AMENDMENTS TO THE CLAIMS

1. (Currently Amended) An off-chip driver circuit, comprising;

a plurality of delay circuits, at least two of which have different delay times, in which the delay circuits receive a data signal and generate delayed data signals, respectively; and

a plurality of off-chip drivers for respectively receiving the delayed data signals from the respective delay circuits and generating respective output signals in response to respective control signals,

whrerein the total number of the off-chip drivers to be activated at the same time is changed by the respective control signals which are generated in response to a desired drivability, and the activated off-chip drivers sequentially generate the output signals in response to the delay times, thereby increasing a total drivability of the off-chip driver circuit each off-chip driver comprises a first inverter for inverting the control signal, a second inverter for inverting an output of the first inverter and a NAND gate for outputting the output signal in response to the delayed data signal and an output of the second inverter.

- 2. (Canceled)
- 3. (Currently Amended) An off-chip driver circuit, comprising;

a plurality of off-chip drivers for respectively receiving a data signal and generating a plurality of output signals, respectively, in response to respective control signals; and

a plurality of delay circuits at least two of which have different delay times with respect to each other, in which the delay circuits respectively receive the output signals and generate delayed output signals, respectively,

whrerein the total number of the off-chip drivers to be activated at the same time is changed by the respective control signals which are generated in response to a desired drivability, and the delay circuits sequentially generate the delayed output signals in response to the delay times, thereby increasing a total drivability of the off-chip driver circuit each off-

Application No. 10/736,731 Docket No.: 29936/39880 Amendment dated August 30, 2006

Reply to Office Action of May 30, 2006

chip driver comprises a first inverter for inverting the control signal, a second inverter for

inverting an output of the first inverter and a NAND gate for outputting the output signal in

response to the delayed data signal and an output of the second inverter.

4. (Canceled)

5. (Canceled)

6. (Currently Amended) A data output circuit, comprising:

a plurality of delay circuits, at least two of which have different delay times with

respect to each other, in which the delay circuits receive a data signal and generate delayed

data signals, respectively;

a plurality of off-chip drivers for respectively receiving the delayed data signals from

the respective delay circuits and generating respective output signals in response to respective

control signals;

a pre-driver circuit adapted to receive the data signal and drive an output driver

circuit; and

the output driver circuit connected to the output terminals of the off-chip drivers and

the pre-driver circuit,

wherein the total number of the off-chip drivers to be activated at the same

time is changed determined by the respective control signals which are generated in response

to a desired drivability, and the activated off-chip drivers sequentially generate the output

signals having the different delay times in response to the delay times delayed data signals,

thereby increasing a total drivability of the off-chip drivers.

7. (Previously Presented) The data output circuit as claimed in claim 6, wherein

the pre-driver circuit receives the data signal and performs a pull-up or a pull-down function

according to a logical status of the data signal.

Application No. 10/736,731 Docket No.: 29936/39880 Amendment dated August 30, 2006

Reply to Office Action of May 30, 2006

8. (Previously presented) The data output circuit as claimed in claim 6,

wherein the off-chip driver comprises:

a first inverter for inverting the control signal;

a second inverter for inverting an output of the first inverter; and

an NAND gate for outputting the output signal in response to the delayed data signal

and an output of the second inverter.

9. (Previously presented) The data output circuit as claimed in claim 6, wherein

the output driver circuit comprises output drivers connected to output terminals of the

respective off-chip drivers and the pre driver circuit, wherein when the control signal of a

given off-chip driver is at an enable level, an output driver connected to the given off-chip

driver is driven.

10. (Previously presented) The data output circuit as claimed in claim 6, wherein a

the total drivability of the off-chip drivers is 80% of a target drivability and a drivability of

the pre driver circuit is 60% of the target drivability so that a drivability of the data output

circuit varies from 60% of the target drivability to 140% of the target drivability.

11. (Currently Amended) A data output circuit, comprising:

a plurality of off-chip drivers for respectively receiving a data signal and generating a

plurality of output signals, respectively, in response to respective control signals;

a plurality of delay circuits at least two of which have different delay times, in which

the delay circuits respectively receive the output signals and generate delayed output signals,

respectively;

a pre-driver circuit receiving the data signal and driving an output driver circuit; and

Reply to Office Action of May 30, 2006

the output driver circuit connected to the output terminals of the delay circuits and the

pre-driver circuit,

wherein the total number of the off-chip drivers to be activated at the same time is

changed determined by the respective control signals which are generated in response to a

desired drivability, and the delay circuits sequentially generate the delayed output signals in

response to the delay times, thereby <u>increasing</u> a total drivability of the off-chip drivers.

12. (Previously presented) The data output circuit as claimed in claim 11, wherein

the pre-driver circuit receives the data signal and performs a pull-up or a pull-down function

according to the logical status of the data signal.

13. (Previously presented) The data output circuit as claimed in claim 11,

wherein the off-chip driver comprises:

a first inverter for inverting the control signal;

a second inverter for inverting an output of the first inverter; and

an NAND gate for outputting the output signal in response to the data signal and an

output of the second inverter.

14. (Previously presented) The data output circuit as claimed in claim 11, wherein

the output driver circuit comprises output drivers connected to output terminals of the delay

circuits and the pre driver circuit respectively, wherein when the control signal of a given off-

chip driver is at an enable level, the output driver connected to the given off-chip driver is

driven.

15. (Previously presented) The data output circuit as claimed in claim 11, wherein

the total drivability of the off-chip drivers is 80% of a target drivability and a drivability of

Docket No.: 29936/39880

the pre driver circuit is 60% of the target drivability so that a drivability of the data output circuit varies from 60% of the target drivability to 140% of the target drivability.

16. (Previously presented) The off-chip driver circuit as claimed in claim 1, wherein the off-chip driver comprises:

an inverter for inverting the control signal; and

an NOR gate for outputting the output signal in response to the delayed data signal and an output of the inverter.

17. (Previously presented) The off-chip driver circuit as claimed in claim 3, wherein the off-chip driver comprises:

an inverter for inverting the control signal; and

an NOR gate for outputting the output signal in response to the data signal and an output of the inverter.

18. (Previously presented) The off-chip driver circuit as claimed in claim 6, wherein the off-chip driver comprises:

an inverter for inverting the control signal; and

an NOR gate for outputting the output signal in response to the delayed data signal and an output of the inverter.

19. (Previously presented) The off-chip driver circuit as claimed in claim 11, wherein the off-chip driver comprises:

an inverter for inverting the control signal; and

Application No. 10/736,731 Amendment dated August 30, 2006 Reply to Office Action of May 30, 2006 Docket No.: 29936/39880

an NOR gate for outputting the output signal in response to the data signal and an

output of the inverter.