[320] Machine Learning: Intro

Department of Computer Sciences University of Wisconsin-Madison

Functions/Models

training data

training data

this is an example of a **regression** model, which in a type of **supervised machine learning**, which is one of the 3 main categories of ML

Machine Learning

Reinforcement Learning not covered in CS 320

https://en.wikipedia.org/wiki/Reinforcement_learning

Supervised Machine Learning

data is labeled, we know what we want to predict

Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

Machine Learning

Reinforcement Learning not covered in CS 320

https://en.wikipedia.org/wiki/Reinforcement_learning

Supervised Machine Learning

data is labeled, we know what we want to predict

Regression predict a quantity

Classification predict a category

*Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

Clustering place rows in groups

Decomposition

represent rows as combos of "component" rows

features

(х0	х1	x2	х3	x4	/ (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	24	63	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

problem: can we predict an unknown quantity based on features?

train: fit a model to the relationship between some label (y) and feature (x's) values

test: make some predictions for known rows -- how close are we?

	x0	x1	x2	хЗ	х4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	2 r	nodel	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

predict: estimate for actual unknowns

predict: estimate for actual unknowns

	x0	x1	x2	х3	х4	y (label)	
0	37	25	40	70	68	5	
1	50	13	7	67	79	25	
2	56	12	5	15	90	44	
3	89	70	85	49	68	72	
4	36	93	52	33	14	59	
5	53	5	67	99	55	90	
6	47	31	9	56	27	85	
7	50	3	20	24	63	25	
8	36	32	66	70	7	33	model
9	27	33	16	21	9	21	

interpret: what can we learn by looking directly at the model?

a problem with some **categorical** features is still a regression as long as the lable is **quantitative**

2. Classification (Supervised)

	x0	x1	x2	х3	х4	y (label)
0	37	green	40	triangle	68	orange
1	50	green	7	circle	79	pear
2	56	red	5	circle	90	pear
3	89	blue	85	triangle	68	apple
4	36	blue	52	square	14	pear
5	53	green	67	triangle	55	????
6	47	blue	9	triangle	27	????
7	50	blue	20	circle	63	????
8	36	green	66	circle	7	????
9	27	red	16	circle	9	????

problem: can we predict an unknown category?

3. Clustering (Unsupervised)

	х0	x1	x2	х3	x4
0	37	25	40	70	68
1	50	13	7	67	79
2	56	12	5	15	90
3	89	70	85	49	68
4	36	93	52	33	14
5	53	5	67	99	55
6	47	31	9	56	27
7	50	3	20	24	63
8	36	32	66	70	7
9	27	33	16	21	9

problem: can we organize data into groups of similar rows?

3. Clustering (Unsupervised)

there is no official grouping to check the model against, but a good grouping places similar rows together

	x0	x1	x2	х3	x4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

original data

	х0	x1	x2	х3	х4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

components

-11		х0	x1	x2	хЗ	х4
21	0	-0.0	0.6	0.5	0.1	-0.6
21	1	0.3	-0.2	0.5	0.6	0.5
-8	2	0.4	0.5	0.1	-0.6	0.5

original data

x1 x2 x3 x4 x0 3 20 20 **0** -11 -7 2 -19 -30 17 31 **2** 8 -20 -32 -35 38 48 -1 20 41 **4** -12 61 15 -17 -34 5 -27 30 49 5 **6** -1 -1 -28 6 -21 2 -29 -17 -26 15 **8** -12 0 29 20 -41 1 -21 -29 -39 9 -21

components

-11		x0	x1	x2	хЗ	х4
21	0	-0.0	0.6	0.5	0.1	-0.6
21	1	0.3	-0.2	0.5	0.6	0.5
-8	2	0.4	0.5	0.1	-0.6	0.5

weights

	pc0	pc1	pc2
0	-11	21	-8
1	-43	12	-6
2	-58	-14	30
3	36	41	53
4	00	0.0	00

. . .

original data

	x0	x1	x2	х3	х4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

components

		χÜ	Х1	x2	хЗ	х4
-43	0	-0.0	0.6	0.5	0.1	-0.6
12	1	0.3	-0.2	0.5	0.6	0.5
-6	2	0.4	0.5	0.1	-0.6	0.5

weights

		pc0	pc1	pc2
	0	-11	21	-8
$\Big($	1	-43	12	-6
	2	-58	-14	30
	3	36	41	53
	4	00	00	00

...

Machine Learning

not covered in CS 320 Regression predict a quantity Supervised Machine Learning data is labeled, we know what we want to predict Classification predict a category Clustering * Unsupervised Machine Learning place rows in groups data is unlabeled, we're just looking for patterns Decomposition represent rows as combos of "component" rows

this semester, we'll learn at least one technique in each of these four categories

+

2. Classification (Supervised)

```
linear_model.LogisticRegression([penalty, ...])
linear_model.LogisticRegressionCV(*[, Cs, ...])
linear_model.PassiveAggressiveClassifier(*)
linear_model.Perceptron(*[, penalty, alpha, ...])
linear_model.RidgeClassifier([alpha, ...])
linear_model.RidgeClassifierCV([alphas, ...])
linear_model.SGDClassifier([loss, penalty, ...])
```

```
linear_model.LinearRegression(*[, ...])
linear_model.Ridge([alpha, fit_intercept, ...])
linear_model.RidgeCV([alphas, ...])
linear_model.SGDRegressor([loss, penalty, ...])

svm.LinearSVC([penalty, loss, dual, tol, C, ...])
svm.LinearSVR(*[, epsilon, tol, C, loss, ...])

tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor
neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n_neighbors, ...])
```

3. Clustering (Unsupervised)

```
cluster.AffinityPropagation(*[, damping, ...])
cluster.AgglomerativeClustering([...])
cluster.Birch(*[, threshold, ...])
cluster.DBSCAN([eps, min_samples, metric, ...])
cluster.FeatureAgglomeration([n_clusters, ...])
cluster.KMeans([n_clusters, init, n_init, ...])
cluster.MiniBatchKMeans([n_clusters, init, ...])
cluster.MeanShift(*[, bandwidth, seeds, ...])
cluster.OPTICS(*[, min_samples, max_eps, ...])
cluster.SpectralClustering([n_clusters, ...])
cluster.SpectralCoclustering([n_clusters, ...])
```

4. Decomposition (Unsupervised)

```
decomposition.DictionaryLearning([...])
decomposition.FactorAnalysis([n_components, ...])
decomposition.FastICA([n_components, ...])
decomposition.IncrementalPCA([n_components, ...])
decomposition.KernelPCA([n_components, ...])
decomposition.LatentDirichletAllocation([...])
decomposition.MiniBatchDictionaryLearning([...])
decomposition.MiniBatchSparsePCA([...])
decomposition.NMF([n_components, init, ...])
decomposition.PCA([n_components, copy, ...])
decomposition.SparsePCA([n_components, ...])
decomposition.TruncatedSVD([n_components, ...])
```

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html

Foundations: Modules and Math

Important Packages

We'll be learning the following to do ML and related calculations efficiently:

3 scikit-learn

```
pip3 install numpy scikit-learn
pip3 install torch torchvision
```


$$\begin{bmatrix} 2 & 1 & 1985 \\ 3 & 1 & 1998 \\ 4 & 3 & 2005 \\ 4 & 2 & 2020 \end{bmatrix} \longrightarrow \begin{bmatrix} y = Xc + b \\ y = Xc + b \\ 328000 \\ 343000 \end{bmatrix}$$

$$y = x ** 2$$
 not linear
 $y = x0*4 + x1*(-1) + x2*0.5 + ... + x10*3$ linear

Calculus: Minimizing Something

training data

beds	baths	year	price		
1	1	1980	\$140K		
3	1	1990	\$240K		
3	4	2004	\$295K	Machine Learning Algorithm	
			-		
				train	
				—	
				y = Xc + b	

Calculus: Minimizing Something

Calculus: Minimizing Something

how do we optimize **c** to minimize **loss**? Important concepts: derivative, gradient

(pytorch can do this)

Conclusion: Developers vs. Users

Conclusion: Our Focus

training data

beds	baths	year	price
1	1	1980	\$140K
3	1	1990	\$240K
3	4	2004	\$295K
4	3	2018	\$350K

writing new algorithms (not our focus)

Machine Learning Algorithm

train

live data

Conclusion: Our Focus

how can we clean this up?

