EC569 Economic Growth Lecture4

İlhan Güner School of Economics University of Kent

February 4, 2019

Economic Growth in the Solow model

What's the long-run growth rate of income per capita in the Solow Model?

Economic Growth in the Solow model

What's the long-run growth rate of income per capita in the Solow Model?

Economic Growth in the Solow model

What's the long-run growth rate of income per capita in the Solow Model?

0

The Extended Solow model

Retain assumptions:

- Constant returns to scale production function: F(K,ehL)
- A constant fraction (γ) of output is invested.
- A constant fraction (δ) of physical capital stock depreciates.
- Labor force participation rate is constant.
- Population grows at a constant rate, n.
- Human capital, h, is constant.

Differently, assume

ullet Labor augmenting productivity, e, grows at a constant rate, g.

$$\frac{\dot{e}}{e} = g \Leftrightarrow e(t) = e_0 e^{gt}$$

Clarification...

- Previously, we assumed production function is AF(K, hL)
 - Here, A is Hicks-neutral technology
- In the Extended Solow model, technology needs to be labor-augmenting: F(K,ehL)
 - Here, e is labor-augmenting or Harrod-neutral technology
- In Cobb-Douglas production, this distinction is not important.
 - $K^{\alpha}(ehL)^{1-\alpha} = AK^{\alpha}(hL)^{1-\alpha}$, where $A \equiv e^{1-\alpha}$

Accumulation of physical capital

• Change in capital stock = Investment - Depreciation

$$\dot{K} = I - D$$

• A constant fraction, γ , of output is invested

$$I = \gamma Y$$

• A constant fraction, δ , of capital depreciates

$$D = \delta K$$

$$\dot{K} = \gamma Y - \delta K$$

Accumulation of capital-technology ratio

- \bullet Goal: write accumulation of capital-technology ratio, $\tilde{k} \equiv \frac{K}{eL}$
- Capital-technology ratio, \tilde{k} , sometimes referred as capital per effective labor.
- Why do we need to convert physical capital accumulation equation into capital-technology units?
- Because capital stock will grow as a result of increasing population and higher productivity.

Accumulation of capital-technology ratio, cont'd

· Accumulation of capital

$$\dot{K} = \gamma Y - \delta K$$

- How do we transform \dot{k} into $\dot{\tilde{k}}$?
 - make use of $\tilde{k} \equiv \frac{K}{eL}$
 - take log of $\tilde{k}(t) \equiv \frac{eL}{e(t)L(t)}$:

$$\ln(\tilde{k}(t)) = \ln\left(\frac{K(t)}{e(t)L(t)}\right) = \ln(K(t)) - \ln(e(t)) - \ln(L(t))$$

• Then differentiate with respect to time, t,

$$\frac{\dot{\bar{k}}(t)}{\tilde{k}(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{e}(t)}{e(t)} - \frac{\dot{L}(t)}{L(t)}, \qquad \frac{\dot{\bar{k}}}{k} = \frac{\dot{K}}{K} - g - n$$

Remember chain-rule:

$$\frac{df(g(x))}{dx} = \frac{df}{dq}\frac{dg}{dx}$$

Accumulation of capital-technology ratio, cont'd (2)

• Divide each side of $\dot{K} = \gamma Y - \delta K$ by K:

$$\frac{\dot{K}}{K} = \frac{\gamma Y}{K} - \delta$$

• Then,

$$\begin{split} \frac{\dot{\tilde{k}}}{\tilde{k}} + g + n &= \frac{\dot{K}}{K} = \frac{\gamma Y}{K} - \delta \\ \frac{\dot{\tilde{k}}}{\tilde{k}} + g + n &= \frac{\gamma Y/(eL)}{K/(eL)} - \delta \\ \\ \frac{\dot{\tilde{k}}}{\tilde{k}} + g + n &= \frac{\gamma \tilde{y}}{\tilde{k}} - \delta, \text{ where } \tilde{y} \equiv \frac{Y}{eL} \end{split}$$

$$\frac{\tilde{k}}{\tilde{k}} = \frac{\gamma \tilde{y}}{\tilde{k}} + (\delta + g + n) \quad \Rightarrow \quad \dot{\tilde{k}} = \gamma \tilde{y} - (\delta + g + n) \tilde{k}$$

Steady State

$$\dot{\tilde{k}} = \gamma \tilde{y} - (\delta + g + n)\tilde{k}, \text{ or }$$

$$\dot{\tilde{k}} = \gamma f(\tilde{k}) - (\delta + g + n) \tilde{k}, \text{ where } \tilde{y} = f(\tilde{k}) = F(K, ehL)/(eL)$$

Capital-technology ratio is constant at the steady state.

- if $\gamma f(\tilde{k}) > (\delta + g + n)\tilde{k}$, then $\dot{\tilde{k}} > 0$
- if $\gamma f(\tilde{k}) < (\delta + g + n)\tilde{k}$, then $\dot{\tilde{k}} < 0$
- if $\gamma f(\tilde{k}) = (\delta + g + n)\tilde{k}$, then $\tilde{k} = 0$: steady state

The Solow Diagram

Diagram from Jones and Vollrath (2013)

If $\tilde{k}<\tilde{k}^*$, capital-technology ratio and output-technology ratio will increase. If $\tilde{k}>\tilde{k}^*$, capital-technology ratio and output-technology ratio will decrease.

Steady State, cont'd

Cobb-Douglas production function

$$Y = K^{\alpha} (ehL)^{1-\alpha}$$
$$\frac{Y}{eL} = \frac{K^{\alpha} (ehL)^{1-\alpha}}{(eL)^{\alpha} (eL)^{1-\alpha}}$$
$$\tilde{y} = \tilde{k}^{\alpha} h^{1-\alpha}$$

No change of capital-technology ratio at the steady state

$$\dot{\tilde{k}} = \gamma \tilde{k}^{\alpha} h^{1-\alpha} - (\delta + g + n) k$$

$$0 = \gamma (\tilde{k}^*)^{\alpha} h^{1-\alpha} - (\delta + g + n) k^*$$

$$\gamma (\tilde{k}^*)^{\alpha} h^{1-\alpha} = (\delta + g + n) \tilde{k}^*$$

$$\tilde{k}^* = \left(\frac{\gamma}{\delta + g + n}\right)^{1/(1-\alpha)} h$$

Steady steady output per worker:

$$\tilde{y}^* = (\tilde{k}^*)^{\alpha} h^{1-\alpha} = \left(\frac{\gamma}{\delta + g + n}\right)^{\alpha/(1-\alpha)} h$$

Per worker values

Output per worker:

$$y(t) = e(t)\tilde{y}(t)$$

Capital per worker:

$$k(t) = e(t)\tilde{k}(t)$$

Output per worker at the steady state:

$$y(t) = e(t)\tilde{y}^* = e(t)\left(\frac{\gamma}{\delta + q + n}\right)^{\alpha/(1-\alpha)}h$$

Capital per worker:

$$k(t) = e(t)\tilde{k}^* = e(t)\left(\frac{\gamma}{\delta + q + n}\right)^{1/(1-\alpha)}h$$

Comparative Statics

Capital-technology ratio at the steady state:

$$\tilde{k}^* = \left(\frac{\gamma}{\delta + g + n}\right)^{1/(1-\alpha)} h$$

Output-technology ratio at the steady state:

$$\tilde{y}^* = \left(\frac{\gamma}{\delta + g + n}\right)^{\alpha/(1-\alpha)} h$$

- \tilde{k}^* and \tilde{y}^* are rising with investment rate γ , and human capital h,
- \tilde{k}^* and \tilde{y}^* are declining with depreciation rate, δ , population growth rate, n, and rate of technological progress, g.

As
$$\gamma \uparrow$$
, $\tilde{k}^* = \left(\frac{\gamma}{\delta + g + n}\right)^{1/(1-\alpha)} h \uparrow$, $\tilde{y}^* = \left(\frac{\gamma}{\delta + g + n}\right)^{\alpha/(1-\alpha)} h \uparrow$

Output-technology ratio after an increase in investment rate

Output per worker after an increase in investment rate

Growth rate of capital-technology ratio after an increase in investment rate

Growth rate of output per worker after an increase in investment rate

Exercise

Conduct comparative statics for changes in $n,\,\delta,\,g$, and h.

Impact of an increase in investment rate

Short-run:

- Growth rates of capital per worker and income per worker increase.
- Capital per worker and income per worker increases.

Long-run (steady-state):

- Capital per worker and income per worker increases.
- Growth rate of capital per worker and income per worker do not change.

Steady State Growth Rates

	Growth	rate	at	the	s.s.
\tilde{k}					
$egin{array}{c} k \ ilde{y} \ ilde{c} \end{array}$					
\tilde{c}					
\overline{k}					
$\frac{y}{c}$					
c					
\overline{K}					
$Y \\ C$					
C					

Steady State Growth Rates

Growth rate at the s.s.
0
0
0
g
g
g
g+n
g+n
g+n

Exogenous Growth Model

- Technology is the only source of long-run growth.
- Technology is exogenous: not a results of interactions of agents in the model
- Hence, the extended Solow model is an example of "exogenous growth models."
- It is also referred as "Neo-classical growth model"
- In upcoming lectures, we will analyze "endogenous growth models"
 - Technological progress as a result of actions of model agents.

Convergence

Are "poor" countries growing faster than "rich" countries?

Are "poor" countries "closing the gap"?

Converge: The phenomenon of "poor" countries catching up with the "rich" countries.

Convergence in a sample of industrialized countries, 1870-2008

Data source: Maddison (2010)

Graph from: Jones and Vollrath (2013)

Convergence in a sample of industrialized countries, cont'd, 1870-2008

Data source: Maddison (2010)

Graph from: Jones and Vollrath (2013)

Convergence in OECD countries, 1960-2008

Data source: Penn World Tables Mark 7.0 and Summers and Heston (1991) Graph from: Jones and Vollrath (2013)

The lack of convergence for the World, 1960-2008

Data source: Penn World Tables Mark 7.0 and Summers and Heston (1991) Graph from: Jones and Vollrath (2013)

Convergence (?)

- How do we reconcile the converge in OECD but lack of convergence for the world?
- Prediction of the Solow model:
 - Among the countries with the same steady state, poor countries should grow faster than rich countries.
 - Steady state depends on investment rate, population growth rate, technological progress rate
- OECD countries show similarities in investment rate, population growth rate, rate of technological progress.
- More variation in the World in these statistics.

Conditional convergence

- Mankiw, Romer, and Weil (1992), and Barro and Sala-i-Martin (1992):
- Convergence of countries "conditional on" their steady states
- Countries that are poor relative to their steady states tend to grow faster.

"Conditional" convergence for the World, 1960-2008

Data source: Author's calculations using Penn World Tables 7.0, update of Summers and Heston (1991).

Note: The variable on the x-axis is \hat{y}_{60}/\hat{y}^* . Estimates of A for 1970 are used to compute the steady state.

Graph from: Jones and Vollrath (2013)

Summary

- We developed a model in which technological progress is the only source of long-run growth
- We looked at the convergence of countries: countries with similar steady states converge but not all countries.

Thank you!