G53KRR 2018 first formal/assessed exercise ex1

Your name: Junsong Yang Your user name: psyjy3

- 1. Express the following sentences in first order logic using predicate symbols Student (unary, Student(a) means a is a student), Tutor (binary, Tutor(b, a) means b is a's tutor), Lazy (unary), Happy (unary):
 - S1 Every student has a tutor.

```
ANS 1 \forall x \exists y (Student(x) \supset Tutor(y, x))
```

S2 There are no lazy students.

```
ANS 2 \forall x(Student(x) \supset \neg Lazy(x))
```

S3 No student has two different tutors. Hint: use =

```
ANS 3 \forall x \forall y \forall z (Student(x) \supset (Tutor(y, x) \land Tutor(z, x) \supset y = z))
```

S4 If a student is lazy, then the student's tutor is not happy.

ANS 4
$$\exists x \forall y (Student(x) \land Lazy(x) \supset Tutor(y, x) \land \neg Happy(y))$$

S5 There is a tutor all of whose tutees are lazy.

ANS 5
$$\exists x \forall y (Student(y) \supset (Tutor(x, y) \supset Lazy(y)))$$

- 2. Consider an interpretation where the domain consists of 4 suitcases a, b, c, d where a and b are large and c and d are small. In other words, the predicate symbol Large is interpreted as the set $\{a, b\}$ and Small is interpreted as the set $\{c, d\}$. There is also a predicate symbol FitsIn that is interpreted as the set of pairs $\{(c, a), (c, b), (d, a), (d, b)\}$ (small suitcases fit inside large ones). Are the following first order sentences true or false in this interpretation (and why):
 - (a) $\forall x \forall y (Large(x) \land Small(y) \supset FitsIn(x,y))$ False. Only small suitcases can fit in large suitcases, since x is large suitcases, it cannot fit in small suitcases. FitsIn(x,y) doesnot hold.
 - (b) $\forall x \forall y (Large(x) \land Small(y) \supset FitsIn(y, x))$ **True.** Small suitcases can always fit in large suitcases.
 - (c) $\exists x \forall y Fits In(x,y)$

False. for x = c or x = d, then not every y such that FitsIn(x,y) holds (it doesnot hold for y = c or y = d). For x = a or x = b, there is no y such that FitsIn(x,y) holds.

(d) $\forall x \exists y \neg Fits In(x,y)$

True. For x = a or x = b, there is no value of y such that FitsIn(x,y) holds. For x = c or x = d, the value of y is c or d such that FitsIn(x,y) doesnot hold.

(e) $\forall x \forall y (\neg FitsIn(x,y) \lor \neg FitsIn(y,x))$

True. For x = a or x = b, there is no y such that FitsIn(x,y) holds. For x = c or x = d, there is no y such that FitsIn(y,x) holds.