CS222 Algorithm Design and Analysis Homework 1

Zhou Litao 518030910407 F1803016

September 19, 2020, 2020 Fall Semester

Exercise 1 Prove that $\log(\log n) = o(n^k)$, where k is a positive constant. (ps. $\log n$ refers to $\log_2 n$.)

Proof.

$$\lim_{n \to \infty} \frac{\log(\log n)}{n^k} = \lim_{n \to \infty} \frac{\frac{1}{n \ln n \cdot \ln 2}}{k n^{k-1}} = \lim_{n \to \infty} \frac{1}{k n^k \ln n \ln 2} = 0 < \infty \tag{1}$$

Hence, by definition, $\log(\log n) = O(n^k)$.

Exercise 2 Prove that for any integer $n^2 - 1 > 3$, there is a prime p satisfying n! > p > n

Proof. Consider n! - 1.

Since n! is the product of 1, 2, ..., n, n! - 1 can't be divided by 1, 2, ..., n with a remainder of 0. If n! - 1 is a prime, then the result follows.

If n!-1 is not a prime, then we can always find a prime divider greater than n, i.e. there is a prime p satisfying n!>p>n

Exercise 3 Assume that there is a recurrence formula as follows:

$$D(x) = \begin{cases} 1, & \text{if } \lfloor x \rfloor \le 1\\ 3D(x/4) + x - 2, & \text{if } \lfloor x \rfloor > 1 \end{cases}$$

Please deduce the non-recursive expression of D(x) and point out its asymptotic complexity.

Solution. For $x \in (-\infty, 2)$, D(x) = 1

For
$$x \in [2,8)$$
, Let $g(k=0,x) = D(x) = 3D(x/4) + x - 2 = 3 + x - 2 = x + 1, ...$
For $x \in [2 \cdot 4^k, 2 \cdot 4^{k+1})$, we have $g(k,x) = 3D(x/4) + x - 2 = 3g(k-1,x) + x - 2$.
Note that $g(k+1) - g(k) = 3(g(k) = g(k-1))$, we have

$$g(k) = (g(k) - g(k-1)) + \dots + (g(1) - g(0)) + g(0)$$

$$= 3^{k}x + \dots + 3^{2}x + 3x + (x+1)$$

$$= (x+1) + \frac{3}{2}(3^{k} - 1)x = \frac{3^{k+1} - 1}{2}x + 1$$
(2)

$$D(x) = \frac{3^{k+1} - 1}{2} x + 1, \text{ for } k \in \left(\log_4 \frac{x}{2} - 1, \log_4 \frac{x}{2}\right]$$
$$= \frac{3^{\max\left(\lfloor \log_4 \frac{x}{2} \rfloor + 1, 0\right)} - 1}{2} x + 1$$
(3)

To analyze the asymtotic complexity, note that

$$D(x) = \frac{3^{\max(\lfloor \log_4 \frac{x}{2} \rfloor + 1, 0)} - 1}{2} x + 1 \le \frac{3^{\log_4 \frac{x}{2} + 2}}{2} x + 1$$

$$= \frac{9 \cdot \left(\frac{x}{2}\right)^{\log_4 3} - 1}{2} x + 1 \in O\left(x^{\log_4 3 + 1}\right)$$
(4)

Exercise 4 Use the minimal counterexample principle to prove that for any integer n > 10, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 3 + j_n \times 4$.

Proof. First, it is easy to check 6, 7, 8, 9, 10 can be written as some combination of 3 and 4.

Suppose otherwise, then there exists a minimal counterexample n' > 10 and n' can't be written as the combination of 3 and 4. Since gcd(3, 4) = 1, n' - 3 can't neither be written as the combination of 3 and 4.

If $n'-3 \le 10$, it contradicts to the previous checked fact. If n'-3 > 10, it contradicts to the assumption that n' is the minimal counterexample.

Exercise 5 Analyze the average time complexity of QuickSort in Alg. 1.

```
Algorithm 1: QuickSort
   Input: An array A[1, \dots, n]
   Output: A[1, \cdots, n] sorted nondecreasingly
 1 if n \le 1 then
 2 return;
 з end
 4 pivot \leftarrow A[n]; i \leftarrow 1;
 5 for j \leftarrow 1 to n-1 do
       if A[j] < pivot then
          swap A[i] and A[j];
          i \leftarrow i + 1;
 8
       end
10 end
11 swap A[i] and A[n];
12 if i > 1 then QuickSort(A[1, \dots, i-1]);
13 if i < n then QuickSort(A[i+1, \cdots, n]);
```

Solution. For input of the size N, the loops from line 5 to 10 takes O(N) time, and the recursion will take T(i-1) and T(N-i-1) time for elements smaller than the pivot and greater than the pivot, where T(n) is the time taken for n inputs.

For average case, we can take the average of every possible dividing case. The partition of N elements can be $\{0, N-1\}, \{1, N-2\}, \ldots, \{N-1, 0\}$. Hence we have

$$T(N) = 2\left(\frac{T(0) + T(1) + \dots + T(N-1)}{N}\right) + cN$$
 (5)

$$NT(N) = 2(T(0) + T(1) + \dots + T(N-1)) + cN^{2}$$
(6)

$$(N-1)T(N-1) = 2(T(0) + T(1) + \dots + T(N-2)) + c(N-1)^{2}$$
(7)

By subtracting Equation 7 from Equation 6 we have

$$NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN - c^{2}$$
(8)

Since constant c^2 can be ignored

$$NT(N) = (N+1)T(N-1) + 2cN$$

$$\frac{T(N)}{N+1} = \frac{T(N-1)}{N} + \frac{2c}{N+1}$$

$$\frac{T(N-1)}{N} = \frac{T(N-2)}{N-1} + \frac{2c}{N}$$
.....
$$\frac{T(2)}{3} = \frac{T(1)}{2} + \frac{2c}{3}$$
(9)

By taking the sum of Equation 9 together, we have

$$T(N) = (N+1) \left(\frac{T(1)}{2} + 2c \sum_{i=3}^{N+1} \frac{1}{i} \right)$$

$$\leq (N+1)2c \ln N \in O(N \log N)$$
(10)

Exercise 6 Rank the following functions by order of growth with explanations: that is, find an arrangement g_1, g_2, \ldots, g_k of the functions $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{k-1} = \Omega(g_k)$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. Use symbols "=" and " \prec " to order these functions appropriately. (ps: $\log n$ refers to $\log_2 n$.)

Solution.

$$\log \log n \prec \log (n^2 - n) \prec \log^2 n \prec 2^{\log n} = n = 2^{\ln n} \prec n^2 \prec n^3$$

$$\prec () \log n)^{\ln n} \prec 2^n = e^n \prec (n+1) \cdot 2^n \prec (n-1)! \prec n! \prec 2^{2^n}$$
(11)

3