Optimisation avancée 2018-2019. Exercices d'entraînement (Chapître 1: Idées générales)

Exercice 1

Soit L > 0 et \mathcal{F}_L l'ensemble des applications L-Lipschitziennes de [0,1] dans \mathbb{R} . Soit $\varepsilon > 0$. Soit \mathcal{A} un algorithme renvoyant, pour toute fonction $f \in \mathcal{F}_L$, un nombre $x^* \in [0,1]$ tel que $f(x^*) \leq \min_{[0,1]} f + \varepsilon$. On suppose que \mathcal{A} fait uniquement appel à l'oracle d'ordre zéro.

- 1. Montrer que \mathcal{A} doit faire appel à l'oracle d'ordre zéro au moins $\Omega(L/\varepsilon)$ fois. Indice: Considérer la fonction nulle, et construire une fonction $g \in \mathcal{F}_L$ valant zéro en tous les points en lesquels l'oracle d'ordre zéro est appelé pour la fonction nulle, dont le minimum est le plus petit possible.
- 2. En déduire la complexité optimale sur \mathcal{F}_L , en fonction de L et ε , pour les algorithmes ne faisant appel qu'à l'oracle d'ordre zéro.

Exercice 2

Soit $P = \{x \in \mathbb{R}^d : a_i^\top x \leq b_i, i = 1, \dots, n\}$ un polytope supposé borné, où $n \geq 1$, $a_1, \dots, a_n \in \mathbb{R}^d$ et $b_1, \dots, b_n \in \mathbb{R}$. On dit qu'un point $x \in P$ est un centre de Chebychev de P si et seulement si x est le centre d'une boule de volume maximal incluse dans P.

- 1. Montrer qu'une telle boule existe. Est-elle nécessairement unique?
- 2. Montrer que le centre et le rayon d'une telle boule sont une solution d'un programme linéaire.

Exercice 3 Estimateur Ridge en régréssion linéaire

Soit $A \in \mathbb{R}^{n \times d}$ (n est un entier supérieur ou égal à d) une matrice de rang d et $y \in \mathbb{R}^n$. On considère les problèmes d'optimisation suivants:

$$(P_{\lambda}) \quad \min_{x \in \mathbb{R}^d} \|y - Ax\|^2 + \lambda \|x\|^2$$

et

$$(Q_{\tau}) \quad \min_{x \in \mathbb{R}^d} \begin{cases} \|y - Ax\| \\ \text{s.c. } \|x\| \le \tau, \end{cases}$$

où lambda et τ sont deux nombres strictement positifs.

1. Résoudre (P_{λ}) et (Q_{τ}) analytiquement.

- 2. Montrer que pour tout $\lambda > 0$, il existe $\tau(\lambda) > 0$ tel que les problèmes (P_{λ}) et $(Q_{\tau(\lambda)})$ sont équivalents.
- 3. Réciproquement, montrer que pour tout $\tau > 0$, il existe $\lambda(\tau) > 0$ tel que les problèmes (Q_{τ}) et $(P_{\lambda(\tau)})$ sont équivalents.

Exercice 4 Estimateur Lasso en régréssion linéaire

Soit $A \in \mathbb{R}^{n \times d}$ (cette fois-ci, n est un entier quelconque) et $y \in \mathbb{R}^n$. On considère les problèmes d'optimisation suivants:

$$(P_{\lambda}) \quad \min_{x \in \mathbb{R}^d} \|y - Ax\|^2 + \lambda \|x\|_1$$

et

$$(Q_{\tau}) \quad \min_{x \in \mathbb{R}^d} \begin{cases} \|y - Ax\| \\ \text{s.c. } \|x\|_1 \le \tau, \end{cases}$$

où lambda et τ sont deux nombres strictement positifs.

- 1. Montrer que pour tout $\lambda > 0$, il existe $\tau(\lambda) > 0$ tel que les problèmes (P_{λ}) et $(Q_{\tau(\lambda)})$ sont équivalents.
- 2. Réciproquement, montrer que pour tout $\tau > 0$, il existe $\lambda(\tau) > 0$ tel que les problèmes (Q_{τ}) et $(P_{\lambda(\tau)})$ sont équivalents.
- 3. Montrer que pour tout $\tau > 0$, (Q_{τ}) peut s'écrire comme un programme linéaire. En pratique, pensez-vous que cela est utile pour la résolution du probléme ?

Exercice 5

Ecrire les problèmes suivants sons la forme d'un programme linéaire, si possible, ou d'un programme quadratique sinon.

1.

$$\min_{x \in \mathbb{R}^d} ||Ax - b||^2,$$

où $A \in \mathbb{R}^{n \times d}$ et $b \in \mathbb{R}^n$, avec $n \ge 1$.

2.

$$\min_{x \in \mathbb{R}^d} \begin{cases} ||Ax - b|| \\ \text{s.c. } x \in B(x_0, r), \end{cases}$$

où $A \in \mathbb{R}^{n \times d}$ et $b \in \mathbb{R}^n$, avec $n \ge 1$, $X_0 \in \mathbb{R}^d$ et r > 0.

 $3. (Square-root\ Lasso)$

$$\min_{x \in \mathbb{R}^d} \|y - Ax\| + \lambda \|x\|_1,$$

où $A \in \mathbb{R}^{n \times d}$ et $b \in \mathbb{R}^n$, avec $n \ge 1$ et $\lambda > 0$.

Optimisation avancée 2018-2019. Exercices d'entraînement (Chapître 2 - Convexité et dualité)

Exercice 1

Soit $A \in \mathbb{R}^{d \times d}$ et $E = \{x \in \mathbb{R}^d : x^\top Ax \le 1\}$.

- 1. Montrer l'existence d'une matrice symétrique $\tilde{A} \in \mathbb{R}^{d \times d}$ telle que $E = \{x \in \mathbb{R}^d : x^\top \tilde{A}x \leq 1\}$. Dorénavant, on supposera donc que A est symétrique, sans perte de généralité.
- 2. Montrer que E est un ensemble fermé.
- 3. Montrer que E est convexe si et seulement si les valeurs propres de A sont toutes de même signe.
- 4. Montrer que E est borné si et seulement si toutes les valeurs propres de A sont de même signe et sont non nulles.
- 5. Supposons que A est définie positive. Trouver une matrice $T \in \mathbb{R}^{d \times d}$ telle que $E = TB(0,1) = \{Tx : x \in B(0,1)\}.$

Exercice 2 Programmation linéaire et dualité

Soit $n \ge 1$, $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$ et $c \in \mathbb{R}^d$. On suppose que l'ensemble $\{x \in \mathbb{R}^d : Ax \le b\}$ est borné.

- 1. Montrer que nécessairement, $n \ge d + 1$.
- 2. On considère le programme linéaire suivant:

$$(P) \quad \min_{x \in \mathbb{R}^d} \begin{cases} c^\top x \\ \text{s.c. } Ax \le b. \end{cases}$$

Ecrire le problème dual, qu'on notera (Q).

3. Montrer que (P) est le problème dual de (Q).

Exercice 3 L'oracle de séparation

Soit f_1, \ldots, f_n des fonctions convexes sur \mathbb{R}^d , où $n \geq 1$ et $E = \{x \in \mathbb{R}^d : f_i(x) \leq 0, i = 1, \ldots, n\}$.

1. Montrer qu'on peut réécrire E comme $\{x \in \mathbb{R}^d : f(x) \leq 0\}$, où f est une fonction convexe sur \mathbb{R}^d à déterminer.

2. Proposer un algorithme produisant l'oracle de séparation pour tout $x \in \mathbb{R}^d$ parrapport à E, en faisant appel aux oracles d'ordres zéro et un de f.

Exercice 4

Soit $E \subseteq \mathbb{R}^d$ un ensemble convexe et $f: E \to \mathbb{R}$ une fonction convexe. Montrer que pour tout $x \in \mathring{E}$, $\partial f(x)$ est compact.