## **SOLUTION ARCHITECTURE**

# <u>Project: A Novel Method for Handwritten Digit Recognition</u> <u>System</u>

Team Members: RAVIKANT, VIGNESHWAR C, VIMAL RAAJ M, KUMARAN S

## **PROJECT DESCRIPTION:**

Since everyone has a different writing style, handwriting identification is one of the most fascinating research projects now being conducted.

It is the ability of a computer to recognise and comprehend handwritten numbers or lett ers automatically.

Science and technology advancements have led to the digitalization of everything, whi ch helps to minimise the need for human labour.

As a result, many real-time applications demand handwritten digit identification.

In this recognition method, the MNIST data collection, which contains 70000 handwritt en digits, is frequently used.

We employ artificial neural networks to train these images and produce a deep learnin g model.

A web application is created that enables users to upload pictures of handwritten numbers.

#### **TECHNICAL ARCHITECTURE:**



#### **SOLUTION:**

## **MNIST Dataset Description:**

10,000 test handwritten digit images and 60,000 training handwritten digit images make up the MNIST Handwritten Digit Recognition Dataset.

The total number of pixels in each image is 784 (2828), with a height of 28 pixels and a width of 28 pixels.

A single pixel value connects every pixel.

It displays the brightness or darkness of that pixel (larger numbers indicates darker pix el).

The integer for this pixel value ranges from 0 to 255.



### PROCEDURE:

- 1. Install the latest TensorFlow library.
- 2. Prepare the dataset for the model.
- 3. Develop Single Layer Perceptron model for classifying the handwritten digits.
- 4. Plot the change in accuracy per epochs.
- 5. Evaluate the model on the testing data.
- 6. Analyse the model summary.
- 7. Add hidden layer to the model to make it Multi-Layer Perceptron.
- 8. Add Dropout to prevent overfitting and check its effect on accuracy.
- 9. Increasing the number of Hidden Layer neuron and check its effect on accuracy.
- 10. Use different optimizers and check its effect on accuracy.
- 11. Increase the hidden layers and check its effect on accuracy.

12. Manipulate the batch size and epochs and check its effect on accuracy.

A dataset that is frequently used for handwritten digit recognition is MNIST. 10,000 test photos and 60,000 training images make up the dataset. Artificial neural networks, which are a crucial component in the field of image processing, can most closely resemble the human brain.

Using the MNIST dataset, handwritten digit recognition is a significant effort that was created with the use of neural networks.

In essence, it recognises the scanned copies of handwritten numbers.

Our handwritten digit recognition technology goes a step further by allowing you to writ e numbers on the screen and have them recognised using an integrated GUI in additio n to recognising scanned photos of handwritten numbers.

This project will be approached utilising a three-layered neural network.

- The input layer: It transfers the characteristics from our example layers to the followin g layer so that the subsequent layer's activations can be calculated.
- The hidden layer: These ties for the network are built up of hidden units known as act ivations.

Depending on our needs, there can be a variety of concealed layers.

• The nodes in this layer are referred to as output units. It gives us access to the neural network's final prediction, which may be used to make f inal predictions.

A neural network is a representation of the way the brain works.

It has many layers and various activations, which resemble the neurons in our brain. An attempt by a neural network to learn a set of parameters from a batch of data may help identify underlying connections.

Without needing to reconsider the output criteria, neural networks can offer the greates t outcomes since they can adjust to changing input.

#### **METHODOLOGY:**

We built a neural network with 100 activation units and one hidden layer (excluding bia s units).

A.mat file is used to load the data, after which features (X) and labels (Y) are extracted

The characteristics are then scaled down to a range of [0,1] and split by 255 to prevent calculation overflow.

10,000 testing cases and 60,000 training examples make up the data.

The training set is used to derive the hypothesis, and backpropagation is then utilised to lessen the error between the layers.

The regularisation parameter lambda is changed to 0.1 to combat overfitting. To choose the model with the best fit, the optimizer is run 70 times.



The Forward Propagation Architecture algorithm:

This is a succinct explanation of how the CNN module will extract features from the im age and categorise it using those features.

The design shows the input layer, hidden layers, and output layer of the network. Convolution and resampling are two of the many layers that are used in the network's f eature extraction stage.

Explaining the specified system:

The User layer is the top layer of the architecture.

The users who engage with the programme and get the desired outcomes makeup the user layer.

The frontend architecture of the application is made up of the following three levels.

The application will be created on the opensource JavaScript, CSS, and HTML platform.

The localhost, which is displayed in the browser, is where the programme is deployed.

The user will be able to upload images of the handwritten numbers to the app to have them digitalized.

• The business layer, which consists of logical calculations based on the client's reques t, sits between the database and view layers.

The service interface is also included.

- •Training Data and Test Data make up the backend layer's two datasets. The training set, which consists of 60,000 cases, and the test set, which consists of 10, 000 examples, have already been separated into the MNIST database.
- •Convolution neural network training is the employed training algorithm. By doing this, the trained model will be ready to be used to categorise the digits found in the test data.

As a result, the digits in the photos can be categorised as Class 0,1,2,3,4,5,6,7,8,9.

## **WORKING:**

- Neural networks process input through a number of secret layers after receiving it.
- Each group of neurons in a hidden layer is completely connected to every other neur on in the layer below it.
- Each layer of neurons functions entirely separately.
- The "output layer" is the final layer to be fully connected.

#### Convolution Layer:

The foundational component of a CNN is the convolutional layer.

The parameters of the layer are a set of learnable filters (or kernels) that cover the entire depth of the input volume but have a narrow receptive field.

Each filter is convolved across the width and height of the input volume during the forw ard pass, computing the dot product between each filter entry and the input to create a two-dimensional activation map of the filter.

As a result, the network picks up filters that turn on when they spot a certain kind of fea ture at a particular location in the input.

#### Feature extraction:

Each neuron in a feature has the same weights during feature extraction.

In this manner, the same feature is recognised by all neurons at various locations in the input image.

Limit the number of unrestricted parameters.

#### Subsampling:

Reducing a signal's total size is referred to as subsampling, sometimes known as dow n sampling.

Each feature map's spatial resolution is decreased by the subsampling layers.

Shift or distortion invariance is attained, and the impact of sounds is

#### Pooling layer:

In a Convent architecture, it is typical to sporadically introduce a Pooling layer between subsequent Conv layers.

In order to decrease the number of parameters and computation in the network and, a sa result, control overfitting, it gradually shrinks the spatial size of the representation.

Every depth slice of the input is independently processed by the Pooling Layer, which then applies the MAX operation to resize each slice spatially.

#### TensorFlow:

An opensource machine learning library for both research and production is called TensorFlow.

TensorFlow provides developers of all skill levels with APIs for desktop, mobile, web, a nd cloud applications.

To get started, refer to the sections below.

We can achieve text output and sound output by scanning the number digit and converting it to png format using the python3 command in terminal.



#### **RESULT:**

As with every investigation or endeavour in the area of computer vision and machine le arning,

After processing, we do not believe our results to be flawless.

There is always space for improvement in your method because machine learning is a topic that is constantly developing. Additionally, there will always be new approaches t hat yield better results for the same problems.

The application was sent in.

Multi-

Layer Perceptron (MLP), Convolution Neural Network (CNN), and Network models wer e employed (CNN).

Depending on the model that shows which is best, the classifier's accuracy varies.