Last lecture

2021年6月10日 19:02

and
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

Review. Given
$$V$$
, defined $\hat{V} = \{L: V \Rightarrow C\}$

List determined by its values on basis (Lei) i

Lem din $\hat{V} = \dim V = n$

Pual basis $\{L:\}$ for $\{e_i\}$

St. Life $i = Sij = \{1, 2, 3, 4\}$

Dem: If Lu=0 Y Lev then v=0

Lem: let $\{e_i\}$ be basis for V, $\{L_i\}$ be chall bests for \widehat{V} , let $V = \mathbb{Z}$ $A_i \in \{e_i\}$ be the $A_i = A_i = A_i$.

Pf: Apply Lit (a) $L_i v = \frac{Z}{J} L_i(a_j e_j) = a_i L_i e_i = a_i$

D [ast the:

(L, f (e, ... en) =]

 Δ Lemma, let $\{e_1'-e_n'\}$ be a new basis $(e_1'-e_n')^2(e_1-e_n)\cdot h$

dud boys
$$\{L_1 - L_1\}$$
 for $\{e_1'\}$

$$\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$$

$$\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$$

$$\{L_1' - L_1'\} = \{L_1' - L_n\} \cdot \{h^{\top}\}^{1}$$

$$\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$$

$$\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$$

where $\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$

$$\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$$

Adjoint operator $\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$

Adjoint operator $\{L_1' - L_1'\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$

Adjoint operator $\{L_1' - L_n\} \cdot \{h^{\top}\} = \{L_1 - L_n\} \cdot \{h^{\top}\}^{1}$

A Adjoint operator $\{L_1' - L_n\} \cdot \{h^{\top}\} = \{L_1 -$

Pf:
$$(x)$$
 $(T^*(P_1-P_n))^{-1}$ $(P_1-P_n)^{-1}$ $(P_1-P$

A Let V now be to a vector space with a positive def Hermitian form

Observation I we V , it give rise to a linear functional (ν, \cdot) $\vee \rightarrow \mathbb{C}$ $V \mapsto (w, v)$

Thun (Riez Representation than). Map sending but, (w,) is a bijection In other words, Y L: V > C, 3 V_ EV, S.t. L. V= (V_L, V) for all veV

Def: Given two vector spaces V1, V2

a multilinear functional 1 VIXV2 -> C (V1, U2) > 1 (V1, 1U2) which is C-linear in both v, v, Def: Given V, , V, 1 ther tensor product V, & V, is defined to be the space of all multilinear fur on $\hat{V}_1 \times \hat{V}_2$ Civen basis {e;} for V_1 [f] for V_2 Lem: $V_1 \otimes V_2$ has abasis of form $e_1 \otimes f_2$ in particular dim $V \otimes V_2$ = (dim V,) x (dim V) Pf. Pick duch basis & Lid for V. Pid for V. a multifiner functional Ion \hat{V} , $\hat{x}\hat{V}$, is determined by its values a 1 (ki, Pi) pick abasis for { } as { (Li, Pj) }) but Lij can be identified with exp (e, @fj): (Lk, Pg) >> Lule, Pe(fj)={ 1 k=1, l=1 } o otherwse matches definition for Lij # Reformulate a matrix in terms of teasor product T: V > W Can be identified with an elevant in VOW basis {e, } for stity for W Pick duck basis { Lix for V T(e,--en)= (f,--fm) 0 $9 = (9ij) \qquad Tei = fig_{12} + fig_{2i} + \cdots \qquad T = \tilde{2}$ $9 = (9ij) \qquad Tei = fig_{12} + fig_{2i} + \cdots \qquad T = \tilde{2}$ I indeed elegnes amon T.V > W V D 7 9 Lilus ti

分区 Teaching 的第 4 页

I indeed elegates among control
V D Z g _{ji} Li(u) fj
it sends e; >> I gji fj
TIE WOZ
Matrix multiplication = T20T1 : V > Z
(II, IV) > VOZ by applying elements in W on D tick basis (e) for V Ifil to W, 19pl for Z (Li) for V (P)
The basis (c) for V 2117 to W, (Jp) for E (Li) for U (P)
Ti= Z afi Li & fj Tz= I bkj Pj & 9k
$(\tau, \tau) \mapsto \sum_{i,j,j,k} b_{kj} a_{j'i} L_{i} \otimes g_{k} \left(P_{j}(f_{j'})\right)$
= Z Li & gr (Z aji brj) i, k
a Cheneralization of matrices and multiplications
Wattices $\rightarrow V_1 \otimes V_2 \otimes \cdots \otimes V_n$
Multiplication -> Collapsing Wectons space with chal vector space
Example: taken a single vector space
"3-dir nectrix". V & V & V
"multiplications;" (V & V & J) × (V & V) -> V & U & V

 $(\Lambda \otimes \Lambda \otimes \mathring{\mathfrak{P}}) \times (\Lambda \otimes \Sigma) \longrightarrow \Lambda \otimes \Lambda \otimes \Sigma$