

# Valoración de Instrumentos del Vector de Precios

# **CONTENIDO**

| IN | ITRODUCCIÓN                                                                                                 | 1  |
|----|-------------------------------------------------------------------------------------------------------------|----|
| 1. | INSTRUMENTOS FINANCIEROS                                                                                    | 3  |
|    | 1.1 Títulos de Deuda de Emisores Públicos                                                                   |    |
|    | A) Bonos de Estabilización Monetaria (bem0, bem) y Títulos de Propiedad sobre Bonos de Deuda Inte (tp0, tp) |    |
|    | B) Títulos de Propiedad sobre Bonos de Deuda Interna en dólares (tp0\$, tp\$)                               |    |
|    | C) Títulos de Propiedad Tasa Básica (TPTBA) y Bonos de Estabilización Monetaria (bemv)                      |    |
|    | D) Títulos de Propiedad Ajustables en Dólares (TP\$A)                                                       |    |
|    | E) Títulos Denominados en Unidades de Desarrollo (tudes)                                                    |    |
|    | F) Otros Títulos de Deuda de Emisores Públicos                                                              |    |
|    | 1.2 Títulos de Deuda de Emisores Privados y Bancarios                                                       |    |
|    | 1.3 Títulos de Deuda Extranjeros                                                                            | 18 |
|    | 1.4 Títulos Accionarios y Títulos de Participación                                                          |    |
|    | A) Fondos Cerrados y Acciones locales                                                                       |    |
|    | 1.5 Títulos Accionarios de Emisores Extranjeros                                                             |    |
| _  | •                                                                                                           |    |
| 2. |                                                                                                             | _  |
|    | 2.1 Curva Soberana de rendimiento en colones                                                                |    |
|    | 2.2 Curva Soberana de rendimiento en dólares                                                                |    |
|    | 2.3 Curva Soberana Cero en colones                                                                          |    |
|    | 2.4 Curva Soberana Cero en dólares                                                                          |    |
|    | 2.6 Curva Soberana Cero de tudes                                                                            |    |
|    | 2.7 Curvas de Banca Privada y Entidades Financieras no bancarias                                            |    |
| 3. | ,                                                                                                           |    |
|    | 3.1 Formato de Comunicación del Vector de Precios                                                           | 3/ |
|    | 3.2 Reglas Operativas para resolver Impugnaciones                                                           |    |
|    | 3.3 Plan de Contingencia para la distribución del Vector                                                    |    |
| 4. |                                                                                                             |    |
|    | 4.1 Periodo de Composición, Convención de días y Fracciones de año                                          |    |
|    | 4.2 Métodos de Interpolación                                                                                | 41 |
|    | A) Interpolación Lineal                                                                                     |    |
|    | B) Interpolación Cúbica con estimación lineal de Pendientes                                                 |    |
|    | C) Uso de tasas equivalentes                                                                                | 48 |
|    | 4.3 "Bootstrapping"                                                                                         |    |
|    | 4.4 Modelos Financieros                                                                                     |    |
|    | A) Bonos cupón cero                                                                                         |    |
|    | B) Bonos de tasa fija                                                                                       |    |
|    | D) Bonos con derecho de pago anticipado                                                                     |    |
|    | E) Administración de riesgo modelo                                                                          |    |
|    | 4.5 Extrapolación con tasa forward constante                                                                |    |
|    | 4.6 Procedimiento general para el primer día de generación del vector                                       |    |
|    | 4.7 Índice de representatividad                                                                             |    |
|    | 4.8 Defaulted                                                                                               | 71 |



# INTRODUCCIÓN

El procedimiento para la generación del Vector de Precios para usuarios de Costa Rica está cimentado en dos partes. La primera, son los Insumos, que se obtienen en su mayor parte con la información proporcionada por la Bolsa Nacional de Valores, a través de los contratos y ofertas, además de la base de datos con las características de los instrumentos. La segunda parte, es la plataforma tecnológica (RiskWatch-Algorithmics) a partir de la cual los procesos son automatizados y todos los instrumentos cuentan con el modelo teórico, sin embargo, siempre se consideran en primer término los niveles de contratos y ofertas observados en el día de valoración.

El proceso diario comienza con la incorporación de las nuevas emisiones tanto estandarizadas como no estandarizadas en el vector de precios, tomando como base el reporte diario que la BNV envía el día previo a las **17:00 hrs.**, con el nombre de "emisiones incremental" el cuál contiene las características de los nuevos títulos emitidos un día antes de la valuación.

Se incluirá en la toma de información de la Bolsa Nacional de Valores, los nuevos títulos emitidos el día de valoración con corte a las **12:00 hrs** para guardar congruencia con las solicitudes que vengan de ventanilla y no pasen por la BNV.

El proceso continua con la recepción de información sobre mercado primario y secundario que envía aproximadamente a las **13:15 hrs**. también la BNV, la cual es el insumo principal para determinar los movimientos que se han observado en el mercado. Se realizan todos los filtros a la información de acuerdo a los lineamientos descritos en la metodología, para considerar sólo contratos con un monto mínimo, facial o transado definido para cada tipo de instrumento y que hayan sido reportadas como ordinarias o como subastas. Un proceso similar se realiza para filtrar la información proveniente de ofertas.

Con la información de ofertas y contratos procesada, se incorpora sobre la base de datos de instrumentos la información generada para determinar qué criterio de los descritos en la metodología aplica obtener los niveles de mercado. En primer lugar, se consideran los instrumentos que son la base para la construcción de las curvas soberanas ya que con éstos se va a dar la referencia a los instrumentos que no registraron operaciones de mercado. Inmediatamente se construyen las curvas, y por su parte, las emisiones no transadas reflejarán el movimiento de mercado de los instrumentos que componen las curvas de rendimiento.

A la par se procede a actualizar otras variables que afectan el precio de los distintos instrumentos como lo son la Tasa Básica, la tasa libor en dólares a 6 y 3 meses, la tasa Prime, las udes y demás indicadores. Con todas las variables actualizadas se aplican las fórmulas de valuación descritas en las metodologías incluyendo el cálculo de precio sucio, intereses corridos, precio limpio, duración y convexidad.

Se realiza un proceso de validación que corrobore que la variación de los precios corresponda en todos los casos al movimiento de las variables que determinan su precio. Posteriormente, se actualizan los títulos de emisores extranjeros en una terminal de "Bloomberg" para obtener el valor de sus atributos más recientes a la fecha de valoración.

El procedimiento de objeciones tiene como fin dar una herramienta a los usuarios del vector a modificar algún nivel que Valmer haya determinado para la valoración de algún instrumento. Tras la publicación del vector preliminar, entre las 14:30 y 15:00 hrs., los usuarios tienen el derecho de objetar la determinación del precio de algún instrumento del vector durante los siguientes 30 minutos, por medio de un formato definido, al cual pueden acceder a través del website de Valmer. En caso de no existir una impugnación el vector definitivo será liberado media hora después de liberado el vector preliminar.



En dado caso en el que existan impugnaciones un Comité Operativo de Valmer determinará si la objeción procede o no, dando respuesta al cliente en máximo una hora después de la recepción de la Impugnación por correo electrónico con el argumento al cliente de por qué si o no procede la objeción, con lo cual se realizará la liberación del vector definitivo. Este mecanismo puede proceder sólo si algún precio fue objetado en los 30 minutos posteriores a la liberación del vector preliminar. De ser aceptada la objeción será comunicada a todos los usuarios por medio de la página WEB, ya que implica modificaciones de algún precio del vector previo respecto al vector definitivo.

El horario aproximado en el que se concluye el proceso anteriormente definido es a las 15:00 hrs., con lo que se pondrá inmediatamente en el website de Valmer el vector definitivo.



#### 1. INSTRUMENTOS FINANCIEROS

A continuación se describe para cada tipo de instrumento el proceso metodológico con el cual Valmer obtiene los niveles del Vector de Precios. Sin embargo, en caso de presentarse situaciones que no se tengan consideradas dentro de estos criterios para obtener los niveles de mercado o se presenten condiciones inusuales de mercado, el Comité Operativo de Valmer determinará los niveles de valuación manteniéndose apegado a las condiciones propias del mercado. De forma interna, el Comité Operativo levantará un acta donde se especifique el motivo por el cual no se aplicó la metodología antes descrita.

#### 1.1 Títulos de Deuda de Emisores Públicos

# A) Bonos de Estabilización Monetaria (bem0, bem) y Títulos de Propiedad sobre Bonos de Deuda Interna (tp0, tp)

#### Características Generales

| Emisor                             | Nemotécnico | Tipo de Instrumento | Cotización    | Moneda  |
|------------------------------------|-------------|---------------------|---------------|---------|
| Banco Central de Costa Rica (BCCR) | bem0        | Bono Cupón Cero     | Precio limpio | Colones |
| Ministerio de Hacienda (G)         | tp0         | Bono Cupón Cero     | Precio limpio | Colones |
| Banco Central de Costa Rica (BCCR) | bem         | Bono de Tasa Fija   | Precio limpio | Colones |
| Ministerio de Hacienda (G)         | tp          | Bono de Tasa Fija   | Precio limpio | Colones |

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayor a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000,000 colones.
- 4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP) y se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.

$$PPP_{j} = \frac{\displaystyle\sum_{i=1}^{K} P_{i,j} \cdot VF_{i,j}}{\displaystyle\sum_{i=1}^{K} VF_{i,j}}$$



#### Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i, i</sub> Precio observado en la operación i del instrumento j

VF<sub>i, i</sub> Valor facial observado en la operación i del instrumento j

PPP<sub>i</sub> Precio promedio ponderado del instrumento j

5. Para los instrumentos fijos que forman parte de la curva no se les coloca prima alguna. Mientras que para los instrumentos que no formen parte de la curva se les coloca la nueva prima de operación.

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que 50,000,000 colones.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Arrastre).</u> En caso que no se cumpla con ninguno de los criterios anteriores, se realizará lo siguiente:

- a. Para los instrumentos fijos que tengan prima, el cambio en el precio será la suma de la última prima conocida del instrumento más la curva soberana de rendimiento en colones del día de hoy (t), evitando de esta manera, que sus niveles se rezaguen. Esto se realizará solo para aquellos instrumentos en los que la curva del día de hoy se aleje del rendimiento anterior (respecto a la curva soberana de rendimiento en colones en t-1), para todos los demás este inciso no se aplicará.
- b. Para los instrumentos en los que la curva soberana de rendimiento en t se acerque al rendimiento anterior (respecto a la curva soberana de rendimiento en t-1), la prima del instrumento será la diferencia entre la curva en t menos el rendimiento anterior.

En este mismo supuesto para los instrumentos en los que el rendimiento anterior, se encuentre entre la curva en t-1 y la curva en t el rendimiento del mismo será la curva soberana de rendimiento en t.

- c. Para los instrumentos fijos y cero cupón que no tengan prima su rendimiento será igual a la curva soberana de rendimiento en colones, de esta forma se logrará que se muevan conforme se mueve el mercado.
- d. Una vez transcurridos 10 días hábiles a partir de la última fecha en que existió un nivel propuesto para los instrumentos fijos se deberá eliminar su prima, esto se realizará moviéndola paulatinamente a cero en un máximo de 20pb, de esta forma conseguimos que el rendimiento sea igual a la curva. Mientras que para los



instrumentos cero cupón se deberá mover la prima de la misma forma transcurridos 5 días hábiles a partir de la última fecha en que existió un nivel propuesto.

#### B) Títulos de Propiedad sobre Bonos de Deuda Interna en dólares (tp0\$, tp\$)

#### Características Generales

| Emisor                     | Nemotécnico | Tipo de Instrumento | Cotización    | Moneda  |
|----------------------------|-------------|---------------------|---------------|---------|
| Ministerio de Hacienda (G) | tp\$        | Bono de Tasa Fija   | Precio limpio | Dólares |
| Ministerio de Hacienda (G) | tp0\$       | Bono Cupón Cero     | Precio limpio | Dólares |

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayores a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000 dólares.
- 4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP) y se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.

$$PPP_{j} = \frac{\displaystyle\sum_{i=1}^{K} P_{i,j} \cdot VF_{i,j}}{\displaystyle\sum_{i=1}^{K} VF_{i,j}}$$

#### Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i, j</sub> Precio observado en la operación i del instrumento j

VF<sub>i, j</sub> Valor facial observado en la operación i del instrumento j

PPP; Precio promedio ponderado del instrumento j

5. Para los instrumentos fijos que forman parte de la curva no se les coloca prima alguna. Mientras que para los instrumentos que no formen parte de la curva se les coloca la nueva prima de operación.



De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que 50,000 dólares.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior

Si se cumple este último punto, el precio será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Arrastre).</u> En caso que no se cumpla con ninguno de los criterios anteriores, se realizará lo siguiente:

- a. Para los instrumentos fijos que tengan prima, el cambio en el precio será la suma de la última prima conocida del instrumento más la curva soberana de rendimiento en dólares del día de hoy (t), evitando de esta manera, que sus niveles se rezaguen. Esto se realizará solo para aquellos instrumentos en los que la curva del día de hoy se aleje del rendimiento anterior (respecto a la curva soberana de rendimiento en dólares en t-1), para todos los demás este inciso no se aplicará.
- b. Para los instrumentos en los que la curva soberana de rendimiento en t se acerque al rendimiento anterior (respecto a la curva soberana de rendimiento en t-1), la prima del instrumento será la diferencia entre la curva en t menos el rendimiento anterior.

En este mismo supuesto para los instrumentos en los que el rendimiento anterior, se encuentre entre la curva en t-1 y la curva en t el rendimiento del mismo será la curva soberana de rendimiento en t.

- c. Para los instrumentos fijos y cero cupón que no tengan prima su rendimiento será igual a la curva soberana de rendimiento en dólares, de esta forma se logrará que se muevan conforme se mueve el mercado.
- d. Una vez transcurridos 10 días hábiles a partir de la última fecha en que existió un nivel propuesto para los instrumentos fijos se deberá eliminar su prima, esto se realizará moviéndola paulatinamente a cero en un máximo de 20pb, de esta forma conseguimos que el rendimiento sea igual a la curva. Mientras que para los instrumentos cero cupón se deberá mover la prima de la misma forma transcurridos 5 días hábiles a partir de la última fecha en que existió un nivel propuesto.

# C) Títulos de Propiedad Tasa Básica (TPTBA) y Bonos de Estabilización Monetaria (bemv)

#### Características Generales

| Emisor                        | Nemotécnico | Tipo de Instrumento     | Cotización    | Cálculo 1er. Cupón                 | Moneda  |
|-------------------------------|-------------|-------------------------|---------------|------------------------------------|---------|
| Ministerio de<br>Hacienda (G) | ТРТВА       | Bono de Tasa Fluctuante | Precio limpio | Primer cupón con promedio de tasas | Colones |
| Ministerio de                 | TPTBA       | Bono de Tasa Fluctuante | Precio limpio | Primer cupón con tasa              | Colones |



| Hacienda (G)                          |      |                         |               | de inicio de cupón                          |         |
|---------------------------------------|------|-------------------------|---------------|---------------------------------------------|---------|
| Banco Central de<br>Costa Rica (BCCR) | bemv | Bono de Tasa Fluctuante | Precio limpio | Primer cupón con tasa<br>de inicio de cupón | Colones |

#### TPTBA con promedio de tasas para el primer cupón:

Para obtener los Niveles de Mercado se contemplan todas las series independientemente del premio de cada emisión, se aplica una prima única para todos los instrumentos tomándose como referencia solo los instrumentos estandarizados que hayan reflejado nivel de mercado por contrato, es decir se calculará la prima del instrumento en base al precio de operación que mejore el precio del día anterior.

Cuando exista más de una referencia, las primas obtenidas por contratos se ponderarán en función del monto de cada contrato. Todos los demás instrumentos que no sean estandarizados reflejarán la prima que establezcan los instrumentos estandarizados. Sin embargo para el caso en el que un instrumento no estandarizado obtenga un nuevo nivel propuesto ya sea por contrato u oferta, esta nueva prima se colocará solo para el instrumento en cuestión, siempre y cuando mejore el precio del día hábil anterior.

#### "TPTBA" y bemv:

Para obtener los Niveles de Mercado se aplica para el instrumento la prima del nuevo nivel propuesto, es decir se calculará la prima del instrumento en base al precio de operación que mejore el precio del día anterior.

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayores a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000,000 colones.
- 4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP) y se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.

$$PPP_{j} = \frac{\sum_{i=1}^{K} P_{ij} \cdot VF_{ij}}{\sum_{i=1}^{K} VF_{ij}}$$

Donde:



j Instrumento j

k Número de operaciones del instrumento j

P<sub>i, j</sub> Precio observado en la operación i del instrumento j

 $VF_{i,j}$  Valor facial observado en la operación i del instrumento j

PPP; Precio promedio ponderado del instrumento j

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que 50,000,000 colones.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

Si se cumple este último punto, el precio será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio.</u> Para el caso de bonos que no cumplan con los filtros de Contratos ni Ofertas al día de valoración, la prima será igual a la reportada por Valmer el día hábil anterior.

Para el caso de los bemv y los "TPTBA" sin promedio de tasas, se tratará de mantener al menos una pendiente plana o positiva es decir cuando un instrumento opere y su prima sea mayor al instrumento inmediato superior en días al vencimiento y si este instrumento no ha presentado operación en los últimos 10 días hábiles se le aplicará la prima del instrumento que presentó el nuevo nivel de mercado.

Véase modelo financiero en Sección "4.4 Modelos Financieros", inciso C) Bonos de Tasa Flotante.

# D) Títulos de Propiedad Ajustables en Dólares (TP\$A)

#### Características Generales

| Emisor                     | Nemotécnico | Tipo de Instrumento     | Cotización    | Moneda  |
|----------------------------|-------------|-------------------------|---------------|---------|
| Ministerio de Hacienda (G) | TP\$A       | Bono de Tasa Fluctuante | Precio limpio | Dólares |

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado



Para el Vector de precios se agrupan los TP\$A por días al vencimiento, por lo que los criterios para obtener los Niveles de Mercado contemplan todas las series contenidas en el rango establecido independientemente del premio de cada emisión. Es decir, para las emisiones del mismo rango se establece la misma prima por lo que los contratos se ponderan para todas las emisiones contenidas dentro del respectivo rango. Y en caso de que se consideren posturas, prevalecerá la oferta cuya prima implícita mejore la prima del rango del día anterior.

Los rangos por días al vencimiento están establecidos conforme a un análisis particular del comportamiento de la prima (sobretasa) de todas las series de los G\_TP\$A, procurando que la amplitud de cada rango contenga al menos dos series que operen regularmente y que el índice de representatividad promedio de los rangos sea uniforme en todos ellos. Los rangos podrán ser actualizados conforme lo requieran las circunstancias de mercado, realizando una revisión por lo menos cada seis meses e informando su modificación a través del web site de Valmer Costa Rica y por medio de correo electrónico a clientes y autoridades.

Las consideraciones tomadas en cuenta al momento de la actualización de los rangos son las siguientes:

- 1. Se aplicara el índice de representatividad a todas las series de los TP\$A, con lo cual se identifican las series que tiene mayor liquidez medida en tres ejes: frecuencia de transacción, monto de transacción y presencia en los días de negociación.
- 2. Se define una amplitud de los rangos por la cual se busca que se logre que cada uno de dichos rangos incluya por lo menos alguna serie que tenga de los mayores índices de representatividad y que proporcionen actualizaciones constantes de las condiciones de mercado.
- 3. Si cada rango contiene varias series bursátiles, se busca que el índice de representatividad promedio sea uniforme para todos los rangos.

Los rangos establecidos son:

| Rangos TP\$A |          |  |
|--------------|----------|--|
| Limite       | Limite   |  |
| inferior     | superior |  |
| 1            | 600      |  |
| 601          | 800      |  |
| 801          | 1.200    |  |

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos)</u>. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000 dólares.

El nivel de mercado (prima) de los bonos de tasa fluctuante es igual a la prima implícita en el Rendimiento Promedio Ponderado (RPP), donde la ponderación se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.



$$RPP_{j} = \frac{\sum_{i=1}^{K} R_{i,j} \cdot VF_{i,j}}{\sum_{i=1}^{K} VF_{i,j}}$$

Donde:

j Rango j

k Número de operaciones para el rango j

 $R_{i,j}$  Rendimiento observado en la operación i dentro del rango j

VF<sub>i, j</sub> Valor facial observado en la operación i dentro del rango j

RPP, Rendimiento promedio ponderado del rango j.

La prima implícita se calcula a partir de la siguiente formula:

 $Prima_i = RPP_i - TLibor_t$ 

Donde:

j Rango j

RPP; Rendimiento promedio ponderado del rango j.

 $TLibor_{t}$  Es la tasa libor a 6 meses aplicable a la fecha de operación t.

Prima; Es la prima de mercado para el rango j

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que 50,000 dólares.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

Si se cumple este último punto, el precio/rendimiento será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Nivel Teórico)</u>. Para el caso de bonos que no cumplan con los filtros de Contratos u Ofertas al día de valoración, se calcula el valor teórico con la prima correspondiente de acuerdo a los días al vencimiento dentro de la curva de primas TP\$A.



En caso que algún rango definido no haya presentado alguna observación de mercado en un periodo de dos meses, la prima de estos rangos se sustituirá por la obtenida con el método de corrección de rezagos que consiste en realizar una regresión lineal por mínimos cuadrados de los puntos medios de los rangos que sí tengan referencias de mercado.

Este periodo de rezago puede actualizarse conforme las observaciones de mercado lo requieran, informando a través del *web site* de Valmer Costa Rica y por medio de correo electrónico a autoridades y clientes de su modificación.

Véase modelo financiero en Sección 4.4 Modelos Financieros, inciso C) Bonos de Tasa Flotante.

# E) Títulos Denominados en Unidades de Desarrollo (tudes)

#### Características Generales

| Emisor                             | Nemotécnico | Tipo de Instrumento | Cotización    | Moneda |
|------------------------------------|-------------|---------------------|---------------|--------|
| Ministerio de Hacienda (G)         | tudes       | Bono de Tasa Fija   | Precio limpio | Ude    |
| Banco Central de Costa Rica (BCCR) | bemud       | Bono de Tasa Fija   | Precio limpio | Ude    |

Basado en las características particulares de los tudes y bemud se construyen 2 curvas:

- Curva real soberana yield a partir de las emisiones con mayor liquidez (sección 2.5)
- Curva real soberana cero cupón a partir de las emisiones con mayor liquidez (sección 2.6)

Para efectos de la determinación de la curva de referencia, se toman aquellos papeles que formen parte de la curva en función de los parámetros de representatividad, es decir, un análisis para determinar los instrumentos más bursátiles.

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayor a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000,000 colones expresado en UDES usando el valor de referencia para la fecha del vector.
- 4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP) y se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.



$$PPP_{j} = \frac{\sum_{i=1}^{K} P_{i,j} \cdot VF_{i,j}}{\sum_{i=1}^{K} VF_{i,j}}$$

Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i i</sub> Precio observado en la operación i del instrumento j

VF<sub>i, i</sub> Valor facial observado en la operación i del instrumento j

PPP; Precio promedio ponderado del instrumento j

5. Para los instrumentos que forman parte de la curva no se les coloca prima alguna. Mientras que para los instrumentos que no formen parte de la curva se les coloca la nueva prima de operación.

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que el monto equivalente a 50,000,000 expresado en UDES usando el valor de referencia para la fecha del vector.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

Si se cumple este último punto, el precio será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Arrastre).</u> En caso que no se cumpla con ninguno de los criterios anteriores, se realizará lo siguiente:

- a. Para los instrumentos fijos que tengan prima, el cambio en el precio será la suma de la última prima conocida del instrumento más la curva soberana de rendimiento en tudes del día de hoy (t), evitando de esta manera, que sus niveles se rezaguen. Esto se realizará solo para aquellos instrumentos en los que la curva del día de hoy se aleje del rendimiento anterior (respecto a la curva soberana de rendimiento en tudes en t-1), para todos los demás este inciso no se aplicará.
- b. Para los instrumentos en los que la curva soberana de rendimiento en t se acerque al rendimiento anterior (respecto a la curva soberana de rendimiento en t-1), la prima del instrumento será la diferencia entre la curva en t menos el rendimiento anterior.

En este mismo supuesto para los instrumentos en los que el rendimiento anterior, se encuentre entre la curva en t-1 y la curva en t el rendimiento del mismo será la curva soberana de rendimiento en t.



- c. Para los instrumentos fijos que no tengan prima su rendimiento será igual a la curva soberana de rendimiento en tudes, de esta forma se logrará que se muevan conforme se mueve el mercado.
- d. Una vez transcurridos 10 días hábiles a partir de la última fecha en que existió un nivel propuesto para los se deberá eliminar su prima, esto se realizará moviéndola paulatinamente a cero en un máximo de 20pb, de esta forma conseguimos que el rendimiento sea igual a la curva.

Véase modelo financiero en Sección "4.4 Modelos Financieros", inciso B) Bonos de Tasa Fija.

#### F) Otros Títulos de Deuda de Emisores Públicos

#### Características Generales

En esta categoría se encuentran todos los Títulos de Deuda de Emisores Públicos que no están contemplados en las categorías anteriores y que no son bancos.

Cabe destacar que los instrumentos emitidos por otros emisores públicos, aunque tienen emisiones garantizadas por el Estado, no forman parte de la curva soberana y por ello cada instrumento refleja a través de una prima sobre la curva soberana un distinto nivel de riesgo percibido por las características de cada emisión.

De todas las series de este tipo de instrumentos, se ha identificado que existen series con mayor liquidez que otras. Es por esto que para las series con poca liquidez es necesario establecer una prima que además de reflejar el riesgo al plazo de inversión, refleje los movimientos del mercado.

Dado lo anterior procedemos a realizar un seccionamiento de este tipo de instrumentos dividiéndolos por emisor, periodicidad, tipo de instrumento y moneda (a lo que llamamos familias de instrumentos).

Una vez contempladas las diversas familias se agrupan por días al vencimiento por lo que los criterios para obtener los Niveles de Mercado contemplan todas las series de cada familia. Posteriormente se realiza de forma diaria un análisis para determinar cuáles son las series que reflejan los movimientos más actualizados del mercado dando prioridad a las operaciones por Contratos, Ofertas y a las nuevas colocaciones para reflejar por medio de estas los niveles de las series poco líquidas, a través de un análisis detallado.

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)
- Bonos de Deuda Externa: Sistemas de información Bloomberg y Reuters. Se usara prioritariamente Blomberg Generic sin embargo se utilizarán fuentes alternas en dado caso de no encontrar información en dicho sistema.

Si en Bloomberg no llega a existir el Bloomberg Generic, se analizará el detalle de contribuidores de cada instrumento y se tomará el promedio del Mid Price. De la misma manera si el precio no está disponible en Bloomberg pero en Reuters si, el criterio será el mismo.

#### Criterios para obtener los Niveles de Mercado



La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayor a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual que 50,000,000 colones ó 50,000 dólares.
- 4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP). La ponderación se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.

$$PPP_{j} = \frac{\sum_{i=1}^{K} P_{i,j} \cdot VF_{i,j}}{\sum_{i=1}^{K} VF_{i,j}}$$

Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i, j</sub> Precio observado en la operación i del instrumento j

VF<sub>i i</sub> Valor facial observado en la operación i del instrumento j

PPP; Precio promedio ponderado del instrumento j

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.

<u>Segundo criterio (Ofertas).</u> Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual que 50,000,000 colones ó 50,000 dólares.
- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

Si se cumple este último punto, el precio será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Nivel Teórico)</u>. Para el caso de bonos que no cumplan con los filtros de Contratos ni Ofertas al día de valoración, se calcula el valor teórico con la prima correspondiente a la última operación observada dependiendo del tipo de instrumento:

Bonos cero cupón



El valor teórico del instrumento será con la prima correspondiente a la última operación observada, la cual se mantiene fija hasta que exista una nueva operación.

#### Bonos de tasa fija

La prima de los instrumentos que no tengan niveles de mercado, se ajustará dependiendo el nivel de los instrumentos que si reflejen estos movimientos ya sea por contrato, oferta o colocaciones. (Descrito en este apartado en la sección de Características Generales)

Ya habiendo definido las series más representativas, se realizará una interpolación lineal entre estas para calcular la prima de las series menos representativas.

En dado caso de no contar con 2 series representativas en la parte corta o larga de la familia procederemos a colocarles al menos la prima del instrumento representativo más cercano en plazo sin embargo se llevará a cabo un análisis para poder determinar los niveles con los métodos Tasa Equivalente, Forward Constante, Extrapolación, etc. dependiendo el plazo del instrumento.

#### Bonos de tasa flotante

Para estos bonos se tratará de mantener al menos una pendiente plana o positiva es decir cuando un instrumento opere y su prima sea mayor al instrumento inmediato superior en días al vencimiento y si este instrumento no ha presentado operación en los últimos 10 días hábiles se le aplicará la prima del instrumento que presentó el nuevo nivel de mercado.

| Tipo de Instrumento     | Tasa                                                                      |
|-------------------------|---------------------------------------------------------------------------|
| Bono cupón cero         | Nivel asociado a los días por vencer de la Curva Soberana Cero            |
| Bono de Tasa Fija       | Nivel asociado a los días por vencer de la Curva Soberana de rendimientos |
| Bono de Tasa Fluctuante | Tasa de Referencia                                                        |

Véase modelo financiero en Sección "4.4 Modelos Financieros", inciso A) Bonos Cupón Cero, B) Bonos de Tasa Fija y C) Bonos de Tasa Flotante.

# 1.2 Títulos de Deuda de Emisores Privados y Bancarios

#### Características Generales

En esta categoría se encuentran todos los bonos cero cupón, bonos de tasa fija y bonos de tasa variable estandarizados y no estandarizados registrados en la BNV emitidos por entidades privadas (dentro de este grupo se consideran bancos, corporativos, etc.). Los tipos de papeles pueden ser certificados de inversión, certificados de depósito a plazo, entre otros.

Cada instrumento refleja a través de una prima sobre la curva soberana un distinto nivel de riesgo percibido por las características de cada emisión.

De todas las series de este tipo de instrumentos, se ha identificado que existen series con mayor liquidez que otras. Es por esto que para las series con poca liquidez es necesario establecer una prima que además de reflejar el riesgo al plazo de inversión, refleje los movimientos del mercado.

Dado lo anterior procedemos a realizar un seccionamiento de este tipo de instrumentos dividiéndolos por emisor, periodicidad, tipo de instrumento y moneda (a lo que llamamos familias de instrumentos).



Una vez contempladas las diversas familias se agrupan por días al vencimiento por lo que los criterios para obtener los Niveles de Mercado contemplan todas las series de cada familia. Posteriormente se realiza de forma diaria un análisis para determinar cuáles son las series que reflejan los movimientos más actualizados del mercado dando prioridad a las operaciones por Contratos, Ofertas y a las nuevas colocaciones para reflejar por medio de estas los niveles de las series poco liquidas, a través de un análisis detallado.

#### Fuentes de Información

- Mercado primario. Subastas proporcionadas por la Bolsa Nacional de Valores (BNV) a través de la Rueda LICI (Subasta de valores estandarizada y ventanilla).
- Mercado secundario. Contratos y Ofertas proporcionados por la Bolsa Nacional de Valores (BNV)

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos)</u>. Se utiliza la información de los Contratos siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen los contratos que son recompras.
- 2. Se excluyen las operaciones a plazo mayor a 2 días.
- 3. Se utiliza la información de los Contratos siempre y cuando el valor facial de las operaciones sea mayor o igual a lo descrito en el siguiente cuadro:

| Tipo Emisor           | Privado | Bancario |
|-----------------------|---------|----------|
| Colones (en millones) | 70      | 50       |
| Dólares (en miles)    | 70      | 70       |

4. El nivel de mercado de los bonos es igual al Precio Promedio Ponderado (PPP) y se realiza con respecto al valor facial, por lo tanto, se da mayor peso a los contratos con mayor valor facial.

$$PPP_{j} = \frac{\displaystyle\sum_{i=1}^{K} P_{i,j} \cdot VF_{i,j}}{\displaystyle\sum_{i=1}^{K} VF_{i,j}}$$

#### Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i i</sub> Precio observado en la operación i del instrumento j

VF<sub>i, i</sub> Valor facial observado en la operación i del instrumento j

PPP; Precio promedio ponderado del instrumento j

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.



<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son operaciones a plazo, recompras o reportos. Tampoco se consideran las ofertas que sean liquidadas en una moneda distinta a la moneda del facial.
- 2. El valor facial de la postura sea mayor o igual a lo descrito en el siguiente cuadro:

| Tipo Emisor           | Privado | Bancario |
|-----------------------|---------|----------|
| Colones (en millones) | 70      | 50       |
| Dólares (en miles)    | 70      | 70       |

- 3. Haya permanecido en pantalla por lo menos 5 minutos.
- 4. Mejore el precio determinado por Valmer el día hábil anterior. Esto es, que el precio de la mejor oferta de compra (el mayor observado en el día de operación) sea mayor al precio del vector del día anterior o que el precio de la mejor oferta de venta (el menor observado en el día de operación) sea menor al precio del vector del día anterior.

Si se cumple este último punto, el precio será igual a la oferta más cercana del nivel del día hábil anterior.

De no aplicar este criterio se utiliza el tercero.

<u>Tercer criterio (Nivel Teórico)</u>. Para el caso de bonos que no cumplan con los filtros de Contratos ni Ofertas al día de valoración, se calcula el valor teórico con la prima correspondiente a la última operación observada dependiendo del tipo de instrumento. Esta prima se suma a la tasa correspondiente, de acuerdo al tipo de instrumento y moneda.

| Tipo de Instrumento     | Tasa                                                                      |
|-------------------------|---------------------------------------------------------------------------|
| Bono cupón cero         | Nivel asociado a los días por vencer de la Curva Soberana Cero            |
| Bono de Tasa Fija       | Nivel asociado a los días por vencer de la Curva Soberana de rendimientos |
| Bono de Tasa Fluctuante | Tasa de Referencia                                                        |

#### Bonos cero cupón

El valor teórico del instrumento será con la prima correspondiente a la última operación observada, la cual se mantiene fija hasta que exista una nueva operación.

#### Bonos de tasa fija

La prima de los instrumentos que no tengan niveles de mercado, se ajustará dependiendo el nivel de los instrumentos que sí reflejen estos movimientos ya sea por contrato, oferta o colocaciones. (Descrito en este apartado en la sección de Características Generales)

Ya habiendo definido las series más representativas, se realizará una interpolación lineal entre estas para calcular la prima de las series menos representativas.

En dado caso de no contar con 2 series representativas en la parte corta o larga de la familia procederemos a colocarles al menos la prima del instrumento representativo más cercano en plazo sin embargo se llevará a cabo un análisis para poder determinar los niveles con los métodos Tasa Equivalente, Forward Constante, Extrapolación, etc. dependiendo plazo del instrumento.

Bonos de tasa flotante



Para estos bonos se tratará de mantener al menos una pendiente plana o positiva es decir cuando un instrumento opere y su prima sea mayor al instrumento inmediato superior en días al vencimiento y si este instrumento no ha presentado operación en los últimos 10 días hábiles se le aplicará la prima del instrumento que presentó el nuevo nivel de mercado.

Véase modelo financiero en Sección "4.4 Modelos Financieros", inciso A) Bonos Cupón Cero, B) Bonos de Tasa Fija y C) Bonos de Tasa Flotante.

# 1.3 Títulos de Deuda Extranjeros

#### Características Generales

En esta categoría se encuentran todos los Títulos de Deuda Extranjeros, sin hacer distinción entre emisores gubernamentales o privados.

Para dar de alta un instrumento, es necesario que los usuarios reporten de forma anticipada los instrumentos que requieren agregar al Vector de Precios a través de sus respectivos ISIN.

#### Fuentes de Información

• Sistemas de información Bloomberg y Reuters. Se usara prioritariamente Bloomberg Generic sin embargo se utilizarán fuentes alternas en dado caso de no encontrar información en dicho sistema.

Si en Bloomberg no llega a existir el Bloomberg Generic, se analizará el detalle de contribuidores de cada instrumento y se tomará el promedio del Mid Price. De la misma manera si el precio no está disponible en Bloomberg pero en Reuters si, el criterio será el mismo.

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio ("Bloomberg")</u>. El nivel de mercado es igual al precio reportado por "Bloomberg" (precios Bloomberg Generic) al cierre de la sesión bursátil de Costa Rica, es decir, a las 13:00 hrs.

En caso que no haya precio publicado por esta fuente de información, se utiliza el segundo criterio.

<u>Segundo criterio (Nivel Teórico)</u>. Se define el modelo teórico de acuerdo al tipo de instrumento, el cual depende de una o más variables de mercado. Por lo tanto, cuando por alguna razón no se puedan observar precios de "Bloomberg", el precio se obtendrá del modelo teórico, actualizando las variables de mercado en el día de valoración requeridas por el modelo propio del instrumento para aplicar las formulas del apartado 4.4 "Modelos Financieros".

# 1.4 Títulos Accionarios y Títulos de Participación

Los títulos accionarios tienen características distintas a los títulos de deuda ya que carecen de fecha de vencimiento, no tienen una periodicidad definida para otorgar flujos (si es que lo hacen), ni tienen una cantidad preestablecida por devengar, entre las principales diferencias.

Fondos Cerrados y Fondos Abiertos:



El precio que reportan los Fondos Abiertos en el vector es el valor en libros a partir de la información que proporciona la SUGEVAL en el Informe Diario de Fondos de Inversión. Se obtiene de dividir el activo neto entre el número de participaciones. Este cálculo se efectúa también para los Fondos Cerrados.

Acciones Locales y Fondos Cerrados:

Estos instrumentos se valoran a partir de los contratos (precio promedio ponderado) y ofertas observadas en el mercado.

#### Fuentes de Información

- Bolsa Nacional de Valores (BNV)
- Superintendencia General de Valores (SUGEVAL)

#### A) Fondos Cerrados y Acciones locales

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio (Contratos).</u> Para el caso de emisores locales, se utiliza la información de los Contratos siempre y cuando el valor transado de las operaciones sea mayor o igual a lo descrito en el siguiente cuadro.

| Tipo de titulo        | Emisores<br>Locales | Fondos<br>Cerrados |
|-----------------------|---------------------|--------------------|
| Colones (en millones) | 20                  | 50                 |
| Dólares (en miles)    | 40                  | 100                |

El nivel de mercado es igual al Precio Promedio Ponderado (PPP), la ponderación se realiza con respecto al valor transado, por lo tanto, se da mayor peso a los contratos con mayor operación.

$$\mathsf{PPP}_j = \frac{\displaystyle\sum_{i=1}^K \mathsf{P}_{i,j} \cdot \mathsf{VT}_{i,j}}{\displaystyle\sum_{i=1}^K \mathsf{VF}_{i,j}}$$

#### Donde:

j Instrumento j

k Número de operaciones del instrumento j

P<sub>i. i</sub> Precio observado en la operación i del instrumento j

VT<sub>i i</sub> Valor transado observado en la operación i del instrumento j

PPP<sub>i</sub> Precio promedio ponderado del instrumento j

De no cumplir con las condiciones anteriores, se utiliza el segundo criterio.



<u>Segundo criterio (Ofertas)</u>. Se utiliza la información de las Ofertas siempre y cuando cumpla con las siguientes condiciones:

- 1. Se excluyen las ofertas que son recompras y ofertas públicas de adquisición o intercambio.
- 2. El valor transado de la postura sea mayor o igual a lo descrito en el siguiente cuadro:

| Tipo de título        | Emisores<br>Locales | Fondos<br>Cerrados |
|-----------------------|---------------------|--------------------|
| Colones (en millones) | 20                  | 50                 |
| Dólares (en miles)    | 40                  | 100                |

Se considerarán montos mayores para que generen una mayor certeza del valor y este se vea reflejado en el vector de precios evitando así que con montos pequeños se desvirtúe el precio de los títulos accionarios y títulos de participación.

El tercer criterio se aplicará solamente para el caso de Títulos de Participación No Financieros (Fondos de Inversión de Titularización, Fondos de Inversión de Desarrollo Inmobiliario y Fondos de Inversión Inmobiliarios).

<u>Tercer criterio (Comunicados).</u> Para Fondos de Inversión de Titularización y Desarrollo Inmobiliario se considerará el pago del principal.

<u>Cuarto criterio.</u> (Arrastre). En caso de que las ofertas no cumplan con los criterios anteriores, el precio será igual al precio del día hábil anterior reportado por Valmer.

Quinto criterio. Si algún título a excepción de los fondos cerrados no financieros tiene un evento de los listados a continuación y no tuvo operación el día en que tiene efecto el mismo evento, el precio del vector se afectará de la siguiente forma:

- Dividendo en efectivo: Al precio de vector se le restará el importe del dividendo entregado en efectivo por acción.
- Dividendo en acciones: Se realizará el ajuste (disminución) del precio en la acción por la razón que represente el número de acciones entregadas en dividendos y el número de acciones por la que es entregado el dividendo.
- Split: El precio se ajustará en función de la proporción en que se realice el fraccionamiento del valor nominal de una acción en valores nominales más pequeños.
- Split inverso: El precio se ajustará en función de la proporción en que se realice el agrupamiento del valor nominal de una acción en valores nominales más grandes.
- Suscripción: En caso que el precio de suscripción sea inferior al que se tiene en el vector de precios, éste último se ajustará al precio de suscripción registrado.
- Fusión: El precio de la acción se determinará por la suma del precio de las acciones de las entidades que se hayan fusionado.
- Escisión: El precio de la acción se fraccionará en la razón en que hayan sido publicado por la entidad de referencia.

#### B) Fondos de Inversión Abiertos

#### Características Generales

Para identificar cada fondo de inversión abierto se utilizará el "identificador" el cual aparecerá como ISIN y SERIE dentro del vector.

Para el nemo instrumento se asignarán 3 tipos de "nemotécnico":



- a. fa= Fondos de inversión abiertos colones.
- b. fa\$= Fondos de inversión abiertos dólares.
- c. fae = Fondos de inversión abiertos euros.
- d. Para el caso de los instrumentos que posean identificador por parte de la Superintendencia de Pensiones (SUPEN), se les colocará dicho identificador.

El nemo emisor, se tomará el asignado por la Bolsa nacional de Valores, en los casos que la SAFI no posea designación por parte de la BNV, Valmer le asignará un nemo compuesto por máximo 5 caracteres.

El proceso diario comienza con la extracción del archivo desde el Web Service de la SUGEVAL, este archivo se extrae a la 1:00 pm, por lo tanto la información de los fondos abiertos se generará con un día de atraso.

#### Fuentes de Información

• Web Service de la SUGEVAL (información t-1)

#### Criterios para obtener los Niveles de Mercado

<u>Primer criterio</u>. El proceso continúa con el cálculo del valor de participación, donde se procede a dividir el activo neto entre el total de participaciones generando el Valor de participación.

<u>Segundo criterio</u>. Para los casos en lo que no se cuente con información publicada, se calculará un precio aplicando un "Benchmark".

Benchmarks de Fondos de Inversión Abiertos. Definiremos a un índice como un cálculo que captura las características y movimientos representativos de las Categorías de Fondos de Inversión, así como dar una medida del rendimiento que este conjunto de activos ha presentado durante un periodo de tiempo determinado. Los Benchmarks para los Fondos de Inversión Abiertos en Costa Rica son:

| Benchmark                   | Α  | В  | С  | D  | Е  |
|-----------------------------|----|----|----|----|----|
| Abierto_EURO                | NA | NA | NA | NA | SI |
| Abierto _Dólar_EU           | SI | SI | SI | SI | SI |
| Abierto_Colon_Costarricense | SI | SI | NA | NA | SI |

- A. Mercado de Dinero
- B. Ingreso
- C. Megafondo
- D. Accionario
- E. Crecimiento

Los Benchmarks serán construidos en base a la información diaria publicada por las Sociedades Administradoras de Fondos de Inversión inscritas ante la SUGEVAL y se agrupan de acuerdo al cuadro anterior.

Se procede a obtener el ponderador de la fecha usando la información disponible en base al siguiente algoritmo:

$$RB = \frac{\sum_{i=1}^{n} \left(\frac{P_i^t}{P_i^{t-1}}\right) * AN_i}{\sum_{i=1}^{n} AN_i}$$

Donde:



Pi<sup>t</sup> Precio del fondo i en tiempo t

P<sub>i</sub><sup>t-1</sup> Precio del fondo i en tiempo t – 1

ANi Activo Neto del fondo i

RB Rendimiento del Benchmark

# 1.5 Títulos Accionarios de Emisores Extranjeros

#### Características Generales

Los títulos accionarios tienen características distintas a los títulos de deuda ya que carecen de fecha de vencimiento, no tienen una periodicidad definida para otorgar flujos (si es que lo hacen), ni tienen una cantidad preestablecida por devengar, entre las principales diferencias. Debido a esto, los títulos accionarios solamente se valoran a partir de los precios de hechos observados en los mercados en donde estos operan, sin que sea necesario realizar algún cálculo adicional.

Para dar de alta un instrumento, es necesario que los usuarios reporten de forma anticipada los instrumentos que requieren agregar al Vector de Precios a través de sus respectivos ISIN.

#### Fuentes de Información

Sistema de información Reuters

#### Criterios para obtener los Niveles de Mercado

La aplicación de los criterios tiene un ordenamiento jerárquico.

<u>Primer criterio ("Reuters").</u> El nivel de mercado es igual al precio reportado por "Reuters" al cierre de la sesión bursátil de Costa Rica, es decir, a las 14:15 hrs.

En caso que no haya precio publicado por esta fuente de información, se utiliza el segundo criterio.

Segundo criterio (Arrastre). El precio será igual al precio del día hábil anterior reportado por Valmer.



# 2. CONSTRUCCIÓN DE CURVAS

#### 2.1 Curvas Soberana de rendimiento en colones

#### A) Características Generales

| - 1/                              |                                                          |
|-----------------------------------|----------------------------------------------------------|
| ➢ Nombre de la curva en WEB       | Soberana de rendimientos en colones                      |
| ➢ Nombre del archivo              | Soberana_Yield_CRCaaaammdd.csv                           |
| ≻ Plazo máximo de generación      | 6,120 días                                               |
| ≻ Base                            | Semestral 30/360                                         |
| ≻ Tipo de tasa                    | Rendimiento (Yield)                                      |
| ≻ Insumos para el "Bootstrapping" | No aplica                                                |
| ≻ Interpolación                   | Interpolación Cúbica con estimación lineal de Pendientes |
| ≻ Extrapolación                   | Yield implícito en curva cero                            |

aaaammdd corresponde a la fecha de generación en formato de año con 4 caracteres, mes con 2 caracteres y día con 2 caracteres.

#### B) Fuentes de Información

La periodicidad para el análisis en la muestra de la curva se realizará por lo menos 2 veces al año.

Los bonos seleccionados para la muestra que compone la curva soberana en colones son los instrumentos del Capítulo 1, inciso A) "Bonos de Estabilización Monetaria (bem0, bem) y Títulos de Propiedad sobre Bonos de Deuda Interna (tp0, tp)" que tengan el índice de representatividad más alto para reflejar las mejores condiciones de liquidez para este segmento. Este índice se calculará por lo menos dos veces al año, incluyendo al menos los 4 instrumentos con mayor valor del índice de representatividad que mejor proporcionen referencias para todo el largo de la curva.

En caso que la recomposición de la muestra implique cambios significativos en la curva, se aplicará un cambio gradual. Esta transición se aplicará en un plazo máximo de dos semanas ponderando de forma creciente la curva resultante de la nueva muestra y de forma decreciente la curva resultante de la muestra anterior.

Las bonos seleccionados para construir las curvas soberanas son informados en la sección de Curvas >> Muestra de Bonos del *web site* de Valmer Costa Rica.

#### C) Determinación de nodos y construcción de la curva

Para formar la parte corta de la curva será necesario realizar diariamente un análisis de los instrumentos cero cupón gubernamentales en colones para determinar cuáles de ellos serán los que formarán parte de la curva. Esto se lleva a cabo analizando el monto de operación y los niveles de tasas. Una vez realizado esto se obtiene la tasa compuesta a partir de la tasa simple de los bonos cero cupón.

Mientras tanto para los instrumentos fijos se obtiene la Yield a partir de los Precios Limpios y del modelo teórico, es decir, para cada bono se obtiene la Yield (Y), que cumpla con la siguiente igualdad:



$$PL + IntDev = \sum_{i=1}^{K} \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

Donde:

PL Precio Limpio

IntDev Intereses Devengados t Fecha de Valoración

T<sub>0</sub> Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera

la fecha de emisión

T<sub>i</sub> Fechas de Pago del cupón i. Para i = 1, ..., K

N Valor Nominal

Y Yield

m Periodicidad. En este caso es igual a 2 porque es semestral

r<sub>C</sub> Tasa del cupón (tasa neta si el instrumento es sujeto a retención de impuestos)

CD Convención de días. En este caso se considera 30/360

 $\mathsf{TF}(\mathsf{t},\mathsf{T_i},\mathsf{CD})$  Fracción de año entre  $\mathsf{t}$  y  $\mathsf{T_i}$ . Se utiliza para obtener el Valor Presente del cupón  $\mathsf{i}$   $\mathsf{TF}(\mathsf{T_{i-1}},\mathsf{T_i},\mathsf{CD})$  Fracción de año entre  $\mathsf{T_{i-1}}$  y  $\mathsf{T_i}$ . Se utiliza para obtener el Flujo de Efectivo del cupón  $\mathsf{i}$ 

La Yield se expresa semestralmente y con convención de días 30/360.

Para extender la curva yield al mismo plazo que la curva cupón cero, se obtiene el yield implícito en la curva cero cupón soberana en colones (sección 2.3), suponiendo un bono con 6,120 días por vencer, con periodicidad 2 y tasa cupón igual a la del bono gubernamental (G o BCCR) con mayor plazo. Con esta curva cero se descuentan todos los flujos de este bono hipotético para obtener su precio, y se despeja el rendimiento del bono.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>1</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

# 2.2 Curva Soberana de rendimiento en dólares

#### A) Características Generales

| ➤ Nombre de la curva en WEB       | Soberana de rendimientos en dólares                      |
|-----------------------------------|----------------------------------------------------------|
| ➤ Nombre del archivo              | Soberana_Yield_USDaaaammdd.csv                           |
| ≻ Plazo máximo de generación      | 6,120 días                                               |
| <b>≻</b> Base                     | Semestral 30/360                                         |
| ≻ Tipo de tasa                    | Rendimiento (Yield)                                      |
| ≻ Insumos para el "Bootstrapping" | No aplica                                                |
| ➤ Interpolación                   | Interpolación Cúbica con estimación lineal de Pendientes |

<sup>&</sup>lt;sup>1</sup> Se explica el modelo en la sección 4.2.



#### > Extrapolación

Yield implícito en curva cero

#### B) Fuentes de Información

La periodicidad para el análisis en la muestra de la curva se realizará por lo menos 2 veces al año.

Los bonos seleccionados para la muestra que compone la curva soberana en dólares son los instrumentos del Capítulo 1, inciso B) "Títulos de Propiedad sobre Bonos de Deuda Interna en dólares (tp\$)" que tengan el índice de representatividad más alto para reflejar las mejores condiciones de liquidez para este segmento. Este índice se calculará por lo menos dos veces al año, incluyendo al menos los 4 instrumentos con mayor valor del índice de representatividad que mejor proporcionen referencias para todo el largo de la curva.

En caso que la recomposición de la muestra implique cambios significativos en la curva, se aplicará un cambio gradual. Esta transición se aplicará en un plazo máximo de dos semanas ponderando de forma creciente la curva resultante de la nueva muestra y de forma decreciente la curva resultante de la muestra anterior.

Las bonos seleccionados para construir las curvas soberanas son informados en la sección de Curvas >> Muestra de Bonos del *web site* de Valmer Costa Rica.

#### C) Determinación de nodos y construcción de la curva

Debido a que en el mercado no se colocan comúnmente bonos cupón cero, la formación de la parte corta de la curva se determinará de la siguiente manera en caso de no existir bonos cupón cero o fijos en el corto plazo:

- Se elegirá un bono soberano fijo en dólares que ya se encuentre en el corto plazo y se calculará su tasa simple equivalente.
- Se elaborará semanalmente una curva de referencia de tasas simples generada a partir de los 3 emisores más bursátiles bancarios. Los componentes de esta curva se determinarán a partir de un análisis de bursatilidad de los instrumentos y congruencia en tasas respecto a los días a vencimiento de los mismos.

Posteriormente se determina el spread entre la tasa simple del bono soberado y la curva de referencia para aplicar dicho spread en los nodos que estableceremos como fijos (1, 7, 30, 90, 180 y 360) de la curva bancaria y por ende obtener los nuevos niveles de tasas simples para dichos nodos.

Con las tasas de los nodos del corto plazo se obtiene la tasa compuesta a partir de la tasa simple de los bonos cero cupón.

Posteriormente se obtiene la Yield de cada instrumento cuponado a partir de los Precios Limpios de los bonos de tasa fija (tp\$) y del modelo teórico.

$$PL + IntDev = \sum_{i=1}^{K} \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

Donde:

PL Precio Limpio

IntDev Intereses Devengados



| t | Fecha de | Valoración |
|---|----------|------------|
|   |          |            |

T<sub>0</sub> Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera

la fecha de emisión

T<sub>i</sub> Fechas de Pago del cupón i. Para i = 1, ..., K

N Valor Nominal

Y Yield

m Periodicidad. En este caso es igual a 2 porque es semestral

r<sub>C</sub> Tasa del cupón (tasa neta si el instrumento es sujeto a retención de impuestos)

CD Convención de días. En este caso se considera 30/360

 $\mathsf{TF}(\mathsf{t},\mathsf{T_i},\mathsf{CD})$  Fracción de año entre  $\mathsf{t}$  y  $\mathsf{T_i}$ . Se utiliza para obtener el Valor Presente del cupón  $\mathsf{i}$   $\mathsf{TF}(\mathsf{T_{i-1}},\mathsf{T_i},\mathsf{CD})$  Fracción de año entre  $\mathsf{T_{i-1}}$  y  $\mathsf{T_i}$ . Se utiliza para obtener el Flujo de Efectivo del cupón  $\mathsf{i}$ 

La Yield se expresa semestralmente y con convención de días 30/360.

Para extender la curva yield al mismo plazo que la curva cupón cero, se obtiene el yield implícito en la curva cero cupón soberana en dólares (sección 2.4), suponiendo un bono con 6,120 días por vencer, con periodicidad 2 y tasa cupón igual a la del bono gubernamental (G) con mayor plazo. Con esta curva cero se descuentan todos los flujos de este bono hipotético para obtener su precio, y se despeja el rendimiento del bono.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>2</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

#### 2.3 Curva Soberana Cero en colones

#### A) Características Generales

| ≻ Nombre de la curva en WEB       | Soberana cero en colones                                                     |
|-----------------------------------|------------------------------------------------------------------------------|
| ➤ Nombre del archivo              | Soberana_CeroCupon_CRCyyyymmdd.csv                                           |
| ≻ Plazo máximo de generación      | 6,120 días                                                                   |
| > Base                            | Simple 30/360                                                                |
| ≻ Tipo de tasa                    | Cero                                                                         |
| ≻ Insumos para el "Bootstrapping" | Bonos de Tasa fija utilizados en la Curva Soberana de rendimiento en colones |
| ≻ Interpolación                   | Interpolación Cúbica con estimación lineal de Pendientes                     |
| ≻ Extrapolación                   | Forward constante                                                            |

#### B) Fuentes de Información

Los bonos seleccionados para la muestra que compone la curva soberana en colones son los instrumentos del Capítulo 1, inciso A) "Bonos de Estabilización Monetaria (bem0, bem) y Títulos de Propiedad sobre Bonos de Deuda Interna (tp0, tp)" que tengan el índice de representatividad más alto para reflejar las mejores condiciones de liquidez para este segmento. Este índice se calculará por lo menos dos veces al año, incluyendo al menos los



<sup>&</sup>lt;sup>2</sup> Se explica el modelo de Interpolación Lineal en el Anexo II, Sección 1.

4 instrumentos con mayor valor del índice de representatividad que mejor proporcionen referencias para todo el largo de la curva.

En caso que la recomposición de la muestra implique cambios significativos en la curva, se aplicará un cambio gradual. Esta transición se aplicará en un plazo máximo de dos semanas ponderando de forma creciente la curva resultante de la nueva muestra y de forma decreciente la curva resultante de la muestra anterior.

Las bonos seleccionados para construir las curvas soberanas son informados en la sección de Curvas >> Muestra de Bonos del *web site* de Valmer Costa Rica.

#### C) Determinación de nodos y construcción de la curva

A partir de los bonos cupón cero y el bono de tasa fija con menos días al vencimiento se aplica el método de "Bootstrapping", para obtener los primeros niveles de la curva cero.

Para agregar los siguientes nodos a la curva, se aplica sucesivamente el "Bootstrapping" hasta el bono con más días al vencimiento.

#### Primer nodo (un día)

Se considera el promedio ponderado por volumen de la tasa de interés promedio de los mercados MIL y MEDI en Colones Costarricenses que publica el Banco Central de Costa Rica.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>3</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

Considerando que existen emisiones en colones con vencimiento posterior al de bonos gubernamentales, es necesaria una extrapolación de la curva gubernamental para que ésta sea la referencia para todas las emisiones contenidas en el vector de precios.

Para este propósito se extrapola la curva con el método "forward constante", descrito en el anexo 4.5, para extender el plazo más largo de la curva cero (definido por los días por vencer del bono con vencimiento más largo considerado para la construcción de la curva) hasta 6,120 días que son 17 años.

#### 2.4 Curva Soberana Cero en dólares

#### A) Características Generales

| , , , , , , , , , , , , , , , , , , , , |                                                                              |
|-----------------------------------------|------------------------------------------------------------------------------|
| ≻ Nombre de la curva en WEB             | Soberana cero en dólares                                                     |
| ≻ Nombre del archivo                    | Soberana_CeroCupon_USDyyyymmdd.csv                                           |
| ≻ Plazo máximo de generación            | 6,120 días                                                                   |
| ≻Base                                   | Simple 30/360                                                                |
| ≻ Tipo de tasa                          | Cero                                                                         |
| ➤ Insumos para el "Bootstrapping"       | Bonos de Tasa fija utilizados en la Curva Soberana de rendimiento en dólares |
| ≻ Interpolación                         | Interpolación Cúbica con estimación lineal de Pendientes                     |
| ➤ Extrapolación                         | Forward constante                                                            |

<sup>&</sup>lt;sup>3</sup> Se explica el modelo en la sección 4.2.



#### B) Fuentes de Información

La periodicidad para el análisis en la muestra de la curva se realizará por lo menos 2 veces al año.

Los bonos seleccionados para la muestra que compone la curva soberana en dólares son los instrumentos del Apartado 1.1, inciso B) "Títulos de Propiedad sobre Bonos de Deuda Interna en dólares (tp0\$, tp\$)" que tengan el índice de representatividad más alto para reflejar las mejores condiciones de liquidez para este segmento. Este índice se calculará por lo menos dos veces al año, incluyendo al menos los 4 instrumentos con mayor valor del índice de representatividad que mejor proporcionen referencias para todo el largo de la curva.

En caso que la recomposición de la muestra implique cambios significativos en la curva, se aplicará un cambio gradual. Esta transición se aplicará en un plazo máximo de dos semanas ponderando de forma creciente la curva resultante de la nueva muestra y de forma decreciente la curva resultante de la muestra anterior.

Las bonos seleccionados para construir las curvas soberanas son informados en la sección de Curvas >> Muestra de Bonos del *web site* de Valmer Costa Rica.

#### C) Determinación de nodos y construcción de la curva

• Primer nodo (un día)

Se considera la tasa de interés promedio del mercado MIL en Dólares de los Estados Unidos de América que publica el Banco Central de Costa Rica.

Debido a que en el mercado no se colocan comúnmente bonos cupón cero, la formación de la parte corta de la curva se determinará de la siguiente manera en caso de no existir bonos cupón cero o fijos en el corto plazo:

- Se elegirá un bono soberano fijo en dólares que ya se encuentre en el corto plazo y se calculará su tasa simple equivalente.
- Se elaborará semanalmente una curva de referencia de tasas simples generada a partir de los 3 emisores más bursátiles bancarios. Los componentes de esta curva se determinarán a partir de un análisis de bursatilidad de los instrumentos y congruencia en tasas respecto a los días a vencimiento de los mismos.

Posteriormente se determina el spread entre la tasa simple del bono soberado y la curva de referencia para aplicar dicho spread en los nodos que estableceremos como fijos (1, 7, 30, 90, 180 y 360) de la curva bancaria y por ende obtener los nuevos niveles de tasas simples para dichos nodos.

Con las referencias obtenidas de corto plazo y el bono de tasa fija con menos días al vencimiento se aplica el método de "Bootstrapping", para obtener los primeros niveles de la curva cero.

Para agregar los siguientes nodos a la curva, se aplica sucesivamente el "Bootstrapping" hasta el bono de más días al vencimiento.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>4</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

Para estandarizar los plazos de las curvas se hace una extrapolación de la curva gubernamental para que ésta sea la referencia para todas las emisiones contenidas en el vector de precios.



<sup>&</sup>lt;sup>4</sup> Se explica el modelo en la Sección 4.2.

Para este propósito se extrapola la curva con el método "forward constante", descrito en el anexo 4.5, para extender el plazo más largo de la curva cero (definido por los días por vencer del bono con vencimiento más largo considerado para la construcción de la curva) hasta 6,120 días que son 17 años.

#### 2.5 Curva Soberana de rendimiento de tudes

#### A) Características Generales

| , , , , , , , , , , , , , , , , , , , , |                                                          |
|-----------------------------------------|----------------------------------------------------------|
| ≻ Nombre de la curva en WEB             | Soberana de rendimientos en tudes                        |
| ➤ Nombre del archivo                    | Soberana_Yield_TUDESaaaammdd.csv                         |
| ≻ Plazo máximo de generación            | 10,080 días                                              |
| > Base                                  | Semestral 30/360                                         |
| ≻ Tipo de tasa                          | Rendimiento (Yield)                                      |
| ≻ Insumos para el "Bootstrapping"       | No aplica                                                |
| > Interpolación                         | Interpolación Cúbica con estimación lineal de Pendientes |
| ➤ Extrapolación                         | No aplica                                                |

#### B) Fuentes de Información

Se consideran como componentes de la curva yield de tudes las series estandarizadas G\_tudes y BCCR\_bemud con mayor valor del índice de representatividad. Las bonos seleccionados para construir las curvas soberanas son informados del *web site* de Valmer Costa Rica en la sección de Curvas >> Muestra de Bonos.

#### C) Determinación de nodos y construcción de la curva

Se obtiene la Yield de cada instrumento a partir de los Precios Limpios de los bonos de tasa fija tudes y del modelo teórico.

$$PL + IntDev = \sum_{i=1}^K \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

#### Donde:

PL Precio Limpio

IntDev Intereses Devengados t Fecha de Valoración

T<sub>0</sub> Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera

la fecha de emisión

T<sub>i</sub> Fechas de Pago del cupón i. Para i = 1, ..., K

N Valor Nominal

Y Yield

m Periodicidad. En este caso es igual a 2 porque es semestral

r<sub>C</sub> Tasa del cupón (tasa neta si el instrumento es sujeto a retención de impuestos)

CD Convención de días. En este caso se considera 30/360

 $\mathsf{TF}(\mathsf{t},\mathsf{T}_\mathsf{i},\mathsf{CD})$  Fracción de año entre  $\mathsf{t}$  y  $\mathsf{T}_\mathsf{i}$ . Se utiliza para obtener el Valor Presente del cupón  $\mathsf{i}$ 



TF(T<sub>i-1</sub>,T<sub>i</sub>,CD) Fracción de año entre T<sub>i-1</sub> y T<sub>i</sub>. Se utiliza para obtener el Flujo de Efectivo del cupón i

La Yield se expresa semestralmente y con convención de días 30/360.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>5</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

#### 2.6 Curva Soberana Cero de tudes

#### A) Características Generales

| ,                                |                                                                            |
|----------------------------------|----------------------------------------------------------------------------|
| > Nombre de la curva en WEB      | Soberana cupón cero TUDES                                                  |
| ➤ Nombre del archivo             | Soberana_CeroCupon_tudes_yyyymmdd.csv                                      |
| ≻ Plazo máximo de generación     | 10,080 días                                                                |
| ≻ Base                           | Simple 30/360                                                              |
| ≻ Tipo de tasa                   | Cero                                                                       |
| ≻Insumos para el "Bootstrapping" | Bonos de Tasa fija utilizados en la Curva Soberana de rendimiento en tudes |
| ≻ Interpolación                  | Interpolación Cúbica con estimación lineal de Pendientes                   |
| > Extrapolación                  | Forward constante                                                          |

#### B) Fuentes de Información

Se consideran como componentes de la curva yield de tudes las series estandarizadas G\_tudes y BCCR\_bemud con mayor valor del índice de representatividad, informados a través del *web site* de Valmer Costa Rica.

### C) Determinación de nodos y construcción de la curva

Primer nodo (1 y 360 días)

Se obtiene la inflación esperada ( $\pi$ ) por el mercado a un año de la Encuesta mensual de expectativas de inflación y de variación del tipo de cambio publicada por el Banco Central de Costa Rica. Con este dato y el nodo 360 de la curva cero nominal en colones ( $i_n$ ) se obtiene la tasa real implícita ( $i_r$ ) a 360 días de la siguiente forma:

$$i_r = \frac{1+i_n}{1+\pi} - 1$$

A partir de este nodo a 360 días, se obtiene por método de tasa equivalente el nodo a 1 día.

Con estas referencias de tasa cero cupón real y el bono de tasa fija con menos días al vencimiento se aplica el método de "Bootstrapping", para obtener los primeros niveles de la curva cero.

Para agregar los siguientes nodos a la curva, se aplica sucesivamente el "Bootstrapping" hasta el bono de más días al vencimiento.



<sup>&</sup>lt;sup>5</sup> Se explica el modelo en la Sección 4.2.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes<sup>6</sup> para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.

Para estandarizar los plazos de las curvas se hace una extrapolación de la curva gubernamental para que ésta sea la referencia para todas las emisiones reales contenidas en el vector de precios.

Para este propósito se extrapola la curva con el método "forward constante", descrito en el anexo 4.5, para extender el plazo más largo de la curva cero (definido por los días por vencer del bono con vencimiento más largo considerado para la construcción de la curva) hasta 10,080 días que son 28 años.

# 2.7 Curvas de Banca Privada y Entidades Financieras no bancarias

# A) Características Generales

| A) darabteristidas deficiales     |                                                          |
|-----------------------------------|----------------------------------------------------------|
| ≻ Nombre de la curva en WEB       | Banca privada colones                                    |
| ➤ Nombre del archivo              | BancaPrivada_CeroCupon_colones_yyyymmdd.csv              |
| ≻ Plazo máximo de generación      | 360 días                                                 |
| ≻ Base                            | Simple 30/360                                            |
| ≻ Tipo de tasa                    | Cero                                                     |
| ≻ Insumos para el "Bootstrapping" | Colocación de certificados de banca privada en colones   |
| ≻ Interpolación                   | Interpolación Cúbica con estimación lineal de Pendientes |
| ≻ Extrapolación                   | No aplica                                                |

| ≻ Nombre de la curva en WEB       | Banca privada dólares                                    |
|-----------------------------------|----------------------------------------------------------|
| ≻ Nombre del archivo              | BancaPrivada_CeroCupon_dolares_yyyymmdd.csv              |
| ≻ Plazo máximo de generación      | 360 días                                                 |
| ≻ Base                            | Simple 30/360                                            |
| ≻ Tipo de tasa                    | Cero                                                     |
| ≻ Insumos para el "Bootstrapping" | Colocación de certificados de banca privada en dólares   |
| ≻ Interpolación                   | Interpolación Cúbica con estimación lineal de Pendientes |
| ≻ Extrapolación                   | No aplica                                                |

| ≻ Nombre de la curva en WEB  | Financiero Colones     |  |  |  |
|------------------------------|------------------------|--|--|--|
| ➤ Nombre del archivo         | Financiero_Colones.csv |  |  |  |
| ≻ Plazo máximo de generación | 360 días               |  |  |  |
| > Base                       | Simple 30/360          |  |  |  |
| ≻ Tipo de tasa               | Cero                   |  |  |  |

<sup>&</sup>lt;sup>6</sup> Se explica el modelo en la Sección 4.2.



| ≻Insumos para el "Bootstrapping" | Colocación de certificados de Entidades Financieras no Bancarias en colones |
|----------------------------------|-----------------------------------------------------------------------------|
| ≻ Interpolación                  | Interpolación Cúbica con estimación lineal de Pendientes                    |
| ≻ Extrapolación                  | No aplica                                                                   |

| ≻ Nombre de la curva en WEB      | Financiero Dolares                                                          |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| ➤ Nombre del archivo             | Financiero_Dolares.csv                                                      |  |  |  |  |
| ≻ Plazo máximo de generación     | 360 días                                                                    |  |  |  |  |
| <b>≻</b> Base                    | Simple 30/360                                                               |  |  |  |  |
| ≻ Tipo de tasa                   | Cero                                                                        |  |  |  |  |
| ≻Insumos para el "Bootstrapping" | Colocación de certificados de Entidades Financieras no Bancarias en dólares |  |  |  |  |
| <b>≻</b> Interpolación           | Interpolación Cúbica con estimación lineal de Pendientes                    |  |  |  |  |
| ➤ Extrapolación                  | No aplica                                                                   |  |  |  |  |

#### B) Fuentes de Información

Se consideran las colocaciones de certificados de depósito reportadas por la BNV, clasificadas por el catalogo de emisores de la Superintendencia General de Entidades Financieras como Banca privada y como Entidades Financieras no Bancarias. Este catalogo se puede consultar en la dirección web:

www.sugef.fi.cr >> Entidades Financieras >> Datos Generales >> Lista de Entidades Sujetas a la Fiscalización de la SUGEF

#### C) Determinación de nodos y construcción de la curva

Los nodos estándar con que se emiten la gran mayoría de las emisiones son 30, 60, 90, 180, 270, 360, por lo que estos se establecen como nodos para las cuatro curvas de esta sección. Se obtiene el nivel promedio de los rendimientos con que son colocados todos los papeles, respetando su plazo de colocación, la moneda y su clasificación en la SUGEF.

Dado que existe un mercado secundario limitado de estos certificados, se define una matriz de spread obtenida para cada elemento del promedio del rendimiento de las nuevas colocaciones menos el nodo de la curva soberana correspondiente (curva soberana cero cupón en colones o en dólares). Con esto se logra que cuando no haya colocaciones, los nodos sin referencia de mercado se actualicen conforme lo haga la curva soberana.

Entonces, las curvas de Banca privada en colones y en dólares y las curvas de entidades financieras en colones y en dólares, se definen como un spread en puntos base (sobretasa) respecto a las curvas soberanas en colones y en dólares.

A partir del primer nodo a 30 días, se obtiene por método de tasa equivalente el nodo a 1 día.

Una vez obtenidos los nodos, se interpolan con el método cúbico con estimación lineal de pendientes para encontrar la estructura temporal de tasas hasta el plazo máximo de generación.



<sup>&</sup>lt;sup>7</sup> Se explica el modelo en la Sección 4.2.

En caso que algún elemento de la matriz de spread no haya presentado alguna observación de mercado en un periodo de dos meses, el spread de estos rangos se sustituirá por la obtenida con el método de corrección de rezagos que consiste en realizar una regresión lineal por mínimos cuadrados de los puntos medios de los rangos que sí tengan referencias de mercado.

Este periodo de rezago puede actualizarse conforme las observaciones de mercado lo requieran, informando a través del *web site* de Valmer Costa Rica y por medio de correo electrónico a autoridades y clientes de su modificación.



# 3. DISTRIBUCIÓN DEL VECTOR DE PRECIOS

#### 3.1 Formato de Comunicación del Vector de Precios

El Vector de Precios se distribuye todos los días hábiles del año por medio de un archivo con formato ASCII, de acuerdo a los siguientes campos:

| DESCRIPCIÓN          |                        |          |             |            |                                         |           |                                                                                                                                                                 |  |  |  |
|----------------------|------------------------|----------|-------------|------------|-----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Descripción          | Tipo de<br>Información | Longitud | Posi<br>De: | ción<br>A: | FORMATO *                               | Decimales | OBSERVACIONES                                                                                                                                                   |  |  |  |
| Emisor               | Alfanumérica           | 5        | 1           | 5          | ****                                    | NA        | Nemotécnico del emisor                                                                                                                                          |  |  |  |
| Instrumento          | Alfanumérica           | 5        | 6           | 10         | ****                                    | NA        | Nemotécnico del título valor                                                                                                                                    |  |  |  |
| No. De Serie         | Alfanumérica           | 12       | 11          | 22         | *******                                 | NA        | Número de serie de las emisiones estandarizadas                                                                                                                 |  |  |  |
| Fecha de Vencimiento | Alfanumérica           | 10       | 23          | 32         | dd/mm/aaaa                              | NA        | Fecha de vencimiento de la emisión                                                                                                                              |  |  |  |
| Premio               | Numérica               | 7        | 33          | 39         | 000.000                                 | 2         | Premio adicional al factor de ajuste<br>que utilizan los títulos tasa variable<br>para pagar intereses                                                          |  |  |  |
| Precio %             | Numérica               | 8        | 40          | 47         | 0000.000                                | 3         | Precio porcentual al que se cotizan los<br>títulos estandarizados en el mercado<br>secundario de la Bolsa                                                       |  |  |  |
| Rendimiento          | Numérica               | 7        | 48          | 54         | 00000.0                                 | 2         | Tasa nominal a la cuál se negocian los títulos estandarizados cero cupón                                                                                        |  |  |  |
| Precio Monetario     | Numérica               | 20       | 55          | 74         | 000000000000000000000000000000000000000 | 2         | Precio expresado en términos<br>económicos, aplica para acciones y<br>títulos de participación de fondos                                                        |  |  |  |
| Forma Cálculo        | Numérica               | 2        | 75          | 76         | 00                                      | NA        | Indicación del destino del precio/rendimiento reportado. Es un 1 si corresponda a mercado secundario y 0 si es calculado con alguna metodología (Ver Anexo III) |  |  |  |

#### Características Generales del formato Vector de Precios

- 1. A cada renglón del Vector de Precios le corresponde un solo instrumento.
- 2. En caso de que algún carácter tenga valor nulo se realizará lo siguiente:
  - No es decimal, entonces el carácter tomará el valor "\_"(espacio).
  - Es decimal, entonces el carácter tomará el valor 0.
- 3. Para efectos de cálculo se utilizan al menos 8 decimales.
- 4. Los nemotécnicos son iguales a los utilizados por la BNV para su negociación.
- 5. En caso de instrumentos de tasa fija el campo premio se define como " 0.000".



- 6. Los campos de monto o valor no llevan "," (coma).
- 7. En caso de Títulos de Deuda se reportará:
  - Precio Limpio Porcentual
  - Tasa de Rendimiento
- 8. El precio monetario será aplicado sólo al caso de las acciones y títulos de participación de fondos abiertos y cerrados que sean cotizados sobre esta base.
- 9. El horario objetivo para la difusión del vector preliminar en el website de Valmer Costa Rica son las 14:30hrs, mientras que el vector definitivo a las 15:00 hrs.

Cabe destacar que los identificadores "Nemotécnico del emisor", "Nemotécnico del título valor" y "Número de serie" utilizados en el vector de Valmer son los mismos registros con que la BNV reporta a Valmer el alta de la emisión.

Adicionalmente se generará un vector formato Valmer (archivo en formato de valores separados por comas *csv*) que estará disponible igualmente en el website de Valmer con los siguientes campos:

| DESCRIPCIÓN           |                        |            |           |                                                                                                           |  |
|-----------------------|------------------------|------------|-----------|-----------------------------------------------------------------------------------------------------------|--|
| Descripción           | Tipo de<br>Información | FORMATO    | Decimales | OBSERVACIONES                                                                                             |  |
| Fecha de valoración   | Alfanumérica           | dd/mm/aaaa | NA        | Fecha en que se realiza la valoración                                                                     |  |
| Tipo Instrumento      | Alfanumérica           | *****      | NA        | Descripción de tipo de instrumento                                                                        |  |
| Nemo Emisor           | Alfanumérica           | *****      | NA        | Nemotécnico del emisor                                                                                    |  |
| Nemo Instrumento      | Alfanumérica           | *****      | NA        | Nemotécnico del título valor                                                                              |  |
| Serie                 | Alfanumérica           | *****      | NA        | Número de serie de las emisiones<br>estandarizadas                                                        |  |
| Precio Sucio          | Numérica               | 0.000      | 3         | Valor presente de todos los flujos del<br>instrumento (incluye intereses<br>transcurridos)                |  |
| Precio Limpio         | Numérica               | 0.000      | 3         | Precio del instrumento sin incluir intereses.                                                             |  |
| Intereses corridos    | Numérica               | 0.000      | 3         | Intereses transcurridos del instrumento.                                                                  |  |
| % Precio              | Numérica               | 0.000      | 3         | Precio porcentual al que se cotizan los<br>títulos estandarizados en el mercado<br>secundario de la Bolsa |  |
| Rendimiento           | Numérica               | 0.000      | 3         | Tasa interna de retorno del<br>instrumento                                                                |  |
| Premio                | Numérica               | 0.000      | 3         | Premio adicional al factor de ajuste<br>que utilizan los títulos tasa variable<br>para pagar intereses    |  |
| Tasa Cupón<br>Vigente | Numérica               | 0.000      | 3         | Tasa facial del instrumento                                                                               |  |
| Prima                 | Numérica               | 0.000      | 3         | Spread sobre curva de rendimiento o tasa de referencia                                                    |  |



|                         | ,            |            |    |                                                                                                                                        |
|-------------------------|--------------|------------|----|----------------------------------------------------------------------------------------------------------------------------------------|
| Duración                | Numérica     | 0.000      | 3  | Duración modificada del bono                                                                                                           |
| Convexidad              | Numérica     | 0.000      | 3  | Convexidad modificada del bono                                                                                                         |
| Forma Cálculo           | Numérica     | 0          | 0  | Indicación del destino del<br>precio/rendimiento reportado. Es 1 si<br>corresponde a mercado y 0 si es<br>calculado con precio teórico |
| Días Por Vencer         | Numérica     | 0          | 0  | Días al vencimiento considerando días comerciales.                                                                                     |
| Plazo                   | Numérica     | 0          | 0  | Días comerciales entre fecha de emisión y de vencimiento.                                                                              |
| Fecha de Emisión        | Alfanumérica | dd/mm/aaaa | NA | Fecha de emisión del instrumento                                                                                                       |
| Fecha de<br>Vencimiento | Alfanumérica | dd/mm/aaaa | NA | Fecha de vencimiento del instrumento                                                                                                   |
| Fecha Inicio<br>Cupón   | Alfanumérica | dd/mm/aaaa | NA | Fecha en que comienzan a<br>devengarse los intereses                                                                                   |
| Fecha Fin Cupón         | Alfanumérica | dd/mm/aaaa | NA | Fecha en que se paga el cupón.                                                                                                         |
| Moneda                  | Alfanumérica | *****      | NA | Divisa del instrumento                                                                                                                 |
| Isin                    | Alfanumérica | ****       | NA | Código: International Securities<br>Identification Number                                                                              |
| Valor Nominal           | Numérica     | 0.000      | 3  | Valor mínimo en que se puede dividir<br>el monto de la emisión                                                                         |
| Monto de la<br>emisión  | Numérica     | 0.000      | 3  | Monto total colocado                                                                                                                   |



# 3.2 Reglas Operativas para resolver Impugnaciones

El recurso de la impugnación es el medio a través del cual se ofrece a los usuarios del Vector de Precios el derecho de disconformidad con la información que contiene. Este recurso en caso de ser procedente debe llevarse a cabo bajo la supervisión del Comité Operativo de Valmer e informarse a los usuarios oportunamente.

# Recepción de la Impugnación

Para solicitar la impugnación, es indispensable que todos los usuarios utilicen el formato preestablecido, para dar uniformidad y llevar un registro de las observaciones realizadas por los usuarios. Este formato tiene el nombre de "Formato de impugnación". El usuario tendrá acceso a este formato para su llenado a través de la página Web de Valmer.

El tiempo de recepción de impugnaciones inicia con la liberación del Vector Preliminar entre las 14:30 y 15:00hrs, dando un tiempo de 30 minutos para que los usuarios hagan sus observaciones, y una vez atendidas dichas bservaciones se distribuirá el Vector Definitivo.

Todas las observaciones realizadas por los usuarios deberán tener sustento técnico, y de ser aceptada la objeción (que modifiquen algún precio del vector previo) será comunicada a los usuarios por medio de la página WEB, o en caso de no poder acceder por este medio, se podrán realizar vía email.

## Evolución de la Impugnación

El Comité Operativo de Valmer es el responsable de los resultados de impugnación ya que se encargará de aprobar su procedencia y coordinar a las áreas involucradas en el proceso de corrección y registro de los eventos en el proceso de impugnación.

El tiempo máximo para que el Comité Operativo de Valmer proporcione el resultado de la impugnación es una hora después de que se haya ingresado el formato de impugnación.

Se dará a conocer el resultado de la impugnación al usuario que la ingresó y en caso de ser procedente también se informará a todos los usuarios y a las autoridades correspondientes a través de los medios que soliciten.

# 3.3 Plan de Contingencia para la distribución del Vector

Considerando el alto nivel de responsabilidad que tiene Valmer con todos sus usuarios, tanto en el aspecto referente al cálculo de precios como en el de difusión de toda la información que compete al mercado, resulta indispensable llevar a cabo la implementación de un Plan de Continuidad de Negocio, que le permita a Valmer superar eventos o situaciones contingentes que pudieran impedir o poner en riesgo la realización de las actividades propias para la generación y difusión de precios y consecuentemente mantener el concepto de alta seguridad y eficiencia. En virtud de lo anterior, la Dirección de Valmer, asume el compromiso de coordinar el desarrollo e implementación de un Plan de Continuidad de Negocio que cubra esta necesidad.

**Objetivo:** Superar oportunamente cualquier contingencia técnica o natural, que pudieran impedir los servicios Operativos (cálculo de precios e información), Administrativos y Difusión de Información que reciben todos los usuarios y autoridades.

**Alcance:** El alcance de este plan, está dimensionado para cubrir oportunamente la continuidad de todos los procesos que implica la operación y difusión de información de Valmer, así como la recuperación de todos los sistemas, aplicaciones técnicas y de personal, etc., que permiten la continuidad del negocio tanto en las instalaciones, como en el Site alterno.



**Beneficios:** El que Valmer cuente con un Plan de Continuidad de Negocio, brinda certidumbre y confianza a todos los intermediarios, autoridades y público inversionista en situaciones de contingencia, así como mantener su imagen institucional de empresa segura.

#### **PROCEDIMIENTO**

Se han definido distintos escenarios para cubrir las posibles contingencias que pudieran afectar el desarrollo habitual de los procesos en la generación y difusión de la información. Dentro de estos escenarios, para las Oficinas en México, se encuentran contemplados Escenario de Bloqueo, Escenario de Desalojo, Escenario de Contingencia de Procesos, Escenario de Contingencia por Fuentes de Información.

Se cuenta con un PROGRAMA DE CONTINGENCIA para cada uno de estos escenarios.

Como recursos para cubrir estas necesidades se cuenta con la facilidad de traslado y la infraestructura de un site alterno que cuenta con el equipo necesario para seguir con las actividades diaria para continuar con la recepción y generación de información de manera continua.

La descripción completa del Plan de Contingencia se encuentra en el documento anexo a las presentes metodologías.

Para el caso de subsanar las contingencias en las que la Bolsa Nacional de Valores de Costa Rica no pueda entregar la información diaria necesaria para la construcción del vector de precios, se utilizarán las referencias proporcionadas por instancias tales como Reuters, Bloomberg así como otros medios de operación y registro los cuales cumplan con requisitos de oportunidad, fidelidad y concentración de operaciones los cuales cuenten con el amplio reconocimiento del mercado. Aunado a lo anterior, se realizarán encuestas de nivel y precio con los distintos participantes del mercado.

Las consideraciones anteriormente expuestas buscan obtener los insumos mínimos necesarios como lo son:

- Curva Soberana.
- UDES,
- Tasa Básica,
- Libor.
- Prime Rate,
- BNCR y
- BNCR\$.

Una vez obtenidos dichos insumos se cumplirán las condiciones necesarias para generar los precios teóricos de los instrumentos que contenga el vector en la fecha en la que se presente la contingencia buscando respectar los parámetros de tolerancia de error entre precio teóricos y actuales establecidos en el Reglamento de Valoración de Carteras Mancomunadas.



# 4. ANEXOS

# 4.1 Periodo de Composición, Convención de días y Fracciones de año

Para definir de forma completa a una tasa de interés es necesario indicar el periodo de composición y la convención de días, ya que de esto dependen cálculos como los pagos de cupones o los factores de descuento.

# Periodo de Composición

Indica el periodo al que se debe considerar el interés compuesto. Existen tres tipos de composición: 1) la discreta, en la cual se indica con un valor entero el número de veces al año que se compone la tasa, por ejemplo, si la tasa es semestral, entonces la tasa se compone 2 veces al año, 2) la continua, en la cual la composición se realiza en cada instante, por lo que con símbolos matemáticos se tendría una frecuencia infinita ( $\infty$ ) y 3) la simple, en la cual no existe interés compuesto.

A continuación se muestran los principales periodos de composición:

| Periodo de Composición | Símbolo | Frecuencia al año<br>(m) | Tipo de composición |
|------------------------|---------|--------------------------|---------------------|
| Anual                  | ANU     | 1                        | Discreta            |
| Semestral              | SEM     | 2                        | Discreta            |
| Trimestral             | TRI     | 4                        | Discreta            |
| Mensual                | MEN     | 12                       | Discreta            |
| 4-semanas              | 4-S     | 13                       | Discreta            |
| Continua               | CONT    | $\infty$                 | Continua            |
| Simple                 | SMP     | No aplica                | No aplica           |

## Convención de días y Fracciones de año

La convención de días define la forma en que se cuentan los días entre dos fechas (numerador) y el número de días que se asigna a un año completo (denominador). Las alternativas más comunes que se utilizan en los instrumentos financieros son: "actual/360", "actual/365", "actual/actual", "30/360" y "30/360 Europea".

La convención de días se utiliza para el cálculo de la fracción de año entre dos fechas, se denota por TF(t<sub>1</sub>, t<sub>2</sub>, CD) donde t<sub>1</sub> es la fecha inicial, t<sub>2</sub> es la fecha final y CD es la Convención de días utilizada.

A continuación se muestra el cálculo para la fracción de año, utilizando las distintas convenciones:

### • TF(t<sub>1</sub>, t<sub>2</sub>, actual/360)

Para el numerador se considera el número de días naturales entre las dos fechas y para el denominador se considera el año de 360 días.

# Ejemplo:

TF(2006/02/28, 2008/02/29, actual/360) = 
$$\frac{731}{360}$$
 = 2.030556



# • TF(t<sub>1</sub>, t<sub>2</sub>, actual/365)

Para el numerador se considera el número de días naturales entre las dos fechas y para el denominador se considera el año de 365 días.

## Ejemplo:

TF(2006/02/28, 2008/02/29, actual/365) = 
$$\frac{731}{365}$$
 = 2.002740

# • TF(t<sub>1</sub>, t<sub>2</sub>, actual/actual)

Para el numerador se considera el número de días naturales y para el denominador se considera el número de días naturales de cada año, puede ser 365 o 366.

#### Ejemplo:

 $TF(t_1, t_2, CD) = TF(2006/02/28, 2008/02/29, actual/actual)$ 

Como 2008 es un año bisiesto, el número de días del 2008 se debe dividir entre 366, mientras que para los días de 2006 y 2007 se debe dividir entre 365.

El número de días entre 2006/02/28 y 2007/12/31 son 671, estos años se pueden agrupar porque ambos tienen 365 días.

Por su parte, el número de días entre 2007/12/31 y 2008/02/29 son 60.

Por lo tanto, el resultado es:

TF(2006/02/28, 2008/02/29, actual/actual) = 
$$\frac{671}{365} + \frac{60}{366} = 2.002291$$

## TF(t<sub>1</sub>, t<sub>2</sub>, 30/360)

Para el numerador se considera que los meses son de 30 días y el año de 360. Con las siguientes consideraciones:

- 1) Si la fecha final es el último día de Febrero y la fecha inicial es el último día de febrero, entonces se considera como 30 el día de la fecha final.
- 2) Si la fecha inicial es el último día de Febrero, entonces se considera 30 como día de la fecha inicial.
- 3) Si el día de la fecha final es 31, entonces se cambia a 30.
- 4) Si el día de la fecha inicial es 31, entonces se cambia a 30.

Para el denominador se considera el año de 360 días.

$$TF(t_1, t_2, 30/360) = \frac{(\tilde{ano}_2 - \tilde{ano}_1) * 360 + (\tilde{mes}_2 - \tilde{mes}_1) * 30 + (\tilde{dia}_2 - \tilde{dia}_1)}{360}$$

# Ejemplo:

 $TF(t_1, t_2, CD) = TF(2006/02/28, 2008/02/29, 30/360)$ 



$$=\frac{(2008-2006)*360+(2-2)*30+(30-30)}{360}=2.000000$$

# • TF(t<sub>1</sub>, t<sub>2</sub>, 30/360 Europea)

Para el numerador se considera que los meses son de 30 días y el año de 360. Con las siguientes consideraciones:

- 1) Si el día de la fecha final es 31, entonces se cambia a 30.
- 2) Si el día de la fecha inicial es 31, entonces se cambia a 30.

Para el denominador se considera el año de 360 días.

$$TF(t_1, t_2, CD) = \frac{(\tilde{ano}_2 - \tilde{ano}_1) * 360 + (\tilde{mes}_2 - \tilde{mes}_1) * 30 + (\tilde{dia}_2 - \tilde{dia}_1)}{360}$$

### Ejemplo:

 $TF(t_1, t_2, CD) = TF(2006/02/28, 2008/02/29, 30/360)$ 

$$=\frac{(2008-2006)*360+(2-2)*30+(29-28)}{360}=2.002778$$

# 4.2 Métodos de Interpolación

Los métodos de interpolación consisten en determinar una función continua a partir de un conjunto de puntos  $(X_i,Y_i)$ . De esta forma, es posible obtener la Y asociada a cualquier X, siempre y cuando se encuentre en el intervalo  $(X_1,X_n)$ , donde n es el número de nodos,  $X_1$  es el mínimo valor de  $\{X_i\}$  y  $X_n$  es el valor máximo de  $\{X_i\}$ .

La interpolación principalmente se utiliza para encontrar la estructura temporal de tasas de interés a partir de nodos obtenidos de niveles de mercado de manera directa o indirecta.

# A) Interpolación Lineal

La interpolación lineal consiste en construir una función lineal que tenga como extremos a los nodos conocidos. Se define a  $(X_1, Y_1)$  y  $(X_2, Y_2)$  como valores conocidos y se desea encontrar el valor de Y asociado a un valor X, tal que  $X_1 < X < X_2$ .





Una forma de deducir la ecuación de la recta que pasa por dos puntos, es con la equivalencia de triángulos, éstos se observan con líneas punteadas en la gráfica anterior.

$$\frac{Y_2 - Y_1}{X_2 - X_1} = \frac{Y - Y_1}{X - X_1}$$

Despejando la variable Y de la expresión anterior resulta:

$$Y = \left(\frac{Y_2 - Y_1}{X_2 - X_1}\right) (X - X_1) Y_1$$

Donde el término  $\frac{Y_2-Y_1}{X_2-X_1}$  indica la pendiente de la recta.

De este modo, es posible determinar el valor de Y mediante la interpolación lineal para cualquier X mayor a  $X_1$  y menor que  $X_2$ .

El problema principal de este tipo de interpolación es que si se realiza con varios nodos, el resultado es una función no derivable<sup>8</sup> en cada nodo, lo que significa que no es una función "suavizada".

#### Eiemplo

Se desea obtener la función de la estructura temporal de tasas<sup>9</sup> a partir de la siguiente información:

| Plazo | Tasa de<br>interés |
|-------|--------------------|
| 40    | 7.29               |
| 50    | 7.34               |
| 60    | 7.35               |
| 70    | 7.38               |

<sup>&</sup>lt;sup>8</sup> Esto sucede cuando no todos los nodos pertenecen a una misma recta.

<sup>&</sup>lt;sup>9</sup> Las tasas de interés están multiplicadas por 100 para reducir las expresiones.



Como se tienen 4 nodos existen tres funciones lineales, dadas por:

$$Y = \left(\frac{7.34 - 7.29}{50 - 40}\right) (4 - 40) + 7.29$$

$$Y = \left(\frac{7.35 - 7.34}{60 - 50}\right) (4 - 50) + 7.34$$

$$Y = \left(\frac{7.38 - 7.35}{70 - 60}\right) (4 - 60) + 7.35$$

Obteniendo la siguiente gráfica:



Por otra parte, para extrapolar linealmente se utiliza la última recta generada con los datos conocidos. Por ejemplo, si se desea obtener el valor cuando X = 75 del ejercicio anterior, la extrapolación lineal es la siguiente:

$$Y = \left(\frac{7.38 - 7.35}{70 - 60}\right) (5 - 60) + 7.35 = 7.395$$

Sin embargo, no se recomienda utilizar la Extrapolación Lineal para tasas de interés, a menos que el valor del plazo sea muy cercano al valor conocido. Para extrapolar la estructura temporal de Tasas, se recomiendan otros modelos como el de Tasas forward constantes, el de Nelson-Siegel o el de Nelson-Siegel-Svensson.



# B) Interpolación Cúbica con estimación lineal de Pendientes

El método de Interpolación cúbica con estimación lineal de pendientes consiste en la interpolación de n nodos conocidos, es decir,  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ , ...,  $(X_n, Y_n)$ , utilizando una familia de n-1 polinomios de tercer grado.

El polinomio de tercer grado para obtener Y en función de X, es:

$$Y = S_i(X) = a_i(X - X_i)^3 + b_i(X - X_i)^2 + c_i(X - X_i) + d_i$$

Donde el subíndice i, indica el polinomio de tercer grado que asocia a los nodos  $(X_i, Y_i)$  y  $(X_{i+1}, Y_{i+1})$ . Por lo tanto, el objetivo es calcular los coeficientes  $a_i$ ,  $b_i$ ,  $c_i$  y  $d_i$  de cada polinomio a partir de los nodos conocidos.

De manera explícita la familia de los n-1 polinomios es:

$$Y = S(X) = \begin{cases} S_1(X) = a_1(X - X_1)^3 + b_1(X - X_1)^2 + c_1(X - X_1) + d_1 & \text{Para} \quad X_1 \leq X \leq X_2 \\ S_2(X) = a_2(X - X_2)^3 + b_2(X - X_2)^2 + c_2(X - X_2) + d_2 & \text{Para} \quad X_2 \leq X \leq X_3 \\ \dots & \\ S_{n-1}(X) = a_{n-1}(X - X_{n-1})^3 + b_{n-1}(X - X_{n-1})^2 + c_{n-1}(X - X_{n-1}) + d_{n-1} & \text{Para} \quad X_{n-1} \leq X \leq X_n \end{cases}$$

Se tienen 4n-4 incógnitas (los coeficientes de cada polinomio) y se establecerán 4n-4 condiciones a la curva, para contar con un sistema de ecuaciones del cual se obtengan los coeficientes de cada polinomio.

### Propiedades de la curva

**1.-Congruencia con los nodos originales**: Cada polinomio debe pasar por los nodos o puntos originales que lo generaron, por lo que:

$$S_i(X_i) = Y_i$$
 Para i = 1, ..., n-1

Con lo que se obtienen n-1 condiciones.

**2.-Continuidad**: La curva debe ser continua, por lo que se incluye la condición de que el último valor del polinomio anterior i debe ser igual al primer valor del polinomio posterior i+1. Dicha condición se expresa de la siguiente forma:

$$\begin{split} S_i \left( X_{i+1} \right) &= S_{i+1} \left( X_{i+1} \right) = Y_{i+1} \\ S_{n-1} \left( X_n \right) &= Y_n \end{split} \qquad \begin{array}{l} \text{Para i = 1, ..., n-2} \\ \text{Para i = n-1} \end{split}$$

Con lo que se obtienen n-1 condiciones.

**3.-La curva debe ser derivable** (suavidad en la curva): Para los nodos que se encuentren dentro de los nodos extremos, la derivada evaluada con el polinomio anterior debe ser igual a la derivada evaluada con el polinomio posterior:

$$S'_{i-1}(X_i) = S'_i(X_i)$$
 Para i = 2, ..., n-1

Donde la primera derivada está dada por  $S_i(X) = 3a_i(X - X_i)^2 + 2b_i(X - X_i) + c_i$ 



Con lo que se obtienen n-2 condiciones.

**4.- Condiciones de Frontera**: Las pendientes de la curva en los nodos extremos son definidas como la pendiente de cada recta formada por los dos primeros y los dos últimos nodos, respectivamente.

$$S_1'(X_1) = \frac{Y_2 - Y_1}{X_2 - X_1}$$
 y  $S_{n-1}'(X_n) = \frac{Y_n - Y_{n-1}}{X_n - X_{n-1}}$ 

Con lo que se tienen 2 condiciones más.

**5. Estimación lineal de pendientes**: Para encontrar el valor con la que se igualan las derivadas de los nodos internos, se define a la pendiente como el promedio ponderado de las pendientes de las dos rectas formadas con los nodos adyacentes, siempre y cuando cuenten con el mismo signo, en caso contrario, la pendiente será igual a cero.

Para i = 2, ..., n-1, el valor se obtiene a partir de:

$$S_{i-1}^{'}(X_i) = \begin{cases} \frac{1}{3} \, m_{i-1,i} + \frac{2}{3} \, m_{i,i+1} & \text{Para} & m_{i-1,i} \, * \, m_{i,i+1} > 0 \\ \\ 0 & \text{Para} & m_{i-1,i} \, * \, m_{i,i+1} \leq 0 \end{cases}$$

Donde:

$$m_{i,i+1} = \frac{Y_{i+1} - Y_i}{X_{i+1} - X_i}$$

Con lo que se obtienen n-2 condiciones.

Con las cinco propiedades anteriores se forma un sistema de 4n-4 ecuaciones y 4n-4 incógnitas, por lo que es posible encontrar los coeficientes de cada polinomio.

Para ilustrar de forma general las propiedades antes descritas, se ejemplificará el sistema de ecuaciones con tres puntos o nodos originales, lo cual genera un sistema de 8 ecuaciones con 8 incógnitas, dicho sistema sería de la siguiente forma:

Primera propiedad,  $S_i(X_i) = Y_i$ 

1ª ecuación: 
$$S_1(X_1) = a_1(X_1-X_1)^3 + b_1(X_1-X_1)^2 + c_1(X_1-X_1) + d_1 = d_1 = Y_1$$

2<sup>a</sup> ecuación: 
$$S_2(X_2) = a_2(X_2-X_2)^3 + b_2(X_2-X_2)^2 + c_2(X_2-X_2) + d_2 = d_2 = Y_2$$

Segunda propiedad,  $S_i(X_{i+1}) = Y_{i+1}$ 

3ª ecuación: 
$$S_1(X_2) = a_1(X_2-X_1)^3 + b_1(X_2-X_1)^2 + c_1(X_2-X_1) + d_1 = Y_2$$

4ª ecuación: 
$$S_2(X_3) = a_2(X_3-X_2)^3 + b_2(X_3-X_2)^2 + c_2(X_3-X_2) + d_2 = Y_3$$



# Tercera propiedad, $S_{i-1}^{'}(X_i) = S_i^{'}(X_i)$

Al ser tres nodos, solamente se tiene un nodo interior, en el que la derivada del polinomio anterior y el posterior deben ser iguales.

 $5^{a}$  ecuación:  $S_{1}(X_{2}) = S_{2}(X_{2})$ 

Es decir,

 $3a_1(X_2-X_1)^2 + 2b_1(X_2-X_1)+c_1 = c_2$ 

# Cuarta propiedad, condiciones de frontera

6a ecuación: 
$$S_1(X_1) = 3a_1(X_1 - X_1)^2 + 2b_1(X_1 - X_1) + c_1 = c_1 = \frac{Y_2 - Y_1}{X_2 - X_1}$$

7<sup>a</sup> ecuación: 
$$S_2'(X_3) = 3a_2(X_3 - X_2)^2 + 2b_2(X_3 - X_2) + c_2 = \frac{Y_3 - Y_2}{X_3 - X_2}$$

## Quinta propiedad, estimación lineal de pendientes

8a ecuación: 
$$S_1(X_2) = 3a_1(X_2-X_1)^2 + 2b_1(X_2-X_1) + c_1 = \frac{1}{3} \left(\frac{Y_2-Y_1}{X_2-X_1}\right) + \frac{2}{3} \left(\frac{Y_3-Y_2}{X_3-X_2}\right)$$

El sistema de ecuaciones se puede expresar de manera matricial de la siguiente forma:

Donde:

$$S_1'(X_1) = \frac{Y_2 - Y_1}{X_2 - X_1}$$

$$S_2'(X_3) = \frac{Y_3 - Y_2}{X_3 - X_2}$$

$$S_1'(X_2) = \frac{1}{3} \left( \frac{Y_2 - Y_1}{X_2 - X_1} \right) + \frac{2}{3} \left( \frac{Y_3 - Y_2}{X_3 - X_2} \right)$$



Una vez que se cuente con este sistema de ecuaciones de la forma Ax = b es posible utilizar algún método matemático para encontrar su solución, por ejemplo, utilizar descomposición triangular, matrices inversas, etc.

Al resolver el sistema de ecuaciones anterior se determinan los coeficientes de los dos polinomios y por lo tanto la curva completa.

#### Ejemplo

Se desea obtener la función de la estructura temporal de tasas a partir de la siguiente información:

| Plazo | Tasa de<br>interés |
|-------|--------------------|
| 1     | 7.00               |
| 7     | 7.50               |
| 28    | 8.00               |

Debido a que se tiene información de 3 nodos, se determinarán los coeficientes de dos polinomios de grado 3, lo que implica resolver un sistema de ecuaciones con 8 incógnitas. Por comodidad se trabajarán con las tasas multiplicadas por 100.

Las 8 ecuaciones expresadas en forma matricial son:

Al resolver el sistema de ecuaciones<sup>10</sup>, se obtienen los coeficientes de los polinomios.

| Coeficientes del primer polinomio |           | Coeficientes del segundo polinomio |           |
|-----------------------------------|-----------|------------------------------------|-----------|
| a <sub>1</sub> =                  | -0.001102 | a <sub>2</sub> =                   | 0.000045  |
| b <sub>1</sub> =                  | 0.006614  | b <sub>2</sub> =                   | -0.001890 |
| C <sub>1</sub> =                  | 0.083333  | C <sub>2</sub> =                   | 0.043651  |
| d <sub>1</sub> =                  | 7         | d <sub>2</sub> =                   | 7.5       |

Por lo tanto, los polinomios son:



<sup>&</sup>lt;sup>10</sup> En este caso se utilizó la Matriz inversa.

$$S_1(X) = -0.001102 (X-1)^3 + 0.006614 (X-1)^2 + 0.083333 (X-1) + 7$$

$$S_2(X) = 0.000045 (X-7)^3 - 0.001890(X-7)^2 + 0.043651(X-7) + 7.5$$

Gráficamente, los polinomios generan la siguiente curva:



# C) Uso de tasas equivalentes

Debido a que las referencias de mercado usadas para construir la parte corta de las curvas soberanas en colones y en dólares tienen un plazo de aproximadamente 30 días (plazo no estandarizado), se emplea el método de tasas equivalentes para conocer la tasa correspondiente a un día. El nodo obtenido con este método se interpola junto con los demás nodos para obtener la estructura temporal de tasas de interés completa.

Bajo el supuesto que tenemos una cotización de mercado a 30 días y queremos conocer la tasa equivalente a 1 día, este método se aplica de la siguiente forma:

$$r_1 = \left[ \left( 1 + r_{30} \, \frac{30}{360} \right)^{\frac{1}{30}} - 1 \right] \frac{360}{1}$$

Donde:

 $r_1$  Tasa de rendimiento a un día (tasa equivalente de 30 días a 1 día)

 $r_{30}$  Tasa de rendimiento a 30 días (información de mercado)



# 4.3 "Bootstrapping"

En diversos mercados el plazo mayor de los bonos cupón cero es de un año, por lo que se necesita un algoritmo que permita estimar la curva cero para plazos mayores. El método "Bootstrapping" consiste en estimar de manera recursiva niveles de tasas cero a partir de la información de los precios de los bonos o de las Yield, para ambos casos, generalmente, se cuenta con información a largo plazo.

El principal supuesto del "Bootstrapping" es el siguiente: el precio de un bono es igual al valor presente de sus flujos de efectivo utilizando las tasas cero para el descuento. Por su parte, el Precio Sucio del bono se obtiene de acuerdo a la cotización de cada instrumento, puede ser con el Precio Limpio o con Yield.

## Flujos de Efectivo

Un bono de tasa fija con pago del Valor Nominal a vencimiento, tiene la siguiente estructura de pagos:



Donde:

$$Cpn_i = N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)$$

Cpn<sub>i</sub> Pago del cupón i

r<sub>C</sub> Tasa cupón (% m CD), (tasa neta si el instrumento es sujeto a retención de impuestos)

m Composición de la tasa<sup>11</sup>. Es igual al número de cupones al año. CD Convención de días<sup>12</sup>. Por lo general es 30/360 o actual/360

TF(t<sub>1</sub>, t<sub>2</sub>, CD) Fracción de año 13 entre el tiempo t<sub>1</sub> y t<sub>2</sub> con la convención de días CD

K Número de cupones pendientes de pago

N Valor Nominal t Fecha de valoración

T<sub>0</sub> Fecha inmediata anterior de pago de cupón con respecto a **t**. En caso de no existir, se considera

la fecha de emisión

T<sub>i</sub> Fechas de pago del cupón i. Para i = 1, ..., K

#### 1) Precio Sucio del Bono

Para obtener el precio sucio de un bono, se consideran dos formas:

# Valor presente de los flujos de efectivo utilizando la Yield para el descuento

El Precio Sucio del bono se obtiene de acuerdo a la siguiente expresión:



<sup>&</sup>lt;sup>11</sup> Se explica detalladamente en la sección 4.1 "Periodo de Composición, Convención de días y Fracciones de año".

<sup>&</sup>lt;sup>12</sup> Íbidem

<sup>&</sup>lt;sup>13</sup> Íbidem

$$PS = \sum_{i=1}^{K} \frac{Cpn_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \cdot F(t,T_i,CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \cdot F(t,T_K,CD)}}$$

Donde:

PS Precio Sucio

Y Yield al vencimiento (% m CD)

Es importante destacar que casi siempre la tasa cupón y la Yield tienen la misma composición y convención de días.

# Precio Limpio cotizado en el mercado

El Precio Sucio del bono se obtiene de acuerdo a la siguiente expresión:

$$PS = PL + ID$$

$$PS = PL + N \cdot r_C \cdot TF(T_0, t)$$

Donde:

PS Precio Sucio PL Precio Limpio

ID Intereses devengados

## 2) Valor Presente de los Flujos de efectivo con tasas cero

Por otro lado, se tienen las tasas cero hasta el periodo K-1, provenientes de las observaciones de los precios de los bonos cupón cero, con éstas es posible calcular un "precio sucio parcial" del bono, dejando como única incógnita la tasa cero del último flujo del periodo K.

Las siguientes expresiones se utilizan de acuerdo a la composición de las tasas de la curva cero.

• Tasa simple (% SMP CD)

$$PS = \sum_{i=1}^{K-1} \frac{Cpn_i}{1 + r_i \cdot TF(t, T_i, CD)} + \frac{Cpn_K + N}{1 + r_K \cdot TF(t, T_K, CD)}$$

• Tasa compuesta m veces al año (% m CD)

$$PS = \sum_{i=1}^{K-1} \frac{Cpn_i}{\left(1 + \frac{r_i}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{Cpn_K + N}{\left(1 + \frac{r_K}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

Tasa continua (% CONT CD)

$$PS = \sum_{i=1}^{K-1} Cpn_i \cdot e^{-r_i \cdot TF(t,T_i,CD)} + \Ppn_K + N \underbrace{} e^{-r_K \cdot TF(t,T_K,CD)}$$



## 3) Supuesto de Equivalencia

El Precio Sucio es igual al Valor Presente de los flujos de efectivo con tasas cero, por lo que la única incógnita es la tasa cero del último flujo de efectivo, denotada por r<sub>k</sub>.

Dependiendo de la distinta composición de tasas se tienen las siguientes ecuaciones para r<sub>k</sub>.

• Tasa simple (% SMP CD)

$$r_{K} = \frac{1}{TF(t, T_{K}, CD)} \cdot \left( \frac{Cpn_{K} + N}{PS - \sum_{i=1}^{K-1} \frac{Cpn_{i}}{1 + r_{i} \cdot TF(t, T_{i}, CD)}} - 1 \right)$$

• Tasa compuesta m veces al año (% m CD)

$$r_{K} = m \cdot \frac{ \underbrace{\text{Cpn}_{K} + N}^{\frac{1}{m \cdot TF(t, T_{K}, CD)}} }_{\text{Cpn}_{i}} - m$$

$$\left( PS - \sum_{i=1}^{K-1} \frac{Cpn_{i}}{\left(1 + \frac{r_{i}}{m}\right)^{m \cdot TF(t, T_{i}, CD)}} \right)^{\frac{1}{m \cdot TF(t, T_{K}, CD)}}$$

• Tasa continua (% CONT CD)

$$r_K \cdot = \frac{1}{TF(t, T_K, CD)} \cdot In \left[ \frac{Cpn_K + N}{PS - \sum\limits_{i=1}^{K-1} Cpn_i \cdot e^{-r_i \cdot TF(t, T_i, CD)}} \right]$$

De esta forma, la estructura temporal de las tasas cero se tenía hasta el periodo k-1 y fue ampliada un periodo más al despejar r<sub>K</sub>. Si se cuenta con la información de varios bonos, el "Bootstrapping" se aplica de manera consecutiva para encontrar las tasas cero hasta el último flujo de efectivo del bono con mayor vencimiento.



Es común que en la aplicación del "Bootstrapping" no se cuente con todas las tasas cero en cada pago de cupón del bono, en estos casos, se realiza una interpolación lineal para las tasas cupón cero de las que no se tiene información, utilizando la última tasa cero conocida y la tasa cero al vencimiento del bono, de esta forma, sólo se tiene como incógnita que es la tasa cero al vencimiento del bono, ya que las demás tasas cero dependen linealmente de este valor.

Para calcular la tasa cero al vencimiento del bono es necesario utilizar un proceso iterativo de estimación no lineal, tal que cumpla con el supuesto de equivalencia, es decir, que el Valor Presente con tasas cero sea igual al Precio Sucio del bono.

*Ejemplo*Se tiene un bono de Tasa Fija que cotiza con Yield, con las siguientes características:

| Símbolo        | Definición                                                                                                                                                | Ejemplo                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| t              | Fecha de Valoración                                                                                                                                       | 2008/01/29                                                     |
| T <sub>K</sub> | Fecha de Vencimiento                                                                                                                                      | 2009/05/15                                                     |
| K              | Número de cupones pendientes de pago en t                                                                                                                 | 3                                                              |
| T <sub>0</sub> | Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera la fecha de emisión                                       | 2007/11/15                                                     |
| T <sub>i</sub> | Fechas de Pago del cupón i. Para i = 1,, K                                                                                                                | $T_1 = 2008/05/15$<br>$T_2 = 2008/11/15$<br>$T_3 = 2009/05/15$ |
| N              | Valor Nominal                                                                                                                                             | 100                                                            |
| Υ              | Yield al vencimiento. La composición de la tasa se relaciona con las fechas de pago de los cupones                                                        | 5.80 % SEM 30/360                                              |
| m              | El número de veces al año que se compone la Yield                                                                                                         | 2                                                              |
| r <sub>C</sub> | Tasa cupón. La composición de la tasa se relaciona con las fechas de pago de los cupones (tasa neta si el instrumento es sujeto a retención de impuestos) | 6.00 % SEM 30/360                                              |

# Flujos de Efectivo

Se tienen los siguientes pagos de cupón y Valor Nominal:

$$Cpn_1 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ , } Cpn_2 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \text{ y } Cpn_3 = 100 \cdot 0.060 \cdot \frac{180}{360} = 3.0000 \cdot \frac{180}{360}$$

N = 100

Valor Presente de los Flujos de efectivo con Yield

<sup>&</sup>lt;sup>14</sup> La Interpolación lineal se explica detalladamente en la sección 4.2 "Métodos de Interpolación", sección A.



$$PS = \frac{3.0000}{\left(1 + \frac{0.0580}{2}\right)^{2\frac{.106}{.360}}} + \frac{3.0000}{\left(1 + \frac{0.0580}{2}\right)^{2\frac{.286}{.360}}} + \frac{103.0000}{\left(1 + \frac{0.0580}{2}\right)^{2\frac{.466}{.360}}} = 101.468952$$

## Valor Presente de los Flujos de efectivo con tasas cero

Para este ejemplo, la composición de la tasa y la convención de días para las tasas cero es SMP actual/360, con los siguientes datos:

$$r_1 = 5.50\%$$
  
 $r_2 = 5.70\%$ 

Por lo tanto, se tiene

$$PS = \frac{3.0000}{1 + 0.0550 \cdot \frac{107}{360}} + \frac{3.0000}{1 + 0.0570 \cdot \frac{291}{360}} + \frac{103.0000}{1 + r_3 \cdot \frac{472}{360}}$$

### Supuesto de Equivalencia

Utilizando el Valor Presente con Yield y con tasas cero se tiene la siguiente ecuación:

$$101.468952 = \frac{3.0000}{1 + 0.0550 \cdot \frac{107}{360}} + \frac{3.0000}{1 + 0.0570 \cdot \frac{291}{360}} + \frac{103.0000}{1 + r_3 \cdot \frac{472}{360}}$$

Finalmente, el valor de r<sub>3</sub> es,

$$r_3 = \frac{360}{472} \cdot \left( \frac{103.0000}{101.468952 - 5.819610} - 1 \right) = 0.058614$$

# 4.4 Modelos Financieros

En este capítulo se presentan para cada Modelo Financiero, los "Atributos Requeridos" y los "Atributos Calculados". Los primeros se refieren a todos los datos que se necesitan para definir completamente a un instrumento, mientras que los "Atributos Calculados" indican los conceptos y las ecuaciones con los que Valmer obtiene los valores, tales como precio sucio, precio limpio, intereses devengados, duración modificada, duración de Macaulay y Convexidad.

En el Anexo 4.1 se explican el periodo de composición, la convención de días y las fracciones de año, lo cual es indispensable para expresar los modelos financieros de forma general.

# A) Bonos cupón cero

# Atributos Requeridos



| Símbolo        | Definición                                      | Ejemplo               |
|----------------|-------------------------------------------------|-----------------------|
| t              | Fecha de Valoración                             | 2008/01/29            |
| Т              | Fecha de Vencimiento                            | 2009/01/15            |
| N              | Valor Nominal                                   | 100                   |
| r <sub>T</sub> | Tasa de rendimiento simple al tiempo <b>T</b> . | 5.63 % SMP actual/360 |

# Atributos Calculados

| Símbolo    | Definición                                                                                                                                                                                                     | Ejemplo            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| TF(t,T,CD) | Fracción de año <sup>15</sup> entre <b>t</b> y <b>T</b> . La convención de días está definida por la tasa de rendimiento <b>r</b> <sub>T</sub> . (Se usa para el calculo y no aparece en el vector de precios) | 352/360 = 0.977778 |
| PS         | Precio Sucio                                                                                                                                                                                                   | 94.782338          |
| ID         | Intereses Devengados                                                                                                                                                                                           | 0                  |
| PL         | Precio Limpio                                                                                                                                                                                                  | 94.782338          |
| DM         | Duración Modificada                                                                                                                                                                                            | 0.926761           |
| DMac       | Duración de Macaulay                                                                                                                                                                                           | 0.977778           |
| С          | Convexidad                                                                                                                                                                                                     | 1.717771           |

### Precio Sucio

El Precio Sucio es igual al valor presente de todos los flujos de efectivo. En el Bono Cupón Cero el único flujo de efectivo es el Valor Nominal al vencimiento.

$$PS = \frac{N}{1 + r_T \cdot TF(t, T, CD)}$$

# Ejemplo:

$$PS = \frac{100}{1 + 0.0563 \cdot \frac{352}{360}} = 94.782338$$

# • Intereses Devengados

Para un Bono Cupón Cero los Intereses Devengados son iguales a cero, ya que no pagan cupones.

ID = 0

## • Precio Limpio

El Precio Limpio es igual al Precio Sucio menos los Intereses Devengados, por lo que en el Bono Cupón Cero, el Precio Limpio es igual al Precio Sucio.

<sup>&</sup>lt;sup>15</sup> La fracción de año entre dos fechas depende de la convención de días de la tasa de rendimiento. Los distintos tipos de convención de días se explican detalladamente en el Anexo 4.1



PL = PS

#### Duración Modificada

Es un cociente en el cual el numerador es igual a la derivada del Precio Sucio con respecto a la tasa de rendimiento, mientras que el denominador es el Precio Sucio. Este cociente se multiplica por -1, para obtener un número positivo.

Se define como función de la tasa al Precio Sucio:

$$f(r_T^-) = \frac{N}{1 + r_T \cdot TF(t, T, CD)}$$

En términos generales la Duración Modificada es:

$$DM = -\frac{f'(r_T)}{f(r_T)}$$

Para un Bono Cupón Cero, la ecuación anterior se reduce a lo siguiente:

$$DM = \frac{TF(t,T,CD)}{1 + r_T \cdot TF(t,T,CD)}$$

Ejemplo:

$$DM = \frac{\frac{352}{360}}{1 + 0.0563 \cdot \frac{352}{360}} = 0.926761$$

# • Duración de Macaulay

La Duración Modificada es igual al Valor Presente de la Duración de Macaulay. Debido a que la composición de la tasa de rendimiento es SMP para un cupón cero, se tiene la siguiente expresión:

$$DM = \frac{DMac}{1 + r_T \cdot TF(t, T, CD)}$$

Despejando la Duración de Macaulay en términos de la Duración Modificada, se tiene,

$$\mathsf{DMac} = \mathsf{DM} \cdot \P + \mathsf{r}_\mathsf{T} \cdot \mathsf{TF}(\mathsf{t},\mathsf{T},\mathsf{CD})$$

Por lo tanto, para un Bono Cupón Cero,

$$DMac = TF(t, T, CD)$$

Ejemplo:

$$DMac = \frac{352}{360} = 0.977778$$

# Convexidad



Es un cociente en el cual el numerador es igual a la segunda derivada del Precio Sucio con respecto a la tasa de rendimiento, mientras que el denominador es el Precio Sucio.

De la misma forma que en la Duración Modificada, se define como función de la tasa al Precio Sucio:

$$f(r_T^-) = \frac{N}{1 + r_T \cdot TF(t, T, CD)}$$

En términos generales la Convexidad es:

$$C = \frac{f''(r_T)}{f(r_T)}$$

Para un Bono Cupón Cero, la ecuación anterior se reduce a lo siguiente:

$$C = \frac{2 \cdot TF(t, T, CD)^{2}}{(+r_{T} \cdot TF(t, T, CD)^{2})}$$

Ejemplo:

$$C = \frac{2 \cdot \left(\frac{352}{360}\right)^2}{\left(1 + 0.0563 \cdot \frac{352}{360}\right)^2} = 1.717771$$

# B) Bonos de tasa fija

A continuación se describen los atributos de los Bonos de Tasa Fija, es importante considerar el supuesto de que el Valor Nominal se paga al vencimiento, por lo que las ecuaciones no aplican a Bonos de tasa fija amortizables, en los cuales se realizan pagos del Valor Nominal en cada pago de cupón.

# Atributos Requeridos

| Símbolo        | Definición                                                                                                          | Ejemplo    |
|----------------|---------------------------------------------------------------------------------------------------------------------|------------|
| t              | Fecha de Valoración                                                                                                 | 2008/01/29 |
| T <sub>K</sub> | Fecha de Vencimiento                                                                                                | 2009/05/15 |
| K              | Número de cupones pendientes de pago en t                                                                           | 3          |
| T <sub>0</sub> | Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera la fecha de emisión | 2007/11/15 |



| T <sub>i</sub> | Fechas de Pago del cupón i. Para i = 1,, K                                                                                                                | $T_1 = 2008/05/15$ $T_2 = 2008/11/15$ $T_3 = 2009/05/15$ |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| N              | Valor Nominal                                                                                                                                             | 1000                                                     |
| Υ              | Yield al vencimiento. La composición de la tasa se relaciona con las fechas de pago de los cupones                                                        | 5.10 % SEM actual/360                                    |
| m              | El número de veces al año que se compone la Yield                                                                                                         | 2                                                        |
| r <sub>C</sub> | Tasa cupón. La composición de la tasa se relaciona con las fechas de pago de los cupones (tasa neta si el instrumento es sujeto a retención de impuestos) | 6.50 % SEM 30/360                                        |

# **Atributos Calculados**

| Símbolo                                  | Definición                                                                                                                           | Ejemplo                                                                                                                                   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| TF(t,T <sub>i</sub> ,CD)                 | Fracción de año entre $\boldsymbol{t}$ y $\boldsymbol{T_i}$ . Se utiliza para obtener el Valor Presente del cupón $\boldsymbol{i}$ . | TF(t,T <sub>1</sub> , actual/360) = 107/360<br>TF(t,T <sub>2</sub> , actual/360) = 291/360<br>TF(t,T <sub>3</sub> , actual/360) = 472/360 |
| TF(T <sub>i-1</sub> ,T <sub>i</sub> ,CD) | Fracción de año entre $\mathbf{T}_{i-1}$ y $\mathbf{T}_{i}$ . Se utiliza para obtener el Flujo de Efectivo del cupón $\mathbf{i}$ .  | $TF(T_0,T_1, 30/360) = 180/360$<br>$TF(T_1,T_2, 30/360) = 180/360$<br>$TF(T_2,T_3, 30/360) = 180/360$                                     |
| Fi                                       | Flujo de Efectivo del cupón i                                                                                                        | $F_1 = 3.250000$<br>$F_2 = 3.250000$<br>$F_3 = 103.250000$                                                                                |
| VPFi                                     | Valor Presente del Flujo de Efectivo del cupón i.                                                                                    | $VPF_1 = 3.201715$<br>$VPF_2 = 3.120355$<br>$VPF_3 = 96.652773$                                                                           |
| PS                                       | Precio Sucio                                                                                                                         | 102.974843                                                                                                                                |
| ID                                       | Intereses Devengados                                                                                                                 | 1.336111                                                                                                                                  |
| PL                                       | Precio Limpio                                                                                                                        | 101.638732                                                                                                                                |
| DM                                       | Duración Modificada                                                                                                                  | 1.232913                                                                                                                                  |
| DMac                                     | Duración de Macaulay                                                                                                                 | 1.264352                                                                                                                                  |
| С                                        | Convexidad                                                                                                                           | 2.156798                                                                                                                                  |

# • Precio Sucio

El Precio Sucio es igual al valor presente de los flujos de efectivo. Para obtener el factor de descuento se utiliza la Yield al vencimiento denotada por Y.

$$PS = \sum_{i=1}^K \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

Otra forma de expresar la ecuación anterior es:

$$PS = \sum_{i=1}^{K} \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} = \sum_{i=1}^{K} VPF_i$$



# Ejemplo:

Este ejemplo se diseñó para destacar dos diferentes convenciones de días, la de la Yield es actual/360, mientras que la de la tasa cupón es 30/360.

$$PS = \sum_{i=1}^{3} \frac{100 \cdot 0.0650 \cdot TF(T_{i-1}, T_{i}, 30/360)}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{T_{i} - t}{360}}} + \frac{100}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{T_{3} - t}{360}}}$$

$$PS = \frac{100 \cdot 0.0650 \cdot \frac{180}{360}}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{107}{360}}} + \frac{100 \cdot 0.0650 \cdot \frac{180}{360}}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{291}{360}}} + \frac{100 \cdot 0.0650 \cdot \frac{180}{360}}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{472}{360}}} + \frac{100}{\left(1 + \frac{0.0510}{2}\right)^{2 \cdot \frac{472}{360}}} = 102.974843$$

## Intereses Devengados

Los intereses devengados son los intereses que han transcurrido desde el último pago de cupón a la fecha de valoración. Para el caso que no exista un pago de cupón previo a la fecha de valoración, en su lugar se utiliza la fecha de emisión.

$$ID = N \cdot r_C \cdot TF(T_0, t, CD)$$

#### Ejemplo:

ID = 
$$100 \cdot 0.0650 \cdot \frac{74}{360} = 1.336111$$

# • Precio Limpio

El Precio Limpio es igual al Precio Sucio menos los Intereses Devengados.

#### Eiemplo:

### Duración Modificada

Es una medida de sensibilidad que se utiliza para aproximar el precio del bono ante cambios en la Yield. Para obtener la Duración Modificada es necesario definir al Precio Sucio en función de la Yield como única variable.

$$f(Y) = \sum_{i=1}^{K} \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \, F(t, T_i, CD)}}$$

La Duración Modificada se define como un cociente que se utiliza para aproximar el precio de un bono ante cambios en la Yield. El numerador es igual a la derivada del Precio Sucio con respecto a la Yield, mientras que el denominador es el Precio Sucio. Por definición este cociente se multiplica por -1, para obtener un número positivo debido a que la derivada siempre es negativa.



$$DM = -\frac{f'(Y)}{f(Y)}$$

Para un Bono de tasa fija, la ecuación anterior se expresa de la siguiente forma:

$$DM = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}}$$

$$DM = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot VPF_i$$

# Ejemplo:

$$DM = \frac{1}{102.974843 \cdot \left(1 + \frac{0.0510}{2}\right)} \cdot \left[\frac{107}{360} \cdot 3.201715 + \frac{291}{360} \cdot 3.120355 + \frac{472}{360} \cdot 96.652773\right] = 1.232913$$

# Duración de Macaulay

La Duración Modificada es igual al Valor Presente de la Duración de Macaulay.

$$DM = \frac{DMac}{1 + \frac{Y}{m}}$$

Despejando la Duración de Macaulay en términos de la Duración Modificada, se tiene,

$$DMac = DM \cdot \left(1 + \frac{Y}{m}\right)$$

Sustituyendo en la ecuación anterior la Duración Modificada, se obtiene,

$$DMac = \frac{1}{PS} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot VPF_i$$

#### Ejemplo:

Como ya se obtuvo la Duración Modificada, entonces se utiliza la primera expresión para obtener la Duración de Macaulay.

$$DMac = 1.232913 \cdot \left(1 + \frac{0.0510}{2}\right) = 1.264352$$



# Convexidad

La Convexidad es una medida de sensibilidad del precio de un bono ante cambios en las tasas de interés, se utiliza junto con la Duración Modificada para brindar una mejor aproximación del precio.

De la misma forma que la Duración, se define al Precio Sucio en función de la Yield como única variable.

$$f(Y) = \sum_{i=1}^{K} \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \cdot F(t, T_i, CD)}}$$

La convexidad se define como un cociente. El numerador es igual a la segunda derivada del Precio Sucio con respecto a la Yield, mientras que el denominador es el Precio Sucio.

$$C = \frac{f''(Y)}{f(Y)}$$

Para un Bono de tasa fija, la ecuación anterior se reduce a lo siguiente:

$$C = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)^2} \cdot \sum_{i=1}^K \Biggl(TF\left(t, T_i, CD\right)^2 + \frac{TF\left(t, T_i, CD\right)}{m} \Biggr) \cdot \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF\left(t, T_i, CD\right)}}$$

$$C = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)^2} \cdot \sum_{i=1}^K \left(TF(t, T_i, CD)^2 + \frac{TF(t, T_i, CD)}{m}\right) \cdot VPF_i$$

## Ejemplo:

$$C = \frac{1}{102.974843 \cdot \left(1 + \frac{0.0510}{2}\right)^2} \cdot \left[ \left( \left(\frac{107}{360}\right)^2 + \frac{107}{2 \cdot 360}\right) \cdot 3.201715 + \left( \left(\frac{291}{360}\right)^2 + \frac{291}{2 \cdot 360}\right) \cdot 3.201715 + \left( \left(\frac{472}{360}\right)^2 + \frac{472}{2 \cdot 360}\right) \cdot 96.652773 \right] = 2.156798$$

# C) Bonos de tasa flotante

A continuación se describen los atributos de los Bonos de Tasa Flotante, es importante considerar el supuesto de que el Valor Nominal se paga al vencimiento, por lo que las ecuaciones no aplican a Bonos de tasa flotante amortizables, en los cuales se realizan pagos del Valor Nominal en cada pago de cupón.

# Atributos Requeridos

Símbolo Definición Ejemplo



| t              | Fecha de Valoración                                                                                                 | 2008/01/29                                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| T <sub>K</sub> | Fecha de Vencimiento                                                                                                | 2009/03/05                                                     |
| K              | Número de cupones pendientes de pago en t                                                                           | 3                                                              |
| T <sub>0</sub> | Fecha inmediata anterior de pago de cupón con respecto a t. En caso de no existir, se considera la fecha de emisión | 2007/09/05                                                     |
| T <sub>i</sub> | Fechas de Pago del cupón i. Para i = 1,, K                                                                          | $T_1 = 2008/03/05$<br>$T_2 = 2008/09/05$<br>$T_3 = 2009/03/05$ |
| N              | Valor Nominal                                                                                                       | 1000                                                           |

| Símbolo          | Definición                                                                                                             | Ejemplo                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| r <sub>REF</sub> | Tasa de referencia observada a la fecha de valoración                                                                  | 4.50 % SEM 30/360                                        |
| S                | Premio. Se agrega a la Tasa de referencia para obtener el pago de los cupones                                          | 2.10 % SEM 30/360                                        |
| r <sub>cv</sub>  | Tasa del cupón vigente (tasa neta si el instrumento es sujeto a retención de impuestos) Para i = 1                     | 6.10 % SEM 30/360                                        |
| rc               | Tasa cupón (tasa neta si el instrumento es sujeto a retención de impuestos) donde $r_C = r_{REF} + S$ Para $i = 2,, K$ | r <sub>C</sub> = 4.50% + 2.10%<br>r <sub>C</sub> = 6.60% |
| SY               | Prima. Se agrega a la Tasa de referencia para obtener la Yield al vencimiento                                          | 1.80 % SEM 30/360                                        |
| Υ                | Yield al vencimiento, donde Y = r <sub>REF</sub> +SY                                                                   | Y = 4.50% + 1.80%<br>Y = 6.30%                           |

# **Atributos Calculados**

| Símbolo                                  | Definición                                                                                                                          | Ejemplo                                                                                               |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| TF(t,T <sub>i</sub> ,CD)                 | Fracción de año entre ${\bf t}$ y ${\bf T_i}$ . Se utiliza para obtener el Valor Presente del cupón ${\bf i}$ .                     | $TF(t,T_1, 30/360) = 36/360$<br>$TF(t,T_2, 30/360) = 216/360$<br>$TF(t,T_3, 30/360) = 396/360$        |
| TF(T <sub>i-1</sub> ,T <sub>i</sub> ,CD) | Fracción de año entre $\mathbf{T}_{i-1}$ y $\mathbf{T}_{i}$ . Se utiliza para obtener el Flujo de Efectivo del cupón $\mathbf{i}$ . | $TF(T_0,T_1, 30/360) = 180/360$<br>$TF(T_1,T_2, 30/360) = 180/360$<br>$TF(T_2,T_3, 30/360) = 180/360$ |
| F <sub>i</sub>                           | Flujo de Efectivo del cupón i                                                                                                       | $F_1 = 30.50$<br>$F_2 = 33.00$<br>$F_3 = 1033.00$                                                     |
| VPFi                                     | Valor Presente del Flujo de Efectivo del cupón i.                                                                                   | $VPF_1 = 30.311400$<br>$VPF_2 = 31.794417$<br>$VPF_3 = 964.868238$                                    |
| PS                                       | Precio Sucio                                                                                                                        | 1026.974055                                                                                           |
| ID                                       | Intereses Devengados                                                                                                                | 24.400000                                                                                             |
| PL                                       | Precio Limpio                                                                                                                       | 1002.574055                                                                                           |
| DM                                       | Duración Modificada                                                                                                                 | 1.022787                                                                                              |
| DMac                                     | Duración de Macaulay                                                                                                                | 1.055005                                                                                              |
| С                                        | Convexidad                                                                                                                          | 1.574982                                                                                              |



### Precio Sucio

El Precio Sucio es igual al valor presente de los flujos de efectivo.

Para obtener el factor de descuento se utiliza la Yield, que se define por la tasa de referencia más la prima y se denota por Y. Con respecto a los flujos de efectivo, para el cupón en curso se utiliza la tasa del cupón vigente y para los cupones restantes se utiliza la tasa de referencia más el premio.

$$PS = \frac{N \cdot r_{CV} \cdot TF(T_0, T_1, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_1, CD)}} + \sum_{i=2}^K \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} + \frac{N}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}}$$

Donde 
$$Y = r_{REF} + SY$$
  
 $r_{C} = r_{REF} + S$ 

Otra forma de expresar la ecuación anterior es:

$$PS = \sum_{i=1}^{K} \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}} = \sum_{i=1}^{K} VPF_i$$

# Ejemplo:

$$PS = \frac{1000 \cdot 0.0610 \cdot \frac{180}{360}}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{36}{360}}} + \frac{1000 \cdot 0.0660 \cdot \frac{180}{360}}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{216}{360}}} + \frac{1000 \cdot 0.0660 \cdot \frac{180}{360}}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{396}{360}}} + \frac{1000 \cdot 0.0660 \cdot \frac{180}{360}}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{396}{360}}} = 1026.974055$$

### Intereses Devengados

Los intereses devengados son los intereses que han transcurrido desde el último pago de cupón a la fecha de valoración. Para el caso que no exista un pago de cupón previo a la fecha de valoración, en su lugar se utiliza la fecha de emisión.

$$ID = N \cdot r_{CV} \cdot TF(T_0, t, CD)$$

# Ejemplo:

$$ID = 1000 \cdot 0.0610 \cdot \frac{144}{360} = 24.400000$$

### Precio Limpio

El Precio Limpio es igual al Precio Sucio menos los Intereses Devengados.



### Ejemplo:

PL = 1026.974055 - 24.400000 = 1002.574055

#### Duración Modificada

Es una medida de sensibilidad que se utiliza para aproximar el precio del bono ante cambios en las tasas de interés. Para obtener la Duración Modificada es necesario definir al Precio Sucio en función de la Yield como única variable.

$$f(Y) = \sum_{i=1}^{K} \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \cdot F(t, T_i, CD)}}$$

La Duración Modificada se define como un cociente que se utiliza para aproximar el precio de un bono ante cambios en la Yield. El numerador es igual a la derivada del Precio Sucio con respecto a la Yield al vencimiento, mientras que el denominador es el Precio Sucio. Por definición este cociente se multiplica por -1, para obtener un número positivo debido a que la derivada siempre es negativa.

$$DM = -\frac{f'(Y)}{f(Y)}$$

Para un Bono de tasa flotante, la ecuación anterior se expresa de la siguiente forma:

$$DM = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)} \cdot \left[TF(t, T_1, CD) \cdot \frac{N \cdot r_{CV} \cdot TF(T_0, T_1, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_1, CD)}} + \sum_{i=2}^{K} TF(t, T_i, CD) \cdot \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}} + TF(t, T_K, CD) \cdot \frac{N \cdot r_C \cdot TF(T_{i-1}, T_i, CD)}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_K, CD)}} \right]$$

Si consideramos los Flujos de Efectivo, se simplifica a lo siguiente,

$$DM = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF(t, T_i, CD)}}$$

$$DM = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot VPF_i$$

#### Eiemplo:

$$DM = \frac{1}{PS \cdot \left(1 + \frac{0.0630}{2}\right)} \cdot \left[\frac{107}{360} \cdot \frac{30.500000}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{107}{360}}} + \frac{291}{360} \cdot \frac{33.000000}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{291}{360}}} + \frac{472}{360} \cdot \frac{1033.000000}{\left(1 + \frac{0.0630}{2}\right)^{2 \cdot \frac{472}{360}}}\right] = 1.022787$$



### Duración de Macaulay

La Duración Modificada es igual al Valor Presente de la Duración de Macaulay. Debido a que la composición de la yield es igual al periodo de cupón, denotado por m, se tiene la siguiente expresión:

$$DM = \frac{DMac}{1 + \frac{Y}{m}}$$

Despejando la Duración de Macaulay en términos de la Duración Modificada, se tiene,

$$DMac = DM \cdot \left(1 + \frac{Y}{m}\right)$$

Sustituyendo en la ecuación anterior la Duración Modificada, se obtiene,

$$DMac = \frac{1}{PS} \cdot \sum_{i=1}^{K} TF(t, T_i, CD) \cdot VPF_i$$

## Ejemplo:

Como ya se obtuvo la Duración Modificada, entonces se utiliza la primera expresión para obtener la Duración de Macaulay.

$$DMac = 1.022787 \cdot \left(1 + \frac{0.0630}{2}\right) = 1.055005$$

### Convexidad

La Convexidad es una medida de sensibilidad del precio de un bono ante cambios en las tasas de interés, se utiliza junto con la Duración Modificada para brindar una mejor aproximación del precio ante cambios en las tasas de interés.

De la misma forma que en la Duración Modificada, se define como función de la tasa al Precio Sucio:

$$f(Y) = \sum_{i=1}^K \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot T \, F(t,T_i,CD)}}$$

En términos generales la Convexidad es:

$$C = \frac{f''(r_K)}{f(r_K)}$$

Para un Bono de tasa flotante, la ecuación anterior se reduce a lo siguiente:

$$C = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)^2} \cdot \sum_{i=1}^K \Biggl(TF\left(t, T_i, CD\right)^2 + \frac{TF\left(t, T_i, CD\right)}{m} \Biggr) \cdot \frac{F_i}{\left(1 + \frac{Y}{m}\right)^{m \cdot TF\left(t, T_i, CD\right)}}$$



$$C = \frac{1}{PS \cdot \left(1 + \frac{Y}{m}\right)^2} \cdot \sum_{i=1}^K \Biggl(TF(t, T_i, CD)^2 + \frac{TF(t, T_i, CD)}{m} \Biggr) \cdot VPF_i$$

# Ejemplo:

$$C = \frac{1}{1026.974055 \cdot \left(1 + \frac{0.0630}{2}\right)^2} \cdot \left[ \left( \left(\frac{36}{360}\right)^2 + \frac{36}{2 \cdot 360} \right) \cdot 30.311400 + \left( \left(\frac{216}{360}\right)^2 + \frac{216}{2 \cdot 360} \right) \cdot 31.794417 + \left( \left(\frac{396}{360}\right)^2 + \frac{396}{2 \cdot 360} \right) \cdot 964.868238 \right] = 1.574982$$

# D) Bonos con derecho de pago anticipado

Los bonos con cláusulas de redención anticipada contemplan en su estructura una opción del tipo Call europeo sobre el mismo a favor del emisor, son por lo regular bonos que otorgan al tenedor un período de gracia en el cual el bono no puede ser recomprado por el emisor al tenedor. Terminado este período de gracia el emisor tiene el derecho pero no la obligación de recomprar la nota al tenedor a par, estos se pueden dividir en las siguientes categorías de acuerdo al momento en que dicho derecho puede ser ejercido:

- 1. En cualquier momento después del pago de un cupón de predefinido;
- 2. Dentro de una ventana de tiempo previo el pago de cualquier cupón;
- 3. Al momento del pago de un cupón predefinido;
- 4. Al momento del pago de cualquier cupón.

El modelo de valuación propuesto para la determinación del precio teórico de este tipo de bonos considera dicho derecho como una opción de compra simple o también conocida como "plain vanilla" de tal forma que las consideraciones para las cuatro instancias antes descritas quedan de la siguiente manera:

- 1. Para aquellos bonos en los que el emisor puede ejercer el derecho de recompra en cualquier momento después del pago de cupón predefinido, se incorporará a la valuación del bono en cuestión, un call option europeo plain vanilla el cual se aplicará solamente a ese cupón.
- Para aquellos bonos en los que el emisor puede ejercer el derecho de recompra dentro de una ventana del tiempo previo pago de cualquier cupón, se incorporará a la valuación del bono en cuestión, un call option europeo plain vanilla que será considerado para el pago de siguiente cupón.
- 3. Para aquellos bonos en los que el emisor puede ejercer el derecho de recompra al momento del pago de un cupón predefinido, se incorporará a la valuación del bono en cuestión, un call option europeo plain vanilla que será considerado para precisamente al momento de pago del cupón en cuestión.
- 4. Para aquellos bonos en los que el emisor puede ejercer el derecho de recompra al momento del pago de cualquier cupón, se incorporará a la valuación del bono en cuestión, un call option europeo plain vanilla que será considerado para el pago de siguiente cupón.



Expuestos los puntos anteriores el modelo de valuación para los bonos Callables se propone de la siguiente forma:

$$P_{V_{RACL}} = N - P_{Call_i}$$

Donde:

PV<sub>RACL</sub> Precio Sucio de Valuación del Bono Callable

PCall<sub>i</sub> Prima de la Opción Call Europea en monto *i* determinada mediante la Fórmula General de Black

& Scholes

N Valor Nominal

i. El precio de ejercicio será el valor nominal, puesto que a este precio lo llamará el emisor.

ii. Se determina el valor de la prima al "Call Date" más cercano mediante la siguiente expresión:

$$C = SN \left( 1_{-B\&S} \right) Ke^{-rt_{BS}} N \left( 1_{2_{-B\&S}} \right)$$

Donde:

C Valor de la prima del Call Europeo

S Precio Spot

 $\operatorname{N} d_{\scriptscriptstyle 1-R\&S}$  Función normal que se distribuye con media 0 y varianza 1 usada para Black&Scholes

 $d_{1\_B\&S} = \frac{\ln(S/K) + (r - r^* + \sigma^2/2) t_{BS}}{\sigma_{\gamma}/t_{BS}}$ 

K Precio del Ejercicio

r Tasa Local continua (tasa de financiamiento)  $t_{RS}$  Plazo de la operación num. De días/360)

 $d_{1 B\&S} = d_{1 B\&S} - \sigma \sqrt{t_{BS}}$ 

 $\sigma$  Volatilidad en términos de % y anualizada

In Logaritmo Natural

# E) Administración de riesgo modelo

Para disminuir en la mayor medida posible el riesgo modelo se sigue un estricto procedimiento de modelación de los instrumentos. El proceso de asignación de modelo teórico a los distintos instrumentos emitidos comienza con la recepción de la información y características a través de la BNV de Costa Rica. Consideramos que el reporte proporcionado por la Bolsa Nacional de Valores de Costa Rica, a través de cual se nos informan las



características de los instrumentos, es la fuente de información más confiable para obtener las características de los instrumentos costarricenses.

Con base en las características recibidas se asigna el modelo de valuación a dicho instrumento y se actualiza la base de datos, la cual sirve como insumo a la plataforma RiskWatch, que es la encargada de valorar el instrumento. Dicha plataforma es a su vez suministrada con los insumos diarios por un cuidadoso proceso, en el cual se verifica que el cambio del día a día de los insumos sea congruente y se complemente con la definición de modelos teóricos para cada tipo de instrumento. Con esto se obtienen los precios teóricos y se procede a revisar que el cambio con el día anterior sea congruente con los movimientos que se reflejaron en el mercado. Al concluir el proceso de valuación a través de la plataforma RiskWatch se verifica que los valores generados por dicho software sean iguales a los valores que resultan de un proceso independiente, comprobando de esta forma una correcta asignación de precio teórico al instrumento valuado.

Respecto a la asignación de parámetros por tipo de instrumento, se realiza un proceso de asignación de curvas de descuento, curva de prima, tasa de referencia para cálculo de cupones no conocidos, tipos de cambio, amortizaciones conocidas, base de calculo de días, etc. basado en las mismas características recibidas por la citada fuente.



# 4.5 Extrapolación con tasa forward constante

La tasa forward denotada por  $F_a^b$ , es la tasa que hace equivalente invertir en una tasa de interés  $r_b$  con plazo b, a utilizar una tasa de interés  $r_a$  con plazo a, y posteriormente reinvertir a una tasa de interés  $F_a^b$  para el periodo (a,b). Tal como se muestra en la siguiente gráfica:



Esta equivalencia se hace bajo el supuesto de ausencia de oportunidades de arbitraje y analíticamente se expresa por:

$$\left(1 + r_b \frac{b}{360}\right) = \left(1 + r_a \frac{a}{360}\right) \left(1 + F_a^b \frac{b - a}{360}\right)$$

Donde:

r<sub>b</sub> Tasa simple correspondiente al plazo b
 r<sub>a</sub> Tasa simple correspondiente al plazo a

 $F_a^b$  Tasa forward del tiempo a al tiempo b

Con a < b

Si se conocen las tasas simples,  $r_b$  y  $r_a$ , es posible obtener la tasa forward,  $F_a^b$ , implícita. Al despejarla de la igualdad antes mencionada, se tiene:

$$F_a^b = \left( \left( \frac{1 + r_b \frac{b}{360}}{1 + r_a \frac{a}{360}} \right) - 1 \right) \frac{360}{b - a}$$

Para obtener la extrapolación, sea desean obtener las tasas simples de k+1 hasta m (plazo al que se desea extrapolar) y se supone conocida la estructura temporal de tasas simples desde 1 hasta k (el plazo mayor de la curva cero cupón que se desea extrapolar).





Como puede observarse la última tasa forward conocida de un día es  $\,F_{k-1}^{\,k}\,$ , que se obtiene a partir de:

$$F_{k-1}^{k} = \left( \left( \frac{1 + r_k \frac{k}{360}}{1 + r_{k-1} \frac{k-1}{360}} \right) - 1 \right) \frac{360}{1}$$

Una vez que se tiene el valor de  $\,F_{k-1}^{k}\,$ , éste se supone constante para los siguientes periodos, es decir,

$$F_{k-1}^k = F_k^{k+1} = ... = F_{m-1}^m$$

Por lo que la tasa simple del periodo k+1 es:

$$r_{k+1} = \left( \left( 1 + r_k \frac{k}{360} \right) \left( 1 + F_k^{k+1} \frac{1}{360} \right) - 1 \right) \frac{360}{k+1}$$

Posteriormente, se utiliza el valor de  $r_{k+1}$  y la tasa forward constante para obtener  $r_{k+2}$  y, así sucesivamente, hasta obtener la tasa  $r_m$ .

Cabe mencionar, que además de la tasa forward asociada a un periodo se podría utilizar cualquier otra tasa forward. De manera general, se podría utilizar la tasa forward asociada a p días,  $F_{k-p}^k$ .

$$F_{k-p+1}^{k+1} = F_{k-p}^k$$

$$F_{k-p}^k$$

$$0 \qquad k-p \qquad k-p+1 \qquad k-2 \qquad k-1 \qquad k \qquad k+1 \qquad m$$

$$Conocidas \qquad No Conocidas$$

Por lo que la tasa  $F_{k-p}^k$ , es:



$$F_{k-p}^{k} = \left( \left( \frac{1 + r_{k}}{1 + r_{k-p}} \frac{\frac{k}{360}}{\frac{k-p}{360}} \right) - 1 \right) \frac{360}{p}$$

Dado que  $F_{k-p}^k$  se mantendrá constante, entonces  $F_{k-p}^k = F_{k-p+1}^{k+1} = ... = F_{m-p}^m$ , por lo que la tasa de interés del plazo k+1 se obtiene de la siguiente forma,

$$r_{k+1} = \left( \left( 1 + r_{k-p+1} \, \frac{k-p+1}{360} \right) \left( 1 + F_{k-p+1}^{k+1} \, \frac{p}{360} \right) - 1 \right) \frac{360}{k+1}$$

Para el caso de las curvas cero cupón en dólares y colones descritas en la sección 2, el plazo de la tasa forward es 180 días para ser congruentes con la periodicidad de los bonos cuponados.

# 4.6 Procedimiento general para el primer día de generación del vector

Los precios y rendimientos reportados en el vector que generó la BNV al 31 de julio de 2008 se tomarán como base para la generación inicial del vector de precios de Valmer con el fin de proveer una valuación que sea congruente con los precios con que se tienen valorizados los instrumentos del mercado de Costa Rica.

En esa fecha se establecen las sobretasas/primas que los instrumentos de tasa fija y cero cupón tienen respecto a las curvas soberanas, para proceder a ajustarlos posteriormente con las observaciones de mercado y respecto a las curvas soberanas conforme a la metodología descrita. Para las acciones y títulos de participación se toman los precios publicados para dicha fecha.

En lo que se refiere a instrumentos de tasa variable, se calcula a esa fecha la prima implícita en los precios reportados por la BNV para proceder a ajustarlos posteriormente con las observaciones de mercado disponibles. Particularmente para instrumentos G\_TPTBA y G\_TP\$A la prima se determina con la curva de primas descritas en la sección 2.5 y 2.6 que fue obtenida a partir de un análisis que reflejara las condiciones con que operan esos instrumentos en el mercado de Costa Rica.

A partir del 1 de Agosto se aplicará por cada día hábil la metodología que se describe en el presente documento y será entregado a los usuarios a través de los medios establecidos.

# 4.7 Índice de representatividad

El índice de representatividad mide la facilidad de un activo de ser encontrado en el mercado bursátil en un periodo dado. Su utilidad es identificar las emisiones que sean más representativas de los movimientos de mercado para elegir las muestras de las curvas y definir los rangos, con el fin de reflejar valoraciones que muestren las condiciones prevalecientes en el mercado y contribuir a una formación de precios oportuna y transparente.



Antes de realizar cualquier cálculo, se eliminan las operaciones de reporto y las que no cumplan con las restricciones de monto mínimo para cada grupo especificadas en esta metodología. Este índice se aplica por cada instrumento que opere en el periodo definido de la siguiente manera:

$$IR = \alpha \cdot FT + \beta \cdot PB + \lambda \cdot NR$$

Frecuencia de Transacción

 $FT = \frac{No. de Operaciones del instrumento i}{No. de Operaciones del grupo}$ 

Presencia Bursátil

**PB** = No. de días en que se transo el instrumento i No.de días que se negociaron los instrumentos del grupo

Negociación Relativa

**NR**= Valor facial total de las operaciones del instrumento i Valor facial total de las operaciones del grupo

**Ponderadores** 

 $\alpha = 1/3$ 

 $\beta = 1/3$ 

 $\lambda = 1/3$ 

Los grupos a los que es aplicado este índice son:

**G\_TPTBA** 

G\_TP\$A

**G\_TUDES** 

G TP0 v BCCR bem0

G\_TP y BCCR\_bem

G\_TP\$ y G\_bde

Cuando se aplica a rangos, se obtiene el índice promedio de las emisiones contenidas en cada uno de ellos.

# 4.8 Defaulted

Para instrumentos que incurran en incumplimiento se determinará el valor del instrumento en función de la información pública disponible en el sitio de la SUGEVAL.

