2025/09/10 06:29 1/18 Sicherungsverteiler Pro

Sicherungsverteiler Pro

Der Sicherungsverteiler Pro vereint zahlreiche Funktionen in einem Gerät.

Seine Hauptaufgabe ist das Absichern einzelner Stromkreise bei Nutzung eines gemeinsamen Netzteils mit bis zu 10A.

So können bis zu acht Universalverteiler direkt an die einzeln abgesicherten Ausgänge angeschlossen werden.

In der Praxis verteilt sich der Strom aber nie gleichmäßig auf die angeschlossenen Verteiler. Um ungenutzte Leistungsreserven auf zusätzliche Verbraucher zu verteilen, überwacht der Sicherungsverteiler Pro jeden seiner acht Ausgänge in Echtzeit und informiert über den aktuellen Stromverbrauch. Signalisiert wird dies über ein integriertes Display sowie über acht RGB LEDs. Der Sicherungsverteiler Pro arbeitet dabei komplett autark und ist nicht auf eine dauerhafte Verbindung zum PC angewiesen.

Die Platine ist so konzipiert, dass man sie durch die Verwendung unterschiedlicher Komponenten für 5 Volt oder für 12 Volt nutzen kann. Eine gemeinsame Nutzung einer Platine für beide Spannungen ist nicht möglich.

Die Platine kommt SMD vorbestückt mit acht Stromsensoren und acht RGB LEDs.

Stückliste

Anzahl	Bezeichnung	Beschreibung	Bemerkungen
1	Anschluss für externes Display	R-RJ45 R08P-B000	
2	Anschluss für Arduino	Buchsenleiste 15pol. 1Reihig RM2.54	
1	Anschluss für internes Display	Buchsenleiste 8pol. 1Reihig RM2.54	
1	Anschluss für internes Display	Buchsenleiste 4pol. 1Reihig RM2.54	
1	Halter für Display	4pol. Stiftleiste RM2.54	
1	Jumper 5V/12V	3pol. Stiftleiste RM2.54	
1	Jumper 5V/12V	Jumper grün	Blau in 12V Version
3	Taster Vor, Bestätigen, Zurück	Push Button Switch 6*6*20mm	
1	Anschluss für externe Taster	Wannen-Steckerleiste 6-pol. gerade	
2	Anschluss für externe Taster	Pfostenverbinder 6-pol	
1	Gesamtsicherung	Auto Sicherungshalter Standard	
1	Gesamtsicherung	Auto Sicherung 10A	
1	Trimmer für Displayhelligkeit	Präzisionspotentiometer 3362W 1KOhm	
8	Einzelsicherung	Sicherungshalter PTF-50	
8	Einzelsicherung	Sicherung 5×20 2A	
5	Stromeingang und -ausgänge	Anschlussklemme KF142R-5.08 4-fach	
1	Stromeinspeisung alternativ	Buchse 10A	
8	Brückung des 78L05	Metallschicht-Widerstand 0 Ohm	nur 5V Version
8	5V Versorgung für 12V Version	Spannungsregler 78L05	nur in 12V Version
1	5V Versorgung für 12V Version	Linearregler L7805	nur in 12V Version

Zusammenbau

5 Volt Version

Den Anfang machen die acht 0 Ohm Widerstände R1-R8, gefolgt vom Trimmer R0, mit dem die Helligkeit des Displays reguliert werden kann.

Die Widerstände überbrücken den Steckplatz für den Spannungsregler, der ausschließlich für die 12 Volt Version benötigt wird.

2025/09/10 06:29 3/18 Sicherungsverteiler Pro

Die beiden Buchsenleisten für den Arduino, die zwei für das Display sowie die dreipolige Stiftleiste für den 5 V Jumper folgen.

Die acht Sicherungshalter für die Feinsicherungen müssen noch vor der KFZ-Sicherung eingelötet werden, wenn man die Löthilfe verwenden möchte.

Nur mit der Löthilfe ist eine parallele Ausrichtung möglich, sodass die Platine im Anschluss gut in das Gehäuse passt.

Der Halter für die KFZ-Sicherung kann im Anschluss mit eingesteckter Sicherung erfolgen.

2025/09/10 06:29 5/18 Sicherungsverteiler Pro

Die fünf 4-fach Klemmleisten müssen exakt ausgerichtet und gut angepresst werden. Es kann passieren, dass die Klemmleisten nicht korrekt nebeneinander passen! (Herstellertoleranz)

Abhilfe: Hier kann mit Sandpapier auf der rechten Seite der Klemmseite ein wenig Material abgenommen werden

Jeden der fünf Blöcke zunächst mit einem Lötpunkt fixieren und Lage kontrollieren.

Den Abschluss bilden die drei Taster S1 - S3.

2025/09/10 06:29 7/18 Sicherungsverteiler Pro

Arduino und Display müssen zum Verschrauben an der Anlage zunächst entfernt werden, da sich die Bohrungen unter den beiden Bauteilen befinden.

12 Volt Version

Den Anfang machen die acht Spannungsregler 78L05 sowie der Trimmer R0, mit dem die Helligkeit des Displays reguliert werden kann.

2025/09/10 06:29 9/18 Sicherungsverteiler Pro

Es folgt der große Spannungsregler L7805, der den Arduino und die WS2812 LEDs mit Strom versorgt.

Die beiden Buchsenleisten für den Arduino, die zwei für das Display sowie die dreipolige Stiftleiste für

den 12 V Jumper folgen.

Die acht Sicherungshalter für die Feinsicherungen müssen noch vor der KFZ-Sicherung eingelötet werden, wenn man die Löthilfe verwenden möchte.

Nur mit der Löthilfe ist eine parallele Ausrichtung möglich, sodass die Platine im Anschluss gut in das Gehäuse passt.

2025/09/10 06:29 11/18 Sicherungsverteiler Pro

Der Halter für die KFZ-Sicherung kann im Anschluss mit eingesteckter Sicherung erfolgen.

Die fünf 4-fach Klemmleisten müssen exakt ausgerichtet und gut angepresst werden. Jeden der fünf Blöcke zunächst mit einem Lötpunkt fixieren und Lage kontrollieren.

Gemeinsamkeiten 5V und 12V Version

Alternativ zur 4-fach Klemme "In" kann eine 10A Buchse für einen Hohlstecker verwendet werden.

2025/09/10 06:29 13/18 Sicherungsverteiler Pro

Für den Fall der Nutzung eines externen Displays und externer LEDs, werden noch eine RJ45-Buchse sowie ein Wannenstecker benötigt.

Der Sketch

Installation der UCGLIB

Bevor der Sketch auf den Arduino geladen wird, muss die passende Bibliothek für das Display installiert werden.

Diese findet man in der Arduino IDE ganz einfach unter > Werkzeuge > Bibliotheken verwalten... Im Suchfeld oben rechts wird einfach "UCGLIB" eingegeben und es erscheint folgende Auswahl, bei der man einfach auf installieren klickt.

Die Bibliothek wird damit automatisch in den Sketch eingebunden.

2025/09/10 06:29 15/18 Sicherungsverteiler Pro

Installation des Sketchs

Der Inhalt der ZIP-Datei wird nach dem Entpacken in folgendes Verzeichnis verschoben: C:\Benutzer\{Benutzername}\Dokumente\Arduino\ACS712-Display

Anschließend öffnet man die ACS712-Display.ino in der Arduino IDE und überträgt den Sketch auf den angeschlossenen Arduino.

Anpassung des Nullpunkts

Für eine richtige Funktionsweise ist das erstmalige Kalibrieren der ACS712-Sensoren nach erfolgreicher Inbetriebnahme unerlässlich. Dazu montiert man den Sicherungsverteiler mit aufgespieltem Sketch am gewünschten Ort und schließt ihn an die Versorgungsspannung (5V oder 12V) an. Eine Verbindung zum PC ist nicht mehr erforderlich.

Zum Kalibrieren werden die Tasten "Hoch" & "Runter" bei eingeschalteter Versorgungsspannung für ca. eine Sekunde lang gleichzeitig gedrückt. Dabei misst der Arduino die Abweichung ggü. Null und schreibt die gemessenen Werte dauerhaft ins EEPROM. Es versteht sich von selbst, dass zu diesem Zeitpunkt kein Verbraucher eingeschaltet sein darf, um Fehlmessungen auszuschließen.

Grün für 5V und Blau für 12V

Der Arduino erkennt automatisch*, ob er von einem 5V Netzteil oder einem 12V Netzteil versorgt wird.

Dementsprechend leuchten die LEDs im 5V Betrieb grün und im 12V Betrieb blau.

*) Bei der 12V Variante liegen die am Sensor gemessenen Werte bedingt durch den Linearregler 78L05 etwas unter den Werten eines 5V Netzteils.

Individuelle Einstellungen nur bei Bedarf

Im Sketch gibt es einige Bereiche, die an die individuellen Vorlieben angepasst werden können. Generell **muss** hier gar nichts verändert werden.

Die wichtigste Anpassung ist der Name des Netzteils, welcher unten links im Display angezeigt wird. Der Name kann im Tab bzw. in der Datei "**Name.h**" verändert werden.

Für die 5V Version und die 12V Version werden beispielsweise unterschiedliche Farben verwendet. Wenn alles im "grünen Bereich" ist, signalisiert die 5V Version das mit Grün und die 12V Version mit Blau.

Diese Farben können im Tab "**Colors.h**" definiert werden. Der Sketch zieht sich die entsprechenden Werte.

Datei	Bereich	#define	Wert	Ergebnis	Bemerkungen
Colors.h	WS2812 LEDs	color0	0x000210	sehr schwaches blau bei 12V	
Colors.h	WS2812 LEDs	color1	0x000700	sehr schwaches grün bei 5V	
Colors.h	WS2812 LEDs	color2	0x070700	sehr schwaches orange	
Colors.h	WS2812 LEDs	color3	0x070000	sehr schwaches rot	
Colors.h	WS2812 LEDs	color4	0xFF0000	helles Rot	
Colors.h	Schriftfarbe	typo0	0, 0,120,255	blau	
Colors.h	Schriftfarbe	typo1	0, 0,255,0	grün	
Colors.h	Schriftfarbe	typo2	0, 255,255,0	gelb	
Colors.h	Schriftfarbe	typo3	0, 255, 0,0	rot	
Colors.h	Schriftfarbe	typo4	0, 255, 0,0	rot	
Name.h	Name des Netzteils	supply1	"5V/12V Netzteil"	5V/12V Netzteil	max. 13 Zeichen
Name.h	Name des Netzteils	supply2	"Beispieltext"	Beispieltext	max. 13 Zeichen

3D-Gehäuse - Sicherungsverteiler Pro

Eignung für 3D-Drucker: FFF / FDM *** SLA / STL ******

2025/09/10 06:29 17/18 Sicherungsverteiler Pro

Im Github liegt eine einfache Druckdatei bereit, die auf einem einfarbigen Drucker hergestellt werden kann. Beide Teile sind so konstruiert, dass sie ohne Support mit 0,2mm Layer und 0,4mm Düse gedruckt werden können.

Wer einen Farbwechsel nach 6mm durchführen will, kann das selbstverständlich manuell anstoßen. Die Bohrungen für die LEDs haben 4mm Durchmesser, sodass ein handelsüblicher Lichtwellenleiter passt.

Die "Schablone_Fuseholder" wird benötigt, um die Sicherungshalter parallel zueinander zu löten. Die Version mit beschriftetem Deckel, gedruckten Linsen für die LEDs und zweifarbigem Unterteil ist wie gewohnt im Shop erhältlich.

Schaltplan

From:

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

https://wiki.mobaledlib.de/anleitungen/bauanleitungen/sicherungsverteiler_pro_221de

