Name : Rishabh PatilSAP : 60009200056/K2

!pip install minisom

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/sim</a> Collecting minisom

Downloading MiniSom-2.3.0.tar.gz (8.8 kB)

Building wheels for collected packages: minisom

Building wheel for minisom (setup.py) ... done

Created wheel for minisom: filename=MiniSom-2.3.0-py3-none-any.whl size=9018 sha256=efb7f8d6
Stored in directory: /root/.cache/pip/wheels/d4/ca/4a/488772b0399fec45ff53132ed14c948dec4b30
Successfully built minisom
Installing collected packages: minisom
Successfully installed minisom-2.3.0
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Minisom library and module is used for performing Self Organizing Maps
from minisom import MiniSom
# Loading Data
data = pd.read_csv('Credit_Card_Applications.csv')
# X
# Shape of the data:
data.shape
# Info of the data:
data.info()
# Defining X variables for the input of SOM
X = data.iloc[:, 1:14].values
y = data.iloc[:, -1].values
# X variables:
pd.DataFrame(X)
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
X = sc.fit_transform(X)
pd.DataFrame(X)
# Set the hyper parameters
som grid rows = 10
som_grid_columns = 10
iterations = 20000
sigma = 1
learning_rate = 0.5
# define SOM:
som = MiniSom(x = som_grid_rows, y = som_grid_columns, input_len=13, sigma=sigma, learning_rate=lear
# Initializing the weights
som.random_weights_init(X)
# Training
som.train_random(X, iterations)
# Weights are:
#wts = som.weights
# Shape of the weight are:
#wts.shape
# Returns the distance map from the weights:
som.distance_map()
from pylab import plot, axis, show, pcolor, colorbar, bone
bone()
```

```
✓ 0s
                                        completed at 11:12 AM
colorbar()
show()
bone()
pcolor(som.distance_map().T)
colorbar() #gives legend
markers = ['o', 's']
                                      # if the observation is fraud then red circular color or else g
colors = ['r', 'g']
for i, x in enumerate(X):
    w = som.winner(x)
    plot(w[0] + 0.5,
         w[1] + 0.5,
         markers[y[i]],
         markeredgecolor = colors[y[i]],
         markerfacecolor = 'None',
         markersize = 10,
         markeredgewidth = 2)
show()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 690 entries, 0 to 689
     Data columns (total 16 columns):
      #
          Column
                      Non-Null Count Dtype
      0
          CustomerID 690 non-null
                                       int64
                                       int64
      1
          Α1
                       690 non-null
      2
          A2
                       690 non-null
                                       float64
      3
          А3
                       690 non-null
                                       float64
      4
                       690 non-null
                                       int64
          Α4
      5
          Α5
                       690 non-null
                                       int64
      6
          А6
                       690 non-null
                                       int64
      7
                       690 non-null
                                       float64
          Α7
      8
          Α8
                       690 non-null
                                       int64
      9
          Α9
                       690 non-null
                                        int64
      10
          A10
                       690 non-null
                                       int64
      11
          A11
                       690 non-null
                                       int64
          A12
                                       int64
      12
                       690 non-null
      13
                       690 non-null
                                       int64
         A13
      14 A14
                       690 non-null
                                       int64
      15 Class
                       690 non-null
                                       int64
     dtypes: float64(3), int64(13)
     memory usage: 86.4 KB
      10
                                                  1.0
                                                  0.9
       8
                                                  0.8
                                                  0.7
       6 -
                                                  0.6
       4
                                                  0.5
                                                  0.4
       2 ·
                                                  0.3
```

×


```
mappings = som.win_map(X)
mappings
mappings.keys()
len(mappings.keys())
mappings[(9,8)]
frauds = np.concatenate((mappings[(4,7)], mappings[(5,8)]), axis = 0)
frauds
# the list of customers who are frauds:
frauds1 = sc.inverse_transform(frauds)
pd.DataFrame(frauds1)
```

	0	1	2	3	4	5	6	7 8	9	10	11	12
0 0.0	19.50	0.165	2.0	11.0	4.0	0.040	0.0	0.0	0.0	1.0	2.0	380.0
10.0	29.75	0.665	2.0	9.0	4.0	0.250	0.0	0.0	0.0	1.0	2.0	300.0
2 0.0	21.75	11.750	2.0	8.0	4.0	0.250	0.0	0.0	0.0	1.0	2.0	180.0
3 0.0	50.25	0.835	2.0	6.0	4.0	0.500	0.0	0.0	0.0	1.0	2.0	240.0
4 0.0	26.17	2.000	2.0	5.0	3.0	0.000	0.0	0.0	0.0	1.0	2.0	276.0
5 0.0	22.92	1.250	2.0	11.0	4.0	0.250	0.0	0.0	0.0	1.0	2.0	120.0
6 0.0	24.83	4.500	2.0	9.0	4.0	1.000	0.0	0.0	0.0	1.0	2.0	360.0
7 0.0	18.08	0.375	3.0	13.0	1.0	10.000	0.0	0.0	0.0	1.0	1.0	300.0
8 0.0	45.33	1.000	2.0	11.0	4.0	0.125	0.0	0.0	0.0	1.0	2.0	263.0
9 0.0	23.50	1.500	2.0	9.0	4.0	0.875	0.0	0.0	0.0	1.0	2.0	160.0
10 0.0	27.67	2.040	2.0	9.0	4.0	0.250	0.0	0.0	0.0	1.0	2.0	180.0
11 0.0	32.25	1.500	2.0	8.0	4.0	0.250	0.0	0.0	0.0	1.0	2.0	372.0
12 0.0	24.50	0.500	2.0	11.0	8.0	1.500	1.0	0.0	0.0	0.0	2.0	280.0
13 0.0	28.08	15.000	1.0	10.0	9.0	0.000	1.0	0.0	0.0	0.0	2.0	0.0
14 0.0	40.83	10.000	2.0	11.0	8.0	1.750	1.0	0.0	0.0	0.0	2.0	29.0
15 0.0	18.83	4.415	1.0	8.0	8.0	3.000	1.0	0.0	0.0	0.0	2.0	240.0
16 0.0	25.17	2.875	2.0	14.0	8.0	0.875	1.0	0.0	0.0	0.0	2.0	360.0
17 0.0	20.50	11.835	2.0	8.0	8.0	6.000	1.0	0.0	0.0	0.0	2.0	340.0
18 0.0	24.58	0.670	2.0	6.0	8.0	1.750	1.0	0.0	0.0	0.0	2.0	400.0