Week 2: Sequence alignment & search

Substitution, BLAST

- Substitution matrix
 - Construction & properties
- Fast sequence searches
 - BLAST; Statistics of similarity search

Dr. Margaret Dayhoff Applying math & computational techniques to the sequencing of proteins and nucleic acids.

- 1965: First collection of protein seqs.
- Single-letter code for amino acids.
- 1966: 'Evolutionary trees'.
- 1978: First AA similarity-scoring matrix.
- 1980: Launched the Protein Information Resource, the first online database system that could be accessed by telephone line.

Substitution matrix: A collection of scores for aligning nucleotides or amino acids with one another.

- The scores represent the relative ease with which one nucleotide or amino acid may mutate into or substitute for another.
- Purely statistical, nothing directly to do with structure/biochemistry.

Wikipedia: Eddy (2004)

```
Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp
```

Substitution matrix: Each score is a <u>log-odds score</u> equal to the logarithm of the ratio of the likelihoods of two hypotheses: i) the residues can substitute for one another, or ii) not.

$$s(a,b) = \frac{1}{\lambda} \log \frac{p_{ab}}{f_a f_b}$$

- \bullet p_{ah} : likelihood of these two residues being correlated because they're homologous.
 - \circ p_{ab} are the target frequencies: the probability that we expect to observe residues *a* and *b* aligned in homologous sequence alignments.
- $f_a f_h$: likelihood of these two residues being uncorrelated and unrelated, occurring independently.
 - \circ f_a and f_b are background frequencies: the probabilities that we expect to observe amino acids *a* and *b* on average in any protein sequence.
- λ: a scaling factor, usually set to something that lets helps round off all the terms in the score matrix to sensible integers.

Substitution matrix: Each score is a log-odds score equal to the logarithm of the ratio of the likelihoods of two hypotheses: i) the residues can substitute for one another, or ii) not.

$$s(a,b) = \frac{1}{\lambda} \log \frac{p_{ab}}{f_a f_b}$$

- p_{ab}: likelihood of these two residues being correlated because they're homologous.
- $\mathbf{f}_{a}\mathbf{f}_{b}$: likelihood of these two residues being uncorrelated and unrelated, occurring independently.
- λ: a scaling factor

Assuming that each aligned residue pair is statistically independent of the others (biologically dubious, but mathematically convenient):

- The score of an alignment ("alignment score") = sum of individual log-odds scores for each aligned residue pair.

Substitution matrix for DNA

Making-up an arbitrary matrix by fixing the p_{ab} values \rightarrow directly describes what homologous alignments are expected to look like.

• The resulting score matrix is optimal for detecting alignments that match these target frequencies.

Say, the matrix should be optimized for finding 88% identity alignments.

- Assume that all mismatches are equiprobable, and composition of both alignments and background sequences is uniform at 25% for each nucleotide (\mathbf{f}_a , $\mathbf{f}_b = 0.25$ for all a,b). Then,
 - Four identities: $p_{aa} = 0.22$
 - \circ 12 types of mismatch: $p_{ab} = 0.01$.
- If we set $\lambda = 1$, this gives +1.26 for a match and -1.83 for a mismatch.
- Setting $\lambda = 0.25$ and round off: we have a new scoring system of +4/-7.

Substitution matrix for DNA

Given a scoring matrix, we can back calculate target frequencies if two conditions are met:

- 1. It must have at least one positive score, and
- 2. The expected score for random sequence alignments must be negative.

True for most score matrices:

- These properties are necessary to make local sequence alignment algorithms like BLAST and Smith-Waterman work.
- Both conditions are met by definition for matrices derived as log-odds scores, except for the useless case of $p_{ab} = f_a f_b$ for all a,b.

Examples:

- FASTA & WU-BLASTN: arbitrary +5/-4 scoring system;
 Optimal for detecting alignments that are 65% identical.
- NCBI BLASTN: +1/-2 scoring system; Optimal for detecting alignments that are 95% identical.

 $s(a,b) = \frac{1}{\lambda} \log \frac{Pab}{f f}$

How do we scale this up to search an entire sequence database?

Given a query sequence, and a large set of target sequences (millions), which target sequences (if any) are related to the query?

- Individual alignments need not be perfect: Once initial matches are found, they can fine-tune them later.
- Must be very fast.

Exploit the nature of the problem (most sequences will be unrelated to the query):

- If any match with % identity ≤ 90 is going to be rejected, can ignore sequences which don't have a stretch of 10 nucleotides in a row.
- Pre-screen sequences for common long stretches.
- Pre-process the database offline and index k-mers.

BLAST

TITLE CITED BY YEAR

Basic local alignment search tool

SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman Journal of molecular biology 215 (3), 403-410

136003 * 1990

BLAST

High-scoring Segment Pair (HSP)

Some uses of BLAST

- Finding the right/relevant species:
 - If you have a DNA sequence from unknown species, BLAST can help identify the correct/related species.
- Finding protein domains:
 - If you a protein sequence (or a translated nucleotide sequence), BLAST can be used to look for known protein domains in the query sequence.
- Mapping the phylogeny of a gene/protein:
 - BLAST can be used to find potential homologs of your gene/protein of interest across many species, which you can then use to generate a phylogenetic tree.
- Mapping DNA to a known chromosome:
 - If you are sequencing a gene from a known species but have no idea of the chromosome location, BLAST can help you. BLAST will show you the position of the query sequence in relation to the hit sequences.
- Annotations:
 - BLAST can also be used to map gene/protein annotations from one organism to another.

Statistics of similarity search

Distribution of real (squares) & expected similarity scores (Gumbel extreme value distribution).

P-value:

- The probability of observing a score equal to or greater than the observed score S.

E-value:

- The expected number of HSPs with score at least S.
- $E = Kmne^{-\lambda S}$

Database E-value:

- E-value after thousands/millions of searches ≈ E*D.

Bit score:

Normalized raw score.