Differential Equations Week 1

Garud Shah

February 5, 2025

Bold indicates corrections.

Problem 1

Let c > 0. Show that $\phi(x) = \frac{1}{c^2 - x^2}$ is a solution to the inital value problem $y' = 2xy^2$, $y(0) = \frac{1}{c^2}$ on the interval -c < x < c.

Solution — Plugging in, we get:

$$\left(\frac{1}{c^2 - x^2}\right)'$$
 start
$$= -2x \cdot - \left(\frac{1}{c^2 - x^2}\right)^2$$
 chain rule
$$= 2xy^2.$$
 finish \checkmark

Problem 2

Consider the nonlinear differential equation $\frac{dy}{dx} = 3y^{2/3}$ for all x.

- (a) Verify that all functions of the form $f(x) = (x c)^3$ are explicit solutions to the equation for all x.
- (b) Verify that the identically zero function f(x) = 0 also satisfies the equation for all x.
- (c) Verify that the function defined by $f(x) = \begin{cases} (x-c)^3, & x>c \\ 0, & x \le c \end{cases}$ satisfies the equation for all x, and that $\begin{cases} (x-c)^3, & x \le c \\ 0, & x>c \end{cases}$ does too.
- (d) Is there any point (a, b) in the plane such that there is no solution to the differential equation that passes through that point?
- (e) Is there any point (a, b) in the plane such that there is a unique solution to the differential equation that passes through that point?

Solution 2.1 (Problem 2a) — Plugging in:

$$f'(x)$$
 inital
$$= 3(x-c)^2$$
 chain rule
$$= 3f(x)^{2/3}$$
 manipulating \checkmark .

Solution 2.2 (Problem 2b) — Plugging in:

$$f'(x)$$
 inital
= 0 duh
= $3f(x)^{2/3}$ duh \checkmark .

Solution 2.3 (Problem 2c) — As this is an first order differential equation, we only need to look at the function and its derivative. The only place where we could have a problem is where we switch functions (as in (a) and (b) looking at a section of those functions and combining do the other parts for us) but notice that here the value and slope are both always zero and $0 = 3 \cdot 0^{2/3}$ \checkmark

Solution 2.4 (Problem 2d) — **No.** Take a point a, b. We will only consider solutions of the form $(x-c)^3$. Then we have: $b=(a-c)^3$, and $c=a-\sqrt[3]{b}$, thus there is at least one of this form. \checkmark

Solution 2.5 (Problem 2e) — **No.** The solution derived in problem 2d can be duplicated as each solution generates another solution with $y \ge 0$:

$$f(x) = \begin{cases} (x-c)^3, & x > c \\ 0, & x \le c \end{cases}$$

and one with $y \leq 0$

$$f(x) = \begin{cases} 0, & x \ge c \\ (x - c)^3, & x < c \end{cases}$$

as well from problem 2c. Thus, if y > 0, we can add the $(x - c)^3$ solution and the $y \ge 0$ solution above, and a similar thing for y < 0. At y = 0 we have $(x - x_0)^3$ and y = 0 so we are done \checkmark

Problem 3

Consider the differential equation

$$\frac{dy}{dx} = -\frac{1 + ye^{xy}}{1 + xe^{xy}},$$

- (a) Show that $x + y + e^{xy} = 0$ defines y as an implicit function of x on some interval containing (-1,0).
- (b) Given that any relation of the form $x + y + e^{xy} = C$ for any real number C satisfies the given differential equation, when and around which points will we not have a guarentee by the implicit function theorem not guarentee a solution for us?

Solution 3.1 (Problem 3a) — Notice that if we let $G(x,y) = x + y + e^{xy}$,

$$\frac{dy}{dx} = -\frac{\partial G/\partial x}{\partial G/\partial y}.$$

By the implicit function theorem, as $1 \neq 0$ and G(x, y) = 0, we are done with (a).

Solution 3.2 (Problem 3b) — Notice that with $G(x,y)=x+y+e^{xy}-C$, we'd only fail if $1+xe^{xy}=0$, by the implicit function theorem, or $xy=-\log x$, $y=-\frac{\log x}{x}$. This would mean $x-\frac{\log x}{x}+e^{-\log x}=x-\frac{\log x-1}{x}=C$, which is possible for all x>0 so we are done.

Problem 4

Consider $\frac{dy}{dx} = 3y^{2/3}$ again.

- (a) Where does the existence and uniqueness theorem guarentee a unique solution to this differential equation?
- (b) How do you reconsile this with the result of problem 2?

Solution 4.1 (Problem 4a) — Notice that $f = 3y^{2/3}$ is continuous everywhere, and $\frac{\partial f}{\partial y} = 2y^{-1/3}$ is continuous everywhere except y = 0. So we should be guarenteed unique solutions everywhere except y = 0.

Solution 4.2 (Problem 4b) — It only guarentees on a small interval around the point for $y \neq 0$, which IS true.

Problem 5 (Problem 5)

Use the conversion of the initial value problem $P = (x_0, y_0)$ and $\frac{dy}{dx} = f(x, y)$ into the integral operator

$$\begin{cases} \hat{O_{f,P}}[y(x)] = y_0 + \int_{x_0}^x f(t, y(t)) dt \\ \hat{O_{f,P}}[y(x)] = y(x). \end{cases}$$
 (5.1)

(a) Prove that if f(x,y) = y, and P = (0,1), then

$$\hat{O}_{f,P}^n[1] = \sum_{i=0}^n \frac{x^i}{i!}.$$

(b) If $f(x,y) = 3x - y^2$, and P = (0,0), find:

$$\hat{O}_{f,P}^{3}[0].$$

(c) If $f(x,y) = 3y^{2/3}$, and P =

Solution 5.1 (Problem 5a) — Note that we just need:

$$1 + \int_0^x \sum_{i=0}^n \frac{x^i}{i!} dt = \sum_{i=0}^{n+1} \frac{x^i}{i!},$$

which is the case termwise integrating.

Solution 5.2 (Problem 5b) — Notice that we need to find:

$$\int_0^x 3x - \left(\int_0^x 3x - \left(\int_0^x 3x dx\right)^2 dx\right)^2 dx.$$

Note that this is:

$$\int_0^x 3x - \left(\int_0^x 3x - \left(\int_0^x 3x dx\right)^2 dx\right)^2 dx$$

$$= \int_0^x 3x - \left(\int_0^x 3x - \left(\frac{3x^2}{2}\right)^2 dx\right)^2 dx$$

$$= \int_0^x 3x - \left(\int_0^x 3x - \frac{9x^4}{4} dx\right)^2 dx$$

$$= \int_0^x 3x - \left(\frac{3x^2}{2} - \frac{9x^5}{20} dx\right)^2 dx$$

$$= \int_0^x 3x - \left(\frac{9x^4}{4} - \frac{27x^7}{20} + \frac{81x^{10}}{400}\right) dx$$

$$= \frac{3x^2}{2} - \frac{9x^5}{20} + \frac{27x^8}{160} - \frac{81x^{11}}{4400}.$$