Efectele reprezentării în lungime finită a coeficienților în filtrarea digitală

Laborator 10, PSS

Table of contents

1	Obiectiv	1
2	Noțiuni teoretice 2.1 Reprezentarea numerelor fracționare în baza 2	
3	Exerciții teoretice	3
4	Exerciții practice	4
5	Întrebări finale	4

1 Objectiv

Studiul efectelor produse de implementarea în virgulă fixă a coeficienților unui filtru digital.

2 Noțiuni teoretice

2.1 Reprezentarea numerelor fracționare în baza 2

TBD

273.21875

$$273 = 256 + 16 + 1 \\
2^{8} 2^{9} 2^{\circ}$$

$$100010001$$

$$0.21875 \times 2 = 0.43750$$

$$0.4375 \times 2 = 0.8750$$

$$0.75 \times 2 = 0.5$$

$$0.5 = 1.0$$

$$0.75 \times 2 = 0.5$$

$$0.7$$

0.21875 : 0.00111

273,21875: 100010001.00111

Figure 1: Reprezentarea numerelor fracționare în baza 2

2.2 Implementarea filtrelor cu secțiuni de ordinul 2

Implementarea filtrelor cu secțiuni de ordinul 2 ("second order sections") înseamnă implementarea filtrului **în formă serie**, ca o secvență de sub-filtre de ordinul 2.

$$H(z) = H_1(z) \cdot \ldots \cdot H_n(z) \cdot Gain$$

unde fiecare $H_i(z)$ este de ordinul 2:

$$H_i(z) = \frac{b_0^{(i)} + b_1^{(i)} z^{-1} + b_2^{(i)} z^{-2}}{1 + a_1^{(i)} z^{-1} + a_2^{(i)} z^{-2}}$$

Exemplu:

 $https://www.ni.com/docs/en-US/bundle/labview-digital-filter-design-toolkit-api-ref/page/lvdfdtconcepts/iir_sos_specs.html$

3 Exerciții teoretice

1. Convertiți numărul de mai jos din binar în zecimal:

11011.0101

2. Să se scrie în formatul virgulă fixă cu 1 bit de semn, 6 biți pentru partea întreagă și 6 biți pentru partea fracționară (1S6Î6F) numărul:

273.21875

3. Să se scrie în formatul virgulă fixă cu 1 bit de semn, 6 biți pentru partea întreagă și 6 biți pentru partea fracționară (1S6Î6F) numerele negative următoare. Reprezentarea numerelor negative se va face în formatele mărime cu semn, complement față de 1 (C1) și complement față de 2 (C2).

- a. -22
- b. -22.21875
- 4. Cuantizați eșantioanele $x_1=0.42625$ și $x_2=-0.4333$ în formatul virgulă fixă 1S0Î4F prin:
 - a. Trunchiere
 - b. Rotunjire
 - c. Trunchiere semn-valoare

Valorile negative se reprezintă în formatul C2.

4 Exerciții practice

- 1. Utilizați utilitarul fdatool pentru a proiecta un filtru trece-jos IIR de ordin 4, de tip eliptic, cu frecvența de tăiere de 3kHz la o frecvență de eșantionare de 44.1kHz. Exportați coeficienții formei directe II în Workspace-ul Matlab sub numele b și a.
- 2. În utilitarul fdatool, setați aritmetica filtrului la "fixed-point arithmetic" și modificați:
 - a. Setați formatul virgulă fixă 1S2Î7F. Cum se modifică funcția de transfer a circuitului?
 - b. Creșteți numărul de biți ai părții fracționare. Cum se modifică funcția de transfer a circuitului? Pentru ce număr de biți considerați că erorile devin neglijabile?
 - c. Exportați coeficienții formei directe II în Workspace-ul Matlab, sub numele b1 și a1.
- 3. Repetați punctul precedent cu filtrul implementat în forma serie ("Second-Order-Sections"). În care caz erorile sunt mai mici? Exportați coeficienții în Workspace-ul Matlab sub numele b2 și a2.
- 4. Încărcați semnalul audio predefinit mtlb din Matlab (load mtlb;). Utilizați funcția filter() pentru a filtra semnalul cu filtrul original (b și a) și cu cel în virgulă fixă în forma directă II (b1 și a1).
 - a. Afișați semnalul diferență dintre cele două ieșiri.
 - b. Afișați histograma semnalului diferență. Ce formă are? Care este valoarea medie a erorilor?

5 Întrebări finale

1. TBD