

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 824 148 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 18.02.1998 Bulletin 1998/08

(21) Application number: 97113932.4

(22) Date of filing: 13.08.1997

(51) Int. Cl.⁶: C12N 15/52, C12N 15/60, C12N 1/21, C12P 7/62, C12N 15/74 // (C12N1/21, C12R1:05)

(84) Designated Contracting States: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

(30) Priority: 14.08.1996 JP 214509/96 25.07.1997 JP 199979/97

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: The Institute of Physical and Chemical Research Wako-shi, Saitama 351-01 (JP)

(72) Inventors:

· Toshiaki, Fukui, The Inst. of Phys. & Chem. Res. Wako-shi, Saitema 351-01 (JP)

· Yoshiharu, Doi, The Inst. of Phys. & Chem. Res. Wako-shi, Saitema 351-01 (JP)

(74) Representative: Grosse, Rainer, Dipl.-Ing. et al Gleiss & Grosse Patentanwaltskanzlei, Maybachstrasse 6A 70469 Stuttgart (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

Polyester synthase gene and process for producing polyester (54)

The present invention relates to a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity; a gene expression cassette comprising the polyester synthase gene and either of open reading frames located upstream and downstream of said gene; a recombinant vector comprising the gene expression cassette; a transformant transformed with the recombinant vector; and a process for producing polyester by culturing the transformant in a medium and recovering polyester from the resulting culture.

Printed by Xerox	(UK)	Business	Service
2	150	ro a	

Description

5

10

30

55

Field of the Invention

The present invention relates to a polyester synthase gene, a recombinant vector containing the gene, a transformant carrying the recombinant vector, and a process for producing polyester by use of the transformant.

Background of the Invention

It is known that a large number of microorganisms biosynthesize poly-3-hydroxybutyrate (P(3HB)) and store it in the form of ultrafine particles as an energy source in the body. P(3HB) extracted from microorganisms is a thermoplastic polymer with a melting temperature of about 180 °C, and because of its excellent biodegradability and biocompatibility it is drawing attention as "green" plastic for preservation of the environment. Further, P(3HB) is "green" plastic which can be synthesized from regenerable carbon resources including sugars and vegetable oils by various microorganisms. However, P(3HB) is a highly crystalline polymer and thus has the problem in physical properties of inferior resistance to impact, so its practical application has never been attempted.

Recently, polyester P(3HB-co-3HH) as a random copolymer of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HH) and a process for producing the same have been studied and developed, and these are described in e.g. Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995 respectively. In these publications, the P(3HB-co-3HH) copolymer is produced from alkanoic acids or olive oil by fermentation with <u>Aeromonas caviae</u> isolated from soil. It is revealed that because the degree of crystallinity of the P(3HB-co-3HH) copolymer produced through fermentation is reduced with an increasing ratio of the 3HH unit in it, so that the copolymer becomes a soft polymeric material excellent in thermostability and formability and can be manufactured into strong yarn or transparent flexible film (Y. Doi, S. Kitamura, H. Abe, Macromolecules <u>28</u>, 4822-4823 (1995)). However, the yield of polyester (content of polyester in dried microorganisms) according to the processes described in Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995 is low, and thus there is demand for developments in a process for producing the copolymerized polyester P(3HB-co-3HH).

Summary of the Invention

The object of the present invention is to provide a polyester synthase gene, recombinant vectors containing the gene, transformants transformed with the recombinant vectors, and processes for producing polyester by use of the transformants.

As a result of their eager research, the present inventors succeeded in producing the polyester in high yield by cloning a polyester synthase gene and deleting one or both of open reading frames located upstream and downstream of said gene to arrive at the completion of the present invention.

That is, the present invention is a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity. Said gene includes those containing e.g. the nucleotide sequence of SEQ ID NO:1.

Further, the present invention is a gene expression cassette comprising said polyester synthase gene and either of open reading frames located upstream and downstream of said gene. In said gene expression cassette, the open reading frame located upstream of the polyester synthase gene includes those (e.g. SEQ ID NO:3) containing DNA coding for the amino acid sequence of SEQ ID NO:4, and the open reading frame located downstream of the polyester synthase gene includes those (e.g. SEQ ID NO:5) containing DNA coding for a polypeptide containing the amino acid sequence of SEQ ID NO:6 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about enoyl-CoA hydratase activity.

Even if one or more amino acids in the amino acid sequence of SEQ ID NO:2 have undergone mutations such as deletion, replacement, addition etc., DNA coding for a polypeptide containing said amino acid sequence is also contained in the gene of the present invention insofar as the polypeptide has polyester synthase activity. For example, DNA coding for the amino acid sequence of SEQ ID NO:2 where methionine at the first position is deleted is also contained in the gene of the present invention.

Further, the present invention is recombinant vectors comprising said polyester synthase gene or said gene expression cassette.

Further, the present invention is transformants transformed with said recombinant vectors.

Further, the present invention is processes for producing polyester, wherein said transformant is cultured in a medium, and polyester is recovered from the resulting culture. Examples of such polyester are copolymers (e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymers) of 3-hydroxyalkanoic acid represented by formula I:

$$R$$
 $|$
 $HO - CH - CH_2 - COOH$

wherein R represents a hydrogen atom or a C1 to C4 alkyl group.

Brief Description of the Drawing

5

15

20

25

30

40

FIG. 1 shows the structure of the gene of the present invention.

FIG. 2 is a photograph showing the result of SDS-polyacrylamide gel electrophoresis.

Detailed Description of the Invention

Hereinafter, the present invention is described in detail.

(1) Cloning of Polyester synthase gene

The polyester synthase gene of the present invention is separated from a microorganism belonging to the genus Aeromonas.

First, genomic DNA is isolated from a strain having the polyester synthase gene. Such a strain includes e.g. <u>Aeromonas caviae</u>.

Any known methods can be used for preparation of genomic DNA. For example, <u>Aeromonas caviae</u> is cultured in LB medium and then its genomic DNA is prepared by the hexadecyl trimethyl ammonium bromide method (Current Protocols in Molecular Biology, vol. 1, page 2.4.3., John Wiley & Sons Inc., 1994).

The DNA obtained in this manner is partially digested with a suitable restriction enzyme (e.g. Sau3Al, BamHl, BgIII etc.) and then the DNA fragments are then dephosphorylated by treatment with alkaline phosphatase. It is ligated into a vector previously cleaved with a restriction enzyme (e.g. BamHl, BgIII etc.) to prepare a library.

Phage or plasmid capable of autonomously replicating in host microorganisms is used as the vector. The phage vector includes e.g. EMBL3, M13, λ gt11 etc., and the plasmid vector includes e.g. pBR322, pUC18, and pBluescript II (Stratagene). Vectors capable of autonomously replicating in 2 or more host cells such as <u>E. coli</u> and <u>Bacillus brevis</u>, as well as various shuttle vectors, can also be used. Such vectors are also cleaved with said restriction enzymes so that their fragment can be obtained.

Conventional DNA ligase is used to ligate the resulting DNA fragments into the vector fragment. The DNA fragments and the vector fragment are annealed and then ligated to produce a recombinant vector.

To introduce the recombinant vector into a host microorganism, any known methods can be used. For example, if the host microorganism is <u>E</u>. <u>coli</u>, the calcium method (Lederberg, E.M. et al., J. Bacteriol. <u>119</u>, 1072 (1974)) and the electroporation method (Current Protocols in Molecular Biology, vol. 1, page 1.8.4 (1994)) can be used. If phage DNA is used, the <u>in vitro</u> packaging method (Current Protocols in Molecular Biology, vol. 1, page 5.7.1 (1994)) etc. can be adopted. In the present invention, an <u>in vitro</u> packaging kit (Gigapack II, produced by Stratagene etc.) can also be used.

To obtain a DNA fragment containing the polyester synthase gene derived from Aeromonas caviae, a probe is then prepared. The amino acid sequences of some polyester synthase have already been known (Peoples, O.P. and Sinskey, A.J., J. Biol. Chem., 264, 15293 (1989); Huisman, G.W. et al., J. Biol. Chem., 266, 2191 (1991); Pieper, U. et al., FEMS Microbiol. Lett., 96, 73 (1992) etc.). Two conserved regions are selected from these amino acid sequences, and nucleotide sequences coding them are estimated to design oligonucleotides for use as primers. Examples of such oligonucleotides include, but are not limited to, the 2 oligonucleotides 5'-CC(C/G)CC(C/G)TGGATCAA(T/C)AAGT (T/A)(T/C)TA(T/C)ATC-3' (SEQ ID NO:7) and 5'-(G/C)AGCCA (G/C)GC(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3' (SEQ ID NO:8).

Polymerase chain reaction (PCR) (Molecular Cloning, vol. 2, page 14.2 (1989)) is carried out using these oligonucleotides as primers and the genomic DNA of <u>Aeromonas caviae</u> as a template. The partial fragment of polyester synthase gene is amplified by PCR.

Then, the partially amplified fragment thus obtained is labeled with a suitable reagent and used for colony hybridization of the above genomic DNA library (Current Protocols in Molecular Biology, vol. 1, page 6.0.3 (1994)).

The E. coli is screened by colony hybridization, and a plasmid is recovered from it using the alkaline method (Cur-

rent Protocols in Molecular Biology, vol. 1, page 1.6.1 (1994)), whereby a DNA fragment containing the polyester synthase gene is obtained.

The nucleotide sequence of said DNA fragment can be determined in e.g. an automatic nucleotide sequence analyzer such as 373A DNA sequencer (Applied Biosystems) using a known method such as the Sanger method (Molecular Cloning, vol. 2, page 13.3 (1989)).

The nucleotide sequence of the polyester synthase gene of the present invention is shown in SEQ ID NO:1, and the amino acid sequence encoded by said gene is shown in SEQ ID NO:2, where some amino acids may have undergone mutations such as deletion, replacement, addition etc. insofar as a polypeptide having said amino acid sequence brings about polyester synthase activity. Further, the gene of the present invention encompasses not only the nucleotide sequence coding for the amino acid sequence of SEQ ID NO:2 but also its degenerated isomers which except for degeneracy codons, code for the same polypeptide.

The above mutations such as deletion etc. can be induced by known site-directed mutagenesis (Current Protocols in Molecular Biology, vol., 1, page 8.1.1 (1994)).

After the nucleotide sequence was determined by the means described above, the gene of the present invention can be obtained by chemical synthesis or the PCR technique using genomic DNA as a template, or by hybridization using a DNA fragment having said nucleotide sequence as a probe.

(2) Preparation of Transformant

The transformant of the present invention is obtained by introducing the recombinant vector of the present invention into a host compatible with the expression vector used in constructing said recombinant vector.

The host is not particularly limited insofar as it can express the target gene. Examples are bacteria such as microorganisms belonging to the genus <u>Alcaligenes</u>, microorganisms belonging to the genus <u>Bacillus</u>, yeasts such as the genera <u>Saccharomyces</u>, <u>Candida</u> etc., and animal cells such as COS cells, CHO cells etc.

If bacteria such as microorganisms belonging to the genus <u>Alcaligenes</u>, microorganisms belonging to the genus <u>Pseudomonas</u> etc. are used as the host, the recombinant DNA of the present invention is preferably constituted such that it contains a promoter, the DNA of the present invention, and a transcription termination sequence so as to be capable of autonomous replication in the host. The expression vector includes pLA2917 (ATCC 37355) containing replication origin RK2 and pJRD215 (ATCC 37533) containing replication origin RSF1010, which are replicated and maintained in a broad range of hosts.

The promoter may be any one if it can be expressed in the host. Examples are promoters derived from <u>E. coli</u>, phage etc., such as trp promoter, lac promoter, P_L promoter, P_R promoter and T7 promoter. The method of introducing the recombinant DNA into bacteria includes e.g. a method using calcium ions (Current Protocols in Molecular Biology, vol. 1, page 1.8.1 (1994)) and the electroporation method (Current Protocols in Molecular Biology, vol. 1, page 1.8.4 (1994)).

If yeast is used as the host, expression vectors such as YEp13, YCp50 etc. are used. The promoter includes e.g. gal 1 promoter, gal 10 promoter etc. To method of introducing the recombinant DNA into yeast includes e.g. the electroporation method (Methods. Enzymol., 194, 182-187 (1990)), the spheroplast method (Proc. Natl. Acad. Sci. USA, 84, 1929-1933 (1978)), the lithium acetate method (J. Bacteriol., 153, 163-168 (1983)) etc.

If animal cells are used as the host, expression vectors such as pcDNAI, pcDNAI/Amp (produced by Invitrogene) etc. are used. The method of introducing the recombinant DNA into animal cells includes e.g. the electroporation method, potassium phosphate method etc.

The nucleotide sequence determined as described above contains the polyester synthase gene as well as a plurality of open reading frames (ORFs) upstream and downstream of it. That is, the polyester synthase gene forms an operon with at least 2 ORF's under the control of a single promoter region.

The ORF's which are located respectively upstream and downstream of the polyester synthase gene are referred to hereinafter as "ORF1" and "ORF3".

It is considered that ORF1 is an open reading frame of a gene involved in accumulating polyester in the microorganism or a gene in the polyester biosynthesis system. It was revealed that ORF3 is an open reading frame of a gene coding for enoyl-CoA hydratase (particularly (R)-specific enoyl-CoA hydratase) involved in biosynthesis of polyester.

As shown in FIG. 1, an EcoRI fragment carrying an expression regulatory region (expressed as "-35/-10" in FIG. 1A), the polyester synthase gene, ORF1, and ORF3 was cloned in the present invention (FIG. 1A). This fragment is designated EE32.

Then, a fragment (a gene expression cassette) is prepared by deleting ORF1 and/or ORF3 from EE32, and this cassette is introduced into a host whereby a transformant capable of efficiently producing polyester can be obtained.

In EE32, a restriction enzyme BgIII sites are introduced into regions between the expression regulatory region and the translation initiation codon of ORF1 and between the translation termination codon of ORF1 and the translation ini-

tiation codon of the polyester synthase gene, and then ORF1 is deleted from EE32 by treatment with BgIII (FIG. 1B). Similarly, a restriction enzyme BamHI sites is introduced into a region between the translation termination codon of the polyester synthase gene and ORF3, and then ORF3 is deleted by treatment with BamHI (FIG. 1C).

To delete both ORF1 and ORF3, EE32 may be subjected to the above operation of deleting ORF1 and ORF3 (FIG. 1D).

The restriction enzyme sites can be introduced by site-directed mutagenesis using synthetic oligonucleotides (Current Protocols in Molecular Biology, vol. 1, page 8.1.1 (1994)).

Each gene expression cassette thus obtained is inserted into said plasmid capable of expression (e.g. pJRD215 (ATCC 37533)) and the resulting recombinant vector is used to transform <u>Alcaligenes eutrophus PHB-4 (DSM541)</u> (strain deficient in the ability to synthesize polyester). The method for this transformation includes e.g. the calcium chloride method, rubidium chloride method, low pH method, in <u>vitro</u> packaging method, conjugation transfer method etc.

(3) Production of Polyester

5

15

35

45

50

The production of polyester is carried out by culturing the transformant of the present invention in a medium, forming and accumulating the polyester of the present invention in the microorganism or in the culture, and recovering the polyester from the cultured microorganism or from the culture.

A conventional method used for culturing the host is also used to culture the transformant of the present invention. The medium for the transformant prepared from a microorganism belonging to the genus <u>Alcaligenes</u> or <u>Pseudomonas</u> as the host include a medium containing a carbon source assimilable by the microorganism, in which a nitrogen source, inorganic salts or another organic nutrition source has been limited, for example a medium in which the nutrition source has been limited to 0.01 to 0.1 %.

The carbon source is necessary for growth of the microorganism, and it is simultaneously a starting material of polyester. Examples are hydrocarbons such as glucose, fructose, sucrose, maltose etc. Further, fat and oil related substances having 2 or more carbon atoms can be used as the carbon source. The fat and oil related substances include natural fats and oils, such as corn oil, soybean oil, safflower oil, sunflower oil, olive oil, coconut oil, palm oil, rape oil, fish oil, whale oil, porcine oil and cattle oil, aliphatic acids such as acetic acid, propionic acid, butanoic acid, pentanoic acid, hexoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linolenic acid, linolic acid and myristic acid as well as esters thereof, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, lauryl alcohol, oleyl alcohol and palmityl alcohol as well as esters thereof.

The nitrogen source includes e.g. ammonia, ammonium salts such as ammonium chloride, ammonium sulfate, ammonium phosphate etc., peptone, meat extract, yeast extract, corn steep liquor etc. The inorganic matter includes e.g. monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride etc.

Culture is carried out usually under aerobic conditions with shaking at 25 to 37 °C for more than 24 hours (e.g. 1 to 7 days) after expression is induced. During culture, antibiotics such as ampicillin, kanamycin, antipyrine, tetracycline etc. may be added to the culture. Polyester is accumulated in the microorganism by culturing it, and the polyester is then recovered.

To culture the microorganism transformed with the expression vector using an inducible promoter, its inducer can also be added to the medium. For example, isopropyl-β-D-thiogalactopyranoside (IPTG), indoleacrylic acid (IAA) etc. can be added to the medium.

To culture the transformant from animal cells as the host, use is made of a medium such as RPMI-1640 or DMEM which may be supplemented with fetal bovine serum. Culture is carried out usually in the presence of $5 \% CO_2$ at 30 to 37° C for 14 to 28 days. During culture, antibiotics such as kanamycin, penicillin etc. may be added to the medium.

In the present invention, purification of polyester can be carried out e.g. as follows:

The transformant is recovered from the culture by centrifugation, then washed with distilled water and dried. Thereafter, the dried transformant is suspended in chloroform and heated to extract polyester from it. The residues are removed by filtration. Methanol is added to this chloroform solution to precipitate polyester. After the supernatant is removed by filtration or centrifugation, the precipitates are dried to give purified polyester.

The resulting polyester is confirmed to be the desired one in a usual manner e.g. by gas chromatography, nuclear magnetic resonance etc.

The gene of the present invention contains the polyester synthase gene isolated from <u>Aeromonas caviae</u>. This synthase can synthesize a copolymer (polyester) consisting of a monomer unit 3-hydroxyalkanoic acid represented by formula I:

$$R$$
 $|$
 $HO - CH - CH_2 - COOH$

wherein R represents a hydrogen atom or a C1 to C4 alkyl group. Said copolymer includes e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymer (P(3HB-co-3HH)) etc. and the transformant carrying said polyester synthase gene has the ability to produce P(3HB-co-3HH) with very high efficiency.

Conventionally, a process for producing poly-3-hydroxybutyrate (P(3HB)) or poly(3-hydroxybutyrate-co-3-hydroxy-valerate) random copolymer P(3HB-co-3HV) has been studied and developed, but such polyester has the problem in physical properties of inferior resistance to impact because it is a highly crystalline polymer.

Because degree of crystallinity is lowered by introducing 3-hydroxyhexanoate having 6 carbon atoms into a polymer chain, polyester acts as a flexible polymeric material which is also excellent in thermostability and formability, but conventional processes for producing P(3HB-co-3HH) by use of <u>Aeromonas caviae</u> (Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995) suffer from a low yield of polyester.

In the present invention, the P(3HB-co-3HH) copolyester can be produced in high yield.

Because the desired polyester can be obtained in a large amount using the above means, it can be used as a biodegradable material of yarn or film, various vessels etc. Further, the gene of the present invention can be used to breed a strain highly producing the P(3HB-co-3HH) copolymer polyester.

Examples

5

20

25

30

55

Hereinafter, the present invention is described in more detail with reference to the Examples which however are not intended to limit the scope of the present invention. (Example 1] Cloning of the Polyester synthase Gene from <u>Aeromonas caviae</u>

First, a genomic DNA library was prepared from Aeromonas caviae.

Aeromonas caviae FA440 was cultured overnight in 100 ml LB medium (1 % yeast extract, 0.5 % trypton, 0.5 % sodium chloride, 0.1 % glucose, pH 7.5) at 30 °C and then genomic DNA was obtained from the microorganism using the hexadecyl trimethyl ammonium bromide method (Current Protocols in Molecular Biology, vol. 1, page 2.4.3 (1994), John Wiley & Sons Inc.).

The resulting genomic DNA was partially digested with restriction enzyme Sau3AI. The vector plasmid used was cosmid vector pLA2917 (ATCC 37355).

This plasmid was cleaved with restriction enzyme BgIII and dephosphorylated (Molecular Cloning, vol. 1, page 5.7.2 (1989), Cold Spring Harbor Laboratory) and then ligated into the partially digested genomic DNA fragment by use of DNA ligase.

<u>E</u>. <u>coli</u> S17-1 was transformed with this ligated DNA fragment by the <u>in vitro</u> packaging method (Current Protocols in Molecular Biology, vol. 1, page 5.7.2 (1994)) whereby a genomic DNA library from <u>Aeromonas caviae</u> was obtained.

To obtain a DNA fragment containing the polyester synthase gene from <u>Aeromonas caviae</u>, a probe was then prepared. Two well conserved regions were selected from known amino acid sequences of several polyester synthases, and nucleotide sequences coding for them were estimated, and 2 oligonucleotides 5'-CC(C/G)CC(C/G)TGGAT-CAA(T/C)AAGT (T/A)(T/C) TA(T/C)ATC-3' (SEQ ID NO:7) and 5'-(G/C)AGCCA(G/C)GC(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3' (SEQ ID NO:8) were synthesized.

The polyester synthase gene was partially amplified by PCR using these oligonucleotides as primers and the genomic DNA from <u>Aeromonas caviae</u> as a template. PCR was carried out using 30 cycles, each consisting of reaction at 94 °C for 30 seconds, 50 °C for 30 seconds, and 72 °C for 60 seconds.

Then, this partially amplified fragment was labeled with digoxigenin using a DIG DNA labeling kit (Boehringer Mannheim) and used as a probe.

Using the probe thus obtained, <u>E. coli</u> carrying a plasmid containing the polyester synthase gene was isolated by colony hybridization from the genomic DNA library from <u>Aeromonas caviae</u>. By recovering the plasmid from the <u>E. coli</u>, a DNA fragment containing the polyester synthase gene was obtained.

The nucleotide sequence of a 3.2 kbp BgIII-EcoRI fragment from this fragment was determined by the Sanger method.

As a result, the nucleotide sequence of the 3.2 kb fragment as shown in SEQ ID NOs:9 or 10 was determined. By further examining homology to this nucleotide sequence, the polyester synthase gene containing the nucleotide sequence (1785 bp) of SEQ ID NO:1 could be identified in this 3.2 kbp nucleotide sequence.

It should be understood that insofar as the protein encoded by the polyester synthase gene of the present invention has the function of gene expression for polyester polymerization, the nucleotide sequence of said gene may have undergone mutations such as deletion, replacement, addition etc.

In a fragment having the nucleotide sequence of SEQ ID NO:9 or 10, a 405 bp gene (ORF3) and a transcription termination region located downstream of the above 1785 bp nucleotide sequence, as well as a 354 bp gene (ORF1) and an expression regulatory region located upstream thereof were identified. The nucleotide sequence of ORF1 is shown in SEQ ID NO:4; the nucleotide sequence of ORF3 in SEQ ID NO:5; and the amino acid sequence encoded by ORF3 in SEQ ID NO: 6.

ORF3 is an open reading frame of a gene coding for enoyl-CoA hydratase involved in biosynthesis of polyester. Insofar as a polypeptide having the amino acid sequence encoded by ORF3 has enoyl-CoA hydratase activity, particularly (R)-specific enoyl-CoA hydratase activity, said amino acid sequence may have undergone mutations such as deletion, replacement and addition of one or more amino acids.

In the nucleotide sequences of SEQ ID NOS:9 and 10, the expression regulatory region is located at the 1- to 383-positions and the transcription termination region at the 3010 to 3187-positions.

[Example 2] Preparation of Alcaligenes eutrophus Transformant

The BgIII site of the BgIII-EcoRI fragment containing this expression regulatory region, ORF1, the polyester synthase gene, ORF3, and the transcriptional termination region was made EcoRI-ended by use of an EcoRI linker whereby a 3.2 kb EcoRI-EcoRI fragment (EE32 fragment) was obtained. This fragment was inserted into plasmid pJRD215 (ATCC 37533) capable of expression in microorganisms belonging to the genus <u>Alcaligenes</u>, and the resulting recombinant plasmid was transformed into <u>Alcaligenes eutrophus</u> PHB-4 (DSM 541) (strain deficient in the ability to synthesize polyester) by the conjugation transfer method, as follows:

First, the recombinant plasmid was used to transform <u>E.coli</u> S17-1 by the calcium chloride method. The recombinant <u>E.coli</u> thus obtained and <u>Alcaligenes eutrophus</u> PHB-4 were cultured overnight in 1.5 ml LB medium at 30 °C, and the respective cultures, each 0.1 ml, were combined and cultured at 30 °C for 4 hours. This microbial mixture was plated on MBF agar medium (0.9 % disodium phosphate, 0.15 % monopotassium phosphate, 0.05 % ammonium chloride, 0.5 % fructose, 1.5 % agar, 0.3 mg/ml kanamycin) and cultured at 30 °C for 5 days.

Because <u>Alcaligenes eutrophus</u> PHB-4 is rendered resistant to kanamycin by transferring the plasmid in the recombinant <u>E. coli</u> into it, the colonies grown on the MBF agar medium are a transformant of <u>Alcaligenes eutrophus</u>. One colony was isolated from these colonies so that <u>Alcaligenes eutrophus</u> AC32 (referred to hereinafter as AC32) was obtained.

AC32 has been deposited as FERM BP-6038 with the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan.

A restriction enzyme BgIII sites were introduced respectively into regions upstream and downstream of the ORF1 gene in the EE32 fragment by site-directed mutagenesis using a synthetic oligonucleotide (Current Protocols in Molecular Biology, vol. 1, page 8.1.1 (1994)), and an ORF1 gene-free fragment was obtained by deleting the BgIII-BgIII fragment from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC321.

Similarly, a restriction enzyme BamHI sites were introduced respectively regions upstream and downstream of the ORF3 gene in the EE32 fragment by site-directed mutagenesis, and an ORF3 gene-free fragment was obtained by deleting the BamHI-BamHI fragment from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC323.

Similarly, a restriction enzyme BgIII sites were introduced respectively regions upstream and downstream of the ORF1 gene and a restriction enzyme BamHI sites were introduced respectively regions upstream and downstream of the ORF3 gene in the EE32 fragment, and a gene fragment free of both the ORF1 and ORF3 genes was obtained by deleting the BgIII-BgIII and BamHI-BamHI fragments from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC3213.

Further, the polyester synthase gene was amplified by PCR using the EE32 fragment as a template, and the resulting amplification product was inserted into a region between an expression regulatory region and a transcription termination region in a known polyester biosynthesis operon derived from <u>Alcaligenes eutrophus</u>. PCR was carried out using 5'-AGTTCCCGCCTCGGGTGTGGGTGAA-3' (SEQ ID NO: 11) and 5'-GGCATATGCGCTCATGCGGCGTCCT-3' (SEQ ID NO: 12) as primers in 30 cycles each consisting of reaction at 94 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 60 seconds.

This DNA fragment was inserted into plasmid pJRD215, and the resulting plasmid was used to transform Alcali-

genes eutrophus PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC29.

[Example 3] Synthesis of Polyester by Alcaligenes eutrophus Transformants

Each of <u>Alcaligenes eutrophus</u> H16, PHB-4, AC32, AC321, AC323, AC3213 and AC29 was inoculated into 95 ml MB medium (0.9 % disodium phosphate, 0.15 % monopotassium phosphate, 0.05 % ammonium chloride) containing 1 ml of 1 % sodium octanate and incubated in a flask at 30 °C. 0.2 g/L kanamycin was contained in the mediums for strains AC32, AC321, AC323, AC3213 and AC29. 12, 24, 36 and 48 hours thereafter, 1 ml of 1 % sodium octanate was added to each medium (total amount of sodium octanate added: 0.5 g) and the microorganisms were cultured for 72 hours.

Each of strains H16 and AC3213 was inoculated into the above MB medium to which 1% olive oil, palm oil, corn oil or oleic acid had been added, and each strain was cultured at 30 °C for 72 hours in a flask. 0.2 g/L kanamycin was contained in the mediums for strain AC3213.

Each of strains H16, AC32, AC321, AC323 and AC3213 was inoculated into the above MB medium to which 1% sodium heptanoate had been added, and each strain was cultured at 30 °C in a flask. 0.2 g/L kanamycin was contained in the mediums for strains AC32, AC321, AC323 and AC3213.

While 1 ml of 1% sodium heptanoate was added to each medium (total amount of sodium heptanoate added: 0.5 g) 12, 24, 36 and 48 hours thereafter, the microorganisms were cultured for 72 hours. 444

The microorganisms were recovered by centrifugation, washed with distilled water and lyophilized, and the weight of the dried microorganisms was determined. 2 ml sulfuric acid/methanol mixture (15:85) and 2 ml chloroform were added to 10-30 mg of the dried microorganism, and the sample was sealed and heated at 100 °C for 140 minutes whereby the polyester in the microorganisms was decomposed into methylester. 1 ml distilled water was added thereto and stirred vigorously. It was left and separated into 2 layers, and the lower organic layer was removed and analyzed for its components by capillary gas chromatography through a capillary column Neutra BOND-1 (column of 25 m in length, 0.25 mm in inner diameter and 0.4 μ m in liquid film thickness, manufactured by GL Science) in Shimadzu GC-14A. The temperature was raised at a rate of 8 °C/min. from an initial temperature of 100 °C. The results are shown in Tables 1, 2 and 3.

30

35

40

45

50

15

20

Table 1

Strain Used A. <u>eutrophus</u>	Weight of Dried Microor- ganism (g/l)	Polyester Comp.					
			знв	знн			
			(mol	e-%)			
H16	3.00	86	100	0			
PHB-4	0.80	0	-	-			
AC32	0.99	33	78	23			
AC321	2.85	92	87	13			
AC323	2.85	92	88	12			
AC3213	3.64	96	85	15			
AC29	3.20	94	92	8			

Table 2

Strain Used A. eutrophus	Carbon Source	Weight of Dried Microorganism (g/l)	Content of Polyester in Dried Microorganism (weight-%)	Polyester Comp.				
				знв	ЗНЬ			
				(mol	e-%)			
H16	olive oil	4.27	79	100	0			
	corn oil	3.57	81	100	0			
	palm oil	4.13	79	100	0			
	oleic acid	4.06	82	100	0			
AC3213	olive oil	3.54	76	96	4			
	corn oil	3.60	77	95	5			
	palm oil	3.58	81	96	4			
	oleic acid	2.22	70	96	. 4			

25

20

5

10

15

		Tab	ole 3													
30	Synt	Synthesis of Polyester Using Heptanoic Acid as Carbon Source														
	Strain Used <u>A</u> . <u>eutrophus</u>	Weight of Dried Microor- ganism (g/l)	Content of Polyester in Dried Microorganism (weight-%)	Polyester Comp.												
35				знв	зну	ЗННр										
				_	(mole-%)											
	H16	2.50	60	50	50	0										
40	AC32	0.77	7	30	67	5										
40	AC321	1.67	55	46	52	2										
	AC323	1.27	40	48	45	7										
	AC3213	2.76	67	44	48	8										
45	3HB: 3-hydroxybutyrate, 3	HH: 3-hydroxyhexanoate, 3	HHp: 3-hydroxyheptanoate													

55

As shown in Table 1, H16 (i.e. wild-type Alcaligenes eutrophus) synthesized a poly(3-hydroxybutyrate) homopolymer. This is because 3HH (3-hydroxyhexanoate) having 6 carbon atoms does not serve as a substrate for the polyester synthase possessed by H16. PHB-4 (i.e. the same strain as H16 but deficient in the ability to synthesize polyester) lacks the polyester synthase and thus does not accumulate polyester. AC32 prepared by introducing into PHB-4 the EE32 fragment containing the polyester synthase gene derived from Aeromonas caviae accumulated the poly(3-hydroxyburylate-co-3-hydroxyhexanoate) random copolymer (P(HB-co-3HH)) containing 22 mole-% 3HH (3-hydroxyhexanoate), and this copolymer accounted for 33 % by weight of the dried microorganism.

AC321, AC323 and AC3213 accumulated P(3HB-co-3HH) containing 12 to 15 mole-% 3HH, and the copolymer accounted for 92 to 96 % by weight of the dried microorganisms. As can be seen from these results, the ability of these strains to accumulate polyester was significantly improved by deleting the ORF1 gene and/or ORF3 gene.

P(3HB-co-3HH) was also accumulated in an amount of 94 % by weight of the microorganism even in the case of

AC29 carrying the polyester synthase gene derived from <u>A. caviae</u> whose expression regulatory region and transcriptional termination region had been replaced by those derived from <u>Alcaligenes eutrophus</u>, indicating that the yield of polyester was significantly improved even using the expression regulatory region and transcriptional termination region of different origin.

When AC3213 producing polyester in the highest yield was cultured using olive oil, corn oil or palm oil as a carbon source, the microorganism accumulated P(3HB-co-3HH) containing 4 to 5 mole-% 3HH, where the copolymer accounted for 76 to 81 % by weight of the microorganism, as shown in Table 2. Even if oleic acid as an fatty acid component contained most abundantly in vegetable oils was used as a carbon source, AC3213 accumulated P(3HB-co-3HH) containing 4 mole-% 3HH, where the copolymer accounted for 70 % by weight of the microorganism. Its corresponding wild strain H16 synthesized only poly(3-hydroxybutyrate) homopolymer under the same conditions.

Alcaligenes eutrophus FA440 is reported to have accumulated 8 % by weight of P(3HB-co-3HH) by use of palmitic acid as a carbon source (Japanese Patent Laid Open Publication No. 265065/1995). On the other hand, the transformant according to the present invention has accumulated 96 % by weight of P(3HB-co-3HH) by use of octanoic acid as a carbon source and 76 to 81 % by weight of P(3HB-co-3HH) by use of extremely cheap vegetable oils as a carbon source, so the comparison therebetween indicates that the method of synthesizing P(3HB-co-3HH) by the transformant used in the present example is an extremely superior method.

When heptanoic acid was used as a carbon source, H16, that is a wild strain of <u>Alcaligenes eutrophus</u>, synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (P(3HB-co-3HV)). This is because 3HHp (3-hydroxyheptanoate) having 7 carbon atoms does not serve as a substrate for the polyester synthase possessed by H16, AC32, derived from PHB-4 by introduction of the EE32 fragment containing the polyester synthase gene derived from <u>Aeromonas caviae</u>, accumulated poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate) terpolymer (P(3HB-co-3HV-co-3HHp)) containing 5 mole-% 3HHp, where this copolymer accounted for 7 % by weight of the dried microorganism.

Further, each of strains AC321, AC323 and AC3213 accumulated P(3HB-co-3HV-co-3HHp) containing 2 to 8 mole-% 3HHp where the copolymer accounted for 40 to 67 % by weight of the microorganisms, indicating that the yield of polyester was significantly improved by deleting the ORF1 gene and/or ORF3 gene (Table 3).

From these results, it is concluded that copolyesters consisting of 3-hydroxyalkanoic acid with 4 to 7 carbon atoms can be synthesized using the polyester synthase derived from <u>Aeromonas caviae</u>.

[Example 4] Identification of Functions of ORF3

The ORF3 gene was amplified by PCR using the EE32 fragment as a template and then inserted into a site down-stream of T7 promoter in expression plasmid PET-3a (Novagene). PCR was carried out using 5'-GCCATATGAGCG-CACAATCCCTGGAAGTAG-3' (SEQ ID NO:13) and 5'-CTGGGATCCGCCGGTGCTTAAGGCAGCTTG-3' (SEQ ID NO:14) as primers in 25 cycles each consisting of reaction at 95 °C for 60 seconds and 68 °C for 30 seconds. The resulting plasmid was used to transform <u>E. coli</u> BL21 (DE3) (Novagene). The resulting transformant is designated NB3.

NB3 was cultured in LB medium at 30 °C for 4 hours, and isopropyl-β-D-thiogalactopyranoside (IPTG) was added at a final concentration of 0.4 mM to induce expression, and it was further cultured at 30 °C for 2 hours. The microorganism was recovered by centrifugation, disrupted by ultrasonication and centrifuged to give a soluble protein fraction.

As shown in Table 4, high enoyl-CoA hydratase activity was detected in the soluble fraction from the microorganism having the expression plasmid introduced into it.

Table 4

Specific Activity of Enoyl-CoA Hydratase in Soluble Protein Fraction

•		(unit/mg protein)
50	E. coli BL21/PET-3a	0
	E. coli NB3	1700

55

40

45

The enoyl-CoA hydratase activity was determined by measuring a change in absorbance (263 nm) due to double bond hydration, using crotonyl-CoA (Sigma) as substrate (concentration: 0.25 mM). No activity was detected in <u>E. coli</u>

into which the control plasmid PET-3a free of the ORF3 gene had been introduced.

anion exchange column elution fraction

Then, the enoyl-CoA hydratase protein was purified. A soluble protein fraction from NB3 was applied to an anion exchange column Q-Sepharose (Pharmacia) and eluted with a gradient of (0 to 1 M) NaCl, and a fraction with enoyl-CoA hydratase activity was collected. SDS-PAGE analysis indicated that the active fraction was homogenous in electrophoresis as shown in FIG. 2. In addition, about 3-fold specific activity could be attained as shown in Table 5.

Table 5

Specific Activity of Enoyl-CoA Hydratase (unit/mg protein) E. coli NB3 soluble protein fraction 1700

The N-terminal amino acid sequence of the encyl-CoA hydratase protein thus purified was determined. As shown in Table 6, the determined amino acid sequence was the same except for Met in the initiation codon as the amino acid sequence deduced from the nucleotide sequence of the ORF3 gene.

5100

Table 6

Comparison between Amino Acid Sequences

(unit/mg protein)

N-terminal amino acid sequence of

purified enoyl-CoA hydratase: SAQSLEVGQKARLSKRFGAA (SEQ ID NO:15)

amino acid sequence deduced from

ORF3 nucleotide sequence: MSAQSLEVGQKARLSKRFGAA (SEO ID NO:16)

From this, it could be confirmed that ORF3 codes for enoyl-CoA hydratase. It is considered that Met was released by post-translational modification.

Further, the stereospecificity of enoyl-CoA hydratase encoded by ORF3 was examined as follows:

By adding (S)-3-hydroxybutyryl-CoA dehydrogenase (Sigma) (final concentration: 0.2 unit/ml) and oxidized nicotinamide adenine dinucleotide (NAD+) (final concentration: 0.5 mM) to a reaction solution for activity measurement, (S)-3-hydroxybutyryl-CoA formed is oxidized to acetoacetyl-CoA by the action of the dehydrogenase if the enoyl-CoA hydratase is specific to the (S)-isomer. During this reaction, NAD+ is reduced to form NADH resulting in the generation of a specific absorption at 340 nm. If enoyl-CoA hydratase is specific to the (R)-isomer, NADH is not formed.

As shown in Table 7, the change in absorbance at 340 nm when enoyl-CoA hydratase encoded by ORF3 was used, was the same as in the case where enoyl-CoA hydratase was absent, but if commercially available (S)-specific enoyl-CoA hydratase (Sigma) was used, a change in absorbance due to formation of NADH was observed.

55

10

Table 7

Change in Absorbance at 340 nm after 1	Min.
no addition of enoyl-CoA hydratase	0.045
ORF3-derived enoyl-CoA hydratase	0.047
(S)-isomer specific enoyl-CoA hydratase (Sigma)	0.146

From this result, it was made evident that the purified enoyl-CoA hydratase is specific to the (R)-isomer. Thus, it was found that ORF3 codes for (R)-isomer specific enoyl-CoA hydratase.

According to the present invention, there are provided a polyester synthase, a recombinant vector carrying the gene, a transformant carrying the recombinant vector and a process for producing polyester by use of the transformant.

The present invention is extremely useful in that the present gene codes for a polyester synthase capable of synthesizing polyester as a copolymer consisting of a monomer unit represented by 3-hydroxyalkanoic acid having 4 to 7 carbon atoms, and that the present process can synthesize a biodegradable plastic P(3HB-co-3HH) very efficiently which is excellent in thermostability and formability.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: (A) NAME: THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH (B) STREET: Hirosawa 2-1 (C) CITY: Wako-shi (D) STATE: Saitama (E) COUNTRY: Japan (F) POSTAL CODE (ZIP): 351-01 (G) TELEPHONE: 81-48-467-9263 (H) TELEFAX: 81-48-462-4609
15	(ii) TITLE OF INVENTION: POLYESTER SYNTHASE GENE AND PROCESS FOR PRODUCING POLYESTER
	(iii) NUMBER OF SEQUENCES: 16
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
25	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: 97113932.4 (vi) PRIOR APPLICATION DATA:
	(VI) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 214509/1996 (B) FILING DATE: 14-AUG-1996
	(vi) PRIOR APPLICATION DATA:
30	(A) APPLICATION NUMBER: JP 199979/1997 (B) PILING DATE: 25-JUL-1997
•	(2) INFORMATION FOR SEQ ID NO: 1:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1785 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
40	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:11782
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
	ATG AGC CAA CCA TCT TAT GGC CCG CTG TTC GAG GCC CTG GCC CAC TAC Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr
50	1 5 10 15 AAT GAC AAG CTG CTG GCC ATG GCC AAG GCC CAG ACA GAG CGC ACC GCC 96 Asn Asp Lys Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala
	20 25 30 CAG GCG CTG CTG CAG ACC AAT CTG GAC GAT CTG GGC CAG GTG CTG GAG Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu

13

													4 =				
			35					40		3.00	a	000	45	Nmc		mcc	192
	CAG	GGC	AGC	CAG	CAA	000	TGG	CAG	CIG	AIC	CAG	712	CAG	Mot	AAC	TGG	174
	GIn	Gly	Ser	GIN	GIN	Pro		GIII	rea	TIE	GIII		GIII	Mec	ASII	ΙΙĐ	
5		50					55		~~~	030	200	60	Cm C		200	CCN	240
	TGG	CAG	GAT	CAG	CTC	AAG	CrG	ATG	CAG	CAC	MLC.	LIG	CIC	AAA	AGC.	Ala	240
		Gln	Asp	GIN	Leu		Leu	Mec	GIII	uis	75	rea	rea.	Lys	261	80	
	65	CAG			~~~	70	CmC	N m C	200	ccc		ccc	n.c.c	CAT	ccc		288
	GGC	Gln	CCG	'Co-	CAG	CCG	1721	TIO	Thr	Pro	GAU	Ara	Sar	767	Arg	Ara	200
	GIY	GIN	PFO	ser	85	PIO	Val	116	1111	90	GIU	ALG	Jer	nap	95		
10	mma	AAG		CAC	666	TCC	300	CAA	CAA		እጥ <i>ር</i>	ጥልጥ	GAC	TAC		AAG	336
	Pho	Lys	232	Clu	212	U~D	SAT	Glu	Gln	PTO	Tla	TUT	Agn	TVT	Leu	Lvs	
	FILE	Lys	Ala	100	VIG	iip	261	GIL	105			-1-		110		-,-	
	CAG	TCC	TAC		CTC	ACC.	GCC	AGG		CTG	CTG	GCC	TCG		GAT	GCC	384
	Gla	Ser	Tur	LAU	LAU	Thr	Ala	Arg	His	Leu	Leu	Ala	Ser	Val	Asp	Ala	
	GIII	561	115	200				120					125		_		
15	CTG	GAG	GGC	GTC	CCC	CAG	AAG		CGG	GAG	CGG	CTG	CGT	TTC	TTC	ACC	432
10	Leu	Glu	Glv	Val	Pro	Gln	Lvs	Ser	Arg	Glu	Arg	Leu	Arg	Phe	Phe	Thr	
		130	,				135		-		-	140	_				
	CGC	CAG	TAC	GTC	AAC	GCC	ATG	GCC	CCC	AGC	AAC	TTC	CTG	GCC	ACC	AAC	480
	Arg	Gln	Tyr	Val	Asn	Ala	Met	Ala	Pro	Ser	Asn	Phe	Leu	Ala	Thr	Asn	
	145					150					155					160	
00	CCC	GAG	CTG	CTC	AAG	CTG	ACC	CTG	GAG	TCC	GAC	GGC	CAG	AAC	CTG	GTG	528
20	Pro	Glu	Leu	Leu	Lys	Leu	Thr	Leu	Glu	Ser	Asp	Gly	Gln	Asn	Leu	Val	
					165					170					175		
	CGC	GGA	CTG	GCC	CTC	TTG	GCC	GAG	GAT	CTG	GAG	CGC	AGC	GCC	GAT	CAG	576
	Arg	Gly	Leu	Ala	Leu	Leu	Ala	Glu	Asp	Leu	Glu	Arg	Ser		Asp	Gln	
				180					185					190			
	CTC	AAC	ATC	CGC	CTG	ACC	GAC	GAA	TCC	GCC	TTC	GAG	CTC	GGG	CGG	GAT	624
25	Leu	Asn		Arg	Leu	Thr	Asp		Ser	Ala	Phe	Glu		GLY	Arg	Asp	
			195					200		a. a		100	205	Cm C	m n m	CAC	672
	CTG	GCC	CTG	ACC	CCG	GGC	CGG	GTG	GTG	CAG	2000	ACC	GAG	tou	TAT	Clu	0/2
	Leu	Ala	Leu	Thr	Pro	GIA		vai	vaı	Gin	Arg		GIU	Leu	TAT	GIU	
		210 ATT	a. a			-	215	3.00	CAC	N.C.C	CITIC	220	226	A C A	CCT	CTC.	720
	Crc	Ile	CAG	TAC	AGC	Des	MCT.	Mb~	Clu	The	77-1	Clv	Lve	Thr	Pro	Val	720
30	225		GIN	TYL	Ser	230	1111	1111	GIU	1111	235	GIY	273			240	
		ATA	CTC	ccc	ccc		ል ጥሮ	AAC	AAG	TAC		ATC	ATG	GAC	ATG		768
•	T.Au	Ile	Val	Pro	Pro	Phe	Tle	Asn	Lvs	Tvr	Tvr	Ile	Met	Asp	Met	Arq	
	200		• • • •		245				-3-	250				-	255	_	
	ccc	CAG	AAC	TCC		GTC	GCC	TGG	CTG	GTC	GCC	CAG	GGC	CAG	ACG	GTA	916
	Pro	Gln	Asn	Ser	Leu	Val	Ala	Trp	Leu	Val	Ala	Gln	Gly	Gln	Thr	Val	
35				260					265					270			
	TTC	ATG	ATC	TCC	TGG	CGC	AAC	CCG	GGC	GTG	GCC	CAG	GCC	CAA	ATC	GAT	864
	Phe	Met	Ile	Ser	Trp	Arg	Asn	Pro	Gly	Val	Ala	Gln	Ala	Gln	Ile	Asp	
			275					280					285				
	CTC	GAC	GAC	TAC	GTG	GTG	GAT	GGC	GTC	ATC	GCC	GCC	CTG	GAC	GGC	GTG	912
0	Leu	Asp		Tyr	Val	Val		Gly	Val	Ile	Ala		Leu	Asp	GIY	Val	
40		290					295					300			maa	1.00	0.60
	GAG	GCG	GCC	ACC	GGC	GAG	CGG	GAG	GTG	CAC	GGC	ATC	GGC	TAC	TGC	AIC	960
		Ala	Ala	Thr	GLY	Glu	Arg	GIU	vai	H15	GIY	ire	GIY	Tyr	Cys	330	
	305	GGC	3.00	222	ama.	310	cmc	ccc	አመሮ		312	CTIC	cca	ccc	cca	CGC	1008
	C1.	Gly	mb-	81-	CIG	200	Tou	312	Mot	GIV	100	LAN	Ala	Ala	Arg	Arg	1000
	GIY	GIA	Thr	MIG	325	ser	Leu	AIA	1460	330		Leu	AIG	nr.	335		
45	CAC	AAG	CNC	ccc	CTC	cac	A C C	GCC	ACC			ACT	ACC	CTG		GAC	1056
	Gln	Lys	Gln	Ara	Val	Ara	Thr	Ala	Thr	Leu	Phe	Thr	Thr	Leu	Leu	Asp	
	G.1		J	340	• • •	9			345				•	350			
	ጥጥር	TCC	CAG	ccc	GGG	GAG	CTT	GGC			ATC	CAC	GAG	CCC	ATC	ATA	1104
	Phe	Ser	Gln	Pro	Glv	Glu	Leu	Gly	Ile	Phe	Ile	His	Glu	Pro	Ile	Ile	
			355					360					365				
50	GCG	GCG	CTC	GAG	GCG	CAA	AAT	GAG	GCC	AAG	GGC	ATC	ATG	GAC	GGG	CGC	1152
	Ala	Ala	Leu	Glu	Ala	Gln	Asn	Glu	Ala	Lys	Gly	Ile	Met	Asp	Gly	Arg	
		370					375					380					
	CAG	CTG	GCG	GTC	TCC	TTC	AGC	CTG	CTG	CGG	GAG	AAC	AGC	CTC	TAC	TGG	1200

	Gln 385	Leu	Ala	Val	Ser	Phe 390	Ser	Leu	Leu	Arg	Glu 395	Asn	Ser	Leu	Tyr	Trp 400	
_		TAC Tyr														TTC Phe:	1248
5					405					410					415		1206
		CTG Leu															1296
	rsp	Dea	Deu	420			501		425					430	-,-		
		AAC															1344
10	His	Asn		Leu	Leu	Arg	Arg	Leu 440	Tyr	Leu	Glu	Asn	Gln 445	Leu	Val	Lys	
10	GGG	GAG	435 CTC	AAG	ATC	CGC	AAC		CGC	ATC	GAT	CTC		AAG	GTG	AAG	1392
		Glu															
		450			a m.o		455		ama	a. a	0 x m	460		000	om a	ma.c	1440
		CCT Pro															1440
15	465			204		470					475					480	
		GGC															1488
	Gln	Gly	Thr	Trp	Gln 485	GLY	Met	Lys	Leu	Phe 490	Gly	GLY	Glu	Gln	Arg 495	Phe	
	CTC	CTG	GCG	GAG		GGC	CAC	ATC	GCC		ATC	ATC	AAC	CCG		GCC	1536
	Leu	Leu	Ala		Ser	Gly	His	Ile		Gly	Ile	Ile	Asn		Pro	Ala	
20				500			mca	a. c	505	ccc	ccc	CNC	ccc	510	200	ccc	1584
		AAC															1304
			515	-	_			520					525				
		AGC															1632
	GIU	Ser 530	Trp	Leu	AIA	GLY	535	Thr	HIS	GIN	GIĀ	540	ser	Trp	TIP	PIO	
25		ATG					CAG					GGG					1680
		Met	Met	Gly	Phe		Gln	Asn	Arg	Asp		Gly	Ser	Glu	Pro		
	545 CCC	GCG	ccc	GTC.	cce	550 GAG	CAA	GGG	СТС	GCC	555 CCC	GCC	ccc	GGC	CAC	560 TAT	1728
		Ala															1.50
					565					570					575		
30		AAG Lys															1776
	• • • •	D 7 3	141	580	500	****			585		O, O	120		590	014		
•		GCA	TGA														1785
	Ala	Ala															
35	(2)	INF	ORMA!	пои	FOR	SEQ	ID I	NO: 2	2:								
		(i)) SE	OUEN	CE CI	HARA	CTER	ISTI	cs:								
		•		-		H: 5				đs							
						ami		cid									
40			-			DEDNI OGY:		ear									
40		(ii				YPE:											
						ESCR:			SEQ :	ID N	o: 2	:					
		_		_	_	_		_	_	n .				•••			
45	Met 1	Ser	Gin	Pro	Ser 5	TYT	GIÀ	PFO	Leu	10	GIU	Ala	Leu	Ala	H15	TYT	
	Asn	Asp	Lys	Leu 20	Leu	Ala	Met	Ala	Lys 25	Ala	Gln	Thr	Glu	Arg 30	Thr	Ala	
	Gln	Ala	Leu 35	Leu	Gln	Thr	Asn	Leu 40	Asp	Asp	Leu	Gly	Gln 45		Leu	Glu	
50	Gln	Gly		Gln	Gln	Pro			Leu	Ile	Gln				Asn	Trp	
	Trp	50 Gln	Asp	Gln	Leu	Lys	55 Leu	Met	Gln	His	Thr	60 Leu	Leu	Lys	Ser	Ala	
	65					70					75			•		80	

Gly Gln Pro Ser Glu Pro Val Ile Thr Pro Glu Arg Ser Asp Arg Arg Phe Lys Ala Glu Ala Trp Ser Glu Gln Pro Ile Tyr Asp Tyr Leu Lys 100 105 110 Gln Ser Tyr Leu Leu Thr Ala Arg His Leu Leu Ala Ser Val Asp Ala Leu Glu Gly Val Pro Gln Lys Ser Arg Glu Arg Leu Arg Phe Phe Thr Arg Gln Tyr Val Asn Ala Met Ala Pro Ser Asn Phe Leu Ala Thr Asn 145 150 155 160 Pro Glu Leu Leu Lys Leu Thr Leu Glu Ser Asp Gly Gln Asn Leu Val Arg Gly Leu Ala Leu Leu Ala Glu Asp Leu Glu Arg Ser Ala Asp Gln Leu Asn Ile Arg Leu Thr Asp Glu Ser Ala Phe Glu Leu Gly Arg Asp 195 200 Leu Ala Leu Thr Pro Gly Arg Val Val Gln Arg Thr Glu Leu Tyr Glu Leu Ile Gln Tyr Ser Pro Thr Thr Glu Thr Val Gly Lys Thr Pro Val 225 230 235 240 Leu Ile Val Pro Pro Phe Ile Asn Lys Tyr Tyr Ile Met Asp Met Arg Pro Gln Asn Ser Leu Val Ala Trp Leu Val Ala Gln Gly Gln Thr Val 260 265 270 Phe Met Ile Ser Trp Arg Asn Pro Gly Val Ala Gln Ala Gln Ile Asp 275 280 285 Leu Asp Asp Tyr Val Val Asp Gly Val Ile Ala Ala Leu Asp Gly Val Glu Ala Ala Thr Gly Glu Arg Glu Val His Gly Ile Gly Tyr Cys Ile Gly Gly Thr Ala Leu Ser Leu Ala Met Gly Trp Leu Ala Ala Arg Arg 325 330 335 Gln Lys Gln Arg Val Arg Thr Ala Thr Leu Phe Thr Thr Leu Leu Asp Phe Ser Gln Pro Gly Glu Leu Gly Ile Phe Ile His Glu Pro Ile Ile 355 360 365 Ala Ala Leu Glu Ala Gln Asn Glu Ala Lys Gly Ile Met Asp Gly Arg 370 375 380 Gln Leu Ala Val Ser Phe Ser Leu Leu Arg Glu Asn Ser Leu Tyr Trp 385 390 Asn Tyr Tyr Ile Asp Ser Tyr Leu Lys Gly Gln Ser Pro Val Ala Phe 405 410 415 Asp Leu Leu His Trp Asn Ser Asp Ser Thr Asn Val Ala Gly Lys Thr 420 425 430 His Asn Ser Leu Leu Arg Arg Leu Tyr Leu Glu Asn Gln Leu Val Lys Gly Glu Leu Lys Ile Arg Asn Thr Arg Ile Asp Leu Gly Lys Val Lys Thr Pro Val Leu Leu Val Ser Ala Val Asp Asp His Ile Ala Leu Trp Gln Gly Thr Trp Gln Gly Met Lys Leu Phe Gly Gly Glu Gln Arg Phe Leu Leu Ala Glu Ser Gly His Ile Ala Gly Ile Ile Asn Pro Pro Ala 500 505 510 Ala Asn Lys Tyr Gly Phe Trp His Asn Gly Ala Glu Ala Glu Ser Pro 515 520 Glu Ser Trp Leu Ala Gly Ala Thr His Gln Gly Gly Ser Trp Trp Pro Glu Met Met Gly Phe Ile Gln Asn Arg Asp Glu Gly Ser Glu Pro Val 545 550 555 560 Pro Ala Arg Val Pro Glu Glu Gly Leu Ala Pro Ala Pro Gly His Tyr Val Lys Val Arg Leu Asn Pro Val Phe Ala Cys Pro Thr Glu Glu Asp Ala Ala

	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I		3:								
5		(i)	(1 (1	A) LI B) TY C) ST	ENGTI (PE: [RAN]	HARAC H: 35 nucl DEDNI DGY:	54 ba Leic ESS:	ase p acid	pair:	5						•	
		(ii)	MOI	LECUI	LE T	YPE:	DNA	(gei	nomi	=)							
10		(ix)	(2		AME/I	KEY: ION: I		51									
		(xi)	SE	QUENC	CE DI	ESCRI	[PTI	ON: S	SEQ :	ED N	D: 3	:					
15						GTG Val											ů@48
					CTC	ACC Thr				CAG							ů@96
20				ACC		TTG Leu			GCC					TAC			144
			CTC			TTG Leu		GCC					CAG				192
25		CTG				GGC Gly 70	ACA					ACC					240
	TCC					GAT Asp											288
30						CTG Leu											336
-				AAG Lys		TGA											354
35	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 4	4 :								
40		(i)	(1 (1	A) LI 3) TY C) ST	engti (Pe : [rani	HARAC H: 11 amir DEDNE DGY:	17 au no ao ESS:	mino cid		is							
						PE: Escri	-		SEO I	ED NO	D: 4:						
45	Met 1					Val							Gln	Met	Gln 15	Gly	
	Phe			20	Leu	Thr Leu			25	Gln				30	Asn		
50			35			Leu		40					45				
		50				Gly	55					60					

_	65					70					75				-	80	
•	Ser	Arg	Gln	Met	Leu 85	Asp	Asp	Ile	Gln	Lys 90	Leu	Ser	Ala	Leu	Gly 95	Gln	
5	Gln	Phe	Lys	Glu 100		Leu	Asp	Val	Leu 105		Ala	Asp	Gly	Ile 110		Lys;	
	Ser	Thr	Gly 115	Lys	Ala								11				
	2)	INFO	RMAT:	ION 1	FOR S	SEQ :	D NO	D: 5	:								
10		(i)	(1 (1	A) L1 B) T' C) S'	ENGTI YPE: IRANI	HARAG H: 40 nuc: DEDNI DGY:)5 ba Leic ESS:	ase ; acidoul	pair:	3							
15		(ii)) MOI	LECU	LE TY	YPE:	DNA	(ge	nomi	=)						•	
		(ix)		A) N	AME/I	KEY:		02									
20																	
		(xi)	SEC	QUEN	CE DI	ESCR	PTIC	: NC	SEQ :	ED NO	D: 5	:					
	ATG	AGC	GCA	CAA	TCC	CTG	GAA	GTA	GGC	CAG	AAG	GCC	CGT	CTC	AGC	AAG	48
		Ser	Ala	Glņ		Leu	Glu	Val	Gly		Lys	Ala	Arg	Leu		Lys	
25	CGG	TTC	GGG	GCG	5 GCG	GAG	GTA	GCC	GCC	10 TTC	GCC	GCG	CTC	TCG	15 GAG	GAC	96
				Ala					Ala			Ala		Ser			
	TTC	AAC	ccc	20 CTG	CAC	CTG	GAC	CCG	25 GCC	TTC	GCC	GCC	ACC	30 ACG	GCG	TTC	144
			Pro					Pro				Ala	Thr				
30	GAG	CGG	35 CCC	АТА	GTC	CAC	GGC	40 ATG	CTG	CTC	GCC	AGC	45 CTC	TTC	TCC	GGG	192
		50		-			55					Ser 60				_	
												ATC Ile					240
	65		_			70		_	_	_	75		_		-	80.	
35												GAC Asp					288
					85					90					95		
												CCC Pro					336
	GIU	Vai	GIU	100	1111	nia	Deu	ALG	105	nsp	БÃЗ	FIO	116	110	1111	Leu	
40												GCC					384
10	Thr	Thr	115	iie	Pne	THE	GIN	120	GIA	Ala	reu	Ala	125	THE	GIA	GIU	
	_	_				CCT											405
	Ala	130	Val	Lys	Leu	Pro											
45																	
~	(2)	INFO	ORMAI	CION	FOR	SEQ	ID P	10: 6	5:								
50			(E (C (T	A) LI B) TY C) ST O) TO	ENGTH (PE: TRANT OPOLO	ARAC i: 13 amir EDNE OGY:	4 an no ac SS: line	nino cid		ls							
		(11)	MOI	,s.CU1	.c. 11	PE:	J 100	-G111									

18

	•	(xi)	SEC	QUEN	CE D	ESCRI	PTI	ON:	SEQ	ID N	0: 6	:					
	Met 1	Ser	Ala	Gln	Ser 5	Leu	Glu	Val	Gly	Gln 10	Lys	Ala	Arg	Leu	Ser 15	Lys	
5	Arg	Phe	Gly	Ala 20	Ala	Glu	Val	Ala	Ala 25		Ala	Ala	Leu	Ser 30	Glu	Asp	
	Phe !	Asn	Pro 35	Leu	His	Leu	Asp	Pro			Ala	Ala	Thr 45	Thr	Ala	Phe	
	Glu	Arg 50	Pro	Ile	Val	His	Gly 55	Met	Leu	Leu	Ala	Ser 60	Leu	Phe	Ser	Gly	
10	Leu :	Leu	Gly	Gln	Gln	Leu 70		Gly	Lys	Gly	Ser 75	Ile	Tyr	Leu	Gly	Gln 80	
	Ser 1	Leu	Ser	Phe	Lys 85	Leu	Pro	Val	Phe	Val 90		Asp	Glu	Val	Thr 95	Ala	
	Glu '	Val	Glu	Val	Thr	Ala	Leu	Arg	Glu 105		Lys	Pro	Ile	Ala 110	Thr	Leu	
15	Thr	Thr	Arg 115		Phe	Thr	Gln	Gly 120		Ala	Leu	Ala	Val 125	Thr	Gly	Glu	
	Ala 7	Val 130	Val	Lys	Leu	Pro											
20	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10: 7	7:								
20		(i)	(A (B (C) LE) TY :) ST	NGTH PE: RAND	IARAC I: 27 nucl EDNE	bas eic ss:	e pa acid	irs I								
25			A)) DE	SCRI	PE: PTIO SCRI	N:	/đe	SC =	"Sy	nthe		DNA*		•		
30	ccscc	STG	GA T	CAAY	AAGT	W YT.	AYAT	С								:	2
	(2) I	NFO	RMAT	ION	FOR	SEQ :	ID N	0:8	:								
35		(i)	(A (B (C) LE) TY:) ST:	NGTH PE: RAND	ARAC : 27 nucle EDNE:	bas eic SS:	e pa acid sing	irs							٠	
40	(ii)				PE: 0				c ac "sy		tic i	DNA"				
						SCRII			EQ I	D NO	: 8:						
	SAGCC															2	? 7
45	(2) I																
V		(1)	(A) (B) (C)	LEN TYP STF	NGTH PE: 1 RANDI	ARACT : 318 nucle EDNES GY: 1	37 ba eic a SS: c	ase pacid doub	pair	s							
50	(:	ii)	MOLE	CULE	TY	PE: D)NA	(gend	omic)							
	(:	ix)	FEAT	URE:													

19

(A) NAME/KEY: CDS
(B) LOCATION: 384..734

(ix) FEATURE:

(A; NAME/KEY: CDS
(B) LOCATION: 830..2611

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GCA															AACCGA SCCTAT	
															TGATO	
															ATGTCA	
															CAAGCA	
															CAACA	
	TCT															4
C10.		300 (31210	COM	in c						sp Va					•
ттт	ACC	GAG	CAG	ATG	CAA	GGC		GCC	GCC	ccc	CTC	ACC	CGC	TAC	AAC	4
Phe 10	Thr	Glu	Gln	Met	Gln 15	Gly	Phe	Ala	Ala	Pro 20	Leu	Thr	Arg	Tyr	Asn 25	
	CTG	CTG	GCC	AGC.	AAC	ATC	GAA	CAG	CTG	ACC	CGG	TTG	CAG	CTG	GCC	5
	Leu															
TCC	GCC	AAC	GCC	TAC	GCC	GAA	CTG	GGC	CTC	AAC	CAG	TTG	CAG	GCC	GTG	5
Ser	Ala	Asn	Ala 45	Tyr	Ala	Glu	Leu	Gly 50	Leu	Asn	Gln	Leu	Gln 55	Ala	Val	
AGC	AAG	GTG	CAG	GAC	ACC	CAG	AGC	CTG	GCG	GCC	CTG	GGC	ACA	GTG	CAA	6
Ser	Lys	Val 60	Gln	Asp	Thr	Gln	Ser 65	Leu	Ala	Ala	Leu	Gly 70	Thr	Val	Gln	
CTG	GAG	ACC	GCC	AGC	CAG	CTC	TCC	CGC	CAG	ATG	CTG	GAT	GAC	ATC	CAG	6
Leu	Glu 75	Thr	Ala	Ser	Gln	Leu 80	Ser	Arg	Gln	Met	Leu 85	Asp	Asp	Ile	Gln	
* * *	CTG	3.00	ccc	CEC	ccc		CAC	mmc.	ABC	CAA		CTC	Cam	CTC	Cutto	6
	Leu															J
90					95				_	100					105	_
	GCA											TGA'	raac	ccc		7
	Ala		GIA	11e	Lys	Lys	Ser	Thr		rys	Ala					
TGG	יחברו			-					115							
				GCA					rgac'						rcccsc	
	GGT			GCA			ATG	AGC	CAA	CCA	TCT	TAT	GGC	CCG	CTG.	
				GCA			ATG Met	AGC	CAA	CCA	TCT Ser	TAT	GGC	CCG	CTG.	
CTC	GGGT	GTG (GGTG	GCA(AAGG/	AG A	CAC	ATG Met 1	AGC Ser	CAA Gln	CCA Pro	TCT Ser 5	TAT Tyr	GGC	CCG	CTG [.] Leu	8
CTC TTC Phe		GCC	GTG CTG	GCC GCC	CAC	CAC TAC	ATG Met 1 AAT	AGC Ser GAC	CAA Gln AAG	CCA Pro CTG Leu	TCT Ser 5 CTG	TAT Tyr GCC	GGC Gly ATG	CCG Pro GCC	CTG Leu AAG Lys	8
TTC Phe 10	GAG Glu	GCC Ala	CTG Leu	GCC AAGG/ GCC Ala	CAC His	TAC TYT	ATG Met 1 AAT Asn	AGC Ser GAC Asp	CAA Gln AAG Lys	CCA Pro CTG Leu 20	TCT Ser 5 CTG Leu	TAT Tyr GCC Ala	GGC Gly ATG Met	CCG Pro GCC Ala	CTG Leu AAG Lys 25	9
TTC Phe 10 GCC	GAG	GCC Ala ACA	CTG Leu GAG	GCC AAGG/ GCC Ala CGC	CAC His 15 ACC	TAC TYT GCC	ATG Met 1 AAT ASD	AGC Ser GAC Asp GCG	CAA Gln AAG Lys	CCA Pro CTG Leu 20 CTG	TCT Ser 5 CTG Leu CAG	TAT Tyr GCC Ala ACC	GGC Gly ATG Met	CCG Pro GCC Ala CTG	CTG Leu AAG Lys 25 GAC	9
TTC Phe 10 GCC Ala	GAG Glu CAG Gln	GCC Ala ACA Thr	CTG Leu GAG Glu	GCC AAGGA GCC Ala CGC Arg 30	CAC His 15 ACC Thr	TAC Tyr GCC Ala	ATG Met 1 AAT Asn CAG Gln	AGC Ser GAC Asp GCG Ala	CAA Gln AAG Lys CTG Leu 35	CCA Pro CTG Leu 20 CTG Leu	TCT Ser 5 CTG Leu CAG	TAT Tyr GCC Ala ACC Thr	GGC Gly ATG Met AAT Asn	CCG Pro GCC Ala CTG Leu 40	CTG Leu AAG Lys 25 GAC Asp	9
TTC Phe 10 GCC Ala	GAG Glu CAG	GCC Ala ACA Thr	CTG Leu GAG Glu CAG	GCC AAGGA GCC Ala CGC Arg 30 GTG	CAC His 15 ACC Thr	TAC Tyr GCC Ala	ATG Met 1 AAT ASN CAG Gln CAG	AGC Ser GAC Asp GCG Ala	CAA Gln AAG Lys CTG Leu 35 AGC	CCA Pro CTG Leu 20 CTG Leu CAG	TCT Ser 5 CTG Leu CAG Gln	TAT Tyr GCC Ala ACC Thr	GGC Gly ATG Met AAT Asn	CCG Pro GCC Ala CTG Leu 40 CAG	CTG Leu AAG Lys 25 GAC Asp	9
TTC Phe 10 GCC Ala GAT Asp	GAG Glu CAG Gln	GCC Ala ACA Thr GGC Gly	CTG Leu GAG Glu CAG Gln 45	GCC Ala GCC Ala CGC Arg 30 GTG Val	CAC His 15 ACC Thr CTG Leu	TAC Tyr GCC Ala GAG Glu	ATG Met 1 AAT Asn CAG Gln CAG	AGC Ser GAC Asp GCG Ala GGC Gly 50	CAA Gln AAG Lys CTG Leu 35 AGC Ser	CCA Pro CTG Leu 20 CTG Leu CAG Gln	TCT Ser 5 CTG Leu CAG Gln CAA	TAT Tyr GCC Ala ACC Thr CCC Pro	GGC Gly ATG Met AAT Asn TGG Trp 55	CCG Pro GCC Ala CTG Leu 40 CAG Gln	CTG Leu AAG Lys 25 GAC Asp CTG Leu	9
TTC Phe 10 GCC Ala GAT Asp	GAG Glu CAG Gln CTG Leu	GCC Ala ACA Thr GGC Gly GCC	CTG Leu GAG Glu CAG Gln 45 CAG	GCC Ala CGC Arg 30 GTG Val	CAC His 15 ACC Thr CTG Leu AAC	TAC Tyr GCC Ala GAG Glu	ATG Met 1 AAT Asn CAG Gln CAG Gln	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG	CAA Gln AAG Lys CTG Leu 35 AGC Ser	CCA Pro CTG Leu 20 CTG Leu CAG Gln	TCT Ser 5 CTG Leu CAG Gln CAA Gln	TAT TYP GCC Ala ACC Thr CCC Pro	GGC Gly ATG Met AAT Asn TGG Trp 55 CTG	CCG Pro GCC Ala CTG Leu 40 CAG Gln	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG	9
TTC Phe 10 GCC Ala GAT ASP ATC Ile CAC	GAG Glu CAG Gln CTG Leu CAG Gln	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG	CTG Leu GAG Glu CAG Gln 45 CAG Gln	GCC Ala CGC Arg 30 GTG Val ATG Met	CAC His 15 ACC Thr CTG Leu AAC ASn	TAC Tyr GCC Ala GAG Glu TGG Trp	ATG Met 1 AAT Asn CAG Gln CAG Gln TGG Trp 65 GGC	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG GIn	CAA Gln AAG Lys CTG Leu 35 AGC Ser GAT ASP	CCA Pro CTG Leu 20 CTG Leu CAG Gln CAG Gln	TCT Ser 5 CTG Leu CAG Gln CAA Gln CTC Leu	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG	GGC Gly ATG Met AAT Asn TGG Trp 55 CTG Leu	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln	9 10
TTC Phe 10 GCC Ala GAT ASP ATC Ile CAC	GAG Glu CAG Gln CTG Leu CAG	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG	CTG Leu GAG Glu CAG Gln 45 CAG Gln	GCC Ala CGC Arg 30 GTG Val ATG Met	CAC His 15 ACC Thr CTG Leu AAC ASn	TAC Tyr GCC Ala GAG Glu TGG Trp	ATG Met 1 AAT Asn CAG Gln CAG Gln TGG Trp 65 GGC	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG GIn	CAA Gln AAG Lys CTG Leu 35 AGC Ser GAT ASP	CCA Pro CTG Leu 20 CTG Leu CAG Gln CAG Gln	TCT Ser 5 CTG Leu CAG Gln CAA Gln CTC Leu	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG	GGC Gly ATG Met AAT Asn TGG Trp 55 CTG Leu	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln	9 10
TTC Phe 10 GCC Ala GAT ASP ATC Ile CAC His	GAG Glu CAG Gln CTG Leu CAG Gln ACC Thr 75	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG Leu CGC	CTG Leu GAG Glu CAG Gln 45 CAG Gln CTC Leu	GCCALAGGA GCCALA GCCALA GGCALA GGCCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCCALA GGCALA GGC	CAC His 15 ACC Thr CTG Leu AAC ASn AGC Ser CGC	TAC Tyr GCC Ala GAG Glu TGG Trp GCA Ala 80 CGC	ATG Met 1 AAT ASN CAG Gln CAG Gln TGG TTP 65 GGC Gly TTC	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG GIn CAG GIn	CAA Gln AAG Lys CTG Leu 35 AGC Ser GAT ASP CCG Pro	CCA Pro CTG Leu 20 CTG Leu CAG Gln CAG Gln AGC Ser	TCT Ser 5 CTG Leu CAG Gln CTC Leu GAG Glu 85 GCC	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG Pro	GGC Gly ATG Met AAT ASn TGG Trp 55 CTG Leu GTG Val	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln ACC Thr	9 9 10 10 10
TTC Phe 10 GCC Ala GAT ASP ATC Ile CAC His	GAG Glu CAG Gln CTG Leu CAG Gln ACC Thr	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG Leu CGC	CTG Leu GAG Glu CAG Gln 45 CAG Gln CTC Leu	GCCALAGGA GCCALA GCCALA GGCALA GGCCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCALA GGCCALA GGCALA GGC	CAC His 15 ACC Thr CTG Leu AAC ASn AGC Ser CGC	TAC Tyr GCC Ala GAG Glu TGG Trp GCA Ala 80 CGC	ATG Met 1 AAT ASN CAG Gln CAG Gln TGG TTP 65 GGC Gly TTC	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG GIn CAG GIn	CAA Gln AAG Lys CTG Leu 35 AGC Ser GAT ASP CCG Pro	CCA Pro CTG Leu 20 CTG Leu CAG Gln CAG Gln AGC Ser	TCT Ser 5 CTG Leu CAG Gln CTC Leu GAG Glu 85 GCC	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG Pro	GGC Gly ATG Met AAT ASn TGG Trp 55 CTG Leu GTG Val	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln ACC Thr	9 9 10 10 10
TTC Phe 10 GCC Ala Asp ATC Ile CAC His CCG Pro 90 CCC	GAG Glu CAG Gln CTG Leu CAG Gln ACC Thr 75 GAG Glu	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG Leu CGC Arg	CTG Leu GAG Glu CAG Gln CAG Gln CAG Gln CAG Gln CAG Gln CAG Gln CTC Leu AGC Ser GAC	GCCA AAGGA GCC Ala CGC Arg 30 GTG Val ATG Met AAA Lys GAT ASD	CAC AHIS 15 ACC Thr CTG Leu AAC ASn AGC Ser CGC ATG 95 CTC	TAC Tyr GCC Ala GAG Glu TGG Trp GCA Ala 80 CGC Arg	ATG Met 1 AAT AS n CAG Gln CAG Gln TGG GLY TTC GCC GLY CAG	AGC Ser GAC Asp GCG Ala GGC Gly CAG GIn CAG GIn AAG Lys	CTGACCCAAAGGIN AAGGLys CTGGLeu 35 AGCSer ASP CCGGPro GCCA1a	CCA Pro CTG Leu 20 CTG Gln CAG Gln AGC Ser GAG GLU 100 CTG	TCT Ser 5 CTG Leu CAG Gln CTC Leu GAG Glu 85 GCC Ala CTC	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG Pro TGG TTP	GGC Gly ATG Met AAT ASn TGG Trp 555 CtG Leu GTG Val AGC Ser	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met ATC Ile GAA Glu AGG	CTG-Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln ACC Thr CAA Gln 105 CAC	9 9 10 10 10
TTC Phe 10 GCC Ala GAT ASP ATC LIE CAC Pro 90 CCC	GAG Glu CAG Gln CTG Leu CAG Gln ACC Thr 75 GAG Glu	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG Leu CGC Arg	CTG Leu GAG Glu CAG Gln CAG Gln CAG Gln CAG Gln CAG Gln CAG Gln CTC Leu AGC Ser GAC	GCCA AAGGA GCC Ala CGC Arg 30 GTG Val ATG Met AAA Lys GAT ASD	CAC AHIS 15 ACC Thr CTG Leu AAC ASn AGC Ser CGC ATG 95 CTC	TAC Tyr GCC Ala GAG Glu TGG Trp GCA Ala 80 CGC Arg	ATG Met 1 AAT AS n CAG Gln CAG Gln TGG GLY TTC GCC GLY CAG	AGC Ser GAC Asp GCG Ala GGC Gly CAG GIn CAG GIn AAG Lys	CTGACCCAAAGGIN AAGGLys CTGGLeu 35 AGCSer ASP CCGGPro GCCA1a	CCA Pro CTG Leu 20 CTG Gln CAG Gln AGC Ser GAG GLU 100 CTG	TCT Ser 5 CTG Leu CAG Gln CTC Leu GAG Glu 85 GCC Ala CTC	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG Pro TGG TTP	GGC Gly ATG Met AAT ASn TGG Trp 555 CtG Leu GTG Val AGC Ser	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met ATC Ile GAA Glu AGG	CTG-Leu AAG Lys 25 GAC Asp CTG Leu CAG Gln ACC Thr CAA Gln 105 CAC	9 10 10 11 11 11 11 11
TTC Phe GCC Ala ASP ATC Ile CAC His CCG Pro	GAG Glu CAG Gln CTG Leu CAG Gln ACC Thr 75 GAG Glu	GCC Ala ACA Thr GGC Gly GCC Ala 60 CTG Leu CGC Arg	CTG Leu GAG Glu CAG Gln 45 CAG Gln CTC Leu AGC Ser GAC Asp	GCCAAAGG/AAAGG/AAAGG/AAAAAAAAAAAAAAAAAA	CAC Hiss 15 ACC Thr CTG Leu AAC Asn AGC Ser CGC CTC Leu Leu Leu Leu CTG Leu Leu CTG LEU CTG LEU CTG CTC LEU CTG CTC LEU CTG ATG CTC LEU CTG ATG CTC LEU CTG ATG CTC LEU CTG ATG CTC LEU CTG CTG CTC LEU CTG CTG CTC LEU CTG CTG CTC LEU CTG	TAC TYT GCC Ala GAG Glu TGG Trp GCA Ala 80 CGC Arg AAG	ATG Met 1 AAT AS n CAG Gln CAG Gln CF	AGC Ser GAC Asp GCG Ala GGC Gly 50 CAG Gln CAG GIn AAG Lys	TGACCCAA Gln AAG Lys CTG Leu 35 AGC Ser GAT ASP CCG Pro GCC Ala TAC Tyr 115	CCA Pro CTG Leu 20 CTG Gln CAG Gln AGC Ser GAG Glu CTG	TCT Ser 5 CTG Leu CAG Gln CTC Leu 85 GCC Ala CTC Leu	TAT Tyr GCC Ala ACC Thr CCC Pro AAG Lys 70 CCG Pro TGG TTP	GGC Gly ATG Met AAT ASn TGG Trp 55 CTG Leu GTG Val AGC Ser GCC-Ala	CCG Pro GCC Ala CTG Leu 40 CAG Gln ATG Met ATC Ile GAA Glu AGG AAG Ju	CTG Leu AAG Lys 25 GAC Asp CTG Leu CAG G1n ACC Thr CAA G1n 105 CAC His	100

				Ser 125					130					135			
				CGT Arg													1288
5			140					145					150				
				CTG													1336
	Ser		Phe	Leu	Ala	Thr		Pro	Glu	Leu	Leu		Leu	Thr	Leu	Glu	
		155					160					165					
				CAG													1384
10	170	ASP	GIĀ	Gln	ASN		vai	Arg	GIY	Leu		reu	Leu	Ala	Glu		
10		CAG	ccc	AGC	ccc	175	CAC	CTC	220	n mc	180	Cmc		~~		185	1433
	Len	Glu	Ara	Ser	Ala	Jen	Gin	LOU	Acn	TIA	722	CTG	Mb-	GAC	GAA	TCC	1432
	neu	Gra	arg	261	190	ASP	GIII	neu	VOII	195	MT Q	reu	THE	ASD	200	ser	
	GCC	ጥጥር	GAG	CTC		CGG	CAT	CTG	GCC		ACC	ccc	ccc	ccc		CTC	1480
				Leu													1400
15				205			•		210				1	215			
.5	CAG	CGC	ACC	GAG	CTC	TAT	GAG	CTC	ATT	CAG	TAC	AGC	CCG		ACC	GAG	1528
				Glu													
			220					225					230				
	ACG	GTG	GGC	AAG	ACA	CCT	GTG	CTG	ATA	GTG	CCG	CCC	TTC	ATC	AAC	AAG	1576
	Thr		Gly	Lys	Thr	Pro		Leu	Ile	Val	Pro	Pro	Phe	Ile	Asn	Lys	
20		235					240					245					
				ATG													1624
		тут	iie	Met	Asp		Arg	Pro	Gin	Asn		Leu	Val	Ala	Trp		
	250	ccc	C L C	000	C3.C	255	CM3	mmc	100	3.00.0	260	maa	~~~			265	1.670
				GGC Gly													1672
			0111	313	270	4111	141	1116	Mec	275	Ser	ιιρ	vra	voii	280	GIY	
<i>25</i>	GTG	GCC	CAG	GCC		ATC	GAT	CTC	GAC		TAC	GTG	GTG	GAT		GTC	1720
	_			Ala													1,20
				285					290		-,-			295	3		
	ATC	GCC	GCC	CTG	GAC	GGC	GTG	GAG	GCG	GCC	ACC	GGC	GAG	CGG	GAG	GTG	1768
	Ile	Ala	Ala	Leu	Asp	Gly	Val	Glu	Ala	Ala	Thr	Gly	Glu	Arg	Glu	Val	
			300					305					310				
30				GGC													1816
	HIS		Ile	Gly	Tyr	Cys		Gly	Gly	Thr	Ala		Ser	Leu	Ala	Met	
-	ccc	315	cmc.	000	000	000	320	ara		010	000	325	~~~				1064
				GCG Ala													1864
	330	110	Deu	nia	AIG	335	nry	G1	uy 5	GIII	340	Val	ary	1111	ALG	345	
05		TTC	ACT	ACC	CTG		GAC	TTC	TCC	CAG		GGG	GAG	СТТ	GGC		1912
35				Thr													
					350					355		_			360		
	TTC	ATC	CAC	GAG	CCC	ATC	ATA	GCG	GCG	CTC	GAG	GCG	CAA	AAT	GAG	GCC	1960
	Phe	Ile	His	Glu	Pro	Ile	Ile	Ala		Leu	Glu	Ala	Gln	Asn	Glu	λla	
				365					370					375			
40				ATG													2008
	гλя	GIÅ	380	Met	ASD	GIY	Arg		ren	Ala	vaı	ser		ser	Leu	Leu	
	CGG	GAG		AGC	CTC	ጥልሮ	TCC	385	ጥልሮ	ጥልሮ	ልጥሮ	CAC	390	ጥእሮ	CITC	N N C	2056
	_			Ser													2056
	5	395				-1-	400		-,-	-3-		405		-1-	200	23.5	
	GGT	CAG	AGC	CCG	GTG	GCC		GAT	CTG	CTG	CAC		AAC	AGC	GAC	AGC	2104
45				Pro													
	410					415					420					425	
				GCG													2152
	Thr	Asn	Val	Ala		Lys	Thr	His	Asn		Leu	Leu	Arg	Arg	Leu	Tyr	
					430					435					440		
				CAG													2200
50	ren	GIU	Asn	Gln	Leu	val	Lys	GIĀ		Leu	rys	tre	Arg		Thr	Arg	
	ATC	GAT	CTC	445 GGC	224	CTC	226	N.C.C	450	CTC	CTIC	CT C	cmc	455 TCC	~~~	ama	2240
				Gly													2248
			460	213	-10	741		465	0	- GI	_eu		470	267	vra	va1	
			-00										0				

	GAC GAT CAC ATC GCC CTC TGG CAG GGC ACC TGG CAG GGC ATG AAG CTG 229 Asp Asp His Ile Ala Leu Trp Gln Gly Thr Trp Gln Gly Met Lys Leu 475 480 485
5	TTT GGC GGG GAG CAG CGC TTC CTC CTG GCG GAG TCC GGC CAC ATC GCC > 234 Phe Gly Gly Glu Gln Arg Phe Leu Leu Ala Glu Ser Gly His Ile Ala 490 495 500 505
	GGC ATC ATC AAC CCG CCG GCC GCC AAC AAG TAC GGC TTÉ TGG CAC AAC 239: Gly Ile Ile Asn Pro Pro Ala Ala Asn Lys Tyr Gly Phe Trp His Asn 510 515 520
10	GGG GCC GAG GCC GAG AGC CCG GAG AGC TGG CTG GCA GGG GCG ACG CAC Sly Ala Glu Ala Glu Ser Pro Glu Ser Trp Leu Ala Gly Ala Thr His 525 530 535
	CAG GGC GGC TCC TGG TGG CCC GAG ATG ATG GGC TTT ATC CAG AAC CGT 248 Gln Gly Gly Ser Trp Trp Pro Glu Met Met Gly Phe Ile Gln Asn Arg 540 545 550
15	GAC GAA GGG TCA GAG CCC GTC CCC GCG CGG GTC CCG GAG GAA GGG CTG 253 Asp Glu Gly Ser Glu Pro Val Pro Ala Arg Val Pro Glu Glu Gly Leu 555 560 565
	GCC CCC GCC CCC GGC CAC TAT GTC AAG GTG CGG CTC AAC CCC GTG TTT 258 Ala Pro Ala Pro Gly His Tyr Val Lys Val Arg Leu Asn Pro Val Phe 570 585 585
20	GCC TGC CCA ACA GAG GAG GAC GCC GCA TGAGCGCACA ATCCCTGGAA 263 Ala Cys Pro Thr Glu Glu Asp Ala Ala 590
	CTAGGCCAGA AGGCCCGTCT CAGCAAGCG TTCGGGGCGG CGGAGGTAGC CGCCTTCGCC 269 GCGCTCTCGG AGGACTTCAA CCCCCTGCAC CTGGACCCGG CCTTCGCCGC CACCACGGCG 275 TTCGAGCGGC CCATAGTCCA CGGCATGCTG CTCGCCAGCC TCTTCTCCGG GCTGCTGGGC 281 CAGCAGTTGC CGGGCAAGGG GAGCATCTAT CTGGGTCAAA GCCTCAGCTT CAAGCTGCCG 287 GTCTTTGTCG GGGACCAGGT GACGCCGAG GTGGAGGTGA CCGCCCTTCG CGAGGACAAG 293
25	CCCATCGCCA CCCTGACCAC CCGCATCTTC ACCCAAGGCG GCGCCCTCGC CGTGACGGGG 299 GAAGCCGTGG TCAAGCTGCC TTAAGCACCG GCGGCACGCA GGCACAATCA GCCCGGCCCC 305 TGCCGGGCTG ATTGTTCTCC CCCGCTCCGC TTGCCCCCTT TTTCGGGGCA ATTTGGCCCA 311 GGCCCTTTCC CTGCCCCGCC TAACTGCCTA AAATGGCCGC CCTGCCGTGT AGGCATTCAT 317 CCAGCTAGAG GAATTC 318
30	
·	(2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3187 base pairs
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
40	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 26113012
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
45	AGATCTGGAC CGGGGTGCTG GCCTGGGCCA CGCCGGCGAG GGCCAGCGCG GAGCAACCGA 6 GCAGCAGGGC GAGAGGTTTC ATCGGGATTC CTTGGCAGTC TGAATGACGT GCCAGCCTAT 12 CAGCGCGGCG CCGGTGCGGC GAGGGCGCGC CGGACCCAGT GCGTCACCTC TCGTCTGATC 18 CGCCTCCCTC GACGGGCGTC GCTGACAAAA AAATTCAAAC AGAAATTAAC ATTTATGTCA 24
50	TTTACACCAA ACCGCATTTG GTTGCAGAAT GCTCAAACGT GTGTTTGAAC AGAGCAAGCA 30 ACACGTAAAC AGGGATGACA TGCAGTACCC GTAAGAAGGG CCGATTGGCC CACAACAACA 36 CTGTTCTGCC GAACTGGAGA CCGATGATGA ATATGGACGT GATCAAGAGC TTTACCGAGC 42 AGATGCAAGG CTTCGCCGCC CCCCTCACCC GCTACAACCA GCTGCTGGCC AGCAACATCG 48
	AACAGCTGAC CCGGTTGCAG CTGGCCTCCG CCAACGCCTA CGCCGAACTG GGCCTCAACC 54 AGTTGCAGGC CGTGAGCAAG GTGCAGGACA CCCAGAGCCT GGCGGCCCTG GGCACAGTGC 60 AACTGGAGAC CGCCAGCCAG CTCTCCCGCC AGATGCTGGA TGACATCCAG AAGCTGAGCG 66

22

	CCCTCGGCCA GCAGTTCAAG GAAGAGCTGG ATGTCCTGAC CGCAGACGGC ATCAAGAAAA 72
	GCACGGGCAA GGCCTGATAA CCCCTGGCTG CCCGTTCGGG CAGCCACATC TCCCCATGAC 78
	TCGACGCTAC GGGCTAGTTC CCGCCTCGGG TGTGGGTGAA GGAGAGCACA TGAGCCAACC 84
5	ATCTTATGGC CCGCTGTTCG AGGCCCTGGC CCACTACAAT GACAAGCTGC TGGCCATGGC 90
	CAAGGCCCAG ACAGAGCGCA CCGCCCAGGC GCTGCTGCAG ACCAATCTGG ACGATCTGGG 96
	CCAGGTGCTG GAGCAGGCA GCCAGCAACC CTGGCAGCTG ATCCAGGCCC AGATGAACTG 1020
	GTGGCAGGAT CAGCTCAAGC TGATGCAGCA CACCCTGCTC AAAAGCGCAG GCCAGCCGAG 1080
	CGAGCCGGTG ATCACCCCGG AGCGCAGCGA TCGCCGCTTC AAGGCCGAGG CCTGGAGCGA 114
	ACAACCCATC TATGACTACC TCAAGCAGTC CTACCTGCTC ACCGCCAGGC ACCTGCTGGC 1200
	CTCGGTGGAT GCCCTGGAGG GCGTCCCCCA GAAGAGCCGG GAGCGGCTGC GTTTCTTCAC 126
10	CCGCCAGTAC GTCAACGCCA TGGCCCCCAG CAACTTCCTG GCCACCAACC CCGAGCTGCT 1320
	CLICATIAN GICARCECCA TEGECCECCAS CARCITECTS GCCACCARCE CCGAGCTGCT 1320
	CAAGCTGACC CTGGAGTCCG ACGGCCAGAA CCTGGTGCGC GGACTGGCCC TCTTGGCCGA 1380
	GGATCTGGAG CGCAGCGCCG ATCAGCTCAA CATCCGCCTG ACCGACGAAT CCGCCTTCGA 1440
	GCTCGGGCGG GATCTGGCCC TGACCCCGGG CCGGGTGGTG CAGCGCACCG AGCTCTATGA 1500
	GCTCATTCAG TACAGCCCGA CTACCGAGAC GGTGGGCAAG ACACCTGTGC TGATAGTGCC 1560
	GCCCTTCATC AACAAGTACT ACATCATGGA CATGCGGCCC CAGAACTCCC TGGTGGCCTG 1620
15	GCTGGTCGCC CAGGGCCAGA CGGTATTCAT GATCTCCTGG CGCAACCCGG GCGTGGCCCA 1680
	GGCCCAAATC GATCTCGACG ACTACGTGGT GGATGGCGTC ATCGCCGCCC TGGACGGCGT 174(
	GGAGGCGGCC ACCGGCGAGC GGGAGGTGCA CGGCATCGGC TACTGCATCG GCGGCACCGC 1800
	CCTGTCGCTC GCCATGGGCT GGCTGGCGGC GCGGCGCCAG AAGCAGCGGG TGCGCACCGC 186
	CACCCTGTTC ACTACCCTGC TGGACTTCTC CCAGCCCGGG GAGCTTGGCA TCTTCATCCA 1920
	CGAGCCCATC ATAGCGGCGC TCGAGGCGCA AAATGAGGCC AAGGGCATCA TGGACGGGCG 1980
20	CCAGCTGGCG GTCTCCTTCA GCCTGCTGCG GGAGAACAGC CTCTACTGGA ACTACTACAT 2040
	CGACAGCTAC CTCAAGGGTC AGAGCCCGGT GGCCTTCGAT CTGCTGCACT GGAACAGCGA 2100
	CAGCACCAAT GTGGCGGGCA AGACCCACAA CAGCCTGCTG CGCCGTCTCT ACCTGGAGAA 2160
	CCAGCTGGTG AAGGGGGAGC TCAAGATCCG CAACACCCGC ATCGATCTCG GCAAGGTGAA 2220
	GACCCCTGTG CTGCTGGTGT CGGCGGTGGA CGATCACATC GCCCTCTGGC AGGGCACCTG 2280
	GCAGGGCATG AAGCTGTTTG GCGGGGAGCA GCGCTTCCTC CTGGCGGAGT CCGGCCACAT 2340
25	CGCCGGCATC ATCAACCCGC CGGCCGCCAA CAAGTACGGC TTCTGGCACA ACGGGGCCGA 2400
29	GGCCGAGAGC CCGGAGAGCT GGCTGGCAGG GGCGACGCAC CAGGGCGGCT CCTGGTGGCC 2460
	CGAGATGATG GGCTTTATCC AGAACCGTGA CGAAGGGTCA GAGCCCGTCC CCGCGCGGGT 2520
	CCCGGAGGAA GGGCTGGCCC CCGCCCCCGG CCACTATGTC AAGGTGCGGC TCAACCCCGT 2580
	CCCGGAGGAA GGGCTGGCCC CCGCCCCCGG CCACTATGTC AAGGTGCGGC TCAACCCCGT 2580 GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634 Met Ser Ala Gln Ser Leu Glu Val
30	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634 Met Ser Ala Gln Ser Leu Glu Val 1 5
30	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634 Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC 2682
30	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634 Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC 2682 Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala
<i>30</i>	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634 Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC 2682 Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20
30	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC 2682 Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG 2730
<i>30</i>	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro
30	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 20 GCC TTC GCC GCG CTC TCC GAG GAC GTC AAC CCC CTG CAC CTG GAC CCC Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40.
30 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 20 GCC TTC GCC GCG CTC TCC GAG GAC GTC AAC CCC CTG CAC CTG GAC CCC Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40.
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40 GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 CTG CTC GCC AGC CTC TTC TCC GGG CTG CTG GGC CAG CAG TTG CCC GGC 2826
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly
35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70
	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG GGC ATG CTG GGC CAG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC 2874
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC 2874 Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC 2874 EVS Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 80
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAC GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAC CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG ACC GCC CTT CGC 2922
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA GCC CTC AAC CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG ACC GCC CTT CGC 2922 Phe Val Gly Asp Glu Val Thr Ala Glu Val Glu Val Thr Ala Leu Arg
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40 GCC TTC GCC GCC ACC ACG GCG TTC GAG CGC CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG ACC GCC CTT CGC Phe Val Gly Asp Glu Val Thr Ala Glu Val Glu Val Thr Ala Leu Arg 90 95
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGC CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG GAC GCC CTT CGC Phe Val Gly Asp Glu Val Thr Ala Glu Val Glu Val Thr Ala Leu Arg 90 GAG GAC AAG CCC ATC GCC ACC CTG ACC CTG ACC CCG ATC TTC ACC CAA GGC 2970 GAG GAC AAG CCC ATC GCC ACC CTG ACC CGC ATC TTC ACC CAA GGC
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC GCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40 GCC TTC GCC GCC ACC ACG GCG TTC GAG CGC CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly 60 65 70 AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG ACC GCC CTT CGC Phe Val Gly Asp Glu Val Thr Ala Glu Val Glu Val Thr Ala Leu Arg 90 95
. 35	### SET ALA GLA TCC CTG GAA GTA AGA GTG CGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser ALA GLA SER Leu Glu Val 1
. 35	GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA Met Ser Ala Gln Ser Leu Glu Val 1 5 GGC CAG AAG GCC CGT CTC AGC AAG CGG TTC GGG GCG GAG GTA GCC Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala 10 15 20 GCC TTC GCC ĠCG CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro 25 30 35 40. GCC TTC GCC GCC ACC ACG GCG TTC GAG CGG CCC ATA GTC CAC GGC ATG Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met 45 50 55 CTG CTC GCC AGC CTC TCC GGG CTG CTG GGC CAG CAG TTG CCG GGC Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly AAG GGG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val 75 80 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG GAG GTG ACC GCC CTT CGC Phe Val Gly Asp Glu Val Thr Ala Glu Val Thr Ala Leu Arg 90 GAG GAC AAG CCC ATC GCC ACC CTG ACC CCG ATC TTC ACC CAA GGC Glu Asp Lys Pro Ile Ala Thr Leu Thr Thr Arg Ile Phe Thr Gln Gly 110 115 120
. 35	### SET ALA GIN SET LEU GIU VAI ### SET ALA GIN SET LEU GIU VAI ### SET ALA GIN SET LEU GIU VAI 1
. 35	### SET ALA GIN SET LEU GIU VAI ### SET ALA ALA GIU VAI ALA ### SET ALA ALA GIU VAI ALA ### SET ALA ALA ALA GIU VAI ALA ### SET CCC CTG CAC CTG GAC CCG ### SET CCC CTG CAC ACC CCG ### SET CCC CTG CAC CTG GAC CCG ### SET CCC CTG CAC CTG GAC CCG ### SET CCC CTG CAC CAC CAC CCG ### SET CCC CTG CAC CAC CAC CCC ### SET CCC CTG CAC CAC CAC CAC CCC ### SET CCC CTG CAC CAC CAC CAC CCC ### SET CCC CTG CAC CAC CAC CCC ### SET CCC CTG CAC CAC CAC CCC ### SET CCC CTG CAC CAC CAC CCC CTG CAC CAC CCC CTC CCC ### SET CCC CTC CTC CCC CTC CCC ### SET CCC CTC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC CTC CCC CCC CTC CCC ### SET CCC CCC CTC CCC CTC CCC CTC CCC CTC CCC CTC CCC CCC CTC
. 35	### SET ALA GIN SET LEU GIU VAI ### SET ALA GIC GEG GAG GTA GCC ### SET GIV ALA CCC CTG GAG GAG GTA GCC ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS GIY MET ### SET GIU ASP PHE ASN PTO LEU HIS GIY MET ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIY LEU GIY GIN GIN LEU PTO GIY ### SET GIY LEU LEU GIY GIN GIN LEU PTO VAI ### SET GIY LEU SET PHE LYS LEU PTO VAI ### SET GIU ASP GIU VAI THE ALA GIU VAI GIU VAI THE ALA LEU AFG ### SET GIU ASP GIU VAI THE ALA GIU VAI GIU VAI THE ALA LEU AFG ### SET ALA GIN SET LEU AFG ### SET GIY CEG GAG GTG ACC CCC ATC CAC CAC CAC CAC CAC CAC CAC
35 40 45	### SET ALA GIN SET LEU GIU VALUE ALA ALA ALA ALA ALA ALA GIU VALUE ALA ALA ALA ALA ALA ALA ALA GIU VALUE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
. 35	### SET ALA GIN SET LEU GIU VAI ### SET ALA GIC GEG GAG GTA GCC ### SET GIV ALA CCC CTG GAG GAG GTA GCC ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PHE ASN PTO LEU HIS GIY MET ### SET GIU ASP PHE ASN PTO LEU HIS GIY MET ### SET GIU ASP PHE ASN PTO LEU HIS LEU ASP PTO ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIU ASP PTO ILE VAI HIS GIY MET ### SET GIY LEU GIY GIN GIN LEU PTO GIY ### SET GIY LEU LEU GIY GIN GIN LEU PTO VAI ### SET GIY LEU SET PHE LYS LEU PTO VAI ### SET GIU ASP GIU VAI THE ALA GIU VAI GIU VAI THE ALA LEU AFG ### SET GIU ASP GIU VAI THE ALA GIU VAI GIU VAI THE ALA LEU AFG ### SET ALA GIN SET LEU AFG ### SET GIY CEG GAG GTG ACC CCC ATC CAC CAC CAC CAC CAC CAC CAC

(2) INFORMATION FOR SEQ ID NO: 11:

5	. (i) SEQUENCE CHARACTERISTICS:	÷
	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	٠
,,	AGTTCCCGCC TCGGGTGTGG GTGAA	
	(2) INFORMATION FOR SEQ ID NO: 12:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	•
20	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	GGCATATGCG CTCATGCGGC GTCCT 25	
25	(2) INFORMATION FOR SEQ ID NO: 13:	•
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
35	GCCATATGAG CGCACAATCC CTGGAAGTAG	3
	(2) INFORMATION FOR SEQ ID NO: 14:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	CTGGGATCCG CCGGTGCTTA AGGCAGCTTG	30
50	(2) INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS:	
<i>55</i>		

(A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 5 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: 10 Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys Arg 1 10 Phe Gly Ala Ala 20 15 (2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid 20 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys

Claims

30

35

40

55

1

Arg Phe Gly Ala Ala

20

 A polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity.

10

- 2. A polyester synthase gene comprising the nucleotide sequence of SEQ ID NO:1.
- 3. A gene expression cassette comprising the polyester synthase gene of claims 1 or 2 and either of open reading frames located upstream and downstream of said gene.
 - 4. The gene expression cassette according to claim 3, wherein the open reading frame located upstream of the polyester synthase gene comprises DNA coding for the amino acid sequence of SEQ ID NO:4.
- 5. The gene expression cassette according to claim 3, wherein the open reading frame located upstream of the polyester synthase gene comprises the nucleotide sequence of SEQ ID NO:3.
 - 6. The gene expression cassette according to claim 3, wherein the open reading frame located downstream of the polyester synthase gene comprises DNA coding for a polypeptide containing the amino acid sequence of SEQ ID NO:6 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about enoyl-CoA hydratase activity.
 - 7. The gene expression cassette according to claim 3, wherein the open reading frame located downstream of the

polyester synthase gene comprises the nucleotide sequence of SEQ ID NO:5.

- 8. A recombinant vector comprising the polyester synthase gene of claim 1 or 2 or the gene expression cassette of any one of claims 3 to 7.
- 9. A transformant transformed with the recombinant vector of claim 8.
- 10. A process for producing polyester, wherein the transformant of claim 9 is cultured in a medium and polyester is recovered from the resulting culture.
- 11. The process for producing polyester according to daim 10, wherein the polyester is a copolymer of 3-hydroxyalkanoic acid represented by formula I:

$$\begin{array}{c|c} R \\ | & \text{(I)} \\ \text{HO} - \text{CH} - \text{CH}_2 - \text{COOH} \end{array}$$

wherein R represents a hydrogen atom or a C1 to C4 alkyl group.

12. The process for producing polyester according to claim 10, wherein the polyester is a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymer.

30

25

5

10

15

20

35

40

45

50

FIG. 1A

FIG.2

1

2

Lane M: molecular-weight marker

Lane 1: soluble-protein fraction from NB3

Lane 2: active fraction eluted from the anion

exchange column

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 824 148 A3 (11)

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 20.10.1999 Bulletin 1999/42

(43) Date of publication A2: 18.02.1998 Bulletin 1998/08

(21) Application number: 97113932.4

(22) Date of filing: 13.08.1997

(51) Int. Cl.⁶: C12N 15/52, C12N 15/60, C12N 1/21, C12P 7/62. C12N 15/74 // (C12N1/21, C12R1:05)

(84) Designated Contracting States: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

(30) Priority: 14.08.1996 JP 21450996 25.07.1997 JP 19997997

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant:

The Institute of Physical and Chemical Research Wako-shi, Saitama 351-01 (JP)

(72) Inventors:

· Toshiaki, Fukui, The Inst. of Phys. & Chem. Res. Wako-shi, Saitema 351-01 (JP)

· Yoshiharu, Doi, The Inst. of Phys. & Chem. Res. Wako-shi, Saitema 351-01 (JP)

(74) Representative: Grosse, Rainer, Dipl.-Ing. et al **Gleiss & Grosse** Patentanwaltskanzlei, Maybachstrasse 6A 70469 Stuttgart (DE)

(54)Polyester synthase gene and process for producing polyester

The present invention relates to a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity; a gene expression cassette comprising the polyester synthase gene and either of open reading frames located upstream and downstream of said gene; a recombinant vector comprising the gene expression cassette; a transformant transformed with the recombinant vector; and a process for producing polyester by culturing the transformant in a medium and recovering polyester from the resulting culture.

Printed by Xerox (UK) Business Services 2.16 7/3 6

EUROPEAN SEARCH REPORT

Application Number

EP 97 11 3932

Category	Citation of document with in- of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
A	WO 95 05472 A (UNIV 23 February 1995 (19 * claims *		1	C12N15/52 C12N15/60 C12N1/21 C12P7/62
A	WO 93 02187 A (UNIV 4 February 1993 (199 * claims *		1	C12N15/74 //(C12N1/21, C12R1:05)
A	WO 91 00917 A (MASSA TECHNOLOGY) 24 Janua * claims *	ACHUSETTS INST ary 1991 (1991-01-24)	1	
Α	HUISMAN ET AL: "Met poly(3-hydroxyalkand Pseudomonas oleovora JOURNAL OF BIOLOGICA vol. 266, no. 4, 5 February 1991 (199 2191-2198, XP0020874 ISSN: 0021-9258	pates) (PHAs) by ans" AL CHEMISTRY, D1-02-05), pages	1	TECHNICAL FIELDS
Α	PEOPLES O P ET AL: "POLY-BETA-HYDROXYBUBIOSYNTHESIS IN ALCA JOURNAL OF BIOLOGICA vol. 264, no. 26, 15 September 1989 (1) 15298-15303, XP00206 ISSN: 0021-9258	ALIGENES EUTROPHUS H16" AL CHEMISTRY, 1989-09-15), pages	1	SEARCHED (Int.Cl.6) C12N C12P
Р,Х	-co-3-hydroxyhexanoa of Aeromonas caviae	y(3- hydroxybutyrate ate) biosynthesis genes), 179(15), 4821-4830 ,	1-12	
	The present search report has b	·		
	Place of search THE HAGUE	Date of completion of the search 25 August 1999	Del	Examiner anghe, L
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anoth ument of the same category innological background	T : theory or principle E : earlier patent doc after the filing date or D : document cited in L : document cited fo	underlying the ument, but pub e the application	invention ished on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 97 11 3932

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-08-1999

	Patent documented in search rep		Publication date		Patent family member(s)	Publicati date
WO	9505472	Α	23-02-1995	US	5610041 A	11-03-1
				AU	7633094 A	14-03-1
				EΡ	0719342 A	03-07-1
				JP	9501832 T	25-02-1
WO	9302187	Α	04-02-1993	AU	671953 B	19-09-1
				AU	2323892 A	23-02-1
				BE	1006851 A	10-01-
				BR CA	9206297 A 2113412 A	17-10-
				CZ	9400108 A	04-02-1 15-12-1
				EP	0595896 A	11-05-
				ES	2046142 A	16-01-
				FI	940242 A	11-03-
				FR	2679735 A	05-02-
				HU	66825 A	30-01-
				IT	1255348 B	31-10-1
				JP	6509233 T	20-10-
				MX	9204245 A	01-02-1
				NL	9201288 A	16-02-
				NO	940157 A	18-03-
				NZ	243626 A	28-03-
				PL PT	170467 B 100705 A	31-12-1 29-10-1
				SK	6494 A	05-10-
				US	5610041 A	11-03-
				US	5650555 A	22-07-
WO	9100917	Α	24-01-1991	AT	172497 T	15-11-
				CA	2062816 A	11-01-
				DE	69032713 D	26-11-
				DE	69032713 T	08-04-
				EP	0482077 A	29-04-
				EP	0870837 A	14-10-
				ES JP	2125222 T 5500751 T	01-03-1 18-02-1
				US	5480794 A	02-01-
				US	5534432 A	09-07-
				US	5663063 A	02-09-1
				US	5245023 A	14-09-
				US	5250430 A	05-10-