Steven Murr

HW 3.2

Problems = { 1abc, 2abc, 3, 10, 21, 22, 23, 24, 25ab, 26ab }

- 1) Determine whether each of these functions is O(x)
 - a) f(x) = 10

x > 10 whenever x > 10

We then replace 10 with x and get $x \le c * x$

Thus, f(x) is O(x) for C = 10, k = 1

b) 3x + 7

Since x > 7 whenever x > 7 we can replace 7 with x.

 $3x + x \le 4x$

This yields $4x \le c * x$

Thus, f(x) is O(x) when C = 4, k = 7

- c) We know that a function is O(x) of it's largest exponent. Since $x^2 + x + 1$ has an x^2 we know that this is not O(x). It's in fact $O(x^2)$.
- 2) Determine whether each of these functions is $O(x^2)$
 - a) f(x) = 17x + 11

Since $x^2 > 11$ whenever $x^2 > 11$ we can write the equation as $17x^2 + x^2$ which becomes $18x^2$.

Thus, f(x) is $O(x^2)$ when C = 18, k = 11

b) $f(x) = x^2 + 1000$

Since we know that $x^2 > 1000$ whenever $x^2 > 1000$ thus we can replace 1000 with x^2 .

 $x^2 + x^2 < 2x^2$

Thus, f(x) is O(x) whenever $C=2, k=\sqrt{1000}$

c) $f(x) = x \log x$

Since $x \log x \le x^2$ for all values of x C = 1, k = 0.

3) Use the definition of "f(x) is O(g(x))" to show that $x^4 + 9x^3 + 4x + 7isO(x^4)$

We first append x^4 to each of the exponents like:

$$x^4 + x^4 + x^4 + x^4 = 4x^4$$
. C = 4, k = 9

10) Show that $x^3 is O(x^4)$ but that x^4 is not $O(x^3)$

The definition for Big-O notation is $|f(x)| \le C|g(x)|$

 x^3 is $O(x^4)$

 $x^3 \le x^4$ however x^4 is not $\le x^3$ therefore a larger exponent cannot be Big-O of a smaller exponent.

21) Arrange the functions \sqrt{n} , 1000logn, nlogn, 2n!, 2^n , 3^n and $n^2/1$, 000, 000 in a list so that each function is big-O of the next function.

$$\frac{n^2}{1.000.000} > \sqrt{n} > x log(x) > 2^x > 2x! > 3^x > 1000 log(x)$$

22) Arrange the functions $(1.5)^n, n^{100}, (long)^3, \sqrt{n}logn, 10^n, (n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function.

 $(log x)^3 > \sqrt{x log x} > (1.5)^x > (x!)^2 > 10^x > x^{99} + x^{98} > x^{100}$

23) Suppose that you have two different algorithms for solving a problem. To solve a problem of size n, the first algorithm uses exactly n(log n) operations and the second algorithm uses exact $n^{\frac{3}{2}}$ operations. As n grows, which algorithm uses fewer operations?

Exponential operations require more operations than logarithmic ones. n(log n) uses fewer operations.

- 25) Give as good a big-O estimate as possible for each of these functions.
 - a) $(n^2 + 8)(n + 1)$ $n^3 + n^2 + 8n + 8$

Algorithms are big-O of it's highest exponent. This algorithm is $O(x^3)$

- b) $(nlog n + n^2)(n^3 + 2)$
 - $n^3 log n + 2 log n + n^5 + 2n^2$

 n^5 is the largest value so, $O(n^5)$

- c) $(n! + 2^n)(n^3 + \log(n^2 + 1))$ $n!n^3$
- 26) Give a big-O estimate for each of these functions. For the function g in your estimate f(x) is O(g(x)), use a simple function g of smallest order.
 - a) $(n^3 + n^2 log n)(log n + 1) + (17 log n + 19)(n^3 + 2)$

O(n^3) b) $(2^n + n^2)(n^3 + 3^n)$ $3^n n^2$