Worksheet-1

Machine Learning

Find -S Algorithm

Find a maximally specific hypothesis?

How many concepts are possible for this instance space?

How many hypotheses can be expressed by the hypothesis language?

How many semantically distinct hypothesis?

Question: 1

For practise (Eg. 2)	Farmer of the same
T. humidity	forecast Enjoy
Bky Temp humany	Same yes
Sanny Larm	same 4es
Canny Cold.	change no
Rainy cold might	aloned yes.
1.12~M	
Sunny.	

Question: 2

Candidate Elimination Algorithm

Find the General and Specific hypothesis for the given dataset

Question: 3

S12e	wlm	Shape	class.
	Red	Circle	No.
Big		Trangle	No.
Small	Red		Yes
Small	Red	·Circle.	No
D . a.	Blue	arde	
Big		Circle.	Yes.
Small	Blue		THE SHALL

Question: 4

cutahm	Size	In libra	my Price E	ditm	By.
Some	Small	No	Affordable		
niary	big	No	Experime	many	
many	hediun	No	"	few	
nary	Small.	No	Affordalli.	many	Yes

Question: 5

Shape "	hze	cola	curface	Thich	Tayet.
Circular	large	light	Smooth	Thick	Malignant (+)
Circular	large	dight	t Irrepular	Twee	"
OVA	large	dan	1 Smooth	This	Benign L-W
OVAL.	large	lig	lit Ingul	This Thick	Malynant (+)

PAC Learning

Question: 6

Find the hypothesis that is a good approximation of target concept f(x) using PAC learning to classify the given dataset as even and odd numbers. Train the model using the dataset,

$$(2,1), (3,0), (6,1), (7,0), (8,1), (9,0).$$

And test the model using the dataset

Question: 7

You are tasked with learning a classifier for emails. The goal is to learn a function that predicts whether an email is spam or not spam based on various features of the email. These features could include the presence of certain words, the length of the email, the number of links in the email, etc. Calculate the sample complexity using PAC learning method. Assume the following values,

- Error tolerance $\epsilon=0.05$ (we want the error rate on unseen data to be at most 5%).
- Confidence level $\delta = 0.01$ (we want 99% confidence).
- Number of features k=10 (let's assume there are 10 features such as the frequency of certain keywords, the number of links, etc.).
- VC Dimension d=10 (since we have 10 features, the VC dimension is 10).

Linear Regression

Formulate the line of equation for the following questions and find the following

- (i) Mean Squared Error(MSE)
- (ii) Mean Absolute Error (MAE)
- (iii) Root Mean Squared Error(RMSE)
- (iv) (iv) Standard Error

Question: 8

Problem Statement

A researcher collects data to study the relationship between the number of hours a student studies (X) and their test score (Y). The goal is to create a regression model to predict test scores based on study hours and validate the model.

Dataset

Study Hours (X)	Test Score (Y)
2	50
4	55
6	60
8	70
10	85

Question: 9

Question: Find linear regression equation for the following two sets of data:

х	2	4	6	8
У	3	7	5	10

Question: 10

Sales data for five weeks is given below.

X, (item)	Y, (actual sales in 1000s)
I ₁	80
I ₂	90
I_3	100
I_4	110
I_5	120

Multilinear Regression

Question: 11

Question: 12

TVAJ.	News paper	y (Solu)
60	22	140
62	25	155
67	2-4	159
70	20	179
71	15	192
72	14	200
75	14	212
78	11	215

Logistic Regression

Formulate Confusion matrix and calculate the following,

(i) Accuracy (ii) Precision (iii) Recall (iv) F1 score (v) Log-loss

Question: 13

We want to predict if a person has a disease (y=1) or not (y=0) based on the following numerical features:

- 1. Age (x_1)
- 2. Blood Pressure (x_2)
- 3. Cholesterol Level (x_3)

Person	Age (x_1)	Blood Pressure (x_2)	Cholesterol (x_3)	Disease (y)
1	25	120	180	0
2	45	140	200	1
3	35	130	190	0
4	50	150	220	1
5	60	160	240	1

Question: 14

We want to predict whether a stock price will go up (y=1) or down (y=0) based on three numerical features:

- 1. Market Sentiment Score (x_1): Ranges from -1 (negative sentiment) to +1 (positive sentiment).
- 2. Trading Volume (x_2): Number of shares traded in thousands.
- 3. Previous Day's Price Change (x_3): Percentage change in stock price from the previous day.

Day	Sentiment Score (x_1)	Trading Volume (x_2)	Price Change (x3)	Stock Up (y)
1	0.5	200	1.2	1
2	-0.3	180	-0.5	0
3	0.7	220	1.8	1
4	-0.1	150	-1.0	0
5	0.4	210	1.0	1

Question: 15

A bank wants to predict whether a loan application will be approved (y=1) or denied (y=0) based on applicant details.

- 1. Income (x_1): Monthly income of the applicant (in \$).
- 2. Credit Score (x_2): Creditworthiness score (ranges from 300 to 850).
- 3. Loan Amount (x_3): Requested loan amount (in \$).
- 4. Loan Approved (y): Target variable; 1 if approved, 0 if denied.

Applicant	Income (x_1)	Credit Score (x_2)	Loan Amount (x3)	Loan Approved (y)
1	5000	720	20000	1
2	3000	650	15000	0
3	8000	800	25000	1
4	2500	600	12000	0
5	4000	680	18000	1