University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING First Year - Program 5

FINAL EXAMINATIONS, APRIL 1995

MAT 195S Calculus II

Examiners: Prof. J. D. de Laurier

annuers: Prof. J. D. de Lat Prof. S.H. Smith

Duration - 2½ hours

- 1. (a) Integrate
- $(j) \qquad \int xe^{-x} dx$

- i) $\int \frac{x^3 dx}{(x^2 1)^{\frac{1}{2}}}$
- $\{3\}$ 1. (b) Find the arc length of the curve $y = \frac{1+2x^6}{8x^2}$ from the point $(1, \frac{3}{3})$ to the point $(2, \frac{129}{32})$.
- A Japanese samurai sword, a Takana, is made by hammering out a long red-hot sterd blank, sprinkling carbon on the surface, then folding it over. This process is repeated 22 times.

9

- (a) What is the sequence that describes the number of layers as a function of the number of folds?
 - How many layers does the finished sword have?

E

- (3.) Calculate $\lim_{h\to 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2}$ where f is a twice differentiable function. [Hint: Use L'Hôpiral's rule.]
- $\mathcal{G}_{\mathcal{F}}=4.$ (a) Find the Taylor series for x^{-1} in powers of (x+1).
- (b) Find the Taylor series for $\int_0^x e^{-u^3} du$, and hence calculate $\int_0^1 e^{-u^3} du$ to two decimal places.
- 5. (a) For what values of x are the following series convergent:
- (i) $\sum_{k=1}^{\infty} \frac{\tan^k x}{k}$

- (ii) $\sum_{i=1}^{\kappa} \frac{1}{x^{i} + x^{i}}$
- (7) 5. (b) Sum the series $\sum_{k=1}^{\infty} \frac{k^2 + 1}{k!}$

- [10] 6. Give a rough sketch of the hyperbola $r^{-1} = 1 2\cos\theta$, and find the equations of the asymptotes to this hyperbola (in cartesian or polar coordinates).
- [10] 7. Given that $f(x,y) = x^{\frac{1}{3}} F\left(\frac{y}{x^{\frac{3}{3}}}\right)$, show that f satisfies the equation
- $f_{nng} = f_n f_{xy} f_x f_{yy}$ when $F''' + \frac{1}{3} [FF'' + (F')^2] = 0$.
- 4ϕ 8. Find the equation of the rangent plane and the normal line to the ellipsoid $|x|^2 + 2y^2 + 3z^2 = 6$ at the point (1, 1, 1).
- $\langle 10 \rangle = 9$. An instrument gives three readings: R_1 , R_2 , and R_3 , by which one may measure a physical process described by

$$T = 24.7R_1 + 1.83R_2^3 - R_3^5/47.8$$
:

the readings and their errors are given by

$$R_1 = 1.82 \pm 0.5$$
; $R_2 = 22.1 \pm 0.5$; $R_3 = 4.2 \pm 0.5$.

- (a) What is the maximum error that T can have?
- (b) What is the percentage of maximum error compared with the nominal reading?
- [12] 10. Given the plane curve C defined by $\mathbf{r}(t)$, let Q be the centre of curvature of C at P. As P traces out C, then Q traces out another curve which is called the evolute of C, Find the evolute when C is the ellipse $\mathbf{r} = a\cos t\hat{t} + b\sin t\hat{f}$.

