Mikroprogrammierung und Mikroprozessoren – Würfel

Die im Labor vorhandenen Würfelanzeigen sind Low-aktiv, daher sollen die Ausgänge wie folgt kodiert werden:

 $A = \{0111, 1110, 0110, 1100, 0100, 1000\}$

Ausgabe Bits 4-7 sind A-D

Würfelzahl	Binärdarstellung (ABCD)	Hex
1	0111	7
2	1110	е
3	0110	6
4	1100	С
5	0100	4
6	1000	8

- 1 Vorwärts zählen
- 2 Rückwärts zählen
- S Schummel Modus

Loslassen eines Tasters – Reset, d.h. alle Leitungen 0.

LED's leuchten auf Low.

Lösung:

Drücken des 1. Tasters: Im ROM fängt die erste Speicherzelle bei Position 10 an (statt 00-Ausgang), also +16 Speicherzellen, da der Taster1 =1 ist und somit am Eingang Position 2^4 (16) = 1 ist.

71 bedeutet es wird 7 ausgegeben und das wäre eine 1 auf dem Würfel und danach springt es eine Speicherzelle weiter (An Stelle 1) usw. In diesem Beispiel wird eine 3 angezeigt auf Stelle 2.

Drücken des 2. Tasters: Anfangsposition bei 20.

Fängt bei der Ausgabe der Würfelzahl 6 an und zählt dann herunter. Es ist egal welcher Zustand gewählt wird solange die Reihenfolge der Zahlen korrekt ausgegeben wird. Deshalb wechselt er nach Zustand 0 zu Zustand 5 um die Würfelzahl 5 auszugeben nach der Würfelzahl 6.

Drücken des S Tasters: Anfang bei 40.

Vorgelegte Reihenfolge beim Würfeln von 5-2-6-4-1-6-3-6, wobei die 6 viel öfter (Schummel Modus) gewürfelt wurde als die anderen Würfelzahlen.

