

Programmable CNN Acceleration in Under 1 Watt

Gordon Hands May 22, 2018

Drivers for Artificial Intelligence at the Edge

Improving Privacy

Simplified Regulation Compliance

Reducing Bandwidth Required

Optimizing Use of Cloud Computing

Minimizing Latency

Edge Device Al Requirements

Edge Device Requirements

- Low Power
- Integration for Small Form Factor
- Fast Development
- Low Cost for High Volume Production
- Moderate Performance Inferencing

Lattice is Focused on Adding AI Capability to its Flexible Low Cost, Low-power Production Priced FPGA Solutions

Introducing Lattice sensAl

1 W, 100 mm², 8/16 bits, ~\$10

Delivering Edge CNN Acceleration in Lattice FPGA

CNN Accelerator IP Architecture

Translating Trained Neural Network Into Lattice CNN Accelerator Instructions

Edge AI – Complex Optimization

Design Factors Attributes	Device		Network		
	# of Engines	Local Memory	Input Size	Number of Multipliers	Bit Widths
Power (W)					
Cost (\$)					
Performance (fps)					
Accuracy (%)					
Small Object (% fov)					

Correlation Between Design Factors and Product Attributes

Examples for Illustration

	Architecture	Number of Multiplications	Input Size	Quantization
Face Tracking	Modified	256M	90x90	16 bit fixed
	VGG8			8/16 bit fixed
Speed Sign Detect	Modified VGG8	146M	128x128	16 bit fixed
				8/16 bit fixed

System Block Diagram

Face Tracking Implementations

Speed Sign Implementations

Bringing It Together

		Device Cost / Power / Performance			
Network	Smallest Object	ECP5-25 Cost x0.25 0.5 W	ECP5-45 Cost x0.5 0.53 - 0.62 W	ECP5-85 Cost x1.0 0.58 - 0.8 W	
Face Tracking 16 bit	20 % of	2.6 fps	2.6 – 5.7 fps	2.6 – 14.4fps	
Face Tracking 8/16 bit	image height	2.7 fps	2.7 – 5.9 fps	2.6 – 15.1fps	
Speed Sign Detect 16 bit	15% of	3.9 fps	3.9 - 5.5 fps	3.9 – 7.1 fps	
Speed Sign Detect 8/16 bit	image height	4.0 fps	4.0 – 7.1 fps	4.0 – 23.1 fps	

Summary

- Al at the edge solves real world problems
- ECP5 sensAl Stack Components Provide Edge Al Building Bocks
 - Silicon, Soft IP, Tools, Development Boards & Reference Designs
- Configurable Engine Size and Bit widths Coupled with Multiple Devices Allows System Optimization
 - 0.5 0.8 W, 10x10 mm², < \$10

Resources

- Please Visit <u>www.latticesemi.com</u> for More Information and Downloads
 - 3 ECP5 Based Reference Designs / Demonstrations -- Free
 - CNN Accelerator IP Free Evaluation
 - NN Compiler Free
 - Video Interface Board Currently \$199 Promotional Price
- Please Visit the Lattice Booth in the Showcase
 - 8+ Intelligence At The Edge Demonstrations

