Instituto Tecnológico de Costa Rica Área de Ingeniería en Computadores Profesor: Dr. Pablo Alvarado Moya EL-5852 Introducción al Reconocimiento de Patrones

L-5852 Introducción al Reconocimiento de Patrones Entrega: 14 de agosto, 2018

II Semestre 2019

Tarea 1

Las siguiente preguntas requieren tiempo para pensar, pero no requieren respuestas extensas. Se resuelven con relativa facilidad si se utilizan las propiedades de gradientes y trazas vistas en clase. El objetivo de la tarea es asegurar que se maneja el lenguaje matemático a utilizar en varias partes del curso.

I Gradientes y Hessianas

Sea la matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ simétrica, y sea el vector $\underline{\mathbf{x}} \in \mathbb{R}^n$.

- 1. Encuentre el gradiente $\nabla f(\underline{\mathbf{x}})$ para $f(\underline{\mathbf{x}}) = \frac{1}{2}\underline{\mathbf{x}}^T \mathbf{A}\underline{\mathbf{x}} + \underline{\mathbf{b}}^T\underline{\mathbf{x}}$ (10 pts)
- 2. Para esa misma función $f(\underline{\mathbf{x}}) = \frac{1}{2}\underline{\mathbf{x}}^T \mathbf{A}\underline{\mathbf{x}} + \underline{\mathbf{b}}^T\underline{\mathbf{x}}$, encuentre la matriz hessiana $\nabla^2 f(\underline{\mathbf{x}})$. (10 pts)
- 3. Encuentre ahora el gradiente $\nabla f(\underline{\mathbf{x}})$ con $f(\underline{\mathbf{x}}) = g(h(\underline{\mathbf{x}}))$ con $g : \mathbb{R} \to \mathbb{R}$ y $h : \mathbb{R}^n \to \mathbb{R}$, ambas diferenciables. (5 pts)
- 4. Sea ahora $f(\underline{\mathbf{x}}) = g(\underline{\mathbf{a}}^T\underline{\mathbf{x}})$ con $g: \mathbb{R} \to \mathbb{R}$ continuamente diferenciable y $\underline{\mathbf{a}} \in \mathbb{R}^n$ un vector. Encuentre el gradiente $\nabla f(\underline{\mathbf{x}})$ y la matriz hessiana $\nabla^2 f(\underline{\mathbf{x}})$. (20 pts)

II Matrices positivas definidas

- 1. Se
a $\underline{\mathbf{z}} \in \mathbbm{R}^n$ un vector n-dimensional. Muestre que
 $\mathbf{A} = \underline{\mathbf{z}}\underline{\mathbf{z}}^T$ es positiva semidefinida. (10 pts)
- 2. Sea $\underline{\mathbf{z}} \in \mathbb{R}^n$ un vector *n*-dimensional no nulo, y $\mathbf{A} = \underline{\mathbf{z}}\underline{\mathbf{z}}^T$. Encuentre cuál es el espacio nulo de \mathbf{A} y su rango. (10 pts)

Esta tarea se realiza en grupos de dos personas.