

(a) Determine todos los valores de c para los cuales la integral impropia $\int e^{-c|x|} dx$ converge. Ayuda: analice por separado los casos c < 0, c = 0 y c > 0.

U= C.X

U= C.X

du = L dx =7 du = dx

$$X \ge 0$$

$$\int_{C} e^{-c \cdot x} dx = \int_{C} e^{-c} dv = \frac{1}{-c} \cdot \int_{C} e^{c} dv \qquad dv = -c \cdot dx = \frac{1}{-c} \cdot dv = dx$$

$$= -\frac{1}{-c} \cdot e^{c} = -\frac{e^{-c \cdot x}}{-c} = -\frac{1}{-c} + c$$

$$= -\frac{1}{-c} \cdot e^{-c} = -\frac{1}{-c}$$

$$\int e^{c.x} dx = \int e^{v} dv = \frac{1}{c} \int e^{v} dv$$

$$= \frac{1}{c} \cdot e^{v} = \frac{e^{c.x}}{c} + c$$

$$\int_{-\infty}^{\infty} e^{-c \cdot x} dx = \int_{-\infty}^{\infty} e^{c \cdot x} dx + \int_{0}^{\infty} e^{-c \cdot x} dx =$$

$$=\lim_{t\to\infty}\left(\frac{e^{t\cdot x}}{c}\right)+\lim_{t\to\infty}\left(\frac{-1}{c\cdot e^{tx}}\right)$$

$$= \lim_{t \to -\infty} \left(\frac{e^{t \cdot 0}}{C} - \frac{e^{t \cdot t}}{C} \right) + \lim_{t \to \infty} \left(\frac{-1}{c \cdot e^{t \cdot t}} - \frac{-1}{c \cdot e^{t \cdot 0}} \right)$$

$$= \frac{1}{C} - \lim_{t \to \infty} \frac{c \cdot t}{C} + \lim_{t \to \infty} \frac{-1}{C \cdot e^{t}t} + \frac{1}{C \cdot 1}$$

$$= \frac{2}{C} - \lim_{t \to \infty} e^{t} + \lim_{t \to \infty} 1$$

$$\lim_{t \to \infty} C \qquad \lim_{t \to \infty} e^{t} + \lim_{t \to \infty} 1$$

$$= \frac{2}{C} - \frac{0}{C} + \frac{-1}{C \cdot \infty} = \frac{2}{C} + \frac{-1}{C} = \frac{2}{C} + \frac{0}{C}$$

Conclusion

Como la integral converge a 2/c, sabemos que la integral converge to x0, ya que la division por o no está definida

Fiorgicio	2	100	mto	
Ejercicio	\boldsymbol{z}	(zv)	pts.	J

(a) Considere la función $f(x) = \sqrt{x}$ y sea $T_{2,4}(x)$ su polinomio de Taylor de grado 2 y centrado en a=4. Estimar el error que se comete si se aproxima el número $\sqrt{3}$ por el valor de $T_{2,4}(x)$ en x = 3.

Calculanos lar primeras 3 derivadas de flu)

$$f(x) = \frac{x^{2}}{2} = \frac{1}{2} = \frac{1$$

$$f^{11}(x) = \underbrace{1 \cdot -1}_{2} \cdot \underbrace{1}_{x^{3/2}} \underbrace{-1}_{4} \underbrace{-1}_{x^{3/7}} \underbrace{-1}_{4} \underbrace{-1}_{4} \underbrace{-1}_{4} \underbrace{-1}_{4} \underbrace{-1}_{32}$$

$$f'''(x) = \frac{-7 \cdot 3}{4 \cdot 2} \cdot \frac{7}{x^{5/2}} = \frac{3}{8 \cdot \sqrt{x^{5'}}} = f'''(4) = \frac{3}{8 \cdot \sqrt{4^{5'}}} = \frac{3}{8 \cdot$$

Wemos la formula de lagrange para el resto

Acotemos t por X

$$R_{2,4}(3) = \frac{-1}{10.3^{2}.\sqrt{3}} = \frac{-1}{144.\sqrt{3}}$$

Conclusion

El error que se cometa a aproximer el volor de 53 con el volor de 7,4 es de 1
144.53

3)											1																							+		+		
(a	a) F		rese								T:								ote	ncia	s co	enti	rad	a ei	n a	= :	2. I	Det	erm	in€	9				?	?		
Rejo	·es	e/l						1											•												(1	J T	ec).	, ,,	erte	Şec	me'	tr'tə
1/x	_	_		7 1-7	1 7.t	 -X	_		<u>1</u>	- X +	7.)	=	_	1	_ •	. <u>-</u>	<u>1</u> -(-	-X+2		(1	<u>,</u>)	1/2	_ •		<u> </u>	∞ .Иъ	0 (-X 1	2)	n)								
		_	- <	2	_ • , o		_	.M 5	61	-1	\n	て	<u> </u>	_=	<u>-</u> ∞		۳_	τO 1	-	1 2 (X-1	·(-	ハ -こ 1	,				Rer	ores	enta	nció	n de	la s	erie	e en :	x=2			
		<u> </u>					- (- <u>(</u>							2	-N:	0	<u> </u>	/ n+1	- (Λ ⁻	C]										⁻ⁿ (-				_			
Vez																																		+		+		
Co	ME) (I Y	}w	10 🕻	5	UΛ	9	J	C M	e	50	01	иe	fri.	ĺ∂	(0	١	۲۵	_	χ+ 2	-2 2	- 1	6	01	te	Por	en	e	de	, l.	>	se.	rie	Sec	, Me	trico
Sc	be	7.N	01	C	Įυ(2_	الح	3	c٢	ie	('ø∕1	ve.	rze		sī.		Į٢	4	41																		
V) }/	w	5	C	Ŀ\^¢	e	ψı	10	۸,	əlo	}e	l 6	Яe	X		26	l	UN	nl	le	es'	to																
	۲)	Z	1	- 17	رد	-	χ.	+2	_	6	1		=	>	-	-1	۷	~ <u>)</u>	1	2	۷	1																
						+	_ (C																			
					=7		7	۷	- <i>λ</i>	(+	2	۷	2	<u></u>	·> '	-4	۷		X	2	0																	
																				X		0																
(٥٨	ch	ازدر	01	ìΛ	te	-n9	lo																														
	Por	· e	d	e ,	el	ĭ	nt	eri	الار) (de	C)O(1	ve'	۲۲	? N	νĭC	· (ۍ		π		(Ο,	ч													
																																		_				
																																+	+	+				
																																		_	_	+		
																																+		+	_	+		
																																		1				
																												_				+	-	+		_		
																																		+				
	_	_	_			_			_				_					1	_	_		_					_	_	_	-	_	_	_	\rightarrow	-	\rightarrow	_	

Vor ende, como el limite dio $0 \times v$ imos que la sucesson en constiva y decreciente, por crit de series alternantes sabemos que $\sum_{n=0}^{\infty} (-1)^n \frac{1}{5n!}$ converge \times

La convergencia del radio es $\frac{1}{3}$, El intervalo de convergencia del radio es $\frac{29}{3} \le x < \frac{31}{3}$

Verificar convergencia de $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n}} \left(\frac{29}{3} - 10 \right)^n$: Es divergente

1)

(b) Sea $f(x,y) = 2x^4 + y^2 - x^2 - 2y$. Encuentre el o los vectores unitarios **u** tales que la derivada direccional de f en el punto (0,2) en la dirección de **u** tiene el valor 1.

Calculemos gradiente

$$\nabla f(x,y) = (z.4x^3 - 2x, 2y - 2) = (8x^3 - 2x, 2y - 2)$$

Planteemos ecuación con derivada direccional

$$D_{\nu}f(o_{i}z)=7 \Longrightarrow \langle \nabla f(o_{i}z), (\nu_{i}, \nu_{z})\rangle = 1$$

$$\Rightarrow \langle (8.0-2.0,2.2-2), (01,02) \rangle = 1$$

$$=>\langle (0,2), (0,0)\rangle = 1$$

$$\Rightarrow 0.07 + 2.02 = 7 = 7 + 2.02 = 7$$

$$= 7 U_2 = \frac{1}{7}$$

Veamos que valorer puede tomar Uz pare que U sea unitario

$$||(v_1, \frac{1}{2})|| = 1 \Rightarrow \sqrt{v_1^2 + v_2^2} = 1 \Rightarrow \sqrt{v_1^2 + v_2^2} = 1$$

$$= \int \frac{4.0i^2 + 1}{4} - 1 = \int \frac{4.0i^2 + 1}{\sqrt{4}} = 1$$

$$= 7 \ 4.0^{2} + 1 = 2^{2} = 7 \ 4.0^{2} = 4 - 1 = 7 \ 0^{2} = 3 \Rightarrow 0_{1} = 5^{3}$$

$$= 7 \ U_1 = \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}}{2}$$

Conclusion

En bore à la virta anteriormente, tonemor que los vectores unitarios u tales que la derivada direccional de f(x,y) en el punto (0,2) en la direccion de V tiene valor 1 son los vectores $(\sqrt{5}, \frac{1}{2})$ y $(\sqrt{5}, \frac{1}{2})$

Z)

(b) Considere la curva $\gamma(t) = (2\cos(t), \sin(t))$. Dibuje aproximadamente la imagen de γ para $t \geq 0$, calcule el vector tangente a la curva en $t_0 = \pi/4$ y obtenga la ecuación de la recta tangente a la imagen de γ en el punto $\gamma(t_0)$.

Grefique mos

Evolvemon
$$Y(t)$$
 en $t=0$, $t=\frac{\pi}{4}$ y $t=1$

$$\delta(0) = (2.605(0), Sen(0)) = (2.7, 0) = (2,0)$$

$$\mathcal{J}\left(\frac{\pi}{4}\right) = \left(2 \cdot \frac{\sqrt{2}}{2}\right) = \left(\sqrt{2}, \frac{\sqrt{2}}{2}\right)$$

$$\delta(\tau) = (2.0, \tau) = (0, \tau)$$

$$\delta(\pi) = (2.1, 0) = (-2.0)$$

$$\delta\left(\frac{3\pi}{2}\right) = \left(2.0, -7\right) = \left(0, -1\right)$$

(dulenas o'(t)

$$\delta'(t) = (2.(\cos(t))', (\sin(t))') = (2.-\sin(t), \cos(t))$$

= (-2. Ser(t), cos(t))

Calculemos vector tangente

$$\overline{\partial} \left(\frac{\overline{\Pi}}{\underline{q}} \right) = \left(-2 \cdot \operatorname{Sen} \left(\frac{\overline{\Pi}}{\underline{q}} \right) \cdot \operatorname{cos} \left(\frac{\overline{\Pi}}{\underline{q}} \right) \right) = \left(\overline{z} \cdot \overline{\underline{z}} \right) \cdot \left(\overline{z} \right) = \left(-\overline{z} \cdot \overline{\underline{z}} \right)$$

Obtenyamos evación recta tangente

Le recte tengente ∂ $\delta(t)$ en to es le recte que pere por el junto $\delta(to)$ y es generade por el vector tengente ∂ $\delta(t)$ en to, por lo cual, la ecuación de la recte es le siguiente

$$R = \frac{5}{2} \times \epsilon R^2 / \chi = 8(\frac{\pi}{4}) + \epsilon \cdot \delta'(\frac{\pi}{4}) \iota con \epsilon \epsilon R^3$$

$$= \frac{5}{2} \times \epsilon R^2 / X = (Jz^2, Jz^2) + t(-Jz^2, Jz^2) + con t \epsilon R$$

(b) Calcule el volumen del prisma sólido cuya base es el rectángulo $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2\}$ y cuya tapa está contenida en el plano P del inciso anterior.

Planto

Surguemos representas al plano l'uno funcion para luego utilizar lo en uno integral doble que tiene como region al rectangulo R

> (10-2\ (02-1)

Obtenzamos vector normal à D

$$N = V \times W = (7,0,-2) \times (0,2,-1)$$

$$= (0.-7 - (2.-2), -(1.-7-0.2), 1.2-0.0)$$

$$= (-(-4), -(-1), 2) = (4,1,2)$$

Obnternos euscion corteriora

Sed
$$X = (X_{i}Y, z)$$
, $X \in \mathbb{R}^3$

$$\langle X-P_0, N \rangle = 0 \Rightarrow \langle (x, y, z) - (0, 0, 10), (4, 1, 2) \rangle = 0$$

$$\Rightarrow ((x-0, y-0, z-10), (4,1,2)) = 0$$

$$\Rightarrow ((x, y, 2-10), (4, 1, 2)) = 0$$

$$= 74 \times 7 + 2.(2-70) = 0$$

$$= 74x + y + 2z - 20 = 0$$

Desperemos Z

$$4x+y+2z-z_0=0 = 74x+y-z_0 = -2z = 74x+y-z_0 = z$$

$$= \frac{74x - y + 20}{2} = \frac{2}{2} = \frac{74x - y}{2} + \frac{20}{2} = \frac{2}{2}$$

$$= 7 - 2 \times - \frac{y}{2} + 10 = 2$$

Definamos funcion

$$Z = -2X - \frac{y}{2} + 10 \Rightarrow f(X,y) = -2X - \frac{y}{2} + 10$$

Calculemos volumen

Tentendo en wento que 0 < x < 1 y 0 < y < 2, tenemos la signiente

 $\iint_{R} f(x,y) dxdy = \int_{0}^{z} \int_{0}^{1} f(x,dy) dxdy$

Colculemos la primer integral

$$\int_{0}^{1} f(x, dy) dx = \int_{0}^{1} zx - \frac{y}{z} + 10 dx = \int_{0}^{1} zx dx - \int_{0}^{1} \frac{y}{z} dx + \int_{0}^{1} 10 dx$$

$$=-2.\int_{0}^{1} \times dx - \frac{y}{z}.\int_{0}^{1} dx + 10.\int_{0}^{1} dx$$

$$= -2 \cdot \left(\begin{array}{c|c} x & 1 \\ \hline z & 0 \end{array} \right) + \left(\begin{array}{c|c} -y & +10 \end{array} \right) \cdot \left(\begin{array}{c|c} x & 1 \\ \hline 0 & \end{array} \right)$$

$$= -2\left(\frac{1}{2} - \frac{0}{2}\right) + \left(\frac{-y}{2} + 10\right) \cdot \left(1 - 0\right) = -2 \cdot \frac{1}{2} + \left(\frac{-y}{2} + 10\right) \cdot 1$$

$$= -1 - \frac{y}{z} + 10 = -\frac{y}{z} + 9$$

Calculemos la integral iterada

$$\int_{0}^{z} \int_{0}^{1} -2x - \frac{y}{z} + 10 \, dx \, dy = \int_{0}^{z} -\frac{y}{z} + q \, dy = \int_{0}^{z} -\frac{y}{z} \, dx + \int_{0}^{z} q \, dy$$

$$= \frac{-7}{2} \int_0^2 y \, dy + 9 \cdot \int_0^2 dy$$

$$= \frac{1}{2} \cdot \left(\frac{y^2}{2} \right)^2 + 9 \cdot \left(\frac{x}{2} \right)^2$$

$$= \frac{-7 \cdot \left(z^{2} - 0^{2}\right) + 9 \cdot (z - 0)}{z} + \frac{1}{z} \cdot \frac{1}{2} + 9 \cdot 2$$

$$= -1 + 18 = 17$$

Convivion

El volumen del prisma solido cuya base as el rectargulo R y cuya tapa está Contenida en el plano P es de 1703