Transition CPGE

Chapitre 0: Outils latex

1. *[1] Calculer 1+1 \bigcirc :

La solution est triviale, on a 1+1=2.

Chapitre 1 It's a me, yassine

1 Chapitre 1 : Rédaction, modes de raisonnements

1. (2) (Somme des cubes des n premiers cubes*) Montrer que :

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

On pose la propriété $P_n: \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

 P_1 est naturellement vérifiée. Supposons que P_n est vraie :

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$\iff \left(\sum_{k=1}^{n} k^{3}\right) + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n^{3}+3n^{2}+3n+1)$$

$$\iff \sum_{k=1}^{n+1} k^{3} = \frac{n^{2}(n^{2}+2n+1) + 4n^{3} + 12n^{2} + 12n + 4}{4}$$

$$\iff \sum_{k=1}^{n+1} k^{3} = \frac{n^{4} + 2n^{3} + n^{2} + 4n^{3}}{4}$$

$$\iff \sum_{k=1}^{n+1} k^{3} = \frac{n^{4} + 6n^{3} + 5n^{2} + 12n + 4}{4}$$

Or, d'après notre propriété, le numérateur vaudrait :

$$((n+1)(n+2))^2 = n^4 + 6n^3 + 5n^2 + 12n + 4$$

D'où la propriété P_n est vraie pour tout $n \in \mathbb{N}$.

2. (2) Montrer que, si $n \in \mathbb{N}$, il existe un entier impair λ_n tel que :

$$5^{2^n} = 1 + \lambda_n 2^{n+2}$$

Chapitre 1It's a me, yassine

Soit $P_n: \forall n, n \in \mathbb{N}, \exists \lambda_n: 5^{2^n} = 1 + \lambda_n 2^{n+2}$. Pour $P_1: \text{On a } 5^2 = 25 = 1 + (3) \cdot 2^3$.

D'où $\lambda_1 = 3$: L'initialisation est vérifiée.

Supposons P_n vraie:

$$5^{2^n} = 1 + \lambda_n 2^{n+2} \iff 5^2 \cdot (5^{2^n}) = 5^2 \cdot (1 + \lambda_n 2^{n+2})$$

$$\iff 5^{2^{n+1}} = 25 + 25\lambda_n 2^{n+2}$$