

Computação Gráfica e Interfaces, LEIC

Exame Final 2004/2005, Época Normal 21 de Junho de 2005

(Com consulta, 2H 30M)

Na Figura 1 a superfície é iluminada por duas fontes de luz pontuais L1 e L2 (modelo de Phong) de intensidade I_{L1}=10, I_{L2}=5 e I_a=2. V₁ representa um ponto de observação. As características da superfície são K_a=K_d=0.8, K_s=0.3 e n=1.

- a)- Desenhe a geometria de vectores no ponto A correspondente à iluminação percebida por um observador em V_1 e calcule a intensidade luminosa respectiva.
- b)- Em que região da figura terá de estar o observador para obter a máxima reflexão no ponto A?
- c)- Refine a resposta anterior, calculando a posição exacta do observador.
- 2. Comente a afirmação: "As *Bump Textures* produzem o seu melhor efeito em superfícies com boa iluminação especular".
- **3.** A figura junta mostra dois polígonos que partilham uma aresta. Diga, justificando, se os valores indicados da iluminação correspondem a "Flat-Shading", "Smooth-Shading de Gouraud" ou "Smooth-Shading de Phong" (considere I_A=10; I_B=6; I_C=2; I_D=3; I_E=4).

- **4.** Considere a órbita circular de **C** em torno de **B**, e de **B** em torno de **A**. A velocidade angular de **C** é 2 vezes superior à velocidade de **B**.
 - a)- Determine a matriz de Transformações Geométricas a aplicar ao objecto **B** para este rodar de um ângulo α (conhecido o centro de **A**).
 - **b)-** Determine a matriz de Transformações Geométricas a aplicar ao objecto **C** considerando, no mesmo espaço de tempo, a rotação anterior de **B** (conhecidos os centros de **A** e de **B**).

- **5.** Comente a afirmação: "Comparando-se o modelo HSV com o CIE, conclui-se que pode representar mais cores do que o RGB, mas é vulgarmente limitado pelo hardware".
- **6.** Sejam, num sistema de modelação sólida baseada em CSG, dois sólidos **B**₁ e **B**₂, correspondentes a instanciações de um cubo centrado na origem e com vértices em (±1, ±1, ±1), acompanhadas da aplicação, respectivamente, das transformações geométricas:

$$M_1=T(1,6,0).S(2, 6, 4)$$
 e $M_2=S(6, 10, 6)$

- T Translação; S Escalamento; R Rotação
- a)- Esboce o sólido resultante da árvore $A = B_2 B_1$ no referencial xyz.
- b)- Verifique a validade do sólido obtido, à luz da fórmula de Euler Generalizada.
- **7.** Para o polígono da figura junta, estabeleça a tabela inicial de arestas do algoritmo da Lista de Arestas Activas.

8. As curvas de Hermite são definidas pela expressão Q=T.M_H.G_H, em que G_H = [P₁ P₄ R₁ R₄]. Suponha que pretendemos definir um novo tipo de curva, com Q=T.M_x.G_x, sendo G_x = [R₁ R₄ P₂ P₃], em que P₂ e P₃ correspondem aos seus homónimos de Bézier. Determine qual será a matriz de base M_x associada a estas curvas. Indique simbolicamente as operações que necessitar, sem efectuar as operações finais.

AAS/JGB/JVV