3.6 The MOS transistor in the circuit of Figure B has a characteristic curve as shown in Figure A. Answer the following questions.

QUESTIONS	ANSWERS		
Indicate the type of transistor:	n		
2. V _T value	3	(∀olts)	
3. K value	0.5	(mA/V^2)	
4. Obtain thevoltage V _{GS} in the circuit.	51	(Volts)	
5. Obtain the current I _D .		(mA)	
6. Obtain the voltage V _{DS} .		(Volts)	
7. ¿What is the limit value of R₃to		(kΩ)	
puttheMOSFET in the ohmic region?		, ,	

3(k) Saturation.

$$JDS = K(V6S - V7)^2 \Rightarrow$$
 $K = \frac{JDS}{(V6S - V7)^2} = \frac{8}{(7-3)^2} = 0.5 \frac{mA}{V^2}$

(V6S - V7) $= \frac{17-3}{2} = 5V$

3.6 The MOS transistor in the circuit of Figure B has a characteristic curve as shown in Figure A. Answer the following questions.

+ 10 V

QUESTIONS	ANSWERS		
Indicate the type of transistor:	n		
2. V _⊤ value	3	(Volts)	
3. K value	0.5	(mA/V^2)	
 Obtain thevoltage V_{GS}in the circuit. 	5	(Volts)	
5. Obtain the current I _D .	2	(mA)	
6. Obtain the voltage V _{DS} .	6	(Volts)	
7. ¿What is the limit value of R₃to	1	(kΩ)	
puttheMOSFET in the ohmic region?	7	` ′	

	٩			(3	ور		oa	d	u	ne	<mark>,</mark>	
					X	a xi	's -	>	VDD	. ح	100	/
1		21	⟨	R3					00			
					,	,,,,		R	30			
				Q1	Q:	Pa d	nt	(ZDS	_ 2	2mi	4
					/			VI	95 <u>-</u>	61	1)	
2				,								
-				رو	a	rai	li+e	ca	lle	1 <u>-</u> '		
			÷	0	165	= 5	「レン	> [/	T=	> 4	20	N
	a	5	sui	ne	٤	at		_			,	
	7	700	. /-	. //	100	,,	(-)	2_	1	-/5	<u>_</u> -	372
	7	US:	- ~	()	165°	-0	"		0.3	(
				m								
	1/2	15=	1	0-	Į	15·	Ľ	3 <i>—</i>	6			
	A	5	12	ر ی	> 6	16-	-U7	=>	d	213	SAT	_
		D	1	1/20	7	11.	Ta-	•	<u>1</u> 5	/		(رري
		æ	('	<i>,</i> 63.		グー	צמ ג	= 21	m A	VD	5 ~	9

$$P_{2} = 15V | P_{3} | P_{4} | P_{5} | P_{5}$$

From out put loop!

$$V_{DD} = P_3 I_{DS} + V_{DS} \Rightarrow P_3 = \frac{V_{DD} - V_{DS}}{I_{DS}}$$

5.1 Indicate the output voltage levels of the logic inverter of figure if Vi is a square wave with values from 0V to 5V. Use the approximate expression for the ohmic region of transistor: I_{DS}≈ 2K(V_{GS}-V_T)V_{DS}

(5.8)Design a NMOS inverter with a pull-up resistor R_D , with the following requirements:

- Static power consumption when the output is low = 0.10 mW
- V_{OL} = 0.5V
- V_{OH} = V_{DD} = 5V
- Transistor: V_T = 1V

$$P_{L} = 100 \cdot IDS$$
, $IDS = \frac{P_{L}}{VOD} = \frac{0.1}{5} = 0.02 \text{ mA}$

5.7 Given the switch of the figure, with a control input Vi which is a square wave varying between 0 and V_{DD} , answer the following questions:

[A] Considering the transistor as a voltagecontrolled variable resistor, calculate its resistance value when closed, so that the value of the output voltage is 0.01 V.

[B] If V_Tof transistor is 2 V, find the value of K of the transistor. To do so, consider that in the ohmic region (also called linear region) the current value IDS can be approximated by the following expression:

 $I_{SD} \approx K [2 (V_{GS} + V_T) V_{DS}].$

+10 V