Zadanie 1. W urnie znajduje się początkowo 10 kul białych i 10 kul czarnych. Doświadczenie polega na kolejnym, 10-krotnym losowaniu bez zwracania po jednej kuli. Rozważmy zdarzenia losowe A_1 , A_2 oraz A_3 określone w taki sposób:

 A_1 - "w pierwszych 4-ch losowaniach pojawią się 2 kule białe i 2 czarne"

 A_2 - "w pierwszych 6-ciu losowaniach pojawią się 3 kule białe i 3 czarne"

A₃ - "w ostatnich 4-ch losowaniach pojawią się 2 kule białe i 2 czarne"

Które z poniższych zdań jest prawdziwe?

(A)
$$\operatorname{Pr}(A_1 \cap A_3 | A_2) = \operatorname{Pr}(A_1 | A_2) \cdot \operatorname{Pr}(A_3 | A_2)$$

(B)
$$\operatorname{Pr}(A_2 \cap A_3 | A_1) = \operatorname{Pr}(A_2 | A_1) \cdot \operatorname{Pr}(A_3 | A_1)$$

(C)
$$\Pr(A_2 \cap A_3) = {10 \choose 3}^2 \cdot {20 \choose 6}^{-1} \cdot {10 \choose 2}^2 \cdot {20 \choose 4}^{-1}$$

(D)
$$Pr(A_3|A_1 \cap A_2) = Pr(A_3|A_1)$$

(E)
$$Pr(A_3) = Pr(A_2)$$

Zadanie 2. Niech $X_0, X_1, \ldots, X_n, \ldots$ będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale (0,1). Zmienna losowa N oznacza numer pierwszej ze zmiennych X_1, \ldots, X_n, \ldots , która jest większa niż X_0 : $N = \inf \{k: k \in \{1, 2, 3, \ldots\} \ oraz \ X_k > X_0 \}.$ $E(X_N - X_0)$ wynosi:

- (A) $\frac{1}{N+1}$
- (B) $\frac{1}{2}$
- $(C) \qquad \frac{1-X_0}{2}$
- (D) $\frac{1}{4}$
- (E) $\frac{1}{3}$

Zadanie 3. Zmienne losowe U oraz V mają łączną gęstość prawdopodobieństwa:

$$f(u, v) = \begin{cases} 4/\pi & dla \quad u \ge 0, v \ge 0 \ i \quad u^2 + v^2 \le 1\\ 0 & w \ przeciwnym \ przypadku \end{cases}$$

Niech $X = \frac{U^2}{U^2 + V^2}$. Zmienna losowa X ma rozkład:

- A) beta Be(0.5, 0.5)
- (B) o gęstości g(x) = 2x dla $0 \le x \le 1$
- (C) beta Be(2, 2)
- (D) o gęstości $g(x) = (2/\pi) \cdot (1 + x^2)^{-1}$ dla $x \ge 0$
- (D) jednostajny na przedziale (0, 1)

Uwaga: rozkład beta $Be(\alpha, \beta)$ ma z definicji gęstość

$$g(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot x^{\alpha - 1} \cdot (1 - x)^{\beta - 1} \quad \text{dla} \quad 0 \le x \le 1$$

Zadanie 4. Wykonano n doświadczeń zgodnie ze schematem Bernoulli'ego, z prawdopodobieństwem sukcesu p=1/3. Liczba n doświadczeń jest nieznanym parametrem. Okazało się, że liczba porażek jest o 4 większa, niż liczba sukcesów. Wartość estymatora największej wiarygodności \hat{n} parametru n wyniosła:

- (A) 12
- (B) 8
- (C) 7
- (D) 6
- (E) 4

Zadanie 5. Wiadomo, że X_1, X_2, \ldots, X_n jest prostą próbą losową z rozkładu normalnego $N(\mu-\theta,1)$, zaś Y_1, Y_2, \ldots, Y_n jest niezależną próbą z rozkładu $N(\mu+\theta,1)$. Liczby μ i θ są nieznanymi parametrami. Rozpatrujemy zadanie testowania hipotezy:

$$H_0: \theta = 0$$

przeciw alternatywie:

$$H_1: \quad \theta = \frac{1}{2}.$$

Dla jakich n można skonstruować test na poziomie istotności 0.05 o mocy przynajmniej 0.95?

- (A) Wtedy i tylko wtedy, gdy $11 \le n \le 22$
- (B) Wtedy i tylko wtedy, gdy $n \ge 11$
- (C) Wtedy i tylko wtedy, gdy $n \ge 22$
- (D) Wtedy i tylko wtedy, gdy $n \ge 6$
- (E) Wtedy i tylko wtedy, gdy $n \ge 100$

Zadanie 6. Zakładamy, że X_1 , X_2 , X_3 , X_4 , X_5 jest prostą próbą losową z rozkładu o gęstości:

$$f_{\theta}(x) = \begin{cases} \theta \cdot x^{\theta - 1} & dla \quad 0 \le x \le 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem.

Chcemy skonstruować przedział ufności $[\underline{\theta}, \overline{\theta}]$ dla parametru θ (na poziomie $1-\alpha=0.90$) tak, żeby:

$$\Pr_{\theta} \left(\overline{\theta} < \theta \right) = 0.05 = \Pr_{\theta} \left(\underline{\theta} > \theta \right).$$

Który z podanych poniżej przedziałów ma żądane własności?

Uwaga: stosujemy oznaczenie $S = -\sum_{i=1}^{5} \ln(X_i)$

(A)
$$\left[\frac{3.94}{S}, \frac{18.31}{S}\right]$$

(B)
$$\left[\frac{1.15}{2 \cdot S}, \frac{11.07}{2 \cdot S}\right]$$

$$(C) \qquad \left[\frac{3.94}{2 \cdot S}, \quad \frac{18.31}{2 \cdot S}\right]$$

(D)
$$\left[\frac{1.15}{S}, \frac{11.07}{S}\right]$$

(E)
$$[3.94 \cdot S, 18.31 \cdot S]$$

Zadanie 7. Zakładamy, że $X_1,\,X_2$, ..., X_{20} są niezależnymi zmiennymi losowymi o rozkładzie normalnym $N(\mu,\sigma^2)$. Niech:

$$Y = X_1 + \dots + X_{15}$$
 i $Z = X_6 + \dots + X_{20}$.

Warunkowa wartość oczekiwana E(Z|Y) wynosi:

- (A) 15μ
- (B) 5μ
- (C) $\frac{2}{3} \cdot Y$
- (D) $20\mu \frac{1}{3} \cdot Y$ (E) $\frac{2}{3} \cdot Y + 5\mu$

Zadanie 8. Łańcuch Markowa ma dwa stany: E_1 , E_2 i macierz przejścia: $\begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$.

Niech X_n oznacza stan, w którym znajduje się łańcuch po dokonaniu n kroków $(n=0,1,\ldots)$. Funkcję f na zbiorze stanów określamy wzorem:

$$f(E_i) = i$$
 dla $i = 1, 2$.
Niech $c = \lim_{n \to \infty} COV[f(X_n), f(X_{n+1})]$.

Granica c wynosi:

(A)
$$\frac{1}{9}$$

(B)
$$-\frac{1}{9}$$

- (C) Wartość c zależy od początkowego stanu łańcucha
- (D) 0
- (E) 1

Zadanie 9. Niech X_1, X_2, \ldots, X_n będzie prostą próbą losową z rozkładu o gęstości:

$$f_{c,\mu}(x) = \begin{cases} \frac{1}{\mu} \cdot e^{-\frac{x-c}{\mu}} & dla \quad x \ge c \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Gdzie $c \in R$ i $\mu > 0$ są nieznanymi parametrami. Który z podanych wzorów określa nieobciążony (dla dowolnego n > 1) estymator parametru μ ?

(A)
$$\hat{\mu} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} X_i - \frac{n}{n-1} \cdot \min \{X_1, \dots, X_n\}$$

(B)
$$\hat{\mu} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i - \min\{X_1, \dots, X_n\}$$

(C)
$$\hat{\mu} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i - \frac{n}{n-1} \cdot \min \{X_1, \dots, X_n\}$$

(D)
$$\hat{\mu} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} X_i - \min\{X_1, \dots, X_n\}$$

(E) Nie istnieje nieobciążony estymator parametru μ

Zadanie 10. Zakładamy, że X_1, X_2, \ldots, X_n jest prostą próbą losową z rozkładu normalnego $N(\mu, \gamma^2 \mu^2)$, gdzie $\mu \in R$ jest nieznanym parametrem, zaś γ^2 - znanym współczynnikiem. Poszukujemy estymatora parametru μ postaci:

$$\hat{\mu} = c_1 X_1 + \dots + c_n X_n,$$

który ma jednostajnie (to znaczy dla każdego μ) najmniejszy błąd średniokwadratowy $E_\mu(\hat{\mu}-\mu)^2$

(wśród estymatorów rozpatrywanej postaci).

- (A) Nie ma takiego estymatora.
- (B) Taką własność ma $\hat{\mu} = \overline{X}$, czyli estymator dla którego $c_1 = \cdots = c_n = \frac{1}{n}$
- (C) Taką własność ma estymator dla którego $c_1=\frac{1}{n+\gamma^2}, \quad c_2=\frac{1}{n+2\gamma^2},$ $c_3=\frac{1}{n+3\gamma^2}, \quad \dots, \quad c_n=\frac{1}{n+n\gamma^2}.$
- (D) Taką własność ma estymator dla którego $c_1 = \cdots = c_n = \frac{1}{n + \gamma^2}$
- (E) Taką własność ma estymator dla którego $c_1 = \cdots = c_n = \frac{1}{n \cdot (1 + \gamma^2)}$

Egzamin dla Aktuariuszy z 28 lutego 1998 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	A	
2	D	
3	D	
4	В	
5	С	
6	С	
7	Е	
8	В	
9	A	
10	D	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.