题目描述

T 城是一个旅游城市,具有 n 个景点和 m 条道路,所有景点编号为 $1,2,\ldots,n$ 。每条道路连接这 n 个景区中的某两个景区,道路是**单向通行**的。每条道路都有一个长度。

为了方便旅游,每个景点都有一个加油站。第 i 个景点的加油站的费用为 p_i ,加油量为 c_i 。若汽车在第 i 个景点加油,则需要花费 p_i 元钱,之后车的油量将**被加至**油量上限与 c_i 中的较小值。不过如果加油前汽车油量已经不小于 c_i ,则不能在该景点加油。

小 C 准备来到 T 城旅游。他的汽车油量上限为 C。旅游开始时,汽车的油量为 0。 在旅游过程中:

- 1、当汽车油量大于 0 时,汽车可以沿从当前景区出发的任意一条道路**到达**另一个景点 (不能只走道路的一部分),汽车油量将减少 1;
- 2、当汽车在景点 i 且当前油量小于 c_i 时,汽车可以在当前景点加油,加油需花费 p_i 元钱,这样汽车油量将变为 $\min\{c_i,C\}$ 。
- 一次旅游的总花费等于每次加油的花费之和,旅游的总路程等于每次经过道路的长度之和。注意多次在同一景点加油,费用也要计算多次,同样地,多次经过同一条道路,路程也要计算多次。

小 C 计划旅游 T 次,每次旅游前,小 C 都指定了该次旅游的起点和目标路程。由于行程不同,每次出发前带的钱也不同。为了省钱,小 C 需要在旅游前先规划好旅游路线(包括旅游的路径和加油的方案),使得从起点出发,按照该旅游路线旅游结束后总路程不小于目标路程,且剩下的钱尽可能多。请你规划最优旅游路线,计算这 T 次旅游每次结束后最多可以剩下多少钱。

输入格式

输入第一行包含四个正整数 n, m, C, T, 每两个整数之间用一个空格隔开, 分别表示景点数、道路数、汽车油量上限和旅行次数。

接下来 n 行,每行包含两个正整数 p_i, c_i ,每两个整数之间用一个空格隔开,按编号顺序依次表示编号为 $1, 2, \ldots, n$ 的景点的费用和油量。

接下来 m 行,每行包含三个正整数 a_i, b_i, l_i ,每两个整数之间用一个空格隔开,表示一条从编号为 a_i 的景点到编号为 b_i 的景点的道路,道路的长度为 l_i 。保证 $a_i \neq b_i$,但从一个景点到另一个景点可能有多条道路。

最后 T 行,每行包含三个正整数 s_i,q_i,d_i ,描述一次旅游计划,旅游的起点为编号为 s_i 的景点,出发时带了 q_i 元钱,目标路程为 d_i 。

输出格式

输出 T 行,每行一个整数,第 i 行的整数表示第 i 次旅游结束后最多剩下多少元钱。如果旅游无法完成,也就是说不存在从景点 s_i 出发用不超过 q_i 元钱经过不小于 d_i 的路程的路线,则该行输出 -1。

样例输入

```
1 6 6 3 2
2 4 1
3 6 2
4 2 1
5 8 1
6 5 4
7 9 1
8 1 2 1
9 1 3 1
10 2 4 1
11 3 5 1
12 4 6 1
13 5 6 1
14 1 12 3
15 1 9 3
```

样例输出

1 2 2 -1

T 城的景区和道路如下图所示:

由图可知,从景点 1 出发,路程为 3 的路线有两条: $1 \rightarrow 2 \rightarrow 4 \rightarrow 6$ 和 $1 \rightarrow 3 \rightarrow 5 \rightarrow 6$ 。

第 1 次旅游,最优路线为先在景点 1 加油,花费 4 元,此时油量为 1,然后到景点 2,此时油量为 0,在景点 2 加油,花费 6 元,此时油量为 2,接着到景点 4,此时油量为 1,最后到景点 6,总路程为 3,最后剩余 12-4-6=2 元。

第2次旅游,只用9元无论如何也无法走3的路程,因此旅游无法完成。

见附加文件(在页面上方下载)中的选手目录下的 trip2.in 与 trip2.ans。

所有测试数据的范围和特点如下表所示:

测试点编号	n	m	C	T	$p_i,\ c_i$	特殊性质
1	≤ 10	= n - 1	≤ 10	= 1	≤ 10	1, 2
2				≤ 10		
3						
4						
5	= 10					2
6	= 15			≤ 20		
7	= 20					
8	≤ 100	= n - 1	$\leq 10^3$	≤ 50	≤ 100	1, 3
9						
10						
11	≤ 40	≤ 400				3
12						
13	≤ 60	≤ 600			$\leq 10^3$	无
14						
15	≤ 80	≤ 800				
16			$\leq 10^5$	$\leq 10^3$	$\leq 10^5$	
17	≤ 90	≤ 900				
18						
19	≤ 100	≤ 1000				
20				$\leq 10^5$		

其中,"特殊性质"—列中的数字意义如下:

• 特殊性质 1: 所有 $a_i = i$, $b_i = i+1$, $l_i = 1$ 。

• 特殊性质 2: 所有 $d_i \le 10^3$ 。 • 特殊性质 3: 所有 $q_i \le 100$ 。

对于所有数据, $2 \leq n \leq 100$, $1 \leq m \leq 1000$, $1 \leq C, T \leq 10^5$, $1 \leq a_i, b_i, l_i \leq n$, $1 \leq p_i, c_i \leq 10^5$, $1 \leq s_i \leq n$, $1 \leq q_i \leq n^2$, $1 \leq d_i \leq 10^9$ 。