PERTEMUAN 14

(AKAR-AKAR PERSAMAAN KARAKTERISTIK DENGAN METODE ITERASI TITIK TETAP)

A. CAPAIAN PEMBELAJARAN

Setelah selesai mengikuti materi pada pertemuan ini, mahasiswa mampu memahami dan menjelaskan akar-akar persamaan karateristik dengan metode iterasi titik tetap.

B. URAIAN MATERI

1. Metode Iterasi Titik Tetap

Metode iterasi titik tetap disebut juga metode iterasi sederhana, metode langsung, atau metode substitusi beruntun. Metode iterasi titik tetap adalah metode yg memisahkan x dengan sebagian x yang lain sehingga diperoleh : x = g(x).

Kesederhanaan metode ini karena pembentukan prosedur iterasinya yang mudah dibentuk sebagai berikut.

- 1. Ubah persamaan f(x) = 0 menjadi bentuk x = g(x),
- 2. bentuk menjadi prosedur iterasi $x_{r+1} = g(x_r)$,
- 3. terka sebuah nilai awal x_0 ,
- 4. hitung nilai x_1 , x_2 , x_3 , ..., yang konvergen ke suatu titik s,sedemikian sehingga

$$f(s) = 0 \quad dans = g(s).$$

Kondisi iterasi berhenti apabila

$$|x_{r+1} - x_r| < \varepsilon$$

atau bila menggunakan galat relatif hampiran, kriteria berhentinya iterasi dinyatakan

$$\left| \frac{|x_{r+1} - x_r|}{x_{r+1}} \right| < \delta$$

dengan ε dan δ telah ditetapkan sebelumnya.

Contoh 1

Carilah akar persamaan $f(x) = x^2 - 2x - 3 = 0$ dengan metode iterasi titik tetap. Gunakan $\varepsilon = 0.000001$.

Penyelesaian:

Terdapat beberapa kemungkinan prosedur iterasi yang dapat dibentuk.

a.
$$x^2 - 2x - 3 = 0$$

$$\Leftrightarrow x^2 = 2x + 3$$

$$\Leftrightarrow x = \sqrt{(2x+3)}$$

Dalam hal ini, $g(x) = \sqrt{(2x+3)}$.

Prosedur iterasinya adalah $x_{r+1} = \sqrt{2x_r + 3}$. Ambil terkaan awal $x_0 = 4$.

Tabel iterasinya:

r	x_r	$ x_{r+1} - x_r $
0	4,000000	0,683375
1	3,316625	0,212877
2	3,103748	0,069362
3	3,034385	0,022945
4	3,011440	0,007629
5	3,003811	0,002541
6	3,001270	0,000847
7	3,000423	0,000282
8	3,000141	0,000094
9	3,000047	0,000031
10	3,000016	0,000010
11	3,000005	0,000003
12	3,000002	0,000001
13	3,000001	0,000001
14	3,000000	0,000000

Hampiran akar x = 3,000000.

(Proses iterasinya konvergen monoton yang membentuk zigzag mendekati hampiran akar x=3,000000).

b.
$$x^2 - 2x - 3 = 0$$

$$\Leftrightarrow x(x-2) = 3$$

$$\iff x = \frac{3}{x - 2}$$

Dalam hal ini, $g(x) = \frac{3}{x-2}$.

Prosedur iterasinya adalah $x_{r+1} = \frac{3}{x_{r-2}}$.

Ambil terkaan awal $x_0 = 4$.

Tabel iterasinya:

r	x_r	$ x_{r+1}-x_r $
0	4,000000	2,500000
1	1,500000	7,500000
2	-6,000000	5,625000
3	-0,375000	0,888158
4	-1,263158	0,343803
5	-0,919355	0,108269
6	-1,027624	0,036748
7	-0,990876	0,012175
8	-1,003051	0,004066
9	-0,998984	0,001355
10	-1,000339	0,000452
11	-0,999887	0,000151
12	-1,000038	0,000051
13	-0,999987	0,000017
14	-1,000004	0,000005
15	-0,999999	0,000001
16	-1,000000	0,000000
17	-1,000000	0,000000

Hampiran akar x = -1,000000.

(Proses iterasinya konvergen berosilasi yang membentuk spiral mendekati hampiran akar $x=-1{,}000000$).

c.
$$x^2 - 2x - 3 = 0$$
$$\Leftrightarrow x = \frac{x^2 - 3}{2}$$

Prosedur iterasinya adalah $x_{r+1} = \frac{x_r^2 - 3}{2}$.

Ambil terkaan awal $x_0 = 4$.

r	x_r	$ x_{r+1} - x_r $
0	4,000000	2,500000

1	6,500000	13,125000
2	19,625000	171,445313
3	191,070313	18061,361847
4	18252,432159	166557385,9400

Iterasinya divergen, artinya pemilihan $x_0 = 4$ untuk prosedur iterasi $x_{r+1} = \frac{x_r^2 - 3}{2}$ menghasilkan proses iterasi yang menjauhi hampiran akarx.

Jadi, diperoleh akar persamaan dari $f(x)=x^2-2x-3=0$ dengan tebakan awal akar $x_0=4$ dan $\varepsilon=0.000001$ adalah x=3,000000 atau x=-1,000000.

Contoh soal 2

Tentukan akar hampiran dari persamaan $x^3-2x+1=0$, dengan $x_0=2$. Gunakan $\varepsilon=0.00001$.

Penyelesaian:

Terdapat beberapa kemungkinan prosedur iterasi yang dapat dibentuk.

a)
$$x^3 - 2x + 1 = 0$$

 $\Leftrightarrow 2x = x^3 + 1$
 $\Leftrightarrow x = \frac{x^3 + 1}{2}$

Diperoleh
$$g(x) = \frac{x^3+1}{2}$$
.

Prosedur iterasinya adalah $x_{r+1} = \frac{x_r^3 + 1}{2}$

Ambil terkaan awal $x_0 = 2$

Tabel iterasinya adalah

R	X _r	(X _{r+1})-X _r
0	2	2,5
1	4,5	41,5625
2	46,0625	48821,08
3	48867,14	5,83E+13

Iterasinya divergen, artinya pemilihan $x_0=2$ untuk prosedur iterasi $x_{r+1}=\frac{x_r^3+1}{2}$ menghasilkan proses iterasi yang menjauhi hampiran akarx.

b)
$$x^3 - 2x + 1 = 0$$

 $\Leftrightarrow x(x^2 - 2) + 1 = 0$
 $\Leftrightarrow x(x^2 - 2) = -1$
 $\Leftrightarrow x = -\frac{1}{x^2 - 2}$

Diperoleh
$$g(x)=-rac{1}{x^2-2}$$
 Prosedur iterasinya adalah $x_{r+1}=-rac{1}{x_r^2-2}.$ Ambil terkaan awal $x_0=2$

Tabel iterasinya adalah

r	Xr	$ (X_{r+1})-X_r $
0	2	2,5
1	-0,5	1,071428571
2	0,571429	0,026132404
3	0,597561	0,011111062
4	0,608672	0,005006231
5	0,613678	0,002313247
6	0,615992	0,001081239
7	0,617073	0,000508086
8	0,617581	0,000239353
9	0,61782	0,000112889
10	0,617933	5,32724E-05
11	0,617986	2,51459E-05
12	0,618012	1,1871E-05
13	0,618023	5,60443E-06

Iterasi berhenti pada iterasi ke-13, karena $|(X_{r+1})-X_r|<\epsilon$ yaitu 5,60443E-06 < 0,00001. Jadi hampiran akar dari hasil iterasi tersebut adalah x=0,618023.

c)
$$x^3 - 2x + 1 = 0$$

 $\Leftrightarrow x^3 = 2x - 1$
 $\Leftrightarrow x = (2x - 1)^{\frac{1}{3}}$

Diperoleh $g(x)=(2x-1)^{\frac{1}{3}}$ Prosedur iterasinya adalah $x_{r+1}=(2x_r-1)^{\frac{1}{3}}$. Ambil terkaan awal $x_0=2$ Tabel iterasinya adalah

r	x_r	$ x_{r+1}-x_r $
0	2	0,55775
1	1,44225	0,207065
2	1,235185	0,098058
3	1,137127	0,052987
4	1,08414	0,030928
5	1,053211	0,018926
6	1,034285	0,011932
7	1,022354	0,007668
8	1,014686	0,00499
9	1,009696	0,003273
10	1,006423	0,002159
11	1,004264	0,001429
12	1,002834	0,000948
13	1,001886	0,00063
14	1,001256	0,000419
15	1,000836	0,000279
16	1,000557	0,000186
17	1,000371	0,000124
18	1,000248	8,25E-05
19	1,000165	5,5E-05
20	1,00011	3,67E-05
21	1,000073	2,44E-05
22	1,000049	1,63E-05

23	1,000033	1,09E-05
24	1,000022	7,24E-06

Iterasi berhenti pada iterasi ke-24, karena $|(X_{r+1})-X_r| < \epsilon$ yaitu 7,24E-06 < 0,00001. Jadi hampiran akar dari hasil iterasi tersebut adalah x=1,000022.

Berdasarkan 3 kemungkinan iterasi yang terbentuk, maka diperoleh akar hampiran dari persamaan $x^3 - 2x + 1 = 0$ dengan $\varepsilon = 0.00001$ dan terkaan nilai awal $x_0 = 2$ adalah x = 0.618023 dan x = 1.000022.

Eksistensi dan ketunggalan titik tetap

- Teorema 1 Jika ϕ kontinu pada [a,b] dan $\phi(x) \in [a,b]$ maka ϕ mempunyai titik tetap di dalam [a,b].
- Teorema 2

 Jika ϕ memenuhi kondisi seperti pada teorema 1 dan terdiferensial pada interval terbuka (a,b) dengan $\phi'x<1$ untuk setiap $x\in(a,b)$ maka titik tetapnya tunggal.

Kriteria Konvergensi

Diberikan prosedur iterasi $x_{r+1}=g(x_r)$. Misalkan x=s adalah solusi f(x)=0 sehingga f(s)=0 dan s=g(s). Selisih antara x_{r+1} dan s adalah $x_{r+1}-s=g(x_r)-s=\frac{g(x_r)-s}{(x_r-s)}(x_r-s)$ (*)

Terapkan teorema nilai rata-rata pada persamaan (*) sehingga diperoleh:

$$x_{r+1} - s = g'(t)(x_r - s)$$

yang dalam hal ini $x_{r+1} < t < s$. Misalkan galat pada iterasi ke-r dan iterasike-(r+1) adalah

$$\varepsilon_r = x_r - s$$
 dan $\varepsilon_{r+1} = x_{r+1} - s$

maka persamaan dapat ditulis menjadi

$$\varepsilon_{r+1} = g'(t)\varepsilon_r$$

atau dalam tanda mutlak

$$|\varepsilon_{r+1}| = |g'(t)||\varepsilon_r| \le K|\varepsilon_r|.$$

Misalkan x_0 dan x berada dalam selang sejauh 2h dari s, yaitu s-h < x < s+h. Jika iterasi konvergen di dalam selang tersebut, yaitu x_0 , x_1 , x_2 , x_3 , ... menuju s, maka galat setiap iterasi berkurang. Jadi, haruslah dipenuhi kondisi:

$$|\varepsilon_{r+1}| \leq K|\varepsilon_r| \leq K^2|\varepsilon_{r+1}| \leq K^3|\varepsilon_{r-2}| \leq \cdots \leq K^{r+1}|\varepsilon_0|.$$

Kondisi tersebut hanya berlaku jika $g'(x) \le K < 1$. Karena K < 1, maka $K^{r+1} \to 0$ untuk $r \to \infty$ disini $|x_{r+1} - s| \to 0$.

Teorema

Misalkan g(x) dan g'(x) di dalam selang [a, b] = [s-h, s+h] yang mengandung titik tetap s dan nilai awal x_0 dipilih dalam selang tersebut. Jika |g'(x)| < 1 untuk semua $x \in [a, b]$ maka iterasi $x_{r+1} = g(x_r)$ akan konvergen ke s. Pada kasus ini s disebut juga titik atraktif. Jika |g'(x)| > 1 untuk semua $x \in [a, b]$ maka iterasi $x_{r+1} = g(x_r)$ akan divergen dari s.

Sehingga dapat disimpulkan bahwa di dalam selang I = [s-h, s+h] dengan s titik tetap, maka:

- 1. Jika 0 < g'(x) < 1 untuk setiap $x \in I$, maka iterasikonvergen monoton,
- 2. jika -1 < g'(x) < 0 untuk setiap $x \in I$, maka iterasikonvergen berosilasi,
- 3. jika g'(x) > 1 untuk setiap $x \in I$, maka iterasi*divergen monoton*, dan
- 4. jika g'(x) < -1 untuk setiap $x \in I$, maka iterasi*divergen berosilasi*.

Hal tersebut ditunjukkan oleh gambar sebagai berikut

Proses iterasi konvergen untuk beberapa nilai awal x_0 dan proses iterasinya membentuk zigzag yang mendekat ke akar untuk0 < g'(x) < 1.

Proses iterasi konvergen untuk beberapa nilai awal x_0 dan proses iterasinya membentuk spiral yang mendekat ke akar untuk-1 < g'(x) < 0.

Konvergen berosilasi

Proses iterasi divergen untuk beberapa nilai awal x_0 dan proses iterasinya membentuk zigzag yang menjauh dari akar untukg'(x) > 1.

Proses iterasi divergen untuk beberapa nilai awal x_0 dan proses iterasinya membentuk spiral yang menjauh dari akar untukg'(x) < -1.

Analisis pencarian akar persamaan x^2 – 2x – 3 = 0 dengan bermacam-macam prosedur iterasi dan tebakan awal terkadang konvergen dan divergen.

Prosedur iterasi pertama: $x_{r+1} = \sqrt{2x_r + 3}$

$$g(x) = \sqrt{(2x+3)}$$

$$g'(x) = \frac{1}{\sqrt{(2x+3)}}$$

Terlihat bahwa |g'(x)| < 1 untuk x di sekitar titik tetap s = 3. Karena itu, pengambilan tebakan awal $x_0 = 4$ akan menghasilkan iterasi yang konvergen sebab

$$|g'(4)| = \left| \frac{1}{2\sqrt{(8+3)}} \right| = 0.1508 < 1.$$

Prosedur iterasi kedua: $x_{r+1} = \frac{3}{x_r - 2}$.

$$g(x) = \frac{3}{x-2}$$

$$g'(x) = -\frac{3}{(x-2)^2}$$

Terlihat bahwa |g'(x)| < 1 untuk x di sekitar titik tetap s = 3. Karena itu, pengambilan tebakan awal $x_0 = 4$ akan menghasilkan iterasi yang konvergen sebab $|g'(4)| = \left|\frac{-3}{(4-2)^2}\right| = 0.75 < 1$.

Prosedur iterasi ketiga $x_{r+1} = \frac{x_r^2 - 3}{2}$

$$g(x) = \frac{x^2 - 3}{2}$$

$$g'(x) = x$$

Terlihat bahwa |g'(x)| > 1 untuk x di sekitar titik tetap s = 3. Karena itu, pengambilan tebakan awal $x_0 = 4$ akan menghasilkan iterasi yang divergen sebab |g'(4)| = |4| = 4 > 1.

Contoh 3

Pada persamaan $x^3+6x-3=0$, tentukan selang sehingga prosedur iterasi $x_{r+1}=\frac{(-x_r^{\ 3}+3)}{6}\ konvergen$

Penyelesaian:

$$g(x) = \frac{(-x^3+3)}{6}$$

$$g'(x) = \frac{x^2}{2}$$

Syarat konvergen adalah |g'(x)| < 1

$$\Leftrightarrow \left| \frac{-x^2}{2} \right| < 1$$

Jadi,
$$\Leftrightarrow -1 < \frac{-x^2}{2} < 1$$

$$\Leftrightarrow 2 > x^2 > -2$$

$$\Leftrightarrow$$
 $-2 < x^2 < 2$

Urai satu per satu:

 x^2 -2 (tidak ada x yang memenuhi)

 x^2 < 2, dipenuhi oleh

$$\Leftrightarrow x^2 - 2 < 0$$

$$\Leftrightarrow$$
 $-\sqrt{2} < x < \sqrt{2}$

Jadi, prosedur iterasi $x_{r+1} = \frac{(-x^3 + 3)}{6}$ konvergen di dalam selang $-\sqrt{2} < x < \sqrt{2}$. Dapat dipilih x_0 dalam selang tersebut yang menjamin iterasi akan konvergen.

Contoh 4

Hitunglah akar $f(x) = e^x - 5x^2$ dengan metode iterasi titik tetap. Gunakan $\varepsilon =$ 0.00001. Tebakan awal akar $x_0 = 0.5$

Penyelesaian:

Salah satu prosedur iterasi yang dapat dibuat,

$$e^x - 5x^2 = 0$$

$$\Leftrightarrow e^x = 5x^2$$

$$\Leftrightarrow x = \sqrt{\frac{e^x}{5}}$$

$$\Leftrightarrow x_{r+1} = \sqrt{\frac{e^{x_r}}{5}}$$

r	x_r	$ x_{r+1}-x_r $
0	0,500000	0,074234
1	0,574234	0,021714
2	0,595948	0,006506
3	0,602453	0,001963
4	0,604416	0,000593
5	0,605010	0,000180
6	0,605189	0,000054
7	0,605244	0,000016
8	0,605260	0,000005
9	0,605265	0,000001
10	0,605266	0,000001
11	0,605267	0,000000

Hampiran akar x = 0,605267.

Jadi, diperoleh akar persamaan dari $f(x)=e^x-5x^2$ dengan tebakan awal akar $x_0=0.5$ dan $\varepsilon=0.00001$ adalah x=0.605267.

Contoh 5

Carilah akar persamaan $x^3 - 3x - 20 = 0$ melalui beberapa prosedur berikut:

a.
$$x = (3x + 20)^{\frac{1}{3}}$$

b.
$$x = \frac{x^3 - 20}{3}$$

c.
$$x = \left(3 + \frac{20}{x}\right)^{\frac{1}{2}}$$

Penyelesaian:

a. Dalam hal ini $g(x)=(3x+20)^{\frac{1}{3}}$. Prosedur iterasinya adalah $x_{r+1}=(3x_r+20)^{\frac{1}{3}}$. Ambil terkaan awal $x_0=3$ dan $\epsilon=0,000001$.

r	x_r	$ x_{r+1} - x_r $
0	3,000000	0,072317
1	3,072317	0,007642
2	3,079959	0,000806
3	3,080765	0,000084

4	3,080849	0,000009
5	3,080858	0,000001
6	3,080859	0,000000

Hampiran akar x = 3,080859.

b. Dalam hal ini $g(x)=\frac{x^3-20}{3}$. Prosedur iterasinya adalah $x_{r+1}=\frac{x_r^3-20}{3}$. Ambil terkaan awal $x_0=3$ dan $\varepsilon=0,000001$.

Tabel iterasinya:

r	x_r	$ x_{r+1} - x_r $
0	3,000000	0,666667
1	2,333333	1,068347
2	3,401680	0,421840
3	2,979840	0,136531
4	3,116371	0,047541
5	3,068831	0,016156
6	3,084986	0,005537
7	3,079450	0,001892
8	3,081342	0,000647
9	3,080695	0,000221
10	3,080916	0,000076
11	3,080840	0,000026
12	3,080866	0,000009
13	3,080857	0,000003
14	3,080860	0,000001
15	3,080859	0,000000

Hampiran akar x = 3,080859.

c. Dalam hal ini $g(x)=\left(3+\frac{20}{x}\right)^{\frac{1}{2}}$. Prosedur iterasinya adalah $x_{r+1}=\left(3+\frac{20}{x_r}\right)^{\frac{1}{2}}$. Ambil terkaan awal $x_0=3$ dan $\epsilon=0,000001$.

r	x_r	$ x_{r+1}-x_r $
0	3,000000	0,109126
1	3,109126	0,037860
2	3,071266	0,012883
3	3,084149	0,004413
4	3,079736	0,001508
5	3,081244	0,000516
6	3,080728	0,000176
7	3,080904	0,000060
8	3,080844	0,000021
9	3,080865	0,000007
10	3,080858	0,000002
11	3,080860	0,000001
12	3,080859	0,000000

Hampiran akar x = 3,080859.

Dari ketiga prosedur yang diberikan ternyata menghasilkan hampiran akar yang sama yaitu x = 3,080859. Hal ini menunjukkan bahwa akar dari persamaan $x^3 - 3x - 20 = 0$ adalah kembar dengan x = 3,080859.

A. Algoritma

Proses iterasi titik tetap:

- 1. Ubahlah f(x) = 0 ke dalam bentuk x = g(x).
- 2. Tentukan sebuah nilai awal x_0 , toleransi, dan jumlah iterasi maksimum.
- 3. Hitung $x_{r+1} = g(x_r)$.
- 4. Untuk nilai awal x_0 , kita dapat hitung berturut-turut x_1 , x_2 , di mana barisan x_1 , x_2 , konvergen pada suatu titik s. Limit dari titik s adalah suatu titik tetap dari g(x), yakni s = g(s).
- 5. Kondisi iterasi berhenti apabila $|x_{r+1}-x_r|<\varepsilon$ dengan ε telah ditetapkan sebelumnya.