Открытая студенческая олимпиада по математике Казахстанского филиала МГУ $10~ de\kappa a 6 ps.~2011$

- 1. Назовем конечное числовое множество своеобразным, если оно содержит число, равное количеству его элементов, но никакое его собственное подмножество этим свойством не обладает. Определите количество своеобразных подмножеств множества {1, 2, ..., 12}.
- 2. Определите множество значений функции, сопоставляющей каждому прямоугольному треугольнику отношение $\frac{h}{r}$, где h высота, проведенная к гипотенузе, а r радиус вписанной в треугольник окружности.
- 3. Две последовательности $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ удовлетворяют условиям:

$$\begin{cases} x_{n+1} = 2x_n - \alpha y_n, \\ y_{n+1} = 2y_n - \frac{1}{\alpha} x_n \end{cases}$$

при всех $n\geqslant 0$, где $lpha\neq 0$ — постоянная величина, а $x_0=1$ и $y_0=0$. Найдите x_{2012} и y_{2012} .

4. Существует ли такая последовательность вещественных чисел $\{x_n\}_{n=1}^{\infty}$, что для неё справедливы соотношения:

$$\begin{cases} \lim_{k \to \infty} x_{12k} = 20, \\ \lim_{k \to \infty} x_{20k} = 12? \end{cases}$$

- 5. Найдите $\int_{0}^{\pi/2} \left(\sin^{2}(\sin^{2}x) + \cos^{2}(\cos^{2}x) \right) dx.$
- 6. Найдите $\sum_{n=0}^{\infty} \frac{n+2}{n! + (n+1)! + (n+2)!}.$
- 7. Найдите все функции $f: [0, 1] \to \mathbb{R}$, удовлетворяющие неравенству $(x y)^2 \leqslant |f(x) f(y)| \leqslant |x y|$ для любых $x, y \in [0, 1]$.
- 8. Пусть $x_1, x_2, \ldots, x_n, \ldots$ все положительные корни уравнения $\operatorname{tg} x = x$, выписанные в порядке возрастания, $n_1, n_2, \ldots, n_k, \ldots$ некоторая возрастающая последовательность натуральных чисел. Докажите, что ряды $\sum_{k=1}^{\infty} |\cos x_{n_k}|$ и $\sum_{k=1}^{\infty} \frac{1}{n_k}$ сходятся или расходятся одновременно.
- 9. Квадратная матрица A порядка n состоит из чисел +1 и -1. При этом, в каждой строке и в каждом столбце этой матрицы находится ровно одно число -1. Найдите $|\det A|$.
- 10. Пусть S сумма всех обратимых элементов конечного ассоциативного кольца с единицей. Докажите, что $S^2=0$ или $S^2=S$.