Richiami sui metodi generali di formulazione delle equazioni di una rete elettrica

- Matrice incidenza
- Relazioni costitutive
- Metodo del Tableau
- Metodo ai nodi modificato
- Metodo a due grafi

Esempio

tensioni di ramo

correnti di ramo

tensioni di nodo

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_b \end{bmatrix}$$

$$\mathbf{i} = egin{bmatrix} i_1 \ i_2 \ \vdots \ i_b \end{bmatrix}$$

$$\mathbf{v}_{n} = \begin{bmatrix} v_{10} \\ v_{20} \\ \vdots \\ v_{n,0} \end{bmatrix}$$

$$KCL \rightarrow \mathbf{Ai} = \mathbf{0}$$

$$KVL \rightarrow \mathbf{A}^t \mathbf{v}_n = \mathbf{v}$$

Nell'esempio precedente:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_{10} \\ v_{20} \\ v_{30} \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} \longrightarrow \begin{cases} -v_{10} = v_1 \\ -v_{20} = v_2 \\ -v_{30} = v_3 \\ v_{10} - v_{20} = v_4 \\ v_{20} - v_{30} = v_5 \\ v_{10} - v_{30} = v_6 \end{cases}$$

sostituendo le prime 3 eq. nelle altre:

$$\begin{cases}
-v_1 + v_2 = v_4 \\
-v_2 + v_3 = v_5 \\
-v_1 + v_3 = v_6
\end{cases} (b-n \ eq., \ n=num.nodiind.)$$

Proprietà

$$Rank(\mathbf{A}) = n$$

$$\mathbf{A}^t \mathbf{v}_n = \mathbf{v} \qquad \rightarrow \qquad \mathbf{v}^t = \mathbf{v}_n^t \mathbf{A} \qquad \rightarrow \qquad \mathbf{v}^t \mathbf{i} = \mathbf{v}_n^t \mathbf{A} \mathbf{i}$$

$$\mathbf{v}^t \mathbf{i} = \mathbf{0}$$

Teorema di Tellegen

in regime sinusoidale:

$$\mathbf{V}^{t}\mathbf{I}^{*}=\mathbf{0}$$

 $\mathbf{V}^{t}\mathbf{I}^{*} = \mathbf{0}$ Teorema di Boucherot

Relazioni Costitutive

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{K}_2 \end{bmatrix} \mathbf{V}_b + \begin{bmatrix} \mathbf{K}_1 \\ \mathbf{Z}_2 \end{bmatrix} \mathbf{I}_b = \begin{bmatrix} \mathbf{W}_{b_1} \\ \mathbf{W}_{b_2} \end{bmatrix}$$

$$\mathbf{Y}_b \mathbf{V}_b + \mathbf{Z}_b \mathbf{I}_b = \mathbf{W}_b$$

Element	Constitutive Equation	Value of Y_b	Value of Z_b	Value of W_b
Resistor	$V_b - R_b I_b = 0$	1	$-R_b$	0
Conductor	$G_b V_b - I_b = 0$	G_b	-1	0
Capacitor	$sC_bV_b-I_b=C_bV_0$	sC_b	-1	C_bV_0
Inductor	$V_b - sL_bI_b = -L_bI_0$	1	$-sL_b$	$-L_bI_0$
Voltage source	$V_b = E_b$	1	0	E_b
Current source	$I_b = J_b$	0	1	J_b

Formulazione Generale: Tableau

$$\mathbf{V}_b - \mathbf{A}^t \mathbf{V}_n = \mathbf{0}$$
 KVL
$$\mathbf{Y}_b \mathbf{V}_b + \mathbf{Z}_b \mathbf{I}_b = \mathbf{W}_b$$
 R.C.
$$\mathbf{AI}_b = \mathbf{0}$$
 KCL

$$TX = W$$

Esempio

Relazioni Costitutive: Componenti a due porte

ELEMENT	SYMBOL	CONSTITUTIVE EQUATIONS		
VCT	$ \begin{array}{c c} & I_1 \\ & V_1 \\ & J' & \bullet \\ & I_1 = 0; I_2 = gV_1 \end{array} $	o g	$0 \\ 0 \\ \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ -1 \end{array} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $
VVT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ο _μ	$ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 $	$ \begin{bmatrix} 0\\0\\0\end{bmatrix}\begin{bmatrix} I_1\\I_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} $
сст	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1 0	$ \begin{array}{c} 0\\0\\0\\\end{array} \begin{bmatrix} V_1\\V_2\\ \end{bmatrix} + \begin{bmatrix} 0\\\alpha \end{array} $	$\begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
CVT	$j \circ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	[1 0	$0 \\ -1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} 0 \\ r \end{bmatrix}$	$ \begin{bmatrix} 0\\0\\0\end{bmatrix} \begin{bmatrix} 1\\1\\2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} $
ОРАМР	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1 0	$ \begin{array}{c} 0\\0\\0\end{array} \begin{bmatrix} V_1\\V_2\\ \end{bmatrix} + \begin{bmatrix} 0\\1\\ \end{array} $	$ \begin{array}{c} 0\\0\\0\end{array}\begin{bmatrix} 1\\1\\2\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix} $

Esempio

Scuola Nazionale Dottorandi "Ferdinando Gasparini"

Metodo ai Nodi

Eliminazione tensioni di ramo:

$$\mathbf{V}_{b} = \mathbf{A}^{t} \mathbf{V}_{n}$$

$$\mathbf{Y}_{b} \mathbf{A}^{t} \mathbf{V}_{n} + \mathbf{Z}_{b} \mathbf{I}_{b} = \mathbf{W}_{b}$$

$$\mathbf{A} \mathbf{I}_{b} = \mathbf{0}$$

$$\mathbf{Y}_{b} \mathbf{A}^{t} \mathbf{V}_{n} + \mathbf{Z}_{b} \mathbf{I}_{b} = \mathbf{W}_{b}$$

$$\mathbf{A} \mathbf{I}_{b} = \mathbf{0}.$$

$$\begin{bmatrix} \mathbf{Y}_{b} \mathbf{A}^{t} & \mathbf{Z}_{b} \\ \mathbf{0} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{n} \\ \mathbf{I}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{b} \\ \mathbf{0} \end{bmatrix}$$

Ipotesi: tutti componenti con rapp. ammettenza solo gen. indip. di corrente

$$\mathbf{I}_b = \mathbf{Y}_b \mathbf{V}_b + \mathbf{J}_b$$

$$\mathbf{V}_b = \mathbf{A}^t \mathbf{V}_n$$

$$\mathbf{I}_b = \mathbf{Y}_b \mathbf{A}^t \mathbf{V}_n + \mathbf{J}_b$$

sostituendo in $\mathbf{AI}_b = \mathbf{0}$

$$\mathbf{A}(\mathbf{Y}_b\mathbf{A}^t\mathbf{V}_n+\mathbf{J}_b)=0$$

cioè:

$$\mathbf{A}\mathbf{Y}_b\mathbf{A}^t\mathbf{V}_n = -\mathbf{A}\mathbf{J}_b$$
 $\mathbf{Y}\mathbf{V}_n = \mathbf{J}_n$ Formulazione ai nodi valida per componenti con rapp. ammettenza e gen. ind. di corrente

Metodo ai Nodi Modificato

KCL
$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \\ \mathbf{J} \end{bmatrix} = \mathbf{0} \qquad \mathbf{A}_1 \mathbf{I}_1 + \mathbf{A}_2 \mathbf{I}_2 = -\mathbf{A}_3 \mathbf{J}$$

- 1. I₁ correnti di ramo dei componenti che hanno rapp. ammettenza
- 2. I₂ correnti di ramo dei componenti che non hanno rapp. ammettenza + correnti dei generatori di tensione
- 3. **J** correnti dei gen. ind. di corrente

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \\ \mathbf{V}_J \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1^t \\ \mathbf{A}_2^t \\ \mathbf{A}_3^t \end{bmatrix} \mathbf{V}_n$$

$$\mathbf{V}_1 = \mathbf{A}_1^t \mathbf{V}_n$$

$$\mathbf{V}_2 = \mathbf{A}_2^t \mathbf{V}_n$$
$$\mathbf{V}_J = \mathbf{A}_3^t \mathbf{V}_n$$

$$\mathbf{V}_J = \mathbf{A}_3^t \mathbf{V}_I$$

$$\mathbf{Y}_1\mathbf{V}_1 = \mathbf{I}_1.$$

$$\mathbf{Y}_2\mathbf{V}_2 + \mathbf{Z}_2\mathbf{I}_2 = \mathbf{W}_2$$

Metodo ai Nodi Modificato

$$\mathbf{A}_1 \mathbf{Y}_1 \mathbf{A}_1^t \mathbf{V}_n + \mathbf{A}_2 \mathbf{I}_2 = -\mathbf{A}_3 \mathbf{J}$$
$$\mathbf{Y}_2 \mathbf{A}_2^t \mathbf{V}_n + \mathbf{Z}_2 \mathbf{I}_2 = \mathbf{W}_2.$$

$$\begin{bmatrix} \mathbf{A}_1 \mathbf{Y}_1 \mathbf{A}_1^t & \mathbf{A}_2 \\ \mathbf{Y}_2 \mathbf{A}_2^t & \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_n \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} -\mathbf{A}_3 \mathbf{J} \\ \mathbf{W}_2 \end{bmatrix}$$

$$\mathbf{A}_1 \mathbf{Y}_1 \mathbf{A}_1^t = \mathbf{Y}_{n_1}$$
$$-\mathbf{A}_3 \mathbf{J} = \mathbf{J}_n.$$

17/10/2003

MNA per ispezione (componente per componente, a partire da una *netlist*)

- Tx = w
- T = G + sC
- Si contano i nodi (n) e si dimensiona T ad n x n e w ad n
- Si esamina la netlist componente per componente:
 - Componenti con rapp. Ammettenza vengono inseriti in T con le regole note (matrice ammettenza ai nodi).
 - Per i componenti con rapp. Impedenza, si aumenta l'ordine di T e w (si aggiunge a T una riga ed una colonna) e si aggiunge un'incognita I.

j v † y ∏ ∨ j · l −	V _j V _j ' i	I _j = y(V _j -V _j ') I _j '=-y(V _j -V _j ')
j 9 + I z ∏ ∨ j' 6 -	$V_{j} V_{j}' I$ $j \begin{bmatrix} & & & 1 \\ & & & -1 \\ & & & -1 \end{bmatrix}$ $m+1 \begin{bmatrix} 1 & & -1 & & -z \end{bmatrix}$	V _j - V _{j'} - zI = O I _j = -I _j ' = I

MNA per ispezione

	ELEMENT	SYMBOL
	CURRENT	j,¢ ⊝†₁
	VOLTAGE SOURCE	j e+ I∳ E j 8−
	OPEN CIRCUIT	j o + V j'o =
	SHORT	j v J
	ADMITTANCE	^j ∛ 1 ν ∏ ν _j '
	IMPEDANCE	j †† z ∏ ∨ j' √ –
	NULLATOR	j o
	NORATOR	i P
€	vст	¹ 0→0 ∨ 0

	j [-J] SOURCE VECTOR	I _j *J I _j , =-J
	V _j V _j ' I SOURCE VECTOR j	V _j - V _j ' = E I _j = I I _j ' = -I
		V = V _j - V _j '
	V _j V _j I j	V _j -V _{j'} = O I _j = I I _{j'} = -I
	V _j V _j ' i	I _j = y(V _j -V _j ') I _j '=-y(V _j -V _j ')
	$\begin{array}{c c} V_j & V_{j'} \cdot I \\ j & & 1 \\ j' & & -1 \\ m+1 & 1 & -1 \\ \end{array}$	V _j - V _j - z I = O I _j = -I _j ' = I
	V _j V _j ' m+1 [-11]	v _j - v _{j'} = 0 I _j = I _j ' = 0
	j [1 -1]	V, I ARE ARBITRARY
ok g∨ ok'	V _j V _j ' k	$I_{j} = 0$ $I_{j'} = 0$ $I_{k} = g(\forall_{j} - \forall_{j'})$ $I_{k'} = -g(\forall_{i} - \forall_{i'})$

MATRIX

EQUATIONS

MNA per ispezione

	vvt	j - I - k vk j'k'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\mu \vee_{j} + \mu \vee_{j}' + \vee_{k}$ $-\vee_{k'} = 0$ $I_{k} = I$ $I_{k'} = -I$
	сст	jo k	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{j} - V_{j}' = 0$ $I_{j} = -I_{j}' = I$ $I_{k} = -I_{k}' = \alpha I$
	сут	jo I ₂ k rI ₁ j'o k'	V _j V _j V _k V _k I ₁ I ₂ 1	$V_{j} - V_{j}' = 0$ $V_{k} - V_{k'} - rI_{1} = 0$ $I_{j} = -I_{j'} = I_{1}$ $I_{k} = -I_{k'} = I_{2}$
	OPERATIONAL AMPLIFIER	jo k'	V _j V _{j'} V _k V _{k'} I	$V_{j} - V_{j'} = 0$ $I_{k} = -I_{k'} = I$
	CONVERTOR	j o o o k'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_j - V_j' - K_1V_k + K_1V_{k'} = 0$ $I_j = -I_j' = I$ $I_k = -I_k' = -K_2I$ FOR IDEAL TRANSFORMER $K_1 = K_2 = n$
or	TRANSFORMER	J I M I 2 k V L B B L 2 V2	V _j V _j ' V _k V _k ' I ₁ I ₂ j	$V_{j} - V_{j}' - sL_{1}I_{1} - sMI_{2} = 0$ $V_{k} - V_{k}' - sMI_{1} - sL_{2}I_{2} = 0$ $I_{j} = -I_{j}' = I_{1}$ $I_{k} = -I_{k}' = I_{2}$

MATRIX

EQUATIONS

SYMBOL

Esempio

NETLIST

J10 1 0 1

G5 1 2 0.1

G6 2 3 0.1

G7 3 4 0.1

G8 4 5 0.1

G9 5 0 0.1

OP1 4 0 1 3

OP2 2 0 5 3

dim: 7x7

Metodo dei due grafi

Si usano grafi separati per correnti e tensioni

Grafo delle correnti:

- Se la corrente nel ramo considerato non è presente nelle relazioni costitutive (e non interessa come uscita), i nodi corrispondenti collassano in un solo nodo
- 2. Se la corrente nel ramo considerato è nulla (per le r.c.), il ramo è cancellato

Grafo delle tensioni:

- Se la tensione sul ramo considerato non è presente nelle relazioni costitutive (e non interessa come uscita), il ramo è cancellato
- 2. Se la tensione sul ramo considerato è nulla (per le r.c.), i nodi corrispondenti collassano in un solo nodo.

Metodo dei due grafi

ELEMENT	SYMBOL	I-GRAPH	V - GRAPH	CONSTITUTIVE EQUATIONS	
CURRENT SOURCE	ا ا ا	\$ 1	از ه ده	I = J	
VOLTAGE SOURCE	ο j Ο _ j '	j≡j •) 	V = E	
OP EN CIRCUIT	oj,	زه 'زه	},		ni di ntrollo
SHORT CIRCUIT	oj'	ا ر	j ≡ j' •	di ç cor	gen. ntrollati
ADMITTANCE	γ j γ γ j '))	گ _ا ،	yV - I = O	
IMPEDANCE	or j ∏z o j'))	, ,	-V +zI = 0	
NULLATOR	Ö,	o j '	j≝j' •		
NCRATOR	Ģ	j≡j' •	oj oj'		

Metodo dei due grafi

ELEMENT	SYMBOL	I-GRAPH	V-GRAPH	CONSTITUTIVE EQUATIONS
VCT	j	oj ok	ρj ok j' ok'	g V — I = O
VVT	j ο κ ν ₁ j'ο κ'	oj k≣k' oj'	oj ok	$\begin{bmatrix} \mu & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$
ССТ	j o I o k'	çj çk İj' İk'	j≞j' ok • ok'	$\begin{bmatrix} \alpha & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = 0$
CVT	j	oj' k≡k'	j≘j' ok • ok'	r I - V = 0
OPA M P	$ \begin{array}{c c} & I_1 & I_2 \\ \downarrow V_1 & \downarrow & \downarrow \\ \downarrow j' \circ & \downarrow & \downarrow \\ V_1 = 0 & \downarrow & I_1 = 0 \end{array} $	oj k≣k' oj'	j≘j' ok'	

Tableau a due grafi

$$\mathbf{V}_b = \mathbf{A}_v^t \mathbf{V}_n$$

$$\mathbf{Y}_b \mathbf{V}_b + \mathbf{Z}_b \mathbf{I}_b = \mathbf{W}_b$$

$$\mathbf{A}_i \mathbf{I}_b = \mathbf{0}$$

	tensioni di ramo	correnti di ramo	nodi nel grafo V			
tensioni di ramo	1	0	$-\mathbf{A}_{v}^{t}$	\mathbf{V}_{b}		
relazioni costitutive	\mathbf{Y}_b	\mathbf{Z}_{b}	0	\mathbf{I}_b	=	$ \mathbf{W}_b $
nodi nel grafo I	_0	\mathbf{A}_i	o _	$oxed{V_n}$		0_

MNA a due grafi

ELEMENT	SYMBOL	I-GRAPH	V-GRAPH	MATRIX	EQUATIONS
CURRENT SOURCE	i	jı V	_{jv} o iv o	jı = J source	l _{i1} = J l _{ij} = -J
VOLTAGE SOURCE	j	j _l ≡ j¦ o	iv o	jv jv VECTOR m+1 1 -1	$V_{j_V} - V_{j_V'} = E$
OPEN CIRCUIT	j o + V j' o –	j _i o jí o	iv o		v = v _{jv} - v _{jv}
SHORT CIRCUIT	j ↓ l	jı o	j _V ≡ j _V o	j ₁ [I IS ARBITRARY
ADMITTANCE	j	j₁ o Jí o	iv o	i ₁ [$I_{j_{\parallel}} = y(V_{j_{\parallel}} - V_{j_{\parallel}})$ $I_{j_{\parallel}} = -y(V_{j_{\parallel}} - V_{j_{\parallel}})$
IMPEDANCE	j	i _l o	j _V ♥	$ \begin{array}{c cccc} $	$V_{i_V} - V_{i_V'} - zI = 0$ $I_{i_1} = -I_{i_1'} = I$
NULLATOR	i o o i' o	iı o Ji o	j _V ≡ j _V o		

MNA a due grafi

ELEMENT	SYMBOL	I-GRAPH	V-GRAPH	MATRIX	EQUATIONS
NORATOR	i 9 8 j' 8	j, ≡ j′, o	ivo		
vст	j + ∨ j' - 0 gV k'	Ji o oki	ojy o ký ojy o	iv jv k _I [g -g kí [-g g]	$I_{k_{1}} = g(V_{j_{V}} - V_{j_{V}'})$ $I_{k_{1}'} = -g(V_{j_{V}} - V_{j_{V}'})$
VVT	j	jı o k _V ≡ k' _V ji o	j _∨ k _∨ o v o v o v o v o v o v o v o v o v o	$\begin{bmatrix} j_{V} & j'_{V} & k_{V} & k'_{V} \\ \\ -\mu & \mu & 1 & -1 \end{bmatrix} m + 1$	$V_{k_{V}} - V_{k_{V}'} - \mu(V_{j_{V}} - V_{j_{V}'}) = 0$
сст	j j'	j ₁ k ₁	k _V 0 j _V ≡ j _V 0 k _V	$ \begin{vmatrix} i_1 \\ j'_1 \\ k_1 \\ k'_1 \end{vmatrix} = \begin{vmatrix} \alpha \\ -\alpha \end{vmatrix} $	$\begin{aligned} & _{j_{\parallel}} = \\ & _{j_{\parallel}} = - \\ & _{k_{\parallel}} = \alpha \\ & _{k_{\parallel}} = -\alpha \end{aligned}$
сут	j	$ \begin{array}{c} j_1 \\ k_1 \equiv k_1' \\ 0 \\ j_1' \end{array} $	j _V ≡ j' _V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{k_V} - V_{k_V'} - rI_I = 0$
OPERATIONAL AMPLIFIER	j k k' k' k' k' k' k' k'	j _i 0 k _i ≡ k; 0 i; 0	k _V j _V ≡j' _V o k' _V o		

Esempio

V-GRAPH

V-graph nodes

dim=3x3