March 25, 2023 4:34 PM

ENGI-1500 Physics-2 Winter-2023

Assignment-2

1 Assignment Prepared By (Individual Work)

Assignment Due: March 28th, 2023 – 11:59 pm Please submit on Blackboard / email

Name: Michael McCorkell
Student ID: NO1500049

Humber College Institute of Technology and Advanced Learning
Textbook: Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. 10th Edition. Cengage learning, 201

ENGI-1500 Physics-2 Winter-2023

2 Questions

Q1 [Textbook 28.27] [20 pts]

s A strong magnet is placed under a horizontal conducting ring of radius r that carries current I as shown in Figure P28.27. If the magnetic field \overrightarrow{B} makes an angle θ with the vertical at the ring's location, what are

(a) the magnitude and

(b) the direction of the resultant magnetic force on the ring?

Figure [28.27]: Magnetic force acting on a current carrying conductor

Humber College Institute of Technology and Advanced Learning
Textbook: Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. 10th Edition. Cengage learning, 20

ENGI-1500 Physics-2

Winter-2023

Q2 [Textbook 29.29] [20 pts]

- $extbf{V}$ A solenoid of radius $r=1.25~ ext{cm}$ and length $\ell=30.0~ ext{cm}$ has 300 turns and carries 12.0 A.
- (a) Calculate the flux through the surface of a disk-shaped area of radius $R=5.00~{
 m cm}$ that is positioned perpendicular to and centered on the axis of the solenoid as shown in Figure P29.29a.
- (b) Figure P29.29b shows an enlarged end view of the same solenoid. Calculate the flux through the tan area, which is an annulus with an inner radius of $a=0.400~\mathrm{cm}$ and an outer radius of $b=0.800~\mathrm{cm}$.

Figure [29.29]: Gauss's law in magnetism

B)
$$\Phi = B \cdot A$$

= (0.016) (0.00015)
= 23x10-4Wb

A=5112=0.0002m A=5112=0.00005m A=A1-A220.00016m Humber College Institute of Technology and Advanced Learning
Textbook: Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. 10th Edition. Cengage learning, 20

ENGI-1500 Physics-2 Winter-2023

Q3 [Textbook 30.35] [20 pts]

A conducting rod of length $\ell=35.0~\mathrm{cm}$ is free to slide on two parallel conducting bars as shown in Figure P30.35. Two resistors $R_1=2.00~\Omega$ and $R_2=5.00~\Omega$ are connected across the ends of the bars to form a loop. A constant magnetic field $B=2.50~\mathrm{T}$ is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of $v=8.00~\mathrm{m/s}$. Find

- (a) the currents in both resistors,
- (b) the total power delivered to the resistance of the circuit, and
- (c) the magnitude of the applied force that is needed to move the rod with this constant velocity.

<u>Hint</u>: Find the EMF induced on the moving bar and apply Kirchhoff's voltage (loop) rule on two sides of the bar. Use Lenz's law as a guidance to assign the directions of currents in each loop.

Figure [30.35]: Motional EMF

a)
$$I_{1} = \frac{B \sqrt{1}}{R_{1}} = \frac{(2.50)(400)(0.35)}{2.00} = 3.54$$

$$I_{2} = \frac{B \sqrt{1}}{R_{2}} = \frac{(2.50)(8.00)(0.35)}{5} = 1.4A$$

$$I = I_{1} + I_{2}$$

$$I = 4.4A$$

b)
$$P = EI = Bvl(4.9A)$$

= (2.50)(8.00)(0.35)(4.9A)
= 34.3 V

ENGI-1500 Physics-2 Winter-2023

Q4.a [Textbook 31.11] [10 pts]

A series RL circuit with L=3.00 H and a series RC circuit with C=3.00 μF have equal time constants. If the two circuits contain the same resistance R,

- (a) what is the value of R?
- (b) What is the time constant?

R= \frac{3}{3\kno''} = 1000\D

a)
$$\frac{L}{R} = RC$$

$$R^2 = \frac{L}{C}$$

b) =
$$1000\Omega \times 3 \times 10^{-6}$$

= $3 \times 10^{-3} \text{ Sec}$

Q4.b [Textbook 31.12] [10 pts]

Show that $i=I_ie^{-t/\tau}$ is a solution of the differential equation

$$iR+L\frac{di}{dt}=0$$

where I_i is the current at t=0 and $\tau=L/R$.

$$-\frac{t}{L/R} = l_n \left(\frac{I}{I_1}\right)$$

$$I = I_i e^{-t/\tau}$$

Humber College Institute of Technology and Advanced Learning
Textbook: Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers. 10th Edition. Cengage learning, 20

ENGI-1500 Physics-2 Winter-2023

Q5 [Textbook 32.5] [20 pts]

In the AC circuit shown in Figure P32.3, $R=70.0~\Omega$ and the output voltage of the AC source is $\Delta V_{\rm max} \sin \omega t$.

- (a) If $\Delta V_R=0.250~\Delta V_{
 m max}$ for the first time at $t=0.010~0~{
 m s}$, what is the angular frequency of the source?
- (b) What is the next value of t for which $\Delta V_R = 0.250 \ \Delta V_{\rm max}$?

Figure [32.3]: Resistors in an AC circuit

$$0.250 \, \text{V}_{\text{max}} = \text{V}_{\text{max}} \, \frac{\sin \left(\omega \cdot 0.0100 \right)}{0.250}$$

 $\sin^{-1}(0.260) = 14.48^{\circ}$
 $14.48^{\circ} = \frac{57}{180^{\circ}} = 0.2527 \text{ Ya.ds}$

b)
$$w t' = \pi - w t$$

 $t' = (\pi/w) - t$
 $t' = (\frac{\pi}{25.27}) - 0.0100$
 $= 0.1243 - 0.0100$
 $= 0.1143$ $= 0.0100$

