

TAS TD 1 - Lambda-Calcul Pur

Le λ -calcul *fort* est défini par la syntaxe :

$$M ::= x \mid \lambda x.M \mid MN$$
 ou x est une variable

et par les règles de sémantique opérationnelle à petit pas :

$$\frac{M\to M'}{(\lambda x.M)N\to M[N/x]}\beta \qquad \frac{M\to M'}{MN\to M'N}\,\mu_l \qquad \frac{N\to N'}{MN\to MN'}\,\mu_r \qquad \frac{M\to M'}{\lambda x.M\to \lambda x.M'}\,\xi$$

Notations

- L'application est associative à gauche : (MN)P = MNP.
- Le corps d'une abstraction s'etend le plus à droite possible : $\lambda x.(MN) = \lambda x.MN$.
- Les suites d'abstractions sont contractées : $\lambda a.\lambda b.M = \lambda ab.M$.
- La clôture réflexive transitive de la rèduction est notée →*.
- Sa clôture réflexive transitive symétrique est notée $=_{\beta}$.

1 Réductions

Réduire, quand c'est possible, les λ -termes suivants :

- 1. $I = \lambda x.x$
- 2. II
- 3. *III* 4. $K = \lambda xy.x$
- 5. K I I
- 6. $S = \lambda xyz.(xz)(yz)$
- 7. SIII
- 8. S K K

2 Graphes de réduction

Le graphe de réduction d'un λ -terme a pour noeuds les réduits de M et une arr \tilde{A} te entre ces réduits pour chaque pas de réduction possible.

1. Donner les graphes de réduction des termes suivants en étiquetant les noeuds par les termes $(\delta = \lambda x. xx)$.

$$Ix \qquad I(Ix) \qquad II(III) \qquad \delta = \delta\delta \qquad (\lambda x.\delta x)(\lambda x.\delta x) \qquad (\lambda x.xxx)(\lambda x.xxx)$$

$$(\lambda x.I)((\lambda x.xxx)(\lambda x.xxx))$$

2. Question inverse:

Indice: on pourra utiliser les λ -termes $I, \delta, \Omega, F = \lambda x.I$ et $A = \lambda xy.yxy$.

3 Entiers de Church

L'interprétation de Church d'un entier n est le λ -terme $[n] = \lambda f x \cdot f^n x$, c'est à dire n itérations de la fonction fappliquées à x.

- Ecrire [0] et [3]
- 2. Ecrire les λ -termes interprétant les fonctions successeur, addition, multiplication et puissance. On interprète les booléens par $T = K = \lambda xy.x$ et $\bot = 0 = \lambda xy.y$.
- 3. Donner une interprétation de if then else.
- 4. Comment interpréter les couples ?
- 5. Proposer un λ-terme décidant si un étudiant peut accéder au campus en fonction de son numéro étudiant.
- 6. Proposer un λ -terme interprétant la fonction prédécesseur .

4 Listes

On peut représenter la liste $[e_1, e_2, \dots, e_k]$ par le terme $\lambda cn.c \ e_1 \ (c \ e_2 \ \dots \ (c \ e_k \ n) \dots)$

- 1. Donner deux termes réalisant la liste vide et la construction d'une liste (à partir d'une liste et d'un élément).
- 2. Donner un λ -terme réalisant la concaténation de deux listes.
- 3. Donner un λ -terme réalisant l'extraction de la tête.
- 4. Donner un λ -terme réalisant un *map* sur une liste.
- 5. Donner un λ -terme réalisant un reduce/fold sur une liste.
- 6. Donner un λ -terme calculant la longueur d'une liste.
- 7. Donner un λ -terme réalisant l'extraction de la queue.
- 8. Donner un λ -terme réalisant un *filter* sur une liste.
- 9. Expliquer comment représenter un arbre binaire en λ -calcul.

5 Indices de De Bruijn

Pour de nombreuses raisons, il peut être pratique de se débarrasser de l' α -conversion en ayant une représentation unique des λ -termes. La syntaxe du λ -calcul en indice de De Bruijn est définie par la grammaire :

$$M ::= n \mid MM \mid \lambda.M$$

où n est un entier naturel. Intuitivement n représente la variable liée par le (n+1)-ème λ obtenu en remontant le terme. Ainsi $\lambda\lambda$.(10)(λ .20) désigne le λ -terme λxy .(xy)($\lambda z.xz$).

- 1. Ecrire les règles décrivant la sémantique opérationnelle à petits pas du λ -calcul en indice de De Bruijn.
- 2. Ecrire la multiplication en indice de De Bruijn.
- 3. Donner la traduction du λ -calcul dans celui en indice de De Bruijn, et la traduction inverse.

6 Stratégies

Une stratégie de réduction pour le λ -calcul est une relation $\rightarrow_s \subseteq \rightarrow$ qui est déterministe.

1. Que signifie " \rightarrow_s est déterministe"?

6.1 Call-by-value

On définit le λ -calcul en appel par valeur en définissant (x est une variable) :

— les termes : $M := x \mid \lambda x.M \mid MN$

— les valeurs : $V := x \mid \lambda x.M$

— la sémantique opérationnelle à petits pas :

$$\frac{M \to_v M'}{(\lambda x. M) V \to_v M[V/x]} \beta \qquad \frac{M \to_v M'}{M N \to_v M' N} \mu_l \qquad \frac{N \to_v N'}{V N \to_v V N'} \mu_r$$

- 1. Réduisez les termes $\delta(I\delta I)$ et $I(F\delta I)$ avec la relation \rightarrow_v .
- 2. Prouvez que \rightarrow_v est déterministe.
- 3. Cette présentation est appelée "left-to-right", quelle est la présentation "right-to-left"?

6.2 Call-by-name

La sémantique du λ -calcul en appel par nom est :

$$\frac{M \to_n M'}{(\lambda x. M) N \to_n M[N/x]} \beta \qquad \qquad \frac{M \to_n M'}{M N \to_n M' N} \mu_l$$

1. Répondez aux questions prècèdentes pour l'appel par nom.

7 Combinateurs de point fixe

Un λ -terme M est un point-fixe d'un λ -terme F si $M=_{\beta}FM$. Un terme C est un combinateur de point fixe si pour tout terme F, CF est un point fixe de F.

On définit les termes suivants :

$$p = \lambda f x. f(xx)$$
 $\mathbf{Y} = \lambda f. p f(pf)$ $q = \lambda xy. y(xxy)$ Theta = qq

1. Montrer que Y et Theta sont des combinateurs de point fixe.