TI-28444

BEST AVAILABLE COPY

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application: Listing of Claims

1 (Previously presented). A method of encrypting a digital signal comprising: generating a plurality of pseudo-noise sequences;

inserting a segment of a first pseudo-noise sequence into a second pseudo-noise sequence, or portion thereof, at an arbitrary position in said second pseudo-noise sequence to generate an augmented pseudo-noise sequence; and

encrypting a data stream using the augmented pseudo-noise sequence.

- 2 (Previously presented). The method of claim 1 wherein said generating step comprises the step of generating two pseudo-noise sequences.
- 3 (Original). The method of claim 1 wherein said generating step comprises the step of generating three or more pseudo-noise sequences.
 - 4 (Canceled).
- 5 (Previously presented). The method of claim 1 wherein said segment has an arbitrary length.
- 6 (Previously presented). The method of claim 1 wherein said segment has arbitrary starting and ending positions within said first pseudo-noise sequence.
- 7 (Original). The method of claim 1 and further comprising the step of starting the output of the augmented pseudo-noise sequence at an arbitrary position in the sequence.
- 8 (Original). The method of claim 1 and further comprising the step of synchronizing the augmented pseudo-noise sequence to a reference clock.
 - 9 (Canceled).

TI-28444

Patent Amendment

10 (Currently amended). Apparatus for encrypting a digital signal comprising: two or more pseudo-noise sequence generators:

circuitry for inserting a segment of a first pseudo-noise sequence into a second pseudo-noise sequence, or portion thereof, at an arbitrary position in said second pseudo-noise sequence to generate an augmented pseudo-noise sequence; and

an encrypting circuit for correlating the augmented pseudo-noise sequence with a data stream.

- 11 (Canceled).
- 12 (Original). The apparatus of claim 10 wherein said two or more pseudo-noise sequence generators comprises three or more pseudo-noise sequence generators.
 - 13 (Canceled).
- 14 (Previously presented). The apparatus of claim 10 wherein said segment has an arbitrary length.
- 15 (Previously presented). The apparatus of claim 10 wherein said segment has arbitrary starting and ending positions within said first pseudo-noise sequence.
- 16 (Previously presented). The apparatus of claim 10 wherein said encrypting circuit performs an exclusive-or operation.
- 17 (Original). The apparatus of claim 10 and further comprising circuitry for starting the output of the augmented pseudo-noise sequence at an arbitrary position in the sequence.
- 18 (Original). The apparatus of claim 10 and further comprising circuitry for synchronizing the augmented pseudo-noise sequence to a reference clock.
 - 19 (Canceled).

TI-28444

Patent Amendment

20 (Canceled).

21 (Currently amended). A method of encrypting a digital signal comprising: generating a plurality of pseudo-noise sequences;

concatenating said pseudo-noise sequences, or portions thereof, to generate an augmented pseudo-noise sequence;

synchronizing the augmented pseudo-noise sequence to a reference clock <u>relative</u> to an arbitrary offset; and

encrypting a data stream using the augmented pseudo-noise sequence.

22 (Currently amended). Apparatus for encrypting a digital signal comprising: two or more pseudo-noise sequence generators:

circuitry for concatenating said pseudo-noise sequences, or portions thereof, to generate an augmented pseudo-noise sequence;

circuitry for starting the output of the augmented pseudo-noise sequence at an arbitrary position in the sequence; and

an encrypting circuit for correlating the augmented pseudo-noise sequence with a data stream.

23 (Currently amended). Apparatus for encrypting a digital signal comprising: two or more pseudo-noise sequence generators:

circuitry for concatenating said pseudo-noise sequences, or portions thereof, to generate an augmented pseudo-noise sequence;

circuitry for synchronizing the augmented pseudo-noise sequence to a reference clock <u>relative to an arbitrary offset</u>; and

an encrypting circuit for correlating the augmented pseudo-noise sequence with a data stream.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items	checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	•
☐ FADED TEXT OR DRAWING	•
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	•
GRAY SCALE DOCUMENTS	. •
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUAI	LITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.