EE7403 LEC 6 Segmentation and Edge Detection
1. Natro
EE7403 LEC 6 Segmentation and Edge Veterion 1. Intro. Segmentation: Subdivide
image \tegions / objects)
Stop when interested
objects isolated.
Translitional Segmentention based on Similarity or discontinuity.
2. Segmentation by Thresholding (Thresholding) (Points, Line Edge)
Objects of interest uniform brightness placed agains of
e.g. homoluritting. textwriting. finger prints. airplanes on a runaway
e.g. homolwritting textwriting finger prints. airplanes on a vinitary.
thresholded.image $g(x, y)$: $g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T \\ 0 & \text{if } f(x, y) \leq T \end{cases}$
thresholder medge first of iff(x,y) & T
throughold given by 1=(Lx, y, pin, y)
T is the threshold: whole image Global threshold: whole image Local threshold: both f(x,y) and its local neighbor property P(x,y) Local threshold: both f(x,y) and its local neighbor property P(x,y)
Local threshold: both fing
Adaptive threshold: X. y wordinats Approach) If the gray value of object &
Adaptive threshold: X. y wordings. D global threshold (Henristic Approach) If the grow value of Object & D global threshold (Henristic Approach) If the grow value of Object & O. Select an initial estimate for T by one separated. B. Select an initial estimate for T by one separated. B. Select an initial estimate for T by one separated. B. Segment the image using T. This will produce 2 groups of pixels: B. Segment the image using T. This will produce 2 groups of pixels: AM Pixels with gray level values > T and G2 consisting
an initial estimate for I be one separate 2 groups of pixels:
Leament the image using 1. This will produce I I for consistion
b. <u>Segment</u> the image <u>using</u> I. This below the gray level values > T and G. consisting G. consisting of all pixels with gray level values > T and G. consisting
hi consisting of the gray value & T.
of all pixels with gray values me and per for the pixels in region
C. and Gz Value T= 0.5 (M Thz)
and as through 4 until the difference in T in successive
d. compute a new threshold built the difference in T in successive e. repeat steps 2 through 4 until the difference in T in successive iterations is smaller than a predefined parameter To
iterations is smaller than a predefined parameter to

EE7403 LEC 6 B Adaptive bocal thresholding
all of discrepted.
a. Subdivide original image into small areas. b. utilize different threshold to segment different sub-image.
b. utilize different threshold to segment different
3. Detection of Discontinuities.
types Line run a mask Eolge
Eolge
1) Point Vetection
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-1 -1 -1 2 -1 2 -1 2 -1 2 -1 2 -1 2 -1
with a constant bg.
with a constant by. 3) Edge Detection extract information: Contour of objects. abrupt changes in brightness (axivative (Gradient operator))
4. first- order derivative (Gradient operator), first derivative
Sersonal alementive
i deal digital edge ramp oligital edge.

EE7403 LEC 6 Fairly little noise can have a significant impact on the two key devi. 2-dimensional first-proler derivative must be greater than a threshold. $Y f(x,y) = \left[\frac{G_X(x,y)}{G_Y(x,y)} \right] =$ (///// hx(x,y)=0 Cix(x,y) large Ly (x,y) =0 Gy (x,y) large the strength of the differentials is proportional to the chapter of discontinuity. =) enhances edges and other discontinuity (noise). magnitude: orea with stowly varying gray-level values. [] T (x, y)] = [Gx (x, y) + Gy (x, y)] $(e(x,y) = tan^{-1} \left(\frac{hy(x,y)}{Gx(x,y)} \right)$ the directions of gradient I direction of edge. the rate of change Simple approximation of x- and y- differentials for of fat (X14) is mini. $G_{\times}(x,y) = f(x+1,y) - f(x-1,y)$ →x 2 hli) f(x-i) (iy (x, y) = f(x, y+1) -f(x, y-1) Very sensitive to noise , =) smoothing prior to differentiation. V[h(x,y) * f(x,y)] = [vh(x,y)] * f(x,y) discrete image + smoothing filter => biased gradient direction h(x,y)=f(x+1,y)-f(x-1,y)+j(f(x,y+1)-f(x,y-1)) = (03(a(x+1)+by) - 03(a(x+1)+by)+j[w3(ax+b1y+1))-03(ax+b1y-1)] (x,y) = arctan Imfof(x,y) } Refofixiy) & + arctan b

5. Second -order derivative (Laplacian operator)

$$\nabla^{2}f = \frac{\partial^{2}f(x,y)}{\partial x^{2}} + \frac{\partial^{2}f(x,y)}{\partial y^{2}}$$

$$\frac{\partial^{2}f}{\partial x^{2}} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\nabla^{2}f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$4 - neighbor Laplacian$$

$$\frac{\partial^{2}f(x,y)}{\partial y^{2}} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y) + f(x,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x+1,y) + f(x-1,y)$$

$$\frac{\partial^{2}f}{\partial y^{2}} = f(x,y)$$

$$\frac{$$