IT24102307 - Dewmith H.L.T.P.

```
getwd()
    setwd("C:\\users\\it24102307\\Desktop\\IT24102307")
3 getwd()
5 #Exercise
 6
 8 branch_data <- read.table("Exercise.txt",header=TRUE,sep=",")</pre>
9 fix(branch_data)
10 attach(branch_data)
11
12 #2
13 str(branch_data)
14
15 #3
16 boxplot(branch_data$sales_X1, Main="Sales",outline=TRUE, outpch=8, horizontal=TRUE,xlab="Sales")
17 hist(branch_data$Sales_X1, Main="Sales",outline=TRUE,outpch=8, horizontal=TRUE)
18
19 #4
20 summary(Advertising_X2)
21 IQR(Advertising_X2)
23 #5
24 - find_outliers <- function(z) {
25
     Q1 <- quantile(z, 0.25)
26
     Q3 \leftarrow quantile(z, 0.75)
27
     IQR <- Q3 - Q1
28
     29
30
31
     print(paste("Upper Bound = ", ub))
print(paste("Lower Bound = ", lb))
print(paste("Outliers =", paste(sort(x[x<lb | x>ub]),collapse=",")))
32
33
34
35 4 }
36 get.outlier(Years_X3)
```

■ Data Editor — □ ×								
File	Edit Help							
	Branch	Sales_X1	Advertising_X2	Years_X3	var5	var6	var7	
1	1	3.4	120	4				
2	2	4.1	150	7				
3	3	2.8	90	3				
4	4	5	200	10				
5	5	3.7	110	5				
6	6	4.5	175	6				
7	7	3	95	2				
8	8	4.9	185	9				
9	9	3.2	105	4				
10	10	2.5	80	1				
11	11	3.9	130	5				
12	12	4.2	140	7				
13	13	2.7	100	3				
14	14	3.6	125	4				
15	15	4.8	190	8				
16	16	3.3	115	5				
17	17	4	135	6				
18	18	5.1	210	12				
19	19	3.8	145	6				

> #2

> str(branch_data)
'data.frame': 30 obs. of 4 variables:

\$ Branch : num 1 2 3 4 5 6 7 8 9 10 ... \$ sales_X1 : num 3.4 4.1 2.8 5 3.7 4.5 3 4.9 3.2 2.5 ... \$ Advertising_X2: num 120 150 90 200 110 175 95 185 105 80 ... \$ Years_X3 : num 4 7 3 10 5 6 2 9 4 1 ...

Histogram of branch_data\$Sales_X1


```
> #4
> summary(Advertising_X2)
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                         Max.
   80.0 101.2 132.5
                         134.8 158.8
                                          210.0
> IQR(Advertising_X2)
[1] 57.5
>
> #5
> find_outliers <- function(z) {
   Q1 \leftarrow quantile(z, 0.25)
   Q3 <- quantile(z, 0.75)
+
   IQR <- Q3 - Q1
+
+
   ub <- Q3 + 1.5 * IQR
+
   lb <- Q1 - 1.5 * IQR
   print(paste("Upper Bound = ", ub))
   print(paste("Lower Bound = ", 1b))
   print(paste("Outliers =", paste(sort(x[x<lb | x>ub]),collapse=",")))
+ }
> get.outlier(Years_X3)
[1] "Upper Bound = 14.5"
[1] "Lower Bound = -3.5"
[1] "Outliers = "
```