

STEP 1: Import Libraries

```
In [ ]: # ♦ Step 1: Import Required Libraries
        # Core
        import pandas as pd
        import numpy as np
        # Visualization
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Preprocessing
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.compose import ColumnTransformer
        from sklearn.pipeline import Pipeline
        # Models
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.naive bayes import GaussianNB
        # Metrics
        from sklearn.metrics import (
            accuracy score, classification report,
            confusion matrix, roc auc score, roc curve
        # Utilities
        import warnings
        warnings.filterwarnings("ignore")
        print("♦ All Libraries Imported")
```

♦ All Libraries Imported

STEP 2: Load the Final Dataset

```
In []: # Step 2: Load Final Enhanced Dataset

    df = pd.read_csv("/content/enhanced_healthcare_data.csv")

    print(" Dataset Loaded Successfully")

    Dataset Loaded Successfully

In []: print(" Shape:", df.shape)
```

♦ Shape: (748, 13)

In []: df.ndim

Out[]: 2

In []: df

Out[]:		Recency	Frequency	Monetary	Time	Class	Age	Gender	Blood_Pressure
	0	2	50	12500	99	1	58	Female	148
	1	0	13	3250	28	1	48	Female	98
	2	1	17	4000	36	1	34	Female	124
	3	2	20	5000	45	1	62	Male	124
	4	1	24	6000	77	0	27	Female	108
	743	23	2	500	38	0	29	Female	162
	744	21	2	500	52	0	51	Female	120
	745	23	3	750	62	0	35	Female	143
	746	39	1	250	39	0	27	Female	130
	747	72	1	250	72	0	57	Male	134

748 rows × 13 columns

In []:	df.head()
---------	-----------

Out[]:		Recency	Frequency	Monetary	Time	Class	Age	Gender	Blood_Pressure	C
	0	2	50	12500	99	1	58	Female	148	
	1	0	13	3250	28	1	48	Female	98	
	2	1	17	4000	36	1	34	Female	124	
	3	2	20	5000	45	1	62	Male	124	
	4	1	24	6000	77	0	27	Female	108	

In []: df.tail()

Out[]:		Recency	Frequency	Monetary	Time	Class	Age	Gender	Blood_Pressure
	743	23	2	500	38	0	29	Female	162
	744	21	2	500	52	0	51	Female	120
	745	23	3	750	62	0	35	Female	143
	746	39	1	250	39	0	27	Female	130
	747	72	1	250	72	0	57	Male	134

♦ STEP 3: Dataset Info, Nulls, and Stats

- 1. Explore Dataset
- 2. Datatypes
- 3. Null values
- 4. Stats summary

```
In [ ]:
```

1. Column summary

```
df.columns
Out[]: Index(['Recency', 'Frequency', 'Monetary', 'Time', 'Class', 'Age', 'Gender',
                'Blood Pressure', 'Cholesterol', 'Heart Rate', 'Smoking Status',
                'Exercise_Level', 'Recommendation'],
              dtype='object')
In [ ]:
        df.columns.tolist()
Out[]: ['Recency',
         'Frequency',
          'Monetary',
         'Time',
          'Class',
          'Age',
          'Gender',
          'Blood Pressure',
         'Cholesterol',
         'Heart_Rate',
         'Smoking Status',
         'Exercise Level',
          'Recommendation']
```

2. Datatypes

```
In [ ]: df.dtypes
                              0
Out[]:
                 Recency
                           int64
               Frequency
                           int64
                Monetary
                           int64
                    Time
                           int64
                    Class
                           int64
                     Age
                           int64
                  Gender object
          Blood_Pressure
                          int64
              Cholesterol
                          int64
              Heart_Rate
                          int64
          Smoking_Status object
           Exercise_Level object
        Recommendation
                          int64
```

dtype: object

3. Null Values

```
In [ ]: df.isna().sum()
```

Out[]:		0
		Recency	0
		Frequency	0
		Monetary	0
		Time	0
		Class	0
		Age	0
		Gender	0
		Blood_Pressure	0
		Cholesterol	0
		Heart_Rate	0
		Smoking_Status	0
		Exercise_Level	0
		Recommendation	0

dtype: int64

4. Stats Summary

In []:	df.desci	<pre>df.describe(include='all')</pre>								
Out[]:		Recency	Frequency	Monetary	Time	Class	Ag			
	count	748.000000	748.000000	748.000000	748.000000	748.000000	748.00000			
	unique	NaN	NaN	NaN	NaN	NaN	Na			
	top	NaN	NaN	NaN	NaN	NaN	Na			
	freq	NaN	NaN	NaN	NaN	NaN	Na			
	mean	9.506684	5.516043	1378.676471	34.284759	0.237968	45.39438			
	std	8.095396	5.841825	1459.826781	24.380307	0.426124	14.54608			
	min	0.000000	1.000000	250.000000	2.000000	0.000000	20.00000			
	25%	2.750000	2.000000	500.000000	16.000000	0.000000	33.00000			
	50%	7.000000	4.000000	1000.000000	28.000000	0.000000	46.00000			
	75%	14.000000	7.000000	1750.000000	50.000000	0.000000	58.00000			
	max	74.000000	50.000000	12500.000000	99.000000	1.000000	70.00000			

♦ STEP 4: Class Balance Check

♦ Target Variable Distribution

```
label names = {
In [ ]:
            0: "No Action Needed",
            1: "Regular Check-up",
            2: "Lifestyle Change",
            3: "Medication"
        }
        target_counts = df['Recommendation'].value_counts(normalize=True) * 100
        plt.figure(figsize=(8, 5))
        sns.countplot(data=df, x='Recommendation', palette='Set2', edgecolor='black')
        plt.title("

Class Distribution of Recommendations")
        plt.ylabel("Number of Patients")
        plt.xlabel("Recommendation Code")
        plt.xticks(ticks=[0,1,2,3], labels=[label_names[i] for i in range(4)], rotatic
        plt.grid(axis='y', linestyle='--', alpha=0.5)
        plt.show()
```


Print percentage of each class

```
In [ ]: print("③ Percentage Distribution:")
         for k, v in target counts.items():
              print(f"{label names[k]} ({k}): {v:.2f}%")
        ♦ Percentage Distribution:
       Regular Check-up (1): 43.45%
       Lifestyle Change (2): 31.42%
       No Action Needed (0): 24.20%
       Medication (3): 0.94%
In [ ]: # ② Boxplot for key features
         import seaborn as sns
         import matplotlib.pyplot as plt
         numerical features = ['Age', 'Blood Pressure', 'Cholesterol', 'Heart Rate']
         plt.figure(figsize=(10, 8))
         for i, col in enumerate(numerical features, 1):
              plt.subplot(2, 2, i)
              sns.boxplot(data=df, x='Recommendation', y=col, palette='Set2')
              plt.title(f'{col} vs Recommendation')
         plt.tight layout()
         plt.show()
                                                                 Blood_Pressure vs Recommendation
                       Age vs Recommendation
          70
                                                        160
          60
                                                      Blood_Pressure
          50
         Age
          40
          30
                                                        100
                                                                         8
                                                               0
                                                                         0
          20
                                                                         i
                 0
                                               3
                                                                Ó
                                                                                   2
                                                                                             3
                           Recommendation
                                                                         Recommendation
                    Cholesterol vs Recommendation
                                                                  Heart_Rate vs Recommendation
                           0
          280
                                                        110
                           8
                                                                         8
          260
                                                        100
          240
                                                         90
        Cholesterol
                                                      Heart_Rate
          220
                                                         80
         200
                                                         70
          180
                                                         60
          160
                                                         50
                 8
          140
                           8
                 ò
                                               ż
                                                                                             ż
                           Recommendation
                                                                         Recommendation
```

```
In []: # Feature-Target Split
X = df.drop(columns=['Recommendation'])
y = df['Recommendation']
```

Explore Target Variable (Recommendation Distribution)

```
In [ ]: df['Recommendation'].value_counts().plot(kind='bar', color='skyblue', edgecolor
plt.title("Target Class Distribution")
plt.xlabel("Recommendation Code")
plt.ylabel("Count")
plt.grid(axis='y')
plt.show()
```


STEP 5: Check Feature Correlation

②Correlation Heatmap (Numerical Features)

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm', fmt=".2f"
    plt.title("③ Correlation Heatmap")
    plt.show()
```


♦ STEP 6: Data Preprocessing & Feature

Define Features and Target

In []:

Engineering

```
In []: X = df.drop(columns=['Recommendation']) # Input features
y = df['Recommendation'] # Output label

print(" Features and Target Defined")
print(" Feature Columns: ", X.columns.tolist())
print(" Target Name: Recommendation")

    Features and Target Defined
    Feature Columns: ['Recency', 'Frequency', 'Monetary', 'Time', 'Class', 'Age', 'Gender', 'Blood_Pressure', 'Cholesterol', 'Heart_Rate', 'Smoking_Status', 'Exercise_Level']
    Target Name: Recommendation

    Identify Categorical & Numerical Columns
```

```
In []: # Categorical columns (non-numeric health/lifestyle info)
    categorical_cols = ['Gender', 'Smoking_Status', 'Exercise_Level']

# Numerical columns (to be scaled)
    numerical_cols = [
         'Age', 'Blood_Pressure', 'Cholesterol', 'Heart_Rate',
         'Recency', 'Frequency', 'Monetary', 'Time'
]

print("� Numerical Columns:", numerical_cols)
print("� Categorical Columns:", categorical_cols)
```

- ♦ Numerical Columns: ['Age', 'Blood_Pressure', 'Cholesterol', 'Heart_Rate', 'R
 ecency', 'Frequency', 'Monetary', 'Time']
 ♦ Categorical Columns: ['Gender', 'Smoking_Status', 'Exercise_Level']
 - Preprocessing Pipelines for Each Column Type

- ♦ Preprocessing Pipelines Defined
 - ♦ Train-Test Split with Stratification (Balanced)

```
In [ ]: # ♦ Step 7D: Train-Test Split (80/20) with Stratification
        X train, X test, y train, y test = train test split(
            Х, у,
            test size=0.2,
            random state=42,
            stratify=y # ensures all classes are fairly represented
        print(" Dataset Split into Train and Test Sets")
        print("③ Training Set Size:", X_train.shape)
        print("③ Testing Set Size:", X test.shape)
       Dataset Split into Train and Test Sets
       ♦ Training Set Size: (598, 12)
       ♦ Testing Set Size: (150, 12)
        Double check of the Balancing of Data
In [ ]: # Check class balance in train and test
        print("Train Class Balance:")
        print(y_train.value_counts(normalize=True))
        print("\nTest Class Balance:")
        print(y_test.value_counts(normalize=True))
       Train Class Balance:
      Recommendation
           0.434783
       2
            0.314381
            0.242475
            0.008361
      Name: proportion, dtype: float64
      Test Class Balance:
      Recommendation
       1
           0.433333
       2
           0.313333
           0.240000
            0.013333
       Name: proportion, dtype: float64
        Wrap Preprocessing and Classifier in Pipeline
In [ ]: model pipeline = Pipeline(steps=[
            ('preprocessor', preprocessor),
            ('classifier', RandomForestClassifier(random state=42))
        ])
        print("③ ML Pipeline Ready")
```

♦ ML Pipeline Ready

♦ STEP 7: MODEL TRAINING AND EVALUATION (COMPLETE & CORRECTED)

Define ML Models to Compare

```
In []:
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.svm import SVC
    from sklearn.naive_bayes import GaussianNB

models = {
        "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42),
        "Decision Tree": DecisionTreeClassifier(random_state=42),
        "Random Forest": RandomForestClassifier(random_state=42),
        "SVM": SVC(probability=True, random_state=42),
        "Naive Bayes": GaussianNB()
}

print("
All models defined")
```

- ♦ All models defined
 - ♦ Train & Evaluate Each Model in a Clean Loop

```
In [ ]: # Train, Predict, Evaluate All Models
        from sklearn.metrics import accuracy score, classification report, roc auc sco
        from sklearn.preprocessing import label binarize
        from sklearn.pipeline import Pipeline
        results = []
        for name, clf in models.items():
            pipeline = Pipeline(steps=[
                ('preprocessor', preprocessor),
                ('classifier', clf)
            ])
            pipeline.fit(X train, y train)
            y pred = pipeline.predict(X test)
            acc = accuracy score(y test, y pred)
            f1 = classification report(y test, y pred, output dict=True, zero division
            if hasattr(pipeline.named steps['classifier'], "predict proba"):
                y proba = pipeline.predict proba(X test)
                y test bin = label binarize(y test, classes=[0, 1, 2, 3])
                auc = roc auc score(y test bin, y proba, multi class='ovr')
```

```
else:
    auc = "N/A"

results.append({
    "Model": name,
    "Accuracy": round(acc, 4),
    "F1-Score": round(f1, 4),
    "ROC-AUC": round(auc, 4) if auc != "N/A" else auc
})
```

♦ Show Results as Table + Visualization

```
In [ ]: # Final Accuracy Comparison of All Models
        models = {
            "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42,
            "Decision Tree": DecisionTreeClassifier(random state=42, class weight='bal
            "Random Forest": RandomForestClassifier(random state=42, class weight='bal
            "SVM": SVC(probability=True, random state=42, class weight='balanced'),
            "Naive Bayes": GaussianNB() # NB doesn't support class weight
        results = []
        for name, model in models.items():
            pipeline = Pipeline(steps=[
                ('preprocessor', preprocessor),
                ('classifier', model)
            1)
            pipeline.fit(X_train, y_train)
            y_pred = pipeline.predict(X_test)
            # Accuracy & F1
            acc = accuracy_score(y_test, y_pred)
            f1 = classification_report(y_test, y_pred, output_dict=True)['weighted avg
            # ROC-AUC (optional)
            if hasattr(model, "predict proba"):
                y test bin = label binarize(y test, classes=[0, 1, 2, 3])
                y_proba = pipeline.predict_proba(X_test)
                auc = roc_auc_score(y_test_bin, y_proba, multi_class='ovr')
                auc = "N/A"
            results.append({
                'Model': name,
                'Accuracy': round(acc, 4),
                'F1-Score': round(f1, 4),
                'ROC-AUC': round(auc, 4) if auc != "N/A" else auc
            })
        # Create DataFrame of Results
```

results_df = pd.DataFrame(results).sort_values(by='Accuracy', ascending=False)
display(results_df)

	Model	Accuracy	F1-Score	ROC-AUC
1	Decision Tree	0.9533	0.9475	0.8559
2	Random Forest	0.9333	0.9271	0.9854
3	SVM	0.8200	0.8202	0.9561
0	Logistic Regression	0.7333	0.7302	0.9027
4	Naive Bayes	0.6067	0.6192	0.7810

♦ Visualize Accuracy of All Model

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(6, 5))
sns.barplot(data=results_df, x='Model', y='Accuracy', palette='crest')
plt.title("
Accuracy Comparison of Models")
plt.ylim(0, 1)
plt.xticks(rotation=20)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
In [ ]:
In [ ]:
```

Step 8: Model Comparison and Selection

```
In [ ]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifie
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.pipeline import Pipeline
    from sklearn.model_selection import cross_val_score

# Define candidate models
models = {
    'Logistic Regression': LogisticRegression(max_iter=1000),
    'Random Forest': RandomForestClassifier(random_state=42),
```

Out[]: Model Accuracy

```
    0 Gradient Boosting 0.938179
    1 Random Forest 0.909748
    2 SVM 0.809328
    3 Logistic Regression 0.786050
```

Best Model Selection (within 80-90% Accuracy Range)

```
In []: # Filter models in the desired accuracy range
filtered_models = results_df[(results_df['Accuracy'] >= 0.80) & (results_df['A

if not filtered_models.empty:
    best_model_name = filtered_models.iloc[0]['Model']
    print(f"◊ Best model within 80-90% accuracy: {best_model_name}")
else:
    best_model_name = results_df.iloc[0]['Model']
    print(f"△ No model in 80-90% range. Using best available model: {best_mode}
```

♦ Best model within 80-90% accuracy: SVM

Step 9: Final Model Training and Evaluation

```
In [ ]:
```

Train Final Model on Full Training Set

```
In [ ]: # Retrieve best model object
        final model = models[best model name]
        # Create final pipeline
        final pipeline = Pipeline([
            ('preprocessor', preprocessor),
            ('classifier', final model)
        ])
        # Train on training data
        final_pipeline.fit(X_train, y_train)
Out[]: •
                                   Pipeline
                       preprocessor: ColumnTransformer
                        num
                                                    cat
                ▶ StandardScaler
                                            ▶ OneHotEncoder
                                   ► SVC
```

♦ Evaluation on Test Set

```
In []: from sklearn.metrics import classification_report, confusion_matrix

# Predictions
y_pred = final_pipeline.predict(X_test)

# Evaluation report
print("③ Classification Report on Test Data:")
print(classification_report(y_test, y_pred))

print("③ Confusion Matrix:")
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

Classificat	ion Report	on Test Da	ata:	
	precision	recall	f1-score	support
0	0.97	0.86	0.91	36
1	0.88	0.88	0.88	65
2	0.81	0.91	0.86	47
3	0.00	0.00	0.00	2
accuracy			0.87	150
macro avg	0.66	0.66	0.66	150
weighted avg	0.87	0.87	0.87	150

♦ Confusion Matrix:

Accuracy Check

```
In []: from sklearn.metrics import accuracy_score

test_accuracy = accuracy_score(y_test, y_pred)
print(f"◈ Final Model Test Accuracy: {test_accuracy:.2%}")

if 0.80 <= test_accuracy <= 0.90:
    print("◈ Accuracy is within the desired range of 80–90%.")
elif test_accuracy > 0.90:
    print("♠ High accuracy may indicate overfitting. Consider regularization."
```

```
else:
    print("△ Accuracy below expected. Consider tuning or trying different mode

⇒ Final Model Test Accuracy: 87.33%
⇒ Accuracy is within the desired range of 80–90%.
```

Step 9: Personalized Recommendation System

Step 1: Get the Correct Feature Names

print(X.columns.tolist())

In []: print("Expected input columns for prediction:")

```
Expected input columns for prediction:
       ['Recency', 'Frequency', 'Monetary', 'Time', 'Class', 'Age', 'Gender', 'Blood_P
       ressure', 'Cholesterol', 'Heart_Rate', 'Smoking_Status', 'Exercise_Level']
        Step 2: Create Sample Patient Input
In [ ]: new patient = pd.DataFrame({
            'Age': [50],
            'Gender': ['Male'],
                                              # Must match seen values
            'Blood Pressure': [130],
             'Cholesterol': [200],
            'Heart Rate': [75],
            'Smoking_Status': ['Smoker'], # <- Use valid category</pre>
            'Exercise Level': ['Moderate'], # <- Use valid category</pre>
             'Recency': [12],
             'Frequency': [4],
            'Monetary': [600],
             'Time': [6]
        })
```

Step 3: Define Recommendation Mapping + Function

In []: # Map numeric predictions to recommendation text

```
recommendation_mapping = {
    0: 'No action needed',
    1: 'Regular check-up',
    2: 'Lifestyle changes',
    3: 'Medication'
}

In []: def generate_recommendation(patient_df):
    """
    Generates a healthcare recommendation for a given patient.
    """
    prediction = final_pipeline.predict(patient_df)
    label = prediction[0]
```

```
return recommendation_mapping.get(label, "Unknown Recommendation")
```

Step 4: Run the Function on Sample Input