243 Séries entières, propriétés de la somme. Exemples et applications.

I - Séries entières et rayons de convergence

1. Définitions

Définition 1. On appelle **série entière** toute série de fonctions de la forme $\sum a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

[**GOU20**] p. 247

Exemple 2. $\sum \frac{z^n}{n!}$ est une série entière.

Lemme 3 (Abel). Soient $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tels que $(a_n z_0^n)$ soit bornée. Alors :

- (i) $\forall z \in \mathbb{C}$ tel que $|z| < |z_0|$, $\sum a_n z^n$ converge absolument.
- (ii) $\forall r \in]0, |z_0|[, \sum a_n z^n \text{ converge normalement dans } \overline{D}(0, r) = \{z \in \mathbb{C} \mid |z| \le r\}.$

Définition 4. Soit $\sum a_n z^n$ une série entière. Le nombre

$$R = \sup\{r \ge 0 \mid (|a_n|r^n) \text{ est bornée}\}$$

est le **rayon de convergence** de $\sum a_n z^n$. On a :

- $\forall z \in \mathbb{C}$ tel que |z| < R, $\sum a_n z^n$ converge absolument.
- $\forall z \in \mathbb{C}$ tel que |z| > R, $\sum a_n z^n$ diverge.
- $\forall r \in [0, R[, \sum a_n z^n \text{ converge normalement sur } \overline{D}(0, r).$

Le disque D(0,R) est le **disque de convergence** de la série, le cercle C(0,R) est le **cercle d'incertitude**.

2. Comparaison de rayons de convergence

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières dont on note R_a et R_b les rayons de convergence respectifs.

[AMR11] p. 234

Proposition 5. (i) Si $\forall n \in \mathbb{N}$, on a $|a_n| \le |b_n|$, alors $R_a \ge R_b$.

- (ii) Si $a_n = O(b_n)$, alors $R_a \ge R_b$.
- (iii) Si $a_n \sim b_n$, alors $R_a = R_b$.

Exemple 6. La série entière $\sum e^{\cos(n)}z^n$ a un rayon de convergence égal à 1.

3. Calcul du rayon de convergence

Proposition 7 (Règle de d'Alembert). Soit $\sum a_n z^n$ une série entière. Si $\lim_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lambda$ avec $\lambda \in [0, +\infty]$, alors le rayon de convergence de $\sum a_n z^n$ est égal à $\frac{1}{\lambda}$.

p. 233

Exemple 8. La série entière $\sum \frac{z^n}{n!}$ a un rayon de convergence infini.

Proposition 9 (Formule d'Hadamard). Le rayon de convergence d'une série entière $\sum a_n z^n$ est donné par $\frac{1}{\rho}$ où

$$\rho = \limsup_{n \to +\infty} |a_n|^{\frac{1}{n}}$$

Exemple 10. La série entière $\sum 2^n z^{2n}$ a un rayon de convergence égal à $\frac{1}{\sqrt{2}}$.

Corollaire 11 (Règle de Cauchy). Soit $\sum a_n z^n$ une série entière. Si $\lim_{n\to+\infty} |a_n|^{\frac{1}{n}} = \lambda$ avec $\lambda \in [0,+\infty]$, alors le rayon de convergence de $\sum a_n z^n$ est égal à $\frac{1}{\lambda}$.

Exemple 12. La série entière $\sum \frac{n}{2^n} z^n$ a un rayon de convergence égal à 2.

4. Étude sur le cercle d'incertitude

Exemple 13. Le comportement d'une série entière peut varier sur le cercle d'incertitude suivant ses coefficients :

p. 231

- $\sum z^n$ dont le rayon de convergence est égal à 1 diverge en tout point de C(0,1).
- $\sum \frac{1}{n^2} z^n$ dont le rayon de convergence est égal à 1 converge en tout point de C(0,1).
- $\sum \frac{z^n}{n} z^n$ dont le rayon de convergence est égal à 1 converge en 1 mais diverge en tout autre point de C(0,1).

[DEV]

Théorème 14 (Abel angulaire). Soit $\sum a_n z^n$ une série entière de rayon de convergence supérieur ou égal à 1 telle que $\sum a_n$ converge. On note f la somme de cette série sur le disque unité D de $\mathbb C$. On fixe $\theta_0 \in \left[0, \frac{\pi}{2}\right[$ et on pose $\Delta_{\theta_0} = \{z \in D \mid \exists \rho > 0 \text{ et } \exists \theta \in [-\theta_0, \theta_0] \text{ tels que } z = 1 - \rho e^{i\theta}\}.$

[**GOU20**] p. 263

Alors
$$\lim_{\substack{z \to 1 \ z \in \Delta_{\theta_0}}} f(z) = \sum_{n=0}^{+\infty} a_n$$
.

Application 15.

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)} = \frac{\pi}{4}$$

Application 16.

$$\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$$

Contre-exemple 17. La réciproque est fausse :

$$\lim_{\substack{z \to 1 \\ |z| < 1}} (-1)^n z^n = \lim_{\substack{z \to 1 \\ |z| < 1}} \frac{1}{1+z} = \frac{1}{2}$$

Théorème 18 (Taubérien faible). Soit $\sum a_n z^n$ une série entière de rayon de convergence 1. On note f la somme de cette série sur D(0,1). On suppose que

$$\exists S \in \mathbb{C} \text{ tel que } \lim_{\substack{x \to 1 \\ x < 1}} f(x) = S$$

Si $a_n = o(\frac{1}{n})$, alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n = S$.

Remarque 19. Ce dernier résultat est une réciproque partielle du Théorème 14. Il reste vrai en supposant $a_n = O\left(\frac{1}{n}\right)$ (c'est le théorème Taubérien fort).

II - Propriétés

1. Opérations sur les séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières dont on note R_a et R_b les rayons de convergence respectifs.

[AMR11] p. 235

Proposition 20. En multipliant $\sum a_n z^n$ par un scalaire, on ne change pas le rayon de convergence de la série initiale.

Définition 21. On appelle **série entière somme** la série entière $\sum (a_n + b_n)z^n$.

Proposition 22. On note R_{a+b} le rayon de convergence de la série somme. Alors $R_{a+b} \ge \min\{R_a, R_b\}$ avec égalité si $R_a \ne R_b$.

Exemple 23. Les séries entières $\sum z^n$ et $\sum -z^n$ ont leur rayon de convergence égal à 1 et la série somme un rayon de convergence infini.

[**GOU20**] p. 248

Définition 24. On appelle **produit de Cauchy** la série entière $\sum c_n z^n$ où

[AMR11] p. 235

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k}$$

Proposition 25. On note R_c le rayon de convergence du produit de Cauchy $\sum c_n z^n$. Alors,

- (i) $R_c \ge \min\{R_a, R_b\}$.
- (ii) $\forall z \in D(0, \min\{R_a, R_b\}), \sum_{n=0}^{+\infty} c_n z^n = (\sum_{n=0}^{+\infty} a_n z^n)(\sum_{n=0}^{+\infty} b_n z^n).$

2. Propriétés de la somme

Dans toute cette sous-partie, $\sum a_n z^n$ désigne une série entière de rayon de convergence R > 0. On note S sa somme sur D(0,R).

[AMR11] p. 239

Proposition 26. *S* est continue sur D(0,R).

Exemple 27. La série entière $\sum \frac{z^n}{n!}$ est continue sur \mathbb{C} .

Corollaire 28. $\forall p \in \mathbb{N}$, S admet un développement limité à l'ordre p au voisinage de l'origine, dont la partie régulière est donnée par $a_0 + a_1z + \cdots + a_pz^p$.

Proposition 29. Soit $[a, b] \subseteq]-R, R[$, alors

$$\int_{a}^{b} S(x) dx = \sum_{n=0}^{+\infty} a_n \int_{a}^{b} x^n dx$$

Corollaire 30. Les primitives de S sont de la forme $\sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} + \alpha$ avec $\alpha \in \mathbb{C}$.

Proposition 31. S est de classe \mathscr{C}^{∞} sur] – R, R[et

$$\forall k \in \mathbb{N}, \, \forall x \in]-R, R[, S^{(k)}(x) = \sum_{k=0}^{+\infty} \frac{k!}{(n-k)!} a_n x^{n-k}$$

Remarque 32. En particulier, $\forall k \in \mathbb{N}$, $a_k = \frac{S^{(k)}(0)}{k!}$.

Exemple 33.

$$\forall x \in]-1,1[,\sum_{n=0}^{+\infty}(n+1)x^n = \frac{1}{(1-x)^2}$$

3. Développement en série entière

Définition 34. Soient $U \subseteq \mathbb{C}$ un ouvert et $f: U \to \mathbb{C}$. On dit que f est **développable en série** entière en $a \in U$ s'il existe r > 0 et $(a_n) \in \mathbb{C}^{\mathbb{N}}$ tels que $D(a, r) \subseteq U$ et

$$\forall z \in D(a,r), f(z) = \sum_{n=0}^{+\infty} a_n (z-a)^n$$

Exemple 35. Tout polynôme est développable en série entière en tout point de \mathbb{R} .

[AMR11] p. 241

[BMP]

p. 46

Proposition 36. Soient $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ et $g: x \mapsto \sum_{n=0}^{+\infty} b_n x^n$ deux fonctions développables en séries entières en 0. Alors :

(i) $\forall \lambda \in \mathbb{C}$, $\lambda f + g$ est développable en série entière et son développement est

$$\sum_{n=0}^{+\infty} (\lambda a_n + b_n) x^n$$

(ii) *f g* est développable en série entière et son développement est le produit de Cauchy des deux séries entières.

Proposition 37. Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ une fonction développable en série entière en 0. Alors $\exists I \subseteq \mathbb{R}$ avec $0 \in I$ tel que :

(i) f' est développable en série entière en 0 son développement est

$$\sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$$

- (ii) f est donc \mathscr{C}^{∞} .
- (iii) f est continue et si F est une primitive de f sur I, F est développable en série entière en 0 son développement est

$$F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

Exemple 38. Voici quelques développements en série entière usuels :

Contre-exemple 39. La fonction

p. 55

$$x \mapsto \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

est \mathscr{C}^{∞} mais n'est pas développable en série entière en 0.

III - Applications

1. Analyse complexe

Définition 40. Soient $U \subseteq \mathbb{C}$ un ouvert et $f: U \to \mathbb{C}$. On dit que f est **analytique sur** U si fest développable en série entière en tout point de U.

p. 46

Théorème 41. Soient $\sum a_n z^n$ une série entière de rayon de convergence R > 0 et $z_0 \in D(0,R)$. On note $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$. Alors f est holomorphe en z_0 et $f'(z_0) = \sum_{n=0}^{+\infty} n a_n z_0^{n-1}$.

Théorème 42 (Zéros isolés). Soient $U \subseteq \mathbb{C}$ un ouvert connexe et $f: U \to \mathbb{C}$. Si f est une fonction analytique si f n'est pas identiquement nulle, alors l'ensemble des zéros de fn'admet pas de point d'accumulation dans U.

Corollaire 43. Soient $U \subseteq \mathbb{C}$ un ouvert connexe et $f: U \to \mathbb{C}$. Alors f admet un nombre fini de zéros dans tout compact de *U*.

Corollaire 44. Deux séries entières dont les sommes coïncident sur un voisinage de 0 dans R sont égales.

[GOU20] p. 250

Théorème 45. Soit f une fonction holomorphe sur un disque ouvert de rayon ρ centré en un point a. Alors f est analytique sur ce disque. De plus, on a convergence normale sur tout compact du disque.

[BMP] p. 63

2. Dénombrement

[DEV]

Application 46 (Nombres de Bell). Pour tout $n \in \mathbb{N}^*$, on note B_n le nombre de partitions de [1, n]. Par convention on pose $B_0 = 1$. Alors,

[**GOU20**] p. 314

$$\forall k \in \mathbb{N}^*, B_k = \frac{1}{e} \sum_{n=0}^{+\infty} \frac{n^k}{n!}$$

Application 47. Soit $n \in \mathbb{N}^*$. $\sigma \in S_n$ est un **dérangement de** S_n si $\forall k \in [1, n]$, $\sigma(k) \neq k$. Alors,

[**DAN**] p. 336

$$d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$

3. Équations différentielles

Proposition 48. Pour résoudre une équation différentielle linéaire (L) à l'aide des séries entières :

[AMR11] p. 246

- (i) On suppose que $\varphi(x) = \sum_{n=0}^{+\infty} a_n x^n$ est solution de (L) et on l'introduit dans (L).
- (ii) On se ramène à $\sum_{n=0}^{+\infty} b_n x^n = 0$ où les b_n dépendent des a_n .
- (iii) On trouve une relation liant les a_n et on vérifie que la série $\sum_{n=0}^{+\infty} a_n x^n$ a un rayon de convergence non-nul.

Exemple 49. Les solutions de $t^2(1-t)y''-t(1+t)y'+y=0$ sont les fonctions $t\mapsto \lambda \frac{x}{1-x}$ (où $\lambda\in\mathbb{R}$).

p. 273

[**GOU20**] p. 263

Annexes

FIGURE 1 – Illustration du théorème d'Abel angulaire.

Bibliographie

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. *Suites et séries numériques, suites et séries de fonctions*. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-et-series-de-fonctions-9782729870393.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.