MATH 220 Practice Midterm — September, 2024, Duration: 50 minutes This test has 5 questions on 8 pages, for a total of 50 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5
Points:					
Total:					/50

10 Marks

- 1. Negate each of the following and prove or disprove the original statement:
 - (a) For all $x \in \mathbb{R}$, there exists $q \in \mathbb{Q}$ such that for all $r < q \in \mathbb{Q}$, r + q < x".

Solution: The negation is "There exists $x \in \mathbb{R}$ such that for all $q \in \mathbb{Q}$, there exists $r < q \in \mathbb{Q}$ such that $r + q \ge x$.

Proof. Let $x \in \mathbb{R}$. Pick $q = \frac{\lfloor x \rfloor}{2} - 1 \in \mathbb{Q}$. Notice for all $r < q \in \mathbb{Q}$, $r + q < 2q = \lfloor x \rfloor - 2 \le x - 2 < x$ so the result holds.

(b) For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that for all $z \in \mathbb{R}$, if xy < z then x < 0 or $x^2 + y^2 < z$

Solution: The negation is "There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, there exists $z \in \mathbb{R}$ such that xy < z and $x \ge 0$ and $x^2 + y^2 \ge z$ ".

Disproof. Choose x=2 and let $y\in\mathbb{R}$. Choose $z=4+y^2$. Notice $x\geq 0$ and $z\leq 4+y^2=x^2+y^2$. Now, notice $y^2-2y+4=(y-1)^2+2\geq 2>0$, so

$$y^{2} - 2y + 4 > 0$$
$$y^{2} + 4 > 2y$$
$$z = x^{2} + y^{2} > xy$$

and thus xy < z. This proves the negation and thus disproves the original statement.

10 Marks

2. Let $p \in \mathbb{N}$ and assume p > 1. Prove that if there exists $x \in \mathbb{Z}$ such that $x \not\equiv 0 \mod p$ and for all $y \in \mathbb{Z}$, $xy \not\equiv 1 \mod p$, then p is not prime.

Solution:

Proof. We prove the contrapositive. Let $p \in \mathbb{N}$ be prime. Let $x \in \mathbb{Z}$.

- If $x \equiv 0 \mod p$, then we are done.
- If $x \not\equiv 0 \mod p$, we know $x \equiv r \mod p$ for some $1 \leq r < p$. By Bézout's lemma, we know there exists $\alpha, \beta \in \mathbb{Z}$ such that $\alpha r + \beta p = \gcd(r, p) = 1$ so $\alpha r = 1 \beta p$. It follows that $\alpha r \equiv 1 \mod p$ so choosing such $\alpha = y$ would yield $xy \equiv 1 \mod p$ as required.

10 Marks

- 3. Let $a, b \in \mathbb{Z}$ where $a, b \neq 0$ and $S = \{ax + by | x, y \in \mathbb{Z}, ax + by > 0\}$. You may not use Bézout's lemma for this section.
 - (a) Prove that S is non-empty.

Solution:

Proof. Notice $a \in S$ so S is non-empty.

(b) Prove that the minimal element $d = as + bt \in S$ for some $s, t \in \mathbb{Z}$ divides both a and b. (Hint: Euclidean division of a by d and b by d)

Solution:

Proof. Let S be as stated and let d be the minimal element of S. By Euclidean division, we know there exists $m, r \in \mathbb{Z}$ such that a = md + r, $0 \le r < d$. Notice r = a - md = a - mas - mbt = a(1 - ms) + b(-mt) so $r \in S \cup \{0\}$. By assumption, we have d is the minimal element in S, but $0 \le r < d$ so r = 0. Likewise, there exists $n, r \in \mathbb{Z}$ such that b = nd + r, $0 \le r < d$. It follows that r = a(-ns) + b(1 - nt) so $r \in S \cup \{0\}$, and by d is the minimal element, we have r = 0. It follows that a = md and b = nd so $d \mid a$ and $d \mid b$.

(c) Prove that if $c \mid a$ and $c \mid b$, then $c \leq d$.

Solution:

Proof. Let S and d be as stated and assume $c \mid a$ and $c \mid b$, so a = ck and $b = c\ell$ for some $k, \ell \in \mathbb{Z}$. Notice $d = as + bt = c(sk + t\ell)$ so $c \mid d$. By assumption, since $d \in S$, d > 0, so $c \le d$ as required.

10 Marks

4. Let $A \subseteq \mathbb{Q}$ and $S = \{c_1a_1 + c_2a_2 + c_3a_3 \dots | a_1, a_2, a_3 \dots \in A, c_1, c_2, c_3 \dots \in \mathbb{Z}\}$. Prove by induction on the elements of A that if A is finite and non-empty, then there exists $q \in \mathbb{Q}$ such that $S = \{cq, c \in \mathbb{Z}\}$. (Hint: Show that $S \subseteq \{cq, c \in \mathbb{Z}\}$ and $S \supseteq \{cq, c \in \mathbb{Z}\}$ and find q in your inductive step)

Solution:

Proof. Let A and S be as stated. We proceed with mathematical induction on the number of elements in A.

- If A has 1 element a, then, $S = \{ca, c \in \mathbb{Z}\}$ and since $a \in \mathbb{Q}$, the base case holds.
- Assume there exists $q \in \mathbb{Q}$ such that $S = \{cq, c \in \mathbb{Z}\}$ where $A = A_k$ has k elements. Consider $A = A_{k+1}$ and partition A into $A \setminus \{a\}$ and $\{a\}$ for some $a \in A_{k+1}$. Notice S consists of all the ways multiples of a can add to multiples of elements in $A \setminus \{a\}$, which is precisely elements in $\{c_1a + c_2q, c_1, c_2 \in \mathbb{Z}\}$. Since $a, q \in \mathbb{Q}$, $a = \frac{x_1}{y_1}$ and $q = \frac{x_2}{y_2}$ where $y_1, y_2 \neq 0$. Let $\frac{\gcd(y_2x_1, y_1x_2)}{y_1y_2} = u$. We claim that $\{cu, c \in \mathbb{Z}\} = S$.
 - Let $p \in \{cu, c \in \mathbb{Z}\} = S$. By Bézout's lemma, we know there exists integers α, β such that

$$p = cu = \frac{c(\alpha y_2 x_1 + \beta y_1 x_2)}{y_1 y_2}$$
$$= \frac{c\alpha y_2 x_1 + c\beta y_1 x_2}{y_1 y_2}$$
$$= \frac{c\alpha x_1}{y_1} + \frac{c\beta x_2}{y_2}$$
$$= c\alpha(a) + c\beta(q)$$

so $p \in \{c_1a + c_2q, c_1, c_2 \in \mathbb{Z}\} = Se, \{cu, c \in \mathbb{Z}\} \subseteq S.$

- Let $p \in S$ so $p = c_1 a + c_2 q$ for some $c_1, c_2 \in \mathbb{Z}$. Then,

$$p = \frac{c_1 x_1}{y_1} + \frac{c_2 x_2}{y_2}$$
$$= \frac{c_1 y_2 x_1 + c_2 y_1 x_2}{y_1 y_2}$$

Notice $gcd(y_2x_1, y_1x_2) | y_2x_1$ and $gcd(y_2x_1, y_1x_2) | y_1x_2$, so

$$y_2x_1 = \alpha \gcd(y_2x_1, y_1x_2)$$

$$y_1x_2 = \beta \gcd(y_2x_1, y_1x_2)$$

where $\alpha, \beta \in \mathbb{Z}$ and thus

$$p = \frac{c_1 \alpha \gcd(y_2 x_1, y_1 x_2) + c_2 \beta \gcd(y_2 x_1, y_1 x_2)}{y_1 y_2}$$

= $(c_1 \alpha + c_2 \beta) u$

so $p \in \{cu, c \in \mathbb{Z}\}, \{cu, c \in \mathbb{Z}\} \supseteq S$.

So there exists $q \in \mathbb{Q}$ such that $S = \{cq, c \in \mathbb{Z}\}$ as required.

Since the base case and the inductive step hold, it follows that for any finite and non-empty A, there exists $q \in \mathbb{Q}$ such that $S = \{cq, c \in \mathbb{Z}\}$.

10 Marks

5. Prove or disprove that the sequence $(x_n)_{n\in\mathbb{N}} = \frac{1\cdot 3\cdot 5\cdot ...\cdot (2n-1)}{2\cdot 4\cdot 6\cdot ...(2n)}$ converges. (Hint: Consider an inequality between this sequence and $\frac{1}{\sqrt{3n+1}}$)

Solution:

Proof. We first prove that for all $n \in \mathbb{N}$, $\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots (2n)} \leq \frac{1}{\sqrt{3n+1}}$. We proceed with induction.

- For the base case, $\frac{1}{2} = \frac{1}{\sqrt{4}} = \frac{1}{\sqrt{3+1}}$ so the base case holds.
- Assume that the result holds for n = k. Then, for k + 1, by assumption,

$$\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \cdot \dots (2n)(2n+2)} \le \frac{(2n+1)}{\sqrt{3n-1}(2n+2)}$$

$$= \sqrt{\frac{(2n+1)^2}{(3n+1)(2n+2)^2}}$$

$$= \sqrt{\frac{(2n+2)^2}{12n^3 + 28n^2 + 20n + 4}}$$

$$\le \sqrt{\frac{(2n+2)^2}{12n^3 + 28n^2 + 19n + 4}}$$

$$= \sqrt{\frac{1}{(3n+4)}}$$

so the inductive step holds

Since the base case and inductive step hold, this proves that $n \in \mathbb{N}$, $\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n)} \le \frac{1}{\sqrt{3n+1}}$. Now, let $\varepsilon > 0$ and choose $N = \left\lceil \frac{1}{3\varepsilon^2} \right\rceil \in \mathbb{N}$. Notice, for all n > N,

$$\left| \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \right| \le \left| \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2N-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2N)} \right|$$

$$\le \left| \frac{1}{\sqrt{3N+1}} \right|$$

$$< \frac{1}{\sqrt{3N}}$$

$$= \frac{1}{\sqrt{3 \left\lceil \frac{1}{3\varepsilon^2} \right\rceil}}$$

$$\le \frac{1}{\sqrt{\frac{3}{3\varepsilon^2}}} = \varepsilon$$

So $(x_n)_{n\in\mathbb{N}}$ converges as required.