

FIG. 111

FIG. 114

FIG. 115

FIG. 116

336/345

FIG. 120

FIG. 121

FIG. 122

FIG. 124

FIG. 125

FIG. 126

SEQUENCE LISTING

	Neose Technologie DeFrees, Shawn Zopf, David Bayer, Robert Bowe, Caryn Hakes, David Chen, Xi	es, Inc.				
<120>	REMODELING AND G	LYCOCONJUGA	TION OF PEP	TIDES		
<130>	040853-01-5050WO					
<150> <151>	US 60/328,523 2001-10-10					
	US 60/344,692 2001-10-19	`				
<150> <151>	US 60/334,233 2001-11-08					
<150> <151>	US 60/334,301 2001-11-08					
<150> <151>	US 60/387,292 2002-06-07					
<150> <151>	US 60/391,777 2002-06-25					
<150> <151>						
<150> <151>						
<150> <151>						
<160>	62					
<170>	PatentIn version	n 3.1				
<400	. 1		asasaettee	tactcaagta	cttagagcaa	6
	octgg geeetgecag					12
	ggaaga tecagggega					1.8
ctgte	gccacc ccgaggagct	ggtgctgctc	ggacactctc	Lyggcalccc	Cagggarace	2.0

ctgagcagct geccageca ggcectgcag etggcagget gettgageca aetecatage 240
ggcettttee tetaccaggg geteetgcag gecetggaag ggateteece egagttgggt 300
cccaccttgg acacactgca getggacgte geegactttg ccaccacat etggcageag 360
atggaagaac tgggaatgge eectgecetg cageccace agggtgecat geeggeette 420
geetetgett tecagegeeg ggcaggaggg gteetggttg eeteccatet geagagette 480
etggaggtgt egtacegegt tetacgecae ettgeccage eetga 525

<210> 2

<211> 174 <212> PRT

<213> Homo sapiens

<400> 2

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val ${35} \qquad \qquad {45}$

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe

60

160 155 145 150

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165

<210> 1733 <211>

DNA <212>

<213> Homo sapiens

<400> 3

gegeetetta tgtacecaca aaaatetatt tteaaaaaag ttgetetaag aatatagtta 120 tgcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 240 agaaaaaagt ttotaaaaag gototggggt aaaagaggaa ggaaacaata atgaaaaaaa 300 tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga 360 agtagaaagt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc 420 taggcacaaa gcaaggtott cagagaacct ggagcctaag gtttaggctc acccatttca 480 accaptotag cagcatotgc aacatotaca atggcottga cotttgcttt actggtggco 540 ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600 agcctgggta gcaggaggac cttgatgctc ctggcacaga tgaggagaat ctctcttttc 660 tcctgcttga aggacagaca tgactttgga tttccccagg aggagtttgg caaccagttc 720 caaaaggotg aaaccatccc tgtcctccat gagatgatcc agcagatett caatctcttc 780 agcacaaagg actcatctgc tgcttgggat gagaccctcc tagacaaatt ctacactgaa 840 ctctaccagc agctgaatga cctggaagcc tgtgtgatac agggggtggg ggtgacagag 900 actoccotga tqaaggagga otocattotg gotgtgagga aatacttoca aagaatoact 960 ctctatctga aagagaagaa atacagccct tgtgcctggg aggttgtcag agcagaaatc 1.020 atgagatott titottigto aacaaactig caagaaagti taagaagtaa ggaatgaaaa 1080 ctggttcaac atggaaatga ttttcattga ttcgtatgcc agctcacctt tttatgatct 1140 qccatttcaa agactcatgt ttctgctatg accatgacac gatttaaatc ttttcaaatg 1200 tttttaggag tattaatcaa cattgtattc agctcttaag gcactagtcc cttacagagg 1260 accatgotga otgatocatt atotatttaa atattttaa aatattattt atttaactat 1320

PCT/US02/32263 WO 03/031464

ttataaaaca acttat	ttttt gttcat	atta tgto	catgtgc a	cctttgcac	agtggt	taat	1380
gtaataaaat gtgtt	ctttg tatttg	gtaa atti	attttg t	gttgttcat	tgaact	tttg	1440
ctatggaact tttgt	acttg tttatt	cttt aaaa	atgaaat t	ccaagccta	attgtg	gcaac	1500
ctgattacag aataa	ctggt acactt	catt tgt	ccatcaa (tattatatto	: aagata	ataag	1560
taaaaataaa ctttc	tgtaa accaag	ttgt atg	ttgtact (caagataaca	gggtga	aacct	1620
aacaaataca attct	gctct cttgtg	tatt tga	ttttgt :	atgaaaaaa	ctaaaa	aatgg	1680
taatcatact taatt	atcag ttatgg	taaa tgg	tatgaag :	agaagaagg	a acg		1733
<210> 4 <211> 188 <212> PRT <213> Homo sapi		÷ .					
<400> 4						*	
Met Ala Leu Thr 1	Phe Ala Leu 5	Leu Val	Ala Leu 10	Leu Val L	eu Ser 15	Cys	
Lys Ser Ser Cys	Ser Val Gly	Cys Asp 25	Leu Pro	Gln Thr H	is Ser O	Leu	
Gly Ser Arg Arg	Thr Leu Met	Leu Leu 40	Ala Gln	Met Arg A 45	rg Ile	Ser	
Leu Phe Ser Cys 50	Leu Lys Asp 55	Arg His	Asp Phe	Gly Phe E 60	ro Gln	Glu	
Glu Phe Gly Asn 65	Gln Phe Gln 70	Lys Ala	Glu Thr 75	Ile Pro V	/al Leu	His 80	
Glu Met Ile Gln	Gln Ile Phe 85	Asn Leu	Phe Ser 90	Thr Lys I	Asp Ser 95	Ser	
Ala Ala Trp Asp	Glu Thr Leu	Leu Asp 105	Lys Phe	Tyr Thr	3lu Leu 110	Tyr	
Gln Gln Leu Asn 115	. Asp Leu Glu	Ala Cys 120	val Ile	Gln Gly 1 125	Val Gly	Val	
Thr Glu Thr Pro	Leu Met Lys	Glu Asp	Ser Ile	Leu Ala	Val Arg	Lys	

140

135

Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro 145 1.50 Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 <210> 5 <211> 757 <212> DNA <213> Homo sapiens <400> 5 atgaccaaca agtgtctcct ccaaattgct ctcctgttgt gcttctccac tacagctctt 60 tccatgagct acaacttgct tggattccta caaagaagca gcaattttca gtgtcagaag 120 ctcctgtggc aattgaatgg gaggcttgaa tattgcctca aggacaggat gaactttgac 180 atccctgagg agattaagca gctgcagcag ttccagaagg aggacgccgc attgaccatc 240 tatgagatgc tccagaacat ctttgctatt ttcagacaag attcatctag cactggctgg 300 aatgagacta ttgttqagaa cctcctggct aatgtctatc atcagataaa ccatctgaag 360 acagtcctgg aagaaaaact ggagaaagaa gattttacca ggggaaaact catgagcagt 420 ctgcacctga aaagatatta tgggaggatt ctgcattacc tgaaggccaa ggagtacagt 480 cactgtgcct ggaccatagt cagagtggaa atcctaagga acttttactt cattaacaga 540 cttacaggtt acctccgaaa ctgaagatct cctagcctgt ccctctggga ctggacaatt 600 getteaagea ttetteaace ageagatget gtttaagtga etgatggeta atgtactgea 660 aatgaaagga cactagaaga ttttgaaatt tttattaaat tatgagttat ttttattat 720 757 ttaaatttta ttttggaaaa taaattattt ttggtgc <210> 6 <211> 187 <212> PRT <213> Homo sapiens <400> 6 Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser

Thr	Thr	Ala	Leu 20	Ser	Met	Ser	Tyr	Asn 25	Leu	Leu	Gly	Phe	Leu 30	Gln	Arg
Ser	Ser	Asn 35	Phe	Gln	Cys	Gln	Lys 40	Leu	Leu	Trp	Gln	Leu 45	Asn	Gly	Arg
Leu	Glu 50	Tyr	Cys	Leu	Lys	Asp 55	Arg	Met	Asn	Phe	Asp 60	Ile	Pro	Glu	Glu
Ile 65	ГÀЗ	Gln	Leu	Gln	Gln 70	Phe	Gln	Lys	Glu	Asp 75	Ala	Ala	Leu	Thr	Ile 80
Tyr	Glu	Met	Leu	Gln 85	Asn	Ile	Phe	Ala	Ile 90	Phe	Arg	Gln	Asp	Ser 95	Ser
ser	Thr	Gly	Trp 100	Asn	Glu	Thr	Ile	Val 105	Glu	Asn	Leu	Leu	Ala 110	Asn	Val
Tyr	His	Gln 115		Asn	His	Leu	Lys 120	Thr	Val	Leu	Glu	Glu 125	ьув	Leu	Glu
Ъув	Glu 130	Asp	Phe	Thr	Arg	Gly 135	ГÀа	Leu	. Met	Ser	Ser 140	Leu	His	Leu	Lys
Arg 145		Tyr	Gly	Arg	11e	Leu	His	тух	Lev	ь Бу е	Ala	Lys	Glu	туг	Ser 160
His	Cys	Ala	Trp	Thr 165	Ile	val	. Arg	y Val	. Glu 170	ı Ile	e Lev	ı Arg) Ası	1 Phe 175	Tyr
₽h∈	Ile	a Ası	180	g Let	Thi	: Gl	Ty:	2 Let	ı Arş	g Ası	1				
		7 1332 DNA Home		pien	3										
<40	00>	7	agg	ccct	cag s	gete	ctct	gc c	ttct	gctt	g gg	cttc	aggg	ctg	cctggct
															cgccaac
															gcagtgc

tccttcgagg aggcccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt

60 120 180

tcttacagtg	atggggacca	gtgtgcctca	agtccatgcc	agaat g gggg	ctcctgcaag	300
	agtoctatat					360
	atgaccagct					420
agtgaccaca	cgggcaccaa	gegeteetgt	cggtgccacg	aggggtactc	tetgetggea	480
	cctgcacacc					540
	ccagcaaacc					600
	ggcaggtcct					660
	tetgggtggt					720
	eggtgetggg					780
	cgcaggtcat					840
	teegeetgea					900
	ggacgttctc					960
					gctcaacgtg	1020
					ctccccaaat	1080
					ctgcaagggg	1140
					gggcatcgtc	1200
					ggtctcccag	1260
					cctcctgcga	1320
gececattte						1332

```
<210> 8
<211> 444
<212> PRT
```

<400> 8

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln 1 $$ 5 $$ 15

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

<213> Homo sapiens

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu 50 50 60

- Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 70 75 80
- Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95
- Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 105
- Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125
- Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135 140
- Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 150 155
- Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175
- Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val. 180 185 190
- Gly Gly Lys Val Cys Pro Lys Gly Gly Cys Pro Trp Gln Val Leu Leu 195 200 205
- Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile 210 220
- Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg 225 230 235
- Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly $245 \hspace{1cm} 250 \hspace{1cm} 255$
- Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr 260 265 270

Val	Pro	Gly 275	Thr	Thr	Asn	His	Asp 280	Ile	Ala	Leu	Leu	Arg 285	Leu	His	Gln	
Pro	Val 290	Val	Leu	Thr	Asp	His 295	Val	Val	Pro	Leu	300 300	Leu	Pro	Glu	Arg	
Thr 305	Phe	ser	Glu	Arg	Thr 310	Leu	Ala	Phe	Val	Arg 315	Phe	Ser	Leu	Val	Ser 320	
Gly	Trp	Gly	Gln	Leu 325	Leu	Asp	Arg	Gly	Ala 330	Thr	Ala	Leu	Glu	Leu 335	Met	
Val	Leu	Asn	Val 340	Pro	Arg	Leu	Met	Thr 345	Gln	Asp	Cys	Leu	Gln 350	Gln	Ser	
Arg	Гув	Val	Gly	Asp	Ser	Pro	Asn 360	Ile	Thr	Glu	Тут	Met 365	Phe	Суѕ	Ala	
Gly	Тут 370		Авр	Gly	Ser	Lys 375	Asp	Ser	Cys	Lys	Gly 380	Авр	Ser	Gly	Gly	
Pro 385		Ala	Thr	His	Туг 390	Arg	Gly	Thr	Trp	Tyr 395	Let	Thr	Gly	' Ile	Val 400	
Ser	Trp	Gly	Gln	Gly 405	Сув	Ala	Thr	Val	Gly 410	His	Phe	e Gly	v Val	. Tyr 415	Thr	
Arg	Val	. Ser	Glr 420		: Ile	Glu	Trp	425	Glr	ь Буя	Let	ı Met	430	g Ser)	Glu	
Pro	Arg	Pro 435		⁄ Va.	Let	Let	440	Ala	Pro	Phe	e Pr					
<21 <21	1>	9 1437 DNA Homo		olen	3											
<40	00> rcag	9	tga	acat	gat (catg	gcag	aa t	cacci	aagc	c tc	atca	ccat	ctg	ecttt	ta
															caaaa	
															gaaco	

PCT/US02/32263 WO 03/031464

gagagagaat	gtatggaaga	aaagtgtagt	tttgaagaac	cacgagaagt	ttttgaaaac	240
actgaaaaga	caactgaatt	ttggaagcag	tatgttgatg	gagatcagtg	tgagtccaat	300
ccatgtttaa	atggcggcag	ttgcaaggat	gacattaatt	cctatgaatg	ttggtgtccc	360
tttggatttg	aaggaaagaa	ctgtgaatta	gatgtaacat	gtaacattaa	gaatggcaga	420
tgcgagcagt	tttgtaaaaa	tagtgctgat	aacaaggtgg	tttgctcctg	tactgaggga	480
tatcgacttg	cagaaaacca	gaagtcctgt	gaaccagcag	tgccatttcc	atgtggaaga	540
gtttctgttt	cacaaacttc	taagctcacc	cgtgctgagg	ctgtttttcc	tgatgtggac	600
tatgtaaatc	ctactgaagc	tgaaaccatt	ttggataaca	tcactcaagg	cacccaatca	660
tttaatgact	tcactcgggt	tgttggtgga	gaagatgcca	aaccaggtca	attcccttgg	720
caggttgttt	tgaatggtaa	agttgatgca	ttctgtggag	gctctatcgt	taatgaaaaa	780
tggattgtaa	ctgctgccca	ctgtgttgaa	actggtgtta	aaattacagt	tgtcgcaggt	840
gaacataata	ttgaggagac	agaacataca	gagcaaaagc	gaaatgtgat	tcgagcaatt	900
	acaactacaa					960
gaactggacg	aacccttagt	gctaaacagc	tacgttacac	ctatttgcat	tgctgacaag	1020
gaatacacga	acatcttcct	caaatttgga	tetggetatg	taagtggctg	ggcaagagtc	1080
ttccacaaag	ggagatcagc	tttagttctt	cagtacctta	gagttccact	tgttgaccga	1140
gccacatgto	ttcgatctac	aaagttcacc	atctataace	acatgttctg	tgctggcttc	1200
catgaaggag	gtagagattc	atgtcaagga	gatagtgggg	g gaccccatgt	tactgaagtg	1260
					: aatgaaaggc	1320
					aaaaacaaag	1380
	gaaagatgga					143

<210> 10

<211> 462 <212> PRT

<213> Homo sapiens

<400> 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr 10

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 20

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn

- Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys 50 60
- Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn 65 70 75 80
- Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln 85 90 95
- Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 100 105 110
- Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 115 120 125
- Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 130 135 140
- Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly 145 150 150
- Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
- Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
- Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu 195 200 205
- Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210 215
- Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp 225 230 235
- Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile \$245\$

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 260 265 270

- Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 275 280 285
- His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 290 295 300
- Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 305 310 315
- Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys
- Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly 340 345
- Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu 355 360 365
- Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 370 375 380
- Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe 385 390 395
- His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His $405 \hspace{1cm} 410 \hspace{1cm} 415 \hspace{1cm}$
- Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp \$420\$
- Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val\$435\$
- Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 455
- <210> 11
- <211> 603
- <212> DNA
- <2135 Homo sapiens

<400> 11 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat	60
gttctccatt ccgctcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca	120
ttettetecc ageegggtge eccaataett cagtgeatgg getgetgett etetagagea	180
tateccacte cactaaggte caagaagaeg atgttggtee aaaagaaegt caceteagag	240
tocacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg	300
gagaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta aatgttttac	360
caagtgctgt cttgatgact gctgattttc tggaatggaa	420
atggctttgt gagataaaac tctccttttc cttaccatac cactttgaca cgcttcaagg	480
atatactgca gctttactgc cttcctcctt atcctacagt acaatcagca gtctagttct	540
tttcatttgg aatgaataca gcattaagct tgttccactg caaataaagc cttttaaatc	600
atc	603
<210> 12 <211> 116 <212> PRT <212> PRT <213> Homo sapiens <400> 12 Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser 1 5 10 15	
Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro 20 25 30	
Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro 35 40 45	
The Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro 50 55 60	
Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 65 70 75 80	
Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly 85 90 95	
Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 100 105 110	

Tyr :		Lуs 115	Ser													
<210 <211 <212 <213	> 3 > D	3 90 NA omo	sapi	ens												
<400 atga	> 1	.3 ac t	ccag	tttt	t ct	tect	tttc	tgt	tgct	gga	aagc	aato	tg c	tgca	atagc	
tgtg	agct	ga c	caac	atca	c ca	ttga	aata	gag	aaag	aag	aatg	tegt	tt c	tgca	taagc	
															accca	
															tgaga	
-															agtgt	
															ccagc	
			tggt						-							
	,		-55-	·												
<210 <211 <212 <213	> 1 > E	.4 .29 RT Iomo	sapi	ens												
<400	> 1	4														
Met 1	Lys	Thr	Leu ,	Gln 5	Phe	Phe	Phe	Leu	Phe 10	Cys	Cys	Trp	ГÀВ	Ala 15	Ile	
Сув	Cys	Asn	Ser 20	Cys	Glu	Leu	Thr	Asn 25	Ile	Thr	Ile	Ala	Ile 30	Glu	ГÀв	
Glu	Glu	Сув 35	Arg	Phe	Cys	Ile	Ser 40	Ile	Asn	Thr	Thr	Trp 45	Сув	Ala	Gly	
Tyr	Сув 50	Tyr	Thr	Arg	Авр	Leu 55	Val	Tyr	Lys	Asp	Pro 60	Ala	Arg	Pro	ГÀв	
Ile 65	Gln	ГЛВ	Thr	Cys	Thr 70	Phe	Lys	Glu	Leu	V al 75	Tyr	Glu	Thr	Val	Arg 80	
۷al	Pro	Gly	Сув	Ala 85	His	His	Ala	Asp	Ser	Leu	Tyr	Thr	Tyr	Pro 95	Val	

Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys 110 100

Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys 120

Glu

<210> 15 <211> 1342

<212> ANG

<213> Homo sapiens

<400> 15

cccqqaqccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 cegocetete etecaggece gtggggetgg ceetgeaceg cegagettee egggatgagg 120 geccceggtg tggtcacceg gcgcgcccca ggtcgctgag ggaccccggc caggcgcgga 180 gatgggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 240 totgggcctc ccagtcctgg gcgccccacc acgcctcatc tgtgacagcc gagtcctgga 300 gaggtacete ttggaggeca aggaggeega gaatateaeg aegggetgtg etgaacaetg 360 cagettgaat gagaatatea etgteecaga caccaaagtt aatttetatg eetggaagag 420 gatggaggte gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcq 600 aggccagaag gaagccatct cocctccaga tgcggcctca gctgctccac tccgaacaat 660 caetgetgae acttteegea aactetteeg agtetactee aattteetee ggggaaaget 720 gaagetgtac acaggggagg cetgeaggac aggggacaga tgaccaggtg tgtecacetg 780 ggcatateca ccacetecet caccaacatt gettgtgcca caccetecee egecacteet 840 quaccccgtc gaggggctct cagctcagcg ccagcctgtc ccatgqacac tccagtgcca 900 gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg 960 tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagec atgetgggaa gacgeetgag eteactegge accetgeaaa atttgatgee 1080 aggacaeget ttggaggega tttacetgtt ttcgcaecta ccatcaggga caggatgaec 1140

tggaga	actt	aggtg	gcaa	g cti	gtga	cttc	tcc	aggt	ctc	acgg	gcat	gg g	cact	ccctt	1200
ggtggd	aaga	gcccc	cttg	a ca	ccgg	ggt g	gtg	ggaa	cca	tgaa	gaca	gg a	tggg	ggctg	1260
geetet	ggct	ctcat	aaaa	t cc	aagti	tttg	tgt	attc	ttc	aacc	tcat	tg a	caag	aactg	1320
aaacca	.ccaa	aaaaa	aaaa	a aa											1342
<210> <211> <212> <213>	16 193 PRT Homo	sapi	ens												
<400>	16														
Met Gl	y Val	His	Glu 5	Cys	Pro	Ala	Trp	Leu 10	Trp	Leu	Leu	Leu	Ser 1.5	Leu	
Leu Se	er Leu	Pro 20	Leu	Gly	Leu	Pro	Val 25	Leu	Gly	Ala	Pro	Pro 30	Arg	Leu	
Ile Cy	/s Asp 35	Ser	Arg	Val	Leu	Glu 40	Arg	Tyr	Leu	Leu	Glu 45	Ala	ГÀв	G1u	
Ala G		Ile	Thr		Gly 55	Cys	Ala	Glu	His	Сув 60	Ser	Leu	Asn	Glu	
Asn I	le Thr	Val	Pro	Asp 70	Thr	ГÀв	Val	Asn	Phe 75	Tyr	Ala	Trp	Lys	Arg 80	
Met G	lu Val	. Gly	Gln 85	Gln	Ala	Val	Glu	Val 90	Trp	Gln	Gly	Leu	Ala 95	Leu	
Leu S	er Glu	Ala 100	Val	Leu	Arg	Gly	Gln 105	Ala	Leu	Leu	Val	Asn 110	Ser	Ser	
Gln P	ro Tr		Pro	Leu	Gln	Leu 120	His	Val	Asp	Lys	Ala 125	Val	Ser	Gly	
Leu A	rg Se:	r Leu	Thr	Thr	Leu 135	Leu	Arg	Ala	Leu	Arg 140	Ala	Gln	Lys	Glu	
Ala I 145	le Se	r Pro	Pro	Asp 150	Ala	Ala	Ser	Ala	Ala 155	Pro	Leu	Arg	Thr	Ile 160	
Thr A	la As	p Thr	Phe	Arg	Lys	Leu	Phe	Arg		Tyr	Ser	Asn	Phe	Leu	

175 170 165

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180

Arq

<210> 17

<211> 435

<212> DNA

<213> Homo sapiens

<400> 17

atgtggetge agageetget getettggge aetgtggeet geageatete tgeaceegee 60 cgctcgccca gccccagcac gcagccctgg gagcatgtga atgccatcca ggaggcccgg 120 cgtctcctga acctgagtag agacactgct gctgagatga atgaaacagt agaagtcatc 180 tcaqaaatqt ttgacctcca ggagccgacc tgcctacaga cccgcctgga gctgtacaag 240 cagggeetge ggggeageet caccaagete aagggeeeet tgaccatgat ggccageeae 300 tacaagcagc actgccctcc aaccccggaa acttcctgtg caacccagat tatcaccttt 360 qaaagtttca aagagaacct gaaggacttt ctgcttgtca tcccctttga ctgctgggag 420 435 ccagtccagg agtga

<210> 18

<211> 144 <212> PRT

<213> Homo sapiens

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His 25 20

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 55 50

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 70 65 Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser 105 100 Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 120 115 Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 140 135 130 <210> 19 <211> 501 <212> DNA <213> Homo sapiens <400> 19 atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 300 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 360 tattoggtaa ctgacttgaa tgtccaacgc aaagcaatac atgaactcat ccaagtgatg 420

qctqaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga ggtcgaagag catcccagta a <210> 20 <211> 166 <212> PRT

<400> 20

<213> Homo sapiens

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 10

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu

			20					25					30		
Asn	Leu	Lys 35	Lys	Tyr	Phe	Asn	Ala 40	Gly	His	ser	Asp	Val 45	Ala	Asp	Asn
Gly	Thr 50	Leu	Phe	Leu	Gly	Ile 55	Leu	Lys	Asn	Trp	Lув 60	Glu	Glu	ser	Asp
Arg 65	Lys	Ile	Met	Gln	Ser 70	Gln	Ile	Val	Ser	Phe 75	Tyr	Phe	Lys	Leu	Phe 80
Lys	Asn	Phe	Lys	Asp 85	Asp	Gln	Ser	Ile	Gln 90	ГÀЗ	Ser	Val	Glu	Thr 95	Ile
Lys	Glu	qaA	Met 100	Asn	Val	Lys	Phe	Phe 105	Asn	Ser	Asn	Lys	Lys 110	Lys	Arg
Asp	Asp	Phe 115	Glu	Lys	Leu	Thr	Asn 120	Tyr	Ser	Val	Thr	Asp 125	Leu	Asn	Val
Gln	Arg	Гув	Ala	Ile	His	Glu 135	Leu	Ile	Gln	Val	Met 140	Ala	Glu	Leu	Ser

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg

150

160

Gly Arg Arg Ala Ser Gln 165

<210> 21

145

<211> 1352 <212> DNA

<213> Homo sapiens

<400> 21
ctgggacagt gaategacaa tgccgtcttc tgtctcgtgg ggcatcctcc tgctggagag 60
cctgtgctgc ctggtccctg tctccctggc tgaggatcc cagggagatg ctgcccagaa 120
gacagataca tcccaccatg atcaggatca cccaaccttc aacaagatca ccccaacct 180
ggctgagttc gccttcagcc tataccgcca gctggcacac cagtccaaca gcaccaatat 240
cttcttctcc ccagtgagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc 300
tgacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttcggggg
360

tcagatocat gaaggottoc aggaactoot cogtaccoto aaccagocag acagocagot 420 ccagctgacc accggcaatg gcctgttcct cagcgagggc ctgaagctag tggataagtt 480 tttggaggat gttaaaaagt tgtaccactc agaagccttc actgtcaact tcggggacac 540 cgaagaggcc aagaaacaga tcaacgatta cgtggagaag ggtactcaag ggaaaattgt 600 ggatttggtc aaggagcttg acagagacac agtttttgct ctggtgaatt acatcttctt 660 taaaqqcaaa tgggagagac cctttgaagt caaggacacc gaggaagagg acttccacgt 720 ggaccaggtg accaccgtga aggtgcctat gatgaagcgt ttaggcatgt ttaacatcca 780 gcactgtaag aagctgtcca gctgggtgct gctgatgaaa tacctgggca atgccaccgc 840 catcttcttc ctgcctgatg aggggaaact acagcacctg gaaaatgaac tcacccacga 900 tatcatcacc aagttcctgg aaaatgaaga cagaaggtct gccagcttac atttacccaa 960 actgtccatt actggaacct atgatctgaa gagcgtcctg ggtcaactgg gcatcactaa 1020 ggtcttcagc aatggggctg acctctccgg ggtcacagag gaggcacccc tgaagctctc 1080 caaggoogtg cataaggotg tgotgaccat cgacgagaaa gggactgaag ctgctggggc 1140 catgititta gaggccatac ccatgictat cccccccgag gicaagitca acaaaccctt 1200 tqtcttctta atgattgaac aaaataccaa gtctcccctc ttcatgggaa aagtggtgaa 1260 teccaccoaa aaataactge etotegetee teaacceete ceetecatee etggeceeet 1320 1352 ccctggatga cattaaagaa gggttgagct gg

<400> 22

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys 1 5 10 15

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20 25 30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 50 55 60

<210> 22 <211> 418

<212> PRT

<213> Homo sapiens

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala

Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu 275 280 285 US02/32263

	wo	03/03	1464												PCT
Asn	Glu 290	Leu	Thr	His	Asp	Ile 295	īle	Thr	Lys	Phe	Leu 300	Glu	Asn	Glu	Asp
Arg 305	Arg	ser	Ala	Ser	Leu 310	His	Leu	Pro	Ľуs	Leu 315	Ser	Ile	Thr	Gly	Thr 320
Tyr	Asp	Leu	гЛа	Ser 325	Val	Leu	G1A	Gln	Leu 330	G1y	Ile	Thr	Lys	Val 335	Phe
Ser	Asn	Gly	Ala 340	Asp	Leu	ser	Gly	Val 345	Thr	Glu	Glu	Ala	Pro 350	Leu	Lys
Leu	Ser	Lys 355	Ala	Val	His	ГЛS	Ala 360	۷al	Leu	Thr	Ile	Asp 365	Glu	Lys	Gly
Thr	Glu 370	Ala	Ala	Gly	Ala	Met 375	Phe	Leu	Glu	Ala	Ile 380	Pro	Met	Ser	Ile
Pro 385	Pro	Glu	Val	Lys	Phe 390	Asn	Lys	Pro	Phe	Val 395	Phe	Leu	Met	Ile	Glu 400
Gln	Asn	Thr	Lys	Ser 405	Pro	Leu	Phe	Met	Gly 410	Lys	Val	Val	Asn	Pro 415	Thr
Gln	Lys														
<21 <21		23 2004													

<213> Homo sapiens <400> 23 gctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60 ctctatcctt cagagactct ggaacccctg tggtcttctc ttcatctaat gaccctgagg 120 ggatggagtt ttcaagteet tccagagagg aatgtcccaa gcctttgagt agggtaagca 180 tcatggctgg cagcctcaca ggtttgcttc tacttcaggc agtgtcgtgg gcatcaggtg 240 coegococtg catcoctaaa agottoggot acagotoggt ggtgtgtgtc tgcaatgcca 300 catactgtga etectttgac ecceegacet tteetgeeet tggtacette ageegetatg 360 agagtacacg cagtgggega cggatggagc tgagtatggg gcccatccag gctaatcaca 420 480

PCT/US02/32263 WO 03/031464

btggaggggc	catgacagat	gctgctgctc	tcaacatcct	tgccctgtca	ecccetgecc	540
aaaatttgct	acttaaatcg	tacttctctg	aagaaggaat	cggatataac	atcatccggg	600
tacccatggc	cagetgtgae	ttctccatcc	gcacctacac	ctatgcagac	acccctgatg	660
atttccagtt	gcacaacttc	agecteccag	aggaagatac	caagctcaag	atacccctga	720
ttcaccgagc	cctgcagttg	gcccagcgtc	ccgtttcact	ccttgccagc	ccctggacat	780
cacccacttg	gctcaagacc	aatggagcgg	tgaatgggaa	ggggtcactc	aagggacagc	840
ccggagacat	ctaccaccag	acctgg gc ca	gatactttgt	gaagttcctg	gatgcctatg	900
ctgagcacaa	gttacagttc	tgggcagtga	cagctgaaaa	tgagccttct	gctgggctgt	960
tgagtggata	cccttccag	tgcctgggct	tcacccctga	acatcagcga	gacttcattg	1020
cccgtgacct	aggteetace	ctcgccaaca	gtactcacca	caatgtccgc	ctactcatgc	1080
tggatgacca	acgcttgctg	ctgccccact	gggcaaaggt	ggtactgaca	gacccagaag	1140
cagctaaata	tgttcatggc	attgctgtac	attggtacct	ggactttctg	gctccagcca	1200
aagccaccct	aggggagaca	caccgcctgt	tccccaacac	catgetettt	gcctcagagg	1260
cctgtgtggg	ctccaagttc	tgggagcaga	gtgtgcggct	aggeteetgg	gatogaggga	1320
tgcagtacag	ccacagcatc	atcacgaacc	tcctgtacca	tgtggtcggc	tggaccgact	1380
ggaaccttgc	cctgaacccc	gaaggaggac	ccaattgggt	gcgtaacttt	gtcgacagtc	1440
ccatcattgt	agacatcacc	aaggacacgt	tttacaaaca	gcccatgttc	taccaccttg	1500
gccacttcag	caagttcatt	cctgagggct	cccagagagt	ggggctggtt	gccagtcaga	1560
agaacgacct	ggacgcagtg	gcactgatgc	atcccgatgg	ctctgctgtt	gtggtcgtgc	1620
taaaccgctc	ctctaaggat	gtgcctctta	ccatcaagga	tcctgctgtg	ggottcctgg	1680
agacaatcto	acctggctac	tecatteaca	cctacctgtg	geategecag	tgatggagca	1740
gatactcaag	gaggcactgg	geteageetg	ggcattaaag	ggacagagto	ageteacaeg	1800
ctgtctgtga	ctaaagaggg	cacagcaggg	ccagtgtgag	cttacagoga	cgtaagecca	1860
ggggcaatgg	tttgggtgac	tcactttccc	ctctaggtgg	tgcccaggg	tggaggcccc	1920
tagaaaaaga	tcagtaagco	ccagtgtccc	cccagccccc	atgcttatgt	gaacatgcgc	1980
tgtgtgctgc	ttgctttgga	aact				2004

<210> 24 <211> 536 <212> PRT

<213> Homo sapiens

<400> 24

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser 1 10 15

Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln
20 25 30

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe 35 40 45

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln 100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 195 200 205

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu

210 215 220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

- Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu \$245\$
- Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270
- Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu 275 280 285
- Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly 290 295 300
- Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu 305 310 315
- Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr
- Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr 340 345 350
- Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg 355 360 365
- Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser 370 375 380
- Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met 385 390 395
- Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly 405 410 415
- Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp 420 425 430
- Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp 435 440 445

Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys 450 455 460

Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys 465 470 475 480

Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val 485 490 495

Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys 500 505 510

Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile 515 520 525

His Thr Tyr Leu Trp His Arg Gln 530 535

<210> 25 <211> 1726

<212> DNA

<213> Homo sapiens

<400> 25 atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tegeccagee aggaaateea tgecegatte agaagaggag ccagatetta ecaagtgate 120 tgcagagatg aaaaaacgca gatgatatac cagcaacatc agtcatggot gcgccctgtg 180 ctcagaagca accgggtgga atattgctgg tgcaacagtg gcagggcaca gtgccactca 240 qtqcctgtca aaagttgcag cgagccaagg tgtttcaacg ggggcacctg ccagcaggcc 300 etgtaettet cagatttegt gtgccagtge eccgaaggat ttgctgggaa gtgctgtgaa 360 atagatacca gggccacgtg ctacgaggac cagggcatca gctacagggg cacgtggaqc 420 acagoggaga gtggcgccga gtgcaccaac tggaacagca gcgcgttggc ccagaagccc 480 tacagogggc ggaggccaga cgccatcagg ctgggcctgg ggaaccacaa ctactgcaga 540 aacccagatc gagactcaaa gccctggtgc tacgtcttta aggcggggaa gtacagctca 600 gagttetgea geacccetge etgetetgag ggaaacagtg actgetactt tgggaatggg 660 teagectace gtggcacgea cagecteace gagtegggtg ceteetgeet ceegtggaat 720 tecatgatec tgataggeaa ggtttacaca geacagaace ccagtgeeca ggeactggge 780

ctgggcaaac ataattactg ccggaatcct gatggggatg ccaagccctg gtgccacgtg 840 ctgaagaacc gcaggctgac gtgggagtac tgtgatgtgc cctcctgctc cacctgcggc 900 ctgagacagt acagccagcc tcagtttcgc atcaaaggag ggctcttcgc cgacatcgcc 960 toccaccoot ggcaggctgo catctttgcc aagcacagga ggtcgccggg agagcggttc 1020 ctgtgcgggg gcatactcat cagetectge tggattetet etgccgccca etgettecag 1080 gagaggtttc cgccccacca cctgacggtg atcttgggca gaacataccg ggtggtccct 1140 ggcgaggagg agcagaaatt tgaagtcgaa aaatacattg tccataagga attcgatgat 1200 gacacttacg acaatgacat tgcgctgctg cagctgaaat cggattcgtc ccgctgtgcc 1260 caggagagea gegtggteeg cactgtgtge ettecceegg eggacetgea getgeeggae 1320 tggacggagt gtgagctctc cggctacggc aagcatgagg ccttgtctcc tttctattcg 1380 gagoggotga aggaggotca tgtcagactg tacccatcca googctgcac atcacaacat 1440 ttacttaaca gaacagtcac cgacaacatg ctgtgtgctg gagacactcg gagcggggg 1500 ccccaqgcaa acttgcacga cgcctgccag ggcgattcgg gaggccccct ggtgtgtctg 1560 1620 aacgatggcc gcatgacttt ggtgggcatc atcagctggg gcctgggctg tggacagaag gatgtcccgg gtgtgtacac caaggttacc aactacctag actggattcg tgacaacatg 1680 cgaccgtgac caggaacacc cgactcctca aaagcaaatg agatcc 1726

<210> 26

<211> 562 <212> PRT

<213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly 1 5 10 15

Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg 20 25 30

Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met 35 40 45

Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn 50 60

Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser 65 70 75 80

- Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr 85 90 95
- Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 100 105 110
- Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr 115 120 125
- Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser 130 135
- Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro 145 150 155 160
- Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His 165 170 175
- Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val
- Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys 195 200 205
- Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg 210 215 220
- Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn 225 230235235
- Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 245 250 250
- Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly 260 265 270
- Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 275 280 285
- Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr

290 295 300

Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 315 305 310 Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro 330 325 Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu 360 Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu 375 370 Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp 395 400 390 385 Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser 410 405 Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro 425 420 Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly 440 Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys 455 Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His 475 470 465

Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr 485 490 495

Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp 500 505 510

Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val 515 520 525

PCT/US02/32263 WO 03/031464

Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly

Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met 555 550

Arg Pro

<210> 27

<211> 825 <212> DNA

<213> Homo sapiens

<400> 27

atcactctct ttaatcacta ctcacattaa cctcaactcc tgccacaatg tacaggatgc 60 ageteetgte ttgeattgea ctaattettg caettgteae aaacagtgea cetaetteaa 120 gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac 180 agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat 240 ttaagtttta catgeecaag aaggeeacag aactgaaaca getteagtgt etagaagaag 300 aactcaaacc totggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac 360 ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa 420 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga 480 ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa 540 aacatatcag goottotatt tatttattta aatatttaaa ttttatattt attgttgaat 600 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt 660 ttatgattct ttttgtaagc cctaggggct ctaaaatggt ttaccttatt tatcccaaaa 720 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta 780 825 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu

<210> 28

<211> 156 <212> PRT

<213> Homo sapiens

<400> 28

1				5					10					15		
Va.	. Thr	Asn	Ser 20	Ala	Pro	Thr	Ser	Ser 25	Ser	Thr	Lys	Lys	Thr 30	Lys	Lys	
Th	Gln	Leu 35	Gln	Leu	Glu	His	Leu 40	Leu	Leu	Asp	Leu	Gln 45	Met	Ile	Leu	
Ası	Gly	Ile	Asn	Asn	Tyr	ьув 5 5	Asn	Pro	Гуs	Leu	Thr 60	Arg	Met	Leu	Thr	
Ph	e Lys	Phe	Tyr	Met	Pro 70	Lys	Гув	Ala	Thr	Glu 75	Leu	Lys	Gln	Leu	Gln 80	
Су	Leu	Glu	Glu	Glu 85	Leu	Lys	Pro	Leu	Glu 90	Glu	Val	Leu	Asn	Leu 95	Ala	
G1:	n Ser	Lys	Asn 100	Phe	His	Leu	Arg	Pro 105	Arg	Asp	Leu	Ile	Ser 110	Asn	Ile '	
Ав	n Val	Ile 115		Leu	Glu	Leu	Lув 120	Gly	Ser	Glu	Thr	Thr 125	Phe	Met	Сув	
Gl	u Tyr 130		Asp	Glu	Thr	Ala 135	Thr	Ile	Val	Glu	Phe	Leu	Asn	Arg	Trp	
I1	e Thr	Phe	Сув	Gln	Ser		Ile	Ser	Thr	Leu 155	Thr	·				
<2 <2	11> 12>	29 7931 DNA Homo	sap	iens								٠				
<4 at	00>	29 tag	aget	ctcc	ac c	tact	tett	t ct	gtgo	cttt	tgo	gatt	ctg	cttt	agtgcc	60
															gatete	120
															ttcaac	180
															aacatc	240

300

360

gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc tgaggtttat

gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct tcatgctgtt

420

ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac cagtcaaagg gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg gcaggtcctg 480 aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat 540 gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt atgtagagaa 600 gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgctgta 660 tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca ggataggqat 720 getgeatetg etegggeetg geetaaaatg cacacagtea atggttatgt aaacaggtet 780 ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaatgggc 840 accactcotg aagtgcactc aatattcctc gaaggtcaca catttcttgt gaggaaccat 900 cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac actcttgatg 960 gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa 1020 gettatgtca aagtagacag etgtecagag gaaccccaac tacgaatgaa aaataatgaa 1080 gaagoggaag actatgatga tgatcttact gattctgaaa tggatgtggt caggtttgat 1140 gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca tcctaaaact 1200 tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt agtcctcgcc 1260 cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg 1320 aagtacaaaa aagtoogatt tatggcatac acagatgaaa cetttaagac tegtgaaget 1380 attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg agacacactg 1440 ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaatcact 1500 gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt gaaggatttt 1560 ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga agatgggcca 1620 actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa tatggagaga 1680 gatctagett caggactcat tggccctctc ctcatctgct acaaagaatc tgtagatcaa 1740 agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt atttgatgag 1800 aaccgaaget ggtacetcae agagaatata caacgettte tecccaatee agetggagtg 1860 cagettgagg atccagagtt ccaageetce aacatcatge acageatcaa tggetatgtt 1920 tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta cattctaagc 1.980 attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt caaacacaaa 2040 atggtctatg aagacacact caccctattc ccattctcag gagaaactgt cttcatgtcq 2100

atggaaaacc caggtetatg gattetgggg tgccacaact cagaettteg gaacagagge 2160 atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta ttacgaggac 2220 agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga accaagaagc 2280 tteteceaga atteaagaca cegtageact aggeaaaage aatttaatge caccacaatt 2340 ccagaaaatg acatagagaa gactgaccct tggtttgcac acagaacacc tatgcctaaa 2400 atacaaaatg teteetetag tgatttgttg atgetettge gacagagtee taeteeacat 2460 gggctatect tatetgatet ccaagaagee aaatatgaga etttttetga tgatecatea 2520 cctggagcaa tagacagtaa taacagcctg tctgaaatga cacacttcag gccacagctc 2580 catcacagtg gggacatggt atttacccct gagtcaggcc tccaattaag attaaatgag 2640 aaactgggga caactgcagc aacagagttg aagaaacttg atttcaaagt ttctagtaca 2700 tcaaataatc tgatttcaac aattccatca gacaatttgg cagcaggtac tgataataca 2760 agtteettag gacccccaag tatgecagtt cattatgata gtcaattaga taccactcta 2820 tttggcaaaa agtcatotoo oottaotgag totggtggao ototgagott gagtgaagaa 2880 aataatgatt caaagttgtt agaatcaggt ttaatgaata gccaagaaag ttcatgggga 2940 aaaaatgtat cgtcaacaga gagtggtagg ttatttaaag ggaaaagagc tcatggacct 3000 gettigtiga etaaagataa tgeettatte aaagttagea tetettigti aaagacaaae 3060 aaaacttcca ataattcagc aactaataga aagactcaca ttgatggccc atcattatta 3120 attgagaata gtocatcagt ctggcaaaat atattagaaa gtgacactga gtttaaaaaa 3180 gtgacacett tgattcatga cagaatgett atggacaaaa atgctacage titgaggeta 3240 aatcatatgt caaataaaac tacttcatca aaaaacatgg aaatggtcca acagaaaaaa 3300 gagggeccca ttccaccaga tgcacaaaat ccagatatgt cgttetttaa gatgetatte 3360 ttqccaqaat caqcaaggtg gatacaaagg actcatggaa agaactctct gaactctggg 3420 caaggeecca gtecaaagca attagtatee ttaggaccag aaaaatetgt ggaaggteag 3480 aatttettgt etgagaaaaa caaagtggta gtaggaaagg gtgaatttac aaaggacgta 3540 ggactcaaag agatggtttt tccaagcagc agaaacctat ttcttactaa cttggataat 3600 ttacatgaaa ataatacaca caatcaagaa aaaaaaattc aggaagaaat agaaaagaag 3660 qaaacattaa tocaagagaa tgtagttttg cotcagatac atacagtgac tggcactaag 3720 aatttcatga agaacetttt cttactgagc actaggcaaa atgtagaagg ttcatatgac 3780

ggggcatatg ctccagtact tcaagatttt aggtcattaa atgattcaac aaatagaaca 3840 aagaaacaca cagctcattt ctcaaaaaaa ggggaggaag aaaacttgga aggcttggga 3900 aatcaaacca agcaaattgt agagaaatat gcatgcacca caaggatatc tcctaataca 3960 agccagcaga attitiqueac gcaacgtagt aagagagett tgaaacaatt cagactccca 4020 ctaqaaqaaa caqaacttga aaaaaggata attgtggatg acacctcaac ccagtggtcc 4080 aaaaacatga aacatttgac cccgagcacc ctcacacaga tagactacaa tgagaaggag 4140 aaaggggcca ttactcagtc toccttatca gattgcctta cgaggagtca tagcatccct 4200 caagcaaata gateteeatt acccattgca aaggtateat catttecate tattagacet 4260 atatatetga ccagggteet attecaagac aactettete atettecage ageatettat 4320 agaaagaaag attotggggt ccaagaaagc agtoatttot tacaaggagc caaaaaaaaat 4380 aacctttctt tagccattct aaccttggag atgactggtg atcaaagaga ggttggctcc 4440 ctggggacaa gtgccacaaa ttcagtcaca tacaagaaag ttgagaacac tgttctcccg 4500 aaaccagact tgcccaaaac atctggcaaa gttgaattgc ttccaaaagt tcacatttat 4560 cagaaggacc tattccctac ggaaactagc aatgggtctc ctggccatct ggatctcgtg 4620 gaaggagcc ttottcaggg aacagaggga gcgattaagt ggaatgaagc aaacagacct 4680 ggaaaagtto cotttotgag agtagcaaca gaaagototg caaagactoo otocaagota 4740 ttggatocto ttgcttggga taaccactat ggtactcaga taccaaaaga agagtggaaa 4800 toccaagaga agtcaccaga aaaaacagct tttaagaaaa aggataccat tttgtccctg 4860 aacgcttgtg aaagcaatca tgcaatagca gcaataaatg agggacaaaa taagcccgaa 4920 ataqaaqtca cctgggcaaa gcaaggtagg actgaaaggc tgtgctctca aaacccacca 4980 gtottgaaac gccatcaacg ggaaataact cgtactactc ttcagtcaga tcaagaggaa 5040 attgactatg atgataccat atcagttgaa atgaagaagg aagattttga catttatgat 5100 gaggatgaaa atcagagccc ccgcagcttt caaaagaaaa cacgacacta ttttattgct 5160 gcagtggaga ggctctggga ttatgggatg agtagctccc cacatgttct aagaaacagg 5220 getcagagtg geagtgtece teagtteaag aaagttgttt teeaggaatt tactgatgge 5280 tectttactc agecettata cegtggagaa ctaaatgaac atttgggact cetggggcca 5340 tatataaqaq cagaaqttga agataatatc atggtaactt tcagaaatca ggcctctcgt 5400 5460 ccctattcct tctattctag ccttatttct tatgaggaag atcagaggca aggagcagaa cctagaaaaa actttqtcaa qcctaatgaa accaaaactt acttttggaa agtgcaacat 5520

catatggcac ccactaaaga tgagtttgac tgcaaagcct gggcttattt ctctgatgtt 5580 gacctggaaa aagatgtgca ctcaggcctg attggacccc ttctggtctg ccacactaac 5640 acactgaacc ctgctcatgg gagacaagtg acagtacagg aatttgctct gtttttcacc 5700 atctttgatg agaccaaaag ctggtacttc actgaaaata tggaaagaaa ctgcagggct 5760 ccctgcaata tccagatgga agatcccact tttaaagaga attatcgctt ccatgcaatc 5820 aatggctaca taatggatac actacetggc ttagtaatgg ctcaggatca aaggattcga 5880 tggtatctgc tcagcatggg cagcaatgaa aacatccatt ctattcattt cagtggacat 5940 gtgttcactg tacgaaaaaa agaggagtat aaaatggcac tgtacaatct ctatccaggt 6000 qtttttgaga cagtggaaat gttaccatcc aaagctggaa tttggcgggt ggaatgcctt 6060 attggcgagc atctacatgc tgggatgagc acactttttc tggtgtacag caataagtgt 6120 cagactoccc tgggaatggc ttctggacac attagagatt ttcagattac agcttcagga 6180 caatatggac agtgggcccc aaagctggcc agacttcatt attccggatc aatcaatgcc 6240 tggagcacca aggagccctt ttcttggatc aaggtggatc tgttggcacc aatgattatt 6300 cacggcatca agacccaggg tgcccgtcag aagttctcca gcctctacat ctctcagttt 6360 atcatcatgt atagtcttga tgggaagaag tggcagactt atcgaggaaa ttccactgga 6420 accttaatgg tettetttgg caatgtggat teatetggga taaaacacaa tatttttaac 6480 cotccaatta ttgctcgata catccgtttg cacccaactc attatagcat tcgcagcact 6540 cttcgcatgg agttgatggg ctgtgattta aatagttgca gcatgccatt gggaatggag 6600 agtaaagcaa tatcagatgc acagattact getteateet actttaccaa tatgtttgcc 6660 acctggtctc cttcaaaagc tcgacttcac ctccaaggga ggagtaatgc ctggagacct 6720 caggigaata atocaaaaga giggotgoaa giggactico agaagacaat gaaagicaca 6780 gqagtaacta ctcagggagt aaaatctctg cttaccagca tgtatgtgaa ggagttcctc 6840 atctccagca gtcaagatgg ccatcagtgg actctctttt ttcagaatgg caaagtaaag 6900 qtttttcagg gaaatcaaga ctccttcaca cctgtggtga actctctaga cccaccgtta 6960 ctgactcgct accttcgaat tcacccccag agttgggtgc accagattgc cctgaggatg 7020 gaggttetgg getgegagge acaggacete tactgagggt ggecactgca geacetgcca 7080 ctgccgtcac ctctccctcc tcagctccag ggcagtgtcc ctccctggct tgccttctac 7140 ctttgtgcta aatcctagca gacactgcct tgaagcctcc tgaattaact atcatcagtc 7200

ctgcatttct	ttggtggggg	gccaggaggg	tgcatccaat	ttaacttaac	tettacetat	7260
tttctgcagc	tgctcccaga	ttactccttc	cttccaatat	aactaggcaa	aaagaagtga	7320
ggagaaacct	gcatgaaagc	attcttccct	gaaaagttag	gcctctcaga	gtcaccactt	7380
cctctgttgt	agaaaaacta	tgtgatgaaa	ctttgaaaaa	gatatttatg	atgttaacat	7440
ttcaggttaa	gcctcatacg	tttaaaataa	aactctcagt	tgtttattat	cctgatcaag	7500
catggaacaa	agcatgtttc	aggatcagat	caatacaatc	ttggagtcaa	aaggcaaatc	7560
atttggacaa	tctgcaaaat	ggagagaata	caataactac	tacagtaaag	tetgtttetg	7620
cttccttaca	catagatata	attatgttat	ttagtcatta	tgaggggcac	attettatet	7680
ccaaaactag	cattcttaaa	ctgagaatta	tagatggggt	tcaagaatcc	ctaagtcccc	7740
tgaaattata	taaggcattc	tgtataaatg	caaatgtgca	tttttctgac	gagtgtccat	7800
agatataaag	ccatttggtc	ttaattctga	ccaataaaaa	aataagtcag	gaggatgcaa	7860
ttgttgaaag	ctttgaaata	aaataacaat	gtottottga	aatttgtgat	ggccaagaaa	7920
gaaaatgatg	a					7931

<210> 30 <211> 2351

<212> PRT <213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln 85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser

- His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125
- Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140
- Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 150 155 160
- Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175
- Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile 180 185
- Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr 195 200 205
- Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly 210 215
- Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225 230 230 235
- Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr \$245\$ \$250\$
- Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
- Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
- Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser 290 295 300
- Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met 305 310 315 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His 325 330 335

- Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro $340 \hspace{1cm} 345 \hspace{1cm} 345 \hspace{1cm} 350 \hspace{1cm}$
- Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp 355 360 365
- Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
- Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr 385 390 395 400
- Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
 405 410 410
- Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn 420 425 430
- Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
 435 440 445
- Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu 450 450 460
- Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465 470 475 480
- Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro 485 495
- His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys 500 505
- Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 515 520 525
- Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530 535
- Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg

545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu 565 570 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 610 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe 660 665 670

Ser Gly Tyr Thr Phé Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr 675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro 690 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys 740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg 755 760 765

Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 770 775 780

Ile 785	Glu	Lys	Thr	Asp	Pro 790	Trp	Phe	Ala	His	Arg 795	Thr	Pro	Met	Pro	800 Lys
Ile	Gln	Asn	Val	Ser 805	Ser	Ser	Asp	Leu	Leu 810	Met	Leu	Leu	Arg	Gln 815	Ser
Pro	Thr	Pro	His 820	Gly	Leu	Ser	Leu	Ser 825	Asp	Leu	Gln	Glu	Ala 830	Lys	Tyr
Glu	Thr	Phe 835	Ser	Asp	Asp	Pro	Ser 840	Pro	Gly	Ala	Ile	Asp 845	Ser	Asn	Asn
ser	Leu 850	Ser	Glu	Met	Thr	His 855	Phe	Arg	Pro	Gln	Leu 860	His	His	Ser	Gly
Asp 865	Met	Val	Phe	Thr	Pro 870	Glu	Ser	Gly	Leu	Gln 875	Leu	Arg	Leu	Asn	Glu 880
ьув	Leu	Gly	Thr	Thr 885	Ala	Ala	Thr	Glu	Leu 890	Lys	Lys	Leu	Asp	Phe 895	Lys
Val	Ser	ser	Thr 900	ser	Asn	Asn	Leu	Ile 905	ser	Thr	Ile	Pro	Ser 910	Asp	Asn
Leu	Ala	Ala 915	Gly	Thr	Asp	'Asn	Thr 920		Ser	Leu	Gly	Pro 925	Pro	Ser	Met
Pro	Val 930	His	Tyr	Asp	Ser	Gln 935	Leu	Asp	Thr	Thr	Leu 940	Phe	Gly	Lys	ГÃЗ
Ser 945		Pro	Leu	Thr	Glu 950		Gly	Gly	Pro	955	Ser	Leu	. ser	Glu	'Glu 960
Asn	Asn	Asp	Ser	ьув 965		Leu	Glu	. Ser	970	/ Leu	. Met	: Asn	Ser	Gln 975	Glu
ser	Ser	Trp	Gly 980		Asn	. Val	. Sei	985	Thi	Glu	ı Sex	Gly	990	Leu	Phe
Lys	Gly	Lys 995		Ala	His	Gl	Pro	A3	la Le	eu Le	eu Th	r Ly 10	rs <i>1</i> 005	ap A	sn Ala

Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu

Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu 1205 1210 1215

Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile 1220 1225 1230

- His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu 1235 1240 1245
- Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr 1250 1255 1260
- Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn 1265 1270 1270
- Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu 1280 1285 1290
- Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu 1295 1300 1305
- Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln 1310 1315 1320
- Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg 1325 1330 1335
- Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp 1340 1345 1350
- Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro 1355 1360 1360
- Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala 1370 1375 1380
- Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser 1385
- Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser 1400 1400
- Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe 1415 1420 1425
- Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys

1430 1435 1440

Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys

- Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly 1460 1460 1460
- Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser 1475 1485
- Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp 1490 1495 1500
- Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His 1505 1510 1515
- Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser 1520 1525 1530
- Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr 1535 1540 1545
- Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val 1550 1560
- Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser 1565 1570 1575
- Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln 1580 1585 1590
- Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys 1595 1600 1605
- Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys 1610 1615 1620
- Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys 1625 1630 1635

Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile . 1690 Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser . 1740 Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu 1.835 Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu

Lvs Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly

Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly

Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro

Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala

Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His

Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser

- Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile 2090 2095 2100
- Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser
- Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr 2120 2125 2130
- Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn 2135 2140 2145
- Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile 2150 2155 2160
- Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg 2165 2170 · 2175
- Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys 2180 2185 2190
- Ser Met | Pro Leu Gly Met Glu | Ser Lys Ala Ile | Ser | Asp Ala Gln | 2195 | 2200 |
- Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser 2210 2215
- Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp 2225 2230 2235
- Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe 2240 2245
- Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys 2255 2260
- Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser 2270 2280
- Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys

2285 2290 2295

Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val 2300 2305

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His 2315 2320 2325

Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu 2330 2340

Gly Cys Glu Ala Gln Asp Leu Tyr 2345 2350

<210> 31 <211> 1471

<212> DNA

<213> Homo sapiens

<400> 31 atggogocog togocgtetg ggocgogotg gcogtoggac tggagetetg ggotgoggog 60 cacgcottge cegeccaggt ggeatttaca ecctaegeec eggagecegg gageacatge 120 eggeteagag aatactatga eeagacaget eagatgtget geageaaatg etegeeggge 180 caacatgcaa aagtettetg taccaagace teggacaceg tgtgtgaete etgtgaggae 240 agcacataca cocagototg gaactgggtt cocgagtget tgagctgtgg ctcccgctgt 300 agototgaco aggtggaaac toaagcotgo actogggaac agaacogoat otgoacotgo 360 aggecegget ggtactgege getgageaag caggagggt geeggetgtg egegeegetg 420 cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg 480 tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcaqg 540 ccccaccaga tetgtaacgt ggtggccate cetgggaatg caagcatgga tgcagtetge 600 acqtccacgt cccccacccg gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tecacacgat cccaacacac gcagecaact ccagaaccca gcactgctcc aagcacctcc 720 ttoctgetec caatgggeee cageceecca getgaaggga geactggega ettegetett 780 ccagttggac tgattgtggg tgtgacagcc ttgggtctac taataatagg agtggtgaac 840 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 900 cctcacttgc ctgccgataa ggcccggggt acacagggcc ccgagcagca gcacctgctg 960

PCT/US02/32263 WO 03/031464

			at ann an ant	agaccaatac	attagacaga	1020
atcacagege	cgagctccag	cagcagette	Ciggagagci	cggccagogo	50-55	
agggcgccca	ctcggaacca	gccacaggca	ccaggcgtgg	aggccagtgg	ggccggggag	1080
gcccgggcca	gcaccgggag	ctcagattct	tcccctggtg	gccatgggac	ccaggtcaat	1140
gtcacctgca	tcgtgaacgt	ctgtagcagc	tctgaccaca	gctcacagtg	ctcctcccaa	1200
gccagctcca	caatgggaga	cacagattcc	agcccctcgg	agtccccgaa	ggacgagcag	1260
gtccccttct	ccaaggagga	atgtgccttt	cggtcacagc	tggagacgcc	agagaccctg	1320
ctggggagca	ccgaagagaa	gcccctgccc	cttggagtgc	ctgatgctgg	gatgaagccc	1380
agttaaccag	gccggtgtgg	getgtgtegt	agccaaggtg	ggctgagccc	tggcaggatg	1440
accetgegaa	ggggccctgg	tccttccagg	c			1471

<210> 32 <211> 461 <212> PRT

<213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 25

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 40

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 50

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 70 75 65

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 105 100

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 115

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185

Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 220

Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 225 230 235

Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 255

Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 260 265 270

Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 275 280 285

Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 290 295 300

Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 305 . 310 315 320

Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 375 Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 395 385 390 Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 425 420 Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 445 435 440 Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 455 <210> 33 <211> 1475 <212> DNA <213> Homo sapiens <400> 33 tecacetgte ecegeagege eggetegege ceteetgeeg cagecacega geogecqtet 60 agogococga cotogocaco atgagagoco tgotggogog cotgettoto tgogtoctgg 120 tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaac tgtgactgtc 180 taaatggagg aacatgtgtg tccaacaagt acttetecaa catteaetgg tgcaaetgee 240 300

agogcocoga octogocace atgagagoco tectegocogo octogottot tegogcottog 120
tegtgagoga otecaaagoc agoaatgaac tecateagt tecategaac tegtgactgte 180
taaatggagg aacatgtetg tecaacaagt acteteccaa catteactgg tgeaactgoc 240
caaagaaatt eggagogaa cactgtgaaa tagataagte aaaaacetge tatgagogga 300
atggteactt ttacegagga aagocagca etgacacat gggeoggoce tgeetgoect 360
ggaactetge cactgteett cageaaagt accatgecca cagatetgat getetteage 420
tgggeotggg gaaacataat tactgeagga acceagaca eeggagoga eectggtet 480
atgtgeaggt gggeetaaag eegettgee aagatgaat ggtgeatgae tgegeagatg 540
gaaaaaagee eteetetee cagaagaat taaaattea gtgtggeaa aagactetga 600
ggeecegett taagattat gggggagaat teacacacat eggagaaca eetggtgtga egeagecta 720

tcagcccttg	ctgggtgatc	agcgccacac	actgcttcat	tgattaccca	aagaaggagg	780
actacatcgt	ctacctgggt	cgctcaaggc	ttaactccaa	cacgcaaggg	gagatgaagt	840
ttgaggtgga	aaacctcatc	ctacacaagg	actacagcgc	tgacacgctt	geteaceaca	900
acgacattgc	cttgctgaag	atccgttcca	aggagggcag	gtgtgcgcag	ccatcccgga	960
ctatacagac	catctgcctg	ccctcgatgt	ataacgatcc	ccagtttggc	acaagctgtg	1020
agatcactgg	ctttggaaaa	gagaatteta	ccgactatct	ctatccggag	cagctgaaga	1080
tgactgttgt	gaagctgatt	tcccaccggg	agtgtcagca	gccccactac	tacggctctg	1140
aagtcaccac	caaaatgctg	tgtgctgctg	acccacagtg	gaaaacagat	tcctgccagg	1200
gagactcagg	gggacccctc	gtctgttccc	tccaaggccg	catgactttg	actggaattg	1260
tgagctgggg	ccgtggatgt	gccctgaagg	acaagccagg	cgtctacacg	agagtctcac	1320
acttcttacc	ctggatccgc	agtcacacca	aggaagagaa	tggcctggcc	ctctgagggt	1380
ccccagggag	gaaacgggca	ccacccgctt	tettgetggt	tgtcatttt	gcagtagagt	1440
	agctgtaaga			•		1475

<210> 34 <211> 431

<211> 431 <212> PRT

<213> Homo sapiens

<400> 34

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser 1 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp 20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile 50 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly 65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser

Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu 100 105 110

- Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 115 120
 - Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln
 130 135 140
 - Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 145 150 160
 - Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 170 170 175
 - Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp 180 185 190
 - Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val 195 $200 \cdot 205$
 - Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 220
 - Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 \$230\$
 - Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val 245 $250_{\,\cdot\,}$ 255
 - Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His
 - His Asn Asp Tle Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys $275 \hspace{1cm} 280 \hspace{1cm}$
 - Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 295 300
 - Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu
420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 . 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 $$ 55 $$ 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro

85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37 <211> 120

<211> 120 <212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala $100 \\ 105$

Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 38

<211> 106 <212> PRT

<213> Mus musculus

<400> 38

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met 20 25 30

His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser

Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp

Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95 \hspace{0.5cm}$

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 39 <211> 1039 <212> DNA <213> Homo sapiens

<400> 39 tectgeacag geagtgeett gaagtgette tteagagace tttetteata gaetaetttt 60 ttttctttaa gcagcaaaag gagaaaattg tcatcaaagg atattccaga ttcttgacag 120 cattctcgtc atctctgagg acatcaccat catctcagga tgaggggcat gaagctgctg 1,80 ggggcgctgc tggcactggc ggccctactg cagggggccg tgtccctgaa gatcgcagcc 240 ttcaacatcc agacatttgg ggagaccaag atgtccaatg ccaccctcgt cagctacatt 300 gtgcagatec tgagccgcta tgacatcgcc ctggtccagg aggtcagaga cagccacctg 360 actgeogtgg ggaagetget ggacaacete aateaggatg caccagacae etateactae 420 gtggtcagtg agccactggg acggaacagc tataaggagc gctacctgtt cgtgtacagg 480 cctgaccagg tgtctgcggt ggacagctac tactacgatg atggctgcga gccctgcqqg 540 aacgacacct tcaaccgaga gccagccatt gtcaggttct tctcccggtt cacagaggtc 600 agggagtttg ccattgttcc cctgcatgcg gccccggggg acgcagtagc cgagatcgac 660 gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgttg 720 atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatccgc 780 ctgtggacaa gccccacctt ccagtggctg atccccgaca gcgctgacac cacagctaca 840 cccacgcact gtgcctatga caggatcgtg gttgcaggga tgctgctccg aggcgccgtt 900 gttcccgact cggctcttcc ctttaacttc caggctgcct atggcctgag tgaccaactg 960 gcccaagcca tcagtgacca ctatccagtg gaggtgatgc tgaagtgagc agcccctccc 1020 1039 cacaccagtt gaactgcag

<210> 40

<211> 282 <212> PRT

<213> Homo sapiens

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Ala Leu

PCT/US02/32263

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu

Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly

Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser 260 Asp His Tyr Pro Val Glu Val Met Leu Lys 275 <210> 41 <211> 678 <212> DNA <213> Mus musculus <400> 41 qacatcttgc tgactcagtc tccagccatc ctgtctgtga gtccaggaga aagagtcagt 60 ttotcotgca gggccagtca gttcgttggc tcaagcatcc actggtatca gcaaagaaca 120 aatggttete caaggettet cataaagtat gettetgagt etatgtetgg gatecettee 180 aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct 240 gaagatattg cagattatta ctgtcaacaa agtcatagot ggccattcac gttcggctcg 300 gggacaaatt tggaagtaaa agaagtgaag cttgaggagt ctggaggagg cttggtgcaa 360 cctggaggat ccatgaaact ctcctgtgtt gcctctggat tcattttcag taaccactgg 420 atgaactggg tccgccagtc tccagagaag gggcttgagt gggttgctga aattagatca 480 aaatotatta attotgoaac acattatgog gagtotgtga aagggaggtt caccatotca 540 agagatgatt ccaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact 600 qqcqtttatt actgttccag gaattactac ggtagtacct acgactactg gggccaaggc 660 678 accactctca cagtctcc <210> 42 <211> 226 <212> PRT <213> Mus musculus <400> 42 Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly 10

Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser

20 25 30

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile

Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly . 50

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser 65 70 75 80

Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe 85 90 95

Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu

Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser 115 120 125

Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val $_{130} \\$

Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser 145 150 155 160

Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg 165 170 175

Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met $180 \hspace{1cm} 185 \hspace{1cm} 185 \hspace{1cm} 190 \hspace{1cm}$

Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn 195 200 205

Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr 210 215 220

Val Ser 225

<210> 43 <211> 450

<212> DNA <213> Homo sapiens
<400> 43 gctgcatcag aagaggccat caagcacatc actgtccttc tgccatggcc ctgtggatgc
geotectgcc cctgctggcg ctgctggccc tctggggacc tgacccagcc gcagcctttg
tgaaccaaca cctgtgcggc tcacacctgg tggaagctct ctacctagtg tgcggggaac
gaggettett ctacacacce aagaccegec gggaggcaga ggacetgcag gtggggcagg
tggagctggg cgggggccct ggtgcaggca gcctgcagcc cttggccctg gaggggtccc
tgcagaageg tggcattgtg gaacaatget gtaccagcat etgeteeste taccagetgg
agaactactg caactagacg cagcccgcag gcagcccccc acccgccgcc tcctgcaccg
agagagatgg aataaagooc ttgaaccagc
<210> 44 <211> 110 <212> PRT <213> Homo sapiens
<400> 44
Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu 1 15
Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 25 30
Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 35 40 45
Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly 50 60
Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu 65 70 75 80
Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys 85 90 95
Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 100 105 110

<210> 45

```
<211> 1203
      DNA
<212>
<213> Hepatitis B virus
<400> 45
atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat
                                                                      60
cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat
                                                                     120
ccagattggg acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg
                                                                      180
ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag
                                                                     240
getcagggca tattgacaac agtgecagca gegeeteete etgttteeac caateggeag
                                                                      300
traggaagar agretactor catetetera cetetaagag aragtrater traggeratg
                                                                      360
cagtggaact ccacaacatt ccaccaagct ctgctagatc ccagagtgag gggcctatat
                                                                      420
tttcctgctg gtggctccag ttccggaaca gtaaaccctg ttccgactac tgtctcaccc
                                                                      480
atatogtcaa tottotogag gaotggggao ootgoacoga acatggagag cacaacatca
                                                                      540
ggattoctag gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc
                                                                      600
acaataccac agagtctaga ctcgtggtgg acttctctca attttctagg gggagcaccc
                                                                      660
acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct
                                                                      720
ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc
                                                                      780
ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat qttgcccqtt
                                                                      840
tgtcctctac ttccaggaac atcaactacc agcacgggac catgcaagac ctgcacgatt
                                                                      900
cotqctcaag gaacctctat gtttccctct tgttgctgta caaaaccttc ggacggaaac
                                                                      960
tgcacttgta ttcccatccc atcatcctgg gctttcgcaa gattcctatg ggagtgggcc
                                                                     1020
tragtrogtt totoctggot cagtttacta gtgccatttg ttragtggtt cgcagggott
                                                                     1.080
toccccactg tttggctttc agttatatgg atgatgtggt attgggggcc aagtctgtac
                                                                     1140
aacatottga gtocottttt acototatta ccaattttot tttgtotttg ggtatacatt
                                                                     1200
                                                                     1203
tqa
```

<400> 46

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu 1 5 10 15

<210> 46 <211> 400 <212> PRT

<213> Hepatitis B virus

Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn 40 Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly 60 Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln 70 Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser 90 85 Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 105 100 Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 115 Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly 140 135 130 Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 155 150 145 Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu 175 1.70 165 Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly 190 180 185 Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 205 195 200

Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro 225 230 235 240

Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly

215

210

220

Pro	Ile	Cys	Pro	Gly 245	Tyr	Arg	Trp	Met	Сув 250	Leu	Arg	Arg	Phe	Ile 255	Ile		
Phe	Leu	Phe	Ile 260	Leu	Leu	Leu	Cys	Leu 265	Ile	Phe	Leu	Leu	Val 270	Leu	Leu		
Asp	Tyr	Gln 275	Gly	Met	Leu	Pro	Val 280	Cys	Pro	Leu	Leu	Pro 285	Gly	Thr	Ser		
Thr	Thr 290	Ser	Thr	Gly	Pro	Cys 295	Lys	Thr	Сув	Thr	11e 300	Pro	Ala	Gln	Gly		
Thr 305	Ser	Met	Phe	Pro	Ser 310	Cys	Cys	Cys	Thr	Lys 315	Pro	Ser	Asp	Gly	Asn 320		
Cys	Thr	Cys	Ile	Pro 325	Ile	Pro	Ser	Ser	Trp 330	Ala	Phe	Ala	Arg	Phe 335	Leu		
Trp	Glu	Trp	Ala 340	Ser	Val	Arg	Phe	Ser 345	Trp	Leu	Ser	Leu	Leu 350	Val	Pro		
Phe	Val	Gln 355		Phe	Ala	Gly	Leu 360	Ser	Pro	Thr	Val	Trp 365	Leu	Ser	Val		
Ile	Trp 370		Met	Trp	Tyr	Trp 375	Gly	Pro	Ser	Leu	1 Tyr 380	Asn	Ile	Leu	Ser		
Pro 385	Phe	Leu	Pro	Leu	Leu 390		Ile	Phe	Phe	Cys 395	Lev	Trp	Val	туг	Ile 400		
<21 <21 <21 <21	1> 2>	47 799 DNA Homo	sap	iens	ı												
<40	0>	47			a+ a	an an	acto	19 d	rt agg	tace	ato	acta	cag	acto	ccggac	60)
_															gtgcctt	120)
-															gtetgea	180)
															aacagaa	240)
															cgacacc	300)

ctcc	aaca	aa a	agga	aaca	c aa	caga	aatc	caa	ccta	gag	ctgc	tccg	ca t	ctcc	ctgct
gctc	atcc	ag t	cgtg	gctg	g ag	cccg	tgca	gtt	cctc	agg	agtg	tctt	cg c	caac	agcct
ggtg	tacg	gc g	cctc	tgac	a gc	aacg	tcta	tga	cctc	cta	aagg	acct	ag a	ggaa	ggcat
ccaa	acgc	tg a	tggg	gagg	c tg	gaag	atgg	cag	cccc	cgg	actg	ggca	ga t	cttc	aagca
gacc	taca	gc a	agtt	cgac	a ca	aact	caca	caa	cgat	gac	gcac	tact	ca a	gaac	tacgg
gctg	ctct	ac t	gctt	cagg	a ag	gaca	tgga	caa	ggtc	gag	acat	tcct	gc g	catc	gtgca
gtgc	cgct	ct g	tgga	gggc	a gc	tgtg	gctt	cta	gctg	ccc	gggt	ggca	tc c	ctgt	gaccc
ctcc	ccag	tg c	ctct	cctg	g cc	ctgg	aagt	tga	cact	cca	gtgc	ccac	ca g	cctt	gtcct
aata	aaat	ta a	gttg	catc											
<210 <211 <212 <213	> 2 > F > H	8 17 PRT Iomo	sapi	ens											
Met			Gly	Ser	Arg	Thr	Ser	Leu	Leu	Leu	Ala	Phe	Gly	Leu	Leu
1				5					10					15	
Cys	Leu	Pro	Trp 20	Leu	Gln	Glu	Gly	Ser 25	Ala	Phe	Pro	Thr	Ile 30	Pro	Leu
Ser	Arg	Pro 35	Phe	Asp	Asn	Ala	Met 40	Leu	Arg	Ala	His	Arg 45	Leu	His	Gln
Leu	Ala 50	Phe	Asp	Thr	Tyr	Gln 55	Glu	Phe	Glu	Glu	Ala 60	Tyr	Ile	Pro	ГÀЗ
Glu 65	Gln	ГÀЗ	Tyr	Ser	Phe 70	Leu	Gln	Asn	Pro	Gln 75	Thr	Ser	Leu	Сув	Phe 80
Ser	Glu	Ser	Ile	Pro 85	Thr	Pro	Ser	Asn	Arg 90	Glu	Glu	Thr	Gln	Gln 95	ГÃЗ
Ser	Asn	Leu	Glu	Leu	Leu	Arg	Ile	Ser	Leu	Leu	Leu	Ile	Gln	Ser	Trp

Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125 ,

Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140

Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160

Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 189

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 195 200 205

Arg Ser Val Glu Gly Ser Cys Gly Phe 210 215

<210> 49

<211> 963 <212> DNA

<213> Homo sapiens

<400> 49 atggagacag acacactcct gttatgggtg ctgctgctct gggttccagg ttccactggt 60 gacgtcaggc gagggccccg gagcctgcgg ggcagggacg cgccagcccc cacgccctgc 1.20 gtocoggoog agtgettoga cetgetggte egecactgeg tggoetgegg geteetgege 180 acgoogoggo ogaaaooggo oggggocago agoootgogo ocaggaoggo gotgoagoog 240 caggagtegg tgggegeggg ggccggcgag gcggcggteg acaaaactca cacatgccca 300 ccgtgcccag cacctgaact cctgggggga ccgtcagtct tcctcttccc cccaaaaccc 360 aaggacacco toatgatoto coggacccot gaggtcacat gcgtggtggt ggacgtgagc 420 cacgaagace ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc 480 aagacaaagc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc 540 gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtotc caacaaagcc 600 ctcccagece ccategagaa aaccatetee aaagccaaag ggcageceeg agaaccacag 660 qtqtacaccc tgcccccatc ccgggatgag ctgaccaaga accaggtcag cctgacctgc 720 ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg 780

gagaac	aact	acaag	gacca	ıc gc	ctcc	cgtg	ttg	gact	ccg	acgg	ctcc	tt c	ttcc	tctac	840
agcaag	ctca	ccgto	gaca	a ga	gcag	gtgg	cag	cagg	gga	acgt	cttc	tc a	tgct	ccgtg	900
atgcat	gagg	ctcts	gcaca	a cc	acta	cacg	cag	aaga	gcc	tata	cctg	tc t	cccg	ggaaa	960
tga															963
<210> <211> <212> <213>	50 320 PRT Homo	sapi	iens												
<400>	50			•											
Met Gl	lu Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro	
Gly Se	er Tha	Gly 20	Asp	Val	Arg	Arg	Gly 25	Pro	Arg	Ser	Leu	Arg 30	Gly	Arg	
Asp Al	la Pro	Ala	Pro	Thr	Pro	Сув 40	Val	Pro	Ala	Glu	Сув 45	Phe	Asp	Leu	
Leu Va		His	Сув	Val	Ala 55	Cys	Gly	Leu	Ъeu	Arg 60	Thr	Pro	Arg	Pro	
Lys Pr 65	co Ala	a Gly	Ala	Ser 70	Ser	Pro	Ala	Pro	Arg 75	Thr	Ala	Leu	Gln	Pro 80	
Gln G	lu Ser		Gly 85	Ala	Gly	Ala	Gly	Glu 90	Ala	Ala	Val	Asp	Ъуз 95	Thr	
His T	hr Cys	Pro 100		Cys	Pro	Ala	Pro 105	Glu	Leu	Leu	Gly	Gly 110	Pro	Ser	
Val P	he Le		Pro	Pro	Lys	Pro 120	Lys	Asp	Thr	Leu	Met 125	Ile	Ser	Arg	
Thr P	ro Gl	u Val	Thr	Cys	Val 135	Val	Val	Asp	Val	Ser 140	His	Glu	Asp	Pro	
Glu V 145	al Ly	s Phe	Asn	Trp 150		Val	Asp	Gly	Val 155	Glu	Val	His	Asn	Ala 160	
Lys T	hr Ly	s Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thx	Tyr	Arg	Val	Val	

66/86

165 170 175

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr $_{180}$ $_{180}$ $_{185}$ $_{185}$

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 195 200 200

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 210 220

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 225 230 235

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 245 250 255

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 260 265 270

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 275 280 285

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 290 295 300

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 305 310 315

<210> 51

<211> 107 <212> PRT

<212> PRT <213> Homo sapiens

... ...

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 202525

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95$

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys

<210> 52

<211> 107

<212> PRT <213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly 1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 50 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Typ 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 53

<211> 119 <212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser

<210> 54 <211> 119

<212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr 1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly 100 105 110

Thr Leu Val Thr Val Ser Ala

<210> 55

<211> 214 <212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 $\,$

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT <213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys \$325\$ \$330\$

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr

350

345

340

Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365	
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 375 380	
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400	
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415	
Ser Arg Trp Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430	
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445	
<210> 57 <211> 8540 <212> DNA <213> Homo sapiens	
<400> 57 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag	60
aggocgaggo ggoctoggoc totgoataaa taaaaaaaat tagtoagooa tgoatgggo	120
ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact	180
atggttgotg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg	240
gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct	300
ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct	360
agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc	. 420
gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg	480
acgtcaataa tgacgtatgt teecatagta acgecaatag ggacttteea ttgacgtcaa	540
tgggtggact atttacggta aactgcccac ttggcagtac atcaagtgta tcatatgcca	600
agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagtac	660

720

atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat cgctattacc

atggtgatgc ggttttggca gtacatcaat gggcgtggat agcggtttga ctcacgggga 780 tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca aaatcaacgg 840 gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg taggcgtgta 900 cggtgggagg tctatataag cagagetggg tacgtgaacc gtcagategc ctggagacgc 960 catcacagat ctctcaccat gagggtcccc gctcagctcc tggggctcct gctgctctgg 1020 ctcccaggtg cacgatgtga tggtaccaag gtggaaatca aacgtacggt ggctgcacca 1080 tetgtettea tettecegee atetgatgag cagttgaaat etggaactge etetgttgtg 1140 tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaggt ggataacgcc 1200 ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac 1260 agcotcagca gcaccotgac gctgagcaaa gcagactacg agaaacacaa agtotacgco 1320 tgogaagtca cccatcaggg cctgagctcg cccgtcacaa agagcttcaa caggggagag 1380 tqttgaattc agatccgtta acggttacca actacctaga ctggattcgt gacaacatgc 1440 ggcogtgata totacgtatg atcagcotcg actgtgcctt ctagttgcca gccatctgtt 1.500 gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 1560 taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 1620 qqqqtqqqqc aqqacaqcaa qqqqqaqqat tqqqaaqaca ataqcaqqca tqctqqqqat 1680 gcggtgggct ctatggaacc agctggggct cgacagctat gccaagtacg ccccctattg 1740 acgtcaatga cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact 1800 ttectacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt 1860 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 1920 ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc 1980 qtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata 2040 taaqcagagc tgggtacgtc ctcacattca gtgatcagca ctgaacacag acccgtcgac 2100 atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt cgctagcacc 2160 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 2220 gecetggget geetggteaa ggaetaette eeegaacegg tgaeggtgte gtggaactea 2280 ggcgccctga ccagcggcgt gcacacette ccggctgtec tacagtecte aggactctac 2340 tecetcagea gegtggtgae egtgeeetee ageagettgg geaeccagae etacatetge 2400 aacgtgaatc acaagcccag caacaccaag gtggacaaga aagcagagcc caaatcttgt 2460

gacaaaactc acacatgecc accgtgccca gcacctgaac tectgggggg accgtcagtc 2520 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 2580 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 2640 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 2700 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggactacaag 2760 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 2820 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccagg 2880 aaccaggica geetgacetg cetggicaaa ggettetate ceagegacat egeegitggag 2940 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 3000 gacggeteet tetteeteta cagcaagete acegtggaca agagcaggtg gcagcagggg 3060 aacgtettet catgeteegt gatgeatgag getetgeaca accaetacae geagaagage 3120 ctctccctgt ctccgggtaa atgaggatcc gttaacggtt accaactacc tagactggat 3180 tegtgacaac atgeggeegt gatatetaeg tatgateage etegaetgtg cettetagtt 3240 gccagccatc tgttgtttgc ccctcccccg tgccttcctt gaccctggaa ggtgccactc 3300 ccactgtcct ttcctaataa aatgaggaaa ttgcatcgca ttgtctgagt aggtgtcatt 3360 ctattctggg gggtggggtg gggcaggaca gcaaggggga ggattgggaa gacaatagca 3420 ggcatgctgg ggatgcggtg ggctctatgg aaccagctgg ggctcgacag cgctggatct 3480 cccgatcccc agctttgctt ctcaatttct tatttgcata atgagaaaaa aaggaaaatt 3540 3600 aattttaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgctttag agacagtgtt etetgcacag ataaggacaa acattattca gagggagtac ecagagetga 3660 gactectaag ccagtgagtg gcacagcatt ctagggagaa atatgettgt catcaccgaa 3720 gcctgattcc gtagagccac accttggtaa gggccaatct gctcacacag gatagagagg 3780 gcaggagcca gggcagagca tataaggtga ggtaggatca gttgctcctc acatttgctt 3840 ctgacatagt tgtgttggga gcttggatag cttggacagc tcagggctgc gatttcgcgc 3900 caaacttgac ggcaatccta gcgtgaaggc tggtaggatt ttatccccgc tgccatcatg 3960 gttcgaccat tgaactgcat cgtcgccgtg tcccaaaata tggggattgg caagaacgga 4020 gacctaccct ggcctccgct caggaacgag ttcaagtact tccaaagaat gaccacaacc 4080 tcttcagtgg aaggtaaaca gaatctggtg attatgggta ggaaaacctg gttctccatt 4140

cctgagaaca atcgaccttt aaaggacaga attaatatag ttctcagtag agaactcaaa 4200 gaaccaccac gaggagetea ttttcttgcc aaaagtttgg atgatgeett aagacttatt 4260 gaacaaccgg aattggcaag taaagtagac atggtttgga tagtcggagg cagttctgtt 4320 taccaggaag ccatgaatca accaggccac cttagactct ttgtgacaag gatcatgcag 4380 qaatttgaaa gtqacacgtt tttcccagaa attgatttgg ggaaatataa acttctccca 4440 gaatacccag gegteetete tgaggteeag gaggaaaaag geateaagta taagtttgaa 4500 gtotacgaga agaaagacta acaggaagat gotttcaagt tototgotco cotoctaaag 4560 tcatgcattt ttataagacc atgggacttt tgctggcttt agatcagcct cgactgtgcc 4620 ttotagttgo cagocatotg ttgtttgccc ctcccccgtg ccttccttga ccctggaagg 4680 tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgcatt gtctgagtag 4740 gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg attgggaaga 4800 caatagcagg catgctgggg atgcggtggg ctctatggaa ccagctgggg ctcgagctac 4860 tagetttget teteaattte ttatttgeat aatgagaaaa aaaggaaaat taattttaae 4920 accaattcag tagttgattg agcaaatgcg ttgccaaaaa ggatgcttta gagacagtgt 4980 tototgoaca gataaggaca aacattatto agagggagta cocagagotg agactootaa 5040 gccagtgagt ggcacagcat tctagggaga aatatgcttg tcatcacoga agcctgattc 5100 5160 cgtagagcca caccttggta agggccaatc tgctcacaca ggatagagag ggcaggagcc agggcagago atataaggtg aggtaggatc agttgctcct cacatttgct tctgacatag 5220 ttgtgttggg agettggate gateetetat ggttgaacaa gatggattge acgeaggtte 5280 tooggoogot tgggtggaga ggctattogg ctatgactgg gcacaacaga caatcggotg 5340 ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt ttgtcaagac 5400 cgacctgtcc ggtgccctga atgaactgca ggacgaggca gegcggctat cgtggctggc 5460 cacgacgggc gttccttgcg cagctgtgct cgacgttgtc actgaagcgg gaagggactg 5520 gotgetattg ggogaagtgo oggggoagga totootgtoa totoacettg otootgooga 5580 gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc cggctacctg 5640 cccattcgac caccaagcga aacatcgcat cgagcgagca cgtactcgga tggaagccgg 5700 tettgtegat caggatgate tggacgaaga gcatcagggg ctcgcgccag ccgaactgtt 5760 cgccaggetc aaggegegea tgcccgacgg cgaggatete gtegtgacce atggcgatge 5820 ctgettgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg actgtggccg 5880

gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata ttgctgaaga 5940 gettggegge gaatgggetg accgetteet egtgetttac ggtategeeg ettecegatt 6000 cgcagcgcat cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt 6060 cgaaatgacc gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc 6120 cttctatgaa aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca 6180 gcgcggggat ctcatgctgg agttcttcgc ccaccccaac ttgtttattg cagcttataa 6240 tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca 6300 ttotagttgt ggtttgtoca aactcatcaa totatottat catgtotgga togoggoogo 6360 gatcccgtcg agagettggc gtaatcatgg teatagetgt tteetgtgtg aaattgttat 6420 ccgctcacaa ttccacacaa catacgagcc ggagcataaa gtgtaaagcc tggggtgcct 6480 aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 6540 acctqtcqtq ccaqctqcat taatgaatcq gccaacqcqc ggggagaggc ggtttgcgta 6600 ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 6660 gagoggtatc agotcactca aaggoggtaa tacggttatc cacagaatca ggggataacg 6720 caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 6780 tgctggcgtt tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa 6840 grcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 6900 coctogtgog ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 6960 cttcgggaag cgtggcgctt totcaatgct cacgctgtag gtatotcagt tcggtgtagg 7020 tegttegete caagetggge tgtgtgcacg aaccccccgt teageccgae egetgegeet 7080 tatcoggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 7140 cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 7200 agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga 7260 agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg 7320 gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 7380 aagatoottt gatottitot acggggtotg acgetoagtg gaacgaaaac toacgttaag 7440 ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat 7500 gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 7560

taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	7620
teccegtegt	gtagataact	acgatacggg	agggettace	atctggcccc	agtgctgcaa	7680
tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	7740
gaagggccga	gegeagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	7800
gttgccggga	agctagagta	agtagttege	cagttaatag	tttgcgcaac	gttgttgcca	7860
ttgctacagg	catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	7920
cccaacgatc	aaggcgagtt	acatgatece	ccatgttgtg	caaaaaagcg	gttagctcct	7980
	gatcgttgtc					8040
	taattotott					8100
					tettgecegg	8160
					atcattggaa	8220
					agttcgatgt	828
					gtttctgggt	8340
					cggaaatgtt	840
					: tattgtctca	846
					cegegeacat	852
	agtgccacct					854

<210> 58

<211> 9209 <212> DNA

<213> Mus musculus

<400> 58 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 60 aggccgaggc ggcctcggcc tctgcataaa taaaaaaaat tagtcagcca tgcatgggc 120 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 atggttgetg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240 gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct 300 ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct 360 agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc 420 gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg 480

acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa 540 tgggtggact atttacggta aactgcccac ttggcagtac atcaagtgta tcatatgcca 600 agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagtac 660 atgacettat gggaetttee tacttggcag tacatetacg tattagteat egetattace 720 atggtgatgc ggttttggca gtacatcaat gggcgtggat accggtttga ctcacgcgga 780 tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca aaatcaacgg 840 gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg taggcgtgta 900 cggtgggagg tctatataag cagagctggg tacgtgaacc gtcagatcgc ctggagacgc 960 catcacagat ctctcactat ggattttcag gtgcagatta tcagcttcct gctaatcagt 1020 getteagtea taatgteeag aggacaaatt gtteteteee agteteeage aateetgtet 1080 qcatctccag gggagaaggt cacaatgact tgcagggcca gctcaagtgt aagttacatc 1140 cactggttcc agcagaagcc aggatcctcc cccaaaccct ggatttatgc cacatccaac 1200 ctggcttctg gagtccctgt tcgcttcagt ggcagtgggt ctgggacttc ttactctctc 1260 acaatcagca gagtggaggc tgaagatgct gccacttatt actgccagca gtggactagt 1320 aacccaccca cgttcggagg ggggaccaag ctggaaatca aacgtacggt ggctgcacca 1380 totgtottca tottocogec atotgatgag cagttgaaat otggaactgc ototgttgtg 1440 tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaggt ggataacgcc 1500 ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac 1560 agoctoagoa goaccotgao gotgagoaaa goagactaog agaaacacaa agtotaogoo 1620 tgcgaagtca cccatcaggg cctgagctcg cccgtcacaa agagcttcaa caggggagag 1680 tgttgaattc agatccgtta acggttacca actacctaga ctggattcgt qacaacatgc 1740 ggccgtgata tctacgtatg atcagcctcg actgtgcctt ctagttgcca gccatctgtt 1800 gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 1860 taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 1920 ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat 1980 geggtggget etatggaace agetgggget egacagetat gecaagtacg ceceetattg 2040 acgteaatga cggtaaatgg cecgectggc attatgccca gtacatgacc ttatgggact 2100 ttcctacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt 2160 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 2220

ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc 2280 gtaacaactc cgccccattg acgcaaatgg gcgqtaggcg tgtacggtgg gaggtctata 2340 taagcagage tgggtacgte etcacattca gtgatcagea etgaacacag accegtegae 2400 atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt cctgtcccag 2460 qtacaactgc agcagcctgg ggctgagctg gtgaagcctg gggcctcagt gaagatgtcc 2520 tgcaaggett etggetacae atttaceagt tacaatatge aetgggtaaa acagacaeet 2580 ggtcggggcc tggaatggat tggagctatt tatcccggaa atggtgatac ttcctacaat 2640 cagaagttca aaggcaaggc cacattgact gcagacaaat cctccagcac agcctacatg 2700 cagetcagea geetgacate tgaggactet geggtetatt actgtgcaag ategacttae 2760 tacggcggtg actggtactt caatgtctgg ggcgcaggga ccacggtcac cgtctctgca 2820 gctagcacca agggcccatc ggtcttcccc ctggcaccct cctccaagag cacctctggg 2880 qqcacagegg ccctgggctg cctggtcaag gactacttcc ccgaaceggt gacggtgtcg 2940 tggaactcag gegeeetgae cageggegtg cacacettee eggetgteet acagteetca 3000 ggactetàct cocteageag egtggtgace gtgcccteca geagettggg cacceagace 3060 tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagaa agcagagccc 3120 aaatottgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 3180 cogtcagtet tectettece eccaaaacce aaggacacce teatgatete coggacceet 3240 gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 3300 tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac 3360 agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 3420 gagtacaagt gcaaggtoto caacaaagco otoccagooc ccatogagaa aaccatotoc 3480 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag 3540 ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 3600 qccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 3660 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 3720 caqcaqqqqa acgtcttctc atgctccqtg atgcatgagg ctctgcacaa ccactacacg 3780 cagaagagcc tctccctgtc tccgggtaaa tgaggatccg ttaacggtta ccaactacct 3840 agactggatt cgtgacaaca tgcggccgtg atatctacgt atgatcagcc tcgactgtgc 3900

cttctagttg ccagccatct gttgtttgcc cctccccgt gccttccttg accctggaag 3960 gtgccactcc cactgtcctt tcctaataaa atgaggaaat tgcatcgcat tgtctgagta 4020 ggtgtcattc tattctgggg ggtggggtgg ggcaggacag caagggggag gattgggaag 4080 acaatagcag gcatgctggg gatgcggtgg gctctatgga accagctggg gctcgacagc 4140 4200 getggatete eegateeeea getttgette teaatttett atttgcataa tgagaaaaaa aggaaaatta attttaacac caattcagta gttgattgag caaatgcgtt gccaaaaagg 4260 atgetttaga gacagtgtte tetgeacaga taaggacaaa cattatteag agggagtace 4320 cagagetgag actectaage cagtgagtgg cacageatte tagggagaaa tatgettgte 4380 atcaccgaag cetgatteeg tagagecaca cettggtaag ggecaatetg etcacacagg 4440 atagagaggg caggagccag ggcagagcat ataaggtgag gtaggatcag ttgctcctca 4500 4560 catttgcttc tgacatagtt gtgttgggag cttggatagc ttggacagct cagggctgcg atttegegee aaacttgaeg geaateetag egtgaagget ggtaggattt tateeceget 4620 4680 gecatcatgg ttegaccatt gaactgcate gtegeogtgt cecaaaatat ggggattgge aagaacggag acctaccctg gcctccgctc aggaacgagt tcaagtactt ccaaagaatg 4740 accacaacct cttcagtgga aggtaaacag aatctggtga ttatgggtag gaaaacctgg 4800 4860 ttctccattc ctgagaagaa tcgaccttta aaggacagaa ttaatatagt tctcagtaga 4920 quacticaaaq aaccaccacg aggageteat tttettgeca aaagtttgga tgatgeetta agacttattg aacaaccgga attggcaagt aaagtagaca tggtttggat agtcggaggc 4980 agttotgttt accaggaago catgaatcaa ccaggocaco ttagactott tgtgacaagg 5040 atcatgcagg aatttgaaag tgacacgttt ttcccagaaa ttgatttggg gaaatataaa 5100 cttctcccag aatacccagg cgtcctctct gaggtccagg aggaaaaagg catcaagtat 5160 aagtttgaag totacgagaa gaaagactaa caggaagatg ctttcaagtt ctctgctccc 5220 ctcctaaagc tatgcatttt tataagacca tgggactttt gctggcttta gatcagcctc 5280 gactgtgcct tctagttgcc agccatctgt tgtttgcccc tcccccgtgc cttccttgac 5340 cetggaaggt gecaeteeca etgteettte etaataaaat gaggaaattg categeattg 5400 5460 ttgggaagac aatagcaggc atgctgggga tgcggtgggc tctatggaac cagctggggc 5520 tegagetaet agetttgett eteaatttet tatttgeata atgagaaaaa aaggaaaatt 5580 aattttaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgctttag 5640

agacagtgtt ctctgcacag ataaggacaa acattattca gagggagtac ccagagctga 5700 5760 gactectaag ccagtgagtg gcacagcatt ctagggagaa atatgettgt catcacegaa gcctgattcc gtagagccac accttggtaa gggccaatct gctcacacag gatagagagg 5820 gcaggagcca gggcagagca tataaggtga ggtaggatca gttgctcctc acatttgctt 5880 ctgacatagt tgtgttggga gettggateg atectetatg gttgaacaag atggattgca 5940 egeaggttet eeggeegett gggtggagag getattegge tatgactggg cacaacagae 6000 6060 aateggetge tetgatgeeg cegtgtteeg getgteageg caggggegee eggttetttt 6120 tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag cgcggctatc gtggetggee acgaegggcg tteettgcge agetgtgetc gacgttgtca ctgaagcggg 6180 aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc 6240 teetgeegag aaagtateea teatggetga tgeaatgegg eggetgeata egettgatee 6300 ggetacetge ceattegace accaagegaa acategeate gagegageae gtacteggat 6360 6420 ggaagccqqt cttgtcgatc aggatgatct ggacgaagag catcaggggc tcgcgccagc cqaactgttc gccaggctca aggcgcgcat gcccgacggc gaggatctcg tcgtgaccca 6480 tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg gattcatcga 6540 etgtggeegg etgggtgtgg eggacegeta teaggacata gegttggeta ecegtgatat 6600 tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg gtatcgccgc 6660 tecegatteg cagegeateg cettetateg cettettgac gagttettet gagegggact 6720 ctqqqqttcg aaatgaccga ccaagcgacg cccaacctgc catcacgaga tttcgattcc 6780 accgccgcct totatgaaag gttgggcttc ggaatcgttt tccgggacgc cggctggatg 6840 atcetecage geggggatet catgetggag ttettegece accecaactt gtttattgca 6900 gettataatg gttacaaata aagcaatage atcacaaatt teacaaataa agcattttt 6960 tcactgcatt ctagttgtgg tttgtccaaa ctcatcaatc tatcttatca tgtctggatc 7020 geggeegega teeegtegag agettggegt aateatggte atagetgttt cetgtgtgaa 7080 attqttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaag tgtaaagcct 7140 qqqqtqccta atqagtgagc taactcacat taattgcgtt gcgctcactg cccgctttcc 7200 agtegggaaa cetgtegtge cagetgeatt aatgaategg ceaacgegeg gggagaggeg 7260 gtttgcgtat tgggcgctct tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc 7320

ggetgeggeg ageggtatea geteaeteaa aggeggtaat aeggttatee acagaateag 7380 gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 7440 aggegggtt getggegttt ttecatagge teegeceee tgaegageat cacaaaaate 7500 gacgeteaag teagaggtgg egaaaceega caggactata aagataceag gegttteece 7560 ctggaagete cetegtgege tetectgtte egaceetgee gettacegga tacetgteeg 7620 cetttetece ttegggaage gtggegettt etcaatgete aegetgtagg tateteagtt 7680 eggtgtaggt egttegetee aagetggget gtgtgcacga accccccgtt cagcccgacc 7740 7800 gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 7860 agttettgaa gtggtggeet aactacgget acactagaag gacagtattt ggtatetgeg 7920 ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 7980 8040 ccaccactag taggagtagt ttttttttttt gcaagcagca gattacgcgc agaaaaaaaag gateteaaga agateetttg atettteta eggggtetga egeteagtgg aacgaaaact 8100 cacqttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa 8160 8220 attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 8280 accaatgott aatcagtgag gcacctatot cagcgatotg totatttogt toatcoatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca 8340 gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc 8400 agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt 8460 ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcccaacq 8520 ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca 8580 getecggtte ccaacgatea aggegagtta catgatecce catgttgtge aaaaaagegg 8640 ttageteett eggteeteeg ategttgtea gaagtaagtt ggeegeagtg ttateactea 8700 tggttatggc agcactgcat aattetetta etgtcatgcc atccgtaaga tgcttttetg 8760 tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct 8820 8880 cttqcccggc gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ttgagatcca 8940 gttcgatgta acceactcgt gcacceaact gatcttcage atcttttact ttcaccageg 9000 tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata agggcgacac 9060

	, aacacc	cata c	tattaatt	ttcaata	atta ttg	gaagcatt	tatca	gggtt	9120
attgtctcai	gagegg	gatac ai	tatttgaat	gtattt	agaa aaa	taaacaa	atagg	ggttc	9180
cgcgcacatt	tococg	gaaaa gi	tgecacct						9209
<210> 59 <211> 384 <212> DNA <213> Mus		Lus							
<400> 59 atggatttt	a g gtgo	agat t	atcagctto	ctgcta	atca gto	getteagt	cataa	tgtcc	60
agagggcaaa	ttgttc	tete e	cagteteca	gcaatco	etgt ctg	gcatctcc	agggg	agaag	120
gtcacaatg	a cttgca	agggc ca	agctcaagt	gtaagt	taca tco	cactggtt	ccago	agaag	180
ccaggatcc	cococa	aacc c	tggatttat	gccacat	cca acc	tggcttc	tggag	tecet	240
gttegette	gtggca	igtgg gl	tctgggact	tcttact	toto to	acaatcag	cagag	rtggag	300
gctgaagat	ctgcca	ctta t	tactgccag	cagtgg	acta gta	acccacc	cacgt	tegga	360
ggggggacca	agctgg	gaaat c	aaa						384
<210> 60.									
<211> 120 <212> PR' <213> Mus		lus							
<212> PR' <213> Mus <400> 60	r s muscul								
<212> PR' <213> Mus	r s muscul	/al Gln	Ile Ile	Ser Phe	Leu Lei	ı Ile Se	r Ala 15	Ser	
<212> PR' <213> Mus <400> 60 Met Asp Pl	r s muscul ne Gln V	Val Gln		10			15 o Ala		
<212> PR: <213> Musical Services (200)	r muscul ne Gln V 5 et Ser A 20	Val Gln S Arg Gly	Gln Ile	10 Val Leu 25	Ser Glı	n Ser Pr 30	15 o Ala	Ile	
<212> PR: <213> Mui <400> 60 Met Asp Pl 1 Val Ile Mo	r s muscul ne Gln V 5 et Ser A 20	val Gln S arg Gly Pro Gly	Glu Lys	Val Leu 25 Val Thr	Ser Gli	n Ser Pr 30 c Cys Ar 45	15 o Ala g Ala	Ile	
<212> PR: <213> Mui <400> 60 Met Asp Pl 1 Val Ile Me Leu Ser A 3: Ser Ser Ve	r s muscul ne Gln V 5 bet Ser A 20	val Gln org Gly Pro Gly	Glu Lys 40 His Trp 55	Val Leu 25 Val Thr	Ser Gli Met Thi Gln Lys 60	Ser Pr 30 Cys Ar 45	o Ala g Ala y Ser	Ile Ser Ser	

85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 61

<211> 420 <212> DNA

<213> Mus musculus

<400> 61

atgggttgga goctcatctt gctottcott gtegctgttg otacgeggt cotgtoccag
gtacaactgc agcagcctgg ggctgagetg gtgaagcctg gggcctcagt gaagatgtcc
120
tgcaaggctt ctggctacac atttaccagt tacaatatgc actgggtaaa acagacacct
180
ggtcggggcc tggaatggat tggagctatt tatcccggaa atggtgatac ttcctacaat
240
cagaagttca aaggcaaggc cacattgact gcagacaaat cotccagcac agcctacatg
300
cagctcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag atcgacttac
tacggcggtg actggtactf caatgtctgg ggcgcaggga ccacggtcac cgtcttgca
420

<210> 62

<211> 140

<212> PRT <213> Mus musculus

<400> 62

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg 1 5 10 15

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu
50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 \$120\$

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 135