## Classificação



## ALGA — Agrupamento IV (ECT, EET, EI)

## Teste 1

| 2 de novembro de 2016 — Duração: <b>1h45</b> | Valore |
|----------------------------------------------|--------|
|                                              |        |

| ome          |                                               |                                                                  |                                                               |                                                                             | N.                                       | ° Mec                        |                                 |
|--------------|-----------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|------------------------------|---------------------------------|
| urso         |                                               |                                                                  |                                                               | N.° Fol                                                                     | has supleme                              | entares                      |                                 |
| Questão      | 1                                             | 2                                                                | 3                                                             | 4                                                                           | 5                                        | 6                            | total                           |
| Cotação      | 45                                            | 30                                                               | 20                                                            | 20                                                                          | 30                                       | 55                           | 200                             |
| Classif.     |                                               |                                                                  |                                                               |                                                                             |                                          |                              |                                 |
| 1. Esta pri  | meira questão é                               | constituída por                                                  | 5 alíneas de es                                               | colha múltipla.                                                             | 73                                       |                              | 3 4 5                           |
| Atribu       |                                               | os por cada res<br>os por cada res                               | posta correta,<br>posta em branc                              | o e                                                                         |                                          |                              | 24 33                           |
|              |                                               | os por cada res                                                  |                                                               |                                                                             |                                          | 3                            | cotação)                        |
| Cada al      | ínea tem uma só                               | opção correta                                                    | que deve assina                                               | lar com uma ×                                                               | no corre                                 | espondente.                  |                                 |
|              | eja $G$ a matriz ob                           |                                                                  |                                                               |                                                                             | ções elementar                           | es nas linhas                |                                 |
| $L_1$        | $1 := \frac{1}{2}L_1,  L_2$ $\det(G) = \det$  |                                                                  | $L_3 := L_3 -$                                                | $L_1$ .                                                                     |                                          |                              |                                 |
|              |                                               | $4 \times 7 \times \det(I)$                                      | O).                                                           |                                                                             |                                          |                              |                                 |
|              |                                               | , ,                                                              |                                                               |                                                                             |                                          |                              |                                 |
|              | $\det(G) = \frac{1}{2} de$                    | et(D).                                                           |                                                               |                                                                             |                                          |                              |                                 |
| (b) Pa       | ara as matrizes C                             |                                                                  | $e F = \begin{bmatrix} 1 + 2 \\ 4 + 5 \\ 7 + 8 \end{bmatrix}$ | $\begin{bmatrix} 2x & 2 & 3 \\ 5x & 5 & 6 \\ 8x & 8 & 9 \end{bmatrix} $ con | $\mathbf{n} \ x \neq 0 \ \mathbf{podem}$ | os dizer                     |                                 |
|              | $C \text{ \'e invert\'e l.}$ $\det(C) = \det$ |                                                                  |                                                               |                                                                             |                                          |                              |                                 |
|              | $\det(C) = \det(C)$ $\det(F) = x.$            | ( <i>I'</i> ).                                                   |                                                               |                                                                             |                                          |                              |                                 |
| -            | $\det(F) = \det$                              | (C) + x.                                                         |                                                               |                                                                             |                                          |                              |                                 |
|              |                                               | (0)                                                              |                                                               |                                                                             |                                          |                              |                                 |
| (c) <u>C</u> | onsidera a matriz<br>é tal que car(A          |                                                                  | car(A) = 3. O                                                 | sistema $AX =$                                                              | B                                        |                              |                                 |
|              | tem sempre so                                 |                                                                  |                                                               |                                                                             |                                          |                              |                                 |
| -            | ╡ -                                           | idade de soluçõ                                                  | es.                                                           |                                                                             |                                          |                              |                                 |
|              | não tem soluçã                                | ,                                                                |                                                               |                                                                             |                                          |                              |                                 |
|              |                                               |                                                                  |                                                               |                                                                             |                                          |                              |                                 |
| (d) Co       | onsidera a matriz<br>O sistema $AX$           | $A_{3\times3}$ invertíve $A_{3\times3}$ invertíve $A_{3\times3}$ |                                                               | $C_1$ , $C_2$ e $C_3$ , u                                                   | $m \ vetor \ B \in \mathbb{R}$           | 2 <sup>3</sup> e o sistema A | AX = B.                         |
|              |                                               | $C_2 + C_3$ , então                                              | X = (1, 1, 1)                                                 | •                                                                           |                                          |                              |                                 |
|              | Se $B = C_3$ , er                             | ntão o sistema é                                                 | é possível e inde                                             | eterminado.                                                                 |                                          |                              |                                 |
|              | $\bigcap$ O sistema $AX$                      | = B é sempre                                                     | possível e inde                                               | eterminado.                                                                 |                                          |                              |                                 |
|              | onsidere as retas spectivamente.              | $\mathcal{R}_1$ e $\mathcal{R}_2$ de e                           | quações $x = y$                                               | +z=1 e (x,                                                                  | y,z)=(2,-1)                              | $(1,0) + \alpha(0,1,1)$      | 1), com $\alpha \in \mathbb{I}$ |
|              | _                                             | tre as duas reta                                                 | s é 0.                                                        |                                                                             |                                          |                              |                                 |
|              |                                               |                                                                  | ntém a reta $\mathcal{R}_2$                                   |                                                                             |                                          |                              |                                 |
|              | <b>≓</b>                                      | _                                                                |                                                               | são concorrente                                                             | es.                                      |                              |                                 |
|              |                                               |                                                                  | _                                                             | al às retas $\mathcal{R}_1$ e                                               |                                          |                              |                                 |

- 2. Consider as matrizes  $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ -1 & 1 \end{bmatrix}$  e  $B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}$ .
  - (a) Se possível, calcula o determinante da matriz AB.

(b) A matriz BA é invertível? Justifica.

3. Ao aplicar o método de eliminação de Gauss-Jordan à resolução de determinado sistema obteve-se uma matriz ampliada [R|d] que permitiu obter a seguinte solução do sistema  $X = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + a \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}, a,b \in \mathbb{R}$ .

Uma matriz ampliada [R|d] obtida pode ser



4. Considera as matrizes  $A = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 3 & 8 & 7 \\ 0 & 0 & 4 & 2 \end{bmatrix}$  e  $B = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$ . Usando o método de eliminação de Gauss ou o método de eliminação de Gauss ou o método de eliminação de Gauss-Jordan, resolve o sistema AX = B e indica o seu conjunto de soluções.

- 5. Considera as matrizes  $A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 1 & 2 \\ 6 & 4 & 7 \end{bmatrix}$ ,  $Q = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$  e  $E = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 0 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ . A matriz E é a matriz escalonada por linhas da matriz [A|Q].

  - (b) Determina  $\mathcal{N}(A)$ , o espaço nulo de A, ou seja o conjunto de soluções do sistema homogéneo.

(c) Verifica se o vetor Q pertence a  $\mathcal{C}(A)$ , o espaço das colunas de A. Justifica a tua resposta.

| 6. Considera a reta $\mathcal{R}$ | que passa nos pontos $A(3,0)$ | $(0,1) \in B(1,0,0) \in O$ plan | o $\mathcal{P}$ de equação geral - | -x - 4y + az = 1. |
|-----------------------------------|-------------------------------|---------------------------------|------------------------------------|-------------------|

(a) Determina as equações cartesianas da reta  $\mathcal{R}$ .

(b) Determina uma equação do plano que contém o ponto P(2,1,-1) e é ortogonal à reta  $\mathcal{R}$ .

(c) Em função do parâmetro  $a \in \mathbb{R}$ , indica, justificando, qual a posição relativa da reta  $\mathcal{R}$  e do plano  $\mathcal{P}$ .

Nota que as matrizes 
$$D = \begin{bmatrix} -1 & -4 & a & 1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & -1 \end{bmatrix}$$
 e  $E = \begin{bmatrix} -1 & -4 & a & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2-a & -2 \end{bmatrix}$  são equivalentes por linhas.

(d) Em função do parâmetro  $a \in \mathbb{R}$ , calcula  $\operatorname{dist}(\mathcal{R}, \mathcal{P})$ , a distância da reta  $\mathcal{R}$  ao plano  $\mathcal{P}$ .