6. Análisis comparativo de las tablas de hash Estudiantes Santiago Talero T (201821994) & Daniel S Londoño B (201821363)

- 6.1: Tabla de Hash linear probing y Hash separate chaining.

	Hash LinearProbing	Hash SeparateChaining
Numero de duplas(K,V)	543196	543196
en la tabla (N)		
Tamaño inicial del	1	1
arreglo de la tabla(M)		
Tamaño final del arreglo	1048576	131072
de la tabla (M final)		
Factor de carga final	0.51	4.14
(N/M)		
Numero de rehashes	20	17
que tuvo la tabla		

6.2: Pruebas getSet(...) en Hash LinearProbing & SeparateChaining

getSet()	Hash LinearProbing	Hash SeparateChaining
	(Milisegundos)	(Milisegundos)
Tiempo mínimo	0	0
Tiempo promedio	0.0014	0.00001
Tiempo máximo	3.97	1

- 6.3: Análisis de los resultados:

A raíz de la previa indagación podemos evidenciar que a pesar de que la implementación de Hash SeparateChaining tiene una velocidad de respuesta mayor, esta emplea más del 200% del factor de carga de Hash LinearProbing. Con base en esto podemos exteriorizar el hecho de que el Hash SeparateChaining sería mucho más eficiente en ordenadores con memoria considerablemente alta. Como cualquier tabla hash tiene la necesidad de ampliar el espacio (Solo si el volumen de datos crece), la operación para realizar dicho acto trata de una operación costosa. Es finalmente por esto que la implementación más eficiente entre las dos presentes radica profundamente en el hardware sobre el cual el programa corra.