Appendix B

Review of Matrix Concepts

B.1 INTRODUCTION

The following matrix notation, definitions, and theorems are used extensively in this book. Much of this material is based on Graybill (1961).

- A matrix **A** will have elements denoted by a_{ij} , where i refers to the row and j to the column.
- A^T will denote the transpose of A.
- A^{-1} will denote the inverse of A.
- |A| will denote the determinant of A.
- The dimension of a matrix is the number of its rows by the number of its columns.
- An $n \times m$ matrix A will have n rows and m columns.
- If m = 1, the matrix will be called an $n \times 1$ vector.
- Given the matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$, the product $\mathbf{AB} = \mathbf{C} = (c_{ij})$ is defined as the matrix \mathbf{C} with the pqth element equal to

$$\sum_{s=1}^{m} a_{ps} b_{sq}$$
 (B.1.1)

where m is the column dimension of A and the row dimension of B.

• Given

$$\mathbf{A} = \left[\begin{array}{c} \mathbf{A}_{11} \ \mathbf{A}_{12} \\ \mathbf{A}_{21} \ \mathbf{A}_{22} \end{array} \right]$$

and

$$\mathbf{B} = \left[egin{array}{c} \mathbf{B}_{11} \ \mathbf{B}_{12} \ \mathbf{B}_{21} \ \mathbf{B}_{22} \end{array}
ight]$$

then

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}_{11} \ \mathbf{A}_{12} \\ \mathbf{A}_{21} \ \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{11} \ \mathbf{B}_{12} \\ \mathbf{B}_{21} \ \mathbf{B}_{22} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A}_{11} \mathbf{B}_{11} + \mathbf{A}_{12} \mathbf{B}_{21} \ \mathbf{A}_{11} \mathbf{B}_{12} + \mathbf{A}_{12} \mathbf{B}_{22} \\ \mathbf{A}_{21} \mathbf{B}_{11} + \mathbf{A}_{22} \mathbf{B}_{21} \ \mathbf{A}_{21} \mathbf{B}_{12} + \mathbf{A}_{22} \mathbf{B}_{22} \end{bmatrix}$$
(B.1.2)

provided the elements of A and B are conformable.

- For AB to be defined, the number of columns in A must equal the number of rows in B.
- For A + B to be defined, A and B must have the same dimension.
- The transpose of A^T equals A; that is, $(A^T)^T = A$.
- The inverse of A^{-1} is A; that is, $(A^{-1})^{-1} = A$.
- The transpose and inverse symbols may be permuted; that is, $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
- $\bullet \ (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \, \mathbf{A}^T.$
- $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$ if \mathbf{A} and \mathbf{B} are each nonsingular.
- A scalar commutes with every matrix; that is, $k \mathbf{A} = \mathbf{A} k$.
- For any matrix A, we have IA = AI = A.
- All diagonal matrices of the same dimension are commutative.
- If \mathbf{D}_1 and \mathbf{D}_2 are diagonal matrices, then the product is diagonal.
- If X and Y are vectors and if A is a nonsingular matrix and if the equation Y = AX holds, then $X = A^{-1} Y$.

B.2. Rank 475

B.2 RANK

• The *rank* of a matrix is the dimension of its largest square nonsingular submatrix; that is, one whose determinant is nonzero.

- The rank of the product **AB** of the two matrices **A** and **B** is less than or equal to the rank of **A** and is less than or equal to the rank of **B**.
- The rank of the sum of A + B is less than or equal to the rank of A plus the rank of B.
- If A is an $n \times n$ matrix and if |A| = 0, then the rank of A is less than n.
- If the rank of A is less than n, then all the rows of A are not independent; likewise, all the columns of A are not independent (A is $n \times n$).
- If the rank of A is $m \leq n$, then the number of linearly independent rows is m; also, the number of linearly independent columns is m (A is $n \times n$).
- If $\mathbf{A}^T \mathbf{A} = 0$, then $\mathbf{A} = 0$.
- The rank of a matrix is unaltered by multiplication by a nonsingular matrix; that is, if **A**, **B**, and **C** are matrices such that **AB** and **BC** exist and if **A** and **C** are nonsingular, then $\rho(\mathbf{AB}) = \rho(\mathbf{BC}) = \rho(\mathbf{B})$. $\rho(\mathbf{B}) = \text{rank}$ of **B**.
- If the product AB of two square matrices is 0, then A = 0, B = 0, or A and B are both singular.
- If **A** and **B** are $n \times n$ matrices of rank r and s, respectively, then the rank of **AB** is greater than or equal to r + s n.
- The rank of AA^T equals the rank of A^TA , equals the rank of A, equals the rank of A^T .

B.3 QUADRATIC FORMS

- The rank of the quadratic form $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ is defined as the rank of the matrix \mathbf{A} where \mathbf{Y} is a vector and $\mathbf{Y} \neq 0$.
- The quadratic form $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ is said to be *positive definite* if and only if $\mathbf{Y}^T \mathbf{A} \mathbf{Y} > 0$ for all vectors \mathbf{Y} where $\mathbf{Y} \neq 0$.
- A quadratic form $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ is said to be *positive semidefinite* if and only if $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \geq 0$ for all \mathbf{Y} , and $\mathbf{Y}^T \mathbf{A} \mathbf{Y} = 0$ for some vector $\mathbf{Y} \neq 0$.

- A quadratic form $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ that may be either positive definite or positive semidefinite is called *nonnegative definite*.
- The matrix A of a quadratic form Y^TAY is said to be positive definite (semidefinite) when the quadratic form is positive definite (semidefinite).
- If P is a nonsingular matrix and if A is positive definite (semidefinite), then P^TAP is positive definite (semidefinite).
- A necessary and sufficient condition for the symmetric matrix A to be positive definite is that there exist a nonsingular matrix P such that $A = PP^T$.
- A necessary and sufficient condition that the matrix A be positive definite, where

$$\mathbf{A} = \begin{bmatrix} a_{11} \ a_{12} \dots a_{1n} \\ a_{21} \ a_{22} \dots a_{2n} \\ \vdots \ \vdots \dots \vdots \\ a_{n1} \ a_{n2} \dots a_{nn} \end{bmatrix}$$

is that the following inequalities hold:

$$a_{11} > 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} > 0.$$

- If A is an $m \times n$ matrix of rank n < m, then $A^T A$ is positive definite and AA^T is positive semidefinite.
- If **A** is an $m \times n$ matrix of rank k < n and k < m, then $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ are each positive semidefinite.
- A matrix that may be either positive definite or positive semidefinite is said to be nonnegative definite.
- If **A** and **B** are symmetric conformable matrices, **A** is said to be greater than **B** if A B is nonnegative definite.

B.4 DETERMINANTS

• For each square matrix A, there is a uniquely defined scalar called the *determinant* of A and denoted by |A|.

B.5. Matrix Trace 477

 The determinant of a diagonal matrix is equal to the product of the diagonal elements.

- If A and B are $n \times n$ matrices, then |AB| = |BA| = |A||B|.
- If **A** is singular if and only if $|\mathbf{A}| = 0$.
- If C is an $n \times n$ matrix such that $\mathbf{C}^T \mathbf{C} = \mathbf{I}$, then C is said to be an orthogonal matrix, and $\mathbf{C}^T = \mathbf{C}^{-1}$.
- If C is an orthogonal matrix, then |C| = +1 or |C| = -1.
- If C is an orthogonal matrix, then $|C^TAC| = |A|$.
- The determinant of a positive definite matrix is positive.
- The determinant of a triangular matrix is equal to the product of the diagonal elements.
- The determinant of a matrix is equal to the product of its eigenvalues.
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|$
- $|\mathbf{A}^{-1}| = 1/|\mathbf{A}|$, if $|\mathbf{A}| \neq 0$.
- If A is a square matrix such that

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} \ \mathbf{A}_{12} \\ \mathbf{A}_{21} \ \mathbf{A}_{22} \end{bmatrix}$$

where \mathbf{A}_{11} and \mathbf{A}_{22} are square matrices, and if $\mathbf{A}_{12}=0$ or $\mathbf{A}_{21}=0$, then $|\mathbf{A}|=|\mathbf{A}_{11}||\mathbf{A}_{22}|$.

• If A_1 and A_2 are symmetric and A_2 is positive definite and if $A_1 - A_2$ is positive semidefinite (or positive definite), then $|A_1| \ge |A_2|$.

B.5 MATRIX TRACE

• The *trace* of a matrix A, which will be written tr(A), is equal to the sum of the diagonal elements of A; that is,

$$tr\left(\mathbf{A}\right) = \sum_{i=1}^{n} a_{ii}.$$
(B.5.1)

• tr(AB) = tr(BA).

- tr(ABC) = tr(CAB) = tr(BCA); that is, the trace of the product of matrices is invariant under any cyclic permutation of the matrices.
- Note that the trace is defined only for a square matrix.
- If C is an orthogonal matrix, $\operatorname{tr}(\mathbf{C}^T \mathbf{A} \mathbf{C}) = \operatorname{tr}(\mathbf{A})$.

B.6 EIGENVALUES AND EIGENVECTORS

- A characteristic root (eigenvalue) of a $p \times p$ matrix **A** is a scalar λ such that $\mathbf{A}\mathbf{X} = \lambda \mathbf{X}$ for some vector $\mathbf{X} \neq 0$.
- The vector X is called the *characteristic vector* (*eigenvector*) of the matrix
 A.
- The characteristic root of a matrix **A** can be defined as a scalar λ such that $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- $|\mathbf{A} \lambda \mathbf{I}|$ is a pth degree polynomial in λ .
- This polynomial is called the *characteristic polynomial*, and its roots are the characteristic roots of the matrix **A**.
- The number of nonzero characteristic roots of a matrix A is equal to the rank of A.
- The characteristic roots of A are identical with the characteristic roots of CAC^{-1} . If C is an orthogonal matrix, it follows that A and CAC^{T} have identical characteristic roots; that is, $C^{T} = C^{-1}$.
- The characteristic roots of a symmetric matrix are real; that is, if $\mathbf{A} = \mathbf{A}^T$, the characteristic polynomial of $|\mathbf{A} = \lambda \mathbf{I}| = 0$ has all real roots.
- The characteristic roots of a positive definite matrix **A** are positive; the characteristic roots of a positive semidefinite matrix are nonnegative.

B.7 THE DERIVATIVES OF MATRICES AND VECTORS

• Let X be an $n \times 1$ vector and let Z be a scalar that is a function of X. The derivative of Z with respect to the vector X, which will be written $\partial Z/\partial X$, will mean the $1 \times n$ row vector*

$$\mathbf{C} \equiv \left[\frac{\partial Z}{\partial x_1} \frac{\partial Z}{\partial x_2} \dots \frac{\partial Z}{\partial x_n} \right]. \tag{B.7.1}$$

^{*}Generally this partial derivative would be defined as a column vector. However, it is defined as a row vector here because we have defined $\widetilde{H} = \frac{\partial G(\mathbf{X})}{\partial \mathbf{X}}$ as a row vector in the text.

• If X, C, and Z are as defined previously, then

$$\partial Z / \partial \mathbf{X} = \mathbf{C}.$$
 (B.7.2)

• If A and B are $m \times 1$ vectors, which are a function of the $n \times 1$ vector X, and we define

$$\frac{\partial (\mathbf{A}^T \mathbf{B})}{\partial \mathbf{X}}$$

to be a row vector as in Eq. (B.7.1), then

$$\partial (\mathbf{A}^T \mathbf{B}) / \partial \mathbf{X} = \mathbf{B}^T \frac{\partial \mathbf{A}}{\partial \mathbf{X}} + \mathbf{A}^T \frac{\partial \mathbf{B}}{\partial \mathbf{X}}$$
 (B.7.3)

where

$$\frac{\partial \mathbf{A}}{\partial \mathbf{X}}$$

is an $m \times n$ matrix whose ij element is

$$\frac{\partial A_i}{\partial X_i}$$

and

$$\frac{\partial (\mathbf{A}^T \mathbf{B})}{\partial \mathbf{X}}$$

is a $1 \times n$ row vector.

• If **A** is an $m \times 1$ vector that is a function of the $n \times 1$ vector **X**, and W is an $m \times m$ symmetric matrix such that

$$Z = \mathbf{A}^T W \mathbf{A} = \mathbf{A}^T W^{1/2} W^{1/2} \mathbf{A}.$$

Let $\mathbf{B} \equiv W^{1/2}\mathbf{A}$, then

$$Z = \mathbf{B}^T \mathbf{B}.$$

From Eq. (B.7.3)

$$\frac{\partial Z}{\partial \mathbf{X}} = 2\mathbf{B}^T \frac{\partial \mathbf{B}}{\partial \mathbf{X}} \tag{B.7.4}$$

where

$$\frac{\partial \mathbf{B}}{\partial \mathbf{X}} = W^{1/2} \frac{\partial \mathbf{A}}{\partial \mathbf{X}}.$$

[†]If $\frac{\partial Z}{\partial \mathbf{X}}$ is defined to be a column vector, $\frac{\partial (A^T B)}{\partial \mathbf{X}}$ would be given by the transpose of Eq. (B.7.3).

• Let **A** be a $p \times 1$ vector, **B** be a $q \times 1$ vector, and C be a $p \times q$ matrix whose ij^{th} element equals c_{ij} . Let

$$Z = \mathbf{A}^T C \mathbf{B} = \sum_{m=1}^q \sum_{n=1}^p a_n c_{nm} b_m.$$
 (B.7.5)

Then $\partial Z / \partial C = \mathbf{A} \mathbf{B}^T$.

Proof: $\partial Z / \partial C$ will be a $p \times q$ matrix whose ij^{th} element is $\partial Z / \partial c_{ij}$.

Assuming that C is not symmetric and that the elements of C are independent,

$$\frac{\partial Z}{\partial c_{ij}} = \frac{\partial \left(\sum_{m=1}^{q} \sum_{n=1}^{p} a_n c_{nm} b_m\right)}{\partial c_{ij}} = a_i b_j.$$
 (B.7.6)

Thus the ij^{th} element of $\partial Z/\partial C$ is a_ib_j . Therefore, it follows that

$$\frac{\partial Z}{\partial C} = \mathbf{A}\mathbf{B}^T.$$

• The derivative of a matrix product with respect to a scalar is given by

$$\frac{d}{dt} \left\{ \mathbf{A}(t)\mathbf{B}(t) \right\} = \frac{d\mathbf{A}(t)}{dt} \mathbf{B}(t) + \mathbf{A}(t) \frac{d\mathbf{B}(t)}{dt}.$$
 (B.7.7)

See Graybill (1961) for additional discussion of the derivatives of matrices and vectors.

B.8 MAXIMA AND MINIMA

• If $y = f(x_1, x_2, ..., x_n)$ is a function of n variables and if all partial derivatives $\partial y / \partial x_i$ are continuous, then y attains its maxima and minima only at the points where

$$\frac{\partial y}{\partial x_1} = \frac{\partial y}{\partial x_2} = \dots = \frac{\partial y}{\partial x_n} = 0.$$
 (B.8.1)

• If $f(x_1, x_2, ..., x_n)$ is such that all the first and second partial derivatives are continuous, then at the point where

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \dots = \frac{\partial f}{\partial x_n} = 0$$
 (B.8.2)

the function has

- a minimum, if the matrix **K**, where the *ij*th element of **K** is $\partial^2 f / \partial x_i \partial x_j$, is positive definite.
- a maximum, if the matrix $-\mathbf{K}$ is positive definite.

In these two theorems on maxima and minima, remember that the x_i are independent variables.

• If the x_i are not independent, that is, there are constraints relating them, we use the method of Lagrange multipliers. Suppose that we have a function $f(x_1, x_2, \ldots, x_n)$ we wish to maximize (or minimize) subject to the constraint that $h(x_1, x_2, \ldots, x_n) = 0$. The equation h = 0 describes a surface in space and the problem is one of maximizing $f(x_1, x_2, \ldots, x_n)$ as x_1, x_2, \ldots, x_n vary on the curve of intersection of the two surfaces. At a maximum point the derivative of f must be zero along the intersection curve; that is, the directional derivative along the tangent must be zero. The directional derivative is the component of the vector ∇f along the tangent. Hence, ∇f must lie in a plane normal to the intersection curve at this point. This plane must also contain ∇h ; that is, ∇f and ∇h are coplanar at this point. Hence, there must exist a scalar λ such that

$$\nabla f + \lambda \nabla h = 0 \tag{B.8.3}$$

at the maximum point. If we define

$$F \equiv f + \lambda h$$

then Eq. (B.8.3) is equivalent to $\nabla F = 0$. Hence,

$$\frac{\partial F}{\partial x_1} = \frac{\partial F}{\partial x_2} = \dots = \frac{\partial F}{\partial x_n} = 0.$$

These n equations together with h=0 provide us with n+1 equations and n+1 unknowns $(x_1,x_2,\ldots,x_n,\lambda)$. We have assumed that all first partial derivatives are continuous and that $\partial h/\partial x_i \neq 0$ for all i at the point.

• If there are additional constraints we introduce additional Lagrange multipliers in Eq. (B.8.3); for example,

$$\nabla f + \lambda_1 \nabla h_1 + \lambda_2 \nabla h_2 + \dots + \lambda_k \nabla h_k = 0.$$
 (B.8.4)

B.9 USEFUL MATRIX INVERSION THEOREMS

Theorem 1: Let **A** and **B** be $n \times n$ positive definite (PD) matrices. If $\mathbf{A}^{-1} + \mathbf{B}^{-1}$ is PD, then $\mathbf{A} + \mathbf{B}$ is PD and

$$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{B}^{-1} (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} \mathbf{A}^{-1}$$

$$= \mathbf{A}^{-1} (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} \mathbf{B}^{-1}.$$
 (B.9.1)

Proof: From the identity

$$(\mathbf{A} + \mathbf{B})^{-1} = [\mathbf{A} (\mathbf{A}^{-1} + \mathbf{B}^{-1}) \mathbf{B}]^{-1} = \mathbf{B}^{-1} (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} \mathbf{A}^{-1}$$

or

$$(\mathbf{A} + \mathbf{B})^{-1} = [\mathbf{B} (\mathbf{B}^{-1} + \mathbf{A}^{-1}) \mathbf{A}]^{-1} = \mathbf{A}^{-1} (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} \mathbf{B}^{-1}.$$

Theorem 2: Let **A** and **B** be $n \times n$ PD matrices. If **A** + **B** is PD, then $I + AB^{-1}$ and $I + BA^{-1}$ are PD and

$$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{B}^{-1} - \mathbf{B}^{-1} (\mathbf{I} + \mathbf{A}\mathbf{B}^{-1})^{-1}\mathbf{A}\mathbf{B}^{-1}$$

= $\mathbf{A}^{-1} - \mathbf{A}^{-1}(\mathbf{I} + \mathbf{B}\mathbf{A}^{-1})^{-1}\mathbf{B}\mathbf{A}^{-1}$. (B.9.2)

Proof: From the identity

$$\mathbf{A}^{-1} = (\mathbf{A}^{-1} + \mathbf{B}^{-1}) - \mathbf{B}^{-1}$$

premultiply by $\mathbf{B}^{-1}(\mathbf{A}^{-1}\,+\,\mathbf{B}^{-1})^{-1}$ and use Theorem 1

$$\begin{split} \mathbf{B}^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}\mathbf{A}^{-1} &= \mathbf{B}^{-1} \ (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1}) \\ &- \mathbf{B}^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}\mathbf{B}^{-1} \\ &= \mathbf{B}^{-1} - \mathbf{B}^{-1}[\mathbf{A}^{-1}(\mathbf{I} + \mathbf{A}\mathbf{B}^{-1})]^{-1}\mathbf{B}^{-1} \\ &= \mathbf{B}^{-1} - \mathbf{B}^{-1}(\mathbf{I} + \mathbf{A}\mathbf{B}^{-1})^{-1}\mathbf{A}\mathbf{B}^{-1}. \end{split}$$

The left-hand side of this equation is $(\mathbf{A} + \mathbf{B})^{-1}$ (from Theorem 1). Hence,

$$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{B}^{-1} - \mathbf{B}^{-1} (\mathbf{I} + \mathbf{A} \mathbf{B}^{-1})^{-1} \mathbf{A} \mathbf{B}^{-1}.$$

Theorem 3: If **A** and **B** are PD matrices of order n and m, respectively, and if **C** is of order $n \times m$, then

$$(\mathbf{C}^T \mathbf{A}^{-1} \mathbf{C} + \mathbf{B}^{-1})^{-1} \mathbf{C}^T \mathbf{A}^{-1} = \mathbf{B} \mathbf{C}^T (\mathbf{A} + \mathbf{C} \mathbf{B} \mathbf{C}^T)^{-1}$$
 (B.9.3)

provided the inverse exists.

Proof: From the identity

$$\mathbf{C}^{T}(\mathbf{A}^{-1}\mathbf{C}\mathbf{B}\mathbf{C}^{T} + \mathbf{I})(\mathbf{I} + \mathbf{A}^{-1}\mathbf{C}\mathbf{B}\mathbf{C}^{T})^{-1} \equiv \mathbf{C}^{T}$$

B.10. Reference 483

we have

$$(\mathbf{C}^T \mathbf{A}^{-1} \mathbf{C} \mathbf{B} \mathbf{C}^T + \mathbf{C}^T) (\mathbf{A}^{-1} (\mathbf{A} + \mathbf{C} \mathbf{B} \mathbf{C}^T))^{-1} = \mathbf{C}^T$$

or

$$(\mathbf{C}^T \mathbf{A}^{-1} \mathbf{C} + \mathbf{B}^{-1}) \mathbf{B} \mathbf{C}^T (\mathbf{A} + \mathbf{C} \mathbf{B} \mathbf{C}^T)^{-1} \mathbf{A} = \mathbf{C}^T.$$

Now premultiply by $(\mathbf{C}^T \mathbf{A}^{-1} \mathbf{C} + \mathbf{B}^{-1})^{-1}$ and postmultiply by \mathbf{A}^{-1} , which yields

$$\mathbf{B}\mathbf{C}^T(\mathbf{A} + \mathbf{C}\mathbf{B}\mathbf{C}^T)^{-1} = (\mathbf{C}^T\mathbf{A}^{-1}\mathbf{C} + \mathbf{B}^{-1})^{-1}\mathbf{C}^T\mathbf{A}^{-1}.$$

Theorem 4: The Schur Identity or insideout rule. If A is a PD matrix of order n, and if B and C are any conformable matrices such that BC is order n, then

$$(\mathbf{A} + \mathbf{BC})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{I} + \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1}.$$
 (B.9.4)

Proof: Define

$$\mathbf{X} = (\mathbf{A} + \mathbf{BC})^{-1}.$$

Then

$$(\mathbf{A} + \mathbf{BC}) \mathbf{X} = \mathbf{I}$$

$$\mathbf{AX} + \mathbf{BCX} = \mathbf{I}.$$
(B.9.5)

Solve Eq. (B.9.5) for CX. First multiply by A^{-1} to yield

$$X + A^{-1}BCX = A^{-1}$$
. (B.9.6)

Premultiply Eq. (B.9.6) by C

$$\mathbf{CX} + \mathbf{CA}^{-1}\mathbf{BCX} = \mathbf{CA}^{-1}.$$

Then

$$CX = (I + CA^{-1}B)^{-1}CA^{-1}.$$
 (B.9.7)

Substitute Eq. (B.9.7) into Eq. (B.9.6) to yield

$$X = (A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}.$$

B.10 REFERENCE

Graybill, F. A., An Introduction to Linear Statistical Models, McGraw-Hill, New York, 1961.