Les communautés dans les réseaux sociaux

Capacités attendues				
	Déterminer les caractéristiques de graphes simples.			
	Décrire comment l'information est conditionnée par le choix de ses			
	amis.			

Pour visualiser comment les utilisateurs d'un réseau social sont connectés les uns aux autres, on peut élaborer des schémas, appelés graphes. Apparaissent ainsi des communautés dont on peut étudier le fonctionnement.

I. L'intérêt des graphes : visualiser les relations dans un réseau

Six élèves d'une même classe sont inscrits dans un réseau social. Le tableau suivant donne les liens d'amitié entre eux. Par exemple, Emma est amie avec Enzo mais pas avec Jasmine. Cette information peut être résumée dans un schéma plus simple à lire appelé **graphe**, où les relations sont représentées par des traits.

Tableau des relations d'amitié:

	Emma	Enzo	Jasmine	Théo	Léa	Mehdi
Emma		\checkmark				\checkmark
Enzo	✓					
Jasmine				V	V	
Théo			V			\checkmark
Léa			V			abla
Mehdi	✓			✓	\checkmark	

Représentation du tableau sous forme de graphe :

Question:

Comment peut-on visualiser la popularité d'une personne sur un graphe de relation d'amitié ?

II. Algorithme de diffusion d'information

Chaque utilisateur d'un réseau social peut réagir selon l'algorithme suivant pour aider une information à se diffuser :

Si je reçois une information que je n'ai pas déjà partagée alors :

partage de l'information à tous mes amis

Question:

Si Théo annonce l'absence d'un professeur à ses camarades, et si l'algorithme ci-dessus est utilisé, combien faudra-t-il de partage pour qu'Emma soit au courant ?

III. Le degré de séparation

En 1967, Stanley Milgram, un psychologue américain a réalisé une expérience dans le but de démontrer qu'il suffisait en moyenne de **6 liens** de connaissances pour relier 2 inconnus aux États-Unis. Sur les réseaux sociaux, cette distance s'est raccourcie car il est plus facile de nouer des liens. Ainsi sur Facebook, **3,5 personnes** en moyenne sépareraient 2 abonnés choisis au hasard. C'est une des clés du succès des réseaux sociaux qui mettent en avant leur capacité à connecter un individu avec le monde entier.

Question:

Comment expliquer la diminution du nombre de liens séparant deux individus grâce aux réseaux sociaux ?

IV. Les « petits mondes »

En 2015 à Bombay, en Inde, le gouvernement a interdit la consommation de viande. La situation a fait polémique dans le pays notamment sur Twitter, où le hashtag #BeefBan a été largement repris.

Sur le schéma ci-dessus, on voit que la twittosphère de Bombay se sépare clairement en 2 groupes que l'on appellera A et B. En coloriant respectivement en vert et en rouge les

tweets pour et contre l'interdiction de la consommation de viande, on constate le lien étroit entre les opinions et l'appartenance à une communauté : les membres de la communauté A ont quasiment tous voté pour l'interdiction alors que les membres de la communauté B ont quasiment tous voté contre l'interdiction.

Au-delà du sentiment d'ouverture qu'il met en avant, les réseaux sociaux conduisent donc fréquemment à rester dans « un petit monde » où l'on est en relation avant tout avec des personnes qui nous ressemblent et pensent comme nous, au risque d'un certain repli sur soi.

Question:

Quel est le risque lié au phénomène de « petit monde » ?

V. Cours

Dans un réseau social les liens entre utilisateurs sont complexes. Il est donc nécessaire de les représenter simplement, sous la forme d'un **graphe**. Un graphe est constitué d'un ensemble de **sommets** (utilisateurs) et **d'arêtes** (liens entre utilisateurs).

La distance entre deux sommets dans un graphe est le nombre de liens constituant le plus court chemin entre eux. Ex: La distance entre A et D est de 3.

Le diamètre d'un graphe est la plus grande distance entre 2 sommets. Ex : Dans l'exemple, le diamètre est de 4.

Le rayon est la plus petite distance à laquelle puisse se trouver un sommet de tous les autres.

Le centre est un sommet placé à la plus petite distance de tous les autres. Ex : dans l'exemple, le centre est le sommet E, le rayon est de 2. Tous les sommets sont au plus à une distance de 2 des autres sommets et il n'est pas possible de faire moins.

Exercice 1 - la représentation d'un réseau social

Capacité : déterminer les caractéristiques de graphes simples.

Représenter sous forme d'un graphe un réseau social constitué de 6 personnes A,B,C,D,E et F où :

- A est ami avec B et D;
- B est ami avec A, C et E;
- C est ami avec B et E;
- D est ami avec A et E;
- E est ami avec F.

Quelle est la distance entre A et C? Entre A et F?

Quel est le diamètre de ce graphe?

Exercice 2 - les caractéristiques d'un graphe

Capacité : déterminer les caractéristiques de graphes simples.

Sur les deux graphes ci-contre, déterminer le rayon, le diamètre, le ou les centres.

