2010 Qualifying Exam: Mathematics

Caution!!!

Use separate answer books for Problems 1-5 (Math.-A) and 6-8 (Math.-B).

Problem 1. (10 points) Find the solution by utilizing Laplace transformation:

$$y^{(2)}(t) + 4y(t) = \cos(3t),$$

where y(0) = 2 and $y^{(1)}(0) = 0$.

Problem 2. (10 points) Green's Formula says that

$$\oint_C \{Ldx + Mdy\} = \int \int_R \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) dxdy,$$

where C indicates the curve enclosing R, oriented counterclockwise. Let R be the region bounded by the triangle with vertices at (0,0), (2,0), and (0,3). If we orient C in the counterclockwise direction, solve the following.

$$\oint_C \{ (3x^2 + 4xy + y)dx + (5x + 2x^2)dy \}$$

Problem 3. (10 points) Find the limits.

(a)
$$\lim_{x \to 1} \frac{x^{1/4} - 1}{x^{1/3} - 1}$$

$$\lim_{x \to 0} \frac{\sin(5x)}{3x}$$

Problem 4. (10 points) Differentiate

$$y = (\sin x)^{x^3}.$$

Problem 5. (10 points) Find

$$\int \frac{3x+6}{x^2+5x+4} \, dx.$$

Caution!!!

Use separate answer books for Problems 1-5 (Math.-A) and 6-8 (Math.-B).

Problem 6. (10 points) Say True or False to each sub-problem. You don't need to justify your answer. (correct answer +2, no answer 0, incorrect answer -1)

- (a) Given an M-by-N rectangular matrix, the sum of the dimension of the null space and the dimension of the row space is always equal to N.
- (b) Given a square matrix, there always exist orthonormal eigenvectors.
- (c) If a square matrix is symmetric, then its eigenvalues are always real.
- (d) A summation of two periodic functions is always periodic.
- (e) The Fourier transform of a periodic signal always consists of Dirac delta functions.

Problem 7. (20 points) Suppose that a square matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 1 + \sin^2 \theta & -\cos \theta \sin \theta \\ -\cos \theta \sin \theta & 1 + \cos^2 \theta \end{pmatrix},$$

where $0 \le \theta < 2\pi$ is a constant. Answer the following questions.

(a) (5 points) Find the characteristic polynomial as a function only of λ , i.e., find a, b, and c such that

$$\det(\lambda \mathbf{I} - \mathbf{A}) = a\lambda^2 + b\lambda + c,$$

where I is the identity matrix.

- (b) (5 points) Find the orthonormal eigenvectors of A.
- (c) (10 points) Find d and e such that

$$\mathbf{A}^3 + d\mathbf{A} + e\mathbf{I} = \mathbf{0},$$

where 0 is the zero matrix.

Problem 8. (20 points) Suppose that x(t) is defined as a time-limited signal given by

$$x(t) \triangleq \begin{cases} -1, & \text{for } -T/2 \le x < 0 \\ 1, & \text{for } 0 \le x < T/2 \\ 0, & \text{elsewhere,} \end{cases}$$

for some T > 0. Answer the following questions.

- (a) (5 points) Find the Fourier transform of x(t).
- (b) (5 points) Find the Fourier series representation of

$$\sum_{n=-\infty}^{\infty} x(t-nT).$$

(c) (10 points) Using the result in (b), find the limit of the series

$$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Math. QE

2009.8

Caution!!!

Use separate answer books for Problems 1-5 (Math.-A) and 6-8 (Math.-B).

Problem 1.(10pt) Consider a linear system with transfer function $H(s) = \frac{1}{(s+2)^2(s+8)}$. Find the output when $u(t) = e^{-2t}u_s(t)$ is applied as an input, where $u_s(t)$ is a unit step function. Assume that the initial condition, $x(0_-) = 0$.

Problem 2.(10pt) Calculate

$$\int_C \frac{ydx - xdy}{x^2 + y^2},$$

where $C: (x-3)^2+(y-5)^2=4$. (Hint: Use Green's theorem.)

Problem 3.(10pt) Using the residue theorem, find

$$\int_C \frac{1 - 4z + 6z^2}{(z^2 + \frac{1}{4})(2 - z)} dz$$

Problem 4.(10pt) Find

$$\lim_{x \to \infty} \sqrt{x} (\sqrt{x+1} - \sqrt{x}).$$

Problem 5.(10pt) Find

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}}.$$

Caution!!!

Use a separate answer book (Math.-B) for Problems 6, 7, and 8.

- 6. (15 points) Say True of False for each sub-problem. You don't need to justify your answer. (Correct answer +1, no answer 0, incorrect answer -1)
 - (a) If the columns of a square matrix are linearly independent, then the rows are also linearly independent.
 - (b) The projection of a vector \underline{a} in the direction of $\underline{b}(\neq \underline{0})$ is $\underline{a}^T\underline{b}$.
 - (c) If two linearly independent vectors \underline{a} and \underline{b} are on the same plane, then their cross/vector product $\underline{a} \times \underline{b}$ is a normal vector to the plane.
 - (d) If $a_{i,j}$ and $b_{i,j}$ are (i,j)th entries of the $N \times N$ square matrices A and B, respectively, then the (i,j)th entry of the product AB is given by $\sum_{k=1}^{N} a_{i,k} b_{k,j}$.
 - (e) If A and B are both $N \times N$ square matrices, then AB = BA.
 - (f) If A and B are both $N \times N$ square matrices, then AB = 0 implies A = 0 or B = 0.
 - (g) The row space and the null space of a matrix A have the same dimension.
 - (h) For any $N \times N$ matrices A and B, $\det(AB) = \det(A)\det(B)$.
 - (i) The eigenspace of an $N \times N$ matrix **A** is the same as the column space of **A**.
 - (j) The eigenvalue λ of an $N \times N$ matrix **A** is defined as a non-zero constant such that $\mathbf{A}\underline{x} = \lambda \underline{x}$ for some \underline{x} .
 - (k) If an $N \times N$ matrix A is unitary, then $AA^T = I$.
 - (l) The determinant of a unitary matrix is 1.
 - (m) The eigenvalues of a Hermitian symmetric matrix are real.
 - (n) If λ is an eigenvalue of A, then it is also an eigenvalue of $\mathbf{T}^{-1}\mathbf{AT}$, where T is any non-singular matrix.
 - (o) If A is a real square matrix, then $\underline{x}^T A \underline{x} > 0$ for any non-zero real vector \underline{x} .

7. (15 points) When 2×2 matrix A is given by

$$\mathbf{A} = \left[\begin{array}{cc} 4 & 2 \\ -3 & -1 \end{array} \right],$$

answer the following questions.

- (a) (5 points) Find the eigenvalues and corresponding eigenvectors of A.
- (b) (10 points) Find the minimum and the maximum values of

$$f(\underline{x}) = \frac{\underline{x}^T \mathbf{A} \underline{x}}{\underline{x}^T \underline{x}},$$

where $\underline{x} \neq \underline{0}$.

8. (15 points) When x(t) is defined as

$$x(t) = \begin{cases} 1, & \text{for } t = 0\\ \frac{\sin \pi t}{\pi t}, & \text{elsewhere,} \end{cases}$$

and $y(t) = (x(t))^2$, answer the following questions.

- (a) (5 points) Sketch y(t) and its Fourier transform.
- (b) (10 points) Using the Fourier transform of

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t-k),$$

find and sketch

$$\sum_{k=-\infty}^{\infty} y(t-k).$$

رب QE Math 08

1 (10pt)

Write out Taylors formula for $\cos x \cos y$ about $(0, \pi)$ to three terms.

2 (10pt)

Green's formula is written as

$$\oint_{B} Ldx + Mdy = \iint_{R} \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) dA$$

Evaluate the integral by Green's theorem. The integral is to be taken in the counterclockwise direction:

$$\oint_C \frac{ydx - xdy}{x^2 + y^2}$$

where $C: (x-3)^2 + (y-5)^2 = 4$.

3 (15pt)

Find the solution by utilizing Laplace transformation:

$$y'' + y = -9\sin 2t$$

Initial conditions: y(0) = 1 and y'(0) = 0.

4 (15pt)

Let

$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- a) Show that f'(0) = 0.
- b) Show that f'(x) is not continuous at x=0.

3

Caution!!! Use a different answer book for Problems 5 and 6 from that for Problems 1-4.

5. (25 points) Suppose that an N-by-N matrix A has the (m, n)th entry given by

$$[A]_{m,n} = \frac{1}{\sqrt{N}} e^{j\frac{2\pi mn}{N}}$$

for m, n = 1, 2, ..., N. Answer the following questions.

- (a) (5 points) When N=2, find A, A^H , and A^{-1} , respectively, where the superscript H denotes Hermitian transposition.
- (a) (10 points) Compute AA^H .
- (b) (10 points) Let λ_i be the *i*th eigenvalue of A. Find $|\lambda_i|$ for i = 1, 2, ..., N.

6. (25 points) Suppose that a continuous-time signal x(t) has the Fourier transform pair $X(j\omega)$ given by

$$X(\mathrm{j}\omega) = \int_{-\infty}^{\infty} x(t)e^{-\mathrm{j}\omega t}dt,$$

and that a continuous-time signal y(t) is defined as

$$y(t) = \sum_{k=-\infty}^{\infty} x(t - kT)$$

for some T > 0. Answer the following questions.

- (a) (5 points) Find the inverse Fourier transform of $2\pi\delta(\omega-\frac{2\pi k}{T})$, where $\delta(\omega)$ is the Dirac delta function.
- (b) (5 points) Find the kth Fourier series coefficient a_k such that

$$\sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi kt}{T}}.$$

(c) (15 points) Find the Fourier series representation of y(t) in terms of $X(j\omega)$. (Hint: Use the results in (a) and (b).)

QE Math. 2007

- 1. (20 points) Answer the following questions.
 - (a) (5 points) Let x_m be the mth entry of an M-by-1 vector \mathbf{x} , $a_{m,n}$ be the (m,n)th entry of an M-by-N matrix A, and let y_n be the nth entry of an N-by-1 vector \mathbf{y} . Find $\mathbf{x}^T A \mathbf{y}$ in terms of x_m , $a_{m,n}$ and y_n , where the superscript T denotes transposition.
 - (b) (5 points) Show that all eigenvalues of an N-by-N real symmetric matrix B are real. (Hint. Consider $(\mathbf{v}^T B \mathbf{v})^*$, where \mathbf{v} is an eigenvector of B and the superscript * denotes complex conjugation.)
 - (c) (5 points) Find all the eigenvalues of the matrix C given by

$$C = \left[\begin{array}{cc} 1 & 3 \\ 4 & 5 \end{array} \right].$$

(d) (5 points) Find the null space of the matrix D given by

$$D = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right].$$

- 2. (20 points) Answer the following questions.
 - (a) (5 points) Find the necessary and sufficient condition on a real number ω for $\int_0^T e^{j\omega t} dt = 0$, where T is a positive real number.
 - (b) (15 points) Find the numbers a_n , for n = -N, -N + 1, ..., N, that minimize

$$\int_0^T \left| x(t) - \sum_{n=-N}^N a_n e^{j\frac{2\pi nt}{T}} \right|^2 dt,$$

where x(t) is a periodic function of t with period T (> 0). (Fully justify your answer.)

3. (7pt) Find the derivative of

$$\sin^{-1}(x^2-1)$$
.

4.(7pt) Find

$$\int (\ln(x))^2 dx.$$

5.(16pt) (a) Expand the following to the $2n^{th}$ order utilizing the Taylor series expansion:

$$\frac{1}{1+x^2}$$

(b) Find a series expansion of $tan^{-1}(\cdot)$ utilizing result (a);

The result (b) can be used for calculating $\frac{\pi}{4} = \tan^{-1}(1)$. Another way of calculating π would be the following:

(c) Prove that

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

and show by utilizing the previous equation that

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right).$$
 (5 - c)

- (d) The target is to calculate $\pi=3.141592\cdots$. Give a good reason why (5-c) is better than the calculation based on $\frac{\pi}{4} = \tan^{-1}(1)$.
- 6.(7pt) Show that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges. (Hint. Utilize the integral test.)
- 7.(15pt)Solve the following differential equation utilizing Laplace transform:

$$y_1' = -y_2,$$
 $y_2' = y_1,$ initial condition : $y_1(0) = 1,$ $y_2(0) = 0.$

7.(8pt) Evaluate

$$\frac{1}{2\pi j} \oint_C \frac{\sin 3z}{z + \frac{\pi}{2}} dz$$

if C is the circle |z| = 5.

2006 Qualifying Exam. Math

1. (20 points) When the square matrices A and B are given, respectively, as

- (a) (5 points) Compute $A^T A$.
- (b) (5 points) Find all the eigenvectors and corresponding eigenvalues of the matrix A.
- (c) (10 points) Compute det(AB).
- 2. (20 points) When a continuous-time signal x(t) is defined as

$$x(t) = \frac{\sin \pi t}{\pi t},$$

answer the following questions.

(a) (10 points) Find the continuous-time Fourier transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

of x(t) and sketch it. Carefully mark all the important values on the graph.

(b) (20 points) Find the continuous-time Fourier transform of

$$y(t) = \sum_{n=-\infty}^{\infty} |x(t-n)|^2$$

and sketch it. Carefully mark all the important values on the graph. (You can use the Dirac delta functions in your answer.)

- 3. (10 points) Prove that $\ln(xy) = \ln x + \ln y$. (Hint: Use differentiation)
- 4. (10 points) Prove that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$.
- 5. (10 points) Expand $\tan^{-1}(x)$ using Taylor series to the third order. (Hint: $\tan^{-1} x = \tan^{-1}(0+x)$.)
- 6. (5 points) Using the previous result, find an approximate value of π . (Hint: $\frac{\pi}{4} = \tan^{-1}(1)$.)
- 7. (15 points) Find the volume of the torus

2005 Math Qualifying Exam.

- 1. (20pts) Mark `O' if the statement is right, mark `X' otherwise. There is a penalty of -4 points for each wrong answer. You may leave question unanswered.
- a) Convolution of sinc function with itself reduces to a sinc function.()
- The limit of a sequence $\{f_n(t)\}$ of continuous functions is continuous.()
 - c) Sum of two jointly Gaussian random variables are Gaussian ()
- d) An infinitely many differentiable function can be expressed as a Taylor series. ()
 - e) Any continuous function f:[0,1] \rightarrow [0,1] is integrable. ()
- 2.(15pts) Determine second order Taylor formula for

$$f(x, y) = \frac{1}{x^2 + y^2 + 1}, \quad x_0 = 0, \ y_0 = 0.$$

3. (20pts) Find

$$\int_{B} (x^2 + y^2)^{-\frac{3}{2}} dx dy$$

where B is given by the following annulus.

a) Let $(x, y)=g(r, \theta)$. Find A in (r, θ) plane such that g(A)=B.

b) Change the integral into the one in the polar coordinate and evaluate it.

4. (20pts) Find the Fourier transform of the following periodic function:

5. (10pts) Evaluate the following determinant:

6. (15pts) Solve the following differential equation using Laplace transform. If you do not use Laplace transform, -7 point penalty will be applied.

$$y'' + y = 2\cos t,$$
 $y(0) = 2,$

$$y'(0) = 0.$$

Math. Qualitying 2004.11.3

1. Find the Fourier Transform of the following periodic function. Sketch the solution

Find the solution

(20)

$$y''(+) + 2y'(+) + 5y(+) = 0$$
, $y(0) = 1$, $y'(0) = 1$

Find the convolution y[n] = x[n] * h[n] (20)

$$x[n] = \left(-\frac{1}{2}\right)^{n} u[n-4]$$

$$h[n] = 4^{n} u[2-n]$$

4. Find the solution

$$\int_{0}^{2\pi} \frac{1}{5 - 4\cos\theta} d\theta$$

Hint: Let $z=e^{i\theta}$, then $\cos\theta=\frac{z+z^{-1}}{2}$, $dz=izd\theta$.

Express in contour integral (10 pt) (10pt)

Apply Residue

5. Show that

$$\begin{vmatrix} 1 & X_1 & X_1^2 \\ 1 & X_2 & X_2^2 \end{vmatrix} = (X_2 - X_1)(X_3 - X_2)(X_3 - X_2)$$

Math. Qualifying Exam. 2003

#1.(15pt) Solve the following via Laplace transform:

$$y'' - y' - 2y = 10 \sin t$$
, $y(0) = 1$, $y'(0) = -3$

#1.(20pt) Solve the following integral. (Hint: Use integration by part)

$$\int_{-\infty}^{\infty} e^{-x^2} x^2 dx$$

#1.(15pt) Evaluate the following integral where C is the unit circle(counterclockwise).

$$\int_C \frac{z^2 \sin z}{4z^2 - 1} dz$$

#1.(20pt) Find e^{At} , where

$$A = egin{bmatrix} 2 & 1 & 0 \ 0 & 2 & 1 \ 0 & 0 & 2 \end{bmatrix}.$$

#1.(30pt) Find the Fourier transform $F(\omega)$ for the voltage pulse shown below:

Sketch the spectra $F(\omega)$ of the two. Need to specify the crossing points of x and y axes.

Find the relationship between two spectra.

$$A = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right].$$

2. (15 pt) The characteristic equation of the following matrix is given by $(x-1)(x-3)^3$.

$$\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-27 & 54 & -36 & 10
\end{array}\right].$$

Calculate A^{-1} . (Hint: Cayley-Hamilton theorem)

3. (20 pt) Solve the following differential equation.

$$y^{(2)} + 3y^{(1)} + 2y = 2$$
, $y(0) = 0$, $y^{(1)}(0) = 0$.

4. (10 pt) Let $f(x) = x^{1/(x-1)}$ for $x \neq 1$. How should f(1) be defined in order to make f be continuous at x = 1.

5. (10 pt) Evaluate the limit.

$$\lim_{x \to 0^+} (1 + \sin 2x)^{1/x}$$

6. (10 pt) Use appropriate theorems, consider the Fourier transform of

$$x(t) = e^{-a|t|} \cos 2\pi f_0 t.$$

Get the Fourier transform of $\cos 2\pi f_0 t$ in the limit as $a \to 0$.

7. (10 pt) Verify Green's theorem in the plane for

$$\oint x^2 y dx + (y^3 - xy^2) dy$$

where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 4$, $x^2 + y^2 = 16$.

Hint: (Green's theorem)

$$\oint_C P dx + Q dy = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

where C is the boundary of a bounded area R and P and Q are differentiable in R.

8. (10 pt) Find $\int \ln x dx$.

2002 Qualifying Mathematics Examination

1. (10 points) Compute sin(A), where

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 2 \end{array} \right].$$

2. (10 points) Compute

hint: $A(I + BA)^{-1}$.

3. (10 points) Find the minimal polynomial of A, where

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}.$$

4. (20 points) Solve the following differential equation:

$$\ddot{y}(t) + 2\dot{y}(t) + y(t) = 1$$
, $y(0) = 2$, $\dot{y}(0) = 0$.

5. (35pt) a) One can express the following function as a sum of Fourier series:

$$p(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn2\pi f_s t}$$

Obtain C_n by utilizing $\{e^{jn2\pi f_s t}\}_n$ as a set of orthonormal basis.

Hint: Note that

$$p(t) = \sum_{n=-\infty}^{\infty} < p(t), e^{jn2\pi f_s t} >$$

and C_n is the projection of p(t) into $e^{jn2\pi f_s t}$.

b) Multiplying an arbitrary signal x(t) by p(t), we have

$$x_s(t) = \sum_{n=-\infty}^{\infty} C_n x(t) e^{jn2\pi f_s t}.$$

Take Fourier transform of $x_s(t)$.

Hint:

$$X_s(f) = \int_{-\infty}^{\infty} x_s(t) e^{-jn2\pi f_s t}.$$

Find a relation between $X_s(f)$ and X(f)

Hint: Frequency shifting property needs to be used.

- c) If $\tau \to 0$, then p(t) converges to a pulse train. In such a case find C_n and rewrite the relation obtained in b).
- d) Draw spectra of $X_s(f)$ for two cases: i) $f_s(=\frac{1}{T}) > 2f_h$, ii) $f_s(=\frac{1}{T}) > 2f_h$. Illustrate aliasing.

- e) We want to reconstruct the original signal x(t) from the sampled signal $x_s(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t-kT)$ by applying an ideal filter whose spectrum is H(f). Give the specification of H(f) and obtain h(t), where h(t) is the impulse response of the filter.
- f) Write x(t) as the output of filtering $x_s(t)$ by the filter h(t).
- g) Illustrate why the ideal filter h(t) is not realizable.
- 6. (15pt) Evaluate

$$\int_0^{2\pi} \frac{d\theta}{5 + 3\sin\theta}.$$

Math. Qualifying Exam

(October. 27, 2000)

- 1.(15) We want to show that the Fourier transform of the impulse train gives us another impulse train in the frequency domain. Specifically, we want to derive the Fourier transform of $h(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$. But, the answer must be also expressed in the form of impulse train in the frequency domain. Note that we define the Fourier transform of x(t) by $\mathcal{F}(x(t)) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$. Take the following step:
- a) Show that if $\mathcal{F}(x(t)) = X(f)$, then $\mathcal{F}(e^{j2\pi f_0 t}x(t)) = X(f f_0)$.
- b) Take the Fourier series expansion of h(t) using the basis function $e^{j2\pi n\frac{t}{T}}$. (Hint: Integrating Interval $[-\frac{T}{2},\frac{T}{2}]$)
- c) Now take the Fourier transform of the (Fourier) series expression obtained in b) using the relation in a). Write down the desired result.
- **2.(10)** Note that $\mathcal{F}[\Pi(t)] = \operatorname{sinc}(f)$ where

$$\Pi(t) = \begin{cases} 1, & -1/2 \le t \le 1/2 \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad \operatorname{sinc}(f) = \frac{\sin \pi f}{\pi f}.$$

Utilizing the above fact, show that

$$\operatorname{sinc}(t) * \operatorname{sinc}(t) = \operatorname{sinc}(t),$$

where * denotes the convolution.

3.(7) Evaluate

$$\lim_{t\to\infty} \left[\frac{m+1}{m-1}\right]^m.$$

4.(8) Using the Taylor series, expand x^2y at (x,y)=(1,-1). The answer must be expressed as a polynomial of (x-1) and (y+1).

- 5.(10) Given the causal transfer function $H(s) = \frac{s+1}{s^2+5s+6}$ calculate the output when the input signal is $x(t) = \cos 2t$.
- 6.(25) Evaluate the integral using contour integral. (Do not forget to specify the contour of integration and the pole within the contour.)

$$I = \int_0^{2\pi} \frac{d\theta}{A + B\cos\theta}, \qquad (A > |B|)$$

7.(25) a) Write

$$f(x, y, z) = 3x^2 - y^2 - 2z^2 - 8xy + 12yz + 4zx$$

in the quadratic form, i.e., find the matrix A such that $f(x, y, z) = \mathbf{x}^T A \mathbf{x}$, where $\mathbf{x} = [x, y, z]^T$.

b) Using X = Px, rotate the coordinates to obtain

$$f(X, Y, Z) = aX^2 + bY^2 + cZ^2,$$

where $\mathbf{X} = [X, Y, Z]^T$ and P is a 3×3 constant matrix. Find a, b, c.

c) Find the min. and max. of f(x, y, z) when $x^2 + y^2 + z^2 = 4$.

- (15) Problem 1)
 - 1. Using contour Integral, evaluate

$$I = \int_{-\infty}^{\infty} \frac{e^{ax}}{e^x + 1} dx \qquad (0 < a < 1)$$

Don't forget to specify the contour for the integral

다음과 같은 4×(+) 주기적인 생활가 있다. (25) Problem 2)

- a. x(t)Fourier Transform $x(\omega) \in \mathcal{A}$ $|x(\omega)| \in \mathcal{A}$ sketch 하각
- b. x(t)을 $\Delta t = \frac{1}{100}[sec]$ 로 sampling 가 생한 $x_s(t)$ 의 Fourier Transform $X_s(\omega)$ 를 가하고 $|x_s(\omega)|$ 를 sketch 하다.
 - c. $x_s(\omega)$ 는 periodic 한가? periodic 이 가면 그 주가는
- (15) Problem 3) Find the critical points of $f(x,y) = x^3 - 3x^2 + y^2$ and determine whether fhas local maximum, local minimum, or saddle at each of these critical points.
- (10) Problem 4) Prove that

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \log 2$$

(/5) Problem 5) Prove that

$$y(t) = e^{\int_0^t p(\tau)d\tau} y(0) + \int_0^t e^{\int_\tau^t p(\sigma)d\sigma} q(\tau)d\tau$$

$$= (4)z$$

$$\begin{cases} t \\ t(t,z) \end{cases}$$

$$\begin{cases} t \\ t(t,z) \end{cases}$$

$$\begin{cases} t \\ t(t,z) \end{cases}$$

is the solution of

$$\frac{d}{dt}y(t) = p(t)y(t) + q(t),$$

where p(t), q(t) are continuous scalar functions of t.

(20) Problem 6)

Suppose that $A \in \mathbb{R}^{n \times n}$ has n distinct eignenvalues $\lambda_1, \dots, \lambda_n$. Prove that there exist matrix $T \in \mathbb{R}^{n \times n}$ such that

$$TAT^{-1} = \left[\begin{array}{ccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{array} \right]$$

Further, show that

$$\det A = \prod_{i=1}^{n} \lambda_i$$

98, 10.23

1. (20pt)

Q f(t)= cos 2πfot el Fourier Transform

○ F(f) = total sketch かみ

b) f(t) 差 sampling 始年 $S(t) = \sum_{n=-\infty}^{\infty} S(t-nT)$

3 sampling it fs (+) 9 Fourier transform Fs(f) = 구하고 sketch하나. 단 += 4 fo 이고 되는 de ta 하수 의미한다.

c) fsl+) 是 linear interpolation os 신화 복원하고가 한다. 복원된 신호 falt)의 Fourier transform F(版) =) 7312 sketch 314.

○ [hint] foth = fs t) * h(t) 로 나라변수있다.

(10 pt)

2. Matrix A el eigenvalue et eigenvector? 구하나.

$$A = \begin{bmatrix} 7 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

(20 pt)

3. 아래경설은 Contour Integral 은 이용하여

781412

(Contour of Integration 은 七三八至八元以)

(10 pt)

4. Compute lim n log (1+ 1/n)

(10 pt) (x, y.) only 5. 叶泉的台で Taylor Series (2計列) 3 217HBH19

$$f(x;y) = e^{-x^2-y^2}\cos(xy)$$

 $x_0 = 0, y_0 = 0$

(10 pt)

6. Show

(20 pt)

7. Determine the capacitor voltage V(t).

i(0) = 2 A

V(0) = 20V

u(+): unit step function.

+ Use Laplace transform

Sin'x dz $\left(\text{Hint}\right) \quad \sin^2 x = \frac{1}{2} \left(1 - \cos 2x\right)$

Qualifying Examination 97

MATHEMATICS

Oct.16, 1996

Linear Algebra

- 1. (10 point) Compute e^A , where $A = \begin{bmatrix} -4 & 6 \\ -3 & 5 \end{bmatrix}$.
- 2. (10 point) Find the characteristic polynomial and the minimal polynomial of

$$\left[\begin{array}{ccc} 3 & 1 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{array}\right].$$

Complex Variables

3. (10 point) Compute

$$\int_{-\infty}^{\infty} \frac{\sin 2x}{x^2 + x + 1} dx.$$

4. (20 point) A function f of two real variables is defined for each point (x, y) in the unit square $0 \le x \le 1$, $0 \le y \le 1$ as follows

$$f(x,y) \triangleq \begin{cases} 1 & \text{if } x \text{ is rational.} \\ 2y & \text{if } x \text{ is irrational.} \end{cases}$$

- (a) Compute $\bar{\int}_0^1 dx$ and $\underline{\int}_0^1 dx$ in terms of y.
- (b) Show that $\int_0^1 f(x,y)dy$ exists for each x and compute $\int_0^t f(x,y)dy$ in terms of x and t for $0 \le x \le 1$, $0 \le t \le 1$.

Here,

$$\int_{a}^{b} f d\alpha \stackrel{\triangle}{=} \inf \{ \mathcal{U}(p, f, \alpha) | p \in \mathcal{P}[a, b] \},
\int_{a}^{b} f d\alpha \stackrel{\triangle}{=} \sup \{ \mathcal{L}(p, f, \alpha) | p \in \mathcal{P}[a, b] \},
\mathcal{U}(p, f, \alpha) \stackrel{\triangle}{=} \sum_{k=1}^{n} \sup_{x_{k-1} \le x < x_{k}} \{ f(x) \},
\mathcal{L}(p, f, \alpha) \stackrel{\triangle}{=} \sum_{k=1}^{n} \inf_{x_{k-1} \le x < x_{k}} \{ f(x) \},$$

where \mathcal{P} is a partition of [a, b].

Fourier Transformation

Let x(t) be a given signal with Fourier transform X(w). Define the signal

$$f(t) \triangleq \frac{d^2}{dt^2} x(t).$$

5. (10 point) Suppose that

$$X(w) = \begin{cases} 1 & |w| < 1 \\ 0 & |w| > 1 \end{cases}$$

Evaluate

$$\int_{-\infty}^{\infty} |f(t)|^2 dt.$$

6. (10 point) What is the inverse Fourier transform of f(w/4)?

Miscellanies

7. (20 point) Solve

$$\frac{d^2}{dt^2}y + 2\frac{d}{dt}y + y = \sin 10t. \quad y(0) = 1, \quad \frac{d}{dt}y(0) = 2.$$

8. (10 point) When a > 1, compute the maximum of

$$y = \frac{\log_a x}{x}.$$

95학년도 방사과정 수학입학시험

1994.10.19

1. Evaluate the limit of
$$\left(\frac{x^{n}+y^{n}}{2}\right)^{\frac{1}{n}}$$
, $x > y > 0$

2. Find (10pt)
$$\iint_A \chi y \sin(\chi^2 - y^2) d\chi dy$$
 where
$$A = \{(\chi, y) \mid 0 < y < 1, \chi > y \text{ and } \chi^2 - y^2 < 1\}$$

3. Let
$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational} \end{cases}$$

Show $f(0)$ exists. Is f continuous at 0 ?

4 Find a matrix
$$P \in \mathbb{R}^{3 \times n}$$
 such that $P \wedge P^{-1}$ is diagonal:
$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

5 Find the steady-state current in the circuit:

Evaluate the integral below using contour integral. (Don't forget to specify the contour of integration.)

$$I = \int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$

7 Given a function $x(t) = \cos 2\pi f_0 t$,

(25pt) a. Calculate its Fourier transform X(f) and sketch it.

- b. Calculate the Fourier transform $X_s(f)$ of its sampled version $x_s(t)$ with sampling interval t_s and sketch it. (Assume $t_s << 1/f_0$)
- c. The function, $x_r(t)$, is reconstructed by linearly interpolating $x_s(t)$. Calculate its Fourier transform $X_r(t)$ and sketch it. Indicate the reconstruction error in the Fourier domain.

Mathematics

박사과정 재학생은 #5문제까지, 신입생은 끝까지 풀 것.

Problem #1 [20점]

a. convolution theorem을 이용하여 아래 주기적파형 f(t)의 Fourier Transform F(ω)를 수 식으로 구하고 magnitude를 sketch하시오. (T = 4t 라 가정하시오.) 단 rectangular pulse 의 Fourier Transform이 sinc함수이며, impulse train 의 Fourier Transform이 간 격이 다른 impulse train이라는 사실과 Fourier Transform의 shift property를 이용해도 된다.

- b. 위 파형 f(t)를 $\Delta t = \tau/4$ 의 간격으로 sampling 한 파형을 $f_s(t)$ 라 할 때 이의 Fourier Transform $F_s(\omega)$ 를 구하고 magnitude를 sketch하시오.
- c. 만일 위에서 sampling function이 delta function이 아닌 폭이 τ 인 (τ << τ) rectangular function의 때 이의 IF.(ω) 에의 영향을 sketch하시오.

Problem #2 [20점]

- a. $f(x,y,z) = 3x^2 y^2 2z^2 8xy + 12yz + 4zx$ 를 quadratic form $\underline{x}^t A \underline{x}$ 로 표시할 때 matrix A 를 구하라. 단 $\underline{x} = (x \ y \ z)^t$ 이다.
- b. matrix A 가 Hermitian 임을 보여라.
- c. $X = P_X$ (단 $X = (X Y Z)^t$ 임)로 좌표회전하여 $f(X,Y,Z) = aX^2 + bY^2 + cZ^2$ 의 형태로 만 등 때 a, b, c와 matrix P를 구하라.
- d. matrix P는 unitary임을 보여라.
- $e. x^2 + y^2 + z^2 = 1$ 일 때 f(x,y,z)의 최대값과 최소값을 구하라.

Problem #3 [20점]

contour integral 을 이용하여 아래의 적분을 i) t < 0 와 ii) t > 0 로 나누어 구하시오. contour를 정확히 표시할 것.

$$I(t) = \frac{A}{2\pi} \int_{-\infty}^{\infty} \frac{e^{j\omega t} d\omega}{R + j\omega L}$$

[20pt]Prob. #4: Compute the second order Taylor formular for $f(x,y) = e^x \cos y$ around (0,0).

[20pt]Prob. #5 Solve the following differential equation using the Laplace transform:

$$y''(t) + 2y'(t) + 2y(t) = 4;$$
 $y(0) = 0, y'(0) = 0$

Students in the Ph. D. course stop at this point.

[20pt]Prob. #6 Prove that

$$\ln 2 = \lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right].$$

(Hint: Use Riemann sums)

[20pt] Prob. #7 Use Green's theorem to show that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .

[20pt]Prob. #8 Mark 'T' for True Statement or 'F' for False Statement. There is a penalty of -2 points for each wrong answer. You do not need to state the jestification.

- (1) If f is a continuous function on [0,1], then f is bounded on [0,1].
- (2) An integrable function on [0,1] must be continuous on [0,1].
- (3) If U and V are open subsets of \mathbb{R} , then $U \times V = \{(x,y) | x \in U, y \in V\}$ is open.
- (4) If f and integrable functions on [a, b], then f 2g is integrable on [a, b].
- (5) Any bounded sequence in \mathbb{R}^n must have a convergent subsequence.
- (6) If f is a continuous real-valued function on [0,l] such that $f(x) \geq 0$ for all $x \in [0,1]$ and $\int_0^1 f(x)dx = 0$, then f(x) = 0 for all $x \in [0,1]$.
- (7) If f is an infinitely differentiable real-valued function on \mathbb{R} , then f must have a power series expansion about each point of \mathbb{R} .

- (8) If f_1, f_2, f_3, \cdots are all continuous real-valued functions on (0,1), then $f(x) = \lim_{n\to\infty} f_n(x)$ is also continuous on (0,1).
- (9) Assume F is a smooth vector (field) in \mathbb{R}^3 . If $\nabla \times F = 0$, locally there exists $f: \mathbb{R}^3 \to \mathbb{R}$ such that $F = \operatorname{grad} f$.
- (10) If f is a differentiable real-valued function on (0,1) and $f(1/2) \ge f(x)$ for all $x \in (0,1)$, then f'(1/2) = 0

Mathematics

Problem #1 [25점]

a. convolution theorem을 이용하여 아래 주기적파형 f(t)의 Fourier Transform F(ω)를 수 식으로 구하고 magnitude를 sketch하시오. 단 rectangular pulse 의 Fourier Transform 이 sinc함수이며, impulse train 의 Fourier Transform이 간격이 다른 impulse train이라 는 사실과 Fourier Transform의 shift property를 이용해도 된다.

b. Gibbs phenomenon에 대해 설명하시오.(발생이유, discontinuity 에서 두드러지는 이유 등 포함)

Problem #2 [25점]

- 2차원 random vector $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ 의 sample 이 다음과 같이 7개가 주어졌다. $(\mathbf{x}_1, \mathbf{x}_2) = \{ (0,0) (1,0) (0,1) (1,1) (2,1) (2,2) (1,2) \}$
- a. mean vector m, 과 covariance matrix C를 구하시오.
- b. covariance matrix C의 eigenvalue와 normalized eigenvector를 구하시오.
- c. ACAT = D (D는 diagonal matrix) 로 하는 matrix A를 구하고 이때의 D를 구하시오.
- d. matrix A가 unitary matrix 가 됨을 보이시오.
- e. random vector x 를 unitary matrix $P \neq y = (y_1, y_2) = P(x-m_x)$ 와 같이 변환시킬 때 y_1 의 variance 를 최대로 하는 P와 A 사이의 관계를 구하고 이때의 $E\{y_1^2\}$, $E\{y_2^2\}$, $E\{y_1y_2\}$ 를 구하시오. 단 $E\{\}$ 는 expectation operator P0.

문제 #3, #4, #5 중 택 2.

set
$$f(x) = \begin{bmatrix} x, & x : rational \\ 1-x, & x : irrational \end{bmatrix}$$
 { $0 \le x \le 1$ }

show that f is continuous at x = 1/2

∫(In x)" dx 을 부정적분하시오.

Problem #5 [15점]

Evaluate $\int_0^\infty dx / (x^6+1)$

Problem #6 [20점]

Solve $y'' + y = 3\cos(2t)$, y(0) = 3, y'(0) = 0

Math. Qualifying Exam.

March 1992

Prob. 1.(20pt) Find the Fourier series of the following function:

Prob. 2.(15pt) Let A be a $n \times n$ nonsingular matrix. The trace of A is defined to be the sum of the diagonal elements, i.e., $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. Show that $\operatorname{tr}(A) = \operatorname{tr}(TAT^{-1})$, where T is a $n \times n$ nonsingular matrix.

Prob. 3.(15pt) Find the mass of a solid body S determined by the inequalities of spherical coordinates:

$$0 \le \theta \le \frac{\pi}{2}$$
, $\frac{\pi}{4} \le \varphi \le \arctan 2$, $0 \le \rho \le \sqrt{6}$.

The density, given as a function of the spherical coordinate (θ, φ, ρ) , is equal to $\frac{1}{\rho}$.

Prob. 4.(15pt) Using $(\arctan x)' = \frac{1}{1+x^2}$, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots.$$

Prob. 5.(15pt) Evaluate

$$\int_C \frac{\sin z}{4z^2 + 1} dz,$$

where C is the unit circle.

Prob. 6.(20pt) Solve

$$y'' + 4y = 4(\cos 2t - \sin 2t),$$
 $\dot{y}(0) = 1,$ $y'(0) = 2.$

1992 Math. Qualifying Exam.

2. Investigate the continuity of
$$f(x,y) = \begin{cases} \frac{\chi^2 - y^2}{\chi^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
at $(0,0)$.

3. Expand the following function in a Fourier Series.

4. Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5+3\sin\theta}$$
 (15 pt)

$$e^{j\omega t} \rightarrow h(t) \rightarrow H(j\omega)e^{j\omega t}$$

1991 Qualifying Mathematics Examination

- 1. (15pt) Find the Laplace trasforms of the following functions.
 - a) $g(t) = t \cos(5t)$,

2. (15pt) Solve the following differential equation.

$$y'' + y = -9\sin 2t$$
, $y(0) = 1$, $y'(0) = 0$.

3. (15pt) Find the determinant of the following matrix.

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 3 & 0 & 1 & 5 \\ 1 & -2 & 0 & 3 \\ -2 & -4 & 1 & 6 \end{bmatrix}$$

4. (15pt) Evaluate the following integral:

$$\int_0^\infty \frac{1}{1+x^4} dx$$

5. (20pt) The bivariate random vector (x, y) has the joint density function.

$$f(x,y) = \begin{cases} c \cdot xy, & \text{if } 0 \le x \le y \le 1; \\ 0, & \text{otherwise.} \end{cases}$$

Find constant c and the expectation of y, i.e., E[y].

6.(20pt) Mark "O" if the statement is right, or "X" otherwise. There is penalty of -5 points for each wrong answer.

a.
$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6}$$
 diverges. ()

b. The following function is not continuous at all points in (0,1).

$$f(x) = \begin{cases} 1, & \text{rational number} \\ 0, & \text{irrational number} \end{cases}$$

c. For some vector $V \in \mathbb{R}^3$,

$$\nabla \times (\nabla \times V) = \nabla \nabla \cdot V - \nabla \cdot \nabla V,$$

where $\nabla \cdot$, ∇ , and $\nabla \times$ denote divergence, gradient, and curl, respectively. ()

d. Consider the sequence of continuous functions, $\{f_n(x):[0,1]\to [0,1]\}$. Then, the limit $f(x):=\lim_{n\to\infty}f_n(x)$ is also continuous over (0,1).

Mathematics Qualifying Exam.

Problem 1.(10pt) A method of calculating $\pi = 3.14159 \cdots$ is to utilize the relation, $\arctan(1) = \frac{\pi}{4}$. Illustrate how to calculate π . In the Taylor series expansion you should obtain at least 3 terms.

Problem 2.(10pt) Show that $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverges, where the base of log is e.

Problem 3.(15pt) Show that

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{\pi}.$$
Hint:
$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dx dy.$$

Problem 4.(15pt) Let A and P be $n \times n$ matrices. Assume P is nonsingular. Show that the eigenvalues of A and PAP^{-1} are the same.

Problem 5.(15pt) Let C be the unit circle in C centered at the origin. Evaluate

$$\int_C \frac{z^2 \sin z}{4z^2 - 1} dx,$$

Problem 6.(15pt) Solve the following differential equation:

$$y'' + y = 2\cos t$$
, $y(0) = 2$, $y'(0) = 0$.

Problem 7.(20pt) Mark 0 if the statement is right, or X otherwise. There is a penalty of -5 points for each wrong answer. If you are not sure, you may leave () blank. (Don't explain.)

- a) If $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist and are continuous in an open neighborhood of (x_0, y_0) , then $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ in a neighborhood of (x_0, y_0) .
- b) If the Fourier integral (transform) of a real function f(t) is real, then f(t) is even.
- c) If an eigenvalue of a square matrix A, then the determinant of A is zero. ()
- d) $\nabla \cdot (E \times H) = -E \cdot \nabla \times H + H \cdot \nabla \times E \tag{1}$

- (8) If f_1, f_2, f_3, \cdots are all continuous real-valued functions on (0,1), then $f(x) = \lim_{n\to\infty} f_n(x)$ is also continuous on (0,1).
- (9) Assume F is a smooth vector (field) in \mathbb{R}^3 . If $\nabla \times F = 0$, locally there exists $f: \mathbb{R}^3 \to \mathbb{R}$ such that $F = \operatorname{grad} f$.
- (10) If f is a differentiable real-valued function on (0,1) and $f(1/2) \ge f(x)$ for all $x \in (0,1)$, then f'(1/2) = 0

Mathematics Problems

Problem M1: (고5정)

a. Evaluate

$$\frac{1}{2\pi i} \oint_C \frac{4}{4z^2 - 1} dz,$$

where C is the unit circle.

b. We want to evaluate the following by using the contour integral:

$$I = \int_0^\infty \frac{dx}{1 + x^2}$$

Specify the integration contour and obtain I by applying the residue theorem.

Problem M2: (25 전)

a. Find the eigenvalues and the eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array} \right]$$

and obtain matrix P such that $P^{-1}AP$ is a diagonal matrix.

b. i) The characteristic equation of the following matrices are given by $(t+2)^2(t-4)$.

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}.$$

For each matrix, obtain the basis of the eigenspace.

ii) Which matrix can be diagonalized? Explain why.

Problem M3: Suppose that the probabilty density function of the random variable X is given by f(x) and let Y = 2X. What is the probabilty density function of Y? (/ 0)

Problem M4:

$$\lim_{x \to 0} x^x = \tag{54}$$

Problem M5: Solve the following ordinary differential equation:

$$y'' + y = -15\sin 4x, \quad y(0) = y'(0) = 0$$
 ($/O \stackrel{\text{d}}{\searrow}$)

O-X Problems: Mark "O" or "X". There is a penalty of -5 points for each wrong answer.

M6.1:
$$\sum_{n=0}^{\infty} \frac{|\cos x|}{n^2}$$
 converges as $n \to \infty$ for all real number x .

M6.2: If curl F = 0, then (locally) there exists a scalar potential function f such that F = grad f.

M6.3: According to the definition of the integration in the high school textbooks or in the freshman calculus, the funtion

$$f(x) = \begin{cases} x^2, & \text{if } x \text{ is rational number,} \\ 0, & \text{if } x \text{ is irrational number} \end{cases}$$

is integrable for the closed interval [0, 1].

M6.4: The funtion

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

()

is differentiable at x = 0.

M6.5 : If X_1 and X_2 are Gaussian random variables, then $X_1 + X_2$ is also a Gaussian random variable.

[1]

- (a) Prove that the rank of a matrix (not necessarily square) is not changed by multiplication by a nonsingular matrix.
- (b) Let A and B be n x n nonsingular square matrices. Prove that AB has an inverse, namely

$$(AB) = B A$$
.

Use the definition of an inverse matrix.

2. (1) Find the general solution of the following differential equation

$$\frac{d^3y}{dx^3} - \frac{dy}{dx} = 2x + 1 - 4\cos x + 2e^x.$$

(2) Evaluate an integral
$$\int_{-\infty}^{\infty} \frac{x^2}{1 + x^4} dx$$