Evaluación PARCIAL – parte 1 -

NO OLVIDES PONER NOMBRE Y APELLIDO, CURSO Y FECHA EN LO QUE ENTREGAS.

El NOMBRE DEL (O LOS) ARCHIVO(S) QUE ENVÍES QUE COMIENCEN CON TÚ APELLIDO.

Los archivos deben estar en formato .pdf o .doc

Evaluación PARCIAL - TEMA 1

Cuerpo Rígido

Nombre y apellido:	Curso:	

- 1. Dos esferas de masa $M=6\,kg$ y radio $r=20\,cm$ están montadas como indica la figura y pueden deslizar a lo largo de la barra muy delgada y homogénea de masa $m=2\,kg$ y longitud $L=2\,m$. El conjunto gira libremente con una frecuencia $f_0=120\,r$. p.m. respecto de un eje vertical que pasa
 - por el centro del sistema. Inicialmente los centros de las esferas se encuentran fijos mediante fiadores a una distancia $R=50 \, cm$ del eje de giro; se sueltan los fiadores y las esferas deslizan por la barra hasta que sus centros se vuelven a trabar en los extremos de misma, calcular

- a. la frecuencia con que gira la el sistema cuando los centros de las esferas se encuentran justo en los extremos de la barra delgada.
- b. La energía cinética del sistema en cada uno de los casos.

$$I_{barra} = \frac{M. L^2}{12} \qquad I_{esfera} = \frac{2}{5} M. r^2$$

2. Una bala de masa M_1 y velocidad horizontal v_1 choca con un pequeño diente situado en la periferia de un volante de masa M_2 y radio R. Suponiendo la bala como una masa puntual, que el volante es cilíndrico, macizo y homogéneo (no se tiene en cuenta el pequeño diente) y que el choque es perfectamente elástico, realizándose en la periferia del volante, averiguar: a) la velocidad de la bala; b) la velocidad angular adquirida por la rueda después del choque. M_1 =100 g ; M_2 =1 kg ;

R=10 cm;
$$v_1 = 100 \frac{m}{s}$$
; $I_{cil} = \frac{M. r^2}{2}$

- 3. Un aro de $0.3\,m$ de radio y $15\,kg$ de masa rueda sobre un piso horizontal desplazándose $0.15\,m$ cada segundo. ¿Qué trabajo hay que realizar para detenerlo? $I_{aro} = M.\,r^2$
- 4. Dos objetos cuelgan de dos cuerdas unidas a dos ruedas capaces de girar respecto a un mismo eje. El momento de inercia total de las dos ruedas es de $40\,kg\,m^2$. Los radios son $R_1 = 1,2\,m$ y $R_2 = 0,4\,m$. a) Si $m_1 = 24\,kg$, calcular el valor de m_2 para que sea nula la aceleración angular de las ruedas. b) Si se colocan con suavidad $12\,kg$ sobre la parte superior de m_1 , calcular la aceleración angular de las ruedas y la tensión en las cuerdas.

