Санкт-Петербургский государственный политехнический университет Физико-Механический институт Высшая школа прикладной математики и вычислительной физики

Лабораторная работа №1 по дисциплине "Математическая статистика"

Выполнил студент группы 5030102 $\20001$ Муринов А.В. Преподаватель Баженов А.Н,

Санкт-Петербург 2025

Содержание

1	Постановка задачи	3
2	Poisson(10)	3
3	Normal(0,1)	4
4	Cauchy(0,1)	5
5	$Uniform(-\sqrt{3},\sqrt{3})$	5

1 Постановка задачи

Для 4 распределений:

- Нормальное распределение Normal(0,1)
- Распределение Коши Cauchy(0,1)
- Распределение Пуассона Poisson(10)
- Равномерное распределение $Uniform(-\sqrt{3},\sqrt{3})$
- 1. Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности рас пределения. 2. Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характе ристики положения данных: $\bar{x}, med\ x, z_Q$. Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик поло жения и их квадратов:

$$E(z) = \bar{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \bar{z^2} - \bar{z}^2$$

Представить полученные данные в виде таблиц.

$2 \quad Poisson(10)$

	Sample size	Mean	Median	z_Q	Mean variance	Median variance	z_Q variance
0	10	10.038800	9.888500	9.958500	1.009415	1.473318	1.148340
1	100	10.014020	9.831000	9.931000	0.102530	0.205939	0.142583
2	1000	9.996545	9.995000	9.996875	0.009288	0.004475	0.002006

$oldsymbol{3} \quad Normal(0,1)$

5	Sample size	Mean	Median	z_Q	Mean variance	Median variance	z_Q variance
0	10	-0.007033	-0.003508	-0.011823	0.093453	0.134266	0.107423
1	100	0.000043	-0.000651	0.000761	0.010257	0.016686	0.012432
2	1000	-0.000211	0.000197	-0.001179	0.000995	0.001542	0.001225

Cauchy(0,1)

	Sample size	Mean	Median	z_Q	Mean variance	Median variance	z_Q variance
0	10	7.573363	-0.035756	-0.029379	37185.262821	0.315107	0.902379
1	100	-0.970891	-0.001050	-0.006343	11736.432538	0.025485	0.056413
2	1000	0.620007	-0.001454	-0.001774	579.877803	0.002487	0.004768

$Uniform(-\sqrt{3},\sqrt{3})$

	Sample size	Mean	Median	z_Q	Mean variance	Median variance	z_Q variance
0	10	0.008790	0.000124	0.010633	0.103650	0.240134	0.140943
1	100	0.002832	0.007462	0.000386	0.009809	0.028952	0.014564
2	1000	-0.001059	-0.001915	-0.001206	0.001040	0.003340	0.001499