Test strategies for data processing pipelines

Lars Albertsson, independent consultant (Mapflat) Øyvind Løkling, Schibsted Products & Technology

Who's talking?

Swedish Institute of Computer. Science. (test & debug tools)

Sun Microsystems (large machine verification)

Google (Hangouts, productivity)

Recorded Future (NLP startup) (data integrations)

Cinnober Financial Tech. (trading systems)

Spotify (data processing & modelling, productivity)

Schibsted Products & Tech (data processing & modelling)

Mapflat (independent data engineering consultant)

Agenda

- Data applications from a test perspective
- Testing stream processing product
- Testing batch processing products
- Data quality testing

Main focus is functional, regression testing

Prerequisites: Backend dev testing, basic data experience

Test value

For data-centric applications, in this order:

- Productivity
 - Move fast without breaking things
- Fast experimentation
 - 10% good ideas, 90% bad
- Data quality
 - Challenging, more important than
- Technical quality
 - Technical failure => ops hassle, stale data

Streaming data product anatomy

Test scopes

- Pick stable seam
- Small scope
 - o Fast?
 - Easy, simple?
- Large scope
 - Real app value?
 - Slow, unstable?
- Maintenance, cost
 - Pick few SUTs

Data-centric application properties

- Output = function(input, code)
 - No external factors => deterministic
- Pipeline and job endpoints are stable
 - Correspond to business value

Reslicing in different dimensions is common

Data-centric app test properties

Output = function(input, code)

- Perfect for test!
- Avoid: external service calls, wall clock
- Pipeline/job edges are suitable seams
 - Focus on large tests
- Internal seams => high maintenance, low value
 - Omit unit tests, mocks, dependency injection!
- Long pipelines crosses teams
 - Need for end-to-end tests, but culture challenge

Suitable seams, streaming

Streaming SUT, example harness

1. IDE / Gradle

Test lifecycle

- 1. Start fixture containers
- 2. Await fixture ready
- 3. Allocate test case resources
- 4. Start jobs
- 5. Push input data to Kafka
- 6. While (!done && !timeout) { pollDatabase(); sleep(1ms) }
- 7. While (moreTests) { Goto 3 }
- 8. Tear down fixture

For absence test, send dummy sync messages at end.

Input generation

- Input & output is denormalised & wide
- Fields are frequently changed
 - Additions are compatible
 - Modifications are incompatible => new, similar data type
- Static test input, e.g. JSON files
 - Unmaintainable
- Input generation routines
 - Robust to changes, reusable

Test oracles

- Compare with expected output
- Check fields relevant for test
 - Robust to field changes
 - Reusable for new, similar types
- Tip: Use lenses
 - JSON: JsonPath (Java), Play JSON (Scala)
 - Case classes: Monocle
- Express invariants for each data type

Batch data product anatomy

Datasets

- Pipeline equivalent of objects
- Dataset class == homogeneous records, open-ended
 - Compatible schema
 - E.g. MobileAdImpressions
- Dataset instance = dataset class + parameters
 - Immutable
 - Finite set of homogeneous records
 - E.g. MobileAdImpressions(hour="2016-02-06T13")

Directory datasets

Some tools, e.g. Spark, understand Hive name conventions

Batch processing

- outDatasets = code(inDatasets)
- Component that scale up
 - Spark, (Flink, Scalding, Crunch)
- And scale down
 - Local mode
 - Most jobs fit in one machine

Gradual refinement

- 1. Wash
 - time shuffle, dedup, ...
- 2. Decorate
 - geo, demographic, ...
- 3. Domain model
 - similarity, clusters, ...
- 4. Application model
 - Recommendations, ...

Workflow manager

- Dataset "build tool"
- Run job instance when
 - input is available
 - output missing
- Backfills for previous failures
- DSL describes dependencies
- Includes ingress & egress

Suggested: Luigi / Airflow

DSL DAG example (Luigi)

```
class ClientActions(SparkSubmitTask):
  hour = DateHourParameter()
 def requires (self):
    return [Actions(hour=self.hour - timedelta(hours=h)) for h in range(0, 24)] + \
      [UserDB(date=self.hour.date)]
                                                                  Job (aka Task) classes
class ClientSessions(SparkSubmitTask):
  hour = DateHourParameter()
 def requires (self):
    return [ClientActions(hour=self.hour - timedeltathours=h)) for h in range(0, 3)]
class SessionsABResults(SparkSubmitTask):
  hour = DateHourParameter()
 def requires (self):
    return [ClientSessions(hour=self.hour), ABExperiments(hour=self.hour)]
 def output(self):
    return HdfsTarget("hdfs://production/red/ab sessions/v1/" +
      "{:year=%Y/month=%m/day=%d/hour=%H}".format(self.hour))
                                                                           Dataset instance
```

- Actions, hourly **UserDB** Time shuffle, user decorate ClientActions, daily Form sessions ClientSessions (A/B tests A/B compare A/B session evaluation
- Expressive, embedded DSL a must for ingress, egress
 - Avoid weak DSL tools: Oozie, AWS Data Pipeline

Batch processing testing

- Omit collection in SUT
 - Technically different
- Avoid clusters
 - Slow tests
- Seams
 - Between jobs
 - End of pipelines

Batch test frameworks - don't

- Spark, Scalding, Crunch variants
- Seam == internal data structure
 - Omits I/O common bug source
- Vendor lock-in

When switching batch framework:

- Need tests for protection
- Test rewrite is unnecessary burden

Testing single job

Runs well in CI / from IDE

Testing pipelines - two options

Both can be extended with egress DBs

- Workflow mgr setup
- Difficult to debug
- Dataset handling with Python

Testing with cloud services

- PaaS components do not work locally
 - Cloud providers should provide fake implementations
 - Exceptions: Kubernetes, Cloud SQL, (S3)
- Integrate PaaS service as fixture component
 - Distribute access tokens, etc
 - Pay \$ or \$\$\$

Quality testing variants

- Functional regression
 - Binary, key to productivity
- Golden set
 - Extreme inputs => obvious output
 - No regressions tolerated
- (Saved) production data input
 - Individual regressions ok
 - Weighted sum must not decline
 - Beware of privacy

Obtaining quality metrics

- Processing tool (Spark/Hadoop) counters
 - Odd code path => bump counter
- Dedicated quality assessment pipelines
 - Reuse test oracle invariants in production

Quality testing in the process

- Binary self-contained
 - Validate in CI
- Relative vs history
 - E.g. large drops
 - Precondition for publishing dataset
- Push aggregates to DB
 - Standard ops: monitor, alert

Computer program anatomy

Data pipeline = yet another program

Don't veer from best practices

- Regression testing
- Design: Separation of concerns, modularity, etc
- Process: CI/CD, code review, static analysis tools
- Avoid anti-patterns: Global state, hard-coding location, duplication, ...

In data engineering, slipping is in the culture...:-(

Mix in solid backend engineers, document "golden path"

Top anti-patterns

- 1. Test as afterthought or in production

 Data processing applications are suited for test!
- 2. Static test input in version control
- 3. Exact expected output test oracle
- 4. Unit testing volatile interfaces
- 5. Using mocks & dependency injection
- 6. Tool-specific test framework
- 7. Calling services / databases from (batch) jobs
- 8. Using wall clock time
- 9. Embedded fixture components

Further resources. Questions?

http://www.slideshare.net/lallea/data-pipelines-from-zero-to-solid

http://www.mapflat.com/lands/resources/reading-list

http://www.slideshare.net/mathieu-bastian/the-mechanics-of-testing-large-data-pipelines-qcon-london-2016

http://www.slideshare.net/hkarau/effective-testing-for-spark-programs-strata-ny-2015

https://spark-summit.org/2014/wp-content/uploads/2014/06/Testing-Spark-Best-Practices-Anupama-Shetty-Neil-Marshall.pdf

Bonus slides

Unified log

- Replicated append-only log
- Pub / sub with history
- Decoupled producers and consum
 - In source/deployment
 - In space
 - In time
- Recovers from link failures
- Replay on transformation bug fix

Credits: Confluent

Stream pipelines

- Parallelised jobs
- Read / write to Kafka
- View egress
 - Serving index
 - SQL / cubes for Analytics
- Stream egress
 - Services subscribe to topic
 - E.g. REST post for export

realio. ripuorio Garriza

The data lake

Unified log + snapshots

- Immutable datasets
- Raw, unprocessed
- Source of truth from batch processing perspective
- Kept as long as permitted
- Technically homogeneous
 - Except for raw imports

Batch pipelines

- Things will break
 - Input will be missing
 - Jobs will fail
 - Jobs will have bugs
- Datasets must be rebuilt
- Determinism, idempotency
- Backfill missing / failed
- Eventual correctness

Batch job

Job == function([input datasets]): [output datasets]

- No orthogonal concerns
 - Invocation
 - Scheduling
 - Input / output location
- Testable
- No other input factors, no side-effects
- Ideally: atomic, deterministic, idempotent
- Necessary for audit

Data pipelines

Form teams that are driven by business cases & need

Forward-oriented -> filters implicitly applied

Beware of: duplication, tech chaos/autonomy, privacy loss

Data platform, pipeline chains

Common data infrastructure

Productivity, privacy, end-to-end agility, complexity

Beware: producer-consumer disconnect

Ingress / egress representation

Larger variation:

- Single file
- Relational database table
- Cassandra column family, other NoSQL
- BI tool storage
- BigQuery, Redshift, ...

Egress datasets are also atomic and immutable.

E.g. write full DB table / CF, switch service to use it, never change it.

Egress datasets

- Serving
 - Precomputed user query answers
 - Denormalised
 - Cassandra, (many)
- Export & Analytics
 - SQL (single node / Hive, Presto, ..)
 - Workbenches (Zeppelin)
 - (Elasticsearch, proprietary OLAP)
- BI / analytics tool needs change frequently
 - Prepare to redirect pipelines

Deployment

