Р е ш е н и е. Прямая BC перпендикулярна плоскости CSD, так как она перпендикулярна двум пересекающимся прямым CD и SD этой плоскости. Плоскость BSC проходит через прямую BC, перпендикулярную плоскости CSD, следовательно, эти плоскости перпендикулярны.

Подготовительные задачи

- **1.** Дан куб $ABCDA_1B_1C_1D_1$. Найдите угол между плоскостями: а) BCC_1 и ABC_1 ; б) ABC и CB_1D_1 ; в) BA_1C_1 и AB_1D_1 ; г) ABC_1 и BCD_1 .
- **2.** Дан правильный тетраэдр ABCD. Точки K и M середины рёбер BD и CD соответственно. Найдите углы между плоскостями: а) AKC и ABD; б) AMB и ABC; в) AKM и ABC.
- **3.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Все рёбра пирамиды равны, E середина бокового ребра SC. Найдите углы между плоскостями: a) SAD и SBC; б) ABC и SCD; в) ABC и BDE; г) BSC и DSC; д) ABE и ABC.
- **4.** Дана правильная треугольная призма $ABCA_1B_1C_1$. Боковое ребро AA_1 равно стороне основания ABC. Точка M середина ребра BC. Найдите углы между плоскостями: а) AA_1M и ABC; б) ABC и CA_1B_1 ; в) ACB_1 и BA_1C_1 ; г) A_1C_1M и $A_1B_1C_1$.
- **5.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$. Боковое ребро AA_1 равно стороне основания ABCDEF. Найдите углы между плоскостями: а) ABC и DB_1F_1 ; б) AFF_1 и DEE_1 ; в) AFF_1 и BCC_1 ; г) AFF_1 и BDD_1 .
- **6.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Боковое ребро вдвое больше стороны основания. Найдите углы между плоскостями: a) ABC и SEF; б) SBD и ABC; в) SBC и SEF; г) SAF и SBC.

Задачи на доказательство и вычисление

- **3.1.** Основание пирамиды совпадает с одной из граней куба, а вершина с центром противоположной грани.
 - а) Докажите, что пирамида правильная.
 - б) Найдите угол между плоскостями её соседних боковых граней.
- **3.2.** Дана правильная треугольная пирамида DABC с вершиной D. Точка M середина ребра AB, N основание перпендикуляра, опущенного из точки M на прямую CD.
 - а) Докажите, что прямая MN перпендикулярна прямой AB.
- б) Найдите угол между боковыми гранями пирамиды, если угол между боковым ребром и плоскостью основания равен 60° .
- **3.3.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Точка O центр основания, K основание перпендикуляра, опущенного из точки O на прямую SC.
 - а) Докажите, что прямая OK перпендикулярна прямой BD.
- б) Найдите двугранный угол при боковом ребре пирамиды, если угол между боковым ребром и плоскостью основания равен 60°.
- **3.4.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Диагонали AD и CE основания пересекаются в точке P, Q основание перпендикуляра, опущенного из точки P на прямую SD.
 - а) Докажите, что прямая PQ перпендикулярна прямой CE.
- б) Найдите двугранный угол при боковом ребре пирамиды, если угол между боковым ребром и плоскостью основания равен 60°.
- **3.5.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 2, а боковые рёбра равны 3. На ребре AA_1 отмечена точка E так, что $AE: EA_1=1:2$.
 - а) Постройте прямую пересечения плоскостей ABC и BED_1 .
 - б) Найдите угол между плоскостями ABC и BED_1 .
- **3.6.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 3, а боковые рёбра равны 4. На ребре AA_1 отмечена точка E так, что $AE: EA_1=1:3$.
 - а) Постройте прямую пересечения плоскостей ABC и BED_1 .
 - б) Найдите угол между плоскостями ABC и BED_1 .
- **3.7.** Основание пирамиды SABCD прямоугольник ABCD. Высота пирамиды лежит в грани CSD.
 - а) Докажите, что прямые AD и SC перпендикулярны.
- б) Известно, что $AB:BC=2\sqrt{3}:1$, высота пирамиды проходит через середину ребра CD, а угол между боковой гранью BSC и плоско-

стью основания равен 45°. Найдите углы, которые образуют с плоскостью основания плоскости остальных боковых граней.

- **3.8.** Основание пирамиды ABCD прямоугольный треугольник ABC. Высота пирамиды проходит через середину гипотенузы AB.
- а) Докажите, что боковые рёбра пирамиды образуют равные углы с плоскостью основания.
- б) Известно, что $BC:AC = \sqrt{3}:1$, а угол между боковой гранью BDC и плоскостью основания равен 60°. Найдите углы, которые образуют с плоскостью основания плоскости двух других боковых граней.
- **3.9.** Точки M и N середины боковых рёбер соответственно AA_1 и CC_1 прямой призмы $ABCA_1B_1C_1$.
- а) Докажите, что отрезок, соединяющий вершину B_1 с серединой ребра AC, делится плоскостью BMN в отношении 2:1, считая от точки B_1 .
- б) Найдите угол между плоскостями AA_1C_1 и MBN, если $AB=BC=15,\ AC=24$ и $AA_1=144.$
- **3.10.** В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 5, боковые рёбра равны 2, точка D середина ребра CC_1 .
 - а) Постройте прямую пересечения плоскостей ABC и ADB_1 .
 - б) Найдите угол между плоскостями *ABC* и *ADB*₁.
- **3.11.** В правильной четырёхугольной пирамиде SABCD с вершиной S все рёбра равны.
- а) Постройте прямую пересечения плоскости SAD с плоскостью, проходящей через точку B перпендикулярно прямой AS.
- б) Найдите угол между плоскостью SAD и плоскостью, проходящей через точку B перпендикулярно прямой AS.
- **3.12.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$ со стороной основания $\sqrt{3}$ и боковым ребром 1.
 - а) Докажите, что плоскости ACA_1 и B_1CE_1 перпендикулярны.
 - б) Найдите угол между плоскостями B_1CE_1 и ABC.
- **3.13.** В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит квадрат ABCD со стороной 2, а высота призмы равна 1. Точка E лежит на диагонали BD_1 , причём BE=1.
 - а) Постройте сечение призмы плоскостью A_1C_1E .
 - б) Найдите угол между плоскостью сечения и плоскостью АВС.
- **3.14.** На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E:EA=4:3$. Точка T середина ребра B_1C_1 . Известно, что AB=5, AD=8, $AA_1=14$.

- а) Докажите, что плоскость ETD_1 делит ребро BB_1 в отношении 2:5.
 - б) Найдите угол между плоскостью ETD_1 и плоскостью AA_1B_1 .
- **3.15.** В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит квадрат ABCD со стороной 4, а высота призмы равна $\sqrt{17}$. Точка E лежит на диагонали BD_1 , причём BE=1.
 - а) Постройте сечение призмы плоскостью A_1C_1E .
 - б) Найдите угол между этой плоскостью и плоскостью АВС.
- **3.16.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ со стороной основания 4 и высотой 7 на ребре AA_1 взята точка M так, что AM = 2. На ребре BB_1 взята точка K так, что $B_1K = 2$.
 - а) Постройте сечение призмы плоскостью A_1C_1E .
 - б) Найдите угол между плоскостью D_1MK и плоскостью CC_1D_1 .
- **3.17.** В треугольной пирамиде SABC с основанием ABC точка M середина ребра SA, точка K середина ребра SB, O точка пересечения медиан основания.
- а) Докажите, что плоскость CMK делит отрезок SO в отношении 3:2, считая от вершины S.
- б) Найдите угол между плоскостями CMK и ABC, если пирамида правильная, SC=6, AB=4.
- **3.18.** Основание четырёхугольной пирамиды SABCD параллелограмм ABCD с центром O. Точка M середина ребра SC, K середина ребра SA.
- а) Докажите, что плоскость BMK делит ребро SD в отношении 1:2, считая от вершины S.
- б) Найдите угол между плоскостями *BMK* и *ABC*, если пирамида правильная, AB = 10, SC = 8.
- **3.19.** Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Через прямую BD_1 проведена плоскость α , параллельная прямой AC.
 - а) Постройте сечение параллелепипеда плоскостью $\alpha.$
- б) Найдите угол между плоскостью α и плоскостью ABC, если $AB=a, BC=b, CC_1=c.$
- **3.20.** Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Через прямую BD_1 проведена плоскость α , параллельная прямой AC. Сечение параллелепипеда плоскостью α ромб.
 - а) Докажите, что грань АВСО квадрат.
- б) Найдите угол между плоскостью α и плоскостью BCC_1 , если $AA_1:AB=3:2$.