Leakage Resilient Non-Malleable Secret Sharing

Gianluca Brian

Sapienza University of Rome Rome, Italy

> 12-13 october 2020 Part 2

State of the art

Tampering model		Leakage model	Reference	Notes
		1	[GK18]	
1-time	independent tampering	1	[SV18]	
		Bounded-leakage	[KMS18]	
1-time	joint tampering	1	[GK18]	${\cal B}$ partition of ${\cal T}$
1-time	cover-free tampering	1	[GSZ20]	
<i>p</i> -time	independent tampering	1	[BS18]	NAT
		1	[ADN+20]	NAT, NACR
<i>p</i> -time	joint tampering	Bounded-leakage	[BFOSV20]	${\cal B}$ partition of ${\cal T}$
		1	[BFOSV20]	Semi-adaptive partitioning
continuous	independent tampering	Noisy-leakage*	[FV19]	Non-standard leakage model, ramp
		Noisy-leakage*	[BFV19]	Non-standard leakage model
continuous	joint tampering	Bounded-leakage	[BFV19]	CRS model
/	/	Bounded-leakage	[KMZ20]	$O(t/\log(t))$ -sized partitioning
/	1	Bounded-leakage	[CGGL20]	(0.99n)-sized partitioning, n -out-of- n

Building blocks

• A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A *t*-out-of-*n* Shamir Secret Sharing scheme (Share t_n^t , Rec t_n^t) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share, Rec, taken as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A *t*-out-of-*n* Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share k, Reck) taking as input values in k, where $k = 1 + \lfloor t/2 \rfloor$.
- \bullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share t_n^t , Rec t_n^t) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share k, Reck) taking as input values in k, where $k = 1 + \lfloor t/2 \rfloor$.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_L, \sigma_R) \leftarrow \$ NMEnc(\mu);$

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share t_n , Rec t_n) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share $_n^k$, Rec $_n^k$) taking as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.
- ullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_L, \sigma_R) \leftarrow$ \$ NMEnc (μ) ;
 - compute $(\sigma_{L,1},\ldots,\sigma_{L,n}) \leftarrow \$$ Share (σ_L) and $(\sigma_{R,1},\ldots,\sigma_{R,n}) \leftarrow \$$ Share (σ_R) ;

Building blocks

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share n, Rec n) taking as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.
- ullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_L, \sigma_R) \leftarrow$ NMEnc (μ) ;
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow$ \$ Share (σ_L) and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow$ \$ Share (σ_R) ;
 - output the shares $(\sigma_1^*, \ldots, \sigma_{k,n}^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{k,i}, \sigma_{k,n})$.

[GK18] "Non-Malleable Secret Sharing", Vipul Goyal, Ashutosh Kumar, 50th STOC 2018

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share $_n^k$, Rec $_n^k$) taking as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc(μ):
 - compute $(\sigma_{L,1},\ldots,\sigma_{L,n}) \leftarrow$ \$ Share $_n^t(\sigma_L)$ and $(\sigma_{R,1},\ldots,\sigma_{R,n}) \leftarrow$ \$ Share $_n^k(\sigma_R)$;
 - output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A *t*-out-of-*n* Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share $_n^k$, Rec $_n^k$) taking as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.
- ullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc(μ):
 - compute $(\sigma_{L,1},\ldots,\sigma_{L,n}) \leftarrow \$$ Share (σ_L) and $(\sigma_{R,1},\ldots,\sigma_{R,n}) \leftarrow \$$ Share (σ_R) ;
 - output the shares $(\sigma_1^*, \dots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
- ullet parse, for all $i\in\mathcal{I}$, $\sigma_i^*=(\sigma_{\mathsf{L},i},\sigma_{\mathsf{R},i})$;

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share $_n^k$, Rec $_n^k$) taking as input values in \mathcal{R} , where $k=1+\lfloor t/2 \rfloor$.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc(μ):
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow \$$ Share (σ_L) and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow \$$ Share (σ_R) ;
 - output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - econstruction algorithm NMRec: upon input a set of t shares $(\sigma_i)_{i \in I}$
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i})$;
 - ullet verify if all the shares $(\sigma_{R,i})_{i\in\mathcal{I}}$ are consistent under k-out-of-n Shamir Secret Sharing, and output \bot if not;

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share k) taking as input values in \mathcal{R} , where $k = 1 + \lfloor t/2 \rfloor$.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc(μ):
 - compute $(\sigma_{L,1},\ldots,\sigma_{L,n}) \leftarrow$ Share (σ_L) and $(\sigma_{R,1},\ldots,\sigma_{R,n}) \leftarrow$ Share (σ_R) ;
 - output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$;
 - verify if all the shares $(\sigma_{R,i})_{i\in\mathcal{I}}$ are consistent under k-out-of-n Shamir Secret Sharing, and output \perp if not;
 - reconstruct $\sigma_L = \operatorname{Rec}_n^t((\sigma_{L,i})_{i \in \mathcal{I}})$ and $\sigma_R = \operatorname{Rec}_n^k((\sigma_{R,i})_{i \in \mathcal{I}});$

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_n^t$, Rec $_n^t$) taking as input values in \mathcal{L} .
- A k-out-of-n Shamir Secret Sharing scheme (Share n, Recn) taking as input values in \mathbb{R} , where $k = 1 + \lfloor t/2 \rfloor$.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc(μ):
 - compute $(\sigma_{L,1},\ldots,\sigma_{L,n}) \leftarrow Share_n^t(\sigma_L)$ and $(\sigma_{R,1},\ldots,\sigma_{R,n}) \leftarrow Share_n^k(\sigma_R)$;
 - output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i})$;
 - verify if all the shares $(\sigma_{R,i})_{i\in\mathcal{I}}$ are consistent under k-out-of-n Shamir Secret Sharing, and output \perp if not;
 - reconstruct $\sigma_L = \operatorname{Rec}_n^t((\sigma_{L,i})_{i \in \mathcal{I}})$ and $\sigma_R = \operatorname{Rec}_n^k((\sigma_{R,i})_{i \in \mathcal{I}})$;
 - decode $\mu = \mathsf{NMDec}(\sigma_{\mathsf{L}}, \sigma_{\mathsf{R}})$ and output μ .

Building blocks

- A one-time ε -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$ and is also $(\log(|\mathcal{L}|) + \log(1/\varepsilon))$ -leakage-resilient on the right share.
- A t-out-of-n Shamir Secret Sharing scheme (Share $_{n}^{t}$, Rec $_{n}^{t}$) taking as input values in \mathcal{L} . • A k-out-of-n Shamir Secret Sharing scheme (Share, Rec, taking as input values in \mathcal{R} , where k=1+|t/2|.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc (μ) :
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow \$$ Share (σ_L) and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow \$$ Share (σ_R) : • output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{T}}$,
- parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$;
 - verify if all the shares $(\sigma_{R,i})_{i\in\mathcal{I}}$ are consistent under k-out-of-n Shamir Secret Sharing, and output \perp if not;

 - reconstruct $\sigma_L = \text{Rec}_n^t((\sigma_{L,i})_{i \in \mathcal{I}})$ and $\sigma_R = \text{Rec}_n^k((\sigma_{R,i})_{i \in \mathcal{I}})$; • decode $\mu = \text{NMDec}(\sigma_{\text{L}}, \sigma_{\text{R}})$ and output μ .

The above scheme is a (t-1)-joint* t-out-of-n one-time 2ε -non-malleable secret sharing scheme.

• By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \ge k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ , ρ_1 , ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ , ρ_1 , ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f_1 ;
 - \bullet compute a partial reconstruction $\tilde{\sigma}_{\mathsf{L},\mathcal{B}_1}$ of the left tampered share;

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \ge k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - ullet compute a partial reconstruction $ilde{\sigma}_{\mathsf{L},\mathcal{B}_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_1}$ (if they are consistent);

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - ullet compute a partial reconstruction $ilde{\sigma}_{\mathsf{L},\mathcal{B}_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{\mathsf{L},\mathcal{B}_1},\alpha)$.

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j\in\mathcal{B}_2}$ (if they are consistent);
 - output $(\tilde{\sigma}_{L,\mathcal{B}_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{L,\mathcal{B}_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,
 - apply the tampering function f₂;

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{L,\mathcal{B}_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,
 - apply the tampering function f₂;
 - use randomness ρ and the auxiliary information α to check that the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ are consistent with the ones computed during the leakage phase;

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,B_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{L,\mathcal{B}_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,
 - apply the tampering function f₂;
 - use randomness ρ and the auxiliary information α to check that the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ are consistent with the ones computed during the leakage phase;
 - if everything is consistent, use the partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ and the tampered shares $(\tilde{\sigma}_{L,J})_{j\in\mathcal{B}_2}$ to obtain the tampered left share $\tilde{\sigma}_L$; otherwise, output \bot ;

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,B_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{\mathsf{L},\mathcal{B}_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,
 - apply the tampering function f₂;
 - use randomness ρ and the auxiliary information α to check that the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ are consistent with the ones computed during the leakage phase;
 - if everything is consistent, use the partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ and the tampered shares $(\tilde{\sigma}_{L,j})_{j\in\mathcal{B}_2}$ to obtain the tampered left share $\tilde{\sigma}_L$; otherwise, output \bot ;
 - output $\tilde{\sigma}_L$.

- By reduction to the underlyng leakage-resilient non-malleable code. Fix any set $\mathcal{T} \subset [n]$ such that $|\mathcal{T}| = t$ and any partition $(\mathcal{B}_1, \mathcal{B}_2)$ of \mathcal{T} such that $|\mathcal{B}_1| \geq k > |\mathcal{B}_2|$ (since $k = 1 + \lfloor t/2 \rfloor$). Let (f_1, f_2) be the tampering query.
- **Setup:** the reduction \hat{A} samples random strings ρ, ρ_1, ρ_2 and random shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$ and $(\sigma_{R,i})_{i \in \mathcal{B}_2}$.
- Leakage from σ_R : using σ_R , randomness ρ_1 and the shares $(\sigma_{R,i})_{i\in\mathcal{B}_2}$, obtain the shares $(\sigma_{R,i})_{i\in\mathcal{B}_1}$; then,
 - apply the tampering function f₁;
 - compute a partial reconstruction $\tilde{\sigma}_{L,B_1}$ of the left tampered share;
 - compute an auxiliary information α that depends on the randomness ρ and the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ obtained by interpolating the values $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_1}$ (if they are consistent);
 - output $(\tilde{\sigma}_{L,B_1},\alpha)$.
- Tampering with σ_L : using σ_L , randomness ρ_2 and the shares $(\sigma_{L,i})_{i \in \mathcal{B}_1}$, obtain the shares $(\sigma_{L,i})_{i \in \mathcal{B}_2}$; then,
 - apply the tampering function f_2 ;
 - use randomness ρ and the auxiliary information α to check that the tampered shares $(\tilde{\sigma}_{R,j})_{j \in \mathcal{B}_2}$ are consistent with the ones computed during the leakage phase;
 - if everything is consistent, use the partial reconstruction $\tilde{\sigma}_{L,\mathcal{B}_1}$ and the tampered shares $(\tilde{\sigma}_{L,j})_{j\in\mathcal{B}_2}$ to obtain the tampered left share $\tilde{\sigma}_L$; otherwise, output \bot ;
 - output $\tilde{\sigma}_L$.
- Tampering with σ_R : perform the same steps as in the leakage phase, but output the value $\tilde{\sigma}_R$ if the shares $(\tilde{\sigma}_{R,J})_{j\in\mathcal{B}_1}$ are consistent and \bot otherwise.

Building blocks

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", *Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, Daniele Venturi,* CRYPTO 2020

Building blocks

• A one-time ε_2 -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$.

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", *Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, Daniele Venturi*, CRYPTO 2020

Building blocks

- A one-time ε_2 -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$.
- A t-out-of-n k-joint ℓ_L -bounded ε_L -leakage-resilient secret sharing scheme (Share_L, Rec_L).
- A t_R -out-of-n ($t_R 1$)-joint ℓ_R -bounded ε_R -leakage-resilient secret sharing scheme (Share_R, Rec_R).

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio,

Building blocks

- A one-time ε_2 -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$.
- A t-out-of-n k-joint ℓ_L -bounded ε_L -leakage-resilient secret sharing scheme (Share_L, Rec_L).
- A t_R -out-of-n ($t_R 1$)-joint ℓ_R -bounded ε_R -leakage-resilient secret sharing scheme (Share_R, Rec_R).
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_L, \sigma_R) \leftarrow \$ NMEnc(\mu)$;
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow$ \$ Share_L (σ_L) and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow$ \$ Share_R (σ_R) ;
 - output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio,

- A one-time ε_2 -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$.
- A t-out-of-n k-joint ℓ_L -bounded ε_L -leakage-resilient secret sharing scheme (Share $_L$, Rec $_L$).
- A t_R -out-of-n ($t_R 1$)-joint ℓ_R -bounded ε_R -leakage-resilient secret sharing scheme (Share_R, Rec_R).
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_L, \sigma_R) \leftarrow$ \$ NMEnc (μ) ;
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow$ \$ Share $_L(\sigma_L)$ and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow$ \$ Share $_R(\sigma_R)$;
- output the shares $(\sigma_1^*, \dots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i})$;
 - reconstruct $\sigma_L = \text{Rec}_L((\sigma_{L,i})_{i \in \mathcal{I}})$ and $\sigma_R = \text{Rec}_R((\sigma_{R,i})_{i \in \mathcal{I}_{t_R}})$;
 - decode $\mu = \text{NMDec}(\sigma_1, \sigma_R)$ and output μ .

Building blocks

- A one-time ε_2 -non-malleable code (NMEnc, NMDec) that encodes a message $\mu \in \mathcal{M}$ in two shares in $\mathcal{L} \times \mathcal{R}$.
- A t-out-of-n k-joint ℓ_1 -bounded ε_1 -leakage-resilient secret sharing scheme (Share, Rec.).
- A t_R -out-of-n ($t_R 1$)-joint ℓ_R -bounded ε_R -leakage-resilient secret sharing scheme (Share, Rec_R).
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \sigma_R) \leftarrow$ NMEnc (μ) :
 - compute $(\sigma_{L,1}, \ldots, \sigma_{L,n}) \leftarrow$ Share_L (σ_L) and $(\sigma_{R,1}, \ldots, \sigma_{R,n}) \leftarrow$ Share_R (σ_R) ; • output the shares $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,i})$;
 - reconstruct $\sigma_L = \text{Rec}_L((\sigma_{L,i})_{i \in \mathcal{I}})$ and $\sigma_R = \text{Rec}_R((\sigma_{R,i})_{i \in \mathcal{I}_{t_R}})$;
 - decode $\mu = \text{NMDec}(\sigma_1, \sigma_R)$ and output μ .

The above scheme is a $(t_{
m R}-1)$ -joint* ℓ -bounded leakage resilient one-time non-malleable secret sharing scheme with security $2(\varepsilon_1 + \varepsilon_R) + \varepsilon_2$ so long as $t_R = \sqrt{k}$, $\ell_1 = \ell + 1$ and $\ell_R = \ell + n \cdot \log |S_{1,i}|$ for all $i \in [n]$.

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio, Maciei Obremski, Mark Simkin, Daniele Venturi, CRYPTO 2020

Achieving leakage resilience [BFOSV20] — Proof strategy

Achieving leakage resilience [BFOSV20] — Proof strategy

 $\bullet \ \ \text{Split the tampering set into two subsets} \ \mathcal{T}_0 \ \ \text{and} \ \mathcal{T}_1 \ \ \text{such that} \ |\mathcal{T}_0| \geq \text{threshold of Share}_R.$

- Split the tampering set into two subsets \mathcal{T}_0 and \mathcal{T}_1 such that $|\mathcal{T}_0| \geq$ threshold of Share_R.
- **Hybrid 1:** before tampering, replace the left shares within \mathcal{T}_1 with valid and consistent shares of the same secret.

- $\bullet \ \ \text{Split the tampering set into two subsets} \ \mathcal{T}_0 \ \ \text{and} \ \mathcal{T}_1 \ \ \text{such that} \ |\mathcal{T}_0| \geq \text{threshold of Share}_R.$
- ullet Hybrid 1: before tampering, replace the left shares within \mathcal{T}_1 with valid and consistent shares of the same secret.
- \bullet **Hybrid 2:** replace all the left shares with shares of an unrelated value $\hat{s}_{L}.$

- $\bullet \ \ \text{Split the tampering set into two subsets} \ \mathcal{T}_0 \ \ \text{and} \ \mathcal{T}_1 \ \ \text{such that} \ |\mathcal{T}_0| \geq \text{threshold of Share}_R.$
- ullet Hybrid 1: before tampering, replace the left shares within \mathcal{T}_1 with valid and consistent shares of the same secret.
- **Hybrid 2:** replace all the left shares with shares of an unrelated value \hat{s}_L .
- **Hybrid 3-4:** the same as in Hybrid 1-2, but on the right shares.

- Split the tampering set into two subsets \mathcal{T}_0 and \mathcal{T}_1 such that $|\mathcal{T}_0| \geq$ threshold of Share_R.
- ullet Hybrid 1: before tampering, replace the left shares within \mathcal{T}_1 with valid and consistent shares of the same secret.
- **Hybrid 2:** replace all the left shares with shares of an unrelated value \hat{s}_L .
- **Hybrid 3-4:** the same as in Hybrid 1-2, but on the right shares.

- Split the tampering set into two subsets \mathcal{T}_0 and \mathcal{T}_1 such that $|\mathcal{T}_0| \geq$ threshold of Share_R.
- ullet Hybrid 1: before tampering, replace the left shares within \mathcal{T}_1 with valid and consistent shares of the same secret.
- **Hybrid 2:** replace all the left shares with shares of an unrelated value \hat{s}_L .
- Hybrid 3-4: the same as in Hybrid 1-2, but on the right shares.
- Now we can safely reduce to non-malleability of the non-malleable code.

• The previous construction is secure in a model that is stronger that selective partitioning, called *semi-adaptive* partitioning.

- The previous construction is secure in a model that is stronger that selective partitioning, called *semi-adaptive* partitioning.
 - Intuitively, this model combines the adaptive partitioning for the leakage queries with the selective partitioning for the tampering query.

- The previous construction is secure in a model that is stronger that selective partitioning, called *semi-adaptive* partitioning.
 - Intuitively, this model combines the adaptive partitioning for the leakage queries with the selective partitioning for the tampering query.
 - In particular, the admissible adversary is defined so that, at the end of the experiment, the leakage performed inside the reconstruction set $\mathcal T$ of the tampering query is leakage under selective partitioning, while the leakage performed outside $\mathcal T$ is leakage under adaptive partitioning.

- The previous construction is secure in a model that is stronger that selective partitioning, called *semi-adaptive* partitioning.
 - Intuitively, this model combines the adaptive partitioning for the leakage queries with the selective partitioning for the tampering query.
 - In particular, the admissible adversary is defined so that, at the end of the experiment, the leakage performed inside the reconstruction set $\mathcal T$ of the tampering query is leakage under selective partitioning, while the leakage performed outside $\mathcal T$ is leakage under adaptive partitioning.
- Actually, non-malleability against adaptive partitioning is very hard to achieve. Even constructing a 3-out-of-3 secret sharing scheme that is non-malleable against adversaries who perform joint leakage from each of the three subsets {1,2}, {1,3}, {2,3} and then independent tampering appears to be a challenging task [KMS18].

[KMS18] "Leakage Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, Amit Sahai, IACR Cryptology ePrint Archive, Vol.2018/1138

- The previous construction is secure in a model that is stronger that selective partitioning, called semi-adaptive partitioning.
 - Intuitively, this model combines the adaptive partitioning for the leakage queries with the selective partitioning for the tampering query.
 - In particular, the admissible adversary is defined so that, at the end of the experiment, the leakage performed inside the reconstruction set $\mathcal T$ of the tampering query is leakage under selective partitioning, while the leakage performed outside $\mathcal T$ is leakage under adaptive partitioning.
- Actually, non-malleability against adaptive partitioning is very hard to achieve. Even constructing a 3-out-of-3 secret sharing scheme that is non-malleable against adversaries who perform joint leakage from each of the three subsets {1,2}, {1,3}, {2,3} and then independent tampering appears to be a challenging task [KMS18].
- This is because joint leakage leads to loss of independence among the shares, therefore the subsequent tampering
 queries are not independent anymore.

[KMS18] "Leakage Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, Amit Sahai, IACR Cryptology ePrint Archive, Vol.2018/1138

- The previous construction is secure in a model that is stronger that selective partitioning, called *semi-adaptive* partitioning.
 - Intuitively, this model combines the adaptive partitioning for the leakage queries with the selective partitioning for the tampering query.
 - In particular, the admissible adversary is defined so that, at the end of the experiment, the leakage performed inside the reconstruction set $\mathcal T$ of the tampering query is leakage under selective partitioning, while the leakage performed outside $\mathcal T$ is leakage under adaptive partitioning.
- Actually, non-malleability against adaptive partitioning is very hard to achieve. Even constructing a 3-out-of-3 secret sharing scheme that is non-malleable against adversaries who perform joint leakage from each of the three subsets {1, 2}, {1, 3}, {2, 3} and then independent tampering appears to be a challenging task [KMS18].
- This is because joint leakage leads to loss of independence among the shares, therefore the subsequent tampering
 queries are not independent anymore.
- Cover-free tampering [GSZ20]: let $\mathcal{T}_1, \ldots, \mathcal{T}_n \subseteq [n]$. $(\mathcal{T}_1, \ldots, \mathcal{T}_n)$ is a k-cover-free family of subsets if, for all $i \in [n]$, the union of all $\mathcal{T}_j \ni i$ has at most k 1 elements.

[KMS18] "Leakage Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, Amit Sahai, IACR Cryptology ePrint Archive, Vol.2018/1138 [GSZ20] "Multi-Source Non-Malleable Extractors and Applications", Vipul Goyal, Akshayaram Srinivasan, Chenzhi Zhu, IACR Cryptology ePrint Archive, Vol.2020/157

Building blocks

Building blocks

• A strong leakage-resilient *t*-times 2-source non-malleable extractor 2SLRNMExt.

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two *t*-out-of-*n* Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- \bullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two *t*-out-of-*n* Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- ullet Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{1,i}, \sigma_{B,i}) \leftrightarrow 2SLRNMExt^{-1}(\sigma_i||\rho_i)$;

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{L,i}, \sigma_{R,i}) \leftarrow$ \$ 2SLRNMExt $^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{\mathbb{R}^{i}}^{(1)}, \dots, \sigma_{\mathbb{R}^{i}}^{(n)}) \leftarrow$ \$ Share $(\sigma_{\mathbb{R}^{i}})$;

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{1,i}, \sigma_{8,i}) \leftrightarrow 2SLRNMExt^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{R,i}^{(1)}, \ldots, \sigma_{R,i}^{(n)}) \leftarrow \$$ Share $(\sigma_{R,i})$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{P},1}^{(i)}, \ldots, \sigma_{\mathsf{P},n}^{(i)})$.

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{1,i}, \sigma_{R,i}) \leftarrow$ \$ 2SLRNMExt $^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{\mathbf{R},i}^{(1)}, \ldots, \sigma_{\mathbf{R},i}^{(n)}) \leftarrow \$$ Share $(\sigma_{\mathbf{R},i})$;
- output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,1}^{(i)}, \ldots, \sigma_{R,n}^{(i)})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$ \operatorname{Share}(\mu);$
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{\mathsf{L},i},\sigma_{\mathsf{R},i}) \hookleftarrow$ 2SLRNMExt $^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{R,i}^{(1)}, \ldots, \sigma_{R,i}^{(n)}) \leftarrow \$$ Share $(\sigma_{R,i})$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},1}^{(i)}, \ldots, \sigma_{\mathsf{R},n}^{(i)})$.
- **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},1}^{(i)}, \ldots, \sigma_{\mathsf{R},n}^{(i)})$;

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{L,i}, \sigma_{R,i}) \leftarrow$ \$ 2SLRNMExt $^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{R,i}^{(1)}, \ldots, \sigma_{R,i}^{(n)}) \leftarrow \$$ Share $(\sigma_{R,i})$;
- output (σ₁^{*},...,σ_n^{*}), where, for each i ∈ [n], σ_i^{*} = (σ_{L,i},σ_{R,1}^(l),...,σ_{R,n}^(l)).
 Reconstruction algorithm NMRec: upon input a set of t shares (σ_i^{*})_{i∈T,n}
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{1,i}, \sigma_{P,1}^{(i)}, \dots, \sigma_{P,n}^{(i)})$;
 - for all $i \in \mathcal{I}$, reconstruct $\sigma_{R,i} = \text{Rec}((\sigma_{P,i}^{(j)})_{i \in \mathcal{I}});$

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{\mathsf{L},i},\sigma_{\mathsf{R},i}) \leftarrow \$2\mathsf{SLRNMExt}^{-1}(\sigma_i||\rho_i);$
 - for all $i \in [n]$, compute $(\sigma_{R,i}^{(1)}, \ldots, \sigma_{R,i}^{(n)}) \leftarrow \$$ Share $(\sigma_{R,i})$;
- output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{L,i}, \sigma_{R,1}^{(i)}, \ldots, \sigma_{R,n}^{(i)})$. • **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{1,i}, \sigma_{P_1}^{(i)}, \dots, \sigma_{P_n}^{(i)})$;
 - for all $i \in \mathcal{I}$, reconstruct $\sigma_{R,i} = \text{Rec}((\sigma_{R,i}^{(j)})_{i \in \mathcal{I}});$
 - for all $i \in \mathcal{I}$, reconstruct $\sigma_i || \rho_i = 2 \text{SLRNMExt}(\sigma_{\mathsf{L},i}, \sigma_{\mathsf{R},i});$

Building blocks

- A strong leakage-resilient t-times 2-source non-malleable extractor 2SLRNMExt.
- Two t-out-of-n Shamir Secret Sharing schemes (Share, Rec) with different input sizes.
- Sharing algorithm NMShare: upon input a message $\mu \in \mathcal{M}$,
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share (μ) ;
 - for all $i \in [n]$, sample a random string ρ_i of $2|\mu|$ bits, and compute $(\sigma_{1,i}, \sigma_{8,i}) \leftarrow 2SLRNMExt^{-1}(\sigma_i||\rho_i)$;
 - for all $i \in [n]$, compute $(\sigma_{\mathbf{R},i}^{(1)}, \ldots, \sigma_{\mathbf{R},i}^{(n)}) \leftarrow \$$ Share $(\sigma_{\mathbf{R},i})$;
- output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\sigma_{\mathsf{L},i}, \sigma_{\mathsf{P},1}^{(i)}, \ldots, \sigma_{\mathsf{P},n}^{(i)})$. • **Reconstruction algorithm** NMRec: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
- parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\sigma_{1,i}, \sigma_{P,1}^{(i)}, \dots, \sigma_{P,n}^{(i)})$;
 - for all $i \in \mathcal{I}$, reconstruct $\sigma_{R,i} = \text{Rec}((\sigma_{R,i}^{(j)})_{i \in \mathcal{I}})$;
 - for all $i \in \mathcal{I}$, reconstruct $\sigma_i || \rho_i = 2 \text{SLRNMExt}(\sigma_{\text{L},i}, \sigma_{\text{R},i});$

 - reconstruct $\mu = \text{Rec}((\sigma_i)_{i \in \mathcal{I}})$ and output μ .

Building blocks

 $\bullet \ \ A \ perfectly \ binding/computationally \ hiding \ non-interactive \ commitment \ scheme \ (Commit, Open).$

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \operatorname{Commit}(\mu; \rho)$;

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \operatorname{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \operatorname{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Reconstruction algorithm Rec^* : upon input a set of t shares $(\sigma_i^*)_{i\in\mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;
 - if all the commitments are the same, let $\gamma=\gamma_i$, otherwise output \perp ;

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;
 - if all the commitments are the same, let $\gamma=\gamma_i$, otherwise output \perp ;
 - reconstruct $\mu||\rho = \text{Rec}((\sigma_i)_{i \in \mathcal{I}});$

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;
 - if all the commitments are the same, let $\gamma=\gamma_{\it i}$, otherwise output \perp ;
 - reconstruct $\mu||\rho = \text{Rec}((\sigma_i)_{i \in \mathcal{I}});$
 - if $\gamma = \text{Commit}(\mu; \rho)$, output μ , otherwise output \perp .

Achieving multiple tampering queries

Building blocks

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \dots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{I}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;
 - if all the commitments are the same, let $\gamma = \gamma_i$, otherwise output \perp ;
 - reconstruct $\mu||\rho = \text{Rec}((\sigma_i)_{i \in \mathcal{I}});$
 - if $\gamma = \mathsf{Commit}(\mu; \rho)$, output μ , otherwise output \perp .
- If Π is ℓ -bounded leakage-resilient against selective/semi-adaptive partitioning, then the above scheme is p-time non-malleable against selective/semi-adaptive partitioning as long as $\ell = p \cdot (|\gamma| + n) + 1$.

Achieving multiple tampering gueries

Building blocks

- A perfectly binding/computationally hiding non-interactive commitment scheme (Commit, Open).
- A t-out-of-n k-joint leakage-resilient one-time non-malleable secret sharing scheme $\Pi = (Share, Rec)$ with information-theoretic security.
- Sharing algorithm Share*: upon input a message $\mu \in \mathcal{M}$,
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- **Reconstruction algorithm** Rec*: upon input a set of t shares $(\sigma_i^*)_{i \in \mathcal{T}}$,
 - parse, for all $i \in \mathcal{I}$, $\sigma_i^* = (\gamma_i, \sigma_i)$;
 - if all the commitments are the same, let $\gamma = \gamma_i$, otherwise output \perp :
 - reconstruct $\mu||\rho = \text{Rec}((\sigma_i)_{i \in \mathcal{T}});$

 - if $\gamma = \mathsf{Commit}(\mu; \rho)$, output μ , otherwise output \perp .
- If Π is ℓ -bounded leakage-resilient against selective/semi-adaptive partitioning, then the above scheme is p-time non-malleable against selective/semi-adaptive partitioning as long as $\ell = p \cdot (|\gamma| + n) + 1$.
- If Π is ℓ -noisy* leakage-resilient against independent leakage and tampering, then the above scheme is ℓ' -noisy* leakage-resilient continuously non-malleable as long as $\ell = \ell' + |\gamma| + 1 + O(\log(\lambda))$.

Hybrid argument

- Original game:
- sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*,\ldots,\sigma_n^*)$, where, for each $i\in[n]$, $\sigma_i^*=(\gamma,\sigma_i)$.

Hybrid argument

Original game:

- sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.

Hybrid game:

- sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
- compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ Share $(\hat{\mu}||\hat{\rho})$;
- output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow \$$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1,\ldots,\sigma_n) \leftarrow \text{Share}(\hat{\mu}||\hat{\rho});$
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.
- Basis of the induction: by reduction to statistical leakage-resilience one-time non-malleability.

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
 - output $(\sigma_1^*,\ldots,\sigma_n^*)$, where, for each $i\in[n]$, $\sigma_i^*=(\gamma,\sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.
- Basis of the induction: by reduction to statistical leakage-resilience one-time non-malleability.
 - Upon receiving the tampering query (\mathcal{T}, f) , the reduction uses a leakage query in order to obtain the result $\tilde{\gamma}_{i^*}$ of the tampering on one commitment γ_{i^*} such that $i^* \in \mathcal{T}$.

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$; • output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.
- Basis of the induction: by reduction to statistical leakage-resilience one-time non-malleability.
 - Upon receiving the tampering query (\mathcal{T}, f) , the reduction uses a leakage query in order to obtain the result $\tilde{\gamma}_{i^*}$ of the tampering on one commitment γ_{i^*} such that $i^* \in \mathcal{T}$.
 - Using another leakage query, the reduction obtains a bit for each share in $\mathcal T$ telling if the corresponding commitment equals $\tilde{\gamma}_{i^*}$ or not; in the latter case, return \bot .

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\mu||\rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ Share $(\hat{\mu}||\hat{\rho})$;
- output $(\sigma_1^*,\ldots,\sigma_n^*)$, where, for each $i\in [n]$, $\sigma_i^*=(\gamma,\sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.
- Basis of the induction: by reduction to statistical leakage-resilience one-time non-malleability.
 - Upon receiving the tampering query (\mathcal{T}, f) , the reduction uses a leakage query in order to obtain the result $\tilde{\gamma}_{i^*}$ of the tampering on one commitment γ_{i^*} such that $i^* \in \mathcal{T}$.
 - Using another leakage query, the reduction obtains a bit for each share in $\mathcal T$ telling if the corresponding commitment equals $\tilde{\gamma}_{i^*}$ or not; in the latter case, return \bot .
 - Then, the reduction forwards the tampering query to the oracle;

Hybrid argument

- Original game:
 - sample random coins ρ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ Share $(\mu || \rho)$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
- output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- The proof that the above games are *statistically* close proceeds by induction over the number p^* of tampering queries performed by the adversary A.
- Basis of the induction: by reduction to statistical leakage-resilience one-time non-malleability.
 - Upon receiving the tampering query (\mathcal{T}, f) , the reduction uses a leakage query in order to obtain the result $\tilde{\gamma}_{i^*}$ of the tampering on one commitment γ_{i^*} such that $i^* \in \mathcal{T}$.
 - Using another leakage query, the reduction obtains a bit for each share in $\mathcal T$ telling if the corresponding commitment equals $\tilde{\gamma}_{i^*}$ or not; in the latter case, return \bot .
 - Then, the reduction forwards the tampering query to the oracle;
 - Finally, the reduction checks that $\tilde{\gamma}_{i^*}$ is a valid commitment for the outcome of the tampering query and returns either the result of the tampering or \perp .

Inductive step

• By reduction to statistical leakage-resilience one-time non-malleability.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- ullet For each tampering query $(\mathcal{T}^{(q)},f^{(q)})$:

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - ullet use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^*\in\mathcal{T}_i$

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - ullet use another leakage query to check if all the tampered commitments correspond, and return $oldsymbol{\perp}$ if not;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\tilde{\gamma}_{i^*}^{(q)}$ of the tampering on one commitment γ_{i^*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \perp if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \perp if no such value is found;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - ullet use another leakage query to check if all the tampered commitments correspond, and return $oldsymbol{\perp}$ if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{j*}$, and return \perp if no such value is found;
 - ullet after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\tilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \bot if not; find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \bot if no such value is found;
 - after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \perp if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \perp if no such value is found;
- after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - ullet construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit b_{ok} ;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \perp if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \bot if no such value is found; • after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- (-(-11) -(-11)
- ullet Upon input the last tampering query $(\mathcal{T}^{(p+1)},f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit book;
 - obtain the tampered commitment $\tilde{\gamma}_{i*}^{(p+1)}$ as in the previous queries;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\widetilde{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \perp if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \bot if no such value is found; • after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering guery $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;
 - obtain the tampered commitment $\tilde{\gamma}_{i*}^{(p+1)}$ as in the previous queries;
 - forward the tampering query to the oracle and check that $\hat{\gamma}_{i}^{(p+1)}$ is a valid commitment for the answer of the query.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\tilde{\gamma}_{i;*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - use another leakage query to check if all the tampered commitments correspond, and return \perp if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \bot if no such value is found; • after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;
 - obtain the tampered commitment $\tilde{\gamma}_{i^*}^{(p+1)}$ as in the previous queries;
 - ullet forward the tampering query to the oracle and check that $ilde{\gamma}_{i^*}^{(p+1)}$ is a valid commitment for the answer of the query.
- Output the same distinguishing bit as the adversary if $b_{0k} = 0$ ok and 0 if $b_{0k} = 0$ error.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain the result $\hat{\gamma}_{i*}^{(q)}$ of the tampering on one commitment γ_{i*} such that $i^* \in \mathcal{T}$;
 - \bullet use another leakage query to check if all the tampered commitments correspond, and return \bot if not;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i^*}$, and return \bot if no such value is found; • after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
 - $(\pi(p+1), c(p+1))$
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit b_{ok} ;
 - obtain the tampered commitment $\tilde{\gamma}_{j*}^{(p+1)}$ as in the previous queries;
 - ullet forward the tampering query to the oracle and check that $ilde{\gamma}_{i^*}^{(p+1)}$ is a valid commitment for the answer of the query.
- Output the same distinguishing bit as the adversary if $b_{ok} = ok$ and 0 if $b_{ok} = error$.

Leakage analysis

The total leakage performed by the reduction amounts to $(p+1) \cdot (|\gamma| + n) + 1$.

[BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio,

Maciej Obremski, Mark Simkin, Daniele Venturi, CRYPTO 2020

Final step

• We proved that the original game and the hybrid game are statistically close.

Final step

- We proved that the original game and the hybrid game are statistically close.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu_b; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
 - output $(\sigma_1^*,\ldots,\sigma_n^*)$, where, for each $i\in[n]$, $\sigma_i^*=(\gamma,\sigma_i)$.

Final step

- We proved that the original game and the hybrid game are statistically close.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu_b; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- For any two messages μ_0, μ_1 , the above game with b=0 and with b=1 are computationally close.

Final step

- We proved that the original game and the hybrid game are statistically close.
- Hybrid game:
 - sample a random message $\hat{\mu}$ and random coins ρ , $\hat{\rho}$ and compute $\gamma = \text{Commit}(\mu_b; \rho)$;
 - compute $(\sigma_1, \ldots, \sigma_n) \leftarrow$ \$ Share $(\hat{\mu}||\hat{\rho})$;
 - output $(\sigma_1^*, \ldots, \sigma_n^*)$, where, for each $i \in [n]$, $\sigma_i^* = (\gamma, \sigma_i)$.
- For any two messages μ_0, μ_1 , the above game with b=0 and with b=1 are computationally close.
- *Proof:* by reduction to the computational hiding property of the commitment scheme.

Digression on the non-standard noisy-leakage notion

• Admissible adversaries: an adversary A is ℓ -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [n]$,

$$ilde{\mathbb{H}}_{\infty}\left(\mathbf{\Sigma}_{i}\mid\mathbf{\Lambda}_{i}
ight)\geq\mathbb{H}_{\infty}\left(\mathbf{\Sigma}_{i}
ight)-\ell$$

Digression on the non-standard noisy-leakage notion

• Admissible adversaries: an adversary A is ℓ -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [n]$,

$$ilde{\mathbb{H}}_{\infty}\left(\mathbf{\Sigma}_{i}\mid\mathbf{\Lambda}_{i}
ight)\geq\mathbb{H}_{\infty}\left(\mathbf{\Sigma}_{i}
ight)-\ell$$

• Admissible adversaries, non-standard version: an adversary A is ℓ -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [n]$,

$$\tilde{\mathbb{H}}_{\infty}\left(\boldsymbol{\Sigma}_{i}\mid(\boldsymbol{\Sigma}_{j})_{j\neq i},\boldsymbol{\Lambda}_{i}\right)\geq\tilde{\mathbb{H}}_{\infty}\left(\boldsymbol{\Sigma}_{i}\mid(\boldsymbol{\Sigma}_{j})_{j\neq i}\right)-\ell$$

Digression on the non-standard noisy-leakage notion

 Admissible adversaries: an adversary A is ℓ-admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all i ∈ [n],

$$ilde{\mathbb{H}}_{\infty}\left(\mathbf{\Sigma}_{i}\mid\mathbf{\Lambda}_{i}
ight)\geq\mathbb{H}_{\infty}\left(\mathbf{\Sigma}_{i}
ight)-\ell$$

• Admissible adversaries, non-standard version: an adversary A is ℓ -admissible if it is allowed to ask as many leakage queries he wants, chosen adaptively, as long as, for all $i \in [n]$,

$$\tilde{\mathbb{H}}_{\infty}\left(\boldsymbol{\Sigma}_{i}\mid(\boldsymbol{\Sigma}_{j})_{j\neq i},\boldsymbol{\Lambda}_{i}\right)\geq\tilde{\mathbb{H}}_{\infty}\left(\boldsymbol{\Sigma}_{i}\mid(\boldsymbol{\Sigma}_{j})_{j\neq i}\right)-\ell$$

Note: the non-standard version is tricky and "dangerous", since there are many more leakage queries performing 0 bits of noisy leakage, and some of them could even break non-malleability.

Inductive step

By reduction to statistical leakage-resilience one-time non-malleability.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- ullet For each tampering query $(\mathcal{T}^{(q)},f^{(q)})$:

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\tilde{\gamma}_i^{(q)})_{i,j\in\mathcal{T}(q)}$ by hard-wiring the tampering functions;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage gueries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\hat{\gamma}_i^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return 1:

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\tilde{\gamma}_i^{(q)})_{i \in \mathcal{T}^{(q)}}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \perp ;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i*}$, and return \perp if no such value is found;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query ($\mathcal{T}^{(q)}, f^{(q)}$):
 - use a leakage query in order to obtain all the mauled commitments $(\hat{\gamma}_i^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \bot :
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i*}$, and return \perp if no such value is found:
 - ullet after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\tilde{\gamma}_i^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \perp ;
 - find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\tilde{\gamma}_{i*}$, and return \perp if no such value is found;
 - after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;

[BFV19] "Continuously Non-Malleable Secret Sharing for General Access Structures", Gianluca Brian, Antonio Faonio, Daniele Venturi, TCC 2019

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\hat{\gamma}_{i}^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \bot ; • find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\hat{\gamma}_{i*}$, and return \bot if no such value is found;
 - after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;
 - obtain and check all the mauled commitments $(\tilde{\gamma}_i^{(p+1)})_{i \in \mathcal{T}(p+1)}$ as in the previous queries;

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\hat{\gamma}_i^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \bot ; • find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\hat{\gamma}_{i*}$, and return \bot if no such value is found;
 - after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;
 - obtain and check all the mauled commitments $(\tilde{\gamma}_i^{(p+1)})_{i \in \mathcal{T}(p+1)}$ as in the previous queries;
 - forward the tampering query to the oracle and check that $\tilde{\gamma}_{j*}^{(p+1)}$ is a valid commitment for the answer of the query.

[BFV19] "Continuously Non-Malleable Secret Sharing for General Access Structures", Gianluca Brian, Antonio Faonio, Daniele Venturi, TCC 2019

Inductive step

- By reduction to statistical leakage-resilience one-time non-malleability.
- Forward all the leakage queries to the leakage oracle.
- For each tampering query $(\mathcal{T}^{(q)}, f^{(q)})$:
 - use a leakage query in order to obtain all the mauled commitments $(\hat{\gamma}_i^{(q)})_{i \in \mathcal{T}(q)}$ by hard-wiring the tampering functions;
 - check that the leaked commitments are all the same and, if not, return \bot ; • find by brute force the opening $(\mu^{(q)}, \rho^{(q)})$ of $\hat{\gamma}_{i*}$, and return \bot if no such value is found;
 - after checking that $\mu^{(q)}$ is "good", return $\mu^{(q)}$ to the adversary.
- Upon input the last tampering query $(\mathcal{T}^{(p+1)}, f^{(p+1)})$:
 - construct a special leakage query checking that the simulation did not cause any inconsistency so far and outputs a bit bok;
 - obtain and check all the mauled commitments $(\tilde{\gamma}_i^{(p+1)})_{i \in \mathcal{T}(p+1)}$ as in the previous queries;
 - forward the tampering query to the oracle and check that $\tilde{\gamma}_{i*}^{(p+1)}$ is a valid commitment for the answer of the query.
- Output the same distinguishing bit as the adversary if $b_{ok} = ok$ and 0 if $b_{ok} = error$.

$$\tilde{\mathbb{H}}\left(\mathbf{\Sigma}_i\mid (\mathbf{\Sigma}_j)_{j\neq i}, \mathbf{\Lambda}_i\right)$$

$$ilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}, \mathbf{\Lambda}_i
ight) \geq ilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}, ilde{oldsymbol{\gamma}}_i^{(1)}, \dots, ilde{oldsymbol{\gamma}}_i^{(\mathbf{q}_{\mathsf{sd}})}, ilde{oldsymbol{\gamma}}_i^{(p+1)}
ight) - \ell' - 1$$

$$egin{aligned} & \tilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, \mathbf{\Lambda}_{i}
ight) \geq \tilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, ilde{\mathbf{\gamma}}_{i}^{(1)}, \ldots, ilde{\mathbf{\gamma}}_{i}^{(\mathsf{q}_{\mathsf{sd}})}, ilde{\mathbf{\gamma}}_{i}^{(
ho+1)}
ight) - \ell' - 1 \ & \geq \tilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, \mathsf{q}_{\mathsf{sd}}, ilde{\mathbf{\gamma}}_{i}^{(\mathsf{q}_{\mathsf{sd}})}, ilde{\mathbf{\gamma}}_{i}^{(
ho+1)}
ight) - \ell' - 1 \end{aligned}$$

$$egin{aligned} \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}, \mathbf{\Lambda}_i
ight) &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}, \widetilde{\gamma}_i^{(\mathbf{1})}, \ldots, \widetilde{\gamma}_i^{(\mathbf{q}_{\mathrm{sd}})}, \widetilde{\gamma}_i^{(
ho+1)}
ight) - \ell' - 1 \ &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}, \mathbf{q}_{\mathrm{sd}}, \widetilde{\gamma}_i^{(\mathbf{q}_{\mathrm{sd}})}, \widetilde{\gamma}_i^{(
ho+1)}
ight) - \ell' - 1 \ &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_i \mid (\mathbf{\Sigma}_j)_{j
eq i}
ight) - \ell' - 1 - |\gamma| - O(\log(\lambda)). \end{aligned}$$

For all $i \in [n]$,

$$egin{aligned} \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, \mathbf{\Lambda}_{i}
ight) &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, \widetilde{\gamma}_{i}^{(1)}, \ldots, \widetilde{\gamma}_{i}^{(\mathbf{q}_{\mathsf{sd}})}, \widetilde{\gamma}_{i}^{(
ho+1)}
ight) - \ell' - 1 \ &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}, \mathbf{q}_{\mathsf{sd}}, \widetilde{\gamma}_{i}^{(\mathbf{q}_{\mathsf{sd}})}, \widetilde{\gamma}_{i}^{(
ho+1)}
ight) - \ell' - 1 \ &\geq \widetilde{\mathbb{H}}\left(\mathbf{\Sigma}_{i} \mid (\mathbf{\Sigma}_{j})_{j
eq i}\right) - \ell' - 1 - |\gamma| - O(\log(\lambda)). \end{aligned}$$

Therefore, the overall performed leakage by the reduction amounts to $\ell=\ell'+1+|\gamma|+O(\log(\lambda))$.

• p-time/continuously non-malleable secret sharing against joint leakage and tampering.

- ullet p-time/continuously non-malleable secret sharing against joint leakage and tampering.
- Non-malleability against adaptive partitioning.

- ullet p-time/continuously non-malleable secret sharing against joint leakage and tampering.
- Non-malleability against adaptive partitioning.
- Optimal rate.

- ullet p-time/continuously non-malleable secret sharing against joint leakage and tampering.
- Non-malleability against adaptive partitioning.
- Optimal rate.
 - Informally, is the ratio between $|\mu|$ and $\max_{i \in [n]} |\sigma_i|$.

- p-time/continuously non-malleable secret sharing against joint leakage and tampering.
- Non-malleability against adaptive partitioning.
- Optimal rate.
 - Informally, is the ratio between $|\mu|$ and $\max_{i \in [n]} |\sigma_i|$.
 - t for standard secret sharing [Kra93].

[Kra93] "Secret Sharing made Short", Hugo Krawczyk, CRYPTO 1993

References

- [ADN+20] "Stronger Leakage-Resilient and Non-Malleable Secret-Sharing Schemes for General Access Structures", Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciei Obremski, Erick Purwanto, João Ribeiro, Mark Simkin, CRYPTO 2019
- [BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, Daniele Venturi, CRYPTO 2020
- [BFV19] "Continuously Non-Malleable Secret Sharing for General Access Structures", Gianluca Brian, Antonio Faonio, Daniele Venturi, TCC
- [BS19] "Revisiting Non-Malleable Secret Sharing", Saikrishna Badrinarayanan, Akshayaram Srinivasan, EUROCRYPT 2019
- [CGGL] "Leakage-Resilient Extractors and Secret-Sharing against Bounded Collusion Protocols", Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Xin Li, Electronic Colloquium on Computational Complexity, Volume 27, 2020
- [DORS08] "Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data", Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith, SIAM Journal on Computing, Vol. 38, 2008
- [DPW09] "Non-Malleable Codes", Stefan Dziembowski, Krzysztof Pietrzak, Daniel Wichs, IACR Cryptology ePrint Archive, Vol.2009/608
- [FV19] "Non-Malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate", Antonio Faonio, Daniele Venturi, CRYPTO 2019
- [GK18] "Non-Malleable Secret Sharing", Vipul Goval, Ashutosh Kumar, 50th STOC 2018
- [GSZ20] "Multi-Source Non-Malleable Extractors and Applications", Vipul Goyal, Akshayaram Srinivasan, Chenzhi Zhu, IACR Cryptology ePrint Archive, Vol.2020/157
- [Kra93] "Secret Sharing made Short", Hugo Krawczyk, CRYPTO 1993
- [KMS18] "Leakage Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, Amit Sahai, IACR Cryptology ePrint Archive, Vol.2018/1138
- [KMZ20] "Bounded Collusion Protocols, Cylinder-Intersection Extractors and Leakage-Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, David Zuckerman, Electronic Colloquium on Computational Complexity, Volume 27, 2020
- [Sha79] "How to Share a Secret", Adi Shamir, Communications of the ACM, Volume 22, 1979
- [SV18] "Leakage Resilient Secret Sharing and Applications", Akshayaram Srinivasan, Prashant Nalini Vasudevan, CRYPTO 2019

References

- [ADN+20] "Stronger Leakage-Resilient and Non-Malleable Secret-Sharing Schemes for General Access Structures", Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciei Obremski, Erick Purwanto, João Ribeiro, Mark Simkin, CRYPTO 2019
- [BFOSV20] "Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model", Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, Daniele Venturi, CRYPTO 2020
- [BFV19] "Continuously Non-Malleable Secret Sharing for General Access Structures", Gianluca Brian, Antonio Faonio, Daniele Venturi, TCC
- [BS19] "Revisiting Non-Malleable Secret Sharing", Saikrishna Badrinarayanan, Akshayaram Srinivasan, EUROCRYPT 2019
- [CGGL] "Leakage-Resilient Extractors and Secret-Sharing against Bounded Collusion Protocols", Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Xin Li, Electronic Colloquium on Computational Complexity, Volume 27, 2020
- [DORS08] "Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data", Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith, SIAM Journal on Computing, Vol. 38, 2008
- [DPW09] "Non-Malleable Codes", Stefan Dziembowski, Krzysztof Pietrzak, Daniel Wichs, IACR Cryptology ePrint Archive, Vol.2009/608 [FV19] "Non-Malleable Secret Sharing in the Computational Setting: Adaptive Tampering. Noisy-Leakage Resilience. and Improved Rate".
- [GK18] "Non-Malleable Secret Sharing", Vipul Goval, Ashutosh Kumar, 50th STOC 2018
- [GSZ20] "Multi-Source Non-Malleable Extractors and Applications", Vipul Goyal, Akshayaram Srinivasan, Chenzhi Zhu, IACR Cryptology ePrint Archive, Vol. 2020/157
- [Kra93] "Secret Sharing made Short", Hugo Krawczyk, CRYPTO 1993

Antonio Faonio, Daniele Venturi, CRYPTO 2019

- [KMS18] "Leakage Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, Amit Sahai, IACR Cryptology ePrint Archive, Vol.2018/1138
- [KMZ20] "Bounded Collusion Protocols, Cylinder-Intersection Extractors and Leakage-Resilient Secret Sharing", Ashutosh Kumar, Raghu Meka, David Zuckerman, Electronic Colloquium on Computational Complexity, Volume 27, 2020
- [Sha79] "How to Share a Secret". Adi Shamir. Communications of the ACM, Volume 22, 1979
- [SV18] "Leakage Resilient Secret Sharing and Applications", Akshayaram Srinivasan, Prashant Nalini Vasudevan, CRYPTO 2019

THANK YOU!!!