WHAT IS CLAIMED IS:

1. A combined oil control ring consists of:

an oil ring body which is integrally formed of upper and lower rails which bring outer peripheral surfaces thereof into slide contact with an inner surface of a cylinder and a web which connects the upper and lower rails and includes a plurality of windows, and

a coil expander which pushes the oil ring body in the direction toward the inner surface of the cylinder, the coil expander being housed in an inner-peripheral groove of the oil ring body,

10

15

20

25

wherein projecting portions which extend toward a center line in the thickness direction are formed at inner peripheral sides in the radial direction than a position where an axial distance between inner peripheries of the inner-peripheral groove portion of the oil ring body becomes maximum.

- 2. A combined oil control ring according to claim 1, wherein the axial distance between inner-peripheries of the inner-peripheral groove portion of the oil ring body smaller than the maximum distance L2, in the inner portion than the position of L2.
- 3. A combined oil control ring according to claim 2, wherein the minimum distance L1 and the maximum distance L2 satisfy a relationship of $0.03 \le (L2-L1)/L1 \le 0.15$.
- 4. A combined oil control ring according to any one of claims 1 to 3, wherein a cross-sectional shape in the

radial direction of the inner-peripheral groove portion of the oil ring body is formed of an arcuate surface.

5. A combined oil control ring according to any one of claims 1 to 3, wherein a cross-sectional shape in the radial direction of the inner-peripheral groove portion of the oil ring body includes a pair of inclined surface which face each other and a vertical surface in the axial direction which connects both inclined surfaces.

5

20

- 6. A combined oil control ring according to any one of claims 1 to 5, wherein the projecting portion is formed on only one periphery of the inner-peripheral groove portion of the oil ring body.
 - 7. A combined oil control ring according to any one of claims 1 to 5, wherein the maximum widths in the axial
- direction of the projecting portions formed on upper and lower portions of the inner-peripheral groove portion of the oil ring body differ from each other.
 - 8. A combined oil control ring according to any one of claims 2 to 7, wherein the minimum distance L1 and an outer diameter dof the coil expander have a relationship of $0.2mm \ge L1-d \ge -0.10mm$.
 - 9. A combined oil control ring according to any one of claims 1-8, wherein the projection portion is partially formed on the oil ring body in a circumferential direction.