# Hydrogen Isotope Separation via Quantum Sieving for Nuclear Fusion

By lizalaarab Elhaimeur

Womanium Quantum+AI for Climate



### Nuclear Fusion: Clean Energy's Future

- Promises abundant, low-carbon energy
- Key challenge: Hydrogen isotope separation
- Current methods: Energy-intensive and inefficient
- Our focus: Novel separation techniques
- Potential impact: Global energy revolution

# Problem: Hydrogen Isotope Separation Challenge

- Traditional methods inefficient for fusion needs
  - High energy use, low selectivity
- ITER facility demands not met by current tech
  - High purity, large-scale, continuous separation required
- Key challenges:
  - Selectivity
  - Efficiency
  - Scale
  - Safety
- Innovation needed:
  - Novel materials and methods
  - Highly selective, energy-efficient, scalable, safe solution

# Quantum Sieving: A Promising Approach

- Concept: Selective filtering based on quantum properties
- Key principle: De Broglie wavelength differences
- Advantages:
  - Low energy consumption
  - High selectivity
  - Near-ambient operation
- Potential impact:
  - Revolutionize fusion fuel recovery
  - Address key separation challenges
- Research opportunity: Limited existing literature

# Past Approaches to Selectivity Approximation

- Monte Carlo Variations
  - Can simulate quantum effects
  - O(N²) complexity
- Classical Molecular Dynamics
  - Large-scale simulations
  - No quantum effects
- Density Functional Theory (DFT)
  - Models electronic structure
  - Intensive for large systems
- Quantum Chemistry Methods
  - High accuracy for small molecules
  - Poor scaling

#### Proposed Solution: Hybrid Quantum-Classical Simulation

- Pre-screening with Classical Methods
  - Reduce search space before expensive quantum simulations
  - Classical Algorithms:
    - Monte Carlo variations
    - Machine Learning techniques (e.g., Neural Networks, SVMs)
  - Advantages: Efficient, handles large datasets
- Quantum Simulation
  - Algorithm: Variational Quantum Eigensolver (VQE)
    - Finds ground state of system Hamiltonian
  - Required Resources:
    - 100-10,000 qubits (for electronic states, orientation, ancillary)
- Quantum Simulation Process
  - Encode particles, positions, and momenta into qubits
  - Construct Hamiltonian (including interactions and energies)
  - Simulate time evolution using VQE
  - Measure system for relevant data (adsorption energies, diffusion coefficients, isotope ratios)

#### Proposed Solution (cont)

- Advantages of Quantum Simulation
  - Accurately simulates quantum effects
  - Provides exact solutions (within error bounds)
  - Scales as O(N) significantly better than classical methods
- Hybrid Approach Benefits
  - Combines efficiency of classical pre-screening
  - Leverages quantum accuracy for final simulations
  - Potential for breakthrough in material discovery for quantum sieving

### Computational Challenges

- Main bottleneck: Hamiltonian construction
  - Scales poorly with system size
- Example: Carbon lattice scaling
  - o 'C': 3 sec
  - 'C-C-C': 10 min 45 sec
  - Trend: Exponential growth
- Large systems: Prohibitive costs
  - Imagine constructing a Hamiltonian for a 100-atom system ••
  - Computational cost becomes prohibitive
- Imperative: Cut costs, optimize process
  - Efficient algorithms
  - Pre-screening methods

#### **Future Research Directions**

- Exploration of new quantum sieving materials
  - Metal-organic frameworks (MOFs)
  - 2D materials (e.g., graphene derivatives)
- Integration with other separation technologies
- Scaling up for industrial applications
- Extending to separation of other isotopes beyond hydrogen

### Background Research: Isotope Separation for Fusion

- Approaches and State of the Art
  - Traditional Methods
    - High energy use, low efficiency for hydrogen
  - Quantum Sieving (Beenakker, 1995)
    - Exploits quantum effects
  - Current Simulations: PIGCMC
    - Can model quantum effects
    - O(N²) complexity
  - Machine Learning
    - Aims to narrow material search space
- Advantages and Disadvantages
  - o Traditional: Well-established, but inefficient
  - Quantum sieving: Promising, hard to simulate
  - PIGCMC: State-of-the-art, computationally expensive
  - ML: Potential to accelerate discovery, needs validation
- Research Gap
  - Lack of quantum/hybrid approaches for quantum sieving simulation

## Conclusion: Advancing Isotope Separation

- Key Takeaways
  - Challenge: Efficient hydrogen isotope separation for fusion
  - Solution: Quantum sieving leveraging quantum effects
  - Approach: Hybrid classical-quantum simulations
  - Impact: Applications beyond fusion, potential spin-offs

## Q&A

Open for questions and discussion

#### References

- H. Oh and M. Hirscher, "Quantum sieving for separation of hydrogen isotopes using MOFs," *European Journal of Inorganic Chemistry*, vol. 2016, no. 27, pp. 4278–4289, Jun. 2016, doi: 10.1002/ejic.201600253.
- N. S. Bobbitt et al., "MOFX-DB: An online database of computational adsorption data for nanoporous materials," Journal of Chemical & Engineering Data, vol. 68, no. 2, pp. 483–498, Jan. 2023, doi: 10.1021/acs.jced.2c00583.
- Q. Wang, S. Challa, D. Sholl, and J. Johnson, "Quantum sieving in carbon nanotubes and zeolites," *Physical Review Letters*, vol. 82, no. 5, pp. 956–959, Feb. 1999, doi: 10.1103/physrevlett.82.956.
- J. Cai, Y. Xing, and X. Zhao, "Quantum sieving: feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials," *RSC Advances*, vol. 2, no. 23, p. 8579, Jan. 2012, doi: 10.1039/c2ra01284g.
- J. Vega *et al.*, "Disruption prediction with artificial intelligence techniques in tokamak plasmas," *Nature Physics*, vol. 18, no. 7, pp. 741–750, Jun. 2022, doi: 10.1038/s41567-022-01602-2.
- H. Tanaka, D. Noguchi, A. Yuzawa, T. Kodaira, H. Kanoh, and K. Kaneko, "Quantum effects on hydrogen isotopes adsorption in nanopores," *Journal of Low Temperature Physics*, vol. 157, no. 3–4, pp. 352–373, Jul. 2009, doi: 10.1007/s10909-009-9917-8.
- Beenakker, J. J. M., et al. (1995). "Selective Adsorption and Quantum Sieving of Hydrogen Isotopes in Carbon Nanotubes." Chemical Physics Letters, 232(5-6), 379-382.
- ITER Organization. (2023). "ITER Tokamak Resources." https://www.iter.org/