

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа 1

«Динамические системы с дискретным временем»

Студент 315 группы П.В. Карпикова

Руководитель практикума Д. А. Алимов

Содержание

1	Пос	становка задачи	2
2	Зад	Задача 1	
	2.1	Неподвижные точки	2
	2.2	Устойчивость	2
	2.3	Исследование существования циклов длины 2 и 3	4
	2.4	Показатель Ляпунова	7
3	Задача 2		8
	3.1	Неподвижные точки	8
	3.2	Бифуркация Неймара-Саккера	8

1 Постановка задачи

- 1. Найти неподвижные точки
- 2. Исследовать устойчивость неподвижных точек в зависимости от значений параметров
- 3. Проверить существование циклов длиной 2 и 3
- 4. В случае существования цикла длиной 3 построить бифуркационную диаграмму
- 5. Построить график показателя Ляпунова в зависимости от значений параметра
- 6. В случае системы с запаздыванием проверить возможность возникновения бифуркации Неймарка-Саккера

Все значения параметров и переменных неотрицательные.

Задача 1. $u_{t+1} = u_t^3 e^{z(1-u_t)}$

Задача 2. $u_{t+1} = u_t^3 e^{z(1-u_{t-1})}$

2 Задача 1

2.1 Неподвижные точки

Неподвижные точки определяются как решения уравнения N = f(N). Пусть мы имеем неподвижную точку N. Тогда $N = u_{t+1} = u_t$ является решением уравнения

$$N = N^3 e^{z(1-N)}$$

$$\begin{bmatrix}
N = 0 \\
1 = N^2 e^{z(1-N)}
\end{bmatrix}$$

Решим второе уравнение. Рассмотрим функцию $F(u) = u^2 e^{z(1-u)} - 1$. Найдем, области возрастания, чтобы понять, где она может пересечь 0.

$$F'(u) = ue^{z(1-u)}(2-zu) > 0$$
 при $u < \frac{2}{z}$.

При этом $F(0)=-1,\ F(1)=0,\ F\left(\frac{2}{z}\right)=\left(\frac{2}{z}\right)^2e^{z-2}-1.$

$$F\left(\frac{2}{z}\right) > 0 \iff \left(\frac{2}{z}\right)^2 e^{z-2} > 1 \iff 2\ln\frac{2}{z} + z - 2 > 0$$

$$\left(2\ln\frac{2}{z}+z-2\right)'=-\frac{2}{z}+1=\frac{z-2}{z}>0$$
при $z>2$. А так как при $z=2$ $F\left(\frac{2}{z}\right)=0$, то $F\left(\frac{2}{z}\right)\geq0$ $\forall z$

Поэтому при z=2 будет 2 неподвижные точки N=0 и N=1. При $z\neq 2$ добавится 3 неподвижная точка u^* : при z<2 $u^*>\frac{2}{z}$, при z>2 $u^*\in (0,\frac{2}{z})$, ее нельзя получить аналитически, поэтому она будет получена численно.

2.2 Устойчивость

Для проверки на устойчивость будем пользоваться производной $f_u(\tilde{u}) = (\tilde{u})^2 e^{z(1-\tilde{u})} (3-z\tilde{u}).$

- 1. Для неподвижной точки $\tilde{u} = 0$: $|f_u(0)| = 0 < 1 \Rightarrow$ асимптотически устойчива,
- 2. Для неподвижной точки $\tilde{u} = 1$:

- неустойчива при $|f_u(1)| = |3-z| > 1 \Rightarrow z \in (0, 2) \cup (4, +\inf),$
- $\bullet\,$ при z=2 или z=4 про ее устойчивость ничего сказать нельзя,
- при $z \in (2,4)$ асимптотически устойчива ,
- 3. Для неподвижной точки $\tilde{u}=u^*$ численно найдем параметры, при которых теряется устойчивость:

Рис. 1: Зависимость особой точки от параметра

Рис. 2: Модуль производной особой точки

Значения z, при которых происходит потеря устойчивости: $z_0=0.8154,\ z_1=2.$ При $z\in(z_0,z_1)$ асимптотически устойчива.

2.3 Исследование существования циклов длины 2 и 3

Ниже приведены графики функций $f, f^2 = f \circ f, f^3 = f \circ f \circ f$, пересечения которых с прямой y = u являются неподвижными точками (отмечены синим), и точками, составляющими циклы длины 2 и 3 соответственно.

Видно, что при увеличении параметра z сначала имеются циклы длины 2 и 3, потом остаются только циклы длины 2, потом их нет, затем снова появляются циклы длины 2 и 3.

Построим бифуркационную диаграмму. Для каждого значения параметра сначала высчитывалось 200 точек для стабилизации, а затем считались следующие 150 точек системы, которые отображались на диаграмме.

Рис. 3: Бифуркационная диаграмма

Видно, что сначала появляется устойчивый цикл длины 2, затем при увеличении параметра появляется устойчивый цикл длины 3.

Рассмотрим подробнее диаграмму при $z \in [4.7, 5.2]$. При значении $z_0 = 4.94$ появляется цикл длины 3. По теореме Шарковского из этого следует, что в ней имеется цикл любой длины.

Приведем примеры этих устойчивых циклов:

Рис. 4: Устойчивый цикл длины 2, $z_0=4.3,\ u_1\approx 1.2439,\ u_2\approx 0.6743$

Рис. 5: Устойчивый цикл длины 3, $z_1=4.94,\ u_1\approx 1.5573,\ u_2\approx 0.2407,\ u_3\approx 0.5935$

2.4 Показатель Ляпунова

Показателем Ляпунова для тра
ектории $u_1,\ u_2,\ \dots,\ u_n$ называется величина,

$$h(u) = \lim_{n \to \infty} \frac{\ln |f'(u_1)| + \ln |f'(u_2)| + \ldots + \ln |f'(u_n)|}{n},$$

если этот предел существует.

Он показывает, насколько хаотична система: при малом отклонении траекторий в начальный момент при h < 0 они будут приближаться друг другу, при h > 0 — разбегаться.

Рис. 6: График показателя Ляпунова, начальное значение $u_1 = \frac{2}{z}$

3 Задача 2

 $u_{t+1} = u_t^3 e^{z(1-u_{t-1})}$ — система с запаздыванием, перепишем ее в более удобном виде:

$$\begin{cases} u_{t+1} = u_t^3 e^{z(1-v_t)}, \\ v_{t+1} = u_t. \end{cases}$$
 (1)

3.1 Неподвижные точки

Неподвижные точки этой системой совпадают с точками из задачи 1.

Чтобы определить их устойчивость, найдем матрицу Якоби для системы:

$$J(u,v) = \begin{bmatrix} 3u^2e^{z(1-v)} & -zu^3e^{z(1-v)} \\ 1 & 0 \end{bmatrix},$$

Так как точки неподвижные, то для нетривиальной точки $u^2e^{z(1-v)}=1,\ u^3e^{z(1-v)}=u,$ поэтому матрица принимает вид:

$$J(u,v) = \begin{bmatrix} 3 & -zu \\ 1 & 0 \end{bmatrix},$$

Характеристический многочлен $det(J-\lambda I)=\lambda(\lambda-3)+zu$. Его корни

$$\lambda_{1,2} = \frac{3 \pm \sqrt{9 - 4zu}}{2}$$

1. Для точки (0, 0)

$$J(0,0) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

Собственные значения матрицы $\lambda_{1,2}=0,\ |\lambda_{1,2}|<1,$ значит точка асимптотически устойчива при любом z,

2. Для точки (1, 1)

$$J(1,1) = \begin{bmatrix} 3 & -z \\ 1 & 0 \end{bmatrix},$$

$$\lambda_{1,2} = \frac{3 \pm \sqrt{9 - 4z}}{2}$$

Как видно, $\lambda = \frac{3 + \sqrt{9 - 4z}}{2} > 1$, значит, она неустойчива.

3. Для точки (u^*, u^*)

$$\lambda_{1,2} = \frac{3 \pm \sqrt{9 - 4zu^*}}{2}$$

Аналогично $\lambda = \frac{3+\sqrt{9-4z}}{2} > 1$, и точка неустойчива.

3.2 Бифуркация Неймара-Саккера

Ни при каком значении параметра z не появились собственные значения $\lambda_{1,2}$ такие, что $|\lambda_1|=|\lambda_2|=1,\ \lambda_1=\overline{\lambda_2},$ значит, такой бифуркации не будет.

Список литературы

[1] Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010.