1. Time plot of a time series is shown. What can be said about the stationarity of this time series?

1 / 1 point

Some time series

- O It is a staionary time series.
- O It is a non-stationary time series since there is a fluctuation.
- O It is stationary since there is a trend.
- It is a non-stationary time series since there is a trend.

✓ Correct

Correct! Trend makes the time series non-stationary.

Some time series

- It is a stationary time series since there is no trend.
- It is a stationary time series since there is no seasonality.
- It is a non-stationary time series.

✓ Correct

Correct! There is a systematic change in the variation in the time series. At some point, the variation has increased.

It maybe combination of two stationary time series.

✓ Correct

Correct! Around time 130 ish, variation increased suddenly. This time series can be a combination of two stationary time series.

7.	Which one or more of the following can be said about the random walk?	1 / 1 point
	Random walk model relates current value of the time series to the previous value by adding some random deviation to the previous value.	
	\checkmark Correct! Random Walk model is $X_t = X_{t-1} + Z_t$	
	Random walk is a stationary stochastic process.	
	Random walk is the accumulation of random deviations from previous steps until the current time.	
	\checkmark Correct! $X_t = \sum_{i=1}^t Z_i.$	
R	How one can obtain a stationary stochastic process from the random walk?	1/1 point
0.	Using the difference operator.	17 I point
	One cannot.	
	✓ Correct!	
9.	Which one or more of the following can be said about moving average processes?	1/1 point
	The current value of the process now is a linear combination of the noises from current and past time steps.	
	✓ Correct Correct!	
	Autocorrelation function of the process decreasing slowly without hitting zero.	

 $\hfill \hfill \hfill$

✓ Correct!

What is the autocorrelation coefficient at lag 4?

✓ Correct

Theoretically, it is 0 starting at lag 4. But for a time series, it will be some value which is nonsignificant.

0.022