令和4年度

卒業論文

表面弾性波-スピン渦度結合における スピン軌道相互作用の寄与

武藤永治

学籍番号 : 61819045

指導教員:能崎幸雄

慶應義塾大学 理工学部物理学科

目次

第1章	序論
1.1	研究背景
1.2	先行研究
1.3	研究目的
第2章	原理
2.1	Rayleigh 波
2.2	スピン渦度結合によるスピン流生成
	2.2.1 スピン流
	2.2.2 スピン蓄積
	2.2.3 スピン渦度結合 4
2.3	磁気共鳴
	2.3.1 LLG 方程式
	2.3.2 強磁性共鳴
	2.3.3 スピン波共鳴
第3章	実験方法
3.1	スピン流の検出手法
3.2	材料
	3.2.1 LiNbO_3
	3.2.2 $\operatorname{Ni}_{81}\operatorname{Fe}_{19}$
	3.2.3 Pt
	3.2.4 Mn
	3.2.5 Ti
	3.2.6 Au
3.3	試料作製!
	3.3.1 素子設計
	3.3.2 素子作製
3.4	測定方法
	3.4.1 ベクトルネットワークアナライザ測定
	3.4.2 ゲーティング処理
	3.4.3 測定系

第4章	実験結果	6
第5章	考察	7
第6章	まとめ	8
第7章	謝辞	9

第1章

序論

- 1.1 研究背景
- 1.2 先行研究
- 1.3 研究目的

第2章

原理

- 2.1 Rayleigh 波
- 2.2 スピン渦度結合によるスピン流生成
- 2.2.1 スピン流
- 2.2.2 スピン蓄積
- 2.2.3 スピン渦度結合
- 2.3 磁気共鳴
- 2.3.1 LLG 方程式
- 2.3.2 強磁性共鳴
- 2.3.3 スピン波共鳴

第3章

実験方法

- 3.1 スピン流の検出手法
- 3.2 材料
- $3.2.1 \quad LiNbO_3$
- 3.2.2 Ni₈₁Fe₁₉
- 3.2.3 Pt
- 3.2.4 Mn
- 3.2.5 Ti
- 3.2.6 Au
- 3.3 試料作製
- 3.3.1 素子設計
- 3.3.2 素子作製
- 3.4 測定方法
- 3.4.1 ベクトルネットワークアナライザ測定
- 3.4.2 ゲーティング処理
- 3.4.3 測定系

第4章

実験結果

第5章

考察

第6章

まとめ

第7章

謝辞