1 Matrix

1.1 Permutation

Definition 1. A permutation

2 Group

Definition 2. A group (G, \cdot) is a set G equipped with a binary operation \cdot which follows four axioms, namely **closure**, **associativity**, **identity** and **invertibility**.

The four axioms are defined below:

closure For all a, b in G, the result of operation \cdot is still in G. This can be written in the form: $\forall a, b \in G, a \cdot b \in G$.

associativity $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c).$

identity $\exists e \in G$ such that, $\forall a \in G$, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique and is called the **identity element**.

invertibility For each $a \in G$, $\exists b \text{ in } G$, commonly denoted a^{-1} , such that $a \cdot b = b \cdot a = e$, where e is the identity element.