

FAKULTI TEKNOLOGI & KEJURUTERAANELEKTRONIK & KOMPUTER UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TECHNOLOGY SKILL AND DEVELOPMENT IN ELECTRONIC AUTOMATION II

BERL 1214	SEMESTER 2	SESI 2023/2024

PROJECT: Design a Synchronous Abnormal Counter

NO.	STUDENTS' NAME	MATRIC. NO.
1.	MUHAMMAD AZRUL BIN REDZUAN	B122310626
2.	DANIA AFRINA BINTI SHARIZUL	B122310238
3.		

PROGRAMME	1 BERL
SECTION / GROUP	S1/1 GROUP (T)
DATE	5 JUN 2024
NAME OF	1. Ts. AHMAD NIZAM BIN MOHD JAHARI @ MOHD JOHARI
INSTRUCTOR(S)	2.
EXAMINER'S COMMENT(S)	TOTAL MARKS

1. INTRODUCTION

In digital electronics, counters are sequential circuits that advance through a specific set of states upon receiving clock pulses. They are widely used in digital systems such as timers, frequency dividers, and digital controllers.

A **synchronous counter** is a type of counter in which all flip-flops are triggered by the same clock signal, ensuring simultaneous state changes. Unlike normal binary or decade counters that follow a natural binary sequence, an **abnormal counter** (also called a non-sequential or arbitrary counter) follows a custom or irregular sequence of states defined by the designer.

In this project, a **synchronous abnormal counter** is designed to follow the sequence:

$$\textbf{F} \rightarrow \textbf{E} \rightarrow \textbf{C} \rightarrow \textbf{A} \rightarrow \textbf{3} \rightarrow \textbf{2} \rightarrow \textbf{1} \rightarrow \textbf{F}$$

Each letter or number represents a unique state encoded in binary form. The design uses **JK flip-flops** to achieve synchronous operation and includes logic to recover automatically if the counter enters an invalid state.

2. OBJECTIVE

To design and implement a **synchronous abnormal counter** that cycles through the sequence :

$$F \rightarrow E \rightarrow C \rightarrow A \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow F,$$

using D flip-flops and combinational logic, with automatic recovery from invalid states.

3. STATE DIAGRAM

4. STATE AND EXCITATION TABLE

F	PRESENT STATE			NEXT STATE				FLIP-FLOP INPUTS								
	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0	J3	K3	J2	K2	J1	K1	J0	K0
F	1	1	1	1	1	1	1	0	X	0	X	0	X	0	X	1
Е	1	1	1	0	1	1	0	0	X	0	X	0	X	1	0	X
С	1	1	0	0	1	0	1	0	X	0	X	1	1	X	0	X
Α	1	0	1	0	0	0	1	1	X	1	0	X	X	0	1	X
3	0	0	1	1	0	0	1	0	0	X	0	X	X	0	X	1
2	0	0	1	0	0	0	0	1	0	X	0	X	X	1	1	X
1	0	0	0	1	1	1	1	1	1	X	1	X	1	X	X	0

KARNAUGH MAP 5.

	-	IQ0 BQ2	01	11	10
	00	X	X	X	X
J3	01	X	X	X	X
J	11	0	X	0	0
	10	X	X	X	1
			K3=	•Q2'	

К3

	00	01	11	10	
00	X	1	0	0	
01	X	X	X	X	
11	X	X	X	X	
10	X	X	X	0	
	J2=Q1'				

	UU	01	_11	10
00 01	X	X	X	X
01	X	X	X	X
11	1	X	0	0
10	X	X	X	X
		K2=	Q1'	

00

01

11

0

0

10

K2

	00	01	11	10			
00	X	1	X	X			
01	X	X	X	X			
11	1	X	X	X			
10	Х	X	X	X			
	J1=1						

J2

JO

K1	

	00	01	11	10		
00	X	X	X	1		
01	X	X	X	X		
11	0	X	X	0		
10	X	X	X	1		
	J0=Q2'					

K0

6. COUNTER IMPLEMENTATION

7. CONCLUSION

In conclusion, Designing a synchronous counter to produce the sequence (F, E, C, A, 3, 2, 1) involves:

Identifying the Sequence: Define the binary values for each state.

State Transition Diagram: Create a diagram showing the progression from one state to the next.

State Table: Map current states to next states.

Determine Flip-Flop Inputs: Find the required inputs for JK flip-flops to transition between states.

Simplify Logic: Use Karnaugh maps to simplify the boolean expressions for flip-flop inputs.

Design the Circuit: Build the circuit using JK flip-flops and logic gates based on the simplified expressions. This method ensures the counter follows the desired sequence accurately and efficiently.