

Proposta de Teste Intermédio n.º 3

Matemática A - 12.º Ano

"Num pequeno número de coisas podemos ter toda a certeza (...) o principal meio de procurar a verdade baseia-se nas probabilidades."

Pierre Simon Laplace

	GRUPO I – ITENS DE E	SCOLHA MÚLTIPLA		
1. Considere a linha n do triângulo de Pascal, com $n > 11$, em que o produto entre o terceiro elemento e o antepenúltimo elemento dessa linha é $5^4 \times 7^4$. Quantos elementos são maiores que $n^{-2}C_8 + n^{-2}C_9 + n^{-1}C_{n-11}$?				
A 28	B 29	C 30	D 31	
2. Considere um prisma em que as bases são eneágonos regulares. Uma dessas bases está contida no plano de equação $y=-2$ e a outra está contida no plano de equação $y=3$.				
Escolhendo, simultaneamente e ao acaso, três dos vértices desse prisma, qual é a probabilidade de definirem um plan que intersecte o plano xOz ?				
$\frac{7}{68}$		$\frac{27}{68}$	$\boxed{D} \ \frac{27}{34}$	
3. Um casal tem três filhos. Qual é a probabilidade de serem do mesmo sexo sabendo que um deles é uma rapariga?				
$\frac{1}{2}$	$\frac{1}{4}$	$C \frac{1}{7}$	$D \frac{1}{8}$	
Retirado do Livro "Preparar o Exame 2013" da Raiz Editora Exercício Extra: Um casal tem cinco filhos. Qual é a probabilidade de exactamente três serem do mesmo sexo sabendo que os dois primeiros filhos são de sexos diferentes? Apresente o resultado na forma de fracção irredutivel. 4. Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis $(A \subset S \in B \subset S)$. Sabe-se que: • $P(A \cup B) = \frac{0.27}{1 - P(\bar{A} \cup \bar{B})}$ • $P(A) = 0.7$ • $P(B) = 0.5$ Qual é o valor de $P(B A)$?				
$\frac{2}{7}$	$\mathbf{B} \ \frac{3}{7}$	$C \frac{4}{7}$	$D \frac{5}{7}$	

5. Sejam X_1 e X_2 duas variáveis aleatórias tal que $X_1 \sim N(\mu_1, \sigma_1)$ e $X_2 \sim N(\mu_2, \sigma_2)$.

Sabe-se que:

•
$$\mu_2 = \mu_1 + 3$$

$$\sigma_1 = 2\sigma_2$$

•
$$P(6,55 < X_2 < 6,85) = 0,1573$$

O valor médio e o desvio padrão da variável aleatória X_1 podem ser, respectivamente:

- **A** 3,4 e 0,3
- **B** 4 e 0,15
- **C** 6,4 e 0,3
- **D** 7 e 0,15

GRUPO II – ITENS DE RESPOSTA ABERTA

- 1. Uma turma do 12.º Ano de uma escola tem 25 alunos, dez rapazes e quinze raparigas.
 - **1.1.** Vão ser escolhidos seis alunos para formarem uma comissão para preparem a viagem de finalistas. Essa comissão terá um Presidente, um Tesoureiro e um Relações Públicas. Os restantes membros da comissão terão tarefas indiferenciadas.

De quantas maneiras distintas se pode formar a comissão de modo que pelo menos dois dos três cargos sejam ocupados por raparigas?

1.2. Entre os dez rapazes da turma, existem cinco que são primos. Os dez rapazes vão colocar-se numa só fila para tirarem uma fotografia.

Supondo que o fazem ao acaso, qual é a probabilidade de pelo menos dois primos ficarem juntos? Apresente o resultado na forma de fracção irredutível.

- 1.3. Todas as mesas da cantina da escola são circulares e têm oito lugares indistinguíveis.
 - **1.3.1.** Oito amigos, entre os quais, o Pedro, a Mariana, o Francisco e a Serenela, almoçam todos os dias na cantina e sentam-se sempre na mesma mesa.

De quantas maneiras distintas se podem sentar de modo que o Pedro, a Mariana, o Francisco e a Serenela, fiquem sentados em lugares consecutivos?

1.3.2. A cantina tem doze mesas. No baile de finalistas, em todas as mesas, estão sentados três rapazes e cinco raparigas.

Escolhendo, ao acaso, um aluno de cada uma das doze mesas, qual é a probabilidade de existirem alunos dos dois sexos, mas no máximo três rapazes? Apresente o resultado na forma de percentagem, arredondado às décimas.

2. Considere um polígono regular com n lados, com $n \ge 3$, em que dois dos seus vértices estão marcados com as letras A e B. Escolhe-se, simultaneamente e ao acaso, três dos vértices do polígono e forma-se um triângulo.

Mostre que a probabilidade de pelo menos um dos vértices A ou B ser vértice do triângulo é dada, em função de n, por $\frac{6n-12}{n_{A_2}}$.

- **3.** Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis $(A \subset S \in B \subset S)$ tal que P(A) + P(B) = 1.
 - **3.1.** Mostre que $P(A|B) P(\bar{B}|A) = \frac{P(B|A)}{P(B)} 1$.
 - **3.2.** Um canal de comunicação é constituído por dois emissores, E_1 e E_2 e dois receptores R_1 e R_2 . Admite o sistema é aleatório.

Sabe-se que:

- o emissor E₁ emite três décimos dos sinais;
- o receptor R₂ recebe 30% dos sinais emitidos;
- dos sinais recebidos por R_1 , $\frac{1}{14}$ é emitido por E_1 .

A dada altura E₁ emite um sinal. Qual é a probabilidade de ser recebido por R₂?

Utilize dois processos distintos para responder a este item, sendo um deles utilizando fórmula do item 3.1., justificando a razão pela qual a pode utilizar. Apresente o resultado na forma de fracção irredutível.

- 4. Considere todas as sequências de dez letras que se podem formar com as 26 letras do alfabeto.
 - 4.1. Considere os acontecimentos:

X: «a primeira letra da sequência é uma consoante»

Y: «as letras da sequência são todas distintas»

Numa pequena composição, justifique, sem utilizar a fórmula da probabilidade condicionada, que $P(X|Y) = \frac{21 \times ^{25} A_9}{^{26} A_{10}}$ e que X e Y são acontecimentos independentes.

Na sua composição deve:

- interpretar o significado de P(X|Y) no contexto da situação descrita;
- fazer uma referência à regra de Laplace;

- justificar o valor de P(X|Y) indicando uma explicação do número de casos possíveis e uma explicação do número de casos favoráveis;
- justificar que X e Y são acontecimentos independentes.
- **4.2.** Considere que numa caixa estão cinco cartões onde se desenharam as cinco primeiras letras do alfabeto, *A*, *B*, *C*, *D*, *E*. Considere também a experiência aleatória que consiste em retirar, sucessivamente e sem reposição, cartões da caixa. Construa a tabela de distribuição de probabilidades da variável aleatória *X*:

X: «número de extracções necessárias até todos os cartões com consoantes estarem fora da caixa»

Apresente as probabilidades na forma de dízima.

Exercício Extra: (Neste item, Apresente todos os resultados na forma de fracção irredutível)

Na figura estão representados, num referencial Oxyz, um cubo [OABCDEFG] e um tetraedro não regular [ACHI].

Sabe-se que:

- os vértices A, C e G pertencem aos eixos, Ox, Oy e Oz, respectivamente;
- os vértices H e I pertencem à diagonal [GE];

•
$$\overline{OA} = 4 \text{ e } \overline{GH} = \overline{IE} = \sqrt{2}$$

- a) Escolhem-se, simultaneamente e ao acaso, quatro dos dez vértices assinalados. Qual é a probabilidade de:
 - a₁) apenas dois serem vértices do cubo?
 - a2) dois serem apenas vértices do cubo e os outros dois do tetraedro?
- b) Escolhem-se, simultaneamente e ao acaso, três dos dez vértices assinalados. Qual é a probabilidade de:
 - b_1) definirem um plano paralelo a xOy?
 - b₂) definirem um plano estritamente paralelo ao plano de equação z=0?
 - b_3) apenas dois pertencerem a um plano estritamente paralelo ao plano de equação z=0?
 - **b**₄) definirem um plano perpendicular à recta definida por y = 1 \land z = -2?
 - **b**₅) pelo menos um pertencer ao plano de equação y z = 0?

- c) Escolhem-se, simultaneamente e ao acaso, dois dos dez vértices assinalados. Qual é a probabilidade de:
 - c₁) definirem uma aresta do cubo paralela ao plano de equação y + z = 2?
 - c₂) definirem uma recta contida no plano de equação y = x?
- d) Considere a recta r perpendicular ao plano ACI que contém o ponto B e os pontos de coordenadas M(2,2,-1), N(4,4,-2), P(1,0,1) e Q(-5,-6,4). Escolhendo, simultaneamente e ao acaso dois destes pontos, qual é a probabilidade de definirem uma recta paralela a r?

Sugestão: Comece por determinar um vector director da recta r.

Solucionário

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

4 D

2 (

Exercício Extra: 3

4 -

Α

GRUPO II - ITENS DE RESPOSTA ABERTA

1.1. 13 906 200

1.2. $\frac{41}{42}$

1.3.1. 576

1.3.2. ≈ 27,9%

3.2. $\frac{5}{6}$

4.2.

x_i	3	4	5
$P(X=x_i)$	0,1	0,3	0,6

Exercício Extra:

 $\frac{2}{15}$

a2) $\frac{3}{7}$

 b_1) $\frac{1}{6}$

b₂) $\frac{2}{1!}$

b₃)

 $\frac{1}{15}$

b₅)

C1) $\frac{4}{45}$

C2)

d)