Class14

Section 1. Differential Expression Analysis

```
library(DESeq2)
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
               hoxa1_kd
SRR493370
SRR493371
               hoxa1_kd
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
                   918
ENSG00000186092
                               0
                                         0
                                                   0
                                                             0
                                                                        0
ENSG00000279928
                   718
                              0
                                         0
                                                  0
                                                             0
                                                                        0
                              23
                                        28
                                                  29
                                                             29
                                                                       28
ENSG00000279457
                1982
ENSG00000278566
                 939
                              0
                                         0
                                                  0
                                                             0
                                                                        0
                               0
ENSG00000273547
                   939
                                                                        0
```

ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Tip: What will rowSums() of countData return and how could you use it in this context? How many genes do we have to start with?

```
nrow(countData)
```

[1] 19808

- Find the rowSums() this will be zero for any genes with no count data
- Find the zero sum genes
- Remove them before running DESeq

Filter count data where you have 0 read count across all samples.

```
to.rm.ind <- rowSums(countData) == 0</pre>
```

```
countData_new <- countData[!to.rm.ind,]
head(countData[!to.rm.ind,])</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
nrow(countData_new)
```

[1] 15975

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing</pre>
```

```
res <- results(dds)
summary(res)

out of 15975 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
```

[2] see 'independentFiltering' argument of ?results

Side-note: QC with PCA

```
pc <- prcomp(t(countData_new), scale=T)
summary(pc)</pre>
```

[1] see 'cooksCutoff' argument of ?results

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 7.387e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

```
plot(pc$x[,1], pc$x[,2])
```


Volcano Plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
                                                     "IPI"
                                                                     "MAP"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
[16] "OMIM"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

pvalue	stat	lfcSE	log2FoldChange	baseMean	
<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
5.81042e-01	0.551863	0.3248216	0.1792571	29.913579	ENSG00000279457
2.36304e-03	3.040350	0.1402658	0.4264571	183.229650	ENSG00000187634
1.43989e-36	-12.630158	0.0548465	-0.6927205	1651.188076	ENSG00000188976
3.12428e-08	5.534326	0.1318599	0.7297556	209.637938	ENSG00000187961
8.81366e-01	0.149237	0.2718928	0.0405765	47.255123	ENSG00000187583
2.97994e-01	1.040744	0.5215599	0.5428105	11.979750	ENSG00000187642
1.51282e-25	10.446970	0.1969053	2.0570638	108.922128	ENSG00000188290
1.22271e-02	2.505522	0.1027266	0.2573837	350.716868	ENSG00000187608
7.04321e-17	8.346304	0.0467163	0.3899088	9128.439422	ENSG00000188157

ENSG00000237330	0.158192	0.7859	552 4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character></character>	<character></character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Section 2. Pathway Analysis

KEGG pathways

```
library(gage)
library(gageData)
library(pathview)
```

The gage() function wants a "vector of importance." In our case, here it will be fold-change values with associated entrez gene names.

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez
head(foldchange)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
                                                               "1549"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                  "1806"
                                            "1807"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                            "54657"
                                                     "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                                "112"
                                                                          "113"
                                                      "11164"
                "115"
                                                                          "159"
 [17] "114"
                         "122481" "122622"
                                             "124583" "132"
                                                                "158"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
                                   "246721"
                "22978"
                         "23649"
                                                                          "270"
 [33] "2272"
                                             "25885"
                                                      "2618"
                                                                "26289"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                         "29922"
                                   "3000"
                                             "30833"
                                                      "30834"
 [57] "353"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                          "4831"
                "3614"
                         "3615"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                      "57804"
                                                                "58497"
                                                                          "6240"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                      "7498"
                                                                "8382"
                                                                          "84172"
[145] "84265"
                                   "8622"
                                             "8654"
                "84284"
                         "84618"
                                                      "87178"
                                                                "8833"
                                                                          "9060"
                         "953"
                                   "9533"
                                             "954"
                                                      "955"
                                                                "956"
                                                                          "957"
[153] "9061"
                "93034"
[161] "9583"
                "9615"
  # Get the results
  keggres = gage(foldchange, gsets=kegg.sets.hs)
  head(keggres$less)
```

p.geomean stat.mean p.val

```
hsa04110 Cell cycle
                                    8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                    9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                    1.246882e-03 -3.059466 1.246882e-03
hsa04114 Oocyte meiosis
                                     3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                          q.val set.size
hsa04110 Cell cycle
                                    0.001448312 121 8.995727e-06
hsa03030 DNA replication
                                    0.007586381
                                                     36 9.424076e-05
hsa03013 RNA transport
                                                    144 1.246882e-03
                                    0.066915974
hsa03440 Homologous recombination 0.121861535 28 3.066756e-03 hsa04114 Oocyte meiosis 0.121861535 102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                    53 8.961413e-03
hsa04110 Cell Cycle
  pathview(gene.data=foldchange, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa04110.pathview.png
  # A different PDF based output of the same data
  pathview(gene.data=foldchange, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa04110.pathview.pdf
```


Figure 1: Cell cycle hsa04110

```
## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchange, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
```

```
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/andybellaart/Desktop/BGGN213/Class14

Info: Writing image file hsa04330.pathview.png

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05 G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04 G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04 G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04 G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04 G0:0035295 tube development 5.953254e-04 3.253665 5.953254e-04 q.val set.size exp1
```

```
GO:0007156 homophilic cell adhesion
                                                        113 8.519724e-05
                                         0.1952430
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                         0.1952430
                                                        424 1.432451e-04
GO:0007610 behavior
                                                        426 1.925222e-04
                                         0.1968058
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                        257 5.932837e-04
GO:0035295 tube development
                                                        391 5.953254e-04
                                         0.3566193
$less
                                           p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
                                                                      exp1
GO:0048285 organelle fission
                                        5.843127e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.843127e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.843127e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.659009e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178690e-07
                                                           84 1.729553e-10
$stats
                                         stat.mean
                                                       exp1
GO:0007156 homophilic cell adhesion
                                          3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
```

GO:0060562 epithelial tube morphogenesis GO:0035295 tube development

Section 4. Reactome Analysis

GO:0048729 tissue morphogenesis

GD:0007610 behavior

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

3.643242 3.643242 3.565432 3.565432

3.261376 3.261376

3.253665 3.253665

[1] "Total number of significant genes: 8147"

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

"Cell cycle, mitotic" has the most significant p-value. The significant pathways listed in our KEGG results are not the same. It predicted that the most significant p-value was for organelle fission. This could be different because KEGG separates its results into upregulated and downregulated.

