MATH 51 Homework #19 Tamir Enkhjargal June 2019

Section 9.1 - Relations and Their Properties

1.

- a) $R = \{(0,0), (1,1), (2,2), (3,3)\}$
- b) $R = \{(1,3), (2,2), (3,1), (4,0)\}$

4.

a) Not reflexive (a can't be taller than a).

Not symmetric (a taller than b, b can't be taller than a).

Transitive (a taller than b, b taller than c, then a taller than c).

b) Reflexive (a born same day as a).

Symmetric (a born same day as b, b born say day as a).

Transitive (a born same day as b, b born same day as c, a born same day as c).

c) Reflexive (a has the same name as a).

Symmetric (a has the same name as b, b has the same name as a).

Transitive (a has the same name as b, b has the same name as c, a has the same name as c).

d) Reflexive (a has the same grandparent as a).

Symmetric (a has the same grandparent as b, b has the same grandparent as a).

Not transitive (if a and b share a common **grandmother** and b and c share a common **grandfather**, its possible that a and c don't share the same grandparent).

6.

- a) Not reflexive (check a=1). Symmetric (if x+y=0, then y+x=0). Not transitive (check x=1, y=-1, z=1).
- b) Reflexive (a= $\pm a$, $\forall a \in \mathbb{R}$). Symmetric (if x= $\pm y$, then y= $\pm x$). Transitive (if x= $\pm y$, and y= $\pm z$, then x= $\pm z$).
- c) Reflexive (any number subtract itself is 0, and 0 is rational). Symmetric (if x-y rational, then y-x rational). Transitive (if x-y rational and y-z rational then x-z rational).
- d) Not reflexive (check a=1, $1\neq 2$). Not symmetric (check x=2, y=1, then y=2, x=1). Not transitive (x=2y, y=2z, x\neq 4y).
- e) Reflexive (any number squared is $a^2 \ge 0$). Symmetric (if $xy \ge 0$, then $yx \ge 0$). Not transitive (check x = -1, y = 0, z = 1, $xz \ge 0$).
- f) Not reflexive (check a=1). Symmetric (if xy = 0, then yx = 0). Not transitive (check $x = 1, y = 0, z = 1, xz \neq 0$).
- g) Not reflexive (choose any $a \neq 1$. Not symmetric (check x=1, y=2, then x=2, y=1). Transitive (if x = 1, and y = 1, then (x, z) is always true).
- h) Not reflexive (choose any $a \neq 1$). Symmetric (if x or y = 1, then y or x = 1 is true). Not transitive (check x=2, y=1, z=2. (x, z) does not work, but (x, y) and (y, z) works.).

8.

This proof works on the vacuous fact that the pair $(a, b) \in R$ is always false. It is not possible to move from the nonempty set S to $R = \emptyset$. Therefore:

Reflexive: $\forall a \in S : (a, a) \notin R$, because $R = \emptyset$. This is not reflexive.

Symmetric: If $(a, b) \in R$ then $(b, a) \in R$. Since $(a, b) \in R$ is false, then $(b, a) \in R$ is vacuously true.

Transitive: If $(a,b) \in R \land (b,c) \in R$ then $(a,c) \in R$. Since the first part of the implication is false, this is again vacuously true.