This weeks problem set focuses isomorphisms and coordinate vectors and the matrices associated to linear transformations. It will be quite a large problem set, and because of the way we will be covering it in class, don't worry if you can't do some of the problems until after next Friday. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 2: due Friday 9 Feb: questions 4 and 5 below.

- 1. From section 2.4, problems 1, $2a, c, e, 3, 7, 14, 15^*, 17^*, 24^{*,\dagger}$.
- 2. From section 2.2, problems 1, $2a, c, f, 10, 11^{\dagger}, 12^{*}, 14^{\dagger}, 16$.
- 3. From section 2.3, problems 1, 2a, 3, 12, 16, 17^{\dagger} , 16.

 There are mathematical objects called \mathfrak{sl}_2 -representations which are important in quantum mechanics and beautiful objects in their own right. We won't define what they are exactly**, but their are vector

spaces that come packaged with a certain pair of linear maps. The next questions give an example.

 4^{\dagger} Let $V = \mathbb{C}[x,y]$ be the vector space of polynomials in two variables. So we have $x^2 - 2xy^2 + 1 \in V$ for example. Define two linear maps $E, F: V \longrightarrow V$ where

$$E(p) = x \frac{\partial p}{\partial y}$$
 and $F(p) = y \frac{\partial p}{\partial x}$

(a) Find a formula for H := EF - FE.

Solution: We just calculate what H does to a polynomial, using the chain rule:

$$\begin{split} H(p) &= EF(p) - FE(p) \\ &= x \frac{\partial}{\partial y} y \frac{\partial p}{\partial x} - y \frac{\partial}{\partial x} x \frac{\partial p}{\partial y} \\ &= x \frac{\partial p}{\partial x} + xy \frac{\partial^2 p}{\partial y \partial x} - y \frac{\partial p}{\partial y} - xy \frac{\partial^2 p}{\partial y \partial x} \\ &= x \frac{\partial p}{\partial x} - y \frac{\partial p}{\partial y}. \end{split}$$

(b) A subspace $U \subset V$ is called a *subrepresentation* if $E(U) \subset U$ and $F(U) \subset U$. Let $V(n) = \text{span} \{ x^{n-a}y^a \mid 0 \le a \le n \}$, this is the space of *homogeneous polynomials of degree* n, i.e. every term on the polynomial has degree n. Show that V(n) is a subrepresentation, for any n > 0.

Solution: Note that $E(x^{n-a}y^a) = ax^{n-a+1}y^{a-1} \in V(n)$ and $F(x^{n-a}y^a) = (n-a)x^{n-a-1}y^{a+1} \in V(n)$. Thus, since an arbitrary element $p \in V(n)$ is simply a linear combination of these, we have that $E(p), F(p) \in V(n)$ and hence it is a subrepresentation.

(c) With the basis $x^n, x^{n-1}y, x^{n-2}y^2, \dots, y^n$, determine the matrix corresponding to the linear maps E, H, F restricted to the subspaces V(n).

Solution: We will do H first. Note that $H(x^{n-a}y^a) = (n-2a)x^{n-a}y^a$. Hence the matrix for H is diagonal with the (i,i)-entry being n-2(i-1).

Now $E(x^{n-a}y^a) = ax^{n-a+1}y^{a-1}$ and so the matrix for E is zero everywhere, apart from the (i, i+1)-entry which is i.

Similarly, $F(x^{n-a}y^a) = (n-a)x^{n-a-1}y^{a+1}$ and so the matrix for F is zero everywhere, apart from the (i+1,i)-entry which is n-i+1.

Examples for n=3 are

$$H = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}, E = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ and } F = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

5. Another example of an \mathfrak{sl}_2 representation is given by $W = \mathbb{C}^2$ and where E' and F' are the linear transformations given by left multiplication by the matrices

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Find an isomorphism $\theta: V(1) \longrightarrow W$ so that $\theta E = E'\theta$ and $\theta F = F'\theta$ as linear maps $V(1) \longrightarrow W$.

Solution: The isomorphism θ will be determined by the values of $\theta(x)$ and $\theta(y)$. So lets set

$$\theta(x) = \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $\theta(x) = \begin{pmatrix} c \\ d \end{pmatrix}$.

In order for $\theta E = E'\theta$ and $\theta F = F'\theta$, we must have that four things hold:

$$\theta E(x) = E'\theta(x) \tag{1}$$

$$\theta E(y) = E'\theta(y) \tag{2}$$

$$\theta F(x) = F'\theta(x) \tag{3}$$

$$\theta F(y) = F'\theta(y). \tag{4}$$

Notice that E(x) = 0, thus $\theta E(x) = 0$ and by 1 we must have that

$$0 = E'\theta(x) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

Thus b = 0. We do something similar and notice that F(y) = 0 so by we have

$$0 = F'\theta(y) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix}$$

so c=0. Now we only need to check 2 and 3. Notice that E(y)=x so $\theta E(y)=\theta(x)$. By 2,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} d \\ c \end{pmatrix}$$

Which gives us that a = d and b = c. Checking 3 gives us the same result. So now we have that

$$\theta(x) = \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $\theta(x) = \begin{pmatrix} c \\ d \end{pmatrix}$.

We just need to pick an a which ensures this will be an isomorphism. It is clear that picking any $a \neq 0$ is fine.

6. Show that there is no, nonzero, linear map $\theta: V(n) \longrightarrow V(m)$ so that $E\theta = \theta E$ and $F\theta = \theta F$ whenever

 $n \neq m$. Hint: if such a map does exist, where does x^n get sent? Now use that $H\theta = \theta H$. This is pretty hard, let me know if you need more hints

Solution: We will give a brief sketch. Consider $\theta(x^n)$. We know that $E(x^n) = 0$ so $0 = \theta(E(x^n)) = E\theta(x^n)$. I.e. we must have that $E\theta(x^n) = 0$. If

$$\theta(x^n) = \lambda_0 x^m + \lambda_1 x^{m-1} y + \ldots + \lambda_m y^m$$

then

$$E\theta(x^n) = 0 + \lambda_1 x^m + \ldots + m\lambda_m x y^{m-1}$$

The only way for this to be zero is if $\lambda_1 = \lambda_2 = \ldots = \lambda_m = 0$. Thus $\theta(x^n) = \lambda x^m$ for some $\lambda \in \mathbb{C}$. Now lets use the fact that $H\theta = \theta H$ (this is true since (EF - FE)H = H(EF - FE)).

Observe that $H(x^n) = nx^n$, thus $\theta H(x^n) = \lambda nx^m$. On the other hand $H\theta(x^n) = H(\lambda x^m) = \lambda mx^m$. Hence $\lambda nx^m = \lambda mx^n$. The only way this is possible, is if either m = n, or if $\lambda = 0$.

If $m \neq n$ then $\lambda = 0$, so $\theta(x^n) = 0$. Now comes the somewhat challending part. How can we figure out that this means that $\theta(x^{n-a}y^a) = 0$? We consider $F^a(x^n)$. This is the result of applying F to the element x^n , a times. The result is $F^a(x^n) = \frac{n!}{(n-a)!}x^{n-a}y^a$. But we know that $\theta F^a = F^a\theta$ so we must have that $\theta(F^a(x^n)) = F^a(\theta(x^n)) = F^a(0) = 0$. But since θ is linear

$$\theta(x^{n-a}y^a) = \frac{(n-a)!}{n!}F^a(\theta(x^n)) = 0.$$

** Ok, if you really want to know exactly what they are here is the definition: An \mathfrak{sl}_2 -representation is a vector space V with two linear maps $E, F: V \longrightarrow V$ such that

$$E^2F - 2EFE + FE^2 = -2E$$

and the same equation with the E's and F's swapped. There is a much more intuitive definition but one would need to know some more abstract algebra. If you are really keen, try and find more \mathfrak{sl}_2 representations and show me!