Datasets

After formulating the proposed mathematical methods into robust map-matching algorithms, we will implement them in python to evaluate their performance numerically using these datasets:

- Dataset for testing and training of map-matching algorithms [KCMMN] (GPS only, has ground truths),
- The BDD100K open data set provided by Berkeley [YCWXCLMD] (for GPS and IMU data, no ground truths).¹

We will also compare the performance of our methods to a geometric method, such as point-to-curve, and HMM method, such as an extended Kalman filter (EKF) or Fast Map-Matching [YG].

¹Because there are no public annotated ground truths, we compare our predictions with the standard EKF approach. This evaluation method is flawed but unavoidable.

Evaluation

How do we measure the accuracy of our prediction?

 d_0 = length of ground truth

 $d_{-} =$ length of prediction route erroneously subtracted

 d_+ = length of prediction route erroneously added

Thank You! And References

High-assurance Mobility Control Lab.

https://hmc.unist.ac.kr/research/autonomous-driving/

M. Kubička, A. Cela, P. Moulin, H. Mountier and S. I. Niculescu, *Dataset for testing and training of map-matching algorithms*, In 2015 IEEE Intelligent Vehicles Symposium (IV), 1088–1093 (2015).

F. Santambrogio, *Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling*, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser/Springer, Cham. (2015).

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan and T. Darrell, *BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning*, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2636–2645 (2020).

C. Yang and G. Gidófalvi, *Fast map matching, an algorithm for integrating a hidden Markov model with precomputation*, International Journal of Geographical Information Science. Taylor & Francis, **32**(3), 547–570 (2018).