Particle spectrograph

Wave operator and propagator

$ \tau_{0+}^{\#2} = 0 $ $ \partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = 0 $ $ 1 $ $ \tau_{0+}^{\#2} - 2 i k \sigma_{0+}^{\#1} = 0 $ $ \partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} $ $ 1 $ $ \tau_{1-}^{\#2\alpha} + 2 i k \sigma_{1-}^{\#2\alpha} = 0 $ $ \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} $ $ 3 $ $ \tau_{1-}^{\#1\alpha} = 0 $ $ \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha} $ $ 3 $ $ \tau_{1+}^{\#1\alpha} + i k \sigma_{1+}^{\#2\alpha\beta} = 0 $ $ \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + $ $ \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + $ $ \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\alpha\beta\chi} = $ $ \partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + $ $ \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi} + $ $ \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} - $ $ \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} - \partial_{\alpha}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} - $ $ \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\tau^{\chi} - $ $ \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^$	
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0 \qquad \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} == \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\alpha \beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} \qquad 3$ $\tau_{1}^{\#1\alpha} == 0 \qquad \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} == \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\beta \alpha} \qquad 3$ $\tau_{1}^{\#1\alpha} + i k \sigma_{1}^{\#2\alpha\beta} == 0 \qquad \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + \\ \qquad \qquad$	
$\tau_{1}^{\#1\alpha} == 0 \qquad \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha} \qquad 3$ $\tau_{1}^{\#1\alpha\beta} + ik \sigma_{1}^{\#2\alpha\beta} == 0 \qquad \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + \qquad 3$ $2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == $ $\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \qquad \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} \qquad 5$ $\tau_{2}^{\#1\alpha\beta} - 2 ik \sigma_{2}^{\#1\alpha\beta} == 0 \qquad -ii (4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\alpha} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\alpha} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 4 \partial_{\lambda}\partial^{\lambda}\partial^{\alpha}\sigma^{\delta}\partial_{\lambda}\partial^{\alpha}\tau^{\lambda\alpha} + 4 \partial_{\lambda}\partial^{\alpha}\sigma^{\lambda}\partial^{$	
$\tau_{1}^{\#1\alpha\beta} + ik \sigma_{1}^{\#2\alpha\beta} == 0 \qquad \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == 0 \\ \partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == 0 \\ \partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} == 0 \\ \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} == 0 \\ -ii (4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi} - 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 4 \partial_{i} k^{\chi} \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon} - 6 \partial_{i} k^{\chi} \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 0 \\ -6 \partial_{i} k^{\chi} \partial_{\epsilon}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 0 \\ -6 \partial_{i} k^{\chi} \partial_{\epsilon}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\partial_{\delta}\partial^{\alpha}\sigma^{\alpha\delta\epsilon} + 0 \\ -6 \partial_{i} k^{\chi} \partial_{\epsilon}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{\lambda}\partial^{\beta}\partial_{$	
$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$ $\partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} + \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} +$ $\partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} + 2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $\tau^{\#1}_{2+}^{\alpha \beta} - 2 i k \sigma^{\#1}_{2+}^{\alpha \beta} = 0$ $-i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} -$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$ $4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} -$ $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\lambda}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\tau^{\lambda} + \partial_{\lambda}\partial^{\alpha}\sigma^{\alpha\lambda} + \partial_{\lambda}\partial^{\alpha}\sigma^{\lambda} + \partial_{\lambda}\partial$	
$ \frac{\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}}{\partial_{\chi}^{2} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}} = 0 $ $ \frac{\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}}{\partial_{\chi}^{2} + 2\partial_{\delta}\partial^{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}_{\chi}^{\chi} - 5 $ $ \frac{\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\delta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi}_{\chi}^{\chi} - 5 $ $ \frac{\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\delta}\partial^{\alpha}\tau^{\chi\delta} - 3\partial_{\delta}\partial^{\delta}\partial_{\lambda}\partial^{\alpha}\tau^{\chi}_{\chi}^{\chi} - 5 $ $ \frac{\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi} - 3\partial_{\delta}\partial^{\delta}\partial^{\alpha}\partial^{\alpha}\tau^{\chi}_{\chi}^{\chi} - 5 $ $ \frac{\partial_{\chi}\partial^{\lambda}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\lambda} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi}_{\chi}^{\chi} - 5 $ $ \frac{\partial_{\lambda}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\alpha} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi} + 4 $ $ \frac{\partial_{\lambda}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\alpha} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\alpha} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\lambda}\partial_{\lambda}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\lambda}\partial_{\lambda}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\lambda}\partial_{\lambda}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\alpha} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3\partial_{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 4 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}}{\partial^{\lambda}\tau^{\lambda}} + 3\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}\tau^{\lambda} + 3 $ $ \frac{\partial_{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\tau^{\lambda}}{\partial^{\lambda}\tau^{\lambda}} + 3\partial_{$	
$\tau_{2}^{\#1\alpha\beta} - 2ik\sigma_{2}^{\#1\alpha\beta} == 0 -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau^{\chi}_{\chi} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 4\partial_{i}k^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon} - 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha\delta}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha\delta}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha\delta}\partial_{\delta}\partial_{\delta}\partial_{\lambda}\partial^{\beta}\partial_{\delta}\partial_{\delta}\partial_{\delta}\partial_{\delta}\partial_{\delta}\partial_{\delta}\partial_{\delta}\partial_{\delta$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$ $4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$ $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$ $4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$ $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \delta \epsilon} -$ $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\delta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha$	
$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$ $6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$ $6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$\alpha = \alpha \beta = \alpha = \lambda \delta$.	
$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	

	Qua	dratic (free	action								
	S ==	$\iiint (\frac{1}{6} (2 \omega))$	$o^{\alpha i}_{\alpha} (t_1 \omega_{i\theta}^{\theta} -$	$(2t_3 \omega_{i\kappa}^{\kappa}) + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6$	$\omega^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$ -						
			$4t_1$	$\omega_{\alpha \theta}^{\theta} \partial_{i} f^{\alpha i} + 8 t_{3} \omega_{\alpha \kappa}^{\kappa} \partial_{i} f^{\alpha i}$	$+4t_1 \omega_{,\theta}^{\theta} \partial' f^{\alpha}_{\alpha}$						
			$8t_3 \omega_{\kappa}^{\kappa} \partial' f^{\alpha}_{\alpha} - 2t_1 \partial_{\nu} f^{\theta}_{\theta} \partial' f^{\alpha}_{\alpha} + 4t_3 \partial_{\nu} f^{\kappa}_{\kappa} \partial' f^{\alpha}_{\alpha} -$								
			$2t_1 \hat{a}$	$t_1 \partial_i f^{\alpha i} \partial_\theta f_{\alpha}^{\ \theta} + 4 t_1 \partial^i f^{\alpha}_{\ \alpha} \partial_\theta f_i^{\ \theta} - 6 t_1 \partial_\alpha f_{i\theta} \partial^\theta f^{\alpha i} -$							
	$3t_1 \partial_{\alpha} f_{\theta_i} \partial^{\theta} f^{\alpha_i} + 3t_1 \partial_{i} f_{\alpha\theta} \partial^{\theta} f^{\alpha_i} + 3t_1 \partial_{\theta} f_{\alpha_i} \partial^{\theta} f^{\alpha_i} +$										
$3t_1 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 6t_1 \omega_{\alpha\theta i} (\omega^{\alpha i\theta} + 2\partial^{\theta} f^{\alpha i}) +$				$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{2 r_2 - t_1}$			
				$\partial_{eta}\omega_{lpha_{eta}}\partial^{ heta}\omega^{lphaeta_{eta}}$ - 4 $r_{2}\partial_{eta}\omega_{lpha heta_{eta}}\partial^{ heta_{eta}}$		τ#2 τ ₀ +	0	0	0	0	
				$\partial_{\beta}\omega_{i\thetalpha}\partial^{\theta}\omega^{lphaeta_{i}}$ - 2 $r_{2}\partial_{i}\omega_{lphaeta heta}\partial^{\theta}\omega^{lphaeta_{i}}$		1	· 2 t3	<i>t</i> ₃			
			$2r_2 \delta$	$\partial_{\theta}\omega_{lphaeta_{i}}\partial^{\theta}\omega^{lphaeta_{i}} - 4r_{2}\partial_{ heta}\omega_{lpha_{i}eta}\partial^{\theta}\omega_{lpha_{i}eta_{i}}$	$^{9}\omega^{lphaeta_{l}}+$	$\tau_0^{\#1}$	1 1/2 k +2 k ²)	$2k^2$	0	0	
			6 r ₅ &	$\partial_{i}\omega_{\theta}^{\ \kappa}\partial^{\theta}\omega_{\alpha}^{\alpha i}$ - $6r_{5}\partial_{\theta}\omega_{i\kappa}^{\ \kappa}\partial^{\theta}$	$\omega^{\alpha \prime}_{\alpha}$ +		- [1-	(1+			
			$4t_{3}\partial_{i}f^{\alpha i}\partial_{\kappa}f_{\alpha}^{\kappa}-8t_{3}\partial^{i}f^{\alpha}_{\alpha}\partial_{\kappa}f_{i}^{\kappa}-6r_{5}\partial_{\alpha}\omega^{\alpha i\theta}\partial_{\kappa}\omega_{i\theta}^{\kappa}+$				$\frac{1}{(1+2k^2)^2t_3}$	$\frac{2}{2}k$	0	0	
			12 r ₅	$\partial^{\theta}\omega^{\alpha i}_{\alpha}\partial_{\kappa}\omega_{i\theta}^{\kappa} + 6r_{5}\partial_{\alpha}\omega^{\alpha i\theta}$	$^{9}\partial_{\kappa}\omega_{\theta}^{\kappa}$,-	$\rho_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	(1+2)	$\frac{i \ \gamma}{(1+2)}$			
			12 r ₅	$\partial^{\theta}\omega^{\alpha i}_{\alpha}\partial_{\kappa}\omega_{\theta^{i}}^{\kappa}))[t, x, y, z]$	dzdydxdt	•	r#1 + 0	*1 + 0.	#2 + C	7#1 0-1	
	#1	#2	#1	ш1	#2	ш1	0	~	~	G	
_	$\mathcal{I}_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^+ \alpha \beta}^{\# 2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\!$	$\sigma_1^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}\alpha$		7	$\Gamma_{1}^{\#2}\alpha$		
	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0			0		
 t	$\frac{\sqrt{2}}{1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0			0		
_ t	$ \frac{\sqrt{2} k}{1+k^2 t_1} $	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	0	0	0			0		
	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	- (1+2		$t_{3}+2$	t ₃) k ² r ₅ (t ₁	+t ₃))
	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{i}{(1+2k)}$	$\sqrt{2} k (6 k)^2 (3 t_1)^2 (3 $	$t_3^2 r_5 + t_3 + 2$	t ₁ +4t ₃) k ² r ₅ (t ₁	+t ₃))

 $-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$

 $\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$

	$\omega_1^{*+} \alpha eta$	$\omega_1^{\#_+^2} \alpha_\beta \ f_1^{\#_1^1} \alpha_\beta$	$f_{1}^{\#_{1}} \alpha \beta$	$\omega_{1}^{\#1}{}_{\alpha}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1^-}^{\#_1} \alpha$	$f_{1^-}^{\#2}$
$_{1}^{#1}+^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$_{1}^{\#2}+^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$_{1}^{#1}+^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$u_1^{\#1} \dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$
$\sigma_{1}^{\#2} + \alpha$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$0 \left \frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3) \right $
$\epsilon_{1}^{\#1} +^{lpha}$	0	0	0	0	0	0	0
$\epsilon_{1}^{#2} + \alpha$	0	0	0	$-\frac{1}{3} \bar{l} k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\bigg 0\bigg $	0	$\frac{2}{3} k^2 (t_1 + t_3)$

Massive and massless spectra

Massive particle					
$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$					
3					
$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$					
1					
Odd					

? $J^P = 0^- /$?
? $\frac{1}{k^{\mu}}$?
?

 $\sigma_{1}^{\sharp 1}\dagger^{lphaeta}$

 $\sigma_{1}^{\#2}\dagger^{\alpha\beta}$

 $\tau_1^{\#1} \dagger^{\alpha\beta}$

 $\sigma_1^{\#1}$ † $^{\alpha}$

 $\sigma_{1}^{#2} \dagger^{\alpha}$

 $\tau_1^{\#1} \uparrow^{\alpha}$

 $\tau_1^{\#2} + ^{\alpha}$

Massive partic	(No	
Pole residue:	$-\frac{1}{r_2} > 0$) mass
Polarisations:	1	-
Square mass:	$\frac{t_1}{r_2} > 0$	ss pa
Spin:	0	rticles
Parity:	Odd	les)

0

0

 $\frac{2 i k (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$