CLAIMS

1	1. A system for modifying input image data used by a projector in generating a
2	displayed image, the projector supporting number of unique levels, the system compris-
3	ing:
4	a luminance uniformity engine configured to process the input image data so as to
5	generate corrected image data that is uniform in luminance;
6	a dither engine configured to process the corrected image data from the luminance
7	uniformity engine so as to generate dithered image data; and
8	a converter configured to convert the dithered image data into the unique levels of
9	the projector.
1	2. The system of claim 1 wherein the luminance uniformity engine comprises:
2	a front-end look-up table (LUT) that imposes a gain on the input level to produce
3	a resulting input level;
4	a spatial attenuation array configured with a plurality of distortion correction val-
5	ues; and
6	a multiplier circuit for multiplying the resulting input level from the front-end
7	LUT by a selected distortion correction value from the spatial attenuation array to pro-
8	duce a luminance corrected input level.
1	3. The system of claim 2 wherein
2	the input image data includes a level and x,y coordinates for each level, and
3	the distortion correction values of the spatial attenuation array are indexed by the
4	x,y coordinates of the input image data.
1	4. The system of claim 1 wherein the dither engine comprises:
2	a dither array configured with a plurality of dither values;
3	an adder circuit configured to generate a sum by adding a selected dither value to
4	the luminance corrected input level; and

a shift register configured the shift the sum by a selected number of bits, thereby 5 producing a dithered output level. 6 5. The system of claim 4 wherein 1 the dither engine has a number of input levels and a number of output levels, and 2 the number of output levels of the dither engine is one of equal to and greater than 3 the number of stated levels of the projector. 6. The system of claim 3 wherein 1 the input image data includes a level and x,y coordinates for each level, and 2 the dither values are indexed by the x,y coordinates of the levels of the input im-3 age data. 4 7. The system of claim 4 wherein the converter is a back-end look-up table (LUT) 1 that is configured to map dither output levels to unique projector levels. 2 8. A method for correcting projector non-uniformity and increasing apparent am-1 plitude resolution, the projector supporting a stated number of levels, the method com-2 prising the steps of: 3 measuring the projector non-uniformity at a plurality of the stated levels; 4 determining the number of unique levels supported by the projector; 5 utilizing the non-uniformity measurements to generate uniform projector image 6 data; and 7 dithering the modified projector image data such that a displayed image appears 8 to have been formed either from the stated number of levels or from a greater number of 9 levels than the stated number. 10 9. The method of claim 8 wherein the step of determining the number of unique 1

projector levels comprises the steps of:

3	generating a displayed image from the projector for each of the plurality of stated
4	projector levels;
5	capturing each of the displayed images with a camera, each camera captured im-
6	age having a plurality of pixel values;
7	averaging all of the pixel values for each camera captured image; and
8	comparing the averaged pixel values computed for two adjacent stated projector
9	levels to determine whether the two stated projector levels are unique.
1	10. The method of claim 9 wherein the step of comparing the averaged pixel val-
2	ues comprises the steps of:
3	computing the difference between the averaged pixel values for the two adjacent
4	stated projector levels;
5	finding the two adjacent stated projector levels to be unique provided that the
6	computed difference is greater than a threshold times the difference between a maximum
7	averaged pixel value considering all of the plurality of stated levels and a minimum aver-
8	aged pixel value considering all of the plurality of stated levels; and
9	finding the two adjacent stated projector levels to be redundant provided that the
10	computed difference is less than a threshold times the difference between the maximum
11	averaged pixel value and the minimum averaged pixel value.
1	11. The method of claim 10 wherein the threshold is on the order of 0.001.
1	12. The method of claim 8 wherein the uniform projector image data has a plural-
2	ity of corrected levels, and the step of dithering the uniform projector image data com-
3	prises the step of utilizing a selected dither template pattern to convert the corrected lev-
4	els of the uniform image data to corresponding dither output levels.
1	13. The method of claim 8 further comprising the step of mapping each dither

output level to a respective unique output level supported by the projector.

- 14. The method of claim 13 wherein the selected dither template pattern is a void
- 2 and cluster pattern.