

Studying Anhydrous Proton Transport on Graphene-based Materials using Deep Learning Methods

Siddarth Achar

Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson

Session: Data-Driven Design and Modeling II

8th November 2021

4:45-5:00 PM

Why anhydrous proton transport?

Fuel cells membranes

Nafion

- Commonly used
- Requires <u>hydration</u>
- Operation at max 80°C
- Decrease in the rate of conduction
- Water flooding issues

Chemical structure of Nafion

Graphane-based membranes

- Novel material
- Conducts protons at elevated temperatures (without hydration)
- Increased reaction rates
- Decreased CO poisoning of anode
- Targeted operating temperature 200°C

DFT used previously, but restrictive

- DFT results show proton hopping
- Fickian diffusion in 1D graphanol
- Grotthuss-like mechanism in higher functionalized graphane
- Restrictive to run for larger structures and longer time

Active learning (AL) using Deep modeling (DPGEN)

Initial success with DeePMD for graphane

- (a) Transformation from global to local reference frame for a Carbon atom
- (b) Sub-network structure for atom C1.
- (c) Complete structure of the deep potential network

Preliminary DP generation and validation

Fitting net: 240, 240, 240

GGA-PBE, PP:PAW

Uncharged

NVT-MD (Nose-Hoover thermostat) 20 ps simulation at 1000 K

Charged

NVT-MD (Nose-Hoover thermostat) 20 ps simulation at 800 K and 1000 K

DFT energy (eV/atom)

DP could achieve a few things

Mean squared Displacement $MSD(t) = \langle [\mathbf{r}(t) - \mathbf{r}(0)]^2 \rangle$

Good approximation of proton diffusion at T=800K (For simulations that were stable)

Unexpected behavior in MSDs for few independent runs at T=800 K Also, this behavior was frequent at T=1000 K

DP had three major shortcomings

Critical aspects to be tuned from active learning

Finally, accurate description of proton transfer

Accurate description of water bond breaking

Accurate description of OH rotation barrier

Accurate description of proton bond breaking

Building various starting configurations for updated DP

Atom and cell **soft perturbation**

- Cell perturbation fraction: 5%
- Atom perturbation distance: 0.3 Å

10 initial structures were obtained

Equilibrium structure

Perturbed structures

Random rotation

function

5 initial structures generated with random OH rotation

These random perturbations are useful for OH rotation sampling

University of Pittsburgh

Siddarth Achar

Modifications to the error indicator (the intelligence)

Unphysical H₂O and proton travel due to P.B.C.

Applied a **z-axis constraint** on selecting configs. for relabeling

May have many configurations with low force deviation, especially when away from 2D sheet.

Reference DP F_0 DP_0 F_1 DP_1 F_2 DP₂ F_3 DP_3

3 iterations of AL for uncharged GOH

3 iterations of AL for charged GOH

- LAMMPS NVT at both high and low temperatures.
- 6000 configurations used out of 1 million generated

As per the DP-GEN

Calc. Max. Force deviation w.r.t 1, 2, 3 Siddarth Achar

Significant improvement on all tests

Analyzing size effects for proton diffusion

There are size effects for proton transport

Summary and Future work

Anhydrous proton conduction is promising for a fuel cell membrane

Active learning helps in fine-tuning essential aspects of proton transport

14

Found size
effects for
proton
transport in
graphanol
using DP

Siddarth Achar

- Studying multi-protonated systems
- Building an empirical model to link the electron densities to functional groups for proton transport

Acknowledgement

Computations were performed at the University of Pittsburgh's <u>Center for Research Computing</u> and the <u>Pittsburgh Supercomputing Center</u>

