数学分析习题课 2

2017.09.25

1 上次作业中的问题

- (1) 大家作业纸上除了作业,还要写下姓名和学号;
- (2) 有些题目, 我给你打了对号, 并不意味着你写的一定可以拿到满分;
- (3) 很多人在确界的题目中直接给出了答案,没有一点过程,这样以后是要 扣分的,还有人写很显然,所以不想写过程;
- (4) 证明两个集合 A = B, 我们需要证明 $A \subset B$ 和 $B \subset A$ 同时成立。要掌握集合运算的定义:

$$\bigcup_{n=1}^{\infty} A_n := \{x : \exists n_0 \ge 1, s.t. \ x \in A_{n_0} \};
\cap_{n=1}^{\infty} A_n := \{x : \forall n \ge 1, s.t. \ x \in A_n \};
A \setminus B = A \cap B^c;
(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c;
(\bigcap_{n=1}^{\infty} A_n)^c = \bigcup_{n=1}^{\infty} A_n^c;$$

(5) 在叙述有界无界的定义时,请大家严格按照书上的写法,或者我在黑板上的写法。在证明上下确界的时候,也请严格按照定义来证,证明满足定义中的两个条件。

2 序列的极限

序列就是按照一定顺序排列的一列数,这里的一列通常是下标为 0,1,2,···,即可数个下标,这里的可数就可以理解为有自然数个,我们称之为一列数,

2 序列的极限 2

注意有理数就有可数多个。我们今后还会遇到随机过程的概念 $\{X_t, t \geq 0\}$,这里 $t \geq 0$ 就是不可数个,可以理解为有实数那么多个下标,我们称之为一族随机变量。

序列极限的直观含义就是就是当 n 越来越大的时候,序列和某一个常数的距离越来越接近,那么我们通常都是用什么来衡量这个距离的呢? 比如我们在高中经常会遇到的例子就是比较小明和小华的成绩,比如语文,数学,英语和物理四门功课。那么对这四门成绩求平均值就是衡量每个人的成绩平均水平。那么用什么衡量这两个人的成绩浮动呢? 就是方差,方差越大,成绩越不稳定。回忆方差的定义,你就会发现它和极限其实有很多相似的地方。既然是为了表达距离越来越小,我们自然要定义什么叫接近。

定义 1 设 $\{x_n\}$ 是一个序列。若存在常数 $a \in \mathbb{R}$,使得 $\forall \epsilon > 0, \exists N \in \mathbb{N}$,当 n > N 时,有 $|x_n - a| < \epsilon$,则称该序列是收敛的,并且称 a 为该序列的极限。若不存在这样的 a,则称该序列是发散的。发散相应数学的表达在课本 34 页,需要仔细体会收敛与发散的区别。

- (1) 可以思考下数列收敛的等价定义,比如把 ϵ 换成 $\frac{1}{m}$, 怎么表述呢?
- (2) N 和 ϵ 的关系, 以 $\frac{1}{n}$ 为例说明。

我们在按照定义求解数列极限的时候,通常是在固定 ϵ 下,把 n 当做未知数来解,从而确定 N 的值。而一般情况下很难求出 n 的显式表达,此时我们就要进行放缩,考虑 $|x_n - a| < b_n$ (b_n 要是无穷小量),例如 $\frac{2^n}{n!}$ 。

2.1 几种常见的极限

- (1) 多项式除以多项式;
- (2) 指数形式 $\{a^n, n \geq 1\}$;
- (3) $a^{\frac{1}{n}}$, 0 < a < 1 and a > 1; $n^{\frac{1}{n}}$;
- (4) $2^{n}, n^{k}, n!$ 收敛速度对比。

2.2 无穷小量和无穷大量

定义 2 设 x_n 是一个序列。若 $x_n \to 0 (n \to \infty)$,则称序列 $\{x_n\}$ 为无穷小量,记为 $x_n = o(1)(n \to \infty)$.

定理 1 设 x_n 是一个序列.

- (1) $\{x_n\}$ 是无穷小量的充分必要条件是 $\{|x_n|\}$ 是无穷小量;
- (2) 若 $\{x_n\}$ 是无穷小量,M 是一个常数,则 $\{Mx_n\}$ 是无穷小量; $\{a_n\}$ 是 有界序列,则 $\{a_nx_n\}$ 也是无穷小量;
- (3) $\{x_n\}$ 极限是 a 的充要条件是 $\{x_n a\}$ 是无穷小量。

定义 3 设 x_n 是一个序列。若 $\forall M>0, \exists N,$ 当 n>N 时,有 $x_n>M,$ 则称 $\{x_n\}$ 是正无穷大量,记为 $\lim_{n\to\infty}=+\infty$,也称 $\{x_n\}$ 有广义极限. 若 $\forall M>0, \exists N,$ 当 n>N 时,有 $x_n<-M,$ 则称 $\{x_n\}$ 是负无穷大量,记为 $\lim_{n\to\infty}=-\infty$. 若 $\{|x_n|\}$ 是正无穷大量,则称 $\{x_n\}$ 为无穷大量,记为 $\lim_{n\to\infty}=\infty$.

3 序列极限的性质

- (1) 若一个数列 $\{x_n\}$ 是有界的,则记为 $x_n = O(1)$;
- (2) 当改变一个序列的有限多项时,不改变其收敛性;
- (3) 收敛序列的极限是唯一的;
- (4) 收敛数列是不是一定是单调的,或者从某一项之后开始单调? 举例说明 $(-1)^n \frac{1}{n}$;
- (5) 无界数列是不是一定是无穷大量?
- (6) 收敛序列是有界的; 反之不成立, 举例说明;
- (7) 极限的保序性,四则运算,夹逼收敛定理.

4 习题

例 2.2.4,3(5),5,6(3),14(1)(2)(3),15.