- Introduction
- Parametric classifiers
- Semi-parametric classifiers
- Dimensionality reduction
- Significance testing

Semi-Parametric Classifiers

- Mixture densities
- ML parameter estimation
- Mixture implementations
- Expectation maximization (EM)

Mixture Densities

• PDF is composed of a mixture of m component densities $\{\omega_1, \ldots, \omega_m\}$:

$$p(\mathbf{x}) = \sum_{j=1}^{m} p(\mathbf{x}|\omega_j) P(\omega_j)$$

- Component PDF parameters and mixture weights $P(\omega_j)$ are typically unknown, making parameter estimation a form of unsupervised learning
- Gaussian mixtures assume Normal components:

$$p(\mathbf{x}|\boldsymbol{\omega}_k) \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Gaussian Mixture Example: One Dimension

Gaussian Example

First 9 MFCC's from [s]: Gaussian PDF

Independent Mixtures

[s]: 2 Gaussian Mixture Components/Dimension

ixture Components

ML Parameter Estimation: ID Gaussian Mixture Means

$$\log L(\mu_k) = \sum_{i=1}^{n} \log p(x_i) = \sum_{i=1}^{n} \log \sum_{j=1}^{m} p(x_i | \omega_j) P(\omega_j)$$

$$\frac{\partial \log L(\mu_k)}{\partial \mu_k} = \sum_i \frac{\partial}{\partial \mu_k} \log p(x_i) = \sum_i \frac{1}{p(x_i)} \frac{\partial}{\partial \mu_k} p(x_i | \omega_k) P(\omega_k)$$

$$\frac{\partial p(x_i|\omega_k)}{\partial \mu_k} = \frac{\partial}{\partial \mu_k} \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(x_i - \mu_k)^2}{2\sigma_k^2}} = p(x_i|\omega_k) \frac{(x_i - \mu_k)}{\sigma_k^2}$$

$$\frac{\partial \log L(\mu_k)}{\partial \mu_k} = \sum_i \frac{P(\omega_k)}{p(x_i)} p(x_i | \omega_k) \frac{(x_i - \mu_k)}{\sigma_k^2} = 0$$

since
$$\frac{p(x_i|\omega_k)P(\omega_k)}{p(x_i)} = P(\omega_k|x_i)$$
 $\hat{\mu}_k = \frac{\sum_{i} P(\omega_k|x_i)x_i}{\sum_{i} P(\omega_k|x_i)}$

Gaussian Mixtures: ML Parameter Estimation

The maximum likelihood solutions are of the form:

$$\hat{\boldsymbol{\mu}}_k = \frac{\frac{1}{n} \sum_{i} \hat{P}(\boldsymbol{\omega}_k | \boldsymbol{x}_i) \boldsymbol{x}_i}{\frac{1}{n} \sum_{i} \hat{P}(\boldsymbol{\omega}_k | \boldsymbol{x}_i)}$$

$$\hat{\Sigma}_{k} = \frac{\frac{1}{n} \sum_{i} \hat{P}(\omega_{k} | \mathbf{x}_{i}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{k}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{k})^{t}}{\frac{1}{n} \sum_{i} \hat{P}(\omega_{k} | \mathbf{x}_{i})}$$

$$\hat{P}(\omega_{k}) = \frac{1}{n} \sum_{i} \hat{P}(\omega_{k} | \mathbf{x}_{i})$$

Gaussian Mixtures: ML Parameter Estimation

- The ML solutions are typically solved iteratively:
 - Select a set of initial estimates for $\hat{P}(\omega_k)$, $\hat{\mu}_k$, $\hat{\Sigma}_k$
 - Use a set of n samples to reestimate the mixture parameters until some kind of convergence is found
- Clustering procedures are often used to provide the initial parameter estimates
- Similar to *K*-means clustering procedure

xample: 4 Samples, 2 Densities

- 1. Data: $X = \{x_1, x_2, x_3, x_4\} = \{2, 1, -1, -2\}$
- 2. Init: $p(x|\omega_1) \sim N(1,1)$ $p(x|\omega_2) \sim N(-1,1)$ $P(\omega_i) = 0.5$
- 3. Estimate:

	<i>x</i> ₁	X 2	X 3	<i>X</i> ₄
$P(\omega_1 x)$	0.98	0.88	0.12	0.02
$P(\omega_2 x)$	0.02	0.12	0.88	0.98

$$p(X) \propto (e^{-0.5} + e^{-4.5})(e^0 + e^{-2})(e^0 + e^{-2})(e^{-0.5} + e^{-4.5})0.5^4$$

4. Recompute mixture parameters (only shown for ω_1):

$$\hat{P}(\omega_1) = \frac{.98 + .88 + .12 + .02}{4} = 0.5$$

$$\hat{\mu}_1 = \frac{.98(2) + .88(1) + .12(-1) + .02(-2)}{.98 + .88 + .12 + .02} = 1.34$$

$$\hat{\sigma}_1^2 = \frac{.98(2 - 1.34)^2 + .88(1 - 1.34)^2 + .12(-1 - 1.34)^2 + .02(-2 - 1.34)^2}{.98 + .88 + .12 + .02} = 0.70$$

5. Repeat steps 3,4 until convergence

[s] Duration: 2 Densities

lter	μ_1	μ_2	σ_1	σ_2
0	152	95	35	23
1	150	97	37	24
2	148	98	39	25
3	147	100	41	25
4	146	100	42	26
5	146	102	43	26
6	146	102	44	26
7	145	102	44	26

lter	$P(\omega_1)$	$P(\omega_2)$	$\log p(X)$
0	.384	.616	2.727
1	.376	.624	2.762
2	.369	.631	2.773
3	.362	.638	2.778
4	.356	.644	2.781
5	.349	.651	2.783
6	.344	.656	2.784
7	.338	.662	2.785

Gaussian Mixture Example: Two Dimensions

3-Dimensional PDF

Two Dimensional Mixtures

Two Dimensional Components

Mixture of Gaussians: Implementation Variations

- Diagonal Gaussians are often used instead of full-covariance Gaussians
 - Can reduce the number of parameters
 - Can potentially model the underlying PDF just as well if enough components are used
- Mixture parameters are often constrained to be the same in order to reduce the number of parameters which need to be estimated
 - Richter Gaussians share the same mean in order to better model the PDF tails
 - Tied-Mixtures share the same Gaussian parameters across *all* classes. Only the mixture weights $\hat{P}(\omega_i)$ are class specific. (Also known as semi-continuous)

chter Gaussian Mixtures

[s] Log Duration: 2 Richter Gaussians

1.2 1.0 Probability Density 0.2 0.0 -2.5 - log Duration (sec) -3.0 -2.0 -1.5 -3.5

Richter Density

Richter Components

Expectation-Maximization (EM)

- Used for determining parameters, θ , for incomplete data, $X = \{x_i\}$ (i.e., unsupervised learning problems)
- Introduces variable, $Z = \{z_j\}$, to make data complete so θ can be solved using conventional ML techniques

$$\log L(\theta) = \log p(X, Z|\theta) = \sum_{i,j} \log p(\mathbf{x}_i, z_j|\theta)$$

• In reality, z_j can only be estimated by $P(z_j|\mathbf{x}_i,\theta)$, so we can only compute the expectation of $\log L(\theta)$

$$\mathcal{E} = E(\log L(\theta)) = \sum_{i} \sum_{j} P(z_{j} | \mathbf{x}_{i}, \theta) \log p(\mathbf{x}_{i}, z_{j} | \theta)$$

- EM solutions are computed iteratively until convergence
 - 1. Compute the expectation of $log L(\theta)$
 - 2. Compute the values θ' , which maximize \mathcal{E}

EM Parameter Estimation: ID Gaussian Mixture Means

• Let z_i be the component id, $\{\omega_j\}$, which x_i belongs to

$$\mathcal{E} = E(\log L(\theta)) = \sum_{i} \sum_{j} P(z_j | x_i, \theta) \log p(x_i, z_j | \theta)$$

Convert to mixture component notation:

$$\mathcal{E} = E(\log L(\mu_k)) = \sum_{i} \sum_{j} P(\omega_j | x_i) \log p(x_i, \omega_j)$$

• Differentiate with respect to μ_k :

$$\frac{\partial \mathcal{E}}{\partial \mu_k} = \sum_i P(\omega_k | x_i) \frac{\partial}{\partial \mu_k} \log p(x_i, \omega_k) = \sum_i P(\omega_k | x_i) (\frac{x_i - \mu_k}{\sigma_k^2}) = 0$$

$$\hat{\mu}_k = \frac{\sum_{i} P(\omega_k | x_i) x_i}{\sum_{i} P(\omega_k | x_i)}$$

EM Properties

• Each iteration of EM will increase the likelihood of X

$$\log \frac{p(\mathbf{X}|\theta')}{p(\mathbf{X}|\theta)} = \sum_{i} \log \frac{p(\mathbf{x}_{i}|\theta')}{p(\mathbf{x}_{i}|\theta)} = \sum_{i} \sum_{j} P(z_{j}|\mathbf{x}_{i},\theta) \log \frac{p(\mathbf{x}_{i}|\theta')}{p(\mathbf{x}_{i}|\theta)}$$

$$= \sum_{i} \sum_{j} P(z_{j}|\mathbf{x}_{i},\theta) (\log \frac{p(\mathbf{x}_{i}|\theta')}{p(\mathbf{x}_{i},z_{j}|\theta')} \frac{p(\mathbf{x}_{i},z_{j}|\theta)}{p(\mathbf{x}_{i}|\theta)} + \log \frac{p(\mathbf{x}_{i},z_{j}|\theta')}{p(\mathbf{x}_{i},z_{j}|\theta)})$$

Using Bayes rule and the Kullback-Liebler distance metric:

$$\frac{p(\mathbf{x}_i, z_j | \theta)}{p(\mathbf{x}_i | \theta)} = P(z_j | \mathbf{x}_i, \theta) \qquad \sum_j P(z_j | \mathbf{x}_i, \theta) \log \frac{P(z_j | \mathbf{x}_i, \theta)}{P(z_j | \mathbf{x}_i, \theta')} \ge 0$$

• Since θ' was determined to maximize $E(\log L(\theta))$:

$$\sum_{i} \sum_{j} P(z_{j} | \mathbf{x}_{i}, \theta) \log \frac{p(\mathbf{x}_{i}, z_{j} | \theta')}{p(\mathbf{x}_{i}, z_{j} | \theta)} \geq 0$$

• Combining these two properties: $p(X|\theta') \ge p(X|\theta)$

Dimensionality Reduction

- Given a training set, PDF parameter estimation becomes less robust as dimensionality increases
- Increasing dimensions can make it more difficult to obtain insights into any underlying structure
- Analytical techniques exist which can transform a sample space to a different set of dimensions
 - If original dimensions are correlated, the same information may require fewer dimensions
 - The transformed space will often have more Normal distribution than the original space
 - If the new dimensions are orthogonal, it could be easier to model the transformed space

Principal Components Analysis

• Linearly transforms d-dimensional vector, \mathbf{x} , to d' dimensional vector, \mathbf{y} , via orthonormal vectors, \mathbf{W}

$$y = W^t x$$
 $W = \{w_1, ..., w_{d'}\}$ $W^t W = I$

• If d' < d, **x** can be only partially reconstructed from **y**

$$\hat{x} = Wy$$

• Principal components, W, minimize the distortion, \mathcal{D} , between x, and \hat{x} , on training data, $X = \{x_1, \dots, x_n\}$

$$\mathcal{D} = \sum_{i=1}^{n} \|\boldsymbol{x}_i - \hat{\boldsymbol{x}}_i\|^2$$

Also known as Karhunen-Loève (K-L) expansion
 (w_i's are sinusoids for some stochastic processes)

PCA Computation

• **W** corresponds to the first d' eigenvectors, **P**, of Σ

$$\mathbf{P} = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$$
 $\mathbf{\Sigma} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^t$ $\mathbf{w}_i = \mathbf{e}_i$

- Full covariance structure of original space, Σ , is transformed to a diagonal covariance structure, Λ'
- Eigenvalues, $\{\lambda_1, \dots, \lambda_{d'}\}$, represent the variances in Λ'
- Axes in d'-space contain maximum amount of variance

$$\mathcal{D} = \sum_{i=d'+1}^{d} \lambda_i$$

PCA Example

- Original feature vector mean rate response (d = 40)
- Data obtained from 100 speakers from TIMIT corpus
- First 10 components explains 98% of total variance

PCA Example

PCA for Boundary Classification

- Eight non-uniform averages from 14 MFCCs
- First 50 dimensions used for classification

PCA Issues

- PCA can be performed using
 - Covariances Σ
 - Correlation coefficients matrix P

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \qquad |\rho_{ij}| \le 1$$

- **P** is usually preferred when the input dimensions have significantly different ranges
- PCA can be used to normalize or whiten original d-dimensional space to simplify subsequent processing

$$\Sigma \Longrightarrow \mathcal{P} \Longrightarrow \Lambda \Longrightarrow \mathbf{I}$$

• Whitening operation can be done in one step: $\mathbf{z} = \mathbf{V}^t \mathbf{x}$

Significance Testing

- To properly compare results from different classifier algorithms, A_1 , and A_2 , it is necessary to perform significance tests
 - Large differences can be insignificant for small test sets
 - Small differences can be significant for large test sets
- General significance tests evaluate the hypothesis that the probability of being correct, p_i , of both algorithms is the same
- The most powerful comparisons can be made using common train and test corpora, and common evaluation criterion
 - Results reflect differences in algorithms rather than accidental differences in test sets
 - Significance tests can be more precise when identical data are used since they can focus on tokens misclassified by only one algorithm, rather than on all tokens

McNemar's Significance Test

• When algorithms A_1 and A_2 are tested on identical data we can collapse the results into a 2x2 matrix of counts

A_1/A_2	Correct	Incorrect
Correct	n_{00}	n_{01}
Incorrect	n_{10}	n_{11}

• To compare algorithms, we test the null hypothesis \mathcal{H}_0 that $p_1=p_2$, or $n_{01}=n_{10}$, or $q=\frac{n_{01}}{n_{01}+n_{10}}=\frac{1}{2}$

• Given \mathcal{H}_0 , the probability of observing k tokens asymmetrically classified out of $n = n_{01} + n_{10}$ has a Binomial PMF

$$P(k) = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

• McNemar's Test measures the probability, P, of all cases that meet or exceed the observed asymmetric distribution, and tests $P < \alpha$

McNemar's Significance Test (cont't)

• The probability, P, is computed by summing up the PMF tails

$$P = \sum_{k=0}^{l} P(k) + \sum_{k=m}^{n} P(k) \quad l = \min(n_{01}, n_{10}) \quad m = \max(n_{01}, n_{10})$$

• For large *n*, a Normal distribution is often assumed

Significance Test Example (Gillick and Cox, 1989)

- Common test set of 1400 tokens
- Algorithms A_1 and A_2 make 72 and 62 errors
- Are the differences significant?

References

- Huang, Acero, and Hon, *Spoken Language Processing*, Prentice-Hall, 2001.
- Duda, Hart and Stork, Pattern Classification, John Wiley & Sons, 2001.
- Jelinek, *Statistical Methods for Speech Recognition*. MIT Press, 1997.
- Bishop, Neural Networks for Pattern Recognition, Clarendon Press, 1995.
- Gillick and Cox, Some Statistical Issues in the Comparison of Speech Recognition Algorithms, *Proc. ICASSP*, 1989.