Introduction to Mesh Routing

For Decentralized Networks

What is routing?

- Getting a (data) packet from A to B
 - Forward decision
 - Needs to be effectively loop free
- Best route decided by metric
 - Hop Count
 - Bandwidth
 - Time
 - Cost

What is a Mesh Network?

- (IP) Network of Computers (nodes)
- arbitrary topology
 - Loops!
- Restricted topology
 - Line
 - Lattice
 - Tree
 - **–** ...

Mesh Types

- Node movement: Mobile
 - Usually wireless networks
- Nodes appear/disappear: Ad-hoc
 - Start with no memory / clean slate
- Virtual
 - Abstract Topology over network
 - Software Defined Networks
- => To clear distinction
 - Depends on task at hand

Mesh Protocols

- Mobile Adhoc Mesh Networks (MANET)
 - Batman-adv
 - OLSR
 - Babel
 - BMX7
- Non Mobile Mesh Networks
 - BGP (Border Gateway Protocol)
 - Backbone protocol of the Internet
 - Between Internet Service Providers (ISP)
 - OSPF
 - Inside ISPs
 - Uses a spanning tree

Prerequisites

- Network topology (handled on previous slides)
- Path Metric
- Routing schemes
- Distance Vector / Link State
- Proactive / Reactive

Path Metric

- When is a path better than another?
- Routing Metric
 - Hops (RIP, academic protocols)
 - Packet Loss (old batman-adv)
 - Bandwidth (batman-adv, olsr)
 - Energy

Routing Schemes

- Name independent
 - Node identifier is opaque value
 - e.g. MAC address
- Named dependent
 - Node identifier serves as address
 - e.g. (global) IP address

Distance Vector

- e.g. batman-adv, geometric routing
- Common approach:
 - called Table Driven
 - Node maintains table
 - Original sender
 - Received from neighbor
 - Path Cost
 - It's distributed Dijkstra shortest path algorithm

Link State

- e.g. OLSR
- Whole topology in memory
 - Allows whole network path planning
 - Allows Policy routing
- Hand in Hand with "Source Routing"
 - header of packet contains whole path
 - Pro: More control over the path to take
 - Policy Routing!
 - Cons: Inflexible in case of topology changes

Proaktiv/Reactive Routing

- Why send all the management data when no user data needs to be routed?
- Reactive
 - Discover routing information when needed
 - Useful for low traffic networks
- Proactive
 - Keep all routing data up to data
 - Efficient when there is much user data

The Routing Task

- Imagine
 - You are a node that wakes up
 - No knowledge of the surrounding
 - Other nodes are in the same situation
 - You have a unique name (e.g. MAC address)
 - You get a packet for somebody
- What to do?
 - Discover neighbors
 - Forward packet -> which neighbor

Naiive Approach

- Flooding
- Pro
 - No discovery needed
 - Always best route found
- Cons:
 - No discovery
 - Horribly inefficient
 - Loops.....

Efficient Flooding

- Need to prevent Loops!
- Solution:
 - Interval counter in packet
 - Every node remembers
 - Original sender ID (e.g. MAC)
 - Interval counter (1, 2, 3, ..)
 - => Destination Sequence Number

Example

Table of Node 1:

Dest.	Next hop	Metric (Hops)	Seq. No.
1	1	0	17
2	2	1	2
3	3	1	15
4	4	1	43
5	2	2	9
6	3	2	58
7	4	2	20
8	3	3	23
9	4	3	13

Discovery By Flooding

- Hello Packets
 - Usually propagated throw the whole network
 - (e.g. batman-adv: OGM, OLSR: HNA)
 - Send in intervals
 - Depends on the expected mobility / on/off rate
- Other discovery mechanisms
 - Distributed Hash Table on mesh networks
 - e.g. for ARP optimization of batman-adv

Implementation for Layer 2

- e.g. batman-adv
- Emulates a virtual network switch
- Easy roaming
- Needs to be implemented as Kernel Module
- Needs to handle lower level protocols (Multicast stuff: ARP, NDP, DHCP)
 - Gets noisy if you miss stuff, otherwise it needs to be flooded

Implementation on Layer 3

- e.g. OLSR, BGP, BMX7
- Easier to implement
- User space makes it more portable to other platforms
- No roaming without hacks

Some Mesh Routing Software

MANET

- Batman-adv: Kernel module / Distance Vector / Layer 2
- Babel: User Space / Distance Vector / Layer 3
- OLSR: User Space / Link State / Layer 3
- BMX7: User Space / Distance Vector / Layer 3 / Source Routing / focus on Policy Routing for security

Other

- BGP: organizational tree / Source Routing / Distance Vector
 / Layer 3 / focus on Policy Routing for peering costs
- **OSPF**: Spanning tree / Distance Vector / Layer 3

Scalability

- Most MANET protocols that use flooding
 - Management traffic growths exponentially O(n^1..2)
 - ~1000 Nodes is the limit
 - Optimizations (clustering, caching) helps by a factor
- Geographic Routing has potential
 - If it works...

Geographic Routing (1)

- Every Node has coordinate
 - GPS or virtual (better/cheaper)
- Every Node exchanges management traffic with neighbors only
 - Constant management traffic
 - Independent of network size!
- Promises really big mobile adhoc mesh networks

Geographic Routing (2)

- Routing is usually Greedy
- Use local information for routing decision
- Hope to archive good global routing path
- Might get stuck in local minimum
- Backtracking fallback (e.g. Face Routing)

RIP

- Routing Information Protocol
- Precursor of OSPF
- Distance Vector
- hop count metric
 - Max 16 (used to prevent loops!)
- Broadcast whole table every 30 Seconds
 - Slow convergence & inefficient

AODV

- Ad-hoc On Demand Distance Vector Routing
 - Often used as citation in academia
 - Descendant of DSDV
- Reactive ("On Demand")
- Route Request Packet
- Router Reply Packet
- (2003)

DSDV

- Destination Sequence Distance Vector
- Bellman Ford routing algorithm

The End

Scalability

- MANET protocols max out at ~1000 nodes
- Lower Barrier O(log n)
 - At least need to address every single node
- The capacity of wireless networks (2000 -Guptar, Kumar)
 - Wireless capacity decreases because of transmission overlap / noise
 - Does not apply for when mesh clouds are connected with directional connections

Random Notes

 Clustering is a more flexible form of a spanning tree

