Амплитудная дифракционная решётка

Гончаров Марк

7 апреля 2021 г.

1 Теория

Разрешающая способность $R=\frac{\lambda}{\delta\lambda}.$

Угловая дисперсия $D=rac{darphi}{d\lambda}.$

Дисперсионная область - предельная ширина спектрального интервала $\Delta \lambda$, для которой дифракционные максимумы соседних порядков не перекрываются.

Рис. 1: Амплитудная дифракиционная решетка.

Для такой решётки несложно посчитать углы максимума интенсивности:

$$d\sin\varphi_{\max}=m\lambda$$
,

где d - период дифракционной решётки.

Теперь легко определить угловую дисперсию такой решётки: $D=\frac{d\varphi}{d\lambda}=\frac{m}{d\cos\varphi}$, при подстановки критерия Релея в разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda} = mN.$$

Рис. 2: Схема установки.

Подсчёт угловой дисперсии дифракционной решётки:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$

Тогда расстояние между двумя линиями:

$$\Delta \varphi \approx D\delta \lambda = \frac{m}{d\cos\varphi} \delta \lambda.$$

2 Выполнение

Сначала мы настроили гониометр. Затем снимали спектр в первом порядке.

Цвет	Фиолетовый	Синий	Голубой	Зелёный	Жёлтый	Жёлтый	Красный	Красный
Длина волны	404,7	435,8	491,6	546,1	577	579,1	623,4	690,7
Угол, +	11,52	12,47	14,12	15,7	16,6	16,72	18,02	18,48
Угол, -	11,83	12,82	14,38	16	16,88	16,97	18,21	18,32

Рис. 3: Измеренные значения первого порядка.

Используя полученные значения нетрудно с помощь метода МНК определить тангенс угла наклона прямой $k=\frac{\Delta \varphi}{\Delta \lambda}$. Для положительных углов $k_1=0.291\pm0.006$ и $k_2=0.296\pm0.006$ - тангенсы углов наклона в градусах в нм. Здесь мы не учитываем последнее значение для красного спектра. С ним всё плохо, так как оно было слишком расплывчато, много лишних полос из-за которых хуже определялся главный спектр.

Для посчёта периода решётки используем формулу:

$$d = \frac{\Delta \lambda}{m\Delta \varphi}.$$

Тогда надо ещё перевести угол в радианы и возвести в -1 степень. На дифракционной решётке указано, что она имеет N=500 штрихов/мм, то есть $d=\frac{1}{N}=2$ мкм.

Итого: считая m = 1 получаем в мкм:

$$d = 2$$
; $d_1 = 1.97 \pm 0.04$; $d_2 = 1.95 \pm 0.04$.

Это показывает отличную оценку нашего эксперимента.

Теперь рассчитаем угловую дисперсию для желтой пары. Для трёх порядков построим графики

$$D = \frac{\Delta \varphi}{\Delta \lambda}.$$

Сразу измерим и теоретически угловую дисперсию:

$$D = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}}.$$

	Жёлтый 1	Желтый 2	Разность		
Длина волны	577	579,1	2,1		
Порядки	•	-	•	Опыт, Рад/мкм	Теория, рад/мкм
1	16,62	16,72	0,1	0,53	0,5
-1	16,88	16,97	0,09	0,51	0,5
2	34,98	35,17	0,19	1,32	1,2
-2	35,39	35,55	0,16	1,29	1,2
3	59,22	59,6	0,38	3,31	3
-3	60,45	60,8	0,35	3,44	3

Жёлтые дублеты

Построим графики измеренной угловой дисперсии теоретическим и опытным путями Для разрешающей способности в первом порядке:

$$R = \frac{\lambda}{\delta \lambda}.$$

В наших измерениях $\delta\lambda=3.9\pm0.1, \delta_{\delta\lambda}\approx3\%.$

Теперь легко посчитать для нашей желтой пары: $R_{\lambda}\approx 1440\pm 40$, то есть относительная погрешность этого измерения $\delta_R\approx 3\%$.

Тогда мы можем найти эффективное число работающих штрихов (первый порядок)

$$N_{\rm eff} = \frac{R}{m} = 1440 \pm 40.$$

Размер освещённой части решётки:

$$l = N_{\text{eff}} \cdot d = (2.8 \pm 0.1) mm$$

Дополнение: мы экспериментально увидели, что только в четвертом порядке фиолетовый спектр накладывается на третий жёлтый.

3 Вывод

- 1. Мы научились анализировать спектр ртутной лампы
- 2. Опытным путём находить период дифракционной решётки, угловую дисперсию и разрешающую способность

3.	Познакомились части решётки"	с понятием '	'эффективное	число работа	ающих штрих	ков"и "разм	ер овещённой