Cross-nested logit models

Estimating complex network structures

Thor Donsby Noe & Kristian Urup Larsen May 22, 2018

Department of Economics, University of Copenhagen

Research question

RQ:

- Show how the cross-nested logit model can extend the concepts of nested choices to a range of complex choice puzzles.
- Implement an estimator for the cross-nested logit on synthetic and real data (for the Danish unemployment benefits systems).

status

- We know how the estimator should be coded up (there are linalg related technicalities making this difficult)
- Optimizing a complex likelihood function is probably to difficult for us (but we're looking into it)

Estimation

 Clearly not correct estimates. Perhaps some kind of convergence? Depending on initial values this might look better or worse.

Current procedure:

- initiate with some parameters set to 0,1 or true value.
- for each parameter find a univariate optimum
- repeat n times over all parameters.

Out thoughts:

- The model is over-identified?
- The likelihood has a very weak global minimum ⇒ we cannot feasibly find the correct minimum without advanced optimization?

Usability

We haven't written a lot about this so far, but we want to emphasize how complex parameter interpretation is in this framework.

- There potentially are many local minima of the likelihood function.
- The math is complex, i.e. marginal effects are

$$\frac{\partial \Pr(i|\mathcal{C})}{\partial x} = \Pr(i|\mathcal{C}) \left(\beta_i - \sum_j \left[\beta_j \Pr(j|\mathcal{C}) + \frac{e^{x\beta_j} \frac{\partial^2 G}{\partial z_j \partial x}}{\sum_{j'} e^{x\beta_{j'}} \frac{\partial G}{\partial z_{j'}}} \right] \right) + \frac{e^{x\beta_i} \frac{\partial^2 G}{\partial z_i \partial x}}{\sum_j e^{x\beta_j} \frac{\partial G}{\partial z_j}}$$
(1)

So all in all you $\bf a$) need parameter estimates for interpreting and should therefore use a simpler model or $\bf b$) need a model general enough to fit weird correlations, in which case you should try out ML.

3