Entropy Codings Stream codes

October 2018

Content

- Arithmetic coding
- Other approaches
 - ▶ LZW coding
 - ► Ex-Golomb
 - Run length coding

Stream code - Arithmetic code

- Arithmetic code defines a way to efficiently encode a sequence of symbols into binary string
- ► Each sequence of symbols \iff a number in unit interval [0,1) (tag value)

Given:

- ▶ Source $X = a_i | \forall i$,
- ▶ Probability (pdf) of each symbol: $Pr(X = a_i) = P(a_i) = p_i$
- ► Cdf of each symbol: $F_X(i) = \sum_{k=1}^i P(X=k) = \sum_{k=1}^i p_k$

Assign each symbols onto unit interval [0,1):

- ▶ Symbol *i* is mapped to $[F_X(i-1), F_X(i))$ (*)
- ▶ Denote $I(i) = [F_X(i-1), F_X(i))$

Arithmetic coding

Coding Algorithm: find tag value for a sequence

- 1. Start with interval I = [0, 1)
- 2. Map symbols on I according to (*)
- 3. Read a symbol x from source.
- 4. Let I = I(x). Repeat to step 1

Arithmetic coding - Interval contains tag value

$$interval = [l^{(k)}, u^{(k)})$$

```
\begin{split} &sequence && interval \\ &NULL: \left\{ \begin{array}{l} l^{(0)} &=& 0 \\ u^{(0)} &=& 1 \end{array} \right. \\ &a_i: \left\{ \begin{array}{l} l^{(1)} &=& F_X(i-1) \\ u^{(1)} &=& F_X(i) \end{array} \right. \\ &a_ia_j: \left\{ \begin{array}{l} l^{(2)} &=& F_X(i-1) + F_X(j-1)(F_X(i) - F_X(i-1)) \\ &=& l^{(1)} + F_X(j-1)(u^{(1)} - l^{(1)}) \\ u^{(2)} &=& F_X(i-1) + F_X(j)(F_X(i) - F_X(i-1)) \\ &=& l^{(1)} + F_X(j)(u^{(1)} - l^{(1)}) \end{array} \right. \end{split}
```

- Recursively identify intervals as receiving symbols
- ▶ The more symbols received, the narrower intervals become
- The mid-point of the final interval can be used as tag value for a sequence.

Arithmetic Coding - From tag value to Sequence

Decoding Algorithm I: find a sequence for a tag value

- 1. Start with interval I = [0, 1)
- 2. Map symbols on I according to (*)
- 3. Find an interval that the tag value lies in. Output corresponding symbol x of that interval.
- 4. Let I = I(x). Repeat to step 1

(#) Note: We should know the length of sequence in advance

Arithmetic Coding - From tag value to code word

Convert tag value (real number) into binary representation.

- ► How?
- We should truncate the binary string -> How long should the binary string is?

Convert decimal fractions to binary

0	0 - 1/4	00	0 - 1/8	000	
			1/8-1/4	001	
	1/4 - 1/2	01	1/4 - 3/8	010	
			3/8 - 1/2	011	
1	1/2 - 3/4	10	1/2 - 5/8	100	
			5/8 - 3/4	101	
	3/4 - 1	11	3/4 - 7/8	110	
			7/8 - 1	111	
	0	1/4 - 1/2	0 1/4 - 1/2 01 1/2 - 3/4 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Algorithm: find binary representation of a fraction

- 1. Test if the fraction is in lower half of upper half.
- 2. Emit "0" if lower half and "1" if upper half.
- 3. Rescale the half to [0,1)
- 4. Repeat step 1, until ...

Rescale upper half and lower half

$$x' = 2 \times x$$

$$x' = 2 \times (x - 0.5)$$

Arithmetic coding: Encoding with rescaling

Algorithm: Output binary string for a sequence of symbols

- 1. Let $I \leftarrow [0,1)$. Map symbols on I
- 2. Read a symbol (x) from sequence. Find the corresponding sub-interval s(x).
- 3. While $0.5 \notin s(x)$ do
 - ▶ If the sub-interval $s(x) \subset lowerhalf(I)$, emit "0". Let $I \leftarrow rescale \ lowerhalf(I)$)
 - ▶ Elself the sub-interval $s(x) \subset upperhalf(I)$, emit "1". Let $I \leftarrow rescale_upperhalf(I)$)
 - ▶ Else $I \leftarrow s(x)$
- 4. Repeat step 2, until the last symbol
- 5. At the last symbol, emit binary representation of a point in s(x)
- 6. End and output the whole bin string.

Encoding with rescaling: Example

```
Sequence "a_1a_3a_2a_1"; P(a_1) = 0.8 P(a_2) = 0.02 P(a_3) = 0.18
```

- **.**..
- **.**..

Arithmetic coding: Decoding with rescaling

Algorithm: Output sequence of symbols for a binary string

- 1. Let $I \leftarrow [0,1)$. Map symbols on I.
- 2. Convert bit string to decimal fraction v. Find the corresponding sub-interval $s(x):v\in s(x)$. Emit x
- 3. Shift left bit string (padding 0 to the right) and rescale s(x) until $s(x) \ni 0.5$
- 4. Let $I \leftarrow s(x)$.
- 5. Repeat step 2, until the bit string becomes all-zero
- 6. End and output the whole symbol sequence.

Decoding algorithm

Algorithm: Output sequence of symbols for a binary string

- 1. Let $I \leftarrow [0,1)$. Map symbols on I.
- 2. Let $J \leftarrow [0,1)$
- 3. Read bit from bitstream gradually and calculate J = intervalOf(readBits) until $J \in s(x)$ Emit x
- 4. Shift left bit string (padding 0 to the right) and rescale s(x) until $s(x) \ni 0.5$
- 5. Let $I \leftarrow s(x)$.
- 6. Repeat step 2, until the bit string becomes all-zero
- 7. End and output the whole symbol sequence.

Decoding with rescaling: Example

```
Bit string "11000110"; P(a_1) = 0.8 P(a_2) = 0.02 P(a_3) = 0.18
```

- **.**..
- **.**..

Arithmetic coding: Characteristics

AC can be encoded and decoded incrementally \rightarrow "stream code"

If we consider a source S=mX where $X=\{x_i|_i\}$, then

- ightharpoonup arithmetic coding AC is a prefix symbol code
- ► Code word length of *AC*:

$$H(mX) \le L(AC, mX) < H(mX) + 2$$

► Thus, bit length per symbol:

$$H(X) \le L(AC, X) = \frac{L(AC, mX)}{m} < H(X) + \frac{2}{m}$$

Dictionary-based compression - LZW

Encoding Algorithm: Produce bit stream for stream of ASCII string

- 1. Load ASCII table into dictionary dict. Let $w \leftarrow NULL$ // empty string
- 2. Read a character k
- 3. If $wk \in dict$, then $w \leftarrow wk$ Else
 - ightharpoonup dict.push(wk)
 - emit bit string (code) c where $c \leftarrow dict.getCode(w)$
 - ▶ Let $w \leftarrow k$
- 4. repeat step 2 until no more symbol to read

LZW - Example

Input string "AHAHA"

step	w	k	wk	output	dict
0					ASCIITab
1		Α	A		ASCIITab
2	A	Н	Α <i>Η</i>	<a>	$ASCIITab + <\!AH\!>$
3	H	Α	HA	<h></h>	+ <ah> + <ha></ha></ah>
4	A	Н	AH		+ < AH > + < HA >
5	AH	Α	AHA	<ah></ah>	+ < AH > + < HA > + < AHA >
6	A		A	<a>	

Resulting bit stream: "< A > < H > < AH > < A >"

- ▶ Length of bit stream : $4 \times l(entry)$, l(entry) > 8
- ▶ Typical length of entry in real implementation is 12

LZW - Decoding algorithm

Decoding Algorithm: Produce stream of ASCII symbols from input bit stream

- 1. Load ASCII table into dictionary dict.
- 2. Read in a code $\langle k \rangle$ (say 12 bit).
- 3. Emit $k \leftarrow dict.getString(\langle k \rangle)$
- 4. Let $w \leftarrow k$
- 5. Read in another code $\langle k \rangle$.
- 6. $k \leftarrow dict.getString(\langle k \rangle)$
- 7. dict.push(w+k[0])
- 8. Let $w \leftarrow k$
- 9. Repeat step 5 until no more code exists

Decoding LZW - Example

Input bit stream: "< A > < H > < AH > < A >"

step	w	k	output	wk	dict
0					ASCIITab
1		A	Α		ASCIITab
2	A	Н	Н	AH	$ASCIITab + \langle AH \rangle$
3	H	AH	AH	HA	$ + \langle AH \rangle + \langle HA \rangle$
4	AH	Α	Α	AHA	$ + \langle AH \rangle + \langle HA \rangle + \langle AHA \rangle$

Resulting ASCII stream: "AHAHA"

Ex-Golomb code

Input: Integer *x*

Output: Binary string code(x)

Algorithm:

$$code(x) = 0\{length(binary(x+1)) - 1\} \oplus binary(x+1)$$

Examples:

Χ	binary(x+1)	code(x)
0	1	1
1	10	010
2	11	011
3	100	00100
23	11000	000011000

Can you prove that Ex-Golomb is prefix code?

Run length Encoding

- ▶ There exists a run of symbols sometime
- ► Replace a run of symbols with a pair (symbol, count)
- ▶ We can easily design a way to encode a pair into binary form

Example: Coding a grayscale image

