Informe Convolución CUDA

Comparación entre tres modelos de Convolución de una dimensión

Rafael Pinzón Rivera 1088313004

Universidad Tecnológica de Pereira Pereira Octubre 2015

Índice general

1.	Introducción	4
	1.1. Convolución Básica	4
	1.2. Convolución con Constante	4
	1.3. Convolución con Tiles y Constante	4
2.	Pruebas y Gráficas	5
3.	Conclusiones	8

Índice de figuras

2.1.	Comparación Convolución	6
2.2.	Convolución Básica vs Convolusión con Constante	6
2.3.	Convolución Básica vs Convolusión con Tiles y Constante	7
2.4	onvolución con Constante ys Convolusión con Tiles y Constante	7

Índice de cuadros

2.1.	Convolución Básica. tiempo: microsegundos				•		5
2.2.	Convolución Con Constante. tiempo: microsegundos.						5
2.3.	Convolución Con Constante. tiempo: microsegundos.						5

Capítulo 1

Introducción

La convolución es un operador matemático que transforma dos funciones f y g en una tercera función que en cierto sentido representa la magnitud en la que se superponen f y una versión trasladada e invertida de g. La mayoría de los filtros usan una matriz de convolución.

1.1. Convolución Básica

Se usan los hilos para que accedan a cada posición del vector y multipliquen por los elementos de la máscara. La matriz de entrada y la máscara vienen del host, desde la memoria global.

1.2. Convolución con Constante

Se usa una variable tipo _constant_ que es como si fuera una variable compartida, utilizada como memoria caché con mucho más rápido acceso que la memoria global.

1.3. Convolución con Tiles y Constante

Se combina la máscara en memoria constante y el uso de memoria compartida para leer datos del vector de entrada.

Capítulo 2

Pruebas y Gráficas

Size			Basic			Promedio
51	35	36	36	36	38	36,2
101	23	25	24	23	26	24,2
501	25	23	26	23	25	24,4
1001	27	27	27	26	28	36,2 24,2 24,4 27 43,4 63
5001	43	43	44	43	44	43,4
10001	63	63	63	63	63	63

Cuadro 2.1: Convolución Básica. tiempo: microsegundos.

Size		Co	onsta	nt		Promedio	Basic / Constant
51	13	13	13	13	14	13,2	2,742424242
101	13	12	13	11	13	12,4	1,951612903
501	13	13	13	12	13	12,8	1,90625
1001	13	13	13	12	13	12,8	2,109375
5001	16	16	16	16	16	16	2,7125
10001	20	19	20	20	20	19,8	3,181818182

Cuadro 2.2: Convolución Con Constante. tiempo: microsegundos.

Size			Tiled	l		Promedio	Basic / Tiled	Constant / Tiled
51	13	12	12	13	14	12,8	2,828125	1,03125
101	13	18	13	12	13	13,8	1,753623188	0,89855072
501	13	13	14	12	14	13,2	1,848484848	0,96969697
1001	13	13	13	14	13	13,2	2,045454545	0,96969697
5001	15	16	15	15	15	15,2	2,855263158	1,05263158
10001	20	20	20	20	20	20	3,15	0,99

Cuadro 2.3: Convolución Con Constante. tiempo: microsegundos.

Figura 2.1: Comparación Convolución

Figura 2.2: Convolución Básica vs Convolusión con Constante

Figura 2.3: Convolución Básica vs Convolusión con Tiles y Constante

Figura 2.4: onvolución con Constante vs Convolusión con Tiles y Constante

Capítulo 3

Conclusiones

- 1. Se pudo observar en la gráfica 2.1 que la convolución desarrollada con constante y tiles con constante, se ejecuta más rápido que la convolución básica.
- 2. La convolución con constante y tiled obtienen tiempos muy semejantes. Pero la que más optimización realiza es la Tiled.

Bibliografía

 $[1] \ \ Victor\ Podlozhnyuk,\ Image\ Convolution\ with\ CUDA,\ 2007.$