САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Алгоритмической математики

Лабораторная работа 1 "Интерполяция"

Студент гр. 0307 _______Латин Я.М. Преподаватель ______Солнышкин С.Н.

Санкт-Петербург 2022

Содержание

1	Цел	ь работы	2		
2	Зад	ание	2		
3	Пос	троение интерполяционного многочлена по равноотстоящим узлам	2		
	3.1	Интерполяционные многочлены	2		
	3.2	Графики интерполяционных многочленов:	3		
	3.3	Графики погрешностей	4		
4	Построение интерполяционного многочлена по чебышёвским узлам				
	4.1	Интерполяционные многочлены	5		
	4.2	Графики интерполяционных многочленов:	6		
	4.3	Графики погрешностей:	7		
5	Графики производных				
6	Оце	нка погрешностей погрешностей	9		
7	Код	д сценариев и функции	10		

1 Цель работы

Построение интерполяционного многочлена по равноотстоящим и чебышёвским узлам. Нахождение фактической и теоретической погрешности.

2 Задание

Построить интерполяционный многочлен по 2, 3, 4, 5 и 6 узлам (равноотстоящим и чебышёвским) для функции $f(x) = \frac{1000}{\sqrt{x^2 - 5x + 60}}$, на промежутке [a;b] = [-1;7] по равноотстоящим и по чебышёвским узлам. Найти фактическую погрешность и сравнить нё с теоретической оценкой.

3 Построение интерполяционного многочлена по равноотстоящим узлам

3.1 Интерполяционные многочлены

$$L_1(x) = -0.2047502048x + 14.9467649468$$

$$L_2(x) = -0.2616252616x^2 + 1.3650013650x + 16.7781417781$$

$$L_3(x) = 0.0082165104x^3 - 0.3274970826x^2 + 1.4069223421x + 16.8941510867$$

$$L_4(x) = 0.0043773481x^4 - 0.0447891072x^3 - 0.1649376649x^2 +$$

1.3976029601x + 16.6648893211

 $0.1522933884x^2 + 1.4134028413x + 16.6520307796$

3.2 Графики интерполяционных многочленов:

3.3 Графики погрешностей

4 Построение интерполяционного многочлена по чебышёвским узлам

4.1 Интерполяционные многочлены

$$L_1(x) = -0.2606882169x + 16.9447340980$$

$$L_2(x) = -0.2770956960x^2 + 1.4323715981x + 16.7152649887$$

$$L_3(x) = 0.0084960616x^3 - 0.3360434158x^2 + 1.4517213711x + 16.8095616750$$

$$L_4(x) = 0.0043618026x^4 - 0.0446617233x^3 - 0.1640351345x^2 +$$

1.3939066976x + 16.6656751544

$$L_5(x) = -0.0002041496x^5 + 0.0071536259x^4 - 0.0556377472x^3 -$$

 $0.1564960714x^2 + 1.4090036379x + 16.6631419171$

4.2 Графики интерполяционных многочленов:

4.3 Графики погрешностей:

5 Графики производных

6 Оценка погрешностей

Таблица 1. Равноотстоящие узлы

n	1	2	3	4	5
(n+1)!	2	6	24	120	720
$max \omega_{n+1} $	16	24.634	50.568	116.21	283.55
$max f^{(n+1)} $	0.69226	0.22041	0.15454	0.088228	0.086487
$R_{ m факт}$	4.2001	0.43542	0.22798	0.04526	0.021455
$R_{ m Teop}$	5.53808	0.90493	0.325616	0.0854415	0.0340603

Таблица 2. Чебышёвские узлы

n	1	2	3	4	5
(n+1)!	2	6	24	120	720
$max \omega_{n+1} $	8	16	32	64	128
$max f^{(n+1)} $	0.69226	0.22041	0.15454	0.088228	0.086487
$R_{ m \phi akt}$	2.3609	0.34934	0.14899	0.025504	0.0098184
$R_{ m reop}$	2.76904	0.58776	0.206053	0.0470549	0.0153755

7 Код сценариев и функции

W1.m

```
1 disp('Equidstation')
a=-1;b=7;
3 t=a:(b-a)/1000:b;
4 \text{ err } 1 = [];
5 format long g
6 for n=1:5
     x=a:(b-a)/n:b;
7
     p = polyfit(x, f(x), n)
8
     y=polyval(p,t);
9
     err1 = [err1, max(abs(f(t)-y))];
10
     plot(t,f(t),'b',t,y,'r',x,f(x),'ko')
11
     title(sprintf('Eq:L_%d',n))
12
     grid on
13
     pause
14
     plot(t,f(t)-y,'b',x,x*0,'ko')
15
     title(sprintf('Err1:n=%d',n))
16
     grid on
17
18
     pause
19 end
20 format short g
21 err1
```

W2.m

```
1 disp('Tchebychev')
a=-1;b=7;
3 t=a:(b-a)/1000:b;
4 \text{ err } 2 = [];
5 format long g
  for n=1:5
     k=0:n;
7
     z=\cos((pi+2*pi*k)/(2*n+2));
8
     x=(a+b)/2-z*(b-a)/2;
9
     p = polyfit(x, f(x), n)
10
     y=polyval(p,t);
11
     err2 = [err2, max(abs(f(t)-y))];
12
     plot(t, f(t), 'b', t, y, 'r', x, f(x), 'ko')
13
     title(sprintf('Eq:L_%d',n))
14
     grid on
15
     pause
16
     plot(t,f(t)-y,'b',x,x*0,'ko')
17
     title (sprintf('Err2:n=%d',n))
18
     grid on
19
20
     pause
21 end
  format short g
23 err2
```

f.m

```
1 function retval = f (input1)
 2 \text{ retval} = 1000./(\text{input1.}^2 - 5*\text{input1} + 60);
 3 endfunction
   Der.m
 1 a=-1;b=7;
 2 t=a:(b-a)/340:b;
 3 \text{ h=t } (2)-\text{t } (1);
 4 df = f(t);
 5 df = diff(df)/h;
 6 t(1) = [];
 7 \text{ mder} = [];
  for n=1:5
     n+1
 9
      df = diff(df)/h;
10
     t(1) = [];
11
     mder = [mder, max(abs(df))];
12
      plot(t, df, 'k')
13
      title(sprintf('f^{(d)})',n+1))
14
      grid on
15
16
      pause
17 end
18 format short g
19 mder
```

Om1.m

```
1 a = -1;
2 b=7;
3 t=a:(b-a)/1000:b;
4 \mod 1 = [];
5 for n=1:5
     n+1
6
     x=a:(b-a)/n:b;
7
     p=poly(x);
8
     y=polyval(p,t);
9
     mom1 = [mom1, max(abs(y))];
10
     plot(t,y,'b',x,x*0,'ko')
11
     title(sprintf('Omega1: n = %d', n))
12
     grid on
13
     print('-deps', sprintf('GO1%d', n+1))
14
15
     pause
16 end
17 format short g
18 mom1
   Om2.m
1 a = -1;
^{2} b=7;
3 t=a:(b-a)/1000:b;
4 \text{ mom } 1 = [];
```

```
5 for n=1:5
    n+1
6
    x=a:(b-a)/n:b;
7
    p=poly(x);
8
    y=polyval(p,t);
9
    mom1 = [mom1, max(abs(y))];
10
     plot(t,y,'b',x,x*0,'ko')
11
     title(sprintf('Omega1: n = %d', n))
12
     grid on
13
     print('-deps', sprintf('GO1\%d', n+1))
14
     pause
15
16 end
17 format short g
18 mom1
```