Improving Photometric Redshifts for Hyper Suprime-Cam (HSC) with Hierarchical Bayes and Machine Learning

Josh Speagle^{1,2,3,†,*}, Alexie Leauthaud^{4,2}, Daniel Eisenstein¹, Kevin Bundy^{4,5,2}, Peter Capak⁶, Boris Leistedt⁷, Daniel Masters⁶, Daniel Mortlock⁸, Hiranya Peiris^{9,10}, and the HSC photo-z team

¹Harvard University, ²Kavli IPMU, ³CREST, JST, ⁴UC Santa Cruz, ⁵UC Observatories, ⁶IPAC, ⁷NYU, ⁸Imperial College London, ⁹University College London, ¹⁰Oskar Klein Centre for Cosmoparticle Physics †NSF Graduate Research Fellow, *jspeagle@cfa.harvard.edu

Our code can be found online at github.com/joshspeagle/frankenz.

Overview

We combine Bayesian inference with machine learning to derive photo-z PDFs in a robust, non-parametric, data-driven way. This involves:

- using training data to construct a set of empirical models,
- exploiting machine learning to generate rapid likelihoods,
- improving posterior calculations to better incorporate observational errors and selection effects, and
- incorporating hierarchical modeling based on Leistedt et al. (2016) [arxiv:1602.05960]

What are photometric redshifts?

Large surveys observe galaxies in several photometric bands, giving a rough estimate of its underlying spectral energy distribution (SED).

We want to use this information to derive a galaxy's photometric redshift (photo-z) probability density function (PDF).

Using these photo-z PDFs, we can do lots of cool science with large galaxy datasets!

Leauthaud et al. (2016) [arxiv:1611.08606].

Fast, Probabilistic, Data-Driven Redshifts

Empirical models We use training data instead of spectral templates as the basis for our predictions.

Right: Performance on mock HSC data (black) from models (blue) and training data (red). Using training data better captures the complex ways galaxies evolve over time.

Fast predictions Using machine learning,

we can quickly generate sparse approximations to the likelihood to take advantage of large training datasets.

Left: As above, but comparing likelihoods computed using all training objects (blue) vs a small (~1%) subset (red). The differences between the two are negligible.

Improved likelihoods By taking advantage

of large amounts of training data, we can compute our likelihoods using **flux** rather than **color**, which better incorporates measurement errors and complex priors.

Right: As above, but for likelihoods from color (blue) vs flux (red). Fluxes give less biased redshift estimates.

Hierarchical inference We explore the joint distribution between individual objects and the overall population using hierarchical Bayesian modeling.

Left: As above, but for our hierarchical (red) vs original redshift estimates (blue). Our hierarchical model better captures uncertainties in our overall redshift estimates.

Selection Effects

Our Bayesian formalism allows us to incorporate the **selection function** directly into our posterior predictions for individual objects.

Original likelihood (left) and selection probability (right) for an object from the HSC Wide Survey as a function of magnitude.

PDFs computed using the likelihood (black), selection function (red), and posterior (purple).

Preliminary Results

Using ~400k training galaxies from 11 different surveys, we computed redshifts for ~200k weak lensing-selected HSC galaxies for uniform (blue) and type-dependent (purple) population priors.

Our redshift distributions are largely insensitive to our choice of prior.

