

Co-variabilidad de la columna de vapor de agua y precipitación en Chile

Raúl Valenzuela^{1,2} y Jorge Jara³

¹Instituto de Cs. de la Ingeniería, Universidad de O'Higgins ²Centro de Ciencia del Clima y la Resiliencia (CR2) ³GFZ German Research Centre for Geosciences

Proyecto Fondecyt Iniciación 11230184

Colaboración:

Gonzalo Contador, académico USM Cristobal Quiñinao, académico PUC Bastián Rubio, estudiante UOH

7º Congreso de Oceanografía Física, Meteorología, y Clima del Pacífico Sur Oriental 4-6 Noviembre 2024 * Iquique

- Pareciera que debemos acostumbrarnos a tener cada vez menos lluvias.
- Pero el año 2023 nos recordó que debemos estar más preparados que nunca.
- Uno de los factores más importante para eventos de precipitación extrema es el flujo de vapor de agua (IVT).
- Así como monitoreamos continuamente la temperatura y presión del aire ¿será posible hacer lo mismo con el vapor de agua (WV)?

Medición de columna de vapor de agua

¿Cómo obtener series de tiempo?

Radiosonda

- Medición in-situ
- Con mucha suerte 2 observaciones por día

Radiómetro de microondas

- Emisión de microondas del vapor de agua
- Mediciones se degrada durante lluvia por presencia de gotas

Global Navigation Satellite System (GNSS)

- Retraso en la señal GNSS
- Mediciones continuas
 24 hrs, all-weather

Principio de funcionamiento de GNSS

Tiempo de salida y tiempo de llegada

- 24 satelites (Global Positioning System, GPS) orbitan y emiten continuamente ondas de radio.
- La señal contiene información de ubicación y tiempo de emisión.
- Un receptor en tierra registra el tiempo de recepción de al menos 4 satelites y triangula posición.
- El principio de medición se basa en la diferencia de tiempo de la señal para calcular distancias.

Fig. 1.3 Basic principle of pseudorange measurements

Teunissen and Montenbruk (Eds, 2017)

Zenith Total Delay

Efecto de la atmósfera en la onda de radio

- La señal GPS sufre retardos (refracción de EM) a lo largo de la trayectoria por: atmósfera neutra.
- El retardo por atmósfera neutra se descompone en retardo por refractvidad hidrostática (N_h) y por presencia de vapor agua (N_w)
- La meteorología GPS estudia variabilidad del vapor de agua a partir de la variabilidad de ZTD.

Teunissen and Montenbruk (Eds, 2017)

$$ext{ZTD} = ext{ZHD+ZWD}$$
 $ext{ZHD} = 10^{-6} \int_{h0}^{h\infty} N_h(z) \, dz$ $ext{ZWD} = 10^{-6} \int_{h0}^{h\infty} N_w(z) \, dz$

Objetivos

- Obtener datos de ZTD procesados por Nevada Geodetic Laboratory (NGL, resolución de 5 minutos).
- Derivar CWV usando estaciones meteorológicas y ERA5 (resolución horaria a diaria).
- Comparar variabilidad anual del WV a lo largo de Chile.
- Relacionar variabilidad de WV y precipitaciones.

Datos y métodos

Zenith Total Delay

Obtención de columna de vapor de agua

$$ZHD(P_s, \lambda, H) = \frac{2.2779P_s}{1 - 0.00266\cos 2\lambda - 0.00028H}$$

Elgered et al (1991)

 P_s = presión atmosférica $\lambda = latitud$

H = altura geopotencial

$${
m CWV} = {
m ZWD} imes \Pi$$
Columna de Valor Factor que vapor de derivado depende de agua meteorología

$$\Pi(T_m) = \frac{10^6}{\rho_w R_v \left(\frac{k_3}{T_m} + k_2'\right)}$$

$$T_m = rac{\int_0^\infty rac{e}{T} \, dz}{\int_0^\infty rac{e}{T^2} \, dz}$$
 Temperatura promedio aire en perfil (Davis et al 1985)

$$T_m = 70.2 + 0.72 T_s$$
 RMS ~2% (Bevis et al 1992)

$$T_s = \text{temperatura del aire}$$

Zenith Total Delay

Ejemplos

Series de tiempo de ZTD

Archivos descargados desde NGL

- Descarga desde http://geodesy.unr.edu/magnet.php
- Script para automatizar descarga de estaciones en territorio chileno.
- Selección de estaciones con 15 o más años (climatología).
- Inspección visual para detectar anomalías.

Series de tiempo meteorología

Descargas de ERA5

- Temperatura a 2 metros
- Presión superficial
- Altura geopotencial
- Interpolación bilineal al punto de estación GNSS
- Interpolación hipsométrica a la altitud de estación GNSS

Series de tiempo meteorología

Descargas de meteorología

- Descarga de datos desde https://explorador.cr2.cl
- Descarga de datos de Dirección Meteorológica de Chile, Agromet
- Temperatura, presión, precipitación
- Inspección visual de datos anómalos
- Estación más cercana a receptor GNSS

Series de tiempo meteorología

Descargas de radiosondas

- Descarga de datos desde NCEI-IGRA (https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive)
- Inspección visual de datos anómalos
- Uso de CWV para comprar con GPS-CWV

Resultados

Estaciones y disponibilidad de datos ZTD

16 estaciones en periodo 1994-2021 (28 años)

Vista general de series de tiempo de GPS-WV

16 estaciones en periodo 1994-2021 (28 años)

- Alta frecuencia y largos periodos de datos perdidos.
- Destaca ciclo anual del WV
- Distintos patrones dependiendo de la zona geográfica (altitud, latitud, distancia a costa)

Variabilidad anual de WV

 Distribuciones similares en ANTC, COYQ, PARC, AUTF (centro, sur y Patagonia)

Variabilidad anual de WV

 Distribuciones similares en PTRE, PCCL, ATJN, CRSC, CDLC, CBAA, JRGN (norte grande)

Variabilidad mensual de WV

Transición de distribución mensual (log-normal, log-normal-1)

Variabilidad mensual de WV

Transición de distribución mensual (log-normal, log-normal-1)

20 -

Ciclo anual de WV

Máximo en Febrero, mínimo en Julio/Agosto

Líneas:

Gris: WV horario

Azul: media móvil sobre promedio diario Naranja: filtro de Savitzky-Golay sobre

promedio diario

Imputación estocástica de WV

Para mejorar calidad de estadística (trabajo en progreso)

Valenzuela et al (AGU 2023 Annual Meeting)

Serie de tiempo GPS-WV y precipitacion

Resolución horaria

Serie de tiempo GPS-WV y precipitacion

Resolución horaria

WV y precipitación a escala horaria

Poconchile (1144 msnm) y Putre (3608 msnm)

WV y precipitación a escala anual

Peldehue (700 msnm)

WV y precipitación a escala anual

Peldehue (700 msnm)

Conclusión

- Valores de ZTD obtenidos desde NGL permiten derivar de manera razonable CWV.
- CWV obtenido directamente de NGL con sesgo seco (se aconseja no utilizar).
- Fuerte variabilidad mensual de CWV (no-estacionaria) función de la localidad.
- Deseable aplicar técnicas de imputación para aprovechar al máximo dataset climático.
- Se observa correlación entre peaks de CWV y precipitación a nivel horario. Falta análisis exhaustivo.
- Se observa correlación entre promedio anual de CWV y precipitación anual. Potencial uso de CWV para estudiar precipitación en el futuro.

Muchas gracias

raul.valenzuela@uoh.cl

Backup

Validación GPS-WV con radiosonda

Valores radiosonda de IGRA, GPS con meteorología cercana

Algorithm 1 Expectation-Maximization for SDE driven process

Input Observed data \vec{X} , set of censored times \mathcal{I} , initial estimate θ_0 Output Estimated parameter θ , simulated missing data repeat While θ does not converge

E-Step: Compute v_{θ_0} , $p_{s,t}(x, y)$ and its gradient

if $0 \in \mathcal{I}$ then Define $X_0 \sim \nu_{\theta_0}$

for each interval $I \subset \mathcal{I}$ do

With j the smallest upper bound of I, define for each $i \in I$

$$X_{t_i} = X_{t_{i-1}} + \left[b_{\theta}(X_{t_{i-1}}) + \sigma_{\theta}^{\top}(X_{t_{i-1}})\sigma_{\theta}(X_{t_{i-1}})\nabla p_{t_{i-1},t_j}(X_{t_{i-1}},X_{t_j})\right](t_i - t_{i-1}) + \sigma_{\theta}(X_{t_{i-1}})Z_i\sqrt{t_i - t_{i-1}}$$

If I is unbounded, define for each $i \in I$

$$X_{t_i} = X_{t_{i-1}} + b_{\theta}(X_{t_{i-1}})(t_i - t_{i-1}) + \sigma_{\theta}(X_{t_{i-1}})Z_i\sqrt{t_i - t_{i-1}}$$

M-Step: Calculate empirical distribution of (observed and filled) X, $\mu_n := n^{-1} \sum_{i=1}^n \delta_{X_{i}}$ Update $\theta = \arg\min W_2(\nu_\theta, \mu_n)$

Distribución condicional de WV y precip

Santo Domingo (RCSD) y Punta Arenas (PARC)

Table 1

	lat	lon	hgt	nyears	beg	end
st_name						
PTRE	-18.194	-69.574	3608	16	2005-10-24 00:00:00	2021-05-04 23:55:00
PCCL	-18.458	-70.107	1144	16	2005-10-21 00:00:00	2021-05-05 23:55:00
ATJN	-19.301	-70.137	1598	16	2005-10-27 00:00:00	2021-05-05 23:55:00
IQQE	-20.274	-70.132	39	18	2002-01-09 00:05:00	2021-05-15 23:55:00
CRSC	-20.918	-70.080	1517.876	16	2005-11-10 12:35:00	2021-05-05 23:55:00
CDLC	-22.190	-69.762	1998.285	15	2006-10-05 16:40:00	2020-10-16 23:55:00
СВАА	-22.746	-68.448	3514.857	15	2006-10-01 17:25:00	2021-05-05 23:55:00
JRGN	-23.289	-70.575	327.590	16	2005-11-06 00:00:00	2021-05-05 23:55:00
CFAG	-31.602	-68.233	702.582	16	1995-11-10 13:30:00	2010-12-13 23:55:00
MZAC	-32.895	-68.876	859.855	17	2004-06-02 13:50:00	2021-05-15 23:55:00
SANT	-33.150	-70.669	723.064	27	1994-01-02 00:00:00	2021-05-15 23:55:00
ANTC	-37.339	-71.532	745.383	19	2002-01-01 00:05:00	2021-05-15 23:55:00
COYQ	-45.514	-71.892	476.177	22	1999-01-14 00:05:00	2020-01-26 23:55:00
PARC	-53.137	-70.880	22.307	22	1999-01-01 00:05:00	2021-05-15 23:55:00
RIO2	-53.785	-67.751	32.013	22	1999-06-10 00:00:00	2021-05-08 23:55:00
AUTF	-54.840	-68.304	71.902	21	1999-01-01 00:05:00	2021-05-15 23:55:00