

IMD0033 - Probabilidade Lesson 22 - Comparing Frequency Distributions

Ivanovitch Silva November, 2018

Agenda

- Grouped bar plots
- Comparing histograms
- Kernel density estimates
- Strip plots
- Box plots
- Outliers

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

PREVIOUSLY ON...

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

50 %

Gender	Frequency		
Male	147		
Female	170		

Organize the data in comprehensible forms to find patterns

Comparing Frequency Distribution

Challenge: Do older players play less?

sns.countplot(x = 'age_mean_relative', hue = 'min_mean_relative', data = wnba)

Comparing Histograms

Comparing Histograms

Kernel Density Estimate (KDE) Plots

Kernel Density Estimate Plots

Drawbacks of Kernel Density Plots

Strip Plots

Box Plots

Box Plots

upper quartile - lower quartile = interquartile range

<matplotlib.axes._subplots.AxesSubplot at 0x1a180c4518>

<matplotlib.axes._subplots.AxesSubplot at 0x1a18180208>

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

Gender	Frequency	
Male	147	
Female	170	

Organize the data in comprehensible forms to find patterns

