CLAIMS

WHAT IS CLAIMED IS:

1	1. A method of testing a planar lightwave circuit comprising:
2	creating a first probe region of a top surface of the planar lightwave circuit
3	by removing a portion of cladding from the top surface of the planar
4	lightwave circuit;
5	coupling a first optical probe to the first probe region; and
6	testing an optical pathway within the planar lightwave circuit by transmitting
7	or receiving light through the first optical probe.
1	2. The method of claim 1 further comprising:
2	creating a second probe region of the top surface of the planar lightwave
3	circuit;
4	coupling a second optical probe to the second probe region; and
5	using the second optical probe in combination with the first optical probe to
6	send and receive a light signal through the planar lightwave circuit.
1	3. The method of claim 2 further comprising:
2	changing an input angle of the light signal to test a second optical pathway
3	within the planar lightwave circuit without moving the first optical
4	probe or the second optical probe.

1	4. The method of claim 1 further comprising:
2	using an index-matching fluid as an interface between the first optical probe
3	and the first probe region.
1	5. The method of claim 1 further comprising:
2	removing the first probe region from the planar lightwave circuit.
1	6. The method of claim 1 further comprising:
2	filling in the first probe region from the planar lightwave circuit with index-
3	matching fluid.
1	7. A method of testing a planar lightwave circuit having first and second surface
2	regions, the first and second surface regions having an upper cladding thickness of
3	approximately 2 microns or less, the method comprising:
4	coupling a first optical probe to the first surface region;
5	directing light through the first optical probe into the planar lightwave
6	circuit;
7	coupling a second optical probe to the second surface region; and
8	receiving the light through the second optical probe.
1	8. The method of claim 7, wherein at least one of the first and second surface
2	regions is near an edge of a planar lightwave circuit die.

1	9. The method of claim 7, wherein directing light through the first optical probe
2	further comprises:
3	directing light through a rounded top portion of the first optical probe.
1	10. The method of claim 9 further comprising:
2	directing light into a first waveguide in a bottom portion of the first optical
3	probe.
1	11. The method of claim 10 further comprising:
2	directing light into a second waveguide in the bottom portion of the first
3	optical probe by changing an input angle of the light.
1	12. The method of claim 7 further comprising:
2	using an index-matching fluid as an interface between the first optical probe
3	and the first surface region.
1	13. The method of claim 7, wherein testing the planar lightwave circuit is
2	performed on a wafer prior to dicing the wafer.
1	14. The method of claim 7, wherein testing the planar lightwave circuit is
2	performed on a die prior to permanently attaching optical fibers to the die.
1	15. The method of claim 7, wherein testing the planar lightwave circuit is
2	performed on a die after permanently attaching optical fibers to the die.

1	16. An optical probe comprising:
2	a prism having a rounded top; and
3	a first waveguide in a bottom portion of the prism, the rounded top to focus
4	light entering the prism into first waveguide.
1	17. The optical probe of claim 16, wherein the prism is at least partially made of
2	sapphire, high density glass, LiNbO ₃ , or rutile.
1	18. The optical probe of claim 16, further comprising:
2	a second waveguide in the bottom portion of the prism, wherein the rounded
3	top constitutes more than one focus to couple light into the first
4	waveguide and the second waveguide.
1	19. The optical probe of claim 16, wherein light entering the rounded top is re-
2	directed approximately 90 degrees by the prism and the first waveguide.
1	20. The optical probe of claim 16, wherein the rounded top comprises a microlens
2	array.
1	21. A method of making an optical probe, the method comprising:
2	forming a lens surface on a prism; and
3	forming a waveguide in a bottom portion of the prism.

1	22. The method of claim 21, wherein the waveguide is formed by diffusion or ion
2	exchange.
1	23. The method of claim 21, wherein the waveguide is formed by ion
2	implantation.
1	24. The method of claim 21, wherein the waveguide is formed by deposition.
1	25. The method of claim 21 further comprising:
2	forming a second waveguide in the bottom portion of the prism.
1	26. The method of claim 21, wherein forming the lens surface on the prism
2	further comprises
3	forming a lens surface having more than one focus.
1	27. The method of claim 21, wherein forming the lens surface on the prism
2	further comprises
3	forming a lens surface having a microlens array.