model using a particular parameter setting on a particular cross-validation split can be done completely independently from the other parameter settings and models. This makes grid search and cross-validation ideal candidates for parallelization over multiple CPU cores or over a cluster. You can make use of multiple cores in Grid SearchCV and cross_val_score by setting the n_jobs parameter to the number of CPU cores you want to use. You can set n jobs=-1 to use all available cores.

You should be aware that scikit-learn does not allow nesting of parallel operations. So, if you are using the n_jobs option on your model (for example, a random forest), you cannot use it in GridSearchCV to search over this model. If your dataset and model are very large, it might be that using many cores uses up too much memory, and you should monitor your memory usage when building large models in parallel.

It is also possible to parallelize grid search and cross-validation over multiple machines in a cluster, although at the time of writing this is not supported within scikit-learn. It is, however, possible to use the IPython parallel framework for parallel grid searches, if you don't mind writing the for loop over parameters as we did in "Simple Grid Search" on page 261.

For Spark users, there is also the recently developed spark-sklearn package, which allows running a grid search over an already established Spark cluster.

Evaluation Metrics and Scoring

So far, we have evaluated classification performance using accuracy (the fraction of correctly classified samples) and regression performance using R^2 . However, these are only two of the many possible ways to summarize how well a supervised model performs on a given dataset. In practice, these evaluation metrics might not be appropriate for your application, and it is important to choose the right metric when selecting between models and adjusting parameters.

Keep the End Goal in Mind

When selecting a metric, you should always have the end goal of the machine learning application in mind. In practice, we are usually interested not just in making accurate predictions, but in using these predictions as part of a larger decisionmaking process. Before picking a machine learning metric, you should think about the high-level goal of the application, often called the business metric. The consequences of choosing a particular algorithm for a machine learning application are