Introduction to toxicology

Toxicology: studies the deleterious effects of chemicals on biological systems

"chemical" separates

- -from physical effects (e.g. ionizing radiation)
- -from living organisms, but not their products (toxins)

Poison: non-living material which, after entering the body, will result in damage by its

- -chemical,
- -physico-chemical or
- -physical (except serious mechanical effects) properties

The concept of poison

"Everything is poison, nothing is completely harmless. Only the **dose** can separate the poison from the drug."

"Dosis sola facit venenum"
(Paracelsus, 1493-1541)

In practice: poison can cause damage in small quantities.

Dose and Dose-Kate matter

Dose and dose rate matter.

Branches of toxicology

- Descriptive toxicology
 - direct testing in vitro or in vivo (animals)
- Occupational toxicology
 - chemicals found in the workplace
- Environmental toxicology
 - pollutants
- Ecotoxicology
 - impact on populations or ecosystems (not on individuals)
- Forensic toxicology
 - analysis with legal consequences
- Clinical toxicology
 - symptoms → diagnosis
 - therapy

Descriptive toxicology

direct toxicity testing in

cell cultures or

animal experiments:

- -expensive, lengthy, cumbersome, but essential
- -alternative methods are searched

lot of new chemical compounds – much less toxicological data

expectation: unequivocal classification of chemicals toxic – non-toxic ls that possible?

BUT better:

estimation of expected **risk**, if used according to a given **way** and **quantity** (dose and dose rate)

16.1. táblázat O Vegyületek minősítése az Európai Unió szerint patkányokon meghatározott akut orális toxicitásuk alapján (példákkal)

Vegyület	LD ₅₀ (mg/ttkg)	Felhasználás
I. Igen mérgező (LD	$\rho_{50} < 25 \text{ mg/ttkg p.}$	os)
Nikotin	1-2	inszekticid
Paration	2-6	inszekticid
Indometacin	10-20	gyógyszer
II. Mérgező (LDsn =	25 - 200 mg/ttkg p	. os)
	70-200	vegyszer
Nátrium-arzenit	25-50	vegyszer
Aldrin	40-80	inszekticid
Allilalkohol	50-150	
III. Ártalmas (LD., =	200 - 2000 mg/ttk	a p. os)
Koffein	200-300	élvezeti szer
Phenobarbital	200-300	gyógyszer
Anilin	400-1000	vegyszer
Barium-karbonát	600-800	rodenticid/vegyszer
Nátrium-szalicilát	800-2000	gyógyszer
V. Méregkategóriáb	a nem sorolható	
LD ₅₀ > 2000 mg/ttl		
Butil-hidroxianizol		élelmiszeradalék
Acetonitril	2000-4000	oldószer
Etilénglikol	4000-8000	oldószer

other factors influencing the risk (apart from the dose)

```
other characteristics e.g.:
volatility
environmental persistence
```

elimination

bioaccumulation

biomagnification

e.g. DDT (dichloro-diphenyl-trichloroethane) *vs.* cholinesterase inhibitors

e.g. Minamata-disease: methylmercury in seafood

- species
- age
- dose
- concentration
- exposure time
- combinations (mixtures)

```
1. Species
atropine LD
   human \rightarrow 2 mg/kg
   rabbit → 1500 mg/kg
DDT: LD rat/LD fly ≈ 100000
dioxin: LD50 guinea pig/LD50 hamster ≈ 1000
extrapolation: animal → human ???
2. Age
infants are more sensitive
   morphine
   ethanol
   chloramphenicol
elderly
   slower elimination \rightarrow t_{1/2}\uparrow
```

3. Dose

dose-response curves:

```
graded
```

quantal → sensitivity of a population

lognormal distribution

ED50, LD50

4. Concentration corrosives (acids, bases)

5. Exposure time

gases: c x t ≈ can be constant

6. Combinations, mixtures

additive potentiating antagonist

Factors influencing the effects of poisons: Toxikokinetics

absorption
distribution
elimination
biotransformation
excretion

ABSORPTION

depends on solubility e.g. $Hg \leftrightarrow HgCl_2$ e.g. As_2O_3

Toxikokinetics: DISTRIBUTION/1

can depend on time

arsenic

acute: gastrointestinal, liver, kidney

chronic: hair, skin, bone

can influence the effect

Hg++ → kidney

Pb → bone

Toxikokinetics: DISTRIBUTION/2

Volume of distribution = V_d

 V_d = (amount of poison in the body)/(C_{plasma} or C_{blood})

- It is not possible to determine the amount of poison in the body based on C_{plasma} or C_{blood} without the knowledge of V_{d}
- if $V_d >> 1$ liter/bwkg \rightarrow hemodialysis is not effective (e.g. digoxin)
- if $V_d \approx 80$ ml/bwkg \rightarrow poison is in the blood
- → blood exchange, plasmapheresis is effective

Toxikokinetics:

ELIMINATION

biotransformation can

decrease: CN⁻ → SCN⁻

or increase: methanol → formaldehyde → formic acid

toxicity

EXCRETION

for some poisons the only effective final elimination mechanism (e.g. Hg)

its location can determine the location of damage (Hg → kidney)

its promotion can be useful change urine pH increased diuresis

Toxikokinetics

Clearance = CL

 $CL_{total} = CL_{kidney} + CL_{liver} + CL_{other}$

if target organ is the location of excretion → long duration of action

proportion of organ CL → detoxification strategy

Concentration in blood or plasma as a function of time depends on the elimination mechanism

saturated: zero order kinetics, linear decrease (e.g. ethanol)

non-saturated: first order kinetics, exponential decrease

Toxikokinetics

Large doses

```
can saturate elimination mechanisms
can saturate plasma protein binding sites → free drug↑
can decrease first-pass effect
thus increase bioavailability
can damage
eliminating organs
blood circulation
```

result:

decreased CL increased half life INCREASED TOXICITY

enterohepatic circulation

Dose-response relationship for an essential compound

Alcohol intake and risk of mortality

Figure 23–2. Risk of mortality relative to alcohol intake. The graph shows the results of a 10- to 12-year study of 13,000 Danish men and women. The risk of mortality was set at 1.0 for the group with the lowest mortality. (Modified and reproduced, with permission, from Grønbæk et al: Influence of sex, age, body mass index, and smoking on alcohol intake and mortality. Br Med J 1994;308:302.)

Management of the poisoned patients

MAINTAIN VITAL FUNCTIONS see OXYOLOGY

TODO

- 1. Before absorption
- 2. After absorption

Before absorption

Skin

```
Remove contaminated clothes,
soak up
wash with large amount of water
acids, bases
neutralization → loss of time, exothermic reaction
lipid soluble compounds should be washed
with alcohol,
oil, or soap and water
```

Subcutaneous, intramuscular (injection, snake bite) incision, wash out with sterile NaCl? adrenaline, tourniquets?

Before absorption

Eye

```
wash with water: acid, bases 15-20 min opened eyes! do not neutralize
```

Oral

Emesis? No!

obsolete emetics: NaCl, CuSO₄ apomorphine / fingertip stimulation of the pharynx: not effective ipecac syrup use is declining (10% in 1987, 0.1% in 2007), routine use is not recommended?

keep the first vomit for poison identification

Before absorption

Gastric lavage

first with clean water: keep

Contraindications of emesis and gastric lavage

- -unconsciousness only when endotracheal intubation,
- -corrosives
- -petroleum and derivatives
- -drugs causing convulsions (e.g. TCA, theophylline)
- -pulmonary edema
- -severe heart disease
- -pregnancy (later stages)

Catharsis, enema

Balanced PEG – isosmotic electrolyte solution – no electrolyte disturbances

Before absorption **NEUTRALIZATION - BINDING**

Physicochemical binding

Activated charcoal

not bind: FeSO₄, alcohol, corrosives

Bolus alba = white, kaolin, mixture of purified Al-silicates

binds only basic compunds

Proteins: milk, egg white

Paraffinum liquidum = mineral oil, not absorbed

bind lipid soluble compunds, used also as a laxative

Chemical neutralization

Poison must be known

acid, base ??? DO NOT USE Na-bicarbonate (=Na-hydrogen carbonate=NaHCO₃)

dilution, milk is better (but milk protein precipitation might disturb gastroscopic examination) making the poison insoluble:

oxalic acid and fluorides: Ca-salts

After absorption

Interruption of enterohepatic circulation

binding of absorbed poison in the gastrointestinal tract

e.g. tallium – Prussian blue

After absorption: promote elimination

Promote biotransformation

Promote natural detoxifying biotransformation:

Na-thiosulfate (Na₂S₂O₃): $CN^- \rightarrow SCN^-$ (sulfur donor)

Chemical/immunological antagonists

acidosis: alkalinization

Antibodies against antigenic poisons:

snake and spider venoms

botulinum-toxin

digitalis-glycosides - sheep IgGF_{ab}

After absorption: promote elimination

- chelators for metal poisons
 - two or more electronegative moieties (electron donor) OH, SH, NH₂
 - coordination bound with metals (≥ 2)
 - the bound metal is
 - not available for toxic interactions
 - e.g. with functional groups of enzymes or other proteins
 - excreted in urine
 - may also result in **redistribution** (e.g. dimercaprol: Hg, As
 → brain / cadmium → kidney → nephrotoxicity)
 - dimercaprol
 - succimer
 - ethylenediaminetetraacetic acid (EDTA)
 - deferoxamine
 - D-penicillamine

DIMERCAPTOPROPANOL

Dimercaptopropanol - BAL

painful **intramuscular** injection (aqueous unstable → peanut oil) administer a lot, quickly and repeatedly

acute As, Hg and Pb (in combination with CaNa₂EDTA) frequent **adverse effects** → rarely used nowadays

DIMERCAPTOSUCCINIC ACID (= DMSA = SUCCIMER)

oral and less toxic than dimercaprol

EDTA + Pb

DEFEROXAMINE

Acute iron intoxication

- as few as 10 tablets can be lethal in toddlers / children
- necrotising gastroenteritis
 - shock → death
- improvement, maybe only transient
 - liver damage
 - metabolic acidosis
 - coma → death
- treatment
 - whole bowel irrigation with balanced PEG solution
 - activated charcoal is NOT useful
 - deferoxamine (Desferal from Streptomyces pilosus)
 - oral: binding of not absorbed Fe (?)
 - slow i.v. infusion (risk of hypotension)

penicillamine

Extracorporeal drug removal

- peritoneal dialysis
- hemodialysis
 - e.g. methanol, ethylene glycol, salicylate
- hemoperfusion
- plasmapheresis

Mérgező ágens	Antidótum	
Gyógyszerek		
Antikolinerg szerek	Physostigmin	
 Benzodiazepinek 	Flumazenil	
Digitálisz-glikozidok	Digitalis-antitoxin	
Opioidok -	Naloxon	
Paracetamol	N-acetilcisztein	
Fémek		
Arzén	Ditiol-kelátorok (dimercaprol, succimer)	
Higany	Ditiol-kelátorok + penicillinamin	
Ólom	CaNa2-EDTA + ditiol-kelátorok + penicillamir	
Réz	Penicillamin, trientin	
Vas	Deferoxamin	
Egyéb mérgek		
Cianid, kénhidrogén	Amilnitrit + NaNO ₂ + Na ₂ S ₂ O ₃	
Kolinészteráz-gátlók	Atropin + pralidoxim	
Metanol, etilénglikol	Etanol , 4-metil-pinazol	
Szénmonoxid	0,	