Lecture 2 remark: Separation axioms and Countabilities (page 1 finished)

zhaofeng-shu33

April 22, 2018

1 Topological space: separation axioms

Figure 1: Illustrations on T_0 to T_4

Example 1.1 Let $X = \{a, b\}, T = \{\emptyset, X, \{a\}\},$ Then T satisfies T_0 , but does not satisfy T_1 .

Example 1.2 (Lecture 1 remark **Example 1.4** continued) T satisfies T_1 , but does not satisfy T_2 (Notice for $x \neq y, \mathbb{R} \setminus \{x\} \ni y, \not\ni x; \mathbb{R} \setminus \{y\} \ni x, \not\ni y$, thus satisfying T_1).

Example 1.3 If $x \notin Y$, where Y is closed, then $d(x,Y) = \inf\{d(x,y)|y \in Y\} > 0$

Proof. Suppose d(x,Y)=0. By the definition of inferior of number set, we can find $\{y_n\}$ such that $d(x,y_n)\to 0$. For any neighborhood V of x, we can find $B(x,r)\subseteq V$. For sufficient large $n,y_n\in B(x,r)\Rightarrow V$ contains point in $Y\backslash x$. By the definition of accumulated point of $Y,x\in Y'$. Since Y is closed, if $x\in Y^c$, which is open, we can find U such that $x\in U\subseteq Y^c$, which contradicts with the fact that x is the accumulated point of Y. Therefore, $x\in Y$, which contradicts $x\notin Y$.

Lemma 1.4 A metric space X is Hausdorff (T_2) , and $x_n \to x, x_n \to y$, then x = y.

Proof. Suppose $x \neq y$, then there exists disjoint open set U, V s.t. $x \in U, y \in V$. Then by the definition of convergence, both U and V contain almost $\{x_n\}$, a contradiction.

Lemma 1.6

- (a) (X,T) is T_3 if and only if for any $x \in X$ and an open neighborhood U of x, there exists an open set V, such that $x \in V \subseteq \overline{V} \subseteq U$
- (b) (X,T) is T_4 if and only if for any closed set A and an open neighborhood $U \supseteq A$, there exists an open set V, such that $A \subseteq V \subseteq \overline{V} \subseteq U$

Proof.

- (a) $\Rightarrow U^c$ is closed, and $x \notin U^c$. Then by T_3 property, there exists an open set $V_1 \ni x$, another open set $V_2 \supseteq U^c$ and $V_1 \cap V_2 = \varnothing$. Then it follows that $V_1 \subseteq U$. Also $\bar{V}_1 \cap V_2 = \varnothing \Rightarrow \bar{V}_1 \subseteq U$. Therefore, choose $V = V_1$ and $x \in V \subseteq \bar{V} \subseteq U$.
 - \Leftarrow Given x and a closed set A, $x \notin A$, then $x \in A^c$ where A^c is open. There exists an open set V such that $x \in V \subseteq \bar{V} \subseteq A^c$. Then $A \subseteq \bar{V}^c$ where \bar{V}^c is open and is disjoint with open set V which contains x.
- (b) $\Rightarrow U^c$ is closed, and $A \cap U^c = \varnothing$. Then by T_4 property, there exists an open set V_1, V_2 such that $A \subseteq V_1, U^c \subseteq V_2$ and $V_1 \cap V_2 = \varnothing$. Then it follows that $V_1 \subseteq U$. Also $\bar{V}_1 \cap V_2 = \varnothing \Rightarrow \bar{V}_1 \subseteq U$. Therefore, choose $V = V_1$ and $A \subseteq V \subseteq \bar{V} \subseteq U$.
 - \Leftarrow Given two closed sets A, B, then $B \subseteq A^c$ where A^c is open. There exists an open set V such that $B \subseteq V \subseteq \bar{V} \subseteq A^c$. Then $A \subseteq \bar{V}^c$ where \bar{V}^c is open and is disjoint with open set V and $B \subseteq V$.

2

2 Countability

Example 2.0 (C_1 space) If X is a metric space, $\forall x$, choose $N_x = \{B(x, \frac{1}{n})\}$

Example 2.1 $S_Q = \{(a_i, b_i) | a_i \in Q, b_i \in Q, a_i < b_i\}$ is a countable basis \mathcal{N} of \mathbb{R} , which implies that \mathbb{R} (with Euclid topology) is C_2 space.

Definition 2.1 (Continued) C_2 space is C_1

Proof. Suppose \mathcal{N} be a countable basis. For any $x \in X$, let $\mathcal{N}_x = \{U \in \mathcal{N} | x \in U\}$. Then \mathcal{N}_x is countable. For $V \ni x, V \in T$, then $V = \bigcup U_i$. $x \in U_i$ for some i, then $U_i \in \mathcal{N}_x, U_i \subseteq V$. Therefore every neighborhood V of x contains an element of \mathcal{N}_x .

Example 2.2 (Continued)

- (a) a C_2 space is separable.
- (b) Discrete topology T is C_1 , and if X is uncountable, then T is not C_2 .

Proof.

- (a) Let B be a countable topological basis of T. Define $A = \{x_V | x_V \in V, \forall V \in B\}$. A is countable. We only need to show that $\bar{A} = X$. Assume if there exists $x \in X, x \notin \bar{A}$. Then there is an open set U containing x and $U \cap A = \emptyset$. Since U is open, $U = \bigcup_{V_i \in B} V_i$. $V_i \cap A = \emptyset$, but $x_{V_i} \in V_i \cap A$, a contradiction.
- (b) A single point set is open in discrete topological space. Therefore, $\{x\}$ is a subset of every neighborhood of x and T is C_1 . If X is uncountable, we show that X is **not separable**. Suppose A is a countable dense subset of X, then $\exists y \in X \setminus A$ and $\{y\} \supseteq y \Rightarrow y \notin \overline{A}$.

Example 2.3 (Continued) We check that \mathcal{N} is a basis. For any open set V in T and $x \in V$, if we can find a ball $B(y(x), \frac{1}{n(x)}) \in \mathcal{N}$ such that $x \in B(y(x), \frac{1}{n(x)}) \subseteq V$, then $V = \bigcup_{x \in V} B(y(x), \frac{1}{n(x)})$. For $x \in Y$, it is obvious since we can find a sufficient small ball contained in V. If $x \notin Y$, since $\bar{Y} = X$, for a sufficient small ball $B(x, \frac{2}{n(x)}) \subseteq V$, $B(x, \frac{1}{n(x)})$ contains points in Y and let it be y(x). Then $x \in B(y(x), \frac{1}{n(x)}) \subseteq V$.

Example 2.4 (Lecture 1 remark Example 1.5 continued) T is not C_1

Proof. \mathcal{N}_x is a countable set consisting neighborhoods of x. We can find $y \in \bigcap_{\mathbb{R}\setminus U\in\mathcal{N}_x} \mathbb{R}\setminus U = \mathbb{R}\setminus \bigcup_{\mathbb{R}\setminus U\in\mathcal{N}_x} U$ and $y\neq x$. Then $\mathbb{R}\setminus \{y\}$ is a neighborhood of x and $y\notin U, \forall \mathbb{R}\setminus U\in \mathcal{N}_x$. Therefore $\mathbb{R}\setminus U\not\subseteq \mathbb{R}\setminus \{y\}, \forall \mathbb{R}\setminus U\in \mathcal{N}_x$.