Problem 1 $|\chi_{n+1} - \chi_n| \le C |\chi_n - \chi_{n-1}| \le C^2 |\chi_{n-1} - \chi_{n-2}| \le C^{n-1} |\chi_2 - \chi_1|$ W.t.s. HEDO, FNENDS, T. VINDIN, |Xm-Xn| < E Without loss of generality, assume m= u+k (k>,0) $\left| \begin{array}{c} \chi_{n} - \chi_{n} \end{array} \right| = \left| \begin{array}{c} \chi_{n+k} - \chi_{n} \end{array} \right| = \left| \begin{array}{c} \chi_{n+k} - \chi_{n+k-1} + \chi_{n+k-1} - \chi_{n+k-2} + \chi_{n+k-2} - \chi_{n+1} - \chi_{n} \end{array} \right|$ $= \left| \left(\chi_{n+1c} - \chi_{n+k-1} \right) - \left(\chi_{n+k-2} - \chi_{n+k-1} \right) - \left(\chi_{n+k-3} - \chi_{n+k-2} \right) - \dots - \left(\chi_{n} - \chi_{n+1} \right) \right|$ $\leq |X_{n+k} - X_{n+k-1}| + |X_{n+k-1} - X_{n+k-2}| + \cdots + |X_{n+1} - X_n|$ by friangular inequality < (n+1c-2 | X2-X1 + (n+1c-3 | X2-X1) +... + (n-1 | X2-X1 | $= (-1 \cdot | x_2 - x_1 | \cdot (| + C + C^2 + \dots + C^{k-1}) = \frac{1 - C^k}{1 - C} \cdot C^{n-1} \cdot | x_2 - x_1 |$ Since OCCCI, OCI-CCI, OCI-C^kCI, so 1-C^k. Cⁿ⁻¹CCⁿ⁻¹ Therefore, YE > 0, ZNEN S.T. YN ZN YMZN, $|\chi_{n}-\chi_{n}|<\zeta^{n-1}|\chi_{z}-\chi_{i}|<\xi$

 $\begin{aligned} |X_{n}-X_{n}| &< (^{n-1}|X_{2}-X_{1}| < \mathcal{E} \\ |X_{n}-X_{n}| &> 0 \quad \text{as} \quad n \to \infty \end{aligned}$ $\leq 0 \quad \begin{cases} X_{n} & \text{is} \quad (\text{auch } y). \end{cases}$

Problem 2.

lim Yn=0, so 42>0, FNEIN s.t. | Yn-0|=(Yn/c20 Hn>,N

 $|X_m-X_k| \leq |Y_k| \otimes \forall k \in N \forall m \geq k$

Since D satisfies Yn > NGIN and D satisfies + kell,

 $\exists y_k = y_n$. So $|x_m - x_k| \leq |y_n| < \xi$, $\{x_n\}$ is Cauchy

UMEIN, 7 62, M 2n2M sit. Xk co, xn20

So $X_N - X_L > X_N$

Since $\{x_n\}$ is Cauchy, by definition, $|x_n - x_k| \in \mathbb{R}$

| Xn- Xk | E | Xn | + | X10 = Xn- Xk < E

 $S_0 \quad \forall n \in \mathcal{E} \quad |x_n - o| = x_n \in \mathcal{E}$

Therefore [xn3 converges to 0

$$\left|\begin{array}{ccc} X_{n} - X_{n-1} \end{array}\right| \leq \frac{n}{(n+1)^{2}} \qquad \frac{n}{(n-1)^{2}} > \frac{n+1}{n^{2}}$$

$$\left|\begin{array}{ccc} X_{n+1} - X_{n} \end{array}\right| \leq \frac{n+1}{n^{2}}$$

 $\{\chi_n\}$ is Cauchy, so $\forall \geq >0$, $\exists N\in N \leq 1$. $\forall n\geq N \; \forall k\geq >N$, $|\chi_n-\chi_k| < \leq .$ Since this satisfies $\forall k\geq >N$, and $\exists intinitely many n s,t. \; \chi_n=C$, $\exists k s,t. \; \chi_k=C$. $|\chi_n-c| < \leq .$ Therefore, $\{\chi_n\}$ converges to C and $\lim \chi_n=C$.

 $\{X_n\}$ is Cauchy, so \forall 270, \exists $NEN s.t. <math>\forall$ $n \geqslant N$ \forall $m \geqslant N$ $|X_n - X_m| < \epsilon$

 $\begin{aligned} \left| \left\langle X_{n+1} - X_{n} \right| & = \left| \left(\left\langle X_{n+1} - X_{n-1} \right) - \left(\left\langle X_{n} - X_{n-1} \right) \right| \leq \left| \left\langle X_{n+1} - X_{n-1} \right| + \left| \left\langle X_{n} - X_{n-1} \right| \right| \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{1}, \quad \left| \left\langle X_{n} - X_{n-1} \right| \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2} \end{aligned}$ $\begin{aligned} \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \quad \left| \left\langle X_{n} - X_{n-1} \right| \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_{2}, \\ \left| \left\langle X_{n+1} - X_{n-1} \right| & \leq \frac{\varepsilon}{2} \quad \forall n \geqslant N_$

 $\left| \left| \chi_{n+1} - \chi_{n} \right| \leq \left| \left| \chi_{n+1} - \chi_{n-1} \right| + \left| \left| \chi_{n} - \chi_{n-1} \right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Therefore, the difference between two consecutive terms is getting closer and closer since it's bounded by any positive Σ ($|X_{n+1}-X_n| \subset \Sigma$). So $|X_{n+1}-X_n| \leq |X_n-X_{n-1}|$.

- a) Since $\frac{3}{9n+1} < \frac{1}{n} \forall n > 1$, by comparison test, Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{3}{9n+1}$ also diverges.
- Since $\frac{1}{2n-1} \le n$ $\forall n \ge 1$, by comparison test, Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ also diverges.
- C) $\frac{(-1)^n}{N^2} = (-1)^n \cdot \frac{1}{N^2}$, $\frac{1}{N^2} > 0$ and decreasing and $\lim_{N \to \infty} \frac{1}{N^2} = 0$, so by alternating test,

 $\sum_{N=1}^{\infty} \frac{(-1)^N}{N^2}$ converges

 $\frac{1}{n(n+1)} = \frac{n+1-n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ $\frac{\infty}{\sum_{n=1}^{\infty} \frac{1}{n(n+1)}} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}$ $= 1 - \frac{1}{n+1}$

Since $\lim_{N\to\infty} \frac{1}{n+1} = 0$, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1(e) $\frac{\chi_{n+1}}{\chi_n} = \frac{(n+1)e^{-(n+1)^2}}{n e^{-n^2}} = \frac{n+1}{n} \cdot e^{-2n-1}$, so $\lim_{n\to\infty} \frac{\chi_{n+1}}{\chi_n} = \lim_{n\to\infty} \frac{n+1}{n} \cdot e^{-2n-1}$ Therefore, by ratio test, $\sum_{n=1}^{\infty} ne^{-n^2}$ converges.

$$\alpha$$
) $\sum |\chi_n \gamma_n| \leq \sum |\chi_n| |\gamma_n|$

b)
$$\chi_n = \frac{(-1)^n}{n}$$
 $\gamma_n = \frac{(-1)^n}{n}$ $\chi_n \gamma_n = \frac{1}{n^2}$

$$\gamma_n = \frac{(-1)^n}{n}$$

$$\chi_n \gamma_n = \frac{1}{\eta^2}$$

$$(x) = \frac{(-1)^n}{\sqrt{n}} \qquad \forall n = \frac{(-1)^n}{\sqrt{n}} \qquad \forall n \neq n = \frac{1}{n}$$

$$X_n Y_n = \frac{1}{n}$$

$$\sum \chi_{n} \sum \gamma_{n} \neq \sum \chi_{n} \gamma_{n}$$

Problem 9
$$\left|\sum_{h=1}^{\infty} \chi_{n}\right| = \left|\chi_{1} + \chi_{2} + \dots \right| \leq \left|\chi_{1}\right| + \left|\chi_{2}\right| + \dots = \sum_{h=1}^{\infty} \left|\chi_{n}\right|$$

Problem 10

Since $\sum x_n$ converges, $\exists N > 0 \text{ s.t.} x_n \leq N \forall n > 1$ So $x_n^2 = x_n \cdot x_n \leq N \cdot x_n \forall n > 1$ $\sum x_n$ converges, so $N \cdot x_n$ converges

By comparison test, $\sum x_n^2 \text{ also converges}$.