INFORME TÉCNICO

DATOS DE CTD DE LA REGIÓN DE LA BAHÍA DE TODOS SANTOS, BAJA CALIFORNIA.

CAMPAÑA BTS10, OCTUBRE 28 A 30 DE 2010. B/O FRANCISCO DE ULLOA

Joaquín García Córdova, Paula Pérez Brunius, Ernesto García Mendoza y Aleph Jiménez Domínguez.

DEPARTAMENTO DE OCEANOGRAFÍA FÍSICA DIVISIÓN DE OCEANOLOGÍA Centro de Investigación Científica y de Educación Superior de Ensenada Km. 107, carretera Tijuana-Ensenada Ensenada, Baja California, México.

DATOS DE CTD DE LA REGIÓN FRENTE A LA BAHÍA DE TODOS SANTOS, BAJA CALIFORNIA.

CAMPAÑA BTS10, OCTUBRE 28 A 30 DE 2010. B/O FRANCISCO DE ULLOA

Por:

Joaquín García Córdova Paula Pérez Brunius Ernesto García Mendoza Aleph Jiménez Domínguez.

CONTENIDO

RESUMEN	ii
LISTA DE TABLAS Y FIGURAS	iii
1. INTRODUCCIÓN	1
1.1 Agradecimientos	2
2. PROCESAMIENTO DE LOS DATOS	5
2.1 Descripción del sistema CTD	5
2.2 Adquisición de los datos	5
2.3 Calibración	6
2.4 Identificación de errores	7
2.5 Reducción del ruido en la señal de presión	7
2.6 Corrección por diferencias en tiempos de respuesta de los sensores de temperatura, conductividad,	7
oxígeno y presión	
2.7 Compensación numérica de la anomalía térmica de la celda de conductividad	8
2.8 Corrección por cambios de velocidad en el descenso del CTD	8
2.9 Compactación de los datos	8
3. PRESENTACIÓN DE LOS DATOS	11
4. REFERENCIAS	12
APÉNDICE A	13
Campañas oceanográficas de BTS	13
APÉNDICE B	14
Posición geográfica de las estaciones oceanográficas ocupadas durante la campaña BTS10	14
APÉNDICE C	17
Participantes Científicos en BTS10	17
APÉNDICE D	18
Perfiles transversales de CTD	18

RESUMEN

Se muestran los datos de 83 lances de CTD realizados del 28 al 30 de octubre de 2010, en la campaña oceanográfica BTS10, a bordo del *B/O Francisco de Ulloa*. Las observaciones se hicieron en cinco líneas de estaciones situadas dentro de la Bahía de Todos Santos, B. C. y en seis afuera frente a las entradas noroeste y suroeste, así como mar afuera de Punta Banda. Se describe la adquisición y procesamiento de los datos de presión, temperatura, conductividad (salinidad) y oxígeno disuelto. Los datos procesados de cada lance se muestran por línea de muestreo en perfiles transversales de las series completas de datos (cada decibar). Otros trabajos hechos en BTS10 fueron: 1) Obtención de perfiles de corrientes con LADCP en 55 estaciones conjuntamente con los lances de CTD; 2) Muestreos de agua con Roseta en 38 estaciones para análisis de fitoplancton, nutrientes y clorofila. 3) Arrastres de Red de Fitoplancton en 2 estaciones. Los datos de fitoplancton, nutrientes, clorofila y corrientes serán reportados separadamente.

BTS10 fue la décima campaña observacional de una serie de muestreos que comenzaron con el proyecto: "Circulación y procesos físicos en la Bahía de Todos Santos, B. C", cuyo objetivo general fue: obtener un modelo físico conceptual y numérico de la circulación y de los procesos físicos relevantes en la Bahía de Todos Santos, y que han continuado con el proyecto: "Factores físicos que influyen en la aparición de florecimientos algales nocivos en la Bahía de Todos Santos, Baja California", cuyo objetivo general es caracterizar las condiciones que determinan la aparición de florecimientos algales nocivos (marea roja) mediante el análisis de mediciones físicas, biológicas y químicas al interior de la Bahía de Todos Santos (Baja California) y regiones aledañas. Su área de estudio comprende a la Bahía de Todos Santos y su región adyacente entre 32º 00' y 31º 33' de latitud norte y hasta 117º 14' de longitud oeste. En BTS10 se ocuparon 78 estaciones, la estación I5.3 se ocupo en tres ocasiones y E2.3, E 3.05 y E 3.1 se ocuparon en dos ocasiones cada una.

LISTA DE TABLAS Y FIGURAS

No. de Tabla		No. de Página
I	Especificaciones técnicas de los sensores del CTD	5
II	Coeficientes de calibración de los sensores utilizados en BTS10	6
III	Identificación de lances para las secciones ocupadas en BTS10	11
No. de Figura		
1	Área de estudio y posición de estaciones para la campaña BTS10.	3
2	Posición de las estaciones oceanográficas ocupadas dentro de la Bahía Todos	4
	Santos.	
3	Diagrama T-S de BTS10, datos de la bajada del CTD	9
4	Diagrama T-S de BTS10, datos de la subida del CTD	10
5-9	Perfiles transversales de CTD región interna de la Bahía de Todos Santos	19-23
10-15	Perfiles transversales de CTD región externa de la Bahía de Todos Santos	24-29

1. INTRODUCCIÓN

A partir de septiembre de 2007 se iniciaron observaciones oceanográficas y meteorológicas para el proyecto "Circulación y procesos físicos en la Bahía de Todos Santos, B. C.", estas observaciones han continuado con el proyecto "Factores físicos que influyen en la aparición de florecimientos algales nocivos en la Bahía de Todos Santos, Baja California, (BTS)". Su área de estudio comprende a la Bahía de Todos Santos, B. C. y su región adyacente, entre 32º 00' y 31º 33' de latitud norte y hasta 117º 14' de longitud oeste. El plan básico de estaciones hidrográficas de este proyecto consiste en una red de 5 líneas de estaciones en la Bahía de Todos Santos y otras 5 en su región adyacente, a partir de abril de 2010 se agregó una línea al norte de Salsipuedes. Los objetivos generales que motivan estos muestreos son 1) Obtener un modelo físico conceptual y numérico de la circulación y de los procesos físicos relevantes en la Bahía de Todos Santos, 2) Caracterizar las condiciones que determinan la aparición de florecimientos algales nocivos (marea roja) mediante el análisis de mediciones físicas, biológicas y químicas al interior de la Bahía de Todos Santos (Baja California) y regiones aledañas. Sus objetivos particulares son: 1) Obtener una descripción detallada de la variación estacional de la hidrografía de mesoescala en la región de la Bahía de Todos Santos y de pequeña escala al interior de ésta; 2) Obtener el patrón de corrientes y su variación estacional en la Bahía de Todos Santos y región adyacente; 3) Caracterizar las condiciones termohalinas, distribución de nutrientes, productividad primaria y composición del fitoplancton para el periodo de surgencias intensas (primavera), la temporada de mayor estratificación (fin del verano) y la temporada más fría (invierno) al interior de la bahía; 4) Determinar la influencia del sistema de Corrientes de California y la zonas de surgencias de Salsipuedes y Punta Banda en las condiciones termohalinas, químicas y biológicas observadas dentro de la BTS; 5) Caracterizar los cambios en la estructura de la comunidad fitoplanctónica y la probable dominancia de especies particulares (presencia de florecimientos nocivos) con relación a las condiciones ambientales asociadas a los procesos físicos que afectan la región. En el Apéndice A se relacionan las 10 campañas BTS efectuadas desde el inicio del programa hasta esta última.

En este informe se presentan los datos de CTD (SBE 9-11 *plus*) de la décima campaña oceanográfica (BTS10) de dichos proyectos, realizada a bordo del B/O Francisco de Ulloa del 28 al 30 de octubre de 2010. En esta campaña se ocuparon las 78 estaciones propuestas, la estación I5.3 fue ocupada en tres ocasiones y E2.3, E 3.05 y E 3.1 fueron ocupadas en dos ocasiones cada una. En la Figura 1 y Figura 2 se muestra a la red de estaciones como fue ocupada en BTS10. La numeración indica la secuencia de ocupación en la estaciones y de los lances de CTD y los símbolos denotan los muestreos hechos en cada estación. En el Apéndice B se muestra el número secuencial del lance de CTD, el nombre, la posición geográfica y profundidad de las estaciones, y la presión (dbar), hora y fecha a la profundidad máxima del lance de CTD; también contiene información sobre otros muestreos hechos en cada estación.

Cada lance de CTD se hizo conjuntamente con un multi-muestreador de agua (Roseta SBE) para 12 botellas Niskin de 5 litros cada una y un perfilador de corrientes LADCP (Lowering Acoustic Doppler Current Profiler, RDI BB-WH300); A continuación se resumen los muestreos efectuados en estaciones (ver la Figura 1 y Figura 2 y el Apéndice B para mayor información al respecto):

- Temperatura, conductividad (salinidad), oxígeno disuelto y clorofila con CTD y corrientes con LADCP en 83 y 55 estaciones respectivamente.
- Muestras de agua con Roseta en 38 estaciones y hasta en 5 profundidades discretas, para mediciones de clorofila, nutrientes y fitoplancton. Las muestras de agua para clorofila se filtraron y congelaron, las muestras de nutrientes se congelaron y las muestras de fitoplancton se fijaron con lugol, para su posterior análisis en tierra.
- Arrastres de Red de Fitoplancton en 2 estaciones. Las muestras se filtraron y fijaron en formol para su posterior análisis en tierra.
- Temperatura, salinidad y fluorescencia superficiales y observaciones meteorológicas, se obtuvieron de equipo de registro continuo a barco parado en cada estación, mientras se hacía el lance de CTD.

Los datos de corrientes, fitoplancton y nutrientes serán publicados separadamente.

1.1 Agradecimientos.

La realización de la campaña BTS10 fue posible gracias a la colaboración de muchas personas, a quienes manifestamos nuestro agradecimiento. En forma especial agradecemos la colaboración del grupo científico participante en esta campaña, el cual se relaciona en el Apéndice C. También queremos hacer extensivo nuestro agradecimiento a todos los miembros de la tripulación del *B/O Francisco de Ulloa* por su entusiasta colaboración.

Este informe y la campaña oceanográfica BTS10 se realizaron con apoyo financiero del Consejo Nacional de Ciencia y Tecnología (CONACyT), Proyecto 106153: "Factores físicos que influyen en la aparición de florecimientos algales nocivos en la Bahía de Todos Santos, Baja California".

Figura 1. Área de estudio y posición de las estaciones oceanográficas para la campaña BTS10. La numeración indica la secuencia de ocupación de las estaciones de los lances de CTD. Los símbolos denotan los muestreos hechos en cada estación, identificados en la parte superior izquierda de la figura (ver también el apéndice B). La estrella negra marca el perfil realizado junto a la boya del proyecto FLUCAR. Profundidades en metros.

- CTD y LADCP
- CTD, LADCP, nutrientes (FAN) y fitoplancton
- O CTD, LADCP, nutrientes (CSC)

Figura 2. Posición de las estaciones oceanográficas ocupadas dentro de la Bahía de Todos Santos. La numeración indica la secuencia de ocupación de las estaciones de los lances de CTD. Los símbolos denotan los muestreos hechos en cada estación, identificados en la parte superior izquierda de la figura. Profundidades en metros.

2. PROCESAMIENTO DE LOS DATOS

Este capítulo está dividido en varias secciones, organizadas en el orden en el cual fueron adquiridos y procesados los datos: descripción del sistema CTD, calibración, adquisición, identificación de errores y procesamiento. El software utilizado en todas las secciones es el distribuido por el fabricante del CTD que se utilizó, CTD Real Time Acquisition Software (SEASAVE for Win32, Sea-Bird Electronics, INC, 2008), versión 7, marzo de 2008 y SBE Data Processing (Sea-Bird Electronics, INC, 2009), versión 7.18c, enero de 2009.

2.1 Descripción del sistema CTD.

Durante el crucero BTS10 se utilizó un sistema CTD modelo SBE 9-11 *plus*, fabricado por Sea-Bird Electronics, INC, el cual consiste de una unidad submarina (SBE-9 plus) y una unidad de control en cubierta (SBE-11 plus). La unidad SBE-9 consta de una caja de presión (con capacidad hasta 3400 m de profundidad), conteniendo en su interior fuentes de poder y la electrónica para adquisición y telemetría de datos, además del sensor de presión. En su exterior tiene sensores modulares, los cuales son alimentados con flujo controlado de agua de mar por una bomba de velocidad constante (30 ml·s⁻¹). La unidad provee hasta ocho canales de entrada para conectar sensores opcionales. Durante BTS10 se emplearon sensores duplicados (primarios y secundarios) de temperatura y conductividad, además de un sensor de oxígeno, un sensor de fluorescencia y un altímetro sónico.

2.2 Adquisición de los datos

La unidad SBE-11 permite la comunicación, control de la operación y monitoreo de la señal de los sensores en la unidad SBE-9 con una computadora personal, vía cable conductor eléctrico en el malacate del de CTD. Dichos sensores son: SBE4 (celda de resistencia) el de conductividad; SBE3 (termistor) el de temperatura; Paroscientific Digiquartz el de presión; y SBE43 el de oxígeno disuelto y sensor Seapoint el de Clorofila *a*. Las especificaciones técnicas para cada sensor, dadas por el fabricante, se muestran en la Tabla I. Las características principales del sistema, así como la manera en que se obtienen los datos, están dadas en García *et al.* (1995).

Tabla I. Especificaciones técnicas de los sensores del CTD.

SENSOR	RANGO	PRECISIÓN	RESOLUCIÓN (a 24 Hz)	ESTABILIDAD	TIEMPO DE RESPUESTA
Conductividad: SBE4	0-70 mmho·cm⁻	0.003 mmho·cm ⁻¹	0.0004 mmho·cm ⁻¹	0.002 mmho·cm ⁻¹	0.040 s
Temperatura: SBE3	-5 a 35 ℃	0.002 °C	0.0002 °C	0.0003 °C por mes	0.060 s
Presión: Paroscientific Digiquartz	0-15000 psia	0.015 % de la escala completa	0.001 % de la escala completa	0.0015 % de la escala completa por mes	0.001 s
Oxígeno disuelto: SBE43	120 % de saturación superficial	2 % de saturación	0.2 % de saturación	2 % por 1000 horas	3 s a 28 °C y 28 s a 2 °C
Clorofila <i>a</i> : Fluorómetro Seapoint	0-150 μg·l ⁻¹	0.02 μg·l ⁻¹	0.033 μg·l ⁻¹	10 % por 5000 horas	0.1 s

2.3 Calibración

La manera en que se calibran en laboratorio los sensores de presión, temperatura, conductividad y oxígeno disuelto se muestra en García *et al.* (1995). En la Tabla II se presentan los coeficientes que resultaron de la última calibración de los sensores usados en la campaña BTS10, la que fue realizada por el fabricante de octubre-diciembre de 2008 para el sensor de presión (P) y el sensor de oxígeno disuelto, los sensores de temperatura y conductividad primaria (T0 y C0) mayo-junio de 2010, temperatura y conductividad secundaria (T1 y C1) octubre de 2008 y diciembre de 2007 para el sensor de fluorescencia (F).

Tabla II. Coeficientes de calibración de los sensores utilizados en BTS 10.

Coeficiente	P#0305	T0 # 1510	T1 # 4519	C0 # 1195	C1 # 3115	O ₂ # 0846	F#3072
AD590M	1.1440E-02						
AD590B	-						
	8.5762E+00						
Slope	0.9999E+00						
Offset	-						
	1.8661E+00						
G		4.84462569E-03	4.32411958E-03	-	-		
				4.08064368E+00	1.03702162E+01		
Н		6.75354890E-04	6.32130709E-04	5.11135404E-01	1.26197760E-00		
I		2.62624688E-05	2.01121489E-05	1.96444957E-04	7.14994894E-04		
J		2.08474223E-06	1.69880085E-06	1.85761554E-05	2.13233335E-06		
F0		1.00000000E+03	1.00000000E+03				
Cpcor				-9.57000000E-08	-9.57000000E-08		
Ctcor				3.25000000E-06	3.25000000E-06		
Soc						0.3593	
Voffset						-0.5101	
τ_{20}						1.54 s	
A						4.9984E-	
						04	
В						8.37210E-	
						05	
С						-6.10520E-	
						07	
Е						0.036	
D1						1.92630E-	
						04	
D2						-4.64800E-	
						02	
H1						-3.3E-02	
H2						5.0E+03	
Gain							1X
Setting							
Offset							0

Estos coeficientes fueron utilizados para actualizar el archivo de configuración del CTD antes del zarpe de la campaña BTS10.

A finales de abril de 2008, Sea-Bird modificó la ecuación para el cálculo de oxígeno disuelto en ml·l⁻¹ a partir del voltaje del sensor de oxígeno SBE43 (Sea-Bird, 2008, Murphy, *et al.*, 2008). El algoritmo utilizado por Sea-Bird, es similar al dado por Owens y Millard (1985), solamente que incluye cambios importantes en Tau, TCor, PCor, and OxSat, en García *et al* (2010) se muestra la ecuación con los cambios realizados por Sea-Bird.

El algoritmo de Sea-Bird incorpora además la corrección por histéresis causada por errores dinámicos (a partir de octubre de 2008), es decir, corrige los valores de voltaje por cambios en la permeabilidad de la membrana de teflón por cambios en la presión de muestreo (Sea-Bird, 2008).

2.4 Identificación de errores

Durante la adquisición de datos de CTD el software provisto por el fabricante permite monitorear, por medio de gráficos, el funcionamiento del equipo. Una vez que el lance termina los datos se pueden procesar con el software SBE Data Processing para obtener los perfiles de propiedades medidas como presión, temperatura y conductividad, o propiedades derivadas como salinidad, densidad y oxígeno disuelto. Durante el procesamiento se disminuye el ruido y se eliminan errores, para obtener finalmente valores a cada metro o decibar en la vertical. En el procesamiento se utilizan todos los datos crudos registrados por el CTD durante el lance y convertidos a unidades convencionales por medio del módulo DATCNV. Se utilizó el módulo WILDEDIT para editar los datos del CTD, etiquetando con un valor centinela los datos que caen fuera de los rangos de temperatura, conductividad, presión y oxígeno especificados por el fabricante (Tabla I).

Después, el mismo módulo elimina a dichos "errores etiquetados". Los pasos que utiliza el algoritmo son:

- 1º. Lectura de un bloque de N datos, en este caso el bloque escogido fue de 48 datos correspondiente a dos segundos de muestreo.
- 2º. Se calcula la media para cada conjunto de N datos consecutivos y los valores que difieran de la media por más de dos veces la desviación estándar, son etiquetados con un valor centinela.
- 3°. Se calcula la media para el mismo número de datos, excluyendo los datos etiquetados en el paso anterior, y los valores que difieran de la media por 5 veces la desviación estándar son también etiquetados con un valor centinela. Si la diferencia entre el valor y la media es menor que 0.001, el valor no se etiqueta con el valor centinela. Así sucesivamente el siguiente bloque de N datos, hasta terminar con el archivo de datos.

2.5 Reducción del ruido de alta frecuencia en la señal de presión

El siguiente paso en el procesamiento de los datos fue reducir el ruido no deseable de alta frecuencia que registra el sensor de presión del CTD. Esto fue efectuado por medio de la aplicación de un filtro de paso bajo con una constante de tiempo de 0.17 s (4 muestras) a las series de tiempo de presión. El módulo FILTER permite aplicar éste filtro en las series de tiempo.

2.6 Corrección por diferencias en tiempos de medición y de respuesta de los sensores de temperatura, conductividad, oxígeno disuelto y presión

Temperatura vs. Presión.

Debido a que el sensor de temperatura SBE3 utilizado en el CTD es de respuesta rápida, aproximadamente 0.06 s (sensores típicos lentos tienen un tiempo de respuesta de ~0.6 s) no es necesario avanzar la medición de temperatura con respecto a la medición de presión (sensor con tiempo de respuesta de 0.001 s).

Conductividad vs. Temperatura.

El sensor de conductividad SBE4 en el CTD mide con un retraso respecto al sensor de temperatura SBE3 debido a la posición de estos sensores en el conducto TC (Seabird, 1992). Este retraso es fijo e independiente del movimiento del CTD pues la rapidez de bombeo es constante (Seabird, 1992). Este retraso, considerando la separación entre sensores y la velocidad del bombeo, debe ser de 0.073 s. Un retraso de 0.073 s, se rescata automáticamente configurando la unidad de control SBE11 del sistema para el sensor primario, mientras que el sensor secundario fue adelantado por 0.073 s con respecto a la presión por medio del módulo ALIGNCTD. Para realizar una reducción adicional en el error introducido por las diferentes respuestas de los sensores, se filtró la temperatura con un filtro paso bajo de polo sencillo, con una constante de tiempo de 0.015 s. Este último filtrado se basa en el criterio de minimizar visualmente los picos en el perfil de salinidad (Morison *et al.*, 1994). En García y Ochoa (1997), se muestran las pruebas efectuadas con diferentes constantes de tiempo para el mismo sistema CTD. Estas pruebas se realizaron con el propósito de que las mediciones de temperatura y conductividad queden lo mejor sincronizadas posible, usando algoritmos simples y basados en la física fundamental de los sensores (Lueck, 1991). El filtro fue aplicado por medio del módulo FILTER.

Oxígeno disuelto vs. Presión.

La medida de oxígeno también es sistemáticamente retrasada con respecto a la presión, debido a la constante de tiempo de respuesta del sensor de oxígeno (de 2 s a 28 °C hasta cerca de 28 s a 2 °C, para alcanzar el equilibrio) y al retraso adicional por el tiempo que transcurre en el bombeo de agua hacia el sensor. En García et al. (2000) se

muestran las pruebas efectuadas para diversos avances del oxígeno con respecto a la presión. La señal de oxígeno fue adelantada por 5 s con respecto a la presión por medio del módulo ALIGNCTD.

2.7 Compensación numérica de la anomalía térmica de la celda de conductividad

El problema debido a la capa límite térmica en el interior de la celda de conductividad es descrito en detalle por Lueck (1991). Esta anomalía térmica requiere, para un mejor cálculo de la salinidad, la estimación de dos parámetros, uno asociado al volumen fraccional de la capa límite (α) y otro asociado con la rapidez con que la anomalía térmica desaparece (τ). El fabricante establece que valores típicos de α deben estar entre 0.03 y 0.04, nunca mayor de 0.1 y los típicos de τ fluctúan entre 7 y 9 s. Para su estimación se evalúa la serie $\delta s = \delta s(T; \alpha, \tau)$, que es la diferencia de la salinidad de bajada menos la salinidad de subida como función de la temperatura para diferentes valores de α y τ . Si se muestrea el mismo tipo de aguas de subida y de bajada y el algoritmo de corrección es el exacto, δs es nula. Como el algoritmo de corrección es sólo una aproximación al comportamiento de la capa límite y no se muestrea el mismo tipo de agua de bajada y de subida, se buscan los valores de α y τ que producen un promedio (que llamamos μ) cercano a cero y que reducen la desviación estándar (σ) de δs .

En García *et al.* (2000) se muestran diversas pruebas para estimar el promedio y la varianza de δs para diferentes valores de α y τ , y se explica que es difícil obtener la situación ideal de $\mu=\sigma=0$. Una segunda opción a la ideal es encontrar el mínimo σ para $\mu=0$, concluyendo que el promedio es cero y la varianza es mínima para los valores de $\alpha=0.035$ y $\tau=7.8$ s ($\beta=\tau^{-1}=0.1282$ s⁻¹). Estas pruebas se realizaron a los datos obtenidos en esta campaña. Para corregir los datos de CTD por anomalía térmica en la celda de conductividad, se aplicó el módulo CELLTM utilizando los valores $\alpha=0.03$ y $\tau=7.0$ s ($\beta=\tau^{-1}=0.1429$ s⁻¹) a todos los lances de BTS10. Esto es para los sensores primarios y secundarios de conductividad (n/s 2720 y 1195) y de temperatura (n/s 4189 y 1510) y para todas las mediciones aquí reportadas.

2.8 Corrección por cambios en la velocidad del lance de CTD

Durante el lance de CTD se produce una estela, con propiedades térmicas ajenas a procesos oceánicos, por el cabeceo del barco (u otras razones), lo que invierte el sentido del movimiento general de ascenso o descenso y se muestrea agua de la estela alterada por el CTD mismo. También ocurre lo anterior cuando el CTD desciende o asciende con interrupciones bruscas y cuando se encuentra en estación suspendido a "malacate parado". El módulo utilizado para eliminar situaciones susceptibles a estos errores es LOOPEDIT. En este módulo se eliminan los datos en que el CTD tenga una rapidez menor a un límite; el mínimo aquí utilizado fue de 25 m·min⁻¹.

2.9 Compactación de los datos

Después de la calibración y corrección del desfase entre los sensores de presión, temperatura, conductividad y oxígeno, siguió el cálculo de la salinidad y del oxígeno disuelto. Las series de datos fueron suavizados por medio de un filtro paso bajo, con una constante de tiempo de un segundo para las series de presión, temperatura, salinidad y dos segundos para las series de oxígeno disuelto. Enseguida, los datos fueron promediados en bloques centrados de 1 dbar usando el módulo BINAVG.

La temperatura reportada y utilizada para derivar variables es IPTS-68, siguiendo la recomendación de JPOTS, T68=1.00024T90. La salinidad es PSS-78 y la densidad es calculada a partir de la ecuación de estado para agua de mar (EOS80). Las fórmulas para el cálculo de la salinidad y densidad fueron las dadas por Fofonoff y Millard (1983) y Millard (1982). El algoritmo utilizado para el cálculo de la concentración de oxígeno disuelto utiliza una ecuación modificada a la descrita por Owens y Millard (1985), la cual incorpora el factor de corrección por la presión. Todos estos algoritmos son internos en el software proporcionado por Sea-Bird Electronics, Inc.

Después de que el procesado ha terminado se verifican los datos visualmente, para localizar errores no eliminados con los procedimientos anteriormente descritos. La mayoría de los errores son por falla en la comunicación entre la unidad de control SBE 11, interfase del CTD y la Computadora Personal o debido a que no se dejaron estabilizar los sensores en la superficie del mar al inicio del lance. Estos errores son eliminados mediante edición de

los archivos originales y rehaciendo el proceso completo o mediante edición de los archivos promediados a 1 dbar. De las series resultantes se calculó la densidad (σ_t), la expresión $\sigma_t = \rho$ -1000, donde $\rho = \rho_{s,t,0}$ en kg·m⁻³ (EOS80).

Las series resultantes de bajada de los sensores primarios se usaron para la elaboración de los perfiles transversales que se presentan en este informe. Como un seguimiento de la calidad de los datos, en las Figuras 3 y 4 se presentan los diagramas T-S de bajada y subida respectivamente de todos los lances efectuados en BTS10, excepto donde hubo malfuncionamiento de la bomba de flujo constante.

Figura 3. Diagrama T/S de BTS10, datos de bajada de todos los lances de CTD (falta que le adicione isopicnas y ajustar los ejes).

Figura 4. Diagrama T-S de BTS10, datos de subida de todos los lances de CTD.

3. PRESENTACIÓN DE LOS DATOS

Los datos procesados de cada lance de CTD se presentan en el Apéndice D, mostrando 11 secciones verticales de salinidad (ups), temperatura (°C) y oxígeno (ml·l⁻¹) con líneas de densidad (σ_{θ} , kg·m⁻³) para cada sección, así como un diagrama T/S de la sección y en la Tabla III se presenta la identificación de los lances correspondientes para cada sección ocupada en BTS10.

Tabla III. Identificación de los lances para cada sección ocupada en BTS10.

Nombre de la Sección:	No. de lance inicial	No. de lance final
Sección I1	1	6
Sección I2	7	12
Sección I3	13	21
Sección I4	29	34
Sección I5	24	28
Sección E1	72	77
Sección E2	62	71
Sección E3	54	62
Sección E4	44	53
Sección E5	78	83
Sección E6	35	43

4. REFERENCIAS

Fofonoff, N. P. y R. C. Millard. Algorithms for computation of fundamental properties of seawater. UNESCO Theorical Papers in Marine Science, **44**, 53 pp, 1983.

García, C. J., J. M. Robles P. y C. F. Flores C. Datos de CTD obtenidos en la Bahía de Todos Santos, B.C., Campaña BATOS 4. B/O Francisco de Ulloa. Marzo 22-24 de 1994. *Comunicaciones Académicas*, CICESE. Informe Técnico CTOFT9506, 75 pp, 1995.

y J. Ochoa. Hidrografía en el estrecho de Yucatán. Campaña CANEK. B/O Justo Sierra. Diciembre 11-18 de 1996. Informe Técnico, **CTOFT9702**. *Comunicaciones Académicas, Serie Oceanografía Física*, CICESE. 93 pp., 1997.

_____ J. Ochoa, J. Candela, A. Badán, J. Sheinbaum y J. I. González. Hidrografía en el estrecho de Yucatán, Campaña CANEK IV. B/O Justo Sierra. Agosto 25-Septiembre 14 de 1999. *Comunicaciones Académicas*, CICESE. Informe Técnico **CTOFT20009**, 125 pp, 2000.

P. Pérez, E. García, M. P. García. Datos de CTD de la región frente a la Bahía de Todos Santos. Campaña BTS8. Abril 24 a 27 de 2010. B/O Francisco de Ulloa. *Comunicaciones Académicas*, CICESE. Informe Técnico. **PA99748**, 106 pp, 2010.

Lueck, R. G. Thermal inertia of conductivity cells: Theory. Jour. Atmos. and Ocean. Technol., 7, 741-755, 1991.

Millard, R. C., Jr. CTD Calibration and data processing techniques at WHOI using the 1978 practical salinity scale. *Proc. Int. STD conference and Workshop, La Jolla, Mar. Tech. Soc.*, 19 pp, 1982.

Morison, J., R. Anderson, N. Larson, E. D'Asaro y T. Boyd. The Correction for thermal-lag effects in Sea-bird CTD data. *Jour. Atmos. Ocean. Technol.*, vol. II, no. 4 (part 2), 1151-1164, 1994.

Murphy, D. J., Larson, N. G., and Edwards, B. C. Improvements to the SBE 43 Oxygen Calibration Algorithm, Poster Presentation 2008 Ocean Sciences Meeting, Orlando, Florida, 2 - 7 March 2008. 2008

Owens, W. B. y R. C. Millard Jr. A new algorithm for CTD oxygen calibration. *Jour. Phys. Oceanogr.*, **15**,621-631, 1985.

Sea-Bird Electronics, INC. Application note no. 38, Fundamentals of the TC duct and pump-controlled flow used on Sea-Bird CTDs, 3 pp., 1992.

CTD Real Time Acquisition Software, SEASAVE v. 7. Manual, 132 pp, 2008.
Application note no. 64-2 (Rev. apr. 2008), SBE 43 Dissolved Oxygen Sensor Calibration
using Winkler Titrations, 10 pp, 2008.
Application note no. 64 (Rev. nov. 2008) SBE 43 Dissolved Oxygen Sensor – Background

Information, Deployment Recommendations, and Cleaning and Storage, 8 pp, 2008.

SBE Data Processing Software, v. 7.18c. 2009.

APÉNDICE A

Campañas oceanográficas de BTS.

CAMPAÑAS	Período [GMT]	No. de estaciones [parámetros medidos]
BTS1	Septiembre 27-28 de 2007	41 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS2	Enero 15 – 19 de 2008	92 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS3	Abril 4 – 7 de 2008	89 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS5		
BTS4	Agosto 14 – 17 de 2008	90 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS6	Noviembre 20 – 23 de 2008	87 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS7	Marzo 12-13 de 2010	Sin estaciones de hidrografía
BTS8	Abril 24 – 27 de 2010	82 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS9	Agosto 25 – 28 de 2010	83 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]
BTS10	Octubre 28 – 30 de 2010	83 [Presión, Temperatura, Salinidad, Oxígeno y Clorofila <i>a</i>]

APÉNDICE B

Posición geográfica de las estaciones de CTD ocupadas durante la campaña BTS10. Se muestra el número secuencial del lance de CTD, su hora y fecha (GMT), la profundidad del fondo (metros) y la del lance de CTD (decibares). Las letras en la última columna indican a otros muestreos efectuados en cada estación, según

la clave mostrada en la base de la tabla.

No.	Estación	I	Latitud	Lo	ongitud	Prof.	Pres.	Н	ora [GN	/IT]		Fech	a	Otros
Lance			°N		°W	[m]	[db]	hh	mn	SS	dd	mm	aa	Muestreos
1	I 1.1	31	49.8864	116	37.6764	17	16	16	59	5	27	10	2010	N, F
2	I 1.2	31	48.8076	116	38.2842	22	20	17	24	21	27	10	2010	
3	I 1.3	31	47.6244	116	39.0654	24	21	17	48	5	27	10	2010	N, F
4	I 1.4	31	46.6314	116	39.6396	24	23	18	10	40	27	10	2010	
5	I 1.5	31	45.4800	116	40.5114	31	27	18	36	33	27	10	2010	N, F, R
6	I 1.6	31	44.2938	116	41.2110	22	22	19	10	47	27	10	2010	
7	I 2.6	31	45.6306	116	43.7982	75	66	19	48	51	27	10	2010	
8	I 2.5	31	46.3680	116	42.9792	75	69	20	9	59	27	10	2010	N, F
9	I 2.4	31	47.5356	116	42.1500	47	44	20	36	42	27	10	2010	
10	I 2.3	31	48.7080	116	41.2638	30	22	20	59	30	27	10	2010	N, F, P
11	I 2.2	31	49.8858	116	40.4562	28	27	21	27	46	27	10	2010	
12	I 2.1	31	51.0600	116	39.6498	20	11	21	51	30	27	10	2010	N, F
13	I 3.1	31	52.1640	116	41.8218	20	12	22	31	3	27	10	2010	N, F
14	I 3.2	31	51.3600	116	42.4986	29	27	22	51	2	27	10	2010	
15	I 3.3	31	50.5908	116	43.2444	35	31	23	7	47	27	10	2010	N, F
16	I 3.4	31	49.6344	116	43.8930	39	39	23	27	5	27	10	2010	
17	I 3.5	31	48.8772	116	44.5260	80	75	23	48	26	27	10	2010	
18	I 3.6	31	48.0000	116	45.2394	233	228	0	13	32	28	10	2010	N, F, P
19	I 3.7	31	47.1180	116	45.9012	291	294	0	41	29	28	10	2010	L
20	I 3.75	31	46.5282	116	46.1952	381	380	1	8	22	28	10	2010	L
21	I 5.3	31	45.9654	116	46.5186	399	384	1	38	44	28	10	2010	L, N, F, N*
22	E 3.05	31	45.7554	116	47.5128	414	456	2	21	17	28	10	2010	L
23	E 3.1	31	45.5292	116	48.5832	558	456	3	0	55	28	10	2010	L
24	I 5.5	31	45.2916	116	45.9504	98	97	3	43	30	28	10	2010	L
25	I 5.4	31	45.6378	116	46.3776	190	176	4	9	54	28	10	2010	L
26	I 5.3	31	46.0980	116	46.8258	405	386	4	38	57	28	10	2010	L
27	I 5.2	31	46.5024	116	47.2062	170	199	5	11	7	28	10	2010	L
28	I 5.1	31	47.0160	116	47.4912	70	61	5	34	17	28	10	2010	
29	I 4.6	31	49.5264	116	47.9964	32	31	6	19	22	28	10	2010	N, F
30	I 4.5 n	31	50.5002	116	47.3886	40	38	6	45	15	28	10	2010	
31	I 4.4	31	51.3936	116	46.8594	42	41	7	8	43	28	10	2010	
32	I 4.3	31	52.1538	116	46.3362	44	42	7	31	13	28	10	2010	N, F
33	I 4.2	31	53.0880	116	45.8076	42	40	7	57	25	28	10	2010	
34	I 4.1	31	53.8242	116	45.1692	33	22	8	16	58	28	10	2010	N, F, P
35	E 6.10	31	53.2308	117	13.5192	1289	1287	12	7	38	28	10	2010	L
36	E 6.9	31	54.2760	117	10.0986	1255	1254	13	25	57	28	10	2010	L, N, F, N*, P
37	E 6.8	31	55.6140	117	6.5226	1193	1183	14	45	32	28	10	2010	L
38	E 6.7	31	56.7960	117	3.0192	1053	1004	15	58	8	28	10	2010	L, N, F, N*, S
39	E 6.5	31	57.9990	116	59.5476	713	695	17	2	2	28	10	2010	L

No.	Estación	I	Latitud	Lo	ongitud	Prof.	Pres.	Н	ora [GN	1T]		Fecha	ì	Otros
Lance			°N		°W	[m]	[db]	hh	mn	SS	dd	mm	aa	Muestreos
40	E 6.4	31	58.5180	116	57.8526	653	623	17	46	6	28	10	2010	L
41	E 6.3	31	59.1816	116	56.1594	525	505	18	27	30	28	10	2010	L, N, F, N*, S
42	E 6.2	31	59.7306	116	54.4854	416	397	19	10	55	28	10	2010	L, N, F
43	E 6.1	32	00.2562	116	52.9164	53	46	19	44	45	28	10	2010	N, F, P
44	E 4.1	31	55.8114	116	46.1748	53	45	20	59	54	28	10	2010	N, F, P, R
45	E 4.2	31	55.2534	116	48.0846	110	129	21	41	44	28	10	2010	L, N, F, P
46	E 4.3	31	54.6600	116	49.9632	270	287	22	18	58	28	10	2010	L, N, F, P
47	E 4.4	31	53.9880	116	51.8436	402	384	23	2	25	28	10	2010	L
48	E 4.5	31	53.3028	116	53.6538	520	516	23	38	14	28	10	2010	L, N, F, N*, P
49	E 4.6	31	52.6344	116	55.6176	604	638	0	21	58	29	10	2010	L
50	E 4.8	31	51.3534	116	59.5458	1028	1043	1	26	52	29	10	2010	L, N, F, N*, P
51	E 4.10	31	50.0664	117	3.4134	1237	1245	2	43	57	29	10	2010	L
52	E 4.12	31	48.7728	117	7.2420	1342	1306	4	4	12	29	10	2010	L, N, F, N*
53	E 4.14	31	47.6160	117	11.0754	1375	1308	5	26	9	29	10	2010	L
54	E 3.10	31	42.1188	117	6.6684	1305	1117	7	10	58	29	10	2010	L
55	E 3.8	31	42.8022	117	2.6658	1162	1153	8	28	55	29	10	2010	L, N, F, N*, P
56	E 3.6	31	43.6650	116	58.6368	1307	1011	9	44	57	29	10	2010	L, N, F, N*, P
57	E 3.4	31	44.5248	116	54.6444	800	799	10	53	57	29	10	2010	L
58	E 3.3	31	44.9940	116	52.7184	824	785	11	45	16	29	10	2010	L
59	E 3.2	31	45.4380	116	50.7204	579	643	12	28	10	29	10	2010	L, N, F, N*, P
60	E 3.1	31	45.7620	116	48.7218	558	558	13	14	42	29	10	2010	L, N, F, P
61	E 3.05	31	45.9660	116	47.6928	386	412	13	55	50	29	10	2010	L
62	I 5.3	31	46.2996	116	46.7706	354	338	14	28	40	29	10	2010	L
63	E 2.1	31	44.6496	116	47.9358	324	322	15	4	18	29	10	2010	L, N, F, N*
64	E 2.2	31	43.1730	116	49.1388	483	485	15	42	27	29	10	2010	L
65	E 2.3	31	41.7486	116	50.1534	608	605	16	28	46	29	10	2010	L, N, F, N*, P, S
66	E 2.4	31	40.2108	116	51.4698	449	433	17	17	14	29	10	2010	L
67	E 2.5	31	39.1344	116	53.2638	686	642	18	1	32	29	10	2010	L
68	E 2.6	31	38.1192	116	55.1964	1132	1149	18	57	47	29	10	2010	L, N, F, N*, P
69	E 2.7	31	37.2096	116	56.9700	1196	1199	20	2	44	29	10	2010	L
70	E 2.9	31	35.2122	117	0.7932	1240	1224	21	21	47	29	10	2010	L, N, F, N*
71	E 2.11	31	33.0018	117	4.4196	840	821	22	39	13	29	10	2010	L
72	E 1.8	31	23.5686	116	57.9060	1240	1202	0	40	41	30	10	2010	L
73	E 1.6	31	26.3286	116	53.5884	1194	1163	2	26	38	30	10	2010	L, N, F, N*, P
74	E 1.4	31	29.2140	116	49.3200	664	564	3	51	22	30	10	2010	L, N, F, N*, P
75	E 1.3	31	30.7296	116	47.4372	493	482	4	43	34	30	10	2010	L
76	E 1.2	31	31.9776	116	45.2232	132	121	5	29	59	30	10	2010	L, N, F, N*, P
77	E 1.1	31	34.1430	116	43.8570	85	81	6	9	3	30	10	2010	N, F
78	E 5.1	31	36.1176	116	42.7896	87	82	6	44	9	30	10	2010	
79	E 5.2	31	37.4868	116	44.5644	370	362	7	28	30	30	10	2010	L
80	FLUCAR	31	40.2204	116	41.5056	89	85	8	24	50	30	10	2010	N, F, N*, P
81	E 5.3	31	38.8266	116	46.4010	463	462	9	30	40	30	10	2010	L, N, F, N*, P
82	E 5.4	31	40.4058	116	48.4254	522	511	10	16	27	30	10	2010	L
83	E 2.3	31	41.7924	116	50.3532	621	622	11	1	9	30	10	2010	L
Fin de la	la campaña oceanográfica													

Clave para otros muestreos efectuados en cada estación, además de los de CTD:

- L = Medición de corrientes con perfilador LADCP (RDI-WH300KHz).
- C, F, N, N*, P, S = muestreos de agua con roseta para análisis químicos de:
- 1) Clorofila (C), Fitoplancton (F) y Nutrientes (N); muestreos en los niveles superficiales, 10 m y 20 m de profundidad. Muestreos para el área sobre florecimientos algales nocivos a cargo del Dr. Ernesto García.
- 2) Nutrientes (N*) muestreos hasta en cinco niveles (superficial, 60 m, máximo en salinidad subsuperficial, mínimo de oxígeno disuelto y máxima profundidad del lance de CTD), para identificación del Agua Ecuatorial en la Contracorriente Subsuperficial.
- 3) Arrastre de Red Fitoplancton. Muestreos a cargo del Dr. José Luis Peña (CETMAR).
- 4) Muestra de Picoplancton (P).
- 5) Disco de Secchi (S).

NOTAS:

Durante la navegación se hicieron mediciones continuas de parámetros meteorológicos y oceanográficos:

- a) Magnitud y dirección del viento, temperatura del aire, humedad relativa, radiación solar y presión atmosférica (Estación meteorológica Davis).
- b) Temperatura y salinidad (Termosalinómetro SBE) y fluorescencia (Fluorómetro Turner Designs); toma de agua ~ a 3 m en el casco del buque.

APÉNDICE C

Participantes Científicos en BTS10

Nombre	Institución
Dra. Paula Pérez Brunius *	CICESE
Téc. Simao Pedro Paixao Velosa	CICESE
Ing. José Ramón López Chico	CICESE
M.C. María Esther Jiménez López	CICESE
Ocean. Luis Erasmo Miranda Bojórquez	CICESE
Biól. María Patricia García García	CICESE
Fis. Daniel Rojano Guido	CICESE
Biól. Guadalupe Cabrales Talavera	CICESE
Est. José Edwin Morales Torres	UABC
Est. Alfredo Galindo Vargas	UABC
Est. Elías Meneces Quiroz	UABC

^{*} Jefe de la Campaña Oceanográfica.

APÉNDICE DSecciones Verticales de CTD:

Línea interna (I) y externa (E) de estaciones dentro de la Bahía de Todos Santos. Panel superior izquierdo: Salinidad (ups), las líneas verticales indican los puntos de lance por estación. Paneles inferiores: Temperatura (°C) (izq.) y Oxígeno disuelto (ml·l-1) (der.). Panel superior derecha: Diagrama T/S. Las líneas de contorno negras en los paneles representan σ_{θ} .

