Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_șt-nat*

Barem de evaluare și de notare

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$x+2=\frac{2+10}{2}$	3p
	x = 4	2 p
2.	$\Delta = 44$	2p
	Valoarea minimă a funcției f este egală cu $-\frac{\Delta}{4a} = -11$	3 p
3.	$x^2 - 2x - 8 = 0$	3 p
	$x_1 = -2$ și $x_2 = 4$, care verifică ecuația	2 p
4.	Sunt 45 de numere pare de două cifre, deci sunt 45 de cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	2n
	nr. cazuri posibile 90 2	2 p
5.	$\vec{u} = -\vec{v} \Leftrightarrow a - 2 = -3$	3p
	a = -1	2 p
6.	$\cos A = \frac{16 + 25 - 36}{2 \cdot 4 \cdot 5} =$	3p
	$=\frac{1}{8}$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	0 0 1	
	$\det B = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = 0 + 0 + 0 - 1 - 0 - 0 =$	3 p
	$\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$	
	=-1	2 p
b)	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	
	$AB = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	2p
	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	
	$BA = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow AB = BA$	
	$BA = \begin{vmatrix} 1 & 0 & 1 \end{vmatrix} \Rightarrow AB = BA$	3 p
c)	$\det(B + xA) = \begin{vmatrix} 0 & x & 1 \\ x & 1 & x \\ 1 & x & 0 \end{vmatrix} = 2x^2 - 1$	
	$\det(B+xA) = \begin{vmatrix} x & 1 & x \end{vmatrix} = 2x^2 - 1$	3 p
	$\begin{vmatrix} 1 & x & 0 \end{vmatrix}$	
	$2x^2 - 1 = 1 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 1$	2 p
2.a)	$4*5 = 4\cdot 5 - 4(4+5-5) =$	3 p
	=4	2p

b)	x * y = xy - 4x - 4y + 16 + 4 =	2p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4 pentru orice numere reale x şi y	3 p
c)	x*4=4*x=4 pentru orice număr real x	2p
	1*2*3**2014 = (1*2*3)*4*(5**2014) = 4*(5**2014) = 4	3 p

SUBIECTUL al III-lea		(30 de puncte)
1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3}{x^2 + 3} =$	2p
	=1	3p
b)	$f'(x) = \frac{(x^2 - 3) \cdot (x^2 + 3) - (x^2 - 3) \cdot (x^2 + 3)}{(x^2 + 3)^2} =$	2p
	$= \frac{2x(x^2+3)-2x(x^2-3)}{(x^2+3)^2} = \frac{12x}{(x^2+3)^2}, \ x \in \mathbb{R}$	3р
c)	$f''(x) = \frac{36(1-x^2)}{(x^2+3)^3}, \ x \in \mathbb{R}$	3р
	$f''(x) > 0$ pentru orice $x \in (-1,1) \Rightarrow f$ este convexă pe intervalul $(-1,1)$	2p
2.a)	$\int_{1}^{e} f(x) \cdot f'(x) dx = \frac{1}{2} f^{2}(x) \Big _{1}^{e} =$	3p
	$= \frac{1}{2} (f^{2}(e) - f^{2}(1)) = \frac{1}{2}$	2 p
b)	$\int_{1}^{e} x^{3} f(x) dx = \int_{1}^{e} \left(\frac{x^{4}}{4}\right) \ln x dx = \frac{x^{4}}{4} \ln x \Big _{1}^{e} - \int_{1}^{e} \frac{x^{4}}{4} \cdot \frac{1}{x} dx =$	2 p
	$= \frac{e^4}{4} - \frac{x^4}{16} \Big _{1}^{e} = \frac{3e^4 + 1}{16}$	3р
c)	$\mathcal{A} = \int_{1}^{e} f(x) dx = \int_{1}^{e} \ln x dx = \left(x \ln x - x\right) \Big _{1}^{e} =$	3p
	$=(e \ln e - e) - (\ln 1 - 1) = 1$	2p