RAJESH NAKKA, PhD

2 338rajesh@gmail.com **3** 38rajesh.github.io

in 338rajesh

338rajesh

J +91-8125240324

PhD with expertise in computational mechanics and machine learning. Skilled in Julia, Python, Git, and simulation tools like ABAQUS, with a strong focus on applying academic research to practical industrial R & D solutions. Ready to leverage academic rigour and innovative thinking in a dynamic industrial research environment.

Education

PhD, IISc Bengaluru, India 2018-2023

Thesis: Prediction of multi-physical properties of fibre-reinforced composites using deep learning

M.Tech, IIT Bombay, India 8.89/10.0 || 2012-2014

Thesis: Finite element simulation of bulk wave propagation in non-linear solids

B.Tech, JNTUH College of Engineering Hyderabad, India

 $77.03/100.0 \parallel 2008-2012$

[...]: Proficient, (...): Familiar Skills

Coding Languages [Julia, Python], (C++, Fortran, Matlab)

Finite Element Analysis tools [gmsh, ABAQUS, FreeCAD], (ANSYS APDL, FEniCSx)

Code & System Management [Git, Power shell] Deep Learning Frameworks [PyTorch], (TensorFlow)

Documentation [Latex, Markdown], (reStructuredText,)

Communication Languages [Telugu, English, Hindi]

Interests

Omputational Mechanics

High-Performance Computing

• Computational Software Development

Scientific Machine Learning

Experience

Research Consultant, Centre for Compressor Technology, City University of London

2023-Present

- Developed a generative deep learning model, WGAN-GP, capable of producing novel and valid rotor profiles of twin screw compressors, trained on 60000 samples synthesised in point cloud format.
- Designed & trained the generator to produce manufacturing grade smooth profiles utilising Bezier curves.
- Achieved comparable performance in displacement volume, inter lobe sealing line area and blowhole area for approximately 20% of the generated profiles, despite the model not being explicitly trained for performance.

Assistant Professor, Bapatla Engineering College, AP, India

- Taught Mechanics of Materials and Design of Machine Elements course to undergraduate students for three semesters, reaching out to more than 100 students each semester.
- Supervised four students for a bachelor's project on stress analysis of compound cylinders.

Post Graduate Engineer Trainee, Mahindra Research Valley, M & M, Chennai, India

2014-2015

- Acquired valuable insights into the industrial working culture by visiting various M & M plants involved in SUV and tractor production, gaining familiarity with product development cycles and plant operations.
- Engaged briefly with the Occupant Safety and Engine Design departments, deepening understanding of safety standards, engine development strategies, and their contribution to the successful product development.

Projects

Virtual Microstructure Generator

Julia, Python, ABAQUS | Article

- Developed a computationally efficient composite microstructure (RVE) generation method that can handle arbitrary inclusion shapes for large fibre volume fractions, using a novel union of n-spheres approach.
- Reduced the computation time from 100+ minutes to less than a second, using explicitly derived gradients and optimal coding practices, compared to the literature.
- ♦ Validated the resemblance between generated & actual microstructures by statistical & micro-mechanical analysis.

Homogenisation Tool for Multi-physical Properties Evaluation

- Julia, ABAQUS | [Article]
- Developed an *in-house homogenisation tool* for determining *thermo-elastic*, *thermal conduction and piezo-electric* properties of composite materials, using Variational Asymptotic Method formulation and Finite Element Method.
- Reduced computational time significantly in comparison to conventional FEM approach.
- Evaluated the influence of fibre cross-section profile on the effective multi-physical properties, using this tool.

CNN-based Surrogate Model for Predicting Multi-physical Properties PyTorch, Julia | [Article] [Repo] [Data]

- Developed a conventional neural network (CNN) model that is applicable for uni-directional composites containing wide range of fibre volume fractions (< 75%) and fibre-matrix material systems.
- Developed a simple *material property encoding scheme* to ensure that the model learns material information, in addition to the structural information from microstructure image.
- Predicted thermal conduction, thermal expansion and elastic moduli with the absolute percentage error less than 5%, for about 90% of the test samples.
- Enforced *physics-based HS bounds* as hard-constraints to ensure physically consistent model predictions.

FE Simulation of Bulk Wave Propagation in Non-Linear Solids

ANSYS APDL, Matlab | -

- Solved the governing equations for bulk wave propagation in an infinitely long cylindrical rod made up of *linear* (steel) and *non-linear* (Mooney-Rivlin two parameter model) materials, and the resulting *dispersion curves* are plotted.
- Proved, theoretically, that mixing two waves with frequency ratio 3 enhances the second harmonic amplitude by 61.8%. This improves the damage detection accuracy by reducing the noise interference.

Publications

J: Journal, C: Conference, U: Under Preparation, P: Patent

- [J1] Rajesh Nakka, D. Harursampath, M. Pathan, and S. A. Ponnusami, "A computationally efficient approach for generating RVEs of various inclusion/fibre shapes," *Composite Structures*, vol. 291, p. 115 560, Jul. 2022. DOI: 10.1016/j.compstruct.2022.115560.
- [J2] Rajesh Nakka, D. Harursampath, and S. A. Ponnusami, "A generalised deep learning-based surrogate model for homogenisation utilising material property encoding and physics-based bounds," *Scientific Reports*, vol. 13, no. 1, Jun. 2023. DOI: 10.1038/s41598-023-34823-3.
- [J3] Rajesh Nakka, A. P. Kumar, D. Harursampath, and S. A. Ponnusami, "Influence of fibre cross-section profile on the multi-physical properties of uni-directional composites," *Composite Structures*, vol. 321, p. 117321, Oct. 2023. DOI: 10.1016/j.compstruct.2023.117321.
- [J4] P. K. Attada, Rajesh Nakka, D. Harursampath, and S. A. Ponnusami, "Computational evaluation of absorption characteristics of ceramic-based auxetic materials in x-band frequencyrange," *Smart Materials and Structures*, Aug. 2023. DOI: 10.1088/1361-665x/acf53d.
- [C1] Rajesh Nakka, A. P. Kumar, D. Harursampath, and S. A. Ponnusami, "Multi-physical property prediction of fibre-reinforced composites using convolutional neural networks," International Conference on Composite Materials, Belfast, 2023.
- [C2] Rajesh Nakka, A. Kovacevic, and S. A. Ponnusami, "Designing novel rotor profiles of twin s crew compressors using generative deep learning," International Conference on Screw Machines, Dortmund, 2024.
- [U1] Rajesh Nakka, S. Patil, A. Kovacevic, and S. A. Ponnusami, Designing novel rotor profiles of twin screw compressors using generative deep learning.
- [U2] M. Naveen, Rajesh Nakka, and B. Gurumoorthy, Inverse design of irregular periodic porous structures with controllable physical properties using generative adversarial networks.

Positions of Responsibility

- Volunteered as a *system administrator* for the NMCAD laboratory during my PhD, for about two years. I was responsible for smooth running of High-Performance Computing (HPC) Rocks cluster containing ten computing nodes and slurm workload manager, managing licensed software and user accounts.
- ♦ Volunteered in technical conference AERES-2023, Aerospace Research Symposium, at IISc Bengaluru as a *core team member*. My responsibilities were to manage submissions and volunteers during the presentation sessions.
- Worked as a **teaching assistant** for machine design, mechanics of materials, engineering mathematics & flight vehicle structures courses during my masters at IIT Bombay and PhD at IISc Bangalore.
- **Founding team member** of Abhyuday, a social body of IIT Bombay during 2013-14. I was an *events manager* and responsible for organising NGO exhibitions and invited talks.

References

Prof. Dineshkumar Harursampath

Head, NMCAD Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Bengaluru,

mail: dineshkumar@iisc.ac.in

Prof. Ahmed Kovacevic

School of Science & Technology , Department of Engineering, City, University of London, Northampton Square, London, United Kingdom.

mail: a.kovacevic@city.ac.uk

Prof. Sathiskumar A Ponnusami

Aeronautics and Aerospace Research Centre, Department of Engineering, City, University of London, Northampton Square, London, United Kingdom. mail: sathiskumar.ponnusami@city.ac.uk,