# Глава 1

# Элементы теории графов

Первая работа о теории графов была опубликована в 1736 году в Санкт-Петербурге Леонардом Эйлером. Эта была знаменитая задача о кенигсбергских мостах. С тех пор графы широко исследовались как теоретически, так и практически. В данном разделе будут рассмотрены только азы теории графов.

#### 1.1 Основные понятия

В различных источниках встречаются разные определения графов.

Формально, можно сказать, что граф — это совокупность множества X, элементы которого называются вершинами и множества упорядоченных пар вершин, элементы которого называются дугами. Граф обычно обозначается (X,A).

В некоторых задачах имеет значение какая из вершин дуги является начальной, а какая конечной, а в некоторых нет. В первом случае граф называется *ориентированным* или *орграфом*. Во втором случае — *неориентированным*. Дуги в этом случае часто называются *ребрами*.

В качестве примера ориентированного и неориентированного графов можно привести поиск правильного маршрута от точки A до точки B в городе, например, в центре Саратова с его односторонним движением на улицах. Пешеходу не важно разрешенное направление движения — маршрут будет проложен по неориентированному графу, т. е., если существует путь от точки A до точки B, то существует путь от точки B до точки A. Для водителя необходимо учитывать разрешенное направление движения и из того, что существует путь от точки A до точки B, необязательно следует, что существует путь от точки B до точки A.

Довольно часто каждому ребру графа ставят в соответствие какую-нибудь метку, например расстояние между двумя точками. Такую метку называют *весом*, а граф — *взвешенным* или помеченным.

Графически ребра ориентированного графа представляются со стрелкой, показывающей направление от начальной точки к конечной. На рисунке слева представлен неориентированный граф, справа — ориентированный. Изображение графа помогает понять структуру, но только для графа с малым числом





Рис. 1.1: Пример неориентированного и ориентированного графов

вершин и ребер. Однако не всегда по чертежу можно понять, что изображен один и тот же граф.

Например, на рисунке представлены два графа. На первый взгляд они разные, но, если выписать все ребра для обоих графов, становится понятно, что это один и тот же граф, просто по-разному представленный.

Действительно, список ребер: 0-1; 0-2; 0-5; 0-6; 3-4; 3-5; 4-5; 4-6; 7-8; 9-10; 9-11; 9-12; 11-12. В примерах выше и дальше, будут рассматриваться *простые графы*. Простой граф — это граф, не



Рис. 1.2: Визуальное представление графа

имеющий кратных ребер (две вершины могут быть соединены только одним ребром) и петель (ребро, начинающееся и заканчивающиеся в одной вершине).

Граф является nолным, если он содержит все возможные ребра. Таких ребер может быть не более N(N-1)/2, где N — количество вершин графа. Два графа называются uзоморфными, если можно поменять метки вершин одного графа таким образом, чтобы набор ребер в итоге для обоих графов стал идентичным.

Если имеется ребро, соединяющее две вершины графа, то такие вершины называются смежными. А ребро — инцидентным этим вершинам. Степень вершины неориентированного графа — это количество инцидентных ей ребер. Для ориентированного графа можно говорить о полустепени исхода и полустепени захода. Это, соответственно, число ребер исходящих и заходящих в данную вершину.

Если все вершины имеют одинаковую степень, то говорят о *регулярных* графах. Например,  $K_5$  граф — полный граф с пятью вершинами, имеющий степень вершин 5.



 $\Pi o \partial \rho p a \phi$  — множество ребер и вершин, которые сами представляют из себя граф.

Граф называется планарным, если на чертеже его ребра не пересекаются.

Путь в графе — это последовательность вершин  $a_0, a_1, a_2, \ldots, a_n$ , таких что для любых i > 0 вершина  $a_i$  смежна с вершиной  $a_{i-1}$ . Простой путь — путь, все вершины и ребра которого различны.

Если существует простой путь, начинающийся и заканчивающийся в одной вершине, такой путь называется *циклом*. Например, на рисунке 1.2 циклами являются: 0-6-4-5-0; 0-6-4-3-5-0; 3-4-5-3; 9-11-12-9. Цикл должен содержать как минимум 3 различных вершины и три различных ребра. Длина пути — количество ребер, составляющих путь (или количество вершин минус единица) для невзвешенного графа и сумма весов соответствующих ребер для взвешенного графа.

Неориентированный граф называется *связным*, если из любой вершины графа существует путь в любую другую вершину.

Несвязный граф состоит из некоторого множества *связных компонент*, представляющих собой максимальные связные подграфы.

Например, представленный на рисунке 1.2 граф несвязный, содержит три связные компоненты. Первая состоит из вершин 0, 1, 2, 3, 4, 5, 6; вторая — из вершин 7, 8 и третья — из вершин 9, 10, 11, 12.

В большинстве задач граф содержит малое количество из возможных ребер. Введем понятие насы-иенность — среднее значение степени вершин,  $\frac{2E}{N}$ , где E — количество ребер, N — количество вершин.

Граф является насыщенным (плотным), если количество его ребер пропорционально  $N^2$ . и разреженным в противоположном случае.

В зависимости от насыщенности определяется какой из алгоритмов необходимо использовать. Пусть есть два алгоритма, решающих одну задачу. Один имеет сложность  $O(N^2)$ , другой —  $O(E \log E)$ .

В случае плотного графа с N=1000 и  $E=10^6$   $O(N^2)=10^6$ ,  $O(E\log E)\approx 2\times 10^7$ . Очевидно, что первый алгоритм выгоднее.

В случае разреженного графа с  $N=10^6$  и  $E=10^6$   $O(N^2)=10^{12},$   $O(E\log E)\approx 2\times 10^7.$  Очевидно, что выгоднее использовать второй алгоритм.

# 1.2 Представление графов

Существует несколько способов представления графов. Все зависит от постановки задачи. Рассмотрим основные способы представления графов — матрицу смежности, список смежности.  $Mampuua\ cmeжноcmu$  — это матрица  $N\times N$ , удовлетворяющая следующему свойству:

$$\begin{cases} a[i][j] = 1, \text{если вершины } i \text{ и } j \text{ смежные} \\ a[i][j] = 0, \text{если вершины } i \text{ и } j \text{ несмежные} \end{cases}$$

Для случая взвешенного графа в случае смежных вершин в ячейку матрицы ставится вес ребра. Например, для графа, представленного на рисунке 1.2 матрица смежности имеет следующий вид:

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----|---|---|---|---|---|---|---|---|---|---|----|----|----|
| 0  | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 0  | 0  |
| 1  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 2  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 3  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 4  | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 0  | 0  |
| 5  | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 6  | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 7  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0  | 0  | 0  |
| 8  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0  | 0  | 0  |
| 9  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 1  | 1  |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 0  | 0  |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 0  | 1  |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1  | 0  |

Для простого неориентированного связного графа должны выполняться два условия:

- 1. Диагональ должна содержать нули (петель нет).
- 2. Матрица должна быть симметрична относительно главной диагонали.

Для ориентированного графа матрица не является симметричной.

В нашем случае граф несвязный, но можно увидеть, что для максимально связных подграфов (0-1-2-3-4-5-6) и (9-10-11-12) подматрицы симметричны.

Главный недостаток матрицы смежности — занимает  $O(N^2)$  памяти и содержит слишком много нулей.

Преимущества использования матрицы смежности — при вставке, поиске и удалении ребра i-j. В этих случаях надо проверить чему равно a[i][j]. Для вставки ребра надо присвоить a[i][j] = a[j][i] = 1, для удаления — a[i][j] = a[j][i] = 0.

Для большинства остальных алгоритмов лучше воспользоваться списком смежности — каждой вершине ставится в соответствие набор смежных вершин.

Например, для графа, представленного на рисунке 1.2 матрица смежности имеет следующий вид:

```
\rightarrow 1 \rightarrow
                                                               5 \rightarrow
                                                                                  6 \rightarrow \emptyset
 1
                      0 \rightarrow
 2
                      0 \rightarrow
                                           \bigcirc
 3
                       4 \rightarrow
                                           5 \rightarrow
                                                               \bigcirc
 4
                     3 \rightarrow
                                           5 \rightarrow
                                                               6 \rightarrow
                                                                                  \bigcirc
 5
            \rightarrow 0 \rightarrow
                                           3 \rightarrow
                                                               4 \rightarrow
 6
                     0 \rightarrow
                                         4 \rightarrow
                                                               \bigcirc
 7
                     8 \rightarrow
                                           \bigcirc
 8
            \rightarrow 7 \rightarrow
                                           \bigcirc
 9
                    10 \rightarrow 11 \rightarrow 12 \rightarrow \emptyset
10
           \rightarrow 9 \rightarrow
                                           \bigcirc
11
           \rightarrow 9 \rightarrow
                                           12 \rightarrow
                                                               \bigcirc
12
                                           11 \rightarrow
           \rightarrow 9 \rightarrow
```

По памяти список смежности занимает O(N+E).

Так как размер каждого списка соответствует степени вершины, следовательно, поиск, вставка и удаление ребра занимает примерно O(2E/V) (среднее значение степени вершины).

# 1.3 Обход графа в глубину

Алгоритм обхода в глубину: посетив вершину, помечаем ее меткой, что она посещена. Ищем смежную непосещенную вершину и рекурсивно вызываем обход в глубину для этой вершины. Повторяем процесс до тех пор, пока все вершины не будут посещены.

Название в глубину происходит из-за того, что идем «вглубь» графа до тех пор, пока это возможно. Например, для заданного графа начинаем с нулевой вершины. Зеленым цветом будет отмечена текущая вершина, синим — уже посещенные.

| Граф  | Результат | Действие с текущей | Массив посещенных     | Поиск смежной     |
|-------|-----------|--------------------|-----------------------|-------------------|
|       |           | вершиной           | вершин                | вершины           |
| 6 1 2 | 0         | Помечаем 0 как     | [1, 0, 0, 0, 0, 0, 0] | Смежная вершина — |
|       |           | посещенную         |                       | 1                 |

| 1.5. ОБХОД ГРАФА | D 1713 DYII 13 |                              |                       | 0                                                                                                         |
|------------------|----------------|------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|
| Граф             | Результат      | Действие с текущей           | Массив посещенных     | Поиск смежной                                                                                             |
|                  | !              | вершиной                     | вершин                | вершины                                                                                                   |
| 6 2              |                |                              |                       |                                                                                                           |
| 3                | 0, 1           | Помечаем 1 как<br>посещенную | [1, 1, 0, 0, 0, 0, 0] | Смежная вершина—<br>3                                                                                     |
| 6 4 2            | 0, 1, 3        | Помечаем 3 как<br>посещенную | [1, 1, 0, 1, 0, 0, 0] | Смежных<br>непосещенных<br>вершин нет.<br>Возвращаемся на<br>шаг назад. Ищем<br>смежную вершину<br>для 1. |
|                  | 0, 1, 3        |                              | [1, 1, 0, 1, 0, 0, 0] | Смежных<br>непосещенных<br>вершин нет.<br>Возвращаемся на<br>шаг назад. Ищем<br>смежную вершину<br>для 0. |

| 6     | Глава 1. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ |                              |                             |                          |  |  |  |  |
|-------|---------------------------------|------------------------------|-----------------------------|--------------------------|--|--|--|--|
| Граф  | Результат                       | Действие с текущей вершиной  | Массив посещенных<br>вершин | Поиск смежной<br>вершины |  |  |  |  |
| 6 4 2 |                                 |                              |                             |                          |  |  |  |  |
| 3     | 0, 1, 3                         |                              | [1, 1, 0, 1, 0, 0, 0]       | Смежная вершина—<br>2    |  |  |  |  |
| 5 2   |                                 |                              |                             |                          |  |  |  |  |
| 3     | 0, 1, 3, 2                      | Помечаем 2 как посещенную    | [1, 1, 1, 1, 0, 0, 0]       | Смежная вершина—<br>5    |  |  |  |  |
| 6 10  |                                 |                              |                             |                          |  |  |  |  |
| 3     | 0, 1, 3, 2, 5                   | Помечаем 5 как<br>посещенную | [1, 1, 1, 1, 0, 1, 0]       | Смежная вершина—<br>6    |  |  |  |  |
| 6 4   |                                 |                              |                             |                          |  |  |  |  |
| 3     | 0, 1, 3, 2, 5, 6                | Помечаем 6 как<br>посещенную | [1, 1, 1, 1, 0, 1, 1]       | Смежная вершина—<br>4    |  |  |  |  |

| Граф   | Результат           | Действие с текущей           | Массив посещенных     | Поиск смежной                                  |
|--------|---------------------|------------------------------|-----------------------|------------------------------------------------|
|        |                     | вершиной                     | вершин                | вершины                                        |
| 6 10 5 |                     |                              |                       |                                                |
| 3      | 0, 1, 3, 2, 5, 6, 4 | Помечаем 4 как<br>посещенную | [1, 1, 1, 1, 1, 1, 1] | Все вершины<br>посещены.<br>Завершаем алгоритм |

### Алгоритм 1: Обход в глубину. Рекурсивный случай.

**Вход**: Граф, представленный списком смежности Gr, N- число вершин графа, A- массив посещенных вершин, x- вершина, с которой начинаем обход

Выход: Список последовательно посещенных вершин

#### начало алгоритма

- $\cdot$  присваиваем A[x] = 1 (помечаем вершину x как посещенную);
- $\cdot$  выводим x на экран;

цикл для i=0  $\partial o$  Gr[x].size() выполнять

если существует непосещенная вершина, смежная вершине стека (A[Gr[x][i]] == 0) то  $|\cdot|$  вызываем эту функцию для x = Gr[x][i];

#### конец алгоритма

| Текущая вершина | Gr[x]        | Смежная вершина | Массив А  | fl    | Стек            | Результат           |
|-----------------|--------------|-----------------|-----------|-------|-----------------|---------------------|
| 0               |              |                 | [1000000] | true  | 0               | 0                   |
| 0               | [1, 2, 4, 5] | 1               | [1100000] | true  | [1, 0]          | 0, 1                |
| 1               | [0, 3]       | 3               | [1101000] | true  | [3, 1, 0]       | 0, 1, 3             |
| 3               | [1]          |                 | [1101000] | false | [1, 0]          | 0, 1, 3             |
| 1               | [0, 3]       |                 | [1101000] | false | [0]             | 0, 1, 3             |
| 0               | [1, 2, 4, 5] | 2               | [1111000] | true  | [2, 0]          | 0, 1, 3, 2          |
| 2               | [0, 5]       | 5               | [1111010] | true  | [5, 2, 0]       | 0, 1, 3, 2, 5       |
| 5               | [0, 2, 6]    | 6               | [1111011] | true  | [6, 5, 2, 0]    | 0, 1, 3, 2, 5, 6    |
| 6               | [4, 5]       | 4               | [1111111] | true  | [4, 6, 5, 2, 0] | 0, 1, 3, 2, 5, 6, 4 |
| 4               | [0, 6]       |                 | [1111111] | false | [6, 5, 2, 0]    | 0, 1, 3, 2, 5, 6, 4 |
| 6               | [4, 5]       |                 | [1111111] | false | [5, 2, 0]       | 0, 1, 3, 2, 5, 6, 4 |
| 5               | [0, 2, 6]    |                 | [1111111] | false | [2, 0]          | 0, 1, 3, 2, 5, 6, 4 |
| 2               | [0, 5]       |                 | [1111111] | false | [0]             | 0, 1, 3, 2, 5, 6, 4 |
| 0               | [1, 2, 4, 5] |                 | [1111111] | false | 0               | 0, 1, 3, 2, 5, 6, 4 |

В таблице под стеком понимается стек вызовов рекурсивных функций.

### 1.4 Обход графа в ширину

Другой способ обхода графа — это обход в ширину. Для работы алгоритма используем очередь. Начинаем рассматривать с некоторой вершины, записываем в очередь все смежные с ней непосещенные

вершины, отмечаем их как посещенные. Извлекаем из очереди голову и повторяем процесс поиска смежных вершин до тех пор, пока очередь не пуста.

Рассмотрим тот же пример, что и в предыдущем разделе. Начинаем с вершины 0. Также создаем массив посещенных вершин. Зеленым цветом показана текущая вершина, синим — смежные, красным — уже посещенные (кроме текущей).

| Граф   | Результат        | Действие с текущей                           | Массив посещенных     | Поиск смежных                                                                               |
|--------|------------------|----------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|
| - 124  |                  | вершиной                                     | вершин                | вершин                                                                                      |
| 6 10 2 |                  |                                              |                       |                                                                                             |
| 3      | 0                | Помечаем 0 как<br>посещенную                 | [1,0,0,0,0,0,0]       | Смежные вершины — 1, 2, 4, 5 Помечаем их как посещенные и записываем в очередь: 1, 2, 4, 5. |
| 6 10   |                  |                                              |                       |                                                                                             |
| 3      | 0, 1, 2, 4, 5    | Текущая вершина— 1. Извлекаем ее из очереди. | [1, 1, 1, 0, 1, 1, 0] | Смежная вершина — 3. Помечаем ее как посещенную и записываем в очередь: 2, 4, 5, 3.         |
| 6 0    |                  |                                              |                       |                                                                                             |
| 3      | 0, 1, 2, 4, 5, 3 | Текущая вершина— 2. Извлекаем ее из очереди. | [1, 1, 1, 1, 1, 0]    | Смежных непосещенных вершин нет. Очередь: 4,5,3.                                            |

| Граф  | Результат           | Действие с текущей                           | Массив посещенных     | Поиск смежных                                                                    |
|-------|---------------------|----------------------------------------------|-----------------------|----------------------------------------------------------------------------------|
| - 1-4 |                     | вершиной                                     | вершин                | вершин                                                                           |
| 6 10  |                     |                                              |                       |                                                                                  |
| 3     | 0, 1, 2, 4, 5, 3    | Текущая вершина— 4. Извлекаем ее из очереди. | [1, 1, 1, 1, 1, 1, 1] | Смежная вершина — 6. Помечаем ее как посещенную и записываем в очередь: 5, 3, 6. |
| 5 2   | 0, 1, 2, 4, 5, 3, 6 | Текущая вершина —                            | [1, 1, 1, 1, 1, 1, 1] | Все вершины                                                                      |
|       | 3, 1, 2, 1, 3, 0, 0 | 5. Извлекаем ее из<br>очереди.               | [-, -, -, -, -, -, -] | обошли, дальше последовательно извлекаем вершины из очереди 3,6.                 |

| Текущая вершина | Gr[x]        | Mассив $A$ | Очередь      | Результат           |
|-----------------|--------------|------------|--------------|---------------------|
| 0               | [1, 2, 4, 5] | [1110110]  | [1, 2, 4, 5] | 0, 1, 2, 4, 5       |
| 1               | [0, 3]       | [1111110]  | [2, 4, 5, 2] | 0, 1, 2, 4, 5, 3    |
| 2               | [0, 5]       | [1111110]  | [4, 5, 3]    | 0, 1, 2, 4, 5, 3    |
| 4               | [0, 6]       | [1111111]  | [5, 3, 6]    | 0, 1, 2, 4, 5, 3, 6 |
| 5               | [0, 2, 6]    | [1111111]  | [3, 6]       | 0, 1, 2, 4, 5, 3, 6 |
| 3               | [1]          | [1111111]  | [6]          | 0, 1, 2, 4, 5, 3, 6 |
| 6               | [0, 4, 5]    | [1111111]  | [Ø]          | 0, 1, 3, 2, 5, 6    |

#### Алгоритм 2: Обход в ширину.

**Вход**: Граф, представленный списком смежности Gr, N- число вершин графа, x- вершина, с которой начинаем обход

Выход: Список последовательно посещенных вершин

#### начало алгоритма

- · создаем очередь и инициализируем ее;
- $\cdot$  создаем массив A размерности N и заполняем его нулями;
- $\cdot$  присваиваем A[x] = 1 (помечаем вершину x как посещенную);
- $\cdot$  помещаем вершину x в очередь;
- $\cdot$  выводим x на экран;

цикл пока очередь не пуста выполнять

 $\cdot$  извлекаем голову очереди (x);

цикл для i=0  $\partial o$  Gr[x].size() выполнять

если существует непосещенная вершина, смежная x (A[Gr[x][i]] == 0) то

- y = Gr[x][i];
- $\cdot$  помечаем y как посещенную вершину;
- помещаем ее в очередь;
- выводим на экран;

если остались непосещенные вершины то

• вызываем рассмотренный алгоритм для непосещенной вершины;

#### конец алгоритма