EE 503: Midterm 1 Wed. Feb. 20, 2019 10:00am-11:55am

1

Location 1: OHE 122 (Last name: Gao - Zuo)

Location 2: GFS 222 (Last name: Abedsoltan - Gajjar)

A. Instructions

- Put your name on the top of this page.
- The exam time is 1 hour and 55 minutes.
- No notes, books, phones, or other electronic equipment.
- Feel free to leave your answer as a fully defined sum, such as $\sum_{n=1}^{\infty} n^2 e^{-n}$, without simplifying.
- Justify your work. A correct answer with little or no explanation will receive zero credit.

B. Formulas and reminders

- 1) Set unions and intersections:

 - $$\begin{split} \bullet & \ (\cap_{n=1}^{\infty}\mathcal{A}_n)^c = \cup_{n=1}^{\infty}\mathcal{A}_n^c. \\ \bullet & \ (\cup_{n=1}^{\infty}\mathcal{A}_n)^c = \cap_{n=1}^{\infty}\mathcal{A}_n^c. \\ \bullet & \ \mathcal{A} \cap (\cup_{n=1}^{\infty}\mathcal{B}_n) = \cup_{n=1}^{\infty}(\mathcal{A} \cap \mathcal{B}_n). \end{split}$$
- 2) Axioms of Probability:
 - $P[A] \ge 0$ for all events A.
 - P[S] = 1.
 - If $\{A_n\}_{n=1}^{\infty}$ are mutually exclusive, then $P[\cup_{n=1}^{\infty}A_n]=\sum_{n=1}^{\infty}P[A_n]$.
- 3) Consequences of the axioms:
 - $P[A] + P[A^c] = 1, 0 \le P[A] \le 1.$
- 4) Total conditioning: Suppose events $\{A_n\}_{n=1}^{\infty}$ partition S. Then:

 - $P[\mathcal{B}] = \sum_{n=1}^{\infty} P[\mathcal{B}|\mathcal{A}_n] P[\mathcal{A}_n].$ $\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{E}[X|\mathcal{A}_n] P[\mathcal{A}_n].$
- 5) Conditional probability and Baye's rule:
- P[A|B] = P[A∩B]/P[B] = P[B|A]P[A]/P[B].
 6) Cumulative distribution function (CDF) and its properties:
 - $F_X(x) = P[X \le x]$ for all $x \in \mathbb{R}$.
 - $\lim_{x\to\infty} F_X(x) = 1$, $\lim_{x\to-\infty} F_X(x) = 0$, $F_X(x)$ is nondecreasing in x.
 - $P[X = x] = F_X(x) F_X(x^-) = \text{height of "jump" at point } x.$
 - $F_{X|\mathcal{A}}(x) = P[X \leq x|\mathcal{A}]$ for all $x \in \mathbb{R}$.
- 7) Expectations:
 - $\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} x f_X(x) dx$, $\mathbb{E}\left[h(X)\right] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$, $Var(X) = \mathbb{E}\left[(X \mathbb{E}\left[X\right])^2\right]$. Discrete case: $\mathbb{E}\left[X\right] = \sum_{x \in \mathcal{S}_X} x P[X = x]$, $\mathbb{E}\left[h(X)\right] = \sum_{x \in \mathcal{S}_X} h(x) P[X = x]$.
- 8) PDF transformations:
 - Y = aX + b with $a \neq 0$. Then $f_Y(y) = \frac{f_X(\frac{y-b}{a})}{|a|}$.
 - Y = h(X) with $\{x_1, ..., x_n\}$ the points that satisfy $h(x_i) = y$. Then $f_Y(y) = \sum_{i=1}^n \frac{f_X(x_i)}{|h'(x_i)|}$.
- 9) Gaussian PDF: $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$ for $x \in \mathbb{R}$. $\mathbb{E}[X] = m, Var(X) = \sigma^2$. 10) Exponential PDF: $f_X(x) = \lambda e^{-\lambda x}$ for $x \geq 0$. $\mathbb{E}[X] = 1/\lambda, Var(X) = 1/\lambda^2$.