AVM de Cultivos — Fórmulas, Definiciones y Procedimiento

Propósito: Documentar, de forma precisa y entendible, las ecuaciones usadas por la calculadora de valuación agrícola (AVM) para bloques/parcelas. Incluye variables, unidades, reglas de valoración y el orden de cómputo.

1) Convenciones, unidades y notación

- Moneda: **COP** (pesos colombianos).
- Área: **ha** (hectáreas).
- Masa: **kg** (cuando se lea en toneladas, tons \rightarrow kg = tons \times 1000).
- Tasas (interés, factor DNP): decimales. Ej.: 9.5% = **0.095**.
- Fechas en formato ISO: aaaa-mm-dd.

Índices

- *t*: edad (años desde la siembra, **entero**).
- Cálculos por **bloque** (subíndice block) y por **hectárea** (/ha).

Funciones auxiliares

- floor(·): parte entera hacia abajo.
- curve data["t"]: acceso a un mapa JSON **edad** → **valor** (de BD).

2) Variables de entrada (por bloque)

Variable	Símbolo	Unidad	Descripción
block_area_ha	Α	ha	Área del bloque.
planting_date	_	fecha	Fecha de siembra.
valuation_asof_date	_	fecha	Fecha de corte para la valuación.
yield_source	_	_	"measured" o "modeled".
production_tons_period	$Q_{ m tons}$	ton	Producción en el periodo (si <i>measured</i>).
period_days	D	días	Días cubiertos por $Q_{\rm tons}$.
age_yield_curve_id	_	_	Id de curva edad–rendimiento (si <i>modeled</i>).

realization_factor	φ	_	Factor de realización (0.8–1.2 típico). Por defecto 1.0.
price_farmgate_cop_per_kg	Р	COP/kg	Precio a puerta de finca.
cost_source	_	_	"standard_template" o "custom_entered".
cost_template_id	_	_	Id de plantilla estándar (si aplica).
11 grupos de costo personalizado	_	COP/ha	Suma por ha si cost_source="custom_entered".
financed_amount_cop	F	COP	Monto financiado en el periodo.
ea_rate	i		Tasa efectiva anual aplicada al monto financiado.
cumulative_outlays_to_date_cop	Cacum	COP	Egresos acumulados históricos (improductivo).
inp_factor	α		Factor improductivo (0.30–0.50). Por defecto 0.40.
dnp_discount_rate	r	_	Tasa de descuento para VPN de un periodo.

3) Derivadas fundamentales

3.1 Edad

$$t = floor \left(\frac{valuation_asof_date - planting_date}{365} \right)$$

3.2 Rendimiento por hectárea Y_t (kg/ha)

Medido (yield_source = "measured"):

$$Y_t = \frac{Q_{\text{tons}} \times 1000}{A \times \left(\frac{D}{365}\right)} \text{ [kg/ha]}$$

Modelado (yield_source = "modeled"):

$$Y_t = Y_t^{\text{base}} \times \phi, Y_t^{\text{base}} = \text{age_yield_curves[curve_id].curve_data[t]}$$

3.3 Costos directos por hectárea C_t (COP/ha)

Curva por edad (preferido, si existe cost_curves):
 Buscar una curva cuyo id coincida/alias con age_yield_curve_id (o por cultivar) y leer:

$$C_t = \text{cost_curves}[\text{curve_id}].\text{curve_data}[t]$$

Plantilla estándar (cost_source="standard_template", sin curva por edad):

$$C_t = \sum_{g=1}^{11} \text{template_cost}_g [\text{COP/ha}]$$

3. Custom (cost_source="custom_entered"):

$$C_t = \sum_{g=1}^{11} \text{input_cost}_g [\text{COP/ha}]$$

3.4 Ingreso bruto del bloque G (COP)

$$G = Y_t \times P \times A$$

3.5 Costo financiero del bloque CF (COP)

$$CF = F \times i$$

3.6 Inversión total del bloque / (COP)

$$I = (C_t \times A) + CF$$

3.7 Ingreso neto del bloque N (COP)

$$N = G - I$$

4) PE, fase y acumulados

4.1 Acumulados (implementación simplificada actual)

En la calculadora, para el **periodo actual**:

Influjos^{acum} =
$$G$$
, Egresos^{acum} = $I + C$ ^{acum} (si viene informado)

Alternativa más rigurosa (multi-año): Acumular año a año $\sum_{\tau=0}^{t} G_{\tau} y \sum_{\tau=0}^{t} I_{\tau}$ leyendo curvas históricas. (No implementado en el snippet actual).

4.2 Fase del bloque

$$fase = \begin{cases} improductive & \text{si } t \leq 3, \\ productive & \text{si } t \geq 4. \end{cases}$$

4.3 Punto de equilibrio (PE)

$$PE = \begin{cases} PE + & \text{si Influjos}^{\text{acum}} \ge Egresos^{\text{acum}}, \\ PE - & \text{en otro caso.} \end{cases}$$

5) Reglas de valuación (valor del bloque)

Definimos V como el **valor AVM del bloque** y v = V/A el valor **por ha**.

1. **Improductiva** $(t \le 3)$

$$V = C_{\rm impl}^{\rm acum} + \alpha \cdot \overline{N}_{\rm improd}$$

- En la implementación actual: C_{impl}^{acum} = I si no se provee cumulative_outlays_to_date_cop.
- \overline{N}_{improd} : promedio de utilidades netas en fase improductiva. En el snippet actual se aproxima con **la neta del periodo** (si no hay histórico).
- 2. Productiva & PE-

$$V = N + I$$

3. Productiva & PE+

$$V = N$$

Valor por ha: v = V/A.

6) Indicadores de negocio

• VPN de un periodo (simplificado):

$$VPN_1 = \frac{N}{1+r}$$

Extensión multi-periodo: VPN = $\sum_{\tau=1}^{T} \frac{N_{\tau}}{(1+r)^{\tau}}$ con proyección de Y_{τ} , C_{τ} , P, F_{τ} .

- IRR: no se calcula en el snippet actual; requiere vector de flujos $\{-I_0, N_1, \dots, N_T\}$.
- Año de PE: primer t tal que influjos acumulados ≥ egresos acumulados. En el snippet actual se infiere con datos del periodo; para exactitud, usar acumulados multi-año.

7) Procedimiento paso a paso (orden de cómputo)

- 1. **Edad**: calcular t.
- 2. Rendimiento/ha:
 - o Si *measured*: usar fórmula con Q_{tons} y D.
 - Si modeled: leer Y_t^{base} de age_yield_curves[curve_id].curve_data[t] y multiplicar por φ.
- 3. Costo/ha:
 - Preferir curva por edad en cost_curves; si no existe, usar plantilla (standard template) o custom.
- 4. **Ingreso bruto**: $G = Y_t \times P \times A$.
- 5. Costo financiero: $CF = F \times i$.
- 6. Inversión total: $I = (C_t \times A) + CF$.
- 7. **Ingreso neto**: N = G I.
- 8. Acumulados:
 - o Simplificado: Influjos^{acum} = G, Egresos^{acum} = I + C^{acum} (si existe).
- 9. **Fase y PE**: aplicar reglas de §4.2 y §4.3.
- 10. Valor V: aplicar reglas de §5.
- 11. **VPN**: $VPN_1 = N/(1+r)$.
- 12. **Por ha**: dividir *V* entre *A*.
- 13. **Tier QA**: A/B/C según fuente de rendimiento (medido + evidencia) y completitud de precio/costos.

8) Lectura desde BD (cómo se arman las curvas)

8.1 Curva edad-rendimiento (age_yield_curves)

- Tabla: public.age_yield_curves
- Campo: curve_data (JSONB), p.ej. {"3":14000,"4":26000,"5":34000,"6":38000,...}
- Acceso: yield = curve_data[t] (convertir clave string → entero).

Ejemplo OxG

```
id = 'oil_palm_oxg' → curve_data["6"] = 38000 kg/ha.
```

8.2 Curva edad-costo (cost_curves)

• Tabla: public.cost curves

- Campo: curve_data (JSONB), p.ej. {"6":10982967.5829,...} en COP/ha.
- Acceso: cost_ha = curve_data[t].

Ejemplo OxG

```
id = 'oil_palm_cost_oxg' \rightarrow curve_data["6"] \approx 10,982,968 COP/ha.
```

Alias práctico: si age_yield_curve_id contiene "oxg", mapear a oil_palm_cost_oxg; si contiene "palmaeguinensis", mapear a oil_palm_cost_palmaeguinensis.

9) Ejemplo numérico (OxG, edad 6, 5 ha, precio 740 COP/ha, 70% financiado, EA=0.095)

Datos:

A = 5 ha, t = 6, $Y_t = 38,000$ kg/ha, P = 740 COP/kg, $C_t = 10,982,968$ COP/ha, $F = 0.70 \times (C_t \times A) = 38,440,388$, i = 0.095, r = 0.12.

Cálculos:

- 1. $G = 38,000 \times 740 \times 5 = 140,600,000$ COP.
- 2. $CF = 38,440,388 \times 0.095 \approx 3,651,837$ COP.
- 3. $I = (10,982,968 \times 5) + 3,651,837 = 58,566,675 \text{ COP}.$
- 4. N = 140,600,000 58,566,675 = 82,033,325 COP.
- 5. $VPN_1 = 82,033,325/1.12 \approx 73,244,041 \text{ COP}.$
- 6. Fase (t=6): **productiva**. PE (simplificado con acumulados del periodo): **PE**+.
- 7. **Valor** (productiva, PE+): V = N = 82,033,325 COP.
- 8. Valor por ha: v = 82,033,325/5 = 16,406,665 COP/ha.

10) Extensiones recomendadas

- Acumulados multi-año reales (para PE exacto).
- Proyecciones T-periodos para NPV/IRR.
- **Descomposición de** C_t en 11 grupos (siempre) a partir de proporciones por edad.
- **Sensibilidades**: $\pm 10\%$ en P, C_t , ϕ , i.