Announcements

- Homework 8 due on Monday!
- I'm still working on grade reports (sorry)
- Physics Open House today at 3pm!
 - Be social (I know...) and recruit more physics majors!
- Read 5.3 for Monday

A "ribbon" (width a) of surface current flows with surface current density \vec{K} . Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density?

- A. 0
- B. 2**K**
- C. $\vec{\mathbf{K}}/2$
- D. Something else

A "ribbon" (width a) of surface current flows with surface current density \vec{K} . Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density?

- A. 0
- B. 2**K**
- \mathbf{C} . $\vec{\mathbf{K}}/2$
- D. Something else (\vec{K})

Which of the following is a statement of charge conservation?

$$\mathbf{A}. \ \frac{\partial \rho}{\partial t} = -\oint \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

$$\mathsf{B.} \ -\frac{\partial \mathsf{Q}}{\partial t} = \oint \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

C.
$$\frac{\partial
ho}{\partial t} = - oldsymbol{
abla} oldsymbol{ec{J}}$$

$$\mathbf{D}. \ \frac{\partial \mathbf{Q}}{\partial t} = \int \mathbf{\nabla} \cdot \vec{\mathbf{J}} \, d\tau$$

Which of the following is a statement of charge conservation?

$$\mathbf{A.} \ \frac{\partial \rho}{\partial t} = -\oint \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

B.
$$-\frac{\partial Q}{\partial t} = \oint \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

C.
$$\frac{\partial
ho}{\partial t} = - oldsymbol{
abla} oldsymbol{ec{J}}$$

$$\mathbf{D}. \ \frac{\partial \mathbf{Q}}{\partial t} = \int \mathbf{\nabla} \cdot \vec{\mathbf{J}} \, d\tau$$

A ribbon of width a with uniform surface current density \vec{K} passes through a uniform magnetic field \vec{B} . Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?

- A. $\frac{bKB}{2}$
 - B. aKB
 - C. abKB
 - D. $\frac{KB}{ab}$

- - abKB
 - KB

What is the direction of the infinitesimal contribution $d\vec{\mathbf{B}}$ at point P created by current in $d\vec{\ell}$?

- A. Up
- B. Up and to the right
- C. Into the page
- D. Out of the page

What is the direction of the infinitesimal contribution $d\vec{\mathbf{B}}$ at point P created by current in $d\vec{\ell}$?

- A. Up
- B. Up and to the right
- C. Into the page
- D. Out of the page

What is the magnitude of $\frac{d\vec{\ell} \times \hat{\imath}}{2^2}$?

A.
$$\frac{d\ell \sin \theta}{r^2}$$

B.
$$\frac{d\ell \sin \theta}{r^3}$$

C.
$$\frac{d\ell\cos\theta}{r^2}$$

D.
$$\frac{d\ell\cos\theta}{r^3}$$

What is the magnitude of $\frac{d\vec{\ell} \times \hat{\imath}}{\imath^2}$?

A.
$$\frac{d\ell \sin \theta}{r^2}$$

B.
$$\frac{d\ell \sin \theta}{r^3}$$

C.
$$\frac{d\ell\cos\theta}{r^2}$$

D.
$$\frac{d\ell\cos\theta}{r^3}$$

What is the value of $\mathcal{I}\frac{d\vec{\ell}\times\hat{\imath}}{\imath^2}$?

A.
$$\frac{\mathcal{I}ydx_s}{(x^2+v^2)^{3/2}}\hat{z}$$

A.
$$\frac{\mathcal{I}ydx_s}{(x_s^2 + y^2)^{3/2}} \hat{z}$$

B. $\frac{\mathcal{I}x_s dx_s}{(x_s^2 + y^2)^{3/2}} \hat{y}$

C.
$$\frac{-\mathcal{I}x_s dx_s}{(x_s^2 + y^2)^{3/2}} \hat{\boldsymbol{y}}$$
D.
$$\frac{-\mathcal{I}y dx_s}{(x_s^2 + y^2)^{3/2}} \hat{\boldsymbol{z}}$$

D.
$$\frac{-\mathcal{I}ydx_s}{\left(x_s^2+y^2\right)^{3/2}}\mathbf{\hat{z}}$$

What is the value of $\mathcal{I}\frac{d\vec{\ell}\times\hat{\imath}}{\imath^2}$?

A.
$$\frac{\mathcal{I}ydx_s}{(x_s^2 + y^2)^{3/2}} \hat{z}$$

B. $\frac{\mathcal{I}x_s dx_s}{(x_s^2 + y^2)^{3/2}} \hat{y}$

$$3. \frac{\mathcal{I}x_s dx_s}{(x_s^2 + y^2)^{3/2}} \hat{\mathbf{y}}$$

C.
$$\frac{-\mathcal{I}x_s dx_s}{(x_s^2 + y^2)^{3/2}} \hat{\boldsymbol{y}}$$
D.
$$\frac{-\mathcal{I}y dx_s}{(x_s^2 + y^2)^{3/2}} \hat{\boldsymbol{z}}$$

D.
$$\frac{-\mathcal{I}ydx_s}{(x_s^2+v^2)^{3/2}}\hat{z}$$

