Model Evaluation

Overview

왜 모델을 검증해야 하는가?

우리가 개선한 모델이 더 정확해졌는지 판단할 수 있는 근거가 있어야만 우리는 모델을 고칠 수 있다.

"통계 시스템에서 양만큼 필수적인 것이 있다. 바로 **피드백**이다. 피드백은 시스템이 정상 항로에서 벗어날 경우, 이를 알려주는 장치다. 통계 전문가들은 피드백을 통해 받은 오류를 토대로 모형을 개선해 더욱 완벽하게 만든다."

. . .

"워싱턴 교육청의 가치부가모형을 포함해 이 책에서 소개할 WMD(Weapons of Math Destruction, 대량살상수학무기)중 상당수가 적절한 피드백을 받지 못하고 있다. ... 매스매티카의 평가 시스템이 와이사키와 205명의 교사들에게 실패자라는 꼬리표를 붙이자 워싱턴 교육 당국은 그들을 모두 해고했다. 그런데 이 평가 시스템에는 이 같은 결정이 옳은지에 대해 사후에 학습가는 과정이 있을까? 없다. 시스템이 교사들을 실패자라고 확신하면, 평가는 그것으로 끝이다."

대량살상수학무기(Weapons of Math Destruction) 캐시 오닐(Cathy O'Neil) 저

모델 검증 방법 - 온라인 검증(Online Evaluation)

라이브 검증(Live Evaluation)이라고도 부른다. 서비스에 직접 올려서 검증하는 방식 가장 정확한 지표이지만, 측정하는데 다소 시간이 걸린다

온라인 검증에서 쓰이는 지표의 예시

- 회사의 매출
- 월 방문자 수
- 방문자가 서비스에 머무르는 시간
- 방문한 사용자가 물건을 구매할 확률
- 추천한 광고를 사용자가 클릭할 확률
- 서브스크립션 모델을 이용중인 사용자가 구 매를 중단할 확률(일명 이탈률, churn rate)

온라인 검증에서 가장 많이 쓰이는 방식 중에 하나인 A/B 테스팅 기존 모델을 Variation A에, 개선한 모델을 Variation B에 도입한 뒤 Key Metric의 차이를 비교한다

모델 검증 방법 - 오프라인 검증(Offline Evaluation)

서비스에 올리지 않고 검증한다 온라인 검증에 비해 정확한 측정 지표는 아니나, 측정 속도가 매우 빠르다

```
import numpy as np

y_predict = model.predict(X_test)
y_predict = np.argmax(y_predict, axis=1)

accuracy = (y_test == y_predict).mean()

print("Accuracy = {0:.5f}".format(accuracy))

Accuracy = 0.98420
```

우리가 지금까지 모델의 정확도를 측정하기 위한 방식을 전문용어로 오프라인 검증(Offline Evaluation)이라 부른다

모델 검증 방법

모든 데이터사이언티스트 팀은 오프라인 검증을 바탕으로 모델을 개선한 뒤, 개선 결과를 실 서비스에 반영하여 온라인 검증을 한다

모델 검증 방법

모든 데이터사이언티스트 팀은 오프라인 검증을 바탕으로 모델을 개선한 뒤, 개선 결과를 실 서비스에 반영하여 온라인 검증을 한다

2. Online Evaluation으로 실 서비스에서 비즈니스 지표를 기준삼아 확실히 검증한다

모델 검증 방법

모든 데이터사이언티스트 팀은 오프라인 검증을 바탕으로 모델을 개선한 뒤, 개선 결과를 실 서비스에 반영하여 온라인 검증을 한다

Offline Evaluation Mechanisms

기본적인 정량적 검증 방법 - Hold Out Validation

데이터를 두 개로 나눈 뒤 하나는 학습용, 하나는 검증용으로 사용한다 가장 간단한 방법이지만, 학습용과 검증용 데이터가 균등하게 배분되어야 한다

데이터 갯수: 10,000 개

train test 8,000 개 2,000 개

데이터를 큰 조각과 작은 조각으로 두 조각을 낸 뒤, 큰 조각으로 알고리즘을 학습하고, 작은 조각을 평가한다.

```
from keras.datasets import mnist

((X_train, y_train), (X_test, y_test)) = mnist.load_data()

print(X_train.shape, y_train.shape)

print(X_test.shape, y_test.shape)

Using TensorFlow backend.

(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
```

대부분의 딥러닝용 데이터셋은

hold-out validation을 위한 train 데이터셋과 test 데이터셋으로 나뉘어져 있다.

기본적인 정량적 검증 방법 - Cross Validation

데이터를 N조각으로 나눠서 N조각 만큼 학습-검증을 반복한다 데이터가 균등하게 분배되어야 할 필요가 없지만, 검증하는데 그만큼 시간이 오래 걸린다

데이터를 N조각 낸 뒤(ex: 5조각), 조각을 뺀 나머지로 알고리즘을 학습하고, 조각을 예측한다. 이후 그 결과값의 평균을 낸다.

평균(mean)을 구한다

오프라인 지표가 안 좋아질 때 온라인 지표도 안 좋아저야 하며, 오프라인 지표가 좋아질 때 온라인 지표도 좋아저야 한다이 되고 있다. 이 두 개가 서로 맞지 않으면 모든 데이터사이언티스트들이 실험을 할 수 없다

어, 정확도가 더 올라갔네? 빨리 실 서비스에 올려서 매출을 늘려야지!

오프라인 지표가 안 좋아질 때 온라인 지표도 안 좋아저야 하며, 오프라인 지표가 좋아질 때 온라인 지표도 좋아저야 한다 이 두 개가 서로 맞지 않으면 모든 데이터사이언티스트들이 실험을 할 수 없다

Classification과 Regression 문제. 서로 다른 측정 방식을 사용해야 한다

	actual	predict	error (accuracy)
0	10000	11616	0
1	10000	9244	0
2	10000	11645	0
3	10000	10000	1
4	10000	9036	0
5	10000	11451	0
6	10000	11938	0
7	10000	8271	0
8	10000	11420	0
9	10000	9551	0

regression 문제를 classification metric으로 검증하려고 한다면, 아마 거의 모든 값이 오답이라고 예측할 것이다.

	actual	predict	error (accuracy)	error (MAE)
0	기타	기타	1	NaN
1	가전제품	가전제품	1	NaN
2	의류	의류	1	NaN
3	기타	의류	0	NaN
4	의류	의류	1	NaN
5	기타	기타	1	NaN
6	기타	기타	1	NaN
7	기타	기타	1	NaN
8	기타	의류	0	NaN
9	의류	의류	1	NaN

반면 classification 문제를 regression metric으로 검증하려고 한다면, 공식이 맞지 않기 때문에 에러가 나거나 제대로된 값이 나오지 않을 것이다

imbalanced 문제(또는 skewed 문제) 서로 다른 Label을 동일하게 간주해야 하는가?

서로 다른 결과를 자세히 비교하기 단순이 어떤 모델이 좋고 나쁜 것을 떠나서, 모델마다의 강점과 약점을 파악할 수 있어야 한다

VOC 2012 test	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	nplant	sheep	sofa	train	ίν
MR_CNN_MORE_DATA [11]	73.9	85.5	82.9	76.6	57.8	62.7	79.4	77.2	86.6	55.0	79.1	62.2	87.0	83.4	84.7	78.9	45.3	73.4	65.8	80.3	74.0
HyperNet_VGG	71.4	84.2	78.5	73.6	55.6	53.7	78.7	79.8	87.7	49.6	74.9	52.1	86.0	81.7	83.3	81.8	48.6	73.5	59.4	79.9	65.7
HyperNet_SP	71.3	84.1	78.3	73.3	55.5	53.6	78.6	79.6	87.5	49.5	74.9	52.1	85.6	81.6	83.2	81.6	48.4	73.2	59.3	79.7	65.6
Fast R-CNN + YOLO	70.7	83.4	78.5	73.5	55.8	43.4	79.1	73.1	89.4	49.4	75.5	57.0	87.5	80.9	81.0	74.7	41.8	71.5	68.5	82.1	67.2
MR_CNN_S_CNN [11]	70.7	85.0	79.6	71.5	55.3	57.7	76.0	73.9	84.6	50.5	74.3	61.7	85.5	79.9	81.7	76.4	41.0	69.0	61.2	77.7	72.1
Faster R-CNN [28]	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
DEEP_ENS_COCO	70.1	84.0	79.4	71.6	51.9	51.1	74. 1	72.1	88.6	48.3	73.4	57.8	86.1	80.0	80.7	70.4	46.6	69.6	68.8	75.9	71.4
NoC [29]	68.8	82.8	79. 0	71.6	52.3	53.7	74.1	69.0	84.9	46.9	74.3	53.1	85.0	81.3	79.5	72.2	38.9	72.4	59.5	76.7	68.1
Fast R-CNN [14]	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
UMICH_FGS_STRUCT	66.4	82.9	76.1	64.1	44.6	49.4	70.3	71.2	84.6	42.7	68.6	55.8	82.7	77.1	79.9	68.7	41.4	69.0	60.0	72.0	66.2
NUS_NIN_C2000 [7]	63.8	80.2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3
BabyLearning [7]	63.2	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6
NUS_NIN	62.4	77.9	73.1	62.6	39.5	43.3	69.1	66.4	78.9	39.1	68.1	50.0	77.2	71.3	76.1	64.7	38.4	66.9	56.2	66.9	62.7
R-CNN VGG BB [13]	62.4	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3
R-CNN VGG [13]	59.2	76.8	70.9	56.6	37.5	36.9	62.9	63.6	81.1	35.7	64.3	43.9	80.4	71.6	74.0	60.0	30.8	63.4	52.0	63.5	58.7
YOLO	57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
Feature Edit [33]	56.3	74.6	69.1	54.4	39.1	33.1	65.2	62.7	69.7	30.8	56.0	44.6	70.0	64.4	71.1	60.2	33.3	61.3	46.4	61.7	57.8
R-CNN BB [13]	53.3	71.8	65.8	52.0	34.1	32.6	59.6	60.0	69.8	27.6	52.0	41.7	69.6	61.3	68.3	57.8	29.6	57.8	40.9	59.3	54.1
SDS [16]	50.7	69.7	58.4	48.5	28.3	28.8	61.3	57.5	70.8	24.1	50.7	35.9	64.9	59.1	65.8	57.1	26.0	58.8	38.6	58.9	50.7
R-CNN [13]	49.6	68.1	63.8	46.1	29.4	27.9	56.6	57.0	65.9	26.5	48.7	39.5	66.2	57.3	65.4	53.2	26.2	54.5	38.1	50.6	51.6

Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

유명 Object Detection모델인 YOLO(You Only Look Once)의 벤치마킹 결과 물체의 종류(ex: 새, 자전거, 고양이)마다의 정확도를 전부 분석함으로서 타 모델과의 성능 차이를 비교한다

Classification Metics

Classification Metics - Accuracy

장점

• 매우 직관적이다. 사실상 모르는 사람이 없을 정도

단점

• imbalanced 된 데이터셋에 약하다. 가령오른쪽 예시에 서는 의류와 가전제품을 못 맞췄을 경우 동일하게 점수가 낮아지는데, 암 환자와 암 환자가 아닌 경우에도 동등하게 처리해야 하나?

일명 퍼센티지. (%) 가장 보편적으로 쓰이는 지표이다 직관적이지만, imbalanced된 데이터셋에 약하다

$$\mathtt{accuracy}(y, \hat{y}) = \frac{1}{n_{\mathrm{samples}}} \sum_{i=0}^{n_{\mathrm{samples}}-1} 1(\hat{y}_i = y_i)$$

```
from sklearn.metrics import accuracy_score
actual = ["의류", "가전제품", "의류", "기타"]
predict = ["의류", "가전제품", "기타", "가전제품"]
accuracy_score(actual, predict)
```

0.5

Classification Metics - Confusion Matrix

모든 클래스(또는 Label)를 동일하게 놓지 않고 서로 다르게 처리한다 imbalanced된 데이터셋에 강하지만, 결과가 하나의 숫자(single number)로 나오지 않는다

장점

- imbalanced된 데이터셋에 강하다.
- 정량적인 측정 뿐만 아니라, 모델이 구체적으로 어떤 부분에 약한지(가령 암 환자를 맞추는 기능이 약한지, 암 환자가 아니라는 사람을 맞추는 기능이 약한지) 알 수 있다.

단점

• 하나의 숫자로 나오지 않는다.

	Predicted as positive	Predicted as negative				
Labeled as positive	80	20				
Labeled as negative	5	195				

다음의 네 가지를 나눠서 판단한다.

- 암 환자를 암 환자라고 맞췄을 경우 (True Positive)
- 암 환자를 암 환자가 아니라고 판단해서 못 맞췄을 경우 (False Negative)
- 암 환자가 아닌 사람을 암 환자라고 판단해서 못 맞췄을 경우 (False Positive)
- 암 환자가 아닌 사람을 암 환자가 아니라고 맞췄을 경우 (True Negative)

Classification Metics - Per Class Accuracy

각 클래스 마다의 accuracy를 더한 후 클래스의 갯수로 나눈다 imbalanced된 데이터셋에서도 결과가 하나의 숫자(single number)로 나온다

장점

- imbalanced된 데이터셋에 강하다.
- 하나의 숫자로 나오기 때문에 다른 모델과 비교하기 편하다.

단점

• 특정 Label의 갯수가 너무 작은 경우, (가령 암 환자가 5명밖에 없다면) 이를 정확히 맞추는 것은 통계적으로 매우어려운 반면 Metric에 끼치는 영향력이 너무 크다. (한두개만 못 맞춰도 accuracy가 너무 크게 감소한다)

	Predicted as positive	Predicted as negative				
Labeled as positive	80	20				
Labeled as negative	5	195				

암 환자를 맞춘 확률: 80명 / (20명 + 80명) = 80% 암 환자가 아닌 사람을 맞춘 확률: 195명 / (5명 + 195명) = 97.5%

Per Class Accuracy: (80% + 97.5%) / 2 = 88.75%

Classification Metics - log loss

Per-class Accuracy와 마찬가지로 imbalanced된 데이터셋에서도 결과가 하나의 숫자로 나온다 차이는 Per-class accuracy는 예측 결과를 기준으로, log-loss는 각 클래스의 확률을 기준으로 계산한다

장점

- imbalanced된 데이터셋에 강하다.
- 단순히 Label을 맞추냐 못 맞추냐를 넘어서서, 각 Label의 확률을 기준으로 점수가 책정된다. (가령 두 모델이 똑같이 의류 카테고리를 못 맞춘다고 하더라도, A모델은 0.31, B모델은 0.49라고 하면 B모델이 점수가 더 좋게나온다) 이를 soft-measurement라고 한다.

단점

- 특정 데이터 (내지는 특정 Label)을 못 맞췄을 경우 그 페 널티가 기하급수적으로 커진다. (∞까지 올라간다)
- log-loss가 좋아졌다고 해도 온라인 지표가 변하지 않을 가능성도 있다.

log-loss =
$$-\frac{1}{N}\sum_{i=1}^{N} y_i \log p_i + (1 - y_i) \log (1 - p_i)$$

우리가 이전에 본 cross-entropy와 유사하다 (또한 KL Divergence와도 유사하다)

```
from sklearn.metrics import log_loss

actual = ["의류", "가전제품", "의류", "기타"]
predict = [
# 각각
# 의류 / 가전제품 / 기타 에 속할 확률
      [0.7, 0.2, 0.1],
      [0.3, 0.5, 0.2],
      [0.5, 0.4, 0.1],
      [0.3, 0.3, 0.4],
]

log_loss(actual, predict)
```

1.7532789486599909

Regression Metics

Regression Metics - Mean Absolute Error(MAE)

두 값의 차이를 뺀 뒤 절대값을 씌운다 가장 기본적인 Regression Problem을 위한 측정 방식

$$MAE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|.$$

```
from sklearn.metrics import mean_absolute_error
actual = [1000, 1000, 1000, 1000]
predict = [900, 1000, 1100, 1200]
mean_absolute_error(actual, predict)
100.0
```

Regression Metics - Mean Squared Error(MSE)

15000.0

두 값의 차이를 뺀 뒤 제곱을 한다 MAE에 비해서 차이가 클수록 더 페널티가 들어간다

$$MSE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} (y_i - \hat{y}_i)^2.$$

```
from sklearn.metrics import mean_squared_error
actual = [1000, 1000, 1000, 1000]
predict = [900, 1000, 1100, 1200]
mean_squared_error(actual, predict)
```

Others

앞서 설명한 것은 가장 보편적인 예시이며, 실제로는 위 예시를 바탕으로 회사의 Key Metric에 맞게 튜닝해서 사용할 줄 알아야 한다

$$\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2},$$

MSE(Mean Squared Error)와 달리, 차이가 클수록 페널티를 덜주고 싶다면, log(label + 1)을 하는 방식으로 이를 구현할 수 있다

챗봇은 결과의 정확도를 정량적으로 평가하기 매우 어렵기 때문에, 오직 평가용으로 만든 딥러닝 모델로 결과를 평가하는 것도 가능하다.

Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses Lowe et al., 2017. https://goo.gl/D4hZo9

Live Coding

Q&A