OPD - 1998-05-22

- TI Image processor for ferroelectric liquid crystal display device compares ID data in transmission signal and ID setup based on which image and vocal data are stored in memory
- AB JP11338445 NOVELTY ID data received from transmission signal and ID setup are compared. A memory stores discriminated vocal and image data based on the comparison result. A controller controls writing and reading of memory based on discrimination signal. Head phones (301-304) output vocal data read out from memory. DETAILED DESCRIPTION ID data, image data and vocal data are arranged in predetermined order in transmission signal. Discrimination signal for distinguishing ID data, image data and vocal data is included. Mask of discrimination signal is performed before storing the data. The transmission signal is transmitted by branch transmission units (201-204).
- USE For liquid crystal display device.
- ADVANTAGE Since received image data are stored in memory, display of front image can be continued until following image data are sent. Since vocal ID is setup independently desired vocal data can be obtained and corresponding matching image can be displayed. DESCRIPTION OF DRAWING(S) The figure shows block diagram of the display device in the image processor. (201-204) Branch transmission units; (301-304) Head phones.
- (Dwg.1/9)

PN - JP11338445 A 19991210 DW200019 G09G5/00 011pp

PR - JP19980141629 19980522

AN - 2000-210980 [19]

AP - JP19980141629 19980522

PA - (CANO) CANON KK

© PAJ / JPO

TI - IMAGE PROCESSING DEVICE, IMAGE DISPLAY UNIT, AND STORAGE MEDIUM READABLE BY COMPUTOR

AB - PROBLEM TO BE SOLVED: To transmit sounds in a system for transmitting images on plural liquid crystal displays (FLCD).

- SOLUTION: A transmission signal transmitted from a host computor 1 contains a data signal arranged with an ID data, an image data and a sound data in this order, and a determination signal for determining any of the ID data, the image data or the sound data. Images are displayed by FLCDs 101-104 while relaying the transmission signals by branch transmission units 201-204, and sounds are output by head phones 301-304. In this case, IDs set respectively by the respective units are compared with the ID data, and the images when they are matched with each other are fetched to be displayed. The sound data can also selected, based on the comparison of the IDs with respect to sounds.

AP - JP19980141629 19980522

PN - JP11338445 A 19991210

PA - CANON INC

I - G09G5/00 ;G09G5/00 ;G06F3/153 ;G06F3/16 ;G09G3/36 ;H04L12/28

PD - 1999-12-10

THIS PAGE BLANK (USPTO)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-338445

(43)公開日 平成11年(1999)12月10日

(51) Int.Cl. ⁶		識別記号		FΙ				
G 0 9 G	5/00	5 1 0		G09G	5/00		510Q	
		555 .	•				555D	
G06F	3/153	3 3 0		G06F	3/153		330A	
	3/16	3 3 0 .			3/16		330C	
G09G	3/36	,		G09G	3/36			
		•	審査請求	未請求 請求	項の数16	OL	(全 11 頁)	最終頁に続く
(21)出願番号		特廢平10-141629		(71)出願人	0000010	007		
				·	キヤノこ	ン株式	会社	
(22)出願日		平成10年(1998) 5月22日			東京都大田区下丸子3丁目30番2号			
				(72)発明者				
				-	東京都大	大田区	下丸子3丁目3	0番2号 キヤ
					ノン株式	式会社I	勺	
				(72)発明者	山本 市	高司		
					東京都大田区下丸子3丁目30番2号 キヤ			
		•			ノン株式	t会社P	4	
				(72)発明者	高山	E		
		•		-	東京都力	大田区	下丸子3丁目3	0番2号 キヤ
					ノン株式	t会社内	4	
				(74)代理人	弁理士	國分	孝悦	
					最終頁に続く			

(54) 【発明の名称】 画像処理装置、画像表示装置及びコンピュータ読み取り可能な記憶媒体

(57)【要約】

【課題】 複数の液晶表示器(FLCD)に画像を伝送するシステムにおいて、音声も伝送できるようにする。 【解決手段】 ホストコンピュータ1から送られる伝送信号には、IDデータと画像データと音声データとが所定の順序で配列されたデータ信号と、上記IDデータか上記画像、音声データかを判別するための判別信号とが含まれる。この伝送信号を分岐伝送ユニット201~204で中継しながらFLCD101~104で画像を表示すると共に、ヘッドホン301~304で音声を出力する。その場合、各ユニットでそれぞれ設定したIDと上記IDデータとを比較して一致したときの画像が取り込まれて表示される。音声についても上記IDの比較に基づいて音声データを選択することができる。

【特許請求の範囲】

4.34.5

【請求項1】 IDデータと画像データと音声データとが所定の順序で配列されたデータ信号と、上記IDデータか上記画像、音声データかを判別するための判別信号とを含む伝送信号を受信する受信手段と、

I Dを設定する I D設定手段と、

上記受信した伝送信号中のIDデータと上記設定されたIDとを比較して両者が一致したことを検出する検出手段と、

上記両者が一致したとき上記受信した伝送信号中の判別 信号をマスクするマスク手段と、

上記判別信号がマスクされた伝送信号を送出する第1の 伝送信号出力手段と、

上記受信した伝送信号をそのまま送出する第2の伝送信号出力手段と、

上記受信した伝送信号中の音声データを記憶するメモリ 手段と、

上記メモリ手段の書き込みと読み出しを上記受信した伝送信号中の判別信号に基づいて制御するメモリ制御手段 と

上記メモリ手段から読み出された音声データを出力する 音声出力手段とを備えた画像処理装置。

【請求項2】 上記メモリ制御手段は、上記データ信号を同期させるクロックを上記判定信号から所定数カウントしたときに上記書き込み開始アドレスを発生し、上記クロックを分周したクロックを上記判定信号から所定数カウントしたときに上記読み出し開始アドレスを発生することを特徴とする請求項1記載の画像処理装置。

【請求項3】 上記メモリ制御手段は、上記設定された I Dに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記 設定された I Dに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする 請求項1記載の画像処理装置。

【請求項4】 音声IDを設定する音声ID設定手段を設け、上記メモリ制御手段は、上記設定された音声IDに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記設定された音声IDに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする請求項1記載の画像処理装置。

【請求項5】 IDデータと画像データと音声データと が所定の順序で配列されたデータ信号と、上記IDデー タか上記画像、音声データかを判別するための判別信号 とを含む伝送信号を受信する受信手段と、

I Dを設定する I D設定手段と、

上記受信した伝送信号中のIDデータと上記設定されたIDとを比較して両者が一致したことを検出する検出手段と、

上記両者が一致したとき上記受信した伝送信号中の判別

信号をマスクするマスク手段と、

上記判別信号がマスクされた伝送信号を送出する第1の 伝送信号出力手段と、

上記受信した伝送信号をそのまま送出する第2の伝送信号出力手段と、

上記受信した伝送信号中の音声データを記憶するメモリ 手段と

上記メモリ手段の書き込みと読み出しを上記受信した伝 送信号中の判別信号に基づいて制御するメモリ制御手段 と

上記メモリ手段から読み出された音声データを出力する 音声出力手段とを有する画像処理部と、

上記第1の伝送出力手段から出力される上記伝送信号中の画像データを表示する表示部とを備えたことを特徴とする画像表示装置。

【請求項6】 上記メモリ制御手段は、上記データ信号を同期させるクロックを上記判定信号から所定数カウントしたときに上記書き込み開始アドレスを発生し、上記クロックを分周したクロックを上記判定信号から所定数カウントしたときに上記読み出し開始アドレスを発生することを特徴とする請求項5記載の画像表示装置。

【請求項7】 上記メモリ制御手段は、上記設定された I Dに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記 設定された I Dに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする 請求項5記載の画像表示装置。

【請求項8】 音声IDを設定する音声ID設定手段を設け、上記メモリ制御手段は、上記設定された音声IDに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記設定された音声IDに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする請求項5記載の画像表示装置。

【請求項9】 上記表示部は、表示画像の記憶性を有し、次の伝送信号が入力されるまで表示画像を保持することを特徴とする請求項5記載の画像表示装置。

【請求項10】 複数の上記画像処理部が直列に接続され、各画像処理部に上記表示部が接続されていることを特徴とする請求項5記載の画像表示装置。

【請求項11】 IDデータと画像データと音声データとが所定の順序で配列されたデータ信号と、上記IDデータか上記画像、音声データかを判別するための判別信号とを含む伝送信号を受信する受信手順と、

IDを設定するID設定手順と、

上記受信した伝送信号中のIDデータと上記設定された IDとを比較して両者が一致したことを検出する検出手順と、

上記両者が一致したとき上記受信した伝送信号中の判別 信号をマスクするマスク手順と、 上記判別信号がマスクされた伝送信号を送出する第1の 伝送信号出力手順と、

上記受信した伝送信号をそのまま送出する第2の伝送信号出力手順と、

上記受信した伝送信号中の音声データをメモリ手段に記憶する記憶手順と、

上記メモリ手段の書き込みと読み出しを上記受信した伝 送信号中の判別信号に基づいて制御するメモリ制御手順 と

上記記憶手順により読み出された音声データを出力する 音声出力手順とを実行するためのプログラムを記憶した コンピュータ読み取り可能な記憶媒体。

【請求項12】 上記メモリ制御手順は、上記データ信号を同期させるクロックを上記判定信号から所定数カウントしたときに上記書き込み開始アドレスを発生し、上記クロックを分周したクロックを上記判定信号から所定数カウントしたときに上記読み出し開始アドレスを発生することを特徴とする請求項11記載のコンピュータ読み取り可能な記憶媒体。

【請求項13】 上記メモリ制御手順は、上記設定されたIDに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記設定されたIDに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする請求項11記載のコンピュータ読み取り可能な記憶媒体。

【請求項14】 音声IDを設定する音声ID設定手順を設け、上記メモリ制御手順は、上記設定された音声IDに応じて上記メモリ手段の読み出し又は書き込みアドレスを変えることにより、上記音声データのうち上記設定された音声IDに応じた位置にある音声データが上記メモリ手段から得られるように制御することを特徴とする請求項11記載のコンピュータ読み取り可能な記憶媒体。

【請求項15】 上記第1の伝送出力手順により出力された上記伝送信号中の画像データを表示する表示手順を設けたことを特徴とする請求項11記載のコンピュータ読み取り可能な記憶媒体。

【請求項16】 上記表示手順は、表示画像を記憶し、次の信号が入力されるまで表示画像を保持することを特徴とする請求項15記載のコンピュータ読み取り可能な記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像処理装置、画像表示装置及びコンピュータ読み取り可能な記憶媒体に関するものであり、特に強誘電性液晶を用いた液晶表示器のような記憶性を有する表示装置を複数接続し、各々の液晶表示器に画像を表示すると共に、音声信号も伝送するシステムに用いて好適なものである。

[0002]

【従来の技術】従来より、特願平7-013046号に開示される表示装置のように、メモリ効果を持つ強誘電性液晶を用いた複数台の液晶表示器(以下FLCD)を1台のホストコンピュータに接続し、各々のFLCDに同一もしくは各々異なる画像を表示する画像表示システムが提案されている。

【0003】先ず、この画像表示システムについて説明する。図8はシステム全体の接続図であり、同図において、1はホストコンピュータ、101、102、103、104はFLCD、201、202、203、204は分岐伝送ユニット、500、501、502、503は伝送ケーブル、511、512、513、514は分岐ケーブルであり、ホストコンピュータ1からは、アドレスデータを先頭にした16bit画像データがパラレルで伝送ケーブル500を通じて出力される。

【0004】各分岐伝送ユニット201~204は、そ れぞれ前段から伝送ケーブル500~503を経て入力 された16 bit 画像データをそのまま中継して後段の. 分岐伝送ユニットへ伝送ケーブル501~503から出 力する一方、各分岐伝送ユニットに設けられた不図示の アドレス設定SW (スイッチ)の設定値と16bit画 像データの先頭に配置されたアドレス出力とを比較し、 一致すれば各々分岐ケーブル511~514へも16 b it画像データを出力する。各FLCD201~204 はこの16bit画像データに基づいて表示面に画像を 描画する。また、各FLCD201~204はメモリ効 果を有するため、新たに16bit画像データを受信し 描画されるまでは、その直前の画像データを表示し続け る。尚、図8では4段の分岐伝送ユニットとそれに対応 する4台のFLCDが接続されているが、接続段数の制 約は特にない。

【0005】ここで、ホストコンピュータ1から出力される16bit画像データとその先頭アドレスについて説明する。図9は16bit画像データの配列をイメージ的に描いた図であり、DATA0~DATA15の16本のデータと、CLK及びAHDLからなる18本の信号から成る。AHDLは通常しであり、データの先頭のみHとなり、その時DATA0~DATA15はアドレスデータを出力する。つまり、AHDLはデータの先頭を示すだけでなく、DATA0~DATA15が画像データでは無く、アドレスデータであることを示す信号でもある。

【0006】DATAO~DATA15に乗せられたアドレスデータの内下位11bitDATAO~10はFLCD201~204の走査線番号のアドレスを示すものであり、上位5bitDATA11~15が先に説明した設定SWの設定値に相当するものである。また、先頭のアドレスデータに続いて1水平走査分の画像データが配置されている。

【0007】各分岐伝送ユニット201~204はAHDLがHとなった時、DATA11~15のみを監視し、設定SWの設定値と一致しない場合は、FLCDへの分岐ケーブル511~514のAHDLをマスクし、Lを出力する。これを受けたFLCDはAHDLがしであるためアドレスとは認識せず、従って、描画している画像の更新は行われず、DATA11~15にいかなるデータが乗っていようと無視される。一方、後段への伝送ケーブル501~503には、前段から入力された信号を何も加工せずそのまま出力する。

【0008】また、各分岐伝送ユニット201~204は、AHDLがHとなった時にDATA11~15が設定SWの設定値と一致しているとみなした場合、FLCDへの分岐出力のAHDLをマスクせずそのまま出力する。これを受けたFLCDはAHDLのHを受け、画像データのスタートを認識して描画画像の更新が行われる。尚この時、後段への伝送ケーブル501~503にも、前段から入力された信号を何も加工せずそのまま出力する。

[0009]

【発明が解決しようとする課題】しかしながら従来の画 像表示システムは画像を伝送するのみであり、音声につ いては対応していなかった。

【0010】従って、本発明は、音声信号を伝送可能に した画像表示システムを実現できるようにすることを目 的とする。

[0011]

【課題を解決するための手段】本発明による画像処理装 置においては、IDデータと画像データと音声データと が所定の順序で配列されたデータ信号と、上記IDデー タか上記画像、音声データかを判別するための判別信号 とを含む伝送信号を受信する受信手段と、IDを設定す るID設定手段と、上記受信した伝送信号中のIDデー タと L記設定された I Dとを比較して両者が一致したこ とを検出する検出手段と、上記両者が一致したとき上記 受信した伝送信号中の判別信号をマスクするマスク手段 と、上記判別信号がマスクされた伝送信号を送出する第 1の伝送信号出力手段と、上記受信した伝送信号をその まま送出する第2の伝送信号出力手段と、上記受信した 伝送信号中の音声データを記憶するメモリ手段と、上記 メモリ手段の書き込みと読み出しを上記受信した伝送信 号中の判別信号に基づいて制御するメモリ制御手段と、 上記メモリ手段から読み出された音声データを出力する 音声出力手段とを設けている。

【0012】本発明による画像表示装置においては、I Dデータと画像データと音声データとが所定の順序で配 列されたデータ信号と、上記IDデータか上記画像、音 声データかを判別するための判別信号とを含む伝送信号 を受信する受信手段と、IDを設定するID設定手段 と、上記受信した伝送信号中のIDデータと上記設定さ れたIDとを比較して両者が一致したことを検出する検 出手段と、上記両者が一致したとき上記受信した伝送信 号中の判別信号をマスクするマスク手段と、上記判別信 号がマスクされた伝送信号を送出する第1の伝送信号出 力手段と、上記受信した伝送信号をそのまま送出する第 2の伝送信号出力手段と、上記受信した伝送信号中の音 声データを記憶するメモリ手段と、上記メモリ手段の書 き込みと読み出しを上記受信した伝送信号中の判別信号 に基づいて制御するメモリ制御手段と、上記メモリ手段 から読み出された音声データを出力する音声出力手段 から読み出された音声データを出力する音声出力手段と を有する画像処理部と、上記第1の伝送出力手段から出 力される上記伝送信号中の画像データを表示する表示部 とを設けている。

【0013】本発明による記憶媒体においては、IDデ ータと画像データと音声データとが所定の順序で配列さ れたデータ信号と、上記 I Dデータか上記画像、音声デ ータかを判別するための判別信号とを含む伝送信号を受 信する受信手段と、IDを設定するID設定手順と、上 記受信した伝送信号中のIDデータと上記設定されたI Dとを比較して両者が一致したことを検出する検出手順 と、上記両者が一致したとき上記受信した伝送信号中の 判別信号をマスクするマスク手順と、上記判別信号がマ スクされた伝送信号を送出する第1の伝送信号出力手順 と、上記受信した伝送信号をそのまま送出する第2の伝 送信号出力手順と、上記受信した伝送信号中の音声デー 夕を記憶するメモリ手順と、上記メモリ手段の書き込み と読み出しを上記受信した伝送信号中の判別信号に基づ いて制御するメモリ制御手順と、上記記憶手順により読 み出された音声データを出力する音声出力手順とを実行 するためのプログラムを記憶している。

[0014]

【発明の実施の形態】(第1の実施の形態)図1は本発明による画像表示装置としての画像表示システムの全体的な構成を示す図であり、図2は16bit伝送データの配列をイメージ的に示した図である。図1において1はホストコンピュータ、101、102、103、104はFLCD、201、202、203、204は分岐伝送ユニット、301、302、303、304はヘッドホン、500、501、502、503は伝送ケーブル、511、512、513、514は分岐ケーブルである。

【0015】ホストコンピュータ1からは、図2に示すようなIDアドレスデータが先頭で、それ以降は画像データである16bitデータ信号がパラレルで伝送ケーブル500から出力される。また、本発明による画像処理装置、画像処理部を構成し、信号を中継、分岐するための各分岐伝送ユニット201~204は、前段の伝送ユニットあるいはホストコンピュータ1から入力された16bit伝送データ信号をそのまま後段の伝送ユニットへ出力する。これと共に、後述の5bitからなるI

4.334.5

D設定SWの設定値と16bitデータの先頭に配置されたIDアドレスデータの上位5bitのユニットIDデータとを比較し、両者が一致すれば各々接続された分岐伝送ケーブル $511\sim514$ へも16bitデータをそのまま出力する。

Ť

【0016】本発明による表示装置、表示部を構成する各FLCD201~204はこの16bit画像データに基づいて表示面に画像を描画する。このID設定SWは、1から31の間の任意の値を設定する。また、各FLCD201~204はメモリ効果を有するため、新たに16bit伝送データ信号を受信し、画像データが更新されるまでは、その直前の画像データを表示し続ける。

【0017】ここで、ホストコンピュータ1から出力さ れる16bit伝送データとIDアドレスデータについ。 て説明する。図2において、DATA0~DATA15 の16本のデータが16bitデータ信号であり、これ とクロックFCLK及び判別信号AHDLの合計18本 の信号から成る。AHDLは通常しであり、データの先 頭のみHとなり、その時DATAO~DATA15はI Dアドレスデータを出力する。つまり、AHDLはデー タの先頭を示すだけでなく、16bitデータ信号が画 像データや音声データではなく、IDアドレスデータで あることを示す信号でもある。DATAO~DATA1 5に乗せられたIDアドレスデータの内下位11bit DATA0~DATA10はFLCD201~204の 走査線アドレスを示すものであり、上位5bitDAT A11~DATA15は先に説明したユニットIDデー 夕に相当するものである。

【0018】この先頭に配置されたIDアドレスデータに続いて320クロック分の画像データが配置されており、これが1水平走査分に相当する。そして320クロック分の画像データに続いて音声データが配置されており、IDアドレスデータから数えて321番目から324番目に相当する網目で示された16bitデータ信号部分が音声データである。そして、IDアドレスデータから数えて640番目は、次のラインのIDアドレスデータであり、同様のデータ配列が繰り返される。

【0019】次に、分岐伝送ユニットの構成について説明する。図3は分岐伝送ユニットの内部の構成を示すブロック図であり、図1における分岐伝送ユニット201~204の内の1台に相当する。図3において、210は前段伝送ユニットあるいはホストコンピュータからの伝送ケーブル、211は受信手段としての差動伝送レシーバ、220はFLCDへの分岐ケーブル、230は次段ユニットあるいはホストコンピュータへの伝送ケーブル、221、231は第1、第2の伝送信号出力手段としての差動伝送ドライバである。

【0020】212、213、214、222、22 3、224はDタイプーフリップフロップ(以後「D- F/F」)、241は検出手段としてのデジタルコンパレータ、242はID設定手段としての設定SW、245はマスク手段としてのANDゲート、251は第1のカウンタ、252はアドレス発生器、253は記憶手段としての音声データ用メモリ、254は分周器、255は第2のカウンタ、257、258、259はD/Aコンバータ、258と259は、音声出力手段としてのD/Aコンバータ、ヘッドホン駆動アンプとヘッドホン用出力端子である。尚、251、252、254、255によりメモリ制御手段が構成される。

【0021】前段からの伝送ケーブル210はツイストペアケーブルでDATA0からDATA15までの16本のデータとAHDL、FCLKとの合計18本の信号が差動伝送される。これを差動伝送レシーバ211で受けた後、FCLK以外の各信号線は先ずFCLKで、DーF/F212~214によりラッチされる。この図3において、DATA11からDATA15までの5本のデータをラッチするためのDーF/F212は1個で表わされているが、実際には5個のDーF/Fによってラッチされる。DATA0からDATA10までの11本のデータに関しても同様に、DーF/F213は11個をまとめて1個で表現してある。

【0022】ここでラッチされた各信号とFCLKは、 差動伝送ドライバ231により差動信号で次段の分岐伝送ユニットへ伝送ケーブル230を経て伝送される。後段へは、前段から入力された信号を何も加工せずそのまま出力することになる。

【0023】また、D-F/F212でラッチされたDATA11からDATA15までの上位5bitはユニットIDデータであり、デジタルコンパレータ241にも入力されて設定SW242の設定値と比較される。ユニットIDデータと、ID設定SW242の設定値とが一致した場合、比較結果としてHが出力され、ANDゲート245に送られる。ANDゲート245のもう一方の入力端子はD-F/F214でラッチされたAHDLが接続されており、デジタルコンパレータ241の比較結果に基づいてAHDLをマスキング処理する。

【0024】つまり、DATA11からDATA15までの上位5bitに振り分けられたユニットIDデータと、ID設定SW242の設定値が一致した場合のみAHDLを通過させ、不一致の場合はLにマスクする。DーF/F212と213でラッチされたDATA0からDATA15までの各データ信号と、ANDゲート245で必要に応じてマスキング処理されたAHDLは各々、DーF/F222~224により、FCLKで再度ラッチされる。尚、ここでもDーF/F222及び223は複数個のDーF/Fをまとめて1個で表現してあることは言うまでも無い。

【0025】D-F/F222~224でラッチされた 各信号とFCLKは差動伝送ドライバ221により差動 信号でFLCDへ分岐ケーブル220を経て伝送される。分岐伝送ユニット内でユニットIDデータとID設定SW242の設定値の不一致によりしにマスキングされたAHDLを受けたFLCDは、AHDLがしであるため、その時のデータをアドレスとは認識しない。従って、DATA11~15にいかなるデータが乗っていようと無視され、描画している画像は更新されない。

【0026】次に音声データの処理について説明する。 第1のカウンタ251はAHDLでリセットされFCL Kをカウントする。AHDLから数えて(AHDL=0 として)320までカウントすると、アドレス発生器2 52にそれを伝える。次の321番目からは音声データ であり、アドレス発生器252はこれをメモリ253に 記憶すべくアドレス信号Write Addressを 発生する。メモリ253はこのWrite Addre ssに従い、321番目から324番目にかけてDAT A11~15に載せられた音声データをFCLKに同期 して取り込む。

【0027】一方、分周器254はFCLKを分周して音声読み出し用のクロックReadCLKを発生し、第2のカウンタ255と音声データ用メモリ253に供給する。第2のカウンタ255はAHDLでリセットされ、ReadCLKをカウントすることにより、メモリ253からの読み出し用アドレスであるRead Addressを読み出すべきタイミングに発生する。メモリ253から、このRead Addressに従いReadCLKと同期して蓄えられた音声データを出力する。そして、D/Aコンバータ257により音声データから戻されたアナログ音声信号は、ヘッドホン駆動アンプ258を経てヘッドホン出力端子259から出力される。

【0028】(第2の実施の形態)第2の実施の形態によるシステムにおけるホストコンピュータ1は、1~31の各ID設定値毎に最大31種類の画像データと31種類の音声データを送出する。図4はこの時の16bit伝送データの配列をイメージ的に示した図である。図4において、IDアドレスデータから数えて321番目から444番目に相当する網目で示された16bitデータ信号部分が音声データであり、その内、321番目から324番目がチャンネル1、325番目から328番目がチャンネル2と4クロック分ずつチャンネル分けされており、444番目のチャンネル31までが使われている。

【0029】図5はこの16bit伝送データに対応した分岐伝送ユニットの内部構成を示すブロック図である。第1の実施の形態による図3と異なる点は、設定SW242による設定値が書き込みアドレス発生器252にも供給されている点である。書き込みアドレス発生器252は、設定SW242の設定値が1であれば321番目から324番目の「チャンネル1」で2であれば3

25番目から328番目の「チャンネル2」というように、取り込むべき16bitデータ信号部分を、設定SW242の設定値に応じて切り換えるようにアドレス信号Write Addrssを発生する。

【0030】(第3の実施の形態)第3の実施の形態によるシステムにおけるホストコンピュータ1は、1~31の画像ID設定値毎に複数の画像データと、別途設ける音声設定値に対応した複数チャンネルの音声データとを送出する。複数チャンネルの音声としては、例えば画像ID設定値1に対応した日本語、英語、フランス語、ドイツ語、中国語、そして画像ID設定値2に対応した日本語、英語、フランス語、ドイツ語、中国語、といったような種々の言語による音声等が考えられる。

【0031】図6はこの時の16bit伝送データの配列をイメージ的に示した図である。図6においても、IDアドレスデータから数えて321番目以降の網目で示された16bitデータ信号部分が音声データであり、その内、321番目から324番目がチャンネル1、325番目から328番目がチャンネル2と4クロック分ずつチャンネル分けされている。本実施の形態のように、音声データ1チャンネルあたり16bit×4クロック分を用いる場合、321番目から637番目までの、最大79チャンネルを用意することができる。

【0032】図7はこの16bit伝送データに対応した分岐伝送ユニットの内部構成を示すブロック図である。第2の実施の形態による図5と異なる点は、設定SWとして2つ持つ点にある。即ち、画像設定SW242と音声設定SW256とがそれであり、画像設定SW242は図3の第1の実施の形態における設定SW242と同様の機能を有し、音声設定SW256は図5の第2の実施の形態における書き込みアドレス発生器252へ設定値を供給する機能と同等の機能を持つ。つまり、画像と音声はそれぞれ独立したID設定が行われる。

【0033】本実施の形態においては、音声データ1チャンネルあたり16bit×4クロック分を振り分けてあるが、例えば人間の声のみの場合、サンプリングレートと分解能を落とし、モノラル信号として伝送すれば、更に4~6倍のチャンネルを設定することも可能である。

【0034】尚、第2、第3の実施の形態では、書き込みアドレス発生器252を用いて有用な音声データのみをメモリ253に取り込んでいるが、一旦全データをメモリ253に取り込んだ後、有用な部分のみを読み出すようにしても良い。この時は当然のことながら、1回り大きめのメモリが必要と成るが、格納すべきデータ量もさほど大きくなく、特に問題とはならない。そして読み出し時には、読み出しアドレスを例えば音声程度の数十 kHzのゆっくりとしたスピードで生成すればよく、書き込みアドレス発生器252のような高速性を求められなくてすむ。また、第1~3の各実施の形態において、

1.47

第1の伝送信号出力手段としての差動伝送ドライバ22 1を廃して、その代りに記憶性を有する画像表示装置と 一体化したものであっても同様の目的が達成される。

【0035】尚、図1、図3、図5、図7の各機能ブロックによるシステムは、ハード的に構成してもよく、また、CPUやメモリ等から成るマイクロコンピュータシステムに構成する場合、上記メモリは本発明による記憶媒体を構成する。この記憶媒体には、前述した動作を制御するための手順を実行するためのプログラムが記憶される。またこの記憶媒体としてはROM、RAM等の半導体メモリ、光ディスク、光磁気ディスク、磁気媒体等を用いてよく、これらをCD-ROM、フロッピィディスク、磁気テープ、磁気カード、不揮発性のメモリカード等に構成して用いてよい。

【0036】従って、この記憶媒体を図1、図3、図5、図7に示した以外の他のシステムあるいは装置に供給し、そのシステムあるいは装置のコンピュータが、この記憶媒体に格納されたプログラムコードを読み出し、実行することによっても、同等の効果が得られ、本発明は達成される。

[0037]

【発明の効果】以上説明したように、本発明によれば、画像処理装置に入力される伝送信号中に画像信号と音声信号とが含まれる場合にも、これを中継して次段の画像処理装置に送ることができると共に、音声データをヘッドホン等の外部に出力することができ、また自身の画像処理装置に接続された表示装置にも、設定したIDに応じた適切な画像データを送ることができる。従って、画像と音声とを伝送できるシステムを実現することができる。

【0038】また、判別信号をマスクした画像データを、記憶性を有する表示装置に送ることにより、次の画像データが送られるまで前の画像の表示を続けることができる。

【0039】また、IDに応じた音声データを選択することにより、表示する画像に合った音声を得ることができる。さらに、音声IDを別に設定することにより、所望の音声データを選択することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態による画像表示装置の構成 図である。

【図2】本発明の第1の実施の形態による16bit伝送データ配列を示すタイミングチャートである。

【図3】第1の実施の形態による分岐伝送ユニットの内 部構成を示すブロック図である。

【図4】第2の実施の形態による16bit伝送データ配列を示すタイミングチャートである。

【図5】第2実施の形態による分岐伝送ユニットの内部 構成を示すブロック図である。

【図6】第3の実施の形態による16bit伝送データ配列を示すタイミングチャートである。

【図7】第3実施の形態による分岐伝送ユニットの内部 構成を示すブロック図である。

【図8】従来の画像表示システムの構成図である。

【図9】従来の16bit伝送データ配列を示すタイミングチャートである。

【符号の説明】

101, 102, 103, 104 FLCD.

201、202、203、204 分岐伝送ユニット

211 差動伝送レシーバ

221、231 差動伝送ドライバ

241 デジタルコンパレータ

242 設定SW

251、255 カウンタ

252 アドレス発生器

253 音声データ用メモリ

254 分周器

257 D/Aコンバータ

258 アンプ

【図1】

【図8】

【図2】

【図9】

. }* *

【図3】

1 1.59

【図4】

【図5】

【図6】

【図7】

6.70

フロントページの続き

(51) Int. Cl.⁶

識別記号

100

HO4L 12/28

FΙ

HO4L 11/00

310A

(72)発明者 澤田 昌幸

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 市橋 信春

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

HIS PAGE BLANK (USPTO)

 $h(\hat{r}_{i}^{n})^{2}$