

What is claimed is:

1 1. A mode converter comprising a silicon waveguide core deposited over a first silicon
2 dioxide cladding layer, the silicon waveguide core polished such that a first end of the silicon
3 waveguide core has a larger cross-sectional area than a second end of the silicon waveguide
4 core.

1 2. The mode converter of claim 1, wherein the silicon waveguide core comprises a
2 vertical taper.

1 3. The mode converter of claim 1, wherein the silicon waveguide core comprises a
2 lateral taper.

1 4. The mode converter of claim 2, wherein the silicon waveguide core comprises an
2 angled top surface and a flat bottom surface.

1 5. The mode converter of claim 3, wherein the slope of the vertical taper matches the
2 slope of the lateral taper.

1 6. The mode converter of claim 1 further comprising a second silicon dioxide cladding
2 layer deposited over the silicon waveguide core to provide a symmetric clad.

1 7. The mode converter of claim 1 further comprising a silicon substrate, wherein the first
2 silicon dioxide cladding layer and the silicon waveguide core are formed over the silicon
3 substrate.

1 8. The mode converter of claim 1, wherein the second end of the silicon waveguide core
2 has at least one dimension of about 1 μm .

1 9. A method of forming a mode converter comprising:
2 depositing a silicon waveguide core over a first silicon dioxide cladding layer; and

3 polishing the silicon waveguide core such that a first end of the silicon waveguide
4 core has a larger cross-sectional area than a second end of the silicon waveguide core.

1 10. The method of claim 9, wherein the polishing step includes vertically tapering the
2 silicon waveguide core.

1 11. The method of claim 9 further comprising tapering the silicon waveguide core
2 laterally using a lithographic mask and etch process.

1 12. The method of claim 10, wherein the silicon waveguide core comprises an angled top
2 surface and a flat bottom surface.

1 13. The method of claim 11 further comprising matching the slope of the vertical taper to
2 the slope of the lateral taper.

1 14. The method of claim 9 further comprising depositing a second silicon dioxide
2 cladding layer over the silicon waveguide core to provide a symmetric clad.

1 15. The method of claim 9 further comprising forming the first silicon dioxide cladding
2 layer and the silicon waveguide core over a silicon substrate.

1 16. The method of claim 9 further comprising mode matching the first end to a single
2 mode fiber.

1 17. The method of claim 9 further comprising mode matching the second end to one of a
2 group consisting of a waveguide device and a semiconductor laser.

1 18. A mode converter comprising a silicon waveguide core deposited over a first silicon
2 dioxide cladding layer, the silicon waveguide core being tapered using a gray-scale

3 lithographic mask and etch process such that a first end of the silicon waveguide core has a
4 larger cross-sectional area than a second end of the silicon waveguide core.

1 19. The mode converter of claim 18, wherein the silicon waveguide core comprises a
2 vertical taper.

1 20. The mode converter of claim 19, wherein the silicon waveguide core comprises a
2 lateral taper.

1 21. The mode converter of claim 20, wherein the slope of the vertical taper matches the
2 slope of the lateral taper.

1 22. The mode converter of claim 18 further comprising a second silicon dioxide cladding
2 layer deposited over the silicon waveguide core to provide a symmetric clad.

1 23. The mode converter of claim 18 further comprising the first silicon dioxide cladding
2 layer and the silicon waveguide core formed over a silicon substrate.

1 24. The mode converter of claim 18, wherein the second end of the silicon waveguide
2 core has at least one dimension of about 0.25 μm .

1 25. A method of forming a mode converter, the method comprising:
2 depositing a silicon waveguide core over a first silicon dioxide cladding layer; and
3 using a gray-scale lithographic mask and etch process on the silicon waveguide core
4 such that a first end of the silicon waveguide core has a larger cross-sectional area than a
5 second end of the silicon waveguide core.

1 26. The method of claim 25 further comprising vertically tapering the silicon waveguide
2 core using the gray-scale lithographic mask and etch process.

1 27. The method of claim 26 further comprising laterally taper the silicon waveguide core
2 using the gray-scale lithographic mask and etch process.

1 28. The method of claim 27 further comprising matching the slope of the vertical taper to
2 the slope of the lateral taper.

1 29. The method of claim 25 further comprising depositing a second silicon dioxide
2 cladding layer over the silicon waveguide core to provide a symmetric clad.

1 30. The method of claim 25 further comprising forming the first silicon dioxide cladding
2 layer and the silicon waveguide core over a silicon substrate.

1 31. The method of claim 25 further comprising mode matching the first end to a single
2 mode fiber.

1 32. The method of claim 25 further comprising mode matching the second end to one of a
2 group consisting of a waveguide device and a semiconductor laser.