

Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes

Donghao Zhou¹, Jialin Li², Jinpeng Li¹, Jiancheng Huang³, Qiang Nie^{4,2}, Yong Liu^{2†}, Bin-Bin Gao², Qiong Wang⁵, Pheng-Ann Heng¹, Guangyong Chen^{6†}

¹CUHK ²Tencent YouTu Lab ³SIAT, CAS ⁴HKUST(GZ) ⁵CV2R-Lab, SIAT, CAS ⁶Zhejiang Lab

Task and Motivations

In this work, we focus on **object detection with noisy bounding boxes** (*i.e.*, the location of box annotations is inaccurate). (a) Encountering this task, existing solutions still exhibit drawbacks. (b) we observed that the spatial distribution of proposals can act as a statistical prior for the potential locations of objects.

(b)

Methodology

Based on our observation, we propose **DIStribution-aware CalibratiOn** (**DISCO**) to model the spatial distribution of proposals for calibrating supervision signals. First, **spatial distribution modeling** is performed to statistically extract the potential locations of objects.

Then, we develop three distribution-aware techniques to collaborate with spatial distribution modeling:

- 1. Distribution-aware proposal augmentation (DA-Aug)
- 2. Distribution-aware box refinement (DA-Ref)
- 3. Distribution-aware confidence estimation (DA-Est)

They are proposed to improve improve *classification*, *localization*, and *interpretability*, respectively (refer to our paper for more details).

Experiments

Our DISCO can achieve **SOTA results** on two large-scale datasets at various noisy ratio.

	VOC				COCO													
Method	Noise Level					2	0% Noi	se Leve	el		40% Noise Level							
	10%	20%	30%	40%	AP	AP ₅₀	AP ₇₅	AP_S	AP_{M}	AP_{L}	AP	AP ₅₀	AP ₇₅	AP_S	AP_{M}	AP_{L}		
Clean-FasterRCNN [28]	77.2	77.2	77.2	77.2	37.9	58.1	40.9	21.6	41.6	48.7	37.9	58.1	40.9	21.6	41.6	48.7		
FasterRCNN [28]	76.3	71.2	60.1	42.5	30.4	54.3	31.4	17.4	33.9	38.7	10.3	28.9	3.3	5.7	11.8	15.1		
RetinaNet [21]	71.5	67.5	57.9	45.0	30.0	53.1	30.8	17.9	33.7	38.2	13.3	33.6	5.7	8.4	15.9	18.0		
Co-teaching [11]	75.4	70.6	60.9	43.7	30.5	54.9	30.5	17.3	34.0	39.1	11.5	31.4	4.2	6.4	13.1	16.4		
SD-LocNet [37]	75.7	71.5	60.8	43.9	30.0	54.5	30.3	17.5	33.6	38.7	11.3	30.3	4.3	6.0	12.7	16.6		
FreeAnchor [38]	73.0	67.5	56.2	41.6	28.6	53.1	28.5	16.6	32.2	37.0	10.4	28.9	3.3	5.8	12.1	14.9		
KL Loss [14]	75.8	72.7	64.6	48.6	31.0	54.3	32.4	18.0	34.9	39.5	12.1	36.7	3.7	6.2	13.0	17.4		
OA-MIL [22]	77.4	74.3	70.6	63.8	32.1	55.3	33.2	18.1	35.8	41.6	18.6	42.6	12.9	9.2	19.0	26.5		
DISCO (Ours)	77.5	75.3	72.1	68.7	32.3	54.7	34.5	18.7	35.8	41.2	21.2	45.7	16.9	11.4	24.7	27.8		

The proposed components of DISCO can all significantly help in detection performance.

Component					Category																A 11			
	DA-Aug	DA-Ref	DA-Est	Aero	Bicy	Bird	Boat	Bot	Bus	Car	Cat	Cha	Cow	Dtab	Dog	Hors	Mbik	Pers	Plnt	She	Sofa	Trai	Tv	All
	√			49.4	69.5	47.4	32.1	35.2	62.3	64.1	60.3	31.9	55.1	41.5	61.8	54.3	56.8	58.7	22.5	48.6	49.7	49.8	51.3	50.1
		\checkmark		56.0	70.6	56.0	38.5	33.0	64.7	74.8	77.4	32.2	58.5	42.4	72.1	65.6	64.8	62.5	23.4	51.2	51.5	65.7	50.5	55.6
		\checkmark	\checkmark	61.2	74.4	59.7	43.1	37.0	69.4	75.2	73.3	34.8	64.1	54.5	74.1	71.7	66.0	66.7	28.7	54.1	55.4	70.5	60.2	59.7
	\checkmark	\checkmark		69.9	77.1	68.2	47.2	49.9	70.9	80.6	80.8	43.0	76.4	60.0	82.6	81.0	74.4	73.4	39.2	62.7	64.3	67.9	68.6	66.9
	\checkmark	\checkmark	\checkmark	71.5	76.9	71.5	45.6	52.2	76.1	81.2	83.2	43.4	79.8	60.3	81.5	82.9	75.4	73.6	40.6	64.4	68.2	76.8	70.0	68.7

DISCO can **offer superior improvement for classification**, even approaching the results of training with clean annotations.

DISCO can gradually refine noisy bounding boxes during training.

DISCO can also **output reasonable variances** for each border of box prediction.

