UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Examinations 2000

BEng Honours Degree in Computing Part I MEng Honours Degrees in Computing Part I for Internal Students of the Imperial College of Science, Technology and Medicine

> This paper is also taken for the relevant examinations for the Associateship of the City and Guilds of London Institute

> > PAPER C112

HARDWARE

Wednesday 17 May 2000, 16:00 Duration: 90 minutes (Reading time 5 minutes)

 $Answer\ THREE\ questions$

Paper contains 4 questions

1. Sequential Circuit Design

A counter is to work in four modes determined by two input bits as follows. When the input is 0 (0,0) the output remains at 0 When the input is 1 (0,1) the counter goes through the sequence 0,3,2,1,0,3,2,1. When the input is 2 (1,0) the counter goes through the sequence 0,1,2,0,1,2. When the input is 3 (1,1) the counter goes through the sequence 1,2,3,1,2,3.

- a. Draw the state transition diagram (using the Moore finite machine model) that corresponds to the above specification
- b. Compile a state transition table in the following format:

Input		Current State		Next State	
I1	IO	Q1	Q0	D1	D0
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1				
0	1				
0	1				
0	1				
1	0				
1	0				
1	0				
1	0				
1	1				
1	11				
1	1				
1	1				

- c. Draw Karnaugh maps for D0 and D1 and determine the minimum form of the Boolean equations for D0 and D1 to implement the counter.
- d. Explain what the difference is between the Moore finite state machine and the Mealy finite state machine. For each, give one reason why a designer should choose to use it.

The four parts carry, respectively, 25%, 20%, 30%, 25% of the marks.

2. Combinational Circuit Design

a. Using Boolean algebra, simplify the following Boolean expression, and draw a circuit that will implement it.

$$R = ((A.B)' + B).C)'$$

b. The exclusive NOR gate (XNOR) is defined by the following truth table

		В			
	XNOR	0	1		
Α	0	1	0		
	1	0	1		

Design a circuit to implement it, and write down its Boolean equation.

c. The full adder is defined in terms of its inputs A, B and C_{in} as

$$C_{out} = A \cdot B$$

 $S = A \oplus B \oplus C_{in}$

Express both boolean equations in the canonical minterm form.

- d. Find the equivalent canonical forms for the full adder using maxterms (hint: you may find it helpful to look at the truth table or Karnaugh map to do this).
- e. Explain briefly why pure Boolean algebra is inadequate as a model for describing the behaviour of a flip flop.

The five parts carry equal marks.

3. The Manual Processor

An 8-bit manual processor has the following block diagram.

The functions of the various components are defined by the following tables:

Shifter:

Function Select	Shift	Carry in	Function
000	unchanged	1	unchanged
001	left	0	arithmetic/logical shift left
010	right	1	?
011	right	0	logical shift right
100	unchanged	data bit 7	unchanged
101	left	CY in	left shift with carry
110	right	data bit 7	arithmetic right shift
111	right	CY in	right shift with carry

ALU:

Selection Bits	000	001	010	011	100	101	110	111
Result	0	B mi A	A mi B	A pl B	A xor B	A+B	A.B	-1

The processor goes through a fixed cycle of five states in which the following clock gates are applied:

_	* *
State	Clock
1	CLKIR
2	CLKA
3	CLKB and CLKC
4	CLKIR
5	CLKRES and CLKC

The following two instructions are to be designed for use with the processor:

ADD: which will add together two numbers on the *data in* lines, and place the result on the *data out* lines during state 5.

DEC: which will take a number from the *data in* lines, decrement it and place the result on the *data out* lines during state 5.

a. Determine the register transfers that will be carried out during each state of the processor cycle, by constructing a table in the following form.

	ADD		DEC		
State	Source	Destination	Source	Destination	
1	DataIn	IR			
2					
etc.					

b. Find the contents of the instruction register in states 2 to 5 of the processor cycle for both the ADD and DEC instructions. This will be determined by the *data in* lines in states 1 and 4 and will contain don't care values.

The two parts carry equal marks.

4. Registers

a. The D-type latch has the following circuit. The inputs to the circuit, as a function of time are shown below can be treated as changing between 0 and 1.

Calculate the value of Q at the times t1, t2, t3 and t4 shown in the diagram.

- b. Show how two D-type latches of the type shown in part a may be connected together, with other gates if required, to form a D-Q flip flop.
- c. Show, with a suitable diagram, how D-Q flip flops may be connected to form a serial to parallel converter.
- d. Give an example where serial to parallel conversion is used in digital computer systems. Explain briefly why it is necessary.
- e. As part of a hardware design it is necessary to have a four bit register which will carry out two different functions. These are parallel load and rotate left. Draw a diagram showing the complete circuit of this register. You may use the following components in your design:

D-Q flip flops AND gates OR gates INVERTER gates

The five parts carry, respectively, 20%, 20%, 15%, 15%, 30% of the marks.