Intervals, Transformations, and Slope Solution (version 62)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5, -1) \cup (4, 8)$
Negative	$(-8, -5) \cup (-1, 4)$
Increasing	$(-8, -2) \cup (2, 6)$
Decreasing	$(-2,2) \cup (6,8)$
Domain	(-8,8)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 62)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=16$ and $x_2=58$. Express your answer as a reduced fraction.

$$\frac{g(58) - g(16)}{58 - 16} = \frac{72 - 90}{58 - 16} = \frac{-18}{42}$$

The greatest common factor of -18 and 42 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{7}$$

2