THE PROBLEM SET OF THE SUMMER

Solutions can be sent by the beginning of September either by mail to

Anne-Maria Ernvall-Hytönen Matematiikan ja tilastotieteen laitos PL 68 00014 Helsingin yliopisto

or by email to esavesalainen@gmail.com, where also questions can be sent.

We wish you a nice summer and pleasant moments with the problems!

Easier problems

1. Let the solutions to the equation $x^2 + (p^2 + 1)x + p = 2$ be x_1 and x_2 , and let us assume that they are nonzero and distinct. Determine all those values of the parameter p, for which

$$\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}.$$

2. Find all positive integers x and y for which

$$(x^2+y)(y^2+x)$$

is the fifth power of some prime number.

3. Find all real numbers a and b for which the pair of equations

$$\begin{cases} x + a = y + b \\ x^2 - a = 2y \end{cases}$$

has a unique solution (x_0, y_0) , and this solution satisfies the condition $x_0^{10} + y_0^{10} = 1025$.

- **4.** In a triangle ABC, in which AB > BC, a point K lies on the side AB so that AK = BC + BK. A line ℓ , which passes through the point K is perpendicular to AB. Prove that the line ℓ , the bisector of the side AC and the bisector of the angle $\angle ABC$ pass through a common point.
- **5.** Let a, b, c and d be real numbers. Prove that the smallest of the numbers

$$a - b^2$$
, $b - c^2$, $c - d^2$ ja $d - a^2$

is at most 1/4.

- **6.** Let a and b be real numbers. If a + b = 4 and $a^2 + b^2 = 14$, then what is $a^3 + b^3$?
- 7. Let ABCDE be a regular pentagon, and let the lines AB and DE intersect at F. Determine the angles of the triangle $\triangle BEF$.

- **8.** The circumscribed circle of a triangle is reflected along a side of the triangle. Prove that the new circle passes through the orthocenter of the triangle.
- **9.** Let $n \ge 2$ be an integer. Compute

$$S_n = \sum_{k=1}^{n-1} \sin kx \cos(n-k)x.$$

10. Let α and β be real numbers from the interval $]0,\pi/2[$, and let us assume that

$$\cos^2(\alpha - \beta) = \sin 2\alpha \sin 2\beta.$$

Prove that $\alpha + \beta = \pi/2$.

11. Let the side lengths of a triangle be a, b and c. Determine, when also a^2 , b^2 and c^2 are the side lengths of a triangle.

Harder problems

- 12. Let us define a number a_n for each positive integer n as follows: $a_n = 0$, if the number n has an even number of prime factors greater than 2007, and $a_n = 1$, if the number n has an odd number of prime factors greater than 2007. Is the number $0, a_1 a_2 a_3 \ldots$ rational?
- **13.** Find all positive integers n for which, whenever $a,b,c \ge 0$ and a+b+c=3, also $abc(a^n+b^n+c^n) \le 3$.
- **14.** Let $a_1 > \frac{1}{12}$ and $a_{n+1} = \sqrt{(n+2)a_n + 1}$, when $n \ge 1$. Prove that
 - 1. $a_n > n \frac{2}{n}$,
 - 2. the sequence $b_n = 2^n \left(\frac{a_n}{n} 1 \right)$ converges $(n = 1, 2, \dots)$.
- 15. Solve the system of equations in the set of integers:

$$\begin{cases} 3a^4 + 2b^3 = c^2, \\ 3a^6 + b^5 = d^2. \end{cases}$$

16. Let a and b be distinct positive real numbers. Find all pairs (x, y) of positive real numbers solving the pair of equations

$$\begin{cases} x^4 - y^4 = ax - by, \\ x^2 - y^2 = \sqrt[3]{a^2 - b^2}. \end{cases}$$