Univariate Time Series Data and Model Card

Generated by Cardtale - Automated Model and Data Card Generator

This report provides an automated, comprehensive analysis of univariate time series data. Generated by Cardtale, it explores basic aspects and potential challenges in your data to support informed decision-making and modeling choices.

Generated: 2024-11-01 09:40

Series Name: M1003

Table of Contents

1 Data Overview

Time series fundamental characteristics and statistical properties

2 Trend

Long-term time series growth and dynamics. Analysis of level stabilization methods.

3 Seasonality

Analysing recurring patterns in the time series. Assessing the impact of different seasonality modeling strategies

4 Variance

Exploring the variability of values over time. Assessing the impact of variance stabilization methods

5 Change Detection

Change detection in the time series distribution

Other aspects were explored but omitted from the final report:

Data Overview

This section examines the core characteristics and statistical properties of the time series. Understanding these attributes is important for assessing data quality and

gaining a preliminary context. We explore the temporal structure, summary statistics, and distribution patterns to create a baseline understanding of your data.

Time Series Plot

Figure 1: Time series line plot.

- A total of 134 month observations which span from January 1983 to February 1994.
- The mean value of the series is 5140.68 (median equal to 4906.25), with a standard deviation of 480.04. The data ranges from a minimum of 4474.1 to a maximum of 5959.8.

Data Distribution

Figure 2: Distribution of the time series using an histogram (left) and a boxplot (right).

• The Kolmogorov-Smirnov test rejects the hypothesis that the series is distributed according to the following distributions: Pareto, Exponential, Power-law, Exponentially Modified Gaussian distribution, Gamma, Log-Normal, Logistic, Gaussian, Cauchy, and Chi-squared

- The statistical tests carried out did not find any suitable distribution for the data with an acceptable significance.
- There are no outliers in the data set according to the boxplot representation.
- The skewness is equal to 0.4, which is close to zero. This indicates a symmetric distribution, though there is a slight right skewness.
- The excess kurtosis is equal to -1.44. This indicates that the data has a light tailed distribution.

Trend and Seasonality

Figure 3: Seasonal and Trend components after decomposition using the STL (Season-Trend decomposition using LOESS) method.

- All hypothesis tests carried out (Augmented Dickey-Fuller and Philips-Perron) indicate that the time series is not stationary in trend/level.
- All hypothesis tests carried out (Wang-Smith-Hyndman and OCSB) indicate that the time series is not stationary in seasonality for the specified period.

Auto-Correlation

- The following lags show significant autocorrelation: t-1, t-2, t-3, t-4, t-5, t-6, t-7, t-8, t-9, t-10, t-11, t-12, t-13, t-14, t-15, t-16, t-17, t-18, t-19, t-20, t-21, t-22, t-23, and t-24. The autocorrelation is positive for all lags with a significant value.
- All lags relative to the seasonal period (t-12 and t-24) show a significant autocorrelation.

Partial Auto-Correlation

Figure 5: Partial Auto-correlation plot up to 24 lags. At each lag, the partial auto-correlation takes into account the previous correlations.

- The following lags show significant partial autocorrelation: t-1, t-3, t-4, t-8, t-9, t-10, t-11, t-12, t-13, t-14, t-15, t-16, t-17, t-18, t-19, t-22, and t-24.
- All lags relative to the seasonal period (t-12 and t-24) show a significant partial autocorrelation.

Trend

Trend refers to the long-term change in the mean level of a time series. It reflects systematic and gradual changes in the data over time. Understanding the trend is important for identifying long-term growth or decline, structural changes, and making informed modeling decisions. This section examines the characteristics of the trend of the time series.

Trend Line Plot

Figure 6: Time series trend plot.

- The time series has non-stationary trend according to the statistical test(s): Augmented Dickey-Fuller and Philips-Perron. There is a strong upward trend.
- The same tests were applied to analyse whether the time series is stationary around a constant level. The method(s) KPSS, Augmented Dickey-Fuller, and Philips-Perron reject this hypothesis.
- Including a trend explanatory variable which denotes the position of each observation improves forecasting performance.

Distribution of Differences

Figure 7: Distribution of percentage changes (left), and a Lag-plot (right). These plots help to understand how the data changes over consecutive observations. The histogram shown the distribution of these changes. The lag-plot depicts the randomness in the data. The time series shows greater randomness as the points deviate from the dotted line.

• The Kolmogorov-Smirnov test rejects the hypothesis that the differenced series is distributed according to the following distributions: Power-law, Exponential, Pareto, and Chi-squared.

- The distribution with largest p-value is Gaussian (p-value equal to 0.97). But, we cannot reject the hypothesis that the differenced series follows the following distributions (ordered decreasingly by p-value): Exponentially Modified Gaussian distribution, Gamma, Log-Normal, Logistic, and Cauchy.
- The skewness of the differenced series is equal to 0.14, which is close to zero. This indicates a symmetric distribution, though there is a slight right skewness.
- The excess kurtosis of the differenced series is equal to 0.33. This value is similar to that found from data following a Gaussian distribution
- **Forecasting experiments**: Taking first differences does not improve forecasting performance.

Seasonality

Seasonality represents recurring patterns or cycles that appear at regular intervals in time series data. These are predictable fluctuations that reflect periodic influences such as monthly, quarterly, or yearly cycles. Understanding seasonal patterns is crucial for forecasting, trend analysis, and identifying anomalies. This section examines the presence, strength, and characteristics of seasonal components in the input time series.

Seasonal Line Plot (Monthly)

Figure 8: Seasonal plot of monthly values grouped by year.

- All hypothesis tests carried out (Wang-Smith-Hyndman and OCSB) indicate that the time series is stationary in seasonality for a yearly period.
- **Forecasting experiments**: Including monthly information in the predictive model decreases forecasting performance. This information was included as Fourier terms and repeating basis function terms in the explanatory variables.

Seasonal Sub-series Plot (Quarterly)

Figure 9: Quarterly seasonal sub-series. This plot helps to understand how the data varies within and across quarterly groups.

- Statistical tests were carried out to check for differences among means and variances across quarters. No significant differences were found.
- All hypothesis tests carried out (Wang-Smith-Hyndman and OCSB) indicate that the time series is stationary in seasonality for a Quarterly period.
- Overall, there is a strong evidence that the time series is not stationary around a constant level. Within each group, there is also indication that the data is not constant around a level in all of the Quarters.
- **Forecasting experiments**: Statistical tests show no evidence for a quarterly seasonal pattern. Yet, including information about this period in the forecasting model improved its performance.

Variance

Variance measures how data points spread around the average value in your time series. This section examines whether the variability remains stable (homoskedastic) or changes (heteroskedastic) over time. Understanding variance patterns is crucial for selecting appropriate modeling techniques, which can have a significant impact on forecasting accuracy.

Heteroskedasticity Testing

Figure 10: Time series residuals analysis. Difference in the distribution of the residuals (left) and the series (right) in the first and last thirds of the series, following a Goldfeld-Quand partition.

- In the analysis of seasonality we did not find significant differences in the dispersion among periodic groups of observations.
- The following tests suggest that the time series is heteroskedastic: Goldfeld-Quandt. But, other tests (White and Breusch-Pagan) fail to reject the hypothesis that the time series has a constant variance.
- **Forecasting experiments**: Transforming the series with the logarithm improved forecasting performance. But, the transformation with the Box-Cox method did not.
- No appropriate distribution was found to fit the data, before or after a Logarithm transformation.

Change Detection

Change points denote significant shifts in the underlying distribution of time series. These structural changes can manifest as sudden shifts in level, trend, variance, or seasonal patterns. Detecting and understanding these points is crucial as they often indicate important events or regime changes that affect modeling decisions. This section identifies potential change points and assesses their impact on the overall analysis strategy.

Change Points

Figure 11: Time series plot with marked change points according to the PELT method.

- There are a total of 2 change points over the time series
- The first change point was found at April 1989 where the time series shows an increasing tendency.

Changes in Distribution

Figure 12: Time series analysis before and after the first detected change point occurs. Paired distributions before and after change (left), and overlapped density plot (right).

• Before the change point, the data follows a Chi-squared distribution. But, after the first change point, a Cauchy distribution is a better fit.