به نام خدا

گزارش پروژه چهارم (شرکت پست) غزل پوراسفندیار بروجنی (9820453<u>)</u>

ابتدا وزن بارها را مرتب می کنیم. هربار کامیون با وزن کمتر را پیدا کرده و سنگین ترین بار را سوار آن می کنیم و بار را از لیست حذف می کنیم.

پیچیدگی زمانی الگوریتم:

در یک حلقه n تایی، هر بار یک مرتب سازی برای پیدا کردن min داریم. پس پیچیدگی زمانی الگوریتم $O(n.nlogn) = O(n^2logn)$ برابر

مثالی از ورودی برنامه:

Enter number of objects:

10

Enter weight of objects:

9 8 19 5 4 17 10 8 2 14

Enter number of trucks:

4

مثالی از خروجی برنامه:

The weight of trucks : [24, 23, 24, 25,]

اثبات نرخ تقریب:

اگر وزن قطعات را به صورت مرتب شده (نزولی) در نظر بگیریم به طوری که اگر i>j باشد، آنگاه داریم :

 $w[i] \le w[j]$

 $\mathsf{best} \geq \mathsf{w[i]}$ فرض کنیم مقدار بهینه برابر best باشد. پس میدانیم که به ازای هر i داریم

همچنین داریم: (که عبارت سمت راست در صورتی است که بتوان وزن قطعات را کسری در نظر گرفت و یک قطعه را در چند کامیون تقسیم کرد.)

$$best \ge \frac{\sum_{i=1}^{n} w[i]}{k}$$

همچنین وزن ها به صورت نزولی اند. پس داریم:

$$w[j] \le \frac{\sum_{i=1}^{j} w[i]}{j}$$

برای k های بزرگتر یا مساوی n الگوریتم قطعا جواب درست را می دهد زیرا تعداد کامیون ها از بارها بیشتر یا مساوی است و هر بار را در یک کامیون قرار می دهیم. پس ماکزیمم مقدار وزن ها همان جواب بهینه است.

اما برای k های کوچکتر از n اقدام به اثبات می کنیم:

اگر کامیون اول بیشترین وزن را داشته باشد و آخرین قطعه ای که در آن قرار گرفته است، برابر باشد با [j]، آنگاه اگر $j \leq k$ باشد که یعنی این کامیون فقط یک قطعه دارد و الگوریتم جواب بهینه را می دهد. اگر j > k باشد، آنگاه داریم:

$$\frac{\sum_{i=1}^{j-1} w[i]}{k} \ge (W - w[j])$$
 وقطعه $w[j]$ در کامیون اول از همه سبکتر است.) $w[j]$ یس داریم :

best
$$\geq \frac{\sum_{i=1}^{n} w[i]}{k} \geq \frac{\sum_{i=1}^{j-1} w[i]}{k} \geq (W - w[j])$$

و در نتیجه:

best $\geq (W - w[j])$

و در نهایت:

 $W - best \le w[j] \le w[1] \le best$

و در آخر داریم:

 $W \leq 2best$

پس نرخ تقریب الگوریتم برابر 2 می باشد.