Predicting Dengue Outbreaks in Singapore

Using Time Series Analysis

Presentation Slides

Scope of Presentation

- Introduction
- Project Objectives
- Methodology
- Phase I: Creating a model using only Past Observations
- Exploring Possible Variables
- Data Cleaning
- Phase II: Enhancing the model with Exogenous Variables
- Results & Limitations
- Conclusion

Dengue is an infectious disease spread by the Aedes aegypti mosquitoe

Mode of Transmission

- Healthy person gets infected when bitten via an infected mosquitoe
- Healthy mosquitoe can get infected by biting an infected person

Global Impact of Dengue

- 390 million people infected per year
- 500,000 develop into **Dengue Haemorrhagic Fever**
- 25,000 deaths in 2019
- Targets both urban and rural areas. Largely occurring in tropical and sub-tropical

areas

 Areas with high rainfall, temperatures & humidity

Local Impact of Dengue

- Singapore's location is very suitable for the Aedes aegypti mosquitoe to breed
- Before January 2020, 2019 had 14, 658 cases. 5.5 times increase from previous year (DENV-2 Strain)
- DENV-3 Strain was detected in January 2020
- This suggests that dengue cases could increase even more, putting more pressure on valuable healthcare resources

- Dengue Dataset: 412 observations
- Indexed by Weeks

- Start: January 2012. End: December 2019
- Obtained from NEA via Data.gov.sg
- Dengue cases will be the response variable

Project Objectives

- Create a parsimonious Time Series Model that can be used to accurately predict future Dengue Cases
- Future: 2 months look-ahead predictions
- Identify potential exogenous variables that can be used to improve the model
- Identify model limitations and suggest potential ways for improvement

Methodology

Phase I: Creating a model using only Past Observations

Use Box-Jenkins Methodology to select appropriate model orders

Phase II: Enhancing the model with **Exogenous Variables**

- Individually insert variables into the best model
- Select best model based on performance on test set

Train-test split

- Performance indicator is the Mean Squared Error on the Test Set
- Test Set: Last 2 months of the Dengue Dataset
- Avoid traditional randomized train-test split due to temporal structure

Benchmark model: Persistence Model

Methodology

Train-Test Split

Methodology

Persistence Model

- Used as a Benchmark
- "Today's Predictions" = "Tomorrow's Predictions"

Test MSE: 1169.125

ARIMA Terminology

AR: Auto-Regressive terms, lags of the time-series

MA: Moving Average, lags of the error terms

I: Integrated, corresponds to differencing done to make a series more stationary

p = number of AR terms

q = number of moving average terms

d = number of differences

Representation: ARIMA(p, d, q) model

Sample: ARIMA(1, 0, 1) is $y_t = \beta_1 y_{\{t-1\}} + \epsilon_{\{t-1\}} + \epsilon_t$

SARIMA Terminology

S: Seasonal

AR: Auto-Regressive terms, lags of the time-series

MA: Moving Average, lags of the error terms

I: Integrated, corresponds to differencing done to make a series more stationary

ARIMA Component

p = number of AR terms

q = number of moving average terms

d = number of differences

Seasonal Component

P = number of seasonal AR terms

Q = number of seasonal moving average

terms

D = number of seasonal differences

m = periodicity of the season

Representation: SARIMA(p, d, q) (P, D, Q, m) model

Sample: SARIMA(0,2,1) (0,0,1,12) is $Y_t - 2Y_{\{t-1\}} + Y_{\{t-2\}} = e_t + \Theta_1 e_{\{t-12\}} + \theta_1 e_{\{t-1\}} + \theta_1 \Theta_1 e_{\{t-13\}}$

Box Jenkins Methodology

- Ensure data is stationary by Augmented Dicky-Fuller Test
 - a. If not stationary, difference the time series
- Plot ACF & PACF to determine possible model order
- 2. Assess residuals of model
- Assess MSE on test set

Determining Stationarity

P-value for ADF Test: 0.006948

H₀ – Non-stationary time series

H₁ − Stationary

Using ACF and PACF to choose model order

	AR(p)	MA(q)	ARMA(p,q)		
ACF	Tails off	Cuts off after lag q	Tails off		
PACF	Cuts off after lag p	Tails off	Tails off		

Fitting AR(1) Model

Model equation: $y_t = \beta_1 y_{\{t-1\}} + \epsilon_t$

Test MSE: 5017

First-order Differencing

$$y = y_t - y_{\{t-1\}}$$

Determining Stationarity

P-value for ADF Test: 1.41 x 10⁻¹⁵

First-order Differencing

$$y = y_t - y_{\{t-1\}}$$

Determining Stationarity

P-value for ADF Test: 1.41 x 10⁻¹⁵

Using PMDARIMA library to search for the best model

Order	AIC	Order	AIC
(2,1,2)	4207.247	(1,1,2)	4211.472
(0,1,0)	4215.667	(2,1,1)	4212.224
(1,1,0)	4215.737	(1,1,1)	4213.104
(0,1,1)	4216.086		

Fitting ARIMA(2,1,2) Model

Test MSE: 4263.6

Second-order Differencing

$$y = y_{t-1} - y_{\{t-2\}}$$

Determining Stationarity

P-value for ADF Test: 9.7274 x 10⁻¹³

Second-order Differencing

$$y = y_{t-1} - y_{\{t-2\}}$$

Determining Stationarity

P-value for ADF Test: 9.7274 x 10⁻¹³

Very negative ACF/PACF suggest over-differencing

Considering General Seasonality

- Intuition suggest a yearly cycle
- Search model space using PMDARIMA with d = 1, m = 52 weeks (1 year)
- PMDARIMA suggests using (2,1,2) (1,0,0,52) SARIMA model

Fitting SARIMA(2,1,2) (1,0,0,52) Model

Test MSE: 4497.3

Theoretical Quantiles

Histogram plus estimated density

Considering First Order Differenced Seasonality

- An approximate cycle occurs at m = 25
- Search model space using PMDARIMA with d = 1, m = 25 weeks
- PMDARIMA suggests using (2,1,2) (0,0,1,25) SARIMA model

Fitting SARIMA(2,1,2) (0,0,1,25) Model

Standardized residual

Test MSE: 2829.6

Best MSE thus far

Exploring Possible Variables

- 3 Possible Sources of Data
- 1. data.gov.sg Data Portal
- 2. Google search terms related to dengue symptoms
- **3. Scraping** 41 weather stations through the Meteorological Service Singapore's website

Exploring Possible Variables

Summary of Possible Variables

data.gov.sg Portal	Google Search Term	Islandwide Weather Stations
SG Population	Fever	Mean / Max / Minimum Temperature
Changi Total / Max Rainfall	Rash	Max Wind Speed
Changi Daily Minimum / Max Temp	Headache	Avg Highest Rainfall in 30 min
Changi Humidity	Joint Pain	Avg Highest Rainfall in 60 min
Changi No. of Rainy Days	Nausea	Avg Highest Rainfall in 120 min
Changi Mean Temperature	Eye Pain	
	Dengue	

Data Cleaning

Re-aligning time index

- Datasets were interpolated to ensure index is aligned with Dengue's index
- Shape of variables were preserved

Cleaning missing data

- Scrapped weather data had numerous missing values
- Missing values were ignored
- All 41 stations' data were averaged out

Scaling datasets

Ensures significance with the Dengue dataset

Re-Alligning Time Index

Population Data originally was indexed by years

Cleaning Missing Data

- Scrapped data was daily
- Entries were grouped by weeks
- Entries were averaged out for each week
- Missing entries were not considered during calculations

	Station	Daily Rainfall Total (mm)	Highest 30 Min Rainfall (mm)	Highest 60 Min Rainfall (mm)	Highest 120 Min Rainfall (mm)	Mean Temperature	Maximum Temperature	Minimum Temperature	Mean Wind Speed (km/h)	Max Wind Speed (km/h)	Date Time
0	Kampong Bahru	3.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 01
1	Kampong Bahru	6.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 02
2	Kampong Bahru	1.9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 03
3	Kampong Bahru	0.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 04
4	Kampong Bahru	30.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 05
5	Kampong Bahru	8.1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 06
6	Kampong Bahru	0.3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 07
7	Kampong Bahru	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 08
8	Kampong Bahru	2.6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 09
9	Kampong Bahru	5.6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 10
10	Kampong Bahru	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 11
11	Kampong Bahru	43.6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 12
12	Kampong Bahru	0.3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 13
13	Kampong Bahru	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 14
14	Kampong Bahru	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2000-01- 15

Scaling Datasets

Datasets were scaled to ensure they were significant to the response variable, Dengue Cases

SARIMAX models of order (2,1,2) (0,0,1,25) were fit with each Exogenous Variable (27 in all)

Each model was evaluated on the test set

Using the top 5 models, a full model was created

Exog Var	Test MSE
fever search	779.079
temp_mean_daily_max changi	1756.088
Max temp changi	1924.362
maximum_rainfall_in_a_day changi	2006.329
Rash search	2095.711

SARIMA Test MSE: 2829

Backward Elimination was carried out on the full model with 5 exogenous variables

	coef	std err	Z	P> z	[0.025	0.975]
google_search_for_fever	0.7037	0.184	3.829	0.000	0.344	1.064
google_search_for_rash	-0.0954	0.205	-0.464	0.643	-0.498	0.307
maximum_rainfall_in_a_day	-0.1797	0.101	-1.785	0.074	-0.377	0.018
max_temperature	-1.4254	2.361	-0.604	0.546	-6.054	3.203
temp_mean_daily_max	-0.9199	2.347	-0.392	0.695	-5.519	3.680
ar.L1	0.1066	0.105	1.019	0.308	-0.098	0.312
ar.L2	-0.7772	0.096	-8.055	0.000	-0.966	-0.588
ma.L1	-0.1095	0.088	-1.249	0.212	-0.281	0.062
ma.L2	0.8678	0.080	10.862	0.000	0.711	1.024
ma.S.L25	0.0644	0.051	1.265	0.206	-0.035	0.164
sigma2	1830.5764	83.687	21.874	0.000	1666.553	1994.600

After Backward Elimination, 2 variables are present

	coef	std err	z	P> z	[0.025	0.975]
google_search_for_fever	0.7307	0.163	4.489	0.000	0.412	1.050
maximum_rainfall_in_a_day	-0.1499	0.095	-1.585	0.113	-0.335	0.035
ar.L1	0.1150	0.109	1.059	0.290	-0.098	0.328
ar.L2	-0.7621	0.098	-7.787	0.000	-0.954	-0.570
ma.L1	-0.1157	0.092	-1.256	0.209	-0.296	0.065
ma.L2	0.8569	0.082	10.427	0.000	0.696	1.018
ma.S.L25	0.0588	0.051	1.164	0.244	-0.040	0.158
sigma2	1843.8042	82.816	22.264	0.000	1681.487	2006.121

Test MSE: 833.6

Persistence Test MSE: 1169.125

Results & Limitations

Best model for prediction is a SARIMAX of order (2,1,2) (0,0,1,25), $X = \{ Fever Search Term, Max Rainfall Changi \}$

Results & Limitations

Best model for prediction is a SARIMAX of order (2,1,2) (0,0,1,25), X = { Fever Search Term, Max Rainfall Changi }

Limitations

- 1. Unrealistic to assume that during prediction, we will have data regarding exogenous variables
- 2. Better to use lagged exogenous variables instead during training
- 3. Other transformations, such as log, were not explored
- 4. A longer time step would allow the model to predict further into the future
- 5. Instead of combining the 41 stations data into a single entity, each station could had been treated separately

Conclusions

Phase 1: Creating a model using only Past Observations

Phase II: Enhancing the model with Exogenous Variables

Over time, the relationship of other variables should be explored as the relationship is dependant with time

This model should be used along with other time-series prediction models, such as SVMs or ANNs

Thank you!

Q&A

References

- https://www.brainkart.com/media/extra3/86KMsSv.jpg
- https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3753061_clep-5-299Fig1.jpg

<Template Slide>

<Placeholder Points>