- 1. Compute the order of β =(13)(247) and γ = α -1 β α , where α =(36)(254).
- 2. Special orthogonal matrices $SO(2,\mathbb{R})$ is a set of elements A_{+-} in the form below, equipped with matrix production.

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \theta \in \mathcal{R}$$

- 1) Show $SO(2,\mathbb{R})$ is an Abelian group;
- 2) Give an appropriate definition of A_{θ}^{k} by matrix production, and prove $A_{\theta}^{k} = A_{k\theta}$, for $k \in \mathbb{Z}$;
- 3) Find all the elements of finite order in $SO(2,\mathbb{R})$.
- 3. GL(2,Q) denotes the set of the *nonsingular* (having nonzero determinant, 行列式非 0) rational square matrix of length 2 under matrix product.
 - 1) Show that it's a group
 - 2) Compute the order of A=[0, -1; 1, 0] and B=[0, 1; -1, 1].
 - 3) What's the order of AB?
 - 4) $GL(k,\mathbb{R})$ denotes the set of the nonsingular $k \times k$ real matrix under matrix product. Show that it is a group.
- 4. 1) The affine set Aff(1,R) consists of all functions $R \rightarrow R$ of the form $f_{a,b}(x)=ax+b$, where the coefficients a and b are real numbers

with a \neq 0. Show that Aff(1, \mathbb{R}) is a group under the function composition;

2) The affine set Aff(k, \mathbb{R}) consists of all functions $\mathbb{R}^k \to \mathbb{R}^k$ of the form $f_{A,b}(X)=AX+b$, where A is a k \times k matrix with $|A|\neq 0$, b is a k \times 1 vector. Show that Aff(k, \mathbb{R}) is a group under the function composition.