- 2. (Amended) A device as claimed in claim 1, wherein the geometry and spacing of the features is such as to cause the liquid crystal material to adopt at least one of a locally planar or tilted planar alignment.
- 3. A device as claimed in claim 2, wherein the inner surface of the second cell wall is treated to produce a locally homeotropic alignment of the liquid crystal material, whereby the cell functions in a hybrid aligned nematic mode.
- 4. (Amended) A device as claimed in claim 2, wherein the inner surface of the second cell wall is treated to produce at least one of a locally planar or tilted planar alignment of the liquid crystal material substantially at right angles to the alignment direction on the first cell wall, whereby the cell functions in a TN mode.
- 5. A device as claimed in claim 1, wherein the geometry and spacing of the features is such as to cause the liquid crystal material to adopt a locally homeotropic alignment.
- 6. (Amended) A device as claimed in claim 1, wherein the features are at least one of shaped and orientated so as to produce one of a substantially uniform planar or tilted planar alignment of the liquid crystal director in a single azimuthal direction.
- 7. (Amended) A device as claimed in claim 1, wherein the features are at least one of shaped and orientated so as to produce one of a substantially uniform planar or tilted planar alignment of the liquid crystal director in a plurality of azimuthal directions.
- 8. A device as claimed in claim 1, wherein the features comprise posts which are tilted with respect to the **ner**mal to the plane of the first cell wall.
- 9. A device as claimed in claim 1, further including an analyser and a polariser mounted on the cell walls.
- 10. (Amended) A device as claimed in claim 1, wherein the features are at least one of different height, different shape, different tilt and different orientation in different regions of the device.
- 11. A device as claimed in claim 1, wherein tilt angle and orientation of the posts are

uniform throughout the device.

- 12. (Amended) A cell wall for use in manufacturing a liquid crystal device according to claim 1, comprising a wall and an alignment surface microstructure on one surface thereof for aligning the director of a liquid crystal material, said microstructure comprising one of a random or pseudorandom two dimensional array of features which are at least one of shaped and orientated to produce the desired alignment.
- 13. Amended) A method of manufacturing a cell wall in accordance with claim 12, comprising applying a photoresist material to a surface of a wall, exposing the applied photoresist material to a suitable light source through a mask which has a random two dimensional array pattern, removing unexposed photoresist, and hardening the exposed photoresist material to produce a random two dimensional array of alignment features on the wall.
- 14. (Amended) A method of manufacturing a cell wall in accordance with claim 12, comprising applying a plastics material to the surface of a wall, and embossing one of a random or pseudorandom two dimensional array of alignment features into the plastics material.
- 15. A method of mahufacturing a liquid crystal device in accordance with claim 1, comprising securing a first cell wall in accordance with claim 11 to a second cell wall, at least one of the cell walls having an electrode structure thereon, so as to produce a cell having spaced apart cell walls the inner surfaces of which each carry at least one electrode structure; filling the cell with a liquid crystal material, and sealing the cell.

Please add the following new claims:

- --16. (Newly added) A device as claimed in claim 2, wherein the inner surface of the second cell wall is treated to produce at least one of a locally planar or tilted planar alignment of the liquid crystal material substantially at right angles to the alignment direction on the first cell wall, whereby the cell functions in an STN mode.
- 17. (Newly added) A method dymanufacturing a cell wall in accordance with claim 12,