7210 HW 7

Duncan Wilkie

25 October 2022

Problem 1 (D&F 7.1.30). Let $A = \mathbb{Z} \times \mathbb{Z} \times \cdots$ be the direct product of copies of \mathbb{Z} indexed by the positive integers (so A is a ring under componentwise addition and multiplication) and let R be the ring of all group homomorphisms from A to itself with addition pointwise and multiplication defined as function composition. Let ϕ be the element of R defined by $\phi(a_1, a_2, a_3, \ldots) = (a_2, a_3, \ldots)$. Let ψ be the element of R defined by $\psi(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, a_3, \ldots)$

- 1. Prove that $\phi \psi$ is the identity of R but $\psi \phi$ is not the identity of R (i.e. ψ is a right, but not a left, inverse for ϕ).
- 2. Exhibit infinitely many right inverses for ϕ .
- 3. Find a nonzero element π in R such that $\phi \pi = 0$ but $\pi \phi \neq 0$.
- 4. Prove that there is no nonzero element $\lambda \in R$ such that $\lambda \phi = 0$ (i.e. ϕ is a left zero divisor but not a right zero divisor).

Solution. $\phi \circ \psi(a_1,a_2,\cdots) = \phi(0,a_1,a_2,\cdots) = (a_1,a_2,\cdots)$; since (a_1,a_2,\cdots) is a general element of A, q this proves $\phi \circ \psi$ is the identity function id_A , which is the ring identity on R, since $id_A \circ f = f \circ id_A = f$ for all (set) endomorphisms f on A. Inversely, $\psi \circ \phi(a_1,a_2,a_3,\cdots) = \psi(a_2,a_3,\cdots) = (0,a_2,a_3,\cdots)$, and taking any element of A with $a_1 \neq 0$ shows $\psi \phi$ is not the identity.

Consider functions $f_i:(a_1,a_2,\cdots)\mapsto (i,a_1,a_2,\cdots)$; these are infinitely many right inverses to ϕ , since $\phi\circ f_i(a_1,a_2,\cdots)=\phi(i,a_1,a_2,\cdots)=(a_1,a_2,\cdots)$.

Taking $\pi:(a_1,a_2,\cdots)\mapsto (1,0,\cdots)$, $\phi\circ\pi=\phi(1,0,\cdots)=(0,0,\cdots)=0$ and $\pi\circ\phi=(1,0,\cdots)\neq 0$.

Suppose $\lambda\phi(a_1,a_2,a_3\cdots)=\lambda(a_2,a_3,\cdots)=0.$ If $\lambda\neq 0$, then there exists some input a such that $\lambda a\neq (0,0,\cdots)$; the sequence $\psi(a)$ has $\lambda\circ\phi(\psi(a))=\lambda(a)\neq 0$, showing $\lambda\phi\neq 0$.

Problem 2 (D&F 7.3.29). Let R be a commutative ring. Recall that an element $x \in R$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove that the set of nilpotent elements from an ideal—called the nilradical of R and denoted $\eta(R)$.

Solution. The set of nilpotent elements is first a subring. It contains the zero of the ring trivially, and if nonzero $a, b \in \eta(R)$ then $a^n = b^{n'} = 0$ for some $n, n' \in \eta(R)$, so assuming WLOG $n' \ge n$,

$$(a-b)^{nn'} = \sum_{k=0}^{nn'} \binom{nn'}{k} a^k (-b)^{nn'-k} = \sum_{k=0}^{n'} \binom{nn'}{k} a^k (-b)^{nn'-k} \sum_{k=n'}^{nn'} \binom{nn'}{k} a^k (-b)^{nn'-k}$$

$$= \sum_{k=0}^{n'} \binom{nn'}{k} a^k (-b)^{nn'-k} \sum_{k=n'}^{nn'} \binom{nn'}{k} a^{nn'-k} (-b)^{nn'}$$

In the left sum, every term has since $0 \le k \le n'$ and $n \ge 2$ (by a nonzero) that $nn'-k \ge n' \Leftrightarrow nn' \ge n'+k$, implying $b^{nn'-k}=0$ and therefore also $(-b)^{nn'-k}=(-1)^{nn'-k}b^{nn'-k}=0$, making the term and the whole sum zero. In the right sum, every term has since $n' \ge n$ that $a^k=0$, making this sum also zero. Therefore, $(a-b)^{nn'}=0$. If one of a,b are zero, then a-b equals either 0, the other nonzero term, or the negative of the other nonzero term, all of which are immediately nilpotent, so for all $a,b\in \eta(R)$ one has $a-b\in \eta(R)$, i.e. R is closed under subtraction. Similarly, $(ab)^{nn'}=a^{nn'}b^{nn'}$ by commutativity (cf. proof of Lemma 6 of the first homework; it uses only associativity of group products), and since each exponent contains a factor of the element's nilpotency exponent, the term is zero.

Showing closure of the now-subring under multiplication is far easier: if $a \in \eta(R)$ has nilpotency exponent n and $r \in R$, then by commutativity $(ar)^n = a^n r^n = 0$, so $\eta(R)$ is a left-ideal and by commutativity also a right-sided ideal.

Problem 3 (D&F 7.3.33). Assume R is commutative. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be an element of the polynomial ring R[x].

- 1. Prove that p(x) is a unit in R[x] iff a_0 is a unit and a_1, a_2, \ldots, a_n are nilpotent in R.
- 2. Prove that p(x) is nilpotent in R[x] iff a_0, a_1, \ldots, a_n are nilpotent elements of R.

Solution. Suppose a_0 is a unit and a_1, a_2, \ldots, a_n are nilpotent with nilpotency exponents k_1, k_2, \ldots, k_n . First, note that $y = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x$ is nilpotent in R[x]: by commutativity, $(a_i x^i)^{k_i} = a_i^{k_i} x^{i+k_i} = 0 x^{i+k_i} = 0$. The sum of nilpotent elements is again nilpotent by the above argument that $\eta(R)$ is an ideal and therefore closed under addition. Since a_0 is a unit in R, it's also a unit in R[x], so P(x) is the sum of a unit and a nilpotent element.

Conversely, suppose p(x) is a unit. Then there exists $p^{-1}(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_0$ such that $p(x)p^{-1}(x) = 1$; equivalently, the ith coefficient of the product polynomial is for all $i \neq 0$

$$\sum_{l=0}^{i} a_l b_{i-l} = 0$$

and for i=0 $a_0b_0=1$. Clearly, the latter shows that a_0 must be a unit. For nilpotency, we induct on the degree of polynomials in the formula "p(x) is unit" \Rightarrow "non-constant coefficients are nilpotent." It clearly holds for $\deg p=0$ vacuously, since degree-zero polynomials have no non-constant coefficients. Presume it holds for all polynomials with degree less than n. One can additively cancel in the expression for the ith coefficient of the product to obtain

$$a_i b_0 = -\sum_{l=0}^{i-1} a_l b_{i-l}$$

Since b_0 is a unit with inverse a_0 ,

$$a_i = -a_0 \sum_{l=0}^{i-1} a_l b_{i-l}$$

The polynomial $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ has inverse $b_0 + b_1x + \cdots + b_{n-1}x^{n-1}$, since in the product of p and p^{-1} , the nth terms of the factors only contribute to the nth term of the product, so omitting them merely removes that term. By the induction hypothesis, then $a_1, a_2 \dots a_{n-1}$ are nilpotent. Similarly, $b_1, b_2, \dots b_n$ are nilpotent, so every addend of the sum expression of a_n contains a nilpotent factor, and a_n is nilpotent. Accordingly, all non-constant coefficients of p are nilpotent, proving the converse.

For the second proposition, note that if a_0, a_1, \ldots, a_n are nilpotent, the above argument that $a_i x^i$ applies to show p(x) is the sum of nilpotent elements and therefore nilpotent. Conversely, suppose p(x) is nilpotent. We induct on the degree of p with the formula "p(x) is nilpotent" \Rightarrow "all its coefficients are nilpotent." The property once again holds for $\deg p=0$ trivially; suppose it holds for $\deg p=n-1$. Nilpotency to exponent k says

$$0 = (a_0 + a_1 x + \dots + a_n x^n)^k = \sum_{0 \le j_1 + j_2 + \dots + j_n \le k} {k \choose j_1, j_2, \dots, j_n} \prod_{l=1}^n a_l^{j_l} x^{l \cdot j_l},$$

using the multinomial theorem. The coefficient of x^{nk} in this sum is a_n^k : unless $j_n = k$, all other $j_i = 0$, and l = n the product $l \cdot j_l$ is less than nk. Comparing coefficients, this implies $a_n^k = 0$, so a_n is nilpotent, concluding the induction.

Problem 4 (D&F 7.4.15). Let $x^2 + x + 1$ be an element of the polynomial ring $E = \mathbb{F}_2[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{F}_2[x]/(x^2 + x + 1)$.

- 1. Prove that \overline{E} has 4 elements: $\overline{0}$, $\overline{1}$, \overline{x} , and $\overline{x+1}$.
- 2. Write out the 4×4 addition table for \overline{E} and deduce that the additive group \overline{E} is isomorphic to the Klein 4-group.
- 3. Write out the 4×4 multiplication table for \overline{E} and prove that \overline{E}^{\times} is isomorphic to Z_3 . Deduce that \overline{E} is a field.

Solution. Two polynomials in $\mathbb{F}_2[x]$ are the same in $\mathbb{F}_2[x]/(x^2+x+1)$ if they differ by a multiple of x^2+x+1 with multiplier in $\mathbb{F}_2[x]$. The elements 0, 1, x, and x+1 are all elements of $\mathbb{F}_2[x]$ with degree ≤ 1 ; these represent distinct equivalence classes in quotient, since polynomials of degree lower than 2 are not multiples of any polynomial of higher degree, and they're distinct in $\mathbb{F}_2[x]$. Additionally, these are the only equivalence classes: by induction on n, any polynomial of the form $a_nx^n+\cdots+a_1x+a_0$ where $a_i\in\mathbb{F}_2$ can be written as a multiple of these elements. For degree zero, every polynomial is either 0 or 1, which are parts of $\bar{0}$ and $\bar{1}$. Suppose every polynomial of degree n-1 is in one of the equivalence classes. Then every polynomial of degree n is of the form $p(x)=x^n+p_{n-1}(x)$ for some polynomial p_{n-1} of degree n-1. Accordingly, $p(x)=x(x^{n-1}+p'_{n-1}(x))+a_0$, where p'_{n-1} is the p_{n-1} without its constant coefficient with all exponents reduced by 1. The polynomial in the parenthesis is of degree n-1, and so is in one of the equivalence classes. x times any element of an equivalence class is again in an equivalence class, so if $a_0=0$ we're done. If $a_0=1$, p is in the equivalence class according to the rules $\bar{0}+\bar{1}=1$, $\bar{1}+\bar{1}=\bar{0}$, $\bar{x}+\bar{1}=\overline{x+1}$, and $\bar{x}+\bar{1}+\bar{1}=\bar{x}$.

Problem 5 (D&F 7.4.27). *Let* R *be a commutative ring with* $1 \neq 0$. *Prove that if* a *is a nilpotent element of* R *then* 1 - ab *is a unit for all* $b \in R$.

Solution. By the last problem on the previous homework, ab is nilpotent for all $b \in R$. Similarly, -x = (-1)x is nilpotent if x is. Then 1 - ab is of the form 1 + x, where x is nilpotent; it is therefore a unit.

Problem 6 (D&F 7.4.30). *Let I be an ideal of the commutative ring R and define*

$$\mathcal{R}(I) = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}$$

called the radical of I. Prove that $\mathcal{R}(I)$ is an ideal containing I and that $\mathcal{R}(I)/I$ is the nilradical of the quotient ring R/I, i.e. $\mathcal{R}/I = \eta(R/I)$.

Solution. The proof that the nilradical is an ideal translates: if $r^n \in I$ and $s^n \in I$, then $(r-s)^{nm} \in I$ using the binomial theorem and the fact that I is an ideal and therefore closed under internal addition and arbitrary multiplication. $\mathcal{R}(I)$ contains I as those elements of R in the ideal satisfy the membership property with n=1.

The set \mathcal{R}/I is the set cosets of the form rI where $r^n \in I$ for some $n \in \mathbb{Z}^+$. The set $\eta(R/I)$ is the set of cosets of the form rI where r is arbitrary that satisfy the condition

$$(rI)^n = 0 \Leftrightarrow r^nI = 0 \Leftrightarrow r^n \in I \text{ for some } n \in \mathbb{Z}^+$$

The two sets are therefore equal.

Problem 7 (D&F 7.4.37). *Prove that a subset* X *of* [0,1] *is a Zariski closed set iff it is closed in the usual sense as a subset of* \mathbb{R} .

Solution. Suppose a subset S of [0,1] is Zariski closed, meaning it is of the form $V(J)=\{x\in[0,1]\mid f(x)=0 \text{ for all } f\in J\}$, where J is some ideal of the ring R of all continuous functions from [0,1] to \mathbb{R} . Since points are closed in \mathbb{R} , $f^{-1}(0)$ is a closed subset of [0,1] for any continuous function f, since a continuous preimage of a closed set is closed. V(J) is the intersection of continuous preimages of 0 inside [0,1], and closed sets remain closed under arbitrary intersection, so Zariski closed \Rightarrow closed.

Conversely, suppose X is a closed subset of [0,1]. The set I(X) of functions $[0,1] \to \mathbb{R}$ that vanish on X is an ideal by the result of exercise 34. According to exercise 36, X = V(I(X)), i.e. X is the Zariski closed set generated by the ideal I(X); in particular, X is Zariski closed. \square