Location 7: Logistics Network Design

- What makes logistics network design hard?
 - Resources are lumpy (both production and transport)
 - ⇒ minimum effective size for each facility
 - ⇒ fixed production cost (cost that does not depend on facility size)
 - ⇒ economies of scale (more of one thing) and scope (many things)
 - Fixed production + variable transport costs can be used by the UFL model to determine the number and location of NFs
 - Don't need to identify actual fixed production costs:
 - Will, instead, used intercept term of linear regression fit

Transport Cost if NF at every EF

Note: $d_a^{\ 0}$ and $d_a > 0$ even when d = 0

$$TC = \sum_{i \in Y}^{\text{fixed cost}} k_i + \sum_{i \in Y}^{\text{transport cost}} c_{ij}$$

Fixed Cost and Economies of Scale

- Cost data from existing facilities can be used to fit linear estimate
 - Economies of scale in production $\Rightarrow k > 0$ and $\beta < 1$

$$TPC_{\rm act} = \max_{f < f_{\rm max}} \left\{ TPC_{\rm min}, TPC_0 \left(\frac{f}{f_0} \right)^{\beta} \right\}$$

$$\beta = \begin{cases} 0.62, & \text{Hand tool mfg.} \\ 0.48, & \text{Construction} \\ 0.41, & \text{Chemical processing} \\ 0.23, & \text{Medical centers} \end{cases}$$

$$TPC_{\rm est} = \frac{k}{f} + c_p f$$

$$\begin{cases} PPC_{\rm act} = \frac{TPC_{\rm act}}{f} = \frac{TPC_0}{f_0^{\beta}} f^{\beta-1} \\ PPC_{\rm est} = \frac{k}{f} + c_p \end{cases}$$

$$k = \text{fixed cost}$$

$$k = \text{constant unit production cost}$$

 $f_{\text{MES}} = Minimum Efficient Scale$

- Problem: Popco currently
 has 42 bottling plants (green
 circles) across the western
 U.S. and wants to know if
 they should consider
 reducing or adding plants to
 improve their profitability.
- Solution: Formulate as an UFL to determine the number of plants that minimize Popco's production, procurement, and distribution costs.

Following representative information is available for each of N current plants (DC) i:

$$xy_i$$
 = location
$$f_i^{DC}$$
 = aggregate production (tons)
$$TPC_i$$
 = total production and procurement cost
$$TDC_i$$
 = total distribution cost

 Assuming plants are (monetarily) weight gaining since they are bottling plants, so UFL can ignore inbound procurement costs related to location

ŷ(p, x) = p[1] .+ p[2]*x
loss(p, x, y) = sum((y .- ŷ(p, x)).^2)
k, cp = optimize(p -> loss(p, DC.fDC, DC.TPC), [0., 1.]).minimizer
2-element Vector{Float64}:
 1.0603652532813296e7

126.15062860391504

- Difficult to estimate fixed cost of each new facility because this cost must not include any cost related to quantity of product produced at facility.
- Use plant (DC) production costs to find UFL fixed costs via linear regression
 - variable production costs c_p do not change and can be cut

$$TPC = \sum_{i \in N} TPC_i = \sum_{i \in N} (k + c_p f_i^{DC})$$
(only keep k for UFL)

 Allocate all 3-digit ZIP codes to closest plant (up to 200 mi max) to serve as aggregate customer demand points.

$$M_{i} = \left\{ j : \arg \min_{h} d_{hj} = i \text{ and } d_{ij} \le d_{\max} \right\}$$

$$d_{\max} = 200 \text{ mi}$$

$$M = \bigcup_{i \in N} M_{i}$$

```
for r in eachrow(z3)
    d = Dgc([r.LON r.LAT], hcat(DC.LON, DC.LAT)) * 1.2
    idx = argmin(d)[2]
    if d[idx] <= 200
        r.IDX = idx
    end
end
filter!(r -> r.IDX != 0, z3)
```

3. Allocate each plant's demand (tons of product) to each of its customers based on its population.

$$f_{j \in M_i} = f_i^{DC} \frac{q_j}{\sum_{h \in M_i} q_h}$$

 q_j = population of EFj

$$f_5 = f_2^{DC} \frac{q_5}{q_5 + q_6}$$

```
gdf = groupby(z3, :IDX)
z3 = transform(gdf, :POP => sum => :DCPOP)
z3 = leftjoin(z3, DC[!, [:IDX, :fDC]], on=:IDX)
z3.f = map(r -> r.fDC * r.POP / r.DCPOP, eachrow(z3))
```

4. Estimate a nominal transport rate (\$/ton-mi) using the ratio of total distribution cost (\$) to the sum of the product of the demand (ton) at each customer and its distance to its plant (mi).

$$r_{\text{nom}} = \frac{\sum_{i \in N} TDC_i}{\sum_{i \in N} \sum_{j \in M_j} f_j d_{ij}^a}$$

2.8625376133920297

5. Calculate UFL variable transportation cost c_{ij} (\$) for each possible NF site i (all customer and plant locations) and EF site j (all customer locations) as the product of customer j demand (ton), distance from site i to j (mi), and the nominal transport rate (\$/ton-mi).

$$\mathbf{C} = \left[c_{ij} \right]_{\substack{i \in M \cup N \\ j \in M}} = \left[r_{\text{nom}} f_j d_{ij}^a \right]_{\substack{i \in M \cup N \\ j \in M}}$$

```
# Include demand + DC locations for NF sites
NF = hcat(vcat(z3.LON, DC.LON), vcat(z3.LAT, DC.LAT))
D = Daa(NF, hcat(z3.LON, z3.LAT), z3.ALAND)
C = rnom*z3.f'.*D
```

6. Solve as UFL, where *TC* returned includes all new distribution costs and the fixed portion of production costs.

$$TC = \sum_{i \in Y}^{\text{fixed cost}} k_i + \sum_{i \in Y}^{\text{transport cost}} c_{ij}$$

$$n = |M \cup N|, \quad \text{number of potential NF sites}$$

m = |M|, number of EF sites

```
y, TC = ufl(fill(k, size(C, 1)), C)

Add: 7.645948563275278e8

Xchg: 7.35417248086411e8

Add: 7.35417248086411e8

Drop: 7.351590430439293e8

Xchg: 7.34021255286948e8

Add: 7.34021255286948e8

Drop: 7.34021255286948e8
```

3×3 DataFrame			
Row	-	Orig	New
	String	Float64	Float64
1	No. of NFs	42.0	27.0
2	TDC	4.49367e8	4.47723e8
3	TC	8.9472e8	7.34021e8

% reduction is TC = 17.96078981797282

- Results: Original 42 plants (red) reduced to 27 (green circles),
 TDC stayed about the same but TC decreased by 18%
- Note: The new plants are a mix of
 - Original plants
 - New plants very close to a closed original plant (why?)
 - New plants far from any of the original plants
- Question: If an original plant is kept, will it have sufficient capacity (since fewer plants)
- Question: If Popco was planning to expand to serve the entire continental U.S., how could the current results be utilized

