SIMULADO

Nível 3 (Ensino Médio) Primeiro Dia

Problema 1 Um conjunto $S \subset \mathbb{N}$ é balanceado quando:

- Cada elemento de ${\cal S}$ tem exatamente 3 dígitos.
- A soma dos dígitos de cada elemento de S é 9.
- Nenhum elemento de ${\cal S}$ possui algarismo decimal 0.
- Cada par de elementos de S tem algarismos das unidades diferentes.
- Cada par de elementos de S tem algarismos das dezenas diferentes.
- Cada par de elementos de S tem algarismos das centenas diferentes.

Ache o maior inteiro n tal que existe um conjunto balanceado com n elementos.

Problema 2 Determine todos os pares (a, b) de números reais tal que

$$a|bn| = b|an|$$

para todo inteiro positivo n.

Problema 3 Seja ABC um triângulo aculângulo com circuncentro O, ortocentro H, e circuncírculo Ω . Seja M o ponto médio de AH e N o ponto médio de BH. Suponha que os pontos M, N, O, H são distintos e caem no círculo ω .

Prove que os círculos ω e Ω são internamente tangentes.

Cada problema vale 7 pontos. Tempo: 4 horas e 30 minutos.

SIMULADO

Nível 3 (Ensino Médio) Segundo Dia

Problema 4 Seja $\mathbb{N}=\{1,2,3,\dots\}$ o conjunto dos inteiros positivos e seja $f:\mathbb{N}\to\mathbb{N}$ uma função bijetora. É verdade que sempre deve existir um inteiro n tal que $(f(1),f(2),\dots,f(n))$ é uma permutação de $(1,2,\dots,n)$?

Problema 5 Seja H o ortocentro do triângulo acutângulo ABC, com BC > AC, inscrito na circunferência Γ . A circunferência com centro C e raio CB intersecta Γ novamente no ponto D, que está no arco AB que não contêm C. A circunferência com centro C e raio CA intersecta o segmento CD no ponto K. A reta paralela a BD por K intersecta AB em L. Se M é o ponto médio de AB e N é o pé da perpendicular de H em CL, prove que a reta MN bisecta o segmento CH.

Problema 6 Quatro pontos são escolhidos uniformemente em uma esfera. Qual é a probabilidade de que o centro da esfera esteja no interior do tetraedro formado por esses pontos?

Cada problema vale 7 pontos. Tempo: 4 horas e 30 minutos.