

Requirements

Develop models to predict HAS_DIV from the census supplement dataset:

- Convert adjusted gross income, age, and weeks worked to binary indicators, where values above the mean are 1 and values below the mean are 0.
- Use entropy-based information gain to determine which of the binary predictors is the best to use for the top node in a decision tree to predict HAS_DIV.
- Create a set of decision tree classifiers using binary features. Iterate through max depth and information gain algorithms. Print out the confusion matrices and cross-validation scores of the models. Discuss.
- Create a set of decision tree classifiers using continuous features. Iterate through max depth and information gain algorithms. Print out the confusion matrices and cross-validation scores of the models. Discuss.
- Create a set of random forest classifiers using continuous features. Iterate through arguments of your choice. Print out the confusion matrices and cross-validation scores of the models. Discuss.

Part 1 Information Gain First Level

• Entropy of HAS_DIV:
$$-\frac{32955}{100000} \log_2(\frac{32955}{100000}) - \frac{67045}{100000} \log_2(\frac{67045}{100000}) = 0.9144 \text{ bits}$$

• Remainder of AGI_BIN:
$$\frac{\frac{27039}{100000} \left(-\frac{11764}{27039} \log_2 \left(\frac{11764}{27039}\right) - \frac{15275}{27039} \log_2 \left(\frac{15275}{27039}\right)\right) +}{\frac{72961}{100000} \left(-\frac{21191}{72961} \log_2 \left(\frac{21191}{72961}\right) - \frac{51770}{72961} \log_2 \left(\frac{51770}{72961}\right)\right)} = 0.901 \text{ bits (IG} = 0.0134)$$

$$\begin{array}{ll} \bullet \ \ Remainder \ of \ A_AGE_BIN: \\ & \frac{\frac{48\,814}{100\,000} \left(-\frac{17\,225}{48\,814} \log_2 \left(\frac{17\,225}{48\,814}\right) - \frac{31\,589}{48\,814} \log_2 \left(\frac{31\,589}{48\,814}\right)\right) +}{\frac{51\,186}{100\,000} \left(-\frac{15\,730}{51\,186} \log_2 \left(\frac{15\,730}{51\,186}\right) - \frac{35\,456}{51\,186} \log_2 \left(\frac{35\,456}{51\,186}\right)\right)} \end{array} = 0.9128 \ \ bits \ (IG=0.0016)$$

$$\text{- Remainder of WKSWORK_BIN:} \ \ \frac{\frac{45\,267}{100\,000} \left(-\frac{16\,330}{45\,267}\log_2\left(\frac{16\,330}{45\,267}\right) - \frac{28\,937}{45\,267}\log_2\left(\frac{28\,937}{45\,267}\right)\right) +}{\frac{54\,733}{100\,000} \left(-\frac{16\,625}{54\,733}\log_2\left(\frac{16\,625}{54\,733}\right) - \frac{38\,108}{54\,733}\log_2\left(\frac{38\,108}{54\,733}\right)\right)} \ \ = 0.9118 \ \text{bits (IG=0.0026)}$$

• Remainder of A_SEX:
$$\frac{\frac{49116}{100000} \left(-\frac{16744}{49116} \log_2 \left(\frac{16744}{49116}\right) - \frac{32372}{49116} \log_2 \left(\frac{32372}{49116}\right)\right) +}{\frac{50884}{100000} \left(-\frac{16211}{50884} \log_2 \left(\frac{16211}{50884}\right) - \frac{34633}{50884} \log_2 \left(\frac{34633}{50884}\right)\right)} = 0.9144 \ bits \ (IG=0)$$

• Information Gain:
$$0.9144 - 0.901 = 0.0134 \text{ bits for AGI_BIN}$$

$$0.9144 - 0.9128 = 0.0016 \text{ bits for A_AGE_BIN}$$

$$0.9144 - 0.9118 = 0.0026 \text{ bits for WKSWORK_BIN}$$

$$0.9144 - 0.9144 = 0 \text{ bits for A_SEX}$$

AGI_BIN is the feature with the highest information gain (IG = 0.0134 bits)

Code Review

Here we see the developed python code for Parts 2-4. We make a pandas dataframe by reading in the census data. The required binary features were calculated in excel and written to the census supplement before creating a dataframe. We normalize the dataframe using min max normalization. We extract the target and features (both binary and continuous) and store them in memory. We iterate through maximum depths of 3, 4, 5, and 10. We iterate through information gain algorithms of gini and entropy. Inside of our iterations we declare a decision tree classifier object and then fit it to the binary features and target. We obtain cross validation scores, have the model make a prediction on the test set, create a confusion matrix, and then print the results. We repeat the same modelling process for the continuous features and target. These decision tree models are exported to png using graph viz for the case of depth = 3 and information gain algorithm = entropy. Finally, we create a set of random forest models using continuous features. We iterate through the same depth values and information gain algorithms as before. In addition, we iterate through number of estimators/trees of 10, 100, and 1000.

```
#AML Homework 1
import pandas as pd
from sklearn import tree, ensemble, model selection, metrics
df=pd.read excel(r'C:\Data\Census Supplement.xlsx')
df=(df-df.min())/(df.max()-df.min())
features_cont=df[['AGI','A_AGE','WKSWORK', 'A_SEX']].values.tolist()
features_bin=df[['AGI_BIN','A_AGE_BIN','WKSWORK_BIN', 'A_SEX']].values.tolist()
features='features bin', 'features cont'
target=df['HAS_DIV'].values.tolist()
fnames=['Income', 'Age', 'Weeks Worked', 'Sex']
tnames='Dividend'
depths=[10,5,4,3]
criteria = 'gini', 'entropy'
for crit in criteria:
     for depth in depths:
          (x_train_bin, x_test_bin, y_train_bin, y_test_bin) = model_selection.train_test_split(features_bin, target, test_size=0.3, random_state=22222)
          clf_bin=tree.DecisionTreeClassifier(max_depth=depth, criterion=crit)
          bin tree=clf bin.fit(x train bin,y train bin)
          acc 1=model selection.cross val score(bin tree, x test bin, y test bin, cv=5)
          y pred bin=bin tree.predict(x test bin)
          conf_1=metrics.confusion_matrix(y_test_bin, y_pred_bin)
          print(crit, depth, 'binary', acc_1)
          if depth==3 and crit=='entropy':
               dot_data=tree.export_graphviz(bin_tree, out_file=None, feature_names=fnames, class_names=tnames, filled=True, rounded=True, special_characters=True)
               (graph,) =pydot.graph_from_dot_data(dot_data)
               graph.write_png(r'C:\Users\Matt\Desktop\Dividend_Tree_Binary.png')
          (x_train_cont, x_test_cont, y_train_cont, y_test_cont) = model_selection.train_test_split(features_cont, target, test_size=0.3, random_state=22222)
          clf cont=tree.DecisionTreeClassifier(max depth=depth, criterion=crit)
          cont tree=clf cont.fit(x train cont,y train cont)
          acc 2=model selection.cross val score(cont tree,x test cont, y test cont, cv=5)
          y pred cont=cont tree.predict(x test cont)
          conf 2=metrics.confusion_matrix(y_test_cont,y_pred_cont)
          print(crit, depth, 'continuous', acc_2)
          if depth==3 and crit=='entropy':
               dot data=tree.export graphviz(cont tree, out file=None, feature names=fnames, class names=tnames, filled=True, rounded=True, special characters=True)
               (graph,) =pydot.graph from dot data(dot data)
               graph.write png(r'C:\Users\Matt\Desktop\Dividend Tree.png')
estimators=[10,100,1000]
for crit in criteria:
     for estimator in estimators:
          for depth in depths:
                    (x train, x test, y train, y test) = model selection.train test split(features cont, target, test size=0.3, random state=22222)
                    rf=ensemble.RandomForestClassifier(max depth=depth, criterion=crit, n estimators=estimator)
                    forest=rf.fit(x train,y train)
                    acc 3=model selection.cross val score(forest,x test,y test,cv=5)
                    y_pred=forest.predict(x_test)
                    conf 3=metrics.confusion matrix(y test,y pred)
                    print(crit, depth, estimator,acc 3)
```

Part 2 Binary Feature Decision Tree

We can see that the top-level decision in our binary feature tree is operating on Income (AGI_BIN). We expect this as we are using the same algorithm (entropy) for information Income ≤ 0.5 entropv = 0.912gain in part 1 and here. Our part 1 result is validated by samples = 70000 value = [47066, 22934] this outcome. class = D True False Weeks Worked ≤ 0.5 Weeks Worked ≤ 0.5 entropy = 0.867entropy = 0.987samples = 51073 samples = 18927 value = [36325, 14748] value = [10741, 8186] class = D class = D Age ≤ 0.5 Age ≤ 0.5 Age ≤ 0.5 Sex ≤ 1.5 entropy = 0.854entropy = 0.892entropy = 0.999entropy = 0.978samples = 34750samples = 16323 samples = 3562 samples = 15365 value = [25048, 9702] value = [11277, 5046] value = [1710, 1852] value = [9031, 6334] class = D class = D class = i class = D entropy = 0.872entropy = 0.819entropy = 0.901entropy = 0.988entropy = 0.957entropy = 0.849entropy = 0.921entropy = 0.993samples = 22545 samples = 12205 samples = 7292 samples = 454 samples = 3108 samples = 8993 samples = 6372 samples = 9031 value = [15955, 6590] value = [5284, 2008] value = [5993, 3038] value = [3960, 2412] value = [9093, 3112] value = [310, 144] value = [1400, 1708] value = [5071, 3922] class = D class = i class = D class = D

Part 2 Discussion and Results

See the top table for cross-validation accuracies and the bottom table for the confusion matrices for our binary feature decision trees. Overall, we see that the highest average cross-validation classification accuracy obtained was 67.6% for the both gini and entropy criterion at a depth of 3. It appears that for our data set, additional depth does not help the model discriminate better. Information gain algorithms of gini and entropy had zero difference in resulting average accuracies. We see in our binary decision tree that the models perform almost the same across all parameters. There are only small changes in accuracies across parameters. We were initially concerned that a mistake had been made so we added depth parameters of 1 and 2 in order to validate that the model does perform worse when given the fewest possible decisions. The information gain calculations in part 1 show that the selected features are low information gain for the target. They have a high remainder. We suspect the reason being that the target appears in similar proportion across subpopulations of feature=0 and feature=1. No matter how many ways we cut the data the incidence of has div 0/1 is similar proportionally in feature splits, that is why information gain is so low. I think decisions beyond a certain point fail to add anything to discrimination when working with binary variables. It appears to me that you only really can make n=feature count meaningful number of decisions with binary data. If all four features are set equal to 1 in a tree, and the resulting subpopulation is 66% positive then you would have to make a low-confidence positive output. Note the bias in our confusion matrices towards false negatives which we explore in greater detail in part 4.

Algorithm	Depth	CV 1	CV 2	CV 3	CV 4	CV 5	Average
gini	3	0.675	0.679	0.6762	0.6717	0.6792	0.6762
entropy	3	0.675	0.679	0.6762	0.6717	0.6792	0.6762
gini	10	0.6752	0.679	0.6752	0.6717	0.677	0.6756
gini	5	0.6752	0.679	0.6752	0.6717	0.677	0.6756
gini	4	0.6752	0.679	0.6752	0.6717	0.677	0.6756
entropy	10	0.6752	0.679	0.6752	0.6717	0.677	0.6756
entropy	5	0.6752	0.679	0.6752	0.6717	0.677	0.6756
entropy	4	0.6752	0.679	0.6752	0.6717	0.677	0.6756
gini	2	0.6718	0.677	0.6742	0.6688	0.6765	0.6737
entropy	2	0.6718	0.677	0.6742	0.6688	0.6765	0.6737
gini	1	0.6723	0.6723	0.6723	0.6723	0.6722	0.6723
entropy	1	0.6723	0.6723	0.6723	0.6723	0.6722	0.6723

Algorithm	Depth	Model Negative	Model Positive	
gini	10	19553	616	Target Negative
		9098	733	Target Positive
gini	5	19553	616	Target Negative
		9098	733	Target Positive
gini	4	19553	616	Target Negative
		9098	733	Target Positive
gini	3	19553	616	Target Negative
		9098	733	Target Positive
entropy	10	19553	616	Target Negative
		9098	733	Target Positive
entropy	5	19553	616	Target Negative
		9098	733	Target Positive
entropy	4	19553	616	Target Negative
		9098	733	Target Positive
entropy	3	19553	616	Target Negative
		9098	733	Target Positive

Part 3 Continuous Feature Decision Tree

Part 3 Discussion and Results

See the top table for cross-validation accuracies and the bottom table for the confusion matrices of our continuous feature decision trees. Our top model is 1.72% more accurate when using continuous features over binary features. This is small but significant. We see that the highest average crossvalidation classification accuracy obtained was 69.34% for the entropy criterion at a depth of 4. Gini performed virtually the same at a depth of 4 obtaining an average cross-validation accuracy of 69.33%. As Dr. Jones states the simplest possible model is best. I think a depth of 4 allows the model to evaluate each feature once before making a prediction in any given path. Additional depth does not help the model discriminate better it appears. There was more difference in average crossvalidation accuracy across parameters for our continuous tree, but the overall difference is still small. There was a 0.54% difference in the maximum and minimum model average accuracy for the continuous trees, and 0.06% for the binary trees (when only considering required depths 3, 4, 5 and 10). We conclude there are minor or insignificant changes across the given depth and information gain parameters for this dataset. Our continuous decision tree performs better than the binary decision tree, and perhaps this is because continuous features have better information gain. We are not constrained to ask questions about the mean of our distribution. Say if the top 20% of income earners have dividends 80% of the time, this would be a more meaningful way of splitting which can occur using continuous over binary data. Note the bias in our confusion matrices towards false negatives which we explore in greater detail in part 4.

Algorithm	Depth	CV 1	CV 2	CV 3	CV 4	CV 5	Average
entropy	4	0.6932	0.6945	0.6895	0.6948	0.6948	0.6934
gini	4	0.6928	0.6945	0.6895	0.6948	0.6948	0.6933
gini	3	0.6898	0.6930	0.6928	0.6917	0.6937	0.6922
entropy	3	0.6898	0.6930	0.6928	0.6917	0.6937	0.6922
entropy	5	0.6923	0.6918	0.6885	0.6928	0.6948	0.6921
gini	5	0.6923	0.6920	0.6885	0.6938	0.6932	0.6920
entropy	10	0.6910	0.6868	0.6902	0.6858	0.6910	0.6890
gini	10	0.6887	0.6878	0.6888	0.6865	0.6887	0.6881

Algorithm	Depth	Model Negative	Model Positive	
gini	10	18898	1081	Target Negative
		8204	1817	Target Positive
gini	5	18855	1124	Target Negative
		8059	1962	Target Positive
gini	4	19025	954	Target Negative
		8211	1810	Target Positive
gini	3	18624	1355	Target Negative
		7897	2124	Target Positive
entropy	10	18871	1108	Target Negative
		8146	1875	Target Positive
entropy	5	18843	1136	Target Negative
		8045	1976	Target Positive
entropy	4	19025	954	Target Negative
		8211	1810	Target Positive
entropy	3	18624	1355	Target Negative
		7897	2124	Target Positive

Part 4 Results

Random Forest Cross Validation Scores

Algorithm	Depth	Estimators	CV 1	CV 2	CV 3	CV 4	CV 5	Average
gini	5	10	0.6930	0.6960	0.6940	0.6958	0.6953	0.6948
gini	4	10	0.6930	0.6970	0.6937	0.6953	0.6947	0.6947
gini	5	100	0.6922	0.6960	0.6920	0.6975	0.6955	0.6946
entropy	5	1000	0.6935	0.6960	0.6908	0.6973	0.6950	0.6945
entropy	5	10	0.6930	0.6960	0.6915	0.6978	0.6938	0.6944
entropy	5	100	0.6927	0.6968	0.6915	0.6955	0.6952	0.6943
gini	4	1000	0.6925	0.6963	0.6908	0.6967	0.6952	0.6943
entropy	4	1000	0.6928	0.6963	0.6910	0.6963	0.6950	0.6943
gini	5	1000	0.6928	0.6962	0.6908	0.6973	0.6942	0.6943
gini	4	100	0.6932	0.6965	0.6908	0.6965	0.6942	0.6942
entropy	3	10	0.6910	0.6950	0.6933	0.6950	0.6963	0.6941
entropy	4	100	0.6930	0.6968	0.6903	0.6955	0.6947	0.6941
gini	3	100	0.6928	0.6963	0.6902	0.6955	0.6938	0.6937
entropy	3	1000	0.6920	0.6963	0.6907	0.6955	0.6935	0.6936
gini	3	1000	0.6918	0.6960	0.6905	0.6953	0.6938	0.6935
gini	3	10	0.6922	0.6963	0.6898	0.6945	0.6938	0.6933
entropy	10	1000	0.6895	0.6943	0.6918	0.6972	0.6938	0.6933
entropy	4	10	0.6917	0.6947	0.6905	0.6950	0.6943	0.6932
entropy	3	100	0.6922	0.6953	0.6898	0.6957	0.6928	0.6932
gini	10	100	0.6895	0.6948	0.6915	0.6958	0.6917	0.6927
entropy	10	100	0.6893	0.6958	0.6913	0.6932	0.6932	0.6926
gini	10	1000	0.6887	0.6940	0.6908	0.6950	0.6923	0.6922
entropy	10	10	0.6902	0.6917	0.6883	0.6933	0.6917	0.6910
gini	10	10	0.6887	0.6908	0.6898	0.6925	0.6930	0.6910

Random Forest Confusion Matrices

Algorithn	Depth	Estimators	Model Negative	Model Positive	
gini	10	10	18813	1166	Target Negative
			8018	2003	Target Positive
gini	5	10	19020	959	Target Negative
			8182	1839	Target Positive
gini	4	10	19002	977	Target Negative
			8204	1817	Target Positive
gini	3	10	19165	814	Target Negative
			8385	1636	Target Positive
gini	10	100	18866	1113	Target Negative
			8060	1961	Target Positive
gini	5	100	19030	949	Target Negative
			8183	1838	Target Positive
gini	4	100	19012	967	Target Negative
			8180	1841	Target Positive
gini	3	100	18992	987	Target Negative
B			8211	1810	Target Positive
gini	10	1000	18879	1100	Target Negative
5	1	1000	8055	1966	Target Positive
gini	5	1000	19075	904	Target Negative
5	ľ	1000	8226	1795	Target Positive
gini	4	1000	19043	936	Target Negative
51111	Γ	1000	8214	1807	Target Positive
gini	3	1000	19019	960	Target Negative
giiii	٢	1000	8225	1796	Target Positive
entropy	10	10	18818	1161	Target Negative
	10		8019	2002	Target Positive
entropy	5	10	18931	1048	Target Negative
спиору	٢	10	8106	1915	Target Positive
entropy	4	10	19009	970	Target Negative
спиору	Γ	10	8171	1850	Target Positive
entropy	3	10	19305	674	Target Negative
спиору	٦	10	8540	1481	Target Positive
entropy	10	100	18884	1095	Target Negative
еппору	10	100	8057	1964	Target Positive
onteony.	5	100	19075	904	Target Positive
entropy	β	100	8251	1770	Target Negative
4	4	100	19059	920	Target Positive
entropy	ľ	100	8242	1779	Target Negative
	<u></u>	100			Target Positive
entropy	3	100	18983	996	Target Negative
	10	1000	8197	1824	Target Positive
entropy	10	1000	18882	1097	Target Negative
entropy	ļ	1000	8042	1979	Target Positive
	5		19049	930	Target Negative
	 	1000	8204	1817	Target Positive
entropy	4	1000	19006	973	Target Negative
			8190	1831	Target Positive
entropy	3	1000	18994	985	Target Negative
			8203	1818	Target Positive

Part 4 Discussion

The highest accuracy we achieved using random forest models is 69.48%. This is 0.14% higher than our continuous decision tree models' maximum average cross-validation accuracy. We iterate through of 3, 4, 5, and 10 and information gain algorithms of gini and entropy. We also now iterate through nestimators values of 10, 100, and 1000. Nestimators is the number of decision trees within the random forest. We attempted to compute random forest models with 10,000 estimators but they took more than an hour of runtime to compute and so we cut this parameter argument. Surprisingly, the random forest model with the best performance had only 10 estimators, a depth of 5, and used gini information gain. Again, simple models appear to perform quite well. Bootstrapping was left to its default value of true when creating our results. When experimenting we discovered turning bootstrapping off led to lower accuracy for our random forest models. We see a bias across all models towards false negatives from our confusion matrices. Perhaps the models see someone of a particular demographic, they have a high income, high age, and work frequently. The model then infers they should have a high chance of receiving stock dividends. When, many people who have high income, busy careers, and are advancing in years fail to invest in their own retirement. An economic phenomena I have read about states that as one's income grows inexorably their spending grows. The data present appears to not allow us to peer far enough to see if an individual has good financial habits! Another alternative explanation may be the proportion of investors portfolio's that yield dividends is statistically small, I know I don't go out of my way to purchase dividend yielding stocks, I usually go for index funds. Perhaps our census data only counts dividends received as income. I believe my dividends are automatically re-invested and I would have no resulting tax burden. It is an interesting problem. burden. It is an interesting problem.

References

When writing my decision trees to png file as a graph I referenced Dr. Creed Jones supplied code.

```
# call this function like this:
    writegraphtofile(clf, dataset.features, ("0", "1"), dataset.basedir+"conttree.png")
def writegraphtofile(clf, featurenames, classnames, pathname):
    dot_data = tree.export_graphviz(clf, out_file=None,
                                    feature names=featurenames, impurity=True,
                                    class names=classnames, filled=True,
                                    rounded=True, special_characters=True)
    graph = pydotplus.graph_from_dot_data(dot_data)
    colors = ('lightblue', 'lightgreen')
    edges = collections.defaultdict(list)
    for edge in graph.get_edge_list():
        edges[edge.get_source()].append(int(edge.get_destination()))
    for edge in edges:
        edges[edge].sort()
       for i in range(2):
            dest = graph.get_node(str(edges[edge][i]))[0]
            dest.set_fillcolor(colors[i])
    graph.write png(pathname)
```