Réseaux II

Wassim SAIDANE

Mise à jour du 12/03/2021

Table des matières

1	La c	ouche physique	е										5
	1.1	Transmission die	gitale ((baseband)									6

Note

Ce cours est ma prise de note du cours de L3 info de Raoul Medina.

Organisation

Introduction

Pourquoi étudier les réseaux dans un cours d'informatique?

- -> Les réseaux permettent de partager des ressources.
- Exemple de partage de ressource : Google map.
- $-> \underline{\text{Distribu\'e}}$ vs parallélisme
- Les machines distribuées ont un rapport qualité/prix intéressent. Elles permettent une plus grande fiabilité et disponibilité.
- Les machines distribuées sont également plus extensible.
- Par nature, les applications sont distribuées.

Un réseau? C'est quoi?

C'est un ensemble d'entité interconnecté entre-elles à l'aide de canaux de communications.

Il existe deux types de canaux :

- Point à point (exemple appel téléphonique) : simplex (unidirectionnel) full-duplex (biderectionnel et en même temps) half-duplex.

- Diffusion (Boadcast)

Quelques caractéristiques des canaux de communication :

	6	taile.
capacité	1	1/1,1
		vitasse de propagation

Quelque soit le canal de communication on aura toujours un taux d'erreurs (une

erreur = un bit qui se décale).

vitesse de propagation : 10^{-5} bit de parité 50% délai de propagation = taille/vitesse de propagation

Temps pour transmettre un bits? délai de propagation $+\frac{n}{\text{capacit\'e}} \times \text{taille du paquet en secondes}$

Quel est l'objectif du réseau?

<u>Problèmes :</u>

1 La couche physique

- Caractéristique mécaniques
- Caractéristique électriques
 - Niveau de volts
 - Fréquence de changement de voltage
- Caractéristique fonctionelle
 - Fonction de chaque broche
- Caractéristique procédurale

Tous ces points définit des standards (Exemple : norme USB).

${\bf Exemples}:$

— Paires torsadées

Exemple: RJ45

— 50 homes coaxales: 10 base 2, 10 base 5

- 75 homes coaxales -> analogique
- Fibre optique

- Micro-ondes, infrarouge, laser
- Disque externe (clé USB)

1.1 Transmission digitale (baseband)

Deux niveaux de volttages :

$$--+sv{=}1$$

$$--sv=0$$

Emetteur et récepteur doivent se mettre d'accord sur la durée d'un bit. Quelques méthodes :

— Cables parallèles

- <u>Cables séris</u>
 - Synchrone
 - Asynchrone

donnes,

horlogos synchronistes

Envoi d'octets :

Synchronisation avec chaque bit.

Le nombre de changement de signaux par seconde : bonds

Soit x le nombre de bonds d'un cnal :

bit raté = $\log_2 V \times$ bonds raté

v : nombre de signaux

Transmission analogique:

Transfert se fait par modulation de porteuse : J'ai raté le schéma à cause d'Anthony et Rapha :)

 $\begin{aligned} & \text{Nyquist}: \text{TTmax} = 2 \times H \times \log_2 V \\ & \text{H}: \text{Bande passante (fréquence max)} \end{aligned}$

 ${\bf V}$: Nombre de signaux

Shannon : TTmax = $H \times \log_2(1 + \frac{S}{B})$ $\frac{S}{B}$ =Rapport signal/bruit en décibel.

