Math in LATEX

Attila Gyetvai

January 19, 2014

1 Environments, equations

This is an inline math environment: f(x) = 2x. This is a dedicated math environment:

$$f(x) = 2x$$

You can do it like this too¹:

$$f(x) = 2x$$

The best way to write dedicated math expressions is the equation environment:

$$f(x) = 2x \tag{1}$$

For no numbering, use the starred version:

$$f(x) = 2x$$

Systems of equations are put in the align environment:

$$f(x) = 2x$$

$$g(x) = 9x$$

For short texts in between:

$$h(x) = 0.1x$$

 $^{^1\}mathrm{However},$ it is fragile, so you should avoid it.

2 Formulae, symbols

$$\begin{aligned} a^2 + b^2 &= c^2 \\ a_1^2 + a_2^2 &= a_3^2 \\ a_{11}^2 + a_{12}^2 &= a_{13}^2 \\ \sin x &= \alpha \iff x = \arcsin x \\ \Pi &\Longrightarrow \pi \\ \frac{2x}{4y} &= \frac{x}{2y} \\ \frac{1/2 \neq \mathbb{N}}{\log x \to 0 \text{ as } x \to -\infty} \iff \lim_{x \to -\infty} x = 0 \end{aligned}$$

3 Operators

$$y = \beta_0 + \beta_1 x_1 + u$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u$$

$$y = \beta_0 + \sum_{i=1}^{j} \beta_i x_i + u$$

$$\hat{y} = \hat{\beta}_0 + \sum_{i=1}^{j} \hat{\beta}_i x_i$$

$$\widehat{educ} = \hat{\beta}_0 + \sum_{i=1}^{j} \hat{\beta}_i x_i$$

$$\bar{y} = \beta_0 + \sum_{i=1}^{j} \beta_i \bar{x}_i + u$$

Inline version: $y = \beta_0 + \sum_{i=1}^j \beta_i x_i + u$. Inline version with full typography: $y = \beta_0 + \sum_{i=1}^j \beta_i x_i + u$.

4 Vectors, matrices

All together

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \iff \sum_{i=1}^2 \alpha_{i1} x_1 + \sum_{i=1}^2 \alpha_{i2} x_2$$

5 Theorems

Theorem 1. All markers are blue.

Proof. By counterexample. You can buy black ones in the store.

Problem 2 (Varian 32.116). Two guys, x and y play the chicken game.

Assumption 1. There might be pink markers.

Summary 3. Theorems in \LaTeX are cool.

6 Regression outputs

6.1 Equation

$$\widehat{wage} = -3.39 + .6443 \ educ + .0701 \ exper$$

 $n = 526, \quad R^2 = .2252$

6.2 Table

wage	Coeff.	St.e.	t-stat.	<i>p</i> -value	95% co	nf. int.
educ	.6443	.0538	11.97	.000	.5386	.7500
exper	.0701	.0110	6.39	.000	.0485	.0917
constant	-3.39	.77	-4.42	.000	-4.90	-1.88
$n = 526, R^2 = .2252$						

My way

Depender	nt variable:	wage
	Coefficient	t-stat.
educ	.6443*** (.0538)	11.97
exper	$.0701^{***}$ $(.0110)$	6.39
constant	-3.39^{***}	-4.42
n = 526	$\bar{R}^2 = .$	2222

Table 1: OLS regression. Standard errors in parentheses. ***: significance at the 1% level.