Leftist trees

Ch. 9.2

Priority queues

• In the clinics, patients are waiting.

Merge two priority queues

• In the clinics, two doctors are on call.

• When Doctor1 becomes off duty, the priority queues have to be melded together.

Operation: Meld

- Priority queues implemented using heaps:
 - Inserting the elements of one heap into another heap.
 - By inserting repeatedly, the meld takes O(n log n).
 - By initializing a max heap, the meld takes O(n). (See Ch. 7.6)

- Priority queues implemented using leftist tree:
 - Insertion, deletion: O(log n)
 - Find min or max: O(1)
 - Meld: O(log *n*)

Extended binary trees

- Start with any binary tree.
- Add an external node wherever there is an empty subtree.
- Obtain an extended binary tree.

Function: shortest(x)

• Let x be a node in an extended binary tree.

• Function shortest(x) is the length of a shortest path from x

to an external node. *Path length: number of edges along the path G Internal node External node

Calculation of shortest(x)

If x is an external node, shortest(x)=0.

Otherwise,

 $shortest(x) = 1 + min\{shortest(leftChild(x), shortest(rightChild(x))\}.$

Height biased leftist trees (HBLT)

- An extended binary tree
- For every internal node x,

 $shortest(leftChild(x)) \ge shortest(leftChild(x))$

Properties of leftist trees (1)

• The rightmost path is a shortest root to external node path, that is, *shortest*(*root*).

Properties of leftist trees (2)

• Number of internal nodes $n \ge 2^{shortest(root)}-1$

The first *shortest(root)* levels of nodes constitute a full binary tree.

Level Number of nodes $1 2^{0}$ $2 2^{1}$ $Total: 2^{0} + 2^{1}$

For a *shortest(root)*-level full binary tree, the total number of nodes is *shortest(root)*

$$\sum_{i=1}^{\infty} 2^{i-1} = 2^{\frac{shortest(x)}{2}} - 1$$

Properties of leftist trees (3)

 Length of rightmost path is O(log n), where n is the number of nodes in a leftist tree.

Leftist trees as priority queues

- Min leftist tree: Leftist tree that is a min tree.
 - Used as a min priority queue.

- Max leftist tree: Leftist tree that is a max tree.
 - Used as a max priority queue.

Examples of min leftist trees

Operations for min leftist trees

- Insert(x, T_a):
 - Create a min leftist tree T_b containing only x
 - Meld T_a and T_b
- DeleteMin(T_a):
 - Meld the two min leftist trees <u>root->leftChild</u> and <u>root->rightChild</u>
 - Delete the original root
- $Meld(T_a, T_b)$
- Initialize()

Operation: Insert()

• Example: insert $(7, T_a)$

STEP 1: Create a single node min leftist tree T_b .

STEP 2: Meld the two min leftist trees.

Operation: DeleteMin()

• Example: deleteMin(T_a)

STEP 1: Get subtrees of root, $T_{a_leftChild}$ and $T_{a_rightChild}$

STEP 2: Delete the root and meld the two subtrees.

Operation: Meld(T_a, T_b)

Phase 1: Top-down process

Maintaining property of min tree:
Root of a subtree has the smallest key.

Going down along the rightmost paths in T_a or T_b

- Comparing their roots.
 For the tree with smaller root, going down to its right child.
 - If no right child, attaching another tree as right subtree.
 - If having right child, comparing again.

Phase 2: Bottom-up process

Maintaining property of leftist tree: Shortest(leftchild)>shortest(rightchild).

- Climbing up through the rightmost path of the new tree
- If shortest(node->leftChild) < shortest(node->rightChild), interchanging the left and right subtrees of the node.

• Phase 1: Top-down STEP 1: Comparing 2 and 5. Meld subtree $T_{a_rightChild}$ and T_b

Phase 1: Top-down

STEP 2: Comparing 50 and 5. Meld subtree $T_{a_rightChild}$ and $T_{b_rightChild}$

Phase 1: Top-down

STEP 3: Comparing 8 and 50.

Attach $T_{a \text{ rightchild}}$ as right subtree of $T_{b \text{ rightChild}}$ 8 should be the root of new tree. Larger 10 T_{a_rightChild} **15**

Phase 1: Top-down

STEP 2: Comparing 50 and 5. Meld subtree $T_{a_rightChild}$ and $T_{b_rightChild}$

• Phase 1: Top-down STEP 1: Comparing 2 and 5. Meld subtree $T_{a_rightChild}$ and T_b

Phase 2: Bottom up

STEP 1: Starting from last modified root (node containing 8). Comparing *shortest*(*leftChild*) and *shortest*(*rightChild*).

Phase 2: Bottom up

STEP 2: Comparing *shortest*(*leftChild*) and *shortest*(*rightChild*) of the node containing 5.

Phase 2: Bottom up

STEP 3: Comparing *shortest*(*leftChild*) and *shortest*(*rightChild*) of the root.

Complexity for meld operation

• Length of rightmost path is O(log n), where *n* is the number of nodes in a leftist tree.

• A meld operation moves down and climbs up along the rightmost paths of the two leftist trees.

• Time complexity for meld: log(m)

m: number of total elements in two leftist trees.

Operation: Initialization()

- Create n single node min leftist trees and place them in a FIFO queue
- Repeatedly remove two min leftist trees from the FIFO queue, meld them, and put the resulting min leftist tree into the FIFO queue
- The process terminates when only 1 min leftist tree remains in the FIFO queue

Weighted-based leftist trees (WBL)

- An extended binary tree
- For every internal node x,

Count(): number of internal nodes

 $count(leftChild(x)) \ge count(rightChild(x))$

Is this a WBLT?

Q3: Is this a WBLT?

Please reply your answers of Q3 via the following link:

Group members: 1~3 people

Summary

- Meldable priority queue
 - Implemented using heaps: O(n)
 - Implemented using leftist trees: O(log n)

- Operations of leftist trees
 - Insert(), deleteMin(), meld(), initialization()