Cyberphysisches System "Autonome Beförderung"

Finn Jannsen

1

¹ Modifiziert, Original: https://www.engadget.com/2017/12/04/vw-moia-ride-sharing-electric-van/

Inhalt

Einleitung	3
Leitfrage	3
Ziele	3
Eigenschaften des Systems	3
Zeitliche Abhängigkeiten	3
Modellierung in Uppaal	3
Modelle	3
Ergebnisse	3
Auswertung	3
Requirements	3
Modellierung	3
Komponenten	3
Testen des Systems	3
Fazit	3
Gesamtauswertung	3
Zielerfüllung	3
Antwort	3

Einleitung

Leitfrage

Wie wird ein MQTT basiertes CPS mit einer hohen Anzahl an unterschiedlichen Teilnehmern skalierbar?

Ziele

Große Anzahl an Passagieren & Autonomen Fahrzeugen Zeitnahe Bearbeitung von Clients Robustheit des Gesamtsystems (Ausfall von Backend-Komponenten)

Eigenschaften des Systems

Zeitliche Abhängigkeiten

Zeitnahe Aufnahme von Clients in das System Zeitnahe Aufnahme von Passagieren in die Fahrzeuge

Modellierung in Uppaal

Modelle

Ergebnisse

Auswertung

Requirements

Konkrete Anforderungen an mein System mit Erkenntnissen aus Uppaal und Zielen

Modellierung

Komponenten

Komponentendiagramme

Duplizierbarkeit von Backend-Anwendungen für skalierbarkeit und Redundanz

Testen des Systems

Quantitatives Testen aller Komponenten unter simulierten Bedingungen

Fazit

Gesamtauswertung

Zielerfüllung

Antwort