Számítógépes Hálózatok

6. Előadás: Adatkapcsolati réteg MAC alréteg

Csúszó-ablak protokollok 1/2

ALAPOK (ÁLTALÁNOS)

- Egy adott időpontban egyszerre több keret is átviteli állapotban lehet.
- \square A fogadó n keretnek megfelelő méretű puffert allokál.
- $\ \square$ A küldőnek legfeljebb n, azaz ablak méretnyi, nyugtázatlan keretet küldése engedélyezett.
- A keret sorozatbeli pozíciója adja a keret címkéjét. (sorozatszám)

ALAPOK (FOGADÓ)

- A keret nyugtázója tartalmazza a következőnek várt keret sorozatszámát.
 - kumulatív nyugta Olyan nyugta, amely több keretet nyugtáz egyszerre. Például, ha a 2,3 és 4 kereteket is fogadnánk, akkor a nyugtát 5 sorszám tartalommal küldenénk, amely nyugtázza mind a három keretet.
- A hibás kereteket el kell dobni.
- A nem megengedett sorozatszámmal érkező kereteket el kell dobni.

Csúszó-ablak protokollok 2/2

JELLEMZŐK (ÁLTALÁNOS)

- A küldő nyilvántartja a küldhető sorozatszámok halmazát. (adási ablak)
- A fogadó nyilvántartja a fogadható sorozatszámok halmazát. (vételi ablak)
- A sorozatszámok halmaza minden esetben véges.
 - K bites mező esetén: $[0...2^K 1]$.
- A adási ablak minden küldéssel szűkül, illetve nő egy nyugta érkezésével.

JELLEMZŐK (GYAKORLATI ALKALMAZÁS ESETÉN)

- gyakorlatban kétirányú adatfolyamot kell kezelni (*duplex csatorn*a)
 - két különböző szimplex csatorna használata (két áramkör használata)
 - egy csatorna használata (egy áramkör használata)
 - piggybacking módszer
 a kimenő nyugtákat késleltetjük, hogy rá
 tudjuk akasztani a következő kimenő adatkeretre (ack mező
 használata);

Csúszó ablak

A sliding window with a 2-bit sequence, of size 1

Pipelining

- Eddig feltételeztük, hogy a keret vevőhöz való megérkezéséhez és a nyugta visszaérkezéséhez együttesen szükséges idő elhanyagolható.
 - a nagy RTT a sávszélesség kihasználtságra hatással lehet
 - □ Ötlet: egyszerre több keret küldése
 - Ha az adatsebesség és az RTT szorzata nagy, akkor érdemes nagyméretű adási ablakot használni. (pipelining)
- Mi van ha egy hosszú folyam közepén történik egy keret hiba?
 - 1. "visszalépés N-nel", avagy angolul go-back-n
 - 2. "szelektív ismétlés", avagy angolul selective-repeat

Go-Back-N

- A sliding window protocol where
 - the receiver's window size is fixed to 1,
 - □ while the sender has window size > 0.

- After receiving a damaged frame
 - Receiver discards all subsequent frames
 - Sender retransmits the damaged frame and all its successors after the times out

Go-Back-N

Selective Repeat

- \square Receiver's window size is n (n > 1)
 - At most n frames can be buffered
- Receiver stores all the correct frames following the bad one
- The sender retransmits only the bad frame not all its successors

Selective Repeat

Ethernet keret

802.3 Ethernet frame structure

Preamble	Start of frame delimiter	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interframe gap
7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	42 ^[note 2] _1500 octets	4 octets	12 octets
64–1522 octets								
72–1530 octets								
84–1542 octets								

Közeg hozzáférés vezérlése Media Access Control (MAC)

Mi az a közeg hozzáférés?

- Ethernet és a Wifi is többszörös hozzáférést biztosító technológiák
 - Az átviteli közegen több résztvevő osztozik
 - Adatszórás (broadcasting)
 - Az egyidejű átvitel ütközést okot
 - Lényegében meghiúsítja az átvitelt
- Követelmények a Media Access Control (MAC) protokolljaival szemben
 - Szabályok a közeg megosztására
 - Stratégiák az ütközések detektálásához, elkerüléséhez és feloldásához

- Eddigi tárgyalásaink során pont-pont összeköttetést feltételeztünk.
- Most az adatszóró csatornát (angolul broadcast channel) használó hálózatok tárgykörével foglalkozunk majd.
 - Kulcskérdés: Melyik állomás kapja a csatornahasználat jogát?
- A csatorna kiosztás történhet:
 - statikus módon (FDM, TDM)
 - 2. dinamikus módon
 - a) verseny vagy ütközés alapú protokollok (ALOHA, CSMA, CSMA/CD)
 - b) verseny-mentes protokollok (bittérkép-alapú protokollok, bináris visszaszámlálás)
 - c) korlátozott verseny protokollok (adaptív fa protokollok)

Frekvenciaosztásos nyalábolás

- N darab felhasználót feltételezünk, a sávszélet N egyenlő méretű sávra osztják, és minden egyes sávhoz hozzárendelnek egy felhasználót.
- Következésképpen az állomások nem fogják egymást zavarni.
- Előnyös a használata, ha fix számú felhasználó van és a felhasználók nagy forgalmi igényt támasztanak.
- Löketszerű forgalom esetén használata problémás.

Időosztásos nyalábolás

- N darab felhasználót feltételezünk, az időegységet N egyenlő méretű időrésre úgynevezett slot-ra osztják, és minden egyes réshez hozzárendelnek egy felhasználót.
- Löketszerű forgalom esetén használata nem hatékony.

Dinamikus csatornakiosztás

1. Állomás modell

- N terminál/állomás
- Annak a valószínűsége, hogy Δt idő alatt csomag érkezik λΔt, ahol λ az érkezési folyam rátája.

2. Egyetlen csatorna feltételezés

- Minden állomás egyenrangú.
- Minden kommunikáció egyazon csatornán zajlik.
- Minden állomás tud ezen küldeni és fogadni csomagot.

3. Ütközés feltételezés

- Ha két keret egy időben kerül átvitelre, akkor átlapolódnak, és az eredményül kapott jel értelmezhetetlenné válik.
- Ezt nevezzük ütközésnek.
- 4. Folytonos időmodell VS diszkrét időmodell
- 5. Vivőjel értékelés VS nincs vivőjel érzékelés

Dinamikus csatornakiosztás

Használt időmodell

Kétféle időmodellt különböztetünk meg:

- Folytonos Mindegyik állomás tetszőleges időpontban megkezdheti a küldésre kész keretének sugárzását.
- b) **Diszkrét** Az időt diszkrét résekre osztjuk. Keret továbbítás csak időrés elején lehetséges. Az időrés lehet üres, sikeres vagy ütközéses.

Vivőjel érzékelési képesség

Az egyes állomások vagy rendelkeznek ezzel a tulajdonsággal vagy nem.

- a) Ha **nincs**, akkor az állomások nem tudják megvizsgálni a közös csatorna állapotát, ezért egyszerűen elkezdenek küldeni, ha van rá lehetőségük.
- b) Ha **van**, akkor állomások meg tudják vizsgálni a közös csatorna állapotát a küldés előtt. A csatorna lehet: foglalt vagy szabad. Ha a foglalt a csatorna, akkor nem próbálják használni az állomások, amíg fel nem szabadul.

Megjegyzés: Ez egy egyszerűsített modell!

Átvitel és terhelés

□ Terhelés (G)

- A protokoll által kezelendő csomagok száma egy időegység alatt (beérkező kérések)
- □ G>1: túlterhelés
- A csatorna egy kérést tud elvezetni

□ Ideális esetben

- Ha G<1, S=G</p>
- Ha G≥1, S=1
- Ahol egy csomag kiküldése egy időegységet vesz igénybe.

(Tiszta) ALOHA

- Az algoritmust a 70-es években a Uni. of Hawaii fejlesztette
 - Ha van elküldendő adat, akkor elküldi
 - Alacsony költségű, nagyon egyszerű megoldás

- Topológia: broadcast rádió több állomással
- □ Protokoll:
 - □ Az állomások azonnal küldenek
 - A fogadók minden csomagot nyugtáznak
 - □ Nincs nyugta = ütközés, véletlen ideig vár, majd újraküld
 - Egyszerű, de radikális megoldás
 - Korábbi megoldások, mind felosztották a csatornát
 - TDMA, FDMA, etc.
 - Kevés küldő esetére készült

Teljesítmény elemzés -Poisson Folyam

- A "véletlen érkezések" egyik ünnepelt modellje a sorban-állás elméletben a Poisson folyam.
- A modell feltételezései:
 - Egy érkezés valószínűsége egy rövid Δt intervallum alatt arányos az intervallum hosszával és nem függ az intervallum kezdetétől (ezt nevezzük memória nélküli tulajdonságnak)
 - Annak a valószínűsége, hogy több érkezés történik egy rövid Δt intervallum alatt közelít a nullához.

Teljesítmény elemzés -Poisson eloszlás

Annak a valószínűsége, hogy *k* érkezés történik egy *t* hosszú intervallum során:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

ahol λ az érkezési ráta. Azaz ez egy egy-paraméteres modell, ahol csak λ -át kell ismernünk.

Poisson Eloszlás példák

- □ Jelölés:
 - \square $T_f = \text{keret-idő}$ (feldolgozási, átviteli és propagációs)
 - S: A sikeres keret átvitelek átlagos száma T_f idő alatt; (throughput)
 - G: T_f idő alatti összes átviteli kísérletek átlagos száma
 - D: Egy keret küldésre kész állapota és a sikeres átvitele között eltelt átlagos idő
- □ Feltételezéseink
 - Minden keret konstans/azonos méretű
 - A csatorna zajmentes, hibák csak ütközések miatt történnek
 - A keretek nem kerülnek sorokba az egyedi állomásokon
 - Egy csatorna egy Poisson folyamként viselkedik

Mivel S jelöli a "jó" átviteleket egy keret idő alatt és G jelöli az összes átviteli kísérletet egy keret idő alatt, így a következő összefüggést írhatjuk:

$$S = S(G) = G \times (A , jó" átvitelek valószínűsége)$$

A sebezhetőségi idő egy keret sikeres átviteléhez: 2T_f

 Azaz a "jó" átvitel valószínűsége megegyezik annak a valószínűségével, hogy a sebezhetőségi idő alatt nincs beérkező keret.

Sebezhetőségi időintervallum a kékkel jelölt kerethez

Tudjuk, hogy:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Azaz most $t = 2T_t$ és k = 0 (t legyen a seb. Idő, k=0, hogy ne érkezzen új keret a kék küldése során)

$$P_0(2T_f) = \frac{(\lambda \cdot 2T_f)^0 e^{-\lambda 2T_f}}{0!} = e^{-2G}$$

$$P_0(2T_f)=rac{(\lambda\cdot 2T_f)^0e^{-\lambda 2T_f}}{0!}=e^{-2G}$$
 becasue $\lambda=rac{G}{T_f}$. Thus, $S=G\cdot e^{-2G}$

S(G) = Ge^{-2G} függvényt G szerint deriválva és az eredményt nullának tekintve az egyenlet megoldásával megkapjuk a maximális sikeres átvitelhez tartozó G értéket:

$$G = 0.5$$
,

melyre S(G) = 1/2e = 0.18. Azaz a maximális throughput csak 18%-a a teljes kapacitásnak!!!

ALOHA vs TDMA

- A csatornát azonos időrésekre bontjuk, melyek hossza pont egy keret átviteléhez szükséges idő.
- Átvitel csak az időrések határán lehetséges

- Algoritmus:
 - Amikor egy új A keret küldésre kész:
 - Az A keret kiküldésre kerül a (következő) időrés-határon

A réselt ALOHA vizsgálata

- A sebezhetőségi idő a felére csökken!!!
- Tudjuk, hogy:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Ez esetben $t = T_f$ és továbbra is k = 0, amiből kapjuk, hogy:

$$P_0(T_f) = \frac{(\lambda \cdot T_f)^0 e^{-\lambda T_f}}{0!} = e^{-G}$$
 because $\lambda = \frac{G}{T_f}$. Thus, $S = G \cdot e^{-G}$

Réselt ALOHA

Adatszóró (Broadcast) Ethernet

33

Eredetileg az Ethernet egy adatszóró technológia volt

Vivőjel érzékelés Carrier Sense Multiple Access (CSMA)

- További feltételezés
 - Minden állomás képes belehallgatni a csatornába és így el tudja dönteni, hogy azt más állomás használja-e átvitelre

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

- A terjedési késleltetés nagymértékben befolyásolhatja a teljesítményét.
- Jobb teljesítményt mutat, mint az ALOHA protokollok.

Nem-perzisztens CSMA protokoll

36

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll
- Mohóság kerülése

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

Jobb teljesítményt mutat, mint az 1-perzisztens CSMA protokoll. (intuitív)

37

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Diszkrét időmodellt használ a protokoll

Algoritmus

- Adás kész állapotban az állomás belehallgat a csatornába:
 - a) Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust.
 - b) Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

CSMA áttekintés

Nem-perzisztens

CSMA perzisztencia

1-perzisztens

p-perzisztens

Konstans v. változó
Késleltetés

Foglalt cogtorna

Nem-perzisztens:

Átvitel ha szabad Különben: késleltetés, újrapróbáljuk

Foglalt csatorna Idő

Kész

1-perzisztens:

Átvitel amint a csatorna szabad Ütközés esetén visszalépés, majd újrapróbáljuk p-perzisztens:

Átvitel p valószínűséggel, ha a csatorna szabad Különben: várunk 1 időegységet és újrapróbáljuk

CSMA és ALOHA protokollok összehasonlítása

CSMA/CD - CSMA ütközés detektálással (CD = Collision Detection)

- Ütközés érzékelés esetén meg lehessen szakítani az adást.
 ("Collision Detection")
 - Minden állomás küldés közben megfigyeli a csatornát,
 - ha ütközést tapasztal, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét.

- Mikor lehet egy állomás biztos abban, hogy megszerezte magának a csatornát?
 - Az ütközés detektálás minimális ideje az az idő, ami egy jelnek a két legtávolabbi állomás közötti átviteléhez szükséges.

CSMA/CD

 Egy állomás megszerezte a csatornát, ha minden más állomás érzékeli az átvitelét.

 Az ütközés detektálás működéséhez szükséges a keretek hosszára egy alsó korlátot adnunk

Ethernet a CSMA/CD-t használja

- Carrier sense multiple access with collision detection
- Alapvetés: a közeg lehetőséget ad a csatornába hallgatásra
- Algoritmus
 - Használjuk valamely CSMA variánst
 - A keret kiküldése után, figyeljük a közeget, hogy történik-e ütközés
 - 3. Ha nem volt ütközés, akkor a keretet leszállítottuk
 - 4. Ha ütközés történt, akkor azonnal megszakítjuk a küldést
 - Miért is folytatnánk hisz a keret már sérült...
 - 5. Alkalmazzuk az bináris exponenciális hátralék módszert az újraküldés során (binary exponential backoff)

CSMA/CD Ütközések

43

- Ütközések történhetnek
- Az ütközéseket gyorsan észleljük és felfüggesztjük az átvitelt
- Mi a szerepe a távolságnak, propagációs időnek és a keret méretének?

Binary Exponential Backoff – Bináris exponenciális hátralék

- 44
- Ütközés érzékelésekor a küldő egy ún. "jam" jelet küld
 - Minden állomás tudomást szerezzen az ütközésről
- Binary exponential backoff működése:
 - □ Válasszunk egy $k \in [0, 2^n 1]$ egyenletes eloszlás szerint, ahol n = az ütközések száma
 - □ Várjunk k időegységet (keretidőt) az újraküldésig
 - n felső határa 10, 16 sikertelen próbálkozás után pedig eldobjuk a keretet
- A hátralék idő versengési résekre van osztva

Binary Exponential Backoff

Tekintsünk két állomást, melyek üzenetei ütköztek

- Első ütközés után: válasszunk egyet a két időrés közül
 - A siker esélye az első ütközés után: 50%
 - Átlagos várakozási idő: 1,5 időrés
- Második ütközés után: válasszunk egyet a négy rés közül
 - □ Sikeres átvitel esélye ekkor: 75%
 - Átlagos várakozási idő: 2,5 rés
- Általában az m. ütközés után:
 - A sikeres átvitel esélye: 1-2^{-m}
 - Average delay (in slots): $0.5 + 2^{(m-1)}$

- Miért 64 bájt a minimális keretméret?
 - Az állomásoknak elég időre van szüksége az ütközés detektálásához
- Mi a kapcsolat a keretméret és a kábelhossz között?
- t időpont: Az A állomás megkezdi az átvitelt
- t + d időpont: A B állomás is megkezdi az átvitelt
- 3. t + 2*d időpont: A érzékeli az ütközést

Alapötlet: Az A állomásnak 2*d ideig kell küldenie!

CSMA/CD

CSMA/CD három állapota:
 versengés, átvitel és szabad.

 Ahhoz, hogy minden ütközést észleljünk szükséges:

$$T_f \ge 2T_{pg}$$

- ahol T_f egy keret elküldéséhez szükséges idő
- és T_{pg} a propagációs késés A
 és B állomások között

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d (s)
 - 10 Mbps Ethernet
 - Pr
 A keretméret és a kábelhossz változik
 Aza a gyorsabb szabványokkal...
 - Min_keret = N
- □ Azaz a kábel össx
 - Távolság = min_ke

 st 2 st távolság (m) / fényseb. (m/s)

sség

- **....**
- * fénysebesség /(2 * ráta)

 $(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d(s)
 - ... de mi az a d? propagációs késés, melyet a fénysebesség ismeretében ki tudunk számolni
 - Propagációs késés (d) = távolság (m) / fénysebesség (m/s)
 - Azaz:
 - □ Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s)
- Azaz a kábel összhossza
 - Távolság = min_keret * fénysebesség /(2 * ráta)

$$(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$$

Kábelhossz példa

```
min_keret*fénysebesség/(2*ráta) = max_kábelhossz
(64B*8)*(2*108mps)/(2*10Mbps) = 5120 méter
```

- Mi a maximális kábelhossz, ha a minimális keretméret 1024 bájtra változik?
 - 81,9 kilométer
- Mi a maximális kábelhossz, ha a ráta 1 Gbps-ra változik?
 - 51 méter
- Mi történik, ha mindkettő változik egyszerre?
 - 819 méter

- Maximum Transmission Unit (MTU): 1500 bájt
- □ Pro:
 - Hosszú csomagokban levő biz hibák jelentős javítási költséget okozhatnak (pl. túl sok adatot kell újraküldeni)
- □ Kontra:
 - Több bájtot vesztegetünk el a fejlécekben
 - Összességében nagyobb csomag feldolgozási idő
- Adatközpontokban Jumbo keretek
 - 9000 bájtos keretek

MOTIVÁCIÓ

- az ütközések hátrányosan hatnak a rendszer teljesítményére
 - hosszú kábel, rövid keret
- a CSMA/CD nem mindenhol alkalmazható

FELTÉTELEZÉSEK

- N állomás van.
- Az állomások 0-ától N-ig egyértelműen sorszámozva vannak.
- Réselt időmodellt feltételezünk.

Alapvető bittérkép protokoll - Egy helyfoglalásos megoldás

alapvető bittérkép eljárás

Működés

- Az ütköztetési periódus N időrés
- Ha az i-edik állomás küldeni szeretne, akkor a i-edik versengési időrésben egy 1-es bit elküldésével jelezheti. (adatszórás)
- A versengési időszak végére minden állomás ismeri a küldőket. A küldés a sorszámok szerinti sorrendben történik meg.

Bináris visszaszámlálás protokoll 1/2

 alapvető bittérkép eljárás hátrány, hogy az állomások számának növekedésével a versengési periódus hossza is nő

Működés

- Minden állomás azonos hosszú bináris azonosítóval rendelkezik.
- A forgalmazni kívánó állomás elkezdi a bináris címét bitenként elküldeni a legnagyobb helyi értékű bittel kezdve. Az azonos pozíciójú bitek logikai VAGY kapcsolatba lépnek ütközés esetén. Ha az állomás nullát küld, de egyet hall vissza, akkor feladja a küldési szándékát, mert van nála nagyobb azonosítóval rendelkező küldő.

```
A HOSZT (0011) 0 - - - -

B HOSZT (0110) 0 - - - -

1 0 1 0

C HOSZT (1010) 1 0 1 1

D HOSZT (1011) 1 0 1 1

D kerete
```

Bináris visszaszámlálás protokoll 2/2

 Következmény: a magasabb címmel rendelkező állomásoknak a prioritásuk is magasabb az alacsonyabb című állomásokénál

MOK ÉS WARD MÓDOSÍTÁSA

- Virtuális állomás címek használata.
- Minden sikeres átvitel után ciklikusan permutáljuk az állomások címét.

	Α	В	С	D	E	F	G	Н
Kezdeti állapot	100	010	111	101	001	000	011	110

Idő

Korlátozott versenyes protokollok

56

- □ Cél: Ötvözni a versenyhelyzetes és ütközésmentes protokollok jó tulajdonságait.
- korlátozott versenyes protokoll Olyan protokoll, amely kis terhelés esetén versenyhelyzetes technikát használ a kis késleltetés érdekében, illetve nagy terhelés mellett ütközésmentes technikát alkalmaz a csatorna jó kihasználása érdekében.

SZIMMETRIKUS PROTOKOLLOK

Adott résben k állomás verseng, minden állomás p valószínűséggel adhat. A csatorna megszerzésének valószínűsége: $kp(1-p)^{k-1}$.

$$P(\text{siker optimális } p \text{ mellett}) = \left(\frac{k-1}{k}\right)^{k-1}$$

 Azaz a csatorna megszerzésének esélyeit a versenyhelyzetek számának csökkentésével érhetjük el.

Adaptív fabejárási protokoll 1/2

Történeti háttér

- 1943 Dorfman a katonák szifiliszes fertőzöttségét vizsgálta.
- 1979 Capetanakis bináris fa reprezentáció az algoritmus számítógépes változatával.

Működés

- 0-adik időrésben mindenki küldhet.
 - Ha ütközés történik, akkor megkezdődik a fa mélységi bejárása.
- A rések a fa egyes csomópontjaihoz vannak rendelve.
- Ütközéskor rekurzívan az adott csomópont bal illetve jobb gyerekcsomópontjánál folytatódik a keresés.
- Ha egy bitrés kihasználatlan marad, vagy pontosan egy állomás küld, akkor a szóban forgó csomópont keresése befejeződik.

Következmény

Minél nagyobb a terhelés, annál mélyebben érdemes kezdeni a keresést.

Adaptív fabejárás példa

Az adatkapcsolati réteg "legtetején"...

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- □ Bridging, avagy hidak
 - Hogyan kapcsoljunk össze LANokat?
- □ Funkciók:
 - Keretek forgalomirányítása a LANok között
- □ Kihívások:
 - Plug-and-play, önmagát konfiguráló
 - Esetleges hurkok feloldása

Visszatekintés

61

Az Ethernet eredetileg adatszóró technológia volt

□ Több állomás = több ütközés = káosz

LAN-ok összekapcsolása

- Kérdés: lehetne-e az egész Internet egy bridge-ekkel összekötött tartomány?
- Hátrány: a bridge-ek sokkal komplexebb eszközök a hub-oknál
 - Fizikai réteg VS Adatkapcsolati réteg
 - Memória pufferek, csomag feldolgozó hardver és routing (útválasztó) táblák szükségesek

Bridge-ek (magyarul: hidak)

- Az Ethernet switch eredeti formája
- □ Több IEEE 802 LAN-t kapcsol össze a 2. rétegben
- Célok
 - □ Ütközési tartományok számának csökkentése
 - Teljes átlátszóság
 - "Plug-and-play," önmagát konfiguráló
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

Az Ethernet switch eredeti formája

- 1. Keretek továbbítása
- 2. (MAC) címek tanulása
- 3. Feszítőfa (Spanning Tree) Algoritmus (a hurkok kezelésére)
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

Keret Továbbító Táblák

Minden bridge karbantart egy továbbító táblát (forwarding table)

Címek tanulása

- 66
 - Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
 - □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portoko kereteknek --- képezzünk ebből egy tábláza

Töröljük a régi bejegyzéseket

			MAC cím	Port	Kor	
00 00 00 00 00 4			00:00:00:00:AA	1	0 minutes	
00:00:00:00:A	4		00:00:00:00:00:BB	2	0 minutes	
	Port 1	Port 2				

00:00:00:00:00:BB

Címek tanulása

67

- Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
- □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portokon beérkező kereteknek --- képezzünk ebből egy táblázatot

		MAC cím	Port	Kor
00:00:00:00:AA		00:00:00:00:AA	1	0 minutes
		00:00:00:00:00:BB	2	0 minutes
Port 1	 Port 2	00:00:00:	OO:OO:BB	

- <Src=AA, Dest=DD>
- Ez megy a végtelenségig
 - Hogyan állítható meg?
- Távolítsuk el a hurkokat a topológiából
 - A kábelek kihúzása nélkül
- 802.1 (LAN) definiál egy algoritmust feszítőfa fépítéséhez és karbantartásához, mely mentén lehetséges a keretek továbbítása

- □ Egy gráf éleinek részhalmaza, melyre teljesül:
 - Lefed minden csomópontot
- Nem tartalmaz köröket Továbbá a struktúra egy fa-gráf 4

A 802.1 feszítőfa algoritmusa

70

- 1. Az egyik bride-et megválasztjuk a fa gyökerének
- 2. Minden bridge megkeresi a legrövidebb utat a gyökérhez
- 3. Ezen utak unióját véve megkapjuk a feszítőfát
- A fa építése során a bridge-ek egymás között konfigurációs üzeneteket (Configuration Bridge Protocol Data Units [BPDUs]) cserélnek
 - A gyökér elem megválasztásához
 - A legrövidebb utak meghatározásához
 - A gyökérhez legközelebbi szomszéd (next hop) állomás és a hozzá tartozó port azonosításához
 - A feszítőfához tartozó portok kiválasztása

Gyökér meghatározása

- Kezdetben minden állomás feltételezi magáról, hogy gyökér
- Bridge-ek minden irányba szétküldik a BPDU üzeneteiket:

Bridge ID

Gyökér ID Út költség a gyökérhez

- A fogadott BPDU üzenet alapján, minden switch választ:
 - Egy új gyökér elemet (legkisebb ismert Gyökér ID alapján)
 - Egy új gyökér portot (melyik interfész megy a gyökér irányába)
 - Egy új kijelölt bridge-et (a következő állomás a gyökérhez vezető úton)

Feszítőfa építése

- A bridge-ek lehetővé teszik hogy növeljük a LAN-ok kapacitását
 - Csökkentik a sikeres átvitelhez szükséges elküldendő csomagok számát
 - Kezeli a hurkokat
- A switch-ek a bridge-ek speciális esetei
 - Minden port egyetlen egy hoszthoz kapcsolódik
 - Lehet egy kliens terminál
 - vagy akár egy másik switch
 - Full-duplex link-ek
 - Egyszerűsített hardver: nincs szükség CSMA/CD-re!
 - Különböző sebességű/rátájú portok is lehetségesek

Kapcsoljuk össze az Internetet

- □ Switch-ek képességei:
 - MAC cím alapú útvonalválasztás a hálózatban
 - Automatikusan megtanulja az utakat egy új állomáshoz
 - Feloldja a hurkokat
- Lehetne a teljes internet egy ily módon összekötött tartomány?

NEM

Korlátok

75

- Nem hatékony
 - Elárasztás ismeretlen állomások megtalálásához
- □ Gyenge teljesítmény
 - A feszítőfa nem foglalkozik a terhelés elosztással
 - Hot spots
- Nagyon gyenge skálázhatóság
 - Minden switch-nek az Internet összes MAC címét ismerni kellene a továbbító táblájában!
- Az IP fogja ezt a problémát megoldani...

Köszönöm a figyelmet!