

ROSENKRANZ LAB MEETING

ESTELLE HIGGINS

SPRING 2023

WHEN DO YOU NEED PIECEWISE?

- Data with different linear trends over different regions
 - x-y relationship is a continuous function with 2+ linear segments
- Clear break points ("knots")
- Theoretically-motivated questions
 - Longitudinal data

WHY PIECEWISE AND NOT POLYNOMIAL?

- Interpretation
 - slope estimates at various stages; distinct "growth phases"
 - identify locations of meaningful change in slope
 - Polynomial assumes smooth trajectory
- Piecewise allows you to examine how different "pieces" relate to other variables
- Avoid multicollinearity
- Piecewise with polynomial pieces

WHY PIECEWISE AND NOT POLYNOMIAL?

• Which fits better?

CHANGE POINTS ("KNOTS")

- x-values where linear function slope changes
- Continuous or discontinuous
- Theory + Data:
 - is change point a known parameter?
 - estimate from data?
- R package segmented
 - Determine change points to minimize SSE

$$y = \beta_{01} + \beta_1 x$$
 for $x \le 2$
 $y = \beta_{02} + \beta_2 x$ for $x \ge 2$

SIDE NOTE: VARIED CHANGE POINTS

- Is person-specific timing of change point of interest?
 - e.g., onset of cognitive decline
- Increase model flexibility (fit)
- Change point in random effects structure?
 - Bayesian approach (Brilleman et al., 2017, Epidemiology)
- What if both location and number of change points is unknown?

SIDE NOTE: VARIED CHANGE POINTS / LANDMARK REGISTRATION

- Control for individual/group difference in time latency of change points
- Example: groups do not differ in reactivity or recovery after adjusting for timing differences

Lopez-Duran et al., 2014, Stress

THE MATH

- Continuous piecewise regression
 - 2+ equations
 - Equal at change points

$$y = \beta_{01} + \beta_1 x \qquad for \ x \le 0$$

$$y = \beta_{02} + \beta_2 x \qquad for \ x \ge 0$$

$$\beta_{01} + \beta_1 * c = \beta_{02} + \beta_2 * c$$

$$\beta_{01} + \beta_1 * c = \beta_{02} + \beta_2 * c$$

$$\beta_{02} = \beta_{01} + c(\beta_1 - \beta_2)$$

THE MATH

$$y(x) = \begin{cases} \beta_0^1 + \beta_1^1(x - b_1) + e^1 & b_1 \le x \le b_2 \\ \beta_0^2 + \beta_1^2(x - b_2) + e^2 & b_2 < x \le b_3 \\ \vdots & \vdots \\ \beta_0^{n-1} + \beta_1^{n-1}(x - b_{n-1}) + e^{n-1} & b_{n-1} < x \le b_n \end{cases}$$

- $b_1 = x$ location of first break
- b₂ = x location of second break point
- $b_n = x$ location of n^{th} break point

PIECEWISE LMEMS

EXAMPLE

EXAMPLE: DATA

Dummy Code Contrast

- $x_{i2} = 0$ for $x_{i1} < k$
- $x_{i2} = 1 \text{ for } x_{i1} > k$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 (x_{i1} - \mathbf{k}) x_{i2} + \epsilon_i$$

subid	sample_num	time_to_peak_mean	reac	recov	cortisol_value
1001	1	-48	-48	0	15.2
1001	2	-26	-26	0	17.95
1001	3	-18	-18	0	15.16
1001	4	-11	-11	0	13.19
1001	5	0	0	0	9.17
1001	6	11	0	11	9.32
1001	7	22	0	22	8.62
1001	8	33	0	33	9.44
1001	9	65	0	65	10.73
1002	1	-48	-48	0	6.62
1002	2	-26	-26	0	6.28
1002	3	-18	-18	0	6.13
1002	4	-11	-11	0	5.91
1002	5	0	0	0	6.19
1002	6	11	0	11	4.18
1002	7	22	0	22	5.31
1002	8	33	0	33	3.9
1002	9	65	0	65	6.23
1003	1	-48	-48	0	10.57
1003	2	-26	-26	0	14.79
1003	3	-18	-18	0	21.55
1003	4	-11	-11	0	30.18
1003	5	0	0	0	NA
1003	6	11	0	11	25.32
1003	7	22	0	22	NA
1003	8	33	0	33	14.65
1003	9	65	0	65	9.88
1004	1	-48	-48	0	9.04

EXAMPLE: MODEL

• Linear growth (not piecewise):

Imer(cortisol ~ time + (1 + time | subid), data)

EXAMPLE: MODEL

• Piecewise linear growth:

Imer(cortisol ~ time1 + time2 + (1 + time1 + time2 | subid), data)

= Imer(cortisol ~ reac + recov + (1 + reac + recov | subid), data)

Level-1:
$$Cort_{ij} = \beta_{0j} + \beta_{1j} reac_{ij} + \beta_{2j} recov_{ij} + \epsilon_{ij}$$

Level-2:
$$\beta_{0j} = \gamma_{00} + e_{0j}$$
 = group avg peak cortisol

$$\beta_{1j} = \gamma_{10} + e_{1j}$$
 = effect of reactivity on cortisol

$$\beta_{2j} = \gamma_{20} + e_{2j}$$
 = effect of recovery on cortisol

$$Cort_{ij} = \gamma_{00} + e_{0j} + (\gamma_{10} + e_{1j}) * reac_{ij} + (\gamma_{20} + e_{2j}) * recov_{ij} + \epsilon_{ij}$$

by-subj random intercept

by-subj random slopes

residual error

|Model: Imer(cortisol ~ reac + recov + (1 + reac + recov | subid), data)

EXAMPLE: OUTPUT

Random Effects:

- int: betw-subj variance in average peak cortisol
- reac: betw-subj variance of reactivity slope
- recov: betw-subj variance of recovery slope

Fixed Effects:

- int: average cortisol at peak
- reac: slope of increase in cort before peak
- recov: slope of decrease in cort after peak

```
Scaled residuals:
   Min
            10 Median
                                  Max
-3.2765 -0.4739 -0.0076 0.4554 3.4436
Random effects:
 Groups
         Name
                    Variance Std.Dev. Corr
 subid
         (Intercept) 40.0834 6.3311
         reac_scale 1.6474 1.2835
                                     0.84
         recov_scale 0.4604 0.6786
                                      -0.86 - 0.85
 Residual
                     5.7301 2.3938
Number of obs: 639, groups: subid, 77
Fixed effects:
           Estimate Std. Error df t value Pr(>|t|)
(Intercept) 13.6996
                       0.7409 75.1920 18.489 < 2e-16 ***
reac_scale 1.1708
                       0.1632 74.6427 7.176 4.43e-10 ***
recov_scale -0.8349
                       0.0931 74.8453 -8.968 1.75e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           (Intr) rc_scl
            0.803
reac_scale
recov_scale -0.783 -0.753
```

REML criterion at convergence: 3323.8

EXAMPLE

MORE COMPLEX MODELS

- How does each piece relate to other variables?
 - e.g., do those with higher life stress recover more slowly from acute stress?

MORE COMPLEX MODELS: MATH

Q: does lifetime stress moderate cortisol reactivity and/or recovery from acute stress?

Level-1:
$$Cort_{ij} = \beta_{0j} + \beta_{1j} reac_{ij} + \beta_{2j} recov_{ij} + \epsilon_{ij}$$

Level-2:

$$eta_{0j} = \gamma_{00} + \gamma_{01} stress_j + e_{0j}$$
 $eta_{1j} = \gamma_{10} + \gamma_{11} stress_j + e_{1j}$
 $eta_{2j} = \gamma_{20} + \gamma_{21} stress_j + e_{2j}$

 γ_{00} : group avg peak cortisol and

 γ_{01} : main effect of stress on cortisol (peak)

 γ_{10} : main effect of reactivity on cortisol and

 γ_{11} : interaction between reac and stress

 γ_{20} : main effect of recovery on cortisol and γ_{21} : interaction between recov and stress

$$Cort_{ij} = \gamma_{00} + \gamma_{01} stress_j + e_{0j} + (\gamma_{10} + \gamma_{11} stress_j + e_{1j}) * reac_{ij} + (\gamma_{20} + \gamma_{21} stress_j + e_{2j}) * recov_{ij} + \epsilon_{ij}$$

MORE COMPLEX MODELS: R

Imer(cortisol ~ reac*stress + recov*stress + (1 + reac + recov | id))

```
Random effects:
                     Variance Std.Dev. Corr
 Groups
         (Intercept) 40.6154 6.3730
         reac_scale 1.6111 1.2693
         recov_scale 0.4541 0.6738
                                     -0.87 -0.90
 Residual
                      5.8873 2.4264
Number of obs: 546, groups: subid, 66
Fixed effects:
                     Estimate Std. Error
                                               df t value Pr(>|t|)
(Intercept)
                    13.810321 0.805874 63.511361 17.137 < 2e-16 ***
reac_scale
stress_c
                    -0.029991 0.027514 63.285098 -1.090
                    -0.865245   0.100524   62.872620   -8.607   3.16e-12 ***
recov_scale
reac_scale:stress_c -0.005826 0.005926 60.779749 -0.983
stress_c:recov_scale 0.006075 0.003421 62.226329 1.776 0.0807 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Correlation of Fixed Effects:
            (Intr) rc_scl strss_ rcv_sc rc_s:_
reac_scale 0.799
stress_c
            0.001 0.001
recov_scale -0.789 -0.789 -0.002
rc_scl:str_ 0.001 0.001 0.804 -0.003
strss_c:rc_ -0.002 -0.003 -0.791 0.005 -0.795
```


MORE COMPLEX MODELS: VISUALS

EVEN MORE COMPLEX MODELS: R

```
Imer(cortisol_value ~
    reac*(age + sex + race + icv + stress + amyg + hpc) +
    recov*(age + sex + race + icv + stress + amyg + hpc) +
    (1 + reac + recov | id))
```

Convergence...

- Scale reac/recov by a factor of 10
- Use different optimizers
- etc.

Psychological Methods 2018, Vol. 23, No. 3, 389-411 © 2017 American Psychological Association 1082-989X/18/\$12.00 http://dx.doi.org/10.1037/met0000159

Linear Mixed-Effects Models and the Analysis of Nonindependent Data: A Unified Framework to Analyze Categorical and Continuous Independent Variables that Vary Within-Subjects and/or Within-Items

> Markus Brauer and John J. Curtin University of Wisconsin-Madison

REMAINING QUESTIONS / FUTURE

- Piece trajectories re functional neuroimaging
 - Subject-specific slope estimates
- Significant relationships between pieces
 - e.g., is reactivity steeper than recovery?

RESOURCES

- Daniel Martin <u>tutorial</u> R code plus cool plots
- Huang, 2015 tutorial in SAS but helpful mathematical explanations
- Penn State tutorial
- Info/code on random change points

CORTISOL-SPECIFIC STUDIES (THANKS, CLAIRE!)

- Bendezú, J. J., Loughlin-Presnal, J. E., & Wadsworth, M. E. (2019). Attachment Security Moderates
 Effects of Uncontrollable Stress on Preadolescent Hypothalamic—Pituitary—Adrenal Axis Responses:
 Evidence of Regulatory Fit. Clinical Psychological Science, 7(6), 1355–1371.
 https://doi.org/10.1177/2167702619854747
- Bendezú, J. J., & Wadsworth, M. E. (2017). If the coping fits, use it: Preadolescent recent stress exposure differentially predicts post-TSST salivary cortisol recovery. *Developmental Psychobiology*, 59(7), 848–862. https://doi.org/10.1002/dev.21542
- Fiksdal, A., Hanlin, L., Kuras, Y., Gianferante, D., Chen, X., Thoma, M. V., & Rohleder, N. (2019). Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. *Psychoneuroendocrinology*, 102, 44–52. https://doi.org/10.1016/j.psyneuen.2018.11.035
- Glier, S., Campbell, A., Corr, R., Pelletier-Baldelli, A., Yefimov, M., Guerra, C., Scott, K., Murphy, L., Bizzell, J., & Belger, A. (2022). Coordination of autonomic and endocrine stress responses to the Trier Social Stress Test in adolescence. *Psychophysiology*, *59*(9), e14056. https://doi.org/10.1111/psyp.14056
- Ji, J., Negriff, S., Kim, H., & Susman, E. J. (2016). A study of cortisol reactivity and recovery among young adolescents: Heterogeneity and longitudinal stability and change. *Developmental Psychobiology*, 58(3), 283–302. https://doi.org/10.1002/dev.21369
- Lopez-Duran, N. L., Mayer, S. E., & Abelson, J. L. (2014). Modeling neuroendocrine stress reactivity in salivary cortisol: Adjusting for peak latency variability. Stress (Amsterdam, Netherlands), 17(4), 285–295. https://doi.org/10.3109/10253890.2014.915517