Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 3. Плоские алгебраические кривые: применения теоремы Безу

Теорема Безу утверждает, что общая плоская алгебраическая кривая степени m пересекает данную гладкую алгебраическую плоскую кривую степени k трансверсально в km точках.

Theorem

Пусть две плоские кривые степени n трансверсально пересекаются в n^2 точках. Тогда если для данного числа p, 0 , <math>np из этих точек лежат на плоской кривой степени p, то оставшиеся n(n-p) точек лежат на кривой степени (n-p).

Следствие. Если 2n-угольник вписан в квадрику, то точки пересечения его сторон с четными номерами со сторонами с нечетными номерами лежат на кривой степени (n-2). **Пример.** Пусть n=3. Тогда точки пересечения четных сторон вписанного в квадрику 6-угольника с нечетными лежат на одной прямой.

Лекция 3. Плоские алгебраические кривые: применения теоремы Безу

Лекция 3. Плоские алгебраические кривые: кубики через 8 точек

Пусть F,G два однородных многочлена степени d от трех переменных. Однопараметрическое семейство кривых $aF+bG=0, a,b\in\mathbb{C}$, называется nyчком кривых. Все кривые пучка проходят через точки пересечения кривых F=0 и G=0 и не имеют других точек пересечения.

Lemma

Пучок кривых степени d, проходящий через данные D-1=d(d+3)/2-1 точек общего положения имеет еще (d-1)(d-2)/2 общих точек.

Доказательство. Эти два числа в сумме дают d^2 . Если мы зафиксируем D-1 точек общего положения на плоскости, то через них проходит пучок кривых степени d.

Corollary

Для любых 8 точек общего положения на плоскости существует девятая точка, такая, что всякая кубика, проходящая через первые 8 точек, проходит и через нее.

Построим явную рациональную параметризацию окружности $(x-1)^2+y^2=1$. Начало координат (0,0) лежит на этой окружности; всякая проходящая через него прямая имеет вид y=tx. Подставив в уравнение окружности, получаем

$$(x-1)^2+t^2x^2=1$$
, или $x^2-2x+1+t^2x^2=1$, или $x((1+t^2)x-2)=0$.

Поэтому либо x=0, либо $x=\frac{2}{1+t^2}$. В первом случае y=0 и точка пересечения прямой с окружностью это начало координат. Во втором случае $y=\frac{2t}{1+t^2}$. Эти рациональные функции (отношения двух многочленов) задают изоморфизм комплексной проективной прямой на квадрику в проективной плоскости.

Задача. Найдите рациональную параметризацию произвольной квадрики на плоскости (например, показав, что любая квадрика подходящей проективной заменой координат переводится в указанную).

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Доказательство. Если у кривой есть две особых точки, то проведем через них прямую. Сумма кратностей точек пересечения этой прямой с кубикой не меньше 4, что противоречит теореме Безу.

Lemma

Кубика с особой точкой допускает рациональную параметризацию.

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Доказательство. Если у кривой есть две особых точки, то проведем через них прямую. Сумма кратностей точек пересечения этой прямой с кубикой не меньше 4, что противоречит теореме Безу.

Lemma

Кубика с особой точкой допускает рациональную параметризацию.

Доказательство. Кратность особой точки на неприводимой кубике равна 2. Прямая, проведенная через эту точку, пересекает кубику еще в одной точке, задавая, тем самым, ее рациональную параметризацию.

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Доказательство. Если у кривой есть две особых точки, то проведем через них прямую. Сумма кратностей точек пересечения этой прямой с кубикой не меньше 4, что противоречит теореме Безу.

Lemma

Кубика с особой точкой допускает рациональную параметризацию.

Плоские кривые степени старше 2 могут допускать рациональную параметризацию только, если у них есть особенности.

Lemma

Неприводимая плоская кубическая кривая может иметь не более одной особой точки.

Доказательство. Если у кривой есть две особых точки, то проведем через них прямую. Сумма кратностей точек пересечения этой прямой с кубикой не меньше 4, что противоречит теореме Безу.

Lemma

Кубика с особой точкой допускает рациональную параметризацию.

Доказательство. Кратность особой точки на неприводимой кубике равна 2. Прямая, проведенная через эту точку, пересекает кубику еще в одной точке, задавая, тем самым, ее рациональную параметризацию.

Theorem

Плоская неприводимая алгебраическая кривая степени d не может иметь больше D=(d-1)(d-2)/2 особых точек.

Theorem

Плоская неприводимая алгебраическая кривая степени d не может иметь больше D=(d-1)(d-2)/2 особых точек.

Доказательство. Пусть на кривой степени d есть больше, чем D особых точек. Возьмем D+1 таких точек и добавим к ним еще d-3 точек кривой. Через полученные (d-1)(d-2)/2+1+(d-3)=(d+1)(d-2)/2 точек проходит кривая степени d-2. Кратность ее пересечения с исходной кривой не меньше, чем (d-1)(d-2)+2+(d-3)=d(d-2)+1, что противоречит теореме Безу.

Theorem

Если плоская неприводимая алгебраическая кривая степени d имеет D=(d-1)(d-2)/2 точек трансверсального самопересечения, то она допускает рациональную параметризацию.

Выберем на кривой еще d-3 гладких точки. Через $D+(d-3)=(d^2-2d-4)/2$ точек проходит пучок кривых степени d-2. Кривая из этого пучка пересекает исходную кривую в D точках трансверсального самопересечени, а также в d-3 гладких точках. Суммарная кратность этих пересечений равна $2D+(d-3)=(d-1)(d-2)+(d-3)=d^2-2d-1$. Поэтому помимо указанных есть еще одна точка пересечения двух кривых. С другой стороны, если к выбранным d-3 гладким точкам добавить еще одну точку кривой, то существует кривая пучка, проходящая через эту точку. Значит, значение параметра пучка, отвечающее дополнительной точке пересечения, параметризует исходную кривую.

Лекция 3. Плоские алгебраические кривые: интегрируемость в элементарных функциях

Рациональную функцию R(x) = P(x)/Q(x), где P и Q многочлены, можно проинтегрировать в элементарных функциях. Для этого ее нужно представить в виде суммы простейших дробей вида $a/(x-b)^n$ и воспользоваться нашим знанием интегралов от этих дробей. Такой интеграл является либо дробью, либо логарифмом. Точно так же можно проинтегрировать в элементарных функциях рациональные функции на плоских кривых, допускающих рациональную параметризацию. Отсюда берутся подстановки, приводящие к интегрируемым функциям.

Лекция 2. Плоские алгебраические кривые: Плоские алгебраические кривые: интегрируемость в элементарных функциях

Например, интегрируемость рациональных функций вида $R(x,\sqrt{ax^2+bx+c})$ обеспечивается рациональной параметризацией квадрики $y^2=ax^2+bx+c$. Аналогично, можно проинтегрировать в элементарных функциях рациональных функций вида $R(x,\sqrt{x^2(x-1)})$

- Рассмотрим все кривые степени d, проходящие через данные dp (p-1)(p-2)/2точек данной кривой степени p, p < d. Тогда все они имеют еще (p-1)(p-2)/2общих точек, причем эти точки также ледат на данной кривой степени р.
- Пусть k > d, k > p и k < d + p 3. Тогда любая кривая степени k, проходящая через

$$dp-\frac{(d+p-k-1)(d+p-k-2)}{2}$$

точек пересечения данной кривой степени d и данной кривой степени p, проходит и через остальные точки их пересечения.

- Докажите, что плоская кривая, заданная уравнением вида $P_d(x,y) + P_{d-1}(x,y) = 0$, где $P_k(x,y)$ однородный многочлен степени k от двух переменных, допускает рациональную параметризацию.
- Докажите, что если на плоской кривой степени d есть особая точка порядка d-1, то эта кривая допускает рациональную параметризацию.
- Найдите рациональную параметризацию лемнискаты $(x^2 + y^2)^2 = x^2 y^2$.

- Пусть кривая на плоскости задана как образ отображения $t \mapsto (P_d(t), Q_d(t))$, где P_d, Q_d многочлены степени d. Докажите, что она алгебраическая, степени не выше d.
- Сколько точек общего положения на плоскости надо задать, чтобы через эти точки проходило конечное множество плоских кривых степени d, допускающих рациональную параметризацию?
- Сколько кривых степени d, допускающих рациональную параметризацию, можно провести через данный набор из точек общего положения на плоскости?

•

•