INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

(51) Internationale Patentkiassifikation 6:

C07D 493/10, 495/10, 491/10, 309/10, 335/02, 333/38, 211/66, A01N 43/16, 43/08, 43/18, 43/10, 43/40 // (C07D 493/10, 311:00, 307:00)

(11) Internationale Veröffentlichungsnummer: WO 96/20196

(43) Internationales

Veröffentlichungsdatum:

4. Juli 1996 (04.07.96)

(21) Internationales Aktenzeichen:

PCT/EP95/04869

(22) Internationales Anmeldedatum:

11. December 1995

(11.12.95)

A1

(30) Prioritätsdaten:

P 44 46 335.9 195 40 736.9

23. December 1994 (23.12.94) DE

2. November 1995 (02.11.95) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FISCHER, Reiner [DE/DE]; Nelly-Sachs-Strasse 23, D-40789 Monheim (DE). BRETSCHNEIDER, Thomas [DE/DE]; strasse 29B, D-53797 Lohmar (DE). BECK, Gunther [DE/DE]; Am Mittelberg 19, D-51375 Leverkusen (DE). HAGEMANN, Hermann [DE/DE]; Kandinskystrasse 52, D-51375 Leverkusen (DE). ERDELEN, Christoph [DE/DE]; Unterbüscherhof 15, D-42799 Leichlingen (DE). WACHENDORFF-NEUMANN, Ulrike [DE/DE]; Oberer Markenweg 85, D-56566 Neuwied (DE). ANDERSCH,

Wolfram [DE/DE]; Schlodderdicher Weg 77, D-51469 Bergisch Gladbach (DE). MENCKE, Norbert [DE/DE]; Grundermühle 2, D-51381 Leverkusen (DE). TURBERG, Andreas [DE/DE]; Naheweg 19, D-40699 Erkrath (DE).

(74) Gemeinsamer Vertreter: AKTIENGE-BAYER SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, MX, NO, NZ, PL, RO, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

eintreffen.

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen

(54) Title: 3-ARYL-TETRONIC ACID DERIVATIVES, THE PRODUCTION THEREOF AND THE USE THEREOF AS ANTI-PARASITIC AGENTS

(54) Bezeichnung: 3-ARYL-TETRONSÄURE-DERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS **SCHÄDLINGSBEKÄMPFUNGSMITTEL**

(57) Abstract

The invention concerns novel 3-aryl-4hydroxy-\Delta^3-dihydrofuranone derivatives of formula (I), wherein: A and B together with the carbon atom to which they are bound form a five to seven member ring which is interrupted by at least one heteroatom and either unsubstituted or substituted; X represents alkyl, halogen or alkoxy; Y represents hydrogen, alkyl, halogen, alkoxy or halogenated alkyl; Z represents alkyl, halogen or alkoxy; n is 0, 1, 2 or 3; G represents hydrogen (a) or one of the groups (b), (c), (d), (e), (f) or (g) shown; E represents a metal ion equivalent or an ammonium ion; L represents oxygen or sulphur, and R1, R2, R3, R4, R5, R6 and R7 have the meanings indicated in the description. The invention also concerns methods of producing the said compounds and the use of the said compounds as anti-parasitic agents, as well as intermediate products of formula (II) in which R8 represents alkyl.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon-Derivate der Formel (I), in welcher A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten 5- bis 7-gliedrigen Ring bilden; X für Alkyl, Halogen oder Alkoxy steht; Y für Wasserstoff, Alkyl, Halogen, Alkoxy oder Halogenalkyl steht; Z für Alkyl, Halogen oder Alkoxy steht; n für eine Zahl 0, 1, 2 oder 3 steht; G für Wasserstoff (a) oder für eine der Gruppen (b), (c), (d), (e), (f) oder (g) steht; E für ein Metallionäquivalent oder ein Ammoniumion steht; L für Sauerstoff oder Schwefel steht; M für Sauerstoff oder Schwefel steht; und R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die in der Beschreibung angegebene Bedeutung haben, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, sowie Zwischenprodukte der Formel (II), in welcher R⁸ für Alkyl steht.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
ΑU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neusceland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumanien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
СН	Schweiz	LJ	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Techad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Мопасо	TT	Trinidad und Tobago
DK	Dinemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
PI	Finaland	MN	Mongolei	υz	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

10

15

3-Aryl-Tetronsaure-Derivate, deren Herstellung und deren Verwendung als Schädlingsbekämpfungsmittel

Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy-Δ³-dihydro-furanon-Derivate (3-Aryl-tetronsäure-Derivate), Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel.

Es ist bekannt, daß bestimmte substituierte Δ^3 -Dihydrofuran-2-on-Derivate herbizide Eigenschaften besitzen (vgl. DE-A-4 014 420). Die Synthese der als Ausgangsverbindungen verwendeten Tetronsäurederivate (wie z.B. 3-(2-Methyl-phenyl)-4-hydroxy-5-(4-fluorphenyl)- Δ^3 -dihydrofuranon-(2)) ist ebenfalls in DE-A-4 014 420 beschrieben. Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al., J. Chem. Soc., Perkin Trans. 1, 1985, (8) 1567-76 bekannt. Weiterhin sind 3-Aryl- Δ^3 -dihydrofuranon-Derivate mit herbiziden, akariziden und insektiziden Eigenschaften aus EP-528 156 bekannt, jedoch ist die dort beschriebene Wirkung nicht immer ausreichend.

Es wurden nun neue 3-Aryl-4-hydroxy-Δ³-dihydrofuranon-Derivate der Formel (I)

gefunden, in welcher

- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind, einen durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten 5- bis 7-gliedrigen Ring bilden,
 - X für Alkyl, Halogen oder Alkoxy steht,
 - Y für Wasserstoff, Alkyl, Halogen, Alkoxy oder Halogenalkyl steht.
- 25 Z für Alkyl, Halogen oder Alkoxy steht,

- n für eine Zahl 0, 1, 2 oder 3 steht,
- G für Wasserstoff (a) oder für eine der Gruppen

steht,

- 5 E für ein Metallionäquivalent oder ein Ammoniumion steht,
 - L für Sauerstoff oder Schwefel steht,
 - M für Sauerstoff oder Schwefel steht,
- R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl, gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann oder jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,
- für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl,
 Alkoxyalkyl, Polyalkoxyalkyl, gegebenenfalls durch Halogen, Alkoxy oder
 Alkyl substituiertes Cycloalkyl oder jeweils gegebenenfalls substituiertes
 Phenyl oder Benzyl steht,
- R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,

10

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Alkandiylrest.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächlichen Strukturen (Ia) bis (Ig):

$$\begin{array}{c} A \\ B \\ \longrightarrow O \\ X \\ \longrightarrow \end{array}$$

$$\begin{array}{c} Zn \\ \end{array}$$

$$(Ia)$$

WO 96/20196 PCT/EP95/04869

- 4 -

5 worin

A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und n die oben angegebenen Bedeutungen besitzen.

Aufgrund eines oder mehrerer Chiralitätszentren, fallen die Verbindungen der Formeln (Ia) bis (Ig) im allgemeinen als Stereoisomerengemisch an. Sie können so-

10

wohl in Form ihrer Diastereomerengemische als auch als reine Diastereomere oder Enantiomere verwendet werden.

Weiterhin wurde gefunden, daß man die neuen substituierten 3-Aryl-tetronsäure-Derivate der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält.

(A) Man erhält 3-Aryl-tetronsäuren der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Y \\ \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, wenn man

Carbonsäureester der Formel (II)

$$A \xrightarrow{CO_2R^8} X$$

$$O \xrightarrow{Z_n} Z_n$$
(II)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, und

15 R⁸ für Alkyl, bevorzugt C₁-C₈-Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert;

und

(B) man erhält Verbindungen der Formel (Ib)

in welcher

A, B, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (Ia),

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Y \\ \end{array}$$

10 in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

B) mit Carbonsäureanhydriden der Formel (IV)

$$R^1$$
-CO-O-CO- R^1 (IV)

in welcher

10 R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

und

15 (C) man erhält Verbindungen der Formel (Ic-1)

$$B \xrightarrow{A} O$$
 $R^2 - M$
 O
 X
 Zn
(Ic-1)

in welcher

A, B, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

und

M für Sauerstoff oder Schwefel steht,

wenn man Verbindungen der Formel (Ia)

 $\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Y \end{array}$ $\begin{array}{c} Z_n \\ \end{array} \qquad (Ia)$

5

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Chlorameisensäureester oder Chlorameisensäurethiolester der Formel (V)

10

(V)

in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

15 und

(D) man erhält Verbindungen der Formel (Ic-2)

in welcher

A, B, R², X, Y, Z und n die oben angegebene Bedeutung haben

und

5 M für Sauerstoff oder Schwefel steht,

wenn man Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Z_n \end{array} \qquad (Ia)$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

10 α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

$$\begin{array}{c}
CI \longrightarrow M \longrightarrow R^2 \\
S
\end{array} (VI)$$

in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

5 B) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R²-Hal (VII)

in welcher

R² die oben angegebene Bedeutung hat

10 und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt;

und

15 (E) man erhält Verbindungen der Formel (Id)

in welcher

A, B, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow O \\ \longrightarrow O$$

in welcher

5 A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Sulfonsäurechloriden der Formel (VIII)

$$R^3$$
-SO₂-Cl (VIII)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

und

(F) man erhält Verbindungen der Formel (Ie)

WO 96/20196 PCT/EP95/04869

- 12 -

$$\begin{array}{c|c}
R^4 & O & O \\
R^5 & 1 & X & O \\
\end{array}$$
(Ie)

in welcher

A, B, L, X, Y, Z, R⁴, R⁵ und n die oben angegebene Bedeutung haben,

wenn man

5 Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ O \\ O \\ X \end{array} \qquad \begin{array}{c} Z_n \\ \end{array} \qquad \begin{array}{c} (Ia) \\ \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Phosphorverbindungen der Formel (IX)

Hal
$$-P$$
 R^{5} (IX)

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

- 5 und
 - (G) man erhält Verbindungen der Formel (If)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

- 10 und
 - E für ein Metallionäquivalent oder für ein Ammoniumion steht,

wenn man Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Y \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Metall-Verbindungen oder Aminen der Formeln (X) bzw. (XI)

MeR $_{t}^{13}$ (X) R^{10} R^{11} (XI)

5 in welchen

10

Me für ein- oder zweiwertige Metallionen, beispielsweise Alkali- oder Erdalkalimetallionen wie z.B. Li⁺, Na⁺, K⁺, Ca²⁺ oder Mg²⁺ steht,

t für die Zahl 1 oder 2 steht,

R¹⁰, R¹¹ und R¹² unabhängig voneinander für Wasserstoff oder Alkyl (insbesondere C₁-C₈-Alkyl) stehen und

R¹³ für Wasserstoff, Hydroxy oder C₁-C₄-Alkoxy steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

(H) Ferner wurde gefunden, daß man Verbindungen der Formel (I-g)

in welcher

A, B, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben,

erhält, wenn man Verbindungen der Formel (Ia)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Verbindungen der Formel (XII)

$$R^6-N=C=L$$
 (XII)

in welcher

L und R⁶ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

B) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

$$R^{6} \bigvee_{\substack{l \\ l^{7}}} Cl \qquad (XIII)$$

15

5

10

in welcher

WO 96/20196 PCT/EP95/04869

- 16 -

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

10

20

25

Weiterhin wurde gefunden, daß sich die neuen Verbindungen der Formel (I) durch hervorragende insektizide und akarizide Wirkungen auszeichnen. Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert.

A und B stehen <u>bevorzugt</u> für gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder Phenyl substituiertes C₄-C₆-Alkandiyl, in welchem ein oder zwei nicht direkt benachbarte Kohlenstoffatome durch die Gruppe

15 und/oder Sauerstoff und/oder Schwefel ersetzt sind.

A und B stehen <u>besonders bevorzugt</u> für gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder Phenyl substituiertes C₄-C₅-Alkandiyl, in welchem ein oder zwei nicht direkt benachbarte Kohlenstoffatome durch die Gruppe

oder durch Sauerstoff oder durch Schwefel ersetzt ist.

A und B stehen ganz besonders bevorzugt für gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sec.-Butyl, tert.-Butyl, Cyclohexyl, Trifluormethyl,

Methoxy, Methylthio oder Phenyl substituiertes C₄-C₅-Alkandiyl, in welchem ein Kohlenstoffatom durch die Gruppe

oder durch Sauerstoff oder durch Schwefel ersetzt ist.

- 5 X steht bevorzugt für C₁-C₆-Alkyl, Halogen oder C₁-C₆-Alkoxy.
 - X steht besonders bevorzugt für C₁-C₄-Alkyl, Fluor, Chlor, Brom oder C₁-C₄-Alkoxy.
 - X steht ganz besonders bevorzugt für Methyl, Ethyl, n-Propyl, iso-Propyl, Fluor, Chlor, Brom, Methoxy oder Ethoxy.
- 10 Y steht bevorzugt für Wasserstoff, C_1 - C_6 -Alkyl, Halogen, C_1 - C_6 -Alkoxy oder C_1 - C_3 -Halogenalkyl.
 - Y steht <u>besonders bevorzugt</u> für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl.
- Y steht ganz besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, 15 i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy oder Trifluormethyl.
 - Z steht <u>bevorzugt</u> für C₁-C₆-Alkyl, Halogen oder C₁-C₆-Alkoxy.
 - Z steht <u>besonders bevorzugt</u> für C₁-C₄-Alkyl, Fluor, Chlor, Brom oder C₁-C₄-Alkoxy.
- Z steht ganz besonders bevorzugt für Methyl, Ethyl, Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy oder Ethoxy.
 - G steht bevorzugt für Wasserstoff (a) oder für eine der Gruppen

10

15

20

25

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht.

R¹ steht <u>bevorzugt</u> für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls einfach bis fünffach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis fünffach durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Halogen oder C₁-C₆-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach bis dreifach durch Halogen oder C_1 - C_6 -Alkyl substituiertes Phenoxy- C_1 - C_6 -alkyl oder

für jeweils gegebenenfalls einfach oder zweifach durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes Pyridinyloxy- C_1 - C_6 -alkyl, Pyrimidinyloxy- C_1 - C_6 -alkyl oder Thiazolyloxy- C_1 - C_6 -alkyl.

- steht <u>bevorzugt</u> für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, für gegebenenfalls einfach oder mehrfach durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cycloalkyl oder für jeweils gegebenenfalls einfach bis dreifach durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkyl substituiertes Phenyl oder Benzyl.
- steht bevorzugt für gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,
- R⁴ und R⁵ stehen unabhängig voneinander <u>bevorzugt</u> für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-alkylamino, C₁-C₈-Alkylthio, C₃-C₆-Alkenylthio oder C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
 - R⁶ und R⁷ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl oder C₁-C₈-Alkoxy-C₁-C₈-alkyl, für jeweils gegebenenfalls einfach bis dreifach durch Halogen C₁-C₁-C₂-
- für jeweils gegebenenfalls einfach bis dreifach durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Phenyl oder Benzyl oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₂-C₆-Alkandiylrest.
 - R⁹ steht <u>bevorzugt</u> für Wasserstoff, Q, COQ oder CO₂Q,
- 30 wobei

- Q die oben für R² als bevorzugt genannten Bedeutungen annehmen kann.
- n steht bevorzugt 0, 1 oder 2.
- G steht besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

in welchen

5

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht.
- 10 R¹ steht <u>besonders bevorzugt</u> für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder gegebenenfalls durch Fluor, Chlor, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl oder C₁-C₃-Halogenalkoxy substituiertes Phenyl-C₁-C₄-alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl.

25 Pyrimidyl oder Thiazolyl,

10

15

30

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom oder C_1 - C_4 -Alkyl substituiertes Phenoxy- C_1 - C_5 -alkyl oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Amino oder C_1 - C_4 -Alkyl substituiertes Pyrimidinyloxy- C_1 - C_5 -alkyl, Pyridinyloxy- C_1 - C_5 -alkyl oder Thiazolyloxy- C_1 - C_5 -alkyl.

steht besonders bevorzugt für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl oder Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl, für gegebenenfalls einfach bis sechsfach durch Fluor, Chlor, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes C₃-C₇-Cycloalkyl oder für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Halogenalkyl substituiertes Phenyl oder Benzyl.

R³ steht besonders bevorzugt für gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,

R⁴ und R⁵ stehen unabhängig voneinander <u>besonders bevorzugt</u> für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆)-alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio oder C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.

R⁶ und R⁷ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl oder C₁-C₆-Alkoxy-C₁-C₆-alkyl, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Phenyl

oder Benzyl oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₂-C₆-Alkandiylrest.

R⁹ steht besonders bevorzugt für Wasserstoff, Q, COQ oder CO₂Q,

wobei

- 5 Q für C₁-C₆-Alkyl, Phenyl oder Benzyl steht.
 - n steht besonders bevorzugt für 0 oder 1.
 - G steht ganz besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

10 in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht.
- steht ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, t-Butyl, Methoxy, Ethoxy, Propoxy, i-Propoxy, Butoxy, i-Butoxy, s-Butoxy oder t-Butoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl oder Nitro substituiertes Phenyl,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C₁-C₃-alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Thienyl, Furanyl oder Pyridyl,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy-C₁-C₄-alkyl oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl oder Thiazolyloxy-C₁-C₄-alkyl.

steht ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl oder Poly-C₁-C₄-alkoxy-C₂-C₆-alkyl, für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor,

oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy oder Trifluor-methyl substituiertes Phenyl oder Benzyl.

steht ganz besonders bevorzugt für gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,

R⁴ und R⁵ stehen unabhängig voneinander ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-alkylamino, C₁-C₄-Alkylthio, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy, C₁-C₂-Alkylthio, C₁-C₂-

Fluoralkylthio, C₁-C₂-Alkyl oder C₁-C₂-Fluoralkyl substituiertes Phenyl, Phenoxy oder Phenylthio.

- R⁶ und R⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff.
- für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_3 - C_4 -Alkenyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy substituiertes Phenyl oder Benzyl, oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₂-C₆-Alkandiylrest.

- R⁹ steht ganz besonders bevorzugt für Wasserstoff, Q, COQ oder CO₂Q, wobei
 - Q für C_1 - C_4 -Alkyl, Phenyl oder Benzyl steht.
- n steht ganz besonders bevorzugt für 0 oder 1.

In den angegebenen Definitionen können gesättigte oder ungesättigte Kohlenwasserstoffreste auch in Verbindung mit Heteroatomen, wie z.B. Alkoxy oder Alkylthio, soweit möglich, geradkettig oder verzweigt sein.

Die gegebenenfalls mehrfach substituierten Reste können gleich oder verschieden durch die für diese Reste genannten Substituenten substituiert sein.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

25 Erfindungsgemäß <u>bevorzugt</u> werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß <u>besonders bevorzugt</u> werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel

(I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Eine <u>bevorzugte</u> Gruppe von Verbindungen sind diejenigen Verbindungen der Formel (I), in welchen n für die Zahl 1 steht und sich der Substituent Z in der 6-Stellung des Phenylrestes befindet

10 Eine weitere <u>bevorzugte</u> Gruppe von Verbindungen sind diejenigen Verbindungen der Formel (I), in welchen gleichzeitig n für die Zahl 0 steht und Y nicht für Wasserstoff steht.

Eine außerdem bevorzugte Gruppe von Verbindungen sind diejenigen Verbindungen der Formel (I), in welcher gleichzeitig n für die Zahl 1 steht und Y für Wasserstoff steht.

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die in den folgenden Tabelle 1 bis 4 aufgeführten Verbindungen der Formel (Ia) genannt:

WO 96/20196 PCT/EP95/04869

- 26 -

Tabelle 1

$$OH \qquad X \qquad Y \qquad (Ia)$$

Ĩ	Х	Y	Z
	CH ₃	CH ₃	Н
5	Cl	Cl	Н
	CH ₃	Cl	Н
ļ.	Cl	CH ₃	H
	CH ₃	OCH ₃	Н
	OCH ₃	CH ₃	Н
10	Cl	OCH ₃	Н
	OCH ₃	Cl	Н
	OCH ₃	OCH ₃	Н
	CI	Н	Cl
	Cl	Н	F
15	Cl	Н	OCH ₃
	CH ₃	Н	CH ₃
	CH ₃	Н	OCH ₃
	CH ₃	Н	Cl
	OCH ₃	Н	OCH ₃
20	CH ₃	CH ₃	CH ₃
	CH ₃	CH ₃	OCH₃
	CH ₃	OCH ₃	CH ₃
	Cl	Cl	Cl
	Cl	CF ₃	CI

Tabelle 2 enthält die Verbindungen der Formel

in welcher X, Y und Z die in Tabelle 1 genannten Bedeutungen haben.

Tabelle 3 enthält die Verbindungen der Formel

C₂H₅ OH X

in welcher X, Y und Z die in Tabelle 1 genannten Bedeutungen haben.

Tabelle 4 enthält die Verbindungen der Formel

in welcher X, Y und Z die in Tabelle 1 genannten Bedeutungen haben.

Verwendet man gemäß Verfahren (A) 1-(2,4-Dichlorphenylacetyloxy)-4-oxacyclohexan-carbonsäureethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

WO 96/20196 PCT/EP95/04869

- 28 -

5

10

15

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6-Trimethylphenyl)-5,5-(ethylenoxaethylen)-tetronsäure und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren B (Variante ß) 3-(2,4,6-Trimethylphenyl)-5,5ethylenoxamethylen-tetronsäure und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (C) 3-(2,4,6-Trimethylphenyl)-5,5-ethylenoxamethylen-tetronsäure und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (Dα) 3-(2,4,6-Trimethylphenyl)-5,5-ethylenoxaethylen-tetronsäure und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (Dß) 3-(2,4,6-Trimethylphenyl)-5,5-ethylenthioethylen-tetronsäure, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

SOH CH₃

$$CH_3 + CS_2 + CH_3J$$

$$O CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Verwendet man gemäß Verfahren (E) 3-(2,4,6-Trimethylphenyl)-5,5-methylenoxa-propylen-tetronsäure und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (F) 3-(2,4-Dimethylphenyl)-5.5-ethylen-thioethylen-tetronsäure und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

5 S
$$CH_3$$
 CH_3 $CH_$

Verwendet man gemäß Verfahren (G) 3-(2,4,6-Trimethylphenyl)-5,5-ethylen-oxamethylen-tetronsäure und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren ($H\alpha$) 3-(2,4,6-Trimethylphenyl)-5,5-ethylenoxaethylen-tetronsäure und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Verwendet man gemäß Verfahren (Hß) 3-(2,4,6-Trimethylphenyl)-5,5-(ethylen-acetylamino-ethylen-tetronsäure und Dimethylcarbamidsäurechlorid als Ausgangs-

produkte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

A, B, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben,

sind neu.

10 Man erhält die Verbindungen der Formel (II) beispielsweise, wenn man

2-Hydroxycarbonsäure-Derivate der Formel (XIV),

in welcher

15

R⁸ für Wasserstoff (XIVa) oder Alkyl (bevorzugt C₁-C₈-Alkyl) (XIVb) steht und

A und B die oben angegebene Bedeutung haben,

mit Phenylessigsäurehalogeniden der Formel (XV)

$$\begin{array}{c} X \\ \\ COHal \end{array}$$

in welcher

5 X, Y, Z und n die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews <u>52</u>, 237-416 (1953)); und gegebenenfalls die dabei für R⁸' = Wasserstoff gebildeten Verbindungen der Formel (IIa)

$$\begin{array}{c|c} A & CO_2H & X \\ \hline & & & \\ & & & \\ \hline \end{array}$$
 (IIa)

10 in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

verestert (Chem. Ind. (London) 1568 (1968)).

Die Verbindungen der Formel (XIV) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren herstellen, beispielsweise aus den Cyanhydrinen der Formel (XVI)

$$\begin{array}{c}
A \\
CN
\end{array}$$
(XVI)

20

in welcher

A und B die oben angegebene Bedeutung haben,

[s. z.B. Nasarow, Unkowskii, Zh. Obshch. Khim. 26, 3486 (1956) oder Bennett, Waddington, J. Chem. Soc. 2831 (1929)].

Die Verbindungen der Formel (XVI) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren herstellen (z.B. Eichen, Fritz; Schmidt, Michal; Buchborn, Helga; Arch. Pharm. 320, 348-61, 1987; Sargsyan, M.S; Ukrtumyan, S.A; Gevorkyan A.A; Arm. Khim. Zh 38 494-8, 1985).

Die Phenylessigsäurehalogenide der Formel (XV) sind bekannt und/oder lassen sich nach bekannten Verfahren herstellen [s. z.B. Lutz, Hinkley, J. Amer. Chem. Soc. 72, 4091 (1950), Harispe, Ann. Chim. (Paris) 11, 6, S. 249, 282, 283 (1936)].

Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) außerdem als Ausgangsstoffe benötigten Säurehalogenide der Formel (III), Carbonsäureanhydride der Formel (IV), Chlorameisensäureester oder Chlorameisensäurethioester der Formel (V), Chlorameisensäureester oder Chlordithioameisensäureester der Formel (VI), Alkylhalogenide der Formel (VII), Sulfonsäurechloride der Formel (VIII), Phosphorverbindungen der Formel (IX) und Metallverbindungen oder Amine der Formeln (X) und (XI) und Isocyanate der Formel (XII) oder Carbamidsäurechloride der Formel (XIII) sind allgemein bekannte Verbindungen der organischen bzw. anorganischen Chemie.

Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II) in welcher A, B, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

WO 96/20196 PCT/EP95/04869

5

10

15

25

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, iso-Butanol und tert.-Butanol.

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetalloxide, -hydroxide oder -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, *Adogen 464 (Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (Tris-(methoxyethzoxyethyl)-amin) eingesetzt werden können.

Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -30°C und 250°C, vorzugsweise zwischen 0°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponente der Formel (II) und die deprotonierende Base im allgemeinen in molaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

10

15

20

25

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ($B\alpha$) bei alle gegenüber den Säurehalogeniden ausreichend inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Ba) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabiyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethylanilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetalloxide, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (Bß) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

Bei dem erfindungsgemäßen Verfahren (Bß) können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen

10

15

20

25

30

kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bß) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bß) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen eingesetzt. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Dimethylanilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetalloxide, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) alle gegenüber den Verbindungen der Formel (V) ausreichend inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether,

15

20

25

wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen eingesetzt. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren (Dα) setzt man pro Mol Ausgangsverbindung der Formel (Ia) im allgemeinen ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VI) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Carbonsäureester, halogenierte Kohlenwasserstoffe Amide, Alkohole, Sulfone oder Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Methylenchlorid, Ethylacetat, Tetrahydro-furan, Dimethylformamid oder Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B. Natriumhydrid oder Kaliumtertiärbutylat das

15

25

Enolatsalz der Verbindung der Formel (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin und Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (Dß) setzt man pro Mol Ausgangsverbindung der Formel (Ia) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.

Als Basen können beim Verfahren (Dß) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetallhydride, Alkalimetallalkoholate, Alkali- oder Erdalkalimetallcarbonate oder -hydrogencarbonate oder Stickstoffbasen. Genannt seien beispielsweise Natriumhydrid, Natriummethanolat, Natriumhydroxid, Calciumhydroxid, Kaliumcarbonat, Natriumhydrogencarbonat, Triethylamin, Dibenzylamin, Diisopropylamin, Pyridin, Chinolin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) und Diazabicycloundecen (DBU).

20 Als Verdünnungsmittel können bei diesem Verfahren alle üblichen Lösungsmittel verwendet werden.

Vorzugsweise verwendbar sind aromatische Kohlenwasserstoffe wie Benzol oder Toluol, Alkohole wie Methanol, Ethanol, Isopropanol oder Ethylenglykol, Nitrile wie Acetonitril, Ether wie Tetrahydrofuran oder Dioxan, Amide wie Dimethylformamid oder andere polare Lösungsmittel wie Dimethylsulfoxid oder Sulfolan.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (Ia) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (Ia) solange mit

20

Schwefelkohlenstoff um, bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Beim Herstellungsverfahren (E) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Sulfonsäurechlorid (VIII) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Carbonsäureester, Amide, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe wie Methylenchlorid.

Vorzugsweise werden Dimethylsulfoxid, Ethylacetat, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung der Formel (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin und Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

20

25

30

Beim Herstellungsverfahren (F) setzt man zum Erhalt von Verbindungen der Struktur (Ie) auf 1 Mol der Verbindung (Ia), 1 bis 2 Mol, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel in Frage wie Ether, Carbonsäureester, halogenierte Kohlenwasserstoffe, Amide, Nitrile, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Ethylacetat, Methylenchlorid, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Dimethylsulfid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Das Verfahren (G) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallverbindungen der Formel (X) oder Aminen der Formel (XI) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (G) vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (G) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Beim Herstellungsverfahren (Hα) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Isocyanat der Formel (XII) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.

25

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, aromatische Kohlenwasserstoffe, Carbonsäureester, halogenierte Kohlenwasserstoffe, Amide, Nitrile, Sulfone oder Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren (Hß) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid der Formel (XIII) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Carbonsäureester, halogenierte Kohlenwasserstoffe, Amide, Alkohole, Sulfone oder Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Ethylacetat, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung der Formel (Ia) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

5 Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

15 Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus
ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis,
Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon
humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix

10

15

20

cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Spodoptera litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..

WO 96/20196 PCT/EP95/04869

5

20

25

30

- 44 -

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Verbindungen der Formel (I) zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus. Sie sind auch bodeninsektizid wirksam.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie beispielsweise gegen die Larven des Meerettichblattkäfers (Phaedon cochleariae) oder gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) oder zur Bekämpfung von pflanzenschädigenden Milben, wie beispielsweise gegen die gemeine Spinnmilbe oder die Bohnenspinnmilbe (Tetranychus urticae) einsetzen.

Die Wirkstoffe der Formel (I) weisen auch eine gewisse herbizide Wirkung auf.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe,

10

15

wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

- Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
- Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarb-stoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in

Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Besonders günstige Mischpartner sind z.B. die folgenden:

Fungizide:

2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoromethoxy-4'-trifluoro-methyl-1,3-thiazol-5-carboxanilid; 2,6-Di-chloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyimino-N-methyl-2-(2-phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyano-phenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino-[alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,

- Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate, Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,
- Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon, Edifenphos, Epoxyconazole, Ethirimol, Etridiazol, Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin,
- Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox,

Guazatine,

Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan,
Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat,
Kupferoxichlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol,
Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,

Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,

Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin, Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb,

Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Quintozen (PCNB),

Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadi-

10 menol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,

Validamycin A, Vinclozolin, Zineb, Ziram.

Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,

Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin, Butylpyridaben,

- Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
- Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton, Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos, Etrimphos,

Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,

5 HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin,
Lamda-cyhalothrin, Lufenuron,

Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin,

10 Monocrotophos, Moxidectin,

Naled, NC 184, NI 25, Nitenpyram,

Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,

Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Primiphos A, Profenofos,

Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,

RH 5992,

Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,

Tebufenozid, Tebufenpyrad, Tebupirimphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron, Trimethacarb, Vamidothion, XMC, Xylylcarb, YI 5301 / 5302, Zetamethrin.

25 Herbizide:

30

35

beispielsweise Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4 D, 2,4 DB, 2,4 DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxy-alkansäureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl, Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chlorpopham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenz-

10

thiazuron; Hydroxylamine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuron-ethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.

- Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.
- Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygieneund Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben,

Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..

Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..

Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie
Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp.,
Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops
spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia
spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp.,
Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp.,
Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma
spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..

Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..

Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..

Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta-sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otabius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemaphysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..

Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates

15

20

25

30

spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..

Beispielsweise zeigen sie eine hervorragende Wirksamkeit gegen Boophilus microplus, Lucilia cuprina und Musca domestica.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.

Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

Außerdem wurde gefunden, daß die erfindungsgemäßen Verbindungen der Formel 1 eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:

Käfer wie

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie

Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.

15 Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

Borstenschwänze, wie Lepisma saccharina.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz und Holzverarbeitungsprodukte und Anstrichmittel.

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.

Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen: Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzpro-

10

15

20

dukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungsbzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.

Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

25

30

Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

- In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.
- Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, daß das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und daß das Insektizid-Fungizid-Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.

Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

10

15

20

25

30

Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.

WO 96/20196 PCT/EP95/04869

Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.

Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chlorpyriphos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Deltamethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron und Triflumuron,

sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octylisothiazolin-3-on,

sein.

5

10

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe gehen aus den nachfolgenden Beispielen hervor.

Herstellungsbeispiele

Beispiel (Ia-1)

67,3 g (0,60 Mol) Kalium-tert.-butylat werden in 400 ml abs. Dimethylformamid (DMF) vorgelegt, bei 0 bis 10°C eine Lösung von 133,6 g (0,40 Mol) 1-(2,4,6-Trimethylphenylacetyl-oxy)-4-oxa-cyclohexan-carbonsäure-ethylester zugetropft und über Nacht bei Raumtemperatur gerührt.

Zur Aufarbeitung tropft man das Reaktionsgemisch langsam in 21 eisgekühlte 1N Salzsäure ein, saugt den Niederschlag ab, wäscht gut mit Wasser nach und trocknet das Produkt im Vakuumtrockenschrank.

Zur Reinigung wird das Rohprodukt mit n-Hexan ausgekocht und erneut abgesaugt und getrocknet.

Ausbeute: 91,6 g (79 % der Theorie) eines Feststoffes; Fp.: 224-226°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung werden die folgenden Verbindungen der Formel (Ia) erhalten:

(In den Tabellen werden folgende Abkürzungen verwendet: Me = Methyl, Et = Ethyl, Pr = Propyl, Bu = Butyl, Ph = Phenyl)

Tabelle 5

Bsp Nr.	A, B	Х	Y	Z _n	Fp. (°C)
Ia-2	-CH ₂ -CH(CH ₃)-O-(CH ₂) ₂ -	Me	Me	6-Me	235
Ia-3	-CH ₂ -CH(CH ₃)-O-(CH ₂) ₂ -	Me	Me	Н	
la-4	-CH ₂ -CH(CH ₃)-O-(CH ₂) ₂ -	Cl	Cl	Н	
Ia-5	-CH ₂ -CH(CH ₃)-O-(CH ₂) ₂ -	Cl	н	Cl	
la-6	-CH ₂ -CH(C ₂ H ₅)-O-(CH ₂) ₂ -	Me	Ме	6-Me	Öl
Ia-7	-CH ₂ -CH(C ₂ H ₅)-O-(CH ₂) ₂ -	Me	Me	Н	
la-8	-CH ₂ -CH(C ₂ H ₅)-O-(CH ₂) ₂ -	Cl	Cl	Н	
la-9	-CH ₂ -CH(C ₂ H ₅)-O-(CH ₂) ₂ -	CI	Н	Cl	
la-10	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	
Ia-11	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Me	Me	Н	
la-12	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Cl	Cl	Н	
Ia-13	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Cl	Н	6-C1	
Ia-14	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	Me	Me	6-Me	
Ia-15	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	Me	Me	Н	
Ia-16	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	Cl	Cl	Н	
la-17	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	CI	Н	Cl	
Ia-18	-CH ₂ -O-(CH ₂) ₃ -	Me	Me	6-Me	

Bsp Nr.	A, B	Х	Y	Z _n	Fp. (°C)
Ia-19	-CH ₂ -O-CH(Me)-(CH ₂) ₂ -	Me	Me	6-Me	
Ia-20	-CH ₂ -O-(CH ₂) ₂ -	Me	Me	6-Me	
Ia-21	-CH(Me)-O-(CH ₂) ₂ -	Me	Me	6-Me	
Ia-22	-CH ₂ -O-CH(Me)-CH ₂ -	Me	Me	6-Ме	
Ia-23	-CH ₂ -O-CH ₂ -CH(Me)-	Me	Me	6-Me	
Ia-24	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Me	Me	6-Me	266-267
Ia-25	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Me	Ме	Н	
Ia-26	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Cl	Cl	Н	
Ia-27	-CH ₂ -CH(CH ₃)-S-(CH ₂) ₂ -	Me	Me	6-Me	
Ia-28	-CH ₂ -CH(CH ₃)-S-(CH ₂) ₂ -	Ме	Me	Н	
la-29	-CH ₂ -CH(CH ₃)-S-(CH ₂) ₂ -	CI	Cl	н	
Ia-3 0	-CH ₂ -S-(CH ₂) ₂ -	Me	Me	6-Me	122-124
la-31	-CH ₂ -S-(CH ₂) ₂ -	Me	Me	Н	
Ia-32	-CH ₂ -S-(CH ₂) ₂ -	Cl	Cl	Н	
Ia-33	-(CH ₂) ₂ -N(COMe)-(CH ₂) ₂ -	Me	Me	6-Ме	230
Ia-34	-(CH ₂) ₂ -N(COMe)-(CH ₂) ₂ -	Me	Me	Н	
Ia-35	-(CH ₂) ₂ -N(COMe)-(CH ₂) ₂ -	CI	Cl	Н	
Ia-36	-(CH ₂) ₂ -0-(CH ₂) ₂ -	Me	Н	6-Me	
Ia-37	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CI	Me	Н	219
Ia-38	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Cl	Н	
Ia-39	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CI	ОМе	Н	
Ia-40	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	ОМе	Н	
Ia-41	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Н	6-OMe	

10

Beispiel (Ib-1)

28,8 g (0,10 Mol) 3-(2,4,6-Trimethylphenyl)-5,5-ethylen-oxa-ethylentetronsäure gemäß Bsp. (Ia-1) werden in 400 ml abs. Methylenchlorid vorgelegt, mit 15,2 g (0,15 Mol) Triethylamin versetzt, bei 0 bis 10°C eine Lösung von 15,7 g (0,13 Mol) Pivaloylchlorid zugetropft und einige Stunden bei Raumtemperatur gerührt.

Zur Aufarbeitung wäscht man das Reaktionsgemisch nacheinander mit 10 %iger Citronensäure, Natriumhydrogencarbonatlösung und Wasser, trocknet die organische Phase über Natriumsulfat und dampft ein.

Zur Reinigung verrührt man das Rohprodukt mit Petrolether und saugt ab.

Ausbeute: 29,4 g (78 % der Theorie) eines Feststoffes; Fp.: 119-120°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung werden die folgenden Verbindungen der Formeln (Ib) bis (Ig) erhalten:

Tabelle 6

Bsp Nr.	A, B	х	Y	Z _n	R ¹	Fp. (°C)
lb-2	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Ме	i-Pr	122
Ib-3	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe ₂ -CH ₂ Cl	170
lb-4	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe ₂ -i-Pr	118
Ib-5	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CH=CMe ₂	139
Ib-6	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	Ph	147-53
lb-7	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Ме	CMe ₂ -CH ₂ F	153-55
Ib-8	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe(CH ₂ F) ₂	158
Ib-9	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Ме	CMe(CH ₂ Cl) ₂	188
Ib-10	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Ме	C(CH ₂ CI) ₃	177
Ib-11	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Ме	CMe ₂ -CH ₂ OMe	177
Ib-12	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Ме	CMe(CH ₂ OMe) ₂	104
Ib-13	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	C(CH ₂ OMe) ₃	103
Ib-14	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Me	6-Me	CMe(-CH ₂ -) ₅	157
Ib-15	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe(CH ₂ OCH ₂ OCH ₂)	176-79
Ib-16	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	(CH ₂) ₈ -CH ₃	Öl
Ib-17	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	(CH ₂) ₁₄ -CH ₃	Öl
lb-18	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Cl	Cl	Н	Ме	
Ib-19	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	Н	i-Pr	
Ib-20	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Ме	Ме	6-Ме	i-Pr	
Ib-21	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Ме	Me	6-Me	CH ₂ -t-Bu	
Ib-22	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Me	Ме	6-Me	t-Bu	130

Bsp Nr.	A, B	х	Y	Z _n	R ^I	Fp. (°C)
Ib-23	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Me	Ме	6-Me	CMe ₂ -CH ₂ CI	
Ib-24	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	Ме	Ме	6-Me	t-Bu	
Ib-25	-CH ₂ -CH(Et)-O-CH(Me)-CH ₂ -	Ме	Ме	6-Me	t-Bu	
Ib-26	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	t-Bu	
Ib-27	-CH ₂ -O-(CH ₂) ₃ -	Me	Ме	6-Me	t-Bu	
Ib-28	-CH ₂ -O-CH(Me)-(CH ₂) ₂ -	Ме	Ме	6-Me	t-Bu	<u> </u>
Ib-29	-CH ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	t-Bu	
lb-30	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Ме	Ме	6-Me	Ме	198-200
lb-31	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Ме	Me	6-Me	t-Bu	113-115
Ib-32	-CH ₂ -S-(CH ₂) ₂ -	Ме	Me	6-Me	Ме	Öl
lb-33	-CH ₂ -S-(CH ₂) ₂ -	Me	Me	6-Me	i-Pr	108-110
lb-34	-CH ₂ -S-(CH ₂) ₂ -	Ме	Me	6-Me	t-Bu	95-97
lb-35	-(CH ₂) ₂ -N(COMe)-(CH ₂) ₂ -	Ме	Ме	6-Me	t-Bu	68
lb-36	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	CH ₂ -CF=CF ₂	Öl
Ib-37	-(CH ₂) ₂ -O-CHEt-CH ₂ -	Me	Ме	6-Me	t-Bu	132
Ib-38	-(CH ₂) ₂ -O-CHEt-CH ₂ -	Ме	Me	6-Me	CH ₂ -t-Bu	69
lb-39	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	4-NO ₂ -Ph-	191-195
lb-40	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Me	6-Ме	4-OMe-Ph-	112-116
lb-41	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe ₂ Et	130-132
Ib-42	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	CMe ₂ CH ₂ OEt	126-129
Ib-43	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	н	6-Me	t-Bu	
Ib-4	4 -(CH ₂) ₂ -O-(CH ₂) ₂ -	CI	Ме	Н	t-Bu	128
Ib-4:	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Cl	Н	t-Bu	
ib-4	6 -(CH ₂) ₂ -O-(CH ₂) ₂ -	Ci	ОМе	н	t-Bu	
lb-4	7 -(CH ₂) ₂ -O-(CH ₂) ₂ -	М	е ОМ	Н	t-Bu	
lb-4	8 -(CH ₂) ₂ -O-(CH ₂) ₂ -	М	e H	6-OM	t-Bu	

Tabelle 7

Bsp Nr.	A, B	х	Y	Z _n	L	М	R ²	Fp.
lc-l	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Me	6-Ме	0	0	i-Pr	104-05
Ic-2	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	0	0	t-Bu	107
Ic-3	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Me	Ме	6-Ме	0	0	і-Рг	Öl
Ic-4	-CH ₂ -CH(Me)-O-CH(Me)-CH ₂ -	Me	Ме	6-Me	0	0	s-Bu	
Ic-5	-CH ₂ -C(CH ₃) ₂ -O-(CH ₂) ₂ -	Ме	Me	6-Ме	0	0	i-Pr	
lc-6	-CH ₂ -S-(CH ₂) ₂ -	Me	Ме	6-Me	0	0	i-Pr	119- 121
lc-7	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	0	0	CH ₂ t-Bu	145- 147
lc-8	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Ме	Ме	6-Me	0	0	i-Bu	96-98
Ic-9	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Me	6-Ме	0	0	s-Bu	111- 113
Ic-10	-(CH ₂) ₂ -O-(CH ₂) ₂ -	Me	Ме	6-Me	0	S	i-Pr	103- 105

Tabelle 8

$$A \xrightarrow{B} O X$$

$$Zn$$
(Id)

Bsp-Nr.	Α	В	х	Y	Z	R ³	Fp.°C
Id-1	-(CH ₂) ₂ -0	O-(CH ₂) ₂ -	Ме	Ме	6-Me	Ме	171-173
Id-2	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	Ме	Me	6-Me	4-Me-Ph-	146-148

10

Beispiel für die Herstellung eines Zwischenprodukts der Formel (II):

Beispiel (II-1):

$$\begin{array}{c} O \\ O \\ CO_2C_2H_5 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$$
 (II-1)

31,3 g (0,18 Mol) 1-Hydroxy-4-oxa-cyclohexancarbonsäureethylester werden in 150 ml Methylenchlorid vorgelegt, 21,9 g (0,216 Mol) Triethylamin zugesetzt, eine Lösung von 38,9 g (0,20 Mol) Mesitylessigsäurechlorid in 50 ml Methylenchlorid bei 0 bis 10°C zugetropft und über Nacht bei Raumtemperatur gerührt.

Zur Aufarbeitung wäscht man das Reaktionsgemisch nacheinander mit 10 %iger Citronensäure, Natriumhydrogencarbonatlösung und Wasser, trocknet die organische Phase über Magnesiumsulfat und dampft ein.

Ausbeute: 60,6 g eines Öls (quantitativ).

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung werden die folgenden Verbindungen der Formel (II) erhalten:

Tabelle 9

$$A \xrightarrow{CO_2R^8} X$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

Bsp Nr.	А, В	х	Y	Z _n	R ⁸	Fp. (°C)
II-2	-CH ₂ -CH(Me)-O-(CH ₂) ₂ -	Me	Me	6-Me	Et.	Öl
II-3	-(CH ₂) ₂ -S-(CH ₂) ₂ -	Ме	Me	6-Me	Et	Öl
II-4	-CH ₂ -S-(CH ₂) ₂ -	Me	Me	6-Me	Et	Öl
II-5	-(CH ₂) ₂ -O-CHMe-CH ₂ -	Me	Me	6-Me	Et	Öl
II-6	-(CH ₂) ₂ -O-CHEt-CH ₂ -	Me	Me	6-Me	Et	Öl
II-7	-(CH ₂) ₂ -(N-COMe)-(CH ₂) ₂ -	Me	Me	6-Me	Et	Öl

Beispiel (XIV-1)

Eine Mischung aus 130 g (ca. 1 mol) 4-Hydroxy-tetrahydropyran-4-carbonsäurenitril und 1050 ml trockenem Ethanol wird bei -20°C bis 0°C mit Chlorwasserstoffsäure gesättigt. Man läßt auf Raumtemperatur kommen, entfernt überschüssige HCl, engt im Vakuum ein, versetzt mit 1,5 l Wasser und rührt 3 Stunden bei Raumtemperatur. Man filtriert und extrahiert 2 mal mit Methylenchlorid. Nach dem Entfernen des Lösungsmittels erhält man 118 g (61 % der Theorie) 4-Hydroxy-tetrahydropyran-4-carbonsäureethylester vom KP_{0.1} 65°C.

In den Anwendungsbeispielen wurden die folgenden, aus dem Stand der Technik bekannten Vergleichsverbindungen eingesetzt:

$$\begin{array}{c|c}
 & CH_3 \\
 & CH_3 \\
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c|c}
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c|c}
 & CH_3
\end{array}$$

5 (alle bekannt aus EP-528 156)

WO 96/20196 PCT/EP95/04869

- 68 -

Beispiel A

Myzus-Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea), die stark von der Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Blattläuse abgetötet wurden; 0 % bedeutet, daß keine Blattlaus abgetötet wurde.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ib-1, Ib-12, Ib-15 und Ic-1 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Abtötung von mindestens 95 % nach 6 Tagen, während die aus dem Stand der Technik bekannte Verbindung (B) bei einer Wirkstoffkonzentration von 0,1 % eine Abtötung von nur 70 % bewirkte.

Beispiel B

Grenzkonzentrations-Test / Wurzelsystemische WSirkung

Testinsekt:

Aphis fabae

Lösungsmittel:

4 Gewichtsteile Aceton

5 Emulgator:

20

25

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Die Wirkstoffzubereitung wird innig mit dem Boden vermischt. Dabei spielt die Konzentration des Wirkstoffes in der Zubereitung praktisch keine Rolle, entscheidend ist allein die Wirkstoffgewichtsmenge pro Volumeneinheit Boden, welche in ppm (= mg/l) angegeben wird. Man füllt den behandelten Boden in Töpfe und bepflanzt diese mit Dicken Bohnen (Vicia faba). Der Wirkstoff kann so von den Pflanzenwurzeln aus dem Boden aufgenommen und in die Blätter transportiert werden.

Für den Nachweis des wurzelsystemischen Effektes werden nach 8 Tagen die Blätter mit den oben genannten Testtieren besetzt. Nach weiteren 6 Tagen erfolgt die Auswertung durch Zählen oder Schätzen der toten Tiere. Aus den Abtötungszahlen wird die wurzelsystemische Wirkung des Wirkstoffes abgeleitet. Sie ist 100 %, wenn alle Testtiere abgetötet sind und 0 %, wenn noch genau so viele Testinsekten leben wie bei der unbehandelten Kontrolle.

In diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ib-2, Ib-5, Ib-7, Ib-8, Ib-12, Ib-15, Ib-16, Ib-17 und Ic-2 bei einer beispielhaften Wirkstoffkonzentration von 200 ppm eine Wirkung von 100 %.

WO 96/20196 PCT/EP95/04869

- 70 -

Beispiel C

Nephotettix - Test

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikade abgetötet wurde.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ib-1, Ib-16, Ic-1 und Ic-3 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 6 Tagen, während die bekannte Verbindung (A) keine Abtötung bewirkte.

- 71 -

Beispiel D

Tetranychus - Test (OP-resistent)

Lösungsmittel:

3 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100%, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilbe abgetötet wurde.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ia-24, Ib-1, Ib-2, Ib-16, Ib-31 und Ic-1 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % eine Abtötung von mindestens 95 % nach 7 Tagen und die Verbindungen gemäß den Herstellungsbeispielen Ib-5, Ib-7, Ib-11 und Ib-22 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Abtötung von mindestens 98 % nach 7 Tagen.

- 72 -

Beispiel E

Panonychus - Test

Lösungsmittel:

3 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Ca. 30 cm hohe Pflaumenbäumchen (Prunus domestica), die stark von allen Entwicklungsstadien der Obstbaumspinnmilbe (Panonychus ulmi) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilbe abgetötet wurde.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-1, Ia-24, Ib-1, Ib-2, Ib-16, Ib-31 und Ic-1 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % eine Abtötung von mindestens 95 % nach 7 Tagen.

- 73 -

Beispiel F

Test mit Fliegenlarven / Entwicklungshemmende Wirkung

Testtiere:

Alle larvalen Stadien von Lucilia cuprina (OP-resistent)

[Puppen und Adulte (ohne Kontakt zum Wirkstoff)]

5 Lösungsmittel:

10

15

35 Gewichtsteile Ethylenglykolmonomethylether

35 Gewichtsteile Nonylphenolglykolether

Zwecks Herstellung einer geeigneten Formulierung vermischt man drei Gewichtsteile Wirkstoff mit sieben Teilen des oben angegebenen Lösungsmittel-Emulgator-Gemisches und verdünnt das so erhaltene Emulsionskonzentrat mit Wasser auf die jeweils gewünschte Konzentration.

30 bis 50 Larven je Konzentration werden auf in Glasröhrchen befindliches Pferdefleisch (1 cm³) gebracht, auf welches 500 µl der zu testenden Verdünnung pipettiert werden. Die Glasröhrchen werden in Kunststoffbecher gestellt, deren Boden mit Seesand bedeckt ist, und im klimatisierten Raum (26°C ± 1,5°C, 70 % rel. Feuchte ± 10 %) aufbewahrt. Die Wirkungskontrolle erfolgt nach 24 Stunden und 48 Stunden (larvizide Wirkung). Nach dem Auswandern der Larven (ca. 72 h) werden die Glasröhrchen entfernt und gelochte Kunststoffdeckel auf die Becher gesetzt. Nach 1½-facher Entwicklungsdauer (Schlupf der Kontrollfliegen) werden die geschlüpften Fliegen und die Puppen/Puppenhüllen ausgezählt.

Als Kriterium für die Wirkung gilt der Eintritt des Todes bei den behandelten Larven nach 48 h (larziver Effekt), bzw. die Hemmung des Adultschlupfes aus den Puppen bzw. die Hemmung der Puppenbildung. Als Kriterium für die in-vitro-Wirkung einer Substanz gilt die Hemmung der Flohentwicklung, bzw. ein Entwicklungsstillstand vor dem Adulten-Stadium. Dabei bedeutet 100 % larvizide Wirkung, daß nach 48 Stunden alle Larven abgestorben sind. 100 % entwicklungsinhibitorische Wirkung bedeutet, daß keine adulte Fliegen geschlüpft sind.

In diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-2, Ia-24, Ib-4, Ib-15, Ib-22, Ib-24 und Ib-30 bei einer beispielhaften Wirkstoffkonzentration von 1000 ppm eine Wirkung von jeweils 100 %.

Patentansprüche

1. Verbindungen der Formel (I)

in welcher

- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind, einen durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten 5- bis 7-gliedrigen Ring bilden,
 - X für Alkyl, Halogen oder Alkoxy steht,
 - Y für Wasserstoff, Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
- 10 Z für Alkyl, Halogen oder Alkoxy steht,
 - n für eine Zahl 0, 1, 2 oder 3 steht,
 - G für Wasserstoff (a) oder für eine der Gruppen

steht,

15

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht.
- M für Sauerstoff oder Schwefel steht.
- R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl, gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann oder jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,
- für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl, gegebenenfalls durch Halogen, Alkoxy oder Alkyl substituiertes Cycloalkyl oder jeweils gegebenenfalls substituiertes Phenyl oder Benzyl steht,
 - R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,
 - R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Alkandiylrest.
- Verbindungen der Formel (I) gemäß Anspruch 1, welche unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e) und (f) der
 Gruppe G folgende Strukturen (Ia) bis (Ig) besitzen:

$$\begin{array}{c|c}
 & A & O \\
\hline
R^2 M & & Z_n
\end{array}$$
(Ic)

worin

5

10

A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und n die oben angegebenen Bedeutungen besitzen.

3. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

A und B für gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder Phenyl substituiertes C₄-C₆-Alkandiyl stehen, in welchem ein oder zwei nicht direkt benachbarte Kohlenstoffatome durch die Gruppe

und/oder Sauerstoff und/oder Schwefel ersetzt sind,

- X für C₁-C₆-Alkyl, Halogen oder C₁-C₆-Alkoxy steht,
- 15 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,

WO 96/20196

- 78 -

PCT/EP95/04869

- Z für C₁-C₆-Alkyl, Halogen oder C₁-C₆-Alkoxy steht,
- G für Wasserstoff (a) oder für eine der Gruppen

steht, in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht,

für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₂-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls einfach bis fünffach durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalk-oxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis fünffach durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Halogen oder C₁-C₆-Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

5

10

15

für gegebenenfalls einfach bis dreifach durch Halogen oder C_1 - C_6 -Alkyl substituiertes Phenoxy- C_1 - C_6 -alkyl oder für jeweils gegebenenfalls einfach oder zweifach durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes Pyridinyloxy- C_1 - C_6 -alkyl, Pyrimidinyloxy- C_1 - C_6 -alkyl oder Thiazolyloxy- C_1 - C_6 -alkyl steht,

für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, für gegebenenfalls einfach oder mehrfach durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cycloalkyl oder für jeweils gegebenenfalls einfach bis dreifach durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkyl substituiertes Phenyl oder Benzyl steht.

R³ für gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-alkylamino, C₁-C₈-Alkylthio, C₃-C₆-Alkenylthio oder C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls einfach oder mehrfach durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für Wasserstoff,

für jeweils gegebenenfalls einfach oder mehrfach durch Halogen substituiertes C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_8 -Alkoxy, C_3 - C_8 -Alkenyl oder C_1 - C_8 -Alkoxy- C_1 - C_8 -alkyl, für jeweils gegebenenfalls einfach bis dreifach durch Halogen, C_1 -

Fur jeweils gegebenenfalls einfach bis dreifach durch Halogen, C_1 - C_8 -Alkyl, C_1 - C_8 -Halogenalkyl oder C_1 - C_8 -Alkoxy substituiertes Phenyl oder Benzyl oder gemeinsam für einen gegebenenfalls durch

5

10

15

20

25

Sauerstoff oder Schwefel unterbrochenen C₂-C₆-Alkandiylrest stehen,

R⁹ für Wasserstoff, Q, COQ oder CO₂Q steht,

wobei

5

- Q die oben für R² als bevorzugt genannten Bedeutungen annehmen kann und
- n 0, 1 oder 2 steht.
- 4. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

A und B für gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder Phenyl substituiertes C₄-C₅-Alkandiyl stehen, in welchem ein oder zwei nicht direkt benachbarte Kohlenstoffatome durch die Gruppe

15

oder durch Sauerstoff oder durch Schwefel ersetzt ist.

- X für C₁-C₄-Alkyl, Fluor, Chlor, Brom oder C₁-C₄-Alkoxy steht,
- Y für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl steht,
- Z für C₁-C₄-Alkyl, Fluor, Chlor, Brom oder C₁-C₄-Alkoxy steht,
- 20 G für Wasserstoff (a) oder für eine der Gruppen

steht, in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht,

R¹ für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder gegebenenfalls durch Fluor, Chlor, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl oder C_1 - C_3 -Halogenalkoxy substituiertes Phenyl- C_1 - C_4 -alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom oder C_1 - C_4 -Alkyl substituiertes Pyridyl, Thienyl, Furanyl, Pyrazolyl, Pyrimidyl oder Thiazolyl,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom oder C_1 - C_4 -Alkyl substituiertes Phenoxy- C_1 - C_5 -alkyl oder

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Amino oder C₁-C₄-Alkyl substituiertes Pyrimidinyloxy-C₁-

5

10

15

20

10

15

20

C₅-alkyl, Pyridinyloxy-C₁-C₅-alkyl oder Thiazolyloxy-C₁-C₅-alkyl steht,

- für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl oder Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl, für gegebenenfalls einfach bis sechsfach durch Fluor, Chlor, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes C₃-C₇-Cycloalkyl oder für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Halogenalkyl substituiertes Phenyl oder Benzyl steht,
 - R³ für gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
 - R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkyl, C₁-C₆-Alkylamino, Di-(C₁-C₆)-alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio oder C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für Wasserstoff,

für jeweils gegebenenfalls einfach bis sechsfach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl oder C₁-C₆-Alkoxy-C₁-C₆-alkyl, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Phenyl oder Benzyl oder gemeinsam für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₂-C₆-Alkandiylrest stehen,

R⁹ für Wasserstoff, Q, COQ oder CO₂Q steht,

wobei

- Q für C₁-C₆-Alkyl, Phenyl oder Benzyl steht und
- n für 0 oder 1 steht.
- 5 5. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

A und B für gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sec.-Butyl, tert.-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Methylthio oder Phenyl substituiertes C₄-C₅-Alkandiyl stehen, in welchem ein Kohlenstoffatom durch die Gruppe

oder durch Sauerstoff oder durch Schwefel ersetzt ist,

- X für Methyl, Ethyl, n-Propyl, iso-Propyl, Fluor, Chlor, Brom, Methoxy oder Ethoxy steht,
- 15 Y für Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy oder Trifluormethyl steht,
 - Z für Methyl, Ethyl, Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy oder Ethoxy steht,
- 20 G für Wasserstoff (a) oder für eine der Gruppen

steht, in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht,

R¹ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, t-Butyl, Methoxy, Ethoxy, Propoxy, i-Propoxy, Butoxy, i-Butoxy, s-Butoxy oder t-Butoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl oder Nitro substituiertes Phenyl,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C₁-C₃-alkyl,

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Thienyl, Furanyl oder Pyridyl,

für gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy-C₁-C₄-alkyl oder

5

10

15

20

15

20

25

30

für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl oder Thiazolyloxy- C_1 - C_4 -alkyl steht,

- für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder

 Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-AlkoxyC₂-C₆-alkyl oder Poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,

 für gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Methyl,
 Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆Cycloalkyl,
 - oder für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht,
 - R³ für gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
 - R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkylamino, Di-(C₁-C₄)-alkylamino, C₁-C₄-Alkylthio, für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor,
 - Brom, Nitro, Cyano, C_1 - C_2 -Alkoxy, C_1 - C_2 -Fluoralkoxy, C_1 - C_2 -Alkylthio, C_1 - C_2 -Fluoralkylthio, C_1 - C_2 -Fluoralkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 - R⁶ und R⁷ unabhängig voneinander für Wasserstoff,
 - für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_3 - C_4 -Alkenyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl,
 - für jeweils gegebenenfalls einfach oder zweifach durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl oder Benzyl, oder gemeinsam für einen gegebe-

nenfalls durch Sauerstoff oder Schwefel unterbrochenen C_2 - C_6 -Alkandiylrest stehen,

- R⁹ für Wasserstoff, Q, COQ oder CO₂Q steht, wobei
- 5 Q für C₁-C₄-Alkyl, Phenyl oder Benzyl steht und
 - n für 0 oder 1 steht.
 - 6. Verfahren zur Herstellung von Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man
 - (A) zum Erhalt von Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow O \\ X \\ \longrightarrow \end{array}$$

$$\begin{array}{c} Z_n \\ \end{array}$$

$$(Ia)$$

10

in welcher

A, B, X, Y, Z und n die in Anspruch 1 angegebene Bedeutung haben,

Carbonsäureester der Formel (II)

$$A \xrightarrow{CO_2R^8} X$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

$$O \xrightarrow{Q} Z_n$$

15

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, und

R⁸ für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert;

5 oder

10

(B) zum Erhalt von Verbindungen der Formel (Ib)

in welcher

A, B, X, Y, Z, R¹ und n die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia),

$$\begin{array}{c} A \\ B \\ \longrightarrow O \\ X \\ \longrightarrow \end{array}$$

$$\begin{array}{c} Z_n \\ \end{array}$$

$$(Ia)$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

10

α) mit Säurehalogeniden der Formel (III)

$$Hal \bigcap_{O} R^{1}$$
 (III)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

B) mit Carbonsäureanhydriden der Formel (IV)

 R^{1} -CO-O-CO- R^{1} (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

15 umsetzt;

oder

(C) zum Erhalt von Verbindungen der Formel (Ic-1)

in welcher

A, B, X, Y, Z, R² und n die in Anspruch 1 angegebene Bedeutung haben,

5 und

10

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \downarrow \\ O \\ X \\ \downarrow \\ X \\ \downarrow \\ Y \\ \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Chlorameisensäureester oder Chlorameisensäurethiolester der Formel (V)

$$R^2$$
-M-CO-Cl (V)

in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

5 (D) zum Erhalt von Verbindungen der Formel (Ic-2)

in welcher

A, B, R², X, Y, Z und n die in Anspruch 1 angegebene Bedeutung haben

10 und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \downarrow \\ A \\$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

$$CI \longrightarrow M \longrightarrow R^2$$
 (VI)

5

in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

10

oder

B) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

(VII)

in welcher

15

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt;

20

oder

10

(E) zum Erhalt von Verbindungen der Formel (Id)

in welcher

A, B, X, Y, Z, R³ und n die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ Y \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Sulfonsäurechloriden der Formel (VIII)

$$R^3$$
-SO₂-Cl (VIII)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

5 (F) zum Erhalt von Verbindungen der Formel (Ie)

in welcher

A, B, L, X, Y, Z, R⁴, R⁵ und n die in Anspruch 1 angegebene Bedeutung haben,

10 Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \longrightarrow \\ O \\ X \\ \longrightarrow \\ X \\ \longrightarrow \\ Y \\ \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Phosphorverbindungen der Formel (IX)

$$Hal \longrightarrow P \underset{I}{\overset{R^4}{\sim}} R^5$$
 (IX)

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

5 Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

(G) zum Erhalt von Verbindungen der Formel (If)

10

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

und

E für ein Metallionäquivalent oder für ein Ammoniumion steht,

15 Verbindungen der Formel (Ia)

10

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Metall-Verbindungen oder Aminen der Formeln (X) bzw. (XI)

MeR¹³

(X)

R¹⁰ R¹¹ (XI)

in welchen

Me für ein- oder zweiwertige Metallionen steht,

t für die Zahl 1 oder 2 steht,

 R^{10} , R^{11} und R^{12} unabhängig voneinander für Wasserstoff oder Alkyl stehen und

R¹³ für Wasserstoff, Hydroxy oder C₁-C₄-Alkoxy steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt;

oder

(H) zum Erhalt von Verbindungen der Formel (I-g)

10

$$\begin{array}{c|c}
A & O & N \\
\hline
 & R^{6} \\
\hline
 & R^{7}
\end{array}$$
(Ig)

in welcher

A, B, L, X, Y, Z, R⁶, R⁷ und n die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

$$\begin{array}{c} A \\ B \\ \hline \\ C \\ \hline \\ Z \\ \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

a) mit Verbindungen der Formel (XII)

$$R^6-N=C=L$$
 (XII)

in welcher

L und R⁶ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

B) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden den der Formel (XIII)

$$R^{6} \bigvee_{\substack{I \\ R^{7}}} CI \qquad (XIII)$$

5

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

10 7. Verbindungen der Formel (II)

$$\begin{array}{c|c}
A & CO_2R^8 \\
X & & \\
CO_2R^8 & X
\end{array}$$
(II)

in welcher

A, B, X, Y, Z und n die in Anspruch 1 angegebene Bedeutung haben und R^8 für Alkyl steht.

15 8. Verfahren zur Herstellung von Verbindungen der Formel (II) gemäß Anspruch 4, dadurch gekennzeichnet, daß man

2-Hydroxycarbonsäure-Derivate der Formel (XIV),

in welcher

R8' für Wasserstoff oder Alkyl steht und

A und B die in Anspruch 1 angegebene Bedeutung haben,

5 mit Phenylessigsäurehalogeniden der Formel (XV)

$$\begin{array}{c} X \\ \\ COHal \end{array} \tag{XV}$$

in welcher

X, Y, Z und n die in Anspruch 1 angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews <u>52</u>, 237-416 (1953)); und gegebenenfalls die dabei für R^{8'} = Wasserstoff gebildeten Verbindungen der Formel (IIa)

$$\begin{array}{c|c} A & CO_2H & X \\ \hline & & & \\ & & & \\ \hline \end{array}$$

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

verestert.

- 9. Schädlingsbekämpfungsmittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Anspruch 1.
- Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen.
 - 11. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken läßt.
- Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/EP 95/04869

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 CO7D493/10 CO7D4 C07D495/10 C07D491/10 CO7D309/10 C07D335/02 C07D333/38 C07D211/66 A01N43/16 A01N43/08 A01N43/18 A01N43/10 A01N43/40 //(C07D493/10,311:00,307:00), According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х EP,A,0 528 156 (BAYER AG) 24 February 1993 1-12 cited in the application see claims 1-10 P.X EP,A,0 647 637 (BAYER AG) 12 April 1995 1,2,6-12 siehe Tabelle 1; Seite 17, 3. und 4. Verbindung; Seite 18, 6. und 7. Verbindung; Seite 20, oben see claims 1-12 see page 84, line 41 - page 85, line 17 X DE,A,92 589 (CHEMISCHE FABRIK AUF AKTIEN 7.8 (VORM. E. SCHERING)) 2 May 1896 see column 1 - column 2 -/--Further documents are listed in the continuation of box C. X I Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to inderstand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 9 April 1996 03.05.1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 Hartrampf, G

INTERNATIONAL SEARCH REPORT

Inter nal Application No
PCT/EP 95/04869

	PC1/EF 93/04003		
NOON) DOCUMENTS CONSIDERED TO BE RELEVANT	Rejevant to claim No.		
Citation of document, with indication, where appropriate, of the relevant passages			
THE JOURNAL OF GENERAL CHEMISTRY OF THE U.S.S.R., vol. 26, no. 10, October 1956 pages 3891-3898, XP 000565019 NAZAROV I.N. ET AL. '47. Synthetic anesthetic substances. X. Esters of 1,2,5-trimethyl-4-carbalkoxy-4-piperidols. New synthetic analogs of a .alphacocaine and .alphaeucaine' siehe Seite 3892; Verbindungen (IX), (X) und (XV) bis (XVIII) siehe Seite 3893; Verbindungen (XXIII) und (XXIII)	7,8		
JOURNAL OF GENERAL CHEMISTRY OF THE USSR, vol. 30, no. 12, December 1960 pages 3883-3887, XP 000565020 UNKOVSKII B.V. ET AL. 'Esters of 1,3-dimethyl- and 1,2,3-trimethyl-4-carbomethoxy-4-piperidol s. New analogs of .alphacocaine and .alphaeucaine' siehe Seite 3884; Verbindungen (X), (XVI) und (XVIII)	7,8		
DE,A,39 13 757 (SCHERING AG) 25 October 1990 siehe Verbindungen (II) see examples 1.03,1.08	1-6		
WO,A,95 01971 (BAYER AKTIENGESELLSCHAFT) 19 January 1995 see claims 1-11	1-6,9-12		
EP,A,O 668 267 (BAYER AG) 23 August 1995 see claims 1-14 siehe Seite 104; Verbindungen Ia-10 und Ia-16 siehe Seiten 106 bis 110; Verbindungen Ib-13, Ib-21, Ib-22, Ib-40 bis Ib-46 und Ib-58 siehe Seiten 111 bis 114; Verbindungen Ic-11, Ic-12, Ic-21 und Ic-39 bis Ic-46 siehe Seite 117/118; Verbindungen II-12 und II-17	1-12		
	THE JOURNAL OF GENERAL CHEMISTRY OF THE U.S.S.R., vol. 26, no. 10, October 1956 pages 3891-3898, XP 000565019 NAZAROV I.N. ET AL. '47. Synthetic anesthetic substances. X. Esters of 1,2,5-trimethyl-4-carbalkoxy-4-piperidols. New synthetic analogs of a .alphacocaine and .alphaeucaine' siehe Seite 3892; Verbindungen (IX), (X) und (XV) bis (XVIII) siehe Seite 3893; Verbindungen (XXII) und (XXIII) JOURNAL OF GENERAL CHEMISTRY OF THE USSR, vol. 30, no. 12, December 1960 pages 3883-3887, XP 000565020 UNKOVSKII B.V. ET AL. 'Esters of 1,3-dimethyl- and 1,2,3-trimethyl-4-carbomethoxy-4-piperidols. New analogs of .alphacocaine and .alphaeucaine' siehe Seite 3884; Verbindungen (X), (XVI) und (XVIII) DE,A,39 13 757 (SCHERING AG) 25 October 1990 siehe Verbindungen (II) see examples 1.03,1.08 WO,A,95 01971 (BAYER AKTIENGESELLSCHAFT) 19 January 1995 see claims 1-11 EP,A,0 668 267 (BAYER AG) 23 August 1995 see claims 1-14 siehe Seite 104; Verbindungen Ia-10 und Ia-16 siehe Seiten 106 bis 110; Verbindungen Ib-13, Ib-21, Ib-22, Ib-40 bis Ib-46 und Ib-58 siehe Seiten 111 bis 114; Verbindungen Ic-11, IC-12, IC-21 und IC-39 bis IC-46 siehe Seite 117/118; Verbindungen II-12		

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter. nal Application No PCT/EP 95/04869

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-528156	24-02-93	DE-A- AU-B- AU-B- JP-A- US-A-	4216814 645701 1959992 5294953 5262383	21-01-93 20-01-94 21-01-93 09-11-93 16-11-93
EP-A-647637	12-04-95	DE-A- AU-B- BR-A- CN-A- JP-A-	4337853 7159994 9403768 1103642 7179450	23-03-95 30-03-95 16-05-95 14-06-95 18-07-95
DE-A-92589		NONE		
DE-A-3913757	25-10-90	NONE		
WO-A-9501971	19-01-95	DE-A- AU-B-	4413669 7072694	12-01-95 06-02-95
EP-A-668267	23-08-95	DE-A- AU-B- CA-A- CN-A- JP-A-	4431730 1157095 2141923 1110680 7252222	10-08-95 17-08-95 10-08-95 25-10-95 03-10-95

INTERNATIONALER RECHERCHENBERICHT

Inter males Aktenzeichen
PCT/EP 95/04869

		P	CT/EP 95/04869
IPK 6	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D493/10 C07D495/10 C07D49 C07D333/38 C07D211/66 A01N43/ A01N43/10 A01N43/40 //(C07i	/16	A01N43/18
B. RECHI	ERCHIERTE GEBIETE		
Recherchie IPK 6	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssys C070	nbole)	
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,	sowert chese unter die rechere	merten Getrete fallen
Während d	er internationalen Recherche konsultuerte elektronische Datenbank	(Name der Datenbank und er	rd. verwendete Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN		· · · · · · · · · · · · · · · · · · ·
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ang	abe der in Betracht kommend	en Teile Betr. Anspruch Nr.
X	EP,A,O 528 156 (BAYER AG) 24.Feb in der Anmeldung erwähnt siehe Ansprüche 1-10	ruar 1993	1-12
P,X	EP,A,0 647 637 (BAYER AG) 12.April 1995 siehe Tabelle 1; Seite 17, 3. und 4. Verbindung; Seite 18, 6. und 7. Verbindung; Seite 20, oben siehe Ansprüche 1-12 siehe Seite 84, Zeile 41 - Seite 85, Zeile 17		1,2,6-12
X	DE,A,92 589 (CHEMISCHE FABRIK AU (VORM. E. SCHERING)) 2.Mai 1896 siehe Spalte 1 - Spalte 2	F AKTIEN	7,8
		-/	
X West	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Paten	Familie
* Besondere 'A' Veröffe aber ni 'E' ättere i Anmel 'L' Veröffe schene andere soll od ausgefi 'O' Veröffe eine Be 'P' Veröffe dem be	Kategonen von angegebenen Veröffentlichungen: intlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist mithchung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- in zu lassen, oder durch die das Veröffentlichungsdatum einer in im Recherchenbenicht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie ihrt) mitichung, die sich auf eine mündliche Offenbarung, mitichung, die vor dem internationalen Anmeldedatum, aber nach aanspruchten Prioritätsdatum veröffentlicht worden ist	T Spätere Veröffentlichung, oder dem Prioritätsdaum Anmeldung nicht kollude Erfindung zugrundelieger Theorie angegeben ist X Veröffentlichung von bes kann allein aufgrund dies erfindenscher Tätigket b Y Veröffentlichung von bes kann nicht als auf erfinde werden, wenn die Veröffe Veröffentlichungen dieser diese Verbundung für ein	the nach dem internationalen Anmeldedatum is veröffentlicht worden ist und mit der ir, sondern nur zum Verständnis des der iden Prinzips oder der ihr zugrundeliegenden onderer Bedeutung; die beanspruchte Erfindung er Veröffentlichung nicht als neu oder auf ernhend betrachtet werden onderer Bedeutung; die beanspruchte Erfindung zischer Täugkeit berühend betrachtet inflichung mit einer oder mehreren anderen Kategone in Verbindung gebracht wird und in Fachmann naheliegend ist glied derselben Patentfamilie ist
Datum des A	Abschlusses der internationalen Recherche	Absendedatum des intern	ationalen Recherchenberichts
9.	April 1996	03.05.1996	
Name und P	ostanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2	Bevoltmächtigter Bediens	eter
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Hartrampf,	G

INTERNATIONALER RECHERCHENBERICHT

Inter males Aktenzeichen
PCT/EP 95/04869

(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
ategorie"	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.		
Ā	THE JOURNAL OF GENERAL CHEMISTRY OF THE U.S.S.R., Bd. 26, Nr. 10, Oktober 1956 Seiten 3891-3898, XP 000565019 NAZAROV I.N. ET AL. '47. Synthetic anesthetic substances. X. Esters of 1,2,5-trimethyl-4-carbalkoxy-4-piperidols. New synthetic analogs of a .alphacocaine and .alphaeucaine' siehe Seite 3892; Verbindungen (IX), (X) und (XV) bis (XVIII) siehe Seite 3893; Verbindungen (XXII) und (XXIII)	7,8		
A	JOURNAL OF GENERAL CHEMISTRY OF THE USSR, Bd. 30, Nr. 12, Dezember 1960 Seiten 3883-3887, XP 000565020 UNKOVSKII B.V. ET AL. 'Esters of 1,3-dimethyl- and 1,2,3-trimethyl-4-carbomethoxy-4-piperidol s. New analogs of .alphacocaine and .alphaeucaine' siehe Seite 3884; Verbindungen (X), (XVI) und (XVIII)	7,8		
A	DE,A,39 13 757 (SCHERING AG) 25.0ktober 1990 siehe Verbindungen (II) siehe Beispiele 1.03,1.08	1-6		
P,A	WO,A,95 01971 (BAYER AKTIENGESELLSCHAFT) 19.Januar 1995 siehe Ansprüche 1-11	1-6,9-12		
P,A	EP,A,0 668 267 (BAYER AG) 23.August 1995 siehe Ansprüche 1-14 siehe Seite 104; Verbindungen Ia-10 und Ia-16 siehe Seiten 106 bis 110; Verbindungen Ib-13, Ib-21, Ib-22, Ib-40 bis Ib-46 und Ib-58 siehe Seiten 111 bis 114; Verbindungen Ic-11, Ic-12, Ic-21 und Ic-39 bis Ic-46 siehe Seite 117/118; Verbindungen II-12 und II-17	1-12		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentiamilie gehören

tnten nales Aktenzeichen
PCT/EP 95/04869

Im Recherchenbericht ingeführtes Patentdokument	Datum der Mitglied(er) der Veröffentlichung Patentfamilie			Datum der Veröffentlichung
EP-A-528156	24-02-93	DE-A- AU-B- AU-B- JP-A- US-A-	4216814 645701 1959992 5294953 5262383	21-01-93 20-01-94 21-01-93 09-11-93 16-11-93
EP-A~647637	12-04-95	DE-A- AU-B- BR-A- CN-A- JP-A-	4337853 7159994 9403768 1103642 7179450	23-03-95 30-03-95 16-05-95 14-06-95 18-07-95
DE-A-92589		KEINE		
DE-A-3913757	25-10-90	KEINE		
WO-A-9501971	19-01-95	DE-A- AU-B-	4413669 7072694	12-01-95 06-02-95
EP-A-668267	23-08-95	DE-A- AU-B- CA-A- CN-A- JP-A-	4431730 1157095 2141923 1110680 7252222	10-08-95 17-08-95 10-08-95 25-10-95 03-10-95