TESSELLATE asteroids paper

Brayden Leicester, Ryan Ridden-Harper, Michele Bannister and Others
July 29, 2025

1 Abstract

2 Introduction

Since 2017, the Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2014) has been obseving large swathes ($96^{\circ} \times 24^{\circ}$) of sky at a very high cadence. These month long blocks of full frame images (FFIs) are named sectors, with the cadence of the sectors dependant on the cycle. The cadence started at $30 \, \text{min}$, then increased to $10 \, \text{min}$, and has now increased again to $200 \, \text{s}$ FFIs.

The large archival dataset of *TESS* has gone largely unanalysied. This is until the **TESSELLATE** project (Roxburgh and Ridden-Harper, Prep), which seeks to find all the transient events that were serendipitously observed by *TESS*. **TESSELLATE** searches every pixel of every FFI from *TESS*, using the **TESSreduce** (Ridden-Harper et al., 2021b) to looking for changes in brightness that could be related to a physical event.

Asteroids are the most numerous source of non-transient detections in TESSELLATE, and need to be filtered out of the rest of the data. This also allows for analysis of the properties of these planetesimals. This letter presents our analysis of the asteroids found with the first set of TESSELLATE sectors, with a 10 min cadence. This cadence is fast enough that the Nyquist frequency of the observations is above the spin barrier for asteroids (Pravec and Harris, 2000), so TESS could detect new fast rotators.

There have been other studies done using TESS to characterise asteroids. It was suggested by Pál et al. (2018) that it would be possible to get good photometry down to $V \lesssim 19 \,\mathrm{mag}$. They followed up with an analysis of the small bodies the first 12 sectors (cycle 1) (Pál et al., 2020), tripleing the number of asteroids with accurate rotation periods. McNeill et al. (2023) re-analyses the same sectors of cycle 1, and is in broad agreement with Pál et al..

TESS is used for solar-system observation in many other ways aswell. The Minor Planet Center (MPC) gets regular updates on asteroids in TESS from the LINEAR-TESS program (Woods et al., 2021). Gowanlock et al. (2024) uses TESS photometry as well as observations by the Zwicky Transient Facility (ZTF, Bellm et al., 2019) to get a longer baseline on mutually observed objects while combining ground and space-based observations. Single object analysis is also possible, Humes and Hanuš (2024) recover the period of an asteroid commensurate with Earth's rotation. They also use the TESS data alongside other observations to determine the shape of the object. TESS has been used to study comets as well (e.g. Ridden-Harper et al., 2021a) Fainter and unknown solar system objects can be found by shift and stacking (Holman et al., 2019, Payne et al., 2019, Rice and Laughlin, 2020) or taking a fast X-ray transform (Nguyen et al., 2024) of the TESS FFI data.

For our analysis of the asteroids in *TESS*, we use sectors **TODO** which have a 10 min cadence. Our methods are presented in section 3, followed by the results in section 4. A discussion of how our results compare to other *TESS* asteroid studies is given in section 5, and we conclude in section 6.

3 Methods

TESSELLATE provides a new way to find and characterize asteroids: detecting them as transient events. The lightcurves of these detections often have spike only a few frames long, as the asteroid moves over the pixel of interest. Asteroids move at about 1 px per frame for the 30 min cadence (Pál et al., 2018), and thus are found as many different transient events as they cross a sector. Both SourceDetect and Starfind, the detection methods employed by TESSELLATE, detect planetesimals.

Characterizing the spikes in the single pixel lightcurves as an "asteroid" has it's problems, as real transient events can look similar. We have implemented another way of finding and removing asteroids from the set of detected events. The reduction of full sectors during a TESSELLATE run also allows for forced photometry at known asteroid positions. These can then be matched with the detections to classify the spikes, and properties of the asteroids can be measured at the same time.

The position of known asteroids is important for matching them to detections. We use SkyBoT (Berthier et al., 2006) conesearch to find all the asteroids with $V \leq 20$ mag, the limit suggested by (Pál et al., 2018). We query every 12 h over the month of the sector, and interpolate the positions to the times of the TESS observations. With TESS's large pixel scale, these interpolations are accurate enough for our purposes, and save on time and resources, as the query can be expensive.

The positions of these asteroids can be matched with the detections, using a KDTree (Maneewongvatana and Mount, 1999). Setting boundaries of 0.1 d and 1 px on the nearest match keeps only objects that are coincident temporally and spatially. If two such objects match to the same detection, the shortest distance between the positions is taken. The matched events are then classified as asteroids, and are not considered further by TESSELLATE.

Forced photometry along the tracks of the asteroids allows for the construction of lightcurves. Aperture photometry, using Photutils (Bradley et al., 2024), is preformed at this COM position with a 1.5 px aperture. The lightcurves are then sigma-clipped to 3σ from the mean remove background stellar contamination.

From their lightcurves, the rotation period of the object can be determined by using a Lomb-Scargle periodogram (Lomb et al. (1976), Scargle et al. (1982), but see VanderPlas, 2018, for a review). The new NIFTY-LS package (Garrison et al., 2024), as implemented in astropy (Astropy Collaboration et al., 2013, 2018, 2022), was used to calculate the periodogram. The periodogram searched for rotation periods between the Nyquist limit of 20 min and a maximum of 17 d (the value used in McNeill et al., 2023, due to the length of the lightcurve).

- -Example Figure
- -Quality Checks on the lightcurves

Not every lightcurve and periodogram is good enough for analysis, so some quality cuts are applied. A minimum brightness cut of 10 counts $\sim 18\,\mathrm{mag}$ is applied, otherwise the lightcurve is indistinugshable from noise. The periodograms could return the 17 d maximum value if no physical period was detected, so following McNeill et al. (2023) we discard any periods within 10 % of this maximum. Also following McNeill et al., we do not trust the periods of any lightcurve with ≤ 200

datapoints.

The above methods are integrated into the rest of the TESSELLATE pipeline. This allows for asteroids to be filtered out of the new detections as they happen. The results given below will be improved upon as more sectors are run and a higher number of minor planets can have their rotation properties measured.

4 Results

-Total Asteroids found

A Number ### of asteroids with $V \leq 20$ mag were found in the sectors we analysed. Most of these are too faint for the lightcurve to give a reliable and period. Once the quality checks described above have been applied, we are left with A smaller number ### of planetesimals with accurate rotation rates. Some fraction of these asteroids are not in the LCDB, so we are the first to get the rotation period for these bodies.

-Properties of those that pass

5 Discussion

-Comp to Pal and McNeill

-Fast Rotator Plot

We do not find any fast rotators in our dataset. While our Nyquist limit is well above the spin barrier of Pravec and Harris (2000) thanks to *TESS*'s fast cadence, most asteroids discoverd above the barrier are small, and therefore dim. The shallow magnitude of **TESSELLATE** (Roxburgh and Ridden-Harper, Prep) makes it difficult for dim planetesimals to pass the quality checks.

-other discussion

The rotation periods of the brightest asteroids are not recovered. This is due to the fixed aperture size of our forced photometry, 1.5 px. The bright asteroids can start to saturate the *TESS* detector, and can bloom out to occupy more pixels. We chose to keep a constant aperture to standardise the analysis, and to be agnostic to the properties of the asteroid being analysed.

Some asteroids slip through our detection methods, and end up unclassifed in the TESSELLATE data. This is often because the detections of bright asteroids are offset from the predicted positions by further than the matching radius we set. Asteroids are easy to spot for our Cosmics Cataclysms Zooniverse¹ volunteers, as they are at a different position in the "1 hour later" panel, so any that slip past can be caught here.

6 Conclusion

References

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., Shupe, D. L., Patil, A. A., Corrales, L., Brasseur, C. E., Nöthe, M., Donath, A., Tollerud, E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A., Tocknell, J., Jamieson, W., van Kerkwijk, M. H., Robitaille, T. P., Merry, B., Bachetti, M., Günther, H. M., Aldcroft, T. L.,

¹ https://www.zooniverse.org/projects/cheerfuluser/cosmic-cataclysms

Alvarado-Montes, J. A., Archibald, A. M., Bódi, A., Bapat, S., Barentsen, G., Bazán, J., Biswas, M., Boquien, M., Burke, D. J., Cara, D., Cara, M., Conroy, K. E., Conseil, S., Craig, M. W., Cross, R. M., Cruz, K. L., D'Eugenio, F., Dencheva, N., Devillepoix, H. A. R., Dietrich, J. P., Eigenbrot, A. D., Erben, T., Ferreira, L., Foreman-Mackey, D., Fox, R., Freij, N., Garg, S., Geda, R., Glattly, L., Gondhalekar, Y., Gordon, K. D., Grant, D., Greenfield, P., Groener, A. M., Guest, S., Gurovich, S., Handberg, R., Hart, A., Hatfield-Dodds, Z., Homeier, D., Hosseinzadeh, G., Jenness, T., Jones, C. K., Joseph, P., Kalmbach, J. B., Karamehmetoglu, E., Kałuszyński, M., Kelley, M. S. P., Kern, N., Kerzendorf, W. E., Koch, E. W., Kulumani, S., Lee, A., Ly, C., Ma, Z., MacBride, C., Maljaars, J. M., Muna, D., Murphy, N. A., Norman, H., O'Steen, R., Oman, K. A., Pacifici, C., Pascual, S., Pascual-Granado, J., Patil, R. R., Perren, G. I., Pickering, T. E., Rastogi, T., Roulston, B. R., Ryan, D. F., Rykoff, E. S., Sabater, J., Sakurikar, P., Salgado, J., Sanghi, A., Saunders, N., Savchenko, V., Schwardt, L., Seifert-Eckert, M., Shih, A. Y., Jain, A. S., Shukla, G., Sick, J., Simpson, C., Singanamalla, S., Singer, L. P., Singhal, J., Sinha, M., Sipőcz, B. M., Spitler, L. R., Stansby, D., Streicher, O., Sumak, J., Swinbank, J. D., Taranu, D. S., Tewary, N., Tremblay, G. R., de Val-Borro, M., Kooten, S. J. V., Vasović, Z., Verma, S., de Miranda Cardoso, J. V., Williams, P. K. G., Wilson, T. J., Winkel, B., Wood-Vasey, W. M., Xue, R., Yoachim, P., Zhang, C., Zonca, A., Contributors, A. P., Collaboration, A., Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., Shupe, D. L., Patil, A. A., Corrales, L., Brasseur, C. E., Nöthe, M., Donath, A., Tollerud, E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A., Tocknell, J., Jamieson, W., van Kerkwijk, M. H., Robitaille, T. P., Merry, B., Bachetti, M., Günther, H. M., Aldcroft, T. L., Alvarado-Montes, J. A., Archibald, A. M., Bódi, A., Bapat, S., Barentsen, G., Bazán, J., Biswas, M., Boquien, M., Burke, D. J., Cara, D., Cara, M., Conroy, K. E., Conseil, S., Craig, M. W., Cross, R. M., Cruz, K. L., D'Eugenio, F., Dencheva, N., Devillepoix, H. A. R., Dietrich, J. P., Eigenbrot, A. D., Erben, T., Ferreira, L., Foreman-Mackey, D., Fox, R., Freij, N., Garg, S., Geda, R., Glattly, L., Gondhalekar, Y., Gordon, K. D., Grant, D., Greenfield, P., Groener, A. M., Guest, S., Gurovich, S., Handberg, R., Hart, A., Hatfield-Dodds, Z., Homeier, D., Hosseinzadeh, G., Jenness, T., Jones, C. K., Joseph, P., Kalmbach, J. B., Karamehmetoglu, E., Kałuszyński, M., Kelley, M. S. P., Kern, N., Kerzendorf, W. E., Koch, E. W., Kulumani, S., Lee, A., Ly, C., Ma, Z., MacBride, C., Maljaars, J. M., Muna, D., Murphy, N. A., Norman, H., O'Steen, R., Oman, K. A., Pacifici, C., Pascual, S., Pascual-Granado, J., Patil, R. R., Perren, G. I., Pickering, T. E., Rastogi, T., Roulston, B. R., Ryan, D. F., Rykoff, E. S., Sabater, J., Sakurikar, P., Salgado, J., Sanghi, A., Saunders, N., Savchenko, V., Schwardt, L., Seifert-Eckert, M., Shih, A. Y., Jain, A. S., Shukla, G., Sick, J., Simpson, C., Singanamalla, S., Singer, L. P., Singhal, J., Sinha, M., Sipőcz, B. M., Spitler, L. R., Stansby, D., Streicher, O., Šumak, J., Swinbank, J. D., Taranu, D. S., Tewary, N., Tremblay, G. R., de Val-Borro, M., Kooten, S. J. V., Vasović, Z., Verma, S., de Miranda Cardoso, J. V., Williams, P. K. G., Wilson, T. J., Winkel, B., Wood-Vasey, W. M., Xue, R., Yoachim, P., Zhang, C., Zonca, A., and Contributors, A. P. (2022). The astropy project: Sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. ApJ, 935:167.

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., VanderPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., Ardelean, C., Babej, T., Bach, Y. P., Bachetti, M., Bakanov, A. V., Bamford, S. P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K. L., Biscani, F., Boquien, M., Bostroem, K. A., Bouma, L. G., Brammer, G. B., Bray, E. M., Breytenbach, H., Buddelmeijer,

H., Burke, D. J., Calderone, G., Rodríguez, J. L. C., Cara, M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D'Avella, D., Deil, C., Depagne, E., Dietrich, J. P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy, T., Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein, D. A., Gommers, R., Greco, J. P., Greenfield, P., Groener, A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh, G., Hu, L., Hunkeler, J. S., Ivezic, Z., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N. S., Kerzendorf, W. E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A. M., Kumar, A., Lee, A., Lenz, D., Littlefair, S. P., Ma, Z., Macleod, D. M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B. M., Mueller, M., Mumford, S. J., Muna, D., Murphy, N. A., Nelson, S., Nguyen, G. H., Ninan, J. P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J. K., Parley, N., Pascual, S., Patil, R., Patil, A. A., Plunkett, A. L., Prochaska, J. X., Rastogi, T., Janga, V. R., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L. E., Sherwood-Taylor, H., Shih, A. Y., Sick, J., Silbiger, M. T., Singanamalla, S., Singer, L. P., Sladen, P. H., Sooley, K. A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S. W., Tremblay, G. R., Turner, J. E. H., Terrón, V., van Kerkwijk, M. H., de la Vega, A., Watkins, L. L., Weaver, B. A., Whitmore, J. B., Woillez, J., Zabalza, V., and Contributors, A. (2018). The astropy project: Building an open-science project and status of the v2.0 core package. AJ, 156:123.

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair, P. H., Günther, H. M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J. E., Singer, L., Fox, R., Weaver, B. A., Zabalza, V., Edwards, Z. I., Bostroem, K. A., Burke, D. J., Casey, A. R., Crawford, S. M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P. L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., and Streicher, O. (2013). Astropy: A community python package for astronomy. Astronomy and Astrophysics, 558:A33.

Bellm, E. C., Kulkarni, S. R., Graham, M. J., Dekany, R., Smith, R. M., Riddle, R., Masci, F. J., Helou, G., Prince, T. A., Adams, S. M., Barbarino, C., Barlow, T., Bauer, J., Beck, R., Belicki, J., Biswas, R., Blagorodnova, N., Bodewits, D., Bolin, B., Brinnel, V., Brooke, T., Bue, B., Bulla, M., Burruss, R., Cenko, S. B., Chang, C.-K., Connolly, A., Coughlin, M., Cromer, J., Cunningham, V., De, K., Delacroix, A., Desai, V., Duev, D. A., Eadie, G., Farnham, T. L., Feeney, M., Feindt, U., Flynn, D., Franckowiak, A., Frederick, S., Fremling, C., Gal-Yam, A., Gezari, S., Giomi, M., Goldstein, D. A., Golkhou, V. Z., Goobar, A., Groom, S., Hacopians, E., Hale, D., Henning, J., Ho, A. Y. Q., Hover, D., Howell, J., Hung, T., Huppenkothen, D., Imel, D., Ip, W.-H., Zeljko Ivezić, Jackson, E., Jones, L., Juric, M., Kasliwal, M. M., Kaspi, S., Kaye, S., Kelley, M. S. P., Kowalski, M., Kramer, E., Kupfer, T., Landry, W., Laher, R. R., Lee, C.-D., Lin, H. W., Lin, Z.-Y., Lunnan, R., Giomi, M., Mahabal, A., Mao, P., Miller, A. A., Monkewitz, S., Murphy, P., Ngeow, C.-C., Nordin, J., Nugent, P., Ofek, E., Patterson, M. T., Penprase, B., Porter, M., Rauch, L., Rebbapragada, U., Reiley, D., Rigault, M., Rodriguez, H., van Roestel, J., Rusholme, B., van Santen, J., Schulze, S., Shupe, D. L., Singer, L. P., Soumagnac, M. T., Stein, R., Surace, J., Sollerman, J., Szkody, P., Taddia, F., Terek, S., Sistine, A. V., van Velzen, S., Vestrand, W. T., Walters, R., Ward, C., Ye, Q.-Z., Yu, P.-C., Yan, L., and Zolkower, J. (2019). The zwicky transient facility: System overview, performance, and first results. Publications of the Astronomical Society of the Pacific, 131:018002.

Berthier, J., Vachier, F., Thuillot, W., Fernique, P., Ochsenbein, F., Genova, F., Lainey, V., Arlot, J. E., Berthier, J., Vachier, F., Thuillot, W., Fernique, P., Ochsenbein, F., Genova, F., Lainey,

- V., and Arlot, J. E. (2006). Skybot, a new vo service to identify solar system objects. ASPC, 351:367.
- Bradley, L., Sipőcz, B., Robitaille, T., Tollerud, E., Vinícius, Z., Deil, C., Barbary, K., Wilson, T. J., Busko, I., Donath, A., Günther, H. M., Cara, M., Lim, P. L., Meßlinger, S., Burnett, Z., Conseil, S., Droettboom, M., Bostroem, A., Bray, E. M., Bratholm, L. A., Jamieson, W., Ginsburg, A., Barentsen, G., Craig, M., Pascual, S., Rathi, S., Perrin, M., Morris, B. M., and Perren, G. (2024). astropy/photutils: 1.13.0.
- Garrison, L. H., Foreman-Mackey, D., hsuan Shih, Y., and Barnett, A. (2024). nifty-ls: Fast and accurate lomb-scargle periodograms using a non-uniform fft. Research Notes of the AAS, 8:250.
- Gowanlock, M., Trilling, D. E., McNeill, A., Kramer, D., and Chernyavskaya, M. (2024). Asteroid period solutions from combined dense and sparse photometry.
- Holman, M. J., Payne, M. J., and Pál, A. (2019). A tess search for distant solar system planets: A feasibility study. *Research Notes of the AAS*, 3:160.
- Humes, O. A. and Hanuš, J. (2024). Insights on the rotational state and shape of asteroid (203) pompeja from tess photometry. *arXiv*, page arXiv:2412.04123.
- Lomb, N. R., Lomb, and R., N. (1976). Least-squares frequency analysis of unequally spaced data. Ap &SS, 39:447–462.
- Maneewongvatana, S. and Mount, D. M. (1999). Analysis of approximate nearest neighbor searching with clustered point sets. *arXiv*, page cs/9901013.
- McNeill, A., Gowanlock, M., Mommert, M., Trilling, D. E., Llama, J., and Paddock, N. (2023). An untargeted survey of the rotational properties of main-belt asteroids using the transiting exoplanet survey satellite (tess). *The Astronomical Journal*, 166:152.
- Nguyen, T., Woods, D. F., Ruprecht, J., Birge, J., Nguyen, T., Woods, D. F., Ruprecht, J., and Birge, J. (2024). Efficient search and detection of faint moving objects in image data. *AJ*, 167:113.
- Payne, M. J., Holman, M. J., and Pál, A. (2019). A tess search for distant solar system objects: Yield estimates. *Research Notes of the AAS*, 3:172.
- Pravec, P. and Harris, A. W. (2000). Fast and slow rotation of asteroids. *Icar*, 148:12–20.
- Pál, A., Molnár, L., and Kiss, C. (2018). Tess in the solar system. *Publications of the Astronomical Society of the Pacific*, 130:114503.
- Pál, A., Szakáts, R., Kiss, C., Bódi, A., Bognár, Z., Kalup, C., Kiss, L. L., Marton, G., Molnár, L., Plachy, E., Sárneczky, K., Szabó, G. M., and Szabó, R. (2020). Solar system objects observed with tess—first data release: Bright main-belt and trojan asteroids from the southern survey. *The Astrophysical Journal Supplement Series*, 247:26.
- Rice, M. and Laughlin, G. (2020). Exploring trans-neptunian space with tess: A targeted shift-stacking search for planet nine and distant thos in the galactic plane. *Planetary Science Journal*, 1:81.

- Ricker, G. R., Winn, J. N., Vanderspek, R., Latham, D. W., Bakos, G. Á., Bean, J. L., Berta-Thompson, Z. K., Brown, T. M., Buchhave, L., Butler, N. R., Butler, R. P., Chaplin, W. J., Charbonneau, D., Christensen-Dalsgaard, J., Clampin, M., Deming, D., Doty, J., Lee, N. D., Dressing, C., Dunham, E. W., Endl, M., Fressin, F., Ge, J., Henning, T., Holman, M. J., Howard, A. W., Ida, S., Jenkins, J. M., Jernigan, G., Johnson, J. A., Kaltenegger, L., Kawai, N., Kjeldsen, H., Laughlin, G., Levine, A. M., Lin, D., Lissauer, J. J., MacQueen, P., Marcy, G., McCullough, P. R., Morton, T. D., Narita, N., Paegert, M., Palle, E., Pepe, F., Pepper, J., Quirrenbach, A., Rinehart, S. A., Sasselov, D., Sato, B., Seager, S., Sozzetti, A., Stassun, K. G., Sullivan, P., Szentgyorgyi, A., Torres, G., Udry, S., and Villasenor, J. (2014). Transiting exoplanet survey satellite. Journal of Astronomical Telescopes, Instruments, and Systems, 1:014003.
- Ridden-Harper, R., Bannister, M. T., and Kokotanekova, R. (2021a). No Rotational Variability in C/2014 UN271 (Bernardinelli-Bernstein) at 23.8 au and 21.1 au as Seen by TESS. Research Notes of the American Astronomical Society, 5(7):161.
- Ridden-Harper, R., Rest, A., Hounsell, R., Müller-Bravo, T. E., Wang, Q., and Villar, V. A. (2021b). TESSreduce: transient focused TESS data reduction pipeline. *arXiv e-prints*, page arXiv:2111.15006.
- Roxburgh, H. and Ridden-Harper, R. (In Prep.). TESSELLATE: A dedicated pipeline for hunting transients with tess.
- Scargle, J. D., Scargle, and D., J. (1982). Studies in astronomical time series analysis. ii. statistical aspects of spectral analysis of unevenly spaced data. ApJ, 263:835–853.
- VanderPlas, J. T. (2018). Understanding the lomb-scargle periodogram. *The Astrophysical Journal Supplement Series*, 236:16.
- Woods, D. F., Ruprecht, J. D., Kotson, M. C., Main, E. L., Evans, E. W., Varey, J. D., Vaillancourt, J. E., Viggh, H. E. M., Brown, J. J., Pál, A., Woods, D. F., Ruprecht, J. D., Kotson, M. C., Main, E. L., Evans, E. W., Varey, J. D., Vaillancourt, J. E., Viggh, H. E. M., Brown, J. J., and Pál, A. (2021). Asteroid observations from the transiting exoplanet survey satellite: Detection processing pipeline and results from primary mission data. *PASP*, 133:014503.