



# Topics to be covered



- Revision of Last Class
- 2 %age yield, %age purity
- 3 Limiting Reagent
- 4 Trick for fast calculation
- MPQ ( Magarmach Practice Questions ) & Home work from Modules



## **Rules to Attend Class**



- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.



## **Rules to Attend Class**



- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.









## Revision of Last class

2 = NNH3 =17NH3 45x2 (2) 4.5 = 13=3

S.C. 1Ng(g)+37g(g)->2NH3(g)

(f) given (g) > ng



3) make = ut xer.w.w.
Roligae 10 TP = ut x88.47

Here's a problem for you, Rookie! How many moles of NH<sub>3</sub> are produced when 4.50 moles of H<sub>2</sub> react with excess N<sub>2</sub>?











1(大ける(は)+(大十年)のの(は)→又(のはり)+進場の(」) Vol. Cont. = 1+ x+3 - >x

#### THE GREAT GAS MIX-UP!









1 mole CH<sub>4</sub> + 2 moles O<sub>2</sub> = 1 mole CO<sub>2</sub>



# **Balancing of Combustion of Organic Compounds**



$$|(x H_{y}O_{z}(g) + (x + \frac{y}{4} - \frac{z}{2})O_{z}(g)| \rightarrow x (CO_{z}(g) + \frac{y}{2}H_{z}O(d))$$
  
 $|(x H_{y}O_{z}(g) + (x + \frac{y}{4} - \frac{z}{2})O_{z}(g)| \rightarrow x (CO_{z}(g) + \frac{y}{2}H_{z}O(d))$   
 $|(x H_{y}O_{z}(g) + (x + \frac{y}{4} - \frac{z}{2})O_{z}(g)| \rightarrow x (CO_{z}(g) + \frac{y}{2}H_{z}O(d))$   
 $|(x H_{y}O_{z}(g) + (x + \frac{y}{4} - \frac{z}{2})O_{z}(g)| \rightarrow x (CO_{z}(g) + \frac{y}{2}H_{z}O(d))$ 



## The volume of oxygen required for complete combustion of 20 ml of ethene is

- (A) 30 ml
- 60 ml
- 6 40 ml
- 50 ml

$$|C_2H_1(g) + 3O_2(g) - 3(CO_2(g) + 2t_2O(1))|C_2H_1(g)$$

# 40 ca 12 c 1 4 160



The volume of gas at STP produced by 100 g of CaC2 with water.

- A 70 litre
- 1 nac= 100 = 50 = 25
- 35 litre
- 17.5 litre 🕙
- 22.4 litre



Volume of CO<sub>2</sub> obtained at STP by the complete decomposition of 9.85 g of BaCO<sub>3</sub>

is:

$$n_g = \frac{9.85}{197 \times 100} = 0.05$$

$$\frac{1}{1} = \frac{1}{1000} = \frac{1}{1$$



## %age Purity

reactant 7/001. Pure

pure mass = ?

mass of pure = 1. ge purity x total mass

all Calc. doneacc. to it.

70 x 200 = 1409



(Improvity) Bhousa = 989 < Dimag = 2g. Total mass = 100g 1. age purity of your Brain. = Mars of pure Dimang X 100 Total marks 2 × 100 = 21.

11-gc purity = 15 × 100 By = 20 = 300 = 300 = 751











of find mass of Cason foomed if 80% pure 10009 Cacoz
Treact with excess of 4,504? f cog(g) + 120(1) 1 Caco3 + Hason -> 1 Cason + mass of pure Ca(03 = 80 × 1000 = 8009 M(0003=100g Mason = 1369 ncacoz = 800 = 8 1 = ncason

mats cason = 8 x 136 g = 1088 g = 1.088 kg

### Question (NCERT: PL-20 | NV, JEE Main April 04, 2025 (II))



Calon

The amount of calcium oxide produced on heating 150 kg limestone (75% pure)

kg. (Nearest integer)

Given: Molar mass (in g mol-1) of Ca - 40, 0 - 16, C - 12.



Q if 60% pure log to is taken with excess of 90 to jorn Water liquid find Volume of 120 formed 2 Hg (g) + 102(g) ->2 Hg 0(J) mass pune Hg = 6d x10 = 6q 1172=5=3 mass 160 = 3×18
= 549 11 HO = 2





%age Yield

7 X100=70.1.



1./ ge yilld = actual zield x 100
Theotorical zield

St. Calculations

#### YIELD ka DEAL!









## PERCENTAGE YIELD

Kiye ya nahi KIYE?



- 2. Percentage yield = 90. Which is correct?

  (A) Actual = theoretical
  (B) Actual > theoretical
  (C) Actual < theoretical
  (D) Actual = zero

  What's the percentage yield?
- 3. What's the percentage yield?

  (A) 115%
  (B) 90%
  (C) 85%
  (D) 22%

  Theoretical yield sield sield





5) / ge gild = 135 × 10/ 150 = 901.

of 27 by after gives 30g af the or on with excess os: As / ge yield of the = mass of the formed (actual yield) x 100 Theotorical gield = 30 × 100 2 Hg (9) + 18 (9) -> 2 Hg (01)

Ony = 5 = 3 7500 = 55.55./

2 = 1 M20 = 1 NH20 = 3 X18=54g.

9 24 34g of NH3 formed on on with 56 g of Ng with excess of the? find / ge yelld of Nonz? M Ng = 288  $1N_{2}(9) + 3H_{2}(9) - 2NH_{3}$ MNH3=179 1 of yield = 34 × 100 = 50 1. D89=211X H2 = H113=28





(L.R.)

- Doubstance which is finished.
- 2) L.R. = Moles = lowest.
- 3) all Calc. > acc. to L.R.

#### THE LIMITING REAGENT

















Each sandwich needs maximum 1 cheese sahnodches Rookie can



What is the maximum number of sandwiches Rookle can make?

B. 3 A. 2 C. 4 D.5

#### MOLE MATCH

2 moles of H2 and 1 mole of 02 mai kuan sa limiting reagit hai? 2H2+02

Identify the limiting reagent.

B. O2 C. H2O D. D

#### THE PIZZA PROBLEM

Check limiting ingredient use n nahi pata kitne pizzas banenge! What is in kimiting



#### **REAL CHEM MIX**

4 g of H2 aur 32 g of O2 m'x kiye, limiting reagent kuans! hai?





1 mole each of N<sub>2</sub> and H<sub>2</sub> react to form NH<sub>3</sub>. Calculate moles of NH<sub>3</sub> formed.

[NCERT Exemplar]



#### QUESTION - (AIPMT 2014)



When 22.4 litres of  $H_2(g)$  is mixed with 11.2 litres of  $Cl_2(g)$ , each at STP, the moles of HCl(g) formed is equal to:

- A 0.5 mol of HCl(g)
- B 1.5 mol of HCl(g)
- 1 mol of HCl(g)
- D 2 mol of HCl(g)

#### QUESTION - (AIPMT 2014)



1.0 g of magnesium is burnt with 0.56 g  $O_2$  in a closed vessel. Which reactant is left in excess and how much:

(At. Wt. Mg = 24; 0 = 16)

- A Mg, 0.44 g
- (B)  $O_2$ , 0.28 g
- Mg, 0.16 g
- D 0<sub>2</sub>, 0.16 g

#### Question



The reaction 2C +  $O_2 \longrightarrow 2CO$ . Is carried out by taking 24 g of carbon and 96 g  $O_2$ . Find out Limiting Reagent & [NCERT Exemplar]

- (a) Which reactant is left in excess?
- (b) How many moles of CO are formed?
- (c) How many grams of other reactant is left?

## Question (NCERT: PL-20 | NV, JEE Main Jan. 24, 2025 (I)



Consider the following reaction occurring in the blast furnace.

```
Fe_3O_{4(s)} + 4CO_{(g)} \rightarrow 3Fe_{(l)} + 4CO_{2(g)}

'x' kg of iron is produced when 2.32 × 10^3 kg Fe_3O_4 and 2.8 × 10^2 kg CO are brought together in the furnace. The value of 'x' is ______ (nearest integer) 

{Given: Molar mass of Fe_3O_4 = 232 g mol^{-1} Molar mass of CO = 28 g mol^{-1}}
```

## Question (NCERT: PL-19 | NV, JEE Main July 28, 2022 (I)



In the given reaction,  $X + Y + 3Z \rightleftharpoons XYZ_3$  if one mole of each of X and Y with 0.05 mol of Z gives compound  $XYZ_3$ . (Given : Atomic masses of X, Y and Z are 10, 20 and 30 amu, respectively). The yield of  $XYZ_3$  is \_\_\_\_\_\_ g. (Nearest integer)

Backlog)
Revise -> revision target -> 6 a.m. to 7 a.m. Notes - official telegram Charnel link Scan > Join. Link > 6a.m.



Join this telegram Channel to get link. Jon Revision Class at 6 a.m.







## Home work from modules



Train your Brain -> example 15

Concept application - 17, 18



# Magarmach Practice Questions (MPQ)





## Question (NCERT: PL-20 | NV, JEE Main July 25, 2022 (II)



56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas if found to be \_\_\_\_\_L.

.

#### Question (NCERT: PL-20 | JEE Main April 03, 2025 (II))



Mass of magnesium required to produce 220 mL of hydrogen gas at STP on reaction with excess of dil. HCl is Given: Molar mass of Mg is 24 g mol<sup>-1</sup>.

- A 235.7 g
- B 0.24 mg
- © 236 mg
- 2.444 g

## Question (NCERT: PL-20 | NV, JEE Main Jan. 27, 2025 (I))



Xg of benzoic acid on reaction with aq. NaHCO<sub>3</sub> release CO<sub>2</sub> that occupied 11.2 L volume at STP. X is \_\_\_\_\_ g.

#### Question (NCERT: PL-20 | JEE Main Jan. 23, 2025 (I))



What amount of bromine will be required to convert 2 g of phenol into 2, 4, 6-tribromophenol?

(Given molar mass in g mol-1 of C. H, O, Br are 12, 1, 16, 80 respectively)

- A 10.22 g
- **B** 6.0 g
- **6** 4.0 g
- D 20.44 g

## Question (NCERT: PL-22 | NV, JEE Main Jan. 27, 2024 (I)



Mass of methane required to produce 22 g of  $CO_2$  after complete combustion is \_\_\_\_\_g.

[Given Molar mass in g mol<sup>-1</sup>; C = 12.0, H = 1.0, O = 16.0]

#### Question (NCERT: PL-18 | NV, JEE Main April 13, 2023 (II))



1 g of a carbonate  $(M_2CO_3)$  on treatment with excess HCl produces 0.01 mol of  $CO_2$ . The molar mass of  $M_2CO_3$  is \_\_\_\_\_ g mol<sup>-1</sup>. (Nearest integer)

## Question (NCERT: PL-18 | NV, JEE Main April 11, 2023 (II))



The volume of hydrogen liberated at STP by treating 2.4 g magnesium with excess of hydrochloric acid  $\_\_\_\_ \times 10^{-2}$  L. Given : Molar volume of gas is 22.4 L at STP. Molar mass of magnesium is 24 g mol<sup>-1</sup>.



