Machine Learning applied to Planetary Sciences

PTYS 595B/495B Leon Palafox

Convolutional Neural Nets

Convolution

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Pooling

- Once we have learned the convolved features, we need to take advantage of the locality.
- We choose adjacent features, and can either take the max or the mean.
- The size of the pooling is defined by the user.
- This way we reduce the number of features and at the same time we take advantage of locality.

Pooling

Convolved feature

Pooled feature

Analysis

- By the end of the training a CNN training scheme is similar to training with an artificially large dataset.
 - Similar results
- Pooling actually decreases the number of weights in the actual network (The autoencoder did most of the heavy lifting)
- Sharing weights is the reason the CNN takes into account local features instead of global ones.

Disadvantages

- This approach is ad-hoc for images (or look alike).
- Trying to use it in time-series or other 1D data is not necessarily a good idea.
 - Long training times
- Unless you use Theano/TensorFlow/MatConvNet/Torch is hard to do real work.

TensorFlow Demo output

```
step 18600, training accuracy 1
step 18700, training accuracy 1
step 18800, training accuracy 1
step 18900, training accuracy 1
step 19000, training accuracy 1
step 19100, training accuracy 1
step 19200, training accuracy 1
step 19300, training accuracy 1
step 19400, training accuracy 0.98
step 19500, training accuracy 0.98
step 19600, training accuracy 1
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
```

Validation Methods

This is were we know who is worthy

Validation Methods

- Cross validation
 - Test different models
 - Obtain reliable statistics
- Bias -- Variance Analysis
 - Regularization
 - Overfitting

Cross Validation

- The hypothesis with the smallest training error, won't be the best.
 - Why?
 - We need test sets and training sets
- Our first tool is called hold-out cross validation.

Hold-out cross validation

What is M

- Everything that we have assigned arbitrarily is fair game.
- Linear Regression
 - Order of the polynomial, regularization parameter
- SVM
 - Kernel, variables associated with kernel
- NN
 - Number of layers, activation functions, number of units.

Problems with Hold-out CV

We are "wasting" ~70% of our data.

 For problems with few data points, this is just not desirable

- Be wary of papers that used CV, but have only few data points.
 - Be even more skeptic of papers that don't mention CV at all.

An even better CV

- K-fold CV
 - Split the data into k subsets (disjoint)
 - For each j = 1..k
 - Train model (M_i) in every subset, except j
 - Get an error (E_{ii}) for Model i in iteration j
 - Total error for M_i is going to be the average of all the errors (E_{ii})

K-Fold Cross validation

K-Fold Cross validation

