Ahlfors Exercises

Charles Yang

Last updated: June 7, 2022

Contents

1	Con	nplex	Numbers	3
	1.1	The A	Algebra of Complex Numbers	3
		1.1.1	Arithmetic Operations	3
		1.1.2	Square Roots	4
		1.1.3	Justification	6
		1.1.4	Conjugation, Absolute Value	7
		1.1.5	Inequalities	10
	1.2	The G	Geometric Representation of Complex Numbers	12
		1.2.1	Geometric Addition and Multiplication	12
		1.2.2	The Binomial Equation	12
		1.2.3	Analytic Geometry	13
		1.2.4	The Spherical Representation	13
2	Con	nplex	Functions	15
	2.1	Introd	luction to the Concept of Analytic Function	16
		2.1.1	Limits and Continuity	16
		2.1.2	Analytic Functions	16
		2.1.3	Polynomials	16
		2.1.4	Rational Functions	16
	2.2	Eleme	entary Theory of Power Series	16
		2.2.1	Sequences	16
		2.2.2	Series	16
		2.2.3	Uniform Convergence	16
		2.2.4	Power Series	16
		2.2.5	Abel's Limit Theorem	16

ii CONTENTS

2.3	The E	xponential and Trigonometric Functions	16
	2.3.1	The Exponential	16
	2.3.2	The Trigonometric Functions	16
	2.3.3	The Periodicity	16
	2.3.4	The Logarithm	16

CONTENTS 1

2 CONTENTS

Chapter 1

Complex Numbers

1.1 The Algebra of Complex Numbers

1.1.1 Arithmetic Operations

1.1.1.1

$$(1+2i)^3 = 1+6i-12-8i = \boxed{-11-2i}$$
$$\frac{5}{-3+4i} = \frac{-15-20i}{25} = \boxed{-\frac{3}{5}-\frac{4}{5}i}$$
$$\left(\frac{2+i}{3-2i}\right)^2 = \left(\frac{4+7i}{13}\right)^2 = \boxed{-\frac{33}{169} + \frac{56}{169}i}$$

From the binomial expansion of the LHS, and cancelling odd powers of i,

$$(1+i)^n + (1-i)^n = 2\sum_{m=0}^{n/2} \binom{n/2}{2m} (-1)^m$$

1.1.1.2

$$\operatorname{Re} z^{4} = x^{4} - 6x^{2}y^{2} + y^{4}$$

$$\operatorname{Re} \frac{1}{z} = \frac{x}{x^{2} + y^{2}}$$

$$\operatorname{Re} \frac{z - 1}{z + 1} = \frac{x^{2} - 1}{(x + 1)^{2} + y^{2}}$$

$$\operatorname{Re} \frac{1}{z^{2}} = \operatorname{Re} \frac{1}{x^{2} - y^{2} + 2xyi} = \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{4}}$$

1.1.1.3

$$\left(\frac{-1 \pm i\sqrt{3}}{2}\right)^3 = -\frac{1}{8} \pm \frac{3\sqrt{3}}{8}i + \frac{9}{8} \mp \frac{3\sqrt{3}}{8}i = 1$$

$$\left(\frac{\pm 1 \pm i\sqrt{3}}{2}\right)^6 = \frac{1}{64} + \frac{6\sqrt{3}}{64}i - \frac{45}{64} - \frac{60\sqrt{3}}{64}i + \frac{135}{64} + \frac{54\sqrt{3}}{64}i - \frac{27}{64}i - \frac{60\sqrt{3}}{64}i - \frac{135}{64}i - \frac{$$

1.1.2 Square Roots

1.1.2.1

(a)
$$a^2 - b^2 = 0$$
 $2ab = 1 \implies a = b = \pm \frac{1}{\sqrt{2}} \implies \sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$

(b)
$$a^2 - b^2 = 0 \quad 2ab = -1 \implies a = b = \pm \frac{i}{\sqrt{2}} \implies \sqrt{-i} = \pm \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$

(c) sub b = 1/2a so

$$a^{2} = \frac{1}{2} \pm \frac{1}{\sqrt{2}}$$
$$b^{2} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{2}$$

enforcing the condition that

$$ab = \frac{1}{2}$$

we obtain

$$\pm \left(\sqrt{\frac{1}{2}+\frac{1}{\sqrt{2}}}+i\sqrt{-\frac{1}{2}+\frac{1}{\sqrt{2}}}\right)$$

(d) I really cannot be bothered to do this...

$$a^{2} - b^{2} = \frac{1}{2} \qquad ab = \frac{\sqrt{3}}{4}$$
$$(a^{2} - b^{2})^{2} = \frac{1}{4} \qquad (a^{2} + b^{2})^{2} = 1$$
$$a^{2} = \frac{3}{4} \qquad b^{2} = \frac{1}{4}$$

Thus,

$$\sqrt{\frac{1 - i\sqrt{3}}{2}} = \pm \left(\frac{\sqrt{3}}{2} - \sqrt{i}2\right)$$

1.1.2.2

Cuz i'm lazy:

$$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$$

1.1.2.3

do i really have to

using the fact that
$$\sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$
, $\sqrt{i} = \mp \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$, and $i^4 = 1$,

$$\sqrt{\sqrt{\pm i}} = a_{\pm} + ib_{\pm} \implies a_{\pm}^2 - b_{\pm}^2 = \frac{1}{\sqrt{2}} \qquad a_{\pm}b_{\pm} = \frac{1}{2\sqrt{2}}$$

$$a_{\pm}^4 - 2a_{\pm}^2 b_{\pm}^2 + b_{\pm}^4 = \frac{1}{2} \implies (a_{\pm}^2 + b_{\pm}^2)^2 = 1 \implies a_{\pm}^2 + b_{\pm}^2 = 1$$

$$\implies a_{\pm}^2 = \frac{1}{2} + \frac{1}{2\sqrt{2}} \qquad b_{\pm}^2 = \frac{1}{2} - \frac{1}{2\sqrt{2}}$$

$$\sqrt{\sqrt{i}} = \sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}} + i\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}}, -\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}} + i\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}},$$

$$-\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}} - i\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}}, \sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}} - i\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}}$$

$$\sqrt{\sqrt{-i}} = -\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}} + i\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}}, -\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}} - i\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}},$$

$$\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}} - i\sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}}, \sqrt{\frac{1}{2} - \frac{1}{2\sqrt{2}}} + i\sqrt{\frac{1}{2} + \frac{1}{2\sqrt{2}}}$$

1.1.2.4

are you serious

Plugging into the quadratic formula,

$$z = \frac{-\alpha - i\beta \pm \sqrt{\alpha^2 - \beta^2 + i2\alpha\beta - 4\gamma - i4\delta}}{2}$$

Taking the square root,

$$a^{2} - b^{2} = \alpha^{2} - \beta^{2} - 4\gamma$$
$$ab = \alpha\beta - 2\delta$$

$$(a^{2} - b^{2})^{2} = \alpha^{4} + \beta^{4} + 16\gamma^{2} - 2\alpha^{2}\beta^{2} - 8\alpha^{2}\gamma + 8\beta^{2}\gamma$$

$$a^{2}b^{2} = \alpha^{2}\beta^{2} + 4\delta^{2} - 4\alpha\beta\delta$$

$$(a^{2} + b^{2})^{2} = \alpha^{4} + \beta^{4} + 16\gamma^{2} + 2\alpha^{2}\beta^{2} - 8\alpha^{2}\gamma + 8\beta^{2}\gamma + 16\delta^{2} - 16\alpha\beta\delta$$

$$a = \frac{\sqrt{\alpha^{2} - \beta^{2} - 4\gamma + \sqrt{(\alpha^{2} + \beta^{2})^{2} + 8\gamma(2\gamma - a^{2} + \beta^{2}) + 16\delta(\delta - \alpha\beta)}}{2}$$

$$b = \frac{\sqrt{-\alpha^{2} + \beta^{2} + 4\gamma + \sqrt{(\alpha^{2} + \beta^{2})^{2} + 8\gamma(2\gamma - a^{2} + \beta^{2}) + 16\delta(\delta - \alpha\beta)}}}{2}$$

for

$$z = \frac{-\alpha \pm 2a}{2} - i\frac{\beta \pm 2b}{2}$$

where i literally cannot be bothered to try and fit the above in one single expression.

1.1.3 Justification

1.1.3.1

Let capital members denote matrices and lower case members denote complex numbers. For a relation $f: Z \mapsto z$ to be a homomomorphism it must obey $f(E_+) = e_+$ and $f(E_\times) = e_\times$, that is, we must have

$$f\left[\begin{pmatrix}0&0\\0&0\end{pmatrix}\right]=0\quad f\left[\begin{pmatrix}1&0\\0&1\end{pmatrix}\right]=1$$

Further, we use the fact that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

to fix

$$f\left[\begin{pmatrix}0&1\\-1&0\end{pmatrix}\right] = i$$

arbitrarily. We can thus identify

$$f\left[\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}\right] = \alpha + i\beta$$

with the inverse map

$$f^{-1}[\alpha + i\beta] = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

We show that this is a field homomorphism. Let $f(Z) = \alpha + i\beta$ and $f(W) = \gamma + i\delta$. Then,

$$f(Z+W) = f \begin{bmatrix} \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} + \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix} \end{bmatrix}$$

$$= f \begin{bmatrix} \alpha + \gamma & \beta + \delta \\ -(\beta + \delta) & \alpha + \delta \end{bmatrix}$$

$$= (\alpha + \gamma) + i(\beta + \delta)$$

$$= (\alpha + i\beta) + (\gamma + i\delta)$$

$$= f(Z) + f(W)$$

thus addition is respected. Similarly,

$$f(ZW) = f \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix} \end{bmatrix}$$
$$= f \begin{bmatrix} \alpha\gamma - \beta\delta & \alpha\delta + \beta\gamma \\ -(\alpha\gamma + \beta\delta) & \alpha\gamma + \beta\gamma \end{pmatrix} \end{bmatrix}$$
$$= (\alpha\gamma - \beta\delta) + i(\alpha\delta + \beta\gamma)$$
$$= (\alpha + i\beta)(\gamma + i\delta)$$
$$= f(Z)f(W)$$

thus multiplication is also respected. Thus, f is a field homomorphism.

We can further see that f is a bijection; it is a surjection because all $z \in \mathbb{C}$ can be written $z = \alpha + i\beta$ for $\alpha, \beta \in \mathbb{R}$, and it clearly an injection because $f(Z) = f(W) \implies f(Z) - f(W) = 0 \implies f(Z - W) = 0 \implies Z - W = 0 \implies Z = W$.

Thus, as f is a field homomorphism and a bijection, it is an isomorphism, and these matrices equiped with matrix addition and matrix multiplication is isomorphic to the complex field.

1.1.3.2

I have no idea what this means

1.1.4 Conjugation, Absolute Value

1.1.4.1

$$\begin{split} \frac{z}{z^2+1} &= \frac{x+iy}{x^2-y^2+i2xy+1} \\ &= \frac{x^3-xy^2-2xy^2+x+i(x^2y-y^3-2x^2y+y)}{x^4-6x^2y^2+y^4+x^2-y^2+1} \\ \frac{\bar{z}}{\bar{z}^2+1} &= \frac{x-iy}{x^2-y^2-i2xy+1} \\ &= \frac{x^3-xy^2-2xy^2+x-i(x^2y-y^3-2x^2y+y)}{x^4-6x^2y^2+y^4+x^2-y^2+1} \\ &= \overline{\left(\frac{z}{z^2+1}\right)} \end{split}$$

1.1.4.2

Splitting into terms,

(a)
$$2 \cdot \sqrt{10} \cdot \sqrt{20} \sqrt{2} = 40$$

(b)
$$5 \cdot \sqrt{5} / \sqrt{2} \sqrt{10} = \frac{5}{2}$$

1.1.4.3

$$\left| \frac{a-b}{1-\bar{a}b} \right| = \frac{a-b}{1-\bar{a}b} \frac{\bar{a}-\bar{b}}{1-a\bar{b}}$$

$$= \frac{\bar{a}a+\bar{b}b-\bar{a}b-a\bar{b}}{1-\bar{a}b-a\bar{b}+\bar{a}a\bar{b}b}$$

$$= \frac{|a|^2+|b|^2-2\operatorname{Re}\bar{a}b}{1+|a|^2|b|^2-2\operatorname{Re}\bar{a}b}$$

We see that if either |a| = 1 or |b| = 1 that the numerator equals the denominator and the fraction cancels. In the case where |a| = |b| = 1, the expression still holds so long as $\operatorname{Re} \bar{a}b \neq 1$, that is $a \neq b$.

1.1.4.4

Make the substitution

$$\alpha = a + b$$
 $\beta = a - b$ \Longrightarrow $a = \frac{\alpha + \beta}{2}$ $b = \frac{\alpha - \beta}{2}$

SO

$$\alpha \operatorname{Re} z + i\beta \operatorname{Im} z = -c$$
$$\bar{\alpha} \operatorname{Re} z - i\bar{\beta} \operatorname{Im} z = -\bar{c}$$

Adding,

$$\operatorname{Re} \alpha \operatorname{Re} z - \operatorname{Im} \beta \operatorname{Im} z = -\operatorname{Re} c$$

and subtracting,

$$\operatorname{Im} \alpha \operatorname{Re} z + \operatorname{Re} \beta \operatorname{Im} z = -\operatorname{Im} c$$

Cases: if α is real,

$$\operatorname{Im} z = -\frac{\operatorname{Im} c}{\operatorname{Re} \beta}$$

if α is imaginary,

$$\operatorname{Im} z = -\frac{\operatorname{Re} c}{\operatorname{Im} \beta}$$

if β is real,

$$\operatorname{Re} z = -\frac{\operatorname{Re} c}{\operatorname{Re} \alpha}$$

if β is imaginary,

$$\operatorname{Re} z = -\frac{\operatorname{Im} c}{\operatorname{Im} \alpha}$$

Note that there is no solution if one of α, β is real and the other is purly imaginary. Further, if either α or β is zero, we have either infinitely many solutions, characterized by a line, or no solutions.

Finally, consider the case where α, β are nonzero and have both imaginary and complex components. Solving,

$$\operatorname{Re} z = -\frac{\operatorname{Re} \beta \operatorname{Re} c + \operatorname{Im} \beta \operatorname{Im} c}{\operatorname{Re} \alpha \operatorname{Re} \beta + \operatorname{Im} \alpha \operatorname{Im} \beta}$$
$$\operatorname{Im} z = -\frac{\operatorname{Re} \alpha \operatorname{Im} c - \operatorname{Im} \alpha \operatorname{Re} c}{\operatorname{Re} \alpha \operatorname{Re} \beta + \operatorname{Im} \alpha \operatorname{Im} \beta}$$

We see there is a unique solution so long as $\operatorname{Re} \alpha \operatorname{Re} \beta + \operatorname{Im} \alpha \operatorname{Im} \beta \neq 0$, or if α, β are both real or both imaginary.

1.1.4.5

Trivially, Lagrange's identity holds for n = 1:

$$|a_1b_1| = |a_1||b_1| + 0$$

First, note that through multiplying conjugates, we obtain

$$\sum_{i=1}^{n+1} \left| a_i \bar{b}_{n+1} - a_{n+1} \bar{b}_i \right|^2 = \left| b_{n+1} \right|^2 \sum_{i=1}^{n+1} \left| a_i \right|^2 + \left| b_{n+1} \right|^2 \sum_{i=1}^{n+1} \left| a_i \right|^2 - 2 \operatorname{Re} \left[\bar{a}_{n+1} \bar{b}_{n+1} \sum_{i=1}^{n+1} a_i b_i \right]$$

Thus, if Lagrange's identity holds for some n,

$$\begin{split} \left| \sum_{i=1}^{n+1} a_i b_i \right|^2 &= \left| \sum_{i=1}^n a_i b_i + a_{n+1} b_{n+1} \right|^2 \\ &= \left| \sum_{i=1}^n a_i b_i \right|^2 + |a_{n+1}|^2 |b_{n+1}|^2 + 2 \operatorname{Re} \left[\bar{a}_{n+1} \bar{b}_{n+1} \sum_{i=1}^n a_i b_i \right] \\ &= \sum_{i=1}^n |a_i|^2 \sum_{i=1}^n |b_i|^2 - \sum_{1 \le i < j \le n} |a_i \bar{b}_j - a_j \bar{b}_i|^2 + |a_{n+1}|^2 |b_{n+1}|^2 \\ &+ 2 \operatorname{Re} \left[\bar{a}_{n+1} \bar{b}_{n+1} \sum_{i=1}^n a_i b_i \right] + |a_{n+1}|^2 \sum_{i=1}^n |b_i| + |b_{n+1}|^2 \sum_{i=1}^{n+1} |a_i|^2 \\ &- |a_{n+1}|^2 \sum_{i=1}^n |b_i| - |b_{n+1}|^2 \sum_{i=1}^{n+1} |a_i|^2 - |a_{n+1}|^2 |b_{n+1}|^2 + |a_{n+1}|^2 |b_{n+1}|^2 \end{split}$$

$$\begin{split} &= \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{i}|^{2} + |a_{n+1}|^{2} \sum_{i=1}^{n} |b_{i}|^{2} + |b_{n+1}|^{2} \sum_{i=1}^{n+1} |a_{i}|^{2} \\ &- \sum_{1 \leq i < j \leq n} |a_{i}\bar{b}_{j} - a_{j}\bar{b}_{i}|^{2} \\ &- |a_{n+1}|^{2} |b_{b+1}|^{2} - |a_{n+1}|^{2} \sum_{i=1}^{n} |b_{i}|^{2} - |b_{n+1}|^{2} \sum_{i=1}^{n+1} |a_{i}|^{2} \\ &+ 2\operatorname{Re} \left[\bar{a}_{n+1}\bar{b}_{n+1} \sum_{i=1}^{n} a_{i}b_{i} \right] + \underbrace{2|a_{n+1}|^{2}|b_{n+1}|^{2}}_{=2\operatorname{Re}\left[\bar{a}_{n+1}\bar{b}_{n+1}a_{n+1}b_{n+1}\right]} \\ &= \sum_{i=1}^{n+1} |a_{i}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2} - \sum_{1 \leq i < j \leq n} |a_{i}\bar{b}_{j} - a_{j}\bar{b}_{i}|^{2} \\ &- |a_{n+1}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2} - |b_{n+1}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2} - 2\operatorname{Re} \left[\bar{a}_{n+1}\bar{b}_{n+1} \sum_{i=1}^{n+1} a_{i}b_{i} \right] \\ &= \sum_{i=1}^{n+1} |a_{i}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2} - \sum_{1 \leq i < j \leq n} |a_{i}\bar{b}_{j} - a_{j}\bar{b}_{i}|^{2} - \sum_{i=1}^{n+1} |a_{i}\bar{b}_{n+1} - a_{n+1}\bar{b}_{i}|^{2} \\ &= \sum_{i=1}^{n+1} |a_{i}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2} - \sum_{1 \leq i < j \leq n+1} |a_{i}\bar{b}_{j} - a_{j}\bar{b}_{i}|^{2} \end{split}$$

it also holds for n+1. Thus, Lagrange's identity holds for all $n \in \mathbb{N}$.

1.1.5 Inequalities

1.1.5.1

From 1.1.4.3, we can write

$$\left| \frac{a-b}{1-\bar{a}b} \right| = \frac{|a|^2 + |b|^2 - 2\operatorname{Re}\bar{a}b}{1 + |a|^2 |b|^2 - 2\operatorname{Re}\bar{a}b}$$

1.1.5.2

Cauchy's inequality holds as an equality for n = 1:

$$|a_1b_1|^2 = |a_1|^2 |b_1|^2$$

Suppose Cauchy's inequality holds for n. Then,

$$\left| \sum_{i=1}^{n+1} a_i b_i \right|^2 \le \left| \sum_{i=1}^n a_i b_i \right|^2 + \left| a_{n+1} \right|^2 \left| b_{n+1} \right|^2$$

$$\leq \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{i}|^{2} + |a_{n+1}|^{2} |b_{n+1}|^{2}
\leq \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{i}|^{2} + |a_{n+1}|^{2} |b_{n+1}|^{2} + |a_{n+1}| \sum_{i=1}^{n} |b_{i}|^{n} + |b_{n+1}|^{2} \sum_{i=1}^{n} |a_{i}|^{2}
= \sum_{i=1}^{n+1} |a_{i}|^{2} \sum_{i=1}^{n+1} |b_{i}|^{2}$$

so it also holds for n+1. Thus, Cauchy's inequality holds for all $n \in \mathbb{N}$.

1.1.5.3

$$\left| \sum_{i=1}^{n} \lambda_i a_i \right| \le \sum_{i=1}^{n} |\lambda_i a_i|$$

$$= \sum_{i=1}^{n} \lambda_i |a_i|$$

$$\le \sum_{i=1}^{n} \lambda_i$$

$$= 1$$

1.1.5.4

By the the parallelogram rule and triangle inequalities,

$$4\left|c\right|^{2} = \left|z - a\right|^{2} + \left|z + a\right|^{2} + 2\left|z^{2} - a^{2}\right| = 2\left|z\right|^{2} + 2\left|a\right|^{2} + 2\left|z^{2} - a^{2}\right| \ge 4\left|a\right|^{2}$$

or

Thus, there are only solutions for $|a| \leq |c|$. There are two solutions given by the pair of equations

$$|z - a| = |c| \qquad \qquad |z + a| = |c|$$

which yield

$$z = \pm i \frac{a}{|a|} \sqrt{|c|^2 - |a|^2}$$

thus, for $|a| \leq |c|$ solutions exist. |z| is bounded above by |c| like |a|, but can go to zero.

The actual bounds seem too hard to think about right now.

1.2 The Geometric Representation of Complex Numbers

1.2.1 Geometric Addition and Multiplication

- 1.2.1.1
- 1.2.1.2
- 1.2.1.3
- 1.2.1.4

1.2.2 The Binomial Equation

1.2.2.1

From de Moivre's,

$$\cos 3\phi = \cos^3 \phi - 3\cos\phi\sin^2\phi$$
$$\cos 4\phi = \cos^4\phi - 6\cos^2\phi\sin^2\phi + \sin^4\phi$$
$$\sin 5\phi = \sin^5\phi - 10\sin^3\phi\cos^2\phi + 5\sin\phi\cos^4\phi$$

1.2.2.2

Note we can add the two terms,

$$\Sigma = 1 + \cos \varphi + i \sin \varphi + \dots = 1 + e^{i\varphi} + e^{2i\varphi} + \dots + e^{ni\varphi}$$

yielding

$$\Sigma = \frac{1 - e^{in\varphi}}{1 - e^{i\phi}} = e^{i\frac{n-1}{2}\phi} \frac{e^{i\frac{n}{2}\phi} - e^{-i\frac{n}{2}\phi}}{e^{-i\phi/2} - e^{-i\phi/2}} = e^{i\frac{n-1}{2}\phi} \frac{\sin\frac{n\phi}{2}}{\sin\frac{\phi}{2}}$$

The cosine terms are the real part of this,

$$\sum_{m=1}^{n} \cos m\phi = \operatorname{Re} \Sigma = \cos \frac{n-1}{2} \phi \frac{\sin \frac{n\phi}{2}}{\sin \frac{\phi}{2}}$$

and the sine terms are the imaginary part of this,

$$\sum_{m=1}^{n} \sin m\phi = \operatorname{Im} \Sigma = \sin \frac{n-1}{2} \phi \frac{\sin \frac{n\phi}{2}}{\sin \frac{\phi}{2}}$$

1.2.2.3

1.2.2.4

$$1 + \omega^h + \dots + \omega^{(n-1)h} = \frac{1 - \omega^{nh}}{1 - \omega^h} = \frac{1 - 1^h}{1 - \omega^h} = 0$$

if h is not divisible by n.

1.2.2.5

$$1 - \omega^h + \dots + (-1)^{n-1} \omega^{(n-1)h} = \frac{1 - (-1)^n \omega^{nh}}{1 + \omega^h} = \frac{1 - (-1)^n 1^h}{1 + \omega^h} = \frac{1 - (-1)^n}{1 + \omega^h}$$

1.2.3 Analytic Geometry

1.2.3.1

When $a = \pm b$. See 1.1.4.4.

1.2.3.2

1.2.3.3

1.2.3.4

Fix the circle to be at the origin, and set the chords to be between pairs z, \bar{z} . The midpoints lie on the line Im(z) = 0, which is a diameter, and perpendicular to the chords.

1.2.3.5

1.2.4 The Spherical Representation

1.2.4.1

Let

$$z = \frac{x_1 + ix_2}{1 - x_3} \qquad z' = \frac{-x_1 - ix_2}{1 - x_3}$$

then,

$$z\bar{z}' = \frac{-x_1^2 - x_2^2}{1 - x_3^2} = \frac{-x_1^2 - x_2^2}{x_1^2 + x_2^2} = -1$$

- 1.2.4.2
- 1.2.4.3
- 1.2.4.4
- 1.2.4.5

Chapter 2

Complex Functions

2.1	Introduction	to the	Concept of	of Analy	vtic Fr	inction
4 • 1	III od de cion		Concept	OI ZXIICUI	, ,,,,	

- 2.1.1 Limits and Continuity
- 2.1.2 Analytic Functions
- 2.1.3 Polynomials
- 2.1.4 Rational Functions
- 2.2 Elementary Theory of Power Series
- 2.2.1 Sequences
- 2.2.2 Series
- 2.2.3 Uniform Convergence
- 2.2.4 Power Series
- 2.2.5 Abel's Limit Theorem
- 2.3 The Exponential and Trigonometric Functions
- 2.3.1 The Exponential
- 2.3.2 The Trigonometric Functions
- 2.3.3 The Periodicity
- 2.3.4 The Logarithm