MA439: Functional Analysis Tychonoff Spaces: Exercises 5, 6, 12, 13, 14 on p.31, Ben Mathes

Huan Q. Bui

Due: Wed, Sep 23, 2020

Exercise 1 (Ex 5, p.31). In an arbitrary topological space \mathcal{X} , we say that a sequence (x_i) converges

to x (and write $x_i \to x$) if, for every open set G containing x, the sequence (x_i) is eventually in G. Prove that $x_i \to x$ if and only if, for every subbasic open set S, (x_i) is eventually in S. Proof. **Exercise 2** (Ex 6, p.31). In arbitrary topological spaces, the neighborhood filter \mathcal{F}_x of a point x is defined to be the collection of all subsets that contain an open set containing x, and we again define $\mathcal{F} \to x$ to mean $\mathcal{F}_x \subseteq \mathcal{F}$. Prove that $F \to x$ if and only if every subbasic open set containing x is in \mathcal{F} . Proof. **Exercise 3** (Ex 12, p.31). Assume that $S = p_k^1(G)$ is a subbasic open set in a product space $\prod_i \mathcal{X}_i$. Prove that $S = p_k^1(p_k(S))$, and if $p_k(E) \subseteq p_k(S)$, then $E \subseteq S$. Proof. Exercise 4 (Ex 13, p.31). Prove that a topological space is compact if and only if every open covering by basic open sets has a finite subcover. Proof. Exercise 5 (Ex 14, p.31). Prove that a topological space is compact if and only if every open covering by subbasic open sets has a finite subcover. (This requires the axiom of choice.) Proof.