Homework 11: Isomorphisms, The Standard Matrix

- 1. §8.3, #4, 8. (For these two, provide brief justifications.)
- 2. Find the standard matrix for each of the following linear transformations.
 - (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotating θ clockwise about the origin.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by projecting onto the line y = -x.
 - (c) $R: \mathbb{R}^3 \to \mathbb{R}^3$ given by rotating 180° about the line passing through points (0, -1, -1) and (0, 1, 1).
- 3. Find the result of rotating the vector $\begin{bmatrix} 1\\3\\7 \end{bmatrix}$ by 180° about the line through the points (0,-1,-1) and (0,1,1).
- 4. Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\ker(T) = R(T)$.
- 5. Let $T:U\to V$ and $S:V\to W$ be linear. Prove that if $S\circ T$ is one-to-one, then T is one-to-one.
- 6. Prove that the linear transformation $T: P_n \to P_n$ given by $T(p(x)) = x^n p\left(\frac{1}{x}\right)$ is an isomorphism. (You need not prove that it is linear; you can assume this.)
- 7. (Bonus) Consider $T: P_2 \to P_2$ given by T(p(x)) = p(x) + p'(x).
 - (a) Prove that T is linear.
 - (b) Prove that T is an isomorphism.