

$$X T_{17} = Andian \left(\frac{\Delta X}{\Delta Y} \right) + 200$$

04 T17 = 964.0441 grades

$$X_{12} = 13.35$$
 $0 \times 12 = 15.69$

012= 148, 1997 grades

N21 = 348, 1997 grads

0 18 P

01.8= 11.7 + P = 141.3242 graves

K28 ?

Q2B = Q21 + 7 = 13, 6227 grades

Calale de y

Y = 6, 8756 grades

(Xb, Yb) D'après la règle desinos

$$\frac{\Delta_1 \Delta_2}{\sin(\varphi)} = \frac{\overline{\Delta_0 B}}{\sin(\varphi)}$$

$$\angle \Rightarrow \qquad \overline{\Delta_{\Lambda}B} = 8h(\beta) \cdot \frac{\Delta_{\Lambda}\Delta_{\xi}}{8h(\beta)}$$

Calculons D.A., of

$$\Delta_{4} \Delta_{3} = \sqrt{(\chi_{3} - \chi_{3})^{2} + (\chi_{4} - \chi_{3})^{2}} = 66.589 \text{ m}$$

f = 200 - B - Y = 127. 7014 grade

Doal 18 = 62.80 21 m

	_					
\vec{X}_{b} , \vec{V}_{b}	$\overline{X}_{b} = X_{a} + \Delta_{a} B \cdot G \left(X_{4b} \right)$			X = 3	361 685, 169	M
	Yb = Y1 + B2B. Sin (X1b)				371 72L 897	
	1b = /	s + OsB . E	Sin (X 1b)	\	371 +26, 897	1 m
Tobleau de						
		direction if	gisement opproché Zij(grade)	distance app (m)	Sigma	
gisement et distance	Station D1	\$ 7	264.0441		20 4	
opp nodée	5 00 mV	В	141. 3242	62, 80 L	Lom (2000))
11 17	Station 12	۵,	348. 1997		2000	<u></u>
	~	В	13,6227		2000	
C4 .			1 1 1 1 1 7 1 1°	Va. 0 5	0	0.0
Colad de la		direction if	gisement opproché Zije graděj	Lettere horizontale Dij	G,	G.m
Constante d'orientation	Station D1	% 7	264.0441	0,0000	264.0441	264.0441
approals des station		В	141. 3249	277. 2801	264. 6441	
Δ Δ ₂	Station 12	۵,	348.1997	0,0000	348. 1997	349.1996
		В	13.6227	65.423	848. 1995	
Or pace la	6 d G.	, s				
On pose lo equations						
d'observation :	6 dĜ.	D" Cos das	i, - ρ" Sin \(\overline{\alpha}_{1B} \(\hat{\beta}_{1} \)	. W.*		
5/- 0 VIO () () () ()	18	(H).	(ij)	, ,,,,,		
	ν ₂₁ = - d Ĝ" + ω",					
	$\hat{G}_{28} = -d\hat{G}_{3}^{"} + \rho^{"} \frac{\cos \tilde{\Lambda}_{2B}}{(ij)_{o}} \hat{z}_{b} - \rho^{"} \frac{\sin \tilde{\Lambda}_{2B}}{(ij)_{b}} \hat{\gamma}_{b} + \hat{\omega}_{2B}^{"}$					
	· · · · · · · · · · · · · · · · · · ·					
	$\hat{\mathcal{V}}_{l_{1B}} = \mathcal{S}_{in} \left(\vec{\mathcal{N}}_{1B} \right) \hat{\mathcal{X}}_{b} + \mathcal{C}_{a} \left(\vec{\mathcal{N}}_{1B} \right) \hat{\mathcal{Y}}_{B} + \mathcal{W}_{1B}$					
	146					
·						

$$\begin{array}{lll}
\mathcal{K} = & \text{ fit s (point i n connu}) & \text{ fits (ref)} + \text{ lecture (s-pi)} \\
\mathcal{K} = & \text{ for } \mathcal{K} = \text{ for } \mathcal{K}$$

phi= 127.70 14