(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 July 2003 (17.07,2003)

PCT

(10) International Publication Number WO 03/057793 A1

- (51) International Patent Classification7: C09K 3/00, 7/00
- . (21) International Application Number: PCT/US02/39949
 - (22) International Filing Date:

13 December 2002 (13.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/341,492

17 December 2001 (17.12.2001) U

- (71) Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY [US/US]; P.O Box 2189, Houston, TX 77252-2189 (US).
- (72) Inventors: BRAGG, James, R.; 2119 Goldsmith, Houston, TX 77030 (US). VARADARAJ, Ramesh; 18 Aberdeen Circle, Flemington, NJ 08822 (US).

- (74) Agents: COLLINS, Douglas J. et al.; Exxonmobil Upstream research Company, P.O. Box 2189, Houston, TX 77252-2189 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SOLIDS-STABILIZED OIL-IN-WATER EMULSION AND A METHOD FOR PREPARING SAME

(57) Abstract: A solid-stabilized oil-in-water emulsion and method for preparing the solids-stabilized oil-in-water emulsion. oil-in-water emulsion is formed by combing oil, water, solid particles and a pH enhancing agent and mixing until the solid-stabilized oil-in-water emulsion is formed. The low viscosity oil-in-water emulsion can be used to enhance production of oil from subterranean reservoir. The low viscosity oil-in-water emulsion can also be used to enhance the transportation of oil through a pipeline. Figure 1 is a ternary diagram (114) representing fundamental shape groups for solids employed including plate (102), pie (104), bar (106), cylinder (108), cube (110) and sphere (112). The size of the particle solids may be measured by scanning probe microscope technique using a atomic force microscope.

WO 03/057793 A1

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for all designations
 as to the applicant's entitlement to claim the priority of the
- earlier application (Rule 4.17(iii)) for all designations

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

with international search report

SOLIDS-STABILIZED OIL-IN-WATER EMULSION AND A METHOD FOR PREPARING SAME

FIELD OF INVENTION

This invention relates to a solids-stabilized oil-in-water emulsion and a method for preparing same. In particular, the invention relates to a method for reducing the effective viscosity of oil by incorporating the oil into a solids-stabilized oil-in-water emulsion.

BACKGROUND OF INVENTION

Recovery of oil from a reservoir usually results in simultaneous production of water with the oil. In many cases the oil and water are subject to mixing and shearing in subsurface pumps, and this results in the formation of water-in-oil or oil-external emulsions having a viscosity that is substantially higher than that of the original, "dry oil". Because of wellbore hydraulics, the production of this oil-external emulsion, with its higher viscosity, increases lifting costs (larger pumps and more electrical power requirements) and often limits the production rate from the well, which reduces economic profitability. Often, demulsifier chemicals are added to the subterranean formation to either prevent emulsion formation or to break the oil-external, high viscosity emulsion. The added demulsifier chemicals are expensive speciality products and need to be customized to the oil, emulsion and reservoir characteristics in order for the desired performance to be achieved. What is needed is a simple, economic method for reducing the viscosity of the oil-water mixture.

Moreover, in some cases the original oil is so viscous, such as with some heavy oils, that even if no water is produced from the reservoir and no oil-external emulsion is formed, the production rate of the oil is nonetheless limited because of its high viscosity. Accordingly, a simple, economic method for reducing the effective viscosity of highly viscous oil is also needed.

A related problem in the production of oil is a need to obtain an increased flowrate of the oil through a pipeline, for example, a pipeline used to transport oil from the point of production to points of collection, transportation, The viscosity of the oil is a limiting factor in the efficient or sale. transportation of oil. As the viscosity of the oil increases, so do the related costs of transportation, such as pumping costs. Existing methods for increasing pipeline capacity are to heat the oil, dilute the oil with less-viscous hydrocarbon diluents, treat the oil with drag reducers, transport the oil in a core annular flow, or convert the oil into an oil-in-water (or water-external) emulsion having a viscosity lower than that of the dry oil. Methods for making water-external emulsions include adding expensive surfactants or adding surfactants simultaneously with raising the pH of the water-oil mixture by adding base such as sodium hydroxide or ammonium hydroxide. However, for many oils, these treatments do not result in emulsions that remain sufficiently stable for the long times needed to transport the oil to market. A need exists for an inexpensive method for making a water-external emulsion that remains stable for long periods of time, and can be easily and economically demulsified and separated into the constituent oil and water.

SUMMARY OF INVENTION

This invention is a solids-stabilized oil-in-water emulsion, and a method for preparing a solids-stabilized oil-in-water emulsion.

In an embodiment of the invention, the solids-stabilized oil-in-water emulsion is used to enhance the production of oil from a subterranean reservoir.

In another embodiment of the invention, the solids-stabilized oil-inwater emulsion is used to enhance the transportation of oil through pipelines.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a ternary diagram that illustrates some, but not all, of the particle shapes that could be characteristic of the solid particles used to make the solids-stabilized oil-in-water emulsion of this invention.

DETAILED DESCRIPTION OF THE INVENTION

This invention provides a solids-stabilized oil-in-water emulsion and a method of making a solids-stabilized oil-in-water emulsion. To make a solids-stabilized oil-in-water emulsion pursuant to this invention, solid particles and a pH enhancing agent are added to water and mixed with oil until the solids-stabilized oil-in-water emulsion is formed.

The solid particles useful for this invention should have certain physical properties. If the solid particles are to be used in a porous subterranean formation, as will be explained in more detail, the average particle size should be smaller than the average diameter of the pore throats in the porous subterranean formation. At least one size measurement dimension of the actual individual particle size should be sufficiently small to provide adequate surface area coverage of the droplets of oil that are formed within the external water phase. Particle size can be measured by a wide array of particle size analytical techniques, including laser light scattering, mesh screen classification, Coulter counting method, and settling velocity (which uses Stokes law to convert a solid sample's settling velocity in a fluid to an average particle size). However, each of these techniques produces an "effective" particle diameter, which is the result that would have been produced by corresponding test sample comprised of particles with a spherical shape. Consequently, a particle's effective diameter becomes a less accurate approximation of its true size as the particle's shape deviates further from a spherical shape. In most instances, however, particles are often irregular and nonuniform in shape.

WO 03/057793 PCT/US02/39949

Without intending to limit the scope of the invention, Figure 1 illustrates this point with a ternary diagram, 114, having three fundamental shape groups. The first group is a plate or pie shape, 102 and 104; the second is a bar or cylinder shape, 106 and 108, and the third is a cube or sphere shape, 1.10 and 112. Typically, particles composing the solids used for making a solids-stabilized emulsion disclosed herein will have some composite irregular shape that is somewhere between the two or three basic shape groups illustrated in ternary diagram, 114. Accordingly, the size of particles composing such solids are preferably determined using a scanning probe microscopy (SPM) technique. One example of such a technique is atomic force microscopy. Digital Instruments of Santa Barbara, California manufactures an atomic force microscope (AFM) known as the Nanoscope MultimodeTM, which has been used to characterize the average size and shape of some of the solid particles used in the working examples disclosed below.

Using AFM or some other SPM technique the maximum dimensions of a particle along its x, y, and z axes can be determined. Therefore, unless reference to an alternative particle size analysis method is otherwise indicated, reference to a particle size will mean the smallest of the three dimensions measured along a particle's x, y, and z axis, as measured by a SPM technique. In the case of a perfect sphere, 112, or cube, 110, each dimension is equal while in the case of a particle having the shape of a pie, 104, or plate, 102, the thickness of the particle, as measured along the z axis, is small relative to it length, x, and width y. The "average" particle size for a particular sample can be determined by obtaining a sufficient number of measurements, preferably 50 or more, of the smallest dimension for the array of particles being analyzed. The average size can be calculated using either the number of particles among the total measured having a particular x, y, or z value, whichever is smallest, or

the weight contribution of the particles having a particular x, y, or z value, whichever is smallest, among the total weight for all particles measured.

If spherical in shape, the solid particles should preferably have an average size of about ten microns or less in diameter, more preferably about two microns or less, even more preferably about one micron or less and most preferably, 100 nanometers or less. If the solid particles are non-spherical in shape, they should preferably have an average surface area of about 200 square microns or less, more preferably about 20 square microns or less, even more preferably about ten square microns or less and most preferably, one square micron or less. The solid particles must also remain undissolved in both the oil and water phase of the emulsion under the conditions for which the emulsion is used.

The preferred solid particles are hydrophilic in nature, which include but are not limited to hydrophilic exfoliated clay, silica, carbonaceous solids and mixtures thereof. Hydrophilic silica, for example Aerosil-130TM sold by Degussa Corp. can also be used. Carbonaceous solids like refinery generated coke can also be used to prepare solids-stabilized oil-in-water emulsions. Refinery coke is generally a hydrophilic carbonaceous solid that can be ground to a powder of sufficient size for this invention. Montmorillonite clays, for example Bentonite and Kaolinite clays are also suitable for preparing the solids-stabilized oil-in-water emulsion. Bentonite clay is suitable because it can be easily exfoliated or divided by methods known in the art for exfoliation or division of clays. As mined, bentonite clays naturally consist of aggregates of particles that can be dispersed in water and broken up by shearing into units having average particle sizes of 2 microns or less. However, each of these particles is a laminated unit containing approximately 100 layers of fundamental silicate layers of 1 nm thickness bonded together by inclusions of atoms such as calcium in the layers. By exchanging the atoms such as calcium

by sodium or lithium (which are larger and have strong attractions for water molecules in fresh water), and then exposing the bentonite to fresh water, the bentonite can be broken into individual 1 nm thick layers, called fundamental particles. The chemistry of this delamination process is well known to those skilled in the art of clay chemistry. The result of this delamination process is a gel consisting of divided bentonite clay.

Also, the source of the solids used for making a solids-stabilized oil-inwater emulsion may be indigenous to the formation where such emulsion is used, hereinafter known as formation solids or formation solid particles, or may be obtained external to the formation, whether taken from another formation, mined, or synthesized, hereinafter known as nonformation solids. In certain instances, in fact, both formation and nonformation solids may be compositionally similar, but simply derived from different sources.

The pH enhancing agent can be any agent that will raise the pH of the final emulsion, preferably to a range of about 7.5 to about 10. It is believed that if the final emulsion is not of a sufficient basicity, the solid particles which are initially hydrophilic (and provide stability to the water-external emulsion) gradually become hydrophobic because of slow absorption of polar hydrocarbons from the oil. A solids-stabilized oil-in-water emulsion formed without sufficient basicity will eventually invert to a water-in-oil (or oil-external) emulsion, which is undesirable for this invention. The preferred pH enhancing agent for this invention is a base, or mixture of bases. Preferred basic solutions include sodium hydroxide, potassium hydroxide, ammonium hydroxide, tertiary butyl ammonium hydroxide or mixtures thereof. A typical treat rate of a basic solution is between about 0.005wt% to about 5.0wt% based on the weight of the water.

The water used to form the emulsion preferably contain salts of Group I and Group II elements. Chlorides, sulfates, carbonates are some of the

commonly occurring salts in water. Presence of these and other salts have a beneficial effect on emulsion formation and stability.

To make the solids-stabilized oil-in-water emulsion in accordance with this invention, oil can be added to water that contains the solid particles and the basic solution. This method is preferred where the solids-stabilized emulsion is prepared above ground, for example, in a surface facility. Alternatively, water containing the solid particles and the basic solution can be added to the oil, which is preferred for subterranean preparation of a solids-stabilized oil-inwater emulsion. The severity and duration of mixing required to form the solids-stabilized oil-in-water emulsion can be determined by one of ordinary skill in the art based upon such factors as the oil viscosity and oil composition. Mixing in a surface facility can be accomplished using static mixers (e.g., paddle mixers), blade mixers, inline mixers (e.g., plurality of fins in a pipe), or propagation of the oil-water mixture through an orifice. In a subsurface formation of emulsions, the mixing occurs in the subsurface pumps. percentage of oil in water for the solids-stabilized oil-in-water emulsion can vary between 10% to 90%. The preferred treat rate of solid particles in the emulsion is between about 0.01 wt% to about 5.0 wt% based upon the weight of the oil.

It is preferred to have oil droplets in the size range of 1 micron to 200 microns in diameter suspended in the external water phase. In general, the dispersed oil droplets size distribution can be controlled by increasing the rate and/or duration of mixing and by increasing the concentration of solid particles and/or the pH enhancing agent. Conventional optical microscopy can be used to observe the oil droplets dispersed in water. Alternate methods to determine the oil droplet size distribution are known in the art, and can be used, such as the Coulter Counter method.

The following laboratory experiment and prophetic examples are intended to illustrate examples of making and using the solids-stabilized oil-inwater emulsions of this invention. However, to the extent that the following descriptions are specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications, and equivalents that are included within the spirit and scope of the invention, as defined by the appended claims.

Laboratory Experiment - Reduction of Effective Viscosity of Oil

The viscosity of a sample of dry crude oil was measured to be 320 cp at 140°F using a Brookfield viscometer. An oil-external emulsion containing 30 volume% (vol. %) water was made with this oil sample, which increased the effective viscosity of the oil (i.e. the viscosity of the water-in-oil emulsion) to 940cp (140 °F at 380 sec -1 shear rate). A water-external emulsion was made with this crude oil sample, also containing 30 vol. % water, by mixing bentonite solid particles (at a treat rate of between 0.01 wt% to about 5 wt% based on the weight of the oil), and 100 ppm of ammonium hydroxide (to bring the pH of the final emulsion to a range of about 7.5 to 10) to the water and oil, and shearing until the water-external emulsion was formed. The resulting water-external emulsion exhibited a viscosity of 91 cp (140 °F at 380 sec -1 shear rate), which is a viscosity reduction of 229 cp from the 320 cp viscosity of the dry oil.

Production of oils using a solids-stabilized oil-in-water emulsion.

An aqueous solution comprising a volume of water containing a pH enhancing agent (for instance a basic solution like ammonium hydroxide), and hydrophilic solid particles (such as bentonite that has been exfoliated into individual, fundamental layers), is pumped into a subterranean oil formation

from the surface. The aqueous solution is provided within the subterranean formation at a location so that it contacts the produced oil and connate water (if any) at a depth below where the fluids enter the submersible pump. The aqueous solution, connate water and oil are mixed within the subterranean formation by propagation of the mixture through pores in the formation and/or mixing in the submersible pump thereby forming the solids-stabilized oil-in-water emulsion. The solids-stabilized oil-in-water emulsion has a lower viscosity than the original dry oil and a lower viscosity than the water-in-oil emulsions that can be formed in the formation by mixing of the dry oil and connate water. The low viscosity solids-stabilized oil-in-water emulsion can be produced from the subterranean formation using production methods commonly known in the industry.

The amount of solid particles and basic solution added to the injected water to form the aqueous solution can be determined by one skilled in the art pursuant to the particular characteristics of the subterranean reservoir and oil being produced. The produced oil-in-water emulsion preferably has a final concentration of solid particles in the range of about 0.01 wt% to about 5 wt% based on the weight of the oil. The amount of basic solution added to the injected water should be sufficient to raise the pH of the resulting oil-in-water emulsion to above 7.0, and preferably to a range of 7.5-10. The amount of base needed depends on the acid content (Total Acid Number, TAN) of the oil. For example, for oils whose TAN ranges from 4-7, the amount of ammonia that needs to be added is about 100-200 ppm in the final emulsion. Generally, it is preferred to add an amount of base sufficient to neutralize at least 25% of the acids. The oil-in-water emulsion produced by addition of solid particles and the basic solution will usually remain stable for longer periods of time and have a lower viscosity than an emulsion made by addition of a basic solution alone. Moreover, the resulting water-external emulsion has a substantially lower viscosity than the dry oil alone, and can be lifted at lower cost and at higher rate than either the dry oil alone or the oil-external emulsions usually formed in the wellbore.

Once produced, the solids-stabilized water-external emulsion can be allowed to gravity settle in surface facilities to concentrate the oil content to approximately 70-80 vol. % oil. The excess water can be removed after separation. This water-external emulsion containing 70-80 vol. % oil is well suited for transport in pipelines as described below. To break the water-external emulsion, a sufficient pH reducing agent (such as an acidic solution) can be added to reduce the pH of the emulsion to a value below about 7.0. Water can then be removed by conventional dehydration methods such as using electrostatic coalescence devices or hydrocylones.

Transportation of oil using a solids-stabilized oil-in-water emulsion.

Water-external emulsions can be transported in pipelines to achieve higher net flowrates of oil than in the transport of dry oil alone. The percentage of oil in water for this embodiment can vary between 10% to 90%, and is preferably in the range of 70 to 80%. In a particular example, oil is combined with an aqueous solution comprising water, a pH enhancing agent (such as a basic solution), and solid particles and mixed until the solids-stabilized oil-inwater emulsion is formed. The amount of basic solution is preferably in a range between about 0.005 wt% to about 5 wt% based upon the weight of the water. The pH of the resulting oil-in-water emulsion should be above 7.0 and preferably be in the 7.5-10 range. The solid particles can be added at a treat range of about 0.01 wt% to about 5 wt% based upon the weight of the oil.

The oil useful for this embodiment of invention can be any oil including but not limited to crude oil, crude oil distillates, crude oil residue, synthetic oil, and mixtures thereof. In propagating the emulsion through a pipe it is preferred to first contact the inner walls of the pipe with a wettability altering agent to make the inner walls of the pipe water-wet to aid the propagation of the oil-in-water emulsion. The wettability altering agent can be water or another known drag reducer that can be selected by one of ordinary skill in the art. After contacting the inner walls of the pipe with the wettability altering agent, the oil-in-water emulsion can be pumped through the pipe.

High-oil content, solids-stabilized oil-in-water emulsions are therefore good candidates for transportation in pipelines using flow regimes of either self-lubricating core annular flow or as uniform, lower-viscosity water-external emulsions. In core annular flow, forming a low-viscosity annulus near the pipe wall further reduces pressure drop. Because the viscosity of a solids-stabilized oil-in-water emulsions is not greatly affected by temperature (because the viscosity of water, the continuous phase, is not greatly affected by temperature), such oil-in-water emulsions do not have to be heated to high temperature to maintain an acceptably low viscosity for economical transport. Another benefit of the oil-in-water emulsion formed in the above manner is that the oil phase does not tend to wet steel. Thus, these emulsions will have fewer tendencies to wet or "foul" the pipeline walls than oil-external emulsions or dry oil.

The present invention has been described in connection with its preferred embodiments. However, to the extent that the foregoing description was specific to a particular embodiment or a particular use of the invention, this was intended to be illustrative only and is not to be construed as limiting the scope of the invention. On the contrary, it was intended to cover all alternatives, modifications, and equivalents that are included within the spirit and scope of the invention, as defined by the appended claims.

We Claim:

1. A method for preparing a solids-stabilized oil-in-water emulsion comprising:

combining water, oil, micron to sub-micron sized hydrophilic solid particles and a pH enhancing agent; and

mixing until said solid-stabilized oil-in-water emulsion is formed.

2. A method for producing oil from a subterranean formation, comprising:

contacting said oil in said subterranean formation with an aqueous solution comprising water, micron to sub-micron sized hydrophilic solid particles, and a pH enhancing agent;

forming a solids-stabilized oil-in-water emulsion in said subterranean formation; and

producing said solids-stabilized oil-in-water emulsion.

3. A method for preparing a solids-stabilized oil-in-water emulsion comprising:

combining water, oil, micron to sub-micron sized hydrophilic formation solid particles and a pH enhancing agent; and

mixing until said solid-stabilized oil-in-water emulsion is formed.

4. A method for producing oil from a subterranean formation, comprising:

contacting said oil in said subterranean formation with an aqueous solution comprising water, micron to sub-micron sized hydrophilic formation solid particles, and a pH enhancing agent;

forming a solids-stabilized oil-in-water emulsion in said subterranean formation; and

producing said solids-stabilized oil-in-water emulsion.

5. A method for transporting oil through a pipe comprising:

-preparing a solids-stabilized oil-in-water emulsion by:

combining water, oil, micron to sub-micron sized hydrophilic solid particles and a pH enhancing agent; and

mixing said combination until said solid-stabilized oil-in-water emulsion is formed; and

-transporting said solids-stabilized oil-in-water emulsion through said pipe.

- 6. The method of claim 1 or 3, wherein said step of combining comprises forming an aqueous solution comprising said water, said solid particles and said pH enhancing agent and injecting said aqueous solution into a subterranean formation to combine with said oil.
- 7. The method of claim 1, 3, or 6, wherein said step of mixing occurs in said subterranean formation.
- 8. The method of claim 1, 3, 5, 6 or 7, wherein said oil, said water, said solid particles and said pH enhancing agent are combined in a surface facility.
- 9. The method of claim 1, 3, 5, 6, 7 or 8, wherein said solid particles are combined at a treat rate of about 0.01 wt% to about 5 wt% based upon the weight of said oil.

- 10. The method of claim 1, 3, 5, 6, 7, 8 or 9, wherein said pH enhancing agent is combined at a treat rate to provide said oil-in-water emulsion with a pH in a range of about 7.5 to about 10.
- 11. The method of claim 1, 3, 5, 6, 7, 8, 9 or 10, wherein said oil is combined with said water, said solid particles and said pH enhancing agent to form an oil-in-water emulsion comprising about 10% to about 80% oil.
- 12. The method of claim 1, 3, 5, 6, 7, 8, 9, 10 or 11, wherein said step of mixing continues until said oil comprises oil droplets dispersed in said water in size range of about 1 micron to about 200 microns in diameter.
- 13. The method of claim 2 or 4, wherein said solid particles are present in said aqueous solution in a range of about 0.01 wt% to about 5 wt% based upon the weight of said oil.
- 14. The method of any of claims 1 through 13, wherein said solid particles comprise spherically shaped solid particles with an average particle size of less than about 10 microns in diameter.
- 15. The method of any of claims 1 through 13, wherein said solid particles comprise non-spherically shaped solid particles with an average surface area of less than about 200 square microns.
- 16. The method of claim 2 or 4, wherein a sufficient amount of pH enhancing agent is contacted with said oil to provide said emulsion with a pH in a range of about 7.5 to about 10.
- 17. The method of any of claims 1 through 16, wherein said pH enhancing agent comprises a basic solution.

- 18. The method of claim 17, wherein said basic solution is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, tertiary butyl ammonium hydroxide and mixtures thereof.
- 19. The method of claim 17 or 18, wherein said basic solution is provided at a concentration of about 0.005 wt% to about 5 wt% based on the weight of the water.
- 20. The method of any of claims 2, 4, 13 or 16, further comprising adding a pH reducing agent to said produced solids-stabilized oil-in-water emulsion.
- 21. The method of claim 20, further comprising removing water from said solids-stabilized oil-in-water emulsion.
- 22. The method of any of claims 1, 3, 5, or 6 through 12, wherein said step of combining, said step of mixing, or both occur in the subsurface.
- 23. The method of claim 22, wherein said step of mixing comprises mixing by a submersible pump in the subsurface.
- 24. The method of claim 5, further comprising contacting the inner walls of said pipe with wettability altering agent prior to said step of transporting said solids-stabilized oil-in-water emulsion.
- 25. The method of claim 24, wherein said wettability altering agent comprises water.
- 26. A solid-stabilized oil-in-water emulsion formed by the method of any of claims 1 through 4, or 6 through 23.
- 27. A solids-stabilized oil-in-water emulsion comprising:

16

oil droplets dispersed in water,

micron to sub-micron sized hydrophilic solid particles suspended at the interface between said oil droplets and said water, and

a pH enhancing agent.

- 28. The emulsion of claim 27, wherein said oil-in-water emulsion comprises about 10 wt% to about 80 wt% oil based on the weight of the emulsion.
- 29. The emulsion of claim 27 or 28, wherein said solid particles are at a concentration of about 0.01 wt% to 5 wt% based on the weight of said oil.
- 30. The emulsion of claim 27, 28 or 29, wherein said solid particles comprise spherically shaped solid particles with an average particle size of less than about 10 microns in diameter.
- 31. The emulsion of claim 27, 28 or 29, wherein said solid particles comprise non-spherically shaped solid particles with an average surface area of less than about 200 square microns.
- 32. The emulsion of any of claims 27 through 31, wherein said pH enhancing agent comprises a basic solution.
- 33. The emulsion of claim 32, wherein said basic solution is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, tertiary butyl ammonium hydroxide and mixtures thereof.

- 34. The emulsion of claim 32 or 33, wherein said basic solution is present at a concentration of about 0.005 wt% to about 5 wt% based on the weight of the water.
- 35. The emulsion of any of claims 27 through 34, wherein said oil droplets are in the size range of about 1 micron to about 200 microns in diameter.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/39949

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : C09K 3/00, 7/00; US CL : 516/52, 53; 507; 103, 203, 140, 269 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 516/52, 53; 507/103, 203, 140, 269, 906; 137/13 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *			Relevant to claim No.
X - Y	US 6,069,178 A (LAYRISSE et al) 30 May 2000 (30.05.2000), see entire document: particularly column 2, lines 40-50; column 4, lines 14-63; examples and claims.		1 & 27-29 5
$\frac{\mathbf{x}}{\mathbf{y}}$	US 5,964,906 A (LAYRISSE et al) 12 October 1999 (12.10.1999), see entire document: particularly column 2, lines 8-22; examples and claims.		1 & 27-29 5
Y	US 5,910,467 A (BRAGG) 08 June 1999 (08.06.1999) see entire document.		1-6, 13, 16, 24-25 & 27-29
Y	US 3,380,531 A (MC AULIFFE et al) 30 April 1968 (30.04.1968), see entire document.		1-6, 13, 16, 24-25 & 27-29
Y	US 3,630,953 A (WHITTIER et al) 28 December 19	71 (28.12.1971) see entire document.	5, 24 & 25
Y	Y US 3,490,471 A (CARLIN) 20 January 1970 (20.01.1970), see entire document.		5, 24 & 25
Further	documents are listed in the continuation of Box C.	See patent family annex.	
		<u> </u>	mational filing date or arigrity
 Special categories of clted documents: "A" document defining the general state of the art which is not considered to be of particular relevance 		"T" later document published after the international filing date or priority date and not in conflict with the application but cled to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be	
"E" earlier application or patent published on or after the international filing date		considered novel or cannot be consider when the document is taken alone	red to involve an inventive step
specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination	
"O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art		ļ	
	t published prior to the international filing date but lazer than the late claimed	"&" document member of the same patent	
Date of the actual completion of the international search 11 April 2003 (11.04.2003)		Date of mailing of the international search report 28 APR 2003	
Name and mailing address of the ISA/US Aut		Authorized officer	2 /22
Commissioner of Parents and Trademarks		Daniel S. Metzmaier	Aller
Box PC1 Washington, D.C. 20231 Facsimile No. (703)305-3230		Telephone No. (703) 308-0661	

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/39949

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: '			
Claim Nos.: 7-12,14,15,17-23,26 and 30-35 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)