

<u>Help</u>

konainniaz 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u>

()

Problem 1

1/1 point (graded)

Suppose we use a basis expansion $\Phi(x)$ for the purposes of getting a quadratic decision boundary. For two-dimensional data, we can do this by expanding to five features. What decision boundary is represented by $w \cdot \Phi(x) + b = 0$ for w = (2, 1, 2, -1, 0) and b = -1?

- $2x_1^2 + x_2^2 + 2x_1 x_2 1 = 0$
- $2x_1^2 + x_1 + 2x_2^2 x_2 1 = 0$
- $2x_1 + x_2 + 2x_1^2 x_2^2 1 = 0$
- $2x_1 + x_1^2 + 2x_2 x_2^2 1 = 0$

Submit

Problem 2

1/1 point (graded)

True or false: When using a basis expansion of $x \in \mathbb{R}^6$ to get a quadratic boundary, the expanded feature vector $\Phi(x)$ has 36 pairwise features of the form x_1x_6 or x_2x_4 .

True

Submit

Problem 3

1/1 point (graded)

We want to use basis expansion of two-dimensional inputs $x = (x_1, x_2)$ to get a quadratic boundary. If the target boundary is given by the equation $(x_1 - 2)^2 + (x_2 - 1)^2 = 16$, what is the coefficient vector, w, and constant, b, such that the boundary has the form $w \cdot \Phi(x) + b = 0$?

 \bullet w = (-4 -2 1 1 0), b = -11

 $\bigcirc w = (-4 \ -2 \ 1 \ 1 \ 0), b = -16$

 $\bigcirc w = (1 \ 1 \ -4 \ -2 \ 5), b = -11$

 $\bigcirc w = (1 -2 1 -11 0), b = 16$

Submit
Problem 5
1/1 point (graded) For 12-dimensional x , what is the dimension of the basis expansion $\Phi(x)$ that we use for getting a quadratic boundary?
O 24
O 57
90
O 144
Submit
Problem 6
1/1 point (graded) Given a data set with n data points, each of d dimensions, what is the dimension of the vector, α , which is used in the dual form of the perceptron algorithm?
\bigcirc d
$\bigcirc d^2$
$\bigcap n^2$
✓
Submit
Problem 7
1/1 point (graded) Given vectors $v, w \in \mathbb{R}^d$, which of the following expressions can be used in place of $\Phi(v) \cdot \Phi(w)$, where Φ is the basis expansion used for a quadratic boundary?
[Math Processing Error]
$O 1 + (v \cdot w)^2$

 $(1, v_1, v_2, \dots, v_d) \cdot (1, w_1, w_2, \dots, w_d)$

✓
Submit
Problem 8
1/1 point (graded) Which vector are we solving for when using the dual form of the SVM?
$\bigcirc w$
α
O x
O none of the above
Submit
Problem 9 1/1 point (graded) Which expression(s) can be used to classify a new point with the kernel SVM? Select all that apply.
✓ \mbox{sign}(w\cdot \Phi (x)+b)
✓
Submit
Problem 10
1/1 point (graded) If you are finding a degree 4 decision boundary and if x \in \mathbb{R}^7 , then the term x_1x_3x_4x_7^2 is part of the expanded feature vector, \Phi (x).
O True
• False
Submit

Problem 11
1/1 point (graded) Which is/are the correct kernel function(s), $k(x,z)$, that is used to find a degree 3 decision boundary? (Here \Phi refers to the basis expansion for a degree-3 polynomial boundary.)
$ k(x,z) = x \cdot dot z $
$ k(x,z) = (1+x \cdot z)^3 $
$k(x,z) = \Phi(x) \Cdot \Phi(z)$
Submit
Problem 12
1/1 point (graded) Vectors that produce high values with the kernel function are more similar or less similar than vectors that produce low values?
More similar
O Less similar
O Not a measure of similarity
Submit
Problem 13
1/1 point (graded) True or false: Decision trees typically perform best when they are grown until the training error is 0\%.
O True
• False
Submit
Problem 14
1/1 point (graded) Overfitting the data with a decision tree will result in which of the following?

☐ Trainin	g error going up		
✓ Trainin	g error going down		
✓ Test er	rror going up		
☐ Test er	rror going down		
~			
Submit			
Problem '	led)		ala sisia n
rue or faise oundary is		ımps are used as weak classifiers for AdaBoost, the final	decision
True			
False			
~			
Submit			
	✓ Previous	Next >	

© All Rights Reserved

edX

About
Affiliates
edX for Business
Open edX

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>