

Real-Time Patient Volume Predictor Instrument

for real-time clinical operation decision making and staffing

Hourly volume (continuous)

Day of week (flagged)

Month of year (flagged)

Holidays (flagged)

What data did we use?

Independent variables included in the model were screened and selected by consulting with clinical experts, literature research, and data exploration:

How did we build this?

Hourly Arrival Count from the EMR

How did we integrate to EMR?

Backend Service Process Hourly data gather and storage

Frontend Service Process

On demand data retrieval & calculation of model value on web page launch

How do we define success?

Multivariate linear regression was used to predict ED daily volumes

Prediction	90% CI	95% CI	99% CI
3pm	+/- 13	+/- 17	+/- 21
11am	+/- 16	+/- 22	+/- 27
7am	+/- 20	+/- 27	+/- 33
3am	+/- 21	+/- 29	+/- 34

The linear regression prediction model became more powerful and accurate throughout the day, with 97% of 3p predictions falling within 10% of the actual daily volume.

Authors:

- § Stephanie Gravenor¹, Saurabh Sharma, MPH MBA¹, Eileen Brassil, MSN¹, Michael Schmidt, MD¹, Ming Zhang, PhD², Brandon Gordon³,
- ¹ Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL
- ² Analytics, Northwestern Medicine, Chicago IL;
- ³ Information Systems, Northwestern Medicine, Chicago IL

This technology (algorithm / process) is Patent Pending, # 62/293,243