```
1 import os
 2 import pandas as pd
 3 import numpy as np
 4 import librosa
 5 import random
 6 import time
 7 import pickle
 8 import librosa
10 import matplotlib
11 import matplotlib.pyplot as plt
12 %matplotlib inline
1 from keras.models import Sequential
 2 from keras.layers import Dense, MaxPooling2D, Conv2D, Flatten, Dropout, Input, BatchNormali
 3 from keras.models import Model, load model

    Using TensorFlow backend.

     The default version of TensorFlow in Colab will soon switch to TensorFlow 2.x.
     We recommend you <u>upgrade</u> now or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_ver
     1.x magic: more info.
 1 from google.colab import drive
 2 drive.mount('/gdrive')
 3 %cd /gdrive/My\ Drive/Colab\ Notebooks
   Go to this URL in a browser: <a href="https://accounts.google.com/o/oauth2/auth?client_id=947318989">https://accounts.google.com/o/oauth2/auth?client_id=947318989</a>
     Enter your authorization code:
     . . . . . . . . . .
     Mounted at /gdrive
     /gdrive/My Drive/Colab Notebooks
```

Making Sense of Genres

 \Box

The first step is seeing how many tracks per genre we have in our dataset, and simplifying the output of our neu to include only the top 5.

Previously, I attempted outputing its confidence for all 161 total genres, and only reached 20% accuracy. You car that journey in my other notebook, <u>training2_svc</u>.

```
1 genres = pd.read_csv("genres.csv", index_col=0)
2 genres
```

	#tracks	parent	title	top_level
genre_id				
1	8693	38	Avant-Garde	38
2	5271	0	International	2
3	1752	0	Blues	3
4	4126	0	Jazz	4
5	4106	0	Classical	5
1032	60	102	Turkish	2
1060	30	46	Tango	2
1156	26	130	Fado	2
1193	72	763	Christmas	38
1235	14938	0	Instrumental	1235

163 rows × 4 columns

```
1 genres = genres.sort_values(by='#tracks', ascending=False)
2 genres.head(5)
```

₽		#tracks	parent	title	top_level
	genre_id				
	38	38154	0	Experimental	38
	15	34413	0	Electronic	15
	12	32923	0	Rock	12
	1235	14938	0	Instrumental	1235
	10	13845	0	Рор	10

```
1 top_titles = ["Experimental", "Electronic", "Rock", "Instrumental", "Pop"]
2 top_titles

['Experimental', 'Electronic', 'Rock', 'Instrumental', 'Pop']
```

Adding Echonest Attributes

Whoop, our top genres are: Experimental, Electronic, Rock, Instrumental, and Pop.

Next, since I want to use this classifier for my senior design project as well, I want to incorporate attributes from echonest.

Echnoest, now Spotify, includes numerical values for tracks for traits like dancebility, energy, speechiness, etc-- the will be very valuable when teaching a stick figure to dance. (my senior design)

```
1 echonest = pd.read_csv("echonest.csv", header=[0, 2], skipinitialspace=True, index_col=0)
2 echonest.head()
```

t
1

	acousticness	danceability	energy	instrumentalness	liveness	speechiness	tem
track_id							
2	0.416675	0.675894	0.634476	0.010628	0.177647	0.159310	165
3	0.374408	0.528643	0.817461	0.001851	0.105880	0.461818	126
5	0.043567	0.745566	0.701470	0.000697	0.373143	0.124595	100
10	0.951670	0.658179	0.924525	0.965427	0.115474	0.032985	111
134	0.452217	0.513238	0.560410	0.019443	0.096567	0.525519	114

5 rows × 249 columns

 \Box

```
1 for col in echonest:
2    if col[0] == "metadata":
3        echonest.drop(col, axis=1, inplace=True)
4    elif col[0] == "ranks":
5        echonest.drop(col, axis=1, inplace=True)
6    elif col[0] == "social_features":
7        echonest.drop(col, axis=1, inplace=True)

1 echonest.columns = echonest.columns.droplevel(0)

1 echonest_sub = echonest[['acousticness', 'danceability', 'energy', 'instrumentalness', 'live 2 echonest_sub.head()
```

	acousticness	danceability	energy	instrumentalness	liveness	speechiness	te
track_id							
2	0.416675	0.675894	0.634476	0.010628	0.177647	0.159310	165
3	0.374408	0.528643	0.817461	0.001851	0.105880	0.461818	126
5	0.043567	0.745566	0.701470	0.000697	0.373143	0.124595	100
10	0.951670	0.658179	0.924525	0.965427	0.115474	0.032985	111
134	0.452217	0.513238	0.560410	0.019443	0.096567	0.525519	114

Adding Track Data

Now let's incorporating part of the track dataset.

```
1 tracks = pd.read_csv("tracks.csv", header=[0, 1], skipinitialspace=True, index_col=0)
2 tracks.columns = tracks.columns.droplevel(0)
3 tracks.head()
```

₽		comments	date_created	date_released	engineer	favorites	id	information	list
	track_id								
	2	0	2008-11-26 01:44:45	2009-01-05 00:00:00	NaN	4	1		6
	3	0	2008-11-26 01:44:45	2009-01-05 00:00:00	NaN	4	1		6
	5	0	2008-11-26 01:44:45	2009-01-05 00:00:00	NaN	4	1		6
	10	0	2008-11-26 01:45:08	2008-02-06 00:00:00	NaN	4	6	NaN	47
	20	0	2008-11-26 01:45:05	2009-01-06 00:00:00	NaN	2	4	"spiritual songs" from Nicky Cook	2

¹ tracks_sub = tracks[['listens', 'name', 'duration', 'genre_top', 'genres', 'title']] 2 tracks_sub.head()

₽		listens	listens	name	duration	genre_top	genres	title	
	track_id								
	2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
	3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	Electi
	5	6073	1151	AWOL	206	Нір-Нор	[21]	AWOL - A Way Of Life	This
	10	47632	50135	Kurt Vile	161	Рор	[10]	Constant Hitmaker	Fr
	20	2710	361	Nicky Cook	311	NaN	[76, 103]	Niris	Spiritua
									ļ

¹ tracks_sub.columns = ['listens_album', 'listens_track', 'name', 'duration', 'genre_top', 'genre_top',

1 tracks_sub.head()

 \Box

→		listens_album	listens_track	name	duration	genre_top	genres	title_album	ti
	track_id								
	2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
	3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	
	5	6073	1151	AWOL	206	Нір-Нор	[21]	AWOL - A Way Of Life	
	10	47632	50135	Kurt Vile	161	Рор	[10]	Constant Hitmaker	
	20	2710	361	Nicky Cook	311	NaN	[76, 103]	Niris	Sp

▼ Merging Tracks, Echonest, and Genres

oh boy

```
1 tracks_echo = pd.merge(tracks_sub, echonest_sub, how="inner", on="track_id")
```

₽

¹ tracks_echo.head()

	listens_album	listens_track	name	duration	genre_top	genres	title_album	ti
track_id								
2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	
5	6073	1151	AWOL	206	Нір-Нор	[21]	AWOL - A Way Of Life	
10	47632	50135	Kurt Vile	161	Рор	[10]	Constant Hitmaker	
134	6073	943	AWOL	207	Нір-Нор	[21]	AWOL - A Way Of Life	Ş

1 tracks_echo_genres = pd.merge(tracks_echo, genres, how="left", left_on="genre_top", right_on

¹ tracks_echo_genres.head()

₽		listens_album	listens_track	name	duration	genre_top	genres	title_album	ti
	track_id								
	2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
	3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	
	5	6073	1151	AWOL	206	Нір-Нор	[21]	AWOL - A Way Of Life	
	10	47632	50135	Kurt Vile	161	Pop	[10]	Constant Hitmaker	
	134	6073	943	AWOL	207	Нір-Нор	[21]	AWOL - A Way Of Life	9

Adding Features

This is the final piece left to merge into our monster dataset. There are a lot of attributes here-- 518-- so I want to some dimensionality reduction here. I will be using PCA post-merge.

¹ tracks_echo_genres.to_pickle("./tracks_echo_genres.pkl")

¹ features = pd.read_csv("features.csv", header=[0, 1, 2], skipinitialspace=True, index_col=0

² features.head()

statistics	kurtosis								
number	01	02	03	04	05	06	07	08	09
track_id									
2	7.180653	5.230309	0.249321	1.347620	1.482478	0.531371	1.481593	2.691455	0.8668
3	1.888963	0.760539	0.345297	2.295201	1.654031	0.067592	1.366848	1.054094	0.1081
5	0.527563	-0.077654	-0.279610	0.685883	1.937570	0.880839	-0.923192	-0.927232	0.6666
10	3.702245	-0.291193	2.196742	-0.234449	1.367364	0.998411	1.770694	1.604566	0.5212
20	-0.193837	-0.198527	0.201546	0.258556	0.775204	0.084794	-0.289294	-0.816410	0.0438

5 rows × 518 columns

feature

chroma cens

```
1 # MERGING!!!
2 monster = pd.merge(tracks_echo_genres, features, how="inner", on="track_id")
```

/usr/local/lib/python3.6/dist-packages/pandas/core/reshape/merge.py:617: UserWarning: merge.pu warnings.warn(msg, UserWarning)

1 monster.head()

 Γ

	listens_album	listens_track	name	duration	genre_top	genres	title_album	ti
track_id								
2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	
5	6073	1151	AWOL	206	Hip-Hop	[21]	AWOL - A Way Of Life	
10	47632	50135	Kurt Vile	161	Pop	[10]	Constant Hitmaker	
134	6073	943	AWOL	207	Нір-Нор	[21]	AWOL - A Way Of Life	,

5 rows × 539 columns

¹ monster = monster[monster.genre_top.notnull()]

² monster.head()

track_id								
2	6073	1293	AWOL	168	Нір-Нор	[21]	AWOL - A Way Of Life	
3	6073	514	AWOL	237	Нір-Нор	[21]	AWOL - A Way Of Life	
5	6073	1151	AWOL	206	Нір-Нор	[21]	AWOL - A Way Of Life	
10	47632	50135	Kurt Vile	161	Pop	[10]	Constant Hitmaker	
134	6073	943	AWOL	207	Нір-Нор	[21]	AWOL - A Way Of Life	5

listens_album listens_track name duration genre_top genres title_album ti

5 rows × 539 columns

 \Box

title_album	genres	genre_top	duration	name	listens_track	listens_album	
							track_id
Constant Hitmaker	[10]	Рор	161	Kurt Vile	50135	47632	10
Arc and Sender	[26]	Rock	405	Arc and Sender	424	628	153
Arc and Sender	[26]	Rock	319	Arc and Sender	205	628	154
unreleased demo	[26]	Rock	756	Arc and Sender	197	197	155
Boss of Goth	[25]	Rock	144	Argumentix	270	716	169

⁵ rows × 539 columns

▼ PCA Shenanigans for Dimensionality Reduction

¹ monster = monster[monster.genre_top.isin(top_titles)]

² monster.head()

¹ monster.to_pickle("./monster_top.pkl")

¹ from sklearn.preprocessing import StandardScaler

² feats = monster.columns

```
3
   4 # Separating out the features
  5 numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
   6 x = monster.select_dtypes(include=numerics).values
  8 # x = monster.loc[:, feats].values
  9 # Separating out the target
10 y = monster.loc[:,['genre_top']].values
12 # Standardizing the features
13 X = StandardScaler().fit transform(x)
  1 X.shape
          (6509, 532)
  1 # no nan vals allowed!!!
   2 from sklearn.impute import SimpleImputer
   4 imputer = SimpleImputer(missing values=np.nan, strategy='mean')
   5 imputer = imputer.fit(X[:,1:532])
   6 X[:,1:532] = imputer.transform(X[:,1:532])
  1 from sklearn.decomposition import PCA
  2
  3 pca = PCA(n components=9) # for number of big attributes?
   4 principalComponents = pca.fit_transform(X)
   5 principalDf = pd.DataFrame(data = principalComponents
                                            , columns = ['principal component 1', 'principal component 2', 'princip
   1 # SCREE PLOT
  2 print(pca.explained_variance_ratio_)
   3 print(np.cumsum(pca.explained_variance_ratio_))
  5 #Explained variance
   6 plt.plot(np.cumsum(pca.explained variance ratio ))
  7 plt.xlabel('number of components')
  8 plt.ylabel('cumulative explained variance')
  9 plt.show()
```

 Γ

```
[0.10689284 0.07021918 0.0446891 0.03621707 0.03121396 0.02907616 0.02699325 0.02559262 0.02420273]
[0.10689284 0.17711202 0.22180113 0.25801819 0.28923215 0.31830831 0.34530156 0.37089418 0.39509691]
```


▼ Ok!!!!!!!! So, this shows that with 9 components, it represents 40% of variance in the data.

Let's make a generic scree plot to see how many components might make more sense:

```
1 # SCREE PLOT
2
3 #Explained variance
4 pca = PCA().fit(X)
5 plt.plot(np.cumsum(pca.explained_variance_ratio_))
6 plt.xlabel('Number of Components')
7 plt.ylabel('Cumulative Explained Variance')
8
9 plt.plot(250, np.cumsum(pca.explained_variance_ratio_)[250], "ob")
10 plt.plot(200, np.cumsum(pca.explained_variance_ratio_)[200], "or")
11 plt.plot(150, np.cumsum(pca.explained_variance_ratio_)[150], "og")
12
13 plt.show()
```


This plot shows us that around 150-250 components might be a better number to try. Let's try it:

```
1 #Explained variance
 2
 3 fig, axs = plt.subplots(3)
 4 fig.suptitle('Comparing Num of PCA Components')
 5 # fig.xlabel('Number of Components')
 6 # fig.ylabel('Cumulative Explained Variance')
 8 # PLOT 1: 150 COMPONENTS
 9 pca = PCA(n components=150)
10 principalComponents = pca.fit_transform(X)
11 col names = [("col " + str(i)) for i in range(150)]
12 principalDf = pd.DataFrame(data = principalComponents
                , columns = col_names)
14 axs[0].plot(np.cumsum(pca.explained variance ratio ))
15
16 # PLOT 2: 200 COMPONENTS
17 pca = PCA(n components=200)
18 principalComponents = pca.fit_transform(X)
19 col names = [("col " + str(i)) for i in range(200)]
20 principalDf = pd.DataFrame(data = principalComponents
                , columns = col names)
22 axs[1].plot(np.cumsum(pca.explained_variance_ratio_))
24 # PLOT 3: 250 COMPONENTS
25 pca = PCA(n components=250)
26 principalComponents = pca.fit transform(X)
27 col_names = [("col_" + str(i)) for i in range(250)]
28 principalDf = pd.DataFrame(data = principalComponents
                , columns = col names)
30 axs[2].plot(np.cumsum(pca.explained_variance_ratio_))
    [<matplotlib.lines.Line2D at 0x7f8437761f60>]
               Comparing Num of PCA Components
     0.75
     0.50
     0.25
                                   100
                                        120
     0.75
     0.50
     0.25
                             100
                                 125
                                       150
                                           175
                                                200
      1.0
      0.5
                  50
                         100
                                 150
                                         200
                                                250
```

So.... they are looking basically the same! Let's see if we can go smaller than 150 components so that we can be while training

```
1 #Explained variance
2 pca = PCA(n_components=100) # for number of big attributes?
3 principalComponents = pca.fit transform(X)
```

```
4 col_names = [("col_" + str(i)) for i in range(100)]
 5 principalDf = pd.DataFrame(data = principalComponents
                 , columns = col_names)
 7
 8 plt.plot(np.cumsum(pca.explained variance ratio ))
 9 plt.xlabel('Number of Components')
10 plt.ylabel('Cumulative Explained Variance')
11 plt.show()
13 print(100, np.cumsum(pca.explained variance ratio )[99])
\Box
       0.8
     Cumulative Explained Variance
       0.7
       0.6
       0.5
       0.4
       0.3
       0.2
       0.1
                   20
                            40
                                    60
                                                   100
                        Number of Components
    100 0.8350745469250968
 1 def compare_n_comp(n):
 2
     pca = PCA(n_components=n)
 3
     principalComponents = pca.fit transform(X)
 4
     print(n, str((np.cumsum(pca.explained_variance_ratio_)[n-1])*100), str('%'))
 5
 6 compare_n_comp(150)
 7 compare_n_comp(175)
 8 compare n comp(200)
    150 90.430565705896 %
    175 92.73442261031477 %
    200 94.49492280474016 %
Alright let's just go with 200 components. That'll be a 62% reduction!
 1 #Explained variance
 2 pca = PCA(n components=200)
 3 principalComponents = pca.fit_transform(X)
 4 col_names = [("col_" + str(i)) for i in range(200)]
 5 principalDf = pd.DataFrame(data = principalComponents
 6
                 , columns = col_names)
 1 print(principalDf.shape)
```

2 print(y.shape)

I want to visualize the data I'm going to train with in some way... let's try taking the mean of all the numerical value

```
our PCA components and map them to their respective genre.
```

```
1 y_df = pd.DataFrame(y)
2 y_df = y_df.replace(np.nan, 'Other', regex=True)
3 y_map = dict(zip(*np.unique(y_df, return_counts=True)))
4 plt.bar(y_map.keys(), y_map.values())
5 plt.xticks(rotation='vertical')
6 plt.title("Genre Distro")
8 print(y_map)
```

{'Electronic': 2170, 'Experimental': 17, 'Instrumental': 84, 'Pop': 346, 'Rock': 3892}

▼ Time to Train!

```
1 from sklearn.model_selection import train_test_split
2 principalDf = principalDf.replace(np.nan, 0, regex=True)
3
4 data = principalDf
5 labels = y_df
7 data_train, data_test, label_train, label_test = train_test_split(data, labels, test_size=0
1 scaler = StandardScaler()
2
3 # Fit on training set only.
4 scaler.fit(data_train)
6 # Apply transform to both the training set and the test set.
7 data_train = scaler.transform(data_train)
8 data_test = scaler.transform(data_test)
```

```
1 pca = PCA(.94) # this is about 200 components as we saw earlier
2 pca.fit(data_train)

PCA(copy=True, iterated_power='auto', n_components=0.94, random_state=None, svd_solver='auto', tol=0.0, whiten=False)
```

Bad

```
→ 4 cells hidden
```

So there's a problem here: I'm trying to use string values as labels for my dataset, which is not allowed. I decided this route (without thinking it all the way through) because the numerical genre values, genre_ids, were stored as string of a list of a list, and I wanted to try to avoid dealing with that mess. Looks like it's unavoidable so let's...

Deal with the genre Label Mess

```
1 with open("genre_labels.pkl", "rb") as handle:
2   genre_labels = pickle.load(handle)
3
4 genrelabels = pd.DataFrame.from_dict(genre_labels)
5 genrelabels.head()
```

Classical

Genre_id genre_title 0 1 Avant-Garde 1 2 International 2 3 Blues 3 4 Jazz

5

1 label_train2.head()

4

₽		0	genre_id	genre_title
	0	Rock	12	Rock
	1	Rock	12	Rock
	2	Rock	12	Rock
	3	Rock	12	Rock
	4	Rock	12	Rock

```
1 label_test2 = pd.merge(label_test, genrelabels, how="left", left_on=0, right_on="genre_title")
2 label_test2.head()
```

```
0 genre id genre title
     0
            Rock
                        12
                                     Rock
        Electronic
                                 Electronic
                        15
     2
            Rock
                        12
                                     Rock
     3
            Rock
                        12
                                     Rock
        Electronic
                        15
                                 Electronic
1 label_test = label_test2["genre_id"]
2 label_train = label_train2["genre_id"]
3 label test = label test.replace(np.nan, 0, regex=True)
4 label_train = label_train.replace(np.nan, 0, regex=True)
6 label_test, label_train
    (0
              12
\Box
     1
              15
     2
              12
     3
              12
              15
              . .
     2143
              15
     2144
              12
              15
     2145
     2146
              15
     2147
              12
     Name: genre_id, Length: 2148, dtype: int64, 0
                                                               12
     2
              12
     3
              12
              12
     4356
              12
     4357
              15
              12
     4358
     4359
              12
     4360
              12
     Name: genre_id, Length: 4361, dtype: int64)
```

→ OK! let's try to train again..

 \Box

```
1 from keras.utils import to_categorical
3 one_hot_train_labels = to_categorical(label_train.values)
4 one_hot_test_labels = to_categorical(label_test.values)
6 one_hot_train_labels.shape, one_hot_train_labels.shape
   ((4361, 1236), (4361, 1236))
1 som borga modela import Comportial
```

```
1.0m keras.moders import sequentiar
 2 :om keras.layers import Dense, Activation
 3
 4 >del = Sequential()
 5 >del.add(Dense(32, activation='relu', input_shape=(200, )))
 6 model.add(Dense(64, activation='relu'))
 7 model.add(Dense(128, activation='relu'))
 8 >del.add(Dense(64, activation='relu'))
9 >del.add(Dense(32, activation='tanh'))
10
11 >del.add(Dense(161, activation='softmax'))
12
13 \text{ itput} = 164
14 >del.add(Dense(output, activation='sigmoid')) # all genres
15
16 >del.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy
17 >del.summary()
```

→ Model: "sequential 5"

Layer (type)	Output Shape	Param #
dense_25 (Dense)	(None, 32)	6432
dense_26 (Dense)	(None, 64)	2112
dense_27 (Dense)	(None, 32)	2080
dense_28 (Dense)	(None, 161)	5313
dense_29 (Dense)	(None, 164)	26568

Total params: 42,505
Trainable params: 42,505
Non-trainable params: 0

1 history = model.fit(data_train, label_train, epochs=50, batch_size=512, validation_split=0.

₽

```
Train on 2921 samples, validate on 1440 samples
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
2921/2921 [=============] - 0s 16us/step - loss: nan - acc: 0.0000e+00 -
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
2921/2921 [=============] - 0s 15us/step - loss: nan - acc: 0.0000e+00 -
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
2921/2921 [==============] - 0s 16us/step - loss: nan - acc: 0.0000e+00 -
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
2921/2921 [=============] - 0s 17us/step - loss: nan - acc: 0.0000e+00 -
```

Epoch 31/50

```
Epoch 32/50
 Epoch 33/50
 Epoch 34/50
 Epoch 35/50
 Epoch 36/50
 Epoch 37/50
 Epoch 38/50
 Epoch 39/50
 Epoch 40/50
 Epoch 41/50
 2921/2921 [==============] - 0s 14us/step - loss: nan - acc: 0.0000e+00 -
 Epoch 42/50
 Epoch 43/50
 2921/2921 [==============] - 0s 16us/step - loss: nan - acc: 0.0000e+00 -
 Epoch 44/50
 Epoch 45/50
 Epoch 46/50
 Epoch 47/50
 Epoch 48/50
 Epoch 49/50
 2921/2921 [==============] - 0s 16us/step - loss: nan - acc: 0.0000e+00 -
 Epoch 50/50
 1 # serialize model to JSON
2 model json = model.to json()
3 with open("model 2.json", "w") as json file:
  json file.write(model json)
5 # serialize weights to HDF5
6 model.save_weights("model_2.h5")
7 print("Saved model to disk")
1 results_test = model.evaluate(data_test, label_test[:99])
2 print("results test:", results test)
4 results_train = model.evaluate(data_train, label_train)
5 print("results train:", results train)
```

 \Box

3

 \Box

Another training attempt w another optimizer (worse)

Not bad, we got to 76% (model_1) which is much better than the 21% we were getting before! Let's play with a different regularizer to see if we can do better..

```
→ 4 cells hidden
```

Plotting Training and Validation Loss + Acc

```
1 loss = history.history['loss']
2 val_loss = history.history['val_loss']
3 epochs = range(1, len(loss) + 1)
4
5 plt.plot(epochs, loss, 'rx', label="Training Loss")
6 plt.plot(epochs, val_loss, 'b', label="Validation Loss")
7 plt.title("Training and Validation Loss")
8 plt.xlabel("Epochs")
9 plt.ylabel("Loss")
10 plt.legend()
11
12 plt.show()
```

```
1 plt.clf()
2
3 acc = history.history['acc']
4 val_acc = history.history['val_acc']
5 # epochs = range(1, len(loss) + 1)
6
7 plt.plot(epochs, acc, 'r', label="Training Accuracy")
8 plt.plot(epochs, val_acc, 'b', label="Validation Accuracy")
9 plt.title("Training and Validation Accuracy")
```

```
10 plt.xlabel("Epochs")
11 plt.ylabel("Loss")
12 plt.legend()
13
14 plt.show()
```

Comparing to a Random Baseline

```
1 import copy
2 np.random.seed(4242)
3
4 test_labels_copy = copy.copy(label_test)
5 np.random.shuffle(test_labels_copy)
6 hits_array = np.array(label_test) == np.array(test_labels_copy)
7 float(np.sum(hits_array)) / len(label_test)
```

→ Predictions on New Data

```
1 predictions = model.predict(data_test)
2 predictions[2].shape
```

That's good! This is what's expected-- our 164 possible genres.

```
1 np.sum(predictions[0])
2 predictions[0]
3 #hmm...
```

```
1 np.argmax(predictions[2])

1 genre_labels["genre_title"][17]

1 genre_labels["genre_title"][int(label_test[2])]

1 for i in range(0, 50):
2    p_idx = np.argmax(predictions[i])
3    p_genre = genre_labels["genre_title"][p_idx]
4    a_genre = genre_labels["genre_title"][int(label_test[i])]
5    print(i, '\t', p_genre, '\n\t', a_genre, '\n')
```