

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE POLITICHE, ECONOMICHE E SOCIALI

Political communication and populist rhetoric An analysis of Italian politicians in the digital arena.

By

RICCARDO RUTA

DRAFT DRAFT DRAFT

Abstract

(the spacing is set to 1.5)

no more than 250 words for the abstract

- a description of the research question what we know and what we don't know
- how the research has attempted to answer to this question
- a brief description of the methods
- brief results
- key conclusions that put the research into a larger context

Contents

1	Data	a cleaning	1
	1.1	Import the dataset and check variables	1
	1.2	Adjust date.time format	1
		1.2.1 Check the conversion	2
	1.3	Create the week variable	2
		1.3.1 Check the variable	2
	1.4	Create the month variable	3
		1.4.1 Check the number of month	3
	1.5	Create the trimester variable	3
		1.5.1 Check the number of trimesters	4
	1.6	Create the year variables	4
		1.6.1 Check the number of years	4
	1.7	Count the number of missing values	5
		1.7.1 Inspect where are the missings	5
		1.7.2 Remove rows with missing tweets	6
	1.8	Check that the variables make sense	7
		1.8.1 Adjust the variable genere	7
		1.8.2 Verify the substitution	8
	1.9	Create a new dataset selecting only necessary informations	8
	1.10	Create the corpus	9
	1.11	Create the DFM	9

	1.12	Remov	ve the emoji	10
		1.12.1	Now the data are ready for the next analysis	11
2	Prel	iminar	analysis	12
	2.1	Who is	s inside this dataset?	12
	2.2	Topfea	tures frequency	13
		2.2.1	Relative frequency of the topfeatures by Party ID	15
	2.3	Most o	common hashtag	16
		2.3.1	Most common hashtag by Gender	17
		2.3.2	Co-occurrence Plot of hashtags	18
	2.4	Most f	requently mentioned usernames	19
		2.4.1	Most frequently mentioned usernames by gender	20
		2.4.2	Co-occurrence plot of usernames	22
	2.5	How m	nany times a politician cite his/her party	22
		2.5.1	Create the variable with the name of the official Twitter account	24
		2.5.2	Count for each party how many times a politician cite their	
			respective party	24
	2.6	How n	nany times the party leader is cited by his/her party	25
		2.6.1	Create the variable with the official leader's account for every party	25
		2.6.2	Count for each party how many times a politician cite his/	
			her party leader	26
	2.7	How n	nany times a politician cite itself in the tweet	27

3	Dic	tionary	analysis	30
	3.1	Create	e the dictionary	30
		3.1.1	Group and weight the dfm	32
	3.2	Decad	ri_Boussalis_Grundl	34
		3.2.1	Level of sparsity	34
		3.2.2	General level of populism in time divided into 3 components .	35
		3.2.3	General level of populism in time	37
		3.2.4	Most populist parliamentary group for each component	38
		3.2.5	Most populist parliamentary group	40
	3.3	Roodu	ijn_Pauwels_Italian	42
		3.3.1	Level of sparsity	42
		3.3.2	General level of populism in time	43
		3.3.3	Most populist parliamentary group	43
		3.3.4	Distribution of parliamentary group populism	44
	3.4	Grund	l_Italian_adapted	47
		3.4.1	Level of sparsity	47
		3.4.2	General level of populism in time	48
		3.4.3	Most populist parliamentary group	48
		3.4.4	Distribution of parliamentary grouppopulism	49
	3.5	Decad	ri_Boussalis	51
		3.5.1	Level of sparsity	51
		3.5.2	General level of populism in time	51
		3.5.3	Most populist parliamentary group	52

		3.5.4 Distribution of party populism	52
	3.6	Compare the general level of populism in time for the dictionaries $$. $$	54
	3.7	Compare how the dictionaries score for the most populist parliamen-	
		tary group	55
4	Sen	timent analysis	57
	4.1	Inspect the dictionary	57
		4.1.1 Clean text from dataframe	57
	4.2	Create the filtered dataframes	58
	4.3	Create nrc objects	59
	4.4	Giorgia Meloni	61
		4.4.1 Proportion of the emotion	61
		4.4.2 Wordcloud of emotions	62
	4.5	Giuseppe Conte	64
		4.5.1 Proportion of the emotion	64
		4.5.2 Wordcloud of emotions	65
	4.6	Matteo Renzi	66
		4.6.1 Proportion of the emotion	66
		4.6.2 Wordcloud of emotions	67
	4.7	Matteo Salvini	68
		4.7.1 Proportion of the emotion	68
		4.7.2 Wordcloud of emotions	69
	4.8	Enrico Letta	70
		4.8.1 Proportion of the emotion	70

	6.1	Report	on the analysis made with FER Python package	80
6	FER	R: Facia	al Emotion Recognition Analysis	80
		5.3.3	Interpret the terms	79
		5.3.2	The most important terms from the model, for each topic $$	78
		5.3.1	Run the analysis selecting $k=11$	78
	5.3	ANAL	ISYS OF THE TOPICS	78
			the best K	77
		5.2.2	Plot the values of coherence and exclusivity in order to find	
		U. ∠.1	exclusivity values	76
	0.4	5.2.1	Search the best number of Topics comparing coherence and	70
	5.2	FIND	THE BEST NUMBER OF TOPICS K	76
		5.1.2	Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)	76
		5.1.1	Remove all the account's mentions	76
	5.1		TE THE DTM	76
5		-	c model analysis	76
			Wordcloud of emotions	
			Proportion of the emotion	
	4.10	Robert	so Speranza	
		4.9.2	Wordcloud of emotions	73
		4.9.1	Proportion of the emotion	72
	4.9	Silvio I	Berlusconi	72
		4.8.2	Wordcloud of emotions	71

1 Data cleaning

1.1 Import the dataset and check variables

1.2 Adjust date.time format

1.2.1 Check the conversion

```
check_dates <- tw %>% select(creato_il,date)
kable(head(check_dates), col.names = c("Old date", "New date"))
```

Old date	New date
2021-02-13	2021-02-13
2021-02-09	2021-02-09
2021-02-07	2021-02-07
2021-01-21	2021-01-21
2021-01-21	2021-01-21
2021-01-20	2021-01-20

```
kable(tail(check_dates), col.names = c("Old date", "New date"))
```

Old date	New date
Mon Dec 28 09:51:35 +0000 2020	2020-12-28
Tue Jul 20 11:15:44 +0000 2021	2021-07-20
Thu Nov 26 13:46:51 +0000 2020	2020-11-26
Fri Oct 15 17:28:57 +0000 2021	2021-10-15
Wed Jun 03 12:22:31 +0000 2020	2020-06-03
Fri Dec 03 21:01:20 +0000 2021	2021-12-03

1.3 Create the week variable

```
tw <- tw %>% mutate(week = cut.Date(date, breaks = "1 week", labels = FALSE))
```

1.3.1 Check the variable

Inspect the first and the last dates and check if the number of weeks is correct

```
max(tw$date)

## [1] "2022-04-18"

min(tw$date)

## [1] "2020-01-01"

difftime(max(tw$date), min(tw$date), units = "weeks")

## Time difference of 119.7143 weeks
```

1.4 Create the month variable

```
tw <- tw %>% mutate(month = cut.Date(date, breaks = "1 month", labels = FALSE))
```

1.4.1 Check the number of month

```
max(tw$month)

## [1] 28

length(seq(from = min(tw$date), to = max(tw$date), by = 'month'))

## [1] 28
```

1.5 Create the trimester variable

```
tw <- tw %>% mutate(quarter = cut.Date(date, breaks = "1 quarter", labels = FALSE))
```

1.5.1 Check the number of trimesters

```
max(tw$quarter)

## [1] 10

length(seq.Date(from = min(tw$date), to = max(tw$date), by = 'quarter'))

## [1] 10
```

1.6 Create the year variables

```
tw <- tw %>% mutate(year = cut.Date(date, breaks = "year", labels = FALSE))
```

1.6.1 Check the number of years

```
max(tw$year)

## [1] 3

length(seq.Date(from = min(tw$date), to = max(tw$date), by = 'year'))

## [1] 3
```

1.7 Count the number of missing values

```
sum(is.na(tw))
## [1] 154672
```

1.7.1 Inspect where are the missings

```
missings <- c(
sum(is.na(tw$tw_screen_name)),
sum(is.na(tw$nome)),
sum(is.na(tw$tweet_testo)),
sum(is.na(tw$creato_il)),
sum(is.na(tw$creato_il_code)),
sum(is.na(tw$url)),
sum(is.na(tw$party_id)),
sum(is.na(tw$genere)),
sum(is.na(tw$chamber)),
sum(is.na(tw$status)),
sum(is.na(tw$date)),
sum(is.na(tw$week)),
sum(is.na(tw$month)),
sum(is.na(tw$quarter)),
sum(is.na(tw$year)))
missing_df <- data.frame(colnames(tw), missings)</pre>
kable(missing_df)
```

colnames.tw.	missings
tw_screen_name	0
nome	0
tweet_testo	6494
creato_il	0
creato_il_code	0
url	148178
party_id	0
genere	0
chamber	0
status	0
date	0
week	0
month	0
quarter	0
year	0

From this check I'll obtain 148178 urls missing, this variable is not collected properly and we will not use in the analysis, and also results 6494 tweets missings, those are the cases when someone post only images or video without text, so the extraction is correct.

1.7.2 Remove rows with missing tweets

```
sum(is.na(tw$tweet_testo))
```

[1] 6494

```
tw <- tw %>% drop_na(tweet_testo)
```

1.8 Check that the variables make sense

```
unique(tw$party_id)
    [1] "PD"
                       "FDI"
                                                      "FI"
##
                                      "M5S"
                                                                     "REG_LEAGUES"
    [6] "MISTO"
                                      "IV"
                                                      "INDIPENDENTE" "CI"
                       "LEGA"
## [11] "LEU"
unique(tw$genere)
## [1] "male" "female" "male "
unique(tw$chamber)
## [1] "NotParl" "Senate" "Camera"
unique(tw$status)
## [1] "sottosegretario" "presregione"
                                           "viceministro"
                                                              "ministro"
## [5] "segretario"
                         "Parl"
1.8.1 Adjust the variable genere
# Remove space from genere variable [RUN ONLY ONCE!]
```

a <- unique(tw\$genere)</pre>

a[3]

```
## [1] "male "
which(tw$genere == a[3])

## [1] 33300 33301 33302 33303 33304

tw$genere <- gsub(a[3], "male", tw$genere)</pre>
```

1.8.2 Verify the substitution

```
which(tw$genere == a[3])

## integer(0)

unique(tw$genere)

## [1] "male" "female"
```

Now all the variables are ready for next steps

1.9 Create a new dataset selecting only necessary informations

1.10 Create the corpus

```
corpus <- corpus(dataset, text = "tweet_testo")
ndoc(corpus)
## [1] 391197</pre>
```

1.11 Create the DFM

```
# Split the corpus into single tokens (remain positional)
doc.tokens <- tokens(corpus,</pre>
                                   remove_punct = TRUE,
                                   remove_numbers = TRUE,
                                   remove_symbols = TRUE,
                                   remove_url = TRUE)
# Import my stopwords
my_word <- as.list(read_csv("data/it_stopwords_new_list.csv",</pre>
                             show col types = FALSE))
# Attach unrecognized symbols
my_list <- c(" ","c'è","+"," ", my_word$stopwords,</pre>
             stopwords('italian'), stopwords("english"))
# Save my list
#save(my_list,file="data/my_list.Rda")
doc.tokens <- tokens_select(doc.tokens, my_list, selection='remove')</pre>
```

```
DFM <- dfm(doc.tokens, tolower = TRUE)</pre>
```

1.12 Remove the emoji

```
# Create a copy of the dfm
test <- DFM
# Remove from the copy all the non ASCII carachters
test@Dimnames$features <- gsub("[^\x01-\x7F]", "", test@Dimnames$features)
# Check the difference from the list of features before and after apply gsub
a <- unique(test@Dimnames$features)</pre>
b <- unique(DFM@Dimnames$features)</pre>
setdiff(b,a) #I have selected also words that must not be removed
# Create an object with the features after remove non ASCII characters
c <- test@Dimnames$features</pre>
# Create an object with the original features
d <- DFM@Dimnames$features</pre>
# Create the list of the removed features
diff <- setdiff(d,c)</pre>
emoji <- diff[diff %>% nchar() < 4]</pre>
emoji <- list(emoji)</pre>
# Now i can remove this list from the dfm
DFM <- dfm remove(DFM, emoji)</pre>
#save(DFM, file="data/dfm.Rda")
```


Figure 1: Emoji removed

1.12.1 Now the data are ready for the next analysis

2 Preliminar analysis

2.1 Who is inside this dataset?

```
# Number of parliamentarians
n_parl <- length(unique(dataset$nome))
n_parl
## [1] 730</pre>
```

How many parliamentarians for each party?
n_parl_party <- dataset %>% group_by(party_id) %>% count()
kable(n_parl_party)

party_id	n
CI	6954
FDI	36177
FI	65264
INDIPENDENTE	2186
IV	3129
LEGA	87162
LEU	7868
M5S	54418
MISTO	34644
PD	91997
REG_LEAGUES	1398

```
# Gender composition
n_gender <- dataset %>% group_by(genere) %>% count()
kable(n_gender)
```

genere	n
female	111216
male	279981

```
# Wich is the period of analysis?
max(tw$date)

## [1] "2022-04-18"

min(tw$date)
```

[1] "2020-01-01"

2.2 Topfeatures frequency

```
edeputatipad tasse risultato dovrebbe andare aspetto gasso campagna filostoconsalvini parsonale aspetto passo campagna filostoconsalvini passo campagna filostoconsal
```

```
# Plot frequency of the topfeatures in the DFM
features_dfm <- textstat_frequency(DFM, n = 50)
# Sort by reverse frequency order
features_dfm$feature <- with(features_dfm, reorder(feature, -frequency))
ggplot(features_dfm, aes(x = feature, y = frequency)) +
    geom_point() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```


2.2.1 Relative frequency of the topfeatures by Party ID

Relative frequency

2.3 Most common hashtag

```
tag_dfm <- dfm_select(DFM, pattern = "#*")
toptag <- names(topfeatures(tag_dfm, 20))
toptag</pre>
```

```
## [1] "#coronavirus" "#covid19" "#lega" "#governo"
```

```
##
   [5] "#salvini"
                            "#conte"
                                                "#m5s"
                                                                    "#draghi"
##
   [9] "#fratelliditalia" "#roma"
                                                "#senato"
                                                                    "#iostoconsalvini"
## [13] "#covid"
                                                "#italia"
                                                                    "#scuola"
                            "#greenpass"
## [17] "#mes"
                            "#covid_19"
                                                "#pnrr"
                                                                    "#mattarella"
```


2.3.1 Most common hashtag by Gender

2.3.2 Co-occurrence Plot of hashtags

```
# NOT WEIGHTED

tag_dfm_NOT_W <- dfm_select(DFM, pattern = "#*")

toptag_NOT <- names(topfeatures(tag_dfm_NOT_W, 20))

tag_fcm_NOT <- fcm(tag_dfm_NOT_W)

set.seed(666)

topgat_fcm_NOT <- fcm_select(tag_fcm_NOT, pattern = toptag_NOT)

textplot_network(topgat_fcm_NOT, min_freq = 0.1, edge_alpha = 0.8, edge_size = 5)</pre>
```


2.4 Most frequently mentioned usernames

```
user_dfm <- dfm_select(DFM, pattern = "@*")
topuser <- names(topfeatures(user_dfm, 20, scheme = "docfreq"))
kable(topuser, col.names = "Most mentioned username")</pre>
```

Most mentioned username
@matteosalvinimi
@fratelliditalia
@forza_italia
@pdnetwork
@stampasgarbi
@mov5stelle
@legasalvini
@italiaviva
@giuseppeconteit
@giorgiameloni
@montecitorio
@deputatipd
@repubblica
@vocedelpatriota
@legacamera
@berlusconi
@matteorenzi
@fattoquotidiano
@enricoletta
@borghi_claudio

2.4.1 Most frequently mentioned usernames by gender

```
# group and weight the DFM
user_dfm_gender_weight <- dfm_group(user_dfm, groups = genere) %>%
dfm_weight(scheme = "prop")
```


2.4.2 Co-occurrence plot of usernames

@vocedelpatriota

2.5 How many times a politician cite his/her party

```
party_citations <- data.frame(first = vector(), second = vector())
system.time(
for (i in unique(tw$party_id))
{
    a <- paste("#", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo)&party_id== i) %>% count()
    c <- tw %>% filter(party_id == i) %>% count()
    d <- (b/c) * 100
    party_citations <- rbind(party_citations, cbind(i,b,c,d))</pre>
```

```
}

#save(party_citations, file = "data/party_citations.Rda")
```

Party	Number of citations	number of tweets	% of citations
M5S	1581	54418	2.9052887
LEGA	511	87162	0.5862647
FDI	131	36177	0.3621085
PD	179	91997	0.1945716
IV	5	3129	0.1597955
FI	62	65264	0.0949988
CI	1	6954	0.0143802
REG_LEAGUES	0	1398	0.0000000
MISTO	0	34644	0.0000000
INDIPENDENTE	0	2186	0.0000000
LEU	0	7868	0.0000000

In the above script i search the # for the parliamentary group, but is very unlikely, for example, that someone use the #IV for talking about the "Italia Viva" party, so i decided to enrich the dataframe creating a new variable with the name of the official twitter page for every party, and repeat the search using it.

I created the variable party_Page for only those parliamentary group that has a direct connection with a party (i excluded Reg_leagues, misto and indipendente)

2.5.1 Create the variable with the name of the official Twitter account

2.5.2 Count for each party how many times a politician cite their respective party

Party	Number of citations	number of tweets	% of citations
@FratellidItalia	5842	36177	16.1483816
@forza_italia	5203	65264	7.9722358
@Mov5Stelle	3873	54418	7.1171304
@ItaliaViva	201	3129	6.4237776
@pdnetwork	4194	91997	4.5588443
@LegaSalvini	3364	87162	3.8594800
@coraggio_italia	131	6954	1.8838079
@liberi_uguali	16	7868	0.2033554

2.6 How many times the party leader is cited by his/her party

2.6.1 Create the variable with the official leader's account for every party

```
tw <- tw %>% mutate(party_leader =
if_else(party_id == "PD" & date < "2021-03-14", "@nzingaretti",
if_else(party_id == "PD" & date > "2021-03-14", "@EnricoLetta",
if_else( party_id == "FDI", "@GiorgiaMeloni",
if_else(party_id == "M5S" &date < "2020-01-22", "@luigidimaio",</pre>
```

```
if_else(party_id == "M5S" &date > "2020-01-22" &date < "2021-08-06", "@vitocrimi",
if_else(party_id == "M5S" & date > "2021-08-061", "@GiuseppeConteIT",
if_else(party_id == "FI", "@berlusconi",
if_else(party_id == "LEGA", "@matteosalvinimi",
if_else(party_id == "CI", "@LuigiBrugnaro",
if_else(party_id == "LEU", "@robersperanza",
"NA"))))))))))))))
```

2.6.2 Count for each party how many times a politician cite his/ her party leader

Leader	Number of citations	Number of tweets	% of citations
@matteosalvinimi	4826	87162	5.5368165
@GiorgiaMeloni	1745	36177	4.8235066
@GiuseppeConteIT	444	15517	2.8613778
@luigidimaio	30	1184	2.5337838
@berlusconi	1533	65264	2.3489213
@EnricoLetta	709	44520	1.5925427
@matteorenzi	46	3129	1.4701182
@nzingaretti	475	47305	1.0041222
@robersperanza	45	7868	0.5719370
@vitocrimi	107	37544	0.2849989
@LuigiBrugnaro	19	6954	0.2732240

2.7 How many times a politician cite itself in the tweet

```
self_citations <- data.frame(first = vector(), second = vector())
system.time(
for (i in unique(tw$tw_screen_name))
{
    a <- paste("0", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo) & tw_screen_name== i) %>% count()
    c <- tw %>% filter(tw_screen_name == i) %>% count()
    d <- (b/c) * 100
    self_citations <- rbind(self_citations, cbind(i,b,c,d))</pre>
```

Politician	Number of citations	Number of tweets	% of citations
wandaferro1	32	55	58.1818182
FrassinettiP	32	163	19.6319018
albertlaniece	51	282	18.0851064
Luca_Sut	20	341	5.8651026
DalilaNesci	17	341	4.9853372
PatassiniTullio	13	714	1.8207283
matteodallosso	3	170	1.7647059
sbonaccini	33	2884	1.1442441
sfnlcd	9	1308	0.6880734
gianluc_ferrara	3	560	0.5357143
adolfo_urso	7	1966	0.3560529
gualtierieurope	4	1432	0.2793296
MassimoUngaro	3	1135	0.2643172
EugenioGiani	3	1235	0.2429150
pierofassino	3	1255	0.2390438
ecdelre	4	2113	0.1893043
guglielmopicchi	3	3234	0.0927644

3 Dictionary analysis

At the level of political parties, which ones make most use of populist rhetoric? At the level of individual politicians, which ones make most use of populist rhetoric?

I use 3 dictionary to perform the analysis

- Rooduijn & Pauwels: Rooduijn, M., and T. Pauwels. 2011. "Measuring Populism: Comparing Two Methods of Content Analysis." West European Politics 34 (6): 1272–1283.
- Decadri & Boussalis: Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies.
 Journal of Elections, Public Opinion and Parties, 30(4), 484-503.
- Grundl: Gründl J. Populist ideas on social media: A dictionary-based measurement of populist communication. New Media & Society. December 2020.
- Decadri & Boussalis + Grundl: this is simply a more extended version of the D&B dictionary, which also contains some terms taken from Grundl.

3.1 Create the dictionary

I imported the excel file with the words for the dictionaries, excluding NA's.

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")
variable.names(dict)</pre>
```

```
## [1] "Rooduijn_Pauwels_Italian"
```

```
## [3] "Decadri_Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
  [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri_Boussalis_Grundl_Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-</pre>
  dictionary(list(populism =
                     (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn_Pauwels_Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                     dict$Grundl Italian adapted
                   [!is.na(dict$Grundl Italian adapted)]))
Decadri_Boussalis <-</pre>
  dictionary(list(populism =
                     dict$Decadri Boussalis
                   [!is.na(dict$Decadri_Boussalis)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                     dict$Decadri Boussalis Grundl People
                   [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                   common_will =
                     dict$`Decadri_Boussalis_Grundl_Common Will`
                   [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
```

[2] "Grundl Italian adapted"

```
elite =
    dict$Decadri_Boussalis_Grundl_Elite

[!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
```

dictionaries	n.words
Rooduijn_Pauwels_Italian	18
Grundl_Italian_adapted	135
Decadri_Boussalis	25
Decadri_Boussalis_Grundl	77

3.1.1 Group and weight the dfm

```
# By party & month

dfm_weigh_p_month <- dfm_group(DFM, groups = interaction(party_id, month))%>%

    dfm_weight(scheme = "prop")

# By party & quarter

dfm_weigh_p_quart <- dfm_group(DFM, groups = interaction(party_id, quarter))%>%
```

```
dfm_weight(scheme = "prop")

# By party & year

dfm_weigh_p_year <- dfm_group(DFM, groups = interaction(party_id, year))%>%
    dfm_weight(scheme = "prop")

# By party & day

dfm_weigh_p_day <- dfm_group(DFM, groups = interaction(party_id, date))%>%
    dfm_weight(scheme = "prop")
```

Apply dictionary

3.2 Decadri_Boussalis_Grundl

3.2.1 Level of sparsity

daily: 12.08%

weekly: 0.55%

monthly: 0%

```
# Dictionary analysis with Decadri_Boussalis_Grundl
# By quarter

dfm_dict1 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Decadri_Boussalis_Grundl)
# By date

dfm_by_date1 <- dfm_lookup(dfm_weigh_p_day, dictionary = Decadri_Boussalis_Grundl)</pre>
```


Looking at the populist rhetoric for each party divided into the 3 components people-centrism, anti-elitism and common-will, we note that the most frequent components is People-centrism.

3.2.2 General level of populism in time divided into 3 components

```
dat smooth1.1 \leftarrow ksmooth(x = dfm by date1$date,
                       y = dfm_by_date1[,"people"] -
                         !dfm_by_date1[,"people"],
                       kernel = "normal", bandwidth = 30)
dat_smooth1.2 <- ksmooth(x = dfm_by_date1$date,</pre>
                       y = dfm by date1[,"common will"] -
                         !dfm_by_date1[,"common_will"],
                       kernel = "normal", bandwidth = 30)
dat_smooth1.3 \leftarrow ksmooth(x = dfm_by_date1$date,
                       y = dfm by date1[,"elite"] -
                         !dfm by date1[,"elite"],
                       kernel = "normal", bandwidth = 30)
plot_time_1 <- plot(dat_smooth1.1$x, dat smooth1.1$y,</pre>
                     type = "l", ylab = "Populism level", xlab = "Time",
                     ylim = c(-1,0), xlim = c(min(dfm by date1$date),
                                               max(dfm by date1$date)))
  lines(dat_smooth1.2$x, dat_smooth1.2$y,
        type = "l", ylab = "Populism level", xlab = "Time",col = "blue")
```

General level of populism divided into 3 components

This plot is coherent with the previous one and show us that people is the Component that score better.

3.2.3 General level of populism in time

General level of populism with Decadri_Boussalis_Grundl dictionar

3.2.4 Most populist parliamentary group for each component

```
# Most populist parliamentary group
dfm_dict1_tstat_party <- textstat_frequency(dfm_dict1, groups = party_id)
kable(dfm_dict1_tstat_party %>% filter(feature == "people") %>% slice_max(frequency
```

	feature	frequency	rank	docfreq	group
22	people	0.0539309	1	10	M5S
4	people	0.0486981	1	10	FDI
10	people	0.0454089	1	10	INDIPENDENTE
7	people	0.0449102	1	10	FI
1	people	0.0443528	1	10	CI
25	people	0.0422541	1	10	MISTO
16	people	0.0422111	1	10	LEGA
28	people	0.0421103	1	10	PD
13	people	0.0417078	1	10	IV
19	people	0.0392343	1	10	LEU
31	people	0.0334640	1	9	REG_LEAGUES

kable(dfm_dict1_tstat_party %>% filter(feature == "elite") %>% slice_max(frequency,

	feature	frequency	rank	docfreq	group
5	elite	0.0287440	2	10	FDI
17	elite	0.0225301	2	10	LEGA
23	elite	0.0178936	2	10	M5S
26	elite	0.0175129	2	10	MISTO
20	elite	0.0168347	2	10	LEU
29	elite	0.0156834	2	10	PD
8	elite	0.0129287	2	10	FI
32	elite	0.0083365	2	10	REG_LEAGUES
14	elite	0.0056664	2	9	IV
2	elite	0.0047789	2	9	CI
12	elite	0.0004012	2	2	INDIPENDENTE

kable(dfm_dict1_tstat_party %>% filter(feature == "common_will") %>% slice_max(freq

	feature	frequency	rank	docfreq	group
18	common_will	0.0048497	3	10	LEGA
24	common_will	0.0044336	3	10	M5S
9	common_will	0.0039613	3	10	FI
27	common_will	0.0039426	3	9	MISTO
21	common_will	0.0030362	3	9	LEU
30	common_will	0.0026507	3	10	PD
6	common_will	0.0024601	3	10	FDI
15	common_will	0.0009923	3	4	IV
3	common_will	0.0008098	3	4	CI
11	common_will	0.0004012	2	2	INDIPENDENTE

3.2.5 Most populist parliamentary group

```
# Add variable for the general level of populism

dfm_dict1_tstat_party <- dfm_dict1_tstat_party %>%

group_by(group) %>% mutate(populism = mean(frequency))

dfm_dict1_tstat_party_filtered <- dfm_dict1_tstat_party %>%

select(group,populism) %>% unique() %>% arrange(desc(populism))

kable(dfm_dict1_tstat_party_filtered)
```

group	populism
FDI	0.0266340
M5S	0.0254194
LEGA	0.0231970
MISTO	0.0212365
REG_LEAGUES	0.0209002
FI	0.0206001
PD	0.0201481
LEU	0.0197017
CI	0.0166472
IV	0.0161222
INDIPENDENTE	0.0154037

3.3 Rooduijn_Pauwels_Italian

3.3.1 Level of sparsity

daily: 0.60%

```
weekly: 0.%
monthly: 0%

# Dictionary analysis with Roodwijn_Pauwels_Italian
# By quarter

dfm_dict2 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Rooduijn_Pauwels_Italian)
# Group by date

dfm_by_date2 <- dfm_lookup(dfm_weigh_p_day, dictionary = Rooduijn_Pauwels_Italian)
#dfm_by_date2

# Group by week
#dfm_by_week2 <- dfm_group(dfm_dict2, groups= week)
#dfm_by_week2
# Group by month
#dfm_by_month2 <- dfm_group(dfm_dict2, groups= month)
#kable(dfm_by_month2)</pre>
```

3.3.2 General level of populism in time

General level of populism with Rooduijn_Pauwels_Italian dictionary

3.3.3 Most populist parliamentary group

```
# Most populist parliamentary group
dfm_dict2_tstat_party <- textstat_frequency(dfm_dict2, groups = party_id)
kable(dfm_dict2_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
2	populism	0.0274375	1	10	FDI
6	populism	0.0215939	1	10	LEGA
7	populism	0.0159693	1	10	LEU
9	populism	0.0156860	1	10	MISTO
10	populism	0.0149336	1	10	PD
8	populism	0.0144550	1	10	M5S
3	populism	0.0116489	1	10	FI
11	populism	0.0083365	1	10	REG_LEAGUES
5	populism	0.0056664	1	9	IV
1	populism	0.0040565	1	9	CI
4	populism	0.0002734	1	1	INDIPENDENTE

3.3.4 Distribution of parliamentary group populism

```
summary(dfm_dict2_tstat_party$frequency)
        Min.
               1st Qu.
                           Median
##
                                       Mean
                                               3rd Qu.
                                                            Max.
## 0.0002734 0.0070015 0.0144550 0.0127324 0.0158277 0.0274375
#TBD
hist(dfm_dict2_tstat_party$frequency, prob=T)
points(density(dfm_dict2_tstat_party$frequency),type="l",col="blue")
rug(dfm_dict2_tstat_party$frequency,col="red")
m <- mean(dfm_dict2_tstat_party$frequency)</pre>
std<-sqrt(var(dfm_dict2_tstat_party$frequency))</pre>
hist(dfm_dict2_tstat_party$frequency,prob=T,main="Frequency")
```

curve(dnorm(x, mean=m, sd=std), col="darkblue", lwd=2, add=TRUE)

above the median

kable(dfm_dict2_tstat_party %>% filter(frequency > median(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0274375	1	10	FDI
6	populism	0.0215939	1	10	LEGA
7	populism	0.0159693	1	10	LEU
9	populism	0.0156860	1	10	MISTO
10	populism	0.0149336	1	10	PD

above the mean

kable(dfm_dict2_tstat_party %>% filter(frequency > mean(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0274375	1	10	FDI
6	populism	0.0215939	1	10	LEGA
7	populism	0.0159693	1	10	LEU
8	populism	0.0144550	1	10	M5S
9	populism	0.0156860	1	10	MISTO
10	populism	0.0149336	1	10	PD

below the first quantiles

kable(dfm_dict2_tstat_party %>% filter(frequency < 0.0070015))</pre>

	feature	frequency	rank	docfreq	group
1	populism	0.0040565	1	9	CI
4	populism	0.0002734	1	1	INDIPENDENTE
5	populism	0.0056664	1	9	IV

above the third quantiles

kable(dfm_dict2_tstat_party %>% filter(frequency > 0.0158277))

	feature	frequency	rank	docfreq	group
2	populism	0.0274375	1	10	FDI
6	populism	0.0215939	1	10	LEGA
7	populism	0.0159693	1	10	LEU

3.4 Grundl_Italian_adapted

3.4.1 Level of sparsity

```
daily: 0.24%
weekly: 0.0%
monthly: 0%

# Dictionary analysis with Grundl_Italian_adapted
# By quarter
dfm_dict3 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Grundl_Italian_adapted)
# Group by date
dfm_by_date3 <- dfm_lookup(dfm_weigh_p_day, dictionary = Grundl_Italian_adapted)
#dfm_by_date2</pre>
```

3.4.2 General level of populism in time

General level of populism with Grundl_Italian_adapted dictionary

3.4.3 Most populist parliamentary group

```
# Most populist parliamentary group
dict_3_tstat_party <- textstat_frequency(dfm_dict3, groups = party_id)
kable(dict_3_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
2	populism	0.0254825	1	10	FDI
8	populism	0.0231987	1	10	M5S
9	populism	0.0227410	1	10	MISTO
6	populism	0.0224236	1	10	LEGA
3	populism	0.0193174	1	10	FI
7	populism	0.0188197	1	10	LEU
10	populism	0.0174278	1	10	PD
1	populism	0.0160156	1	10	CI
11	populism	0.0108807	1	10	REG_LEAGUES
4	populism	0.0105241	1	8	INDIPENDENTE
5	populism	0.0080644	1	9	IV

3.4.4 Distribution of parliamentary grouppopulism

```
#TBD
summary(dict_3_tstat_party$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.008064 0.013448 0.018820 0.017718 0.022582 0.025483
```

above the median

kable(dict_3_tstat_party %>% filter(frequency > median(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0254825	1	10	FDI
3	populism	0.0193174	1	10	FI
6	populism	0.0224236	1	10	LEGA
8	populism	0.0231987	1	10	M5S
9	populism	0.0227410	1	10	MISTO

above the mean

kable(dict_3_tstat_party %>% filter(frequency > mean(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0254825	1	10	FDI
3	populism	0.0193174	1	10	FI
6	populism	0.0224236	1	10	LEGA
7	populism	0.0188197	1	10	LEU
8	populism	0.0231987	1	10	M5S
9	populism	0.0227410	1	10	MISTO

below the first quantiles

kable(dict_3_tstat_party %>% filter(frequency < 0.013448))</pre>

	feature	frequency	rank	docfreq	group
4	populism	0.0105241	1	8	INDIPENDENTE
5	populism	0.0080644	1	9	IV
11	populism	0.0108807	1	10	REG_LEAGUES

above the third quantiles

kable(dict_3_tstat_party %>% filter(frequency > 0.022582))

	feature	frequency	rank	docfreq	group
2	populism	0.0254825	1	10	FDI
8	populism	0.0231987	1	10	M5S
9	populism	0.0227410	1	10	MISTO

3.5 Decadri_Boussalis

3.5.1 Level of sparsity

daily: 0%

weekly: 0.0%

monthly: 0%

```
# Dictionary analysis with Decadri_Boussalis
# By quarter

dfm_dict4 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Decadri_Boussalis)
# By date

dfm_by_date4 <- dfm_lookup(dfm_weigh_p_day, dictionary = Decadri_Boussalis)</pre>
```

3.5.2 General level of populism in time

General level of populism with Decadri_Boussalis dictionary

3.5.3 Most populist parliamentary group

```
# Most populist parliamentary group
dict_4_tstat_party <- textstat_frequency(dfm_dict4, groups = party_id)
kable(dict_4_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
2	populism	0.0781517	1	10	FDI
8	populism	0.0696170	1	10	M5S
6	populism	0.0656655	1	10	LEGA
3	populism	0.0600724	1	10	FI
9	populism	0.0595844	1	10	MISTO
7	populism	0.0588181	1	10	LEU
10	populism	0.0586910	1	10	PD
1	populism	0.0499145	1	10	CI
5	populism	0.0479199	1	10	IV
4	populism	0.0464945	1	10	INDIPENDENTE
11	populism	0.0435615	1	10	REG_LEAGUES

3.5.4 Distribution of party populism

```
#TBD
summary(dict_4_tstat_party$frequency)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04356 0.04892 0.05882 0.05804 0.06287 0.07815
```

above the median

kable(dict_4_tstat_party %>% filter(frequency > median(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0781517	1	10	FDI
3	populism	0.0600724	1	10	FI
6	populism	0.0656655	1	10	LEGA
8	populism	0.0696170	1	10	M5S
9	populism	0.0595844	1	10	MISTO

above the mean

kable(dict_4_tstat_party %>% filter(frequency > mean(frequency)))

	feature	frequency	rank	docfreq	group
2	populism	0.0781517	1	10	FDI
3	populism	0.0600724	1	10	FI
6	populism	0.0656655	1	10	LEGA
7	populism	0.0588181	1	10	LEU
8	populism	0.0696170	1	10	M5S
9	populism	0.0595844	1	10	MISTO
10	populism	0.0586910	1	10	PD

below the first quantiles

kable(dict_4_tstat_party %>% filter(frequency < 0.04892))</pre>

	feature	frequency	rank	docfreq	group
4	populism	0.0464945	1	10	INDIPENDENTE
5	populism	0.0479199	1	10	IV
11	populism	0.0435615	1	10	REG_LEAGUES

above the third quantiles kable(dict_4_tstat_party %>% filter(frequency > 0.06287))

	feature	frequency	rank	docfreq	group
2	populism	0.0781517	1	10	FDI
6	populism	0.0656655	1	10	LEGA
8	populism	0.0696170	1	10	M5S

3.6 Compare the general level of populism in time for the dictionaries

Compare how the different dictionaries score

3.7 Compare how the dictionaries score for the most populist parliamentary group

```
# Create the columns with the "populist score"
# 11 for the "most populist" and 1 for the least
dfm_dict1_tstat_party_filtered$my_rank <- rank(dfm_dict1_tstat_party_filtered$popul</pre>
dfm_dict2_tstat_party$my_rank <- rank(dfm_dict2_tstat_party$frequency)</pre>
dict_3_tstat_party$my_rank <- rank(dict_3_tstat_party$frequency)</pre>
dict 4 tstat party$my rank <- rank(dict 4 tstat party$frequency)</pre>
# define the parliamentary group list
party <- c("LEGA", "PD", "M5S", "FI", "FDI", "MISTO",</pre>
                               "LEU", "CI", "IV", "INDIPENDENTE", "REG LEAGUES")
# create an empty df
party rank <- data.frame(first = vector(), second = vector(),</pre>
                                                                      third = vector(), fourth = vector(), fifth = vector() )
# loop the rank for each parliamentary group
for (i in party)
{
     rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filtered %
     rank dict_2 <- (dfm_dict2_tstat_party %>% filter(group == i ) %>% .$my_rank)
     rank_dict_3 <- (dict_3_tstat_party %>% filter(group == i ) %>% .$my_rank)
     rank_dict_4 <- (dict_4_tstat_party %>% filter(group == i ) %>% .$my_rank)
     party <- (i)
     party_rank <- rbind(party_rank, cbind(party, rank_dict_1, rank_dict_2,</pre>
                                                                                                                rank dict 3, rank dict 4))
```

```
# change the format of the columns in numeric
party_rank$rank_dict_1 <- as.numeric(party_rank$rank_dict_1)
party_rank$rank_dict_2 <- as.numeric(party_rank$rank_dict_2)
party_rank$rank_dict_3 <- as.numeric(party_rank$rank_dict_3)
party_rank$rank_dict_4 <- as.numeric(party_rank$rank_dict_4)

# Create the column with the sum of the single score
party_rank$total_score <- rowSums(party_rank[,-1])
kable(party_rank %>% arrange(desc(total_score)))
```

party	rank_dict_1	rank_dict_2	rank_dict_3	rank_dict_4	total_score
FDI	11	11	11	11	44
LEGA	9	10	8	9	36
M5S	10	6	10	10	36
MISTO	8	8	9	7	32
FI	6	5	7	8	26
LEU	4	9	6	6	25
PD	5	7	5	5	22
REG_LEAGUES	7	4	3	1	15
CI	3	2	4	4	13
IV	2	3	1	3	9
INDIPENDENTE	1	1	2	2	6

4 Sentiment analysis

http://saifmohammad.com/WebPages/lexicons.html

4.1 Inspect the dictionary

```
head(get sentiment dictionary(dictionary = "nrc", language = "italian"),15)
##
                      word sentiment value
         lang
## 1
      italian
                      abba
                            positive
                                         1
## 2
      italian
                  capacità
                            positive
                                         1
## 3
      italian sopra citato
                            positive
                                         1
## 4
      italian
                                         1
                  assoluto positive
      italian assoluzione positive
## 5
                                         1
## 6
      italian
                assorbito positive
                                         1
## 7
      italian
                abbondanza positive
                                         1
## 8
      italian
                                         1
                abbondante positive
## 9
      italian
                accademico positive
                                         1
## 10 italian
                                         1
                 accademia positive
## 11 italian accettabile positive
                                         1
## 12 italian accettazione positive
                                         1
                                         1
## 13 italian accessibile
                            positive
## 14 italian
                            positive
                                         1
                   encomio
```

4.1.1 Clean text from dataframe

15 italian

Define function to make the text extracted from dataframe suitable for analysis

alloggio positive

```
# Define function to make the text suitable for analysis
clean.text = function(x)
  # tolower
  x = tolower(x)
  # remove rt
 x = gsub("rt", "", x)
  # remove at
 x = gsub("@\\\\"", "", x)
  # remove punctuation
 x = gsub("[[:punct:]]", "", x)
  # remove numbers
  x = gsub("[[:digit:]]", "", x)
  # remove links http
 x = gsub("http\\w+", "", x)
  # remove tabs
 x = gsub("[ | t]{2,}", "", x)
  # remove blank spaces at the beginning
 x = gsub("^", "", x)
  # remove blank spaces at the end
 x = gsub(" $", "", x)
 return(x)
}
```

4.2 Create the filtered dataframes

```
# Create filtered dataframes

MELONI <- dataset %>% filter(nome == "MELONI Giorgia")

CONTE <- dataset %>% filter(nome == "CONTE Giuseppe")

RENZI <- dataset %>% filter(nome == "RENZI Matteo")

SALVINI <- dataset %>% filter(nome == "SALVINI Matteo")

LETTA <- dataset %>% filter(nome == "LETTA Enrico")

BERLUSCONI <- dataset %>% filter(nome == "BERLUSCONI Silvio")

SPERANZA <- dataset %>% filter(nome == "SPERANZA Roberto")
```

4.3 Create nrc objects

```
# Create the nrc object

nrc_meloni <- get_nrc_sentiment(MELONI$tweet_testo, language="italian")
save(nrc_meloni,file="data/nrc_meloni.Rda")

nrc_conte <- get_nrc_sentiment(CONTE$tweet_testo, language="italian")
save(nrc_conte,file="data/nrc_conte.Rda")

nrc_renzi <- get_nrc_sentiment(RENZI$tweet_testo, language="italian")
save(nrc_renzi,file="data/nrc_renzi.Rda")

nrc_salvini <- get_nrc_sentiment(SALVINI$tweet_testo, language="italian")
save(nrc_salvini,file="data/nrc_salvini.Rda")

nrc_letta <- get_nrc_sentiment(LETTA$tweet_testo, language="italian")
save(nrc_letta,file="data/nrc_letta.Rda")

nrc_berlusconi <- get_nrc_sentiment(BERLUSCONI$tweet_testo, language="italian")</pre>
```

```
save(nrc_berlusconi, file="data/nrc_berlusconi.Rda")
nrc_speranza <- get_nrc_sentiment(SPERANZA$tweet_testo, language="italian")
save(nrc_speranza,file="data/nrc_speranza.Rda")</pre>
```

4.4 Giorgia Meloni

4.4.1 Proportion of the emotion

```
barplot(
  sort(colSums(prop.table(nrc_meloni[, 1:8]))),
  horiz = TRUE,
  cex.names = 0.7,
  las = 1,
  main = "Emotions in tweets by Giorgia Meloni", xlab="Percentage"
)
```

Emotions in tweets by Giorgia Meloni

4.4.2 Wordcloud of emotions

```
all <- c(
  paste(MELONI$tweet testo[nrc meloni$anger > 0], collapse=" "),
  paste(MELONI$tweet_testo[nrc_meloni$anticipation > 0], collapse=" "),
  paste(MELONI$tweet_testo[nrc_meloni$disgust > 0], collapse=" "),
  paste(MELONI$tweet_testo[nrc_meloni$fear > 0], collapse=" "),
  paste(MELONI$tweet_testo[nrc_meloni$joy > 0], collapse=" "),
  paste(MELONI$tweet_testo[nrc_meloni$sadness > 0], collapse=" "),
  paste(MELONI$tweet testo[nrc meloni$surprise > 0], collapse=" "),
  paste(MELONI$tweet testo[nrc meloni$trust > 0], collapse=" ")
)
# Call the function previously defined
all <- clean.text(all)</pre>
# remove stop-words
all = removeWords(all, c(stopwords("italian")))
# create corpus
corpus viz <- Corpus(VectorSource(all))</pre>
# create term-document matrix
tdm <- TermDocumentMatrix(corpus viz)</pre>
# convert as matrix
tdm <- as.matrix(tdm)</pre>
# add column names
colnames(tdm) <- c('anger', 'anticipation', 'disgust', 'fear',</pre>
                    'joy', 'sadness', 'surprise', 'trust')
# Plot comparison wordcloud
layout(matrix(c(1, 2), nrow=2), heights=c(1, 4))
par(mar=rep(0, 4))
```

Emotion Comparison Word Cloud for tweets by Giorgia Meloni

4.5 Giuseppe Conte

${\bf 4.5.1} \quad {\bf Proportion \ of \ the \ emotion}$

Emotions in tweets by Giuseppe Conte

4.5.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Giuseppe Conte

4.6 Matteo Renzi

4.6.1 Proportion of the emotion

Emotions in tweets by Matteo Renzi

4.6.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Renzi

4.7 Matteo Salvini

4.7.1 Proportion of the emotion

Emotions in tweets by Matteo Salvini

4.7.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Salvini

4.8 Enrico Letta

${\bf 4.8.1} \quad {\bf Proportion \ of \ the \ emotion}$

Emotions in tweets by Enrico Letta

4.8.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Enrico Letta

4.9 Silvio Berlusconi

${\bf 4.9.1} \quad {\bf Proportion \ of \ the \ emotion}$

Emotions in tweets by Silvio Berlusconi

4.9.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Silvio Berlusconi

4.10 Roberto Speranza

4.10.1 Proportion of the emotion

Emotions in tweets by Roberto Speranza

4.10.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Roberto Speranza

5 LDA Topic model analysis

5.1 CREATE THE DTM

5.1.1 Remove all the account's mentions

```
DFM_trimmed@Dimnames$features <- gsub("^@", "", DFM_trimmed@Dimnames$features)</pre>
```

5.1.2 Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)

```
dtm <- quanteda::convert(DFM_trimmed, to = "topicmodels")</pre>
```

5.2 FIND THE BEST NUMBER OF TOPICS K

5.2.1 Search the best number of Topics comparing coherence and exclusivity values

```
K = 10:50
```

```
# 10 : 50 iter 1000

top1 <- c(10:50)

## Create an empty data frame

risultati <- data.frame(first=vector(), second=vector(), third=vector())

#Run the loop searching the best k value

system.time(
  for (i in top1)
  {
    set.seed(123)</pre>
```

5.2.2 Plot the values of coherence and exclusivity in order to find the best K

Scatterplot k=10:50

K= 11 has the best values of coherence and exclusivity.

5.3 ANALISYS OF THE TOPICS

5.3.1 Run the analysis selecting k=11

5.3.2 The most important terms from the model, for each topic

Top terms 01	Top terms 02	Top terms 03	Top terms 04	Top terms 05	Top terms 06
governo	#coronavirus	diretta	forza_italia	solidarietà	grande
italiani	#covid19	roma	bene	libertà	grazie
lega	sicurezza	domani	cose	parole	mondo
conte	covid	città	vero	diritti	italia
matteosalvinimi	scuola	amici	davvero	rispetto	forza
fratelliditalia	salute	sindaco	ragione	democrazia	de
salvini	pandemia	insieme	problema	diritto	italiano
pd	pass	sera	ce	violenza	italiana
#lega	dati	territorio	parla	guerra	storia
casa	green	parlare	dovrebbe	popolo	l'italia

Top terms 7	Top terms 8	Top terms 9	Top terms 10	Top terms 11
lavoro	via	governo	anni	piano
paese	ministro	imprese	grazie	nazionale
presidente	legge	milioni	donne	futuro
politica	parlamento	euro	giornata	importante
buon	commissione	lavoratori	auguri	sociale
l'italia	senato	famiglie	vittime	giovani
momento	mov5stelle	sostegno	famiglia	europea
bene	voto	cittadini	comunità	fondamentale
pdnetwork	camera	misure	servizio	paesi
insieme	intervento	crisi	forze	intervista

5.3.3 Interpret the terms

	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6
titles_11	1?	PANDEMIA	3?	4?	DIRITTI	NAZIONE
	governo	#coronavirus	diretta	forza_italia	solidarietà	grande
	italiani	#covid19	roma	bene	libertà	grazie
	lega	sicurezza	domani	cose	parole	mondo
	conte	covid	città	vero	diritti	italia
	matteosalvinimi	scuola	amici	davvero	rispetto	forza
	fratelliditalia	salute	sindaco	ragione	democrazia	de
	salvini	pandemia	insieme	problema	diritto	italiano
	pd	pass	sera	ce	violenza	italiana
	#lega	dati	territorio	parla	guerra	storia
	casa	green	parlare	dovrebbe	popolo	l'italia

	Topic 7	Topic 8	Topic 9	Topic 10	Topic 11
titles_11	7?	PARLAMENTO	ECONOMIA	RICORRENZE	PNRR
	lavoro	via	governo	anni	piano
	paese	ministro	imprese	grazie	nazionale
	presidente	legge	milioni	donne	futuro
	politica	parlamento	euro	giornata	importante
	buon	commissione	lavoratori	auguri	sociale
	l'italia	senato	famiglie	vittime	giovani
	momento	mov5stelle	sostegno	famiglia	europea
	bene	voto	cittadini	comunità	fondamentale
	pdnetwork	camera	misure	servizio	paesi
	insieme	intervento	crisi	forze	intervista

6 FER: Facial Emotion Recognition Analysis

6.1 Report on the analysis made with FER Python package

The package use the FER-2013 dataset created by Pierre Luc Carrier and Aaron Courville.

The dataset was created using the Google image search API to search for images of faces that match a set of 184 emotion-related keywords like "blissful", "enraged," etc. These keywords were combined with words related to gender, age or ethnicity, to obtain nearly 600 strings which were used as facial image search queries. The first 1000 images returned for each query were kept for the next stage of processing. OpenCV face recognition was used to obtain bounding boxes around each face in the collected images. Human labelers than rejected incorrectly labeled images, corrected the cropping if necessary, and filtered out some duplicate images. Approved, cropped images were then resized to 48x48 pixels and converted to grayscale. Mehdi Mirza and Ian Goodfellow prepared a subset of the images for this contest, and mapped the fine-grained emotion keywords into the same seven broad categories used in the Toronto Face Database [Joshua Susskind, Adam Anderson, and Geoffrey E. Hinton. The Toronto face dataset. Technical Report UTML TR 2010-001, U. Toronto, 2010.]. The resulting dataset contains 35887 images, with 4953 "Anger" images, 547 "Disgust" images, 5121 "Fear" images, 8989 "Happiness" images, 6077 "Sadness" images, 4002 "Surprise" images, and 6198 "Neutral" images. FER-2013 could theoretical suffer from label errors due to the way it was collected, but Ian Goodfellow found that human accuracy on FER-2013 was $65\pm 5\%$.

66% ACCURACY REPORTED BY OCTAVIO ARRIAGA, Matias Valdenegro-Toro, Paul Plöger (Real-time Convolutional Neural Networks for Emotion and Gender Classification)