Physics: 3D Field Simulation

a.

d.

e.

Question: Three point charges, of charge +Q, -2Q, and +3Q, are placed equidistant as shown. Which vector best describes the net direction of the electric force acting on the +Q charge?

GPT-40 with CoT:

- 1. Forces Due to the Charges:
 - The -2Q charge attracts the +Q charge. (Force points downward-left).

- The +3Q charge repels the +Q charge. (Force points downward-right).
- 2. Force Magnitudes (Coulomb's Law):
 - Force due to -2Q: $F_{-2Q}=rac{2kQ^2}{r^2}$.
 - Force due to +3Q: $F_{+3Q} = \frac{3kQ^2}{r^2}$.
- 3. Force Directions:
 - -2Q: Downward-left.
 - +3Q: Downward-right.
- 4. Force Components (at 60°):
 - Horizontal: $F_{-2Q,x}=-rac{kQ^2}{r^2}$, $F_{+3Q,x}=+rac{3kQ^2}{2r^2}$.

Vertical:

$$F_{-2Q,y}=-rac{\sqrt{3}kQ^2}{r^2}$$
 , $F_{+3Q,y}=-rac{3\sqrt{3}kQ^2}{2r^2}$

- 5. Net Force Components:
 - Horizontal: $F_x = \frac{kQ^2}{2r^2}$.
 - Vertical: $F_{y}=-rac{5\sqrt{3}kQ^{2}}{2r^{2}}$.
- 6. Net Force Direction:

The net force is determined by

$$an^{-1}\left(rac{F_y}{F_x}
ight).$$

 $F_x>0$ and $F_y<0$ indicate the direction is downward-right.

Final Answer: |e|.

Direct GPT-40: b.

Error Analysis: Misunderstand the net force's direction during vector addition. The issue arose from not correctly identifying the force direction from +3Q to +Q (longer red arrow in vector graphic on the right), which causes the net force to point \, not downward-right **** in **⊗** .

Human Reasoning (Ground Truth):

The direction of the electric force due to -2Q and +3Q can be visualized with a

quick free-body sketch of the electric forces:

