Example Scenario: Personalized Health Insurance Recommendations

User Profile

- Age: 35
- Location: Melbourne
- Health Needs: Maternity coverage, no waiting periods.
- **Budget:** Prefers policies under \$150/month.
- **Additional Preferences:** Prefers insurers with high customer satisfaction ratings.

Step-by-Step Breakdown

1. Data Collection

User Data:

- o Age: 35
- Location: Melbourne (encoded as a categorical feature, e.g., "VIC").
- Health Needs: Maternity coverage (encoded as a binary feature: 1 for maternity, 0 otherwise).
- o Budget: \$150/month (normalized to a scale of 0−1, e.g., 0.75).
- Customer Satisfaction Preference: High (encoded as a binary feature: 1 for high, 0 for low).

Policy Data:

Policy X:

- Premium: \$120/month (normalized to 0.6).
- Waiting Period: 0 days for maternity (encoded as 0).
- Coverage: Maternity, dental, optical.
- Insurer Rating: 4.5/5 (normalized to 0.9).

Policy Y:

- Premium: \$135/month (normalized to 0.675).
- Waiting Period: 30 days for maternity (encoded as 30).
- Coverage: Maternity, neonatal care, hospital.
- Insurer Rating: 4.2/5 (normalized to 0.84).

Policy Z:

- Premium: \$110/month (normalized to 0.55).
- Waiting Period: 0 days for maternity (encoded as 0).
- Coverage: Maternity, partnered with Royal Women's Hospital.
- Insurer Rating: 4.7/5 (normalized to 0.94).

• Interaction Data:

 Historical data showing that users with similar profiles (e.g., age 30–40, maternity needs) often prefer policies with no waiting periods and high insurer ratings.

2. Model Input

The user's features are preprocessed and fed into the **User Tower** of the TFRS model:

```
python
Copy
user_input = {
    "age": 0.35, # Normalized (35 / 100)
    "location": "VIC", # Categorical (Victoria)
    "maternity_coverage": 1, # Binary (1 = needed)
    "budget": 0.75, # Normalized ($150/month)
    "insurer_rating_preference": 1 # Binary (1 = high rating preferred)
}
```

The **Policy Tower** processes the policy features:

3. Model Inference

The TFRS model computes embeddings for the user and policies, then calculates similarity scores:

```
python
Copy
```

```
# User embedding
user_embedding = model.user_model(user_input)

# Policy embeddings
policy_embeddings = model.policy_model(policy_dataset)

# Similarity scores (dot product)
scores = tf.matmul(user_embedding, policy_embeddings, transpose_b=True)
```

The scores might look like this:

Policy X: 0.92Policy Z: 0.89Policy Y: 0.75

4. Top-K Recommendations

The model retrieves the top-2 policies based on similarity scores:

```
python \\ Copy \\ top\_k\_indices = tf.math.top\_k(scores, k=2).indices.numpy() \\ recommended\_policies = [policy\_dataset[i] for i in top\_k\_indices] \\
```

Output:

1. Policy X:

o Premium: \$120/month

Waiting Period: 0 days for maternity

o Coverage: Maternity, dental, optical

o Insurer Rating: 4.5/5

2. **Policy Z:**

o Premium: \$110/month

Waiting Period: 0 days for maternity

o Coverage: Maternity, partnered with Royal Women's Hospital

o Insurer Rating: 4.7/5

5. Explanation for Recommendations

The platform provides explanations for why these policies were recommended:

Policy X:

 "Recommended because it has no waiting period for maternity and fits your budget."

Policy Z:

 "Recommended because it partners with Royal Women's Hospital and has a high insurer rating."

6. User Interaction

The user can:

- Click on a policy to view detailed coverage and exclusions.
- Adjust filters (e.g., increase budget to \$160/month) to see updated recommendations.
- Compare policies side-by-side.

Technical Implementation Details

Model Training

Loss Function:

Use a retrieval task with factorized top-K metrics to optimize for accurate policy recommendations.

```
python

Copy

task = tfrs.tasks.Retrieval(
    metrics=tfrs.metrics.FactorizedTopK(
        candidates=policy_dataset.batch(128).map(policy_model)
    )
)
```

• Training Data:

Use historical user-policy interactions (e.g., clicks, purchases) to train the model.

Example:

```
python

Copy

train_data = tf.data.Dataset.from_tensor_slices({
    "user_features": user_data,
    "policy_features": policy_data,
    "interaction": interaction_labels # 1 (clicked/purchased) or 0 (ignored)
}
```

Deployment

• API Endpoint:

Deploy the model using **TensorFlow Serving** or **FastAPI** to serve recommendations in real time. Example API call:

```
post /recommendations
{
    "user_id": "123",
    "features": {
        "age": 35,
        "location": "VIC",
        "maternity_coverage": 1,
        "budget": 150,
        "insurer_rating_preference": 1
    }
}
```

Response:

Business Impact

- **Increased Conversions:** Personalized recommendations lead to higher engagement and purchase rates.
- **Improved User Satisfaction:** Users find policies tailored to their needs, reducing decision fatigue.

• **Competitive Advantage:** Differentiates the platform from competitors using rule-based or non-Al systems.

This detailed example demonstrates how TensorFlow Recommenders can be used to deliver **personalized**, **data-driven health insurance recommendations** in the Australian market.