A.KACIMI Maître de conférences classe A Faculté de Mathématique USTHB

Fonctions élémentaires d'une variable réelle

Plan du cours

- 1.
- Fonction Logarithme
- Fonction exponentielle

- 11.
- Fonction logarithme de base « a »
- Fonction exponentielle de base
 « a »
- Fonctions puissances

- Fonctions trigonométriques
- Fonctions trigonométriques inverses

- IV.
- Fonctions hyperboliques
- Fonctions hyperboliques inverses

Plan du cours

I.

- Fonction Logarithme
- Fonction exponentielle

11.

- Fonction logarithme de base « a »
- Fonction exponentielle de base « a »
- Fonctions puissances

III.

- Fonctions trigonométriques
- Fonctions trigonométriques inverses

IV.

- Fonctions hyperboliques
- Fonctions hyperboliques inverses

Prérequis

1. Les nombres réels

2. Les applications

3.Les Suites numériques

4. Les fonctions numériques

5. Continuité et dérivabilité des fonctions numériques

Fonctions élémentaires d'une variable réelle

Proposition 00:

$$f:I\subseteq\mathbb{R}\to\mathbb{R}$$

qui possède une dérivée strictement positive sur *I* (respectivement strictement négative sur *I*)

alors f représente une bijection de I sur J = f(I) admet une fonction réciproque notée f^{-1} définie de J sur I De plus

- f^{-1} est dérivable sur J et $\forall x \in J$; $f^{-1}(x) = \frac{1}{f'[f^{-1}(x)]}$
- f et f^{-1} ont même sens de variation
- Les graphes de f et f^{-1} sont symétriques l'un de l'autre par rapport à la première bissectrice.

Fonctions élémentaires d'une variable réelle

I. Fonction Logarithme népérien

Soit
$$m \in \mathbb{Q} - \{-1\}$$
 $x \mapsto x^m$

$$x \mapsto \frac{1}{n+1} x^{n+1} + c \text{ où } c \in \mathbb{R}$$
Pour $m = -1$

$$x \mapsto \frac{1}{n+1} x^n + c \mapsto x \neq 0$$

. Fonction Logarithme népérien

Définition:

On appelle fonction logarithme népérien que l'on note ln l'unique primitive sur \mathbb{R}_+^* de la fonction $x \mapsto \frac{1}{x}$ s'annulant en 1 et définie sur \mathbb{R}_+^* par :

$$ln: \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x) = \int_{1}^{x} \frac{dt}{t}$$

l. Fonction Logarithme népérien

Proposition:

La fonction logarithme est

• Indéfiniment dérivable sur \mathbb{R}_+^* avec $(\ln x)' = \frac{1}{x}$, $x \in \mathbb{R}_+^*$

- Strictement croissante
- Concave

Fonction Logarithme népérien

Preuve:

$$ln(x) = \int_{1}^{x} \frac{dt}{t}$$

$$(\ln x)' = \frac{1}{x}$$
 pour tout $x \in \mathbb{R}_+^*$

$$(\ln x)' = \frac{1}{x}$$
 pour tout $x \in \mathbb{R}_+^*$
 $(\ln x)'' = -\frac{1}{x^2} < 0$ pour tout $x \in \mathbb{R}_+^*$

. Fonction Logarithme népérien

<u>Proposition</u>: (Propriété fondamentale)

La fonction logarithme népérien vérifie que

Pour tout x, ydans \mathbb{R}_+^* ln(xy) = ln(x) + ln(y)

De plus pour tout x > 0 et pour tout $n \in \mathbb{N}$

$$ln(x^n) = nln(x)$$

. Fonction Logarithme népérien

Preuve:

Pour tout
$$y>0$$

$$u_y(x)=\ln(xy)$$
Pour tout $x>0$

$$u'_y(x)=\frac{y}{xy}=\frac{1}{x}$$

$$\forall x\in\mathbb{R}_+^*;\ \ln(xy)-\ln x=C$$
En prenant $x=1$; $C=\ln y$

$$x_1,x_2,\cdots,x_n>0$$

$$\ln(x_1x_2\cdots x_n)$$

$$=\ln(x_1)+\ln(x_2)+\cdots+\ln(x_n)$$

$$x_1=x_2=\cdots=x_n=x \text{ , il vient}$$

$$\forall x>0, \forall n\in\mathbb{N}; \ln(x^n)=n\ln(x)$$

l. Fonction Logarithme népérien

Conséquence:

1.
$$\forall x, y > 0; ln\left(\frac{x}{y}\right) = ln(x) - ln(y),$$

2.
$$\forall x > 0, \forall r \in \mathbb{Q}; ln(x^r) = rln(x).$$

Preuve:

1.
$$z = \frac{x}{y}$$
 donc que $x = zy$

$$ln(x) = ln(yz) = lny + lnz$$

$$lnz = ln\left(\frac{x}{y}\right) = lnx - lny$$

en prenant x = 1

$$\forall y > 0; \ln\left(\frac{1}{y}\right) = -\ln y$$

. Fonction Logarithme népérien

2.
$$n \in \mathbb{Z}$$
 on a $ln(x^n) = nlnx$
 $n = -mavec \ m \in \mathbb{N}$
 $ln(x^n) = ln(1/x)^m = mln(1/x)$
 $= -mln(x)$

posons
$$y = \sqrt[n]{x}$$
 ie $x = y^n$
 $lnx = ln(y^n) = nln(y)$

$$ln(x^{(1/n)}) = (1/n)ln(x)$$

$$r = \frac{p}{q}$$
 tel que $p \in \mathbb{Z}$, $q \in \mathbb{N} - \{0\}$

$$ln(x^r) = ln\left((x^p)^{1/q}\right) = (1/q)(plnx)$$
$$= rlnx$$

I. Fonction Logarithme népérien

Proposition:

$$\lim_{x \to +\infty} \ln(x) = +\infty \quad \lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Preuve:

$$\lim_{x \to +\infty} \ln(2^n) = +\infty$$

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\ln(1/x) = -\ln(x)$$

$$x \to \ln(1+x); \quad \frac{d}{dx} \ln(1+x) = \frac{1}{1+x}$$

Pour x = 0

$$\frac{d}{dx}\ln(1+x)|_{x=0} = \lim_{x \to 0} \frac{\ln(1+x) - 0}{x - 0} = 1$$

I. Fonction Logarithme népérien

Tableau de variation:

l. Fonction Logarithme népérien

$$\lim_{x \to +\infty} \frac{ln(x)}{x} = 0$$

Graphe du logarithme népérien:

. Fonction Logarithme népérien

Dérivée logarithmique

$$u: I \to \mathbb{R}$$
$$u(x_0) \neq 0$$

Définition:

On appelle dérivée logarithmique de u en x_0 , le nombre

$$\frac{u'(x_0)}{u(x_0)}$$

Remarque:

$$x \to \ln(u(x)) \frac{u'(x_0)}{u(x_0)}.$$

$$(\ln|u(x)|)' = \frac{u'(x_0)}{u(x_0)}$$

. Fonction Logarithme népérien

$$\frac{(uv)'}{uv} = \frac{u'v + uv'}{uv} = \frac{u'}{u} + \frac{v'}{v}$$

$$\frac{\left(\frac{u}{v}\right)'}{\frac{u}{u}} = \frac{u'v - uv'}{uv} = \frac{u'}{u} - \frac{v'}{v}$$

Exemple:

La relation donnant la période T d'un pendule de torsion en fonction de sa constante de torsion C et de son moment d'inertie T est

$$T = 2\pi \sqrt{\frac{J}{C}}$$

Déduire l'incertitude sur la période.

I. Fonction Logarithme népérien

Solution:

$$ln(T) = ln\left(2\pi\sqrt{\frac{J}{C}}\right) = ln(2\pi) + ln\left(\sqrt{\frac{J}{C}}\right)$$
$$ln(T) = ln(2\pi) + \frac{1}{2}[ln(J) - ln(C)]$$
$$\frac{dT}{T} = \frac{1}{2}\left[\frac{dJ}{J} - \frac{dC}{C}\right]$$

D'où l'incertitude ΔT vérifie

$$\frac{\Delta T}{T} = \frac{1}{2} \left[\frac{\Delta J}{J} + \frac{\Delta C}{C} \right]$$

Donc

$$\Delta T = \frac{T}{2} \left[\frac{\Delta J}{J} + \frac{\Delta C}{C} \right]$$

Fonctions élémentaires d'une variable réelle

II. Fonction exponentielle

Définition:

On appelle fonction exponentielle, notée exp la fonction réciproque de la fonction logarithme népérien définie de \mathbb{R} vers \mathbb{R}_+^* et on a

$$y = exp(x) \Leftrightarrow x = ln(y); \ \forall x \in \mathbb{R}$$

Proposition:

La fonction exponentielle est une bijection strictement croissante de \mathbb{R} vers \mathbb{R}_{+}^{*}

$$exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$
$$x \longmapsto y = exp(x)$$

sa dérivée

$$(exp)'(x) = \frac{1}{\ln'(y)} = \frac{1}{\left(\frac{1}{y}\right)} = exp(x)$$

De plus

$$\lim_{x \to +\infty} exp(x) = +\infty, \lim_{x \to -\infty} exp(x) = 0$$

Tableau de variations:

Graphe de l'exponentielle:

Proposition:

- 1. exp(0) = 1
- 2. Pour tout x, y dans \mathbb{R} exp(x + y) = exp(x)exp(y)
- 3. Pour tout x dans \mathbb{R}

$$exp(-x) = \frac{1}{exp(x)}$$

4. Pour tout x, y dans \mathbb{R}

$$exp(x - y) = \frac{exp(x)}{exp(y)}$$

5. Pour tout x dans \mathbb{R} et $\forall n \in \mathbb{Z}$; $exp(nx) = (exp(x))^n$

Preuve:

- $ln1 = 0 \Leftrightarrow exp(0) = 1$
- ln(exp(x+y)) = x + y, et ln(exp(x)exp(y)) = ln(exp(x)) + ln(exp(y)) = x + y
- ln(exp(-x)) = -x et $ln(\frac{1}{exp(x)}) = -ln(exp(x)) = -x$
- exp(x y) = exp(x + (-y)) = $exp(x)exp(-y) = \frac{exp(x)}{exp(y)}$
- ln(exp(nx)) = nx et $ln((exp(x))^n) = nln(exp(x)) = nx$

Théorème fondamentaux:

Soit la suite $(U_n)_{n\geq 0}$

$$U_0 = 1, U_1 = 1 + \frac{1}{1!}$$

$$U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \quad \forall n \in \mathbb{N}$$

Lemme 1:

La suite $(U_n)_{n\geq 0}$ est convergente et de plus sa limite est un nombre irrationnel

Preuve du lemme:

$$V_{1} = 1 + \frac{1}{1!}, \qquad V_{n} = U_{n} + \frac{1}{n!}$$

$$U_{n+1} - U_{n} = \frac{1}{(n+1)!} > 0$$

$$V_{n+1} - V_{n} = \frac{1-n}{(n+1)!} < 0, \qquad \forall n > 1$$

$$\lim_{n \to +\infty} (U_{n} - V_{n}) = 0$$

$$\lim_{n \to +\infty} U_{n} = \lim_{n \to +\infty} V_{n} = L \in \mathbb{R}$$

$$\forall n; \ U_{n} < L < V_{n}$$

Suite de la preuve:

Montrons par l'absurde que $L \in \mathbb{R} - \mathbb{Q}$

$$L \in \mathbb{Q}; \qquad L = \frac{P}{N}$$

$$1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{N!} < \frac{P}{N}$$

$$< 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{N!} + \frac{1}{N!}$$

$$A < P(N - 1)! < A + 1$$

$$A = 2N! + \frac{N!}{2!} + \dots + N(N - 1) + N + 1$$

$$L \in \mathbb{R} - \mathbb{Q}$$

Définition du nombre e d'Euler:

On désigne par la lettre e le nombre irrationnel limite de la suite $(U_n)_{n\geq 0}$ de terme général

$$U_0 = 1$$
, $U_1 = 1 + \frac{1}{1!}$
 $U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$
 $e \approx 2.718\ 281\ 828$

Théorème 1:

$$exp(1) = e$$

Preuve:

$$exp(1) = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} exp(\theta_n);$$

avec $0 < \theta_n < 1$

$$exp(1) = U_n + \frac{1}{(n+1)!} exp(\theta_n)$$

$$\frac{1}{(n+1)!} < exp(1) - U_n = \frac{1}{(n+1)!} exp(\theta_n) < \frac{exp(1)}{(n+1)!}$$

avec $\lim_{n \to +\infty} \frac{1}{(n+1)!} = \lim_{n \to +\infty} \frac{exp(1)}{(n+1)!} = 0$

ďoù

$$U_n \xrightarrow[n \to +\infty]{} exp(1)$$

$$exp(1) = e$$

Théorème 2:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Preuve:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$
$$x_n = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

On obtient que:

$$\frac{1}{x_n} \ln(1 + x_n) = n \ln\left(1 + \frac{1}{n}\right)$$

$$= \ln\left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} 1$$

$$\left(1 + \frac{1}{n}\right)^n = exp\left[\ln\left(1 + \frac{1}{n}\right)^n\right] \xrightarrow[n \to +\infty]{} e$$

Nouvelle notation de la fonction exponentielle:

$$\forall x \in \mathbb{R}, n \in \mathbb{Z} \; ; \; exp(nx) = \left(exp(x)\right)^n$$

$$exp(n) = \left(exp(1)\right)^n = e^n$$

$$ln(e^{(1/q)}) = (1/q)ln(e) = 1/q$$

$$exp(1/q) = e^{(1/q)}$$
pour tout $r = p/q \in \mathbb{Q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{Z} - \{0\}$, on a
$$exp(p/q) = \left(exp(1/q)\right)^p = e^{(p/q)}$$

$$\forall r \in \mathbb{Q}; \; exp(r) = e^r$$
définie sur \mathbb{Q} par $r \to e^r$

$$\forall x \in \mathbb{R} \; ; \; exp(x) = e^x$$

Partie II

Fonctions logarithme de base a

 Fonctions exponentielle de base a

Fonction puissance

Fonctions logarithme de base « a »

I. <u>Fonction logarithme de base</u>« a »:

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R}$$

$$\forall x, y > 0: f(xy) = f(x) + f(y)$$

$$x = y = 1 \Rightarrow f(1) = 0$$

$$\forall x, y > 0: xf'(xy) = f'(y)$$

$$y = 1, \quad \forall x > 0: f'(x) = f'(1)/x$$

$$\forall x > 0: f(x) = f'(1) \ln(x) + C$$

$$f(x) = k \ln(x) \circ uk = f'(1) \neq 0$$

$$\exists a \in \mathbb{R}_{+}^{*} - \{1\}; \ln(a) = \frac{1}{k}$$

donc:

$$f(x) = \frac{ln(x)}{ln(a)}$$

avec $a \in \mathbb{R}_+^* - \{1\}$

Fonctions logarithme de base « a »

Définition:

Soit aun nombre réel strictement positif et différent de 1.

On appelle logarithme de base a, la fonction notée log_a définie sur \mathbb{R}_+^* par

$$log_a: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$x \mapsto \frac{ln(x)}{ln(a)}$$

Propriétés:

- $log_a(1) = 0$ et $log_a(a) = 1$
- Pour tout x, y > 0 $log_a(xy) = log_a(x) + log_a(y)$
- Pour tout x, y > 0

$$log_a\left(\frac{x}{y}\right) = log_a(x) - log_a(xy)$$

• Pour tout $r \in \mathbb{Q}$ pour tout $x \in \mathbb{R}_+^*$ $log_a(x^r) = rlog_a(x)$

De plus pout tout a, b deux réels strictement positifs différents de 1 et pour tout $x \in \mathbb{R}_+^*$ on a

$$log_b(x) = log_b(a) \cdot log_a(x)$$

appelée: Formule de changement de base pour les logarithmes.

Il suffit pour cela de remarquer que:

$$log_b(x) = \frac{ln(x)}{ln(b)} = \frac{ln(a)}{ln(b)} \cdot \frac{ln(x)}{ln(a)}$$
$$= log_b(a) \cdot log_a(x)$$

Variations de la fonction logarithme de base a:

Pour : a > 1

x	01 <i>a</i> + ∞	
	+	
$log_a(x)$	+∞ 1 7 0 -∞	

D -				4
$D \cap$	ıır	•	α	- 1
Po	uı		α	

10u1. u < 1		
x	$0a1 + \infty$	
$\left(\log_a(x)\right)' = \frac{1}{x \ln(a)}$		
$log_a(x)$	+8 1 0 -8	

Graphe de log_a pour a > 1

Le logarithme et le calcul scientifique:

Un peu d'histoire:

Issac Newton (1643-1727)

Edmond Halley (1656-1742)

.

John NAPIER (1550-1617) (NEPER)

Cas particulier :Le logarithme décimal

$$1 = 10^{0} \to 0$$

$$10 = 10^{1} \to 1$$

$$100 = 10^{2} \to 2$$

$$1000 = 10^{3} \to 3 \cdots$$

$$log_{10}(x) = log(x) = \frac{ln(x)}{ln(10)}$$

$$avec log(10) = \frac{ln(10)}{ln(10)} = 1$$

$$log(10^{0}) = 0 \cdot log(10) = 0 \to 0$$

$$log(10^{1}) = 1 \cdot log(10) = 1 \to 1$$

$$log(10^{2}) = 2 \cdot log(10) = 2 \to 2$$

$$log(10^{3}) = 3 \cdot log(10) = 3 \to 3$$

On étend le procédé aux puissances négatives de 10 :

$$0.1 \rightarrow log(10^{-1}) = (-1) \cdot log(10) = -1 \rightarrow -1$$

 $0.01 \rightarrow log(10^{-2}) = (-2) \cdot log(10) = -2 \rightarrow -2$
 $0.001 \rightarrow log(10^{-3}) = (-3) \cdot log(10) = -3 \rightarrow -3$
 $log(1) = 0$
 $log(10) = 1, log(100) = 2$
 $log(1000) = 3, log(10000) = 4$
 $log(0.1) = -1, log(0.01) = -2$
 $log(0.001) = -3, log(0.0001) = -4$

II. <u>Fonction exponentielle de base « a »:</u>

Soit *a* un nombre réel strictement positif différent de 1.

La fonction log_a logarithme de base « a » étant une bijection de \mathbb{R}_+^* vers \mathbb{R} elle admet donc une fonction réciproque définie de \mathbb{R} vers \mathbb{R}_+^* , de plus

Pour tout $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}$ tels que $y = log_a(x)$ on a

$$y = log_a(x) \iff y = \frac{ln(x)}{ln(a)}$$
$$\iff ln(x) = yln(a)$$
$$\iff e^{ln(x)} = e^{yln(a)} = e^{ln(a^y)}$$
$$\iff x = a^y$$

Définition:

On appelle exponentielle de base a la bijection définie de \mathbb{R} vers \mathbb{R}_+^* réciproque de la fonction log_a , notée par exp_a et définie par

$$\forall x \in \mathbb{R}$$
; $exp_a(x) = e^{xln(a)} = a^x$

et qui vérifie :

$$y = log_a(x) \Leftrightarrow x = a^y; \ \forall y \in \mathbb{R}$$

Proposition:

La fonction exp_a réciproque de log_a est une fonction dérivable sur $\mathbb R$ et sa dérivée est donnée par

$$(exp_a(x))' = (exp(xln(a)))' = ln(a)exp_a(x)$$

de plus:

si a > 1, exp_a est strictement croissante sur \mathbb{R}

et

$$\lim_{x \to -\infty} exp_a(x) = 0 \qquad \lim_{x \to +\infty} exp_a(x) = +\infty$$

si a < 1, exp_a est strictement décroissante sur $\mathbb R$

et

$$\lim_{x \to -\infty} exp_a(x) = +\infty \qquad \lim_{x \to +\infty} exp_a(x) = 0$$

Tableau de variation de exp_a :

Pour : a > 1

x	-∞	0	+ ∞
$ \begin{aligned} \left(exp_a(x)\right)' \\ &= ln(a)exp_a(x) \end{aligned} $		+	
$exp_a(x)$		+∞ 1 0	

Pour: a < 1

1001. 4 < 1	
x	$-\infty$ 0 $+\infty$
$ \begin{aligned} \left(exp_a(x)\right)' \\ &= ln(a)exp_a(x) \end{aligned} $	_
$exp_a(x)$	+∞ 1 0

Graphe de exp_a pour a > 1

Proposition:

- 1. $exp_a(0) = 1$ et $exp_a(1) = a$
- 2. Pour tout $x, y \in \mathbb{R}$: $exp_a(x + y) = exp_a(x)exp_a(y)$
- 3. Pour tout $x, y \in \mathbb{R}$: $exp_a(x - y) = exp_a(x)/exp_a(y)$
- 4. Pour tout $x \in \mathbb{R}$ et pour tout $r \in \mathbb{Q}$: $exp_a(rx) = (exp_a(x))^r$
- 5. De plus pour tout $a, b \in \mathbb{R}_+^* \{1\}$ $exp_{ab}(x) = exp_a(x)exp_b(x)$

Preuve:

Pour démontrer les points 1°,2°,3° et 4° il suffit de calculer le logarithme base *a* des membres de gauches et de droite de chacune des égalités

Le dernier point est dû au fait que

$$exp_{ab}(x) = (ab)^{x} = e^{xln(ab)}$$
$$= e^{x(lna+lnb)} = e^{xlna}e^{xlnb}$$
$$= exp_{a}(x)exp_{b}(x)$$

Remarque:

la définition de la fonction exponentielle de base a pour a > 0 et différent de 1 permet de donner un sens à la notation a^x .

Néanmoins on peut prolongé cette notation au cas où a=1 on posant $1^x=1$ pour tout x dans \mathbb{R}

De plus les fonctions logarithme népérien et exponentielle sont des cas particulier pour a = e.

III. Fonction puissance

Pour tout $n \in \mathbb{N}$

$$x \in \mathbb{R} \to x^n$$

Pour *n* impair

$$x \in \mathbb{R} \to (x)^{\frac{1}{n}} = \sqrt[n]{x}$$

Pour *n* pair :

$$x \in [0, +\infty[\to x^n \in [0, +\infty[$$

$$x \in [0, +\infty[\to (x)^{\frac{1}{n}} = \sqrt[n]{x} \in [0, +\infty[$$

Pour
$$a > 0$$
, $x \in \mathbb{R} \to a^x$

Pour tout
$$x \in \mathbb{R}_+^*$$
 et $\alpha \in \mathbb{R}$

$$x^{\alpha} = e^{\alpha ln(x)}$$

Définition:

On appelle fonction puissance toute fonction φ_a définie par

$$\varphi_a\colon \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$$

$$x \mapsto \varphi_a(x) = x^a$$
 Avec
$$x^a = exp\big(aln(x)\big)$$
 et $a \in \mathbb{R}$

Proposition:

Pour tout a, b dans \mathbb{R} et x, y > 0 on a

$$1^{a} = 1$$

$$x^{0} = 1$$

$$ln(x^{a}) = aln(x)$$

$$x^{a}y^{a} = (xy)^{a}$$

$$x^{a}x^{b} = x^{a+b}$$

$$(x^{a})^{b} = x^{ab}$$

Proposition:

La fonction φ_a est une fonction dérivable sur \mathbb{R}_+^* de dérivée

$$\frac{d}{dx}[\varphi_a(x)] = ax^{a-1}$$

et ainsi

$$(\varphi_a)' = a\varphi_{a-1}$$

Preuve:

$$\underbrace{x \in \mathbb{R}^*_+ \mapsto ln(x)}_{ln} \xrightarrow{a \cdot x} \underbrace{exp}_{exp} \\
\frac{d}{dx} [\varphi_a(x)] = \frac{d}{dx} [x^a] = \frac{d}{dx} [exp(alnx)] \\
= a \frac{d}{dx} (lnx) \left[\frac{d}{dx} (exp) \right] (alnx) \\
= \frac{a}{x} exp(alnx) = \frac{a}{x} x^a = ax^{a-1} \\
avec \varphi_{a-1}(x) = x^{a-1}$$

Proposition:

$$\lim_{x \to 0} x^a = \lim_{x \to 0} exp(aln(x)) = \begin{cases} 0, & a > 0 \\ +\infty, & a < 0 \end{cases}$$

$$\lim_{x \to +\infty} x^{a} = \lim_{x \to +\infty} exp(aln(x)) = \begin{cases} +\infty, & a > 0 \\ 0, & a < 0 \end{cases}$$

De plus pour a>0 : φ_a admet un prolongement par continuité en 0 on écrit alors que pour a>0 $0^a=0$

Tableau de variation de la fonction puissance:

Pour : a > 0

x	01 + ∞
$(x^a)' = ax^{a-1}$	+
x^a	+ ® 7 1 0

Pour: a < 0

x	01 + ∞
$(x^a)' = ax^{a-1}$	_
x^a	+∞ 1 0

De plus vue que

$$\frac{\varphi_a(x)}{x} = \varphi_{a-1}(x)$$

On en déduit que:

Si a>1 la fonction φ_a est dérivable en 0 de nombre dérivé $(\varphi_a)'(0)=0$

et si 0 < a < 1la fonction φ_a est non dérivable en 0.

Pour a = 1 la fonction φ_1 est l'identité et donc dérivable de dérivée égale à 1 en 0

Graphe de la fonction puissance:

Comparaison des fonctions logarithme et puissance:

Théorème:

$$\lim_{x \to +\infty} \frac{ln(x)}{x} = 0$$

$$\lim_{x\to 0} x ln(x) = 0$$

Preuve:

Pour tout t > 0, on a $t \ge \sqrt{t}$, ce qui pour $x \ge 1$, permet d'écrire :

$$0 \le \ln(x) = \int_{1}^{x} \frac{dt}{t} \le \int_{1}^{x} \frac{dt}{\sqrt{t}} = 2\sqrt{x} - 2 < 2\sqrt{x}$$

Ce qui entraine que pour tout $x \ge 1$:

$$0 \le \frac{\ln(x)}{x} < \frac{2}{\sqrt{x}} \to 0$$
 quand $x \to +\infty$, d'où la limite.

On pose
$$x = \frac{1}{y}$$
, quand sachant que $y \to +\infty$, $x \to 0$

$$\lim_{x \to 0} x \ln(x) = -\lim_{y \to +\infty} \frac{\ln(y)}{y} = 0$$

Proposition:

Si *a*, *b* sont deux réels strictement positifs, on a

$$\lim_{x \to +\infty} \frac{\left(ln(x)\right)^b}{x^a} = 0$$

et

$$\lim_{x \to 0} x^a |\ln(x)|^b = 0$$

Preuve:

Il suffit d'écrire

$$\frac{\left(\ln(x)\right)^b}{x^a} = \left(\frac{\ln(x)}{x^{a/b}}\right)^b = \left(\frac{b}{a}\right)^b \left(\frac{\ln(x^{a/b})}{x^{a/b}}\right)^b$$

En posant $x^{a/b} = y$ avec $y \to +\infty$ quand $x \to +\infty$, il vient du théorème précédent que

$$\lim_{x \to +\infty} \frac{\left(ln(x)\right)^b}{x^a} = 0$$

La deuxième limite est obtenue en posant

$$x = \frac{1}{y}$$

Comparaison des fonctions exponentielle et puissance:

Théorème:

Si a, b deux sont deux réels strictement positifs, on a

$$\lim_{x \to +\infty} \frac{exp(ax)}{x^b} = +\infty$$

$$\lim_{x \to -\infty} |x|^b exp(ax) = 0$$

Merci de votre attention

au prochain cours

Partie III

I – Fonction Arc sinus

II – Fonction Arc cosinus

III - Fonction Arc tangente

IV – Fonction Arc cotangente

I. Fonction Arc sinus

$$sin: \mathbb{R} \to [-1,1]$$

$$\forall x \in \mathbb{R}; \quad sin(-x) = -sin(x)$$

$$\sin(x + 2\pi) = sin(x)$$

$$sin' = cos$$

$$cos(x) = 0 \iff x = \frac{\pi}{2} + k\pi, \qquad k \in \mathbb{Z}$$

Aspect de la courbe de la fonction sinus 2

Définition:

La fonction sinus est continue et strictement croissante sur l'intervalle $I = [-\pi/2, \pi/2]$, elle réalise une bijection de cet intervalle sur l'intervalle J = sin(I) = [-1, +1].

La bijection réciproque de la fonction $sin_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}$ est par définition la fonction Arc

sinus notée arcsin

arcsin:
$$[-1,+1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

De plus; pour tout
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $y = sin(x) \Leftrightarrow x = arcsin(y)$

Proposition:

Pour tout $x \in [-1, +1]$, le réel arcsin(x) est l'unique élément de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus vaut x.

On a

$$\forall x \in [-1, +1] \ sin(arcsin(x)) = x$$

$$\forall \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad arcsin(sin(\alpha)) = \alpha$$

Remarque:

Pour tout réel α l'expression $arcsin(sin(\alpha))$ possède un sens , car $sin(\alpha)$ est toujours compris entre -1 et +1, mais l'égalité $arcsin(sin(\alpha)) = \alpha$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc sinus, c'est-à-dire $-\frac{\pi}{2}, \frac{\pi}{2}$

Exemple:

$$\arcsin\left(\sin\frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$\operatorname{Car}\sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) \text{ avec}$$

$$\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Proposition:

Pour tout
$$x \in [-1, +1]$$

$$cos(arcsin(x)) = \sqrt{1 - x^2}$$

Preuve:

On sait que pour tout $\theta \in \mathbb{R}$

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

D'où pour tout $x \in [-1, +1]$ $cos^2(arcsin(x)) + sin^2(arcsin(x)) = 1$

et

$$cos^{2}(arcsin(x)) = 1 - sin^{2}(arcsin(x))$$

vue que $-\frac{\pi}{2} \le \arcsin(x) \le \frac{\pi}{2}$ il vient que $\cos(\arcsin(x)) \ge 0$ et donc

$$cos(arcsin(x)) = \sqrt{1 - x^2}$$

Proposition:

La fonction Arc sinus est dérivable sur l'intervalle]-1, +1[
et de plus
Pout tout $x \in]-1, +1[$ on a $(arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}$

Preuve:

pour tout
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $y = sin(x) \iff x = arcsin(y)$

Avec

$$(sin)'(x) = cos(x) = 0 \Leftrightarrow x = \pm \frac{\pi}{2}$$

$$sin\left(-\frac{\pi}{2}\right) = -1 \quad sin\left(\frac{\pi}{2}\right) = +1$$

$$(arcsin)'(y) = \frac{1}{(sin)'(x)} = \frac{1}{cos(x)}$$

$$= \frac{1}{cos(arcsin(y))}$$

$$(arcsin)'(y) = \frac{1}{\sqrt{1 - y^2}}$$

Tableau de variation:

On résume les variations de la fonction Arc sinus dans le tableau suivant

Représentation graphique de Arc sin:

I. Fonction Arc cosinus

$$cos: \mathbb{R} \to [-1,1]$$

$$\forall x \in \mathbb{R}; \ cos(-x) = cos(x)$$

$$cos' = -sin$$

$$sin(x) = 0 \iff x = k\pi, \qquad k \in \mathbb{Z}$$

Aspect de la courbe de la fonction cosinus

Définition:

La fonction cosinus est continue et strictement décroissante sur l'intervalle $I = [0, \pi]$, elle réalise une bijection de cet intervalle sur l'intervalle J = cos(I) = [-1, +1]

La bijection réciproque de la fonction $\cos_{|[0,\pi]}$ est par définition la fonction Arc cosinus notée \arccos

arccos:
$$[-1, +1]$$
 → $[0, \pi]$

De plus; pour tout $x \in [0, \pi]$ $y = cos(x) \Leftrightarrow x = arccos(y)$

Proposition:

Pour tout $x \in [-1, +1]$, le réel arccos(x) est l'unique élément de $[0, \pi]$ dont le cosinus vaut x.

On a

$$\forall x \in [-1, +1] \ cos(arccos(x)) = x$$

$$\forall \alpha \in [0, \pi] \quad arccos(cos(\alpha)) = \alpha$$

Remarque:

Pour tout réel α l'expression $\arccos(\cos(\alpha))$ possède un sens , car $\cos(\alpha)$ est toujours compris entre -1 et +1, mais l'égalité $\arccos(\cos(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc cosinus, c'est-à-dire $[0,\pi]$

Exemple:

$$arccos\left(cos - \frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

Car
$$\cos\left(-\frac{5\pi}{6}\right) = \cos\left(\frac{5\pi}{6}\right)$$
 avec $\frac{5\pi}{6} \in [0,\pi]$

Proposition:

Pour tout
$$x \in [-1, +1]$$

$$sin(arccos(x)) = \sqrt{1 - x^2}$$

Preuve:

On sait que pour tout
$$\theta \in \mathbb{R}$$
 $\cos^2(\theta) + \sin^2(\theta) = 1$
D'où pour tout $x \in [-1, +1]$ $\cos^2(\arccos(x)) + \sin^2(\arccos(x)) = 1$
et $\sin^2(\arccos(x)) = 1 - \cos^2(\arccos(x))$
vue que $0 \le \arccos(x) \le \pi$ il vient que $\sin(\arccos(x)) \ge 0$ et donc $\sin(\arccos(x)) = \sqrt{1 - x^2}$

Proposition:

La fonction Arc cosinus est dérivable sur l'intervalle]-1,+1[et de plus Pout tout $x \in]-1,+1[$ on a

$$(arccos)'(x) = -\frac{1}{\sqrt{1-x^2}}$$

Preuve:

pour tout
$$x \in [0, \pi]$$

 $y = cos(x) \Leftrightarrow x = arccos(y)$
Avec

$$(cos)'(x) = -sin(x) = 0$$

$$\Leftrightarrow x = 0, \quad x = \pi$$

$$cos(0) = -1 \quad cos(\pi) = +1$$

$$(arccos)'(y) = \frac{1}{(cos)'(x)} = -\frac{1}{sin(x)}$$

$$= -\frac{1}{sin(arccos(y))}$$

$$(arccos)'(y) = -\frac{1}{\sqrt{1 - y^2}}$$

Tableau de variation:

On résume les variations de la fonction Arc cosinus dans le tableau suivant

Représentation graphique de Arc cosinus:

Fonction Arc tangente

$$tan: \mathbb{R} - \left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\} \to \mathbb{R}$$

$$tan(x) = \frac{\sin(x)}{\cos(x)} \quad , (tan)'(x) = \frac{1}{\cos^2(x)}$$

Définition:

La fonction tangente est continue et strictement croissante sur l'intervalle I =

 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, elle réalise une bijection de cet intervalle sur l'intervalle

$$J = tan(I) = \lim_{\substack{> \\ x \to -\pi/2}} tan(x), \lim_{\substack{\leq \\ x \to \pi/2}} tan(x), [$$

 $= \mathbb{R}$

La bijection réciproque de la fonction $tan_{\left| -\frac{\pi}{2},\frac{\pi}{2} \right|}$ est par définition la fonction Arc

tangente notée arctan

$$arctan: \mathbb{R} \rightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

De plus; pour tout
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 $y = tan(x) \Leftrightarrow x = arctan(y)$

Proposition:

Pour tout $x \in \mathbb{R}$, le réel $\arctan(x)$ est l'unique élément de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ dont la tangente vaut x.

On a

$$\forall x \in \mathbb{R} \ tan(arctan(x)) = x$$

$$\forall \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\arctan(\tan(\alpha)) = \alpha$$

Remarque:

Pour tout réel $\alpha \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$ l'expression $\arctan(\tan(\alpha))$ possède un sens , car $\tan(\alpha)$ est dans \mathbb{R} , mais l'égalité $\arctan(\tan(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc tangente, c'est-à-dire $-\frac{\pi}{2}, \frac{\pi}{2}$

Exemple:

$$\arctan\left(\tan - \frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$\operatorname{Car} \tan\left(-\frac{5\pi}{6}\right) = \tan\left(-\pi + \frac{\pi}{6}\right) = \tan\left(+\frac{\pi}{6}\right)$$

$$\operatorname{avec} \frac{\pi}{6} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

Proposition:

La fonction Arc tangente est dérivable sur l'intervalle R

et de plus

Pout tout $x \in \mathbb{R}$ on a

$$(arctan)'(x) = \frac{1}{1+x^2}$$

Preuve:

pour tout
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$y = tan(x) \Leftrightarrow x = arctan(y)$$

$$(tan)'(x) = \frac{1}{cos^2(x)} = 1 + tan^2(x) \neq 0$$

$$(arctan)'(y) = \frac{1}{(tan)'(x)} = \frac{1}{1 + tan^2(x)}$$

$$= \frac{1}{1 + tan^2(arctan(y))}$$

$$(arctan)'(y) = \frac{1}{1 + y^2}$$

Tableau de variation:

On résume les variations de la fonction Arc tangente dans le tableau suivant

x	-∞	0	+ ∞
$(arctan)'(x) = \frac{1}{1+x^2}$		+	
arctan(x)	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$

Proposition:

Pour tout $x \in \mathbb{R}^*$

$$arctan(x) + arctan\left(\frac{1}{x}\right) = \varepsilon \frac{\pi}{2}$$

Avec
$$\varepsilon = \begin{cases} -1, & x < 0 \\ +1, & x > 0 \end{cases}$$

Preuve:

$$f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$$
$$f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\left(\frac{1}{x}\right)^2} = 0$$

La fonction f est donc constante sur \mathbb{R}^* , de la forme

$$f(x) = \begin{cases} c_1, & x < 0 \\ c_2, & x > 0 \end{cases}$$

Où c_1 , c_2 sont des constantes réelles.

Prenons x = -1 puis x = +1, il vient que

$$c_1 = -\frac{\pi}{2}, \qquad c_2 = \frac{\pi}{2}$$

I. Fonction Arc cotangente

$$cotan: \mathbb{R} - \{k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$$

$$cotan(x) = \frac{cos(x)}{sin(x)}$$

$$(cotan)'(x) = -\frac{1}{sin^2(x)}$$

$$= -(1 + cotan^2 x)$$

Définition:

La fonction cotangente est continue et strictement décroissante sur l'intervalle $I =]0, \pi$ [, elle réalise une bijection de cet intervalle sur l'intervalle

$$J = cotan(I) = \mathbb{R}$$

La bijection réciproque de la fonction $\cot an_{|]0,\pi}[$ est par définition la fonction Arc cotangente notée arccot

$$arccot: \mathbb{R} \rightarrow]0, \pi[$$

De plus; pour tout
$$x \in]0, \pi[$$

 $y = cotan(x) \Leftrightarrow x = arccot(y)$

Proposition:

Pour tout $x \in \mathbb{R}$, le réel arccot(x) est l'unique élément de $]0,\pi$ [dont la cotangente vaut x.

On a

$$\forall x \in \mathbb{R} \ cotan(arccot(x)) = x$$

$$\forall \alpha \in]0, \pi[arccot(cotan(\alpha)) = \alpha]$$

Remarque:

Pour tout réel α l'expression $\operatorname{arccot}(\operatorname{cotan}(\alpha))$ possède un sens , car $\operatorname{cotan}(\alpha)$ est dans \mathbb{R} , mais l'égalité $\operatorname{arccot}(\operatorname{cotan}(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc $\operatorname{cotangente}$, c'est-à-dire]0, π [

Exemple:

$$arccotan\left(cotan - \frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$Car \cot \left(-\frac{5\pi}{6}\right) = \cot \left(-\pi + \frac{\pi}{6}\right) = \cot \left(\frac{\pi}{6}\right)$$

$$\cot \left(\frac{\pi}{6}\right) \operatorname{avec} \frac{\pi}{6} \in \left]0, \pi\right[$$

Proposition:

La fonction Arc cotangente est dérivable sur l'intervalle R

et de plus

Pout tout $x \in \mathbb{R}$ on a

$$(arccotan)'(x) = -\frac{1}{1+x^2}$$

Preuve:

pour tout
$$x \in]0, \pi[$$

$$y = cotan(x) \Leftrightarrow x = arccot(y)$$

$$(cotan)'(x) = -\frac{1}{sin^2(x)}$$

$$= -(1 + cotan^2(x)) \neq 0$$

$$(arccot)'(y) = \frac{1}{(cotan)'(x)}$$

$$= -\frac{1}{1 + cotan^2(x)}$$

$$= -\frac{1}{1 + cotan^2(arccot(y))}$$

$$(arccot)'(y) = -\frac{1}{1 + y^2}$$

Fonction Arc tangente

Fonction Arc tangente

Fonction Arc tangente

Proposition:

Pour tout $x \in \mathbb{R}$

$$arccotan(x) + arctan(x) = \frac{\pi}{2}$$

Preuve:

$$f(x) = arccotan(x) + arctan(x)$$
$$f'(x) = -\frac{1}{1+x^2} + \frac{1}{1+x^2} = 0$$

La fonction f est donc constante sur $\mathbb R$, de la forme

Prenons x = 1 puis, il vient que $f(x) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$

Fonction Arc sinus

Merci Au prochain cours

Partie IV

I- Fonctions
Hyperboliqu
es

- Définitions des fonctions hyperboliques (sinus, cosinus tangente et cotangente hyperboliques)
- Variations des fonctions hyperboliques

II-Trigonométrie hyperbolique

- Formules d'addition
- Formules de multiplication

III- Fonctions hyperboliques réciproques

- Argument sinus hyperbolique
- Argument cosinus hyperbolique
- Argument tangente hyperbolique

<u>Définition des fonctions</u> <u>hyperboliques :</u>

Introduction:

$$f:]-\alpha, +\alpha[\rightarrow \mathbb{R}$$

$$\begin{cases} f(x) = P(x) + Q(x) \\ f(-x) = P(x) - Q(x) \end{cases}$$

$$\begin{cases} P(x) = \frac{f(x) + f(-x)}{2} \\ Q(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Définition:

On appelle cosinus hyperbolique de x et sinus hyperbolique de x et on note respectivement cosh(x) et sinh(x) les parties paire et impaire de e^x

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$cosh(x) - 1 = \frac{e^x + e^{-x}}{2} - 1$$
$$= \frac{e^x - 2 + e^{-x}}{2} = \frac{\left(e^{\frac{x}{2}} - e^{-\frac{x}{2}}\right)^2}{2} \ge 0$$

Il vient que pour tout $x \in \mathbb{R}^*$; cosh(x) > 1 avec cosh(0) = 1

Et du fait que

$$sinh(x) = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$$

Il vient que sinh(x) est du signe de x quel que soit $x \neq 0$ avec sinh(0) = 0.

Définition:

On appelle tangente hyperbolique de x et cotangente hyperbolique de x respectivement tanh(x) et cotanh(x) les fonctions

$$tanh(x) = \frac{sinh(x)}{cosh(x)}$$
$$cotanh(x) = \frac{cosh(x)}{sinh(x)}$$

Ou encore sous la forme

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$
$$cotanh(x) = \frac{e^{2x} + 1}{e^{2x} - 1}$$

Remarque:

- Il est courant d'utiliser pour alléger l'écriture les notations suivantes : ch xau lieu de cosh(x), sh xau lieu de sinh(x), th xau lieu de tanh(x) et coth x au lieu de cotanh(x).
- Pour les fonctions hyperboliques la variable est appelée argument.

Propriété:

(Relation entre fonctions hyperboliques de même argument)

Pour tout $x \in \mathbb{R}$ on a

$$ch x + sh x = e^x$$
, $ch x - sh x = e^{-x}$

$$ch^2 x - sh^2 x = 1$$

$$ch \ x = \frac{1}{\sqrt{1 - th^2 \ x}} \quad , sh \ x = \frac{th \ x}{\sqrt{1 - th^2 \ x}}$$

Preuve:

$$(ch x + sh x) \cdot (ch x - sh x) = e^x e^{-x} = 1$$

 $ch^2 x - sh^2 x = 1$
 $1 - th^2 x = \frac{1}{ch^2 x}$

Et en tenant compte du fait que ch x > 0et que $sh x = ch x \cdot th x$ il vient que

$$ch \ x = \frac{1}{\sqrt{1 - th^2 x}} \quad , \qquad sh \ x = \frac{th \ x}{\sqrt{1 - th^2 x}}$$

Variation des fonctions hyperboliques :

Tenant compte de la parité des fonctions hyperboliques nous nous limiterons à l'intervalle $[0, +\infty[$

Dérivées. Sens de variation:

$$(ch x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = sh x$$

$$(sh x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = chx$$

$$(th x)' = \frac{1}{ch^2 x} = 1 - th^2 x$$

$$(coth x)' = -\frac{1}{sh^2 x} = 1 - coth^2 x$$

De plus

$$\lim_{x \to +\infty} ch \, x = \lim_{x \to +\infty} \frac{e^x + e^{-x}}{2} = +\infty$$

$$\lim_{x \to +\infty} sh \ x = \lim_{x \to +\infty} \frac{e^x - e^{-x}}{2} = +\infty$$

$$\lim_{x \to +\infty} th \ x = \lim_{x \to +\infty} \frac{e^{2x} - 1}{e^{2x} + 1} = +1$$

$$\lim_{x \to +\infty} \coth x = \lim_{x \to +\infty} \frac{e^{2x} + 1}{e^{2x} - 1} = +1$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \coth x = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{ch x}{sh x} = +\infty$$

x	$-\infty0+\infty$	
(ch)'x = sh x	-0+	
ch x	+∞ -	
(sh)'x = ch x	+	-
sh x		
$(th)'x = 1/ch^2x$	+	
th x	→ 0 −1	
$(coth)'x = -1/sh^2x$	-	_
$coth \ x$	-1	+0 +1

Représentation graphique:

$$\lim_{x \to +\infty} \frac{sh x}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{ch x}{x} = +\infty$$

Et de plus on a

$$sh x - \frac{e^x}{2} = -\frac{e^{-x}}{2}$$
 $ch x - \frac{e^x}{2} = \frac{e^{-x}}{2}$

comme $\lim_{x \to +\infty} \frac{e^{-x}}{x} = 0^+$, la courbe de ch et la courbe de sh se rapprochent, pour $x \to +\infty$, de la courbe de $x \mapsto \frac{e^x}{2}$, qui est donc une courbe asymptote à ces deux courbes

Trigonométrie hyperboliques:

Formules d'addition:

Pour calculer ch(a+b) et sh(a+b) connaissant ch(a,sh(a,ch(b),sh(b)), il suffit de remplacer dans les formules

$$ch(a + b) = ch a \cdot ch b + sh a \cdot sh b$$

 $sh(a + b) = sh a \cdot ch b + ch a \cdot sh b$

$$ch (a - b) = ch a \cdot ch b - sh a \cdot sh b$$

$$sh (a - b) = sh a \cdot ch b - ch a \cdot sh b$$

$$th (a + b) = \frac{th a + th b}{1 + th a \cdot th b}$$

$$th (a - b) = \frac{th a - th b}{1 - th a \cdot th b}$$

$$ch (a + b) + ch (a - b) = 2 ch a \cdot ch b$$

$$ch (a + b) - ch (a - b) = 2 sh a \cdot sh b$$

$$sh (a + b) + sh (a - b) = 2 sh a \cdot ch b$$

$$ch p + ch q = 2 ch \frac{p + q}{2} \cdot ch \frac{p - q}{2}$$

$$ch p - ch q = 2 sh \frac{p + q}{2} \cdot sh \frac{p - q}{2}$$

$$sh p + sh q = 2 sh \frac{p + q}{2} \cdot ch \frac{p - q}{2}$$

$$sh p - sh q = 2 sh \frac{p - q}{2} \cdot ch \frac{p + q}{2}$$

Formules de multiplication :

Multiplication par 2:

$$ch \ 2 \ a = ch^{2}a + sh^{2}a \qquad sh \ 2 \ a$$

$$= 2 sh \ a ch \ a$$

$$th \ 2a = \frac{2 th \ a}{1 + th^{2}a}$$

$$ch \ 2a + 1 = 2 ch^{2}a \qquad ch \ 2a - 1 = 2 sh^{2}a$$

$$ch \ 2a = \frac{1 + th^{2}a}{1 - th^{2}a} \qquad sh \ 2a = \frac{2 th \ a}{1 - th^{2}a}$$

On poset =
$$th \ a/2$$

$$ch \ a = \frac{1+t^2}{1-t^2}$$

$$sh \ a = \frac{2t}{1-t^2}$$

$$th \ a = \frac{2t}{1+t^2}$$
Ou pour $u = e^a$

$$ch \ a = \frac{1}{2}\left(u + \frac{1}{u}\right)$$

$$sh \ a = \frac{1}{2}\left(u - \frac{1}{u}\right)$$

$$th \ a = \frac{u^2 - 1}{u^3 + 1}$$

Multiplication par un entier naturel $\underline{quelconque}_{m}$:

Ecrivons

$$(ch a + sh a)^{m} = e^{ma}$$

$$(ch a - sh a)^{m} = e^{-ma}$$

$$(ch a + sh a)^{m} = ch ma + sh ma$$

$$(ch a - sh a)^{m} = ch ma - sh ma$$

$$2 ch ma = (ch a + sh a)^{m} + (ch a - sh a)^{m}$$
$$2 sh ma = (ch a + sh a)^{m} - (ch a - sh a)^{m}$$

$$th \ ma = \frac{(1 + tha)^m - (1 - tha)^m}{(1 + tha)^m - (1 - tha)^m}$$
$$= \frac{C_m^1 th \ a + C_m^3 th^3 a + \cdots}{1 + C_m^2 th^2 \ a + C_m^4 th^4 a + \cdots}$$

Pour
$$m = 3$$
:

$$ch \ 3a = ch^{3}a + 3 \ ch \ a \ sh^{2}a$$

$$sh \ 3a = 3 \ ch^{2}a \ sh \ a + sh^{3}a$$

$$th \ 3a = \frac{3 \ th \ a + th^{3}a}{1 + 3 \ th^{2}a}$$

ďoù

$$ch 3a = 4ch^3 a - 3ch a$$

$$sh 3a = 3 sh a + 4 sh^3 a$$

et

$$ch^{3}a = \frac{ch \ 3a}{4} + \frac{3}{4}ch \ a$$
$$sh^{3}a = \frac{sh \ 3a}{4} - \frac{3}{4}sh \ a$$

Fonctions hyperboliques inverses:

Inversion du sinus hyperbolique:

Définition:

La fonction sinus hyperbolique est une application continue et strictement croissante de \mathbb{R} sur \mathbb{R} . On peut donc définir la fonction réciproque, application continue et strictement croissante de \mathbb{R} sur \mathbb{R} . Cette fonction réciproque est appelée argument sinus hyperbolique ; on le désigne par le symbole Argsh caractérisée par

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}$$
$$y = sh \ x \Longleftrightarrow x = Argsh \ y$$

Propriétés:

- La fonction argument sinus hyperbolique est une fonction impaire
- $\lim_{x \to +\infty} Argsh \ x = +\infty$ $\lim_{x \to -\infty} Argsh \ x = -\infty$
- La fonction argument sinus hyperbolique est dérivable partout dans \mathbb{R} et de plus Pour tout $y \in \mathbb{R}$ tel que y = sh x

$$(Argsh)'y = \frac{1}{sh'x} = \frac{1}{ch x} = \frac{1}{ch(Argsh y)}$$

or vue que
$$\frac{ch^2x - sh^2x = 1}{ch \ x = \sqrt{1 + sh^2x}}$$

 $\frac{ch(Argsh \ y)}{1} = \frac{1}{\sqrt{1 + y^2}}$
 $\frac{(Argsh)'y}{\sqrt{1 + y^2}} = \frac{1}{\sqrt{1 + y^2}}$

Tableau de variation de Argsh:

x	$-\infty0+\infty$
$(Argsh)'(x) = \frac{1}{\sqrt{1+x^2}}$	+
argsh x	0 ∞

Expression logarithmique de ar gsh:

Nous avons que pour tout x dans \mathbb{R}

$$y = sh x$$
 et $ch x = \sqrt{1 + y^2}$

Par addition il vient que $e^x = y + \sqrt{1 + y^2}$ donc

$$x = \arg sh \ y = \ln \left(y + \sqrt{1 + y^2} \right)$$

D'où en déduit que la fonction Argument sinus hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in \mathbb{R}$$
; $Argsh x = ln(x + \sqrt{1 + x^2})$

Inversion du cosinus hyperbolique:

Définition:

La restriction à $[0, +\infty[$ de la fonction cosinus hyperbolique est une application continue et strictement croissante de $[0, +\infty[$ sur $[1, +\infty[$. On peut donc définir la fonction réciproque, application continue et strictement croissante de $[1, +\infty[$ sur $[0, +\infty[$. Cette fonction réciproque est appelée argument cosinus hyperbolique ; on le désigne par le symbole Argch caractérisée par

$$\forall x \in [0, +\infty[\ \forall y \in [1, +\infty[\ y = ch \ x \\ \Leftrightarrow x = Argch \ y$$

Propriétés:

La fonction argument cosinus hyperbolique vérifie que

- $\lim_{x \to +\infty} Argch(x = +\infty) \quad Argch(1) = 0$
- La fonction argument cosinus hyperbolique est dérivable partout dans]1, +∞[

et de plus Pour tout $y \in]1, +\infty[$ tel que y = ch xavec

$$(Argch)'y = \frac{1}{ch'x} = \frac{1}{sh x} = \frac{1}{sh(Argch y)}$$

or vue que $ch^2x - sh^2x = 1$

donc $sh^2x = ch^2x - 1$ et $sh x = \sqrt{ch^2x - 1}$ il vient que

$$sh(Argch y) = \sqrt{y^2 - 1}$$

$$(Argch)'y = \sqrt{y^2 - 1}$$

Tableau de variation de Argch:

Expression logarithmique de ar gch:

Nous avons que pour tout x dans $[0, +\infty[$

$$y = ch xet$$
 $sh x = \sqrt{y^2 - 1}$

Par addition il vient que $e^x = y + \sqrt{y^2 - 1}$ donc

$$x = \arg ch \ y = \ln \left(y + \sqrt{y^2 - 1} \right)$$

D'où en déduit que la fonction Argument cosinus hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in [1, +\infty[;$$

$$Argch \ x = ln \left(x + \sqrt{x^2 - 1} \right)$$

<u>Inversion de la tangente</u> <u>hyperbolique :</u>

Définition:

La fonction tangente hyperbolique est une application continue et strictement croissante de \mathbb{R} sur]-1,+1[. On peut donc définir la fonction réciproque, application continue et strictement croissante de]-1,+1[sur \mathbb{R} . Cette fonction réciproque est appelée argument tangente hyperbolique ; on la désigne par le symbole Argth caractérisée par

$$\forall x \in \mathbb{R}, \forall y \in]-1, +1[;$$

 $y = th \ x \iff x = Argth \ y$

Propriétés:

- La fonction argument tangente hyperbolique est une fonction impaire
- Elle vérifie que $\lim_{x\to 1-} Argth \ x = +\infty \quad \lim_{x\to -1+} Argth \ x = -\infty$
- La fonction argument tangente hyperbolique est dérivable partout dans]-1,+1[et de plus Pour tout $y \in]-1,+1[$ tel que y=th x $(Argth)'y=\frac{1}{th'x}=\frac{1}{1-th^2x}=\frac{1}{1-y^2}$

Tableau de variation de Argth:

x	-10+1	
$(Argth)'(x) = \frac{1}{1-x^2}$	+	
argth x	-8	

Expression logarithmique de ar gth:

Nous avons que pour tout x dans \mathbb{R}

$$x = Argth \ y \iff y = th \ x \iff y = \frac{e^{2x} - 1}{e^{2x} + 1}$$
$$\iff e^{2x} = \frac{1 + y}{1 - y} \iff x = \frac{1}{2} ln \left(\frac{1 + y}{1 - y} \right)$$

D'où en déduit que la fonction Argument tangente hyperbolique peut être exprimée en fonction du logarithme comme suite

$$\forall x \in]-1,+1[;$$

$$Argth \ x = \frac{1}{2} ln \left(\frac{1+x}{1-x} \right) = ln \sqrt{\frac{1+x}{1-x}}$$

