第三章 勾股数组与单位圆

圆 $x^2 + y^2 = 1$ 上的坐标是有理数的点都可由公式

$$(x,y)=(rac{1-m^2}{1+m^2},rac{2m}{1+m^2})$$

得到,其中m取有理数值。

如果将有理数m写成分数v/u,则公式变成

$$(x,y)=(rac{u^2-v^2}{u^2+v^2},rac{2uv}{u^2+v^2})$$

消去分母就给出勾股数组

$$(a,b,c)=(u^2-v^2,2uv,u^2+v^2)$$

习题

• 3.1 正如我们已看到的,所有勾股数组(a,b,c)(其中b为偶数)有如下形式:

$$(a,b,c)=(u^2-v^2,2uv,u^2+v^2)($$
其中 u , v 为整数)

- (a) 如果u与v有公因数,解释(a,b,c)不是本原勾股数组的原因。
- *(b)* 求出没有公因数的整数u>v>0,使得勾股数组 $(u^2-v^2,2uv,u^2+v^2)$ 不是本原的。
- (c) 制作一个由满足 $1 \le v < u \le 10$ 的所有u和v值得到的勾股数组表。
- (d) 应用(c)表求出使勾股数组 $(u^2-v^2,2uv,u^2+v^2)$ 是本原的充分条件。

	•	(e) 证明在(d)中你给出的条件的确是充分的。													
		(a)))	usv	松因	数ki	ダU=kx,	ν: ky .;	54 () L	12. V' =	1 (x2-y1.	. Zuv =	21' xy. u²	ŧν, =	h (x1+y)	
		Pl a	1.b.C	有個	数1,2,	根据本际	勺股数俎	的议	, d.b.c	次有15/10/	刘州公园	数,好以0	ر عرط،	不足本爪	
			数囚												
		b)全U=5.V=1.n²·v=8,2uv=6,u²+v²=10,构a)函数2,此时,伺服数值(u²-n²,2ux,u²+v²)不艰本													
		历的	}.												
		٠٠ ٧/	2		3	4	2		6	7	8	9	l	•	
			3,4	, 5-) (1	\$ 16.10)	11518,17)	124, 10,2	מו נוי	עניניי	L48, 17,50)	(63,16,65)	(80.18,82)	199,1	0, 101)	
		2		C	(دا، ۱۷، ۶	(11, 16,20)	(21,20,	m) 62	, z4, to)	145,26,53)	(60,32,68)	(17,36,85)	(96,4	to,(ot)	
		3				(1,24,4)) (16, 30,	וג) נדנ	136,42)	(40,42,58	122,48,13	L72,51, 90)	(91,6	00,109)	
		4					(9, 40,	41) (20	0,48,52)	133.56,65) (48,64,80) (65,72,47)	(84,8	10, [16)	
		5						LII	1,60, 61)	(24,70,74) (39,80,89 ⁾	(56,90,106)	L75, 1	00,(125)	
		6								(13,84,65) (18, 9 6, 100,) (45, lo8 , [17 <mark>]</mark>	(64, 1	20,136)	
		7									(15,112,113) (32,126,130)	121,1	40,149)	
		8										(17, 144, 145)	(36, 1	60,164)	
		9											119,1	80, 181)	
								-	•		始加				
		(e) +n,	RU和	咖啡	一个	\$ U= 2x+	1. v=29	+1 . R.	1 n, - Ns	= 4x²+tx -4	·y'-4y , 20	1y = 2(2x+1)(ly +1),	
											戏外小				
		₹ %	果 u木	哪	民偶数	戏U和	し有公园	牧,只	小权推	is cas,此间	村的勾础	如限桐	的。		
•	3.21	使用过	点(1,	1)的	直线系	来描述 圆	$1x^2 + y^2$	$2^{2} = 2$	上所有	坐标是	有理数的	点。			
	321	及设备	孤任	意有亚	数m,	观净过	としいり	斜郊	自加约	直戊L.孟	LLL由入	呈しりり	= m (x -1)作出	
	1	导列方程	TA {	X²+	y1 = 2	•	→ √	_ I \	m¹	- Lm-1					
		•		Ŋ=1	nlx	-1)+l	→ 1	= 12	6 <u> </u>	+ m 2			•		
		4x约1	有代	人直代	山约	5程 4=1	n (X- 1) +	1 = 1	m (mi	2n-1-1-n	1) + = - M- , -	-2m2-2m+	<u> </u>	m2-2m+	
		林 对	ー ・ · · 毎 - イク	加勒	m紹	以赤绍 x	(²+ u² = 2 ti	わける	i Paka	m2 -2	<u>m-1</u> , <u>-1</u>	m2.2m+)		7	
	335	≵∇₩	は ₁ 2	$-u^2$	_ 1	- 坐标是	:有理数的	的占 的	カシボ	· 1	,	↑ M •			
											直伐L直	はしわる	4-21 · 1	พ -MI v_ป	
											リスト、当	14 <u>11</u> 11	144	J- 11/19	
		7年,代	710	1211	1	y -1	⇒ x=1	*	M1 -1	_					
									_						
		₹ X MJ1	<u>夕</u> 八	<u> / 月</u> に チョル	t Lity	17年2月	= M(X-1)	٠ . ٠ .	M ² -)		hh / M³	†	.m)		
						•				<u>-</u>	15 (m,		•		
•							-	•			[线与曲约	线恰好在	另一	点相	
	交,	求第三	个点	。你	能解	释为什么	公第三个	`点的	坐标员	是有理数	吗?				

沙 过这两点的直线尼 y = - 37(x-1) つ 假设我们取任意有理数m,观察过点(1,3)科率为m的直线L,直层1.由方程Lyam(A-1)-3 1年加二·37代76得 X=1,-2, 433 户们分第三个总的坐标是(433), 4765), 是有理数。 • 3.5 在第一章中介绍了既是平方数又是三角数的自然数,并且在习题1.1中对它们进行了 研究。 • (a) 证明每个平方三角数都可用方程 $x^2 - 2y^2 = 1$ 的正整数解来描述 • (b) 点(1,0)在曲线 $x^2 - 2y^2 = 1$ 上。设直线L经过点(1,0)且斜率为m。求出L与曲线 的另一个交点。 • *(c)* 取 $m=\frac{v}{u}$,其中 $u^2-2v^2=1$ 。证明*(b)*中求出的那个交点的坐标是整数,进而证 明你找到了 $x^2 - 2y^2 = 1$ 的一个正整数解。 通过那些解找出另外一些平方三角数的例子。 • (e) 证明这个过程会产生无穷多个不同的平方三角数 (a) 因为形三角数满水 m= 士(n+n), 2p2m=(n+1)2- 士 两边同时乘以子得 4 Ln++12-8m2=1 名x= 2(n+ 1)=2n+1, y=2m 即了 4) 将m= ~ 代入得另一个交点为(-2v-u2,-2uv).同时(2v+u2,2vv)是水-2y2=1的方 正整教新 (1) 利用(中的化式得角)有 (3,2),(17,12),(571.408)

(C) 根据d 的计算过程 19年次的价价为U,V主新得到一个更大的阶 互刺爱整数剂,因此会产

ルオ n=1,8,288, m=1,6,204

平方三尺数有36,41016。

生无穷多行不同的平方三角数、