1 t	he weights may be reduced	to zero.						
\bigcirc A	L1 and L2	B L1	\bigcirc	L2	$\bigcirc\!$	None of the above		
2 . Bag	gging is an ensemble technic	que that:						
A B C D	B Trains multiple models on different subsets of the data C Constructs an ensemble by iteratively updating weights							
3. Wh	nich of the following is/are L	imitations of deep learning?						
\bigcirc A	Data labeling		\bigcirc B	Obtain huge training datase	ets			
\bigcirc	Both \bigcirc and \bigcirc \bigcirc		\bigcirc	None of the previous				
4. Wh	nich neural network has only	y one hidden layer between the in	nput a	and output?				
\simeq	Shallow neural network Feed-forward neural netwo	rks	$\stackrel{\textstyle (B)}{\textstyle (D)}$	Deep neural network Recurrent neural networks				
5 . CN	N is mostly used when there	e is an?						
\bigcirc A	structured data	B unstructured data	\bigcirc	both (A) and (B)	$\bigcirc\!$	None of the previous		
6. Wh	nich of the following is well	suited for perceptual tasks?						
\simeq	feed-forward neural networ recurrent neural networks convolutional neural netwo Reinforcement learning							
7. Wh	nich of the following is/are C	Common uses of RNNs?						
\simeq	BusinessesHelp securities to Detect fraudulent credit-can Provide a caption for image All of the above		ts					
8 . Boo	osting is an ensemble techni	que that:						
A B C D								
9. Wh	nat steps can we take to prev	rent overfitting in a Neural Netwo	ork?					
(A) (C) (E)	Data Augmentation Early Stopping All of the previous		(B) (D)	Weight Sharing Dropout				
10 . W	10. Which of the following is an example of an ensemble learning algorithm?							
\bigcirc A	Decision tree	B SVM	(C)	Random Forest	$\bigcirc\!$	KNN		
11 . A	daBoost is an example of:							
\simeq	Bagging algorithm Randomized algorithm		$\stackrel{\textstyle (B)}{\textstyle (D)}$	Boosting algorithm Reinforcement learning alg	orith	m		
12 . G	radient Boosting is an ensen	able technique that:						

\bigcirc A	Combines predictions usi	0 0		
(B)	-	n different subsets of the data		
(D)	Uses a committee of expe	by iteratively updating weight erts to make predictions		
\bigcirc	GBoost is a popular imple	•		
(A)	Bagging algorithm	memumon on	B) Boosting algorithm	
(c)	Random Forest Algorithm	n	(D) K-Means clustering algorith	hms
14 . S	tacking is an ensemble tec	hnique that:		
(A)	Combines predictions us	ing a weighted average		
$\widecheck{\mathbb{B}}$	Trains multiple models o	n different subsets of the data		
\bigcirc	Constructs an ensemble l	by iteratively updating weight		
(D)	Trains a meta-model to n	nake predictions based on outp	of base models	
15. V	Vhich ensemble learning a	lgorithm uses bootstrapping a	eature sampling?	
(A)	Random Forest	(B) AdaBoost	(C) Gradient Boosting	(D) Stacking
16 . T	he purpose of using ensen	nble learning is to:		
\bigcirc A	Reduce overfitting and in	-		
(B)	Increase training time an			
(D)	Decrease the number of a Eliminate the need for la	-		
\bigcirc	agging algorithms are effe			
(A)	Handling imbalanced dat		(B) sequential data prediction	
(c)	Clustering high-dimension		D Text classification tasks	
18. V			nodels based on their performance	?
$\widehat{(A)}$	AdaBoost	(B) Random Forest	C Gradient Boosting	(D) Stacking
 19. V	Vhich ensemble learning a	lgorithm uses a committee of	erts to make predictions?	
$\widehat{(A)}$	Bagging	(B) Boosting	C Random Forest	(D) Stacking
20. V			the base models are too complex?	
$\widehat{(A)}$	Bagging	(B) Boosting	C Random Forest	(D) Stacking
21. V		lgorithm can handle both regr		
(A)	Bagging (B)	AdaBoost (C) G	ent Boosting (D) Stacking	(E) All of the previous
22 . E	nsemble learning algorith	ms are useful when:	_	
$\widehat{(A)}$	The dataset is small and l	low-dimensional	(B) The dataset is large and hig	gh-dimensional
\bigcirc	The dataset is perfectly b	alanced	(D) The dataset contains categor	orical variables
23 . E	nsemble learning algorith	ms can improve model perform	ee by:	
\bigcirc A	Reducing bias		B Reducing variance	
(C)	Increasing interpretabilit	у	D Increasing training time	
24 . V	Vhich ensemble learning a	lgorithm can handle both num	al and categorical data without req	quiring one-hot encoding?
\bigcirc	Bagging	(B) AdaBoost	C Graident Boosting	(D) Stacking
25. V	Vhich ensemble learning a	lgorithm is less sensitive to ou	rs?	
(A)	Bagging	(B) Boosting	C Random Forest	(D) Stacking

26 . Tl	ne majority voting method	in ensemble learning refers to:				
A B C D	Combining predictions by Combining predictions by	averaging their probabilities taking the mode of their classes multiplying their probabilities taking the median of their values				
27. W	hich ensemble learning alg	orithm can handle missing values	in th	e dataset?		
\bigcirc	Bagging	(B) AdaBoost	\bigcirc	Gradient Boosting	\bigcirc	Stacking
28 . Er	nsemble learning algorithm	s are useful for:				
(A) (C)	Improving model stability Reducing feature importan	ice	(B) (D)	Increasing model complexit Eliminating the need for cre	-	alidation
29 . W	hich ensemble learning alg	orithm can handle non-linear rela	ations	hips in the data?		
\bigcirc	Bagging	B AdaBoost	\bigcirc	Graident Boosting	\bigcirc	Stacking
30 . Er	nsemble learning algorithm	s are effective in:				
\simeq	Reducing model interpreta Handling unbalanced datas	·	(B) (D)	Increasing model training Eliminating the need for hy	perp	arameter tuning
31. W	hich ensemble learning alg	orithm can handle both numerica	l and	categorical features effective	ely?	
\bigcirc A	Bagging	B AdaBoost	(C)	Gradient Boosting	D	Stacking
32 . W	hich ensemble learning alg	orithm is less susceptible to overf	itting	compared to others?		
\bigcirc A	Bagging	B Boosting	(C)	Random Forest	(D)	Stacking
33 . W	hich ensemble learning alg	orithm uses a weighted sum of pr	edicti	ions from base models?		
\bigcirc A	Bagging	B AdaBoost	(C)	Gradient boosting	(D)	Stacking
34 . W	hich ensemble learning alg	orithm can be used to identify im	porta	nt features in a dataset?		
\bigcirc	Bagging	B AdaBoost	\bigcirc	Gradient Boosting	\bigcirc	Stacking
35 . Tl	ne ReLu activation has no e	ffect on back-propagation and the	e vani	shing gradient.		
$\begin{pmatrix} A \\ C \end{pmatrix}$	True can be true and false		(B) (D)	False can't say		
36 . W	Thy is the vanishing gradier	nt a problem?				
\bigcirc	with back propagation, the	dient is large and slow if it's smal gradient becomes smaller as it w multiplying two numbers between	orks l	-		
	-	tions can be used as an activation that sum of p over all n equals to \overline{p}		ion in the output layer if we	wisl	n to predict the probabilities
\bigcirc A	Softmax	B ReLu	\bigcirc	Sigmoid	D	tanh
38 . W	hich of the following woul	d have a constant input in each ep	och o	of training a Deep Learning	node	:1?
\bigcirc	Weight between input and Weight between hidden an Biases of all hidden layer n Activation Function of out none of the previous	d output layer leurons				

39 . Assume a simple MLP mo		s = 1,2,3. The weights to the input . . What will be the output ?	neurons are 4,5 and 6 respectively.
(A) 32	B 64	© 96	D 128
40 . The input image has been the size of the convoluted matr		28 X 28 and a kernel/filter of size 7	X 7 with a stride of 1. What will be
\bigcirc A) 20×20	\bigcirc B) 21×21	\bigcirc 22 × 22	\bigcirc 25 × 25
41 . The number of nodes in the to the hidden layer are	e input layer is 10 and the hidde	en layer is 5. The maximum number	of connections from the input layer
A 50	(B) less than 50	© more than 50	(D) it's an arbitrary value.
42 . Which of the following state	tements is true when you use 1	1×1 convolutions in a CNN?	
A It can help in dimensiona B It can be used for feature C It suffers less overfitting D all of the previous	pooling		
43 . Deep learning algorithms a	remore accurate than mach	ine learning algorithm in image clas	sification.
A 33 %	B 37%	C 40%	D 41%
44 . Which of the following are	universal approximators?		
(A) Kernel SVM	(B) Neural Networks	© Boosted Decision trees	(D) All of the above
45 . In which of the following a	pplications can we use deep le	arning to solve the problem?	
A Protein structure predictC Detection of exotic partic		B Prediction of chemical re D all of the previous	actions
46 . Which of following activate	ion function can't be used at o	utput layer to classify an image ?	
(A) Sigmoid	(B) tanh	C ReLU	(D) None of the previous
47. Dropout can be applied at v	visible layer of Neural Network	x model?	
(A) True		(B) False	
48. Which of the following neu	ıral network training challenge	e can be solved using batch normaliz	ation?
(A) overfitting		B Restrict activation to become	ome too high or low
C Training is too slow		(D) Both (B) and (C)	
(E) All of the previous			
49. Changing Sigmoid activation	on to ReLu will help to get over	r the vanishing gradient issue?	
(A) True		(B) False	
50 . In CNN, having max poolir	ng always decrease the parame	ters?	
(A) True	(B) False	C can be true and false	(D) can't say
51 . Bagging is more sensitive t	o noise.		
(A) True		(B) False	
52 . What is true about the fun	ctions of a Multi Layer Percept	tron?	
B It predicts which group of	were born out of the need to a of given set of inputs falls into. determines the confidence leve	address teh inaccuracy of an early classed of the prediction	assifier, the perceptron.

53 . Se	elect reason(s) for using a D	eep Neural Network.			
A B C D	Deep nets are great at reco	nplex and can't be deciphered gnizing patterns and using the logy, GPUs, to accelerate the to	em as bui	lding blocks in decipheri	
54 . Se	entiment analysis using Dee	p Learning is a many-to one p	rediction	ı task	
\bigcirc A	True	B False	\bigcirc	Can be true and false	(D) can't say
55 . Ba	ackPropogation cannot be a	pplied when using pooling lay	rers		
$\widehat{(A)}$	True		(B)	False	
56. W	hat is the primary purpose	of regularization in deep learn	ning?		
(A) (B) (C) (D)	to increase computational of to reduce the number of lay to prevent overfitting to speed up the training pre-	yers in a neural network			
57. W	hich of the following regul	arization techniques adds a per	nalty ter	m based on the absolute v	values of the weights?
A	L1 regularization	B L2 regularization	\bigcirc	Dropout	(D) Elastic Net
58 . In	neural networks, what doe	es L2 regularization encourage?	?		
$\widehat{(A)}$	Sparse weight matrices		(B)	large weight values	
$\stackrel{\smile}{(c)}$	small weight values		\bigcirc	No impact on weight val	ues
59. H	ow does dropout regulariza	tion work in a neural network	?		
(A) (B) (C)	It randomly drops input fea It randomly drops entire la It adds noise to the input d	yers during training			
D	It introduces a penalty term	n for large weights.			
60. W	hich regularization techniq	ue combines both L1 and L2 p	enalties?		
\bigcirc A	Dropout		\bigcirc B	Ride regression	
\bigcirc	Elastic Net		\bigcirc	Batch Normalization	
61. W	hat is the purpose of early	stopping as a form of regulariz	zation?		
(A) (B) (C) (D)			-		
62. W	hich of the following stater	nents is true about the bias-va	riance tr	adeoff in the context of re	egularization?
(A) (B) (C) (D)	Regularization always incre Regularization can help bal	eases bias and decreases variar eases both bias and variance lance bias and variance act on the bias-variance tradeo			
63 . In		orks, what does weight decay			
(A) (B) (C) (D)	The gradual increase in we	ight values during training eight values during training y weights from the network			

64 . V	Vhich of the following is a disadvantage of using a high regul	arization strength in a neural network?
\bigcirc A	Increased risk of overfitting	
\bigcirc B	Faster convergence during training	
(C)	Enhanced generalization to new data	
D	Reduced capacity to capture complex patterns	
65 . V	Vhat is weight decay?	
(A)	A regularization technique (such as L2 regularization) that r	esults in gradient descent shrinking the weights on every iteration.
$\overline{\mathbb{B}}$	Gradual corruption of the weights in the neural network if i	t's training on noisy data.
(C)	The process of gradually decreasing the learning rate during	training
D	A technique to avoid vanishing gradient by imposing a ceili	ng on the values of the weights.
66 . I	f you have 10,000,000 examples, how would you split the train	/dev/test set?
\bigcirc A	98% train. 1% dev. 1% test	
\bigcirc B	33% train. 33% dev. 33% test	
(C)	60% train. 20% dev. 20% test	
67 . T	The dev and test set should:	
\bigcirc A	Come from the same distribution	
\bigcirc B	Come from different distributions	
(C)	Be identical to each other (same (x, y) pairs)	
\bigcirc	Have the same number of examples	
	f your Neural Network model seems to have high variance, wapply)	hat of the following would be promising things to try? (choose all
(A)	Make the Neural network deeper	(B) Get more training data
(c)	Get more test data	(D) Increase the number of units in each hidden layer
E	Add regularization	
Supp		narket, and are building a classifier for apples, bananas and oranges. ev set error of 7%. Which of the following are promising things to
(A)	Increase the regularization parameter lambda	
(B)	decrease the regularization parameter lambda	
(C)	get more training data	
D	use a bigger neural network	
70. V	What happens when you increase the regularization hyperpara	ameter lambda?
\bigcirc A	Weights are pushed twoard becoming smaller (closer to 0)	
\bigcirc B	weights are pushed toward becoming bigger (further from 0 $$	
(C)	doubling lambda should roughly result in doubling the weig	hts
(D)	Gradient descent taking bigger steps with each iteration (pro	pportional to lambda)
71. V	Vith the inverted dropout, at test time:	
\bigcirc A	You don't apply dropout (do not randomly eliminate units),	but keep 1/keep_prob factor in the calculations used in training
B	You don't apply dropout (do not randomly eliminate units) a the training	and do not keep the 1/keep_prob factor in the calculations usd in
(c)	You apply dropout (randomly eliminate units) but keep 1/k	eep_prob factor in the calculations used in training

(D) You apply dropout (randomly eliminate units) and do not keep 1/keep_prob factor in the calculations used in training

72. Which of these techniques are useful for reducing variance (reduce overfitting)? (check all that apply)

(A) (D)	Dropout Vanishing gradient Exploding gradient	B Gradient Check E Xavier initializa	~	Data augmentation L2 regularization			
73. W	Thy do we normalize the inputs x ?						
(A) (B) (C) (D)	Normalization is another word for regularization–it helps to reduce variance It makes the cost function faster to optimize It makes it easier to visualize the data.						
74. W	That is the role of the temperature para	meter in the context o	f knowledge distillation as	a form of regularization?			
(A) (B) (C) (D)	Controls the learning rate Adjusts the level of noise in the input Regulates the softness of the target dis Sets the threshold for dropout during to	tribution					
75 . Ir	the context of neural networks, what	does dropout rate refe	r to?				
A B C D	B The rate at which weight are decayed during training The probability of dropping out a unit in the hidden layers during training						
	Which of the following is a technique usep learning?	sed for dynamic adjus	tment of the learning rate	during training to improve convergence			
(A) (C)	Adversarial training Batch Normalization		B Learning rate annea D Feature Scaling	ling			
77. W	hat is the purpose of adding noise to the	ne input data as a form	n of regularization?				
(A) (B) (C) (D)	A To make the training process deterministic B To improve model interpretability C To reduce the impact of outliers in the input data						
	the context of regularization, what do	es the term "shrinkage	e" refer to?				
(A) (B) (C) (D)	Reducing the number of hidden layers in the network C Constraining the magnitude of the weights in the model						
79. W	hich of the following statements is tru	e about the dropout to	echnique?				
(A) (B) (C) (D)	Dropout can be applied only to input layers Dropout introduces random variations only during testing						
80 . W	That is the primary goal of ensemble mo	ethods in machine lea	rning?				
(A) (B) (C)	To reduce the computational complexit To increase the training time of individe To improve the predictive performance	dual models	ning multiple models				

 $\stackrel{\frown}{\mathbb{D}}$ To decrease the diversity among base models

81. W	Which of the following states	ments is true about bagging (Boo	tstrap Aggregating)?			
A B C D	B It trains multiple models independently on different subsets of the training data. It combines models using a weighted average.					
82. V	What is the purpose of rando	om forests in ensemble learning?				
A B C D	B To reduce the number of trees in the ensemble C To introduce randomness by considering a random subset of features for each tree					
83 . Ir	n boosting, how are the weig	ghts assigned to misclassified inst	tances during training?			
	Inversely proportional to the	veights for misclassified instances he number of features nbines the predictions of base me	s odels by taking a weighted averag	e, wh	nere the weights are learned	
$\widehat{(A)}$	Bagging	(B) Stacking	(C) Boosting	\bigcirc	Random Forest	
\cup		ge of ensemble methods over ind				
(A) (B) (C) (D) (B6. In (A) (B) (C) (D)	A Ensemble methods are always faster than individual models. B Ensemble methods can handle only linear relationships. C Ensemble methods often generalize better and have improved robustness. D Ensemble methods are more prone to overfitting. 86. In the context of boosting, what does the term "weak learner" refer to? A model with high training accuracy					
87. W	Vhich ensemble method trai	ns multiple models independently	y on different subsets of the training	ng da	ta?	
\bigcirc A	Boosting	(B) Stacking	© Bagging	D	Random Forest	
88. V	What is bagging short for in	the context of ensemble methods	?			
(A) 89. W	Bootstrap Aggregating Vhich ensemble method is k	B Boosting Algorithm nown for building a sequence of	© Bagged Aggregation weak learners, each correcting the	D	Batch Aggregation rs of its predecessor?	
$\widehat{(A)}$	Bagging	(B) AdaBoost	(C) Random Forest	\bigcirc	Gradient Boosting	
\cup		ge of ensemble methods over ind	\smile		Ü	
(A) (B) (C) (D)	Faster training time Improved generalization as Lower computational comp Higher sensitivity to outlie	nd robustness plexity				
91. W	Which ensemble method is b	ased on constructing a forest of d	lecision trees with high diversity?			
\bigcirc A	Bagging	B AdaBoost	C Random Forest	D	Stacking	

92. W	nat does the acronym "LSTM" stand for in	ine context of deep	iear	ning?		
(A) (C)	Long Short-Term Memory Limited Short-Term Memory		B D	Linear Short-Term Memory Lasting Short-Term Memor	-	
93 . Ir	n boosting, what is the purpose of the learning	ng rate parameter?				
(A) (B) (C)	It controls the number of weak learners It as It determines the depth of decision trees It sets the threshold for feature selection	djusts the amount l	by v	which weights are updated o	during each iteration	
94 . W	hat distinguishes Random Forest from trad	tional bagging tech	niq	ues?		
A	Random Forest uses a single decision tree					
(B)	Random Forest trains models sequentially					
(C)	Random Forest introduces randomness by	_	m s	ubset of features for each tr	ree	
(D)	Random Forest assigns equal weights to all	instances				
95 . H	ow does stacking differ from bagging and b	oosting in ensemble	e me	ethods?		
\bigcirc A	Stacking trains models independently on d	ifferent subsets				
(B)	Stacking combines predictions using a weig					
(C)	Stacking builds a sequence of weak learner					
(D)	Stacking uses multiple base models to form	a meta-model				
96. W	That role does the concept of "bias-variance	tradeoff" play in en	sem	ible methods?		
(A)	Ensemble methods eliminate the bias-varia	nce tradeoff				
(B)	Ensemble methods intensify the bias-varian					
(C)	Ensemble methods help balance bias and va					
(D)	Ensemble methods have no impact on bias					
97. W	That is the primary limitation of using too m	any weak learners	in b	oosting?		
(A)	Increased risk of overfitting	(1	B)	Decreased computational c	complexity	
(C)	Improved generalization	(1	D)	Faster training time		
98 . Ir	a bagging, how are the subsets of the training	g data created for ea	ach	base model?		
\bigcirc A	Randomly and with replacement					
\bigcirc B	Randomly and without replacement					
(C)	Sequentially and with replacement					
(D)	Sequentially and without replacement					
99 . W	That is the primary advantage of using grad	ent boosting over to	radi	tional AdaBoost?		
\bigcirc A	Faster convergence	(1	$\overline{\mathbf{B}}$	Better handling of outliers		
(C)	Reduced risk of overfitting	(l	D)	Simplicity in implementation	on	
100.	Which ensemble method is prone to becomi	ng computationally	exp	pensive as the number of mo	odels increases?	
\bigcirc A	Bagging B Stacking		\hat{c}	Boosting	(D) Random Forest	t
101.	What does the term "stacking" refer to in en	semble learning?				
$\widehat{(A)}$	Combining models using a weighted average	ge				
(B)	Training models independently on differen					
$\check{\mathbb{C}}$	Constructing a sequence of weak learners					
D	Using multiple base models to form a meta	-model				
102.	102 . Which ensemble method is known for its ability to handle both linear and non-linear relationships in the data?					

(A)	Bagging	(B) Stacking	(C) Random Forest	(D) Gradient Boosting		
103 .]	Explain the concept of "out-o	of-bag" error in the context of bag	ging.			
A	It is the error rate calculated	-				
\simeq	It is the error rate on the va					
\simeq		error obtained from the unused s	-			
\cup		l's performance on out-of-distribu				
104. \	What is the role of the hyper	rparameter "max depth" in decision	on trees within a Randon	n Forest?		
(A)	It controls the number of tr					
\simeq	_	h of individual decision trees				
\simeq	It sets the learning rate for	-				
\cup		ned to misclassified instances				
105. l	In the context of ensemble m	nethods, what is "early stopping,"	and how does it contribu	ite to regularization?		
\simeq				ing, contributing to model simplicity.		
(B)				starts to memorize the training data.		
(C)		oise to the input data during trai		ing.		
(D)		d to regularization in ensemble m				
	_	sing the number of base models of	n the computational con	nplexity of stacking?		
(A)	The computational complex					
(B)	The computational complex					
(C)	The computational complex	•	1.1			
(D)		kity depends on the type of base i				
107 .]	Explain the concept of "adve	rsarial training" in the context of	ensemble methods.			
(A)	_	es training models to be robust ag				
\simeq	-	s on maximizing the accuracy on	-			
(C)	_	ates the need for ensemble method				
_		to using adversarial examples as				
$\overline{}$		acking with cross-validation" add	ess the risk of overfittin	g in stacking?		
A	It eliminates the need for cr	_				
B		ated models, reducing overfitting.				
\simeq	-					
	D) It has no impact on the risk of overfitting.					
		ck of using a high learning rate i				
A	Slower convergence		(B) Increased risk of o			
(c)	Decreased model performan		(D) Improved generalis	zation		
110.	Explain the concept of "featu	are importance" in the context of	Random Forest.			
A	-	nts the number of times a feature	-			
(B)	-	es the relevance of a feature in pr	edicting the target varial	ble.		
(C)		pplicable to ensemble methods.				
(D)	Feature importance measures the computational cost of using a specific feature.					

111. What is the role of the "n estimators" hyperparameter in ensemble methods such as Random Forest and Gradient Boosting?

A It cor	itrols the learning rate	in boosting algorithms.			
B It set	s the maximum depth	of individual decision trees.			
C It spe	ecifies the number of b	ase models in the ensemble.			
D It det	ermines the subset of	features considered for each base	e mode	1.	
112 . Explai	n the concept of "stack	ring with meta-features" in the c	ontext	of ensemble methods.	
(A) Stack	ing with meta-feature	s involves using the output of ba	se mod	lels as features for a meta-r	nodel.
B Stack	ing with meta-feature	s eliminates the need for multipl	e base i	models.	
C Stack	ing with meta-feature	s refers to combining models usi	ng a w	eighted average.	
D Stack	ing with meta-feature	s involves using only one type or	f base r	model in the ensemble.	
113 . What	is Dropout in the cont	ext of neural networks?			
A Addin	ng noise to input featu	res			
B Remo	oving random neurons	during training			
C Redu	cing the learning rate				
D Incre	asing the number of hi	idden layers			
114 . What	is the main purpose of	Dropout in neural networks?			
A To in	crease overfitting				
	peed up the training pr	ocess			
C To pr	event co-adaptation of	f neurons			
(D) To ela	iminate the need for a	ctivation functions			
115 . Which	ı of the following state	ments is true about the applicati	ion of I	Oropout during training?	
(A) Drop	out is only applied to i	input layers			
B Drop	out is applied to all lay	vers except the output layer			
C Drop	out is applied during b	ooth training and testing			
D Drop	out is never applied to	neural networks			
116 . How o	loes Dropout contribut	te to regularization in neural net	works?		
A By in	creasing the number o	of parameters			
B By in	troducing noise to the	input data			
C By re	educing the model's cap	pacity			
D By pr	romoting co-adaptation	n of neurons			
117 . In terr	ns of training, what do	oes it mean if a neuron is "droppe	ed out"	?	
(A) The r	neuron's weights are so	et to zero			
B The r	neuron is removed from	n the network temporarily			
C The r	neuron's activation fun	action is bypassed			
D The r	neuron's output is squa	ared			
118 . What	challenge does Dropou	nt aim to address in neural netwo	orks?		
(A) Unde	erfitting	B Overfitting	<u>C</u>	Vanishing gradients	(D) Exploding gradients
119 . How d	loes Dropout affect the	e training time of a neural netwo	rk?		
(A) Slows	s down the training pr	ocess			
\sim	ds up the training proc	ess			
C No in	npact on training time				
D Depe	nds on the type of acti	vation function used			
120 What	is the recommended re	ange for Dropout rates in neural	netwoi	·ks?	

A	0.0 to 0.1	B 0.2 to 0.5	© 0.5 to 0.8	(D) 0.9 to 1.0
121.	How does Dropout contribu	te to model generalizati	on?	
(A) (B) (C) (D)	By memorizing the training By promoting co-adaptation By reducing the sensitivity By increasing the number of	n of neurons of neurons to specific in	nput features	
122 .	When applying Dropout, wh	nich phase is used for ad	justing the weights of the neural	l network?
(A) (B) (C) (D)	Training phase Testing phase Both training and testing p Neither training nor testing			
123.	Explain the term "co-adapta	tion of neurons" in the c	ontext of neural networks and h	ow Dropout addresses it.
A	Co-adaptation refers to neu neurons during training.	rons relying too much o	n each other, and Dropout break	s these dependencies by randomly dropping
(B) (C) (D)	-	neurons are independe		y introducing noise. ptation by removing dependencies.
124 .	How does the effectiveness	of Dropout vary with th	e size and complexity of a neural	network?
A B C D	Dropout is more effective in Dropout is more effective in Dropout is equally effective Dropout is irrelevant to net	n large and complex net e across all network size	works s and complexities	
125 .	What is the relationship bet	ween Dropout and the c	oncept of ensemble learning?	
A B C D	Dropout is a type of enseme Ensemble learning and Dropout and ensemble learning Dropout eliminates the need	pout are unrelated conc ning achieve the same r	esult in terms of model diversity	
126 .	Explain the trade-off betwee	n using a high Dropout	rate and a low Dropout rate in n	eural networks.
(A) (B) (C) (D)	-	improve model general ropout rate does not im		•
127 .	How does Dropout contribu	te to mitigating the vani	ishing gradient problem in deep	neural networks?
A B C D	a. By increasing the learning By preventing co-adaptation By introducing noise to the By reducing the sensitivity	n of neurons input data	nput features	
128.	What is the primary goal of	data augmentation in m	achine learning?	
\bigcirc	To decrease the size of the	dataset		

 $\bar{\underbrace{B}}$. To increase the computational complexity

 $\stackrel{\frown}{ ext{D}}$ To eliminate the need for validation data

 $\stackrel{\frown}{\mathbb{C}}$ To improve model performance by increasing the diversity of the training data

129.	Which of the following is a	common technique used in data a	augme	ntation for image data?				
(A) (C)	Principal Component Anal- Image rotation	ysis (PCA)	(B) (D)	Feature scaling Lasso regularization				
130 .]	30 . How does data augmentation contribute to preventing overfitting in machine learning models?							
A B C D	By increasing the number of layers in the model By introducing noise to the input data By providing a more diverse set of training examples							
131 .]	In text data augmentation, w	vhat technique involves replacing	g word	ls with their synonyms?				
\bigcirc A	Tokenization	B Embedding	\bigcirc	Word substitution	\bigcirc	Lemmatization		
132.	Which of the following is a	disadvantage of data augmentation	on?					
(A) (B) (C) (D)	A Increased model generalization B Potential introduction of unrealistic patterns C Improved model robustness							
133.	What is the purpose of rand	om cropping in image data augm	entati	on?				
A B C D	B To remove irrelevant features from the image C To create variations in the spatial location of objects							
134. Which type of data augmentation is commonly used for time series data?								
134.	Which type of data augment	tation is commonly used for time	series					
A	Image rotation	B Time warping	<u>C</u>	Word substitution	D	Feature scaling		
A	Image rotation Explain the concept of "jitter Jittering refers to the introd	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data pe	© entati	Word substitution	D	Feature scaling		
(A) 135. I	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data pe	© entati oints	Word substitution on.	D	Feature scaling		
(A) 135. I	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data po mage rotation ta augmentation augmentation, what is the purpo	© entati oints	Word substitution on.	D	Feature scaling		
(A) 135. 1 (B) (C) (D) 136. 1 (A) (C)	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat In the context of image data To rotate images clockwise To adjust the image bright	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data po mage rotation ta augmentation augmentation, what is the purpo	c c entati	Word substitution on. horizontal flipping? To create mirror images	D	Feature scaling		
(A) 135. 1 (B) (C) (D) 136. 1 (A) (C)	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat In the context of image data To rotate images clockwise To adjust the image brighte How does data augmentatio Data augmentation focuses Feature engineering is limit Data augmentation involve	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data po mage rotation ta augmentation augmentation, what is the purpo	entation oints ose of B D featurementa	Word substitution on. horizontal flipping? To create mirror images To resize images re engineering manipulates ation is applicable to all data	a type	ng features.		
(A) 135. 1 (A) (B) (C) 136. 1 (A) (B) (C) 137. 1 (A) (B) (C) (D)	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat In the context of image data To rotate images clockwise To adjust the image brighte How does data augmentatio Data augmentation focuses Feature engineering is limit Data augmentation involve Feature engineering and data	B Time warping ring" in the context of data augm duction of noise to input features om selection of a subset of data per mage rotation a augmentation augmentation, what is the purpor mess on differ from feature engineering s on creating new samples, while ted to image data, while data aug es scaling features, while feature of	entation oints ose of B D framentation of the control of the con	Word substitution on. horizontal flipping? To create mirror images To resize images re engineering manipulates ation is applicable to all data	a type	ng features.		
(A) 135. 1 (A) (B) (C) 136. 1 (A) (B) (C) 137. 1 (A) (B) (C) (D)	Image rotation Explain the concept of "jitter Jittering refers to the introd Jittering involves the rando Jittering is a synonym for i Jittering is irrelevant to dat In the context of image data. To rotate images clockwise To adjust the image bright. How does data augmentation Data augmentation focuses. Feature engineering is limit Data augmentation involves Feature engineering and data. What is the role of dropout is not related to data Dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation involves the role of dropout is not related to data augmentation	B Time warping ring" in the context of data augmentation of noise to input features om selection of a subset of data permage rotation a augmentation augmentation, what is the purpose mess on differ from feature engineering on creating new samples, while ted to image data, while data augmentation are synonymous in the context of data augmentation generation by randomly removing	centation coints oints ose of B D featurementations; terminations	Word substitution on. horizontal flipping? To create mirror images To resize images re engineering manipulates ation is applicable to all data eering involves randomizations. ures during training	a type	ng features.		

\bigcirc A	Time warping	B Spectrogram augmentation
\bigcirc	Random cropping	(D) Jittering
140.	What is the purpose of elastic deformation in image data augr	nentation?
\bigcirc A	To adjust the image contrast	
\bigcirc B	To introduce non-linear distortions to the image	
(C)	To resize the image	
(D)	To rotate the image	
141 .]	In natural language processing, which technique involves rand	domly removing words from sentences during data augmentation?
A	Tokenization	
(B)	Word substitution	
(C)	Sentence splitting	
(D)	Sentence dropout	
	Explain the concept of "adversarial training" in the context of	-
(A)	by data augmentation.	s to test the model's robustness against unseen patterns introduced
(B)	Adversarial training is irrelevant to data augmentation.	
(D)	Adversarial training involves increasing the size of the training adversarial training enhances data augmentation by introdu-	
\bigcirc		
	How does data augmentation contribute to handling class imb	variance in classification tasks?
(A)	Data augmentation exacerbates class imbalance	
(B)	Data augmentation is not related to class imbalance Data augmentation generates additional samples for minority	y alassas, addressing alass imbalance
(D)	Data augmentation generates auditional samples for initionity Data augmentation reduces the need for addressing class imb	
\bigcirc	What challenges might arise when applying data augmentation	
(A)	Difficulty in implementing data augmentation for non-image	
(B)	Limited applicability of data augmentation to non-image data	
(c)	The potential introduction of unrealistic patterns	•
(D)	No challenges; data augmentation is equally effective for all	data types
145 .]	Explain the term "mixup" in the context of data augmentation	and how it differs from traditional augmentation techniques.
(A)	Mixup involves blending two or more samples, creating new	synthetic samples with averaged labels.
(B)	Mixup is a synonym for image rotation.	
$\overline{\mathbb{C}}$	Mixup refers to the addition of random noise to input feature	es.
D	Mixup is irrelevant to data augmentation.	
146 .]	How does data augmentation impact the interpretability of ma	achine learning models?
\bigcirc A	Data augmentation improves model interpretability by provi-	ding more diverse training examples.
\bigcirc B	$\label{eq:definition} Data \ augmentation \ has \ no \ impact \ on \ model \ interpretability.$	
(C)	Data augmentation reduces model interpretability due to the	
(D)	Data augmentation improves model interpretability by elimin	nating the need for validation data.
147.	What is the role of "cutout" in image data augmentation?	
A	To remove random portions from images	
(B)	To blur the edges of images	
(C)	To rotate images	
(D)	To resize images	

148. In the context of data augme	entation, explain how the techniq	que of	"shearing" is applied to ima	ge dat	ta.		
A Shearing involves adjusting	g the brightness of images.						
B Shearing is irrelevant to da	B Shearing is irrelevant to data augmentation.						
\simeq	Shearing introduces non-linear distortions to the image by tilting it along one of its axes.						
(D) Shearing is a synonym for image rotation.							
149 . Which ensemble learning al	lgorithm can be applied to both re	egressi	ion and classification tasks?				
(A) Bagging	B AdaBoost	\bigcirc	Random Forest	D	Stacking		
150 . Ensemble learning algorithm	ms can be computationally expens	sive w	hen:				
A The dataset is small		\bigcirc B	The base models are simple	3			
C The ensemble size is small		D	The dataset is large				
151 . Which ensemble learning al	lgorithm can be used to identify in	mport	ant features in a dataset?				
(A) Bagging	(B) AdaBoost	\bigcirc	Gradient Boosting	\bigcirc	Stacking		
-	p learning and machine learning a is recommended to do feature eng	-					
(A) True		\bigcirc B	False				
153 . Which of the following is a	representation learning algorithm	n?					
(A) Neural Network	(B) Random Forest	(c)	k-Nearest neighbor	\bigcirc	None of the above		
154 . Which of the following opti	on is correct for the below-mention	ioned t	techniques?				
AdaGrad uses first order d	ifferentiation						
2. L-BFGS uses second order	differentiation						
3. AdaGrad uses second orde	r differentiation						
4. L-BFGS uses first order diff	ferentiation						
(A) 1 and 2	(B) 3 and 4	(c)	1 and 4	\bigcirc	2 and 3		
155 . Increase in size of a convolu	itional kernel would necessarily in	increas	se the performance of a con-	voluti	onal neural network.		
(A) True	·		False				
images on cars and trucks and th	neural network model which was the aim was to detect name of the v	vehicle	e (the number of classes of v	vehicle	es are 10). Now you want to		
	et which has images of only Ford cories would be suitable for this ty		-	s to Ic	ocate the car in an image.		
A Fine tune only the last cou	ple of layers and change the last l	layer (classification layer) to regre	ssion	layer		
	t the last, re-train the last layer						
C Re-train the model for the	new dataset						
(D) None of these							
:	utional kernel of size 7 x 7 with zo mension 224 x 224 x 3 through th	_	-	-			
(A) 217x217x3	B 217x217x8	\bigcirc	218x218x5	D	220x220x7		
	LU activation function with linear LU activations. Will the new neur						
(A) Yes		(B)					

			e, it takes 2 seconds for a single data and 4th layers with rates 0.2 and 0.3,
A Less than 2 secs	B Exactly 2 secs	© Greater than 2 secs	(D) Can not Say
160 . Which of the following op	tions can be used to reduce over	rfitting in deep learning models?	
A Add more data C Use architecture that gene E Reduce architectural com		(B) Use data augmentation(D) Add regularization(F) All of these	
161 . Perplexity is a commonly ments is correct?	used evaluation technique when	n applying deep learning for NLP	tasks. Which of the following state-
A Higher the perplexity the	better	B Lower the perplexity the	e better
162 . Suppose an input to Max-Frons in the layer is (3, 3).		ne pooling size of neu-	3 4 5 4 5 6
(A) 3 (C) 5.5 163. If we remove the ReLU la	(B) 5 (D) 7 yers, we can still use this neu	ral network to model	5 6 7
non-linear functions.			Input
(A) True	(B) False		\$
		[Affine
			ReLU
			
		<u> </u>	Affine
			ReLU
			Output
464 D. J. J. J.	1. 1.1 6.1 6.1		Output
164 . Deep learning can be appli	ed to which of the following N		
(A) Machine translation (C) Question Answering systems	em	(B) Sentiment analysis (D) All of the above	
segment the areas into industria	al land, farmland, and natural la ta of the map of Arcadia city, wi to find out the nearest distance	ndmarks like rivers, mountains, et th detailed roads and distances bet	city and its outskirts. The task is to tc. ween landmarks. This is represented
A TRUE		B FALSE	
166 . Which of the following is a	a data augmentation technique	used in image recognition tasks?	
A Horizontal flipping E Random translation	B Random cropping F Random shearing	C Random scalingG All of these	(D) Color jittering
input is "predictio" (which is a 9	-	to predict what would be the 10th	er in the sequence. For example, our character.

A B C D	Fully-Connected N Convolutional Neu Recurrent Neural N Restricted Boltzma	ıral Network Network						
168.	What is generally th	ne sequence follo	wed when building a ne	eural ne	etwork architec	ture for sema	ntic segmenta	tion for an image?
A	Convolutional network on output	work on input a	nd deconvolutional ne	t- (B)	Deconvolution work on output		on input and	convolutional net-
169.	A ReLU unit in neur	ral network neve	r gets saturated.					
\bigcirc A	True			\bigcirc B	False			
170 . '	What is the relation	ship between dro	pout rate and regulariz	ation?				
\bigcirc A	Higher the dropou	t rate, higher is th	ne regularization	\bigcirc B	Higher the dro	pout rate, lov	ver is the regu	larization
171 . rithm		cal difference bet	ween vanilla backpropa	agatior	algorithm and	l backpropaga	ation through	time (BPTT) algo-
A	Unlike backprop, is sponding weight for		up gradients for corre	e- (B)	Unlike backpr sponding weig			radients for corre-
		•	e in training deep netwo e probable approach wh		_		_	•
(A) (C)	A Use modified architectures like LSTM and GRUs C Dropout D				Gradient clipping None of these			
gradi	ent descent techniq	ue whereas SGD	cent algorithms. Two of is a first-order gradient l you prefer l-BFGS ove	descer	ıt technique.	s are l-BFGS ar	nd SGD. l-BFG	S is a second-order
\bigcirc A	Data is sparse			\bigcirc B	Number of par	ameters of ne	eural network	are small
(C)	Both of them			D	None of these			
174.	Which of the follow	ing is not a direc	t prediction technique f	or NLI	? tasks?			
\bigcirc A	Recurrent Neural N	Network		\bigcirc B	Skip-gram mo	del		
(C)	PCA			$\overline{(D)}$	Convolutional	Neural Netwo	ork	
175.	Which of the follow	ring would be the	best for a non-continue	ous obj	ective during o	ptimization ir	n deep neural	net?
A	L-BFGS	B SG	SD	(C)	AdaGrad		D Subgradi	ient method
176 . `	Which of the follow	ing is correct?						
A	Dropout randomly	masks the input	weights to a neuron	B	Dropconnect r to a neuron	andomly mas	ks both input a	and output weights
(C)	1 is False and 2 is 7	True		D	Both 1 and 2 a	re True		
	While training a ne of training error and		image recognition task for debugging.	, we p	lot the graph E	rror		
	A A	B B	© c	D I)	A B	C D Va	lidation
178 .]	Backpropagation w	orks by first calcu	lating the gradient of .	.and t	hen propagatin	g it backward		
(A)	Sum of squared er	ror with (B) Su	m of squared error wit	h(C)	Sum of square	d error with	(D) None of	the above

respect to inputs respect to weights respect to outputs

179 . Mini-Batch sizes when def behind it?	fining a neural network are prefe	rred t	o be multiples of 2's such a	s 256 or 512. Wh	at is the reason	
(A) Gradient descent optimize	(A) Gradient descent optimizes best when you use an even number					
B Parallelization of the neur	al network is best when the mem-	ory is	used optimally			
\simeq	ou don't use an even number					
(D) None of these						
	e increases, it becomes harder for nal vector. To solve this, which of			perform as sente	ence meaning is	
(A) Use recursive units instead	d of recurrent	\bigcirc B	Use attention mechanism			
(C) Use character-level transla	(C) Use character-level translation (D) None of these					
181 . A recurrent neural network	can be unfolded into a fully com	nected	neural network with infini	te length.		
A TRUE		\bigcirc B	FALSE			
182 . Which of the following is a	bottleneck for deep learning algo	rithm	s?			
(A) Data related to the problem	m	\bigcirc B	CPU to GPU communication	on		
© GPU memory		\bigcirc	All of the above			
183 . When deriving a memory of addressing would this entail?	cell in memory networks, we choo	ose to	read values as vector values	instead of scalars	. Which type of	
(A) Content-based addressing		\bigcirc B	Location-based addressing			
184 . It is generally recommended	d to replace pooling layers in the $arepsilon$	genera	tor part of convolutional ge	nerative adversari	al nets with?	
(A) Affine layer	B Strided convolutional layer	r (C)	Fractional strided convolutional layer	- (D) ReLU layer		
185 . Which of the following stat	tements is true with respect to GR	U?				
(A) Units with short-term dep gate.	endencies have a very active rese	t B	Units with long-term dependant.	ndencies have a ve	ry active update	
C None of them		\bigcirc	Both 1 and 2			
186 . If the calculation of the reso	et gate in a GRU unit is close to 0,	which	n of the following would oc	cur?		
A Previous hidden state wou	ıld be ignored	\bigcirc B	Previous hidden state wou	ld not be ignored		
187 . If the calculation of the upo	late gate in a GRU unit is close to	1, wh	ich of the following would o	occur?		
(A) Forgets the information for	or future time steps	\bigcirc B	Copies the information thr	ough many time s	teps	
188. Dropout technique is not as	n advantageous technique for wh	ich of	the following layers?			
A Affine layer	B Convolutional layer	(C)	RNN layer	D None of the	ese	
	redict the next few notes of a son would be better suited to solve the	-		ling segment of th	ne song. Which	
(A) End-to-End fully connected (C) Neural Turing Machine	ed neural network	(B) (D)	CNN followed by recurren	t units		
	se of a Convolutional Neural Netv	work (
(A) Object detection	(B) Image classification	(c)	Text generation	(D) Reinforcem	ent learning	
			_	O	8	
191. Which layer type is typically used to extract local features in a CNN? (A) Convolutional layer (B) Pooling layer (C) Fully connected layer (D) Activation layer						
		NI2	Tany connected layer	D Activation	ayei	
172. What is the advantage of u	sing convolutional layers in a CN	LN:				

(A) (C)	They can capture local spatial parties they can generate synthetic data	-	(B) (D)	They can handle sequential. They can capture local spate		
193.	What is the purpose of the poolin	g layer in a CNN?				
(A) (C)	To introduce non-linearity to the To adjust the weights and biases		$\stackrel{\textstyle \textcircled{B}}{\textstyle \textcircled{D}}$	To reduce the spatial dimer To compute the gradients f		_
194.	Which activation function is com	monly used in the convoluti	onal	layers of a CNN?		
(A) (C)	Sigmoid Tanh (Hyperbolic Tangent)		$\stackrel{\textstyle \textcircled{B}}{\textstyle \textcircled{D}}$	ReLU (Rectified Linear Units Softmax	t)	
195.	What is the purpose of the stride	parameter in a convolutiona	al laye	er?		
A	To determine the size of the \fbox{B} receptive field	To control the step size of the convolution operation	C	To adjust the learning rate during training	D	None of the above
196 .	Which layer type is used to reduc	e the spatial dimensions in a	a CNI	N ?		
\bigcirc A	Convolutional layer B	Pooling layer	\bigcirc	Fully connected layer	\bigcirc	Activation layer
197.	What is the purpose of the paddin	ng parameter in a convolutio	onal la	ayer?		
A	To adjust the learning rate (B) during training	To prevent the reduction of spatial dimensions	<u>C</u>	To regularize the network and prevent overfitting	D	None of the above
198.	Which layer type is responsible for	or making final predictions i	n a C	NN?		
\bigcirc A	Convolutional layer B	Pooling layer	\bigcirc	Fully connected layer	\bigcirc	Activation layer
199.	What is the purpose of the fully o	onnected layers in a CNN?				
(A) (C)	To capture global patterns and n To apply non-linear transformat		(B) (D)	To reduce the spatial dimer To initialize the weights an		-
200.	Which layer type is responsible for	or applying non-linear trans	forma	ations to the feature maps in	a CN	IN?
\bigcirc A	Convolutional layer B	Pooling layer	(C)	Fully connected layer	\bigcirc	Activation layer
201.	What is the purpose of dropout re	egularization in a CNN?				
(A) (B) (C) (D)	To randomly disable neurons du To adjust the learning rate durin To increase the number of layers None of the above	g training	rfittin	g		
202 .	Which layer type is responsible for	or backpropagating the grad	ients	and updating the network's	parar	meters in a CNN?
\bigcirc A	Convolutional layer B	Pooling layer	\bigcirc	Fully connected layer	\bigcirc	Activation layer
203 .	What is the primary advantage of	f using a CNN over a fully co	onnec	eted neural network for imag	ge pro	cessing tasks?
(A) (C)	CNNs have a higher training spec		(B) (D)	CNNs can handle sequential CNNs can capture local spa		
204.	Which layer type is responsible fo	or parameter sharing in a CN	NN?			
(A)	Convolutional layer (B)	Pooling layer	(c)	Fully connected layer	\bigcirc	Activation layer
205 .	What is the purpose of the recept	ive field in a convolutional l	ayer?)	
(A) (C)	To determine the number of filte To specify the size of the local operation	ers in the layer	\bigcirc B	To determine the size of the None of the above	e featı	ure maps

19

206. Which layer type is responsible for spatial downsampling in a CNN?

\bigcirc A	Convolutional layer	\bigcirc B	Pooling layer	(C)	Fully connected layer	\bigcirc	Activation layer
207 .	What is the purpose of the fi	lter/l	xernel in a convolutional lay	er?			
(A) (C)	To determine the number of To extract local features from		•	$\stackrel{\textstyle \textcircled{B}}{\textstyle \textcircled{D}}$	To specify the size of the fe None of the above	ature	maps
208.	Which layer type is common	ıly us	ed in CNNs to normalize the	e inpu	ıt data?		
\bigcirc A	Convolutional layer	\bigcirc B	Pooling layer	\bigcirc	Batch normalization layer	\bigcirc	Activation layer
209 .	What is the primary goal of	traini	ing a CNN?				
A	To minimize the prediction error on the training data	\bigcirc B	To maximize the number of layers in the network	<u>(C)</u>	To achieve 100	D	None of the above
210 .	Which layer type is responsi	ble fo	or introducing translation in	varia	nce in a CNN?		
A	Convolutional layer	\bigcirc B	Pooling layer	(C)	Fully connected layer	D	Activation layer
211.	What is the purpose of the o	utput	layer in a CNN?				
A	To compute the predicted of representation	outpu	t based on the final feature	B	To reduce the spatial dimen	sions	of the input data
(C)	To apply non-linear transfo	rmat	ions to the feature maps	D	To initialize the weights and	d bias	ses of the network
212 .	What is the purpose of zero-	padd	ing in a CNN?				
A	To adjust the learning rate during training	B	To prevent the reduction of spatial dimensions	C	To regularize the network and prevent overfitting	D	None of the above
213 .	Which layer type is common	ıly us	ed in CNNs for semantic seg	gmen	tation tasks?		
\bigcirc A	Convolutional layer	\bigcirc B	Pooling layer	(C)	Fully connected layer	D	Upsampling layer
214 .	What is the purpose of the lo	oss fu	nction in CNN training?				
\bigcirc A	To measure the prediction of	error	and guide the learning proc	ess			
(B)	To initialize the weights and						
(D)	To adjust the learning rate of None of the above	durin	g training				
	Which layer type is common	1137 115	ed in CNNs to introduce no	n-lin <i>e</i>	earity?		
(A)	Convolutional layer	(B)	Pooling layer		Fully connected layer	\bigcirc	Activation layer
\bigcirc	·	\bigcirc			runy connected layer	Ъ	Activation layer
	What is the purpose of the le			·•	.:		
(A) (B)	To adjust the size of the filt	-	rameter updates during opti the convolutional lavers	muza	uon		
(c)	To increase the number of l		•				
\bigcirc	None of the above						
217 .	Which layer type is responsi	ble fo	or feature extraction in a CN	N?			
\bigcirc A	Convolutional layer	\bigcirc B	Pooling layer	\bigcirc	Fully connected layer	D	Activation layer
218.	What is the purpose of data	augm	entation in CNN training?				
\bigcirc A	To increase the number of l	ayers	in the network	\bigcirc B	To introduce noise and vari	ation	s in the training data
(C)	To adjust the learning rate	durin	g training	D	None of the above		
219 .	219. Which layer type is commonly used in CNNs to handle variable-sized inputs?						
\bigcirc	Convolutional layer	\bigcirc B	Pooling layer	\bigcirc	Fully connected layer	\bigcirc	None of the above
220.	What is the primary purpose	e of a	Recurrent Neural Network	(RNN)?		

\bigcirc A	Image classification	B Text generation	(C)	Reinforcement learning	(D)	Object detection		
221.	Which layer type is typically	y used to capture sequential deper	ndeno	cies in an RNN?				
\bigcirc A	Input layer	B Hidden layer	\bigcirc	Output layer	\bigcirc	Activation layer		
222.	What is the advantage of us	ing recurrent layers in an RNN?						
\bigcirc A	They can handle non-linear	r transformations	\bigcirc B	They can handle variable-le	ength	inputs		
\bigcirc	They can generate synthetic	ic data	D	They can capture temporal	depe	ndencies in the input data		
223.	223. What is the purpose of the hidden state in an RNN?							
A	To store the information from	om the previous time step	\bigcirc B	To adjust the learning rate	durin	g training		
(c)	To compute the gradients f	or backpropagation	(D)	None of the above				
224.	Which activation function is	s commonly used in the recurrent	layeı	rs of an RNN?				
\bigcirc A	ReLU (Rectified Linear Uni	t)	\bigcirc B	Sigmoid				
(c)	Tanh (Hyperbolic Tangent)		(D)	Softmax				
225.	What is the purpose of the t	ime step parameter in an RNN?						
A	To determine the number of	of recurrent layers in the network	\bigcirc B	To adjust the learning rate	durin	g training		
(c)	To specify the length of the	e input sequence	(D)	None of the above				
226.	Which layer type is common	nly used to initialize the hidden st	ate ir	an RNN?				
A	Input layer	B Hidden layer	(C)	Output layer	D	Activation layer		
227.	What is the purpose of the b	oidirectional RNN architecture?						
\bigcirc A	To handle sequential data i	n both forward and backward dire	ection	ıs				
\bigcirc B		al complexity of the network						
(C)	To adjust the learning rate	during training						
(D)	None of the above							
228.		ible for making final predictions is	n an i					
(A)	Input layer	(B) Hidden layer	(C)	Output layer	(D)	Activation layer		
229.	What is the purpose of the r	ecurrent connection in an RNN?						
(A)		ate across different time steps	\bigcirc B	To adjust the weights and b	oiases	of the network		
(C)	To reduce the dimensionali	-	(D)	None of the above				
230.	Which layer type is common	nly used in RNNs for sequence-to-	-sequ	ence tasks?				
(A)	Input layer	(B) Hidden layer	(c)	Output layer	(D)	Attention layer		
231.	What is the purpose of the b	packpropagation through time (BF	TT)	algorithm in RNN training?				
A	To compute the gradients a	and update the network's paramet	ers					
(B)	To adjust the learning rate	0						
(C)	To prevent overfitting by re	egularizing the model						
ъ	None of the above	1 1 2 2 2 2 1 1 1 1 1		.1				
		nly used in RNNs to handle variab	ole-lei			01		
(A)	Input layer	(B) Hidden layer	(C)	Output layer	(D)	None of the above		
233.		nitial hidden state in an RNN?						
(A)	-	nt for the recurrent computation						
(B)	To adjust the learning rate To compute the gradients f	-						
(D)	None of the above	or backpropagation						

234 .	Which layer type is responsi	ble for handling the output at eac	ch tin	ne step in an RNN?		
\bigcirc A	Input layer	B Hidden layer	\bigcirc	Output layer	\bigcirc	Activation layer
235.	What is the purpose of the te	eacher forcing technique in RNN	train	ing?		
\bigcirc A	To adjust the learning rate of	during training				
(B)	To propagate the gradients	through time				
(c)		al complexity of the network				
$\overline{(D)}$	None of the above					
236 .	Which layer type is common	lly used in RNNs for language mo	odelir	ng tasks?		
(A)	Input layer	B Hidden layer	(C)	Output layer	D	None of the above
237 .	What is the purpose of the se	equence-to-vector architecture in	an R	NN?		
\bigcirc A	To process an input sequen	ce and produce a fixed-length rep	oresei	ntation		
(B)	To adjust the weights and b	iases of the network				
(C)	To reduce the dimensionality	ty of the input data				
(D)	None of the above					
238.		ble for introducing non-linearity	in an			
(A)	Input layer	(B) Hidden layer	(C)	Output layer	(D)	Activation layer
239 .	What is the purpose of the fo	orget gate in a Gated Recurrent U	Jnit (0	GRU)?		
(A)	To control the flow of inforstate	mation from the previous hidden	(B)	To adjust the learning rate	durin	g training
(C)	To compute the gradients for	or backpropagation	D	None of the above		
240 .	Which layer type is common	ly used in RNNs for machine tra	nslati	on tasks?		
\bigcirc A	Input layer	B Hidden layer	(c)	Output layer	\bigcirc	Attention layer
241.	What is the purpose of the p	eephole connections in a Long Sh	nort-T	Term Memory (LSTM) netwo	ork?	
(A)	To allow the cell state to inf	fluence the gating mechanisms	\bigcirc B	To adjust the learning rate	durin	g training
(C)	To introduce non-linearity	to the network	D	None of the above		
242.	Which layer type is responsi	ble for handling variable-length	outpu	its in an RNN?		
\bigcirc A	Input layer	B Hidden layer	\bigcirc	Output layer	\bigcirc	None of the above
243.	What is the purpose of the co	ell state in an LSTM network?				
\bigcirc A	To store long-term depende	encies in the input sequence	\bigcirc B	To adjust the learning rate	durin	g training
(C)	To compute the gradients for	or backpropagation	D	None of the above		
244 .	Which layer type is common	ıly used in RNNs for speech recoફ	gnitic	on tasks?		
\bigcirc A	Input layer	B Hidden layer	\bigcirc	Output layer	\bigcirc	None of the above
245 .	What is the purpose of the in	nput gate in an LSTM network?				
\bigcirc A	To control the flow of inform	mation from the current input	\bigcirc B	To adjust the learning rate	durin	g training
(C)	To introduce non-linearity	to the network	D	None of the above		
246 .	Which layer type is responsi	ble for handling variable-length i	input	s and outputs in an RNN?		
\bigcirc A	Input layer	B Hidden layer	(C)	Output layer	\bigcirc	None of the above
247 .	What is the purpose of the o	utput gate in an LSTM network?				
(A)	To control the flow of inform	mation to the current output	\bigcirc B	To adjust the learning rate	durin	g training
(C)	To introduce non-linearity	to the network	D	None of the above		
248.	Which layer type is common	ly used in RNNs for time series p	oredic	tion tasks?		
\bigcirc A	Input layer	B Hidden layer	\bigcirc	Output layer	\bigcirc	None of the above
249 .	What is the purpose of the re	eset gate in a Gated Recurrent Ur	nit (G	RU)?		
\bigcirc A	To reset the hidden state ba	sed on the current input	\bigcirc B	To adjust the learning rate	durin	g training
(c)	To introduce non-linearity	to the network	\bigcirc	None of the above		

Solutions to the Exercises

- 1.(B) L1
- 2.(B) Trains multiple models on different subsets of the data
- 3.(C) Both (A) and (B)
- **4**.(**A**) Shallow neural network
- 5.(B) unstructured data
- 6.(C) convolutional neural networks
- 7.(**D**) All of the above
- **8.(C)** Constructs an ensemble by iteratively updating weights
- **9**.(**E**) All of the previous
- 10.(C) Random Forest
- 11.(B) Boosting algorithm
- 12.(C) Constructs an ensemble by iteratively updating weights
- 13.(B) Boosting algorithm
- 14.(D) Trains a meta-model to make predictions based on outputs of base models
- 15.(A) Random Forest
- 16.(A) Reduce overfitting and improve generalization
- 17.(A) Handling imbalanced datasets
- 18.(A) AdaBoost
- 19.(D) Stacking
- 20.(B) Boosting
- 21.(E) All of the previous
- 22.(B) The dataset is large and high-dimensional
- 23.(B) Reducing variance
- 24.(D) Stacking
- 25.(A) Bagging
- **26**.(**B**) Combining predictions by taking the mode of their classes
- 27.(C) Gradient Boosting
- 28.(A) Improving model stability
- 29.(D) Stacking
- **30**.(C) Handling unbalanced datasets
- 31.(D) Stacking
- 32.(C) Random Forest
- 33.(B) AdaBoost
- **34**.(**C**) Gradient Boosting
- **35**.(**B**) False
- **36**.(**D**) All of the previous
- 37.(A) Softmax
- 38.(A) Weight between input and hidden layer
- **39**.(**C**) 96
- **40**.(**C**) 22×22
- 41.(A) 50
- 42.(D) all of the previous
- 43.(D) 41%
- **44**.**(D)** All of the above
- 45.(D) all of the previous
- 46.(C) ReLU
- **47**.(**A**) True
- **48**.(**E**) All of the previous
- **49**.(**A**) True
- **50**.(**B**) False
- **51**.(**B**) False
- 52.(D) all of the previous
- **53**.(**D**) All of the above
- **54**.(**A**) True
- **55**.(**B**) False
- **56**.(**C**) to prevent overfitting
- 57.(A) L1 regularization

- 58.(C) small weight values
- **59**.(**B**) It randomly drops entire layers during training
- 60.(C) Elastic Net
- 61.(B) To prevent the model from memorizing the training data
- 62.(C) Regularization can help balance bias and variance
- $\mathbf{63.}(\mathbf{B})$ The gradual decrease in weight values during training
- 64.(D) Reduced capacity to capture complex patterns
- **65**.(**A**) A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
- 66.(A) 98% train. 1% dev. 1% test
- 67.(A) Come from the same distribution
- 68.(B) Get more training data
- (E) Add regularization
- **69**.(**A**) Increase the regularization parameter lambda
- (C) get more training data
- **70**.(**A**) Weights are pushed twoard becoming smaller (closer to 0)
- **71**.(**B**) You don't apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations usd in the training
- 72.(A) Dropout
- (C) Data augmentation
- (F) L2 regularization
- 73.(B) It makes the cost function faster to optimize
- 74.(C) Regulates the softness of the target distribution
- **75.**(C) The probability of dropping out a unit in the hidden layers during training
- 76.(B) Learning rate annealing
- 77.(D) To prevent the model from memorizing the training data
- 78.(C) Constraining the magnitude of the weights in the model
- 79.(D) Dropout helps prevent co-adaptation of hidden units
- **80**.(**C**) To improve the predictive performance of a model by combining multiple models
- **81**.(**B**) It trains multiple models independently on different subsets of the training data.
- 82.(C) To introduce randomness by considering a random subset of features for each tree
- 83.(C) Sequentially, with higher weights for misclassified instances
- 84.(B) Stacking
- **85**.(C) Ensemble methods often generalize better and have improved robustness.
- **86**.(**B**) A model that performs slightly better than random chance
- **87.(C)** Bagging
- 88.(A) Bootstrap Aggregating
- 89.(B) AdaBoost
- 90.(B) Improved generalization and robustness
- 91.(C) Random Forest
- 92.(A) Long Short-Term Memory
- 93.(A) It adjusts the amount by which weights are updated during each iteration
- **94**.(**C**) Random Forest introduces randomness by considering a random subset of features for each tree
- 95.(D) Stacking uses multiple base models to form a meta-model
- 96.(C) Ensemble methods help balance bias and variance
- 97.(A) Increased risk of overfitting
- 98.(A) Randomly and with replacement
- 99.(B) Better handling of outliers
- **100**.(**C**) Boosting
- 101.(D) Using multiple base models to form a meta-model

102.(C) Random Forest

103.(**C**) It is an estimate of the test error obtained from the unused samples during training

104.(**B**) It limits the maximum depth of individual decision trees

105.(**B**) Early stopping prevents overfitting by stopping the training process when the model starts to memorize the training data.

106.(**B**) The computational complexity increases linearly

107.(**A**) Adversarial training involves training models to be robust against adversarial attacks.

108.(**B**) It uses multiple cross-validated models, reducing overfitting.

109.(B) Increased risk of overfitting

110.(**B**) Feature importance indicates the relevance of a feature in predicting the target variable.

111.(**C**) It specifies the number of base models in the ensemble.

112.(**A**) Stacking with meta-features involves using the output of base models as features for a meta-model.

113.(B) Removing random neurons during training

114.(C) To prevent co-adaptation of neurons

115.(B) Dropout is applied to all layers except the output layer

116.(**C**) By reducing the model's capacity

117.(**B**) The neuron is removed from the network temporarily

118.(B) Overfitting

119.(A) Slows down the training process

120.(**B**) 0.2 to 0.5

121.(C) By reducing the sensitivity of neurons to specific input features

122.(A) Training phase

123.(**A**) Co-adaptation refers to neurons relying too much on each other, and Dropout breaks these dependencies by randomly dropping neurons during training.

124.(B) Dropout is more effective in large and complex networks

125.(C) Dropout and ensemble learning achieve the same result in terms of model diversity

126.(**A**) High Dropout rates lead to overfitting, while low Dropout rates may result in underfitting.

127.(C) By introducing noise to the input data

128.(**C**) To improve model performance by increasing the diversity of the training data

129.(C) Image rotation

130.(**D**) By providing a more diverse set of training examples

131.(C) Word substitution

132.(B) Potential introduction of unrealistic patterns

133.(**C**) To create variations in the spatial location of objects

134.(**B**) Time warping

135.(A) Jittering refers to the introduction of noise to input features

136.(**B**) To create mirror images

137.(**A**) Data augmentation focuses on creating new samples, while feature engineering manipulates existing features.

138.(B) Dropout enhances data augmentation by randomly removing features during training

139.(**B**) Spectrogram augmentation

140.(**B**) To introduce non-linear distortions to the image

141.(D) Sentence dropout

142.(**A**) Adversarial training focuses on creating adversarial examples to test the model's robustness against unseen patterns introduced by data augmentation.

143.(**C**) Data augmentation generates additional samples for minority classes, addressing class imbalance

144.(C) The potential introduction of unrealistic patterns

145.(**A**) Mixup involves blending two or more samples, creating new synthetic samples with averaged labels.

146.(**C**) Data augmentation reduces model interpretability due to the introduction of synthetic samples.

147.(**A**) To remove random portions from images

148.(C) Shearing introduces non-linear distortions to the image by tilting it along one of its axes.

149.(C) Random Forest

150.(**D**) The dataset is large

151.(C) Gradient Boosting

152.(B) False

153.(A) Neural Network

154.(**A**) 1 and 2

155.(B) False

156.(A) Fine tune only the last couple of layers and change the last layer (classification layer) to regression layer

157.(C) 218x218x5

158.(B) No

159.(B) Exactly 2 secs

160.(F) All of these

161.(**B**) Lower the perplexity the better

162.(D) 7

163.(B) False

164.(**D**) All of the above

165.(**B**) FALSE

166.(**G**) All of these

167.(C) Recurrent Neural Network

 ${\bf 168.}({\bf A})$ Convolutional network on input and deconvolutional network on output

169.(**B**) False

170.(B) Higher the dropout rate, lower is the regularization

171.(**A**) Unlike backprop, in BPTT we sum up gradients for corresponding weight for each time step

172.(B) Gradient clipping

173.(C) Both of them

174.(C) PCA

175.(D) Subgradient method

176.(**C**) 1 is False and 2 is True In dropout, neurons are dropped, whereas in dropconnect, connections are dropped. So, both input and output weights will be rendered useless in dropconnect, while only one of them should be dropped in dropconnect.

177.(C) C In dropout, neurons are dropped, whereas in dropconnect, connections are dropped. So, both input and output weights will be rendered useless in dropconnect, while only one of them should be dropped in dropconnect.

178.(C) Sum of squared error with respect to outputs

179.(B) Parallelization of the neural network is best when the memory is used optimally

180.(B) Use attention mechanism

181.(A) TRUE

182.(D) All of the above

183.(A) Content-based addressing

184.(**C**) Fractional strided convolutional layer

185.(**D**) Both 1 and 2

186.(A) Previous hidden state would be ignored

187.(B) Copies the information through many time steps

188.(**C**) RNN layer

189.(B) CNN followed by recurrent units

190.(B) Image classification

- 191.(A) Convolutional layer
- 192.(A) They can capture local spatial patterns in the input data
- **193.(B)** To reduce the spatial dimensions of the feature maps
- 194.(B) ReLU (Rectified Linear Unit)
- **195**.(**B**) To control the step size of the convolution operation
- 196.(B) Pooling layer
- 197.(B) To prevent the reduction of spatial dimensions
- 198.(C) Fully connected layer
- **199**.(**A**) To capture global patterns and make predictions
- 200.(D) Activation layer
- **201**.(A) To randomly disable neurons during training to prevent overfitting
- 202.(C) Fully connected layer
- 203.(D) CNNs can capture local spatial patterns in the input data
- 204.(A) Convolutional laver
- ${\bf 205.}({\bf C})$ To specify the size of the local region for the convolution operation
- 206.(B) Pooling layer
- 207.(C) To extract local features from the input data
- 208.(C) Batch normalization layer
- 209.(A) To minimize the prediction error on the training data
- 210.(A) Convolutional layer
- ${\bf 211.}(A)$ To compute the predicted output based on the final feature representation
- 212.(B) To prevent the reduction of spatial dimensions
- 213.(D) Upsampling layer
- **214**.(**A**) To measure the prediction error and guide the learning process
- **215**.(**D**) Activation layer
- ${\bf 216.}({\bf A})$ To control the step size of the parameter updates during optimization
- 217.(A) Convolutional layer
- 218.(B) To introduce noise and variations in the training data
- 219.(D) None of the above
- 220.(B) Text generation
- 221.(B) Hidden layer
- 222.(D) They can capture temporal dependencies in the input data
- 223.(A) To store the information from the previous time step
- **224**.(**C**) Tanh (Hyperbolic Tangent)
- 225.(C) To specify the length of the input sequence
- 226.(B) Hidden layer
- ${\bf 227.(A)}$ To handle sequential data in both forward and backward directions
- 228.(C) Output layer
- 229.(A) To propagate the hidden state across different time steps
- 230.(D) Attention layer
- ${\bf 231.}({\bf A})$ To compute the gradients and update the network's parameters
- 232.(A) Input layer
- 233.(A) To provide the starting point for the recurrent computation
- 234.(C) Output layer
- 235.(B) To propagate the gradients through time
- 236.(C) Output layer
- ${\bf 237.(A)}$ To process an input sequence and produce a fixed-length representation
- **238**.(**D**) Activation layer
- **239**.(**A**) To control the flow of information from the previous hidden state
- **240**.(**D**) Attention layer

- ${\bf 241.}(A)$ To allow the cell state to influence the gating mechanisms
- **242**.(**C**) Output layer
- 243.(A) To store long-term dependencies in the input sequence
- 244.(C) Output layer
- 245.(A) To control the flow of information from the current input
- **246**.(**D**) None of the above
- 247.(A) To control the flow of information to the current output
- 248.(C) Output layer
- 249.(A) To reset the hidden state based on the current input