TASK - 3

DIABETES PATIENT ANALYSIS

USING SQL

BY RIYAVARSHINI ARUNPRASAD

POWERED BY

INTRODUCTION

- Diabetes patient analysis project is a third task provided by PSYLIQ during my internship.
- This project aims in demonstrating intern's SQL skills at all levels.
- The primary objective is to analyze a dataset consisting health records of diabetes patients.
- The entire project is executed using Oracle SQL Developer, providing a hands-on opportunity to showcase and refine my SQL expertise.

AGENDA

1 DATA OVERVIEW

SCHEMA ENHANCEMENT

4

2 DATA QUERIES

QUERY OPTIMIZATION

5

3 DATA INSIGHTS

CONCLUSION

6

DATA OVERVIEW

- This dataset .xlxs format and has 1,00,000 rows and 11 columns making it ideal for analysis.
- Attributes and its datatype :

SI.No	Attribute Name	Data Type	Description		
1	Patient_name	VARCHAR2(50)	Name of the patient		
2	Patient_id	VARCHAR2(20)	Unique identifier of each patient		
3	Gender	VARCHAR2(10)	Gender of Patient		
4	Age	NUMBER(3)	Age of patient		
5	Hypertension	NUMBER(1)	Indicates whether the patient has hypertension (1 for yes, 0 for no)		
6	Heart_disease	NUMBER(1)	Indicates whether the patient has heart diseases (1 for yes, 0 for no)		
7	Smoking_history	VARCHAR2(15)	Smoking history of patient		
8	BMI	NUMBER(5,2)	Body Mass Index of patient		
9	HbA1c_level	NUMBER(3,1)	Haemoglobin A1c level of patient		
10	Blood_glucose_level	NUMBER(4)	Blood_glucose_level of patient		
11	Diabetes	NUMBER(1)	Indicates whether the patient has Diabetes (1 for yes, 0 for no)		

Note: While importing data into SQL developer an incorrect column name found and was renamed. Employeename → Patient_name

1

Retrieve the patient_id and ages of all patients

```
SELECT patient_id, age
FROM health_record;
```

Patient ID and Age of all patients were retrieved.

2

Select all female patients who are older than 40.

```
SELECT patient_id,patient_name,gender,age
FROM health_record
WHERE gender = 'Female' AND age > 40;
```

 29626 patients found to be female and are above the age of 40

3

Calculate the average BMI of patients

```
SELECT AVG(bmi) AS Average_bmi
FROM health_record;
```

 The average Body Mass Index of patients found to be approximately 27.3.

4

List patients in descending order of blood glucose levels

```
SELECT
patient_id,patient_name,blood_glucose_level
FROM health_record
ORDER BY blood_glucose_level DESC;
```

 The patient details have been sorted in descending order of blood glucose level.

Find patients who have hypertension and diabetes

```
SELECT patient_id, patient_name, hypertension,
diabetes
FROM health_record
WHERE hypertension = 1 and diabetes = 1;
```

1730 patients in dataset found to have hypertension and diabetes.

Works	heet	Query Builder						
<pre>SELECT patient_id, patient_name, hypertension, diabetes FROM health_record WHERE hypertension = 1 and diabetes = 1;</pre>								
WHERE HYPER LEHISTON = 1 and utabetes = 1;								
Script Output * Query Result *								
📌 🖺 🝓 SQL Fetched 50 rows in 0.07 seconds								
	♦ PATIEN	T_ID # PATIENT_	NAME		♦ DIABETES			
1	PT632	ROBERT BONN	ET	1	1			
2	PT139	JONES WONG		1	1			
3	PT205	PATRIC STEE	LE	1	1			
4	PT343	ARTHUR STEL	LINI	1	1			
5	PT355	CHAD LAW		1	1			
6	PT451	CATHERINE J	AMES	1	1			
7	PT565	JOHN HART		1	1			
8	PT567	JOHN BARKER		1	1			
9	PT1557	JOSEPH MCFA	DDEN	1	1			
10	PT1577	DAVID HAMIL	TON	1	1			

6

Determine the number of patients with heart disease

```
SELECT COUNT(*) AS "Number of patients with
heart disease"
FROM health_record
WHERE heart_disease = 1;
```

• 3942 patients in dataset found to have heart disease

```
Worksheet Query Builder

| SELECT COUNT(*) AS "Number of patients with heart disease"
| FROM health_record
| WHERE heart_disease = 1; |
| Script Output * Query Result *
| Query Result *
| SQL | All Rows Fetched: 1 in 0.028 seconds
| Number of patients with heart disease
| 1 3942
```


7

Group patients by smoking history and count how many patients are there?

```
SELECT SMOKING_HISTORY, COUNT(*) AS "TOTAL
PATIENT"
FROM health_record
GROUP BY smoking_history;
```

- There were five distinct entries for denoting patients smoking history and about 35816 entries of No info.
- Out of five, Most number of patients about 35095 people never smoked in their life.

Retrieve the Patient_ids of patients who have a BMI greater than the average BMI

- The Body Mass Index (BMI) of the respective patient greater than the average BMI is calculated from the subquery.
- 56802 records are retrieved.

9

Find the patient with the highest HbA1c level and the patient with the lowest HbA1clevel.

- The Common Table Expression selects patient details for both the maximum and minimum HbA1c levels using the UNION operator.
- The CTE separates the logic for finding the highest and lowest HbA1c levels, providing a cleaner and more organized structure.

Calculate the date of birth of patients in years (assuming the current date as of now).

```
SELECT
    patient_id, patient_name, age,
    EXTRACT(YEAR FROM SYSDATE) - age AS "Year
of Birth"
FROM health_record;
```

- Subtracting the age of patient from current date provides year of birth of patients.
- SYSDATE provides current date in Oracle SQL developer.

11

Rank patients by blood glucose level within each gender group.

```
SELECT
patient_id, patient_name, gender, blood_glucose_level,

DENSE_RANK() OVER(partition by gender order by
blood_glucose_level desc) as "RANK by blood glucose level"
FROM health_record;
```

 DENSE_RANK() window function to assign a rank to each record in the health_record table based on the descending order of the blood_glucose_level within each gender partition.

Update the smoking history of patients who are older than 50 to "Ex-smoker."

```
UPDATE health_record

SET smoking_history = 'Ex-smoker'
WHERE age > 50;
```

- Data Manipulation Language (DML) statements are responsible for manipulating data stored in the database.
- UPDATE performs updation in table health_record where criteria meet.

Insert a new patient into the database with sample data.

```
INSERT INTO health_record

VALUES('MONICA THOMAS', 'PT100147', 'Female',
33,0,0,'Ex-smoker',25.49,2.1,89,0);
```

 Data Manipulation Language (DML) statement INSERT is responsible for adding new row of values into table health_record.

14

Delete all patients with heart disease from the database.

```
DELETE FROM health_record
WHERE heart_disease = 1;
```

- Data Manipulation Language (DML) statement DELETE removes the rows where criteria meets.
- 3942 records of patients with heart_diseases were deleted from health_record.

```
Worksheet Query Builder

DELETE FROM health_record
WHERE heart_disease = 1;

SELECT patient_id FROM health_record
WHERE heart_disease = 1;

Script Output * Query Result *

P Query Result *

Task completed in 0.264 seconds

3,942 rows deleted.
```


Find patients who have hypertension but not diabetes using the EXCEPT operator

- Equivalent of EXCEPT in Oracle SQL Developer is MINUS
- The MINUS operator is used to subtract the result set of the second query from the result set of the first query.

Define a unique constraint on the "patient_id" column to ensure its values are unique.

```
ALTER TABLE health_record

ADD CONSTRAINT unique_patient_id

UNIQUE(patient_id);
```

Data Definition Language statement ALTER TABLE ...
 ADD CONSTRAINT is used to add or modify the constraints in columns of table.

Create a view that displays the Patient_ids, ages, and BMI of patients.

```
CREATE VIEW patient_bmi AS
(    SELECT patient_id, age, bmi
    FROM health_record
    );
SELECT patient_id, age, bmi
FROM patient_bmi;
```

 The view patient_bmi is created to provide a convenient way to query and analyze data from the health_record table, specifically focusing on the patient_id, age, and bmi columns.

SCHEMA ENHANCEMENT

QUERY OPTIMIZATION

Query optimization is a crucial aspect of database performance tuning.

Some of the optimisation techniques:

LIMIT THE RESULTS

REDUCE USING DISTINCT KEYWORD OFTEN

AVOID USING SELECT *
INSTEAD
RETRIEVE SELECTIVE COLUMNS

IMPLEMENT INDEXING
ON MOST QUERYING COLUMNS

THANK YOU

