

國立臺北科技大學

電路學 Circuit Theory

Lecture 3

Responses of RL, RC, and RLC Circuits

Week 9, Fall 2019 陳晏笙 Electronic Engineering, Taipei Tech

Contents

Lecture 3:

Responses of RL, RC, and RLC Circuits

- 3.1 Capacitors and Inductors
- 3.2 Combinations of C and L
- 3.3 Natural Responses of First-Order Circuits
- 3.4 Step Responses of First-Order Circuits
- 3.5 Linear Second-Order Circuits
- 3.6 Responses of Second-Order Circuits

Contents

3.1 Capacitors and Inductors

Two New Passive Components: C & L

Resistors:

They dissipate energy

Capacitors:

- They store energy
- The energy is stored at electric field
- Whenever electrical conductors are separated by a insulator, the capacitance occurs

Inductors

- They store energy
- The energy is stored at magnetic field
- Inductance results from a conductor linking a magnetic field

Component Model of a Capacitor

Symbol	Model	
$ \begin{array}{c} i_C(t) \\ + \\ v_C(t) \\ \hline - \end{array} $	Slope = C v_C	

- $q = C \times v_C$; where q: charge, or "electric flux", in coulombs C: capacitance in F (Farad)
- On the other hand, $q(t) = \int_{-\infty}^{t} i_{C}(\tau) d\tau$
- 1. If v_C is given, then $i_C(t) = \frac{dq}{dt} = C \frac{dv_C(t)}{dt}$
- 2. If i_C is given, then $v_C(t) = \frac{q}{C} = \frac{1}{C} \int_{-\infty}^t i_C(\tau) d\tau = v_C(t_0) + \frac{1}{C} \int_{t_0}^t i_C(\tau) d\tau$

EX 3.1 Circuit Variables of a Capacitor (1/5)

- 1. Find the expressions for the current, power, and energy on the capacitor
- 2. Determine the interval of time when energy is being stored and delivered in the capacitor, respectively

EX 3.1

Circuit Variables of a Capacitor (2/5)

The current run through the capacitor: $i(t) = C \frac{dv(t)}{dt}$

$$t \le 0$$
 s

$$0 < t \le 1 \text{ s}$$

$$t > 1 \text{ s}$$

Circuit Variables of a Capacitor (3/5)

■ The power of the capacitor: p(t) = v(t)i(t)

$$p(t) = \begin{cases} t \le 0 \text{ s} \\ 0 < t \le 1 \text{ s} \\ t > 1 \text{ s} \end{cases}$$

EX 3.1

Circuit Variables of a Capacitor (4/5)

The energy of the capacitor: $W(t) = \int_{-\infty}^{t} p(\tau) d\tau = \int_{-\infty}^{t} Cv(\tau) \frac{dv(\tau)}{d\tau} d\tau = \frac{1}{2} Cv^{2}(t)$

Circuit Variables of a Capacitor (5/5)

Summary:

- Voltage on a capacitor must be continuous; it cannot change abruptly across the terminals of the capacitor
- If the voltage across the terminals is constant, $i_c = 0$ (equivalent to open circuit)

When does the capacitor store energy?

- Storing energy: w(t) increases
- This is when the power is positive

$$\int_{0}^{1} p(t) dt = \int_{0}^{1} (8t) dt = 4 \, uJ$$

When does the capacitor dissipate energy?

- Dissipating energy: w(t) decreases
- This is when the power is negative

$$\int_{1}^{\infty} p(t)dt = \int_{1}^{\infty} \left(-8e^{-2(t-1)}\right)dt = -4 \ uJ$$

EX 3.2 Circuit Variables of a Capacitor (1/4)

$$i(t)$$

$$v(t) = \begin{cases}
0 & t \le 0 \,\mu\text{s} & i \,(\text{mA}) \\
5000t \text{ A} & 0 < t \le 20 \,\mu\text{s} & 100 \\
0.2 - 5000t \text{ A} & 20 < t \le 40 \,\mu\text{s} & 50 \\
0 & t > 40 \,\mu\text{s} & 0 < t \le 20 \,\mu\text{s} & 100 \\
0 & t > 40 \,\mu\text{s} & 0 < t \le 40 \,\mu\text{s} & 0 <$$

1. Let v(0) = 0. Find the expressions for the voltage, power, and energy on the capacitor

EX 3.2

Circuit Variables of a Capacitor (2/4)

The voltage dropped across the capacitor: $v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$

$$t \le 0 \,\mu\text{s}$$

$$0 < t \le 20 \ \mu s$$

$$20 < t \le 40 \ \mu s$$

$$t > 40 \,\mu\text{s}$$

Circuit Variables of a Capacitor (3/4)

The power in the capacitor: p(t) = v(t)i(t)

$$p(t) = \begin{cases} 0 & t \le 0 \,\mu\text{s} \\ \left(12.5 \times 10^9 t^2\right) \times \left(5000t\right) = 62.5 \times 10^{12} t^3 \,W & 0 < t \le 20 \,\mu\text{s} \\ \left(10^6 t - 12.5 \times 10^9 t^2 - 10\right) \times \left(0.2 - 5000t\right) = 62.5 \times 10^{12} t^3 - 7.5 \times 10^9 t^2 + 2.5 \times 10^5 t - 2 \,W & 20 < t \le 40 \,\mu\text{s} \\ 0 & t > 40 \,\mu\text{s} \end{cases}$$

- The power > 0 all the time
- So the capacitor stores energy continuously

Circuit Variables of a Capacitor (4/4)

The energy in the capacitor: $W(t) = \frac{1}{2}Cv^2(t)$

$$W(t) = \begin{cases} 0 & t \le 0 \,\mu\text{s} \\ \frac{1}{2} \left(0.2 \times 10^{-6}\right) \times \left(12.5 \times 10^{9} \, t^{2}\right)^{2} = 15.625 \times 10^{12} \, t^{4} \, J & 0 < t \le 20 \,\mu\text{s} \\ \frac{1}{2} \left(0.2 \times 10^{-6}\right) \times \left(10^{6} \, t - 12.5 \times 10^{9} \, t^{2} - 10\right)^{2} = 15.625 \times 10^{12} \, t^{4} - 2.5 \times 10^{9} \, t^{3} + 0.125 \times 10^{6} \, t^{2} - 2t + 10^{-5} \, J & 20 < t \le 40 \,\mu\text{s} \\ \frac{1}{2} \left(0.2 \times 10^{-6}\right) \times \left(10\right)^{2} = 10 \,\,\mu J & t > 40 \,\,\mu\text{s} \end{cases}$$

Component Model of an Inductor

Symbol	Model	
$ \begin{array}{c} i_L(t) \\ + \\ v_L(t) & \\ - \end{array} $	Slope = L i_L	

- $\lambda = L \times i_L;$ where λ : "magnetic flux" in weber λ : inductance in H (Henry)
- Solution On the other hand, $\lambda(t) = \int_{-\infty}^{t} v_L(\tau) d\tau$

1. If
$$i_L$$
 is given, then $v_L(t) = \frac{d\lambda}{dt} = L \frac{di_L(t)}{dt}$

2. If
$$v_L$$
 is given, then $i_L(t) = \frac{\lambda}{L} = \frac{1}{L} \int_{-\infty}^t v_L(\tau) d\tau = i_L(t_0) + \frac{1}{L} \int_{t_0}^t v_L(\tau) d\tau$

Circuit Variables of an Inductor (1/5)

- 1. Find the expressions for the voltage, power, and energy on the inductor
- 2. Determine the interval of time when energy is being stored and delivered in the inductor, respectively

EX 3.3

Circuit Variables of an Inductor (2/5)

The voltage dropped on the inductor: $v(t) = L \frac{di(t)}{dt}$

$$\rightarrow$$
 $v(t) =$

 $t \le 0$ s

t > 0 s

Circuit Variables of an Inductor (3/5)

The power in the inductor: p(t) = v(t)i(t)

$$p(t) = \begin{cases} t \le 0 \text{ s} \\ t > 0 \text{ s} \end{cases}$$

EX 3.3

Circuit Variables of an Inductor (4/5)

The energy in the inductor: $W(t) = \int_{-\infty}^{t} p(\tau) d\tau = \int_{-\infty}^{t} Li(\tau) \frac{di(\tau)}{d\tau} d\tau = \frac{1}{2} Li^{2}(t)$

$$W(t) = \begin{cases} t \le 0 \text{ s} \\ t > 0 \text{ s} \end{cases}$$

Circuit Variables of an Inductor (5/5)

Summary:

- Current through an inductor must be continuous; it cannot change abruptly in an inductor
- If the current run through an inductor is constant, $v_L = 0$ (equivalent to short circuit)
- When does the inductor store energy?
 - Storing energy: w(t) increases
 - This is when the power is positive

$$\int_0^{0.2} p(t) dt = 27.07 \ mJ$$

- When does the inductor dissipate energy?
 - Dissipating energy: w(t) decreases
 - This is when the power is negative

$$\int_{0.2}^{\infty} p(t) dt = -27.07 \ mJ$$

EX 3.4 Circuit Variables of an Inductor

1. Let i(0) = 0. Find the expressions for the current through the inductor

DC Condition

Under DC condition, find:

- 1. the voltage across the capacitor
- 2. the current through the inductor
- 3. the energy in the capacitor
- 4. the energy in the inductor

Remarks

- C and L are capable of storing energy, so they can be used for generating a large amount of voltage or current for a short period of time
- They can also be used as temporary voltage or current sources
- The frequency sensitive property of L and C makes them useful for frequency discrimination
 - Low pass filters
 - High pass filters
 - Band pass filters

Contents

3.2 Combinations of C and L

N Capacitors in Parallel

Left:
$$i = i_1 + i_2 + i_3 + ... + i_N$$

$$= C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} + C_3 \frac{dv}{dt} + ... + C_N \frac{dv}{dt}$$

$$= (C_1 + C_2 + C_3 + ... + C_N) \frac{dv}{dt}$$

Right:
$$i = C_{eq} \frac{dv}{dt}$$

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_N$$

N Capacitors in Series

Left:
$$v = v_1 + v_2 + v_3 + ... + v_N$$

$$= \left[v_1(t_0) + \frac{1}{C_1} \int_{t_0}^t i(\tau) d\tau \right] + \left[v_2(t_0) + \frac{1}{C_2} \int_{t_0}^t i(\tau) d\tau \right] + ... + \left[v_N(t_0) + \frac{1}{C_N} \int_{t_0}^t i(\tau) d\tau \right]$$

$$= \left(v_1(t_0) + v_2(t_0) + ... + v_N(t_0) \right) + \left(\frac{1}{C_1} + \frac{1}{C_2} + ... + \frac{1}{C_N} \right) \int_{t_0}^t i(\tau) d\tau$$

Right:
$$v = v(t_0) + \frac{1}{C_{eq}} \int_{t_0}^t i(\tau) d\tau$$

NInductors in Series

Left:
$$v = v_1 + v_2 + v_3 + ... + v_N$$

$$= L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + ... + L_N \frac{di}{dt}$$

$$= (L_1 + L_2 + L_3 ... + L_N) \frac{di}{dt}$$

Right:
$$v = L_{eq} \frac{di}{dt}$$

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_N$$

N Capacitors in Parallel

Left:
$$i = i_1 + i_2 + i_3 + ... + i_N$$

$$= \left[i_1(t_0) + \frac{1}{L_1} \int_{t_0}^t v(\tau) d\tau \right] + \left[i_2(t_0) + \frac{1}{L_2} \int_{t_0}^t v(\tau) d\tau \right] + ... + \left[i_N(t_0) + \frac{1}{L_N} \int_{t_0}^t v(\tau) d\tau \right]$$

$$= \left(i_1(t_0) + i_2(t_0) + ... + i_N(t_0) \right) + \left(\frac{1}{L_1} + \frac{1}{L_2} + ... + \frac{1}{L_N} \right) \int_{t_0}^t v(\tau) d\tau$$
Right: $i = i(t_0) + \frac{1}{L_1} \int_{t_0}^t v(\tau) d\tau$

Right:
$$i = i(t_0) + \frac{1}{L_{eq}} \int_{t_0}^t v(\tau) d\tau$$

Summary

	Resistor	Capacitor	Inductor
Give i , find v	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$	$v = L \frac{di}{dt}$
Give v , find i	$i = \frac{v}{R}$	$i = C \frac{dv}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau$
Power or energy	$P = i^2 R = \frac{v^2}{R}$	$W = \frac{1}{2}Cv^2$	$W = \frac{1}{2}Li^2$
Series connection	$R_{eq} = R_1 + R_2$	$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{eq} = L_1 + L_2$
Parallel connection	$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{eq} = C_1 + C_2$	$L_{eq} = \frac{L_{1}L_{2}}{L_{1} + L_{2}}$
DC case	The same	Open circuit	Short circuit

Contents

3.3 Natural Responses of First-Order Circuits

From Resistive Circuits to RC and RL Circuits

Resistive circuits

- Algebraic equations
- Solution techniques: Nodal analysis
 Mesh analysis

RC and RL circuits

- Differential equations
- Solution techniques: Nodal analysis
 Mesh analysis
- The solution of RC and RL circuits:
 Natural response + Forced response
- Or in the form of
 Transient response + Steady response
- Or in the mathematical terms of Homogeneous solution + Particular solution

When input sources are set as DC inputs, the "forced response" is called a "step response"

Natural Responses of First-Order Circuits

First-order RC circuit

- Solution Objective: Find v(t) from a given v(0)
- How to create v(0)?

First-order RL circuit

- Solution Objective: Find i(t) from a given i(0)
- Fig. How to create i(0)?

Step Responses of First-Order Circuits

- Solution Objective: Find v(t) and i(t) after t = 0
- Note that the voltage source and current source provide DC inputs

EX 3.6 An RC Circuit

1. Find v(t) for $t \ge 0^+$

Time Constant in RC Circuits

After finishing the computation, we find an interesting parameter

$$\tau = RC \longrightarrow v(t) = v_S e^{-\frac{t}{\tau}}$$

$$\mathcal{O} t = \tau$$
: $v(t) = 0.368 v_s(37\%)$

$$\mathcal{Q} t = 3\tau$$
: $v(t) = 0.050 v_S (5\%)$

$$\Im t = 5\tau$$
: $v(t) = 0.007 v_S \approx 0$ (1 %)

- When $t \ge 5\tau$, we call it a "steady state"
- \blacksquare The capacitor is fully discharged after 5τ

Example: Another RC Circuit

- 1. Find $v_C(t)$, $v_0(t)$, and $i_0(t)$ for $t \ge 0^+$
- 2. Find the total energy dissipated in the $60-k\Omega$ resistor

EX 3.8 An RL Circuit

1. Find i(t) for $t \ge 0^+$

Time Constant in RL Circuits

In the above procedure, we find an interesting parameter again

$$\tau = \frac{R}{L} \longrightarrow i(t) = i_S e^{-\frac{t}{\tau}}$$

$$\mathcal{O} t = \tau: i(t) = 0.368 i_S(37\%)$$

$$\mathcal{Q} t = 3\tau$$
: $i(t) = 0.050 i_s$ (5 %)

3
$$t = 5\tau$$
: $i(t) = 0.007 i_S \approx 0$ (1 %)

- When $t \ge 5\tau$, we call it a "steady state"
- \blacksquare The inductor is fully discharged after 5τ

Example: Another RL Circuit

1. Find $i_L(t)$ and $i_x(t)$ for $t \ge 0^+$

EX 3.10 Another Example of RL Circuits

- The switch has been turned on for a long time
- At t = 0, it's turned off
 - 1. Find $i_{x}(t)$ for $t \ge 0^{+}$
 - 2. Find $i_L(t)$ for $t \ge 0^+$

Contents

3.4 Step Responses of First-Order Circuits

Characteristics of Step Response

Natural response:

When the state of the switch is changed, the new state has no other sources

Step response:

- When the state of the switch is changed, the new state has new sources
- The new sources cause new responses—forced responses
- If the new sources are DC inputs, then the force response is called the "step response"

EX 3.11 Basic Case of Step Response (1/2)

1. Find $v_C(t)$ for $t \ge 0^+$

Basic Case of Step Response (2/2)

The complete solution: $v_C(t) = (V_0 - V_S)e^{-\frac{t}{RC}} + V_S$

How about the current over *C*?

$$i_{C}(t) = C\frac{dv_{C}}{dt} = C\left[\frac{-1}{RC}(v_{0} - v_{S})e^{-\frac{t}{RC}}\right] = \frac{v_{S} - v_{0}}{R}e^{-\frac{t}{RC}}$$

If $v_0 = 0$, for $t = 0^+$, $i(0^+) = v_S/R$ C is initially short circuited!

Particular Solutions (1/2)

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \dots + a_1 y'(x) + a_0 y = g(x)$$

解的形式為 $y_h + y_p$:

g(x) 長什麼樣子, particular solution 就是什麼樣子

2.
$$5x + 7$$

3.
$$3x^2 - 2$$

4.
$$x^3 - x + 1$$

5.
$$\sin 4x$$

6.
$$\cos 4x$$

7.
$$e^{5x}$$

8.
$$(9x - 2)e^{5x}$$

9.
$$x^2e^{5x}$$

10.
$$e^{3x} \sin 4x$$

11.
$$5x^2 \sin 4x$$

12.
$$xe^{3x}\cos 4x$$

$$Ax + B$$

$$Ax^2 + Bx + C$$

$$Ax^3 + Bx^2 + Cx + E$$

$$A\cos 4x + B\sin 4x$$

$$A \cos 4x + B \sin 4x$$

$$Ae^{5x}$$

$$(Ax + B)e^{5x}$$

$$(Ax^2 + Bx + C)e^{5x}$$

$$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$$

$$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$$

$$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$$

Particular Solutions (2/2)

Example

$$y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$$

Step 1: Find the solution of

$$y'' - 2y' - 3y = 0.$$

$$y_c = c_1 e^{3x} + c_2 e^{-x}$$

Step 2: Particular solution

$$y'' - 2y' - 3y = 4x - 5$$
guess

$$y_{p_1} = Ax + B$$

$$y_{p_1} = -\frac{4}{3}x + \frac{23}{9}$$

solution
$$y'' - 2y' - 3y = 4x - 5$$

$$y'' - 2y' - 3y = 6xe^{2x}$$
 guess
$$y'' - 2y' - 3y = 6xe^{2x}$$

$$y_{p_2} = Cxe^{2x} + Ee^{2x}$$

$$y_{p_2} = -(2x + \frac{4}{3})e^{2x}$$

EX 3.12 An RC Circuit with Step Responses

- $t \le 0^-$: the circuit is under steady state
 - 1. Find v(t) for $t \ge 0^+$

EX 3.13 An RL Circuit with Step Responses

- $t \le 0^-$: the circuit is under steady state
 - 1. Find v(t) for $t \ge 0^+$
 - 2. Find i(t) for $t \ge 0^+$

First-Order RC Circuit

- The switch in the circuit has been in the OFF position for a long time
 - 1. Find $v_o(t)$ for $t \ge 0^+$
 - 2. Find $i_{\Lambda}(t)$ for $t \ge 0^+$

First-Order RL Circuit

- The switch in the circuit has been open a long time before closing at t=0
 - 1. Find $i_o(t)$ for $t \ge 0^+$

EX 3.16 First-Order RL Circuit

- The switch in the circuit has been open a long time before closing at t = 0
 - 1. Find $v_o(t)$ for $t \ge 0^+$

Contents

3.5 Linear Second-Order Circuits

Examples of Linear 2nd-Order Circuits (1/2)

- One energy storage element
- 1st-order differential equations
- Need one initial condition to get the unique solution

- Two energy storage elements
- 2nd-order differential equations
- Need two initial conditions to get the unique solution

Series RLC Circuit

Parallel RLC Circuit

Examples of Linear 2nd-Order Circuits (2/2)

We can't combine C_1 and C_2 (L_1 and L_2) together because there is a resistor between them

Examples of Natural Response

Series RLC Circuit

Parallel RLC Circuit

When the switch is turned off, the new circuit has no external sources

Examples of Step Response

Series RLC Circuit

Parallel RLC Circuit

When the switch is turned off, the new circuit has external sources

How to Solve 2nd-Order RLC Circuits? (1/4)

1. Select the nodal analysis or mesh analysis and write down the equation

$$\left(C\frac{dv(t)}{dt}\right) + \left(\frac{v(t)}{R}\right) + \left(\frac{1}{L}\int_{0^{+}}^{t}vd\tau + i\left(0^{+}\right)\right) = 0$$

2. Differentiate the equation as many times as required to get the standard form of a 2^{nd} -order differential equation

$$C\frac{d^{2}v(t)}{dt^{2}} + \frac{1}{R}\frac{dv(t)}{dt} + \frac{1}{L}v(t) = 0$$

How to Solve 2nd-Order RLC Circuits? (2/4)

- 3. Solve the differential equation
 - ① Homogeneous solutions $v_h(t)$
 - ② Particular solution $v_p(t)$ (if the RLC circuit has external sources)

$$C\frac{d^{2}v(t)}{dt^{2}} + \frac{1}{R}\frac{dv(t)}{dt} + \frac{1}{L}v(t) = 0$$

Considering that the RLC circuit has no external sources (as this example):

① Homogeneous solutions $x_h(t)$:

Suppose that the solutions have the form of e^{mt}

$$Cm^{2}e^{mt} + \frac{m}{R}e^{mt} + \frac{1}{L}e^{mt} = 0 \rightarrow \left(Cm^{2} + \frac{m}{R} + \frac{1}{L}\right)e^{mt} = 0$$

How to Solve 2nd-Order RLC Circuits? (3/4)

Solving
$$Cm^2 + \frac{m}{R} + \frac{1}{L} = 0$$
:

$$m_{1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$$

$$m_{2} = -\frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$$

First difference between 1st-order and 2nd-order circuits

$$\sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}} > 0$$
, < 0, or = 0 leads to three different situations

• Three new terminologies: overdamped, underdamped, & critically damped

Overdamped, Underdamped, & Critically damped

How to Solve 2nd-Order RLC Circuits? (4/4)

4. Express the final solution $v(t) = v_h(t) + v_p(t)$

(Supposing
$$\sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}} > 0$$
)

$$v_C(t) = c_1 e^{m_1 t} + c_2 e^{m_2 t}$$

Second difference between 1st-order and 2nd-order circuits)

- In order to get the <u>unique</u> solution, we need to solve c_1 and c_2
- Two initial conditions (I. C.) are required (Lectures 3-2 and 3-3 only need one I. C.)
- What I. C. do we need?

$$v_C(0^+), \frac{dv_C(0^+)}{dt}$$

Contents

3.6 Responses of Second-Order Circuits

Solution Procedure

All the problems in these two lectures can be casted into:

- Step 1: \blacksquare Draw the circuit under $t \le 0^-$
 - Find $i_L(0^-)$ on the inductor and $v_C(0^-)$ on the capacitor
- Step 2: \blacksquare Draw the circuit for $t \ge 0^+$
 - Formulate the problem by nodal analysis or mesh analysis
 - Differentiate the equation as many times as required to get the standard form of a 2nd order D. E.

$$a\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + x(t) = y(t)$$

- Step 3: Solve the D. E. to get $x(t) = x_h(t) + x_p(t)$
 - Find the initial conditions $x(0^+)$ and $dx(0^+)/dt$ and then get the unique solution

EX 3.17 Natural Response of Series RLC Circuits

- $t \le 0^-$: the circuit is under steady state
 - 1. Find $i_L(t)$ for $t \ge 0^+$

Natural Response of Parallel RLC Circuits

- $f \le 0^-$: the circuit is under steady state
 - 1. Find $v_o(t)$ for $t \ge 0^+$

Step Response of Series RLC Circuits

- $f \leq 0^{-1}$: the circuit is under steady state
 - 1. Find $i_L(0^+)$ for $t \ge 0^+$
 - 2. Find $di_L(0^+)/dt$ for $t \ge 0^+$
 - 3. Find $i_L(t)$ for $t \ge 0^+$

Second-Order RLC Responses

The switch in the circuit has been in position a for a long time 1. Find $i_L(t)$ for $t \ge 0^+$

EX 3.21 A More Complex Example

- $t \le 0^-$: the circuit is under steady state
 - 1. Find $i(0^+)$ for $t \ge 0^+$
 - 2. Find $di(0^+)/dt$ for $t \ge 0^+$
 - 3. Find i(t) for $t \ge 0^+$