Package 'EpiEstim'

July 8, 2019

```
Version 2.2-1
```

Title Estimate Time Varying Reproduction Numbers from Epidemic Curves

Maintainer Anne Cori <a.cori@imperial.ac.uk>

Description Tools to quantify transmissibility throughout

an epidemic from the analysis of time series of incidence as described in Cori et al. (2013) <doi:10.1093/aje/kwt133> and Wallinga and Teunis (2004) <doi:10.1093/aje/kwh255>.

Depends R (>= 2.10)

Imports coarseDataTools (>= 0.6-4), stats, graphics, reshape2, ggplot2, gridExtra, fitdistrplus, coda, incidence (>= 1.7.0), scales, grDevices

Suggests testthat, utils, vdiffr, covr, knitr, rmarkdown

License GPL (>= 2)

LazyLoad yes

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Anne Cori [aut, cre] (https://orcid.org/0000-0002-8443-9162),

Simon Cauchemez [ctb],

Neil M. Ferguson [ctb] (https://orcid.org/0000-0002-1154-8093),

Christophe Fraser [ctb] (https://orcid.org/0000-0003-2399-9657),

Elisabeth Dahlqwist [ctb] (https://orcid.org/0000-0001-5797-6803), P. Alex Demarsh [ctb],

Thibaut Jombart [ctb] (https://orcid.org/0000-0003-2226-8692),

Zhian N. Kamvar [ctb] (https://orcid.org/0000-0003-1458-7108),

Justin Lessler [ctb] (https://orcid.org/0000-0002-9741-8109),

Shikun Li [ctb],

Jonathan A. Polonsky [ctb] (https://orcid.org/0000-0002-8634-4255),

Jake Stockwin [ctb],

Robin Thompson [ctb] (https://orcid.org/0000-0001-8545-5212),

Rolina van Gaalen [ctb]

Repository CRAN

Date/Publication 2019-07-08 16:40:07 UTC

R topics documented:

check_cdt_samp	les_conve	rgence	e	 		 	 				 		2
coarse2estim .				 		 	 				 		3
DiscrSI				 		 	 				 		5
discr_si				 		 	 				 		5
EstimateR				 		 	 				 		7
estimate_R				 		 	 				 		8
estimate_R_plot	s			 		 	 				 		12
Flu1918				 		 	 				 		14
Flu2009				 		 	 				 		15
flu_2009_NYC_	school .			 		 	 				 		16
init_mcmc_para	ms			 		 	 				 		18
make_config				 		 	 				 		20
make_mcmc_co	ntrol			 		 	 				 		24
Measles1861 .				 		 	 				 		26
mers_2014_15.				 		 	 				 		27
MockRotavirus				 		 	 				 		28
OverallInfectivit	у			 		 	 				 		29
overall_infectivi	ty			 		 	 				 		30
plot.estimate_R				 		 	 				 		31
sample_posterio	r_R			 		 	 				 		33
SARS2003				 		 	 				 		35
Smallpox1972.				 		 	 				 		36
wallinga_teunis				 		 	 				 		37
WT				 		 	 				 		39
													41

check_cdt_samples_convergence

 ${\it Checking\ convergence\ of\ an\ MCMC\ chain\ by\ using\ the\ Gelman-Rubin\ algorithm}$

Description

check_cdt_samples_convergence Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm

Usage

```
check_cdt_samples_convergence(cdt_samples)
```

Arguments

 coarse2estim 3

Details

This function splits an MCMC chain in two halfs and uses the Gelman-Rubin algorithm to assess convergence of the chain by comparing its two halves.

Value

TRUE if the Gelman Rubin test for convergence was successful, FALSE otherwise

Author(s)

Anne Cori

See Also

```
estimate_R
```

Examples

```
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the serial interval from data
SI_fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,</pre>
                     dist="G",
                     init_pars=init_mcmc_params(MockRotavirus$si_data, "G"),
                     burnin = 1000,
                     n.samples = 5000)
## use check_cdt_samples_convergence to check convergence
converg_diag <- check_cdt_samples_convergence(SI_fit@samples)</pre>
converg_diag
## End(Not run)
```

coarse2estim

Link coarseDataTools and EpiEstim

Description

 $\verb|coarse2estim Transforms| outputs of \verb|coarseDataTools::dic.fit.mcmc| to right format for input into \verb|estimate_R| \\$

4 coarse2estim

Usage

```
coarse2estim(x = NULL, dist = x@dist, samples = x@samples,
  thin = 10)
```

Arguments

An object generated by function coarseDataTools::dic.fit.mcmc, containing posterior estimates of the serial interval distribution.

dist The parametric distribution used when estimating the serial interval. #' Should

be one of "G" (Gamma), "W" (Weibull), "L" (Lognormal), "off1G" (Gamma shifted by 1), "off1W" (Weibull shifted by 1), or "off1L" (Lognormal shifted by

1). If not present, computed automatically from x.

samples A dataframe containing the posterior samples of serial interval parameters cor-

responding to the parametric choice specified in dist. If not present, computed

automatically from x.

thin A positive integer corresponding to thinning parameter; of the posterior sample

of serial interval distributions in x, only 1 in thin will be kept, the rest will be

discarded.

Value

A list with two elements:

- si_sample: a matrix where each column gives one distribution of the serial interval to be explored, obtained from x by thinning the MCMC chain.
- si_parametric_distr: the parametric distribution used when estimating the serial interval stored in x.

Author(s)

The Hackout3 Parameter Estimation team.

See Also

```
estimate_R
```

DiscrSI 5

DiscrSI

Function to ensure compatibility with EpiEstim versions <2.0

Description

Please only use for compatibility; Prefer the new discr_si function instead

Usage

```
DiscrSI(k, mu, sigma)
```

Arguments

k	see k in discr_si
mu	see mu in discr_si
sigma	see sigma in discr_si

discr_si

Discretized Generation Time Distribution Assuming A Shifted Gamma Distribution

Description

discr_si computes the discrete distribution of the serial interval, assuming that the serial interval is shifted Gamma distributed, with shift 1.

Usage

```
discr_si(k, mu, sigma)
```

6 discr_si

Arguments

k Positive integer, or vector of positive ingerers for which the discrete distribution is desired.
 mu A positive real giving the mean of the Gamma distribution.
 sigma A non-negative real giving the standard deviation of the Gamma distribution.

Details

Assuming that the serial interval is shifted Gamma distributed with mean μ , standard deviation σ and shift 1, the discrete probability w_k that the serial interval is equal to k is:

$$w_k = kF_{\{\mu-1,\sigma\}}(k) + (k-2)F_{\{\mu-1,\sigma\}}(k-2) - 2(k-1)F_{\{\mu-1,\sigma\}}(k-1) + (\mu-1)(2F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}})(k-1) - F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}})(k-1) + F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}})(k-1) - F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}})(k-1) + F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}}\}(k-1) - F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}}\}(k-1) + F_{\{\mu-1+\frac{\sigma^2}{\mu-1},\sigma}\sqrt{1+\frac{\sigma^2}{\mu-1}$$

where $F_{\{\mu,\sigma\}}$ is the cumulative density function of a Gamma distribution with mean μ and standard deviation σ .

Value

Gives the discrete probability w_k that the serial interval is equal to k.

Author(s)

Anne Cori <a.cori@imperial.ac.uk>

References

Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013).

See Also

```
overall_infectivity, estimate_R
```

EstimateR 7

EstimateR	Function to ensure compatibility with EpiEstim versions <2.0

Description

Please only use for compatibility; Prefer the new estimate_R function instead

Usage

```
EstimateR(I, T.Start, T.End, method = c("NonParametricSI",
   "ParametricSI", "UncertainSI"), n1 = NULL, n2 = NULL,
   Mean.SI = NULL, Std.SI = NULL, Std.Mean.SI = NULL,
   Min.Mean.SI = NULL, Max.Mean.SI = NULL, Std.Std.SI = NULL,
   Min.Std.SI = NULL, Max.Std.SI = NULL, SI.Distr = NULL,
   Mean.Prior = 5, Std.Prior = 5, CV.Posterior = 0.3, plot = FALSE,
   leg.pos = "topright")
```

Arguments

I	see incid in estimate_R
T.Start	see config\$t_start in estimate_R
T.End	see config\$t_end in estimate_R
method	see method in $estimate_R$ (but EstimateR uses CamelCase where $estimate_R$ uses $snake_case$ for the method names)
n1	see n1 in estimate_R
n2	see n2 in estimate_R
Mean.SI	see config\$mean_si in estimate_R
Std.SI	see config\$std_si in estimate_R
Std.Mean.SI	see config\$std_mean_si in estimate_R
Min.Mean.SI	see config\$min_mean_si in estimate_R
Max.Mean.SI	see config\$max_mean_si in estimate_R
Std.Std.SI	see config\$std_std_si in estimate_R
Min.Std.SI	see config\$min_std_si in estimate_R
Max.Std.SI	see config\$max_std_si in estimate_R
SI.Distr	see config\$si_distr in estimate_R
Mean.Prior	see config\$mean_prior in estimate_R
Std.Prior	see config\$std_prior in estimate_R
CV.Posterior	see config\$cv_posterior in estimate_R
plot	Not used anymore, only there for compatibility
leg.pos	Not used anymore, only there for compatibility

estimate_R	Estimated Instantaneous Reproduction Number estimate_R estimates the reproduction number of an epidemic, given the incidence time series and the serial interval distribution.

Description

Estimated Instantaneous Reproduction Number

estimate_R estimates the reproduction number of an epidemic, given the incidence time series and the serial interval distribution.

Usage

```
estimate_R(incid, method = c("non_parametric_si", "parametric_si",
  "uncertain_si", "si_from_data", "si_from_sample"), si_data = NULL,
  si_sample = NULL, config = make_config(incid = incid, method =
 method))
```

Arguments

incid

One of the following

- A vector (or a dataframe with a single column) of non-negative integers containing the incidence time series
- A dataframe of non-negative integers with either i) incid\$I containing the total incidence, or ii) two columns, so that incid\$local contains the incidence of cases due to local transmission and incid\$imported contains the incidence of imported cases (with incid\$local + incid\$imported the total incidence). If the dataframe contains a column incid\$dates, this is used for plotting. incid\$dates must contains only dates in a row.
- An object of class incidence

Note that the cases from the first time step are always all assumed to be imported cases.

method	One of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or
	"si_from_sample" (see details).

For method "si_from_data"; the data on dates of symptoms of pairs of infector/infected individuals to be used to estimate the serial interval distribution (see details).

si_sample For method "si_from_sample"; a matrix where each column gives one distribution of the serial interval to be explored (see details).

config An object of class estimate_R_config, as returned by function make_config.

si_data

Details

Analytical estimates of the reproduction number for an epidemic over predefined time windows can be obtained within a Bayesian framework, for a given discrete distribution of the serial interval (see references).

Several methods are available to specify the serial interval distribution.

In short there are five methods to specify the serial interval distribution (see help for function make_config for more detail on each method). In the first two methods, a unique serial interval distribution is considered, whereas in the last three, a range of serial interval distributions are integrated over:

- In method "non_parametric_si" the user specifies the discrete distribution of the serial interval
- In method "parametric_si" the user specifies the mean and sd of the serial interval
- In method "uncertain_si" the mean and sd of the serial interval are each drawn from truncated normal distributions, with parameters specified by the user
- In method "si_from_data", the serial interval distribution is directly estimated, using MCMC, from interval censored exposure data, with data provided by the user together with a choice of parametric distribution for the serial interval
- In method "si_from_sample", the user directly provides the sample of serial interval distribution to use for estimation of R. This can be a useful alternative to the previous method, where the MCMC estimation of the serial interval distribution could be run once, and the same estimated SI distribution then used in estimate_R in different contexts, e.g. with different time windows, hence avoiding to rerun the MCMC everytime estimate_R is called.

Value

an object of class estimate_R, with components:

- R: a dataframe containing: the times of start and end of each time window considered; the posterior mean, std, and 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 quantiles of the reproduction number for each time window.
- method: the method used to estimate R, one of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample"
- si_distr: a vector or dataframe (depending on the method) containing the discrete serial interval distribution(s) used for estimation
- SI.Moments: a vector or dataframe (depending on the method) containing the mean and std of the discrete serial interval distribution(s) used for estimation
- I: the time series of total incidence
- I_local: the time series of incidence of local cases (so that I_local + I_imported = I)
- I_imported: the time series of incidence of imported cases (so that I_local + I_imported = I)
- dates: a vector of dates corresponding to the incidence time series
- MCMC_converged (only for method si_from_data): a boolean showing whether the Gelman-Rubin MCMC convergence diagnostic was successful (TRUE) or not (FALSE)

Author(s)

Anne Cori <a.cori@imperial.ac.uk>

References

Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013). Wallinga, J. and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (AJE 2004). Reich, N.G. et al. Estimating incubation period distributions with coarse data (Statis. Med. 2009)

See Also

```
discr_si make_config
```

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the reproduction number (method "non_parametric_si")
## when not specifying t_start and t_end in config, they are set to estimate
## the reproduction number on sliding weekly windows
res <- estimate_R(incid = Flu2009$incidence,
                  method = "non_parametric_si"
                  config = make_config(list(si_distr = Flu2009$si_distr)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## to specify t_start and t_end in config, e.g. to have biweekly sliding
## windows
t_start <- seq(2, nrow(Flu2009$incidence)-13)</pre>
t_{end} \leftarrow t_{start} + 13
res <- estimate_R(incid = Flu2009$incidence,
                  method = "non_parametric_si",
                  config = make_config(list(
                       si_distr = Flu2009$si_distr,
                      t_start = t_start,
                       t_{end} = t_{end}))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 14-day window
## finishing on that day.
## example with an incidence object
## create fake data
library(incidence)
data < c(0,1,1,2,1,3,4,5,5,5,5,4,4,26,6,7,9)
location <- sample(c("local","imported"), length(data), replace=TRUE)</pre>
location[1] <- "imported" # forcing the first case to be imported</pre>
## get incidence per group (location)
```

```
incid <- incidence(data, groups = location)</pre>
## Estimate R with assumptions on serial interval
res <- estimate_R(incid, method = "parametric_si",</pre>
                  config = make_config(list(
                  mean_si = 2.6, std_si = 1.5)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## estimate the reproduction number (method "parametric_si")
res <- estimate_R(Flu2009$incidence, method = "parametric_si"</pre>
                  config = make_config(list(mean_si = 2.6, std_si = 1.5)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## estimate the reproduction number (method "uncertain_si")
res <- estimate_R(Flu2009$incidence, method = "uncertain_si",
                  config = make_config(list(
                  mean_si = 2.6, std_mean_si = 1,
                  min_mean_si = 1, max_mean_si = 4.2,
                  std_si = 1.5, std_std_si = 0.5,
                  min_std_si = 0.5, max_std_si = 2.5,
                  n1 = 100, n2 = 100))
plot(res)
## the bottom left plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the reproduction number (method "si_from_data")
MCMC_seed <- 1
overall_seed <- 2
R_si_from_data <- estimate_R(MockRotavirus$incidence,</pre>
                            method = "si_from_data",
                            si_data = MockRotavirus$si_data,
                            config = make_config(list(si_parametric_distr = "G",
                                     mcmc_control = make_mcmc_control(list(burnin = 1000,
                                         thin = 10, seed = MCMC_seed),
                                         n1 = 500, n2 = 50,
                                         seed = overall_seed))))
```

compare with version with no uncertainty

12 estimate_R_plots

```
R_Parametric <- estimate_R(MockRotavirus$incidence,</pre>
                          method = "parametric_si",
                          config = make_config(list(
                          mean_si = mean(R_si_from_data$SI.Moments$Mean),
                             std_si = mean(R_si_from_data$SI.Moments$Std))))
## generate plots
p_uncertainty <- plot(R_si_from_data, "R", options_R=list(ylim=c(0, 1.5)))</pre>
p_no_uncertainty <- plot(R_Parametric, "R", options_R=list(ylim=c(0, 1.5)))</pre>
gridExtra::grid.arrange(p_uncertainty, p_no_uncertainty,ncol=2)
## the left hand side graph is with uncertainty in the SI distribution, the
## right hand side without.
## The credible intervals are wider when accounting for uncertainty in the SI
## distribution.
## estimate the reproduction number (method "si_from_sample")
MCMC_seed <- 1
overall_seed <- 2
SI.fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,</pre>
                 dist = "G",
                 init.pars = init_mcmc_params(MockRotavirus$si_data, "G"),
                 burnin = 1000,
                 n.samples = 5000,
                 seed = MCMC_seed)
si_sample <- coarse2estim(SI.fit, thin = 10)$si_sample</pre>
R_si_from_sample <- estimate_R(MockRotavirus$incidence,</pre>
                               method = "si_from_sample",
                                si_sample = si_sample,
                                config = make_config(list(n2 = 50,
                                seed = overall_seed)))
plot(R_si_from_sample)
## check that R_si_from_sample is the same as R_si_from_data
## since they were generated using the same MCMC algorithm to generate the SI
## sample (either internally to EpiEstim or externally)
all(R_si_from_sample\R\) = R_si_from_data\R\) Mean(R))
## End(Not run)
```

estimate_R_plots

Wrapper for plot.estimate_R

Description

This wrapper has been created so that several estimate_R objects can be plotted at the same time.

Usage

```
estimate_R_plots(..., legend = FALSE)
```

estimate_R_plots 13

Arguments

. Arguments of $plot.estimate_R$, but in addition, parameter x can be a ob-

jects of class estimate_R (obtained as outputs of functions estimate_R or wallinga_teunis. If x is a list, and what='R' or what='all', all estimates of R are plotted on a single graph. This will only work if all the estimate_R objects in the list were computed using the same config\$t_start and config\$t_end

legend

A boolean (TRUE by default) governing the presence / absence of legends on

the plots

Value

```
a plot (if what = "incid", "R", or "SI") or a grob object (if what = "all").
```

Author(s)

Anne Cori, Zhian Kamvar

See Also

```
plot.estimate_R
```

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
#### COMPARE THE INSTANTANEOUS AND CASE REPRODUCTION NUMBERS ####
## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_instantaneous <- estimate_R(Flu2009$incidence,</pre>
                  method = "non_parametric_si",
                  config = list(t_start = seq(2, 26),
                                 t_{end} = seq(8, 32),
                                 si_distr = Flu2009$si_distr
                 )
## estimate the case reproduction number
R_case <- wallinga_teunis(Flu2009$incidence,</pre>
                  method = "non_parametric_si",
                  config = list(t_start = seq(2, 26),
                                 t_{end} = seq(8, 32),
                                 si_distr = Flu2009$si_distr
                  )
## visualise R estimates on the same plot
estimate_R_plots(list(R_instantaneous, R_case), what = "R",
                 options_R = list(col = c("blue", "red")), legend = TRUE)
```

14 Flu1918

COMPARE THE INSTANTANEOUS R ON SLIDING WEEKLY OR BIWEEKLY WINDOWS

Flu1918

Data on the 1918 H1N1 influenza pandemic in Baltimore.

Description

This data set gives:

- 1. the daily incidence of onset of disease in Baltimore during the 1918 H1N1 influenza pandemic (see source and references),
- 2. the discrete daily distribution of the serial interval for influenza, assuming a shifted Gamma distribution with mean 2.6 days, standard deviation 1.5 days and shift 1 day (see references).

Format

A list of two elements:

- incidence: a vector containing 92 days of observation,
- si_distr: a vector containing a set of 12 probabilities.

Source

Frost W. and E. Sydenstricker (1919) Influenza in Maryland: preliminary statistics of certain localities. Public Health Rep.(34): 491-504.

Flu2009

References

Cauchemez S. et al. (2011) Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci U S A 108(7), 2825-2830.

Ferguson N.M. et al. (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209-214.

Fraser C. et al. (2011) Influenza Transmission in Households During the 1918 Pandemic. Am J Epidemiol 174(5): 505-514.

Frost W. and E. Sydenstricker (1919) Influenza in Maryland: preliminary statistics of certain localities. Public Health Rep.(34): 491-504.

Vynnycky E. et al. (2007) Estimates of the reproduction numbers of Spanish influenza using morbidity data. Int J Epidemiol 36(4): 881-889.

White L.F. and M. Pagano (2008) Transmissibility of the influenza virus in the 1918 pandemic. PLoS One 3(1): e1498.

Examples

Flu2009

Data on the 2009 H1N1 influenza pandemic in a school in Pennsylvania.

Description

This data set gives:

- the daily incidence of onset of acute respiratory illness (ARI, defined as at least two symptoms among fever, cough, sore throat, and runny nose) amongst children in a school in Pennsylvania during the 2009 H1N1 influenza pandemic (see source and references),
- 2. the discrete daily distribution of the serial interval for influenza, assuming a shifted Gamma distribution with mean 2.6 days, standard deviation 1.5 days and shift 1 day (see references).
- 3. interval-censored serial interval data from the 2009 outbreak of H1N1 influenza in San Antonio, Texas, USA (see references).

Format

A list of three elements:

- **incidence:** a dataframe with 32 lines containing dates in first column, and daily incidence in second column (Cauchemez et al., 2011),
- si_distr: a vector containing a set of 12 probabilities (Ferguson et al, 2005),
- **si_data:** a dataframe with 16 lines giving serial interval patient data collected in a household study in San Antonio, Texas throughout the 2009 H1N1 outbreak (Morgan et al., 2010).

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the reproduction number (method "non_parametric_si")
res <- estimate_R(Flu2009$incidence, method="non_parametric_si",
          config = make_config(list(si_distr = Flu2009$si_distr)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number
## over the 7-day window finishing on that day.
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## estimate the reproduction number (method "si_from_data")
res <- estimate_R(Flu2009$incidence, method="si_from_data",
          si_data = Flu2009$si_data,
          config = make_config(list(mcmc_control = make_mcmc_control(list(
                                 burnin = 1000,
                                 thin = 10, seed = 1),
                      n1 = 1000, n2 = 50,
                      si_parametric_distr = "G")))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number
## over the 7-day window finishing on that day.
## End(Not run)
```

Description

This data set gives:

- the daily incidence of self-reported and laboratory-confirmed cases of influenza amongst children in a school in New York city during the 2009 H1N1 influenza pandemic (see source and references),
- 2. interval-censored serial interval data from the 2009 outbreak of H1N1 influenza in a New York city school (see references).

Format

A list of two elements:

- incidence: a dataframe with 14 lines containing dates in first column, and daily incidence in second column.
- **si_data**: a dataframe containing data on the generation time for 16 pairs of infector/infected individuals (see references and see argument si_data of function estimate_R() for details on columns)

Source

Lessler J. et al. (2009) Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. New Eng J Med 361: 2628-2636.

References

Lessler J. et al. (2009) Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. New Eng J Med 361: 2628-2636.

```
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on pandemic flu in a New York school in 2009
data("flu_2009_NYC_school")
## estimate the reproduction number (method "si_from_data")
res <- estimate_R(flu_2009_NYC_school$incidence, method="si_from_data",
         si_data = flu_2009_NYC_school$si_data,
          config = make_config(list(
                      t_start = seq(2, 8),
                      t_{end} = seq(8, 14),
                      si_parametric_distr = "G",
                      mcmc_control = make_mcmc_control(list(burnin = 1000,
                                 thin = 10, seed = 1)),
                      n1 = 1000, n2 = 50)
plot(res)
```

18 init_mcmc_params

```
## the second plot produced shows, at each each day,
## the estimate of the reproduction number
## over the 7-day window finishing on that day.

## End(Not run)

init_mcmc_params

init_mcmc_params Finds clever starting points for the MCMC to
be used to estimate the serial interval, e.g. when using option
si_from_data in estimate_R
```

Description

init_mcmc_params Finds values of the serial interval distribution parameters, used to initalise the MCMC estimation of the serial interval distribution. Initial values are computed based on the observed mean and standard deviation of the sample from which the parameters are to be estiamted.

Usage

```
init_mcmc_params(si_data, dist = c("G", "W", "L", "off1G", "off1W",
    "off1L"))
```

Arguments

si_data

the data on dates of symptoms of pairs of infector/infected individuals to be used to estimate the serial interval distribution. This should be a dataframe with 5 columns:

- EL: the lower bound of the symptom onset date of the infector (given as an integer)
- ER: the upper bound of the symptom onset date of the infector (given as an integer). Should be such that ER>=EL
- SL: the lower bound of the symptom onset date of the infected indivdiual (given as an integer)
- SR: the upper bound of the symptom onset date of the infected indivdiual (given as an integer). Should be such that SR>=SL
- type (optional): can have entries 0, 1, or 2, corresponding to doubly intervalcensored, single interval-censored or exact observations, respectively, see Reich et al. Statist. Med. 2009. If not specified, this will be automatically computed from the dates

dist

the parametric distribution to use for the serial interval. Should be one of "G" (Gamma), "W" (Weibull), "L" (Lognormal), "off1G" (Gamma shifted by 1), "off1W" (Weibull shifted by 1), or "off1L" (Lognormal shifted by 1).

Value

A vector containing the initial values for the two parameters of the distribution of the serial interval. These are the shape and scale for all but the lognormal distribution, for which it is the meanlog and sdlog.

init_mcmc_params 19

Author(s)

Anne Cori

See Also

```
estimate_R
```

```
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## get clever initial values for shape and scale of a Gamma distribution
## fitted to the the data MockRotavirus$si_data
clever_init_param <- init_mcmc_params(MockRotavirus$si_data, "G")</pre>
## estimate the serial interval from data using a clever starting point for
## the MCMC chain
SI_fit_clever <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,</pre>
                             dist = "G",
                             init.pars = clever_init_param,
                             burnin = 1000,
                             n.samples = 5000)
## estimate the serial interval from data using a random starting point for
## the MCMC chain
SI_fit_naive <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,</pre>
                             dist = "G",
                             burnin = 1000,
                             n.samples = 5000)
## use check_cdt_samples_convergence to check convergence in both situations
converg_diag_clever <- check_cdt_samples_convergence(SI_fit_clever@samples)</pre>
converg_diag_naive <- check_cdt_samples_convergence(SI_fit_naive@samples)</pre>
converg_diag_clever
converg_diag_naive
## End(Not run)
```

make_config

Set and check parameter settings of estimate_R

Description

This function defines settings for estimate_R It takes a list of named items as input, set defaults where arguments are missing, and return a list of settings.

Usage

```
make_config(..., incid = NULL, method = c("non_parametric_si",
    "parametric_si", "uncertain_si", "si_from_data", "si_from_sample"))
```

Arguments

. . .

Acceptables arguments for ... are:

- t_start Vector of positive integers giving the starting times of each window over which the reproduction number will be estimated. These must be in ascending order, and so that for all i, t_start[i]<=t_end[i]. t_start[1] should be strictly after the first day with non null incidence.
- **t_end** Vector of positive integers giving the ending times of each window over which the reproduction number will be estimated. These must be in ascending order, and so that for all i, t_start[i]<=t_end[i].
- **n1** For method "uncertain_si" and "si_from_data"; positive integer giving the size of the sample of SI distributions to be drawn (see details).
- **n2** For methods "uncertain_si", "si_from_data" and "si_from_sample"; positive integer giving the size of the sample drawn from the posterior distribution of R for each serial interval distribution considered (see details).
- **mean_si** For method "parametric_si" and "uncertain_si"; positive real giving the mean serial interval (method "parametric_si") or the average mean serial interval (method "uncertain_si", see details).
- std_si For method "parametric_si" and "uncertain_si"; non negative real giving the stadard deviation of the serial interval (method "parametric_si") or the average standard deviation of the serial interval (method "uncertain_si", see details).
- **std_mean_si** For method "uncertain_si"; standard deviation of the distribution from which mean serial intervals are drawn (see details).
- min_mean_si For method "uncertain_si"; lower bound of the distribution from which mean serial intervals are drawn (see details).
- max_mean_si For method "uncertain_si"; upper bound of the distribution from which mean serial intervals are drawn (see details).
- **std_std_si** For method "uncertain_si"; standard deviation of the distribution from which standard deviations of the serial interval are drawn (see details).
- min_std_si For method "uncertain_si"; lower bound of the distribution from which standard deviations of the serial interval are drawn (see details).

max_std_si For method "uncertain_si"; upper bound of the distribution from which standard deviations of the serial interval are drawn (see details).

- **si_distr** For method "non_parametric_si"; vector of probabilities giving the discrete distribution of the serial interval, starting with si_distr[1] (probability that the serial interval is zero), which should be zero.
- si_parametric_distr For method "si_from_data"; the parametric distribution to use when estimating the serial interval from data on dates of symptoms of pairs of infector/infected individuals (see details). Should be one of "G" (Gamma), "W" (Weibull), "L" (Lognormal), "off1G" (Gamma shifted by 1), "off1W" (Weibull shifted by 1), or "off1L" (Lognormal shifted by 1).
- mcmc_control An object of class estimate_R_mcmc_control, as returned by function make_mcmc_control.
- **seed** An optional integer used as the seed for the random number generator at the start of the function (then potentially reset within the MCMC for method si_from_data); useful to get reproducible results.
- **mean_prior** A positive number giving the mean of the common prior distribution for all reproduction numbers (see details).
- **std_prior** A positive number giving the standard deviation of the common prior distribution for all reproduction numbers (see details).
- cv_posterior A positive number giving the aimed posterior coefficient of variation (see details).

incid As in functionestimate_R.
method As in functionestimate_R.

Details

Analytical estimates of the reproduction number for an epidemic over predefined time windows can be obtained using function estimate_R, for a given discrete distribution of the serial interval. make_config allows to generate a configuration specifying the way the estimation will be performed.

The more incident cases are observed over a time window, the smallest the posterior coefficient of variation (CV, ratio of standard deviation over mean) of the reproduction number. An aimed CV can be specified in the argument cv_posterior (default is 0.3), and a warning will be produced if the incidence within one of the time windows considered is too low to get this CV.

The methods vary in the way the serial interval distribution is specified.

In short there are five methods to specify the serial interval distribution (see below for details on each method). In the first two methods, a unique serial interval distribution is considered, whereas in the last three, a range of serial interval distributions are integrated over:

- In method "non_parametric_si" the user specifies the discrete distribution of the serial interval
- In method "parametric_si" the user specifies the mean and sd of the serial interval
- In method "uncertain_si" the mean and sd of the serial interval are each drawn from truncated normal distributions, with parameters specified by the user
- In method "si_from_data", the serial interval distribution is directly estimated, using MCMC, from interval censored exposure data, with data provided by the user together with a choice of parametric distribution for the serial interval

• In method "si_from_sample", the user directly provides the sample of serial interval distribution to use for estimation of R. This can be a useful alternative to the previous method, where the MCMC estimation of the serial interval distribution could be run once, and the same estimated SI distribution then used in estimate_R in different contexts, e.g. with different time windows, hence avoiding to rerun the MCMC everytime estimate_R is called.

method "non_parametric_si" —————
The discrete distribution of the serial interval is directly specified in the argument si_distr.
method "parametric_si" ————
The many and standard designing of the continuous distribution of the casislinears law

The mean and standard deviation of the continuous distribution of the serial interval are given in the arguments mean_si and std_si. The discrete distribution of the serial interval is derived automatically using discr_si.

-----method "uncertain_si" -----

Method "uncertain_si" allows accounting for uncertainty on the serial interval distribution as described in Cori et al. AJE 2013. We allow the mean μ and standard deviation σ of the serial interval to vary according to truncated normal distributions. We sample n1 pairs of mean and standard deviations, $(\mu^{(1)}, \sigma^{(1)}), ..., (\mu^{(n_2)}, \sigma^{(n_2)})$, by first sampling the mean $\mu^{(k)}$ from its truncated normal distribution (with mean mean_si, standard deviation std_mean_si, minimum min_mean_si and maximum max_mean_si), and then sampling the standard deviation $\sigma^{(k)}$ from its truncated normal distribution (with mean std_si, standard deviation std_std_si, minimum min_std_si and maximum max_std_si), but imposing that $\sigma^{(k)} < \mu^{(k)}$. This constraint ensures that the Gamma probability density function of the serial interval is null at t=0. Warnings are produced when the truncated normal distributions are not symmetric around the mean. For each pair $(\mu^{(k)}, \sigma^{(k)})$, we then draw a sample of size n2 in the posterior distribution of the reproduction number over each time window, conditionnally on this serial interval distribution. After pooling, a sample of size n1 × n2 of the joint posterior distribution of the reproduction number over each time window is obtained. The posterior mean, standard deviation, and 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 quantiles of the reproduction number for each time window are obtained from this sample.

-----method "si_from_data" -----

Method "si_from_data" allows accounting for uncertainty on the serial interval distribution. Unlike method "uncertain_si", where we arbitrarily vary the mean and std of the SI in truncated normal distributions, here, the scope of serial interval distributions considered is directly informed by data on the (potentially censored) dates of symptoms of pairs of infector/infected individuals. This data, specified in argument si_data, should be a dataframe with 5 columns:

- EL: the lower bound of the symptom onset date of the infector (given as an integer)
- ER: the upper bound of the symptom onset date of the infector (given as an integer). Should be such that ER>=EL
- SL: the lower bound of the symptom onset date of the infected individual (given as an integer)
- SR: the upper bound of the symptom onset date of the infected indivdiual (given as an integer). Should be such that SR>=SL
- type (optional): can have entries 0, 1, or 2, corresponding to doubly interval-censored, single interval-censored or exact observations, respectively, see Reich et al. Statist. Med. 2009. If not specified, this will be automatically computed from the dates

Assuming a given parametric distribution for the serial interval distribution (specified in si_parametric_distr), the posterior distribution of the serial interval is estimated directly fom these data using MCMC methods implemented in the package coarsedatatools. The argument mcmc_control is a list of characteristics which control the MCMC. The MCMC is run for a total number of iterations of mcmc_control\$burnin + n1*mcmc_control\$thin; but the output is only recorded after the burnin, and only 1 in every mcmc_control\$thin iterations, so that the posterior sample size is n1. For each element in the posterior sample of serial interval distribution, we then draw a sample of size n2 in the posterior distribution of the reproduction number over each time window, conditionally on this serial interval distribution. After pooling, a sample of size n1 × n2 of the joint posterior distribution of the reproduction number over each time window is obtained. The posterior mean, standard deviation, and 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 quantiles of the reproduction number for each time window are obtained from this sample.

```
-----method "si_from_sample" ------
```

Method "si_from_sample" also allows accounting for uncertainty on the serial interval distribution. Unlike methods "uncertain_si" and "si_from_data", the user directly provides (in argument si_sample) a sample of serial interval distribution to be explored.

Value

An object of class estimate_R_config with components t_start, t_end, n1, n2, mean_si, std_si, std_mean_si, min_mean_si, max_mean_si, std_std_si, min_std_si, max_std_si, si_distr, si_parametric_distr, mcmc_control, seed, mean_prior, std_prior, cv_posterior, which can be used as an argument of function estimate R.

```
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the reproduction number (method "si_from_data")
## we are not specifying the time windows, so by defaults this will estimate
## R on sliding weekly windows
incid <- MockRotavirus$incidence</pre>
method <- "si_from_data"</pre>
config <- make_config(incid = incid,</pre>
                      method = method,
                      list(si_parametric_distr = "G",
                      mcmc_control = make_mcmc_control(burnin = 1000,
                      thin = 10, seed = 1),
                      n1 = 500,
                      n2 = 50,
                      seed = 2))
R_si_from_data <- estimate_R(incid,</pre>
                             method = method,
```

24 make_mcmc_control

```
si_data = MockRotavirus$si_data,
                            config = config)
plot(R_si_from_data)
## you can also create the config straight within the estimate_R call,
## in that case incid and method are automatically used from the estimate_R
## arguments:
R_si_from_data <- estimate_R(incid,</pre>
                            method = method,
                            si_data = MockRotavirus$si_data,
                            config = make_config(
                     list(si_parametric_distr = "G",
                     mcmc_control = make_mcmc_control(burnin = 1000,
                     thin = 10, seed = 1),
                     n1 = 500,
                     n2 = 50,
                     seed = 2)))
plot(R_si_from_data)
## End(Not run)
```

make_mcmc_control

make_mcmc_control Creates a list of mcmc control parameters to be used in config\$mcmc_control, where config is an argument of the estimate_R function. This is used to configure the MCMC chain used to estimate the serial interval within estimate_R (with method "si_from_data").

Description

make_mcmc_control Creates a list of mcmc control parameters to be used in config\$mcmc_control, where config is an argument of the estimate_R function. This is used to configure the MCMC chain used to estimate the serial interval within estimate_R (with method "si_from_data").

Usage

```
make_mcmc_control(burnin = 3000, thin = 10,
  seed = as.integer(Sys.time()), init_pars = NULL)
```

Arguments

burnin	A positive integer giving the burnin used in the MCMC when estimating the serial interval distribution.
thin	A positive integer corresponding to thinning parameter; the MCMC will be run for burnin+n1*thin iterations; 1 in thin iterations will be recorded, after the burnin phase, so the posterior sample size is n1.
seed	An integer used as the seed for the random number generator at the start of the MCMC estimation; useful to get reproducible results.

make_mcmc_control 25

init_pars

vector of size 2 corresponding to the initial values of parameters to use for the SI distribution. This is the shape and scale for all but the lognormal distribution, for which it is the meanlog and sdlog.

Details

The argument si_data, should be a dataframe with 5 columns:

- EL: the lower bound of the symptom onset date of the infector (given as an integer)
- ER: the upper bound of the symptom onset date of the infector (given as an integer). Should be such that ER>=EL
- SL: the lower bound of the symptom onset date of the infected indivdiual (given as an integer)
- SR: the upper bound of the symptom onset date of the infected indivdiual (given as an integer).
 Should be such that SR>=SL
- type (optional): can have entries 0, 1, or 2, corresponding to doubly interval-censored, single interval-censored or exact observations, respectively, see Reich et al. Statist. Med. 2009. If not specified, this will be automatically computed from the dates

Assuming a given parametric distribution for the serial interval distribution (specified in si_parametric_distr), the posterior distribution of the serial interval is estimated directly from these data using MCMC methods implemented in the package

Value

An object of class estimate_R_mcmc_control with components burnin, thin, seed, init_pars. This can be used as an argument of function make_config.

```
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the reproduction number (method "si_from_data")
mcmc_seed <- 1
burnin <- 1000
thin <- 10
mcmc_control <- make_mcmc_control(burnin = burnin, thin = thin,</pre>
                      seed = mcmc_seed)
incid <- MockRotavirus$incidence</pre>
method <- "si_from_data"
overall_seed <- 2
config <- make_config(incid = incid,</pre>
                      method = method,
                      si_parametric_distr = "G",
```

26 Measles1861

Measles1861

Data on the 1861 measles epidemic in Hagelloch, Germany.

Description

This data set gives:

- 1. the daily incidence of onset of symptoms in Hallegoch (Germany) during the 1861 measles epidemic (see source and references),
- 2. the discrete daily distribution of the serial interval for measles, assuming a shifted Gamma distribution with mean 14.9 days, standard deviation 3.9 days and shift 1 day (see references).

Format

A list of two elements:

- incidence: a vector containing 48 days of observation,
- si_distr: a vector containing a set of 38 probabilities.

Source

Groendyke C. et al. (2011) Bayesian Inference for Contact Networks Given Epidemic Data. Scandinavian Journal of Statistics 38(3): 600-616.

References

Groendyke C. et al. (2011) Bayesian Inference for Contact Networks Given Epidemic Data. Scandinavian Journal of Statistics 38(3): 600-616.

mers_2014_15 27

mers_2014_15

Data on Middle East Respiratory Syndrome (MERS) in Saudi Arabia.

Description

This data set gives:

- the daily incidence of onset of symptoms of laboratory confirmed human infections with MERS-CoV in Saudi Arabia between the beginning of July 2014 and the end of December 2015, and
- 2. estimates of the mean and standrad deviation of the serial interval for MERS.

Format

A list of two elements:

- **incidence:** a dataframe containing 495 days of observations with dates in the first column, and number of local (2nd column) and imported (3rd column) cases of MERS,
- si: a list of estimates of the mean (mean_si) and standard deviation (std_si) of the serial interval for MERS.

Source

The incidence data was extracted from the EMPRES I system from FAO (Global Animal Disease Information System - Food and Agriculture Organization of the United Nations, 2017). Note incidence on the first day was originally made of one local case and zero imported cases; this has been modified to zero local cases and one imported case in the dataset shown here so the reproduction number can be estimated from the start using the function <code>estimate_R()</code>. The serial interval parameters were those estimated by Cauchemez et al. (2016).

References

Global Animal Disease Information System - Food and Agriculture Organization of the United Nations, 2017

Cauchemez S, Nouvellet P, Cori A, Jombart T, Garske T, Clapham H, Moore S, Linden Mills H, Salje H, Collins C, et al. 2016. Unraveling the drivers of MERS-CoV transmission. Proc Natl Acad Sci 113: 9081-9086.

28 MockRotavirus

Examples

```
## load data
data("mers_2014_15")
## estimate the reproduction number (method "parametric_si")
bimonthly_R <- estimate_R(mers_2014_15$incidence[,c("local", "imported")],</pre>
                          method = "parametric_si",
                          config = make_config(
                          mean_si = mers_2014_15si$mean_si,
                          std_si = mers_2014_15$si$std_si,
                          t_start = 2:(nrow(mers_2014_15\$incidence)-8*7),
                          t_{end} = (2:(nrow(mers_2014_15\$incidence)-8*7)) + 8*7))
plot(bimonthly_R, legend = FALSE, add_imported_cases = TRUE,
                          options_I = list(col = c("local" = "black",
                              "imported" = "red"),
                             interval = 7, # show weekly incidence
                             ylab = "Weekly incidence"),
                          options_R = list(ylab = "Bimonthly R"))
# The first plot shows the weekly incidence,
# with imported cases shown in red and local cases in black
```

MockRotavirus

Mock data on a rotavirus epidemic.

Description

This data set gives:

- 1. the daily incidence of onset of symptoms in a mock outbreak of rotavirus,
- 2. mock observations of symptom onset dates for 19 pairs of infector/infected individuals.

Format

A list of two elements:

- incidence: a vector containing 53 days of observation,
- si_distr: a dataframe containing a set of 19 observations; each observation corresponds to a pair of infector/infected individuals. EL and ER columns contain the lower an upper bounds of the dates of symptoms onset in the infectors. SL and SR columns contain the lower an upper bounds of the dates of symptoms onset in the infected individuals. The type column has entries 0, 1, or 2, corresponding to doubly interval-censored, single interval-censored or exact observations, respectively, see Reich et al. Statist. Med. 2009

OverallInfectivity 29

Examples

```
## Not run:
## Note the following example uses an MCMC routine
## to estimate the serial interval distribution from data,
## so may take a few minutes to run
## load data
data("MockRotavirus")
## estimate the reproduction number (method "si_from_data")
res <- estimate_R(MockRotavirus$incidence,</pre>
          method = "si_from_data",
          si_data = MockRotavirus$si_data,
          config = make_config(list(
            si_parametric_distr = "G",
            mcmc_control = make_mcmc_control(list(burnin = 3000, thin = 10)),
            n1 = 500, n2 = 50))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number
## over the 7-day window finishing on that day.
## End(Not run)
```

OverallInfectivity

Function to ensure compatibility with EpiEstim versions <2.0

Description

Please only use for compatibility; Prefer the new overall_infectivity function instead

Usage

```
OverallInfectivity(I, SI.Distr)
```

Arguments

```
I see incid in overall_infectivity
SI.Distr see si_distr in overall_infectivity
```

30 overall_infectivity

overall_infectivity

Overall Infectivity Due To Previously Infected Individuals

Description

overall_infectivity computes the overall infectivity due to previously infected individuals.

Usage

```
overall_infectivity(incid, si_distr)
```

Arguments

incid

One of the following

- A vector (or a dataframe with a single column) of non-negative integers containing an incidence time series
- A dataframe of non-negative integers with two columns, so that incid\$local contains the incidence of cases due to local transmission and incid\$imported contains the incidence of imported cases (with incid\$local + incid\$imported the total incidence).

Note that the cases from the first time step are always all assumed to be imported cases.

si_distr

Vector of probabilities giving the discrete distribution of the serial interval.

Details

The overall infectivity λ_t at time step t is equal to the sum of the previously infected individuals (given by the incidence vector I, with I = incid\$local + incid\$imported if I is a matrix), weighted by their infectivity at time t (given by the discrete serial interval distribution w_k). In mathematical terms:

$$\lambda_t = \sum_{k=1}^{t-1} I_{t-k} w_k$$

Value

A vector which contains the overall infectivity λ_t at each time step

Author(s)

Anne Cori <a.cori@imperial.ac.uk>

References

Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013).

plot.estimate_R 31

See Also

```
discr_si, estimate_R
```

Examples

```
## load data on pandemic flu in a school in 2009
data("Flu2009")

## compute overall infectivity
lambda <- overall_infectivity(Flu2009$incidence, Flu2009$si_distr)
par(mfrow=c(2,1))
plot(Flu2009$incidence, type = "s", xlab = "time (days)", ylab = "incidence")
title(main = "Epidemic curve")
plot(lambda, type = "s", xlab = "time (days)", ylab = "Infectivity")
title(main = "Overall infectivity")</pre>
```

plot.estimate_R

Plot outputs of estimate_r

Description

The plot method of estimate_r objects can be used to visualise three types of information. The first one shows the epidemic curve. The second one shows the posterior mean and 95% credible interval of the reproduction number. The estimate for a time window is plotted at the end of the time window. The third plot shows the discrete distribution(s) of the serial interval.

Usage

```
## S3 method for class 'estimate_R'
plot(x, what = c("all", "incid", "R", "SI"),
   add_imported_cases = FALSE, options_I = list(col = palette(), transp
   = 0.7, xlim = NULL, ylim = NULL, interval = 1L, xlab = "Time", ylab =
   "Incidence"), options_R = list(col = palette(), transp = 0.2, xlim =
   NULL, ylim = NULL, xlab = "Time", ylab = "R"),
   options_SI = list(prob_min = 0.001, col = "black", transp = 0.25, xlim
   = NULL, ylim = NULL, xlab = "Time", ylab = "Frequency"), legend = TRUE,
   ...)
```

Arguments

x The output of function estimate_R or function wallinga_teunis. To plot simultaneous outputs on the same plot use estimate_R_plots function

what A string specifying what to plot, namely the incidence time series (what='incid'), the estimated reproduction number (what='R'), the serial interval distribution

(what='SI', or all three (what='all')).

add_imported_cases

A boolean to specify whether, on the incidence time series plot, to add the incidence of imported cases.

32 plot.estimate_R

options_I

For what = "incid" or "all". A list of graphical options:

col A colour or vector of colours used for plotting incid. By default uses the default R colours.

transp A numeric value between 0 and 1 used to monitor transparency of the bars plotted. Defaults to 0.7.

xlim A parameter similar to that in par, to monitor the limits of the horizontal axis

ylim A parameter similar to that in par, to monitor the limits of the vertical axis **interval** An integer or character indicating the (fixed) size of the time interval used for plotting the incidence; defaults to 1 day.

xlab, ylab Labels for the axes of the incidence plot

options_R

For what = "R" or "all". A list of graphical options:

col A colour or vector of colours used for plotting R. By default uses the default R colours

transp A numeric value between 0 and 1 used to monitor transparency of the 95%CrI. Defaults to 0.2.

xlim A parameter similar to that in par, to monitor the limits of the horizontal axis

ylim A parameter similar to that in par, to monitor the limits of the vertical axis xlab, ylab Labels for the axes of the R plot

options_SI

For what = "SI" or "all". A list of graphical options:

prob_min A numeric value between 0 and 1. The SI distributions explored are only shown from time 0 up to the time t so that each distribution explored has probability < prob_min to be on any time step after t. Defaults to 0.001.

col A colour or vector of colours used for plotting the SI. Defaults to black.

transp A numeric value between 0 and 1 used to monitor transparency of the lines. Defaults to 0.25

xlim A parameter similar to that in par, to monitor the limits of the horizontal axis

ylim A parameter similar to that in par, to monitor the limits of the vertical axis xlab, ylab Labels for the axes of the serial interval distribution plot

legend

A boolean (TRUE by default) governing the presence / absence of legends on the plots

... further arguments passed to other methods (currently unused).

Value

```
a plot (if what = "incid", "R", or "SI") or a grob object (if what = "all").
```

Author(s)

Rolina van Gaalen <rolina.van.gaalen@rivm.nl> and Anne Cori <a.cori@imperial.ac.uk>; S3 method by Thibaut Jombart

sample_posterior_R 33

See Also

```
estimate_R, wallinga_teunis and estimate_R_plots
```

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_i <- estimate_R(Flu2009$incidence,</pre>
                  method = "non_parametric_si",
                   config = list(t_start = seq(2, 26),
                                 t_{end} = seq(8, 32),
                                 si_distr = Flu2009$si_distr
                                )
                  )
## visualise results
plot(R_i, legend = FALSE)
## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_c <- wallinga_teunis(Flu2009$incidence,</pre>
                        method = "non_parametric_si",
                        config = list(t_start = seq(2, 26),
                                      t_{end} = seq(8, 32),
                                       si_distr = Flu2009$si_distr
                                      )
                       )
## produce plot of the incidence
## (with, on top of total incidence, the incidence of imported cases),
## estimated instantaneous and case reproduction numbers
## and serial interval distribution used
p_I \leftarrow plot(R_i, "incid", add_imported_cases=TRUE) \# plots the incidence
p\_SI \leftarrow plot(R_i, "SI") \# plots the serial interval distribution
p_Ri <- plot(R_i, "R",</pre>
             options_R = list(ylim = c(0, 4)))
        # plots the estimated instantaneous reproduction number
p_Rc <- plot(R_c, "R",</pre>
             options_R = list(ylim = c(0, 4)))
        # plots the estimated case reproduction number
gridExtra::grid.arrange(p_I, p_SI, p_Ri, p_Rc, ncol = 2)
```

Description

sample from the posterior R distribution

Usage

```
sample_posterior_R(R, n = 1000, window = 1L)
```

Arguments

R an estimate_R object from the estimate_r function function.

n an integer specifying the number of samples to be taken from the gamma distri-

bution.

window an integer (or sequence of integers) specifying the window(s) from which to

estimate R. Defaults to the first window. If multiple windows are specified, the

resulting samples will be drawn from several distributions.

Value

n values of R from the posterior R distribution

Author(s)

Anne Cori

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the reproduction number (method "non_parametric_si")
## when not specifying t_start and t_end in config, they are set to estimate
## the reproduction number on sliding weekly windows
res <- estimate_R(incid = Flu2009$incidence,
                  method = "non_parametric_si",
                  config = make_config(list(si_distr = Flu2009$si_distr)))
## Sample R from the first weekly window
win <- 1L
R_median <- res$R$`Median(R)`[win]</pre>
R_{cri} \leftarrow c(res\R^\circ\Quantile.0.025(R)'[win], res\R^\circ\Quantile.0.975(R)'[win])
set.seed(2019-06-06) # fixing the random seed for reproducibility
R_sample <- sample_posterior_R(res, n = 1000, window = win)</pre>
hist(R_sample, col = "grey", main = "R sampled from the first weekly window")
abline(v = R_median, col = "red")
                                         # show the median estimated R
abline(v = R_CrI, col = "red", lty = 2) # show the 95%CrI of R
```

SARS2003 35

SARS2003

Data on the 2003 SARS epidemic in Hong Kong.

Description

This data set gives:

- 1. the daily incidence of onset of symptoms in Hong Kong during the 2003 severe acute respiratory syndrome (SARS) epidemic (see source and references),
- 2. the discrete daily distribution of the serial interval for SARS, assuming a shifted Gamma distribution with mean 8.4 days, standard deviation 3.8 days and shift 1 day (see references).

Format

A list of two elements:

- incidence: a vector containing 107 days of observation,
- si_distr: a vector containing a set of 25 probabilities.

Source

Cori A. et al. (2009) Temporal variability and social heterogeneity in disease transmission: the case of SARS in Hong Kong. PLoS Comput Biol 5(8): e1000471.

References

Cori A. et al. (2009) Temporal variability and social heterogeneity in disease transmission: the case of SARS in Hong Kong. PLoS Comput Biol 5(8): e1000471.

Lipsitch M. et al. (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627): 1966-1970.

36 Smallpox1972

Smallpox1972

Data on the 1972 smallpox epidemic in Kosovo

Description

This data set gives:

- 1. the daily incidence of onset of symptoms in Kosovo during the 1972 smallpox epidemic (see source and references),
- 2. the discrete daily distribution of the serial interval for smallpox, assuming a shifted Gamma distribution with mean 22.4 days, standard deviation 6.1 days and shift 1 day (see references).

Format

A list of two elements:

- incidence: a vector containing 57 days of observation,
- si_distr: a vector containing a set of 46 probabilities.

Source

Fenner F. et al. (1988) Smallpox and its Eradication. Geneva, World Health Organization.

References

Fenner F. et al. (1988) Smallpox and its Eradication. Geneva, World Health Organization.

Gani R. and S. Leach (2001) Transmission potential of smallpox in contemporary populations. Nature 414(6865): 748-751.

Riley S. and N. M. Ferguson (2006) Smallpox transmission and control: spatial dynamics in Great Britain. Proc Natl Acad Sci U S A 103(33): 12637-12642.

wallinga_teunis 37

wallinga_teunis	Estimation of the case reproduction number using the Wallinga and Teunis method
0 =	Teunis method

Description

wallinga_teunis estimates the case reproduction number of an epidemic, given the incidence time series and the serial interval distribution.

Usage

```
wallinga_teunis(incid, method = c("non_parametric_si", "parametric_si"),
  config)
```

Arguments

incid

One of the following

- Vector (or a dataframe with a column named 'incid') of non-negative integers containing an incidence time series. If the dataframe contains a column incid\$dates, this is used for plotting. incid\$dates must contains only dates in a row.
- An object of class incidence

method

the method used to estimate R, one of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample"

config

a list with the following elements:

- t_start: Vector of positive integers giving the starting times of each window over which the reproduction number will be estimated. These must be in ascending order, and so that for all i, t_start[i]<=t_end[i]. t_start[1] should be strictly after the first day with non null incidence.
- t_end: Vector of positive integers giving the ending times of each window over which the reproduction number will be estimated. These must be in ascending order, and so that for all i, t_start[i]<=t_end[i].
- method: One of "non_parametric_si" or "parametric_si" (see details).
- mean_si: For method "parametric_si"; positive real giving the mean serial interval.
- std_si: For method "parametric_si"; non negative real giving the stadard deviation of the serial interval.
- si_distr: For method "non_parametric_si"; vector of probabilities giving the discrete distribution of the serial interval, starting with si_distr[1] (probability that the serial interval is zero), which should be zero.
- n_sim: A positive integer giving the number of simulated epidemic trees used for computation of the confidence intervals of the case reproduction number (see details).

38 wallinga_teunis

Details

Estimates of the case reproduction number for an epidemic over predefined time windows can be obtained, for a given discrete distribution of the serial interval, as proposed by Wallinga and Teunis (AJE, 2004). Confidence intervals are obtained by simulating a number (config\$n_sim) of possible transmission trees (only done if config\$n_sim > 0).

The mean and standard deviation of the continuous distribution of the serial interval are given in the arguments config\$mean_si and config\$std_si. The discrete distribution of the serial interval is derived automatically using discr_si.

Value

a list with components:

- R: a dataframe containing: the times of start and end of each time window considered; the
 estimated mean, std, and 0.025 and 0.975 quantiles of the reproduction number for each time
 window.
- si_distr: a vector containing the discrete serial interval distribution used for estimation
- SI.Moments: a vector containing the mean and std of the discrete serial interval distribution(s) used for estimation
- I: the time series of total incidence
- I local: the time series of incidence of local cases (so that I_local + I_imported = I)
- I_imported: the time series of incidence of imported cases (so that I_local + I_imported = I)
- dates: a vector of dates corresponding to the incidence time series

Author(s)

Anne Cori <a.cori@imperial.ac.uk>

References

Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013). Wallinga, J. and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (AJE 2004).

See Also

discr_si, estimate_R

WT 39

Examples

```
## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the case reproduction number (method "non_parametric_si")
res <- wallinga_teunis(Flu2009$incidence,</pre>
  method="non_parametric_si",
   config = list(t_start = seq(2, 26), t_end = seq(8, 32),
                 si_distr = Flu2009$si_distr,
                 n_{sim} = 100)
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the case reproduction number over the 7-day window
## finishing on that day.
## estimate the case reproduction number (method "parametric_si")
res <- wallinga_teunis(Flu2009$incidence, method="parametric_si",
   config = list(t_start = seq(2, 26), t_end = seq(8, 32),
                 mean_si = 2.6, std_si = 1.5,
                 n_{sim} = 100)
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the case reproduction number over the 7-day window
## finishing on that day.
```

WT

Function to ensure compatibility with EpiEstim versions <2.0

Description

Please only use for compatibility; Prefer the new wallinga_teunis function instead

Usage

```
WT(I, T.Start, T.End, method = c("NonParametricSI", "ParametricSI"),
   Mean.SI = NULL, Std.SI = NULL, SI.Distr = NULL, nSim = 10,
   plot = FALSE, leg.pos = "topright")
```

Arguments

I	see incid in wallinga_teunis
T.Start	see config\$t_start in wallinga_teunis
T.End	see config\$t_end in wallinga_teunis
method	see method in wallinga_teunis (but WT uses CamelCase where wallinga_teunis uses $snake_case$ for the method names)
Mean.SI	see config\$mean_si in wallinga_teunis
Std.SI	see config\$std_si in wallinga_teunis

WT

SI.Distr	see config\$si_distr in wallinga_teunis
nSim	see config\$n_sim in wallinga_teunis
plot	Not used anymore, only there for compatibility
leg.pos	Not used anymore, only there for compatibility

Index

```
\verb|check_cdt_samples_convergence|, 2|
coarse2estim, 3
discr_si, 5, 10, 22, 31, 38
DiscrSI, 5
estimate_R, 3, 4, 6, 8, 13, 19, 31, 33, 38
estimate_R(), 17, 27
estimate_R_plots, 12, 31, 33
EstimateR, 7
Flu1918, 14
Flu2009, 15
flu_2009_NYC_school, 16
grob, 13, 32
incidence, 8, 37
\verb"init_mcmc_params", 18
make\_config, 10, 20
make_mcmc_control, 24
Measles1861, 26
mers_2014_15, 27
MockRotavirus, 28
overall_infectivity, 6, 30
OverallInfectivity, 29
plot.estimate_R, 13, 31
sample_posterior_R, 33
SARS2003, 35
Smallpox1972, 36
wallinga_teunis, 13, 31, 33, 37
WT, 39
```