MAT-255- Number Theory

Spring 2024

IN CLASS WORK JANUARY 24

Your Name: _____ Group Members:_

In-class Problem 1 (Chapter 1, Exercise 29) Let n be a positive integer with $n \neq 1$. Prove that if $n^2 + 1$ is prime, then $n^2 + 1$ can be written in the form 4k + 1 with $k \in \mathbb{Z}$.

Hint: Try showing the statement is true for all odd integers greater than 1.

Solution: Assume that n is a positive integer, $n \neq 1$, and $n^2 + 1$ is prime. If n is odd, then n^2 is odd, which would imply $n^2 + 1 = 2$, the only even prime. However, $n \neq 1$ by assumption. Thus, n is even.

By definition of even, there exists $j \in \mathbb{Z}$ such that n = 2k and $n^2 = 4j^2$. Thus, $n^2 + 1 = 4k + 1$ when $k = j^2$.

In-class Problem 2 (Chapter 1, Exercise 33) to the Twin Prime Conjecture:

Prove or disprove the following conjecture, which is similar

Conjecture 1. There are infinitely many prime number p for which p+2 and p+4 are also prime numbers.

Hint: Show that the only prime where p + 2 and p + 4 are also prime is p = 3.

In-class Problem 3 Without looking up the proof, prove Proposition 1.10: Let $a, b \in \mathbb{Z}$ with (a, b) = d. Then $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Learning outcomes:

Author(s): Claire Merriman