# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3288

ON THE ANALYSIS OF LINEAR AND NONLINEAR DYNAMICAL SYSTEMS

FROM TRANSIENT-RESPONSE DATA

By Marvin Shinbrot

Ames Aeronautical Laboratory Moffett Field, Calif.



Washington

December 1954

LIBRARY COPY

DEC 3 1954

FOR PEFERENCE

LIBRARY, HACA

NOT TO BE TAKEN FROM THIS ROOM

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTIUS

TECHNICAL NOTE 3288

ON THE ANALYSIS OF LINEAR AND NONLINEAR DYNAMICAL SYSTEMS

FROM TRANSIENT-RESPONSE DATA

By Marvin Shinbrot

## SUMMARY

A general theory of the so-called "equations-of-motion" methods for the analysis of linear dynamical systems is developed first. It is then shown that when viewed from this general point of vantage, all of these linear methods can be extended in a straightforward manner to apply to the analysis of nonlinear systems. In addition, through use of this theory, a new method is derived. It is essentially a variation of the well-known "Fourier transform" method for the analysis of linear systems but possesses certain advantages over previous methods. Application and effectiveness of this method are demonstrated by three examples, two of which are nonlinear - one highly so - and the third being of the fourth order.

#### INTRODUCTION

It has often been suggested (e.g., in ref. 1) that nonlinearities which are ignored in the classical theory of the equations of motion of an aircraft may be responsible for certain unusual phenomena which have been observed in flights of modern high-speed airplanes and missiles. Consequently, it seems desirable to develop methods for the analysis of such nonlinear systems - methods which allow the calculation from measured transient-response data of the nonlinear stability characteristics as well as the classical linear stability derivatives of the aircraft. Several such methods are described in reference 2, the principal one consisting of a generalization of the so-called "derivative method" which was originally devised for use with linear systems (cf. ref. 3). However, the methods described in reference 2 leave something to be desired from both points of view of accuracy of the results and lengthiness of the calculations. In addition, application of these methods requires, in all but the simplest cases, the previous evaluation by some means of those stability characteristics which are linear. In view of these shortcomings, an attempt has been made in the present study to find simpler, more accurate, and more general procedures. The problem is attacked by first examining several well-known methods for the analysis of simple linear systems and then modifying them as necessary to allow their application to more general systems.

2 NACA IN 3288

Many methods for the analysis of linear systems have been proposed in the past (see, e.g., refs. 3 and 4). In reference 5, these methods have been classified under two main heads: "equations-of-motion" methods and "response-curve-fitting" methods, the former title including the derivative method and what have been called the Laplace transform and the Fourier transform methods (ref. 3), and the latter consisting of such methods as Prony's (refs. 3 and 6) and the techniques of reference 4. Since the response-curve-fitting methods involve the explicit solution of the equations of motion in terms of the physical parameters of the system at hand, they do not seem suitable for use with nonlinear systems. Hence, we shall be concerned solely with the equations-of-motion methods.

Each of these methods has been considered in the literature as an independent entity; apparently, no attempt has ever been made to subsume all of them under a single general theory. For the purposes of the present study, such a theory would be desirable since it seems reasonable to expect first that when viewed from a more general point of view, a generalization of the methods to nonlinear systems might appear; and second that once such a theory is known, it might be possible to develop new methods, superior in certain respects to the old ones from which the theory sprang.

In accordance with this plan, the paper begins with a short presentation of the three best known of the equations-of-motion methods. These methods are examined from a new point of view which is then shown to lead to the general theory for linear systems. The further extension to non-linear systems is considered next. Based on the general theory, development of a new method for data analysis follows. Finally, some examples of the application of this recommended method are given.

### SYMBOLS

a angle of attack, radians  $\dot{\alpha} \qquad \frac{d\alpha}{dt} \\
b \qquad \frac{L_{\alpha}}{mV} - \frac{M_{q}}{L_{y}} - \frac{M_{\alpha}^{2}}{L_{y}} \\
C_{0} \qquad \frac{M_{\delta}}{L_{y}} + \frac{L_{\delta}}{mV} \frac{M_{q}}{L_{y}} \\
C_{1} \qquad - \frac{L_{\delta}}{mV} \\
\delta \qquad \text{elevator deflection, radians} \\
I_{y} \qquad \text{pitching moment of inertia, slug-ft}^{2}$ 

$$k \qquad \qquad - \; \frac{M_{CL}}{I_{\mathbf{y}}} \; - \; \frac{L_{CL}}{mV} \; \frac{M_{\mathbf{Q}}}{I_{\mathbf{y}}}$$

L linear lift force, lb

 $\Gamma^{\alpha}$   $\frac{g\alpha}{g\Gamma}$ 

 $\Gamma^{\varrho}$   $\frac{9\varrho}{9\Gamma}$ 

 $L(\alpha)$  nonlinear lift force, lb

m mass of aircraft, slugs

M linear pitching moment, ft-lb

 $\mathbf{M}^{\mathrm{Cr}} \qquad \frac{9^{\mathrm{Cr}}}{9^{\mathrm{M}}}$ 

 $M_{\alpha}^{\alpha}$   $\frac{\partial \alpha}{\partial M}$ 

 $M_{\delta} \frac{\partial S}{\partial S}$ 

 $M^{\overline{d}}$   $\frac{9^{\overline{d}}}{9^{\overline{M}}}$ 

M(α) nonlinear pitching moment, ft-lb

q pitching velocity, radians/sec

t time, sec

V velocity of aircraft, ft/sec

Other symbols will be defined as they are introduced.

# ANALYSIS

Some Equations-of-Motion Methods for Linear Systems

In the presentation of the general theory of equations-of-motion methods, it is desirable to have some examples of these methods set down for examination. The three best known of these methods are briefly described below; for a more detailed discussion of them, see reference 3.

As a concrete example, let us consider an airplane operating under conditions where the stability characteristics are effectively linear, so that, as in reference 3, the equations of its longitudinal motion can be written

$$-\alpha I_{CC} - \dot{\alpha}mV + qmV = \delta I_{\delta}$$
$$-\alpha M_{CC} - \dot{\alpha}M_{\dot{C}} - qM_{\dot{C}} + \dot{q}I_{\dot{Y}} = \delta M_{\delta}$$

It will be convenient to eliminate q and so to write these equations as

$$\ddot{\alpha}(t) + b\dot{\alpha}(t) + k\alpha(t) = C_0\delta(t) + C_1\dot{\delta}(t)$$
 (1)

where dots denote differentiation with respect to time t. It is assumed that time histories of  $\alpha(t)$  and  $\delta(t)$  are available from flight records and that one wishes to calculate the constants b, k,  $C_0$ , and  $C_1$ . For simplicity, it will further be assumed that the constant b is positive and that  $\delta(t)$  is a pulse, so that  $\delta(t)$  is zero for t sufficiently large. These restrictions will be removed farther on.

The derivative method. In order to apply the derivative method, it is necessary first to differentiate the given records to obtain the derivatives  $\alpha(t)$ ,  $\alpha(t)$ , and  $\delta(t)$ . Then, for fixed t, equation (1) may be considered as an equation for the constants b, k,  $C_0$ , and  $C_1$ . By letting t vary, a set of such equations can be obtained, which can in turn be solved by least squares (see reference 6, page 210, where, however, the integral rather than the sum of the squares of the errors has been minimized) for the desired constants. By this procedure, the following equations are obtained:

$$b\int_{0}^{\infty} \dot{\alpha}^{2} dt + k \int_{0}^{\infty} \dot{\alpha} dt - C_{0} \int_{0}^{\infty} \dot{\alpha} \delta dt - C_{1} \int_{0}^{\infty} \dot{\alpha} \dot{\delta} dt = - \int_{0}^{\infty} \dot{\alpha} \dot{\alpha} dt$$

$$b\int_{0}^{\infty} \alpha \dot{\alpha} dt + k \int_{0}^{\infty} \alpha^{2} dt - C_{0} \int_{0}^{\infty} \alpha \delta dt - C_{1} \int_{0}^{\infty} \alpha \dot{\delta} dt = - \int_{0}^{\infty} \alpha \dot{\alpha} dt$$

$$- b\int_{0}^{\infty} \delta \dot{\alpha} dt - k \int_{0}^{\infty} \delta \alpha dt + C_{0} \int_{0}^{\infty} \delta \delta dt + C_{1} \int_{0}^{\infty} \delta \dot{\delta} dt = \int_{0}^{\infty} \delta \dot{\alpha} dt$$

$$- b\int_{0}^{\infty} \dot{\delta} \dot{\alpha} dt - k \int_{0}^{\infty} \delta \alpha dt + C_{0} \int_{0}^{\infty} \delta \delta dt + C_{1} \int_{0}^{\infty} \delta^{2} dt = \int_{0}^{\infty} \delta \dot{\alpha} dt$$

Equations (2) can be solved for the desired parameters b, k, Co, and C1.

NACA TN 3288 5

The Laplace transform method. Letting A(p) and  $\Delta(p)$  denote the Laplace transforms of  $\alpha(t)$  and  $\delta(t)$ , respectively, so that

$$A(p) = \int_{0}^{\infty} e^{-pt} \alpha(t) dt$$

$$\Delta(p) = \int_{0}^{\infty} e^{-pt} \delta(t) dt$$
(3)

it follows that if  $\alpha(t)$  and  $\delta(t)$  are related by equation (1), then

$$(p^2 + bp + k) A(p) = (C_1p + C_0) \Delta(p)$$
 (4)

(ref. 7). In writing down equation (4), it has been assumed for simplicity that  $\alpha(0) = \dot{\alpha}(0) = \delta(0) = 0$ ; this restriction is inessential and will be removed later on. For any value of p, equation (4) is an equation in b, k, Co, and C<sub>1</sub>. After finding the Laplace transforms of  $\alpha(t)$  and  $\delta(t)$  for several such values of p, say for  $p = p_1, p_2, \ldots, p_N$ , the corresponding equations (4) can be set up and solved by least squares to obtain

$$b \sum_{p_{1} \geq A^{2}(p_{1}) + k} p_{1}A^{2}(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) - C_{0} \sum_{p_{1} \leq A(p_{1})} \Delta(p_{1}) + C_{0} \sum_{p_{1} \leq$$

where all sums are over the range 1, . . ., N of the index i. These equations then can be solved for the desired constants.

The Fourier transform method. - The Fourier transform method proceeds in much the same way as did the Laplace transform method.

Defining

$$A(i\omega) = \int_{0}^{\infty} e^{-i\omega t} \alpha(t) dt$$

$$\Delta(i\omega) = \int_{0}^{\infty} e^{-i\omega t} \delta(t) dt$$
(6)

 $(i^2 = -1)$ , it follows that if  $\alpha(0) = \dot{\alpha}(0) = \delta(0)$ , then

$$[(i\omega)^2 + i\omega b + k] A(i\omega) = [C_O + i\omega C_1] \Delta(i\omega)$$
 (7)

This equation can be written as two real equations by setting

$$A(i\omega) = C(\omega) - iS(\omega)$$

$$\Delta(i\omega) = \Gamma(\omega) - i \Sigma(\omega)$$
(8)

Putting equations (6) and (8) together, we see this means that

$$C(\omega) = \int_{0}^{\infty} \alpha(t) \cos \omega t dt \qquad S(\omega) = \int_{0}^{\infty} \alpha(t) \sin \omega t dt - \frac{1}{2} \int_{0}^{\infty} \delta(t) \cos \omega t dt \qquad \Sigma(\omega) = \int_{0}^{\infty} \delta(t) \sin \omega t dt - \frac{1}{2} \int_{0}^{\infty} \delta(t) \sin \omega t dt$$

Breaking equation (7) into its real and imaginary parts gives

$$\omega \ S(\omega)b + C(\omega)k - \Gamma(\omega)C_O - \omega \ \Sigma(\omega) \ C_1 = \omega^2C(\omega)$$

$$\omega \ C(\omega)b - S(\omega)k + \Sigma \ (\omega)C_O - \omega \ \Gamma(\omega)C_1 = -\omega^2S(\omega)$$

After  $C(\omega)$ ,  $S(\omega)$ ,  $\Gamma(\omega)$ , and  $\Sigma(\omega)$  have been evaluated for several values of  $\omega$ , substitution into these equations yields a number of equations for b, k,  $C_0$ , and  $C_1$  which can be solved by least squares. These equations, corresponding to (2) and (5), are exceedingly complicated and will not be reproduced here.

NACA TN 3288 7

The Common Feature of These Methods and the First Generalization

Each of these methods is usually derived as in the preceding section, through use of a certain specialized concept. Thus, the derivative method is based on the fact that for fixed t, equation (1) is linear in b, k, Co, and C1, so that a set of simultaneous linear equations for these parameters can be obtained by varying t. The Laplace and Fourier transform methods stem from the theory of these operators. Thus, if  $\alpha(t)$ and  $\delta(t)$  are related by the linear differential equation (1), their Laplace transforms are related by equation (4). However, equation (4) is linear in the parameters, and so by writing this equation for several values of p, one can solve the resulting equations by least squares for the desired constants. These derivations tend to obscure the common idea which can be shown to lie behind all the methods. This difficulty can be overcome if these particular derivations are forgotten and if attention is fixed entirely on the formal processes whereby the final least squares equations are obtained. With this in mind, let us reconsider the three methods.

The derivative method. - Equations (2) for the derivative method are formally obtained by

- (1) Multiplying equation (1) by the four functions  $\dot{\alpha}(t)$ ,  $\dot{\alpha}(t)$ ,  $\dot{\delta}(t)$ , and  $\dot{\delta}(t)$  one at a time and
- (2) Integrating the results from zero to infinity.

We should forget for the moment the interpretation of this procedure as the solution of equation (1) by least squares, and simply keep the process of multiplication and integration in mind.

The Laplace transform method. - A similar process can be described for the Laplace transform method. Choosing  $N(\geq 4)$  positive numbers  $p_i$ ,

- (1) Equation (1) can be multiplied by the functions  $e^{-p_it}$ ,  $i = 1, \ldots, N$ , and
- (2) The results can be integrated from zero to infinity.

If the resulting equations are solved by least squares, precisely equations (5) for the determination of the parameters by the Laplace transform method are obtained, provided that in step (2) any integrals which arise involving derivatives of  $\alpha(t)$  and  $\delta(t)$  are integrated by parts to eliminate these derivatives.

It should be noted that although there appears to be one more step here than there was in applying the derivative method - notably an additional least squares following step (2) - this addition is more apparent than real, since it is necessary to apply a least squares process here merely because N (which is generally greater than four) equations are obtained for the four parameters, while in the derivative method exactly

8 NACA IN 3288

four such equations were obtained. Thus, the least squares step could be eliminated by choosing N=4 (of course, such a choice is not really practical), or, alternatively, such a step could be added to the derivative method by solving the equations resulting from step (2) in that method by least squares instead of in the ordinary way. Of course, such a step would only be made to make the two methods so far described formally more similar; in practice, it would not be performed.

# The Fourier transform method .- Finally,

(1) If equation (1) is multiplied by  $\cos \omega t$  and  $\sin \omega t$  for several values of  $\omega$ , and

(2) If the results are integrated from zero to infinity (as in the Laplace transform method, integrating by parts to eliminate explicit dependence on the derivatives of  $\alpha$  and  $\delta$ ),

one obtains a set of equations identical with those obtained from the Fourier transform method.

The general method for linear systems. The general development of equations-of-motion methods is now manifest. One takes the equations of motion for the physical system under consideration - for definiteness, say equation (1) - and

- (1) Multiplies them by N arbitrary (but sufficiently smooth) functions  $y_{\mathbf{v}}(t)$ .
- (2) The resulting equations are then integrated between two definite limits, say, zero and T.

In the three methods described above,  $T=\infty$ , but this is not essential. In order to avoid some complications initially, we shall continue to integrate over this infinite interval; this restriction will subsequently be removed, however, and T will be allowed to have finite values. In the case of equation (1), the process just described leads to N equations of the form

$$b \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\alpha}(t) dt + k \int_{0}^{\infty} y_{\mathbf{V}}(t) \alpha(t) dt - C_{0} \int_{0}^{\infty} y_{\mathbf{V}}(t) \delta(t) dt -$$

$$C_{1} \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\delta}(t) dt = - \int_{0}^{\infty} y_{\mathbf{V}}(t) \dot{\alpha}(t) dt, \quad \mathbf{V} = 1, \dots, N \quad (9)$$

It is possible that the functions  $y_{\mathbf{v}}(t)$  depend on  $\alpha(t)$  or  $\delta(t)$  as, for example, in the derivative method; in such cases, equations (9) can be considered as N equations which are to be solved by least squares for the desired parameters. Of course, this process requires the calculation of the derivatives  $\dot{\alpha}(t)$ ,  $\dot{\alpha}(t)$ , and  $\dot{\delta}(t)$ . On the other hand, if the functions  $y_{\mathbf{v}}(t)$  are explicitly independent of  $\alpha$  and  $\delta$ , as is the case

in the Laplace and Fourier transform methods, the following formulas, obtained by integrating by parts, are used:

$$\begin{split} &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\dot{\alpha}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\alpha(0) - \int_{0}^{\infty} \dot{y}_{\boldsymbol{\nu}}(t)\alpha(t)\mathrm{d}t \\ &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\ddot{\alpha}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\dot{\alpha}(0) + \dot{y}_{\boldsymbol{\nu}}(0)\alpha(0) + \int_{0}^{\infty} \ddot{y}_{\boldsymbol{\nu}}(t)\alpha(t)\mathrm{d}t \\ &\int_{0}^{\infty} y_{\boldsymbol{\nu}}(t)\dot{\delta}(t)\mathrm{d}t = -y_{\boldsymbol{\nu}}(0)\delta(0) - \int_{0}^{\infty} \dot{y}_{\boldsymbol{\nu}}(t)\delta(t)\mathrm{d}t \end{split}$$

Substitution into equation (9) gives

$$-b\left[y_{\mathbf{v}}(0)\alpha(0) + \int_{0}^{\infty} \dot{y}_{\mathbf{v}}(t)\alpha(t)dt\right] + k \int_{0}^{\infty} y_{\mathbf{v}}(t)\alpha(t)dt - C_{0} \int_{0}^{\infty} y_{\mathbf{v}}(t)\delta(t)dt + C_{1} \left[y_{\mathbf{v}}(0)\delta(0) + \int_{0}^{\infty} \dot{y}_{\mathbf{v}}(t)\delta(t)dt\right] = y_{\mathbf{v}}(0)\dot{\alpha}(0) - \dot{y}_{\mathbf{v}}(0)\alpha(0) - \int_{0}^{\infty} \ddot{y}_{\mathbf{v}}(t)\alpha(t)dt, \quad \mathbf{v} = 1, 2, \dots, N \quad (10)$$

Equations (10) are N equations in b, k, C<sub>0</sub>, and C<sub>1</sub>. If  $N \ge 4$ , they may be solved by least squares for these parameters.

The choice of the functions  $y_{\nu}(t)$  defines which equations-of-motion method is being used. For this reason, these functions will be referred to as the "method functions."

## Generalization to Nonlinear Systems

In this section, all considerations will refer to the equations of longitudinal motion of an aircraft. It will be seen that the method actually is applicable to a far wider class of equations - in particular to the equations of lateral motion of an aircraft, including, if it is so desired, cross-coupling terms. The special analysis presented here can be extended to other problems, the only real restriction being that for practical reasons too many parameters cannot be handled at once.

The following equations, which involve assumptions of constant airspeed, smallness of certain quantities, etc., are often used to describe the motions of an aircraft which has linear stability characteristics:

$$-\alpha I_{\alpha} - \dot{\alpha} m V + q m V = \delta I_{\delta}$$
 
$$-\alpha M_{\alpha} - \dot{\alpha} M_{\alpha}^{*} - q M_{q} + \dot{q} I_{y} = \delta M_{\delta}$$

If, on the other hand, it is assumed that the lift and moment functions are nonlinear in  $\alpha$ , these equations become

$$-L(\alpha) - \dot{\alpha}mV + qmV = \delta L_{\delta}$$

$$-M(\alpha) - \dot{\alpha}M_{\alpha}^{\bullet} - qM_{q} + \dot{q}I_{y} = \delta M_{\delta}$$
(11)

We shall assume that over the range of interest, approximations of the following form are valid:

$$L(\alpha) = L_{1}\alpha + L_{2}\alpha^{2} + \dots + L_{l}\alpha^{l}$$

$$M(\alpha) = M_{1}\alpha + M_{2}\alpha^{2} + \dots + M_{n}\alpha^{n}$$
(12)

where the coefficients  $L_i$ ,  $M_i$  are constant. Only the first three terms of this series will be retained in the present-analysis since this three-term approximation usually balances very well the opposing requirements of simplicity and adequate representation of the aerodynamic parameters. If more terms are found to be necessary in a particular problem they can, of course, be added. It should be noted that this three-term approximation is still fairly general, even retaining the possibility of asymmetry in the nonlinearities.

By use of the approximations (12) with l=n=3, equations (11) can be written

$$-\frac{L_{1}}{mV}\alpha - \frac{L_{2}}{mV}\alpha^{2} - \frac{L_{3}}{mV}\alpha^{3} - \dot{\alpha} + q = \frac{L_{\delta}}{mV}\delta$$

$$-\frac{M_{1}}{I_{y}}\alpha - \frac{M_{2}}{I_{y}}\alpha^{2} - \frac{M_{3}}{I_{y}}\alpha^{3} - \frac{M_{\alpha}^{\star}}{I_{y}}\dot{\alpha} - \frac{M_{q}}{I_{y}}q + \dot{q} = \frac{M_{\delta}}{I_{y}}\delta$$

$$(13)$$

Ė

The generalization of the methods of the preceding section to such non-linear systems proceeds in the obvious way. First, multiply each of equations (13) by N method functions  $y_{\mathbf{v}}(t)$  which have been selected as suitable. This operation is followed by integration of the resulting 2N equations. If records of the derivatives  $\dot{q}$  and  $\dot{\alpha}$  are not available, one then eliminates the terms involving these derivatives by integration by parts. The result is N equations in  $L_1, L_2, L_3$ , and  $L_6$  and N equations in  $M_1, M_2, M_3, M_3, M_3$ , and  $M_6$ . If  $N \geq 5$ , these two sets of equations can be solved by least squares for the parameters.

Of course, the pitching velocity q can be eliminated from equations (11) to yield the single equation

NACA IN 3288

$$\ddot{\alpha} - \left[ \begin{array}{c} \frac{M_{C}^{*}}{I_{y}} + \frac{M_{Q}}{I_{y}} - \frac{L^{*}(\alpha)}{mV} \end{array} \right] \ \dot{\alpha} \ - \frac{M(\alpha)}{I_{y}} - \frac{M_{Q}}{I_{y}} \ \frac{L(\alpha)}{mV} = \left( \frac{M_{S}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{I_{S}}{mV} \right) \delta \ - \frac{I_{S}}{mV} \ \dot{\delta}$$

where

$$L^{\dagger}(\alpha) = \frac{d}{d\alpha} L(\alpha)$$

With the approximations (12), this leads to the following generalization of equation (1):

$$\ddot{a} + (b_0 + b_1 \alpha + b_2 \alpha^2)\dot{a} + (k_0 + k_1 \alpha + k_2 \alpha^2)\alpha = C_0 \delta + C_1 \delta$$
 (14)

where

$$b_{0} = -\left(\frac{M_{0}^{2}}{I_{y}} + \frac{M_{Q}}{I_{y}} - \frac{L_{1}}{mV}\right) \qquad k_{0} = -\left(\frac{M_{1}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{1}}{mV}\right)$$

$$b_{1} = \frac{2L_{2}}{mV} \qquad k_{1} = -\left(\frac{M_{2}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{2}}{mV}\right)$$

$$b_{2} = \frac{3L_{3}}{mV} \qquad k_{2} = -\left(\frac{M_{3}}{I_{y}} + \frac{M_{Q}}{I_{y}} \frac{L_{3}}{mV}\right)$$

$$(15)$$

By applying the method described to equation (14), the constants  $b_0$ ,  $b_1$ ,  $b_2$ ,  $k_0$ ,  $k_1$ ,  $k_2$  can be calculated.

Solution for the parameters in equations of the general form of equation (14) is of interest to workers in many fields. In addition, the evaluation, from these parameters, of the stability constants occurring on the right sides of equations (15) is of considerable interest to aeronautical engineers, and so this problem will be considered in further detail. One cannot, in general, isolate the constants  $L_i$  and  $M_i$  to obtain, from values of the  $b_i$  and the  $k_i$ , the nonlinear functions  $L(\alpha)$  and  $M(\alpha)$ . For this reason, it is ordinarily best to apply the method directly to equations (13) rather than to equation (14), provided that records of both q(t) and  $\alpha(t)$  are available.

On the other hand, there is one case of interest when equation (14) can be used directly and measurements of q(t) are not needed. It sometimes happens that while the pitching moment  $M(\alpha)$  is nonlinear, the lift  $L(\alpha)$  can still be successfully approximated by a linear function. In this case, we have the approximations

$$L(\alpha) = L_{\alpha}\alpha$$

$$M(\alpha) = M_{1}\alpha + M_{2}\alpha^{2} + M_{3}\alpha^{3}$$
(16)

and so equation (14) becomes

$$\ddot{a} + b\dot{a} + (k_0 + k_1 \alpha + k_2 \alpha^2)\alpha = C_0 \delta + C_1 \dot{\delta}$$
 (17)

where

$$k_{O} = -\left(\frac{M_{1}}{I_{y}} + \frac{M_{q}}{I_{y}} \frac{I_{cc}}{mV}\right)$$

$$k_{1} = -\frac{M_{2}}{I_{y}}$$

$$k_{2} = -\frac{M_{3}}{I_{y}}$$
(18)

Thus in this case, M( $\alpha$ ) can, except for the term  $\frac{M_{\rm q}}{I_{\rm y}}\frac{L_{\alpha}}{{\rm mV}}$  occurring in the expression for k<sub>O</sub>, be obtained from an analysis of equation (17). At high speeds, however, this term is small and its effect on the curve of M( $\alpha$ ) versus  $\alpha$  can be neglected. Thus, the expression for k<sub>O</sub> in formulas (18) can be replaced by the expression

$$k_{O} = -\frac{M_{1}}{I_{y}} \tag{19}$$

and in this case, the nonlinear moment  $M(\alpha)$  is completely determined by the knowledge of  $k_0$ ,  $k_1$ ,  $k_2$ , and, of course,  $I_V$ .

## Choice of the Method Functions

Up to this point in the general discussion, the method functions  $y_{\nu}(t)$  have been to a very great extent arbitrary, having to satisfy only certain weak smoothness conditions. In this section, the possiblity of developing new and perhaps improved methods for data analysis by means of a particular choice of the method functions will be explored.

Previous experience, consisting in part of unpublished analyses performed at Ames Aeronautical Laboratory, have indicated that the Fourier transform method generally results in greater accuracy than either the

derivative or the Laplace transform methods. For this reason, the method to be discussed will be a variation of the Fourier transform method.

Let us consider first some evident shortcomings in the Fourier transform method. These defects will offer definite goals to be held in mind in the development of a new method. First, there is a weakness in the Fourier transform method in that all integrations proceed over the interval from zero to infinity (cf. eq. (10)). This causes difficulties in any example in which  $\alpha(t)$  and  $\delta(t)$  do not approach zero so rapidly that their integrals exist. Thus, referring, for example, to equation (1), if b is not positive or if  $\delta(t)$  does not approach zero quickly enough, the method cannot be applied straightforwardly. Furthermore, even if b > 0 and  $\delta(t) \rightarrow 0$  in such a way that  $\int_{-\infty}^{\infty} \alpha(t) dt$  exists, the experimental record often is not long enough for this integral to be accurately calculable when the system is so lightly damped (b small) that sizable oscillations persist even to the end of the run. One device which is sometimes used to overcome this difficulty is equivalent to a change in the method functions. Instead of the functions sin wt and cos  $\omega t$ , the functions  $e^{-\beta t}$  sin  $\omega t$  and  $e^{-\beta t}$  cos  $\omega t$ , with some fixed constant  $\beta$ , are used. However, this leads to the same objection that was voiced in footnote 1 for the derivative and Laplace transform methods, notably that the method functions approach zero. Other tricks for dealing with such deficiencies in the Fourier transform method can be evolved, but, rather than develop new devices for each special case. it appears wiser to construct a generally applicable method in which these difficulties never arise - that is, one in which the integration proceeds only over a finite interval.

The second defect which we shall consider becomes clear from an inspection of equation (10), with the functions  $y_V(t)$  of the form  $\sin \omega t$  and  $\cos \omega t$  for certain values of  $\omega$ . Referring to equation (10), it is easily seen that one point, namely the point t=0, is weighted very heavily because of the occurrence of the quantities  $\alpha(0)$ ,  $\dot{\alpha}(0)$ , and  $\delta(0)$ . It should be noted that not only are the values of  $\alpha(t)$  and  $\delta(t)$  at one point relied on to this great extent, but that even the relatively inaccurate value of the derivative of  $\alpha(t)$  at that point is weighted. Thus, advantages in accuracy might be expected to accrue if these terms were eliminated.

Since the method for overcoming this second deficiency in the Fourier transform method will also be used in treating the first, the problem of eliminating dependence on the initial values will be discussed now. To this end, consider equation (10). We begin with the Fourier transform

¹It would seem that no rational explanation for this conclusion has heretofore been offered. However, the theory described herein appears to afford such an explanation. A long and rather tedious analysis based on this theory has indicated that the failure of both the derivative and the Laplace transform methods is due in large part to the fact that the associated method functions approach zero very rapidly as time progresses.

method, that is, with method functions  $y_{\nu}(t)$  of the forms  $\sin \omega t$  and  $\cos \omega t$ . Noting that most-of the terms which depend on the initial values at  $t\equiv 0$  are multiplied by  $y_{\nu}(0)$ , it is seen that a choice of method functions such that  $y_{\nu}(0)$  is zero for all  $\nu=1,2,\ldots,N$  represents a step in the right direction. Such a choice is easy to make, since it is only necessary to eliminate those method functions which have the form  $\cos \omega t$ ; then, we may write

$$y_{V}(t) = \sin \omega_{V}t, \quad V = 1, 2, ..., N$$
 (20)

This does not entirely eliminate the dependence on the initial conditions, however, as the term  $\dot{y}_{\mathbf{V}}(0)\alpha(0)$  remains in equation (10). If this term can also be removed, the second weakness in the Fourier transform method will have been entirely corrected. This will clearly be the case if  $\dot{y}_{\mathbf{V}}(0)$  as well as  $y_{\mathbf{V}}(0)$  is zero for all  $\nu=1,\ldots,N$ . A possible choice of the method functions for which this is so, a choice which still retains the advantages of the favored Fourier transform method, is the following:

$$y_{\nu}(t) = \sin^2 \omega_{\nu} t = \frac{1 - \cos 2\omega_{\nu} t}{2}, \quad \nu = 1, ..., N$$
 (21a)

With this choice of the method functions, equation (10) becomes

$$- b \int_{0}^{\infty} \alpha(t) \dot{y}_{V}(t) dt + k \int_{0}^{\infty} \alpha(t) y_{V}(t) dt - C_{0} \int_{0}^{\infty} \delta(t) y_{V}(t) dt + C_{1} \int_{0}^{\infty} \delta(t) \dot{y}_{V}(t) dt = - \int_{0}^{\infty} \alpha(t) \dot{y}_{V}(t) dt$$
(22)

The method functions (21a) would be used for systems satisfying differential equations, like (1), which involve derivatives of the second order. More generally, and for the same reasons, if the highest order derivative occurring in any of the equations of motion of a system is the nth, the following method functions are suggested:

$$y_{\nu}(t) = \sin^n \omega_{\nu}t, \quad \nu = 1, \dots, N$$
 (21b)

Thus, in the case of the two-degrees-of-freedom system described by equations (13), there is no point in using formula (21a); the simpler method functions (20) may as well be used.

As for the first of the weaknesses in the Fourier transform method, that which is due to integration over an infinite interval, it would

NACA TN 3288 15

appear at first glance to be easily disposed of by merely choosing some finite, positive number T and integrating over the interval from zero to T. This, however, introduces another difficulty. Suppose  $y_V(t)$  is given by equation (21a), so that  $y_V(0) = \dot{y}_V(0) = 0$ . Returning to the derivation of equation (10), it may be seen that if one integrates only over the interval  $0 \le t \le T$ , all the good which has been achieved by eliminating dependence on the point t = 0 is obviated by certain terms which arise - terms of the form  $y_V(T)\alpha(T)$ ,  $y_V(T)\alpha(T)$ , and  $y_V(T)\delta(T)$ . Thus, the heavy dependence on the initial conditions is replaced by a dependence on the final conditions. Of course, the same approach as was used for eliminating the initial conditions can be used again - that is, the method functions can be chosen in such a way that  $y_V(T) = \dot{y}_V(T) = 0$ . One possibility, naturally, is to choose the frequencies  $\omega_V$  such that

$$\sin \omega_{\mathbf{v}} T = 0, \quad \mathbf{v} = 1, \dots, N$$

Thus, we can set

$$\omega_{\mathbf{V}} = \frac{\mathbf{V}\pi}{\mathbf{m}}, \quad \mathbf{V} = 1, \dots, N$$

This choice of the frequencies (corresponding to the method functions given by equation (21b)) leads to an elegant method which gives satisfactory results in certain cases. On the other hand, the difference  $\left(\frac{\pi}{T}\right)$  between two successive frequencies is too large to define the "frequency response" (to use loosely the terminology of the Fourier transform) of some examples adequately. For this reason, we should like to be able to choose the frequencies as follows:

$$\omega_{\mathcal{V}} = \frac{\nu \pi}{2T}, \qquad \nu = 1, \dots, N \tag{23}$$

Of course, this means that for frequencies having an odd subscript,  $y_{V}(T)$  will be different from zero. To overcome this difficulty, the following choice of the method functions can be made: If the highest derivative occurring in the equations of motion is the nth, define the method functions by the formulas

$$y_{2\mu}(t) = \sin^{n} \omega_{2\mu} t$$

$$y_{2\mu+1}(t) = \begin{cases} \sin^{n} \omega_{2\mu+1} t, & 0 \le t \le \frac{2\mu}{2\mu+1} T \\ 0, & \frac{2\mu}{2\mu+1} T < t \le T \end{cases}$$
(24)

where the frequencies  $\omega_{V}$  are given by equation (23) and T is the length of the run. What has been done in choosing these method functions is the following: Those method functions which are such that  $y_{V}(T)$  is zero (i.e., those method functions which have even subscripts), have been left unaltered in the form given by equation (21b). The remaining method functions have had the last quarter cycle, during which they would normally have varied from 0 to  $\pm 1$ , chopped off, so that they are identically zero over part of the interval  $0 \le t \le T$ . The claim is not made that this is the best of all possible choices for the method functions. There is certainly no reason for such an assertion, particularly in view of the fact that a certain amount of the data is not used by each of the odd-numbered method functions. However, this amount is small after all and no datum is completely discarded, since the even-numbered method functions use all the data. That these method functions do seem to be adequate is indicated by the results obtained in the examples given below.

Before-proceeding to the examples, one further change, imposed in the interest of simplicity in the computations, will be made in the method functions. For the odd-numbered method functions, certain complications arise in the computations due to the fact that the point  $(2\mu/2\mu+1)T$  at which the function is cut-off may not coincide-with a point at which the data are tabulated. For this reason, values of even-numbered frequencies will be chosen in accordance with equation (23). The odd-numbered frequencies, on the other hand, will be changed (by as little as possible, to be sure) in such a way that the following condition is satisfied. Let the data be tabulated at the points  $t = t_0, t_1, \ldots, t_K$ , where  $t_{k+1} - t_k = \text{constant}$ . The odd-numbered frequencies are then assumed to be chosen such that

# $\sin \omega_{2u+1} t_{\alpha} = 0$

where  $t_{\rm C}$  is that one of the two tabulation instants closest to the time  $(2\mu/2\mu+1)T$  having an even subscript. The reason for this last condition is merely that it is convenient for a numerical integration procedure (such as the one in the Appendix) to have an even number of intervals  $(t_k, t_{k+1})$ ; thus, Simpson's rule, for example, calls for an even number of intervals in its application.

For many of the experiments performed on airplanes and missiles, the run is 2 seconds long and the time between tabulated points is 0.05 second, so that the tabulation times  $t_{\alpha}$  are at 0, 0.05, 0.10, . . ., 2.00 seconds. For these values of T and  $\Delta t$ , the rule given above for the frequencies  $\omega_{\alpha}$  is climaxed by the following table:

| ν  | 2   | 3         | 4 | 5  | 6           | 7                | 8  | 9               | 10             | 11              | 12 | 13       | 14             | 15        | 16 |
|----|-----|-----------|---|----|-------------|------------------|----|-----------------|----------------|-----------------|----|----------|----------------|-----------|----|
| ων | KIN | 10π<br>13 | π | 54 | <u>ა</u> [ა | <u>30π</u><br>17 | 2π | <u>20π</u><br>9 | <u>5π</u><br>2 | <u>25л</u><br>9 | 3π | 10π<br>3 | <u>7π</u><br>2 | 70л<br>19 | 4π |

NACA IN 3288

The frequency  $\omega_1$  has been omitted from the table since, according to the rule for the determination of the method functions,  $y_1(t) \equiv 0$  (see eq. (24), ff.) and offers no information. A 2-second interval will be taken as standard in this report, and all computations will be based on such an interval. If one has a data run T seconds in length, it can of course be brought into this standard form by a preliminary substitution of the form

$$t = \frac{T}{2} \tau$$

and we always assume such a transformation has been made.

Thus, finally, the method may be summarized as follows: Select N frequencies in accordance with the rule given in the preceding paragraph. (The number N is chosen, as in the Fourier transform method, large enough to cover the frequency range of interest in the particular problem; usually, N = 16 is adequate.) Multiply the equations of motion by the method functions (24) and integrate the resulting equations from zero to T, where T denotes the length of the data run. Eliminating all explicit dependence of these equations on derivatives of the data by successive integrations by parts results in N linear simultaneous equations for the parameters. The coefficients in these equations are all integrals involving the recorded data; after these have been evaluated by some means, the equations can be solved by least squares for the desired parameters.

## EXAMPLES

Three example problems will be solved in order to demonstrate the effectiveness of the proposed analysis method and to illustrate associated computing techniques. An effort was made to select examples representative of problems which often occur in aircraft-response flight testing and which have not been handled adequately by other known analysis methods. These examples have been simplified in some respects, not because of fundamental limitations of the method, but in order to avoid obscuring the essentials of the method and of the related computing techniques.

Although limited use was made of automatic digital computing machinery in the following analyses, it did not appear worthwhile to mechanize complete calculation procedures for these isolated illustrative examples. However, the method appears to be well suited to such mechanization.

<sup>&</sup>lt;sup>2</sup>See, for example, the Appendix, where a technique well suited for the type of integrations needed for this method is described.

# Example I

The first example concerns the longitudinal response of a hypothetical missile for which it is assumed that the lift varies linearly with angle of attack, although the pitching moment does not. The velocity of the missile is assumed to be sufficiently high for the expression (18) for  $k_{\rm O}$  to be simplified to

$$k_0 = -\frac{M_1}{I_y}$$

so that equation (17) can be used to determine the lift and moment characteristics from a transient response. A pulse response of a system described by equation (17) was obtained from a Reeves Electronic Analogue Computer and it was decided to consider this response as given data to be analyzed. The moment of inertia of the missile was chosen to be 100 slugfeet. The nonlinear moment curve  $M(\alpha)$  versus  $\alpha$  which was used to obtain the data is shown as the solid curve in figure 1. The linear stability derivatives were chosen in such a way that the damping parameter is given by

$$b = 2 \tag{25}$$

In order to simplify the presentation, it was decided that free oscillations alone would be analyzed to determine only the constants occurring on the left-hand side of equation (17). Thus, for the data which will be analyzed,  $\delta(t)=0$ , and equation (17) becomes

$$\ddot{a} + b\dot{a} + (k_0 + k_1 a + k_2 a^2)a = 0$$
 (26)

A plot of the a(t) "data" is given in figure 2, and this information is listed in table I.

Since equation (26) is of the second order, we shall choose, according to the rule given earlier, the method functions (24) with n=2; since the run is 2 seconds long and the time interval between data points is 0.05 second, the frequencies  $\omega_{V}$  are chosen as in the table on page 16.

Integrating factors  $\Gamma_n(y_v)$  corresponding to each function  $y_v(t)$  and its first two derivatives are tabulated in columns 6 through 50 of table I. (As discussed in the Appendix, the  $\Gamma_n(y_v)$  are numbers chosen such that for any integrable function x(t), the sum

$$\sum_n \ x(t_n) \Gamma_n(y_{\boldsymbol{\nu}})$$

is an approximation to the integral of  $x(t)y_{\psi}(t)$ .) Accordingly, the sums displayed beneath table I are the integrals needed for the reduction of the data, divided by the factor  $\Delta t = 0.05$ . Since this factor occurs homogeneously throughout the equations from which the parameters are to be found (i.e., the generalization of eqs. (22) to the nonlinear eq. at hand), it can be divided out of these equations, and the sums can be used directly without first multiplying them by  $\Delta t$ .

NACA TN 3288

In accordance with the method as it has been described, the equations which are to be solved by least squares have the form

$$\frac{1}{0.05} \left[ -b \int_{0}^{2} \alpha(t) \dot{y}_{\nu}(t) dt + k_{0} \int_{0}^{2} \alpha(t) y_{\nu}(t) dt + k_{1} \int_{0}^{2} \alpha^{2}(t) y_{\nu}(t) dt + k_{2} \int_{0}^{2} \alpha^{3}(t) y_{\nu}(t) dt \right] = -\frac{1}{0.05} \int_{0}^{2} \alpha(t) \ddot{y}_{\nu}(t) dt$$

The sums below table I are needed for the evaluation of the coefficients of b,  $k_0$ ,  $k_1$ , and  $k_2$  in the above equation. These sums are again listed in table II, and the coefficients in the last equation are set down as columns 4, 5, 6, 7, and 9 of table II. The sums displayed beneath table II are needed for the final least squares step of the solution. Using these sums, it can be seen that the following equations are to be solved for the parameters:

$$24.1669 \text{ b} - 1.05270 \text{ k}_0 - 0.336760 \text{ k}_1 - 0.0140294 \text{ k}_2 = -7.01790$$
 $-1.05270 \text{ b} + 0.885340 \text{ k}_0 + 0.144127 \text{ k}_1 + 0.00906192 \text{ k}_2 = 45.5226$ 
 $-0.336760 \text{ b} + 0.144127 \text{ k}_0 + 0.0374138 \text{ k}_1 + 0.00189656 \text{ k}_2 = 7.00244$ 
 $-0.0140294 \text{ b} + 0.00906192 \text{ k}_0 + 0.00189656 \text{ k}_1 + 0.000108975 \text{ k}_2 = 0.459829$ 

$$(27)$$

It may seem odd to some that four significant figures have been used in table II for the values of the integrals and six significant figures for the coefficients in equations (27), while the test data are not given to more than three significant figures. The reason for carrying more significant figures in the computations than there are in the data is to avoid eventual loss of accuracy due to round-off errors and other errors of a similar type. This procedure of carrying a few more (fictitious) figures than the data supply is usually necessary in order to retain even the basic information which is in the data.

Solving equations (27) gives

$$b = 1.95$$

$$k_0 = 50.4$$

$$k_1 = -30.5$$

$$k_2 = 806$$
(28)

The only parameter whose numerical value is given and which can be immediately checked is the damping parameter. Comparing the values of b given in equations (25) and (28), we see that it has been found with an error of 2.5 percent. The constants  $k_0$ ,  $k_1$ ,  $k_2$  cannot be checked directly; however, the calculated pitching-moment curve

$$M(\alpha) = -I_y(k_0\alpha + k_1\alpha^2 + k_2\alpha^3)$$
$$= -5040 \alpha + 3050 \alpha^2 - 80600 \alpha^3$$

can be plotted and compared with the true curve from which we started. This has been done in figure 1 from which it can be seen that the error at the least accurate point is less than 3 percent.

It should be noted that the values of  $\Gamma_n(y_{\boldsymbol{\nu}})$  given in table I can be used to solve any problem of the type considered here which depends on a second-order differential equation or on a system of such equations. If the data run is 2 seconds long, it is only necessary to insert the data in table I in place of the data used in this example and proceed as we have just done. As mentioned earlier, if the data run is more or less than 2 seconds long, it is only necessary to make a preliminary transformation of the time scale so that in the new time scale the data run is 2 seconds long, a process illustrated in example II.

# Example II

The first example served to illustrate the application of the method to an equation of the form (14), corresponding in the missile pitch-response problem to the case where only  $\alpha(t)$  and  $\delta(t)$  are measured. A problem involving equations, like (13), of the first order, corresponding to the case where q(t) is available in addition to  $\alpha(t)$  and  $\delta(t)$ , will be illustrated now.

NACA TN 3288 21

As in example I, the lift force will be assumed linear and the pitching moment nonlinear. The following parametric values were assumed:

$$m = 2$$
  $I_{CC} = 1000$   $V = 750$   $M_{CC}^* = -200$   $M_{QC} = -500$  (29)

The nonlinear  $M(\alpha)$  is plotted as the solid curve in figure 3. It should be noted that in contrast to the first example, the pitching moment is unstable at  $\alpha=0$  and highly nonlinear.

The "test data" were manufactured by determining a pulse response of this missile on the REAC. Again, the control characteristics of the system will not be considered, so that only free oscillations are shown in figure 4.

Merely to have a standard length of run, a 2-second interval was always selected for the calculation of the integrating factors  $\Gamma_n(y_{\boldsymbol{\nu}})$  (see the Appendix for the definition of these quantities). To illustrate the computation procedure for data runs of different lengths, a 1-second run will be considered in the present example.

In order to use the integrating factors displayed in table III, it is necessary to make a preliminary transformation of the form

$$t = \frac{\tau}{2}$$

This transformation has the following effect on equations (13):

$$-\frac{L_{I}}{mV}\alpha - \frac{L_{2}}{mV}\alpha^{2} - \frac{L_{3}}{mV}\alpha^{3} - 2\frac{d\alpha}{d\tau} + q = \frac{L_{\delta}}{mV}\delta$$

$$-\frac{M_{I}}{I_{y}}\alpha - \frac{M_{2}}{I_{y}}\alpha^{2} - \frac{M_{3}}{I_{y}}\alpha^{3} - 2\frac{M_{\alpha}}{I_{y}}\frac{d\alpha}{d\tau} - \frac{M_{q}}{I_{y}}q + 2\frac{dq}{d\tau} = \frac{M_{\delta}}{I_{y}}\delta$$
(30)

Recalling that for the problem under discussion,  $L_1 = L_{C}$ ,  $L_2 = L_{3} = 0$ ,  $\delta(t) = 0$ , it can be seen from equations (30) that the equations to be solved by least squares for the parameters have the forms

$$-\frac{L_{\infty}}{mV}\int_{0}^{2}\alpha(\tau)y_{\nu}(\tau)d\tau+2\int_{0}^{2}\alpha(\tau)\frac{dy_{\nu}(\tau)}{d\tau}d\tau+\int_{0}^{2}q(\tau)y_{\nu}(\tau)d\tau=0$$

and

$$-\frac{M_{1}}{I_{y}}\int_{0}^{z}\alpha(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau - \frac{M_{2}}{I_{y}}\int_{0}^{z}\alpha^{2}(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau - \frac{M_{3}}{I_{y}}\int_{0}^{z}\alpha^{3}(\tau)y_{\boldsymbol{\nu}}(\tau)\mathrm{d}\tau +$$

$$2 \frac{M_{\alpha}^{2}}{I_{y}} \int_{0}^{2} \alpha(\tau) \frac{dy_{\gamma}(\tau)}{d\tau} d\tau - \frac{M_{q}}{I_{y}} \int_{0}^{2} q(\tau)y_{\gamma}(\tau)d\tau - 2 \int_{Q}^{2} q(\tau) \frac{dy_{\gamma}(\tau)}{d\tau} d\tau = 0$$

The "data" of figure 4 are presented as functions of  $\tau$  in table III. The sums, which when multiplied by  $\Delta \tau = 0.05$  approximate the integrals in the last two equations, are given below table III. These sums have been listed in the appropriate places in table IV. With circled numbers referring to columns in table IV, it can be seen that the above two equations are equivalent to the following:

Hence,

$$L_{cc} = mV \frac{2\Sigma \otimes \times \otimes + \Sigma \otimes \times \otimes}{\Sigma \otimes^{2}}$$

or

$$L_{\alpha} = 1033$$

using the given values of m and V (eqs. (29)), while the equations for the moment parameters are

When the sums displayed below table TV are inserted in the appropriate places, the resulting equations can be solved to yield

$$\frac{M_1}{I_y} = 521$$

$$\frac{M_2}{I_y} = -42.3$$

$$\frac{M_3}{I_y} = -197,000$$

$$2 \frac{M_0}{I_y} = 38.66$$

$$\frac{M_2}{I_y} = -26.7$$

Hence, using the value of  $I_{y}$  given in equations (29),

$$M_1 = 5.21 \times 10^4$$
  $M_{\alpha} = 1930$   $M_{q} = -2670$   $M_{g} = -1.97 \times 10^7$  (31)

To begin our discussion of these values, consider  $L_{\alpha}$ . A comparison of the values given for  $L_{\alpha}$  by equations (29) and (31) shows that  $L_{\alpha}$  has been found within 3.2 percent. The nonlinear pitching moment

$$M(\alpha) = (5.21 \times 10^4)\alpha - (4.23 \times 10^3)\alpha^2 - (1.97 \times 10^7)\alpha^3$$

has been superposed as the dotted curve on the true moment curve in figure 3. As can be seen, the agreement for this strongly nonlinear problem is excellent. Finally, the errors in the calculated values of known and easily explained. Consider equations (13) which describe the motion. Eliminating q from these equations results in equation (14); since the lift is linear,  $b_1 = b_2 = 0$ . The constant bo, on which  $M_q$ and Mo have their principal effect, is easily interpreted physically as a measure of the damping in the system. The other gross aspects of the response are relatively little affected by either Mq or Ma. However, the important quantity in bo is not Mq or Ma alone, but is their sum,  $M_{\rm Q}$  +  $M_{\rm C}$ . In other words, relatively large changes in  $M_{\rm Q}$  and  $M_{\rm C}$ are possible without causing any great change in the motion, just so long as their sum remains constant. Thus, one may not expect to find Mq and Ma accurately from an experiment such as this - only their sum may be relied upon. This is verified in the present example, since equations (29) give the sum

$$M_{Q} + M_{C} = -700$$

NACA TN 3288 25

while equations (31) give

$$M_{Q} + M_{CC} = -740$$

These two values differ by only 5.7 percent.

It should be noted that the assumption, which has been made in this and the preceding example, of the linearity of the lift is not necessary. If it is suspected that the lift is linear but if no definite verification of this is available, a nonlinear form such as (12) can be assumed for the lift, and the coefficients  $L_1, L_2, L_3, \ldots$ , can be calculated. If the lift is indeed linear, it should turn out that  $L_2, L_3, \ldots$ , are small. Some limited experience has shown that this method does work but that the errors in the calculated parameters are somewhat larger than when the correct form is assumed. The reason for this is not known, but it appears that it may be associated with a tendency of the extraneous parameters  $L_2$  and  $L_3$  to fit the lift curve to that corresponding to the original data, errors and all, at the expense of the smoothing operation which is necessary with this type of data and which is performed by the least squares process when the correct form is assumed.

# Example III

We turn, finally, to a system described by a differential equation whose order is higher than the second. Since the higher order systems whose occurrence is most common appear to be those of the fourth order, we shall be concerned with such a system. In order to simplify the presentation, a linear system will be considered; there are no conceptual difficulties in the generalization to the nonlinear case. In addition, it will be assumed for simplicity that free oscillations are available for analysis. Thus, the system to be analyzed is assumed to be described by an equation of the form

$$\frac{d^4x}{dt^4} + a_3 \frac{d^3x}{dt^3} + a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0x = 0$$
 (32)

A solution of this equation was calculated over the interval from 0 to 2 seconds, for the following values of the coefficients a:

$$a_0 = 2544.9$$
  $a_1 = 219.32$   $a_2 = 132.87$   $a_3 = 2.000$ 

The result, representing the free oscillations in response to some disturbance, is tabulated in table V and presented graphically as the solid curve in figure 5. The sums needed for the solution of the problem are displayed below table V and again in table VI. The least-squares equations for the parameters are

24.2035 
$$a_0 - 16.7225$$
  $a_1 - 1098.19$   $a_2 + 1603.19$   $a_3 = -81036.4$ 

$$-16.7225 a_0 + 855.538$$
  $a_1 + 664.495$   $a_2 - 82282.3$   $a_3 = 85777.1$ 

$$-1098.19$$
  $a_0 + 664.495$   $a_1 + 77898.7$   $a_2 - 94741.8$   $a_3 = 7533580$ 

$$1603.19$$
  $a_0 - 82282.3$   $a_1 - 94741.8$   $a_2 + 8523670$   $a_3 = -10567800$ 

Solving these equations gives

$$a_0 = 3098.7$$
  $a_1 = 374.93$   $a_2 = 141.29$   $a_3 = 3.367$ 

It can be seen that these numbers are correct only to within orders of magnitude. On the other hand, it is not these coefficients which have direct physical significance; rather, it is the damping and frequency of each of the components making up the oscillation which are important. In order to find these numbers, the following equation was set up

$$\lambda^4 + 3.367 \lambda^3 + 141.29 \lambda^2 + 374.93 \lambda + 3098.7 = 0$$

and solved to find the roots:

$$\lambda = \begin{cases} -0.046 \pm 10.7 \text{ i} \\ -1.64 \pm 4.96 \text{ i} \end{cases}$$

The true roots are obtained by solving the equation

$$\lambda^4 + 2.000 \lambda^3 + 132.87 \lambda^2 + 219.32 \lambda + 2544.9 = 0$$

This gives

$$\lambda = \begin{cases} \pm 10.5 i \\ -1.00 \pm 4.71 i \end{cases}$$

Thus, the frequencies of the oscillation have been found quite accurately, as has the damping parameter of the undamped component. The only large effect of the errors in the coefficients  $a_0$ ,  $a_1$ ,  $a_2$ , and  $a_3$  is in the damping of one of the components. The apparent ill-conditioning of the problem with respect to this parameter is not too surprising, for after all, either the true or calculated value of this damping is large enough that the corresponding component of the motion is masked by the undamped component over a good part of the run. This may be seen best, perhaps, from figure 5 in which the solution of equation (32), using both the true and calculated values of the parameters, has been plotted. It can be seen that the two curves do not differ by very much, indicating that the fit could not be much improved.

#### CONCLUDING REMARKS

A general theory of the so-called "equations-of-motion" methods for the analysis of dynamical systems has been presented. It has been shown that, when looked at from a new point of view, all such methods can be generalized so as to apply to linear and nonlinear systems alike. Using this theory, it has also been shown how new methods can be developed in order to satisfy the requirements of particular problems.

One new method has been described in detail. In certain cases, it reduces to one which is very similar to the well-known Fourier transform method (ref. 3) but in all cases has certain advantages over this latter method and over other methods heretofore used. Its superiority is based on two facts. First, there is the heavy dependence on the initial conditions which occurs when using most of the previously known equations-of-motion methods; this dependence is entirely eliminated in the new method. This superiority manifests itself particularly when systems of higher order than the second are considered. If, for definiteness, a fourth-order system is considered, before the Fourier transform method (for example) can be applied, it is necessary to evaluate the test data and their first three time derivatives at the initial point. Accurate evaluation of all these derivatives is practically impossible, however, with the type of data obtained from most aerodynamic experiments.

The second fact upon which the superiority of the proposed method rests is that most of the equations-of-motion methods used to this time demand an infinitely long record for their rigorous application. For some years now, questions about the errors introduced into an analysis

of a system by the finite length of records available have been asked, but answers have not been offered. The second principal advantage of the method described herein is that such questions are side-stepped completely: There is no error at all from this source, since it is assumed from the start that only a finite record is available. Because of this feature, the method avoids a further limitation of the Fourier transform method (apparently the most accurate of all well-known methods of this type), which cannot be applied at all to some systems (e.g., unstable ones) without time-consuming and sometimes ineffective special devices, since the Fourier integrals of the data simply do not exist.

The single exception to these remarks is the derivative method (refs. 2 and 3). The derivative method does not weight the initial comditions and does not depend on an infinite-interval for its application. In addition, the derivative method has in the past been considered as the only well-known method which applies to nonlinear as well as linear systems. (Other methods are described in references 2 and 10, but the derivative method appears to be the only one with such general applicability as we are discussing here.) There are, however, a number of very serious objections to the derivative method. First of all, there is the inordinate amount of time and labor which must be expended in its application, principally because of the necessity for calculating time derivatives of the data. Second, and most important, is the question of accuracy. The accurate calculation of the derivatives needed for the method is most-difficult, and this calculation is a large source of error. Besides, even if the derivatives could be computed with the requisite accuracy, the derivative method appears often to lead to badly conditioned equations, as pointed out in reference 2; because of this, many problems have been found for which the derivative method has been shown to lead to extremely large errors. The method proposed herein is subject to none of these weaknesses. The time required for its application is far less than that needed for the derivative method; in addition, it appears to be well suited to machine computation. Naturally, derivatives need not be calculated, and the method shares the properties of the Fourier transform method which cause it to lead to fairly wellconditioned equations.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., July 14, 1954

#### APPENDIX

NUMERICAL EVALUATION OF INTEGRALS OF THE FORM 
$$\int_{a}^{b} x(t)y(t)dt$$

In 1928, Filon (ref. 8 - see also ref. 9, pp. 67-72) published a generalization of Simpson's rule for evaluation of integrals of the form

$$\int_{a}^{b} x(t) \sin \omega t dt$$

$$\int_{a}^{b} x(t) \cos \omega t dt$$

where x(t) represents numerical data. Filon's method, in contrast to Simpson's, has the distinction of giving results whose errors are independent of the frequency  $\omega$ , depending only on how closely x(t) can be fitted to a sequence of parabolas. This method will be generalized to apply to integrals of the form

$$\int_{a}^{b} x(t)y(t)dt$$

where y(t) is known exactly (for application to the method described in the body of this report, y(t) is one of the method functions), while x(t) is given tabularly.

Suppose the interval (a,b) is divided into 2h equal parts by points  $t_0=a < t_1 < \ldots < t_{2h}=b$ , where  $t_{n+1}$  -  $t_n=\Delta t$  = constant. Then, a formula of the form

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{x}(t)\mathbf{y}(t)dt \approx \Delta t \sum_{n=0}^{2\mathbf{h}} \Gamma_{n}(\mathbf{y})\mathbf{x}(t_{n})$$
 (33)

will be sought, where the  $\Gamma_n$  are constants which depend only on the function y. These constants will be determined by the condition that the formula (33) will give the integral exactly in the cases where x(t) is a constant, a linear function or a quadratic function of t. Suppose first that the interval (a,b) is divided into two parts only by points  $t_0$ ,  $t_1$ , and  $t_2$ ; since formula (33) is to be exact if x(t) = 1,  $(t - t_1)$ , or  $(t - t_1)^2$ , we have

$$\Gamma_{O}(y) + \Gamma_{I}(y) + \Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} y(t)dt$$

$$- (\Delta t)\Gamma_{O}(y) + (\Delta t)\Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} (t - t_{1})y(t)dt$$

$$(\Delta t)^{2}\Gamma_{O}(y) + (\Delta t)^{2}\Gamma_{2}(y) = \frac{1}{\Delta t} \int_{t_{O}}^{t_{2}} (t - t_{1})^{2}y(t)dt$$

Equations (34) can be solved for  $\Gamma_0$ ,  $\Gamma_1$ ,  $\Gamma_2$  to obtain

$$\Gamma_{0}(y) = \frac{1}{2(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt - \frac{1}{2(\Delta t)^{2}} \int_{t_{0}}^{t_{2}} (t - t_{1}) y(t) dt$$

$$\Gamma_{1}(y) = \frac{1}{\Delta t} \int_{t_{0}}^{t_{2}} y(t) dt - \frac{1}{(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt$$

$$\Gamma_{2}(y) = \frac{1}{2(\Delta t)^{3}} \int_{t_{0}}^{t_{2}} (t - t_{1})^{2} y(t) dt + \frac{1}{2(\Delta t)^{2}} \int_{t_{0}}^{t_{2}} (t - t_{1}) y(t) dt$$

$$(35)$$

Now, if (a,b) is divided into 2h(>2) parts, the integral is written as follows:

$$\int_{a}^{b} x(t)y(t)dt = \int_{t_{0}}^{t_{2}} x(t)y(t)dt + \int_{t_{2}}^{t_{4}} x(t)y(t)dt + \dots + \int_{t_{2h-2}}^{t_{2h}} x(t)y(t)dt$$
(36)

ì

and equations (35) can be used to evaluate each of the integrals on the right-hand side. Calling

$$J_{\rho}(y) = \frac{1}{\Delta t} \int_{t_{\rho-1}}^{t_{\rho+1}} y(t)dt$$

$$K_{\rho}(y) = \frac{1}{2(\Delta t)^2} \int_{t_{\rho-1}}^{t_{\rho+1}} (t - t_{\rho})y(t)dt$$

$$L_{\rho}(y) = \frac{1}{2(\Delta t)^3} \int_{t_{\rho-1}}^{t_{\rho+1}} (t - t_{\rho})^2 y(t) dt$$

we obtain from (33), (35) and (36) that

$$\int_{a}^{b} x(t)y(t)dt \approx \Delta t \sum_{n=0}^{2h} r_{n}(y)x(t_{n})$$

where

$$\Gamma_{O}(y) = L_{1}(y) - K_{1}(y)$$

$$\Gamma_{2\rho-1}(y) = J_{2\rho-1}(y) - 2L_{2\rho-1}(y), \ \rho = 1, 2, \dots, h$$

$$\Gamma_{2\rho}(y) = L_{2\rho-1}(y) + K_{2\rho-1}(y) + L_{2\rho+1}(y) - K_{2\rho+1}(y),$$

$$\rho = 1, 2, \dots, h - 1$$

$$\Gamma_{2h}(y) = L_{2h-1}(y) + K_{2h-1}(y)$$
(37)

It should be noted that if y(t) is identically unity,

$$J_{\rho}(1) = 2$$

$$K_0(1) = 0$$

$$L_p(1) = 1/3$$

where the relations  $t_{\rho-1}=t_{\rho}-\Delta t$ ,  $t_{\rho+1}=t_{\rho}+\Delta t$  have been used repeatedly. Hence, from equations (37),

$$\Gamma_{o}(1) = 1/3$$

$$\Gamma_{2\rho-1}(1) = 4/3, \ \rho = 1, 2, \dots, h$$

$$\Gamma_{2\rho}(1) = 2/3, \ \rho = 1, 2, \dots, h-1$$

$$\Gamma_{2h}(1) = 1/3$$

which exactly describes Simpson's rule.

Equations (37), with y(t) being chosen equal to the method functions, were used to calculate the numbers displayed in tables I, III, and V.

## REFERENCES

- 1. Oswald, Telford W.: The Effect of Nonlinear Aerodynamic Characteristics on the Dynamic Response to a Sudden Change in Angle of Attack. Jour. Aero. Sci., vol. 19, no. 5, May 1952, pp. 302-316.
- Briggs, Benjamin R., and Jones, Arthur L.: Techniques for Calculating Parameters of Nonlinear Dynamic Systems From Response Data. NACA TN 2977, 1953.
- 3. Greenberg, Harry: A Survey of Methods for Determining Stability Parameters of an Airplane from Dynamic Flight Measurements.

  NACA TN 2340, 1951.
- 4. Shinbrot, Marvin: A Description and a Comparison of Certain Nonlinear Curve-Fitting Techniques, With Applications to the Analysis of Transient-Response Data. NACA TN 2622, 1952.
- Milliken, William F., Jr.: Dynamic Stability and Control Research. (Presented at Third International Joint Conference of R.A.S. -I.A.S., Brighton, England, Sept. 3-14, 1951). Cornell Aero. Lab., Inc., CAL-39. (Also issued in Anglo-Amer. Aero. Conf. Rep., 1952, pp. 447-524.)
- 6. Whittaker, Sir Edmund, and Robinson, G.: The Calculus of Observations; a Treatise on Numerical Mathematics. Fourth ed., Blackie and Son., Ltd., London, 1944.
- 7. Churchill, Ruel V.: Modern Operational Mathematics in Engineering.
  McGraw-Hill Book Co., Inc., 1944.
- 8. Filon, L. N. G.: On a Quadrature Formula for Trigonometric Integrals. Proc. Roy. Soc. Edinburgh, vol. XLIX, 1928-9, pp. 38-47.
- 9. Tranter, C. J.: Integral Transforms in Mathematical Physics. John Wiley and Sons, Inc., 1951.
- 10. Klotter, K.: The Attenuation of Damped Free Vibrations and the Derivation of the Damping Law from Recorded Data. Stanford Univ., Div. of Eng. Mech., Contract N6-onr-251. Tech. Rept. 23, Nov. 1, 1953.

TABLE 1.- CALCULATIONS OF THE INTEGRALS WEEDED FOR EXAMPLE I

| ¥Ç₹~~_                                 | N <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jese d                                 | ge sreden                              | pich the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at mentos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | edt meto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Оъет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                           |                                             |                                                                                              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|
| 300E<br>08820<br>SEČE00                | , ⊊69 <b>4*</b> ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ደፐፕ፡<br>የ፲፻ኯዕ.<br>803£00.                                                  | £066°~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46QZ°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 594E00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 060≤                                   | 89 <b>2</b> 0°1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 550E.<br>37440.<br>E8E500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6η <b>ξ</b> ⊊•τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | тт61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ST81<br>695#0.<br>207000. | £क्रा⊈∙ र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1512.                                  | \$00000<br>₩61£0<br>9₩£T••             | 4278.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | т960°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ελεεο.<br>ελεεο.<br>εξοσοο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (O) 1<br>(O) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , ,                                                                                         |                                             |                                                                                              |
| ###################################### | 2007.0<br>2007.0<br>2007.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0<br>2009.0 | 80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>800000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>800000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000<br>80000 | 84468576445847868887448887488874888444888444888444888444888844488884448888 | ATTION OF THE PROPERTY OF THE | 8194  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  9415  941 | 6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>6000.0-<br>600 | 00000000000000000000000000000000000000 | \$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0 | 6400.0- 6400.0- 6400.0- 6400.0- 6400.0- 6414. 6666. 6714. 6676. 6714. 6676. 6714. 6716. 6714. 6716. 6714. 6716. 6714. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 6717. 67 | \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0  \$619.0 | #100 080 t 1890 t 1890 t 2890 t | 8.99.50                   | \$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.00<br>\$478.0 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0- 6699.0 | 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 20 | 8000.0<br>8400.<br>8410.<br>8410.<br>8410.<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>8685.1<br>86 | #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000, #60000 | 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,000.00 0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | \$9.45.45.45.45.45.45.45.45.45.45.45.45.45. | ೦ 1 ೭ ನ್ನು ೧೯ ७ 6 9 9 9 11 12 11 15 15 17 18 19 20 12 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| L <sup>p</sup> (1,0)                   | 7 L <sup>V</sup> (3.2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | τ L <sup>π</sup> ( <sup>3</sup> γ <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L^{\mathbf{U}}(1^{\perp})$                                                | T L"(A")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T. Lu(je)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sup>D</sup> (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n I I (¾)                              | $\frac{1}{L}$ $\Gamma_{n}(\dot{y}_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ru(TS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | u I Lu(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{\omega_4} \; \Gamma_n(\dot{y}_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $t_{n}(y_{4})$            | $\frac{1}{m_{\rm e}^2} \Gamma_{\rm h}(F_{\rm e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{L_0}  \Gamma_n(\dot{y}_8)$   | $L^{\mu}(\lambda^{\alpha})$            | <u>π<sup>2</sup>ς</u> τ <sup>μ</sup> (λ <sup>ε</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (zt)ulzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L <sup>n</sup> (≯≥)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 <sub>tr</sub> to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s <sub>p</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ию                                                                                          | u <sub>7</sub>                              | u                                                                                            |
| 59                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lτ                                     | 9T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sτ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>\$</b> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ध                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | टा                        | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oτ                                     | 6                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ξ                                                                                           | 5                                           | τ                                                                                            |

3¢

TABLE 1.- CALCUIATIONS OF THE INTEGRALS NEEDED FOR EXAMPLE I - Continued

| - NACA                   |                           |                                                         |                                     |                   |                                          |                                 |                                   |                    | r                                               |                            |                                                       |                     | laccana.                          |                                                                   | <del></del>            | 90ηE00°              | r                                               |                                                  | ъ×               |
|--------------------------|---------------------------|---------------------------------------------------------|-------------------------------------|-------------------|------------------------------------------|---------------------------------|-----------------------------------|--------------------|-------------------------------------------------|----------------------------|-------------------------------------------------------|---------------------|-----------------------------------|-------------------------------------------------------------------|------------------------|----------------------|-------------------------------------------------|--------------------------------------------------|------------------|
|                          | 864500.                   |                                                         |                                     | 46740.<br>178500. | 1                                        |                                 | 461£00°                           |                    |                                                 | £2€00.                     |                                                       |                     | 79480.<br>708800.                 |                                                                   |                        | 77990.               |                                                 |                                                  | Öx               |
| τ <b>6τ</b> 0'-          | 80SS.<br>504763           | 6560                                                    | ⊊πο•-                               | ₹₹81.             | S84T*-                                   | <b>⊆9το</b> *−                  | 7EEs.                             | 2 <b>⊆</b> ητ•-    | 8900,-                                          | #861.                      | o€ss                                                  | o£10'-              | 8525.                             | 9642                                                              | 0                      | 8455.                | ፒኒፒካ ~                                          |                                                  | ŏ×               |
| 7640                     | 8750                      | 0                                                       | 0                                   | 0                 | 4151.                                    | 8 <u>\$</u> 0                   | 7590                              | 0                  | o<br>o                                          | 0                          | 81∏,1<br>9₹57.                                        | 7920                | .2237<br>0171                     | 0                                                                 | 0                      | 0                    | 2.0734<br>3£17.                                 | 0104                                             | 0 <del>1</del> 4 |
| -1.0504                  | 058₹.                     | 0                                                       | 0                                   | 0                 | £2€4'T<br>1994'-                         | 7203<br>9659                    | 4054                              | 0                  | 0                                               | 0                          | 0                                                     | SET                 | EEEE.                             | ŏ                                                                 | o o                    | ŏ                    | OT44°                                           | 7870                                             | 86               |
| 448£                     | 1.2489                    | O.                                                      | ě l                                 | ő                 | 671E.S-                                  | 991E                            | 7,2461                            | . 0                | Q                                               | 0                          | 8t77.t-                                               | 6₹88                | 960T'T                            | 0                                                                 | 0                      | 0                    | 0527                                            | -1.2187                                          | 35<br>7.E        |
| X047.                    | SEZ4.                     | ETTT.                                                   | 9E40*-                              | 2920              | -1.2255                                  | SEA4.                           | 7656.                             | 178₹.1<br>6747.    | 7546                                            | .2699<br>-, 0202           | 4074.1-                                               | 6₹88.<br>0          | 600∫.                             | οξ <i>ε</i> Δ.<br>6446,1                                          | 1410                   | τητο"-<br>1091       | 659₹.s-<br>64₹1.1-                              | <b></b> ተ6ῖት " –                                 | ζέ               |
| EEB.                     | 7950<br>864s.             | 7 <b>261.1</b>                                          | 1899                                | 29.2₹.<br>₹80£.   | 7.2255                                   | 7,2186                          | 0750.<br>7333.                    | 36₹S               | £9£7                                            | \$86£.                     | 0                                                     | æεγ.<br>o≖ep.       | 3333                              | 1172s.                                                            | 0217                   | 307s.                | 94ST'T-                                         | <b>ት</b> 6ፒተ *                                   | 48               |
| 4042<br>4481.1-          | 7950 -                    | -2.3855                                                 | 6681                                | 1.2630            | S-3179                                   | 9975                            | 5780.                             | -2.1382            | £119                                            | 1.2012                     | 8177.£                                                | 6₹88.               | 1.2237                            | -1.2695                                                           | η660°T-                | 0486                 | 0567                                            | 7.2187                                           | ξĒ               |
| 154                      | T819                      | STLL -                                                  | т899°                               | 393€°             | 1694                                     | . T203                          | .2163                             | OSON T-            | 12557                                           | 9h89°                      | 4074, I                                               | 0                   | £4£0                              | -1,3588                                                           | ET45                   | 0£73.                | OT41                                            | S€₹7.<br>787∂.                                   | 35               |
| ZEE.                     | 6161.1                    | T.1927                                                  | 1.0329                              | 3685              | -1.4325                                  | 6 <del>6</del> 86               | 8450.1                            | E448               | 1091°1                                          | 8778                       | δt77.1                                                | ₹£7<br>6₹88         | EEEE.<br>TESS.                    | . 7230<br>8 <b>5</b> 8£ . 3-                                      | 2η <b>ξη</b> *         | τε93°τ               | 2754.£                                          | . O                                              | 30               |
| 2ξξζ.<br>38ΤΤ.           | EEEE.                     | 1.587<br>1.1927                                         | -1.0329                             | €88£.<br>49€0     | 8417.1-                                  | 6696                            | 8450.1<br>0SL7.                   | 2.4315<br>2.4315   | 4212.                                           | η9ητ°<br>88≤ο°             | 9T.77.19                                              | 6₹88                | 960T°T                            | 604th.                                                            | 1.2502                 | 4956                 | 2.0734                                          | SECT                                             | 58               |
| 77 15d                   | 9810                      | CTLL-                                                   | 1899                                | 292               |                                          | FOST.                           | 2163                              | ψ⊆ψT'T             | 9084                                            | orto.                      | φοLη·T−                                               | 0                   | 600T.                             | TTOTT                                                             | <b>L</b> ተ9 <b>ተ</b> * | #990°                | יויויס ОТ                                       | 7873                                             | 28               |
| יזיזפוין                 | 682T.                     | -2,3855                                                 | 0                                   | 1.2630            | 2.3179<br>.4681                          | 3978.                           | ST80.                             | 0                  | -1.2345                                         | 1999                       | atm.1-                                                | 6 <del>6</del> 88.  | 960T.L                            | 5.5389                                                            | 0                      | 49%0°                | 0267<br>647.1-1                                 | -, 4194<br>7815.1-                               | 25               |
| -,2404                   | EEOT.                     | STILL -                                                 | 1899,                               | 392g.             | 7.225₹                                   | S.44                            | 7333.                             | 4541.1-<br>6164.9- | 4412.                                           | 1619°.                     | 9.777.18<br>0                                         | 9588.<br>9357.      | TESS.<br>EEEE.                    | <i>ይ</i> ያት ነ                                                     | -1.2502<br>-1.2502     | 1996                 | 659% 5-                                         | O                                                | SZ               |
| λ <u>εξ</u> 8.           | 1.0835                    | 1.1927                                                  | τ'0356                              | 49₹0<br>₹89£      | -1,2255<br>0                             | 3€44°-                          | 1953.                             | 3747               | 4410                                            | S05%.                      | 4074.1                                                | 0                   | E480                              | 7230                                                              | 1929                   | THE.                 | 946T T-                                         | 46 <b>14</b>                                     | 54               |
| አሳይፒ .<br>የሳይፒ .         | ₹480.<br>T££S.            | 1361.1<br>1,5429                                        | 6 <b>z</b> £0 1-                    | ₹89€.             | 671E - S-                                | 3375.                           | T'5#2T                            | 5448'              | το9τ·τ                                          | 9664°                      | 8177.1                                                | 6 <del>7</del> 88   | 75.59.                            | -2.38 <del>5</del> 8                                              | <b>⊘</b> ηΕη ' −       | 1,2631               | 0567                                            | 1.S187                                           | 83               |
| 629                      | 740T.                     | ETTT                                                    | T899'-                              | 392€.             | T894'~                                   | TZO3                            | 4054                              | 0904°T             | 12557                                           | 6LTO:-                     | 0                                                     | ₹£7                 | EEEE.                             | -1.3588                                                           | 1.0994                 | 048e.<br>0£73.       | 45TO.S                                          | 9827.<br>7872.                                   | SS               |
| -7.050                   | 6466                      | -2.3855                                                 | 0                                   | 1.2630            | 1.4325                                   | <i>6</i> ₹86.                   | 3085                              | 5'1395<br>5296     | £8£7<br>£7£8                                    | τ <i>2</i> Στ°<br>+893°    | 4074.1-<br>8177.1-                                    | o<br>6€88           | 960T. I                           | ττςς.<br>-1.2695                                                  | OSIT.                  | 307S.                | 1,4272                                          | 0                                                | 50               |
| 0                        | 4527.                     | \$TLL                                                   | T899*                               | ₹88£.<br>saæ.     | 8416.1<br>8284.1                         | 6 <b>⊆9</b> 6•-                 | ₹80€,                             | τ78₹.1-            | 1646 -                                          | 1093°T                     | 8777.1-                                               | 6₹88.               | 9601.1                            | 6446°T                                                            | 0918.                  | 189t                 | 2.0734                                          | SECT                                             | 6τ               |
| eesa.<br>1,0≷0.τ         | ይቱይ6•<br>ሪቱ               | 7.1927<br>T.1927                                        | 7:03S6                              | 4260              | T894 -                                   | EOST                            | 40€4.                             | 2564°T-            | 0                                               | TTOT.                      | ī. o                                                  | s₹£T,               | EEEE.                             | 09 <del>111</del> °T                                              | 0                      | SS20                 | OTTY                                            | 7875                                             | 81               |
| 448g                     | ₹480°                     | 1.1927                                                  | 62€0'T~                             | ₹89€.             | 671E.S-                                  | 9918 -                          | 1,2461                            | 1787.1-            | Te46.                                           | ₩£90°T                     | A.TTLE                                                | 6₹88.               | TESS.                             | 6446°T                                                            | 0918                   | 307S.                | 026 <u>7</u><br>2,7920                          | 7812.1-                                          | 17<br>16         |
| 00ηL°~                   | ग्डाउर                    | STLL                                                    | π899*~                              | 398€              | -1.2255                                  | æήt.                            | 7689.                             | 8.1388<br>2796     | ET13.<br>E3ET.                                  | ,1321                      | 1.4771.E                                              | 6€88<br>0           | 78 <b>\$9.</b><br>Ε4ξο            | -7.2695<br>-2.2695                                                | 4660.1-                | 2486.                | -2,5629                                         | dord .                                           | Sτ               |
| eε8                      | 7.0835                    | - 1112<br>- 1172                                        | ±000°                               | 29.82.<br>1.≈630  | 7.2295                                   | 2,44,52<br>1,2186               | 7999                              | o⊊o+°T             | 1559                                            | 6LT0*-                     | .; 0                                                  | SET                 | EEEE.                             | -1.3588                                                           | E745                   | οετ3.                | 916T'T-                                         | 46T4 *                                           | ήT               |
| ሳዕቲኛ'<br>የ <b>ካ</b> ያፒ'ፒ | <b>68₹7.</b><br>εεογ.     | TSQT.1                                                  | t899°                               | ₹89€.             | 2.3179                                   | 9975                            | 9780.                             | <u>⊆</u> ग्रंग8⁺   | T09T'T-                                         | 9654°                      | 8LTT.1-                                               | 9 <del>7</del> 88.− | 960T°T                            | 8686.5                                                            | SAE4.                  | 1.2631               | 0527                                            | 1.2187                                           | 13               |
| LSH*                     | 9810.                     | τ એ₅5                                                   | 0                                   | 49€0              | 1894.                                    | 7203                            | £3153.                            | <b>9</b> ĽካĽ•-     | <b>4</b> 249°-                                  | 202¢                       | 4074.£-                                               | ((20)               | 600T.                             | 0EST                                                              | 1.2502<br>1.2502       | 1955.                | ου τη 10<br>1741 στη 10                         | SE₹7.<br>1873.                                   | रा<br>भ          |
| - 2325                   | भाषा.                     | 7.1927                                                  | 62£0,1~                             | sas₹.<br>₹8à£.    | 5254'T-<br>84TS'T-                       | eĕ8e                            | 0SL7.<br>84SO.1                   | \$T\$4.9-          | 14123                                           | 7619.<br>7619.             | ο<br>6117.1.                                          | 9₹87.<br>9₹88.      | 960T T                            | <u>የ</u> 770ደ.ደ                                                   | 7434                   | 1990                 | T. 4272                                         | 0                                                | or               |
| 35.2<br>3817             | 6161.1                    | ₹585. S-<br>₹171. <b>-</b>                              | τ8 <b>9</b> 9                       | 1,2630            | 8412 1-                                  | 6€8¢.                           | 1,0248                            | 0                  | 1.2345                                          | 1999                       | 9T44.Ť                                                | 6₹88.               | 7855.                             | 2.5389                                                            | Q                      | 6tEO"                | 2.0734                                          | SECT -                                           | 6                |
| Tet.                     | T849                      | \$117                                                   |                                     | 2926              | T997*                                    | EOST.                           | £915.                             | ψ₫ψͳ°ͳ             | 908 <sup>4</sup> °                              | OT40.                      | tOLy T                                                | 0                   | E4E0                              | LLOT'T                                                            | L11911 -               | 179≨0*               | ዕደሪፓ -                                          | 7812.1-                                          | ļ8               |
| τ <b>1</b> 9τ°τ          | CATE.                     | 1.1927                                                  | 1899.                               | ₹89€.             | 2.3179                                   | 33766                           | s780.                             | ST84° 8            | 4415                                            | 494Γ.<br>88%0.             | ο Τίλτα                                               | 9287                | EEEE.                             | 0527<br>9044.                                                     | 1,2502<br>-1,2502      | 1956.                | 946T T                                          | 7815 I-                                          | Q Q              |
| .570y                    | 79£0                      | 7527.1<br>7527.1                                        | -7.0329                             | ₹88€.             | 7°5522<br>0                              | 2815.1-<br>2€44                 | 7999.                             | ጀብዛ8<br>ፅጉ47.      | 4748                                            | 8778.                      | פְּנגוּזי.נ-                                          | 9586                | 960T°T                            | 868£.S-                                                           | SAE4                   | 1.2631               | 629€.5-                                         | 0                                                | ś                |
| 0047<br>0658             | 8642.                     | ZEDI I                                                  | 1899'-                              | 292               | -1.8255                                  | <b>2€</b> ήτι*−                 | 7689.                             | ο⊊οη°τ−            | 1003                                            | 9489                       | 4074.1-                                               | 0                   | 600L                              | 88₹£.1-                                                           | £743.                  | 0ET3.                | 946T'T-                                         | η6Τη "                                           | 4                |
| 148C -                   | 7.2489                    | -2.3925                                                 | 0                                   | 1,2630            | 671E.S-                                  | 3766                            | T972°T                            | -2.1362            | ELT9"                                           | 7,2012                     | 8tTT.1-                                               | e₹88.               | 960T.T                            | -1.2695                                                           | 1,0994                 | 6486.                | 0527                                            | 7879.<br>7815.1                                  | 2                |
| 46 <del>2</del> 9°       | 2620                      | STLL                                                    | 1899.                               | ₹8 <b>3</b> €.    | τ89η*-<br>\$ <b>2</b> €η*τ               | 6286.<br>Eost.                  | 280£.<br>4024,                    | 7.5871<br>2.596    | 7846.<br>E9ET.                                  | . 2699<br>2895             | 37.77.18<br>0                                         | 9888.<br>SEFT.      | TESS.<br>EEEE.                    | 11,9449                                                           | 0918,                  | 4081.                | 2.0734                                          | 5877.                                            | T                |
| ή0⊊0°Ι<br>L6ή0°0         | 87 <b>s</b> 0.0-<br>£99£. | ZTTT.0<br>TSQT.1                                        | 9€#0°0<br>9€#0°0                    | 3830.0-<br>₹83€   | AYET O                                   | 8SE0.0                          | 7SS0.0-                           | 9747.0             | 6,0265                                          | soso.o-                    | SET.0                                                 | 7910.0              | TLTO-0-                           | ogst.o                                                            | Τητο ο                 | Tato.o-              | 9££7.0                                          | 4010.0                                           | 0                |
| Lu(Y                     | Ľ <sup>p</sup> (¾³*)      | $\frac{1}{2} \operatorname{T}_{\pi}(\overline{y}_{19})$ | T L <sup>p</sup> (Å <sup>TG</sup> ) |                   | $\frac{n^{75}}{1}$ $L^{p}(\lambda^{75})$ | $\frac{1}{1} r_n(\dot{y}_{12})$ | r <sub>n</sub> (y <sub>12</sub> ) | T L"(L")           | $\frac{\tau}{\tau} L^{\mu}(\lambda^{\tau\tau})$ | $L^{\Gamma}(\lambda^{TT})$ | $\frac{\sigma^{ros}}{\tau} L^{u}(\dot{\lambda}^{ro})$ | (or,i)u orm         | L <sup>u</sup> (A <sup>ro</sup> ) | $\frac{1}{\mu_{\rm S}} \Gamma_{\rm A}(\ddot{\mathbf{y}}_{\rm g})$ | L Lu(ýe)               | $L^{p}(\lambda^{0})$ | in In (in in i | $\frac{1}{L_n} \; \Gamma_n(\dot{y}_{_{\Theta}})$ | <u> </u>         |
| £#                       | - P                       | Τŧ                                                      | O4                                  | 68                | 8£                                       | 1,5                             | 9£                                | GE .               | ŧξ                                              | 33                         | æ.                                                    | ΤĒ                  | 30                                | 55                                                                | 58                     | 73                   | 56                                              | 52                                               |                  |

32

NACA TN 3288 - 36

TABLE I. - CALCULATIONS OF THE INTEGRALS NEEDED FOR EXAMPLE I - Concluded

|                                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                   | 49                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                        | $\frac{1}{\omega_{14}^2}\Gamma_{\!\scriptscriptstyle 1}(\ddot{y}_{14})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r <sub>n</sub> (y <sub>15</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{\omega_{15}} \Gamma_{n}(\dot{y}_{15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{\omega_{15}^2}  \Gamma_n(\ddot{y}_{15})$                                                                                                                                                                        | r <sub>n</sub> (y <sub>15</sub> )                                                                                                                                                                                                                                                                                                                    | $\frac{1}{\omega_{16}}\; r_n(\dot{y}_{16})$                                                                                                                                                                  | $\frac{1}{\omega_{16}^2}  \Gamma_{n}(\ddot{y}_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0123456789011234156789012222567890123456 | 0.7780 1.07059146 -2.32884809 1.6673 1.4799 .3689 -1.2589 -2.1009 0 2.1009 1.2589 -1.4799 -1.6673 -1.4799 -1.6705 -1.57561 -1.0705 -1.57561 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.5761 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0705 -1.0 | -0.0295<br>.4331<br>.5991<br>1.2167<br>.3657<br>.1552<br>.237<br>.8094<br>.7204<br>.9847<br>.0931<br>.2370<br>1.1256<br>.6785<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2728<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.2729<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.4910<br>.49 | 0.0568 1.0651 -5774 -3776 -7822 -5536 -1292 -9737 -6570 -1914 -7608 -7144 -3735 -1.1591 -2548 -8557 -7187 0 -7187 -6570 -1914 -7608 -11591 -3735 -7144 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 -7608 -1914 | 0.7848 .9344 -1.0631 -2.20011296 2.0457 1.23875710 -1.5483 -1.2723 .8585 2.2944 .3853 -1.8356 -1.3805 -1.921 -1.4846 1.57546305 -1.5453 2.2944 8.5853 2.2948 8.5853 -1.2723 -1.54835710 1.2387 2.04571296 -2.2001 -1.0631 | -0.0321 .4914 .6549 1.1255 .2105 .2105 .2105 .2105 .2105 .54914 .54914 .1255 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 .2105 | 0.0703 1.0788 .467366677561 0 7561 .6667467366677561 0 7561 .6667467310788 0 1.0788 .467310788 0 1.0788 .467310788 0 1.0788 .467310788 0 1.0788 .46737561 0 7561 .666745737561 0 7561 .66677561 0 7561 .7561 | 0.7951<br>.7010<br>-1.2864<br>-1.8354<br>.4914<br>-1.8354<br>-1.2864<br>.7010<br>-1.2864<br>-1.8354<br>-1.8354<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.8354<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.2864<br>-1.28 |
| 37<br>38<br>39<br>40                     | -2.3288<br>9146<br>1.0705<br>.7780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .4331<br>0295<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0651<br>0568<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9344<br>.7848<br>0<br>0                                                                                                                                                                                                  | 1.1255<br>.6549<br>.4914<br>0321                                                                                                                                                                                                                                                                                                                     | .6667<br>4673<br>-1.0788<br>0703                                                                                                                                                                             | -1,8354<br>-1,2864<br>.7010<br>.7951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 000                                      | =0970<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .1961<br>.04680<br>.002096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0747                                                                                                                                                                                                                      | .2141<br>.04688<br>.001861                                                                                                                                                                                                                                                                                                                           | 0124                                                                                                                                                                                                         | 0702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

NACA

TABLE II.- SUMS NEEDED FOR THE EVALUATION OF THE PARAMETERS OF EXAMPLE I BY LEAST SQUARES

| - TYPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                  |                                                                                                                                                                                                                        | 26130600.<br>3527.74-<br>37680100.<br>44500.7-<br>376801000. |                                                                                                    |                                                                           |                                                                                                                                | 09L9EE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 3521.5<br>648.8<br>648.7-<br>648.7-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471.51-<br>6471. | #278.0<br>#278.0<br>#278.0<br>#470<br>#470<br>#470<br>#470<br>#470 | \$20000.0-<br>\$00000.<br>\$00000.<br>\$07000.<br>\$07000.<br>\$28500.<br>\$04500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500.<br>\$25500. | \$8940.                                                      | 2150.0-<br>2150.0-<br>2781<br>2008.<br>2773.<br>2008.<br>8023.<br>2681.<br>2681.<br>2681.<br>2761. | 0.1510<br>8513.<br>9513.<br>9868.<br>1501<br>0013<br>0013<br>0013<br>8751 | 1960.0 120.0 1200. 1200. 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. 0 1200. | 2.4674<br>2.4600<br>3.4697<br>5.4697<br>5.269<br>5.21.559<br>5.21.57<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.25.35<br>5.2 | 8077. L<br>8077. L<br>8426. QI<br>8427. QI<br>8427. QI<br>8428. S<br>8478. LI<br>8478. LI | 2 3 4 5 6 9 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| ® × @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L Ot S ayout                                                       | T O a3vat                                                                                                                                                                                                              | T Osasyat                                                    | T C and a                                                                                          | © × ①                                                                     | I de Je ajuat                                                                                                                  | <sub>გ</sub> ^ო                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Λm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٨                                                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                  | L                                                                                                                                                                                                                      | 9                                                            | G                                                                                                  | ή                                                                         | ε                                                                                                                              | ट                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |

TABLE III. - CALCULATION OF THE INTEGRALS WEEDED FOR EXAMPLE II

| JAN -                                        |                    |                      |                       |                                                      |                                  |                                                                              |                            |                                                                                                      |                                            | Dere appear                                                                                 | teh the num                                         | dw at manico                                                      | enotes the                                          | αO                    |                   |               |              |                |
|----------------------------------------------|--------------------|----------------------|-----------------------|------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-------------------|---------------|--------------|----------------|
|                                              | 380500.<br>STEBLOO |                      | 190710.<br>ES30100    |                                                      | 4ξ07±0.<br>6₹ξ6000               |                                                                              | 9τ⊆6τ00°-<br>₩60100°-      |                                                                                                      | £86800,-                                   |                                                                                             | 67#S£0.<br>487₹000.                                 |                                                                   | ₹₹33₹0.<br>∂₹₹200.                                  | - O × Ø               |                   |               |              |                |
| €9⊈τ•                                        | 9604⊊              | 8 <del>641/</del> 0° | -,23 <sup>4,1</sup> 3 | 50560.~                                              | 4.203.4                          | 87045                                                                        | - 65799                    | st866                                                                                                | 9168⊊'-                                    | 6TT45                                                                                       | 7191E.                                              | 97ST9                                                             | 9999€                                               | - O × 🖲               | 3                 |               |              |                |
| 9419.8-                                      | 4115.9-            | 4567.8-              | £509                  | 0540.8-                                              | £787.                            | s768.a-                                                                      | ट्युक्ष'र                  | srs8.₹-                                                                                              | 8170.S                                     | 06TT.4-                                                                                     | 9099.5                                              | 9969.6-                                                           | 2.8046 : ·                                          | - O × ©               | 3                 |               |              |                |
| 7955.                                        | 4T00°~             | 0                    | 0                     | o7£6                                                 | 9000                             | 0                                                                            | 0                          | 0≷88.                                                                                                | 5000                                       | 0                                                                                           | 0                                                   | TEEE                                                              | 0                                                   | 7441000.              | ₹3900,<br>∂₹7900, | ξΩξ0.         | 40.          | 00.5<br>2.00   |
| 7,2556                                       | 466E               | 0                    | 0                     | -1.2893                                              | ₹60€.                            | 0                                                                            | 0                          | TETE.I                                                                                               | 180S                                       | 0                                                                                           | 0                                                   | ₩82€°T-                                                           | SHOT.                                               | 0₹\$£000.<br>68££000. | ∞7,000            | 00₹0.         | ot.<br>60.   | 90 L           |
| 164€.                                        |                    | 0                    | 0                     | €009                                                 | 0905.                            | 0                                                                            | 0                          | 1789.                                                                                                | 0705                                       | 0                                                                                           |                                                     | 72951-                                                            | τττε•                                               | THTTOOO.              | æ85000.           | ₹8#0.         | 80.          | 68.1<br>06.1   |
| 0977.                                        | T890'T-            | 0                    | 0                     | -1.0083                                              | 1138.                            | 0.                                                                           | 0                          | 1581.1<br>13851                                                                                      | 8£6£                                       | . 0                                                                                         |                                                     | 8469                                                              | .2063                                               | 3011000.              | 405200.           | 0840.         | ξο.          | 08.1           |
| у5то.                                        | 202E.1-            | 0                    | 0                     | T96€°-                                               | ο₹sz.τ<br>Σι4ξ.                  | 0                                                                            | 0                          | 2046°                                                                                                | 8505 -                                     | 0                                                                                           | ا ا                                                 | L15311                                                            | 660₹.                                               | <b>3711000.</b>       | 104500.           | 0610          | ão∙-         | 37.1           |
| - sto                                        | 9949               | £8££                 | 6000                  | #50T                                                 | 7533.                            | ő                                                                            | ő                          | 8666.                                                                                                | -,5420                                     | Õ                                                                                           | اة ا                                                | Lη65 · -                                                          | 0505.                                               | TSELOOO.              | .002601           | ot€o.         | €0           | 07.1           |
| 0977                                         | T890.1-            | -1.2726              | £23€.                 | JOHO.                                                | 619E.1                           | ŏ                                                                            | ő                          | 8503.                                                                                                | τζ8τ.ι-                                    | ŏ                                                                                           | اه ا                                                | -1.1362                                                           | 2969*                                               | 684T000°              | 608300            | 0530.         | £0           | 69.1           |
| 6tG -                                        | 4668               | EZ72                 | 59₹€.                 | .2083                                                | 0149                             | 645€.                                                                        | £000                       | o7os.                                                                                                | TZE9                                       | 0                                                                                           | o                                                   | 004€*-                                                            | 5365<br>5369                                        | TESTOOO"              | 299200            | ¿650.         | 40°          | 09°1           |
| -7.2 <del>5</del> 2.                         | 090η*-             | 4168°-               | 8179.                 | 8526                                                 | 90€T°T                           | 7.30E.1                                                                      | - 2591                     | LBOS.                                                                                                | 75.tE.t-                                   | Ō                                                                                           | 0                                                   | -T.0132                                                           | <del>կ</del> ⊆98°                                   | <b>ζήή(ΤΟΟΟ</b> *     | ð₹7500.           | ₹2€0.         | ξŢ.          | €€.1           |
| 629                                          | 0                  | 9106                 | 1509.                 | 9947                                                 | 9974.                            | 6206                                                                         | 2571                       | 0                                                                                                    | 6699 -                                     | 0                                                                                           | 0                                                   | 02T4                                                              | OST4.                                               | ELSTOOO.              | .002450           | ₹640.         | TI.          | 05.1           |
| -7'52≥¢                                      | 090t*              | T\$#3"-              | J.3006                | 30E1.1                                               | 8269                             | thot't                                                                       | 67£7                       | £805.~                                                                                               | TETE T-                                    | 0                                                                                           | 0                                                   | <b>4</b> ≤98°-                                                    | T.0132                                              | ₹001000°              | SDI 500.          | €940.         | ήľ.          | St.1           |
| L6η≤°-                                       | 0,90†°<br>1466€°   | \$290°               | 8573.                 | OT49*                                                | .2063                            | 0⊊Ltr°                                                                       | 0₹74                       | 2070                                                                                                 | T753                                       | 0                                                                                           | 0                                                   | 53923                                                             | 50£1.1<br>004₹.                                     | TT60000.              | ₹20500.           | 0940°         | 40.          | 0ካ*ገ           |
| J977                                         | T890°T             | 0874.                | 1.2338                | 612£°1                                               | O#OT°                            | 67£7.                                                                        | tr\$OT°T~                  | 8£03                                                                                                 | T\$81.1-                                   | 0                                                                                           | 0                                                   | 5969                                                              | 1,1362                                              | ₹0000000              | 501,500.          | ≤940°         | 70           | ζξ.            |
| ~ 'STO                                       | \$945.             | BLO4°                | 0045.                 | 1699                                                 | ₩SOT"-                           | .2571                                                                        | -,6206                     | 8696                                                                                                 | 054€                                       | E486                                                                                        | T000°                                               | - 3030                                                            | L466.                                               | oestooo.              | 000€500           | 0050.         | ζτ           | ςς.<br>30      |
| 0                                            | 1.3202             | 6660 T               | 4797.                 | 1.2250                                               | 470€                             | т643г                                                                        | -1.3027                    | 5046                                                                                                 | €046                                       | -1.3217                                                                                     | €091.                                               | 6606 -                                                            | 1.2311                                              | 4991000               | 649500.           | 0720.         | ξ0.<br>ξ1    | 20.            |
| STO.                                         | 5949.              | 0169.                | "ऽएएए                 | <b>3</b> €† <b>€</b>                                 | T96E*-                           | 0                                                                            | 8t75,-                     | 0542                                                                                                 | 8£9£                                       | 2649°-                                                                                      | 009T                                                | 2063                                                              | 7.2957<br>6348                                      | \$20000.              | ₹50500°.          | 0550          | £S.          | ζt             |
| 1911                                         | T890°T             | T.3175               | tær.                  | π98.                                                 | -1,0063                          | ±6€2                                                                         | -1.3027                    | τέατ·τ-                                                                                              | 8509                                       | 6445.£~<br>056€                                                                             | 3107                                                | 3777                                                              | £6₹9.                                               | 466£000.              | 000pd01           | 0640          | œ.           | 0T"            |
| 1675<br>7 52€                                | 466E.              | ∞369.                | E481                  | 360E                                                 | €009*-                           | 1762                                                                         | 9029                       | TETE-I-                                                                                              | 0705                                       | 1260°τ~                                                                                     | 89₹7.                                               | ήηοτ°~<br>⊆ηοτ°-                                                  | 482E.1                                              | 8970000,              | 308100.           | SS40.         | 2s.          | ₹0             |
| 979.                                         | 0804.              | 100€.<br>100€.       | 868€                  | 3006                                                 | 0479<br>-1.2693                  | 0274<br>9757                                                                 | ₩₩0Τ°ͳ~<br>0%᠘ <b>ካ</b> °~ | 6699*~                                                                                               | -*5087 .                                   | ₹00₹                                                                                        | मृह्भूम ः                                           | 31/01<br>0                                                        | ₹799.                                               | 64₹0000.              | ካተቱT00"           | 0850.         | π.           | 00.            |
| 3675.⊥<br>3678                               | 000+               | 6969°                | 21.1249               | ≤60€ -                                               | -1:2893                          | tilOI°I~                                                                     | 9787                       | TELE.I-                                                                                              | .2081                                      | 6988                                                                                        | 9966                                                | ⊊hot.                                                             | 48€€°₹                                              | T/20000°              | S84100.           | ₹8€0.         | 60'-         | 66.            |
| 646                                          | 4666               | s₹8£.                | 6059                  | 0908                                                 | €009                             | -,6206                                                                       | -,2571                     | T753                                                                                                 | 0703.                                      | 867E                                                                                        | 505C                                                | ηήΟΤ.                                                             | ξ6⊊9.                                               | g₹80000,              | 9£6τ00°           | 0440          | 05           | 06.            |
| 2977.                                        | 1890.1-            | CEB C                | TESE'T-               | 1138                                                 | -1,0083                          | 7:50E.1-                                                                     | -,2591                     | TS9T*T~                                                                                              | 8£03.                                      | 1819                                                                                        | 6871.1                                              | tite.                                                             | 1.2957                                              | TESTOOO"              | 598500,           | CECO.         | O#*~         | ₹8.            |
| )213.                                        | S949               | a₹8ι                 | 6049                  | 2€η <b>≤•</b> −                                      | T968 -                           | 8173                                                                         | 0                          | 54so                                                                                                 | 8£9£.                                      | 2371                                                                                        | 2₹29.                                               | .2063                                                             | 8469.                                               | .000≥2000             | 996500,           | 0£90.         | Œ            | 08.            |
| 0.0                                          | 202€·τ-            | ₹969 -               | 6451.1-               | ο≷25.1-                                              | +120G·-                          | 750ξ·1-                                                                      | .2591                      | €046°-                                                                                               | 5046                                       | 98££                                                                                        | 7.2927                                              | 6609                                                              | T*53TT                                              | TH# 2000              | 909£00°           | ₹290          | œ.           | ₹7.<br>08.     |
| -,2100                                       | 2949'-             | T005 -               | 6664 -                | 7699                                                 | +°JO⊋t                           | -,6206                                                                       | LTZS.                      | 8£6£                                                                                                 | OSAZ.                                      | 9080                                                                                        | 7599.                                               | ogog.                                                             | 746ë.                                               | 99€1000               | 9,0006            | STSO.         | 59.          | OT.            |
| 911                                          | T990'T-            | <b>₩</b> ₩₩₩₩₩₩₩     | 868⋶                  | -1.3219                                              | ONOT"                            | ήήOΤ°Τ-                                                                      | 67£7.                      | 8£03                                                                                                 | τς8τ.τ                                     | 0                                                                                           | T.3314                                              | 5365<br>5369                                                      | T.1362                                              | 3840000.              | SEETOO.           | 59€0.         | 09.          | 59.            |
| 645 -                                        | 466E'-             | ₹99°-                | ६४८१                  | OT49*-                                               | £80S.                            | 06የ4                                                                         | OFT4.                      | o70s                                                                                                 | TZE9"                                      | 9080                                                                                        | 7.8927<br>7.8937                                    |                                                                   | 004₹.                                               | SS10000.              | es₹000.           | 0830.         | ζĒ.<br>74.   | 66.<br>66.     |
| ¥ςς.τ-                                       | 0904.~             | SLTE T~              | . उडर                 | 90£T°T-                                              | 8569                             | erer                                                                         | τήΟξ°Τ                     | ±805                                                                                                 | TELE, I                                    | 981E.                                                                                       | 7.59S.1                                             | 4698.                                                             | 1.0132                                              | ₹5000000              | S81000.           | <b>₹€₹0</b> . | Oξ.          | 95.            |
| 619                                          | 0                  | OTE9                 | भूमें द               | 9924                                                 | 39F4.                            | LYZS                                                                         | 9059,                      | 0                                                                                                    | 6699                                       | .2371                                                                                       | æ39.                                                | 0274.                                                             | 02F4,                                               | 50000000.             | 400000,           | 0500          | ξĘ.          | ος.            |
| &⊈č•τ−<br><i>6</i> ₩ <b>4</b>                | 0904               | 6540°T-              | 416L                  | 8269                                                 | 3051,1                           | 76⊊3*-                                                                       | 1.30£.1                    | .2081                                                                                                | T.313T                                     | 867E.<br>7813.                                                                              | 6871.1                                              | oo⊬≷.<br>S££0.£                                                   | £38£<br>4₹98.                                       | 7.000000              | ##T0000           | osto          | 64.          | OF.            |
| ιοής. · ·                                    | 466€               | 8704                 | 0016                  | 2083                                                 | 0149                             | 0                                                                            | 8176.                      | ocos.<br>o7os.                                                                                       | t₹8t.t<br>tγε∂.                            | 6988.<br>8075.                                                                              | 9966                                                | 1,1362<br>1,1362                                                  | 986.<br>F.005                                       | TES0000,-             | ST8000.           | 6020          | 08.          | ςξ.<br>04      |
| 9开 <b>-</b>                                  | 1890,I             | 0874                 | 8673.<br>8855.1       | οήοτ. –<br>4≥οι.                                     | 1 <u>7</u> 99.                   | τ7∂ς.<br>.2692                                                               | 6028.<br>Σ30ε.1            | 8565.<br>8503.                                                                                       | 054₹.                                      | ₹00₹.                                                                                       | 3300                                                | 7487.                                                             | 0505.                                               | TEGT000'-             | \$28500.          | 0535          | <b>₹₹°</b> ₹ | oξ.            |
| OTS                                          | 33502<br>7°9799    | 154S.<br>4990        | 300£,£                | 4702                                                 | 1,22550                          | erer.                                                                        | ηή0Τ°Τ                     | ζοή6.                                                                                                | C046.                                      | 7760.1                                                                                      | £9€7.                                               | 1.2311                                                            | 660₹.                                               | 0E6#000               | T#2900°           | 0670,~        | 79           | ζŞ.            |
| отг.                                         | 5949               | Stof.                | 7500                  | 196£                                                 | S242.                            | 0274.                                                                        | 0₹74.                      | 054₹.                                                                                                | 8£6£.                                      | 0566                                                                                        | TOLE.                                               | 8453.                                                             | .2063                                               | 2€04000°-             | 974€00°           | 0470          | EO.1-        | os.            |
| <b>9Τ.</b>                                   | T990'T             | #160°                | 8779                  | £800.1                                               | L138.                            | ##OT*T                                                                       | 6127.                      | τέρτιτ                                                                                               | 8603.                                      | 7.2449                                                                                      | TZL4                                                | 7.2957                                                            | ITTE'                                               | £660000 ·-            | 125100            | 0650          | 29°T-        | Ç۲.            |
| <b>Q</b> 4₹.                                 | ₹66€               | EETC.<br>41.08.      | 3%5                   | ₹009.                                                | 0908.                            | 9059                                                                         | LTZS.                      | TLE9.                                                                                                | oros.                                      | ₹5,49                                                                                       | 009τ                                                | £6 <del>2</del> 93                                                | TON'                                                | 0                     | T000000°          | отоо.         | 女人*T-        | oτ.            |
| 1.255                                        | 0804.              | T'5,159              | .3621                 | 1,2893                                               | €60€.                            | T30£1T                                                                       | . 2 <del>2</del> 97        | T.3137                                                                                               | .2081                                      | T.3217                                                                                      | ⊊09T                                                | 1.3284                                                            | €#OT*                                               | οξεποσο•              | 00≥500.           | 00%0          | 42.5-        | ₹0.            |
| 955.0                                        | †T00°0             | €8€€.0               | 6000.0                | orge.o                                               | 9000.0                           | 625E.0                                                                       | 5000.0                     | 0,3350                                                                                               | 5000.0                                     | £4EE.0                                                                                      | 1000,0                                              | TEEE.0                                                            | 0                                                   | 0.0010000             | 0.000000          | 0001.0        | -7-00        | - '            |
| $\frac{1}{2} r_n \left( \frac{d}{d} \right)$ | $\Gamma_n(y_g)$    | (12) a' 24           | $\Gamma_n(y_7)$       | $\left(\frac{dp}{dh}\right)_{n}^{-1}\frac{1}{n^{d}}$ | L <sup>p</sup> (L <sup>e</sup> ) | $\frac{1}{\omega_{p}} \Gamma_{n} \left( \frac{d \nabla_{n}}{d \tau} \right)$ | $L^D(\lambda^2)$           | $\frac{1}{\omega_{\bullet}} \Gamma_{n} \left( \frac{d \nabla_{\bullet}}{d \nabla_{\bullet}} \right)$ | $\mathbf{L}^{\pi}(\lambda^{\mathfrak{q}})$ | $\frac{1}{\omega_{\rm S}}\Gamma_{\rm B}\left(\frac{{\rm d} y_{\rm S}}{{\rm d} \tau}\right)$ | $\mathbf{L}^{\overline{\mu}}(\lambda^{\mathbf{g}})$ | $\frac{1}{4} I_{\Omega} \left( \frac{dV_{\Omega}}{d\tau} \right)$ | $\mathbf{L}^{\mathrm{II}}(\mathbf{A}^{\mathrm{S}})$ | e <sup>up</sup>       | Sap               | πρ            | пр           | u <sub>L</sub> |
| 50                                           | 6T                 | gt                   | <u> </u>              | gt                                                   | ςτ                               | γt                                                                           | £T                         | 75                                                                                                   | π                                          | OT                                                                                          | 6                                                   | В                                                                 | L                                                   | 9                     | 5                 | 17            | Ε            | ड              |

TABLE III.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE II - Concluded

| 5775 -<br>5045 -<br>5045 -<br>7950 1                                                  | 1815.1-<br>1875<br>5877<br>4010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9€₹E. <del>-</del><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 812E ·-                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9129 9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹£6₹°9-                               | +800*9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 <u>5</u> 79.T-                                              | £\$96*†-                                                                                                                                                                                | 954 <b>6.</b> 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | •0×                                                       |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| ######################################                                                | #010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0<br>#010.0 | \$610.T-  \$61 | 200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0 | 825.0<br>825.0<br>825.1<br>826.4<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1<br>9201.1 | 2692. I 2693. C 264. C 265. C | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$195.1<br>\$1 | \$400.0<br>\$400.0<br>\$400.0<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$415<br>\$4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0<br>\$600.0 | \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                     | \$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0<br>\$200.0 | \$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55.4<br>\$1.55. | 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 6100.0 | ० म २ १ म ५ ५ ५ ६ १ ७ ५ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ १ |
| $\frac{\eta^{2}}{\eta} L^{0} \left( \frac{q_{\perp}}{q_{\lambda}^{2} \sigma} \right)$ | $L^{II}(\lambda^{TG})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{\sqrt{2}} r_0 \left( \frac{d\nabla_1 \pi}{d\tau} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r <sub>n</sub> (y <sub>1,5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T In ( The                                                                                                                           | L <sup>D</sup> (A <sup>T4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{1} \operatorname{T}_n \left( \frac{d \operatorname{Mn}}{d \operatorname{Mn}} \right)$ | L <sup>D</sup> (A <sup>TG</sup> )     | $\frac{1}{12} \Gamma_{\alpha} \left( \frac{dy_{12}}{d\tau} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sup>D</sup> (A <sup>TS</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | L <sup>D</sup> (A <sup>JJ</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{t_{0}}{1} T_{n} \left( \frac{dV_{10}}{dT_{0}} \right)$ | L <sup>n</sup> (V <sub>10</sub> )                                                                                                                                                       | $\frac{1}{1} T_n \left( \frac{d \nabla_\theta}{d T} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sup>π</sup> (χ <sup>8</sup> )                                                                                | ū                                                         |

| 86 | ३८६ | Nш | ADAM |
|----|-----|----|------|
|    |     |    |      |

| NACA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,<br>00871700,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: Control of the control of th |                                                                                                                                             |                                                                                                          | ·                                                                                                                               | 44158.4<br>60.821-<br>60.821-<br>60.821-<br>60.821-<br>60.821-<br>60.821-<br>7481090-           |                                                                                                                | 3<br>3<br>3<br>3<br>3<br>3                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| \$969.72-<br>\$127.65-<br>\$127.08-<br>\$127.08-<br>\$127.08-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$127.48-<br>\$12 | 77950.1-<br>98262.1-<br>98264.2<br>98262.2<br>98764.2<br>98764.2<br>98769.2<br>1.3054.2<br>98769.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1.3054.2<br>1. | 9989.8-<br>998.8-<br>9879.8-<br>9879.7-<br>9879.7-<br>9879.7-<br>9879.7-<br>9879.7-<br>9878.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>9418.8-<br>941 | 67276.0-<br>61142<br>87042<br>87042<br>88040.<br>88041.<br>60041.<br>50218.<br>75018.<br>75018.<br>18872.<br>18852.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 377.200.0<br>487.200.0<br>587.200.0<br>586.200.0<br>586.200.0<br>686.200.0<br>686.200.0<br>686.200.0<br>686.200.0<br>785.200.0<br>785.200.0 | 259950.0<br>586800<br>686800<br>480700<br>480710.<br>480710.<br>688400.<br>882510.<br>681150.<br>681150. | 82806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0<br>\$2806.0 | 2,8046<br>8170.5<br>8170.5<br>8170.5<br>8170.5<br>6203<br>6203<br>6276.4-<br>6269.7-<br>8376.6- | 8077.1<br>845.2<br>845.2<br>845.0<br>8454.0<br>8454.6<br>788.3<br>648.7<br>818.8<br>9141.8<br>9141.8<br>9141.8 | 9T 5T |
| Ø×0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Tb \frac{\sqrt{Vb}}{Tb} p \int_{0}^{S} T\Delta \frac{I}{\sqrt{\omega}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{L} \Delta T \int_{0}^{R} \alpha \frac{dT}{dT} dT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To Sayydt                                                                                                                                   | T Os asyvat                                                                                              | ⊥ ∫ αγγατ                                                                                                                       | $\frac{1}{\sqrt{1}} \int_{0}^{2} \frac{dy}{\sqrt{1}}$                                           | A <sub>(t)</sub>                                                                                               | ٨                                         |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                           | ħ                                                                                                        | 3                                                                                                                               | 5                                                                                               | τ                                                                                                              |                                           |

TABLE IV. - SUMS NEEDED FOR THE EVALUATION OF THE PARAMETERS OF EXAMPLE II BY LEAST SQUARES

and the control of th

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III

| - NYCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                              | ppear.                                    | e numbers a                                 | tn which the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trumtos edi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Denotes t                             | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| £667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ολζη.1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹8£8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67E.9E-                                                                                                   | Sμ.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>16τς·9</b>                                | -3.2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2°1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T00.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹9°₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o6£7.₹~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⊊ <del>4</del> τ6⁺ <b>г</b> − | 388I.                                        | 905. <b>9</b> 01                          | τ96•οτ-                                     | 890.11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81₹9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TS40.1                                | O × 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 6840.0- 6840.0- 6840.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 6940.1 | \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0- \$100.0 | 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0- 2000.0 | 4699 8 4699 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                           | 8686 4 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 6083 7 - 608 | 1184 0 40 40 40 40 40 40 40 40 40 40 40 40   | 6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  6500.0-  650 | 800.0-<br>8100.<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8200.0-<br>8 | \$25.8<br>\$25.8<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9<br>\$25.9 | 6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0<br>6560.0 | \$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0-<br>\$190.0 | 8100                          | 0000.0000.0000.0000.0000.0000.0000.0000.0000 | 3.600 00 00 00 00 00 00 00 00 00 00 00 00 | 2010 - 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 2000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 - 1011. 1000 | \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0- \$000.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0<br>0055.0 | 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| T Lu(ž²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{1} \Gamma_n(y_z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Gamma_n(y_s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{\omega_{\mathbf{q}}} \Gamma_{\mathbf{n}} \left( \mathbf{y_{\mathbf{q}}}^{(\mathbf{q})} \right)$ | T LD(A*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{\sqrt{\chi}} \Gamma_n(\ddot{y}_4)$ | T L"(**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r <sub>n</sub> (y <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Pn (V a (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T Lu(Va)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | <del></del> _                                |                                           | T T (Yz)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lu(yz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                     | - <del>ε</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| รร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                                                                                        | ' <b>L</b> τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9t                                           | ⊊τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ग्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                            | 6                                            | 8                                         | L L                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ή                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | र इ                                     |

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

| ካሪካ ካ                                 | 786.#-                                        | 60TT*T-        | T.OT24             | £ <u>₽</u> £4.−     | -24°007                                                       | <b>2€</b> †6*9 <del>-</del>                   | OT4E.T                                    | 2,0668          | S0£8,s-                                                         | OSS.4S-                                                                     | ₹78.81                                  | <b>3€</b> 06.≷       | S£88.£-                                                                            | +9/T °Z-             | †00°9T               | 718.St = | . 0                  |
|---------------------------------------|-----------------------------------------------|----------------|--------------------|---------------------|---------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------|----------------------|----------------------|----------|----------------------|
| 00016                                 | 405≷                                          | ςτ8ο.−         | T490.              | 7500                | 0                                                             | 0                                             | 0                                         | 0               | 0                                                               | 804£.6                                                                      | 0 <del>1/4</del> 2°−                    | o£30                 | 6110.                                                                              | ET00*-               | 0                    | 0        | ᅄ                    |
| 2.923<br>9.866                        | 4003 -                                        | T.3724         | -,2138             | 7500                | ŏ                                                             | ŏ                                             | ŏ                                         | ŏ               | l ŏ l                                                           | 0929°ET                                                                     | 06TG G-                                 | ττ68.                | 0660*-                                                                             | 3800.                | 0                    | 0        | 68                   |
| 5.003                                 | 9LT9.€-                                       | ησω L          | 9516               | £660                | 0                                                             | ő                                             | ő                                         | ŏ               | ا ة ا                                                           | TSGL OT-                                                                    | -3°£T22                                 | 1,2845               | -,2016                                                                             | 19to                 | 0                    | 0        | 38                   |
| -26.197<br>-22.346                    | -1.0239                                       | 1.727.t        | 05th<br>T2€6 T-    | £683.<br>£030       | ő                                                             | ő                                             | ő                                         | ŏ               | ŏ                                                               | -38.7183                                                                    | 2.1391                                  | 2.7259               | 9660°T-                                                                            | LESS.                | 0                    | 0        | 128                  |
| 761.9S-                               | 10.2067                                       | τ°0η3η         | LOSS L             | 1683                | . 0                                                           | ŏ                                             | ő                                         | ő               | ا مّا                                                           | ₹168.71-                                                                    | 6.2033                                  | £967.                | 0£88                                                                               | 708s.                | 0                    | ٥        | 35<br>36<br>37<br>88 |
| 084. St<br>64₹. 84                    | 83sT.T                                        | 0949°T-        | 6797 -             | <del>1</del> 69⊆•   | •                                                             | -                                             | ď                                         | 0               |                                                                 | 3978. T                                                                     | 69E4*ET                                 | Thab.I-              | ETES.T-                                                                            | ot96'                | ñ                    | 0        | 32                   |
| 6η <b>⊆ 9</b> η                       | 0                                             | ₹£8.4~         | . 0                | 1.2825              | 0                                                             | 0                                             |                                           | _               | 1c                                                              | OTEO L                                                                      | 66Th.4                                  | 4946.5-              | 27E4                                                                               | 89€9                 | ň                    | ō        | 146                  |
| 791.85-<br>194.81                     | 89sT.T-                                       | 0949°T-        | 219T.              | 469₹                | 10€9.6                                                        | STT2.                                         | 0₹70                                      | T9T0*           | £500                                                            | St.8918                                                                     | (030.C-                                 | 7£68.4-              | £29£.                                                                              | 1.2888               | ő                    | ŏ        | 33<br>33             |
| 791.397                               | -10.2087                                      | ηξη0°τ         | T-55ST             | 5833                | T789.7                                                        | 3507.₹-                                       | ⊊6ητ°τ                                    | 0η <b>Σ</b> Τ*~ | 0910                                                            | 768£.74                                                                     | -3.6285                                 | 17608 1/-            |                                                                                    | 509€                 | 39.03g               | zŁ4τ.−   | æ                    |
| o+22.346                              | 1.0239                                        | 1,727.4        | ος ηη *            | 66₹0.               | 7367-TI-                                                      | -2.4530                                       | 899⊈°1                                    | η <b>άτε</b> -  | मण्६०.                                                          | 11.9841                                                                     | -1·362#                                 | LT64*T-              | £837.                                                                              | Cools                | OG TO O              | 7770.6-  | τε                   |
| 5 383                                 | 9.13.₹                                        | 1.3724         | °5138              | č₹so.               | 0150.05-                                                      | €878.9                                        | 2.0743                                    | +1566 T-        | TST4"                                                           | 848T.8T-                                                                    | -12.534s                                | ,2486                | 8489.1                                                                             | ₹907.                | -3.8825<br>18.6458   | ₹046, £- | 30                   |
| 29.733                                | ۵ ا                                           | 6291.~         | 0                  | 4700                | -3.4286                                                       | 8.2431                                        | SSS4                                      | 99€6•-          | <b>5</b> 564.                                                   | -24.2370                                                                    | 7777 s-                                 | BASE I               | 1169°,                                                                             | EGGT.                | 7089 E-              | 3.000    |                      |
| 2.923                                 | 9LT9.E-                                       | T'3124         | 213g               | ₹520.               | 0€94°LE                                                       | 8.2086                                        | 8641.4-                                   | ££38            | 1.2111                                                          | 93.55€                                                                      | 3.2396                                  | S 6165               | 6899                                                                               | STIT.                | -23.3571<br>-32.3688 | 2.2356   | 56                   |
| O#E - 525-                            | 45.00.1-                                      | T.TZTA         | 05try -            | £650.               | 0787.85                                                       | -2.T693                                       | 4788.5-                                   | LOTS.           | 6989                                                            | S 66 S                                                                      | 00€T°4                                  | CCC9.                | 0840                                                                               | 9T00°-               | -23, 271             | 2.7453   | 28<br>28             |
| 761.35-<br>345.55-                    | 10.2087                                       | 1°0#3#         | TZEG T-            | ££83.               | 19TT'TT                                                       | ગ્રદ્8∙ડા-                                    | 62ਗ ਦ                                     | 19 <b>≤</b> † T | E166.                                                           | 26.7833                                                                     | 2.1966                                  | .5219                | LGTO                                                                               | 6000.                | -24.3300             | τ626*ττ  | 7.5                  |
| 701.30                                | 89ST.T                                        | 0949°T-        | 6767               | ή69⊊•               | £159.61-                                                      | €066.€-                                       | ₹686.                                     | #288 #          | .2635                                                           | 7¢'35¢6                                                                     | SE07.9-                                 | უ⊆60°                | 0800.                                                                              | 9£00°-               | 3.88≥5               | 7.8230   | 50<br>52             |
| 084° ठा<br>64€ • 94                   | . 0                                           | ZTE8.41-       | 0                  | 1.2825              | 8758.45-                                                      | -, 0192                                       | 2.7081                                    | 8559.<br>4988.  | τρ6τ*                                                           | £975.7-                                                                     | 9616°-                                  | THYB°T               | TSLE                                                                               | 0650.                | 68₹0.8€              | 0760.6   | 52                   |
| ויע ביוים                             |                                               | area d.        | ₹197.              | η69€                | #200°T=                                                       | 4.3092                                        | 0768.                                     | ₹ <b>98</b> 0,  | 5000                                                            | 642E,15-                                                                    | 8616                                    | 74₹9.£               | 61E+ -                                                                             | τ990*                | TT0.65               | 0        | 5#<br>53             |
| 56.197<br>19.190<br>19.190            | 892T.T-                                       | 0949'T-        | 19707              | £58₹.               | 8759,45<br>-1.8624                                            | 2.4496                                        | 9Σ4ξ.                                     | 1850.           | TTOO.                                                           | 9454.25-                                                                    | 8.1642                                  | 6606°T               | -1.4762                                                                            | τίζη·                | 98.0589              | 0760.6-  | S3                   |
| 10t.9s                                | 780S.01-                                      | <b>τ</b> ΕτΟ Τ |                    | COCO*               | 2571.E1                                                       | 6181.E-                                       | 9191'                                     | T800            | £900                                                            | 5425,4-                                                                     | 6600.8                                  | £84£                 | - 9220                                                                             | 8454.                | ₹368.₹               | 0558.7-  | ड्ड                  |
| -55° 3 <sub>1</sub> 16                | 1,0239                                        | 7.7274         | O≨ή∜               | £6 <del>6</del> 0°  | TSES'9T-                                                      | 95.56.4-                                      | 2,2021                                    | 6494            | SOTO.                                                           | 32.2153                                                                     | 70.2549                                 | 93.T.E-              | 6480.1-                                                                            | ₹071.1               | -24.3300             | T686.LI- | 57                   |
| 5.923                                 | 97 <u>£</u> 3,₹                               | jele.t         | 8213.              | cc 50.              | 1929 91                                                       | 7,6592                                        |                                           | 9629            | श्चर.                                                           | 29 7925                                                                     | 0 20 01                                 | -2.9037              | 0100 1                                                                             | 6169                 | -23.5271             | -2.7453  | 50                   |
| ££7.6£                                | . 0                                           | - 1629         | 0                  | 4700                | 7850.65-                                                      |                                               | 7£62.£                                    |                 | 3669.                                                           | 32.2153                                                                     | -10.2549                                | 20₹7.8-              | 5480°T                                                                             | COLT'T               | 888E.SE-             | 2.2356   | 6T                   |
| 5 7 923                               | 9/τ9.ሮ⊷                                       | T'315#         | - 5T38             | ₹₹50°.              | -18.0769                                                      | 12,1397                                       | 42924                                     | -1.6267         |                                                                 | 30 0163                                                                     | 6600.8-                                 | E846                 | 05220                                                                              | 84154                | ₹588.6-              | 3.9405   | OT                   |
| 945.5S-                               | 6€20°T~                                       | 1.7274         | 0544               | 66₹0.               | 15.9033                                                       | 5500.T                                        | -1.8920                                   | 46TL            | 8566                                                            | -4.2242                                                                     |                                         | 6606.1               |                                                                                    | TTZ4.                | 8849.81              | 1770. č  | 17                   |
| - <b>56</b> . 197                     | 1802.01                                       | ηξηΟ°Τ         | -1. 552t           | .5833               | 9886.74                                                       | Ō                                             | ₹856.4-                                   |                 | 1.2935                                                          | 9754.75-<br>-22.4549                                                        | -8.1642                                 | 0000 L               | 3924°T                                                                             |                      | 19.0364              | 0        | 07                   |
| 08म् "टा                              | 7.7268                                        | 0949°T~        | C161               | 469€.               | ξξ06.21                                                       | -7.0626                                       | -1.8920                                   | 46T.L           | 8566.                                                           | -57 3570                                                                    | 8616                                    | £4€9°1               | 61.54                                                                              | 1990                 | 18 036ls             | -5-סדודו | 9T                   |
| 6th 9th                               | 0                                             | CTER +-        | 0                  | 1.2825 l            | 6970,81-                                                      | 795.1397                                      | 4595'                                     | T.6267          | 6669.                                                           | E37E.T-                                                                     | 9090'9                                  | τήη8°τ<br>η≤60°      | TSLE.                                                                              | 0650.                | 8€49.81              | 2046.E-  |                      |
| 15° 400                               | -7.7268                                       | 0919°T-        | S161.              | ή69⊆°               | -16,5351<br>-25.0267                                          | 36€9°T-                                       | 1.16617                                   | 9639            | शररा.                                                           | 22.9952<br>26.7833<br>24.3246                                               | 2.703g                                  | 15.60                | 0800                                                                               | <b>∂</b> £00.−       | 53.88≥5              | 2010 8-  | YI.                  |
| 791.52-<br>25.38-<br>25.38-<br>26.38- | -10.2087                                      | <b>τ</b> ξη0°Τ | T-SSST             | EEBZ.               | τςες, 51-                                                     | 9526*†                                        | 2,2021                                    | 6€94°           | 30TO.                                                           | 26.7833                                                                     | 9961.S-                                 | 6775s.               | TC.10.                                                                             | 6000.                | 888£.SE-             | -2.2356  | 13                   |
| O#6 , 55-                             | 7.0239                                        | T-7274         | 05th               | £660°               | 2571.E1                                                       | 3.1819                                        | 9191.                                     | £800.−          | £300                                                            | 2,9952                                                                      | O0£1.4-                                 | <b>6559.</b>         | 0840 -                                                                             | 9του'-               | -23.5271             | 2.7453   | टा                   |
| C26.3                                 | 9,6176                                        | T'315#         | ST38               | <b>€</b> €30°       | 24.9378                                                       | 96th.S-                                       | 974E.                                     | τς 20 • −       | Troo.                                                           | -27.6 <del>5</del> 66                                                       | -3.2396                                 | 8,6165               | 6899'-                                                                             | Sytt.                | -24.3300             | 1666.11  | π                    |
| EET. QL                               | 0                                             | 6391           | 0                  | 4700                | -1,8624                                                       | 260E +-                                       | 0768.                                     | ₹980            | 0012                                                            | -24.2370                                                                    | ב דודון                                 | 84t€°t               | ₩69°-                                                                              | EGGT.                | ₹568.5               | 0.598.7  | TO                   |
| 2.983                                 | 9279'6                                        | 1.3724         | 2138               | ₹₹20.               | 4298, 45-                                                     | 3610.                                         | 2,7081                                    | 8556            | τ96τ.                                                           | SHOT OT-                                                                    | अहर्त द्वा                              | 98µs.                | 8459°T-                                                                            | ₹807.                | 38.0529              | 0760.6   | 6                    |
| O+C. 33-                              | 6550.1-                                       | 4727.t         | UCP#               | €6€0.               | έλζ9.6τ-                                                      | 5066.₹                                        | ₹6£6°                                     | 4988            | .5635                                                           | T186'TT                                                                     | 4295.7<br>5457.SI                       | 716₹ .1-             | £897                                                                               | 209¢.                | 29.0177              | . 0      | 8                    |
| -26.197<br>946.52                     | 10.2087                                       | τεηο·τ         | -1,5521<br>1557.1- | ξξ8ξ.               | 7911,11                                                       | S₹₹8.SΩ                                       | -2.1279                                   | L9Sh.t-         | ετ66                                                            | 1486.11<br>7 <b>6</b> 85.74                                                 | 3.8285                                  | 7568.4-              | E59E                                                                               | 1,2868               | 65₹0.8€              | 0760.6-  | 4                    |
| OUL YO                                | 8927.7<br>7405.01                             | 0949'T-        | 6161 -             | #69₹.               | 287.8s                                                        | 2.7693                                        | 47£8.S~                                   | 2701            | 6989,                                                           | \$37£.7<br>81.68.4s                                                         | 66T4°4-                                 | -5∙≱ <del>ր</del> 6ր | T 23T3                                                                             | 89⊊9•                | 24.3300<br>3.8885    | 0E58.7-  | 9                    |
| 084°टा<br>64⊊°94                      |                                               | €1£8.4-        | ×107 -             | 1.2825<br>1033      | 0₹94.7£                                                       | 9805.8-                                       | 86ητ·η-                                   | E£38.           | 1.2114                                                          | 2975.7                                                                      | 69En ET-                                | T#18:T-              | ETEG T                                                                             | 0196                 | -54.3300             | τ626*ττ- | 6                    |
| ויע בויים                             | 0                                             | ALES A.        | ₹16T.              | 4694                | 3854.E-                                                       | -8.2431                                       | SSS# -                                    | 9966            | GG€4                                                            | CT6g. LT-                                                                   | -6.2033                                 | £967                 | og88.                                                                              | 7085.                | -53°25.17            | EZ4T. S- | 1 4                  |
| <b>28</b> 4°8€                        | 8927.7-                                       | 09tg'T-        | ALOL               | ££8₹.               | 01₹0.8£~                                                      | 7878.2-                                       | 2.0743                                    | 4€6€.1          | TST4                                                            | -38.7183                                                                    | -2.1391                                 | S.7259               | 9660 1                                                                             | .2531                | ₹588.8-<br>888£.9€-  | 2.2326   | 1 5                  |
| -55 3HC                               | -10.20S7                                      | ηξηΟ' Ι        | 1.5521             |                     | 1985 11-                                                      | 2,4530                                        | 8995.1                                    | #6TE            | 14E0.                                                           | TZCT.01-                                                                    | 3.545                                   | 3.2845               | 2016                                                                               | 7910.                | -3.6625              | 3.9405   | s                    |
| 94F, SS-                              | £20.1                                         | 1,7274         | ο⊊ηψ.              | £660.               | 1965 LL"                                                      |                                               | CONTIT                                    |                 |                                                                 |                                                                             | 06TG-2                                  | 1166.                | 0660.                                                                              | 3800,                | 0C#0.01              | 2770.2   | l t l                |
| 998.6<br>592.3                        | 3,6176                                        | J.3724         | 8213               | ₹₹20.               | 10₹0.7                                                        | 3.7026                                        | S6tT'T                                    | OHET.           | 0910,                                                           | 9,3406                                                                      | 0.2440                                  | 0630                 | 6110                                                                               | £100                 | 9.0182<br>87.645     | O,1472   | 0                    |
|                                       | #05€,0                                        | ₹180.0~        | 7450.0-            | TE00.0-             |                                                               | 277R2.0                                       | 0₹70.0-                                   | 1810.0-         | ES00.0-                                                         |                                                                             |                                         |                      |                                                                                    | ١ ،                  |                      |          | _                    |
| <sup>γ</sup> μ μ λ <sup>8</sup>       | $\frac{\tau}{\omega_{B}} T_{B}(\ddot{y}_{g})$ | La(ÿa)         | (av)al as          | L <sup>n</sup> (Je) | $\frac{1}{L} \Gamma_{\Omega} \left( y_{\gamma}^{(4)} \right)$ | $\frac{1}{\sqrt{\gamma}} \Gamma_n(\vec{y}_7)$ | $\frac{1}{1} \Gamma_{n}(\ddot{y}_{\tau})$ | (¬į,)"T 🛣       | $\mathbf{L}^{\overline{\mu}(\mathbf{A}^{\underline{\lambda}})}$ | $\frac{1}{1} \Gamma_{\mathbf{n}} \left( \mathbf{y_{c}}(\mathbf{t}) \right)$ | $\frac{1}{1} \Gamma_{\mu}(\vec{y}_{e})$ | T LP(3°)             | $\frac{1}{\omega_{\mathbf{c}}} \Gamma_{\mathbf{n}}(\dot{\mathbf{y}}_{\mathbf{c}})$ | $L^{D}(\lambda^{G})$ | (4) Pa Pa (4)        | T LU(À)  | ū                    |
| 88                                    | 75                                            | 9E             | 32                 |                     | 33                                                            | 35                                            | τε                                        | 30              | 56                                                              | 88                                                                          | LZ                                      | 56                   | 52                                                                                 | 5¢                   | 53                   | 55       | <del>  - </del>      |

TABLE V. - CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

| - KYYN -                           |                          |                                         |                                               |                      |                                                                      |                                   |                     |                     |                                                  |                                                 |                                         |                                                                     |                                                                    |                                                                            |                                  |                                      |
|------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------------|----------------------|----------------------------------------------------------------------|-----------------------------------|---------------------|---------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|--------------------------------------|
| τοςη.                              | £969°-                   | 480*-                                   | æ0.                                           | 8485.                | 8τή <b>0</b> °                                                       | 9106                              | 906.                | τατ.τ-              | £66T                                             | 6 <b>2</b> 69°                                  | ካፒ99"~                                  | £6T*-                                                               | 9 <mark>tτ*</mark>                                                 | £99ħ°                                                                      | ₹TEO.                            | 1966 O ×                             |
| £05€                               | 8410                     | 0                                       | 0                                             | 0                    | 0                                                                    | 0                                 | T0.0263             | 7217.4-<br>9788     | 4₹70                                             | 999€<br>8040.                                   | τ800.−                                  | 0                                                                   | 0                                                                  | 0                                                                          | 0                                | 0 0tr<br>0 6£                        |
| SE79                               | 2992.<br>€30£.           | 0                                       | 0                                             | 0                    | 0                                                                    | 0                                 | S8£6.₹S-<br>£780.7- | 2.9409              | 1159.1                                           | 2(5)                                            | 784T                                    |                                                                     | 0                                                                  | ١                                                                          | l š                              | 0 85                                 |
| T2#8                               | TSTT.I                   | 0                                       | ő                                             | 0                    | ő                                                                    | ő                                 | E780.7              | T008.LL             | 8117.1-                                          | 6TQ4°T-                                         | 0646                                    | ŏ                                                                   | ő                                                                  | ō                                                                          | Ö                                | 47€0. €€<br>47€00 8€<br>0 7€<br>0 8€ |
| e158.                              | ofac.                    | 6688.6                                  | 660T°T~                                       | <b>ተ</b> ፈናዕ.~       | 66to                                                                 | 9110-                             | 31.8200             | 0                   | 91.60.E-                                         | 0                                               | 6017                                    | £966.6                                                              | 5.3302<br>-,6179                                                   | 1,7650<br>1,5661<br>2,560.−                                                | 6875<br>6875<br>6150.            | ₩£00°- 9€                            |
| 7.2186                             | ζζ8ξ.                    | ₹3£7.11-<br>6688.6                      | TT€8.E-                                       | 7°583€               | 9894 -                                                               | SS20.                             | £780.7              | T008.LI-            | SLTT.I-                                          | 6to4°T                                          | 0£46°                                   | 2817.1-                                                             | -5.3302                                                            | T995°T                                                                     | - 2189                           | 47EO. CE                             |
| ₹830.                              | 8₹50                     | -53°769⊋                                | LLTT'S                                        | T.2533               | <b>9578</b>                                                          | ,2204                             | -25.9382            | 6046.5-             | ληγ.τ<br>1159.1                                  | 73.22                                           | 7841                                    | 45,2264                                                             | 5579.LL                                                            | 0€9L°T                                                                     | E4TZ                             | 9560. 48                             |
| 1/LOT                              | τετο.                    | 25.3541<br>24.0563                      | 1201.6                                        | -3.1072              | 89£0.1-                                                              | T\$60°T                           | £780.7-             | TSIT.4              | 8177.1                                           | 6698.                                           | 0770.                                   | -12.3758                                                            | STET C                                                             | -2.5929<br>-2.5929                                                         | 506<br>7177.1.                   | 9005, I LE<br>8999, SE<br>8947, SE   |
| ₹184°-                             | 6950.                    | S2.3541                                 | ₹29T.₹-                                       | 4863.5-              | TLA'T                                                                | £813.                             | 20.0565             | 7217.44-<br>0       | Toet                                             | 6605                                            | 65to                                    | 36.2838<br>36.2838                                                  | 9946.7-                                                            | T150.4-                                                                    | 8487                             | 8999° ZE                             |
| 4124.1-                            | 17.27.<br>8556.          | -15.8708<br>-20.3745                    | (106.3                                        | 936°τ<br>976°τ       | 2969                                                                 | 8210                              | SB59.7-             | 2.9409              | 11:62.11<br>81.17.1                              | 2657 -                                          | 784£.                                   | £966.6~                                                             | £₹80.8-                                                            | <b>6360</b>                                                                | 6476                             | #08£. 0£                             |
| +T2+-T                             | 0550.                    | 4014 et                                 | 7897.1<br>2196.9<br>6599.6-<br>7591.6-        | Cot9                 | 1840                                                                 | 6€00°                             | £780.7              | T008.LI             | gtlJ:T-                                          | 6T04'T-                                         | 0E+6                                    | 159% 48-                                                            | 0910.2-                                                            | 5°#370                                                                     | 9£90°T                           | 59 .2616                             |
| 4184.1                             | දුනුල.<br>පියුතුපි.      | £801                                    | TOSh t-                                       | 8⊆98                 | S#80                                                                 | 6910                              | 31.5200             | 0                   | 8177.1-<br>8177.1-                               | 0                                               | 69T.L                                   | g€#0.                                                               | £184 4                                                             | 6738°                                                                      | T890°                            | 18 - 1009                            |
| TOT.                               | τετο.                    | 9900.1£-                                | то <del>г</del> т'+-<br>тогт'+-               | 6 <u>7</u> 56.1      | -1.2345                                                              | 987E.                             | 26£6.₹3-<br>£780.7  | 2.9409<br>-11.8001  | 8t77.t-                                          | 6 <b>104</b> °T                                 | 0£46.                                   | 2 <b>Σ</b> 40.<br>ΣΣ40.                                             | 0                                                                  | 3772                                                                       | 0                                | 2100.   7S                           |
| ₹890                               | 8₹50.~                   | 9900°TE-                                | 7807.5-<br>8.2646                             | -7.12₹               | 0960.<br>£08€.<br>0∏8                                                | 8555.                             | -55.9382            | 6046.S-             | 707.1.<br>8117.1<br>11.6211                      | SET.                                            | 784£,                                   | 2 <b>⊆</b> 40°                                                      | £784 4-                                                            | e758.                                                                      | 1890 T−<br>9€90 T−               | 26 -,009h                            |
| -1,2186                            | ₹85.                     | 9998 . e-<br>8538 . BE                  | 7807.E-                                       | 92€5.4-              | το8ξ.                                                                | TISS.I                            | £780.7-             | TSTT.4              | 8177.I                                           | 6698                                            | 0770                                    | 77.55 AE-                                                           | 2.0160                                                             | 0164.3                                                                     | 9£90 T-                          | S2 S616                              |
| \$576.<br>1749.<br>9198<br>8815.1- | 078₹.                    | 6668 6-                                 | LT2L.8-                                       | 4770                 | 0966                                                                 | 998€.                             | S0.0565             | Ö                   | 10%T*-                                           | 0                                               | £910*-                                  | £966.6-                                                             | £₹80.8                                                             | ₹260.                                                                      | 6t/16                            | 23 1.8009<br>24 .3804                |
| 7E49.                              | 1.1721                   | £0£1.7S-                                | 434E.                                         | 2,3890               | 7848.                                                                | τ96τ'                             | 9859.7-<br>5780.7-  | TSIT.4-             | 8177.I                                           | 969E -                                          | 0770                                    | 36,883,88                                                           | 3948.T                                                             | -2.5929<br>-2.5929                                                         | \$30% -<br>8487 -                | 8999. SS<br>8009.1 ES                |
| SF 70.                             | 9985.                    | 9ETT: #T                                | 69TT &                                        | TITI.                | 7791<br>0500                                                         | 0850<br>5450                      | 8780.T              | 11,8001<br>2,9409   | 11.6211                                          | 6104 T-                                         | 7841.                                   | - १५ - २५ -<br>१५ - १५ -                                            | 2579. II.                                                          | 3871                                                                       | TTTZ: T                          | 9647, LS<br>8666, SS                 |
| Eoee.                              | €90T°                    | ₽3.24 <del>5</del> 7<br>6.9503          | 7814.11<br>5947.<br>1449.11                   | 1.1693               | 9866 -                                                               | €060                              | 31.8200<br>7.0573   | 1008 11             | 1159.1<br>8177.1-<br>8190.8-<br>8177.1-          | OTOM I-                                         | 6817.                                   | -25,2264                                                            | 0449                                                               | 0€9L T                                                                     | EHTZ.                            | 20 0926                              |
| 5055                               | 7650                     | 048e.                                   | 1014.11                                       | 7.2505<br>1.7726     | 8554.I-                                                              | 1778.                             | Clou.1              | TODO:TT-            | 3100 £                                           | 6tot°t                                          | 0£46.                                   | -1.718e                                                             | 5.3302                                                             | T99€°T                                                                     | 2789                             | 7LEO 6T                              |
| 5666                               | 9982.                    | 9147.1E                                 | באַנין ננ                                     | -3.1053              | pari i                                                               | 445T.                             | 28.69.25-<br>6780.7 | -2.9409<br>-11.8001 | 11.6211                                          | S₹£Ţ.                                           | JANT'                                   | 3566.91                                                             | 0                                                                  | ο≤9τ•-                                                                     | ه سا                             | 8010 - 81                            |
| 7849                               | 1.1721                   | 0#86.                                   | 19T+*TT-                                      | -1.2505              | 3.52¥ 1,                                                             | 1610.                             | ET80.T-             | TSIT. 4             | ath.t                                            | 669€                                            | 7841.                                   | 2017.1-                                                             | S0£6.₹-                                                            | T99€°T                                                                     | 68TS                             | 4750, TI                             |
| e156.                              | 0782.                    | 7842.25-<br>9640                        | 7423<br>7514,411-                             | 1,TT26               | 7791.<br>8884 ; I                                                    | 7678                              | 20.0565             | 0                   | 70₹1.±                                           | . 0                                             | £9T0                                    | 9₹7£.\$1-<br>45.\$2.₹9-                                             | 55₹6.11<br>0μ49.                                                   | 0€9L°T                                                                     | E+125                            | 3500, 3t                             |
| ,0685<br>1,2186                    | ₹₹8£.<br>078₹.           | 6.9503                                  | 1791.8<br>4545<br>6911.5-<br>1445.4           | 1.1693<br>1.1726     | LL6τ.                                                                | 0980                              | 28:9.52-<br>5780.7- | TSIT.4-             | 8t77.t                                           | 2€£7<br>96∂£                                    | 0770.                                   | 8₹7£.\$1-                                                           | æε6.π                                                              | 3871                                                                       | LTLS T-                          | 3647. CL                             |
| ₹890.                              | 8₹50                     | 9εττ•ήτ                                 | 6911'8-                                       | <b>ኒ</b> ፒኒፒ・        | oE00.                                                                | 9450                              | 25.9382             | 5.9409              | 1.6211                                           | SET                                             | 784£.                                   | 25.1812                                                             | 5.1313                                                             | -2 5929                                                                    | S90¢                             | 8999° †I                             |
| 4701                               | tEto.                    | -27.1303                                | 4545                                          | 2.3290               | 0966<br>7848                                                         | T96T                              | 7.0673              | T008, LL            | 8117.1-<br>8117.1-                               | 6104°T-                                         | 0£46°                                   | 858S. 25                                                            | 5,6853<br>946.7⊷                                                   | ₹580.<br>£7₹0.#-                                                           | 8487.                            | 4085, St.                            |
| ₹784                               | 6950                     | 6688.6-                                 | 17761.8                                       | 98€8.4-<br>47₹0.     | 108E,-                                                               | 7.52.1<br>3866                    | 31,8200             | 0                   | 9100 %                                           | 610y 1                                          | OAIT.                                   | 1COC:+C=                                                            | -2 0160                                                            | 0164.9                                                                     | 0600.1                           | 11 .2616                             |
| Arcal, r-                          | 1727.<br>8528.           | 9,598,8€                                | 780₹.€                                        | 0€24°T~              | OTT8.                                                                | SEEC.                             | \$859.₹S-<br>£780.7 | -2.9409<br>-2.9409  | BITT I                                           | SET.                                            | JOHT'                                   | 2C+0.                                                               | E784.4                                                             | 67.30                                                                      | 1890                             | 4600'- OT                            |
| T'#ST#                             | 0550,                    | 9900°TE-                                | -4.9381<br>-8.2646                            | 1.9379               | 1.2345                                                               | 987£.                             | 5/30.7-             | 7317.4              | arm.r                                            | 669€.                                           | 0720.<br>7841.<br>0649.                 | 2177, #5<br>2740.<br>1787, #2-<br>6892, 92-<br>8685, 86             | 0                                                                  | 9725.<br>97 <b>9</b> 8.                                                    | 0                                | 9too 6                               |
| 7724°T<br>\$184°                   | ලුදුර<br>ඉදුලුල          | £901                                    | # #SOT                                        | 8€96.                | S#80 .                                                               | 6810                              | 20.0565             | 0                   | 70₹<br>81∏.t<br>1158.t                           | . 0                                             | £9T0*-                                  | Z€+0°                                                               | £784.4-                                                            | 6758.                                                                      | T890*-                           | 4600 - 8                             |
| TOLT"                              | TETO'                    | 40T4 6T                                 | 1.1937<br>4.1201                              | 92ξ.τ<br>50τ9·       | 7840                                                                 | 6600                              | 586.65-<br>5780.7-  | rstr.4-             | 8177.L                                           | 9857<br>9935                                    | 69£0                                    | £366. 6-<br>1₹3₹. 4£-<br>92.40.                                     | S'0700                                                             | S.4910                                                                     | 6479<br>8630.1-                  | 25. T                                |
| 925.2-<br>9812.1-<br>980           | 8≷90                     | 8078.21-<br>5475.0S-                    | 9.629<br>6786.9-                              | 926€°τ               | 6062                                                                 | SSEO.                             | -25.9382            | 5.9409              | 11.69.1                                          | <b>₹</b> εγ                                     | 7841.                                   | £366.6-                                                             | 8.0853                                                             | .0625                                                                      | 6476                             | 4085. 3                              |
| -1.2186                            | 3822                     | -SO 3745                                | 6559.6                                        | то <del>1</del> 9°7- | <b>ሬ</b> ፒ <b>/</b> ቴ ' ፒ -<br>ካካፒሬ ' -                              | £818.                             | E730.7              | T008.LL             | 8177.1-                                          | 6T04°T-                                         | 0ξ46.                                   | 36.283.8                                                            | 294E.T                                                             | T150.4-                                                                    | \$487                            | 11.2009                              |
| e158                               | 078₹.                    | SP 32tT                                 | €σ9τ.€                                        | 48£3.5-              | <b>ተ</b> ካፒና ' -                                                     | £878.                             | 31,8200             | 0                   | 9760 -                                           | 0                                               | 69TL                                    | 25.1812                                                             | 546'TT-                                                            | 6266.3-                                                                    | 7177.1<br>500.                   | 9999°   †                            |
| 1519                               | T'TLST                   | -23, 1685<br>24, 0563                   | 7741.2-                                       | 7.2533<br>-3.1072    | 8578<br>88€0 . I                                                     | T260°T                            | 26.69.7<br>£780.7   | 2.9409<br>2008,LL-  | SITT. I-                                         | ≪ε7.<br>2₹ε7.                                   | 0540.                                   | 827E.St-                                                            | 0449,-                                                             | 0₹37.1<br>3871                                                             | EATZ.                            | 8960. S<br>SQ47. E                   |
| COCC.                              | 2992<br>2869             | 2871.50                                 | TICOSC                                        | 0526'T               | 000F,                                                                | 5280.<br>4052.                    | C100-1-             | ייין דבן ייי        | OTLL                                             | 6605                                            | 07₹0.                                   | 1966 36"                                                            | SUEE.C                                                             | TOOC T                                                                     | 69/2                             | ₩/£0.   T                            |
| 1980.0-<br>5088.<br>SERG.          | ONTO TO-                 | 52€7.LL-                                | 3.699<br>1.1099                               | 4770.0-<br>4750.0-   | 9894°                                                                | OTTO n=                           | 10.0263<br>-7.0673  | 1217.4<br>68859     | 8177.1<br>8177.1<br>1193.1<br>8177.1-<br>8177.1- | 969€.                                           | T900°0~                                 | 9.9963<br>4.05.25.                                                  | £473.0<br>50ξξ.₹                                                   | 7995°T                                                                     | 6812·                            | 4750. 1                              |
| 1730 V                             | 94100                    | 5000                                    | J. 1                                          | 1,0000               | #0·10·0                                                              | 70.00                             | 00000               |                     | 1,120                                            | ,5,5,5                                          |                                         | 2,00                                                                | - 1-2 -                                                            |                                                                            | ,                                |                                      |
| T L <sup>n</sup> (Ar               | $L^{p}(\mathbb{A}^{7S})$ | T L L L L L L L L L L L L L L L L L L L | $\frac{1}{T} \Gamma_{\Pi}(\overline{Y}_{11})$ | LE TE (VIL)          | $(_{LL}\dot{V})_{\Omega}^{\mathrm{T}}\frac{1}{\iota \iota^{\omega}}$ | L <sup>B</sup> (A <sup>TT</sup> ) | T Lu(Aro(4))        | ula Tala            | (or£)u zorm                                      | $\frac{1}{100} \Gamma_{\text{R}}(\dot{y}_{10})$ | $\mathbf{L}^{\mathbf{u}}(\lambda^{TO})$ | $\frac{1}{2} \operatorname{Tr} \left( y_{\mathbf{e}}^{(4)} \right)$ | $\frac{1}{1}$ $L^{\mathrm{D}}(\mathring{\mathbb{A}}^{\mathrm{B}})$ | $\frac{1}{1} \mathbb{E}_{\hat{\mathbf{u}}}(\hat{\mathbf{v}}_{\mathbf{g}})$ | $\frac{1}{1} t^{n}(\lambda^{n})$ | n In(Ja)                             |
| <u>G</u> G                         | ηS                       | ES                                      | 35                                            | τς                   | 06                                                                   | 64                                | 84                  | Ltr                 | 94                                               | Str                                             | 44                                      | £#                                                                  | 간                                                                  | Tη                                                                         | Ot                               | 6E T                                 |

TABLE V.- CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Continued

| 6тто•-           | ाडाः             | 6669*-                                             | 66T'                | £75              | 8090                                                                   | <b>4688</b> °                                      | S007                       | <b>⊆</b> †0°~         | 120.                                                         | 9261.                         | £6£0.        | æ18                 | <b>Β</b> η <b>ξ</b> •                                                                              | 9τ⊊•-                                                 | 36≨0 - ≈                            | '0 ×       |
|------------------|------------------|----------------------------------------------------|---------------------|------------------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------|-----------------------|--------------------------------------------------------------|-------------------------------|--------------|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|------------|
| 0                | 0                | 0                                                  | 4569.8              | 6199°T-          | 7666.1<br>8540.                                                        | o730.                                              | 9€ao                       | 0                     | 0                                                            | 0                             | 0            | 0                   | z⊈#9°6                                                                                             | -7.2905                                               | 8450                                | ОĦ         |
| 0                | 0                | 0 ]                                                | £641.61-            | T+T6*-           |                                                                        | TOET -                                             | EHLT.                      | 0                     | 0                                                            | 0                             | 0            | 0                   | τ187.41-                                                                                           | 9₹50.€-                                               | 9866 T                              | 68         |
| 1910.            | 0690             | 1750                                               | 4518.E-             | इटार.८           | 209h                                                                   | T616                                               | €0ζ+,                      | 0                     | 0                                                            | 0                             | 0            | 0                   | 96E9.81-                                                                                           | 4909.9                                                | TEIB.                               | 8€         |
| 90%6°T           | 8167             | 2035                                               | 33.3717             | 8169.5-          | 1358.5-                                                                | 390€.                                              | 1,1762                     | 0                     | 0                                                            | 0                             | 0            | (0                  | 38.9831                                                                                            | 7.8131                                                | 6667. E-                            | 75         |
| 457E.E-          | 8856             | £521.1<br>₹80₹.                                    | -17.1120            | 7277 9-          | 660Y.                                                                  | τ9≤6*                                              | .2959                      | £640.6                | η6η⊊°τ~<br>⊈6£9°τ~                                           | 0000                          | T490*        | €050.~              | 0906.9S~<br>2057.91                                                                                | 0808.7-                                               | TSTL'T-                             | 9£         |
| 4275 E-          | 9048,<br>8₹03,   | 666T.                                              | 1699.9-             | S 9990           | 2062.<br>£766.£                                                        | ₩30°-                                              | SE80.                      | T660*9T~              | S752.7                                                       | 0£10<br>1₹50.s                | 5966<br>527∂ | 8641.               | 4156.9                                                                                             | ₩η <b>∠8</b> *ή-<br>9ή-8*ή                            | <i>6</i> ςεγ.<br>8τεθ. 1            | 35         |
| 1.2332           | .2426.<br>(8)    | £6£0                                               | 13°1121<br>9162°25- | 8664.5-          | 4578.1<br>5000                                                         | -1.0423                                            | 8ξ£.<br>6₹40               | 1861.8E<br>18610 6−   | 27.00 T                                                      | 6τ£0°η-                       | 9900 -       | 1.2005              | 66E4.4I                                                                                            | 3008.2-                                               | <u>6₹8</u> .                        | 33         |
| 6988,            | £041             | 0850                                               | 2905.SI<br>3153 30- | 7.4237<br>2.7036 | EETT.1-                                                                | 0708                                               | LEGE.                      | 2640.e-               | srse.r-                                                      | OETO -                        | ⊊966°        | CC6E·               | 73807                                                                                              | 7548                                                  | 6647.1                              | sc         |
| 3₹£7.            | S40ξ.1-          | ττ9⊈·                                              | 23.2711             | 896s.1-          | τοξο•ξ-                                                                | 0₹₹8.<br>070å                                      | 1.0833                     | 1660.81-              | 96€9°T                                                       | 7₹ <b>5</b> 0.3               | \$270.       | 864T                | 8928. E-                                                                                           | ग्ठाठे ठा                                             | ₹998 -                              | 35<br>TE   |
| -2.8821          | 1£42             | T204                                               | 5697.59-            | -3.1122          | 3074.1                                                                 | TSTT.                                              | 1861.                      | 1660 BT               | ٥ جين                                                        | 0980                          | ٥            | 6010 -              | 6004 TE                                                                                            | . 0                                                   | S660.E-                             | 30         |
| CC19 -           | 8£TE*T           | 8087                                               | U+OF.0              | 0≷79.S           | TTTT.I                                                                 | יצובי.                                             | 6350                       | 1660'81-              | £6€9·τ-                                                      | 2.025Ţ                        | SST0         | 864T                | -3.3266                                                                                            | 1216.01-                                              |                                     | 1 56       |
| 7.4250           | 33.62            | 0.02                                               | 2.2353<br>6.4640    | 1767-E-          | ₹±08.                                                                  | LLot"-                                             | £8£0                       | ≤640 6-               | 575Q.T                                                       | 0£T0                          | £966·-       | 3955                | -22.3807                                                                                           | 7548.                                                 | <del>66</del> 42°τ                  | SB         |
| 3668             | 8070             | chto.                                              | 22.5808             | 91.19.9          | THET. I                                                                | -7.2866                                            | 296η*                      | 36.1981               | 0                                                            | ST\$0°+-                      | 0            | 7.2005              | 66E4 4T                                                                                            | S.8006                                                | eces.                               | SI         |
| 1,6256           | 0€6⊆ -           | T940'                                              | 24.9553<br>-22.5808 | £6Th*4           | 7699. S-                                                               | 9992°T-                                            | E469°                      | 5640.6-               | STS2.T-                                                      | o£10                          | £966°        | 3925                | †π <b>Σ6</b> ° δ                                                                                   | -4.2465                                               | ecer.                               | 98         |
| -2.2003          | 4470 I-          | 7186°:                                             | 0626°02-            | T869.6-          | £7673                                                                  | 7.2289                                             | 8916.                      | 1660°91~              | €689°T                                                       | 1750.3                        | 6722         | <b>86</b> ητ°       | 0608.65-                                                                                           | 4478.4                                                | 1.8318                              | 52         |
| -5.1518          | 7899             | EE+9                                               | -50.9290            | 1164             | 9029°T                                                                 | 6£ <b>5</b> 6                                      | +6€0°                      | τ660.8τ               | 0                                                            | 09201                         | Ø            | 6040                | 35.7355                                                                                            | 0808.T                                                | TETL'T-                             | 57         |
| €189°T           | 6160°T           | 409E                                               | 804L 4T             | #9TZ*T           | .8533                                                                  | £S20.                                              | 8110.                      | τ660°8τ-              | €6€9°T-                                                      | 7₹50.S                        | 2966<br>3276 | 864⊺                | 1£86.5£                                                                                            | τέτ9.ζ-                                               | 666T.E-                             | 33         |
| SLITE.           | £8£0.            | 9150 -                                             | €626°01-            | 3.0766           | T69E.T                                                                 | 867s                                               | T/00'-                     | 5€40-6-               | ST56.T                                                       | -°0730                        |              | CCGE                | 8€63.81-                                                                                           | 4909.9-                                               | TELB.                               | 55         |
| 1969 T           | τ876.−<br>εξ84.− | 6960                                               | 8585.01-            | 9LTE-6           | टापा -                                                                 | -1.3702                                            | ₹607.                      | 1861.8E               | 0                                                            | <b>⊆τ⊆0*</b> η-               | 0            | 1.2005              | TT8T. AL-                                                                                          | 3, co. ₹                                              | 9866°T                              | ST         |
| 9488             | £879             | eTHE.                                              | 29.7336             | 0                | 7850.E-                                                                | 0                                                  | EOET.                      | 6640 6-               | 21.59.T-                                                     | o£to -                        | £966°        | 3955                | 79.2903                                                                                            | 0                                                     | 6690 -                              | 50         |
| TI18. E-         | 16.0             | T'TLET                                             | 868€ ot-            | 971E.9-          | टापा -                                                                 | 20TE.1                                             | ₹607.                      | τ660 - 9τ-            | €6£9.£                                                       | 1650.9                        | serta.       | 864T                | TL91.41-                                                                                           | 2₹50.£-                                               | 9866°T                              | 6T         |
| 35/92            | τ876.            | ₹860.                                              | ≤636°0T-            | 9970.ε           | 169E*T                                                                 | £s30<br>867s.                                      | 8LTO.<br>⊥700.~            | 1660°81               | 6€9°τ-                                                       | 7550.S<br>0860                | 0            | 6040 -              | £86.5€<br>£86.8±                                                                                   | 4909.9<br>  τξτ8.ζ                                    | 9997.E-<br>TELB.                    | 81         |
| 817E.            | £8€0             | 9T50*-                                             | 9041°41<br>0626°03− | #9TZ*T-          | 3073.1                                                                 | \$630                                              | 4660.                      | €6 <del>4</del> 0°.6− | 2792.7                                                       | 0£to                          | ₹866<br>SST8 | 9641.               | CCET. SI                                                                                           | 0808 7-                                               | TSTL'T-                             | 91         |
| 1.6575           | 6760.1-          | 109€                                               | 1699.9              | 1859.6           | £16673                                                                 | -1.2289.                                           | 8916.                      | 1861.98               | 0                                                            | ₹₹0.4-                        | 3500         | 1.2005              | 090€.9S-                                                                                           | 1476.4                                                | 3158.1                              | 話          |
| -2 1218          | 7899             | EE+0.                                              | S# 6223             | ε6tη·η-          | 7699.5-                                                                | £9€4.                                              | £η69°                      | ₹640.6-               | 's192.T-                                                     | o£to                          | ⊊966°        | 366E.               | 5.931¢                                                                                             | ₹ 5465                                                | 6487.                               | 171        |
| -2.2003          | דינביד           | 718e.                                              | 8082,55             | 9TT9-9-          | THET'T                                                                 | 7,2866                                             | 2864°                      | τ660 - 8τ-            | €6€9°T                                                       | 2.025T                        | SSTO.        | 964T                | 66E4*4T                                                                                            | 9008 8-                                               | 6%£8.                               | 13         |
| 1.6256           | 0866             | 1920                                               | 2.2353              | τς9Ĺ·ξ           | 6408°                                                                  | ίμοτ.                                              | £980 -                     | T660 '8T              | 0                                                            | 0980                          | .0           | 6010                | 7086.SS-                                                                                           | 7E48                                                  | 66nL.T                              | या         |
| S688.            | 8070.            | Stro.                                              | 0494.9              | -2.9750          | TTTT.I                                                                 | CC13                                               | 0329                       | T660°8T-              | <b>66€9°τ−</b>                                               | 2.0257                        | 2278         | 864T                | 8925.6-                                                                                            | रटां6.0र                                              | €998*-                              | $ \pi $    |
| 1,4250           | S486             | 0                                                  | 5657.52-            | 3:1185           | 901+°T                                                                 | LBTT                                               | TBGT'                      | ₹640.6-               | 7.9272                                                       | o£10                          | €966         | 3995.               | 6904 TE                                                                                            | 0                                                     | -3.0992                             | OT         |
| 6679 -           | 9ETE • T -       | 8087.                                              | 23.2711             | 88≳s.⊺           | TOE0 . E-                                                              | ogg8 -                                             | 1.0833                     | T96T*9E               | 0                                                            | STSO 4-                       | 0            | 1.2005              | -3.3268                                                                                            | T8T6*0T-                                              | €998                                | 6          |
| 1568.S-          | 7845.            | 40ST.                                              | 490€. 21            | TESA. T-         | -1.7133                                                                | 0708.                                              | TE66                       | S640.6-               | STSQ.T-                                                      | o£to                          | 966          | 566E.               | 708E.SS-                                                                                           | TE48.                                                 | 664L'T                              | 8          |
| δε <u>τ</u> .    | 1,30h2           | 1196                                               | -25.5316            | 2.TO36           | 4578,1                                                                 | 1.0423                                             | 3738                       | 1660.81-              | €6£9°T                                                       | 2.0057                        | SSTD.        | 8641                | 66En * 4T                                                                                          | 9008.5                                                | 6658.                               | 1 7 1      |
| ₹568.            | EOnt'            | 6850                                               | 73.1157             | 8664.S           | 9065.                                                                  | #25.<br>. 0243                                     | 9940                       | 1660,81               | 0                                                            | 0990.                         | 0            | 60to*~              | 426,3<br>2.931μ                                                                                    | \$9\\Z`\\-                                            | 84ξ8, £                             | 9          |
| 1.2332           | 2426             | ₹6£0.                                              | 1699.9-             | 0696.5-          | 6807.<br>ET33.1                                                        | τ9≤6°-                                             | £80.                       | τ660'8τ~<br>\$640'6-  | sγse.γ<br>₹9£6.1-                                            | 0130<br>2.0251                | 5969<br>5279 | 864t.               | 3257 ST<br>0005 99-                                                                                | 0808.7<br>4478.4                                      | TCTT.I-                             | #  <br>  # |
| 1752TF           | 8₹0∂<br>\$048    | 1.1233                                             | 7.478.58            | 8169.5           | 42£8.£-                                                                | 330E                                               | S271.1                     | 1891, 85              | ereo r                                                       | STSO'4-                       | 0            | L.2005              | 32.9831                                                                                            | TETA G-                                               | 666T.E-                             | =          |
| 1946             | 8889.            | 80€.                                               | 4St8.6-             | 8.03.6           | 208#,-                                                                 | 1676.                                              | £0 <b>⊊4</b> *             | ₹640.6-               | s792.7-                                                      | oEto                          | ≤966·``      | 556E.               | 8559-81-                                                                                           | 1909.9~                                               | TETS.                               | š          |
| מויקה            | 81.67.           | 2035                                               | 6641.91-            | τητ6.            | 1666°T                                                                 | TOET.                                              | £4γ£.                      | 1660.81-              | C650.1                                                       | 17550.S                       | 2578.        | 86hT                | 1787.41-                                                                                           | 1 5 55 E                                              | 9866.£                              | ίτΙ        |
| 7970.0<br>7970.1 | 0690-0-          | £750.6~                                            | 49₹9.8              | 6299•τ           | 8940.0                                                                 | 0750.0-                                            | è£90.0-                    | ₹640.6                | \$6€9°T<br>†6†\$°T                                           | οετο-ο                        | T#90 °0-     | ₹050.0-             | 9C#9.6                                                                                             | 1,2905                                                | 8450.0-                             | 0          |
| )n' serw         | (\$7 £) L ST()   | $\mathbf{L}^{\mathrm{D}(\lambda^{\mathcal{T}^2})}$ | T Lu(AT* (4))       | " In (VI.4)      | $\frac{\tau}{\sigma^{f \cdot \xi}} L^{p}(\dot{\lambda}^{J \cdot \xi})$ | $\frac{1}{\omega_{1,4}} \Gamma_{n}(\dot{y}_{1,4})$ | $L^{\mu}(\lambda^{T^{*}})$ | T Lu(Are (+))         | $\frac{\pi^{T\Theta}}{T}$ $L^{n}(\tilde{\lambda}^{T\Theta})$ | Lack) mark in (in a section ) | (st.)" union | $L^p(\lambda^{rg})$ | $\frac{\mathbf{R}^{TS_{\phi}}}{T} \mathbf{L}^{\mathbf{p}} \left( \lambda^{TS}(\mathbf{v}) \right)$ | $\frac{\pi^{TS}Q}{\Gamma}L^{U}(\tilde{\lambda}^{TS})$ | $\frac{1}{1}$ $L^{D}(\lambda^{TS})$ | п          |
|                  |                  |                                                    |                     |                  |                                                                        |                                                    |                            |                       |                                                              |                               |              |                     |                                                                                                    |                                                       |                                     |            |
| T.J              | OT 7             | 69                                                 | 89                  | L9               | 99                                                                     | €9                                                 | 119                        | £9                    | 89                                                           | τ9                            | 09           | 6⊊                  | 8€                                                                                                 | LC                                                    | 9∕₌                                 | τ          |

TABLE V. - CALCULATION OF THE INTEGRALS NEEDED FOR EXAMPLE III - Concluded

| 1                                            | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                             | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75                                                                                                                                                                                                 | 76                                                                                                                                                                                                                           | 77                                                                                                                                                                                                               | 78                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n                                            | $\frac{1}{\omega_{15}} \Gamma_n(\ddot{y}_{15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{\omega_{15}^4}  r_n \! \left( y_{15} \left( 4 \right) \right)$                                                                                                                                                                                                                                       | Γ <sub>n</sub> (y <sub>16</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{\omega_{16}} \Gamma_n(\dot{y}_{16})$                                                                                                                                                     | $\frac{1}{\omega_{16}} \Gamma_n(\ddot{y}_{16})$                                                                                                                                                                              | $\frac{1}{\omega_{16}^{6}} \; \Gamma_{n}(\widetilde{y}_{16})$                                                                                                                                                    | $\frac{1}{\omega_{16}^4} \Gamma_n \left( y_{16}^{(4)} \right)$                                                                                                                                                                                                                                                                                                  |
| 0123456789011234545458282828282828           | 1.7865<br>.1117<br>-7.9314<br>5.1605<br>4.0571<br>-2.7607<br>3.5401<br>-7.3382<br>-2.3484<br>9.3367<br>-2.5377<br>1.1638<br>-3585<br>-8.6181<br>-6.2166<br>3.6582<br>-2.4454<br>-2.4454<br>-3.6582<br>-2.4454<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>-3.6582<br>- | 8.1426 -19.8366 2.3892 27.5582 -21.7377 4.8180 -5843 -18.6211 27.5345 -4.4593 -12.4980 13.3047 -21.3858 13.1777 17.8633 -24.2143 11.8676 -8.2646 -12.7600 33.0746 -12.7600 -8.2646 11.8676 -24.2143 17.8633 13.1777 -21.3858 13.1777 -21.3858 13.1777 -21.3858 13.3047 -12.4980 -4.4593 27.5345 -18.6211 -5843 | -0.0335<br>.2580<br>.59654<br>.0621<br>.0621<br>.9844<br>.5965<br>.2580<br>-0581<br>.0521<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.0581<br>.05 | -0.0693<br>.8847<br>.7734<br>9808<br>5670<br>0.5670<br>.9808<br>7734<br>8847<br>0.8847<br>.7734<br>9808<br>7734<br>8847<br>0.8847<br>.7734<br>9808<br>7734<br>9808<br>7734<br>9808<br>7734<br>9808 | 0.1514 1.7696 -1.6842 -2.2435 1.5329 -9478 1.5329 -2.2435 -1.6842 1.7696 -1.6842 1.7696 -3027 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 -1.6842 1.7696 | 1.9516 -1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 0 -1.2097 -6.7667 7.69170022 0 .0022 -7.6917 6.7667 1.2097 0 -1.2097 -6.7667 7.69170022 0 .0022 | 7.1188 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 13.8720 11.5107 -19.9014 14.2374 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 13.8720 11.5107 -19.9014 14.2374 -19.9014 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 13.8720 11.5107 13.8720 -18.6294 12.0568 -18.6294 12.0568 -18.6294 12.0568 -18.6294 12.0508 |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 2.7607<br>-4.0571<br>-5.1605<br>7.9314<br>1117<br>-1.7865<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8180<br>-21.7377<br>27.5582<br>2.3892<br>-19.8366<br>8.1426<br>0                                                                                                                                                                                                                                             | .9844<br>.0621<br>.0154<br>.0621<br>.9844<br>.5965<br>.2580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9808<br>5670<br>0<br>.5670<br>.9808<br>7734<br>8847                                                                                                                                                | -2.2435<br>1.5329<br>.9478<br>1.5329<br>-2.2435<br>-1.6842<br>1.7696<br>.1514                                                                                                                                                | 7.6917<br>0023<br>0<br>.0022<br>-7.6917<br>6.7667<br>1.2097<br>-1.9516                                                                                                                                           | -18.6294<br>12.0588<br>-18.6294<br>13.8720<br>11.5107<br>-19.9014<br>7.1188                                                                                                                                                                                                                                                                                     |
| 0                                            | =055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .169                                                                                                                                                                                                                                                                                                           | 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2724                                                                                                                                                                                              | 0128                                                                                                                                                                                                                         | 114                                                                                                                                                                                                              | .235                                                                                                                                                                                                                                                                                                                                                            |

NACA

| - TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$25.58556-<br>201.711788<br>351.86877<br>\$7.14746<br>7.3175557-<br>8.633557-                                         |                                                                                                                                                 |                                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | E9464*499-<br>TT8E5*548<br>04E*9E0T8<br>4E6T*E09T-<br>788T*860T-<br>404052L*9T                                                                                                                                                   | = (1) × (2) × (2) × (3) × (4) × (5) × (5) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) × (6) | (8) 2<br>(8) 3<br>(8) 3<br>(8) 3<br>(9) 3<br>(9) 3                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### 1998 ### | 7 8945.4<br>1 8945.4<br>1 8945.4<br>1 985.2<br>1 985.3<br>1 985.3<br>1 986.3<br>1 986.3 | 850.1-<br>850.7-<br>860.7-<br>860.01-<br>860.01-<br>860.01<br>860.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01<br>840.01 | 803.601<br>663.001<br>675.66-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600.45-<br>600 | 246.01-<br>246.01-<br>246.6-<br>250.<br>181.1-<br>250.<br>181.1-<br>250.<br>181.1-<br>250.<br>181.1-<br>260.1-<br>1411 | 8780.11-<br>00ET.2-<br>60ET.2-<br>60ET.3-<br>074E.7<br>60LL.1-<br>60AL-<br>848S.<br>848S.<br>848S.<br>848S.<br>848S.<br>848S.<br>848S.<br>848S. | 8123.0-<br>8428.5-<br>902.5-<br>9027.1-<br>838.5-<br>4507.1<br>8140.<br>8140.<br>6260.<br>1024.<br>8140.<br>4273. | 9151.5-<br>9858<br>9958.5-<br>1970<br>1970<br>1999 | 280.9<br>280.9<br>290.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46<br>200.46 | 6689°0991<br>T468°688T        | 2.4794.5<br>9.8696<br>9.8696<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421<br>10.154.421 | 4994 21 9466 01 9466 01 9476 6 9924 8 9746 9 9744 9 9744 9 9747 8 9951 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9T<br>17T<br>17T<br>17T<br>17T<br>17T<br>17T<br>17T<br>17T<br>17T<br>17 |
| 6 × 6 8 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | © 0 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T of Ω xyv(α)gt                                                                                                        | τρ √χ ος πχνατ                                                                                                                                  | <sup>1</sup> Δt γ S                                                                                               | T O xange                                          | *^m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>B</sup> v <sup>ttl</sup> | 2 <b>^</b> m                                                                                                                                                                                                                     | Λ <sub>00</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٨                                                                       |
| ध्य हा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ττ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                      | L L                                                                                                                                             | 9                                                                                                                 | ς                                                  | ή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ε                             | 5                                                                                                                                                                                                                                | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\perp$                                                                 |

TABLE VI. - SUMS NEEDED FOR EVALUATION OF THE PARMETERS OF EXAMPLE III BY LEAST SQUARES

NACA TN 3288



Figure 1.- The nonlinear pitching-moment curve for example I.



Figure 2.- "Test data" for example I.

NACA TN 3288 . 49



Figure 3.- The nonlinear pitching-moment curve for example II.



Figure 4.- "Test data" for example II.



Figure 5.- "Test data" for example III.