Importing Data

NCD19

8.93

```
import pandas as pd
In [2]:
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       data train = pd.read csv("C:\Technocolab\9961 14084 bundle archive\Train.csv")
In [3]:
       data train.head()
Out[3]:
          0
               FDA15
                          9.30
                                     Low Fat
                                               0.016047
                                                          Dairy
                                                               249.8092
                                                                            OUT049
                                                                                                 1999
                                                                                                        Medium
        1
               DRC01
                          5.92
                                     Regular
                                               0.019278 Soft Drinks
                                                                48.2692
                                                                            OUT018
                                                                                                 2009
                                                                                                        Medium
        2
               FDN15
                         17.50
                                     Low Fat
                                               0.016760
                                                          Meat
                                                               141.6180
                                                                            OUT049
                                                                                                 1999
                                                                                                        Medium
                                                       Fruits and
        3
               FDX07
                         19.20
                                               0.000000
                                                               182.0950
                                                                            OUT010
                                                                                                 1998
                                                                                                          NaN
                                     Regular
                                                      Vegetables
```

0.000000 Household

53.8614

OUT013

1987

High

Low Fat

```
In [4]: data_test = pd.read_csv("C:\Technocolab\9961_14084_bundle_archive\Test.csv")
    data_test.head()
```

Out[4]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_	_Year	Outlet_Size	0
	0	FDW58	20.750	Low Fat	0.007565	Snack Foods	107.8622	OUT049		1999	Medium	
	1	FDW14	8.300	reg	0.038428	Dairy	87.3198	OUT017		2007	NaN	
	2	NCN55	14.600	Low Fat	0.099575	Others	241.7538	OUT010		1998	NaN	
	3	FDQ58	7.315	Low Fat	0.015388	Snack Foods	155.0340	OUT017		2007	NaN	
	4	FDY38	NaN	Regular	0.118599	Dairy	234.2300	OUT027		1985	Medium	
	4											•

In [5]: data_train.shape

Out[5]: (8523, 12)

In [6]: data_test.shape

Out[6]: (5681, 11)

In [7]:		data = data_train data.head()								
Out[7]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size O
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987	High
	4									•
In []:										

EDA

In [8]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	<pre>Item_Identifier</pre>	8523 non-null	object
1	Item_Weight	7060 non-null	float64
2	<pre>Item_Fat_Content</pre>	8523 non-null	object
3	<pre>Item_Visibility</pre>	8523 non-null	float64
4	Item_Type	8523 non-null	object
5	Item_MRP	8523 non-null	float64
6	Outlet_Identifier	8523 non-null	object
7	Outlet_Establishment_Year	8523 non-null	int64
8	Outlet_Size	6113 non-null	object
9	Outlet_Location_Type	8523 non-null	object
10	Outlet_Type	8523 non-null	object
11	Item_Outlet_Sales	8523 non-null	float64
dtvn	$as \cdot float64(4)$ int64(1) o	hiect(7)	

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

In [9]: data.describe()

Out[9]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

Data Visualization

```
In [10]: sns.catplot(x = 'Item_Type', y = 'Item_Outlet_Sales', data = data, kind = 'point', hue = 'Item_Type')
plt.xticks(rotation = 90)
plt.show()
```



```
In [16]: sns.catplot(x = 'Item_Type', y = 'Item_Weight', data = data, kind = 'box')
    plt.xticks(rotation = 90)
    plt.show()
```


Correlation

```
In [17]: sns.heatmap(data.corr(), annot = True)
Out[17]: <AxesSubplot:>
```

Feature Engineering

Encoding

```
In [18]: from sklearn.preprocessing import OrdinalEncoder

ord_enc = OrdinalEncoder()
data["Outlet_Type"] = ord_enc.fit_transform(data[["Outlet_Type"]])
data['Outlet_Location_Type'] = ord_enc.fit_transform(data[["Outlet_Location_Type"]])
data['Outlet_Size'] = ord_enc.fit_transform(data[["Outlet_Size"]])
data['Item_Fat_Content'] = ord_enc.fit_transform(data[["Item_Fat_Content"]])
data['Item_Type'] = ord_enc.fit_transform(data[["Item_Type"]])
```

In [19]:	data												
Out[19]:		Item_Identifie	r Item_Weight	Item_Fat_Conte	nt Item_Vi	sibility l	tem_Type	Item_MRP	Outlet_lo	lentifier	Outlet_Establishment_\	/ear	Outlet_Size
	0	FDA1	9.300	1.	0 0.	016047	4.0	249.8092	(OUT049	1	999	1.0
	1	DRC0	5.920	2	0 0.0	019278	14.0	48.2692	(OUT018	2	009	1.0
	2	FDN1	5 17.500	1.	0 0.0	016760	10.0	141.6180	(OUT049	1	999	1.0
	3	FDX0	7 19.200	2	0 0.0	000000	6.0	182.0950	(OUT010	1	998	NaN
	4	NCD1	8.930	1.	0 0.0	000000	9.0	53.8614	(OUT013	1	987	0.0
	8518	FDF2	6.865	1.	0 0.0	056783	13.0	214.5218	(OUT013	1	987	0.0
	8519	FDS3	8.380	2	0 0.0	046982	0.0	108.1570	(OUT045	2	002	NaN
	8520	NCJ2	10.600	1.	0 0.0	035186	8.0	85.1224	(OUT035	2	004	2.0
	8521	FDN4	7.210	2	0 0.	145221	13.0	103.1332	(OUT018	2	009	1.0
	8522	DRG0	1 14.800	1.	0 0.0	044878	14.0	75.4670	(OUT046	1	997	2.0
	8523 r	ows × 12 colu	ımns										
	4												>
T [00]			- 1	10 11 1 71					4.				
In [20]:	aata.	arop(['Item	_ldentifler	, 'Outlet_Ide	ntifier], inpi	ace=Irue	, axis =	1)				
In [21]:	data.	head()											
Out[21]:	lte	m_Weight Ite	m_Fat_Content	Item_Visibility	tem_Type	Item_MR	RP Outlet	_Establishme	ent_Year	Outlet_S	ize Outlet_Location_T	/pe	Outlet_Type
	0	9.30	1.0	0.016047	4.0	249.809	92		1999		1.0	0.0	1.0
	1	5.92	2.0	0.019278	14.0	48.269	92		2009		1.0	2.0	2.0
	2	17.50	1.0	0.016760	10.0	141.618	80		1999		1.0	0.0	1.0
	3	19.20	2.0	0.000000	6.0	182.09	50		1998	N	aN	2.0	0.0
	4	8.93	1.0	0.000000	9.0	53.86	14		1987	(0.0	2.0	1.0
	4												•

Handling Outliers

```
In [22]: sns.boxplot(x = 'Item Visibility', data = data)
Out[22]: <AxesSubplot:xlabel='Item Visibility'>
In [23]: |q1 = data.Item Visibility.quantile(0.25)
         q3 = data.Item Visibility.quantile(0.75)
         11 = q1 - 1.5*(q3 - q1)
         ul = q3 + 1.5*(q3 - q1)
In [24]: def capping(x):
             if x < 11:
                 x = 11
                 return x
             elif x > ul:
                 x = ul
                 return x
             else:
                 return x
In [25]: data.Item_Visibility = data.Item_Visibility.apply(capping)
In [26]: sns.boxplot(x = 'Item Visibility', data = data)
Out[26]: <AxesSubplot:xlabel='Item Visibility'>
```

Handling Missing Values

```
In [27]: | data.isna().mean()*100
Out[27]: Item_Weight
                                      17.165317
         Item Fat Content
                                       0.000000
         Item Visibility
                                       0.000000
         Item_Type
                                       0.000000
         Item MRP
                                       0.000000
         Outlet Establishment Year
                                       0.000000
         Outlet Size
                                      28.276428
         Outlet_Location_Type
                                       0.000000
         Outlet Type
                                       0.000000
         Item Outlet Sales
                                       0.000000
         dtype: float64
In [28]: from sklearn.impute import KNNImputer
         imputer = KNNImputer(n neighbors=3)
In [29]: imputed = imputer.fit transform(data)
```

In [30]: data1 = pd.DataFrame(imputed, columns = data.columns) data1

A 1 1		
()((†	1 301	٠.
ouc	70	

	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Ty
0	9.300	1.0	0.016047	4.0	249.8092	1999.0	1.0	0.0	
1	5.920	2.0	0.019278	14.0	48.2692	2009.0	1.0	2.0	
2	17.500	1.0	0.016760	10.0	141.6180	1999.0	1.0	0.0	
3	19.200	2.0	0.000000	6.0	182.0950	1998.0	2.0	2.0	
4	8.930	1.0	0.000000	9.0	53.8614	1987.0	0.0	2.0	
8518	6.865	1.0	0.056783	13.0	214.5218	1987.0	0.0	2.0	
8519	8.380	2.0	0.046982	0.0	108.1570	2002.0	1.0	1.0	
8520	10.600	1.0	0.035186	8.0	85.1224	2004.0	2.0	1.0	
8521	7.210	2.0	0.145221	13.0	103.1332	2009.0	1.0	2.0	
8522	14.800	1.0	0.044878	14.0	75.4670	1997.0	2.0	0.0	

8523 rows × 10 columns

In [31]: data1.isna().mean()*100

Out[31]: Item Weight 0.0 Item_Fat_Content 0.0 Item_Visibility 0.0 Item_Type 0.0 Item_MRP 0.0 Outlet_Establishment_Year 0.0 Outlet_Size 0.0 Outlet_Location_Type 0.0 Outlet_Type 0.0 Item_Outlet_Sales 0.0 dtype: float64

```
In [32]: data1.Outlet_Size = round(data1.Outlet_Size,)
```

ML Model Building

Data Splitting

In [33]: data1.head()

Out[33]:

:		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type
•	0	9.30	1.0	0.016047	4.0	249.8092	1999.0	1.0	0.0	1.0
	1	5.92	2.0	0.019278	14.0	48.2692	2009.0	1.0	2.0	2.0
	2	17.50	1.0	0.016760	10.0	141.6180	1999.0	1.0	0.0	1.0
	3	19.20	2.0	0.000000	6.0	182.0950	1998.0	2.0	2.0	0.0
	4	8.93	1.0	0.000000	9.0	53.8614	1987.0	0.0	2.0	1.0
	4									>

Out[34]:

•		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_T ₁
	0	9.300	1.0	0.016047	4.0	249.8092	1999.0	1.0	0.0	
	1	5.920	2.0	0.019278	14.0	48.2692	2009.0	1.0	2.0	
	2	17.500	1.0	0.016760	10.0	141.6180	1999.0	1.0	0.0	
	3	19.200	2.0	0.000000	6.0	182.0950	1998.0	2.0	2.0	
	4	8.930	1.0	0.000000	9.0	53.8614	1987.0	0.0	2.0	
	8518	6.865	1.0	0.056783	13.0	214.5218	1987.0	0.0	2.0	
	8519	8.380	2.0	0.046982	0.0	108.1570	2002.0	1.0	1.0	
	8520	10.600	1.0	0.035186	8.0	85.1224	2004.0	2.0	1.0	
	8521	7.210	2.0	0.145221	13.0	103.1332	2009.0	1.0	2.0	
	8522	14.800	1.0	0.044878	14.0	75.4670	1997.0	2.0	0.0	

8523 rows × 9 columns

```
In [35]: y = data1.Item Outlet Sales
         У
Out[35]: 0
                  3735.1380
                  443,4228
         1
         2
                 2097,2700
         3
                  732.3800
                  994.7052
                   . . .
         8518
                 2778.3834
         8519
                  549.2850
                 1193.1136
         8520
         8521
                 1845.5976
                  765.6700
         8522
         Name: Item Outlet Sales, Length: 8523, dtype: float64
In [36]: from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, test size=0.20, random state=42)
In [38]: print(f'Samples of trained data = {X train.shape[0]} and Samples of testing data = {X test.shape[0]}')
         Samples of trained data = 6818 and Samples of testing data = 1705
In [39]: from sklearn.metrics import mean absolute error
         from sklearn.metrics import mean squared error
         from sklearn.metrics import r2 score
 In [ ]:
```

Linear Regression

```
In [40]: from sklearn.linear_model import LinearRegression
    reg = LinearRegression()
    reg_model = reg.fit(X_train, y_train)
    lr_pred = reg.predict(X_test)

In [41]: MSE=mean_squared_error(y_test,lr_pred)
    MAE=mean_absolute_error(y_test,lr_pred)
    r2=r2_score(y_test,lr_pred)
    RMSE = np.sqrt(MSE)
    print("R squared value: ", r2)
    print("Root Mean Squared Error : ", RMSE)
    print("Mean Absolute Error : ", MAE)

    R squared value: 0.5230197859838783
    Root Mean Squared Error : 1138.603506082893
    Mean Absolute Error : 857.8120480090059
In []:
```

Ridge Regression

```
In [42]: from sklearn.linear_model import Ridge
    ridge = Ridge(alpha=1.0)
    ridge_model = ridge.fit(X_train, y_train)
    ridge_pred = ridge.predict(X_test)
```

```
In [43]: MSE=mean_squared_error(y_test,ridge_pred)
    MAE=mean_absolute_error(y_test,ridge_pred)
    r2=r2_score(y_test,ridge_pred)
    RMSE = np.sqrt(MSE)
    print("R squared value: ", r2)
    print("Root Mean Squared Error : ", RMSE)
    print("Mean Absolute Error : ", MAE)

    R squared value: 0.5231530154893569
    Root Mean Squared Error : 1138.4444783371632
    Mean Absolute Error : 857.6418174505641
In []:
```

Lasso Regression

Mean Absolute Error: 857.0861568464775

```
In [44]: from sklearn.linear_model import Lasso
    Lasso = Lasso(alpha=1)
    Lasso_model = Lasso.fit(X_train, y_train)
    Lasso_pred = Lasso.predict(X_test)

In [45]: MSE=mean_squared_error(y_test,Lasso_pred)
    MAE=mean_absolute_error(y_test,Lasso_pred)
    r2=r2_score(y_test,Lasso_pred)
    RMSE = np.sqrt(MSE)
    print("R squared value: ", r2)
    print("Root Mean Squared Error : ", RMSE)
    print("Mean Absolute Error : ", MAE)

R squared value: 0.5235058338097819
    Root Mean Squared Error : 1138.0232337797443
```

```
In [ ]:
```

ElasticNet Regression

```
In [46]: from sklearn.linear_model import ElasticNet
ElasticNet = ElasticNet(l1_ratio = 1)
    ElasticNet_model = ElasticNet.fit(X_train, y_train)
    ElasticNet_pred = ElasticNet.predict(X_test)

In [47]: MSE=mean_squared_error(y_test,ElasticNet_pred)
    MAE=mean_absolute_error(y_test,ElasticNet_pred)
    r2=r2_score(y_test,ElasticNet_pred)
    RMSE = np.sqrt(MSE)
    print("R squared value: ", r2)
    print("Root Mean Squared Error : ", RMSE)
    print("Mean Absolute Error : ", MAE)

    R squared value: 0.5235058338097819
    Root Mean Squared Error : 1138.0232337797443
    Mean Absolute Error : 857.0861568464775
In []:
```

Random Forest Regressor

XGBoost Regressor

Mean Absolute Error: 721.1821851870911

```
In [50]: from sklearn.ensemble import GradientBoostingRegressor
    gbr = GradientBoostingRegressor(random_state=0)
    gbr_model = gbr.fit(X_train, y_train)
    gbr_model_pred = gbr_model.predict(X_test)

In [51]: MSE=mean_squared_error(y_test,gbr_model_pred)
    MAE=mean_absolute_error(y_test,gbr_model_pred)
    r2=r2_score(y_test,gbr_model_pred)
    RMSE = np.sqrt(MSE)
    print("R squared value: ", r2)
    print("Root Mean Squared Error : ", RMSE)
    print("Mean Absolute Error : ", MAE)

R squared value: 0.6089663354221819
    Root Mean Squared Error : 1030.9305482727502
```

Summary:

The linear regression, ridge regression, lasso regression, and elasticnet regression models show similar performance with R-squared values around 0.52. They have relatively high RMSE and MAE values, indicating some degree of prediction error.

The random forest regressor and XGBoost regressor outperform the linear-based models, with higher R-squared values (0.6170 and 0.6090, respectively) and lower RMSE and MAE values. This suggests that these ensemble models provide better predictive accuracy on the given dataset.

The random forest regressor appears to perform slightly better than the XGBoost regressor in terms of RMSE and MAE.

In conclusion, based on the provided metrics, the ensemble models (Random Forest and XGBoost) seem to be more effective in capturing the underlying patterns in the data and making more accurate predictions compared to the traditional linear regression and its regularized variants.

In []:	