Hanwen Zhang

CONTACT INFORMATION	Department of Applied and Computational Mathematics Yale University 12 Hillhouse Avenue, New Haven CT 06511, USA	(203) 392-4522 hanwen.zhang@yale.echttps://han-wen-zhan	
RESEARCH INTERESTS	Numerical analysis, fast algorithms, computational physics, PDE-constrained optimization		
Employment	Gibbs Assistant Professor, Yale University Graduate Research Assistant, Yale University Optical Scientist, Facebook Reality Lab	09,	/2022- /2017-05/2022 /2021-08/2021
EDUCATION	Ph.D., Applied Physics, Yale University B.Sc., Physics, National University of Singapo B.Eng., Material Science, National University	re 08/	/2017-05/2022 /2012-05/2017 /2012-05/2017
Publications	 H Zhang. "Constructing optimal Wannier functions via potential theory: isolated multiband for matrix models." (To be submitted.) H Zhang. "A highly accurate procedure for computing globally optimal Wannier 		

- functions in one-dimensional crystalline insulators, Part II." (To be submitted.)
- 3. **H Zhang**. "Constructing optimal Wannier functions via potential theory: isolated single band for matrix models." Preprint (2025).
- 4. A. Gopal, **H Zhang**. "A highly accurate procedure for computing globally optimal Wannier functions in one-dimensional crystalline insulators." Preprint (2024).
- 5. H. Zhang, V. Rokhlin. "Finding roots of complex analytic functions via generalized colleague matrices." Advances in Computational Mathematics (2024).
- 6. W. Xue, H. Zhang, A. Gopal, V. Rokhlin, O. Miller. "Fullwave design of cmscale cylindrical metasurfaces via fast direct solvers." *Preprint* (2023).
- 7. H. Zhang, Z. Kuang, S. Puri and O. Miller. "Conservation-law-based global bounds to quantum optimal control." Physical Review Letters (2021).
- 8. **H. Zhang**, O. Miller. "Quasinormal coupled mode theory." *Preprint* (2020).
- 9. H. Zhang, C.-W. Hsu, and O. Miller. "Scattering concentration bounds: brightness theorems for waves." Optica (2019).
- 10. Solutions manual to Quantum Mechanics by Julian Schwinger with Berthold-Georg Englert. (To appear.)
- Talks
- Constructing optimal Wannier functions via potential theory, NYU Courant Institute of Mathematical Sciences (2025)
- Constructing optimal Wannier functions via potential theory, Flatiron Institute Center for Computational Mathematics (2025)
- Finding scattering resonances via generalized colleague matrices, SIAM Conference on Computational Science and Engineering (2025)
- Finding scattering resonances via generalized colleague matrices, UMass Lowell Mathematics & Statistics Colloquium (2024)

- An efficient scheme for fullwave inverse design of large-scale metasurfaces, SPIE (2022)
- Conservation-law-based global bounds to quantum optimal control, SUTD Mathematics and Technology Seminar (2021)
- Brightness theorems for nanophotonics, CLEO (2019)

SERVICE AND OUTREACH

- Organizer Applied Mathematics Seminar, Yale University, 2023–present
- Reviewer Applied and Computational Harmonic Analysis; Journal of Scientific Computing.

Teaching

Yale University, Department of Mathematics

- Instructor MATH 325 Introduction to Functional Analysis, Spring 2026
- Instructor MATH 325 Introduction to Functional Analysis, Spring 2025
- Instructor MATH 246 Ordinary Differential Equations, Fall 2024
- Instructor MATH 222 Linear Algebra with Applications, Spring 2024
- Instructor MATH 246 Ordinary Differential Equations, Fall 2023
- Instructor MATH 222 Linear Algebra with Applications, Spring 2023
- Instructor MATH 222 Linear Algebra with Applications, Fall 2022

Yale University, Department of Physics

• Teaching assistant – PHYS 502 Electromagnetic Theory I, Spring 2019