Probability and Random Processes

Gude Pravarsh EE22BTECH11023*

$$\mathbf{A} = \begin{pmatrix} -3\\2 \end{pmatrix}; \mathbf{B} = \begin{pmatrix} -4\\3 \end{pmatrix}; \mathbf{C} = \begin{pmatrix} -5\\2 \end{pmatrix}$$

I. Vertices

Parameters	Values	Description
\mathbf{m}_1	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	$\mathbf{B} - \mathbf{A}$
\mathbf{m}_2	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	C - B
m ₃	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	A – C
$ \mathbf{B} - \mathbf{A} $	$\sqrt{2}$	length of AB
$\ \mathbf{C} - \mathbf{B}\ $	$\sqrt{2}$	length of BC
$ \mathbf{A} - \mathbf{C} $	2	length of CA
$rank\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	Non-collinear
n ₁	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_1}$
n ₂	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_2}$
n ₃	$\begin{pmatrix} 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_3}$
$\frac{1}{2} \mathbf{m_1} \times \mathbf{m_2} $	1	Area
$\angle A$	45°	Angle A
∠B	90°	Angle B
$\angle C$	45°	Angle C

1

II. CENTROID

D	CENTROID	D
Parameters	Values	Description
D	$\begin{pmatrix} -\frac{9}{2} \\ \frac{5}{2} \end{pmatrix}$	$\frac{\mathbf{A} + \mathbf{B}}{2}$
E	$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$	$\frac{\mathbf{C} + \mathbf{A}}{2}$
F	$\begin{pmatrix} -\frac{7}{2} \\ \frac{5}{2} \end{pmatrix}$	<u>B+C</u> 2
m ₄	$\begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$	D – A
m ₅	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	E - B
m ₆	$\begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$	F – C
n ₄	$\begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_4}$
n ₅	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_5}$
n ₆	$\begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m_6}$
G	$\begin{pmatrix} -4 \\ \frac{7}{3} \end{pmatrix}$	$\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3}$
$ \mathbf{A} - \mathbf{G} $	1.054	
$ \mathbf{D} - \mathbf{G} $	0.527	
$ \mathbf{B} - \mathbf{G} $	0.666	AG DG GG
$ \mathbf{E} - \mathbf{G} $	0.333	$\therefore \frac{AG}{GD} = \frac{BG}{GE} = \frac{CG}{GF} = 2$
$\ \mathbf{C} - \mathbf{G}\ $	1.054	
$\ \mathbf{F} - \mathbf{G}\ $	0.527	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}$	2	The points are collinear
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}$		points are common
$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$		
AF ED	$\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$	AFDE is a quadrilateral

III. ORTHOCENTRE

Parameters	Values	Description
n ₇	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	alt AD_1
n ₈	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	alt BE_1
n ₉	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	alt CF_1
Н	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	orthocentre

IV. CIRCUMCENTRE

Parameters	Values	Description
O	$\left(-4,2\right)$	circumcentre
$\ \mathbf{O} - \mathbf{A}\ $		
$\ \mathbf{O} - \mathbf{B}\ $	1	circumradius
$\ \mathbf{O} - \mathbf{C}\ $		

V. INCENTRE

Parameters	Values	Description	
I – A	$\begin{pmatrix} 1.70 \\ -0.70 \end{pmatrix}$	angle bisector of A	
I – B	$\begin{pmatrix} 0 \\ -1.41 \end{pmatrix}$	angle bisector of B	
I – C	$\begin{pmatrix} -1.70 \\ -0.70 \end{pmatrix}$	angle bisector of C	
I	$\begin{pmatrix} -4 \\ 2.41 \end{pmatrix}$	incentre	
r	0.414	incentre radius	
∠BAI ∠CAI	22.5°	bisector of A	
∠ABI ∠CBI	135°	bisector of B	
∠BCI ∠ACI	157.5°	bisector of C	
D ₃	$\begin{pmatrix} -4.29 \\ 2.70 \end{pmatrix}$	mainte of interesection	
E ₃	$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$	points of intersection	
F ₃	$\begin{pmatrix} -3.70 \\ 2.70 \end{pmatrix}$		

