Colegio Universitario IESSiglo 21	
SEGUNDA INSTANCIA EVALUATIVA	
Materia: Algebra Lineal	Docente: Augusto Chaves
Modalidad: Presencial	Fecha: 28/06/2021
Alumno: Lautaro Santos Da Silveira	Carrera: Inteligencia Artificial
Dni: 43 879 787	Cuatrimestre: Segundo / Turno: Noche

Nota

Objetivos:

- 1. Reconocer los conceptos clave relativos a la diagonalización de matrices.
- 2. Resolver con técnicas de 'algebra lineal las situaciones problemáticas propuestas.

Criterio de Evaluación: Se evaluará la interpretación y claridad con la que se expresan los conceptos y metodología aplicada en la resolución de la situación planteada, como así también los conceptos teóricos.

Modalidad de Evaluación: Desarrollo teórico-práctico de las consignas planteadas. Sean a, b, c, d los cuatro primeros dígitos no nulos (leyendo de izquierda a derecha) de tu DNI. Por ejemplo, si el DNI es 95087511, entonces a = 9, b = 5, c = 8, d = 7. Y forma los dos números ab y cd. En nuestro caso ab = 95 cd = 87.

- 1. Dos ciudades de nombres Villa la Bestia y Villa el final del mundo, poseen un flujo vehicular que sigue el siguiente patrón
 - El ab% de los autos de la ciudad Villa la Bestia se trasladan a la ciudad Villa el final,
 - \blacksquare El cd% de los autos de la ciudad Villa el final se trasladan a la ciudad Villa la Bestia.

Suponiendo que inicialmente hay 15000 autos en la ciudad Villa la Bestia y 25000 autos en la ciudad Villa el final, hallar:

- a) 10 puntos. La matriz A de transición de estados.
- *b*) 10 puntos. El polinomio característico $P(\lambda)$ y los valores característicos y los vectores característicos de la matriz A.
- c) 10 puntos. La matriz P formada por los vectores característicos de A y la matriz P^{-1} .
- *d*) 10 puntos. Encontrar la matriz diagonal D tal que $A = PDP^{-1}$ y verificar esta igualdad.
- *e*) 10 puntos. Mostrar una expresión explicita y simple de las potencias de la matriz *A* usando el resultado anterior.
- *f*) 10 puntos. Calcular explícitamente cuantos autos habrá en cada ciudad a él cualquier periodo.
- 2. 20 puntos. Explicar con sus propias palabras y en términos de los que vimos en los capítulos de transformaciones lineales y matrices el significado de las matrices *P* y *D* del ejercicio 1 en relación a la matriz *A* del mismo ejercicio.
- 3. 20 puntos. Considere la forma bilineal $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) = x_1 y_1 + 5x_1 y_2 - x_2 y_2$$

Decidir si f es simétrica o antisimétrica. En caso contrario que no sea ninguna de las anteriores expresarla como una suma de una forma bilineal simétrica y una forma bilineal antisimétrica.

RESPUESTAS:

1) HOJA 1:

HOJA 2:

Hoja 3:

2)

La Matriz D está compuesta por los valores característicos (λ) que se consiguen con el polinomio característico y se ubican en forma diagonal, por lo que D es una matriz Diagonal.

La Matriz P está compuesta por los vectores característicos generadores (E_{λ}) de λ_1 y λ_2 respectivamente.

La función de P es trasladar un vector a otro lenguaje de vectores, y la función de D es la de trasladar el vector hallado con P a otra base, por ejemplo: si queremos pasar de como la matriz A es cuadrada y el sistema conmuta,

entonces se puede decir que $A = P*D*P^{-1}$, al decir esto estoy haciendo el siguiente camino:

y al decir P-1 digo que hará el camino inverso que P

3) F([x1] [y1]) = X1/1+5. X1. y2 - X2/2 B={e1=[0] e2=[1]}
f(e,e)=1.1+5.1.0-0.0=1 f(e,e)=0.1+5.0.0-1.0=0
S(e1,e2)=1.0+5.1.1-0.1=5 S(e2,e2)=0.0+5.0.1-1.1=-1
A= [0 -1] A= [5 -1]
Como A # At, no es simétrica y como - A # At, no es
esimétice, por ende:
F(X1) [1] - [X1 X2] - A+ AT [V1] + [X1 X2] - A-AT [V1]
F [X] [V] [X, X2] [1 25] [V2] + [X, X2] [2,5 8] . [V2]