沈阳市城郊市重点联合体 2018-2019 学年度下学期城郊市重点 联合体期中考试高二数学答案及评分标准

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	В	C	В	C	A	A	В	В	C	C	A	C

- 13. $(1, +\infty)$
- 14. i
- 15. 3
- 16. (-2,2)

(2)
$$\frac{z^2 + az + b}{z^2 - z + 1} = \frac{(1+i)^2 + (1+i)a + b}{(1+i)^2 - (1+i) + 1} = \frac{(2+a)i + b + a}{i} = (a+2) - (b+a)i$$

$$\therefore (a+2)-(a+b)i=1-i$$

$$\therefore \begin{cases} a+2=1 \\ a+b=1 \end{cases} \Rightarrow \begin{cases} a=-1 \\ b=2 \end{cases}$$
 -----1

18. (1) 当 z 为实数时,

有
$$\begin{cases} a^2 - 5a - 6 = 0 \\ a^2 - 1 \neq 0 \end{cases} \Rightarrow \begin{cases} a = -1 \mathbf{或} a = 6 \\ a \neq \pm 1 \end{cases} \Rightarrow a = 6,$$

- ∴当a=6时, z 为实数.
- (2) 当 z 为虚数时,

有
$$\begin{cases} a^2 - 5a - 6 \neq 0 \\ a^2 - 1 \neq 0 \end{cases} \Rightarrow \begin{cases} a \neq -1 \coprod a \neq 6 \\ a \neq \pm 1 \end{cases} \Rightarrow a \neq \pm 1 \coprod a \neq 6,$$

- (3) 当 z 为纯虚数时,

$$\overline{A} \begin{cases}
a^2 - 5a - 6 \neq 0 \\
\underline{a^2 - 7a + 6} \\
a^2 - 1
\end{cases} \Rightarrow \begin{cases}
a \neq -1 \underline{\mathbb{H}} a \neq 6 \\
a = 6
\end{cases} \Rightarrow a \in \emptyset$$

- 19. 解: (I) 函数的定义域为 $\{x \mid x \neq 0\}$ 。

$$f'(x) = 1 - \frac{4}{x^2}$$
, 令 $f'(x) = 0$,即 $1 - \frac{4}{x^2} = 0$, 解得 $x_1 = -2$, $x_2 = 2$ 。 当 x 变化时, $f'(x)$, $f(x)$ 的变化情况如下表:

$$x (-\infty,-2)$$
 -2 (-2,0) (0,2) 2 (2,+\infty)
 $f'(x)$ + 0 - 0 +
 $f(x)$ \(\sqrt{-4} \quad \quad \quad 4 \quad \gamma

因此函数 $f(x) = x + \frac{4}{x}$ 在区间 $(-\infty, -2)$ 内是增函数,在区间 (-2, 0) 内是减函数,在区间 (0, 2) 内是减函数,在区间 $(2, +\infty)$ 内是增函数。

(II) 在区间[1, 4]上,

当 x=1 时,f(x)=5;当 x=2 时,f(x)=4;当 x=4 时,f(x)=5。因此,函数 f(x) 在区间[1,4]上的最大值为 5,最小值为 4.

:f(x)在[-1,0]上为增函数,在[0,1]上为减函数.

∴
$$f(0)=b=1$$
,

$$f(-1) = -\frac{3}{2}a, \ f(1) = 2 - \frac{3}{2}a, \ f(-1) < f(1),$$

$$\therefore f(-1) = -\frac{3}{2}a = -2, \ a = \frac{4}{3}.$$

∴
$$f(x) = x^3 - 2x^2 + 1$$
.

$$(2)g(x)=x^3-2x^2-mx+1$$
, $g'(x)=3x^2-4x-m$.
由 $g(x)$ 在[-2,2]上为减函数,
知 $g'(x)$ ≤0 在 x ∈[-2,2]上恒成立. -----8分

$$f'(x) = 3ax^2 + b \text{ 的最小值为} - 12, \quad \therefore b = -12.$$
又直线 $x - 6y - 7 = 0$ 的斜率为 $\frac{1}{6}$, 因此, $f'(1) = 3a + b = -6$.
$$\therefore a = 2, \quad b = -12, \quad c = 0.$$
(2) $f(x) = 2x^3 - 12x$, $f'(x) = 6x^2 - 12 = 6(x + \sqrt{2})(x - \sqrt{2})$, 列表如下:
$$\begin{vmatrix} x & (-\infty, -\sqrt{2}) & -\sqrt{2} & (-\sqrt{2}, \sqrt{2}) & \sqrt{2} & (\sqrt{2}, +\infty) \\ f'(x) & + & 0 & - & 0 & + \\ f(x) & 增函数 & 极大 & 褪函数 & 极小 & 增函数 \end{vmatrix}$$
所以函数 $f(x)$ 的中调增区网是 $(-\infty, -\sqrt{2})$ 和 $(\sqrt{2}, +\infty)$, -10 分 $f'(x)$ 的极小值是 $f(\sqrt{2}) = -8\sqrt{2}$.
$$\therefore f(x)$$
的两次的是 $f(x) = -12$ 分
$$\therefore f(x)$$
的两级分别是 $f(x) = -12$ 分
$$\therefore f(x) = -12$$

$$\therefore f(x) = -12$$

令 h'(x)=0, 得 x=1, x= $-\frac{1}{3}$ (舍)	
当 $0 < x < 1$ 时, $h'(x) > 0$;当 $x > 1$ 时, $h'(x) < 0$	10 分
∴当 x=1 时, h (x) 取得最大值 - 2	
∴a≥ - 2.	11 分
∴a 的取值范围是[-2, +∞).	12 分