IN THE CLAIMS

Please amend the claims as follows:

1. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, and Mo: 0.05 - 5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30 - 45 in HRC and the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

2. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, and Mo: 0.05 - 5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 ... (b)

and wherein the hardness is 30 - 45 in HRC and the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

3. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \underline{0.09}\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 0.95%

4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30 - 45 in HRC the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

4. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 (b)

and wherein the hardness is 30 - 45 in HRC and the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

5. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual

being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30 - 45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

6. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 ... (b)

and wherein the hardness is 30 - 45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

7. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual

being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30 - 45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

8. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 (b)

and wherein the hardness is 30 - 45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa.

9-12. canceled.

13. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \underline{0.09}\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, and Mo: 0.05

– 5% in mass %, the residual being Fe and impurities, wherein the contents of Cu satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

14. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, and N: not more than 0.1%, Cu: 0.05 - 5%, and Mo: 0.05 - 5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 ... (b)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a

result of the martensitic stainless steel being subjected to a sulfur-containing environment.

15. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, and Mo: 0.05 - 5%, and at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

16. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 (b)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

17. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

18. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 ... (b)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

19. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, Mo: 0.05 - 5%, at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (a),

$$0.2\% \le Mo + Cu/4 \le 5\%$$
 ... (a)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a result of the martensitic stainless steel being subjected to a sulfur-containing environment.

20. (currently amended) A martensitic stainless steel having a yield strength of 815MPa or more, consisting of C: $0.02 - [[0.10]] \ 0.09\%$, Si: 0.05 - 1.0%, Mn: 0.05 - 0.95%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9 - 15%, Ni: 1.0 - 4.5%, Al: not more than 0.05%, N: not more than 0.1%, Cu: 0.05 - 5%, optionally Mo: 0.05 - 5%, at least one of the elements of Ti: 0.005 - 0.5%, V: 0.005 - 0.5% and Nb: 0.005 - 0.5%, and one or more elements of B: 0.0002 - 0.005%, Ca: 0.0003 - 0.005%, Mg: 0.0003 - 0.005% and rare earth elements: 0.0003 - 0.005% in mass %, the residual being Fe and impurities, wherein the contents of Cu and Mo satisfy the following formula (b),

$$0.55\% \le Mo + Cu/4 \le 5\%$$
 (b)

and wherein the hardness is 30-45 in HRC, the amount of carbides in grain boundaries of prior austenite is not more than 0.13 volume %, the martensitic stainless steel having a structure resulting from one of quenching, air cooling, quenching followed by a 400 °C or lower tempering treatment, or air cooling followed by a 400 °C or lower tempering treatment, and a yield strength of the steel after cooling by quenching or air cooling in a final treatment after final heating at a temperature of the Ac_3 point or more is not less than 815 MPa, and the amounts of Cu and Mo effective to form a sulfide layer on a formed chromium oxide layer, the sulfide layer formed as a

result of the martensitic stainless steel being subjected to a sulfur-containing environment.