Problem Set 3

David Bunger

October 2022

Problem 1

a)

1,0,1,0

b)

$$\overline{z}(z+x)(y+v)(z+\overline{x}) \\ (\overline{z}z+\overline{z}x)(y+v)(z+\overline{x}) \\ (0+\overline{z}x)(y+v)(z+\overline{x}) \\ (\overline{z}x(y+v)(z+\overline{x}) \\ (\overline{z}xz+\overline{z}x\overline{x})(y+v) \\ (0\cdot x+0\cdot \overline{z})(y+v) \\ (0+0)(y+v) \\ (0)$$

c)

1,0,0,1

d)

$$\begin{array}{ll} (\overline{x}+\overline{y})\overline{(\overline{z}+v)}(y+x)(xy) \\ \hline (xy)(\overline{z}+v)(y+x)(xy) & \textbf{(DeMorgan's Law)} \\ 0 \cdot \overline{(\overline{z}+v)}(y+x) & \textbf{(Complement Law)} \\ 0 & \textbf{(Domination Law)} \end{array}$$

Problem 2

a)

Prove $\overline{A \cap \overline{B}} = \overline{A} \cup B$ We will start with $x \in (\overline{A \cap B})$ and show that it is equivalent to $x \in (\overline{A} \cup B)$. By the definition of negation, $x \in (\overline{A \cap B})$ is equivalent to $\neg(x \in (A \cap \overline{B}))$. We can then get $\neg((x \in A) \land (\overline{x \in B}))$ by the definition of intersect. Once again, by the definition of negation, we can get $\neg((x \in A) \land \neg(x \in B))$. Now, using De Morgan's law, we get $\neg(x \in A) \land \neg \neg(x \in B)$. With the double negation law, $\neg(x \in A) \land \neg \neg(x \in B)$ becomes $\neg(x \in A) \land (x \in B)$. We can apply the definition of negation to get $(\overline{x \in A}) \land (x \in B)$. Finally, by the definition of union, $(\overline{x \in A}) \land (x \in B)$ is equivalent to $x \in (\overline{A} \cup B)$, and therefore, $x \in (\overline{A} \cap \overline{B})$ is equivalent to $x \in (\overline{A} \cup B)$.

b)

Prove $A-(B\cap A)=A-B$ We will start with $x\in (A-(B\cap A))$ and show that it is equivalent to $x\in (A-B)$. Starting with the definition of difference, we show that $x\in (A-(B\cap A))$ is equivalent to $(x\in A)\wedge \neg (x\in (B\cap A))$. Then, by the definition of intersect, we get $(x\in A)\wedge \neg ((x\in B)\wedge (x\in A))$. Using De Morgan's law, we get $(x\in A)\wedge (\neg (x\in B)\vee \neg (x\in A))$. Next, using the distributive law, we get $((x\in A)\wedge \neg (x\in B))\vee ((x\in A)\wedge \neg (x\in A))$. With the complement law, we get $((x\in A)\wedge \neg (x\in B))\vee F$, and with the idempotent law, we get $((x\in A)\wedge \neg (x\in B))$. Finally, by the definition of difference, $((x\in A)\wedge \neg (x\in B))$ is equivalent to $x\in (A-B)$. Therefore, $x\in (A-(B\cap A))$ is equivalent to $x\in (A-B)$.

Problem 3

a)

Let $A = \{1, 2, 4\}, B = \{2, 3, 4\}, C = \{1, 3, 4\}.$ $(A \oplus B \oplus C) \cup (A \cap B \cap C) = \emptyset \cup \{4\} = \{4\},$ but $(A \cup B \cup C) = \{1, 2, 3, 4\}.$ Therefore, the identity is false.

b)

Let $A=U, B=\emptyset$. $A\cap (\overline{A}\cup B)$ becomes $U\cap (\emptyset\cup\emptyset)$, which yields \emptyset . However, $A\cup (A\cap \overline{B})$ becomes $U\cup (U\cap U)$, which yields U. Therefore, the identity is false.