Minimalni končni modeli prostorov

Filip Bezjak Mentor: dr. Petar Pavešić

23. marec 2023

1 Simpleksi

Simpleks ali n-simpleks je n-razsežni analog trikotnika. Točka je 0-simpleks, 1-simpleks je daljica, 2-simpleks je trikotnik, 3-simpleks je tetraeder. n-simpleks definiramo kot množico svojih n+1 oglišč. $Simplicialni\ kompleks\ K$ je sestavljen iz množice oglišč V_K in množice simpleksov S_K , sestavljene iz končnih nepraznih podmnožic od V_k , pri čemer je vsak element S_k simpleks in vsaka podmnožica simpleksa je simpleks. Pišemo $\sigma \in K$ in $v \in K$, če je $\sigma \in S_K$ ter $v \in V_K$. Dimenzija K je enaka supremumu dimenzij njegovih simpleksov, n-dimenzionalnemu simpleksialnemu kompleksu rečemo tudi n-kompleks. Omejili se bomo samo na končne komplekse, torej $n \in \mathbb{N}$.

Če je simpleks σ vsebovan v simpleksu τ , mu rečemo $face \ref{eq:total_constraints}$ od τ , rečemo mu proper face, če $\tau \neq \sigma$. Simpleksu rečemo maksimalen simpleks, če ni proper face nobenemu drugemu simpleksu. Subkompleks $L \in K$ simplicialnega kompleksa K je Simplicialni kompleks, tak da $V_L \subseteq V_K$ in $S_L \subseteq S_K$

Naj bo $\sigma=\{v_0,v_1,\ldots,v_n\}$ n-simpleks. Zaprt simpleks $\bar{\sigma}$ je množica formalnih konveksnih combinacij $\sum_{i=0}^n\alpha_iv_i$ pri čemer je $\alpha_i\geq 0$ za vsak $0\leq i\leq n$ in $\Sigma\alpha_i=1$. Zaprt simpleks je metričen prostor z metriko

$$d(\sum_{v \in K} \alpha_v v, \sum_{v \in K} \beta_v v) = \sqrt{\sum_{v \in K} (\alpha_v - \beta_v)^2}$$
 (1)

Geometrijska realizacija |K| simplicialnega kompleksa K je množica formalnih konveksnih kombinacij $\sum\limits_{v\in K}\alpha_v v$, takih da je $\{v|\alpha_v>0\}$ simpleks v K. Na |K| lahko gledamo kot unijo zaprtih simpleksov $\bar{\sigma}$, za $\sigma\in K$. Množica $U\subseteq |K|$ je odprta natanko tedaj, ko je $U\cap\hat{\sigma}$ odprta, glede na metriko na $\hat{\sigma}$, za vsak $\sigma\in K$, lahko zato na |K| definiramo metriko tako kot pri $\ref{eq:K}$. Če $L\subseteq K$, potem je $|L|\subseteq |K|$ zaprta podmnožica.

Polihedron/eder?? je geometrijska realizacija Simplicialnega kompleksa |K|, triangulacija poliedra X pa je simplicialni kompleks, katerega geometrijska realizacija je homeomorfna X.

Ker metrika na |K| sovpada z metriko na $\bar{\sigma}$, za vsak $\sigma \in K$, sledi, da je preslikava f iz |K| v nek topološki prostor X zvezna, natanko tedaj, ko je $f|_{\bar{\sigma}}: \bar{\sigma} \to X$ zvezna za vsak $\sigma \in K$. Tudi $H: |K| \times I \to X$ je zvezna, natanko tedaj, ko je zvezna $H|_{\bar{\sigma} \times I}: \bar{\sigma} \times I \to X$, za vsak $\sigma \in K$.

Simplicial preslikava $\phi: K \to L$, med simplicialnima kompleksoma K in L, je preslikava med ogljišči, $V_K \to V_L$, ki slika simplekse v simplekse. Preslikava ϕ inducira zvezno preslikavo med kompleksoma $|\phi|: |K| \to |L|$, kot $|\phi|: \sum\limits_{v \in K} \alpha_v v \mapsto \sum\limits_{v \in K} \alpha_v \phi(v)$.

Baricentrična subdivizija simplicialnega kompleksa K je simplicialni kompleks K', čigar ogljišča so simpleksi $\sigma \in K$, simpleksi v K' so pa verige simpleksov v K, urejenih z inkluzijo. Torej $\sigma' \in K'$, če $\sigma' = \{\sigma_0, \sigma_1, ..., \sigma_n\}$ in $\sigma_0 \subsetneq \sigma_1 \subsetneq ... \subsetneq \sigma_n$. Baricenter simpleksa $\sigma \in K$ je točka $b(\sigma) = \sum_{x \in \sigma} \frac{v}{\#\sigma}$.

Definirajmo linearno preslikavo $S_K: |K'| \to |K|$, s predpisom $S_K(\sigma) = b(\sigma)$. Linearnost pomeni, da velja $S_K(\sum_{\sigma \in \sigma'} a_{\sigma}\sigma) = \sum_{\sigma \in \sigma'} a_{\sigma}S_K(\sigma)$.

Primer 1. Naj bo $K = \sigma = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ 3-simpleks.

Slika

Poglejmo si preslikavo $S_K: |K'| \to |K|$. Naj bo x tako kot na sliki. Potem je $K'_x:=support(x)=\{\{a\},\{a,b\},\{a,b,c\}\}$ in $x=\sum_{\sigma\in K'_x}\alpha_{i_\sigma}\sigma$. Zato

$$\begin{split} S_K(x) &= S_K(\sum_{\sigma \in K_x'} \alpha_{i_\sigma} \sigma) = \sum_{\sigma \in K_x'} \alpha_{i_\sigma} S_K(\sigma) \\ &= \alpha_1 S_K(\{a\}) + \alpha_2 S_K(\{a,b\}) + \alpha_3 S_K(\{a,b,c\}) \\ &= \alpha_1 a + \alpha_2 \frac{a+b}{2} + \alpha_3 \frac{a+b+c}{3}. \end{split}$$

Preslikava S_K je očitno homeomorfizem.