

Verfahren zur Bestimmung von Grössen, die das Fahrverhalten eines Fahrzeugs beschreiben

Publication number: DE19607050

Publication date: 1997-08-07

Inventor: GUO LIMIN DR (DE); WANKE PETER DR (DE)

Applicant: TEVES GMBH ALFRED (DE)

Classification:

- International: B60T8/172; B62D37/00; G01C9/00; B60T8/17;
B62D37/00; G01C9/00; (IPC1-7): B62D37/00;
B60K28/10; G01C9/00; G01M17/00; G01P3/44;
G01P9/00; G01P15/00; G01P21/00

- European: B60T8/172; B62D37/00; G01C9/00

Application number: DE19961007050 19960224

Priority number(s): DE19961007050 19960224; DE19961003908 19960203

[Report a data error here](#)

Abstract of DE19607050

Ensuring stability and good yawing moment adjustment even in case of road surface cross slope and/or if the vehicle rolls requires cross slope detection. This is done by calculating the cross slope alpha q. At a certain cross slope angle, the vehicle computer can be set to counteract the cross slope vigorously.

Calculation of the cross slope angle alpha q is based on a co-ordinate transformation. The value aqm measured by the lateral acceleration gauge fixed relative to the vehicle is related to a value aq (the lateral ground acceleration determined by signals from other sensors) by the equation $aqm = aq \cos \alpha q - g \sin \alpha q$. The solution to this equation gives the cross slope angle alpha q.

Data supplied from the esp@cenet database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 196 07 050 A 1

⑯ Int. Cl. 8:
B 62 D 37/00
G 01 P 15/00
G 01 P 3/44
G 01 P 21/00
G 01 P 9/00
B 60 K 28/10
G 01 C 9/00
G 01 M 17/00

⑯ Aktenzeichen: 196 07 050.3
⑯ Anmeldetag: 24. 2. 96
⑯ Offenlegungstag: 7. 8. 97

⑯ Innere Priorität:
196 03 908.8 03.02.96

⑯ Anmelder:
ITT Automotive Europe GmbH, 60488 Frankfurt, DE

⑯ Erfinder:
Guo, Limin, Dr., 60489 Frankfurt, DE; Wanke, Peter,
Dr., 60437 Frankfurt, DE

⑯ Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE	43 25 413 C2
DE	43 08 128 C1
DE	42 26 746 C1
DE	39 22 528 C1
DE	39 19 347 C2
DE	44 30 458 A1
DE	44 04 098 A1
DE	43 25 413 A1
DE	43 14 830 A1
DE	42 44 112 A1
DE	42 26 749 A1
DE	41 23 232 A1
DE	39 33 294 A1

⑯ Verfahren zur Bestimmung von Größen, die das Fahrverhalten eines Fahrzeugs beschreiben

⑯ Um die Stabilität bzw. eine gute Qualität der Giermomentenregelung auch bei einer Fahrbahnquerneigung und/oder bei einer Wankbewegung des Fahrzeugs zu gewährleisten, ist eine Querneigungserkennung notwendig. Dies erfolgt durch eine Berechnung des Querneigungswinkels α_q . Bei einer erkannten Querneigung kann die Recheneinrichtung des Fahrzeugs so ausgelegt werden, daß er gegenüber Querneigung robust arbeitet. Die Berechnung des Querneigungswinkels α_q basiert auf einer Koordinatentransformation. Der vom fahrzeugfesten Querbeschleunigungsmesser erfaßte Wert $a_{q,m}$ wird zu einem aus anderen Sensorsignalen berechneten Wert a_q der erdbezogenen Querbeschleunigung in Bezug gesetzt nach der Gleichung

$$a_{q,m} = a_q \cos \alpha_q - g \sin \alpha_q.$$

Auflösung dieser Gleichung ergibt den Querneigungswinkel α_q .

DE 196 07 050 A 1

DE 196 07 050 A 1

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Größen, die das Fahrverhalten eines vierrädrigen Fahrzeugs beschreiben, gemäß dem Oberbegriff des Anspruchs 1.

Ein solches Verfahren ist in der DE 42 26 749 A1 beschrieben. Es werden einer Recheneinrichtung Signale zugeführt, die die Längsbeschleunigung a_x , die Fahrzeuggeschwindigkeit in Längsrichtung v_x , die Querbeschleunigung a_y und die Gierwinkelgeschwindigkeit Ψ repräsentieren, wobei aufgrund dieser gemessenen Größen in der Recheneinrichtung unter Verwendung eines Fahrzeugsmodells zumindest der Schwimmwinkel β abgeleitet wird. Im Verlauf der Rechnung werden Nick- und Wankbewegungen des Fahrzeugs als vernachlässigbar klein angenommen, um die Drehgeschwindigkeiten um die Fahrzeulgängs- und -querachse gleich Null setzen zu können und somit ein komplexes Gleichungssystem zu vereinfachen. Auch die Fahrzeugquerbeschleunigung wird als die angenommen, welche von fahrzeugfesten Querbeschleunigungsmessern erfaßt wird, so daß auch seitliche Fahrbahnneigungen als Querbeschleunigungen angenommen werden. Dies führt zwangsläufig zu Fehlern bei der Berechnung des Schwimmwinkels. Deshalb kann nicht gewährleistet werden, daß die Regelung ohne Berücksichtigung der Querneigung auch bei Fahrten mit Querneigung zum gewünschten Fahrverhalten führt.

Um die Stabilität bzw. eine gute Qualität der Giermomentenregelung auch bei einer Fahrbahnquerneigung und/oder bei einer Wankbewegung des Fahrzeugs zu gewährleisten, ist eine Querneigungserkennung notwendig. Dies erfolgt durch eine Berechnung des Querneigungswinkels. Bei einer erkannten Querneigung kann der Regler, also die Recheneinrichtung, so ausgelegt werden, daß er gegenüber Querneigung robust arbeitet.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, welches in der Lage ist, eine Querneigung des Fahrzeugs von einer echten Querbeschleunigung des Fahrzeugs zu unterscheiden und betragmäßig anzugeben.

Diese Aufgabe wird in Verbindung mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Die Berechnung des Querneigungswinkels basiert also auf einer Koordinatentransformation. Der vom fahrzeugfesten Querbeschleunigungsmesser erfaßte Wert wird zu einem aus anderen Sensorsignalen berechneten Wert der erdbezogenen Querbeschleunigung in Bezug gesetzt. Erdbezogen soll heißen, daß die z-Achse des Koordinatensystems im Gravitationsrichtung verläuft, während die x- und die y-Achse senkrecht hierzu in Fahrzeulgängs- und -querrichtung weisen.

Die erdbezogene Querbeschleunigung des Fahrzeugs kann beispielsweise aus einer gemessenen oder berechneten Gierwinkelgeschwindigkeit und der Fahrzeulgängsgeschwindigkeit oder aus den einzelnen Radgeschwindigkeiten je eines rechten und eines linken Fahrzeuggrades berechnet werden.

Falls gewünscht, kann auf einfache Weise noch ein Anteil des Querneigungswinkels als Wankwinkel ausgewiesen werden, indem die gemessene, fahrzeugbezogene Querbeschleunigung mit einem fahrzeugspezifischen, beladungsabhängigen Faktor multipliziert wird, der vorzugsweise einmalig vorab durch Versuchsmessungen ermittelt und in der fahrzeugeigenen Recheneinrichtung abgelegt wird.

Eine nähere Erläuterung des Erfindungsgedankens erfolgt nun unter Zuhilfenahme einer Zeichnung.

Die einzige Figur zeigt das Verhältnis des fahrzeugbezogenen Koordinatensystems (x' , y' , z') zum erdbezogenen Koordinatensystem (x , y , z), wobei in diesem Beispiel angenommen wird, daß das Fahrzeug keinen Längsneigungswinkel zur Horizontalen einnimmt ($x = x'$). Die Transformation läßt sich anhand der Figur durch folgende Gleichung darstellen.

$$a_{qm} = a_q \cos \alpha_q - g \sin \alpha_q \quad (1)$$

Dabei sind die in der Figur verwendeten Variablen wie folgt definiert:

a_q Querbeschleunigung bezüglich des ursprünglichen Koordinatensystems;

a_{qm} gemessene Querbeschleunigung bezüglich des Fahrzeugkoordinatensystems;

g Erdbeschleunigung (Gravitation);

α_b Fahrbahnquerneigungswinkel;

X Wankwinkel;

$\alpha_q = \alpha_b + X$ Fahrzeugquerneigungswinkel bezüglich des ursprünglichen Koordinatensystems.

Aus (1) folgt:

$$a_{qm} = \sqrt{a_q^2 + g^2} \cos(\gamma - \alpha_q) \quad (2)$$

$$\gamma = 360^\circ - \arccos \frac{a_q}{\sqrt{a_q^2 + g^2}}$$

wobei

Nach (2) und der Figur gilt:

$$\gamma - \alpha_q = 360^\circ - \arccos \frac{a_{qm}}{\sqrt{a_q^2 + g^2}} \quad (3)$$

Aus (2) und (3) folgt:

$$\alpha_q = \arccos \frac{a_{qm}}{\sqrt{a_q^2 + g^2}} - \arccos \frac{a_q}{\sqrt{a_q^2 + g^2}} \quad (4)$$

Um den Rechenaufwand zu reduzieren bzw. in Integer zu programmieren, kann diese Berechnung entweder durch Approximation nach der Taylor-Reihenentwicklung oder nach dem Newton-Iterationsverfahren durchgeführt werden.

Die Approximationen nach der Taylor-Reihenentwicklung

$$\sqrt{a_q^2 + g^2} \approx g + \frac{a_q^2}{2g} - \frac{a_q^4}{8g^3}$$

$$\arccos(x) \approx \frac{\pi}{2} - x - \frac{x^3}{6}$$

lauten: Durch diese Approximationen ergibt sich dann die Gleichung:

$$\alpha_q = \left(x_q - x_{qm} + \frac{x_q^3 - x_{qm}^3}{6} \right) \frac{180^\circ}{\pi}$$

mit

$$x_{qm} = \frac{a_{qm}}{\sqrt{a_q^2 + g^2}} \approx \frac{a_{qm}}{g + \frac{a_q^2}{2g} - \frac{a_q^4}{8g^3}}$$

und

$$x_q = \frac{a_q}{\sqrt{a_q^2 + g^2}} \approx \frac{a_q}{g + \frac{a_q^2}{2g} - \frac{a_q^4}{8g^3}}$$

Das Newton-Iterationsverfahren ist bekannt und wird deshalb hier nicht weiter verfolgt.
Die Querbeschleunigung a_q bezüglich des ursprünglichen Koordinatensystems kann entweder durch

$$a_q = v_{fzg}(\psi + \beta) = v_{fzg}\psi$$

oder durch eine der nachfolgenden Gleichungen

$$5 \quad a_q = \frac{v_{hr}^2 - v_{hl}^2}{2S}$$

$$10 \quad a_q = \frac{v_{vr}^2 - v_{vl}^2}{2S}$$

$$a_q = \frac{v_{vr}^2 - v_{hl}^2}{2S}$$

$$a_q = \frac{v_{hr}^2 - v_{vl}^2}{2S}$$

nachgebildet werden, wobei folgende Bezeichnungen verwendet wurden:

15 v_{fzg} Fahrzeugreferenzgeschwindigkeit;

β Schwimmwinkelgeschwindigkeit;

Ψ Gierwinkelgeschwindigkeit;

v_{vr} Radgeschwindigkeit vorne rechts;

v_{vl} Radgeschwindigkeit vorne links;

20 v_{hr} Radgeschwindigkeit hinten rechts;

v_{hl} Radgeschwindigkeit hinten links;

S Spurweite des Fahrzeugs.

Im folgenden wird eine Möglichkeit zur Ermittlung des Wankwinkels angegeben. Wie in der Literatur beschrieben, z. B. in Mitschke, Dynamik der Kraftfahrzeuge, Band C, Springer-Verlag 1990, ist die Querbeschleunigung a_q bezüglich des ursprünglichen Koordinatensystems von der Fahrzeuggeschwindigkeit und vom Krümmungsradius der Bahnkurve P abhängig. Sie ist nach folgender Gleichung zu berechnen:

$$30 \quad a = \frac{v_{fzg}^2}{k}$$

(4)

Der Wankwinkel ist proportional zur Querbeschleunigung, solange die Fahrzeugparameter konstant sind. Nach der Literatur ist der Wankwinkel beim leeren Fahrzeug $8^\circ/g$ und beim beladenen Fahrzeug $11^\circ/g$ nicht zu überschreiten. Bei $a_{qm} < 0$ ergibt sich dann $X > 0$, bei $a_{qm} > 0$ $X < 0$ und bei $a_{qm} = 0$ $X = 0$. Dadurch kann die eigene Wankbewegung beim leeren Fahrzeug durch

$$40 \quad X_{max} = -a_{qm} k, \quad k = \frac{8^\circ}{9,81 \text{ m/s}}$$

und beim beladenen Fahrzeug durch

$$45 \quad X_{max} = -a_{qm} k, \quad k = \frac{11^\circ}{9,81 \text{ m/s}}$$

abgeschätzt werden. Der Faktor k kann durch einen Fahrversuch auf einer ebenen Fahrbahn mit Hilfe eines besonderen Wankwinkel-Meßsystems fahrzeugspezifisch ermittelt werden, nämlich:

$$55 \quad k = -\frac{X_m}{a_{qm}}$$

wobei X_m der durch das Meßsystem gemessene Wankwinkel ist.

Die Querneigungserkennung wurde bei einem Fahrversuch in einer Test-Stielkurve ohne Einschalten des Giermomentenreglers zum Testen eingesetzt. Dabei wurde die Wurzel-Berechnung nach dem Newton-Iterationsverfahren durchgeführt, da die Wurzelfunktion bereits in der Integer-Programmierung vorhanden ist.

Aus den Meßergebnissen war zu erkennen, daß die Querbeschleunigung bezüglich des ursprünglichen Koordinatensystems nach Gleichung (4) von der Fahrzeuggeschwindigkeit abhängig ist. Die Wirkung der eigenen Wankbewegung war aus einem Vergleich der Meßergebnisse bei verschiedenen Fahrzeuggeschwindigkeiten festzustellen, da die Fahrbahnneigung bekannt und bei allen Durchläufen dieselbe war. Bei niedrigen Fahrzeuggeschwindigkeiten ist die Querbeschleunigung klein und verursacht eine kleine eigene Wankbewegung. Bei einer höheren Querbeschleunigung ist die Wankbewegung unübersehbar. Mit Hilfe des Wankwinkel-Meßsystems kann der Istwert des Querneigungswinkels ermittelt werden, der als Referenzwert für eine Untersuchung

der Fahrversuchsergebnisse zur Verfügung steht. Bei Vergleich zwischen dem gemessenen und dem berechneten Querneigungswinkel hat sich ergeben, daß die Berechnung zumindest bei einer nahezu stationären Fahrt zufriedenstellende Ergebnisse liefert.

Patentansprüche

5

1. Verfahren zur Bestimmung von das Fahrverhalten eines Fahrzeugs charakterisierenden Größen, wobei das Fahrzeug mit einem fahrzeugfesten Querbeschleunigungsmesser (a_{qm}) und pro Fahrzeuggrad mit einem Radsensor zur Erfassung der Radgeschwindigkeit ($v_{vl}, v_{vr}, v_{hl}, v_{hr}$) sowie zumindest als einspuriges Fahrzeug mit einem GierrateSENSOR zur Erfassung der Gierwinkelgeschwindigkeit ($\dot{\Psi}$) ausgestattet ist, dadurch gekennzeichnet, daß ein in Fahrzeugkoordinaten (x', y', z') gemessener Wert der Querbeschleunigung (a_q) des Fahrzeugs zu einem in Erdkoordinaten (x, y, z) berechneten Wert (a_q) der Querbeschleunigung in Bezug gesetzt wird und durch Auflösung der Gleichung

10

$$a_{qm} = a_q \cos \alpha_q - g \sin \alpha_q$$

15

die Querneigung (α_q) des Fahrzeugs bezüglich der Erdkoordinaten (x, y, z) ermittelt wird, wobei mit g die Gravitation bezeichnet ist.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Berechnung der erdbezogenen Querbeschleunigung (a_q) nach der Formel

20

$$a_q = v_{fzg} \dot{\Psi}$$

25

erfolgt, wobei v_{fzg} die gemessene oder aus einzelnen Radgeschwindigkeiten ermittelte Fahrzeuggeschwindigkeit ist und $\dot{\Psi}$ die gemessene oder berechnete Gierwinkelgeschwindigkeit des Fahrzeugs.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Berechnung der erdbezogenen Querbeschleunigung (a_q) nach einer der Formel

30

$$a_q = v_{fzg} (\dot{\Psi} + \beta)$$

35

erfolgt, wobei v_{fzg} die gemessene oder aus einzelnen Radgeschwindigkeiten ermittelte Fahrzeuggeschwindigkeit ist, $\dot{\Psi}$ die gemessene oder berechnete Gierwinkelgeschwindigkeit des Fahrzeugs und β die gemessene oder berechnete Schwimmwinkelgeschwindigkeit des Fahrzeugs.

4. Verfahren nach Anspruch 1, wobei es sich um ein zweispuriges Fahrzeug handelt, dadurch gekennzeichnet, daß die Berechnung der erdbezogenen Querbeschleunigung (a_q) nach einer der Formeln

40

$$a_q = \frac{v_{xr}^2 - v_{xl}^2}{2S}$$

45

erfolgt, wobei v_{xr} die Radgeschwindigkeit eines rechten Fahrzeuggrades, v_{xl} die Radgeschwindigkeit eines linken Fahrzeuggrades und S die Spurweite des Fahrzeugs bezeichnet.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Wankwinkel (X) des Fahrzeugs nach der Formel

50

$$X = - a_{qm} k$$

ermittelt wird, wobei k ein beladungsabhängiger, fahrzeugspezifisch ermittelter Faktor ist.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Faktor k durch eine Messung von in Fahrzeugkoordinaten (x', y', z') gemessener Querbeschleunigung (a_{qm}) und gleichzeitiger Versuchsmessung des Wankwinkels (X_m) einmalig nach der Formel

55

$$k = - \frac{X_m}{a_{qm}} -$$

60

ermittelt und in einer Recheneinrichtung im Fahrzeug abgelegt ist.

65

