

Process for the recombinant production of holo-citrate lyase

The enzyme citrate lyase (EC4.1.3.6) is regarded as a key enzyme of anaerobic citrate degradation and can accordingly be isolated from a number of different prokaryotic cells. The enzyme catalyses the cleavage of citrate into acetate and oxaloacetate. Furthermore it is known that the enzyme complex of the citrate lyase enzyme that has been best examined to date from Klebsiella pneumoniae (formally: Klebsiella aerogenes) is composed of six copies of each of three different subunits and namely an α , β and γ subunit, of a molecular weight of about 550,000 Dalton. In addition it is known that the catalytically active centre is located in the α and β subunit, whereas the γ subunit has the binding site for the prosthetic group 2'-(5"phosphoribosyl)-3'-dephospho CoA. This prosthetic group is bound to the serine residue 14 via a phosphodiester bond.

The citrate lyase enzyme is required in high purity for most applications which are primarily for clinical chemistry and food analysis. Hence the aim is to over-produce the enzyme in an active form in certain host cells by recombinant methods and to isolate it from these cells. Such a process has not yet been described or made known in other ways. Hence citrate lyase is nowadays usually isolated from Klebsiella pneumoniae cells which had been cultured under anaerobic conditions using citrate as the only carbon and energy source. The citrate lyase genes from Klebsiella pneumoniae have been

0965722655 09626600

cloned and sequenced (M. Bott and P. Dimroth, Mol. Microbiol. Vol. 14, 347-356 (1994)). These genes are part of the citC operon which is composed of the five genes citCDEFG. The citC gene codes for citrate lyase ligase which catalyses the formation of an acetyl thioester. The genes citD, citE and citF code for the gamma, beta and alpha subunit of citrate lyase. The protein coded by citG is involved in the biosynthesis of the prosthetic group. Furthermore it is known that the citC operon is induced in the absence of oxygen and in the presence of citrate and Na⁺ ions; moreover the expression is strongly dependent on the citA/citB regulation system (M. Bott et al., Mol. Microbiol. Vol. 18, 533-546 (1995); M. Meyer et al., J. Mol. Biol. Vol. 269, 719-731 (1997)).

Expression of the genes coding for citrate lyase from Klebsiella pneumoniae which would preferably be carried out in prokaryotic cells such as E. coli for practical reasons, results in an inactive but nevertheless soluble form of the enzyme (M. Bott and P. Dimroth, Mol. Microbiol. Vol. 14, 347-356 (1994)). The recombinant apo-citrate lyase enzyme can be activated to form the holo-enzyme by subsequent addition of acetyl coenzyme A which is known as a substituent for the acetyl thioester of the native prosthetic group 2'-(5"-phosphoribosyl)-3'-dephospho CoA. However, such an additional activation measure is complicated and laborious. Moreover the necessity to add acetyl CoA is unsuitable for the commercial distribution of citrate lyase or the apo form since the substance decomposes when stored for long periods at 4°C.

Hence the object of the invention is to provide a recombinant, soluble and at the same time active holo-

citrate lyase which eliminates the disadvantages of the known methods.

The object is achieved by a process for the production of a protein with citrate lyase activity by expressing a suitable plasmid in a host organisms whereby the plasmid contains the information of a gene cluster composed of at least six genes and an inducible promoter. The genes comprising the gene cluster code for certain subunits of the protein with citrate lyase activity and/or for a component which participates in the biosynthesis of the complete enzyme. In particular a suitable plasmid contains the genes citC, citD, citE, citF, citG and a DNA fragment that can for example be obtained from E. coli which is located between the genes citF and citG on the E. coli citrate lyase gene cluster. The genes citD, citE and citF code for the corresponding γ , β and α subunits of the enzyme and have molecular weights of about 11,000 Dalton, 32,000 Dalton and 55,000 Dalton. According to the invention it is preferred that one of the genes represents a DNA fragment which codes for a protein containing the motif G(A)-R-L-X-D-L(I)-D-V. A corresponding DNA fragment is particularly preferred which codes for a protein with a molecular weight of about 20,000 Dalton.

In addition it has proven to be advantageous when one gene and optionally a further gene fused to the first gene of the genes comprising the gene cluster is derived from a different organism than the other genes. In particular it has proven to be advantageous when the DNA fragment citX or genes homologous to citX located between citF and citG on the E. coli citrate lyase gene cluster are derived from E. coli, Klebsiella pneumoniae, Haemophilus influenzae or Leuconostoc mesenteroides and

090672265-0906800

when one or several of the other genes are derived from the microorganism that is specific for the isolated protein having citrate lyase activity which is for example *Klebsiella pneumoniae*. In *Haemophilus influenza*, *Leuconostoc mesenteroides* (S. Bekal et al., J. Bacteriol. Vol. 180, 647-654 (1998)) and *Leuconostoc paramesenteroides* (M. Martin et al., FEMS Microbiol. Lett. Vol. 174, 231-238 (1999)) the genes *citX* and *citG* occur in a fused form. Thus corresponding fusion genes contain the information of two genes. The resulting proteins have a molecular weight of about 52,000 Dalton, have the activities of *E. coli* *CitX* and *CitG* and are thus bifunctional. In the absence of the *citX* gene or of a gene homologous to *citG* or of a corresponding *citX* fusion gene, only the low-molecular apo form (MW 12,000 Dalton, SDS-PAGE) but not the holo form of citrate lyase (MW 14,500 Dalton, SDS-PAGE) could be detected after expression.

According to the invention prokaryotes as well as eukaryotes have proven to be suitable as the host organism. The fact that a soluble active citrate lyase can now be produced in prokaryotes such as e.g. *E. coli* in a simple manner and in adequate yields without additional activation measures is a major advantage.

Hence it was possible to show that by cloning the entire *E. coli* *citCDEFXG* gene cluster under the control of an inducible promoter such as e.g. the lac, lac UV5, T5, tac or T7 promoter, an active enzyme can be expressed having citrate lyase activity even under non-oxygen limiting conditions. Cell extracts containing appropriate expression plasmids result in citrate lyase activities of about 4 to 5 U/mg protein in the cell-free extract whereas cells without recombinant citrate lyase

09572265-092600

have no citrate lyase activity when grown aerobically.

In addition the invention concerns the simultaneous expression of the citCDEFG gene cluster from Klebsiella pneumoniae and of the citX gene obtainable from E. coli by which means it is possible to obtain a corresponding citrate lyase in an active form even in prokaryotes and in particular in E. coli.

By this means it was possible to achieve an activity of about 8 U/mg total protein in a cell-free extract under aerobic growth conditions.

The holo-enzyme is purified by methods known to a person skilled in the art. About 100 to 120 µg soluble protein with citrate lyase activity can be obtained from about 1 g of cells (wet weight) using the process according to the invention. The protein determination was carried out according to P.K. Smith et al., Anal. Biochem. Vol. 150, 76-85 (1985) using ovalbumin as a standard. The specific activity of the citrate lyase is ca. 70 U/ml protein (M. Single and P.A. Srere, J. Biol. Chem. Vol. 251 (10), 2911-2615 (1976)). The activity of the holo-enzyme that can be obtained by the process according to the invention is thus ca. 0.5 to 3-fold higher than the activity that was achieved with acetyl CoA and apo-citrate lyase.

Hence the process according to the invention provides for the first time a recombinant protein with improved citrate lyase activity that is both soluble and active.

Furthermore the invention concerns a test kit for the determination of citric acid which is composed

09522655 09522656

essentially of the following components: a protein obtainable by the process according to the invention with citrate lyase activity, at least one protein with hydrogen-transferring activity, nicotinamide-adenine dinucleotide or an appropriate derivative in a reduced form and optionally suitable stabilizers, activators and/or substances to avoid or reduce interferences i.e. components or reactions which mask or interfere with the actual reaction as well as suitable buffer solutions. In particular L-malate dehydrogenase and L-lactate dehydrogenase come into consideration as proteins with hydrogen-transferring activity. Those substances, additives or measures which help to avoid or at least to delay the degradation of a property or activity that is important for the determination are in principle suitable as stabilizers. Especially when only small amounts of sample material are available or if the samples are very dilute it can be advantageous to add activators.

An additional subject matter of the invention is the use of the recombinant soluble protein with citrate lyase activity to determine citric acid in clinical chemistry, food analysis and as a purity test for cosmetics. In clinical chemistry a corresponding enzymatic test is used primarily to examine fertility and for therapeutic monitoring of patients with kidney stones. In food analysis the most important application is analysis of wines and fruit juices.

The enzymatic method is based on the cleavage of citrate by the enzyme citrate lyase in the presence of Mg^{2+} ions to form oxaloacetate and acetate. In the presence of hydrogen-transferring enzymes such as L-malate dehydrogenase and L-lactate dehydrogenase, oxaloacetate

09672265 "096610

and its decarboxylation product pyruvate are reduced by reduced NADH or NADPH to form L-malate and L-lactate. The amount of NADH or NADPH is proportional to the amount of citrate and is measured at 334 nm, 340 nm or 365 nm.

Hence the invention also concerns a corresponding test kit for the determination of citric acid which, apart from suitable buffer solutions, contains a recombinant protein with citrate lyase activity, one or several hydrogen-transferring enzymes and a nicotinamide adenine dinucleotide or a corresponding derivative in a reduced form and optionally suitable stabilizers such as thiol reagents.

Figure legends

Figure 1:

A: Function of the various subunits in a reaction catalysed by citrate lyase and activation of the enzyme by citrate lyase ligase. HS-R denotes a prosthetic group.

B. Structure of the prosthetic group of citrate lyase 2'-(5"-phosphoribosyl)-3'-phospho-CoA.

Figure 2:

Citrate lyase gene cluster from Klebsiella pneumoniae (K.p.), Escherichia coli (E.c.) Haemophilus influenzae (H.i.) and Leuconostoc mesenteroides (L.m.). Gene sequences that are homologous to E. coli citX are shown by the light grey shading.

INFORMATION FOR SEQ ID NO. 1:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 36 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - CCCTCTAGAGAACACATTGTTCAAATCGATAAC - 3'

INFORMATION FOR SEQ ID NO. 2:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 38 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - CCGCGAATTCTTAGTTCCACATGGCGAGAACATCGGCCAG - 3'

INFORMATION FOR SEQ ID NO. 3:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 5484 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

1 GAACAAACATT CGTTGCAAAT CGATAACAAC ATGCACCTTC AGGATACTAT
rStart citC
51 TTATTATGTT CGGCAATGAT ATTTTCACCC GCGTAAAACG TTCAGAAAAT
101 AAAAAAAATGG CGGAAATCGC CCAATTCTG CATGAAAATG ATTGAGCGT
151 TGACACCACA GTCGAAGTAT TTATTACCGT AACCCGCGAT GAAAAGCTTA
201 TCGCGTGCAGG TGGAATTGCC GGAAATATTA TTAAATGCGT TGCTATCAGT
251 GAATCCGTCC GCGGTGAAGG ACTGGCGCTG ACATTAGCCA CTGAATTGAT
301 AAACCTCGCC TATGAGCGGC ACAGCACGCA TCTGTTTATT TATACCAAAA
351 CCGAATAACGA GGGCCTGTTC CGCCAGTGC GTTTTTCCAC GCTGACCAGC
401 GTACCCGGCG TGATGGTGCT GATGGAAAAC AGCGCCACGC GACTGAAACG
451 CTATGCCGAA TCGCTGAAAA AATTTCTGCA TCCAGGGAAC AAGATTGGCT
501 GCATTGTGAT GAACGCCAAT CCCTTACGA ATGGTCACCG TTATCTGATT
551 CAACAGGCTG CGGCACAGTG CGACTGGTTG CATCTGTTT TAGTCAAAGA
601 AGATTCTTCA CGCTTCCCCCT ATGAAGACCG GCTGGATTG GTGTTAAAAG
651 GCACCGCCGA TATTCCACGC CTGACTGTGC ATCGTGGCTC CGAATACATC
701 ATCTCCCGCG CTACGTTCCC TTGCTACTTC ATTAAAGAAC AGAGCGTCAT
751 TAACCATTGT TACACCGAAA TTGATCTGAA GATTTTCCGT CAGTACCTCG
801 CTCCCGCGCT GGGTGTAACT CACCGCTTGT TCGGTACTGA ACCCTTTGT
851 CGCGTTACCG CCCAGTACAA CCAGGATATG CGCTACTGGC TGGAAACGCC
901 GACTATCTCC GCACCGCCCA TCGAACTGGT TGAAATTGAG CGGCTGCGTT

951 ACCAGGAGAT GCCGATATCC GCTTCCCAGG TACGTCAACT GCTGGCGAAA
1001 AACGATCTCA CGGCTATCGC GCCGCTGGTC CCTGCAGTCA CGCTGCATTA
1051 TTTGCAGAAC CTGCTTGAGC ACTCCCGCCA GGACGCGGCA GCTCGTCAA
 Stop cite_C **rStart citeD**
1101 AGACCCCCCGC ATGAGAAACA GGTGAAAAAT GAAAATAAAC CAGCCCGCCG
1151 TTGCAGGCAC CCTTGAGTCT GGGGATGTGA TGATACGCAT CGCCCCACTC
1201 GATACGCAGG ATATCGACCT GCAAATCAAT AGCAGCGTTG AGAAACAGTT
1251 TGGCGATGCA ATTGCGACCA CCATTCTGGA CGTTCTCGCC CGCTACAACG
1301 TGGCGGGCGT ACAGCTGAAT GTCGATGACA AAGGCGCACT GGACTGCATT
1351 TTACGTGCAC GACTGGAAGC CCTGCTGGCA CGCGCCAGCG GTATCCCGGC
 Stop citeD₁
1401 TCTGCCATGG GAGGATTGCC AATGATTCC GCTTCGCTGC AACAACGTA
 LStart citeE
1451 AACTCGCACC CGCCGCAGCA TGTGTTTGT GCCTGGTGC AATGCCGCGA
1501 TGGTCAGCAA CTCCCTTCATC TACCCGGCTG ATGCCCTGAT GTTGTACCTC
1551 GAAGACTCCG TAGCATTGCG TGAAAAAGAC ACCGCCCGCC GCATGGTTA
1601 CCACGGCGCT CAACATCCG TGATCGCGA TATTGAAACC ATTGTGCGTG
1651 TCAACGCGCT GGATTCCGAA TGGGGTGTGA ACGACCTGGA AGCCGTCGTT
1701 CGCGGTGGTG CGGACGTTGT GCGTCTGCCG AAAACCGATA CCGCTCAGGA
1751 TGTTCTGGAT ATTGAAAAAG AGATCCTGCG TATCGAAAAA GCCTGTGGTC
1801 GTGAACCCGG CAGCACCGGC CTGCTGGCG CGATTGAATC TCCGCTGGGG
1851 ATTACCCCGC CAGTGGAAAT CGCTCACGCT TCCGAGCGTT TGATCGGTAT
1901 CGCCCTCGGT GCAGAAGACT ATGTGCGCAA CCTGCGTACA GAAACGCTCCC
1951 CGGAAGGAAC TGAACCTGCTG TTCGCACGCT GTTCCATTTC GCAGGCCGCG
2001 CGCTCTGCGG GTATTCAAGGC GTTCGATACC GTCTATTCCG ACGCTAACAA
2051 CGAAGCCGGA TTTCTGCAAG AAGCCGCCA CATCAAACAG CTGGGCTTTG
2101 ACGGCAAATC GCTGATCAAC CCGCGTCAGA TTGATCTGCT GCACAACCTC
2151 TACGCACCGA CCCAGAAAGA AGTGGATCAC GCCCGCCGCG TCGTAGAAC
2201 CGCTGAAGCC GCCGCTCGCG AAGGCCTCGG CGTGGTTTCC CTGAACGGCA
2251 AGATGGTGGA CGGTCCGGTT ATCGATCGCG CCCGTCTGGT GCTCTCCCGT
 Stop citeE₁ **rStart citeF**
2301 GCAGAACTTT CCGGCATCCG CGAAGAATAA GGCAATCAAA ATGACCGAGA
2351 AAATTGAACA ATCTCAACGA CAAGAACGGG TAGCGGCCCTG GAATCGTCGC
2401 GCTGAATGCG ATCTTGCCGC TTTCCAGAAC TCGCCAAAGC AACACCTACCA
2451 GGCTGAAAAA GCGCGCGATC GCAAACGTG CGCCAAACCTG GAAGAACGGA
2501 TTCGTCGCTC TGGTTTACAG GACGGCATGA CGGTTTCCCT CCATCACGCT
2551 TTCCGTGGCG GTGACCTGAC CGTCAATATG GTGATGGACG TCATCGCGAA
2601 GATGGGCTTT AAAAACCTGA CCCTGGCGTC CAGCTCCCTG AGTGATTGCC
2651 ATGCGCCGCT GGTAGAACAC ATTGCCAGG GCGTGGTTAC CCGCATTAT
2701 ACCTCCGGCC TCGCTGGTCC ACTGGCGGAA GAGATCTCCC GTGGTCTGCT
2751 GGCAGAACCG GTGCAGATCC ACTCTCACGG CGGTGCTGTG CATCTGGTAC
2801 AGAGCGGGGA ACTGAATATC GACGTGGCTT TCCTCGGCGT CCCGTCCTGT
2851 GATGAATTGCG GTAATGCCAA CGGCTACACC GGTAAAGCCT GCTGCGGCTC
2901 CCTCGGCTAT GCAATAGTTG ATGCCGACAA CGCAAAACAG GTCGTGATGC
2951 TTACCGAAGA ACTGCTGCT TATCCGCATA ATCCGGCAAG CATTGAGCAA
3001 GATCAGGGTG ATTTGATCGT CAAAGTTGAC CGCGTTGGCG ATGCTGCAA
3051 AATCGGGCGCT GGCAGCACCC GTATGACCCAC TAACCCGGCG GAACTGCTTA
3101 TTGCCCCGTAG CGCTGCGGAT GTGATTGTCA ACTCTGGCTA CTTCAAAGAA
3151 GGTTTCTCCA TGCAAACCGG CACCGGGCGC GCATCGCTGG CGGTAACCCG
3201 TTTCCCTGGAA GACAAAATGC GTAGCCGCGA TATTGCGGCC GACTTCGCCC
3251 TTGGCGGTAT TACCGCGACG ATGGTTGACC TGACGAAAA AGGTCTGATC
3301 CGCAAACCTGC TGGATGTGCA GAGCTTGAC AGCCATGCTG CGCAATCGCT
3351 GGCCCGTAAC CCCAATCACA TCGAAATCAG CGCCAACCAAG TACGCTAACT

096222657-092800

3401 GGGGTTCGAA AGGCGCATCG GTTGATCGTC TCGACGTGGT GGTACTGAGC
3451 CGGCTGGAAA TTGACACCCA GTTCAACGTT AACGTGCTGA CCGGCTCTGA
3501 CGGCGTACTG CGTGGTGCCT CCGGTGGTCA CTGCGATACC GCGATTGCCT
3551 CTGCGCTTTC CATCATCGTC GCGCCGCTGG TACGCGGTGCG TATTCCGACT
3601 CTGGTGGATA ACGTACTGAC CTGCATCACCC CCAGGCTCCA GTGTCGATAT
3651 TCTGGTCACA GACCACGGTA TCGCAGTTAA CCCGGCACGT CCGGAACCTGG
3701 CAGAACGTCT GCAGGAAGCG GGCATTAAG TGGTTTCCAT TGAGTGGCTG
3751 CGCGAACGTG CGCGTCTGCT GACC GGTTGAA CCACAGCCGA TTGAATTAC
3801 AGACCGCGTC GTGCCGTTG TGC GTTACCG CGATGGCTCG GTGATCGATG
Stop citF₁ **Start citX**
3851 TTGTGCATCA GGTGAAGGAA TAAGCCATGC ACCTGCTTCC TGAAC TCGGCC
3901 AGCCACCATG CGGTATCAAT TCCCAGCTG CTCGTAGCC GGGATGAAAG
3951 GCAAGCACGG CAACACGTCT GGCTCAAGCG CCATCCTGTT CCACTGGTCT
4001 CCTTTACCGT GGTGCGCCT GGGCCGATTA AAGACAGCGA GGTACACACG
4051 CGAATTTTA ATCATGGCGT GACAGCCTG CGTGCCTTAG CCGCAAAACA
4101 GGGCTGGCAA ATTCAAGGAGC AGGCTGCACT GGTTCCGCC AGCGGGCCGG
4151 AGGGCATGTT GAGCATTGCC GCCCCGGCTC GCGACCTCAA GCTCGCCACC
4201 ATTGAGCTTG AACATAGTCA TCCTCTCGGG CGGTTATGGG ATATCGATGT
4251 CCTGACGCC C GAAAGGCAGAA TTCTCTCCCG CCGCGACTAT TCACTGCCGC
4301 CTCGCCGCTG CCTGTTGTGC GAACAAAGCG CAGCCGTCTG CGCGCGTGG
4351 AAAACCCATC AACTGACCGA TTTACTCAAC CGCATGGAGG CACTGCTGAA
Stop citX₁
4401 CGATGTGCGAT GCCTGCAACG TCAACTAAAA CCACAAAGCT TGCGACGTCA
Start citG
4451 TTAATCGATG AGTACGCCCT GCTGGGCTGG CGCGCCATGC TGACTGAAGT
4501 CAATCTGTCA CCGAAACCAAG GCCTCGTGGA TCGCATTAAAC TGCGGTGCGC
4551 ACAAAAGATAT GCGCCTGGAA GATTTCACC GCAAGCGCGT GGCAGATTCA
4601 GGCTGGCTAC CCCGTTTCAT TGAATTGGT GCCTGTAGTG CGGAAATGGC
4651 ACCAGAACGCG GTACTCCACG GATTACGCC AATTGGTATG GCTTGCAG
4701 GTGATATGTT CCGCGCCACT GCGGGCGTAA ACACGCATAA AGGCAGCATT
4751 TTTCTTTAG GGCTGCTATG TGC GGCAATT GGCGTTTG C TTCAACTCAA
4801 CCAACCGGTA ACGCCAACAA CCGTTGTTG TACGGCGGCA AGTTTCTGCC
4851 GTGGCCTGAC CGATCGCGAA CTGCGTACCA ATAATTCAAC ACTGACGGCA
4901 GGTCAACGGT TGTACCAACA GCTTGGCCTT ACCGGCGCAC GCGGTGAAGC
4951 CGAACGGGT TATCCACTGG TGATCAATCA CGCCTTGCCG CATTACCTCA
5001 CTCTGCTGGA TCAGGGGTTA GATCCTGAAC TGGCATTGCT CGATACCTTG
5051 CTCCTACTGA TGGCGATCAA CGGCGATACC AACGTTGCAT CGCGCGGTGG
5101 CGAGGGGGGC CTGCGCTGGC TACAGCGCGA GGC GCAAACA TTATTGCAA
5151 AAGGGGGCAT TCGAACCCCCC GCCGATCTCG ATTATCTCCG GCAGTTCGAC
5201 AGGGAGTGT A TCGAACGAAA TCTCAGTCCA GGC GGGCAGTG CTGACCTACT
Stop citG₁
5251 GATCCTTACC TGGTTTTAG CACAGATTAA ATTATTTAAG CACTTGATAA
Start citT
5301 ATTTGGAAAT ATTAATTTTC GGAGAACCCG TATGTCTTTA GCAAAAGATA
5351 ATATATGGAA ACTATTGGCC CCACTGGTGG TGATGGGTGT CATGTTCTT
5401 ATCCCTGTCC CCGACGGTAT GCCGCCGCAAG GCATGGCATT ACTTCGCTGT
5451 GTTTGTGGCA ATGATTGTGCG GCATGATCCT CGAG

INFORMATION FOR SEQ ID NO. 4:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 33 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - AAATTCATATGCACCTGCTTCCTGAAGTCGCC - 3'

INFORMATION FOR SEQ ID NO. 5:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 36 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - GGGCCCCTCGAGTTAGTTGACGTTGCAGGCATCGAC - 3'

INFORMATION FOR SEQ ID NO. 6:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 553 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

1 ATGCACCTGC TTCCCTGAAC T CGCCAGCCAC CATGCGGTAT CAATTCCCGA
51 GCTGCTCGTC AGCCGGGATG AAAGGCAAGC ACGGCAACAC GTCTGGCTCA
101 AGCGCCATCC TGTCCACTG GTCTCCTTTA CCGTGGTTGC GCCTGGGCCG
151 ATTAAAGACA GCGAGGTCAC ACGCCGAATT TTTAACATG GCGTGACAGC
201 CTTGCGTGCC TTAGCCGCAA AACAGGGCTG GCAAATTCA GAGCAGGCTG
251 CACTGGTTTC CGCCAGCGGG CC GGAGGGCA TGTTGAGCAT TGCCGCCCG
301 GCTCGCGACC TCAAGCTCGC CACCATTGAG CTTGAACATA GTCATCCTCT
351 CGGGCGGTTA TGGGATATCG ATGTCCTGAC GCCCGAAGGC GAAATTCTCT
401 CCCGCCGCGA CTATTCACTG CCGCCTCGCC GCTGCCTGTT GTGCGAACAA
451 AGCGCAGCCG TCTGCGCGCG TGGAAAACC CATCAACTGA CCGATTTACT
501 CAACCGCATG GAGGCACTGC TGAACGATGT CGATGCCTGC AACGTCAACT
551 AA

INFORMATION FOR SEQ ID NO. 7:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 5593 base pairs
- (B) TYPE : nucleic acid
- (C) STRANNESS : single
- (D) TOPOLOGY : linear

1 TTAATTAACA ACATAAAAAC CATAAAGCCA ATTAAGCCAC GAGAAAAACT GTGACTTAAA
61 TACAAGAACAT CATAGCCGAA CGCTGGCGAA ATACAGTTCG TTTTGAAATG ACGAAGCGCT
rStart citCe
121 AAAAAATGAC ACTGATATTAA AACACGCGTTC AGCTATTAAA AGATAAAACCG CGGCGAGAGG
181 CGATCGATCG GTTCTCCGC CAGCATCAAC TGTCGTTAGA GGCGACTGC GAAATGGCGA
241 TTATCGCCGA GTATCAGCAG CGGCTGGTCG GCTGCGGTGC TATCGCCGGC AATGTGCTGA
301 AATGCATCGC CATCGATCCC TCGCTGCAGG GGGAGGGCT GAGCCTTAAA TTACTGACCG
361 AGCTCCTGAC GCTGGCCTAT GAGCTGGGC GCAGCGAAGT GTTTTTGTTT ACTAAACCTT
421 GCAATGCCGC GTTATTTTC GGCGCCGGCT TCTGGCCGAT AGCCCAGGCG GGCACCGCG
481 CCGTGCTAAT GGAAAATAGC CGCGAACGGC TGACTCGTTA CTGTCGACAG CTGGCGATGT
541 ACCGTCAAGCC GGGAAAGAAAA ATCGGGCCTA TCGTGATGAA TGCTAATCCA TTACCCCTCG
601 GCCACCGCTG GTTGGTAGAA CAGGCGGCCA GCCAGTGCAG CTGGCTGCAT CTGTTGTGG
661 TCAAAGAAGA TGCCTCCCTGC TTTCCCTATC ACGATCGCTT CAAGCTCATT GAACAGGGGA
721 TTACCGGCAT CGATAAGGTG ACGCTGCATC CCGGTTCGGC GTATCTGATC TCGCGGGCGA
781 CGTTCCCCGG CTATTCCTG AAAGAGCAGG GGGTGGTTGA TGACTGCCAC AGCCAGATTG
841 ACCTGCAGCT CTTCCCGCAG CGCCTGGCCC CGGCGCTGCA GATTACCCAT CGCTTGTGC
901 GCACCGAGCC GCTGTGTCCC CTGACCCGTA ATTACAACCA GCGCATGAAG TCACACTGG
961 AAGCGCCAGG CGACCGCGCG CCCATTGAAG TAGTTGAGCT TGCGCGAATC GAAAAAAATG
1021 GTGGACCCGT GTCGGCCTCC CGAGTGCAGC AACTCTATCG ACAGCGAAC TGGCAGGCG
1081 TCGCGGCCTG GGTACCGCCG GGAACCCTCT CTTTCTGAT GCAACTGGCG GAAAGCGAAC
Stop citC1 rStart citD
1141 ATCAAACCGC CTGATTTATA CGCCCTAACT AAGGATTTC CCCTATGGAA ATGAAGATTG
1201 ACGCCCTGGC CGGCACGCTG GAGTCCAGCG ATGTGATGGT CAGGATTGGA CCCGCGGC
1261 AGCCGGGCAT TCAGCTGGAA ATCGACAGCA TTGTGAAACA ACAGTTTGGC GCTCGATTTG
1321 AGCAGGTAGT GAGAGAAACG CTGGCTCAGC TTGGCGTGAA ACAGGCCAAC GTGGTGGTGC
1381 ATGATAAAAGG CGCGCTGGAA TGTGTTTGC GAGCTCGCGT ACAGGCCCGC GCGCTCGCG
Stop citD1 rStart cite
1441 CGGCGCAACA GACCCAATTAA CAATGGAGCC AGCTATGAAA CCACGTCGCA GTATGTTGTT
Lstart cite
1501 CATCCCTGGC GCCAATGCCG CCATGTTAAG CACGTCATTG GTCTACGGCG CTGATGCTGT
1561 GATGTTCGAC CTGGAAAGATG CCGTTTCGCT GCGCGAGAAA GATACCGCTC GTCTGCTGGT
1621 GTATCAGGCC CGTCAGCATC CACTGTATCA GGATATCGAA ACCGTGGTGC GTATTAACCC
1681 GCTAAATACC CCGTTGGTC TGGCCGATCT GGAAGCCGTG TTTCGTGCGG GCGTGGATAT
1741 GGTGCGTCTG CCGAAAACCG ACAGCAAAGA AGATATCCAT GAGCTGGAAG CGCATGTTGA
1801 GCGGATTGAA CGCGAGTGC GCGGGAAAGT GGGCAGCACC AAGTTAATGG CGGCGATCGA
1861 GTCGGCGCTG GGCCTGGTGA ACGCGGTGGA AATCGCCCGC GCCAGCCCGC GTCTGGCGGC
1921 GATCGCGCTG GCGGCCATTG ATTACCGTGT GGATATGGGC ACCTCCCGC GCGACGGTAC
1981 TGAACGTTC TACGCCCGCT GCGCTGTACT GCATGCCGCC CGCGTTGCCG GCATGCCCG
2041 CTATGACGTG GTGTGGTCGG ATATCAATAA TGAAGAGGGC TTCTGGCGG AAGCGAATCT
2101 GGCCAAAAAAC CTCGGCTTTA ACGGCAAATC GTTGGTTAAC CCACGACAAA TTGAACCTC
2161 GCATCAGGTC TATGCCCGA CGCGCAAAGA GGTGCGATCAC GCGCTGGAAG TGATTGCCGC
2221 GGCGGAAGAA GCCGAAACGC GAGGTCTGGG TGTGGTATCG CTGAACGGCA AGATGATCGA
2281 TGGACCGATT ATCGACCATG CTCGCAAAGT GGTGGCGCTC TCGGCTTCCG GTATTGCTGA

Stop citE **rStart citF**

2341 TTAAGGGGAA TAAGATGAAA GAGACAGTAG CAATGCTTAA TCAGCAGTAC GTGATGCCGA
2401 ATGGACTGAC ACCTTATGCC GCGTAAACGG CGAAAAGTCC CTGGCTGGCG AGTGAGAGCG
2461 AAAAGCGCCA GCGCAAAATC TGCGATTGCG TGGAAACGGC AATCCGTCGC TCCGGCCTGC
2521 AAAACGGCAT GACCATCTCG TTTCACCAACG CGTTTCCGCG CGGTGACAAA GTCGTCAATA
2581 TGGTAGTGGC GAAGCTGGCG GAAATGGGTT TTCGCGATCT CACCCCTGGCG TCCAGTTCGC
2641 TGATCGACGC CCACTGGCCG CTGATCGAGC ATATTAAAAA TGGCGTGATC CGCCAGATCT
2701 ACACCTCCGG CCTGGCGCGC AAGTTGGCG AGGAGATCTC CGCCGGTTA ATGGAAAACC
2761 CGGTGCAGAT CCACCTCCCAC GGCCTCGCG TACAGCTGAT TCAAAGCGGC GAGCTGTCGA
2821 TTGATGTCGC GTTCTCGGC GTTCCCTGCT GCGATGAGTT TGGCAACGCC AACGGCTTTA
2881 GCGGTAAATC ACGCTGCGGT TCTCTGGGCT AC CGCGCGCGT CGATGCCGAG CACGCTAAAT
2941 GCGTGGTGC GCTCACCGAA GAGTGGGTGG ATTATCCTAA CTATCCGGCC AGTATTGCC
3001 AGGATCAGGT GGATCTGATA GTCCAGGTAG ATGAAGTCGG CGATCCGCAA AAAATTACCG
3061 CGGGTGCAT CCGTCTGACC AGCAACCCGC GCGAGCTGCT GATGCCCGC CAGGCGGCCA
3121 AAGTCGTTGA GCACTCCGGT TACTTAAAG AGGGTTTCTC GCTGCAGACC GGTACCGGCG
3181 GCGCCTCGCT GGCAGTAAC CGCTTCTTG AAGATAAAAT GCGCCGTAAC GGCATTACCG
3241 CCAGCTTCGG CCTCGCGGT ATCACCGGA CGATGGTCGA TTTGCACGAA AAAGGGTTGA
3301 TCAAAACGCT GCTCGATACC CAGTCCTTCG ATGGTGACGC GGCGCGTCG CTGGCGCAGA
3361 ACCCGAACCA TGTCGAGATC TCCACCAATC AGTATGCCAG CCCGGGCTCC AAAGGCGCCT
3421 CCTGCGAGCG CTTAACACGTG GTGATGCTCA GCGCGCTGGA AATTGATATC GACTTTAACG
3481 TTAACGTGAT GACCGGTTCT AACGGGTGTC TGCGCGGGC GTCCGGTGGC CATAGCGATA
3541 CCGCCGCCGG TGC GGATTG ACCATTATTA CGCGCGCGTT AGTTCGCGC CGTATTCCCT
3601 GCGTCGTGGA AAAGGTGCTG ACCCGCGTCA CGCCGGGGC CAGCGTGGAT GTGCTGGTCA
3661 CTGACCACGG CATTGCGGTC AACCCGGCAC GTCAGGACCT GATCGACAAT TTGCGCAGCG
3721 CAGGCATTCC GCTGATGACC ATTGAGGAAC TGCAGCAGCG TGCTGAGCTG TTGACTGGCA
3781 AGCCGCAGCC GATCGAATTG ACCGATCGGG TGGTGGCGGT GGTGCGCTAT CGCGACGGTT

stop **citF**

rStart

3841 CGGTCACTGA TGTGATTGCGT CAGGTGAAAA ACAGCGACTA AACGCAGAGG GGAAAGGCCA
citG

3901 TGAGCGACGT GTTAATTAAT CCTGCGCGTG TGCGCGCGT GAAGCCACTG AGTGCAGAAG
3961 AGGTGGTCAG CGCGGTAGAG CGCGCGCTGT TGACCGAAGT TCGCCTGACC CCAAAGCCCG
4021 GGTTGGTGGA TATTGTAAC GCTGGCGCGC ACTGGGATAT GGATCTGGCC TCGTTTGAGG
4081 CCAGCACCGC GGTGGTGGCT CCGTGGATGG AGAAATTGGT CATCATGGC CACGATACTG
4141 CGGCGGTGCG GCCGGAGCAG GTATTGATGA TGCTGCGCCC GGTAGGGATG GCCTGTGAGA
4201 ACGATATGCT GGAGGCCACC GGCAGGGTGA ATACCCATCG CGGGGCGATC TTGCTTTTG
4261 GCCTGCTCAG CGCGCGGGCG GGCAGGCTGG TGTCGAAAGG TGAGCCGATA GAGCAGCACC
4321 GGCTTGGCA CCAGGTGGCG CGCTTCTGTC GCGGCATGGT TATGCAGGAG TTGTCTTCTG
4381 CTGGCGGGGA ACGGCTCAGT AAAGGGCAGG CTCATTTCT ACGCTATGGT CTCTCCGGGG
4441 CCCCGGGCGA GGCAGGAGAGC GGTTTCTGA CGGTGCGTAC CCAGGCCATG CCAGTCTTTA
4501 CCCGCATGAT GGAAGAGACC GGCACAGTA ATCTGGCGCT ACTGCAAACC CTGCTGCATC
4561 TGATGGCGTG GAATGATGAC ACCAACCTGG TCTCGCGCG CGGGCTTGCC GGGCTGAAC
4621 TTGTCCAGCA GGAGGCGCAG CGACTGCTGT GGCAGGGCGG CGTGTGGCG GACGGCGGGC
4681 TGGAGGCGCT GCGACAGTT GACGATGAGC TGATTGCCCG CCATCTCAGC CCTGGCGGCC
4741 GCGCCGATCT GTTGGCGGTG ACCTGGTTT TATCCGCGTT TCCCGCCGGC GCGCTTTTCC
Stop citG

4801 CGCTGTAACC CACTGCAATA CCGCCTTCGC CGCACTGTA CGGGCGAGGG CGCCATCATT
4861 AGCCTTCCC GTTGTCATCC GGTAAACACG GAATCGCGC ACAATCGTAT AGTTTTTACT
4921 GATATCGTCC GCCGTTGTC ATAAATTCT AATTATCGGC GTTTTGAGT AGCGGCCCGC
4981 TGACGGGCTG GTTACTCTGA AAACAATTAA CGTAATGTTA ACAAAAGAGA ATAGCTATGC
5041 ATGATGCACA AATCCGCGTG GCCATCGCCG GCGCGGGCGG CCGGATGGGA CGCCAGTTAA
5101 TTCAGGCTGC ATTGCAGATG GAAGGCGTGG CGCTGGCGC GGCGCTGGAG CGCGAAGGGT
5161 CAAGCCTGGT GGGCAGCGAC GCCGGCGAGC TGGCGGGCGC CGGCAAAGCG GGCCTCGCGG

5221 TGCAGAGCAG CCTGGCGGCG GTAAAAGATG ATTCGACGT GTTGATCGAT TTTACCCGCC
5281 CGGAAGGCAC GCTGAACCAT CTGGCGTTT GCCGCGAGCA CGGCAAAGGG ATGGTCATCG
5341 GCACCACCGG TTTGACGAC GCTGGCAAAC AGGCATTG CGATGCCCG CAGGACATTG
5401 CCATTGTCTT CGCCGCTAAC TTTAGCGTTG GCGTCAATGT CCTGTTGAAG CTGCTGGAGA
5461 AGGCGGCGAA GGTGATGGGC GACTATAACG ACATCGAAAT TATCGAAGCG CACCACCGGC
5521 ATAAAGTGGG TGCGCCGTCA GGCACCGCGC TGGCGATGGG CGAAGCGATC GCCGGGGCAT
5581 TGAACAAAGA TCT

The invention is further elucidated by the following examples:

Example 1:

Cell culture

The following strains and plasmids were used: *E. coli* DH5 α or BL21 (DE3) (F.W. Studier and B.A. Moffatt, *J. Mol. Biol.* Vol. 189, 113-130 (1986)) and pACYC184 (A.C.Y. Chang et al., *J. Bacteriol.* Vol. 134, 1141-1156 (1978)). The *E. coli* cells were routinely cultured in Luria Bertani (LB) medium at 37°C according to J. Sambrook et al., *Molecular Cloning. A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2nd Edition 1989). Antibiotics were added at the following final concentrations: 200 μ g/ml ampicillin, 50 μ g/ml chloroamphenicol and 50 μ g/ml kanamycin. The *E. coli* strain DH5 α was used as the host organism for the cloning. The *E. coli* BL21 (DE3) cells which contain the phage T7 polymerase gene under the control of a lacUV5 promoter (F.W. Studier and B.A. Moffatt, supra) served as a host for the expression of the target genes of pT7-7 and pET derivatives. The cultures for the expression were prepared as follows. After centrifugation (3000 g, 8 min) of a preculture of 40 ml which had been incubated overnight at 37°C, the cells were resuspended in 20 ml fresh LB medium. The cell suspension was subsequently

used to inoculate 2 L of the same medium which contained appropriate antibiotics and the culture was incubated at 37°C in a shaker (180 rpm). When the OD₆₀₀ reached a value between 0.5 and 0.8, the expression of the target genes was induced by adding IPTG (isopropyl-β-D-thiogalactoside) at a final concentration of 1 mM and the culture was incubated for a further 3 hours at 37°C in a shaker (180 rpm). Subsequently the cells were harvested by centrifugation (30 min at 3000 g), washed once with 20 ml 50 mM potassium phosphate, pH 7.0, 1 mM MgCl₂ and stored at -20°C.

Example 2:

Isolation of the genes and gene cluster

For the construction of the expression plasmid which contains the E. coli citCDEFXG gene cluster, a 6.9 kb fragment from the chromosomal DNA of E. coli was amplified by means of PCR with the primers eccl-for (SEQ ID NO.1) and ec-citT-rev (SEQ ID NO.2) using the Expand High Fidelity PCR System from Roche Diagnostics. The 6.9 kb PCR fragment which additionally contains the citT gene (K.M. Pos et al., J. Bacteriol. Vol. 180, 4160-4165 (1998)), was cleaved with the restriction endonucleases XbaI and Xhol and the resulting 5.5 kb fragment (SEQ ID NO.3) and an expression vector that was also linearized correspondingly such as pKK177-3Hb, pKKT5, pUC18, pT7, pET24b were separated on an agarose gel and the appropriate bands were isolated (QIAEX kit from the Diagen Company). Subsequently the PCR fragment and the vector fragment were ligated together using T4 DNA ligase. For this 1 μl (20 ng) vector fragment and 3 μl (100 ng) PCR fragment, 1 μl 10 x ligase buffer (Maniatis et al., 1989 B.27), 1 μl T4 DNA ligase, 4 μl sterile redistilled H₂O were pipetted, carefully mixed

00963722665-00963600

and incubated overnight at 16°C. The insert obtained from the PCR starts 55 bp before the citC start codon and ends 203 bp downstream of the citG stop codon.

For the construction of the expression plasmid which contains the citX gene from *E. coli* (SEQ ID NO.3), the citX gene was amplified by PCR from the chromosomal DNA with the primers ec-citX-for (SEQ ID NO.4) and ec-citX-rev (SEQ ID NO.5) using the Pfu DNA polymerase (Stratagene). The start codon is part of an NdeI restriction endonuclease cleavage site and a XhoI restriction endonuclease cleavage site is located directly behind the stop codon. After digestion of the PCR product with NdeI and XhoI, the resulting 555 bp DNA fragment (SEQ ID NO.6) was ligated into appropriately linearized expression vectors (as described above).

The construction of the expression plasmid which contains the citCDEFG gene cluster of *Klebsiella pneumoniae* is described in M. Bott and P. Dimroth, Molecular Microbiology Vol. 14 (2), 347-356 (1994). The sequence of the citCDEFG gene cluster is shown in SEQ ID NO.7.

Example 3:

Transformation of the various expression plasmids in various *E. coli* expression strains

Competent cells of various *E. coli* strains were prepared according to the method of Hanahan (J. Mol. Biol. Vol. 166, 557 ff. (1983)). 200 µl of cells prepared in this manner were mixed with 20 ng of the corresponding expression plasmids. After 30 minutes incubation on ice, a heat shock was carried out (90 sec. at 42°C).

0962265-0962600

Subsequently the cells were transferred to 1 ml LB medium and incubated for 1 hour at 37°C for the phenotypic expression. Aliquots of this transformation mixture were plated on LB plates containing the appropriate antibiotic as a selection marker and incubated for 15 hours at 37°C.

Example 4:

Expression of the various target genes

After centrifugation (3000 g, 8 min) of 40 ml preculture which had been grown overnight at 37°C, the cell pellet was resuspended in 20 ml fresh LB medium. The cell suspension was then used to inoculate 2 l LB medium containing the appropriate antibiotics. This cell culture was incubated at 37°C in a shaker (180 rpm). The expression of the target genes was induced at an optical density (measured at 600 nm) of 0.5 - 0.8 by adding 1 mM isopropyl- β -D-thiogalactoside (IPTG, final concentration) and the cultures were incubated for a further 3 hours at 37°C and 180 rpm. Afterwards the cells were harvested by centrifugation (30 min. at 3000 g), washed once in 20 ml 50 mM potassium phosphate, pH 7.0 and frozen at -20°C.

For the cell extract preparation, 1 g cells (wet weight) were resuspended in 4 ml cold 50 mM potassium phosphate, 1 mM MgCl₂ pH 7.0. After adding a protease inhibitor cocktail (Roche Diagnostics) and DNaseI to a final concentration of 25 mg/ml, the cells were lysed by a three-fold passage in a French press at 108 Mpa. Intact cells and cell debris were removed by centrifugation (30 min. at 27,000 g). The cell-free supernatant was separated from the membrane fraction by ultracentrifugation (1 h at 150,000 g) and the resulting

09572255-032600

cell extract can then be used directly for enzymatic studies and for protein purification.

Example 5:

Citrate lyase activity test

The citrate lyase activity was measured at 25°C in a spectrophotometric test coupled with malate dehydrogenase from Roche Diagnostics. The test mixture contained in a final volume of 1 ml 50 mM glycylglycine pH 7.9, 5 mM potassium citrate, 2 mM ZnCl₂, 0.5 mM NADH, 30 U malate dehydrogenase (Roche Diagnostics) and 10 µl or 20 µl cell extract. The oxidation of NADH was measured in a spectrophotometer at 365 nm ($\epsilon = 3.4 \text{ mM}^{-1} \text{ cm}^{-1}$). One enzyme unit (unit) is defined as 1 µmol citrate which is degraded per minute to acetate and oxaloacetate.

0005222555-09926600