Definition 3.1 (Notation: v + U). Let $v \in V$ and $U \subseteq V$, then $v + U = \{v + u \mid u \in U\}$.

Such sets also called *coset* in group theory.

Definition 3.97 (Translate). Let $v \in V$ and $U \subseteq V$, we say v + U is a translate of U.

Definition 3.98 (Quotient Space). Let $U \subseteq V$ a subspace, then the quotient space V/U is a set with translates of U, that is:

$$V/U = \{ v + U \mid v \in V \}$$

Theorem 3.101. Let $U \subseteq V$ a subspace and $v, w \in V$, then the following statements are equivalent.

- 1. $v w \in U$
- 2. v + U = w + U
- 3. $(v+U)\cap(w+U)\neq\emptyset$

Proof.

- If $v-w \in U$, for any $v+u \in v+U$, we have $v+u = v+(v-w)-(v-w)+u = v-w+w+u = w+(v-w)+u \in w+U$ since $v-w \in U$. Similarly, for any $w+u \in w+U$, we have $w+u = w+(v-w)-(v-w)+u = v-v+w+u = v-(v-w)+u = v+(-(v-w)+u) \in v+U$.
- If v+U=w+U, then v=w+u since $v\in v+U$, therefore $v-w=u\in U$.
- if v + U = w + U, then $(v + U) \cap (w + U) = v + U = w + U \neq \emptyset$
- If $(v+U)\cap(w+U) \neq \emptyset$, then for any $v+u_0 = w+u_1 \in (v+U)\cap(w+U)$, we have $(v-w) + (u_0 u_1) = 0$ and then $v-w = u_1 u_0 \in U$, so v+U = w+U.

Definition 3.102. Let $U \subseteq V$, then addition and scalar multiplication on V/U is defined by:

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

1

Theorem 3.103. Let $U \subseteq V$ a subspace, then V/U is a vector space with addition and scalar multiplication we defined in previous definition.

Proof. We must first show that the addition and the sclar multiplication we introduce are functions.

For any $a, b, c, d \in V$, we will show (a+b)+U=(c+d)+U if a+U=c+U and b+U=d+U. We can show $(a+b)-(c+d)\in U$ by $a-c\in U$ and $b-d\in U$.

For any $v, w \in V$ and $\lambda \in F$, we will show $(\lambda v) + U = (\lambda w) + U$ if v + U = w + U. We know $v - w \in U$, then $\lambda(v - w) = \lambda v - \lambda w \in U$, therefore $(\lambda v) + U = (\lambda w) + U$.

We have identity of addition 0+U and inverse of addition (-v)+U for all $v \in V$.

Definition 3.104. Let $U \subseteq V$ a subspace, the quotient map $\pi: V \to V/U$ is a linear mapping defined by:

$$\pi(v) = v + U$$

Proof. We will show π is a linear mapping, $\pi(v+w)=(v+w)+U=v+U+w+U=\pi(v)+\pi(w)$ and $\lambda\pi(v)=\lambda(v+U)=(\lambda v)+U=\pi(\lambda v)$.

Theorem 3.105. Let V finite and $U \subseteq V$ a subspace, show that $\dim(V/U) = \dim V - \dim U$.

Proof. We can rewrite the equation as $\dim V = \dim(V/U) + \dim U$, and it is easy to see that range $\pi = \dim(V/U)$ and $\operatorname{null} \pi = \dim U$.

Definition 3.106. Let $T \in \mathcal{L}(V, W)$, define $\tilde{T} : V/(\text{null } T) \to W$ by $\tilde{T}(v + \text{null } T) = Tv$.

Theorem 3.107. Let $T \in \mathcal{L}(V, W)$, then:

- 1. $\tilde{T} \circ \pi = T$
- 2. \tilde{T} is injective
- 3. range $\tilde{T} = \operatorname{range} T$
- 4. $V/(\text{null }T) \cong \text{range }T$

Proof.

- 1. For all $v \in V$, $\tilde{T}(\pi(v)) = \tilde{T}(v + \text{null } T) = Tv$
- 2. If $\tilde{T}(v + \text{null } T) = \tilde{T}(w + \text{null } T)$, then T(v w) = 0, which means $v w \in \text{null } T$, therefore v + null T = w + null T.
- 3. For any $Tv \in \operatorname{range} T$, we have $\tilde{T}(v + \operatorname{null} T) \in \operatorname{range} \tilde{T}$. For any $\tilde{T}(v + \operatorname{null} T) = Tv \in \operatorname{range} \tilde{T}$, we have $Tv \in \operatorname{range} T$.
- 4. Restrict the range of \tilde{T} on range T, say $\varphi(v + \text{null } T) = \tilde{T}(v + \text{null } T)$: $V/(\text{null } T) \to \text{range } T$, then φ is injective since (2) and surjective since (3), therefore φ is an isomorphism, thus $V/(\text{null } T) \simeq \text{range } T$.