6 A battery is connected in series with resistors X and Y, as shown in Fig. 6.1.

Fig. 6.1

The resistance of X is constant. The resistance of Y is $6.0\,\Omega$. The battery has electromotive force (e.m.f.) 24V and zero internal resistance. A variable resistor of resistance R is connected in parallel with X.

The current I from the battery is changed by varying R from 5.0Ω to 20Ω . The variation with R of I is shown in Fig. 6.2.

Fig. 6.2

(a)	Explain why the potential difference (p.d.) between points A and C is 24V for all values of R.
(b)	Fig. 6.2 to state and explain the variation of the p.d. across resistor Y as R is increased. Numerical values are not required.
(c)	$R = 6.0\Omega,$ (i) show that the p.d. between points A and B is 9.6V,
	(ii) calculate the resistance of X,
	resistance = Ω [3] (iii) calculate the power provided by the battery.
(d)	power =
	[1]