where A.B are the events. P(AIB) is a conditional poorb. The likelihood pc BIA) is a also conditional the likelihord of B occurring knowing that A is I me p(A) & p(B) are marginal probabilities Noive bayes is a technique for constructing classifiers which applies the above theosen with the storney assumption These models assign class labels in to problem instances represented as votors of features values A family of algorithms based on one common principle from the naive bayes classifier the principle is that. a particular feature is independent of the voly of any other feature given the class variable each feature contributes independently to the probability of the Positive outcomes - Prout the duta set! The dataset Danginolly from the National institute of Diabetes U Digestie U kidney Disease.

	The objective of the dataset is to diagonostical
	14 predict whether or not patient has
	diabetes based on certain diagnostic
	measures included.
	Several constraints were placed on the
	selection of these instances from the
	larger latobase in Partialar all patients
	larger dutabase in Partialar all pabients here are at least 21 years old.
	conclusion: The Maire Bayes classifier was
	successfully applied to the cleaned dataset
	y the out come was predicted with an
80	olocusacy.
- V	