

Computational Physics

Florian Bruckner

Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, Vienna University of Technology, Austria

2015-02-25

Outline

Partielle Differentialgleichungen (PDEs)

Partielle Differentialgleichungen (PDEs)

- Bei partiellen Differentialgleichungen (Partial Differential Equations, PDE), treten mehr als eine unabhängige Variablen auf.
- Mögliche Differentialoperatoren: div, rot, Δ , ∂_t , . . .
- Partikuläre Lösung durch Faltung mit Greensfunktion
- Problem mit Randbedingungen, Inhomogenitäten, Nichtlinearitäten: in den seltensten Fällen sind analytische Lösungen bekannt.
- Lösungen sind Felder (Temperature, Magnetfeld, Druck, ...)

Lineare partielle Differentialgleichung 2. Ordnung

$$\sum_{i,j=1}^{n} \underbrace{a_{ij}(x) \, u_{x_i,x_j}}_{\text{Hauptteil}} + F(x,u,u_{x_i},\ldots,u_{x_j}) = 0$$

Charakterisierung von PDEs - Linearität

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i,x_j} + \sum_{i=1}^{n} b_i u_{x_i} + c u = f$$

linear

- Koeffizienten nur von den unabhängigen Variablen x_i abhängig
- Superpositionsprinzip
- z.B:

$$\sin(x)u_{xx} + \cos(y)u_{yy} = \exp\left(-x^2 - y^2\right)$$

konstante Koeffizienten

 $a_{ij} = constant$

$$u_{xx} + 3 u_{xy} + u_y + u_x - u = e^{x-y}$$

nicht-linear

- Koeffizienten auch von der Unbekannten u bzw. deren Ableitungen abhängig
- Oft keine eindeutige Lösung
- z.B: Burgers-Gleichung

$$u_t + u u_x = c u_{xx}$$

variable Koeffizienten

$$a_{ii} = f(x, y)$$

$$\sin(xy) u_{xx} + u_{xy} + y u_x - u = e^{x-y}$$

Charakterisierung von PDEs - Klasse(1)

■ Für PDEs 2. Ordnung:

$$\sum_{i,j=1}^{n} \underbrace{a_{ij}(x) \, u_{x_i,x_j}}_{\text{Hauptteil}} + F(x,u,u_{x_i},\ldots,u_{x_j}) = 0$$

- Koeffizienten des Hauptteils bestimmen die Klasse der Differentialgleichung
- Klasseneinteilung je nach Definitheit der Koeffizienten-Matrix
- Je nach Klasse sind verschiedene Problemstellungen sinnvoll
- Klasse ändert sich nicht durch Ähnlichkeitstransformationen
- Beispiel für Gleichung mit 2 Unbekannten x und y:

$$A = \begin{pmatrix} a_{xx} & a_{xy} \\ a_{yx} = a_{xy} & a_{yy} \end{pmatrix}$$

$$D = \det A = a_{xx} a_{yy} - a_{xy}^2 = \begin{cases} > 0 & \text{definit (elliptisch)} \\ = 0 & \text{semi-definit (parabolisch)} \\ < 0 & \text{indefinit (hyperbolisch)} \end{cases}$$

Charakterisierung von PDEs - Klasse (2)

Elliptisch

- Koeffizientenmatrix a_{ij}(x) ist positiv definit oder negativ definit
- Randwert-Probleme
 - Neumann-Randbedingungen
 - Dirichlet-Randbedingungen
 - Robin-Randbedingungen
- **z**.B: Poisson-Gleichung $u_{xx} + u_{yy} = 0$

Parabolisch

- Koeffizientenmatrix $a_{ij}(x)$ ist positiv semi-definit oder negativ semi-definit
- Anfangs-Randwert-Probleme, Anfangswert-Probleme
- **z**.B: Wärmeleitungsgleichung $u_t = c u_{xx}$

Hyperbolisch

- Koeffizientenmatrix $a_{ij}(x)$ ist indefinit
- Anfangs-Randwert-Probleme, Anfangswert-Probleme (Cauchy-Probleme)
- **z**.B: Wellengleichung $u_{tt} = c u_{xx}$

Gemischt

- Definitheit abhängig vom Punkt x
- **z**.B: Euler-Tricomi equation $u_{xx} = x u_{yy}$

Poisson-Gleichung

Gleichung:

$$u_{xx} + u_{yy} = \Delta u(x, y) = f(x, y)$$

- Eigenschaften:
 - linear
 - elliptisch
 - beschreibt Gleichgewichtszustände (Potential, Temperatur, ...)
 - Quellterm f beschreibt die Entstehung bzw. das Verschwinden der Größe u
 - lacktriangle Diffusionsterm Δu beschreibt die Ausbreitung der Größe u durch Diffusion
 - Lösung glatter als Randwerte
- Beispiele:
 - eingespannte Membran
 - stationäre Wärmeleitungsgleichung
 - stationäre Maxwell-Gleichungen

Konvektions-Diffusions-Gleichung

Gleichung:

$$u_t - a u_{xx} - \mathbf{b} u_x = f(x, t)$$

- Eigenschaften:
 - linear
 - parabolisch
 - beschreibt zeitliche Entwicklung von Potential, Temperatur, ...
 - Diffusionsterm u_{xx} beschreibt die Ausbreitung der Größe u durch Diffusion
 - Konvektions-Term c ux beschreibt die Ausbreitung der Größe u durch Konvektion (Strömung)
 - Quellterm f beschreibt die Entstehung bzw. das Verschwinden der Größe u
 - Lösung glatter als Randwerte
- Beispiele:
 - instationäre Wärmeleitung
 - Schrödinger-Gleichung (Dynamik von quantenmechanischen Zuständen)
 - Black-Scholes-Gleichung (Finanzmathematik)

Wellen-Gleichung

Gleichung:

$$u_{tt}-u_{xx}=0$$

- Eigenschaften:
 - linear
 - hyperbolisch
 - beschreibt zeitliche Entwicklung von Potential, Magnetfeld, . . .
 - beschreibt Wellenphänomene (Beugung, Reflektion, ...)
 - Lösungen nicht oder schwach gedämpft → lange Reichweite
- Beispiele:
 - dynamische Maxwell Gleichungen
 - Akustik, Schallwellen
 - Klein-Gordon-Gleichung (relativistische Feldgleichung für Spin-0-Teilchen)
- Vergleich Wellen-Glg Wärmeleitungs-Glg

Disketisierung von elliptischen PDEs

Finite Differenzen Methode (FDM)

- einfache Implementierung
- sehr schnell durch Verwendung von FFT
- erfordert reguläres Gitter
- Geometrie oft nur schlecht abgebildet
- diinn besetzte Matrizen

Randelemente Methode (BEM)

- Problem nur am Rand definiert (2D)
- dicht besetzte Matrizen
- oft zeitaufwendig bei Inhomogenitäten / Nichtlinearitäten

FDM

Finite Elemente Methode (FEM)

- Tetraeder-, Würfel-, Hexaeder-Elemente
- Gitter-Erzeugung oft schwierig
- Schwache Formulierung
- Aufstellen der Elementmatrizen (FEniCS)
- diinn besetzte Matrizen

Finite Volumen Methode (FVM)

- Erhaltungssätze auch im Diskreten
- z.B: Navier-Stokes-Gleichungen (OpenFOAM)
- Ahnlich zu unstetigen FEM Formulierungen

BEM

Linien-Methode (MOL)

- Zuerst räumliche Dimensionen diskretisieren (meist elliptisch)
- PDE zerfällt in System von ODEs
- Zeit-Diskretisierung anschließend mit Methoden für ODEs (Einschritt-, Mehrschritt-Verfahren, . . .)

Rothe-Methode

- Zuerst zeitliche Dimension diskretisieren
- Stationäre PDE pro Zeitschritt
- Raum-Diskretisierung anschließend mit Methoden für elliptische PDEs (FDM, FEM, ...)

Raum-Zeit Diskretisierung

- Räumliche und zeitliche Dimensionen werden gleichzeitig Diskretisiert
- Spezielle finite Elemente notwendig (DG-FEM)

Finite Differenzen Methode

- Annahme eines regulären Gitters (für Raum und Zeit)
- Approximation der Differentialoperatoren durch finite Differenzen
- Herleitung mittels Taylor-Reihe (wie bei ODEs):

$$u(x, t + \Delta t) = u(x, t) + \frac{\partial u(x, t)}{\partial t} \Delta t + O(\Delta t^{2})$$

$$u(x + \Delta x, t) = u(x, t) + \frac{\partial u(x, t)}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \Delta x^{2} + O(\Delta x^{3})$$

$$u(x - \Delta x, t) = u(x, t) - \frac{\partial u(x, t)}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \Delta x^{2} - O(\Delta x^{3})$$

Näherungen für Differentialoperatoren:

$$\begin{split} \frac{\partial u(x,t)}{\partial t} &= \frac{u(x,t+\Delta t) - u(x,t)}{\Delta t} + O(\Delta t) \\ \frac{\partial^2 u(x,t)}{\partial x^2} &= \frac{u(x+\Delta x,t) - 2u(x,t) + u(x-\Delta x,t)}{\Delta x^2} + O(\Delta x^2) \end{split}$$

Finite Differenzen Methode - Beispiel

Laplace-Gleichung

$$\Delta u = f$$

■ Verwendung des 3-Point-Stencil für die Ortsdiskretisierung

$$\Delta u(x,t) = \frac{u(x+\Delta x,t) - 2u(x,t) + u(x-\Delta x,t)}{\Delta x^2} = f(x)$$

Assemblieren des Gesamtsystems $\mathbf{A} \mathbf{x} = \mathbf{b}$

■ Lösung des linearen, dünnbesetzten Gleichungssystems

Faculty of Physics

hite Differenzen Methode - Explizites Eulerverfahren

Wärmeleitungsgleichung 1D

$$\frac{\partial u(x,t)}{\partial t} = \alpha \, \Delta u + f(x,t)$$

 Verwendung des expliziten Euler-Verfahrens für die Zeitdiskretisierung

$$\begin{split} \frac{\partial u(\mathbf{x},t)}{\partial t} &\approx \frac{u(\mathbf{x},t+\Delta t) - u(\mathbf{x},t)}{\Delta t} = \\ &= \left(u_i^{t+1} - u_i^t\right)/\Delta t \end{split}$$

■ Verwendung des 3-Point-Stencil für die Ortsdiskretisierung

$$\frac{\partial^2 u(x,t)}{\partial x^2} \approx \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{\Delta x^2} = \frac{u(t+1)}{u(t+1)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)}{u(x+\Delta x,t) - 2 u(x,t) + u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t) - u(x-\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x+\Delta x,t)} = \frac{u(x+\Delta x,t) - u(x-\Delta x,t)}{u(x$$

Dirichlet Randbedingungen

■ Potential am Rand gegeben $u(x_0, t) = u_0$

z.B: Laplacegleichung $\Delta u = f$, $u_0 = a$, $u_5 = b$

$$\begin{array}{c} \frac{1}{\Delta x^2} \begin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ 1 & -2 & 1 & \cdot & \cdot \\ \cdot & 1 & -2 & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & -2 & 1 & \cdot \\ \cdot & \cdot & 1 & -2 & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 & -2 & 1 \\ \end{array} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{pmatrix} = \begin{pmatrix} a/\Delta x^2 \\ f_1 \\ f_2 \\ f_3 \\ b/\Delta x^2 \end{pmatrix} \Leftrightarrow \\ \frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & \cdot & \cdot \\ 1 & -2 & 1 & \cdot \\ \cdot & 1 & -2 & 1 \\ \cdot & \cdot & 1 & -2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} f_1 - a/\Delta x^2 \\ f_2 \\ f_3 \\ f_4 - b/\Delta x^2 \end{pmatrix}$$

Neumann Randbedingungen

- Normalableitung am Rand gegeben $\frac{\partial u}{\partial \mathbf{n}}(x_0, t) = \phi$
- lacksquare Diskretisierung der Randbedingung (lacksquare = -1)

$$\frac{\partial}{\partial x}u_0^t = \left(u_1^t - u_{-1}^t\right)/2\,\Delta x = -\phi$$

■ Einsetzen in Stencil bei x₀

$$\Delta u_0^t = \left(u_1^t - u_0^t\right)/\Delta x^2 + \phi/\Delta x$$

z.B: Laplacegleichung $\Delta u = f$, $u_n(0) = \phi$, $u_n(5) = \psi$

$$\frac{1}{\Delta x^2}\begin{pmatrix} -2 & 2 & . & . & . & . \\ 1 & -2 & 1 & . & . & . \\ . & 1 & -2 & 1 & . & . \\ . & . & 1 & -2 & 1 & . \\ . & . & 1 & -2 & 1 & . \\ . & . & . & 2 & -2 \end{pmatrix}\begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{pmatrix} = \begin{pmatrix} f_0 & 2\phi/\Delta x \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_2 & 2\psi/\Delta x \end{pmatrix}$$

$$\circ$$
 — \circ — \circ — \circ — \circ t_3

16

Finite Differenzen Methode - Beispiel 2D

Laplace-Gleichung 2D $\Delta u = 0$

■ 3-Point-Stencil für x und y

$$u_{xx} = (u_{i+1,j} - 2 u_{i,j} + u_{i-1,j}) / \Delta x^{2}$$

$$u_{yy} = (u_{i,j+1} - 2 u_{i,j} + u_{i,j-1}) / \Delta y^{2}$$

■ Stencil für Laplace-Operator

- Einfachste Lösung mittels Fixpunkt-Iteration
- Besser: Methoden f
 ür lineare Gleichungssysteme (CG, GMRES, ...)
- Beispiel: Laplace-Glg mit Excel (LibreOffice Calc)

Finite Differenzen Methode - Stabilität

- lokale Fehler
 - Diskretisierungfehler
 - Rundungsfehler
 - Verfahrensfehler
- von-Neumann Stabilitätsanalyse
 - Fehler in der Anfangsbedingung werden gedämpft
 - Gesamtfehler bleibt beschränkt
 - Alternativen benötigen Eigenwerte bzw. Matrix-Normen
 - Basiert auf Fourier-Darstellung der Fehler

Finite Differenzen Methode - Fehlergleichung

Exakte Lösung u

$$u_t(x, t) = \alpha \Delta u(x, t) + f(x, t)$$

 $u(t_0, x) = u_0(x)$
 $u(t, x_0) = a$
 $u(t, x_1) = b$

Gestörte Lösung \tilde{u}

$$\tilde{u}_t(x,t) = \alpha \Delta \tilde{u}(x,t) + f(x,t)
\tilde{u}(t_0,x) = \tilde{u}_0(x) + \epsilon_0(x)
\tilde{u}(t,x_0) = a
\tilde{u}(t,x_1) = b$$

Fehlergleichung
$$\epsilon = \tilde{u} - u$$

$$\epsilon_t(x,t) = \alpha \, \Delta \epsilon(x,t)$$

$$\epsilon(t_0,x) = \epsilon_0(x)$$

$$\epsilon(t,x_0) = 0$$

$$\epsilon(t,x_1) = 0$$

Finite Differenzen Methode - Stabilitätsanalyse

von-Neumann Stabilitätsanalyse

Ansatz des Fehlers als Fourier-Reihe

$$\epsilon(t,x) = \sum_m e^{a_m t} e^{ik_m x} \quad k_m = \pi m/L$$

Verstärkungsfaktor

$$G = \frac{\epsilon_i^{t+1}}{\epsilon_i^t} = e^{a \, \Delta t}$$

- lacksquare Numerisch stabil wenn |G| < 1
- z.B: Wärmeleitungsgleichung mit explizitem Eulerverfahren

$$\left| \frac{2 \alpha \Delta t}{\Delta x^2} \sin^2 \left(\frac{k_m \Delta x}{2} \right) \right| < 1$$

■ für alle k_m erfüllt, wenn

$$\frac{2 \alpha \Delta t}{\Delta x^2} < 1$$

Allgemein

■ Basiert auf der Trapezregel (siehe ODEs)

$$\frac{\partial u}{\partial t} = f(t, x, u, u_x, u_{xx})$$
$$u_i^{t+1} - u_i^t = \frac{\Delta t}{2} \left[f_i^{t+1} + f_i^t \right]$$

- semi-implizit
- meist bedingungslos stabil
- in jedem Zeit-Schritt muss ein Gleichungssystem gelöst werden
- lokaler Fehler $O(\Delta x^3, \Delta t^3) \rightarrow \text{Ordnung 2}$

Finite Differenzen Methode - Stencils (1)

Zentrale-Finite-Differenzen:

Derivative	Accuracy	-4	-3	-2	-1	0	1	2	3	4
1	2				-1/2	0	1/2			
	4			1/12	-2/3	0	2/3	-1/12		
	6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
	8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280
2	2				1	-2	1			
	4			-1/12	4/3	-5/2	4/3	-1/12		
	6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
	8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560
	2			-1/2	1	0	-1	1/2		
3	4		1/8	-1	13/8	0	-13/8	1	-1/8	
	6	-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240
4	2			1	-4	6	-4	1		
	4		-1/6	2	-13/2	28/3	-13/2	2	-1/6	
	6	7/240	-2/5	169/60	-122/15	91/8	-122/15	169/60	-2/5	7/240
5	2		-1/2	2	-5/2	0	5/2	-2	1/2	

Finite Differenzen Methode - Stencils (2)

■ Vorwärts-Finite-Differenzen:

Derivative	Accuracy	0	1	2	3	4	5	6	7	8
1	1	-1	1							
	2	-3/2	2	-1/2						
	3	-11/6	3	-3/2	1/3					
	4	-25/12	4	-3	4/3	-1/4				
	5	-137/60	5	-5	10/3	-5/4	1/5			
	6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6		
2	1	1	-2	1						
	2	2	-5	4	-1					
	3	35/12	-26/3	19/2	-14/3	11/12				
	4	15/4	-77/6	107/6	-13	61/12	-5/6			
	5	203/45	-87/5	117/4	-254/9	33/2	-27/5	137/180		
	6	469/90	-223/10	879/20	-949/18	41	-201/10	1019/180	-7/10	
3	1	-1	3	-3	1					
	2	-5/2	9	-12	7	-3/2				
	3	-17/4	71/4	-59/2	49/2	-41/4	7/4			
	4	-49/8	29	-461/8	62	-307/8	13	-15/8		
	5	-967/120	638/15	-3929/40	389/3	-2545/24	268/5	-1849/120	29/15	
	6	-801/80	349/6	-18353/120	2391/10	-1457/6	4891/30	-561/8	527/30	-469/240
4	1	1	-4	6	-4	1				
	2	3	-14	26	-24	11	-2			
	3	35/6	-31	137/2	-242/3	107/2	-19	17/6		
	4	28/3	-111/2	142	-1219/6	176	-185/2	82/3	-7/2	
	5	1069/80	-1316/15	15289/60	-2144/5	10993/24	-4772/15	2803/20	-536/15	967/240

■ Für Rückwärts-Finite-Differenzen ändern sich die Vorzeichen aller Koeffizienten für ungerade Ableitungen

Übungsbeispiele

- **1** Advektions-Gleichung: $u_t = -v u_x$
 - beschreibt die Strömung einer inkompressiblen Flüssigkeit
 - Verwende die FTCS-Methode (Forward-Time Central-Space): Zentrale-Differenzen für die Ortsableitung: $u_x = u_t^t + 1 - u_t^t - 1$ Explizite Eulermethode für die Zeitableitung: $u_t = u_t^{t+1} - u_t^t$
 - Diskretisiere die Gleichung (welche Anfangs-/Randbedingungen sind erforderlich)
 - Welche Ordnung ergibt sich für Zeit und Ort?
 - Untersuche die Stabilität der Methode
- 2 Löse die 1D-Wärmeleitungsgleichung:

$$u_t = u_{xx}$$

$$u(0, x) = \sin(\pi x)$$

$$u(t, 0) = 0$$

$$u(t, 1) = 0$$

- Gibt es eine analytische Lösung?
- Vergleiche explizites Euler-Verfahren, implizite Euler-Verfahren, Crank-Nicolson-Verfahren
- Plotte u(x, t) für $x \in (0, 1)$, $t \in (0, 1)$ bzw. einzelne $u(x, t_i)$
- Experimentiere mit verschiedenen Zeit-, Orts-Schrittweiten