PERTEMUAN 11

TEKNIK NUMERIK UNTUK PENYELESAIAN INTEGRAL (INTEGRASI NUMERIK)

TUJUAN PRAKTIKUM

Mahasiswa mampu menerapkan teknik-teknik penyelesaian integral menggunakan Program R.

TUGAS PRAKTIKUM

1. Buatlah fungsi R untuk aturan trapesium dan simpson.

Aturan Trapesium

```
trapesium <- function(x) {
    x*exp(-x^2)
}
I =
    a =
    b =
    n =
    delta <- (b-a)/n
    for (x in 0:n) {
        if (x==0 || x==n) {
            I = I + trapesium(x*delta)
        }
        else {
            I = I + 2*(trapesium(x*delta))
        }
}
I = (delta/2)*I
print(I)</pre>
```

Aturan Simpson

```
simpson <- function(x) {
    x*exp(-x^2)
}
I =
a =
b =
n =
delta = (b-a)/n
for (x in 0:n) {
    if (x == 0 || x == n) {
        I = I + simpson(x*delta)
    }
    else if (x %% 2 == 0) {</pre>
```

```
I = I + 2*simpson(x*delta)
}
else {
    I = I + 4*simpson(x*delta)
}
I = I * delta/3
print(I)
```

2. Diberikan fungsi sebagai berikut (**kerjakan dengan menggunakan R**)

$$\int_0^{1.5} xe^{-x^2} dx$$

a. Aproksimasi integral tersebut menggunakan aturan Trapesium, N=8.

```
Console Terminal × Jobs ×

R 4.1.1 - -/ -

> trapesium <- function(x) {

+ x*exp(-x^2)

+ }

> I = 0

> a = 0

> b = 1.5

> n = 8

> delta <- (b-a)/n

> for (x in 0:n) {

+ if (x==0 | | x==n) {

+ I = I + trapesium(x*delta)

+ }

+ else {

+ I = I + 2*(trapesium(x*delta))

+ }

> I = (delta/2)*I

> print(I)

[1] 0.4432782

>
```

b. Aproksimasi integral tersebut menggunakan aturan Simpson, N=8.

3. Diberikan fungsi (**kerjakan dengan cara manual**)

$$f(x) = \sqrt{\frac{7}{x}}$$

N=2. Gunakan aturan trapesium dan Simpson untuk menghitung integralnya pada [1,4]. Kemudian lengkapi tabel berikut

	Solusi	Kesalahan
Eksak	5.2915	0
Trapesium	5.4864	0.1949
Simpson	5.3310	0.0395

Menghitung solusi eksak

Wengin	tung solusi eksak
	Integral terhadap variobel x
	$f(x) = \sqrt{\frac{7}{x}} \rightarrow \sqrt{\frac{7}{x}} \sqrt{\frac{7}{x}} dx$
	1 × 1 ×
4	Eksak
	$\int_{1}^{4} \sqrt{\frac{7}{x}} dx = \int_{1}^{4} \sqrt{7} \cdot x^{-1/2} dx$
	$1\sqrt{1}\sqrt{\frac{1}{2}}$
	$=\sqrt{7} \cdot \times^{v_1}$
	1/2
	$= 2\sqrt{7} \times 1\frac{4}{1}$
	$= 2\sqrt{7(4)} - 2\sqrt{7(1)}$
	z 4√7 - 2√7 =
	= 2√7 = 5,291S

Menghitung solusi trapesium dan simpson

		DATE :		
	Menghilung tabel Fungs trapesium dan simpson			
	niloi h = 4-1 + 3 = 1.5			
	2 2			
	$x_0 = 1 \rightarrow f(1) = \sqrt{\frac{7}{100}} = 2,6458$	1	×i	f(xi)
	V 1	0	1	2,645%
	$X_1 = 2.5 \rightarrow f(2.5) = \frac{7}{2} = 1,6733$	1	2,5	1,6733
	$x_1 = 2.5 \rightarrow f(2.5) = \frac{7}{2.5} = 1.6733$	2	4	1,3229
	$x_2 = 4 \rightarrow f(4) = \sqrt{7} = 1.3229$			
	4			
•	Trapesium			
	$I = \frac{1}{1} \int \frac{7}{\sqrt{x}} \cdot dx$			
	$\frac{h}{2} \left(f_0 + 2 \sum_{i=1}^{h-1} f_i + f_n \right)$			
	2		,	-
	≈ 1.5 (2,6458 + 2(1,6733) + 1,3229)			
	2			
	≈ 5,4864			
Ħ				
D	Simpson			
		-		
	$I : \int \sqrt{\frac{7}{x}} dx$			
	$\frac{2}{3} \frac{h}{3} \left(f_0 + 4 \left(\sum_{i:genjq} f_i \right) + 2 \left(\sum_{i:genqp} f_i \right) + f_n \right)$			
	3 is ganging is garage			
		2.6		
-	2 15 (26668 + 4(16737) 1 2(0) 1 12	110		
	2 1.5 (2,6458 + 4(1,6733) + 2(0) + 1,35	119		
		119		

Menghitung kesalahan trapesium dan simpson

kesalahan 1	rapesium = solusi eksak - solusi trapesium
	= 5,2915 - 5,4864
	= 0.1949
kesalahan s	impson = solusi eksak - solusi simpson
	= 5,2915 - 5,3310
	= 0.0395