

RE6111032 N96104399 L46111158 數據所碩一

工科所碩二

地科所碩一

曾以諾(組長)

楊育維

郭人豪

TABLE OF CONTENTS

01.

目標

02.

領域知識介紹

03.

資料前處理 與視覺化

04.

模型建置與分析

01. 目標

目標

嘗試建立一種用SNPs去預測是否罹 患類風溼性關節炎的模型,我們主要 關注模型recall與f1的表現。

什麼是類風溼性關節炎?

健康2.0

類風濕性關節炎是一種慢性且會不斷進展的發炎性關節疾病 ,全身的關節都可能會受到影響。類風濕性關節炎可能發生在 任何年紀. 但又以中年女性罹病的可能性最高。

會得到這個病的原因是身體的免疫系統出了問題,產生了很 多會破壞身體組織器官的自體抗體及發炎物質(如細胞激素) 。這些抗體或發炎物質除了會攻擊全身的關節以外. 還有可能 侵犯其他的器官, 如肝臟、脾臟、心臟、肺臟、血液系統、神經 系統、淋巴系統等。

藉由抽血檢驗類風濕因子(RF) 與抗環瓜氨酸抗體 (anti-CCP). 類風濕性關節炎病人可分成血清陰性及血清陽 性兩群。

GWAS是什麼?

全基因組關聯研究(GWAS) 使用高通量基因組技術快速掃描 大量受試者的整個基因組, 以發現與特徵或疾病相關的遺傳變 異。了解複雜疾病的遺傳結構在很大程度上依賴於疾病相關變 異的發現和表徵, 例如單核苷酸多態性(SNP) 和拷貝數變異 (CNV)。

什麼是SNP基因分型?

SNP(單核苷酸多態性)基因分型是分析基因組序列變異的技術。

只靠一個鹼基替換為其他鹼基,並且必須至少存在於1%的 人群中,就稱為SNP。

人類的基因組中, 大約500~1000個鹼基中有一個SNP, 而個人或人種之間的序列會出現差距。平均而言, 每一個人約有300萬個SNPs。

什麼是SNP基因分型?

為什麼要對SNP進行分析?

單核苷酸多態性(single nucleotide polymorphism,SNP) 指存在於某一(些)群體、正常個體的基因組DNA中單鹼基的序 列差異. 是生物體基因組中存在的最簡單也是最廣泛的多態 形式. 是人類遺傳基因的多態性在遺傳信息上的本質表現 . 90%以上的遺傳信息是由SNP所引起的。具有分佈廣、數目 多,相對穩定的存在於染色體上等特點。SNP的產生可能會引 起蛋白質表型的改變,所以SNP也是影響人類體質的關鍵 使 人可能特別易於或特別不易患上某些疾病. 或對於治療藥物 的反應性有所差異。當前人們正致力於疾病基因背景的探索 . SNP由於其在基因遺傳研究方面所具備的優勢, 成為人類基 因組計劃完成之後又一研究新熱點。

SNP

為什麼要對SNP進行分析?

人類白細胞抗原(human leucocyte antigen,HLA)基因系統是人類主要組織相容性複合體(major histocompatibility complex, MHC),是人類基因組中與免疫功能相關最密切的一個區域,由於該基因和免疫機制聯繫密切且具有豐富的多態性,決定了其成為探索免疫性疾病基因遺傳背景的一個重點研究靶位。目前,已有研究表明HLA-II類基因中多態性最豐富的HLA-DRB1和DQB1的等位基因與類風濕關節炎的發生相關,但這兩個基因的SNP位點如何與RA相關聯並不清楚。

資料量測方式和設備介紹

利用 illumina 550K 晶片取得全基因體SNPs表現資料。

Illumina 晶片由2部分組成,玻璃基片和微珠。玻璃基片和普通的载玻片大小差不多,上面用光蝕刻出一個個小孔給微珠作為容器,一個小孔放一個微米級大小的微珠。每個微珠表面都偶聯了一種序列的DNA片段,每個微珠上有幾十萬個片段,一個珠子上的片段都是同一種序列。

資料量測方式和設備介紹

利用 illumina 掃描儀掃描螢光標記,透過螢光標記強度的不同和探針設計不同可以區分出不同的SNPs。

相關問題分析方法文獻回顧

- 1. 李怡然 et al. (2015), 基於SNP互作識別類風濕性關節炎的潛在致病基因
 - a. 採用Logistic迴歸模型來檢測互作SNP與疾病的顯著相關性。結果分析疾病相關 SNP對,獲得34個潛在的類風濕性關節炎疾病風險基因,其中 5個為類風濕性關節炎已知疾病基因,16個已有文獻證實為疾病風險基因。結論通過對 SNP間上位效應的研究可獲得類風濕性關節炎新的潛在疾病基因。
 - b. 數據來自WTCCC和UCSC
 - c. 使用p-value判斷相關性, p-value<5x10^(-5)稱為與疾病顯著相關
- 2. Jawaheer et al. (2003), Screening the Genome for Rheumatoid Arthritis Susceptibility Genes
 - a. 許多非 HLA 基因座已顯示與類風濕性關節炎 (RA) 相關的證據 (P < 0.05)。有證據顯示在1號(1p13, 1q43)、6號(6q21)、10號(10q21)、12號(12q12)、17號(17p13)、18號(18q21)染色體上存在基因連鎖。
 - b. 數據來自NARAC招募的受試者
 - c. 判斷標準用 p-value
- 3. Newton et al. (2004), A review of the MHC genetics of rheumatoid arthritis
 - a. 類風濕性關節炎是一種常見的複雜遺傳疾病, 儘管有重要的遺傳因素, 但 除 HLA-DRB1 外, 沒有其他基因被明確證明與該疾病有關。

相關問題分析方法文獻回顧

- 4. Huizinga et al. (2005), Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins
 - a. 目標:類風濕關節炎 (RA) 的主要遺傳風險因素 HLA 區域已被人們所知 25 年。先前的研究表明,在 RA 人群中,攜帶共享表位 (SE) 的 HLA-DRB1 等位基因與針對環狀瓜氨酸肽的抗體(Anti-CCP 抗體)之間存在關聯。作者進行了這項研究,首次比較了健康人群中的 SE 等位基因頻率與有或沒有 Anit-CCP 抗體的 RA 患者中的 SE 等位基因頻率。
 - b. 結論:編碼 SE 的 HLA-DRB1 等位基因對以瓜氨酸 肽抗體為特徵的疾病具有特異性, 表明這些等位基因與 RA 本身不相關, 而是與特定表型相關。
 - c. 數據來自NARAC
 - d. 判斷是否存在關聯之標準為 p-value

資料前處理

與視覺化

資料集介紹

- 1. 來自北美類風濕性關節炎聯盟(NARAC)
- 2. 總樣本數N=2062, 病例數N=868, 對照組(健康)N=1194
- 3. 資料欄位ID, Affection, Sex, DRB1_1, DRB1_2, SENum, SEStatus, AntiCCP, RFUW, SNP位點名稱(545080筆, 包含粒線體DNA位點)

樣本流水編號

DRB1_1

HLA-DRB1 allele 1

Affection

是否患有 類風溼性關節炎 O=unaffected, 1=affected

DRB1_2

HLA-DRB1 allele 2

Sex

性別 F=Female, M=Male

SENum

共享表位的等位基因數量 NN=0, SN=1, SS=2

資料欄位介紹

是否是共享表位的等位基因 yes or no **AntiCCP**

抗環瓜氨酸抗體

RFUW

類風溼性關節炎因子 (IgM RF)

SNPs

545080 SNP-genotype from the Illumina 550K chip

- NaN資料轉換成-1
- SNP資料轉換成數字編碼

https://www.twblogs.net/a/5b8e0

3642b71771883423fda

鹼基	Α
А	0
С	1
G	3
Т	6

G

3

4

5

8

8

9

4

SNP位點介紹

每人平均含有的遺失值個數: 每人含有的遺失值個數(共2062筆)相加再除以2062

每人平均遺失值比例:每人平均含有的遺失值個數除以SNP總數(545080)

每人平均含有的遺失值個數	每人平均遺失值比例
3995.592628516004(個)	0.007330286615755493

資料視覺化

- 1. 欄位[Sex] 女生1493位, 男生569位
- 2. 欄位[Affection] 確診類風溼性關節炎人數868人 未確診類風溼性關節炎人數1194人

資料視覺化

由論文得知顯著SNP rs2476601其鹼基對分布情況

資料視覺化

資料視覺化

資料視覺化

資料視覺化

資料視覺化

模型探討

01.

挑選特徵多寡討 論

02.

線性模型與非線性 模型討論

Build model

- 1. 拆分訓練集與測試集
 - a. 以8:2分配
 - b. 亂數種子為666

模型建置

- 2. 特徵篩選(訓練集資料)
 - a. 模型評估與基準
 - b. 全部挑20個特徵
 - i. DecisionTree
 - ii. SelectFromModel_RandomForest
 - iii. SelectFromModel LGBM
 - iv. SelectFromModel_XGB
 - c. 特徵測試
 - i. LogisticRegression
 - ii. Random Forest
 - d. 全部挑400個特徵
 - i. SelectFromModel LGBM
 - ii. SelectFromModel_XGB
 - e. 全部挑10個特徵
 - i. SelectFromModel_LGBM
 - SelectFromModel_XGB

Evaluate model

模型評估指標

混淆矩陣(confusion matrix)

	「模型預測」為真 (positive)	「與型預測」為非(negative)
「真實情況」為真	true positive (TP)	false negative (FN)
「真實情況」為非	false positive (FP)	true negative (TN)

ROC曲線下方的面積(AUC ROC))

- •因為是在1x1的方格裡求面積, AUC必在0~1之間。
- •假設閾值以上是陽性,以下是陰性
- •若隨機抽取一個陽性樣本和一個陰性樣本,分類器**正確判斷**陽性樣本的值高於陰性樣本之機率=AUC。

Model正確預測的機率值

在正向例子很少的狀況下, 此種指標不適用

$$Precision(精確率) = \frac{TP}{TP + FP}$$

預測正向的狀況中,正確預測的機率值

較在意「預測正向」的答對數量

$$Recall(召回率) = \frac{TP}{TP + FN}$$

實際正向的狀況中,實際為真的機率值 較在意「實際正向」的答對數量

$$F_{\beta} = (1 + \beta^2) \times \frac{precision \times recall}{(\beta^2 \times precision) + recall}$$

① F1-source ($\beta = 1$): precision和recall同等重要

② F2-source ($\beta = 2$): recall比precision重要

③ F0.5-source ($\beta = 0.5$): precision比recall重要

Evaluate model

利用Sex&DRB1&DRB2當成基本的參考 以CatBoost模型為最好 約0.80

Baseline(SEX&DRB1&DRB2)										
estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣				[13, 211], [4, 185]						
accuracy	0.54237	0.47942	0.54237	0.47942	0.78693	0.75061	0.65375	0.77482	0.75303	0.78693
precision	0.00000	0.46717	0.00000	0.46717	0.75897	0.75294	0.67969	0.83333	0.78065	0.79882
recall	0.00000	0.97884	0.00000	0.97884	0.78307	0.67725	0.46032	0.63492	0.64021	0.71429
F1	0.00000	0.63248	0.00000	0.63248	0.77083	0.71309	0.54890	0.72072	0.70349	0.75419
rocauc	0.50000	0.51844	0.50000	0.51844	0.78662	0.74487	0.63864	0.76389	0.74421	0.78125

Train, Test model Colab

模型數據分析

SelectFromModel=DecisionTreeClassifier() 20_feature										
estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[190, 34] [36, 153]	[99, 125] [0, 189]	[190, 34] [32, 157]	[99, 125] [0, 189]	[195, 29] [46, 143]	[196, 28] [26, 163]	[191, 33] [35, 154]	[200, 24] [46, 143]	[202, 22] [41, 148]	[202, 22] [33, 156]
accuracy	0.830508	0.697337	0.840194	0.697337	0.818402	0.869249	0.835351	0.830508	0.847458	0.866828
precision	0.818182	0.601911	0.82199	0.601911	0.831395	0.853403	0.823529	0.856287	0.870588	0.876404
recall	0.809524	1.0	0.830688	1.0	0.756614	0.862434	0.814815	0.756614	0.783069	0.825397
F1	0.81383	0.751491	0.826316	0.751491	0.792244	0.857895	0.819149	0.803371	0.824513	0.850136
rocauc	0.828869	0.720982	0.839451	0.720982	0.813575	0.868717	0.833747	0.824735	0.842427	0.863591
交叉驗證 (recall)	0.809531	0.994737	0.835704	0.783073	0.756615	0.835989	0.814651	0.772262	0.841679	0.799004

Features_select (CPU:56Cores RAM_MAX:192G Time:2m55.408s)
Train ,Test model Colab

模型數據分析

SelectFromModel=RandomForestClassifie() 20_feature										
estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[191 33] [48 141]	[195 29] [47 142]	[193 31] [50 139]	[197 27] [42 147]	[198 26] [45 144]	[201 23] [37 152]	[192 32] [49 140]	[202 22] [44 145]	[203 21] [37 152]	[201 23] [33 156]
accuracy	0.803874	0.815981	0.803874	0.83293	0.828087	0.854722	0.803874	0.840194	0.859564	0.864407
precision	0.810345	0.830409	0.817647	0.844828	0.847059	0.868571	0.813953	0.868263	0.878613	0.871508
recall	0.746032	0.751323	0.73545	0.777778	0.761905	0.804233	0.740741	0.767196	0.804233	0.825397
F1	0.77686	0.788889	0.774373	0.809917	0.802228	0.835165	0.775623	0.814607	0.839779	0.847826
rocauc	0.799355	0.810929	0.798528	0.828621	0.822917	0.850777	0.798942	0.834491	0.855241	0.861359
交叉驗證 (recall)	0.772831	0.772546	0.762447	0.719915	0.788905	0.809531	0.783499	0.740967	0.804979	0.783215

Evaluate model

模型數據分析

Feature_selection_LGBM_20 lgb.LGBMClassifier(application='binary', boosting='gbdt', learning_rate=0.001, n_jobs=-1, max_depth=8)

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[[191, 33] [41, 148]]		[[190, 34]. [38, 151]]	[[155, 69], [76, 113]]	the state of the s	[[199, 25], [30, 159]]				[[202, 22], [31, 158]]
accuracy	0.82082	0.69734	0.82567	0.64891	0.79661	0.86683	0.81356	0.83051	0.84504	0.87167
precision	0.81768	0.60191	0.81622	0.62088	0.78689	0.86413	0.82558	0.85207	0.86982	0.87778
recall	0.78307	1.00000	0.79894	0.59788	0.76191	0.84127	0.75132	0.76191	0.77778	0.83598
F1	0.80000	0.75149	0.80749	0.60916	0.77419	0.85255	0.78670	0.80447	0.82123	0.85637
rocauc	0.81787	0.72098	0.82358	0.64492	0.79390	0.86483	0.80870	0.82515	0.83978	0.86888

Train, Test model Colab

模型數據分析

Feature_selection_XGB_20
xgb.XGBClassifier(n_estimators=1000, learning_rate= 0.001,max_depth=8, n_jobs=-1, objective = 'binary:logitraw')

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[[193, 31] [35, 154]]	,[[99, 125], [0, 189]]	[[192, 32]. [33, 156]]			[[199, 25], [24, 165]]			[[200, 24], [31, 158]]	A Park and the second will
accuracy	0.84019	0.69734	0.84262	0.69734	0.84504	0.88136	0.83777	0.87167	0.86683	0.89104
precision	0.83243	0.60191	0.82979	0.60191	0.87425	0.86842	0.83889	0.86957	0.86813	0.87895
recall	0.81482	1.00000	0.82540	1.00000	0.77249	0.87302	0.79894	0.84656	0.83598	0.88360
F1	0.82353	0.75149	0.82759	0.75149	0.82023	0.87071	0.81843	0.85791	0.85175	0.88127
rocauc	0.83821	0.72098	0.84127	0.72098	0.83937	0.88070	0.83474	0.86971	0.86442	0.89046

Features_select (CPU:56Cores RAM_MAX:192G Time:52m44.273s)

模型數據分析

Logistic Regression模型在特徵數量為400時,會有最佳的表現 Random Forest模型在特徵數量為435時,會有最佳的表現

模型數據分析

Feature_selection_LGBM_400 lgb.LGBMClassifier(application='binary', boosting='gbdt', learning_rate=0.001, n_jobs=-1, max_depth=8)

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[[180, 44], [61, 128]]	[[109, 115], [1, 188]]	[[183, 41], [52, 137]]		[[188, 36], [52, 137]]				[[203, 21], [35, 154]]	
accuracy	0.74576	0.71913	0.77482	0.55932	0.78693	0.86199	0.74576	0.87409	0.86441	0.88620
precision	0.74419	0.62046	0.76966	0.73333	0.79191	0.84737	0.75301	0.88268	0.88000	0.88172
recall	0.67725	0.99471	0.72487	0.05820	0.72487	0.85185	0.66138	0.83598	0.81482	0.86773
F1	0.70914	0.76423	0.74659	0.10784	0.75691	0.84960	0.70423	0.85870	0.84615	0.87467
rocauc	0.74041	0.74066	0.77092	0.52017	0.78208	0.86119	0.73917	0.87111	0.86053	0.88476

模型數據分析

Feature_selection_XGB_400 xgb.XGBClassifier(n_estimators=1000, learning_rate= 0.001,max_depth=8, n_jobs=-1, objective = 'binary:logitraw')

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣		[[133, 91], [10, 179]]								
accuracy	0.81114	0.75545	0.83051	0.61501	0.83051	0.88862	0.80630	0.91041	0.88862	0.91041
precision	0.78757	0.66296	0.81482	0.87500	0.85207	0.86667	0.77949	0.91758	0.88235	0.89583
recall	0.80423	0.94709	0.81482	0.18519	0.76191	0.89418	0.80423	0.88360	0.87302	0.91005
F1	0.79581	0.77996	0.81482	0.30568	0.80447	0.88021	0.79167	0.90027	0.87766	0.90289
rocauc	0.81060	0.77042	0.82928	0.58143	0.82515	0.88905	0.80613	0.90832	0.88740	0.91038

模型數據分析

Random Forest模型在特徵數量為10左右,就會到一定基準

	accuracy_score	precision_score	recall_score	T1_score	teatures_number
0	0.699758	0.718121	0.566138	0.633136	1
1	0.719128	0.644269	0.862434	0.737557	2
2	0.750605	0.726316	0.730159	0.728232	3
3	0.774818	0.740000	0.783069	0.760925	4
4	0.774818	0.740000	0.783069	0.760925	5
5	0.772397	0.723005	0.814815	0.766169	6
6	0.791768	0.744076	0.830688	0.785000	7
7	0.806295	0.776650	0.809524	0.792746	8
8	0.815981	0.783920	0.825397	0.804124	9
9	0.801453	0.780105	0.788360	0.784211	10
10	0.813559	0.807692	0.777778	0.792453	11
11	0.818402	0.823864	0.767196	0.794521	12
12	0.794189	0.802326	0.730159	0.764543	13
13	0.801453	0.805714	0.746032	0.774725	14
14	0.811138	0.813559	0.761905	0.786885	15

模型數據分析

Feature_selection_LGBM_10 lgb.LGBMClassifier(application='binary', boosting='gbdt', learning_rate=0.001, n_jobs=-1, max_depth=8)

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[[189, 35] [42, 147]]	,[[99, 125], [0, 189]]	[[186, 38] [39, 150]]		[[193, 31], [39, 150]]	[[197, 27], [35, 154]]			[[202, 22], [47, 142]]	
accuracy	0.81356	0.69734	0.81356	0.69734	0.83051	0.84988	0.81114	0.82809	0.83293	0.86925
precision	0.80769	0.60191	0.79787	0.60191	0.82873	0.85083	0.80663	0.84302	0.86585	0.86487
recall	0.77778	1.00000	0.79365	1.00000	0.79365	0.81482	0.77249	0.76720	0.75132	0.84656
F1	0.79245	0.75149	0.79576	0.75149	0.81081	0.83243	0.78919	0.80332	0.80453	0.85562
rocauc	0.81076	0.72098	0.81200	0.72098	0.82763	0.84714	0.80812	0.82333	0.82655	0.86748

模型數據分析

Feature_selection_XGB_10 xgb.XGBClassifier(n_estimators=1000, learning_rate= 0.001,max_depth=8, n_jobs=-1, objective = 'binary:logitraw')

estimator	LR	NB	LDA	QDA	DT	RF	SVM	XGB	LGBM	CAT
混淆矩陣	[[189, 35] [42, 147]]	,[[99, 125], [0, 189]]	[[186, 38] [39, 150]]			[[197, 27], [35, 154]]	[[189, 35], [43, 146]]		[[202, 22], [47, 142]]	
accuracy	0.81356	0.69734	0.81356	0.69734	0.83051	0.84988	0.81114	0.82809	0.83293	0.86925
precision	0.80769	0.60191	0.79787	0.60191	0.82873	0.85083	0.80663	0.84302	0.86585	0.86487
recall	0.77778	1.00000	0.79365	1.00000	0.79365	0.81482	0.77249	0.76720	0.75132	0.84656
F1	0.79245	0.75149	0.79576	0.75149	0.81081	0.83243	0.78919	0.80332	0.80453	0.85562
rocauc	0.81076	0.72098	0.81200	0.72098	0.82763	0.84714	0.80812	0.82333	0.82655	0.86748

模型數據分析

就算挑出來的feature不一樣,模型訓練出來成果也很好

LGBM

feature = [,'rs660895', 'rs9275388', 'rs12525276', 'rs12530984', 'rs10508741', 'rs12249377', 'rs8181424', 'rs1704094', 'rs281440', 'MitoG1440A']

XGB

feature = [,'rs187454', 'rs11746584', 'rs2395175', 'rs660895','rs9275388', 'rs910603','rs12530984', 'rs12249377','rs1704094', 'rs4919838']

模型數據分析

Lasso模型在α為0.1時,會有最佳的表現

SelectFromModel(estimator=RandomForest, max_features=435)										
	RF Time:20.9s	LR Time:20.3s								
混淆矩陣	[[202 22] [27 162]]	[[202 22] [27 162]]								
accuracy	0.8814	0.8814								
precision	0.8804	0.8804								
recall	0.8571	0.8571								
f1	0.8686	0.8686								

SelectFromModel(estimator=Lasso(alpha=0.1)) features=51									
	RF Time:1m41.5s	LR Time:1m47.8s							
混淆矩陣	[[201 23] [27 162]]	[[191 33] [28 161]]							
accuracy	0.8789	0.8523							
precision	0.8757	0.8299							
recall	0.8571	0.8519							
f1	0.8663	0.8407							

SelectFromModel(estimator=LassoCV(n_alpha=1, alphas=[0.1], cv=StratifiedKFold(n_splits=5))) features=51								
	RF	Time:2m0.2s	LR	Time:2m10.5s				
混淆矩陣	[[201 23] [27 162]]		[[191 33] [28 161]]					
accuracy	0.8789		0.8523					
precision	0.8757		0.8299					
recall	0.8571		0.8519					
f1	0.8663		0.8407					

Communicate results

結果與討論

- 透過上面的模型結果,我們總結了以下幾點
 - 特徵值的多寡(10個與400個)與模型表現 影響不大(5%以內)
 - 非線性模型挑選出來的變數(SNP)送進非線性模型中,表現比線性模型的結果要來得好

THANKS!

時間: 2022/11/04 18:00-20:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

- 1. 挑選SNP的方法
 - a. 隨機挑選、挑選論文提出的高風險 SNP
- 2. 資料預處理、視覺化細節(郭人豪)
- 3. 決定用logistic regression和naive Bayes為初步模型(楊育維)
- 4. 相關文獻回顧(曾以諾)
- 5. 决定下次討論時間

時間: 2022/11/07 18:00-20:00

人員:楊育維、郭人豪、曾以諾

會議記錄:楊育維

討論內容:

1. 簡報個人部分

2. 討論資料視覺化圖形

3. 模型評估結果討論

時間: 2022/12/02 16:00-18:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

- 1. 修改文獻回顧
- 2. 修改資料視覺化
- 3. 修改模型之輸入變數
- 4. 變數(SNP)選擇

分工內容:

- 1. 優化參考文獻回顧:曾以諾
- 2. EDA與資料視覺化:郭人豪
- 3. 建立模型與結果分析:楊育維

時間: 2022/12/05 17:00~19:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

1. 修改文獻回顧

2. 修改資料視覺化

3. 修改模型之輸入變數

4. 變數(SNP)選擇

5. 模型選擇

分工內容:

1. 優化參考文獻回顧、跑模型:曾以諾

2. EDA與資料視覺化:郭人豪

3. 跑模型與結果分析:楊育維

時間: 2022/12/05 17:30~18:30

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

1. 討論簡報、報告內容

分工內容:

1. 優化參考文獻回顧、跑模型:曾以諾

2. EDA與資料視覺化:郭人豪

3. 跑模型與結果分析:楊育維

時間: 2022/12/24 18:00~20:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

1. 討論簡報、報告內容

分工內容:

- I. 跑Random Forest, Lasso模型:曾以諾
- 2. EDA與資料視覺化修改、跑模型:郭人豪
- 3. 跑Random Forest, Decision Tree模型與結果分析:楊育維

- 分工

- @KJHAO(人豪) 更新資料欄位介紹與統計量表格、畫max feature與metrics的線圖
- @育維 跑DRB1&DRB2當baseline model,跑QDA、NaiveBayes,重新用全部的snp抓snp建模
- @曾以諾 抓chromo 6的snp出來重新建模

時間: 2022/12/26 18:00~19:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

1. 討論簡報、報告內容

分工內容:

- 1. 跑Lasso模型、修改投影片(增加上次討論模型的結果):曾以諾
- 2. 修改計算missing values的表格、尋找應該挑選多少參數的理想值:郭人豪
- 3. 跑XGBoost、LightGBM、CATboost等模型與結果分析:楊育維
 - 今日討論
 - @曾以諾: 改投影片、放模型結果、將6號用lasso挑看看變數
 - @育維: 改baseline model輸入變數、和剩下的模型
 - @KJHAO(人豪): 試試看隨機森林的最佳max_features數、計算missing value的表格

時間: 2022/12/26 18:00~19:00

人員:楊育維、郭人豪、曾以諾

會議記錄:曾以諾

討論內容:

1. 討論簡報、報告內容

分工內容:

- 1. 跑Lasso模型、修改投影片(增加上次討論模型的結果):曾以諾
- 2. 修改計算missing values的表格、尋找應該挑選多少參數的理想值:郭人豪
- 3. 跑XGBoost、LightGBM、CATboost等模型不同特徵數量討論:楊育維