8

Diagonalització

8.1 Calculeu el polinomi característic, els valors propis i els subespais de vectors propis de les matrius següents. Determineu quines són diagonalitzables i doneu, quan sigui possible, una base en la que diagonalitzin i la matriu diagonal associada.

1)
$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
, 5) $\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$, 8) $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 12 & -13 & 6 \end{pmatrix}$, 3) $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$, 6) $\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$, 9) $\begin{pmatrix} -2 & 0 & 0 & 4 \\ 2 & 1 & 0 & 2 \\ 3 & 0 & -1 & 3 \\ 4 & 0 & 0 & 2 \end{pmatrix}$.

$$4) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad 7) \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix},$$

Solució:

1) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 2\\ 3 & 2-k \end{vmatrix} = k^2 - 3k - 4 = (k+1)(k-4).$$

Per tant, els valors propis són -1 i 4 amb multiplicitat 1 (simples). Com que hi ha 2 valors propis diferents i la dimensió de l'espai és 2, la matriu diagonalitza.

Els subespais associats als valors propis són $E_{-1} = \langle \binom{-1}{1} \rangle$, $E_4 = \langle \binom{2}{3} \rangle$. En efecte, els vectors de E_{-1} i de E_4 són, respectivament, les solucions del sistemes:

$$\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Una base en la que la matriu diagonalitza és, per tant, $\{\binom{-1}{1}, \binom{2}{3}\}$ i la matriu diagonal associada en aquesta base és Diag(-1,4). El canvi de base vé donat per:

$$\begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}.$$

2) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 0\\ 2 & -1-k \end{vmatrix} = k^2 - 1 = (k+1)(k-1).$$

Per tant, els valors propis són -1 i 1 amb multiplicitat 1 (simples). Com que hi ha 2 valors propis diferents i la dimensió de l'espai és 2, la matriu diagonalitza.

Els subespais associats als valors propis són $E_{-1} = \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle$, $E_1 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$, que són, respectivament, les solucions dels sistemes:

$$\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Per tant, una base en la que la matriu diagonalitza és $\{\binom{0}{1},\binom{1}{1}\}$ i la matriu diagonal associada és Diag(-1,1). El canvi de base vé donat per:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

3) El polinomi característic és:

$$p(k) = \begin{vmatrix} 3-k & 1 & 1\\ 2 & 4-k & 2\\ 1 & 1 & 3-k \end{vmatrix} = -k^3 + 10k^2 - 28k + 24 = -(k-6)(k-2)^2.$$

Els valors propis són 6, simple $(m_6=1)$, i 2, doble $m_2=2$. Els subespais de vectors propis associats són $E_6=\langle \begin{pmatrix} 1\\2\\1 \end{pmatrix} \rangle,\ E_2=\langle \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \rangle, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \rangle$, que són, respectivament, les solucions dels sitemes d'equacions:

$$\begin{pmatrix} -3 & 1 & 1 \\ 2 & -2 & 2 \\ 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Com que $\dim(E_6) = m_6 = 1$ i $\dim(E_2) = m_2 = 2$, la matriu és diagonalitzable. Diagonalitza en la base $\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right\}$ i la matriu diagonal associada és $\operatorname{Diag}(6,2,2)$. El canvi de base és:

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

4) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 1 & 0 \\ 0 & 1-k & 1 \\ 0 & 0 & 1-k \end{vmatrix} = (1-k)^3.$$

Per tant, hi ha un valor propi, 1, de multiplicitat 3: $m_1 = 3$. El subespai associat al valor propi és $E_1 = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$, que està format per les solucions del sistema:

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Com que $\dim(E_1) = 1 < m_1 = 3$, la matriu no és diagonalitzable.

5) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & -3 & 3\\ 3 & -5-k & 3\\ 6 & -6 & 4-k \end{vmatrix} = -k^3 + 12k + 16 = -(k-4)(k+2)^2.$$

Per tant, hi ha dos valors propis: 4, simple, i -2, doble. Els subespais associats als valors propis són:

$$E_4 = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \rangle, \quad E_{-2} = \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rangle.$$

La matriu és diagonalitzable, donat que la multiplicitat de cada valor propi coincideix amb la dimensió del corresponent subespai propi. Diagonalitza en la base $\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$ i la matriu diagonal associada és Diag(4,-2,-2).

6) El polinomi característic és:

$$p(k) = \begin{vmatrix} -k & 1 & 0 \\ -4 & 4-k & 0 \\ -2 & 1 & 2-k \end{vmatrix} = -(k-2)^3.$$

La matriu té un valor propi 2 de multiplicitat 3. El subespai associat al valor propi és $E_2 = \langle \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$. Com que dim $(E_2) \neq 3$, la matriu no és diagonalitzable.

7) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & -1 & -1 \\ 1 & -1-k & 0 \\ 1 & 0 & -1-k \end{vmatrix} = -(k+1)(k^2+1).$$

Com que la matriu només té un valor propi real, no és diagonalitzable.

8) El polinomi característic és (desenvolupant per la primera columna):

$$p(k) = \begin{vmatrix} -k & 1 & 0 & 0 \\ 0 & -k & 1 & 0 \\ 0 & 0 & -k & 1 \\ -4 & 12 & -13 & 6 - k \end{vmatrix} = (-k) \cdot \begin{vmatrix} -k & 1 & 0 \\ 0 & -k & 1 \\ 12 & -13 & 6 - k \end{vmatrix} + 4$$
$$= k^4 - 6k^3 + 13k^2 - 12k + 4 = (k-1)^2(k-2)^2.$$

La matriu té valors propis 1 i 2, els dos dobles. Els subespais associats als valors propis són $E_1 = \langle \begin{pmatrix} 1\\1\\1 \end{pmatrix} \rangle$, $E_2 = \langle \begin{pmatrix} 1\\2\\4\\8 \end{pmatrix} \rangle$. La matriu no és diagonalitzable perquè les multiplicitats dels valors propis no coincideixen amb les dimensions dels corresponents subespais propis.

9) El polinomi característic és:

$$p(k) = \begin{vmatrix} -2-k & 0 & 0 & 4 \\ 2 & 1-k & 0 & 2 \\ 3 & 0 & -1-k & 3 \\ 4 & 0 & 0 & -2-k \end{vmatrix} = (k-1)(k+1) \cdot \begin{vmatrix} -2-k & 4 \\ 4 & -2-k \end{vmatrix}$$
$$= (k-1)(k+1)((2+k)^2 - 16) = (k+1)(k+6)(k-2)(k-1).$$

La matriu és diagonalitzable perquè té quatre valors propis diferents. Els subespais associats als valors propis són $E_{-1} = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \rangle, \ E_{-6} = \langle \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rangle, \ E_{2} = \langle \begin{pmatrix} 1 \\ 4 \\ 2 \\ 1 \end{pmatrix} \rangle, \ E_{1} = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle.$ La matriu diagonalitza en la base $\{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \}$ i la matriu diagonal associada és Diag $\{-1, -6, 2, 1\}$.

8.2 Sigui J la matriu de $\mathcal{M}_5(\mathbb{R})$ formada integrament per uns. Trobeu una base de \mathbb{R}^5 que estigui formada per un vector propi de J de valor propi 5 i per quatre vectors propis de valor propi 0.

Solució: Calculem en primer lloc el polinomi característic de *J*:

$$p(\lambda) = \begin{vmatrix} 1 - \lambda & 1 & 1 & 1 & 1 \\ 1 & 1 - \lambda & 1 & 1 & 1 \\ 1 & 1 & 1 - \lambda & 1 & 1 \\ 1 & 1 & 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 & 1 - \lambda & 1 \end{vmatrix} \stackrel{(1)}{=} \begin{vmatrix} -\lambda & \lambda & 0 & 0 & 0 \\ 0 & -\lambda & \lambda & 0 & 0 \\ 0 & 0 & -\lambda & \lambda & 0 \\ 0 & 0 & 0 & -\lambda & \lambda & 0 \\ 0 & 0 & 0 & -\lambda & \lambda & 1 \\ 1 & 1 & 1 & 1 & 1 - \lambda \end{vmatrix}$$

$$\stackrel{(2)}{=} \lambda^4 \cdot \begin{vmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} \stackrel{(3)}{=} \lambda^4 (-A + (1 - \lambda))$$

on hem fet: (1) restem a cada fila la fila següent; (2) treiem λ factor comú de les quatre primeres files; (3) desenvolupem per la cinquena columna. On, a més, A és el determinant:

$$A = \begin{vmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix} = -4$$

(desenvolupant, per exemple, per la primera columna). Finalment, tenim:

$$p(\lambda) = \lambda^4 (4 + 1 - \lambda) = \lambda^4 (5 - \lambda).$$

Per tant, els valors propies de J són $\lambda=0$, amb multiplicitat algebraica 4, i $\lambda=5$, simple. Calculem els subespais propis. El supespai E_0 és el conjunt de solucions del sistema $x_1+x_2+x_3+x_4+x_5=0$; és a dir:

$$E_{0} = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle.$$

El supespai E_4 és el conjunt de solucions dels sistema:

$$\begin{pmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Restant a cada fila la fila posterior, obtenim el sistema equivalent:

$$x_1 = x_2 = x_3 = x_4 = x_5.$$

Per tant:

$$E_4 = \left\langle \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} \right\rangle.$$

La base buscada és doncs:

$$B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

8.3 Trobeu els valors i vectors propis dels endomorfismes següents. En cas que siguin diagonalitzables, doneu una base en què diagonalitzin i la matriu diagonal associada.

1)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, on $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x+4z \\ 3x-4y+12z \\ x-2y+5z \end{pmatrix}$.

2) $f: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$, on:

$$f(a+bx+cx^2) = (5a+6b+2c) - (b+8c)x + (a-2c)x^2.$$

3) $f: P_3(\mathbb{R}) \longrightarrow P_3(\mathbb{R})$, on:

$$f(a+bx+cx^2+dx^3) = (a+b+c+d) + 2(b+c+d)x + 3(c+d)x^2 + 4dx^3.$$

Solució:

1) El polinomi característic és:

$$p(k) = \begin{vmatrix} 2-k & 0 & 4\\ 3 & -4-k & 12\\ 1 & -2 & 5-k \end{vmatrix} = -k^3 + 3k^2 - 2k = -k(k-1)(k-2).$$

Els subespais associats als valors propis són:

$$E_0 = \operatorname{Ker} f = \left\langle \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix} \right\rangle, \ E_1 = \operatorname{Ker}(f - I) = \left\langle \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \ E_2 = \operatorname{Ker}(f - 2I) = \left\langle \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\rangle.$$

Com que les multiplicitats algebràiques coincideixen amb les corresponents dimensions dels subespais propis, l'endomorfisme és diagonalitzable i ho fa en la base $\left\{ \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$ i la matriu diagonal associada és Diag(0,1,2).

2) El polinomi característic és:

$$p(k) = \begin{vmatrix} 5-k & 6 & 2\\ 0 & -1-k & -8\\ 1 & 0 & -2-k \end{vmatrix} = -k^3 + 2k^2 + 15k - 36 = -(k+4)(k-3)^2.$$

Els subespais associats als valors propis són:

$$E_{-4} = \text{Ker}(f + 4I) = \langle 3x^2 + 8x - 6 \rangle, \quad E_3 = \text{Ker}(f - 3I) = \langle x^2 - 2x + 5 \rangle.$$

L'endomorfisme no és diagonalitzable, ja que $\dim(E_3) \neq 2$.

3) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 1 & 1 & 1\\ 0 & 2-k & 2 & 2\\ 0 & 0 & 3-k & 3\\ 0 & 0 & 0 & 4-k \end{vmatrix} = (k-1)(k-2)(k-3)(k-4).$$

Els subespais associats als valors propis són:

$$E_1 = \langle 1 \rangle, \ E_2 = \langle 1 + x \rangle, \ E_3 = \langle 3 + 4x + 2x^2 \rangle, \ E_4 = \langle 8 + 12x + 9x^3 + 3x^3 \rangle.$$

Atès que l'endomorfisme té quatre valors propis diferents, aquest diagonalitza respecte de la base $\{1, 1+x, 3+4x+2x^2, 8+12x+9x^2+3x^3\}$, essent la matriu diagonal associada Diag(1, 2, 3, 4).

8.4 Trobeu els valors i vectors propis de l'endomorfisme $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ definit per:

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2c & a+c \\ b-2c & d \end{pmatrix}.$$

Solució: Considerem la base canònica C de l'espai $\mathcal{M}_2(\mathbb{R})$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

En aquesta base, la matriu de f és:

$$M_C(f) = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

i el polinomi característic és:

$$p(\lambda) = \begin{vmatrix} -\lambda & 0 & 2 & 0 \\ 1 & -\lambda & 1 & 0 \\ 0 & 1 & -2 - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda & 0 & 2 \\ 1 & -\lambda & 1 \\ 0 & 1 & -2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(-\lambda^3 - 2\lambda^2 + \lambda + 2) = (\lambda - 1)^2(\lambda + 1)(\lambda + 2).$$

Per tant, els valors propis són -1, -2 i 1, de multiplicitat algebraica 1, 1 i 2, respectivament. Els subespais associats als valors propis són:

$$E_{-1} = \langle \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \rangle, \quad E_{-2} = \langle \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \rangle, \quad E_{1} = \langle \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \rangle.$$

L'endomorfisme f diagonalitza perquè la multiplicitat algebraica de λ coincidex amb dim (E_{λ}) , per a cada valor propi λ de f.

8.5 Discutiu la diagonalització de les matrius següents sobre \mathbb{R} en funció dels seus paràmetres:

Solució:

1) El polinomi característic és:

$$p(k) = \begin{vmatrix} a-k & b \\ -b & -k \end{vmatrix} = k^2 - ak + b^2.$$

El discriminant d'aquest polinomi de segon grau és a^2-4b^2 . Si $a^2-4b^2<0$, no hi ha cap valor propi real i, per tant, la matriu no diagonalitza. Si $a^2-4b^2>0$, llavors hi ha dos valors propis reals i diferents i, per tant, la matriu diagonalitza. Estudiem ara què passa si $a^2-4b^2=0$; és adir, si $a=\pm 2b$. Resolent l'equació p(k)=0 en aquest cas, trobem que hi ha un valor propi k=a/2 amb multiplicitat 2. El subespai propi $E_{a/2}$ ve donat per l'equació bx+by=0, si a=2b, o per l'equació bx-by=0, si a=-2b. En els dos casos, si $b\neq 0$, el subespai té dimensió 1 i, per tant, la matriu no diagonalitza. Però el subespai de vectors propis té dimensió 2 si b=0 i, en conseqüència, la matriu diagonalitza. Resumint: la matriu diagonalitza si i només si o bé $a^2-4b^2>0$ o bé a=b=0.

2) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 0 & 0 \\ a & 1-k & 0 \\ b & c & 2-k \end{vmatrix} = (1-k)^2(2-k).$$

Els subespais propis E_1 i E_2 venen donats, respectivament, pels sistemes següents:

$$E_1: \quad ax = 0, bx + cy + z = 0; \qquad E_2: \quad x = 0, y = 0.$$

D'aqui resulta que $E_2 = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$, és a dir dim $(E_2) = 1$. Pel que fa a E_1 , tenim: si $a \neq 0$, el rang del sistema és 2 i, per tant, dim $(E_1) = 1$, i si a = 0, el rang del sistema és 1 i, per tant,

 $\dim(E_1) = 2$. Per tal que la matriu diagonalitzi s'ha de complir que $\dim(E_{\lambda})$ sigui igual a la multiplicitat algebraica de λ , per a tot valor propi λ . Per tant, la matriu és diagonalitzable si i nomès si a = 0.

3) El polinomi característic és:

$$p(k) = \begin{vmatrix} a-k & b & 0 \\ 0 & -1-k & 0 \\ 0 & 0 & 1-k \end{vmatrix} = (a-k)(1-k)(-1-k).$$

Si $a \neq \pm 1$, llavors la matriu té tres valors propis diferents i, per tant, diagonalitza. Estudiem què passa si a=1 o si a=-1. Si a=1, llavors hem de veure quan $\dim(E_1)=2$. Si a=1, el subespai E_1 ve donat per x=x,y=0,z=z i té dimensió 2. Per tant, la matriu diagonalitza. Si a=-1, hem de veure quan $\dim(E_{-1})=2$. Si a=-1, el subespai E_{-1} ve donat per x=x,by=0,z=z. Per tal que E_{-1} tingui dimensió 2, el paràmetre b ha de ser 0. Per tant, quan a=-1 la matriu diagonalitza si i només si b=0. Resumint: la matriu diagonalitza si i només si $a=\pm 1$ o a=1 o a=-1 i b=0.

4) El polinomi característic és:

$$p(k) = \begin{vmatrix} c - k & 2a & 0 \\ b & -k & a \\ 0 & 2b & -c - k \end{vmatrix} = k(k^2 - (c^2 + 4ab)).$$

Si $c^2+4ab<0$, llavors només hi ha un valor propi real i, per tant, la matriu no diagonalitza. Si $c^2+4ab>0$, llavors hi ha tres valors propis reals diferents i, per tant, la matriu diagonalitza. Si $c^2+4ab=0$, llavors la matriu té el valor propi k=0 amb multiplicitat 3. En aquest cas, la matriu només diagonalitza si i només si és la matriu zero; és a dir, si i només si a=b=c=0. Resumint: la matriu diagonalitza si i només si $c^2+4ab>0$ o si a=b=c=0.

5) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & a & 0 & 1\\ 0 & 1-k & 0 & 0\\ 0 & 0 & 2-k & 0\\ 0 & 0 & 0 & b-k \end{vmatrix} = (1-k)^2(2-k)(b-k).$$

Si $b \neq 1, 2$, llavors la matriu té valors propis 1, doble, 2, simple, i b, simple. La matriu diagonalitza si i només si $\dim(E_1)=2$. El subespai E_1 ve donat pel sistema d'equacions x=x, ay=0, z=0, t=0. Per tal que E_1 tingui dimensió 2, ha de ser a=0. Per tant, si $b \neq 1, 2$, la matriu diagonalitza si i només si a=0. Si b=1, la matriu té valors propis 1, triple, i 2, simple. Diagonalitza si i només si $\dim(E_1)=3$. Però E_1 ve donat per x=x, y=y, z=0, t=-ay, i té, per tant, dimensió 2. Per tant, si b=1, la matriu no diagonalitza. Si b=2, la matriu té valors propis 1, doble, i 2, doble. Diagonalitza si i només si $\dim(E_1)=\dim(E_2)=2$. Però E_2 ve donat per x=y=t=0, z=z i té dimensió 1. Per tant, si b=2, la matriu no diagonalitza. Resumint: la matriu diagonalitza si i només si $b \neq 1, 2$ i a=0.

6) El polinomi característic és:

$$p(k) = \begin{vmatrix} 2a - 1 - k & 1 - a & 1 - a \\ a - 1 & 1 - k & 1 - a \\ a - 1 & 1 - a & 1 - k \end{vmatrix} = (a - k)^2 (1 - k).$$

Si a=1, la matriu és la identitat, que és una matriu diagonal. Si $a\neq 1$, la matriu té valors propis a, doble, i 1, simple. Per tant, si $a\neq 1$, la matriu diagonalitza si i només si $\dim(E_a)=2$. Però si $a\neq 1$, E_a ve donat pel sistema x=y+z, i té, per tant, dimensió 2. Per tant, si $a\neq 1$, la matriu diagonalitza. Resumint: la matriu diagonalitza per a qualsevol valor de a.

7) El polinomi característic és:

$$p(k) = \begin{vmatrix} 1-k & 0 & 0 \\ b & a-k & 0 \\ 0 & 0 & 2-k \end{vmatrix} = (1-k)(2-k)(a-k).$$

Si $a \neq 1, 2$, llavors la matriu té tres valors propis diferents i, per tant, diagonalitza. Si a = 1, la matriu té valors propis 1, doble, i 2, simple. En aquest cas, la matriu diagonalitza si i només si $\dim(E_1) = 2$. Però E_1 ve donat per bx = 0, y = y, z = 0. Si $b \neq 0$, tenim que $\dim(E_1) = 1$ i si b = 0, llavors $\dim(E_1) = 2$. Per tant, si a = 1, la matriu diagonalitza si i només si b = 0. Si a = 2, la matriu té valors propis 1, simple, i 2, doble. Diagonalitza si i només si $\dim(E_2) = 2$. Però en aquest cas, E_2 ve donat per x = 0, y = y, z = z i té, per tant, dimensió 2. Resumint: la matriu diagonalitza si $a \neq 1$ o bé si a = 1 i b = 0.

- **8.6** Siguin f un endomorfisme d'un \mathbb{R} -espai vectorial E i $u \in E$ un vector propi de f de valor propi $\lambda \in \mathbb{R}$. Demostreu que:
- 1) -u és un vector propi de f de valor propi λ ;
- 2) u és un vector propi de f^2 de valor propi λ^2 .

Solució: Si u és un vector propi de valor propi λ , llavors $f(u) = \lambda u$.

1) En aquest cas, tenim:

$$f(-u) = (-1)f(u) = -\lambda u = \lambda(-u).$$

Per tant, -u és un vector propi de valor propi λ .

2) Ara tenim:

$$f(f(u)) = f(\lambda u) = \lambda f(u) = \lambda^2 u.$$

Per tant, u és un vector propi de f^2 de valor propi λ^2 .

8.7 Sigui E un \mathbb{R} -espai vectorial i f un endomorfisme de E. Demostreu que f és bijectiu si i només si 0 no és valor propi d'f.

Solució: L'escalar 0 és valor propi de f si i només si hi ha algun vector $u \neq 0_E$ tal que $f(u) = 0 \cdot u = 0_E$; és a dir, si i només si $u \in \text{Ker}(f)$. Però sabem que f és injectiu si i només si $\text{Ker}(f) = \{0_E\}$. Per tant, f és injectiu si i només si 0 no és valor propi. Per acabar la demostració notem que, com a conseqüència la fórmula de les dimensions, tot endomorfisme injectiu és exhaustiu.

8.8 Demostreu que si $A \in \mathcal{M}_n(\mathbb{R})$ és una matriu triangular superior, amb els elements de la diagonal principal diferents dos a dos, aleshores A és diagonalitzable.

Solució: El polinomi característic serà de la forma $(-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$, on λ_i és l'*i*-èsim element de la diagonal principal. Al ser tots diferents, llavors hi haurà exactament n vectors propis linealment independents i, per tant, diagonalitza.

- **8.9** Raoneu si existeix algun endormorfisme $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifiqui les condicions que s'especifiquen a continuació. En cas que existeixi, determineu-lo, calculeu el seu polinomi característic i digueu si és o no diagonalitzable.
- 1) Tal que $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ i $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$ són vectors propis de valor propi 1 i $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ és un vector propi de valor propi 0.
- 2) Tal que $\text{Ker}(f) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 5x + y 2z = 0 \right\}$ i $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ és un vector propi de valor propi -1/2.
- 3) Tal que $f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2\\0\\0 \end{pmatrix}$, $f\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ i $f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$.
- 4) Tal que $\operatorname{Ker}(f) = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$ i $F = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y = z \}$ sigui el subespai vectorial dels vectors propis de valor propi 2.

Solució:

1) L'endomorfisme existeix i és diagonalitzable. Els vectors $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$ i $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ són linealment independents i, per tant, formen una base de \mathbb{R}^3 . Sabem que si fixem les imatges dels vectors d'una base, aleshores existeix un únic endomorfisme satisfent les condicions. En aquest cas, sabem que:

$$f\begin{pmatrix}1\\2\\1\end{pmatrix} = 1 \cdot \begin{pmatrix}1\\2\\1\end{pmatrix}, \quad f\begin{pmatrix}2\\0\\1\end{pmatrix} = 1 \cdot \begin{pmatrix}2\\0\\1\end{pmatrix}, \quad f\begin{pmatrix}1\\-1\\0\end{pmatrix} = 0 \cdot \begin{pmatrix}1\\-1\\0\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}.$$

En aquesta base, la matriu de f és:

$$M_B(f) = D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

D'aquí, el polinomi característic és $p(\lambda)=-\lambda(\lambda-1)^2$. Per tant, la matriu de f en la base canónica C és:

$$M_C(f) = PDP^{-1} = \begin{pmatrix} -1 & -1 & 4 \\ 2 & 2 & -4 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{on} \quad P = P_C^B = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

L'endomorfisme f ve donat en base canònica per les fórmules:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M_C(f) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x - y + 4z \\ 2x + 2y - 4z \\ z \end{pmatrix}.$$

2) L'endomorfisme existeix i és diagonalitzable. Els vector dels nucli són vectors propis de valor propi associat 0. Una base del nucli és:

$$E_0 = \operatorname{Ker}(f) = \left\langle \begin{pmatrix} 1 \\ -5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\rangle.$$

Per tant, les condicions que ha de complir l'endomorfisme f són:

$$f\begin{pmatrix} 1\\-5\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad f\begin{pmatrix} 0\\2\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad f\begin{pmatrix} 1\\1\\1 \end{pmatrix} = -\frac{1}{2} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Ara bé, la matriu:

$$P = P_C^B = \begin{pmatrix} 1 & 0 & 1 \\ -5 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

té rang 3 i, per tant, les seves columnes formen una base B de \mathbb{R}^3 (C és la base canònica). Sabem que si fixem les imatges dels vectors de una base, llavors existeix un únic endomorfisme que satisfà les condicions. Per tant, existeix l'endomorfisme f i la seva matriu en base B és diagonal:

$$M_B(f) = D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}.$$

Per tant, el polinomi característic de f és $p(\lambda) = -\lambda^2(\lambda + 1/2)$ i la matriu de f en base canònica és:

$$M_C(f) = PDP^{-1} = \frac{1}{8} \cdot \begin{pmatrix} -5 & -1 & 2 \\ -5 & -1 & 2 \\ -5 & -1 & 2 \end{pmatrix}.$$

I en base canònica les fórmules de f són:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{8} \cdot \begin{pmatrix} -5x - y + 2z \\ -5x - y + 2z \\ -5x - y + 2z \end{pmatrix}.$$

3) L'endomorfisme existeix, però no és diagonalitzable. Els vectors $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ y $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ són linealment independents i, per tant, formen una base $B = \{v_1, v_2, v_3\}$ de \mathbb{R}^3 . Això implica que hi ha un únic endomorfisme f que satisfà les condicions demanades. En la base B la matriu de f és:

$$M_B(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

ja que les condicions del problema es poden escriure com $f(v_1) = 2v_1$, $f(v_2) = v_2$, $f(v_3) = v_2 + v_3$. Per tant, el polinomi característic de f és $p(\lambda) = -(\lambda - 2)(\lambda - 1)^2$. Ara bé l'espai propi E_1 té per ecuacions x = z = 0, y = 1 i, per tant té dimensió 1, que no coincideix amb la multiplicitat algebraica del valor propi 1. Per tant, f no diagonalita. La matriu de f en base canònica c és:

$$M_C(f) = PM_B(f)P^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{on} \quad P = P_C^B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Les fórmules de f en base canònica són:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = M_C(f) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y \\ y + z \\ z \end{pmatrix}.$$

4) L'endomorfisme existeix i és diagonalitzable. Una base del subespai F és $F = \langle \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle$. Per tant, es demana si existeix un endomorfisme tal que:

$$f\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}, \quad f\begin{pmatrix}-1\\1\\0\end{pmatrix} = 2 \cdot \begin{pmatrix}-1\\1\\0\end{pmatrix}, \quad f\begin{pmatrix}1\\0\\1\end{pmatrix} = 2 \cdot \begin{pmatrix}1\\0\\1\end{pmatrix}.$$

Com que els vectors $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, formen una base de \mathbb{R}^2 , aquest endomorfisme f existeix, ja que estem fixant les imatges dels vectors d'una base. A més, està clar que els vectors d'aquesta base B són vectors propis (de valors propis 0, 2 i 2, respectivament). Per tant, l'endomorfisme f diagonalitza. La matriu de f en base B i la matriu del canvi de base de B a C (base canònica) són, respectivament:

$$M_B(f) = D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad P = P_C^B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Per tant, la matriu de f en base canònica és:

$$M_C(f) = PDP^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 2 & 0 \end{pmatrix},$$

i les fórmules de f en base canónica són:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2x + 2y \end{pmatrix}.$$

El polinomi característic és $p(\lambda) = -\lambda(\lambda - 2)^2$.

- **8.10** Considereu l'endomorfisme f de \mathbb{R}^3 definit per $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax-y \\ x+y+z \\ 2z \end{pmatrix}$, on a és un paràmetre real.
- 1) Doneu la dimensió de $\operatorname{Im}(f)$ segons els valors de $a \in \mathbb{R}$.
- 2) És f diagonalitzable per a a = 3?
- 3) Doneu condicions sobre a per tal que f tingui tots els seus valors propis reals.

Solució:

1) La matriu associada a f en base canònica és:

$$M(f) = \begin{pmatrix} a & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix},$$

que té determinant 2(a+1). Per tant, si $a \neq -1$, la matriu té rang 3 i, per tant, $\dim(\operatorname{Im}(f)) = 3$ (és a dir, la imatge és \mathbb{R}^3 i f és exhaustiva). Si a = -1, observem que les dues primeres columnes són iguals i, per exemple, la primera i la tercera columnes són independents i generen la imatge: és a dir, $\dim(\operatorname{Im}(f)) = 2$ si a = -1.

2) El polinomi característic és:

$$p(\lambda) = \begin{vmatrix} a - \lambda & -1 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = -(\lambda - 2)(\lambda^2 - (a+1)\lambda + a + 1).$$

Si a=3, llavors $p(\lambda)=-(\lambda-2)^3$. L'espai de vectors propis E_2 és el subespai de les solucions del sistema:

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

És a dir: $E_2 = \langle \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \rangle$. Com que la multiplicitat algebraica és 3 i dim $(E_2) = 1$, f no diagonalitza.

3) Hem vist a l'apartat anterior que $p(\lambda) = -(\lambda - 2)(\lambda^2 - (a+1)\lambda + a + 1)$. Per tant, f té totes les arrels reals si, i només si, el discriminant del factor de segon grau de $p(\lambda)$ és positiu o 0. Però:

$$\operatorname{discriminant}(\lambda^2 - (a+1)\lambda + a + 1) = (a+1)^2 - 4(a+1) = a^2 - 2a - 3 = (a+1)(a-3)$$

Per tant, f té totes les arrels reals si i només si $a \ge 3$ o $a \le -1$.

8.11 Sigui $A \in \mathcal{M}_n(\mathbb{R})$.

- 1) Quina relació hi ha entre els valors propis d'A i els d' A^k ? I entre els vectors propis?
- 2) Demostreu que si la matriu A es pot escriure com $A=PDP^{-1}$, on P és una matriu invertible, aleshores $A^k=PD^kP^{-1}$.
- 3) Fent ús de l'apartat anterior, calculeu:

i)
$$\begin{pmatrix} 17 & -6 \\ 35 & -12 \end{pmatrix}^{100}$$
, ii) $\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}^{2001}$, iii) $\begin{pmatrix} 2 & 0 & 0 & 9 \\ 5 & 13 & 0 & 5 \\ 7 & 0 & -1 & 7 \\ 9 & 0 & 0 & 2 \end{pmatrix}^{70}$.

Solució:

1) Sigui λ un valor propi de A i $u \neq \vec{0}$ un vector propi associat; és a dir, $A \cdot v = \lambda \cdot v$. Afirmem que v és vector propi de A^k amb valor propi λ^k . Ho demostrem per inducció sobre $k \geq 1$. Per a k = 1, és la hipòtesi. Suposem que $k \geq 1$ i que v és un vector propi de A^k amb valor propi λ^k . Veiem que v és un vector propi de A^{k+1} amb valor propi λ^{k+1} . Tenim:

$$A^{k+1} \cdot v = A^k A \cdot v = A^k \cdot \lambda v = \lambda A^k \cdot v = \lambda \cdot \lambda^k v = \lambda^{k+1} v,$$

la penúltima igualtat per hipòtesi d'inducció.

Per tant, hem demostrat que si λ és un valor propi d'A, llavors λ^k és un valor propi d' A^k i els vectors propis associats són els mateixos.

Observació: Ara bé, A^k pot tenir valors propis que no provinguin de valors propis d'A. Per exemple, la matriu $A=\begin{pmatrix}1&-1&-1\\1&-1&0\\1&0&-1\end{pmatrix}$ té un únic valor propi real $\lambda=-1$ de multiplicitat algebraica 1, però la matriu $A^2=\begin{pmatrix}-1&0&0\\0&0&-1\\0&0&1&0\end{pmatrix}$ té dos valors propis, $\lambda^2=1$ i -1, amb multiplicitats algebraiques 1 i 2 respectivament.

2) En efecte, tenim:

$$A^k = (PDP^{-1})^k = PDP^{-1} \cdot PDP^{-1} \cdots PDP^{-1} = PD^kP^{-1},$$

ja que els factors intermitjos satisfan $P^{-1}P = I$.

- 3) L'estratègia per a calcular A^k és la següent: primer estudiem si la matriu A diagonalitza. Si és el cas, llavors existeix una matriu invertible P tal que $P^{-1}AP = D$, on D és una matriu diagonal. Per tant, $A = PDP^{-1}$ i, per l'apartat anterior, tenim que $A^k = PD^kP^{-1}$. Però si $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$, aleshores $D^k = \text{Diag}(\lambda_1^k, \ldots, \lambda_n^k)$.
 - a) La matriu $\begin{pmatrix} 17 & -6 \\ 35 & -12 \end{pmatrix}$ diagonalitza. Els valors propis són 3 i 2 i la matriu de canvi de base és $\begin{pmatrix} 3 & 2 \\ 5 & 5 \end{pmatrix}$. Per tant:

$$\begin{pmatrix} 17 & -6 \\ 35 & -12 \end{pmatrix}^{100} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 3^{100} & 0 \\ 0 & 2^{100} \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}.$$

b) La matriu $\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$ diagonalitza. Els seus valors propis són 1, 2 i 4 i la matriu de canvi de base és $\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Per tant:

$$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}^{2001} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{2001} & 0 \\ 0 & 0 & 4^{2001} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}.$$

c) La matriu $\begin{pmatrix} \frac{2}{5} & 0 & 0 & 9\\ \frac{5}{7} & 13 & 0 & 5\\ 7 & 0 & -1 & 7\\ 9 & 0 & 0 & 2 \end{pmatrix}$ diagonalitza. Els seus valors propis són -1, -7, 11 i 13 i la matriu de canvi de base és $\begin{pmatrix} 0 & -1 & 6 & 0\\ 1 & 0 & -30 & 1\\ 1 & 0 & 7 & 0\\ 1 & 0 & 7 & 0 \end{pmatrix}$. Per tant:

$$\begin{pmatrix} 2 & 0 & 0 & 9 \\ 5 & 13 & 0 & 5 \\ 7 & 0 & -1 & 7 \\ 9 & 0 & 0 & 2 \end{pmatrix}^{70} = \begin{pmatrix} 0 & -1 & 6 & 0 \\ 0 & 0 & -30 & 1 \\ 1 & 0 & 7 & 0 \\ 0 & 1 & 6 & 0 \end{pmatrix} \begin{pmatrix} (-1)^{70} & 0 & 0 & 0 \\ 0 & (-7)^{70} & 0 & 0 \\ 0 & 0 & 11^{70} & 0 \\ 0 & 0 & 0 & 13^{70} \end{pmatrix} \begin{pmatrix} -7/12 & 0 & 1 & -7/12 \\ -1/2 & 0 & 0 & 1/2 \\ 1/12 & 0 & 0 & 1/12 \\ 5/2 & 1 & 0 & 5/2 \end{pmatrix}.$$

8.12 Un ovni surt d'un planeta en el qual tenen el seu origen els vectors v_1, v_2, v_3 . Aquests vectors són utilitzats com base d'un sistema de coordenades de l'univers (\mathbb{R}^3). Després d'arribar al punt $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ la nau es deixa portar per una estranya força tal que cada dia la transporta de la situació v a la Av, on:

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}.$$

- 1) On estarà al cap de 10 dies?
- 2) Arribarà algun dia a la Terra, que està situada al punt $\begin{pmatrix} -4098\\2049\\4149 \end{pmatrix}$ segons les seves coordenades?

Solució:

1) Al cap de 10 dies la seva posició vindrà donada pel vector $A^{10} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Per tal de calcular la potència A^{10} , diagonalitzem la matriu A i llavors apliquem el mètode del problema anterior. El polinomi característic de la matriu A és:

$$\begin{vmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{vmatrix} = -(\lambda-1)(\lambda-2)^2.$$

Per tant, la matriu A té dos valors propis: $\lambda=1$ amb multiplicitat 1 i $\lambda=2$ amb multiplicitat 2. Calculem els valors propis. L'espai propi E_1 és el conjunt de solucions del sistema:

$$\begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

és a dir: $E_1 = \left\langle \left(\begin{smallmatrix} -2 \\ 1 \end{smallmatrix} \right) \right\rangle$. L'espai propi E_2 és el conjunt de solucions del sistema:

$$\begin{pmatrix} -2 & 0 & -2\\ 1 & 0 & 1\\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

és a dir: $E_2 = \left\langle \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle$. Com que les multiplicitats dels valors propis coincideixen amb les respectives dimensions dels seus espais propis, la matriu A diagonalitza. La matriu de canvi de base i la seva inversa són, respectivament:

$$P = \begin{pmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad P^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}.$$

Tenim doncs:

$$P^{-1}AP = \text{Diag}(2, 2, 1), \qquad A = P \cdot \text{Diag}(2, 2, 1) \cdot P^{-1}.$$

Per tant, pel problema 8.11, tenim doncs que, per a tot enter $n \ge 1$:

$$A^{n} = P \cdot \text{Diag}(2, 2, 1)^{n} \cdot P^{-1} = P \cdot \text{Diag}(2^{n}, 2^{n}, 1) \cdot P^{-1} = \begin{pmatrix} -2^{n} + 2 & 0 & -2^{n+1} + 2 \\ 2^{n} - 1 & 2^{n} & 2^{n} - 1 \\ 2^{n} - 1 & 0 & 2^{n+1} - 1 \end{pmatrix}.$$

En particular:

$$A^{10} = \begin{pmatrix} -1022 & 0 & -2046 \\ 1023 & 1024 & 1023 \\ 1023 & 0 & 2047 \end{pmatrix}.$$

Per últim, la posició de l'OVNI al cap de 10 dies serà:

$$A^{10} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2046 \\ 1023 \\ 2047 \end{pmatrix}.$$

2) No, ja que l'equació:

$$A^{n} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2^{n} + 2 & 0 & -2^{n+1} + 2 \\ 2^{n} - 1 & 2^{n} & 2^{n} - 1 \\ 2^{n} - 1 & 0 & 2^{n+1} - 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2^{n+1} + 2 \\ 2^{n} - 1 \\ 2^{n+1} - 1 \end{pmatrix} = \begin{pmatrix} -4098 \\ 2049 \\ 4149 \end{pmatrix}$$

no té solució en n enter.