Problem Set 5 PHYS 23410

5 Three Dimensional Mathematical Tools

2/17: 1. Consider a three-dimensional box, such that the potential is given by

$$V(x, y, z) = V_1 \theta(|x| - a) + V_2 \theta(|y| - b) + V_3 \theta(|z| - c)$$
(5.1)

where the function θ is such that

$$\theta(u) = \begin{cases} 1 & u \ge 0 \\ 0 & u < 0 \end{cases} \tag{5.2}$$

This means that the potential is zero inside the box that extends from x = -a to x = a in the x-direction, y = -b to y = b in the y-direction, and z = -c to z = c in the z-direction and increases in steps otherwise.

- a) Analyze first the case wherein all of $V_1, V_2, V_3 \to \infty$. This is the infinite square well in three dimensions. What is the general solution for $\psi(x,y,z)$? Hint: Use the method of separation of variables and write $\psi(x,y,z) = X(x)Y(y)Z(z)$.
- b) Give an expression for the total energy of the system in terms of the energies associated with the propagation in the three space directions.
- c) What happens when one of the three V_i 's becomes finite? What would be the possible solutions in such a case?
- d) What happens when the three V_i 's become finite?
- 2. In the presence of a central force, the potential depends only on the radial distance and not on the direction, i.e.,

$$V(\vec{r}) = V(\sqrt{x^2 + y^2 + z^2}) \tag{5.3}$$

- a) Show that in such a potential, the momentum is not conserved (that is, its mean value is not independent of time), but the angular momentum $\vec{L} = \vec{r} \times \vec{p}$ is conserved. *Hint*: Use commutation relations with \hat{H} . Test this for each component of \vec{L} separately.
- b) What happens if the system has a translational invariance in the z-direction and

$$V(\vec{r}) = V(\sqrt{x^2 + y^2}) \tag{5.4}$$

for all z? Is any component of the momentum or angular momentum preserved?

- c) For part (b), what would be the mean value $\langle \hat{z} \rangle (t)$ of the z-coordinate if the mean value $\langle \hat{p}_z \rangle$ of the momentum in the z-direction is constant at p_0 while $\langle \hat{z} \rangle = 0$ at time t = 0?
- **3.** Imagine I have a potential such that I can find simultaneous eigenstates of \vec{L}^2 , \hat{L}_z , and \hat{H} with respective eigenvalues $\hbar^2 \ell(\ell+1)$, $\hbar m$, and $E_{n\ell}$. Suppose that $[\hat{L}_i, \hat{L}_j] = i\hbar \epsilon_{ijk} \hat{L}_k$, $[\vec{L}^2, \hat{L}_i] = [\hat{H}, \hat{L}_i] = 0$, and $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$.
 - a) Show that $[\hat{L}_{\pm}, \hat{L}_z] = \mp \hbar \hat{L}_{\pm}$.
 - b) Show also that this implies that, given an eigenfunction $Y_{\ell m}$ of $\hat{\vec{L}}^2$ and \hat{L}_z ,

$$\hat{L}_{\pm}Y_{\ell m} \propto Y_{\ell(m\pm 1)} \tag{5.5}$$

- c) Show that $\hat{\vec{L}}^2 = \hat{L}_- \hat{L}_+ + \hbar \hat{L}_z + \hat{L}_z^2$.
- d) With the above information, use the ladder operators \hat{L}_{\pm} to compute the mean value of \hat{L}_z , \hat{L}_y , \hat{L}_x^2 , and \hat{L}_y^2 in an eigenstate of \hat{L}_z^2 and \hat{L}_z .
- e) Discuss the uncertainty principle for the incompatible variables \hat{L}_x and \hat{L}_y . In which way does this differ from the case of \hat{x} and \hat{p}_x ?