Регуляризация. Линейная классификация. Метрики качества.

Егор Соловьев Слайды Евгения Соколова

План на ближайшие занятия

- 08.04: Линейная регрессия (продолжение), линейная классификация, метрики качества
- 15.04: Метрики качества, многоклассовая классификация, кроссвалидация и гиперпараметры
- 22.04: Практика по линейной классификации и кросс-валидации
- После майских каниикул: контрольная

Д3:

- 1) SQL/SQLAlchemy + scikit-learn
- 2) Параллельное программирование
- 3) Линейная регрессия/классификация

В прошлых сериях: линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x^j$$

Вещественное число!

Мультиколлинеарность

Объекты-признаки

$$X = \begin{pmatrix} 1 & 1000 & 5 & 3 & 4 \\ 9 & 9000 & 10 & 5 & 7.5 \\ 5 & 5000 & 1 & 3 & 2 \end{pmatrix}$$

- Задача предсказания прибыли магазина в следующем месяце
- Рассмотрим в качестве векторов столбцы матрицы (признаки)

Подозрительные зависимости

$$X = \begin{pmatrix} 1 & 1000 & 5 & 3 & 4 \\ 9 & 9000 & 10 & 5 & 7.5 \\ 5 & 5000 & 1 & 3 & 2 \end{pmatrix}$$

- Первый и второй признаки: $x_2 = 1000x_1$
- Первый общий вес товаров в тоннах, второй в килограммах

Подозрительные зависимости

$$X = \begin{pmatrix} 1 & 1000 & 5 & 3 & 4 \\ 9 & 9000 & 10 & 5 & 7.5 \\ 5 & 5000 & 1 & 3 & 2 \end{pmatrix}$$

- $x_5 = 0.5x_3 + 0.5x_4$
- Пятый средняя прибыль за последние два месяца
- Третий и четвертый прибыль в прошлом и позапрошлом месяце

Линейная зависимость

— один из векторов равен сумме с весами остальных векторов

Это плохо:

- Избыточная информация
- Лишние затраты на хранение данных
- Вредит некоторым методам машинного обучения

Линейная зависимость

- Пусть дан набор векторов x_1, \dots, x_n
- Они линейно зависимы, если
 - существуют такие числа β_1 , ..., β_n ,
 - хотя бы одно из которых не равно нулю,
 - что сумма векторов с такими коэффициентами равна нулю

$$\beta_1 x_1 + \dots + \beta_n x_n = 0$$

Мультиколлинеарность

- Наличие зависимостей между признаками
- Приводит к тому, что решений бесконечное число
- Далеко не все из них имеют хорошую обобщающую способность

Линейная зависимость

- Худший случай линейно зависимые признаки
- Существуют такие $\alpha = (\alpha_1, ..., \alpha_d)$, что для любого объекта:

$$\alpha_1 x^1 + \dots + \alpha_d x^d = \langle \alpha, x \rangle = 0$$

Линейная зависимость

- Допустим, мы нашли решение w_{st}
- Модифицируем: $w_1 = w_* + t\alpha$
- (*t* число)
- Ответ нового алгоритма на любом объекте:

$$\langle w_1, x \rangle = \langle w_* + t\alpha, x \rangle = \langle w_*, x \rangle + t \langle \alpha, x \rangle = \langle w_*, x \rangle$$

• *w*₁ — тоже решение!

Коррелирующие признаки

- Тоже плохо
- Сначала разберёмся с корреляцией

Коэффициент корреляции

$$\rho(\xi,\eta) = \frac{\mathbb{E}(\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta)}{\sqrt{\mathbb{D}\xi\mathbb{D}\eta}}$$

Выборочная корреляция:

$$\rho(x,z) = \frac{\sum_{i=1}^{\ell} (x_i - \bar{x})(z_i - \bar{z})}{\sqrt{\sum_{i=1}^{\ell} (x_i - \bar{x})^2 \sum_{i=1}^{\ell} (z_i - \bar{z})^2}}$$

$$\bar{x} = \frac{1}{\ell} \sum_{j=1}^{\ell} x_j; \qquad \bar{z} = \frac{1}{\ell} \sum_{j=1}^{\ell} z_j$$

Коэффициент корреляции

$$\rho(x,z) = \frac{\sum_{i=1}^{\ell} (x_i - \bar{x})(z_i - \bar{z})}{\sqrt{\sum_{i=1}^{\ell} (x_i - \bar{x})^2 \sum_{i=1}^{\ell} (z_i - \bar{z})^2}}$$

- $\rho(x,z) \in [-1,+1]$
- Очень грубо: чем ближе к +1 или -1, тем точнее выполнено уравнение x = az + b

• Мера линейной зависимости

Примеры

Пример

Пример

Распространённое заблуждение

- Может показаться, что из корреляции следует причинноследственная связь
- Это не так!
- Корреляция означает, что события часто происходят вместе
- Но никак не следуют друг из друга

• Больше примеров: http://tylervigen.com/spurious-correlations

Коррелирующие признаки

- Плохо, если есть коррелирующие признаки
- Решение: отбор признаков или их декорреляция
- В следующих лекциях

Переобучение и регуляризация

Пример

- Один признак x
- $a(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_9 x^9$

Пример

• Коэффициенты:

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \dots + 2740x^9$$

- Большие коэффициенты симптом переобучения
- (эмпирическое наблюдение)

Симптом переобучения

- Большие коэффициенты в линейной модели это плохо
- Пример: предсказание роста по весу
 - a(x) = 698x 41714
- Изменение веса на 0.01 кг приведет к изменению роста на 7 см
- Не похоже не правильную зависимость

Регуляризация

- Будем штрафовать за большие веса!
- Функционал:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \to \min_{w}$$

• Регуляризатор:

$$||w||^2 = \sum_{j=1}^a w_j^2$$

Регуляризация

• Регуляризованный функционал ошибки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• Всё ещё гладкий и выпуклый

Коэффициент регуляризации

- λ новый параметр, надо подбирать
- Высокий λ простые модели
- Низкий λ риск переобучения
- Нужно балансировать
- Подбор λ с помощью кросс-валидации

Смысл регуляризации

• Минимизация регуляризованного функционала равносильна решению условной задачи:

$$\begin{cases} \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \to \min_{w} \\ \|w\|^2 \le C \end{cases}$$

$L_{\mathbf{1}}$ -регуляризация

• L_1 -регуляризатор:

$$||w||_1 = \sum_{j=1}^d |w_j|$$

• Регуляризованный функционал ошибки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||_1 \to \min_{w}$$

$L_{\mathbf{1}}$ -регуляризация

- Функционал становится негладким
- Сложнее оптимизировать
- Зато производится отбор признаков
- Часть весов в решении будут нулевыми

Масштабирование признаков

Хороший случай

Плохой случай

- Задача: одобрят ли заявку на грант?
- 1-й признак: сколько успешных заявок было до этого у заявителя
- 2-й признак: год рождения заявителя

• Масштаб: единицы и тысячи

• Все признаки должны иметь одинаковый масштаб

- Отмасштабируем *j*-й признак
- Вычисляем среднее и стандартное отклонение признака на обучающей выборке:

$$\mu_j = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^j$$

$$\sigma_j = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (x_i^j - \mu_j)^2}$$

- Отмасштабируем *j*-й признак
- Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_i^j \coloneqq \frac{x_i^J - \mu_j}{\sigma_j}$$

Важность признаков

• Если признаки масштабированы, то вес характеризует важность признака в модели

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
${\tt lweight}$	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
${\tt gleason}$	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Квадратичные признаки

- Можно добавлять новые признаки, зависящие от исходных
- Модель может восстанавливать более сложные зависимости
- Пример: квадратичные признаки

[площадь, этаж, число комнат]

• Новые признаки:

[площадь, этаж, число комнат, площадь^2, этаж^2, число комнат^2, площадь* этаж, площадь* число комнат, этаж* число комнат,]

Модель линейной классификации

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

Свободный коэффициент

Признаки

Beca

• Добавим единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a+1} w_j x^j = \operatorname{sign} \langle w, x \rangle$$

Уравнение гиперплоскости: $\langle w, x \rangle = 0$

- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$ объект «слева» от неё
- $\langle w, x \rangle > 0$ объект «справа» от неё

• Расстояние от точки до гиперплоскости $\langle w, x \rangle = 0$:

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

• Чем больше $\langle w, x \rangle$, тем дальше объект от разделяющей гиперплоскости

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Функционал ошибки для классификации

Линейная регрессия

• Квадратичное отклонение:

$$L(a, y) = (a - y)^2$$

• Абсолютное отклонение:

$$L(a, y) = |a - y|$$

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

a(x)	у
-1	-1
+1	+1
-1	-1
+1	-1
+1	+1

• Доля неправильных ответов:

$$\frac{1}{5} = 0.2$$

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• На английском: accuracy

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- На английском: accuracy
- ВАЖНО: не переводите это как «точность»!

• Доля неправильных ответов (через отступ):

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

Пороговая функция потерь

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

- Разрывная функция
- Непонятно, как оптимизировать

Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M) = \tilde{L}(y\langle w, x \rangle)$$

Гладкая функция — это функция, имеющая непрерывную производную на всей области определения.

Примеры оценок

Примеры оценок

- $\tilde{L}(M) = \log_2(1 + \exp(-M))$ логистическая
- $\tilde{L}(M) = \exp(-M)$ экспоненциальная
- $\tilde{L}(M) = \max(0, 1-M)$ кусочно-линейная

Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M)$$

• Оценим через нее функционал ошибки:

$$Q(a,X) \le \tilde{Q}(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i)$$

Оценка функции потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [M_i < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i) \to \min_{a}$$

Минимизируем верхнюю оценку

Надеемся, что доля ошибок тоже уменьшится

Примеры оценок

• $\tilde{L}(a,y) = \ln(1 + \exp(-ya))$ — логистическая

Логистическая функция потерь

$$\tilde{Q}(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle))$$

- 1. Выписали индикатор ошибки через отступ
- 2. Заменили пороговую функцию потерь на гладкую функцию

Обучение

- Обучение с помощью любых методов оптимизации
- Например, градиентный спуск:

$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i x_i}{1 + \exp(y_i \langle w, x_i \rangle)}$$

• Борьба с переобучением: регуляризация (так же, как в линейной регрессии)

Логистическая регрессия

Логистическая регрессия

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

Оценивание вероятностей

•
$$P(y = 1 | x) = \pi(x)$$

Оценивание вероятностей

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с $\pi(x) > 0.9$
- 10% невозвращённых кредитов нормально

Оценивание вероятностей

- Баннерная реклама
- $\pi(x)$ вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- $\pi(x)c(x)$ хотим оптимизировать

Оценивание вероятностей

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Оценивание вероятностей

- $P(y = 1 \mid x) = \pi(x)$
- $\pi(x)$ вещественное число
- Классификатор не подходит

Регрессия?

• $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$

Регрессия?

• $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$

Отрицательная вероятность о_О

Регрессия?

$$\pi(x) pprox \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$
Сигмоида

Сигмоида

• $\pi(x) \approx \sigma(\langle w, x \rangle)$

- Как оптимизировать?
- Если $y_i = +1$, то $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\langle w, x_i \rangle \to -\infty$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \max_{w}$$

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

- Слишком слабый штраф
- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф = 1

- Как оптимизировать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \{ [y_i = 1] \log_2 \sigma(\langle w, x_i \rangle) + [y_i = -1] \log_2 (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \max_{w}$$

• Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штра $\varphi = -\infty$

• Если вспомнить арифметику, то получим эквивалентную задачу:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Линейная модель классификации: $a(x) = \mathrm{sign} \langle w, x \rangle$
- Позволяет оценивать вероятности: $\pi(x) = \sigma(\langle w, x \rangle)$
- Обучение: градиентный спуск

Метрики качества классификации

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Несбалансированные выборки

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95

Несбалансированные выборки

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов:

accuracy ∈
$$[q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Цены ошибок

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Кто лучше?

Цены ошибок

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Матрица ошибок

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• precision $(a_1, X) = 0.8$

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• precision(a_2, X) = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$\operatorname{recall}(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• recall(a_1, X) = 0.8

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• recall(a_2, X) = 0.48

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: precision $(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $\operatorname{recall}(a, X) \ge 0.8$
- Максимизируем точность

Несбалансированные выборки

- accuracy(a, X) = 0.99
- precision(a, X) = 0.33
- $\operatorname{recall}(a, X) = 0.1$

	y = 1	y = -1
a(x) = 1	10	20
a(x) = -1	90	10000

Резюме

- Линейные классификаторы разделяют классы гиперплоскостью
- Логистическая регрессия классификация и оценка вероятности
- Качество классификации: доля правильных ответов, точность и полнота

Метрики качества регрессии

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Легко минимизировать
- Сильно штрафует за большие ошибки

Средняя абсолютная ошибка

MAE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

- Сложнее минимизировать
- Выше устойчивость к выбросам

Средняя абсолютная ошибка

Средняя абсолютная ошибка

Средняя абсолютная ошибка

Устойчивые оценки

- Оценка среднего значения матожидание
- Оценка разброса дисперсия

Математическое ожидание

• Характеризует среднее значение случайной величины

$$\mathbb{E} \xi = \left\{egin{aligned} \sum_{i=1}^n x_i p_i, & \text{для дискретных величин} \\ \int_{-\infty}^{+\infty} x \, p(x) dx \,, \text{для непрерывных величин} \end{aligned}
ight.$$

Медиана

- Такое число m, что попасть левее и правее равновероятно
- $P(\xi \le m) \ge 0.5 \text{ u } P(\xi \ge m) \ge 0.5$

Мода

- Для дискретных величин: точка с максимальной вероятностью
- Для непрерывных величин: точка максимума плотности

Центральная величина

Центральная величина

В чем разница?

- Опросили 100 человек
- 99 имеют доход 10.000 рублей
- 1 имеет доход 1.000.000 рублей
- Среднее: $\frac{99*10000+1000000}{100} = 19900$
- Медиана: 10000
- Мода: 10000

Дисперсия

$$\mathbb{E}(\xi - \mathbb{E}\xi)^2 \approx \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Опросили 100 человек
- 99 имеют доход 10.000 рублей
- 1 имеет доход 1.000.000 рублей
- Дисперсия: 9702990000
- Стандартное отклонение (корень из дисперсии): ~98503
- Что-нибудь более устойчивое?

Квантиль

- Q_p-p -квантиль
- Такое число m, что вероятность попасть левее равна p
- Медиана 0.5-квантиль

Квантиль

- $Q_{0.25}$, $Q_{0.75}$ квартили
- $Q_{0.01}$, ..., $Q_{0.99}$ перцентили

Интерквартильный размах

• Устойчивая к выбросам мера разброса:

$$IQR = Q_{0.75} - Q_{0.25}$$

• В нашем примере: IQR = 0

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Подходит, чтобы сравнивать разные модели
- Чем меньше, тем лучше
- Не позволяет понять, хорошая ли модель получилась
- MSE = 32955 хорошо или плохо?

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $\bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$ средний ответ
- Доля дисперсии, объясненная моделью, в общей дисперсии ответов
- Значение можно интерпретировать

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $0 \le R^2 \le 1$ (для разумных моделей)
- $R^2 = 1$ идеальная модель
- $R^2 = 0$ модель на уровне константной
- $R^2 < 0$ модель хуже константной

Метрики качества классификации

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Улучшение метрики

- Два алгоритма
- Доли правильных ответов: r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное улучшение: $\frac{r_2 r_1}{r_1}$

Улучшение метрики

•
$$r_1 = 0.8$$

•
$$r_2 = 0.9$$

$$\cdot \frac{r_2 - r_1}{r_1} = 12.5\%$$

•
$$r_1 = 0.5$$

•
$$r_2 = 0.75$$

$$\bullet \, \frac{r_2 - r_1}{r_1} = 50\%$$

•
$$r_1 = 0.001$$

•
$$r_2 = 0.01$$

$$\cdot \frac{r_2 - r_1}{r_1} = 900\%$$

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$\operatorname{recall}(a, X) = \frac{TP}{TP + FN}$$

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = 1?
- Полнота как много положительных объектов находит a(x)?

- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.1
- recall = 1
- A = 0.55

• Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

 $M = \min(\text{precision, recall})$

 $M = \min(\text{precision, recall})$

- precision = 0.05
- recall = 1
- M = 0.05

 $M = \min(\text{precision, recall})$

- precision = 0.55
- recall = 0.55
- M = 0.55

 $M = \min(\text{precision, recall})$

- precision = 0.4, recall = 0.5
- M = 0.4

- precision = 0.4, recall = 0.9
- M = 0.4

• Но второй лучше!

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44

- precision = 0.4, recall = 0.9
- M = 0.55

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 0.5$
- Важнее полнота

F-мера

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 2$
- Важнее точность

Оценки принадлежности классу

Классификатор

• Частая ситуация:

$$a(x) = [b(x) > t]$$

• b(x) — оценка принадлежности классу +1

Линейный классификатор

$$a(x) = [\langle w, x \rangle > t]$$

- $b(x) = \langle w, x \rangle$ оценка принадлежности классу +1
- Обычно t = 0

- Как оценить качество b(x)?
- Порог выбирается позже
- Порог зависит от ограничений на точность или полноту

- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Пример: кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- precision = 0.1, recall = 0.7
- В чем дело в пороге или в алгоритме?

PR-кривая

- Кривая точности-полноты
- Ось X полнота
- Ось Ү точность
- Точки значения точности и полноты при последовательных порогах

PR-кривая

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

PR-кривая в реальности

PR-кривая

- Левая точка: (0, 0)
- Правая точка: (1,r), r доля положительных объектов
- Для идеального классификатора проходит через (1, 1)
- AUC-PRC площадь под PR-кривой

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y — True Positive Rate $TPR = \frac{TP}{TP + FN}$

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Число отрицательных объектов

• Ось Y — True Positive Rate $TPR = \frac{TP}{TP + FN}$

Число положительных объектов

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

ROC-кривая в реальности

- Левая точка: (0, 0)
- Правая точка: (1, 1)
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

AUC-ROC

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}$$

- FPR и TPR нормируются на размеры классов
- AUC-ROC не поменяется при изменении баланса классов
- Идеальный алгоритм: AUC-ROC = 1
- Худший алгоритм: $AUC-ROC \approx 0.5$

AUC-PRC

$$precision = \frac{TP}{TP + FP}; recall = \frac{TP}{TP + FN}$$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- Проще интерпретировать, если выборка несбалансированная
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

- AUC-ROC = 0.95
- AUC-PRC = 0.001

50000 объектов

y = -1

100 объектов y = +1

> 950000 объектов

> > y = -1

Пример

- Выберем конкретный классификатор
- a(x) = 1 50095 объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

50000 объектов

y = -1

> 950000 объектов

> > y = -1

Параметры и гиперпараметры

Простой пример

- Максимизируем удовлетворённость студентов
- Обучающая выборка время до сессии
- Контрольная выборка сессия
- Параметр продолжительность лекции
- Гиперпараметр минимальная продолжительность лекции

Простой пример

- Максимизируем удовлетворённость студентов
- Обучающая выборка время до сессии
- Контрольная выборка сессия
- Параметр продолжительность лекции
- Гиперпараметр минимальная продолжительность лекции
- Максимальная удовлетворённость на обучении если не ограничивать продолжительность
- Но оценки во время сессии будут ужасными

Переобучение

Регуляризация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

Гиперпараметры

- Параметры модели веса w
 - Позволяют подогнать модель под обучающую выборку
 - Настраиваются по обучающей выборке
- Гиперпараметр модели коэффициент регуляризации λ
 - Определяют сложность модели
 - Лучшее качество на обучении достигается при $\lambda=0$
 - Необходимо настраивать по другим данным

Гиперпараметры

Без регуляризации

Высокое качество на обучении

С регуляризацией

Качество на обучении ниже

Гиперпараметры

Без регуляризации

Низкая обобщающая способность

С регуляризацией

Высокая обобщающая способность

Резюме

- Два вида классификаторов:
 - Ответ класс
 - Ответ оценка принадлежности классу
- Метрики в первом случае: доля правильных ответов, точность, полнота, F-мера
- Метрики во втором случае: AUC-ROC, AUC-PRC
- В регрессии: MSE, MAE, R^2
- Кросс-валидация