CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Testing for Primes:

- Quadratic Residues
- Rabin-Miller algorithm
 - Error Bounds and Time Complexity

QUADRATIC RESIDUES

Quadratic Residue Theorem:

- For odd prime \mathbf{p} and $\mathbf{e} > = \mathbf{1}$, the equation $x^2 = 1$ (mod \mathbf{p}^e) has <u>only two solutions</u>:
 - $x = 1 \pmod{p^e}$ and $x = -1 \pmod{p^e}$

Proof:

- $x^2 = 1 \pmod{p^e}$ implies $y^e = (x-1)(x+1)$
- Since p>2,
 - we may have p|(x-1) or p|(x+1) but not both
- o If $p \nmid x-1$ then $gcd(p^e, x-1) = 1$ and so $p^e \mid (x+1)$
- Similarly, if $p \nmid x+1$ then $gcd(p^e, x+1) = 1$ and so $p^e \mid (x-1)$
- Thus $x = 1 \pmod{p^e}$ or $x = -1 \pmod{p^e}$

QUADRATIC RESIDUES

- A number x is <u>a square root of 1 modulo n</u>:
 - if it satisfies the equation $x^2 = 1 \pmod{n}$.
 - o1 (mod n) and -1 (mod n) are referred to as <u>trivial</u>
 <u>square roots</u>
- A number x is a *non-trivial square root of 1 modulo n*:
 - if it satisfies the equation x² = 1 (mod n) and
 - it is neither 1 (mod n) nor (-1 mod n).

QUADRATIC RESIDUES

- Corollary (to Quadratic Residue Theorem):
 - If there exists a <u>nontrivial square root of 1</u>, <u>modulo n</u>, then <u>n is composite</u>.
- Proof:
 - n!=1 (obvious)
 - n!= 2 (easy to verify)
 - By contra-positive of the (quadratic residue) theorem:
 - if there exists a nontrivial square root of 1, modulo n, then n is not an odd prime.

Primality Testing — Approach II Idea:

- Instead of trying just one potential witness for compositeness
 - i.e. a in Z^{*}_n not satisfying Fermat congruence we try <u>multiple potential witnesses</u> and we use <u>both</u> <u>Fermat congruence and non-trivial square roots.</u>

PRIMALITY TESTING — APPROACH II: STEPS AND CORRECTNESS

Algorithm (outline):

- Let a be a random witness
 i.e. chosen randomly in Z_n \ { 0 }
- This is correct by Fermat's Theorem because:

$$b_k = a^{n-1} \pmod{n}$$

- Let k and d be such that
 n-1 = 2^k * d where d is odd and k>=1,
- 3. Compute $b_i = a^(2^i * d) \mod n$, for each i = 0 to k
 - 1. If $b_k != 1$ then n is composite
 - 2. ...

Primality Testing — Approach II - Steps and Correctness [2] Algorithm (outline):

- 1. Let a be a random witness i.e. chosen randomly in $Z_n \setminus \{0\}$
- 2. Let k and d be such that $n-1 = 2^k * d$ where d is odd and k>=1,
- 3. Compute $b_i = a^{(2^i * d) \mod n}$, for each i = 0 to k
 - 1. If $b_k != 1$ then n is composite
 - 2. If for any i, $b_i = 1$ but $b_{i-1} != 1$ and $b_{i-1} != n-1$ then n is composite

This is correct by the Corollary to the Quadratic Residue Theorem because:

$$b_i = (b_{i-1})^2$$

PRIMALITY TESTING - APPROACH II - A MONTE-CARLO ALGORITHM

procedure WITNESS(a,n)

// n is odd and a is chosen randomly from Z_n and

```
1. d=n-1; k=0;
2. while (d mod 2 == 0) { /* Invariant: n-1 = 2^k * d * / 2^k
       d = d / 2; k = k + 1;
                                                                    steps
                                 Multiplication of two m-bit
3. b_0 = a^d \mod n
                                 numbers takes m*m time
                                 (naive algorithm)
4. for i = 1 to k \{
   1. b_i = b_{i-1} * b_{i-1} \pmod{n};
   2. if (b_i == 1 \&\& b_{i-1} != 1 \&\& b_{i-1} != n-1) return 1;
```

- 4. if $b_k != 1$ return 1;
- 5. return 0; // n is prime
- Running time = $k * m^2 = \Theta((logn)^3)$
 - because $k \le \lfloor \log_2 n \rfloor$ and $m = \lfloor \log_2 n \rfloor$

PRIMALITY TESTING — APPROACH II — A MONTE-CARLO ALGORITHM

- Claim (w.o. proof): The probability that WITNESS fails to produce a witness for an odd composite n is at most 1/4.
- o Claim: WITNESS successfully produces a witness for any odd composite n even if n is a Carmichael number.
 - Proof: <u>Corrollary of the Quadratic Residue Theorem</u> applies <u>for all composite numbers</u> – including Carmichael numbers.

PRIMALITY TESTING — MILLER-RABIN

O Miller-Rabin Algorithm
MR(n,s) { // s is the number of trials
for k = 1 to s {
 a = random(1,n-1);
 if (WITNESS(a,n)) return "composite";
 }
 return "prime";
}
Running Time: Θ(s(logn)³)

Claim:

- Miller-Rabin is a polynomial time <u>Monte-Carlo algorithm</u>
 with 1-way error :
 - if it <u>returns composite</u> then it is <u>correct</u> and
 - if it <u>returns prime</u> then <u>it errs with probability at most 4-s</u>

3/5/2015

MILLER-RABIN (MR): NUMBER OF TRIALS

Estimating the required number of trials of Miller-Rabin:

- Consider a number N randomly chosen (with a fixed bit length)
 - Let A denote the event that N is prime and
 - Let **B** denote the event **MR**(N,s) returns "prime".
 - We must estimate Pr[A/B]

ASIDE: CONDITIONAL PROBABILTIY

- Bayes's Theorem (for events A and B):
 - Pr[A/B] = (Pr[A]*Pr[B/A])/Pr[B]
- Since
 - \circ B = (B \cap A) \cup (B \cap A') and
 - $\circ B \cap A$ and $B \cap A'$ are mutually exclusive
 - $Pr[B] = Pr[B \cap A] + Pr[B \cap A']$
 - Pr[B] = Pr[A]*Pr[B/A] + Pr[A']*Pr[B/A']
- Now substituting Pr[B] into *Bayes's Theorem*:
 - Pr[A/B] = (Pr[A]*Pr[B/A])/(Pr[A]*Pr[B/A]+Pr[A']*Pr[B/A'])

ASIDE: CONDITIONAL PROBABILITY

- We can now estimate
 - the probability that
 - o <u>a number N is prime</u> (i.e. event A)
 - given
 - o MR(N,s) returns "prime" (i.e. event B)
- o using the result from previous slide
 - Pr[A/B] = (Pr[A]*Pr[B/A])/(Pr[A]*Pr[B/A]+Pr[A']*Pr[B/A'])

ASIDE: CONDITIONAL PROBABILITY

- For computing
 - Pr[A/B] = (Pr[A]*Pr[B/A])/(Pr[A]*Pr[B/A]+Pr[A']*Pr[B/A'])
- we must compute:
 - Pr[A], the probability that N is prime

0

Pr[B/A], the probability MR(N,s) returns "prime" when N is prime

0

 Pr[B/A'], the probability MR(N,s) returns "prime" when N is composite

0

ESTIMATING THE PROBABILITY MR(N,S) YIELDS THE CORRECT RESULT

- Pr[A], the probability that N is prime
 - = 1 / In(N) by Prime Number Theorem
- Pr[B/A], the probability MR(N,s) returns "prime" when N is prime
 - = 1
- Pr[B/A'], the probability MR(N,s) returns "prime" when N is composite
 - $= 4^{-s}$

MILLER-RABIN (MR): NUMBER OF TRIALS

Estimating the required number of trials of MR:

- Pr[A/B]
- >= (Pr[A]*Pr[B/A]) / (Pr[A]*Pr[B/A]+Pr[A']*Pr[B/A'])
- >= $(1/\ln(N)) / ((1/\ln(N)) + (1-(1/\ln(N)))*4^{-s})$
- >= $1/(1 + (\ln(N)-1)*4^{-s})$
- >= 1/2 for s >= $\log_4(\ln(N)-1)$
- i.e. if we run MR(N,s) for $s > = log_4(ln(N)-1)$ and it returns "prime",
 - then N is prime with probability > 1/2
- Let us call this s the half-life of N and denote it as $s_{half}(N)$:
 - if MR(N,s) returns "prime" for some s > s_{half}(log₂N)
 - then N is prime with probability >= $1/(1 + 4^{(s_{half}(N) s)})$

MILLER-RABIN (MR): NUMBER OF TRIALS - EXAMPLE

- For example, for a 1024 bit number N,
 - $s_{half}(N) = log_4(ln(N)-1) = log_4(log_2(N)/log_2(e) 1)$
 - $\approx \log_4(1024/1.443) \approx 5$

oi.e. if MR(N, 5) returns "prime"

then N is prime with probability >= 1/2

- For s=50
 - $Pr[A/B] >= 1 / (1 + 4^{-45}) \approx 1$ for most practical purposes

3/5/2015 \$

MILLER-RABIN (MR): TRIALS: GROWTH RATE

- Consider a <u>2m-bit number</u> and an <u>m-bit number</u>
 - i.e. N² and N

•
$$s_{half}(N^2) = log_4(ln(N^2)-1) = log_4(log_2(N^2)/log_2(e) - 1)$$

•
$$\approx \log_4(\log_2(N^2)/\log_2(e))$$

$$= \log_4(2*\log_2(N)/\log_2(e))$$

$$= \log_4 2 + s_{half}(N)$$

- $= 0.5 + s_{half}(N)$
- We can generalize this by induction :
 - $s_{half}(N^{2^k}) = k/2 + s_{half}(N)$
 - i.e. the half-life grows slowly with respect to N
 - in fact sub-linearly with respect to logN
 - oi.e. w.r.t. the size of N