1

Assignment 19

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19

1 Problem

Let **A** be an $m \times n$ matrix of rank m with n > m. If for some non-zero real number α , we have $\mathbf{x}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{x} = \alpha\mathbf{x}^{T}\mathbf{x}$, for all $x \in \mathbf{R}^{m}$, then $\mathbf{A}^{T}\mathbf{A}$ has,

- 1. exactly two distinct eigenvalues.
- 2. 0 as an eigenvalue with multiplicity n m.
- 3. α as a non-zero eigenvalue.
- 4. exactly two non-zero distinct eigenvalues.

2 EXPLANATION

Refer Table 0.

3 Solution

Refer Table 1.

Given	Derivation		
Given	A is a $m \times n$ matrix of rank m with $n > m$. A non-zero real number α . To find eigenvalues of $\mathbf{A}^{T}\mathbf{A}$.		
Eigenvalues of AAT	$\mathbf{A}\mathbf{A}^{\mathbf{T}}$ is a $m \times m$ matrix and $\mathbf{A}^{\mathbf{T}}\mathbf{A}$ is a $n \times n$ matrix. Let, λ be a non-zero eigen value of $\mathbf{A}^{\mathbf{T}}\mathbf{A}$.		
	$\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \mathbf{v} \in \mathbf{R}^{\mathbf{n}}$	(2.0.1)	
	$\mathbf{A}\mathbf{A}^{T}\mathbf{A}\mathbf{v} = \lambda\mathbf{A}\mathbf{v}$	(2.0.2)	
	Let, $\mathbf{x} = \mathbf{A}\mathbf{v} \mathbf{x} \in \mathbf{R}^{\mathbf{m}}$	(2.0.3)	
	$\mathbf{A}\mathbf{A}^{\mathrm{T}}\mathbf{x} = \lambda\mathbf{x}$	(2.0.4)	
	$\mathbf{x}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{x} = \lambda \mathbf{x}^{T} \mathbf{x}$	(2.0.5)	
	Given, $\mathbf{x}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{x} = \alpha \mathbf{x}^{T} \mathbf{x}$	(2.0.6)	
	$\implies \alpha \mathbf{x}^{T} \mathbf{x} = \lambda \mathbf{x}^{T} \mathbf{x}$	(2.0.7)	
	From equation (2.0.7), $\lambda = \alpha$ as $ \mathbf{x} \neq 0$ As rank($\mathbf{A^T A}$) = rank(\mathbf{A}) = m and equation (2.0.7) satisfies the condition in quest Therefore the only non-zero eigen value is α $\mathbf{A^T A}$ has an eigenvalue α with multiplicity m .		
Eigenvalues of A ^T A	 A^TA is a n × n matrix. Given n > m, We know that, A^TA and AA^T have same number of non-zero eigenvalues and if one of them has more number of eigenvalues than the other then these eigenvalues are zero. 1. From above, as α is non-zero, A^TA has α as its eigenvalue with multiplicity m 2. A^TA has 0 as its eigenvalue with multiplicity n - m 3. Therefore, the two distinct eigenvalues of A^TA are α and 0. 		

TABLE 0: Explanation

$\mathbf{A}^{\mathbf{T}}\mathbf{A}$ has exactly two distinct eigenvalues.	True statement
$\mathbf{A}^{\mathbf{T}}\mathbf{A}$ has 0 as an eigenvalue with multiplicity $n-m$	True statement
$A^{T}A$ has α as a non-zero eigenvalue	True statement
$\mathbf{A}^{T}\mathbf{A}$ has exactly two non-zero distinct eigenvalues.	False statement

TABLE 1: Solution