Lab Assignments

- 1. WAP to check two matrices are equal or not. The user has to enter the order of two matrices and elements of two matrices. Then, these two matrix are compared.
 - a. If both matrix size and corresponding elements are equal, then it should display that the two matrices are equal.
 - b. If sizes of the two matrices are equal but the elements are not equal, then it should display that the matrix can be compared but are not equal.
 - c. If sizes of the two matrices are not equal, then it should display that the matrices cannot be compared.

```
Input 1: Enter the row and column size of matrix 1: 3 3
```

Enter the row and column size of matrix 2: 3 3

Enter the elements of matrix 1:

Enter the elements of matrix 2:

```
\begin{array}{cccc} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 5 & 7 & 0 \end{array}
```

Output 1: Both the matrices are equal.

Input 2: Enter the row and column size of matrix 1: 3 3

Enter the row and column size of matrix 2: 3 3

Enter the elements of matrix 1:

Enter the elements of matrix 2:

```
\begin{array}{cccc} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 5 & 7 & 0 \end{array}
```

Output 2: The matrices can be compared but are not equal.

Input 3: Enter the row and column size of matrix 1: 3 3 Enter the row and column size of matrix 2: 5 3

Output 3: Given matrices can not be compared.

2. WAP perform scalar matrix multiplication.

Input: Enter the row and column size of the matrix: 3 3

Enter the elements of the matrix:

```
3 2 1
6 5 4
5 7 9
```

Enter the scalar value: 5

Output: Matrix M=

```
3 2 1
6 5 4
5 7 9
5M=
15 10 5
```

30	25	20	
25	35	45	
erch	ange the	colu	

3. WAP to interchange the columns in the matrix.

Input: Enter the row and column size of the matrix: 3 3

Enter the elements of the matrix:

```
3 2 1
6 5 4
5 7 9
```

Enter the column numbers to interchange: 1 3

Output: Elements of the matrix before column interchange:

```
3 2 1
6 5 4
5 7 9
```

Elements of the matrix after column interchange:

1	2	3	
4	5	6	
9	7	9	

4. WAP to find the normal of a matrix. Normal of a matrix is the value which is equivalent to the square root of sum of squares of matrix elements.

Input: Enter the row and column size of the matrix: 3 3

Enter the elements of the matrix:

```
3 2 1
6 5 4
5 7 9
```

Output: Normal of the given matrix: 15.684

5. WAP that builds the PASCAL triangle of degree n and store it in a square matrix P of dimension n+1.

Input: Enter the degree of the triangle: 5

Output: Pascal triangle of degree 5:

```
1
1
      1
1
      2
            1
      3
1
            3
      4
1
            6
                         1
      5
            10
                  10
                         5
                               1
```

6. WAP to find the row with the maximum number of 1s.

Input: Enter the row and column size of the matrix: 5 5

Enter the elements of the matrix:

```
\begin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 1 \end{array}
```

Output: The given 2D array is:

$$\begin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 1 \end{array}$$

The index of row with maximum 1's is: 1

Home Assignments

1. WAP to		for an e	element	in a ro	w wise and column wise sorted	
11107711117	•	+la aa	,,, and a	ممسداد	size of the matrix: 4 4	
Input:						
4	Ente	er the ele	ements	of the f	ow wise and column wise sorted	
matrix:	150	2 21 20				
		3 31 39				
		6 36 43				
		8 37 48				
		4 39 50		,	27	
0.4		er the ele			n: 3/	
Output		given n		5:		
		3 31 39				
		18 26 36 43				
		25 28 37 48				
		30 34 39 50				
		The given value for searching is: 37 The element found at the position in the matrix is: 2, 2				
2 WADY				-		
binary	-	rogram	III C to	return	only the unique rows from a given	
Input:		r the ro	w and a	olumn	size of the matrix: 4 5	
ınput.						
		Enter the elements of the binary matrix: 0 1 0 0 1				
		10110				
	-	01001				
		100				
Outnu	-		natrix is			
Output		The given matrix is: 0 1 0 0 1				
		110				
	_	001				
		10100				
		The unique rows of the given matrix are:				
		0 1 0 0 1				
	10	1 1 0				
		100				
3. WAP to	o find th	e sum o	f lower	triangı	ılar matrix.	
Input:					size of the matrix: 3 3	
•		r the ele				
	3	2	1			
	6	5	4			
	5	7	9			
Output	t: Sum	of the	lower tr	iangula	ar matrix: 35	
4. WAP to	o interch	nterchange diagonals of a matrix.				
Input:	Ente	Enter the row and column size of the matrix: 4 4				
_	Ente	Enter the elements of the matrix:				
	3	2	1	4		
	6	5	4	2		
	5	7	9	6		

Output: The given matrix is: After interchanging the diagonals the given matrix is:

5. WAP to find the sum of minor diagonals of a matrix.

Input: Enter the row and column size of the matrix: 5 5

Enter the elements of the matrix:

Output: The given matrix is:

Sum of the minor diagonal of the matrix: 18