Assignment 4

15-359 Probability and Computing

Name: Shashank Singh

Email: sss1@andrew.cmu.edu

Section: B

Due: Friday, February 17, 2012

Problem 2: Shipping error

Let G be the event that you are shipped a working server, and let B be the event that you are shipped a faulty server. Then, if T is a random variable denoting the time in days until the server crashes, $(T|G) \sim \text{Geometric}\left(\frac{1}{100}\right)$, and $(T|B) \sim \text{Geometric}\left(\frac{5}{100}\right)$. Thus, as shown in class,

$$E[T^2|G] = \frac{2 - \frac{1}{100}}{\left(\frac{1}{100}\right)^2} = 19900, \ E[T|G] = \frac{1}{1/100} = 100,$$

$$E[T^2|B] = \frac{2 - \frac{5}{100}}{\left(\frac{5}{100}\right)^2} = 780, \ E[T|B] = \frac{1}{1/20} = 20.$$

Then, since $E[T^2] = E[T^2|G]P(G) + E[T^2|B]P(B)$ and E[T] = E[T|G]P(G) + E[T|B]P(B), $Var(T) = E[T^2] - E[T]^2 = \frac{73340}{9}$.

Problem 3: Skew and skewer

For purposes of this question, abbreviate Skewer as S. Note that, for all random variables X,

$$S(X) = E[(X - E[X])^{3}] = E[X^{3}] - 3E[X^{2}]E[X] + 2E[X]^{3}.$$

Let X and Y be independent random variables, noting that this implies that E[X]E[Y] = E[XY]. Thus,

$$S(X + Y) = E[(X + Y)^{3}] - 3E[X^{2}]E[X] + 2E[X]^{3}$$

$$= E[X^{3}] + 3E[X^{2}Y] + 3E[XY^{2}] + E[Y^{3}]$$

$$- 3(E[X^{2}]E[X] - 2E[XY]E[X] + E[XY^{2}])$$

$$- 3(E[X^{2}Y] - 2E[XY][EY] + E[Y^{2}]E[Y])$$

$$+ 2E[X + Y]^{3}$$

$$= E[X^{3}] + E[Y^{3}]$$

$$- 3(E[X^{2}]E[X] - 2E[XY]E[X])$$

$$- 3(-2E[XY][EY] + E[Y^{2}]E[Y])$$

$$+ 2E[X + Y]^{3}$$

$$= E[X^{3}] - 3E[X^{2}]E[X] + 2E[X]^{3}$$

$$+ E[Y^{3}] - 3E[Y^{2}]E[Y] + 2E[Y]^{3}$$

$$= S(X) + S(Y)$$

Thus, S(X + Y) = S(X) + S(Y).

Problem 4: Tails

Let X be a non-negative, discrete, integer-valued random variable. Let $S = \{(i, j) \in \mathbb{N} \times \mathbb{N} | 1 \le j \le i\}$. Then,

$$\sum_{j=1}^{\infty} j P(X \ge j) = \sum_{j=1}^{\infty} j \sum_{i=j}^{\infty} P(X = i)$$

$$= \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} j P(X = i)$$

$$= \sum_{(i,j) \in S} j P(X = i)$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{i} j P(X = i)$$

$$= \sum_{i=1}^{\infty} (i + i^2) P(X = i)$$

$$= \left[\frac{E[X^2] + E[X]}{2}\right]$$

Problem 5: Coffee-theorem revisited

Let W be the event that the student starts off working, let C be the event that the student starts off at the coffee shop, and let X be a random variable denoting the time at which the student returns home. Note that, as computed in the solution to Problem 6 on Assignment 2, E[X|W] = 9 and E[X|C] = 12. Furthermore, conditioning on what the student does at the end of any given hour, $P(X=i|W) = \frac{2}{3}P(X=i-1|C)$, and $P(X=i|C) = \frac{2}{3}P(X=i-1|C) + \frac{1}{3}P(X=i-1|W)$. Thus, by definition of expected value, since $\sum_{i=1}^{\infty} P(X=i|C) = \sum_{i=1}^{\infty} P(X=i|W) = 1$,

$$\begin{split} E[X^2|C] &= \sum_{i=2}^{\infty} i^2 P(X=i|C) \\ &= \frac{1}{3} \left(\sum_{i=2}^{\infty} i^2 2 P(X=i-1|C) + P(X=i-1|W) \right) \\ &= \frac{1}{3} \left(\sum_{i=1}^{\infty} (i+1)^2 2 P(X=i|C) + P(X=i|W) \right) \\ &= \frac{1}{3} \left(2 (E[X^2|C] + 2 E[X|C] + 1) + (E[X^2|W] + 2 E[X|W] + 1) \right) \end{split}$$

$$= \frac{1}{3} \left(2(E[X^2|C] + 48 + 1) + (E[X^2|W] + 18 + 1) \right)$$

= $\frac{1}{3} \left(2E[X^2|C] + E[X^2|W] + 69 \right),$

giving $E[X^2|C] = E[X^2|W] + 69$. A similar derivation gives $3E[X^2|W] = 51 + 2E[X^2|C]$. Solving this system of two linear equations in two variables gives $E[X^2|W] = 189$, $E[X^2|C] = 258$. Thus, since the quantity σ^2 in question is the variance of X given W, $\sigma^2 = E[X^2|W] - E[X|W]^2 = 189 - 81 = 108$.

Problem 6: Counterexamples

A. Let X be a random variable such that \forall positive integers i, $P(X=i) = \frac{6}{(\pi i)^2}$. Then,

$$\sum_{i=1}^{\infty} P(X=i) = \frac{6}{\pi^2} \sum_{i=1}^{\infty} \frac{1}{i^2} = 1,$$

but

$$E[X] = \sum_{i=1}^{\infty} i \cdot P(X=i) = \frac{6}{\pi^2} \sum_{i=1}^{\infty} \frac{1}{i} = \infty.$$

B. Let $X, Y : \{0,1\} \to [0,1]$ be random variables with the joint distribution below:

P(X=i,Y=j)	i = 0	i = 1
j = 0	1/6	1/2
j=1	1/12	1/4

Clearly, X and Y are not independent. However, $E[XY] = \frac{1}{4} = \left(\frac{1}{12} + \frac{1}{4}\right)\left(\frac{1}{2} + \frac{1}{4}\right) = E[X]E[Y]$.

Problem 7: Some Chebyshev on the side

A. Suppose that, for some $a,b \in \mathbb{R}$, a random variable X takes values a and b so that, for some $p \in [0,1]$, P(X=a) = p and P(X=b) = 1-p. Then, for $k = \frac{1}{\sqrt{1-p}}$, $\frac{1}{1+k^2} = p$, so that, for $\mu = E[X]$, $\sigma^2 = \operatorname{Var}(X)$, $P(X-\mu \ge k\sigma) = P(X \le \mu) = p = \frac{1}{1+k^2}$, so that equality holds in the one-sided Chebyshev Inequality.

Problem 8: See what I mean

Let X_1, X_2, \ldots be an infinite sequence of independent, identically distributed random variables with finite mean μ and finite variance σ^2 . $\forall n \in \mathbb{N}$, let

$$S_n = \frac{X_1 + X_2 + \ldots + X_n}{n},$$

and let $\epsilon > 0$. Since X_1, X_2, \ldots are independent, and expectation is linear, $\forall n \in \mathbb{N}$,

$$Var(S_n) = E\left[\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)^2\right] - E\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right]^2$$

$$= E\left[\frac{(X_1 + X_2 + \dots + X_n)^2}{n^2}\right] - E\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right]^2$$

$$= \frac{1}{n^2}\left(E\left[(X_1 + X_2 + \dots + X_n)^2\right] - E\left[X_1 + X_2 + \dots + X_n\right]^2\right)$$

$$= Var\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{1}{n^2}\left(Var(X_1) + Var(X_2) + \dots + Var(X_n)\right)$$

$$= \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

Also, by Linearity of Expectation, $E[S_n] = \mu$. Thus, by Chebyshev's Inequality, $\forall \epsilon_2 > 0$, for

$$n = \left(\frac{\epsilon \sigma}{\epsilon_2}\right)^2 + 1, \ k = \frac{\epsilon \sqrt{n}}{\sigma},$$

$$P(|S_n - \mu| > \epsilon) \leq P(|S_n - \mu| \ge \epsilon)$$

$$= P(|S_n - \mu| \ge k \frac{\sigma}{\sqrt{n}})$$

$$\leq \frac{1}{k} = \frac{\sigma}{\epsilon \sqrt{n}} < \epsilon_2.$$

Thus, $\lim_{n\to\infty} P(|S_n - \mu| > \epsilon) = 0$.