

FCC PART 15.407 TEST REPORT

For

SHENZHEN TENDA TECHNOLOGY CO.,LTD

6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

FCC ID: V7TO4

Report Type: Product Name:

Original Report 5Km Outdoor Point to Point CPE

Report Number: RDG190521011-00B

Report Date: 2019-07-03

Jerry Zhang

Reviewed By: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan)

Test Laboratory: No.69 Pulongcun, Puxinhu Industry Area,

Tangxia, Dongguan, Guangdong, China

Jerry Zhang

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	4 5
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP SUMMARY OF TEST RESULTS	
FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	13
Antenna Connector Construction	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
Test Data	
FCC §15.209, §15.205 & §15.407(b) –UNWANTED EMISSION	18
APPLICABLE STANDARD	18
EUT Setup	19
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.407(a)(e)–EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	34
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
Test Data	
FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	53

Bay Area Compliance Laboratories Corp. (Dongguan)

TEST PROCEDURE	53
TEST DATA	53
FCC §15.407(a) - POWER SPECTRAL DENSITY	55
APPLICABLE STANDARD	55
TEST PROCEDURE	56
TEST EQUIPMENT LIST AND DETAILS.	56
TEST DATA	56

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	5Km Outdoor Point to Point CPE
EUT Model:		O4
Operation Frequency:		5180-5240(802.11a/n ht20) 5190-5230 MHz(802.11n ht40) 5745-5825(802.11a/n ht20)
		5755-5795 MHz(802.11n ht40)
Maximum	Output Power	5150-5250 MHz:11.62 dBm
	(Conducted):	5725-5850 MHz:21.86 dBm
Mo	odulation Type:	OFDM
Rated	Input Voltage:	DC 24V from POE Adapter
	Model:	BN060-P12024
Adapter Information	Input:	AC 100-240V`50/60Hz,0.3A
Thio mation	Output:	DC 24V 0.5A
External Dimension:		274mm(L)* 96mm(W)*67mm(H)
	Serial Number:	190521011
EUT	Received Date:	2019/05/24

Objective

This type approval report is prepared on behalf of *SHENZHEN TENDA TECHNOLOGY CO.,LTD* in accordance with Part 2-Subpart J, Part 15-Subparts A, and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Rules Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB,
	6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Report No.: RDG190521011-00B

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RDG190521011-00B

The system only supports 802.11a/n ht20/n ht40 in 5.2G and 5.8 GHz band.

For 5150~5250 MHz band, 6 channels are provided:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240

For 802.11a, 802.11n ht20 Channel 36, 40 and 48 was tested, for 802.11n ht40 Channel 38, 46 were tested.

For 5725~5850MHz band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	159	5795
151	5755	161	5805
153	5765	165	5825
157	5785	/	/

For 802.11a, 802.11n ht20 Channel 149, 157 and 165 was tested, for 802.11n ht40 Channel 151, 159 were tested.

The device supports SISO and MIMO at 802.11n ht20/n ht40 mode, per pre-test, MIMO 2TX mode was the worst and reported.

EUT Exercise Software

The software "CMD" was used for testing, the CMD command was provided by manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations. The maximum power was configured as below table, that provided by the manufacturer:

D 1	Mala	Frequency	D. t. D. t.	Powe	er level
Band	Mode	(MHz)	Data Rate	Chain 0	Chain 1
		5180	6Mbps	12.5	13.5
	802.11a	5200	6Mbps	13	14
		5240	6Mbps	13	15.5
5.2G	002.11	5180	MCS8	10	10
3.20	802.11n ht20	5200	MCS8	10.5	10.5
	11120	5240	MCS8	11	11
	802.11n	5190	MCS8	11	11
	ht 40	5230	MCS8	11	11
		5745	6Mbps	24	24
	802.11a	5785	6Mbps	25	25
		5825	6Mbps	22	22
5.8G	002.11	5745	MCS8	22	22
3.80	802.11n ht20	5785	MCS8	22	22
	11120	5825	MCS8	21	21
	802.11n	5755	MCS8	22	22
	ht 40	5795	MCS8	22	22

The duty cycle as below:

y cycle as selett.			
Mode	Ton (ms)	T _{on+off} (ms)	Duty Cycle(x) (%)
802.11 a	2.0698	2.0781	99.60
802.11n ht20	0.991	1.0225	96.92
802.11n ht40	0.498	0.519	95.95

802.11a

Date: 2.JUL.2019 10:05:22

802.11n ht20

Date: 2.JUL.2019 10:06:29

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From	То
RJ45 Cable	Yes	No	1.8	PoE Adapter	EUT
RJ45 Cable	Yes	No	10	PoE Adapter	Laptop

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
\$15.407 (f) & \$1.1310 & \$2.1091	Maximum Permissable Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliance
§15.407(a)(e)	Emission Bandwidth	Compliance
§15.407(a)	Conducted Transmitter Output Power	Compliance
§15.407 (a)	Power Spectral Density	Compliance

FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.407(f)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Range	Anto	enna Gain	Max. Target Power including Tolerance		Evaluation Distance	Power Density (W/m ²)	MPE Limit (W/m²)
	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(W/III)	(W/III)
5150-5250	14	25.12	12	15.85	20.00	0.08	1.0
5725-5850	14	25.12	22	158.49	20.00	0.79	1.0

Note 1: the Max. Target Power including Tolerance was declared by manufacturer.

Result: Compliance, The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at distance ≥ 20 cm.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has two internal antennas for 5G wifi, the antenna gain is 14 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), §15.407(b) (6)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

 V_R : reading voltage amplitude A_c : attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2018-09-05	2019-09-05
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
R&S	Two-line V-network	ENV 216	101614	2018-12-10	2019-12-10
R&S	EMI Test Receiver	ESCI	101121	2019-03-23	2020-03-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Data

Environmental Conditions

Temperature:	25.3 °C		
Relative Humidity:	52 %		
ATM Pressure:	100.5 kPa		

The testing was performed by Lily Xie on 2019-05-29.

Test Mode: Transmitting (802.11a 5745MHz chain 0 was the worst)

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.159228	54.1	9.000	L1	11.1	11.4	65.5	Compliance
0.190460	50.0	9.000	L1	10.7	14.0	64.0	Compliance
0.204199	47.3	9.000	L1	10.6	16.1	63.4	Compliance
0.426418	42.7	9.000	L1	9.9	14.6	57.3	Compliance
0.461750	43.4	9.000	L1	9.9	13.3	56.7	Compliance
11.601974	34.3	9.000	L1	9.8	25.7	60.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.156091	42.1	9.000	L1	11.1	13.6	55.7	Compliance
0.208304	38.2	9.000	L1	10.6	15.1	53.3	Compliance
0.426418	30.9	9.000	L1	9.9	16.4	47.3	Compliance
0.471031	38.5	9.000	L1	9.9	8.0	46.5	Compliance
0.774673	31.3	9.000	L1	9.8	14.7	46.0	Compliance
11.601974	23.4	9.000	L1	9.8	26.6	50.0	Compliance

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.154545	54.4	9.000	N	11.1	11.4	65.8	Compliance
0.175887	50.7	9.000	N	10.8	13.9	64.6	Compliance
0.196231	49.9	9.000	N	10.6	13.9	63.8	Compliance
0.212491	48.8	9.000	N	10.5	12.3	63.1	Compliance
0.471031	44.6	9.000	N	9.9	11.9	56.5	Compliance
11.601974	36.6	9.000	N	9.8	23.4	60.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.157652	42.0	9.000	N	11.1	13.6	55.6	Compliance
0.208304	37.7	9.000	N	10.6	15.6	53.3	Compliance
0.418016	32.1	9.000	N	9.9	15.4	47.5	Compliance
0.471031	39.0	9.000	N	9.9	7.5	46.5	Compliance
0.782419	30.7	9.000	N	9.8	15.3	46.0	Compliance
11.601974	25.2	9.000	N	9.8	24.8	50.0	Compliance

FCC §15.209, §15.205 & §15.407(b) –UNWANTED EMISSION

Applicable Standard

FCC §15.407; §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.

EUT Setup

Below 1 GHz:

1-26.5 GHz:

26.5-40 GHz:

The radiated emission Below 1GHz tests were performed in the 10 meters chamber test site, above 1GHz tests were performed in the 3 meters chamber test site B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits

Report No.: RDG190521011-00B

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A 210	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: E [dB μ V/m] = EIRP[dBm] + 95.2, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m or 1m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB or

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1m]) dB= 9.54 dB

All emissions under the average limit and under the noise floor have not recorded in the report.

Corrected Amplitude & Margin Calculation

For the range 30MHz-1GHz, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RDG190521011-00B

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

For the range 1GHz-40GHz, Test performed at 1.5m or 1m, the Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading and the Distance extrapolation factor. The basic equation is as follows:

Corrected Amplitude

= Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain-Distance extrapolation factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit- Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100035	2018-08-03	2019-08-03
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Sunol Sciences	Antenna	JB3	A060611-3	2017-07-21	2020-07-21
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2018-09-24	2019-09-24
Sonoma	Amplifier	310N	185914	2018-10-13	2019-10-13
Agilent	Spectrum Analyzer	E4440A	SG43360054	2019-01-04	2020-01-04
R&S	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1302	2016-11-18	2019-11-18
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2018-06-27	2019-06-27
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2018-09-05	2019-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2018-06-27	2019-06-27
Sinoscite	Bandstop Filters	BSF5150-5850MN- 0899-003	0899003	2019-05-06	2020-05-06
Mini Circuits	High Pass Filter	VHF-6010+	31118	2018-06-16	2019-06-16

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	22.6~24°C
Relative Humidity:	51~55 %
ATM Pressure:	100.1kPa

^{*} The testing was performed by Vito Chen and Lucy Lu from 2019-05-29 to 2019-06-13.

Test Mode: Transmitting

Below 1GHz (802.11n ht20, 5240 MHz was the worst):

Horizontal

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Атр. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
30.9700	28.96	peak	-8.40	20.56	40.00	19.44
77.5300	38.43	peak	-19.69	18.74	40.00	21.26
99.8400	42.38	peak	-17.68	24.70	43.50	18.80
121.1800	40.52	peak	-15.92	24.60	43.50	18.90
540.2200	33.38	peak	-4.59	28.79	46.00	17.21
901.0600	29.93	peak	1.15	31.08	46.00	14.92

Vertical

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Атр. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
34.8500	40.51	peak	-10.33	30.18	40.00	9.82
77.5300	46.92	peak	-19.69	27.23	40.00	12.77
99.8400	48.91	peak	-17.68	31.23	43.50	12.27
121.1800	48.40	peak	-15.92	32.48	43.50	11.02
540.2200	32.39	peak	-4.59	27.80	46.00	18.20
901.0600	30.43	peak	1.15	31.58	46.00	14.42

1GHz-40GHz: 5150-5250MHz 802.11a (Chain 0 was the worst)

		oivon										
Frequency	Rec	eiver	KX A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin		
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	(dBµV/m)	(dB)		
	Low Channel: 5180 MHz											
5180.00	72.07	PK	Н	33.59	3.58	0.00	109.24	103.22	N/A	N/A		
5180.00	62.53	AV	Н	33.59	3.58	0.00	99.70	93.68	N/A	N/A		
5180.00	66.16	PK	V	33.59	3.58	0.00	103.33	97.31	N/A	N/A		
5180.00	56.77	AV	V	33.59	3.58	0.00	93.94	87.92	N/A	N/A		
5150.00	28.95	PK	Н	33.54	3.56	0.00	66.05	60.03	74.00	13.97		
5150.00	16.53	AV	Н	33.54	3.56	0.00	53.63	47.61	54.00	6.39		
10360.00	42.63	PK	Н	38.17	6.29	36.85	50.24	44.22	68.20	23.98		
15540.00	48.55	PK	Н	38.06	8.85	39.04	56.42	50.4	74.00	23.60		
15540.00	36.44	AV	Н	38.06	8.85	39.04	44.31	38.29	54.00	15.71		
				Mic	ddle Char	nnel: 5200 M	Hz					
5200.00	72.16	PK	Н	33.62	3.60	0.00	109.38	103.36	N/A	N/A		
5200.00	62.34	AV	Н	33.62	3.60	0.00	99.56	93.54	N/A	N/A		
5200.00	66.64	PK	V	33.62	3.60	0.00	103.86	97.84	N/A	N/A		
5200.00	56.81	AV	V	33.62	3.60	0.00	94.03	88.01	N/A	N/A		
10400.00	43.16	PK	Н	38.18	6.32	36.86	50.80	44.78	68.20	23.42		
15600.00	48.32	PK	Н	38.00	8.83	39.09	56.06	50.04	74.00	23.96		
15600.00	36.51	AV	Н	38.00	8.83	39.09	44.25	38.23	54.00	15.77		
				Hi	igh Chanı	nel: 5240 MF	Iz					
5240.00	72.28	PK	Н	33.68	3.52	0.00	109.48	103.46	N/A	N/A		
5240.00	61.73	AV	Н	33.68	3.52	0.00	98.93	92.91	N/A	N/A		
5240.00	66.81	PK	V	33.68	3.52	0.00	104.01	97.99	N/A	N/A		
5240.00	56.94	AV	V	33.68	3.52	0.00	94.14	88.12	N/A	N/A		
5350.00	28.23	PK	Н	33.86	3.52	0.00	65.61	59.59	74.00	14.41		
5350.00	17.29	AV	Н	33.86	3.52	0.00	54.67	48.65	54.00	5.35		
10480.00	44.05	PK	Н	38.20	6.37	36.88	51.74	45.72	68.20	22.48		
15720.00	48.50	PK	Н	37.88	8.79	39.18	55.99	49.97	74.00	24.03		
15720.00	36.69	AV	Н	37.88	8.79	39.18	44.18	38.16	54.00	15.84		

002.	802.11n ht20(21x was the worst)									
_	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBµV/m)	Limit (dBμV/m)	Margin (dB)
Low Channel: 5180 MHz										
5180.00	70.16	PK	Н	33.59	3.58	0.00	107.33	101.31	N/A	N/A
5180.00	60.23	AV	Н	33.59	3.58	0.00	97.40	91.38	N/A	N/A
5180.00	68.73	PK	V	33.59	3.58	0.00	105.90	99.88	N/A	N/A
5180.00	58.94	AV	V	33.59	3.58	0.00	96.11	90.09	N/A	N/A
5150.00	28.43	PK	Н	33.54	3.56	0.00	65.53	59.51	74.00	14.49
5150.00	16.50	AV	Н	33.54	3.56	0.00	53.60	47.58	54.00	6.42
10360.00	45.23	PK	Н	38.17	6.29	36.85	52.84	46.82	68.20	21.38
15540.00	47.65	PK	Н	38.06	8.85	39.04	55.52	49.5	74.00	24.50
15540.00	35.49	AV	Н	38.06	8.85	39.04	43.36	37.339	54.00	16.66
				Mic	ddle Chai	nnel: 5200 M	Hz			
5200.00	69.69	PK	Н	33.62	3.60	0.00	106.91	100.89	N/A	N/A
5200.00	59.73	AV	Н	33.62	3.60	0.00	96.95	90.93	N/A	N/A
5200.00	68.93	PK	V	33.62	3.60	0.00	106.15	100.13	N/A	N/A
5200.00	59.05	AV	V	33.62	3.60	0.00	96.27	90.25	N/A	N/A
10400.00	45.26	PK	Н	38.18	6.32	36.86	52.90	46.88	68.20	21.32
15600.00	47.62	PK	Н	38.00	8.83	39.09	55.36	49.34	74.00	24.66
15600.00	35.54	AV	Н	38.00	8.83	39.09	43.28	37.26	54.00	16.74
				Hi	gh Chan	nel: 5240 MF	Iz			
5240.00	69.24	PK	Н	33.68	3.52	0.00	106.44	100.42	N/A	N/A
5240.00	58.34	AV	Н	33.68	3.52	0.00	95.54	89.52	N/A	N/A
5240.00	67.21	PK	V	33.68	3.52	0.00	104.41	98.39	N/A	N/A
5240.00	57.54	AV	V	33.68	3.52	0.00	94.74	88.72	N/A	N/A
5350.00	27.62	PK	Н	33.86	3.52	0.00	65.00	58.98	74.00	15.02
5350.00	16.52	AV	Н	33.86	3.52	0.00	53.90	47.88	54.00	6.12
10480.00	44.11	PK	Н	38.20	6.37	36.88	51.80	45.78	68.20	22.42
15720.00	48.32	PK	Н	37.88	8.79	39.18	55.81	49.79	74.00	24.21
15720.00	36.63	AV	Н	37.88	8.79	39.18	44.12	38.1	54.00	15.90

002.	1111 111-10(2	21x was tii								
T	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	T **4	M
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBμV/m)	Margin (dB)
				Lo	ow Chani	nel: 5190 MH	[z			
5190.00	68.47	PK	Н	33.60	3.59	0.00	105.66	99.64	N/A	N/A
5190.00	58.87	AV	Н	33.60	3.59	0.00	96.06	90.04	N/A	N/A
5190.00	66.84	PK	V	33.60	3.59	0.00	104.03	98.01	N/A	N/A
5190.00	57.06	AV	V	33.60	3.59	0.00	94.25	88.23	N/A	N/A
5150.00	28.64	PK	Н	33.54	3.56	0.00	65.74	59.72	74.00	14.28
5150.00	16.97	AV	Н	33.54	3.56	0.00	54.07	48.05	54.00	5.95
10380.00	43.56	PK	Н	38.18	6.31	36.85	51.20	45.178	68.20	23.02
15570.00	47.49	PK	Н	38.03	8.84	39.06	55.30	49.28	74.00	24.72
15570.00	35.16	AV	Н	38.03	8.84	39.06	42.97	36.95	54.00	17.05
				Hi	igh Chan	nel: 5230 MF	Iz			
5230.00	67.64	PK	Н	33.67	3.54	0.00	104.85	98.83	N/A	N/A
5230.00	58.43	AV	Н	33.67	3.54	0.00	95.64	89.62	N/A	N/A
5230.00	65.29	PK	V	33.67	3.54	0.00	102.50	96.48	N/A	N/A
5230.00	55.64	AV	V	33.67	3.54	0.00	92.85	86.83	N/A	N/A
5350.00	28.51	PK	Н	33.86	3.52	0.00	65.89	59.87	74.00	14.13
5350.00	17.61	AV	Н	33.86	3.52	0.00	54.99	48.97	54.00	5.03
10460.00	45.15	PK	Н	38.19	6.36	36.87	52.83	46.81	68.20	21.39
15690.00	47.83	PK	Н	37.91	8.80	39.15	55.39	49.37	74.00	24.63
15690.00	35.94	AV	Н	37.91	8.80	39.15	43.50	37.48	54.00	16.52

5725-5850MHz 802.11a (Chain 0 was the worst)

	,	eiver		ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBµV/m)	Limit (dBμV/m)	Margin (dB)
				Lo	ow Chani	nel: 5745 MH	[z			
5745.00	74.32	PK	Н	34.20	3.69	0.00	112.21	106.19	N/A	N/A
5745.00	65.27	AV	Н	34.20	3.69	0.00	103.16	97.139	N/A	N/A
5745.00	69.43	PK	V	34.20	3.69	0.00	107.32	101.3	N/A	N/A
5745.00	60.13	AV	V	34.20	3.69	0.00	98.02	92	N/A	N/A
5725.00	54.53	PK	Н	34.19	3.69	0.00	92.41	86.39	122.20	35.81
5720.00	45.86	PK	Н	34.19	3.69	0.00	83.74	77.72	110.80	33.08
5700.00	31.86	PK	Н	34.18	3.68	0.00	69.72	63.7	105.20	41.50
5650.00	30.11	PK	Н	34.16	3.63	0.00	67.90	61.88	68.20	6.32
11490.00	64.22	PK	Н	38.99	6.59	37.35	72.45	66.43	74.00	7.57
11490.00	50.30	AV	Н	38.99	6.59	37.35	58.53	52.51	54.00	1.49
17235.00	57.42	PK	Н	41.56	8.78	38.61	69.15	63.13	68.20	5.07
				Mic	ddle Chai	nnel: 5785 M	Hz			•
5785.00	73.39	PK	Н	34.21	3.71	0.00	111.31	105.29	N/A	N/A
5785.00	64.18	AV	Н	34.21	3.71	0.00	102.10	96.08	N/A	N/A
5785.00	68.94	PK	V	34.21	3.71	0.00	106.86	100.84	N/A	N/A
5785.00	60.31	AV	V	34.21	3.71	0.00	98.23	92.21	N/A	N/A
11570.00	63.60	PK	Н	39.00	6.61	37.44	71.77	65.75	74.00	8.25
11570.00	49.73	AV	Н	39.00	6.61	37.44	57.90	51.88	54.00	2.12
17355.00	51.05	PK	Н	42.26	8.81	38.52	63.60	57.58	68.20	10.62
				Hi	gh Chan	nel: 5825 MF	Iz			
5825.00	81.95	PK	Н	34.23	3.73	0.00	119.91	113.89	N/A	N/A
5825.00	72.32	AV	Н	34.23	3.73	0.00	110.28	104.26	N/A	N/A
5825.00	76.38	PK	V	34.23	3.73	0.00	114.34	108.32	N/A	N/A
5825.00	67.84	AV	V	34.23	3.73	0.00	105.80	99.78	N/A	N/A
5850.00	45.34	PK	Н	34.24	3.75	0.00	83.33	77.31	122.20	44.89
5855.00	41.78	PK	Н	34.24	3.75	0.00	79.77	73.75	110.80	37.05
5875.00	29.41	PK	Н	34.25	3.77	0.00	67.43	61.41	105.20	43.79
5925.00	27.95	PK	Н	34.27	3.80	0.00	66.02	60	68.20	8.20
11650.00	64.09	PK	Н	39.00	6.64	37.53	72.20	66.18	74.00	7.82
11650.00	50.17	AV	Н	39.00	6.64	37.53	58.28	52.26	54.00	1.74
17475.00	50.99	PK	Н	42.96	8.84	38.44	64.35	58.33	68.20	9.87

802.11n nt20(21x was the worst)										
T	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	T,	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBμV/m)	Margin (dB)
				Lo	ow Chani	nel: 5745 MH	Iz			
5745.00	83.18	PK	Н	34.20	3.69	0.00	121.07	115.05	N/A	N/A
5745.00	73.25	AV	Н	34.20	3.69	0.00	111.14	105.12	N/A	N/A
5745.00	80.83	PK	V	34.20	3.69	0.00	118.72	112.7	N/A	N/A
5745.00	71.34	AV	V	34.20	3.69	0.00	109.23	103.21	N/A	N/A
5725.00	54.70	PK	Н	34.19	3.69	0.00	92.58	86.56	122.20	35.64
5720.00	47.10	PK	Н	34.19	3.69	0.00	84.98	78.96	110.80	31.84
5700.00	36.13	PK	Н	34.18	3.68	0.00	73.99	67.97	105.20	37.23
5650.00	30.03	PK	Н	34.16	3.63	0.00	67.82	61.8	68.20	6.40
11490.00	60.87	PK	Н	38.99	6.59	37.35	69.10	63.08	74.00	10.92
11490.00	49.98	AV	Н	38.99	6.59	37.35	58.21	52.19	54.00	1.81
17235.00	49.17	PK	Н	41.56	8.78	38.61	60.90	54.88	68.20	13.32
				Mic		nnel: 5785 M	Hz			
5785.00	83.26	PK	Н	34.21	3.71	0.00	121.18	115.16	N/A	N/A
5785.00	73.49	AV	Н	34.21	3.71	0.00	111.41	105.39	N/A	N/A
5785.00	80.05	PK	V	34.21	3.71	0.00	117.97	111.95	N/A	N/A
5785.00	72.04	AV	V	34.21	3.71	0.00	109.96	103.94	N/A	N/A
11570.00	61.04	PK	Н	39.00	6.61	37.44	69.21	63.19	74.00	10.81
11570.00	49.13	AV	Н	39.00	6.61	37.44	57.30	51.28	54.00	2.72
17355.00	49.33	PK	Н	42.26	8.81	38.52	61.88	55.86	68.20	12.34
						nel: 5825 MF				
5825.00	80.94	PK	Н	34.23	3.73	0.00	118.90	112.88	N/A	N/A
5825.00	71.35	AV	Н	34.23	3.73	0.00	109.31	103.29	N/A	N/A
5825.00	77.56	PK	V	34.23	3.73	0.00	115.52	109.5	N/A	N/A
5825.00	68.26	AV	V	34.23	3.73	0.00	106.22	100.2	N/A	N/A
5850.00	48.96	PK	Н	34.24	3.75	0.00	86.95	80.93	122.20	41.27
5855.00	42.80	PK	Н	34.24	3.75	0.00	80.79	74.77	110.80	36.03
5875.00	35.99	PK	Н	34.25	3.77	0.00	74.01	67.99	105.20	37.21
5925.00	28.02	PK	Н	34.27	3.80	0.00	66.09	60.07	68.20	8.13
11650.00	61.23	PK	Н	39.00	6.64	37.53	69.34	63.32	74.00	10.68
11650.00	48.70	AV	Н	39.00	6.64	37.53	56.81	50.79	54.00	3.21
17475.00	50.16	PK	Н	42.96	8.84	38.44	63.52	57.5	68.20	10.70

002.	802.11n ht40(21x was the worst)											
	Rece	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	T	3.6		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)		Amplitude (dBμV/m)	result (dBμV/m)	Limit (dBμV/m)	Margin (dB)			
	Low Channel: 5755 MHz											
5755.00	84.01	PK	Н	34.20	3.70	0.00	121.91	115.89	N/A	N/A		
5755.00	73.94	AV	Н	34.20	3.70	0.00	111.84	105.82	N/A	N/A		
5755.00	82.46	PK	V	34.20	3.70	0.00	120.36	114.34	N/A	N/A		
5755.00	73.34	AV	V	34.20	3.70	0.00	111.24	105.22	N/A	N/A		
5725.00	57.89	PK	Н	34.19	3.69	0.00	95.77	89.75	122.20	32.45		
5720.00	60.50	PK	Н	34.19	3.69	0.00	98.38	92.36	110.80	18.44		
5700.00	52.94	PK	Н	34.18	3.68	0.00	90.80	84.78	105.20	20.42		
5650.00	34.44	PK	Н	34.16	3.63	0.00	72.23	66.21	68.20	1.99		
11510.00	60.15	PK	Н	39.00	6.59	37.37	68.37	62.35	74.00	11.65		
11510.00	48.62	AV	Н	39.00	6.59	37.37	56.84	50.82	54.00	3.18		
17265.00	48.62	PK	Н	41.74	8.79	38.58	60.57	54.55	68.20	13.65		
			-	Hi	gh Chan	nel: 5795 MF	Iz	_		_		
5795.00	82.64	PK	Н	34.22	3.71	0.00	120.57	114.55	N/A	N/A		
5795.00	72.50	AV	Н	34.22	3.71	0.00	110.43	104.41	N/A	N/A		
5795.00	80.99	PK	V	34.22	3.71	0.00	118.92	112.9	N/A	N/A		
5795.00	71.64	AV	V	34.22	3.71	0.00	109.57	103.55	N/A	N/A		
5850.00	46.50	PK	Н	34.24	3.75	0.00	84.49	78.47	122.20	43.73		
5855.00	42.54	PK	Н	34.24	3.75	0.00	80.53	74.51	110.80	36.29		
5875.00	37.15	PK	Н	34.25	3.77	0.00	75.17	69.15	105.20	36.05		
5925.00	33.27	PK	Н	34.27	3.80	0.00	71.34	65.32	68.20	2.88		
11590.00	62.03	PK	Н	39.00	6.62	37.46	70.19	64.17	74.00	9.83		
11590.00	50.22	AV	Н	39.00	6.62	37.46	58.38	52.36	54.00	1.64		
17385.00	48.11	PK	Н	42.43	8.82	38.50	60.86	54.84	68.20	13.36		

Test Plots(For worst mode 802.11a chain 0 5745MHz) Horizontal

18000.00018850.00 19700.00 20550.00 21400.00 22250.00 23100.00 23950.00 24800.00

26500.00 MHz

Vertical

FCC §15.407(a)(e)–EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH

Applicable Standard

15.407(a) (e)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
conducted emission	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Data

Environmental Conditions

Temperature:	24.4°C
Relative Humidity:	62 %
ATM Pressure:	100.5 kPa

The testing was performed by Carrie He on 2019-06-13.

Test Result: Pass.

Please refer to the following tables and plots.

Test mode: Transmitting (test was only performed at chain 0)

5150-5250MHz:

Mode	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5180	22.800	17.040
802.11 a	5200	23.440	17.040
	5240	22.800	17.120
	5180	23.040	17.840
802.11n ht20	5200	23.280	17.920
	5240	22.800	17.840
802.11n ht40	5190	44.000	37.440
802.111111140	5230	43.360	37.280

5725-5850MHz:

Mode	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5745	16.160	17.120
802.11 a	5785	16.160	17.200
	5825	16.400	17.120
	5745	17.440	17.840
802.11n ht20	5785	17.520	17.920
	5825	17.440	17.920
902 11m h+40	5755	36.000	37.760
802.11n ht40	5795	36.000	37.760

Note: the 99% Occupied Bandwidth have not fall into the band 5150-5250 MHz or 5470-5725 MHz, please refer to the test plots of 99% Occupied Bandwidth.

5150-5250MHz: 26dB Emission Bandwidth:

Date: 13.JUN.2019 16:20:58

802.11a Middle Channel

Date: 13.JUN.2019 16:23:01

802.11a High Channel

Date: 13.JUN.2019 16:24:31

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:26:52

802.11n ht20 Middle Channel

Date: 13.JUN.2019 16:28:31

802.11n ht20 High Channel

Date: 13.JUN.2019 16:29:36

802.11n ht40 Low Channel

Date: 13.JUN.2019 16:31:32

802.11n ht40 High Channel

Date: 13.JUN.2019 16:33:00

99% Occupied Bandwidth:

802.11a Low Channel

Date: 13.JUN.2019 16:21:18

802.11a Middle Channel

Date: 13.JUN.2019 16:23:24

802.11a High Channel

Date: 13.JUN.2019 16:24:54

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:27:27

802.11n ht20 Middle Channel

Date: 13.JUN.2019 16:28:54

802.11n ht20 High Channel

Date: 13.JUN.2019 16:30:23

802.11n ht40 Low Channel

Date: 13.JUN.2019 16:32:01

802.11n ht40 High Channel

Date: 13.JUN.2019 16:33:23

5725-5850MHz: 6dB Emission Bandwidth:

802.11a Low Channel

Date: 13.JUN.2019 16:48:52

802.11a Middle Channel

Date: 13.JUN.2019 16:50:17

802.11a High Channel

Date: 13.JUN.2019 16:51:31

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:54:07

802.11n ht20 Middle Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 16:55:38

802.11n ht20 High Channel

Date: 13.JUN.2019 16:57:26

Date: 13.JUN.2019 17:00:34

802.11n ht40 High Channel

Date: 13.JUN.2019 17:02:14

99% Occupied Bandwidth:

802.11a Low Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 16:49:18

802.11a Middle Channel

Date: 13.JUN.2019 16:50:37

802.11a High Channel

Date: 13.JUN.2019 16:52:00

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:54:26

802.11n ht20 Middle Channel

Date: 13.JUN.2019 16:56:01

802.11n ht20 High Channel

Date: 13.JUN.2019 16:57:55

802.11n ht40 Low Channel

Date: 13.JUN.2019 17:00:57

802.11n ht40 High Channel

Date: 13.JUN.2019 17:02:40

FCC §15.407(a) -MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2018-12-10	2019-12-10
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Data

Environmental Conditions

Temperature:	24.4°C	
Relative Humidity:	62 %	
ATM Pressure:	100.5 kPa	

The testing was performed by Carrie He on 2019-06-13.

		Frequency	Conducted A	Limit		
Band	Mode	(MHz)	Chain 0	Chain 1	Total	(dBm)
		5180	11.55	11.33	/	22
	802.11 a	5200	11.42	11.41	/	22
5150		5240	11.29	11.59	/	22
-	802.11n	5180	8.53	7.77	11.18	22
5250	ht20	5200	8.73	7.84	11.32	22
MHz	11120	5240	9.09	6.17	10.88	22
	802.11n	5190	8.97	7.28	11.22	22
	ht40	5230	9.84	6.90	11.62	22
		5745	21.50	18.45	/	22
	802.11 a	5785	20.24	18.99	/	22
5725		5825	17.17	16.20	/	22
-	802.11n	5745	19.80	16.32	21.41	22
5850		5785	20.30	16.55	21.83	22
MHz	ht20	5825	18.20	14.86	19.85	22
	802.11n	5755	20.10	17.10	21.86	22
	ht40	5795	20.11	17.00	21.84	22

Note:

The device is an outdoor AP.

The duty cycle factor has been calculated into the test data.

The maximum antenna gain at any elevation angle above 30 degrees as measured from the horizon less than 9dBi, which meets the requirement: The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

The maximum antenna gain is 14dBi in 5GHz band. The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

So:

Directional gain = G_{ANT} + Array Gain = 14dBi

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RDG190521011-00B

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Equipment List and Details

Manufacturer	Description Model Serial Number		10.0	Calibration Date	Calibration Due Date	
conducted emission	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10	
R&S	Spectrum Analyzer	FSV40	101474	2019-01-09	2020-01-09	
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.4°C
Relative Humidity:	62 %
ATM Pressure:	100.5 kPa

The testing was performed by Carrie He on 2019-06-13.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plot.

5150-5250MHz

Mode	Frequency	Res	Limit		
Mode	(MHz)	Chain 0	Chain 1	Total	(dBm/MHz)
802.11a	5180	-3.19	-1.5	/	9.0
	5200	-2.61	-1.66	/	9.0
	5240	-4.51	-2.35	/	9.0
802.11n ht20	5180	-5.9	-4.18	-1.95	6.0
	5200	-4.97	-4.12	-1.51	6.0
	5240	-5.53	-6.45	-2.96	6.0
802.11n ht40	5190	-6.46	-6.09	-3.26	6.0
	5230	-7.06	-8.14	-4.56	6.0

5725-5850MHz

Mode	Frequency (MHz)	Reading (dBm/300kHz)		Result (dBm/500kHz)			Limit (dBm/500kHz)
	(MITIZ)	Chain 0	Chain 1	Chain 0	Chain 1	Total	(ubiii/Suukiiz)
	5745	3.27	2.45	5.49	4.67	/	22.0
802.11a	5785	4.39	3.86	6.61	6.08	/	22.0
	5825	1.62	0.02	3.84	2.24	/	22.0
802.11n ht20	5745	5.59	2.62	7.81	4.84	9.58	19.0
	5785	5.84	3.25	8.06	5.47	9.97	19.0
	5825	4.06	1.33	6.28	3.55	8.14	19.0
802.11n	5755	2.84	0.2	5.06	2.42	6.95	19.0
ht40	5795	3.44	0.43	5.66	2.65	7.42	19.0

Note:

The device is an outdoor AP.

The maximum antenna gain is 14dBi in 5GHz band. The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain =
$$10 \log(N_{ANT}/N_{SS}) dB$$
.

So:

Directional gain = G_{ANT} + Array Gain = 14dBi+10*log(2/1)=17dBi

For 5.8 GHz band, If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log(500 \text{kHz/RBW})$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Note 3: Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test.

Chain 0: 5150-5250MHz

Date: 13.JUN.2019 16:42:25

802.11a Middle Channel

Date: 13.JUN.2019 16:43:21

802.11a High Channel

Date: 13.JUN.2019 16:43:58

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:36:54

802.11n ht20 Middle Channel

Date: 13.JUN.2019 16:37:52

802.11n ht20 High Channel

Date: 13.JUN.2019 16:38:26

Date: 13.JUN.2019 16:36:17

802.11n ht40 High Channel

Date: 13.JUN.2019 16:35:18

5725-5850MHz

Date: 13.JUN.2019 17:12:56

802.11a Middle Channel

Date: 13.JUN.2019 17:13:46

802.11a High Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 17:15:52

802.11n ht20 Low Channel

Date: 13.JUN.2019 17:06:05

802.11n ht20 Middle Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 17:06:54

802.11n ht20 High Channel

Date: 13.JUN.2019 17:07:33

802.11n ht40 Low Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 17:04:55

802.11n ht40 High Channel

Date: 13.JUN.2019 17:03:50

Chain 1: 5150-5250MHz

Date: 13.JUN.2019 17:18:22

802.11a Middle Channel

Date: 13.JUN.2019 16:23:40

802.11a High Channel

Date: 13.JUN.2019 16:25:10

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:27:42

802.11n ht20 Middle Channel

Date: 13.JUN.2019 16:29:10

802.11n ht20 High Channel

Date: 13.JUN.2019 16:30:39

802.11n ht40 Low Channel

Date: 13.JUN.2019 16:32:17

802.11n ht40 High Channel

Date: 13.JUN.2019 16:33:35

5725-5850MHz

Date: 13.JUN.2019 16:49:37

802.11a Middle Channel

Date: 13.JUN.2019 16:50:55

002 11a High Channal

Report No.: RDG190521011-00B

Date: 13.JUN.2019 16:52:22

802.11n ht20 Low Channel

Date: 13.JUN.2019 16:54:42

Date: 13.JUN.2019 16:56:29

802.11n ht20 High Channel

Date: 13.JUN.2019 16:58:20

802.11n ht40 Low Channel

Report No.: RDG190521011-00B

Date: 13.JUN.2019 17:01:22

802.11n ht40 High Channel

Date: 13.JUN.2019 17:03:08

***** END OF REPORT *****