6.003: Signals and Systems

Relations between CT and DT:
Insights from Operators and Transforms

February 25, 2010

Mid-term Examination #1

Wednesday, March 3, 7:30-9:30pm.

No recitations on the day of the exam.

Coverage: Representations of CT and DT Systems

Lectures 1–7 Recitations 1–8 Homeworks 1–4

Homework 4 will not collected or graded. Solutions will be posted.

Closed book: 1 page of notes $(8\frac{1}{2} \times 11 \text{ inches; front and back}).$

Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Check Yourself

What is the "step response" of the leaky tank system?

5. none of the above

Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

$$x_d[n] = x_c(nT)$$

$$y_d[n] = y_c(nT)$$

$$\dot{y}_c(nT) \approx \frac{y_c\big((n+1)T\big) - y_c\big(nT\big)}{T} = \frac{y_d[n+1] - y_d[n]}{T}$$

Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

$$x_d[n] = x_c(nT)$$

$$y_d[n] = y_c(nT)$$

$$\dot{y}_c(nT) \approx \frac{y_c\big((n+1)T\big) - y_c\big(nT\big)}{T} = \frac{y_d[n+1] - y_d[n]}{T}$$

into the differential equation

$$\tau \dot{y}_c(t) = x_c(t) - y_c(t)$$

to obtain

$$\frac{\tau}{T}\Big(y_d[n+1] - y_d[n]\Big) = x_d[n] - y_d[n].$$

Solve:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right) y_d[n] = \frac{T}{\tau} x_d[n]$$

Forward Euler Approximation

Plot.

Why is this approximation badly behaved?

Check Yourself

DT approximation:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right) y_d[n] = \frac{T}{\tau} x_d[n]$$

Find the DT pole.

1.
$$z = \frac{T}{z}$$

2.
$$z = 1 - \frac{T}{5}$$

3.
$$z = \frac{\tau}{T}$$

4.
$$z = -\frac{\tau}{T}$$

5.
$$z = \frac{1}{1 + \frac{T}{z}}$$

Dependence of DT pole on Stepsize

$$\frac{T}{\tau} = 0.1$$

The CT pole was fixed $(s=-\frac{1}{\tau})$. Why is the DT pole changing?

Dependence of DT pole on Stepsize

Change in DT pole: problem specific or property of forward Euler?

Approach: make a systems model of forward Euler method.

CT block diagrams: adders, gains, and integrators:

$$X \longrightarrow A \longrightarrow Y$$

$$\dot{y}(t) = x(t)$$

Forward Euler approximation:

$$\frac{y[n+1]-y[n]}{T}=x[n]$$

Forward Euler: substitute equivalent system for all integrators.

Example: leaky tank system

Started with leaky tank system:

Replace integrator with forward Euler rule:

Write system functional:

$$\frac{Y}{X} = \frac{\frac{T}{\tau} \frac{\mathcal{R}}{1 - \mathcal{R}}}{1 + \frac{T}{\tau} \frac{\mathcal{R}}{1 - \mathcal{R}}} = \frac{\frac{T}{\tau} \mathcal{R}}{1 - \mathcal{R} + \frac{T}{\tau} \mathcal{R}} = \frac{\frac{T}{\tau} \mathcal{R}}{1 - \left(1 - \frac{T}{\tau}\right) \mathcal{R}}$$

Equivalent to system we previously developed:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right) y_d[n] = \frac{T}{\tau} x_d[n]$$

Model of Forward Euler Method

Replace every integrator in the CT system

$$X \longrightarrow A \longrightarrow Y$$

with the forward Euler model:

Substitute the DT operator for A:

$$\mathcal{A} = \frac{1}{s} \rightarrow \frac{T\mathcal{R}}{1-\mathcal{R}} = \frac{\frac{T}{z}}{1-\frac{1}{z}} = \frac{T}{z-1}$$

Forward Euler maps $s \to \frac{z-1}{T}$.

Or equivalently: z = 1 + sT.

Dependence of DT pole on Stepsize

Pole at $z = 1 - \frac{T}{\tau} = 1 + sT$.

$$= 0.1$$

Forward Euler: Mapping CT poles to DT poles

Forward Euler Map:

$$\begin{array}{ccc} s & \rightarrow & z=1+sT \\ 0 & & 1 \\ -\frac{1}{T} & & 0 \\ -\frac{2}{T} & & -1 \end{array}$$

DT stability: CT pole must be inside circle of radius $\frac{1}{T}$ at $s=-\frac{1}{T}.$

$$-\frac{2}{T}<-\frac{1}{\tau}<0 \qquad \rightarrow \qquad \frac{T}{\tau}<2$$

Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

$$\begin{split} x_d[n] &= x_c(nT) \\ y_d[n] &= y_c(nT) \\ \dot{y}_c(nT) &\approx \frac{y_c \left(nT\right) - y_c \left((n-1)T\right)}{T} = \frac{y_d[n] - y_d[n-1]}{T} \end{split}$$

Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

$$x_d[n] = x_c(nT)$$

$$y_d[n] = y_c(nT)$$

$$\dot{y}_c(nT) \approx \frac{y_c \left(nT \right) - y_c \left((n-1)T \right)}{T} = \frac{y_d[n] - y_d[n-1]}{T}$$

into the differential equation

$$\tau \dot{y}_c(t) = x_c(t) - y_c(t)$$

to obtain

$$\frac{\tau}{T}\Big(y_d[n] - y_d[n-1]\Big) = x_d[n] - y_d[n].$$

$$\left(1+\frac{T}{\tau}\right)y_d[n]-y_d[n-1]=\frac{T}{\tau}x_d[n]$$

Backward Euler Approximation

Plot.

This approximation is better behaved. Why?

Check Yourself

DT approximation:

$$\left(1 + \frac{T}{\tau}\right) y_d[n] - y_d[n-1] = \frac{T}{\tau} x_d[n]$$

Find the DT pole.

1.
$$z = \frac{T}{\tau}$$

1.
$$z = \frac{T}{\tau}$$
 2. $z = 1 - \frac{T}{\tau}$

3.
$$z = \frac{\tau}{7}$$

4.
$$z = -\frac{\tau}{T}$$

5.
$$z = \frac{1}{1 + \frac{T}{\tau}}$$

Dependence of DT pole on Stepsize

$$\frac{L}{\tau} = 0.1$$

Why is this approximation better behaved?

Dependence of DT pole on Stepsize

Make a systems model of backward Euler method.

CT block diagrams: adders, gains, and integrators:

$$X \longrightarrow A \longrightarrow Y$$

$$\dot{y}(t) = x(t)$$

Backward Euler approximation:

$$\frac{y[n]-y[n-1]}{T}=x[n]$$

Equivalent system:

Backward Euler: substitute equivalent system for all integrators.

Model of Backward Euler Method

Replace every integrator in the CT system

$$X \longrightarrow A \longrightarrow Y$$

with the backward Euler model:

Substitute the DT operator for \mathcal{A} :

$$\mathcal{A} = \frac{1}{s} \to \frac{T}{1 - \mathcal{R}} = \frac{T}{1 - \frac{1}{z}}$$

Backward Euler maps $z o \frac{1}{1-\mathfrak{c}T}.$

Dependence of DT pole on Stepsize

Backward Euler: Mapping CT poles to DT poles

Backward Euler Map:

$$\begin{array}{ccc} s & \rightarrow & z = \frac{1}{1-sT} \\ 0 & & 1 \\ -\frac{1}{T} & & \frac{1}{2} \\ -\frac{2}{T} & & \frac{1}{3} \end{array}$$

The entire left half-plane maps inside a circle with radius $\frac{1}{2}$ at $z = \frac{1}{2}$. If CT system is stable, then DT system is also stable.

Masses and Springs, Forwards and Backwards

In Homework 2, you investigated three numerical approximations to a mass and spring system:

- forward Euler
- backward Euler
- centered method

Trapezoidal Rule

The trapezoidal rule uses centered differences.

$$\dot{y}(t) = x(t)$$

Trapezoidal rule:

$$\frac{y[n] - y[n-1]}{T} = \frac{x[n] + x[n-1]}{2}$$

Trapezoidal Rule

The trapezoidal rule uses centered differences.

$$\dot{y}(t) = x(t)$$

Trapezoidal rule:
$$\frac{y[n]-y[n-1]}{T} = \frac{x[n]+x[n-1]}{2}$$

$$H(z) = \frac{Y(s)}{X(s)} = \frac{T}{2} \left(\frac{1+z^{-1}}{1-z^{-1}} \right) = \frac{T}{2} \left(\frac{z+1}{z-1} \right)$$

$$\mathcal{A} = \frac{1}{s} \to \frac{T}{2} \left(\frac{z+1}{z-1} \right)$$

Trapezoidal rule maps $z \rightarrow \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}$

Trapezoidal Rule: Mapping CT poles to DT poles

Trapezoidal Map:

The entire left-half plane maps inside the unit circle.

The $j\omega$ axis maps onto the unit circle

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.