ANALÍZIS II. Példatár

Differenciálegyenletek. II. rész.

2009. április

4. fejezet

Feladatok

Állandó együtthatós lineáris DE 4.1.

Határozzuk meg a következő állandó együtthatós lineáris DE-k általános megoldását:

4.1.
$$y'' - y = 0$$

$$\boxed{\mathbf{4.2.}} \ y'' + y = 0$$

$$\boxed{\textbf{4.3.}} \ y'' + 2y' - 15y = 0$$

$$\boxed{\textbf{4.4.}} \ y'' + 2y' + y = 0$$

4.5.
$$y'' + 12y' + 45y = 0$$
 4.6. $y^{(5)} - y' = 0$

4.6.
$$y^{(5)} - y' = 0$$

$$\boxed{\mathbf{4.7.}} \ y^{(5)} - 8y''' + 16y' = 0$$

4.7.
$$y^{(5)} - 8y''' + 16y' = 0$$
 4.8. $y^{(7)} + 2y^{(5)} + y''' = 0$

4.9.
$$y^{(4)} - y = 0$$

4.10.
$$y''' + 3y'' + 3y' + y = 0$$

4.11.
$$y'' - 6y' + 8y = 0$$

4.11.
$$y'' - 6y' + 8y = 0$$
 4.12. $4y'' + 4y' + y = 0$

4.13.
$$y'' - 2y' + 5y = 0$$

4.14.
$$6y'' - 5y' + y = 0$$

4.15.
$$y'' - 10y' + 25y$$

4.16.
$$4y'' + 12y' + 9y = 0$$

4.17.
$$y^{(6)} - 4y^{(5)} + 6y^{(4)} - 4y''' + y'' = 0$$

4.18.
$$y^{(5)} + y''' - 6y' = 0$$

4.18.
$$y^{(5)} + y''' - 6y' = 0$$
 4.19. $y^{(6)} + 4y^{(4)} + 4y'' = 0$

4.20.
$$y^{(7)} - 4y^{(5)} + 4y''' = 0$$
 4.21. $y^{(4)} - 2y'' = 0$

4.21.
$$u^{(4)} - 2u'' = 0$$

$$\boxed{\mathbf{4.22}} \ y^{(4)} + 4y = 0$$

Írjuk fel az alábbi inhomogén lineáris differenciálegyenlet általános megoldását a homogén egyenlet alaprendszerének ismeretében.

$$y'' + y' - 6y = x$$
, $y_1 = e^{2x}$, $y_2 = e^{-3x}$

4.24.

$$y'' + 2y' + 5y = \frac{1}{e^x \cos 2x},$$
 $y_1 = e^{-x} \cos 2x;$ $y_2 = e^{-x} \sin 2x$

4.25.
$$y'' - 2y' + y = \frac{e^x}{(1-x)^2}, \qquad y_1 = e^x; \quad y_2 = xe^x$$

4.26.
$$y'' + 4y = \frac{8}{\cos 2x}, \qquad y_1 = \cos 2x; \quad y_2 = \sin 2x$$

4.27.
$$y'' - 4y = \frac{8}{e^x + 1}, \qquad y_1 = e^{2x}; \quad y_2 = e^{-2x}$$

4.2. Másodrendű homogén lineáris DE

4.28. Határozzuk meg az

$$x^{2}(\ln x - 1)y'' - xy' + y = 0$$

differenciálegyenlet általános megoldását, ha egy partikuláris megoldás az $y_1(x) = x$ függvény.

Határozzuk meg az alábbiakban adott differenciálegyenletek általános megoldását egy $y_1 = y_1(x)$ partikuláris megoldás ismeretében.

4.29.

$$xy'' - (x+1)y' - 2(x-1)y = 0; \quad y_1 = e^{2x}$$

4.30.

$$(1+x^2)y'' + xy' - y = 0; y_1 = x;$$

4.31.

$$y''\sin^2 x - 2y = 0; \quad y_1 = \operatorname{ctg} x$$

4.32.

$$(x-1)^2 y'' + x(x-1)y' + (x-2)y = 0;$$
 $y_1 = \frac{1}{x-1}$

4.34.

$$x^2y'' - xy' - 3y = 0; \quad y_1 = x^3$$

4.35.

$$x^2y'' - 2xy' + 2y = 0$$
; $y_1 = x^2$

4.36.

$$(1-x^2)y'' - xy' = 0; y_1 = \arcsin x$$

4.37.

$$xy'' - (1+x)y' + y = 0; \quad y_1 = x+1$$

4.38. Írjuk fel az

$$(x^2 + 1)y'' + 2xy' - 2y = 0$$

differenciálegyenletet y(0) = 2, y'(0) = 1 kezdeti feltételeknek megfelelő partikuláris megoldását, ha $y_1 = x$ partikuláris megoldás.

Írjuk fel az alábbi differenciálegyenletek adott kezdeti feltételeket kielégítő megoldását, ha a differenciálegyenlet egy partikuláris megoldását ismerjük.

4.39.

$$(2x - x^2)y'' + (x^2 - 2)y' + 2(1 - x)y = 0; \quad y_1 = x^2$$
$$y(1) = e, \quad y'(1) = 3e$$

4.40.

$$\sin^2 x \ y'' + \sin x \ \cos x \ y' - y = 0; \quad y_1 = \operatorname{ctg} x$$
$$y\left(\frac{\pi}{2}\right) = 1, \qquad y'\left(\frac{\pi}{2}\right) = 3$$

4.41.

$$(2x+1)y'' + (4x-2)y' - 8y = 0; \quad y_1 = e^{-2x}$$
$$y(0) = 5, \quad y'(0) = -4$$

4.42.

$$(1-x)y'' + xy' - y = 0; \quad y = e^x$$

 $y(0) = -2, \quad y'(0) = 1$

4.3. Másodrendű inhomogén lineáris DE

4.43. Határozzuk meg az

$$x^{2}(\ln x - 1)y'' - xy' + y = (x \ln x - x)^{2}$$

egyenlet általános megoldását.

Határozzuk meg az alábbi inhomogén lineáris differenciálegyenletek általános megoldását, a homogén egyenlet egy partikuláris megoldásának ismeretében.

4.44.

$$y''\sin^2 x - y'\sin x \cos x + y = \sin x; \quad y_1(x) = \sin x$$

4.45.

$$x^{2}(1-2\ln x)y'' + x(1+2\ln x)y' - 4y = 2x\ln x - 3x; y_{1}(x) = x^{2}$$

4.46.

$$2(x+1)^2 y'' - (x+1)y' + y = x;$$
 $y_1(x) = \sqrt{x+1}$

4.47.

$$xy'' - (1+x)y' + y = x^2e^x$$
 $y_1(x) = x+1$

4.48.

$$(x\cos x - \sin x)y'' + x\sin xy' - \sin x \ y = (x\cos x - \sin x)^2$$
$$y_1(x) = x$$

Határozzuk meg az alábbi inhomogén lineáris differenciálegyenletek adott kezdeti feltételt kielégítő megoldását a homogén lineáris differenciálegyenlet egy partikuláris megoldásának ismeretében:

4.49.

$$x^{2}y'' - 2xy' + 2y = x^{3} \sin x; \quad y_{1} = x^{2};$$

 $a) \quad y\left(\frac{\pi}{2}\right) = \pi; \qquad \qquad y'\left(\frac{\pi}{2}\right) = 0$
 $b) \quad y(0) = 0; \qquad \qquad y'(0) = 2$

$$y'' - 4y' + 4y = \frac{e^{2x}}{\sqrt{1 - x^2}}; \quad y_1 = e^{2x};$$

 $y(0) = 3; \qquad \qquad y'(0) = 1$

Állandó-együtthatós lineáris inhomogén 4.4. DE

Írja fel az alábbi diferenciálegyenletek általános megoldását.

4.51.
$$y'' + 2y' + y = x \sin x$$
 4.52. $y^{(4)} - 4y'' + 3y = 3e^{\frac{x}{2}}$

$$\boxed{\textbf{4.52.}} \ y^{(4)} - 4y'' + 3y = 3e^{\frac{x}{2}}$$

4.53.
$$y''' + 3y'' + 3y' + y = e^{-x} + \cos x$$

4.54.
$$y''' + 3y'' + 3y' + y = e^{-x} \cdot \cos x$$

4.55.
$$y'' - y = (2x + 3)e^x$$
 4.56. $y'' + y = -4\cos x$

4.56.
$$y'' + y = -4\cos x$$

4.57.
$$y''' - 5y'' + 7y' - 3y = 8e^x(2x - 1)$$

4.58.
$$y'' + y' - 12y = \sinh x$$
 4.59. $y'' - y' - 2y = 8e^{3x}$

4.59.
$$y'' - y' - 2y = 8e^{3x}$$

4.60.
$$y'' - 2y' - 3y = 2\cos 3x$$

4.61.
$$y'' - 3y' - 4y = e^{-x}$$

4.62.
$$y''' - 4y' = xe^{2x} + \sin x + x^2$$

4.63.
$$y'' - y' - 12y = 4x^2 - 6x - 3$$

4.64.
$$y'' - 3y' - 4y = e^{2x} + 2\sin x$$

4.65.
$$y''' + 2y'' + y' = 1 + e^{-x}$$

4.66.
$$y^{(4)} + 2y''' + 5y'' + 8y' + 4y = \cos x + 40e^x$$

4.67.
$$y^{(3)} + y'' + y' + y = xe^x$$
 4.68. $y'' - 3y' + 2y = 2e^x \cos \frac{x}{2}$

4.69.
$$y^{(4)} - 4y''' + 6y'' - 4y' + y = (x+1)e^x$$

4.70.
$$y'' - 6y' + 9y = \frac{9x^2 + 6x + 2}{x^3}$$

4.71.
$$y'' + y = \operatorname{tg} x$$
 4.72. $y'' + y = 2 \sin x \sin 2x$

4.73.
$$2y'' + 5y' = 29x \sin x$$
 4.74. $y'' + 4y' - 5y = 1$

4.75.
$$y'' - 9y = 3 \text{sh } 3x$$
 4.76. $y''' - 2y'' - y' + 2y = \text{ch } 2x$

Határozzuk meg az alábbi állandó együtthatójú inhomogén lineáris differenciálegyenletek adott kezdeti feltételeket kielégítő partikuláris megoldását.

4.77.

$$4y'' + 16y' + 15y = 4e^{-\frac{3}{2}x}$$
$$y(0) = 3, \quad y'(0) = -5.5$$

4.78.

$$y'' - 2y' + 10y = 10x^{2} + 18x + 6$$
$$y(0) = 1, \quad y'(0) = 3.2$$

4.79.

$$y'' - y' = 2(1 - x),$$
 $y(0) = 1,$ $y'(0) = 1$

4.80.

$$y'' - 2y' = e^x (x^2 + x - 3),$$
 $y(0) = 2,$ $y'(0) = 2$

4.81.

$$y'' + y + \sin 2x = 0$$
 $y(\pi) = 1$, $y'(\pi) = 1$

4.5. Állandó-együtthatós lineáris inhomogén DE és Laplace transzformáció

Az alábbi kezdetiérték feladatokat oldjuk meg Laplace-transzformáció segítségével:

4.82.

$$y'' - y' = 2 - 2x$$
; $y(0) = 1$, $y'(0) = 1$

4.83.

$$y'' - 3y' - 4y = e^{-x}; \quad y(0) = 2, \quad y'(0) = 4$$

4.84.

$$y'' - 4y' + 4y = 8\sin 2x$$
; $y(0) = 2$; $y'(0) = 4$

4.85.

$$y'' + 4y' + 4y = 2\cos 3x$$
; $y(0) = 1$, $y'(0) = 0$

4.86.

$$y'' + 4y' + 4y = 4\sin 4x$$
; $y(0) = 0$, $y'(0) = 0$

4.87.

$$y'' - 2y' + y = 6xe^x$$
; $y(0) = 2$, $y'(0) = 1$

4.88.

$$y'' + 5y' + 4y = e^{3x}; \quad y(0) = 0, \quad y'(0) = 0$$

4.89.

$$y'' + 5y' + 4y = e^{-x}; \quad y(0) = 0, \quad y'(0) = 0$$

4.90.

$$y'' - y' - 12y = 3x - 2; \quad y(0) = 0, \quad y'(0) = 0$$

4. fejezet

Megoldások

4.1. Állandó együtthatós lineáris DE

4.1. Keressük a megoldást $y = e^{\lambda x}$ alakban. Ekkor:

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x},$$

ezért a differenciálegyenlet

$$\lambda^2 e^{\lambda x} - e^{\lambda x} = 0.$$

Mivel $e^{\lambda x} \neq 0$, tehát $\lambda^2 - 1 = 0$, s innen $\lambda = \pm 1$. A megoldás tehát:

$$y = C_1 e^x + C_2 e^{-x}.$$

Figyelembe vesszük, hogy a partikuláris megoldások lineáris kombinációja is megoldás, tehát az

$$\frac{e^x + e^{-x}}{2} = \text{ch } x, \text{ illetve } \frac{e^x - e^{-x}}{2} = \text{sh } x$$

függvények is megoldásai a differenciálegyenletnek. Ezek lineárisan függetlenek is, mert:

$$W(x) = \begin{vmatrix} \operatorname{ch} x & \operatorname{sh} x \\ \operatorname{sh} x & \operatorname{ch} x \end{vmatrix} = 1.$$

A differenciálegyenlet általános megoldása tehát

$$y = C_1 \operatorname{ch} x + C_2 \operatorname{sh} x.$$

alakban is írható.

Érdemes megjegyezni, hogy valahányszor a karakterisztikus egyenletnek abszolut értékben egyező, de előjelben különböző, megegyező multiplicitású gyöke van, akkor a differenciálegyenletnek alaprendszere

$$e^{\alpha x}$$
, $e^{-\alpha y}$, vagy ch αx , sh $x\alpha$ is lehet!

4.2. Az y'' + y = 0 differenciálegyenletnek karakterisztikus egyenlete

$$\lambda^2 + 1 = 0$$
.

Innen $\lambda = \pm i$. A megoldás tehát:

$$y = C_1 \cos x + C_2 \sin x, \qquad C_1, C_2 \in \mathbb{R}.$$

4.3. A karakterisztikus egyenlet $\lambda^2 + 2\lambda - 15 = 0$, innen

$$\lambda_{1,2} = \frac{-2 \pm \sqrt{4+60}}{2} = \frac{-2 \pm 8}{2}.$$

Két különböző valós gyököt kapunk, $\lambda_1=3, \lambda_2=-5,$ s így:

$$y(x) = C_1 e^{3x} + C_2 e^{-5x}, C_1, C_2 \in \mathbb{R}.$$

4.4. Az y'' + 2y' + y = 0 egyenlet karakterisztikus egyenlete:

$$\lambda^2 + 2\lambda + 1 = 0.$$

Azt kapjuk, hogy

$$(\lambda + 1)^2 = 0,$$

ezér $\lambda_{1,2} = -1$ kétszeres gyök. Így:

$$y(x) = (C_1 + C_2 x) e^{-x}, C_1, C_2 \in \mathbb{R}.$$

4.5. A karakterisztikus egyenlet $\lambda^2 + 12\lambda + 45 = 0$, ahonnan:

$$\lambda_{1,2} = \frac{-12 \pm \sqrt{144 - 180}}{2} = -6 \pm 3i.$$

A karakterisztikus egyenletnek konjugált komplex gyökei vannak. Ezért az általános megoldás:

$$y(x) = e^{-6x} (C_1 \cos 3x + C_2 \sin 3x), \qquad C_1, C_2 \in \mathbb{R}.$$

4.6. Az $y = e^{\lambda x}$ megoldás függvényt behelyettesítve

$$\lambda^5 - \lambda = \lambda \left(\lambda^4 - 1\right) = \lambda \left(\lambda^2 + 1\right) \left(\lambda^2 - 1\right) = 0$$

karakterisztikus egyenlethez jutunk. Ennek megoldásai:

$$\lambda_1 = 0, \quad \lambda_2 = 1, \quad \lambda_3 = -1, \quad \lambda_4 = i, \quad \lambda_5 = -i$$

Az általános megoldás:

$$y(x) = C_1 + C_2 e^x + C_3 e^{-x} + C_4 \cos x + C_5 \sin x.$$

Mivel a $|\lambda_2|=|\lambda_3|$ és $\lambda_1\cdot\lambda_2<0$ ez még így is írható (l. 1. feladat):

$$y(x) = C_1 + C_2 \operatorname{ch} x + C_3 \operatorname{sh} x + C_4 \cos x + C_5 \sin x.$$

4.7. A karakterisztikus egyenlet:

$$\lambda^{5} - 8\lambda^{3} + 16\lambda = \lambda (\lambda^{4} - 8\lambda^{2} + 16) = \lambda (\lambda^{2} - 4)^{2} = \lambda (\lambda - 2)^{2} (\lambda + 2)^{2} = 0.$$

A gyökök tehát:

$$\lambda_1 = 0$$
 $\lambda_{2,3} = 2$, kétszeres gyök
 $\lambda_{4,5} = -2$, kétszeres gyök

Általános megoldás:

$$y(x) = C_1 + (C_2 + C_3 x) e^{2x} + (C_4 + C_5 x) e^{-2x},$$

és ez

$$y(x) = C_1 + (A_1 + A_2x) \operatorname{sh} 2x + (B_1 + B_2x) \operatorname{ch} 2x$$

alakban is írható.

4.8. A karakterisztikus egyenlet:

$$\lambda^{7} + 2\lambda^{5} + \lambda^{3} = \lambda^{3} (\lambda^{4} + 2\lambda^{2} + 1) = \lambda^{3} (\lambda^{2} + 1)^{2} = 0$$

A gyökök:

$$\lambda_{1,2,3}=0,$$
háromszoros gyök
$$\lambda_{4,5,6,7}=\pm i,$$
 kétszeres konjugált komplex gyökpár

A megoldás:

$$y(x) = C_1 + C_2 x + C_3 x^2 + (A_1 x + A_2) \cos x + (B_1 x + B_2) \sin x.$$

4.9.

$$y(x) = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x =$$

= $C_1 \operatorname{sh} x + C_2 \operatorname{ch} x + C_3 \cos x + C_4 \sin x.$

4.10.
$$y(x) = (C_1 + C_2 x + C_3 x^2) e^{-x}$$
.

4.11.
$$y(x) = C_1 e^{4x} + C_2 e^{2x}$$

4.12.
$$y(x) = (C_1 + C_2 x) e^{-\frac{1}{2}x}$$
.

4.13.
$$y(x) = e^x (C_1 \cos 2x + C_2 \sin 2x)$$
.

4.14.
$$y(x) = C_1 e^{\frac{1}{2}x} + C_2 e^{\frac{1}{3}x}$$
.

4.15.
$$y(x) = (C_1 + C_2 x) e^{5x}$$
.

4.16.
$$y(x) = (C_1 + C_2 x) e^{-\frac{3}{2}x}$$
.

4.17.
$$y(x) = (C_1 + C_2x + C_3x^2 + C_4x^3 + C_5x^4 + C_6x^5)e^x$$
.

4.18.

$$y(x) = C_1 + C_2 e^{\sqrt{2}x} + C_3 e^{-\sqrt{2}x} + C_4 \cos \sqrt{3}x + C_5 \sin \sqrt{3}x =$$

= $C_1 + C_2 \cot \sqrt{2}x + C_3 \cot \sqrt{2}x + C_4 \cos \sqrt{3}x + C_5 \sin \sqrt{3}x.$

4.19.
$$y(x) = C_1 x + C_2 + (C_3 + C_4 x) \cos \sqrt{2}x + (C_5 + C_6 x) \sin \sqrt{2}x$$
.

4.20.

$$y(x) = C_1 + C_2 x + C_3 x^2 + (C_4 + C_5 x) \operatorname{sh} \sqrt{2} x + (C_6 + C_7 x) \operatorname{ch} \sqrt{2} x =$$

$$= C_1 + C_2 x + C_3 x^2 + (A_1 + A_2 x) e^{\sqrt{2} x} + (B_1 + B_2 x) e^{-\sqrt{2} x}.$$

4.21.

$$y(x) = C_1 + C_2 x + C_3 e^{\sqrt{2}x} + C_4 e^{-\sqrt{2}x} =$$

= $C_1 + C_2 x + C_3 \operatorname{sh} \sqrt{2}x + C_4 \operatorname{ch} \sqrt{2}x.$

4.22. A karakterisztikus egyenlet:

$$\lambda^4 + 4 = 0$$
, innen $\lambda = \sqrt[4]{-4}$

azaz:

$$\lambda_1 = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = 1 + i$$

$$\lambda_2 = \sqrt{2} \left(-\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = -1 + i$$

$$\lambda_3 = \sqrt{2} \left(-\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = -1 - i$$

$$\lambda_4 = \sqrt{2} \left(\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = 1 - i$$

Így a partikuláris megoldások:

$$e^x \cos x,$$
 $e^x \sin x$
 $e^{-x} \cos x,$ $e^{-x} \sin x$

Mivel a megoldások lineáris kombinációja is megoldás, így megoldások az alábbi függvények is:

$$\frac{e^x + e^{-x}}{2}\cos x = \cosh x \cos x$$

$$\frac{e^x - e^{-x}}{2}\cos x = \sinh x \cos x$$

$$\frac{e^x + e^{-x}}{2}\sin x = \cosh x \sin x$$

$$\frac{e^x - e^{-x}}{2}\sin x = \sinh x \sin x.$$

Bizonyítható, hogy az így nyert függvények alaprendszert alkotnak, mert a belőlük felírt Wronski-féle determináns nem zérus. Így:

$$y(x) = e^x (C_1 \cos x + C_2 \sin x) + e^{-x} (C_3 \cos x + C_4 \sin x),$$

illetve

$$y(x) = (C_1 \cos x + C_2 \sin x) \operatorname{ch} x + (C_3 \cos x + C_4 \sin x) \operatorname{sh} x.$$

4.23. Az inhomogén lineáris differrenciálegyenlet általános megoldása a homogén egyenlet általános megoldásának és az inhomogén differenciálegyenlet egy partikuláris megoldásának összege. A homogén lineáris differenciálegyenlet általános megoldása az alaprendszer ismeretében felírható:

$$y_{hom} = C_1 y_1 + C_2 y_2 = C_1 e^{2x} + C_2 e^{-3x}$$

Az inhomogén egyenlet partikuláris megoldása:

$$y_0 = \gamma_1(x)e^{2x} + \gamma_2(x)e^{-3x}$$

alakban keresendő.

Az ismeretlen függvények deriváltjait a

$$\gamma'_1(x)y_1 + \gamma'_2(x)y_2 = 0$$

 $\gamma'_1(x)y'_1 + \gamma'_2(x)y'_2 = x$

egyenletrendszerből számolhatjuk. Behelyettesítve az alapmegoldásokat, az egyenletrendszer kompakt alakban így írható:

$$\begin{pmatrix} e^{2x} & e^{-3x} \\ 2e^{2x} & -3e^{-3x} \end{pmatrix} \begin{pmatrix} \gamma_1' \\ \gamma_2' \end{pmatrix} = \begin{pmatrix} 0 \\ x \end{pmatrix},$$

Cramer-szabállyal meghatározzuk ennek a lineáris egyenlet rendszernek a megoldását:

$$D = \begin{vmatrix} e^{2x} & e^{-3x} \\ 2e^{2x} & -3e^{-3x} \end{vmatrix} = -5e^{-x};$$

$$D_1 = \begin{vmatrix} 0 & e^{-3x} \\ x & -3e^{-3x} \end{vmatrix} = -xe^{-3x};$$

$$D_2 = \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & x \end{vmatrix} = xe^{2x};$$

Innen:

$$\gamma_1'(x) = \frac{-xe^{-3x}}{-5e^{-x}} = \frac{1}{5}xe^{-2x}; \quad \gamma_2'(x) = \frac{xe^{2x}}{-5e^{-x}} = -\frac{1}{5}xe^{3x}$$

Integrálással:

$$\gamma_1(x) = -e^{-2x} \left(\frac{x}{10} + \frac{1}{20} \right); \quad \gamma_2(x) = -e^{3x} \left(\frac{x}{15} - \frac{1}{45} \right)$$

$$y_0(x) = -e^{-2x} \left(\frac{x}{10} + \frac{1}{20} \right) e^{2x} - e^{3x} \left(\frac{x}{15} - \frac{1}{45} \right) e^{-3x} =$$

$$= -\frac{x}{6} - \frac{1}{36}.$$

A differenciálegyenlet általános megoldása:

$$y(x) = C_1 e^{2x} + C_2 e^{-3x} - \frac{x}{6} - \frac{1}{36}.$$

4.24.

$$y(x) = C_1 e^{-x} \cos 2x + C_2 e^{-x} \sin 2x + \frac{e^{-x}}{4} \cos 2x \ln(\cos 2x) + \frac{e^{-x}x}{2} \sin 2x$$

4.25.

$$y(x) = e^x \left(C_1 + C_2 x + \ln \frac{1}{1 - x} \right)$$

4.26.

$$y(x) = \cos 2x (C_1 + 2\ln(\cos 2x)) + \sin 2x (C_2 + 4x)$$

4.27.

$$y(x) = C_1 e^{2x} + C_2 e^{-2x} +$$

$$+2 \left[x e^{2x} + e^x - e^{-x} - \left(e^{2x} - e^{-2x} \right) \ln(e^x + 1) \right] - 1.$$

4.2. Másodrendű homogén lineáris DE

4.28. Az $x^2(\ln x - 1)y'' - xy' + y = 0$ differenciálegyenletek az $y_1 = x$ partikuláris megoldástól lineárisan független megoldását szorzat alakban keressük.

$$y_2(x) = C(x) x$$

Deriváljuk és az egyenletbe helyettesítjük. Mivel:

$$y_2'(x) = C' x + C y_2''(x) = C'' x + 2C'$$
$$x^2(\ln x - 1)(C''x + 2C') - x(C'x + C) + Cx = 0.$$

A C(x) - függvény deriváltjai szerint rendezve:

$$C''x^{3}(\ln x - 1) + C'(2x^{2}(\ln x - 1) - x^{2}) = 0.$$

A kapott másodrendű differenciálegyenletet C'=p(x) helyettesítéssel elsőrendű szétválasztható változójú egyenletre vezetjük vissza:

$$\frac{p'}{p} = \frac{-2x^2(\ln x - 1) + x^2}{x^3(\ln x - 1)} = -\frac{2}{x} + \frac{1}{x(\ln x - 1)}$$

Integrálva:

$$\ln p = \ln \frac{1}{x^2} + \ln(\ln x - 1) = \ln \frac{\ln x - 1}{x^2},$$

ahonnan:

$$p = \frac{dC}{dx} = \frac{\ln x - 1}{x^2}$$

Újabb integrálással

$$C = \int \frac{\ln x - 1}{x^2} dx = -\frac{\ln x}{x},$$

így

$$y_2(x) = -\frac{\ln x}{x}x = -\ln x.$$

A keresett általános megoldás a két partikuláris megoldás lineáris kombinációja:

$$y(x) = C_1 x + C_2 \ln x.$$

 $y_1(x)$ és $y_2(x)$ lineárisan függetlenek, hiszen

$$\left| \underline{\underline{W}}(x) \right| = \begin{vmatrix} x & \ln x \\ 1 & \frac{1}{x} \end{vmatrix} = (1 - \ln x) \neq 0.$$

4.29.
$$y(x) = C_1 e^{2x} + C_2 (1+3x)e^{-x}$$
.

4.30.
$$y(x) = C_1 x + C_2 \sqrt{1 + x^2}$$

4.31.
$$y(x) = C_1 \operatorname{ctg} x + C_2 (1 - x \cdot \operatorname{ctg} x).$$

4.32.

$$y(x) = \frac{1}{x-1} \left[C_1 + C_2 x e^{-x} \right].$$

4.33.

$$y(x) = \frac{1}{x} [C_1(1+x)e^{-x} + C_2].$$

4.34.

$$y(x) = C_1 x^3 + \frac{C_2}{x}.$$

4.35.
$$y(x) = C_1 x^2 + C_2 x$$
.

4.36.
$$y(x) = C_1 \arcsin x + C_2$$
.

4.37.
$$y(x) = C_1(x+1) + C_2 e^x$$

4.38. A differenciálegyenlet

$$y'' + \frac{2x}{x^2 + 1}y' - \frac{2}{x^2 + 1}y = 0$$

alakban írhatjuk. Mivel $y_1 = x$, a másik partikuláris megoldást $y_2 = v(x)x$ alakban keressük.

$$y'_2 = v'x + v$$

 $y''_2 = v''x + v' + v'.$

Behelyettesítve:

$$v''x + \left(2 + \frac{2x^2}{x^2 + 1}\right)v' = 0.$$

Vezessük be a v'=p jelölést. Ekkor v''=p', és a fenti egyenlet így írható:

$$p'x = -2\left(1 + \frac{x^2}{x^2 + 1}\right)p.$$

Szétválasztva a változókat:

$$\frac{p'}{p} = \left(-\frac{2}{x} - \frac{2x}{x^2 + 1}\right),$$

innen

$$\int \frac{dp}{p} = \int \left(-\frac{2}{x} - \frac{2x}{x^2 + 1} \right) dx.$$

Az integrálást elvégezve azt kapjuk, hogy

$$\ln p = -2\ln x - \ln\left(1 + x^2\right) = \ln\frac{1}{x^2(1 + x^2)}.$$

Így:

$$v' = p = \frac{1}{x^2 (1 + x^2)} = \frac{1}{x^2} - \frac{1}{1 + x^2},$$

és újabb integrálással:

$$v = \int \left(\frac{1}{x^2} - \frac{1}{1+x^2}\right) dx = -\frac{1}{x} - \arctan x.$$

A másik alapmegoldás

$$y_2 = x\left(-\frac{1}{x} - \arctan x\right) = -1 - x \arctan x.$$

Az általános megoldás:

$$y = C_1 x + C_2 (1 + x \arctan x).$$

A partikuláris megoldást keresve:

$$y(0) = C_2 = 2$$

$$y'(0) = C_1 = 1.$$

A feladat megoldása tehát:

$$y = x + 2 + 2x \arctan x.$$

4.39.
$$y(x) = 2ex^2 - e^x$$
.

4.40.

$$y(x) = \frac{1 - 3\cos x}{\sin x}.$$

4.41.
$$y(x) = 2e^{-2x} + 3(4x^2 + 1)$$
.

4.42.
$$y(x) = 3x - 2e^x$$
.

4.3. Másodrendű inhomogén lineáris DE

4.43. A homogén egyenlet általános megoldása $y = C_1 x + C_2 \ln x$ (lásd a 5.28. feladat).

Az inhomogén egyenlet egy $y_0(x)$ megoldását az állandók variálása módszerével határozzuk meg. Végigosztjuk az inhomogén egyenletet a második derivált együtthatójával:

$$y'' - \frac{1}{x(\ln x - 1)}y' + \frac{1}{x^2(\ln x - 1)}y = \ln x - 1.$$

A megoldást $y_0 = \gamma_1(x)x + \gamma_2(x) \cdot \ln x$ alakban keressük.

Az ismeretlen együtthatókra a

$$\gamma'_1 x + \gamma'_2 \ln x = 0;$$

 $\gamma'_1 + \gamma'_2 \frac{1}{x} = \ln x - 1$

egyenletrendszert nyerjük.

Cramer-szabállyal:

$$\gamma_1' = \frac{|\underline{\underline{W_1}}|}{|\underline{\underline{W}}|} = \frac{\begin{vmatrix} 0 & \ln x \\ \ln x - 1 & \frac{1}{x} \end{vmatrix}}{\begin{vmatrix} x & \ln x \\ 1 & \frac{1}{x} \end{vmatrix}} = -\frac{\ln x(\ln x - 1)}{1 - \ln x} = \ln x$$

$$\gamma_2' = \frac{|\underline{\underline{W}}_2|}{|\underline{\underline{W}}|} = \frac{\begin{vmatrix} x & 0 \\ 1 & \ln x - 1 \end{vmatrix}}{\begin{vmatrix} x & \ln x \\ 1 & \frac{1}{x} \end{vmatrix}} = \frac{x(\ln x - 1)}{1 - \ln x} = -x$$

integrálva:

$$\gamma_1 = \int \ln x dx = x(\ln x - 1); \quad \gamma_2 = \int (-x) dx = -\frac{x^2}{2}$$

Az integrálási állandót zérusnak vehetjük, hiszen egyetlen partikuláris megoldást keresünk! A partikuláris megoldás tehát:

$$y_0(x) = (x \ln x - x)x - \frac{x^2}{2} \ln x = \frac{x^2}{2} \ln x - x^2.$$

A keresett általános megoldás:

$$y(x) = C_1 x + C_2 \ln x + \frac{x^2}{2} (\ln x - 2).$$

4.44.

$$y(x) = C_1 \sin x + C_2 \sin x \cdot \ln \operatorname{tg} \frac{x}{2} + \frac{\sin x}{2} \left(\ln \operatorname{tg} \frac{x}{2} \right)^2.$$

4.45.

$$y(x) = C_1 x^2 + C_2 \ln x + x.$$

4.46.

$$y(x) = C_1\sqrt{x+1} + C_2(x+1) + (x+1)\ln(x+1) - 1.$$

4.47.

$$y(x) = C_1(x+1) + C_2e^x + \left(\frac{x^2}{2} - 1\right)e^x.$$

4.48.

$$y(x) = C_1 x + C_2 \sin x + x \cos x + \frac{x^2}{2} \sin x.$$

4.49. A differenciálegyenletet osszuk végig a második derivált együtthatójával:

$$y'' - \frac{2}{x}y' + \frac{2}{x^2}y = x\sin x$$

A homogén egyenlet egy partikuláris megoldása $y_1 = x^2$. A szokott módszerrel megtalálható a másik partikuláris megoldás $y_2 = x$. A két függvény lineárisan független.

A homogén egyenlet általános megoldása:

$$y_{hom} = C_1 x^2 + C_2 x.$$

Az inhomogén egyenlet partikuláris megoldása:

$$y_0 = \gamma_1(x)x^2 + \gamma_2(x)x$$

A $\gamma(x)$ és $\gamma_2(x)$ függvények az

$$\begin{pmatrix} x^2 & x \\ 2x & 1 \end{pmatrix} \cdot \begin{pmatrix} \gamma_1' \\ \gamma_2' \end{pmatrix} = \begin{pmatrix} 0 \\ x \sin x \end{pmatrix}$$

egyenletrendszerből számíthatók.

$$\gamma_1' = \sin x; \quad \gamma_2' = -x \sin x.$$

Integrálva

$$\gamma_1 = -\cos x; \quad \gamma_2 = x\cos x - \sin x$$

A keresett partikuláris megoldás:

$$y_0 = -x^2 \cos x + x^2 \cos x - x \sin x = -x \sin x$$

Az általános megoldás:

$$y(x) = y(x) = C_1 x_2 + C_2 x - x \sin x$$

a) Az $y\left(\frac{\pi}{2}\right)=\pi$ és $y'\left(\frac{\pi}{2}\right)=0$ kezdeti feltételeket kielégítő megoldás a

$$C_1 \frac{\pi^2}{4} + C_2 \frac{\pi}{2} = \frac{3\pi}{2}$$
$$C_1 \pi + C_2 = 1$$

egyenletrendszerből számítható:

$$C_1 = -\frac{4}{\pi}, \quad C_2 = 4$$

A keresett megoldás:

$$y = 5x - \frac{4}{\pi}x^2 - x\sin x$$

b) Az y(0) = 0 és y'(0) = 2 feltételeket kielégítő megoldás nem létezik, mert az x = 0 hely a differenciálegyenletnek szinguláris helye. (Nincs értelmezve!)

4.50.
$$y(x) = e^{2x} \left(2 - 5x + x \arcsin x + \sqrt{1 - x^2} \right)$$

4.4. Állandó-együtthatós lineáris inhomogén DE

[4.51.] A lineáris differenciálegyenlet karakterisztikus egyenletének a $\lambda_{1,2} = -1$ kétszeres gyöke. Ezért a homogén egyenlet általános megoldása:

$$y_{hom} = (C_1 + C_2 x) e^{-x}.$$

Az inhomogén lineáris differenciálegyenlet partikuláris megoldását

$$y_0(x) = (Ax + B)\sin x + (Cx + D)\cos x$$

alakban kereshetjük, ugyanis az inhomogenitást okozó függvény $x \sin x$, s ilyen esetben a megoldásban fellép az $x \cos x$ függvény is. Az x szorzó miatt viszont elsőfokú polinommal kell a trigonometrikus függvényeket szorozni. Deriváljunk:

$$y'_{0} = A \sin x + (Ax + B) \cos x + C \cos x - (Cx + D) \sin x =$$

$$= (A - D - Cx) \sin x + (C + B + Ax) \cos x$$

$$y''_{0} = -C \sin x + (A - D - Cx) \cos x + A \cos x -$$

$$- (C + B + Ax) \sin x =$$

$$= -(2C + B + Ax) \sin x + (2A - D - Cx) \cos x$$

Behelyettesítünk az inhomogén differenciálegyenletbe:

$$- (2C + B + Ax)\sin x + (2A - D - Cx)\cos x + + (2A - 2D - 2Cx)\sin x + (2C + 2B + 2Ax)\cos x + + (Ax + B)\sin x + (Cx + D)\cos x \equiv x\sin x.$$

Együttható összehasonlítással a következő egyenleteket kapjuk:

$$x\sin x$$
 szorzóiból : $-A-2C+A=1$ $x\cos x$ szorzóiból : $-C+2A+C=0$ $\sin x$ szorzóiból : $-2C-B+2A-2D+B=0$ $\cos x$ szorzóiból : $2A-D+2C+2B+D=0$

Az egyenletrendszer megoldása:

$$A = 0;$$
 $B = \frac{1}{2};$ $C = -\frac{1}{2};$ $D = \frac{1}{2}.$

Az inhomogén egyenlet partikuláris megoldása:

$$y_0 = \frac{1}{2}\sin x + \frac{1}{2}(1-x)\cos x$$

A differenciálegyenlet általános megoldása:

$$y(x) = (C_1 + C_2 x) e^{-x} + \frac{1}{2} \sin x + \frac{1}{2} (1 - x) \cos x.$$

4.52. A differenciálegyenlet karakterisztikus egyenlete:

$$\lambda^4 - 4\lambda^2 + 3 = 0$$

A gyökök:

$$\lambda_1 = \sqrt{3}$$
 $\lambda_2 = -\sqrt{3}$

 $\lambda_3 = 1$, $\lambda_4 = -1$.

A homogén egyenlet általános megoldása:

$$y_{hom} = C_1 e^x + C_2 e^{-x} + C_3 e^{\sqrt{3}x} + C_4 e^{-\sqrt{3}x},$$
 illetve
$$y_{hom} = C_1 \operatorname{ch} x + C_2 \operatorname{sh} x + C_3 \operatorname{sh} \sqrt{3}x + C_4 \operatorname{ch} \sqrt{3}x - \sqrt{3}x.$$

Az inhomogén egyenlet partikuláris megoldása $y_0 = Ae^{\frac{x}{2}}$ alakú. Differenciálva és az egyenletbe behelyettesítve:

$$\frac{1}{16}Ae^{\frac{x}{2}} - 4\frac{1}{4}Ae^{\frac{x}{2}} + 3Ae^{\frac{x}{2}} = 3e^{\frac{x}{2}}.$$

Innen: $A = \frac{16}{11}$. Az inhomogén lineáris differenciálegyenlet általános megoldása:

$$y(x) = C_1 e^x + C_2 e^{-x} + C_3 e^{\sqrt{3}x} + C_4 e^{-\sqrt{3}x} + \frac{16}{11} e^{\frac{x}{2}},$$

vagy

$$y(x) = C_1 \operatorname{ch} x + C_2 \operatorname{sh} x + C_3 \operatorname{ch} \sqrt{3}x + C_4 \operatorname{sh} \sqrt{3}x + \frac{16}{11}e^{\frac{x}{2}}.$$

4.53. Az $y''' + 3y'' + 3x + y = e^{-x} + \cos x$ inhomogén differenciálegyenlethez tartozó karakterisztikus egyenlet:

$$\lambda^{3} + 3\lambda^{2} + 3\lambda + 1 = (\lambda + 1)^{3} = 0.$$

A $\lambda=-1$ háromszoros gyök, így a homogén egyenlet általános megoldása:

$$y_{hom} = (C_1 + C_2 x + C_3 x^2) e^{-x}.$$

Az inhomogén egyenlet partikuláris megoldását két részből tesszük össze.

Legyen $y_1(x)$ az

$$y''' + 3y'' + 3y' + y = e^{-x}$$

és $y_2(x)$ az

$$y'' + 3y'' + 3y' + y = \cos x$$

inhomogén lineáris differenciálegyenlet partikuláris megoldása. Ekkor:

$$y_0(x) = y_1(x) + y_2(x)$$
.

Az $y_1(x)$ függvény meghatározásánál figyelembe kell vennünk, hogy a $\lambda = -1$ a homogén egyenlet karakterisztikus egyenletének háromszoros gyöke, s így háromszoros rezonancia van. Ezért a megoldást

$$y_1(x) = Ax^3 e^{-x}$$

alakban keressük. Deriválva

$$y_1' = (3Ax^2 - Ax^3) e^{-x}$$

$$y_1'' = (6Ax - 3Ax^2 - 3Ax^2 + Ax^3) e^{-x}$$

$$y_1''' = (6A - 12Ax + 3Ax^2 - 6Ax + 6Ax^2 - Ax^3) e^{-x},$$

és behelyettesítve:

$$Ae^{-x}\left(-x^3 + 9x^2 - 18Ax + 6A\right) + Ae^{-x}\left(3x^3 - 18x^2 + 18Ax\right) + Ae^{-x}\left(-3x^3 + 9x^2\right) + Ae^{-x}x^3 = e^{-x}.$$

Összevonva $6Ae^{-x}=e^{-x}$, innen $A=\frac{1}{6}$, tehát

$$y_1(x) = \frac{1}{6}x^3e^{-x}.$$

Az y_2 függvényt $y_2(x) = B \cos x + D \sin x$ alakban kereshetjük. Ennek deriváltjai:

$$y_2' = -B\sin x + D\cos x$$

$$y_2'' = -B\cos x - D\sin x$$

$$y_2''' = B\sin x - D\cos x.$$

Innen

$$B\sin x - D\cos x + 3(-B\cos x - D\sin x) + 3(-B\sin x + D\cos x) +$$

$$+D\sin x \equiv \cos x.$$

Együttható összehasonlítással:

$$\sin x \text{ szorzóiból} : B - 3D - 3B + D = 0$$

$$\cos x \text{ szorzóiból} : -D - 3B + 3D + B = 1.$$

Innen
$$B = -\frac{1}{4}$$
, $D = \frac{1}{4}$, tehát

$$y_2(x) = -\frac{1}{4}\cos x + \frac{1}{4}\sin x.$$

Az inhomogén lineáris differenciálegyenlet általános megoldása:

$$y(x) = (C_1 + C_2 x + C_3 x^2) e^{-x} + \frac{1}{6} x e^{-x} - \frac{1}{4} \cos x + \frac{1}{4} \sin x.$$

4.54. $y''' + 3y'' + 3y' + y = e^{-x}\cos x$ inhomogén lineáris differenciálegyenlethez tartozó homogén lineáris differenciálegyenletet már az előző (5.53.) feladatban megoldottuk:

$$y_{hom} = (C_1 + C_2 x + C_3 x^2) e^{-x}.$$

Az inhomogén egyenlet partikuláris megoldását

$$y_0 = (A\cos x + B\sin x)e^{-x}$$

alakban keressük. (Figyeljük meg, hogy itt nincs rezonancia!)

$$y'_{0} = (-A\sin x + B\cos x - A\cos x - B\sin x)e^{-x} =$$

$$= [(-A - B)\sin x + (B - A)\cos x]e^{-x}.$$

$$y''_{0} = e^{-x}[(-A - B)\cos x - (B - A)\sin x + (A + B)\sin x +$$

$$+ (A - B)\cos x] = (-2B\cos x + 2A\sin x)e^{-x}.$$

$$y'''_{0} = [2B\sin x + 2A\cos x + 2B\cos x - 2A\sin x]e^{-x} =$$

$$= [(2B - 2A)\sin x + (2A + 2B)\cos x]e^{-x}.$$

Behelyettesítünk a differenciálegyenletbe:

$$y_0''' = e^{-x}[(2B - 2A)\sin x + (2A + 2B)\cos x]$$

$$3y_0'' = e^{-x}[6A\sin x - 6B\cos x]$$

$$3y_0' = e^{-x}[(-3A - 3B)\sin x + (3B - 3A)\cos x]$$

$$y_0 = e^{-x}[B\sin x + A\cos x]$$

Összegezve:

$$e^{-x}\cos x \equiv e^{-x}[A\sin x + (-B)\cos x]$$

Együttható összehasonlítással:

$$A = 0; \quad B = -1.$$

A partikuláris megoldás: $y_0(x) = -e^{-x} \sin x$.

A keresett általános megoldás:

$$y(x) = (C_1 + C_2 x + C_3 x^2 - \sin x) e^{-x}.$$

4.55. Az 5.1. feladatban láttuk, hogy homogén egyenlet általános megoldása:

$$y_{hom} = C_1 e^x + C_2 e^{-x},$$

mely ilyen alakban is írható

$$y_{hom} = c_1 \operatorname{ch} x + c_2 \operatorname{sh} x.$$

Mivel a differenciálegyenlet jobboldalán - egy polinom szorzótól eltekintve - a homogén differenciálegyenlet partikuláris megoldása áll, rezonancia van. Ezért az inhomogén egyenlet megoldását ilyen alakban keressük:

$$y_0 = x(Ax + B)e^x = (Ax^2 + Bx)e^x$$
.

Deriválva:

$$y'_0 = (Ax^2 + Bx + 2Ax + B) e^x$$

 $y''_0 = (Ax^2 + Bx + 2Ax + B + 2Ax + B + 2A) e^x$

Behelyettesítve az egyenletbe azt kapjuk, hogy

$$(2x+3)e^x = (4Ax + 2A + 2B)e^x$$

Az együtthatókat összehasonlítva:

$$4A = 2;$$
 $2A + 2B = 3,$ azaz $A = \frac{1}{2};$ $B = 1.$

Így:

$$y_0(x) = \left(\frac{1}{2}x^2 + x\right)e^x.$$

A keresett általános megoldás:

$$y(x) = \left(C_1 + \frac{1}{2}x^2 + x\right)e^x + C_2e^{-x}.$$

4.56. Az 5.2. feladatban láttuk, hogy a homogén egyenlet általános megoldása:

$$y_{hom} = C_1 \cos x + C_2 \sin x.$$

A rezonancia miatt az inhomogén egyenlet partikuláris megoldását

$$y_0(x) = x(A\cos x + B\sin x)$$

alakban kell keresnünk. Deriváljunk:

$$y'_0 = -Ax\sin x + Bx\cos x + A\cos x + B\sin x$$

$$y''_0 = -Ax\cos x - Bx\sin x - A\sin x + B\cos x - A\sin x +$$

$$+ B\cos x$$

Behelyettesítünk:

$$y'' = -Ax\cos x - Bx\sin x - 2A\sin x + 2B\cos x$$
$$y = Ax\cos x + Bx\sin x$$

Összeadva:

$$-4\cos x \equiv -2A\sin x + 2B\cos x.$$

Innen: A = 0, 2B = -4, tehát B = -2. Vagyis

$$y_0(x) = -2x\sin x.$$

A feladat megoldása:

$$y(x) = C_1 \cos x + (C_2 - 2x) \sin x.$$

4.57.

$$y(x) = \left(C_1 + C_2 x - \frac{4}{3}x^3\right)e^x + Ce^{3x}.$$

4.58.

$$y(x) = C_1 e^{3x} + C_2 e^{-4x} - \frac{11}{120} \operatorname{sh} x - \frac{1}{120} \operatorname{ch} x.$$

4.59.
$$y(x) = C_1 e^{2x} + C_2 e^{-x} + 2e^{3x}$$
.

4.60.

$$y(x) = C_1 e^{3x} + C_2 e^{-x} - \frac{1}{15} \sin 3x - \frac{2}{15} \cos 3x.$$

4.61.
$$y(x) = C_1 e^{4x} + C_2 e^{-x} - \frac{1}{5} x e^{-x}$$
.

4.62.

$$y(x) = C_1 + C_2 e^{2x} + C_3 e^{-2x} + \frac{1}{32} e^{2x} \left(2x^2 - 3x\right) + \frac{1}{5} \cos x - \frac{1}{12} x^3 - \frac{1}{8} x.$$

4.63.

$$y(x) = C_1 e^{4x} + C_2 e^{-3x} - \frac{1}{3}x^2 + \frac{5}{9}x + \frac{4}{27}.$$

4.64.
$$y(x) = C_1 e^{4x} + C_2 e^{-x} - \frac{1}{6} e^{2x} - \frac{5}{17} \sin x + \frac{3}{17} \cos x.$$

4.65.
$$y(x) = C_1 + e^{-x} \left(C_2 + C_3 x \right) + x - \frac{1}{2} x^2 e^{-x}.$$

4.66.
$$y(x) = C_1 \cos 2x + C_2 \sin 2x + e^{-x} \left(C_3 + C_4 x \right) + \frac{1}{6} \sin x + 2e^x.$$

4.67.
$$y(x) = C_1 e^{-x} + C_2 \cos x + C_3 \sin x + \frac{1}{8} (2x - 3)e^x.$$

4.68.
$$y(x) = C_1 e^{2x} + C_2 e^x - \frac{8}{5} e^x \left(\cos\frac{x}{2} + 2\sin\frac{x}{2}\right).$$

4.69.
$$y(x) = e^x \left(C_1 + C_2 x + C_3 x^2 + C_4 x^3 \right) + \frac{1}{120} \left(x^5 + 5x^4 \right) e^x.$$

4.70.
$$y(x) = e^{3x} (C_1 + C_2 x) + \frac{1}{x}.$$

4.71.
$$y(x) = C_1 \cos x + C_2 \sin x - \cos x \ln \operatorname{tg} \left(\frac{\pi}{4} + \frac{x}{2} \right).$$

4.72.
$$y(x) = C_1 \cos x + C_2 \sin x + \frac{1}{2} x \sin x - \frac{1}{2} \sin^2 x \cos x.$$

4.73.
$$y(x) = C_1 + C_2 e^{-\frac{5}{2}x} + \left(-5x - \frac{16}{29}\right)\cos x + \left(-2x + \frac{185}{29}\right)\sin x.$$

4.74.
$$y(x) = C_1 e^x + C_2 e^{-5x} - \frac{1}{5}.$$

4.75.
$$y(x) = C_1 e^{3x} + C_2 e^{-3x} + \frac{1}{2} x \operatorname{ch} 3x = \left(C_1 + \frac{x}{2}\right) \operatorname{ch} 3x + C_2 \operatorname{sh} 3x.$$

4.76.

$$y(x) = C_1 e^x + C_2 e^{-x} + C_3 e^{2x} + \frac{1}{6} x e^{2x} - \frac{1}{24} e^{-2x} =$$

$$= C_1 \operatorname{ch} x + C_2 \operatorname{sh} x + C_3 e^{2x} + \frac{1}{6} x e^{2x} - \frac{1}{24} e^{-2x}.$$

4.77.

$$y(x) = (1+x)e^{-\frac{3}{2}x} + 2e^{-\frac{5}{2}x}.$$

4.78.

$$y(x) = e^x(0.16\cos 3x + 0.28\sin 3x) + x^2 + 2.2x + 0.84$$

4.79.

$$y(x) = e^x + x^2.$$

4.80.

$$y(x) = e^{2x} + e^x (1 - x - x^2).$$

4.81.

$$y(x) = \frac{1}{3}\sin 2x - \frac{1}{3}\sin x - \cos x.$$

4.5. Állandó-együtthatós lineáris inhomogén DE és Laplace transzformáció

4.82. A Laplace transzformáltat jelölje $\mathcal{L}(y,s) = Y(s)$. A transzformált egyenlet:

$$s(sY(s) - 1) - 1 - (sY(s) - 1) = frac2s - \frac{2}{s^2}.$$

Rendezés után

$$Y(s) = \frac{s^3 + 2s - 2}{s^3(s - 1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s - 1}.$$

Az állandók meghatározásához formálisan közös nevezőre hozunk, és együttható összehasonlítással keressük a megoldást:

$$\frac{s^3 + 2s - 2}{s^3(s - 1)} \equiv \frac{As^2(s - 1) + Bs(s - 1) + C(s - 1) + Ds^3}{s^3(s - 1)}$$

$$s^3$$
 szorzója : $A + D = 1$
 s^2 szorzója : $-A + B = 0$
 s szorzója : $-B + C = 2$
 s^0 szorzója : $-C = -2$

Az egyenletrendszer megoldása: $A=B=0; \quad C=2; \quad D=1.$

Így

$$Y = \frac{2}{s^3} + \frac{1}{s-1}.$$

Vissza transzformálva a keresett megoldás:

$$y(x) = x^2 + e^x.$$

4.83.

$$y(x) = \left(\frac{19}{25} - \frac{x}{5}\right)e^{-x} + \frac{31}{25}e^{4x}.$$

4.84.

$$y'' - 4y' + 4y = 8\sin 2x;$$
 $y(0) = 2,$ $y'(0) = 4.$

A transzformált egyenlet, ha L(y, s) = Y:

$$s[sY - 2] - 4 - 4[sY - 2] + 4Y = \frac{16}{s^2 + 4}.$$

Rendezés után:

$$Y = \frac{2s^3 - 4s^2 + 8s}{(s-2)^2(s^2+4)} = \frac{A}{s-2} + \frac{B}{(s-2)^2} + \frac{Cs+D}{s^2+4}$$

Az együttható összehasonlítás után:

$$A = 1, \quad B = 2, \quad C = 1, \quad D = 0.$$

Így:

$$Y = \frac{1}{s-2} + \frac{2}{(s-2)^2} + \frac{s}{s^2 + 4}.$$

Vissza transzformálva:

$$y(x) = e^{2x} + 2xe^{2x} + \cos 2x$$

4.85.

$$y(x) = \frac{1}{169} \left[(179 + 286x)e^{-x} - 10\cos 3x + 24\sin 3x \right].$$

4.86.
$$y(x) = \left(\frac{4}{25} + \frac{4}{5}x\right)e^{-2x} - \frac{4}{25}\cos 4x - \frac{3}{25}\sin 4x.$$

4.87.
$$y(x) = (2-x)e^x + x^3e^x.$$

4.88.
$$y(x) = \frac{1}{28}e^{3x} - \frac{1}{12}e^{-x} + \frac{1}{21}e^{-4x}$$

4.89.
$$y(x) = \frac{1}{9} \left(e^{-4x} - e^{-x} \right) + \frac{1}{3} x e^{-x}.$$

4.90.
$$y(x) = \frac{3}{16} - \frac{x}{4} - \frac{1}{7}e^{-3x} - \frac{5}{112}e^{4x}$$