#### Information about data:

- ->We have the amazon reviews dataset from kaggle
- ->Reviews are given for the product
- ->The features of the data were:

Ιd

ProductId- unique identifier for the product

UserId- unqiue identifier for the user

ProfileName

 $\label{eq:helpfullnessNumerator-number of users who found the review helpful} \\$ 

dicated whether they

HelpfulnessDenominator- number of users who in

found the review helpful or not

Score-rating between 1 and 5

Time-timestamp for the review

Summary- brief summary of the review

Text- text of the review

and negative

Number of reviews: 568,454

Objective:

-> Convert the reviews to vectors by using different approaches like Bag of Words, TFIDF, Average Word2vec, TFIDF-Word2vec and apply the dimensionality reduction technique

## Importing the required libraries to process

```
import sqlite3
import numpy as np
import pandas as pd
import matplotlib.pyplot as mp
import nltk
import string
from sklearn.feature_extraction.text import
TfidfTransformer, TfidfVectorizer, CountVectorizer
from sklearn import metrics
from sklearn.metrics import auc, roc_curve
from nltk.stem.porter import PorterStemmer
```

Using the sqlite3 to read data

```
In [2]:
con = sqlite3.connect("database.sqlite")
```

Filtering the reviews with positive and negative based on the score

```
In [3]:

filtereddata = pd.read_sql_query("SELECT * FROM Reviews WHERE Score !=3",co
n)
```

- ->function to classify reviews into positive and negative based on rating.
- ->Here we are considering that reviews with a rating more than 3 are as positive and reviews with rating
- ->less than 3 as negative. So considering 3 as the neutral rating, so neglecting the reviews which are give-n

with rating of 3

```
In [4]:

def classify(x):
    if x>3:
        return 'positive'
    return 'negative'
```

Applying the function on rating(score) in the data

```
In [5]:

rating = filtereddata['Score']
rating = rating.map(classify)
filtereddata['Score'] = rating
```

Information about the data:

```
->The shape of data
```

```
->Number of features
   ->Sample data
In [6]:
print(filtereddata.shape)
print(filtereddata.ndim)
print(filtereddata.columns)
print(filtereddata.head(5))
(525814, 10)
2
Index(['Id', 'ProductId', 'UserId', 'ProfileName', 'HelpfulnessNumerator',
       'HelpfulnessDenominator', 'Score', 'Time', 'Summary', 'Text'],
      dtype='object')
   Ιd
       ProductId
                           UserId
                                                       ProfileName
   1 B001E4KFG0 A3SGXH7AUHU8GW
0
                                                         delmartian
   2 B00813GRG4 A1D87F6ZCVE5NK
1
                                                            dll pa
    3 B000LQOCH0
                  ABXLMWJIXXAIN Natalia Corres "Natalia Corres"
2
3
   4 B000UA0QIQ A395BORC6FGVXV
                                                               Karl
   5 B006K2ZZ7K A1UQRSCLF8GW1T
                                  Michael D. Bigham "M. Wassir"
  HelpfulnessNumerator HelpfulnessDenominator
                                                    Score
                                                                  Time \
0
                                              1 positive 1303862400
                      1
1
                      0
                                              0 negative 1346976000
2
                      1
                                              1 positive 1219017600
                      3
3
                                              3
                                                negative 1307923200
4
                      0
                                                 positive 1350777600
                 Summary
                         I have bought several of the Vitality canned d...
   Good Quality Dog Food
0
1
       Not as Advertised Product arrived labeled as Jumbo Salted Peanut...
   "Delight" says it all This is a confection that has been around a fe...
2
3
          Cough Medicine If you are looking for the secret ingredient i...
             Great taffy Great taffy at a great price. There was a wid...
Exploratory data analysis
Deduplication:removing duplicates
In [7]:
dup = pd.read sql query("""SELECT * FROM REVIEWS WHERE Score !=3 AND UserId
```

->dimensionality of data

# Id ProductId UserId ProfileName HelpfulnessNumerator HelpfulnessE

="AR5J8UI46CURR" ORDER BY ProductId """, con)

dup

Out[7]:

|   | ld     | ProductId  | Userld        | ProfileName        | HelpfulnessNumerator | HelpfulnessE |
|---|--------|------------|---------------|--------------------|----------------------|--------------|
| ( | 78445  | B000HDL1RQ | AR5J8UI46CURR | Geetha<br>Krishnan | 2                    | 2            |
| 1 | 138317 | B000HDOPYC | AR5J8UI46CURR | Geetha<br>Krishnan | 2                    | 2            |
| 2 | 138277 | B000HDOPYM | AR5J8UI46CURR | Geetha<br>Krishnan | 2                    | 2            |
| 3 | 73791  | B000HDOPZG | AR5J8UI46CURR | Geetha<br>Krishnan | 2                    | 2            |
| 4 | 155049 | B000PAQ75C | AR5J8UI46CURR | Geetha<br>Krishnan | 2                    | 2            |
| 4 |        |            |               | 1000               |                      | F            |

- ->It shows that same user have 5 reviews at the same time which is not possible
- ->This is because if we review on product it is applied to different flavors in the product
- ->In order to remove the product we have to sort them and drop the duplicates

# In [8]:

```
sorteddata = filtereddata.sort_values("ProductId",axis=0,ascending=True,inp
lace=False,kind='quicksort',na_position='last')
```

## In [9]:

```
finaldata = sorteddata.drop_duplicates(subset=('Time','Text','ProfileName',
'UserId'), keep='first',inplace=False)
```

# In [10]:

```
finaldata.shape
```

## Out[10]:

(364173, 10)

Percentage reduction of data after dropping duplicates

```
In [11]:
```

```
print(filtereddata['Id'].size)
print(finaldata['Id'].size)
```

525814 364173

In [12]:

```
(364173/525814) *100
```

Out[12]:

69.25890143662969

- ->One more observation is that for a product the useful review(helpfullnessnumerator) is greater that the
- ->Total number of reviews on the product(helpfullnessdenominator) which is not possible

## In [13]:

```
numden = pd.read_sql_query("""SELECT * FROM Reviews WHERE Score !=3 AND Id=
44737 OR Id = 64422 ORDER BY ProductId""",con)
```

## In [14]:

numden

Out[14]:

|   | ld    | ProductId  | Userld         | ProfileName                   | HelpfulnessNumerator | HelpfulnessD |
|---|-------|------------|----------------|-------------------------------|----------------------|--------------|
| 0 | 64422 | B000MIDROQ | A161DK06JJMCYF | J. E.<br>Stephens<br>"Jeanne" | 3                    | 1            |
| 1 | 44737 | B001EQ55RW | A2V0I904FH7ABY | Ram                           | 3                    | 2            |

## In [15]:

finaldata = finaldata[finaldata.HelpfulnessNumerator<=finaldata.Helpfulness
Denominator]
finaldata</pre>

Out[15]:

|        | ld     | ProductId  | Userld         | ProfileName                    | HelpfulnessNun |
|--------|--------|------------|----------------|--------------------------------|----------------|
| 138706 | 150524 | 0006641040 | ACITT7DI6IDDL  | shari zychinski                | 0              |
| 138688 | 150506 | 0006641040 | A2IW4PEEKO2R0U | Tracy                          | 1              |
| 138689 | 150507 | 0006641040 | A1S4A3IQ2MU7V4 | sally sue "sally<br>sue"       | 1              |
| 138690 | 150508 | 0006641040 | AZGXZ2UUK6X    | Catherine<br>Hallberg "(Kate)" | 1              |
| 138691 | 150509 | 0006641040 | A3CMRKGE0P909G | Teresa                         | 3              |
| 138693 | 150511 | 0006641040 | A1C9K534BCI9GO | Laura Purdie<br>Salas          | 0              |
| 138694 | 150512 | 0006641040 | A1DJXZA5V5FFVA | A. Conway                      | 0              |
| 138695 | 150513 | 0006641040 | ASH0DZQQF6AIZ  | tessarat                       | 0              |
| 138696 | 150514 | 0006641040 | A2ONB6ZA292PA  | Rosalind Matzner               | 0              |
| 138697 | 150515 | 0006641040 | A2RTT81R6Y3R7X | Lindylu                        | 0              |

|        | ld     | ProductId  | UserId            | Jaso <b>PrêfileNahae</b>                    | HelpfulnessNum |
|--------|--------|------------|-------------------|---------------------------------------------|----------------|
| 138687 | 150505 | 0006641040 | A2PTSM496CF40Z    | "Nobody made a greater mistak               | 1              |
| 138698 | 150516 | 0006641040 | A3OI7ZGH6WZJ5G    | Mary Jane<br>Rogers<br>"Maedchen"           | 0              |
| 138700 | 150518 | 0006641040 | AK1L4EJBA23JF     | L. M. Kraus                                 | 0              |
| 138701 | 150519 | 0006641040 | A12HY5OZ2QNK4N    | Elizabeth H.<br>Roessner                    | 0              |
| 138702 | 150520 | 0006641040 | ADBFSA9KTQANE     | James L.<br>Hammock<br>"Pucks Buddy"        | 0              |
| 138703 | 150521 | 0006641040 | A3RMCRB2NDTDYP    | Carol Carruthers                            | 0              |
| 138704 | 150522 | 0006641040 | A1S3C5OFU508P3    | Charles<br>Ashbacher                        | 0              |
| 138705 | 150523 | 0006641040 | A2P4F2UO0UMP8C    | Elizabeth A.<br>Curry "Lovely<br>Librarian" | 0              |
| 138707 | 150525 | 0006641040 | A2QID6VCFTY51R    | Rick                                        | 1              |
| 138708 | 150526 | 0006641040 | A3E9QZFE9KXH8J    | R. Mitchell                                 | 11             |
| 400700 | 450500 | 0000044040 | AGEAGL VEIZED AVA | Matt Hetling                                |                |

| 136709 | 150529<br><b>Id</b> | ProductId  | UserId         | "Mat <b>p</b> rofileName                               | HelpfulnessNur |
|--------|---------------------|------------|----------------|--------------------------------------------------------|----------------|
| 138699 | 150517              | 0006641040 | ABW4IC5G5G8B5  | kevin clark                                            | 0              |
| 138686 | 150504              | 0006641040 | AQEYF1AXARWJZ  | Les Sinclair<br>"book maven"                           | 1              |
| 138692 | 150510              | 0006641040 | AM1MNZMYMS7D8  | Dr. Joshua<br>Grossman                                 | 0              |
| 138680 | 150498              | 0006641040 | A3SJWISOCP31TR | R. J. Wells                                            | 2              |
| 138677 | 150494              | 0006641040 | AYZ0PR5QZROD1  | Mother of 3 girls                                      | 3              |
| 138678 | 150496              | 0006641040 | A3KKR87BJ0C595 | Gretchen<br>Goodfellow<br>"Lover of<br>children's lit" | 3              |
| 138685 | 150503              | 0006641040 | A3R5XMPFU8YZ4D | Her Royal<br>Motherliness<br>"Nana"                    | 1              |
| 138684 | 150502              | 0006641040 | AVFMJ50HNO21J  | Jane Doe                                               | 1              |
| 138679 | 150497              | 0006641040 | A1HKYQOFC8ZZCH | Maria Apolloni<br>"lanarossa"                          | 2              |
|        |                     |            |                |                                                        |                |

| 35419  | ld<br>38512 | ProductId<br>B009O7B1I0 | UserId<br>A2YWHBF45M64S2 | ProfileName<br>EcyMom         | HelpfulnessNun |
|--------|-------------|-------------------------|--------------------------|-------------------------------|----------------|
| 195185 | 211594      | B009O7DGEW              | A2UAKIEWZLQCUE           | Cindy S.                      | 0              |
| 494393 | 534495      | B009OY38SY              | A1H1OCLG2B4AEQ           | base64                        | 0              |
| 134853 | 146374      | B009P4KMZA              | A217L3D5UK74I6           | george karlin                 | 0              |
| 430102 | 465120      | B009PCDDO4              | A2II09GQGWOMTQ           | Brian Nallick<br>"METALMANMN" | 1              |
| 264734 | 286941      | B009PFJUF2              | A2UAKIEWZLQCUE           | Cindy S.                      | 1              |
| 264735 | 286942      | B009PFJUF2              | A16HJRHRHNSUZ6           | Danielle Tietz                | 1              |
| 241028 | 261429      | B009PG8MVO              | A2UAKIEWZLQCUE           | Cindy S.                      | 0              |
| 269822 | 292509      | B009PIAFTE              | A00489763J7YUCSN6CP7K    | Andrea Llyod                  | 0              |
| 343072 | 371148      | B009PICJTS              | A09229701Z8W88AD38877    | Kristi Greene                 | 0              |
|        |             |                         |                          |                               |                |

| 427660 | 462501<br><b>Id</b> | B009PIEW3O<br><b>Productid</b> | A0849196AFU725N8S7RS<br><b>Userid</b> | Brady Gibson<br><b>ProfileName</b> | )<br>HelpfulnessNum |
|--------|---------------------|--------------------------------|---------------------------------------|------------------------------------|---------------------|
|        |                     |                                |                                       |                                    |                     |
| 184728 | 200383              | B009RE0Y5G                     | A3M2YJ76LOMNBK                        | turbo418                           | 0                   |
| 178140 | 193169              | B009RSR8HO                     | A3M3S2NCVZ8UXF                        | Stephanie                          | 0                   |
| 178139 | 193168              | B009RSR8HO                     | A1L130V9KINC45                        | mildred rosa                       | 0                   |
| 178138 | 193167              | B009RSR8HO                     | A5F9OUO3F2N7C                         | Jan                                | 0                   |
| 178135 | 193164              | B009RSR8HO                     | A2IZG2VYD476QH                        | CSTreviso                          | 1                   |
| 178136 | 193165              | B009RSR8HO                     | A1I08MP3H92U6R                        | Thomas                             | 1                   |
| 178134 | 193163              | B009RSR8HO                     | A1QX7TAALGCUKM                        | H.B. "H.B."                        | 2                   |
| 178137 | 193166              | B009RSR8HO                     | AD0V42PRKCDBM                         | Rachelle                           | 0                   |
| 178142 | 193171              | B009RSR8HO                     | AH2FVNP7Z6PZH                         | Marty Campbell                     | 0                   |
| 178141 | 193170              | B009RSR8HO                     | A1TNEJA68OD7ZH                        | morgan                             | 0                   |

|        | ld     | ProductId  | Userld         | ProfileName               | HelpfulnessNum |
|--------|--------|------------|----------------|---------------------------|----------------|
| 178143 | 193172 | B009RSR8HO | A3JJTHP8T7A8LY | Joanne Eklund<br>"Joanne" | 0              |
| 178147 | 193176 | B009RSR8HO | A76WHW051R3KV  | Shawn "Shawn"             | 0              |
| 178146 | 193175 | B009RSR8HO | A1A0PMN417S4V9 | mamaelle<br>"mamaelle"    | 0              |
| 178144 | 193173 | B009RSR8HO | A34TVEXPHSSPBV | Beth                      | 0              |
| 178145 | 193174 | B009RSR8HO | A4P6AN2L435PV  | romarc                    | 0              |
| 173675 | 188389 | B009SF0TN6 | A1L0GWGRK4BYPT | Bety Robinson             | 0              |
| 204727 | 221795 | B009SR4OQ2 | A32A6X5KCP7ARG | sicamar                   | 1              |
| 5259   | 5703   | B009WSNWC4 | AMP7K1O84DH1T  | ESTY                      | 0              |
| 302474 | 327601 | B009WVB40S | A3ME78KVX31T21 | K'la                      | 0              |

```
In [16]:
finaldata.shape
Out[16]:
(364171, 10)
Text preprocessing: ->Which includes cleaning the text like
   ->Removing special characters, stemming, lemitization
   ->Checking a word length greater that 2
   ->Removing stopwords
   ->converting words to lowercase
In [17]:
import re
i=0
for sent in finaldata['Text'].values:
    if (len(re.findall("<.*?>", sent))):
        print(i)
        print(sent)
        break
    i = i+1
I set aside at least an hour each day to read to my son (3 y/o). At this po
int, I consider myself a connoisseur of children's books and this is one of
the best. Santa Clause put this under the tree. Since then, we've read it p
```

erpetually and he loves it.<br />First, this book taught him the mont hs of the year.  $\$  />Second, it's a pleasure to read. Well suited to 1.5 y/o old to 4+.<br />very few children's books are worth owning. M ost should be borrowed from the library. This book, however, deserves a per manent spot on your shelf. Sendak's best.

# In [18]:

```
import string
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
nltk.download('stopwords')
[nltk data] Downloading package stopwords to
             /Users/vthumati/nltk data...
[nltk data]
[nltk data] Package stopwords is already up-to-date!
Out[18]:
True
```

- ->Removing stop words
- ->Stemming the words

```
In [20]:
```

```
stop = set(stopwords.words('english'))
sno = nltk.stem.SnowballStemmer('english')
```

## Function to clean html tags and special characters

## In [21]:

```
def cleanhtml (sentence):
    clean = re.compile("<.*?>")
    cleantext = re.sub(clean," ",sentence)
    return cleantext
def cleanpunct(sentence):
    cleanr = re.sub(r"[?|!|\|'|#|.|,|)|(|/]",r' ',sentence)
    return cleanr
```

## In [22]:

```
print(sno.stem('because'))
print(stop)
```

becaus { 'hasn', 'above', 'don', 'or', 'himself', 'am', "doesn't", 'his', 'themselv es', 'any', 'through', 'be', 'an', "shouldn't", 'me', 'their', 'up', 'out', 'do', 'during', 'did', 'them', 'into', "you've", 'we', "she's", 'before', " isn't", 'same', 'there', 'below', 'other', 'this', "it's", 'if', 'only', 'o f', 'they', 'having', 'to', 'couldn', "weren't", 're', 'myself', "hadn't", 'yours', "you're", 'which', 'against', 'aren', 'm', 'once', 'was', 'again', 'very', 'after', 'were', 'as', 'those', 'from', 'her', 'over', 'each', 'the n', 'all', 'further', 'should', 'mightn', 'no', 'weren', "should've", 'down ', 'about', 'o', 'and', 'by', 'what', 't', 'does', 'both', 'nor', "mightn't ", 'between', 'i', 'in', 'most', "didn't", 'needn', 'a', 'hadn', 'few', 'ma 'the', 'now', 'on', 'herself', 'such', 'not', 'my', 'is', 've', "you'll" 'has', 'theirs', 'some', 'she', 'doesn', 'than', 'with', 'wouldn', 'isn', 'you', 'more', 'just', "hasn't", "wasn't", 'too', 'your', 'have', 'own', 'o urselves', 'wasn', "don't", 'yourself', 'shouldn', 'under', "shan't", 'why' , 's', 'won', 'here', 'while', 'these', 'll', 'its', 'doing', "you'd", 'you rselves', "couldn't", 'had', 'are', 'at', 'so', 'ain', 'until', "mustn't", 'whom', 'will', 'for', 'that', "aren't", 'because', 'him', 'being', 'off', 'our', 'didn', "won't", 'd', 'he', 'y', 'can', "that'll", 'been', 'ours', ' hers', 'shan', 'itself', 'where', "wouldn't", 'mustn', 'but', 'who', 'haven ', 'when', 'it', 'how', "haven't", "needn't"}

### In [23]:

```
filtered sentence.append(s)
                         if (finaldata['Score'].values)[i] == 'positive':
                             all positive words.append(s)
                         if (finaldata['Score'].values)[i] == 'negative':
                             all negative words.append(s)
    str1 = b" ".join(filtered_sentence)
    final string.append(str1)
    i = i+1
In [24]:
len(final string)
Out[24]:
364171
BAG OF WORDS:
       Using bow to convert text to vector and reducing its
   dimensionality
In [25]:
count vect = CountVectorizer()
In [26]:
final_count = count_vect.fit_transform(finaldata['Text'].values)
In [27]:
print(type(final count))
final count.shape
<class 'scipy.sparse.csr.csr_matrix'>
Out[27]:
(364171, 115281)
In [28]:
print(type(final count))
final_count.shape
<class 'scipy.sparse.csr.csr matrix'>
Out[28]:
(364171, 115281)
Applying TRUNCATEDSVD technique on bag of words data to reduce dimensionality
In [29]:
from sklearn.decomposition import TruncatedSVD
```

```
In [30]:
truncatedsvd = TruncatedSVD(n components=2,n iter=100,random state=999,tol=
0.0)
In [31]:
tsvd = truncatedsvd.fit transform(final count)
In [32]:
print(tsvd.shape)
print(type(tsvd.shape))
(364171, 2)
<class 'tuple'>
In [33]:
score = finaldata['Score']
print(score.head(5))
138706 positive
138688
        positive
138689
         positive
         positive
138690
138691
         positive
Name: Score, dtype: object
In [34]:
score.shape
Out[34]:
(364171,)
In [35]:
tsvddata = np.vstack((tsvd.T,score)).T
In [36]:
tsvddata.shape
Out[36]:
(364171, 3)
In [37]:
tsvddatadf=pd.DataFrame(data=tsvddata,columns=('1stdim','2nddim','score'))
In [38]:
import seaborn as s
In [39]:
s.FacetGrid(tsvddatadf, hue='score', size=8).map(mp.scatter, '1stdim', '2nddim'
).add legend()
mp.show()
```



# TF-IDF

Using TF-IDF to convert text to vector and reducing its dimensionality  ${\bf r}$ 

# In [40]:

```
tf_idf = TfidfVectorizer(ngram_range=(1,2))
```

# In [41]:

```
tf_idf_vector = tf_idf.fit_transform(finaldata['Text'].values)
```

# In [42]:

```
print(tf_idf_vector.get_shape())
(364171, 2910192)
```

# In [43]:

```
type(tf_idf_vector)
```

# Out[43]:

```
scipy.sparse.csr.csr matrix
->After converting the reviews to vectors using tfidf the resultant is a sparse matrix
->So i have to go with truncatedsvd method for dimensionality redcution
In [44]:
svd1 = TruncatedSVD(n components=2,n iter=100,random state=888,tol=0.0)
In [45]:
svd1 data = svd1.fit transform(tf idf vector)
In [46]:
print(svd1 data.shape)
print(type(svd1 data))
(364171, 2)
<class 'numpy.ndarray'>
In [47]:
score.shape
Out [47]:
(364171,)
In [48]:
svd1 dataframe = np.vstack((svd1 data.T, score)).T
In [49]:
svd1 dataframe.shape
Out[49]:
(364171, 3)
In [50]:
svd1 df = pd.DataFrame(svd1 dataframe,columns=('dim1','dim2','rating'))
In [51]:
s.FacetGrid(svd1 df,hue='rating',size=8).map(mp.scatter,'dim1','dim2').add_1
egend()
mp.show()
   0.6
   0.5
```



## WORD2VEC:

-> Uisng word2vec approach to convert the words in sentences

# In [52]:

```
import gensim
from gensim.models import word2vec
from gensim.models import keyedvectors
```

Constructing our own word2vec model with available data by cleaning the data

# In [53]:

```
i=0
listofsent=[]
for sent in finaldata['Text'].values:
    filtered_sentences = []
    sent = cleanhtml(sent)
    for w in sent.split():
        for cleanedwords in cleanpunct(w).split():
            if(cleanedwords.isalpha()):
                 filtered_sentences.append(cleanedwords.lower())
            listofsent.append(filtered_sentences)
```

## In [54]:

```
print(len(listofsent))
364171
```

Tm [EE].

```
:[cc] nr
```

## listofsent[364170]

```
Out[55]:
['i',
 'purchased',
 'this',
 'to',
 'send',
 'to',
 'my',
 'son',
 'who',
 's',
 'away',
 'at',
 'college',
 'it',
 'was',
 'delivered',
 'right',
 'to',
 'his',
 'dorm',
 'room',
 'with',
 'very',
 'fast',
 'shipping',
 'he',
 'loved',
 'it',
 'so',
 'much',
 'he',
 'called',
 'me',
 'to',
 'thank',
 'me',
 'and',
 'sadly',
 'he',
 'hardly',
 'ever',
 'calls',
 'me',
 'anymore',
 'if',
 'you',
 'want',
 'your',
 'kids',
 'to',
 'call',
 'home',
 'and',
 'have',
 'some',
```

'aood'.

```
'snack',
 'to',
 'get',
 'them',
 'through',
 'midterms',
 'then',
 'send',
 'them',
 'this'
In [56]:
finaldata['Text'][7]
Out [56]:
'This taffy is so good. It is very soft and chewy. The flavors are amazin
g. I would definitely recommend you buying it. Very satisfying!!'
In [57]:
w2vmodel = gensim.models.Word2Vec(listofsent,min count=4,size=50,workers=4)
In [58]:
print(w2vmodel.most similar('the'))
print(len(w2vmodel.wv.vocab))
[('which', 0.5728905200958252), ('each', 0.5433917045593262), ('their', 0.5
308894515037537), ('this', 0.5060376524925232), ('my',
0.48464125394821167), ('simply', 0.45643067359924316), ('flat', 0.452905356
8840027), ('clear', 0.45220744609832764), ('eruption', 0.4510941803455353),
('delicateness', 0.44709208607673645)]
37022
/Users/vthumati/anaconda3/lib/python3.6/site-
packages/ipykernel launcher.py:1: DeprecationWarning: Call to deprecated `m
ost_similar` (Method will be removed in 4.0.0, use self.wv.most_similar() i
nstead).
  """Entry point for launching an IPython kernel.
We can get similar words and the percentage of relationship between the words
In [59]:
print(w2vmodel.most similar('care'))
[('know', 0.6655935645103455), ('understand', 0.6083115935325623), ('realiz
e', 0.6025015711784363), ('complain', 0.586801290512085), ('notice', 0.5743
852257728577), ('mind', 0.5673655271530151), ('forget',
0.5611222386360168), ('mean', 0.56031334400177), ('wonder',
0.5506972670555115), ('think', 0.5449468493461609)]
/Users/vthumati/anaconda3/lib/python3.6/site-
packages/ipykernel launcher.py:2: DeprecationWarning: Call to deprecated `m
ost similar` (Method will be removed in 4.0.0, use self.wv.most similar() i
nstead).
```

9000,

In [60]:

```
w2vmodel.similarity('care','cares')
/Users/vthumati/anaconda3/lib/python3.6/site-
packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `s
imilarity` (Method will be removed in 4.0.0, use self.wv.similarity() inste
  """Entry point for launching an IPython kernel.
Out[60]:
0.4535463963042511
In [61]:
w2vmodel.wv['the']
Out[61]:
array([ 1.4760077 , 0.06088085, 0.25122893, 3.8024113 , -0.7325647 ,
       0.3348562 , -1.227128 , 1.0383446 , 1.9653679 , -0.9013535 ,
       -3.3546283 , -2.7682312 , 0.5758802 , -1.1963058 ,
                                                          0.10881724,
       0.01830601, -1.3414948 , -0.9830876 , 0.05742005, -0.82297766,
       -1.5509261 , -3.6913466 , 0.44190043, -1.0714308 , -3.6228158 ,
       0.5253932, 0.83740276, -0.7880022, 0.03580055, 4.513867
       -0.81963825, -3.9849663 , 0.4207909 , 1.086782 , 2.1443024
       -0.9370693 , -1.7344187 , 1.9087057 , -0.75689244, 1.077857
       2.7157898 , 1.0272412 , -0.1846602 , 0.9406825 , -1.04837
       -0.8381365 , -0.36185342, 1.3645554 , 0.17003968, 1.6306833 ],
      dtype=float32)
Observation:
   -> We can train our own model with the available data, in which we c
   an specify the number of dimensions for each
      word
   -> By using word2vec we can the similarity between the words and als
   o most similar words for the given word
   -> We get each word in the form of 45-dimension vector
   representation
AVERAGE WORD2VEC:
   Using word2vec model and average word2vec to convert sentences to ve
   ctors and applying dimensionality reduction technique
```

### In [62]:

```
sent_vectors = []
for sent in listofsent:
    sent_vec = np.zeros(50)
    cnt=0
    for word in sent:
        try:
        vec = w2vmodel.wv[word]
        sent vec += vec
```

```
cnt += 1
        except:
            pass
    sent vec /= cnt
    sent vectors.append(sent vec)
print(len(sent vectors))
print(len(sent vectors[8]))
/Users/vthumati/anaconda3/lib/python3.6/site-
packages/ipykernel launcher.py:13: RuntimeWarning: invalid value
encountered in true divide
 del sys.path[0]
364171
50
In [63]:
print(len(sent_vectors))
print(len(sent_vectors[9999]))
364171
50
In [64]:
type (sent vectors)
Out[64]:
list
In [65]:
sent vectors[364170]
Out[65]:
array([ 0.36570453, 0.09334156, 0.98163805, 0.73257641, 0.27443594,
       -0.30483963, 0.25059458, 0.2841531, 0.6156666, 0.60540936,
       -0.6850321 , -0.7704277 , -0.85955792 , -0.36570157 , -0.9139018 ,
        0.32033311, 0.59219124, -0.99978455, -0.30295844, -0.67316759,
        0.54540802, -0.16040993, -0.29966747, -0.04598839, -0.43404739,
        0.31542922, -0.54752204, 1.77304547, -0.80832378, 0.59803742,
       -0.11124071, -1.02951697, 0.90932121, 0.23180143, 0.71062997,
        0.70429823, 1.17052499, 1.51756817, 0.07588771, -0.82052859,
        1.08738133, -0.92131361, 0.33412902, -0.24660408, -0.38576354,
        0.39805261, 0.89788988, -1.67742117, -0.45916062, -0.52337357])
In [66]:
np.isnan(sent vectors).any()
Out [66]:
True
In [67]:
np.nansum(sent vectors)
Out [67]:
-157262,27503916554
```

```
In [68]:
type (sent_vectors)
Out[68]:
list
In [69]:
from sklearn.decomposition import TruncatedSVD
In [70]:
tsvd = TruncatedSVD(n components=2,tol=0.0,random state=555)
In [72]:
sent_vectors = np.nan_to_num(sent_vectors)
In [73]:
print(sent vectors.shape)
print(len(sent_vectors))
(364171, 50)
364171
In [75]:
np.isnan(sent_vectors).any()
Out [75]:
False
In [74]:
from sklearn.decomposition import TruncatedSVD
In [76]:
truncatedsvd = TruncatedSVD(n_components=2,tol=0.0,random state=4)
In [77]:
tsvd data = truncatedsvd.fit transform(sent vectors)
In [78]:
tsvd_data.shape
Out[78]:
(364171, 2)
In [79]:
score.shape
Out[79]:
```

```
(364171,)
In [80]:
tsne_data_avgw2vec = np.vstack((tsvd_data.T,score)).T
In [81]:
tsne_data_avgw2vec.shape
Out[81]:
(364171, 3)
In [82]:
tsne_data_avgw2vec_df = pd.DataFrame(data=tsne_data_avgw2vec,columns=("Dime")
nsion-1",'Dimension-2','label'))
In [83]:
s.FacetGrid(tsne_data_avgw2vec_df,hue="label",size=8).map(mp.scatter,'Dimen
sion-1','Dimension-2').add legend()
mp.show()
   2
Dimension-2
                                                                            label
                                                                            positive
                                                                            negative
  -2
        -2
                                    2
                                                              6
                                  Dimension-1
```

Observation:

- -> Using the word2vec model for each word we have constructed the ve ctor representation of each sentence

#### TFIDF-W2V:

- -> This is an alternative for the average word2vec representation
- -> Using this model with the help of the word2vec model we construct the vector representation of each sentence
- -> Applying dimensionality reduction technique to reduce the dimensi ons of each sentences

## In [84]:

```
tf_idf_features = tf_idf.get_feature_names()
print(len(tf_idf_features))
```

2910192

### In [85]:

```
tfidf sent vec = []
row=0
for sent in listofsent:
        sent_vector = np.zeros(50)
        sum = 0
        for word in sent:
            try:
                vec = w2vmodel.wv[word]
                tf_idf = tf_idf_vector[row, tfidf_features.index(word)]
                sent vec += (vec * tf idf)
                sum += tf idf
            except:
                pass
        sent vec /= sum
        tfidf sent vec.append(sent vector)
        row += 1
```

/Users/vthumati/anaconda3/lib/python3.6/site-packages/ipykernel\_launcher.py:14: RuntimeWarning: divide by zero encounter ed in true\_divide

## In [86]:

```
len(tfidf_sent_vec)
```

#### Out[86]:

364171

```
In [87]:
len(tfidf sent vec[99999])
Out[87]:
50
In [88]:
np.isnan(tfidf_sent_vec).any()
Out[88]:
False
In [89]:
type(tfidf_sent_vec)
Out[89]:
list
In [90]:
tfidf_sent_vec = np.nan_to_num(tfidf_sent_vec)
In [91]:
tfidf sent vec.shape
Out[91]:
(364171, 50)
In [92]:
len(tfidf sent vec)
Out[92]:
364171
In [93]:
type (tfidf sent vec)
Out [93]:
numpy.ndarray
In [94]:
from sklearn.decomposition import TruncatedSVD
In [95]:
tsvd tfidf avgw2v =
TruncatedSVD(n components=2,n iter=200,tol=0.0,random state=8)
In [96]:
toud third array or data - toud third array or fit transform (third cont upon)
```

```
tsvu_ctrut_avgwzv_uata - tsvu_ctrut_avgwzv.ftt_ctransform(tfruf_sent_vec)
/Users/vthumati/anaconda3/lib/python3.6/site-
packages/sklearn/decomposition/truncated_svd.py:192: RuntimeWarning: invali
d value encountered in true_divide
    self.explained_variance_ratio_ = exp_var / full_var

In [98]:

print(tsvd_tfidf_avgw2v_data.shape)
print(len(tsvd_tfidf_avgw2v_data))
print(score.shape)

(364171, 2)
364171
(364171,)

In [100]:

tsne_data_tfidf_avgw2vec = np.vstack((tsvd_tfidf_avgw2v_data.T,score)).T
```

## In [101]:

tsne\_data\_tfidf\_avgw2vec\_df = pd.DataFrame(data=tsne\_data\_avgw2vec,columns=
 ("Dimension-1",'Dimension-2','label'))

## In [102]:

```
s.FacetGrid(tsne_data_tfidf_avgw2vec_df,hue="label",size=8).map(mp.scatter,
    'Dimension-1','Dimension-2').add_legend()
    mp.show()
```





## Sample example for constructing tfidf-word2vec of a word

## In [106]:

```
print(tf idf vector[0,tf idf features.index('in')])
print(w2vmodel.wv['in'])
a = tf idf vector[0,tf idf features.index('in')]
b = w2vmodel.wv['in']
c = a*b
print(c)
0.03277183177760655
0.5037021 0.8123775 0.22914465 0.39732596
  0.6230064 -1.964715
                          0.6152098 3.4045718 -1.2768095
                                                               0.684145
  1.1673226 -0.05719063 2.8159833 -2.1201591
                                                  1.2506253
                                                               1.832313
  1.1778784 - 1.3166465 - 3.5585659 - 3.6476698 - 3.0662668 - 3.2881083
  0.50599736 2.845872
                         0.02283531 0.16117303 -0.4806304
                                                              1.9380871
  1.727675
             -2.8744116 -1.0183523
                                      0.12740374 -2.1708148
                                                             0.57003117
-0.9761366 -0.798371
                         -5.5048757 2.6155515 -1.239809
                                                               0.6248961
  0.8735584 - 1.6617626 - 2.1666777 - 0.6809082 0.8801965 - 3.4966476
            0.33846864]
 -4.1194386
[ 0.06619212  0.0519272  0.01650724  0.0266231
                                                  0.00750949 0.0130211
  0.02041706 - 0.06438731 \ 0.02016155 \ 0.11157406 - 0.04184339 \ 0.02242069
  0.0382553 -0.00187424 0.09228493 -0.0694815
                                                  0.04098528 0.06004825
  0.03860123 \ -0.04314892 \ -0.11662073 \ -0.11954083 \ -0.10048718 \ -0.10775734
  0.01658246 \quad 0.09326444 \quad 0.00074835 \quad 0.00528194 \quad -0.01575114 \quad 0.06351466
  0.05661907 \ -0.09419974 \ -0.03337327 \ \ 0.00417525 \ -0.07114158 \ \ 0.01868097
 -0.03198979 \ -0.02616408 \ -0.18040487 \ \ 0.08571642 \ -0.04063081 \ \ 0.02047899
  0.02862811 - 0.05445901 - 0.071006 - 0.02231461 0.02884565 - 0.11459155
 -0.13500156 0.01109224]
```

## Observation:

- -> The alternate strategy to construct sentence vectors is TFIDF-WOR D2vec

- -> We can apply the dimensionality reduction technique on the result

### Conclusion:

- -> For the given dataset we have constructed the vector representation by using techniques like Bag of words, TFIDF, Average word2vec, TFIDF-Word2vec
- -> Dimensionality reduction technique is applied on each of these te

chniques.

- -> Based on the polarity of the class labels.
- $\mbox{->}$  By applying the dimensionality reduction technique on each of the se representations to

reduce the dimensions from n to 2-dimensions