Model Reduction within Control Systems Design

Pepijn Wortelboer

PHILIPS OPTICAL STORAGE

January 2001

Introduction

- Control problem formulation
- Need for order reduction algorithms
- Introduction of CD-player mechanism
- Standard reduction techniques: modal and balanced
- Closed-loop reduction
- Iterative low-order control design for CD-player
- Concluding remarks

Control problem formulation

- Linear time-invariant
- model based
- standard plant formulation
- tuning by weighting function design

Goal:

simplest K achieving "small" z

$$z=1$$
 (G,M,K) w

Need for order reduction algorithms

- High-speed high-accuracy servo-mechanisms imply high-order models
- Highest frequency modes in model are not reliable
- High-order model is not suited for optimal control
- Controller order exceeds model order

But

order reduction not goal in itself

Part of design

Introduction of CD-player mechanism

- Rotating compact disc
- swing arm for radial tracking
- with optical pick-up unit (vertically suspended lens) for focussing
- mounting plate, disc, arm not infinitely stiff
- 2x2 servo control design problem

Radial control loop

- No weights on input signals
- output weights
 - Ws to penalize low-frequent error e
 - Wt to penalize high-frequent current i

Standard reduction techniques:

- Modal A diagonal
 - + invariant for input & output
 - + direct
 - + no stability constraint
- balanced

+ input-output significant

Gramians P & Q diag

Both suitable for truncation and singular perturbation Not optimal, how about closed-loop?

Closed-loop balancing

Transform

- model state
- controller state

to get closed-loop system

Gramians with

- closed-loop G-HSV
- closed-loop K-HSV

Closed-loop balanced reduction

- Solve P, Q from Lyapunov equations of I(G,M,K)
- extract G-part: $P_G \& Q_G$
- find balancing transformation:

$$T^*Q_GT = T^{-1}P_GT^{-*} = \text{diag}(HSV_G)$$

- apply T to G: $G_{bal} = (T^{-1}A_G T, T^{-1}B_G, C_G T, D_G)$
- truncate G_{bal}

Reduction in twin feedback configuration

Separate weighting in the form of power spectra

Iterative low-order control design

Available:

- High order model G
- Weights in M
- First guess controller K

CD-player example

- Model G120
- Ws order 1, Wt order 2
- First guess order-3 controller:

Sequence of model and controller reduction

Closed-loop evaluation

$$g_{23} = 913.76$$

sensitivity

 10^{3}

Frequency [Hz]

Sensitivity

 10^{4}

K17

No visual difference

Model reduction OK

20

10

-30

-40

-50

 10^{2}

HSV and performance measures

Models

Controllers

Direct controller reduction with manually shaped frequency weights

----- K23 ----- Kreduced

error error

____ weighting

Recommendations from Experience:

- See order reduction as a tool for control design
- Use robust and fast algorithms
- Exploit specific structure of model
- Apply iterative scheme (with frequency tuning)
- Evaluate results in more than one measure (graphics)
- Choose odd or even order
- Do not rely on "a priori" HSV-based error bounds
- Customize and automate in later stage

Further reading:

P.M.R. Wortelboer, M. Steinbuch and O.H. Bosgra

Iterative Model and Controller Reduction using Closed-loop Balancing, with application to a Compact Disc Mechanism

Int. J. Robust Nonlinear Control 9, 123-142 (1999)

