HOMEWORK 1 MATH 4070, FALL 2025

Problems to type in TeX

1. (a) In \mathbb{R}^3 , prove that the set of vectors $(x,y,z)^{\top}$ which satisfy x-y+4z=0is a subspace.

> Let $V = \{(x, y, t)^T \in \mathbb{R}^3 | x - y + 4z = 0\}$. For V to be a subspace of \mathbb{R}^3 , it must show:

- 1. $0 \in V$
- 2. for any $v, w \in V$, $v + w \in V$
- 3. for any $v \in V$ and $\alpha \in \mathbb{F}$, $\alpha v \in V$
- 1. $0 = (0,0,0)^T \implies (0) (0) + 4(0) = 0$, which is true, so $0 \in V$.
- 2. Let $v = (x_1, y_1, z_1)^T$ and $w = (x_2, y_2, z_2)^T$, s.t.

$$x_1 - y_1 + 4z_1 = 0$$

$$x_2 - y_2 + 4z_2 = 0$$

Consider $v + w = (x_1 + x_2, y_1 + y_2, z_1 + z_2)^T$, s.t.

$$(x_1 + x_2) - (y_1 + y_2) + 4(z_1 + z_2) = 0$$
, rearrange

$$(x_1 - y_1 + 4z_1) + (x_2 - y_2 + 4z_2) = 0$$

 $0 + 0 = 0$, therefore $v + w \in V$

$$0+0=0$$
, therefore $v+w\in V$

3. Let $v = (x, y, z)^T$ s.t.

$$x - y + 4z = 0$$

Consider $\alpha \in \mathbb{R}$, where $\alpha v = (\alpha x, \alpha y, \alpha z)^T$, s.t.

$$\alpha x - \alpha y + 4\alpha z = 0$$
, rearrange

$$\alpha(x-y+4z)=0 \implies x-y+4z=0$$
, therefore $\alpha v \in V$

Because V matches all of the conditions, V is a subspace of \mathbb{R}^3 .

(b) In \mathbb{R}^3 , prove that the set of vectors $(x,y,z)^{\top}$ which satisfy x-y+4z=1is not a subspace.

Let $V = \{(x, y, t)^T \in \mathbb{R}^3 | x - y + 4z = 1\}$. For V to be a subspace of \mathbb{R}^3 , it must show:

- 1. $0 \in V$
- 2. for any $v, w \in V$, $v + w \in V$
- 3. for any $v \in V$ and $\alpha \in \mathbb{F}$, $\alpha v \in V$
- 1. $0 = (0,0,0)^T \implies (0) (0) + 4(0) = 1$, which is not true, so $0 \notin V$.

Because V fails one of the conditions, it can not be a subspace of \mathbb{R}^3 .

2. For the matrix below, find (a) a spanning set for the kernel, (b) a basis for the image, and (c) its rank:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ -2 & 2 & -4 \end{array} \right].$$

(a). $N(L) = \{v \in A : Lv = 0\} \le A$, where $v = (v_1, v_2, v_3)^T$

Gives us the equations:

$$v_1 - v_2 + 2v_3 = 0$$

 $-2v_1 + 2v_2 - 4v_3 = 0 \implies v_1 - v_2 + 2v_3 = 0$
Simplify:

 $v_1 = v_2 - 2v_3$

Replace in v:

$$(v_2 - 2v_3, v_2, v_3)^T \implies v_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + v_3 \begin{bmatrix} -2\\0\\1 \end{bmatrix}$$

which gives us our spanning set for the kernal: $\{(1,1,0)^T, (-2,0,1)^T\}$ Any vector in the kernel has the form above, hence is a linear combination of those two vectors, so they span kerA.

(b). Find row reduced echelon form of A:

(b). I find row reduced cert
$$\begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix} \to R_2 + 2R_1$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \text{ done}$$

This tells us there is only one pivot column (column 1).

Therefore our basis for $R(A) = \{(1, -2)^T\}$

We know this because every column of A is a linear combination of the pivot columns, because we used the RREF form. Also, pivot columns are independent because each introduces a new leading 1 in the RREF that was made. Thus by definition of a basis, that must be the basis for the image.

- (c). rankA = dim(R(A)), which we know is 1
- 3. (a) The **trace** of a square matrix A is the sum tr A of its diagonal entries. Show that if A is $m \times n$ and B is $n \times m$, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. *Hint*: Write out everything as a double sum.

AB is a $m \times m$ matrix, so its trace can be written as $\sum_{i=1}^{m} AB_{ii}$. The entry of the matrix AB can be written as $AB_{ik} = \sum_{j=1}^{n} A_{ij}B_{jk}$. If we plug this into our trace algorithm we get $tr(AB) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}B_{ji}$

Similarly BA is a $n \times n$ matrix, so $tr(BA) = \sum_{j=1}^{n} BA_{jj}$. The entry of the matrix BA can be written as $BA_{jk} = \sum_{i=1}^{m} B_{ji}A_{ik}$. If we plug this into our trace algorithm we get $tr(BA) = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji}A_{ij}$

Let
$$tr(AB) = tr(BA) \implies \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij}$$

 B_{ji} and A_{ij} are scalars so they can be swapped.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} B_{ji} A_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij},$$

Our sums are finite, so they can be swapped as well.

$$\sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij}$$

Therefore $tr(AB) = tr(BA)$

(b) Show that similar matrices have the same trace.

Let A and B be similar matrices. Therefore $B = P^{-1}AP$ and A, B, and P are all square matrices of the same size (due to the rules of inverting matrices). So,

 $tr(B) = tr(P^{-1}AP)$, focusing on the right side, we can rearrange using cycles $tr(P^{-1}AP) = tr(APP^{-1}) = tr(PP^{-1}A)$

 $tr(B) = tr(PP^{-1}A)$, this can be simplified

 $tr(B) = tr(IA) \implies tr(B) = tr(A)$, thus similar matrices have the same trace.

(c) Prove or disprove: If A is $m \times n$ and B is $n \times m$, then AB and BA have the same determinant.

By counter example let
$$A=(1,2)$$
 and $B=(3,4)^T$. $AB=(11) \Longrightarrow det(AB)=11$. $BA=\begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \Longrightarrow det(BA)=(3)(8)-(4)(6)=0$. Therefore, $det(AB)\neq det(BA)$. Thus, by counter example, AB and

Therefore, $det(AB) \neq det(BA)$. Thus, by counter example, AB and BA don't have the same determinant if A is $m \times n$ and B is $n \times m$.

Problems to do in MATLAB

4. In a wind tunnel experiment, the force on a projectile due to air resistance was measured at different velocities:

(a) Find an interpolating polynomial of degree 5 that expresses force as a function of velocity. Your polynomial should have the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5.$$

Hint: Make a function that turns numbers into row vectors:

$$r = 0(t) [1 t t^2 t^3 t^4 t^5].$$

Check out what happens when you type r(0). Then try [r(0);r(2)]. What you just learned should make your life easier.

Another hint: If a linear system Ax = b has a solution, then MATLAB will return one when you enter $A \setminus b$.

(b) Use your answer to (a) to estimate the force on the projectile when it is traveling at 750 ft/sec.

5. A function $L \colon \mathbb{R}^4 \to \mathbb{R}^4$ is linear and satisfies

$$L(0,1,1,1)^{\top} = (-3,-2,-1,0)^{\top}$$

$$L(1,1,0,1)^{\top} = (-1,0,-3,-2)^{\top}$$

$$L(1,1,0,0)^{\top} = (1,1,-3,-3)^{\top}$$

$$L(0,1,0,-1)^{\top} = (2,2,-2,-2)^{\top}$$

$$L(0,-1,1,-1)^{\top} = (1,-2,3,0)^{\top}.$$

- (a) Find the matrix for L in the standard basis.
 - *Hint*: The naive way to do this is to find out what L does to the standard basis vectors. It turns out that the input vectors I gave you span \mathbb{R}^4 , so each e_j can be written as a linear combination of them. Once you find coefficients for that expansion, you can use linearity to find Le_j .
- (b) Use your answer to (a) to find $L(1, -2, -1, 1)^{\top}$.
- (c) Use similarity to find the matrix for L in the following basis:

$$b_1 = (1, 1, 1, 1)^{\top}$$

$$b_2 = (1, -1, 1, -1)^{\top}$$

$$b_3 = (1, 1, -1, -1)^{\top}$$

$$b_4 = (1, -1, -1, 1)^{\top}$$

Hint: Use inv to get the inverse of a matrix.

(d) Without computing anything more, use your answer to (c) to determine if L is one-to-one.