Theory of Computation Coursework – <u>ACSF375</u>

Questions answered: A1 and B1

A1) a.

Theory of Computation Co	ice and	0/4	iia Wazali	nanile	ACCES 15
3		ONIC	HAMCHM	IVIACIC-	TICSFOID
Al) a. $ x = [i(3)/2] = .5 = $ 2. $Y = [x(1) + 3] \mod 5 = 4$	X= 1	ID:	ACS F	375	
3 Z = [1(3)/5] + 1 = 1.6 = 1	7=1	ć= 3	j=7	K=5	
4, U= [; (7) /5]+3=4,4=4	4=4			'	
	V=2 W=3				
είνισης	Wit		_		
50V a					
q. V	2)				
all	Ĵε				
£ 3	+)				
	<i>'</i>				

A1) b.

b.) Create our transition table							
state							
State	a	6	C	E	Initial	volume =	0
0	8	٤	٤	2,3	Accept	state = 1	
	2	٤	٤	٤			ons from start:
2	٤	1	3	4		72	
3	1	4	3	€	0	72-74	
4	٤	ع	1,	3 &		73	
Create our new transition table:							
Type of sta	nte 1	Vew st	nte	٥	Ь	c	
Start		80,2,3,	43	£13	21,43	81,33	
Accept		213		92,43	0	0	
Accept		31,43		22,43	0	£1,33	
Accept		₹1,33		\$1,2,43	2.43	0	1.
		22,43		0	813	\$1,33	
Accept		21,2,43		8,2,43	213	21133	
		£ 43°		0	0	81,33	
Empty .		903		19	0	0	
	'		-		-		

Renaming our states

f					
		_		HAMRI	AH MALIK
Type of st	nte	new s	tale	tenan	re
Start		20,2,3	143	253 {6}	
Accept		213		€63	
Accept		81,43		{7}	
Accept		{1,33		₹83	
		22,43		293	
Accept		21,2,	43	210	3
		243		211	G
Emphy		२०३		515	3
					1
Type of state	N	ew State	-	<u>b</u>	c _
start		15}	463	673	283
Accept		863	ર ૧૩	C127	2123
Accept		873	893		883
Accept		283	210		£12>
		893	£125		883
Accept		8103	દ ૧૩		
		2113	2123		
EMPLY		3 123	5123	1123	<123

A1) c.

Creating a new accept state for my initial diagram.

My new accept state from my initial diagram in part a is now 6 instead of 1. Note a new start state is not needed as there are no incoming transitions from node 0.

Bypass State 2

I now bypass State 2 and label the incoming transitions and outgoing transitions. This gives a total of 2x2 transitions which means 4 new transitions – these are coloured in red in the diagram below.

I have now chosen to bypass State 3. This also has four new transitions (2 in, 2 out) and labelled below in red.

Note: I have applied the sum of edges to transitions where necessary.

Bypassing State 4.

Bypass St	nte 1
Bypars Sta IW ((EUb)Cb)*	OVT
)(cb)*(cVca))V(aVb))((ab)Va(cb)*Va)*
Final)(cb)*(cVca)) V (aVb)(Cab) Va(cb)*cVa)*
4 (((eVb	(cb) (clca)) V (alb) (ab) Va(cb) cla)

Our final regular expression from this diagram using Kleenes Theorem is:

 $(((\emptyset Ub)(cb)*(cUca))U(aUb))((ab)Ua(cb)*cUa)*$

B1) a.

HAMZAH MACIK -ACSF375
B()a) lifirst introduce our new start production rule.
· SO > S
S7BDE JaE b
- B7 BC / ε
· (¬ b
0 D 7 SC E
0 E 7 B D 1 b
2. Now we must identify the productions that lead to rull and
remove these null productions.
•
0 B → E BC C
0 D 7 8 SC C
0 E 7 BD B D E
· E > BDE BD BE DE B D E a E
0 5078 8
Now, we remove our null paths:
0 50 -75
OS > BDE aE b BD BE DE B D E a
0 B 7 BC 1 C
6 C 7 b
0 D-7 SC C
6 E7BD 1 6 B D

3. Remove unit productions -> first ident	ify these!
· SO -> S	
OSTBDE	
0B7C	1
o D⇒ C	
O E P B D	
now these valves are replaced.	
· 80 > BDE aE b BD BE DE BC SC a	
· S > BDE a E b BD B E DE BC SC a	
· B > BC 16	
0 () 6	
D 7SCIP	
· E -> BD b BC SC	
	Y III

HAMAH MALIK - ACSF 375
4. We have to remove the productions containing 2 + symbols.
These are:
· SO 7 BDE
· 5 7 BDE
We introduce a new production rule for this case which we call
(4)
5. 77a
This transforms our CFG to the following:
CO Day 1 = 1 1 DD D = 1 = 1 = 1
· SO > BX QE b BD BE DE BC SC a
· S > BX a E I b BD B E DE BC SC a
, B7BC/b
. (76
· D7sclb
· F>BDI BIBCISC
-, 4 -> DE => this is our new production rule
/ - / 1/10 10 01 10 10 10 10 10 10 10 10 10 10 1

5. Lastly we remove our mixed productions and replace emptys removed.
The only mixed productions are:
· SD 7 a E
o S7 aE > both mix terminals and non-ferminals
To fix this, we introduce a new production rule for the ERMINAL symbol.
a 7 7 A
We also add an empty (E) to SO to replace the emptys removed. CNF OF OUR CFG:
CNF OF OUR CFG:
SO > BX ZEIBD BE DE BCISCIA blee
S -> BX 1ZE BD BE DEBCISCIALD
B 7 BC16
C7 b
D-> SC/b
E> BD 16 BC ISC
Y-> DE
Z -> a

B1) b.

(SO, E, E), (F, SO) (F, E, SO), (F, BX) (F, E, SO), (F, BD) (F, E, SO), (F, BE) (F, E, SO), (F, BE) (F, E, SO), (F, BC) (F, E, S), (F, BE) (F, E, S), (F, BC) (F, E, S), (F, BC) (F, E, S), (F, BC)	HAMRAH MALIK-ACSF373 (f, \(\xi\), (f, D\) (f, \(\xi\), (f, \(\alpha\)) (f, \(\alpha\), f, \(\xi\)) (f, \(\beta\), f, \(\xi\)
$(f, \xi, \xi), (f, b)$ $(f, \xi, B), (f, BC)$ $(f, \xi, B), (f, b)$ $(f, \xi, C), (f, b)$ $(f, \xi, D), (f, SC)$ $(f, \xi, E), (f, B)$ $(f, \xi, E), (f, b)$ $(f, \xi, E), (f, b)$ $(f, \xi, E), (f, SC)$	

B1) c.

B1) d.

	-	
Current State	Input Tape	Stack
SO	Input Tape bbabb	Stack
F	babb	80
F	bbabb	B4
F	babb	ВСЧ
f.	babb	b CY
F	babb	6C4 C4
£	bbabb	64
F	bbabb	4
<u> </u>	bbabb	
F	bbabb	DE SCE
f	66966	aCE
F	bbabb	CE
F	bbabb	bE
- f	bhab b	CE bE E
F	bloub b	6
F	bbabb_	E