

Minne är en av de absolut viktigaste komponenterna i ett datorsystem.

Det spelar ingen roll hur snabb din processor är om du behöver vänta på att läsa och skriva data.

Eller om allting inte får plats.

GAMLA MINNESTYPER

Tidigare typer a datorminnen.

Elektronrör volatil

Mercury delay line memory volatil

Cathode ray tube volatil

Trumminne icke volatil

MAGNETIC CORE MEMORY

/ire

Random Access Memory – RAM

- X-wire & Y-wire för att välja cell
- Inhibit wire f\u00f6r att spara ett v\u00e4rde
- Sense wire f\u00f6r att l\u00e4sa ut ett v\u00e4rde
- När ett värde läses raderas det
- Accesstid 6 μs 0.6 μs

Icke volatilt RAM

FIGURE 3-1: The structure of a core memory plane

STATIC random access memory

- SRAM

- Baserad på flip-flops
 - logisk krets med två olika outputs
 - Den kan byta från den ena till den andra
- Icke volatile (så länge det finns ström)
- Används oftast som cache minne
 - Har använts som arbetsminne i några datorer

TALAR MED MINNEN

HÖGSKOLAN VÄST

I en minneskrets sparats data som i en 2D matris.

Processorns vy av minnet är inte i form av x/y utan som en numerisk adress.

Ex: 13

Bilden har 64 celler, 0-63.

Bussbredden är 8.

Adress data Cont.

FIGURE 3-2: How a memory chip addresses cells

1 bit är väldigt lite – fler chip

Intels 8080 processor (1972) arbetar med 8 bitar åt gången.

Control bus

Adress buss

Data buss
Control buss

FIGURE 3-3: A 1,024 × 8 memory system

Hur stort är ett minne?

Minnen adresseras binärt.

Därför består de inte av ett jämnt antal bitar (decimalt)

	Bitar	IEEE 1541	SI
26	64		
2 ¹⁰	1 024	1 kibi	1K
2 ¹⁴	16 384	16 kibi	16K
2 ²⁰	1 048 576	1 mebi	1M
2 ²⁷	134 217 728	128 mebi	128M
2 ³²	4 294 967 296	4 gibi	4G

DYNAMIC RANDOM ACCESS MEMORY - DRAM

- tar mindre plats än SRAM
 - färre komponenter
 - kan göras mindre
 - packas tätare

- volatil
 - Kondensatorn behöver refreshas var 5 – 64 ms

FIGURE 3-4: DRAM cells

DRAM FORTS.

Läser av en hel rad samtidigt.

Kan vara tusentals värden, vanligtvis används 8-64 bitar.

SYNCHRONUS DRAM HÖGSKOLAN VÄST

vanlig DRAM arbetar asynkront

SDRAM delar upp DRAM matrisen i flera banker och hanterar dem var för sig

kan därför pipelina förfrågningar

Double Data Rate SDRAM

- Traditionell SDRAM skickar en bit per clockcykel och dataledning.
- DDR SDRAM skickar 2 bitar per klockcykel och dataledning.

Double pumping!

Dubbla hastigheten till minneskontrollern.

System clock

FIGURE 3-6: SDR vs. DDR timing

PREFETCH I DDR, DDR2, DDR3, DDR4

DDR kan skicka dubbelt så ofta som SDR. Vad skall skickas?

- DRAM "aktiverar" en hel rad åt gången.
- Data från den kolumn vi vill ha skickas vidare.

Varför inte bara skicka vidare data från nästa kolumn med?

SIMM - DIMM

Single eller Dual In-line Memory Module
 Kontakterna är olika för olika sidor på DIMM

72-pin EDO DRAM SIMM

By Mariushm at the English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32507403

204-pin DDR3 SODIMM

By Tobias B Köhler - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18720269

ERROR CORRECTING CODE - ECC MEMORY HÖGSKOLAN VÄST

- Ibland tappar en minnes cell rätt värde
 - läckage
 - strålning
- ECC minne har en extra krets
 - Hamming code
 - kan korrigerar 1-bit fel
 - kan detektera 2-bit fel
 - sköts helt i minneskretsen.