

پردازش اطلاعات کوانتومی نام و نام خانوادگی: مهدی وجهی

۸۱۰۱۰۱۵۵۸

ارائه ۱۰

Grover الگوريتم

 $\frac{N}{2}$ در دنیای کلاسیک هزینه جست و جو مجموعه داده بدون ساختار از پیچیدگی O(N) است و به صورت متوسط به Nگام نیاز دارد. این کار در دنیای کوانتوم سریع تر است اما دیگر به اندازه الگوریتم های قبلی که مسائل نمایی را خطی حل می کردند نیست و به $O(\sqrt{N})$ پرس و جو نیاز دارد. مدار کلی آن به شکل زیر است که اوراکل N مشخص می کند که ورودی مقدار مورد نظر است یا خیر و این کار را با N کردن خروجی با تک بیت خروجی مسئله انجام می دهد.

در این حالت نیز اگر $|x-\rangle$ باشد پدیده $Phase\ Kickback$ رخ می دهد و وضعیت خروجی به شکل $|a\rangle=|-\rangle$ باشد پدیده قرار می گیرد. یعنی تنها درصورتی که جواب را به اوراکل بدهیم یک فاز سراسری منفی به خروجی اضافه می شود. در این قسمت پایه های خود را $|z\rangle$, $|y\rangle$ تعریف می کنیم که $|z\rangle$ حالت درست را نشان می دهد و احتمال آن برابر با در این قسمت پایه های خود را $|z\rangle$, $|z\rangle$ است. با نمایش وضعیت روی این پایه می بینیم که بعد از اعمال گیت بردار نسبت به $|z\rangle$ قرینه می شود.

در این مرحله هدف ما افزایش احتمال $|z\rangle$ است و برای این کار عملگری تعریف می کنیم که بردار را نسبت به $|\psi\rangle$ مردار $|\psi\rangle$ می نامیم و تعریف می کنی $|\psi\rangle$ می اوریه کند. این عملگر را $|\psi\rangle$ می نامیم و تعریف می کنی $|\psi\rangle$ می ماند ولی مقدار عمود بر آن قرینه می شود. با را به دست می آوریم و با محاسبه $|\psi\rangle$ عملا مقدار بردار $|\psi\rangle$ ثابت می ماند ولی مقدار عمود بر آن قرینه می شود. با توجه به این که زاویه بین $|\psi\rangle$ و $|\psi\rangle$ برابر $|\psi\rangle$ پس قرینه ی آن هم نسبت به $|\psi\rangle$ زاویه $|\psi\rangle$ و نسبت به $|\psi\rangle$ برابر $|\psi\rangle$ برابر $|\psi\rangle$ برابر عمل توانستیم احتمال حالت مطلوب را افزایش دهیم. حالت ایده آل این است که مقدار زاویه نهایی ۹۰ درجه شود و روی $|z\rangle$ منطبق شود. برای ایجاد زاویه $|z\rangle$ لازم است $|z\rangle$ بار عملیات را تکرار کنیم.

Wییاده سازی گیت Y

گیت W را می توان به صورت زیر با گیت هایی که آموخته ایم پیاده کنیم :

$$|\psi\rangle = |+\rangle \implies X^{\otimes n}(H^{\otimes n}WH^{\otimes n})X^{\otimes n} = X^{\otimes n}(2|0\rangle^{\otimes n}\langle 0|^{\otimes n} - I)X^{\otimes n} = 2|1\rangle^{\otimes n}\langle 1|^{\otimes n} - I$$

$$= -(I - 2|1\rangle^{\otimes n}\langle 1|^{\otimes n}) = -C_{n-1}Z$$

$$\implies W = -H^{\otimes n}X^{\otimes n}C_{n-1}ZX^{\otimes n}H^{\otimes n}$$

درنهایت چیزی در حدود ۷۵ درصد مباحث را فهمیدم.