Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation

Yuhui Yuan, Xiaokang Chen, Xilin Chen, and Jingdong Wang ECCV 2020 Spotlight

https://arxiv.org/abs/1909.11065

Presenter: Minho Park

Contribution

- Study the context aggregation problem in semantic segmentation.
- Present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class.
- "HRNet+OCR+SegFix" achieves 1st place on the Cityscapes leaderboard (2020)

Overview

 Object-Contextual Representation and Augmented Representation

Fig. 3: Illustrating the pipeline of OCR.

Two main streams

- 1. Exploit multi-scale contexts
 - ASPP

Fig. 4: Atrous Spatial Pyramid Pooling (ASPP).

Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." *IEEE transactions on pattern analysis and machine intelligence* 40.4 (2017): 834-848.

Two main streams

2. Attention mechanism

OCNet

Fig. 2: Illustrating the Interlaced Sparse Self-Attention.

Two main streams

2. Attention mechanism

ACFNet

Figure 1. Class Center (c) captures the context via a categorical strategy

Figure 4. An illustration of the role of class center.

Zhang, Fan, et al. "Acfnet: Attentional class feature network for semantic segmentation." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2019.

Motivation

Fig. 2: Illustrating the multi-scale context with the ASPP as an example and the OCR context for the pixel marked with ■.

Object Contextual Representation

$$\mathbf{y}_i = \rho \left(\sum_{k=1}^K w_{ik} \delta(\mathbf{f}_k) \right)$$

$$\mathbf{f}_k = \sum_{i \in \mathcal{I}} \widetilde{m}_{ki} \mathbf{x}_i$$

 \widetilde{m}_{ki} : spatial softmax to mormalize object region \mathbf{M}_k $\rho(\cdot)$, $\delta(\cdot)$: 1×1 conv \rightarrow BN \rightarrow ReLU

$$w_k = \frac{e^{\kappa(\mathbf{x}_i, \mathbf{f}_k)}}{\sum_{j=1}^K e^{\kappa(\mathbf{x}_i, \mathbf{f}_k)}}, \kappa(\mathbf{x}_i, \mathbf{f}_k) = \phi(\mathbf{x})^T \psi(\mathbf{f})$$

Fig. 3: Illustrating the pipeline of OCR.

Augmented representations

$$\mathbf{z}_i = g\left(\left[\mathbf{x}_i^T \ \mathbf{y}_i^T\right]^T\right)$$

Fig. 3: Illustrating the pipeline of OCR.

• Segmentation Transformer: Rephrasing the OCR Method

$$a_{ij} = \frac{e^{\frac{1}{\sqrt{d}}\mathbf{q}_i^T\mathbf{k}_j}}{Z_i}, \text{ where } Z_i = \sum_{j=1}^{N_{kv}} e^{\frac{1}{\sqrt{d}}\mathbf{q}_i^T\mathbf{k}_j}$$
$$\text{Attn}(\mathbf{q}_i, K, V) = \sum_{j=1}^{N_{kv}} a_{ij}\mathbf{v}_j$$

• An alternative of segmentation transformer

Fig. 5: An alternative of segmentation transformer

Empirical Analysis

- Object region supervision
 - Existence of **soft object regions**
- Pixel-region relations
 - Existence of object region representations

Object region supervision		Pixel-region relations				
w/o supervision	w/ supervision	DA scheme	ACF scheme	Ours		
77.31%	79.58%	79.01%	78.02%	79.58%		

Table 1: Influence of object region supervision and pixel-region relation estimation scheme.

Empirical Analysis

• Ground-truth OCR

•
$$m_{ki} = \begin{cases} 1, & \text{if } l_i = k \\ 0, & \text{otherwise} \end{cases}$$
, $w_{ki} = \begin{cases} 1, & \text{if } l_i = k \\ 0, & \text{otherwise} \end{cases}$

Fig. 1: Illustrating the effectiveness of our OCR scheme.

Method	Cityscapes (w/o coarse)	Cityscapes (w/ coarse)	ADE20K	LIP
PPM [80]	78.4%★	81.2%	43.29%	_
ASPP [6]	_	81.3%	_	_
PPM (Our impl.)	80.3%	81.6%	44.50%	54.76%
ASPP (Our impl.)	81.0%	81.7%	44.60%	55.01%
OCR	81.8%	82.4%	45.28 %	55.60 %

Table 2: Comparison with multi-scale context scheme.

Method	Cityscapes (w/o coarse)	Cityscapes (w/ coarse)	ADE20K	LIP
CC-Attention [27]	81.4%	-	45.22%	-
DANet [18]	81.5%	-	-	-
Self Attention (Our impl.)	81.1%	82.0%	44.75%	55.15%
Double Attention (Our impl.)	81.2%	82.0%	44.81%	55.12%
OCR	81.8%	82.4%	45.28 %	55.60 %

Table 3: Comparison with relational context scheme.

Method	Parameters▲	Memory▲	FLOPs ▲	Time▲
PPM (Our impl.)	23.1M	792M	619G	$99 \mathrm{ms}$
ASPP (Our impl.)	15.5M	284M	492G	$97 \mathrm{ms}$
DANet (Our impl.)	10.6M	2339M	1110G	$121 \mathrm{ms}$
CC-Attention (Our impl.)	10.6M	427M	804G	$131 \mathrm{ms}$
Self-Attention (Our impl.)	10.5M	2168M	619G	$96 \mathrm{ms}$
Double Attention (Our impl.)	10.2 M	209M	338 G	$46 \mathrm{ms}$
OCR	10.5M	202 M	340G	45 ms

Table 4: Complexity comparison.

Method	Baseline	Stride		Cityscapes (w/o coarse	Cityscapes (w/ coarse)	ADE20K	LIP	PASCAL Context	COCO-Stuff
				baselines	// //				
PSPNet [80]	ResNet-101	8×	M	78.4 ^b	81.2	43.29	-	47.8	-
DeepLabv3 [6]	ResNet-101	8×	M	-	81.3	-	-	-	-
PSANet [81]	ResNet-101	8×	R	80.1	81.4	43.77	-	-	-
SAC [79]	ResNet-101	8×	M	78.1	-	44.30	-	-	-
AAF [29]	ResNet-101	8×	R	79.1 ^b	-	-	-	-	-
DSSPN [41]	ResNet-101	8×	-	77.8	-	43.68	-	-	38.9
DepthSeg [32]	ResNet-101	8×	-	78.2	-	-	-	-	-
MMAN [48]	ResNet-101	8×	-	-	-	-	46.81	-	-
JPPNet [39]	ResNet-101	8×	M	-	-	-	51.37	-	-
EncNet [76]	ResNet-101	8×	-	-	-	44.65	-	51.7	-
GCU [38]	ResNet-101	8×	R	-	-	44.81	-	-	-
APCNet [24]	ResNet-101	8×	M,R	-	-	45.38	-	54.7	-
CFNet [77]	ResNet-101	8×	R	79.6	-	44.89	-	54.0	-
BFP [12]	ResNet-101	8×	R	81.4	-	-	-	53.6	-
CCNet [27]	ResNet-101	8×	R	81.4	-	45.22	-	-	-
ANNet [84]	ResNet-101	8×	M,R	81.3	-	45.24	-	52.8	-
OCR (Seg. transformer)	ResNet-101	8×	R	81.8	82.4	45.28	55.60	54.8	39.5

Table 5: Comparison with the state-of-the-art. We use M to represent multiscale context and R to represent relational context. Red, Green, Blue represent the top-3 results.

Method	Baseline	Stride	Context	Cityscapes (w/o coarse	Cityscapes (w/ coarse)	ADE20K	LIP	PASCAL Context	COCO-Stuff
		1	Advanced	baselines					
DenseASPP [68]	DenseNet-161	8×	M	80.6	-	E.	-	-	1.5
DANet [18]	ResNet-101 + MG	8×	R	81.5	-	45.22	-	52.6	39.7
DGCNet [78]	ResNet-101 + MG	8×	R	82.0	-	-	=	53.7	-
EMANet [36]	ResNet-101 + MG	8×	R	-	-	-	-	53.1	39.9
SeENet [51]	ResNet-101 + ASPP	8×	M	81.2	-	81,	-	-	-
SGR [40]	ResNet-101 + ASPP	8×	R	-	-	44.32	-	52.5	39.1
OCNet [72]	ResNet-101 + ASPP	8×	M,R	81.7	-	45.45	54.72	-	-
ACFNet [75]	ResNet-101 + ASPP	8×	M,R	81.8	-	-	-	-	-
CNIF [63]	ResNet-101 + ASPP	8×	M		_	2	56.93	-	
GALD [37]	ResNet-101 + ASPP	8×	M,R	81.8	82.9	-	-	-	-
$GALD^{\dagger}$ [37]	ResNet-101 + CGNL + MG	8×	M,R	-	83.3	= 1	-	-	-
Mapillary [52]	WideResNet-38 + ASPP	8×	M	1-	82.0	- 1		-	-
$GSCNN^{\dagger}$ [55]	WideResNet-38 + ASPP	8×	M	82.8	-	F)	-	-	
SPGNet [10]	$2 \times \text{ResNet-50}$	$4\times$	-	81.1	-	81	-	-	18
ZigZagNet [42]	ResNet-101	$4\times$	M	-	-	-	-	52.1	-
SVCNet [13]	ResNet-101	$4\times$	R	81.0	-	-	-	53.2	39.6
ACNet [19]	ResNet- $101 + MG$	$4\times$	M,R	82.3	-	45.90	-	54.1	40.1
CE2P [45]	ResNet-101 + PPM	$4\times$	M	_	-	-	53.10	-	
$VPLR^{\dagger \ddagger}$ [83]	WideResNet-38 + ASPP	$4\times$	M	-	83.5	T.)	-	-	
DeepLabv3+ [7]	Xception-71	$4\times$	M	-	82.1	5 1	-	S-7	-
DPC [4]	Xception-71	$4\times$	M	82.7	-	-1	-1	-	
DUpsampling [57]	Xception-71	4×	M	-	-	-	-	52.5	-
HRNet [54]	HRNetV2-W48	$4\times$	-	81.6	-	- 5	55.90	54.0	
OCR (Seg. transformer)	HRNetV2-W48	4×	R	82.4	83.0	45.66	56.65	56.2	40.5
OCR [†] (Seg. transformer)	HRNetV2-W48	4×	R	83.6	84.2	-1	-	:-	-

Table 5: Comparison with the state-of-the-art. We use M to represent multiscale context and R to represent relational context. Red, Green, Blue represent the top-3 results.