BERT: Bidirectional Encoder Representations from Transformers

Baseado em transformers

Possui apenas a parte do Encode, pois o objetivo é gerar uma representação da linguagem

Bidirecional: capaz de ler o texto em ambas as direções

- A representação do embedding para cada palavra é contextualizada
- O contexto é obtido buscando a relação entre as palavras utilizando multi-head attention

Variações: 24

	Camadas de Encoders	Unidades na Camada Oculta				
Tiny	2	128				
Mini	4	256				
Small	4	512				
Medium	8	512				
Base	12	768				
Large	24	1024				

Pré treinamento

Treinamento não supervisionado

Bert em inglês, utiliza Toronto BookCorpus e Wikipidia

4 dias utilizando 16 TPUs

Pré treinamento

- Modelos pre-treinados estão disponíveis (não é necessário anotação)
- Como o treino é realizado?
 - Masked language modeling
 - Next sentence prediction
- Ambos são utilizados
- Para uma tarefa, usamos o modelo pré-treinado
- Pode-se fazer ajuste fine (ajuste de pesos custo baixo)

Masked language modeling

- 15% dos tokens são mascarados, recebendo [MASK]
- O modelo tenta prever o token mascarados através de um processo de treinamento (ajuste de pesos) baseado nas palavras não mascaradas
- O modelo retorna uma lista de previsões com probabilidades

- São utilizadas pares de sentenças
- O objetivo é prever se a segunda sentença é continuação da primeira
- Problema de classificação binário: IsNext, NotNext

- Texto deve ser convertido em 3 embedding layers
 - Token
 - Segment
 - Position

Tokenizer

- Se a palavra não estiver presente no vocabulário, é dividida n vezes até que seja encontrada no vocabulário
- Palavras divididas são sinalizadas com ##

Token Embedding

- Tokenização
- Token [CLS] no inicio da primeira sentença
- Token [SEP] no final de todas as sentenças

Segment Embedding

• Separa as sentenças em diferentes segmentos

	[CLS]	Data	Science	Is	Cool	[CLS]	But	ı	Am	afraid	[SEP]
Segment	Α	Α	Α	Α	Α	Α	В	В	В	В	В

Position Embedding

• Usado para informar posição, uma vez que o processamento é em paralelo

	[CLS]	Data	Science	Is	Cool	[CLS]	But	-1	Am	afraid	[SEP]
Segment	Α	Α	Α	Α	Α	Α	В	В	В	В	В
Position	1	2	3	4	5	6	7	8	9	10	11

Bert em Português

- Bert padrão é um modelo em inglês
- Alternativas?
 - Multilingual Bert
 - Treinando utilizando a Wikipedia em mais de 100 idiomas
 - Open Source
 - Cased e Uncased
 - BERTimbau
 - Base e Large