Applications of Stochastic Calculus in Finance Chapter 8: Stochastic calculus for single jump processes

Gechun Liang

1 Functions with one-sided limits

Definition 1. (One-sided limits) For T > 0, a function $f : [0,T] \to \mathbb{R}$ is said to have right limits at $t \in [0,T)$ if

$$f(t+) := \lim_{s \mid t} f(s)$$

exists, and is said to have <u>left limits</u> at $t \in (0, T]$ if

$$f(t-) := \lim_{s \uparrow t} f(s)$$

exists. f is said to have <u>one-sided limits</u> at $t \in (0,T)$ if both f(t+) and f(t-) exist. Furthermore, if f(t) = f(t+) holds, then f is called <u>Cadlag</u> (right continuous with left limits); if f(t) = f(t-) holds, then f is called <u>Caglad</u> (left continuous with right limits). \Box

For convenience, we set f(T+) = f(T) and f(0-) = f(0) in the rest of this chapter. Functions with one-sided limits are more well behaved than one might initially expect.

Theorem 1. If $f:[0,T]\to\mathbb{R}$ has one-sided limits, then f is bounded on [0,T].

Proof. Fix $t \in [0,T]$. Since f(t+) exists, there exists $\delta_{t+} > 0$ such that |f(s) - f(t+)| < 1 for all $s \in (t,t+\delta_{t+})$. Thus,

$$|f(s)| \le |f(s) - f(t+)| + |f(t+)| < 1 + |f(t+)|, \text{ for } s \in (t, t + \delta_{t+}).$$

Similarly, there exists $\delta_{t-} > 0$, such that

$$|f(s)| \le |f(s) - f(t-)| + |f(t-)| < 1 + |f(t-)|, \quad \text{for } s \in (t - \delta_{t-}, t).$$

Gechun Liang

Department of Statistics, University of Warwick, U.K. e-mail: g.liang@warwick.ac.uk

Hence, we have, for $s \in O_t := (t - \delta_{t-}, t + \delta_{t+})$,

$$|f(s)| \le \max\{1 + |f(t+)|, 1 + |f(t-)|, |f(t)|\} =: r_t.$$

Since $\{O_t : t \in [0,T]\}$ is an open cover of [0,T], there exists a finite set $\{t_1,\ldots,t_n\} \subset [0,T]$ such that $[0,T] \subset \bigcup_{i=1}^n O_{t_i}$. It follows that

$$\sup_{s\in[0,T]}|f(s)|\leq \max\{r_{t_1},\ldots,r_{t_n}\}.$$

The proof is complete. \Box

Functions with one-sided limits cannot have large jumps which accumulate, i.e. for any point, there exists a neighborhood of that point such that the function jumps with infinitesimal size in that neighborhood except at that point.

Theorem 2. If $f:[0,T] \to \mathbb{R}$ has one-sided limits, then for any $t \in [0,T]$ and $\varepsilon > 0$, there exits $\delta_t > 0$ such that

$$|f(s+)-f(s)|+|f(s-)-f(s)|<\varepsilon$$

for $s \in (t - \delta_t, t) \cup (t, t + \delta_t)$.

Proof. Suppose not, there exists $t \in [0,T]$, $\varepsilon > 0$, and a sequence $\{s_n\}_{n \ge 1}$ such that

$$|f(s_n+)-f(s_n)|+|f(s_n-)-f(s_n)|\geq \varepsilon$$

for $s_n \in (t - \frac{1}{n}, t) \cup (t, t + \frac{1}{n})$.

Introduce the following four sets

$$S_1 := \left\{ n : s_n > t, |f(s_n +) - f(s_n)| \ge \frac{\varepsilon}{2} \right\}$$

$$S_2 := \left\{ n : s_n > t, |f(s_n) - f(s_n -)| \ge \frac{\varepsilon}{2} \right\}$$

$$S_3 := \left\{ n : s_n < t, |f(s_n +) - f(s_n)| \ge \frac{\varepsilon}{2} \right\}$$

$$S_4 := \left\{ n : s_n < t, |f(s_n +) - f(s_n -)| \ge \frac{\varepsilon}{2} \right\}$$

Then, it is clear that $\bigcup_{i=1}^4 S_i$ covers the set of natural numbers \mathbb{N} .

Firstly, for $n \in S_1$, since $f(s_n+)$ exists, we may choose $u_n \in (s_n, s_n + \frac{1}{n})$ such that $|f(u_n) - f(s_n+)| < \frac{\varepsilon}{4}$. In turn,

$$\frac{\varepsilon}{2} \le |f(s_n+) - f(s_n)| \le |f(s_n+) - f(u_n)| + |f(u_n) - f(s_n)|$$
$$\le \frac{\varepsilon}{4} + |f(u_n) - f(s_n)|.$$

However, since f(t+) exists, and $u_n, s_n \downarrow t$, we have

$$\lim_{n\to\infty}|f(u_n)-f(s_n)|\leq \lim_{n\to\infty}|f(u_n)-f(t+)|+\lim_{n\to\infty}|f(s_n)-f(t+)|=0,$$

which is a contradiction.

Similarly, we also get contradiction for the other three sets S_2 , S_3 and S_4 . \square

One of the most fundamental properties of functions with one-sided limits is the following:

Theorem 3. If $f:[0,T] \to \mathbb{R}$ has one-sided limits, then it has at most countably many jumps, and finite many jumps with size larger than 1.

Proof. Note that f is continuous at $t \in [0,T]$ iff f(t+) = f(t-) = f(t). Let

$$A_n = \{ t \in [0, T] : |f(t+) - f(t)| + |f(t-) - f(t)| \ge \frac{1}{n} \}.$$

Then, $A = \bigcup_{n \ge 1} A_n$ is the set of jumps of the function f, and A_1 is the set of jumps with size larger than 1.

Fix $t \in [0,T]$. It follows from Theorem 2 that there exists $\delta_t > 0$ such that, for $s \in (t - \delta_t, t) \cup (t, t + \delta_t)$,

$$|f(s+) - f(s)| + |f(s-) - f(s)| < \frac{1}{n}.$$

Thus, $(t - \delta_t, t) \cup (t, t + \delta_t) \cap A_n = \emptyset$. In turn, for $O_t := (t - \delta_t, t + \delta_t)$, we have $O_t \cap A_n \subset \{t\}$.

Since $\{O_t : t \in [0,T]\}$ is an open cover of [0,T], there exists a finite set $\{t_1,\ldots,t_m\} \subset [0,T]$ such that $[0,T] \subset \bigcup_{i=1}^m O_{t_i}$. In turn,

$$A_n = [0,T] \cap A_n \subset \bigcup_{i=1}^m O_{t_i} \cap A_n \subset \{t_1,\ldots,t_m\},\,$$

which means A_n is finite. In particular, A_1 is finite. Finally, since $A = \bigcup_{n \ge 1} A_n$, it follows that A is countable. \square

Proposition 1. If $f:[0,T] \to \mathbb{R}$ is increasing, then f has one-sided limits. Therefore, an increasing function has at most countably many jumps, and finite many jumps with size larger than 1.

Proof. Fix $t \in [0, T]$. We show that f(t-) exists. Let $t_n \uparrow t$. By the increasing property of f, $f(t_n) \le f(t)$. Thus, there exists $L \in \mathbb{R}$, such that $f(t_n) \uparrow L$.

Consider another sequence $s_m \uparrow t$. Similarly, there exists $L' \in \mathbb{R}$, such that $f(s_m) \uparrow L'$. For $m \in \mathbb{N}$, since $s_m < t$ and $t_n \uparrow t$, there exists N such that $t_n > s_m$ for $n \ge N$. Hence, $f(s_m) \le f(t_n)$. Sending $n \to \infty$ yields $f(s_m) \le L$. Sending $m \to \infty$ further yields $L' \le L$. By interchanging the rule of the sequences $\{s_m\}_{m \ge 1}$ and $\{t_n\}_{n \ge 1}$, we also have $L \le L'$, so L = L'. The existence of f(t+) is left as an exercise. \square

2 Cadlag Functions with bounded variation

Definition 2. (Bounded variation) Let $f:[0,T]\to\mathbb{R}$ be a function such that

$$v_f(T) := \sup_{D} \sum_{i=1}^{N} |f(t_i) - f(t_{i-1})| < \infty,$$

where D ranges over all the partitions of [0,T]: $0 = t_0 < t_1 < \cdots < t_N = T$. Then f is said to have <u>bounded variation</u> over [0,T], and $v_f(T)$ is called the <u>variation</u> of the function f over [0,T]. \Box

Example 1. • Lebesgue integral is of bounded variation.

$$f(t) = \int_0^t g(s)ds, \quad \text{for } t \in [0, T],$$

where $\int_0^T |g(s)| ds < \infty$. This is because

$$v_f(T) = \sup_{D} \sum_{i=1}^{N} |\int_{t_{i-1}}^{t_i} g(s)ds| \leq \sup_{D} \sum_{i=1}^{N} \int_{t_{i-1}}^{t_i} |g(s)|ds = \int_{0}^{T} |g(s)|ds < \infty.$$

• Increasing function is of bounded variation.

$$f(t) = a(t), \text{ for } t \in [0, T],$$

where a is increasing. This is because

$$v_f(T) = \sup_{D} \sum_{i=1}^{N} |a(t_i) - a(t_{i-1})| = a(T) - a(0) < \infty. \ \Box$$

Definition 3. (Canonical decomposition) Let $f : [0,T] \to \mathbb{R}$ be of bounded variation. Its canonical decomposition is defined as

$$f(t) = f(0) + a(t) - b(t),$$

where a and b are two increasing functions satisfying a(0) = b(0) = 0, and are given by

$$a(t) = v_f(t),$$

 $b(t) = a(t) - f(t) + f(0). \square$

It is clear that in the canonical decomposition, a is increasing, and a(0) = b(0) = 0. To prove that b is increasing, note that for $t' \ge t$, we have

¹ Recall a process A is said to have *finite variation* if it has *bounded variation* over every finite time interval, say [0,t].

5

$$a(t') - a(t) = v_f(t') - v_f(t) \ge |f(t') - f(t)| \ge f(t') - f(t).$$

It follows that

$$b(t') - b(t) = a(t') - a(t) - (f(t') - f(t)) \ge 0.$$

If a function f is of bounded variation, by the canonical decomposition, it can be written as the difference of two increasing functions. It thus follows from Proposition 1 that f has one-sided limits and, therefore, has at most countably many jumps.

If, furthermore, f is Cadlag, we call such a function a <u>BV function</u>. Then, a and b in the canonical decomposition of f are also Cadlag.

Definition 4. (Lebesgue-Stieltjes measure and integral) Let a and b be the canonical decomposition of a BV function f. Define a finite measure on $((0,T], \mathcal{B}(0,T])$ induced by a by

$$\mu_a(t_1,t_2] = a(t_2) - a(t_1),$$

for $(t_1,t_2] \subset (0,T]$, and by convention $\mu_a\{0\} = 0$.

In general, for any $E \subset \bigcup_{i\geq 1} A_i$ with A_i being the interval of the form $(t_1,t_2] \subset (0,T]$, we define the outer measure of E by

$$\mu_a^*(E) = \inf_{(A_i)_{i \ge 1}} \left\{ \sum_{i \ge 1} \mu_a(A_i) \right\}.$$

The Caratheodory theorem then implies that the collection $\mathscr A$ of μ_a^* -measurable sets forms a σ -algebra and, moreover, μ_a^* is a measure on $([0,T],\mathscr A)$ containing all the null sets. Every Borel set in $\mathscr B(0,T]$ is μ_a^* -measurable. We now drop asterisk from μ_a^* and call μ_a Lebesgue-Stieltjes measure induced by a. Note that since $\{t\} = \bigcap_{n\geq 1} (t-\frac{1}{n},t]$, we have

$$\mu_a\{t\} = \lim_{\varepsilon \to 0} \mu_a(t - \varepsilon, t]$$

=
$$\lim_{\varepsilon \to 0} (a(t) - a(t - \varepsilon)) = a(t) - a(t - t),$$

for $t \in (0,T]$. We will be using the notations $d\mu_a(t) = \mu_a(dt)$ interchangeably.

Similarly, we also define a finite measure $d\mu_b(t)$ on $((0,T], \mathcal{B}(0,T])$ induced by b. Then, $d\mu_b(t) \le 2(d\mu_a(t))$, and the Lebesgue-Stieltjes measure induced by the BV function f is defined as

$$df(t) = d\mu_a(t) - d\mu_b(t).$$

The corresponding Lebesgue-Stieltjes integral on any interval $(t_1, t_2] \subset (0, T]$ is defined as

$$\int_{(t_1,t_2]} df(t) = \int_{t_1}^{t_2} df(t) = f(t_2) - f(t_1). \ \Box$$

In general, for any function g such that $\int_0^T |g(s)| d\mu_a(s) < \infty$ and $A \in \mathcal{B}(0,T]$,

$$\int_{A} g(t)df(t) = \int_{0}^{T} \mathbf{1}_{A}(t)g(t)df(t)$$

$$= \int_{0}^{T} \mathbf{1}_{A}(t)g(t)d\mu_{a}(t) - \int_{0}^{T} \mathbf{1}_{A}(t)g(t)d\mu_{b}(t).$$

Note that if g is a pure jump Cadlag function (so g is of bounded variation and a BV function), i.e. $g(t) = g(0) + \sum_{0 < s \le t} \Delta g(s)$, with $\Delta g(s) = g(s) - g(s-)$, then

$$\int_0^t \Delta g(s) df(s) = \sum_{0 < s \le t} \Delta g(s) \Delta f(s),$$

and

$$\int_0^t f(s)dg(s) = \sum_{0 < s < t} f(s)\Delta g(s).$$

Theorem 4. For any two BV functions f and $g:[0,T] \to \mathbb{R}$, the following integration by parts formulas hold:

$$f(t)g(t) = f(0)g(0) + \int_0^t f(s)dg(s) + \int_0^t g(s-)df(s)$$
 (1)

$$= f(0)g(0) + \int_0^t f(s-)dg(s) + \int_0^t g(s)df(s)$$
 (2)

$$= f(0)g(0) + \int_0^t f(s-)dg(s) + \int_0^t g(s-)df(s) + \sum_{0 < s < t} \Delta f(s)\Delta g(s). \quad (3)$$

Proof. We first prove (1). Note that

$$(f(t) - f(0))(g(t) - g(0)) = \int_0^t df(x) \int_0^t dg(y)$$
$$= \int_D df(x) dg(y)$$
(4)

with $D = (0,t] \times (0,t]$. Introduce

$$D_1 := \{(x, y) \in D : x \le y\},\$$

$$D_2 := \{(x, y) \in D : x > y\}.$$

Then, using Fubini's theorem, we obtain

$$\int_{D_1} df(x)dg(y) = \int_{(0,t]} \left(\int_{(0,y]} df(x) \right) dg(y)$$

$$= \int_{(0,t]} (f(y) - f(0)) dg(y)$$

$$= \int_0^t f(y) dg(y) - f(0)(g(t) - g(0)). \tag{5}$$

Likewise,

$$\int_{D_2} df(x)dg(y) = \int_{(0,t]} \left(\int_{(0,x)} dg(y) \right) df(x)$$

$$= \int_{(0,t]} (g(x-) - g(0)) df(x)$$

$$= \int_0^t g(x-) df(x) - g(0)(f(t) - f(0)). \tag{6}$$

The integration by parts formula (1) then follows by combining (4), (5) and (6). \Box The proof of the formula (2) is similar to (1). Finally, to prove (3), we note that

$$\begin{split} \int_0^t g(s)df(s) &= \int_0^t g(s-)df(s) + \int_0^t \Delta g(s)df(s) \\ &= \int_0^t g(s-)df(s) + \sum_{0 < s \le t} \Delta g(s)\Delta f(s), \end{split}$$

and (3) follows from (2). \Box

In general, we also have the following change of variables formula, whose proof is omitted.

Theorem 5. Let $F \in C^1(\mathbb{R})$. For any BV function $f : [0,T] \to \mathbb{R}$, the following change of variables formula holds:

$$F(f(t)) - F(f(0)) = \int_0^t F'(f(s-))df(s) + \sum_{0 \le s \le t} \left[F(f(s)) - F(f(s-)) - F'(f(s-))\Delta f(s) \right]. \tag{7}$$

Example 2. For BV function f, we calculate $(f(t))^2$. Applying the integration by parts formula (3) with g = f yields

$$(f(t))^{2} = (f(0))^{2} + 2\int_{0}^{t} f(s-)df(s) + \sum_{0 \le s \le t} |\Delta f(s)|^{2}.$$

Note that this implies that the infinite sum $\sum_{0 < s \le t} |\Delta f(s)|^2 < \infty$.

On the other hand, we may also apply the change of variables formula (7) with $F(x) = x^2$, and have

$$\begin{split} (f(t))^2 - (f(0))^2 = & 2 \int_0^t f(s-) df(s) \\ & + \sum_{0 \le s \le t} \left[(f(s))^2 - (f(s-))^2 - 2f(s-) \Delta f(s) \right]. \end{split}$$

Note that the last term is

$$\begin{split} &(f(s))^2 - (f(s-))^2 - 2f(s-)\Delta f(s) \\ = &(f(s) - f(s-))^2 + 2f(s)f(s-) - 2(f(s-))^2 - 2f(s-)\Delta f(s) \\ = &|\Delta f(s)|^2 + 2f(s-)(f(s) - f(s-)) - 2f(s-)\Delta f(s) \end{split}$$

which is nothing but $|\Delta f(s)|^2$. \square

Theorem 6. Let $a:[0,T] \to \mathbb{R}$ be a BV function, with $\int_0^T |\mu(s)| da(s) < \infty$ for some function μ . Then the equation

$$Z(t) = Z(0) - \int_0^t Z(s-)\mu(s)da(s)$$
 (8)

admits a (unique) solution given by

$$Z(t) = Z(0) \prod_{0 \le s \le t} (1 - \mu(s) \Delta a(s)) e^{-\int_0^t \mu(s) da^c(s)},$$

where
$$\Delta a(s) = a(s) - a(s-1)$$
 and $a^{c}(s) = a(s) - \sum_{0 \le s \le t} \Delta a(s)$.

Proof. Let $f(t) = Z(0) \prod_{0 < s \le t} (1 - \mu(s) \Delta a(s))$ and $g(t) = e^{-\int_0^t \mu(s) da^c(s)}$. It is obvious that g is a BV function. We next verify that f is also a BV function. We first verify that the infinite product in f is finite. Indeed, using the elementary inequality $(1-x) \le e^{-x}$, we get

$$\prod_{0 \le s \le t} (1 - \mu(s) \Delta a(s)) \le e^{\sum_{0 \le s \le t} - \mu(s) \Delta a(s)}.$$

By the assumption on the function μ ,

$$\int_0^T |\mu(s)| da(s) = \int_0^T |\mu(s)| da^c(s) + \sum_{0 < s < t} |\mu(s)| \Delta a(s) < \infty.$$

This implies that $\sum_{0 < s \le t} -\mu(s) \Delta a(s) < \infty$, so f is well defined. It is obvious that f, as a pure jump function, is of bounded variation and Cadlag, so it is BV function. Furthermore, since $f(t) = f(t-)(1-\mu(t)\Delta a(t))$, we have

$$\Delta f(t) = f(t) - f(t-)$$

$$= -f(t-)\mu(t)\Delta a(t). \tag{9}$$

Using the integration by parts formula (2) in Theorem 4, we obtain

$$\begin{split} f(t)g(t) &= f(0)g(0) + \int_0^t f(s-)dg(s) + \int_0^t g(s)df(s) \\ &= f(0)g(0) - \int_0^t f(s-)g(s-)\mu(s)da^c(s) + \sum_{0 \le s \le t} g(s)\Delta f(s). \end{split}$$

Note that the last term, by (9), is equal to

$$\sum_{0 < s \le t} g(s) \Delta f(s) = -\sum_{0 < s \le t} f(s-)g(s-)\mu(s) \Delta a(s),$$

9

and therefore,

$$f(t)g(t) = f(0)g(0) - \int_0^t f(s-)g(s-)\mu(s)da(s).$$

That is f(t)g(t), $t \in [0,T]$, is a solution to the equation (8).

The uniqueness of the solution is left as an exercise. \Box

3 Single jump processes and Girsanov's theorem

3.1 Stopping times

Definition 5. A filtered probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbf{P})$ is said to satisfy the usual conditions if the following conditions hold:

- (1) completeness: \mathcal{F}_0 includes all of the **P**-null sets;
- (2) right continuity: $\mathscr{F}_t = \mathscr{F}_{t+}$ where $\mathscr{F}_{t+} = \cap_{n \geq 1} \mathscr{F}_{t+\frac{1}{2}}$. \square

For any "reasonable" strong Markov process X (e.g. Feller processes including Levy, Brownian and Poisson processes), its natural filtration $\mathscr{F}_t := \sigma(X_s : s \le t)$ after augmentation is right continuous².

Definition 6. A random variable $\tau: \Omega \to [0,\infty]$ is called an \mathscr{F}_t -stopping time if $\{\tau \leq t\} \in \mathscr{F}_t$ for $t \geq 0$. The random variable τ is called an optional time if $\{\tau < t\} \in \mathscr{F}_t$ \square

If τ is an \mathscr{F}_t -stopping time, then

$$\{\tau < t\} = \bigcup_{n \ge 1} \{\tau \le t - \frac{1}{n}\} \in \bigcup_{n \ge 1} \mathscr{F}_{t - \frac{1}{n}} \subset \mathscr{F}_t.$$

However, $\{\tau < t\} \in \mathscr{F}_t$ does not necessarily imply that $\{\tau \le t\} \in \mathscr{F}_t$ unless the filtration is right continuous. To see this,

$$\{ \tau \le t \} = \bigcap_{n \ge 1} \{ \tau < t + \frac{1}{n} \} \in \bigcap_{n \ge 1} \mathscr{F}_{t + \frac{1}{n}},$$

which is \mathscr{F}_t only if $\{\mathscr{F}_t\}_{t\geq 0}$ is right continuous.

Example 3. Let $\{\tau_n\}_{n\geq 1}$ be a sequence of \mathscr{F}_t -stopping times. Then,

$$\left\{\sup_{n\geq 1}\tau_n\leq t\right\}=\cap_{n\geq 1}\left\{\tau_n\leq t\right\}\in\mathscr{F}_t,$$

Note that the natural filtration of Poisson processes is right continuous before argumentation, and so are single jump processes.

so $\sup_{n>1} \tau_n$ is again an \mathscr{F}_t -stopping time. However, since

$$\left\{\inf_{n\geq 1} \tau_n \leq t\right\} = \bigcap_{m\geq 1} \bigcup_{n\geq 1} \left\{\tau_n < t + \frac{1}{m}\right\} \in \bigcap_{m\geq 1} \mathscr{F}_{t+\frac{1}{m}},$$

which is \mathscr{F}_t only if $\{\mathscr{F}_t\}_{t\geq 0}$ is right continuous, $\inf_{n\geq 1} \tau_n$ is an \mathscr{F}_t -stopping time only if the filtration is right continuous.

On the other hand, if τ_n is only optional, then since $\{\inf_{n\geq 1} \tau_n \geq t\} = \cap_{n\geq 1} \{\tau^n \geq t\}$, it follows that

$$\left\{\inf_{n\geq 1} \tau_n < t\right\} = \cup_{n\geq 1} \left\{\tau^n < t\right\} \in \mathscr{F}_t,$$

 $\inf_{n>1} \tau_n$ is an optional time. \square

Definition 7. The past at the stopping time τ is the σ -field \mathscr{F}_{τ} defined by

$$\mathscr{F}_{\tau} = \{ A \in \mathscr{F}_{\infty} : A \cap \{ \tau \le t \} \in \mathscr{F}_{t} \text{ for } t \ge 0 \}$$

The strict past at the stopping time τ is the σ -field $\mathscr{F}_{\tau-}$ generated by the set

$$\mathscr{F}_{\tau-} = \sigma\left(\left\{A_0 \in \mathscr{F}_0\right\} \cup \left\{A_s \cap \left\{\tau > s\right\} \text{ for } s \ge 0, A_s \in \mathscr{F}_s\right\}\right)$$

Proposition 2. Both \mathscr{F}_{τ} and $\mathscr{F}_{\tau-}$ are σ -fields satisfying $\mathscr{F}_{\tau-} \subset \mathscr{F}_{\tau}$, and τ is an $\mathscr{F}_{\tau-}$ -measurable random variable (therefore also \mathscr{F}_{τ} -measurable). When X is progressively measurable, X_{τ} is \mathscr{F}_{τ} -measurable.

Proof. The verification of \mathscr{F}_{τ} and $\mathscr{F}_{\tau-}$ being σ -fields is by the definition. For example, for $A \in \mathscr{F}_{\tau}$, $A^c \cap \{\tau \leq t\} = \{\tau \leq t\} - A \cap \{\tau \leq t\}$. Since $\{\tau \leq t\} \in \mathscr{F}_t$ and $A \cap \{\tau \leq t\} \in \mathscr{F}_t$, it follows that $A^c \in \mathscr{F}_{\tau}$.

To prove that $\mathscr{F}_{\tau-} \subset \mathscr{F}_{\tau}$, it suffices to show that the generators of $\mathscr{F}_{\tau-}$ are in \mathscr{F}_{τ} . Indeed, $\mathscr{F}_0 \subset \mathscr{F}_{\tau}$. For $A_s \in \mathscr{F}_s$,

$$A_s \cap \{\tau > s\} \cap \{\tau < t\} = A_s \cap \{s < \tau < t\} \in \mathscr{F}_t$$

The set $\{\tau=0\}$ and $\{\tau>a\}$, $a\geq 0$, are generators of $\mathscr{F}_{\tau-}$ and therefore τ is $\mathscr{F}_{\tau-}$ measurable.

Finally, we show that X_{τ} is \mathscr{F}_{τ} measurable. For this, for fixed $t \geq 0$, we aim to show that for any Borel set $V, X_{\tau}^{-1}(V) \cap \{\tau \leq t\} \in \mathscr{F}_t$. Define two maps

$$\phi_t: \{\omega: \tau(\omega) \le t\} \to [0,t] \times \Omega$$
, by $\phi_t(\omega) = (\tau(\omega), \omega)$,

and

$$\phi^t: [0,t] \times \Omega \to \mathbb{R}^d$$
, by $\phi^t(s,\omega) = X_s(\omega)$.

Note that $X_{\tau} = \phi^t \circ \phi_t$. We verify that ϕ_t is $\mathscr{F}_t \cap \{\tau \leq t\} \to \mathscr{B}[0,t] \otimes \mathscr{F}_t$ measurable. Indeed, for $A \in \mathscr{F}_t$ and $a \in [0,t]$, since τ is a stopping time,

$$\phi_t^{-1}([0,a]\times A) = \{\tau \le a\} \cap A \subset \{\tau \le t\} \cap A \in \mathscr{F}_t \cap \{\tau \le t\}.$$

Together with X being progressively measurable, i.e. ϕ^t is $\mathscr{B}[0,t] \otimes \mathscr{F}_t \to \mathscr{B}(\mathbb{R}^d)$ measurable, we conclude that $X_{\tau} = \phi^t \circ \phi_t$ is $\mathscr{F}_t \cap \{\tau \leq t\} \to \mathscr{B}(\mathbb{R}^d)$ measurable. Hence,

$$X_{\tau}^{-1}(V) \cap \{\tau \leq t\} = \{\omega : \tau(\omega) \leq t, X_{\tau(\omega)}(\omega) \in V\}$$
$$= \{\omega : \tau(\omega) \leq t, \phi^{t} \circ \phi_{t}(\omega) \in V\}$$
$$= \{\tau \leq t\} \cap \phi^{t} \circ \phi_{t}^{-1}(V) \in \mathscr{F}_{t}$$

3.2 Single jump processes

Let $\tau: \Omega \to \mathbb{R}_+$ be a non-negative random variable with property $\mathbf{P}(\tau = 0) = 0$ and $\mathbf{P}(\tau > t) > 0$ for any $t \in \mathbb{R}_+$. Introduce the corresponding single jump process $H_t = \mathbf{1}_{\{\tau \le t\}}, t \ge 0$, and its natural filtration $\{\mathscr{F}_t\}_{t \ge 0}$ by

$$\mathscr{F}_t = \sigma(H_u : u \leq t)$$

with $\mathscr{F}_{\infty} = \sigma(H_u : u \in \mathbb{R}_+)$. It is easy to check the following properties of \mathscr{F}_t .

- 1. $\mathscr{F}_t = \sigma(\{\tau \leq u\} : u \leq t);$
- 2. $\mathscr{F}_t = \sigma(\sigma(\tau) \cap \{\tau \leq t\});$
- 3. $\mathscr{F}_t = \sigma(\sigma(\tau \wedge t) \cup \{\tau > t\});$
- 4. $\mathscr{F}_t = \mathscr{F}_{t+}$;
- 5. $\mathscr{F}_{\infty} = \sigma(\tau)$;
- 6. $A \cap \{\tau \leq t\} \in \mathscr{F}_t$ for any $A \in \mathscr{F}_{\infty}$.

The following formulas are useful to calculate the conditional distribution of τ . The key point (which may not be obvious at the beginning) is that any \mathscr{F}_t measurable r.v. X_t is of the form $X_t = x_t^0 \mathbf{1}_{\{\tau > t\}} + x_t^1(\tau) \mathbf{1}_{\{\tau \le t\}}$ (called *Jacod's decomposition for optional processes*).

Lemma 1. For any random variable $Y \in \mathscr{F}_{\infty}$,

$$\mathbf{E}[Y|\mathscr{F}_t] = \frac{\mathbf{E}[\mathbf{1}_{\{\tau > t\}}Y]}{\mathbf{P}(\tau > t)}\mathbf{1}_{\{\tau > t\}} + \mathbf{E}[Y|\sigma(\tau)]\mathbf{1}_{\{\tau \le t\}}.$$

Proof. We first prove on $\{\tau \le t\}$, $\mathbb{E}[Y|\mathscr{F}_t] = \mathbb{E}[Y|\sigma(\tau)]$, i.e.

$$\mathbf{E}[\mathbf{1}_{\{\tau \leq t\}}Y|\mathscr{F}_t] = \mathbf{E}[\mathbf{1}_{\{\tau \leq t\}}Y|\sigma(\tau)]$$

In other words, $\mathbf{E}[\mathbf{1}_{\{\tau \leq t\}}Y | \mathscr{F}_t]$ is the conditional expectation of $\mathbf{1}_{\{\tau \leq t\}}Y$ on $\sigma(\tau)$. Indeed, for any $A \in \sigma(\tau)$, $A \cap \{\tau \leq t\} \in \mathscr{F}_t$, it follows that

$$\mathbf{E}[\mathbf{1}_{A}\mathbf{E}[\mathbf{1}_{\{\tau < t\}}Y|\mathscr{F}_{t}]] = \mathbf{E}[\mathbf{1}_{A \cap \{\tau < t\}}\mathbf{E}[Y|\mathscr{F}_{t}]] = \mathbf{E}[\mathbf{1}_{A}\mathbf{1}_{\{\tau < t\}}Y].$$

Next, we show on $\{\tau > t\}$, $\mathbf{E}[Y|\mathscr{F}_t] = \frac{\mathbf{E}[\mathbf{1}_{\{\tau > t\}}Y]}{\mathbf{P}(\tau > t)}$, i.e.

$$\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y|\mathscr{F}_t] = \mathbf{1}_{\{\tau>t\}} \frac{\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y]}{\mathbf{P}(\tau>t)}.$$
 (10)

In other words, $\mathbf{1}_{\{\tau>t\}}\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y]$ is the conditional expectation of $\mathbf{1}_{\{\tau>t\}}Y\mathbf{P}(\tau>t)$ on \mathscr{F}_t . For this, for any $A\in\mathscr{F}_t$, it is sufficient to consider $A=\{\tau\leq s\}$ for $s\leq t$ which yields $A\cap\{\tau>t\}=\emptyset$, and $A=\{\tau>t\}$ which yields $A\cap\{\tau>t\}=\{\tau>t\}$. For the case $A\cap\{\tau>t\}=\emptyset$,

$$\mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y]\right] = \mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}Y\mathbf{P}(\tau>t)\right] = 0,$$

so that (10) holds.

For the case $A \cap \{\tau > t\} = \{\tau > t\}$,

$$\mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}\mathbf{E}\left[\mathbf{1}_{\{\tau>t\}}Y\right]\right] = \mathbf{P}(\tau>t)\mathbf{E}\left[\mathbf{1}_{\{\tau>t\}}Y\right],$$

and

$$\mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{\{\tau>t\}}Y\mathbf{P}(\tau>t)\right] = \mathbf{E}\left[\mathbf{1}_{\{\tau>t\}}Y\right]\mathbf{P}(\tau>t),$$

from which we conclude. \Box

One of the most typical examples of the stopping time τ used to model default time is generated by an exponential random variable with constant intensity $\lambda > 0$, as shown in the following example.

Example 4. If τ follows exponential distribution with constant intensity $\lambda > 0$, then formula (10) implies that

$$\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y|\mathscr{F}_t] = \mathbf{1}_{\{\tau>t\}}e^{\lambda t}\mathbf{E}[\mathbf{1}_{\{\tau>t\}}Y].$$

In particular, taking $Y = \mathbf{1}_{\{\tau > T\}}$ yields

$$\mathbf{P}(\tau > T | \mathscr{F}_t) = \mathbf{1}_{\{\tau > t\}} e^{-\lambda(T - t)}. \tag{11}$$

Taking $Y = \mathbf{1}_{\{t < \tau < T\}}$ yields

$$\mathbf{P}(t < \tau \le T | \mathscr{F}_t) = \mathbf{1}_{\{\tau > t\}} (1 - e^{-\lambda(T - t)}). \tag{12}$$

We also have the martingale characterisation of the single jump process $H_t := 1_{\{\tau \le t\}}, t \ge 0$, when τ follows exponential distribution.

Lemma 2. The \mathcal{F}_t -stopping time τ follows exponential distribution with constant intensity $\lambda > 0$ iff

$$M_t := H_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds, \ t \ge 0,$$

is an $(\mathcal{F}_t, \mathbf{P})$ -martingale and $\mathbf{P}(\tau > 0) = 1$.

Proof. Only if part: For any $T \ge t \ge 0$, by the formula (11),

$$\mathbf{E}[M_T|\mathscr{F}_t] = 1 - \mathbf{E}[1_{\{\tau > T\}}|\mathscr{F}_t] - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds - \int_t^T \mathbf{E}[\mathbf{1}_{\{\tau > s\}} \lambda |\mathscr{F}_t] ds$$

$$= 1 - \mathbf{1}_{\{\tau > t\}} e^{-\lambda(T - t)} - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds - \mathbf{1}_{\{\tau > t\}} \int_t^T \lambda e^{-\lambda(s - t)} ds$$

$$= 1_{\{\tau \le t\}} - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds = M_t.$$

Since τ follows exponential distribution, it follows that $\mathbf{P}(\tau > 0) = e^{-\lambda 0} = 1$. If part: For $t \ge 0$, define $\Phi(t) = \mathbf{P}(\tau > t)$. Then, following the martingale property of M,

$$\Phi(t) = \mathbf{E} \left[1 - M_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda ds \right]$$
$$= 1 - M_0 - \lambda \int_0^t \Phi(s) ds.$$

It follows from the condition $\tau > 0$ a.s. that $M_0 = H_0 = 0$, a.s., so

$$\Phi(t) = 1 - \lambda \int_0^t \Phi(s) ds$$

which implies that $\Phi(t)=e^{-\lambda t}$, i.e. τ follows exponential distribution with intensity λ . \square

In practice, we often need to model λ as an \mathscr{F}_t -prog measurable stochastic process. Based on the above martingale characterisation, we impose the following assumption on the \mathscr{F}_t -stopping time τ through its corresponding single jump process $H_t = \mathbf{1}_{\{\tau \leq t\}}, t \geq 0$. It is clear that for each ω , $H_t(\omega)$ is a BV function (recall BV means Cadlag with bounded variation).

Assumption 1 Let τ be a non-negative random variable defined on $(\Omega, \mathcal{F}, \mathbf{P})$, and $\{\mathcal{F}_t\}_{t\geq 0}$ be the natural filtration of $H_t = \mathbf{1}_{\{\tau \leq t\}}, t \geq 0$. i.e. $\mathcal{F}_t = \sigma(H_s : s \leq t)$, such that

$$M_t := H_t - \int_0^t \mathbf{1}_{\{\tau > s\}} \lambda_s ds, \ t \ge 0,$$

is an $(\mathcal{F}_t, \mathbf{P})$ -martingale, for λ being an \mathcal{F}_t -prog measurable, strictly positive and bounded process. Moreover, we assume that $\mathbf{P}(\tau > 0) = 1$.

Since $H_t(\omega)$ is BV, it is obvious that $M_t(\omega)$ is also BV, that is, M is a Cadlag martingale with bounded variation, and moreover, $\Delta M_t = \Delta H_t$.

3.3 Girsanov's theorem

We next discuss the Girsanov's theorem for the single jump process H under Assumption 1.

Theorem 7. Let $\mu \in [0,1]$ be a constant, and suppose that Assumption 1 is satisfied. For T > 0, define $Z_t^{\mu} = C_t^{\mu} V_t^{\mu}$ for $t \in [0,T]$, where

$$C_t^{\mu} = e^{\int_0^t \mu \mathbf{1}_{\{\tau > s\}} \lambda_s ds},$$

and

$$V_t^{\mu} = \mathbf{1}_{\{\tau > t\}} + (1 - \mu)\mathbf{1}_{\{\tau \le t\}}.$$

Then, Z^{μ} is an $(\mathcal{F}_t, \mathbf{P})$ -martingale, and satisfies,

$$Z_t^{\mu} = 1 - \int_0^t Z_{s-}^{\mu} \mu dM_s, \quad for \ t \in [0, T].$$

Proof. Note that for T > 0, $\int_0^T |\mu| dM_s = \mu M_T < \infty$. We decompose the martingale M into its continuous part and pure jump part as

$$M_t = M_t^c + \sum_{0 < s \le t} \Delta M_s$$
$$= -\int_0^t \mathbf{1}_{\{\tau > s\}} \lambda_s ds + H_t$$

In turn, we have

$$e^{-\int_0^t \mu dM_s^c} = e^{\int_0^t \mu \mathbf{1}_{\{\tau > s\}} \lambda_s ds} = C_t^{\mu},$$

and since $\Delta M_s = \Delta H_s$,

$$\prod_{0 < s \le t} (1 - \mu \Delta M_s) = \prod_{0 < s \le t} (1 - \mu \Delta H_s) = \mathbf{1}_{\{\tau > t\}} + (1 - \mu) \mathbf{1}_{\{\tau \le t\}} = V_t^{\mu}.$$

Theorem 6 then implies that $C_t^{\mu}V_t^{\mu}$ satisfies, for $t \in [0, T]$,

$$C_t^{\mu}V_t^{\mu} = 1 - \int_0^t C_{s-}^{\mu}V_{s-}^{\mu}\mu dM_s,$$

so $Z_t^\mu = C_t^\mu V_t^\mu$, $t \in [0,T]$, is an $(\mathscr{F}_t,\mathbf{P})$ -local martingale. Since both C_t^μ and V_t^μ are bounded for $t \in [0,T]$, we conclude that Z^μ is also an $(\mathscr{F}_t,\mathbf{P})$ -martingale. \square

Theorem 8. Let T > 0 be fixed. Given the $(\mathscr{F}_t, \mathbf{P})$ -martingale Z^{μ} as in Theorem 7, define a new probability measure \mathbf{Q}^{μ} by the Radon-Nikodym density

$$\left. \frac{d\mathbf{Q}^{\mu}}{d\mathbf{P}} \right|_{\mathscr{F}_t} = Z_t^{\mu}.$$

Then,

$$M_t^{\mu} = H_t - \int_0^t (1 - \mu) \mathbf{1}_{\{\tau > s\}} \lambda_s ds, \ t \in [0, T],$$

is an $(\mathcal{F}_t, \mathbf{Q}^{\mu})$ -martingale.

Proof. Note that by the Bayes' formula, M_t^{μ} , $t \in [0,T]$, is an $(\mathcal{F}_t, \mathbf{Q}^{\mu})$ -martingale iff $M_t^{\mu} Z_t^{\mu}$, $t \in [0,T]$ is an $(\mathcal{F}_t, \mathbf{P})$ -martingale.

Hence, it is sufficient to show that $M_t^{\mu} Z_t^{\mu}$, $t \in [0,T]$, is an $(\mathscr{F}_t, \mathbf{P})$ -martingale. Using the integration by parts formula (3), we obtain

$$M_t^{\mu} Z_t^{\mu} = \int_0^t M_{s-}^{\mu} dZ_s^{\mu} + \int_0^t Z_{s-}^{\mu} dM_s^{\mu} + \sum_{0 \le s \le t} \Delta M_s^{\mu} \Delta Z_s^{\mu}. \tag{13}$$

Note that M^{μ} can be rewritten as

$$M_s^{\mu} = M_s + \int_0^t \mu \mathbf{1}_{\{\tau > s\}} \lambda_s ds,$$

so

$$\int_0^t Z_{s-}^{\mu} dM_s^{\mu} = \int_0^t Z_{s-}^{\mu} dM_s + \int_0^t Z_{s-}^{\mu} \mu \mathbf{1}_{\{\tau > s\}} \lambda_s ds. \tag{14}$$

On the other hand, since $\Delta Z_s^{\mu} = -Z_{s-}^{\mu} \mu \Delta M_s$, we have

$$\sum_{0 < s \le t} \Delta M_s^{\mu} \Delta Z_s^{\mu} = -\sum_{0 < s \le t} Z_{s-}^{\mu} \mu |\Delta M_s|^2.$$

But $\Delta M_s = \Delta H_s$ and $|\Delta H_s|^2 = \Delta H_s$, it follows that

$$\sum_{0 \le s \le t} \Delta M_s^{\mu} \Delta Z_s^{\mu} = -\sum_{0 \le s \le t} Z_{s-}^{\mu} \mu \Delta H_s = -\int_0^t Z_{s-}^{\mu} \mu dH_s. \tag{15}$$

Plugging (14) and (15) into (13), we get

$$M_t^{\mu} Z_t^{\mu} = \int_0^t M_{s-}^{\mu} dZ_s^{\mu} + \int_0^t Z_{s-}^{\mu} dM_s - \int_0^t Z_{s-}^{\mu} \mu dM_s,$$

which implies that $M_t^{\mu} Z_t^{\mu}$, $t \in [0, T]$, is an $(\mathscr{F}_t, \mathbf{P})$ -local martingale. Finally, since $M^{\mu} Z^{\mu}$ is bounded, it is also an $(\mathscr{F}_t, \mathbf{P})$ -martingale. \square

Note that when $\mu = 0$, then $Z^0 = 1$. Therefore, $\mathbf{Q}^0 = \mathbf{P}$, and $M^0 = M$ is an $(\mathscr{F}_t, \mathbf{P})$ -martingale following from Assumption 1.

On the other hand, when $\mu = 1$, \mathbf{Q}^1 is only absolutely continuous w.r.t. \mathbf{P} . Therefore, for $A \subset \Omega$, $\mathbf{P}(A) = 0 \Rightarrow \mathbf{Q}^1(A) = 0$. However, for the sets $B_t = \{\tau \leq t\}$, $t \in [0,T]$, we have $\mathbf{Q}^1(B_t) = 0$ but $\mathbf{P}(B_t) \neq 0$, so \mathbf{Q}^1 and \mathbf{P} are not equivalent.

Exercise 1. (Exponential formula)

- 1. Prove the solution to the equation (8) is unique.
- 2. Apply the change of variables formula in Theorem 5 to $\ln Z(t)$ to derive the solution of the equation (8) directly.

References

1. Bremaud, Pierre. Point processes and queues: martingale dynamics. Springer-Verlag, 1981.