Linear Algebrea - Opdracht 4

Luc Veldhuis

Maart 2017

1. In
$$\mathbb{C}^3$$
 zij $U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ en $V = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}$.

Bestaat er een deelruimte $W \subset \mathbb{C}^3$ zodat $\mathbb{C}^3 = U \oplus W$ en $\mathbb{C}^3 = V \oplus W$?

Ja, namelijk $W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$.

Nu moeten we nog laten zien dat het een directe som is door te laten zien dat:

•
$$U + W = \mathbb{C}^3$$

Neem $x \in \mathbb{C}^3 = \begin{pmatrix} d \\ e \\ g \end{pmatrix}$.

Dan kunnen we dit schrijven als $g \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + (d-g) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (e-g) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} g+d-g \\ g+e-g \\ g \end{pmatrix} = \begin{pmatrix} d \\ e \\ g \end{pmatrix}$. Hierbij gebruiken we dat $g \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in U$ en $(d-g) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $(e-g) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in W$. Dus $U+W=\mathbb{C}^3$.

$$\bullet \ U \cap W = \{0\}$$

Neem $x \in U \cap W$ met α , β en $\gamma \in \mathbb{C}$. Dit geeft $x = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \beta \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Dit geeft:

$$\begin{cases} \alpha = \beta \\ \alpha = \gamma \\ \alpha = 0 \end{cases}$$

Dus
$$\alpha = \beta = \gamma = 0$$
, dus de enige vector $x \in U \cup W$ is $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Dus $\mathbb{C}^3 = U \oplus W$

•
$$V + W = \mathbb{C}^3$$

Neem $x \in \mathbb{C}^3 = \begin{pmatrix} d \\ e \\ g \end{pmatrix}$.

Dan kunnen we dit schrijven als
$$g \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + (d-g) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (e-g) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -g+d+g \\ -g+e+g \end{pmatrix} = \begin{pmatrix} d \\ e \\ g \end{pmatrix}$$
. Hierbij gebruiken we dat $g \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \in V$ en $(d-g) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $(e-g) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in W$. Dus $V+W=\mathbb{C}^3$.

 $\bullet \ V \cap W = \{0\}$

Neem
$$x \in V \cap W$$
. Dit geeft $x = \alpha \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \beta \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ met α, β en $\gamma \in \mathbb{C}$

Dit geeft:

$$\begin{cases} -\alpha = \beta \\ -\alpha = \gamma \\ \alpha = 0 \end{cases}$$

Dus
$$\alpha = \beta = \gamma = 0$$
, dus de enige vector $x \in V \cup W$ is $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Dus $\mathbb{C}^3 = V \oplus W$

- 2. Zij V een vectorruimte over $\mathbb C$ en $P:V\to V$ een projectie en $I:V\to V$ de identiteit. Bewijs de volgende uitspraken:
 - (a) I P is ook een projectie

Voor een projectie moet gelden: $P(\alpha v_1 + \beta v_2) = \alpha P(v_1) + \beta P(v_2)$. Bewijs dit:

$$(I - P)(\alpha v_1 + \beta v_2) = I(\alpha v_1 + \beta v_2) - P(\alpha v_1 + \beta v_2)$$

$$= I(\alpha v_1) + I(\beta v_2) - (P(\alpha v_1) + P(\beta v_2))$$

$$= \alpha I(v_1) + \beta I(v_2) - \alpha P(v_1) - \beta P(v_2))$$

$$= \alpha (I(v_1) - P(v_1)) + \beta (I(v_2) - P(v_2))$$

$$= \alpha (I(v_1) - P(v_1)) + \beta (I(v_2) - P(v_2))$$

$$= \alpha (I - P)(v_1) + \beta (I - P)(v_2)$$

Dus dit is een lineaire afbeelding. Nu moeten we nog bewijzen dat geldt $(I-P)^2 = (I-P)$. Dit geeft: $(I-P)(I-P)(x) = (I-P)(x-P(x)) = (I-P)(x) - (I-P)(P(x)) = x - P(x) - P(x) + P^2(x) = x - 2P(x) + P(x) = x - P(x) = (I-P)(x)$.

(b) Ker $P = \operatorname{Im}(I - P)$

We weten dat P een projectie is, dus $P = P^2$. Hieruit volgt dat $P(x) = P^2(x)$ voor een willeurige $x \in \mathbb{C}$.

Eerst bewijzen we dat $Im(I - P) \subseteq Ker P$.

Im $(I - P) = \{(I - P)(x) | x \in \mathbb{C}\} = \{(x - P(x) | x \in \mathbb{C}\}\$ deze vectoren behoren tot Ker P omdat $P(x - P(x)) = P(x) - P^2(x) = (P - P)(x) = 0$

Nu bewijzen we dat Ker $P \subseteq \text{Im } (I - P)$

Ker $P = \{x \in \mathbb{C} | P(x) = 0\}$ deze vectoren behoren tot Im (I - P) omdat (I - P)(x) = x - P(x) = x - 0 = x

Dus Ker $P = \operatorname{Im}(I - P)$

(c) Im
$$P = Ker(I - P)$$

Bewijs eerst dat Im $P \subseteq \text{Ker}(I - P)$

Im $P = \{P(x) | x \in \mathbb{C}\}$. Deze vectoren behoren tot Ker(I - P) omdat $(I - P)(P(x)) = P(x) - P^2(x) = (P - P)(x) = 0$

Bewijs nu dat $Ker(I - P) \subseteq Im P$

 $\operatorname{Ker} (I - P) = \{ x \in \mathbb{C} | (I - P)(x) = 0 \} = \{ x \in \mathbb{C} | x - P(x) = 0 \} = \{ x \in \mathbb{C} | x = P(x) \}.$

Deze vectoren behoren tot Im P omdat P(x) = x.

Dus Im P = Ker(I - P).