JULIA ZIEGLER

CLASSIFICATION OF GALAXY SPECTRA WITH ARTIFICIAL NEURAL NETWORKS

Bachelor Thesis Defense

1

CLASSIFICATION OF GALAXY SPECTRA

- GAMA Spectroscopic survey
- 300,000 spectra
- AAOmega spectrograph on 3.9m Anglo Australian Telescope
- From 2008 to 2014
- Down to magnitude r<19.8 mag

No Problem

Bad Splice

ARTIFICIAL NEURAL NETWORKS (ANN)

- Inspired by biological neural Networks
- Ability to learn
- Ability to handle probabilistic information
- Often used for: Image recognition, classification

NEURON

Activation Functions:

ANDRIES P. ENGELBRECHT. COMPUTATIONAL INTELLIGENCE: AN INTRODUCTION. JOHN WILEY SONS LTD, 2007.

JOSEPH YACIM AND DOUW BOSHOFF. IMPACT OF ARTIFICIAL NEURAL NETWORKS TRAINING ALGO-RITHMS ON ACCURATE PREDICTION OF PROPERTY VALUES. JOURNAL OF REAL ESTATE RESEARCH, 40:375–418, 11 2018.

5

NEURAL NETWORKS

- Supervised Training
- Minimize Loss
- By adjusting weights

EVALUATING ANN

$$ACC = \frac{TP + TN}{TP + FP + TN + FN}$$

$$PRE = \frac{TP}{TP + FP}$$

$$REC = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \cdot PRE \cdot REC}{PRE + REC}$$

UNBALANCED DATA PROBLEM

 ANNs perform best on balanced data

SOLUTION

- Random under sampling
- Training Set:
- Classifier 1: 800/800 (other/bad splice)
- Classifier 2: 400/400 (other/ fringed)
- Test Set:
- 3,213 (364 bad splice (11%), 92 fringed (3%), 2,757 other (86%))

DATA PREPARATION

CLASSIFIER 1

DATA PREPARATION

CLASSIFIER 2

ANN ARCHITECTURE

CLASSIFIER 1

Class 0

Class 1

ANN ARCHITECTURE

RESULTS

CLASSIFIER 1

Test Results:

- ACC: 0.8880

F1_class_0: 0.9353

F1_class_1: 0.5765

Losscurve

Test ROC curve

RESULTS

CLASSIFIER 2

Test Results:

ACC: 0.9788

F1_class_0: 0.9890

F1_class_1: 0.6937

1.0 - 0.8 - 0.6 - 0.6 - Validation Loss Training Accuracy Validation Accuracy

Epoch

Test ROC curve

IMPROVING CLASSIFIER 2

RESULTS

CLASSIFIER 2

Test Results:

ACC: 0.99667

F1_class_0: 0.9813

F1_class_1: 0.6312

F1_class_2: 0.8966

Losscurve, F1 scores

RESULTS

CLASSIFIER 2

- Training Set 1: 400/400/400 (other/fringed/M-star)
- Training Set 2: 400/400 (other/ fringed)
- Training Set 3: 400/400 (other(containing 2% M-stars)/ fringed)

Test Recall and Precision, Class 1

IMPROVING CLASSIFIER 2

RESULTS

- Change Ratio of class 1 in training set
- Total set size: 400 (other and fringed)

RESULTS

- Change Ratio of class 1 in training set
- Total set size: 400 (other and fringed)

Test F1 scores, Class 0 and 1

FINAL RESULTS

- Unbalance in training set could improve precision
- **Highest scores for balanced** training:
- splicing: AUC=0.8880
- fringing: AUC=0.9875

ROC CURVE

True class

	Р	
Y	True Positives	False Positives
N	False Negatives	True Negatives

fp rate =
$$\frac{FP}{N}$$
 tp rate = $\frac{TP}{P}$

$$precision = \frac{TP}{TP + FP} \quad recall = \frac{TP}{P}$$

$$accuracy = \frac{TP + TN}{P + N}$$

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

