Issues in Voice and Video Coding

Presented at ICME Panel I: Advances in Audio/Video Coding Technologies, July 12, 2011

Jerry D. Gibson

Department of Electrical and Computer Engineering
University of California, Santa Barbara
gibson@ece.ucsb.edu

This research has been supported by NSF Grant Nos. CCF-0728646 and CCF-0917230

Primary Considerations in Voice and Video Coding

- Rate
- Distortion
- Complexity
- Latency

Bounding the Performance of Best **Known Voice Codecs [1]**

Bounding the Performance of Best Known Video Codecs—Intra/Inter Mode [2-4]

What About Latency and Complexity?

 Does Algorithmic Delay Deserve More Attention?

Is Complexity Becoming Too Much?

Narrowband (300-3400 Hz, 8 kHz sampling rate) speech codecs [5]

Formal Name	ITU-T G.711	ITU-T G.726	ITU-T G.729	3GPP AMR
Technology	Log PCM	ADPCM	CS-ACELP	ACELP
Bitrate(s) (kbits/sec)	48, 56, 64	16, 24, 32, 40	6.4, 8, 11.8	4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2, 12.2
Algorithmic Delay (msec)	0.125	0.125	15	25
Comp. Complexity (give units)	0.01 MIPS	1.25 MIPS	18 MIPS	11.9-16.7 WMOPS

Prof. Jerry D. Gibson, ViVoNets Lab,

University of California, Santa Barbara

Wideband Speech Codecs [5]

Formal Name	ITU-T G.722	ITU-T G.722.1	ITU-T G.722.2 3GPP AMR-WB	ITU-T G.718	ITU-T G.719
Technology	Sub-band ADPCM	MLT	ACELP	ACELP, MDCT	Adaptive resolution MDCT, FLVQ
Audio Bandwidth(Hz)	50-7000	50-7000	50-7000	50-7000	20-20000
Bitrate(s) (kbits/sec)	48, 56, 64	24, 32	6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05, 23.85	8,12,16,24,32 & 12.65 (G.722.2, AMR-WB, VMR-WB Interop Mode)	32128 steps of 4 kbps up to 96 kbps, steps of 8 kbps up to 128 kbps
Algorithmic Delay (msec)	1.625	40	25	32.875 to 43.875	40
Comp. Complexity	10 MIPS	< 5.5 WMOPS	27.2-39.0 WMOPS	57 WMOPS	15.39 - 21 WMOPS

Current Efforts for Voice/Audio Coding: Quality of User Experience

- Wider Bandwidths
 - Narrowband (200 to 3400 Hz)
 - Wideband (50 Hz to 7 kHz)
 - Superwideband (50 Hz to 14 kHz)
 - Fullband (20 Hz to 20 kHz)
- Stereo
- Spatial Localization
- Multiparty Calls
- Acoustic and Background Noise

High Dynamic Range Video for Handhelds

- Inexpensive video cameras have limited dynamic range – saturated pixels [6]
- HDR photography combines multiple exposures, yet we need new methods for video [7]
- Applications:
 - Videoconferencing
 - Saturated pixels on user's face hurt experience
 - Mobile/Handhelds: extreme outdoor lighting conditions
 - Security/Surveillance [8]
 - Dynamic range crucial to "see" environment
 - Temporal fidelity secondary
 - Need low-cost solution (<\$10)

HDR Still Photography

Mobile Videoconferencing (poor lighting!)

Recent Results on High Dynamic Range Video for Handhelds

- Alternate between short/long exposures
- Combine adjacent frames to achieve HDR at the same frame rate
- Need to remove ghosting with motion compensation and filtering [9]

Low Dynamic Range Inputs

Prof. Jerry D. Gibson, ViVoNets Lab, University of California, Santa Barbara

Viewing and Sensing 3D Video on Handhelds

- Glasses-free autostereoscopic displays now available on handheld gaming devices and phones
- Back-facing stereo cameras are standard
- Front-facing stereo cameras 3D Videoconferencing
- 3D can enhance experience if done correctly

HTC EVO 3D

Prof. Jerry D. Gibson, ViVoNets Lab, University of California, Santa Barbara

Front-facing Stereo Camera?

Issues for Handheld 3D Videoconferencing

- How to achieve effective and comfortable 3D for video communications on handhelds
- Close-up stereo photography is notoriously difficult! [10-11]
 - Optimal camera placement for display and analysis not the same
 - Need small stereo baseline (~9mm!) to reduce disparities
 - Need wider baseline for significant depth reconstruction
 - Need to adjust disparities in real-time according to scene depth [12]
- Combine 3D and HDR

Handheld 3D Videoconferencing

Nintendo 3DS "Depth Slider"

7/12/2011

References

- [1] Y.-Y. Li and J. D. Gibson, "Rate Distortion Bounds for Speech Coding Based on A Perceptual Distortion Measure (PESQ-MOS)," IEEE International Conference on Multimedia and Expo (ICME), Barcelona, July 2011.
- [2] Hu, J.; Gibson, J.D.; , "New rate distortion bounds for natural videos based on a texture dependent correlation model in the spatial-temporal domain," 46th Annual Allerton Conf. on Communication, Control, and Computing, pp.996-1003, 23-26 Sept. 2008
- [3] Hu, J.; Gibson, J.D.; , "Rate distortion bounds for blocking and intra-frame prediction in videos," 43rd Asilomar Conf. on Signals, Systems and Computers, pp.573-577, 1-4 Nov. 2009
- [4] Wiegand, T.; Han, W.-J.; Bross, B.; Ohm, J.-R.; Sullivan, G.J.; "WD2: Working Draft 2 of High-Efficiency Video Coding," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, doc. JCTVC-D503, Daegu, South Korea, 20–28 Jan. 2011.
- [5] ITU-T SG16 Q7/16, "Media Coding Summary Database," Nov. 2009.

References

- [6] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.
- [7] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, "High dynamic range video," in ACM SIGGRAPH, New York, NY, USA, 2003, pp. 319–325.
- [8] S. Mangiat and J. Gibson, Inexpensive High Dynamic Range Video for Large Scale Security and Surveillance, MILCOM, Baltimore, MD, Nov 2011.
- [9] S. Mangiat and J. Gibson, "High dynamic range video with ghost removal," in SPIE Optical Engineering & Applications, 2010.
- [10] L. Lipton, Foundations of the stereoscopic cinema: a study in depth. Van Nostrand Reinhold, 1982.
- [11] B. Mendiburu, 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press, 2009.
- [12] Manuel Lang, Alexander Hornung, Oliver Wang, Steven Poulakos, Aljoscha Smolic, and Markus Gross, "Nonlinear disparity mapping for stereoscopic 3d," ACM Trans. Graph., vol. 29, no. 3, pp. 10, 2010.

