• Decided to collide against the wall (y-axis). Started at time t=1; collision at t=0. Path of $f: \sin(t)$. Path of $g: \sin(1/t)$.

- Where should f collide?
- Q Observe f at $t_n = 1, \frac{1}{2}, \frac{1}{3}, \cdots$. Does $(f(t_n))$ converge?
- Q A friend observes f at $t_n = \frac{1}{n\sqrt{2}}$. Does $(f(t_n))$ converge?
- Q If $t_n > 0$ and $t_n \to 0$, should $(f(t_n))$ have the same limit?
- Q Take $t_n = \frac{2}{n\pi}$. Does $(g(t_n))$ converge?

Limits of f: definitions

D1[Sequential defn] Let $f: A \to \mathbb{R}$ and a be a cluster point of A. We say $\lim_{t\to a} f(t) = I$ if for each sequence $a_n \to a$, $a_n \ne a$, we have $f(a_n) \to I$.

D2[ϵ - δ -defn] We say $\lim_{t\to a} f(t) = I$ if for each $\epsilon > 0$, $\exists \delta > 0$ s.t. $\left(0 < |t-a| < \delta, t \in A\right) \Rightarrow |f(t) - I| < \epsilon$.

- Here the value of δ depends on ϵ , the point a and on f.
- If f is a function, we define $f(B) := \{ f(t) \mid t \in B \cap \text{dom } f \}$.
- Notice: $\{t \mid 0 < |t-a| < \delta, t \in A\} = D_{\delta}(a) \cap A$. And $\left(0 < |t-a| < \delta, t \in A\right) \Rightarrow |f(t) I| < \epsilon \text{ means } f(D_{\delta}(a)) \subseteq B_{\epsilon}(I)$.
- D2' We say $\lim_{t \to a} f(t) = I$ if each $B_{\epsilon}(I)$ contains some $f(D_{\delta}(a))$.
- Notice that to define limit at a, we need not have $a \in A$.

- It is useful to imagine dom f an interval or a disc, and a a point or boundary point of it.
 - By D2, $\lim_{x\to a} f(x) = I$ if each $B_{\epsilon}(I)$ contains some $f(D_{\delta}(a))$.

R Both the definitions are equivalent.

A Let $a_n \to 1$, $a_n \ne 1$. So $a_n^2 - \frac{3}{\sqrt{a_n}} \to 1 - 3 = -2$, by limit theorems for sequences. By D1, $\lim_{x \to 1} f(x) = -2$.

• Take $f(x) = \sqrt{x}$ on \mathbb{R}_+ . Show that $\lim_{x \to 1} f(x) \neq 2$.

A Take $a_n=1-\frac{1}{n}$. Then $a_n\to 1$, $a_n\ne 1$. But $f(a_n)=\sqrt{a_n}\to 1\ne 2$. By D1, $\lim_{x\to 1}f(x)\ne 2$.

• Take $f(x) = \begin{cases} 1, & x < 0 \\ 0, & x \ge 0. \end{cases}$ Show that $\lim_{x \to 0} f(x)$ does not exist.

A Take $a_n=(-.1)^n$. Then $a_n\to 0$, $a_n\ne 0$. But $(f(a_n))=(1,0,1,0,\cdots)$ diverges. By D1, $\lim_{x\to 0}f(x)$ does not exist.

• Did you notice? We used <u>particular examples</u> of (a_n) , to show $\lim f \neq I$. We started with an <u>arbitrary</u> (a_n) , to argue $\lim f = I$.

• Take $f(x) = \begin{cases} 0 & x = 0 \\ \sin(\frac{1}{x}) & x \neq 0. \end{cases}$ Then $\lim_{x \to 0} f(x)$ does not exist.

A Take $a_n = \frac{2}{n\pi}$. Then $a_n \to 0$, $a_n \neq a$. But $(f(a_n)) = (1, 0, -1, 0, 1, \cdots)$ diverges. By D1, $\lim_{x \to 0} f(x)$ does not exist.

• Take $f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q}. \end{cases}$ Fix any a. Then $\lim_{x \to a} f(x)$ does not exist.

A Let (r_n) be a sequence of rationals s.t. $r_n \neq a$, $r_n \to a$. Then $f(r_n) \to 0$. Let (i_n) be a sequence of irrationals s.t. $i_n \neq a$, $i_n \to a$. Then $f(i_n) \to 1$. Hence $\lim_{x \to a} f(x)$ does not exist, by D1.

Note For the limit to be I, we should have $f(a_n) \to I$, for each sequence $a_n \to a$, $a_n \neq a$.

• Take $f(x) = x^2$. Show that $\lim_{x \to 2} f(x) = 4$.

A Let $\epsilon > 0$. We are looking for a $0 < \delta < 1$ s.t. $f(D_{\delta}(2)) \subseteq B_{\epsilon}(4)$.

As *f* is increasing, we have

$$f(D_{\delta}(2)) \subseteq B_{\epsilon}(4) \qquad \Leftarrow \qquad 4 - \epsilon \le (2 - \delta)^{2} < (2 + \delta)^{2} \le 4 + \epsilon$$

$$\Leftarrow \qquad \sqrt{4 - \epsilon} \le 2 - \delta < 2 + \delta \le \sqrt{4 + \epsilon}$$

$$\Leftarrow \qquad \sqrt{4 - \epsilon} - 2 \le -\delta < \delta \le \sqrt{4 + \epsilon} - 2.$$

$$\Leftarrow \qquad \delta = \min\{|\sqrt{4 - \epsilon} - 2|, |\sqrt{4 + \epsilon} - 2|\}.$$

Then $\delta > 0$ and we are done.

Q To show $\lim_{x\to 2} x^3 = 8$, we take $\delta = \min\{|\sqrt[3]{8-\epsilon} - 2|, |\sqrt[3]{8+\epsilon} - 2|\}$.

• Pictures can help to guess δ . Take $f(x) = x^2$. Then $\lim_{x \to 2} f(x) = 4$.

• Intervals at 2 suggest: $\delta \leq \min\{2 - \sqrt{4 - \epsilon}, \sqrt{4 + \epsilon} - 2\}$. Which one?

• Take $f(x) = x^2$ on \mathbb{R} . Then $\lim_{x \to 2} f(x) \neq 3.99$.

A Each $D_{\delta}(2)$ contains a number more than 2. So each $f(D_{\delta}(2))$ contains a number more than 4. Put $\epsilon=.01$. Then $B_{\epsilon}(3.99)=(3.98,4)$. So \exists no $\delta>0$ such that $f(D_{\delta}(2))\subseteq B_{\epsilon}(3.99)$. Thus by D2, $\lim_{t\to\infty}f(x)\neq 3.99$.

• Take $f(x) = \begin{cases} 1, & x < 0 \\ 0, & x > 0 \end{cases}$ Then $\lim_{x \to 0} f(x)$ does not exist.

A If it exists, let it be I. Each $D_{\delta}(0)$ contains +ve and -ve numbers. So each $f(D_{\delta}(0))$ contains 1 and 0. Put $\epsilon=.1$. As $B_{\epsilon}(I)$ has length .2, it cannot contain two integers. So \exists no $\delta>0$ such that $f(D_{\delta}(0))\subseteq B_{\epsilon}(I)$. So $\lim_{x\to 0} f(x) \neq I$, a contradiction.

• We don't want to find the limits, every time from the definitions. So we require some tools to find limit for nontrivial functions.

R Let $\lim_{x\to c} f(x) = I$. Then f is bounded on some $D_{\delta}(c)$. Follows from D2.

R[Sandwich] Let
$$f \leq h \leq g$$
 on A and $\lim_{x \to c} f = I = \lim_{x \to c} g$. Then $\lim_{x \to c} h = I$. Follows from D1. Here c is a cluster point of A .

R We have $\lim_{x \to c} f(x) = 0$ iff $\lim_{x \to c} |f(x)| = 0$. Follows from D1.

R. Let
$$\lim_{x \to c} f(x) = I$$
 and $\lim_{x \to c} g(x) = m$. Then

a) $\lim_{x \to c} (f(x) + g(x)) = l + m$. b) $\lim_{x \to c} f(x)g(x) = Im$.

c)
$$\lim_{x \to c} (\alpha f)(x) = \alpha I$$
.
d) If $f \ge 0$ on dom f , then $I \ge 0$

d) If f > 0 on dom f, then l > 0.

e) If l>0, then f>0 on a $D_{\delta}(c)$ and $\lim_{x\to c}\frac{1}{f(x)}=\frac{1}{l}$. Use D2 for the first part of e) and D1 for f) If $f \ge 0$ and $k \in \mathbb{N}$, then $\lim_{x \to c} \sqrt[k]{f(x)} = \sqrt[k]{I}$. the rest.

- rational polynomials As $\lim_{x\to a} x = a$, we have $\lim_{x\to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}$, if $Q(a) \neq 0$.
- As $-|\theta| \le \sin \theta \le |\theta|$, we have $\lim_{\theta \to 0} \sin \theta = 0$. Hence, $\lim_{\theta \to 0} \cos \theta = 1$. Hence, $\lim_{x \to a} \sin(x) = \lim_{x \to a} \left(\sin(x a) \cos a + \cos(x a) \sin a \right) = \sin(a)$.
- Similar results for trigonometric polynomials and rational functions.
- For $0 < \theta < \frac{\pi}{2}$, we have $\sin \theta \le \theta \le \sin \theta + (1 \cos \theta)$. So $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.
- For |x| < 1, we have $1 + x \le e^x \le 1 + x + x^2 \, !!$. So $\lim_{x \to 0} e^x = 1$. Thus $\lim_{x \to a} e^x = \lim_{y \to 0} e^{a+y} = e^a \lim_{y \to 0} e^y = e^a$.
- For $x \neq 0$, we have $-|x| \leq f(x) = x \sin(\frac{1}{x}) \leq |x|$. So $\lim_{x \to 0} f(x) = 0$.
- $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x} = \lim_{x \to 1} \frac{(x+2)(x-1)}{x(x-1)} = (?) \lim_{x \to 1} \frac{x+2}{x} = 3.$

One sided limits 11

Ex Define $\lim_{x\to\infty} f(x) = I$ in both ways. Similar to $\lim_{n\to\infty} a_n = I$, where $a_n = f(n)$.

D Let $f:A \to \mathbb{R}$ and c be a cluster point of $(c,\infty) \cap A$.(?)

We say $\lim_{x\to c^+} f(x) = I$, if each $B_{\epsilon}(I)$ contains some $f(c, c + \delta)$.

Ex Define $\lim_{x\to c} f(x) = \infty$ in both ways. Compare with the texts.

That is, $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $(c < x < c + \delta, x \in A) \Rightarrow |f(x) - I| < \epsilon$.

It is the right hand limit f(c+). Define left hand limit f(c-) similarly.

Eg Take f(x) = [x]. Then f(2-) = 1 and f(2+) = 2.

Ex Write a sequential definition of left/right hand limit.

R Let $D_{\epsilon}(a) \subseteq \text{dom}(f)$ for an ϵ . Then $\lim_{x \to a} f(x) = I$ iff f(a+) = f(a-) = I. !!

Continuity: definitions

D1 if $f(a_n) \to f(a)$ for each sequence $a_n \to a$, $a_n \in A$. (property)

D2 if each $B_{\epsilon}(f(a))$ contains a $f(B_{\delta}(a))$. That is,

$$\forall \epsilon > 0$$
, $\exists \delta > 0$ such that $(x \in A, |x - a| < \delta) \Rightarrow |f(x) - f(a)| < \epsilon$.

- If $a \in A$ is a cluster point of A, then 'f is cts at a' means $\lim_{x \to a} f(x) = f(a)$.
- 'f is discontinuous at a' means 'f is not continuous at a'.
- We say f is continuous on D, if it is continuous at each $a \in D$.
- We say I is continuous on D, if it is continuous at each $a \in D$.

Ex Define f on $[1,2) \cup \{3\}$ as f = 1 on [1,2) and f(3) = 2. Apply D1,D2.

• If $a \in A$ is NOT a cluster point of A, then 'f is cts at a, by definition.

× Define f on $[1,2) \cup \{3\}$ as f = 1 on [1,2) and f(3) = 2. Apply D1,D2.

R Rational functions involving $\sqrt[k]{x}$, $\sin(x)$, e^x are continuous wherever defined.

Eg(Dirichlet's function)
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
 is discontinuous at each point. In fact, limit does not exist at any point.

Eg Take $f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$ Then f is continuous at each point.

A Let $a \neq 0$. Let $a_n \to a$. By LT(s), a_n may be assumed nonzero and so $\frac{1}{a_n} \to \frac{1}{a}$. As $\sin x$ is cts at $\frac{1}{a}$, we get $\sin \frac{1}{a_n} \to \sin \frac{1}{a}$. So $a_n \sin \frac{1}{a_n} \to a \sin \frac{1}{a}$.

So f is continuous at a.

Let a=0. Note that $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \sin \frac{1}{x} = 0 = f(0)$. So f is cts at 0.

Eg
$$f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is continuous at each point except 0.

(0, x = 0)
A For $a \neq 0$, similar to the previous argument. For a = 0, recall that $\lim_{x \to 0} \sin \frac{1}{x}$ does not exist. So f is not continuous at 0.

Eg Take $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q}. \end{cases}$ It is discontinuous at each point except 0.

A Let
$$a \neq 0$$
. Recall that $a_n = \frac{[10^n a]}{10^n} \rightarrow a$ and $b_n = \frac{[10^n a]}{10^n} + \frac{\sqrt{2}}{n} \rightarrow a$.

But $f(a_n) \to a$ and $f(b_n) \to 0 \neq a$. Hence f is not continuous at a.

Let a=0. Note that $-|x| \le f(x) \le |x|$ and $\lim_{x\to 0} (\pm |x|) = 0$. By sandwich lemma, $\lim_{x\to 0} f(x) = 0 = f(0)$. So f is continuous at a=0.

R(Combination of cts functions) If
$$f,g:D\to\mathbb{R}$$
 are cts at a and $\beta\in\mathbb{R}$, then

- a) f + g, βf , fg are cts at a.
- b) If f(a) > 0, then f > 0 in some $B_{\delta}(a)$ and 1/f is cts at a.
- c) If $f \ge 0$ on D and $k \in \mathbb{N}$, then $\sqrt[k]{f}$ is cts at a.

Po For b) first part, use ϵ - δ definition. For others use sequential definition.

More techniques

g(x) = [x].

15

R If f and g are cts at a, then so is $h = \min\{f, g\}$. As $h(x) = \frac{f+g}{2} - \frac{|f-g|}{2}$.

R(Composition) If f is cts at a and g is cts at f(a), then $g \circ f$ is cts at a.

Po Let $a_n \to a$. As f is cts at a, we get $f(a_n) \to f(a)$. As g is cts at f(a),

we get $g(f(a_n)) \to g(f(a))$. If I mimic this for limits, where will I have a problem? Try the ϵ - δ proof too. Eg Can $g \circ f$ be cts at a, even if g is not cts at f(a)? Yes. Take f = 0 and

D Let $f:A\to\mathbb{R}$ and $a\in A$. We say f has an absolute maximum at a, if $f(a)\geq f(x)$ for each $x\in A$. Absolute minimum is defined similarly.

R(maximum-minimum theorem) Let $f:[a,b]\to\mathbb{R}$ be cts. Then f is bounded on [a,b]. Also f has an absolute maximum (minimum) in [a,b].

Po Suppose it is not bounded. So, $\exists x_n \in [a, b]$ s.t. $|f(x_n)| \to \infty$.

Is (x_n) bounded? By BWT, we have a conv subsequence, say, $x_{n_k} \to I$.

As $a \le x_{n_k} \le b$, we get $a \le l \le b$.

(cont.) Let
$$p = \sup f([a, b])$$
.

Is $p - \frac{1}{n}$ an upper bound of f([a, b])? So, $\exists y_n \in [a, b]$ s.t. $f(y_n) \ge p - \frac{1}{n}$.

Is $x_{n_k} \to I$? Is f cts at I? So $f(x_{n_k}) \to f(I)$. So $|f(x_{n_k})| \to |f(I)|$. $\Rightarrow \Leftarrow J$

Is (y_n) bounded? So, by BWT, \exists a conv subsequence, say, $y_{n_k} \to t$. Is $a \le y_{n_k} \le b$? So $a \le t \le b$. Is $y_{n_k} \to t$? Is f cts at t? So $f(y_{n_k}) \to f(t)$.

As $p - \frac{1}{n_k} \le f(y_{n_k}) \le p$, we get $f(y_{n_k}) \to p$. So f(t) = p.

Bisection method. Let $f:[a,b] \to \mathbb{R}$ be continuous with f(a) < 0 and f(b) > 0.

Call
$$a_1 = a$$
, $b_1 = b$ and $l_1 = [a_1, b_1]$.

<u>b</u>1

If
$$f(\frac{a+b}{2}) < 0$$
, then put $a_2 = \frac{a+b}{2}$, $b_2 = b_1$, $l_2 = [a_2, b_2]$.

If $f(\frac{a+b}{2}) > 0$, then put $a_2 = a_1$, $b_2 = \frac{a+b}{2}$, $I_2 = [a_2, b_2]$.

Assume that we never get $f(\frac{a_n+b_n}{2})=0$. Notice that, we always have

By nested interval theorem,
$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$$
. As $a_n \to c$ and $f(a_n) < 0$,

 $f(a_n) < 0$, $f(b_n) > 0$, length $I_{n+1} = \frac{1}{2}$ length I_n , and $I_{n+1} \subseteq I_n$.

we get $f(c) \le 0$. As $b_n \to c$ and $f(b_n) > 0$, we get $f(c) \ge 0$. So f(c) = 0.

R Let
$$f:[a,b]\to\mathbb{R}$$
 be cts with $f(a)f(b)<0$. Then $\exists c\in(a,b)$ s.t. $f(c)=0$.

Po Use previous result with f(x) - k.

R(IVT) Let $f:[a,b] \to \mathbb{R}$ be cts. Let $m = \min f$ and $M = \max f$ on [a,b]. Take an intermediate value k in (m,M). Then $\exists c \in (a,b)$ s.t. f(c) = k.

R Let f:[a,b] be cts. Let $m=\min f$ and $M=\max f$ on [a,b]. Then f([a,b])=[m,M].

R(fixed point) Let $f:[0,1] \to [0,1]$ be cts. Then $\exists c \in [0,1]$ s.t. f(c) = c. Po If f(0) = 0 or f(1) = 1, we are done. Otherwise, we have f(0) > 0 and

f(1) < 1. Consider g(x) = f(x) - x. Apply IVT.

Eg The equation $p(x) = x^3 - 5x^2 + 17x + 18$ has at least one real zero. A $x > 40 \Rightarrow x^3 > \underbrace{(5+17+18)}_{} x^2 \ge 5x^2 + 17x + 18 \ge \pm 5x^2 \pm 17x \pm 18$.

That is, $x > 40 \Rightarrow p(x) > 0$ and $x < -40 \Rightarrow p(x) < 0$. Apply IVT.

R(Inverse continuity) Let $f:[a,b] \to [c',d']$ be strictly increasing, onto and continuous. Then f^{-1} is strictly increasing and continuous.

Po Continuity of f^{-1} : let c' < t' < d'. Put $x = f^{-1}(t')$. Is a < x < b? Yes.

Now, take some $[x - \epsilon, x + \epsilon] \subseteq (a, b)$.

Then $f(x - \epsilon, x + \epsilon) = (f(x - \epsilon), f(x + \epsilon))$, as f is strictly increasing and cts. Also it contains t'. So some $(t' - \delta, t' + \delta) \subseteq f(x - \epsilon, x + \epsilon)$. That is, $f^{-1}(t' - \delta, t' + \delta) \subseteq (x - \epsilon, x + \epsilon)$. So f^{-1} is cts at t'.

Similarly, f is cts at c' and d'.

Cor Thus $\ln x$ is cts on $(0, \infty)$.