POLITECHNIKA WROCŁAWSKA

Inteligencja Obliczeniowa i jej zastosowania

Ćwiczenie 2 Metody redukcji wymiarowości – nieujemna faktoryzacja macierzy i dekompozycje tensorów

Autorzy: Paweł Andziul 200648 Robert Chojnacki 200685 Marcin Słowiński 200638

Prowadzący: dr hab. inż. Rafał ZDUNEK

Spis treści

1	Zad	lanie 1	2			
	1.1	Algorytm ALS	2			
	1.2	Algorytm MUE	2			
	1.3	Algorytm HALS	2			
	1.4	Realizacja	2			
	1.5	Wyniki	4			
2	Zadanie 3					
	2.1	Opis metody	4			
	2.2	Algorytm	4			
	2.3	Realizacja	5			
	2.4	Realizacja	7			
3			13			

1 Zadanie 1

Wygenerować faktory $A = [a_{ij}] \in R_+^{IxJ}$ i $X = [x_{jt}] \in R_+^{JxT}$, gdzie $a_{ij} = max(0, \check{a}_{ij})$ i $x_{jt} = max(0, \check{a}_{jt})$ oraz $\check{a}_{ij}, \check{x}_{jt} \sim N(0, 1)$ (rozkład normalny). Wygeneruj syntetyczne obserwacje Y=AX dla I = 100, T = 1000, J = 10. Stosując wybrane algorytmy NMF (ALS, MUE, HALS) wyznacz estymowane faktory \hat{A} i \hat{X} oraz unormowany błąd residualny w funkcji iteracji naprzemiennych. Oceń jakość estymacji stosując miary MSE (ang. Mean-Squarred Error) lub SIR (ang. Signal-to-Interference Ratio).

1.1 Algorytm ALS

Algorytm ALS polega na N-krotnym powtórzeniu pętli, której zadaniem jest obliczenie tensorów A oraz X.

W pierwszym etapie tensory A i X inicjalizowane są liczbami losowymi zależnymi od rzędu faktoryzacji. Następnie następuje N-krotne powtórzenie pętli, w której estymowane są faktory stosując wykorzystując pochodną kwadratu odległości euklidesowej.

```
\nabla_A D(Y|AX) = (AX - Y)X^T = 0 \Rightarrow AXX^T = YX^T \Rightarrow A = YX^T(XX^T)^{-1}\nabla_X D(Y|AX) = A^T(AX - Y) = 0 \Rightarrow A^TAX = A^TY \Rightarrow X = (A^TA)^{-1}A^TY
```

Wykorzystując otrzymane wyniki obliczany jest błąd residualny.

1.2 Algorytm MUE

1.3 Algorytm HALS

1.4 Realizacja

Listing 1: Skrypt z realizacją w środowisku MATLAB

```
clc:
   clear all;
   close all;
   % dane oryginalne
   I = 100; T = 1000; J = 10;
   Aw = \max(0, \operatorname{randn}(I, J));
   Xw = max(0, randn(J, T));
9
   Y = Aw * Xw;
11
   % inicjalizacja
12
   A = rand(size(Y,1),J);
13
   X = rand(J, size(Y,2));
14
   A1 = A;
16
   A2 = A;
17
18
   %A3 = A;
19
   X1 = X;
20
  X2 = X;
```

```
%X3 = X;
23
   MaxIter = 100;
24
25
   [A1,X1,res1] = NMF_ALS(A1,X1,Y,MaxIter);
   [A2,X2,res2] = NMF_MUE(A2,X2,Y,MaxIter);
27
   %[A3,X3,res3] = NMF_HALS(A3,X3,Y,J,MaxIter);
28
29
   figure
30
   hold on;
31
   semilogy(res1)
32
   semilogy(res2)
   %semilogy(res3)
35
   % to samo ale z wykorzystaniem wbudowanej funkcji
36
37
   rng(1) % for reproducibility
38
   [W,H] = nnmf(Y,10);
39
   D = norm(Y-W*H,'fro')/sqrt(I*T); % blad residualny (resztowy)
40
41
42
   SIR = CalcSIR(Aw, A);
43
44
   % ---- to co pisal na konsoli ----
45
46
   Aws = Aw*diag(1./sum(Aw,1));
47
   grid on
48
   eps
   Aws(1:5,:)
```

1.5 Wyniki

Rysunek 1: Wykres ilustrujący przebieg optymalizacji naprzemiennej

2 Zadanie 3

Obrazy twarzy z bazy ORL (lub podobnej) przedstaw za pomocą tensora $Y \in R^{I_1xI_2xI_3}$, gdzie I_3 jest liczbą obrazów. Rozdziel obrazy na zbiory trenujący i testujący według odpowiedniej zasady, np, 5-folds CV i utwórz odpowiednie tensory trenujący Y_r i testujący Y_t . Tensor trenujący poddaj dekompozycji CP (np. algorytmem ALS) oraz HOSVD dla J = 4, 10, 20, 30. Pogrupować obrazy stosując metodę k-średnich dla faktora $\hat{U}^{(3)}$. Badania przeprowadzić dla różnej liczby grup. Porównać dokładność grupowania z metodą PCA (z poprzedniego ćwiczenia). Następnie dokonaj projekcji obrazów z tensora Y_t na podprzestrzeń cech generowaną faktorami otrzymanymi z Y_r . Dokonaj klasyfikacji obrazów w przestrzeni cech w $\hat{U}^{(3)}$ za pomocą klasyfikatora k-NN. Porównać efekty klasyfikacji różnymi metodami (np. PCA, CP, HOSVD).

2.1 Opis metody

2.2 Algorytm

2.3 Realizacja

Listing 2: Podstawowy skrypt z realizacją w środowisku MATLAB

```
clc;
   clear;
   close all;
   load('FaceData_56_46.mat');
   Persons = 8;
6
   ImagesPerPerson = 10;
   nOfImages = Persons*ImagesPerPerson;
   % wczytanie danych do tensora
10
   P = zeros(1,n0fImages);
11
   Y=zeros(56,46,nOfImages);
12
   img_index = 1;
13
   for p=(1:Persons)
14
       for i=(1:ImagesPerPerson)
15
           P(img_index) = p;
16
           Y(:,:,img_index) = FaceData(p, i).Image;
17
           img_index = img_index + 1;
18
       end
19
   end
20
   P = P';
21
22
   figure;
23
   suptitle('Twarze oryginalne');
   for i=(1:n0fImages)
25
       subplot(Persons, ImagesPerPerson, i);
26
       imagesc(Y(:,:,i));
27
       title(i)
       colormap gray;
29
       set(gca,'XtickLabel',[],'YtickLabel',[]);
30
31
   end
32
   % rozdzielenie na dwa zbiory (5-folds CV)
33
   CV = cvpartition(P, 'kfold', 5);
34
   train_idx = CV.training(1);
36
   test_idx = CV.test(1);
37
   % utworzenie tensorow trenujacego i testowego
38
   Y_train = Y(:,:,train_idx);
   Y_{\text{test}} = Y(:,:,\text{test_idx});
40
   Class_train_idx = P(train_idx);
41
   Class_test_idx = P(test_idx);
42
   J_{serie} = [4 10 20 30];
44
45
   res_time_hosvd = zeros(1,length(J_serie));
46
   res_time_kmeans = zeros(1,length(J_serie));
   res_time_knn = zeros(1,length(J_serie));
48
  res_acc_kmeans = zeros(1,length(J_serie));
49
  res_acc_knn = zeros(1,length(J_serie));
  res_rands_kmeans = zeros(1,length(J_serie));
   res_rands_knn = zeros(1,length(J_serie));
```

```
res_delta = zeros(1,length(J_serie));
    res_groups_kmeans = [];
54
55
    for J_current=(1:length(J_serie))
56
        J(1:3) = J_serie(J_current);
57
58
       % dekompozycja hosvd (pod kmeansa)
59
        [A, B, C, G, Y_hat] = skrypt_zad3_hosvd(Y, J);
61
        res_time_hosvd(J_current) = toc;
63
       figure;
64
       suptitle(sprintf('Twarze zredukowane J=%d (HOSVD)', J_serie(J_current)));
        for i=(1:nOfImages)
66
           subplot(Persons, ImagesPerPerson, i);
67
           imagesc(Y_hat(:,:,i));
68
           title(i)
69
           colormap gray;
70
           set(gca,'XtickLabel',[],'YtickLabel',[]);
71
        end
72
73
        % grupowanie metoda ksrednich dla faktora U^(3) - stala liczba grup (ilosc
74
            osob)
        tic
       kmeans_result = kmeans(C, Persons);
76
        res_time_kmeans(J_current) = toc;
        res_groups_kmeans = [res_groups_kmeans kmeans_result];
78
        [res_acc_kmeans(J_current), res_rands_kmeans(J_current), ~] = AccMeasure(P,
           kmeans_result');
80
        % dekompozycja hosvd
81
        [Ar, Br, Cr, Gr, Yr_hat] = skrypt_zad3_hosvd(Y_train, J);
82
83
       % projekcja
84
       Y3 = reshape(permute(Y_test,[3 1
85
            2]), size(Y_test,3), size(Y_test,1)*size(Y_test,2));
        G3 = reshape(permute(Gr, [3 1 2]), [J(3), J(1)*J(2)]);
86
        Ct = Y3*pinv(double(G3)*(kron(Br,Ar))');
87
        Ct = Ct.*repmat(1./sqrt(sum(Ct.^2,2)+eps),1,size(Ct,2));
89
       % klasyfikacja w przestrzeni cech U^(3)
90
        tic
91
       mdl_class = fitcknn(Cr,Class_train_idx,'NumNeighbors',1);
92
       prediction = predict(mdl_class, Ct);
93
       res_time_knn(J_current) = toc;
94
        [res_acc_knn(J_current), res_rands_knn(J_current), ~] =
95
            AccMeasure(prediction, Class_test_idx');
96
       % dokladnosc klasyfikacji (podobnie jak w AccMeasure)
97
        res_delta(J_current) = 100*(length(find((prediction -
98
            Class_test_idx)==0))/length(Class_test_idx));
99
    end
100
    %%
101
   figure;
   hold on
```

Listing 3: Funkcja realizująca algorytm HOSVD

```
function [ A, B, C, G, Y_hat ] = skrypt_zad3_hosvd( Y, J )
2
       DimY = size(Y);
3
4
       % unfolding
       Y1 = reshape(Y,DimY(1),DimY(2)*DimY(3));
       Y2 = reshape(permute(Y, [2 1 3]), DimY(2), DimY(1)*DimY(3));
       Y3 = reshape(permute(Y, [3 1 2]), DimY(3), DimY(1)*DimY(2));
Q
       % dekompozycja tensorow
       [E1,^{\sim}] = eig(Y1*Y1');
11
       A = fliplr(E1(:,DimY(1)-J(1)+1:DimY(1)));
13
       [E2,^{\sim}] = eig(Y2*Y2');
14
       B = fliplr(E2(:,DimY(2)-J(2)+1:DimY(2)));
16
       [E3,^{\sim}] = eig(Y3*Y3');
17
       C = fliplr(E3(:,DimY(3)-J(3)+1:DimY(3)));
19
       G = ntimes(ntimes(Y,A',1,2),B',1,2),C',1,2); % core tensor
20
       Y_hat = ntimes(ntimes(G,A,1,2),B,1,2),C,1,2); % tensor 3-way
21
22
       C = C.*repmat(1./sqrt(sum(C.^2,2)+eps),1,size(C,2));
23
24
25
   end
```

2.4 Wyniki

W niniejszym punkcie zamieszczono wyniki dla dekompozycji z wykorzystaniem metody HOSVD. Badaniu poddano 80 obrazów twarzy (ilustracja 2) z bazy Uniwersytetu Cambridge [7].

Rysunek 2: Twarze wykorzystane podczas testów

Rysunek 3: Twarze zredukowane J=4 (HOSVD)

Rysunek 4: Twarze zredukowane J=10 (HOSVD)

Rysunek 5: Twarze zredukowane J=20 (HOSVD)

Rysunek 6: Twarze zredukowane J=30 (HOSVD)

W tabeli 1 zamieszczono otrzymane wartości metryk. Dla algorytmu k-średnich zostały policzone Acc (dokładność) oraz Rand's index.

Tabela 1: Otrzymane metryki dla różnych wartości parametru J (k-średnich)

	4	10	20	30
Acc (dokładność)	76,25	100	80,00	63,75
Rand's index	92,56	100	93,04	84,56

Jak możemy zauważyć metoda k-średnich daje najlepsze rezultaty dla J=10, zarówno mniej jak i więcej szczegółów w obrazie negatywnie wpływa na rezultat grupowania. W przypadku metody najbliższych sąsiadów jest inaczej – tutaj im bardziej szczegółowy obraz otrzyma ta metoda na wejściu tym lepsze będą rezultaty. Trzeba również pamiętać, że metoda k-średnich nie wymaga zbioru treningowego i uczącego.

W tabeli 2 zamieszczono metryki dla klasyfikacji metodą najbliższych sąsiadów. Zostały policzone dokładność (Acc) oraz Rand's index dla klasyfikacji w przestrzeni cech $\widehat{U}^{(3)}$ przy pomocy metody najbliższych sąsiadów.

Tabela 2: Otrzymane metryki dla różnych wartości parametru J (k-najbliższych sąsiadów)

	4	10	20	30
Acc (dokładność)	81,25	93,75	100	100
Rand's index	94,17	97,50	100	100

Natomiast zależności czasowe przedstawiono w tabeli 3. Grupowanie przeprowadzono dla ilości grup równej liczbie osób aby móc jednoznacznie zinterpretować wyniki. Na ilustracji 7 zamieszczono graficzne porównanie.

Tabela 3: Czas przetwarzania [ms] w zależności od parametru J

	4	10	20	30
HOSVD	12,54	14,09	11,80	13,58
grupowanie k-średnich	8,25	9,81	11,15	15,22
klasyfikacja k-NN	14,17	13,61	13,62	14,21

Rysunek 7: Czas przetwarzania w zależności od wartości J

3 Podsumowanie

Podczas prac nad zadaniami zapoznano się z metodami redukcji wymiarowości przy pomocy nieujemnej faktoryzacji macierzy i dekompozycji tensorów.

Literatura

- [1] Dokumentacja środowiska MATLAB, https://www.mathworks.com/
- [2] Zdunek, Rafał, "Nieujemna faktoryzacja macierzy i tensorów : zastosowanie do klasyfikacji i przetwarzania sygnałów", Oficyna Wydawnicza Politechniki Wrocławskiej, 2014
- [3] http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
- [4] http://www.esat.kuleuven.be/sista/tensorlab/
- [5] http://www.bsp.brain.riken.jp/TDALAB/
- [6] http://www.bsp.brain.riken.jp/~phan/
- [7] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html