A.Belcaid

Université Euro Méditerranéenne de Fès

December 1, 2020

Un **groupe** (G, *) est un ensemble G muni d'une **opération** *(dite loi de composition) vérifiant les propriétés suivantes:

Si on plus, l'opération * vérifie:

$$\forall x, y \in G \quad x * y = y * x \tag{1}$$

On dit que le groupe G est abélien (commutatif).

<u>A.Belcaid</u> 2/18

Un groupe (G, *) est un ensemble G muni d'une opération * (dite loi de composition) vérifiant les propriétés suivantes:

1 Loi Interne: $\forall x, y \in G$, $x * y \in G$.

Si on plus, l'opération * vérifie:

$$\forall x, y \in G \quad x * y = y * x \tag{1}$$

On dit que le groupe G est abélien (commutatif).

Un groupe (G, *) est un ensemble G muni d'une opération * (dite loi de composition) vérifiant les propriétés suivantes:

- **1 Loi Interne**: $\forall x, y \in G$, $x * y \in G$.
- **2** Associativité: $\forall x, y, z \in G \quad (x * y) * z = x * (y * z).$

Si on plus, l'opération * vérifie:

$$\forall x, y \in G \quad x * y = y * x \tag{1}$$

On dit que le groupe G est abélien (commutatif).

Un groupe (G, *) est un ensemble G muni d'une opération * (dite loi de composition) vérifiant les propriétés suivantes:

- **1** Loi Interne: $\forall x, y \in G$, $x * y \in G$.
- **2** Associativité: $\forall x, y, z \in G \quad (x * y) * z = x * (y * z).$
- **3** Elément neutre: $\exists e \in G \text{ tel que} \forall x \in G \quad x * e = e * x = x$

Si on plus, l'opération * vérifie:

$$\forall x, y \in G \quad x * y = y * x \tag{1}$$

On dit que le groupe G est abélien (commutatif).

Un groupe (G, *) est un ensemble G muni d'une opération * (dite loi de composition) vérifiant les propriétés suivantes:

- **1 Loi Interne**: $\forall x, y \in G$, $x * y \in G$.
- **2 Associativité**: $\forall x, y, z \in G \quad (x * y) * z = x * (y * z)$.
- **3** Elément neutre: $\exists e \in G \text{ tel que} \forall x \in G \quad x * e = e * x = x$
- **Solution Elément inverse**: $\forall x \in G \ \exists x' \in G \ \text{tel que} \ x \ x' = x' * x = e$

Si on plus, l'opération * vérifie:

$$\forall x, y \in G \quad x * y = y * x \tag{1}$$

On dit que le groupe G est abélien (commutatif).

Unicité Elément neutre

L'élément neutre est unique.

Supposons qu'on possède deux éléments uniques e_1 et e_2 dans $(\mathsf{G},*).$

$$\begin{cases}
e_1 * e_2 = e_1 \\
e_1 * e_2 = e_2
\end{cases}$$
(2)

<u>A.Belcaid</u> 3/18

Unicité Elément neutre

L'élément neutre est unique.

Supposons qu'on possède deux éléments uniques e_1 et e_2 dans (G, *).

$$\begin{cases}
e_1 * e_2 = e_1 \\
e_1 * e_2 = e_2
\end{cases}$$
(2)

Unicité Inverse

De même, on prouve que l'inverse d'un élément x est unique. Supposons que pour un $x \in G$, on possède deux inverses x_1 et x_2 . alors on peut évaluer l'expression:

$$x_1 * x * x_2 = \begin{cases} (x_1 * x) * x_2 = e * x_2 = x_2 \\ x_1 * (x * x_2) = x_1 * e = x_1 \end{cases}$$
 (3)

Exemples classiques

Mini Exercices

- Vérifier que les ensembles muni des opérations suivantes sont des groupes:
 - \mathbb{Q} (\mathbb{Q} , \times)

Justifier pourquoi les ensembles suivants ne sont pas des groupes:

- \bullet (\mathbb{Z}, \times)
- ② (N, +)

Pour un groupe (G,*) et un élément $x \in G$, on peut définir l'opération x * x par x^2 . Plus généralement:

$$x^{n} = \begin{cases} e & \text{si} & n = 0\\ \underbrace{x * x \dots * x}_{n \text{ fois}} & \text{pour} & n > 0 \end{cases}$$
 (4)

On possède alors les propriétés suivantes:

<u>A.Belcaid</u> 5/18

Pour un groupe (G,*) et un élément $x \in G$, on peut définir l'opération x * x par x^2 . Plus généralement:

$$x^{n} = \begin{cases} e & \text{si} & n = 0\\ \underbrace{x * x \dots * x}_{n \text{ fois}} & \text{pour} & n > 0 \end{cases}$$
 (4)

On possède alors les propriétés suivantes:

<u>A.Belcaid</u> 5/18

Pour un groupe (G,*) et un élément $x \in G$, on peut définir l'opération x * x par x^2 . Plus généralement:

$$x^{n} = \begin{cases} e & \text{si} & n = 0\\ \underbrace{x * x \dots * x}_{n \text{ fois}} & \text{pour} & n > 0 \end{cases}$$
 (4)

On possède alors les propriétés suivantes:

$$x^m * x^n = x^{n+m}$$

$$(x^m)^n = x^{nm}$$

Pour un groupe (G,*) et un élément $x \in G$, on peut définir l'opération x * x par x^2 . Plus généralement:

$$\chi^{n} = \begin{cases} e & \text{si} & n = 0\\ \underbrace{\chi * \chi \dots * \chi}_{n \text{ fois}} & \text{pour} & n > 0 \end{cases}$$
 (4)

On possède alors les propriétés suivantes:

- $x^m * x^n = x^{n+m}$
- ② $(x^m)^n = x^{nm}$
- $(x * y)^{-1} = y^{-1} * x^{-1}$

Pour un groupe (G,*) et un élément $x \in G$, on peut définir l'opération x * x par x^2 . Plus généralement:

$$\chi^{n} = \begin{cases} e & \text{si} & n = 0\\ \underbrace{\chi * \chi \dots * \chi}_{n \text{ fois}} & \text{pour} & n > 0 \end{cases}$$
 (4)

On possède alors les propriétés suivantes:

- $x^m * x^n = x^{n+m}$
- $(x^m)^n = x^{nm}$
- $(x * y)^{-1} = y^{-1} * x^{-1}$
- **Si G est abélien**, $(x * y)^n = x^n * y^n$

Mini exercice

Mini Exercice

① Soit $f_{a,b}: \mathbb{R} \to \mathbb{R}$ l'application définie par: $x \to ax + b$. Montrer que le groupe:

$$\left(\mathfrak{F} = \{f_{\mathfrak{a},\mathfrak{b}} \mid \mathfrak{a} \in \mathbb{R}^*, \mathfrak{b} \in \mathbb{R}\}, \circ\right) \tag{5}$$

est un groupe non commutatif.

② Soit G =]-1,1[, Pour $x,y \in G$ on définit:

$$x * y = \frac{x + y}{1 + xy} \tag{6}$$

Montrer que (G, *) forme un groupe.

2- Sous Groupes

• Souvent on travaille avec des ensembles G qui sont des parties des groupes classiques comme (\mathbb{R},\times) . Il existe alors une méthode plus simple pour démontrer que G est un groupe.

2- Sous Groupes

• Souvent on travaille avec des ensembles G qui sont des parties des groupes classiques comme (\mathbb{R},\times) . Il existe alors une méthode plus simple pour démontrer que G est un groupe.

Sous groupe

Soit (G, *) un groupe. Une **partie** $H \subset G$ est un **sous groupe** de G si:

- $\mathbf{e} \in H$
- $\forall x, y \in H$, $x * y \in H$
- $\forall x \in H$, $x^{-1} \in H$.

<u>A.Belcaid</u> 7/18

2- Sous Groupes

• Souvent on travaille avec des ensembles G qui sont des parties des groupes classiques comme (\mathbb{R},\times) . Il existe alors une méthode plus simple pour démontrer que G est un groupe.

Sous groupe

Soit (G, *) un groupe. Une partie $H \subset G$ est un sous groupe de G si:

- e ∈ H
- $\forall x, y \in H, \quad x * y \in H$
- $\forall x \in H$, $x^{-1} \in H$.

Remarque

Une méthode plus simple pour prouver que H est un **sous groupe** est:

- H ≠ ∅
- $\forall x, y \in H$ $x * y^{-1} \in H$.

Exemples

Exemples

 \bullet $\left(\mathbb{R}_{+}^{*},\times\right)$ est un sous groupe de $\left(\mathbb{R}^{*},\times\right)$

Exemples

 $\bullet \ \left(\mathbb{R}_+^*,\times\right) \text{ est un sous groupe de } (\mathbb{R}^*,\times) \\ \bullet \ 1\in\mathbb{R}_+^*$

Exemples

- (\mathbb{R}_+^*, \times) est un sous groupe de (\mathbb{R}^*, \times)
 - ullet $1\in\mathbb{R}_+^*$
 - $\quad \bullet \quad \forall x,y \in \mathbb{R}_+^* \quad x \times y \in \mathbb{R}_+^*.$

- (\mathbb{R}_+^*, \times) est un sous groupe de (\mathbb{R}^*, \times)
 - \bullet $1 \in \mathbb{R}_+^*$
 - $\begin{aligned} \bullet & \forall x, y \in \mathbb{R}_+^* & x \times y \in \mathbb{R}_+^*. \\ \bullet & \forall x \in \mathbb{R}_+^* & \frac{1}{x} \in \mathbb{R}_+^*. \end{aligned}$

Exemples

- ullet $\left(\mathbb{R}_{+}^{*},\times\right)$ est un sous groupe de $\left(\mathbb{R}^{*},\times\right)$
 - $1 \in \mathbb{R}_+^*$
 - $\quad \bullet \ \, \forall x,y \in \mathbb{R}_+^* \quad x \times y \in \mathbb{R}_+^*.$
 - $\bullet \ \forall x \in \mathbb{R}_+^* \quad \frac{1}{x} \in \mathbb{R}_+^*$
- $\bullet \ (\mathbb{Z},+) \ \text{est un sous groupe de} \ (\mathbb{R},+).$

Exemples

- (\mathbb{R}_+^*, \times) est un **sous groupe** de (\mathbb{R}^*, \times)
 - \bullet $1 \in \mathbb{R}_+^*$
 - $\quad \bullet \quad \forall x,y \in \mathbb{R}_+^* \quad x \times y \in \mathbb{R}_+^*.$
 - $\bullet \ \forall x \in \mathbb{R}_+^* \quad \frac{1}{x} \in \mathbb{R}_+^*$
- $(\mathbb{Z}, +)$ est un sous groupe de $(\mathbb{R}, +)$.
- ullet Soit l'ensemble $\mathbb{U}=\{z\in\mathbb{C}\mid |z|=1\}$

Exemples

- (\mathbb{R}_+^*, \times) est un sous groupe de (\mathbb{R}^*, \times)
 - \bullet $1 \in \mathbb{R}_+^*$
 - $\quad \bullet \ \, \forall x,y \in \mathbb{R}_+^* \quad x \times y \in \mathbb{R}_+^*.$
 - $\bullet \ \forall x \in \mathbb{R}_+^* \quad \frac{1}{x} \in \mathbb{R}_+^*$
- $(\mathbb{Z}, +)$ est un sous groupe de $(\mathbb{R}, +)$.
- Soit l'ensemble $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$
 - Sachant que (\mathbb{C}, \times) est un groupe, prouvez que \mathbb{U} muni de \times est aussi un groupe.

Sous groupes de \mathbb{Z}^1

Théorème

Les seuls sous groupes de \mathbb{Z} , sont les $n\mathbb{Z}$ pour $n \in \mathbb{N}$.

$$n\mathbb{Z} = \{k.n \mid k \in \mathbb{Z}\} \tag{7}$$

- Lister les éléments de 3\mathbb{Z}.
- Donner une démonstration de ce théorème.

<u>A.Belcaid</u> 9/18

Mini exercices

Mini Exercices

- Montrer que si H et H' sont deux sous groupes de (G, *), alors $H \cap H'$ est aussi un sous groupe.
- **③** Montrer que $5\mathbb{Z} \cup 8\mathbb{Z}$ n'est pas un sous groupe.

<u>A.Belcaid</u> 10/18

2.3 Morphisme de groupes

Morphisme

Soit (G, *) et (G', \diamond) deux **groupes**. Une application $f: G \Longrightarrow G'$ est un **morphisme de groupes** si:

$$\forall x, y \in G \quad f(x * y) = f(x) \diamond f(y) \tag{8}$$

<u>A.Belcaid</u> 11/18

2.3 Morphisme de groupes

Morphisme

Soit (G, *) et (G', \diamond) deux **groupes**. Une application $f: G \Longrightarrow G'$ est un **morphisme de groupes** si:

$$\forall x, y \in G \quad f(x * y) = f(x) \diamond f(y) \tag{8}$$

Les deux exemples classiques que vous connaissez sont:

• $G = (\mathbb{R}, +)$ et $G' = (\mathbb{R}_+^*, \times)$. Le morphisme classique qui transforme l'addition en multiplication est la fonction exponentielle

A.Belcaid 11/18

2.3 Morphisme de groupes

Morphisme

Soit (G, *) et (G', \diamond) deux **groupes**. Une application $f: G \Longrightarrow G'$ est un **morphisme de groupes** si:

$$\forall x, y \in G \quad f(x * y) = f(x) \diamond f(y) \tag{8}$$

Les deux exemples classiques que vous connaissez sont:

• $G = (\mathbb{R}, +)$ et $G' = (\mathbb{R}_+^*, \times)$. Le morphisme classique qui transforme l'addition en multiplication est la fonction exponentielle

$$\forall x, y \in \mathbb{R} \quad \exp(x + y) = \exp(x) \times \exp(y)$$
 (9)

• Inversement, la fonction **logarithme** est un morphisme de groupe entre G' et G.

$$\log(x \times y) = \log(x) + \log(y) \tag{10}$$

A.Belcaid 11/18

Propriétés(1)

Proposition

Soit $f:G\Longrightarrow G^{'}$ un morphisme de groupe. On note e_{G} $(e_{G^{'}})$ l'élément neutre de $G(G^{'}).$ Alors:

•

$$f(e_G) = e_{G'} \tag{11}$$

0

$$\forall x \in G \quad f(x^{-1}) = (f(x))^{-1}$$
 (12)

• Pour l'exemple de logarithme, on sait déjà que:

$$\log(1) = 0 \tag{13}$$

Donner une preuve des deux équations.

<u>A.Belcaid</u> 12/18

Propriétés (2)

 $\bullet \ \, \text{Soient deux morphismes } f \colon \, G \Longrightarrow G^{'} \ \text{et} \ g \colon \, G^{'} \Longrightarrow G^{''} \\$

Composée

La composée $g \circ f$ est un morphisme de groupe entre G et G''.

<u>A.Belcaid</u> 13/18

Propriétés (2)

 $\bullet \ \, \mathsf{Soient \ deux \ morphismes} \ \, \mathsf{f}: \ \, \mathsf{G} \Longrightarrow \mathsf{G}^{'} \ \, \mathsf{et} \ \, \mathsf{g}: \ \, \mathsf{G}^{'} \Longrightarrow \mathsf{G}^{''}$

Composée

La composée $g \circ f$ est un morphisme de groupe entre G et G''.

Inverse

Si l'application est **bijective**. Alors f^{-1} est aussi un morphisme de groupe entre $G^{'}$ et G.

- Dans ce cas, on dit que:
 - f est un isomorphisme.
 - Les deux groupes G et G' sont isomorphes

A.Belcaid 13/18

Noyau et Image

• Si $f: G \longrightarrow G'$ est un morphisme de groupe. Alors on identifie deux sous groupes importants:

Noyau

Le noyaux (kernel) de f est

Kern
$$f = \{x \in G \mid f(x) = e_{G'}\} = f^{-1}(\{e_{G'}\})$$
 (14)

<u>A.Belcaid</u> 14/18

Noyau et Image

• Si $f: G \longrightarrow G'$ est un morphisme de groupe. Alors on identifie deux sous groupes importants:

Noyau

Le noyaux (kernel) de f est

Kern
$$f = \{x \in G \mid f(x) = e_{G'}\} = f^{-1}(\{e_{G'}\})$$
 (14)

Image

L'image de f est:

$$Img f = \{f(x) \mid x \in G\} \subset G'$$
 (15)

<u>A.Belcaid</u> 14/18

Propriétés

Voici quelque propriétés du noyau et l'image de f:.

Propriétés

- Kern f est un sous groupe de G.
- Img f est un sous groupe de G'.
- **(a)** f est **injectif** si et seulement si **Kern** $f = \{e_G\}$
- \bullet f est surjectif si et seulement si $\mathbf{Img} \ \mathbf{f} = \mathbf{G}'$

Preuve:

A.Belcaid 15/18

Mini Exercices

Mini Exercices

- - Montrer que f est un morphisme de groupe.
 - f est elle injective, surjective?
- ② Soit (G,*) un groupe et $f: G \longrightarrow G$ l'application définie par $f(x) = x^2$.
 - Montrer que si (G, *) est commutatif, alors f est un morphisme de groupe.
 - Montrer la réciproque.
- $\textbf{§ Montrer qu'il n'existe pas de morphisme } f:(\mathbb{Z},+) \longrightarrow (\mathbb{Z},+) \text{ tel que:}$

$$f(2) = 3$$

A.Belcaid 16/18

Groupe $\mathbb{Z}/n\mathbb{Z}$

• Pour un $n \ge 1$, on rappelle que:

$$\mathbb{Z}/n\mathbb{Z}=\left\{\overline{0},\overline{1},\overline{2},\ldots,\overline{n-1}\right\}$$

où \overline{p} désigne la classe d'équivalence de p modulo n.

 Sur cet ensemble, on peut définir l'opérateur d'addition entre les classes par:

$$\overline{p} + \overline{q} = \overline{p+q} \tag{16}$$

On prouve que:

Groupe

 $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif.

A.Belcaid 17/18

Groupe cyclique de cardinal fini

Définition

Un groupe (G, *) est dit cyclique si

$$\exists ! \alpha \in G \quad \forall x \in G, \exists k \in \mathbb{Z} \text{ tel que } x = \alpha^n$$

ou que le groupe G est engendré par l'élément α .

Exemple

Le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe **cyclique** engendré par l'élément $a=\overline{1}$.

On peut prouver que $\forall k \in \mathbb{Z}/n\mathbb{Z}$ on a:

$$k = \underbrace{\overline{1} + \overline{1} + \dots, \overline{1}}_{k \text{ fois}}$$

Théorème

Soit (G,*) un groupe de cardinal fini n. Alors G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

<u>A.Belcaid</u> 18/18