

Support Vector Machines

Instructor

Mousum Dutta Chief Data Scientist, Spotle.ai Computer Science, IIT KGP

Perceptron Revisited: Linear Separators

Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

Which of the linear separators is optimal?

Classification Margin

- Distance from example x_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- $Margin \rho$ of the separator is the distance between support vectors.

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\begin{aligned} \mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b &\leq -\rho/2 & \text{if } y_i &= -1 \\ \mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b &\geq \rho/2 & \text{if } y_i &= 1 \end{aligned} \iff y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \geq \rho/2$$

• For every support vector $\mathbf{x_s}$ the above inequality is an equality. After rescaling \mathbf{w} and \mathbf{b} by $\mathbf{\rho/2}$ in the equality, we obtain that distance between each $\mathbf{x_s}$ and the hyperplane is $r = \frac{\mathbf{y_s}(\mathbf{w}^T\mathbf{x_s} + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$

• Then the margin can be expressed through (rescaled) **w** and **b** as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVM Mathematically

Then we can formulate the *quadratic optimization problem*:

Find₂**w** and *b* such that
$$\rho = \frac{1}{\|\mathbf{w}\|}$$
 is maximized and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find **w** and *b* such that $\Phi(\mathbf{w}) = \mathbf{I} \mathbf{w} \mathbf{I}^2 = \mathbf{w}^\mathsf{T} \mathbf{w} \text{ is minimized}$

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Solving the Optimization Problem

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a dual problem where a Lagrange multiplier
 α_i is associated with every inequality constraint in the primal (original) problem:

Find $a_1...a_n$ such that

 $\mathbf{Q}(\mathbf{a}) = \Sigma a_i - \frac{1}{2} \Sigma \Sigma a_i a_i y_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i$ is maximized and

- $(1) \ \Sigma \alpha_i y_i = 0$
- (2) $a_i \ge 0$ for all a_i

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_i between all training points.

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification Mathematically

The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1
```

Modified formulation incorporates slack variables:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + C \Sigma \xi_i is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \xi_i \ge 0
```

 Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification – Solution

 Dual problem is identical to separable case (would not be identical if the 2norm penalty for slack variables CΣξ_i² was used in primal objective, we would need additional Lagrange multipliers for slack variables):

Find
$$a_1...a_N$$
 such that $\mathbf{Q}(\mathbf{a}) = \sum a_i - \frac{1}{2} \sum a_i a_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$ is maximized and (1) $\sum a_i y_i = 0$ (2) $0 \le a_i \le C$ for all a_i

- Again, x_i with non-zero a_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute **w** explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

Justification for Maximum Margins

Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as

$$h \le \min\left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

- Intuitively, this implies that regardless of dimensionality \mathbf{m}_0 we can minimize the VC dimension by maximizing the margin $\boldsymbol{\rho}$.
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers \mathbf{a}_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find
$$a_1...a_N$$
 such that $\mathbf{Q}(\mathbf{a}) = \Sigma a_i - \frac{1}{2} \Sigma \Sigma a_i a_i y_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i$ is maximized and

$$(1) \quad \Sigma \alpha_i y_i = 0$$

(2)
$$0 \le a_i \le C$$
 for all a_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

General idea: The original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_i$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \phi(x)$, the inner product becomes:

$$K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$$

• A *kernel function* is a function that is equivalent to an inner product in some feature space.

The "Kernel Trick"

Example:

For 2-dimensional vectors
$$\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2]$$
; let $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{1} + \mathbf{x}_i^T \mathbf{x}_j)^2$.
We need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

• Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly).

What Functions are Kernels?

- It may be cumbersome to check that $K(x_i,x_i) = \phi(x_i)^T \phi(x_i)$ for some functions $K(x_i,x_i)$.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

 Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

K =

$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	•••	$K(\mathbf{x}_1,\mathbf{x}_n)$
$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
• • •	•••	•••	•••	• • •
$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Examples of Kernel Functions

- Linear: $K(x_i, x_j) = x_i^T x_j$
 - Mapping Φ : $x \to \phi(x)$, where $\phi(x)$ is x itself

- Polynomial of power p: $K(x_i,x_j)=(1+x_i^Tx_j)^p$
 - Mapping Φ : $x \to \phi(x)$, where $\phi(x)$ has $\binom{d+p}{p}$ dimensions
- Gaussian (radial-basis function): $K(x_i, x_j) = e^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}}$
 - Mapping Φ : $x \to \varphi(x)$, where $\varphi(x)$ is infinite-dimensional: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

Non-linear SVMs Mathematically

Dual problem formulation:

Find $a_1...a_n$ such that

$$\mathbf{Q}(\mathbf{a}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 is maximized and

- $(1) \quad \Sigma \alpha_i y_i = 0$
- (2) $a_i \ge 0$ for all a_i
- The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

SVM History

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- Most popular optimization algorithms for SVMs use decomposition to hill-climb over a subset of α_i's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

