

Procesamiento de señales, fundamentos

Maestría en sistemas embebidos Universidad de Buenos Aires MSE 5Co2O2O

Clase 1 - Introducción

Ing. Pablo Slavkin slavkin.pablo@gmail.com wapp:011-62433453

Plan de vuelo

Ud. Está aquí

Colaboradores

- Gonzalo Lavigna <gonzalolavigna@gmail.com>
- Guillermo Guichal <guillermo.guichal@gmail.com>
- Federico Giordano Zacchigna <federico.zacchigna@gmail.com>

Plan de vuelo

Ud. Esta aquí

- 1. Python, numpy
 - CIAA
 - Sampleo
 - Fourier, DFT
- 2. Python, numpy
 - CIAA
 - VHDL, FPGA
 - Filtrado y ventaneo
- 3. Python
 - VHDL, FPGA
 - Comunicaciones
 - Implementación
 - Hi-Speed

Bibliografía

Libros, links y otro material

[1] Steven W. Smith.

The Scientist and Engineer's Guide to Digital Signal Processing
Second Edition. 1999.

[2] Allen B. Downey
Think DSP - Digital Signal Processing in Pytho

[3] Richard Lyons.Understanding digital signal processing.Third edition.

- 4] Boaz Porat. Digital Processing of Random Signals: Theory and Methods. Digital Processing of Random Signals: Theory and Methods.
- [5] Allen B. Downey Think Python, 2nd Edition, - How to Think Like a Computer Scientist
- [6] Emmanuel C Ifeachor, Barrie W Jervis
 Digital Signal Processing, A practial approach.
- [7] NW. Taylor, Francis Group, LLC.
 Introduction to Python Programming.
- [8] Matt Harrison
 Illustrated guide to python 3

Enuestas

Encuesta anónima clase a clase

Propiciamos este espacio para compartir sus sugerencias, criticas constructivas, oportunidades de mejora y cualquier tipo de comentario relacionado a la clase.

Encuesta anónima

https://forms.gle/1j5dDTQ7qjVfRwYo8

Link al material de la material

https://drive.google.com/drive/u/1/folders/1TIR2cgDPchL_4v7DxdpS7pZHtjKq38CK

Metodo de evaluacion

- 3 pts Examen
- 3 pts TP Python
- 4 pts Proyecto final

Evaluación

Proyecto final

- Deberá incluir algún tipo de procesamiento Ejemplos:
 en hardware. ej. DFT, FIR, IIF, etc.
- Puede utilizar el ADC para samplear, DAC para reconstruir y/o canales de comunicación para adquirir datos previamente digitalizados
- Presentación de 10 minutos.
- Deberá funcionar!

- Filtrado y/o procesamiento de audio, señales biomédicas, etc.
- Técnicas de compresión en dominio de la frecuencia
- Aplicaciones con acelerómetro, magnetómetro, T+H

porque digital?

digital vs analógico

- digital
 - Reproducibilidad
 - Tolerancia de componentes
 - Partidas todas iguales
 - Componentes no envejecen
 - Fácil de actualizar
 - Soluciones de un solo chip
- analógico
 - Gran rango dinamico de entrada,
 - Alto ancho de banda
 - Alta potencia
 - Baja latencia

Señales y sistemas

Que son?

Señal

Una señal, en función de una o más variables, puede definirse como un cambio observable en una entidad cuantificable

Sistema

Un sistema es cualquier conjunto físico de componentes que actúan en una señal, tomando una o más señales de entrada, y produciendo una o más señales de salida.

Señales y sistemas

Tipos de señales

- De tiempo continuo
- Pares
- Periódicas
- De energía
- Reales

- De tiempo discreto
- Impares
- Aperiódicas
- De potencia
- Imaginarias

Señales y sistemas

Tipos de señales

• De tiempo continuo

Tiene valores para todos los puntos en el tiempo en algún intervalo (posiblemente infinito) De tiempo discreto

Tiene valores solo para puntos discretos en el tiempo

Generación de señales en Python

Continuo? vs discreto

```
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(1)
Nc=1000
tc = np.linspace(0, 1, Nc)
ax1 = fig.add_subplot(2,1,1)
ax1.plot(tc, np.sin(2*np.pi*tc),"b-")
ax1.grid(True)
Nd=10
td = np.linspace(0, 1, Nd)
ax2 = fig.add_subplot(2,1,2)
ax2.plot(td, np.sin(2*np.pi*td),"ro")
ax2.grid(True)
plt.show()
```


Podrían pensarse como muestras de una señal de tiempo continuo x[n] = x(nT) donde n es un número entero y **T** es el período de muestreo.

Señales periódicas

Continua periódica

si existe un $T_0 > 0$, tal que $x(t + T_0) = x(t)$, para todo t

 T_0 es el período de x(t) medido en tiempo, y $f_0 = 1/T_0$ es la frecuencia fundamental de x(t)

Discreta periódica

si existe un entero $N_0 > 0$ tal que $x[n + N_0] = x[n]$ para todo n

 N_0 es el período fundamental de x[n] medido en espacio entre muestras y $F_0 = \Delta t/N_0$ es la frecuencia fundamental de x[n]

Sistema

Un sistema es cualquier conjunto físico de componentes que actúan en una señal, tomando una o más señales de entrada, y produciendo una o más señales de salida.

En ingeniería, a menudo la entrada y la salida son señales eléctricas.

Linealidad

Un sistema es lineal cuando su salida depende linealmente de la entrada. Satisface el principio de superposición.

$$y(t) = e^{x(t)}$$
$$y(t) = \frac{1}{2}x(t)$$

Invariantes en el tiempo

Invariantes en el tiempo

Un sistema es invariante en el tiempo cuando la salida para una determinada entrada es la misma sin importar el tiempo en el cual se aplica la entrada

sin importar el tiempo en el cual se aplica la entrada
$$v(t) = v(t) * cos(t)$$

Causalidad

Sistema causal

Un sistema es causal cuando la salida depende solo de los valores presentes y pasados de la entrada

$$y(t) = x(t+1)$$
$$y(t) = x(t-2)$$

Lineales invariantes en el tiempo

Un sistema es LTI cuando satisface las 2 condiciones anteriores, de linealidad y de invariancia en el tiempo.

$$\alpha x_1(t-t_1) + \beta x_2(t-t_2)$$
 \longrightarrow LTI $\Rightarrow \alpha y_1(t-t_1) + \beta y_2(t-t_2)$

17/42

*** LTI ***

En este curso, solo estudiaremos sistemas lineales invariantes en el tiempo.

Fidelidad senoidal

En todo sistema LTI para una entrada senoidal la salida es siempre senoidal.

Linealidad estática

En todo sistema LTI para una entrada constante (DC) la salida es siempre la entrada multiplicada por una constante.

ADC

Bloque incompleto de procesamiento

Que falta?

Aliasing Disco Giratorio

Aliasing

Simulando en Python

Diferentes frecuencias de sampleo para capturar una señal de 50hz

Aliasing

Simulando en Python

Diferentes frecuencias de sampleo para capturar una señal de 50hz

```
import numpy as np
import matplotlib.pyplot as plt
signalFrec = 50
NC
           = 1000
fsC = 3000
tC = np.arange(0,NC/fsC,1/fsC)
signalC = np.sin(2*np.pi*signalFrec*tC)
fsĎ
           = [200, 102, 80, 43]
fia
     = plt.figure()
           = np.sin(2*np.pi*signalFrec*tC)+0.5*np.sin(2*np.pi*210*tC)
signalC
for i in range(len(fsD)):
    contiAxe = fig.add subplot(4,1,i+1)
    plt.plot(tC,signalC,'r-',tC[::fsC//fsD[i]],signalC[::fsC//fsD[i]],'b-o')
    contiAxe.set ylabel(fsD[i])
plt.show()
```

Aliasing

Simulando en Python

Que pasa si se suma ruido de alta frecuencia?

ADC

Bloque genérico de procesamiento

Agregamos el filtro antialising

Teorema de sampleo

Teorema de Shannon

Teorema

La reconstrucción exacta de una señal periódica continua en banda base a partir de sus muestras, es matemáticamente posible si la señal está limitada en banda y la tasa de muestreo es superior al doble de su ancho de banda

$$x(t) = \sum_{n=-\infty}^{\infty} x_n rac{\sin\pi(2Bt-n)}{\pi(2Bt-n)}.$$

Teorema de sampleo

Teorema de Shannon

Sampleo e interpolado

```
#!/usr/bin/ip3
import numpy as np
import matplotlib.pyplot as plt
signalFrec = 50
NC = 300
fsC = 1000
tC = np.arange(0,NC/fsC,1/fsC)
signalC = np.sin(2*np.pi*signalFrec*tC)
#signalC = np.sin(2*np.pi*signalFrec*tC)+0.5*np
    .\sin(2*np.pi*210*tC)
fsD = np.array([200, 102, 80, 45])
fig = plt.figure()
def interpolate(x, s, u):
    y=[]
```

```
B = 1/(2*(s[1] - s[0]))
    for t in u:
        prom=0
        for n in range(len(x)):
           prom+=x[n]*np.sinc(2*B*t-n)
        v.append(prom)
    return v
for i in range(len(fsD)):
    contiAxe = fig.add subplot(4,1,i+1)
    Xt=interpolate(signalC[::fsC//fsD[i]],tC[::
        fsC//fsD[i]l.tC)
    plt.plot(tC,signalC,'r-',tC,Xt,'b-')
    contiAxe.set ylabel(fsD[i])
plt.show()
```

Teorema de sampleo

Teorema de Shannon Sampleo e interpolado

Sampleo

Filtro Antialias

FAA

Filtro analógico Pasabajos que elimina o al menos mitiga el efecto de aliasing

Sampleo

Filtro reconstructor

Filtro reconstructor

Filtro analógico Pasabajos que suaviza la salida del DAC eliminando frecuencias mas alla de la Fs/2

Sampleo

Digitado

Digitado o cuantizado

Proceso de asignar un patron de bits a una muestra

Ejemplo de cuantización

Diferentes formas de onda cuantizadas

Cuantización en python


```
import numpy as np
import scipy.signal as sc
import matplotlib.pyplot as plt
signalFrec = 1
           = 200
NC
fsC
           = 100
           =\bar{2}
Rits
tC
           = np.arange(0,NC/fsC,1/fsC)
signalC
           = np.array([(2**7-1)*np.sin(2*np.pi*signalFrec*tC)])
             (2**7-1)*sc.sawtooth(2*np.pi*tC,1),
             (2**7-1)*np.random.normal(0,1,len(tC)),
             100*sc.square(2*np.pi*tC,0.5)],dtype='int16')
signalQ = np.copy(signalC)
signalQ += (2**(8-Bits))//2
signal() &= 0xFFFF<<(8-Bits)
fia
         = plt.figure()
for i in range(len(signalC)):
    contiAxe = fig.add subplot(4,1,i+1)
    plt.step(tC.signalO[i].'r-')
    plt.plot(tC.signalC[i].'b-')
plt.show()
```

Histogramas

Histogramas de ruido para cada señal

Histogramas

Histogramas en Python

```
import numpy as np
import scipy.signal as sc
import matplotlib.pyplot as plt
signalFrec = 1
NC.
           = 500
           = 100
fsC
           = 2
Bits
          = np.arange(0,NC/fsC,1/fsC)
signalC
           = np.array([(2**7-1)*np.sin(2*np.pi*signalFrec*tC),
             (2**7-1)*sc.sawtooth(2*np.pi*tC,1),
             (2**7-1)*np.random.normal(0.1.len(tC)).
             100*sc.square(2*np.pi*tC,0.5)],dtype='int16')
signal0 = np.copv(signalC)
signal0 += (2**(8-Bits))//2
signalQ &= 0xFFFF<<(8-Bits)
fiq
         = plt.figure()
for i in range(len(signalC)):
    contiAxe = fig.add subplot(4,2,2*i+1)
    plt.step(tC.signalC[i]-signalO[i].'r-')
    contiAxe = fig.add subplot(4,2,2*i+2)
    plt.hist(signalC[i]-signalO[i])
plt.show()
```


Modelo estadístico

En el caso de que se cumplan las siguientes premisas:

- La entrada se distancia de los diferentes niveles de cuantización con igual probabilidad
- El error de cuantización NO esta correlacionado con la entrada
- El cuantizador cuanta con un numero relativamente largo de niveles
- Los niveles de cuantización son uniformes

Se puede considerar la cuantización como un ruido aditivo a la señal según el siguiente esquema:

Función densidad de probabilidad

$$\int_{-\frac{lsb}{2}}^{\frac{lsb}{2}} p(e)de = 1$$

Potencia de ruido de cuantización

$$P_{q} = \int_{-\frac{lsb}{2}}^{\frac{lsb}{2}} e^{2} p(e) de$$

$$P_{q} = \int_{-\frac{lsb}{2}}^{\frac{lsb}{2}} e^{2} \frac{1}{lsb} de$$

$$P_{q} = \frac{1}{lsb} \left(\frac{e^{3}}{3}\Big|_{-\frac{lsb}{2}}^{\frac{lsb}{2}}\right)$$

$$P_{q} = \frac{1}{|sb|} \left(\frac{\left(\frac{|sb|}{2}\right)^{3}}{3} - \frac{\left(\frac{-|sb|}{2}\right)^{3}}{3} \right)$$

$$P_{q} = \frac{1}{|sb|} \left(\frac{|sb|^{3}}{24} + \frac{|sb|^{3}}{24} \right)$$

Potencia de ruido de cuantización

$$P_q = \frac{lsb^2}{12}$$

Relación señal a ruido

$$input = \frac{Amp}{2} \sin(t)$$

$$P_{input} = \frac{1}{T} \int_{0}^{T} \left(\frac{Amp}{2} \sin(t)\right)^{2} dt$$

$$P_{input} = \frac{1}{T} \left(\frac{Amp}{2}\right)^{2} * \left(\frac{t}{2} - \frac{\sin(2t)}{4}\right) \Big|_{0}^{T}$$

$$P_{input} = \frac{Amp^{2}}{4T} \frac{T}{2}$$

$$P_{input} = \frac{Amp^{2}}{8}$$

$$Isb = \frac{Amp}{2^{N}}$$

$$P_{ruido} = \frac{Isb^{2}}{12}$$

$$P_{ruido} = \frac{\left(\frac{Amp}{2^{N}}\right)^{2}}{12}$$

$$P_{ruido} = \frac{Amp^{2}}{12 * 2^{2N}}$$

Relación señal a ruido

$$SNR = 10 \log_{10} \left(\frac{P_{input}}{P_{ruido}} \right)$$

$$SNR = 10 \log_{10} \left(\frac{\frac{Amp^2}{8}}{\frac{Amp^2}{12 * 2^{2N}}} \right)$$

SNR =
$$10 \log_{10} \left(\frac{3 * 2^{2N}}{2} \right)$$

SNR = $10 \log_{10} \left(\frac{3}{2} \right) + 10 \log_{10} \left(2^{2N} \right)$

SNR

$$SNR = 1.76 + 6.02 * N$$

 $SNR_{N=10} \approx 62dB$ $SNR_{N=11} \approx 68dB$

Densidad espectral de potencia de ruido

Si consideramos la potencia de ruido uniformemente distribuido en todo el espectro desde -Fs hasta +Fs, nos queda que:

Densidad espectral de potencia de ruido

$$S_{espectral}(f) = \frac{P_q}{Fs}$$

Entonces como puedo mejorar la SNR de un sistema?

Sobremuestreo

Densidad espectral de potencia de ruido

Oversampling x4

$$S_{espectral}(f) = \frac{P_q}{4 * Fs}$$

Que hago si tengo un AD de 10bits y deseo una SNR de 68dB? $SNR_{10} \approx 62dB$ Pero si sobremuestreo a 4x obtengo 6dB extras

Dithering

Dithering

Tecnica de agregado de ruido antes del ADC para prevenir que señales con poca variacion sean samoleadas siempre con el mismo valor

