Date: 19/10/2015 Alexei Kosykhin MSc student

- (1) (i) For ignition and high burn there are two pr criteria a) Pr>0.3 g/cm² for a hot spot b) Pr>3.0 g/cm² for a whole fuel blob
 - (ii) compression = 50 times $p_0 = 0.22 \text{ g/cm}^3$, $p' = 50 \times 0.22 = 11 \text{ g/cm}^3$ From $f_0 = \frac{pr}{7 + pr} \Rightarrow p'r = \frac{7 \times f_0}{1 f_0}$ $p'r = \frac{7 \times 0.33}{1 0.83} = \frac{3.449 \text{ g/cm}^2}{1 f_0}$ $r = 3.449/11 = \frac{0.3135 \text{ cm}}{3}$ $V = \frac{4}{3} \text{ Tr} \times r^3 = \frac{4}{3} \text{ Tr} (0.3135) = \frac{0.129 \text{ cm}^3}{3}$ $M = p' \cdot V = 1/\times 0.129 = 1.420 \text{ g}$ Wreleased = $f_0 \times Q \times m = \frac{1.420 \text{ g}}{3}$ $M = 0.33 \times 3.3 \times 10^{11} \times 1.420 = 1.55 \times 10^{11} = 1556$

For compression = 2,000 times $P' = 2,000 \times 0.22 = 440 \text{ g/cm}^3$ V = 3.449/440 = 0.00784 g $V = 4/3 \text{ TT} \times (0.00784)^3 = 2.02 \times 10^{-6} \text{ cm}^3$ $V = 9' \times V = 440 \times 2.02 \times 10^{-6} = 8.88 \times 10^{-4} \text{ g}$ Wreleased = $0.33 \times 3.3 \times 10^{11} \times 8.88 \times 10^{-4} = 96 \text{ MJ}$

Alexei Kosykhin MSc student

For a hot spot pr criteria is Pr > 0.3 g/cm^2 $V = 0.3/100 = 3 \times 10^{-3}$ CM $V = \frac{4}{3} T \times (3 \times 10^{-3})^3 = 1.13 \times 10^{-7}$ cm³ $M = PV = 100 \times 1.13 \times 10^{-7} = 1.13 \times 10^{-5} g$ $Wreq = 100 \times 10^6 \times 1.13 \times 10 = 1.13 \times 10^4 J$ $= 11.3 \times 10^4 J$

(2) Total mass of fusion fuel $m_f = \frac{16J}{(3.3 \times 10^{11} \times 60\%)} = 5 \times 10^{-3} g = 5 \times 10^{-6} kg$ Mass of TNT fuel MTNT = 16J/4.6MJ = 217.4 kg $E = \frac{1}{2}mv^2 = \frac{1}{2}\frac{m^2v^2}{m} = \frac{1}{2}p^2 = \frac{1}$