

Platelets and Hemostasis: Part 3

PHYSIOLOGY 210

Dr. Saswati Das

Department of Physiology

saswati@ualberta.ca

"Images reproduced in these slides have been included under section 29 of the *Copyright Act*, as fair dealing for research, private study, criticism or review. Further distribution or uses may infringe copyright".

Introduction to hemostasis and platelets: Part 3a Topic outline

- What is hemostasis?
 - (What is homeostasis?)
- Why is hemostasis necessary?
- Where does hemostasis occur?
- How is hemostasis achieved?
- What role do platelets play?

Why is hemostasis necessary?

Key steps of hemostasis

- Vasoconstriction
- Primary hemostasis or platelet plug formation ("white thrombus")
- Secondary hemostasis or blood clotting or blood coagulation ("red thrombus")

Where do platelets come from?

Megakaryocytes and platelets

http://www.ouhc.edu/histology

Key words: Part 3 a Hemostasis, homeostasis
 Buffy coat
 Platelet plug, white thrombus, primary hemostasis
 Blood clot, red thrombus, secondary hemostasis
 Megakaryocytes, platelets

Platelet structure and function: Part 3 b Topic outline

- Structure of platelet
- Platelet granules and their contents
- Formation of platelet plug
- Role of <u>activated</u> platelets

Structure of platelets

Content of platelet granules

Glycogen Mitochondrion Microtubules Dense granule α granule ADP Fibrinogen ATP vFW 5-HT Fibronectin PF4 Thrombospondin Pyrophosphate PDGF Factor V PAI-1 α₂-antiplasmin

- 1. Alpha granules contain relatively large molecules:
 - Adhesion molecules such as von Willebrand factor (vWF)

- Growth factors
- Some clotting factors
- Cytokines

Dense granules contain relatively small molecules
 ADP and ATP
 hydroxytryptamine (5HT) or serotonin
 Ca⁺⁺

http://clinicalgate.com/acquired-disorders-affecting-megakaryocytes-and-platelets/

Platelet plug formation (primary hemostasis)

1. ADHESION of platelets

 they stick to damaged vessel wall

2. ACTIVATION of platelets

 they change shape, express various receptors and secrete various substances

3. AGGREGATION of platelets

 they stick to each other and form a plug

Mechanism of platelet plug formation

Roles of activated platelets

PL = phospholipid exposed on platelet surface

Key words: 3b

- Alpha granule, dense granule
- von Willebrand's factor (vWF)
- Fibrinogen
- Collagen
- 5 hydroxytryptamine (5HT),
 Thromboxane A2
- Endothelial cells

What do you remember?

What is the **function** of Von Willebrand's factor?

- a. Release Ca⁺⁺ essential for blood clotting.
- b. Act as an adhesive protein in binding platelets to the exposed collagen.
- c. Act as a source of serotonin.

Factors affecting platelet plug formation: Part 3c Topic outline

- Prevention of the spread of platelet plug
- Biochemical pathways controlling platelet plug formation
- Role of Aspirin in hemostasis

Why does platelet plug not continuously expand?

Signaling mediates responses to damage in a blood vessel:

adjacent endothelial cells are a source of chemical signals that influence platelet aggregation and alter blood flow and clot formation at the affected site.

Effects of Arachidonic acid metabolites

Copyright © 2005 Lippincott Williams & Wilkins. Instructor's Resource CD-ROM to Accompany Porth's Pathophysiology: Concepts of Altered Health States, Seventh Edition.

Cells involved: platelets, endothelial cells

Effect of Aspirin on Hemostasis

Net effect of **low** dose Aspirin: anti-hemostasis

Key words: Part 3c

- Arachidonic acid, leukotrienes, prostaglandins
- ☐ Lipoxygenase, Cyclooxygenase (COX)
- ☐ Vasodilation, vasoconstriction
- ☐ Nitric oxide (NO), prostacyclin

Secondary hemostasis - Formation of blood clot Part: 3d Topic outline

- Secondary hemostasis or initiation of clotting/coagulation
- Factors involved in blood clotting
- Physical appearance of a blood clot
- Role of platelets in clot formation
- Formation of blood clot

Secondary Hemostasis

- Occurs following a platelet plug formation
- Involves a cascade of enzyme (clotting factors) activation
- Activation of enzymes occur by proteolytic cleavage
- Formation of gel-like fibrin clot

Fibrin mesh work

Factors involved in Blood clotting

- Clotting/coagulation factors are plasma proteins
- Mostly made in the liver (except factor IV)
- Factors are usually represented by Roman numerals (I, II, and X etc.)
- * = need vitamin K for synthesis
- Factors activated proteolytic cleavage are represented by a suffix "a"
- Factors V and VIII act as cofactors

Factors	Names
I	FIBRINOGEN
II*	PROTHROMBIN
III	TISSUE FACTOR
IV	CALCIUM
V	Proaccelerin
(VI)	Not used
DIE TO LO	Proconvertin
A PHONE	Anti-hemophilic factor A AHF –A)
IX*	Christmas factor (AHF-B)
X*	Stuart-Prower factor
XI	Plasma thromboplastin antecedent
XII	Hageman factor
XIII	Fibrin stabilizing factor

Blood clotting: key step

Activation of thrombin

Cascade of enzyme activation

Key words: Part 3d

- ☐Secondary hemostasis, Fibrin clot
- □Clotting factors
- ☐ Intrinsic pathway, Extrinsic pathway, Common pathway
- ☐ Prothrombin, thrombin
- ☐ Enzyme cascade

Source: Wikipedia.org

Pathways leading to formation of blood clot: Part 3e

Topic outline

- Interaction of intrinsic, extrinsic and common pathways
- Bleeding disorders associated with deficiency of clotting factors
- Central role of thrombin
- https://www.science mag.org/news/2009 /10/case-closedfamous-royalssuffered-hemophilia

Traditional/Classical mechanism of blood clotting

Effect of various clotting factor deficiencies on clotting

Deficiency of factors:	RESULT
VII	Severe bleeding
VIII	Severe bleeding
XI	Moderate bleeding
XII	No bleeding problem in vivo; failure to clot in vitro

Blood from a healthy normal individual can clot when placed in a glass test tube. Blood will have a delayed clot formation in a silicone-coated test tube.

Physiological mechanism of blood

clotting in vivo

- Remember that the pathways are named for our benefit of understanding
- Activation of the <u>extrinsic</u> and <u>intrinsic</u> pathways happen in a sequential manner
- Initiation happens at extrinsic pathway, small amounts of thrombin amplify the intrinsic pathway to form a large clot

Amplification of clotting protein activity by thrombin

- 1. Activation of factor XIII by thrombin **not** shown.
- 2. Steps requiring calcium is **not** shown.

For self –study purpose

What does Thrombin do in the clotting pathway?

Summary

Part 3b Slide 6

1. Activation of platelets

Part 3e Slide 4 2. Conversion of soluble fibrinogen to insoluble fibrin

3. Activation of several other clotting factors (factor V, VIII,XI, and XIII)

Part 3f Slide 5

4. Activation of "protein C" (anticoagulant activity)

Sequence of activation following the extrinsic pathway

Sequence of activation in the intrinsic pathway

Saswati Das, Dept of Physiology

Hemophilia B: X-linked recessive gene

- Deficiency of factor IX (of Hemophilia B)
- Less common than Hemophilia A (due to deficiency of Factor VIII)
- Expressed in males
- No treatment available

Haemophilia in the descendants of Queen Victoria Kingdom Eugenie of Leopold of Maurice of Hesse and Hesse and aueen of by Rhine (1870-1873) of Russia Albany (1883-1981) Battenberg Battenberg (1891-1914) Heinrich of Rupert of Prince of Gonzalo o Prussia of Russia Teck 1907-1928 Asturias Spain

Just for Interest

Genotypes for Males

- X^HY = normal blood clotting
- XhY = male with hemophilia
- Tsarevich Alexei of Russia had hemophilia

Key words: Part 3e

- ☐ Extrinsic, intrinsic, common pathway
- ☐ Initiation and amplification of clotting pathway
- ☐ Thrombin, Tissue factor (TF)
- ☐Bleeding disorders, Hemophilia

Mechanisms of anticoagulation and clot breakdown: Part 3f Topic outline

- Prevention of clot formation
- Natural anticoagulants and their actions
- Clinical anticoagulants and their actions
- Fibrinolysis
- Abnormal hemostasis and their outcomes

Regulation of blood clotting

- Prevention of clot formation where and when it is <u>not</u> required
 - Role of various anticoagulants
- 2. Breakdown of clot as tissue repair occurs
 - Role of fibrinolytic system

Prevention of clot formation: natural anticoagulants

Anticoagulant	How it works?
TFPI (Tissue factor pathway inhibitor)	Inhibits X a and VII a
Antithrombin 3	Inhibits thrombin etc
Thrombomodulin	Changes thrombin activity
Protein C and S	Inhibit V a and VIII a

Site of action: natural anticoagulants

This slide is to be used for self-study purpose.

Focus on the:

- 1)Sequence of activation
- 2) Steps where

anticoagulants work

Actions of thrombin as an anticoagulant

Prevention of clot formation: "Clinical Anticoagulants"

Anticoagulant	How it works	Where it works
Calcium chelators (eg. Na citrate)	Remove ionized Ca ⁺⁺	In vitro
Heparin	Increases effect of antithrombin 3	In vitro and in vivo
Antagonists of vitamin K	Inhibit synthesis of II, VII, IX and X in liver	In vivo

Breakdown of Fibrin Clot: Fibrinolysis

Fibrinolysis

- Natural Plasminogen activator
 - tissue plasminogen activator
 - released from endothelial cells
 - release increased by exercise
- Clinical clot busters or thrombolytic drugs
 - used to treat patients with heart attacks
 - eg., tenectaplase

Abnormal hemostasis: imbalance of PRO- and ANTI- hemostatic factors

Excessive bleeding/hemorrhage

- Failure of hemostatic mechanisms when they <u>ARE</u> required
- 1. problems with platelets
 - a) not enough platelets (thrombocytopenia)
 - b) abnormal <u>platelet function</u> (eg., deficiency of vWF)
- 2. problems with clotting factors
 - a) hereditary deficiencies (eg. hemophilias)
 - b) acquired deficiencies (eg. due to vit K deficiency)

Thrombosis

- Formation of blood clot when they are <u>NOT</u> required
- hereditary disorders: (deficiency of natural anticoagulants and fibrinolytic factors)
- acquired disorders: decreased /sluggish blood flow, damage to the blood vessel wall, etc

Abnormal hemostasis when this fine balance is broken.....

Key words: Part 3f

- Anticoagulants
- TFPI, Antithrombin, Thrombomodulin, Protein C
- Calcium chelator, Heparin
- Fibrinolysis
- Plasminogen activator,
 Plasminogen, Plasmin
- Thrombolytic drugs

Study guidelines: Part 3

- 1. What is hemostasis? Is it different from *homeostasis*?
- 2. Why is hemostasis necessary?
- 3. What do platelets contribute towards platelet plug formation?
- 4. What is a primary plug? How is a platelet plug formed?
- 5. What is a secondary plug? What is the difference between the intrinsic and extrinsic pathways of clot formation? How are the two pathways involved during a successful clot formation?
- 6. What is fibrinolysis? Can unwanted blood clotting be prevented *in vitro* and *in vivo*? What do the terms *in vitro* and *in vivo* mean?
- 7. What factors can contribute to excessive bleeding and what are the effects of excessive bleeding?
- 8. What can contribute to excessive clotting and what are the effects observed with excessive clotting?