Electrical Engineering Technology

Frequency Response For Series ac Circuits

Spring 2019 (2185)

Frequency Response For Series ac Circuits

- Frequency Response for Basic Elements
 - Introduction
 - □ RLC Series Circuit (qualitatively)
 - □ RLC Series Circuit Impedance Example/ICP Find the equation and sketch
- Frequency Response for a Series RC Circuit
 - □ Total Impedance and example/ICP
 - \square Voltage V_C and example/ICP

How does the response of a series circuit change as the frequency changes?

- Parameters of Interest
 - □ Impedance, **Z**
 - □ Voltage, V
 - □ Current, I

М

Frequency Response of Basic Elements

The impedance and impedance diagram of <u>ideal circuit</u>
 <u>elements</u> are shown in the RLC circuit below

М

Frequency Response of Basic Elements

The response of the ideal elements to changes in frequency are shown below

Note:

	Low Freq. $(f = 0)$	High Freq. $(f \rightarrow \infty)$
Z_R	No changes	No changes
Z_L	Short-circuit	Open-circuit
Z_{C}	Open-circuit	Short-circuit

FIG. 15.49

Reviewing the frequency response of the basic elements.

Frequency Response of Basic Elements

■ What do |**Z**T| and |**I**T| look like for a series RLC Circuit?

М

Frequency Response of Basic Elements

Find |ZT| for this circuit as a function of frequency (as the frequency changes)

ICP:

- 1) Calculate |ZT| at 100Hz, 10kHz and 100kHz
- 2) At what frequency does |Zτ| hit its minimum?
- 3) Sketch |ZT| as a function of frequency (calculator...)

- **Example**: Determine the frequency response of a series R-C circuit
 - □ Frequency range: 0 to 20 kHz
 - □ Frequency response of the individual elements are key
 - But We are more interested in the frequency response of the entire circuit (Z_T and V_C here)

FIG. 15.51

• Frequency for $X_R = X_C$

- \blacksquare Total impedance, Z_T
 - Rectangular form

$$Z_T = Z_R + Z_C$$

$$Z_T = (R + j0) + (0 - jX_C)$$

$$Z_T = R - jX_C$$

□ Polar form

$$Z_T = Z_T \angle \theta$$

$$Z_T = \sqrt{(R^2 + X_C^2)} \angle - \tan^{-1}(\frac{X_C}{R})$$

Magnitude:
$$\sqrt{(R^2 + X_C^2)}$$

 Z_T

Angle: $\angle - \tan^{-1} \left(\frac{X_C}{R} \right)$

The magnitude of the input impedance versus frequency for the circuit in Fig. 15.50.

ICP - Calculate |ZT| and <ZT at: 100Hz, 3.18kHz, 20kHz

The phase angle of the input impedance versus frequency for the circuit in Fig. 15.50.

frequen	ісу Z т
100 Hz	159.2KΩ < -88.2°
3.18 kHz	7.07KΩ < -45°
20 kHz	5.06KΩ < -9.04°

Find the voltage V_C using voltage divider

$$V_{C} = \frac{Z_{C}E}{Z_{T}} = \frac{Z_{C}E}{Z_{R} + Z_{C}} = \frac{(X_{C} \angle -90^{\circ})(E \angle 0^{\circ})}{(R + j0) + (0 - jX_{C})} = \frac{(X_{C}E \angle -90^{\circ})}{(R - jX_{C})}$$

$$= \frac{(X_{C}E \angle -90^{\circ})}{\sqrt{(R^{2} + X_{C}^{2})} \angle -\tan^{-1}(\frac{X_{C}}{R})}$$

$$E = 10 \text{ V} \angle 0^{\circ}$$

$$f: 0 \text{ to } 20 \text{ kHz}$$

$$V_C = |V_C| \angle \theta_C = \frac{X_C E}{\sqrt{R^2 + X_C^2}} \angle -90^\circ - (-\tan^{-1} {X_C/R})$$

■ Voltage V_C

□ Angle:
$$\angle \theta_C = -90^\circ + \tan^{-1} \left(\frac{X_C}{R} \right) = -\tan^{-1} \left(\frac{R}{X_C} \right)$$

 $V_{\mathcal{C}}$

Magnitude:
$$V_C = \frac{X_C E}{\sqrt{R^2 + X_C^2}}$$

The magnitude of the voltage V_C versus frequency for the circuit in Fig. 15.50.

Calculate |Vc| and <Vc at: 100Hz, 3.18kHz, 20kHz

The phase angle between E and V_C versus frequency for the circuit in Fig. 15.50.

frequency V		
100 Hz	10.0V < -1.8°	
3.18 kHz	7.07V < -45°	
20 kHz	1.57VΩ < -81.0°	

Frequency Response of a Series R-C Circuit – Multisim

There is a great way to check your understanding and perform this kind

of work more efficiently...

Frequency Vc 100.2 Hz 10.0V < -1.78° 3.17 kHz 7.09V < -45.2°

Frequency Response of a Series R-C Circuit – Multisim

frequen	<u>су Zт</u>
~99 Hz	160.5KΩ < -88.2°
~3.1 kHz	7.19KΩ < -44.8°

N

Frequency Response of a Series R-C Circuit – Multisim

- Get familiar with Multisim for this kind of work
 - See the posted file to get started
 - ☐ Use Multisim to check your HW answers and text examples

