Leis de Velocidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

PROBLEMA 0.1

3D01

Considere a reação química:

$$4 NO_2(g) + O_2(g) \longrightarrow 2 N_2O_5(g)$$

Em um experimento, são formados 6 mol de N_2O_5 em um minuto

Assinale a alternativa que mais se aproxima da velocidade média de consumo de dióxido de nitrogênio.

- A $100 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{B} 200 mmol s⁻¹
- \mathbf{c} 300 mmol s⁻¹
- \mathbf{D} 400 mmol s⁻¹
- E 500 mmol s⁻¹

PROBLEMA 0.3

3D03

A reação de Sabatier-Sanderens consiste na hidrogenação catalítica de alcenos ou de alcinos com níquel, para a obtenção de alcanos. Considere os resultados obtidos na reação de hidrogenação do acetileno:

t/min	0	4	6	10
$\overline{[C_2H_2]/molL^{-1}}$	50	38	35	30

Assinale a alternativa que mais se aproxima da velocidade média de consumo do hidrogênio no período de 4 min a 6 min.

- **B** $1,50 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- \mathbf{C} 2 mol L⁻¹ min⁻¹
- **D** $2,50 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- \mathbf{E} 3 mol L⁻¹ min⁻¹

PROBLEMA 0.2

3D02

Considere a reação química:

$$HBrO_3(aq) + HBr(aq) \longrightarrow Br_2(aq) + H_2O(aq)$$

Em um experimento, são consumidos 20 mmol de HBr em um segundo.

Assinale a alternativa que mais se aproxima da velocidade média de formação de bromo.

- \mathbf{A} 12 mmol s⁻¹
- \mathbf{B} 14 mmol s⁻¹
- c 16 mmol s⁻¹
- D 18 mmol s⁻¹
- \mathbf{E} 20 mmol s⁻¹

PROBLEMA 0.4

3D04

FAZER O GRÁFICO

PROBLEMA 0.5

3D05

Considere a reação química:

$$CH_3Br\left(aq\right) + OH^-(aq) \longrightarrow CH_3OH\left(aq\right) + Br^-(aq)$$

Quando a concentração de hidróxido é duplicada, a velocidade da reação dobra. Quando a concentração de bromometano é triplicada, a velocidade da reação triplica.

Assinale a alternativa com a ordem global da reação.

- A .
- В
- C
- D
- E 4

Considere a reação química:

$$FeCl_{2}(aq) + O_{2}(aq) + HCl\left(aq\right) \longrightarrow FeCl_{3}(aq) + H_{2}O\left(l\right)$$

Quando a concentração de ferro (II) é duplicada, a velocidade da aumenta 8 vezes. Quando as concentrações de ferro (II) e oxigênio são duplicadas, a velocidade aumenta 16 vezes. Quando a concentração de todos os reagentes é duplicada, a velocidade aumenta 32 vezes.

Assinale a alternativa com a ordem da reação em relação ao ácido clorídrico.

PROBLEMA 0.7

3D08

Considere a reação de decomposição do N₂O₅:

$$2 \operatorname{NO}_2(g) \longrightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$$

Essa reação possui constante cinética $k=0,500\, atm^{-1}\, s^{-1}$. Em um experimento $460\,mg$ de NO_2 são adicionados em um recipiente de $224\,mL$ a $0\,^{\circ}C$.

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de NO.

- \mathbf{A} 5 atm s⁻¹
- \mathbf{B} 10 atm s⁻¹
- **c** $50 \, \text{atm} \, \text{s}^{-1}$
- **D** $100 \, \text{atm} \, \text{s}^{-1}$
- **E** $500 \, \text{atm s}^{-1}$

PROBLEMA 0.8

3D09

Considere a reação química:

$$2 \mathbf{A}(g) + 2 \mathbf{B}(g) + \mathbf{C}(g) \longrightarrow 3 \mathbf{G}(g) + 4 \mathbf{F}(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	$[\boldsymbol{A}]/(mM)$	$[\boldsymbol{B}]/(mM)$	$[\boldsymbol{C}]/(mM)$	$r_{\text{G}}/(mMs^{-1})$
1	10	100	700	2
2	20	100	300	4
3	20	200	200	16
4	10	100	400	2
5	50	300	500	

Assinale a alternativa que mais se aproxima da velocidade inicial de consumo de **A** no experimento **5**.

- **A** 5 mmol L^{-1} s⁻¹
- **B** $6 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $7 \text{ mmol L}^{-1} \text{ s}^{-1}$
- ${\bf D}$ 8 mmol L⁻¹ s⁻¹
- **E** 9 mmol L^{-1} s⁻¹

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) \longrightarrow \mathbf{C}(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	$[\mathbf{A}]/(mM)$	$[\mathbf{B}]/(mM)$	$r_{\text{C}}/(mMs^{-1})$
1	0,600	0,300	12,6
2	0,600	0,300	1,40
3	0,600	0,100	4,20
4	0,170	0,250	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **C** no experimento **4**.

- **A** $0,590 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0,630 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{C} 0,740 mmol L⁻¹ s⁻¹
- **D** $0.870 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{E} 0,960 mmol L⁻¹ s⁻¹

PROBLEMA 0.10

3D11

Considere a reação química:

$$\mathbf{A}(aq) + \mathbf{B}(aq) + \mathbf{C}(aq) \longrightarrow \mathbf{G}(aq)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[A]/(mM)	[B]/(mM)	[C]/(mM)	$\rm r_G/(mMs^{-1})$
1	1,25	1,25	1,25	8,70
2	2,50	1,25	1,25	17,4
3	1,25	3	1,25	50,8
4	1,25	3	3,75	457
5	3	1	1,15	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **G** no experimento **5**.

- **A** 10,5 mmol L^{-1} s⁻¹
- **B** $11,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- C 12,5 mmol L^{-1} s⁻¹
- D $13,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $14.5 \, \text{mmol L}^{-1} \, \text{s}^{-1}$

Leis de Velocidade | Gabriel Braun, 2022

PROBLEMA 0.11

3D12

Considere a reação de síntese do gás fosgênio.

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[CO]/(mM)	$[\text{Cl}_2]/(mM)$	$r_{COCl_2}/(mMs^{-1})$
1	0,120	0,200	0,121
2	0,240	0,200	0,241
3	0,240	0,400	0,682
4	0,170	0,340	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de COCl₂ no experimento **4**.

- ${f A}$ 0,170 mmol ${f L}^{-1}\,{f s}^{-1}$
- $\begin{tabular}{ll} \bf B & 0,370 \, mmol \, L^{-1} \, s^{-1} \end{tabular}$
- ${f C}$ 0,570 mmol ${f L}^{-1}\,{f s}^{-1}$
- **D** $0,770 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $E = 0,970 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

Gabarito

- 1. B
- 2. A
- 3. E
- 4 -
- 5. C
- 6. B
- 7. D
- 8. B
- 9. D
- 10. B
- 11. D