D. MENINGKATKAN KUALITAS CITRA-OPERASI SPASIAL

Judul

PRAKTEK D1- KONVOLUSI 2D

Deskripsi

Konvolusi 2D merupakan suatu proses untuk memperoleh suatu piksel berdasarkan pada nilai piksel itu sendiri dan ketetanggannya dengan melibatkan suatu matriks kernel yang mempresentasikan pembobotan (Kadir & Susanto, 2013).

Proses konvolusi matrik piksel citra dengan matriks kernel dapat diilustrasikan sebagai berikut ini (Munir, 2004):

$$f(i,j) = A p_1 + B p_2 + C p_3 + D p_4 + E p_5 + F p_6 + G p_7 + H p_8 + I p_9$$

Gambar 20. ||ustrasi Konvolusi

Berbeda dengan koordinat piksel citra yang dimulai (0,0) dari ujung kiri atas, koordinat kernel ditunjukkan pada Gambar di bawah ini

i-1, j-1	i-1, j	i-1, j+1
i, j-1	i,j	i, j+1
i+1, j-1	i+1,j	i+1, j+1

Gambar 21. Koordinat kernel

Estimasi waktu	20 menit
Prerequisite	Siapkan 5 buah citra yang telah diedit menggunakan tools editing image seperti Adobe Photoshop, atur sehingga citra tersebut memiiki noise seperti salt & papper, Spike dll

Alur Proses

```
Masukkan:
```

X: Citra yang akan dikonvolusi F: Kernel Konvolusi

Keluaran:

Out: citra hasil keluaran

- 1. Baca ukuran tinggi dan lebar citra
- 2. Baca ukuran tinggi dan lebar kernel
- 3. H=ukuran tinggi kernel /2
- 4. W=ukuran lebar kernel/2
- 5. For i: H+1 to ukuran_tinggi_citra-H

 For j:W+1 to ukuran_lebar_citra-W

 #lakukan konvolusi

 Sum=0

 For k: -H to H

 For I: -W to W

 a=X[i+k, j+1]

 w=F[H+k, W+1]

 sum=sum+(w*a)

 End for

 End For

 out[i, j] = sum
- Untuk memanggil fungsi konvolusi di GUI buatlah menu Filtering dibawah struktur menu Operasi Spasial dengan objectname 'actionFilter'
- 2. Inisialisasi menu filtering di main.python
- 3. Panggil fungsi konvolusi dengan cara import function
- 4. Buat prosedur menu filtering

End For

End For

```
def filteringClicked(self):
    ubah citra masukan menjadi grayscale
    kernel = array piksel kernel

img_out = fungsi_konvolusi(citra masukan, kernel)

plt.imshow(img_out, cmap='gray', interpolation='bicubic')
    plt.xticks([], plt.yticks([]))
    plt.show()
```

Tugas

- Implementasikan pseudo code diatas menjadi fungsi Konvolusi yang terpisan file python dan disimpan dalam satu direktori dengan project utama
- 2. Ujikan fungsi konvolusi diatas dengan memanggil fungsi tersebut dengan kernel sbb:
 - a) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 6 & 0 & -6 \\ 6 & 1 & -6 \\ 6 & 0 & 6 \end{bmatrix}$
- 3. Analisis hasil pengujian diatas
- 4. Analisis citra dari perubahan piksel citra sebelum dikonvolusi dan citra yang telah dikonvolusi!

Judul

PRAKTEK D2- IMAGE SMOOTHING USING MEAN FILTER

Deskripsi

Operasi pelembutan dilakukan dengan mengganti intensitas suatu *pixel* dengan rata-rata dari nilai pixel tersebut dengan nilai pixel-pixel tetangganya (Munir, 2004).

Contoh penapis rerata yang berukuran 3 x 3 dan 2 x 2 adalah seperti di bawah ini

(i)
$$\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & \bullet 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} \bullet 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$$

Gambar 22. Kernel mean filter

Estimasi waktu	15 menit
Prerequisite	 Asumsi telah membuat fungsi konvolusi Citra noise sebanyak minimal 5 buah citra
Tugas	 Buat prosedur untuk menu pelembutan citra menggunakan mean filter Analisis hasil program untuk kernel (i) dan kernel (ii) Jelaskan mengapa proses mean filter memberikan efek blurring? Dapat dijelaskan menggunakan studi kasus proses konvolusi untuk melembutkan citra pada ukuran citra 6 x 6 dengan derajat keabuan 8 bit! Analisis piksel citra berdasarkan aplikasi yang dibuat berdasarkan citra sebelum dikonvolusi dan yang setelah dikonvolusi!

Judul	PRAKTEK D3- IMAGE SMOOTHING USING GAUSSIAN FILTER		
Deskripsi	Gaussian Filter digunakan untuk proses penghalusan citra, pengaburar menghilangkan detail, menghilangkan noise (Munir, 2004).		
	$G_{(x,y)} = \frac{1}{2\pi\sigma^2} \exp(-(x^2 + y^2)/2\sigma^2)$ (8)		
	Dimana σ adalah standar deviasi dan distribusi biasanya diatur σ=1 X,y adalah posisi koordinat pada kernel		
Estimasi waktu	20 menit		
Prerequisite	1. Asumsi telah membuat fungsi konvolusi		
	2. Citra noise sebanyak minimal 5 buah citra		
Tugas	 Hitung bagaimana membentuk kernel Gaussian menggunakan Persamaan (8) 		
	Buat prosedur untuk menu pelembutan citra menggunakan Gaussian filter		
	Analisis hasil program untuk beberapa jenis gambar yang memiliki noise		
	4. Analisis piksel citra berdasarkan aplikasi yang dibuat berdasarkan citra sebelum dikonvolusi dan yang setelah dikonvolusi!		

PRAKTEK D4- IMAGE SHARPENING Judul

Deskripsi

Operasi penajaman citra bertujuan memperjelas tepi pada objek di dalam citra atau menghilangkan bagian citra yang lembut. Operasi penajaman dilakukan dengan melewatkan citra pada penapis lolos-tinggi (high-pass filter).

(i)
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
$$\Sigma = 0$$

(ii)
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
$$\sum = 1$$

(i)
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\Sigma = 1$$

$$\Sigma = 1$$

(iv)
$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
 (v)
$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
 (vi)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\sum_{x=0}^{\infty} -0$$

$$(v) \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

(vi)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\Sigma = 0$$

Gambar 23. Kernel low pass filter

Estimasi waktu

25 menit

Prerequisite

- 1. Asumsi telah membuat fungsi konvolusi
- 2. Citra noise sebanyak minimal 5 buah citra
- 3. Tambahkan menu Sharpening image di GUI

Tugas

- 1. Buat prosedur untuk menjalankan program penajaman citra
- 2. Analisis hasil citra dengan mencoba kernel-kernel citra pada Gambar.23
- 3. Analisis citra jika diberikan kernel filter Laplace berikut:

4. Analisis piksel citra berdasarkan aplikasi yang dibuat berdasarkan citra sebelum dikonvolusi dan yang setelah dikonvolusi!

Judul

PRAKTEK D5- MEDIAN FILTER

Deskripsi

Median filer berbeda dengan yang sudah dikerjakan pada praktek D1-D4 yan merupakan filterisasi secara linear, 3 modul praktek berikutnya merupakan proses filterisasi non linear.

Sebagai contoh, tinjau matriks citra dengan kelompok *pixel* (berbentuk kotak diarsir). Pixel yang sedang diproses adalah yang mempunyai intensitas 35. Langkah yang perlu dilakukan adalah mengurutkan *pixel-pixel* tersebut:

13	10	15	14	18
12	10	10	10	15
11	11	35	10	10
13	9	12	10	12
13	12	9	8	10

9 10 10 10 **10** 10 11 12 35 Median dari kelompok tersebut adalah 10 Hasil setelah median filter

13	10	15	14	18
12	10	10	10	15
11	11	35	10	10
13	9	12	10	12
13	12	9	8	10

13	10	15	14	18
12	10	10	10	15
11	11	10	10	10
13	9	12	10	12
13	12	9	8	10

⁽a) Pixel bernilai 35 terkena derau

(b) 35 diganti dengan median dari kelompok 3 × 3 pixel

Gambar 24. Proses median filter (sumber: (Putra, 2010))

Estimasi waktu 15 menit					
Prerequisite	 Asumsi telah membuat fungsi konvolusi Citra noise sebanyak minimal 5 buah citra 				
Alur Proses	 Konversi citra ke grayscale dapat menggunakan fungsi cv2.COLOR_BGR2GRAY img_out= copy image h=ukuran tinggi citra w=ukuran baris citra for i=3 to h-3 for j=3 to w-3 neighbors=[] for k=-3 to 4				
TUGAS	 Implementasikan pseudo code diatas dengan membuat prosedur 'Median Filter' Lakukan pengujian dan analisis hasil pengujian terhadap minimal 5 buah citra noise yang berbeda! Analisis piksel citra berdasarkan aplikasi yang dibuat berdasarkan citra sebelum dan yang setelah difilter Median! 				

Judul	PRAKTEK D6- MAX FILTERING
Deskripsi	Maximum filter adalah proses menggantikan nilai piksel dengan nilai piksel maksimum yang dipengaruhi piksel area tetangga.

Estimasi waktu	stimasi waktu 20 menit				
Prerequisite	 Citra noise sebanyak minimal 5 buah citra Tambahkan menu 'Max Filter' di GUI 				
Alur Proses	 Konversi citra ke grayscale dapat menggunakan fungsi cv2.COLOR_BGR2GRAY img_out= copy image h=ukuran tinggi citra w=ukuran baris citra for i=3 to h-3 neighbors=[] for k=-3 to 4 baca piksel pada (i + k, j + l) if a < min:				
Tugas	 Buat prosedur untuk menjalankan program Maximum Filtering Buatkan prosedur untuk menampilkan citra hasil minimum filtering Analisis citra berdasarkan piksel sebelum dan setelah dilakukan proses maximum filtering Analisis citra berdasarkan piksel sebelum dan setelah dilakukan proses minimum filtering 				