Rare and Not-So-Rare Regions of Random Pattern-Avoiding Permutations

Neal Madras York University Toronto, Canada

Permutation Patterns 2017

A survey of work with Mahshid Atapour, Lerna Pehlivan, Gökhan Yıldırım, and Yosef Bisk, Hailong Liu, Victor Tsetsulin.

A random 4231-avoiding permutation of length 500

A random 312-avoiding permutation of length 500

A random 2413-avoiding permutation of length 300

Some notation and conventions:

 $S_N(\tau)$ is the set of permutations of length N that avoid the pattern τ , where $\tau \in S_k$.

Growth rate: the Stanley-Wilf limit:

$$L(\tau) = \lim_{N\to\infty} |S_N(\tau)|^{1/N}.$$

For the first part of the talk, we'll assume $\tau_1 > \tau_k$ (w.l.o.g.).

Some notation and conventions:

 $S_N(\tau)$ is the set of permutations of length N that avoid the pattern τ , where $\tau \in S_k$.

Growth rate: the Stanley-Wilf limit:

$$L(\tau) = \lim_{N\to\infty} |S_N(\tau)|^{1/N}.$$

For the first part of the talk, we'll assume $\tau_1 > \tau_k$ (w.l.o.g.).

Let P_N^{τ} denote the uniform probability distribution on $S_N(\tau)$:

$$P_N^{\tau}(A) = \frac{|A|}{|S_N(\tau)|}$$
 for $A \subset S_N(\tau)$.

We'll consider the plot of a random $\sigma \in S_N(\tau)$ scaled down by N, to the unit square.

We say that the open set $B \subset \mathbb{R}^2$ is au-rare if

$$\limsup_{N\to\infty} P_N^\tau \left(\left\{ \left(\frac{i}{N}, \frac{\sigma_i}{N}\right) : i=1,\dots,N \right\} \cap B \neq \emptyset \right)^{1/N} \ < \ 1 \, ;$$

i.e., if there exists a c>0 such that, for all sufficiently large N,

$$P_N^{\tau}\left(\left\{\left(\frac{i}{N},\frac{\sigma_i}{N}\right):i=1,\ldots,N\right\}\cap B\neq\emptyset\right) \leq e^{-cN}.$$

Theorem 1 (Atapour & Madras, 2014): Assume $\tau \in S_k$ with $\tau_1 > \tau_k$.

- (a) Assume $\tau_1 = k$. Then there is an open τ -rare set containing the point (0,1).
- (b) Assume $\tau_1 < k$. Then for every open τ -rare set B, we have $B \cap \{(x,y) : 0 \le x \le y \le 1\} = \emptyset$.

Proof of Theorem 1(b) [not hard]

Assume $\tau_1 < k$ (and $\tau_1 > \tau_k$), e.g. $\tau = 3142$.

We'll show that for any integer sequences i(N) and j(N) with $1 \le i(N) \le j(N) \le N$,

$$\lim_{N\to\infty} P_N^{\tau} \{ \sigma_{i(N)} = j(N) \}^{1/N} = 1.$$

$$(\tau_k < \tau_1 < k)$$

$$P_N^{\tau} \{ \sigma_i = j \} \geq \frac{|\mathcal{S}_{i-1}(\tau)| |\mathcal{S}_{j-i}(\tau)| |\mathcal{S}_{N-j}(\tau)|}{|\mathcal{S}_N(\tau)|}$$

Monotone patterns

A random 4321-avoiding permutation of length 300

Theorem 2 (Miner & Pak, 2014; Atapour & Madras, 2014): Assume

$$\lim_{N \to \infty} \frac{I_N}{N} = \gamma \quad \text{ and } \quad \lim_{N \to \infty} \frac{J_N}{N} = \delta$$

where $0 < \gamma < \delta < 1$. Then

$$\lim_{N \to \infty} P_N^{321} (\sigma_{I_N} = J_N)^{1/N} = \frac{1}{4} G(\gamma, \delta; 1) < 1$$

$$= \lim_{N \to \infty} P_N^{312} (\sigma_{I_N} = J_N)^{1/N},$$

where

$$G(\gamma,\delta;1) = \frac{(\gamma+\delta)^{\gamma+\delta}(2-\gamma-\delta)^{2-\gamma-\delta}}{\gamma^{\gamma}\,\delta^{\delta}(1-\gamma)^{1-\gamma}(1-\delta)^{1-\delta}}.$$

Theorem 2 (Miner & Pak, 2014; Atapour & Madras, 2014): Assume

$$\lim_{N \to \infty} \frac{I_N}{N} = \gamma \quad \text{ and } \quad \lim_{N \to \infty} \frac{J_N}{N} = \delta$$

where $0 < \gamma < \delta < 1$. Then

$$\lim_{N \to \infty} P_N^{321} (\sigma_{I_N} = J_N)^{1/N} = \frac{1}{4} G(\gamma, \delta; 1) < 1$$

$$= \lim_{N \to \infty} P_N^{312} (\sigma_{I_N} = J_N)^{1/N},$$

where

$$G(\gamma,\delta;1) = \frac{(\gamma+\delta)^{\gamma+\delta}(2-\gamma-\delta)^{2-\gamma-\delta}}{\gamma^{\gamma}\,\delta^{\delta}(1-\gamma)^{1-\gamma}(1-\delta)^{1-\delta}}\,.$$

Theorem 3 (Madras & Pehlivan, 2016 EJC): *Let* $\tau = k(k-1)\cdots 21$. *Assume*

$$\lim_{N\to\infty}\frac{I_N}{N}=\gamma \quad \text{ and } \quad \lim_{N\to\infty}\frac{J_N}{N}=\delta$$

where $0 < \gamma < \delta < 1$.

Theorem 3 (Madras & Pehlivan, 2016 EJC): *Let* $\tau = k(k-1)\cdots 21$. *Assume*

$$\lim_{N\to\infty}\frac{I_N}{N}=\gamma \quad \text{ and } \quad \lim_{N\to\infty}\frac{J_N}{N}=\delta$$

where $0 < \gamma < \delta < 1$. Then

$$\lim_{N \to \infty} P_N^{\tau} (\sigma_{I_N} = J_N)^{1/N} = \frac{G(\gamma, \delta; (k-2)^2)}{(k-1)^2} < 1$$

where

Theorem 3 (Madras & Pehlivan, 2016 EJC): *Let* $\tau = k(k-1)\cdots 21$. *Assume*

$$\lim_{N \to \infty} \frac{I_N}{N} = \gamma \quad \text{ and } \quad \lim_{N \to \infty} \frac{J_N}{N} = \delta$$

where $0 < \gamma < \delta < 1$. Then

$$\lim_{N\to\infty} P_N^{\tau}(\sigma_{I_N}=J_N)^{1/N} = \frac{G(\gamma,\delta;(k-2)^2)}{(k-1)^2} < 1$$

where

$$G(\gamma, \delta; c) = 4 c g(\gamma, \delta; c) g(\delta, \gamma; c) g(1-\gamma, 1-\delta; c) g(1-\delta, 1-\gamma; c)$$

and
$$g(x,y;c) = \left(\frac{x(c-1)}{2cx+y-x-\sqrt{(y-x)^2+4cxy}}\right)^x$$
.

Here,
$$(k-1)^2 = L(\tau)$$
 and $(k-2)^2 = L((k-1)\cdots 21)$.

$$\tau = 4321$$
:

 $\tau = 4321$:

$$\tau = 4321$$
:

Method also works for $\tau=21\ominus\hat{\tau}$: Replace $(k-1)^2$ by $L(\tau)$ and $(k-2)^2$ by $L(1\ominus\hat{\tau})$ in the theorem. (correction and comment in preparation)

$$\mathcal{R}(312) = \{(x, y) : 0 \le x < y \le 1\}$$

$$\mathcal{R}(312) = \{(x, y) : 0 \le x < y \le 1\}$$

 $\mathcal{R}(3142) = \emptyset$

$$\mathcal{R}(312) = \{(x, y) : 0 \le x < y \le 1\}$$

$$\mathcal{R}(3142) = \emptyset$$

$$\mathcal{R}(4321) = \{(x, y) \in [0, 1]^2 : x \ne y\}$$

$$\mathcal{R}(312) = \{(x,y) : 0 \le x < y \le 1\}$$
 $\mathcal{R}(3142) = \emptyset$
 $\mathcal{R}(4321) = \{(x,y) \in [0,1]^2 : x \ne y\}$
 $\mathcal{R}(4231) = ???$ (simulations not yet conclusive(?))

Let $\mathcal{R} \equiv \mathcal{R}(\tau)$ be the set of all points in $[0,1]^2$ that belong to a τ -rare region. We call \mathcal{R} the *rare region* for τ .

$$\mathcal{R}(312) = \{(x,y) : 0 \le x < y \le 1\}$$
 $\mathcal{R}(3142) = \emptyset$
 $\mathcal{R}(4321) = \{(x,y) \in [0,1]^2 : x \ne y\}$
 $\mathcal{R}(4231) = ???$ (simulations not yet conclusive(?))

General properties: Assume $\tau_1 > \tau_k$.

Let $\mathcal{R}^{\uparrow} = \mathcal{R} \cap \{(x,y) : 0 \le x \le y \le 1\}$ be the part of the rare region above the main diagonal.

Let $\mathcal{R} \equiv \mathcal{R}(\tau)$ be the set of all points in $[0,1]^2$ that belong to a τ -rare region. We call \mathcal{R} the *rare region* for τ .

$$\mathcal{R}(312) = \{(x,y) : 0 \le x < y \le 1\}$$
 $\mathcal{R}(3142) = \emptyset$
 $\mathcal{R}(4321) = \{(x,y) \in [0,1]^2 : x \ne y\}$
 $\mathcal{R}(4231) = ???$ (simulations not yet conclusive(?))

General properties: Assume $\tau_1 > \tau_k$.

Let $\mathcal{R}^{\uparrow} = \mathcal{R} \cap \{(x,y) : 0 \le x \le y \le 1\}$ be the part of the rare region above the main diagonal.

By Theorem 1, $\mathcal{R}^{\uparrow} \neq \emptyset$ if and only if $\tau_1 = k$.

Let $\mathcal{G} = [0,1]^2 \setminus \mathcal{R}$ be the "good region".

Theorem 4 (Madras & Yıldırım, arxiv:1608.06326):

(a) G contains the main diagonal x = y.

Theorem 4 (Madras & Yıldırım, arxiv:1608.06326):

- (a) G contains the main diagonal x = y.
- (b) If $(x, y) \in \mathcal{G}$, then $conv\{(x, y), (0, 0), (1, 1)\} \subset \mathcal{G}$.

Theorem 4 (Madras & Yıldırım, arxiv:1608.06326):

- (a) G contains the main diagonal x = y.
- (b) If $(x, y) \in \mathcal{G}$, then $conv\{(x, y), (0, 0), (1, 1)\} \subset \mathcal{G}$.
- (c) The lower boundary of \mathcal{R}^{\uparrow} is a continuous curve $y=r^{\uparrow}(x)$ such that $r^{\uparrow}(0)=0$, $r^{\uparrow}(1)=1$, and $r^{\uparrow}(x)\geq x \ \forall x$.

Theorem 4 (Madras & Yıldırım, arxiv:1608.06326):

- (a) G contains the main diagonal x = y.
- (b) If $(x, y) \in \mathcal{G}$, then $conv\{(x, y), (0, 0), (1, 1)\} \subset \mathcal{G}$.
- (c) The lower boundary of \mathcal{R}^{\uparrow} is a continuous curve $y = r^{\uparrow}(x)$ such that $r^{\uparrow}(0) = 0$, $r^{\uparrow}(1) = 1$, and $r^{\uparrow}(x) \geq x \ \forall x$.
- (d) The function r^{\uparrow} has left and right derivatives in $[L(\tau)^{-1}, L(\tau)]$ at every point. (Hence it is strictly increasing and Lipschitz continuous.)

(strengthens results of Atapour & Madras 2014).

Open question: Is \mathcal{G} necessarily convex?

We turn now to regions that are not τ -rare, but sparsely occupied. Primary example: $S_n(312)$ below the diagonal.

We turn now to regions that are not τ -rare, but sparsely occupied. Primary example: $S_n(312)$ below the diagonal.

Theorem 5 (Miner & Pak, 2014; Madras & Pehlivan, 2016 RSA) (a) Assume

$$\lim_{N\to\infty}\frac{I_N}{N}=\gamma \quad \text{ and } \quad \lim_{N\to\infty}\frac{J_N}{N}=\delta \quad \text{ where } 0<\delta<\gamma<1.$$

We turn now to regions that are not τ -rare, but sparsely occupied. Primary example: $S_n(312)$ below the diagonal.

Theorem 5 (Miner & Pak, 2014; Madras & Pehlivan, 2016 RSA) (a) Assume

$$\lim_{N\to\infty}\frac{I_N}{N}=\gamma \quad \text{ and } \quad \lim_{N\to\infty}\frac{J_N}{N}=\delta \quad \text{ where } 0<\delta<\gamma<1.$$

Then
$$P_N^{312}(\sigma_{I_N}=J_N) \sim \frac{N^{-3/2}}{2\sqrt{\pi}\,(1-[\gamma-\delta])^{3/2}\,(\gamma-\delta)^{3/2}}.$$

(b) For fixed $i, j \in \mathbb{N}$:

$$\lim_{N\to\infty} P_N^{312}(\sigma_{N+1-i}=j)$$

exists, is nonzero, and can be computed explicitly. Joint probabilities can also be computed in (a) and (b).

Proofs rely on exact formulas for $P_N^{312}(\sigma_i = j)$.

More challenging pattern: $\tau = 2413$. Recall $\mathcal{R}(2413) = \emptyset$.

More challenging pattern: $\tau = 2413$. Recall $\mathcal{R}(2413) = \emptyset$.

Since $|S_N(2413)| \approx 8^N N^{-5/2}$, we see from the proof of Theorem 1(b) that $P_N^{2413}(\sigma_i = j)$ cannot decay more slowly that N^{-5} .

$$\left(P_{N}^{\tau}\left\{\sigma_{i}=j\right\} \geq \frac{\left|\mathcal{S}_{i-1}(\tau)\right|\left|\mathcal{S}_{j-i}(\tau)\right|\left|\mathcal{S}_{N-j}(\tau)\right|}{\left|\mathcal{S}_{N}(\tau)\right|}\right)$$

<u>Remark</u>: For i = 1, we have a lower bound of order $N^{-5/2}$. But so far, we can't say much more than this.

Simulation results from $S_{200}(2413)$ (sample size 3000):

Simulation results from $S_{200}(2413)$ (sample size 3000):

Conjecture: $P_N^{2413}(\sigma_1 = \lfloor N/2 \rfloor) \times N^{-2}$.

A random 2413-avoiding permutation of length 300

Theorem 6 (Madras & Yıldırım, in preparation): For any integer $k \ge 3$,

$$\lim_{N \to \infty} P_N^{2413}(\sigma_1 = k) \; = \; 8^{-k} \sum_{m=3}^k m \, b_k(m) \, \left(\frac{32}{27}\right)^{m-1},$$

where $b_k(m)$ is the cardinality of an explicit subset of $S_{k-1}(2413)$.

Exact computation of the right-hand side up to k=10 produces a very good fit to a function of the form C/k^2 .

m=3 term for k=3:

$$P_N^{2413}(\sigma_1=3) = \sum_{u \in V} \frac{|S_{u-2}(2413)| |S_{v-u-1}(2413)| |S_{N-v}(2413)|}{|S_N(2413)|}$$

Still lots to explore, theoretically and numerically!

- Does $\mathcal{R}(4231)$ contain everything off the diagonal? If so, are there any patterns whose rare regions have "interesting" shapes?
- Do longer patterns show new structures? Which patterns are likely candidates?
- Can we obtain power laws for probabilities when the rare region is the empty set?