H21間1

(1)
$$Sq = \lambda a$$
; $a Ta = \frac{(Sai)^T}{(Sa)} = \frac{1}{\lambda i \lambda j} a : S^T Sa$; $Sa = \lambda j a$; $(Saj)^T a := \lambda j a j Ta$; $PPP^T PPT^T PPT^T$
 $S = PPP^T$, $PPT = 3JSa := \lambda j a j Ta$; $PPP^T PPT^T PPT^T PPT^T PPT^T = \lambda i a i \lambda i a i$
 $PPT = \lambda i P Ta = \lambda i a i \lambda i a i$
 $PPT = \lambda i P Ta = \lambda i A i \lambda i a i$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$
 $(\lambda i - \lambda j) a Ta = 0$

(3)
$$2 \le | \le n$$
 | $||x|| = | b' > b' > 1$ | $||x|| = 0$

Here may $||Sz||$
 $||Sz||$
 $||Sz|| = 0$
 $||x|| = 1$
 $||Sz||^2 = \cdots = ||DP^Tz||^2$
 $||Sz||^2 = \cdots = ||DP^Tz||^2$
 $||Sz||^2 = 0$
 $|Sz||^2 = 0$
 $|Sz||^2$