# **EAE-298 - Spacecraft Engineering - W2016**













### EAE-243a - Spacecraft Engineering (4 units)

(EAE-298) Winter 2016 - Robinson V3

**Course Description:** Principles, governing equations, theoretical and empirical predictive approaches to spacecraft design. Integration of engineering disciplines including dynamics, astrodynamics, heat transfer, structures, propulsion, and sensors. Weekly homework plus team design/analysis project.

Req'd Text: Spacecraft Systems Engineering (4thEd.) – Fortescue, Swinerd, Stark

**Reg'd Text:** NASA Systems Engineering Handbook – *SP2007-6105 (free)* 

**Reference:** Fundamentals of Space Systems – Pisacayne

Reference: Space Vehicle Design (2<sup>nd</sup> Ed.) – Griffin and French

**Reference:** Space Mission Engineering: The New SMAD – Wertz et al

Pre-requisites: EAE-141 (Space Mission Design) or EAE-198 (Intro to Space Vehicles) or

equivalent undergraduate spacecraft course.

#### **Student Expectations:**

40%: Individual Bi-Weekly homework (analysis of assigned subsystem)

60%: Team Project: - Satellite design for launch/rendezvous/docking/reboost with HST

or CubeSat design to dock with and provide attitude control for existing LEO satellite

No final exam – presentations of projects during final exam time

#### Week1

#### **Spacecraft Systems Engineering**

Intro to Principles of Systems Engineering
NASA Systems Engineering Handbook
Case Study: ISS Environmental & Life Support System

#### **Introduction to Spacecraft Systems**

Payloads and Missions A System View of Spacecraft

Homework: Project mission requirements and flowchart

#### Week 2

#### The Space Environment and Its Effect on Vehicle Design

Pre-Operational Spacecraft Environments
Operational Spacecraft Environments
Radiation – measurements and modeling
MMOD - measurements and modeling (NASA software)
Environmental Effects on Design

#### **Spacecraft Structures**

Pressure shell design parameters

#### UC Davis EAE-243a Prof. S.K. Robinson

Debris (MMOD) impact modeling and shielding techniques **Homework:** Radiation and MMOD stochastic modeling for mission intended orbit

#### Week 3

#### **Dynamics of Spacecraft**

Trajectory Dynamics
General Attitude Dynamics

Attitude Motion of Specific Types of Spacecraft

Oscillatory Modes

Homework: Quad-reaction wheel dynamic analysis

#### Week 4

#### **Celestial Mechanics**

The Two-body Problem—Particle Dynamics

Specifying the Orbit

**Orbit Perturbations** 

Spacecraft Rendezvous - Hill & Clohessy-Wiltshire egns

**Homework:** Rendezvous, prox ops, and docking trajectory plan and delta-V requirements

Requirements Review

#### Week 5

#### Mission Analysis & Design

**Keplerian Orbit Transfers** 

Mission Analysis

Polar LEO/Remote-Sensing Satellites

Geostationary Earth Orbits (GEO)

**Highly Elliptic Orbits** 

**Interplanetary Missions** 

Homework: Orbital transfer analysis for re-boost propulsion requirements

#### Week 6

#### **Propulsion Systems**

Systems Classification

**Chemical Rockets** 

**Spacecraft Propulsion** 

**Electric Propulsion** 

Mission-based propulsion selection process: mass vs volume vs performance

Homework: Design cold-gas thruster system for project

#### Week 7

#### **Launch Vehicles**

Basic Launch Vehicle Performance and Operation Spacecraft Launch Phases and Mission Planning

#### UC Davis EAE-243a Prof. S.K. Robinson

**US Crewed Launch Systems** 

**Launch Sites** 

Today's Available Launchers

Specific Launch Costs and Reliability

**Homework:** Trade study of launchers: performance vs cost/schedule

#### Week 8

#### **Attitude Control**

**ACS Overview** 

Spacecraft Attitude Response

**Torques and Torquers** 

Attitude Measurement

ACS Computation/Models

**Homework:** Attitude control requirements for mission phases, including RW desaturation predictions

#### Week 9

#### **Electrical Power Systems and Thermal Control of Spacecraft**

**Power System Elements** 

Power Management, Distribution and Control

Power Budget - Apollo 13 example

The Thermal Environment

Thermal Balance & Analysis

Thermal Technology

**Homework:** Finalizing system element designs/analyses

#### Week 10

Systems Integration - Prelim Design Review

Final project presentations

# EAE-243b - Spacecraft Engineering for Human Spaceflight (4 units)

(EAE-298) Spring 2017? - Robinson

**Course Description:** Requirements and theoretical/empirical predictive approaches to human spacecraft design. Mission design and operations, life support and safety systems, robotics, and extravehicular activity. Weekly homework, research paper review, plus team design/analysis project.

**Req'd Text:** <u>Human Spaceflight – Mission Analysis and Design</u> (4thEd.) – *Larson et al* **Req'd Text:** <u>Human-Rating Requirements for Space Systems</u>– *NASA NPR 8705.2B (free)* 

Reference: Spaceflight Life Support and Biospherics – Eckart

Pre-requisites: EAE-243a (Spacecraft Systems Engineering)

#### **Student Expectations:**

Weekly homework (analysis of assigned subsystem)

Research Papers as Assigned

Team Project: Lunar lander design, including trajectory simulator No final exam – presentations of projects during final exam time

#### Week1

#### **Introduction to Human Spaceflight**

Mission concepts and architectures

#### **Designing Human Space Missions**

Systems Engineering – Objectives & Requirements Constraints

#### Week 2

#### The Space Environment - Hazards and Effects on Humans

Vacuum & Human Pressure Requirements Plasma and Spacecraft Charging

Radiation and Human Risk

MicroMeteoroid Damage (MMOD) Risk

#### Physiology of Spaceflight

Environmental Parameters: micro-g

Metabolic input/output

Fluid shift, neurovestibular, cardiovascular, musculo-skeletal, ocular changes Partial gravity: planetary surfaces, centrifugation effects on physiology

#### Week 3

#### Safety, Human Rating, & Human Factors of Crewed Spaceflight

Design and Analysis for Human Life Support/Survival

#### UC Davis EAE-243a Prof. S.K. Robinson

#### **Entry, Descent, Landing, and Ascent**

Atmospheric entry: heating, guidance, navigation, control Capsules vs Wings: Cross-range and G-Loading Considerations Descent and Landing: Wings vs Parachutes & Retro Rockets

Lunar Ascent - Numerical Integration of Eqns of Vehicle Motion for State-Vector

#### Simulation

#### Week 4

#### **Designing and Sizing Space Elements for Habitation**

Requirements & Constraints
Habitat Subsystem Critical Choices
Baseline and Alternative Configurations; Concept Engineering Assessment

#### Week 5

#### Transfer, Entry, Landing, and Ascent Vehicles

**Vehicle Concepts and Evaluation** 

#### Spacecraft Thermal Control for Humans – Overview

Thermal Environments
Hardware Design for Thermal Control
Thermal Analysis Tools
Passive vs Active Thermal Control

#### Week 6

#### Human Environmental Control and Life Support Systems (ECLSS)

Example: ISS ECLSS systems – design, redundancy, reliability, repair Human Requirements
Pressurization, Leaks
Atmospheric Revitalization (N2, O2, CO2, humidity)

#### Week 7

#### Human Environmental Control and Life Support Systems (ECLSS) (con't)

Thermal Control Systems Water Supply and Recycle Waste Management

#### Week 8

#### **Extravehicular Activity (EVA) Systems**

System Requirements: pressure, comm, mobility, tools Self-Rescue (SAFER example) Micro-g vs Surface EVA – ISS vs Lunar Example

#### Week 9

#### **Space Robotics**

#### UC Davis EAE-243a Prof. S.K. Robinson

**Human vs Robotics** 

Functional, Operational, and Design Requirements

#### **Selecting Launch and Transfer Vehicles**

Engineering Specs of Launch and Transfer Vehicles Selection Criteria for Launchers

#### Week 10

#### **Mission Operations for Crewed Spaceflight**

Planning & Analysis for: Mission Design, Data Transport, Navigation, Payloads, Communication, Crew Timeline Planning

#### **Command, Control, and Communications Architecture**

Analyzing Requirements & System Design

**Mars Design Example** 

# **Spacecraft Design - Course Goals:**

- Foundation of systems engineering as applied to spacecraft systems integration
- Introduction to spacecraft design considerations/trades
- Broad look at spacecraft environments, missions, orbits, launchers, and design considerations
- Practice with subsystem analyses (individual HW)
- Significant spacecraft design to meet specific mission requirements (team effort)
- Introduction to modern software tools for orbit, mission, and subsystem design
- Deep immersion in online information sources
- Engineering Skills:
  - Systems engineering
  - Dynamics
  - Physics
  - Orbital mechanics
  - Propulsion
  - Fluid dynamics
  - Thermodynamics
  - Optimization

# <u>Spacecraft, Launchers, News, and Policy – Online Knowledge Resources:</u>

- NASA websites
- SpaceX, Boeing CST-100, Sierra Nevada, Blue Origin
- ULA, Boeing, Lockheed Martin, Space Systems/Loral
- https://en.wikipedia.org/wiki/List\_of\_spacecraft\_manufacturers
- Space news websites (examples):
  - o <a href="http://www.space.com/">http://www.space.com/</a>
  - http://spacenews.com/
  - http://www.nbcnews.com/science/space
  - http://news.discovery.com/space
  - http://phys.org/space-news/
  - o http://www.livescience.com/space/
  - o <a href="http://www.universetoday.com/">http://www.universetoday.com/</a>
- NASASpaceflight.com: (Thanks to Chris Bergin)

http://www.nasaspaceflight.com/

**Username: UCDavisSpaceflight** 

Password: ucdavisaggies

# **Weekly Lecture Plan:**

- Tuesdays 2:10-4pm
  - Space news
  - Lecture
  - Homework assignment
  - Homework due next Tuesday 8pm SmartSite
- Thursdays 2:10-4pm
  - Lecture 2:10-3pm
  - In-class project group work 3-4pm
- Occasional guest lectures
- Weekly text reading assignments
- Individual weekly homework (40% grade): mix of problems and subsystem trade studies
- Matlab or Python plus existing packages and apps
- Team project (60% grade): (more details later)
  - Every Thursday in class 3-4pm
  - Requirements review ~4 weeks
  - Preliminary design review finals week
  - Written report

# Team Project: You are a satellite startup

- You have venture capital for one year of planning, potentially followed by five years for a market-busting demo
- Must accomplish a needed mission that has never been done before to impress market and future investors
- 10 weeks to generate mission design, spacecraft design, and budget – up to Preliminary Design Review
- Three potential missions to choose from
- No guarantee than any one mission is do-able (nobody has yet done them!)
- NASA systems engineering principles will provide your development framework

# **Group Design Project: we will choose one**

## #1 Project Hubble-Boost:



- Launch from KSC
- Rendezvous, dock with HST (grapple fixture?)
- Reboost to higher orbit 2-burn Hohmann xfer
- De-orbit booster vehicle

## #2 Project *De-orbit SpaceX Junk:*

http://stuffin.space/ Falcon 9 R/B 2015-023



- Launch from KSC
- Rendezvous, dock with spent upper stage
- De-orbit junk and clean-up vehicle

# #3 Project Save Terra:





- Save Terra Earth Observing Satellite <a href="http://terra.nasa.gov/">http://terra.nasa.gov/</a>
- Fuel leak will leave it unable to maneuver
- Launch from KSC
- Rendezvous, dock with TERRA
- Provide external attitude control module + propellant to complete mission

# Fuel Usage: Actual & Predicted

(Updated April 2013)





# **State of the Spacecraft**

# Estimates of Space Assets, by Country







# Operational Satellites by Function (as of 2013)



# Satellite Missions



### **U.S. Earth Science Satellites**



#### Classes of Satellite Orbits

#### Low Earth Orbit (LEO) --- defined as having altitude < 2000 km</li>

- Circular, e.g., Iridium, Globalstar, Orbcomm; also many scientific, weather spacecraft
- For comm use, a constellation of satellites is usually required to achieve reasonable visibility to users
- A number of standard constellations of multiple satellites have been defined to meet certain objectives:
  - Walkerconstellations, etc.
  - Usually specified as, e.g., 7 spacecraft in each of 9 orbital planes at a specified inclination angle, equally spaced around the equator

#### Medium Earth Orbit (MEO)

- Circular, with altitudes from ~ 2,000 km out to 35786 km,
- e.g., GPS is ~ "half-synchronous" with altitude of ~ 20,200 km
- Not many communications satellites in this regime; also Van Allen belts are in MEO

#### Highly Elliptical Orbit (HEO)

- Elliptical orbits, e.g., Molniya, Tundra, primarily at 63.4° inclination
- Achieves good visibility with high average elevation angles for users at high latitudes

#### Geosynchronous Earth Orbit (GEO)

- Circular, with altitude such that the orbital period exactly equals one sidereal period of the earth's rotation
- If excellent station-keeping is maintained, this could be called a "geostationary" orbit
- By far the dominant orbit for communications satellites

# **LEO (Low Earth Orbit)**

- Circular/slightly elliptical orbit, 2000km
- Orbit period: 1.5 -2 km
- Diameter of coverage: 8000 km
- Signal propagation delay: <20 ms</li>
- Maximum satellite visible time:20 min
- Atmospheric drag results in orbital deterioration.







# Satellite Orbits



- Low Earth orbits (LEO)-about 80 kilometers (km) to 2000 km above Earth Includes: military intelligence satellites, weather satellites
- Geosynchronous orbits (GEO)-36,000 km above Earth Includes: commercial and military communications satellites, satellites providing early warning of ballistic missile launch
- Medium Earth orbits (MEO)-between LEO and GEO Includes: navigation satellites (Navstar, Glonass)
- Molniya orbit-a highly elliptical orbit with a 12-hour period Includes: communication satellites for regions near the North Pole



# Low Earth Orbit Advantages/Disadvantages

- Advantages:
  - Reduced launch costs to place in low Earth orbit
    - e.g., airplane/booster launched
  - Reduced pass loss
  - Lower Power, Lower cost satellite (\$0.5-2M)
  - Much shorter transmission delays
- Disadvantages:
  - Short visibility from any point on earth, as little as 15 minutes
    - Potentially large constellations
  - Radiation effects reduce solar cells and electronics lifetimes
    - Van Allen radiation belts limit orbit placement

Belt 1: 1500-5000 km

Belt 2: 13000-20000 km -

## **Crowded Sky:**



Thousands of manmade objects—95 % of them "space junk"— occupy low Earth orbit. Each black dot in this image shows either a functioning satellite, an inactive satellite, or a piece of debris. Although the space near Earth looks crowded, each dot is much larger than the satellite or debris it represents, and collisions are extremely rare. (NASA illustration courtesy Orbital Debris Program Office.)

http://orbitaldebris.jsc.nasa.gov/

## A Growing Problem - Risk of Collision

http://www.vox.com/2015/1/20/7558681/space-junk





# Spacecraft Mission Objectives and Requirements



# Functional Requirements of Spacecraft Subsystems

- 1. Payload must be pointed in the right direction
- 2. Payload must be operable
- Data must be communicated to the ground
- 4. Desired orbit for the mission must be maintained
- Payload must be held together and mounted on the spacecraft structure
- Payload must operate reliably over some specified period
- Adequate power must be provided

# Spacecraft Subsystems



Numbers refer to mission functions

How do we design and integrate the satellite subsystems to meet the mission requirements?

# **Spacecraft Systems Engineering**



# UC Davis EAE-243a Prof. S.K. Robinson

#### 2.1 The Common Technical Processes and the SE Engine



Figure 2.1-1 The systems engineering engine

#### ...... UC Davis EAE-243a Prof. S.K. Robinson Stakeholder Expectations Trade Studies and Iterative Design Loop Mission Objectives & Constraints Start, Mission Derived and Authority Allocated Design and Functional Product Requirements Operational High-Level and Logical Functional Breakdown Requirements Objectives Decomposition Performance Structure Interface Operational · "Ilities" Mission Success ConOps Criteria Functional & No - Next Level Performance Analysis Yes Legend: No Stakeholder Expectations Definition No Select Rebaseline afe & reliable Technical Requirements Definition requirements? Baseline Affordabl Logical Decomposition Design Solution Definition

Figure 4.0-1 Interrelationships among the system design processes

Decision Analysis

.....

Figure 4.2-3 The flowdown of requirements

·

Requirements

Requirements

Requirements

Requirements



Figure 4.2-4 Allocation and flowdown of science pointing requirements

### **Product Breakdown Structure (PBS):**



Figure 4.3-2 Example of a PBS

## Homework #0: Choose mission by Thurs 1/7 7pm

Send email to Prof. Robinson

### Homework #1: due Tues 1/11/2016 8pm on SmartSite

- Read text pp 3-10
- Read NASA Systems Engineering Handbook pp 1-69
- Stakeholder expectations (Fig 4.0-1) will be provided on Sat 1/9

## Version 1 of the following:

- Technical requirements list and flowchart (Fig 4.2-4)
- Product breakdown structure for vehicle (Fig. 4.3-2)
- List of required analyses