Directional Derivatives MCQ Questions

July 10, 2020

Questions

- Q1. The slope in any direction pointed by the vector $\hat{\mathbf{u}}$ can be calculated using the directional derivative.
 - a. True
 - b. False
- Q2. Find the gradient $\nabla f(2,3)$, if $f(x,y) = x^3y$.
 - a. $\nabla f(2,3) = 24\mathbf{i} + 24\mathbf{j}$
 - b. $\nabla f(2,3) = 24\mathbf{i} + 8\mathbf{j}$
 - c. $\nabla f(2,3) = 8\mathbf{i} + 8\mathbf{j}$
 - $d. \nabla f(2,3) = 8\mathbf{i} + 24\mathbf{j}$
- Q3. Find the unit vector in the direction (1, 2).
 - a. $\hat{\mathbf{u}} = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$
 - b. $\hat{\mathbf{u}} = \langle \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$
 - c. $\hat{\mathbf{u}} = \langle 1, 2 \rangle$
 - d. $\hat{\mathbf{u}} = \langle \frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$
- Q4. Find the directional derivative of $f(x,y) = x^3y$ in the direction (1,2) at the point (2,3).
 - a. $D_u f(2,3) = \frac{40}{\sqrt{5}}$
 - b. $D_u f(2,3) = 40$
 - c. $D_u f(2,3) = \frac{30}{\sqrt{5}}$

d.
$$D_u f(2,3) = \sqrt{5}$$

Q5. Find the directional derivative $D_u f$, when $\theta = 0$.

a.
$$D_u f = |\nabla f|$$

b.
$$D_u f = -|\nabla f|$$

Q6. Find the directional derivative $D_u f$, when $\theta = \pi$.

a.
$$D_u f = |\nabla f|$$

b.
$$D_u f = -|\nabla f|$$

Answer Key

Q2.
$$\nabla f(2,3) = 24\mathbf{i} + 8\mathbf{j}$$

Q3.
$$\hat{\mathbf{u}} = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$$

Q4.
$$D_u f(2,3) = \frac{40}{\sqrt{5}}$$

Q5.
$$D_u f = |\nabla f|$$

Q6.
$$D_u f = -|\nabla f|$$