IMAGE RECONSTRUCTION FROM DVS

MARCEL GEPPERT, SAMUEL BRYNER SUPERVISOR: PETRI TANSKANEN

BASED ON WORK BY KIM ET AL. [1]

1. MOTIVATION

✓ increase robustness and speed of visual odometry / SLAM by replacing normal cameras with event cameras

reduce SLAM problem to camera rotation in a static scene and reconstruction of a complete image

2. DYNAMIC VISION SENSOR

normal camera event camera (DVS)

✓ a DVS delivers instantaneouschanges in image brightness ("events")instead of periodic full frames

- practically no motion blur
- very high dynamic range
- drastically reduced bandwith incurs significantly lower computational costs

4. SIMULATION

The full system is implemented in simulation. Both tracking and image reconstruction can either work with ground truth data or results from the other component.

3. CORE ALGORITHM

image-like mosaic.

the other is correct.

ASSUMPTIONS

- a change in brightness is caused by a movement of the camera (static scene)
- only rotation, no translation and therefore no parallax displacement

5. REAL DATA

CALIBRATION

- ▼ flickering display of normal checker-board pattern
- standard camera calibration toolbox

INITIALIZATION

ving a dark cover results in an initial image patch

✓ another possibilty: the 2nd generation DVS is able to take full pictures

MOVEMENT TRACKING

Jointly track the global rotational mo-

tion of a camera and estimate the gra-

dients of the scene around it. The gra-

dient map is then upgraded to a full

Each of these components essentially

believes that the current estimate from

- ▼ rotation tracking with particle filter and constant position motion model
- For every event, compare intensity at event position for every possible camera rotation to intensity at (assumed) position of last event:

 $z := log(M(\mathbf{p}^t)) - log(M(\mathbf{p}^{t-1}))$

the closer the intensity change to the camera's threshold the more likely is the proposed movement

▶ bootstrap: start with a small known patch at the center. See also initialization in section 5.

RECONSTRUCTION

Use movement between current and last event of the pixel to estimate gradient (intensity change) at event pixel.

- vextended Kalmann filter reduces noise in the image
- Poisson-solver computes grayscale image from gradients.

6. CONCLUSION

A dynamic vision sensor is a feasible option for rotational motion tracking. With some optimizations the system is conceiveably real-time capable - especially when combined with other sensors such as an IMU. This might even lead to full 3D-SLAM with a dynamic vision sensor.

7. REFERENCES

- [1] H. Kim, A. Handa, R. Benosman, S. Ieng, A. Davison, 2014 "Simultaneous Mosaicing and Tracking with an Event Camera"
- [2] E. Mueggler, B. Huber, D. Scaramuzza, IROS 2014 "Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers"

