Ch 1.3: Algorithms and Convergence

* In this course we will be examining approximation procedures, called algorithms, involving a sequence of calculations.

- * An algorithm is a procedure that describes a finite sequence of steps to be performed in a specified order.
- * The object of the algorithm is to implement a procedure to solve a problem or approximate a solution to the problem.
- * We will use **pseudocode** to describe the algorithms. This psuedocode specifies the form of the input to be supplied and the form of the desired output.

Outputs and Stopping Techniques

- * Not all numerical procedures give satisfactory output for arbitrarily chosen input.
- * As a consequence, a stopping technique independent of the numerical technique is incorporated into each algorithm to avoid infinite loops.
- * The steps of the algorithms are arranged so that they can be translated from the pseudocode into most programming languages.

Chapter 1.3 Algorithms and Convergence

Example 1: An algorithm to compute

$$\sum_{i=1}^{N} x_i = x_1 + x_2 + \dots + x_N$$

INPUT $N, x_1, ..., x_N$.

OUTPUT $SUM = \sum_{i=1}^{N} x_i$.

Step 1 Set SUM = 0. (*Initialize accumulator*)

Step 2 For i = 1, 2, ..., N do

Set SUM = SUM + x_i . (Add next term)

Step 3 OUTPUT(SUM);

STOP.

Stable Algorithms

★ We are interested in choosing methods that will produce dependably accurate results for a wide range of problems.

- * An algorithm is **stable** if small changes in initial data produce correspondingly small changes in the final results.
- * Otherwise the algorithm is said to be unstable.
- * Some algorithms are stable only for certain choices of initial data. These are called conditionally stable.
- * We will characterize the stability properties of algorithms whenever possible.

Definition 1.17: Linear and Exponential Error Growth

** Suppose that $E_0 > 0$ denotes the initial error and E_n represents the magnitude of an error after n subsequent operations.

- * If $E_n \approx CnE_0$, where C is a constant independent of n, then the growth if error is said to be **linear**.
- * If $E_n \approx C^n E_0$ for some C > 1, then the growth is said to be **exponential**.

Table 1.5

n	Computed \hat{p}_n	Correct p_n	Relative Error
0	0.10000×10^{1}	0.10000×10^{1}	
1	0.33333×10^{0}	0.33333×10^{0}	
2	0.11110×10^{0}	0.111111×10^{0}	9×10^{-5}
3	0.37000×10^{-1}	0.37037×10^{-1}	1×10^{-3}
4	0.12230×10^{-1}	0.12346×10^{-1}	9×10^{-3}
5	0.37660×10^{-2}	0.41152×10^{-2}	8×10^{-2}
6	0.32300×10^{-3}	0.13717×10^{-2}	8×10^{-1}
7	-0.26893×10^{-2}	0.45725×10^{-3}	7×10^{0}
8	-0.92872×10^{-2}	0.15242×10^{-3}	6×10^{1}

Table 1.6

n	Computed \hat{p}_n	Correct p_n	Relative Error
0	0.10000×10^{1}	0.10000×10^{1}	
1	0.33333×10^{0}	0.33333×10^{0}	
2	-0.33330×10^{0}	-0.33333×10^{0}	9×10^{-5}
3	-0.10000×10^{1}	-0.10000×10^{1}	0
4	-0.16667×10^{1}	-0.16667×10^{1}	0
5	-0.23334×10^{1}	-0.23333×10^{1}	4×10^{-5}
6	-0.30000×10^{1}	-0.30000×10^{1}	0
7	-0.36667×10^{1}	-0.36667×10^{1}	0
8	-0.43334×10^{1}	-0.43333×10^{1}	2×10^{-5}

Definition 1.18 Suppose that [Bn] is a sequence known to converge to zero, and {\angle nn nn converges to a number \alpha. If a positive number k exists with

 $|x_n-x| \le k|\beta_n|$, for large n, then we say that $\{x_n\}_{n=1}^{\infty}$ converges to x with rate of convergence $o(\beta_n)$. This expression is read "big on of β_n ." It is written

Typically $\{\frac{1}{n^p}\}$ is used for $\{\beta_n\}$, for some p>0. We are usually interested in the largest value of p with $\alpha_n = \alpha + O(n^p)$

Example Suppose that

 $\alpha_n = \frac{n+1}{n^2}$ and $\hat{\alpha}_n = \frac{n+3}{n^3}$

Then $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} \hat{\alpha}_n = 0$.

However, [&n] converges much faster. See Table 1.7.

Let $\beta_n = \frac{1}{n}$ and $\hat{\beta}_n = \frac{1}{n^2}$. Then $|\alpha_n - 0| = \frac{n+1}{n^2} \le \frac{n+n}{n^2} = \frac{2n}{n^2} = 2(\frac{1}{n}),$

 $|\hat{\alpha}_n - 0| = \frac{n+3}{n^3} \le \frac{n+3n}{n^3} = \frac{4n}{n^3} = 4(\frac{1}{n^2}).$

Thus $\alpha_n = 0 + O(\frac{1}{n})$, $\alpha_n = 0 + O(\frac{1}{n^2})$

Therefore $\{x_n\}$ converges to 0 at about the rate $\{\frac{1}{n}\}$ converges to zero, and $\{\hat{x}_n\}$ converges to 0 about as fast as $\{\frac{1}{n^2}\}$.

Ex Find the rate of convergence of the following sequence as $n \to \infty$. $\lim_{n \to \infty} \ln(1+\frac{1}{n}) = 0$.

Solution Let orn= In(1++), x=a we want to find k & Ba such that k>o and lim Ba=o with

| dn - ol & K | Bal

To do so, examine $\alpha_n - \alpha$: $|\alpha_n - \alpha_l| = |\ln(l+\frac{1}{n})| \stackrel{?}{=} \frac{1}{n}$ Choose k=1 and $\beta_n = \frac{1}{n}$. Then $|\ln(l+\frac{1}{n}) - 0| \leq 1 \cdot |\frac{1}{n}|$.

Therefore $\ln(l+\frac{1}{n}) = 0 + O(\frac{1}{n})$ and the rate of convergence is $O(\frac{1}{n})$.

* We now show | (n(1++)) = +. Let $f(x) = x - h(1+x), x \ge 0$. If we can show f(x)>0 on (0,00), then we are done. Taking derivative of f, we have $f(x) = 1 - \frac{1}{1+x} > 0$ on $(0, \infty)$. Thus f is increasing on (0,00). Now f(0) = 0 - In(1+0) = -ln(i)Therefore f(x) >0 on (0,00). It follows that to- In(1+t)>0 for all n, and hence In(1+ +) | < / / / for all n.

Definition 1.19 Suppose that lim G(h) = 0 and lim F(h) = L. h-0

If a positive constant K exists with $|F(h)-L| \leq K|G(h)|$, h sufficiently small, then we write F(h) = L + O(G(h)) (function "big oh" notation).

The function G(h) typically \equiv used for comparison has the form $G(h) = h^p$, where p>0, p as large as possible.

Example Recall $cos(h) = 1 - \frac{h^2}{2} + \frac{1}{24}h^4 cos \xi(h)$ where $\xi(h)$ is between 0 and h. Thus $cos(h) + \frac{1}{2}h^2 = 1 + \frac{1}{24}h^4 cos \xi(h)$.

Since $|\cos(h) + \frac{1}{2}h^2 - 1| = \frac{1}{24} |h^4 \cos \xi(h)| \le \frac{1}{24}h^4$, we have $\cos(h) + \frac{1}{2}h^2 = 1 + o(h^4)$. Hence $\cosh(h) + \frac{1}{2}h^2$ converges to 1 as fast as $h^4 \to 0$.

Ex Find the rate of convergence for the following function as h - 0. lim 1-eh =-1 Solution Let F(h) = 1-eh and L=-1. We want to find kro and 6(h) s.t. |F(h)-L| & k (G(h)), where [im [6(h)] = 0. To do so, examine F(h)-L: |F(h)-L| = | 1-eh + 1 | = | 1-eh + h | = 1+4-64

To obtain a usable simplification of the above result, consider Taylor expansions of et, expanded about hea

f(h) = e" => f(o) = 1 => f(h) = 1+ Ro(h) f(h)=e => F(o)=1 => F(h)=1+h+R,(h) P"(h)=e">f"(o)=1 => f(h)= (+h+ 1+h+h) f"(h)=eh=> f"(o)=1 = f(h) = 1+ h+ な+な+にの) Which expression should we use? Re call |F(h)-L| = | 1+h-eh | Because of the obvious cancellation, Choose Taylor representation using R.(h): $\left| F(h) - L \right| = \left| \frac{-R_1(h)}{h} \right| = \left| \frac{F''(f(h))}{2! \cdot h} h^2 \right|$ = | es(h) h , s(h) between

 $\leq \left| \frac{e'}{2} h \right|$, assuming |h|<<1 <> $\leq \frac{3}{2} \cdot |h|$

n

From the previous slide, we have $|F(h)-L|=|\frac{1-e^h}{h}+1|\leq \frac{3}{2}\cdot |h|$ Choose k=3/2 and 6(h)=h. Then

| F(h) - L| = K | G(h) |

or | 1-eh +1 | = = 1h1

and hence

It follows that the rate of convergence for F(h) = 1-en as h > 0 is O(h).