BÀI TẬP LẦN 2

2.1 Trong không gian \mathbb{R}^4 , cho

$$S = \{u_1 = (1, 0, 2, 1), u_2 = (1, 0, 4, 4)\}.$$

Chứng tỏ S độc lập tuyến tính và thêm vào S một số vectơ để S trở thành cơ sở của \mathbb{R}^4 .

2.2 Trong không gian \mathbb{R}^4 , cho W sinh bởi

$$S = \{u_1 = (1, 2, 1, 2), u_2 = (2, 1, 1, 2), u_3 = (3, 0, 1, 2), u_4 = (5, 7, 4, 8)\}.$$

Tìm một tập con của S để là cơ sở của W?

2.3 Cho W_1 là không gian nghiệm của hệ phương trình

$$\begin{cases} 2x_1 + 4x_2 - x_3 + 4x_4 = 0; \\ 3x_1 + 6x_2 - x_3 + 5x_4 = 0; \\ x_1 + 2x_2 - 2x_3 + 5x_4 = 0. \end{cases}$$

và W_2 là không gian sinh bởi $\{v_1, v_2\}$ với $v_1 = (0, -1, 4, 1), v_2 = (1, -1, 2, 0).$

- a) Tìm một cơ sở của không gian W_1 .
- b) Tìm một cơ sở của không gian $W_1 + W_2$.

 ${f 2.4}$ Cho W_1 là không gian nghiệm của hệ phương trình

$$\begin{cases} x_1 + 2x_2 - 2x_3 + 5x_4 = 0; \\ 3x_1 + 6x_2 - x_3 + 5x_4 = 0; \\ 2x_1 + 4x_2 - x_3 + 4x_4 = 0. \end{cases}$$

và W_2 là không gian sinh bởi $\{v_1 = (1, 2, 2, 1); v_2 = (3, -2, 2, 1)\}.$

- a) Tìm một cơ sở của không gian W_1 .
- b) Tìm một cơ sở của không gian $W_1 + W_2$.
- c) Tìm số chiều của không gian $W_1 \cap W_2$.

2.5 Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (3, 2, -1), u_2 = (2, 0, 1), u_3 = (-1, -1, 1), v_1 = (2, 1, -1), v_2 = (-1, 1, -2), v_3 = (1, 2, m).$

- a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở của \mathbb{R}^3 .
- b) Tìm điều kiện m để $\mathcal{C} = (v_1, v_2, v_3)$ là cơ sở của \mathbb{R}^3 .

2.6 Trong không gian \mathbb{R}^3 , cho W là không gian sinh bởi hai vectơ $u_1=(2,1,2)$ và $u_2=(3,1,1)$.

- a) Chứng tổ rằng $\mathcal{B} = (u_1, u_2)$ là cơ sở của W.
- b) Cho $u=(a,b,c)\in\mathbb{R}^3$. Tìm điều kiện của a,b,c để $u\in W$. Với điều kiện đó, hãy tìm $[u]_{\mathcal{B}}$ theo a,b,c.
- c) Cho $v_1=(3,2,5)$ và $v_2=(1,1,3)$. Chứng tỏ rằng $\mathcal{C}=(v_1,v_2)$ là cơ sở của W.
- d) Tìm $[u]_{\mathcal{C}}$ biết $[u]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.