Michał Bugno, Łukasz Siemański Michał Kordasz

Optymalizacja sterowaniem wirtualnym pojazdem przy użyciu algorytmu genetycznego

Kordasz

Rysunek: Środowisko Car Racing

Kordasz

Uczenie ze wzmocnieniem

Rysunek: Proces uczenia

$$A = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \tag{1}$$

Gdzie:

- $ightharpoonup x_1$ skręt $\langle -1;1 \rangle$. Wartości ujemne oznaczają skręt w lewo, dodatnie w prawo.
- $ightharpoonup x_2$ przyśpieszenie $\langle 0; 1 \rangle$.
- $ightharpoonup x_3$ hamulec $\langle 0; 1 \rangle$.

Kordasz

Pozyskiwanie obserwacji i funkcja oceny

Rysunek: Metryka odległości

Siemański, M Kordasz

Struktura algorytmu genetycznego

$$X_i = \langle x_1; x_2; x_3; x_4; x_5; x_6 \rangle$$

Gdzie x_i oznacza kolejne geny, odpowiedzialne za:

- ➤ x₁ oraz x₂ skręt.
- ▶ x₃ dopuszczalną szybkość.
- $\triangleright x_4$ hamowanie.
- ▶ x₅ przyśpieszenie.
- ▶ x₆ zmiana prędkości (w buforze).

Siemański, M Kordasz

Rezultaty

Generacja:	Fitness:
1	88.9
2	124.9
3	180.3
4	227.3
5	280.5

- Poprawa funkcji fitness.
- Zauważalna poprawa stabilności sterowania pojazdem.
- ▶ Brak "falkowania" i "wycierania krawędzi".

