Desafío: Energía Cinética Rotacional de una Esfera sobre Rieles Acanalados

Objetivos

- Comprender cómo se reparte la energía mecánica entre traslación y rotación en una esfera que rueda sin deslizar.
- Analizar cómo la geometría del sistema (separación entre rieles) afecta la velocidad de la esfera.
- Verificar experimentalmente el modelo físico propuesto mediante el uso de gráficas y regresión lineal

Contexto

El estudio del movimiento rodante es clave en diseño de rodamientos, vehículos autónomos y sistemas de transporte industrial. Esta práctica te permitirá modelar un sistema real, predecir su comportamiento y validar tus hipótesis a través de la experimentación, como lo hacen ingenieros y científicos de datos.

Materiales

- Esfera metálica (radio R)
- Riel acanalado de ancho variable (0 a 10 mm)
- Calibrador digital
- Regla milimetrada
- Transportador
- Soporte ajustable

Preparación previa

- Conservación de la energía mecánica.
- Energía cinética rotacional.
- Movimiento rodante sin deslizamiento.
- Movimiento parabólico y ecuaciones de caída libre.

Modelo teórico explicado

Cuando una esfera rueda sin deslizar, posee energía cinética traslacional $(\frac{1}{2}mv^2)$ y rotacional $(\frac{1}{2}I\omega^2)$. Para una esfera homogénea, $I=\frac{2}{5}mR^2$.

Usando conservación de la energía:

$$mgH = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

Si $\omega = \frac{v}{r}$, y sustituyendo *I*, se obtiene:

$$v^2 = \frac{2gH}{1 + \frac{2R^2}{5r^2}}$$

El radio efectivo de giro r depende de la separación entre los rieles W:

$$r = \sqrt{R^2 - \left(\frac{W}{2}\right)^2} = R\sqrt{1 - \frac{W^2}{4R^2}}$$

Sustituyendo se llega a:

$$v = \sqrt{\frac{10}{7}gH} \cdot \sqrt{\frac{1 - \frac{W^2}{4R^2}}{1 - \frac{5W^2}{28R^2}}}$$

Para linealizar:

$$Y = v^2 \left(1 - \frac{5}{28} \frac{W^2}{R^2} \right), \quad X = 1 - \frac{1}{4} \frac{W^2}{R^2} \Rightarrow Y = pX, \quad p = \frac{10}{7} gH$$

Montaje Experimental

• Incline el riel a un ángulo fijo θ . Ver figura 1

Figura 1: Vista frontal de la esfera en contacto con el riel acanalado.

- Asegure que la distancia de separación W entre los rieles se puede ajustar con precisión.
- Libere la esfera desde una altura fija H, asegurándose de que ruede sin deslizar.

Procedimiento experimental

- 1. Para cada valor de W, suelta la esfera desde la misma altura.
- 2. Mide x y y desde el extremo del riel hasta el punto de impacto.
- 3. Calcula la velocidad:

$$v = \sqrt{\frac{gx^2}{2\cos^2\theta(y - x\tan\theta)}}$$

4. Completa la siguiente tabla:

W (mm)	x (m)	y (m)	v (m/s)
0			
1			
2			
10			

- 5. Calcula X y Y para cada punto y grafica Y vs X.
- 6. Calcula la pendiente y compárala con $p = \frac{10}{7}gH$.

Preguntas orientadoras

- ¿Qué ocurre con la velocidad al aumentar W?
- ¿Cómo se modifican las energías rotacional y traslacional con W?
- ¿Cómo cambia la fricción de contacto con los rieles al variar W?
- ¿Por qué se anula la velocidad cuando $W \to 2R$?

Rúbrica de Informe (2.5 puntos)

Criterio	Puntaje
Explicación clara del modelo y ecuaciones	0.5
Análisis de datos y gráficas (linealización correcta)	1.0
Discusión crítica de resultados	1.0
Presentación y redacción adecuada	0.5
Total	2.5

Rúbrica de Sustentación Oral (2.5 puntos)

Criterio	Puntaje
Dominio del tema y explicación del modelo	1.0
Uso adecuado de gráficas y resultados	0.75
Claridad y participación activa del grupo	0.75
Total	2.5

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos