Quantile Function on Scalar Regression Analysis for Distributional Data

Hojin Yang*, Veera Baladandayuthapani Arvind Rao, and Jeffrey S. Morris

> Department of Statistics Pusan National University

> > May 28, 2021

Outline

IntroductionMotivation

Quantile Functions

2 Methods

Quantile Functional Regression Model Setup Estimation

ApplicationSimulationGBM Data Analysis

4 Summary

Glioblastoma Multiforme (GBM)

- Most common and aggressive form of brain cancer
- No current prevention approaches, and poor outcomes
 - Median survival 12mo, 3-5% 5yr survival
- Exhibits heterogeneous physiological and morphological features as it proliferates
- Investigating these heterogeneities and relating them to clinical/genetic outcomes can lead to the development of personalized treatment strategies.

Glioblastoma Multiforme (GBM)

- Most common and aggressive form of brain cancer
- No current prevention approaches, and poor outcomes
 - Median survival 12mo, 3-5% 5yr survival
- Exhibits heterogeneous physiological and morphological features as it proliferates
- Investigating these heterogeneities and relating them to clinical/genetic outcomes can lead to the development of personalized treatment strategies.

Our Goal:

Assess how variability in tumor image intensities is associated with demographic, clinical, and genetic factors

Glioblastoma Images

- Presurgical T1-weighted post-contrast MRI images from GBM patients
- Radiomics: compute features summarizing tumor image characteristics and relate to clinical outcomes.
- Histogram features:
 Summaries computed from pixel intensity distributions (e.g. mean, variance, skewness, Q05, Q95)

Modeling Distributions

The typical approach is to extract pre-chosen feature and fit separate regression analyses to each selected feature, which has some major drawbacks:

- Multiple testing problems
- May miss distributional differences not contained in pre-chosen summaries.

Modeling Distributions

The typical approach is to extract pre-chosen feature and fit separate regression analyses to each selected feature, which has some major drawbacks:

- Multiple testing problems
- May miss distributional differences not contained in pre-chosen summaries.

Alternative Approach

Instead of just modeling the extracted summaries, model the entire distribution of pixel intensities (as functional data).

Distributional Data

We consider regression problem for i = 1, ..., n subjects.

- Random copies $(X_1, F_1), \ldots, (X_n, F_n)$ of (X, F)
 - Predictor: $X_i = (x_{i1}, \dots, x_{iA})$. i.e. $X_i \in \mathbb{R}^A$
 - Outcome: $F_i(y)$ for $y \in \mathbb{R}$
- A challenge is that $F_i(y)$ is not actually observed.
- Observed data: $(X_1,Y_{11},\ldots,Y_{1m_1}),\ldots,(X_n,Y_{n1},\ldots,Y_{nm_n})$
- Y_{i1}, \ldots, Y_{im_i} are samples from F_i .

Modeling Distributions

 Several choices to represent pixel intensity distributions: density, cumulative distribution, or quantile functions.

Modeling Distributions

 Several choices to represent pixel intensity distributions: density, cumulative distribution, or quantile functions.

• We choose to use the quantile function. The quantile function of Y on $p \in [0, 1]$, is defined as

Definition of the quantile function

$$Q_Y(p) = F_Y^{-1}(p) = \inf(y : F_Y(y) \ge p),$$

where $p = F_Y(y)$ is the proportion less than or equal to y.

Properties of Quantile Functions

Quantile functions have properties that make them useful here:

• Defined on a fixed domain, $p \in \mathcal{P} \subset [0,1]$

Properties of Quantile Functions

Quantile functions have properties that make them useful here:

- Defined on a fixed domain, $p \in \mathcal{P} \subset [0,1]$
- Straightforward to compute empirical estimates without choice of smoothing parameters

eDF

Let $Y_{(1)} \leq \cdots \leq Y_{(m)}$ be order statistics from a sample of size m. For $p \in [1/(m+1), m/(m+1)]$, the eQF is given by

$$\widehat{Q}_Y(p) = (1 - w)Y_{([(m+1)p])} + wY_{([(m+1)p]+1)},$$

where w is a weight such that (m+1)p = [(m+1)p] + w.

Properties of Quantile Functions

Quantile functions have properties that make them useful here:

- Defined on a fixed domain, $p \in \mathcal{P} \subset [0,1]$
- Straightforward to compute empirical estimates without choice of smoothing parameters
- Straightforward formulas to calculate distributional moments

Distributional Moments

$$\begin{array}{lcl} \mu_Y & = & \operatorname{E}(Y) = \int_0^1 Q_Y(p) dp \\ \\ \sigma_Y^2 & = & \operatorname{Var}(Y) = \int_0^1 \left(Q_Y(p) - \mu_Y\right)^2 dp \\ \\ \xi_Y & = & \operatorname{Skew}(Y) = \int_0^1 \left(Q_Y(p) - \mu_Y\right)^3 / \sigma_Y^3 dp \end{array}$$

Approach: Regress eQF as functional response on covariates.

Approach: Regress eQF as functional response on covariates.

① For each subject $i=1,\ldots,n$, construct the eQF $\widehat{Q}_i(p)$ from the order statistics of $Y_{ij}, j=1,\ldots,m_i$.

Approach: Regress eQF as functional response on covariates.

- ① For each subject $i=1,\ldots,n$, construct the eQF $\widehat{Q}_i(p)$ from the order statistics of $Y_{ij}, j=1,\ldots,m_i$.
- **2** Regress $\widehat{Q}_i(p)$ on covariates $x_{ia}, a=1,\ldots,A$, each with regression coefficients $\beta_a(p)$ defined on $p \in \mathcal{P} \subset [0,1]$.

Quantile Functional Regression Model

$$Q_i(p) = \beta_0(p) + \sum_{a=1}^{A} x_{ia} \beta_a(p) + E_i(p)$$

Approach: Regress eQF as functional response on covariates.

- ① For each subject $i=1,\ldots,n$, construct the eQF $\widehat{Q}_i(p)$ from the order statistics of $Y_{ij}, j=1,\ldots,m_i$.
- **2** Regress $\widehat{Q}_i(p)$ on covariates $x_{ia}, a=1,\ldots,A$, each with regression coefficients $\beta_a(p)$ defined on $p \in \mathcal{P} \subset [0,1]$.

Quantile Functional Regression Model

$$Q_i(p) = \beta_0(p) + \sum_{a=1}^{A} x_{ia} \beta_a(p) + E_i(p)$$

3 Test for significantly associated covariates: $H_0: \beta_a(p) \equiv 0$.

Approach: Regress eQF as functional response on covariates.

- ① For each subject $i=1,\ldots,n$, construct the eQF $\widehat{Q}_i(p)$ from the order statistics of $Y_{ij}, j=1,\ldots,m_i$.
- **2** Regress $\widehat{Q}_i(p)$ on covariates $x_{ia}, a=1,\ldots,A$, each with regression coefficients $\beta_a(p)$ defined on $p \in \mathcal{P} \subset [0,1]$.

Quantile Functional Regression Model

$$Q_i(p) = \beta_0(p) + \sum_{a=1}^{A} x_{ia} \beta_a(p) + E_i(p)$$

- **3** Test for significantly associated covariates: $H_0: \beta_a(p) \equiv 0$.
- **4** Characterize the significant distributional differences e.g. range of p, mean, variance, skewness

Quantile Functional Regression Model

$$Q_{i}(p) = \beta_{0}(p) + \sum_{a=1}^{A} x_{ia} \beta_{a}(p) + E_{i}(p)$$

Naive approach: compute independent regressions for each p

- fail to borrow strength over $p \to \text{wiggly}$, inefficient $\widehat{\beta}_a(p)$.
- ignore correlation over p in $E_i(p) \to loss$ of inferential power.

Quantile Functional Regression Model

$$Q_{i}(p) = \beta_{0}(p) + \sum_{a=1}^{A} x_{ia} \beta_{a}(p) + E_{i}(p)$$

Naive approach: compute independent regressions for each p

- fail to borrow strength over $p \to \text{wiggly}$, inefficient $\widehat{\beta}_a(p)$.
- ignore correlation over p in $E_i(p) \to loss$ of inferential power.

Functional regression approach: Use basis function representations to account for correlation (Morris 2015)

- $\beta_a(p)$ regularized via L1/L2 penalization of basis coefficients.
- Basis functions induce correlation across p in $Cov\{E_i(p)\}$.
- Common bases: splines, PC, Fourier bases, wavelets

Beta Cumulative Distribution Functions

We consider **basis functions** for the quantile function, Q(p).

$$\tilde{Q}_K(p) = \sum_{k=1}^K \psi_k(p) q_k^*$$

- Define $\psi_k(p)=\int_0^p \frac{\Gamma(K+2)}{\Gamma(k+1)\Gamma(K-k+1)} z^k (1-z)^{K-k} dz$
 - i.e., $\psi_k(p) = P(Z \le p)$, where $Z \sim \mathrm{beta}(k+1,K-k+1)$

Basis Transform Modeling Approach

Data Space Model

$$Q_i(p) = X_i^T B(p) + E_i(p),$$

where $B(p) = (\beta_1(p), \dots, \beta_A(p))^T$ and $E_i(p)$ is a noise process.

Compute basis coefficients

Computing Coefficients

Let
$$\widehat{m{Q}}_{i} = [\widehat{Q}_{i}(p_{1}), \ldots, \widehat{Q}_{i}(p_{m_{i}})]$$
 with $p_{j} = j/(m_{i}+1)$

Let Ψ_i be $K \times m_i$ matrix with elements $\psi_i(k,j) = \psi_k(p_j)$

Basis coefficients: $\widehat{m{q}_i^*} = \widehat{m{Q}_i} m{\Psi}_i^*$ where $m{\Psi}_i^* = m{\Psi}_i^T (m{\Psi}_i m{\Psi}_i^T)^{-1}$.

Basis Transform Modeling Approach

Data Space Model

$$Q_i(p) = X_i^T B(p) + E_i(p),$$

where $B(p) = (\beta_1(p), \dots, \beta_A(p))^T$ and $E_i(p)$ is a noise process.

- 1 Compute basis coefficients
- 2 Fit projected space model

Projected Space Model

$$\widehat{\boldsymbol{q}_i^*} = \boldsymbol{X}_i^T \boldsymbol{B}^* + \boldsymbol{E_i^*}$$

where
$$\widehat{q}_i^* = (\widehat{q}_{i1}^*, \dots, \widehat{q}_{iK}^*)^T$$
, $\widehat{Q}_i(p) = \sum_{k=1}^K \widehat{q}_{ik}^* \psi_k(p)$, $\beta_a(p) = \sum_{k=1}^K B_{ak}^* \psi_k(p)$, $E_i(p) = \sum_{k=1}^K E_{ik}^* \psi_k(p)$, and $E_i^* \sim \text{MVN}(0, \Sigma^*)$ where Σ^* is $K \times K$ covariance matrix.

Basis Transform Modeling Approach

Data Space Model

$$Q_i(p) = X_i^T B(p) + E_i(p),$$

where $B(p) = (\beta_1(p), \dots, \beta_A(p))^T$ and $E_i(p)$ is a noise process.

- 1 Compute basis coefficients
- 2 Fit projected space model
- 3 Transform results back to data space for inference

Transform Results to Data Space

$$\beta_a(p) = \sum_{k=1}^K B_{ak}^* \psi_k(p)$$
, and then perform desired inference.

• We use a Bayesian modeling approach to fit this model.

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)

Sparsity prior on B_{ak}^*

$$B_{ak}^* \sim \gamma_{ak} N(0, \tau_{ak}^2) + (1 - \gamma_{ak}) I_0$$

 $\gamma_{ak} \sim \text{Bernoulli}(\pi_{ak}),$

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)
 - Vague proper prior on covariance parameters.

Vague proper prior

 $\sigma_k^2 \sim \text{inverse-gamma}(\nu_0/2, \nu_0/2).$

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)
 - Vague proper prior on covariance parameters.
- We fit the project space model by using Markov chain Monte Carlo (MCMC).

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)
 - Vague proper prior on covariance parameters.
- We fit the project space model by using Markov chain Monte Carlo (MCMC).
 - Complete conditional for B_{ak}^* is mixture of I_0 and Gaussian.

Posterior Sampling

$$\begin{array}{l} \pmb{B_{ak}^*} \sim \alpha_{ak} N(\mu_{ak}, v_{ak}) + (1 - \alpha_{ak}) \pmb{I_0} \\ \text{where } \mu_{ak} = \widehat{B}_{ak}^* (1 + S_{ak}/\tau_{ak})^{-1} \text{, } S_{ak} = (\sum_{i=1}^n x_{ia}/\sigma_k^2)^{-1} \text{,} \\ v_{ak} = S_{ak} (1 + S_{ak}/\tau_{ak})^{-1} \text{, and } \alpha_{ak} = \mathsf{P}(\gamma_{ak} = 1 | Q_{.k}^*, B_{ak}^*, \sigma_k^2) \end{array}$$

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)
 - Vague proper prior on covariance parameters.
- We fit the project space model by using Markov chain Monte Carlo (MCMC).
 - Complete conditional for B_{ak}^* is mixture of I_0 and Gaussian.
 - Covariance parameters have conjugate complete conditionals.

Posterior Sampling

$$\sigma_k^2 \sim \text{Inverse Gamma}\{(\nu_0 + n)/2, (\nu_0 + \|\widehat{q}_{.k} - \boldsymbol{X}B_{.k}^*\|^2)/2\}$$

- We use a Bayesian modeling approach to fit this model.
 - Sparsity prior on B_{ak}^* to regularize $\beta_a(p)$. (spike Gaussian-slab)
 - Vague proper prior on covariance parameters.
- We fit the project space model by using Markov chain Monte Carlo (MCMC).
 - Complete conditional for B_{ak}^* is mixture of I_0 and Gaussian.
 - Covariance parameters have conjugate complete conditionals.
- Posterior samples transformed back to original data space to get posterior samples of $\beta_a(p)$ on desired grid of p.

Simulation

Figure: Four population groups in the simulation.

Figure: **Simulated Data**. $\beta_a(p)$ are location, scale, and skewness shifts.

- $Q_{ij}(p) = Q_{0j}(p) + \epsilon_{ij}(p)$
- $Y_{ij1} = Q_{ij}(u_1), \ldots, Y_{ijm_{ij}} = Q_{ij}(u_{m_{ij}})$, where $u_l \sim U(0,1)$, $m_{ij} = 1024$, $X_{ij} = (1, e_j)$, and e_j is standard basis in \mathbb{R}^3 .

Simulation Results

Figure: Results of the simulation: estimations and 95% joint CI (A=Naive *one-p-at-a-time* method; D=our method with regularization)

Simulation Results

Table: Area and coverage for the joint 95% credible intervals.

Туре	A (naive)	B (PCA)	C (no reg.)	D (regularized)
$\beta_1(p)$	1.603 (1.000)	1.092 (0.999)	1.186 (1.000)	1.069 (1.000)
$\beta_2(p)$	2.246 (1.000)	1.551 (1.000)	1.706 (1.000)	1.465 (1.000)
$\beta_3(p)$	2.242 (1.000)	1.599 (1.000)	1.717 (1.000)	1.457 (1.000)
$\beta_4(p)$	2.281 (1.000)	1.583 (1.000)	1.651 (1.000)	1.499 (1.000)

Table: Probability scores for differences in mean, variance, and skewness.

True	H_0	Α	В	С	D	E (feature)
$\mu_1 = \mu_3$	$\mu_1 = \mu_3$	0.001	0.193	0.211	0.217	0.205
$\sigma_1 \neq \sigma_3$	$\sigma_1 = \sigma_3$	0.001	0.001	0.001	0.001	0.001
$\xi_1 = \xi_3$	$\xi_1 = \xi_3$	0.374	0.498	0.488	0.479	0.389
$\mu_2 = \mu_4$	$\mu_2 = \mu_4$	0.001	0.447	0.465	0.445	0.438
$\sigma_2 = \sigma_4$	$\sigma_2 = \sigma_4$	0.002	0.420	0.334	0.331	0.187
$\xi_2 \neq \xi_4$	$\xi_2 = \xi_4$	0.001	0.001	0.001	0.001	0.001

GBM Data Analysis

Response: T1 MRI images from 64 patients in glioblastoma (GBM) study, Y_{ij} =intensity of pixel j from subject $i, i = 1, \ldots, n$ and $j = 1, \ldots, m_i$, with m_i ranging from 371 to 3421.

Covariates:

- **Demographic variables:** sex (21 F/43M) & age (56.5yr)
- **GBM subtype:** *mesenchymal* (30 mes./34 other)
- Clinical outcome: survival (> 12m/< 12m)
- **Genetic alterations:** *DDIT3*(6m/58wt) & *EGFR*(24m/58wt)

Model

$$\begin{split} Q_i(p|X_i) = & \beta_{\rm 0}(p) + x_{{\rm sex},i}\beta_{{\rm sex}}(p) + x_{{\rm age},i}\beta_{{\rm age}}(p) + x_{{\rm surv},i}\beta_{{\rm surv}}(p) \\ & + x_{{\rm Mes},i}\beta_{{\rm Mes}}(p) + x_{{\rm DDIT3},i}\beta_{{\rm DDIT3}}(p) \\ & + x_{{\rm EGFR},i}\beta_{{\rm EGFR}}(p) + E_i(p). \end{split}$$

Full Results

GBM Results

• $P_{\text{sex},\mu} = 0.004$, $P_{\text{sex},\sigma^2} = 0.121$, $P_{\text{sex},\xi} = 0.51$

GBM Results

• $P_{\text{DDIT3},\mu} = 0.008$, $P_{\text{DDIT3},\sigma^2} = 0.023$, $P_{\text{DDIT3},\xi} = 0.468$

Summary

- General approach to regress distributions on covariates
- Useful in many settings without missing any information and insights on distributions
- Our framework yields global and local tests that adjust for multiple testing
 - Greater power than naive one-p-at-a-time approach
 - No power loss compared with feature extraction
- Applications of interest (future work)
 - Various types of imaging data
 - Climate change data
 - Activity data/wearable computing

Reference

- 1 Yang, H., Baladandayuthapani V., and Morris, J.S. (2020), "Quantile Function on Scalar Regression Analysis for Distributional Data", *Journal of American Statistical Association*, 115, 90-106.
- 2 Morris, J. S. (2015), "Functional Regression", *Annual Review of Statistics and Its Application*, 2, 321-359.
- 3 Just, N. (2014), "Improving Tumour Heterogeneity MRI Assessment with Histograms", *British Journal of Cancer*, 111, 2205-2213.

Thank you.