

GRADIENT BOOSTING MATEMATICA

EXPLICACIÓN

- 1. Empezamos con un decision tree básico (M_0), el modelo predice la probabilidad: $\widetilde{y_0} = M_0(X)$
- 2. Comparamos la predicción $(\widetilde{y_0})$ con la realidad (y) y calculamos el error $(r_0) -> r_0 = y \widetilde{y_0}$
- 3. El siguiente decision tree intentará predecir r_0 , en vez de y.
- 4. Iteraciones de trees (n iteraciones):
 - 1. El modelo $M_1(X)$ intenta predecir con los atributos (X) los residuos del anterior ($\widetilde{r_0}$), en vez del target (y)
 - 2. Para hacer una nueva predicción de la probabilidad $(\widetilde{y_1})$ debemos utilizar:
 - 1. $\widetilde{r_0} = M_1(X)$ (en este primer paso entrenamos un árbol, con target = r_0)
 - 2. La predicción inicial $\widetilde{y_0}$
 - 3. Learning rate g (parametro que marca cuanto nos importa $\widetilde{r_0}$ con respecto a $\widetilde{y_0}$

El resultado es $\widetilde{y_1} = f(\widetilde{r_0}, \widetilde{y_0}, g)$

En esta función, entre otras transformaciones agregamos los resultados: $\widetilde{y_1} = h(\widetilde{y_0} + g^* g(\widetilde{r_0}))$.

Nota: la función h() es la función sigmoide, que obliga al resultado a ser entre 0 y 1, porque estamos en clasificación. La función g() permite agregar predicción de probabilidad con la predicción de residuos.

3. Calculamos los residuos de nuevo: $r_1 = y - \widetilde{y_1}$

La predicción final es $\widetilde{y_n}$, que es una garegación de las predicciones de todos los árboles que se han generado de forma iterativa.