Influential and high-leverage observations, outliers

Influential observations

- Idea: how much does my fit change after taking out this observation?
- There are different ways to measure this
- For example: Cook's distance, DFFITS, etc.

Cook's distance

Cook's distance of observation i is

$$D_i = \frac{\sum_{j=1}^n \left(\hat{y}_j - \hat{y}_{j(i)}\right)^2}{ps^2} \quad \begin{array}{c} \text{all the observations} \\ \hat{y}_{j(i)} \text{ predicted value for observation j} \\ \text{after taking out the i-th observation} \end{array}$$

- \hat{y}_{j} predicted value for observation j with all the observations
- after taking out the i-th observation
- s^2 our usual estimator of the residual variance σ^2
- How big is big? Different recommendations... Some people say $D_i > I$
- I recommend looking closely at any observation that seems to "stick out"

Leverage, outliers, and influence

- Leverage: measures how far away x_i is from the other x values [goes from 0 to 1, from "average x" to "very unusual x"]
- High leverage: unusual value of x_i , which may or may not be well predicted by our line
- Big residual |e_i| : point that is badly predicted by our line (outliers)
- Observations with high leverage and big residuals are highly influential, because Cook's distance can be written as

$$D_i = rac{e_i^2}{s^2 p} \left[rac{h_i}{(1-h_i)^2}
ight] \quad {}^{h_i: ext{ leverage of observation } i}_{ ext{e}_i: ext{ residual of observation } i}$$

Figure 7.2: Outliers can conceal themselves. The solid line is the fit including the \triangle point but not the \bullet point. The dotted line is the fit without either additional point and the dashed line is the fit with the \bullet point but not the \triangle point.

Multiple linear regression

Multiple linear regression

- The same, but with more variables
- Find the coefficients that minimize in-sample predictive error
- We can find Cls and hypothesis tests if we make assumptions
- We assume

$$y_{i} \stackrel{\text{ind}}{\sim} N(\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p-1}x_{i,p-1}, \sigma^{2})$$

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p-1}x_{i,p-1} + \varepsilon_{i}, \ \varepsilon_{i} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2})$$

- Independence of outcomes y_i for i in I:n (given the x_{ij}).
- Normality
- Homoscedasticity (equal variance across observations, which doesn't depend on x_{ii})
- Linearity (i.e. E[Y | X] is a linear comb. of the Xs)

Model building

General problem: Variable selection

- You have an outcome y and predictors x_1, x_2, \dots, x_p
- Do put all p predictors in the model?
- Some reasons we might not want to include all of them
 - In the application, the client might be interested in knowing which variables seem to be "active" ("predictive")
 - If you don't need some of them, you might be able to get rid of them and get more precise estimates and predictions [there are some caveats here]

Two classes of approaches

All subsets

- Fit all possible models (with all the possible subsets of predictors in and out of the model)
- Rank/score the model according to some criterion
 - Almost infinitely many possibilities, no single criterion is uniformly better than the rest

Search strategies

- Look for good models, without exploring all the subsets
- Sometimes you just have to do this because the model space is too big, and you can't go through all subsets...

How to score models?

- You go through all subsets, find a "score"... A score like what?
- We have seen R²

variability in y

Residual sum of squares

variability in predictions

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- It's easy to use: it goes from 0 to 1
- Tempting to use it as a "goodness-of-fit" statistic
- However, it can be highly deceptive when the relationship between y and x isn't linear

$$R_{\text{adjusted}}^2 = 1 - (1 - R^2) \left(\frac{n - 1}{n - p - 1} \right)$$

- Unfortunately, R² can't get worse as you add in more variables [the residual sum of squares can't get worse after adding a variable... Worst case scenario, the coefficient of that variable is set to 0, and we're done]
- Fortunately, somebody found out a way to penalize the so that there isn't a bias towards bigger models
- If all predictors are garbage: $E[R^2] = p/(n-1)$
 - BAD! It increases as we put in bogus predictors
 - Adjusted R^2 is modified so that $E[R^2_{adj}] = 0$ if all predictors are bad

BIC and C_p

- BIC: smaller is better
 - Again, it looks at the tradeoff between smaller residual sum of squares (RSS) and the fact that bigger models (tend to) have smaller residual sum of squares
 - So, it has a term that increases in RSS and some penalty on model "complexity" (p * log n)
- C_p: Pick smallest model whose C_p is roughly p
 - Idea: Same tradeoff between small RSS and penalizing big models
 - Can be derived by thinking how E(RSS) should behave if the model is "correct"

Searching for good models

- Sometimes you can't go through all models
- Some strategies for finding good models
 - Forward selection: start with no variables, and keep on adding variables one at a time until it doesn't pay off (according to some criterion)
 - Backward selection: start with all of the variables, and keep on dropping variables until it doesn't pay off (according to some criterion)
 - Stepwise selection: start with no variables, and keep on adding variables one at a time until it doesn't pay off. If a variable that seemed useful at some previous step isn't useful anymore, you drop it
- You can use p-values as the criterion to include/exclude variables
- You can use other criteria, such as BIC, etc.

Don't compare model scores if you transformed y!

Two fitted models, obtained by different transformations of the response, are plotted on the original scale in Figures 1 and 2. Figure 1 is obtained by fitting a model of the form

$$Y_1^* = \alpha + \beta x + \gamma x^2 + e, \tag{1}$$

where $Y_1^* = Y/x^{3/2}$, by ordinary least squares and then expressing the prediction equation and the prediction interval limits back in the original scale. Figure 2 is obtained in the same way by fitting

$$Y_2^* = \alpha + \beta x + \gamma x^2 + e, \tag{2}$$

with $Y_2^* = \log_e(Y)$. Note that both linear models contain a constant term.

Source:

Transformations and R²

Alastair Scott & Chris Wild

Don't compare model scores if you transformed y!

Figure 1. Fitted Model Based on $Y_1^* = Y/x^{3/2}$.

Figure 2. Fitted Model Based on $Y_2^* = log Y$.

Source:

Transformations and R²

Alastair Scott & Chris Wild