Introduction to Deep Neural Networks

주재걸교수 KAIST 김재철AI대학원

Deep Learning

Deep Learning

• Deep learning refers to artificial neural networks that are composed of many layers.

2

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Artificial Neural Networks

A technology that imitates neurons existing in the human brain

Deep Neural Network

Deep Neural Network (DNN)

• DNN improves accuracy of AI technology by stacking neural network layers

"Non-deep" feedforward neural network

Deep neural network

Reason Why Deep Learning has been Successful

Algorithm Improvements

Algorithm Improvements

romise)?e.promise().done(n.resolve).fail(n.re
id(function(){n=s},t[1^e][2].disable,t[2][2].

Applications of Deep Learning

Computer Vision

Object Detection

Liu, Ze et al. "Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows." Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021.

Image Synthesis

Applications of Deep Learning

Natural Language Processing

Machine Translation

Mail Classification

Applications of Deep Learning

Reinforcement Learning

Go Atari Gane

Perceptron and Neural Networks

Perceptron

- One kind of neural networks
- Frank Rosenblatt devised in 1957
- Linear classifier

Similar with structure of a neuron

Input: x_1, x_2 Output: y

Input: x_1, x_2 Output: y

Input: x_1, x_2 Output: y

Input: x_1, x_2 Output: y

Single Layer Perceptron

Single Layer Perceptron

Decision Boundary in Perceptron

Multi-Layer Perceptron for XOR Gate

Is it possible to solve a XOR problem using a single layer perceptron?

→ No. Single layer perceptron can only solve linear problem. XOR problem is non-linear

XOR Gate				
x_1	x_2	У		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Multi-Layer Perceptron

But if we use two-layer perceptron, we can solve XOR problem

→ This model is called multi-layer perceptron

Multi-Layer Perceptron

AND Gate x1 x2 y 0 0 0 0 1 0 1 0 0 1 1 1

OR Gate				
x_1	x_2	у		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

XOR Gate			
x_1	x_2	у	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Multi-Layer Perceptron

Hidden Layer

2-layer Neural Network or 1-hidden–layer Neural Network 3-layer Neural Network or 2-hidden-layer Neural Network

Tensorflow Playground

https://playground.tensorflow.org/

- $a_{\widehat{D}}^{(i)}$: "Activation" of the i-th unit in the j-th layer
- $W^{(j)}$: "Weight Matrix" mapping from the j-th layer to the (j+1)-th layer

$$z_{1}^{(2)} = W_{10}^{(3)} x_{0} + W_{11}^{(1)} + W_{12}^{(1)} x_{2}$$

$$= \left[W_{10}^{(3)} \quad W_{11}^{(1)} \quad W_{12}^{(1)} \right] \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \end{bmatrix}$$

$$a_1^{(2)} = g(z_1^{(2)})$$

Logistic function (Sigmoid function)

$$\begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} W_{10}^{(3)} & W_{11}^{(1)} & W_{12}^{(1)} \\ W_{20}^{(3)} & W_{21}^{(1)} & W_{22}^{(1)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} g\left(z_1^{(2)}\right) \\ g\left(z_2^{(2)}\right) \end{bmatrix}$$

Logistic function (Sigmoid function)

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$\begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} W_{10}^{(3)} & W_{11}^{(1)} & W_{12}^{(1)} \\ W_{20}^{(3)} & W_{21}^{(1)} & W_{22}^{(1)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = \begin{bmatrix} g\left(z_1^{(2)}\right) \\ g\left(z_2^{(2)}\right) \end{bmatrix}$$

$$z_{1}^{(3)} = \begin{bmatrix} W_{20}^{(3)} & W_{21}^{(1)} & W_{22}^{(1)} \end{bmatrix} \begin{bmatrix} a_{0}^{(2)} \\ a_{1}^{(2)} \\ a_{2}^{(2)} \end{bmatrix}$$

$$a_1^{(3)} = g\left(z_1^{(3)}\right)$$

Linear Layer

Each layer performs linear transformation, so it is also called a linear layer Linear Layer and Fully-connected Layer are the same thing.

MNIST Dataset

MNIST (Modified National Institute of Standards and Technology)

28 x 28

- Handwritten digits from 0 to 9
 - 55,000 training examples
 - 10,000 testing examples
- Each image has been preprocessed
 - Digits are center-aligned
 - Digit size is rescaled to similar size
 - Each image has fixed size of 28×28
 - → Real number matrix from 0.0 to 1.0

Example of MNIST

28

28

MNIST Classification Model

MNIST Classification Model

Squared Error: 1.1

Let's find the weight which minimizes error!

Softmax Layer (Softmax Classifier)

Problem of Sigmoid Outputs and Mean-Squared Error Loss

- Because of sigmoid outputs, Prediction $\in (0,1)$ & Target $\in \{0,1\}$
- → Upper limits exist on loss and gradient magnitude with MSE Loss

$$\max L = \max_{y_i \in \{0,1\}, \widehat{y_i} \in (0,1)} \sum_{i=1}^n (\widehat{y_i} - y_i)^2 < 1, \qquad \max \left| \frac{\partial L}{\partial \widehat{y_i}} \right| < 2$$

• In addition, a better output would be a sum-to-one probability vector over multiple possible classes.

Softmax Layer (or Softmax Classifier) for Multi-Class Classification

- The softmax layer applies a monotonically increasing, exponential function to a logit vector:
 - Map the value in $(-\infty, \infty)$ to $(0, \infty)$
 - Preserve the order of values
- Calculate the relative proportions with respect to the sum of these positive values, resulting in a sum-to-one probability vector

Softmax Loss (or Cross-Entropy Loss)

 Softmax loss, also known as cross-entropy loss or negative log-likelihood (NLL) loss used for training a softmax classifier is defined as

$$L = -\sum_{c=1}^{c} \mathcal{V}_{o} \log(\hat{p}_{c}) = -\log(\hat{p}_{y_{i}})$$
ground truth vector

Logistic Regression as a Special Case of Softmax Classifier

- Logistic regression → Softmax classifier whose logit for a negative class is set as
 a constant value of 0.
- Logistic regression is used for a binary classification.
- The softmax classifier can also be used for two classes by using the matrix *W* with two columns, i.e., using the twice the number of parameters of a logistic regression.

Logistic Regression as a Special Case of Softmax Classifier

• Binary cross-entropy (BCE) loss for logistic regression is defined/as

$$L = -\sum_{c=1}^{2} y_c \log(\hat{p}_c) = -y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \quad \text{BCE loss}$$

where $y_i = 1$ for a positive class, e.g., **cat**, and $y_i = 0$ for a negative class, e.g., **not cat**, and