Deep Learning

Components

- Training data: (x, y) y: discrete quantity, real number
- Model:
 - Architecture
 - (FFNN) Input layer \rightarrow (Hidden Layer)+ \rightarrow Output layer
 - (CNNs)
 - (RNNs) GRU, LSTM
- Loss function
 - Regression: MSE, MAEBinary classification: BCE
- Optimization procedure
 - o SGD
- Model selection/evaluation
 - o HPT
 - o Regression: MSE
 - Classification: Precision, recall, F1-score, accuracy

Visual neural network

https://playground.tensorflow.org

NLP, Images, Vector data

- Vector data → ML model → Label
- NLP → Feature engineering → ML model → Label
- Image \rightarrow Feature engineering \rightarrow ML model \rightarrow Label

Text/Image/Speech → **Deep learning model** → Output Layer → Label / Sequence of tokens

• Sequence-to-sequence models

Recurrent neural networks (RNNs)

- **Text** → Sequence of tokens (words, characters, subword units)
- Sequence models
 - Hidden markov models (HMMs) {Generative models}
 - MaxEnt
 - Conditional random fields (CRFs) {Conditional models}
 - \circ RNNs \rightarrow GRUs, LSTM
 - Attention models
 - Transformers

Input:

- Sequence of tokens
- Feature vector

$$s_1: T<1>^{(1)} T<2>^{(1)} T<3>^{(1)} T<4>^{(1)} ... T^{(1)} (Review #1) | y^{(1)} x_1 x_2 x_3 x_4 ... x_k | y^{(1)}$$

s_2: T<1>^{(2)}, T<2>^{(2)} ... T^{(2)} (Review #2) |
$$y^{(2)}$$

.

 $s_n: T<n>^{(2)}, T<n>^{(2)} ... T<n>^{(2)} (Review #n) | y^{(n)}$

