Optimization for ML: Convex Sets

Mrinmay Maharaj

Office: MB 113 mrinmay.mj@rkmvu.ac.in

10, 14, 21 Sept. 2020

Definition of Convex set

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the linesegment $\lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, also lies in C.

- ▶ Convex: $\lambda_1 x + \lambda_2 y \in C$, where $\lambda_1, \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 = 1$.
- **Linear:** if restrictions on λ_1 , λ_2 are dropped
- Conic: if restriction $\lambda_1 + \lambda_2 = 1$ is dropped

convex combination of two vectors lie in the line joining the two vectors

convex cone: set that contains all conic combinations of points

- (a) *n*-dimensional Euclidean space, \mathbb{R}^n . Given $x, y \in \mathbb{R}^n$, we must have $\lambda x + (1 \lambda)y \in \mathbb{R}^n$.
- (b) Nonnegative orthant, $\mathbb{R}_+^n := \{x \in \mathbb{R}^n : x_i \ge 0, i = 1, ..., n\}$. Let $x, y \in \mathbb{R}_+^n$ be given. Then for any $\lambda \in [0, 1]$,

$$(\lambda x + (1 - \lambda)y)_i = \lambda x_i + (1 - \lambda)y_i \ge 0.$$

(c) Balls defined by an arbitrary norm, $\{x \in \mathbb{R}^n | ||x|| \le 1\}$ (e.g., the l_2 norm $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$ or l_1 norm $||x||_1 = \sum_{i=1}^n |x_i|$ balls). To show this set is convex, it suffices to apply the Triangular inequality and the positive homogeneity associated with a norm. Suppose that $||x|| \le 1$, $||y|| \le 1$ and $\lambda \in [0,1]$. Then

$$\|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\| \le 1.$$

(d) Affine subspace, $\{x \in \mathbb{R}^n | Ax = b\}$. Suppose $x, y \in \mathbb{R}^n$, Ax = b, and Ay = b. Then

$$A(\lambda x + (1 - \lambda)y) = \lambda Ax + (1 - \lambda)Ay = b.$$

Examples

Take
$$x_1, x_2 \in \mathbb{R}^n$$
Take $x_1 + (1-x)x_2 = x \in \mathbb{R}^n$

$$\mathbb{R}^{n}_{+} = \{ \varkappa, (\varkappa; \varkappa_{0}) \}$$

Take
$$x_1, x_2 \in \mathbb{R}_+$$

$$\lambda_{x_1} + (i-\lambda) x_2 \circ \lambda \wedge \lambda < 1$$

$$= x \in \mathbb{R}_+^n$$

Distance between X, and X2

$$\begin{array}{c} x_{1}, x_{2} \in \mathbb{R}^{n} \\ X_{1} = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} \end{array}$$

Norm is a real valued fr. 8 Sept 2021 f: Ph -> IR, Which is always >0 ٤٠٤. Eudedian norm or la norm. $\|\mathcal{H} - \mathcal{Y}\|_{1} = \sum_{i=1}^{2} |\mathcal{H} - \mathcal{Y}_{i}|$ Called l, norm P $||x-y||_{\infty} = \max_{i} |x_{i}-y_{i}|$ رح) Called La norm max | | x1, | y1 } | 74 | 4 | = 1 Unit square Unit Thombus x+ y2 = 1 Unit Circle

Halfspace

$$\{x \mid a^T x = b\} \ (a \neq 0)$$

$$\{x \mid a^T x \le b\} \ (a \ne 0)$$

(e) Polyhedron, $\{x \in \mathbb{R}^n | Ax \leq b\}$. For any $x, y \in \mathbb{R}^n$ such that $Ax \leq b$ and $Ay \leq b$, we have

$$A(\lambda x + (1 - \lambda)y) = \lambda Ax + (1 - \lambda)Ay \le b$$

for any $\lambda \in [0,1]$.

(polyhedron is intersection of finite number of halfspaces and hyperplanes)

(f) The set of all positive semidefinite matrices S_+^n . S_+^n consists of all matrices $A \in \mathbb{R}^{n \times n}$ such that $A = A^T$ and $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$. Now consider $A, B \in S_+^n$ and $\lambda \in [0, 1]$. Then we must have

$$[\lambda A + (1 - \lambda)B]^T = \lambda A^T + (1 - \lambda)B^T = \lambda A + (1 - \lambda)B.$$

Moreover, for any $x \in \mathbb{R}^n$,

$$x^{T}(\lambda A + (1 - \lambda)B)x = \lambda x^{T}Ax + (1 - \lambda)x^{T}Bx \ge 0.$$

- (g) Intersections of convex sets. Let X_i , i = 1, ..., k, be convex sets. Assume that $x, y \in \bigcap_{i=1}^k X_i$, i.e., $x, y \in X_i$ for all i = 1, ..., k. Then for any $\lambda \in [0, 1]$, we have $\lambda x + (1 \lambda)y \in X_i$ by the convexity of X_i , i = 1, ..., k, whence $\lambda x + (1 \lambda)y \in \bigcap_{i=1}^k X_i$.
- (h) Weighted sums of convex sets. Let $X_1, \ldots, X_k \subseteq \mathbb{R}^n$ be nonempty convex subsets and $\lambda_1, \ldots, \lambda_k$ be reals. Then the set

$$\lambda_1 X_1 + \ldots + \lambda_k X_k$$

$$\equiv \{ x = \lambda_1 x_1 + \ldots + \lambda_k x_k : x_i \in X_i, 1 \le i \le k \}$$

is convex. The proof also follows directly from the definition of convex sets.

Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their **convex hull** is

conv
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}.$$

Convex hull is always convex (<u>by definition</u>). It is the smallest convex set that contains the set C, i.e., If B is any convex set that contains C, then conv $C \subseteq B$.

Images of Convex sets

1. The image of a convex set under affine mapping is convex

If $C \subseteq \mathbb{R}^n$ is convex and $\mathcal{A}(x) = \mathbf{A}x + \mathbf{b}$ is an affine mapping from \mathbb{R}^n into \mathbb{R}^m (**A** is m x n matrix, **b** is m-dimensional vector), then the set $\mathcal{A}(C) = \{ y \mid y = \mathbf{A}x + \mathbf{b}, \ x \in C \}$ is convex in \mathbb{R}^m

2. The inverse image of a convex set under affine mapping is convex

If $C \subseteq \mathbb{R}^n$ is convex and $\mathcal{A}(y) = \mathbf{A}y + \mathbf{b}$ is an affine mapping from \mathbb{R}^m to \mathbb{R}^n (**A** is n x m matrix, **b** is n-dimensional vector), then the set $\mathcal{A}^{-1}(C) = \{ y \in \mathbb{R}^m : \mathcal{A}(y) \in C \}$ is convex in \mathbb{R}^m

Projections onto Convex sets

<u>Definition:</u> Let $X \subseteq \mathbb{R}^n$ be a closed convex set, for any $y \in \mathbb{R}^n$ we define the closest point to y in X as

$$\operatorname{Proj}_X(y) = \operatorname*{argmin}_{x \in X} \|y - x\|_2^2.$$

$$Proj_H(y) = y - \frac{(w^T y + b)w}{\|w\|_2^2}$$

Projections onto Convex sets

<u>Definition:</u> Let $X \subseteq \mathbb{R}^n$ be a closed convex set, for any $y \in \mathbb{R}^n$ ($y \notin X$) we define the closest point to y in X as

$$\operatorname{Proj}_X(y) = \operatorname*{argmin}_{x \in X} \|y - x\|_2^2.$$

Proposition 1: The projection point is unique

Proof. Let a and b be the two closet points in X to the given point y, so that $||y-a||_2 = ||y-b||_2 = d$. Since X is convex, the point $z = (a+b)/2 \in X$. Therefore $||y-z||_2 \ge d$. We now have

$$\underbrace{\|(y-a)+(y-b)\|_{2}^{2}}_{=\|2(y-z)\|_{2}^{2}\geq 4d^{2}} + \underbrace{\|(y-a)-(y-b)\|_{2}^{2}}_{=\|a-b\|^{2}} = \underbrace{2\|y-a\|_{2}^{2}+2\|y-b\|_{2}^{2}}_{4d^{2}},$$

whence $||a-b||_2 = 0$. Thus, the closest to y point in X is unique.

Projections onto Convex sets

<u>Definition:</u> Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a closed convex set, for any $\mathbf{y} \in \mathbb{R}^n$ ($\mathbf{y} \notin \mathcal{X}$) we define the closest point \mathbf{x}^* in \mathcal{X} to \mathbf{y} as

$$X^* = \operatorname{Proj}_X(y) = \operatorname*{argmin}_{x \in X} \|y - x\|_2^2.$$

Proposition 2: The unique projection point x^* satisfies $(y-x^*)^T(x-x^*) \le 0$, for all $x \in \mathcal{X}$

Supporting Hyperplane

Proposition: Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a set, $\mathcal{X} \neq \emptyset$ (null set), and consider any boundary point \mathbf{x}^* . A hyperplane $\mathbf{H} := \mathbf{a}^\mathsf{T} \mathbf{x} = b$ is a supporting hyperplane at the point \mathbf{x}^* if $\mathbf{a}^\mathsf{T}(\mathbf{x} - \mathbf{x}^*) \le 0$, for all $\mathbf{x} \in \mathcal{X}$

The supporting hyperplane $\mathbf{a}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}^*) = b$, also written as, $(\mathbf{y} - \mathbf{x}^*)^{\mathsf{T}}\mathbf{x}$ = $(\mathbf{y} - \mathbf{x}^*)^{\mathsf{T}}\mathbf{x}^*$ is the tangent plane of the set \mathcal{X} at the point \mathbf{x}^*

Separating Hyperplane

H is a proper separation since, $S_1 \cup S_2 \not\sqsubseteq H$

 $\begin{aligned} & \mathbf{H} = \mathbf{a}^\mathsf{T} \mathbf{x} = b \text{ is a separating} \\ & \text{hyperplane of the sets } S_{_{1}} \text{ and } S_{_{2}} \\ & \text{if } \mathbf{a}^\mathsf{T} \mathbf{x} \leq b \text{ for } \mathbf{x} \in S_{_{1}} \text{ and} \\ & \mathbf{a}^\mathsf{T} \mathbf{x} \geq b \text{ for } \mathbf{x} \in S_{_{9}} \text{ or vice versa} \end{aligned}$

H is a not proper separation since, $S_1 \cup S_2 \subseteq H$

Strict and Strong Separation

$$H:=\mathbf{a}^{\mathsf{T}}\mathbf{x}=b$$

H strictly separates since,
$$\mathbf{a}^{\mathsf{T}}\mathbf{x} < b$$
 for $\mathbf{x} \in S_{_{\mathcal{I}}}$ and $\mathbf{a}^{\mathsf{T}}\mathbf{x} > b$ for $\mathbf{x} \in S_{_{\mathcal{I}}}$

H strongly separates since, $\mathbf{a}^\mathsf{T}\mathbf{x} \leq b \text{ for } \mathbf{x} \in S_{_{\mathcal{I}}} \text{ and }$ $\mathbf{a}^\mathsf{T}\mathbf{x} \geq b + \varepsilon \text{ for } \mathbf{x} \in S_{_{\mathcal{I}}} \text{ ,for some } \varepsilon > 0$

Strongly separating Hyperplane

Proposition: Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a closed convex set, $\mathcal{X} \neq \emptyset$ (null set), and consider any point $\mathbf{y} \notin \mathcal{X}$. Then there exists a hyperlane that strongly separates \mathcal{X} and \mathbf{y}

Proof: Let the projection from the given point $\mathbf{y} \in \mathcal{X}$ to the set \mathcal{X} be the point \mathbf{x}^* which is unique and satisfies

$$(\mathbf{y} - \mathbf{x}^*)^{\mathsf{T}} (\mathbf{x} - \mathbf{x}^*) \leq 0, \ \forall \ \mathbf{x} \in \mathcal{X}$$

Let
$$\mathbf{a} = \mathbf{y} - \mathbf{x}^*$$
 and $\mathbf{a}^T \mathbf{x}^* = b$, then we have $\mathbf{a}^T (\mathbf{x} - \mathbf{x}^*) \le 0 \Rightarrow \mathbf{a}^T \mathbf{x} \le b$, $\forall \mathbf{x} \in \mathcal{X}$

To show strong separation we need to show $\mathbf{a}^{\mathsf{T}}\mathbf{y} \geq b + \varepsilon$, for some $\varepsilon > 0$ Note that $\mathbf{a}^{\mathsf{T}}\mathbf{y} - b = \mathbf{a}^{\mathsf{T}}\mathbf{y} - \mathbf{a}^{\mathsf{T}}\mathbf{x}^*$ $= \mathbf{a}^{\mathsf{T}}(\mathbf{y} - \mathbf{x}^*)$ $= (\mathbf{y} - \mathbf{x}^*)^{\mathsf{T}}(\mathbf{y} - \mathbf{x}^*)$ $= ||\mathbf{y} - \mathbf{x}^*||^2 \geq 0 > \varepsilon$, for some ε

What conditions are needed for separation?

H is a separating hyperplane of the sets S_1 and S_2 if $\mathbf{a}^\mathsf{T}\mathbf{x} \leq b$ for $\mathbf{x} \in S_1$ and $\mathbf{a}^\mathsf{T}\mathbf{x} \geq b$ for $\mathbf{x} \in S_2$ or vice versa

$$H:=\mathbf{a}^{\mathsf{T}}\mathbf{x}=b$$

H strictly separates since, $\mathbf{a}^{\mathsf{T}}\mathbf{x} < b$ for $\mathbf{x} \in S_{1}$ and $\mathbf{a}^{\mathsf{T}}\mathbf{x} > b$ for $\mathbf{x} \in S_{2}$

In both cases $\inf(S_1) \cap \inf(S_2) = \emptyset$

What conditions are needed for strong separation?

The boundaries do not intersect,i.e., $\partial S_1 \cap \partial S_2 = \emptyset$, but there is no separating hyperplane

It is sufficient that the closures have no intersection: $\mathcal{C}(S_1) \cap \mathcal{C}(S_2) = \emptyset$