

095946- ADVANCED ALGORITHMS AND PARALLEL PROGRAMMING

Fabrizio Ferrandi

a.a. 2023-2024

so we have different costs in doing something and we have to ammortize that costs during all the execution time

Amortized Analysis

the goal is going to try to understand the average complexity / costs

- Dynamic tables
- Aggregate method
- Accounting method
- Potential method

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: Dynamic tables.

like for example how we do with arrays.

IDEA: Whenever the table overflows, "grow" it by allocating (via malloc or new) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

- 1. Insert
- 2. Insert

i'm doubling the size.

- 1. Insert
- 2. Insert

i'm coopying the first value

- 1. Insert
- 2. Insert

1

2

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

2

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert

2

3

4

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

2 3 4

- 1. Insert
- 2. Insert
- 3. Insert
- 4. INSERT
- 5. Insert
- 6. INSERT
- 7. Insert

1

2

3

4

5

6

7

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n^2)$. but the asymptotic complexity is theta of n not n^2.

Let's see why.

Tighter analysis

in that case we have to reallocate.

```
Let c_i = the cost of the ith insertion
```

$$= \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$
 (basta che lo mano e capis)

this is i-th insertion

sizei

cost for each iteration.

Tighter analysis

Let
$$c_i$$
 = the cost of the i th insertion
=
$$\begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

i	1	2	3	4	5		7		9	10
sizei	1	2	4	4	8	8	8	8	16	16
cost just for insert so the total il n	ing 1	1	1	1	1	1	1	1	1	1
c_{i}	or copying after	a realloc.	2		4				8	

Tighter analysis (continued)

Thus, the average cost of each dynamic-table operation is

 $\Theta(n)/n = \Theta(1)$ the average is simply the total cost divided by n iterations.

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we're taking averages, however, probability is not involved!

• An amortized analysis guarantees the average performance of each operation in the *worst* case.

Three common amortization arguments:

- the aggregate method, "idea to compute the cost for each insertion, doing the sum and dividing for the number of iteration (what we've seen so far)
- the accounting method,
- the *potential* method.

We've just seen an aggregate analysis.

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

Accounting method

- Charge i th operation a fictitious amortized cost \hat{c}_i , where \$1 pays for 1 unit of work (i.e., time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the bank for use by subsequent operations.
- The bank balance must not go negative! We must ensure that

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

for all n.

• Thus, the total amortized costs provide an upper bound on the total true costs.

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

\$0 \$0 \$0 \$0 \$2 \$2 \$2 \$2 *overflow*

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i* th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

i	1	2	3	4	5	6	7	8	9	10	
sizei	1	2	4	4	8	8	8	8	16	16	
c_i	1	2	3	1	5	1	1	1	9	1	
\hat{c}_i	2	3	3	3	3	3	3	3	3	3	
bank _i	1	2	2	4	2	4	6	8	2	4	

^{*}Okay, so I lied. The first operation costs only \$2, not \$3.

Potential method

IDEA: View the bank account as the potential energy (à la physics) of the dynamic set.

Framework:

- Start with an initial data structure D_0 .
- Operation *i* transforms D_{i-1} to D_i .
- The cost of operation i is c_i .
- Define a potential function $\Phi: \{D_i\} \to \mathbb{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ for all i.
- The amortized cost \hat{c}_i with respect to Φ is defined to be $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$.

Understanding potentials

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$potential \ difference \ \Delta\Phi_{i}$$

- If $\Delta\Phi_i > 0$, then $\hat{c}_i > c_i$. Operation i stores work in the data structure for later use.
- If $\Delta\Phi_i < 0$, then $\hat{c}_i < c_i$. The data structure delivers up stored work to help pay for operation i.

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

Summing both sides.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^n \hat{c}_i = \sum_{i=1}^n (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$
 quindi faccio la diff tra i e i-1, poi alla prossima faccio la differenza tra i+1 e i e così via. \Rightarrow rimane solo Dn e D0 (serie telescopica)
$$= \sum_{i=1}^n c_i + \Phi(D_n) - \Phi(D_0)$$

The series telescopes.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

$$\geq \sum_{i=1}^{n} c_{i}$$
since $\Phi(D_{n}) \geq 0$ and $\Phi(D_{0}) = 0$.

Potential analysis of table doubling

Define the potential of the table after the ith insertion by $\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil}$ (Assume that $2^{\lceil \lg 0 \rceil} = 0$.)

Note:

- $\bullet \Phi(D_0) = 0,$
- $\Phi(D_i) \ge 0$ for all *i*.

Example:

sto alla sesta iterazione

$$\Phi = 2 \cdot 6 - 2^{3} = 4$$

\$0 \$0 \$0 \$0 \$2 \$2

accounting method)

Calculation of amortized costs

The amortized cost of the *i* th insertion is

$$\hat{c}_{\boldsymbol{i}} = c_{\boldsymbol{i}} + \Phi(D_{\boldsymbol{i}}) - \Phi(D_{\boldsymbol{i-1}})$$

Calculation of amortized costs

The amortized cost of the *i* th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise;} \end{cases}$$

$$+ \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right)$$

Calculation of amortized costs

The amortized cost of the *i* th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases}
i & \text{if } i - 1 \text{ is an exact power of 2,} \\
1 & \text{otherwise;} \\
+ \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right)
\end{cases}$$

$$= \begin{cases}
i & \text{if } i - 1 \text{ is an exact power of 2,} \\
1 & \text{otherwise;} \\
+ 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
\end{cases}$$

Calculation

Case 1: i - 1 is an exact power of 2.

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

= $i + 2 - 2(i-1) + (i-1)$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
= i + 2 - 2(i-1) + (i-1)
= i + 2 - 2i + 2 + i - 1
= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
= i + 2 - 2(i-1) + (i-1)
= i + 2 - 2i + 2 + i - 1
= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil} \\
= 3 \qquad (\text{since } 2^{\lceil \lg i \rceil} = 2^{\lceil \lg (i-1) \rceil})$$

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
= i + 2 - 2(i-1) + (i-1)
= i + 2 - 2i + 2 + i - 1
= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil} \\
= 3$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

$$\hat{c}_{i} = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
= i + 2 - 2(i-1) + (i-1)
= i + 2 - 2i + 2 + i - 1
= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil} \\
= 3$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.

- Amortized costs can provide a clean abstraction of data-structure performance.
- Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest or most precise.
- Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.

- Based on Introduction to Algorithms CLRS
- Material adapted from Erik D. Demaine and Charles E. Leiserson slides