

Homological information to refine small-world regime of brain functional connectivity networks

<u>Simone Chiominto</u> ¹ Francesco Pappone¹ Hanâ Lbath² Lucrezia Carboni^{2,3} Sophie Achard²

¹Dipartimento di Scienze Matematiche, Politecnico di Torino, 10129 Torino, IT

²Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, FR

³Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, FR

October 2022

Simone Chiominto Brains Homology October 2022 1/14

Motivations

- Topological Data Analysis is a powerful tool for extracting information in Networks
- Homology uses information between local and global scale
- Comparison with synthetic constructions can help understand properties of real datasets
- Application to functional brain connectivity networks

Goals

Our goals are to:

- Find a measure of mesoscale efficiency of brains and compare it to Watts-Strogatz graphs
- Predict the proportion of long range links using Topological Data Analysis, in terms of predicting the *p* of Watts-Strogatz graphs

Presentation of the datasets

We used two different datasets:

- ② 200 matrices of dimension 90×90 (AAL90) all from healthy volunteers. Given a threshold or a sparsity value, we extract a graph representation of the data, considering as connected the most correlated nodes.

Figure: Example of graph extraction from a synthetic matrix 20×20

Small World properties of Brain Functional Networks

In (Achard, Bullmore, 2007) network efficiency measures on brain functional networks are studied. Efficiency is defined as

$$E_{glob} := \frac{1}{\textit{N(N-1)}} \sum_{i \neq j \in \textit{G}} \frac{1}{\textit{L}_{i,j}} \qquad E_{loc} := \frac{1}{\textit{N}_{\textit{G}_{i}}(\textit{N}_{\textit{G}_{i}} - 1)} \sum_{j \neq k \in \textit{G}_{i}} \frac{1}{\textit{L}_{j,k}}$$

Brain data have global efficiency similar to a Watts-Strogatz with p=0.025 and local efficiency similar to a Watts-Strogatz with p=0.1.

Watts-Strogatz model

Watts-Strogatz construction is our benchmark for synthetic small world graphs.

Watts-Strogatz model

- start with a ring lattice;
- Rewire every edge with fixed probability p.

Observation

- If p = 0 ring lattice
- if p = 1 random

Figure: Watts-Strogatz graph with 20 nodes and p = 0.05

Simplicial Complex

Simplicial Complex

A k-simplex is the convex hull of its k + 1 vertices.

A simplicial complex $\mathcal K$ is a set of simplices s.t.

- Every face of a simplex from K is also in K.
- ② Intersection of any two simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of both σ_1 and σ_2 .

graph

flag complex

k-chains

Multidimensional extension of paths.

S simplicial complex. A simplicial *k*-chain is a finite formal sum $\sum_{i=1}^{N} c_i \sigma_i$ where $c_i \in \mathbb{Z}$, σ_i of oriented *k*-simplex.

Homology groups and Betti numbers

Homology groups and betti numbers

Homology groups defined as:

- $H_k := \ker \partial_k / \operatorname{im} \partial_{k+1}$
- Betti numbers $\beta_k := \operatorname{rank} H_k$

Intuition: k-th homology group as the group generated from k-dimensional voids. The number of voids are the Betti numbers

Feature Vector

- For each node, we computed the "2-steps" neighborhood for 10 different sparsity levels
- For each of the 10 neighborhoods, we computed the 1-dimensional Betti number
- For each node, we define as feature vector the vector of these 10 Betti numbers

GCN Model and training

Tool to do regression for graph structured data: Graph Neural Network

- GCN model is trained over a dataset of n = 1000 Watts-Strogatz with chosen with p taking values in [0, 0.5]
- The trained model is then applied to the brains dataset

Results on Watts-Strogatz networks

RMSE on the test set is lower than 0.02.

A second, identical model is trained for reference, using vectors of ones instead of topological features. We will refer to this model as *null model*.

Figure: Results on Watts-Strogatz Graphs

Results on Brain Networks

- Model applied to real data always predicts a probability (!)
- Prediction on brains has mean around 0.077: between the local 0.1 and global prediction 0.025

Figure: Histogram of estimated probabilities on brain functional connectivity networks

Conclusions and future outlooks

Our work suggests the following:

- Homological information can be cast as useful features in a task over brain functional connectivity networks
- A measure of mesoscale efficiency can be obtained by using the predicted rewiring probability extracted by the GNN.

There may be several future directions in our work,

- Training on the synthetic dataset to do transfer learning on a classification task
- Results on finer representations of brain connectivity

Thank you!

Thank you for your attention!

Contacts and code

https://github.com/SimoneChiominto/TDA_BrainNetworks.git