14.7 案例分析

下面以2004年高教社杯全国大学生数学建模竞赛 D 题为例,作为 TOPSIS 方法的应用。

14.7.1 问题的提出

某市直属单位因工作需要,拟向社会公开招聘8名公务员,具体的招聘办法和程序如下:

- (1)公开考试:凡是年龄不超过30周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目包括综合基础知识、专业知识和行政职业能力测验三个部分,每科满分为100分。根据考试总分的高低排序选出16人进入第二阶段的面试考核。
- (2) 面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、 表达能力等综合素质。按照一定的标准,面试专家组对每个应聘人员的各个方面都给出 一个等级评分,从高到低分成 A/ B/ C/ D 四个等级,具体结果见表 14.21。

现要求根据表 14.21 中的数据信息,利用理想解法对 16 名应聘人员作出综合评价, 选出 8 名作为录用的公务员。

	N I	4. 41 70 45 47	丁以毛风风坝, 又	不凹风灯刀			
	A-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	专家组对应聘者特长的等级评分					
应聘人员	笔试成绩	知识面	理解能力	应变能力	表达能力		
人员1	290	A	A	B	B		
人员 2	288	A	B	A	C		

表 14.21 招聘公务员笔试成绩,专家面试评分

立鸣人员	笔试成绩	专家组对应聘者特长的等级评分					
		知识面	理解能力	应变能力	表达能力		
人员4	285	A	B	B	B		
人员 5	283	B	A	B	C		
人员6	283	B	D	A	В		
人员7	280	A	B	C	B		
人员 8	280	B	A	A	C		
人员 9	280	B	B	A	B		
人员 10	280	D	B	A	C		
人员 11	278	D	C	B	A		
人员 12	277	A	B	C	A		
人员 13	275	B	C	D	A		
人员 14	275	D	B	A	В		
人员 15	274	A	B	C	B		
人员 16	273	B	A	B	C		

14.7.2 模型的建立与求解

1. 数据的量化与处理

不妨将应聘人员特长的4个面试等级分别量化赋值为

$$A = 0.5, B = 0.3, C = 0.15, D = 0.05(A + B + C + D = 1)$$

应聘人员的综合分数的确定可以采用笔试成绩和面试成绩加权求和,权值的确定可以采用层次分析法的思想,在这种方法中,需要建立成对比较判断矩阵,设成对比较判断矩阵(建模者主观给出的矩阵)为

$$E = \begin{bmatrix} 1 & 4 & 2 & 8 & 2 \\ 1/4 & 1 & 1/2 & 2 & 1/2 \\ 1/2 & 2 & 1 & 4 & 1 \\ 1/8 & 1/2 & 1/4 & 1 & 1/4 \\ 1/2 & 2 & 1 & 4 & 1 \end{bmatrix}$$

求出成对比较判断矩阵 E 的最大特征值为 λ = 5, 对应的归一化特征向量为

w = [0.4211, 0.1053, 0.2105, 0.0526, 0.2105],

即得到5个指标对应的权重。

2. 模型的建立及求解

利用 TOPSIS 法对应聘人员进行评价。计算结果见表 14.22。

表 14.22 距离值及综合指标值

T	s;*	s_i^0	f_i^*		8,*	80	f_i^*
11	0.332392	1.568678	0.825155	人员9	0. 924877	0.748592	0.447329
	0.665109	1.299035	0.661375	人员 10	1.067911	0.689466	0.392327
2	0.622772	1.38829	0.690327	人员 11	1.134249	0.718148	0.387686
3	0.601082	1.101551	0.646969	人员 12	1.08995	0.807686	0.425627
4	0.813186	1.063098	0.566598	人员 13	1.325744	0.632298	0.322924
5	0.945515	0.864416	0.477596	人员 14	1.312925	0.496157	0.274259
6	0.922617	0.773227	0.455954	人员 15	1.361487	0.537998	0.283233
7 8	0.992529	0.903337	0.476477	人员 16	1.484406	0.698281	0.319918

由fi* 值的大小可确定各应聘人员的综合评价从高到低的排列次序如下:

这样就得出,如果招聘8人,就取前8人。

计算的 Matlab 程序如下:

clc, clear

%把原始数据保存在纯文本文件zhaopin.txt中,并且把A,B a = load('zhaopin.txt'); C,D分别替换成相应的数值

b=zscore(a); %数据标准化

E = [14282; 1/411/221/2; 1/22141; 1/81/21/411/4; 1/22141];

[vec, val] = eigs(E,1) % 求模最大的特征值及对应的特征向量

w=vec/sum(vec) % 求归一化特征向量,即权重

w=repmat(w',16,1); %扩充为与数据矩阵相同的维数

C=b.*W %计算加权属性

cstar = max(c) % 求正理想解

8 求负理想解 c0 = min(c)

for i = 1:16

8 求到正理想解的距离 sstar(i) = norm(c(i,:) - cstar);8 求到负理想解的距离 s0(i) = norm(c(i,:) - c0);

end

f = s0./(sstar + s0);

%把计算结果写到 Excel 文件中,便于将来制 xlswrite('book3.xls',[sstar's0'f']) 8 求排序结果 [sc,ind] = sort(f,'descend')