

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Інститут прикладного системного аналізу

Лабораторна робота №3
З курсу «Чисельні методи»
З теми «Методи розв'язання нелінійних систем»
Варіант №5

Виконав студент 2 курсу групи KA-01
Вагін Олександр Вікторович
Перевірила старший викладач
Хоменко Ольга Володимирівна

Завдання №1

Розв'язати систему рівнянь методом простих ітерацій з точністю 0,00001:

$$\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$$

Визначимо початкове наближення, побудувавши графіки кривих системи:

Отже, візьмемо $x^{(0)} = (0.5; -0.1)$

Перепишемо систему у вигляді:

$$y = \sin(x + 0.5) - 1 = \varphi_2$$

$$x = -\cos(y - 2) = \varphi_1$$

Візьмемо частинні похідні:

$$\frac{\partial \varphi_1}{\partial x} = 0 \quad \frac{\partial \varphi_1}{\partial y} = \sin(y - 2)$$

$$\frac{\partial \varphi_2}{\partial x} = \cos(x + 0.5) \quad \frac{\partial \varphi_2}{\partial y} = 0$$

Перевіримо виконання умов збіжності. Будемо розглядати окіл точки $x^{(0)}$:

$$G = \{|x - 0.5| \le 0.1; |y + 0.1| \le 0.1\}$$

$$\max_{\vec{x} \in G} \left(\max_{j} \sum_{i=1}^{n} \left| \frac{\partial \varphi_{i}}{\partial x_{j}} \right| \right) \leq q \leq 1$$

$$\left| \frac{\partial \varphi_{1}}{\partial x} \right| = 0 \quad \left| \frac{\partial \varphi_{1}}{\partial y} \right| = \left| \sin(y - 2) \right|$$

$$\left| \frac{\partial \varphi_{2}}{\partial x} \right| = \left| \cos(x + 0.5) \right| \quad \left| \frac{\partial \varphi_{1}}{\partial y} \right| = 0$$

$$\left| \frac{\partial \varphi_{1}}{\partial x} \right| + \left| \frac{\partial \varphi_{2}}{\partial x} \right| = \left| \cos(x + 0.5) \right| \leq \cos(0.4) < 1$$

$$\left| \frac{\partial \varphi_{1}}{\partial y} \right| + \left| \frac{\partial \varphi_{1}}{\partial y} \right| = \left| \sin(y - 2) \right| \leq \left| \sin(-2) \right| < 1$$

Умови збіжності виконуються. Якщо послідовні наближення не будуть виходити з області G, то ітераційний процес збіжний.

Будемо знаходити послідовні наближення за формулами:

$$x^{(k+1)} = -\cos(y^{(k)} - 2)$$

$$y^{(k+1)} = \sin(x^{(k)} + 0.5) - 1$$

№ iteration	I	×	I	у	ı	Δ	ı
I 0	ı	0.50000	ı	-0.10000	ı	0.000000	ı
l 1	ı	0.50485	ı	-0.15853	ı	0.058529	ı
2	ı	0.55448	ı	-0.15592	ı	0.049629	ı
I 3	ı	0.55230	ı	-0.13036	ı	0.025562	ı
4	ı	0.53082	ı	-0.13143	ı	0.021488	ı
J 5	ı	0.53173	ı	-0.14228	I	0.010848	ı
l 6	ı	0.54088	ı	-0.14181	ı	0.009156	ı
l 7	ı	0.54049	ı	-0.13715	ı	0.004664	ı
l 8	ı	0.53656	ı	-0.13735	ı	0.003930	ı
l 9	ı	0.53673	ı	-0.13934	ı	0.001994	
10	ı	0.53841	ı	-0.13926	ı	0.001682	1
11	ı	0.53834	ı	-0.13840	ı	0.000855	ı
12	ı	0.53762	ı	-0.13844	ı	0.000721	ı
13	I	0.53765	I	-0.13881	I	0.000366	l
14	I	0.53795	I	-0.13879	I	0.000309	I
15	 	0.53794 	 	-0.13863 	 	0.000157	

Загалом вийшло 23 ітерації та розв'язок: (0,57386; -0,13868)

Виконаємо перевірку отриманого розв'язку, обчисливши $F(\overrightarrow{x^*})$:

$$F(\overrightarrow{x^*}) = {\cos(y-2) + x \choose \sin(x+0.5) - y - 1}_{(0.57386; -0.13868)} = {3.6 \cdot 10^{-5} \choose 1.7 \cdot 10^{-5}}$$

Маємо доволі близькі до нуля значення.

Якщо випадковим чином задати початкові наближення на відрізку [-50; 50], то отримаємо результат в середньому за 29 ітерацій

```
Random initial approximation

Attempt M1: initial approx - (-24.646262548914976, 49.70254038613392) root is (0.5378538535339918, -0.13868065751445744), iterations - 27

Attempt M2: initial approx - (-22.596011594766253, 30.809967728562) root is (0.5378483411985528, -0.1386866623346764), iterations - 29

Attempt W3: initial approx - (6.062271009915932, -24.307789317165874) root is (0.5378483501914804, -0.13868664756798855), iterations - 30

Attempt W4: initial approx - (-48.01011295577797, 1.3564271346926589) root is (0.5378482788284269, -0.13868669562375602), iterations - 30

Attempt W5: initial approx - (25.065064596474656, 34.376319795270575) root is (0.5378482514775718, -0.13868661027612705), iterations - 30
```

Якщо скористаємося для пошуку розв'язку пакетом scipy, то отримаємо розв'язок: (0,537853, -0,13868462)

```
Via SciPy
Root is [ 0.537853 -0.13868462]
```

Завдання №2

Розв'язати методом Ньютона систему:

$$\begin{cases} \tan(xy + 0.3) = x^2 \\ 0.9x^2 + 2y^2 = 1 \end{cases}$$

Визначимо початкове наближення, побудувавши графіки кривих системи:

3 графіку видно, що система матиме 4 розв'язки. Візьмемо такі початкові наближення:

$$x_1^{(0)} = (-0.9; -0.4), x_2^{(0)} = (-0.3; 0.7), x_3^{(0)} = (0.3; -0.7), x_4^{(0)} = (0.9; 0.4)$$

Знайдемо матрицю Якобі:

$$f_1(x,y) = \tan(xy + 0.3) - x^2$$
, $f_2(x,y) = 0.9x^2 + 2y^2 - 1$

$$W(x) = \begin{pmatrix} \frac{y}{\cos^2(xy + 0.3)} - 2x & \frac{x}{\cos^2(xy + 0.3)} \\ 1.8x & 4y \end{pmatrix}$$

За методом Ньютона отримали наближені розв'язки:

Root №1							Root №3										
Nº	iteration	I	х	I	у	I	Δ	I	N	iteration	I	х	 	у	 	Δ	
I	0	I	-0.90000	I	-0.40000	I	0.000000	1	I	0	ı	0.30000	ı	-0.70000	ı	0.000000	1
I	1	I	-0.92594	I	-0.44436	ı	0.044356	1	I	1	ı	0.30392	 I	-0.68389	 I	0.016113	Ι
1	2	I	-0.92948	I	-0.44382	ı	0.003535	1	I	2	ı	0.30396	 I	-0.68386	 I	0.000045	Ι
I	3	I	-0.92993	I	-0.44413	ı	0.000449	1	I	3	ı	0.30396	ı	-0.68386	ı	0.000002	I
I	4	I	-0.92999	I	-0.44416	I			Solution of system is: (0.30396, -0.68386) Root №4								
1	5	I	-0.93000	I	-0.44417		0.000008	I									
Solution of system is: (-0.93, -0.44417)							Nº	iteration 	 	X 	 	у	 	Δ	 		
Root				-,					I	0	I	0.90000	I	0.40000	I	0.000000	I
Nº	iteration	I	х	I	у	I	Δ		I	1	I	0.92594	I	0.44436	I	0.044356	I
I	0	I	-0.30000	I	0.70000	I	0.000000	1	I	2	I	0.92948	 	0.44382	I	0.003535	I
I	1	I	-0.30392	I	0.68389	I	0.016113	 	I	3	I	0.92993	 I	0.44413	I	0.000449	
I	2	I	-0.30396	I	0.68386	I	0.000045	 	I	4	ı	0.92999	ı	0.44416	ı	0.000058	ı
I	3	l	-0.30396		0.68386	I	0.000002	 	I	5	I	0.93000	I	0.44417	I	0.000008	I
Solution of system is: (-0.30396, 0.68386)						Solution of system is: (0.93, 0.44417)											

В середньому для пошуку коренів було потрібно 4 ітерації та отримали такі наближені розв'язки:

$$x_1^* = (-0.93; -0.44417), \qquad x_2^* = (-0.30396; 0.68386)$$

$$x_3^* = (0.30396; -0.68386), x_4^* = (0.93; 0.44417)$$

Виконаємо перевірку отриманого розв'язку, обчисливши $F(\overrightarrow{x^*})$:

$$F(\overrightarrow{x^*}) = {\tan(xy + 0.3) - x^2 \choose 0.9x^2 + 2y^2 - 1}_{\overrightarrow{x_j^*}}$$

$$x_1^*: F(\overrightarrow{x^*}) = \begin{pmatrix} 1 \cdot 10^{-10} \\ -2 \cdot 10^{-6} \end{pmatrix}, \qquad x_2^*: F(\overrightarrow{x^*}) = \begin{pmatrix} 8 \cdot 10^{-13} \\ 6 \cdot 10^{-8} \end{pmatrix}$$

$$x_3^*: F(\overrightarrow{x^*}) = {8 \cdot 10^{-13} \choose 6 \cdot 10^{-8}}, \qquad x_4^*: F(\overrightarrow{x^*}) = {1 \cdot 10^{-10} \choose -2 \cdot 10^{-6}}$$

Оскільки отримані значення доволі близькі до нуля, то перевірка виконана.

Якщо випадковим чином задати початкові наближення на відрізку [-50; 50], то отримаємо результат в середньому за 15 ітерацій з можливими випадками на більше ітерацій.

```
Random initial approximation

Attempt W1: initial approx - (-10.880470186717638, 13.459836621038257) root is (0.30396332890015265, -0.6838583662328589), iterations - 14

Attempt W2: initial approx - (-2.256624176387021, 5.69094670861535) root is (0.3039633575436964, -0.6838582449699683), iterations - 11

Attempt W3: initial approx - (16.920089320776682, -25.15883876813113) root is (0.30396333821791927, -0.6838583268027782), iterations - 17

Attempt W4: initial approx - (37.76105970203545, 1.79092714674087) root is (-0.9299966413048414, -0.44417080736432546), iterations - 40

Attempt W5: initial approx - (-13.799315286842507, -36.91500818031665) root is (0.9299967355205883, 0.4441708701667473), iterations - 19
```

Якщо скористаємося для пошуку розв'язку пакетом scipy, то отримаємо розв'язки:

$$x_1^* = (-0.92999622; -0.44417053),$$
 $x_2^* = (-0.30396334; 0.68385832)$ $x_3^* = (0.30396334; -0.68385832),$ $x_4^* = (0.92999622; 0.44417053)$

```
Via SciPy
Root №1
[-0.92999622 -0.44417053]
Root №2
[-0.30396334 0.68385832]
Root №3
[ 0.30396334 -0.68385832]
Root №4
[0.92999622 0.44417053]
```

Код програм:

```
import matplotlib.pyplot as plt
def simple iterations(x 0, eps, equations):
```

```
log.append((x 1, delta))
   m00 = y / np.cos(x * y + 0.3) ** 2 - 2 * x
equations(x 0))))
       log.append((x 1, delta))
   approx = random.uniform(-50, 50), random.uniform(-50, 50)
   solution, history = simple_iterations(approx, 0.00001, (x1, y1))
```

```
# Calculating solution via SciPy
print("\nvia SciPy")
print("Root is", fsolve((lambda x: (np.cos(x[1] - 2) + x[0], np.sin(x[0] +
0.5) - x[1] - 1)), (0.5, -0.1)))
# Second task
print("\nSecond task\n")
initial_approximations = ((-0.9, -0.4), (-0.3, 0.7), (0.3, -0.7), (0.9, 0.4))
# Calculating solution
for j in range(len(initial_approximations)):
    print(f"Root N[j + 1]")
    solution, history = newton_search(initial_approximations[j], 0.00001,
jacobian, second_system)
    print log(history)
    print("Solution of system is:", tuple(map(r5, solution)))
    print(second_system(solution))
# Calculating solution with random initial approximation
print("\nRandom initial approximation")
for j in range(5):
    approx = random.uniform(-50, 50), random.uniform(-50, 50)
    solution, history = newton_search(approx, 0.00001, jacobian,
second_system)
    print(f"Rattempt N[j + 1]: initial approx - (approx) root is (solution),
iterations - (len(history))")
# Calculating solution via SciPy
print("\nVia SciPy")
for j in range(len(initial_approximations)):
    print(f"Root N[j + 1]")
    print(f"Root N[j + 1]")
    print(fsolve(second_system, initial approximations[j]))
```

Висновок:

В ході виконання роботи реалізовано методи простих ітерацій та Ньютона. З отриманих результатів можемо зробити висновок, що метод Ньютона працює набагато швидше за метод простих ітерацій, але він також є доволі чутливим до випадкових початкових наближень. Загалом метод простих ітерацій потребує до 30 ітерацій, а метод Ньютона, за умови «осмисленних» початкових наближень працює за п'ять.