LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

SVAR KONTINUERLIGA SYSTEM 2013-08-22

1. Modell

$$\begin{cases} u'_t - Du''_{xx} = 0, & 0 < x < 2L, t > 0, \\ u'_x(0, t) = u'_x(2L, t) = 0, & t > 0, \\ u(x, 0) = \begin{cases} q, & 0 < x < L, \\ 2q, & L < x < 2L. \end{cases}$$

Cosinusutveckling ger att koncentrationen bl

$$\frac{3q}{2} - \frac{2q}{\pi} \sum_{k=1}^{\infty} \frac{\sin(k\pi/2)}{k} e^{-Dk^2\pi^2t/(4L^2)} \cos(\frac{k\pi x}{2L})$$

med 3q/2 som stationär koncentration.

2. En tolkning kan vara att modellen beskriver små transversella svängningar i en sträng som är fastsatt i (0,0) och $(0,\pi)$. Strängen befinner sig vid tiden t=0 längs x-axeln och får genom ett hammarslag i $\pi/2$ en transversell hastighet $u'_t(x,0) = \delta(x-\pi/2)$. Vågutbredningshastigheten c = 1.

Låt h vara en udda och 2π -periodisk funktion sådan att $h(x) = \delta(x - \pi/2) - \delta(x + \pi/2)$ då $-\pi < x < \pi$. Enligt d'Alemberts formel är då

$$u(x,t) = \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy$$
 då $0 < x < \pi$.

Speciellt blir $u(x, 1) = \frac{1}{2}(\theta(x + 1 - \pi/2) - \theta(x - 1 - \pi/2)) då 0 < x < \pi$.

- **3.** Enligt projektionssatsen blir integralen som minst då $c_k = 2^{-k-1}, k = 0, 1, 2, \dots$ n. Gränsvärdet av integralens minimivärde blir $\ln 2/2 - 1/3 \approx 0.013$. (Eftersom gränsvärdet inte blir 0 utgör $\{\varphi_k\}_0^{\infty}$ ingen ortogonal bas.)
- **4.** Tidsoberoende värmeledningsproblem där q = 70, $\lambda = 0.2$ och $\alpha = (1, 2)$.

$$\begin{cases}
-\Delta u = \frac{q}{\lambda} \delta_{\alpha}, & x^2 + y^2 < 25, \\
u = 20, & x^2 + y^2 = 25.
\end{cases}$$

Efter homogenisering och spegling till $\tilde{\alpha} = (5, 10)$ ger Greenfunktionen lösningen

$$u(x,y) = 20 - \frac{1}{2\pi} \frac{70}{0.2} (\ln|(x,y) - (2,1)| - \ln(\frac{1}{\sqrt{5}}|(x,y) - (5,10)|))$$

med temperaturen i origo $u(0,0) = 20 + \frac{350}{4\pi} \ln 5 \approx 64.8^{\circ} C$.

5. Operatorn är Sturm-Liouville då den kan skrivas $\mathcal{A}u=-\frac{1}{e^{2x}}\left(e^{2x}\,u'\right)',\,u(0)=u(L)=0,$ och den har egenfunktioner $\varphi_k(x)=e^{-x}\sin\frac{k\pi x}{L}$ med motsvarande egenvärden $\lambda_k=1+\frac{k^2\pi^2}{L^2}$ vilket gör att lösningen kan skrivas

$$u(x,t) = \sum_{k=1}^{\infty} c_k \sin(c\sqrt{\lambda_k}t) \varphi_k(x), \quad \text{med} \quad c_k = \frac{2(1-(-1)^k)}{k\pi c\sqrt{\lambda_k}}.$$

6. I rymdpolära koordinater blir lösningen blir oberoende av φ . Då är det lämpligt att göra ansatsen $u(r,s) = \sum_{k=0}^{\infty} u_k(r) P_k(s)$, där P_k är Legendrepolynomet av grad k och $s = \cos \theta$. Det blir dock enklar räkningar om man först sätter $v = u - 3z^2$. Då gäller att v bara beror av r. Lösningen blir $u = 2 - 2r^2 + 3z^2 = 2 - 2x^2 - 2y^2 + z^2$.