SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Electronics & Academic Year: 2022 Duration: 3 hours

Telecommunication Engineering

Date: 23.01.2023

Time: 09:00 am to 12:00 pm

Subject: Electrical Network Analysis and Synthesis (Semester III) Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains three pages.
- (2) Use of Non- Programmable Scientific Calculator.
- (3) All Questions Are Compulsory.
- (4) All questions carry equal marks.
- (5) Answer to each new question is to be started on a fresh page.
- (6) Figures in the brackets on the right indicate full marks.
- (7) Assume suitable data wherever required, but justify it.
- (8) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Using Mesh Analysis, Find the current through 5 Ohm. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[05]
Q1 (b)	i. Find the Node Voltages V_A & V_B $1 \Omega \bigvee_{Q} V_A = 0.5 \Omega \bigvee_{Q} V_B$ 20 V	[05]

******* 1 *******

	ii. Obtained Thevenin's Equivalent network from the given network at terminal A & B.	
	√1 ₁	
	$4 \Omega \geqslant 2I_1$	F0.51
	8 V ———————————————————————————————————	[05]
Q2 (a)	i. Write down the Tieset matrix and obtain the network equilibrium equation in matrix form using KVL. Calculate loop currents.	[10]
	2 Ω	
	$A \Omega I_{l_3} A A A$	
	$6\Omega \gtrsim 2\Omega \searrow 4\Omega$	
	12 V (±)	
	Y	
	<u>OR</u>	
	i. Draw the Oriented graph and Find the Incidence matrix, Also Write down the Tieset matrix of given circuit.	[10]
	R_2 L_1 R_4 C	
	R_{1} R_{3}	
Q2 (b)	Find the Equivalent Inductance of the network from given circuit.	
	1 H	[05]
	10 H 5 H 6 H	[03]
Q3 (a)	In the given network, the switch is closed at $t = 0$. With zero current in the inductor,	[05]
	find, $i, \frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t=0+	[05]
	100 V T	
	i(t) ~	
Q3 (b)	i. In the network given the switch is moved from the position 1 to 2 at $t = 0$,	[05]
	steady-state condition having been established in the position 1. Determine i (t)	
	$\begin{array}{c c} & & & 10 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	
	10 V T	

******* 2 *******

	ii) In the network shown, the switch is changed from the position 1 to the position	
	2 at $t = 0$, steady condition having reached before switching.	
	Find $i, \frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t=0 ⁺	[05]
	Tille t , $\frac{dt}{dt}$ and $\frac{dt^2}{dt^2}$ at $t=0$	
	1 0 Ω	
	20 1	
	20 V T S 20 Q S 1 H	
	$\geq 20 \Omega$ $i(t) \prec$ $\geqslant 1 H$	
Q4 (a)	Realise following Impedance function in Foster-I and Foster-II form.	[10]
()		[]
	$Z(S) = \frac{4(S^2 + 1)(S^2 + 9)}{S(S^2 + 4)}$	
O4 (b)		
Q4 (b)	i. Test whether given function is Positive Real Function,	[05]
	$F(S) = \frac{(S^2 + 6S + 5)}{(S^2 + 9S + 14)}$	
	(5"+95+14) OP	
	ii Test whather the given polynomial is Hymyitz on Not?	
	ii. Test whether the given polynomial is Hurwitz or Not?	
	1. $P(S) = S^3 + 4S^2 + 5S + 2$	[05]
	2. $P(S) = S^4 + 7S^3 + 6S^2 + 21S + 8$	[05]
Q5 (a)	i. Find the open-circuit impedance parameters for the given network-	
	4Ω	[05]
	4 10 20 4	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	· · · · · · · · · · · · · · · · · · ·	
	$V_1 \geqslant 2 \Omega$ V_2	
	ii. Find the transmission parameters for the given network-	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	+	
	V_1 $\gtrsim_{5\Omega}$ V_2	[05]
		[05]
	- -	
Q5 (b)	Find Y-parameters of the given network –	
	l_1 2Ω V_3 2Ω l_2	
	→ VVV → +	
	ξ1Ω	
	V_1 V_2	
		[05]
	_ ·	
	<u> </u>	

******* 3 *******