

AD A 050750

9 MISCELLANEOUS PAPER 5-73-1

STATE-OF-THE-ART FOR ASSESSING EARTHQUAKE HAZARDS IN THE UNITED STATES.

Report 8.

DURATION, SPECTRAL CONTENT, AND PREDOMINANT PERIOD OF STRONG MOTION EARTHQUAKE RECORDS FROM WESTERN UNITED STATES.

Frank K. Chang Ellis L. Krinitzsky

Soils and Pavements Laboratory

U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

December 77
Report 8 of a Series

Approved For Public Release; Distribution Unlimited

(14) WES-MRS-73-1-8

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

038100

JOB

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER						
Miscellaneous Paper S-73-1							
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED						
STATE-OF-THE-ART FOR ASSESSING EARTHQUAKE HAZARDS IN THE UNITED STATES; Report 8, DURATION, SPECTRAL	Report 8 of a series						
CONTENT, AND PREDOMINANT PERIOD OF STRONG MOTION	6. PERFORMING ORG. REPORT NUMBER						
EARTHQUAKE RECORDS FROM WESTERN UNITED STATES	8. CONTRACT OR GRANT NUMBER(#)						
7. AUTHOR(s)	B. CONTRACT ON GRANT HUMBER(5)						
Frank K. Chang Ellis L. Krinitzsky	•						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
U. S. Army Engineer Waterways Experiment Station	AREA & WORK UNIT NUMBERS						
P. O. Box 631, Vicksburg, Miss. 39180	March 1995 Committee Commi						
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE						
	December 1977						
Office, Chief of Engineers, U. S. Army Washington, D. C. 20314	13. NUMBER OF PAGES 82						
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)						
made actions to all receives the state and but on the	Unclassified						
to the contraction of the contra	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report)	DDC						
A							
Approved for public release; distribution unlimited							
	WAR 6 1918						
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)						
AND AND LEASE TO SEE THE SECOND PROPERTY OF SECOND PARTY.							
and the contract of the contra	District to the Control Page Control of						
18. SUPPLEMENTARY NOTES							
•							
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)							
Earthquake engineering Ground moti							
Earthquake hazards State-of-th	ne-art studies						
Earthquake resistant structures							
Earthquakes							
Eat onquares							
20. ABSTRACT (Continue on reverse sids if necessary and identify by block number)							
The purposes of this investigation were princ	inally to assess the duration						
and spectral content of strong-earthquake accelerog	rems and indirectly to						
consider their applicability in earthquake design.	Correlations of duration						
consider their applicability in earthquake design.	on Pichten magnitude have						
with MM intensity for the near and far fields and f	or Michter magnitude have						
been obtained. Difference in durations for soil an	d rock sites was determined.						
A set of relations between the duration and distanc	e for soil and rock sites was						
	(Continued)						

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued)

established from records of the San Fernando Earthquake of 9 February 1971 (magnitude of 6.5). Values for other magnitudes were extrapolated. Duration is taken to be the time interval between the first and last peaks of acceleration equal to or greater than 0.05 g.

The spectral content in the range of 0.1-10 Hz for strong-motion records in western United States for acceleration level equal to or greater than 0.05 g was processed with the modified Nigam and Jennings' response spectra computer programs. The corrected accelerograms on the digital magnetic tapes of NIS 130, 131, and 132 provided by the California Institute of Technology were the input data for this study. The critical damping ratios of 5.0, 7.5, and 10.0 percent were assigned to the soil (or soft, alluvial), intermediate (firm sediments), and rock (or hard) sites, respectively. The relative response spectral amplitudes of acceleration, velocity, and displacement were reduced to the ground surface by dividing the relative response spectral amplitude by the dynamic amplification factor of 1/2h, where h is the critical damping ratio. The frequency-amplitude spectra were then plotted as a function of magnitude, epicentral distance, and site conditions.

The characteristics of duration are as follows: (a) duration is greater in the near field than in the far field and greater in alluvium than in rock with the duration-ratio of alluvium to rock approximately 2 to 1; (b) duration increases with magnitude and intensity, as expected; and (c) the maximum duration at a source in rock for magnitude 8.5 was extrapolated to be about 43 sec. The duration is twice as long where there is magnification by alluvium or soil.

Frequency content and spectral shape have the following characteristics: (a) the predominant frequencies of the strong-motion earthquakes for the magnitude of 5.3-7.7 are in the range of 0.1-6.67 Hz; (b) the maximum acceleration, velocity, and displacement levels are within the ranges of 1.5-5.0, 0.5-1.5, and 0.1-0.5 Hz; (c) the predominant period of the acceleration spectra does not increase with distance within the range of 0-90 km, but the predominant period of displacement does; (d) the spectral mode shape depends on the source spectrum function (magnitude), distance, and local geological conditions; (e) generally, the average or upper-bound peak amplitudes have a uniform envelope, but the possible maximum acceleration was found to be about 0.5 g near surface faulting for the discrete frequency range of 4-5 Hz; and (f) the summation of the maximum amplitude level of the predominant frequencies equals approximately the total amplitude of the ground motion in time history if the selected damping ratio corresponds to the geological condition of the recording site. An assumption is made that the amplitudes of all discrete frequencies on the envelope are in phase.

Unclassified

PREFACE

This report is part of ongoing work at the U. S. Army Engineer Waterways Experiment Station (WES) in Civil Works Investigation Study: "Methodologies for Selecting Design Earthquakes," sponsored by the Office, Chief of Engineers (OCE). General direction was by Mr. James P. Sale, Chief, Soils and Pavements Laboratory, and Mr. Don C. Banks, Chief, Engineering Geology and Rock Mechanics Division. Preparation of the report was by Mr. Frank K. Chang, Earthquake Engineering and Vibrations Division and Dr. Ellis L. Krinitzsky, Chief, Engineering Geology Research Facility.

The report was reviewed by Dr. Bruce A. Bolt of the University of California at Berkeley, and Dr. Shan S. Kuo of the University of New Hampshire at Durham. To both of them, the authors wish to express their appreciation.

COL J. L. Cannon, CE, and Mr. F. R. Brown were Director and Technical Director, respectively, of WES during the period of this study.

NTIS		White Section	M
DDC		Buff Section	
UNANI	HOUNCED		
JUSTIF	ICATION		
BY	IRUTIRN/A	VAN ARIUTY Cor e	?
		VAILABILITY COOL	-

CONTENTS

																											Page
PREFA	ACE .																										1
PART	I:	INT	RODU	CTIO	N.																						3
	Def	init	tion	ork of of	Dur	at	io	n e	and	1 5	Sec	pe	•														3 7 8
PART	II:	TEC	CHNI	QUES	FC	R	DA	TA	PI	ROC	CES	SI	INC	3													10
				rogr																							10 10
PART	III:	DA	ATA	ANAL	YSE	S																					12
	Ans	lyse	es o	f Du f Sp d Up	ect	ra	.1	Cor	nte	ent	5																12 28 39
PART	IV:	DIS	SCUS	SION																							52
PART	٧:	CON	CLUS	IONS																							55
REFER	RENCE	s .																									56
APPEN	DIX	A:		ONG TED				DA!					0.70														Al
APPEN	DIX	В:		ATIO																				101	٧.		B1
APPEN	DIX	C:	PER	IODS	AN	D	FR	EQU	JEI	VC]	ES	1	F	TH	Œ	RE	ESF	201	ISE	2 5	SPE	EC T	TRA	1			Cl

STATE-OF-THE-ART FOR ASSESSING EARTHQUAKE HAZARDS IN THE UNITED STATES

DURATION, SPECTRAL CONTENT, AND PREDOMINANT PERIOD OF STRONG
MOTION EARTHQUAKE RECORDS FROM WESTERN UNITED STATES

PART I: INTRODUCTION

1. This investigation evaluates the duration, spectral content, and predominant period of strong motion records from western United States for parameters that are significant in earthquake design.

Previous Work

2. Gutenberg and Richter presented the following equation for duration as a function of magnitude:

$$\log t_0 = -1.4 + 0.32 M$$
 (1)

where

t = time of duration in seconds at point of origin.

M = magnitude in the Richter scale

Their source of data was the standard torsion seismograms. Esteva and Rosenblueth² described the duration of an equivalent ground motion with uniform intensity per unit time by the equation:

$$s = 0.02e^{0.74 M} + 0.3\Delta$$
 (2)

where

s = duration in seconds

 Δ = source to station distance in kilometres Housner³ suggested an upper bound for duration of ground shaking during large earthquakes by a linear law expressed as where D represents duration in seconds. If M equals 8.5, the duration is about 45 sec. The study of Bolt for the "bracketed duration" D of acceleration greater than 0.05 g as a function of M yields the formula:

$$D = 17.5 \tanh (M - 6.5) + 19.0 \text{ for } f > 1 \text{ Hz}$$
 (4)

$$D = 7.5 \tanh (M - 6.0) + 7.5$$
 for $f > 1 Hz$ (5)

Relating magnitude to duration for threshold values of 0.05 g, Kobayashi⁵ gave this equation

$$\log_{10} t_{0.05} = 0.50 \text{ M} - 2.26 \text{ sec}$$
 (6)

An effort was made by Husid, 6 to compute the effective duration of shaking based on the concept of energy (Arias 7). In their approach, the digitized acceleration values were squared, and the sum of the values was accumulated. A plot (Figure 1) of the accumulated value against time (adopting the 95 percentile time interval) has a shape resembling a cumulative distribution curve and provides a direct graphical representation of the duration effects.

- 3. It should be noted that the site effects on duration were not evaluated in any of the above-mentioned papers.
- 4. Recently, Trifunac and Brady attempted to give a modified definition of the duration of strong earthquake ground motion from the concept of Husid. They define the duration of the recorded strong motion to be that time interval during which the most significant contribution is made to an integral of the form $\int_{-T}^{T} f^2(t) dt^{6,7}$ where f(t) stands for acceleration a(t), velocity v(t), or displacement d(t), and T is finite or infinite. They arbitrarily delete the first 5 percent and the last 5 percent of the amplitudes of these integrals

Figure 1. Graph of cumulative squared acceleration values versus time for Pacoima (1971) and El Centro (1940) records; the durations are 12.0 and 25.8 sec, respectively (both durations agree with the results in Appendix B)

and define the remaining 90 percent as the "significant" or "strongmotion" contribution. Their definition of duration is closely related to seismic energy and associated spectral amplitudes. Correlations were established among the following parameters: duration, velocity, displacement, Modified Mercalli (MM) intensity, earthquake magnitude, site geology, and epicentral distance. Hays studied the durations of earthquakes and nuclear explosions and then defined duration as absolute acceleration \geq 5 percent g. Site geology was completely ignored. Dobry et al. conducted a study of duration of horizontal records in the western United States on site conditions from rock to soft clay

based on the definition of Trifunac and Brady. They found a consistent correlation between duration on rock and magnitude and distance to the source. Vanmarcke and Lai proposed a strong-motion duration that is nearly proportional to the quantity I_0/a_{max}^2 , in which a_{max} is the maximum ground acceleration, and I is the integral of the squared accelerations. The proportionality factor is weakly dependent on the predominant period of the ground motion. Housner (1975)12 suggested two parameters to describe the severity of the earthquake ground motion: (a) the spectrum intensity plus the duration of strong shaking, or

- (b) the average power of the input during the strong phase of shaking plus the duration of this input.
- 5. Little is presently known of the frequency variations in time history of earthquake motions. As a consequence, such properties are not usually included in the specification of earthquake motions for structural design. Bolt, in his study of durations of strong earthquake motion, presented bracketed duration in the range of 0.5-10.0 Hz. The predominant frequency range was within 2-5 Hz. The observed frequency range of ground motions using the SMAC Accelerograph in Japan is approximately between 0.25 and 7.0 Hz (Kobayashi). 13 A systematic analysis of strong motion accelerograms for the western United States since the Long Beach Earthquake (California) of 1933 has been performed and published in Volumes III and IV of a report series (Volume I contains uncorrected accelerograms and Volume II corrected data) by the California Institute of Technology (CIT). 14 Volumes III and IV deal with response spectra and Fourier amplitude spectra, respectively. The undamped response spectra of 0 percent critical damping and Fourier amplitude spectra are in good correlation. The response spectral data for the period range between 0.04 and 15.0 sec, or 0.06 and 25.0 Hz, have been presented both graphically and numerically. Based on the presentations of Fourier amplitude spectrum of acceleration in Volume IV, the predominant peaks at 95 percent confidence level are within 0-5 Hz; however, there are some cases where the 95 percent confidence level extends to about 10 Hz.
 - 6. Newmark 15 established the frequency bands of the response

spectra at the critical damping ratio of 0.5, 2.0, 5.0, and 10.0 percent. They are used for averaging the amplifications of displacement, velocity, and acceleration as follows:

Horizontal displacement	0.2-0.4 Hz
Horizontal velocity	0.4-2.0 Hz
Horizontal acceleration	2.0-6.0 Hz
Vertical displacement	0.1-0.3 Hz
Vertical velocity	0.3-3.0 Hz
Vertical acceleration	3.0-10.0 Hz

These values indicate that the predominant frequency range of the strong earthquakes is within 0.1-10.0 Hz. The site condition is completely ignored.

7. Blume¹⁶ studied the response spectrum shapes for 33 significant and different accelerograms generated by 12 major earthquakes with damping ratios of 0.005, 0.01, 0.02, 0.05, 0.07, and 0.10. He found that the effect of duration on the shape of the response spectrum is small for frequencies greater than 2 Hz and that the dynamic amplification factor at longer periods, however, tends to be higher for long duration motions than for short ones.

Definition of Duration and Scope

8. The "bracketed" duration is defined as the time interval between the first and last peaks of acceleration equal to or greater than 0.05 g for the strong earthquake record. This definition has been used by Page et al. 17 and Bolt. Durations in Appendix B were computed in this manner. Figure 1 (Husid) shows the "effective durations," formed by summing the squared digitized accelerations and the values accumulated against time, for the horizontal components of the Pacoima Dam record of the San Fernando Earthquake (California), 9 February 1971, and of the El Centro record of the Imperial Valley Earthquake (California), 18 May 1940. The durations are 12.0 and 25.8 sec, respectively. Appendix B presents approximately the same values of duration for these

two earthquake records, probably a coincident case. For a general case, further investigation is needed.

9. Values for the duration of strong earthquake shaking are determined by magnitude, amplitude, distance, site geology, and wave frequency. These factors will be examined in the following paragraphs.

Definition of Spectral Content

10. Fourier spectrum and relative response spectrum are two useful tools for defining the frequency content of a time signal. Since earthquake engineers are familiar with the response spectrum technique (RST), this method will be used in this study. The frequency bands of the response spectra, established by Newmark¹⁵ within 0.1-10 Hz for acceleration, velocity, and displacement, are also to be adopted. However, only the relative response spectral peak amplitudes, i.e., acceleration, velocity, and displacement of the predominant peak frequencies, will be considered and reduced to the ground surface by dividing the peak amplitudes by the dynamic amplification factor (DAF) or 1/2h, where h is the critical damping ratio. This relationship can be expressed as

Ground peak amplitude spectrum = Relative response peak amplitude spectrum DAF

There are two important justifications for this relationship. First, the peak amplitudes of the discrete predominant frequencies at the ground surface or base could be summed to obtain the approximate resultant amplitude by assuming them in phase, if this computed resultant amplitude is in agreement with the observed maximum amplitude in a seismogram. In this way, the critical damping ratio at a different geological site-model (soil or rock) can be compared. The resultant peak amplitude will be conservative, i.e., an overestimate. For an actual ground motion, the phase angle between the various frequencies should be considered. Secondly, an arbitrary seismogram of any frequency content and duration could be generated using the principle of

mode superposition. Tentatively, the critical damping ratios of 5.0, 7.5, and 10.0 percent will be assigned to the response spectra for the soft (soft alluvium or soil), intermediate (sedimentary rock), and hard rock (basement or crystalline rock) sites, respectively, as classified by Trifunac and Brady. Usually, the frequencies of seismic waves in rock are higher than in soil; the amplitudes are attenuated more rapidly in the former than in the latter (Duke et al., 18 Donovan, 19 and Seed et al. 20).

PART II: TECHNIQUES FOR DATA PROCESSING

ll. The theoretical background of RST can be found in Housner, ²¹ Biot, ²² Housner et al., ²³ and Hudson. ²⁴, ²⁵ The functions of the RST computer program and the data collection are discussed below.

Computer Program

- 12. The Nigam and Jennings' integration and response spectral computer programs 26 were modified to obtain the following:
 - a. The time interval between the first and last peaks of acceleration in the frequency bank of 0.1-10.0 Hz was equal to or greater than 0.05 g for each strong motion accelerogram recorded in the western United States during the past four decades. (The corrected accelerograms in CIT Volume II were used.)
 - <u>b</u>. The peak amplitudes (acceleration, velocity, and displacement) of the relative response spectra and the frequencies corresponding to those peaks were compiled in the sequence of magnitude, distance, and site conditions shown in Appendix B.
 - c. The relative peak amplitudes of the response spectra were reduced to ground surface by dividing by DAF, or 1/2h, where h is the critical damping ratio. The critical damping ratios of 0.05, 0.075, and 0.10 were assigned to each recording site in accordance with its classification as soil (soft), intermediate, and hard rock, respectively. This information was provided by the Earthquake Engineering Research Laboratory, CIT (Appendix A). The DAF for 0.05, 0.075, and 0.10 percent critical damping are 10.0, 6.66, and 5.0, respectively.

Data Collection

13. All strong-motion accelerograms (acc ≥ 0.05 g) recorded on the free-field and basement of a building for the western United States (from the Long Beach Earthquake, 10 March 1933, to the San Fernando Earthquake, 9 February 1971) were included in this study. These data represented 25 of the 57 earthquakes (Appendix A), 107 recording stations, 201 horizontal accelerograms, and 54 vertical accelerograms.

Appendix A and Appendix B list the items of information, such as the record file (CIT system), station location, date of earthquake, epicentral distance, Richter magnitude, MM intensity (Krinitzsky and Chang, 27) local MM intensity, and site condition (information provided by Dr. Brady, formerly of CIT).

- 14. The data in Appendix B, compiled from the output of the modified Nigam and Jennings' integration and response spectra computer programs, 26 include the record file (column 1 of Appendix A), instrument component, peak acceleration, duration, predominant period of acceleration, velocity, and displacement peaks. CIT prepared digitizations of the accelerograms on magnetic tape.
- 15. The spectrum shapes were computed for a period range of 0.1-10.0 sec or a frequency range of 0.10-10.0 Hz.

PART III: DATA ANALYSES

16. The data listed in Appendixes A and B have been processed for the analysis of duration, spectral content, and spectral shape.

Analyses of Durations

17. The duration data in Appendix B have been plotted as a function of frequency, magnitude, intensity, distance, and site condition.

Duration as a function of frequency

18. Generally, the range of the predominant frequency content in the strong-motion earthquake accelerograms does not vary greatly with duration, magnitude, and site geological conditions. Figures 2-6 show these relationships. The frequency band between 0.1 and 6.66 Hz was encompassed in the duration. On alluvial sites, the long-period or low-frequency waves (<2 Hz) appear to be dominant. Also, durations are longer in soil sites than in rock sites. Long-period Rayleigh waves (<1 Hz), which contain about two thirds of the total wave energy, (Miller and Pursey²⁸), are propagated as guide waves and cause motions in the surface soil layer. Rayleigh waves may be the main cause of the longer duration and higher damage potential in alluvium rather than in rock.

Figure 2. Duration versus frequency for various site conditions, San Fernando Earthquake, 9 February 1971 (M = 6.5)

Figure 3. Duration versus frequency for various site conditions, California Earthquakes (M = 5.3-5.6)

Figure 4. Duration versus frequency for alluvial sites, Western Washington Earthquake, 13 April 1949 (M = 7.1); and Kern County, California, Earthquake, 21 July 1952 (M = 7.5)

Figure 5. Duration versus frequency for intermediate rock and alluvial sites, California Earthquakes (M = 5.7-5.9); and Helena, Montana, Earthquakes, 31 October and 28 November 1935 (M = 5.7-6.0)

Figure 6. Duration versus frequency for alluvial and intermediate rock sites, California Earthquakes (M = 6.3-6.5)

Duration as a function of magnitude in the near field

19. Figure 7 shows duration as a function of magnitude. The top line is the upper-bound duration for soil, and the second line is the upper-bound duration for hard rock. Based on this figure, the linear relationship between the peak duration and magnitude can be stated as follows:

Duration (>0.05 g, sec)

Magnitude	Rock Site	Soil Site
5.0	14	8
5.5	6	12
6.0	8	16
6.5	11	23
7.0	16	32
7.5	22	45
8.0	31	62
8.5	43	86

It is clear that the ratio of duration for the soil site to the rock site is about 2 to 1. The durations of Page et al., 17 Bolt, 4 and this study are plotted in Figure 8 for comparison. Page et al. compare favorably for soil but not for rock. Bolt's values compare well with those for rock. The upper-bound duration by linear extrapolation for the soil site in Figure 7 and Kobayashi's data in Figure 9 show a good agreement, although Kobayashi's duration of ground motion exceeds 30 gal (1 gal = 1 cm/sec). The data for Tokachioki Earthquake of 16 May 1968, which had a magnitude of 7.9 and was recorded on an alluvial site, are useful in this interpretation because there is no such strongmotion record in the western United States. Since the duration data in Figure 7 are plotted in the near field, apparently, the duration for rock site could be interpreted as at the source (or focus); the soil site is in the epicentral region. Of course, the duration is longer on the ground surface than at the source. Based on this interpretation, Housner's maximum duration of 45 sec and Bolt's duration

Figure 7. Duration versus Richter magnitude in the near field

Figure 8. Comparison of near-field durations with Page et al. 17 and Bolt^{14}

Figure 9. Duration of strong shaking and the earthquake magnitude (1. Gutenberg and Richter, \log_{10} t₀ = 0.25 M - 0.7; 2. Housner, t₀ = 11.0 M - 52; 3. Ambraseys and Sarma; t₀ = 11.5 M - 53.0; and 4. Kobayashi, \log_{10} t₃₀ = 0.50 M - 2.08)

of 35 sec (+20 percent) for the magnitude 8.5 can be explained as the duration at the source (focus) of a rock site, but Page et al. and Kobayashi's maximum duration for the magnitude 8.5 corresponds to the upper-bound duration of this study for a soil site in an epicentral area.

Duration as a function of site intensity in the near and far fields

20. Figures 10 and 11 present duration as a function of MM intensity in the near field and far field, respectively. The boundary of the near field and far field has been defined by Krinitzsky and Chang. The upper-bound durations for the soil and rock sites in the near field are tabulated below. (The average MM intensity and site conditions

Figure 10. Duration versus MM intensity in the near field

Figure 11. Duration versus MM intensity in the far field

were defined by CIT and shown in Appendix B):

Local	Duration, sec							
MM Intensity	Rock Site	Soil Site						
V	6.4	17.5						
VI	7.3	20.0						
VII	8.3	23.0						
VIII	9.6	26.5						
IX	11.0	30.0						
X	12.5	35.0						
XI	14.5	40.0						
XII	16.5	46.0						

The ratio of duration for the soil site to the rock site in the near field is nearly 3 to 1. An important factor to be noted is that local MM intensity at the recording station is attenuated rapidly in the near field as is the duration. However, in the far field, the intensity and duration are attenuated much more slowly.

Duration as a function of distance

21. Figure 12 shows the duration of the strong motion $(acc \ge 0.05 \text{ g})$ of the San Fernando Earthquake of 9 February 1971 as a function of epicentral distance. The duration decreases as the distance increases. A generalized relationship between the duration and epicentral distance as a function of earthquake magnitudes is shown in Figure 13 for the soil site and in Figure 14 for the rock site. The extrapolations of other magnitudes are based on Figure 7 and Figure 12.

Duration as a function of site condition

22. The effect of site geological condition on duration is presented in Figures 2-8 and 10-14. Figure 12 shows the duration for soft versus hard rock to be about 2 to 1. Recently, Arnold and Vanmarcke studied the average intensity of the San Fernando Earthquake, 1971, derived from the power spectral density. The values show approximately a linear attenuation with distance from the epicentral area in the

Figure 12. Duration versus epicentral distance, San Fernando Earthquake, California, 9 February 1971 (M - 6.6)

Figure 13. Duration versus epicentral distance and magnitude for the soil site

Figure $1^{\frac{1}{4}}$. Duration versus epicentral distance and magnitude for the rock site

range of 50 km. Beyond this distance, the intensity seems to be more nearly constant. Since the duration of strong motion is related to peak intensity, the upper-bound line of duration in the near field (Figure 10) shows a linear decrease as the MM intensities decrease with distance. The durations are truncated in the far field of the soil site (Figure 13). Figure 15 also shows that the durations at 119.5 and 126 km are zero for the Kern County Earthquake (M = 7.7).

Analyses of Spectral Content

23. The digitized earthquake accelerograms (acc ≥ 0.05 g) of the western United States on magnetic tapes of CIT were processed through the modified Nigam and Jennings' double integration and response spectra computer programs, ²⁶ and principal peaks in the response spectra were chosen. The predominant peaks of acceleration, velocity, and displacement at the ground surface and their corresponding frequencies are listed in Appendix B. These data, and the related data in Appendix A, will be considered as major parameters for the spectral content analyses. The data processed in Appendix B were in the frequency range of 0.1-10 Hz. The frequencies of higher than 10 Hz have little effect on structures.

Frequency range chosen

24. Figures 15-17 show the response spectra of acceleration, velocity, and displacement, respectively, at the ground surface for the Kern County Earthquake, 21 July 1952 (M = 7.7). A total of 48-period data points were chosen and processed. The periods are from 0.01 to 0.1, 0.1 to 2.6, 2.6 to 5.0, 5.0 to 6.0, and 6.0 to 9.0 sec with respective increments of 0.01, 0.1, 0.2, 0.5, and 1.0 sec. Figure 15 shows the amplitudes of acceleration in a wide frequency range of 0.1-50 Hz, but the predominant peak accelerations are within 1-10 Hz. Above 10 Hz, the amplitudes of response spectrum become a constant value at the distance range of 43-126 km. The integrated particle velocities and displacements of Figures 16 and 17 do not present any information in the frequency range over 10 Hz. Evidently, the higher

Figure 15. Ground peak acceleration of horizontal components versus frequency for soil sites, Kern County, California, Earthquake, 21 July 1952 (M = 7.7)

for soil sites, Kern County, California, Earthquake, 21 July 1952 (M = 7.7)

components versus frequency for soil sites, Kern County, California, Earthquake, 21 July 1952 (M = 7.7)

horizontal components versus frequency

frequency range above 10 Hz recorded in the accelerograms does not affect or influence the particle velocity and displacement. Based on this relation, the frequency range of 0.1-10 Hz for this study is appropriate. All data in Appendix B were processed in this range. The incremental intervals for the 48 periods chosen were taken as follows:

Period sec	Increment sec
0.1 - 0.8	0.05
0.8 - 1.6	0.10
1.6 - 2.0	0.20
2.0 - 2.6	0.10
2.6 - 5.0	0.20
5.0 - 6.0	0.50
6.0 - 9.0	1.00

Appendix C lists the 48 periods and the corresponding frequency components, which were employed to define the spectral content.

25. The spectra dependent effects of magnitude, distance, recording site condition, and path are discussed in the following sections. The discussions are based mainly on the data presented in Appendixes A, B, and C.

Spectra dependent effect of magnitude

- 26. The acceleration peak spectra of the San Fernando Earthquake of 9 February 1971, which has a magnitude of 6.5, are plotted in Figures 18 and 19 for the soil and hard rock sites, respectively. Figures 20 and 21 show plots of the other earthquakes of magnitudes that range from 5.3 to 5.9 and 5.7 to 6.0, respectively, with soft and intermediate site conditions. Figure 22 presents the El Centro Earthquake of magnitude 6.7 (1940) and Western Washington Earthquake of magnitude 7.1 (1949), and Figures 15-17, the Kern County Earthquake of magnitude 7.7 (1952). An examination of the above-mentioned figures shows that the predominant frequencies are within the range of 1-6.67 Hz for all earthquakes used.
 - 27. No relationship was found between frequency and magnitude.

Figure 18. Ground peak acceleration spectra of horizontal components for soil sites at various distances and durations, San Fernando Earthquake, California, 9 February 1971 (M = 6.5)

Figure 19. Ground peak acceleration spectra of horizontal components for rock sites at various distances and durations, San Fernando Earthquake, California, 9 February 1971 (M = 6.5)

Figure 20. Ground peak acceleration spectra of horizontal components for soft and intermediate sites at various distances and durations for earthquake magnitudes of 5.3-5.9 in western United States

Figure 21. Ground peak acceleration spectra of horizontal components for soft and intermediate sites at various distances and durations for earthquake magnitudes of 5.7-6.0 in western United States

Figure 22. Ground peak acceleration spectra of horizontal components for soil sites at various distances and durations for earthquake magnitudes of 6.7-7.1 in western United States

Effect of distance on spectra

28. The acceleration response spectra of Figures 18-22 do not show any notable increase of the predominant period with distance (6.6 km $\leq \Delta <$ 126 km). Apparently, a reverse case is indicated in Figures 18 and 20. Of course, the distance was limited to within 90 km in this study due to the criteria of time duration (acc \geq 0.05 g). The peak acceleration spectrum has a wide frequency range from 1.0 to 7.0 Hz at a short epicentral distance.

Effect of site geology on spectra

29. A comparison of the acceleration spectra of Figures 18 and 19 for the soil and rock sites of the San Fernando Earthquake shows the soil site with a wider frequency range of maximum acceleration than the rock site, but the rock site has higher accelerations in the near field. The dispersion phenomena are more pronounced in the low-frequency (f) range (0.5 Hz > f > 0.1 Hz) for the soil site than for the rock site; the amplitude range for the soil site is between 0.0001 and 0.03 g and for the rock site between 0.001 and 0.1 g. However, it is noted that the maximum displacement is in the low-cycle region between 0.1 and 0.4 Hz (see paragraph 38). Kasiraj and Yao (1968)30 presented the results of a theoretical variation of parameter study that investigated damage based on a low-cycle fatigue damage factor using an inelastic model, which included a low-cycle fatigue hysteresis loop. A similar process probably influences the soil site more so than the rock site, so that the maximum displacement, low frequency, and longer duration are affected and show up as important damage criteria.

Spectra-dependent effect of path and topography

30. The effect of wave transmission path and topography, from the earthquake source to the recording station, on the ground motion history is well known. Especially, after the recording of 1.25 g at the Pacoima Dam during the San Fernando Earthquake, an extensive study of the effect of topography on the ground motion was made. Chang³¹ found a linear relationship between the ground motion and the elevation in the San Fernando Valley region of the San Fernando Earthquake. He used

this new relationship, elevation gradient method, to predict the acceleration of 2.29 g at the top of Kagel Mountain, which was also confirmed by the after-shock study.

31. In Figure 19, the acceleration response spectra recorded at the Santa Anita Reservoir, Arcadia (distance = 43.3 km), and the Lake Hughes Array No. 1, California (distance = 29.6 km), both on rock, have different characteristics in comparison with other paths. The former shows a linear increase in acceleration between 0.5 and 7.0 Hz and is nearly constant under 0.5 Hz; the latter shows maximum accelerations that changed from the usual spread of 2-7 Hz for other paths to a range of 1-2 Hz. The duration for the former is longer at the far distance than the near distance. Also, the accelerograms of the Lake Hughes Array (distance from 26.6 to 29.6 km) have lesser durations than those for other paths. The site of the Santa Anita Reservoir is nearly at the southeastern front of the San Gabriel Mountain range and the source-station path is almost entirely within the crystalline mass of the San Gabriel Mountains. The site of Lake Hughes Array No. 1 is at the northern edge of the San Gabriel Mountain range and on the north side of the San Andreas Fault. The source-station path for Lake Hughes Array No. 1 is probably not entirely within the more uniform basement complex, and also the discontinuity of the San Andreas Fault might cause the difference in wave spectra.

Spectra dependent effect of integration process (on acceleration, particle velocity, and particle displacement)

- 32. The integration procedures tend to smooth out the rapid oscillations of the acceleration and allow the lower frequencies to become predominant. As an example, let us consider the Kern County, California, Earthquake of 21 July 1952 (magnitude 7.7).
- 33. The highest frequency of the acceleration response spectra in Figure 15 is 50 Hz. However, the accelerations reached a constant value at 14 Hz; the effective frequency was from 0.1 to 10 Hz. Figure 15 also indicates that the predominant frequencies of the acceleration response spectra are between 1 and 5 Hz because the maximum

accelerations are in this frequency range. Figures 16 and 17 show that the predominant frequencies of the velocity response spectra and the displacement spectra are between 0.5 and 1.5 Hz and 0.1 and 0.4 Hz, respectively. Newmark's tripartite logarithmic response spectra technique 15 is based on these predominant frequency ranges. This also explains why the frequencies of maximum acceleration, maximum velocity, and maximum displacement cannot be correlated.

Average and Upper-Bound Spectral Shape

34. The spectral shape is dependent on magnitude, focal mechanism, propagation path, distance, duration, site geology, and damping ratio. At the present time, there is not enough instrumental data of strong earthquakes for a sufficient analysis of the above-mentioned parameters. Based on the total horizontal components of 201 in Appendix B, general average horizontal response spectra of acceleration, velocity, and displacement for the soil, intermediate rock, and hard rock sites are presented in Figures 23, 24, and 25, respectively. The upper-bound spectral shape can thus be extrapolated for the respective sites. Epicentral distances are in the range of 6-90 km. About 70 percent of these data were collected from the San Fernando, California, Earthquake of 9 February 1971. The amplitudes of acceleration, velocity, and displacement listed in Appendix B are not the relative amplitudes of response spectra, for they have to be multiplied by the dynamic amplification factor of 10, 6.67, and 5 for the soft, intermediate rock, and hard rock sites, respectively, to get the relative response spectral amplitudes. However, the average spectral shape is not changed. The processed spectral frequency range is between 0.1 and 10 Hz (see Appendix C), but the effective spectral peak frequency range is between 0.111 and 6.667 Hz (see Appendix B - predominant frequency range). Average acceleration-peak spectra

35. Figures 23, 24, and 25 show the acceleration-peak distributions within the frequency range of 0.111-6.667 Hz for the magnitudes of 5.3-7.7 at soil, intermediate rock, and hard rock sites, respectively.

Figure 23. Average ground peak acceleration spectrum (mode shape) and upper-bound envelope of horizontal components for soil sites for earthquake magnitudes of 5.3-7.7 in western United States

Figure 24. Average ground peak acceleration spectrum (mode shape) and upper-bound envelope of horizontal components for intermediate sites for earthquake magnitudes of 5.3-6.6 in western United States

Figure 25. Average ground peak acceleration spectrum (mode shape) and upper-bound envelope of vertical and horizontal components for rock sites for earthquake magnitudes of 5.6-6.6 in western United States

The average acceleration curves of Figures 23-25 are presented in Figure 26, which shows a narrow frequency band of maximum peak accelerations between 2.5 and 5 Hz for the hard rock site and a wider frequency band between 2 and 6 Hz for the intermediate rock and soil sites. The differences between intermediate rock and soil sites are slight.

36. The general pattern of the three average acceleration curves of Figure 26 indicates that the amplitude increases from the lowest at a frequency of 0.11 Hz to the highest at 4 Hz for the soil site and 5 Hz for the intermediate and hard rock sites. In the frequency range of 0.1-2.0 Hz on the average acceleration spectrum for the hard rock site, the acceleration seems to increase linearly with frequency, but the intermediate rock and soil sites do not. The acceleration distribution is between 0.00003 g at 0.11 Hz and 0.4 g at 5 Hz for the soil site and 0.00008 g at 0.11 Hz and 0.45 g at 5 Hz for the hard rock site, according to the extrapolation of the upper-bound envelopes. Both 0.4 and 0.45 g at the discrete frequency of 5 Hz are probably the upper-bound or near upper-bound accelerations for the soil and rock sites at or near the fault rupture. At this point, it should be noted that the 1.25 g of the Pacoima record was the resultant amplitude obtained from the sum of the amplitudes of the predominant frequencies.

Average velocity-peak spectra

37. Figures 27-29 present the upper-bound velocity-peak and the average velocity-peak curves for the western United States strong earthquakes. The maximum average velocity peaks are located in the frequency range of 0.2-1.5 Hz (Figures 27 and 28) for soil and intermediate rock sites and 0.2-2.5 Hz (Figure 29) for the hard rock site. The ground-surface peak-amplitudes are within the range of 0.4-25 cm/sec for soil and intermediate rock sites, and 0.6 to 36 cm/sec for the hard rock site. In general, the soil and intermediate sites have the approximate same characteristics in average velocity spectral content, but the hard rock site has a different characteristic, which shows three peak-regions of 0.2-0.3, 0.7-0.8, and 2-3 Hz. Since the soil and intermediate rock sites have common spectral characteristics, they can be combined into a single representative alluvial or sedimentary site.

Figure 26. Average ground peak acceleration spectra of horizontal components for various site conditions for earthquake magnitudes of 5.3-7.7 in western United States

Figure 27. Average ground peak velocity spectrum and upper-bound envelope of horizontal components for soil sites for earthquake magnitudes of 5.3-7.7 in western United States

Figure 28. Average ground peak velocity spectrum and upper-bound envelope of horizontal components for intermediate sites for earthquake magnitudes of 5.3-6.6 in western United States

Figure 29. Average ground peak velocity spectrum and upper-bound envelope of horizontal components for rock sites for earthquake magnitudes of 5.6-6.6 in western United States

The highest particle velocity of 36.5 cm/sec at 0.714 Hz (1.4 sec) was recorded on granite at the Pacoima Dam, about 9 km from the epicenter of the San Fernando Earthquake (magnitude 6.5).

Average displacement-peak spectrum

38. Figures 30-32 show the upper-bound displacement-peak envelopes and the average displacement-peak curves that indicate a general pattern of displacement spectra for soil, intermediate, and hard rock sites, respectively. The average displacement curve increases from a low of 6.67 Hz to a high in the range of 0.167-0.2 Hz and then decreases to about 0.1 Hz. The distribution of displacement amplitude is between 0.02 and 8 cm for soil and intermediate sites and between 0.015 and 16 cm for the hard rock site.

Figure 30. Average ground peak displacement spectrum and upper-bound envelope of horizontal components for soil sites for earthquake magnitude of 5.3-7.7 in western United States

Figure 31. Average ground peak displacement spectra and upper-bound envelope of horizontal components for intermediate sites for earthquake magnitude of 5.3-6.6 in western United States

Figure 32. Average ground peak displacement spectrum and upper-bound envelope of horizontal components for rock sites for earthquake magnitudes of 5.6-6.6 in western United States

PART IV: DISCUSSION

- 39. Figure 8 indicates that duration is taken to be the time interval between the first and last peaks of acceleration equal to or greater than 0.05 g, and that it is strongly dependent on the magnitude and site geology in the epicentral region (i.e in the near field). The upper-bound duration for a soil site has been extrapolated to 86 sec at magnitude 8.5. The corresponding upper-bound duration for rock is 43 sec at the source. Another interpretation is that the lower bound for duration is in the focal region and is the rupture time in rock along the fault plane. The upper bound for duration is on the soil site in the epicentral region. If the average duration of 75 sec is taken for the Alaska Earthquake (M = 8.3) and 65 sec for the San Francisco Earthquake (M = 8.2), then both durations of these earthquakes fit the curve of upper-bound duration on the soil site very well. Evidently, the curves of Bolt 4 and Page et al., 17 below magnitude 7, correspond approximately to the mean durations of this study. Above magnitude 7. the duration of Page et al. agrees with our upper-bound curve for a soil site, and Bolt's curve bends toward our duration for a hard rock site.
- 40. In comparison with the duration from worldwide data, Figure 9 shows the duration curves of Gutenberg and Richter, Housner, Ambraseys and Sarma, and Kobayashi. Kobayashi's duration data⁵ for the Tokachioki Earthquake of 16 May 1968 (M = 7.9) are especially in favor of our upper-bound duration for the soil site. However, Kobayashi⁵ obtained the duration (acc ≥ 0.05 g) of 63 sec for the Tokachioki Earthquake at Hachinohe Harbor, Japan, located about 180 km from the hypocenter.
- 41. All response spectral amplitudes of discrete frequencies were reduced to the ground motion or free-field motion, using the value of the critical damping ratio assigned to the recording site. The summation of the predominant peak amplitudes (acceleration, velocity, or displacement) of the corresponding discrete frequencies will approximately equal the maximum amplitude in time history. This is based on

the theory of the one degree of freedom system with the base shaken by a single frequency at a given time. Therefore, the relative response spectral amplitude does not contain mixed frequencies. This technique provides a simple decomposition procedure to separate the wave frequencies from a seismogram and to provide clues to determine the equivalent damping ratio of various geological sites. Since the equivalent damping ratio is a basic, important factor in earthquake engineering, if the equivalent damping ratio of the site is not known, then the response spectra cannot be considered adequate.

42. A complete analysis of response spectra of acceleration for the San Fernando Earthquake, 9 February 1971, as a function of distance, site geology, and duration, has been made in this report. The data of other moderate and strong earthquakes with magnitudes of 5.3-7.7 in the western United States have also been analyzed and presented.

43. The upper-bound and average curves of the mixed data of acceleration, velocity, and displacement for all magnitudes (5.3 < M < 7.7 including San Fernando Earthquake) are presented in Figures 23-25 and 27-32 for different site conditions. Since about 70 percent of the total data were collected from the San Fernando Earthquake of magnitude 6.5, and the average magnitude between 5.3 and 7.7 is also 6.5, the average curves of acceleration, velocity, and displacement are naturally represented by the magnitude 6.5. If the magnitude, epicentral distance, site condition, maximum amplitude, and duration of a design earthquake are given, a synthetic seismogram of displacement could be predicted by the following simple equation of free vibration at any point on the ground surface:

$$y(t, p_i, n_i, \phi_i, and c_i) = \Sigma_i c_i e^{-n_i p_i t} sin (p_i t + \phi_i)$$
 (1)

where

y = amplitudes of the time history of a synthetic seismogram

t = time duration (it is assumed that all predominant frequencies
 have the same duration)

p_i = 2 π times the frequency of vibration of the ith mode (predominant one)

- n = ratio of damping in ith mode to critical damping (small damping); but in this case, it is assumed that all predominant frequencies have the same damping
- φ; = phase angle of the ith normal mode
- c_i = amplitude or coefficient of each predominant frequency in the time history

In this equation, c_i can be chosen from the average smoothed ground-motion curves for different magnitude earthquakes, ϕ_i is the only parameter not known. Since it is assumed that all predominant frequencies are harmonic motions and have the same duration, or that all frequencies start to vibrate at the same time, then ϕ_i can be determined from the complex Fourier coefficients. An alternate way to compute ϕ_i is by a simple oscillator procedure, which is suggested by Khattri and Paul. 32 The predominant frequency band of all moderate and strong earthquakes (5.3 < M < 7.7) is found approximately in the range of 0.1-7 Hz. Therefore, the frequency content in a synthetic seismogram should be evenly distributed in this range.

44. The networks of strong-motion instruments for the United States are growing. Eventually, it will be practicable to have all of the representative response spectra for the entire country. For the present, the data used in this report are restricted to the western United States and are of limited extent.

PART V: CONCLUSIONS

- 45. From the investigation of the strong-motion data (acc \geq 0.05 g) of western United States earthquakes, the following conclusions may be reached:
 - a. The bracketed duration generally decreases with increasing distance.
 - \underline{b} . The duration is generally greater on soil sites than on rock sites.
 - c. The maximum duration at the source (focus) in rock for the magnitude 8.5 was extrapolated to be about 43 sec but the duration is twice as long on soil or alluvium.
 - d. The effective frequency content for all geological sites can be limited to a narrow range of 0.1-6.67 Hz. The possible maximum acceleration was found to be about 0.5 g at near-surface faulting for the discrete frequency range of 4-5 Hz.
 - e. The predominant frequency bands for maximum ground motions of acceleration, velocity, and displacement are established as follows:

	acceleration intermediate		2.0-6.0 Hz
Horizontal hard rock	acceleration site	for the	2.5-5.0 Hz*
	velocity for intermediate		0.3-2.0 Hz
Horizontal hard rock	velocity for	the	0.5-2.5 Hz
	displacement intermediate		0.15-0.3 Hz
Horizontal hard rock	displacement	for the	0.1-0.5 Hz

- \underline{f} . The acceleration response spectra do not positively indicate that the predominant periods increase with distance.
- g. The displacement response spectra do show the predominant periods increasing with distance.

^{*} Bolt found 10 Hz for Pacoima record.

REFERENCES

- 1. Gutenberg, B. and Richter, C. F., "Earthquake Magnitude, Intensity, Energy, and Acceleration," <u>Bulletin, Seismological Society of America</u>, Vol 46, No. 1, Jan 1956, pp 105-145.
- 2. Esteva, L. and Rosenblueth, E., "Espectros de Temblores a Distomcas Moderodas y Grandes," <u>Bol. Soc. Mex. Ing. Sism.</u>, Vol 2, No. 1, 1964, pp 1-18.
- 3. Housner, G. W., "Intensity of Earthquake Ground Shaking near the Causative Fault," Proceedings, Third World Conference on Earthquake Engineering, New Zealand, Vol 1, 1965, pp 94-111.
- 4. Bolt, B. A., "Duration of Strong Ground Motion," <u>Proceedings</u>, <u>Fifth World Conference on Earthquake Engineering</u>, Rome, Vol 1, 6-D, Paper No. 292, 1973.
- 5. Kobayashi, Y., "Effects of Earthquakes on Ground (II) Ground Motions and Pore-Water Pressure in Soils," <u>Journal</u>, <u>Physics of the Earth</u>, Vol 19, No. 3, 1971, pp 231-241.
- 6. Husid, R., "Caracteristicas de Terremotos. Analisis General," Revista del IDIEM, Vol 8, No. 1, 1969, pp 21-42.
- 7. Arias, A., "A Measure of Earthquake Intensity," Seismic Design for Nuclear Power Plants, R. Hansen, ed., Massachusetts Institute of Technology Press, Cambridge, 1970, pp 438-483.
- 8. Trifunac, M. D. and Brady, A. G., "A Study on the Duration of Strong Earthquake Ground Motion," <u>Bulletin, Seismological Society of America</u>, Vol 65, No. 3, Jun 1975, pp 581-626.
- 9. Hays, W. W., "A Note on the Duration of Earthquake and Nuclear-Explosion Ground Motions," <u>Bulletin, Seismological Society of America</u>, Vol 65, No. 4, Aug 1975, pp 875-883.
- 10. Dobry, R. et al., "Influence of Magnitude, Site Conditions and Distance on Significant Duration of Earthquakes," Proceedings, Sixth World Conference on Earthquake Engineering, New Delhi, Vol 2, Jan 1977, pp 131-136.
- 11. Vanmarcke, E. H. and Lai, S. S., "Strong-Motion Duration of Earth-quakes," Publication No. R77-16, Jul 1977, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass.
- 12. Housner, G. W., "Measures of Severity of Earthquake Ground Shaking,"
 Proceedings, U. S. National Conference on Earthquake Engineering,
 Earthquake Engineering Research Institute, Oakland, Calif.,
 Jun 1975, pp 25-33.
- 13. Kobayashi, Y., "Duration of Strong Ground Motion," discussion of Bolt's paper, Proceedings, Fifth World Conference on Earthquake Engineering, Rome, 1973, pp 1314-1315.

- 14. Brady, A. G., Trifunac, M. D., and Hudson, D. E., "Analyses of Strong Motion Earthquake Accelerograms," Response Spectra; and Fourier Amplitude Spectra, Vols III and IV, Aug 1972 and Apr 1975, respectively, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, Calif.
- 15. Newmark, N. M., "A Study of Vertical and Horizontal Earthquake Spectra," WASH-1255, UC-11, Apr 1973, Directorate of Licensing, U. S. Atomic Energy Commission, Washington, D. C.
- 16. Blume, J. A., "Recommendations for Shape of Earthquake Response Spectra," WASH-1254, UC-11, Feb 1973, Directorate of Licensing, U. S. Atomic Energy Commission, Washington, D. C.
- 17. Page, R. A. et al., "Ground Motion Values for Use in the Seismic Design of the Trans-Alaska Pipeline System," Geological Survey Circular 672, 1972, U. S. Geological Survey, Washington, D. C.
- 18. Duke, C. M. et al., "Effects of Site Classification and Distance on Instrumental Indices in the San Fernando Earthquake," UCLA Eng-7247, Jun 1972, University of California, Los Angeles, Calif.
- 19. Donovan, N. C., "A Statistical Evaluation of Strong Motion Data Including the Feb. 9, 1971 San Fernando Earthquake," Proceedings, Fifth World Conference on Earthquake Engineering, Rome, Vol 1, 1973, pp 252-261.
- 20. Seed, H. B. et al., "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source and Local Site Conditions for Moderately Strong Earthquakes," <u>Bulletin</u>, <u>Seismological Society of America</u>, Vol 66, Aug 1976, pp 1323-1342.
- 21. Housner, G. W., "Calculating the Response of an Oscillator to Arbitrary Ground Motion," <u>Bulletin, Seismological Society of America</u>, Vol 31, Apr 1941, pp 143-149.
- 22. Biot, M. A., "Analytical and Experimental Methods in Engineering Seismology," Proceedings, American Society of Civil Engineers, Vol 68, No. 1, Jan 1942, pp 49-70.
- 23. Housner, G. W. et al., "Spectrum Analysis of Strong-Motion Earthquakes," <u>Bulletin</u>, <u>Seismological Society of America</u>, Vol 43, No. 1, Apr 1953, pp 97-119.
- 24. Hudson, D. E., "Response Spectrum Techniques in Engineering Seismology," <u>Proceedings</u>, World Conference on Earthquake Engineering, Earthquake Engineering Research Institute and the University of California, Berkeley, Calif., 1956, p 4-1.
- 75. "Some Problems in the Application of Spectrum Techniques to Strong-Motion Earthquake Analysis," Bulletin, Seismological Society of America, Vol 52, No. 2, Apr 1962, pp 417-430.

- 26. Nigam, N. C. and Jennings, P. C., "Digital Calculation of Response Spectra from Strong-Motion Earthquake Record," Jun 1968, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, Calif.
- 27. Krinitzsky, E. L. and Chang, F. K., "State-of-the-Art for Assessing Earthquake Hazards in the United States; Earthquake Intensity and the Selection of Ground Motions for Seismic Design," Miscellaneous Paper S-73-1, Report 4, Sep 1975, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 28. Miller, G. F. and Pursey, H., "On the Partition of Energy Between Elastic Waves in a Semi-Infinite Solid," <u>Proceedings</u>, Royal Society of London, A, Vol 233, 1955, pp 55-69.
- 29. Arnold, P. and Vanmarcke, E. H., "Ground Motion Spectral Content: The Influence of Local Soil Conditions and Site Azimuth," <u>Proceedings, Sixth World Conference on Earthquake Engineering</u>, New Delhi, Vol 2, Jan 1977, pp 113-118.
- 30. Kasiraj, I. and Yao, J. T. P., "Low-Cycle Fatigue Failure of Seismic Structures," Technical Report CE-11(68) NSF-065, Sep 1968, Bureau of Engineering Research, University of New Mexico, Albuquerque, N. Mex.
- 31. Chang, F. K., "An Empirical Interpretation of the Effects of Topography on Ground Motion of the San Fernando, California, Earthquake, 9 February 1971," Miscellaneous Paper S-76-1, Mar 1976, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 32. Khattri, K. N. and Paul, D. K., "A New Technique for Generating Synthetic Accelerogram Corresponding to Smooth Design Response Spectra," Proceedings, Sixth World Conference on Earthquake Engineering, New Delhi, Vol 2, Jan 1977, p 2-520.

APPENDIX A: STRONG MOTION DATA, EARTHQUAKES OF WESTERN UNITED STATES*

Record	Station Location	Date of Earthquake	Epicentral Location	Epicentral Distance km	Richter Magnitude M	Maximum MM Intensity	Local MM Intensity	Site Conditions**
Al	El Centro Site Imperial Valley	5-18-40	32°44'N	9.3	6.7	x	VIII	s
A 2	Northwest California Earthquake,	10-7-51	115°27'W 40°17'N	56.3	5.8	VII	V	I
A3	Ferndale City Hall Kern County Earthquake, California,	7-21-52	124°48'W 35°00'N					
A4	Cal Tech Athenaeum Kern County Earthquake, California,	7-21-52	119°02'W 35°00'N	126.0 43.0	7.7	XI	VII	S
A5	Taft Lincoln School Kern County Earthquake, California, Santa Barbara Courthouse	7-21-52	119°02'W 35°00'N 119°02'W	89.5	7.7	XI		S
А6	Kern County Earthquake, California, Hollywood Storage Basement	7-21-52	35°00'N 119°02'W	119.5	7.7	XI		s
A8	Eureka Earthquake, Eureka Federal Building	12-21-54	32°38'N	24.0	6.5	VII		I
A9	Eureka Earthquake, Ferndale City Hall	12-21-54	32°38'N 117°07'W	40.0	6.5			I
A10	San Jose Earthquake, San Jose Bank of America Basement	9-4-55	37°22'N 121°53'W	9.8	5.5			S
A15	San Francisco Earthquake, San Francisco Golden Gate Park	3-22-57	37°40'N 122°29'W	11.8	5.3			I
A16	San Francisco Earthquake, San Francisco State Building Basement	3-22-57	37°40'N 122°29'W	14.6	5.3			I
A18	Hollister Earthquake	4-8-61	36°40'N 121°18'W	40.0	5.6		1	S
A19	Borrego Mt. Earthquake	4-8-68	33°09'N 116°08'W	69.8	6.5		VI	S
B21	Long Beach Earthquake, Vernon CMD Building	3-10-33	33°35'N 117°59'W	47.8	6.3	IX	VI	S
B22	Southern California Earthquake, Hollywood Storage Building Fenthouse	10-2-33	33°47'N 118°08'W	38.2	5.4	VI	v	s
P24	Lower California Earthquake, El Centro Imperial Valley	12-30-34	32° 12 'N 115° 30 'W	60.8	6.5	IX	VI	S
B25	Helena, Montana, Earthquake, Helena, Montana, Carroll College	10-31-35	46°37'N 111°58'W	6.6	6.0	VIII	VII	I
B26	First Northwest California Earthquake Ferndale City Hall	, 9-11-38	40° 18'N 124° 48'W	55.3	5.5	vi	vi	I
B28	Western Washington Earthquake, District Engineers Office at Army Base, Seattle	4-13-49	46°06'N 122°42'W	57.8	7.1	VIII	VIII	S
B29	Western Washington Earthquake, Olympia, Washington, Highway Test Lab	4-13-49	46°06'n 122°42'w	16.8	7.1	VIII	VIII	S
В30	Northern California Earthquake, Ferndale City Hall	9-22-52	40° 12 'N 124° 25 'W	43.2	5.5	VII	VI	S
B31	Wheeler Ridge, California, Earthquake, Taft Lincoln School Tunnel	1-12-54	35°00'N 119°01'W	43.0	5.9	VIII	VI	s
B32	Puget Sound, Washington, Earthquake, Olympia, Washington	4-29-65	47°24'N 122°18'W	61.1	6.5	VIII	VII	S
В33	Parkfield, California, Earthquake, Cholame, Shandon Array No. 2	6-27-66	35°54'N 120°54'W	31.9	5.6	VII	VII	S
В34	Parkfield, California, Earthquake, Cholame, Shandon Array No. 5	6-27-66		32.4	5.6		VI	s
B35	Parkfield, California, Earthquake, Cholame, Shandon Array No. 8	6-27-66		34.1	5.6		VI	S
в36	Parkfield, California, Earthquake, Cholame, Shandon Array No. 12	6-27-66		36.5	5.6		VI	S
B37	Parkfield, California, Earthquake, Temblor No. 2	6-27-66	•	31.0	5.6	•	VII	Н
C41	San Fernando Earthquake, Pacoima Dam	2-9-71	34°24'N 118°23'42"W	9.1	6.6	XI	X	Н
c48	San Fernando Earthquake, 8244 Orion Boulevard, First Floor Holiday Inn			22.4			VII	S
C51	San Fernando Earthquake, 250 E. First Street Basement, Los Angeles			42.8			VII	s
C54	San Fernando Earthquake, 445 Figueroa Street Subbasement Los Angeles			41.9			VII	I
D56	San Fernando Earthquake, Old Ridge Route, Castaic			28.6			VI	I
D57	San Fernando Earthquake, Hollywood Storage Basement	7	•	37.1			VII	S
D58	San Fernando Earthquake, Hollywood Storage P. E. Lot	•	34°24'N 118°23.7'W	37.1	1	•	VII	S

^{*} Uniformly processed at California Institute of Technology.
** Site conditions: S = soft, I = intermediate, and H = hard rock.

Record	Station Location	Date of Earthquake	Epicentral Location	Epicentral Distance km	Richter Magnitude M	Maximum MM Intensity	Local MM Intensity	Site Conditions
D59	San Fernando Earthquake,	2-9-71	34°24'N	39.8	6.6	XI	VII	S
D62	1901 Avenue, the Stars Subbasement San Fernando Earthquake, 1640 S. Marengo Street, First		118°23.7'W	42.8			1	s
D65	Floor, Los Angeles San Fernando Earthquake, 3710 Wilshire Boulevard Basement,			40.0				s
D68	Ios Angeles San Fernando Earthquake, 7080 Hollywood Boulevard Basement,			35.0				S
E72	Los Angeles San Fernando Earthquake, 4680 Wilshire Boulevard Basement, Los Angeles			39.5				S
E75	San Fernando Earthquake, 3470 Wilshire Boulevard Sub-			40.1				s
E78	basement, Los Angeles San Fernando Earthquake, Water & Power Building Basement,			42.5			-	I
E81	Los Angeles San Fernando Earthquake, Santa Felicia Dam, California,			32.9			VI	I
E83	Outlet Works (Piru) San Fernando Earthquake, 3407 6th Street, Basement,			40.0			VII	S
F86	Los Angeles San Fernando Earthquake, Vernon, CMD Building			49.4			V	S
F88	San Fernando Earthquake,			34.1			VII	I
F89	633 East Broadway, Glendale San Fernando Earthquake,			44.0		100		s
F92	808 S. Olive, Los Angeles San Fernando Earthquake, 2011 Zonal Avenue Basement,			43.1				I
F95	Los Angeles San Fernando Earthquake, 120 N. Robertson Boulevard Sub-			37.4				s
F98	basement, Los Angeles San Fernando Earthquake, 646 S. Olive Avenue Basement, Los Angeles			42.7				S
F103	San Fernando Earthquake, Pumping Plant, Pearblossom,			45.4			v	s
F104	California San Fernando Earthquake, Oso Pumping Plant, Gorman, California			52.2			v	I
F105	San Fernando Earthquake, UCLA Reactor Lab (Boelter Hall), Los Angeles			38.7			VII	S
G106	San Fernando Earthquake, Seismological Lab, CIT, Pasadena			36.1				н
G107	San Fernando Earthquake, Athenaeum, CIT, Pasadena			39.8				S
G108	San Fernando Earthquake, Millikan Library, CIT, Pasadena			39.8				S
G110	San Fernando Earthquake, Jet Propulsion Laboratory, CIT, Pasadena			31.5				I
G112	San Fernando Earthquake, 611 W. Sixth Street, Los Angeles			42.5			1	S
G114	San Fernando Earthquake, Fire Station, Palmdale			32.3			VI	S
H115	San Fernando Earthquake, 15250 Ventura Boulevard, Los Angeles			29.3			VII	S
H121	San Fernando Earthquake,			43.1			VII	S
1128	900 S. Fremont Avenue, Alhambra San Fernando Earthquake, 435 N. Oakhurst Avenue,			36.0				s
1131	Beverly Hills San Fernando Earthquake, 450 N. Roxbury Drive, Beverly			38.2			VI	S
1134	Hills San Fernando Earthquake, 1800 Century Park East,			38.9			VII	S
1137	Los Angeles San Fernando Earthquake, 15910 Ventura Boulevard, Los Angeles	+	•	29.0	+	+	VII	S

Record	Station Location	Date of Earthquake	Epicentral Location	Epicentral Distance	Richter Magnitude M	Maximum MM Intensity	Local MM Intensity	Site Conditions**
J141	San Fernando Earthquake.	2-9-71	34°24'N	29.6	6.6	XI	VI	Н
J142	Lake Hughes Array No. 1 San Fernando Earthquake,		118°23.7'W	26.8				Н
J143	Lake Hughes Array No. 4 San Fernando Earthquake,			26.6				н
J144	Lake Hughes Array No. 9 San Fernando Earthquake,			23.3	1000			I
J145	Lake Hughes Array No. 12 San Fernando Earthquake,			34.9			VII	s
024)	15107 Vanowen Street, Los Angeles			3,				
J148	San Fernando Earthquake, 616 S. Normandie Avenue, Los Angeles			39.9				I
1166	San Fernando Earthquake, 3838 Lankershim Boulevard, Sheraton Universal Hotel, Los Angeles			30.8				I
M176	San Fernando Earthquake, 1150 S. Hill Street, Los Angeles			42.9				s
N185	San Fernando Earthquake,			75.6			v	I
N186	Carbon Canyon Dam, Brea San Fernando Earthquake, Whittier Narrows Dam,			54.1		400	vī	s
	Whittier							
N187	San Fernando Earthquake, San Antonio Dam, Upland			72.1			VI	S
N188	San Fernando Earthquake, 1880 Century Park East,			38.9			VII	S
N192	Los Angeles San Fernando Earthquake, 2500 Wilshire Boulevard,			40.7				I
0198	Los Angeles San Fernando Earthquake, Griffith Park Observatory, Los Angeles			34.0				Н
0199	San Fernando Earthquake, 1625 Olympic Boulevard, Los Angeles			42.0				S
0207	San Fernando Earthquake,			32.8			ıv	н
P214	Fairmont Reservoir, Fairmont San Fernando Earthquake, 4867 Sunset Boulevard,			36.2			AII	I
P217	Los Angeles San Fernando Earthquake, 3345 Wilshire Boulevard,			40.0			VII	s
P221	Los Angeles San Fernando Earthquake,			43.3			VI	Н
P223	Santa Anita Reservoir, Arcadia San Fernando Earthquake, Puddingstone Reservoir, San Dimas			65.0			v	Н
Q233	San Fernando Earthquake, 14724 Ventura Boulevard, Los Angeles			29.3			VII	s
Q236	San Fernando Earthquake, 1760 N. Orchid Avenue, Los Angeles			34.9				s
9239	San Fernando Earthquake, 9100 Wilshire Boulevard, Los Angeles			38.0				S
Q241	San Fernando Earthquake, 800 W. First Street, Los Angeles			41.8				I
R244	San Fernando Earthquake, 222 Figueroa Street, Los Angeles			41.9				r
R246	San Fernando Earthquake, 6464 Sunset Boulevard, Los Angeles			35.7				S
R248	San Fernando Earthquake, 6430 Sunset Boulevard, Los Angeles			35.7				g
R249	San Fernando Earthquake, 1900 Avenue of the Stars, Los Angeles			39.2				S
R251	San Fernando Earthquake, 234 S. Figueroa Street, Los Angeles			41.8				I
R253	San Fernando Earthquake, 533 S. Fremont Avenue, Los Angeles			42.0				S
\$255	San Fernando Earthquake, 6200 Wilshire Boulevard, Los Angeles			38.9				I
s258	San Fernando Earthquake, 3440 University Avenue, Los Angeles	+	+	44.6	+	+	+	S

Record	Station Location	Date of Earthquake	Epicentral Location	Epicentral Distance km	Richter Magnitude M	Maximum MM Intensity	Local MM Intensity	Site Conditions
s261	San Fernando Earthquake, 1177 Beverly Drive, Los Angeles	2-9-71	34°24'N 118°23.7'W	39.6	6.6	XI	VII	S
s262	San Fernando Earthquake, 5900 Wilshire Boulevard, Los Angeles			39.0				I
S265	San Fernando Earthquake, 3411 Wilshire Boulevard, Los Angeles			39.9			0.0	I
s266	San Fernando Earthquake, 3550 Wilshire Boulevard, Los Angeles			40.0			1	S
s267	San Fernando Earthquake, 5260 Century Boulevard, Los Angeles			52.0			VI	S
U297	Helena, Montana, Federal Building	11-28-35	46°37'N	5.8	1	VI	VI	Н
0299	Santa Barbara Courthouse, California	6-30-41	34°22'N 119°35'W	35.9	5.9	VIII	AIII	S
U 301	Northern California Earthquake, Public Library, Hollister, California	3- 9-49	37°06'N 121°18'W	29.3	5.3	AII	VII	S
U 30 5	Central California Earthquake, Public Library, Hollister, California	4-25-54	36°48'N 121°48'W	36.2	5.3	VII	VI	S
U308	Northern California Earthquake, Ferndale City Hall	6- 5-60	40°49'N 124°55'W	60.3	5.7	VI	VI	I
U309	Central California Earthquake, Public Library, Hollister, California	4- 8-61	36°30'N 121°18'W	40.0	5.7	AII	VII	S
U312	Northern California Earthquake, City Hall, Ferndale	12-10-67	40° 30' N 124° 36' W	30.6	5.8	VI	VI	S
V321	San Francisco Earthquake	3-22-57	37°40'N 122°29'W	24.3	5.3	VII	V	S

APPENDIX B: DURATIONS AND FREQUENCY CONTENTS OF STRONG MOTION RECORDS, EARTHQUAKES OF WESTERN UNITED STATES*

ecord	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Fredominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Velor Frequency (Period) Hz (sec)	Amplitude cm/sec	Predominant Displac Frequency (Feriod) Hz (sec)	Amplitude
٨١	S00°E	341.7	25.86	4.000 (0.25) 1.818 (0.55) 0.625 (1.60) 0.435 (2.30) 0.167 (6.00)	0.0922 0.0916 0.0195 0.0194 0.0027	1.000 (1.00) 1.818 (0.55) 0.351 (2.80) 1.429 (0.70) 0.111 (9.00) 4.000 (0.25)	9.0595 8.0128 8.0061 6.8986 3.8040	0.400 (2.50) 0.111 (9.00) 0.167 (6.00) 1.000 (1.00) 0.833 (1.20) 1.538 (0.65)	2.7437 2.5968 2.3915 1.2784 1.1797 0.7738
	890°W	210.1	25.40	2.000 (0.50) 4.000 (0.25) 1.250 (0.80) 0.833 (1.20) 0.476 (2.10)	0.0638 0.0530 0.0435 0.0348 0.0223	0.476 (2.10) 0.333 (3.00) 0.182 (5.50) 0.278 (3.60) 0.208 (4.80)	3.4109 8.2422 7.7652 6.9210 6.8890 6.8131	0.143 (7.00) 0.227 (4.40) 0.276 (2.10) 0.833 (1.20) 0.667 (1.50)	5.6332 3.7316 2.4310 1.2374 1.0593
	UP	206.3	13.26	2.875 (0.35) 1.667 (0.60) 1.250 (0.80) 0.909 (1.10) 0.769 (1.30) 0.667 (1.50) 0.556 (1.80) 0.476 (2.10)	0.0236 0.0181 0.0088 0.0063 0.0050 0.0045 0.0044	1.538 (0.65) 0.385 (2.60) 0.143 (7.00) 0.182 (5.50) 0.227 (4.40) 0.500 (2.00) 1.000 (1.00) 2.857 (0.35)	1.7490 1.6416 1.6103 1.5422 1.3799 1.3579 1.2935 1.2765	0.111 (9.00) 0.227 (4.40) 0.385 (2.60) 0.667 (1.50) 0.909 (1.10) 1.538 (0.65) 1.111 (0.90) 2.500 (0.40)	1.3922 0.8387 0.5817 0.2520 0.1864 0.1684 0.1591 0.0786
A2	844°W	102.0	0.40	5.000 (0.20) 2.500 (0.40) 3.333 (0.30) 1.429 (0.70)	0.0296 0.0241 0.0183 0.0116	2.500 (0.40) 1.333 (0.75) 5.000 (0.20) 0.455 (2.20)	1.5364 1.1972 0.9226 0.8226	0.111 (9.00) 0.357 (2.80) 1.429 (0.70) 0.667 (1.50)	0.4698 0.2441 0.1402 0.1135
	N46°W	109.5	2.48	0.714 (1.40) 3.333 (0.30) 2.500 (0.40) 5.000 (0.20) 1.250 (0.80)	0.0023 0.0327 0.0289 0.0273 0.0100	0.294 (3.40) 2.222 (0.45) 0.455 (2.20) 3.333 (0.30) 1.250 (0.80) 0.909 (1.10) 0.111 (9.00)	0.6449 1.8545 1.4768 1.4753 1.3100 1.0593 0.7457	2.222 (0.45) 0.143 (7.00) 0.476 (2.10) 1.250 (0.80) 0.909 (1.10) 2.222 (0.45) 3.333 (0.30)	0.1090 0.4031 0.2949 0.1574 0.1488 0.1347 0.0730
A4	N21°E	152.7	19.50	2.857 (0.35) 1.429 (0.70) 2.000 (0.50) 5.000 (0.20)	0.0585 0.0383 0.0380 0.0347 0.0308	1.429 (0.70) 1.250 (0.80) 0.833 (1.20) 2.857 (0.35) 2.000 (0.50)	4.4133 3.8653 3.5364 2.8761 2.8670	0.111 (9.00) 0.250 (4.00) 0.357 (2.80) 0.227 (4.40)	0.9739 0.9384 0.9109 0.8119 0.6682
	\$69°E	175.9	15.12	1.250 (0.80) 2.222 (0.45) 2.857 (0.35) 5.000 (0.20) 1.538 (0.65) 1.250 (0.80) 0.625 (1.60) 0.833 (1.20)	0.0573 0.0448 0.0427 0.0305 0.0286 0.0166 0.0146	0.625 (1.60) 2.222 (0.45) 1.111 (0.90) 0.313 (3.20) 0.435 (2.30) 1.667 (0.60) 0.263 (3.80)	4.0982 3.9551 3.7878 3.3328 2.9447 2.8562 2.8279	0.556 (1.80) 0.111 (9.00) 0.278 (3.60) 0.238 (4.20) 0.625 (1.60) 0.200 (5.00) 0.833 (1.20) 1.111 (0.90)	1.7483 1.1044 1.0859 1.0493 0.9558 0.5200 0.4866
	UP	102.9	13.54	2.857 (0.350) 6.667 (0.150) 4.000 (0.25) 1.667 (0.60) 0.833 (1.20) 1.000 (1.00)	0.0359 0.0270 0.0246 0.0161 0.0077 0.0004	0.263 (3.80) 2.857 (0.35) 0.625 (1.60) 2.222 (0.45) 1.429 (0.70) 1.667 (0.60)	1.8927 1.8127 1.7067 1.6663 1.6081 1.5394	0.111 (9.00) 0.263 (3.80) 0.200 (5.00) 0.435 (2.30) 0.625 (1.60) 1.333 (0.75)	1.3029 0.8152 0.7590 0.3482 0.3355 0.1666
A5	N42°E	87.8	13.64	2.000 (0.50) 2.500 (0.40) 0.909 (1.10) 0.714 (1.40) 1.429 (0.70) 1.250 (0.80) 4.000 (0.25)	0.0321 0.0253 0.0217 0.0212 0.0211 0.0210 0.0209	0.625 (1.60) 0.400 (2.50) 0.476 (2.10) 1.250 (0.80) 2.000 (0.50) 1.429 (0.70) 0.167 (6.00)	4.4544 3.2212 2.9104 2.5313 2.4026 2.2841 1.0752	0.667 (1.50) 0.417 (2.40) 0.200 (5.00) 0.167 (6.00) 0.250 (4.00) 1.250 (0.80) 1.818 (0.55)	1.0869 1.0288 0.7357 0.7242 0.5544 0.3325 0.2025
	548°€	128.6	8.62	1.111 (0.90) 2.000 (0.50) 3.333 (0.30) 0.625 (1.60) 0.500 (2.00)	0.0243 0.0273 0.0247 0.0184 0.0180	0.157 (2.00) 0.500 (2.00) 1.000 (1.00) 0.333 (3.00) 0.182 (5.50) 2.857 (0.35)	6.0188 5.0649 2.8524 2.8211 1.0558	0.500 (2.00) 0.500 (2.00) 0.217 (4.60) 0.250 (4.00) 0.357 (2.80) 0.143 (7.00)	1.7740 1.4349 1.3447 1.0548 0.8483
A8	N11°W	164.5	3.80	2.500 (0.40) 3.333 (0.30) 2.000 (0.50) 0.909 (1.10) 0.357 (2.80) 0.313 (3.20)	0.0652 0.0618 0.0521 0.0427 0.0142 0.0139	0.263 (3.80) 0.217 (4.60) 0.833 (1.20) 0.500 (2.00) 1.667 (0.60) 2.500 (0.40)	8.5207 7.8930 7.2571 5.5037 4.8079 3.8885	0.217 (4.60) 0.125 (8.00) 0.556 (1.80) 0.833 (1.20) 1.667 (0.60) 2.500 (0.40)	4.4951 3.4626 1.5033 1.3163 0.4007 0.2555
	N79°E	252.7	6.02	0.313 (3.20) 2.500 (0.40) 1.667 (0.60) 0.556 (1.80)	0.1064 0.0861 0.0222	2.500 (0.40) 0.500 (2.00) 1.538 (0.65) 0.263 (3.80) 0.182 (5.50) 2.222 (0.45)	8.4706 8.4621 7.6352 7.4202 6.9466	0.238 (4.20) 0.111 (9.00) 0.500 (2.00) 1.538 (0.65) 2.222 (0.45)	3.6228 3.0650 1.8511 0.8774 0.5183
	UP	81.3	0.80	6.667 (0.15) 2.000 (0.50) 1.333 (0.75) 0.313 (3.20)	0.0294 0.0118 0.0118 0.0017	1.111 (0.90) 0.111 (9.00) 0.714 (1.40) 3.333 (0.30)	1.4840 1.2076 1.1297 0.8150	0.111 (9.00)	1.7858
А9	N## _o E	155.7	10.04	2.500 (0.40) 1.333 (0.75) 0.667 (1.50)	0.0473 0.0435 0.0400	0.625 (1.60) 1.333 (0.75) 2.500 (0.40) 2.000 (0.50)	10.0196 4.6121 2.6394 2.2559	0.182 (5.50) 0.227 (4.40) 0.278 (3.60) 0.556 (1.80)	3.2016 3.0994 2.8530 2.8420
	N46°W	197.3	8.50	1.250 (0.80) 1.818 (0.55) 6.667 (0.15) 2.857 (0.35)	0.0450 0.0415 0.0397 0.0306	0.714 (1.40) 1.000 (1.00) 0.357 (2.80) 1.818 (0.55) 2.500 (0.40)	6.9396 5.7930 3.5270 3.4673 1.4639	0.556 (1.80) 0.667 (1.50) 0.111 (9.0) 0.357 (2.80)	1.6063 1.5355 1.4590
A10	N31°W	100.2	0.82	3.333 (0.30) 1.667 (0.60)	0.0417 0.0137	3.333 (0.30) 1.333 (0.75) 0.111 (9.00)	1.7424 1.6648 1.1959	0.111 (9.00) 1.111 (0.90) 2.500 (0.40)	0.72 09 0.1867 0.1055
	N59°E	105.8	0.42	5.000 (0.20) 0.909 (1.10)	0.0450	5.000 (0.20) 2.000 (0.50) 0.625 (1.60)	1.1959 1.3687 0.5576 0.4505	0.111 (9.00) 2.857 (0.35) 0.667 (1.50)	0.0580 0.0541 0.0493

[•] All data processed from Tape NIS 130, 131, and 130 of California Institute of Technology.

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	ation Peaks Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	Amplitude	Predominant Displa Frequency (Period) Hz (sec)	Amplitude
A10	N59°E	105.8	0.42			0.111 (9.00) 1.000 (1.00)	0.4194	5.000 (0.20) 1.818 (0.55)	0.0445
A15	N10°E 880°E	81.8	0.28	4.000 (0.25) 6.667 (0.15) 1.111 (0.90) 0.500 (2.00) 5.000 (0.20) 2.500 (0.40)	0.0351 0.0314 0.0041 0.0017 0.0438 0.0167	3.333 (0.30) 1.250 (0.80) 0.111 (9.00) 0.500 (2.00) 4.000 (0.25) 2.222 (0.45)	1.3971 0.7843 0.7505 0.7129 1.5268 1.2154	0.111 (9.00) 1.000 (1.00) 3.333 (0.30) 1.429 (0.70) 0.111 (9.00) 0.769 (1.30)	0.4620 0.0876 0.0662 0.0592 0.2200 0.1337
A16	s09°w	83.8	0.30	1.538 (0.65) 4.000 (0.25) 6.667 (0.15) 2.000 (0.50) 0.714 (1.40)	0.0067 0.0418 0.0285 0.0156 0.0021	1.000 (1.00) 3.333 (0.30) 1.667 (0.60) 2.500 (0.40) 0.667 (1.50)	1.1881 1.8609 1.5137 1.3746 1.0161	0.111 (9.00) 0.294 (3.40) 0.476 (2.10) 1.818 (0.55)	0.1175 0.2986 0.2313 0.1824 0.1087
	s81°w	55.1	1.26	2.500 (0.40) 6.667 (0.15) 1.538 (0.65) 0.400 (2.50)	0.0214 0.0213 0.0150 0.0016	1.333 (0.75) 2.222 (0.45) 0.556 (1.80) 0.294 (3.40)	1.4840 1.4570 0.7797 0.7625	0.111 (9.00) 1.333 (0.75) 0.833 (1.20) 0.556 (1.80)	0.7416 0.1787 0.1654 0.1374
A18	SO1°W	63.4	10.00	1.818 (0.55) 1.429 (0.70) 3.333 (0.30) 6.667 (0.15) 0.909 (1.10)	0.0271 0.0225 0.0187 0.0181 0.0122	1.333 (0.75) 0.909 (1.10) 1.818 (0.55) 0.769 (1.30) 0.400 (2.50)	2.6131 2.3438 2.2093 2.1556 1.3856	0.167 (6.00) 0.417 (2.40) 0.714 (1.40) 0.500 (2.00) 0.909 (1.10)	0.8176 0.4539 0.4063 0.3679 0.3637
	N89°W	175.7	9.04	2.500 (0.40) 1.333 (0.75) 0.769 (1.30) 0.556 (1.80)	0.0552 0.0250 0.0180 0.0072	0.769 (1.30) 2.222 (0.45) 1.333 (0.75) 0.500 (2.00)	3.6520 3.6392 3.0625 2.8771	0.125 (8.00) 0.385 (2.60) 0.769 (1.30) 0.500 (2.00)	1.0098 0.8790 0.7520 0.6841
A19	soo°w	127.8	2.56	4.000 (0.25) 0.769 (1.30) 2.500 (0.40) 6.667 (0.15) 1.538 (0.65)	0.0253 0.0244 0.0227 0.0208 0.0205	0 356 (1.80) 2.417 (2.40) 1.538 (0.65) 2.500 (0.40) 3.333 (0.30)	5.9603 5.0258 2.0954 0.9612 0.7200	0.400 (2.50) 0.313 (3.20) 0.111 (9.00) 2.000 (0.50)	1.8945 1.8035 1.3019 0.1004
B21	so8°w	130.6	1.72	3.333 (0.30) 2.222 (0.45) 1.667 (0.60) 1.111 (0.90)	0.0336 0.0324 0.0312 0.0243	1.000 (1.00) 0.435 (2.30) 1.667 (0.60) 0.111 (9.00) 3.333 (0.30)	3.5463 2.9582 2.8142 2.5104 1.6089	0.111 (9.00) 0.909 (1.10) 0.500 (2.00)	2.2703 0.5333 0.4538
	s82°₩	151.5	5.82	3.333 (0.300) 1.538 (0.650) 1.000 (1.000) 1.333 (0.750) 0.625 (1.600)	0.0324 0.0216 0.0191 0.0177 0.0101	0.263 (3.80) 1.000 (1.00) 0.417 (2.40) 0.476 (2.10) 1.538 (0.65) 3.333 (0.30) 2.500 (0.40)	3.4127 3.3328 3.0674 2.9798 2.0732 1.4746 1.4129	0.111 (9.00) 0.167 (6.00) 0.250 (4.00) 0.227 (4.40) 0.833 (1.20) 1.333 (0.75) 1.538 (0.65)	2.6346 2.0449 1.9287 1.9026 0.5451 0.2465 0.2256
	DOWN	149.5	3.64	5.000 (0.20) 2.500 (0.40) 2.000 (0.50) 0.769 (1.30) 1.333 (0.75)	0.0268 0.0221 0.0147 0.0069 0.0065	0.278 (3.60) 0.143 (7.00) 2.500 (0.40) 0.769 (1.30) 0.625 (1.60)	2.2832 1.6259 1.4417 1.3307 1.1444	0.182 (5.50) 0.769 (1.30) 2.000 (0.50) 1.333 (0.75) 2.500 (0.40)	1.3408 0.2866 0.0904 0.0903 0.0878
B22	N90°E	85.4	8.04	1.818 (0.55) 0.294 (3.40) 0.400 (2.50) 0.455 (2.20)	0.0462 0.0025 0.0020 0.0019	1.667 (0.60) 0.227 (4.40) 0.294 (3.40) 0.435 (2.30) 0.111 (9.00)	4.0599 1.4753 1.4251 0.9572 0.9518	0.111 (9.00) 0.217 (4.60) 0.278 (3.60) 1.667 (0.60) 0.833 (1.20)	1.0947 0.8734 0.7470 0.3829 0.1781
B24	NOO°E	156.8	12.86	4.000 (0.25) 2.857 (0.35) 1.818 (0.55) 1.111 (0190) 0.400 (2.50)	0.0608 0.0380 0.0350 0.0212 0.0055	1.667 (0.60) 1.111 (0190) 0.769 (1.30) 0.400 (2.50) 4.000 (0.25)	3.1244 3.1240 3.1006 2.4152 2.3029	0.217 (4.60) 0.385 (2.60) 0.125 (8.00) 0.278 (3.60) 0.909 (1.10)	1.2536 0.8985 0.8095 0.7906 0.5542
	N90°W	179.1	18.12	4.000 (0.25) 2.500 (0.40) 1.538 (0.65) 0.667 (1.50) 0.500 (2.00)	0.0635 0.0463 0.0330 0.0066 0.0065	1.429 (0.70) 2.000 (0.50) 1.111 (0190) 0.909 (1.10) 0.417 (2.40) 4.000 (0.25)	3.9192 3.0587 2.8593 2.7684 2.2843 2.2604	0.263 (3.80) 0.111 (9.00) 0.500 (2.00) 0.455 (2.20) 0.400 (2.50) 0.909 (1.10)	1.0354 0.9352 0.6400 0.6130 0.6115 0.3970
	UP	68.1	11.70	4.000 (0.25) 1.818 (0.55) 1.538 (0.65) 1.333 (0.75) 0.556 (1.80)	0.0218 0.0106 0.0093 0.0074 0.0030	0.143 (7.00) 1.538 (0.65) 1.818 (0.55) 0.500 (2.00) 0.417 (2.40) 2.857 (0.35) 1.000 (1.00)	1.3040 1.0780 1.0553 1.0533 0.9610 0.8865 0.7710	0.111 (9.00) 0.400 (2.50) 0.476 (2.10) 1.000 (1.00) 1.250 (0.80) 1.538 (0.65) 1.818 (0.55)	1.6326 0.2999 0.2879 0.1255 0.1146 0.0973 0.0800
B25	soo°w	143.5	1.46	6.667 (0.15) 2.857 (0.35) 4.000 (0.25) 0.667 (1.50)	0.0490 0.0308 0.0285 0.0037	2.000 (0.50) 2.500 (0.40) 0.667 (1.50) 6.667 (0.15)	1.9844 1.9443 1.2796 1.1756	0.278 (3.60) 0.385 (2.60) 0.556 (1.80) 0.111 (9.00) 1.667 (0.60) 1.333 (0.75)	0.2770 0.2582 0.2528 0.2471 0.1606 0.1447
	890°W	142.5	1.30	3.333 (0.30) 6.667 (0.15) 1.111 (0.90)	0.0542 0.0456 0.0257	0.667 (1.50) 0.833 (1.20) 1.111 (0.90) 2.857 (0.35) 0.111 (9.00)	3.8217 3.8212 3.7863 2.8009	6.667 (0.15) 0.111 (9.00) 0.500 (2.00) 0.833 (1.20) 2.500 (0.40)	0.0271 0.8277 0.7591 0.6840 0.1661
	DOWN	87.5	0.48	4.000 (0.25) 6.667 (0.15) 2.857 (0.35) 0.625 (1.60) 1.250 (0.80)	0.0292 0.0288 0.0276 0.0097 0.0072	0.111 (9.00) 0.476 (2.10) 0.208 (4.80) 2.500 (0.40) 1.250 (0.80) 6.667 (0.15)	2.0990 2.6009 1.6967 1.5971 0.7535 0.6696	0.455 (2.20) 0.333 (3.00) 2.222 (0.45) 1.538 (0.65)	0.7996 0.7162 0.1033 0.0802
ю6	N45°E	140.9	1.32	3.333 (0.30) 5.000 (0.20) 2.222 (0.45) 0.909 (1.10)	0.0342 0.0313 0.0295 0.0045	2.000 (0.50) 3.333 (0.30) 0.909 (1.10) 0.313 (3.20)	2.2874 1.5236 1.0356 0.8525	0.111 (9.00) 2.000 (0.50) 0.833 (1.20) 1.333 (0.75) 3.333 (0.30)	0.8051 0.1757 0.1481 0.1156 0.0759

	Instrument	Peak Acceleration	Duration sec	Predominant Accelera Frequency (Period)	ation Peaks Amplitude	Predominant Velor Frequency (Period)	eity Peaks Amplitude	Predominant Displace Frequency (Period)	
Record	Direction	cm/sec2	(Acc ≥ 0.05 g)	Hz (sec)	(g)	Hz (sec)	cm/sec	Hz (sec)	cm cm
B26	S45°E	87.1	1.24	5.000 (0.20) 3.333 (0.30) 2.222 (0.45)	0.0329 0.0235 0.0207	2.222 (0.45) 3.333 (0.30) 1.000 (1.00) 1.333 (0.75) 5.000 (0.20) 0.111 (9.00)	1.5023 1.1184 1.0542 1.0281 0.9960 0.6574	0.111 (9.00) 0.714 (1.40) 0.625 (1.60) 1.000 (1.00) 2.222 (0.45) 5.000 (0.20)	0.2279 0.1563 0.1534 0.1502 0.1047 0.0326
B28	soe°w	66.5	14.32	1.111 (0.90) 2.857 (0.35) 2.000 (0.50) 0.769 (1.30) 0.400 (2.50)	0.0256 0.0226 0.0155 0.0109 0.0020	1.111 (0.90) 0.769 (1.30) 2.857 (0.35) 0.400 (2.50) 1.818 (0.55)	3.6339 2.2414 1.1793 1.1424 1.1304	1.000 (1.00) 0.769 (1.30) 0.385 (2.60) 0.227 (4.40) 0.125 (8.00)	0.5515 0.4534 0.3181 0.3140 0.3050
	n88°w	65.9	0.92	3.333 (0.30) 2.222 (0.45) 1.111 (0.90) 0.357 (2.80)	0.0156 0.0127 0.0118 0.0013	1.111 (0.90) 2.000 (0.50) 0.667 (1.50) 0.227 (4.40) 3.333 (0.30)	1.5348 0.7940 0.7301 0.6971 0.6718	0.111 (9.00) 0.208 (4.80) 1.111 (0.90) 0.667 (1.50) 2.000 (0.50) 3.333 (0.30)	0.4851 0.4688 0.2372 0.1619 0.0728 0.0347
B29	NO4°W	161.6	22.30	3.333 (0.30) 2.500 (0.40) 1.667 (0.60) 0.909 (1.10) 0.500 (2.00) 0.400 (2.50)	0.0580 0.0578 0.0430 0.0260 0.0104 0.0085	0.833 (1.20) 0.667 (1.50) 1.667 (0.60) 2.000 (0.50) 0.435 (2.30) 2.500 (0.40) 0.227 (4.40) 6.667 (0.15)	4.9345 4.3088 4.1891 4.0064 3.9826 3.3256 3.2983 0.9157	0.111 (9.00) 0.217 (4.60) 0.400 (2.50) 0.294 (3.40) 0.435 (2.30) 0.625 (1.60) 0.625 (1.60)	1.5028 1.4333 1.3164 1.2516 1.2094 0.8985 0.7907 0.3825
	n86°E	274.6	21.04	2.857 (0.35) 5.000 (0.20) 2.222 (0.45) 1.667 (0.60) 1.250 (0.80) 0.769 (1.30) 0.625 (1.60) 0.417 (2.40)	0.0684 0.0637 0.0573 0.0521 0.0291 0.0164 0.0142 0.0118	0.313 (3.20) 1.667 (0.60) 0.357 (2.80) 1.111 (0.90) 0.625 (1.60) 0.455 (2.20) 2.222 (0.45) 2.857 (0.35)	5.4396 5.4378 5.3406 4.4304 4.4105 4.3070 4.0113 3.7022	2.000 (0.50) 0.313 (3.20) 0.111 (9.00) 0.1¼3 (7.00) 0.71¼ (1.40) 0.909 (1.10) 1.111 (0.90) 1.667 (0.60) 2.857 (0.35)	0.3019 2.5580 1.3184 1.2656 0.7878 0.5075 0.4958 0.4634 0.2073
	UP	90.6	18.36	3.333 (0.30) 5.000 (0.20) 2.222 (0.45) 0.833 (1.20) 1.250 (0.80) 0.625 (1.60) 0.500 (2.00)	0.0257 0.0218 0.0144 0.0066 0.0061 0.0058 0.0038	0.294 (3.40) 0.250 (4.00) 0.625 (1.60) 0.167 (6.00) 0.455 (2.20) 0.500 (2.00) 0.833 (1.20)	1.8084 1.7271 1.5865 1.5073 1.4162 1.3664 1.3226	0.111 (9.00) 0.278 (3.60) 0.625 (1.60) 0.633 (1.20) 2.222 (0.45) 1.818 (0.55) 2.857 (0.35)	1.3961 0.9109 0.3658 0.2360 0.0720 0.0646 0.0587
в30	S46°E	74.1	0.06	5.000 (0.20) 2.857 (0.35) 1.111 (0.90)	0.0246 0.0184 0.0054	2.500 (0.40) 2.000 (0.50) 1.538 (0.65) 1.111 (0.90) 4.000 (0.25) 0.500 (2.00)	1.1508 1.0879 0.8748 0.8184 0.7706 0.7057	1.500 (2.00) 0.111 (9.00) 0.278 (3.60) 0.909 (1.10) 1.538 (0.65) 2.500 (0.40)	0.1615 0.1497 0.1457 0.1197 0.0868 0.0705
B31	NS1°E	63.9	0.02	3.333 (0.30) 0.833 (1.20) 0.143 (7.00)	0.0186 0.0048 0.0001	1.818 (0.55) 0.625 (1.60) 3.333 (0.30) 0.238 (4.20)	1.1101 0.9604 0.7573 0.6277	0.111 (9.00) 0.667 (1.50) 0.313 (3.20) 1.818 (0.55)	0.2467 0.1995 0.1571 0.0920
	\$6 9 °E	66.8	0.02	5.000 (0.20) 1.818 (0.55) 1.250 (0.80)	0.0236 0.0104 0.0054	1.11 (0.90) 1.667 (0.60) 4.000 (0.25) 0.556 (1.80)	0.9187 0.9077 0.7315 0.7151	0.111 (9.00) 0.500 (2.00) 0.714 (1.40) 1.818 (0.55) 2.857 (0.35) 4.000 (0.25)	0.2230 0.1446 0.1437 0.0769 0.0345 0.0306
B32	SQ4°E	134.2	10.18	6.667 (0.15) 1.667 (0.60) 2.500 (0.40) 1.111 (0.90) 0.769 (1.30)	0.0548 0.0310 0.0235 0.0179 0.0077	1.667 (0.60) 1.111 (0.90) 0.714 (1.40) 0.833 (1.20) 6.667 (0.15)	3.0671 2.6604 1.7983 1.7182 1.2617	0.167 (6.00) 0.227 (4.40) 0.208 (4.80) 0.125 (8.00) 0.714 (1.40)	0.4385 0.4383 0.4333 0.3831 0.3602
	s86°w	194.3	9.20	4.000 (0.25) 1.667 (0.60) 2.000 (0.50) 1.111 (0.90) 0.667 (1.50)	0.0493 0.0286 0.0236 0.0197 0.0136	0.625 (1.60) 0.500 (2.00) 1.111 (0.90) 1.667 (0.60) 1.333 (0.75)	3.5263 3.3771 2.9308 2.5684 2.2239 2.0012	0.111 (9.00) 0.500 (2.00) 0.667 (1.50) 1.111 (0.90) 1.667 (0.60) 2.500 (0.40)	0.8841 0.8748 0.7553 0.3945 0.2549
	UP	59.9	1.12	5.000 (0.20) 2.000 (0.50) 1.250 (0.80) 0.625 (1.60) 0.385 (2.60)	0.0180 0.0073 0.0041 0.0024 0.0006	3.333 (0.30) 1.818 (0.55) 2.500 (0.40) 3.333 (0.30) 0.625 (1.60) 1.538 (0.65) 1.250 (0.80) 0.833 (1.20) 1.000 (1.00)	0.6637 0.6595 0.6436 0.6384 0.6025 0.5609 0.5486 0.5437	0.111 (9.00) 0.625 (1.60) 0.625 (1.60) 0.278 (3.60) 1.000 (1.00) 1.250 (0.80) 1.667 (0.60) 2.857 (0.35)	0.1136 0.4011 0.1499 0.1191 0.1055 0.0708 0.0654 0.0547
в33	N65°E	479.6	11.74	2.222 (0.45) 1.667 (0.60) 6.667 (0.15) 0.667 (1.50)	0.2588 0.2471 0.1229 0.0879	0.556 (1.80) 1.538 (0.65) 0.227 (4.40)	23.7264 22.1588 20.9512	0.313 (3.20) 0.111 (9.00) 1.429 (0.70)	7.5725 5.7794 2.5234
	DOWN	202.2	6.90	1.538 (0.65) 2.857 (0.35) 0.909 (1.10)	0.0576 0.0521 0.0347	0.714 (1.40) 1.538 (0.65) 0.167 (6.00) 2.857 (0.35) 6.667 (0.15)	6.3966 5.4544 4.0558 2.5183 2.1301	0.111 (9.00) 0.667 (1.50) 0.217 (4.60) 1.250 (0.80) 5.000 (0.20)	1.3926 1.3656 1.2528 0.6391 0.0565
B34	NO5°W	347.8	6.64	3.333 (0.30) 2.000 (0.50) 6.667 (0.15) 0.476 (2.10) 0.417 (2.40)	0.1268 0.0791 0.0682 0.0037 0.0031 0.0021	2.000 (0.50) 3.333 (0.30) 1.250 (0.80) 1.000 (1.00) 0.476 (2.10) 0.278 (3.60)	6.3052 5.3534 4.4756 3.7856 2.9653 2.4840	0.111 (9.00) 0.263 (3.80) 2.000 (0.50) 1.111 (0.90) 0.476 (2.10) 3.333 (0.30)	1.1749 0.6765 0.4892 0.4206 0.4032 0.2835
	N85°E	425.7	7.30	0.294 (3.40) 2.857 (0.35) 5.000 (0.20) 2.000 (0.50) 0.833 (1.20)	0.1212 0.0890 0.0676 0.0213	2.500 (0.40) 2.500 (0.50) 0.476 (2.10) 0.833 (1.20)	6.6673 5.7632 4.6624 4.2528	0.143 (7.00) 0.400 (2.50) 0.357 (2.80) 0.500 (2.00)	1.7740 1.4041 1.3706 1.3152

Record	Instrument Direction	Peak Acceleration cm/sec ²	Duration sec (Acc ≥ 0.05 g)	Predominant Accelere Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Frequency (Period) Hz (sec)		Predominant Display Frequency (Period) Hz (sec)	Amplitude
B34	N85°E	425.7 116.9	7.30 7.32	0.500 (2.00) 6.667 (0.15) 2.222 (0.45)	0.0133 0.0400 0.0231	1.111 (0.90) 0.667 (1.50) 2.000 (0.50) 0.208 (4.80)	3.6092 3.1034 1.7252 1.1067	0.833 (1.20) 2.500 (0.40) 2.000 (0.50) 0.238 (4.20)	0.7592 0.4313 0.4205 0.5567 0.4322
				0.714 (1.40) 0.385 (2.60)	0.0041	0.238 (4.20) 1.429 (0.70) 0.625 (1.60) 5.000 (0.20) 0.111 (9.00)	1.0830 1.0492 1.0263 0.9318 0.9181	0.111 (9.00) 0.556 (1.80) 2.000 (0.50) 1.538 (0.65) 1.111 (0.90) 5.000 (0.20)	0.2264 0.1676 0.0926 0.0760 0.0274
В35	N50°E	232.6	7.84	6.667 (0.15) 2.500 (0.40) 1.667 (0.60) 1.333 (0.75) 1.000 (1.00)	0.0686 0.0325 0.0209 0.0169 0.0156	1.000 (1.00) 1.667 (0.60) 1.250 (0.80) 2.222 (0.45) 5.000 (0.20)	2.6059 2.1080 2.0862 2.0702 1.8664	0.111 (9.00) 1.000 (1.00) 1.667 (0.60) 2.222 (0.45) 5.000 (0.20)	1.1138 0.3844 0.1859 0.1514 0.0570
	N4+O _o M	269.6 5.70	5.70	5.000 (0.20) 2.000 (0.50) 1.250 (0.80) 0.769 (1.30) 0.667 (1.50)	0.0890 0.0368 0.0185 0.0082 0.0076	2.000 (0.50) 1.250 (0.80) 5.000 (0.20) 2.857 (0.35) 0.714 (1.40) 0.476 (2.10) 1.538 (0.65)	3.0493 2.9962 2.7443 2.6980 2.5467 1.9132 1.8721	0.111 (9.00) 0.385 (2.60) 0.556 (1.80) 1.000 (1.00) 2.000 (0.50) 1.538 (0.65) 5.000 (0.20)	1.0294 0.6303 0.5301 0.3569 0.2250 0.1699 0.0877
	DOWN	77.7	3.94	1.111 (0.90) 2.500 (0.40) 0.278 (3.60)	0.0090 0.0079 0.0007	1.000 (1.00) 0.769 (1.30) 0.182 (5.50) 4.000 (0.25) 2.222 (0.45) 1.818 (0.55)	1.3279 1.1155 0.5370 0.4953 0.4846 0.4796	0.111 (9.00) 0.208 (4.80) 0.714 (1.40) 0.417 (2.40) 2.000 (0.50) 4.000 (0.25)	0.3104 0.2892 0.1979 0.1343 0.0338 0.0171
В37	n65°w	264.3	2.90	4.000 (0.25) 1.111 (0.90) 0.625 (1.60)	0.1365 0.0180 0.0135	2.500 (0.40) 0.333 (3.00) 0.714 (1.40) 1.429 (0.70)	7.0274 5.0506 4.0648 3.5016	0.250 (4.000) 0.313 (3.20) 0.111 (9.00) 0.476 (2.10) 2.500 (0.40)	1.2888 1.2535 1.1436 0.9054 0.4119
	\$25°₩	340.8	2.08	2.857 (0.35) 5.000 (0.20) 1.000 (1.00)	0.1624 0.1201 0.0350	2.500 (0.40) 0.833 (1.20) 0.111 (9.00) 1.333 (0.75) 0.357 (2.80)	10.2746 7.5019 4.9159 4.8882 3.6368	0.111 (9.00) 0.167 (6.00) 0.278 (3.60) 0.909 (1.10) 0.714 (1.40) 2.500 (0.40)	1.5028 1.1391 0.9916 0.9509 0.7072 0.6340
	DOWN	129.8	0.58	6.667 (0.15) 1.538 (0.65) 0.769 (1.30) 0.263 (3.80)	0.0468 0.0120 0.0054 0.0009	2.857 (0.35) 1.333 (0.75) 0.625 (1.60) 0.833 (1.20) 0.417 (2.40)	1.7799 1.4624 1.3852 1.1022 1.0798	0.111 (9.00) 0.238 (4.20) 0.500 (2.00) 1.429 (0.70) 1.111 (0.90)	0.3368 0.3280 0.2990 0.1262 0.1186
C41	816°E	1148.1	11.36	2.500 (0.40) 5.000 (0.20) 1.000 (1.00) 0.217 (4.60)	0.3957 0.3549 0.2042 0.0240	0.714 (1.40) 0.208 (4.80) 2.500 (0.40)	36.4629 25.0099 23.6821	0.167 (6.00) 0.263 (3.80) 0.556 (1.80) 2.500 (0.40) 2.000 (0.50)	15.8704 9.1517 8.4209 1.5366 1.4654
	s74°₩	1054.9	12.44	2.222 (0.45) 4.000 (0.25) 1.111 (0.90)	0.3780 0.3525 0.1350	2.000 (0.50) 0.769 (1.30) 0.313 (3.20) 0.182 (5.50)	28.8445 22.4607 15.2545 11.4690 11.2648	0.625 (1.60) 0.238 (4.20) 0.200 (5.00) 0.111 (9.00)	4.3962 3.1944 2.8298 2.7345 2.2208
	DOWN	696.0	10.50	4.000 (0.25) 6.667 (0.15) 0.714 (1.40) 0.625 (1.60)	0.3336 0.2427 0.0527 0.0512	0.111 (9.00) 2.857 (0.35) 0.455 (2.20) 0.357 (2.80) 0.111 (9.00) (.167 (6.00) 1.538 (0.65) 1.250 (0.80)	16.6026 15.5078 15.0347 13.3605 11.6005 9.2975 8.5784	2.000 (0.50) 0.125 (8.00) 0.333 (3.00) 1.538 (0.65) 2.857 (0.35)	8.2036 5.0793 0.8104 0.7877
c48	NOO°W	250.0	17.22	1.538 (0.65) 1.818 (0.55) 3.333 (0.30) 2.500 (0.40) 5.000 (0.20) 0.769 (1.30) 0.476 (2.10) 0.227 (4.40) 0.263 (3.80)	0.0810 0.0739 0.0693 0.0662 0.0573 0.0399 0.0247 0.0110 0.0101	0.556 (1.80) 0.769 (1.30) 0.217 (4.60) 1.538 (0.65) 0.455 (2.20) 0.278 (3.60) 1.250 (0.80) 2.222 (0.45)	10.2220 9.2299 8.1832 8.1015 7.5525 6.5595 6.2827 4.1531	0.217 (4.60) 0.455 (2.20) 0.556 (1.80) 0.111 (9.00) 1.538 (0.65)	5.4476 2.8314 2.6390 2.5089 0.8447
	S90°₩	131.7	17.82	0.111 (9.00) 2.857 (0.35) 1.538 (0.65) 0.769 (1.30) 1.000 (1.00) 0.667 (1.50) 0.357 (2.80) 0.500 (2.00)	0.0013 0.0545 0.0323 0.0301 0.0293 0.0287 0.0245 0.0232	0.333 (0.30) 0.667 (1.50) 0.476 (2.10) 0.227 (4.40) 1.000 (1.00) 1.538 (0.65) 2.857 (0.35) 1.818 (0.55)	11.1422 7.3718 7.1037 6.0709 4.6375 3.1443 3.0277 2.6453	0.357 (2.80) 0.125 (8.00) 0.200 (5.00) 0.476 (2.10) 0.667 (1.50) 1.000 (1.00) 1.538 (0.65) 2.222 (0.45)	4.7429 3.9953 3.6966 2.3752 1.5953 0.7256 0.3364 0.1801
	DOWN	167.5	22.22	3.333 (0.30) 0.435 (2.30) 1.667 (0.60) 0.294 (3.40) 1.000 (1.00)	0.0615 0.0300 0.0243 0.0188 0.0187	0.278 (3.60) 0.385 (2.60) 0.167 (6.00) 2.857 (0.35) 0.769 (1.30)	10.9572 10.9468 4.6812 2.8892 2.7578	2.857 (0.35) 0.278 (3.60) 0.385 (2.60) 0.167 (6.00) 1.000 (1.00) 1.538 (0.65)	0.1644 5.7027 4.6584 2.7632 0.4634 0.2454
C51	N36°E	97.8	8.16	0.625 (1.60) 2.500 (0.40) 3.333 (0.30) 1.538 (0.65) 1.333 (0.75) 0.833 (1.20) 0.455 (2.20)	0.0175 0.0317 0.0288 0.0196 0.0194 0.0185 0.0057	1.538 (0.65) 0.769 (1.30) 0.143 (7.00) 0.278 (3.60) 1.250 (0.80) 1.538 (0.65) 2.222 (0.45)	2.1979 3.2489 2.8214 2.5429 2.4115 2.1061 2.0949	2.500 (0.40) 0.111 (9.00) 0.833 (1.20) 1.250 (0.80) 1.538 (0.65) 2.222 (0.45)	0.1713 2.6356 0.6563 0.3035 0.2044 0.1563
	N54°W	122.7	6.16	0.313 (3.20) 2.222 (0.45) 1.818 (0.55) 5.000 (0.20) 1.000 (1.00) 0.769 (1.30)	0.0048 0.0328 0.0283 0.0254 0.0212 0.0142	3.333 (0.30) 0.714 (1.40) 1.000 (1.00) 1.538 (0.65) 0.111 (9.00) 1.818 (0.55)	1.4120 3.3737 3.3316 2.7852 2.4557 2.3989	0.111 (9.00) 0.714 (1.40) 0.625 (1.60) 1.000 (1.00) 1.429 (0.70)	2.5171 0.6501 0.6476 0.5250 0.2736

Record	Instrument Direction	Peak Acceleration cm/sec ²	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Velo Frequency (Period) Hz (sec)	Amplitude	Predominant Displa Frequency (Period) Hz (sec)	cement Peaks Amplitude
C51	N54°W	122.7	6.16	0.417 (2.40) 0.217 (4.60)	0.0027	0.167 (6.00)	2.1147		
C54	ท52°พ ร38°พ	147.1	5.52 9.92	2.222 (0.45) 4.000 (0.25) 1.667 (0.60) 1.000 (1.00) 0.200 (5.00) 4.000 (0.25) 2.000 (0.50) 1.333 (0.75) 1.111 (0.90) 0.833 (1.20) 0.313 (3.20)	0.0564 0.0460 0.0427 0.0357 0.0030 0.0470 0.0298 0.0247 0.0232 0.0171	0.909 (1.10) 0.605 (1.60) 1.538 (0.65) 0.125 (8.00) 2.222 (0.45) 0.596 (1.80) 0.596 (1.80) 1.111 (0.90) 1.429 (0.70) 0.833 (1.20) 1.818 (0.55) 2.222 (0.45)	5.8706 5.6074 4.1245 3.6036 3.5971 6.4462 2.8002 2.7608 2.5963 2.3263 2.1348 1.8884	0.556 (1.80) 0.999 (1.10) 1.536 (0.65) 2.222 (0.45) 0.111 (5.00) 0.596 (1.80) 0.667 (1.50) 0.833 (1.20) 1.838 (0.55) 3.333 (0.30)	1.0586 0.9143 0.4137 0.2830 3.7455 4.5201 0.7911 0.6818 0.6046 0.1900 0.0921
D56	N21°E	309.4	13.78	2.857 (0.35) 6.667 (0.15) 2.222 (0.45) 1.250 (0.80) 0.111 (9.00)	0.1127 0.1042 0.0796 0.0317 0.0010	2.000 (0.50) 2.857 (0.35) 1.000 (1.00) 1.250 (0.80) 0.556 (1.80) 0.294 (3.40)	6.3364 6.0272 5.6499 4.8263 3.0971	0.111 (9.00) 0.208 (4.80) 0.357 (2.80) 0.833 (1.20) 2.000 (0.50)	2.0883 0.7233 0.6709 0.6371 0.4798
	n69° w	265.4	17.24	5.000 (0.20) 2.500 (0.40) 2.000 (0.50) 1.250 (0.80)	0.0811 0.0794 0.0763 0.0598 0.0015	0.294 (3.40) 1.000 (1.00) 1.667 (0.60) 0.357 (2.80) 4.000 (0.25)	3.0942 7.8559 6.0484 5.2922 2.4433	2.857 (0.35) 0.111 (9.00) 0.385 (2.60) 1.000 (1.00) 0.769 (1.30)	0.3396 2.7315 1.1432 1.1415 1.1247
	DOWN	153.3	7.42	0.111 (9.00) 5.000 (0.20) 2.000 (0.50) 0.833 (1.20) 0.111 (9.00)	0.0743 0.0242 0.0049 0.0006	4.000 (0.25) 2.222 (0.45) 0.476 (2.10) 0.111 (9.00)	2.7895 1.9117 1.6684 1.4747	0.111 (9.00) 1.818 (0.55) 1.111 (0.90) 3.333 (0.30)	1.2382 0.1604 0.1566 0.1072
D57	S00°W	103.8	9.70	4.000 (0.25) 1.818 (0.55) 2.222 (0.45) 1.429 (0.70) 1.111 (0.90) 0.769 (1.30) 0.500 (2.00)	0.0351 0.0317 0.0298 0.0191 0.0158 0.0078	0.227 (4.40) 1.818 (0.55) 1.000 (1.00) 2.417 (2.40) 1.429 (0.70) 0.625 (1.60) 2.857 (0.35)	4.1332 2.7966 2.6307 2.5367 2.3430 1.7759 1.5770	0.217 (4.60) 0.417 (2.40) 1.000 (1.00) 0.769 (1.30) 1.818 (0.55) 1.429 (0.70)	2.7310 0.9644 0.3778 0.3240 0.2362 0.2319
	90°Е	148.2	7.74	4.000 (0.25) 2.857 (0.35) 1.250 (0.80) 0.769 (1.30) 0.294 (3.40)	0.0532 0.0459 0.0292 0.0282 0.0084	0.714 (1.40) 0.227 (4.40) 1.111 (0.90) 2.500 (0.40) 1.667 (0.60)	5.8458 4.5297 3.7515 2.7782 2.0579	0.111 (9.00) 0.714 (1.40) 2.500 (0.40)	3.5771 1.2948 0.1683
D58	S00°W	167.3	5.98	4.000 (0.25) 1.818 (0.55) 2.222 (0.45) 1.429 (0.70) 1.111 (0.90) 0.556 (1.80) 0.263 (3.80)	0.0492 0.0316 0.0310 0.0192 0.0165 0.0048 0.0039	1.818 (0.55) 0.200 (5.00) 1.000 (1.00) 1.429 (0.70) 0.111 (9.00) 0.625 (1.60) 3.333 (0.30)	2.9036 2.8028 2.7560 2.4014 2.1716 1.9507 1.8200	0.167 (6.00) 1.000 (1.00) 0.556 (1.80) 1.818 (0.55) 1.429 (0.70)	2.2180 0.3879 0.3819 0.2362 0.2328
	N90°E	207.0	7.72	4.000 (0.25) 2.857 (0.35) 1.818 (0.55) 1.250 (0.80) 0.769 (1.30) 0.313 (3.20)	0.0741 0.0549 0.0319 0.0302 0.0287 0.0092	0.714 (1.40) 0.227 (4.40) 0.278 (3.60) 1.111 (0.90) 2.500 (0.40) 1.667 (0.60) 4.000 (0.25) 0.769 (1.30)) 4.6407) 4.5556) 3.8357) 3.1076) 3.0672	0.111 (9.00) 0.714 (1.40) 1.667 (0.60) 2.500 (0.40)	3.8738 1.3091 0.2726 0.1786
	UP	87.0	6.00	2.857 (0.35) 1.429 (0.70) 0.833 (1.20) 0.263 (3.80)	0.0116 0.0062 0.0058 0.0011	0.769 (1.30) 0.200 (5.00) 1.111 (0.90) 1.333 (0.75) 2.857 (0.35) 4.000 (0.25)	1.2574 0.8997 0.6880 0.6851 0.6348 0.5039	0.167 (6.00) 0.769 (1.30) 1.111 (0.90) 2.222 (0.45) 4.000 (0.25)	0.5568 0.2369 0.0877 0.0382 0.0190
D59	n46°W	133.8	33.8 6.14	6.667 (0.15) 3.333 (0.30) 2.500 (0.40) 1.667 (0.60) 1.000 (1.00) 0.769 (1.30) 0.625 (1.60) 0.357 (2.80)	0.0579 0.0274 0.0206 0.0152 0.0124 0.0075 0.0068 0.0025	0.556 (1.80) 1.000 (1.00) 3.333 (0.30) 1.667 (0.60) 2.222 (0.45) 6.667 (0.15) 0.294 (3.40) 0.417 (2.40)	1.000 (1.00) 1.9949 3.333 (0.30) 1.3927 1.667 (0.60) 1.3749 2.222 (0.45) 1.3564 5.667 (0.15) 1.3028 0.294 (3.40) 1.2323 0.417 (2.40) 1.1644	0.111 (9.00) 0.313 (3.20) 0.556 (1.80) 0.769 (1.30) 1.000 (1.00) 1.667 (0.60) 2.222 (0.45) 3.333 (0.30)	1.3525 0.5439 0.5058 0.3140 0.3064 0.1352 0.1006 0.0613
	Spr _o m	147.1	6.80	0.143 (7.00) 6.667 (0.15) 2.500 (0.40) 1.667 (0.66) 1.250 (0.80) 0.667 (1.50) 0.400 (2.50)	0.0007 0.0529 0.0409 0.0201 0.0138 0.0113 0.0047	0.111 (9.00) 0.200 (5.00) 2.500 (0.40) 0.625 (1.60) 1.667 (0.60) 1.111 (0.90) 0.400 (2.50) 6.667 (0.15)	0.9939 3.8799 2.5781 2.5305 1.8458 1.7538 1.5764 1.1670	0.143 (7.00) 0.556 (1.80) 1.667 (0.60) 2.500 (0.40)	3.3099 0.6964 0.1789 0.1611
D62	N38°W	118.0	6.68	5.000 (0.20) 2.857 (0.35) 1.667 (0.60) 1.250 (0.80) 0.909 (1.10) 0.417 (2.40)	0.0381 0.0374 0.0260 0.0215 0.0195 0.0059	0.769 (1.30) 1.250 (0.80) 0.238 (4.20) 0.143 (7.00) 1.667 (0.60) 0.455 (2.20) 2.857 (0.35) 2.222 (0.45)	3.9336 2.8911 2.7591 2.6558 2.5317 2.0965 1.8479 1.6017	0.111 (9.00) 0.385 (2.60) 0.633 (1.20) 0.667 (1.50) 1.250 (0.80) 2.857 (0.35)	3.2981 0.8647 0.6842 0.6780 0.3389 0.1133
	S52°W	130.0	6.68	4.000 (0.25) 2.222 (0.45) 1.250 (0.80) 1.538 (0.65) 0.909 (1.10)	0.0395 0.0314 0.0291 0.0280 0.0253	0.833 (1.20) 1.250 (0.80) 1.667 (0.60) 0.111 (9.00)	5.1660 3.4784 2.8502 1.8870	0.111 (9.00) 0.769 (1.30) 1.250 (0.80) 1.538 (0.65)	1.4019 0.9255 0.4611 0.2932
D65	500°W	146.7	5.78	3.333 (0.30) 5.000 (0.20) 1.667 (0.60) 2.222 (0.45) 0.385 (2.60)	0.0409 0.0333 0.0309 0.0302 0.0024	1.538 (0.65) 0.833 (1.20) 1.111 (0.90) 0.111 (9.00) 0.435 (2.30)	2.9725 2.8680 2.6408 1.9568 1.8413	0.111 (9.00) 0.833 (1.20) 1.538 (0.65)	2.1439 0.4737 0.3010

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceleration Frequency (Period) Am	n Peaks plitude (g)	Predominant Veloc Frequency (Period) Hz (sec)	ity Peaks Amplitude cm/sec	Fredominant Displac Frequency (Feriod) Hz (sec)	Amplitude
D65	S00°W	146.7	5.78		0.0020	0.167 (6.00)	1.7566		
	s90°₩	155.7	6.06	1.538 (0.65) 0.833 (1.20) 0.400 (2.50)	0.0562 0.0296 0.0236 0.0047 0.0016	3.333 (0.30) 0.833 (1.20) 1.538 (0.65) 0.357 (2.80) 2.222 (0.45) 1.818 (0.55)	1.5861 4.5119 2.9938 2.7432 2.4920 2.4571	0.111 (9.00) 0.769 (1.30) 0.385 (2.60) 1.538 (0.65)	1.8733 0.8754 0.7596 0.3085
	DOWN	73.1	2.56	5.000 (0.20) 1.538 (0.65)	0.0320 0.0284 0.0077 0.0061	0.143 (7.00) 3.333 (0.30) 0.714 (1.40) 2.500 (0.40) 0.227 (4.40) 1.538 (0.65) 0.385 (2.60) 5.000 (0.20) 0.111 (9.00)	1.8735 1.5514 1.4381 1.3829 0.9837 0.9182 0.8722 0.8704 0.3301	0.143 (7.00) 0.400 (2.50) 0.714 (1.40) 0.625 (1.60) 0.833 (1.20) 2.500 (0.40) 3.333 (0.30)	0.5638 0.2633 0.2455 0.2469 0.2156 0.0759 0.0714
D68	NOO°E	81.2	3.60	1.818 (0.55) 5.000 (0.20) 1.250 (0.80) 0.714 (1.40)	0.0268 0.0265 0.0240 0.0109 0.0050 0.0025	1.818 (0.55) 0.111 (9.00) 1.208 (4.80) 1.111 (0.90) 0.667 (1.50) 3.333 (0.30)	2.4840 1.9309 1.7378 1.7006 1.5766 1.2400	0.125 (8.00) 0.667 (1.50) 1.111 (0.90) 1.818 (0.55)	1.7037 0.2589 0.2052 0.1975
	N90°E	98.0	3.84	6.667 (0.15) 0.769 (1.30) 0.455 (2.20)	0.0303 0.0211 0.0167 0.0044 0.0016	2.500 (0.40) 0.714 (1.40) 0.400 (2.50) 2.222 (0.45) 1.667 (0.60) 0.182 (5.50) 0.217 (4.60) 0.111 (9.00) 6.667 (0.15)	1.2384 3.5462 1.8389 1.8074 1.4359 1.3650 1.3004 1.1288 0.3974	0.143 (7.00) 0.667 (1.50) 0.385 (2.60) 2.222 (0.45) 1.667 (0.60)	1.2205 0.7658 0.6249 0.1237 0.1219
E72	N75°W	82.2	7.76	4.000 (0.25) 1.333 (0.75) 2.500 (0.40) 0.769 (1.30)	0.0251 0.0206 0.0200 0.0192 0.0158 0.0077	0.167 (6.00) 0.714 (1.40) 0.313 (3.20) 1.333 (0.75) 1.818 (0.55) 0.476 (2.10)	5.7712 3.5285 3.2023 2.4794 2.2347 2.2271	0.167 (6.00) 0.476 (2.10) 0.714 (1.40) 1.333 (0.75) 1.818 (0.55)	5.4092 0.8033 0.7231 0.2782 0.1885
	N15°E	115.0	5.50	0.200 (5.00) 6.667 (0.15) 4.000 (0.25) 2.857 (0.35) 2.222 (0.45) 1.538 (0.55) 1.111 (0.90) 0.714 (1.40)	0.0071 0.0343 0.0296 0.0288 0.0277 0.0275 0.0255 0.0208 0.0092	4.000 (0.25) 1.111 (0.90) 1.429 (0.70) 0.111 (0.90) 1.818 (0.55) 0.357 (2.80) 0.667 (1.50) 0.167 (6.00) 2.222 (0.45) 2.857 (0.35)	0.6960 3.1892 2.7002 2.5144 2.2885 2.2884 2.2383 2.0739 1.8667 1.5726	0.111 (9.00) 0.357 (2.80) 0.667 (1.50) 1.000 (1.00) 1.409 (0.70) 1.818 (0.55) 2.222 (0.45)	2.4728 0.8239 0.4827 0.4771 0.2972 0.2063 0.1378
	DOWN	64.80	1.70	0.208 (4.80) 6.667 (0.15) 2.222 (0.45) 2.857 (0.35) 1.667 (0.66)	0.0023 0.0203 0.0119 0.0106 0.0062 0.0054	4.000 (0.25) 0.833 (1.20) 0.714 (1.40) 2.222 (0.45) 0.278 (3.60) 1.429 (0.70) 0.476 (2.10) 2.857 (0.35) 6.667 (0.15)	0.9458 1.1637 1.1012 0.8720 0.7618 0.7030 0.7022 0.6106 0.4257	0.111 (9.00) 0.417 (2.40) 0.769 (1.30) 1.333 (0.75) 2.222 (0.45) 6.667 (0.15)	0.4938 0.2374 0.2180 0.0727 0.0594 0.0113
£75	NOO°E	133.8	5.10	5.000 (0.20) 1.538 (0.65) 1.111 (0.90) 0.714 (1.40) 0.400 (2.50)	0.0445 0.0355 0.0318 0.0287 0.0151 0.0026	1.111 (0.90) 0.667 (1.50) 0.833 (1.20) 1.538 (0.65) 0.111 (9.00) 0.238 (4.20) 2.500 (0.40)	4.3913 3.8797 3.5488 3.4484 2.7831 2.3222 2.1725	0.111 (9.00) 0.667 (1.50) 1.000 (1.00) 0.357 (2.80) 1.429 (0.70)	2.3057 0.7477 0.6980 0.4554 0.3760
	s90°₩	ш.8	10.44	1.818 (0.55) 2.500 (0.40) 6.667 (0.15) 0.833 (1.20) 1.250 (0.80) 0.556 (1.80) 0.400 (2.50)	0.0379 0.0287 0.0285 0.0265 0.0222 0.0168 0.0084 0.0084	0.385 (2.60) 0.167 (6.00) 0.769 (1.30) 0.400 (2.50) 1.111 (0.90) 1.818 (0.55) 0.556 (1.80) 3.333 (0.30) 2.500 (0.40)	2.0200 5.3101 3.8790 3.0146 2.5212 2.4206 2.4140 1.6812 1.6705	0.143 (7.00) 0.385 (2.60) 0.833 (1.20) 0.556 (1.80) 1.818 (0.65) 1.538 (0.65) 2.500 (0.40) 3.333 (0.30)	5.1677 1.3045 0.7887 0.6776 0.2160 0.2155 0.1122 0.0847
E78	N50°W	126.5	5.26	2.222 (0.45) 6.667 (0.15) 1.538 (0.65) 1.111 (0.90)	0.0392 0.0372 0.0338 0.0316 0.0282	0.714 (1.40) 0.111 (0.90) 1.538 (0.65) 0.217 (4.60) 2.222 (0.45)	5.3855 3.7710 2.9259 2.2521 2.0782	0.111 (9.00) 0.714 (1.40) 1.111 (0.90) 1.429 (0.70)	3.8416 1.0375 0.5617 0.3501
	s40°W	169.2	5.68	3.333 (0.30) 1.333 (0.75) 0.833 (1.20)	0.0238 0.0456 0.0347 0.0214 0.0180	0.769 (1.30) 0.625 (1.60) 1.250 (0.80) 0.385 (2.60) 0.143 (7.00) 2.500 (0.40) 6.667 (0.15)	4.2831 4.2445 4.0167 2.9433 2.2506 2.2049 0.9511	0.667 (1.50) 0.455 (2.20) 0.833 (1.20) 1.250 (0.80) 0.111 (9.00) 0.182 (5.50) 2.222 (0.45)	0.8919 0.8486 0.7554 0.5373 0.5055 0.3936 0.1398
581	S 08 °E	213.0	8.48	1.000 (1.00) 1.667 (0.60) 0.417 (2.40) 0.250 (4.00)	0.0300 0.0195 0.0165 0.0036 0.0021	1.000 (1.00) 0.263 (3.80) 0.769 (1.30) 6.667 (0.15) 0.556 (1.80) 2.000 (0.50) 1.667 (0.60) 2.500 (0.40)	3.0965 2.2617 2.1160 2.0498 2.0283 1.7458 1.6370 1.5866	0.111 (9.00) 0.227 (4.40) 0.294 (3.40) 1.000 (1.00) 0.500 (2.00) 0.769 (1.30) 2.000 (0.50) 6.667 (0.15)	1.2555 0.9368 0.6782 0.4779 0.4275 0.3989 0.1303 0.0456
	s82°w	198.3	3.48	1.818 (0.55)	0.0188	0.435 (2.30) 0.111 (9.00) 1.429 (0.70)	1.4884 1.4266 1.6748	1.429 (0.70)	1.6748

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Fredominant Acceler Frequency (Period) Hz (sec)	ation Feaks Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	Amplitude	Predominant Displac Frequency (Feriod) Hz (sec)	Amplitude
E81	\$82°W	198.3	3.48	0.625 (1.60) 0.250 (4.00)	0.0034	1.818 (0.55) 6.667 (0.15) 0.167 (6.00) 2.857 (0.35)	1.5700 1.4836 1.0169 1.0168	1.818 (0.55) 6.667 (0.15) 0.167 (6.00) 2.857 (0.35)	1.5700 1.4836 1.0169 1.0168
	DOWN	63.7	0.76	3.333 (0.30) 1.667 (0.60)	0.0146 0.0079	1.429 (0.70) 0.833 (1.20) 1.818 (0.55) 2.857 (0.35) 0.111 (9.00)	0.9378 0.8722 0.8203 0.7884 0.4733	1.000 (1.00) 0.111 (9.00) 0.665 (1.60) 0.833 (1.20) 2.857 (0.35)	0.1117 0.1108 0.1102 0.1088 0.0433
E83	soo°w	158.2	12.32	3.333 (0.30) 5.000 (0.20) 1.538 (0.65) 1.111 (0.90) 0.769 (1.30) 0.500 (2.00)	0.0569 0.0430 0.0319 0.0292 0.0158	1.111 (0.90) 1.538 (0.65) 0.833 (1.20) 1.818 (0.55) 0.625 (1.60)	4.3900 3.5589 3.2173 3.1926 3.0918	0.167 (6.00) 0.278 (3.60) 0.111 (9.00) 0.476 (2.10) 0.769 (1.30) 1.000 (1.00)	2.3226 2.0788 2.0238 0.9505 0.6594 0.6481
	N90°E	161.9	12.60	0.333 (3.00) 6.667 (0.15) 3.333 (0.30) 1.538 (0.65) 2.222 (0.45) 0.909 (1.10) 1.250 (0.80) 0.417 (2.40)	0.0090 0.0070 0.0719 0.0338 0.0272 0.0207 0.0205 0.0177 0.0093	2.857 (0.35) 0.476 (2.10) 0.200 (5.00) 0.167 (6.00) 0.833 (1.20) 0.400 (2.50) 1.538 (0.65) 3.333 (0.30) 6.667 (0.15)	2.7971 2.6384 4.3715 4.2734 3.8759 3.5254 2.7631 1.8081 1.5268	1.000 (1.00) 1.429 (0.70) 0.208 (4.80) 0.125 (8.00) 0.400 (2.50) 0.769 (1.30) 0.625 (1.60) 1.429 (0.70) 6.667 (0.15)	0.3486 3.1020 2.9143 1.4022 0.7121 0.5453 0.2884 0.0399
	DOWN	55.5	0.02	6.667 (0.15) 3.333 (0.30) 2.000 (0.50) 1.429 (0.70) 1.250 (0.80) 0.455 (2.20)	0.0171 0.0170 0.0079 0.0043 0.0040 0.0009	3.333 (0.30) 2.000 (0.50) 1.250 (0.80) 0.833 (1.20) 0.143 (7.00) 0.500 (2.00)	0.7967 0.7087 0.5769 0.5241 0.4912 0.3860	0.111 (9.00) 0.556 (1.80) 1.111 (0.90) 2.000 (0.50) 3.333 (0.30)	0.6808 0.0969 0.0762 0.0492 0.0377
F86	N83°₩	104.6	5 .5 2	2.222 (0.45) 4.000 (0.25) 1.000 (1.00) 1.818 (0.55) 1.429 (0.70) 0.417 (2.40)	0.0315 0.0281 0.0226 0.0215 0.0196 0.0045	1.000 (1.00) 0.833 (1.20) 1.429 (0.70) 1.667 (0.60) 0.111 (9.00) 2.222 (0.45)	3.4465 3.2903 2.1565 2.0395 2.0154 1.8577	0.111 (9.00) 0.385 (2.600) 0.769 (1.300) 0.500 (2.00) 1.000 (1.00) 1.429 (0.70)	2.6166 0.7128 0.6206 0.5848 0.5573 0.2369
	507°W	80.5	7.72	4.000 (0.25) 2.857 (0.35) 1.250 (0.80) 1.429 (0.70) 0.833 (1.20)	0.0252 0.0248 0.0156 0.0136 0.0060	3.333 (0.30) 0.227 (4.40) 1.250 (0.80) 2.222 (0.45) 0.111 (9.00) 1.000 (1.00)	1.2466 1.8762 1.7901 1.5209 1.4890 1.4385	2.222 (0.45) 0.111 (9.00) 0.500 (2.00) 1.250 (0.80) 1.000 (1.00) 2.222 (0.45)	0.1577 1.6017 0.3384 0.2459 0.2096 0.1063
F88	S70°E	265.7	8.02	1.667 (0.60) 1.250 (0.80) 2.222 (0.45) 3.333 (0.30) 5.000 (0.20)	0.1098 0.1071 0.0901 0.0684 0.0598	1.000 (1.00) 1.667 (0.60) 0.625 (1.60) 0.111 (9.00) 5.000 (0.20)	15.6470 9.4654 8.5561 5.3867 1.8072	0.125 (8.00) 1.000 (1.00) 0.500 (2.00) 0.294 (3.40)	2.9696 2.4144 1.7587 1.6820
	S20°W	209.1	10.20	5.000 (0.20) 2.500 (0.40) 1.000 (1.00) 1.333 (0.75)	0.1004 0.0757 0.0606 0.0535	1.000 (1.00) 0.714 (1.40) 0.625 (1.00) 1.333 (0.75) 0.313 (3.20) 2.222 (0.45) 3.333 (0.30)	10.0056 9.7703 9.2055 6.7316 4.9957 4.5064 2.8503	0.667 (1.50) 0.500 (2.00) 0.909 (1.10) 0.333 (3.00) 0.250 (4.00) 0.111 (9.00) 2.000 (0.50)	2.0460 1.8049 1.7643 1.5080 1.4828 1.1530 0.3826
	DOWN	131.5	9.62	1.250 (0.80) 1.667 (0.60) 4.000 (0.25) 2.222 (0.45) 0.385 (2.60) 0.263 (3.80)	0.0553 0.0454 0.0406 0.0395 0.0056 0.0032	5.000 (0.20) 1.111 (0.90) 1.667 (0.60) 0.278 (3.60) 2.222 (0.45) 0.111 (9.00)	2.6463 7.3479 4.0944 3.3603 2.3875 2.3644	5.000 (0.20) 0.111 (9.00) 0.217 (4.60) 1.111 (0.90) 0.333 (3.00) 0.667 (1.50) 2.222 (0.45)	0.0997 1.3876 1.2879 1.0606 1.0373 0.7372 0.1966
F89	\$53°E	131.9	6.52	2.222 (0.45) 2.857 (0.35) 5.000 (0.20) 1.000 (1.00) 1.250 (0.80) 1.538 (0.65)	0.0409 0.0385 0.0378 0.0329 0.0321 0.0317	1.000 (1.00) 0.625 (1.60) 0.167 (6.00) 1.538 (0.65) 1.818 (0.55) 2.857 (0.35)	5.1903 4.3444 3.2656 2.9652 2.9452 1.7871	0.125 (8.00) 0.667 (1.50) 1.000 (1.00) 0.556 (1.80) 1.538 (0.65) 1.818 (0.55)	3.3291 0.8601 0.8136 0.7983 0.3315 0.2478
	s37°w	139.0	9.76	0.400 (2.50) 6.667 (0.15) 2.857 (0.35) 1.333 (0.75) 1.818 (0.55) 0.909 (1.10) 0.313 (3.20) 0.556 (1.80)	0.0049 0.0342 0.0242 0.0218 0.0175 0.0170 0.0091	4.000 (0.25) 0.208 (4.80) 0.833 (1.20) 1.250 (0.80) 0.556 (1.80) 1.818 (0.55) 2.500 (0.40)	1.3446 4.6380 2.9957 2.8241 2.2377 1.4597 1.2720	0.182 (5.50) 0.833 (1.20) 1.333 (0.75) 2.500 (0.40)	3.4546 0.5607 0.3043 0.0877
	DOWN	75.3	2.96	0.556 (1.80) 3.333 (0.30) 6.667 (0.15) 0.833 (1.20) 1.429 (0.70) 0.556 (1.80) 0.250 (4.00)	0.0086 0.0278 0.0175 0.0096 0.0078 0.0037 0.0027	5.000 (0.20) 0.208 (4.80) 0.833 (1.20) 3.333 (0.30) 0.111 (9.00) 0.500 (2.00) 1.429 (0.70) 2.222 (0.45)	0.8085 1.8985 1.5768 1.2990 1.0708 1.0023 0.9190 0.8742	0.182 (5.50) 0.435 (2.30) 0.833 (1.20) 1.429 (0.70) 3.333 (0.30) 2.000 (0.50) 2.500 (0.40)	1.3820 0.3512 0.3399 0.0945 0.0618 0.0617 0.0612
P92	s62° €	64.2	2.56	6.667 (0.15) 0.909 (1.10) 1.250 (0.80) 2.000 (0.50) 2.857 (0.35)	0.0239 0.0211 0.0195 0.0159 0.0155	0.769 (1.30) 1.250 (0.80) 0.333 (3.00) 1.667 (0.6) 4.000 (0.25)	4.3216 2.4179 2.3894 1.4009 0.8226	0.200 (5.0) 0.769 (1.3) 0.385 (2.6)	0.8480 0.7865 0.4992
	s28°W	79.1	3.66	1.667 (0.60) 2.857 (0.35) 4.000 (0.25) 6.667 (0.15) 1.538 (0.65) 0.833 (1.20) 0.167 (6.00)	0.0147 0.0330 0.0291 0.0238 0.0216 0.0143 0.0008	2.857 (0.35) 0.714 (1.40) 1.250 (0.80) 1.429 (0.70) 0.455 (2.20) 2.500 (0.40) 0.294 (3.40) 0.200 (5.00) 0.111 (9.00)	0.6607 3.3031 2.3571 2.3380 1.9759 1.7925 1.5366 1.3768 1.3707	0.111 (9.00) 0.238 (4.20) 0.667 (1.50) 0.385 (2.60) 1.333 (0.75)	1.2467 0.6005 0.5938 0.4828 0.2787
F95	s88°E	96.2	4.70	3.333 (0.30)	0.0235	0.769 (1.30)	3.4604	0.167 (6.00)	1.0585

Record	Instrument Direction	Peak Acceleration cm/sec ²	Duration sec (Acc ≥ 0.05 g)	Predominant Accele Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	ity Peaks Amplitude cm/sec	Predominant Displac Prequency (Period) Hz (sec)	ement Peaks Amplitude cm
F95	s88°E soe°w	96.2 83.9	4.70 5.96	2.500 (0.40) 1.111 (0.90) 1.818 (0.55) 0.263 (3.80) 2.000 (0.50) 2.857 (0.35)	0.0227 0.0203 0.0167 0.0020 0.0319 0.0287	0.143 (7.00) 1.818 (0.55) 2.500 (0.40) 3.333 (0.30) 0.167 (6.00) 1.000 (1.00)	1.7225 1.3159 1.2285 0.9941 3.7061 2.8262	0.833 (1.20) 0.500 (2.00) 1.667 (0.60) 2.222 (0.45) 0.143 (7.00) 0.714 (1.40)	0.6640 0.3964 0.1352 0.0912 3.2956 0.5126
200	aratu			5.000 (0.20) 1.538 (0.65) 1.111 (0.90) 0.208 (4.80) 0.333 (3.00)	0.0252 0.0211 0.0178 0.0041 0.0036	2.000 (0.50) 0.400 (2.50) 1.429 (0.70)	2.4185 2.2424 2.0860	1.000 (1.00) 1.429 (0.70) 2.000 (0.50)	0.4323 0.2392 0.1968
F98	S53°E	236.4	7.56	5.000 (0.20) 2.222 (0.45) 1.538 (0.65) 1.250 (0.80) 1.000 (1.00) 0.833 (1.20)	0.0462 0.0337 0.0315 0.0305 0.0242 0.0200	0.833 (1.20) 1.000 (1.00) 1.250 (0.80) 1.538 (0.65) 2.222 (0.45) 5.000 (0.20) 2.857 (0.35)	4.1776 3.7358 3.6438 3.2235 2.1663 1.4995 1.4962	0.125 (8.00) 0.769 (1.30) 0.667 (1.50) 1.000 (1.00) 0.445 (2.20) 1.250 (0.80) 2.222 (0.45)	4,0003 0,7776 0,7361 0,5975 0,5600 0,4837 0,1701
	s37°₩	192.0	9.80	5.000 (0.20) 2.222 (0.45) 3.333 (0.30) 1.538 (0.65) 0.833 (1.20) 0.294 (3.40) 0.556 (1.80) 0.435 (2.30)	0.0673 0.0402 0.0400 0.0304 0.0166 0.0095 0.0094 0.0077	0.278 (3.60) 0.217 (4.60) 1.538 (0.65) 0.769 (1.30) 2.222 (0.45) 0.556 (1.80) 1.250 (0.80) 5.000 (0.20) 3.333 (0.30)	4.7643 4.5278 3.3793 3.3316 2.7971 2.7466 2.4908 2.1065 1.9059	0.111 (9.00) 0.200 (5.00) 0.833 (1.20) 1.538 (0.65) 1.250 (0.80) 2.222 (0.45) 5.000 (0.20)	3.4973 3.3644 0.5887 0.3181 0.2822 0.2031 0.0670
	DOWN	69.2	4.68	0.833 (1.20) 1.818 (0.55) 1.250 (0.80) 0.250 (4.00)	0.0088 0.0078 0.0078 0.0031	0.200 (5.0) 0.833 (1.20) 0.455 (2.20) 1.250 (0.80) 1.667 (0.60) 2.222 (0.45) 5.000 (0.20)	2.0104 1.6630 1.2183 0.9672 0.6752 0.6649 0.5513	0.200 (5.00) 0.417 (2.40) 0.667 (1.50) 0.769 (1.30) 1.250 (0.80) 1.667 (0.60)	1.5327 0.4231 0.3422 0.3339 0.1232 0.0658
F103	NOO°E	91.5	7.72	6.667 (0.15) 2.857 (0.35) 1.538 (0.65) 1.250 (0.80) 0.625 (1.60) 0.769 (1.30) 0.417 (2.40) 0.200 (5.00)	0.0382 0.0199 0.0074 0.0051 0.0038 0.0030 0.0012	2.857 (0.35) 0.625 (1.60) 6.667 (0.15) 0.833 (1.20) 1.538 (0.65) 1.111 (0.90) 0.357 (2.80) 0.294 (3.40) 0.143 (7.00)	1.0830 1.0020 0.8952 0.7630 0.7609 0.7364 0.6827 0.5860 0.5801	0.143 (7.00) 0.111 (9.00) 0.625 (1.60) 0.357 (2.80) 0.294 (3.40) 1.000 (1.00) 1.538 (0.65) 2.500 (0.40) 1.818 (0.55)	0.3435 0.3414 0.2397 0.2016 0.1309 0.0898 0.0770 0.0730
	N90°W	120.5	7.48	6.667 (0.15) 2.857 (0.35) 1.333 (0.75) 0.625 (1.60) 0.435 (2.30) 0.238 (4.20)	0.0440 0.0195 0.0055 0.0022 0.0020 0.0006	2.500 (0.40) 1.818 (0.55) 4.000 (0.25) 1.333 (0.75) 1.000 (1.00) 0.833 (1.20) 0.111 (9.00)	1.2821 1.1100 1.1097 0.8803 0.7533 0.7054 0.5447	0.111 (9.00) 0.435 (2.30) 0.400 (2.50) 1.111 (0.90) 0.909 (1.10) 2.000 (0.50) 4.000 (0.25)	0.6610 0.2648 0.2596 0.0971 0.0869 0.0816 0.0450
F104	NOO°E	85.2	6.00	5.000 (0.20) 2.500 (0.40) 1.818 (0.55) 1.333 (0.75) 0.625 (1.60) 0.769 (1.30)	0.0369 0.0182 0.0152 0.0112 0.0096 0.0088	0.556 (1.80) 0.333 (3.00) 1.333 (0.75) 1.818 (0.55) 4.000 (0.25) 2.222 (0.45)	2.6133 1.5382 1.2915 1.1699 1.1375 1.0914	0.167 (6.00) 0.556 (1.80) 1.667 (0.60)	0.7241 0.6926 0.1164
	N90°W	103.1	1.80	5.000 (0.20) 2.222 (0.45) 1.111 (0.90) 0.500 (2.00)	0.0328 0.0192 0.0067 0.0038	2.222 (0.45) 2.857 (0.35) 0.385 (2.60) 4.000 (0.25) 0.111 (9.00)	1.3040 1.2155 1.1949 1.1946 0.9428	0.111 (9.00) 0.313 (3.20) 1.000 (1.00) 0.833 (1.20) 2.222 (0.45)	1.1347 0.5108 0.1393 0.1264 0.0945
F105	S00°W	83.1	3.76	5.000 (0.20) 1.111 (0.90) 0.238 (4.20) 0.313 (3.20)	0.0314 0.0061 0.0015 0.0014	0.143 (7.00) 0.909 (1.10) 0.200 (5.00) 5.000 (0.20) 2.857 (0.35) 2.222 (0.45) 0.357 (2.80) 1.667 (0.60)	1.1463 0.9949 0.9588 0.9450 0.9428 0.9009 0.7511	0.111 (9.00) 1.000 (1.00) 1.538 (0.65) 2.222 (0.45)	1.1477 0.1214 0.0658 0.0596
	N90°E	77.6	1.86	3.333 (0.30) 5.000 (0.20) 2.500 (0.40) 1.667 (0.60) 1.250 (0.80) 0.556 (1.80) 0.714 (1.40) 0.143 (7.00)	0.0244 0.0238 0.0172 0.0158 0.0123 0.0035 0.0034 0.0008	1.667 (0.60) 1.250 (0.80) 0.500 (2.00) 3.333 (0.30) 2.500 (0.40) 0.111 (9.00) 0.278 (3.60) 0.400 (2.50)	0.7061 1.4272 1.4112 1.0466 1.0456 0.9831 0.8951 0.7493 0.7302	0.111 (9.00) 0.500 (2.00) 1.111 (0.90) 1.667 (0.60) 2.500 (0.40) 3.333 (0.30)	1.3507 0.3093 0.1944 0.1400 0.0674 0.0542
	UP	67.1	5.40	6.667 (0.15) 0.769 (1.30) 1.538 (0.65) 0.313 (3.20) 0.182 (5.50)	0.0264 0.0065 0.0061 0.0008 0.0004	0.667 (1.50) 5.000 (0.20) 0.333 (3.00) 0.217 (4.60) 3.333 (0.30) 2.222 (0.45) 1.538 (0.65) 0.125 (8.00)	1.5351 0.7562 0.7438 0.7171 0.6751 0.6446 0.6428 0.5404	0.167 (6.00) 0.625 (1.60) 0.250 (4.00) 0.357 (2.80) 1.429 (0.70) 2.000 (0.50) 3.333 (0.30) 5.000 (0.20)	0.3330 0.3233 0.2474 0.1813 0.0734 0.0490 0.0303 0.0232
1106	S00°W	87.5	4.20	4,000 (0.25) 1,333 (0.75) 1,111 (0.90) 0,455 (2.20) 0,182 (5.50)	0.0472 0.0124 0.0112 0.0027 0.0010	0.833 (1.20) 4.000 (0.25) 1.111 (0.90) 0.238 (4.20) 0.500 (2.00) 1.333 (0.75) 0.125 (8.00)	1.8669 1.7564 1.7340 1.6628 1.5246 1.5161 1.3994	0.143 (7.00) 0.278 (3.60) 0.385 (2.60) 0.833 (1.20) 2.000 (0.50) 3.333 (0.30)	0.7076 0.3416 0.3347 0.3231 0.0883 0.0746
	s90°w	188.6	5.88	4.000 (0.25) 1.250 (0.80) 0.476 (2.10) 0.217 (4.60)	0.0988 0.0352 0.0070 0.0034	2.222 (0.45) 1.000 (1.00) 0.769 (1.30) 2.857 (0.35) 1.333 (0.75)	1.2542 5.1588 5.0298 4.5414 4.2546	0.167 (6.00) 0.455 (2.20) 0.385 (2.60) 0.909 (1.10)	2.2735 0.7688 0.7320 0.6479

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	ity Peaks Amplitude cm/sec	Predominant Displac Prequency (Period) Hz (sec)	Amplitude
G106	890°W	188.6	5.88			0.200 (5.00)	3.6973 3.3754	1.111 (0.90) 2.857 (0.35)	0.6101
	DOWN	83.5	2.12	6.667 (0.45) 3.333 (0.30) 1.667 (0.60) 0.208 (4.80)	0.0339 0.0318 0.0137 0.0006	0.111 (9.00) 3.333 (0.30) 1.429 (0.70) 2.500 (0.40) 0.833 (1.20) 0.400 (2.50) 0.143 (7.00)	2.9027 1.6103 1.5762 1.4234 1.2092 1.0757 0.9639	0.111 (9.00) 0.417 (2.40) 0.385 (2.60) 1.333 (0.75) 2.857 (0.35)	0.3653 0.2023 0.2016 0.1428 0.0765
G107	NOO°E	93.5	6.42	3.333 (0.30) 1.250 (0.80) 6.667 (0.15) 1.667 (0.60) 0.714 (1.40) 0.625 (1.60) 0.294 (3.40)	0.0305 0.0205 0.0195 0.0150 0.0051 0.0047 0.0015	1.111 (0.90) 0.833 (1.20) 0.556 (1.80) 1.667 (0.60) 0.667 (1.50) 2.222 (0.45) 2.857 (0.35) 0.385 (2.60)	2.9606 1.4643 1.4263 1.4053 1.3087 1.3033 1.2952 1.2828	0.278 (3.60) 0.217 (4.60) 0.167 (6.00) 1.111 (0.90) 0.556 (1.80) 0.400 (2.50) 0.714 (1.40) 0.833 (1.20) 1.538 (0.65)	0.4404 0.4335 0.4133 0.3921 0.3132 0.2511 0.2442 0.2440
	N90°E	107.3	7.92	2.222 (0.45) 3.333 (0.30) 5.000 (0.20) 1.111 (0.90) 1.538 (0.65) 0.909 (1.10) 0.455 (2.20) 0.217 (4.66)	0.0400 0.0373 0.0333 0.0205 0.0195 0.0191 0.0073 0.0030	0.238 (4.20) 6.667 (0.15) 0.909 (1.10) 1.111 (0.90) 2.222 (0.45) 0.200 (5.00) 0.143 (7.00) 0.227 (4.40) 0.455 (2.20) 1.429 (0.70)	1.2787 0.4256 3.3507 3.1335 2.6529 2.5985 2.3922 2.3596 2.2849 2.2061	1.538 (0.65) 2.222 (0.45) 0.167 (6.00) 0.400 (2.50) 0.909 (1.10) 0.769 (1.30) 1.429 (0.70) 2.222 (0.45)	0.1407 0.0914 1.9618 0.9585 0.5702 0.4519 0.2343 0.2016
	DOWN	92.9	0.56	3.333 (0.30) 1.818 (0.55) 1.111 (0.90) 0.400 (2.50) 0.143 (7.00)	0.0197 0.0104 0.0037 0.0007 0.0003	1.429 (0.70) 1.667 (0.60) 2.857 (0.35) 1.818 (0.55) 1.111 (0.90) 0.909 (1.10) 0.111 (9.00) 0.357 (2.80) 0.417 (2.40)	2.1704 1.8338 0.9282 0.8643 0.6742 0.6400 0.5262 0.3919 0.3455	0.111 (9.00) 0.385 (2.60) 0.769 (1.30) 1.667 (0.60) 0.278 (3.60) 0.476 (2.10) 2.857 (0.35)	0.4641 0.1091 0.1020 0.0798 0.0762 0.0729 0.0502
;110	\$82°E	207.8	5.60	2.857 (0.35) 1.111 (0.90) 0.263 (3.80)	0.1097 0.0233 0.0039	2.857 (0.35) 0.769 (1.30) 1.111 (0.90) 0.227 (4.40)	5.8924 3.7298 3.2492 2.9572	0.182 (5.50) 0.476 (2.10) 0.769 (1.30) 1.111 (0.90)	1.9555 0.6033 0.5092 0.4651
	so8°w	139.0	5.88	4.000 (0.25) 2.857 (0.35) 1.333 (0.75) 1.667 (0.60) 1.000 (1.00)	0.0490 0.0392 0.0249 0.0235 0.0225	0.909 (1.10) 1.429 (0.70) 0.476 (2.10) 0.625 (1.60) 2.857 (0.35)	3.8133 2.9636 2.5860 2.5111 2.1776	2.857 (0.35) 0.455 (2.20) 0.125 (8.00) 0.909 (1.10) 1.667 (0.60) 2.857 (0.35)	0.3297 0.8291 0.6470 0.5978 0.2088 0.1178
	DOWN	126.3	4.60	2.857 (0.35) 1.818 (0.55) 1.429 (0.70) 0.833 (1.20) 0.455 (2.20) 0.333 (3.00)	0.0556 0.0144 0.0098 0.0044 0.0022 0.0019	4.000 (0.25) 2.857 (0.35) 0.556 (1.80) 1.333 (0.75) 1.000 (1.00) 0.357 (2.80) 0.143 (7.00)	1.6673 3.0125 1.4330 1.3162 1.2082 1.0551 1.0279	0.182 (5.50) 0.556 (1.80) 2.857 (0.35) 1.429 (0.70) 1.111 (0.90) 1.818 (0.55)	0.6063 0.2192 0.1673 0.1174 0.1158 0.1064
3115	N52°₩	101.9	7.42	1.667 (0.60) 2.222 (0.45) 6.667 (0.15) 0.909 (1.10) 1.111 (0.90) 0.556 (1.80) 0.455 (2.20)	0.0215 0.0204 0.0189 0.0142 0.0131 0.0067 0.0065	0.167 (6.00) 0.263 (3.80) 0.833 (1.20) 0.435 (2.30) 1.667 (0.60) 0.556 (1.80) 2.222 (0.45)	2.9024 2.7388 2.5709 2.1124 2.0899 1.8904 1.3057	0.143 (7.00) 0.833 (1.20) 1.667 (0.60)	2.7208 0.5027 0.1919
	n38°E	78.5	4.00	0.313 (3.20) 1.667 (0.60) 2.222 (0.45) 5.000 (0.20) 1.250 (0.80) 0.182 (5.50)	0.0055 0.0265 0.0258 0.0235 0.0215 0.0023	6.667 (0.15) 0.833 (1.20) 0.625 (1.60) 1.538 (0.65) 0.125 (8.00) 2.222 (0.45) 0.227 (4.40)	0.4493 3.4918 2.7334 2.5064 2.4690 1.6913 1.6102	0.125 (8.00) 0.625 (1.60) 0.833 (1.20) 0.294 (3.40) 1.538 (0.65)	2.4432 0.6249 0.6095 0.5596 0.2567
	DOWN	53.2	1.30	4.000 (0.25) 2.500 (0.40) 1.250 (0.80) 2.000 (0.50) 1.538 (0.65) 0.909 (1.10) 0.667 (1.5) 0.294 (3.40)	0.0198 0.0060 0.0058 0.0056 0.0052 0.0047 0.0027	5.000 (0.20) 0.227 (4.40) 0.909 (1.10) 1.250 (0.80) 4.000 (0.25) 0.667 (1.50) 1.538 (0.65) 0.476 (2.10) 2.000 (0.50)	0.5494 1.1589 0.8172 0.7744 0.7115 0.6861 0.6227 0.4372 0.4056	0.200 (5.00) 0.625 (1.60) 0.909 (1.10) 0.500 (2.00) 1.250 (0.80) 2.000 (0.50) 4.000 (0.25)	0.6477 0.1488 0.1391 0.1074 0.0924 0.0347 0.0304
;114	\$ 60° E	110.8	10.88	4.000 (0.25) 1.818 (0.55) 2.857 (0.35) 0.667 (1.50) 1.333 (0.75)	0.0343 0.0300 0.0273 0.0216 0.0195	0.625 (1.60) 1.818 (0.55) 0.294 (3.40) 0.167 (6.00) 2.857 (0.35)	4.9244 2.4302 1.9049 1.6374 1.5135	0.625 (1.60) 0.182 (5.50) 1.333 (0.75) 1.667 (0.60)	1.3500 0.5884 0.2715 0.2328
	s30°w	136.2	11.44	1.111 (0.90) 3.333 (0.30) 6.667 (0.15) 1.818 (0.55) 0.769 (1.30) 1.000 (1.00) 1.250 (0.80)	0.0167 0.0369 0.0332 0.0262 0.0182 0.0127 0.0117	4.000 (0.25) 0.769 (1.30) 1.667 (0.60) 3.333 (0.30) 0.294 (3.40) 0.357 (2.80) 0.208 (4.80)	1.1726 3.8935 2.1948 1.8450 1.5703 1.4652 1.0968	0.714 (1.40) 0.556 (1.80) 0.125 (8.00) 0.263 (3.80) 0.167 (6.00) 1.667 (0.60)	0.8085 0.6947 0.5762 0.5337 0.5093 0.2141
	DOWN	86.6	5.46	0.333 (3.00) 5.000 (0.20) 2.857 (0.35) 1.818 (0.55) 0.769 (1.30) 1.111 (0.90) 0.500 (2.00)	0.0022 0.0277 0.0174 0.0149 0.0138 0.0121 0.0049	0.111 (9.00) 0.769 (1.30) 1.538 (0.65) 1.818 (0.55) 0.125 (8.00) 2.500 (0.40) 5.000 (0.20)	1.0446 2.8736 1.3656 1.3140 0.9734 0.9076	3.333 (0.30) 0.769 (1.30) 0.455 (2.20) 0.167 (6.00) 0.125 (8.00) 1.538 (0.65) 5.000 (0.20)	0.0817 0.5776 0.5226 0.4591 0.4255 0.1403 0.0275
4115	N11°E	220.6	16.82	4.000 (0.25) 2.500 (0.40)	0.0873 0.0671	0.278 (3.60) 0.556 (1.80)	11.0790 8.1032	0.294 (3.40) 0.250 (4.00)	5.7034 5.1382

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Accele Prequency (Period Hz (sec)		Predominant Veloc Frequency (Feriod) Hz (sec)	Amplitude	Predominant Displa Frequency (Period) Hz (sec)	
H115	N11°E	220.6	16.82	0.556 (1.80)	0.0298	0.476 (2.10)	6.9377	0.556 (1.80)	2.3840
				1.818 (0.55) 1.538 (0.65)	0.0290	2.500 (0.40) 4.000 (0.25)	4.3440	0.455 (2.20) 1.333 (0.75)	0.3123
				1.333 (0.75) 0.476 (2.10)	0.0224	1.429 (0.70) 1.667 (0.60)	2.7313	2.500 (0.40)	0.2673
						0.833 (1.20)	2.6427	4.000 (0.25)	0.2172
	N79°W	146.0	17.90	2.500 (0.40) 0.909 (1.10)	0.0560	0.385 (2.60)	8.5381 4.9913	0.385 (2.60)	3.4829
				1.667 (0.60) 0.400 (2.50)	0.021	0.167 (6.00)	3.6338 3.5219	0.250 (4.00)	2.8822
				0.250 (4.00)	0.0073	0.833 (1.20)	3.3390	0.833 (1.20)	0.7276
				0.167 (6.00)	0.0035	0.111 (9.00) 1.538 (0.65)	2.9391	1.429 (0.70) 2.222 (0.45)	0.2377
	DOWN	94.5	9.34	2.500 (0.40)	0.0339	1.250 (0.80) 0.208 (4.80)	2.3354		
				3.333 (0.30) 5.000 (0.20)	0.0287	2.500 (0.40) 0.500 (2.00)	2.0600 1.8168	0.200 (5.00) 0.313 (3.20)	0.8370
				1.538 (0.65)	0.0158	0.143 (7.00)	1.7847	0.455 (2.20)	0.5934
				0.769 (1.30)	0.0152	1.538 (0.65) 0.625 (1.60)	1.6756 1.6648	1.538 (0.65) 2.500 (0.40)	0.1655
				0.496 (2.10)	0.0054	0.333 (3.00) 3.333 (0.30)	1.5925		
						1.000 (1.00)	0.8515		
H121	890°W	119.4	9.10	3.333 (0.30) 5.000 (0.20)	0.0364	0.769 (1.30) 0.182 (5.50)	5.0166	0.167 (6.00)	2.8653
				1.250 (0.80)	0.0224	2.500 (0.40)	1.8269	0.714 (1.40) 0.476 (2.10)	0.9813
				0.833 (1.20) 1.000 (1.00)	0.0220				
				1.538 (0.65)	0.0196				
	S00°W	112.3	6.38	0.313 (3.20)	0.0055	1.250 (0.80)	0.01/2	0.500 (0.00)	
	500 W	ш.,	0.30	4.000 (0.25)	0.0374	0.909 (1.10)	2.9163	0.500 (2.00) 0.238 (4.20)	0.7130
				1.818 (0.55) 2.222 (0.45)	0.0254	1.667 (0.60) 0.476 (2.10)	2.2213	0.200 (5.00) 0.313 (3.20)	0.6769
				1.250 (0.80) 0.556 (1.80)	0.0243	0.333 (3.00)	1.9059	0.909 (1.10) 0.111 (9.00)	0.4578
				0.550 (1.00)	0.0013	0.167 (6.00)	1.3326	1.250 (0.80)	0.3838
						3.333 (0.30) 6.667 (0.15)	0.7380	1.667 (0.60) 6.667 (0.15)	0.2200
	DOWN	79.2	4.86	5.000 (0.20) 2.500 (0.40)	0.0206	0.833 (1.2) 0.250 (4.00)	1.9007	0.238 (4.20)	0.8184
				0.909 (1.10)	0.0101	0.167 (6.00)	1.1662	0.833 (1.20)	0.3349
				1.333 (0.75)	0.0097	0.455 (2.20)	1.0300	1.333 (0.75) 2.222 (0.45)	0.1342 0.0583
				0.455 (2.20)	0.0024	2.222 (0.45) 1.818 (0.55)	0.9312	5.000 (0.20)	0.0204
				0.294 (3.40)	0.0022	5.000 (0.20)	0.6443		
1128	890°W	91.6	5.58	2.500 (0.40) 6.667 (0.15)	0.0241	0.200 (5.00) 1.111 (0.90)	2.4572	0.167 (6.00) 0.417 (2.40)	1.8689
				1.111 (0.90)	0.0172	2.500 (0.40)	1.4617	1.111 (0.90)	0.3443
				0.714 (1.40) 0.455 (2.20)	0.0068	0.714 (1.40) 0.556 (1.80)	1.4091	0.714 (1.40) 2.222 (0.45)	0.3295
				0.278 (3.60)	0.0035	1.667 (0.60)	1.2381		
1131	N50°E	184.3	7.74	4.000 (0.25) 2.500 (0.40)	0.0538	0.227 (4.40)	3.6613 3.2620	0.182 (5.50) 0.667 (1.50)	0.5025
				1.111 (0.90) 0.357 (2.80)	0.0140	2.222 (0.45) 1.000 (1.00)	2.8048	0.909 (1.10) 2.222 (0.45)	0.3752
				0.435 (2.30)	0.0060	0.714 (1.40)	2.2370	1.667 (0.60)	0.1691
	N40°W	160.6	6.26	5.000 (0.20)	0.0433	4.000 (0.25) 2.000 (0.50)	2.1314	0.125 (8.00)	1.4053
				1.111 (0.90) 0.833 (1.20)	0.0120	2.500 (0.40) 1.000 (1.00)	1.9436	0.217 (4.60) 0.278 (3.60)	0.5503
				0.385 (2.60)	0.0026	3.333 (0.30) 0.714 (1.40)	1.6303	0.667 (1.50) 1.000 (1.00)	0.2916
				0.455 (2.20) 0.143 (7.00)	0.0010	0.111 (9.00)	1.4863	2.000 (0.50)	0.2497
						0.455 (2.20)	1.4247	1.538 (0.65)	0.1371
1134	N54°E	97.9	5.12	2.500 (0.40)	0.0381	2.500 (0.40) 0.111 (9.00)	2.3536	0.111 (9.00) 0.625 (1.60)	2.1752 0.3884
				5.000 (0.20) 0.909 (1.10)	0.0024	2.000 (0.50) 0.667 (1.50)	2.0387	0.476 (2.10) 1.818 (0.55)	0.3325
				0.714 (1.40)	0.0078	0.833 (1.20)	1.6562	2.500 (0.40)	0.1499
				0.208 (4.80)	0. 00 26	1.333 (0.75)	1.1340		
	\$36°E	82.3	5.54	2.500 (0.40) 6.667 (0.15)	0.0259	2.222 (0.45)	1.8149	0.111 (9.00)	0.6303
				3.333 (0.30) 1.667 (0.60)	0.0226	1.111 (0.90) 0.667 (1.50) 0.111 (9.00)	1.4008	0.625 (1.60) 0.435 (2.30)	0.2938
				1.111 (0.90)	0.0121	1.667 (0.60)	1.3110	1.111 (0.90)	0.2419
				0.833 (1.20) 0.625 (1.60)	0.0063	3.333 (0.30) 1.429 (0.70)	1.1185	0.833 (1.20) 2.222 (0.45)	0.2230
	DOWN	62.5	0.30	0.476 (2.10) 3.333 (0.30)	0.0025	0.417 (2.40) 3.333 (0.30)	0.9450	1.667 (0.60)	0.1256
				5.000 (0.20) 2.000 (0.50)	0.0154	2.000 (0.50)	0.7893	0.111 (9.00)	0.2432
				1.111 (0.90)	0.0023	0.263 (3.80) 0.556 (1.80)	0.5745	0.556 (1.80)	0.0927
				0.714 (1.40) 0.294 (3.40)	0.0017	0.667 (1.50) 1.000 (1.00)	0.5646	3.333 (0.30) 1.000 (1.00)	0.0653
						0.125 (8.00)	0.3598	2.000 (0.50) 1.667 (0.60)	0.0517
1137	581°E	140.2	19.50	2.222 (0.45)	0.0354	0.385 (2.60)	6.5263	0.357 (2.80)	2.5650
				1.538 (0.65) 6.667 (0.15)	0.0343	1.250 (0.80) 0.238 (4.20)	4.1519 3.8722	0.250 (4.00)	2.0763
				4.000 (0.25)	0.0292	0.625 (1.60)	2.5496	0.625 (1.60)	0.6665
				0.435 (2.30)	0.0177	0.714 (1.40)	2.2669	1.250 (0.80) 2.000 (0.50)	0.5038
	809°W	129.0	16.12	4.000 (0.25)	0.0388	0.556 (1.80)	9.2257	0.294 (3.40)	3.4978

Record	Instrument Direction	Peak Acceleration cm/sec	Duretion sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Frequency (Feriod) Hz (sec)	Amplitude cm/sec	Predominant Displac Frequency (Period) Hz (sec)	Amplitude
1137	SO9 ^o W	129.0	16.12	0.625 (1.60) 2.500 (0.10) 6.667 (0.15) 1.111 (0.90) 1.1429 (0.70) 0.909 (1.10) 0.333 (3.00) 2.500 (0.40) 6.667 (0.15) 4.000 (0.25) 1.538 (0.65) 0.734 (1.40) 0.200 (5.00)	0.0380 0.0326 0.0287 0.0276 0.0259 0.032 0.0126 0.0243 0.0177 0.0011	0.294 (3.40) 0.208 (4.80) 0.909 (1.10) 1.111 (0.90) 1.429 (0.70) 2.500 (0.50) 2.500 (0.40) 3.333 (0.30) 0.667 (1.50) 1.429 (0.70) 2.222 (0.45) 0.208 (4.80) 0.167 (6.00) 0.909 (1.10) 4.000 (0.25) 6.667 (0.15)	7.7421 5.4560 4.2477 3.4970 2.9802 2.3338 2.1316 1.3477 1.8452 1.6662 1.5487 1.0358 1.0992 0.9143 0.6259 0.4951	0.217 (4.60) 0.182 (5.50) 0.556 (1.80) 0.435 (2.30) 0.909 (1.10) 1.333 (0.75) 2.000 (0.50) 4.000 (0.25) 0.182 (5.50) 0.556 (1.80) 0.400 (2.50) 0.400 (2.50) 1.429 (0.70) 2.222 (0.45)	2.8851 2.7511 2.6336 1.5452 0.7749 0.3436 0.1606 0.0600 0.7366 0.3844 0.3107 0.1680 0.1064
J141	№1°E	145.5	3.54	1.429 (0.70) 1.000 (1.00) 2.000 (0.50) 2.857 (0.35)	0.0620 0.0618 0.0528 0.0428	0.833 (1.20)	10.1098	0.833 (1.20) 0.667 (1.50) 0.263 (3.80)	1.7060 1.5012 1.0425
	\$ 69° E	108.9	5.14	5.000 (0.20) 1.538 (0.65) 2.857 (0.35) 6.667 (0.15) 0.909 (1.10)	0.0376 0.0539 0.0407 0.0377 0.0322	0.833 (1.20) 1.429 (0.70) 0.357 (2.80) 2.857 (0.35)	5.8133 4.9160 4.1586 1.6487	0.833 (1.20) 0.417 (2.40) 0.238 (4.20) 0.111 (9.00)	1.0521 0.9021 0.8220 0.6399
	DOWN	93.0	5.96	1.429 (0.70) 5.000 (0.20) 2.500 (0.40)	0.0424 0.0347 0.0201	0.625 (1.60) 0.476 (2.10) 1.111 (0.90) 0.200 (5.00) 5.000 (0.20)	5.3417 4.6991 4.6117 2.4075 0.8433	1.429 (0.70) 0.556 (1.80) 0.111 (9.00) 0.385 (2.60) 5.000 (0.20)	0.6239 1.1558 1.0697 1.0101 0.0340
J142	s69°€	168.2	4.94	6.667 (0.15) 4.000 (0.25) 1.667 (0.60)	0.0781 0.0459 0.0232	0.909 (1.10) 1.538 (0.65) 2.000 (0.50) 6.667 (0.15) 0.200 (5.00)	2.5578 2.3803 2.3362 1.6550 1.2118	0.667 (1.50) 0.111 (9.00) 0.909 (1.10) 0.400 (2.50) 0.278 (3.60) 1.538 (0.65)	0.3978 0.3824 0.3132 0.2746 0.2724 0.2355
	S21°W	143.5	4.32	5.000 (0.20) 2.500 (0.40) 1.667 (0.60) 1.429 (0.70)	0.0792 0.0380 0.0241 0.0241	0.769 (1.30) 1.538 (0.65) 0.400 (2.50) 2.500 (0.40) 2.000 (0.50) 5.000 (0.20)	3.8177 2.9032 2.6472 2.4641 2.4497	6.667 (0.15) 0.435 (2.30) 1.000 (1.00) 0.238 (4.20) 0.111 (9.00) 2.222 (0.45) 5.000 (0.20)	0.0431 0.5393 0.4927 0.4808 0.3185 0.1717
	DOWN	150.8	4.82	5.000 (0.20) 1.667 (0.60) 0.833 (1.20) 1.111 (0.90)	0.0779 0.0094 0.0077 0.0068	5.000 (0.20) 0.714 (1.40) 0.833 (1.20) 2.500 (0.40) 0.125 (8.00) 1.818 (0.55) 1.538 (0.65)	2.3579 2.3306 1.9615 1.9625 1.7793 1.5003 1.1900 1.1519	0.208 (4.80) 0.294 (3.40) 0.500 (2.00) 0.625 (1.60) 2.500 (0.40) 4.000 (0.25) 1.667 (0.60)	0.5384 0.4567 0.3756 0.3746 0.0852 0.0793 0.0788
J143	N21°E	119.3	4.50	6.667 (0.15) 2.857 (0.35) 1.818 (0.55) 0.714 (1.40)	0.0473 0.0391 0.0126 0.0068	2.857 (0.35) 0.833 (1.20) 0.500 (2.00)	2.2424 1.7813 1.4873	0.667 (1.50) 0.556 (1.80) 2.500 (0.40)	0.3253 0.3215 0.1≥08
	n69° ₩	109.4	2.82	3.333 (0.30) 1.538 (0.65) 0.667 (1.50) 0.556 (1.80) 0.833 (1.20)	0.0242 0.0097 0.0057 0.0056 0.0053	0.556 (1.80) 0.417 (0.55) 1.818 (0.55) 1.333 (0.75) 2.857 (0.35) 0.909 (1.10) 6.667 (0.15)	1.8818 1.6589 1.4356 1.2804 1.2444 1.0721 0.9503	0.476 (2.10) 0.111 (9.00) 1.000 (1.00) 1.818 (0.55) 2.222 (0.45) 2.857 (0.35)	0.4836 0.4509 0.1656 0.0844 0.0806 0.0695
	DOWN	71.5	2.68	2.222 (0.45) 2.857 (0.35) 1.111 (0.90) 0.625 (1.60)	0.0149 0.0147 0.0055 0.0032	0.111 (9.00) 0.500 (2.00) 0.435 (2.30) 2.222 (0.45) 0.357 (2.80) 1.111 (0.90)	0.8937 1.1657 1.0680 1.0035 0.9882 0.9268	0.111 (9.00) 0.417 (2.40) 1.000 (1.00) 2.222 (0.45)	0.7129 0.2829 0.1259 0.0737
J144	N21°E	346.2	14 .04	5.000 (0.20) 1.111 (0.90) 1.429 (0.70)	0.1678 0.0214 0.0206	5.000 (0.20) 1.000 (1.00) 0.111 (9.00) 0.357 (2.80)	5.1485 3.7920 2.2812 2.1845	0.167 (6.00) 1.000 (1.00) 0.476 (2.10) 0.294 (3.40) 2.857 (0.35)	0.5460 0.5066 0.4597 0.3908 0.2149
	n69°w	277.9	14.10	4.000 (0.25) 0.714 (1.40) 0.217 (4.60)	0.1672 0.0082 0.0027	4.000 (0.25) 0.125 (8.00) 1.000 (1.00) 0.182 (5.50) 0.625 (1.60) 0.227 (4.40)	6.6591 2.3554 2.3254 2.1111 2.0776 1.9159	2.000 (0.50) 0.111 (9.00) 0.400 (2.50) 0.357 (2.80) 0.667 (1.50) 4.000 (0.25) 1.000 (1.00)	0.1622 2.6914 0.6150 0.6136 0.4190 0.2585 0.2115
	DOWN	105.3	3.66	1.429 (0.70) 0.500 (2.00) 0.435 (2.30) 0.385 (2.60)	0.0076 0.0018 0.0018 0.0017	0.417 (2.40) 4.000 (0.25) 2.500 (0.40) 1.111 (0.90) 2.000 (0.50) 0.435 (2.30) 0.313 (3.20) 0.250 (4.00)	1.9009 1.1972 1.0564 0.9947 0.8517 0.7639 0.6800 0.6514	1.818 (0.55) 0.111 (9.00) 1.000 (1.00) 1.818 (0.55) 4.000 (0.25)	0.1893 0.7620 0.1206 0.0583 0.0437
J145	soo°w	113.9	15.74	2.500 (0.40) 1.111 (0.90) 5.000 (0.20) 0.556 (1.80) 2.000 (0.50) 0.769 (1.30) 1.538 (0.65) 0.357 (2.80)	0.0328 0.0284 0.0281 0.0276 0.0274 0.0263 0.0248	0.227 (4.40) 0.556 (1.80) 0.313 (3.20) 0.167 (6.00) 0.769 (1.30) 1.111 (0.90) 2.500 (0.40)	9.2230 8.3584 7.1102 6.1068 5.4861 3.8312 1.8582	0.200 (5.00) 0.227 (4.40) 0.111 (9.00) 0.556 (1.80) 0.769 (1.30) 1.111 (0.90) 2.500 (0.40)	5.1426 5.0967 3.4553 2.2054 1.0993 0.5695 0.1285
	s90°w	103.4	16.26	0.294 (3.40) 2.500 (0.40)	0.0138	0.278 (3.60)	9.0099	0.278 (3.60)	4.8949

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceleration Pea Frequency (Period) Amplitu Hz (sec) (g)	Predominant Velocity Peaks Frequency (Period) Amplitud Hz (sec) cm/sec	Predominant Displace Frequency (Period) Hz (sec)	Amplitude
л45	S90°₩	103.4	16.26	6.667 (0.15) 0.032 0.714 (1.40) 0.032 4.000 (0.25) 0.032 0.556 (1.80) 0.027 1.818 (0.55) 0.026 0.455 (2.20) 0.026 1.429 (0.70) 0.022	4 0.435 (2.30) 8.5603 5 0.556 (1.80) 8.2460 6 0.714 (1.40) 6.8564 6 0.238 (4.20) 6.6766 6 0.182 (5.50) 5.8055 7 1.429 (0.70) 2.2747 8 1.818 (0.55) 2.2037 8 2.222 (0.45) 2.0779	0.182 (5.50) 0.385 (2.60) 0.435 (2.30) 1.333 (0.75) 1.818 (0.55) 2.222 (0.45)	4.6858 3.4993 3.3988 0.3011 0.1976 0.1387
	DOWN	106.3	21.60	0.200 (5.00) 0.006 5.000 (0.20) 0.035 3.333 (0.30) 0.034 2.222 (0.45) 0.029 0.500 (2.00) 0.021 0.388 (2.60) 0.021 1.538 (0.65) 0.016 0.909 (1.10) 0.014 0.294 (3.40) 0.010 0.227 (4.40) 0.000 0.167 (6.00) 0.003	6 0.385 (2.60) 6.7934 6 0.500 (2.00) 6.5474 2 0.278 (3.60) 5.6506 7 0.200 (5.00) 3.4561 7 0.167 (6.00) 3.1970 9 0.232 (1.20) 2.4582 9 2.222 (0.45) 2.1399 1 0.111 (9.00) 2.0349 1 1.538 (0.65) 1.5904 1 1.333 (0.75) 1.8330	0.385 (2.60) 0.276 (3.60) 0.167 (6.00) 0.111 (9.00) 0.217 (4.60) 1.500 (2.00) 1.333 (0.75) 2.222 (0.45) 3.333 (0.30)	3.0331 3.0211 2.7699 2.6226 2.2169 2.1149 0.1919 0.1170 0.0771
J148	MOO°E	107.6	6.94	6.667 (0.15) 0.040 2.857 (0.35) 0.038 2.000 (0.50) 0.031 1.538 (0.65) 0.028 1.111 (0.90) 0.028 0.759 (1.30) 0.018 0.227 (4.40) 0.004	0 1.111 (0.90) 4.2820 0.769 (1.30) 4.1706 9 1.538 (0.65) 3.1586 6 2.000 (0.50) 2.5119 9 0.357 (2.80) 2.5046 8 2.857 (0.35) 1.9391	0.182 (5.50) 0.714 (1.40) 1.000 (1.00) 0.476 (2.10) 2.500 (0.40)	3.0090 0.8547 0.6498 0.4860 0.1327
	s90°w	112.0	10.24	0.333 (3.00) 0.004 3.333 (0.30) 0.095 1.818 (0.55) 0.034 0.909 (1.10) 0.024 0.417 (2.40) 0.010 0.200 (5.00) 0.007	7 0.167 (6.00) 6.7571 1 0.909 (1.10) 4.7394 7 0.417 (2.40) 3.6239 9 1.538 (0.65) 3.1655	0.167 (6.00) 0.400 (2.50) 0.769 (1.30) 1.538 (0.65) 3.333 (0.30)	5.9264 1.6057 0.7671 0.2662 0.1168
ш66	NOO°E	164.2	5.42	6.667 (0.15) 0.056 2.857 (0.35) 0.040 1.818 (0.55) 0.024 1.429 (0.70) 0.020 1.111 (0.90) 0.016 0.217 (4.60) 0.03 0.385 (2.60) 0.03	3 0.667 (1.50) 2.7288 5 1.429 (0.70) 2.5138 1 0.263 (3.80) 2.4858 4 1.818 (0.55) 2.4427 5 0.227 (4.40) 2.4054	0.182 (5.50) 0.667 (1.50) 1.000 (1.100) 1.333 (0.75) 1.818 (0.55) 2.500 (0.40)	2.0673 0.4465 0.3717 0.2531 0.1820 0.1404
	s90°w	147.6	5.36	4.000 (0.25) 0.081 1.429 (0.70) 0.030 1.818 (0.55) 0.030 0.769 (1.30) 0.018 0.455 (2.20) 0.007	7 1.250 (0.80) 3.5814 2 0.143 (7.00) 3.1798 9 0.500 (2.00) 3.0463 5 4.000 (0.25) 2.9176	0.125 (8.00) 0.435 (2.30) 0.769 (1.30) 1.250 (0.80) 1.818 (0.55)	1.7693 0.9113 0.7830 0.4689 0.2255
	DOWN	69.7	6.14	2.857 (0.35) 0.006 1.538 (0.65) 0.008 0.769 (1.30) 0.006 0.333 (3.00) 0.001 0.182 (5.50) 0.000	0 0.556 (1.80) 1.5463 7 2.857 (0.35) 1.3920 7 0.143 (7.00) 1.1849	3.333 (0.30) 0.111 (9.00) 0.294 (3.40) 0.500 (2.00) 0.667 (1.50) 0.435 (2.30) 1.111 (0.90) 2.000 (0.50) 2.857 (0.35)	0.1354 1.1036 0.4091 0.3799 0.3259 0.3132 0.1344 0.0841
M176	N37°E	83.4	7.90	0.833 (1.20) 0.026 2.222 (0.45) 0.025 6.667 (0.15) 0.023 3.333 (0.30) 0.021 1.538 (0.65) 0.017 0.313 (3.20) 0.005	3 0.167 (6.00) 3.5725 5 0.500 (2.00) 3.3899 0.278 (3.60) 2.8726 3 2.222 (0.45) 1.5830 0 1.538 (0.65) 1.5265	0.111 (9.00) 0.400 (2.50) 0.476 (2.10) 0.769 (1.30) 1.538 (0.65) 2.222 (0.45)	3.7966 1.1216 1.0641 1.0105 0.1861 0.1286
	S53°E	116.0	7.06	0.909 (1.10) 0.024 1.538 (0.65) 0.024 1.250 (0.45) 0.024 1.250 (0.80) 0.021 0.625 (1.60) 0.011 0.294 (3.40) 0.005 0.200 (5.00) 0.004	0 0.167 (6.00) 4.0635 2 1.429 (0.70) 2.2430 7 2.222 (0.45) 1.5409 5 3.333 (0.30) 0.7051 6.6667 (0.15) 0.5214	0.143 (7.00) 0.909 (1.10) 0.625 (1.60) 0.714 (1.40)	4.1467 0.7440 0.7332 0.6761
N185	850°E	67.3	3.02	2.857 (0.35) 0.030 6.667 (0.15) 0.022 1.667 (0.60) 0.009 1.333 (0.75) 0.007 0.625 (1.60) 0.001 0.217 (4.60) 0.000	1.429 (0.70) 1.1359 1.250 (0.80) 1.2057 0.143 (7.00) 0.8231 0.208 (4.80) 0.7721	0.125 (8.00) 0.556 (1.80) 1.333 (0.75) 2.857 (0.35) 0.909 (1.10)	0.5535 0.1103 0.1052 0.0917 0.0744
	s40°w	67.3	5.34	0.357 (2.80) 0.000 1.000 (0.25) 0.038 2.857 (0.35) 0.025 1.129 (0.70) 0.008 0.556 (1.80) 0.001 0.250 (1.00) 0.000	5 0.476 (2.10) 0.5639 2.500 (0.40) 1.5535 5 4.000 (0.25) 1.4120 5 1.333 (0.75) 1.0931 0.455 (2.20) 0.8701	0.143 (7.00) 0.357 (2.80) 0.417 (2.40) 1.429 (0.70) 2.000 (0.50) 2.500 (0.40) 1.667 (0.60) 0.833 (1.20) 4.000 (0.25)	0.4168 0.1527 0.1500 0.1006 0.0974 0.0948 0.0917 0.0801 0.0587
N186	\$3 7 °E	95.7	2.76	5,000 (0.20) 0.032 2.857 (0.35) 0.020 1.538 (0.65) 0.012 0.833 (1.20) 0.005	0.714 (1.40) 1.1706 1.111 (0.90) 1.1568	0.111 (9.00) 0.769 (1.30) 0.357 (2.80) 1.429 (0.70) 1.250 (0.80) 2.000 (0.50) 2.500 (0.40)	0.5420 0.2034 0.2022 0.1354 0.1275 0.0774 0.0737

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Prequency (Period) Hz (sec)	Amplitude cm/sec	Predominant Displac Frequency (Period) Hz (sec)	Amplitude
N186	S53°₩	96.7	4.62	5.000 (0.20) 2.500 (0.40) 2.000 (0.50) 1.538 (0.65) 0.833 (1.20) 0.667 (1.50)	0.0321 0.0209 0.0168 0.0165 0.0055 0.0055	1.667 (0.60) 1.333 (0.75) 0.667 (1.50) 2.500 (0.40) 4.000 (0.25) 0.111 (9.00)	1.6011 1.4409 1.3542 1.2340 1.2273 0.6307	0.111 (9.00) 0.625 (1.60) 0.476 (2.10) 0.385 (2.60) 1.538 (0.65) 1.333 (0.75) 2.500 (0.40)	0.5519 0.3236 0.3152 0.2834 0.1718 0.1568 0.0835
N187	м75° ₩	55.7	5.12	4.000 (0.25) 1.111 (0.90) 0.769 (1.30) 0.182 (5.50)	0.0309 0.0041 0.0024 0.0001	2.222 (0.45) 4.000 (0.25) 1.429 (0.70) 0.714 (1.40) 0.833 (1.20) 1.111 (0.90) 0.556 (1.80)	1.2385 1.2032 0.6399 0.6296 0.6212 0.6174 0.4930	0.111 (9.00) 0.714 (1.40) 2.222 (0.45) 1.111 (0.90) 0.417 (2.40) 1.429 (0.70) 0.333 (3.00) 4.000 (0.25)	0.1584 0.1076 0.0832 0.0807 0.0566 0.0566 0.0476
N188	N54°E	114.4	5.22	3.333 (0.30) 2.500 (0.40) 5.000 (0.20) 1.111 (0.90) 0.667 (1.50) 0.238 (4.20)	0.0355 0.0340 0.0301 0.0113 0.0093	0.200 (5.00) 0.667 (1.50) 0.125 (8.00) 2.500 (0.40) 1.111 (0.90)	3.0655 2.3637 2.2479 2.1303 1.4484	0.167 (6.00) 0.625 (1.60) 1.111 (0.90) 2.500 (0.40)	2.4295 0.5692 0.2253 0.1331
	n36°₩	126.5	9.46	0.357 (2.80) 3.333 (0.30) 2.500 (0.40) 5.000 (0.20) 1.111 (0.90) 0.625 (1.60) 0.250 (4.00) 0.385 (2.60) 0.333 (3.00)	0.0037 0.0595 0.0554 0.0468 0.0113 0.0055 0.0038 0.0029	2.500 (0.90) 3.333 (0.30) 0.182 (5.50) 0.238 (4.20) 0.625 (1.60) 1.111 (0.90) 5.000 (0.20) 0.357 (2.80)	3.3893 2.6469 2.4369 2.2356 1.8417 1.7872 1.4262 1.4138	0.167 (6.00) 0.385 (2.60) 0.556 (1.80) 1.000 (1.00) 0.833 (1.20) 2.500 (0.40) 1.667 (0.60)	2.1278 0.4878 0.3785 0.2538 0.2203 0.2196 0.1402
	DOWN	62.5	5.08	3.333 (0.30) 6.667 (0.15) 2.500 (0.40) 1.000 (1.00) 0.769 (1.30) 0.357 (2.80) 0.238 (4.20)	0.0165 0.0159 0.0157 0.0083 0.0040 0.0015 0.0010	0.417 (2.40) 1.000 (1.00) 0.625 (1.60) 2.500 (0.40) 3.333 (0.30) 0.500 (2.00) 1.818 (0.55) 0.357 (2.80) 0.227 (4.40) 0.125 (8.00) 0.278 (3.60)	1.2356 1.2446 1.1008 0.9658 0.8638 0.8212 0.7971 0.7837 0.7835 0.6937 0.6056	0 167 (6.00) 0.333 (3.00) 0.455 (2.20) 0.625 (1.60) 1 000 (1.00) 1.818 (0.55) 2.500 (0.40) 1.538 (0.65) 3.333 (0.30)	0.5846 0.3090 0.2207 0.2135 0.2050 0.0647 0.0626 0.0587 0.0367
N192	№9°E	96.7	6.70	5.000 (0.20) 3.333 (0.30) 0.769 (1.30) 2.000 (0.50) 1.250 (0.80) 0.227 (4.40)	0.0302 0.0245 0.0204 0.0199 0.0193 0.0030	0.769 (1.30) 0.556 (1.80) 0.143 (7.00) 1.250 (0.80) 0.400 (2.50) 0.250 (4.00) 1.818 (0.55) 2.500 (0.40)	3.9716 2.7455 2.5608 2.1837 2.1097 1.8075 1.6266 1.2240	0.125 (8.00) 0.182 (5.50) 0.769 (1.30) 0.357 (2.80) 0.455 (2.20) 1.250 (0.80)	1.8781 1.8509 0.8477 0.6474 0.6191 0.3023
	n61°w	98.9	5.82	0.909 (1.10) 1.818 (0.55) 3.333 (0.30) 1.429 (0.70)	0.0400 0.0307 0.0277 0.0244	5.000 (0.20) 0.909 (1.10) 0.714 (1.40) 0.143 (7.00) 0.435 (2.30) 1.818 (0.55) 2.500 (0.40) 3.333 (0.30)	0.8864 6.6983 5.1022 3.7670 3.4638 2.1868 1.2523 0.9626	0.143 (7.00) 0.909 (1.10) 0.500 (2.00) 0.667 (1.50) 1.818 (0.55)	2.7598 1.1889 1.1840 1.0379 0.2287
0198	soo°w	176.0	6.60	4.000 (0.25) 1.818 (0.55) 1.111 (0.90) 0.263 (3.80) 0.333 (3.00) 0.400 (2.50)	0.0874 0.0571 0.0480 0.0080 0.0078 0.0070	1.000 (1.00) 0.208 (4.80) 0.143 (7.00) 1.818 (0.55) 0.385 (2.60) 0.667 (1.50)	7.8771 5.8615 5.4799 4.8232 4.6514 4.0322	0.200 (5.00) 1.000 (1.00) 0.667 (1.50)	3.5756 1.1090 0.7427
	s90°W	167.0	8.34	5.000 (0.20) 2.857 (0.35) 2.000 (0.50) 1.333 (0.75) 0.400 (2.50) 0.278 (3.60)	0.0752 0.0638 0.0585 0.0474 0.0075 0.0053	3.333 (0.30) 1.000 (1.00) 0.769 (1.30) 1.333 (0.75) 2.000 (0.50) 0.227 (4.40) 1.667 (0.60) 0.143 (7.00) 0.500 (2.00)	3.1434 6.4136 5.9160 5.8482 4.3465 4.0960 4.0339 3.7790 3.7325	0.167 (6.00) 0.357 (2.80) 0.909 (1.10)	2.9126 1.1603 1.0234
	DOWN	120.0	6.38	5.000 (0.200) 2.500 (0.40) 1.429 (0.70) 0.294 (3.40)	0.0469 0.0275 0.0240 0.0027	4.000 (0.25) 1.333 (0.75) 2.500 (0.40) 4.000 (0.25) 0.294 (3.40) 0.769 (1.30) 1.818 (0.55) 0.125 (8.00)	2.2708 2.6618 1.8853 1.7842 1.6667 1.4443 1.4407	0.111 (9.00) 0.250 (4.00) 0.417 (2.40) 1.333 (0.75) 0.625 (1.60) 0.909 (1.10) 2.500 (0.40)	0.9456 0.8320 0.3250 0.2913 0.2812 0.2631 0.1066
P214	s89° w s01° E	154.0 156.0	6.12 5.74	4.000 (0.25) 2.222 (0.45) 1.000 (1.00) 1.429 (0.70) 0.476 (2.10) 0.263 (3.80)	0.0860 0.0439 0.0339 0.0316 0.0065 0.0062	3-333 (0.30) 2-500 (0.40) 1.000 (1.00) 0.227 (4,40) 0.263 (3.80) 3-333 (0.30) 1.818 (0.55) 0.125 (8.00) 0.500 (2.00)	3.2186 2.8625 5.2750 4.0866 3.9153 3.5539 3.1052 2.9766 2.4083	0.200 (5.00) 1.000 (1.00) 1.818 (0.55) 3.333 (0.30)	2.8588 0.8294 0.2878 0.1587
	DOWN	115.0	6.62	6.667 (0.15) 2.857 (0.35) 1.000 (1.00) 1.538 (0.65) 0.435 (2.30)	0.0318 0.0226 0.0169 0.0152 0.0055	0.625 (1.60) 0.909 (1.10) 0.313 (3.20) 0.250 (4.00) 2.222 (0.45) 1.429 (0.70) 5.000 (0.20)	2.1922 2.8635 2.4804 2.2487 1.4630 1.4401 0.7285	0.278 (3.60) 0.238 (4.20) 0.909 (1.10) 1.429 (0.70) 2.222 (0.45)	1.1712 1.1669 0.4822 0.1670 0.1032

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	ation Peaks Amplitude (g)	Predominant Veloc Frequency (Period) Hz (sec)	ity Peaks Amplitude cm/sec	Predominant Displace Frequency (Period) Hz (sec)	Amplitude
P217	soo°w	108.0	5.52	2.222 (0.45) 3.333 (0.30) 1.111 (0.90) 1.538 (0.65) 5.000 (0.20) 0.769 (1.30) 0.278 (3.60)	0.0327 0.0310 0.0248 0.0241 0.0238 0.0135 0.0038	1.000 (1.00) 0.625 (1.60) 0.769 (1.30) 1.538 (0.65) 2.000 (0.50) 0.182 (5.50) 0.227 (4.40) 0.357 (2.80)	3.6584 2.9120 2.7003 2.4968 2.1919 2.1811 2.0950 1.9261	0.111 (9.00) 1.000 (1.00) 0.714 (1.40) 0.455 (2.20) 1.538 (0.65)	2.11.88 0.6033 0.6008 0.4682 0.2505
	N90°E	88.1	5.32	3.333 (0.30) 6.667 (0.15) 0.833 (1.20) 2.500 (0.40) 2.000 (0.50) 1.429 (0.70) 1.111 (0.90)	0.0229 0.0219 0.0195 0.0184 0.0166 0.0143 0.0135 0.0014	0.833 (1.20) 0.435 (2.30) 1.429 (0.70) 0.125 (8.00) 2.500 (0.40) 3.333 (0.30)	3.9686 1.9951 1.7070 1.6425 1.0441 0.9579	0.111 (9.00) 0.769 (1.30) 0.417 (2.40) 0.455 (2.20) 1.429 (0.70) 2.500 (0.40)	1.9176 0.7128 0.6338 0.6333 0.1734 0.0725
	DOWN	60.1	3.00	0.182 (5.50) 5.000 (0.20) 3.333 (0.30) 1.818 (0.55) 1.429 (0.70) 1.250 (0.80) 1.000 (1.00) 0.556 (1.80) 0.263 (3.80) 0.385 (2.60)	0.0136 0.0120 0.0100 0.0065 0.0056 0.0053 0.0028 0.0018	0.217 (4.60) 1.000 (1.00) 1.818 (0.55) 0.111 (9.00) 0.556 (1.80) 0.833 (1.20) 3.333 (0.30) 1.250 (0.80) 2.500 (0.40)	1.0924 0.8164 0.7622 0.7363 0.7327 0.6624 0.6269 0.6056 0.5296	0.111 (9.00) 0.200 (5.00) 0.556 (1.80) 1.000 (1.00) 1.429 (0.70) 1.818 (0.55) 2.500 (0.40)	0.9775 0.8059 0.2264 0.1313 0.0789 0.0751 0.0346
P221	NO3°E	137.0	10.88	5.000 (0.20) 1.667 (0.60) 1.333 (0.75) 0.833 (1.20) 0.625 (1.60) 0.417 (2.40) 0.313 (3.20) 0.167 (6.00)	0.0734 0.0099 0.0092 0.0040 0.0030 0.0020 0.0020 0.0018 0.0013	5.000 (0.20) 0.143 (7.00) 1.333 (0.75) 0.625 (1.60) 0.476 (2.10)	2.1518 1.9427 1.4473 1.0530 0.9494	0.143 (7.00) 0.294 (3.40) 0.500 (2.00) 0.769 (1.30) 1.250 (0.80) 2.857 (0.35)	1.7606 0.5315 0.2151 0.1523 0.1276 0.0868
	n87°₩	165.0	5.80	0.217 (4.60) 6.667 (0.15) 1.818 (0.55) 0.217 (4.60) 0.313 (3.20)	0.0921 0.0163 0.0019 0.0016	0.111 (9.00) 5.000 (0.20) 2.500 (0.40) 1.538 (0.65) 0.667 (1.50) 0.909 (1.10) 0.455 (2.20)	2.3241 2.2116 1.7852 1.5590 1.4997 1.4211 1.2468	0.111 (9.00) 0.556 (1.80) 1.111 (0.90) 1.538 (0.65) 2.857 (0.35) 5.000 (0.20)	2.2582 0.2834 0.1571 0.1285 0.0882 0.0691
P223	N55°E	69.7	0.42	5.000 (0.20) 2.500 (0.40) 1.429 (0.70)	0.0294 0.0222 0.0179	1.333 (0.75) 1.538 (0.65) 2.500 (0.40) 0.263 (3.80) 0.111 (9.00) 5.000 (0.20) 0.556 (1.80)	2.1436 2.0641 1.3918 0.9572 0.9481 0.8826 0.8024	0.143 (7.0) 1.333 (0.75) 2.222 (0.45)	0.3701 0.2313 0.1001
	N35°W	53.2	0.02	6.667 (0.15) 2.222 (0.45) 3.333 (0.30) 1.429 (0.70) 0.263 (3.80)	0.0277 0.0190 0.0149 0.0119 0.0009	1.250 (0.80) 2.000 (0.50) 0.125 (8.00) 0.294 (3.40) 0.476 (2.10) 5.000 (0.20)	1.4749 1.3554 1.1890 0.8154 0.8139 0.7260	0.111 (9.00) 0.200 (5.00) 1.250 (0.80) 0.833 (1.20) 1.818 (0.55) 0.476 (2.10) 5.000 (0.20)	0.5410 0.3626 0.1631 0.1387 0.1114 0.1009 0.0240
Q233	S12°W	243.0	17.48	3.333 (0.30) 6.667 (0.15) 1.667 (0.60) 0.313 (3.20) 0.556 (1.80) 0.833 (1.20)	0.1054 0.0631 0.0368 0.0180 0.0178 0.0177	0.238 (4.20) 0.294 (3.40) 0.476 (2.10) 2.500 (0.40) 3.333 (0.30) 0.556 (1.80) 1.667 (0.60) 0.714 (1.40) 2.000 (0.50)	9.4413 9.4177 5.0107 4.9557 4.8358 4.5836 0.0474 3.5905 3.4946	0.250 (4.00) 0.208 (4.80) 0.476 (2.10) 0.769 (1.30) 1.429 (0.70) 2.500 (0.40)	5.5487 5.3294 1.6101 0.7162 0.3845 0.2950
	N78°₩	197.0	15.12	5.000 (0.20) 2.500 (0.40) 2.000 (0.50) 1.250 (0.80) 0.625 (1.60) 0.417 (2.40) 0.714 (1.40) 1.000 (1.00)	0.0646 0.0385 0.0358 0.0189 0.0149 0.0149 0.0131 0.0124	1.250 (0.80) 0.357 (2.80) 0.182 (5.50) 0.556 (1.80) 2.000 (0.50) 2.500 (0.40) 1.250 (0.80) 0.714 (1.40) 3.333 (0.30)	3.0606 6.0685 4.9755 3.3637 2.8503 2.4954 2.4322 2.3021 2.1147	0.167 (6.00) 0.333 (3.00) 0.556 (1.80) 1.000 (1.00) 1.250 (0.80) 1.818 (0.55) 2.500 (0.40)	3.8220 2.6605 1.0398 0.3065 0.2980 0.2280 0.1525
	UP	96.0	7.54	3.333 (0.30) 2.500 (0.40) 1.818 (0.55) 1.250 (0.80) 0.667 (1.50) 0.833 (1.20) 0.500 (2.00) 0.250 (4.00) 0.182 (5.50)	0.0290 0.0215 0.0119 0.0061 0.0056 0.0048 0.0039 0.0012	1.000 (1.00) 2.590 (0.40) 0.556 (1.80) 3.333 (0.30) 0.667 (1.50) 0.400 (2.50) 1.667 (0.60) 0.143 (7.00) 1.333 (0.75) 0.227 (4.40)	2.0459 1.3899 1.3427 1.3249 1.3082 1.2562 1.1418 1.0941 0.8630 0.7963	0.143 (7.00) 0.357 (2.80) 0.500 (2.00) 0.625 (1.60) 1.667 (0.60) 2.500 (0.40) 3.333 (0.30)	1.1354 0.4956 0.3853 0.3237 0.0923 0.0842 0.0642
q236	SOUTH	167.0	9.50	5.000 (0.20) 2.500 (0.40) 1.818 (0.55) 1.429 (0.70) 1.111 (0.90) 0.769 (1.30) 0.417 (2.40) 0.263 (3.80)	0.0518 0.0477 0.0217 0.0171 0.0166 0.0164 0.0055 0.0044	0.769 (1.30) 0.667 (1.50) 2.500 (0.40) 0.263 (3.80) 0.313 (3.20) 0.476 (2.10) 1.111 (0.90) 2.208 (4.80) 1.818 (0.55)	3.5009 3.1927 2.9574 2.5719 2.5381 2.4849 2.4838 2.4803 2.0961	0.182 (5.50) 0.714 (1.40) 1.429 (0.70) 2.222 (0.45) 1.818 (0.55) 5.000 (0.20)	1.8830 0.7046 0.2060 0.2042 0.1616 0.0509
	EAST	122.0	5.20	5.000 (0.20) 2.500 (0.40) 1.667 (0.60) 1.250 (0.80)	0.0491 0.0163 0.0103 0.0087	1.429 (0.70) 5.000 (0.20) 0.208 (4.80) 0.143 (7.00) 4.000 (0.25) 1.000 (1.00)	1.9431 1.5548 2.1313 1.8171 1.5661 1.2703	0.167 (6.00) 0.500 (2.00) 0.714 (1.40) 1.000 (1.00)	1.6206 0.2977 0.2288 0.1667

Record	Instrument Direction	Feak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Accelers Frequency (Period) Hz (sec)	Amplitude	Fredominant Veloc Frequency (Feriod) Hz (sec)	ity Peaks Amplitude cm/sec	Fredominant Displac Frequency (Feriod) Hz (sec)	Amplitude
9236	EAST	122.0	5.20	0.833 (1.20) 0.278 (3.60) 0.417 (2.40)	0.0054 0.0032 0.0031	1.333 (0.75) 0.556 (1.80) 0.714 (1.40) 2.500 (0.40)	1.1634 1.1288 1.0815	2.222 (0.45) 3.333 (0.30)	0.0712
	UP	73.20	5.36	3.333 (0.30) 6.667 (0.15) 1.538 (0.65) 1.818 (0.55) 1.111 (0.90) 0.909 (1.10) 0.400 (2.50) 0.250 (4.00) 0.111 (9.00)	0.0325 0.0218 0.0137 0.0130 0.0117 0.0108 0.0014 0.0012	0.833 (1.20) 1.111 (0.90) 3.333 (0.30) 1.538 (0.65) 0.455 (2.20) 0.167 (6.00) 0.263 (3.80)	1.0471 2.0475 1.6979 1.4906 1.3221 1.1216 1.0368 0.9679	0.217 (4.60) 0.111 (9.00) 0.769 (1.30) 0.556 (1.80) 1.111 (0.90) 3.333 (0.30)	0.5604 0.4010 0.3893 0.2991 0.2352 0.0727
9239	SOUTH	119.0	11.40	5.000 (0.20) 2.857 (0.35) 2.000 (0.50) 1.111 (0.90)	0.0385 0.0353 0.0346 0.0148 0.0096 0.0063	0.182 (5.50) 2.000 (0.50) 1.429 (0.70) 0.667 (1.50) 0.385 (2.60) 1.111 (0.90)	5.0952 2.6372 2.5354 2.4315 2.3666 2.3539	0.182 (5.50) 0.357 (2.80) 0.625 (1.60) 0.769 (1.30) 1.000 (1.00) 1.429 (0.70)	4.0248 1.0591 0.5942 0.3949 0.3370 0.2540
	EAST	161.0	7.98	0.385 (2.60) 0.208 (4.80) 3.333 (0.30) 6.667 (0.15) 1.667 (0.60) 1.429 (0.70) 1.250 (0.80) 0.714 (1.40) 0.263 (3.80) 0.476 (2.10)	0.0060 0.0493 0.0444 0.0217 0.0187 0.0185 0.0138 0.0065 0.0047	1.111 (0.90) 4.000 (0.25) 0.217 (4.60) 0.769 (1.30) 2.500 (0.40) 1.111 (0.90) 1.538 (0.65)	1.4599 4.2941 2.8580 2.5613 2.4584 2.0974	0.200 (5.00) 0.714 (1.40) 1.667 (0.60) 2.500 (0.40)	3.0782 0.6702 0.1940 0.1665
Q241	N37°E	86.8	7.86	4.000 (0.25) 1.250 (0.80) 2.222 (0.45) 1.538 (0.65) 0.833 (1.20) 0.435 (2.30) 0.294 (3.40)	0.0393 0.0350 0.0338 0.0263 0.0234 0.0080	0.714 (1.40) 1.111 (0.90) 0.182 (5.50) 2.222 (0.45)	4.3779 3.8393 3.1846 2.3251	0.125 (8.00) 0.400 (2.50) 0.556 (1.80) 0.769 (1.30) 1.250 (0.80) 2.222 (0.45)	3.1609 1.0832 1.0068 0.8960 0.5502 0.1672
	N53°₩	138.0	5.66	0.294 (3.40) 4.000 (0.25) 2.222 (0.45) 1.000 (1.00) 0.769 (1.30) 0.167 (6.00) 0.278 (3.60) 6.667 (0.15)	0.0056 0.0463 0.0372 0.0313 0.0249 0.0032 0.0031	0.667 (1.50) 1.000 (1.00) 0.111 (9.00) 1.818 (0.55) 2.857 (0.35)	5.7652 4.4046 3.7354 2.3324 1.9596	0.143 (7.00) 0.714 (1.40) 0.625 (1.60) 1.000 (1.00) 1.667 (0.60)	3.3175 1.1804 1.1360 0.7710 0.2479
	UP	60.8	0.16	6.667 (0.15) 1.818 (0.55) 1.250 (0.80) 0.476 (2.10) 0.250 (4.00)	0.0189 0.0109 0.0092 0.0029 0.0025	0.167 (6.00) 0.833 (1.20) 1.111 (0.90) 0.476 (2.10) 1.667 (0.60) 2.500 (0.40) 3.333 (0.30)	1.8679 1.3183 1.3079 0.8936 0.8217 0.7708 0.6095	0.167 (6.00) 0.111 (9.00) 0.435 (2.30) 0.625 (1.60) 1.667 (0.60)	1.4128 1.4082 0.3332 0.2731 0.0875
R244	N53°W	149.0	8.16	2.500 (0.40) 1.667 (0.60) 1.000 (1.00) 1.333 (0.75) 0.769 (1.30) 0.333 (3.00) 0.208 (4.80)	0.0513 0.0336 0.0317 0.0273 0.0256 0.0063	0.714 (1.40) 1.143 (7.00) 1.000 (1.00) 0.227 (4.40) 1.538 (0.65) 2.222 (0.45)	5.4146 4.8999 4.8086 4.6146 3.2736 3.1379	0.167 (6.00) 0.769 (1.30) 0.625 (1.60) 2.222 (0.45)	4.2405 1.0609 1.0597 0.2410
	s37°w	126.0	9.54	0.208 (4.86) 3.333 (0.30) 1.250 (0.80) 1.818 (0.55) 1.429 (0.70) 0.909 (1.10) 0.385 (2.60) 0.333 (3.00)	0.0057 0.0536 0.0297 0.0296 0.0279 0.0205 0.0121 0.0120	0.217 (4.60) 0.714 (1.40) 0.143 (7.00) 0.909 (1.10) 1.250 (0.80) 2.857 (0.35) 1.818 (0.55)	6.0337 4.6319 4.5617 4.0909 3.3965 2.6333 2.2836	0.200 (5.00) 0.625 (1.60) 1.250 (0.80)	4.0158 0.9246 0.4655
R246	SOUTH	115.0	9.04	3.333 (0.30) 5.000 (0.20) 2.500 (0.40) 1.429 (0.70) 1.000 (1.00) 0.455 (2.20) 0.556 (1.80) 0.238 (4.20)	0.0330 0.0323 0.0261 0.0233 0.0221 0.0073 0.0062 0.0055	0.227 (4.40) 1.000 (1.00) 0.313 (3.20) 0.417 (2.40) 1.429 (0.70) 0.625 (1.60) 2.222 (0.45) 3.333 (0.30)	4.0067 3.5210 2.7035 2.4999 2.2939 1.8106 1.7405 1,4002	0.200 (5.00) 0.435 (2.30) 1.000 (1.00) 1.429 (0.70) 3.333 (0.30)	2.6539 0.9318 0.5479 0.2833 0.0733
	EAST	106.0	10.72	5.000 (0.20) 1.111 (0.90) 0.909 (1.10) 0.556 (1.80) 0.714 (1.40) 0.435 (2.30) 0.278 (3.60)	0.0422 0.0233 0.0210 0.0124 0.0111 0.0096 0.0087	3.333 (0.30) 5.000 (0.20) 0.250 (4.00) 0.182 (5.50) 0.357 (2.80) 0.909 (1.10) 0.556 (1.80) 1.111 (0.90) 2.500 (0.40)	0.8652 5.3173 4.0858 3.5253 3.4719 3.4562 3.2128 1.6547	0,208 (4,80) 0,556 (1,80) 0,909 (1,10) 1,111 (0,90) 2,222 (0,45)	3.3157 0.9905 0.6274 0.4673 0.1114
	UP	74.1	5.20	0.313 (3.20) 6.667 (0.15) 4.000 (0.25) 1.667 (0.60) 2.500 (0.40) 0.999 (1.10) 0.417 (2.40) 0.294 (3.40) 0.238 (4.20)	0.0087 0.0229 0.0174 0.0126 0.0120 0.0075 0.0013 0.0011	0.909 (1.10) 1.667 (0.60) 0.238 (4.20) 0.435 (2.30) 0.143 (7.00) 4.000 (8.25) 2.500 (0.40) 6.667 (0.15)	1.3941 1.1070 0.9458 0.7619 0.7522 0.7421 0.5708 0.5280	0.200 (5.00) 0.769 (1.30) 0.500 (2.00) 0.400 (2.50) 1.667 (0.60) 4.000 (0.25)	0.5455 0.2492 0.2100 0.1831 0.1124 0.0267
R248	SOUTH	184.0	9.70	6.667 (0.15) 3.333 (0.30) 2.500 (0.40) 1.667 (0.60) 1.111 (0.90) 0.625 (1.60) 0.455 (2.20) 0.250 (4.00) 0.333 (3.00)	0.0524 0.0441 0.0386 0.0325 0.0285 0.0080 0.0070 0.0054	1.000 (1.00) 0.238 (4.20) 0.200 (5.00) 0.167 (6.00) 0.313 (3.20) 1.538 (0.65) 0.435 (2.30) 0.111 (9.00) 2.222 (0.45) 3.333 (0.30) 0.625 (1.60)	4.6195 3.8821 3.3298 3.0685 2.9503 2.8681 2.4706 2.4461 2.2588 2.2128 2.0654	0.200 (5.00) 0.435 (2.30) 1.000 (1.00) 0.769 (1.30) 1.429 (0.70)	2.4731 0.8817 0.6960 0.5504 0.2985

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Accelera Frequency (Period) Hz (sec)	Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	ity Peaks Amplitude cm/sec	Predominant Displace Frequency (Period) Hz (sec)	Amplitude
R248	EAST	174.0	10.68	5.000 (0.200) 2.500 (0.40) 1.111 (0.90) 0.909 (1.10) 1.667 (0.60) 1.429 (0.70) 0.556 (1.80) 0.278 (3.60)	0.0614 0.0407 0.0230 0.0220 0.0187 0.0175 9.0124 0.0087	0.250 (4.00) 0.182 (5.50) 0.556 (1.80) 0.909 (1.10) 0.357 (2.80) 0.435 (2.30) 1.111 (0.90) 2.500 (0.40) 1.667 (0.60)	5.3620 4.0262 3.5945 3.5431 3.3537 3.2290 3.1891 2.6089 1.8481	0.227 (4.40) 0.556 (1.80) 0.909 (1.10) 1.111 (0.90) 2.500 (0.40)	3.2370 0.9932 0.6578 0.4609 0.1624
	UP	88.9	10.78	0.313 (3.20) 6.667 (0.15) 1.818 (0.55) 2.500 (0.40) 0.909 (1.10) 1.429 (0.70) 1.250 (0.80) 0.357 (2.80) 0.278 (3.60)	0.0284 0.0166 0.0136 0.0089 0.0081 0.0074 0.0022	0.714 (1.ko) 0.236 (4.20) 1.818 (0.55) 0.357 (2.80) 0.113 (7.00) 0.111 (9.00) 2.500 (0.40) 1.429 (0.70) 1.250 (0.80) 5.000 (0.20)	1.7571 1.7089 1.2784 1.0187 0.9728 0.9397 0.8994 0.8642 0.8411	0.125 (8.00) 0.217 (4.60) 0.263 (3.80) 0.263 (3.80) 0.357 (2.80) 0.714 (1.40) 0.500 (2.00) 1.818 (0.55) 1.429 (0.70) 2.500 (0.40) 5.000 (0.20)	0.7817 0.7314 0.6864 0.4186 0.3683 0.2493 0.1243 0.0974 0.0539 0.0223
R249	Mr17₀E	79.8	4.24	3.333 (0.30) 1.667 (0.60) 2.222 (0.45) 1.250 (0.80) 0.909 (1.10) 0.250 (4.00) 0.208 (4.80)	0.0278 0.0155 0.0153 0.0107 0.0098 0.0029 0.0029	0.143 (7.00) 0.111 (9.00) 0.714 (1.40) 0.625 (1.60) 1.667 (0.60) 3.333 (0.30) 1.250 (0.80)	2.2802 2.2779 1.8437 1.8077 1.5353 1.2329 1.2245	0.111 (9.00) 0.625 (1.60) 1.667 (0.60) 3.333 (0.30)	3.1540 0.4899 0.1381 0.0621
	S46°E	84.1	6.10	3.333 (0.30) 6.667 (0.50) 1.667 (0.60) 1.111 (0.90) 0.769 (1.30) 0.667 (1.50) 0.333 (3.00) 0.143 (7.00)	0.0310 0.0262 0.0144 0.0128 0.0065 0.0062 0.0030 0.0010	1.000 (1.00) 0.556 (1.80) 2.500 (0.40) 0.278 (3.60) 0.357 (2.80) 0.125 (8.00) 1.667 (0.60) 0.208 (4.80) 6.667 (0.15)	2.0711 2.0154 1.6765 1.6720 1.4395 1.3852 1.2689 1.0676 0.5153	0.125 (8.00) 0.278 (3.60) 0.556 (1.80) 0.455 (2.20) 1.000 (1.00) 1.667 (0.60) 1.429 (0.70) 2.500 (0.40)	1.3580 0.7805 0.4342 0.3334 0.2937 0.1281 0.1177 0.1054
R251	N37°E	195.0	7.64	3.333 (0.30) 1.818 (0.55) 1.250 (0.80) 0.833 (1.20) 0.455 (2.20) 0.313 (3.20)	0.0941 0.0407 0.0297 0.0210 0.0088 0.0068	2.857 (0.35) 0.833 (1.20) 0.714 (1.40) 1.818 (0.55) 0.625 (1.60) 1.333 (0.75) 0.278 (3.60) 0.182 (5.50) 0.385 (2.60)	4.6883 4.5577 4.0566 4.0259 3.9566 3.9473 3.5883 3.5624 2.7238	0.143 (7.00) 0.435 (2.30) 0.625 (2.30) 0.625 (1.30) 1.250 (0.80) 1.667 (0.60) 2.857 (0.35)	3.2773 1.0877 0.8268 0.7422 0.4657 0.3347 0.2593
	\$53°E	188.0	6.76	2.222 (0.45) 1.667 (0.60) 1.250 (0.80) 1.000 (1.00) 0.200 (5.00)	0.0657 0.0430 0.0425 0.0385 0.0056	1.000 (1.00) 0.714 (1.40) 0.556 (1.80) 1.250 (0.80) 0.143 (7.00) 1.538 (0.65) 2.222 (0.45) 0.333 (3.00)	5.8928 5.8054 5.4487 4.9518 4.7232 4.1308 4.2304 3.0438	0.143 (7.00) 0.667 (1.50) 0.909 (1.10) 2.222 (0.45)	4.7805 1.2179 0.9494 0.3283
R253	N30°W	242.0	8.40	4.000 (0.25) 2.222 (0.45) 1.000 (1.00) 0.278 (3.60) 0.385 (2.60) 0.182 (5.50)	0.0583 0.0473 0.0279 0.0048 0.0043 0.0040	0.909 (1.10) 0.556 (1.80) 1.667 (0.60) 0.182 (5.50) 2.222 (0.45) 4.000 (0.25)	5.0800 3.9826 3.7521 3.6401 3.0254 2.1579	0.167 (6.00) 0.500 (2.00) 0.909 (1.10) 0.714 (1.40) 1.538 (0.65)	3.5352 0.8301 0.8168 0.6919 0.3391
	s60°w	220.0	10.76	3.333 (0.30) 2.222 (0.45) 1.538 (0.65) 1.250 (0.80) 0.833 (1.20) 0.294 (3.40) 0.435 (2.30)	0.0488 0.0413 0.0284 0.0234 0.0187 0.0079 0.0069	0.167 (6.00) 0.238 (4.20) 0.833 (1.20) 1.250 (0.80) 1.429 (0.70) 2.222 (0.45) 0.455 (2.20)	4,5003 4,3435 3,9903 3,0649 3,0438 2,6687 2,4668 2,1270	0.167 (6.00) 0.500 (2.00) 0.769 (1.30) 1.250 (0.80) 2.000 (0.50)	4.1130 0.7840 0.7096 0.3713 0.2297
	UP	81.6	1.40	5.000 (2.20) 2.222 (0.45) 1.333 (0.75) 0.909 (1.10) 0.667 (1.50) 0.200 (5.00) 0.435 (2.30) 0.333 (3.00)	0.0200 0.0188 0.0067 0.0045 0.0032 0.0016 0.0013 0.0012	3.333 (0.30) 2.000 (0.50) 0.1\(\frac{1}{3}\) (7.00) 0.1\(\frac{2}{3}\) (7.00) 0.1\(\frac{2}{3}\) (7.50) 3.333 (0.30) 1.\(\frac{2}{3}\) (0.70) 1.000 (1.00) 0.833 (1.20) 0.667 (1.50) 0.400 (2.50)	1.3204 1.2736 1.1912 0.9225 0.8988 0.8566 0.7741 0.7057	0.111 (9.00) 0.117 (2.10) 0.667 (1.50) 0.833 (1.20) 2.000 (0.50) 1.333 (0.75) 3.333 (0.30)	1.3552 0.1830 0.1802 0.1500 0.0951 0.0933 0.0408
\$255	NO8°E	123.0	6.26	2.857 (0.35) 1.250 (0.80) 0.294 (3.40) 0.435 (2.30)	0.0597 0.0199 0.0067 0.0063	0.143 (7.00) 2.222 (0.45) 0.250 (4.00) 2.857 (0.35) 0.769 (1.30) 1.250 (0.80) 1.000 (1.00) 0.500 (2.00)	3.7013 3.4624 3.4271 3.1981 3.1316 0.5874 2.5096 2.1390	0.111 (9.00) 0.556 (1.80) 0.714 (1.40) 2.222 (0.45)	4.2439 0.5914 0.5318 0.2260
	N85°A	128.0	8.46	2.222 (0.45) 4.000 (0.25) 1.429 (0.70) 1.111 (0.90) 0.667 (1.50) 0.400 (2.50) 0.238 (4.20)	0.0492 0.0487 0.0299 0.0257 0.0136 0.0085 0.0072	0.435 (2.30) 0.200 (5.00) 0.625 (1.60) 1.818 (0.55) 0.111 (0.90) 1.111 (0.90) 0.435 (2.30) 1.429 (0.70)	2.0896 5.5901 4.3075 4.0332 3.9968 3.5799 3.1020 2.9255	0.182 (5.50) 0.625 (1.60) 1.111 (0.90) 1.667 (0.60)	4.0185 0.7832 0.5126 0.3315
s258	N29°E	56.3	4.02	2.857 (0.35) 1.818 (0.55) 1.111 (0.90) 1.429 (0.70) 0.217 (4.60) 0.625 (1.60)	0.0226 0.0186 0.0143 0.0087 0.0051 0.0049	0.167 (6.00) 1.000 (1.00) 1.818 (0.55) 0.714 (1.40) 0.500 (2.00) 0.455 (2.20)	3.9778 1.9075 1.5674 1.3841 1.3460 1.2774	0.143 (7.00) 0.435 (2.30) 1.000 (1.00) 0.769 (1.30) 1.818 (0.55) 2.857 (0.35)	3.8564 0.5334 0.3328 0.2681 0.1388 0.0685

Record	Instrument Direction	Peak Acceleration em/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Accele Frequency (Period) Hz (sec)	ration Feaks Amplitude	Predominant Veloc Frequency (Period) Hz (sec)	Amplitude	Predominant Displac Frequency (Period) Hz (sec)	Amplitude
\$258	N29°E	56.3	4.02	0.500 (2.00)	0.0047	0.400 (2.50) 2.857 (0.35)	1.2414		
	\$61°E	83.3	2.48	0.909 (1.10) 2.222 (0.45) 0.714 (1.40) 1.429 (0.70) 1.818 (0.55) 5.000 (0.20) 3.333 (0.30) 0.476 (2.10)	0.0227 0.0218 0.0214 0.0206 0.0194 0.0172 0.0159 0.0053	0.665 (1.60) 0.714 (1.40) 0.909 (1.10) 0.111 (9.00) 0.435 (2.30) 0.182 (5.50) 1.538 (0.65) 2.222 (0.45)	1.1212 4.4738 3.9852 2.7929 2.5775 2.0140 1.8499 1.1437	0.143 (7.00) 0.714 (1.40) 0.263 (3.80) 0.417 (2.40) 1.429 (0.70) 2.222 (0.45)	2.2802 1.0340 0.8411 0.6621 0.2496 0.1094
	UP	54.5	0.00	0.167 (6.00) 3.333 (0.30) 2.000 (0.50) 1.111 (0.90) 0.714 (1.40) 0.500 (2.00) 0.263 (3.80)	0.0021 0.0177 0.0129 0.0041 0.0025 0.0021	2.000 (2.50) 0.250 (4.00) 2.857 (0.35) 1.538 (0.65) 0.714 (1.40) 0.500 (2.00) 1.111 (0.90)	1.0523 0.9912 0.9136 0.6597 0.6438 0.6131 0.5492	0.227 (4.40) 0.111 (9.00) 0.500 (2.00) 0.625 (1.60) 1.111 (0.90) 2.000 (0.50) 1.538 (0.65)	0.6166 0.4287 0.2064 0.1407 0.0814 0.0790 0.0555
s261	N59°E	97.7	6.82	2.857 (0.35) 5.000 (0.20) 2.000 (0.50) 1.667 (0.60) 1.111 (0.90) 0.769 (1.30) 0.263 (3.80) 0.357 (2.80)	0.0360 0.0278 0.0208 0.0183 0.0164 0.0141 0.0058	0.227 (4.40) 0.769 (1.30) 0.667 (1.50) 0.143 (7.00) 1.111 (0.90) 2.857 (0.35) 1.538 (0.65) 2.000 (0.50) 1.333 (0.75)	4.0151 3.2081 3.1500 3.1304 2.3653 1.8047 1.6289 1.3861 1.3855	0.167 (6.00) 0.667 (1.50) 1.111 (0.90) 1.538 (0.65) 2.857 (0.35)	3.0926 0.7548 0.3275 0.1680 0.1091
	N31°W	107.0	4.78	2.857 (0.35) 5.000 (0.20) 1.538 (0.65) 0.909 (1.10) 0.263 (3.80)	0.0314 0.0249 0.0174 0.0083 0.0022	5,000 (0.20) 1.667 (0.60) 0.769 (1.30) 2.857 (0.35) 1.333 (0.75) 0.208 (4.80) 0.111 (9.00) 0.556 (1.80)	0.8686 1.6830 1.6719 1.6486 1.6091 1.5805 1.5178 1.3429	0.125 (8.00) 0.500 (2.00) 0.714 (1.40) 1.250 (0.80) 1.429 (0.70) 2.222 (0.45)	1.2976 0.3067 0.2975 0.2074 0.1873 0.1040
	UP	64.0	4.50	2.500 (0.40) 2.000 (0.50) 5.000 (0.20) 1.111 (0.90) 0.667 (1.50) 0.769 (1.30) 0.263 (3.80)	0.0202 0.0162 0.0160 0.0047 0.0024 0.0023 0.0010	5.000 (0.20) 2.000 (0.50) 2.500 (0.40) 0.625 (1.60) 1.111 (0.90) 0.227 (4.40) 1.333 (0.75) 0.769 (1.30) 0.476 (2.10) 0.125 (8.00)	0.6492 1.2644 1.2220 0.8130 0.7889 0.7515 0.6979 0.5944 0.5763 0.5628	0.182 (5.50) 0.435 (2.30) 0.556 (1.80) 2.000 (0.50) 1.111 (0.90) 2.500 (0.40) 1.538 (0.65)	0.4961 0.1687 0.1670 0.1002 0.0939 0.0798 0.0777
S262	N83°W	68.3	8.80	2.857 (0.35) 1.000 (1.00) 2.222 (0.45) 5.000 (0.20) 1.429 (0.70) 1.667 (0.60) 0.556 (1.80)	0.0260 0.0255 0.0232 0.0229 0.0226 0.0218 0.0175	0.208 (4.80) 0.769 (1.30) 0.556 (1.80) 1.333 (0.75) 1.667 (0.60) 2.857 (0.35)	8.2890 4.4405 4.3479 2.3224 1.4978 1.1787	0.182 (5.50) 0.500 (2.00) 1.333 (0.75)	6.1968 1.4734 0.3118
	507°W	93.6	4.10	0.250 (4.00) 2.222 (0.45) 1.538 (0.65) 0.625 (1.60) 0.833 (1.20) 0.313 (3.20)	0.0134 0.0376 0.0337 0.0234 0.0204 0.0121	0.200 (5.00) 0.556 (1.80) 0.769 (1.30) 1.111 (0.90) 1.333 (0.75) 2.222 (0.45)	6.9539 5.2556 3.7463 3.3630 3.2762 2.5392	0.167 (6.00) 0.556 (1.80) 2.222 (0.45)	5.9747 1.5349 0.1883
s265	SOUTH	104.0	6.08	6.667 (0.15) 1.111 (0.90) 2.000 (0.50) 1.538 (0.65) 0.769 (1.30) 0.227 (4.40)	0.0475 0.025 0.0284 0.0244 0.0180 0.0048	1.000 (1.00) 0.667 (1.50) 0.167 (6.00) 0.769 (1.30) 1.538 (0.65) 0.357 (2.80) 2.857 (0.35)	4.1607 3.8113 3.8112 3.7190 2.2894 2.1839 1.6391	0.167 (6.00) 0.714 (1.40) 1.000 (1.00) 2.857 (0.35)	3.3686 0.7602 0.7085 0.0862
	WEST	125.0	10.30	6.667 (0.15) 2.000 (0.50) 0.909 (1.10) 2.500 (0.40) 1.250 (0.80) 0.417 (2.40)	0.0556 0.0202 0.0195 0.0192 0.0159 0.0111	5.000 (0.20) 0.167 (6.00) 0.769 (1.30) 0.400 (2.50) 1.538 (0.65) 5.000 (0.20) 2.500 (0.40)	1.1317 6.7475 3.8988 3.7065 1.7226 1.2417 1.1177	0.167 (6.00) 0.400 (2.50) 0.769 (1.30) 1.818 (0.55) 4.000 (0.25)	6.1523 1.6490 0.7422 0.1393 0.0530
	UP	53.7	0.00	0.227 (4.46) 2.000 (0.50) 1.000 (1.00) 1.333 (0.75)	0.0082 0.0050 0.0033 0.0022	0.714 (1.40) 0.909 (1.10) 2.000 (0.50) 5.000 (0.20) 0.385 (2.60) 1.538 (0.65) 0.200 (5.00)	0.6720 0.5824 0.4589 0.3799 0.3641 0.3600 0.3474	0.111 (9.00) 0.167 (6.00) 0.250 (4.00) 0.625 (1.60) 2.000 (0.50) 1.538 (0.65) 5.000 (0.20)	0.1396 0.1376 0.1351 0.1268 0.0308 0.0293 0.0126
zn66	NORTH	153.0	5.76	3.333 (0.30) 2.500 (0.40) 6.667 (0.15) 1.111 (0.90) 1.538 (0.65) 0.714 (1.40) 0.417 (2.40) 0.333 (3.00)	0.0482 0.0397 0.0350 0.0259 0.0254 0.0128 0.0031	1.111 (0.900) 0.667 (1.50) 1.538 (0.65) 1.818 (0.55) 0.125 (8.00) 2.500 (0.40) 0.182 (5.50) 0.385 (2.60)	3.8563 3.1389 2.5398 2.2678 2.2668 2.2558 2.1193 2.0554	0.167 (6.00) 0.714 (1.40) 1.000 (1.00) 1.429 (0.70) 2.500 (0.40)	1.7874 0.6209 0.5227 0.2731 0.1576
	WEST	129.0	10.30	0.333 (3.06) 0.208 (4.80) 4.000 (0.25) 1.818 (0.55) 2.500 (0.40) 0.833 (1.20) 1.111 (0.90) 0.417 (2.40) 0.217 (4.60)	0.0025 0.0415 0.0314 0.0277 0.0220 0.0218 0.0085 0.0060	0.1455 (2.20) 0.167 (6.00) 0.909 (1.10) 1.111 (0.90) 0.100 (2.50) 1.818 (0.55) 0.556 (1.80) 2.222 (0.45) 3.333 (0.30)	2.0295 4.6819 4.2990 3.1670 2.9811 2.9382 2.5528 1.9162 1.6797	0.143 (7.00) 0.400 (2.50) 0.833 (1.20) 0.556 (1.80) 1.111 (0.90) 1.429 (0.70)	4.5660 1.2791 0.7826 0.7229 0.4359 0.2813

Record	Instrument Direction	Peak Acceleration cm/sec	Duration sec (Acc ≥ 0.05 g)	Predominant Acceler Frequency (Period) Hz (sec)	Amplitude	Predominant Velor Frequency (Period) Hz (sec)	eity Peaks Amplitude cm/sec	Predominant Displa Frequency (Period) Hz (sec)	cement Peaks Amplitude
s266	UP	54.2	2.30	6.667 (0.15) 2.857 (0.35) 1.111 (0.90) 1.429 (0.70) 0.833 (1.20) 0.667 (1.50) 0.263 (3.80)	0.0220 0.0121 0.0014 0.0036 0.0028 0.0020 0.0006	2.222 (0.45) 2.857 (0.35) 0.769 (1.30) 0.111 (9.00) 1.111 (0.90) 0.500 (2.00) 0.200 (5.00) 6.667 (0.15) 1.538 (0.65)	0.6409 0.6278 0.5943 0.5771 0.5744 0.4990 0.4679 0.4601 0.3887	0.143 (7.00) 0.476 (2.10) 0.769 (1.30) 1.111 (0.90) 2.000 (0.50) 6.667 (0.15)	0.1423 0.1435 0.1096 0.0888 0.0468 0.0122
s267	NORTH	55.5	0.04	1.429 (0.70) 3.333 (0.30) 2.500 (0.40) 1.818 (0.55) 1.111 (0.90) 0.714 (1.40) 0.167 (6.00) 0.385 (2.60)	0.0165 0.0156 0.0134 0.0130 0.0116 0.0073 0.0020	0.143 (7.00) 1.111 (0.90) 0.667 (1.50) 1.429 (0.70) 0.357 (2.80) 0.500 (2.00) 1.818 (0.55) 0.263 (3.80) 3.333 (0.30)	2.8111 1.7840 1.7591 1.6734 1.1608 1.0777 1.0507	0.143 (7.00) 0.333 (3.00) 0.667 (1.50) 0.476 (2.10) 1.000 (1.00) 1.429 (0.70) 1.818 (0.55)	2.2301 0.4187 0.3855 0.2566 0.2363 0.2004 0.0967
	EAST	61.5	0.02	0.217 (4.60) 5.000 (0.20) 2.857 (0.35) 2.000 (0.50) 1.333 (0.75) 0.769 (1.30) 0.143 (7.00) 0.182 (5.50) 0.263 (3.80) 0.227 (4.40)	0.0015 0.0124 0.0123 0.0088 0.0065 0.0047 0.0006 0.0006 0.0006	3.333 (0.30) 0.714 (1.40) 0.625 (1.60) 0.143 (7.00) 1.667 (0.60) 1.111 (0.90) 1.333 (0.75) 2.857 (0.35) 0.313 (3.20) 0.208 (4.80)	0.6954 1.1020 1.0948 0.8173 0.7619 0.7589 0.601 0.6277 0.6058 0.5367	0.111 (9.00) 0.333 (3.00) 0.667 (1.50) 1.111 (0.90) 1.333 (0.75) 2.857 (0.35)	0.9209 0.2456 0.2423 0.0920 0.0906 0.0372
U297	EAST	83.0	0.42	5.000 (0.20)	0.0110	2.500 (0.40) 1.818 (0.55) 1.429 (0.70) 5.000 (0.20) 0.500 (2.00) 0.833 (1.20) 0.111 (9.00)	0.4679 0.3798 0.3706 0.3444 0.3223 0.3198 0.2947	0.111 (9.00)	0.3026
U299	N45°E	233.0	3.14	2.857 (0.35)	0.0661	2.222 (0.45) 2.857 (0.35) 1.818 (0.55)	3.8290 3.7434 3.6408	0.111 (9.00) 0.333 (3.00) 0.455 (2.20)	1.5165 0.6349 0.5359
	s45°E	172.0	1.54	2.857 (0.35) 2.222 (0.45) 1.667 (0.60) 4.000 (0.25) 6.667 (0.15)	0.0538 0.0513 0.0471 0.0395 0.0325 0.0186 0.0103 0.0007	0.111 (9.00) 1.429 (0.70) 1.667 (0.60) 0.833 (1.20)	2.7325 4.5209 4.5102 2.7555	1.429 (0.70) 0.111 (9.00) 0.500 (2.00) 1.538 (0.65) 0.385 (2.60) 0.833 (1.20)	0.3210 0.6611 0.4844 0.4722 0.4300 0.4101
	UP	68.5	0.00	6.667 (0.15) 2.857 (0.35) 0.435 (2.30)		2.500 (0.40) 1.111 (0.90) 0.111 (9.00) 5.000 (0.20) 0.556 (1.80)	0.5742 0.4609 0.4422 0.4337 0.2635	0.111 (9.00) 0.909 (1.10) 1.667 (0.60) 2.000 (0.50) 5.000 (0.20)	0.4772 0.0685 0.0388 0.0375 0.0134
U301	N89°W	193.0	3.64	3.333 (0.30) 1.111 (0.90) 0.182 (5.50)	0.0631 0.0139 0.0003	2.857 (0.35) 1.000 (1.00) 0.714 (1.40) 2.222 (0.45)	3.0920 2.5753 2.3093 2.1392	0.833 (1.20) 0.143 (7.00) 2.857 (0.35) 1.818 (0.55)	0.3655 0.2326 0.1792 0.1580
	so1°w	119.0	5.00	2.857 (0.35) 2.000 (0.50) 6.667 (0.15) 1.250 (0.80) 0.476 (2.10)	0.0558 0.0342 0.0270 0.0134 0.0016	0.167 (6.00) 2.857 (0.35) 1.818 (0.55) 1.250 (0.80) 0.417 (2.40) 0.143 (7.00)	1.3011 3.0350 2.8311 2.0058 1.0254 0.9326	0.111 (9.00) 1.111 (0.90) 1.818 (0.55) 0.455 (2.20) 2.857 (0.35) 0.357 (2.80)	0.2557 0.2526 0.2488 0.1785 0.1685 0.1466
	UP	69.5	0.02	3.333 (0.30) 1.538 (0.65) 1.111 (0.90) 0.909 (1.10) 0.625 (1.60) 0.313 (3.20)	0.0257 0.0036 0.0028 0.0027 0.0017 0.0004	2.857 (0.35) 1.538 (0.65) 0.476 (2.10) 0.909 (1.10) 1.250 (0.80) 0.111 (9.00)	1.3323 0.5804 0.5204 0.4623 0.4417 0.3637	0.111 (9.00) 0.625 (1.60) 0.909 (1.10) 0.455 (2.20) 2.857 (0.35) 1.429 (0.70)	0.2421 0.1071 0.0814 0.0751 0.0724 0.0412
U305	n89°₩	52.00	0.00	1.538 (0.65) 2.000 (0.50) 5.000 (0.20) 0.455 (2.20) 0.200 (5.00)	0.0181 0.0142 0.0116 0.0008 0.0005	1.429 (0.700) 0.769 (1.30) 0.167 (6.00) 0.500 (2.00) 0.357 (2.80) 0.278 (3.61) 4.000 (0.25)	1.8146 0.5892 0.5800 0.4785 0.4414 0.4384 0.3471	0.111 (9.00) 1.538 (0.65) 0.385 (2.60)	0.6044 0.1888 0.1150
U308	10146° W	57.5	4.24	5.000 (0.20) 2.222 (0.45) 1.429 (0.70) 1.111 (0.90) 0.714 (1.40) 0.417 (2.40) 0.278 (3.60)	0.0171 0.0116 0.0065 0.0048 0.0012 0.0004 0.0003	2.000 (0.50) 1.667 (0.60) 1.111 (0.90) 3.333 (0.30) 0.313 (3.20) 0.625 (1.60) 0.111 (9.00)	0.8618 0.8545 0.7637 0.6589 0.5165 0.4977 0.4194	0.111 (9.00) 0.238 (4.20) 1.111 (0.90) 1.429 (0.70) 0.333 (3.00) 2.000 (0.50) 1.667 (0.60)	0.1466 0.1144 0.0957 0.0789 0.0744 0.0640
	s44°W	73.5	0.26	4,000 (0.25) 1.667 (0.60) 1.250 (0.80) 0.909 (1.10) 0.476 (2.10) 0.238 (4.20)	0.0243 0.0054 0.0036 0.0029 0.0012 0.0003	3.333 (0.30) 2.222 (0.45) 1.667 (0.60) 0.455 (2.20) 0.667 (1.50) 1.250 (0.80) 0.909 (1.10) 1.429 (0.70) 0.143 (7.00) 0.358 (2.80) 0.238 (4.20)	1.0066 0.6383 0.6231 0.5878 0.5810 0.5772 0.5617 0.5545 0.4698 0.4698	0.667 (1.50) 0.167 (6.00) 0.111 (9.00) 0.113 (9.00) 0.435 (2.30) 0.714 (1.40) 1.250 (0.80) 1.429 (0.70) 3.333 (0.30) 2.222 (0.45)	0.0577 0.1792 0.1405 0.1378 0.0956 0.0570 0.0503 0.0470 0.0388
11309	N89°W	168.0	8.60	2.857 (0.35) 4.000 (0.25) 1.429 (0.70) 1.667 (0.60)	0.0294 0.0277 0.0229 0.0218	0.769 (1.30) 1.333 (0.75) 0.556 (1.80) 0.435 (2.30)	3.4940 2.7054 1.9752 1.6581	0.111 (9.00) 0.769 (1.30) 0.200 (5.00) 0.455 (2.20)	0.8048 0.6747 0.5014 0.4565

		Peak	Duration	Predominant Acceleration Peaks		Predominant Velocity Peaks		Predominant Displacement Peaks	
	Instrument	Acceleration	sec	Frequency (Period)	Amplitude	Frequency (Period)	Amplitude	Frequency (Period)	Amplitude
Record	Direction	cm/sec	(Acc ≥ 0.05 g)	Hz (sec)	(g)	Hz (sec)	cm/sec	Hz (sec)	Cm _
U309	N89°W	168.0	8.60	0.833 (1.20)	0.0170	2.857 (0.35)	1.5768	0.556 (1.80)	0,4478
0307		-		0.556 (1.80)	0.0056	0.313 (3.20)	1.4624	0.278 (3.60)	0.4402
				0.333 (3.00)	0.0016	0.111 (9.00)	1.2723	0.333 (3.00)	0.3439
				0.294 (3.40)	0.0015	0.182 (5.50)	1.2165	1.333 (0.75)	0.2914
				0.238 (4.20)	0.0010			2.222 (0.45)	0.1143
	SOl°W	74.9	0.56	3.333 (0.30)	0.0274	1.429 (0.70)	1.8998	0.111 (9.00)	0.7073
				2.222 (0.45)	0.0183	2.000 (0.50)	1.3778	1.429 (0.70)	0.2078
				1.429 (0.70)	0.0171	3.333 (0.30)	1.1967	0.313 (3.20)	0.1736
				0.417 (2.40)	0.0010	0.667 (1.50)	0.8156	0.909 (1.10)	0.1709
				0.200 (5.00)	0.0007	0.250 (4.00)	0.6739	0.385 (2.60)	0.1506
						0.385 (2.60)	0.6593	0.625 (1.60)	0.1099
						0.111 (9.00)	0.5948	2.857 (0.35)	0.0659
						0.476 (2.10)	0.5879		
						0.167 (6.00)	0.5763		
U312	N46°W	103.0	0.16	6.667 (0.15)	0.0257	1.333 (0.75)	2.2134	0.909 (1.10)	0.3403
				2.000 (0.50)	0.0247	0.909 (1.10)	2.0575	0.111 (9.00)	0.3281
				1.111 (0.90)	0.0151	1.111 (0.90)	2.0489	1.333 (0.75)	0.2713
				0.455 (2.20)	0.0019	0.357 (2.80)	1.3803	0.400 (2.50)	0.2615
						0.208 (4.80)	1.3710	0.625 (1.60)	0.2419
						6.667 (0.15)	0.5225	0.250 (4.00)	0.2402
	S44°W	232.0	0.70	6.667 (0.15)	0.0465	1.250 (0.80)	2.5090	1.250 (0.80)	0.2869
				1.429 (0.70)	0.0192	1.429 (0.70)	2.1212	0.111 (9.00)	0.2407
				1.250 (0.80)	0.0181	4.000 (0.25)	1.3903	0.455 (2.20)	0.2354
				0.714 (1.40)	0.0045	2.500 (0.40)	1.3719	0.909 (1.10)	0.2342
						0.217 (4.60)	1.2186	1.429 (0.70)	0.2316
						0.714 (1.40)	1.1909	0.250 (4.00)	0.2265
						0.111 (9.00)	1.1579	0.400 (2.50)	0.2206
						0.357 (2.80)	1.1249	0.667 (1.50)	0.2192
						0.435 (2.30)	1.1219	2.500 (0.40)	0.0879
V321	N26°E	88	9.32	0.833 (1.20)	0.0387	0.833 (1.20)	7.1605	0.833 (1.20)	1.3794
				4.000 (0.25)	0.0277	0.357 (2.80)	1.6927	0.385 (2.60)	0.4630
				1.818 (0.55)	0.0123	0.417 (2.40)	1.6700	0.111 (9.00)	0.3962
				0.400 (2.50)	0.0029	0.200 (5.00)	1.1402	0.182 (5.50)	0.3799
				0.455 (2.20)	0.0028	2.857 (0.35)	1.1322	1.667 (0.60)	0.0943
				0.208 (4.80)	0.0006	0.125 (8.00)	1.1210	2.857 (0.35)	0.0615
						4.000 (0.25)	1.0393		
	N46°W	59.9	0.02	4.000 (0.25)	0.0033	1.818 (0.55)	0.9033	0 *** (0 **)	
	N40_M	59.9	0.02	2.222 (0.45)	0.0311	4.000 (0.25) 2.500 (0.40)	0.6013	0.111 (9.00)	0.1201
				0.833 (1.20)	0.0017	2.000 (0.40)	0.5979	4.000 (0.25)	0.0095
				0.033 (1.20)	0.0017	0.435 (2.30)	0.4586	1.818 (0.55)	
						0.769 (1.30)	0.4500	1.010 (0.55)	0.0430
	UP	96.4	1.80	5.000 (2.20)	0.0323	2.000 (0.50)	1.3025	0.111 (9.00)	0.1146
	OF .	70.4	1.00	2.857 (0.35)	0.0168	4.000 (0.25)	1.2038	2.000 (0.50)	0.1146
				2.000 (0.50)	0.0150	2.500 (0.40)	1.0409	0.182 (5.50)	0.0884
				0.500 (2.00)	0.0006	0.625 (1.60)	0.4502	0.435 (2.30)	0.0628
				3.,00 (2.00)	0.000	0.00) (1.00)	0.4,02	4.000 (0.25)	0.0626
								(0.2)	0.0414

Preceding Page BLank - NOT

APPENDIX C: PERIODS AND FREQUENCIES OF THE RESPONSE SPECTRA

Periodsec_	Frequency Hz	Period sec	Frequency Hz
0.10	10.00	2.00	0.50
0.15	6.67	2.10	0.48
0.20	5.00	2.20	0.45
0.25	4.00	2.30	0.43
0.30	3.33	2.40	0.42
0.35	2.86	2.50	0.40
0.40	2.50	2.60	0.38
0.45	2.22	2.80	0.36
0.50	2.00	3.00	0.33
0.55	1.82	3.20	0.31
0.60	1.67	3.40	0.29
0.65	1.54	3.60	0.28
0.70	1.43	3.80	0.26
0.75	1.33	4.00	0.25
0.80	1.25	4.20	0.24
0.90	1.11	4.40	0.23
1.00	1.00	4.60	0.22
1.10	0.91	4.80	0.21
1.20	0.83	5.00	0.20
1.30	0.77	5.50	0.18
1.40	0.71	6.00	0.17
1.50	0.67	7.00	0.14
1.60	0.63	8.00	0.13
1.80	0.56	9.00	0.11

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Chang, Frank K

State-of-the-art for assessing earthquake hazards in the United States; Report 8: Duration, spectral content, and predominant period of strong motion earthquake records from western United States / by Frank K. Chang, Ellis L. Krinitzsky. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1977.

58, £24 p.: i11.; 27 cm. (Miscellaneous paper - U. S. Army Engineer Waterways Experiment Station; S-73-1, Report 8) Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C.

References: p. 56-58.

1. Earthquake engineering. 2. Earthquake hazards. 3. Earthquake resistant structures. 4. Earthquakes. 5. Ground motion. 6. State-of-the-art studies. I. United States. Army. Corps of Engineers. II. Krinitzsky, Ellis Louis, joint author. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper; S-73-1 Report 8. TA7.W34m no.S-73-1 Report 8