Bases de Données Relationnelles

TD 3 : Dépendances, Formes Normales SI3, SI4, MAM4

November 28, 2016

1 Vérification de dépendances

Soit r l'instance de la relation suivante:

1	. (A	В	$^{\mathrm{C}}$	D	$\mathbf{E})$			
		a_1	b_1	c_1	d_1	e_1			
		a_1	b_2	c_2	_	e_1			
		a_2	b_1	c_3	-	e_1			
		a_2	b_1	c_4	-	e_1			
_		a_3	b_2	c_5	_	e_1)			
Q	uelle	s son	t les o	déper	idanc	es véri	ées par r :		
1.	A -	$\rightarrow D$?							
		, les onne I		prem	iers t	uples o	t la même valeur a_1 en col	onne A mais des valeurs différen	ites en
2.	$AB \rightarrow D$?								
	oui, les deux seuls tuples (le troisième et le quatrième) ayant la même paire de valeurs en colonne A, D ont la même valeur sur la colonne D.								
3.	$C \to BDE$?								
	oui, car il n'y a pas deux tuples différents ayant même valeur en C								
	Il suffit de remarquer que toutes les valeurs de C sont différentes								
4.	E o A ?								
	non à cause par exemple du premier et du troisième tuple.								
5.	$A \to E$?								
	oui trivialement, une seule valeur étant présente en colonne E .								

2 Relation clé/dépendance fonctionnelle

Montrer qu'une instance r satisfait la dépendance $X \to Y$ si et seulement si X est une superclé de la relation $\Pi_{XY}(r)$.

X est une super clé de la relation $\Pi_{XY}(r)$ si et seulement si X détermine fonctionnellement tous les autres attributs de la relation $\Pi_{XY}(r)$, c'est à dire X détermine fonctionnellement Y

3 Algorithme de vérification d'une dépendance

Donner un algorithme pour vérifier qu'une instance r satisfait une dépendance fonctionnelle

Voici deux idées d'algorithmes "standards" :

- En O(nlogn) avec éventuellement une copie de la table (ou du moins des colonnes qui correspondent à X et Y)
 - 1. Trier la table (ou la copie) suivant X;
 - 2. Pour i=1 à n vérifier que si $X_i=X_{i+1}$ alors $Y_i=Y_{i+1}$
- En O(n) mais avec un coût mémoire un peu plus important (20-30%). L'idée consiste à utiliser un algorithme de "Hash-coding" :
 - Stocker toutes les paires (X, Y) en utilisant X pour calculer l'adresse;
 - En cas de collision verifier que les Y sont identiques (et peut etre aussi que les X sont identiques..)

Soit $X \to Y$, la dépendance fonctionnelle que l'on veut vérifier : select * from r , r as $copie_r$ where r.X= $copie_r$.X and r.Y<> $copie_R$.Y doit rendre un ensemble vide de tuple.

4 Axiomes

Montrer que les axiomes 3,4 et 5 se déduisent tous des axiomes 1,2 et 6 et de la propriété d'idempotence $XX \equiv X$.

- 1. Reflexivité : $\vdash X \to X$
- 2. Augmentation: $X \to Y \vdash XZ \to Y$
- 3. Additivité : $X \to Y, X \to Z \vdash X \to YZ$
- 4. Projectivité : $X \to YZ \vdash X \to Z$
- 5. Transitivité : $X \to Y, Y \to Z \vdash X \to Z$
- 6. Pseudo- transitivité : $X \to Y, YZ \to W \vdash XZ \to W$

Règle 3:

$$\frac{X \to Y(h_1) \qquad \overline{YZ \to YZ}}{XZ \to YZ} \stackrel{(1)}{(6)} \\
\frac{XX \to YZ}{X \to YZ} \text{ (IDEMPOTENCE)}$$

Règle 4:

$$\frac{\overline{Z \to Z}}{XZ \to Z} \stackrel{(1)}{(2)}$$

$$\frac{X \to YZ(h)}{YXZ \to Z} \stackrel{(2)}{(2)}$$

$$\frac{XX \to Z}{X \to Z} \text{ (IDEMPOTENCE)}$$

Règle 5:

$$\frac{X \to Y(h_1) \qquad \frac{Y \to Z(h_2)}{XY \to Z}}{\frac{XX \to Z}{X \to Z}} \tag{6}$$

5 Dependances Fonctionnelles

Soit un schéma de Bases de données, $DB = \{R_1, R_2, R_3\}$, où

- R_1 a comme attributs ABC
- R_2 a comme attributs ADE
- R_3 a comme attributs CE

et où l'ensemble des dépendances fonctionnelles est :

$$DF = \{AB \rightarrow C, C \rightarrow E, E \rightarrow C, C \rightarrow D, AB \rightarrow E\}$$

Trouver un ensemble DF' équivalent à DF, où chacune des dépendances de DF' a tous ses attributs dans une des relations R_i .

```
\begin{array}{l} DF' = \{AB \rightarrow C, C \rightarrow E, E \rightarrow C, E \rightarrow D\} \\ \text{En effet, } DF \Rightarrow DF' \text{ car } E \rightarrow C, C \rightarrow D \vdash E \rightarrow D \\ \text{D'autre part } DF' \Rightarrow DF \text{ car } C \rightarrow E, E \rightarrow D \vdash C \rightarrow D \text{ et } AB \rightarrow C, C \rightarrow E \vdash AB \rightarrow E \end{array}
```

6 Décomposition 3NF

On considère une relation R avec

- Attributs = {Vol, Ville_Départ, Ville_Arrivée, Heure_Départ, Heure_Arrivée, Durée, Type_Avion, Capacité_Première_Classe, Capacité_Tourisme Capacité_Totale, Repas}
- Clés :
 - Vol
 - Ville Départ, Ville Arrivée, Heure Départ
 - Ville_Départ, Ville_Arrivée, Heure_Arrivée
- Dépendances :
 - Type Avion → Capacité Première Classe, Capacité Tourisme, Capacité Totale
 - Heure_Départ, Durée \rightarrow Repas -
 - Heure_Arrivée, Durée \rightarrow Repas
 - Capacité_Première_Classe, Capacité_Tourisme \rightarrow Capacité_Totale
 - Capacité Première Classe, Capacité Totale → Capacité Tourisme

- Capacité_Tourisme, Capacité_Totale \rightarrow Capacité_Première_Classe

Trouver un décomposition en forme 3NF de cette relation .

- R₁={Vol, Ville_Départ, Ville_Arrivée, Heure_Départ, Heure_Arrivée, Durée, Type_Avion}
- $R_2 = \{ \text{Heure_Départ, Durée, Repas} \}$
- R₃={Type_Avion, Capacité_Première_Classe, Capacité_Tourisme}
- \bullet R_1 a pour clés les trois clés de la relation initiale et il n'y a aucune autre dépendance fonctionnelle
- $\bullet~R_2$ a pour clé (H_Départ, Durée) et il n'y a aucune autre dépendance fonctionnelle
- \bullet R_3 a pour clé Type_Avion et il n'y a aucune autre dépendance fonctionnelle
- R₄ a pour clés (Capacité_Première_Classe, Capacité_Tourisme), (Capacité_Première_Classe, Capacité_Totale), (Capacité_Tourisme, Capacité_Totale) et il n'y a pas d'autres dépendance fonctionnelle.