Forward probability

Question 1

The probability of rain on Saturday and Sunday are 50% and 20%, respectively. Any rain will be light with 90%, and heavy with 10% probability on Saturday. Any rain on Sunday will be light.

 Q_1 : What is the probability of light rain on both days?

Q₂: What is the probability of raining during the weekend?

Question 2

One bag of candy contains 3 pieces of taffy and 4 pieces of caramel, while the other contains 1 piece of taffy and 5 pieces of caramel. We draw one piece of candy from each bag.

Q₁: With what probability are the two drawn pieces of candy different?

Q₂: What if we draw them from the same (but randomly chosen) bag?

Question 3

In a simple game, we flip a coin 3-times. The reward we get depends on the outcome in the following way: $3 \text{ heads} \rightarrow \text{win } \100 , $2 \text{ heads} \rightarrow \text{win } \40 , $1 \text{ head} \rightarrow \text{nothing}$, $0 \text{ heads} \rightarrow \text{lose } \200 .

Q: What is the expectation value and the standard deviation of the reward?

Question 4

10 selected Hogwarts students are randomly lined up for questioning.

Q₁: What is the probability that Potter, Granger and Weasley are standing next to each other?

 Q_2 : What if they are standing in a circle?

Question 5

5 male dancers, a, b, c, d, e and 5 female dancers $\alpha, \beta, \gamma, \delta, \epsilon$ form dancing couples randomly.

Q: What is the probability that c dances with γ ?

Question 6

The 21 Insight Fellows are grouped into 3 equal-size groups randomly.

Q: What is the probability that Derrick and Gaurav end up in the same group?

Question 7

The Krampus distributes 10 pieces of candy randomly between the stockings of 4 kids, A, B, C, D.

Q: What is the probability that A doesn't get any?

(The answer depends on the details of the randomization procedure.)

Questions 8

We keep throwing a fair, ten-sided die, with numbers $1, 2, 3, \dots 10$ on its sides, and count the number of times "1" comes up.

Q₁: What is the probability that we get two "1"s in the first twenty throws?

 Q_2 : What is the probability that we get the first "1" at the tenth throw?

Q₃: What is the probability that we get the third "1" at the thirtieth throw?

Probabilistic inference

Problem

- Model comparison: Given observations (aka data) $D = (d_1, d_2, \dots d_N)$, how plausible is each of the proposed models $\{M_1, M_2, \dots\}$?
- **Prediction**: Given the above calculated plausibility of each model, what is the prediction for the next observation, d_{N+1} ?

Solution

- 1. **Prior probability**: Think hard about the details of each model M_i , irrespective of the data D, and come up with prior probabilities, $\mathcal{P}(M_1), \mathcal{P}(M_2) \dots$. (Here $P(M_i)$ is the probability with which we think model i is true, disregarding the observations D.)
- 2. Forward probability: Think hard about the details of each model M_i , and calculate the probability of observing the data D, assuming that model i is true, $\mathcal{P}(D|M_i)$, $i=1,2,\ldots$. (A common assumption is that D is composed of independent, identically distributed (iid) observations d_j , in which case we need to calculate $\mathcal{P}(d|M_i)$ for all d individual observations, and combine them to get $\mathcal{P}(D|M_i) = \prod_{j=1}^N \mathcal{P}(d_j|M_i)$)
- 3. **Posterior probability**: Bayes theorem allows relating the probability of a model M_i (given observations D) to the probabilities of observations D (given models $\{M_k\}, k = 1, 2, \ldots$),

$$\boxed{\mathcal{P}(M_i|D)} = \frac{\mathcal{P}(D|M_i)\mathcal{P}(M_i)}{\mathcal{P}(D)} = \frac{\mathcal{P}(D|M_i)\mathcal{P}(M_i)}{\sum_k \mathcal{P}(D|M_k)\mathcal{P}(M_k)} \propto \mathcal{P}(D|M_i)\mathcal{P}(M_i).$$

There are different strategies making sense of this result:

(a) Maximum likelihood estimate: Pick the model that has the highest probability of producing the data (disregarding of its prior probability)

$$\hat{M}_{\text{MLE}} = \underset{M}{\operatorname{arg\,max}} \left[\mathcal{P}(D|M) \right].$$

(b) Maximum a posteriori estimate: Pick the model with the highest posterior probability

$$\hat{M}_{\text{MAP}} = \underset{M}{\operatorname{arg max}} \left[\mathcal{P}(M|D) \right] = \underset{M}{\operatorname{arg max}} \left[\mathcal{P}(D|M)\mathcal{P}(M) \right].$$

(c) Full distribution: Report the full set of posterior probabilities,

$$\{\mathcal{P}(M_1|D), \mathcal{P}(M_2|D), \ldots\}.$$

Or report summary statistics of this distribution, if it makes sense.

4. **Prediction**: Averaging the forward probabilities of all models weighted by their posterior probabilities give the probability of the next observation $d_{N+1} = d$,

$$\boxed{\mathcal{P}(d|D)} = \sum_{i} \mathcal{P}(d, M_i|D) = \sum_{i} \mathcal{P}(d|D, M_i) P(M_i|D) = \sum_{i} \mathcal{P}(d|M_i) \mathcal{P}(M_i|D).$$

This is often approximated by taking only the most plausible model into account (either \hat{M}_{MLE} or \hat{M}_{MAP}) to get $\mathcal{P}(d|D) \approx \mathcal{P}(d|\hat{M})$, resulting in a fast but often less robust result.

Examples

- Two discrete models: $D = \{\text{series of daily maximum temperatures}\}, M_1 = \text{``It's December.''}, M_2 = \text{``It's January.''}.$
- Many discrete models: $D = \{\text{series of drawn cards at a blackjack table}\}, M_k = \text{"The foot contains } k \text{ decks."}, k = 1, 2, 3, ...$
- One set of continuously many models: $D = \{\text{series of coin toss outcomes}\}, M_p = \text{``A coin toss gives heads with probability } p.\text{''}, p \in [0, 1]$
- Continuously many models against one discrete: $D = \{\text{series of coin toss outcomes}\}, M_{\text{null}} = \text{``Coin is fair.''} M_p = (\text{see above})$

Model comparison

Question 9

A blood test for an disease gives positive result on a sample.

Q: What is the probability that the sample actually has the disease? (Let's assume that the prevalence of the disease is one in 10,000, and the test has a false positive rate of 1%, and no false negative rate.)

Question 10

You have a new burglar alarm installed in your house. It is advertised to be able to detect 99.9% of all burglaries. From the user manual you also learn that earthquakes have a tendency to set it off with 20% probability.

 Q_1 : One day, while you are at work, you get an automated message from your new burglar alarm saying it went off. What is the probability that a break-in happened? (Let's assume a break-in rate of one in five years, and an earthquake rate of two per year.)

 Q_2 : A minute after this, you learn that there was an earthquake near your house. Now, what is the probability that a break-in happened?

Prediction

Question 11

We pick one of the following two coins at random, and toss it five times. Coin 1 is a fair coin with tail and head sides, but coin 2 is a trick coin, with heads on both sides.

 Q_1 : For each coin, what is the probability of tossing five heads?

Q₂: Given that five heads came up, what is the probability that we chose the trick coin?

Q₃: Given that five heads came up, what is the probability of getting a head for the sixth toss?