PHASE - 3 Development Part 1

DATE	23 - 10 - 2023
TEAM ID	8939
PROJECT NAME	8301 – CUSTOMER CHURN PREDICTION
TEAM NAME	Proj_207142_Team_1

ANALYTICS OBJECTIVES

Data Preprocessing:

- 1.Data Inspection
- 2.Data Cleaning
- 3. Data Transformation
- 4.Data Splitting
- 5. Data Normalization
- 6.Data Validation
- 7. Data Visualization
- 8.Data Collection

1.Loading Data:

Use pandas.read_csv() to load data from a CSV file.

Use pandas.read_excel() for Excel files.

```
In [1]:
```

```
import pandas as pd
df=pd.read_csv("E:/Churn.csv")
```

2. Exploring Data:

Use df.head() to view the first few rows of the dataset.

In [2]: df.head()

Out[2]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No

5 rows × 21 columns

Use df.info() to get information about data types and missing values.

Use df.describe() for summary statistics.python

In [4]: df.describe()

Out[4]:

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7043 entries, 0 to 7042
        Data columns (total 21 columns):
             Column
                                Non-Null Count
                                                Dtype
             customerID
                                7043 non-null
                                                object
             gender
                                7043 non-null
                                                object
             SeniorCitizen
                                7043 non-null
                                                int64
             Partner
                                7043 non-null
                                                object
             Dependents
                                7043 non-null
                                                object
             tenure
                                7043 non-null
                                                int64
             PhoneService
                                7043 non-null
                                                object
             MultipleLines
                                                object
                                7043 non-null
             InternetService
                                                object
                                7043 non-null
             OnlineSecurity
                                7043 non-null
                                                object
             OnlineBackup
                                                object
                                7043 non-null
             DeviceProtection
                                7043 non-null
                                                object
             TechSupport
                                7043 non-null
                                                object
             StreamingTV
                                7043 non-null
                                                object
             StreamingMovies
                                7043 non-null
                                                object
             Contract
                                7043 non-null
                                                object
             PaperlessBilling
                                                object
                                7043 non-null
             PaymentMethod
                                                object
                                7043 non-null
             MonthlyCharges
                                7043 non-null
                                                float64
             TotalCharges
                                7043 non-null
                                                object
             Churn
         20
                                7043 non-null
                                                object
        dtypes: float64(1), int64(2), object(18)
        memory usage: 1.1+ MB
```

3. Handling Missing Values:

Use df.isnull() to identify missing values.

Use df.fillna() or df.dropna() to handle missing values.

df.isnull() Out[7]: gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity ... DeviceProtection TechS False ... False False ... False ... False ... False ... False 7038 False ... False 7039 False ... False 7040 False ... False 7041 False ... False 7042 False ... False 7043 rows × 21 columns

4. Data Cleaning:

Remove duplicate rows with df.drop_duplicates().

Rename columns using df.rename() if necessary. Convert data types with df.astype().

0	7590-				Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	•••	DeviceProtection	
	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No		No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes		Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes		No	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes		Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No		No	
							***	***					
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes		Yes	
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No		Yes	
7040	4801-JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes		No	
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No		No	
7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes		Yes	
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	service Yes	Fiber optic	No			No

5. Handling Outliers:

Detect and deal with outliers using statistical methods or visualization.

You can use techniques like zscores or IQR (Interquartile Range).

```
In [11]: import seaborn as sns
         import matplotlib.pyplot as plt
         corr_matrix = df.corr()
         plt.figure(figsize=(10, 8))
         sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
         plt.title("Correlation Heatmap")
         plt.show()
                                            Correlation Heatmap
                                                     0.017
                                                                                                            - 0.6
                         0.017
                                                                                  0.25
                                                                                                            - 0.4
           MonthlyCharges
                                                      0.25
                      SeniorCitizen
                                                     tenure
                                                                             MonthlyCharges
```

6. Saving Data:

Save the preprocessed data back to a file if needed.

```
In [13]: df.to_csv('Downloads/preprocessed_churn.csv', index=False)
```

IBM COGNOS ANALYTICS

IN COGNOS - DATA LOADING

IN COGNOS - DATA RELATIONSHIP

IN COGNOS - CHURN DASHBOARD

IN COGNOS - TENURE AND MONTHLY CHARGES

MONTHLY CHARGES BY CHURN COLORED BY PAYMENT METHOD

TOTAL CHARGES BY ONLINE SECURITY

SENIOR CITIZER BY CHURN

VIEW OF TABLES

CONCLUSION

Data preprocessing is a crucial step in preparing data for analysis and machine learning. It involves collecting, inspecting, cleaning, transforming, and organizing data. The main steps include data collection, inspection, cleaning, transformation, splitting, normalization, and validation. It ensures data is ready for analysis and model training, improving the success of data-related projects.