Mall Customer Segmentation Analysis

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: data=pd.read_csv("C:/Users/rockz/OneDrive/Documents/Mall Customers.csv")
 data

Out[2]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [3]: |data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

```
In [4]: data.nunique()
Out[4]: CustomerID
                                   200
        Gender
                                     2
                                    51
        Age
        Annual Income (k$)
                                    64
        Spending Score (1-100)
        dtype: int64
In [5]: |data.columns
Out[5]: Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
                'Spending Score (1-100)'],
              dtype='object')
In [6]: data.describe()
Out[6]:
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

Visualization

```
In [7]: plt.figure(figsize=(10,10))
   plt.subplot(4,2,1)
   sns.histplot(data=data['Age'], x=data['Age'],kde=True)
   plt.subplot(4,2,2)
   sns.histplot(data=data['Annual Income (k$)'],x=data['Annual Income (k$)'],kde=
   plt.subplot(4,2,5)
   sns.histplot(data=data['Spending Score (1-100)'],x=data['Spending Score (1-100)']
```

Out[7]: <AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Count'>


```
In [9]: plt.figure(1)
for gender in ['Male','Female']:
        plt.scatter(x='Annual Income (k$)',y='Spending Score (1-100)',data=data[da
plt.xlabel('Annual Income (k$)'),plt.ylabel('Spending Score (1-100)')
plt.title('Annual Income vs Spending Score w.r.t Gender')
plt.legend()
plt.show()
```

Annual Income vs Spending Score w.r.t Gender


```
In [10]: plt.figure(1)
    for gender in ['Male','Female']:
        plt.scatter(x='Age',y='Annual Income (k$)',data=data[data['Gender']==gende
        plt.xlabel('Age'),plt.ylabel('Annual Income (k$)')
        plt.title('Age vs Annual Income w.r.t Gender')
        plt.legend()
        plt.show()
```



```
In [12]: plt.figure(1)
    for gender in ['Male','Female']:
        plt.scatter(x='Age',y='Spending Score (1-100)',data=data[data['Gender']==g
    plt.xlabel('Age'),plt.ylabel('Spending Score (1-100)')
    plt.title('Age vs Spending Score w.r.t Gender')
    plt.legend()
    plt.show()
```


Age

Modelling

K-Means

```
In [16]: from sklearn.cluster import KMeans

In [17]: x1=data[['Age','Spending Score (1-100)']].iloc[:,:].values
    inertia=[]
    for n in range(1,11):
        algorithm=(KMeans(n_clusters=n,init='k-means++',n_init=10,max_iter=300,tol
        algorithm.fit(x1)
        inertia.append(algorithm.inertia_)

C:\Users\rockz\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1036: U
    serWarning: KMeans is known to have a memory leak on Windows with MKL, when t
    here are less chunks than available threads. You can avoid it by setting the
    environment variable OMP_NUM_THREADS=1.
    warnings.warn(
```

```
In [18]: plt.figure(1)
    plt.plot(np.arange(1,11),inertia,'o')
    plt.plot(np.arange(1,11),inertia,'-',alpha=0.5)
    plt.xlabel('Number of Clusters'),plt.ylabel('Inertia')
    plt.show()
```



```
In [29]: data['cluster']=pred
data
```

Out[29]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
0	1	Male	19	15	39	2
1	2	Male	21	15	81	0
2	3	Female	20	16	6	1
3	4	Female	23	16	77	0
4	5	Female	31	17	40	2
195	196	Female	35	120	79	0
196	197	Female	45	126	28	1
197	198	Male	32	126	74	0
198	199	Male	32	137	18	1
199	200	Male	30	137	83	0

200 rows × 6 columns

```
In [30]: m=algorithm.cluster_centers_
m
```

```
In [33]: sns.scatterplot(x=data['Age'],y=data['Annual Income (k$)'],hue=data['cluster']
plt.scatter(x=m[:,0],y=m[:,1],marker="*",s=100,color="red")
```

Out[33]: <matplotlib.collections.PathCollection at 0x1ea157e9070>

In []: