Espaços Vetoriais

Álgebra Linear

Espaços Vetoriais

- 1. Considera o conjunto dos números complexos $\mathbb C$ e definidas as operações: adição usual de dois números complexos (a+bi)+(c+di)=(a+c)+(b+d)i, multiplicação de um número real por um número complexo, $\alpha \cdot (a+bi)=\alpha a+\alpha bi$. O conjunto $\mathbb C$ é um espaço vetorial sobre $\mathbb R$? Justifica.
- **2.** Considera o conjunto dos números reais $\mathbb R$ e definidas as operações: adição usual entre números reais, multiplicação de um número real por um número complexo, $\alpha \cdot (a+bi) = \alpha a + \alpha bi$. O conjunto $\mathbb R$ é um espaço vetorial sobre $\mathbb C$? Justifica.
- **3.** Considera o conjunto $E = \{(x, 2x, 3x), x \in \mathbb{R}\}$ e definidas as operações: adição de elementos de E dada por (x, 2x, 3x) + (y, 2y, 3y) = (x + y, 2x + 2y, 3x + 3y), multiplicação de um número real por um elemento de E, $\alpha \cdot (x, 2x, 3x) = (\alpha x, \alpha 2x, \alpha 3x)$. O conjunto E é espaço vetorial sobre \mathbb{R} ? Justifica.
- **4.** Considera o conjunto $E = \{(x,y) \in \mathbb{R}^2 : x > 0 \ e \ y > 0\}$ e definidas as operações: adição de elementos de E dada por $(x_1,y_1) + (x_2,y_2) = (x_1 + x_2,y_1 + y_2)$, multiplicação de um número real por um elemento de E, $\alpha \cdot (x,y) = (\alpha x, \alpha y)$. O conjunto E é espaço vetorial sobre \mathbb{R} ? Justifica.