

高性能RDBMS及基于K8S的RDS尝试

Performance Infiniband SSD IOPS Flash Oracle Kubernetes RDBMS Cloud NVMe Availability Latency RDSDB-Engine RDMA MUSQL

### **Private Cloud**









#### **Relational Database**

# Graph DBMS, Key-value stores, Relational DBMS, Multivalue DBMS, Object oriented DBMS

328 systems in ranking, July 2017

|             | Rank         |             |                          |                   | Score                     |            |
|-------------|--------------|-------------|--------------------------|-------------------|---------------------------|------------|
| Jul<br>2017 | Jun<br>2017  | Jul<br>2016 | DBMS                     | Database Model    |                           | Jul<br>016 |
| 1.          | 1.           | 1.          | Oracle 🗄 🖫               | Relational DBMS   | <b>1374.88</b> +23.11 -66 | .65        |
| 2.          | 2.           | 2.          | MySQL 🛅 🖫                | Relational DBMS   | 1349.11 +3.80 -14         | .18        |
| 3.          | 3.           | 3.          | Microsoft SQL Server 🛅 🖫 | Relational DBMS   | 1226.00 +27.03 +33        | .11        |
| 4.          | 4.           | <b>↑</b> 5. | PostgreSQL 🔠 🖫           | Relational DBMS   | <b>369.44</b> +0.89 +58   | .28        |
| 5.          | 5.           | <b>4</b> .  | MongoDB 🛅 🖫              | Document store    | 332.77 -2.23 +17          | .77        |
| 6.          | 6.           | 6.          | DB2 🖶                    | Relational DBMS   | 191.25 +3.74 +6           | .17        |
| 7.          | 7.           | <b>1</b> 8. | Microsoft Access         | Relational DBMS   | 126.13 -0.42 +1           | .23        |
| 8.          | 8.           | <b>4</b> 7. | Cassandra 🛅              | Wide column store | 124.12 -0.00 -6           | .58        |
| 9.          | 9.           | <b>1</b> 0. | Redis 🛅                  | Key-value store   | 121.51 +2.63 +13          | .48        |
| 10.         | <b>↑</b> 11. | <b>1</b> 1. | Elasticsearch 🗄          | Search engine     | 115.98 +4.42 +27          | .36        |



#### **Relational Database Service**

#### **Service: AWS RDS**

- It provides cost-efficient and resizable capacity while automating timeconsuming administration tasks such as hardware provisioning, database setup, patching and backups
- the fast performance, high availability, security and compatibility they need



- **✓** fast performance
- √ cost-efficient
- ✓ services
  - √ high availability
  - ✓ security



# fast performance

导致数据库性能问题:应用,Schema,Index,SQL,执行计划,CPU,内存......

### IO 模型:(仅以online redo日志为例)

- WAL: Write-ahead logging
- · direct,sync,连续,512byte

#### 对存储的要求是:

- IOPS
- 延时: QoS,Jitter

### 大多数时候





# fast performance:存储介质

- Principle of Locality
- Shaving x off lantency at every layer in the stack

| Event                                      | Latency   | Scaled        |
|--------------------------------------------|-----------|---------------|
| 1 CPU cycle                                | 0.3 ns    | 1 s           |
| Level 1 cache access                       | 0.9 ns    | 3 s           |
| Level 2 cache access                       | 2.8 ns    | 9 s           |
| Level 3 cache access                       | 12.9 ns   | 43 s          |
| Main memory access (DRAM, from CPU)        | 120 ns    | 6 min         |
| Solid-state disk I/O (flash memory)        | 50-150 μs | 2-6 days      |
| Rotational disk I/O                        | 1-10 ms   | 1-12 months   |
| Internet: San Francisco to New York        | 40 ms     | 4 years       |
| Internet: San Francisco to United Kingdom  | 81 ms     | 8 years       |
| Internet: San Francisco to Australia       | 183 ms    | 19 years      |
| TCP packet retransmit                      | 1-3 s     | 105-317 years |
| OS virtualization system reboot            | 4 s       | 423 years     |
| SCSI command time-out                      | 30 s      | 3 millennia   |
| Hardware (HW) virtualization system reboot | 40 s      | 4 millennia   |
| Physical system reboot                     | 5 m       | 32 millennia  |

SSD 解救 DBA



# fast performance:存储介质

## NAND SSD / Flash 可以解决所有问题吗?

# Write amplification Garbage Collection

- IO Queue Depth
- ・ 读/写
- 空盘/满盘
- ・抖动





# fast performance:存储介质

#### 看蓝线

#### 测试模型

- point selects (single row)
- range selects (multiple rows)
- sum range selects (multiple rows)
- order range selects (multiple rows)
- distinct range selects (multiple rows)
- row updates/deletions/insertions

#### 问题:

• 蓝线有两次下降



# fast performance :存储协议

- SAS/SCSI
- NVMe



NVM-Express protocol, which allows compute and memory complexes to talk directly to flash storage rather than have the flash emulate a disk and go through the SCSI device driver stack



# fast performance:存储网络



# fast performance:存储网络

### 硬件层面





# fast performance:存储网络协议

**NVMf:** allows the new high performance SSD interface, Non-Volatile Memory Express (NVMe), to be connected across RDMA-capable networks.

- Zero-copy
- Kernel bypass
- No CPU involvement





# **fast performance : NVMf**

iSer

iscsi + rdma +infiniband

### **NVMf**

NVMe+ rdma +infiniband

测试模型需要继续优化



### fast performance





# fast performance:分布式存储

#### 易用:

・ 支持容量透明的 scale up/out

#### 数据安全

・ 支持多种冗余模式 : mirror, raid

#### 易维护

- ・ 完善的 FA 机制
- Online rebuild / Online increament rebuild
- ・ 可控制的 rebuild power

#### 优化:

- snapshot,compression
- · 基于最新存储技术进行优化



fast performance :分布式存储



- **✓** fast performance
- √ cost-efficient
- ✓ services
  - √ high availability
  - ✓ security



# cost-efficient:分布式存储

Host/KVM/Docker

- **✓** fast performance
- √ cost-efficient
- ✓ Services
  - √ high availability
  - ✓ security



#### services

### high availability:

Oracle Rac / MySQL Galera



### 用户需要什么:

- · 故障检测机制
- 免干预的切换流程
- · 60s 内完成切换过程
- 应用透明

#### services:

- · 备库水平扩展,逻辑/物理备份
- ・安全



### services













