Ejercicio 3

2024-06-03

```
x <- c(3.9, 7.9, 4.1, 8.8, 9.4, 0.46, 5.3, 8.92, 5.5, 4.6, 47.9, 23.2, 34.2, 29.1, 6.0, 45.1, 13.1, 3.1, 17.1, 47.8)
y <- c(2.3, 2.4, 1.8, 2.3, 1.7, 0.1, 2.2, 0.22, 2.4, 1.0, 2.8, 2.9, 2.5, 2.6, 1.2, 2.1, 3.4, 1.3, 1.7, 1.6)
```

Vamos a obtener el coeficiente de correlacion de Pearson.

I)

```
cor.test(x,y,method = "pearson", alternative="two.sided")
```

```
##
## Pearson's product-moment correlation
##
## data: x and y
## t = 1.6827, df = 18, p-value = 0.1097
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.08823671 0.69741789
## sample estimates:
## cor
## 0.3686798
```

Entonces el coeficiente de correlacion de Pearson es de 0.3686798 y ademas el p-value es mayor a .05 por lo que no se rechaza H_0 , es decir, no estamos rechazando que x y y sean independientes. Pero para realizar este coeficiente estamos suponiendo que se cumple la normalidad bivariada, entonces vamos a hacer pruebas para ver si efectivamente se cumple este supuesto.

```
mvn(data=cbind(x,y), mvnTest = "hz")
```

```
## $multivariateNormality
##
              Test
                          HZ
                                p value MVN
## 1 Henze-Zirkler 0.8589563 0.02203508 NO
##
## $univariateNormality
##
                 Test Variable Statistic
                                            p value Normality
## 1 Anderson-Darling
                                             0.0002
                                   1.6558
                                                       NO
                          Х
## 2 Anderson-Darling
                                   0.3796
                                             0.3704
                                                       YES
                          У
##
## $Descriptives
##
         Mean
                  Std.Dev Median Min Max 25th
                                                   75th
                                                              Skew
                                                                     Kurtosis
## x 20 16.274 15.8947633
                            8.86 0.46 47.9 5.125 24.675 0.9733591 -0.6340077
                            2.15 0.10 3.4 1.525 2.425 -0.5606597 -0.3801318
## y 20 1.926 0.8506617
```

mvn(data=cbind(x,y), mvnTest = "mardia")

```
## $multivariateNormality
##
                Test
                              Statistic
                                                   p value Result
## 1 Mardia Skewness
                       5.80081251091552 0.214525741744589
## 2 Mardia Kurtosis -0.629418159366215 0.529075332506437
                                                              YES
                 MVN
                                                              YES
## 3
                                    <NA>
                                                      <NA>
##
## $univariateNormality
                                             p value Normality
##
                 Test
                       Variable Statistic
                                              0.0002
## 1 Anderson-Darling
                                    1.6558
                                                        NO
                          х
## 2 Anderson-Darling
                          У
                                    0.3796
                                              0.3704
                                                        YES
##
## $Descriptives
                  Std.Dev Median Min Max 25th
##
      n
          Mean
                                                    75th
                                                               Skew
                                                                       Kurtosis
## x 20 16.274 15.8947633
                            8.86 0.46 47.9 5.125 24.675
                                                          0.9733591 -0.6340077
                            2.15 0.10 3.4 1.525 2.425 -0.5606597 -0.3801318
## y 20 1.926 0.8506617
```

En ambas pruebas podemos ver que marginalmente rechazamos que x se distribuya como una normal, por lo que se rechaza H_0 , es decir, hay evidencia que nos dice que no se cumple el supuesto de normalidad bivariada. Y por lo tanto el coeficiente que obtuvimos solo se puede usar como una estadistica que nos habla de la asociación monotona de las variables y en este caso la prueba de hipotesis asociada al coeficiente de correlación de Pearson no tiene validez.

II)

Ahora vamos a obtener el coeficiente τ_b de Kendall

```
cor.test(x,y,method = "kendall", alternative="two.sided")
```

```
## Warning in cor.test.default(x, y, method = "kendall", alternative =
## "two.sided"): Cannot compute exact p-value with ties

##
## Kendall's rank correlation tau
##
## data: x and y
## z = 1.9172, p-value = 0.05521
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.3130073
```

En este caso el coeficiente τ_b de Kendall es de 0.3130073

III)

Ahora vamos a calcular el coeficiente ρ_s de Spearman

```
cor.test(x,y,method = "spearman", alternative="two.sided")
```

```
## Warning in cor.test.default(x, y, method = "spearman", alternative =
## "two.sided"): Cannot compute exact p-value with ties

##
## Spearman's rank correlation rho
##
## data: x and y
## S = 710.3, p-value = 0.0384
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.4659393
```

Entonces tenemos que el coeficiente ρ_s de Spearman es de 0.4659393

Vamos a realizar un diagrama de dispersion para ver como se comportan las variables

plot(x,y)

Podemos ver en el diagrama de dispersion que no hay algun patron o comportamiento en especifico que nos pueda indicar que las variables sean independientes e incluso podemos ver que no parece haber una relacion completamente monotona positiva entre las variables