Introduction to Information Retrieval http://informationretrieval.org

IIR 12: Language Models for IR

Mihai Surdeanu

(Based on slides by Hinrich Schütze at informationretrieval.org)

Spring 2017

Overview

- 1 Language models
- 2 Language Models for IR
- Bigram Language Models
- 4 Discussion

Take-away today

- Statistical language models: Introduction
- Statistical language models in IR: Unigram models
- Exercise: Bigram language models
- Discussion: Properties of different probabilistic models in use in IR

Outline

- Language models
- 2 Language Models for IR
- Bigram Language Models
- 4 Discussion

Using language models (LMs) for IR

- LM = language model
- ② We view the document as a generative model that generates the query. That is, we compute P(query|document) for each document.
- We rank documents in descending order of P(query|document).

Intro to LMs

Let's forget about IR for a minute.

What is a language model?

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

Cannot generate: "wish I wish" or "I wish I"

In natural language: each text is generated by an automaton like this except that these automata are probabilistic.

A probabilistic language model

W	$P(w q_1)$	w	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
a	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 . STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog STOP

 $P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.00000000000048$

A different language model for each document

language model of d_1			language model of d_2			
W	P(w .)	W	P(w .)	W	P(w .)	
toad	.01	STO	P .2	toad	.02	
said	.03	the	.15	said	.03	
likes	.02	а	.08	likes	.02	
that	.04	frog	.01	that	.05	
	toad said likes		$\begin{array}{c cccc} w & P(w .) & w \\ \hline toad & .01 & STO \\ said & .03 & the \\ likes & .02 & a \\ that & .04 & frog \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

query: frog said that toad likes frog STOP

$$P(\text{query}|M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= 0.0000000000048 = 4.8 \cdot 10^{-12}

$$P(\text{query}|M_{d2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= $0.0000000000120 = 12 \cdot 10^{-12}$

$$P(\text{query}|M_{d1}) < P(\text{query}|M_{d2})$$

Thus, document d_2 is "more relevant" to the query "frog said that toad likes frog STOP" than d_1 is.

Outline

- 1 Language models
- 2 Language Models for IR
- Bigram Language Models
- 4 Discussion

Using language models in IR

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a higher prior to "high-quality" documents, e.g., those with high PageRank.
- P(q|d) is the probability of q given d.
- For uniform prior: ranking documents according according to P(q|d) and P(d|q) is equivalent.

Where we are

- In the LM approach to IR, we attempt to model the query generation process.
- Then we rank documents by the probability that a query would be observed as a random sample from the respective document model.
- That is, we rank according to P(q|d).
- Next: how do we compute P(q|d)?

How to compute P(q|d)

 We will make the same conditional independence assumption as in BIM and Naive Bayes (next lecture).

•

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

 $(|q|: length of q; t_k: the token occurring at position k in q)$

This is equivalent to:

$$P(q|M_d) = \prod_{\text{distinct term } t \text{ in } q} P(t|M_d)^{\text{tf}_{t,q}}$$

• $tf_{t,q}$: term frequency (# occurrences) of t in q

Parameter estimation

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates (as we did for BIM and will do for Naive Bayes)

$$\hat{P}(t|M_d) = \frac{\mathrm{tf}_{t,d}}{|d|}$$

(|d|: length of d; $tf_{t,d}$: # occurrences of t in d)

- As before, we have a problem with zeros...
- A single t with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- We would give a single term "veto power".
- For example, for query [Michael Jackson top hits] a document about "top songs" (but not using the word "hits") would have $P(q|M_d)=0$. Thats's bad.
- We need to smooth the estimates to avoid zeros.

Smoothing

For BIM we saw the smoothing model where we would add a constant (0.5) to all counts. We will revisit that soon. But, now, let's look at a couple of different approaches.

Smoothing

- Key intuition: A nonoccurring term is possible (even though it didn't occur), . . .
- ... but no more likely than would be expected by chance in the collection.
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_t \operatorname{cf}_t$: the total number of tokens in the collection.

•

$$\hat{P}(t|M_c) = \frac{\mathrm{cf}_t}{T}$$

• We will use $\hat{P}(t|M_c)$ to "smooth" P(t|d) away from zero.

Jelinek-Mercer smoothing

- Aka "linear interpolation" or "mixture model"
- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ : more disjunctive, suitable for long queries
- ullet Correctly setting λ is very important for good performance.

Jelinek-Mercer smoothing: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.

Example

- Collection: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$

Exercise: Compute ranking

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$

Exercise: Compute ranking

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(1/8 + 2/16)/2] \cdot [(1/8 + 1/16)/2] = 1/8 \cdot 3/32 = 3/256$
- $P(q|d_2) = [(1/8 + 2/16)/2] \cdot [(0/8 + 1/16)/2] = 1/8 \cdot 1/32 = 1/256$
- Ranking: $d_1 > d_2$

Dirichlet smoothing

•

$$\hat{P}(t|d) = \frac{\mathrm{tf}_{t,d} + \alpha \hat{P}(t|M_c)}{L_d + \alpha}$$

- Intuition: Before having seen any part of the document we start with the background distribution as our estimate.
- As we read the document and count terms we update the background distribution.
- The weighting factor α determines how strong an effect the prior has.

Jelinek-Mercer or Dirichlet?

- Dirichlet performs better for keyword, i.e., short, queries,
 Jelinek-Mercer performs better for verbose queries.
- Both models are sensitive to the smoothing parameters you shouldn't use these models without parameter tuning.

Sensitivity of Dirichlet to smoothing parameter

 μ is the Dirichlet smoothing parameter (called α on the previous slides)

Outline

- Language models
- 2 Language Models for IR
- Bigram Language Models
- 4 Discussion

Bigram language models

- The word independence assumption is "unreasonably effective" for IR
- But for many other applications it is impossible to make.
 What applications are these?
- How does a LM look if the word independence assumption is not made?

Bigram language models

- The word independence assumption is "unreasonably effective" for IR
- But for many other applications it is impossible to make.
 What applications are these?
- How does a LM look if the word independence assumption is not made?
- Exercise: let's design such a LM together!. Fundamentally, how do we compute P(q|d), and how do we smooth the probabilities involved?

SMT: The role of the LM

Outline

- Language models
- 2 Language Models for IR
- Bigram Language Models
- 4 Discussion

Vector space (tf-idf) vs. LM

	precision		significant	
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.4	0.2093	0.2572	+22.9	*
0.6	0.1024	0.1405	+37.1	*
0.8	0.0160	0.0432	+169.6	*
1.0	0.0028	0.0050	+76.9	
11-point average	0.1868	0.2233	+19.6	*

The language modeling approach always does better in these experiments but note that where the approach shows significant gains is at higher levels of recall.

Vector space vs BM25 vs LM

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization
- idf: BM25/vector space use it directly.
- LMs: Mixing term and collection frequencies has an effect similar to idf.
 - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.
- Collection frequency (LMs) vs. document frequency (BM25, vector space)

Language models for IR: Assumptions

- Simplifying assumption: Terms are conditionally independent.
 - Again, vector space model (and Naive Bayes) make the same assumption.
 - There are language models that do not make this assumption!
- Cleaner statement of assumptions than vector space
- Thus, better theoretical foundation than vector space
 - ... but "pure" LMs perform much worse than "tuned" LMs.

Take-away today

- Statistical language models: Introduction
- Statistical language models in IR: Unigram models
- Exercise: Bigram language models
- Discussion: Properties of different probabilistic models in use in IR