Documents autorisés : cours, TD, notes manuscrites. Barème indicatif : 4 + 3 + 4 + 5 + 4. Durée : 1h. Les valeurs approchées seront données avec trois chiffres significatifs.

Exercice 1

Vendredi 8 août, la cérémonie d'ouverture des Jeux Olympiques a été regardée par 2 milliards de personnes, soit un tiers de la population mondiale. (Le Monde du 16 août 2008).

On note X la variable aléatoire qui donne le nombre de personnes ayant suivi la cérémonie d'ouverture des Jeux Olympiques le vendredi 8 août dans un groupe de 100 personnes.

- 1. On suppose que X suit la loi binomiale $\mathcal{B}\left(100, \frac{1}{3}\right)$. Préciser $P\left(X=33\right)$ sans chercher à calculer ce nombre.
- 2. On procède à présent à une approximation suivant la loi normale $\mathcal{N}(m,\sigma)$ avec m=E(X) et $\sigma=\sqrt{V(X)}$.
 - (a) Préciser m et σ .
 - (b) Quelle est la probabilité
 - i. que 33 personnes aient suivi la cérémonie d'ouverture des Jeux Olympiques le vendredi 8 août : $P(32, 5 \le X \le 33, 5)$?
 - ii. qu'entre 24 et 42 personnes aient suivi la cérémonie d'ouverture des Jeux Olympiques le vendredi 8 août : $P(23, 5 \le X \le 42, 5)$?

Exercice 2

Le nombre de baleines qui s'échouent sur les côtes bretones en une année est une variable aléatoire X qui suit la loi de Poisson $\mathcal{P}(2,5)$.

- 1. Préciser P(X = 0), P(X = 1) et P(X = 2).
- 2. En déduire $P(X \ge 1)$, $P(X \ge 2)$ et $P(X \ge 3)$.

Source : JT TF1 16 août 2008.

Exercice 3

Le nombre d'insectes ingérés par une chauve souris en une nuit est une variable aléatoire X qui suit la loi normale $\mathcal{N}(m, \sigma)$ avec $m = 2\,000$ et $\sigma = 500$.

- 1. Quelle est la probabilité que
 - (a) entre 1 200 et 2 600 insectes soient ingérés par une chauve souris en une nuit : $P(1199, 5 \le X \le 2600, 5)$?
 - (b) au moins 2 800 insectes soient ingérés par une chauve souris en une nuit : $P(X \ge 2799, 5)$?
- 2. Le nombre d'insectes ingérés par deux chauves souris en une nuit est la variable aléatoire Y qui suit la loi normale $\mathcal{N}\left(2m,\sqrt{2}\,\sigma\right)$.
 - (a) Quelle est la probabilité qu'entre 2 400 et 5 200 insectes soient ingérés par deux chauves souris en une nuit : $P(2\,399,5 \le Y \le 5\,200,5)$?

(b) Préciser n tel que la probabilité qu'au moins n insectes soient ingérés par deux chauves souris en une nuit soit égale à 0.95.

Indication: n vérifie $P(Y \ge n - 0, 5) = 0,95$.

Exercice 4

On note X_1 et X_2 les variables aléatoires respectivement définies par :

$$> X_1(\Omega) = \{1, 2\}, P(X_1 = 1) = 0, 2 \text{ et } P(X_1 = 2) = 0, 8.$$

$$ightharpoonup X_2(\Omega) = \{1, 2\}, P(X_2 = 1) = 0, 4 \text{ et } P(X_2 = 2) = 0, 6.$$

On pose $P((X_2 = 1) / (X_1 = 1)) = 0,25$.

- 1. Préciser $P((X_1 = 1) \cap (X_2 = 1))$
- 2. En déduire la loi conjointe du couple de variables aléatoires (X_1, X_2) en reproduisant et complétant le tableau suivant :

$X_1 \backslash X_2$	1	2
1		
2		

- 3. Est-ce que X_1 et X_2 sont indépendantes? Expliquer.
- 4. On pose $X_3 = X_1 X_2$. Donner la loi de probabilité de X_3 . On pourra présenter les résultats dans un tableau.
- 5. Déterminer $E(X_1)$, $E(X_2)$, $E(X_3)$, $V(X_1)$ et $V(X_2)$. On reproduira et complétera le tableau suivant :

$E\left(X_{1}\right)$	$E\left(X_{2}\right)$	$E\left(X_{3}\right)$	$V\left(X_{1}\right)$	$V\left(X_{2}\right)$

6. En déduire $E(X_1 + X_2)$, $cov(X_1, X_2)$ et $V(X_1 + X_2)$.

Indication:
$$E(X_1 + X_2) = E(X_1) + E(X_2)$$
, $cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$ et $V(X_1 + X_2) = V(X_1) + V(X_2) + 2cov(X_1, X_2)$.

On reproduira et complétera le tableau suivant :

$E\left(X_1+X_2\right)$	$cov(X_1, X_2)$	$V\left(X_1+X_2\right)$

Exercice 5

On note f la fonction définie par f(x) = 4x sur $\left[0, \frac{1}{2}\right]$, f(x) = 4 - 4x sur $\left[\frac{1}{2}, 1\right]$ et f(x) = 0 sinon.

- 1. Représenter graphiquement f.
- 2. Montrer que f est une densité de probabilité.
- 3. Soit X une variable aléatoire de densité de probabilité f.
 - (a) Préciser la fonction de répartion de X.
 - (b) En déduire $P(\frac{1}{3} \le X \le \frac{3}{4})$.
 - (c) Préciser E(X) et V(X).