Análisis de resultados

Integrantes:

- Daniel Cortes, <u>d.cortesl@uniandes.edu.co</u>, 202316263
- Salomon Fulleda, s.fulleda@uniandes.edu.co, 202225323

Requerimientos Individuales:

Requerimiento 3: Daniel Cortes

• Requerimiento 4: Salomon Fulleda

Requerimiento 1:

-Las lineas "vertices = catalog["vertices"]["table"]["elements"]", "user_data = catalog["information"]["table"]["elements"]"," if start_id not in vertices or end_id not in vertices" son busquedas en diccionarios por lo tanto se tiene una complejidad de O (1). Después se tiene una búsqueda por BSF la cual tiene una complejidad O(V+E) en el peor de los casos por último se recorren todos los caminos del grafo lo cual nos da una complejidad de O (P), simplificando todo nos da finalmente una complejidad de O(V+E).

Req_1		
Archivo	Datos	Tiempo(S)
10	9830.0 - 7073.0	0.0
50	9830.0 - 7073.0	0.003001
Large	9830.0 - 7073.0	0.007006

Requerimiento 3:

-Las lineas "vertices = catalog["vertices"]["table"]["elements"]", "if start_id not in vertices", "friends = vertices.get(start_id, [])" son operaciones de diccionarios y listas las cuales tienen complejidad de O (1). Después tenemos el ciclo "for friend_id in friends" el cual en el peor de los casos tiene una complejidad de O (v) donde v son los vertices que se iteran, por último, tenemos la operación len la cual tiene complejidad O (1) sin embargo la complejidad total del algoritmo seria O (v)

Req_3		
Archivo	Datos	Tiempo(S)
10	9830.0	0.0
50	9830.0	0.0
Large	9830.0	0.0

Requerimiento 4:

-Las lineas "catalog['vertices']['table']['elements']" y

"catalog['information']['table']['elements']" tienen complejidad O (1), despues al hacer "Afriends = relationshipgraph[cuentaA]" y "Bfriends = relationshipgraph[cuentaB]" tambien se tiene una complejidad de O (1) despues en el ciclo "for amigo in Afriends:" en el peor de los casos se tiene una complejidad de O (n), dentro de este ciclo se realizan varias verificaciones con if las cuales tienen complejidad de O (m) por ende la complejidad final es O ($n \times m$)

Req_4		
Archivo	Datos	Tiempo(S)
10	3 y 54	0.0
50	3 y 54	0.0
Large	3 y 54	0.0

Requerimiento 6:

-Primeramente, tenemos una comparación en la línea "if N < 2" la cual tiene complejidad de O (1) igualmente que las lineas de operaciones básicas de diccionarios y listas, después tenemos el ciclo "for user_id, followed_users in vertices.items():" el cual en el peor de los casos la complejidad es de O (E) siendo "E" la cantidad de aristas, después tenemos la línea sorted la cual tiene una complejidad de O (V log V), despues la linea "popular_users = sorted_users[:N]" tiene una complejidad de O (N) y por ultimo tenemos la llamada a la función "check_if_tree_exists(catalog, popular_user_ids)" la cual es un recorrido de BFS el cual tiene complejidad de O (V+E) por lo tanto la complejidad total es O (E + V log V + N)

Req_6		
Archivo	Datos	Tiempo(S)
10	9	0.001012
50	9	0.004014
Large	9	0.005012

Requerimiento 7:

-Las lineas "catalog["vertices"]["table"]["elements"]" y

"catalog["information"]["table"]["elements"]", la creación de visited y la creación de queue tienen complejidad de O (1), despues se tiene una búsqueda de tipo BFS la cual como en los otros requerimientos tiene una complejidad de O (V +E). En el bucle "for neighbor in neighbors" se tienen varias operaciones sin embargo la mayoría tienen complejidad de O (1), la operación la cual cambia la complejidad es la de .split() y calcular la intersección la cual tiene una complejidad de O (h+k) por ende la complejidad total de esta función es de O (V + E(h + k))

Req_7		
Archivo	Datos	Tiempo(S)
10	7488.0 - ['parapente', 'voleibol', 'rafting']	0.021208
50	7488.0 - ['parapente', 'voleibol', 'rafting']	0.085139
Large	7488.0 - ['parapente', 'voleibol', 'rafting']	0.136818

