Practice Midterm 2 for MATH 226, section 39559

You have 50 minutes.

Name: Date:

Problem	Score
#1	/10
#2	/10
#3	/10
#4	/10
#5	/10
Total	/50

Problem 1 (10 points): Define

$$f(x, y, z) = \frac{1}{x^2} + \frac{4}{y^2} + \frac{9}{z^2},$$

where x > 0, y > 0, and z > 0. Use Lagrange multipliers to find the minimum value of f on the portion of the surface $x^2 + y^2 + z^2 = 36$ with x > 0, y > 0, z > 0. (You may assume that this absolute minimum exists, and that the solution to the system of equations coming from Lagrange multipliers is this absolute minimum.)

Let's use Lagrange multipliers with $g(x, y, z) = x^2 + y^2 + z^2$ to find the critical points of f subject to the constraint g = 36:

$$\begin{cases}
-2/x^3 &= 2\lambda x, \\
-8/y^3 &= 2\lambda y, \\
-18/z^3 &= 2\lambda z, \\
x^2 + y^2 + z^2 &= 36.
\end{cases}$$

Solving for λ (and using that x,y,z are nonzero), we have $-1/x^4 = -4/y^4 = -9/z^4$, hence $y = \sqrt{2}x$, $z = \sqrt{3}x$ (here we have used that x,y,z are all positive). Substituting this into the constraint, we have $x^2 + 2x^2 + 3x^2 = 36$, hence $x = \sqrt{6}$, hence the one critical point of f subject to g = 36 is $(\sqrt{6}, 2\sqrt{3}, 3\sqrt{2})$. This must be the global minimum, since as we approach the boundary of this portion of the ellipsoid, f goes to ∞ . Therefore the global minimum of f on this eighth-ellipsoid is $f(\sqrt{6}, 2\sqrt{3}, 3\sqrt{2}) = 1/6 + 4/12 + 9/18 = 1$.

Problem 2 (10 points): Consider the function

$$f(x,y) = \frac{1}{5}xy^2 - x$$

on the domain $D = \{(x, y) \mid -2 \le x \le 2, x^2 \le y \le 4\}.$

(a; 3 points) Find the critical points of f(x,y) in the interior of D.

The critical points are where f_x and f_y both vanish. We compute these partial derivatives:

$$f_x = \frac{1}{5}y^2 - 1, \qquad f_y = \frac{2}{5}xy.$$

The equation $f_x = 0$ gives $y = \pm \sqrt{5}$, hence the equation $f_y = 0$ gives x = 0. Of the points $(0, \pm \sqrt{5})$, only the point $(0, \sqrt{5})$ is in D.

(b; 3 points) Classify the critical points of f(x,y) in the interior of D as local minima, local maxima, or saddles.

We use the second derivative test. We compute the quantity called "D" (unfortunate overlap of notation):

$$D = f_{xx}f_{yy} - f_{xy}^2 = \left(\frac{1}{5}y^2 - 1\right)_x \left(\frac{2}{5}xy\right)_y - \left(\left(\frac{1}{5}y^2 - 1\right)_y\right)^2 = 0 \cdot \left(\frac{2}{5}x\right) - \left(\frac{2}{5}y\right)^2$$
$$= -\frac{4}{25}y^2.$$

It follows that $D(0, \sqrt{5}) = -4/5$ is negative, hence $(0, \sqrt{5})$ is a saddle point.

Problem 2 (continued).

(c; 4 points) Find the absolute maximum and minimum values of f(x,y) on D.

We must find the candidate-extrema on the interior and boundary. The only candidate on the interior is the critical point $(0, \sqrt{5})$, but we know that it cannot be a global extremum of f on D because $(0, \sqrt{5})$ is a saddle.

The boundary is composed of two curves: L_1 , the curve (x, x^2) for $-2 \le x \le 2$, and L_2 , the curve (x, 4) for $-2 \le x \le 2$.

- Consider L_1 . We have $f(x, x^2) = \frac{1}{5}x^5 x$. Its critical points are where $(\frac{1}{5}x^5 x)' = (x^4 1) = 0$, i.e. ± 1 . Its endpoints are $(\pm 2, 4)$.
- Consider L_2 . We have $f(x,4) = \frac{16}{5}x x = \frac{11}{5}x$, hence it has no critical points. Its endpoints are $(\pm 2,4)$.

The candidate-extrema are therefore (1,1), (-1,1), (2,4), and (-2,4) (we argued that the interior critical point cannot be a global extremum, because it is a saddle). We have $f(1,1)=-\frac{4}{5}$, $f(-1,1)=\frac{4}{5}$, $f(2,4)=\frac{22}{5}$, and $f(-2,4)=-\frac{22}{5}$, so the absolute max res. min are $\frac{22}{5}$ and $-\frac{22}{5}$.

Problem 3 (10 points): Evaluate the following integrals.

(a; 5 points)
$$I = \int_0^4 \int_{\sqrt{x}}^2 \frac{3}{y^3 + 1} \, dy \, dx$$
 (switch the order!).

By drawing the domain of integration, we see that we can swap the order and rewrite the integral like so:

$$I = \int_0^4 \int_{\sqrt{x}}^2 \frac{3}{y^3 + 1} \, dy \, dx = \int_0^2 \int 0^{y^2} \frac{3}{y^3 + 1} \, dx \, dy = \int_0^2 \frac{3y^2}{y^3 + 1} \, dy = \int_1^9 \frac{1}{u} \, du = \log 9.$$

(b; 5 points)
$$I = \int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} \sqrt{1+x^2+y^2} \, dy \, dx$$
.

The upper bound on y is $y = \sqrt{4 - x^2}$, which yields $x^2 + y^2 = 4$, i.e. the circle of radius 2. The lower bound is y = x, i.e. the line that makes an angle of $\pi/4$ with the +x-axis. In polar coordinates, the domain of integration is therefore

$$E = \{(r, \theta) \mid \pi/4 \le \theta \le \pi/2, 0 \le r \le r\}.$$

We compute I in polar coordinates:

$$I = \int_{\pi/4}^{\pi/2} \int_0^2 r \sqrt{1 + r^2} \, dr \, d\theta = \int_{\pi/4}^{\pi/2} \frac{1}{2} \int_1^5 \sqrt{u} \, du \, d\theta = \int_{\pi/4}^{\pi/2} \frac{1}{2} \left[\frac{2}{3} u^{3/2} \right]_1^5 \, d\theta$$
$$= \int_{\pi/4}^{\pi/2} \frac{1}{3} \left(5^{3/2} - 1 \right) \, d\theta$$
$$= \frac{\pi}{12} \left(5^{3/2} - 1 \right) .$$

Problem 4 (10 points): Consider the region E that is under the plane z + 3y = 16, inside the cylinder $x^2 + y^2 = 4$, and in the first octant.

(a; 3 points) Rewrite the integral $\iiint_E x \, dV$ as an iterated integral in Cartesian coordinates (i.e. x, y, z). (Do not compute this integral.)

The constraint that E is under the plane z+3y=16 is equivalent to $z \le -3y+16$. The constraint that E is inside the given cylinder is equivalent to $x^2+y^2+\le 4$. Finally, the constrain that E is in the first octant is equivalent to $x \ge 0$, $y \ge 0$, and $z \ge 0$. We can therefore rewrite E like so:

$$E = \{0 \le x \le 2, \ 0 \le y \le \sqrt{4 - x^2}, \ 0 \le z \le -3y + 16\}.$$

This allows us to rewrite the integral I like so:

$$I = \int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{-3y+16} x \, dz \, dy \, dx.$$

(b; 3 points) Rewrite this integral as an iterated integral in cylindrical coordinates.

This is pretty straightforward, as long as remember the extra factor of r we pick up when going into cylindrical coordinates:

$$I = \int_0^{\pi/2} \int_0^2 \int_0^{-3r \sin \theta + 16} r^2 \cos \theta \, dz \, dr \, d\theta.$$

(c; 4 points) Evaluate this integral.

Ave-ave:

$$I = \int_0^{\pi/2} \int_0^2 \int_0^{-3r \sin \theta + 16} r^2 \cos \theta \, dz \, dr \, d\theta = \int_0^{\pi/2} \int_0^2 \left(-3r^3 \sin \theta \cos \theta + 16r^2 \cos \theta \right) \, dr \, d\theta$$

$$= \int_0^{\pi/2} \left[-\frac{3}{4}r^4 \sin \theta \cos \theta + \frac{16}{3}r^3 \cos \theta \right]_{r=0}^2 \, d\theta$$

$$= \int_0^{\pi/2} \left(-12 \sin \theta \cos \theta + \frac{128}{3} \cos \theta \right) \, d\theta$$

$$= \left[-6 \sin^2 \theta + \frac{128}{3} \sin \theta \right]_{\theta=0}^{\theta=\pi/2}$$

$$= -6 + \frac{128}{3}$$

$$= \frac{110}{3}.$$

Problem 5 (10 points):

(a; 5 points) Rewrite the integral $I = \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x,y,z) \, dz \, dy \, dx$ as an iterated integral in the order $dx \, dy \, dz$. (You may want to draw a picture of the domain of integration, to help you figure out how to switch the order.)

This is tantamount to rewriting the domain:

$$E = \{(x, y, z) \mid -1 \le x \le 1, \ x^2 \le y \le 1, \ 0 \le z \le 1 - y\}$$
$$= \{(x, y, z) \mid 0 \le z \le 1, \ 0 \le y \le 1 - z, \ -\sqrt{y} \le x \le y\}.$$

We can therefore rewrite I in the desired order:

$$I = \int_0^1 \int_0^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) \, dx \, dy \, dz.$$

(b; 5 points) Compute the integral
$$I = \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \int_{\sqrt{x^2+y^2}}^{1} z \, dz \, dx \, dy$$
.

We rewrite the domain in cylindrical coordinates:

$$\begin{split} E &= \left\{ (x,y,z) \mid -1 \leq y \leq 1, \ -\sqrt{1-y^2} \leq x \leq \sqrt{1-y^2}, \ \sqrt{x^2+y^2} \leq z \leq 1 \right\} \\ &= \left\{ (r,\theta,z) \mid 0 \leq \theta \leq 2, \ 0 \leq r \leq 1, \ r \leq z \leq 1 \right\}. \end{split}$$

We now compute I:

$$I = \int_0^{2\pi} \int_0^1 \int_r^1 rz \, dz \, dr \, d\theta = \int_0^{2\pi} \int_0^1 \frac{1}{2} r (1 - r^2) \, dr \, d\theta$$
$$= \int_0^{2\pi} \left[\left(\frac{1}{4} r^2 - \frac{1}{8} r^4 \right) \cos \theta \right]_0^1 \, d\theta$$
$$= \int_0^{2\pi} \frac{1}{8} \, d\theta = \frac{\pi}{4}.$$