Tentamen i kombinatorik, 11 Mars 2024 · 1MA020

Vilhelm Agdur¹

11 Mars 2024

¹ Jag kommer att besöka tentasalen för frågor. Om ni behöver nå mig för frågor om tentan utanför den tiden kan ni nå mig på 072-373 32 90.

Fråga 1

Erdős-Székeres sats säger följande:

Teorem 1. För alla $r,s \ge 1$ gäller det att varje följd av (r-1)(s-1)+1 distinkta reella tal antingen innehåller en ökande delföljd av längd r eller en minskande delföljd av längd s.

Bevisa detta påstående.²

² Ledtråd: Lådprincipen.

Fråga 2

Del a): Ge ett kombinatoriskt bevis för att

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}.$$

Del b): Ge ett kombinatoriskt bevis för att

$$\binom{n}{2}\binom{n-2}{3}\binom{n-5}{k-5} = \binom{n}{k}\binom{k}{2}\binom{k-2}{3}.$$

Fråga 3

Del a): Givet en följd a_0, a_1, \ldots , definiera dess exponentiella genererande funktion.

Del b): Vad är Fibonaccitalen? Använd rekursionen för dem för att härleda en differentialekvation som löses av den exponentiella genererande funktionen för Fibonaccitalen.

Fråga 4

Del a): Definiera vad som menas med en händelse, med en slumpvariabel, och med väntevärdet för en slumpvariabel. Bevisa att väntevärdet är linjärt, alltså att

$$\mathbb{E}\left[aX + bY\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right]$$

för alla slumpvariabler X och Y och alla $a, b \in \mathbb{R}$.

Del b): Unionsbegränsningen är följande olikhet för en samling händelser A_1, A_2, \ldots, A_n :

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right).$$

Kräver denna olikhet att händelserna är oberoende? Ge ett bevis för denna olikhet.3

Fråga 5

Vi sammanfattade merparten av våra räkneproblem i kursen i en stor tabell, som vi kallade den "tolvfaldiga vägen". Denna tabell finns med i formelsamlingen.

Del a):

Välj sju av cellerna i denna tabell, och motivera varför just det problemet hör hemma i den cellen.4

Del b):

Välj tre av cellerna⁵ och bevisa att formeln vi ger stämmer. Du får lov att, i dina bevis, antaga att alla andra formler i tabellen redan är kända.

Fråga 6

En k-cykel i en graf G = (V, E) är en följd v_1, v_2, \dots, v_k av k stycken noder i grafen, sådan att v_{i-1} och v_i är grannar för varje i, och v_1 och v_k är grannar.

Del a): Vad är en Erdős-Rényi-graf med parameterar *n* och *p*? Ge en definition. Räkna sedan ut väntevärdet av antalet k-cykler i en

Del b): Bevisa att sannolikheten att det finns en k-cykel i en $G(n, \frac{c}{n})$ graf går mot noll med n för varje fixt c > 0.

Fråga 7

Betrakta ekvationen

$$x_1 + x_2 + x_3 + x_4 = n$$

där vi kräver att alla variablerna är ickenegativa heltal, och att

- x_1 är ett udda tal,
- x_2 är ett jämnt tal,
- $2 \le x_3 \le 9$,

³ Vi har sett tre olika bevis i kursen, ett i föreläsningen och två till i övningarna till föreläsningarna. Vilket korrekt bevis som helst är så klart ett korrekt svar på denna fråga.

- ⁴ Du behöver alltså inte, i denna del, förklara eller bevisa formeln – bara ge en tolkning av problemet som förklarar varför det passar in i den cellen.
- ⁵ Förutom de på sista raden, och mellersta i näst sista raden – vi har ju ingen formel för heltalspartitioner, och de två "dumma cellerna" är inte intressanta.

• och x_4 kan vara vilket tal som helst, men det kan vara målat grönt, lila, vitt, eller rött.

Beteckna antalet distinkta lösningar⁶ som uppfyller våra krav med ℓ_n .

Beräkna genererande funktionen för följden $\{\ell_n\}_{n=0}^{\infty}$.

⁶ Lösningar med olika färg på x₄ betraktar vi alltså som olika.

Fråga 8

Antag att $v_1, v_2, \ldots, v_n \in \{-1, 1\}^n$, det vill säga varje v_i är en följd av n stycken ± 1 or. Vi kan betrakta dessa som enhetsvektorer i \mathbb{R}^n , så att det blir väldefinierat att multiplicera dessa med reella tal och addera dem.

Bevisa⁷ att det finns en följd $\eta_1, \eta_2, \dots, \eta_n$, med $\eta_i = \pm 1$ för varje i, sådan att

$$\left\|\sum_{i=1}^n \eta_i v_i\right\| \leq \sqrt{n},$$

där vi menar den vanliga euklidiska normen av en vektor, det vill säga

$$\left\| \sum_{i=1}^n \eta_i v_i \right\| = \sqrt{\sum_{j=1}^n \left(\sum_{i=1}^n \eta_i v_{i,j} \right)^2}.$$

⁷ Ledtråd: Detta är en övning på probabilistiska metoden.

Formelsamling

Den tolvfaldiga vägen

	Generellt f	Injektivt f	Surjektivt <i>f</i>
Bägge särskiljbara	Ord ur X av längd n x^n	Permutation ur X av längd n $\frac{x!}{(x-n)!}$	Surjektion från N till X $x! \binom{n}{x}$
Osärskiljbara objekt	Multi-delmängd av X av storlek n $\binom{n+x-1}{n}$	Delmängd av X av storlek n $\binom{x}{n}$	Kompositioner av n av längd x $\binom{n-1}{n-x}$
Osärskiljbara lådor	Mängdpartition av N i $\leq x$ delar $\sum_{k=1}^{x} {n \brace k}$	Mängdpartition av N $i \le x$ delar av storlek 1 1 om $n \le x$, 0 annars	Mängdpartition av N i x delar $\begin{Bmatrix} n \\ x \end{Bmatrix}$
Bägge osärskiljbara	Heltalspartition av $n \in x$ delar $p_x(n+x)$	Sätt att skriva n som summan av $\leq x$ ettor 1 om $n \leq x$, 0 annars	Heltalspartitioner av n i x delar $p_x(n)$

Räkneregler för genererande funktioner

Lemma 2 (Räkneregler för genererande funktioner). Antag att vi har en följd $\{a_k\}_{k=0}^{\infty}$, med genererande funktion F_a . Då gäller det att

1. För varje $j \geq 1$ är

$$\sum_{k=j}^{\infty} a_k x^k = \left(\sum_{k=0}^{\infty} a_k x^k\right) - \left(\sum_{k=0}^{k=j-1} a_k x^k\right) = F_a(x) - \sum_{k=0}^{k=j-1} a_k x^k$$

2. För alla $m \geq 0$, $l \geq -m$ gäller det att

$$\sum_{k=m}^{\infty} a_k x^{k+l} = x^l \left(\sum_{k=m}^{\infty} a_k x^k \right) = x^l \left(F_a(x) - \sum_{k=0}^{m-1} a_k x^k \right)$$

3. Det gäller att⁸

$$\sum_{k=0}^{\infty} k a_k x^k = x F_a'(x).$$

⁸ Denna räkneregel kan förstås generealiseras till att högre potenser av kmotsvarar högre derivator – och om vi istället delar med någon potens av k får vi primitiva funktioner till den genererande funktionen.

Vanliga genererande funktioner

Följd		Genererande funktion		
(1,0,0,)		1		
(1,1,1,)		$\frac{1}{1-x}$		
$a_k = 1 \text{ om } k \le n$	ı, 0 annars	$\frac{1-x^{n+1}}{1-x}$		
Fixt n , $a_k = \binom{n}{k}$		$(1+x)^n$		
Fixt n , $a_k = \binom{n+k-1}{k}$		$\frac{1}{(1-x)^n}$		
Fibonacci	talen	$\frac{1}{1-r-r^2}$		
$f_0 = f_1 = 1$, $f_{k+1} = f_k + f_{k-1}$ för $k \ge 1$				
Indikatorfunktion för jämna talen		$\frac{1}{1-x^2}$		
$(1,0,1,0,1,0,\ldots)$				
Catalantalen		$\frac{1-\sqrt{1-4x}}{2x}$		
Följd	Exponentiell genererande funktion			
(1,0,0,)		1		
(1,1,1,)		e^x		
(0!, 1!, 2!, 3!,)		$\frac{1}{1-x}$		
Fixt n , $a_k = \frac{n!}{(n-k)!}$	(2	$(1+x)^n$		

Sannolikhetsteori

Lemma 3. Det gäller för alla händelser A och B att

- per definition är $\mathbb{P}(A) = \sum_{\omega \in A} \mu(\omega)$,
- $s\mathring{a} \mathbb{P}(A^c) = 1 \mathbb{P}(A)$,
- och om A och B har tomt snitt, $A \cap B = \emptyset$, så är $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \emptyset$ $\mathbb{P}(B)$,

• och om de inte nödvändigtvis har tomt snitt har vi att

$$\mathbb{P}\left(A \cup B\right) = \mathbb{P}\left(A\right) + \mathbb{P}\left(B\right) - \mathbb{P}\left(A \cap B\right).$$

- $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \mathbb{P}(B)$,
- och per definition är A och B oberoende precis när $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Lemma 4. Om (Ω, μ) är något sannolikhetsrum, $A \subseteq \Omega$ någon händelse, och $X, Y : \Omega \to \mathbb{R}$ samt $Z : \Omega \to V$ är slumpvariabler som tar värden i \mathbb{R} och i någon godtycklig mängd V, så gäller att:

1.

$$\mathbb{E}\left[X\right] = \sum_{x \in X(\Omega)} x \mathbb{P}\left(X = x\right) = \sum_{\omega \in \Omega} X(\omega) \mu(\omega).$$

2. För alla $a,b \in \mathbb{R}$ så är

$$\mathbb{E}\left[aX + bY\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right].$$

Väntevärdet är alltså en linjär funktional.

3.

$$\mathbb{P}\left(A\right) = \mathbb{E}\left[\mathbb{1}_{A}\right].$$

- 4. Om $X(\omega) \leq C$ för varje ω , eller ekvivalent om $\mathbb{P}(X \leq C) = 1$, så är $\mathbb{E}[X] \leq C$.
- 5. Om $\mathbb{E}[X] = C$ så finns det åtminstone ett ω sådant att $X(\omega) \geq C$.
- 6. Om Z är likformigt fördelad på V så gäller det för varje delmängd $W\subseteq V$ att

$$\mathbb{P}\left(Z\in W\right)=\frac{|W|}{|V|}.$$