L1 Regularized Least Squares

ECE367 PS05 Problem 5.4 -- Aman Bhargava

Optimization Problem:

$$\min_{x \in \mathbb{R}^2} \left| \left| Ax - y
ight|
ight|_2^2 + \gamma \left| \left| x
ight|
ight|_1$$

For $0<\gamma\in\mathbb{R}$. The minimizing x is denoted x_{γ}^{*} .

Part A

Consider

$$A = egin{bmatrix} 0 & 2 \ 1 & 0 \ 2 & 1 \end{bmatrix}, \quad y = egin{bmatrix} -2 \ 5 \ 9 \end{bmatrix}, \quad \gamma = 0.$$

Derive that $x_0^* = (5, -1)$.

Part A Solution

We re-derive using the formula derived in class for solution to unconstrained least-squares:

$$x^* = (A^T A)^{-1} A^T y$$

By the computation in cell 1:

$$\therefore x^* = (5, -1)$$

Part B

Figure 2 is a plot of x_γ^* as a function of γ . We observe that there is a range of γ where $x_{\gamma,2}^*=0$. What is the smallest value of $\gamma=\gamma_{\min}$ such that $x_{\gamma,2}^*=0$? Also, what is the value of $x_{\gamma_{\min},1}^*$?

Part B Solution

At the optimal value of \vec{x} for a given γ , we would have $\nabla \vec{x} = \vec{0}$.

Therefore, we set $abla p = ec{0}$ and $x_2 = 0$ and solve for x_1, γ .

$$abla p = egin{bmatrix} -46+10x_1+4x_2+(\gamma x_1)/|x_1| \ -10+4x_1+10x_2+(\gamma x_2)/|x_2| \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

By inspection, $x_1>0$ and $x_2\to 0^-$.

$$abla p = \left[egin{array}{c} -46 + 10x_1 + \gamma \ -10 + 4x_1 - \gamma \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

Solving as a system of linear equations (two constraints, two unknowns),

$$-56 + 14x_1 = 0; \gamma + 10x_1 - 46 = 0$$

 $\therefore (x_1, \gamma) = (4, 6)$

Part C

It can be ovserved that $\gamma>\gamma_{\min}$ leads to x_{γ}^* of the form $(x_{\gamma 1}^*,0).$ Explain why.

Part C Answer

- The second index of x_{γ}^* was 'eliminated' first because, of the two indexes, it explained less of the linear correlation between rows of A and indexes of y.
- As γ is increased, this does not change, so the index remains 0-valued.
- Geometrically, the cost associated with the regularization term has square cross sections with corners aligned with the x_1, x_2 axes.
- This axis alignment means that, once reached, the path of steepest descent is along an axis as the regularization parameter γ is increased.
- Therefore, $x_{\gamma,2}^*=0$ for all $\gamma \geq \gamma_{\min}.$

Part D

Solve for x_{γ}^* for $\gamma \geq \gamma_{\min}$.

Part D: Solution

For $\gamma \geq \gamma_{\min}$, we know from C that $x_2=0$. We can re-use the same logic from A (i.e. that $\nabla p=\vec 0$ at the optimal x_1,x_2 , knowing that $x_2=0$:

$$egin{aligned}
abla p &= egin{bmatrix} -46 + 10x_1 + 4x_2 + (\gamma x_1)/|x_1| \ -10 + 4x_1 + 10x_2 + (\gamma x_2)/|x_2| \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix} \
abla p &= egin{bmatrix} -46 + 10x_1 + \gamma \ -10 + 4x_1 + \gamma \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix} \end{aligned}$$

Since the second index in ∇p corresponds to the derivative w.r.t. to x_2 , we discard the constraint since we already showed in A that $x_2=0$.

```
# IMPORT BOX #
In [1]:
         using LinearAlgebra
         using Plots
         using JuMP, Ipopt
         import GLPK
         using Convex, SCS
In [2]: # PART A #
         A = [0 \ 2; \ 1 \ 0; \ 2 \ 1];
         y = [-2; 5; 9];
         x_0_{star} = inv(transpose(A)*A)*transpose(A)*y
Out[2]: 2-element Array{Float64,1}:
         -0.99999999999998
        # PART B: Solving for Optimal Point given \lambda #
In [6]:
         #ARG:
         \gamma = 0
         function get optimal x(\gamma)
             # Create a (column vector) variable of size n x 1.
             x = Variable(n)
             # The problem is to minimize ||Ax - b||^2 subject to x \ge 0
             # This can be done by: minimize(objective, constraints)
             problem = minimize(sumsquares(A * x - y) + \gamma*norm(x, 1))
             # Solve the problem by calling solve!
             solve!(problem, SCS.Optimizer)
             # Check the status of the problem
             problem.status # :Optimal, :Infeasible, :Unbounded etc.
             # Print the value for x
             println(round.(evaluate(x), digits=2))
              # Get the optimal value
             problem.optval
              return(evaluate(x))
         end
Out[6]: get_optimal_x (generic function with 1 method)
In []: range gamma = 20
         \max i = 20*10
```

xmat = zeros(max i, 2) # matrix to keep optimal x for various γ values.

```
gs = zeros(max_i)
for i = 1:max_i
    \gamma = i/10;
    gs[i] = \gamma;
    x = get_optimal_x(\gamma)
    xmat[i,:] = x
end
```

```
plot((1:max_i)/10, xmat, label = ["x1" "x2"])
In [5]:
         title!("x1, x2 vs. \gamma")
```


10