نظریه زبان و ماشین - دکتر قوامیزاده

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۱

سوال ۱

cout $((<< "(A^*|\t|\n|\")^*") | (<< endl))^*;$

در بالا منظور از A، مجموعهی کاراکترهای ASCII، به جز کاراکترهای ' " ' (double quotation)، و ' \ ' (backslash) است.

سوال ٢ - الف

 $1 \mid (1(0|1)^*1)$

توضیح: در regex سمت راست، چون رشته نباید با صفر شروع شود، اولین کاراکتر آن حتما باید یک باشد. سپس در ادامه میتواند تعداد دلخواهی صفر یا یک داشته باشد. و آخرین کاراکتر نیز باید یک باشد تا عدد نهایی فرد شود.

همچنین چون رشته "1" با regex گفته شده منطبق نیست، برای این رشته regex جداگانه مینویسیم (regex سمت چپ)

سوال ۲ - ب

(a|b)6+

توضیح: زبان مورد نظر، درواقع همه رشتههای دارای کاراکتر a و b است که حداقل به طول ۶ هستند.

سوال ۲ - پ

 $a^{2}(a^{2})^{*}b^{7}(b^{2})^{*}|a^{4}(a^{2})^{*}b^{3}(b^{2})^{*}|a^{12}(a^{2})^{*}b(b^{2})^{*}$

 $m\geqslant 7$ توضیح: چون داریم mn>10 ، بنابراین n نمیتواند صفر باشد. روی m حالتبندی میکنیم: اگر $a\geqslant 1$ آنگاه باید $a\geqslant 1$ ، آنگاه باید ویس هر رشته در زبان مورد نظر، در نهایت با یکی از عبارات بالا منطبق است.

سوال ۲ - ت

(a²)(a²)*((a|b)((a|b))*)(b²)(b²)* | (a)(a²)*((a|b)((a|b))*)(b)(b²)* توضيح: n و m بايد يا هردو زوج يا هردو فرد باشند تا شرط n + m ∈ E برقرار باشد. بنابراين هر رشته در زبان مورد نظر، با يكي از دو حالت بالا منطبق است.

سوال ۲ - ث

(X(ab)X(ab))*X

 $X = (c|b|a^*c)^*a^*$

توضیح: در بالا، X شامل همه رشتههایی است که اصلا ab ندارند (یعنی هیچوقت b بلافاصله بعد از a نمیآید).

سوال ۲ - ج

 $L_1 = (b^*ab^*ab^*a)^*b^*$

توضیح: با تعداد دلخواهی رشته که در هر کدام، دقیقا سه a و تعداد دلخواهی b داریم (به جز در آخر آنها) شروع میکنیم و در انتها با تعداد دلخواهی b رشته را تمام میکنیم. بنابراین رشتههای حاصل حتما 3k (k ∈ W) کاراکتر a خواهند داشت.

 $L_2 = (a^*ba^*b)^*(a^*ba^*)$

توضیح: پرانتز اول همه رشتههایی را میسازد که تعداد زوجی b دارند. بعد از تولید زوج تا b، یک b دیگر قرار میدهیم تا حاصل فرد تا b داشته باشد.

سوال ٣ - الف

زبانی شامل همه رشتههای به طول k+2 $(k\in W)$ است که از کاراکترهای a و b تشکیل شدهاند.

سوال ۳ - ب

زبانی شامل همه رشتههایی که از کاراکترهای a و b تشکیل شدهاند، و در آنها بلافاصله بعد از هر a، حتما یک b آمده است.

سوال ۳ - پ

 $\{v_1 w v_2 w v_3 \mid w \in \{"a", \, \varepsilon\} \wedge v_1, v_2, v_3 \in \{"b"\}^* \wedge |v_1| + |v_2| \ge 1 \wedge |v_1| + |v_3| \ge 1 \wedge |v_2| + |v_3| \ge 1 \}$

سوال ۴ - الف

نادرست - به عنوان یک مثال نقض، رشته "ba" با regex سمت چپ منطبق است، ولی با regex سمت راست منطبق نیست.

سوال ۴ - ب

درست - عبارت سمت چپ به صورت زیر است:

قسمت ۱، با حداقل دو a و قسمت ۲، با حداقل یک b منطبق میشود. قسمت ۳ نیز دقیقا مانند قسمت ۱ با حداقل دو a، و قسمت ۴ نیز دقیقا مانند قسمت ۲، با حداقل یک b منطبق میشود. پس عبارت داخل دو پرانتز درواقع یکی هستند و میتوان نوشت:

 $(a^{2+}b^{+})^{2}(a^{2+}b^{+})^{*}$

که در واقع معادل این است که ⁺a²+b حداقل دوبار تکرار شود. پس میتوان نوشت:

 $(a^{2+}b^{+})^{2+}$

و این همان عبارت سمت راست است.

سوال ۵

عبارت منظم L₁ برابر است با:

 $(b|ab)^*(a|\epsilon)$

عبارت منظم L₂ برابر است با:

#

عبارت منظم L₃ برابر است با:

 $(a|ba)^*(b|\epsilon)$

بنابراین با کنار هم گذاشتن عبارات منظم بالا، عبارت منظم L به دست میآید:

 $(b|ab)^*(a|\epsilon)\#(a|ba)^*(b|\epsilon)$

با برعکس کردن ترتیب پرانترها و عبارات داخل آنها، عبارت منظم L^R به دست می آید: $(b|\epsilon)(a|ab)^* + (a|\epsilon)(b|ba)^*$

سوال ۶

 $(L_1 \cup L_2)^* = L_1^*$ اگر و تنها اگر $(L_1 \cup L_2)^* = L_1^*$ ثابت میکنیم اگر $(L_1 \cup L_2)^* = L_1^*$ داریم: ۱- ثابت میکنیم اگر

$$(L_1 \cup L_2)^* = L_1^*$$

$$\Rightarrow (L_1 \cup L_2)^* \subseteq L_1^*$$

$$\begin{split} &\Rightarrow L_1^* \bigcup L_2^* \subseteq L_1^* \\ &\Rightarrow L_2^* \subseteq L_1^* \\ &\Rightarrow L_2^0 \bigcup L_2^1 \bigcup L_2^2 \bigcup \ldots \subseteq L_1^* \\ &\Rightarrow L_2^1 \subseteq L_1^* \Rightarrow L_2 \subseteq L_1^* \end{split}$$

:داریم . ($L_1 \cup L_2$)* = L_1^* آنگاه $L_2 \subseteq L_1^*$ داریم -۲

$$\begin{split} L_2^1 &\subseteq L_1^* \\ &\Rightarrow L_2 \cup L_1^* = L_1^* \\ &\Rightarrow (L_2 \cup L_1^*)^* = (L_1^*)^* = L_1^* \\ &\Rightarrow L_1^* \cup L_2^* = L_1^* \\ &\Rightarrow (L_1 \cup L_2)^* = L_1^* \end{split}$$