Model Formulation

Table 1: List of Variables

Variable	Definition	Unit
k_s^B	Battery power rating at charging station s	MW
e_s^B	Energy capacity for battery at charging station s	MWh
g_{st}^B	Battery electricity generation at charging station s at time t	MWh
d_{st}^B	Inflow demand for battery at charging station s at time t	MWh
x_{st}^B	State of charge for battery at charging station s at time t	MWh
k_s^H	H_2 power rating at charging station s	MW
e_s^H	Energy capacity for H_2 at charging station s	MWh
g_{st}^H	H_2 electricity generation at charging station s at time t	MWh
x_{st}^H	State of charge for H_2 at charging station s at time t	MWh
d_{st}^H	Inflow demand for H_2 at charging station s at time t	MWh
k_s^P	Solar capacity at charging station <i>s</i>	MW
g_{st}^{P}	Solar electricity generation at charging station s at time t	MWh
g_{st}^{M}	SMR electricity generation at charging station s at time t	MWh
u_s^M	Number of SMR modules to build at charging station s	Whole number
u_{si}^W	Whether to build (1) or not build (0) transmission line of capacity group i at station s	Binary
g_{st}^W	Electricity generation purchased from wholesale markets to charging station s at time t	MWh

Table 2: List of Parameters and Sets

Parameter/Set	Definition	Unit
Parameters:		
p^{BK}	Battery annual capital cos	\$/MW
p^{BC}	Battery energy cost	\$/MWh
p^{BE}	Battery operating cost	\$/MWh
r_s^B	Battery ramp rate at charging station s at time t	MWh
p^{HK}	H ₂ capital cost	\$/MW
p^{HC}	H ₂ energy cost	\$/MWh
p^{HE}	H ₂ operating cost	\$/MWh
r_s^H	H_2 ramp rate at charging station s at time t	MWh
p^{PK}	Solar capital cost	\$/MW
p^{PE}	Solar operating cost	\$/MWh
f_{st}^P	Solar capacity factor at charging station s at time t	%
p^{MK}	SMR capital cost	\$/MW
p^{ME}	SMR operating cost	\$/MWh
$ar{k}^M$	SMR module capacity s	MW
$ar{l}_{si}^W$	Length of transmission line of capacity group i built to connect to charging station s	Miles
$ar{k}^W_i$	Effective capacity of transmission line in group i	MW
p_{si}^{WK}	Transmission capital cost for transmission capacity group i at charging station s	\$/MW
p_{si}^{WI}	Transmission infrastructure cost for transmission capacity group i at charging station s	\$/mile
p_{si}^{WC}	Conductor cost for transmission capacity group i at charging station s	\$/mile
p_{si}^{WL}	Land cost for transmission capacity group i at charging station s	\$/mile
p_{st}^{WE}	Wholesale electricity cost at charging station s at time t	\$/MWh
p_s^{WO}	Overhead add-ons at charging station s	%
d_{st}^E	Electricity demand at charging station s at time t	MWh
Sets:		
I	Set of transmission line capacity levels, index $i = \{1, 2, 3,, 7\}$	-
S	Set of stations, index $s = \{1, 2, 3,, 170\}$	_
${\mathbb T}$	Set of hours, index $t = \{1, 2, 3,, 24\}$	-
\mathbb{Z}_0^+	Set of whole numbers, $\mathbb{Z}_{0}^{+} = \{0, 1, 2, 3,\}$	-
\mathbb{Z}_2	Set of binary numbers, $\mathbb{Z}_2 = \{0,1\}$	_

$$\min_{\substack{u_{si}^{W}, k_{s}^{B}, k_{s}^{H}, k_{s}^{P}, u_{s}^{M}, \\ e_{s}^{B}, e_{s}^{H}, k_{s}^{P}, u_{s}^{M}, \\ e_{s}^{B}, e_{s}^{H}, e_{s}^{D}, e_{s}^{M}, e_{s}^{D}, e_{s}^{M}, e_{s}^{D}, e_{s}^{M}, e_{s}^{D}, e_{s}^{D},$$

$$+\left[p^{MK} \underline{u_s^M} \bar{k}^M + \sum_t p^{ME} \underline{g_{st}^M}\right] + \left[\sum_i \left(p_{si}^{WK} \bar{k}_i^W + \left(1 + p^{WO}\right) \left(p_{si}^{WI} + p_{si}^{WC} + p_{si}^{WL}\right) \bar{l}_{si}^W\right) \underline{u_{si}^W} + \sum_t p_{st}^{WE} \underline{g_{st}^W}\right]\right]$$

SMR Expansion and Operating Costs

Transmission Expansion and Operating Costs

s.t.

General Non-negativity:
$$k_s^B, k_s^H, k_s^P, k_s^W, e_s^B, e_s^H \ge 0,$$
 $\forall s \in \mathbb{S}$ (2)

Market Clearing Conditions:
$$g_{st}^B + g_{st}^H + g_{st}^P + g_{st}^M + g_{st}^W \ge d_{st}^E + d_{st}^B + d_{st}^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (3)

Battery Constraints:
$$0 \le d_{st}^B \le k_s^B$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (4)

$$0 \le g_{st}^B \le k_s^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T} \tag{5}$$

$$0 \le g_{st}^B \le x_{st}^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (6)

$$0 \le x_{st}^B \le e_s^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (7)

$$x_{st}^{B} = x_{s(t-1)}^{B} + d_{st}^{B} - g_{st}^{B}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (8)

$$\|g_{st}^B - g_{s(t-1)}^B\| \le r_s^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (9)

Hydrogen Constraints:
$$0 \le d_{st}^H \le k_s^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (11)

$$0 \le g_{st}^H \le k_s^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (12)

$$0 \le g_{st}^H \le x_{st}^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (13)

$$0 \le x_{st}^H \le e_s^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (14)

$$x_{st}^{H} = x_{s(t-1)}^{H} + d_{st}^{H} - g_{st}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (15)

$$\|g_{st}^{H} - g_{s(t-1)}^{H}\| \le r_{s}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (16)

Solar PV Constraints:
$$0 \le g_{st}^P \le f_{st}^P k_s^P$$
, $\forall s \in \mathbb{S}, \ \forall t \in \mathbb{T}$ (18)

SMR Constraints:
$$0 \le g_{st}^M \le u_s^M \bar{k}^M$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (19)

$$\mathbf{u}_{s}^{M} \in \mathbb{Z}_{0}^{+}, \qquad \forall s \in \mathbb{S}$$
(20)

$$\|\mathbf{g}_{st}^{M} - \mathbf{g}_{s(t-1)}^{M}\| \le r_{s}^{M}, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (21)

Wholesale Power Constraints:
$$0 \le g_{st}^W \le \sum_i u_{si}^W \bar{k}_i^W$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (22)

$$\mathbf{u}_{si}^{W} \in \mathbb{Z}_{2}, \qquad \forall s \in \mathbb{S}, \forall i \in \mathbb{I}$$
 (23)

$$\sum_{i} u_{si}^{W} \le 1, \qquad \forall s \in \mathbb{S}, \forall i \in \mathbb{I}$$
 (24)