STAT 332: Sampling and Experimental Design

Professor Riley Metzger LATEXer Iris Jiang

Spring 2020

Contents

1	PPDAC	2
	1.1 Problem	. 2
	1.2 Plan	. 2
	1.3 Data	. 2
	1.4 Analysis	. 2
	1.5 Conclusion	. 2
	1.6 Errors	. 3
2	Models	3
	2.1 Model I	. 3
	2.2 Independent vs. Dependent Groups	. 3
	2.2.1 Ways of Creating Dependency	
	2.3 Model 2A	
	2.4 Model 2B	
	2.5 Model 3	
	2.6 Model 4	. 5
3	Maximum Likelihood Estimation (MLE)	6
	3.1 What is it?	
	3.2 How does it work?	
	3.3 What is the process?	
	3.4 Example	
4	Least Squares	7
	4.1 What is it?	. 7
	4.2 How?	
	4.3 Models	
	4.4 Process	
	4.5 Example	
_	·	
5	Estimators	9
	5.1 Example	. 10
6	Sigma	11
	6.1 Example	. 11
7	Confidence Interval	11
	7.1 Model 1 Example	. 12
	7.2 Model 2A Example	. 12
	7.3 Model 2B Example	. 13
	7.4 Model 3 Example	. 13
	7.5 Model 4 Example	. 13
8	Hypothesis Testing	13

9	\mathbf{Mo}	dels Cont.	1 4
	9.1	Model 5: Completely Randomized Design (CRD)	14
		9.1.1 Example	14
	9.2	Least Square	15
	9.3	Estimators	15
	9.4	Confidence Interval	16

1 PPDAC

Problem, Plan, Data, Analysis, Conclusion

1.1 Problem

Define the proble:

- Target Population (T.P.): The group of units referred to in the problem step
- Response: The answer provided by the T.P. to the problem
- Attribute: statistic of the response

What is the average grade of students in STAT 101?

Solution.

- T.P.: All STAT 101 students
- Response: Grade of a STAT 101 student
- Attribute: Average grade

1.2 Plan

How?

• Study population (S.P.): The set of unites you can study Problem: Does a drug reduce hair loss

Solution. You can not use untested drug directly on people out of ethical concerns

T.P.: People

S.P: Mice \Box

• Sample: A subset of the study population

1.3 Data

Collect the data, according to the plan.

1.4 Analysis

Analyse the data.

1.5 Conclusion

Refers back to the problem.

1.6 Errors

- Study Error: The attribute of the T.P. differs from the parameter of the S.P. $a(T.P.) \mu$
- Sample Error: The parameter differs from the sample statistic (estimate). $\mu \bar{x}$
- Measurement Error: The difference between what we want to calculate and what we do calculate.

2 Models

Definition 2.1 (Model). A model relates a parameter to a response.

2.1 Model I

$$Y_j = \mu + R_j, \ R_j \sim N(0, \sigma^2)$$

- y_j : The response of unit j, it is random.
- μ : S.P. mean, it is not random and it is unknown
- R_i : The distribution of responses about μ

Note.

- 1. R_j 's are always independent.
- 2. Gaus's Theorem: Any Linear combination of normal R.V.s is normal

3.
$$Y_i \sim N(\mu, \sigma^2)$$
,

$$E(Y_j) = E(\mu + R_j) = E(\mu) + \mu + 0 = \mu$$

 $V(Y_j) = V(\mu + R_j) = V(R_j) = \sigma^2$

Average grade of STAT 101: $Y_j = \mu + R_j, \ R_j \sim N(0, \sigma^2)$

2.2 Independent vs. Dependent Groups

Definition 2.2 (Dependent). We randomly select one group and we find a match, having the same explanatory variates, for each unit of the first group.

2.2.1 Ways of Creating Dependency

• Twins

• Reuse

Definition 2.3 (Independent). Are formed when we select units at random from mutually exclusive groups.

• No relationship between chosen groups Broken parts and non-broken parts

2.3 Model 2A

Independent groups where we assume the groups have the same standard deviation.

$$Y_{ij} = \mu_i + R_{ij}, \ R_{ij} \sim (0, \sigma^2)$$

- Y_{ij} : Response of unit j in group i
- μ_i : Mean for group i; not random; unknown
- R_{ij} : The distribution of responses about μ_i

2.4 Model 2B

Independent groups but $\sigma_1 \neq \sigma_2$

$$Y_{ij} = \mu_i + R_{ij}, R_{ij} \sim N(0, \sigma_i^2)$$

2.5 Model 3

Lets construct two groups using twins and get two groups. Set group 1:

$$y_{1j} = \mu_1 + R_{1j}$$

and group 2:

$$y_{2i} = \mu_2 + R_{2i}$$

and we subtract them:

$$y_{1j} - y_{2j} = \mu_1 - \mu_2 + R_{1j} - R_{2j}$$

Let $y_{dj}=y_{1j}-y_{2j}, \mu_d=\mu_1-\mu_2$ and $R_{dj}=R_{1j}-R_{2j}$. Then we get a new model:

$$y_{dj} = \mu_d + R_{dj}, \ R_{dj} \sim N(0, \sigma_d^2)$$

heart rate before exercise	heart rate after exercise	difference (d)
70	80	10
80	100	20
90	90	0

 $y_{dj} = \mu_d + R_{dj}, \ R_{dj} \sim N(0, \sigma_d^2)$ studies the difference.

2.6 Model 4

Recall:

$$Y \sim \text{Bin}(n, \pi)$$

- \bullet *n* outcomes
- each outcome is binary

$$E(Y) = n\pi, \, Var((Y)) = n\pi(1 - \pi)$$

By the Central Limit Theorem

$$Y \sim N(n\pi, n\pi(1-\pi))$$

The proportion is $\frac{Y}{n} \sim N(\pi, \frac{\pi(1-\pi)}{n})$

$$E(\frac{Y}{n} = \frac{E(Y)}{n}) = \pi, \ Var((\frac{Y}{n})) = \frac{Var((Y))}{n^2} = \frac{\pi(1-\pi)}{n}$$

3 Maximum Likelihood Estimation (MLE)

3.1 What is it?

It connects the population parameter (θ) to the sample statistic $(\hat{\theta})$.

3.2 How does it work?

It choose the most probable value of θ given our data y_1, y_2, \dots, y_n

3.3 What is the process?

1. Define likelihood function

$$L = f(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n)$$

We assume that $Y_i \perp Y_j, \forall i \neq j$

$$L = f(Y_1 = y_1)f(Y_2 = y_2)\cdots f(Y_n = y_n)$$

2. Define log likelihood function

$$l = \ln(L)$$

use log rules to clean it up

- 3. Find $\frac{\partial l}{\partial \theta}$ for all θ
- 4. Set $\frac{\partial l}{\partial \hat{\theta}} = 0$ and solve for $\hat{\theta}$

3.4 Example

Consider $Y_{ij} = \mu_i + R_{ij}$ (Model 2A), Estimate using MLE, μ_1, μ_2, σ , assuming our group sizes are n_1 and n_2 ; $n = n_1 + n_2$.

Note the fact $R_{ij} \sim N(0, \sigma^2)$, hence $Y_{ij} \sim N(\mu_i, \sigma^2)$

Recall the pdf of a normal distribution:

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

1. Define likelihood function

$$L = \prod_{ij} f(j_{ij}) = \prod_{j=1}^{n_1} f(y_{1j}) \prod_{j=1}^{n_2} f(y_{2j})$$

$$= \prod_{ij} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_{1j} - \mu_1)^2}{2\sigma^2}\right) \prod_{ij} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_{2j} - \mu_2)^2}{2\sigma^2}\right)$$

$$= (2\pi)^{-\frac{n}{2}} \sigma^{-n} \exp\left(-\frac{\sum_{j=1}^{n_1} (y_{1j} - \mu_1)^2}{2\sigma^2}\right) \exp\left(-\frac{\sum_{j=1}^{n_2} (y_{2j} - \mu_2)^2}{2\sigma^2}\right)$$

2. Define log likelihood function

$$l = -\frac{n}{2}\ln(2\pi) - n\ln(\sigma) - \frac{\sum_{j=1}^{n_1}(y_{1j} - \mu_1)^2}{2\sigma^2} - \frac{\sum_{j=1}^{n_2}(y_{2j} - \mu_2)^2}{2\sigma^2}$$

3. Find $\frac{\partial l}{\partial \mu_1}$, $\frac{\partial l}{\partial \mu_2}$ and $\frac{\partial l}{\partial \sigma}$. And set them to be 0

$$\frac{\partial l}{\partial \hat{\mu_1}} = \frac{2 \sum_{j=1}^{n_1} (y_{1j} - \hat{\mu_1})}{2\hat{\sigma^2}} = 0$$

$$\implies \sum_{j=1}^{n_1} (y_{1j} - \hat{\mu_1}) = 0$$

$$n_1 \bar{y_1} - n_1 \hat{\mu_1} = 0$$

$$\implies \hat{\mu_1} = \bar{y_1}$$

The estimate of population average is the sample average

By symmetry, $\hat{\mu}_2 = \bar{y}_2$

$$\frac{\partial l}{\partial \hat{\sigma}} = -\frac{n}{\hat{\sigma}} - \frac{\sum_{j=1}^{n_1} (y_{1j} - \hat{\mu}_1)^2}{2} (-2\hat{\sigma}^{-3}) - \frac{\sum_{j=1}^{n_2} (y_{2j} - \hat{\mu}_2)^2}{2} (-2\hat{\sigma}^{-3}) = 0$$

$$\implies -n\hat{\sigma}^2 + \sum_{j=1}^{n_1} (y_{1j} - \hat{\mu}_1)^2 + \sum_{j=1}^{n_2} (y_{2j} - \hat{\mu}_2)^2 = 0$$

$$\hat{\sigma}^2 = \frac{\sum_{j=1}^{n_1} (y_{1j} - \hat{\mu}_1)^2 + \sum_{j=1}^{n_2} (y_{2j} - \hat{\mu}_2)^2}{n}$$

MLE doesn't necessarily give you something unbiased, LSM however is generally unbiased if the error term is normal.

The above $\hat{\sigma}^2$ is biased, we will need some twit to make it unbiased.

$$\hat{\sigma}^2 = \frac{\sum_{j=1}^{n_1} (y_{1j} - \hat{\mu_1})^2 + \sum_{j=1}^{n_2} (y_{2j} - \hat{\mu_2})^2}{n_1 + n_2 - 2}$$

Recall: An estimator for θ is unbiased if $E(\tilde{\theta}) = \theta$.

We can rewrite it another way:

$$\hat{\sigma}^{2} = \frac{\frac{n_{1}-1}{n_{1}-1} \sum_{j=1}^{n_{1}} (y_{1j} - \hat{\mu}_{1})^{2} + \frac{n_{2}-1}{n_{2}-1} \sum_{j=1}^{n_{2}} (y_{2j} - \hat{\mu}_{2})^{2}}{n_{1} + n_{2} - 2}$$

$$= \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1} + n_{2} - 2} = s_{p}^{2}$$

4 Least Squares

4.1 What is it?

Another technique to find $\hat{\theta}$

4.2 How?

It minimizes the residuals.

4.3 Models

Response = Deterministic Part + Random Part

$$y = f(\theta) + R$$

Let y_1, y_2, \ldots, y_n be realizations of y. Let $\hat{y}_i = f(\hat{\theta})$, where $f(\hat{\theta})$ is simply $f(\theta)$ with θ replaces by $\hat{\theta}$. We call \hat{y}_i our "prediction".

A residual is

$$r_i = y_i - f(\hat{\theta}) = y_i - \hat{y}_i$$

4.4 Process

- 1. Define the w function $w = \sum r^2$
- 2. Calculate $\frac{\partial w}{\partial \theta}$ for all non- σ parameters
- 3. Set $\frac{\partial w}{\partial \theta} = 0$ and replace θ by $\hat{\theta}$
- 4. Solve for $\hat{\theta}$

4.5 Example

Consider Model 2A, $y_{ij} = \mu_i + R_{ij}$

- y_{ij} : response
- μ_i : deterministic part
- R_{ij} : random part

Let $n = n_1 + n_2$

$$w = \sum_{ij} r_{ij}^{2} = \sum_{ij} (y_{ij} - \hat{\mu}_{i})^{2}$$

$$= \sum_{j=1}^{2} \sum_{i=1}^{2} (y_{ij} - \hat{\mu}_{i})^{2}$$

$$= \sum_{j=1}^{n_{1}} (y_{1j} - \hat{\mu}_{1})^{2} + \sum_{j=1}^{n_{2}} (y_{2j} - \hat{\mu}_{2})^{2}$$

$$\frac{\partial w}{\partial \hat{\mu}_{1}} = \sum_{j=1}^{n_{1}} (y_{1j} - \hat{\mu}_{1})(-2) = 0$$

$$\implies \hat{\mu}_{1} = \bar{y}_{1}$$

By symmetry, $\hat{\mu_2} = \bar{y_2}$

Note.

1. $\hat{\sigma}^2$ is always of the form

$$\hat{\sigma}^2 = \frac{w}{n - q + c}$$

- n: number of units (sample size)
- q: number of non-σ parameters
- c: number of constraints

In the example, $\hat{\sigma}^2 = \frac{\sum_{j=1}^{n_1} (y_{1j} - \hat{\mu_1})^2 + \sum_{j=1}^{n_2} (y_{2j} - \hat{\mu_2})^2}{n_1 + n_2 - 2}$, we can further show $s_p^2 = \frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}$

- 2. MLE vs. LS
 - *LS*:
 - is from 1860's (older technique)
 - LS is unbiased provided R_i is normally distributed
 - MLE:
 - recent technique
 - much more flexible it does NOT need R_i to be normal
- 3. Minimum? We can assume LS provides a minimum second derivative.

5 Estimators

Our sample data is y_1, y_2, \ldots, y_n . It is not random. It is a realization of a r.v. Y_1, Y_2, \ldots, Y_n . A statistic is a function of the sample data; $\hat{\theta}$, is not random. But if y_1, y_2, \ldots, y_n changes, so does $\hat{\theta}$

For that reason you can think of $\hat{\theta}$ as the realization of a r.v. $\tilde{\theta}$, called an **estimator**. To move from $\hat{\theta}$ to $\tilde{\theta}$, we captalize our y_i 's.

Example 5.1. Model 2A:

$$\underbrace{\hat{\mu} = \bar{y}_1}_{\text{statistic}} \to \underbrace{\tilde{\mu}_1 = \bar{Y}_1}_{estimator}$$

Theorem 5.1 (Gaus). Any linear combination of normal r.v.'s is still normal.

Let $X \sim N(\mu_x, \sigma_x^2)$

Let $Y \sim N(\mu_y, \sigma_y^2)$

Let $X \perp Y$

Let a, b, c be constants, $a, b \neq 0$.

Let L = ax + by = c.

Then $L \sim N(E(L), Var(L))$

Theorem 5.2 (Central Limit Theorem). Let Y_1, \ldots, Y_n be a sequence of r.v.'s.

Let $E(Y_i) = \mu, \forall i$.

Let $Var(Y_i) = \sigma^2 < \infty, \forall i$

Let $Y_i \perp Y_j, \forall i \neq j$

Then $\bar{Y} \sim N(\mu, \frac{\sigma^2}{n})$

5.1 Example

Model 2A: $Y_{ij} = \mu_i + R_{ij}, R_{ij} \sim N(0, \sigma^2)$. What is the distribution of $\tilde{\mu}_1$? Using LS or MLE we get

$$\hat{\mu_1} = \bar{y_1}$$

Our corresponding estimator is

$$\tilde{\mu_1} = \bar{Y_1} = \frac{\sum\limits_{j=1}^n Y_{ij}}{n_1}$$

Thus by Gaus theorem, it is normal.

$$E(\tilde{\mu}_1) = E(\bar{Y}_1) = E\left(\frac{\sum_{j=1}^n Y_{1j}}{n_1}\right)$$

$$= \sum_{j=1}^n \frac{E(Y_{1j})}{n_1} \text{ (sum rule)}$$

$$= \sum_{j=1}^n \frac{E(\mu_i + R_{1j})}{n_1}$$

$$= \sum_{j=1}^n \frac{\mu_i + E(R_{1j})}{n_1} \text{ (sum rule)}$$

$$= \mu_1$$

This is an unbiased estimator: $E(\tilde{\theta}) = \theta \implies \tilde{\theta}$ is an unbiased estimator of θ

$$\operatorname{Var}(\tilde{\mu_{1}}) = \operatorname{Var}\left(\overline{Y_{1}}\right) = \operatorname{Var}\left(\frac{\sum_{j=1}^{n} Y_{ij}}{n_{1}}\right)$$

$$= \frac{1}{n_{1}^{2}} \operatorname{Var}\left(\sum_{j=1}^{n} Y_{1j}\right)$$

$$= \frac{1}{n_{1}^{2}} \sum_{j=1}^{n} \operatorname{Var}(Y_{1j}) \text{ (since } Y_{1j} \perp Y_{1i}, \forall i \neq j)$$

$$= \frac{1}{n_{1}^{2}} \sum_{j=1}^{n} \operatorname{Var}(\mu_{i} + R_{1j})$$

$$= \frac{1}{n_{1}^{2}} \sum_{i=1}^{n} \operatorname{Var}(R_{1j}) = \frac{\sigma^{2}}{n_{1}}$$

Therefore, $\tilde{\mu_1} \sim N(\mu_1, \frac{\sigma^2}{n_1})$, and by symmetry $\tilde{\mu_2} \sim N(\mu_2, \frac{\sigma^2}{n_2})$

6 Sigma

Theorem 6.1. Let $Z \sim N(0,1)$, then $Z^2 \sim \chi_1^2$

Theorem 6.2. Let $X \sim \chi_m^2$; let $Y \sim \chi_n^2$; let $X \perp Y$, then $X + Y \sim \chi_{n+m}^2$

Theorem 6.3. Let $Z \sim N(0,1)$, let $X \sim \chi_m^2$, then $\frac{Z}{\sqrt{\frac{X}{m}}} \sim t_m$

Theorem 6.4. Let $Y = \frac{(n-q+c)\tilde{\sigma}^2}{\sigma^2}$, then $Y \sim \chi^2_{n-q+c}$

- n: number of units (sample size)
- q: number of non- σ parameters
- c: number of constraints

6.1 Example

Model 1: $Y_j = \mu + R_j, R_j \sim N(0, \sigma^2)$. What is the distribution of $\frac{\tilde{\mu} - \mu}{\frac{\tilde{\sigma}}{\sqrt{n}}}$? We know by LS or MLE that

$$\hat{\mu} = \bar{y}$$

We know

$$\tilde{\mu} = \bar{Y}$$

Therefore, we know $\tilde{\mu} \sim N(\mu, \frac{\sigma^2}{n})$.

We standardise

$$Z = \frac{\tilde{\mu} - \mu}{\frac{\sigma}{\sqrt{p}}} \sim N(0, 1)$$

By theorem 4 we know

$$X = \frac{(n-1)\tilde{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$$

By theorem 3 we know

$$\frac{Z}{\sqrt{\frac{X}{n-1}}} = \frac{\frac{\tilde{\mu} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{(n-1)\tilde{\sigma}^2}{\sigma^2}}} = \frac{\tilde{\mu} - \mu}{\frac{\tilde{\sigma}}{\sqrt{n}}} \sim t_{n-1}$$

Recall:

$$\frac{\tilde{\mu} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

By replacing σ by $\tilde{\sigma}$, we end up using a t distribution instead of a normal

7 Confidence Interval

We assume our estimator is

$$\tilde{\theta} \sim N(\theta, \operatorname{Var}(\tilde{\theta}))$$

The CI:

$$\theta$$
: estimate $\pm c \times SE = \hat{\theta} \pm c \sqrt{Var(\tilde{\theta})}$

If we don't know σ we replace it by $\hat{\sigma}$.

7.1 Model 1 Example

$$Y_j = \mu + R_j, R_j \sim N(0, \sigma^2)$$

By LS, we know

$$\hat{\mu} = \bar{y}$$

The estimator

$$\tilde{\mu} - \bar{Y}$$

The distribution of our estimator is

$$\tilde{\mu} = N(\mu, \frac{\sigma^2}{n})$$

Our CI:

estimate
$$\pm c \times SE = \hat{\mu} \pm c \frac{\sigma}{\sqrt{b}} = \bar{y} \pm c \frac{\sigma}{\sqrt{n}}$$

where $c \sim N(0, 1)$.

If σ is unknown:

$$\mu: \bar{y} \pm c \frac{s}{\sqrt{n}}, \ c \sim t_{n-1}$$

Recall: $s = \frac{\sum (y_i - \bar{y})^2}{n-1}$

7.2 Model 2A Example

$$Y_{ij} = \mu_i + R_{ij}, \ R_{ij} \sim N(0,1)$$

By LS, $\hat{\mu}_1 = \bar{y_1}$; $\hat{\mu}_2 = \bar{y_2}$

The estimators $\tilde{\mu}_1 = \bar{Y_1}$; $\tilde{\mu}_2 = \bar{Y_2}$

The distributions are

$$\tilde{\mu}_1 \sim N(\mu_1, \frac{\sigma^2}{n_1})$$

$$\tilde{\mu}_2 \sim N(\mu_2, \frac{\sigma^2}{n_2})$$

$$\tilde{\mu}_1 - \tilde{\mu}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2})$$

Our CI is

$$\mu_1 - \mu_2 : \hat{\mu}_1 - \hat{\mu}_2 \pm c\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ c \sim N(0, 1)$$

Most of time we don't know σ , we will need to estimate it;

$$\mu_1 - \mu_2 : \hat{\mu}_1 - \hat{\mu}_2 \pm cs_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ c \sim t_{n_1 + n_2 - 2}$$

7.3 Model 2B Example

$$Y_{ij} = \mu_i + R_{ij}, \ R_{ij} \sim N(0, \sigma_i^2)$$

By LS, $\hat{\mu}_1 = \bar{y_1}$; $\hat{\mu}_2 = \bar{y_2}$

The estimators $\tilde{\mu}_1 = \bar{Y}_1$; $\tilde{\mu}_2 = \bar{Y}_2$

The distributions are

$$\tilde{\mu}_1 \sim N(\mu_1, \frac{\sigma_1^2}{n_1})$$

$$\tilde{\mu}_2 \sim N(\mu_2, \frac{\sigma_2^2}{n_2})$$

$$\tilde{\mu}_1 - \tilde{\mu}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

Our CI is

$$\mu_1 - \mu_2 : \hat{\mu}_1 - \hat{\mu}_2 \pm c\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \ c \sim N(0, 1)$$

Most of time we don't know σ , we will need to estimate it;

$$\mu_1 - \mu_2 : \hat{\mu}_1 - \hat{\mu}_2 \pm c\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ c \sim t_{n_1 + n_2 - 2}$$

7.4 Model 3 Example

$$Y_{dj} = \mu_d + R_{dj}, \ R_{dj} \sim N(0, \sigma_d^2)$$

This is the **same** as model 1.

$$\mu_d: \bar{y_d} \pm c \frac{\sigma_d}{\sqrt{n_d}}; c \sim N(0, 1)$$
$$\mu_d: \bar{y_d} \pm c \frac{s_d}{\sqrt{n_d}}; c \sim t_{n_d - 1}$$

7.5 Model 4 Example

$$\tilde{\pi} \sim N(\pi, \frac{\pi(1-\pi)}{n})$$

CI:

$$\hat{\pi} \pm c \frac{\hat{\pi}(1-\hat{\pi})}{n}; \ c \sim N(0,1)$$

8 Hypothesis Testing

1. Define the hypothesis

$$\begin{array}{c|c} H_0 & H_a \\ \hline \theta = \theta_0 & \theta \neq \theta_0 \\ \theta \geq \theta_0 & \theta < \theta_0 \\ \theta \leq \theta_0 & \theta > \theta_0 \end{array}$$

2. Discrepancy

$$d = \frac{\text{EST} - H_0 \text{ value}}{\text{SE}} = \frac{\hat{\theta} - \theta_0}{\sqrt{\text{Var}(\tilde{\theta})}}$$

Given $\tilde{\theta} \sim N(\theta, \text{Var}(\tilde{\theta}))$ where $D \sim N(0, 1)$ when σ is known or $D \sim t_{n-q+c}$ when σ is unknown.

3. p-value

H_a	p-value
$\theta \neq \theta_0$	2P(D > d)
$\theta > \theta_0$	P(D > d)
$\theta < \theta_0$	P(D < d)

4. Conclusion

p-value > 0.1	No evidence to reject H_0
0.1 > p-value > 0.05	There is evidence to reject H_0
0.05 > p-value > 0.01	There is some evidence to reject H_0
p-value < 0.01	There is tons of evidence to reject H_0

9 Models Cont.

9.1 Model 5: Completely Randomized Design (CRD)

$$Y_{ij} = \mu + \tau_i + R_{ij}, R_{ij} \sim N(0, \sigma^2)$$

 $i = 1, 2, \dots, t$ (number of treatments)

 $j = 1, 2, \dots, r$ (number of replicates/treatments)

Number of units = tr.

 μ is the S.P. mean; $\mu + \tau_i$ is the group mean; τ_i is the treatment effect of group i.

 R_{ij} is the distribution of values about the deterministic part of the model.

Constraint: $\sum \tau_i = 0$

9.1.1 Example

$$\hat{\mu} = \frac{60 + 65 + \dots + 80}{6} = 70$$

$$\hat{\mu} + \hat{\tau}_1 = \frac{60 + 65 + 70}{3} = 65; \ \hat{\mu} + \hat{\tau}_2 = \frac{75 + 75 + 80}{3} = 75$$

$$\hat{\tau}_1 = -5; \ \hat{\tau}_2 = +5$$

9.2 Least Square

$$w = \sum_{i,j} r_{ij}^2 + \lambda(\tau_1 + \dots + \tau_t) = \sum_{i,j} (y_{ij} - \mu - \tau_i)^2 + \lambda(\tau_1 + \dots + \tau_t)$$

Find $\frac{\partial w}{\partial \mu}$, $\frac{\partial w}{\partial \tau_1}$, $\frac{\partial w}{\partial \tau_2}$, \cdots , $\frac{\partial w}{\partial \tau_t}$, $\frac{\partial w}{\partial \lambda}$ Set to zero and solve:

$$\hat{\mu} = \bar{y}_{++}; \ \hat{\tau}_i = \bar{y}_{i+} - \bar{y}_{++}; \ \sigma^2 = \frac{w}{n-q+c} = \frac{w}{tr-1-t+1} = \frac{w}{tr-t}$$

9.3 Estimators

$$Y_{ij} = \mu + \tau_i + R_{ij}, R_{ij} \sim N(0, \sigma^2)$$

Today we consider i = 1, 2; j = 1, 2, ..., r, number of units = 2r.

Recall: $\bar{\mu} = \bar{y}_{++}$.

The estimator is $\tilde{\mu} = \bar{Y}_{++}$

$$E(\bar{Y}_{++}) = E(\frac{\sum_{i=1}^{2} \sum_{j=1}^{2} Y_{ij}}{2r})$$

$$= E(\frac{\sum_{i=1}^{2} \sum_{j=1}^{2} (\mu + \tau_i + R_{ij})}{2r})$$

$$= \frac{\sum_{i=1}^{2} \sum_{j=1}^{r} \mu + \tau_i + E(R_{ij})}{2r}$$

$$= \frac{\sum_{i=1}^{2} \sum_{j=1}^{r} \mu + \tau_i)}{2r}$$

$$= \frac{2ru + \sum_{j=1}^{2} (\tau_1 + \tau_2)}{2r}$$

$$= u$$

Hence, $E(\tilde{\mu}) = \mu$, unbiased!

$$\operatorname{Var}(\bar{Y}_{++}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{2} \sum_{j=1}^{2} Y_{ij}}{2r}\right)$$

$$= \frac{\sum_{i=1}^{2} \sum_{j=1}^{r} \operatorname{Var}(Y_{++})}{(2r)^{2}}$$

$$= \frac{2r\sigma^{2}}{(2r)^{2}} \text{ (by CLT)}$$

$$= \frac{\sigma^{2}}{2r}$$

Recall: $\hat{\tau}_1 = \bar{y}_{1+} - \bar{y}_{++}$. The estimator is $\tilde{\tau}_1 = \bar{Y}_{1+} - \bar{Y}_{++}$

$$E(\tilde{\tau}_{1}) = E(\bar{Y}_{1+} - \bar{Y}_{++})$$

$$= E\bar{Y}_{1+}) - \mu$$

$$= E(\frac{\sum_{j=1}^{2} Y_{ij}}{r}) - \mu$$

$$= \frac{\sum_{j=1}^{2} \mu + \tau_{1}}{r} - \mu$$

$$= \frac{r\mu + \tau_{1}}{r} - \mu$$

$$= \tau_{1}$$

Hence, $E(\tilde{\tau_1}) = \tau_1$, unbiased!

$$\begin{aligned} \operatorname{Var}(\tilde{\tau}_{1}) &= \operatorname{Var}(\bar{Y}_{1+} - \bar{Y}_{++}) \\ &= \operatorname{Var}\left(\bar{Y}_{1+} - (\frac{\bar{Y}_{1+} + \bar{Y}_{2+}}{2})\right) \\ &= \operatorname{Var}\left(\frac{1}{2}\bar{Y}_{1+} - \frac{1}{2}\bar{Y}_{2+}\right) \\ &= \frac{1}{4}\operatorname{Var}(\bar{Y}_{1+}) + \frac{1}{4}\operatorname{Var}(\bar{Y}_{2+}) \text{ (since indep.)} \\ &= \frac{1}{4}\frac{\sigma^{2}}{r} + \frac{1}{4}\frac{\sigma^{2}}{r} \\ &= \frac{1}{2r}\sigma^{2} \Longrightarrow \begin{cases} \operatorname{C.I. for } \tau_{1} \colon \hat{\tau}_{1} \pm c\sqrt{\frac{\hat{\sigma}^{2}}{2r}} \\ d = \frac{\tilde{\tau}_{1} - \tau_{0}}{\sqrt{\frac{\sigma}{2r}}}, \ \sim t_{n-1+c} \end{cases} \end{aligned}$$

9.4 Confidence Interval

C.I. for
$$\tau_1$$
: $\hat{\tau_1} \pm c\sqrt{\frac{\hat{\sigma}^2}{2r}}$; $c \sim t_{n-1+c}$
C.I. for μ : $\hat{\mu} \pm c\sqrt{\frac{\hat{\sigma}^2}{2r}}$; $c \sim t_{n-1+c}$