Introduction to Computational Techniques in Physics/Data Science Applications in Physics

Definitions

- Suppose x(b) is some periodic function that we sample at some f frequency
 - Measure and times $t_n = t_0 + n t_s$
 - Goal is to analyze ∞ and infer properties of ∞ (6)
 - · magnitude [x(t)]
 - · power vs time P(t) ~ |x(t)|2
 - Spectral composition

Acronyms

- FFT = Fast Fourier Transform
 - DFT = Discrete Fourier Transform
- DSP = Digital Signal Processing
- · SNR = Signal-to-noise ratio
 - Often expressed in dB,
- i.e. SNR = $20 \log_{10} (S/N)$ where S and N are $5 \log^{10} and$ and noise amplitudes
 - For power, SNR = $10 \log_{10} C P_S / P_N$
- · ASD = Amplitude spectral density
 - · PSD = Power spectral density
 - · NPS = Noise power spectrum

Acronyms

• FIR = Finite Impulse Response & filter • IIR = Infinite Impulse Response

Schematic Notation

- Represent addition, multiplication Crixing), de lay operations
- Most linear systems can be represented this way
 - · i.e. C, x, (n) + C2 x2(n) > C, y (n) + C2 y(n)

Fourier Transform

- Most common way to analy ze a periodic function by means of a Fourier transform
 - · Represent as a superposition of harmonic oscillations

Represent as a superposition of
$$x(t) = \int_{-\infty}^{\infty} x(t) e^{-it} dt$$

- Here $x(\omega)$ is a Fourier coefficient: represents the strength of the periodic signal at a particular frequency
 - · Also known as the spectral density

Fourier Transform

• Inverse transform

$$x(\omega) = C \int x(t) e^{-j\omega t} dt$$

 $x(f) = C \int x(t) e^{-ja\pi f t} dt$

• = $C_{S}^{6} x(t) \left[\cos(2\pi f t) - j \sin(2\pi f t) dt \right]$

screte Fourier Transform

Define

•
$$\Delta \phi(m) = p \text{ hase } = fan^{-1} \left[x_{im} c_m \right] / x_{re} c_m$$

$$P(m) = \left| x cm \right|^2 = x^* (m) x (m)$$

Aliasing

- For real signals $\mathcal{L}(m)$, can show that
 - Exercise for the reader
 - $x(m) = x^* (N-m)$
- Moreover (obvious)
- $x(m) = \infty (N + m)$
- This is called aliasing
- Spectrum for OS m < N/2 is redundant with 2 m < N, 3N
- · Nyquist theorem:
- x(x) can be reconstructed perfectly from x(m)

 - Fy = ts/2 is often called the Nyquist frequency

Fast Fourier Transform

- Brute-force discrete Fourier transforms can be slow
 - Require N[∞] calculations
- However, trig functions are symmetric and obey tris, which is used in the fast Fourier Transform CFFT)
 - Scale as N log N
 - Multiple FFT algorithms exist, and are interfaced in
 - E.g. FFTW from MT

Applications of FFT

- FFT is useful to
 - · Look at the composition of a periodic signal
 - · e.g. harmonics, tone analysis
 - · Look at the composition of noise
 - · Line noise
 - · White noise (flat in frequency)
 - · Pink noise (4)
 - Signal processing
 - · Measure amplitude of the signal in freq. do main
 - · Design filters to maximize SNR

FIR filters

- Filtering Cin the time domain) is a way to reduce the contributions of (random) noise to the elementaries of the signal
- Usually implemented by summing oversmples with some (predetermined) weight
 - · Equivalent to integration or averaging

Box-car Filter Response

Time-Domain Signal After Filtering

Frequency-Domain Response

More FIR Filters

Ideal Low-Pass FIR Filter

Convoluted Low-Pass Filter

Example: Blackman Window

(a)

(b)

(c)

Gaussian Filter

Frea

More (Tunable) Filters

•
$$w(k) = N$$
-point inverse Chebyshev

DFT of window

 $\cos \sum N \cdot \cos^{-1} \sum \alpha \cdot \cos(\pi \frac{m}{N})$
 $\cosh \sum N \cdot \cosh^{-1} (\alpha)$

• where $\alpha =$ cosh[Ncosh -1 (100)]

• where
$$\alpha = \frac{1}{(08h)}$$
 where $\alpha = \frac{1}{(08h)}$ $\cos h = \frac{1}{(108)}$ $\cos h = \frac{1}{(10$

More Tunable Filters

Bandpass Filter

Highpass Filter

Phase Response in FIR Filters

Linear phase shift in passband constant group delay (no spectral distortion):

IIR Filters

Example: Exponential Averaging Filter

Exponential IIR Filter

What We Have Not Covered

- Many topics to cover, so I so far focused on most relevant immediately
 - There are courses dedicated to DSP
- Other possible topics of interest (at your leisure):
 - Digital Signal Processing
 - Digital mixing
 - Modulation/demodulation
 - Smoothing, windowing
 - Often useful for image processing
 - Down-sampling (decimating), re-sampling