以WiFi模組與紅外線感測器開發羽球敏捷、協調與反應力訓練裝置之研究

本研究旨在開發一套結合無線科技的羽球訓練裝置,提升選手敏捷性、反應 速度與協調能力。透過模擬比賽中不確定性的情境,幫助選手在實戰中提升 應變與動作反應效率。

参考論文: Development of agility, coordination, and reaction time training device with infrared sensor and WiFi module Arduino in badminton Agus Rusdiana*

Program of Sport Science Study, Faculty of Sport and Health Education, Universitas Pendidikan Indonesia, Sukasari, Kota Bandung, Jawa Barat, 40154 Indonesia Received: 30 January 2020; Revised: 1 March 2020; Accepted: 6 March 2020

姓名:王冠傑 學號: D11497668

裝置設計與組成

核心架構

以Arduino與ESP8266 WiFi模 組為主控,實現無線控制與資料 傳輸。

主要組件

- 可調式紅外線感測器偵測球 拍動作
- LED RGB燈光提示
- 蜂鳴器提供聲音反饋
- Android手機App遠端操控

系統架構

包含一個主控制單元與最多四組從裝置,具備自動開關燈及無線傳輸功 能。

Master Fitlight 主控制裝置

Figure 2. Master fitlight design. A: On/Off switch has a function to prepare the suite of the master fitlight B: Active LED Indicator is a sign that the master fitlight is in use. C: The charger LED indicator is a sign that the master fitlight is being charged. D: The charger hole has a function to charge the master fitlight.

互動設備

A. Rusdiana / Songklanakarin J. Sci. Technol. 43 (2), 448-452, 2021

Figure 3. Suite of a slave top view (A) and side view (B)

研發方法

- 問題識別明確定義訓練需求與技術挑戰。
- 2 資料蒐集與產品設計 收集相關資料並設計裝置架構。
- 3 試驗與修正 進行多次測試,調整裝置功能。
- 4 大規模生產 完成設計後準備量產。

訓練裝置操作流程

裝置安裝與連線

在半場左右兩側各放兩個從裝置,玩家 站中央,使用Android App連接WiFi控制 燈號。

Figure 5. Agility, coordination, and reaction training media application

模擬實戰情境

對手隨機擊球,選手需快速反應並觸碰 亮燈裝置,觸發感測器與聲光反饋。

連續訓練迴圈

燈號依序亮起,選手持續移動與反應, 整合視覺、判斷與動作能力。

Figure 6. Trial test of the agility, coordination, and reaction training

實驗與結果

實地測試

於羽球場半場進行為期兩個月的接發球與反應訓練。

訓練成效

受試者反應速度、協調性與敏捷性均明顯提升。

數據支持

實驗數據證實裝置有效促進選手體能與反應能力。

結論

系統優勢

結合WiFi模組與紅外線感測器 ,具無線控制與自動感應功能

0

模擬實戰

有效模擬比賽變化情境,提升 選手反應與協調能力。

實用價值

系統彈性高,便利性強,對選手體能與比賽表現具實質幫助。

Badminton Training

裝置技術細節與應用展望

WiFi模組功能

ESP8266實現多裝置無線連接與同步控制,提升訓練靈活度。

紅外線感測器應用

偵測球拍觸碰動作,提供即時反饋與數 據收集。 未來發展

可擴展至其他運動訓練,結合更多感測 技術與AI分析。

研究貢獻與未來展望

1

提升運動表現

本裝置有效提升敏捷、協調與反應力,助力選手競技表現。

2

技術整合創新

結合無線通訊與感測技術,創造智能化訓練環境。

未來應用

可拓展至多種運動領域,促進運動科技發展與普及。

