Analyse III

September 28, 2015

Contents

1 Chapitre 2

1

1 Chapitre 2

Intégrales curvilignes

• Def Courbes

 $\Gamma\subset\mathbb{R}^d$ est une courbe simple si $\exists I\subset\mathbb{R}$ (interval) $\gamma:I\to\mathbb{R}^d$: continu. tel que

- 1. $\gamma(I) = \tau$ (courbe)
- 2. $\gamma * \text{Chapitre } 2$

Intégrales curvilignes

• Def Courbes

 $\Gamma\subset\mathbb{R}^d$ est une courbe simple si $\exists I\subset\mathbb{R}$ (interval) $\gamma:I\to\mathbb{R}^d$: continu. tel que

- 1. $\gamma(I) = \tau$ (courbe)
- 2. $\gamma(t_1) \neq \gamma(t_2) \ \forall t_1, t_2 \in I \ (\text{simple})$

 γ : une paramétrisation.

• Ex. 1:

 $\Gamma = \{x \in \mathbb{R}^2 : |x| = 1\} \text{ dessin cercle } \gamma : [0, 2\pi] \to \mathbb{R}^2 \ \gamma(\theta) = (\cos \theta, \sin \theta)$

• Ex. 2 : (helix)

dessin helix $\gamma \mathbb{R} \to \mathbb{R}^3 \ \gamma(t) = (\cos t, \sin t, t)$

• Ex. 3:

 $\mathbb{R} \to \mathbb{R}^2 \ \gamma(t) = (t^3, t^2) \text{ dessin}$

• Ex. 4:

 $\gamma: \mathbb{R} \to \mathbb{R}^2 \ \gamma(t) = (t, |t|)$ dessing

• Ex. 5:

 \mathbb{R}^2 dessin courbe pas simple

- Def 2 : τ : courbe simple est dite fermée si $\gamma(a)=\gamma(b)$ (I=[a,b])
 - Ex. 1 : fermé $\gamma(0)=\gamma(2\pi)=(1,0)$ image patate.
 - Ex. 2,3,4: non fermé.
- Def 3: Γ : courbe est régulière si $\exists \, [a,b]\,, \gamma: \gamma\cdot [a,b] \to \mathbb{R}^d$ tel que

$$- \gamma \in C^1\left([a,b]: \mathbb{R}^2\right)$$

$$-\gamma'(t) \neq 0 \in \mathbb{R}^d ((\gamma'_1(t), ..., \gamma'_d(t)) \neq (0, ..., 0))$$

- Ex.1 : régulière $\gamma'(t) = (-\sin t, \cos t) \neq (0,0)$
- Ex.3 : $\gamma'(t) = (3t^2, 2t)$ et $\gamma'(0) = (0, 0)$: Γ : n'est pas régulière.
- Ex.4 : γ n'est pas diff. en t=0. Donc Γ n'est pas régulière.

Remarque:

• Γ : régulière. La ligne tangente en $\gamma(t_0)$.

(L) :
$$\gamma(t_0) + \gamma'(t_0)(t - t_0)$$

• Γ : courbe $\subset \mathbb{R}^d$

$$f:\Gamma\to\mathbb{R}$$
: continue.

$$\underline{\mathrm{Def}}: \int_{T} f := \int_{a}^{b} f(\gamma(t)) ||\gamma'(t)|| dt$$

$$\gamma: [a, b] \to \mathbb{R}^{d}: \text{ une paramétrisation de } \Gamma.$$

La longueur de Γ : $\int\limits_{\Gamma}1=\int\limits_{a}^{b}||\gamma'(t)||dt$

• Ex.1 :
$$\int_{\Gamma} f$$
 avec $f = 1$

$$= \int_{0}^{2\pi} ||\gamma'(t)|| dt = \int_{0}^{2\pi} 1 dt = 2\pi$$

• Ex. :

$$\begin{split} &\int_{\Gamma}: \\ &f(\mathbf{x}, \mathbf{y}) = \sqrt{x^2 + 4y^2} \\ &\Gamma = \{(x, y) \in \mathbf{R}^2; \, 2\mathbf{y} = \mathbf{x}^2; \, \mathbf{x} \in [0, 1] \\ &\gamma: [0, 1] \to \mathbf{R}^2 \\ &\mathbf{t} \to (\mathbf{t}, \mathbf{t}^2 \frac{1}{2J} \Gamma \ \mathbf{f} \ \& = \int_0^1 \mathbf{f}(\gamma(\mathbf{t})) \ || \ \gamma'(\mathbf{t}) || \ \mathrm{d} \mathbf{t} \\ &\&= \int_0^1 \sqrt{\{t^2 + 4 \ \mathbf{t}^4 \frac{1}{4\}\sqrt{1 + t^2} dt} \& = \int_0^1 \mathbf{t} \ (1 + \mathbf{t}^2) \ \mathrm{d} \mathbf{t} = \mathbf{t}^2 \frac{1}{2 + \frac{t^4}{4} \Big|_0^1} = 3_{\frac{7}{4}} \end{split}$$

image courbe

$$\int_{\Gamma} \simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$
$$\gamma(t_{i}) \in \Gamma_{i}$$
$$\simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$

$$\begin{split} &\Gamma_i = \gamma\left([t_i,t_{i+1}]\right): \ \gamma \ \text{une paramétrisation} \ [a,b] \to \mathbb{R}^d \\ &\operatorname{Donc} \int\limits_{\Gamma} \simeq \sum ||\gamma(t_i)'||(t_{i+1}-t_i)f(\gamma(t_i)) \simeq \int\limits_a^b ||\gamma'(t)||f(\gamma(t))dt(\mathbf{t}_1) \neq \gamma(\mathbf{t}_2)\$ \\ &\forall t_1,t_2 \in I \ \text{(simple)} \ \gamma: \ \text{une paramétrisation}. \end{split}$$

• Ex. 1:

 $\Gamma = \{x \in \mathbb{R}^2 : |x| = 1\}$ dessin cercle $\gamma : [0, 2\pi] \to \mathbb{R}^2 \ \gamma(\theta) = (\cos \theta, \sin \theta)$

• Ex. 2: (helix)

dessin helix $\gamma \mathbb{R} \to \mathbb{R}^3 \ \gamma(t) = (\cos t, \sin t, t)$

• Ex. 3:

 $\mathbb{R} \to \mathbb{R}^2 \ \gamma(t) = (t^3, t^2) \text{ dessin}$

• Ex. 4:

 $\gamma: \mathbb{R} \to \mathbb{R}^2 \ \gamma(t) = (t, |t|) \text{ dessing}$

• Ex. 5:

 \mathbb{R}^2 dessin courbe pas simple

- Def 2 : τ : courbe simple est dite fermée si $\gamma(a) = \gamma(b)$ (I = [a, b])
 - Ex. 1 : fermé $\gamma(0) = \gamma(2\pi) = (1,0)$ image patate.
 - Ex. 2,3,4: non fermé.
- Def 3 : Γ : courbe est régulière si $\exists [a,b], \gamma : \gamma \cdot [a,b] \to \mathbb{R}^d$ tel que
 - $-\gamma \in C^1([a,b]:\mathbb{R}^2)$
 - $-\gamma'(t) \neq 0 \in \mathbb{R}^d ((\gamma'_1(t), ..., \gamma'_d(t)) \neq (0, ..., 0))$
- Ex.1 : régulière $\gamma'(t) = (-\sin t, \cos t) \neq (0,0)$
- Ex.2 : régulière $\gamma'(y) = (-\sin t, \cos t, 1) \neq (0, 0, 0)$
- Ex.3 : $\gamma'(t) = (3t^2, 2t)$ et $\gamma'(0) = (0, 0)$: Γ : n'est pas régulière.
- Ex.4 : γ n'est pas diff. en t=0. Donc Γ n'est pas régulière.

Remarque:

• Γ : régulière. La ligne tangente en $\gamma(t_0)$.

(L) :
$$\gamma(t_0) + \gamma'(t_0)(t - t_0)$$

• Γ : courbe $\subset \mathbb{R}^d$

 $f:\Gamma\to\mathbb{R}$: continue.

La longueur de Γ : $\int_{\Gamma} 1 = \int_{a}^{b} ||\gamma'(t)|| dt$

• Ex.1 : $\int_{\Gamma} f$ avec f = 1

$$= \int_{0}^{2\pi} ||\gamma'(t)|| dt = \int_{0}^{2\pi} 1 dt = 2\pi$$

• Ex. :

$$\begin{split} &\int_{\Gamma}: \\ &f(\mathbf{x},\mathbf{y}) = \sqrt{x^2 + 4y^2} \\ &\Gamma = \{(x,y) \in \mathbf{R}^2; \, 2\mathbf{y} = \mathbf{x}^2; \, \mathbf{x} \in [0,1] \\ &\gamma: [0,1] \to \mathbf{R}^2 \\ &\mathbf{t} \to (\mathbf{t},\mathbf{t}^2 \frac{1}{2J}\Gamma \ \mathbf{f} \ \& = \int_0^1 \mathbf{f}(\gamma(\mathbf{t})) \ || \ \gamma'(\mathbf{t})|| \ \mathrm{d}\mathbf{t} \\ &\&= \int_0^1 \sqrt{\{t^2 + 4 \ \mathbf{t}^4 \frac{1}{4\}\sqrt{1 + t^2} dt \& = \int_0^1 \mathbf{t} \ (1 + \mathbf{t}^2) \ \mathrm{d}\mathbf{t} = \mathbf{t}^2 \frac{1}{2 + \frac{t^4}{4} \Big|_0^1} = 3_{\overline{4}} \end{split}$$

image courbe

$$\int_{\Gamma} \simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$
$$\gamma(t_{i}) \in \Gamma_{i}$$
$$\simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$

$$\Gamma_i = \gamma([t_i, t_{i+1}]): \gamma$$
 une paramétrisation $[a, b] \to \mathbb{R}^d$
Donc $\int_{\Gamma} \simeq \sum ||\gamma(t_i)'||(t_{i+1} - t_i)f(\gamma(t_i)) \simeq \int_a^b ||\gamma'(t)||f(\gamma(t))dt$