2020年日本覆铜板及其原材料企业发展 要事综述(下)

祝大同 中电材协覆铜板材料分会

摘要文章在收集来自日本媒体等相关消息的基础上,对在2020年间,日本覆铜板及其原材料企业发生的经营、技术等方面的要事,作以盘点综述。

关键词 覆铜板; 印制电路板; 日本; 技术; 经营; 原材料

中图分类号: TN41 文献标识码: A 文章编号: 1009-0096(2021)04-0039-04

Review of the development of Japanese Copper Clad Laminate and raw material of CCL in 2020 (II)

Zhu Datong

Abstract In the paper, main development about management and technology of Japanese copper clad laminate and raw material in 2020 was reviewed according to Japanese information from medium.

Key words Copper Clad Laminate (CCL); Printed Circuit Board (PCB); Japan; Technology; Management; Raw Material

(接上期)

5 日本覆铜板原材料企业在2020年 间发生的要事

5.1 信越化学株式会社

2019年12月美国Novelette公司与日本信越化学株式会社(Shin-Etsu Chemical Co.Ltd)签署了专利许可协议^[1]。允许信越化学在全球范围生产、销售由Novoset公司技术中心开发的三项针对5G装备配套的新型材料。它们包括: (1)热固性超低介电性的碳氢类高聚物树脂(@10~80 GHz: $D_k < 2.5/D_f < 0.00025$); (2)防辐射射特性的石

英布 (厚度在20 μm以下); (3) 导热系数为 5~100 W/m·K导热片材。

其中,信越化学从Novelette公司购买技术专利的热固性超低介电树脂,产品的名称为"SLK系列"。它具有与PTFE(聚四氟乙烯)树脂相近的低介电特性[在高频带(10~80 GHz)下的 D_k 小于2.5, D_f 小于0.0020],以及高强度、低弹性、高耐热性。SLK树脂还具有低吸湿性和对PCB基材、低粗度铜箔的高粘合强度,因此适合在FCCL(挠性覆铜板)制造用胶粘剂,可作为高频特性的FPCB制造中用的胶粘剂(粘接膜)。

信越化学还特别于2020年12月在该公司网站 新闻专栏中宣传: SLK系列树脂产品, "作为高速 通信基板的粘合剂和粘合膜,在用户中的评价也很好,销售也在顺利进行中。"该公司已投资30亿日元,以实施从Novelette公司引进技术的三大项高频材料产品转化为大规模生产的扩产工程。计划在2021年实现年产能80吨SLK系列树脂的目标^{[2][3]}。

信越化学公司为此还将增强SLK系列树脂在要求高耐热性和可靠性的通信基站用覆铜板、刚性电路板、天线和雷达罩等方面的市场竞争力。另外,信越化学在2020年东京举办的"NEPCON JAPAN展览会"上,首次亮相了一款高纯度的石英薄膜纤维材料(牌号为SQX系列)。宣称它可用于CCL(覆铜板)中作为补强材料,与目前主流E-glass和LowDk Glass两种覆铜板用玻纤布相比,具有更好的介电特性及高耐热性、低膨胀系数的特性。但因销价昂贵,短期并不容易导入高频CCL的需求市场中^[4]。

5.2 日本ZEON株式会社

日本ZEON株式会社(日本ゼオン株式会社,中国大陆惯称:日本瑞翁公司)于2020年间开发出了结晶性环丙烯烃聚合物(简称COP)产品,它是一种可应用于PCB基板材料的树脂材料。其产品牌号:"ZEONEX®C2420"(正式上市前的应用推广、评价时,称为"L-24")。

由于它赋予了结晶性,所以具有以往COP所具有的低吸水性、低介电常数、低介电正切,同时具有非结晶性环丙烯烃聚合物所未有的耐热性(T_g 的上限为163 °C左右;熔点265 °C)、耐化学性、耐弯曲性(可以承受20000次以上的弯曲试验)[5]。在日本ZEON网站上还提供了"ZEONEX®C2420"材料在毫米波雷达天线基板上的应用例照片[5](如图3所示)。

中国台湾工研院高频基材方面研究人员发文 认为^[4]:高频性覆铜板用树脂,"除了PTFE以及 PPE之外,目前高频树脂材料研发的方向演变,已 经从传统的环氧树脂逐渐转移到碳氢树脂方面。 碳氢树脂又称为烃类树脂,是由碳氢原子组成的 烯烃聚合物。——碳氢树脂中的环状烯烃聚合 物,具有低介电、低损失性。以ZEON的Cyclo Olefin Polymer(COP)最具代表性。该公司在高 频应用的部分,推出了环烯烃聚合物材料L-24,其

图3 ZEONEX® C2420的应用例 (毫米波雷达天线基板)

不仅具有良好的耐药性,亦有相当优异的耐高热与低吸湿特性,性能还远优于其他树脂系统。此外,它具备低损耗特性(D_f <0.002),并且对温度的变异小。——此材料目前并没有导入CCL产业的应用,笔者推论,可能因本是热塑性质导致价格性以及耐热性不佳的缺点需要突破。"

5.3 东洋科美株式会社

在2020年1月在日本东京举办的"第 34 届电子研发、制造与封装技术展(NEPCON JAPAN 2020)"上,日本东洋科美株式会社(toyochem)展示了低 D_k 接合树脂材料 TSUM 530。它在10 GHz下的 D_f 为0.0034, D_k 为2.49。用此树脂材料开发的FCCL,具有相当高的热稳定性,浸焊耐热(温度 288 $^{\circ}$ C)测试结果优秀。TSUM 530黏接树脂与PI膜、铜箔有着很好的粘接性 $^{[6]}$ 。

5.4 日本化药株式会社

日本化药株式会社(Nippon Kayaku)在展场上推出新型低损失Maleimide Resin(BMI,双马来酰亚胺)树脂产品MIR-3000-70MT^[5]。10 GHz时 D_t 趋近于0.003,同时具备高溶解性、低吸水率和高韧性。具备一定的挠曲能力,拉伸强度可达112 Mpa,有潜质作为5G用刚挠板的绝缘基材。它的另一种更低损失系数的BMI树脂是正在开发中的MIR-5000,10 GHz时 D_t 0.002,同时保持原有的高耐热性和高溶解度能力,预计不久将会进入更高频用电路板基板材料市场。

5.5 日本东丽株式会社

日媒报道^[8],东丽株式会社开发的聚苯硫醚(PPS)薄膜,已于2020年内,完成量产线的构

建。此新生产线的建成投产,使得东丽拥有了近年产3万吨PPS聚合物树脂的产能,以及3000吨/年的加工PPS薄膜的能力。东丽这种PPS薄膜是对应于5G用高速传输的FCCL而开发的。它具有与LCP(工业化液晶聚合物)同样优异的介电性能,并还拥有很好的阻燃性、耐药性,有很好的高温下的尺寸稳定性。东丽PPS膜所具备的这些特性,解决了LCP膜在制造多层PCB中加工性差以及制造成本高的两大难题,是替代LCP膜制造低传送损失性PCB的新型基材。

5.6 日本SABIC公司

由于PPE在5G基站与高速服务器等领域所使 用的覆铜板制造中得到广泛应用, 日本SABIC公司 所产销的"NORYL SA9000"PPE树脂量,在2020 年间有较大的增加。SABIC公司在亚洲产销量在 2019年比2018年增长了10倍之多。由于SABIC公 司设在印度的可生产PPE树脂工厂在2020年的中期 投产,也使得整个SABIC公司在当年的亚洲产销 量又有明显的增长。2020年,日本SABIC公司在 提供覆铜板用改性PPE方面作出了更大工作。该公 司在日媒上宣传[8]: 近些年它在5G基础设施配套 的基板材料方面, 可为客户提供有更多解决方案 的、为改性PPE创造更好的结构条件的PPE产品。 例如,可提供的SA90为主树脂在分子结构上具 有高自由度特性,便于CCL厂家引入溶剂类环氧 树脂作配合,制成即耐热性、高韧性及尺寸稳定 性三者均衡性好的CCL树脂,也可以为提高低介 电性而引入其他的树脂配合, 共同构成组成物。 SABIC公司还可提供一种特殊的二乙酸酐,它与 特定的PI树脂材料配合,可实现低介电性好、低 吸水性的树脂组成物。

5.7 太阳油墨株式会社与DIC株式会社

2020年7月,太阳油墨株式会社与DIC株式会社共同开发的"高频电路形成用含新型晶种层树脂薄膜",获得第16届JPCA大奖,这种FPCB基材具有可降低高频传输损失特性^{[9][10]}。这两家公司于2017年起开始合作开发此种有晶种层的PI(聚酰亚胺)薄膜,它用于SAP(半加成法),制造高

频、微细线路($L/S \le 10$ μm/10 μm)的挠性PCB。因它在薄膜外侧含有特殊纳米金属层(即晶种层,此金属层在其上形成电路图形之后,可以去除),使得所制成的聚酰亚胺/铜界面平滑,传输损失低,并具有基膜与镀铜层之间的较高剥离强度,以及低成本性。

5.8 日东纺织株式会社

5G时代的到来,对PCB基板材料的信号低传输损失性有了更多的需求,日本日东纺织株式会社的高频高速CCL用的低D_k玻纤布(NE布)、极薄玻纤布成为市场上"抢手"产品。日东纺销售利润额在2020年1~6月得到了比2019年有明显的提升。但很不幸的是,在生产上述市场需求增大的这两类玻纤布的日东纺国内主力工厂——福岛第2工厂,因在2020年7月发生火灾事故,造成7月~9月的生产及供货的断链^[11]。

为了适应5G市场发展的需求,早在2019年日东纺就推出了投资50亿日元,对日东纺下属的工厂(包括在台湾海外工厂)的玻纤窑炉、织布设备等进行增置,计划在2021年秋,达到NE玻纤布、T玻纤布、极薄玻纤布的产能,比2020年3月约有7成的增加^[12]。

另外,日东纺还针对高频传输电路基板的要求,近期开发出一种称为: "Smart Surface (SS, 高精表面)"玻纤布,它经该公司新研发的平整化工艺的处理,使得玻纤布更为平整、孔洞面积减少。但是,此种布的树脂含浸性、层间粘接性,又显示不足,与树脂接合力差,这些都导致覆铜板及多层板用半固化片的可靠性下降。还需要日东纺与下游厂方的更多"磨合",加以改进[4]。

5.9 三井金属矿业株式会社

日媒报道^[13],三井金属矿业株式会社产销的IC封装基板用极薄电解铜箔(厚度9 μm及以下),在2020年销售额有明显的同比提升,特别明显表现在2020年7月以后的时间段。需求极薄铜箔的市场主要还是IC封装基板领域。但是极薄铜箔市场在2020年间也出现了新的变化:所看到的不仅是智能手机与5G关联设备所用的IC封装

基板市场对极薄铜箔需求数量的增加,还在高端 新型智能手机及服务器中,由于采用模块化设计 增加后(三井金属的北美客户需求,表现得更突 "MT12GN"的产品厚度规格、载体铜箔厚度适用改进型半加成法(mSAP)的线宽/线距范围、铜箔的标准厚度等特性对比见表2所示。

表2 三井金属IC封装基板用极薄电解铜箔的常用规格、牌号性能及Rz指标

产品类别	产品	表面粗糙度	线宽/线距	载体铜箔厚度	铜箔的标称厚度		(µm)	
	牌号	$(Rz \leqslant \mu m)$	(μm)	(μm)	1.5	2.0	3.0	5.0
常规型	MT18SD-H	$R_z 3.0$	25/25	18	-	-	0	0
低轮廓度型	MT18Ex	$R_z 2.0$	20/20	18	0	0	0	0
甚低轮廓度型	MT18EL	$R_z 1.3$	10/15	18	0	0	0	-
新型超低轮廓度型	MT12GN	$R_z 1.0$	10/15	12	0	0	0	0

出),使得所用的HDI(高密度互连)板,电路图 形更加微细化。模块安装形式的HDI板的极薄铜箔 市场的新增,还由于基板制作的面积较大,也带 动了需求极薄铜箔的明显增多。这些市场变化, 都驱动了极薄铜箔应用市场的增加。

在日本东京举办的"2020 NEPCON JAPAN" 展览会上,三井金属推出适应5G或IoT基板用超低轮廓度的极薄(1.5~5.5 μm)电解铜箔新品种。可应用于目前高頻所用mSAP(Modified Semi-Additive Process,改进型半加成法)制程中。应用此铜箔具有高精确的对位和可制微细线宽线距的特性。这种超薄铜箔还具有良好的黏接力,在与低损失性树脂接合中,它的剥离強度测试可达1.2 kg/cm²^[14]。

另据日媒报道^[15],三井金属应对5G及IoT市场需求,新开发的新型极薄电解铜箔,在2020年上半年开始正式量产。此款极薄电解铜箔的牌号为"MT12GN"。"MT12GN"铜箔其厚度规格1.5~5.0 μm。

"MT12GN"的主要性能特点有: (1)它采用的铜箔载体厚度为12 μm (原几款的铜箔载体为18 μm); (2)此铜箔成品最大幅宽为1300 mm (可提供卷状品); (3)载体剥离强度的稳定性优异; (4)铜箔与树脂基板的黏接强度,同原有的"MT19FL"相同,即保持了很好的铜箔剥离强度特性; (5)铜箔表面粗糙度 (Rz)仅为常规极薄铜箔的约三分之一(推估Rz小于1.0 μm),即达到超低轮廓度铜箔。这种新型极薄铜箔Rz非常低,不仅实现了基板的低信号传送损失,而且应用在IC封装板电路图形加工中,它比同样厚度、Rz较大的铜箔在蚀刻量方面会减少,有益于实现PCB的阻抗设计与控制的高精度。

参考文献

- [1] 慧正资讯.DT新材料[J/OL].
- [2] 信越化学工业株式会社网站(www.shinetsu.co.jp)新闻.信越化学 5 G向けに熱硬化性低誘電樹脂「SLKシリーズ」を量産化[OL]. 2020.12.01
- [3] (日)産業タイムズ社.電子デバイス産業新聞.2020.1.23(2381号); 2020.3.19(2389号); 2020.12.25(2428号)
- [4] 洪铭德(台湾工研院).低损耗基板材料技术 [J]. 工业材料,406,2020/10.
- [5] (日)結晶性シクロオレフィンポリマーの 新製品上市. 日本ZEON株式会社网站[OL]. http://www.zeon.co.jp
- [6] (台) 工研院材化所陈凯琪等[OL]. NEPCON JAPAN 2020.日本东京特别报导系列 (一).2020.1.
- [7] (日)産業タイムズ社.電子デバイス産業新聞[OL]. 2020,1,30(2382号).
- [8] (日)産業タイムズ社.電子デバイス産業新聞.2020.9.17(2415号).
- [9] 太陽インキ製造株式会社.高周波対応配線形成用新シードフィルム[OL]. www.jpcashow.com/show,2020,7.
- [10] DIC株式会社[OL]. www.dic-global.com.
- [11] (日)産業タイムズ社.電子デバイス産業新聞[OL]. 2020,1,23(2381号).
- [12] (日)産業タイムズ社.電子デバイス産業新聞[OL]. 2020,8,20(2411号).
- [13] (日)産業タイムズ社.電子デバイス産業新聞[OL]. 2020,9,17(2415号).
- [14] (台) 陳凱琪等(工研院材化所).NEPCON JAPAN 2020 現場報導系列(三)[OL]. 2020,1.
- [15] (日)産業タイムズ社.電子デバイス産業新聞[OL]. 2020.3.19(2389号),2020,5,7(2396号).