

Identifying Emergent Research Trends By Key Authors and Phrases

Shenhao Jiang, Animesh Prasad, Min-Yen Kan, and Kazunari Sugiyama

School of Computing, National University of Singapore

ttps://github.com/WING-NUS/ResearchTrends

http://wing.comp.nus.edu.sg/?page_id=724

jiangshenhao@gatech.edu, {animesh, kanmy, sugiyama}@comp.nus.edu.sg

Introduction

> Motivation:

- >> Bloom of scientific publications
- ➤ Researchers need to scan large amount of data for identification of areas with long-term impact

> State-of-the-arts:

- ➤ Text Mining: LDA-type models (e.g. Dynamic Topic Models and Author Topic Model), temporal and authoring aspects of topics;
- ➤ Citation Links: co-citation networks of papers, where tightly knit clusters represent topics, and keywords indicate trends

> Observation:

- ➤ Influential authors often collaborate together
- ➤ Important authors are more likely to write about important words which are potential trending words

Proposed Techniques

> Step 1: MultiGraph-Ranking (MGR)

- > Yearly grouped documents
- > Author graph and phrase graph (mutual recursion) in each year
- > Author-Author: collaboration; Phrase-Phrase: co-occurrence
- ➤ Author-Phrase: tf-iaf

$$tf\text{-}iaf_{a_i,p_j} = tf_{a_i,p_j} \times iaf_{p_j}$$

$$= \frac{Occ(a_i,p_j)}{\sum_{z=1}^n Occ(a_i,p_z)} \times \log \frac{|A|}{|A(p_j)|},$$

Graph Ranking with Year 1989 (Part)

Author Graph Phrase Graph

➤ Step 2: Word2Vec Representativeness

➤ In different timestamps, representativeness of phrases could vary drastically; therefore we enhance the score from Step 1 with the distance to cluster centroid (*k-means*)

➤ Step 3: RNN Predicting Scores

Time series of scores: $x_1, x_2, ..., x_n$. We train an RNN to perform $x_{t+3} = f(x_t, x_{t+1}, x_{t+2})$ with a sliding window moving through the series.

Experiments & Results

➤ Quantitative: ACM Periodical Dataset

- ➤ Abstract as doc entry
- Field of "software engineering"
- ➤ Baseline: replace Step 1 with standard TextRank [1]

➤ Qualitative: SCI & SSCI Dataset

- ➤ Comparative study against Shibata et al. [2]
- ➤ Field of "Gallium Nitride (GaN)"
- ➤ Predicting trending phrases in 2000

photoluminescence

contact American Institute

film substrate American Institute
layers Mg structure

GaAs defect physics
Si GaAs Au Al physics
Growth

Growth

sapphire substrate properties surface conditions result film

molecular beam epitaxy

electron microscopy

Our model

measurements diffraction

Discussions

- ➤ Our phrase extraction model consistently outperforms the baseline TextRank, and can be taken as empirical justification for our assumption where important authors and phrases mutually influence each other
- ➤ Our extracted keyphrases work better than Shibata et al.'s work [2], and we conclude that because of the way we form phrase nodes in MGR, longer terms are compensated, and our tf-iaf concept has reduced the effects of large occurrences.

> Future Directions

- ➤ Pre-train the existing Word2Vec model with our data, so there is no need to use the tf-idf average for representativeness.
- > Possible to apply to other disciplines like PubMed data, so utilize the domain experts to help us evaluate the performance.

References

[1]: Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Texts. In Proc. of the 2004 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2004),

[2]: Naoki Shibata, Yuya Kajikawa, Yoshiyuki Takeda, and Katsumori Matsushima. 2008. Detecting Emerging Research Fronts Based on Topological Measures in Citation Networks of Scientific Publications. Technovation