► r is surjective => v.,..., vm is linearly independent

Suppose $V_{1,...}$, V_{m} is linearly dependent.

There exist $\chi_{1,...}$, χ_{m} , not all zero such that $0 = \alpha_{1}V_{1} + \cdots + \alpha_{m}V_{m}$

as a linear combination of $V_1, \dots, V_{i-1}, V_{i+1}, \dots V_m$

claim: $(0, ..., 1, ..., b) \in \mathbb{F}^m$, where the element is zero everywhere except 1 is in the i'th position, is not in range Γ .

S Proof:

supprose there is le such that