DM5

à faire avant le prochain DS!

Exercice 1. Soit $\epsilon \in]0,1[$ et $u \in \mathbb{C}$ tel que $|u| \leq 1 - \epsilon$. Soit $(z_n)_{n \in \mathbb{N}}$ la suite définie par $z_0 = i + u$ et pour tout $n \in \mathbb{N}$:

$$z_{n+1} = z_n^2 - 2iz_n - 1 + i$$

Montrer que $\forall n \in \mathbb{N}, |z_n - i| \leq (1 - \epsilon)^{2^n}$. En déduire la limite de $(z_n)_{n \in \mathbb{N}}$.

Exercice 2. On note $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

- 1. Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est monotone.
- 2. Montrer que pour tout $k \geq 2$

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in[0,2]$.

Exercice 3 (Suite de Fibonacci). Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0,\,F_1=1$ et pour tout $n\geq 0$

$$F_{n+2} = F_{n+1} + F_n.$$

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a : $\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$ et $\sum_{k=0}^{n} F_{2k} = F_{2n+1} 1$.
- 2. Montrer que pout tout $n \in \mathbb{N}$ on a $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.
- 3. (a) On note $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$. Montrer que $\varphi^2 = \varphi + 1$ et $\psi^2 = \psi + 1$.
 - (b) Montrer que l'expression explicite de F_n st donnée par $F_n = \frac{1}{\sqrt{5}}(\varphi^n \psi^n)$.
 - (c) En déduire que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi$.

Exercice 4 (Vous pouvez attendre vendredi pour le faire). Calculer

$$\sum_{i,j \in [\![1,n]\!]} \min(i,j)$$