Forecasting Production

Price Analysis: A Fundamental Approach to the Study of Commodity Prices

Highlights

- Learn the timeline and tools to estimate acreage and yield.
- Learn the relative price of corn versus soybeans contributes to acreage decisions, and thus production.
- Learn basic techniques for forecasting yield before and during the growing season.

Check Your Understanding

• Can you use NASS data for soybeans to forecast production in a similar manner shown for corn?

- We will focus our energy on more data and technical questions of actually forecasting elements of the balance sheet.
 - short term price changes using time-series econometric techniques.

- Our first task in forecasting a balance sheet will be to get a good estimate of production for the marketing year.
 - As we noted before, **Production = Acreage X Yield**. To begin, we will discuss the fundamentals of estimating acreage.

CORN				
	Million Acres			
Area Planted	88.0	94.0	90.9	90.9
Area Harvested	80.8	86.7	83.5	83.5
	Bushels			
Yield per Harvested Acre	168.4	174.6	169.5	169.9
	Million Bushels			
Beginning Stocks	1,731	1,737	2,370	2,350
Production	13,602	15,148	14,153	14,184
Imports	68	55	50	50
Supply, Total	15,401	16,940	16,573	16,585

Estimating Acreage

- The forecasting depends on the time of year, we are making the forecast.
- Prior to planting season, we can rely on recent trends in acreage from previous years.
- And, relative profitability of planting competing crops as measured by relative futures prices.

Historical acres planted and harvested can be found from USDA NASS.

- Steps to download historical acreage data:
 - 1. Go to [https://www.nass.usda.gov/Quick_Stats/Lite/index.php]
 - 2. Click Crops in the menu
 - 3. In the query, choose Field Crops
 - 4. Choose Corn
 - 5. Click Acreage, Yield, Production, and Price
 - 6. Select the years you want. Hold Ctrl key to select multiple.
 - 7. Click Get Data.

- The graph of historical corn **Planted Acres** along with the ratio of **Average Prices Received by Farmers** for corn and soybeans.
- The graph of historical corn **Planted Acres and Harvested Acres** generated from the data described above from 2000 to 2014.
- The left axis shows planted and harvested acres while the right axis shows the difference between the two.
- Since 2000, corn acreage has been increasing steadily from 80 million acres to just above 90 million acres.
- Given this, prior to planting season we might expect a simple trend-line to forecast corn acreage fairly well.
- In a couple of instances, there were fairly large deviations from the trendline.

- Aside from historical trends, the average corn farmer makes decisions based on relative profitability of planting corn versus planting soybeans.
- In years where profitability favors corn, more corn-on-corn acres will be planted, thus increasing the total number of acres planted to corn.
- In years where profitability favors soybeans, less corn-on-corn acres will be planted, thus increasing soybean acres and reducing the total number of acres planted to soybeans.
- This pattern is demonstrated in 2008 and 2011 when an increase in the corn-to-soybean price ratio corresponded to an increase in planted acres.

- Figure 4 shows, December 2017 and November 2017 corn and soybean futures prices ratio from 10/1/2016 to 5/1/2017.
- This roughly corresponds to the time frame when a farmer must make acreage decisions for the next crop year.
- The acreage decision begins in the fall of the prior year because fertilizer on corn ground is often applied in the fall.
- Assuming inputs costs were constant, forecasts of corn and soybean acreage for Spring 2017 should take into account the changing profitability.
- When corn/soy ratio is **high** and corn becomes more profitable relative to soybeans and vice versa.

- Figure 4 shows, during the fall of 2016, the corn/soy price ratio was falling.
- The acreage expectations should have been shifting slightly from corn toward soybeans.
- In late spring 2017, the corn price gained relative to the soybean price.
- Some corn acres may have been added back at the last minute that were originally planned for soybean acres.
- If we compare the 2017 prospective plantings report (released on 3/21/2017) with the 2017 acreage report (released on 6/30/2017).
- USDA estimated corn acres to be 90 million, but the acreage report showed plantings were nearly 1 million acres higher at 90.9 million

Forecasting Harvested Acres

- After forecasting Planted Acres one still needs to provide a forecast for Harvested Acres.
- Figure 5 shows historical trends in Harvested Acres relative to Planted Acres.
- The difference between these two variables is provided in gray with units along with the right axis for convenience.
- Harvested acres tends to be fairly stable number, averaging 7.6 million acres between 2000 and 2014.

Forecasting Harvested Acres (CONT...)

- This variable deviates most from trend corresponds to years of exceptionally poor production.
- In figure 5, 2012 and 2002 as examples. These years marginal reductions in production are explained by reduced yield and abandoned acres.
- Forecasting the harvested acres number accurately becomes very important to accurately forecasting production in shortfall years.

Forecasting Yield

- In forecasting acreage, we have different procedures for forecasting yield prior to planting.
- Before summer, the growing season gets underway and trend yield is usually used.
- USDA has records on yield that go back to 1866.
- When forecasting, the old yield estimates are no longer useful for forecasting current yield.
- Technological progress caused yields to take of in the 1950's and they have been climbing ever since.

Forecasting Yield (CONT...)

- In the forecasting world, this is called **Structural Change** or a **Structural Break**.
- If **Structural Change** has occurred, the world looks so different now than it did before.
- The **Structural Change** the data from before the break which is not useful for forecasting going forward.
- If a trend-line estimate beginning with 1952, 1980, or with pretty much any date in between, you will get an estimate that is roughly similar.

Forecasting Yield (CONT...)

• For Example:

- \circ Using the trend-line beginning with 1952 to forecast yield we come up with $Yield^{2015}=1.9066*2015-3677.9=163.899$.
- \circ While, using the trend-line beginning with 1980 to forecast yield we come up with $Yield^{2015}=1.8619*2015-3588.9=162.8285$.
- In other words, yields have been increasing by an average of just under 2 bushels per acre since the 1950's.

Growing Season Yield Forecasts

- The USDA undertakes an extensive effort to estimate yield during the growing season.
- Prior to August, they conduct the **Agricultural Yield Survey** (AYS) which surveys a large number of farmers and asks them to estimate yield.
- Beginning in August, the USDA conducts the Objective Yield Survey.
- They take samples from a relatively large number of fields and estimates yield in those fields based on various factors such as:
 - Counts of plants
 - Ears
 - And, pods (for soybeans)

- The commodity futures markets respond to new information in the USDA reports.
- Analysts employed by private advisory firms or proprietary trading shops will try to anticipate the USDA's yield forecast.
- It can be capitalized on superior private information by making a well advised business decision or earning speculative profits.
- This is difficult because an independent analyst will not have the same level of resources as the USDA does when it compiles its monthly yield estimates.
- They will have to rely on historical data and an understanding of weather is affecting crop yields across the geographically dispersed growing region.
- Figure 8 plots each year's deviation from trend yield since 1980.
- The first plot is in levels (i.e., $Yield_t TrendYield_t$); whereas the second plot is in percent terms (i.e., $\ln Yield_t \ln TrendYield_t$.

- Notice that the shape looks roughly the same, but the 2012 drought looks worse.
- Expressed in level deviations that the short crops of 1983, 1988, and 1993.
- The yield is trending higher.
- In percentage terms, the 2012 drought was equally as bad as 1983 and not quite as bad as 1988.

- An advanced agronomic model that can take into account planting date, precipitation, or ability to estimate yield from remote sensing technology.
- We will have to resort to the **Similar Year Approach**.
- Analysts often estimate deviations from trend yield by finding year similar to the current one in terms of weather.
- The assumption is, if the weather patterns were similar then the percent deviation from trend yield should be similar as well.
- Percent deviation is preferable so you do not need to adjust for increasing trend in yield as you look backward to a similar year.

- An alternative approach would be to use the Crop Condition Report and find a year in recent history.
- It had a similar percent of the crop rated Good/Excellent.
- Figure 9 shows how **Good** + **Excellent** crop condition ratings relating to the percent deviations in trend yield.
- They should be at least positively correlated, and in fact starting in the late 90's.
- This measure began to correlate strongly with the final yield.

Forecasting Production

• Once you have an estimate for acreage and yield, you can multiply them to give you an estimate of production for your balance sheet forecast.

Conclusion

- We reviewed the basics of forecasting production and forecasting acreage.
- Both Forecasting yields, before and during the growing season.
- We discovered that estimating yield percent deviations from trend better than the USDA is extremely difficult.
- Even anticipating whether the yield forecast will go up or down is not an easy task.
- The Similar Year Method has its limitations when used to find similar years in terms of weather or crop conditions ratings.

Exercises

- 1. Use NASS data for soybeans for forecast production in a similar manner we we did in class for corn.
- 2. Read and Discuss: Early Planting and 2015 Corn Yield Prospects: How Much of an Increase?

(http://farmdocdaily.illinois.edu/2015/05/early-planting-and-2015-corn-yield-prospects.html)

CHAPTER END