EECS 376: Foundations of Computer Science

Seth Pettie
Lecture 2

Today's Agenda

- * Review of the Euclidean Algorithm
 - * Using Potential Function
- * Divide and Conquer algorithms
 - * Mergesort
 - Closest pair

Greatest Common Divisor

- * **Definition:** Let $x, y \in \mathbb{N}$ (natural numbers). The Greatest Common Divisor (gcd) of x and y is the largest $z \in \mathbb{N}$ that divides x and y.
 - * If gcd(x,y) = 1 then x and y are called **coprime**.

* Examples:

- * gcd(21,9) = 3
- * gcd(121,5) = 1 (co-prime)
- * $gcd(81,48) = gcd(3^4, 2^4 \cdot 3) = 3$

* Naïve Algorithm:

- * For z from y down to 1:
 - * If $((z|y) \land (z|x))$, return z.

Runtime: O(y) operations.

If x, y are n-bit numbers, $O(y) = O(2^n)$ is exponential in the input size!

We want an algorithm that is polynomial in the input size, e.g., O(n), $O(n^2)$, etc.

Step 3: Think about the "structure" of the problem.

- * **Strategy:** Recursively solve the problem, by reducing to *smaller* numbers.
- * Suppose $x \ge y$. Observe: gcd(x, y) = gcd(y, x y).
- * Proof: If d divides both x and y, d also divides x y. Conversely, any d that divides both x - y and y also divides x. So the common divisors of x, y are the common divisors of y, x - y. Hence, their **greatest** common divisors are equal.
- * In general, we can reduce k times until x ky < y.
- * **Q:** What is x ky?
 - * $x \mod y =$ the remainder of x divided by y.
- * Thereom: $gcd(x, y) = gcd(y, x \mod y)$

A good potential function

* The **sum** of the arguments to **Euclid** decreases quite rapidly.

```
Euclid(x, y): // for x \ge y > 0
if(x \mod y = 0), return y.
else return Euclid(y, x \mod y)
```

- * Define x_t , y_t to be the arguments to the tth call to **Euclid**, where $x_t \ge y_t$.
- * Define the **potential** to be $s_t = x_t + y_t$.

* Claim.
$$s_{t+1} < \frac{2}{3}s_t$$
.

A good potential function

* Claim. $s_{t+1} < \frac{2}{3}s_t$.

Euclid(x, y): // for $x \ge y > 0$ if $(x \mod y = 0)$, return y. else return Euclid $(y, x \mod y)$

- * **Proof.** Write $x_t = k_t y_t + r_t$, where $k_t \ge 1$, $r_t < y_t$
 - * What is $x_{t+1} = ? y_t$
 - * What is $y_{t+1} = ? r_t$
- * $s_t = x_t + y_t = k_t y_t + r_t + y_t \ge 2y_t + r_t$

*
$$> 2y_t + r_t - \frac{y_t - r_t}{2} = \frac{3}{2}(y_t + r_t) = \frac{3}{2}s_{t+1}.$$

A good potential function

* Claim. $s_{t+1} < \frac{2}{3}s_t$.

Euclid(x, y): // for $x \ge y > 0$ if $(x \mod y = 0)$, return y. else return Euclid $(y, x \mod y)$

- * Thus, if there are t calls to **Euclid**, $2 \le s_t < \left(\frac{2}{3}\right)^t (x+y)$
- * Which implies that $t < \log_{3/2}((x + y)/2)$
- * $n = \log_2 x + \log_2 y$ is the **input size** (bits).
- * $t < \log_{3/2}((x+y)/2) < \log_{3/2} x + \log_{3/2} y = (\log_{3/2} 2)n$.

The number of recursive calls is linear in the number of digits in the input.

The optimal analysis

- * Is there a better bound than $\log_{3/2}(x+y)$?
- * The actual maximum recursion depth is $\log_{\phi}(x+y)$, where $\phi = \frac{\sqrt{5}+1}{2} \approx 1.618$ is the **golden ratio**.
 - * Can you prove this?

"Divide et impera" – Philip II

Algorithmic Strategy: Divide and Conquer

Template

- * If the input is a "base case" of the problem:
 - * directly compute the answer and return it
- * Otherwise:
 - * divide the problem into smaller subproblems
 - * recursively solve each subproblem
 - * combine the solutions

Example: MergeSort

Combining two sorted lists

- * The heart of the **MergeSort** procedure is how we **Merge** the two sorted sublists, L and R
- * Idea: repeatedly compare the front of L and R; pop off the smaller one and append it to the merged list

Analysis of MergeSort

```
\label{eq:mergeSort} \begin{aligned} & \textbf{MergeSort}(A[1..n]): \text{// sorts a list of integers} \\ & \text{if } n = 1 \text{ then return A} & \text{// base case} \\ & L = & \textbf{MergeSort}(A[1..n/2]) & \text{// recursively sort 1st half} \\ & R = & \textbf{MergeSort}(A[n/2+1..n]) & \text{// recursively sort 2nd half} \\ & \text{return } & \textbf{Merge}(L, R) & \text{// combine solutions} \end{aligned}
```

- * We expect you to analyze the runtime (and sometimes correctness) of each algorithm that you design
- * Runtime: for $n \ge 1$, let T(n) be the runtime of MergeSort on a list of n integers. We can write T(n) as a recursive function (recurrence):

Note: we typically omit the base case

Analysis of MergeSort

- * Runtime: for $n \ge 1$, let T(n) be the runtime of MergeSort on a list of n integers. We can write T(n) = 2T(n/2) + O(n). (Next time: tool to show $T(n) = O(n \log n)$.)
- * Correctness: Strong induction on size of list, n.
 - * As a base case, **MS** is correct on lists of size 1. Now suppose **MS** is correct on lists of size < n. Then **MS** is correct on 1st/2nd half, by assumption. Since **Merge** is correct, **MS** is correct on n.

Example: Closest Pair in 2D

- * Given a set of $n \ge 2$ points in the *plane*.
- * Goal: Find minimum distance between any pair of points.
- * A point $p = (x_p, y_p)$ is represented by a pair of numbers.
- * (Pythagorean Theorem) $dist(p,q) = \sqrt{(x_p x_q)^2 + (y_p y_q)^2}$.
- * How fast is the trivial algorithm for this problem?

0

0

Example: Closest Pair in 1D

- * You're given a set of $n \ge 2$ distinct points on a line.
- * Goal: Find minimum distance between any pair of points
- * **Q:** Can you think of a fast algorithm?
 - * (1) Sort the points in increasing order as $(p_1, p_2, ..., p_n)$
 - * (2) Scan the list of sorted points; return $\min_{1 \le i < n} \{p_{i+1} p_i\}$.

0 0 0 0 0 0

 $O(n \log n)$ time

Example: Closest Pair in 2D

- * Given a set of $n \ge 2$ <u>distinct</u> points in the <u>plane</u>.
- * Goal: Find minimum distance between any pair of points
- * **Q:** What goes wrong with "walk left to right" strategy?
 - * Might need to check all previous points; $O(n^2)$ runtime

Divide and Conquer?

Q: How many blue/red pairs are there?

Q: Do we need to check all of them?

The δ -strip

```
ClosestPair(P_1, ..., P_n): || n \ge 2 pts in the plane, x-sorted asc. if n \le 3 then return min dist among P_1, P_2, P_3 || base case (L, R) \leftarrow \text{partition points by } P_{n/2} || split by median \delta_1 \leftarrow \text{ClosestPair}(L) || min dist on left \delta_2 \leftarrow \text{ClosestPair}(R) || min dist on right need to know min dist \underline{\text{between}} \ L \ \text{and} \ R || ... look at \delta-strip
```

- * Let $\delta = \min\{\delta_1, \delta_2\}$.
- * **Observation:** We can focus on points whose x-coord is within δ of $P_{n/2}$'s x-coord (the " δ -strip").

Properties of the δ -strip

```
ClosestPair(P_1, ..., P_n): || n \ge 2 pts in the plane, x-sorted asc. if n \le 3 then return min dist among P_1, P_2, P_3 || base case (L, R) \leftarrow partition points by P_{n/2} || split by median \delta_1 \leftarrow ClosestPair(L) || min dist on left \delta_2 \leftarrow ClosestPair(R) || min dist on right need to know min dist between L and R || ... look at \delta-strip
```

- * Let $\delta = \min\{\delta_1, \delta_2\}$.
- * **Q:** How many pts can there be in the δ -strip?
- * **Q:** How many blue pts can there be in a $\delta \times \delta$ square?
- * **Q:** How many pts can there be in a $\delta \times 2\delta$ rectangle?

How to find a close red/blue pair: Slide a $\delta \times 2\delta$ rectangle!

Analysis of ClosestPair

```
 \begin{aligned}  & \textbf{ClosestPair}(P_1, \dots, P_n) \colon || \ n \geq 2 \ \text{pts in the plane, $x$-sorted asc.} \\ & \text{if $n = 2$ then return } \operatorname{dist}(P_1, P_2) \qquad || \ \text{base case} \\ & (L, R) \leftarrow \operatorname{partition points } \operatorname{by} P_{n/2} \qquad || \ \text{split by median} \\ & \delta_1 \leftarrow \mathbf{ClosestPair}(L) \qquad \qquad || \ \text{min dist on left} \\ & \delta_2 \leftarrow \mathbf{ClosestPair}(R) \qquad \qquad || \ \text{min dist on right} \\ & \text{Let } (P_1', P_2', \dots, P_m') \ \text{be points in the $\delta$-strip, $|| m \leq n$} \\ & \text{sorted by $y$-coordinate} \\ & \delta_3 \leftarrow \min_{1 \leq i < m, 1 \leq c \leq 7} \{ dist(P_i', P_{i+c}') \} \qquad || \  \leq 7m \ \text{distances computed} \\ & \text{return } \min\{\delta_1, \delta_2, \delta_3\} \end{aligned}
```

- * Runtime: For $n \ge 2$, let T(n) be the runtime of ClosestPair on n points.
 - $* T(n) = 2T(n/2) + O(n \log n)$
 - * How can we improve this to T(n) = 2T(n/2) + O(n)?

Aside: A lower bound on sorting

- * Fact: If the numbers can only be compared (e.g., A[i] < A[j]?), then any sorting algorithm requires at least $\log_2(n!) = \Theta(n \log n)$ comparisons to sort a list of n distinct numbers.
- * **Idea:** The algorithm must be able to distinguish the total order of the elements, e.g., A[3] < A[1] < A[2].
 - * We can use a potential function argument to show that it can't do this too quickly (we'll play the role of an adversarial input)

Aside: A lower bound on sorting

The interaction might look something like this:

Alg. Query	Our Ans.
A[1] < A[2]?	Yes
A[2] < A[3]?	No

In general: Always choose the answer that results in more indistinguishable orderings.

Indistinguishable orderings

1,2,3	2,1,3
1,3,2	2,3,1
3,1,2	3,2,1

Aside: A lower bound on sorting

Define $s_t = number of possible orderings$ after t comparisons.

Define potential $\Phi_t = \log_2(s_t)$.

There are **2** possible answers to the $(t+1)^{\text{th}}$ comparison. If we pick the one that max. s_{t+1} , then $s_{t+1} \geq \frac{1}{2} \cdot s_t$ and $\Phi_{t+1} \geq \Phi_t - 1$.

We're done sorting when $s_t = 1$ and $\Phi_t = 0$,

So
$$t \ge \Phi_0 = \log_2(n!) = n \log n - O(n)$$
.

