Doppelbrechung und Anwendungen

Erasmus Bartholinus

1669: Doppelbrechung in isländischem Kalkspat

Doppelbrechung in Kristallen

Ausbreitung von Lichtwellen in anisotropen Medien

$$\frac{1}{\epsilon_0} D_x = \epsilon_{xx} E_x + \epsilon_{xy} E_y + \epsilon_{xz} E_z
\frac{1}{\epsilon_0} D_y = \epsilon_{yx} E_x + \epsilon_{yy} E_y + \epsilon_{yz} E_z
\frac{1}{\epsilon_0} D_z = \epsilon_{zx} E_x + \epsilon_{zy} E_y + \epsilon_{zz} E_z$$

$$\vec{P} = \epsilon_0 \left(\tilde{\epsilon} - 1 \right) \vec{E}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \tilde{\epsilon} \epsilon_0 \vec{E}$$

$$\widetilde{\epsilon} = \left(egin{array}{ccc} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{array}
ight)$$

verlustfrei, nichtmagnetisch: Tensor symmetrisch

Anisotropie:

- ⇒ Polarisation und anregendes Feld nicht mehr parallel
- ⇒ Schwingungsrichtung der induzierten Dipole nicht mehr parallel zum E-Feld der einfallenden Welle

Feldrichtungen in anisotropen Medien

- Phasenflächen senkrecht zu \vec{k}
- Flußrichtung Energie entlang \vec{S}
- ⇒ in anisotropen Kristallen Richtung Wellenvektor und Flußrichtung der Energie i. Allg. verschieden

Brechungsindex-Ellipsoid (optische Indikatrix)

Hauptachsentransformation:

$$\tilde{\epsilon} = \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_3 \end{pmatrix} = \begin{pmatrix} n_1^2 & 0 & 0 \\ 0 & n_2^2 & 0 \\ 0 & 0 & n_3^2 \end{pmatrix}$$

$$n_1 < n_2 < n_3$$

$$x_2$$
 $\epsilon_0 \vec{E}_0 = \tilde{\eta} \vec{D}_0 = \begin{pmatrix} 1/n_1^2 & 0 & 0 \\ 0 & 1/n_2^2 & 0 \\ 0 & 0 & 1/n_3^2 \end{pmatrix}$

$$\tilde{\eta} = \tilde{\epsilon}^{-1}$$
 Impermeabilitätstensor

$$\sum_{i,j}\eta_{ij}x_ix_j=\frac{x^2}{n_1^2}+\frac{y^2}{n_2^2}+\frac{z^2}{n_3^2}=1 \qquad \text{Ellipsoid,} \\ \text{"optische Indikatrix"}$$

Optische Eigenschaften des Kristalls vollständig durch optische Indikatrix beschrieben.

Propagation entlang Hauptachsen, Polarisation entlang Hauptachsen

$$\vec{D}_0 = \epsilon_0 \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_3 \end{pmatrix} \vec{E}_0 = \epsilon_0 \begin{pmatrix} n_1^2 & 0 & 0 \\ 0 & n_2^2 & 0 \\ 0 & 0 & n_3^2 \end{pmatrix} \vec{E}_0$$

$$\vec{D}_0 = \epsilon_0 n_1^2 \vec{E}_0 \quad v = c/n_1 \qquad \vec{D}_0 = \epsilon_0 n_2^2 \vec{E}_0 \quad v = c/n_2$$

 $\vec{k} = k\hat{\vec{z}}$

$$\vec{D}_0 = \epsilon_0 n_2^2 \vec{E}_0 \quad v = c/n_2$$

- ⇒ Ausbreitungsgeschwindigkeit entlang Hauptachsen hängt vom Polarisationzustand des Lichtes ab
- ⇒ "Normalmode": Polarisationszustand ändert sich nicht

Propagation entlang Hauptachsen, Polarisation beliebig

$$\vec{E} = E_x \hat{\vec{x}} + E_y \hat{\vec{y}}$$

Zerlegung in zwei linear polarisierte Komponenten, \vec{E}_x und \vec{E}_y parallel zu den Hauptachsen

$$E_x(z=d) = E_{0x}e^{i(kd-\omega t)}$$
 $E_y(z=d) = E_{0y}e^{i(kd-\omega t)}$
= $E_{0x}e^{i(n_1k_0d-\omega t)}$ = $E_{0y}e^{i(n_2k_0d-\omega t)}$

$$\Delta \varphi = (n_1 - n_2) k_0 d$$
 Phasendifferenz zwischen den Komponenten

⇒ aus linear polarisiertem Licht wird elliptisch polarisiertes Licht
 ⇒ allgemein: zwei senkrecht zueinander polarisierte Normalmoden für jede Richtung

Propagation in beliebiger Richtung

- optische Indikatrix = dreiachsiger Ellipsoid
- k-Vektor, Schnittfläche senkrecht dazu
 - ⇒ Schnittellipse
- Halbachsen der Schnittellipsen: Brechungsindizes n_a , n_b für Normalmoden
- Richtung der Halbachsen: Richtungen von \vec{D}_a, \vec{D}_b
 - ⇒ zwei senkrecht zueinander polarisierte Normalmoden
- zwei Kreisschnitte,
 Lote darauf = "optische Achsen"
 - ⇒ Welle entlang optische Achse wie in isotropem Medium

$$n_1 \neq n_2 \neq n_3 \neq n_1$$
 : zwei optische Achsen, "biaxial"

$$n_1=n_2 \neq n_3$$
: Rotationsellipsoid eine optische Achse, "uniaxial"

$$n_1 = n_2 = n_3$$
: Kugel

Propagation in beliebiger Richtung

- optische Indikatrix = dreiachsiger Ellipsoid
- k-Vektor, Schnittfläche senkrecht dazu
 - ⇒ Schnittellipse
- Halbachsen der Schnittellipsen: Brechungsindizes n_a, n_b für Normalmoden
- Richtung der Halbachsen: Richtungen von \vec{D}_a, \vec{D}_b
 - ⇒ zwei senkrecht zueinander polarisierte Normalmoden
- zwei Kreisschnitte,
 Lote darauf = "optische Achsen"
 - ⇒ Welle entlang optische Achse wie in isotropem Medium

$$n_1 \neq n_2 \neq n_3 \neq n_1$$
 : zwei optische Achsen, "biaxial"

$$n_1=n_2 \neq n_3$$
: Rotationsellipsoid eine optische Achse, "uniaxial"

$$n_1 = n_2 = n_3$$
: Kugel

Propagation in beliebiger Richtung

- optische Indikatrix = dreiachsiger Ellipsoid
- k-Vektor, Schnittfläche senkrecht dazu
 - ⇒ Schnittellipse
- Halbachsen der Schnittellipsen: Brechungsindizes n_a, n_b für Normalmoden
- Richtung der Halbachsen: Richtungen von \vec{D}_a, \vec{D}_b
 - ⇒ zwei senkrecht zueinander polarisierte Normalmoden
- zwei Kreisschnitte,Lote darauf = "optische Achsen"
 - ⇒ Welle entlang optische Achse wie in isotropem Medium

$$n_1 \neq n_2 \neq n_3 \neq n_1$$
 : zwei optische Achsen, "biaxial"

$$n_1=n_2 \neq n_3$$
: Rotationsellipsoid eine optische Achse, "uniaxial"

$$n_1 = n_2 = n_3$$
: Kugel

Uniaxialer Kristall

uniaxialer Kristall:

 $n_3 > n_1 = n_2$: optisch positiv

 $n_3 < n_1 = n_2$: optisch negativ

 $n_{
m o}$: unabhängig von heta "ordentlicher Brechungsindex"

 $n_{\mathrm{a}}(\theta)$: abhängig von θ "außerordentlicher Brechungsindex"

$$\frac{1}{n_{\rm a}^2(\theta)} = \frac{\cos^2 \theta}{n_{\rm 1}^2} + \frac{\sin^2 \theta}{n_{\rm 3}^2}$$

 $\begin{array}{c|c} n_{\rm o} & n_{\rm a} \\ \hline \text{Kalkspat} & 1.658 & 1.486 \\ \text{Quarz} & 1.544 & 1.553 \\ \end{array}$

ordentlicher Strahl:

 $ec{D}_0 \perp$ optische Achse

außerordentlicher Strahl:

 $ec{D}_0$ in Ebene (optische Achse, $ec{k}$)

Doppelbrechung am Kalkspat

Ordentliche Welle:

Außerordentliche Welle:

Doppelbrechung am Kalkspat

Ordentliche Welle:

 $ec{k}$ und $ec{S}$ parallel

Außerordentliche Welle:

 \vec{k} und \vec{S} nicht parallel

Doppelbrechung in Kalkspat (CaCO₃)

Spezialfälle

senkrechter Einfall, optische Achse senkrecht zur Oberfläche:

kein Versatz, beide Wellen laufen gleichschnell

senkrechter Einfall, optische Achse parallel zur Oberfläche, Polarisation weder parallel noch senkrecht zur optischen Achse:

kein Versatz, ordentliche und außerordentliche Welle laufen mit unterschiedlicher Geschwindigkeit

Doppelbrechende Polarisatoren

ordentlicher Strahl: $n_{
m K} > n_{
m o}$ Totalreflexion ab 68°

außerordentlicher Strahl: $n_{\rm a} < n_{\rm K}$ Transmission

Anisotrope Medien: Dichroismus

Polarisation durch selektive Absorption

Polarisationswandler: $\lambda/4$ Plättchen

Phasenverschiebung zwischen beiden Komponenten:

$$\Delta \varphi = \frac{2\pi}{\lambda_0} d \left| n_{\rm o} - n_{\rm a} \right|$$

λ/4 Plättchen: Gangunterschied

$$d\left|n_{\rm o} - n_{\rm a}\right| = \lambda_0/4$$

$$\rightarrow \Delta \varphi = \pi/2$$

Linear polarisiertes Licht wird i. Allg. zu elliptisch polarisiertem Licht.

$$\theta = 45^{\circ}: \quad \vec{P}_{\text{ein}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \quad \vec{P}_{\text{aus}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\e^{\pm i\pi/2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\\pm i \end{pmatrix}$$

Aber: unter 45° linear polarisiertes Licht wird zu zirkular polarisiertem Licht.

Polarisationswandler: $\lambda/2$ Plättchen

Phasenverschiebung zwischen beiden Komponenten:

$$\Delta \varphi = \frac{2\pi}{\lambda_0} d \left| n_{\rm o} - n_{\rm a} \right|$$

 $\lambda/2$ Plättchen: Gangunterschied

$$d |n_{o} - n_{a}| = \lambda_{0}/2$$

$$\to \Delta \varphi = \pi$$

$$\vec{P}_{\rm ein} = \left(\begin{array}{c} \sin \theta \\ \cos \theta \end{array} \right) \qquad \vec{P}_{\rm aus} = \left(\begin{array}{c} \sin \theta \\ e^{i\pi} \cos \theta \end{array} \right) = \left(\begin{array}{c} \sin \theta \\ -\cos \theta \end{array} \right) = \left(\begin{array}{c} \sin(-\theta) \\ \cos(-\theta) \end{array} \right)$$

Drehung um den Winkel 2 θ . Speziell: $\theta = 45^{\circ}$. Drehung um 90°.

Glimmer: biaxial

$$n_1 = 1.552$$
 $n_2 = 1.582$ $n_3 = 1.588$

für
$$\lambda/2$$
-Plättchen bei λ_0 = 600 nm: $d=\frac{600\,\mathrm{nm}/2}{n_3-n_2}=50\,\mu\mathrm{m}$

Interferenzfarben

linear polarisiertes Licht, doppelbrechendes Medium Dicke *d*

$$\Delta \varphi = \frac{2\pi}{\lambda_0} d \left| n_o - n_a \right|$$

⇒ i. Allg. elliptisch polarisiert

zweiter Polarisator: Interferenz

Tesa-Film auf Glas

parallel

gekreuzt

Bsp.: gekreuzte Polarisatoren,

blau: $\Delta \varphi = 3\pi$ transmittiert

gelb: $\Delta \varphi = 2\pi$ geblockt

parallel Polarisatoren:

blau geblockt

gelb transmittiert

Interferenzfarben

Verbindung Dicke – Doppelbrechung – Interferenzfarbe

Optische Aktivität

Polarisationsrichtung von linear polarisiertem Licht wird beim Durchgang gedreht.

Drehwinkel unabhängig von Anfangspolarisation

$$\alpha = \alpha_S d$$

 α_S spezifisches optisches Drehvermögen

- Drehrichtung unabhängig von Durchlaufrichtung Licht
- oft durch Chiralität des Materials bedingt

Optische Aktivität

Interpretation: unterschiedliche Brechungsindizes für links- und rechts-zirkular polarisiertes Licht, $n_{\rm L},~n_{\rm R}$ $k_{\rm L}=n_{\rm L}k_0$ $k_{\rm R}=n_{\rm R}k_0$

Zerlegung in links- und rechts-zirkular polarisiertes Licht

Bei z = d: Phasendifferenz

$$2\alpha = (k_{\rm L} - k_{\rm R}) d$$

Drehwinkel:

$$\alpha = \frac{\pi d}{\lambda_0} \left(n_{\rm L} - n_{\rm R} \right)$$

Quarz:

$\lambda \text{ [nm]}$	$n_{ m R}$	$n_{ m L}$	$n_{\rm R}-n_{\rm L}$
396	1.55810	1.55821	0.00011
589	1.54420	1.54427	0.00007
760	1.53914	1.53920	0.00006

Spannungsdoppelbrechung

transparentes, isotropes Medium + mechanische Spannungen \Rightarrow doppelbrechend, proportional zur Hauptspannungsdifferenz $\Delta n \propto \Delta \sigma$

- kleine Abstände Farbwechsel ⇒ große Spannungsänderungen
- Anwendung: Materialprüfung

Spannungsdoppelbrechung: Untersuchung Belastungsverteilung

Bourges Cathedral

Robert Mark, Experiments in Gothic Structure

Kathedrale Mallorca