head(map)

BEMA supplemental fungal figures

Description

Adamsresdust3 Adams res dust

BEMA supplemental fungal figures

Make figures for brief fungal analysis. The goal is to show that the study bias, combined with too few studies makes combined analysis goofy.

```
library(wesanderson)
library(scales)

# setwd('~/Dropbox/BEMA/bacteriaHTS/closed_ref_pickedOTUs/R/fungalSupp')
pcAll <- read.delim('binary_sorensen_dice_pc.txt', head=TRUE, row.names=1)
pcNoAA <- read.delim('binary_sorensen_dice_pcNoAmend.txt', head=TRUE, row.names=1)
map <- read.delim('map.txt', head=TRUE, row.names=1)[-1, ]</pre>
```

```
##
                 BarcodeSequence
                                   LinkerPrimerSequence
                                                           Geolocation
                      ACGAGTGCGT CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
## Adamsresdust1
## Adamsresdust2
                      ACGCTCGACA CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
                      AGACGCACTC CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
## Adamsresdust3
## Adamsresdust4
                      AGCACTGTAG CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
                      ATCAGACACG CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
## Adamsresdust5
## Adamsresdust6
                      ATATCGCGAG CTTGGTCATTTAGAGGAAGTAA Albany_CA_USA
##
                 Building_Type Building_Type2 Room_Function
## Adamsresdust1
                   apt_bulding
                                  apt_bulding
                                                     kitchen
## Adamsresdust2
                   apt_bulding
                                  apt_bulding
                                                 living_room
## Adamsresdust3
                   apt_bulding
                                  apt_bulding
                                                    bathroom
## Adamsresdust4
                   apt_bulding
                                  apt_bulding
                                                     bedroom
## Adamsresdust5
                   apt_bulding
                                  apt_bulding
                                                     balcony
## Adamsresdust6
                   apt bulding
                                  apt bulding
                                                     kitchen
##
                 Sequencing_Technology Target_Region Primer_name
                   454_GS_FLX_Titanium
## Adamsresdust1
                                                 ITS1 ITS1F ITS2
## Adamsresdust2
                   454_GS_FLX_Titanium
                                                       ITS1F_ITS2
                                                 ITS1
```

```
## Adamsresdust3
                   454_GS_FLX_Titanium
                                                 ITS1
                                                       ITS1F_ITS2
## Adamsresdust4
                   454_GS_FLX_Titanium
                                                 ITS1
                                                       ITS1F_ITS2
## Adamsresdust5
                   454_GS_FLX_Titanium
                                                 ITS1
                                                       ITS1F_ITS2
                   454_GS_FLX_Titanium
                                                       ITS1F_ITS2
## Adamsresdust6
                                                 ITS1
##
                 Sampling_Method Matrix Specific_Matrix
                                                            Extraction_method
## Adamsresdust1
                    settle_plate
                                     air
                                                     air chloroform_powersoil
## Adamsresdust2
                    settle_plate
                                                     air chloroform_powersoil
                                     air
## Adamsresdust3
                    settle_plate
                                                     air chloroform_powersoil
                                     air
                    settle_plate
## Adamsresdust4
                                                     air chloroform_powersoil
                                     air
## Adamsresdust5
                    settle plate
                                                     air chloroform_powersoil
                                     air
## Adamsresdust6
                    settle_plate
                                                     air chloroform_powersoil
                                     air
##
                    Description
## Adamsresdust1 Adams_res_dust
## Adamsresdust2 Adams_res_dust
```

```
## Adamsresdust4 Adams_res_dust
## Adamsresdust5 Adams_res_dust
## Adamsresdust6 Adams_res_dust
map$Description <- factor(map$Description)</pre>
table(map$Description)
##
##
         Adams_res_dust
                            Adams_res_surfaces Adams_univ_classroom
##
                      94
##
           Amend_global
                                 Dann_Chamacos
                                                   Hoisington_retail
##
                     118
cols <- c(wes.palette(5, 'Darjeeling2')[-3], wes.palette(5, 'Darjeeling')[c(1,4)])</pre>
cols \leftarrow cols[c(6,3,4,2,5,1)]
map$col <- ''
for(i in 1:nlevels(map$Description)) {
  these <- which(map$Description == levels(map$Description)[i])</pre>
  map$col[these] <- cols[i]</pre>
  }
perExplAll <- pcAll['% variation explained', ]</pre>
perExplNoAA <- pcNoAA['% variation explained', ]</pre>
perExplAll[c(1,2)]; perExplNoAA[c(1,2)]
##
                              X1
                                    X2
## % variation explained 9.626 4.508
                              Х1
                                    Х2
##
## % variation explained 8.466 4.182
sum(perExplAll)
## [1]100
dim(pcAll)
## [1] 375 373
pcAll <- pcAll[-c(nrow(pcAll), nrow(pcAll)-1), c(1,2)]</pre>
pcNoAA <- pcNoAA[-c(nrow(pcNoAA), nrow(pcNoAA)-1), c(1,2)]
all(row.names(pcAll) %in% row.names(map))
## [1] TRUE
```

```
all(row.names(pcNoAA) %in% row.names(map))
## [1] TRUE
mapAll <- map[row.names(pcAll), ]</pre>
mapNoAA <- map[row.names(pcNoAA), ]</pre>
leg <- data.frame(levs = levels(mapAll$Description), cols=cols)</pre>
leg$legend <- 'Adams Home Dust'</pre>
leg$legend[leg$levs == 'Adams_res_surfaces'] <- 'Adams Home Surfaces'</pre>
leg$legend[leg$levs == 'Adams_univ_classroom'] <- 'Adams University Classrooms'</pre>
leg$legend[leg$levs == 'Amend_global'] <- 'Amend Global'</pre>
leg$legend[leg$levs == 'Dann_Chamacos'] <- 'Dannemiller Chamacos'</pre>
leg$legend[leg$levs == 'Hoisington_retail'] <- 'Hoisington Retail'</pre>
legNoAA \leftarrow leg[-c(1, 4),]
ch <- function(x) {as.character(x)}</pre>
#pdf('pcAllFungal.pdf', useDingbats=FALSE)
plot(pcAll, pch=21, col='gray20', bg=alpha(mapAll$col, alpha=1), cex=2,
     bty='l', ann=FALSE, xaxt='n', yaxt='n')
legend('topright', legend=leg$legend,
       pch=21, pt.bg=ch(leg$cols), col='gray30', pt.cex=2, cex=1,
       bg='gray96', box.col='gray90')
mtext('PC1 (9.6%)', side=1, adj=1, line=.1)
```

mtext('PC2 (4.5%)', side=2, adj=1, line=.2)

PC1 (9.6%)

#dev.off()

```
#pdf('pcNoAAFungal.pdf', useDingbats=FALSE)
plot(pcNoAA, pch=21, col='gray20', bg=alpha(mapNoAA$col, alpha=1), cex=2,
    bty='l', ann=FALSE, xaxt='n', yaxt='n')
legend('topright', legend=legNoAA$legend,
    pch=21, pt.bg=ch(legNoAA$cols), col='gray30', pt.cex=2, cex=1,
    bg='gray96', box.col='gray90')
mtext('PC1 (8.5%)', side=1, adj=1, line=.1)
mtext('PC2 (4.2%)', side=2, adj=1, line=.2)
```


#dev.off()