

Design and Analysis of Algorithms CSE2012

Dr. Ramesh Ragala

February 11, 2022

Asymptotic Notations

- The step count for estimating Time Complexity is inexact.
- Reason: The step count is one for either instruction x=y or x = y+(x*y)
- The running time for latter instruction is high
- So this step count is not very useful comparative purpose of algorithms.
- But Step Count method can be used to predict the running time growth of the algorithm for larger instance size accurately.
- ullet Larger Instance Size o asymptote as n approaches infinity.
- So, We can use this to predict the relative performance of two programs when the instance size becomes large.
- Notations are used to Characterise main factors, affecting the Running time of algorithm
 - These Notations are not considering detail examination of primitive operations in algorithm.
- Asymptotic Notations are used to formalized.

Asymptotic Notations

- Simply, Asymptotic Notations are used to formalize "An algorithm has running time or storage requirement that are NEVER MORE THAN, ALWAYS GREATER THAN, or EXACTLY some amount"
- There are five asymptotic notations are available
 - Big Oh (() Notation.
 - Big Omega (Ω) Notation.
 - Theta (θ) Notation.
 - Little -Oh (○) Notation.
 - Little Omega (ω) Notation.

BIG OH (O) NOTATION

• Definition: "Let f(n) and g(n) are two positive functions, the function f(n) = O(g(n)) [read as "f of n is big Oh of g of n"] if and only if, \exists positive constants c and n_0 such that $f(n) \le c g(n)$ for all n, where $n \ge n_0$ ".

BIG-OH NOTATION

- The Big-Oh notation allows
 - f(n) is less that or equal to another function, up to a constant factor-c and in the asymptotic sense as n grows towards infinity $[n \ge no]$.
 - The growth rate of f(n) is always less than or equal to the growth rate of g(n) for large n-values.
 - The Big Oh notation is used widely to characterize running times and space bounds in terms of some parameters n.
 - f(n)=O(g(n)) states only that g(n) is an upper bound on the value of f(n) for all n, where $n \ge n_0$.
 - Big -Oh does not say about how good the bound is.

BIG - OH NOTATION

• Big -Oh Graph Representation:

BIG - OH NOTATION

- Rules of Big Oh Notation:
 - The constants are ignored. Example: O(100n) is write as O(n). Here 100 is ignored.
 - Lower order terms are also ignored. Example: $O(2n^2+26n+39)$ is written as $O(n^2)$.

BIG-OH NOTATION EXAMPLES

- Find the Big Oh Representation of f(n) = 3n+2.
- According to the definition of Big Oh Notation, $f(n) \le c \ g(n)$ for $n \ge n_0$.

$$3n+2 \le cn$$
 here g(n) is n $2 \le c.n-3n$ $2 \le n(c-3)$ $2/(c-3) \le n$ here we take n as n_0 $n_0 \ge 2/(c-3)$

- According to the definition of Big Oh, c and n_0 are positive constants. \rightarrow So we should choose c-value that leads n_0 should to positive.
- So choose c has 4, that implies n₀ has 2.
- So f(n) = 3n+2 = O(4n). here we can neglect c-value in Big Oh representation.
- So f(n) = 3n+2 = O(n), where $n \ge 2$.

BIG OMEGA (Ω) NOTATION

- Definition: "Let f(n) and g(n) are two positive functions, the function $f(n) = \Omega(g(n))$ [read as "f of n is big Omega of g of n"] if and only if, \exists positive constants c and n_0 such that $f(n) \ge c g(n)$ for all n, where $n \ge n_0$ ".
- $f(n)=\Omega(g(n))$ states only that g(n) is an Lower bound on the value of f(n) for all n, where $n \ge n_0$.

BIG - OMEGA NOTATION

• Big -Omega Graph Representation:

BIG-OMEGA NOTATION EXAMPLE

- Find Big-Omega Representation of f(n) = 3n+2
- According to the deffinition of Big-Omega notation, $f(n) \ge c \ g(n)$ for $n \ge n_0$.

$$3n+3 \ge cn$$
 here g(n) is n $2 \ge c.n-3n$ $2 \ge n(c-3)$ $2/(c-3) \ge n$ here we take n as n_0 $n_0 \le 2/(c-3)$

- According to the definition of Big Omega, c and n_0 are positive constants. \rightarrow So we should choose c-value that leads n_0 should to positive.
- So choose c has 3, that implies n₀ starts from 0.
- So $f(n) = 3n+2 = \Omega(3n)$. here we can neglect c-value in Big-Omega representation.
- So $f(n) = 3n+2 = \Omega(n)$, where $n \ge 0$.

Theta (θ) Notation

- Definition: " Let f(n) and g(n) are two positive functions, the function $f(n) = \theta(g(n))$ [read as "f of n is Theta of g of n"] if and only if, \exists positive constants c_1 , c_2 and n_0 such that $c_1g(n) \leq f(n) \leq c_2 g(n)$ for all n, where $n \geq n_0$ ".
- g(n) is the an asymptotically tight bound for f(n).

THETA NOTATION

• Theta Graph Representation:

THETA NOTATION EXAMPLE

- Find the Theta Representation of f(n) = 3n+2?
- Here we have calculate lower bound and upper bound of f(n) = 3n+2.
- In previous Slide we did estimate for the same function.
- So the lower Bound is 3n+2=3n, $n\geq 0$, where $c_1=3$ and n_0 starts from 0.
- The Upper Bound is 3n+2=4n, $n\geq 2$, where $c_2=4$ and n_0 starts from 2.
- Here we have to find the same n₀ for lower and upper bound.
- Assume n₀ is starting from 2.
- According to definition, $c_1g(n) \leq f(n) \leq c_2 \ g(n)$ for all n, where $n \geq n_0$.
- $3n \le 3n+2 \le 3n+4$ for all n, where $n \ge 2$
 - \bullet Here $c_1=3$ and $c_2=4$ and $n_0\geq 2$
 - So $f(n) = 3n+2 = \theta(n)$ where $c_1 = 3$ and $c_2 = 4$ and $n_0 \ge 2$

THETA NOTATION

THEOREM

For any two functions f(n) and g(n), $f(n) = \theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

LITTLE-OH (O) NOTATION

• Definition: "Let f(n) and g(n) are two positive functions, the function f(n) = o(g(n)) [read as "f of n is little-oh of g of n"] if and only if, \exists positive constants c and n_0 such that f(n) < c g(n) for all n, where $n > n_0$ ".

LITTLE-OMEGA (ω) NOTATION

• Definition: "Let f(n) and g(n) are two positive functions, the function f(n) = o(g(n)) [read as "f of n is little-omega of g of n"] if and only if, \exists positive constants c and n_0 such that f(n) > c g(n) for all n, where $n > n_0$ ".

ASYMPTOTIC NOTATION PROPERTIES

- Let f(n) and g(n) be asymptotically positive functions.
 - f(n) = O(g(n)) implies g(n) = O(f(n))
 - $f(n) + g(n) = \Theta(\min(f(n), g(n)))$
 - $f(n) + o(g(n)) = \Theta(f(n))$
 - f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$
- Many of the relational properties of real numbers apply to asymptotic comparisons as well.
 - Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$
 - $\bullet \ f(n) = O(g(n))$ and g(n) = O(h(n)) imply f(n) = O(h(n))
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$
 - f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$
 - Reflexivity:
 - $f(n) = \Theta(f(n))$
 - $f(n) = \Omega(f(n))$
 - f(n) = O(f(n))

ASYMPTOTIC NOTATION PROPERTIES

Symmetry:

- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
 - f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$
- Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ notation, it can be proved that max(f(n), g(n)) $=\Theta (f(n)+g(n)).$