

DEEP LEARNING COM TENSORFLOW

MODELOS GENERATIVOS

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

Dia	Aula	Trab
02/09	Workshop de Deep Learning	
04/09	Deep FeedForward	
09/09	Rede Neural Convolutiva	Modelo Baseline
	AutoEncoders	
	Representation & Transfer Learning	
	Sequências	
23/09	Modelos Generativos	Deployment
25/09	Apresentação dos Trabalhos Parte II	

MODELOS GENERATIVOS

- PARTE 1 : TEORIA
 - BUSINESS UNDERSTANDING
 - MODELOS GENERATIVOS EM DEEP LEARNING
 - MODELING
 - MODELOS BAYESIANOS E MARKOVIANOS
 - MÁQUINA DE BOLTZMANN
 - DEEP BELIEVE NETWORK
 - AUTOENCODER
 - GENERATIVE ADVERSARIAL NETWORK
 - TRANSFORMERS
 - DIFUSÃO

PARTE 1 : TEORIA

BUSINESS UNDERSTANDING

MODELOS GENERATIVOS EM DEEP LEARNING

Modelos generativos são um tipo de modelo de aprendizado de máquina que aprendem a capturar a distribuição probabilística dos dados de entrada. O objetivo é gerar novos dados que sejam similares aos dados reais, amostrando dessa distribuição.

Diferente de **modelos discriminativos** (que classificam), os modelos generativos se concentram em **entender a distribuição dos dados**.

Aplicações

- Criação de conteúdo sintético (imagens, vídeos, áudio).
- Geração de novos exemplos para dados escassos.
- Simulações e melhorias em RL (Reinforcement Learning).

PRINCIPAIS MODELOS GENERATIVOS

- 1. Autoencoders
- 2. Variational Autoencoders (VAE)
- 3. Generative Adversarial Networks (GAN)
- 4. Modelos de Difusão

Exemplos

- •DALL-E / MidJourney: Gera imagens realistas a partir de descrições textuais.
- •DeepMind's WaveNet: Um modelo gerativo de áudio usado na síntese de voz.
- •GPT: Modelos como GPT-3 geram texto e completam frases com base em uma distribuição de linguagem.

MODELING

MODELOS MARKOVIANOS E REDES BAYESIANAS 90'S

Durante os anos 90, o aprendizado de máquina focava em técnicas probabilísticas tradicionais.

Duas das técnicas principais utilizadas para modelar uma Distribuição de Probabilidade de uma Amostra desconhecida eram as redes bayesianas e os modelos de markov ocultos.

REDES BAYESIANAS

Representam relações de dependência probabilística entre variáveis utilizando grafos direcionados acíclicos (DAGs).

Exemplo

Diagnóstico médico, onde os sintomas estão condicionados a doenças.

MODELO DE MARKOV OCULTO

Capturam relações temporais probabilísticas entre estados ocultos e observações. O modelo parte da premissa de que cada estado depende apenas do estado anterior, tornando o modelo eficiente para dados sequenciais.

Exemplos

Reconhecimento de fala

Processamento de linguagem natural

MÁQUINA DE BOLTZMANN 80'S

Redes neurais que tentam inferir a distribuição probabilística entre um conjunto de variáveis.

Funcionamento

- As Máquinas de Boltzmann (BMs) são totalmente conectadas e simétricas, com cada neurônio conectado a todos os outros.
- São treinadas para minimizar a energia de uma configuração de estados (inspiradas na mecânica estatística).
- Limitações: Por ser totalmente conectada, o treinamento de uma BM é computacionalmente caro e impraticável para redes grandes.

MÁQUINA DE BOLTZMANN RESTRITA 2000'S

RBMs são uma simplificação das Máquinas de Botlzmann com restrições nas conexões (nenhuma conexão entre neurônios da mesma camada).

Características

- Camada visível (dados de entrada).
- Camada oculta (características latentes).
- Aprendizado: Algoritmo de Contrastive Divergence (Hinton, 2002)
 tornou o treinamento das RBMs viável em grandes datasets.

RBMs

DEEP BELIEVE NETWORKS 2000'S

Deep Belief Networks (DBNs) são **redes neurais profundas** formadas por **múltiplas camadas empilhadas de RBMs.**

Cada camada é treinada individualmente de forma não supervisionada usando RBMs, e depois a rede é ajustada de maneira supervisionada para uma tarefa específica.

DEEP BELIEVE NETWORKS 2000'S

DBNs foram os primeiros modelos a mostrar como redes neurais profundas poderiam ser treinadas com eficiência, solucionando o problema de dissipação do gradiente que antes limitava o uso de redes profundas.

O sucesso dos DBNs trouxe de volta o interesse no uso de redes profundas, sendo precursor para arquiteturas mais avançadas.

AUTOENCODERS

GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) são redes neurais compostas por dois modelos: um Gerador e um Discriminador, que competem entre si em um processo adversarial.

Introduzidas por lan Goodfellow em 2014, GANs revolucionaram a geração de dados sintéticos.

TIPOS DE GAN

- 1. Vanilla GAN (2014)
- 2. Conditional GAN (cGAN) (2014)
- 3. Deep Convolutional GAN (DCGAN) (2015)
- 4. Wasserstein GAN (WGAN) (2017)
- 5. WGAN-GP (Wasserstein GAN with Gradient Penalty) (2017)
- 6. Least Squares GAN (LSGAN) (2017)
- 7. CycleGAN (2017)
- 8. Progressive GAN (PGGAN) (2017)
- 9. StyleGAN (2018)

VANILLA GAN (2014)

A arquitetura original de GANs, onde o gerador e o discriminador são simples redes feedforward.

Desvantagem: Dificuldade de treinamento devido à instabilidade e Mode Collapse.

CONDITIONAL GAN (2014)

Adiciona uma condição extra ao gerador e ao discriminador, permitindo o controle do tipo de amostra gerada.

DEEP CONVOLUTIONAL GAN (2015)

Extensão das GANs com camadas convolucionais profundas, trazendo avanços significativos na qualidade da geração de imagens.

Usada amplamente em geração de imagens realistas e arte digital.

WASSERSTEIN GAN (2017)

Wasserstein GAN (WGAN)

- Resolve o problema de instabilidade no treinamento usando a distância de Wasserstein como função de perda.
- Vantagem: Melhora a estabilidade e evita mode collapse, tornando o treinamento mais confiável.

WGAN-GP (Wasserstein GAN with Gradient Penalty)

 Aperfeiçoamento do WGAN que adiciona uma penalidade de gradiente, melhorando ainda mais a estabilidade do treinamento.

$$W_p(\mu,
u) := \left(\inf_{\gamma \in \Gamma(\mu,
u)} \int_{M imes M} d(x,y)^p \, \mathrm{d}\gamma(x,y)
ight)^{1/p}$$

LEAST SQUARES GAN (2017)

Modifica a função de perda para minimizar a divergência entre as distribuições geradas e reais, resultando em imagens de maior qualidade.

CYCLE GAN (2017)

Permite a transformação de imagens entre domínios sem a necessidade de pares de imagens correspondentes.

PROGRESSIVE GAN (2017)

Treinamento progressivo, começando com imagens de baixa resolução e aumentando gradualmente a resolução ao longo do tempo, resultando em imagens mais estáveis e de alta qualidade.

STYLE GAN (2018)

Noise Latent $\mathbf{z} \in Z$ Synthesis network g Const $4 \times 4 \times 512$ Normalize Mapping network f AdaIN Conv 3 × 3 FC FC AdaIN FC FC Upsample FC Conv 3 × 3 В ◀ FC AdaIN Conv 3 × 3 AdalN

Desenvolvida pela NVIDIA, é uma das arquiteturas mais avançadas para geração de imagens realistas, com controle detalhado sobre os atributos estilísticos das imagens geradas.

TRANSFORMERS (2017)

A arquitetura de Transformers, introduzida no artigo "Attention is All You Need", revolucionou o processamento de linguagem natural (NLP) ao abandonar redes recorrentes e convolucionais em favor do mecanismo de atenção.

TRANSFORMERS (2017)

Como Funciona o Self-Attention?

Imagine que estamos processando uma frase, e o modelo precisa prever a próxima palavra ou entender o significado de uma palavra dentro da frase. O selfattention permite que cada palavra se relacione com todas as outras palavras da sequência de entrada, o que ajuda o modelo a determinar quais palavras são mais relevantes para entender ou prever a palavra atual.

DIFUSÃO (2021)

Modelos de Difusão são uma nova classe de modelos generativos baseados em um processo de difusão. O conceito central é que os dados são gradualmente corrompidos com ruído gaussiano, e o modelo é treinado para reverter esse processo, reconstruindo os dados originais a partir de versões ruidosas.

WORKSHOP

- QUAL A TOPOLOGIA DE DEEP LEARNING ADEQUADA PARA O MEU TRABALHO?
- QUAL CAPÍTULO DO LIVRO MELHOR SE ENQUADRA NO MEU TRABALHO?
- AULA 3: NOVO CICLO DE BUSINESS UNDERSTANDING / GRUPO + MODELO BASELINE TREINADO
- AULA 5 OU 7: MODELO PROFUNDO TREINADO
- AULA 7: DEPLOYMENT DO MODELO*
- AULA 3-7 > APRESENTAÇÃO TEÓRICA DA(S) TOPOLOGIA(S) + LEITURA DE ARTIGO
 + ACOMPANHAMENTO DOS TRABALHOS + DEEP DIVE NO CÓDIGO (POR GRUPO)
- APRESENTAÇÃO FINAL DOS TRABALHOS