Muhammad Andhika Ramadhan AlphaZero

Animal Image Classification Using EfficientNet

Ujian Praktik Computer Vision – Orbit Future Academy

Latar Belakang dan Rumusan Masalah

Latar Belakang

- Terdapat 4 jenis hewan yang akan di klasifikasi
- 4 hewan tersebut antara lain: Kucing, Rusa, Anjing dan Kuda
- Terdapat 2800 gambar keseluruhan untuk train
- 729 gambar untuk testing

Rumusan Masalah

 Membuat sebuah arsitektur untuk mengklasifikasikan jenis hewan apa yang ada pada gambar

Data, Variabel yang digunakan

Train: 80% || Val: 20% 2240 || 560

43.jpg

44.jpg

277.jpg

278.jpg

48.jpg

47.jpg

Preprocessing

```
image_datagen = ImageDataGenerator(
#
                      rescale=1./255,
                     rotation_range=20,
                    horizontal_flip=True,
                     shear_range = 0.2,
                    fill_mode = 'nearest',
                    validation_split = 0.2,
                    width_shift_range=0.1,
                     height_shift_range=0.1,)
```

https://machinelearningmastery.com/how-toconfigure-image-data-augmentation-whentraining-deep-learning-neural-networks/

Preprocessing (Rotation Range)

rotation_range = 20

Preprocessing (Horizontal Flip)

horizontal_flip = True

Preprocessing (Shear Range)

shear_range = 20

Preprocessing (Fill Mode)

fill_mode = 'nearest'

NEAREST

https://towardsdatascience.com/complete-imageaugmentation-in-opency-31a6b02694f5

Preprocessing (Width Shift Range)

width_shift_range = 0.1

Preprocessing (Heigth Shift Range)

height_shift_range = 0.1

Default

Model: "sequential_2"		
Layer (type)	Output Shape	Param #
conv2d_10 (Conv2D)	(None, 298, 298, 32)	896
max_pooling2d_10 (MaxPoolin g2D)	(None, 149, 149, 32)	0
conv2d_11 (Conv2D)	(None, 147, 147, 64)	18496
max_pooling2d_11 (MaxPoolin g2D)	(None, 73, 73, 64)	9
conv2d_12 (Conv2D)	(None, 71, 71, 128)	73856
max_pooling2d_12 (MaxPoolin g2D)	(None, 35, 35, 128)	0
conv2d_13 (Conv2D)	(None, 33, 33, 128)	147584
max_pooling2d_13 (MaxPoolin g2D)	(None, 16, 16, 128)	9
conv2d_14 (Conv2D)	(None, 14, 14, 512)	590336
max_pooling2d_14 (MaxPoolin g2D)	(None, 7, 7, 512)	0
flatten_1 (Flatten)	(None, 25088)	0
dense_4 (Dense)	(None, 512)	12845568
dense_5 (Dense)	(None, 4)	2052
Total params: 13,678,788 Trainable params: 13,678,788 Non-trainable params: 0		

```
Epoch 1/20

Epoch 1: val_accuracy improved from -inf to 0.32143, saving model to checkpoints/best.h5
70/70 - 71s - loss: 1.9573 - accuracy: 0.3076 - val_loss: 1.3791 - val_accuracy: 0.3214 - 71s/epoch - 1s/step
Epoch 2/20

Epoch 2: val_accuracy improved from 0.32143 to 0.32857, saving model to checkpoints/best.h5
70/70 - 69s - loss: 1.3745 - accuracy: 0.3210 - val_loss: 1.3707 - val_accuracy: 0.3286 - 69s/epoch - 993ms/step
Epoch 3: val_accuracy improved from 0.32857 to 0.33393, saving model to checkpoints/best.h5
70/70 - 69s - loss: 1.3667 - accuracy: 0.3379 - val_loss: 1.3627 - val_accuracy: 0.3339 - 69s/epoch - 984ms/step
Epoch 4/20
```

EfficientNetB3

Model: "sequential 9"

Model. Sequencial_9			
Layer (type)	Output	Shape	Param #
efficientnetb3 (Functional)	(None,	10, 10, 1536)	10783535
global_average_pooling2d_9 (1536)	0
flatten_9 (Flatten)			0
dense_27 (Dense)	(None,		1967360
dense_28 (Dense)	(None,	128)	163968
dense_29 (Dense)	(None,		516
Total params: 12,915,379			
Trainable params: 12,828,076			
Non-trainable params: 87,303			

Block N0. (i)	Layer (F _i ())	Resolution (H _i x W _i)	No. of Layers (L _i)
1	Conv 3x3	300x300	$\frac{(\mathbf{L}_i)}{1}$
2	MBConv1, 3x3	150x150	2
3	MBConv6, 3x3	150x150	3
4	MBConv6, 5x5	75x75	3
5	MBConv6, 3x3	38x38	5
6	MBConv6, 5x5	19x19	5
7	MBConv6, 5x5	10x10	6
8	MBConv6, 3x3	10x10	2
9	Conv 1x1	10x10	1
10	Global Pooling	10x10	1
11	Dense layer	10x10	1

MBConv?

- Blok Residual Terbalik yang menghemat waktu dan memori dengan mengganti konvolusi 3 X 3 dengan konvolusi yang lebih mendalam.
- Dicetus mobilenet untuk meningkatkan efisiensi
- · Residual Block merupakan suatu kumpulan fungsi yang didalamnya terdapat fitur Skip Connection

https://medium.com/python-in-plain-english/implementing-efficientnet-in-pytorch-part-3-mbconv-squeeze-and-excitation-and-more-4ca9fd62d302

Parameter	Value	
Optimizer	SGD	
Learning Rate	0.0010	
Momentum	0.9	
Loss	Categorical_crossentropy	
Metrics	accuracy	

Ukuran Kebaikan Model

```
results = model.evaluate(validation_generator)
print(f"test loss {results[0]}, test accuracy {results[1]}")
```


submission3.csv

a day ago by mdhkrmd

Leaderboard

1 Naufal Al Hakim 0.99176 10 9h 2 JeffKing 0.98628 5 10d 3 Prashanth-ACSQ 0.98628 13 2d 4 Dastin Aryo 0.98628 2 1d 5 Erni Nuraini 0.98491 5 10h	#	Team	Members	Score	Entries	Last	Code
3 Prashanth-ACSQ	1	Naufal Al Hakim		0.99176	10	9h	
4 Dastin Aryo 0.98628 2 1d	2	JeffKing		0.98628	5	10d	
	3	Prashanth-ACSQ		0.98628	13	2d	
5 Erni Nuraini 0.98491 5 10h	4	Dastin Aryo		0.98628	2	1d	
	5	Erni Nuraini		0.98491	5	10h	
6 mdhkrmd 0.98353 7 16h	6	mdhkrmd		0.98353	7	16h	

Your Best Entry!

Your most recent submission scored 0.98353, which is the same as your previous score. Keep trying!

Kesimpulan

- Transfer Learning sukses menaikan akurasi
- Akurasi yang dihasilkan mencapai 0.98353 (Kaggle)
- EfficientNet, dengan parameter yang tidak terlalu besar, namun menghasilkan akurasi yang baik

Terima Kasih 😊

Ujian Praktik – Orbit Future Academy