

RADIO TEST REPORT FCC ID: 2AHXO-T4016

Product: 4inch 3G Dual SIM Smart phone

Trade Name: N/A

Model No.: T4016

 $\textbf{Serial Model:} \ \ \frac{\text{RLTP4028-B-BLACK}, A1, A2, A3, A4, A6, K2,}{\text{K3}, \text{K4}, \text{C1}, \text{C3}, \text{G4}, \text{G5}, \text{G6}}$

Report No.: NTEK- 2016NT04155188F2

Issue Date: 07 May. 2016

Prepared for

SHENZHEN IDWELL TECHNOLOGY CO.,LTD. BUILDING A2, ZHENGFENG INDUSTRIAL PARK, FENGTANG ROAD, FUYONG, BAOAN, SHENZHEN, CHINA

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China

> Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SU	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	5
4		NERAL DESCRIPTION OF EUT	
5		SCRIPTION OF TEST MODES	
6	SE'	ΓUP OF EQUIPMENT UNDER TEST	9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEMSUPPORT EQUIPMENTEQUIPMENTS LIST FOR ALL TEST ITEMS	9 10
7	TE	ST REQUIREMENTS	12
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT ANTENNA APPLICATION	

1 TEST RESULT CERTIFICATION

Applicant's name:	ShenZhen IDWELL Technology CO.,Ltd.
Address:	Building A2, Zhengfeng Industrial Park, Fengtang Road, Fuyong, Baoan, Shenzhen, China
Manufacture's Name:	ShenZhen IDWELL Technology CO.,Ltd.
Address:	Building A2, Zhengfeng Industrial Park, Fengtang Road, Fuyong, Baoan, Shenzhen, China
Product description	
Product name:	4inch 3G Dual SIM Smart phone
Model and/or type reference:	T4016
Serial Model:	RLTP4028-B-BLACK,A1,A2,A3,A4,A6,K2,K3,K4,C1,C3,G4,G5,G6

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J:2015 FCC 47 CFR Part 15, Subpart C:2015 KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013 DA 00-705	Complied	

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :		15 Apr. 2016 ~ 07 May.2016
		1 -
Testing Engineer	:	Jack Li
		(Jack Li)
Technical Manager	:	Jasen ohen
C		(Jason Chen)
Authorized Signatory		Sam. Chew
Authorized Signatory		(Sam Chen)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Verdict	Remark		
15.207	Conducted Emission	PASS			
15.247(c)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.205	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2014.09.04

The certificate is valid until 2017.09.03

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.

Accredited by FCC, September 6, 2013

The Certificate Registration Number is 238937.

Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.

Name of Firm : NTEK Testing Technology Co., Ltd

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	4inch 3G Dual SIM Smart phone			
Trade Name	N/A			
FCC ID	2AHXO-T4016			
Model No.	T4016			
Serial Model	RLTP4028-B-BLACK,A1,A2,A3,A4,A6,K2,K3,K4,C1,C3,G4,G5,G6			
Model Difference	All the model are the same circuit and RF module, except the model No.and colour.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK, π/4-DQPSK, 8DPSK			
Number of Channels	79 Channels			
Antenna Type	FPCB Antenna			
Antenna Gain	1 dBi			
Power supply				
HW Version	Y809_MB_V2			
SW Version	Y809.JH.T4016.MINT.B1B2B5.4+4.5.1.2016.03.30			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
NTEK-2016NT04155188F2	Rev.01	Initial issue of report	May 07, 2016

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation; 3Mbps for 8DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403

39	2441
40	2442
	•••
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Final Test Mode Description	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases	
Final Test Mode	Description
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	4inch 3G Dual SIM Smart phone	N/A	T4016	2AHXO-T4016	EUT
E-2	Adapter	N/A	K-T50501000U1	N/A	Peripherals
E-3	Earphone	N/A	L662	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone	NO	NO	0.8m
C-3	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

	Kind of				Last	Calibrated	Calibration
Item	Equipment	Manufacturer	Type No.	Serial No.	calibration	until	period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2015.07.06	2016.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2015.07.06	2016.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2015.07.06	2016.07.05	1 year

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2015.06.06	2016.06.05	1 year
2	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2015.06.07	2016.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2015.06.08	2016.06.07	1 year
7	Test Cable	N/A	C01	N/A	2015.06.08	2016.06.07	1 year
8	Test Cable	N/A	C02	N/A	2015.06.08	2016.06.07	1 year
9	Test Cable	N/A	C03	N/A	2015.06.08	2016.06.07	1 year
1	Attenuation	MCE	24-10-34	BN9258	2015.06.08	2016.06.07	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov(MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Power: AC 120V/60Hz

Hamildita 54.04

Humidity: 51 %

Mode: Mode1

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3420	35.21	10.10	45.31	59.15	-13.84	QP	
2		0.3420	24.39	10.10	34.49	49.15	-14.66	AVG	
3	*	0.4180	40.40	10.00	50.40	57.49	-7.09	QP	
4		0.4180	30.01	10.00	40.01	47.49	-7.48	AVG	
5		0.5700	35.48	9.79	45.27	56.00	-10.73	QP	
6		0.5700	25.62	9.79	35.41	46.00	-10.59	AVG	
7		0.8340	36.52	9.81	46.33	56.00	-9.67	QP	
8		0.8340	24.42	9.81	34.23	46.00	-11.77	AVG	
9		1.6340	35.39	9.77	45.16	56.00	-10.84	QP	
10		1.6340	22.74	9.77	32.51	46.00	-13.49	AVG	
11		2.3860	33.59	9.73	43.32	56.00	-12.68	QP	
12		2.3860	20.92	9.73	30.65	46.00	-15.35	AVG	

^{*:}Maximum data x:Over limit !:over margin

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

AC 120V/60Hz Power:

Humidity: 51 %

Mode: Mode1

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3699	35.13	10.07	45.20	58.50	-13.30	QP	
2	0.3699	24.51	10.07	34.58	48.50	-13.92	AVG	
3 *	0.4219	40.74	9.99	50.73	57.41	-6.68	QP	
4	0.4219	29.47	9.99	39.46	47.41	-7.95	AVG	
5	0.5620	35.56	9.79	45.35	56.00	-10.65	QP	
6	0.5620	24.96	9.79	34.75	46.00	-11.25	AVG	
7	0.8100	35.03	9.81	44.84	56.00	-11.16	QP	
8	0.8100	24.79	9.81	34.60	46.00	-11.40	AVG	
9	1.6259	35.50	9.77	45.27	56.00	-10.73	QP	
10	1.6259	23.85	9.77	33.62	46.00	-12.38	AVG	
11	2.1339	33.68	9.73	43.41	56.00	-12.59	QP	
12	2.1339	21.59	9.73	31.32	46.00	-14.68	AVG	

^{*:}Maximum data x:Over limit !:over margin

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Power: AC 240V/50Hz

Humidity: 51 %

Mode: Mode1

Note:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
0.3700	35.05	10.07	45.12	58.50	-13.38	QP	
0.3700	24.25	10.07	34.32	48.50	-14.18	AVG	
0.4260	40.18	9.98	50.16	57.33	-7.17	QP	
0.4260	29.61	9.98	39.59	47.33	-7.74	AVG	
0.5580	35.80	9.79	45.59	56.00	-10.41	QP	
0.5580	25.29	9.79	35.08	46.00	-10.92	AVG	
0.8139	35.65	9.81	45.46	56.00	-10.54	QP	
0.8139	24.17	9.81	33.98	46.00	-12.02	AVG	
1.6380	34.79	9.77	44.56	56.00	-11.44	QP	
1.6380	23.30	9.77	33.07	46.00	-12.93	AVG	
2.1580	33.10	9.73	42.83	56.00	-13.17	QP	
2.1580	21.34	9.73	31.07	46.00	-14.93	AVG	
	MHz 0.3700 0.4260 0.4260 0.5580 0.5580 0.8139 0.8139 1.6380 1.6380 2.1580	Freq. Level MHz dBuV 0.3700 35.05 0.3700 24.25 0.4260 40.18 0.4260 29.61 0.5580 35.80 0.5580 25.29 0.8139 35.65 0.8139 24.17 1.6380 34.79 1.6380 23.30 2.1580 33.10	Freq. Level Factor MHz dBuV dB 0.3700 35.05 10.07 0.3700 24.25 10.07 0.4260 40.18 9.98 0.4260 29.61 9.98 0.5580 35.80 9.79 0.8139 35.65 9.81 0.8139 24.17 9.81 1.6380 34.79 9.77 1.6380 23.30 9.77 2.1580 33.10 9.73	Freq. Level Factor ment MHz dBuV dB dBuV 0.3700 35.05 10.07 45.12 0.3700 24.25 10.07 34.32 0.4260 40.18 9.98 50.16 0.4260 29.61 9.98 39.59 0.5580 35.80 9.79 45.59 0.5580 25.29 9.79 35.08 0.8139 35.65 9.81 45.46 0.8139 24.17 9.81 33.98 1.6380 34.79 9.77 44.56 1.6380 23.30 9.77 33.07 2.1580 33.10 9.73 42.83	Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.3700 35.05 10.07 45.12 58.50 0.3700 24.25 10.07 34.32 48.50 0.4260 40.18 9.98 50.16 57.33 0.4260 29.61 9.98 39.59 47.33 0.5580 35.80 9.79 45.59 56.00 0.5580 25.29 9.79 35.08 46.00 0.8139 35.65 9.81 45.46 56.00 0.8139 24.17 9.81 33.98 46.00 1.6380 34.79 9.77 44.56 56.00 1.6380 23.30 9.77 33.07 46.00 2.1580 33.10 9.73 42.83 56.00	Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.3700 35.05 10.07 45.12 58.50 -13.38 0.3700 24.25 10.07 34.32 48.50 -14.18 0.4260 40.18 9.98 50.16 57.33 -7.17 0.4260 29.61 9.98 39.59 47.33 -7.74 0.5580 35.80 9.79 45.59 56.00 -10.41 0.5580 25.29 9.79 35.08 46.00 -10.92 0.8139 35.65 9.81 45.46 56.00 -10.54 0.8139 24.17 9.81 33.98 46.00 -12.02 1.6380 34.79 9.77 44.56 56.00 -11.44 1.6380 23.30 9.77 33.07 46.00 -12.93 2.1580 33.10 9.73 42.83 56.00 -13.17 <td>Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.3700 35.05 10.07 45.12 58.50 -13.38 QP 0.3700 24.25 10.07 34.32 48.50 -14.18 AVG 0.4260 40.18 9.98 50.16 57.33 -7.17 QP 0.4260 29.61 9.98 39.59 47.33 -7.74 AVG 0.5580 35.80 9.79 45.59 56.00 -10.41 QP 0.5580 25.29 9.79 35.08 46.00 -10.92 AVG 0.8139 35.65 9.81 45.46 56.00 -10.54 QP 0.8139 24.17 9.81 33.98 46.00 -12.02 AVG 1.6380 34.79 9.77 44.56 56.00 -11.44 QP 1.6380 23.30 9.77 33.07 <</td>	Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.3700 35.05 10.07 45.12 58.50 -13.38 QP 0.3700 24.25 10.07 34.32 48.50 -14.18 AVG 0.4260 40.18 9.98 50.16 57.33 -7.17 QP 0.4260 29.61 9.98 39.59 47.33 -7.74 AVG 0.5580 35.80 9.79 45.59 56.00 -10.41 QP 0.5580 25.29 9.79 35.08 46.00 -10.92 AVG 0.8139 35.65 9.81 45.46 56.00 -10.54 QP 0.8139 24.17 9.81 33.98 46.00 -12.02 AVG 1.6380 34.79 9.77 44.56 56.00 -11.44 QP 1.6380 23.30 9.77 33.07 <

^{*:}Maximum data x:Over limit !:over margin

Humidity:

51 %

Power:

AC 240V/50Hz

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Mode: Mode1

Note:

11

12

Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV dBuV dB Detector Comment 34.34 10.12 44.46 1 0.1499 66.00 -21.54 QP 2 0.1499 18.30 10.12 28.42 56.00 -27.58 AVG 0.3620 35.25 10.08 45.33 58.68 -13.35 QP 3 4 0.3620 24.25 10.08 34.33 48.68 -14.35 AVG 5 0.4180 40.05 10.00 50.05 57.49 -7.44 QP 47.49 -7.47 6 0.4180 30.02 10.00 40.02 AVG 7 0.5500 9.79 QP 34.52 44.31 56.00 -11.69 8 0.5500 25.26 9.79 35.05 46.00 -10.95 AVG 9 0.8300 35.47 9.81 45.28 56.00 -10.72 QP 10 0.8300 24.30 9.81 34.11 46.00 -11.89 AVG

56.00 -12.08

46.00 -12.41

QP

AVG

34.14

23.81

9.78

9.78

43.92

33.59

1.5980

1.5980

^{*:}Maximum data x:Over limit !:over margin

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

soording to 1 00 1 dr. 10:200, restricted barids						
MHz	MHz	GHz				
16.42-16.423	399.9-410	4.5-5.15				
16.69475-16.69525	608-614	5.35-5.46				
16.80425-16.80475	960-1240	7.25-7.75				
25.5-25.67	1300-1427	8.025-8.5				
37.5-38.25	1435-1626.5	9.0-9.2				
73-74.6	1645.5-1646.5	9.3-9.5				
74.8-75.2	1660-1710	10.6-12.7				
123-138	2200-2300	14.47-14.5				
149.9-150.05	2310-2390	15.35-16.2				
156.52475-156.52525	2483.5-2500	17.7-21.4				
156.7-156.9	2690-2900	22.01-23.12				
162.0125-167.17	3260-3267	23.6-24.0				
167.72-173.2	3332-3339	31.2-31.8				
240-285	3345.8-3358	36.43-36.5				
322-335.4	3600-4400	(2)				
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

eee the felletting operation analyzer cettings	•
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	30 to 1000 QP		300 kHz	
Above 1000	Peak Peak		1 MHz	
Above 1000	Average	1 MHz	10 Hz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

IE111.	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

All the modulation modes have been tested, and the worst result was report as below:

Limit: FCC_PART15_B_03m_QP

Mode: Mode 2

Note:

Polarization: Vertical

AC 120V/60Hz Power:

Temperature:

Humidity: 50 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		39.0245	13.71	15.12	28.83	40.00	-11.17	QP			
2		131.7577	22.10	10.92	33.02	43.50	-10.48	QP			
3		219.8446	13.82	10.85	24.67	46.00	-21.33	QP			
4		423.5403	12.52	14.74	27.26	46.00	-18.74	QP			
5	*	665.8034	15.84	20.77	36.61	46.00	-9.39	QP			
6		958.7943	5.73	26.57	32.30	46.00	-13.70	QP			

^{*:}Maximum data x:Over limit !:over margin

Limit: FCC_PART15_B_03m_QP

Mode: Mode 2

Note:

Temperature: Polarization: Horizontal

Power: AC 120V/60Hz

Humidity: 50 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.5094	6.10	19.03	25.13	40.00	-14.87	QP			
2	*	146.8877	21.49	11.43	32.92	43.50	-10.58	QP			
3		239.9874	18.58	10.73	29.31	46.00	-16.69	QP			
4		300.3672	15.82	12.60	28.42	46.00	-17.58	QP			
5		365.5391	12.83	14.51	27.34	46.00	-18.66	QP			
6		996.4995	6.46	27.57	34.03	54.00	-19.97	QP			

^{*:}Maximum data x:Over limit !:over margin

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

I = I I I I ·	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	k	Comment
	Low Channel (2402 MHz)-Above 1G						
4804.78	61.47	-3.64	57.83	74.00	-16.17	Pk	Vertical
4804.78	51.36	-3.64	47.72	54.00	-6.28	AV	Vertical
7206.68	58.22	-0.95	57.27	74.00	-16.73	Pk	Vertical
7206.68	44.47	-0.95	43.52	54.00	-10.48	AV	Vertical
4804.79	65.36	-3.64	61.72	74.00	-12.28	Pk	Horizontal
4804.79	49.44	-3.64	45.80	54.00	-8.20	AV	Horizontal
7206.78	58.26	-0.96	57.30	74.00	-16.70	Pk	Horizontal
7206.78	45.13	-0.96	44.17	54.00	-9.83	AV	Horizontal
		Mid Chan	nel (2441 MHz)-Abo	ove 1G			
4882.70	62.47	-3.67	58.80	74.00	-15.20	Pk	Vertical
4882.70	46.80	-3.67	43.13	54.00	-10.87	AV	Vertical
7323.79	55.29	-0.82	54.47	74.00	-19.53	Pk	Vertical
7323.79	44.80	-0.82	43.98	54.00	-10.02	AV	Vertical
4882.72	64.80	-3.67	61.13	74.00	-12.87	Pk	Horizontal
4882.72	46.69	-3.67	43.02	54.00	-10.98	AV	Horizontal
7323.80	60.69	-0.82	59.87	74.00	-14.13	Pk	Horizontal
7323.80	44.80	-0.82	43.98	54.00	-10.02	AV	Horizontal
		High Chan	nel (2480 MHz)- Ab	ove 1G			
4960.60	56.77	-3.59	53.18	74.00	-20.82	Pk	Vertical
4960.60	50.47	-3.59	46.88	54.00	-7.12	AV	Vertical
7440.69	54.58	-0.68	53.90	74.00	-20.10	Pk	Vertical
7440.69	45.30	-0.68	44.62	54.00	-9.38	AV	Vertical
4960.72	61.36	-3.59	57.77	74.00	-16.23	Pk	Horizontal
4960.72	50.44	-3.59	46.85	54.00	-7.15	AV	Horizontal
7440.78	61.26	-0.68	60.58	74.00	-13.42	Pk	Horizontal
7440.78	46.88	-0.68	46.20	54.00	-7.80	AV	Horizontal

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

⁽²⁾ Emission Level= Reading Level+Probe Factor +Cable Loss.

⁽³⁾All other emissions more than 20dB below the limit.

All the modulation modes have been tested, the worst result was report as below:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Comment
(1411 12)	(4541)	(ab)	1Mbps Non-	` ' '	(42)	•	
2337.41	62.76	-13.06	49.7	74	-24.3	Pk	Vertical
2337.41	56.9	-13.06	43.84	54	-10.16	AV	Vertical
2400	64.74	-13.06	51.68	74	-22.32	Pk	Vertical
2400	56.32	-13.06	43.26	54	-10.74	AV	Vertical
2352.92	63.47	-13.06	50.41	74	-23.59	Pk	Horizontal
2352.92	56.21	-13.06	43.15	54	-10.85	AV	Horizontal
2400	65.31	-13.06	52.25	74	-21.75	Pk	Horizontal
2400	56.63	-13.06	43.57	54	-10.43	AV	Horizontal
2483.5	64.4	-12.78	51.62	74	-22.38	Pk	Vertical
2483.5	63.32	-12.78	50.54	54	-3.46	AV	Vertical
2483.5	63.73	-12.78	50.95	74	-23.05	Pk	Horizontal
2483.5	62.19	-12.78	49.41	54	-4.59	AV	Horizontal
2403.3	02.19	-12.70		pping	-4.53	AV	Tionzoniai
2350.58	63.26	-13.06	50.2	74	-23.8	Pk	Vertical
2350.58	57.3	-13.06	44.24	54	-9.76	AV	Vertical
2400	65.32	-13.06	52.26	74	-9.76	Pk	Vertical
2400	57.56	-13.06	44.5	54	-9.5	AV	Vertical
	62.87		49.81	74		Pk	
2674.4		-13.06			-24.19		Horizontal
2674.4	56.81	-13.06	43.75	54	-10.25	AV	Horizontal
2400	66.3	-13.06	53.24	74	-20.76	Pk	Horizontal
2400	57.24	-13.06	44.18	54	-9.82	AV	Horizontal
2483.5	61.39	-12.78	48.61	74	-25.39	Pk	Vertical
2483.5	57.11	-12.78	44.33	54	-9.67	AV	Vertical
2483.5	61.72	-12.78	48.94	74	-25.06	Pk	Horizontal
2483.5	56.54	-12.78	43.76	54	-10.24	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

■ Spurious Emission	Spurious Emission in Restricted Band 3260MMHz-18000MHz							
EUT: 4inch 3G Dual SIM Model No.: T4016								
Temperature:	20 ℃	Relative Humidity:	48%					
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li					

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			1Mbps Non-	hopping			
3260	62.09	-13.06	49.03	74	-24.97	Pk	Vertical
3260	51.23	-13.06	38.17	54	-15.83	AV	Vertical
3260	62.8	-13.06	49.74	74	-24.26	Pk	Horizontal
3260	52.54	-13.06	39.48	54	-14.52	AV	Horizontal
3332	63.73	-12.78	50.95	74	-23.05	Pk	Vertical
3332	52.65	-12.78	39.87	54	-14.13	AV	Vertical
3332	63.06	-12.78	50.28	74	-23.72	Pk	Horizontal
3332	51.52	-12.78	38.74	54	-15.26	AV	Horizontal
17798	65.54	-12.24	53.3	74	-20.7	Pk	Vertical
17798	51.32	-12.24	39.08	54	-14.92	AV	Vertical
17789	64.76	-12.24	52.52	74	-21.48	Pk	Horizontal
17789	50.43	-12.24	38.19	54	-15.81	AV	Horizontal
			1Mbps ho	pping			
3260	62.59	-13.06	49.53	74	-24.47	Pk	Vertical
3260	52.16	-13.06	39.1	54	-14.9	AV	Vertical
3260	60.97	-13.06	47.91	74	-26.09	Pk	Horizontal
3260	51.54	-13.06	38.48	54	-15.52	AV	Horizontal
3332	60.72	-12.78	47.94	74	-26.06	Pk	Vertical
3332	52.6	-12.78	39.82	54	-14.18	AV	Vertical
3332	61.89	-12.78	49.11	74	-24.89	Pk	Horizontal
3332	50.32	-12.78	37.54	54	-16.46	AV	Horizontal
17788	64.11	-12.24	51.87	74	-22.13	Pk	Vertical
17788	52.45	-12.24	40.21	54	-13.79	AV	Vertical
17791	63.75	-12.24	51.51	74	-22.49	Pk	Horizontal
17791	52.81	-12.24	40.57	54	-13.43	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and DA 00-705

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

IF() ·	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Number of Hopping (Channel)	Adaptive Frequency hopping (Channel)	limit	Verdict	
79	20	≥15	Pass	

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and DA 00-705

7.4.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

 $RBW \geq 30 KHz$

 $VBW \geq 3*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

 - -	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Modulation	Channel	Channel	Measurement	Limit		
Mode	Number	Frequency	Bandwidth	(kHz)		Verdict
		(MHz)	(kHz)			
GFSK	0	2402	1000.00	>902.500	20dB BW	PASS
	39	2441	1005.00	>901.900	20dB BW	PASS
	78	2480	1000.00	>899.500	20dB BW	PASS
π/4-DQPSK	0	2402	1000.00	>835.333	2/3 of 20dB BW	PASS
	39	2441	1000.00	>840.600	2/3 of 20dB BW	PASS
	78	2480	1000.00	>835.333	2/3 of 20dB BW	PASS
8DPSK	0	2402	1000.00	>839.333	2/3 of 20dB BW	PASS
	39	2441	1000.00	>840.000	2/3 of 20dB BW	PASS
	78	2480	1000.00	>839.333	2/3 of 20dB BW	PASS

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and DA 00-705

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

 $RBW \ge 1MHz$

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Modulation Mode	Channel Number	Packet type	Mode	Hops Over Occupancy Time (ms)	Pulse width (ms)	dwell time (ms)	Limit (ms)	Verdict
	39	DH1	Normal	320.00	0.410	131.200	<400	PASS
	39		AFH	160.00	0.410	65.600	<400	PASS
GFSK	39	DH3	Normal	160.00	1.664	266.240	<400	PASS
Gran	39	סחס	AFH	80.00	1.664	133.120	<400	PASS
	39	DH5	Normal	106.67	2.901	309.450	<400	PASS
	39	טחט	AFH	53.33	2.901	154.710	<400	PASS
π/4-DQPSK	39	2DH1	Normal	320.00	0.418	133.760	<400	PASS
	39		AFH	160.00	0.418	66.880	<400	PASS
	39	2DH3	Normal	160.00	1.664	266.240	<400	PASS
	39		AFH	80.00	1.664	133.120	<400	PASS
	39	2DH5	Normal	106.67	2.910	310.410	<400	PASS
	39		AFH	53.33	2.910	155.190	<400	PASS
8DPSK	39	3DH1	Normal	320.00	0.418	133.760	<400	PASS
	39		AFH	160.00	0.418	66.880	<400	PASS
	39	3DH3	Normal	160.00	1.673	267.680	<400	PASS
	39	טחט	AFH	80.00	1.673	133.840	<400	PASS
	39	3DH5	Normal	106.67	2.918	311.263	<400	PASS
<u> </u>	39		AFH	53.33	2.918	155.617	<400	PASS

Note:

A Period Time = (channel number)*0.4

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and DA 00-705

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.6.6 Test Results

 - -	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Test Channel	Frequency (MHz)	Measurement Bandwidth (KHz)	Limit (kHz)	Verdict	
	(******	1Mbps	(*** -=/		
00	2402	902.500	N/A	PASS	
39	2441	901.900	N/A	PASS	
78	2480	899.500	N/A	PASS	
		2Mbps			
00	2402	1253.000	N/A	PASS	
39	2441	1260.900	N/A	PASS	
78	2480	1253.000	N/A	PASS	
3Mbps					
00	2402	1259.000	N/A	PASS	
39	2441	1260.000	N/A	PASS	
78	2480	1259.000	N/A	PASS	

Note: N/A (Not Applicable)

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and DA 00-705

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

IEIII.	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict
			1Mbps		
00	2402	Default	-0.248	30	PASS
39	2441	Default	0.620	30	PASS
78	2480	Default	1.599	30	PASS
			2Mbps		
00	2402	Default	-1.035	20.97	PASS
39	2441	Default	-0.241	20.97	PASS
78	2480	Default	1.125	20.97	PASS
	3Mbps				
00	2402	Default	-0.864	20.97	PASS
39	2441	Default	-0.055	20.97	PASS
78	2480	Default	1.678	20.97	PASS

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and DA 00-705

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	4inch 3G Dual SIM Smart phone	Model No.:	T4016
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/ Mode4	Test By:	Jack Li

Francisco Dand	Dalta Daak ta hand amiasian/dDa	_l imit(dPa)	Vandiat		
Frequency Band	Delta Peak to band emission(dBc)	>Limit(dBc)	Verdict		
1Mbps Non-hopping					
2400	50.465	20	Pass		
2483.5	55.383	20	Pass		
	2Mbps Non-hopping				
2400	52.959	20	Pass		
2483.5	57.169	20	Pass		
	3Mbps Non-hopping				
2400	52.279	20	Pass		
2483.5	56.501	20	Pass		
1Mbps hopping					
2400	51.564	20	Pass		
2483.5	54.435	20	Pass		
2Mbps hopping					
2400	53.453	20	Pass		
2483.5	57.630	20	Pass		
3Mbps hopping					
2400	52.434	20	Pass		
2483.5	57.040	20	Pass		

Note: Hopping enabled and disabled have evaluated, and the wortest data was reported

System Display Settings

2,479 860 GHz 2,483 500 GHz 0.819 dBm -57.630 dBm

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END OF REPORT