

CSE 151A Intro to Machine Learning

Lecture 17 – Part 01
Dimensionality
Reduction

Announcements

- Midterm 02 is Friday! Covers Week 05 Week 08.
 - Canvas Quiz. Tip: don't use Safari.
- There are no more mandatory homeworks.
 - ► I will be posting more plus problems (maybe another competition...).
 - I'll post some "essential" conceptual questions about Weeks 09 and 10, but they will not be turned in. Preparation for final exam.

Dimensionality Reduction

- Too many features hurts performance.
- Einstein: "Everything should be made as simple as possible, but no simpler."

Dimensionality Reduction

- Given: a data set in high dimensions.
- ► **Reduce** dimensionality while preserving information.

- Why?
 - Faster, less memory.
 - High-dimensional data usually has redundancy.
 - Remove noisy/irrelevant features.

Example

Example

Assumption

- Variance is interesting.
 - More variable features are more useful.

D-R Approach #1

- Start with data in d dimensions.
- Compute variance of each feature.
- Keep only the k features with most variance.

This is OK...

...but we can do better.

Problem: features are often redundant.

Example: height and weight

D-R Approach #2

- Find features which vary **together**.
 - Example: height and weight.
- Create **new** features which are combinations of old features.

Keep best k combinations.

Example

Suppose we want just one feature.

Projections

The **projection** of $\vec{x} \in \mathbb{R}^d$ along the direction $\vec{u} \in \mathbb{R}^d$ (where \vec{u} is a unit vector) is $(\vec{x} \cdot \vec{u})\vec{u}$.

Projections

The Problem

- ▶ **Given**: data $\vec{x}^{(1)}, \dots, \vec{x}^{(n)} \in \mathbb{R}^d$
- **Map**: each data point $\vec{x}^{(i)}$ to a single feature, z_i .
 - ► Later: $\vec{z}^{(i)} \in \mathbb{R}^{d'}$, $d' \leq d$.
- ldea: map $\vec{x}^{(i)}$ by projecting it onto direction \vec{u} of maximum variance.
 - $z_i = \vec{x}^{(i)} \cdot \vec{u} = \sum_{i=1}^d u_i x_i^{(i)}$

Variance in a Direction

- ► Let \vec{u} be a unit vector.
- $\vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- ► The variance of the new features is:

$$Var(z_{1},...,z_{n}) = \frac{1}{n} \sum_{i=1}^{n} z_{i}^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^{2}$$

Claim

- Suppose the data is centered.
 - The average of each feature is zero.
- Let C be the data's covariance matrix.
- ▶ Then the variance in the direction of \vec{u} is:

$$\mathrm{Var}(z_1,\dots,z_n)=\vec{u}^\mathsf{T}C\vec{u}$$

The Problem (More Formally)

- **Given**: covariance matrix *C* of centered data $\vec{x}^{(1)}$ $\vec{x}^{(n)}$ ∈ \mathbb{R}^d
- Find: the unit vector \vec{u} maximizing $\vec{u}^T C \vec{u}$

The Problem (More Formally)

- **Given**: covariance matrix *C* of centered data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- Find: the unit vector \vec{u} maximizing $\vec{u}^T C \vec{u}$
- ► How?

CSE 151A Intro to Machine Learning

Lecture 17 – Part 02
Optimization

The Problem

Given: covariance matrix *C* of centered data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$

Find: the unit vector \vec{u} maximizing $\vec{u}^T C \vec{u}$

The Variance Function

- ▶ Define $f(\vec{v}) = v^T C v$.
- ► Claim: *f* is paraboloidal.

Optimization

Set gradient to zero, solve?

Optimization

Set gradient to zero, solve? No.

The Solution

- ▶ We want to maximize $f(\vec{v})$ subject to $||\vec{v}|| = 1$.
- ▶ Necessary: \vec{v} is in same direction as $\nabla f(\vec{v})$.

$$\nabla f(\vec{v}) = \lambda \vec{v} \tag{1}$$

Lagrange Multipliers

Claim

Remember:
$$f(\vec{v}) = \vec{v}^T C \vec{v}$$

► Claim:
$$\nabla f(\vec{v}) = 2C\vec{v}$$

Condition (1) becomes:

$$2C\vec{v} = \lambda \vec{v}$$

 \vec{v} must be an eigenvector of C.

Remember: Eigenvectors

- An eigenvector of a matrix A is a vector \vec{u} such that $A\vec{u} = \lambda \vec{u}$. λ is called the eigenvalue.
- Matrices can have many eigenvector/eigenvalue pairs.
- If $A(d \times d)$ is symmetric, positive definite, there is a set of d mutually orthogonal eigenvectors.

Recap

- ▶ **Goal**: Find unit vector \vec{u} maximizing $\vec{u}^T C \vec{u}$.
 - I.e., find unit vector in direction of maximum variance.
- Any solution must satisfy $2C\vec{u} = \lambda \vec{u}$
 - I.e., it must be an eigenvector of *C*.

► The **top eigenvector** of the covariance matrix points in direction of maximum variance.

Principal Components

- ► The **top eigenvector** of the covariance matrix is called the **principal component**.
- ▶ It points in the direction of maximum variance.
- Idea: it is the "most interesting" direction.

Principal Component Projections

Principal Component Analysis

- ▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- **Map**: each data point $\vec{x}^{(i)}$ to a single feature, z_i .
- **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix.

Next Time

- ► **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ► Map: each data point $\vec{x}^{(i)}$ to a lower-dimensional vector, $\vec{z}^{(i)} \in \mathbb{R}^{d'}$, $d' \leq d$.