

						Pri	nted	Pag	ge: 1	of 2)
				1	Subj	ject	Cod	e: K	AS1	03T	١
Roll No:											

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.) 1
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.	2
Q1(e)	State Euler's Theorem on homogeneous function.	3
Q1(f)	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$.	3
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4
Q1(h)	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	4
Q1(i)	Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point $(1, 0, -1)$.	5
Q1(j)	State Stoke's Theorem.	5

SECT		
	Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, compute A^{-1} and prove that $A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I = \begin{bmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}$.	1
	State Rolle's theorem and verify Rolle's theorem for the function $F(x) = \frac{\sin x}{e^x} \text{ in } [0, \pi].$	2
Q2(c)	f u, v and w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find $\frac{(u,v,w)}{(x,y,z)}$.	3
Q2(d)	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the plane $y + z = 4$ and $z = 0$.	4
Q2(e)	Apply Green's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)dy]$, where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$.	5

SECTION-C Attempt ANY ONI		Attempt ANY ONE following Question	Marks (1X10=10)	
Q3(a)	Find the v	value of k for which the system of equations $(3k - 8)$	x + 3y + 3z = 0,	1
	3x + (3k)	(-8)y + 3z = 0, $3x + 3y + 3k - 9z = 0$ has a	non-trivial solution.	
Q3(b)		[2 1	1]	1
	Find the e	igen values and eigen vectors of matrix A= 2 3	2 .	

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	ION-C	Attempt Al	Y ONE following	Question	Marks (1X10=10)	
Q4(a)	If $f(x) =$	$\frac{x}{1}$; x	\neq Ond $f(0) = 0$, then show that the fur	ection is continuous	2
		$1+e^{\frac{1}{x}}$		•		
	but not di	fferentiable	at $x=0$.			
O4(b)	70 (/ ₄ - 22	-m (2)			2
21(0)	If $y = ($	$x + 1 + x^2$	\int_{0}^{m} , find $y_n(0)$.			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	Expand <i>x</i> evaluate (in powers of $(x - 1)$ and $(y - 1)$ up to the third- $(x - 1)^{1.02}$.	degree terms and hence	3
Q5(b)		ular box which is open at the top having capacity 32 of the box such that the least material is required for		3

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	
	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.	4
	Find the position of the C.G. of a semicircular lamina of radius, a if its density	4
	varies as the square of the distance from the diameter.	

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	
	Find the directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, 1)$ in the direction of	5
	the normal to the surface $xy^2z = 3x + z^2$ where $f = 2x^3y^2z^4$.	
Q7(b)	Find the constants a , b , so that	5
	$\vec{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - \lambda)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational and hence	
	find function \emptyset such that $\vec{F} = \nabla \emptyset$.	