QUI070 - Métodos	Pontuação ↓		
Data: 04/07/2025	Questões: 2	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	4	
2	1	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas e materiais de consulta com essa folha anexa.
- 1. (4 pontos) O benzaldeído (A), na presença de uma solução etanol:água de acetona e NaOH, produz o intermediário de síntese B, que não é isolado. Ainda na presença de base, o intermediário B produz o produto final C, cuja fórmula molecular é C₁₇H₁₄O. Os espectros na região do infravermelho, de massas e de ressonância magnética nuclear de ¹H e ¹³C, estão mostrados nas Figuras 1 a 4.

Para o espectro de RMN de ¹³C, considere que as análises de DEPT-45, DEPT-90 e DEPT-135 geraram os resultados expostos na **Tabela 1**.

Tabela 1: Fases dos sinais de ¹³C de **C** observados nos experimentos de DEPT-45, DEPT-90 e DEPT-135. Fases indicadas como "0" representam sinais não observados no respectivo espectro.

	Fase do sinal			
Sinal (δ, ppm)	DEPT-45	DEPT-90	DEPT-135	
188,6	0	0	0	
142,2	(+)	(+)	(+)	
135,2	0	0	0	
128,6	(+)	0	(-)	
128,5	(+)	0	(-)	
127,9	(+)	(+)	(+)	
123,3	(+)	(+)	(+)	

Figura 1: Espectro no infravermelho do produto C.

Figura 2: Espectro de massas do produto C. O espectro foi adquirido com uma temperatura de fonte igual à $160\,^{\circ}$ C, de amostra igual à $120\,^{\circ}$ C e por impacto de elétrons com energia igual à $75\,^{\circ}$ eV.

Figura 3: Espectro de RMN de ¹H do produto **C**. O espectro foi adquirido em um espectrômetro de 300 MHz (¹H). As regiões **A**, **B**, **C** e **D** foram expandidas, mostrando os deslocamentos químicos acima dos sinais e as integrais, abaixo. O sinal em 7,355 (região **B**) é um multipleto.

Figura 4: Espectro de RMN de 13 C do produto **C**. O espectro foi adquirido em um espectrômetro de 75 MHz (13 C). A região **A** foi expandida, mostrando os deslocamentos químicos acima dos sinais.

- (a) Mostre a estrutura do produto C. Justifique sua resposta com base em evidências espectroscópicas e espectrométricas.
- (b) O espectro de absorção de $\bf C$ no UV-Vis revela uma banda intensa com $\lambda_{m\acute{a}x}=332$ nm. Qual a natureza da transição eletrônica relativa a essa banda? Considerando essa informação e

fatores estruturais, contextualize o uso de ${\bf C}$ como princípio ativo de algumas formulações de protetor solar.

- (c) A reação para produção de **C** é feita à temperatura ambiente (25 °C) e a formação do produto é observada como um precipitado que forma após 5 minutos de reação. Considerando o mecanismo da reação de formação de **C**, por que sua formação não necessita de aquecimento?
- 2. (1 ponto) O but-1-eno, quando reagido com BH_3 e, posteriormente, H_2O_2 na presença de NaOH, gera o butan-1-ol. Esse álcool, na presença de PBr_3 e piridina (pyr), gera o produto A.

Considerando que o produto \mathbf{A} possui fórmula molecular C_4H_9Br , dê a sua fórmula estrutural e indique qual a evidência mais marcante no espectro de massas, utilizando ionização por impacto de elétrons (70 eV), para confirmar a formação de \mathbf{A} .