

D. B. J. COLLEGE, CHIPLUN

Page No. : _____

DEPARTMENT OF COMPUTER SCIENCE

Expt. No.	Name: Piyush Pandurang Bumte Class: TYCS Roll No.: 523
	Title of Experiment: Adaboost Engemble learning
Date	Sub titles: Assignment/ Problem Solution, Flow chart/Algorithm, Problem Listing, Input Screen, Output Screen, Comments (If any)
	Aim: Adaboost Ensemble Learning - Implement the Adaboost algorithm to create an ensemble of weak classifier. - Train the ensemble model on a given dataset and evaluate its performance. - Compare the results with individual weak classifier.
	Theory:-
	Adaboost Algorithm Adaboost Short for adaptive boosting is an ensemble markine learning algorithm that can be used in a wide variety of classification and regression tasks. It is supervised learning algorithm that is used to classify data by combining multiple weak or bare learners into a strong learner.
	* Key Tokeaways
Remark	
Signature	given model by combine multiple "weak" learners

	2. Adaboost works by weighting incorrectly classified instances more wer heavily so that the subsequent weak learners focus mainly on the difficult rases.
	3. It is adaptive in the sense that subsequent weak learners are tweaked in Favour of those instances missclassified by previous classifiers.
	4. Adaboost is fast simple to implement and versatile.
	5-Adaboost is not suitable for noisy data and is sensitive to outliers.
- (X - 1)	
100	

AdaBoost

Code:

```
class perceptron:
  def Adaboost(self,examples,K):
      w=[]
     N=len(examples[1])
     y=examples[1]
     for i in range(0,N):
        w.append(1/N)
     print("Original w: ", w)
      h=[]
     for k in range(0,K):
        print("K= ",k+1)
        h.append([])
        h=self.L(examples,w)
        error=0
        for j in range(0,N):
          if(h[j] !=y[j]):
            error=error+w[j]
        print("error : ",error)
        for j in range(0,N):
          if(h[j] == y[j]):
            w[j]=w[j]*error/(1-error)
        self.normalize(w)
        print(w)
        print("result using final w: ")
        h=self.L(examples,w)
        print(h)
  def normalize(self,w):
    for t in range(0,len(w)):
       normalizer =1/float(sum(w))
       w=[x*normalizer for x in w]
  def L(self,ex,w):
    hresult=[]
    for i in range(0,len(ex[1])):
       hresult.append(0)
      hresult[i]=hresult[i]+(w[i]*ex[0][i])
    return hresult
ex=[ [1,2,3,4,5,6],[15,20,30,40,45,60] ]
k = 30
p=perceptron()
p.Adaboost(ex,k)
```

Output:

K= 1

error: 0.999999999999999

result using final w:

0.83333333333333, 1.0]

K = 30

0.1666666666666666, 0.16666666666666, 0.16666666666666666

result using final w:

0.83333333333333, 1.0]

>>>