

TinTin: Tiny In-Network Transport for High Precision INdustrial Communication

Kiran Makhijani*, Bhaskar Kataria*, Shashank D.*, Deepta Devkota, <u>Mohit P. Tahiliani*</u>

*Dept. of Computer Science & Engineering, NITK Surathkal, Karnataka, India

#Futurewei Technologies, Santa Clara, USA

tahiliani@nitk.edu.in

Outline of the presentation

- □ Introduction
 - Industrial IoT
- ☐ High Precision Communication
 - Characteristics
 - Motivation for TinTin
- ☐ TinTin Protocol Design
 - Design Overview and Principles
 - High-Level Architecture
 - Protocol Operations
- ☐ TinTin Implementation Details
 - TinTin with Time Aware Network (New IP)
 - TinTin and HPC Contract.
 - Proof of Concept of TinTin
- ☐ Conclusions and Future Work

Introduction

Introduction

- ☐ Industry 4.0
 - ☐ Support for different types of connections (short lived, long lasting)
 - ☐ Support for high precision communication
 - ☐ More stringent requirements than real-time operations
- ☐ Critical requirements from the network
 - ☐ High reliability in machine-centric data delivery
 - ☐ Fine-grained customisation of traffic
 - ☐ Guarantees of data delivery
 - ☐ Lossless traffic flow between the endpoints
 - ☐ Digital Sovereignty and Preservation of Privacy
 - ☐ Digital Twins and Cyber Physical Systems

Source: ITU-T

Introduction (contd ...)

- ☐ Recent innovations in network technologies!
 - ☐ New IP at Layer 3
 - ☐ Deterministic Networking (DetNet) at Layer 3
 - ☐ Time Sensitive Networking (TSN) at Layer 2
 - ☐ What is the major challenge?
 - ▶ Mechanisms for endpoints to leverage these new capabilities
- ☐ Need for a new transport protocol
 - ☐ that can utilize the new network services
 - □ satisfy the requirements of industrial applications
 - ▶ For example: meet the latency and timeliness guarantees

1st Workshop on New IP and Beyond - Organized by IEEE ICNP 2022

High Precision Communication

Characteristics

- ☐ Although less constrained than IoT, the communication in Industrial IoT is characterized with the following:
 - ☐ Time-critical
 - Every operation is executed in or at a specific time precisely without complex state management
 - ☐ Safety-critical and Reliable
 - ▶ The accuracy of each command received is utmost critical; the data cannot be lost or arrive incorrectly
 - ☐ Resource-constrained
 - ▶ It is extremely important to maintain a light-weight network stack on field-devices
 - ☐ Stateless and Session-free
 - ▶ Neither session based QoS is useful nor maintenance of long-lived sessions on endpoints

Motivation for TinTin

- ☐ High Precision Industrial Communication Systems: designed with extreme care and redundancy
 - ▶ The traffic profiles are well-defined and structured.
 - ▶ Most of the traffic consists of 'commands' and is low volume
- ☐ Main goal: design a transport protocol for industrial devices that are:
 - ▶ Constrained with limited CPU and RAM capability
 - Not power constrained
- ☐ Assumption: communication medium is not prone to interference
 - ▶ there are no packet losses due to interference in the medium
- ☐ Property: relies on and leverages evolving new network technologies
 - ▶ For example: New IP

TinTin Protocol Design

Design Overview and Principles

- ☐ Adopts a modular approach
 - ▶ Both long and short protocol control headers are supported
- ☐ Supports features that are suitable for industrial networks:
 - ▶ Closed-control loop
 - ▶ Publish/Subscribe messages
 - ▶ Time-centric packet delivery
- ☐ Assumption: high precision communication network is available to support time-based end-to-end delivery.
- ☐ A lightweight transport protocol with time-aware network characteristics
 - ☐ Uses a 'magic token' instead of source/destination ports
 - ☐ TinTin control header introduces a 'message-type' concept

Design Overview and Principles (contd ...)

- ☐ Key considerations of TinTin protocol:
 - ▶ *Packet Delivery*: connectionless protocol with application driven reliability, modular choice of long/short headers
 - Enhanced Reliability: due to additional time based parameters provided by TinTin, does not send an ACK unless requested
 - Congestion Control: industrial networks are well managed, so TinTin relies on the network to handle congestion or expects pacing at the server side
 - ▶ *Packet Ordering*: notion of a flow is not necessary in IIoT, most of the messages contain short commands, sequence numbers are provided to maintain 'order among a group of commands'.

Design Overview and Principles (contd ...)

- ☐ Key considerations of TinTin protocol (contd ...):
 - Dealing with Packet losses:
 - → physical media errors (rely on sender-side timeouts?)
 - → network congestion (in-network support to handle congestion?)
 - ⇒ connectivity-loss/non-reachability (heart beats from application?)
 - → failures on the receiving side (isolate the end device?)
 - ▶ Dealing with Pub/Sub Pattern: broker-free end-to-end communication

by using asymmetric and semantic addressing structures

High-Level Architecture

TinTin Architecture and Communication Model

Terminology:

- ☐ TinTin Endpoint: field-devices, application servers or controllers
- ☐ Authorized node: that is verified and granted access to by a field device
- ☐ TinTin Protocol Data Unit (T-PDU): the transport control header of TinTin
- ☐ Payload: service or application data in T-PDU

Protocol Operations

Three top-level pairs of directive(s):

- ☐ Authorize & Grant
- ☐ Async & Reply
- ☐ Post

Minimal Header Fields:

- ☐ ACS: Application Connection Signature
- ☐ CTRL: placeholder for specific extension flags or to indicate length of ACS

Directives

1	0	8		16		24	32
	HLEN	(CTRL	R	MSG=AUTH	←	
	Authorized Connection Signature (ACS)→ MLEN						
	(Verify Reject) Refresh Withdraw Magic-Context						
	Challenge Private Key (Response)						
	Traffic Profile Parameters (Result)						
Authorize and Async Headers							
	0		8	1	16	24 -	32
	HDR-LEN		CTRL-FLAGS=	0 1	TYPE.ASYNC	←	
	Connection Authentication Control → MSG.LEN						
							1

Aysnc Header for time-based transmission

data

SEQ#

HPC_FLAGS I|0|D|A|R|E|x|x

data

1st Workshop on New IP and Beyond - Organized by IEEE ICNP 2022

TinTin Implementation Details

TinTin with Time-Aware Network (New IP)

- ☐ Next Proto is TinTin in this case
- ☐ It is used alongside a contract that provides high precision services
 - ▶ Latency Based Forwarding (LBF)
- ☐ Fundamental operations of TinTin have been tested using NeST
 - ▶ Spins off a custom topology using Linux network namespaces
 - ▶ TinTin is implemented in the controller and field device sides

1st Workshop on New IP and Beyond - Organized by IEEE ICNP 2022

Conclusions and Future Work

Conclusions and Future Work

- ☐ Conclusions ☐ Preliminary work on high precision transport protocol: TinTin ☐ It is a promising first step in filling one of the critical gaps in IIoT ☐ Headers are shorter than existing transports, such as TCP and UDP ☐ Its security-centric design with ephemeral identifiers enhances security of end-to-end communications ☐ TinTin also builds on programmable, extensible header philosophy ☐ Testing: all time-specific requirements met by using a LBF contract ☐ Future Work
 - ☐ Develop a realistic test environment to evaluate each message in more details with specific focus on reliability

Thank you!

