of the project, respectively. The dummy activities need no resources and have processing time 0. In order to impose $0 \to j \to n+1$ for all activities $j=1,\ldots,n$ we set $0 \to j$ for all activities j without any predecessor and $j \to n+1$ for all activities j without any successor. Then S_0 is the starting time of the project and $S_{n+1}-S_0$ may be interpreted as the makespan of the project. Usually we set $S_0:=0$.

If preemption is not allowed, the vector $S = (S_j)$ defines a **schedule** of the project. S is called **feasible** if all resource and precedence constraints are fulfilled.

Example 1 Consider a project with n = 4 activities, r = 2 resources with capacities $R_1 = 5$, $R_2 = 7$, a precedence relation $2 \rightarrow 3$ and the following data:

$$\begin{array}{c|cccc}
j & 1 & 2 & 3 & 4 \\
\hline
p_j & 4 & 3 & 5 & 8 \\
r_{j1} & 2 & 1 & 2 & 2 \\
r_{j2} & 3 & 5 & 2 & 4
\end{array}$$

FIGURE 1.1: Two feasible schedules for Example 1.

In Figure 1.1(a) a so-called **Gantt chart** of a feasible schedule with $C_{\text{max}} = 15$ is drawn. This schedule does not minimize the makespan, since by moving activity 1 to the right, a shorter schedule is obtained. An optimal schedule with makespan $C_{\text{max}} = 12$ is shown in (b).

A precedence relation $i \to j$ with the meaning $S_i + p_i \le S_j$ may be generalized by a start-start relation of the form

$$S_i + d_{ij} \le S_j \tag{1.1}$$