

Visual Question Answering

Alexander Mirrington

This thesis is presented as part of the requirements for the conferral of the degree:

Bachelor of Information Technology (Honours)

Supervisors: Dr. Caren Han Dr. Josiah Poon

The University of Sydney School of Computer Science

September 11, 2020

Declaration

I, Alexander Mirrington, declare that this thesis is submitted in partial fulfilment of the requirements for the conferral of the degree Bachelor of Information Technology (Honours), from the University of Sydney, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce volutpat lobortis ipsum. Pellentesque et rhoncus turpis. Nam hendrerit ligula eu justo hendrerit eleifend a eu nunc. Suspendisse felis risus, pellentesque at pretium a, imperdiet quis mauris. Pellentesque rutrum, mi sit amet faucibus posuere, neque velit mattis ligula, ac dapibus lectus enim vitae arcu. Aenean cursus, mi quis aliquam dapibus, justo neque posuere ipsum, sit amet pharetra sem nulla non nisi. Phasellus laoreet faucibus metus id convallis. Integer augue sapien, tempus eu aliquet vehicula, ornare ut ligula. Sed ex magna, tempus ut nulla a, pharetra cursus dui. Aenean dapibus dui commodo, pretium nunc gravida, dapibus elit. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

Acknowledgements

Contents

Al	ostra	${f ct}$	iii						
A	Acknowledgements								
Li	st of	Figures	\mathbf{v}						
Li	st of	Tables	vi						
1	Intr 1.1 1.2	oduction Contributions	1 1 1						
2	Lite 2.1 2.2 2.3 2.4	Visual Question Answering Datasets	2 2 5 5 5						
3	Res ³ .1 3.2 3.3	ults Performance Evaluation Ablation Studies Hyperparameter Optimisation	6 6 6						
4	Con 4.1	rclusion Future Work	7 7						
A		r first appendix The title of the first section	8						
Bi	bliog	raphy	9						

List of Figures

List of Tables

2.1	2.1 A comparison of relevant features of the most popular VQA datasets.							
	Dataset variations are listed in regular font below their bolded coun-							
	terparts	4						

Introduction

1.1 Contributions

Summary of main contributions to the field.

1.2 Outline

Overall thesis outline.

Literature Review

2.1 Visual Question Answering Datasets

Dataset Year	Image Count	Questic Count	onmage Source	Questic Source		· Additio Data	onEntaluation Met- rics
DAQUA 2R14	1K	12K	NYU- Depth V2 [2]	Both	Multi- label	-	Accuracy, WUPS
Visual 2015 Madlibs [3]	10K	360K	COCO [4]	Human	Fill in the blank openended & multichoice	-	Accuracy, BLEU
COCO QA	-	-	COCO	-	-	-	Accuracy, BLEU
VQAv1 2015 [5]	204K	614K	COCO	Human	Open- ended, Multi- choice	COCO image captions	Accuracy ¹
Abstract 2015 Scenes	50K	150K	Clip art, 2D	Human	Open- ended, Multi- choice	Image cap- tions	Accuracy ¹
Changing2018 Priors (CP) [6]	≈204K	≈370K	COCO	Human	Open- ended	See VQAv1	Accuracy ¹

Composit 201 71 VQA (C- VQA)	204K	369K	COCO	Human	Open- ended	See VQAv1	Accuracy ¹
[7] VQAv2 2017 [8]	204K	1.1M	COCO	Human	Open- ended	COCO image captions, Complementary image pairs	Accuracy ¹
Balanced 2016-Binary 17 Abstract Scenes [9]	31K	33K	Clip art, 2D	Human	Multiple choice	-	Accuracy ¹
Changing2018 Priors (CP) [6]	≈219K	≈658K	COCO	Human	Open- ended	See VQAv2	Accuracy ¹
Visual 2016 Genome [10]	108K	1.7M	COCO, YFCC10 [11]	Human 00M	Open- ended	COCO annota- tions, Region de- scrip- tions, Scene graphs	Accuracy
Visual7W 016 [12]	47K	327K	COCO	Human	-	-	-

TDIUC 2017 [13]	167K	1.6M		Open- ended		Perquestion- type accu- racy, regu- lar & nor- malised arith- metic & har- monic mean accu- racy
CLEVR 2017 [14]	100K	999K	ComputeGenerated generated, e 3D	Dpen- ended	Function pro- grams, Scene graphs	na A ccuracy
CoGenT-2017 A & B	100K	999K	ComputeGenerated generated, e	Dpen- ended		na 4 ccuracy
Humans 2017	-	32K		Open- ended	See CLEVR	Accuracy
GQA 2019 [15]	113K	22.6M	- Both (Open- ended	Scene graphs, Functional programs, Fullsentence answers	tency, Valid- ity, Plau-

Table 2.1: A comparison of relevant features of the most popular VQA datasets. Dataset variations are listed in regular font below their bolded counterparts.

- 2.2 Question Embedding in Visual Question Answering
- 2.3 Image Embedding in Visual Question Answering
- 2.4 Multi-modal Fusion in Visual Question Answering

¹For open-ended answers, an answer is considered 'correct' if it matches at least three of the ten human-provided answers. For multiple choice answers, a traditional accuracy metric is used.

Results

- 3.1 Performance Evaluation
- 3.2 Ablation Studies
- 3.3 Hyperparameter Optimisation

Conclusion

4.1 Future Work

• Scene graph generation

Appendix A

Your first appendix

A.1 The title of the first section

The appendices work exactly the same way as chapters, they are numbered with letters rather than numbers though.

Bibliography

- (1) M. Malinowski and M. Fritz, in *Advances in Neural Information Processing Systems* 27, ed. Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K. Q. Weinberger, Curran Associates, Inc., 2014, pp. 1682–1690.
- (2) N. Silberman, D. Hoiem, P. Kohli and R. Fergus, European conference on computer vision, 2012, pp. 746–760.
- (3) L. Yu, E. Park, A. C. Berg and T. L. Berg, Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2461–2469.
- (4) T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. L. Zitnick, European conference on computer vision, 2014, pp. 740–755.
- (5) S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick and D. Parikh, The IEEE International Conference on Computer Vision (ICCV), 2015.
- (6) A. Agrawal, D. Batra, D. Parikh and A. Kembhavi, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4971–4980.
- (7) A. Agrawal, A. Kembhavi, D. Batra and D. Parikh, "C-vqa: A compositional split of the visual question answering (vqa) v1. 0 dataset", arXiv preprint arXiv:1704.08243, 2017.
- (8) Y. Goyal, T. Khot, D. Summers-Stay, D. Batra and D. Parikh, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6904–6913.
- (9) P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra and D. Parikh, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5014–5022.
- (10) R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma et al., "Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations.(Article)", International Journal of Computer Vision, 2017, 123, 32–73.
- (11) B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth and L.-J. Li, "YFCC100M: The New Data in Multimedia Research", *Commun. ACM*, 2016, **59**, 64–73.
- (12) Y. Zhu, O. Groth, M. Bernstein and L. Fei-Fei, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4995–5004.

BIBLIOGRAPHY 10

(13) K. Kafle and C. Kanan, The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 1965–1973.

- (14) J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick and R. Girshick, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2901–2910.
- (15) D. A. Hudson and C. D. Manning, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6700–6709.