

BARseq - BARseq-styled in situ sequencing for barcoded abies virus

 $\langle \mathsf{iaoyin}\ \mathsf{Chen}^1, \mathsf{Mara}\ \mathsf{CP}\ \mathsf{Rue}^1 \rangle$

¹Allen Institute for Brain Science

Xiaovin Chen

Allen Institute for Brain Science

AUG 16, 2023

ABSTRACT

This protocol describes the application of BARseq-style in situ sequencing adapted for barcoded rabies virus. Similar procedures for both trans-synaptic tracing and retrograde tracing experiments.

GUIDELINES

Standard precautions with RNA samples should be taken to reduce RNA degradation during tissue processing and library preparation. Pipetting and suctioning should be gentle throughout the whole procedure, and sample should not be left dried.

MATERIALS

Λ D

XCAI6

XCAI7

DOI:

87866.1

dx.doi.org/10.17504/protocolDNA oligos s.io.n2bvj82q5gk5/v1

Protocol Citation: Xiaoyin Chen, Mara CP Rue 2023. BARseg - BARseg-styled in situ sequencing for barcodec rabies virus. **protocols.io** https://dx.doi.org/10.17504/r rotocols.io.n2bvj82q5gk5/v1

MANUSCRIPT CITATION: https://doi.org/10.7554/eLife

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproductio in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

A	В	C
YS220	GATCGTCGGACTGTAGAACTCTGAACCTGTCG	sequencing primer
YS221	/5Alex594N/GATCGTCGGACTGTAGAACTCTGAACCTGTCG	Hybridization probe to visualize all genes
XC141 7	GTTCAGAGTTCTACAGTCCGACGATC	RCA primer for SNAP25 RNA padlock
XC275 7	/5AmMC12/NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	N20 for random priming
XC275	/5Alex488N/AGTCAGCGTCGAGCACGCGGCACT TATTGCA	Hybridization probe to visualize Slc17a7
XC275	/5Alex532N/TGAGTAGAGTTGACTAAGAGCCGTT AGATGCC	Hybridization probe to visualize Gad1
XC276 0	/5Alex647N/TCGCTGTACTAATAGTTGTCGACAG ATCGTCA	Hybridization probe to visualize B19G
XCAI5	/5phos/agctccggcattttgttattcaTCCTCTATGATTA CTGACTGCGTCTATTTAGTGGAGCCATTGCTATC TTCTTggatatacacaatccgtagattgct	pRV-4mCherry-Nhel-N20 BC gapfilling padlock

/5AmMC6/g+ac+at+at+tc+ga+gt+gactcataagaag

/5AmMC6/g+aa+gt+tg+aa+ta+ac+aaaatgccggag

protocols.io |

primer 1 for pRV-

primer 2 for pRV-

4mCherry-Nhel-N20 and pRV-4mCherry-CSCS2

4mCherry-Nhel-N20 and

pRV-4mCherry-CSCS2

Created: Jan 12, 2023

Last Modified: Aug 16,

2023

PROTOCOL integer ID:

75215

Keywords: BARseq, in situ sequencing, spatial transcriptomics, barcoding-based neuroanatomy

A	В	С
XCAI63	/5AmMC6/gggagtgactgacacctccctccctg	RV B19G RT primer, Hyb XC2760 for detection
XCAI64	/5AmMC6/tatcaacatcaaggcagtcagggccc	RV B19G RT primer, Hyb XC2760 for detection
XCAI65	/5AmMC6/tcctgagacctgattgtgcacatcgg	RV B19G RT primer, Hyb XC2760 for detection
XCAI66	/5AmMC6/aactccatatgttgctggaggaggga	RV B19G RT primer, Hyb XC2760 for detection
XCAI67	/5AmMC6/tgcttttccaaacccagggacaagtt	RV B19G RT primer, Hyb XC2760 for detection
XCAI68	/5AmMC6/tttcgtctgagcgaaagtcgtgcagg	RV B19G RT primer, Hyb XC2760 for detection
XCAI69	/5AmMC6/ttgcatcgagacccatgttccatcca	RV B19G RT primer, Hyb XC2760 for detection
XCAI70	/5AmMC6/aggcctctttcatctacaaagccgca	RV B19G RT primer, Hyb XC2760 for detection
XCAI71	/5AmMC6/acatecetagteteggatteteggge	RV B19G RT primer, Hyb XC2760 for detection
XCAI72	/5AmMC6/aagacaccgctactcctgagcacttc	RV B19G RT primer, Hyb XC2760 for detection
XCAI73	/5AmMC6/tggtttttacagttcgaagccagcgg	RV B19G RT primer, Hyb XC2760 for detection
XCAI74	/5AmMC6/caccggccatcttccagttgtacgcg	RV B19G RT primer, Hyb XC2760 for detection
XCAI75	/5AmMC6/agtgtaggtttcagcctccgtcacaa	RV B19G RT primer, Hyb XC2760 for detection
XCAI76	/5AmMC6/atgtaggagaaccctgacaggttggt	RV B19G RT primer, Hyb XC2760 for detection
XCAI77	/5phos/acacaatctcagagggacaggTCGCTGTACTAATAGTTGTCGACAGATCGTCACTTCGTTCCTcaatcgatcagaacctacgca	RV B19G padlock, Hyb XC2760 for detection, use with XC63
XCAI78	/5phos/gggaagtatgtattactgagtgcTCGCTGTACTAATAGTTGTCGACAGATCGTCACTTCGTTCCTtgacttgggtctcccgaactgg	RV B19G padlock, Hyb XC2760 for detection, use with XC64
XCAI79	/5phos/tgttgaagttcaccttcccgaTCGCTGTACTAAT AGTTGTCGACAGATCGTCACTTCGTTCCTcggtga cgaggctgaggattt	RV B19G padlock, Hyb XC2760 for detection, use with XC65
XCAI80	/5phos/tcccagagatgcaatcatcccTCGCTGTACTAA TAGTTGTCGACAGATCGTCACTTCGTTCCTgacct gacggcaatgtcttaa	RV B19G padlock, Hyb XC2760 for detection, use with XC66
XCAI81	/5phos/gtttcagacgtctcagtcattTCGCTGTACTAAT AGTTGTCGACAGATCGTCACTTCGTTCCTtcatgac aaccaagtcagtga	RV B19G padlock, Hyb XC2760 for detection, use with XC67
XCAI82	/5phos/cccgataagttggtgaacctgTCGCTGTACTAA TAGTTGTCGACAGATCGTCACTTCGTTCCTaatga aaccaaatggtgccct	RV B19G padlock, Hyb XC2760 for detection, use with XC68
XCAI83	/5phos/tggagttctaggacttagacttTCGCTGTACTAA TAGTTGTCGACAGATCGTCACTTCGTTCCTgagca tgcaaactcaagttatg	RV B19G padlock, Hyb XC2760 for detection, use with XC69
XCAI84	/5phos/ccaaagggagtgagacttgcgTCGCTGTACTAATAGTTGTCGACAGATCGTCACTTCGTTCCTatagtagagggaagagagcat	RV B19G padlock, Hyb XC2760 for detection, use with XC70

A	В	С
XCAI85	/5phos/gattacaccatttggatgcccTCGCTGTACTAAT AGTTGTCGACAGATCGTCACTTCGTTCCTacctact gctccactaaccac	RV B19G padlock, Hyb XC2760 for detection, use with XC71
XCAI86	/5phos/agggtcttccctagcgggaagtTCGCTGTACTA ATAGTTGTCGACAGATCGTCACTTCGTTCCTtatg acagatcccttcactcg	RV B19G padlock, Hyb XC2760 for detection, use with XC72
XCAI87	/5phos/caatccgtaccctgactaccgTCGCTGTACTAA TAGTTGTCGACAGATCGTCACTTCGTTCCTcccag atatgaagagtctctaca	RV B19G padlock, Hyb XC2760 for detection, use with XC73
XCAI88	/5phos/ccagatgcatgtagagccgcgtTCGCTGTACTA ATAGTTGTCGACAGATCGTCACTTCGTTCCTaga aagcatttccgcccaaca	RV B19G padlock, Hyb XC2760 for detection, use with XC74
XCAI89	/5phos/gttcacttgcacaggcgttgtTCGCTGTACTAAT AGTTGTCGACAGATCGTCACTTCGTTCCTtcttagc cataaaagtgaacgg	RV B19G padlock, Hyb XC2760 for detection, use with XC75
XCAI90	/5phos/tggaggacgaaggatgcaccaTCGCTGTACTA ATAGTTGTCGACAGATCGTCACTTCGTTCCTgctg cccaaacaatttggtag	RV B19G padlock, Hyb XC2760 for detection, use with XC76
XCAI13 1	TGGAGCCATTGCTATCTTCTTggatatacacaatccgt agattgct	sequencing primer for XCAI5

Reagents

- Phusion high-fidelity PCR kit **Thermo Scientific Catalog** #F553S
- X Tween-20 Sigma-aldrich Catalog #P-7949
- BS(PEG)9, 100 mg (Note: BS(PEG)9 loses its effectiveness 1 month after reconstitution in DMSO. Prepare a fresh batch every month, especially if it has been frozen and
- thawed repeatedly. Thermo Scientific Catalog #21582

 Formamide Thermo Fisher Scientific Catalog #AM9342
- 10x PBS Thermo Fisher Scientific Catalog #AM9624
- 🔀 RNase-free water Contributed by users
- dNTP Mix (dATP, dCTP, dGTP, and dTTP, each at 10mM) Thermo Fisher Scientific Catalog #R0192
- phi29 DNA Polymerase (10 U/μL) **Thermo Scientific Catalog**#EP0091
- X RNAse H Enzymatics Catalog #Y9220L

- Sigma Aldrich Catalog #G5516
- Ethanol Merck Millipore Catalog #100983
- Pierce™ MMTS (methyl methanethiosulfonate) Thermo Fisher Catalog #23011
- SSC (20X), RNase-free Thermo Fisher Catalog #AM9770
- RiboLock RNase Inhibitor (40 U/μL) **Thermo Fisher Catalog** #E00381
- RevertAid H Minus Reverse Transcriptase (200 U/µL) **Thermo Fisher Catalog** #EP0452
- Paraformaldehyde 20% Electron Microscopy Sciences Catalog #15713
- BSA Molecular grade New England Biolabs Catalog #B9000S
- Ampligase DNA Ligase Kit Lucigen Catalog #A8101
- KCl (2 M) RNase-free Thermo Fisher Scientific Catalog #AM9640G
- Aminoallyl-dUTP Solution (50 mM) Thermo Fisher Scientific Catalog #R1101
- Tris (1 M) pH 8.0 RNase-free Thermo Fisher Scientific Catalog #AM9855G
- ₩ HiSeq SBS Kit v4 illumina Catalog #FC-401-4003
- Grace Bio-Labs HybriWell-FL™ sealing system Fluor-friendly adhesive chamber Sigma

 Aldrich Catalog #GBL612204

Other equipment required include incubators set at 37 °C, 45 °C, and 60 °C. All tubes should be RNase-free. RNase-free filter tips should be used. A Crest Xlight v3 spinning disk confocal on an Nikon Ti2E with Photometrics Kinetix, and Lumencor Celesta was used for imaging the sequencing steps. The filters and lasers used are indicated in Table 1.

A	В	С	D
Channels	Laser	Dichroic	Emission filter
G/YFP	514	Zt405/514/63 5rpc	FF01-565/24
T/RFP	561	FF421/491/5 67/659/776- Di01	FF01-441/511/593/684/817
A	640	Zt405/514/63 5rpc	FF01-676/29

A	В	С	D
С	640	Zt405/514/63 5rpc	FF01-775/140
GFP	488	FF421/491/5 72-Di01	69401m
DAPI	405	FF421/491/5 72-Di01	69401m
TexasRed	561	FF421/491/5 72-Di01	69401m
Cy5	640	Zt405/514/63 5rpc	ZET532/640m

Table 1. Laser and filter settings for sequencing imaging.

SAFETY WARNINGS

 Use caution when handling liquids containing formaldehyde and formamide.

Library preparation

1 Tissues with barcoded neurons should be cryo-sectioned to 20 μ m and mounted on slides. Slides can be stored at -80 °C for up to a month.

2 DAY 1

Take slide(s) out of -80 °C and immerse immediately in 4% paraformaldehyde in 1x PBS (2 slides per 50mL falcon tube, back-to-back)

- 3 Incubate for 1 hour at room temperature on slow shaker
- 4 Wash the slides by immersing in 1x PBS (2 slides per 50ml falcon tube, back to back)

5 Wipe excess PBS off the surface of the chamber, then stick on the Hybriwell-FL chambers. Note that the ports on the chamber should be placed as far away from the tissue slices as possible. 6 Wash twice in PBST (1x PBS + 0.5% Tween-20) 7 Wash in 70% Ethanol for 5 mins 8 Wash in 85% Ethanol for 5 mins 9 Wash in 100% Ethanol for 5 mins 10 Replace with new 100% Ethanol, drop extra 100% Ethanol on top of slides and cover with ParaFilm to avoid evaporation. Incubate for at least 1.5 hrs at 4 °C (up to 3 hours) 11 Wash in PBST for 4-6 times, until all bubbles are cleared in the chamber and PBST flows in and out of the chamber smoothly. 12 Make reverse transription mix: 50 μM N20 primer (XC2757), 2 μM XCAI6, 2 μM XCAI7, 20 U/μL RevertAid H Minus M-MuLV reverse transcriptase, 500 μM dNTP, 0.2 μg/μL BSA, 1 U/μL RiboLock RNase Inhibitor, 1x RevertAid RT buffer. For the monosynaptic tracing experiments, the RT primers additionally included 2 µM of primers for the rabies glycoprotein (XCAI63 through XCAI76).

13	Incubate in reverse transcription mix overnight at 37 °C. Create a humidity chamber to avoid the slides drying out using kim-wipes and DI water.
14	DAY 2:
	Wash with PBST once
15	Incubate in a mixture of 1µL BS(PEG)9 per 4 µL PBST (e.g. 200ul BS(PEG)9 and 800ul PBST) for one hour at room temperature
16	Wash with 1M Tris pH 8.0, then incubate in new 1M Tris pH 8.0 for 30 mins
17	Wash twice in PBST
18	Make non-gap-filling ligation mix: 1x Ampligase buffer, 20 nM padlock probe each, 0.5 U/μL Ampligase, 0.4 U/μL RNase H, 1 U/μL RiboLock RNase Inhibitor, 50 mM KCl (extra of those already provided by the ampligase buffer), 20% formamide.
	In the retrograde tracing experiments, the non-gap-filling padlock probe mix included all padlock probes for endogenous genes. In the monosynaptic tracing experiments, the non-gap-filling padlock probe mix included all padlock probes for endogenous genes except <i>Slc30a3</i> , and additionally included padlocks for the rabies glycoprotein (XCAI77 – XCAI90).
19	Incubate in ligation mix for at least 30 mins at 37 °C (can go longer but not shorter), then at least 45 mins at 45 °C (can go longer but not shorter).
20	Make the gap-filling ligation mix [same as the non-gap-filling mix with the rabies barcode padlock probe (XCAI5) as the only padlock probe, and with 50 μ M dNTP, 0.2 U/ μ L Phusion DNA polymerase, and 5% glycerol]

	RiboLock RNase Inhibitor, 50 mM KCl (extra of those already provided by the ampligase buffer), 20% formamide, 50 µM dNTP, 0.2 U/µL Phusion DNA polymerase, and 5% glycerol.
21	Wash twice in PBST
22	Incubate in ligation mix for 5 mins at 37 °C, then 45 mins at 45 °C. **exact timing on this step!**
23	Wash twice in PBST, then once in FISH Wash (2x SSC with 10% formamide)
24	Hybridize with 1 μ M RCA primer (XC1417) in FISH wash for 10 mins at room temperature
25	Wash twice in FISH wash, then twice in PBST
26	Make RCA mix: 1 U/ μ L phi29 DNA polymerase, 1x phi29 polymerase buffer, 0.25 mM dNTP, 0.2 μ g/ μ L BSA, 5% glycerol (extra of those from the enzymes), 125 μ M aminoallyl dUTP
27	Incubate in RCA mix overnight at room temperature
28	DAY 3:
	Wash with PBST once

1x Ampligase buffer, 20 nM padlock probe each, 0.5 U/ μ L Ampligase, 0.4 U/ μ L RNase H, 1 U/ μ L

29	Incubate in a mixture of 1µL BS(PEG)9 per 4 µL PBST (e.g. 200ul BS(PEG)9 and 800ul PBST) for one hour at room temperature
30	Wash with 1M Tris pH 8.0, then incubate in new 1M Tris pH 8.0 for 30 mins
31	Wash twice in PBST

Sequencing

32 Hybridization of Gene sequencing primer:

Wash with FISH wash (2x SSC with 10% formamide)

- 33 Hybridize sequencing primer (YS220) with a primer concentration of 1 μ M in FISH wash for 10 mins at room temperature
- 34 Wash with FISH wash three times, 2 mins each
- 35 Wash with PBST twice
- 36 Sequence first cycle (genes and barcodes):

Do the following incubations. Unless noted with incubation temperature, each step is performed at room temperature. For steps without incubation time, treat these as quick washes. large flat

metal blocks can be used to place sample slides to quickly cycle through high and low temperatures. This version uses MiSeq Nano v2 kit:

 $\frac{https://www.illumina.com/products/by-type/sequencing-kits/cluster-gen-sequencing-reagents/miseq-reagent-kit-v2.html}{}$

36.1	Incorporation Buffer 60 °C 3 mins x1
36.2	2% PBST x1
36.3	Idoacetamide blocker: For 9.3mg vial dilute pellet in between 2.5-3.5mL 2% PBST. Make fresh tube daily and store out of light.
	Idoacetamide blocker 60 °C 3 mins x1
36.4	2% PBST x1
36.5	Incorporation Buffer x2
36.6	IRM 60 °C 3 mins x2
36.7	2% PBST x1
36.8	2% PBST 60 °C 3 mins x4

36.9 Replace PBST with USM and Image **if slides are dirty, clean with 70% Ethanol before adding USM** 37 Sequence subsequent cycles (genes and barcodes): Do the following incubations. Unless noted with incubation temperature, each step is performed at room temperature. For steps without incubation time, treat these as quick washes. large flat metal blocks can be used to place sample slides to quickly cycle through high and low temperatures. 37.1 Incorporation buffer x2 37.2 CRM 60 °C 3 mins x2 37.3 Incorporation buffer x1 - Wipe ports after adding the incorporation buffer, to ensure that no CRM is left on the slide's surface 37.4 2% PBST x1 37.5 Idoacetamide blocker: For 9.3mg vial dilute pellet in between 2.5-3.5mL 2% PBST. Make fresh tube daily and store out of light. Idoacetamide blocker 60 °C 3 mins x1

37.6

2% PBST x1

37.7	Incorporation buffer x2
37.8	IRM 60 °C 3 mins x2
37.9	2% PBST x1
37.10	2% PBST 60 °C 3 mins x4
37.11	Replace 2% PBST with USM and image **if slides are dirty, clean with 70% Ethanol before adding USM**
38	After completing all gene sequencing imaging cycles: Hybridization cycle
38.1	Hybridize probes: Make strip buffer: 60% formamide 2xSSC 0.01% Tween20
	Strip buffer 60 °C 5 mins x3 Cool down quickly on metal plates between washes, place on metal plates in 60 °C oven to heat up quickly.
38.2	FISH wash (2x SSC with 10% formamide) 1x

38.3	Hybridize probes (YS221, XC2758, XC2759, XC2760) with a primer concentration of 1 μM in FISH wash at 60 °C for 2 minutes, then for 10 mins at room temperature. Rotate plates in holder to ensure they cool down slowly.
38.4	FISH wash x1
38.5	0.002 mg/ML DAPI in PBST, room temperature for 5 mins
38.6	Replace PBST with USM and image **if slides are dirty, clean with 70% Ethanol before adding USM**
39	After completing all gene sequencing imaging cycles and hybridization cycle:
3,5	
0)	Hybridize barcode sequencing primers
39.1	
	Hybridize barcode sequencing primers Strip buffer (60% formamide 2xSSC 0.01% Tween20) 60 °C 5 mins x3 Cool down quickly on metal plates between washes, place on metal plates in 60 °C oven to
39.1	Hybridize barcode sequencing primers Strip buffer (60% formamide 2xSSC 0.01% Tween20) 60 °C 5 mins x3 Cool down quickly on metal plates between washes, place on metal plates in 60 °C oven to heat up quickly.

Sequencing barcodes: The sequencing procedures are the same as those for gene sequencing (Steps 36 and 37)

After hybridizing barcode primers, go directly back to step 36, sequence first barcode imaging cycle. Then repeat step 37 for desired length of barcode sequence.