CSE 241 Class 3

Jeremy Buhler

August 31, 2015

Time to stop playing fast and loose with asymptotic notation. Previously, we said that " $\Theta(f(n))$ " means "roughly a constant times f(n)." How can we formalize this notion?

1 Definitions

Let f(n) and g(n) be two functions of n defined to be non-negative on positive integers (e.g., running times!).

• f(n) = O(g(n)) iff there exists a constant c and a value n_0 such that for every $n \ge n_0$,

$$f(n) \le c \cdot g(n)$$
.

[Draw a picture!]

• $f(n) = \Omega(g(n))$ iff there exists a constant c > 0 and a value n_0 such that for every $n \ge n_0$,

$$f(n) \ge c \cdot g(n)$$
.

[Draw a picture!]

• $f(n) = \Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$. [Draw a picture!] Let's think about what these definitions mean. Do they match the intuitive notion of asymptotic complexity we had before?

- Why allow an $n_0 > 1$? Think of fast and slow closest-pair. For small n, quadratic algo dominates, but eventually $n \log n$ algorithm wins. (Remember **asymptopia**.)
- Ignores constants. Does $\Omega(3n)$ makes sense? Yes, but it's the same as $\Omega(n)$, so we never write the "3".
- Ignores lower-order terms. Example:

$$n^2 + 7n + 5 = O(n^2).$$

Proof: Let c = 2 and $n_0 = 8$. Consider that

$$n^2 + 7n + 5 - 2n^2 = 0$$

for $n \approx 7.65$. Easy to check that derivative of difference is negative, so $n^2 + 7n + 5 \le 2n^2$ for $n \ge 8$. QED.

• Can you prove the Ω relation for the above pair of functions? [trivial: $n_0 = 1$, c = 1].

Let's do some more examples.

• Example:

$$n^2 = \Omega(n \log n).$$

Proof: Let c = 1. $n^2 > n \log n$ for $n_0 = 1$. Observe that continuous functions n^2 and $n \log n$ never cross for any n > 0, so n^2 must always be larger for every positive n. QED.

• Counterexample:

Does
$$6n^2 = \Omega(n^3)$$
?

Contradiction Proof: Suppose yes. Then for some c > 0 and all sufficiently large n,

$$6n^2 > cn^3.$$

but this implies that $6 \ge cn$, or equivalently $n \le 6/c$, which is surely false for any fixed c and sufficiently large n. QED.

Technically, the "=" is poor notation. O(g(n)) means "the set of all functions that are at most a constant times g(n) for all sufficiently large n," so we should say $f(n) \in O(g(n))$. Oh well.

2 Quick and Easy Comparisons of Growth

Is there an easy way to tell which of two functions f(n) and g(n) grows faster? Yes! Consider their ratio as n gets big. This procedure is practically mechanical, unlike direct proof that relies on various functional analysis tech.

• Suppose

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

Which function grows faster? [wait] (g(n), of course.)

- Does f(n) = O(g(n))? Recall definition of limit... for all large enough n,

$$\frac{f(n)}{g(n)} - 0 < 1.$$

Hence, for large enough $n, f(n) \leq g(n)$. QED.

- Can $f(n) = \Omega(g(n))$? If so, then $f(n) \ge cg(n)$ for some c and all sufficiently large n. But for all large enough n,

$$\frac{f(n)}{g(n)} - 0 < c,$$

which contradicts claim. Hence, f(n) is not $\Omega(g(n))$.

- When f(n) is O(g(n)) but not $\Omega(g(n))$, we write f(n) = o(g(n)).
- Suppose

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$$

Which function grows faster? [wait] (f(n), of course.)

- By similar arguments, can say that $f(n) = \Omega(g(n))$ but is never O(g(n)).
- When f(n) is $\Omega(g(n))$ but not O(g(n)), we write $f(n) = \omega(g(n))$.
- Suppose

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$

for constant c > 0. What can we say? [wait] (functions grow at same rate.) For all large enough n and any $\varepsilon > 0$,

$$\left| \frac{f(n)}{g(n)} - c \right| < \varepsilon,$$

which implies $(c - \varepsilon)g(n) \le f(n) \le (c + \varepsilon)g(n)$, or equivalently $f(n) = \Theta(g(n))$.

Let's do some examples:

• n^3 versus n^2 ? Well,

$$\frac{n^3}{n^2} = n,$$

so the limit is ∞ , and so n^3 grows faster.

• n versus $\log n$? Hmmm... what is

$$\lim_{n\to\infty}\frac{n}{\log n}\ ?$$

Recall l'Hôpital's Rule:

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 is ill-defined, compute $\lim_{n\to\infty} \frac{\frac{d}{dn}f(n)}{\frac{d}{dn}g(n)}$.

Now it's obvious:

$$\lim_{n \to \infty} \frac{n}{\log n} = \lim_{n \to \infty} \frac{c}{1/n}$$
$$= \lim_{n \to \infty} cn$$
$$= \infty.$$

so n grows faster than $\log n$.

• n^2 versus $3n^2 + 5n + 7$?

$$\lim_{n \to \infty} \frac{n^2}{3n^2 + 5n + 7} = \lim_{n \to \infty} \frac{2n}{6n + 5}$$
$$= \lim_{n \to \infty} \frac{2}{6}$$
$$= 1/3$$

so the functions grow at the same rate.

• n^4 versus 2^n ?

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{(\ln 2)2^n}$$

$$= \lim_{n \to \infty} \frac{12n^2}{(\ln 2)^2 2^n}$$

$$= \lim_{n \to \infty} \frac{24n}{(\ln 2)^3 2^n}$$

$$= \lim_{n \to \infty} \frac{24}{(\ln 2)^4 2^n}$$

$$= 0.$$

so 2^n grows faster than n^4 . Inductive proof along same lines shows that a^n grows faster than n^b for all positive constants a and b.

3 Relationships Among O, Ω, Θ

Some useful facts:

- 1. f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$. (Proof by definitions of O, Ω).
- 2. Above implies $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$.
- 3. More useful facts in your text: beginning of Chapter 3.

Here's something to ponder. Define f(n) as follows:

$$f(n) = \begin{cases} 1 & \text{if } n \text{ even} \\ n^2 & \text{if } n \text{ odd} \end{cases}$$

- Clearly, f(n) is not O(n).
- Does $f(n) = \Omega(n)$? No! No matter how large n gets, there is always some larger n such that f(n) < cn for any fixed c.
- Shows that given two functions f(n) and g(n), they may be asymptotically **incomparable**.
- Does this answer seem "right" if f(n) describes the running time of an algorithm? Some people use a different notion of Ω because of this phenomenon.

4 Importance for Running Time

Which algorithm is fastest? (Which running time is smallest, i.e. grows most slowly?) Assume worst-case times given as follows:

Algorithm	Time
A1	$\Theta(n^2)$
A2	$\Theta(n \log n)$
A3	$\Omega(n^2)$
A4	$\Theta(n^3)$
A5	$\Theta(n \log n)$

Clearly, A1, A3, A4 are slower than A2, A5. How do we choose between the last two?

- Constants of abstract reps, if sufficiently different.
- Otherwise, code up implementations and test!
- What if we added $A6 = O(n^2)$?
- Cannot tell could be either faster or slower than $\Theta(n \log n)$.