

planetmath.org

Math for the people, by the people.

proximal neighborhood

Canonical name ProximalNeighborhood Date of creation 2013-03-22 16:58:25 Last modified on 2013-03-22 16:58:25

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 54E05

Synonym proximity neighborhood

Synonym δ -neighborhood

Let X be a set and P(X) its power set. Let \ll be a binary relation on P(X) satisfying the

following conditions, for any $A, B \subseteq X$:

- 1. $X \ll X$,
- 2. $A \ll B$ implies $A \subseteq B$,
- 3. $A \ll B$ and $C \ll D$ imply $A \cap C \ll B \cap D$,
- 4. $A \ll B$ implies $B' \ll A'$ (' is the complement operator)
- 5. $A \subseteq B \ll C \subseteq D$, then $A \ll D$, and
- 6. if $A \ll B$, then there is $C \subseteq X$, such that $A \ll C \ll B$.

By 1 and 4, it is easy to see that $\emptyset \ll \emptyset$. Also, 3 and 4 show that $A \cup C \ll B \cup D$ whenever $A \ll B$ and $C \ll D$. So \ll is a topogenous order, which means \ll is transitive and anti-symmetric. Under this order relation, we say that B is a proximal neighborhood of A if $A \ll B$.

The reason why we call B a "proximal" neighborhood is due to the following:

Theorem 1. Let X be a set. The following are true.

- Let \ll be defined as above. Define a new relation δ on P(X): $A\delta'B'$ iff $A \ll B$. Then δ so defined is a proximity relation, turning X into a proximity space.
- Conversely, let (X, δ) is a proximity space. Define a new relation \ll on P(X): $A \ll B$ iff $A\delta'B'$. Then \ll satisfies the six properties above.

Proof. Suppose first that X and \ll are defined as above. We will verify the individual nearness relation axioms of δ by proving their contrapositives in each case, except the last axiom:

- 1. if $A\delta'B$, then $A \ll B'$, or $A \subseteq B'$, so $A \cap B = \emptyset$;
- 2. suppose either $A = \emptyset$ or $B = \emptyset$. In either case, $A \ll B'$, which means $A\delta'B$;
- 3. if $A\delta'B$, then $A \ll B'$, so $B'' \ll A'$, or $B \ll A'$, or $B\delta'A$;

- 4. if $A_1\delta'B$ and $A_2\delta'B$, then $A_1 \ll B$ and $A_2 \ll B$, so $(A_1 \cup A_2) \ll B$, or $(A_1 \cup A_2)\delta'B$;
- 5. if $A\delta'B$, then $A \ll B'$. So there is $D \subseteq X$ with $A \ll D$ and $D \ll B'$. Let C = D'. Then $A \ll C'$ and $C' \ll B'$, or $A\delta'C$ and $C'\delta'B$.

Next, suppose (X, δ) is a proximity space. We now verify the six properties of \ll above.

- 1. since $X\delta'\varnothing$, $X\ll\varnothing'$, or $X\ll X$;
- 2. suppose $A\delta'B'$, then if $x \in A$, we have $x\delta'B'$, implying $x \cap B' = \emptyset$, or $x \in B$;
- 3. if $A \ll B$ and $C \ll D$, then $A\delta'B'$ and $C\delta'D'$, which means $A\delta'(B' \cup D')$ and $C\delta'(B' \cup D')$, which together imply $(A \cap C)\delta'(B' \cup D')$, or $(A \cap C)\delta(B \cap D)'$, or $A \cap C \ll B \cap D$;
- 4. if $A \ll B$, then $A\delta'B'$, so $B'\delta'A$ (as δ is symmetric, so is its complement), which is the same as $B'\delta'A''$, or $B' \ll A'$;
- 5. if $A\delta D'$, then $B\delta C'$ (since $A\subseteq B$ and $D'\subseteq C'$), so $B\ll' C$, a contradiction;
- 6. if $A \ll B$, then $A\delta'B'$, so there is $D \subseteq X$ with $A\delta'D$ and $D'\delta'B'$. Define C = D', then $A \ll C$ and $C \ll B$, as desired.

This completes the proof.

Because of the above, we see that a proximity space can be equivalently defined using the proximal neighborhood concept. To emphasize its relationship with δ , a proximal neighborhood is also called a δ -neighborhood.

Furthermore, we have

Theorem 2. if B is a proximal neighborhood of A in a proximity space (X, δ) , then B is a (topological) neighborhood of A under the topology $\tau(\delta)$ induced by the proximity relation δ . In other words, if $A \ll B$, then $A \subseteq B^{\circ}$ and $A^{c} \subseteq B$, where $^{\circ}$ and c denote the interior and closure operators.

Proof. Since $A\delta'B'$, then $x\delta'B'$ whenever $x \in A$, which is the contrapositive of the statement: $x \in A'$ whenever $x\delta B'$, which is equivalent to $B'^c \subseteq A'$, or $A \subseteq B^\circ$. Furthermore, if $x \notin B$, then $x \in B'$. But $A\delta'B'$ b assumption. This implies $x\delta'A$, which means $x \notin A^c$. Therefore $A^c \subseteq B$.

Remark. However, not every $\tau(\delta)$ -neighborhood is a δ -neighborhood.