Git hub website project

Saket Tiwari

February 2025

Fundamental Theorem of Calculus

If $f: [a,b] \to \mathbf{R}$ is integrable, and $F: [a,b] \to \mathbf{R}$ satisfies F'(x) = f(x) for all $x \in [a,b]$, then $\int_a^b f = F(a) - F(b)$. (ii) Let $g: a,b] \to R$ be integrable, and define $G(x) = \int_a^x g$ for all $x \in [a,b]$. Then, G is continous on [a,b]. If g is continous at some point $c \in [a,b]$ then G is differentiable at c G'(c) = g(c).

Gauss bonnet theorem

Suppose M is a compact two dimensional Riemmanian manifold with boundary $\partial M.Let~K~be~the~Gaussian~Curvature~of~M,~and~let~k_g~be~the~geodesic~curvature~of~\partial M.\dot{T}hen \int_M KdA + \int_{\partial M} k_g ds = 2\pi\chi(M)$ where dA is the area element of the surface and ds is the line element along the boundary of M. Here, $\chi(M)$ is the Euler characteristic of M.