Stochastik

Markus Reichl, 3. Dezember 2017

Inhaltsverzeichnis

1	Grundlagen	2
2	Laplace Experiment	2
3	Zusammengesetzte Ereignisse	2
4	Bernoulli Versuch (Pfade)	3
5	Abzähltechniken	3
	5.1 Permutation	3
	5.2 Kombination	3
	5.3 Variation Geordnete Auswahl	3

Markus Reichl 1/3

1 Grundlagen

Der Zufall unterliegt Regeln, die erst bei einer großen Anzahl von Versuchen sichtbar werden.

Ein Zufallsexperiment muss n-Mal durchgeführt werden um zu erkennen, dass das Ereignis A k-Mal auftritt.

Nach einer ausreichenden Zahl von Versuchen kann man als Schätzwert für die Wahrscheinlichkeit P(A), die Anzahl der Ereignisse k relativ zur Anzahl der Versuche n nehmen.

$$P(A) = \frac{k}{n}$$
$$0 \le P(A) \le 1$$

P(A) ... Wahrscheinlichkeit

A ... Ereignis

k ... Anzahl der Ereignissen ... Anzahl der Versuche

2 Laplace Experiment

Gilt für ein Zufallsexperiment, dass

- endlich viele Ereignisse existieren und
- jedes Ereignis gleich wahrscheinlich ist,

kann man ein Laplace Experiment durchführen. Man unterscheidet dabei die Zahl der günstigen g und der möglichen m Fälle für ein Ereignis A. Die Wahrscheinlichkeit P(A) für ein Ereignis A ist als Quotient der günstigen g und der möglichen m Fälle definiert.

$$P(A) = \frac{g}{m}$$

3 Zusammengesetzte Ereignisse

2 Ereignisse A, B sollen zu einem Ereignis C zusammengesetzt werden.

$$A \text{ UND } B$$
 bzw. $A \text{ ODER } B$

$$(A \text{ und } B \text{ zugleich}) \qquad (\text{mindestens } A \text{ oder } B)$$

Gegenwahrscheinlichkeit $P(\bar{A}) = 1 - P(A)$ \bar{A} ... "Non-A"

Unvereinbar 2 Ereignisse sind unvereinbar wenn sie nicht gemeinsam Auftreten können ($P(A_{\text{UND}}B) = 0$).

Additionssatz (ODER-Regel)

$$P(A_{\rm ODER}B) = P(A) + P(B) - P(A_{\rm UND}B) \quad \text{wenn A und B beliebig}$$

$$P(A_{\rm ODER}B) = P(A) + P(B) \quad \text{wenn A und B unvereinbar}$$

Multiplikationssatz (UND-Regel)

$$P(A_{\rm UND}B) = P(A) * P(B_{\rm ODER}A) \quad \text{wenn A und B beliebig}$$

$$P(A_{\rm UND}B) = P(A) * P(B) \quad \text{wenn A und B unvereinbar}$$

Markus Reichl 2/3

4 Bernoulli Versuch (Pfade)

- **1. Pfadregel UND-Regel** Die Wahrscheinlichkeit eines Ereignisses ist gleich dem Produkt der Wahrscheinlichkeiten entlang seines Pfades.
- **2. Pfadregel ODER-Regel** Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe der Wahrscheinlichkeiten seiner Pfade.

5 Abzähltechniken

5.1 Permutation

Es seien 4 Personen gegeben und es wird die Anzahl verschiedener Reihenfolgen gesucht. Jede Person kann nur an einer Position stehen, es handelt sich also um ein *ziehen ohne zurücklegen*.

Nach jeder Auswahl einer Position stehen eine Person und ein Platz weniger zur Verfügung.

- 1. 2. 3. 4. Position
- 4 3 2 1 Möglichkeiten

Es bestehen also 4*3*2*1 Möglichkeiten (Permutationen) oder 4 Fakultät (4!). Die Anzahl der Permutationen von n Elementen entspricht also $n! = \sum_{i=0}^{n-1} n - i$.

5.2 Kombination

Aus n = 7 Personen sollen k = 3 Personen ausgewählt werden. Die Reihenfolge ist dabei belanglos, es handelt sich also um ein ziehen mit zurücklegen.

7*6*5 sind wählbar

3*2*1 sind gleich für jede Auswahl

Es bestehen also $\frac{7*6*5}{3*2*1} = \frac{210}{6} = 35$ Möglichkeiten. Allgemein ist die Kombination als $\frac{n*(n-1)...(n-k+1)}{1...k}$ definiert, was dem Binomialkoeffizienten entspricht.

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{(n-k)! * k!}$$

In wxMaxima kann der Binomialkoeffizient mittels binomial(n, k) berechnet werden.

5.3 Variation Geordnete Auswahl

Aus n = 7 Personen sollen k = 3 ausgewählt werden. Die Reihenfolge der Kombination ist dabei zu beachten, es handelt sich also um ein ziehen ohne zurücklegen.

1. 2. 3. Position

7 6 5 \rightarrow 7 * 6 * 5 Möglichkeiten

Die Variation kann auch anhand der Kombination berechnet werden.

$$\binom{7}{3} * 3! = 7 * 6 * 5 = 210$$
 Variationen

Markus Reichl 3/3