CSI - 3105 Design & Analysis of Algorithms Course 17

Jean-Lou De Carufel

Fall 2019

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

Here, "short" means the length of the proof is "polynomial in the length of the input".

 If someone gives us such a short proof, then we can "easily" verify this proof.

Here, "easily" means "in polynomial time".

2 / 19

Complexity Class NP

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

3 / 19

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

NP stands for Nondeterministic Polynomial.

can use nondeterministic solution

Complexity Class NP

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

NP stands for Nondeterministic Polynomial.

The following problems are in NP:

HAM-CYCLE, TSP, SUBSET-SUM, CLIQUE

§6.2 A More Formal Approach Using Languages

Definition (Language of a Decision Problem)

The language of a decision problem is the set of all inputs (encoded as finite strings) for which the answer is YES.

§6.2 A More Formal Approach Using Languages

Definition (Language of a Decision Problem)

The language of a decision problem is the set of all inputs (encoded as finite strings) for which the answer is YES.

 $HAM - CYCLE = \{G \mid G \text{ is a graph that contains a Hamiltonian cycle}\}$

§6.2 A More Formal Approach Using Languages

Definition (Language of a Decision Problem)

The language of a decision problem is the set of all inputs (encoded as finite strings) for which the answer is YES.

$$TSP = \{(G,K) \mid G \text{ is a complete directed graph } G = (V,E),$$
 where each edge $(u,v) \in E$ has a weight $wt(u,v) > 0$, K is an integer and G contains a Hamiltonian cycle

 $HAM - CYCLE = \{G \mid G \text{ is a graph that contains a Hamiltonian cycle}\}$

with total weight at most K.

$$SUBSET - SUM = \{(S,t) \mid S \text{ is a set of integers, } t \text{ is an integer}$$
 and $\exists S' \subseteq S \text{ such that } \sum_{x \in S'} x = t.\}$

$$SUBSET - SUM = \{(S,t) \mid S \text{ is a set of integers, } t \text{ is an integer}$$
 and $\exists S' \subseteq S \text{ such that } \sum_{x \in S'} x = t.\}$

 $CLIQUE = \{(G, K) \mid G \text{ is an undirected graph, } K \text{ is an integer } \}$ and G contains a clique of size K.

Definition (Complexity Class P)

The language L (of a decision problem) is in P if the following is true. There exists an algorithm A and a constant $c \geq 1$ such that for any input x,

- If $x \in L$, then A(x) returns YES.
- If $x \notin L$, then A(x) returns NO.
- The running time of A(x) is $O(n^c)$, where n is the length of x.

Definition (Complexity Class P)

The language L (of a decision problem) is in P if the following is true. There exists an algorithm A and a constant $c \ge 1$ such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is $O(n^c)$, where n is the length of x.

Definition (Complexity Class NP)

The language L (of a decision problem) is in NP if the following is true. There exists an algorithm V and a constant $c \geq 1$ such that for any input Χ,

 $x \in L \iff$ there exists a certificate y such that

- $|y| = O(|x|^c),$
- $\cdot V(x, y)$ returns YES
- \cdot and the running time of V(x, y) is polynomial in the length of x.

Observe that V is a verification algorithm. It has 2 input parameters.

$$P \subseteq NP$$

Proof:

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P.

8 / 19

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

We have to show that L is in NP.

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

We have to show that L is in NP. That is, we have to show that L satisfies the definition of NP.

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

We have to show that L is in NP. That is, we have to show that L satisfies the definition of NP.

Therefore, we need a verification algorithm V. We define it in the following way:

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

We have to show that L is in NP. That is, we have to show that L satisfies the definition of NP.

Therefore, we need a verification algorithm V. We define it in the following way: V takes as input

- the input x for A
- and a certificate y

$$P \subseteq NP$$

PROOF: Let L be an arbitrary language (of a decision problem) in P. By definition, there is an algorithm A such that for any input x,

- $x \in L \iff A(x)$ returns YES.
- The running time of A(x) is polynomial in the length of x.

We have to show that L is in NP. That is, we have to show that L satisfies the definition of NP.

Therefore, we need a verification algorithm V. We define it in the following way: V takes as input

- the input x for A
- and a certificate y

V(x, y) does the following: it runs A(x) and that's it! (It ignores y.)

$$x \in L \iff$$

$$x \in L \iff A(x) \text{ returns YES}$$

$$x \in L \iff A(x) \text{ returns YES}$$

 $\iff V(x, \text{empty string } y) \text{ returns YES}$

$$x \in L \iff A(x) \text{ returns YES}$$

 $\iff V(x, \text{empty string } y) \text{ returns YES}$

\iff there exists a certificate y such that

- |y| is polynomial in the length of x,
- $\cdot V(x, y)$ returns YES
- \cdot and the running time of V(x,y) is polynomial in the length of x.

$$x \in L \iff A(x) \text{ returns YES}$$

 $\iff V(x, \text{empty string } y) \text{ returns YES}$

\iff there exists a certificate y such that

- |y| is polynomial in the length of x,
- $\cdot V(x, y)$ returns YES
- \cdot and the running time of V(x,y) is polynomial in the length of x.

Therefore *I* is in *NP*.

Big Question

Is P = NP or $P \neq NP$?

Most people believe that $P \neq NP$.

- L ∈ NP
- $L \notin NP$.

- L ∈ NP
- L ∉ NP.

Such an L must be "difficult".

- L ∈ NP
- L ∉ NP.

Such an L must be "difficult".

So we should look at the "most difficult" problems.

- L ∈ NP
- L ∉ NP.

Such an L must be "difficult".

So we should look at the "most difficult" problems.

But what does this mean?! How can we measure how difficult a problem is?!

§6.3 Reductions

Definition (Polynomial-Time Reduction)

Let L and L' be two languages. We say that L is polynomial-time reducible to L' if the following is true: There exists a function f which satisfies the following famous 3 properties:

- **1** f maps inputs for L to inputs for L'.
- 2 for every input x for L,

$$x \in L \iff f(x) \in L'$$

 \odot for every input x for L, f(x) can be computed in time that is polynomial in the length of x.

Notation: $L \leq_P L'$

What Does This Mean?

If we have a program A' that solves L', then we can use A' to solve L:

- Compute x' = f(x)
- Run A' on input x'.

Thus, we only have to write a program for the function f.

Example of a Reduction

```
CLIQUE = \{(G, K) \mid \text{graph } G \text{ has a clique with } K \text{ vertices.} \}
INDEP - SET = \{(G, K) \mid \text{graph } G \text{ has an independent set of } K \text{ vertices.} \}
Clique: each pair of vertices is connected by an edge.
Independent set: no pair of vertices is connected by an edge.
```

Example of a Reduction

 $CLIQUE = \{(G, K) \mid \text{graph } G \text{ has a clique with } K \text{ vertices.} \}$ $INDEP - SET = \{(G, K) \mid \text{graph } G \text{ has an independent set of } K \text{ vertices.} \}$

Clique: each pair of vertices is connected by an edge.

Independent set: no pair of vertices is connected by an edge.

 $\{2,3,4,5\}$: clique of size 4

 $\{1,4,6\}$: independent set of size 3

Example of a Reduction

 $CLIQUE = \{(G, K) \mid \text{graph } G \text{ has a clique with } K \text{ vertices.} \}$ $INDEP - SET = \{(G, K) \mid \text{graph } G \text{ has an independent set of } K \text{ vertices.} \}$

Clique: each pair of vertices is connected by an edge.

Independent set: no pair of vertices is connected by an edge.

 $\{2,3,4,5\}$: clique of size 4

 $\{1,4,6\}\colon$ independent set of size 3

We want to show that

 $INDEP - SET \leq_P CLIQUE$.

Is this a coincidence?

$$f(G,K)=\left(\overline{G},K\right)$$

$$f(G,K) = (\overline{G},K)$$

We have

• f maps inputs for INDEP-SET to inputs for CLIQUE.

$$f(G,K) = (\overline{G},K)$$

We have

Image: Inputs for INDEP-SET to inputs for CLIQUE.

Time to construct (\overline{G}, K) , when given (G, K), is O(|V| + |E|) which is polynomial in the size of (G, K).

$$f(G,K)=\left(\overline{G},K\right)$$

We have

- f maps inputs for INDEP-SET to inputs for CLIQUE.
- ② Is it true that G has an independent set of size K if and only if \overline{G} has a clique of size K?
- Time to construct (\overline{G}, K) , when given (G, K), is O(|V| + |E|) which is polynomial in the size of (G, K).

Let us prove Property 2.

Let us prove Property 2. We must prove that G has an independent set of size K if and only if \overline{G} has a clique of size K.

Let us prove Property 2. We must prove that G has an independent set of size K if and only if \overline{G} has a clique of size K.

Let $V' \subseteq V$ be an independent set of size K in G.

Let us prove Property 2. We must prove that G has an independent set of size K if and only if \overline{G} has a clique of size K.

Let $V' \subseteq V$ be an independent set of size K in G.

V' is an independent set in $G \iff$

Let us prove Property 2. We must prove that G has an independent set of size K if and only if \overline{G} has a clique of size K.

Let $V' \subseteq V$ be an independent set of size K in G.

V' is an independent set in $G \iff$ for all vertices $u, v \in V'$ with $u \neq v$, $\{u,v\}$ is not an edge of G.

Let us prove Property 2. We must prove that G has an independent set of size K if and only if \overline{G} has a clique of size K.

Let $V' \subseteq V$ be an independent set of size K in G.

V' is an independent set in $G \iff$ for all vertices $u,v \in V'$ with $u \neq v$, $\{u,v\}$ is not an edge of G. \iff for all vertices $u,v \in V'$ with $u \neq v$, $\{u,v\}$ is an edge of \overline{G} .

Let us prove Property 2. We must prove that G has an independent set of size K if and only if G has a clique of size K.

Let $V' \subseteq V$ be an independent set of size K in G.

V' is an independent set in $G \iff$ for all vertices $u, v \in V'$ with $u \neq v$, $\{u,v\}$ is not an edge of G.

 \iff for all vertices $u, v \in V'$ with $u \neq v$,

 $\{u,v\}$ is an edge of \overline{G} .

 $\iff V'$ is a clique in \overline{G}

If $L \leq_P L'$ and $L' \in P$, then $L \in P$.

Proof:

If $L \leq_P L'$ and $L' \in P$, then $L \in P$.

Intuition:

- $L' \in P$ means "L' is easy".
- $L \leq_P L'$ means "L is easier than L'".

So *L* is easy. So $L \in P$.

Proof:

If $L \leq_P L'$ and $L' \in P$, then $L \in P$.

Intuition:

- $L' \in P$ means "L' is easy".
- $L \leq_P L'$ means "L is easier than L'".

So *L* is easy. So $L \in P$.

PROOF: Since $L' \in P$, there is a polynomial-time algorithm A' such that for all inputs x' for L'

$$x' \in L' \iff A'(x')$$
 returns YES.

If $L \leq_P L'$ and $L' \in P$, then $L \in P$.

Intuition:

- $L' \in P$ means "L' is easy".
- $L <_P L'$ means "L is easier than L'".

So *L* is easy. So $L \in P$.

PROOF: Since $L' \in P$, there is a polynomial-time algorithm A' such that for all inputs x' for L'

$$x' \in L' \iff A'(x')$$
 returns YES.

Since $L \leq_P L'$, there is a function f satisfying the famous 3 conditions.

Consider the following algorithm:

- Compute f(x)
- Run A'(f(x))

- Compute f(x)
- Run A'(f(x))

We have

$$x \in L \iff$$

- Compute f(x)
- Run A'(f(x))

We have

$$x \in L \iff f(x) \in L'$$

by definition of reduction

- Compute f(x)
- Run A'(f(x))

We have

$$x \in L \iff f(x) \in L'$$

 $\iff A'(f(x)) \text{ returns YES}$

by definition of reduction by definition of A'

- Compute f(x)
- Run A'(f(x))

We have

$$x \in L \iff f(x) \in L'$$

 $\iff A'(f(x)) \text{ returns YES}$
 $\iff A(x) \text{ returns YES}$

by definition of reduction by definition of A'by definition of A

- Compute f(x)
- Run A'(f(x))

We have

$$x \in L \iff f(x) \in L'$$
 by definition of reduction $\iff A'(f(x))$ returns YES by definition of A' by definition of A'

The running time of A is polynomial in the length of x. So $L \in P$.

