Формальная верификация криптографических протоколов с использованием Proverif

Винарский Евгений

Институт системного программирования

28 июля 2021

Слабые места защиты информации

- Атаки на архитектуру (Криптографическая система не может быть надежнее использованных в ней отдельных алгоритмов шифрования)
- Атаки на конкретные реализации
 - Переполнение буферов
 - Не стёртая до конца секретная информация
- Атаки на сетевое оборудование
- Атаки на пользователей
- Атаки с использованием побочных каналов
- . . .

Для того чтобы преодолеть систему защиты, достаточно взломать любой из ее компонентов

Криптографические примитивы

- Алгоритмы симметричного шифрования
- Алгоритмы ассимметричной криптографии (выработка общих сессионных ключей и т.д.)
- Датчик псевдослучайных чисел
- Алгоритмы хэширования

В этом блоке считаем, что все криптографические примитивы не могут быть скомпрометированы раньше, чем перестанут использоваться

Какие достоинства и недостатки асимметричной криптографии?

Модель противника

- Модель атаки Возможности противника по взаимодействию с системой
- Ресурсы противника Предположения о вычислительных и информационных ресурсах противника
- Угроза Задача противника по нарушению свойств безопасности

Уязвимости криптосистемы возникают, если неправильно выбраны

- модель атаки
- угроза
- предположения о ресурсах

Модель противника (2)

- Пассивный противник (противник может читать зашифрованные пересылаемые данные в открытом канале)
- Dolev-Yao (Активный) Противник может:
 - читать сообщения в канале
 - модифицировать сообщения в канале
 - удалять сообщения из канала
- Противник, учитывающий временные задержки (может определить, какая именно проверка не прошла, ...)
- . . .

Рассуждать о стойкости криптосистемы можно только в терминах модели противника

Протокол (алгоритм) Диффи-Хеллмана

Схема протокола Диффи-Хеллмана

Модель противника

Протокол Диффи-Хелммана при активном противнике

- Е пассивный противник, слушающий незащищённый канал
- ullet известно значение g,N и y_A,y_B

Угроза: Противник E узнал выработанный общий ключ $K=g^{k_Ak_B} \pmod{N}$

Модель противника

Протокол Диффи-Хелммана при активном противнике

- Е пассивный противник, слушающий незащищённый канал
- ullet известно значение g,N и y_A,y_B

Угроза: Противник E узнал выработанный общий ключ $K = g^{k_A k_B} \pmod{N}$ Пусть E скомпрометировал $K = g^{k_A k_B} \pmod{N}$, тогда:

- узнал k_∆
 - решил задачу дискретного логарифмирования, т.е. вычислил k_A из уравненя $y_A = g^{k_A} \pmod{N}$
- узнал k_B
 - решил задачу дискретного логарифмирования, т.е. вычислил k_B из уравненя $y_B = g^{k_B} \pmod{N}$
- узнал k_A * k_B

Протокол Диффи-Хэллмана стойкий по отношении к пассивному противнику

Свойства безопасности протоколов выработки общих ключей обмена

- Аутентификация
 - Ложная аутентификация
 - Unknown key share (Неизвестный общий ключ)
- Установление одинаковых ключей
- Секретность ключей обмена
- Уникальность установленных ключей обмена
- Forward secrecy (Прямая секретность)
- Backward secrecy (Обратная секретность)

Протокол Нидхема-Шрёдера

Протокол выработки общего сессионного ключа (N_A,N_B)

Alice (pkA, privA)		Bob (pkB, privB)
- генерация NA - шифрует <a, na="">pk(B)</a,>	<a, na="">pk(B)</a,>	
	<na, nb="">pk(A) <</na,>	 дешифровка сообщения <a, na="">pk(B)</a,> <na, nb="">pk(A)</na,>
- дешифровка сообщения <na, nb="">pk(A) - <nb>pk(B)</nb></na,>	<nb>pk(B)</nb>	
, , ,	(<i>N</i> A, <i>N</i> в) общий секрет	-

Уязвимость протокола Нидхема-Шрёдера

Alice	Intruder (pkl, privl)	Bob
- генерация NA - шифрует <a, na="">pk(I)</a,>		
<a, na="">pk(I)</a,>		
	 дешифрует <a, na="">pk(I)</a,> шифрует <a, na="">pk(B)</a,> A, NA>pk(B) 	
		- дешифровка сообщения <a, na="">pk(B) - <na, nb="">pk(A)</na,></a,>
		<na, nb="">pk(A)</na,>

Уязвимость протокола Нидхема-Шрёдера (2)

	<na, nb="">pk(A)</na,>	
- дешифровка сообщения pk(A) - pk(I) >		
	- дешифровка <nв>pk(I)</nв>	
	<nb>pk(B)</nb>	
(NA, N	/в) общий секрет, который и	известен <i>I</i>

Пример 1: код на Proverif


```
fun Exp(bitstring,bitstring,bitstring):bitstring.
fun Sign(bitstring,bitstring):bitstring;
reduc forall msg.bitstring,sign_key;bitstring;
CheckSign(Sign(msg, sign_key), Exp(xCurve, xBase, sign_key)) = msg.
fun Encrypt(bitstring,bitstring):bitstring;
reduc forall a0:bitstring,al:bitstring;
Decrypt(Encrypt(a0,a1),a1) = a0.
fun A_Encrypt(bitstring,bitstring):bitstring,
reduc forall a0:bitstring,a_key:bitstring;
A_Decrypt(A_Encrypt(a0,Exp(xCurve, xBase, a_key)),a_key) = a0.
```

Пример 1: код на Proverif (2)


```
new k:bitstring;
let msq1 = A Encrypt(siqC, pkS) in
let s = Decrypt(msq2, k) in
event Client end(s).
let sigC = A Decrypt(msql, skS) in
let msq2 = Encrypt(s, k) in
```

Пример 1: описание протокола дизъюнктами Хорна


```
Дизъюнкты
                                  Хорна,
                                                          пред-
ставляющие
                                                   протокол
attacker(pk(x))
    \Rightarrow attacker(pencrypt(sign(k[pk(x)], sk<sub>A</sub>[]), pk(x)))
attacker(pencrypt(sign(y, sk_A[]), pk(sk_B[])))
   \Rightarrow attacker(sencrypt(s, y))
Дизъюнкты
                                 Хорна,
                                                          пред-
ставляющие
                                               противника
attacker(m) \land attacker(pk) \Rightarrow attacker(pencrypt(m, pk))
attacker(sk) \Rightarrow attacker(pk(sk))
attacker(pencrypt(m, pk(sk))) \land attacker(sk) \Rightarrow attacker(m)
attacker(m) \land attacker(sk) \Rightarrow attacker(sign(m, sk))
attacker(sign(m, sk)) \Rightarrow attacker(m)
\operatorname{attacker}(\operatorname{sign}(m, sk)) \wedge \operatorname{attacker}(\operatorname{pk}(sk)) \Rightarrow \operatorname{attacker}(m)
```

Выводимо ли событие attacker(s)?

Пример 1: выводимость события attacker(s)

Последовательность применения дизъюнктов Хорна, приводящая к нарушению секретности s

- attacker(a[])
- 3 $attacker(pencrypt(sign(k[pk(a[])], skA[]), pk(a[]))) \land attacker(a[]) \Rightarrow attacker(sign(k[pk(a[])], skA[]))$
- $attacker(sign(k[pk(a[])], skA[])) \land attacker(pk(skB[])) \Rightarrow attacker(k[pk(a[])])$
- $\textbf{ attacker}(sencrypt(s,k[pk(a[])])) \land attacker(k[pk(a[])]) \Rightarrow attacker(s)$

Протокол Диффи-Хеллмана Proverif

- \bullet (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- $(pr_S, pk_S) долговременные$ (закрытый, открытый) ключи сервера
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- (y, g^y) сессионные (закрытый, открытый) ключи сервера

Лиффи-Хеллман

Client (pkC, privC)		Server (pkS, privS)
- генерация g^x	< <i>pkC</i> , g^x>	
	< <i>pkS</i> , g^ <i>y</i> >	- генерация g^y
- client_key = g^y^x		- server_key = g^x^y

Противник отправляет серверу сообщение $\stackrel{< pk_{E,g}x>}{\rightarrow}$ от лица клиента

Протокол Диффи-Хэллмана не является стойким по отношении к активному противнику

Протокол Диффи-Хеллмана Proverif

- \bullet (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- $(pr_S, pk_S) долговременные$ (закрытый, открытый) ключи сервера
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- (y, g^y) сессионные (закрытый, открытый) ключи сервера

Лиффи-Хеллман

Client (pkC, privC)		Server (pkS, privS)
- генерация g^x	< <i>pkC</i> , g^ <i>x</i> >	
	< <i>pkS</i> , g^ <i>y</i> >	- генерация g^y
- client_key = g^y^x		- server_key = g^x^y

Противник отправляет серверу сообщение $\stackrel{< pk_{E,g}x>}{\rightarrow}$ от лица клиента

Протокол Диффи-Хэллмана не является стойким по отношении к активному противнику

17 / 29

Tamarin Prover: пример описания протокола BADH

- (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- (x, g^x) сессионные (закрытый, открытый) ключи клиента
- $sig_C(mess) ЭЦП$ на закрытом ключе клиента

- (pr_S, pk_S) долговременные (закрытый, открытый) ключи сервера
- (y, g^y) сессионные (закрытый, открытый) ключи сервера
- $sig_S(mess)$ ЭЦП на закрытом ключе сервера

Client (pkC, privC)		Server (pkS, privS)
- генерация g^x	<g^χ>></g^χ>	
	<g^y, g^y)="" pks,="" sig_s(g^x,=""></g^y,>	- генерация g^y
- client_key = g^y^x	<pre><pkc, g^x)="" sig_c(g^y,="">></pkc,></pre>	- <u>server_key</u> = g^x^y
	key = g^(x*y) общий секрет	

Практическое задание

Необходимо построить модель на языке Tamarin протокола **ISO** и прислать её на почту vinevg2015@gmail.com или в телеграмм до 27.11.2020

- (pr_C, pk_C) долговременные (закрытый, открытый) ключи клиента
- (x,g^x) сессионные (закрытый, открытый) ключи клиента
- $sig_C(mess)$ ЭЦП на закрытом ключе клиента

- (pr_S, pk_S) долговременные (закрытый, открытый) ключи сервера
- (y, g^y) сессионные (закрытый, открытый) ключи сервера
- $sig_S(mess)$ ЭЦП на закрытом ключе сервера

Client (pkC, privC)		Server (pkS, privS)
- генераци я g^x	<pkc, g^x=""> ></pkc,>	
	<pre><pks, g^y,="" pkc)="" sig_s(g^x,=""> <</pks,></pre>	- генерация g^y
- client_key = g^y^x	<sig_c(g^y, g^x,="" pks)=""></sig_c(g^y,>	- <u>server_key</u> = g^x^y
	key = g^(х*у) общий секрет	

Верификация на основе солвера cryptoverif

Основная идея

Криптографические примитивы (подпись, хэш, шифрование) – вероятностные процессы

- Безопасность криптографических примитивов обычно определяется как игра, в которую играют противник и "честные агенты"
- И противник, и "честные агенты" вероятностные процессы, которые взаимодействуют друг с другом
- Безопасность означает, что для каждого полиномиального противника вероятность наступления события S пренебрежимо мала
- Игра G вероятностный процесс, оперирующий действиями над криптографическими примитивами
- Задача посчитать вероятность выпадения события S в игре G

Доказательство стойкости

Game 0 — вероятностный процесс (игра), выпадение события $S=S_0$ $(Pr(G_0 \to S_0))$ в которой есть нарушение свойства безопасности протокола

- **①** Строится последовательность игр *Game* 0, *Game* 1, ..., *Game* n, где S_0, S_1, \ldots, S_n такие, что:
 - Все игры определены над одним и тем же вероятностным пространством
 - $|Pr(G_i \rightarrow S_i) Pr(G_{i-1} \rightarrow S_{i-1})| \leq \varepsilon_i$
 - $Pr(G_n \rightarrow S_n) = 0$
- $m{2}$ Тогда $Pr(G_0 o S_0 \leq \varepsilon_0 + \dots \varepsilon_{n-1})$

Переход между играми $\mathit{Game}\ i$ и $\mathit{Game}\ i+1$

- Игры $Game\ i$ и $Game\ i+1$ определены над одним и тем же вероятностным пространством
- Игры $Game\ i$ и $Game\ i+1$ действуют одинаково, если только не произойдет определенное "событие сбоя" F

Тогда
$$S_i \wedge \neg F \iff S_{i+1} \wedge \neg F$$

Lemma 1 (Difference Lemma). Let A,B,F be events defined in some probability distribution, and suppose that $A \land \neg F \iff B \land \neg F$. Then $|\Pr[A] - \Pr[B]| \le \Pr[F]$.

Proof. This is a simple calculation. We have

$$\begin{split} |\Pr[A] - \Pr[B]| &= |\Pr[A \wedge F] + \Pr[A \wedge \neg F] - \Pr[B \wedge F] - \Pr[B \wedge \neg F]| \\ &= |\Pr[A \wedge F] - \Pr[B \wedge F]| \\ &\leq \Pr[F]. \end{split}$$

The second equality follows from the assumption that $A \wedge \neg F \iff B \wedge \neg F$, and so in particular, $\Pr[A \wedge \neg F] = \Pr[B \wedge \neg F]$. The final inequality follows from the fact that both $\Pr[A \wedge F]$ and $\Pr[B \wedge F]$ are numbers between 0 and $\Pr[F]$. \square

Pseudo-Random Functions

- $\ell_1, \ell_2 \in \mathcal{N}$
- $m{\mathcal{F}}=\{F_s\}_{s\in S}$ семейство ключевых функций, где каждая функция F_s отображает $\{0,1\}^{\ell_1}$ в $\{0,1\}^{\ell_2}$
- ullet Γ_{ℓ_1,ℓ_2} множество всех функций, отображающих $\{0,1\}^{\ell_1}$ в $\{0,1\}^{\ell_2}$

PRF-преимущество ${\cal A}$ равно

$$|Pr[s \overset{\mathcal{U}}{\leftarrow} S: \ A^{F_s}() = 1] - Pr[f \overset{\mathcal{U}}{\leftarrow} \Gamma_{\ell_1,\ell_2}: \ A^f() = 1]|$$

- $\ell \in \mathcal{N}$ и $\ell > \ell$
- $\bullet \ \mathcal{H} = \{H_k\}_{k \in K}$
- $|Pr[k \stackrel{U}{\leftarrow} K : H_k(w) = H_k(w') \mid w \neq w'] \leq \varepsilon_{uh}$

$$\mathcal{F}'=\{F'_{k,s}\}_{(k,s)\in(K imes S)}$$
, где $F'_{k,s}=F_s(H_k(w))$

! Если ${\mathcal F}$ – псевдо-рандомные, то и ${\mathcal F}'$ – псевдо-рандомные

Pseudo-Random Functions (2)

$$\begin{array}{c} k \overset{\ell}{\leftarrow} K, \, s \overset{\ell}{\leftarrow} S \\ r \overset{\ell}{\leftarrow} R \\ \text{for } i \leftarrow 1 \dots q \text{ do} \\ \qquad w_i \leftarrow A(r, y_1, \dots, y_{i-1}) \in \{0, 1\}^{\ell} \\ \qquad x_i \leftarrow H_k(w_i) \in \{0, 1\}^{\ell_1} \\ \qquad y_i \leftarrow F_s(x_i) \in \{0, 1\}^{\ell_2} \\ b \leftarrow A(r, y_1, \dots, y_q) \in \{0, 1\} \\ \text{output } b \end{array}$$

$$k \stackrel{t}{\leftarrow} K, f \stackrel{t}{\leftarrow} \Gamma_{\ell_1,\ell_2}$$

$$r \stackrel{t}{\leftarrow} R$$
for $i \leftarrow 1 \dots q$ do
$$w_i \leftarrow A(r,y_1,\dots,y_{i-1}) \in \{0,1\}^{\ell_1}$$

$$x_i \leftarrow H_k(w_i) \in \{0,1\}^{\ell_1}$$

$$y_i \leftarrow f(x_i) \in \{0,1\}^{\ell_2}$$

$$b \leftarrow A(r,y_1,\dots,y_q) \in \{0,1\}$$
output b

Game 0

Game 1

$$|Pr(S_0) - Pr(S_1)| \le \varepsilon_{prf}$$

Pseudo-Random Functions (3)

$$\begin{split} k & \stackrel{\ell}{\leftarrow} K, \boxed{Y_1, \dots, Y_q \stackrel{\ell}{\leftarrow} \{0,1\}^{\ell_2}} \\ r & \stackrel{\ell}{\leftarrow} R \\ \text{for } i \leftarrow 1 \dots q \text{ do} \\ w_i \leftarrow A(r, y_1, \dots, y_{i-1}) \in \{0,1\}^{\ell} \\ x_i \leftarrow H_k(w_i) \in \{0,1\}^{\ell_1} \\ \text{if } x_i = x_j \text{ for some } j < i \text{ then } y_i \leftarrow y_j \text{ else } y_i \leftarrow Y_i \\ b \leftarrow A(r, y_1, \dots, y_q) \in \{0,1\} \\ \text{output } b \end{split}$$

Game 2

$$Pr(S_2) = Pr(S_1)$$

Game 3

output b

 $r \stackrel{\mathfrak{c}}{\leftarrow} R$

for $i \leftarrow 1 \dots q$ do

 $y_i \leftarrow Y_i$

 $k \stackrel{\text{\tiny ℓ}}{\leftarrow} K, Y_1, \dots, Y_q \stackrel{\text{\tiny ℓ}}{\leftarrow} \{0,1\}^{\ell_2}$

 $x_i \leftarrow H_k(w_i) \in \{0,1\}^{\ell_1}$

 $b \leftarrow A(r, y_1, \dots, y_q) \in \{0, 1\}$

 $w_i \leftarrow A(r, y_1, \dots, y_{i-1}) \in \{0, 1\}^{\ell}$

- F событие в $Game~3,~x_i=x_i$ для $i\neq j$
- $S_2 \land \neg F \iff S_3 \land \neg F$

$$|Pr(S_2) - Pr(S_3)| \le Pr(F) \le \varepsilon_{uh} \cdot \frac{q^2}{2}$$
 $\forall Pr(S_0) \le \varepsilon_{prf} + \varepsilon_{uh} \cdot \frac{q^2}{2}$

Signed DH

Оценить вероятность нарушения свойства query y: G, x: G; inj-event(endA(A, B, x, y)) ==> inj-event(beginB(A, B, x, y))

Модель противника

Formal View

- Модель атаки: возможность использовать любые правила вывода, представленные в теории
- Угроза: вывод специального события bad
- Вычислительные ресурсы: Не определены в явном виде

Computational View

- Модель атаки: возможность использовать все доступные оракулы
- Угроза: преймущество противника выше определённого порога
- Вычислительные ресурсы: количество запросов к внутренним алгоритмам (оракулам) полиномиально

Соотношение моделей противника при Formal View и Computational View

Модель Computational View сильнее модели Formal View

- Если протокол HE стойкий при Formal View, то он HE стойкий и при Computational View
- Если протокол стойкий при Computational View, то он стойкий и при Formal View

Однако

- если протокол стойкий при Formal View, то нет гарантий стойкости при Computational View
- если протокол HE стойкий при Computational View, то нет гарантий стойкости при Formal View

Доказательство НЕ стойкости протокола при Formal View конструктивно, т.е. алгоритм возвращает атаку