ELL 881: Fundamentals of Deep Learning

Lec 03a: Deep Feedforward Networks

Vineet Kumar

August 8, 2018

Table of Contents

Fundamentals

Limitations of Linear Models

Hidden Units

Architecture Design

Table of Contents

Fundamentals

Limitations of Linear Models

Hidden Units

Architecture Design

- Also known as Feedforward Neural Networks or Multilayer perceptrons (MLP)
- ▶ In this class, we will refer deep feed forward networks as MLP

- Also known as Feedforward Neural Networks or Multilayer perceptrons (MLP)
- ▶ In this class, we will refer deep feed forward networks as MLP
- ▶ MLP defines mapping $y = f(x; \theta)$

- Also known as Feedforward Neural Networks or Multilayer perceptrons (MLP)
- ▶ In this class, we will refer deep feed forward networks as MLP
- ▶ MLP defines mapping $y = f(x; \theta)$
- f assigns a category y to an input x

- Also known as Feedforward Neural Networks or Multilayer perceptrons (MLP)
- ▶ In this class, we will refer deep feed forward networks as MLP
- ▶ MLP defines mapping $y = f(x; \theta)$
- f assigns a category y to an input x
- ▶ Goal of MLP is to approximate some true function $f^*(x)$

- Also known as Feedforward Neural Networks or Multilayer perceptrons (MLP)
- ▶ In this class, we will refer deep feed forward networks as MLP
- ▶ MLP defines mapping $y = f(x; \theta)$
- f assigns a category y to an input x
- ▶ Goal of MLP is to approximate some true function $f^*(x)$
- lacktriangle This is achieved by estimating the parameters $oldsymbol{ heta}$

Layers as Composition of Functions

▶ DFN is represented by composing together many functions

Layers as Composition of Functions

- ▶ DFN is represented by composing together many functions
- ▶ For example, DFN could be constructed by connecting three functions $f^{(1)}$, $f^{(2)}$ and $f^{(3)}$ in a chain such that:

$$f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$$

Layers as Composition of Functions

- ▶ DFN is represented by composing together many functions
- ▶ For example, DFN could be constructed by connecting three functions $f^{(1)}$, $f^{(2)}$ and $f^{(3)}$ in a chain such that:

$$f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$$

- ▶ We call $f^{(1)}$ the first layer, $f^{(2)}$ the second layer ...
- The final layer is called the output layer

- ► MLP can be thought of as a black box
- MLP makes a prediction f(x) for an input x

- MLP can be thought of as a black box
- MLP makes a prediction f(x) for an input x
- MLP is trained by guiding the predictions as close as possible to the ground truth category y

- MLP can be thought of as a black box
- MLP makes a prediction f(x) for an input x
- MLP is trained by guiding the predictions as close as possible to the ground truth category y
- ► As we only observe the final layer, all intermediate layers are called hidden

- MLP can be thought of as a black box
- MLP makes a prediction f(x) for an input x
- MLP is trained by guiding the predictions as close as possible to the ground truth category y
- As we only observe the final layer, all intermediate layers are called hidden
- Final layer is called the output layer

Figure 1: Multi Layer Perceptron Image: Getting started with Tensorflow, Safari Books, Giancarlo Zaccone

Example code for MLP

Let us see multiple layers in action, via some Tensorflow code! **Notebook**: mlp_example_eager.ipynb

Table of Contents

Fundamentals

Limitations of Linear Models

Hidden Units

Architecture Design

▶ XOR function is an operation on two binary values x_1 and x_2 , which returns 1 only when one of the values is 1.

- ▶ XOR function is an operation on two binary values x_1 and x_2 , which returns 1 only when one of the values is 1.
- We want to learn XOR function $y = f^*(x)$

- ▶ XOR function is an operation on two binary values x_1 and x_2 , which returns 1 only when one of the values is 1.
- ▶ We want to learn XOR function $y = f^*(x)$
- Let us try to learn a MLP $y = f(x; \theta)$

- ▶ XOR function is an operation on two binary values x_1 and x_2 , which returns 1 only when one of the values is 1.
- ▶ We want to learn XOR function $y = f^*(x)$
- Let us try to learn a MLP $y = f(x; \theta)$
- We only care about $X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$

Code: Linear XOR Model

 $\textbf{Notebook}: \ \mathsf{xor_eager_keras.ipynb}$

Why does a linear XOR Model fail?

Figure 2: The data points are not separable via a linear function

Image Courtesy:

https://medium.com/@jayeshbahire/the-xor-problem-inneural-networks-50006411840b

We cannot find a line which separates label = 1 from label = 0

Why does a linear XOR Model fail?

Figure 2: The data points are not separable via a linear function

Image Courtesy: https://medium.com/@jayeshbahire/the-xor-problem-inneural-networks-50006411840b

- We cannot find a line which separates label = 1 from label = 0
- ► Thus, the solution is to add a non linear layer

We define a two layer network: one hidden layer and one output layer

- We define a two layer network: one hidden layer and one output layer
- First layer $\boldsymbol{h} = f^{(1)}(\boldsymbol{x}; W, c)$
- Second layer $y = f^{(2)}(\boldsymbol{h}; w, b)$

- We define a two layer network: one hidden layer and one output layer
- First layer $\boldsymbol{h} = f^{(1)}(\boldsymbol{x}; W, c)$
- Second layer $y = f^{(2)}(\mathbf{h}; w, b)$
- If both f⁽¹⁾ and f⁽²⁾ are linear, we effectively have only one linear layer! Why?

- We define a two layer network: one hidden layer and one output layer
- First layer $h = f^{(1)}(x; W, c)$
- Second layer $y = f^{(2)}(\mathbf{h}; w, b)$
- If both f⁽¹⁾ and f⁽²⁾ are linear, we effectively have only one linear layer! Why?
- $f^{(1)}(x) = W^T x$; $f^{(2)}(h) = h^T w$; Thus, $f(x) = w^T W^T x$

Notebook: xor_eager_keras_ml.ipynb

Notebook: xor_eager_keras_ml.ipynb

Add Non-linear Layer

We apply a nonlinear function g, such that

$$\boldsymbol{h} = g(W^T \boldsymbol{x} + \boldsymbol{c})$$

► Note, that *g* is applied elementwise

We apply a nonlinear function g, such that

$$\boldsymbol{h} = g(W^T \boldsymbol{x} + \boldsymbol{c})$$

- ► Note, that *g* is applied elementwise
- ► The default recommendation is to use Rectified Linear Unit **ReLU**.
- $g(z) = max\{0, z\}$

 We apply a nonlinear function g, such that

$$\boldsymbol{h} = g(W^T \boldsymbol{x} + \boldsymbol{c})$$

- Note, that g is applied elementwise
- ► The default recommendation is to use Rectified Linear Unit **ReLU**.
- $g(z) = max\{0, z\}$
- Note that ReLU is a piecewise linear function, and still has easy to compute derivatives.
- We will talk more about ReLU in next section.

Figure 3: ReLU Image Courtesy: http://www.deeplearningbook.org/slides/06_mlp.pdf

Notebook: xor_eager_keras_ml_relu.ipynb

Table of Contents

Fundamentals

Limitations of Linear Models

Hidden Units

Architecture Design

Non differentiable Hidden Unit

▶ Design of hidden units is still an active research area

- ▶ Design of hidden units is still an active research area
- ▶ ReLU is an excellent default choice

- Design of hidden units is still an active research area
- ReLU is an excellent default choice
- ▶ ReLU $g(z) = max\{0, z\}$ is not differentiable at all points. How can we still use it for learning?

- Design of hidden units is still an active research area
- ReLU is an excellent default choice
- ▶ ReLU $g(z) = max\{0, z\}$ is not differentiable at all points. How can we still use it for learning?
- ► Neural Network training does not usually reach a local minimum, and it is okay to not have a gradient defined at 0.

- Design of hidden units is still an active research area
- ReLU is an excellent default choice
- ▶ ReLU $g(z) = max\{0, z\}$ is not differentiable at all points. How can we still use it for learning?
- Neural Network training does not usually reach a local minimum, and it is okay to not have a gradient defined at 0.
- ▶ Key point to remember: ReLU is not differentiable at 0 but it can be used as its left and right derivative are defined.

Hidden Unit

► Most hidden units, first do an affine transformation of the input

$$z = W^T x + b$$

Hidden Unit

Most hidden units, first do an affine transformation of the input

$$z = W^T x + b$$

▶ They later apply an element wise *nonlinear* function g(z) such as ReLU

Hidden Unit

Most hidden units, first do an affine transformation of the input

$$z = W^T x + b$$

- ▶ They later apply an element wise *nonlinear* function g(z) such as ReLU
- ▶ Hidden units usually only differ in choice of the function g

More on ReLU

- ReLU is similar to a linear unit
- Gradients are large and consistent even for small values of input!
- ► This makes learning easier

More on ReLU

- ReLU is similar to a linear unit
- Gradients are large and consistent even for small values of input!
- ► This makes learning easier
- ▶ It is important to initialize the biases with small constant values such as 0.1
- ► This allows ReLU units activate initially, and allow them to pass gradients through!

Logistic Sigmoid and Hyperbolic Tangent

Figure 4: Sigmoid
Image Courtesy:
https://en.wikipedia.org/wiki/Logistic_function

Figure 5: Tanh
Image Courtesy:
http://mathworld.wolfram.com/HyperbolicTangent.html

Logistic Sigmoid and Hyperbolic Tangent

Figure 4: Sigmoid Image Courtesy: https://en.wikipedia.org/wiki/Logistic_function

Figure 5: Tanh
Image Courtesy:
http://mathworld.wolfram.com/HyperbolicTangent.html

- Unlike ReLU, sigmoid suffers from saturation
- When z is very positive σ saturates to a high value
- When z is very negative σ saturates to a low value
- Sigmoid is only strongly sensitive to the input near zero.
- Thus, use of sigmoids for MLP is discouraged
- ➤ A better alternative is to use tanh, which behaves like a linear function, when activations are small.

Table of Contents

Fundamentals

Limitations of Linear Models

Hidden Units

Architecture Design

Architecture Design Choices

Figure 6: Architecture Design Choices
Image Courtesy: http://www.deeplearningbook.org/slides/06_mlp.pdf

 Universal Approximation Theorem states that one hidden layer (such as ReLU or sigmoid) is enough to represent an approximation of any function

- Universal Approximation Theorem states that one hidden layer (such as ReLU or sigmoid) is enough to represent an approximation of any function
- However, this theorem only talks about representing a function, and not learning it!

- Universal Approximation Theorem states that one hidden layer (such as ReLU or sigmoid) is enough to represent an approximation of any function
- However, this theorem only talks about representing a function, and not learning it!
- MLP only provide a guarantee that there exists some MLP which can estimate a function

- Universal Approximation Theorem states that one hidden layer (such as ReLU or sigmoid) is enough to represent an approximation of any function
- However, this theorem only talks about representing a function, and not learning it!
- MLP only provide a guarantee that there exists some MLP which can estimate a function
- In practise, using deeper models can reduce the number of units required to learn a function.

- Universal Approximation Theorem states that one hidden layer (such as ReLU or sigmoid) is enough to represent an approximation of any function
- However, this theorem only talks about representing a function, and not learning it!
- MLP only provide a guarantee that there exists some MLP which can estimate a function
- ▶ In practise, using deeper models can reduce the number of units required to learn a function.
- ► Another reason to select deeper network is to define a model in terms of composition of simpler functions.