Reminder: Measurement scales		
Туре	Meaning	Admissible Operations
Nominal Scale	Unordered classification of objects	=
Ordinal Scale	Ranking of objects into ordered categories	=, <, >
Interval Scale	Differences between points on the scale are meaningful	=, <, >, difference, mean
Ratio Scale	Ratios between points on the scale are meaningful	=, <, >, difference, mean, ratio
Absolute Scale	No units necessary - scale cannot be transformed	=, <, >, difference, mean, ratio

Department of Computer Science

Basics

→ Relationships between two variables:

- ♦ Magnitude how strong is the relationship?
- \$ Reliability how well does the relationship in the sample represent the relationship in the population?

→ Note:

- \$ Strong relationships can be detected more reliably
- \$ Larger sample sizes produce more reliable results

University of Toronto

Department of Computer Science

Hypothesis Testing

→ Set up some hypotheses

- ♦ Null hypothesis (H₀) asserts that a relationship does not hold
 - > In many cases, this is the same as saying there is no difference in the the means of two different treatment groups
- ♦ Alternative hypotheses (H₁, ...) each asserts a specific relationship
- \heartsuit Type I error: A false positive (rejecting H_0 when it's true)
- ⋄ Type II error: A false negative (accepting H₀ when it's false)

→ For the statistical tests

- sample happened by chance
- $\$ Alpha level (selected a priori) a threshold for p at which we will accept that a relationship did not happen by chance (typically 0.1 or 0.05)
 - > This allows us to fix the probability of a type I error in advance
 - \triangleright If p < α , we say the result was significant

© 2006 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Department of Computer Science

Correlations for Ordinal Scales

\rightarrow Spearman's Rank Coefficient (ρ):

- ♥ Convert each variable into a ranked list
- ♥ Compute:

$$\rho = 1 - \frac{6\sum D^2}{N(N^2 - 1)}$$

- ♥ D = difference between the ranks for corresponding X and Y values
- \P N = Number of pairs of X,Y values
- ♦ Note: assumes no tied ranks

→ Kendall's Robust Rank Correlation (τ)

- ⋄ n number of items (X,Y pairs)
- ♥ P sum (over all items) of the items ranked after the given item by both rankings

$$\tau = \frac{2P}{\frac{1}{2}n(n-1)} - 1$$

♦ Robust in the face of tied rankings

© 2006 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

University of Toronto

Department of Computer Science

Student's t test

→ For testing whether two samples really are different

- \$ given: two experimental treatments, one dependent variable
- ♦ Assumes:
 - > the variables are normally distributed in each treatment
 - > the variances for the treatments are similar
 - \succ the sample sizes for the treatments do not differ hugely
- ♥ Basis: difference between the means of samples from two normal distributions is itself normally distributed.
- \$\text{The t-test checks whether the treatments are significantly different}

→ Procedure:

- ♥ H₀: "There is no difference in the population means from which the samples are drawn"
- $\$ Choose a significance level (e.g. 0.05)
- where $SE = \frac{SD}{\sqrt{hT}}$ $t = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\left(SE_A\right)^2 + \left(SE_B\right)^2}}$
- \checkmark Look up the value for t, with degrees of freedom df = $(n_A + n_B)$ 2
- ♥ If calculated value of t is greater than the lookup value, reject H₀

© 2006 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

Department of Computer Science

Analysis of Variance (ANOVA)

→ Generalization of t-test for >2 treatments

- 🤝 given: n experimental treatments, one dependent variable
- ♦ Assumes:
 - > the variables are normally distributed in each treatment
 - > the variances for the treatments are similar
 - > the sample sizes for the treatments do not differ hugely
 - > (Okay to deviate slightly from these assumptions for larger samples sizes)
- ♦ Works by analyzing how much of the total variance is due to differences within groups, and how much is due to differences across groups.

→ Procedure:

- ♥ H_a: "There is no difference in the population means across all treatments"
- ♥ Compute the F-statistic:
 - > F=(found variation of the group averages)/(expected variation of the group averages)
 - > (don't do this by hand!)
- $\$ If H_0 is true, we would expect F=1
- ♥ Note: ANOVA tells you whether there is a significant difference, but does not tell you which treatment(s) are different.

© 2006 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license

University of Toronto

Department of Computer Science

Chi-squared test

→ "ANOVA for non-interval data"

- ♦ Given: data in an n x m frequency table (e.g. n treatments, m variables)
- ♦ Assumes:
 - > Non-parametric, hence no assumption of normality
 - > Reasonable sample size (pref >50, although some say >20)
 - > Reasonable numbers in each cell
- ♥ Calculates whether the data fits a given distribution
- ♥ Basis: computes the sum of the Observed-Expected values

→ Procedure:

- ♥ Calculate an expected value (mean) for each column
- ♥ Calculate χ²:

$$\chi^2 = \sum_{i=1}^{\mathsf{n}} \frac{(O_i - E_i)^2}{E_i}$$

- > Where O; is an observed frequency
- \succ E $_{\rm i}$ is the expected frequency asserted by the null hypothesis
- ♦ Compare with lookup value for a given significance level and d.f.

© 2006 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14