Package 'immcp'

October 13, 2022

Title Poly-Pharmacology Toolkit for Traditional Chinese Medicine Research

Version 1.0.3

Description Toolkit for Poly-pharmacology Research of Traditional Chinese Medicine. Based on the biological descriptors and drug-disease interaction networks, it can analyze the potential poly-pharmacological mechanisms of Traditional Chinese Medicine and be used for drug-repositioning in Traditional Chinese Medicine.

License GPL (>= 3)

URL https://github.com/YuanlongHu/immcp

BugReports https://github.com/YuanlongHu/immcp/issues

Depends igraph, R (>= 4.0.0)

Imports clusterProfiler, DOSE, dplyr, methods, magrittr, Matrix, openxlsx, org.Hs.eg.db, pbapply, proxyC, purrr, rlang (>= 1.0.2), stats, utils, visNetwork (>= 0.3.1), arules, ggplot2, ggheatmap, factoextra

Suggests knitr, rmarkdown

VignetteBuilder knitr

biocViews

Encoding UTF-8

RoxygenNote 7.1.2

LazyData true

NeedsCompilation no

Author Yuanlong Hu [aut, cre] (https://orcid.org/0000-0003-1933-7570)

Maintainer Yuanlong Hu < huyuanlong 1996@163.com>

Repository CRAN

Date/Publication 2022-05-12 05:50:02 UTC

2 BasicData-class

R topics documented:

	BioDescr-class	2
	CreateBasicData	. 3
	CreateDisDrugNet	. 4
	diff_network_char	. 5
	drugdemo	. 5
	enrich_f	. <i>6</i>
	exportCytoscape	. 7
	extr_biodescr	. 7
	extr_biodescr,BasicData-method	. 8
	HerbResult-class	. 9
	natural_connectivity	. 10
	network_char	
	network_node_ks	. 11
	plot_BioDescr	. 11
	plot_graph	. 12
	PrepareData	. 14
	read_gmt	
	score_network	. 15
	score_rule	. 16
	score_sim	. 17
	to_biodescr	. 18
	to_df	. 18
	to_list	. 19
	write_gmt	. 20
Index		21

BasicData-class

 ${\it Class}$ BasicData ${\it This}$ ${\it class}$ ${\it represents}$ ${\it the}$ ${\it basic}$ ${\it input}$ ${\it data}$.

Description

Class BasicData This class represents the basic input data.

Slots

drugnet A directed graph vertices Vertices of drug graph. diseasenet Disease network. biomarker Disease-related gene.

Author(s)

BioDescr-class 3

BioDescr-class

Class BioDescr This class represents the biological descriptor data.

Description

Class BioDescr This class represents the biological descriptor data.

Slots

```
drug_geneset from drug to geneset.
geneset_gene from geneset to gene for each drug.
anno Geneset ID and description.
```

Author(s)

Yuanlong Hu

CreateBasicData

CreateBasicData

Description

Create BasicData Object

Usage

```
CreateBasicData(..., diseasenet = NULL, biomarker = NULL)
```

Arguments

... Drug graph from PrepareData.

diseasenet A graph of Disease-related gene from PrepareData. biomarker Character vector, the vector of Disease-related gene.

Value

A BasicData object.

Author(s)

4 CreateDisDrugNet

Examples

```
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)</pre>
```

CreateDisDrugNet

CreateDisDrugNet

Description

Create Disease-Drug Network

Usage

CreateDisDrugNet(BasicData, drug, disease)

Arguments

BasicData BasicData object.

drug Character vector, the drug.
disease Character vector, the disease.

Value

A igraph object.

Author(s)

Yuanlong Hu

```
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
DisDrugNet <- CreateDisDrugNet(BasicData, drug = "Drug1", disease = "disease")</pre>
```

diff_network_char 5

diff_network_char diff_network_char

diff_network_char

Description

Calculate the difference of network characters in two network

Usage

```
diff_network_char(graph1, graph2, output_all = FALSE)
```

Arguments

graph1 A igraph object.

graph2 A igraph object.

output_all FALSE

Value

A number vector.

Author(s)

Yuanlong Hu

drugdemo

Datasets Demo dataset

Description

Datasets Demo dataset

6 enrich_f

enrich_f

enrich_f

Description

Enrich Analysis

Usage

```
enrich_f(
  target_character,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  out_dataframe = TRUE,
  to_ENTREZID = TRUE
)
```

Arguments

target_character

Charactor vector of gene.

geneset Charactor vector, one of "ke

Character vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GO-DD) and "arm" (AVI): Potherwson), a data forms and list

BP), and "wp"(WikiPathways); a data frame and list.

arguments A list of the arguments of clusterProfiler, including minGSSize, maxGSSize,

pvalue, and qvalue.

out_dataframe Logical, whether to output data frame,defaults to FALSE.

to_ENTREZID Logical, whether to translate to ENTREZID from SYMBOL, defaults to TRUE.

Value

data frame

Author(s)

exportCytoscape 7

exportCytoscape

Export an xlsx file to Cytoscape

Description

Export an xlsx file to Cytoscape.

Usage

```
exportCytoscape(graph, file)
```

Arguments

graph igraph object. file file

Value

A workbook object

Author(s)

Yuanlong Hu

extr_biodescr

Extract Biological descriptor

Description

Extract Biological descriptor

Usage

```
extr_biodescr(
  BasicData,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  ref_type = "drug",
  ref = NULL,
  to_ENTREZID = TRUE
)
```

Arguments

BasicData	BasicData object.
geneset	Charactor vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GOBP), and "wp"(WikiPathways); a data frame and list.
arguments	A list of the arguments of cluster Profiler, including ${\tt minGSSize}, {\tt maxGSSize}, {\tt pvalue}, {\tt and qvalue}.$
ref_type	Charactor vector, one of "drug", "herb", "compound" or "target", defaults to "drug".
ref	Charactor vector, reference drug, herb, compound or target, defaults to NULL.
to_ENTREZID	Logical, whether to translate to ENTREZID from SYMBOL, defaults to TRUE.

Value

A BioDescr object.

Author(s)

Yuanlong Hu

```
{\it extr\_biodescr}, {\it BasicData-method} \\ {\it Extract~Biological~descriptor}
```

Description

Extract Biological descriptor

Usage

```
## S4 method for signature 'BasicData'
extr_biodescr(
  BasicData,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  ref_type = "drug",
  ref = NULL,
  to_ENTREZID = TRUE
)
```

Arguments

BasicData BasicData object.

geneset Charactor vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GO-

BP), and "wp"(WikiPathways); a data frame and list.

HerbResult-class 9

arguments	A list of the arguments of cluster Profiler, including ${\tt minGSSize}, {\tt maxGSSize}, {\tt pvalue}, {\tt and} {\tt qvalue}.$
ref_type	Charactor vector, one of "drug", "herb", "compound" or "target", defaults to "drug".
ref	Charactor vector, reference drug, herb, compound or target, defaults to NULL.

 $to_{\tt ENTREZID} \qquad Logical, whether to translate to {\tt ENTREZID} from {\tt SYMBOL}, defaults to {\tt TRUE}.$

Value

A BioDescr object.

Examples

```
## Not run:
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
biodescr <- extr_biodescr(BasicData, geneset= "kegg")
## End(Not run)</pre>
```

HerbResult-class

Class HerbResult This class represents the biological descriptor data.

Description

Class HerbResult This class represents the biological descriptor data.

Slots

```
Drug_Herb Data frame, Drug-herb relationship.

Herb_Herb Herb-herb association Rule Graph, it is a directed graph.
```

Author(s)

10 network_char

```
natural_connectivity natural_connectivity
```

Description

Calculate the natural connectivity

Usage

```
natural_connectivity(graph)
```

Arguments

graph

A igraph object.

Value

A numeric vector.

Author(s)

Yuanlong Hu

network_char

network_char

Description

Calculate the network characters

Usage

```
network_char(graph, total_network = FALSE)
```

Arguments

graph

The graph.

total_network

Calculate for total network or each nodes.

Value

A number vector or data frame.

Author(s)

network_node_ks 11

network_node_ks

Description

Kolmogorov-Smirnov tests for node characters between networks

Usage

```
network_node_ks(graph1, graph2, replicate = 1000)
```

Arguments

graph1 A igraph object. graph2 A igraph object.

replicate Number vector, the number of conduct bootstrapping sampling replications.

Value

A data frame

Author(s)

Yuanlong Hu

plot_BioDescr

Plot Biological descriptor

Description

Plot Biological descriptor

Usage

```
plot_BioDescr(
   BioDescr,
   type = "heatmap",
   cluster_k = 2,
   colors = c("#2E9FDF", "#E7B800")
)
```

Arguments

BioDescr object.

type one of "heatmap" and "clusterplot". cluster_k Number vector, number of cluster.

colors vector of colors.

plot_graph

Value

Returns NULL, invisibly.

 $plot_graph$

Plot Disease-Drug Network

Description

Plot Disease-Drug Network

Usage

```
plot_graph(
  graph,
  drug,
 disease,
 Isolated = TRUE,
 vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
 width = 1,
  size = 20,
)
## S4 method for signature 'BasicData'
plot_graph(
 graph,
 drug,
 disease,
 Isolated = TRUE,
 vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
 width = 1,
 size = 20,
)
## S4 method for signature 'igraph'
plot_graph(
  graph,
 drug,
 disease,
  Isolated = TRUE,
 vis = "visNetwork",
```

plot_graph 13

```
color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
   "#70f3ff"),
 width = 1,
 size = 20,
)
## S4 method for signature 'HerbResult'
plot_graph(
 graph,
 drug,
 disease,
 Isolated = TRUE,
 vis = "visNetwork",
 color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
   "#70f3ff"),
 width = 1,
 size = 20,
)
```

Arguments

graph	graph.
drug	drug.
disease	disease.
Isolated	Whether to delect Isolated nodes.
vis	one of "igraph", "visNetwork" and "shiny".
color	Nodes Color
width	Edges width
size	Nodes size
• • •	Arguments

Value

Returns NULL, invisibly.

Author(s)

14 PrepareData

PrepareData PrepareData

Description

Prepare input format.

Usage

```
PrepareData(..., from, to, diseaseID, format = "single", sep)
```

Arguments

	панст
data frame, containing interaction inform	munom.

from A charactor vector, containing "drug", "herb", "compound", or "target".

to A character vector, containing "drug", "herb", "compound", or "target".

diseaseID Charactor vector, diseaseID format one of "single" or "basket".

sep Separator.

Value

A igraph object.

Author(s)

Yuanlong Hu

```
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")</pre>
```

read_gmt 15

read_gmt write_gmt

Description

parse gmt file to a data.frame

Usage

```
read_gmt(gmtfile, out_dataframe = TRUE)
```

Arguments

gmtfile A GMT file name or URL containing gene sets.

out_dataframe TRUE or FALSE

Value

data.frame, list

Author(s)

Yuanlong Hu

score_network

score_network

Description

Calculating differences in disease network characteristics before and after removal of drug targets

Usage

```
score_network(BasicData, n = 1000)
```

Arguments

BasicData A BasicData object.

n Number vector, the number of times random permutation sampling, default to

1000.

Value

A list.

score_rule

Author(s)

Yuanlong Hu

Examples

```
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
res <- score_network(BasicData, n = 100)</pre>
```

score_rule

Mining herb-herb associations with Apriori

Description

Mine herb-herb association rules of prescription using the Apriori algorithm.

Usage

```
score_rule(BasicData, drug = NULL, support = 0.1, confidence = 0.8)
```

Arguments

BasicData BasicData object.

drug Charactor vector of drug names to analyze, default to NULL.

support A numeric value for the minimal support of an item set, default to 0.1.

Confidence A numeric value for the minimal confidence of an item set, default to 0.8.

Value

A HerbResult object.

Author(s)

Yuanlong Hu

```
## Not run:
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)</pre>
```

score_sim 17

```
res <- score_rule(BasicData, support = 0.1,confidence = 0.8)
## End(Not run)</pre>
```

score_sim

Calculating similarity between drug and disease

Description

Calculating drug-disease similarity based on biological descriptors

Usage

```
score_sim(BioDescr, method = "jaccard", n = 1000)
```

Arguments

BioDescr object.

method method to compute similarity, default "jaccard". See proxyC::simil.

n number.

Value

A list.

Author(s)

Yuanlong Hu

```
## Not run:
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease", from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
biodescr <- extr_biodescr(BasicData, geneset= "kegg")
res <- score_sim(biodescr, method="jaccard", n=1000)
## End(Not run)</pre>
```

18 to_df

to_biodescr

 $to_biodescr$

Description

Convert BioDescr object to a list of adjacency matrix

Usage

```
to_biodescr(BioDescr)
```

Arguments

BioDescr

A BioDescr object.

Value

A list.

Author(s)

Yuanlong Hu

Examples

```
## Not run:
   to_biodescr(BioDescr)
## End(Not run)
```

to_df

 to_df

Description

Convert list to data.frame

Usage

```
to_df(list)
```

Arguments

list

A list containing gene sets.

to_list

Value

A data frame.

Author(s)

Yuanlong Hu

Examples

```
## Not run:
    to_df(list)
## End(Not run)
```

to_list

to_list

Description

Create a new list from a data.frame of drug target and disease biomarker as input

Usage

```
to_list(dataframe, input = "single", sep = ", ")
```

Arguments

dataframe a data frame of 2 column with term/drug and gene

input one of the single or basket sep When 'input' is 'basket'.

Value

list

Author(s)

Yuanlong Hu

```
## Not run:
    to_list(dataframe)
## End(Not run)
```

20 write_gmt

write_gmt

write_gmt

Description

prints data frame to a gmt file

Usage

```
write_gmt(geneset, gmt_file)
```

Arguments

geneset

A data.frame of 2 column with term/drug and gene.

gmt_file

A character of gmt file name.

Value

gmt file

Author(s)

Index

```
* datasets
    drugdemo, 5
BasicData-class, 2
BioDescr-class, 3
CreateBasicData, 3
CreateDisDrugNet, 4
diff_network_char, 5
drugdemo, 5
enrich_f, 6
exportCytoscape, 7
extr_biodescr, 7
{\sf extr\_biodescr}, {\sf BasicData-method}, 8
HerbResult-class, 9
natural\_connectivity, 10
network_char, 10
network_node_ks, 11
plot_BioDescr, 11
plot_graph, 12
plot_graph,BasicData-method
        (plot_graph), 12
plot_graph,HerbResult-method
        (plot_graph), 12
plot_graph,igraph-method(plot_graph),
        12
PrepareData, 14
read_gmt, 15
score_network, 15
score_rule, 16
score_sim, 17
to_biodescr, 18
to_df, 18
to_list, 19
write_gmt, 20
```