Exercice 1.

Soit la fonction f définie sur [-1; 2] par $f(x) = -2x^3 + x$.

- 1. Justifier que f est continue sur [-1; 2].
- 2. Justifier que l'équation f(x) = -7 a au moins une solution dans cet intervalle.

Exercice 2.

Soit une fonction f définie et continue sur $\mathbb R$ dont on donne ci-après le tableau de variation :

- 1. Démontrer que l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $]-\infty;-5]$.
- 2. Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[-5; +\infty[$.
- 3. En déduire le tableau de signes de f(x) sur \mathbb{R} .

Exercice 3.

Soit la fonction f définie sur [-1; 1] par $f(x) = (x+2)e^{x-1} - 1$. On admet que l'équation f(x) = 0 a une solution unique α dans [-1; 1]. Déterminer un encadrement de α à 10^{-1} près puis la valeur approchée de α à 10^{-1} près.

Exercice 1.

Soit la fonction f définie sur [-1; 2] par $f(x) = -2x^3 + x$.

- 1. Justifier que f est continue sur [-1; 2].
- 2. Justifier que l'équation f(x) = -7 a au moins une solution dans cet intervalle.

Exercice 2.

Soit une fonction f définie et continue sur $\mathbb R$ dont on donne ci-après le tableau de variation :

- 1. Démontrer que l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $]-\infty;-5]$.
- 2. Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[-5; +\infty[$.
- 3. En déduire le tableau de signes de f(x) sur \mathbb{R} .

Exercice 3.

Soit la fonction f définie sur [-1; 1] par $f(x) = (x+2)e^{x-1} - 1$. On admet que l'équation f(x) = 0 a une solution unique α dans [-1; 1]. Déterminer un encadrement de α à 10^{-1} près puis la valeur approchée de α à 10^{-1} près.