Plan du cours

I.	Activités d'introduction	1				
н.	Définition et unités . Déterminer l'aire d'une figure					
III.						
	1. 1ère Méthode	3				
	2 2ème Méthode	3				

I.	Activités d'introduction

Définition et unités 11.

Définition

L'aire d'une "figure fermée" est la mesure de sa surface, c'est à dire de la partie recouvrant l'intérieur de cette figure.

L'unité d'aire du Système international de mesure est **le mètre carré**, noté m^2 .

Les mesures d'aires

km²		hm ²		dam ²		m ²		dm ²		cm ²		mm ²	
d	u	d	u	d	u	d	u	d	u	d	u	d	u

On a donc :

$$1km^2 = \dots hm^2$$

$$1hm^2 = \dots dam^2$$

$$1 \, dam^2 = \dots m^2$$

$$1m^2 =dm^2$$

$$1dm^2 = \dots cm^2$$

$$1cm^2 = \dots mm^2$$

$$1km^2 = \dots m^2$$

$$1m^2 = \dots mm^2$$

Les unités agraires : (qui servent à évaluer la grandeur des terrains, des champs, des bois ...)

- l'hectare (ha)

$$1ha = 1hm^2$$

- **l'are (a)**
$$1a = 1 dam^2$$

$$1ca = 1m^2$$

Exercice d'application 1 -

Compléter les égalités suivantes :

$$4hm^2 =m^2$$

$$30a =dm^2$$

$$13cm^2 = \dots m^2$$

$$94.5cm^2 = \dots mm^2$$

$$1.5ha =km^2$$

$$0.0015 dam^2 = \dots m^2$$

III. Déterminer l'aire d'une figure

1. 1ère Méthode

On choisit le carreau du quadrillage comme unité d'aire.

L'aire \mathcal{A} d'une surface quelconque est égale au nombre de carreaux du quadrillage qu'elle recouvre.

Exemple:

Sachant qu'un carré fait $1\ cm$ de côté, quelle est l'aire du polygone ci-contre :

.....

2. 2ème Méthode

On peut aussi utiliser une formule.

Aire du rectangle : $A = I \times L$

Le disque

Aire du disque : $A = \pi \times r^2$

Aire du carré : $A = c^2$

Le triangle

Aire du triangle : $A = \frac{b \times h}{2}$

 \triangle

Avant d'effectuer les calculs, il faut vérifier que les longueurs sont exprimées dans la même unité!

•	Exemples :
	1. Quelle est l'aire d'un carré de côté 2,5 cm?
	2. Quelle est l'aire d'un rectangle de longueur 0,5 cm et de largeur 1 cm?
	3. Quelle est l'aire d'un cercle de 20 m de diamètre?

Exercice d'application 2

1. Détermine l'aire des deux surfaces grisées (Les figures ne sont pas en vraie grandeur).

