4.	(a)	What is the role of TSS in multitasking? Explain I/O permission
		bitmap in TSS. 6.
	(b)	Draw the format of interrupt gate and trap gate descriptor.
		What is the difference between them? [6]
		00,00
5.	(a)	What is the role of DR0 to DR3 registers in debugging?
		Explain task switch breakpoint. [4]
	(b)	What are content of CRO register after RESET in 80386?
		Explain all related bits. [3]
	(c)	Explain linear address formation in virtual mode of 80386.[6]
	_	Or 6
6.	(a)	Explain any four debugging features of 80386. [4]
	(b)	List any three differences between Virtual 86 mode and 8086.[3]
	(c)	With the help of neat diagram explain format of DR6 register.[6]
7.	(a)	Compare Pipelined and Non-pipelined bus cycle. [2]
	<i>(b)</i>	Explain the following signals of 80386: [6]
		M/IO#, W/R#, READY#
	(c)	Explain the following instructions of 80387:
		FLD, FSQRT, FBSTP
		Or City
8.	(a)	Explain any two instructions used in 80387 to pop data from
		its stack registers.
	<i>(b)</i>	With the help of neat diagram, explain the pipelined read bus
		cycle.
	(c)	When WAIT state is required in 80386 read bus cycle? Explain
		with neat diagram. [5]

[5459]-193

Q. 1 a) Logical address to physical address Translation (Paging Disabled)

Diagram for segmentation address translation - 2M

Explanation - 4M

- i) Logical address contain selector and offset address.
- ii) Segment selector select one of the descriptor present in GDT/LDT.
- iii) Selected segment descriptor will contain base address of target segment. This base address is added in offset address to generate linaddress.
- iv) The physical address will be same as above linear address as paging disabled.
- b) For each instruction 2M. (2 *3 = 6M)Instructions are – CALL, JMP, RET, IRET

<u>OR</u>

Q.2 a) Conversion of Linear address into physical address.

Diagram for paging address translation - 2M Explanation - 4M

b) For each instruction 2M. (Explanation- 1M and Flags affected- 1M)

$$(2*3 = 6M)$$

Q.3 a) Diagram – 2M, Explanation- 4M

Working of CALL gate descriptor:

b) Procedure of handling interrupts in Protected mode (6M)

- i) When interrupt occurs execution of current instruction is completed.
- ii) One of the descriptor present in IDT is selected.
- iii) Using selected descriptor control is transferred to ISR.
- iv) After execution of IRET instruction in ISR control is transferred back to interrupted program.

Q.4 a) Role of TSS in multitasking -2M

I/O permission bitmap - 4M

b) Draw format of interrupt gate and trap gate descriptor

Format of interrupt gate descriptor- 2M
Format of trap gate descriptor- 2M
Difference - 2M

Q.5 a) What is role of DR0 to DR3 registers in debugging? Explain task switch breakpoint.

Role of DR0 to DR3 - 1M

Task switch breakpoint-3M

b) What are content of CR0 register after RESET in 80386? Explain all related bits.3M

c) Linear address formation in virtual mode of 80386- 6M

<u>or</u>

Q.6 a)) Explain any four debugging features of 80386.

One feature for 1M (4 features *1= 4M)

- i) Four debug address register
- ii) Debug control register
- iii) Debug status register
- iv) Trap bit of TSS
- v) RF flag of flag register
- b) List any three differences between Virtual 86 mode and 8086.

One difference for 1M (3*1=3M)

c) With the help of neat diagram explain format of DR6 register.

Format of DR6 register - 2M

Explanation- 4M

[5459]-S-193

a) Comparison between pipeline and nonpipelined bus cycle Q.7 One point for 1M (2 Points *1=2M) Address of next bus cycle appears on address bus when previous bus cycle is under process. ii) NA# signal 2M (3 Signals *2 = 6M) b) Explanation of each signal i) M/IO# ii) W/R# iii) READY# c) Instructions of 80387. FLD (1M) FSQRT (1M) FLDZ (1M) FBSTP (2M) <u>OR</u> a) Explain any two instructions used in 80387 to pop data from its stack 0.8 registers. One instruction – 1M (2 instructions *1M=2M) Example Instructions are FST, FSTP, FBSTP b) Explain pipelined read bus cycle with the help of neat diagram. Diagram - 3M Explanation-3M (c) When WAIT state is required in 80386 read bus cycle? Explain with neat diagram. Diagram -2M Explanation-3M