Course Syllabus

Course	CISC 7026 Fall 2024
Time	19:00-22:00, Mondays
Location	Room E11-1009
Description	This course introduces the theory and application of deep neural networks
Instructor	Steven Morad <smorad at="" um.edu.mo=""></smorad>
Office Hours	TBD
Teaching	TBD
Assistants	
Grading	Assignments: 70%
	• Quizzes: 20%
	Participation: 10%
Late Work Policy	• -25% 0-1 days late
	• -50% 1-2 days late
	• -75% 2-3 days late
D	• -100% 3+ days late
Prerequisites	Linear Algebra Multiportiable Calculus
	Multivariable Calculus Programming in Pathon
D 1: :	Programming in Python
Preliminary	Week 1: No Lecture (visa issues) Week 2: Introduction to the Common
Lecture Schedule	Week 2: Introduction to the Course Week 3: Limon Pormanian
	Week 3: Linear Regression Week 4: Neural Networks
	Week 5: Backpropagation and Optimization
	Week 6: Training Tricks
	Week 7: Convolutional Neural Networks
	Week 8: Autoencoders and Generative Models
	Week 9: Recurrent Neural Networks
	Week 10: Graph Neural Networks
	Week 11: Attention and Transformers
	Week 12: Foundation Models
	Week 13: Reinforcement Learning I
	Week 14: Reinforcement Learning II
Preliminary	Week 3-4: Linear Regression
Assignment	Week 4-5: Neural Networks and Backpropagation
Schedule	• Week 5-7: MLP Regression
	Week 7-9: Convolutional MNIST Classification
	• Week 9-11: LSTM Week 11 14: Transforms on
	Week 11-14: Transformer