마이크로 로봇을 이용한 소프트웨어 교육

메이식스 라 효 진

아이스 브레이킹

목표

- 1. 프로그래밍이 가능한 마이크로 로봇을 이용하여 코딩을 통해 로봇을 제어한다.
- 2. 로봇 제어에 필요한 프로그래밍 문법과 구조를 이해한다.
- 3. 마이크로 로봇 내 각종 센서들의 동작 방법을 학습한다.
- 4. 제시한 주제에 대해 센서 및 모터를 포함한 로봇의 동작을 스스로 코딩한다.

어떤 게 하드웨어이고 소프트웨어 일까?

어떤 게 하드웨어이고 소프트웨어 일까?

하드웨어: 아이패드

소프트웨어: YouTube

어떤 게 하드웨어이고 소프트웨어 일까?

하드웨어 : 만질 수 있는 것

소프트웨어: 만질 수 없는 것

인공지능 스피커는 하드웨어 일까요? 소프트웨어 일까요?

하드웨어 개발

전자회로 설계

전자기판 설계

https://youtu.be/F_xNoEZ0Cg4

소프트웨어 개발

```
// ICM Sensor
ICM20648_VALUE value = NAM_ICM20648_Get_Data();
int sensitivity = 300;
mouse_state = get_mouse_state(mouse_state, value);
mouse_state.gyroX = value.gyroX / sensitivity / 1.1 * -1;
mouse_state.gyroZ = value.gyroZ / sensitivity * -1;
mouse_state.button_front = NAM_Button_Front_Is_Push();
mouse_state.button_center = NAM_Button_Center_Is_Push();
mouse_state.button_back = NAM_Button_Back_Is_Push();
printf("%d\t%d\t%d\t%d\t/xd\r\n", mouse state.velocity x, mouse state.velocity y,
PACKET_DATA[0] = PACKET_START;
PACKET_DATA[1] = PACKET_LEN;
uint8 t which sign = 0; // 0 : +, 1 : -
if(mouse state.velocity x <= 0)</pre>
   which_sign = 1;
   mouse_state.velocity_x *= -1;
PACKET_DATA[2] = which_sign;
PACKET_DATA[3] = mouse_state.velocity_x;
which_sign = 0;
if(mouse_state.velocity_y <= 0)</pre>
   which sign = 1;
   mouse_state.velocity_y *= -1;
PACKET_DATA[4] = which_sign;
PACKET_DATA[5] = mouse_state.velocity_y;
```


에어팬슬 코드

에어팬슬 프로그램

하드웨어를 개발한다? 소프트웨어를 개발한다?

아이폰		하드웨어
윈도우 11		소프트웨어
3D 프린터		하드웨어
파워포인트		소프트웨어

프로그래밍 분야

- 소프트웨어 개발자
- 웹 개발자
- 게임 개발자
- 앱 개발자
- 화이트 해커
- 네트워크 관리사

이 둘의 차이는 무엇일까요?

이 둘의 차이는 무엇일까요?

햄스터 로봇이란?

- 작은 소프트웨어 교육용 로봇
- 본체와 USB 동글이 서로 블루투스 연결을 하여 명령어를 전달
- 기본 구성 외 다른 부품으로 다양하게 활용이 가능

출처 : [햄스터 스쿨] 이미지

마이크로 로봇 소개

햄스터 로봇의 센서

햄스터 로봇의 센서

★ 블루투스 4.0 BLE

o^o DC 모터 × 2

[w)) 전방 거리 센서 × 2

합 바닥(라인) 센서 × 2

유 7가지 색의 LED × 2

소 3축 가속도 센서

Q》 조도 센서

내부 온도 센서

■) 피에조 스피커

● 외부 확장 단자 × 2 : 센서 및 모터 추가 연결

햄스터 로봇의 센서

- 리튬이온 충전배터리
- DC 모터 × 2
- 합 바닥(라인) 센서 × 2
- 点 3축 가속도 센서
- 내부 온도 센서
- 외부 확장 단자 × 2 : 센서 및 모터 추가 연결

- ★ 블루투스 4.0 BLE
- [w) 전방 거리 센서 × 2
- 류 7가지 색의 LED × 2
- ♡ 조도 센서
- ■) 피에조 스피커

햄스터 로봇의 센서

요 3축 가속도 센서

● 외부 확장 단자 × 2 : 센서 및 모터 추가 연결

햄스터 로봇의 센서

DC 모터 : 전진, 후진, 회전, 오른쪽, 왼쪽

7가지 색의 LED : 7가지 색으로 왼쪽, 오른쪽 2개의 LED 램프

피에조 스피커: 소리를 낼 수 있는 스피커

바닥 센서 : 바닥 감지용 적외선 센서

전방 거리 센서 : 전방 물체 감지용 적외선 센서(1 ~ 30cm)

조도 센서 : 주변의 밝기를 측정하는 센서

내부 온도 센서 : 내부 온도를 측정하는 센서

3축 가속도 센서 : 로봇의 움직임 감지를 할 수 있는 센서

햄스터 로봇 구성품

햄스터 로봇 충전을 해주세요!

프로그래밍 언어 동작 원리

프로그래밍 언어 동작 원리

프로그래밍 언어 동작 원리

프로그래밍 언어 동작 원리

기계어 010010110...

프로그래밍 언어 동작 원리 – 언어의 문법

1형식: 주어 + 동사 당시, 대명사 be\$사, 조\$사, 알반\$사 2형식: 주어 + 동사 + 보어 당시, 당용사, 대명사 4형식: 주어 + 동사 + 목적어 보사, 대명사 4형식: 주어 + 동사 + 간접 목적어 + 직접 목적어 5형식: 주어 + 동사 + 목적어 + 보어

프로그래밍 언어 동작 원리 – 프로그램 언어의 문법

```
#include <stdio.h>
def add5(x):
                                                                                              <!DOCTYPE html>
                                                    void sub( int n )
  return x+5
                                                                                              <html>
                                                                                                  <head>
                                                        printf(" n = %d, &n = %d \n", n, &n );
def dotwrite(ast):
                                                                                                      <title>Example</title>
   nodename = getNodename()
                                                                                                      <link rel="stylesheet" href="st</pre>
   label=symbol.sym_name.get(int(ast[0]),ast[0])
   print ' %s [label="%s' % (nodename, label),
                                                                                                  </head>
                                                    int main(void)
   if isinstance(ast[1], str):
                                                                                                  <body>
      if ast[1].strip():
                                                        int a = 20, b = 30, c = 40;
                                                                                                      <h1>
         print '= %s"];' % ast[1]
                                                        puts(" 스택의 이해 ");
                                                                                                          <a href="/">Header</a>
      else:
         print '"]'
                                                                                                      </h1>
                                                        sub( a );
   else:
                                                                                                      <nav>
                                                        sub( b );
      print '"];'
                                                                                                          <a href="one/">One</a>
      children = []
                                                        sub( c );
                                                                                                          <a href="two/">Two</a>
                                                                                                          <a href="three/">Three</a>
                                                        puts("주소를 잘 보세요.");
                                                                                                      </nav>
                                                        return 0;
```

마이크로 로봇 동작 원리

기계어(0100...)

마이크로 로봇 동작 원리

설치 순서

- 1. USB 동글 드라이버 설치(cp2102)
 - -> 컴퓨터와 햄스터 로봇이 통신하기 위한 통신 모듈
- 2. Mu Editor 설치
 - -> python 코딩 환경
- 3. MuEditor에 roboid 패키지 설치
 - -> 햄스터 로봇을 python으로 제어하기 위한 라이브러리 다운

설치 순서

- 1. USB 동글 드라이버 설치(cp2102)
 - -> 컴퓨터와 햄스터 로봇이 통신하기 위한 통신 모듈
- 2. Mu Editor 설치
 - -> python 코딩 환경
- 3. MuEditor에 roboid 패키지 설치
 - -> 햄스터 로봇을 python으로 제어하기 위한 라이브러리 다운

디바이스 드라이버 설치

1. 칩 제조사 홈페이지 접속, Window 전용 디바이스 드라이버 설치 https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

디바이스 드라이버 설치

2. 다운 받은 ZIP 파일 압축 풀기

3. 압축 푼 폴더에 있는 exe 파일을 클릭하여 설치

디바이스 드라이버 설치

디바이스 드라이버 설치

설치 순서

- 1. USB 동글 드라이버 설치(cp2102)
 - -> 컴퓨터와 햄스터 로봇이 통신하기 위한 통신 모듈

2. Mu Editor 설치

- -> python 코딩 환경
- 3. MuEditor에 roboid 패키지 설치
 - -> 햄스터 로봇을 python으로 제어하기 위한 라이브러리 다운

- 1. https://codewith.mu/ 접속
- 2. Download 버튼 클릭

- 3. Windows installer 64-bit 클릭
- 4. 내 PC "/다운로드 " 에서 Mu-Editor-Win63-1.1.0b5 클릭

- 5. 추가정보 클릭
- 6. 실행 버튼 클릭

- 7. 라이선스 동의 후 설치 버튼 클릭
- 8. 설치 완료

Mu IDE 실행

- 1. 윈도우 창에 Mu Editor를 검색한다.
- 2. Mu Editor IDE 프로그램 실행

LINTU | Installing baseline packages.
ILINTO | Expecting zipped wheels at C-WUsersWkbgstWAppDataWLocalWProgramsWAu EditorWPythonWilbWste-packagesWmuWwheelsW
[INFO] - About to install from wheel: backcall-0,20-py2-py3-none-ary,whl
ILINTO] - About to install from wheel: backcall-0,20-py2-py3-none-ary,whl
ILINTO] - About to install from wheel: backcall-0,20-py2-py3-none-ary,whl

Mu IDE 실행

- 3. Python 3 Mode 선택
- 4. Mu Editor 세팅 완료

Mu IDE 기능 설명

example.py 파일 생성

- 1. 내 폴더를 열어, D 드라이브에 myMu 폴더 생성
- 2. 해당 경로에 Mu에서 Save 버튼 클릭하여 example.py 파일 생성

실습 프로그램 확인

python 테스트

- 1. print("Hello") 입력
- 2. Run 버튼을 클릭하여 실행

설치 순서

- 1. USB 동글 드라이버 설치(cp2102)
 - -> 컴퓨터와 햄스터 로봇이 통신하기 위한 통신 모듈
- 2. Mu Editor 설치
 - -> python 코딩 환경
- 3. MuEditor에 roboid 패키지 설치
 - -> 햄스터 로봇을 python으로 제어하기 위한 라이브러리 다운

라이브러리 설치

1. REPL 아이콘 클릭 하여 터미널 창 열기

라이브러리 설치

2. 터미널 명령어 입력 \$ pip install -U roboid

```
Jupyter QtConsole 4.7.7
Python 3.8.5 (default, Aug 30 2020, 16:01:16) [MSC v.1927 64 bit (AMD64)]
명령어입력 e 'copyright', 'credits' or 'license' for more information
hon 7.25.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: pip install -U roboid
Collecting roboid
Using cached roboid-1.5.14-py3-none-any.whl (64 kB)
```

라이브러리 설치 다른 방법

1. 설정 아이콘 클릭

실습 프로그램 확인

햄스터 모듈 테스트

- 1. 아래의 코드를 입력
- 2. Run 버튼을 클릭하여 실행
- 3. 결과 확인

: 드라이버와 패키지가 모두 잘 설치 됨 (햄스터 로봇과 연결 가능한 상태)

실습 프로그램 설치 완료

설치 완료.

파이썬

파이썬(python)이란?

- 1991 귀도 반 로섬 개발자에 의해 만들어진 인터프리터 프로그래밍 언어

파이썬의 특징

- 고급 프로그래밍 언어
- 인터프리터 언어
- 탭으로 구분
- 윈도우, 리눅스 등 다양한 OS 환경에서 사용 가능

파이썬을 이용한 서비스

- 카카오, 구글, NASA 등...

파이썬 코딩 방법 2가지

1. 터미널 창에 직접

```
C:\Users\janglab>python
Python 3.7.0 (default, Jun 28 2018, 08:04:48)
Type "help", "copyright", "credits" or "licens
>>> a = 5
>>> a
5
>>> b = 10
>>> b
10
>>> a + b
15
>>>
```

2. ".py"파일을 만들어 코드를 작성한 후 실행

```
from CNLP.Engine.Tokenizer.RegexTokenizer import RegexTokenizer

tokenizer = RegexTokenizer()
ppint(tokenizer.tokenize("안녕111나222는 대한3민국4학생555이야!!"))
print(tokenizer.tokenize("27일 '놀라운 토요일'에서 멤버들은 아우내 순대국밥을 걸고 지드래곤의 '크레용' 가사 맞추기를 했다."))
```

```
D:\Projects\NLP\CNLP\Engine\Tokenizer>python RegexTokenizer.py
['안녕', '111', '나', '222', '는', '대한', '3', '민국', '4', '학생', '555', '이야', '!', '', '!']
['27', '일', "'", '놀라운', '토요일', "'", '에서', '멤버들은', '아우내', '순대국밥을', '걸고', '지드래곤의', "'", '', '크레용', "'가사", '맞추기를', '했다', '.', '']
```

파이썬의 자료형

변수(Variable)

- 데이터의 형태(정수, 실수, 문자)를 구분하며, 데이터의 범위나 부호 사용 여부 등을 결정 짓는 것

없음	None	0 byte
불	bool/boolean	1 byte
정수	int(integer)	4 byte
실수	float, double	float – 4, double – 8
단일 문자	char(character)	1 byte
문자열	string	
리스트	list	
사전	dictionary	
튜플	tuple	

변수와 상수

변수(Variable)

- 한가지 값으로 고정되지 않고, 여러가지 값으로 변할 수 있는 공간

상수(Constant)

- 한가지 값으로 고정되며, 수정되지 않음

변수와 상수

실습

- 1. Mu의 빈 ".py" 를 실행한다.
- 2. 아래의 창에 >>> 옆에 커서를 둔다.
- 3. 해당 터미널에 다음과 같이 입력한다.

$$>>> a = 7$$

$$>>> b = 10$$

>>> test

표준 출력 함수

print

- cmd창에 우리가 입력한 자료형을 출력할 때 사용

사용방법

```
print("Hello World")
print("I am Ratataca!")
```

```
>>> print("Hello")
Hello
>>> print("I am Ratataca!")
I am Ratataca!
>>>
```

표준 입력 함수

input

- 키보드를 이용하여 변수에 사용자가 값을 입력할 때 사용

사용방법

```
a = input("Enter the string : ")
                                               # 주로 문자 입력
print(a)
                >>> a = input("Enter the string : ")
                Enter the string: hello! I am Ratataca
                >>> print(a)
                hello! I am Ratataca
                >>>
b = int(input("Enter the Value : "))
                                               # 주로 숫자 입력
print(b)
                >>> b= int(input("Enter the Value : "))
                Enter the Value: 192
                >>> print(b)
                192
```

표준 입력 함수

input

- 키보드를 이용하여 변수에 사용자가 값을 입력할 때 사용

사용방법

```
a = input("Enter the string : ")
                                               # 주로 문자 입력
print(a)
                >>> a = input("Enter the string : ")
                Enter the string: hello! I am Ratataca
                >>> print(a)
                hello! I am Ratataca
                >>>
b = int(input("Enter the Value : "))
                                               # 주로 숫자 입력
print(b)
                >>> b= int(input("Enter the Value : "))
                Enter the Value: 192
                >>> print(b)
                192
```

조건문 : 수행할 경우를 조건에 따라 분류

만약에 유명한 연예인이 나에게 사귀자고 한다면?

조건문 : 수행할 경우를 조건에 따라 분류

사귄다? 안 사귄다?

조건문 : 수행할 경우를 조건에 따라 분류

조건문 : 수행할 경우를 조건에 따라 분류

조건문 : 수행할 경우를 조건에 따라 분류

한국어: 만약에 유명한 연예인이 나에게 사귀자고 한다면? 파이썬: if 유명한 연예인이 나에게 사귀자고 한다면:

조건문 : 수행할 경우를 조건에 따라 분류

조건문: 수행할 경우를 조건에 따라 분류

한국어: 만약에 유명한 연예인이 나에게 사귀자고 한다면?

사귄다 ← 수행할 일

파이선: if 유명한 연예인이 나에게 사귀자고 한다면:

사귄다 ← 수행할 작업

조건문: 수행할 경우를 조건에 따라 분류

한국어: 만약에 유명한 연예인이 나에게 사귀자고 한다면?

사귄다 ← 수행할 일

파이선: if 유명한 연예인이 나에게 사귀자고 한다면:

수행할 작업은 컴퓨터가 이해할 수 있게 들여쓰기 하기! (탭 1번)

조건문

if - 조건이 참인지 거짓인지 구분, 조건이 참이면 if 문 내 코드를 수행

```
she_like_me = True
if she_like_me == True:
    print("I love you too")
```

```
she_like_me = True

if she_like_me == True:
    print("I love you too")
```

조건문 : 수행할 경우를 조건에 따라 분류

만약에 내가 좋아하는 사람에게 고백을 했는데 성공했다면?

사귄다? 못 사귄다?

조건문 : 수행할 경우를 조건에 따라 분류

조건문 : 수행할 경우를 조건에 따라 분류

그게 아니라면? ㅠㅠ

조건문 : 수행할 경우를 조건에 따라 분류

조건문

조건문 : 수행할 경우를 조건에 따라 분류

한국어: 만약에 내가 좋아하는 사람에게 고백했는데 성공했다면?

사귄다 ← 성공 했을 때 수행할 일

그게 아니라면? ㅠㅠ

못 사귄다 ← 실패 했을 때 수행할 일

파이썬: if 내가 좋아하는 사람에게 고백했는데 성공했다면:

사귄다 ← 성공 했을 때 수행할 일

else:

못 사귄다 ← 실패 했을 때 수행할 일

조건문

조건문

if - 조건이 참인지 거짓인지 구분, 조건이 참이면 if 문 내 코드를 수행 else - 조건이 거짓인 경우, else 문 내 코드를 수행

```
would_you_marry_me = True
if would_you_marry_me == True:
    print("Nice")
else:
    print("I'm so sad ☺")
```

```
would_you_marry_me = False

if would_you_marry_me == True:
    print("Nice")

else:
    print("I'm so sad")
```

반복문 : 동일한 작업을 여러 번 수행

아침 먹고 땡

반복문 : 동일한 작업을 여러 번 수행

하고 나서려는데 화려한 조명... 똥 밟...

반복문 : 동일한 작업을 여러 번 수행

공부...

반복문 : 동일한 작업을 여러 번 수행

점심 먹고 공부

반복문 : 동일한 작업을 여러 번 수행

저녁 먹고 공부

반복문 : 동일한 작업을 여러 번 수행


```
반복문
```

while - 조건이 참인 경우, while 문 내 코드를 계속 반복하여 수행

```
while True:

print("Studying...")

while True:

print("Studying...")
```

반복문 : 동일한 작업을 여러 번 수행

고 1때 공부...

반복문 : 동일한 작업을 여러 번 수행

고 2때 공부...

반복문 : 동일한 작업을 여러 번 수행

고 3때 공부...

반복문 : 동일한 작업을 여러 번 수행

대학 합격하면?

반복문 : 동일한 작업을 여러 번 수행

공부 왜 해??

반복문 : 동일한 작업을 여러 번 수행

range() - 범위 표현 함수

range(시작점, 끝점) range(시작점, 끝점, 간격)

예시)

반복문

for - 주어진 범위 내에 for 문 내 코드를 반복하여 수행

```
for grade in range(1, 4):
    print("Studying...")

print("I'm not studying!")
```

```
for grade in range(1, 4):
    print("Studying...")

print("I'm not studying!")
```

마이크로 로봇 연결

햄스터 로봇과 컴퓨터 연결

1. 자신의 햄스터 로봇과 USB 동글에 표시(이름, 사인, 특수 모양 등)

- 2. USB 동글을 컴퓨터 USB 포트에 연결
- 3. USB 동글에 파란 불이 들어오면(천천히 깜빡) 정상 작동 중인 상태

마이크로 로봇 연결

햄스터 로봇과 컴퓨터 연결

- 4. 햄스터 로봇의 전원 버튼 ON,
- 5. 햄스터 로봇과 USB 동글이 15cm 이내로 가깝게 둠
- 6. 삑- 소리가 나고 파란불이 지속적으로 들어면 정상 연결됨

마이크로 로봇 연결

컴퓨터와 연결 후 동작 테스트

7. 해당 코드를 다시 실행한다.

```
from roboid import *
2
3 hamster = Hamster()
4

Running:.pv

Hamster[0] Connected: COM6 FF:59:58:56:81:5F
>>>

정상 연결 시 출력 메시지
```

모터 센서

모터 센서

모터 센서

모터 센서 -30 +50 +50 -30 Həmster Hamster

모터 센서 +30 +50 +30 +50 Həmster Hamster

모터 센서 – 과제 1

wheels()를 사용하여 햄스터 로봇을 움직여 보자

```
23 # 3. 오른쪽 회전하기
  from roboid import *
                                 hamster.wheels(50, -50)
10
                                 wait(2000)
  hamster = Hamster()
                              26
12
13
                              28 # 4. 왼쪽 회전하기
14 # 1. 직진하기
                                 hamster.wheels(-50, 50)
  hamster.wheels(50, 50)
                                 wait(2000)
  wait(2000)
                              31
17
18 # 2. 뒤로가기
                              33 # 실행 종료 후 멈추기
  hamster.wheels(-50, -50)
                              34 hamster.stop()
20 wait(2000)
```

- 입력 값은 양의 정수는 전진, 음의 정수는 후진, 0은 정지 상태
- 입력 값의 절댓값은 회전의 빠르기

오른쪽, 왼쪽

모터 센서 – 과제 2

각 방향으로 움직임이 정이 된 함수를 이용하여 햄스터 로봇을 움직여 보자

```
# 3. 오른쪽 회전하기
8 from roboid import *
                                     hamster.turn_right(2, 60)
9
  hamster = Hamster()
                                  23
10
                                  24
11
                                  25 # 4. 왼쪽 회전하기
12
                                     hamster.turn_left(2, 60)
  # 1. 직진하기
  hamster.move_forward(2, 50)
                                  27
                                  28
15
                                  29
16
                                  30 # 실행 종료 후 멈추기
17 # 2. 뒤로가기
                                     hamster.stop()
  hamster.move_backward(2, 60)
                                  32
19
```

- 첫번째 매개변수는 지속시간, 두번째 매개변수는 이동 속도이다.
- 세밀한 속도 컨트롤은 어렵다.

LED 센서

LED 색상	숫자	설명
Hamster.LED_OFF	0	전원 OFF
Hamster.LED_BLUE	1	파란색
Hamster.LED_GREEN	2	초록색
Hamster.LED_CYAN	3	하늘색
Hamster.LED_RED	4	빨간색
Hamster.LED_MAGENTA	5	보라색
Hamster.LED_YELLOW	6	노란색
Hamster.LED_WHITE	7	하얀색

LED 센서 - 과제 1

햄스터 로봇의 좌우 LED를 켜보자

```
# 2. 오른쪽 LED 켜기
   from roboid import *
                                       hamster.right_led("yellow")
                                      wait(500)
   hamster = Hamster()
                                   23
10
                                       hamster.right_led("off")
11
                                      wait(500)
  # 1. 왼쪽 LED 켜기
                                   26
   hamster.left_led("blue")
                                   27
   wait(500)
                                      # 3. 양쪽 LED 모두 켜기
15
                                       hamster.leds("red", "green")
   hamster.left_led("off")
                                      wait(500)
                                   30
   wait(500)
17
                                   31
18
                                   32
                                      hamster.leds("off")
```

LED 센서 - 과제 2

22

로봇의 좌우 LED의 색과 모터를 움직여 이동시켜보자.

```
hamster.wheels(-50, 50)
   from roboid import *
                                                hamster.left_led(Hamster.LED_MAGENTA)
8
                                                wait(500)
   hamster = Hamster()
                                                hamster.right_led(Hamster.LED_YELLOW)
10
                                                wait(500)
   hamster.wheels(50)
   hamster.left led(Hamster.LED BLUE)
                                              28
                                                hamster.wheels(50, -50)
  wait(500)
                                                 hamster.leds(Hamster.LED_WHITE, Hamster.LED_WHITE)
   hamster.right_led(Hamster.LED_GREEN)
   wait(500)
                                                wait(500)
                                              31
16
                                              32
   hamster.wheels(-50, -50)
                                                # 실행 종료 후 멈추기
   hamster.left_led(Hamster.LED_CYAN)
                                                hamster.stop()
  wait(500)
   hamster.right_led(Hamster.LED_RED)
  wait(500)
```

피에조 센서

- 햄스터 로봇의 부저 소리 범위는 0~167771.5 Hz까지 출력

나이	최고 가청 주파수	나이	최고 가청 주파수
보청기 필요	8000 Hz	20대 중반	15800 Hz
50대 이후	10000 Hz	20대 초반	16700 Hz
40대 정도	12000 Hz	10대 후반	17700 Hz
30대 정도	14100 Hz	10대 초반	18800 Hz
20대 후반	14900 Hz	10대 이하	19900 Hz

피에조 센서 – 과제 1

버저의 값을 바꿔 자신의 가청 주파수는 얼마인지 측정해보자.

```
9 from roboid import *

10

11 hamster = Hamster()

12

13 # 숫자는 Hz의 값 #hamster.buzzer(16500)

14 hamster.buzzer(134.42)

15

16

17 # 실행 종료 후 멈추기

18 hamster.stop()

19
```

피에조 센서 – 과제 2

0 옥타브부터 8 옥타브 도까지 소리 내보자

```
10 from roboid import *
11
  hamster = Hamster()
13
  hamster.note(Hamster.NOTE_C_1)
  wait(1000)
16
   hamster.note(Hamster.NOTE_C_2)
  wait(1000)
19
   hamster.note(Hamster.NOTE_C_3)
  wait(1000)
22
   hamster.note(Hamster.NOTE C 4)
  wait(1000)
24
25
```

```
hamster.note(Hamster.NOTE_C_5)
wait(1000)

hamster.note(Hamster.NOTE_C_6)
wait(1000)

hamster.note(Hamster.NOTE_C_7)
wait(1000)

# 실행 종료 후 멈추기
hamster.stop()
```

적외선 센서 – 과제 1

```
2 from roboid import *
   hamster = Hamster()
   buzzer_hz = 0
   while True:
       #proximity = hamster.left_proximity()
8
       proximity = hamster.right_proximity()
9
10
       if proximity < 10:
11
           proximity = 0
12
       buzzer_hz = (buzzer_hz * 5 + proximity * 70) / 10.0
13
       hamster.buzzer(buzzer_hz)
14
15
       wait(20)
16
```

실습01. 가속 모터

게임에서 부스터를 이용하여 빠르게 달린다. 이를 코드로 구현해 보면?

```
from roboid import *
   hamster = Hamster()
10
11
   for i in range(40, 100):
       hamster.wheels(i, i)
13
       wait(30)
14
15
16
   hamster.stop()
17
18
```

실습01. 감속 모터

게임에서 브레이크를 밟아 급속도로 속도를 줄여야 한다. 이를 코드로 구현해 보면?

```
8 from roboid import *
9
   hamster = Hamster()
11
12
   for i in range(100, 0, -1):
       hamster.wheels(i, i)
14
       wait(30)
15
16
17
18
   hamster.stop()
```

실습02. 피아노 연주

피에조 센서 이용하여 젓가락 송 노래를 연주를 해보자!

무엇이 무엇이 똑같을까~~

젓가락 두짝이 똑같지요~~

실습02. 피아노 건반

피에조 센서 이용하여 피아노 건반을 만들어보자


```
from roboid import *
   hamster = Hamster()
  while True:
       key = input()
       if key:
           if key == 'a':
                hamster.note(Hamster.NOTE_C_4) # \( \subseteq \)
           elif key == 's':
10
                hamster.note(Hamster.NOTE D 4) # 레
11
           elif key == 'd':
12
                hamster.note(Hamster.NOTE E 4) # []
13
           elif kev == 'f':
14
                hamster.note(Hamster.NOTE_F_4) # □
15
           elif key == 'g':
16
                hamster.note(Hamster.NOTE_G_4) # 舎
17
           elif key == 'h':
18
                hamster.note(Hamster.NOTE_A_4) # 라
19
           elif kev == 'j':
20
                hamster.note(Hamster.NOTE_B_4) # 시
21
           elif kev == 'k':
22
                hamster.note(Hamster.NOTE_C_5) # \( \subseteq \)
23
           elif key == 'l':
24
                hamster.note(Hamster.NOTE_D_5) # 레
25
           elif key == ';':
26
                hamster.note(Hamster.NOTE_E_5) # []
27
           elif kev == "'":
28
                hamster.note(Hamster.NOTE_F_5) # Ⅲ
29
           elif key == ' ': # 스페이스 키
30
                hamster.note(0)
31
32
       wait(20)
33
```

실습03. 감속 모터

키보드 이벤트를 받아 가속 모터를 발생 시켜보자.

```
8 from roboid import *
  import keyboard
10
11 hamster = Hamster()
12 count = 0
13 while True:
       if keyboard.is_pressed("a"):
14
15
           if count < 200:
16
                count += 5
17
18
           hamster.wheels(count, count)
19
20
           wait(30)
21
       else:
22
           count = 0
23
           hamster.wheels(0, 0)
24
```

햄스터 로봇을 이용하여 엉터리 씨름 대회를 진행하고자 한다.

엉터리 씨름 대회는 **키보드 방향키를 이용하여 가속하는 햄스터로봇으로 상대팀을 밀치는 씨름이다**.

4인 1조가 되어 총 3팀으로 나눠져 게임을 한다.

게임은 토너먼트 형식으로 진행되며 뽑기를 통하여 부전승을 결정할 것이다.

wait(30)

```
8 from roboid import *
                                                  elif keyboard.is_pressed("d"):
                                            34
9 import keyboard
                                                      if is pressed key != "d":
                                            35
                                                          count = 0
10
                                            36
11 hamster = Hamster()
                                                      if count < 100:
                                            37
                                                          count += 3
12 count = 0
                                            38
                                                      hamster.wheels(count, -count)
is_pressed_key = ""
                                            39
                                                      is_pressed_key = "d"
                                            40
14
                                                      wait(30)
                                            41
  while True:
                                            42
       if keyboard.is_pressed("w"):
16
17
               팀 이름을 먼저 정해주세요!
18
19
                                          46
               count += 10
20
           hamster.wheels(count, count)
           is pressed key = "w"
22
           wait(30)
23
24
       elif keyboard.is_pressed("a"):
25
           if is_pressed_key != "a":
26
               count = 0
27
           if count < 100:
28
               count += 3
29
           hamster.wheels(-count, count)
30
           is_pressed_key = "a"
31
                                                                                     113
```

34

35

36

37

38

39

40

42

43

44

45

46

```
8 from roboid import *
9 import keyboard
10
   hamster = Hamster()
12 count = 0
is_pressed_key = ""
14
   while True:
       if keyboard.is_pressed("w"):
16
           if is_pressed_key != "w":
17
                count = 0
18
           if count < 100:
19
                count += 10
20
           hamster.wheels(count, count)
           is pressed key = "w"
22
           wait(30)
23
24
       elif keyboard.is_pressed("a"):
25
           if is_pressed_key != "a":
26
                count = 0
27
           if count < 100:
28
                count += 3
29
           hamster.wheels(-count, count)
30
           is_pressed_key = "a"
31
           wait(30)
32
```

```
elif keyboard.is_pressed("d"):
    if is_pressed_key != "d":
        count = 0
    if count < 100:
        count += 3
    hamster.wheels(count, -count)
    is_pressed_key = "d"
    wait(30)

else:
    count = 0
    hamster.wheels(0, 0)</pre>
```


프로젝트 02. 햄스터 로봇 축구 대회

햄스터 로봇을 이용하여 로봇 축구 대회를 진행하고자 한다.

4인 1조가 되어 총 3팀으로 나눠져 게임을 한다.

먼저 자신의 햄스터 로봇이 강력해질 수 있게 **마분지로 다양한 모양으로 변신이** 가능하다.

게임은 총 3번 앞서 경기한 엉터리 씨름 대회 우승팀이 부전승으로 올라간다.

경기 제한 시간은 전반전 4분, 쉬는시간 2분, 후반전 4분으로 진행된다.

동점일 경우 승부차기(각 2번의 기회)!

<u>단 연결이 끊기거나 배터리가 없어 로봇이 움직이지 않는 경우 퇴장!</u> 최종 우승한 팀에게는 특별한 **선물**이 있다.

프로젝트 02. 햄스터 로봇 축구 대회

감사합니다! ☺