Probabilistic reconciliation via conditioning

Giorgio Corani (giorgio.corani@idsia.ch)

IDSIA, Switzerland

Research group

Dario Azzimonti, Nicolò Rubattu e Lorenzo Zambon

- Probabilistic forecasting and reconciliation.
- Bayesian data analysis, Bayesian networks, Gaussian Processes.

SUPSI (Lugano, Switzerland)

■ We are open to collaboration, exchange of students, visiting.

Outline

- Gaussian variables
 - analytical reconciliation
 - relation with Kalman Filter and minT
 - properties of reconciled mean and variance
- Count variables
 - reconciliation via virtual evidence
 - properties of reconciled mean and variance
 - sampling
- Software
- Open problems

Notation

 \mathbf{B}_{t+h} : actual values of bottom time series at time t+h

 \mathbf{U}_{t+h} : actual values of upper time series at time t+h

 \mathbf{Y}_{t+h} : actual values of all time series at time t+h

Summing matrix $\mathbf S$

$$\mathbf{Y}_{t+h} = \mathbf{SB}_{t+h}$$

$$\mathbf{S} = \left[\begin{array}{cc} & A \\ & I \end{array} \right]$$

Forecast notation

- $\hat{\mathbf{b}}_{t+h}, \hat{\mathbf{u}}_{t+h}$: base point forecasts for bottom and upper ts
- $\widehat{\Sigma}_b, \widehat{\Sigma}_u$: covariance matrices (1-step ahead) of the residuals of the base forecasts for bottom and upper ts
- $oldsymbol{\widetilde{\Sigma}}_b$: reconciled covariance matrixes for bottom time series.

 k_h

The covariance matrix of the base forecast for time t+h are assumed to be $k_h\widehat{\Sigma}_b$ and $k_h\widehat{\Sigma}_u$.

Gaussian base forecasts

- We start from a Gaussian predictive distribution on each time series.
- We then assume a jointly Gaussian predictive distribution over the bottom time series:

$$\widehat{p}(\mathbf{B}_{t+h}) = N\left(\widehat{\mathbf{b}}_{t+h}, k_h \widehat{\pmb{\Sigma}}_b\right)$$

Probabilistic bottom-up

■ We get the joint density as:

$$p_{BU}(\mathbf{Y}_{t+h}) = p_{BU}(\mathbf{S}\mathbf{B}_{t+h}) = N\left(\mathbf{S}\hat{\mathbf{b}}_{t+h}, k_h\mathbf{S}\widehat{\boldsymbol{\Sigma}}_b\mathbf{S}'\right).$$

Conditioning on the base forecast of the upper variables

We model the point forecasts of the upper time series as noisy observations of sums of the bottom time series:

$$\widehat{\mathbf{U}}_{t+h} \sim N\left(A\mathbf{B}_{t+h}, k_h \widehat{\pmb{\Sigma}}_u\right)$$

 $\widehat{\mathbf{U}}_{t+h}$ denotes the random variable, while $\widehat{\mathbf{u}}_{t+h}$ denotes its specific value.

Conditioning to obtain the reconciled density of the bottom time series

$$\tilde{p}(\mathbf{B}_{t+h}) = p(\mathbf{B}_{t+h} \mid \hat{\mathbf{u}}_{t+h}) \propto \hat{p}(\mathbf{B}_{t+h}) \hat{p} \left(\hat{\mathbf{u}}_{t+h} \mid \mathbf{B}_{t+h} \right)$$

- The conditioning is solved using the linear-Gaussian model, obtaining the normal reconciled density $\tilde{p}(\mathbf{B}_{t+h})$ (Corani et al, ECML 2020).
- We get the reconciled joint $\tilde{p}(\mathbf{Y}_{t+h})$ by "pre-multiplying" $\tilde{p}(\mathbf{B}_{t+h})$ by $\mathbf{S}.$

Relation with the update step of the Kalman filter

Reconciliation requires the same type of conditioning of the state-update of the Kalman filter, which is also solved by the linear-Gaussian model.

$$\left\{ \begin{array}{ll} \mathbf{B}_{t+h} & \sim N(\hat{b}, k_h \widehat{\boldsymbol{\Sigma}}_b) & \text{prior on the state vector} \\ \\ \widehat{\mathbf{U}}_{t+h} & \sim N(\mathbf{A}\mathbf{B}_{t+h}, k_h \widehat{\boldsymbol{\Sigma}}_u) & \text{observation equation} \end{array} \right.$$

Reconciled mean and variance (Corani et al., 2020)

$$\mathbf{G} = \left(\widehat{oldsymbol{\Sigma}}_b \mathbf{A}^T
ight) \left(\mathbf{A}\widehat{oldsymbol{\Sigma}}_b \mathbf{A}^T + \widehat{oldsymbol{\Sigma}}_u + \widehat{oldsymbol{\Sigma}}_b \mathbf{A}^T
ight)^{-1}$$

$$\tilde{\mathbf{b}}_{t+h} = \hat{\mathbf{b}}_{t+h} + \mathbf{G}(\underbrace{\hat{\mathbf{u}}_{t+h} - \mathbf{A}\hat{\mathbf{b}}_{t+h}}_{\text{incoherence}})$$

$$\widetilde{\boldsymbol{\Sigma}}_b = \left(\widehat{\boldsymbol{\Sigma}}_b - \mathbf{G}(\mathbf{A}\widehat{\boldsymbol{\Sigma}}_b)\right) k_h$$

- Equivalent to minT with a block-diagonal covariance matrix.
- We obtain the same reconciled mean and variance of minT by adding the covariance $\text{Cov}(\mathbf{B}_{t+1}, \widehat{\mathbf{U}}_{t+h})$, which adds some terms in the above equations.

Reconciled upper mean in 1-level hierarchies

Assuming no correlation between bottom and upper forecasting errors, \tilde{u} is the combination of \hat{u} and $(\hat{b}_1+\hat{b}_2)$ (Corani et al., 2020; Hollyman et al., 2022):

$$\tilde{u} = \underbrace{\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 + \sigma_2^2 + \sigma_u^2}}_{w} \hat{\mathbf{u}} + \underbrace{\frac{\sigma_u^2}{\sigma_1^2 + \sigma_2^2 + \sigma_u^2}}_{1 - w} \mathbf{A} \hat{\mathbf{b}},$$

where w depends on the variances of the base forecasts.

Reconciled variance

$$\widetilde{\boldsymbol{\Sigma}}_b = k_h \left(\widehat{\boldsymbol{\Sigma}}_b - \mathbf{G}(\mathbf{A}\widehat{\boldsymbol{\Sigma}}_b)\right)$$

- The variance of each variable decreases after reconciliation: see Zambon et al., (2023); Wickramasuriya et. al. (2022).
- $\blacksquare k_h$ is unknown!

The k_h problem

- Heuristic choices for k_h (Corani et al, ECML20):
 - $k_h = 1$
 - $\ \ \blacksquare \ k_h=h$

Open problem

How to better estimate $\widehat{\pmb{\Sigma}}_b, \widehat{\pmb{\Sigma}}_u$ for h-steps ahead forecasts?

Reconciling count variables

Count variables

- A count variable takes non-negative integer values $\{0, 1, 2, 3, ...\}$.
- We have "vectors" of counts $\mathbf{y} \in \mathbb{N}^n$, $\mathbf{b} \in \mathbb{N}^{n_b}$ and $\mathbf{u} \in \mathbb{N}^{n_u}$:
 - n: number of total time series
 - \blacksquare n_b : number of bottom time series
 - \blacksquare n_u : number of upper time series
- The set of coherent vectors in \mathbb{N}^n is:

$$\mathbf{y} \in \mathbb{N}^n : \exists \mathbf{b} \in \mathbb{N}^{n_b} \text{ such that } \mathbf{y} = \mathbf{Sb}.$$

Notation for probability mass functions

- \hat{p} : pmf of base forecasts
- lacksquare p_{BU} : pmf of the probabilistic bottom-up
- \blacksquare \tilde{p} : reconciled pmf
- In the following for simplicity we drop the time subscript.

Independence assumptions

Dealing with counts we assume independence of the base forecasts:

- $\blacksquare \ \hat{p}(\mathbf{b}) = \prod_i^{n_b} \hat{p}_i(b_i)$
- $\blacksquare \ \hat{p}(\mathbf{y}) = \hat{p}(\mathbf{b})\hat{p}(\mathbf{u}) = \prod_i^{n_b} \hat{p}_i(b_i) \prod_j^{n_u} \hat{p}_j(u_j)$

Open problem

Model correlations between base forecasts of count variables.

How to obtain a predictive joint from predictive marginals?

Probabilistic bottom-up

- The pmf $p_{BU}(\mathbf{y})$ uses $\hat{p}(\mathbf{b})$ as the only source of information.
- Consider the bottom vector \mathbf{b}^* , with $\mathbf{Ab}^* = u^*$

$$p_{BU}(\mathbf{y}) = p(\mathbf{u}, \mathbf{b}^*) = \begin{cases} \hat{p}(\mathbf{b}) & \text{if } \mathbf{u} = \mathbf{u}^* \\ 0 & \text{otherwise} \end{cases}.$$

See also Olivares et al., IJF 2023.

Probability of coherence of the base forecasts

Example

- \blacksquare B_1 and B_2 take values in {0, 1}
- \blacksquare U takes values in $\{0, 1, 2\}$.

Probability of coherence, p_c

Assuming independence:

$$\begin{split} &+ \hat{p}_{B1}(B_1=0) \cdot \hat{p}_{B2}(B_2=1) \cdot \hat{p}_{U}(U=1) \\ &+ \hat{p}_{B1}(B_1=1) \cdot \hat{p}_{B2}(B_2=0) \cdot \hat{p}_{U}(U=1) \\ &+ \hat{p}_{B1}(B_1=1) \cdot \hat{p}_{B2}(B_2=1) \cdot \hat{p}(U=2) \end{split}$$

 $p_c = \hat{p}_{R1}(B_1 = 0) \cdot \hat{p}_{R2}(B_2 = 0) \cdot \hat{p}_U(U = 0)$

In general:

$$p_c = \sum_{\mathbf{a}} \ \hat{p}(\mathbf{b}) \ \mathbb{1}_{\mathbf{A}\mathbf{b} = \mathbf{u}} \ \hat{p}(\mathbf{u})$$

Conditioning on the base forecasts of the upper time series (Corani et al., 2023).

■ We use virtual evidence (Pearl, 2009) as a counterpart of the linear-Gaussian model for discrete variables .

Conditioning on the base forecasts of the upper time series (Corani et al., 2023).

■ Given a 1-level hierarchy, the vector \mathbf{b}^* and $u^* = \mathbf{A}\mathbf{b}^*$:

$$\begin{split} \tilde{p}(\mathbf{b}^*) &\propto \sum_{u} p_{BU}(u, \mathbf{b}^*) \;\; \hat{p}(u) \\ \\ &= \;\; \hat{p}(\mathbf{b}^*) \;\; \mathbbm{1}_{\mathbf{A}\mathbf{b}=u} \;\; \hat{p}(u) \\ \\ &= \;\; \hat{p}(\mathbf{b}^*) \;\; \hat{p}(u^*) \end{split}$$

 \blacksquare The normalizing constant is $p_c.$ In general the updating has to be computed via sampling.

Effect of reconciliation on the relative probabilities

Consider two bottom vectors \mathbf{b}^* and \mathbf{b}^{**} :

$$\frac{\tilde{p}(\mathbf{b}^{**})}{\tilde{p}(\mathbf{b}^{*})} = \frac{\hat{p}(\mathbf{b}^{**})}{\hat{p}(\mathbf{b}^{*})} \cdot \frac{\hat{p}(u^{**})}{\hat{p}(u^{*})}$$

- $\overline{ \begin{array}{c} \tilde{p}(\mathbf{b}^{**})\\ \tilde{p}(\mathbf{b}^{*}) \end{array}} \text{ does not change if } \hat{p}(u) \text{ is uniform.}$
- $\label{eq:problem} \begin{array}{l} \blacksquare \ \, \frac{\tilde{p}(\mathbf{b}^{**})}{\tilde{p}(\mathbf{b}^{*})} \ \, \text{increases if} \ \, \hat{p}(u^{**}) > \hat{p}(u^{*}). \end{array}$
- If $\hat{p}(u^*) = 1$, reconciliation assigns positive probability only to the bottom vectors which sum up to u^* .

Multiple updates with virtual evidence

- An update is performed for each upper time series of the hierarchy.
 - The posterior (reconciled distribution) of the previous step becomes the prior (base forecast) of the next update.
 - The updates are commutative.
- We assume the conditional independence of the base forecast of the upper time series.

Properties of the reconciled distribution (Zambon et al, 2023)

- While in the Gaussian case reconciliation decreases the variance of every variable...
- .. in the count case reconciliation can decrease or increase the variance of the bottom variables.
- \blacksquare The increase of variance is more likely with a small p_c , i.e., when the base forecasts are largely incoherent.

Poisson example ($\lambda_{B1}=\lambda_{B2}=0.5$, $\lambda_{U}=6$)

Reconciled Mean of discrete variables

- The reconciled mean of the upper time series can be lower than both the bottom-up and the base mean (*concordant-shift*).
- This happens for instance if most base forecasts are skewed towards low counts.
- The reconciled means of all the time series are shifted towards zero.
- See Zambon et al. (2023) for a case study about the reconciliation of count time series related to rare events on financial markets.

Temporal reconciliation on carparts (Corani et al., 2023)

- Temporal hierarchy, whose bottom level is constituted by monthly time series.
- Base forecast in form of samples, generated by tscount.
- We fit a negative binomial on the samples of each base forecasts and then we reconcile using virtual evidence.
- As a term of comparison, we fit a normal on the samples of each base forecasts and then we reconcile using Gaussian reconciliation.

Temporal reconciliation on carparts (Corani et al., 2023)

The negbin reconciled pmf is asymmetric, with median 0.

It revises the mean downwards (*concordant shift*) and reduces the variance.

Gaussian reconciliation is a poor model for low-counts time series.

Sampling the reconciled distribution

- Outside the Gaussian case, we need sampling the reconciled distribution.
- Corani et al., (2023) use probabilistic programming.
 - reconciles any parametric base forecast with minimal coding.
 - can become time consuming
- Zambon et al (2022): bottom-up importance sampling (BUIS)
 - immediate
 - reconciles also base forecasts constituted by samples

The BayesRecon package

- Published on CRAN in July 2023.
- Analytical reconciliation of Gaussian base forecasts.
- BUIS reconciliation of non-Gaussian base forecasts.

https://CRAN.R-project.org/package=bayesRecon

Open problems

- reconciling hierarchies with mixed types of base forecasts
- \blacksquare estimating Σ_h in Gaussian reconciliation
- representing correlated base forecasts over counts
- cross-temporal probabilistic reconciliation

Papers on reconciliation via conditioning

- Corani, Azzimonti and Rubattu, "Probabilistic Reconciliation of Count Time Series." International Journal of Forecasting. 2023
- Zambon, Azzimonti and Corani, Efficient probabilistic reconciliation of forecasts for real-valued and count time series. Arxiv: 2210.02286v2 (2022)
- Zambon, Agosto, Giudici and Corani, Properties of the reconciled distributions for Gaussian and count forecasts. ArXiv:2303.15135 (2023)
- Corani, Azzimonti et al., "Probabilistic reconciliation of hierarchical forecast via Bayes' rule.", Proc. ECML 2020