ESERCIZI SU LIMITI E CONTINUITÀ TRAMITE DEFINIZIONE

CALCULUS I, INFORMATICA 21/22

1. Continuità tramite definizione

Quando si vuole provare la continuità di una funzione per mezzo della definizione bisogna fare riferimento alla definizione:

per ogni
$$\epsilon > 0$$
 esiste un $\delta > 0$ tale che : $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$

L'obiettivo è - per ogni $\epsilon > 0$ - trovare un $\delta > 0$. La condizione - chiesta nella definizione dopo il "tale che" - ci dice che δ e ϵ dovranno avere la proprietà di essere maggioranti delle quantità $|x-x_0|<\delta$ e $|f(x)-f(x_0)|<\epsilon$. Attenzione: queste due disequazioni sono collegate tra loro perchè contengono la stessa x.

Facciamo un esempio: prendiamo la funzione $f(x) = \frac{1}{2}x$ e consideriamo il punto $x_0 = 10$.

Adesso scegliamo un valore per ϵ , per esempio $\epsilon = 2$. Quindi $f(x_0) - \epsilon = 5 - 2 = 3$ e $f(x_0) + \epsilon =$ 5+2=7. La controimmagine di f(x)=3 è x=6, mentre la contro immagine di f(x)=7 è x=14. Possiamo associare un qualsiasi $\delta < 4$ e tutte le immagini f(x) di punti $x_0 - \delta < x < x_0 + \delta$ saranno contenute in $f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$.

Se ripetiamo l'esperimento per vari valori di ϵ abbiamo una tabella, ad esempio:

In pratica questa tabella è una funzione (definita punto per punto): quindi quello che ci serve per dimostrare la continuità è una funzione (che chiamiamo h)

$$\delta = h(\epsilon)$$

che associa a ogni $\epsilon > 0$ un $\delta > 0$ per cui siano verificate le disuguaglianze

$$|x - x_0| < \delta$$
 e $|f(x) - f(x_0)| < \epsilon$

Come troviamo questa funzione h? Un modo per trovarla è mettere in relazione $|x - x_0|$ e $|f(x) - f(x_0)|$, ovvero scrivere una equazione che coinvolga questi due termini e a partire da questa equazione troviamo h. Scrivere questa relazione è la parte difficile dell'esercizio, perchè dipende tutto della forma di f(x) e non c'è una regola fissa per ogni forma. Vediamo un paio di casi concreti.

1.1. **Esercizio.** Verificare che la funzione

$$f(x) = \sqrt{x}$$

è continua in $x_0 = 2$.

Soluzione: In questo caso abbiamo:

$$|x-2| < \delta \implies |\sqrt{x} - \sqrt{2}| < \epsilon$$

Possiamo rileggere la condizione della definizione come: deve esistere una funzione $\delta(\epsilon)$ tale che

$$|x-2| < \delta(\epsilon) \implies |\sqrt{x} - \sqrt{2}| < \epsilon$$

Per trovare questa funzione $\delta(\epsilon)$ dobbiamo pensare a che cosa serve questa funzione: serve come maggiorante della quantità |x-2|, mentre ϵ è un maggiorante di $|\sqrt{x}-\sqrt{2}|$. Dividiamo la soluzione in tre passaggi.

• Equazione tra le quantità da maggiorare. Che relazione c'è tra le due quantità che vengono maggiorate?

$$|x-2| = |\sqrt{x} - \sqrt{2}||\sqrt{x} + \sqrt{2}||$$

• Maggiorazioni. Prendiamo un ϵ tale che $|\sqrt{x} - \sqrt{2}| < \epsilon$. Osserviamo che $|\sqrt{x} - \sqrt{2}| < \epsilon$ implica $|\sqrt{x} + \sqrt{2}| < \epsilon + 2\sqrt{2}$. Quindi abbiamo una maggiorazione dei termini $|\sqrt{x} - \sqrt{2}|$ e $|\sqrt{x} + \sqrt{2}|$ da cui otteniamo una maggiorazione del loro prodotto:

$$|x-2| < \epsilon(\epsilon + 2\sqrt{2})$$

• Relazione tra δ e ϵ . Stabiliamo che

$$\delta(\epsilon) = \epsilon(\epsilon + 2\sqrt{2}) > 0$$

per $\epsilon > 0$.

Questo equivale a dire - nel senso della definizione di continuità - che comunque preso $\epsilon > 0$ esiste un $\delta > 0$ per cui quando $|x-2| < \delta$, si ha $|\sqrt{x} - \sqrt{2}| < \epsilon$. Questo δ è $\epsilon(\epsilon + 2\sqrt{2})$.

1.2. Esercizio. Verificare che la funzione

$$f(x) = \frac{1}{x}$$

è continua in $x_0 = 1$.

Soluzione: seguendo l'idea dell'esercizio precedente, dobbiamo mettere in relazione $|x - x_0|$ e $|f(x) - f(x_0)|$ che in questo caso sono |x - 1| e |1/x - 1|. Osserviamo quindi che:

$$\left| \frac{1}{x} - 1 \right| = \left| \frac{1 - x}{x} \right| = \frac{|x - 1|}{|x|}$$

Prendiamo un valore x vicino a $x_0 = 1$ usando il parametro δ per definire questa "vicinanza". Sia $\delta > 0$ e supponiamo di prendere x vicino a 1 in modo che

$$|x-1|<\delta$$

Per non incappare in x=0 che è fuori dal dominio, possiamo supporre $\delta<1$, tanto l'importante (per la definizione) è che δ sia positivo ed esista. Cosa possiamo dire su |x|? Per maggiorare il termine $\left|\frac{1}{x}-1\right|$ dobbiamo prendere un minorante di |x| dato che |x| sta al denominatore. Da $|x-1|<\delta$ si ha

$$1 - \delta < |x|$$

Quindi, mettiamo tutto insieme

$$\left|\frac{1}{x} - 1\right| = \left|\frac{1 - x}{x}\right| = \frac{|x - 1|}{|x|} < \frac{\delta}{1 - \delta}$$

Chiamiamo $\epsilon := \frac{\delta}{1-\delta}$. Invertiamo la relazione e otteniamo

$$\delta = \frac{\epsilon}{1 + \epsilon} > 0$$

per $\epsilon>0$ (e otteniamo anche $\delta<1$ in accordo con l'ipotesi). In altre parole, abbiamo mostrato che, comunque preso $\epsilon>0$ quando

$$|x-1| < \frac{\epsilon}{1+\epsilon}$$

si ha

$$\left| \frac{1}{x} - 1 \right| < \epsilon$$

Questo equivale a dire - nel senso della definizione di continuità - che comunque preso $\epsilon > 0$ esiste un $\delta > 0$ per cui quando $|x-1| < \delta$, si ha $\left|\frac{1}{x} - 1\right| < \epsilon$. Questo δ è $\frac{\epsilon}{1+\epsilon}$.

1.3. **Esercizio.** Verificare che la funzione

$$f(x) = \frac{1}{\sqrt{x}}$$

è continua in $x_0 = 1$.

1.4. **Esercizio.** Sapendo che $|\arctan \theta| \leq |\theta|$, verificare che la funzione

$$f(x) = \arctan x$$

è continua in $x_0 = 0$.

1.5. **Esercizio.** Sapendo che $|\sin \theta| \le |\theta|$, verificare che la funzione

$$f(x) = \sin x$$

è continua in $x_0 = \pi$.