Undergraduate Complexity Theory Lecture 21: Randomized Complexity: RP, coRP, and ZPP

Marcythm

July 23, 2022

1 Lecture Notes

Computational resources: randomness

Can you save time/space if you allow randomness?

Why randomness? Even for decision problems, with nothing to do with randomness. Sometimes the fastest algo we know is randomized.

Why not randomness? error: can generally reduce error to $< 2^{-n}$ prob at expense of factor O(n) in time. where to get random bits? in practice PRNG.

Randomize algo = A-OK, randomized poly-time = "feasible algo". some faster randomized algos:

- 1. Primality Testing
- 2. Median Finding
- 3. Verifying Matrix Multiplication
- 4. Minimum Spanning Tree
- 5. 3SAT
- 6. Undirected ST-PATH
- 7. Bipartitle Perfect Matching
- 8. Polynomial Identity Testing

Definition 1.1. A probabilistic (randomized) TM is a normal TM with two transition functions δ_0, δ_1 . In its computation, at each step either δ_0 or δ_1 is used with probability half each, independently. For each input x, we care about $\mathbf{Pr}[M(x)]$ accepts.

Remark 1.2. We assume M(x) always halts for all x.

Definition 1.3. M decides language L with one-sided error ϵ if

$$\forall x \in L : \mathbf{Pr}[M(x) \text{ acc}] \ge 1 - \epsilon$$

 $\forall x \notin L : \mathbf{Pr}[M(x) \text{ acc}] = 0$

i.e. no false positive.

Randomness from algo itself (not input)

Definition 1.4.

 $\mathsf{RTIME}(f(n)) = \{L : \exists \text{ prob } M \text{ with running time } O(f(n)) \text{ which accepts } L \text{ with one-sided error } 1/3\}$

Definition 1.5. Running time of a RTM M is the maximum number of steps M(x) may take over all possible random choices, similar to the definition on NTM.

Lemma 1.6 (Success amplification / error reduction). Suppose M decides L with one-sided error ϵ . Let $k \in \mathbb{N}$, define TM $M^{(k)}$: on input x, run M(x) k times. If ever accepts, overall accept. If all runs reject, at end rejects. Then $M^{(k)}$ decides L with one-sided error $1 - \epsilon^k$.

Definition 1.7. $RP = \bigcup_{k \in \mathbb{N}} RTIME(n^k)$.

Proposition 1.8. $P \subseteq RP \subseteq NP$.

Recall: COMPOSITES \in NP.

Theorem 1.9 ('74). COMPOSITES $\in RP$.

Proof. Let $x \in \mathbb{N}$, write $x = 2^s d$ where d is odd. $b \in \mathbb{N}$ is called a "compositeness witness" for x if:

$$b^d \not\equiv 1 \pmod{x}, b^d, b^{2d}, b^{4d}, \dots, b^{2^{s-1}d} \not\equiv -1 \pmod{x}$$

If x is prime, then no b is a witness for x. If x is composite, $\geq 3/4$ of all b's in [0,x) are witnesses for x. Check whether $0 \leq b < x$ is a witness is in time poly(|x|).

Miller-Rabin'25: Pick a random $0 \le b < x$, check if it's a witness. $x \in \mathsf{COMPS} \implies \mathbf{Pr}[\mathsf{acc}] = 3/4 > 2/3$

Corollary 1.10. PRIMES \in coRP.

Theorem 1.11. $P \in coRP \subseteq coNP$.

Theorem 1.12 (Adlemm-Huang '87). $PRIMES \in RP$. witnesses for primality easily checkable & findable with randomness.

Definition 1.13. $ZPP = RP \cap coRP$. (Zero-sided error)

2 Reading

2.1 sipser 10.2 (Probabilistic Algorithms)

definition of BPP, Probabilistic TM, amplification lemma