CSCE 420 Homework #2 (2022 Fall)

Game Playing; Logic and Theorem Proving

Total 100 points See Canvas for submission details.

Game Playing 1

Minmax Search 1.1

Using the following figure 1, use minmax search to assign utility values for each Question 1 (15 pts): internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. Assume you explore the successors from left to right.

Figure 1: Game Tree. Solve using minmax search.

1.2 $\alpha - \beta$ pruning

Question 2 (20 pts): Using the following figure 2, use $\alpha - \beta$ pruning to (1) assign utility values for each internal node (i.e., non-leaf node) and indicate which path is the optimal solution for the MAX node at the root of the tree. (2) For each node, indicate the final α and β values. (Note that initial values at the root are $\alpha = -\infty$, $\beta = \infty$.) (3) For each cut that happens, draw a line to cross out that subtree.

Hint: There are 5 places that need to be cut.

Figure 2: Game Tree. Solve using $\alpha - \beta$ pruning. This tree is the same as figure 1.

Question 3 (10 pts): In Minmax search, we used a depth-first exploration through the use of recursion. We know that Minmax gives an optimal solution, however, we also know that depth-first search is suboptimal. Explain why Minmax gives an optimal solution even when it is using a depth-first exploration.

2 Propositional Logic

In this section, assume P, Q, R, S, T, U, V are atoms (propositions).

2.1 Inference rule

Question 4 (20 pts): Using a truth table, show that the resolution inference rule is valid (if the premises are true, the conclusion is also true, or, $((P \lor R) \land (Q \lor \neg R)) \to (P \lor Q)$ is valid). Note: valid means "true under all interpretations".

$$\frac{P \vee R, \ Q \vee \neg R}{P \vee Q}$$

P	Q	R	$(P \vee R)$	$(Q \vee \neg R)$	$(P \vee R) \wedge (Q \vee \neg R)$	$(P \lor Q)$	$((P \lor R) \land (Q \lor \neg R)) \to (P \lor Q)$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

2.2 Normal forms

In all of the problems in this section, show each step of the derivation and indicate which law (or other rules) you used: For example, *distributive law, by definition, etc.*

Question 5 (15 pts):

- (1) Convert $P \vee (Q \wedge \neg R)$ into conjunctive normal form.
- (2) Convert $P \lor (Q \land \neg R) \lor (Q \land S)$ into conjunctive normal form.
- (3) Convert $(P \to Q) \to (R \lor S)$ into disjunctive normal form.

2.3 Theorem proving

Using resolution, show that $P \vee Q$ is a logical consequence of the following premises:

- 1. $R \to (Q \vee S)$
- 2. $(U \to V) \land \neg V$
- 3. $S \rightarrow (P \lor V)$
- 4. $U \vee R$

Question 6 (10 pts): Transform the above problem into a set of clauses (premises and the conclusion), suitable for resolution-based theorem proving.

- Turn each axiom in the list of premises above into conjunctive normal form.
 - One premise may result in multiple clauses.
 - For example, one premise $\neg((P \land \neg R) \lor S)$ will convert to CNF as $(\neg P \lor R) \land \neg S$, which results in two clauses:

Clause 1: $\neg P \lor R$

Clause 2: $\neg S$

• Don't forget to negate the conclusion $(P \lor Q)$, before adding to the clause list. Multiple clauses may (or may not) result from the negated conclusion.

C1:

C2:

Ouestion 7 (10 pts)	Use resolution to derive Folgo	Charry arramy stan	DO NOT USE any other information
•••			
C6:			
C5:			
C4:			
C3:			

Question 7 (10 pts): Use resolution to derive False. Show every step. DO NOT USE any other infernce rule.

Full-size print of the game tree, for practice, etc. (copy 1)

Full-size print of the game tree, for practice, etc. (copy 2)

