Data Preprocessing

1.Import the Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2.import dataset

```
In [41]:
          df=pd.read_csv("Titanic-Dataset.csv")
          df.head()
In [79]:
Out[79]:
             Survived
                       Pclass
                                 Sex Age SibSp
                                                  Parch
                                                            Fare
                                                                 Embarked
          0
                    0
                                                          7.2500
                                                                          S
                           3
                                male
                                      22.0
          1
                    1
                                      38.0
                                                                         C
                            1 female
                                                         65.6344
          2
                    1
                                                                          S
                                               0
                           3 female
                                      26.0
                                                          7.9250
          3
                              female
                                     35.0
                                                      0 53.1000
                                                                         S
                                                                          S
                    0
                                               0
                                male 35.0
                                                          8.0500
```

In [4]: df.describe()

Out[

4]:	PassengerId		Survived Pclass		Age	SibSp	Parch	Fare	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
$dtynes \cdot float64(2) int64(5) object(5)$							

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [6]: df.corr()

C:\Users\saisa\AppData\Local\Temp\ipykernel_17732\1134722465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver sion, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [7]: df.corr().Fare.sort_values(ascending=False)

C:\Users\saisa\AppData\Local\Temp\ipykernel_17732\60082530.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr().Fare.sort_values(ascending=False)

Out[7]:

Fare 1.000000
Survived 0.257307
Parch 0.216225
SibSp 0.159651
Age 0.096067
PassengerId 0.012658
Pclass -0.549500
Name: Fare, dtype: float64

3.checking for null values

```
In [8]: df.isnull().any()
```

```
PassengerId
                         False
Out[8]:
         Survived
                         False
         Pclass
                         False
                         False
         Name
         Sex
                         False
         Age
                          True
         SibSp
                         False
         Parch
                         False
         Ticket
                         False
         Fare
                         False
         Cabin
                          True
         Embarked
                          True
         dtype: bool
```

In [9]: df.isnull().sum()

PassengerId 0 Out[9]: Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 0 Fare Cabin 687 Embarked 2 dtype: int64

In [10]: sns.heatmap(df.isnull(),yticklabels=False,cbar=False)

Out[10]: <Axes: >


```
In [43]: df.drop(['PassengerId','Name','Ticket','Cabin'],axis=1,inplace=True)
    df.head()
```

Out[43]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	С
	2	1	3	female	26.0	0	0	7.9250	S
	3	1	1	female	35.0	1	0	53.1000	S
	4	0	3	male	35.0	0	0	8.0500	S

```
df['Age']=df['Age'].fillna(df['Age'].mode()[0])
In [44]:
         df['Embarked']=df['Embarked'].fillna(df['Embarked'].mode()[0])
In [45]:
         df.isnull().any()
In [46]:
         Survived
                      False
Out[46]:
         Pclass
                      False
         Sex
                      False
                      False
         Age
         SibSp
                      False
         Parch
                      False
         Fare
                      False
                      False
         Embarked
         dtype: bool
```

4.data visualization

```
In [47]: plt.scatter(df["Pclass"],df["Fare"])
Out[47]: <matplotlib.collections.PathCollection at 0x1f37d22cf10>
```


In [48]: sns.pairplot(df)

Out[48]: <seaborn.axisgrid.PairGrid at 0x1f304ef9310>

In [49]: sns.heatmap(df.corr(),annot = True)

C:\Users\saisa\AppData\Local\Temp\ipykernel_17732\2221401063.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver sion, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(),annot = True)

Out[49]: <Axes: >

In [50]: sns.barplot(x=df["Pclass"],y=df["Fare"],ci=0)

C:\Users\saisa\AppData\Local\Temp\ipykernel_17732\1541779687.py:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Pclass"],y=df["Fare"],ci=0)

Out[50]: <Axes: xlabel='Pclass', ylabel='Fare'>

5.outlier detection

```
In [51]: df.head()
Out[51]:
             Survived Pclass
                                Sex Age SibSp Parch
                                                           Fare Embarked
          0
                    0
                           3
                               male 22.0
                                               1
                                                         7.2500
                                                                        S
                                                     0
                                                                        C
                           1 female
                                     38.0
                                                     0 71.2833
                                                                        S
          2
                    1
                           3 female 26.0
                                              0
                                                        7.9250
                                                                        S
          3
                           1 female 35.0
                                                     0 53.1000
          4
                    0
                           3
                               male 35.0
                                              0
                                                         8.0500
                                                                        S
```

```
In [55]: sns.boxplot(df["Fare"])
```

Out[55]: <Axes: >


```
In [57]: Q1 = df['Fare'].quantile(0.25)
   Q3 = df['Fare'].quantile(0.75)
   IQR = Q3 - Q1
   whisker_width = 1.5
   Fare_outliers = df[(df['Fare'] < Q1 - whisker_width*IQR) | (df['Fare'] > Q3 + whisker_outliers.head()
```

```
Survived Pclass
                                  Sex Age SibSp Parch
                                                              Fare Embarked
Out[57]:
                                                                            C
            1
                                       38.0
                                                            71.2833
                      1
                             1 female
                                                 1
                                                        0
                                                                            S
           27
                      0
                             1
                                 male 19.0
                                                 3
                                                        2 263.0000
           31
                      1
                             1 female 24.0
                                                 1
                                                                            C
                                                        0 146.5208
                                                                            C
           34
                      0
                             1
                                 male 28.0
                                                 1
                                                        0
                                                            82.1708
                                                                            C
                      1
           52
                             1 female 49.0
                                                 1
                                                        0
                                                            76.7292
```

```
In [58]: fare_mean = df['Fare'].mean()
  fare_std = df['Fare'].std()
  low= fare_mean -(3 * fare_std)
  high= fare_mean + (3 * fare_std)
  fare_outliers = df[(df['Fare'] < low) | (df['Fare'] > high)]
  fare_outliers.head()
```

```
Out[58]:
                Survived Pclass
                                   Sex Age SibSp Parch
                                                               Fare
                                                                     Embarked
                                                                             S
            27
                       0
                                  male 19.0
                                                  3
                                                         2 263.0000
                              1
            88
                                                                             S
                       1
                                female 23.0
                                                  3
                                                         2 263.0000
                                                                             C
           118
                       0
                              1
                                  male 24.0
                                                  0
                                                           247.5208
           258
                              1 female 35.0
                                                  0
                                                         0 512.3292
                                                                             C
           299
                                                                             C
                       1
                              1 female 50.0
                                                  0
                                                         1 247.5208
```

```
In [61]: Q1 = df['Fare'].quantile(0.25)
   Q3 = df['Fare'].quantile(0.75)
   IQR = Q3 - Q1
   whisker_width = 1.5
   lower_whisker = Q1 -(whisker_width*IQR)
   upper_whisker = Q3 +(whisker_width*IQR)
   df['Fare']=np.where(df['Fare']>upper_whisker,upper_whisker,np.where(df['Fare']<lower_whisker)</pre>
```

```
In [63]: sns.boxplot(df['Fare'])
```

Out[63]: <Axes: >

6.Splitting Dependent and independent variables

```
X=df.drop(columns=["Fare"],axis=1)
In [64]:
          X.head()
Out[64]:
             Survived
                       Pclass
                                Sex Age SibSp
                                                 Parch Embarked
                                                                S
          0
                    0
                           3
                                     22.0
                                                     0
                               male
                           1 female
                                     38.0
                                                               C
                                                                S
          2
                    1
                                     26.0
                                              0
                                                     0
                           3 female
                                                                S
                             female
                                     35.0
                    0
                                                     0
                                                                S
                               male 35.0
                                              0
```

```
In [65]: y=df["Fare"]
y.head()

Out[65]: 0    7.2500
1    65.6344
2    7.9250
3    53.1000
4    8.0500
Name: Fare, dtype: float64
```

7.Encoding

```
In [66]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
X["Sex"]=le.fit_transform(X["Sex"])
In [67]:
          X.head()
Out[67]:
             Survived
                      Pclass Sex Age SibSp Parch Embarked
                                                           S
          0
                   0
                          3
                               1
                                 22.0
                                          1
                                                 0
          1
                              0 38.0
                                                0
                                                           C
          2
                   1
                          3
                                          0
                                                0
                                                           S
                              0 26.0
          3
                              0 35.0
                                                0
                                                           S
                   0
                                          0
                                                0
                                                           S
          4
                          3
                               1 35.0
          mapping=dict(zip(le.classes_,range(len(le.classes_))))
In [68]:
          mapping
          {'female': 0, 'male': 1}
Out[68]:
          X["Embarked"]=le.fit transform(X["Embarked"])
In [71]:
          X.head()
                      Pclass Sex Age SibSp Parch Embarked
Out[71]:
             Survived
                   0
                                                           2
          0
                          3
                               1
                                 22.0
                                                0
          1
                   1
                              0 38.0
                                          1
                                                0
                                                           0
          2
                   1
                          3
                                                           2
                                          0
                                                 0
                              0 26.0
          3
                   1
                          1
                              0 35.0
                                          1
                                                0
                                                           2
                   0
                                                           2
                          3
                               1 35.0
                                          0
                                                 0
In [72]:
          print(le.classes_)
          ['C' 'Q' 'S']
In [73]:
          mapping=dict(zip(le.classes_,range(len(le.classes_))))
          mapping
          {'C': 0, 'Q': 1, 'S': 2}
Out[73]:
In [78]:
          df.Embarked.value counts()
               646
Out[78]:
               168
          Name: Embarked, dtype: int64
```

8. Feature Scaling

```
In [69]:
         from sklearn.preprocessing import MinMaxScaler
         ms= MinMaxScaler()
         X_Scaled=pd.DataFrame(ms.fit_transform(X),columns=X.columns)
In [74]:
         X_Scaled.head()
In [75]:
```

9/20/23, 6:33 PM Assignment 15 sep

Out[75]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
	0	0.0	1.0	1.0	0.271174	0.125	0.0	1.0
	1	1.0	0.0	0.0	0.472229	0.125	0.0	0.0
	2	1.0	1.0	0.0	0.321438	0.000	0.0	1.0
	3	1.0	0.0	0.0	0.434531	0.125	0.0	1.0
	4	0.0	1.0	1.0	0.434531	0.000	0.0	1.0

9. Train, test split

```
In [76]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(X_Scaled,y,test_size =0.2,random_s)
In [77]: print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)
    (712, 7) (179, 7) (712,) (179,)
```