MAT361 – Introduction à l'analyse réelle

Devoir personnel obligatoire à rendre en PC le vendredi 16 juin

Exercice 1. On fixe une norme $\|\cdot\|$ sur \mathbf{R}^N . Pour $X \in \mathbf{R}^N$ et $r \geq 0$, on note $B_f(X, r)$ la boule fermée de centre X et de rayon r pour la norme $\|\cdot\|$.

Considérons l'équation différentielle $\dot{X} = f(X)$, où $f: \mathbf{R}^N \to \mathbf{R}^N$ est de classe \mathcal{C}^1 .

Pour tout $Z_0 \in \mathbf{R}^N$, on note $T_{\text{max}}(Z_0) > 0$ le temps d'existence maximal de la solution Z(t) de l'équation différentielle $\dot{Z} = f(Z)$ de donnée initiale $Z(0) = Z_0$.

On fixe $X_0 \in \mathbf{R}^N$.

Le but de l'exercice est de montrer que pour tout T tel que $0 < T < T_{\text{max}}(X_0)$, il existe un réel $\epsilon > 0$ tel que, si Y_0 est au plus à distance ϵ de X_0 , alors $T_{\text{max}}(Y_0) > T$.

Soit donc $T \in \mathbf{R}$ tel que $0 < T < T_{\text{max}}(X_0)$.

- (a) Montrer l'existence de R > 1 tel que $X(t) \in B_f(X_0, R)$ pour tout $t \leq T$.
- (b) Montrer l'existence de $k_R > 0$ telle que f soit k_R -lipschitzienne sur $B_f(X_0, 2R)$.

Soit $\epsilon > 0$ tel que $\epsilon < R$ et soit $Y_0 \in B_f(X_0, \epsilon)$. On note Y(t) la solution maximale de l'équation $\dot{X} = f(X)$ telle que $Y(0) = Y_0$. Son temps maximal d'existence est $T_{\max}(Y_0)$.

- (c) Montrer qu'il existe $T' \in [0,T]$ tel que $Y(t) \in B_f(X_0,2R)$ pour tout $t \leq T'$.
- (d) Montrer que pour un tel T', on a $||X(t) Y(t)|| \le \epsilon e^{k_R t}$ pour tout $t \in [0, T']$.
- (e) Montrer qu'il existe $\epsilon > 0$ tel que $T_{\text{max}}(Y_0) > T$ (on pourra raisonner par l'absurde en supposant que $T_{\text{max}}(Y_0) \leq T$ et que donc Y explose en temps fini).

Définition 1. Soit $\varphi: \mathbf{R}^N \to \mathbf{R}$ une fonction. On définit $\liminf_{X \to X_0} \varphi$ par la formule suivante :

$$\liminf_{X \to X_0} \varphi = \sup_{\epsilon > 0} \left(\inf_{\|X - X_0\| < \epsilon} \varphi(X) \right).$$

- (f) Montrer que $\liminf_{X\to X_0} T_{\max}(X) \ge T_{\max}(X_0)$.
- (g) On considère $f(x,y) = (x^2y,0)$. Pour une condition initiale $X_0 = (x_0,y_0)$, donner $T_{\max}(X_0)$. En particulier déterminer les conditions initiales X_0 pour lesquelles la solution X(t), telle que $X(0) = X_0$, est globale. Tracer le portrait de phase de cette équation.
- (h) On considère maintenant $f(x,y)=(x^2-yx^4,0)$. Soit a>0, montrer que l'on a $T_{\max}(a,0)<+\infty$ alors que pour tout ϵ tel que $\epsilon a^2<1$, on a $T_{\max}(a,\epsilon)=+\infty$ (ceci peut s'écrire $\lim_{\epsilon\to 0} T_{\max}(a,\epsilon)\neq T_{\max}(a,0)$).

Exercice 2. On rappelle quelques résultats obtenus à l'exercice 35 (feuille d'exercices 3). Pour $A \in M_n(\mathbf{R})$, la suite $\sum_{k=0}^N \frac{A^k}{k!}$ (avec $A^0 = I_n$ la matrice identité) est une suite de Cauchy et converge vers une matrice notée e^A . Si de plus A et B dans $M_n(\mathbf{R})$ commutent, alors on a $e^A e^B = e^{A+B} = e^B e^A$.

- (a) Soit $A \in M_n(\mathbf{R})$ et $f : \mathbf{R} \to M_n(\mathbf{R})$ définie par $f(t) = e^{tA}$. Montrer que f est de classe \mathcal{C}^1 et calculer sa dérivée.
- (b) Soit $f: \mathbf{R} \to M_n(\mathbf{R})$ une application de classe \mathcal{C}^1 telle que f(s+t) = f(s)f(t) pour tous $s, t \in R$ et telle que f(0) est inversible. Montrer qu'il existe une matrice $A \in M_n(\mathbf{R})$ telle que $f(t) = e^{tA}$ pour tout $t \in \mathbf{R}$.