КиМ. Лекция

daskf

22 октября 2024 г.

Свободные модуль

$$_RF o \{f_i\}_{i\in I}$$
 - базис в $\mathbf{F} \iff \forall \ m \in F \ \exists ! \ r_{i_1}, \dots, r_{i_k} \in R \mid m = r_{i_1}f_{i_1} + \dots + r_{i_k}f_{i_k}$ $\iff F = \bigoplus_{i \in I} Rf_i \iff$ 1) $\{f_i\}_{i \in I}$ - лнз (над \mathbf{R})
$$2)F = \sum_{i \in I} Rf_i \iff F =_R < f_i >_{i \in I}$$

 $\underline{\operatorname{Th}}$ R - модуль F свободен $\iff F \cong \bigoplus_{i \in I} \ _RR$ $\underline{\operatorname{Proof}}$

$$F = \bigoplus_{i \in I} Rf_i$$

 $\phi:R o Rf_i:r\mapsto rf_i$ - гомо левых R - модулей

$$r \in \ker \phi \implies \phi(r) = rf_i = 0 \implies f_i$$
 - лнз $r = 0 \implies \ker \phi = \{0\}$

⇐ :

$$F\cong igoplus_{i\in I} {}_RR=\{(\dots,r_k,\dots)\mid r_k\in R$$
 и почти все $r_k=0\}$

Базис:

$$\{(\ldots,0,1,0,\ldots\}\implies F$$
 - свободен

Examples

- 1) Векторные пр-ва свободные модули
- 2) ℤ модули (≡ абелевы группы)

Аб. гр A - свободна $\iff A \cong \bigoplus Z$

<u>Предл</u> любой R - модуль M является эпиморфным образом некоторого свободного R - модуля <u>Proof</u> Пусть $\{m_i\}_{i\in I}$ система образующих

 $\overline{\mathbf{P}}$ ассмотрим своб. модуль $F = \bigoplus_{i \in I} {}_R R$ с базисом $\{f_i\}_{i \in I}$

Рассмотрим

$$\phi: F o M: f = r_{i_1}f_{i_1} + \dots + r_{i_k}f_{i_k} \mapsto m = r_{i_1}m_{i_1} + \dots + r_{i_k}m_{i_k}$$
 - эпиморфизм

 $\underline{\mathrm{Cn}} \ \forall \ \mathrm{R}$ - модуль $\mathrm{M} \cong \varphi$ актормодулю своб модуля

Вполне приводимые модули

Def Модуль M наз-ся простым, если он ненулевой и имеет только два подмодуля $\{0\}$, M

Упр Найти все простые $\mathbb Z$ - модули (\cong абелевы группы)

 $\underline{\mathrm{Def}}$ Модуль M называется вполне приводимым, если любой подмодуль в нем выделяется прямым слагаемым, т.е.

$$\forall N \leq M: \ M = N \oplus K \text{ some } K \leq M$$

Note любой простой модуль вполне приводим. Обратное неверно

<u>Lemma1</u> Подмодули и гомоморфные образы вполне приводимых модулей вполне приводимы <u>Proof</u> M - вполне приводим, $N \leq M$. N - вп. приводим?

$$\forall K \leq N \implies M = K \oplus X$$

$$N = N \cap M = N \cap (K \oplus X) = K + (N \cap X) = K \oplus (N \cap X)$$

Рассмотрим:

$$f: M \to f(M) \implies f(M) \cong M/\ker f$$

С другой стороны

$$\ker f \leq M \implies M = \ker f \oplus Y \implies Y \cong M/\ker f \cong f(M) \implies$$

т.к Y - вп. приводим, то f(M) — вполне приводим

<u>Lemma2</u> Пусть M - R -модуль, $\{M_i\}_{i\in I}$ - семейство простых подмодулей в M, порождающих M $(M=\sum_{i\in I}M_i)$. Тогда для любого подмодуля $N\leq M$ $\exists J\subset I\mid M=N\oplus (\bigoplus_{i\in J}M_i)$

Сведения из теории множеств

Уже было видимо в ОСА

Proof Рассмотрим чум $X = \{K \subset I \mid N + (\bigoplus_{k \in K} M_k) = N \oplus (\bigoplus_{k \in K} M_k)\}$

- 1) $X \neq \emptyset$, t.k. $\emptyset \in K$
- 2) $\{Y_s\}_{s\in S}$ лу подмн-во в X \implies верхняя грань $\bigcup_{s\in S}Y_{i_s}\implies$ в X \exists max $J\implies N\oplus (\bigoplus_{j\in J}M_j)=N'$ $N'\stackrel{?}{=}M$. Противное: $M\neq N'$

$$\implies$$
 T.K. $=\sum_{i\in I}M_i$, then $\exists M_t\mid M_t\not\subseteq N'\implies M_t\cap N'=\{0\}$

Тогда $N'+M_t=N'\oplus M_t=N\oplus (\bigoplus_{j\in J})M_j)\oplus M_t=N\oplus (\bigoplus_{q\in J\cup\{t\}}M_q).$ Противоречие с макс J

<u>Тh</u> Для R - модуля M эквивалентно:

- 1) М сумма простых подмодулей $M = \sum_{i \in I} M_i$
- 2) $M = \bigoplus_{j \in J} M_j, M_j$ -прост
- 3) М вполне приводимый модуль

 $\underline{\text{Proof}}\ 1) \implies 2$) следует из леммы 2 при N=0

 $2) \implies 3$

следует из леммы 2