DIC L9: MOSFET (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

2.4. Nonideal IV (1)

- Review of ideal IV characteristics
 - After some manipulation, we have

Subthreshold

Linear

Saturation

Here,

 $I_d = 0$

$$I_d = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$I_d = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

$$\beta = \mu_n C_{OX} \frac{W}{L}$$

Drain current

GIST Lecture on October 15, 2019

2.4. Nonideal IV (2)

2.4. Nonideal IV (3)

- ON and OFF currents (Drain currents)
 - ON current: $V_{gs} = V_{ds} = V_{DD}$
 - OFF current: $V_{gs} = 0$, $V_{ds} = V_{DD}$ (In the ideal model, it vanishes.)

GIST Lecture on October 15, 2019

2.4. Nonideal IV (4)

- Intel 32 nm transistor
 - Different leakage options
 - loff in log scale
 - Ion in linear scale
 - HP (High performance)
 - SP (Standard performance/power)
 - LP (Low power)

(M. Bohr's 2011 IEDM abstract)

2.4. Nonideal IV (5)

Intel 22 nm transistor

Table I. 22nm modular SoC transistor options and device characteristics

Transistor Type	High Speed Logic		Low Power Logic		High Voltage	
Options	High Performance (HP)	Standard Perf./ Power (SP)	Low Power (LP)	Ultra Low Power (ULP)	1.8 V	3.3 V
Vdd (Volt)	0.75 / 1	0.75 / 1	0.75 / 1	0.75/1.2	1.5/1.8/3.3	3.3 / >5
Gate Pitch (nm)	90	90	90	108	min. 180	min. 450
Lgate (nm)	30	34	34	40	min. 80	min. 280
N/PMOS Idsat/loff (mA/um)	1.08/ 0.91 @ 0.75 V, 100 nA/um	0.71 / 0.59 @ 0.75 V, 1 nA/um	0.41 / 0.37 @ 0.75 V 30 pA/um	0.35 / 0.33 @ 0.75 V 15 pA/um	0.92 / 0.8 @ 1.8 V 10 pA/um	1.0 / 0.85 @ 3.3 V 10 pA/um

(Intel's 2012 IEDM abstract)

GIST Lecture on October 15, 2019