Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module			Beam Coverplate Connection	
MainMo	odule			Moment Connection
Moment(kNm)*			1.0	
Shear (I	Shear (kN)*			89.0
Axial (k	(N) *			32.0
		Section		
	Beam S	ection *		WPB 550x300x166.2
т У	Prefer	rences		Outside + Inside
	Mate	erial *		E 250 (Fe 410 W)A
	Ultimate stren	ngth, fu (MPa)		410
Z————————————————————————————————————	Yield Strength , fy (MPa)	240	R1(mm)	2.7
R ₁	Mass	166.23	R2(mm)	0.0
R ₂	Area(mm2) -	21180.0	Iz(mm4)	1119322000.0
V	D(mm)	540.0	Iy(mm4)	108122200.0
	B(mm)	300.0	rz(mm)	229.9
	t(mm)	12.5	ry(mm)	71.5
	T(mm)	24.0	Zz(mm3)	4145640.0
	FlangeSlope	90	Zy(mm3)	720810.0
		Bolt Details		
Diameter	(mm)*		[12.0,	, 16.0, 20.0, 24.0, 30.0, 36.0
Grade	e *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*			Bearing Bolt
Bolt hole type				Standard
Slip factor	r (µ_f)			0.3
Type of	edges		a - 1	Sheared or hand flame cut
Gap between beam and	 - support (mm)		10.0
Are the members exposed to	 corrosive	influences		False

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{21180.0 * 240}{1.1 * 10^3}$ $= 4621.09$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{492.0 * 12.5 * 240}{\sqrt{3} * 1.1 * 10^3}$ $= 774.7$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 756450.0 * 240}{1.1 * 10^6}$ $= 165.04$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 4145640.0 * 240}{1.1 * 10^6}$ $= 1356.75$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(165.04, 1356.75)$ = 165.04	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ $= 0.3 * 4621.09$ $= 1386.33$ $Ac_{max} = Ac$ $= 4621.09$	$A_u = 1386.33$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 774.7 = 464.82 $Vc_{max} = Sc$ = 774.7	$V_u = 464.82$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ $= 0.5 * 165.04$ $= 82.52$ $Mc_{max} = Mc$ $= 165.04$	$M_u = 82.52$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(540.0 - 2 * 24.0) * 12.5 * 1386.33}{21180.0}$ $= 402.55 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{756450.0 * 82.52}{4621820.0}$ $= 13.51 \ kNm$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{1386.33 * 300.0 * 24.0}{21180.0}$ $= 471.27 \ kN$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 82.52 - 13.51$ $= 69.02 \ kNm$ $F_f = flange \ force$ $= \frac{M_f * 10^3}{D - T} + A_f$ $= \frac{69.02 * 10^3}{540.0 - 24.0} + 471.27$ $= 605.02 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 605.02$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 300.0 * 24.0 * 240}{1.1}$ $= 1636.36$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 402.55$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 492.0 * 12.5 * 240}{1.1}$ $= 1398$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 300.0	Pass
flange_plate.InnerHeight	Inner.b >= 50	$inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{300.0 - 12.5 - (2 * 2.7)}{2}$ $= 141.05$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 12.0	$t_f = 14.0$	Pass
Plate Area check (mm2)	$pt.area >=$ $connected\ member\ area * 1.05$ $= 7560.0$	$outer.b = B$ $= 300.0$ $inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{300.0 - 12.5 - (2 * 2.7)}{2}$ $= 141.05$ $pt.area = (300.0 + (2 * 141.05)) * 14.0$ $= 8149.4$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	t = 6.25	$t_w = 20.0$	Pass
(11111)		$web \ b = D - (2*T) - (2*r_1)$	
Plate Area	pt.area >= connected member area * 1.05	= 540.0 - (2 * 24.0) - (2 * 2.7) $= 444.0$	Pass
check (mm2)	=5827.5	pt.area = 20.0 * 2 * 444.0	
		= 17760.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 90 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	70	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 70 + (2.0 - 1) * 90$ $= 230.0$	444.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 0.0 (Row Limit (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	70	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 70 + (1.0 - 1) * 90$ $= 140.0$	141.05	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.9 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 36.0	
Grade	Bolt Grade Optimisation	3.6	
Bolt.fu		300.0	
Bolt.fy		180.0	
Hole Diameter (mm)		$d_0 = 39.0$	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 2 * 817}{\sqrt{3} * 1.25}$ $= 226.41$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 36.0 * 24.0 * 410}{1.25}$ $= 368.41$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (226.41, 368.41)$ $= 226.41$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 605.02^{2}}}{226.41}$ $= 6$	8	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 2$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 36.0 = 90.0$	90	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 14.0, \ 300 \ mm)$ = 300) 90	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 36.0 = 90.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 14.0, \ 300 \ mm)$ = 300	0.0	N/A
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 39.0 = 66.3	70	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *14.0 * \sqrt{\frac{250}{250}}$ $= 168.0$	70	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 39.0 = 66.3	70.525	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *14.0 * \sqrt{\frac{250}{250}}$ $= 168.0$	70.525	Pass
Bolt Capacity post Long Joint (kN)	$if \ l \geq 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \leq \beta_{ij} \leq 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{4}{2} - 1) * 90 + 70) + 10.0$ $= 330.0$ $lr = 2 * ((\frac{2}{2} - 1) * 0.0 + 70.525$ $+ 2.7) + 12.5 = 158.950000000000000$ $l = 330.0$ $15 * d = 15 * 36.0 = 540.0$ $since, \ l < 15 * d$ $then \ V_{rd} = V_{db}$ $V_{rd} = 226.41$	2
Capacity (kN)	151.26	226.41	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 2 * 817}{\sqrt{3} \ * \ 1.25}$ $= 226.41$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 36.0 * 12.5 * 410}{1.25}$ $= 191.88$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (226.41, 191.88)$ = 191.88	
No of Bolts	$R_u = \sqrt{V_u^2 + A_u^2}$ $n_{trial} = R_u/V_{bolt}$ $R_u = \frac{\sqrt{464.82^2 + 402.55^2}}{191.88}$ $= 8$	16	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 4$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 36.0 = 90.0$	90	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.5, \ 300 \ mm)$ = 300) 90	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 36.0 = 90.0$	90	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.5, \ 300 \ mm)$ = 300) 90	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 39.0 = 66.3	70	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	70	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 39.0 = 66.3	70	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	70	Pass
Parameters required for bolt force (mm)		$l_n = length \ available$ $l_n = (n_r - 1) * g$ $= (4 - 1) * 90$ $= 270$ $y_{max} = l_n/2$ $= 270/2$ $= 135.0$ $x_{max} = p * (\frac{n_c}{2} - 1)/2$ $= 90 * (\frac{4}{2} + -1)/2$ $= 45.0$ $M_d = (V_u * ecc + M_w)$	
Moment Demand (kNm		$M_d = (V_u * ecc + M_w)$ $= \frac{(464.82 * 10^3 * 120.0 + 13.51 * 10^6)}{10^6}$ $= 69.28$	106)
Bolt.Force		$vbv = V_u/(n_r * n_c)$ $= \frac{464.82}{(4 * 4)}$ $= 58.1$ $tmh = \frac{M_d * y_{max}}{\Sigma r_i^2}$ $= \frac{69.28 * 135.0}{97.2}$ $= 96.23$ $tmv = \frac{M_d * x_{max}}{\Sigma r_i^2}$ $= \frac{69.28 * 45.0}{97.2}$ $= 32.08$ $abh = \frac{A_u}{(n_r * n_c)}$ $= \frac{402.55}{(4 * 4)}$ $= 50.32$ $vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(58.1 + 32.08)^2 + (96.23 + 4.85)^2}$ $= 172.07$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{4}{2} - 1) * 90 + 70) + 10.0$ $= 330.0$ $lr = (4 - 1) * 90 = 270$ $l = 330.0$ $15 * d = 15 * 36.0 = 540.0$ $since, \ l < 15 * d$ $then \ V_{rd} = V_{db}$ $V_{rd} = 191.88$	
Capacity (kN)	172.07	191.88	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Inner and Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$min\ flange\ plate\ ht = beam\ width$ $= 300.0$	300.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 66.3 + (\frac{4}{2} - 1) * 90.0]$ $= +\frac{10.0}{2}]$ $= 455.2$	470.0	Pass
Min. Inner Plate Height (mm)	$= \frac{B - t - (2 * R1)}{2}$ $= \frac{300.0 - 12.5 - 2 * 2.7}{2}$ $= 141.05$	141.05	Pass
Max. Inner Plate Height (mm)	$= \frac{B - t - (2 * R1)}{2}$ $= \frac{300.0 - 12.5 - 2 * 2.7}{2}$ $= 141.05$	141.05	Pass
Min. Inner Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 66.3 + (\frac{4}{2} - 1) * 90.0]$ $= +\frac{10.0}{2}]$ $= 455.2$	470.0	Pass
Min.Plate Thickness (mm)	$t_w = 12.0$	14.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.12 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Flange Tension Yielding		$= \frac{1 * 300.0 * 24.0 * 240}{1.1}$	
Capacity (kN)		= 1636.36	
		$-0.9*A_n*f_n$	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Flange Tension Rupture		$= \frac{0.9 * (300.0 - 2 * 39.0) * 24.0 *}{1.25}$	410
Capacity (kN)		= 1.25	
		= 1572.83	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Flange Block Shear Ca-		$0.9*A_{vn}f_u + A_{tq}f_y$	
pacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 1599.72$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
		$T_d = min(T_{dg}, T_{dn}, T_{db})$	
Flange Tension Capacity	$f_f = 605.02$	= min(1636.36, 1572.83, 1599.72)	Pass
(kN)		=1572.83	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
W-1 T: V:-11: C-		γ_{mo}	
Web Tension Yielding Capacity (kN)		$= \frac{1 * 492.0 * 12.5 * 240}{1.1}$	
pacity (M1)		1.1	
		$= 1397.73$ $T_{dn} = \frac{0.9 * A_n * f_u}{2}$	
		/m1	
Web Tension Rupture Ca-		$= \frac{0.9 * (492.0 - 4 * 39.0) * 12.5 *}{1.25}$	410
pacity (kN)			
		$= 1239.84$ $A = f = 0.94 \cdot f$	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Web Block Shear Capac-			
ity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 1347.73$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 402.55$	= min(1397.73, 1239.84, 1347.73)	Pass
(kN)		= 1239.84	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Flange Plate Capacity Checks in axial-Outside/Inside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 582.1 * 14.0 * 250}{1.1}$ $= 1852.14$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (582.1 - 2 * 39.0) * 14.0 *}{1.25}$ $= 2083.34$	410
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 1923.29$	
Plate Tension Capacity (kN)	$f_f = 605.02$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(1852.14, 2083.34, 1923.29)$ $= 1852.14$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 410 * 20.0 * 250}{1.1}$ $= 2151.94$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (410 - 4 * 39.0) * 20.0 * 3}{1.25}$ $= 2999.23$	00.0
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 4312.75$	
Plate Tension Capacity (kN)	$A_w = 402.55$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(3727.27, 2999.23, 4312.75)$ $= 2999.23$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.15 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity (V_dy) (kN)		$=\frac{1*410*20.0*250}{\sqrt{3}*1.1}$	
(*_uy) (m*)		=2151.94	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$	
Shear Rupture Capacity		$= \frac{0.9 * (410 - (2.0 * 39.0)) * 20.0}{\sqrt{3} * 1.25}$	* 410
(V_dn) (kN)		$\sqrt{3} * 1.25$ = 1731.61	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 2841.88$	
		$V_d = min(V_{dy}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	$V_u = 464.82$	= min(2151.94, 1731.61, 4312.75)	Pass
		= 1731.61	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View