D. 3	11.4
15, 19, 15,	2,6

HW 18

	HW]	8
11.3)	13) Suppose Ris on equily relation	15.) R= {a,a)(b,b)(c,c)(d,d)(a,b)(b,a)}
	on a finite sor A, and every	R2= 8(9,a) (1,b) (c,c) (d,d) (a,c) (c,a) }
	eq. has some coordinality m.	R3-{(a,a)(b,b)(c,c)(d,d)(a,d)(d,a)}
	Express IRI in terms of IAI and m	R,= {(a,a) (b,b) (c,c)(dd) (b,c) (c,b)}
	= m A	$R_s = \{(a,a)(b,b)(c,c)(d,d)(b,d)(b,d)\}$
	M) · LEE XEA,	R= {(a,a)(b,b)(c,d(d,d)(a,b)(b,a)(a,d)(c,a)
	If R is refrexive then xRx.	(b,c)(c,b)}
	Let x, =x.	Ry= {(9,9)(6,6)(c,c)(dd)(e,d)(d,c)}
	: xRx, x, Rx => xSy, Therefore	: 1 - ()
	R is reflexive.	$R_{15} = \frac{1}{5} (a,a)(b,b)(c,c)(d,d)(a,b)(b,a)(a,c)(c,a)$
	* Let xSy, then there exists	(b,c)(c,b)(d,a)(a,d)}
	natural numbers o such that	= 15 caser.
	XRX, MRM2, M3RM4 XRM	with more than the second
#	and AnRy. IP R 18 symmetre 11	
-	then x, Rx, x, Rxy x, Rxn ==	शिक bहें, हें दहें।
1	and y Rxn. Then, y Rxn, xn Rxn	? [a,c], [b]]
1	~ ×2 Rx2 , ×2 Rx4 , ×1, Rx	{{a}{{b}},e}{{b}}
	⇒ ysx	{{a}{{a}}{{b}}{{c}}}
	xSy => ySx, thus S is	6) P= { 0}, {-1,1} {-2,2} {-3,3},}
	Symmetric.	The equivolence relation
	· Lee X Sy and y SZ therefore 3	of Equivalence Classes of P15;
	not number me n such that xRxy,	R= { x~y :: F x = y }.
	MRXX Non Rx, and Xn Ry	
	yRy, yRyzym, Rym and ymRz.	
	2 xRigg xy Rigg xx Rig	
	So xR'y => (x,y) GR'	
	= S & R,	1 -1
	Hence, S is unique problem eq on	A congal