

Thiết kế luận lý 1

Khoa KH & KTMT Bộ môn Kỹ Thuật Máy Tính

cuu duong than cong . com

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Tài liệu tham khảo

 "Digital Systems, Principles and Applications", 11th Edition, Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss

cuu duong than cong . com

cuu duong than cong . com

cuu duong than cong . com

Các mạch luận lý tổ họp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Mục tiêu

- Biểu thức logic dạng chuẩn SoP, PoS
- Đơn giản biểu thức dạng chuẩn SoP
- Sử dụng đại số Boolean và bìa Karnaugh để đơn giản biểu thức logic và thiết kế mạch tổ hợp
- Mạch tạo parity và mạch kiểm tra parity
- Mach enable/disable
- Các đặc tính cơ bản của IC số

cuu duong than cong . com

Mạch tổ hợp

- Mức logic ngõ xuất phụ thuộc việc tổ hợp các mức logic của ngõ nhập hiện tại.
- Mạch tố hợp không có bộ nhớ nên giá trị ngõ xuất phụ thuộc vào giá trị ngõ nhập hiện tại.

Các dạng chuẩn (Standard form)

- Tổng của các tích (Sum of products SoP)
 - Mỗi biểu thức dạng SoP bao gồm các biểu thức AND được OR lại với nhau.
 - Ví dụ: ABC + A'BC' AB + A'BC' + C'D' + D cuu duong than cong . com
- Tích của các tổng (Product of Sums PoS)
 - Mỗi biểu thức dạng PoS bao gồm các biểu thức OR được AND lại với nhau.
 - Ví dụ: (A+B'+C)(A+C) com (A+B')(C'+D)F

Đơn giản mạch tố hợp

• Biến đổi các biểu thức logic thành dạng đơn giản hơn để khi xây dựng mạch ta cần ít cổng logic và các kết nối hơn.

Các phương pháp đơn giản mạch tổ hợp

- Phương pháp đại số
- Bìa Karnaugh (K-map)

```
cuu duong than cong . com
```

cuu duong than cong . com

Phương pháp đại số

- Sử dụng các định lý trong đại số Boole để đơn giản các biểu thức của mạch logic.
- Chuyến sang dạng SOP (DeMorgan và phân phối).
- Rút gọn bằng cách tìm các nhân tố chung.

Ví dụ

Đơn giản biểu thức sau

$$-Z1 = A.B.C + A.\overline{B}.(\overline{A}.\overline{C})$$

$$-Z2 = A.B.C + A.B.C + A.B.C$$

$$-Z3 = \overline{A}.C.(\overline{A}.B.D) + \overline{A}.B.\overline{C}.\overline{D} + A.\overline{B}.C$$

$$-Z4 = (A+B)(A+B+D).D$$

©2010, CE Department

Thiết kế mạch tổ hợp

	Α	В	X
→ AB	0	0	0
	0	1	0
	1	0	0
cuu duong t	hah c	ong	1 _{om}

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Thiết kế mạch tổ hợp

A	В	X
0	0	0
0	1	1
1	0	0
1	1	0

cuu duong than cong . com

Thiết kế mạch tổ hợp

- 1. Lập bảng sự thật (truth table)
- 2. Viết biểu thức AND cho các ngõ xuất mức 1
- 3. Viết biểu thức SoP
- 4. Đơn giản biếu thức SoP
- 5. Hiện thực mạch từ biểu thức đơn giản

Ví dụ 1

 Thiết kế mạch logic với 3 ngõ nhập A, B, C thoả mãn điều kiện sau: ngõ xuất = 1 khi và chỉ khi số ngõ nhập ở mức 1 nhiều hơn số ngõ nhập ở mức 0

cuu duong than cong . com

cuu duong than cong . com

©2014, CE Department

Ví dụ 1

Bảng sự thật

A	В	С	х	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\rightarrow \overline{A}BC$
ng 1 th	an 0 on	g 0 c	om O	
1	0	1	1	$\rightarrow A\overline{B}C$
1	1	0	1	$\rightarrow AB\overline{C}$
1	1	1	1	$\rightarrow ABC$

cuu duong than cong . com

- Biểu thức ngõ xuất (SOP): $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
- Rút gọn: BC + AC + AB

dce Ví du 2

 Thiết kế mạch logic sau: Output = 1 khi điện thể (được biểu diễn bởi 4 bit nhị phân ABCD) lớn hơn bằng 6V.

©2014, CE Department

- Bìa Karnaugh biểu diễn quan hệ giữa ngõ nhập và ngõ xuất của mạch.
- Theo chiều dọc hoặc chiều ngang, các ô cạnh nhau chỉ khác nhau một biến.

- Bảng sự thật
- Biểu thức logic
- Bìa Karnaugh

©2014, CE Department

Α	В	С	D	X					
0	0	0	0	0					
0	0	0	1	1 → ĀBCD					
0	0	1	0	0					
0	0	1	1	0					
0	1	0	0	0			C	D	
0	1	0	1	1 → ĀBCD 0 X = ĀBCD + ĀBCD + ABCD + ABCD	\com				
0	1	1	0	0 + ABCD + ABCD	com	00	01	11	10
0	1	1	1	0		00	O I	• • • •	10
1	0	0	0	0					
1	0	0	1	0	00	0	1	0	0
1.	0	1	0	0					
1	0	1	11	0	01	0	1	0	0
1	1	0	0	0 1 → ABCD cuu duong than coAB.	com				
-1	1	0	1	1 → ABCD	11	0	1	1	0
1	1	1	0	0	• •)			
1	1	1	1	1 → ABCD	40	•			
					10	0	0	0	0

Α	В	C	D	X					
0	0	0	0	0					
0	0	0	1	1 → ĀBCD					
0	0	1	0	0					
0	0	1	1	0					
0	1	0	0	0			A	В	
0	1	0	1	1 → ĀBCD 0 X = ĀBCD + ĀBCD + ABCD + ABCD	\com				
0	1	1	0	0 + ABCD + ABCD	Com	00	01	11	10
0	1	1	1	0		00	O I	• •	
1	0	0	0	0	00	0			
1	0	0	1	0	00	0	0	0	0
1.	0	1	0	0					
1	0	1	1	0	01	1	1	1	0
1	1	0	0	cuu duong than coCD.	com				
-1	1	0	1	0 1 → ABCD cuu duong than co CD.	11	0	0	1	0
1	1	1	0	0	• •				
1	1	1	1	1 → ABCD	40	0	•	•	
					10	0	0	0	0

Α	В	С	D	X					
0	0	0	0	0					
0	0	0	1	1 → ĀBCD					
0	0	1	0	0					
0	0	1	1	0					
0	1	0	0	0			A	В	
0	1	0	1	1 → ĀBCD 0 X = ĀBCD + ĀBCD + ABCD + ABCD	\com				
0	1	1	0	0 + ABCD + ABCD	Com	00	01	11	10
0	1	1	1	0		UU	O I	• • • •	10
1	0	0	0	0	04	4			
1	0	0	1	0	01	1	1	1	0
1.	0	1	0	0					
1	0	1	1	0	11	0	0	1	0
1	1	0	0	0 1 → ABCD cuu duong than co CD.	com				
		^	-1	1 - ABCD					
-1	1	0		1 - ABOD	10		l ()		
1	1	1	0	0	10	0	0	0	0
1	1	1	- 0		10 00	0	0	0	0

ABCD	X					
0 0 0 0	0					
0 0 0 1	1 → ĀBCD					
0 0 1 0	0					
0 0 1 1	0					
0 1 0 0	0			C	D	
0 1 0 1	1 → ĀBCD X = ĀBCD + ĀBCD 0 + ABCD + ABCD					
0 1 1 0	0 + ABCD + ABCD	Com	00	04	44	40
0 1 1 1	0		00	01	11	10
1 0 0 0	0					
1 0 0 1	0	00	$\mathbf{0_0}$	111	0 ₃	02
1 0 1 0	0			•	-	
1 0 1 1	0	01	04	1 ₅	0,	0 ₆
1 1 0 0	0		04	' 5	07	6
1 1 0 1	1 → ABCDuu duong than coAB.	com				
1 1 1 0	0	11	0 ₁₂	1 ₁₃	1 ₁₅	0 ₁₄
1 1 1 1	1 → ABCD					
		10	08	09	0 ₁₁	0 ₁₀

Quy tắc rút gọn bìa Karnaugh

- Khoanh vòng (looping) là quá trình kết hợp các ô kề nhau lại với nhau. Thông thường ta khoanh các ô chứa giá trị 1.
- Ngõ xuất có thể được đơn giản hóa bằng cách khoanh vòng.

cuu duong than cong . com

cuu duong than cong . com

Qui tắc tính giá trị của 1 vòng

- Khi một biến xuất hiện cả dạng đảo và không đảo trong một vòng, biến đó sẽ được đơn giản khỏi biểu thức.
- Các biến chung cho mọi ô trong một vòng phải xuất hiện trong biểu thức cuối cùng.

cuu duong than cong . com

©2014, CE Department

Khoanh vòng 2 ô kề nhau

Khoanh vòng 2 ô kề nhau

cuu duong than cong . com

$$X = \overline{BCD} + \overline{ABD}$$

$$X = \overline{ABC} + \overline{ABD}$$

Khoanh vòng 4 ô kề nhau

Khoanh vòng 4 ô kề nhau

$$X = BD$$

Khoanh vòng 4 ô kề nhau

$$X = \overline{BD}$$

Khoanh vòng 8 ô kề nhau

Khoanh vòng 8 ô kề nhau

$$X = A$$

$$X = D$$

Quá trình đơn giản hóa

- Xây dựng bảng K-map và đặt 1 hoặc 0 trong các ô tương ứng với bảng sự thật.
- Khoanh vòng các ô giá trị 1 đơn lẻ, không tiếp giáp với các ô giá trị 1 khác (vòng đơn).
- Khoanh vòng các cặp giá trị 1 không tiếp giáp với các ô giá trị 1 nào khác nữa (vòng kép).
- Khoanh vòng các ô 8 giá trị 1 (nếu có) ngay cả nếu nó chứa 1 hoặc nhiều ô đã được khoanh vòng.
- Khoanh vòng các ô 4 giá trị 1 (nếu có) chứa một hoặc nhiều ô chưa được khoanh vòng. Phải đảm bảo số vòng là ít nhất.
- Khoanh vòng các cặp giá trị 1 tương ứng với các ô giá trị 1 chưa được khoanh vòng. Phải đảm bảo số vòng là ít nhất.
- Tạo cổng OR các số hạng được tạo bởi mỗi vòng

$$X = \overline{ABCD} + ACD + BD$$

$$X = BC + AC$$

$$X = A.B.\overline{C} + \overline{A.C.D} + \overline{A.B.C} + A.C.D$$

Don't-care

- Điều kiện "don't-care" là điều kiện với một tập các ngõ nhập nào đó, mức luận lý ngõ xuất không được mô tả.
- Giá trị "Don't-care" nên được gán bằng 1 hoặc 0 sao cho việc khoanh vòng K-map tạo ra biểu thức đơn giản nhất.
- Ví dụ:

				uong	than	cong	. com .			
Α	В	С	[2]		0	1			0	1
0	0	0	0	00	0	0		00	0	0
0 0 1	1 1 0	0 1 0	0 x	01	0	x		01	0	0
1	0	1 0	x care" cuAB 1 1	11	1	cong 1	AB	11	1	1
1	1	1	1	10	X	1		10	1	1

PP bảng Karnaugh - Tóm tắt

- So sánh với phương pháp đại số, phương pháp dùng K-map có tính hệ thống hơn, ít bước hơn và luôn tao ra được biểu thức tối giản nhất.
- Bảng Karnaugh có thể dùng tối đa là với hàm 6 biến. Đối với những mạch có số ngõ nhập lớn (>=6), người ta dùng thêm các kỹ thuật phức tạp để thiết kê.

Exclusive-OR và Exclusive-NOR

• EXclusive-OR (XOR) $Y = A \oplus B = A'B + AB'$

• EXclusive-NOR (XNOR) $Y = (A \oplus B)' = (A'B' + AB)'$

Bi	ến	Ex. OR	XNOR		
A	В	$A \oplus B$	(A ⊕ B)'		
0	u duor	g than con	g . com		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Thiết kế mạch tổ hợp với 4 input x₁, x₀, y₁, y₀

$$z = 1 \text{ khi } x_1 x_0 = y_1 y_0$$

0000, 0101, 1010, 1111

Mạch tạo bit Parity

$$D_3D_2D_1D_0 = 1010 \rightarrow P_E = 0$$

$$D_3D_2D_1D_0 = 1110 \rightarrow P_E = 1$$

Mạch kiểm tra bit Parity

Mach enable

Mach disable

©2014, CE Department

 Thiết kế mạch tổ hợp cho phép 1 tín hiệu truyền đến ngõ xuất khi một trong 2 tín hiệu điều khiển ở mức 1 (không đồng thời). Các trường hợp khác ngõ xuất ở mức 1 (HIGH).

