Modeling CPR With a Piston-Cylinder Apparatus

Constants: A_1 , A_2 , L_2 , k , A_{in} , A_{out} , P_0 , ρ

Volume flow into chamber 2 is equal to volume flow out of chamber 1 which is dependent only on change in h. Because of the one-way valve, as long as Δh is positive...

$$\Delta V_{in} = \Delta V_1 = A_1 * \Delta h$$
 Eq1

Now find volume flow out of chamber 2. Using Bernoulli...

$$P_2=P_0+rac{1}{2}
ho v_{out}^2$$

$$P_0=0$$

$$v_{out}=\sqrt{rac{2P_2}{
ho}}$$
 Eq2
$$\Delta V_{out}=v_{out}A_{out}\Delta t$$
 Eq3

Now update volume of chamber 2...

$$V_2 = V_2 + \Delta V_{in} - \Delta V_{out}$$
 Eq4

Use volume to find displacement of spring in chamber 2 (x) ...

Now use x to find spring force using Hooke's Law...

$$F_{spring} = kx$$
 Eq6

Finally, use spring force to find pressure in chamber 2...

$$F_{spring} = F_{pressure}$$

$$P = \frac{F}{A}$$

$$P_2 = \frac{F_{spring}}{A_2}$$
 Eq7

Execute **Eq1-7** for each iteration of the loop to update volume and pressure of chamber 2. See below for Arduino script.