体論 (第2回)

2. 多項式の既約性

今回は1変数多項式の既約性を判定する方法について述べる.

定義 2-1

Aを整域とし, $f(x) \in A[x]$ はモニックかつ $\deg f \ge 1$ とする.

- (1) $\deg g_1 \ge 1$, $\deg g_2 \ge 1$ かつ $g_1(x)g_2(x) = f(x)$ を満たす $g_1(x), g_2(x) \in A[x]$ が存在する とき, f(x) を A 上**可約**と言う.
- (2) f(x) が A 上可約でないとき, f(x) を A 上既約と言う. 言い換えると,

$$f(x) = g_1(x)g_2(x) \Rightarrow \deg g_1 = 0$$
 または $\deg g_2 = 0$

が成り立つ.

[補足] モニック 1 次多項式 $f(x) \in A[x]$ は A 上既約である.

 x^2+1 は \mathbb{Q} 上でこれ以上分解できないので \mathbb{Q} 上既約である. 一方, \mathbb{C} においては,

$$x^{2} + 1 = (x+i)(x-i)$$

と分解できるので ℂ上可約である.

定理 2-1

 $f(x) \in \mathbb{Z}[x]$ をモニックかつ $\deg f \ge 1$ とする. このとき, 次は同値である.

- (1) f(x) は \mathbb{Z} 上既約である.
- (2) f(x) は \mathbb{Q} 上既約である.

[証明]

参考文献 [1] 命題 1.11.34 を参照のこと.

定理 2-2

 $f(x) \in \mathbb{Z}[x]$ をモニックかつ $\deg f = 2,3$ とする. このとき, f(x) が整数の根を持たなければ, f(x) は \mathbb{Q} 上既約である.

[証明]

定理 2-1 より f(x) が $\mathbb Z$ 上既約であることを示せばよい. f(x) が $\mathbb Z$ 上可約と仮定すると, $\deg f=2.3$ なので、

$$f(x) = (x - a)g(x) \quad (g(x) \in \mathbb{Z}[x], \ a \in \mathbb{Z})$$

と表せる. このとき, f(a) = 0 であるから仮定に矛盾する. 従って, f(x) は \mathbb{Z} 上既約である.

[**補足**] 定理 2-2 は f(x) が 4 次以上だと成立しない. 例えば, $f(x) = (x^2+1)^2$ は $\mathbb Q$ 上可約であるが, 整数の根を持たない.

例 2-1

- (1) $f(x) = x^3 2$ は Q 上既約である.
- (2) $\alpha = \sqrt[3]{2}$ は無理数である.

[証明]

- (1) y = f(x) のグラフを考えると, f(x) は整数の根を持たないことが分かる. 従って, 定理 2-2 より f(x) は $\mathbb Q$ 上既約である.
- (2) $\alpha \in \mathbb{Q}$ と仮定する. 因数定理より

$$x^3 - 2 = (x - \alpha)g(x) \quad (g(x) \in \mathbb{Q}[x])$$

と表せる. これは f(x) が $\mathbb Q$ 上既約であることに矛盾する. 従って, α は無理数である.

定理 2-3 (アイゼンシュタインの定理)

素数 p と多項式

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x]$$

に対して.

$$p \mid a_0, p \mid a_1, \dots, p \mid a_{n-1}, p^2 \nmid a_0$$
 (*)

が成り立てば, f(x) は \mathbb{Q} 上既約である.

例えば、多項式 $f(x) = x^2 + 6x + 2$ は p = 2 で (*) をみたすので \mathbb{Q} 上既約である.

[定理 2-3 の証明]

f(x) が \mathbb{Z} 上可約と仮定する. このとき.

$$f(x) = (x^s + b_{s-1}x^{s-1} + \dots + b_0)(x^t + c_{t-1}x^{t-1} + \dots + c_0) \quad (a_i, b_i \in \mathbb{Z}, \ 1 \le s, t < n)$$
 (**)

と分解できる. $a_0 = b_0 c_0$ であり、また $p \mid a_0$ より $p \mid b_0$ または $p \mid c_0$ である. $p \mid b_0$ としておく. すると、 $p^2 \nmid a_0$ より $p \nmid c_0$ が分かる. ここで、

$$p \mid b_0, p \mid b_1, \dots, p \mid b_{i_0-1}, p \nmid b_{i_0}$$

をみたす $1 \le i_0 \le s$ をとる. 式 (**) の i_0 次の項を比較すると,

$$a_{i_0} = b_{i_0}c_0 + b_{i_0-1}c_1 + \dots + b_1c_{i_0-1} + b_0c_{i_0}$$

を得る. このとき, 左辺は仮定から p で割れるが, 右辺は p で割れない ($p \nmid b_{i_0} c_0$ に注意). よって矛盾. 従って, f(x) は $\mathbb Z$ 上既約であり, 定理 2-1 から $\mathbb Q$ 上既約でもある.

問題 2-1

(1) $f(x) = x^3 - 3x + 1$ が \mathbb{Q} 上既約であることを示せ.

(2) $\alpha = \sqrt{2 + \sqrt{2}}$ が無理数であることを示せ.

例 2-2

 $f(x) = x^4 + 1$ は \mathbb{Q} 上既約である.

[証明]

g(x) = f(x+1) と置く. このとき,

$$q(x) = (x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$$

は p=2 でアイゼンシュタインの定理の条件を満たすので、 $\mathbb Q$ 上既約である. 従って、下の問題 2-2 より、f(x)=g(x-1) も $\mathbb Q$ 上既約である.

問題 2-2 モニック多項式 $f(x) \in \mathbb{Q}[x]$ $(\deg f \ge 1)$ と $a \in \mathbb{Q}$ を考える. このとき, f(x) が \mathbb{Q} 上既約ならば, f(x+a) も \mathbb{Q} 上既約であることを示せ.

問題 2-3 $x^5 + 4$ が \mathbb{Q} 上既約であることを示せ.

問題 2-4 *p* を素数とする.

 $(1)_{p}C_{k}$ (k=1,2,...,p-1) が p で割れることを示せ.

(2) $f(x) = x^{p-1} + x^{p-2} + \dots + 1$ は \mathbb{Q} 上既約であることを示せ.

参考文献

[1] 雪江明彦, 代数学 2 環と体とガロア理論, 日本評論社, 2010.