Tentti 08.03.2002

Huom! Tehtävistä 1, 2 ja 3 ratkaistaan vain kaksi. Näistä kolmesta pois jäävän tehtävän voi valita vapaasti. Tehtävä 4 on siis kaikille pakollinen.

1. Kappaleen pisteessä on oheisen jännityselementin mukainen jännitystila. Kirjoita vastaava jännitysmatriisi ja laske sen pääinvariantit. Osoita, että $s_{||} = 6$ MPa ja laske sitä vastaava pääsuunta. **10 p.**

2. Oheisen levyn $s_0 = 100 \, \text{MPa}$, $t = 10 \, \text{mm}$ (paksuus), $E = 210 \, \text{GPa}$ ja n = 0.3. Tilavuusvoimia ei ole. Määritä levyn jännitystilakenttä, muodonmuutostilakenttä ja siirtymäkenttä, kun jäykän kappaleen liikettä ei oteta huomioon. Laske paljonko piste D siirtyy pisteeseen G nähden vaaka- ja pystysuunnassa. **10 p.**

3. Ympyrälevyn b = 500 mm, $r = 7850 \text{ kg/m}^3$, E = 210 GPa ja n = 0.3. Määritä, kuinka suuri levyn pyörimisnopeus n voi korkeintaan olla, kun sallittu halkaisijan muutos on 0.2 mm. Laske suurinta pyörimisnopeutta vastaava levyn normaalijännityksen maksimiarvo. **10 p.**

4. Kuvan mukaisen tasaisesti kuormitetun ja reunaltaan niveltuetun laatan a = 200 mm, h = 10 mm, E = 210 GPa, n = 0,3 ja s_{sall} = 140 MPa. Määritä VVEH:n avulla laatan sallittu kuormitus p_0 . Laske sallittua kuormitusta vastaava laatan maksimitaipuma ja laatan kaltevuuskulma niveltuennan kohdalla. **12 p.**