МП-31 Захаров Дмитро

Викладач: Гиря Н.П.

§ Відображення #1. Варіант 5 §

Задача 1: Лінійно-дробове відображення

Умова. Знайти образ області \mathcal{D} при відображенні ω , знайти нерухомі точки кожного відображення, вказати хоча б одну пару симетричних точок в кожному завданні.

Пункт 1.

$$\mathcal{D} = \{ z \in \mathbb{C} : \text{Re}(z) > 3 \}, \ \omega(z) = 5z - 3i, \ \omega(z) = \frac{2}{z - 1}$$

Пункт 2.

$$\mathcal{D} = \{ z \in \mathbb{C} : |z+1| < 2 \}, \ \omega(z) = 5z - 3i, \ \omega(z) = \frac{2}{z-1}$$

Розв'язання.

Оскільки далі ми будемо багато малювати, одразу відмічу позначення на малюнках:

- Синім кольором будемо замальовувати області \mathcal{D} , задані в умові 1 .
- Зеленим кольором будемо замальовувати образи $\omega(\mathcal{D})$, що отримані перетворенням $\omega: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.
- Червоним будемо відмічати симетричні точки до і після перетворення.
- Помаранчевим будемо позначати нерухомі точки відображення (тобто такі $z^* \in \hat{\mathbb{C}}$, що $\omega(z^*) = z^*$)

Отже, перейдемо до розв'язання.

¹Я пам'ятаю, що на парах ми ставимо штрихи навпроти заданої області, але будь ласка вибачте, малювати це дуже складно на комп'ютері :(

Рис. 1: Відображення $\omega(z) = 5z - 3i$ на область Re(z) > 3.

Пункт 1. Відображення $\omega(z) = 5z - 3i$.

Образ. \mathcal{D} задає праву напівплощину від вертикальної прямої Re(z) = 3. Подивимось, що буде, якщо ми застосуємо перетворення $\omega(z) = 5z - 3i$. Вона складається з композиції $\omega(z) = \omega_2 \circ \omega_1(z)$, де $\omega_1(z) = 5z$ та $\omega_2(z) = z - 3i$. Отже, розглянемо як буде змінюватись границя Re(z) = 3 та орієнтація області.

- 1. $\omega_1(z)=5z$ розтягує кожен вектор з області в п'ять разів. Тому, пряма $\mathrm{Re}(z)=3$ перейде у пряму $\mathrm{Re}(z)=15$.
- 2. $\omega_2(z) = z 3i$ опускає усі елементи з області на 3 одиниці вниз. Проте, це переведе пряму Re(z) = 15 у саму себе, оскільки при цьому дійсна частина ніяк не змінюється.

Отже, орієнтація області не змінилася і пряма $\mathrm{Re}(z)=3$ перейшла у пряму $\mathrm{Re}(z)=15$. Тому остаточний образ $\omega(\mathcal{D})=\{z\in\mathbb{C}:\mathrm{Re}(z)>15\}$. (можна також впевнетись, що, наприклад, $\omega(4(\in\mathcal{D}))=20-3i$ лежить праворуч від прямої $\mathrm{Re}(z)=15$)

 $\frac{\text{Нерухомі}}{\text{точки}}$. Для цього просто розв'яжемо $\omega(z)=z$. Маємо $4z=3i\implies z=\frac{3i}{4}$ — єдина нерухома точка відображення.

Симетричні точки. Скористаємося тим, що ω переводить симетричні точки у симетричні. Тому нехай $z_1=2$ та $z_2=4$ — симетричні відносно $\mathrm{Re}(z)=3$. Тоді $z_1'=\omega(z_1)=10-3i$ та $z_2'=\omega(z_2)=20-3i$ — дійсно симетричні відносно $\mathrm{Re}(z)=15$.

Результат зображено на Рисунку 1.

Рис. 2: Відображення $\omega(z) = \frac{2}{z-1}$ на область Re(z) > 3. Точка z = 2 є і нерухомою, і симетричною.

Відображення $\omega(z) = \frac{2}{z-1}$.

Образ. Оскільки лінійно-дробове відображення переводить узагальнене коло у узагальнене коло, то образом має бути або пряма, або коло. Бачимо, що особлива точка z=1 не знаходиться на $\overline{\mathcal{D}}$, тому на виході маємо отримати коло.

Щоб знайти центр, скористаємося тим, що симетричні точки перетворюються у симетричні під дією ω . Тоді, обираємо z = 1 – особлива точка (полюс) ω . Симетричною відносно $\partial \mathcal{D}$ є z=5. Отже, маємо $\omega(1)=\infty,\ \omega(5)=\frac{1}{2}$. Оскільки симетричною точкою до ∞ відносно кола ε центр кола, то $z=\frac{1}{2}$ і є центром нашого шуканого кола.

Щоб знайти якусь точку на колі, підставимо точку з прямої Re(z) = 3, тобто, наприклад, z=3. Оскільки $\omega(3)=1$, то $1\in\partial\omega(\mathcal{D})$. Отже, рівняння кола стає $\partial\omega(\mathcal{D}):|z-\frac{1}{2}|=\frac{1}{2}.$ Залишилося визначитися зі штриховкою. Підставимо z=4, тоді $\omega(4)=\frac{2}{3}$ – лежить всередині кола, а отже $\omega(\mathcal{D}):|z-\frac{1}{2}|<\frac{1}{2}.$ Нерухомі точки. Розв'яжемо $\omega(z)=z$, або $\frac{2}{z-1}=z$, звідки $z^2-z-2=0$,

коренями якого є $z_1=2$ та $z_2=-1$ – дві нерухомі точки. *Симетричні точки.* Оскільки $\frac{1}{2}$ та ∞ є дещо тривіальними точками, підставим ще дві. Візьмемо $z=\tilde{2}$ та z=4, наприклад. Тоді матимемо $\omega(4) = \frac{2}{3}, \omega(2) = 2$ – дві симетричні точки.

Результат зображено на Рисунку 2.

Пункт 2.

Відображення $\omega(z) = 5z - 3i$.

Образ. Лінійне перетворення має перевести коло у коло, але з іншим центром і радіусом. Щоб визначити центр, достатньо лише підставити коорди-

Рис. 3: Відображення $\omega(z) = 5z - 3i$ на область |z + 1| < 2.

нати центра: $\omega(-1) = -5 - 3i$. Отже, z = -5 - 3i є новим центром. Також, множення на 5 збільшує радіус вдвічі (в цьому можна впевнитись, наприклад, знайшовши $\omega(1) = 5 - 3i$ для точки z = 1, що належить $\partial \mathcal{D}$, і помітити, що радіус дорівнює $|\omega(1) - \omega(-1)| = 10$). Також, орієнтація області не змінюється. Отже, образ:

$$\omega(\mathcal{D}) = \{ z \in \mathbb{C} : |z + 5 + 3i| < 10 \}$$
 (1.1)

Нерухомі точки. Як було показано, єдина нерухома точка – $z = \frac{3i}{4}$.

Симетричні точки. Візьмемо z=0, симетрична ній відносно $\partial \mathcal{D}$ є така точка z^* , що $(z-z_0)(z^*-z_0)=R^2$ (оскільки ми на дійсній вісі), де $z_0=-1, R=2$. Отже, підставляючи, маємо $z^*+1=4$, тому $z^*=3$.

Перетворення ω залишить ці точки симетричними, тому знаходимо $\omega(0) = -3i, \omega(3) = 15 - 3i$ – дві симетричні точки відносно $\partial \omega(\mathcal{D})$.

Результат зображено на Рисунку 3.

Відображення $\omega(z) = \frac{2}{z-1}$.

Образ. Як вже було оговорено, $\omega(\mathcal{D})$ має бути або іншим колом, або прямою. Оскільки особлива точка z=1 належить $\partial \mathcal{D}$, то образом має бути пряма. Для того, щоб визначити яка сама пряма, достатньо лише визначити дві точки. Для цього візьмемо якісь дві точки на границі $\partial \mathcal{D}$ і підставимо у наше перетворення ω :

$$\omega(-1+2i) = \frac{1}{-1+i} = -\frac{1}{2} - \frac{i}{2}, \quad \omega(-3) = -\frac{1}{2}$$
 (1.2)

Отже, маємо пряму $\text{Re}(z) = -\frac{1}{2}$. Щоб визначити яка саме частина, просто

Рис. 4: Відображення $\omega(z) = \frac{2}{z-1}$ на область |z+1| < 2.

підставимо якусь точку з області \mathcal{D} . Наприклад, $\omega(0) = -2$ лежить ліворуч від $\operatorname{Re}(z) = -\frac{1}{2}$, отже відповіддю буде $\omega(\mathcal{D}) = \{z \in \mathbb{C} : \operatorname{Re}(z) < -\frac{1}{2}\}.$

 $Hepyxomi \ moчкu$. Маємо дві неруxомі точки: $z_1 = 2, z_2 = -1$.

Симетричні точки. ω переводить симетричні точки у симетричні, тому візьмемо, наприклад, $z_1=0$ та $z_2=3$ — ми їх брали у попередньому прикладі. Вони переводяться у $\omega(z_1)=-2$ та $\omega(z_2)=1$ — вони є дійсно симетричними $\mathrm{Re}(z)=-\frac{1}{2},$ оскільки відстань обох до цієї прямої дорівнює $\frac{3}{2}$.

Результат зображено на Рисунку 4.