Física Computacional.

Boletín ejercicios

Ecuación Unidimensional de Convección

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de convección (aunque cualquier condición de frontera es aceptable se recomienda emplear flujo nulo):

Métodos Explícitos:

- **1*.-** Esquema Forward in Time Centered in Space (FTCS)
- **2*.-** Esquema *upwind*.
- **3*.-** Esquema *DuFort-Frankel*.

Métodos Implícitos:

- **4.-** Esquema totalmente implícito a dos niveles.
- **5.-** Esquema Crank-Nicolson.

Ecuación Unidimensional de Transporte

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de transporte:

Métodos Explícitos:

- **6*.-** Esquema Forward in Time Centered in Space (FTCS).
- **7*.-** Esquema upstream.
- **8*.-** Esquema DuFort-Frankel.

Métodos Implícitos:

- **9.-** Esquema totalmente implícito a dos niveles.
- 10.- Esquema Crank-Nicolson.
- 11*.- Calcular la estabilidad y la consistencia de uno de los métodos anteriores (para la ecuación de convección o de transporte).

Ecuaciones Multidimensionales. Método ADI

- 12*.- Emplear el método explícito FTCS para integrar la ecuación de difusión bidimensional.
- 13.- Emplear el método semiimplícito ADI para integrar la ecuación de difusión bidimensional.

^{*} Problemas obligatorios para superar la asignatura. El resto son opcionales