MA 110 Linear Algebra and Differential Equations Lecture 09

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay

http://www.math.iitb.ac.in/~srg/

Spring 2025

Review of last lecture

We mainly discussed the notion of determinant of a square matrix $\mathbf{A} = (a_{jk})$ of size $n \times n$ and observed the following.

• Defined inductively by det $\mathbf{A} = a_{11}$ if n = 1 and for $n \ge 2$,

$$\det \mathbf{A} := a_{11}M_{11} - a_{12}M_{12} + \dots + (-1)^{1+n}a_{1n}M_{1n}.$$

where M_{jk} denotes the the (j,k)th minor of $\bf A$., which is the determinant of the $(n-1)\times(n-1)$ submatrix of $\bf A$ obtained by deleting the jth row and the kth column of $\bf A$,

- det A has a similar expansion along any of its rows, and also a similar expansion along any of its columns.
- $\det \mathbf{A}^{\mathsf{T}} = \det \mathbf{A}$.
- The determinant of a triangular matrix is the product of its diagonal entries. In particular, det I = 1.
- The determinant function $\mathbf{A} \longmapsto \det \mathbf{A}$ from $\mathbb{R}^{n \times n}$ to \mathbb{R} :is multilinear and alternating in columns (as well as rows).
- **A** is invertible \iff det **A** \neq 0.

Determinant and Rank

We now relate the rank of a matrix with determinants of its submatrices.

Lemma

Let **A** be an $m \times n$ matrix, and $r \in \mathbb{N}$. Then

rank $\mathbf{A} \geq r \iff \exists \text{ an } r \times r \text{ submatrix } \mathbf{B} \text{ of } \mathbf{A} \text{ with } \det \mathbf{B} \neq 0$

Proof. Suppose rank $\mathbf{A} \geq r$. Since rank \mathbf{A} equals the column rank of \mathbf{A} , there are r linearly independent columns of \mathbf{A} . Let \mathbf{C} denote the $m \times r$ submatrix of \mathbf{A} consisting of these r columns. Then the column rank of \mathbf{C} is r, and so the row rank of \mathbf{C} is also r. Hence there are r linearly independent rows of \mathbf{C} . Let \mathbf{B} denote the $r \times r$ submatrix of \mathbf{C} consisting of these r rows. These r rows of \mathbf{B} are linearly independent, and so rank $\mathbf{B} = r$. Hence \mathbf{B} is invertible, and so det $\mathbf{B} \neq 0$.

Conversely, suppose **B** is an $r \times r$ submatrix of **A** such that det $\mathbf{B} \neq 0$. Then **B** is invertible, and so rank $\mathbf{B} = r$. Hence the r rows of **B**, and consequently, the corresponding r rows of **A** are linearly independent. Hence rank $\mathbf{A} \geq r$.

Corollary (Determinantal Characterization of Rank)

Let **A** be an $m \times n$ matrix, and $r \in \mathbb{N}$. Then $r = \operatorname{rank} \mathbf{A}$ if and only if the following two conditions are satisfied.

- (i) there is an $r \times r$ submatrix **B** of **A** such that det **B** \neq 0,
- (ii) det C = 0 for every $(r+1) \times (r+1)$ submatrix C of A.

Proof. This is an immediate consequence of the above lemma.

We remark that although the above result is of theoretical interest, it does not give a practically useful method for finding the rank of a matrix **A**. On the other hand, transformation of **A** to a Row Echelon Form quickly reveals its rank.

Example

Let
$$\mathbf{A} := \begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$$
. Since $\det \begin{bmatrix} 3 & 0 \\ -6 & 42 \end{bmatrix} \neq 0$

and since the determinants of all 3×3 submatrices of **A** are equal to 0, we see that rank $\mathbf{A} = 2$.

This also follows by noting that $\bf A$ can be transformed by EROs to

$$\mathbf{A}' = \begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 42 & 28 & 58 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

which is in REF, and by noting that rank \mathbf{A} is equal to the row rank of \mathbf{A}' , which is 2.

We now consider another classical method of finding solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is invertible.

Proposition (Cramer's Rule)

Let $\mathbf{A} := \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ be invertible, and let $\mathbf{b} \in \mathbb{R}^{n \times 1}$. For $k = 1, \dots, n$, let $\mathbf{B}_k := \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{b} & \cdots & \mathbf{c}_n \end{bmatrix}$ be the matrix obtained by replacing the kth column \mathbf{c}_k of \mathbf{A} by the right side \mathbf{b} of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then the unique solution $\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\mathsf{T}$ of the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by $x_k := \frac{\det \mathbf{B}_k}{\det \mathbf{A}}$ for $k = 1, \dots, n$.

Proof. If $\mathbf{A}\mathbf{x} = \mathbf{b}$, then $\mathbf{b} = x_1\mathbf{c}_1 + \dots + x_k\mathbf{c}_k + \dots + x_n\mathbf{c}_n$. By the first two crucial properties of the determinant function, $\det \mathbf{B}_k = \det \begin{bmatrix} \mathbf{c}_1 & \cdots & x_1\mathbf{c}_1 + \cdots + x_k\mathbf{c}_k + \cdots + x_n\mathbf{c}_n & \cdots & \mathbf{c}_n \end{bmatrix} = x_k \det \mathbf{A}$ for $k = 1, \dots, n$. Since \mathbf{A} is invertible, $\det \mathbf{A} \neq 0$. Hence the result.

Let
$$\mathbf{A} := \begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & 4 \\ 1 & 4 & -5 \end{bmatrix}$$
, $\mathbf{b} := \begin{bmatrix} 13 \\ 11 \\ -31 \end{bmatrix}$. Then $\det \mathbf{A} = -60$. Also,

$$\det \mathbf{B}_1 = \det \begin{bmatrix} 13 & -2 & 1 \\ 11 & 1 & 4 \\ -31 & 4 & -5 \end{bmatrix} = -60,$$

$$\det \mathbf{B}_2 = \det \begin{bmatrix} 3 & 13 & 1 \\ -2 & 11 & 4 \\ 1 & -31 & -5 \end{bmatrix} = 180,$$

$$\det \mathbf{B}_3 = \det \begin{bmatrix} 3 & -2 & 13 \\ -2 & 1 & 11 \\ 1 & 4 & -31 \end{bmatrix} = -240.$$

Hence the unique solution of the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by $x_1 := 1, x_2 = -3, x_3 = 4$, that is, $\mathbf{x} = \begin{bmatrix} 1 & -3 & 4 \end{bmatrix}^T$. Note: Cramer's Rule is rarely used for solving linear systems; the preferred method is the GEM. But Cramer's Rule is of theoretical interest, especially in solutions of differential egns.

Formula for the Inverse of a Matrix

Let $\mathbf{A} := [a_{jk}] \in \mathbb{R}^{n \times n}$ with $n \geq 2$. Recall that \mathbf{A}_{jk} denotes the submatrix of \mathbf{A} obtained by deleting the jth row and the kth column of \mathbf{A} , and $M_{jk} := \det \mathbf{A}_{jk}$, the (j,k)th minor of \mathbf{A} , for $j,k=1,\ldots,n$. We define $C_{jk} := (-1)^{j+k}M_{jk}, j,k=1,\ldots,n$. It is called the **cofactor** of the entry a_{jk} . Then the expansion of det \mathbf{A} in terms of the kth column is given by

$$\det \mathbf{A} = \sum_{\ell=1}^n a_{\ell k} C_{\ell k}, \quad \text{where } k \in \{1, \dots, n\}.$$

Define $\mathbf{C} := [C_{jk}] \in \mathbb{R}^{n \times n}$. It is called the **cofactor matrix** of \mathbf{A} .

Theorem

Let **A** be a square matrix. Then $C^TA = (\det A)I = AC^T$. In particular, if $\det A \neq 0$, then **A** is invertible and

$$\mathbf{A}^{-1} = \mathbf{C}^{\mathsf{T}} / \det \mathbf{A}$$
.

Proof. Let $\mathbf{D} := \mathbf{C}^{\mathsf{T}} \mathbf{A} = [d_{jk}]$ say. By the definition of matrix multiplication, the (j,k)th entry of \mathbf{D} is $d_{jk} = \sum_{\ell=1}^{n} C_{\ell j} a_{\ell k}$.

If j = k, then $d_{kk} = \sum_{\ell=1}^{n} C_{\ell k} a_{\ell k} = \det \mathbf{A}$, being the expansion in terms of its kth column of \mathbf{A} .

Let now $j \neq k$. Write $\mathbf{A} := \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_j & \cdots & \mathbf{c}_n \end{bmatrix}$ in terms of its columns, and let \mathbf{B} denote the matrix obtained by replacing the jth column \mathbf{c}_j by the kth column \mathbf{c}_k of \mathbf{A} , that is, $\mathbf{B} := \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_k & \cdots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} b_{jk} \end{bmatrix}$, say. Then det $\mathbf{B} = 0$ since two columns are identical. Expanding det \mathbf{B} in terms of its jth column, det $\mathbf{B} = \sum_{\ell=1}^n b_{\ell j} C_{\ell j} = \sum_{\ell=1}^n a_{\ell k} C_{\ell j}$. Thus $d_{jk} = \sum_{\ell=1}^n C_{\ell j} a_{\ell k} = \det \mathbf{B} = 0$ if $j \neq k$.

 $\mathbf{AC}^{\mathsf{T}} = (\det \mathbf{A})\mathbf{I}$, and so $\mathbf{C}^{\mathsf{T}}\mathbf{A} = (\det \mathbf{A})\mathbf{I} = \mathbf{AC}^{\mathsf{T}}$. In case $\det \mathbf{A} \neq 0$, we see that \mathbf{A} is invertible, and $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}\mathbf{C}^{\mathsf{T}}$. \square Remark: \mathbf{C}^{T} is sometimes called the adjugate of \mathbf{A} and denoted by $\mathrm{adj}(\mathbf{A})$. Thus, $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} adj(\mathbf{A})$ when $\det \mathbf{A} \neq 0$.

This shows that $\mathbf{C}^{\mathsf{T}}\mathbf{A} = (\det \mathbf{A})\mathbf{I}$. Similarly, we can prove

Multiplicativity of Determinant Function

Proposition

Let **A**, **B** be $n \times n$ matrices. Then det(AB) = (det A)(det B).

Proof. Suppose first **A** is not invertible. Then $(\det \mathbf{A}) = 0$. Also, **AB** is not invertible; otherwise there would be **C** such that $(\mathbf{AB})\mathbf{C} = \mathbf{I}$, that is, $\mathbf{A}(\mathbf{BC}) = \mathbf{I}$, which is impossible since **A** is not invertible. Hence $\det(\mathbf{AB}) = 0 = (\det \mathbf{A})(\det \mathbf{B})$.

Next, suppose $\bf A$ is invertible. Then we can transform $\bf A$ to a diagonal matrix $\bf A'$ (having nonzero diagonal elements) by elementary row transformations of type I and type II. Then $\det \bf A' = \det \bf A$ if an even number of row interchanges are involved, and $\det \bf A' = -\det \bf A$ otherwise.

We observe that the same elementary row operations transform \mathbf{AB} to $\mathbf{A'B}$.

To see this, we can use Q. 2.3 in Tut Sheet 2: Making an elementary row operation is equivalent to multiplying on the left by the corresponding elementary matrix! And of course $\mathbf{E}(AB) = (EA)B$ where E is any elementary matrix.

Hence $\det \mathbf{A}'\mathbf{B} = \det \mathbf{A}\mathbf{B}$ if an even number of row interchanges are involved, and $\det \mathbf{A}'\mathbf{B} = -\det \mathbf{A}\mathbf{B}$ otherwise.

Thus it is enough to show that

$$det(AB) = (det A)(det B)$$
 when A is a diagonal matrix.

But this is easily seen because

$$\mathbf{A} := \begin{bmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{bmatrix} \text{ and } \mathbf{B} := \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{bmatrix} \Longrightarrow \mathbf{A} \mathbf{B} := \begin{bmatrix} \alpha_1 \mathbf{b}_1 \\ \alpha_2 \mathbf{b}_2 \\ \vdots \\ \alpha_n \mathbf{b}_n \end{bmatrix},$$

where $\mathbf{b}_1, \dots, \mathbf{b}_n$ denote the rows of **B**. Hence

$$\det(\mathbf{AB}) = \alpha_1 \alpha_2 \cdots \alpha_n \det \mathbf{B} = (\det \mathbf{A})(\det \mathbf{B}).$$

Corollary

If **A** is invertible, then $\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}$.

Proof.
$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I} \implies (\det \mathbf{A})(\det \mathbf{A}^{-1}) = \det \mathbf{I} = 1.$$

Example

Let
$$\mathbf{A} := \begin{bmatrix} 13 & 0 & 0 \\ 11 & 1 & 0 \\ -31 & 22 & -5 \end{bmatrix}$$
. Then $\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} = -\frac{1}{65}$.