

### 3D Rendering Geometry

CS 355: Interactive Graphics and Image Processing

# Rendering Geometry

- Transform from object to world coordinates
- Transform from world to camera coordinates
- Clipping: near plane, far plane, field of view (we're going to skip this for the moment)
- Perspective projection
- View transformation

### Object to World

- Like what you've done in 2D, only in 3D:
  - Scale (while still at origin in object space)
  - Rotate (while still at origin in object space)
  - Translate to position the object

#### World to Camera

- Suppose that you know
  - Position of camera in world coordinates

$$\mathbf{c} = (c_x, c_y, c_z)$$

Orientation of camera as given by
 a set of basic vectors in world coordinates

$$\{e_1,e_2,e_3\}$$
 Camera's x Camera's y Camera's z

#### World to Camera

- Two steps:
  - Translate everything to be relative to the camera position
  - **Rotate** into the camera's viewing orientation



Step 2. Rotate

Original position

Step 1.

#### World to Camera

- Two steps:
  - Translate
     everything to be relative
     to the camera position
  - Rotate

     into the camera's
     viewing orientation

$$\begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

| $e_{11}$ | $e_{12}$ | $e_{13}$ | 0 |
|----------|----------|----------|---|
| $e_{21}$ | $e_{22}$ | $e_{23}$ | 0 |
| $e_{31}$ | $e_{32}$ | $e_{33}$ | 0 |
| 0        | 0        | 0        | 1 |

# Putting It Together

$$\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} e_{11} & e_{12} & e_{13} & 0 \\ e_{21} & e_{22} & e_{23} & 0 \\ e_{31} & e_{32} & e_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Normalize Project Rotate Translate

### Rendering Geometry

- √ Transform from object to world coordinates
- √ Transform from world to camera coordinates
- Clipping: near plane, far plane, field of view
- ✓ Perspective projection
- View transformation

### Coming up...

- Specifying camera pose and orthogonalizing the rotation
- Clipping space
- Screen transformation