

Digital Logic Design

Hajar Falahati

Department of Computer Engineering IRAN University of Science and Technology

hfalahati@iust.ac.ir

IUST

Outline

- Integrated Circuits
- Programmable Logic Device
- Read Only Memory (ROM)
- Programmable Logic Array (PLA)
- Programmable Array Logic (PAL)

Integrated Circuits

Realization

- AND-OR
- OR-AND
- NAND
- NOR

Realization Types

- Application Specific Integrated Circuit (ASIC)
- Programmable Logic Device (PLD)

ASIC

- Application Specific Integrated Circuit (ASIC)
- AND-OR Plane
 - Customized implementation
 - Efficient
 - High cost

ASIC (cont'd)

- Why Programable Logic Device (PLD)?
 - Custom computing
 - Reconfigurable computing
 - Reuse the device for a different design

Programmable Logic Design

Programmable Realization

Programmable gates

Programmable Realization (cont'd)

Programmable gates

Programmable Realization (cont'd)

Programmable AND

Programmable Realization (cont'd)

Programmable OR

Programmable Logic Design

Includes programmable gates

PLD: Types

- SPLD Structure
- CPLD Structure
- FPGA

SPLD Structure

Simple Programmable Logic Design (SPLD)

Inputs + (Buffers/Inverters)

AND PLANE
OR PLANE

Flip-flops (Optional)

Outputs + Inverters

CPLD Structure

Complex Programmable Logic Design (SPLD)

SPLD

SPLD Types

- Read Only Memory (ROM)
 - Fixed And-Plane, Programmable Or-Plane
- Programmable Array Logic (PAL)
 - Programmable And-Plane, Semi-Programmable Or-Plane
- Programmable Logic Array (PLA)
 - Programmable And-Plane and Or-Plane

ROM

- ROM
 - Store truth table in a memory
 - Store minterms/maxterms

Programmable ROM (PROM)

- PROM
 - Select which minterms/maxterms as inputs to OR/AND gates

PROM (cont'd)

PROM (cont'd)

a	b	c	f_2	f_1	f_0
0	0	0	0	1	1
0	0	1	0	1	1
O	1	0	1	1	0
O	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	0	1

Programable Logic: PROM (cont'd)

a	b	c	f_2	f_1	f_{O}
0	0	0	0	1	1
0	0	1	0	1	1
O	1	0	1	1	0
O	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	0	1

$$f_0 = \sum (0,1,5,7)$$

 $f_1 = \sum (0,1,2,6)$
 $f_2 = \sum (\bar{2,3,4})$

PROM

- PROM
 - Fixed And-Plane, Programmable Or-Plane
- Disadvantages
 - Canonical forms
 - => Not optimized

Programmable Logic Array (PLA)

- PLA
 - Programmable And-Plane, Programmable Or-Plane

• 2 logic functions of 3 inputs

$$f_1 = x_1 x_2 + x_1 \overline{x}_3 + \overline{x}_1 \overline{x}_2 x_3$$

$$f_2 = x_1 x_2 + \overline{x}_1 \overline{x}_2 x_3 + x_1 x_3$$

Programable Logic: PLA (cont'd)

2 logic functions of 3 inputs

$$f_1 = x_1 x_2 + x_1 \overline{x}_3 + \overline{x}_1 \overline{x}_2 x_3$$

$$f_2 = x_1 x_2 + \overline{x}_1 \overline{x}_2 x_3 + x_1 x_3$$

Programable Logic: PLA (cont'd)

Programable Logic: PLA (cont'd)

PLA

- PLA
 - Programmable And-Plane and Or-Plane
- Disadvantages
 - => High cost

Programmable Array Logic (PAL)

- PAL
 - Programmable And-Plane
 - Number of PT is limited
 - Optimized like as PLA
 - Lower cost than PLA

• 2 logic functions of 3 inputs

$$f_1 = x_1 x_2 + x_1 \overline{x}_3$$

$$f_2 = \overline{x}_2 x_3 + x_1 x_3$$

2 logic functions of 3 inputs

$$f_1 = x_1 x_2 + x_1 \overline{x}_3$$

$$f_2 = \overline{x}_2 x_3 + x_1 x_3$$

Question 1

PLA implementation

Question1: Answer

Question 2

ROM implementation

Question 2: Answer

F1 = ABC

F2 = A + B + C

F3 = A' B' C'

F4 = A' + B' + C'

F5 = A xor B xor C

Question 3

PAL implementation

$$f_1 = x_1 x_2 + x_1 \overline{x}_3$$

$$f_2 = \overline{x}_2 x_3 + x_1 x_3$$

Question 3: Answer

$$f_1 = x_1 x_2 + x_1 \overline{x}_3$$

$$f_2 = \overline{x}_2 x_3 + x_1 x_3$$

Thank You

