

SENAI CIMATEC
Supercomputing Center

Accelerating 3D Seismic Modeling with Alveo FPGA

Sistema FIEB

PELO FUTURO DA INOVAÇÃO

Brazilian Research and Development Institute

Contents:

- Brief review on Seismic Inversion with RTM;
- Seismic Modeling: Generating Synthetic Shot Records;
- Seismic Modeling: FPGA Implementation;
- Seismic Modeling: FPGA vs. CPU Performance Comparison;
- Final Considerations;

Seismic Inversion: Subsurface Imaging with RTM

- Seismic Inversion is a set of techniques used to create an image of the subsurface from field recorded data;
- RTM is a diversified class of algorithms used in seismic inversion processes. It relies on two known parameters:
 - Field data or also called recorded data. This is a shot record corresponding to the true velocity model collected in field during Seismic Survey;
 - Background velocity model This is a velocity model that has been obtained by processing and inverting the field data. This velocity model is usually a smooth version of the true velocity model.

Seismic Inversion: Subsurface Imaging with RTM

Seismic Modeling: Generating Synthetic Shot Records

- Fine-tunning of RTM implementations require the ability to experiment on:
 - Different acquisition geometries;
 - Multiple source signatures parameters (Peak frequency, number of time steps, source position, etc.)
 - Multiple boundary absorbing conditions;
- Real world shot records are expensive and hard to acquire;
- They are also tied to the specific acquisition geometry used in the field;
- Synthetic Shot Records are an essential part of the RTM prototyping process;
- They can be used to validate RTM flow and fine-tunning adjustments;

Seismic receivers distributed across the X direction;

Seismic shot positioned at the top-center position;

Seismic Modeling: Generating Synthetic Shot Records

- The time-forward propagation is the simulation of the source wave propagation across the input velocity model;
- It generates the source wavefield snapshots that are then used in the cross-correlation with the reconstructed Shot Record wavefield (time-backward propagation);
- It is part of most RTM implementations normally corresponding to 40% of the execution time;
- The Seismic Modeling process consists of a time-forward propagation where wave values are recorded at given acquisition geometry points;

Time-Forward Source Wave Propagation

Seismic Modeling: Generating Synthetic Shot Records

- The time-forward propagation implements a PDE solver of the acoustic wave equation to compute pressure fields across multiple time steps (duration);
- A discrete solution of the Acoustic Wave Equation can be expressed as:

$$P[t+1] = 2P[t] - P[t-1] + c^2 L \Delta t^2$$

- 2nd order in time;
- n-th order in space;
- Two opportunities for parallelism:
 - **Spatial parallelism**: multiple points can be updated within the same time step;
 - Temporal parallelism: as soon as a point is updated, it can be used as input for the next time step (Pipelining);
- Great opportunity for hardware-based acceleration!

SENAI CIMATEC

Seismic Modeling: FPGA Implementation

- Using Alveo U280, we have developed an FPGA-based accelerator that computes the time-forward propagation across a 3D velocity model;
- Our architecture can be used to accelerate the 3D Seismic Modeling and the RTM Forward Propagation processes;
- Features:
 - C++ implementation (no Verilog);
 - PCIe based transfers between host program and the accelerator (just like GPUs);
 - Significant power efficiency when compared to GPUs and CPUs;

SENAI CIMATEC

Seismic Modeling: FPGA Implementation

FPGA Kernel Resource Utilization					
Resource	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-		-	
Expression	-	-	0	3088	
FIFO	-	-	-	-	
Instance	804	2081	309914	182669	200
Local Memory	0	-	896	48	
Multiplexer	-	-	-	1938	
Register	-	-	7115	352	
Total	804	2081	317925	188095	200
Available on SRL0	1344	3008	869120	434560	320
Utilization on SLRO (%)	59	69	36	43	62
Available on U280 FPGA	4032	9024	2607360	1303680	960
Utilization (%)	19	23	12	14	20

U280 Available Memory				
Туре		Total		
Global	DDR4	2x16GB (32GB)		
	HBM2	8GB		
Local	Block RAM	4032		
	UltraRAM	960		

SENAI CIMATEC

Seismic Modeling: FPGA vs. CPU Performance Comparison

Input Velocity Model				
Name	SEG/EAGE 3D Salt Model			
Grid	676x676x210			
(dx,dy,dz)	(20,20,20)			
dt	0.00085			
Size (km)	13.52x13.52x4.2			
Duration (s)	2.8			
Time steps	3300			
Virtual Border	21			
Shot Record (MB)	6032.08			
Grid Size (MB)	3x520 (1560)			
Required Memory (MB)	7600			

1	6x

Architecture	x86_64
CPU(s)	72
On-line CPU	0-71
Threads	2
Cores	18
Socket(s)	2
CPU family	6
Model	85
Model name	Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
L1d cache	32K
L1i cache	32K
L2 cache	1024K
L3 cache	25344K
Interconnect	InfiniBand
RAM (GB)	376
Distributed FS	Lustre

CPU-Node

Seismic Modeling: FPGA vs. CPU Performance Comparison

- 1 MPI-Rank per CPU-Node (up to 16 nodes),
 72 threads per rank;
- We recorded the time it took to generate a Shot Record both on CPU and FPGAaccelerated implementations;
- FPGA-time includes Host time as well;
- Stencil computation requires halo-regions to be synchronized at every time step, which is bed for small volumes;
- Both FPGA and CPU outputs were compared for validation;
- Number of shots: 1;

Domain Partitioning Strategy for MPI-based CPU

Seismic Modeling: FPGA vs. CPU Performance Comparison

Seismic Modeling Time:

Output Synthetic Shot Records:

Seismic Modeling: Final Considerations

- Results have shown that a single U280 FPGA board can provide performance superior to 16 CPU nodes for 3D Seismic Modeling;
- Equivalent performance results can be expected for a full 3D-RTM implementation;
- Future improvements may include:
 - Include Time-Backward and Image Condition kernels for full RTM implementation;
 - Domain partitioning with direct network communication between FPGAs;

SENAI CIMATEC
Supercomputing Center

Accelerating 3D Seismic Modeling with Alveo FPGA

Sistema FIEB

PELO FUTURO DA INOVAÇÃO

Brazilian Research and Development Institute

