НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Основы теории управления

Задание 1. Оптимальная настройка и сравнение регуляторов

Bыполнил Кондренко К.П., группа 21203

Преподаватель Ломов А.А.

Содержание

1	Постановка задачи	2
2	Порядок выполнения работы 2.1 Разработка формул для настройки	3 5
3	Результаты моделирования и анализ результатов	8
4	Выводы	10
5	Приложения	12

1 Постановка задачи

Определение

Отклик системы на функцию Хэвисайда называется переходной характеристикой.

Определение

Отклик системы на дельта-функцию называется импульсной функцией.

Определение

Образ Лапласа W(s) импульсной функции w(t) называется nepedamoчной функцией линейной системы.

Определение

Система *устойчива*, если для любой ненулевой ограниченной функции входа, функция выхода ограничена.

Определение

Oшибкой регулирования называется функция e(t) = x(t) - u(t), где x(t) — функция выхода системы, u(t) — функция входа.

Определение

Интегральной ошибкой называется интеграл от модуля ошибки регулирования на интервале наблюдения.

Определение

За показатель качества регулятора принимается

$$\int_{0}^{\infty} |e(\tau)| d\tau$$

Цель

Произвести оптимальную настройку и сравнение П,ПИ и ПИД- регуляторов.

Задачи

- 1. Для одноконтурной системы регулирования с $\Pi И$ -регулятором определить параметры K и T_i следующими способами:
 - \bullet покоординатной оптимизацией K и T_i по интегральному критерию качества;
 - по параметрам переходной характеристики объекта.

Сравнить полученные системы управления между собой по интегральному критерию качества.

- 2. Для одноконтурной системы регулирования с ПИД-регулятором определить параметры K, T_i, T_d, T_s следующими способами:
 - покоординатной оптимизацией K и T_i по интегральному критерию качества (принять $T_d = T_i/4,\, T_s = T_d/8);$
 - по параметрам переходной характеристики объекта.

Сравнить полученные системы управления между собой по интегральному критерию качества. Сравнить ПИ- и ПИД-регуляторы между собой по интегральному критерию качества исходя из наилучших значений K и T_i .

3. Предложить свои формулы настройки параметров ПИД-регулятора исходя из наилучших табличных значений K и T_i . Сравнить по интегральному критерию качества регулятор, настроенный по вашим формулам, с регулятором, настроенным по предложенным формулам, для значений параметра задержки объекта T=1;2;10.

2 Порядок выполнения работы

В ходе работы рассматривались объекты с передаточной функцией 1

$$W(s) = \frac{2e^{-sT}}{(1 + T_0 s)^n},$$

а именно — три объекта: T=0;1.5;3, при $T_0=1.07$ и n=4. Для каждого из трёх объектов были разработаны П,ПИ,ПИД-регуляторы, построенные в программе MicroCap. В конечном итоге регуляторы были настроены для получения минимальной интегральной ошибки, при этом в качестве функции входа выступала функция $u(t) \equiv 1$.

Рис. 1: Схема П-регулятора

Рис. 2: Схема ПИ-регулятора

 $^{^1{\}rm Ha}$ схемах вместо Tбыла использована буква d

Рис. 3: Схема ПИД-регулятора

Рис. 4: Схема ПИ-регулятора с вычислением интегральной ошибки

Рис. 5: Схема ПИД-регулятора с вычислением интегральной ошибки

2.1 Разработка формул для настройки

В ходе работы были разработаны формулы для параметров рассматриваемых объектов, которые должны минимизировать интегральную ошибку. Итоговые формулы имеют вид

ПИ

$$K(T) = 0.7e^{-0.24\sqrt{T}},$$

$$T_i(T) = 4.9e^{0.17\sqrt{T^3}};$$

ПИД

$$K(T) = 0.932e^{-0.15T^{\frac{5}{4}}}$$
$$T_i(T) = 4e^{0.195T}.$$

При разработке эти формул были сделаны 2 предположения, основанных на подборе параметров регуляторов:

$$\lim_{T \to \infty} K(T) = 0, \quad \lim_{T \to \infty} T_i(T) = +\infty,$$

также было сделано предположение о монотонности K(T) и $T_i(T)$. В следствие этого были подобраны монотонные функции, которые бы проходили через точки, соответствующие настройкам регулятора через «покоординатный спуск».

Рис. 6: Разработанная зависимость K(T) для ПИ-регулятора

Рис. 7: Разработанная зависимость $T_i(T)$ для ПИ-регулятора

Рис. 8: Разработанная зависимость K(T) для ПИД-регулятора

Рис. 9: Разработанная зависимость $T_i(T)$ для ПИД-регулятора

3 Результаты моделирования и анализ результатов

Рис. 10: Переходная характеристика П-регулятора в критическом режиме ($T=0,\,K=K_{cr}=1.97,\,T_{cr}=6.787$)

Рис. 11: Переходная характеристика ПИ-регулятора вместе с интегральной ошибкой ($T=0,\,K=0.45Kcr-0.2,\,Ti=Tcr/1.2-0.7$)

Рис. 12: Переходная характеристика ПИД-регулятора вместе с интегральной ошибкой ($T=0,\,K=0.6K_{cr}-0.25,\,T_i=T_{cr}/2+0.61,\,Td=Ti/4,\,Ts=Td/8$)

4 Выводы

По ходу работы выяснилось, что при «малых» значениях задержки (T < 3) ПИ-регулятор даёт ошибку меньше, чем ПИД-регулятор, однако если задержка не является «малой» величиной, то ПИД-регулятор обеспечивает более хорошее качество регулирования.

Также выяснилось, что использование готовых формул увеличивает интегральную ошибку по сравнению с «покоординатным спуском» и использованием формул, основанных на нём.

T	Ошибка
1	6.465
2	4.327
10	4.289

Таблица 1: Интегральная ошибка ПИ-регулятора при использовании разработанных формул

T	Ошибка
1	5.647
2	6.535
10	214.6

Таблица 2: Интегральная ошибка ПИД-регулятора при использовании разработанных формул

T	Ошибка
1	66.517
2	∞
10	53.037

Таблица 3: Интегральная ошибка ПИ-регулятора при использовании первого варианта готовых формул

T	Ошибка
1	∞
2	∞
10	62.543

Таблица 4: Интегральная ошибка ПИД-регулятора при использовании первого варианта готовых формул

T	Ошибка
1	38.637
2	276
10	∞

Таблица 5: Интегральная ошибка ПИ-регулятора при использовании второго варианта готовых формул

T	Ошибка
1	∞
2	∞
10	∞

Таблица 6: Интегральная ошибка ПИД-регулятора при использовании второго варианта готовых формул

5 Приложения

K	T_{i}	Ошибка
$0.45K_{cr}$	$T_{cr}/1.2$	4.928
$0.45K_{cr} - 0.15$	$T_{cr}/1.2 - 0.35$	4.327
$0.45K_{cr} - 0.2$	$T_{cr}/1.2 - 0.7$	4.289

Таблица 7: Итеративный процесс нахождения оптимальных характеристик ПИ-регулятора при T=0

K	T_{i}	Ошибка
$0.6K_{cr}$	$T_{cr}/2$	8.341
$0.6K_{cr} - 0.31$	$T_{cr}/2 + 0.5$	6.924
$0.6K_{cr} - 0.25$	$T_{cr}/2 + 0.61$	5.883

Таблица 8: Итеративный процесс нахождения оптимальных характеристик ПИД-регулятора при T=0

K	$\mathbf{T_{i}}$	Ошибка
$0.45K_{cr}$	$T_{cr}/1.2$	10.260
$0.45K_{cr} + 0.11$	$T_{cr}/1.2-1.4$	8.232
$0.45K_{cr} + 0.07$	$T_{cr}/1.2 - 2.3$	7.742

Таблица 9: Итеративный процесс нахождения оптимальных характеристик ПИ-регулятора при T=1.5

K	T_{i}	Ошибка
$0.6K_{cr}$	$T_{cr}/2$	6.529
$0.6K_{cr} - 0.01$	$T_{cr}/2 + 0.01$	6.346
$0.6K_{cr} - 0.02$	$T_{cr}/2$	6.345

Таблица 10: Итеративный процесс нахождения оптимальных характеристик ПИД-регулятора при T=1.5

K	$\mathbf{T_i}$	Ошибка
$0.45K_{cr}$	$T_{cr}/1.2$	17.427
$0.45K_{cr} + 0.14$	$T_{cr}/1.2 - 0.005$	12.932
$0.45K_{cr} + 0.141$	$T_{cr}/1.2 - 0.0045$	12.929

Таблица 11: Итеративный процесс нахождения оптимальных характеристик ПИ-регулятора при T=3

K	$\mid \mathbf{T_i} \mid$	Ошибка
$0.6K_{cr}$	$T_{cr}/2$	8.765
$0.6K_{cr} + 0.2$	$T_{cr}/2 - 0.0001$	7.626
$0.6K_{cr} + 0.21$	$T_{cr}/2 - 0.0001$	7.574

Таблица 12: Итеративный процесс нахождения оптимальных характеристик ПИД-регулятора при T=3