Introduction à la chimie organique

I- Introduction à la chimie organique :

1- Définition :

Historiquement, la chimie organique est la chimie des composés de carbone issues des êtres vivants animal ou végétal, par opposition à la chimie minérale qui s'intéressait aux molécules issues du monde minéral (terre, eau, atmosphère).

Aujourd'hui, la chimie organique est la chimie des composés du carbone d'origine naturelle ou produits par synthèse.

Exemple:

Méthane CH_4 et le saccarose $C_{12}H_{22}O_{11}$ sont des composés organiques L'eau H_2O et l'ammoniac NH_3 sont des composés minéraux.

2- Ressources naturelles des composés organiques :

2-1- La photosynthèse:

Grace à la chlorophylle, les végétaux sont capables, en utilisant l'énergie solaire, de transformer le carbone minéral (venant de dioxyde de carbone ${\it CO}_2$ atmosphérique) en carbone organique (dans les glucoses) suivant le bilan :

$$6CO_{2(g)} + 6H_2O_{(l)} \xrightarrow{Rayons\ lumineux} C_6H_{12}O_{6(aq)} + 6O_{2(g)}$$

2-2- Synthèse biochimie:

Les cellules des êtres vivants fabriquent leurs propres substances organiques à partir des aliments : c'est la synthèse biochimique.

2-3- les hydrocarbures fossiles :

Le pétrole et le gaz naturel, sont formés aux fonds des mers, proviennent de la décomposition, d'organismes vivants (végétaux et animaux), lente qui a durée des millions d'années loin de l'aire et sous l'action des bactéries.

II- Les liaisons covalentes autour de l'atome carbone :

1- Le carbone tétravalent :

Le symbole du noyau de l'atome de carbone est ${}^{12}_{6}C$ Sa structure électronique est $(K)^2(L)^4$

La règle de l'octet permet de prévoir que l'atome de carbone établit (8-4=4) liaisons covalentes avec les atomes voisins. Donc l'atome de carbone est tétravalent.

2- Les liaisons possibles de l'atome de carbone :

Les quatre liaisons de l'atome de carbone peuvent être distribuées de quatre façons différentes dans l'espace.

2-1- Quatre liaisons covalentes simples :

Dans la molécule de méthane CH_4 , l'atome de carbone forme 4 liaisons covalentes simples avec 4 atomes d'hydrogène, la molécule à la forme d'un tétraèdre régulier.

2-2- Une liaison double et deux liaisons simples :

Dans la molécule de l'éthylène C_2H_2 l'atome de carbone forme une liaison covalente double avec l'autre atome de carbone et deux liaisons covalentes simples avec 2 atomes d'hydrogènes, la molécule forme un trigonale plane.

2-3- Une liaison triple et une liaison simple :

Dans la molécule de l'acétylène C_2H_2 chaque atome de carbone a une liaison triple avec l'autre atome de carbone et une liaison simple avec un atome d'hydrogène. La molécule est linière.

2-4- Deux liaisons covalentes doubles :

Dans la molécule de dioxyde de carbone ${\it CO}_2$ chaque atome de carbone forme une liaison covalente double avec un atome d'oxygène et une liaison covalente double avec l'autre atome de carbone. La molécule est linière.

III- L'importance de la chimie organique :

La chimie organique est considérée comme la base de l'économie mondiale, car c'est elle qui fournit la matière première à tous les autres domaines industriels. La chimie peut se diviser en trois secteurs industriels :

1- La chimie lourde :

La chimie qui produit des carburants et de la matière plastique.

2- La chimie fine:

La chimie qui produit les parfums et les médicaments utiles à la santé de l'être humain.

3- La chimie de spécialités :

Ses produits sont nombreux et divers on cite les produits cosmétiques, peintres, vernis, encre etc.....