SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1.(a)) A solution containing 1.5% of a polymer was found to osmotic pressure of 3.6 × 10 ⁻⁴ atmospheres at room temperature. Calculate the molecular mass of the pol	١
	remperature, carculate the molecular mass of the por	ymer. (02 <u>‡</u> marks)
 b)	Explain why in the determination of molecular mass o osmotic pressure is used instead of ebullioscopic and methods.	•
 b)	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic
 b) 	osmotic pressure is used instead of ebullioscopic and	cryoscopic

the ob:	me one reagent that can be u e following pairs of compound served if the reagent is sepa e pair.	s. In each case, state who	at is
	CH ₃ CH ₂ CH ₂ CH(OH)CH ₃ & Reagent:	CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	(03 marks)
	Observation (s):		
b)	2-phenyl-2-methylethan-2-o Reagent:	l & 3-phenylpropan-1-ol	(03 marks)
	Observation (s):		
3.(a)	Thorium, $^{232}_{90}Th$ undergoes radiaccording to the following ed $^{232}_{90}Th$ \longrightarrow X Calculate:		ement, X
	i. The atomic number of elem	ment, X.	(01 mark)

b) Element, X decays further to form element,	
the equation:	Y as shown below in
X	
i. The atomic number of element, Y.	(01 mark)
ii. The mass number of element, Y.	(01 mark)
c) A radioactive isotope of element, X had an in counts per second on a Geiger counter. Afte activity had declined to 240 counts per second half-life of element, X.	itial activity of 250 r 40 minutes , the
(a) Define the term hydration energy.	(01 mark)

b) State two factors which affect the magnitude of hydration					
energy.				(03 marks)
			• • • • • • • • • • • • • • • • • • • •	••••••	
c) The table	e below shows enthalp	ies of h	ydratior	of Ca ²⁺ d	& Cl ⁻ ions.
Ions		Entho	alpy of h	ydration	[kJ/mol
<i>C</i> a ²⁺		1,577	•		
Cl ⁻		381			
i. State wh	ether the values of e	nthalpie	s of hyd	ration of	Ca ²⁺ & Cl ⁻
given in t	he table above are po	sitive or	negativ	ve. Give a	reason
for your	answer.			(0	1½ marks)
				•••••••	
		_			••••••••••
ii. Calculate	the enthalpy of hydr	ation of	calcium		_
				(C	11½ marks)
				••••••	••••••
					•
	elow shows the first ic		•		•
•	ne group (II) element		•		lse the
	in it to answer the fo		•		
Elements		Mg	Ca	Sr	Ba
1 st Ionizatio	on energy [kJ/mol]	738	590	549	505

649

839

769

Melting points [°C] Briefly explain the variation in trends of: 729

a)	First ionization energy.	(02½ marks)
b)	Melting points.	(02½ marks)
	emplete the following equations and wi	rite a mechanism for the
	>	(02 marks)

			• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	••••
			• • • • • • • • • • • • • • • • • • • •	•••••		••••••	
						• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	••••
							••••
		CH ₃ CH ₂ ONa ⁺	-				
b)	$(CH_3)_3C$ -Br	Ethanol/Heat			······································	(03 marks)	
			• • • • • • • • • • • • • • • • • • • •		••••••		••••
			• • • • • • • • • • • • • • • • • • • •			•••••	
			•••••••	•••••••	••••••	•••••••••••	••••
			••••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	••••
7.(a)		would be obse		•	uation fo	or the	
		at would take				4. 1	
		n iodide was ac	ided to ac	cidified p	otassiun		
	solution. Observat	rion (s)				(02½ mark	5)
	Observur						
		•••••	••••••	•••••		••••••	••••
	Equation:						
			••••••	•••••		••••••	••••
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • •

Observation (s): Equation: 8. Name the reagent(s) and condition(s) that can be used to effect the following changes. COCH ₃ from a) Reagent (s): Observation (s): Br Br From Br Br From (01 mark) Reagent (s):	i	i. Sodium thiosulpho	ite was ac	dded to the 1	mixture in a (i) above. (02½ marks)
8. Name the reagent(s) and condition(s) that can be used to effect the following changes. COCH3 from (01 mark) Reagent (s): Observation (s): Br Br From Br Br Grom (01 mark) (01 mark)		Observation (s):			
8. Name the reagent(s) and condition(s) that can be used to effect the following changes. COCH3 from (01 mark) Reagent (s): Observation (s): Br Br From Br Br Grom (01 mark) (01 mark)				••••••••••	
following changes. COCH3 from (01 mark) Reagent (s): Observation (s): Br Br Br From (01 mark)		Equation:			
a) Reagent (s): Observation (s): Br Br Br Br From (01 mark) (01 mark)		owing changes.	d conditi	on(s) that co	an be used to effect the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			from		(01 mark)
Br Br Br Br Br Br Br Br		Observation (s):			
(OI mark)	L)	Br Br Br	from		(O1 monte)
		Reagent (s):			(U1 mark)

	-Cl		
	from		(01
Reagent (s)) :	v	(01 mc
Observatio	n (s):		
			•••••
	tructures and nai	me the shape of	the following oxid
Draw the s	tructures and nai	•	the following oxid
Draw the s	se state the oxid	ation state of su	lphur atom. (03 mar
Draw the s		•	lphur atom.
Draw the s	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta
Draw the standard case In each case Oxide (s)	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta
Draw the standard case In each case Oxide (s)	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta
Draw the standard case In each case Oxide (s)	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta
Draw the standard case In each case Oxide (s)	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta
Draw the standard of the stand	se state the oxid	ation state of su	llphur atom. (03 mar Oxidation sta

5)(i) Name the reagent that can be in (a).	(01 mark)
i	ii.State what would be observed	•
	treated with the reagent you h	ave named in b (1) above. (01 mark)
		(OI mark)
ii	ii.Write equation(s) for the reac	tion(s) that would take place
	when each oxide is separately t	•
	named b (i).	$(01\frac{1}{2} \text{ marks})$
	SECTION B-54 ATTEMPT ANY SIX QUESTI	
10 (a) V	Write an equation of reaction bet	
. (u) v	with an equation of Teachion bei	($@01\frac{1}{2}$ marks)
i.	. Sodium.	(- 2)
ii	. Magnesium.	

iii. Pho 	phorous.	
b)Write acid an i. Magi		
	ogen bromide.	
iii. Phos	horous.	
The pha	e diagram for a mixture of metals P & Q is shown be	elow.

a) Identify the regions A, B, C & D.

(02 marks)

A:	
B:	
C:	
D:	
b)State what point M represent.	(01 mark)
	······
c) Using the diagram, estimate the melting point of: P:	
Q:	
d)Describe what would happen if a mixture containing 5 of P and Q is cooled from $410^{\circ}C$ to $270^{\circ}C$.	•
	•••••

	State one each difference and similarity between the at point M and a pure compound. i. Difference:	e substance (@01 mark)
i	i. Similarity:	
12.(a)	Define the term enthalpy of solution.	(01 mark)
b)	In an experiment to determine the enthalpy of solut anhydrous and hydrated copper (II) sulphate salts, anhydrous salt was added to 50g of water and temper water rose by 8.0°C . When 4.0g of the hydrated salt [CuSO ₄ .5H ₂ O] was added to 50g of water, the temper water dropped by 1.3°C . Calculate the enthalpy of salts.	4.0g of erature of t erature of

kJ/mol of: [Specific heat capacity of solution = $4.2J/g/^{\circ}C$]

i.	Anhydrous copper (II) sulphate.	(02½ marks)
ii.	Hydrate copper (II) sulphate.	(02 marks)
iii.	Comment on the difference in values of ent calculated in (b) above.	halpy of solution (02 marks)
	calculated in (b) above.	(OZ 11101 K3)

۵۱	Calculate the authorize	hanaa fan +ha	i	
c)	Calculate the enthalpy of $CuSO_{4(aq)} + 5H_2O_{(1)}$	_		
	37 12 O(1)		74.31 12O(I)	
		•••••••••••	•••••	•••••
				••••••
				•••••
	litrogen and hydrogen red			•
	quation below: $N_{2(g)} + 3H_2$	•	_	
a,)State the industrial con ammonia gas.	iditions used to	o obtain a maxii	mum yield of (01½ marks)
	animonia gas.			(01 <u>2</u> marks)
				•••••••••••

with water to produce nitric acid.	(@01 monts)
i. Name P and Q. P =	(@0½ mark)
Q =	
ii. Write equations for the formation of: P:	(@01½ marks)
Q:	
Nitric acid:	
c) Write equations for the reaction of conce and:	entrated nitric acid (@01½ marks)
i. Carbon.	
ii. Copper.	
14. Write equations to show how the following a synthesized.	compounds can be
a) Butanone from calcium carbide.	(03½ marks)

b)Phenylmethanol from benzene.	(03½ marks)
c)But-2-yne from ethyne.	(02 marks)

15.(a)	The saturated vapour pressures of liquids A & B which form an ideal solution at 20°C are 15kN/m² and 35kN/m² respectively. If the total pressure above the solution is 29kN/m², Calculate the:										
i	. Mole fraction of A in the liquid mixture.	(02 marks)									
ii	. Composition of the vapour above the liquid mix	ture of A and B. (02 marks)									
b)	The boiling point-composition diagram for a mix hydrochloric acid and water is shown below: (Diagram needed)	xture of									
	i. State how the mixture deviates from Raoult'										
	reason for your answer.	(02 marks)									

ii. Explain the causes of the deviation you have stat	
above.	(03 marks)
16.(a) An organic compound, P has a molecular formula C4H91	Br.
i. Name the functional group in organic compound, P.	
ii. Write the structural formulae and names of all pos	sible
isomers of organic compound, P.	(04 marks)

	dentify two isomers in a (ii) that when reacted with that the same than olic potassium hydroxide solution give the same	
iv. V	Vrite the structural formula and name of the prod	uct in a (iii). (01 mark)
b) Out	tline the mechanism for the reaction between the	product in a
•	and benzene in presence of an acid.	(02 marks)
		······································

17. The table below shows values for the atomic and ionic radii of the alkali metals.

Element	Atomic radius [x 10 ⁻¹⁰ m]	Ionic radius [x 10 ⁻¹⁰ m]
Lithium	1.23	0.68
Sodium	1.57	0.97
Potassium	2.03	1.33
Rubidium	2.16	1.47
Caesium	2.35	1.67

a) In every case, the radius of an ion is smaller than that of the corresponding atom. Explain. (02 marks)

o)	Explain the increase in atomic radius along the series	
o)	Explain the increase in atomic radius along the series Caesium.	
၁ ့	· ·	s lithium to (02 marks)
o)	· ·	
o)	· ·	
o]	· ·	
ɔ]	· ·	
ɔ]	· ·	
o)	· ·	

C)The ions Na ⁺ , Mg ²⁺ & Al ³⁺ have the same electronic configuration, yet they have different ionic radii. Suggest a reason for this. (02 marks									
d)Which of the alkali metal ions in the gaseous state is	likely to								
	have the highest hydration energy? Give a reason.	(03 marks)								

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 Ho 2
6.9 Li 3	9.0 Be 4	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12							• 9				27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 CI 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20			50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28		65.7 Zn 30						83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	1	1	101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89			i je	2 10	4 9	9 -85 In	1 14 () 16 ()								2 3
-		78		140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		3 8	227 Ac 89		231 Pa 91		237 Np 93				247 Bk 97		Es	Fm	256 Md 101	No	Lw

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2023
This is the last page of the printed paper, Page 22