Examples

Robust Direct Trajectory Optimization Using Approximate Invariant Funnels

Journal Club, Team 3

BSc Federico Girlanda

DEKI Robotics Innovation Center Bremen

Table of Content

Examples

Introduction Background 000 00

Direct Transcription With Ellipsoidal Disturbances

- Introduction
- 2 Background
- 3 Direct Transcription With Ellipsoidal Disturbances
- 4 Examples

Examples

Introduction Background 00

Direct Transcription With Ellipsoidal Disturbances 000000

Introduction

•00

An algorithm that reason about robustness

Introduction

Background 00 Direct Transcription With Ellipsoidal Disturbances

Examples 00000

Reference

 Z. Manchester and S. Kuindersma, "DIRTREL: Robust Trajectory Optimization with Ellipsoidal Disturbances and LQR Feedback"

Figure 1: Zachary Manchester

Figure 2: Scott Kuindersma

An algorithm that reason about robustness

Introduction

Background 00 Direct Transcription With Ellipsoidal Disturbances

Contribute

- In the case of ellipsoidal disturbance sets, fast evaluations of robust cost and constraint functions.
- Algorithm that improves tracking performance over non-robust formulations while incurring only
 a modest increase in computational cost.
- Evaluation of the algorithm in several simulated robot control tasks.

Introduction Background

Direct Transcription With Ellipsoidal Disturbances

Examples 00000

Background

Trajectory optimization via DIRTRAN

Introduction

Background O● Direct Transcription With Ellipsoidal Disturbances

000000

Characteristics

- NLP that can be solved using SQP packages such as SNOPT.
- Straight forward inclusion of state constraints and avoid numerical pitfalls such as the "tail wagging the dog" effect.
- · Usually the problem size is large

$$\begin{aligned} & \underset{x_{1:N},\,u_{1:N-1},\,h}{\text{minimize}} \,\,g_N(x_N) + \sum_{i=1}^{N-1} g(x_i,u_i) \\ & \text{subject to} \quad x_{i+1} = x_i + f(x_i,u_i) \cdot h \quad \forall i=1:N-1 \\ & \quad u_i \in \mathcal{U} \qquad \qquad \forall i=1:N-1 \\ & \quad x_i \in \mathcal{X} \qquad \qquad \forall i=1:N \\ & \quad h_{\min} \leq h \leq h_{\max} \end{aligned}$$

Figure 3: DIRTRAN optimization problem

Background OO Direct Transcription With Ellipsoidal Disturbances

Examples 00000

Direct Transcription With Ellipsoidal Disturbances

Introduction

State and input deviations

Introduction Background 000 00

Direct Transcription With Ellipsoidal Disturbances

○●○○○○

Assume well defined $w_i \in W$ disturbances that enter into the dynamics Hence, we can write the disturbed dynamics as

$$x_{i+1} = f_h(x_i, u_i, w_i)$$

Given a disturbance sequence $w_{1:N-1}$ we can calulate the state and input deviations from the nominal values.

Deviations formulation

$$\delta x_{i+1} = f_h(x_i + \delta x_i, u_i + \delta u_i, w_i) - x_{i+1}$$

$$\delta u_i = -K_i \delta x_i$$

Background OO Direct Transcription With Ellipsoidal Disturbances

○○●○○○

Characteristics

Introduction

- Penalize deviations of the closed-loop system from the nominal trajectory in the presence of disturbances, w_i.
- Quadratic cost of the form $\delta x_i^T Q^\ell \delta x_i + \delta u_i^T R^\ell \delta u_i$, where $Q^\ell \geq 0$ and $R^\ell \geq 0$ are positive semidefinite cost matrices.
- Need of a well-defined disturbance sequence, $w_{1:N-1}$.

Robust cost averaged over the entire disturbance set and summed along the trajectory:

$$\ell_W(x_{1:N}, u_{1:N-1}) \approx \frac{1}{Vol(W)} \int_W (\delta x_N^T Q_N^\ell \delta x_N + \sum_{i=1}^{N-1} (\delta x_i^T Q^\ell \delta x_i + \delta u_i^T R^\ell \delta u_i)) dW$$

but this integral cannot be easily computed.

Introduction Background

Direct Transcription With Ellipsoidal Disturbances

Assumptions

 \bullet Parametrization of the ellipsoidal set W by a symmetric positive-definite matrix D, such that

$$w^T D^{-1} w \leq 1$$

• Parametrization of the ellipsoidal bounds on the state deviations δx_i by a symmetric positive-definite matrix E_i , such that

$$\delta x_i^T E_i^{-1} \delta x_i \leq 1$$

Linearization of the disturbed dynamics around the nominal trajectory:

$$\delta x_{i+1} \approx A_i \delta x_i + B_i \delta u_i + G_i w$$

Thanks to the previous assumptions we can write the robust cost as:

$$\ell_{W}(x_{1:N}, u_{1:N-1}) = Tr(Q_{N}^{\ell} E_{N}) + \sum_{i=1}^{N-1} Tr((Q^{\ell} + K_{i}^{T} R^{\ell} K_{i}) E_{i})$$

The DIRTREL Algorithm

Introduction

Background 00 Direct Transcription With Ellipsoidal Disturbances

○○○●○

Examples 000000

In addition to augmenting the DIRTRAN optimization problem with $\ell_W(x_{1:N}, u_{1:N-1})$, we must also ensure that the closed-loop system obeys state and input constraints.

Robust state constraints

$$x_i^W = x_i \pm col(E_i^{1/2})$$

Robust input constraints

$$u_i^W = u_i \pm col((K_i E_i K_i^T)^{1/2})$$

The DIRTREL Algorithm

Introduction Background 000 00

Direct Transcription With Ellipsoidal Disturbances 00000●

$$\begin{aligned} & \underset{x_{1:N}, u_{1:N-1}, h}{\text{minimize}} \ \ell_{\mathcal{W}}(x_{1:N}, u_{1:N-1}) + g_N(x_N) + \sum_{i=1}^{N-1} g(x_i, u_i) \\ & \text{subject to} \quad x_{i+1} = f_h(x_i, u_i) \quad \forall i = 1:N-1 \\ & u_i \in \mathcal{U} \qquad \forall i = 1:N-1 \\ & u_i^{\mathcal{W}} \in \mathcal{U} \qquad \forall i = 1:N-1 \\ & x_i \in \mathcal{X} \qquad \forall i = 1:N \\ & x_i^{\mathcal{W}} \in \mathcal{X} \qquad \forall i = 1:N \\ & h_{\min} \leq h \leq h_{\max} \end{aligned}$$

Figure 4: DIRTREL optimization problem

Introduction Background 00

Direct Transcription With Ellipsoidal Disturbances 000000

Examples •00000

Examples

000

Pendulum with Uncertain Mass

Introduction Background

Direct Transcription With Ellipsoidal Disturbances

Figure 5: Direct Transcription vs DIRTREL nominal trajectories from the reference paper $% \left(1\right) =\left(1\right) \left(1\right)$

Figure 6: Direct Transcription vs DIRTREL nominal trajectories from my implementation

Pendulum with Uncertain Mass

Examples

000000

Introduction Background OOO OO

0.20

0.0 0

Direct Transcription With Ellipsoidal Disturbances

Number of steps

Figure 7: Comparison between the RoA dimension rho

400.8 50 1.0

Figure 8: Comparison between the RoA representation via funnels

Cart Pole with Unmodeled Friction

Examples

000000

Introduction Background OOO OO

Direct Transcription With Ellipsoidal Disturbances

Figure 9: Schematic of the cart pole system

Figure 10: Resulting nominal trajectories from DIRTRAN and DIRTREL

Quadrotor with Wind Gusts

Examples

000000

Background Introduction Direct Transcription With Ellipsoidal Disturbances 00 000000

Figure 11: Resulting nominal trajectories from DIRTRAN and DIRTREL

Robot Arm with Fluid-Filled Container

Introduction Background Direct Transcription With Ellipsoidal Disturbances OOO OOOOO Examples

Figure 12: Resulting nominal trajectories from DIRTRAN and DIRTREL

•000

Thanks for your attention

Appendix

0000

Figure A1: Conceptual depiction of an invariant funnel around a nominal trajectory

000

By defining

$$S(w) = w^T D^{-1} w - 1 \le 0$$
 and $V(t, \delta x) = \delta x^T E(t) \delta x - 1 \le 0$

we can define a robust invariant funnel by imposing

$$\dot{V}(t,\delta x,w)\leq 0$$

when $V(t,\delta x)=0$ and for all disturbances $w\in W=\left\{w|S(w)\leq 0\right\}$

It can be shown that imposing the SOS formulation with this notation will lead to obtain the propagation rule for E that is used to compute the robust cost in DIRTREL.

