Sistemi non inerziali

Cosa sappiamo sui sistemi di riferimento inerziali

- 1. Se S e S' sono due qualsiasi sistemi inerziali, allora S' è in moto rettilineo uniforme rispetto a S (e viceversa)
- 2. In qualsiasi sistema inerziale vale la seconda legge di Newton

$$\vec{F} = m\vec{a}$$

3. Il pianeta Terra è, con buona approssimazione, un sistema di riferimento inerziale

Un sistema di riferimento è non inerziale se è in moto accelerato (rispetto a un sistema di riferimento inerziale)

N.B. Nei sistemi di riferimento non inerziali la legge $\vec{F} = m\vec{a}$ non è valida e sarà necessario apportare delle modifiche.

Sistema in moto rettilineo uniformemente accelerato

Supponiamo che S' abbia accelerazione costante \vec{a}_r rispetto a un sistema di riferimento inerziale S.

- 1. Se P è un punto materiale di massa m allora $\vec{F}=m\vec{a}$, dove \vec{F} è la forza risultante su P e \vec{a} la sua accelerazione nel sistema S
- 2. Nel sistema S' l'accelerazione di P risulta essere $\vec{a}' = \vec{a} \vec{a}_r$

Ne consegue la seconda legge di Newton "modificata" nel sistema S'

$$\vec{F} + \vec{F}_{app} = m\vec{a}'$$

- $ightharpoonup \vec{F}$ è la risultante delle "forze reali" agenti su P
- $ightharpoonup ec{F}_{\mathsf{app}} = -m ec{a}_r$ è la cosiddetta forza apparente
- $ightharpoonup \vec{a}'$ è l'accelerazione di P nel sistema non inerziale S'

Ascensori

Qual è la reazione vincolare \vec{R} esercitata dal pavimento di un'ascensore con accelerazione \vec{a}_r su un oggetto di massa m al suo interno?

$$\vec{F} = \vec{P} + \vec{R} \qquad \vec{F}_{\mathsf{app}} = -m\vec{a}_r \qquad \vec{a}' = 0$$

▶
$$\vec{F} = \vec{P} + \vec{R}$$
 $\vec{F}_{app} = -m\vec{a}_r$ $\vec{a}' = 0$
▶ $\vec{P} + \vec{R} + \vec{F}_{app} = 0$ $\rightarrow -mg + R \mp ma_r = 0$ $\rightarrow R = m(g \pm a_r)$