Advanced Linear Algebra - Valenza, 2017

Trevor Klar

January 23, 2018

1 Functions

Theorem. (1.4) a function $f: S \to T$ is invertible iff it is bijective.

2 Groups and group homomorphisms

For a nonempty set S, a binary operation on S is a function

$$S \times S \to S$$

$$(s,t) \mapsto s \star t$$
, where $s,t \in S$

Basically, you take two numbers, and do something to them to get a third number, according to a rule.

Definition. We say that the binary operation \star is associative if:

$$(s \star t) \star u = s \star (t \star u)$$

For any $s, t, u \in S$.

Definition. We say that the binary operation \star is *commutative* if:

$$s \star t = t \star s$$

For any $s, t \in S$.

Definition. We say that an element $e \in S$ is an *identity* for \star if $e \star s = s = s \star e \quad \forall s \in S$.

Definition. A group (G, \star) is a pair where G is a nonempty set and \star is a binary operator on G such that

- 1. \star is associative (associative axiom).
- 2. $\exists e \in G$ that is an identity under \star (identity axiom).
- 3. $\forall s \in G, \exists t \in G \text{ such that } s \star t = e = t \star s \text{ (inverse axiom)}.$

Definition. A group is called *commutative* or *abelian* if

$$s \star t = t \star s \quad \forall s, t \in G.$$

2.1 General Properties of Groups

Definition. (Cancellation Property)

Suppose (G, \star) is a group and $s, t, u \in G$. Then

$$st = su \implies t = u$$

$$st = ut \implies s = u$$

(note: st means $s \star t$.)

Proposition. Suppose (G, \star) is a group. Then,

1. The identity element e in G is unique.

PROOF
$$e = ee' = e'$$
, so $e = e'$

2. For any $s \in G$, the inverse of s is unique. (And we denote it s^{-1} .)

PROOF Suppose $t, u \in G$ such that ts = e and us = e. Then ts = us, so t = u by cancellation.

3. If st = e, then s is the inverse of t (and t is the inverse of s).

PROOF

$$st = e$$

$$tst = te = t$$

$$tst = (ts)t$$

so,

$$(ts)t = t$$

ts = e, by cancellation.

4.
$$\forall s \in G, (s^{-1})^{-1} = s$$
.

5.
$$\forall s, t \in G, (st)^{-1} = t^{-1}s^{-1}$$

PROOF

$$(st)^{-1}(st) = e$$
$$(st)^{-1}(st)t^{-1} = et^{-1}$$
$$(st)^{-1}(ss^{-1} = t^{-1}s^{-1}$$
$$(st)^{-1} = t^{-1}s^{-1}$$

6. If $s \in G$, then $ss = s \iff s = e$.

Definition. Suppose (G, \star) is a group, and H is a subset of G. We say H is a subgroup of G if (H, \star) is a group.

This means:

- \star is a binary operator on H, that is, H is closed under \star
- \star is associative for elements in H. (Clearly, since this also hold for all of G)
- There is an identity e' in H such that e'h = h = he' for any $h \in H$.
- Every element $s \in H$ has an inverse in H, i.e. there should be an element $t \in H$ such that $s \star t = e = t \star s$.

Remark 2.1. t is the same as the inverse of s taken in G. (We leave the proof as an excercise.)

Proposition. (Subgroup criterion) Suppse (G, \star) is a group, and H is a nonempty subset of G. Then

 $H \text{ is a subgroup of } G \iff \text{for any } s,t \in H, \quad s \star t^{-1} \in H.$

Example. Consider the group $(\mathbb{Z}, +)$. For any $n \in \mathbb{Z}^+$,

 $n\mathbb{Z} = \{nz : z \in \mathbb{Z}\} = \{\text{all integer multiples of } n\}.$

 $1n \in n\mathbb{Z}$, so $n\mathbb{Z} \neq \emptyset$.

Now, apply the subgroup criterion:

Take any two elements $s, t \in \mathbb{Z}$.

then s = na and t = nb, where $a, b \in \mathbb{Z}$

so $s + (-t) = na - nb = n(a - b) \in n\mathbb{Z}$.

Therefore, $n\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Exercise 2.1. Prove that $I' := \{ f \in \mathscr{C}^0(\mathbb{R}) : f(0) = 1 \}$ is *not* a subgroup of $\mathscr{C}^0(\mathbb{R})$.

2.2 Group homomorphisms

Definition. Suppose $(G_1, \star_1), (G_2, \star_2)$ are groups. A function $f: G_1 \to G_2$ is called a *group homomorphism* if:

$$\forall s, t \in G_1, \quad f(s \star_1 t) = f(s) \star_2 f(t)$$

Example. Consider the group $(\mathbb{Z}, +)$. The function $f : \mathbb{Z} \to \mathbb{Z}$ where $n \mapsto 3n$ is a group homomorphism.

PROOF Take any $s, t \in \mathbb{Z}$. We want f(s+t) = f(s) + f(t).

$$f(s+t) = 3(s+t) = 3s + 3t = f(s) + f(t)$$

This completes the proof.

Properties of group homomorphisms:

Proposition. Suppose $f: G_1 \to G_2$ is a group homomorphism. Then,

(i)
$$f(e_1) = e_2$$

PROOF
$$f(e_1) = f(e_1e_1) = f(e_1)f(e_1)$$
.
Then, by cancellation, $e_2 = f(e_1)$.

(ii) For any
$$s \in G$$
, $f(s^{-1}) = (f(s))^{-1}$

PROOF We need to prove that $f(s^{-1})$ is the inverse of f(s). It suffices to prove that $f(s^{-1})f(s) = e_2$.

$$f(s^{-1})f(s) = f(s^{-1}s) = f(e_1) = e_2.$$

Definition. If $\phi: H \to G$ is a bijective function from the group H to the group G, then we say it is a *group isomorphism* and write $G \cong H$.

Lemma 2.2. If $\phi: G \to H$ is a group isomorphism, then $\phi^{-1}: H \to G$ is also a group isomorphism.

Proposition. Given group homomorphisms $\phi: G \to H$, $\psi: H \to I$, the composition $\psi \phi: G \to I$ is also a group homomorphism.

Corollary 2.3. If ψ, ϕ above are both isomorphisms, then $\psi \phi$ is also a group isomorphism.

Definition. Suppose we have a function $f: S \to T$.

• For any $t \in T$, the inverse image (or the preimage) of t, denoted $f^{-1}(t)$, is the set

$$f^{-1}(t) \equiv \{x \in S : f(x) = t\}$$

• For any subset $W \subset T$, the *inverse image* (or the *preimage*) of t, denoted $f^{-1}(W)$, is the set

$$f^{-1}(W) \equiv \{x \in S : f(x) \in W\}$$

Definition. Given a group homomorphism $\phi: G \to H$,

• the kernel o $f\phi$ is

$$\ker \phi := \{x \in G : \phi(x) = e_H\} = \phi^{-1}(e_H)$$

• the *image* of ϕ is

$$im \ \phi := \{\phi(x) : x \in G\}$$

Proposition. For a group homomorphism $\phi: G \to H$,

$$\ker \phi$$
 is a subgroup of G , $im \phi$ is a subgroup of H .

Lemma 2.4. For a group homomorphism $\phi: G \to H$, then

$$\phi$$
 is injective \iff $\ker \phi = \{e_G\}$

Definition. Let G_0, G_1 be groups. The direct product of G_0 and G_1 is the set

$$G_0 \times G_1 = \{(s_0, s_1) : s_0 \in G_0, s_1 \in G_1\}$$

equipped with an operation on $G_0 \times G_1$ as follows:

$$(s_0, s_1)(t_0, t_1) = (s_0t_0, s_1t_1) \quad \forall s_0, t_0 \in G_0, s_1, t_1 \in G_1$$

This is just the Cartesian product of the two sets G_0 and G_1 , equipped with the same operations, applied componentwise.

Definition. Let G_0, G_1 be groups. A projection map is a function

$$\begin{array}{ccc} \rho_0: G_0 \times G_1 & \to & G_0 \\ (s_0, s_1) & \mapsto & s_0 \end{array}$$

Definition. Consider the special case of the direct product $G \times G$ of a group G with itself. Define a subset D of $G \times G$ by

$$D = \{(s, s) : s \in G\}$$

That is, D consists of all elements with both coordinates equal. This is called the $diagonal\ subgroup$.

2.3 Rings and Fields

Definition. A *ring* is a triple $(A, +_A, \bullet_A)$, where A is a nonempty set, $+_A$ is some 'addition' operation, and \bullet is some 'multiplication' operation such that:

- $(A, +_A)$ is an abelian group. (We use additive notation for the inverse and identity of this operation)
- (A, \bullet_A) is a "monoid", that is, \bullet_A has the associative and identity properties, but not necessarily the inverse property or the commutative property.
- \bullet_A distributes over $+_A$ from the right and the left (distributive property).

Definition. If \bullet_A is also commutative, then we say A is a *commutative ring*. We often write ab to denote $a \bullet_A b$.

If k is a commutative ring, $k* := k - \{0_k\}.$

Definition. A commutative ring k where $(k*, \bullet_k)$ is a group is called a field. (That is, it is a ring where \bullet has commutativity and an inverse)

Proposition. Suppose $(A, +, \bullet)$ is a ring. Then, $\forall a, b \in A$,

- 1. 0a = 0 = a0
- 2. a(-b)=-(ab)=(-a)b
- 3. (-a)(-b)=ab
- 4. (-1)a = -a
- 5. (-1)(-1)=1

3 Vector Spaces and Linear Transformations

3.1 Vector Spaces and Subspaces

Fix a field k (e.g. $\mathbb{R}, \mathbb{C}, \mathbb{Q}etc.$)

Definition. A vector space over k (or a k-vector space) is a set V, together with a binary operation + on V, and a scalar multiplication.

Vector fields have the following properties: $\forall \lambda, \mu \in k, \forall v, w \in V$,

- (i) (V, +) is an abelian group.
- (ii) $(\lambda \mu) \vec{v} = \lambda(\mu) \vec{v}$ That is, scalar multiplication is associative.
- (iii) $(\lambda + \mu)\vec{v} = \lambda \vec{v} + \mu \vec{v}$ That is, vectors distribute over scalars.
- (iv) $\lambda(\vec{v} + \vec{w}) = \lambda \vec{v} + \lambda \vec{w}$ That is, scalars distribute over vectors.
- (v) $1_k \vec{v} = \vec{v}$ That is, the identity of the field is also the identity of the vector space.

Proposition 3.1. Let V be a vector space over a field k. Then the following assertions hold:

- (i) $\lambda \vec{0} = \vec{0} \quad \forall \lambda \in k$
- (ii) $0\vec{v} = \vec{0} \quad \forall \vec{v} \in V$
- $(iii) \ (-\lambda) \vec{v} = -(\lambda \vec{v}) \quad \forall \lambda \in k, \vec{v} \in V$
- $(iv) \ \lambda \vec{v} = \vec{0} \iff (\lambda = 0 \ or \ v = \vec{0}) \quad \forall \lambda \in k, \vec{v} \in V$

Definition. A subset W of a vector space V over a field k is called a *subspace* of V if it constitutes a vector space over k in its own right with respect to the additive and scalar operations defined on V.

Proposition 3.2. (Subspace Criterion) Let W be a nonempty subset of the vector space V. Then W is a subspace of V if and only if it is closed under addition and scalar multiplication.

Definition. Let $v_1 \ldots, v_n$ be a family of vectors in the vector space V defined over a field k. Then an expression of the form

$$\lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + \ldots + \lambda_n \vec{v_n} \quad (\lambda_1, \lambda_2, \ldots \lambda_n \in k)$$

is called a *linear combination* of the vectors $v_1 \ldots, v_n$. The set of all such linear combinations is called the *span* of $v_1 \ldots, v_n$ and denoted $\mathrm{Span}(v_1 \ldots, v_n)$.

Proposition 3.3. Let $v_1 \ldots, v_n$ be a family of vectors in the vector space V defined over a field k. Then $W = Span(v_1 \ldots, v_n)$ is a subspace of V.

3.2 Linear Transformations

Definition. Let V and V' be vector space over a common field k. Then a function $V \to V'$ is called a *linear transformation* if it satisfies the following conditions:

(i)
$$T(v+w) = T(v) + T(w) \quad \forall v, w \in V$$

(ii)
$$T(\lambda v) = \lambda T(v) \quad \forall v \in V, \lambda \in k$$

One also says that T is k-linear or a vector space homomorphism.

Note that the first condition states that T is a homomorphism of additive groups, and therefore all of our previous theory of group homomorphisms applies. In particular, we have the following derived properties:

(iii)
$$T(\vec{0}) = \vec{0}$$

(iv)
$$T(-\vec{v}) = -T(\vec{v}) \quad \forall v \in V$$

Proposition 3.4. The composition of linear transformations is a linear transformation.

Proposition 3.5. The kernel and image of a linear transformation are subspaces of their ambient vector spaces.

Definition. A bijective linear transformation $T:V\to V'$ is called an *isomorphism* of vector spaces.

4

Theorem 4.1. In any vector space,

- Every linearly independent set of vectors can be extended to a basis.
- Every spanning set can be contracted to a basis.
- Every vector space has a basis

Corollary 4.2. Suppose V is a finite-dimensional k-vector space with $\dim(V) = n$. Then,

- ullet No subset of V with more than n vectors can be linearly independent.
- ullet No subset of V with less than n vectors can span V.

PROOF (i) Suppose \mathcal{B} is a collection of ℓ vectors in V, and suppose $\ell > n$. Suppose also that \mathcal{B} is linearly independent. By part (i) of the Thm, \mathcal{B} can be extended to a basis \mathcal{B}' for V.

$$\ell = |\mathscr{B}| \le |\mathscr{B}'| = n$$

which is a contradiction.

Corollary 4.3. Suppose V has dimension n and S is a collection of n vectors in V. The following are equivalent:

- \bullet S is linearly independent.
- ullet S spans V.
- \bullet S is a basis for V.