V

Applications of Partial differentiations

Classwork Examples

5.1 Maclaurin's and Taylor's series expansion in two variables

Expand $f(x, y) = xy^2 + xy + 3$ in powers of (x - 1) and (y + 2) using Taylor's series expansion. C.W. **Answer:** $f(x,y) = 5 + 2(x-1) - 3(y+2) - 3(x-1)(y+2) + (y+2)^2 + \cdots$ Expand $f(x, y) = e^{xy}$ in powers of (x - 1) and (y - 1) using Taylor's series 2 expansion. C.W. **Answer:** $f(x,y) = e \left[1 + (x-1) + (y-1) + \frac{1}{2}(x-1)^2 + 2(x-1)(y-1) + \frac{1}{2}(x-1)^2 + 2(x-1)(x-1)^2 + 2(x-1)^2 +$ $\frac{1}{2}(y-1)^2 + \cdots$ Expand $f(x, y) = xe^y + 1$ in powers of (x - 1) and y using Taylor's series 3 expansion. H.W. **Answer:** $f(x,y) = 1 + x + xy + \frac{y^2}{2}$... Expand $f(x, y) = e^x \cdot \sin y$ in powers of x and y up to second order terms. C.W. 4 **Answer:** $f(x, y) = y + xy + \cdots$ Find the expansion of $f(x, y) = \cos x \cdot \cos y$ in powers of x and y up to second order 5 terms. C.W. **Answer:** $f(x,y) = 1 - \frac{x^2}{2} - \frac{y^2}{2} + \cdots$ Show that $e^{y} \cdot \log(1 + x) = x + xy - \frac{x^{2}}{2} + \cdots$. **H.W.** 6

5.2 Tangent plane and normal line to a surface

1	Find the equation of tangent plane and normal line to the surface $x^2 + y^2 + z^2 = 3$ at
	the point (1, 1, 1). C.W.

Answer:
$$x + y + z = 3, \frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{2}.$$

Find the equation of tangent plane and normal line to the surface
$$2x^2 + y^2 + 2z = 3$$
 at the point $(2, 1, -3)$. **H.W.**

Answer:
$$4x + y + z = 6$$
, $\frac{x-2}{4} = \frac{y-1}{1} = \frac{z+3}{1}$.

Find the equation of tangent plane and normal line to the surface
$$z = \sqrt{1 - x^2 - y^2}$$
 at the point $(\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$. **C.W.**

Answer:
$$2x + 2y + z = 3$$
, $\frac{3x-2}{2} = \frac{3y-2}{2} = \frac{3z-1}{1}$.

Find the equation of tangent plane and normal line to the surface
$$z = \tan^{-1} \left(\frac{y}{x} \right)$$
 at the point (1, 1). **C.W.**

Answer:
$$x - y + 2z = \frac{\pi}{2}$$
, $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-\frac{\pi}{4}}{2}$.

5 Find the equation of tangent plane and normal line to the surface
$$xyz = a^2$$
 at the point (α, β, γ) . C.W.

Answer:
$$\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$$
, $\frac{x - \alpha}{\beta \gamma} = \frac{y - \beta}{\alpha \gamma} = \frac{z - \gamma}{\alpha \beta}$.

Find the equation of tangent plane and normal line to the surface
$$\frac{x^2}{2} - \frac{y^2}{3} = z$$
 at the point $(2, 3, -1)$. **H.W.**

Answer:
$$2x - 2y - z + 1 = 0$$
, $\frac{x-2}{2} = \frac{y-3}{-2} = \frac{z+1}{-1}$.

5.3 Maxima and Minima of two variable function

1 Find the maximum and minimum values of the function

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20$$
. C.W.

Answer: f(x,y) is maximum at (-1,-2), f(-1,-2) = 38 and minimum at (1,2), f(1,2) = 2.

2	Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$. C.W.
	Answer: $f(x, y)$ is maximum at $(0, 0)$, $f(0, 0) = 4$ and minimum at $(2, 0)$, $f(2, 0) = 4$
	0.

Find the extreme values of the function $f(x, y) = x^2 + y^2 + xy + x - 4y + 5$. C.W.

Answer: f(x, y) is minimum at (-2, 3), f(-2, 3) = -2.

Show that the minimum value of the function $f(x, y) = 2x^4 + y^2 - x^2 - 2y$ is $-\frac{9}{8}$.

C.W.

Answer: f(x,y) is minimum at $\left(\pm\frac{1}{2},1\right)$, $f\left(\pm\frac{1}{2},1\right)=-\frac{9}{8}$.

5 Find the extreme values of the function $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$. **H.W.**

Answer: f(x, y) is maximum at (0, 0), f(0, 0) = 1 and minimum at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$,

 $f\left(\pm\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}}\right) = \frac{1}{2}.$

6 Show that the maximum value of the function $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ is 4.

H.W.

5.4 Lagrange's method of undetermined multiplier

1 If the sum of three positive numbers is unity, then find the maximum value of their product. **C.W.**

Answer: $\frac{1}{27}$.

In a triangle, find maximum value of sin *A* sin *B* sin *C*, where *A*, *B*, and *C* are three angles of triangle. **C.W.**

Answer: $\frac{3\sqrt{3}}{8}$.

Find the extreme values of x - 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$. C.W.

Answer: Maximum value is 30 and Minimum value is – 30.

4 Find the maximum value of $x^l y^m z^n$ subject to x + y + z = a. **H.W.**

Answer: $\frac{a^{l+m+n} l^l m^m n^n}{(l+m+n)^{l+m+n}}.$

5	Find the volume of the largest rectangular parallelepiped that can be inscribed in the
	ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. C.W.

Answer:
$$\frac{8abc}{3\sqrt{3}}$$
.

6 Find the dimensions of the rectangular box of maximum capacity whose surface area is given when box is closed. **H.W.**

Answer:
$$x = \sqrt{\frac{s}{6}}, y = \sqrt{\frac{s}{6}}, z = \sqrt{\frac{s}{6}}, V = (\frac{s}{6})^{\frac{3}{2}}.$$

5.5 Jacobian

If
$$u = e^x \cos y$$
 and $v = e^x \sin y$, then find $\frac{\partial(u,v)}{\partial(x,y)}$. C.W.

Answer: e^{2x} .

If
$$x = r \cos \theta$$
 and $y = r \sin \theta$, then find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$. C.W.

Answer:
$$r$$
 and $\frac{1}{r}$.

If
$$u = xyz$$
, $v = xy + yz + zx$, and $w = x + y + z$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. C.W.

Answer:
$$(x - y)(y - z)(z - x)$$
.

If
$$u = \frac{x}{y-z}$$
, $v = \frac{y}{z-x}$, and $w = \frac{z}{x-y}$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. **H.W.**

Answer: 0.

If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, and $w = \frac{xy}{z}$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. C.W.

Answer: 4.

If
$$x = u(1 - v)$$
, $y = uv$, then prove that $\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$. **H.W.**

5.6 Errors and approximations

If the sides and angles of a plane triangle vary in such a way that its circumradius remains constant, then prove that $\frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0$. C.W.

2	The power dissipated in a resistor is given by $P = \frac{E^2}{R}$. Find the approximate percentage
	change in P when E is increased by 3 percentage and R is decreased by 2 percentage.
	C.W.
	Answer: 8 percentage.
3	The diameter and altitude of a can in the shape of a right circular cylinder are measured
	as 40 cm and 64 cm respectively. The possible error in each measurement is ± 5
	percentage. Find approximately the maximum possible error in the computed value for
	the volume and the lateral surface. C.W.
	Answer: $3840\pi \ cm^3$, $256\pi \ cm^2$.
4	Find the possible percentage error in computing the parallel resistance <i>R</i> of the three
4	
	resistances R_1 , R_2 and R_3 from the formula $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ if R_1 , R_2 , R_3 are each in
	error by 1.2 percentage. H.W.
	Answer: 1.2 percentage.
5	As a result of deformation of the radius of a cone changes from 30 cm to 30.1 cm and
	its height changes from 60 cm to 59.5 cm. Find the approximate change in volume of a
	cone. C.W.
	Answer: $30\pi \ cm^3$.
	Miswer. Son em .
6	If kinetic energy $K = \frac{wv^2}{2g}$, where g is constant, then find approximately the change in
	kinetic energy as w changes from 49 to 49.5 and v changes from 1600 to 1590. H.W.
	Answer: $-\frac{144000}{g}$.
7	Find an approximate value of $(4.1)^2 + (2.9)^2$ using the theory of approximations.
	C.W.
	Answer: 25.02.
8	Find an approximate value of $\sqrt[5]{(3.8)^2 + 2(2.1)^3}$ using the theory of approximations.
	H.W.
	Answer: 2.01.

9	Find an approximate value of $\sqrt{(0.98)^2 + (2.01)^2 + (1.94)^2}$ using the theory of
	approximations. C.W.
	Answer: 2.96.
10	Find an approximate value of $\sin 58^{\circ} \cdot \cos 46^{\circ}$ using the theory of approximations.
	C.W.
	Answer: $\frac{\sqrt{3}}{2\sqrt{2}} - \frac{\pi}{180} \left(\frac{2+\sqrt{3}}{2\sqrt{2}} \right)$.
11	Find an approximate value of $\sin 29^{\circ} \cdot \cos 58^{\circ}$ using the theory of approximations.
	C.W.
	Answer: $\frac{1}{4} + \frac{\sqrt{3}}{4} \cdot \frac{\pi}{180}$.
12	Find an approximate value of $(27.1)^{\frac{2}{3}} + \sqrt{26}$ using the theory of approximations. H.W.
	Answer: 14.1222.