# Answer for EX4.1

Jiaqi Wang

2025-10-07

# **Question 1**

## 1-1

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
     filter, lag
## The following objects are masked from 'package:base':
##
##
     intersect, setdiff, setequal, union
ultra <- read.csv(here::here("data","ultrarunning.csv"))</pre>
ultra clean <- ultra %>%
 select(pb100k dec, teique sf) %>%
 filter(!is.na(pb100k dec), !is.na(teique sf))
ultra clean <- ultra clean %>%
 mutate(intercept = 1)
head(ultra clean)
## pb100k dec teique sf intercept
## 1
        7.60
                5.73
                          1
## 2
        14.20
                 5.33
                           1
                 5.33
## 3
        14.33
## 4
        17.00
                 5.33
                           1
## 5
        12.00
                 5.23
                           1
## 6
        16.00
                 5.97
```

```
#scatterplot
plot(ultra_clean\steique_sf, ultra_clean\spb100k_dec,
```

# sonal best 100k times in hour vs Emotional intelligend



# 1-3

```
#matrix

Y <- as.matrix(ultra_clean$pb100k_dec)

X <- as.matrix(ultra_clean[, c("intercept", "teique_sf")])
```

```
#caculate beta

Beta <- solve(t(X) %*% X) %*% t(X) %*% Y

Beta

## [,1]

## intercept 11.033815

## teique_sf 0.706835
```

 $\hat{\beta}_0 = 11.03$ : predicted 100k time when EI = 0  $\hat{\beta}_1 = 0.71$ : for each one-unit increase in EI score, average time increases by 0.71 hours So there's a weak, slightly positive relationship between those two.

# **Question 2**

```
lm obj <- lm(pb100k dec ~ teique sf, data = ultra clean)
sum lm <- summary(lm obj)
sum 1m
##
## Call:
## lm(formula = pb100k dec \sim teique sf, data = ultra clean)
##
## Residuals:
##
     Min
            1Q Median
                           3Q
                                 Max
## -7.5237 -2.1808 -0.4426 1.8613 8.7906
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.0338 1.7318 6.371 1.14e-09 ***
## teigue sf 0.7068 0.3348 2.111 0.0359 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
## Residual standard error: 3.403 on 213 degrees of freedom
## Multiple R-squared: 0.02049, Adjusted R-squared: 0.01589
## F-statistic: 4.456 on 1 and 213 DF, p-value: 0.03594
beta df <- setNames(as.numeric(Beta), c("intercept", "teique sf"))
beta df
## intercept teique sf
## 11.033815 0.706835
coef(lm obj)
## (Intercept) teique sf
## 11.033815 0.706835
all.equal(unname(beta df), unname(coef(lm obj)))
## [1] TRUE
```

Summary(lm\_obj) prints the parameter estimates, t-tests, p-values, and R<sup>2</sup>. Both methods (matrix vs. lm()) give identical estimates.

## 2-2

```
nm <- names(lm_obj)
nm

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

length(nm)

## [1] 12
```

There are 12 components in the lm\_obj.

## 2-3

```
lm_obj$coefficients

## (Intercept) teique_sf

## 11.033815 0.706835
```

These are the estimates  $\hat{\beta}_0$  and  $\hat{\beta}_1$ .

# 2-4

```
lm_obj$coefficients["teique_sf"]

## teique_sf

## 0.706835
```

This retrieves the slope estimate for  $\hat{\beta}_1$ .

## 2-5

```
Fitted <- lm_obj$fitted.values
head(Fitted, 5)

## 1 2 3 4 5

## 15.08398 14.80125 14.80125 14.73056
```

```
head(predict(lm_obj), 5)

## 1 2 3 4 5

## 15.08398 14.80125 14.80125 14.73056

all.equal(Fitted, predict(lm_obj))

## [1] TRUE
```

Output: TRUE. Both give identical results.

```
2-7
```

```
yhat_auto <- Fitted[1]
yhat_manual <- 11.03 + 0.71 * 5.73
c (manual = yhat_manual, auto = yhat_auto)

## manual auto.1
## 15.09830 15.08398</pre>
```

The manual and model-based fitted values match exactly.

# **Question 3**

### 3-1

```
Y <- ultra_clean$pb100k_dec  # observed outcomes
Yp <- Fitted  # fitted values from the model
Ym <- rep(mean(Y), length(Y))  # vector of the sample mean

3-2
SST <- sum( (Y - Ym)^2 )
SST
## [1] 2518.397

3-3
SSE <- sum( (Y - Yp)^2 )
SSE
## [1] 2466.788
```

# 3-4

```
SSR <- sum( (Yp - Ym)^2 )
SSR
## [1] 51.60908
```

```
c(SST = SST, SSR = SSR, SSE = SSE)

## SST SSR SSE

## 2518.39745 51.60908 2466.78838

all.equal(SST, SSR + SSE)

## [1] TRUE
```

#### 3-6

```
an <- anova(lm obj)
an
## Analysis of Variance Table
## Response: pb100k dec
        Df Sum Sq Mean Sq F value Pr(>F)
## teique sf 1 51.61 51.609 4.4563 0.03594 *
## Residuals 213 2466.79 11.581
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compare to your hand-calculated values:
SSR anova <- an[1, "Sum Sq"] # regression SS (for teique sf)
SSE anova <- an[2, "Sum Sq"] # residual SS
c(Hand SSR = SSR, ANOVA SSR = SSR anova,
 Hand SSE = SSE, ANOVA SSE = SSE anova)
## Hand SSR ANOVA SSR Hand SSE ANOVA SSE
## 51.60908 51.60908 2466.78838 2466.78838
all.equal(SSR, SSR anova) # should be TRUE (up to tiny rounding)
## [1] TRUE
all.equal(SSE, SSE anova) # should be TRUE (up to tiny rounding)
## [1] TRUE
```

I obtain the same sums of squares by anova() and hand-caculating. In regression ANOVA, the Total SS (SST) is a property of the response Y alone (variability around  $\bar{Y}$ ) and does not depend on the fitted model. For model comparison and the F-test, we only need the decomposition into model (SSR) and residual (SSE) plus their df to compute  $F = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}$ . Because SST = SSR + SSE is redundant and not required to form the F statistic, R omits it by default.

```
# SST = SSR + SSE; both are in `an`:

SST_from_anova <- sum(an[ , "Sum Sq"])

SST_from_anova

## [1] 2518.397
```

```
all.equal(SST_from_anova, SST) # should be TRUE
## [1] TRUE
```

# **Question 4**

#### 4-1

```
v \leftarrow vcov(lm obj)
##
          (Intercept) teique sf
## (Intercept) 2.9989739 -0.5746213
## teique sf -0.5746213 0.1121146
var b1 <- v["teique sf", "teique sf"]
var b1
## [1] 0.1121146
se b1 vcov <- sqrt(var b1) #square root of the variance of /beta1
se b1 vcov
## [1] 0.3348352
se b1 summary <- summary (lm obj) $\scotlength{S}\coefficients[2, 2]
\mathbf{c}(\text{var b1} = \text{var b1},
 se from vcov = se b1 vcov,
 se from summary = se b1 summary)
        var b1 se from vcov se from summary
##
##
      0.1121146
                      0.3348352
                                     0.3348352
```

The diagonal elements are variances:  $Var(\beta_0) = 2.99897 \ Var(\beta_1) = 0.11211 \ The off-diagonal$  elements are covariances between  $\beta_0$  and  $\beta_1$ . The standard error from the variance—covariance matrix matches the value R reports in the regression summary.

```
# Inputs from earlier steps:

# Im_obj <- lm(pb100k_dec ~ teique_sf, data = ultra_clean)

# Vectors

Y <- ultra_clean$pb100k_dec

X <- ultra_clean$teique_sf

Yp <- lm_obj$fitted.values

n <- length(Y)
```

```
# Pieces of the formula
SSE <- sum((Y - Yp)^2)
                                   # residual sum of squares
SSXX \le sum((X - mean(X))^2)
                                         # sum of squares of X about its mean
MSE < -SSE/(n-2)
                                  # mean squared error
# Algebraic variance and SE for beta1
var b1 alg <- MSE / SSXX
se b1 alg <- sqrt(var b1 alg)
# Compare to previous results
var b1 vcov <- vcov(lm obj)["teique sf", "teique sf"]
se b1 vcov <- sqrt(var b1 vcov)
se b1 summ <- summary(lm obj)\$coefficients[2,2]
\mathbf{c}(\text{var b1 alg} = \text{var b1 alg},
 var b1 vcov = var b1 vcov,
 se b1 alg = se b1 alg,
 se b1 \text{ vcov} = \text{se } b1 \text{ vcov},
 se b1 \text{ summ} = \text{se } b1 \text{ summ})
## var b1 alg var b1 vcov se b1 alg se b1 vcov se b1 summ
## 0.1121146 0.1121146 0.3348352 0.3348352 0.3348352
```

As shown above:  $var_b1_alg \approx var_b1_vcov se_b1_alg \approx se_b1_vcov \approx se_b1_summ$  That confirms the algebraic formula gives the same  $SE(\beta_1)$  as vcov() and summary(lm obj).

# 4-3

The numerator  $\sum_i (Y_i - \hat{Y}_i)^2$  is the residual sum of squares (SSE), which measures how far the observed data points are from the fitted regression line. When the model fits well, the residuals  $Y_i - \hat{Y}_i$  are small,  $\sum_i (Y_i - \hat{Y}_i)^2$  is small.

## 4-4

 $\sum_i (X_i - \bar{X})^2$  is large when the predictor values X are widely spread out around their mean (high variance of X); it is small when the  $X_i$  cluster near  $\bar{X}$ . Because  $SE(\hat{\beta}_1) = \sqrt{\frac{SSE/(n-2)}{SSXX}}$ , you want a small numerator (good fit / small residuals) and a large SSXX.

When designing an experiment, they should have a lot of variation so that X values cover a wide and balanced range. The denominator  $\sum (X_i - \bar{X})^2$  gets larger when X values are more spread out, making the standard error smaller. This yields a more precise and reliable slope estimate.

# **Question5**

### **5-1**

```
n <- nrow(ultra clean)
b1 <- coef(lm obj)[["teique sf"]]
se1 <- summary(lm obj)\$coefficients["teique sf", "Std. Error"]
tval <- b1 / se1
df <- n - 2
p t <- 2 * pt(abs(tval), df, lower.tail = FALSE)
c(b1 = b1, se1 = se1, t = tval, df = df, p value = p t)
##
         b1
                                   df
                 se1
                                        p value
## 0.70683496 0.33483521 2.11099352 213.00000000 0.03593904
summary(lm obj)$coefficients["teique sf", c("t value", "Pr(>|t|)")]
## t value Pr(>|t|)
## 2.11099352 0.03593904
```

The hand-caculated t matches the one from lm().

```
Y <- ultra clean$pb100k dec
Yp <- lm obj\sfitted.values
SSR \leftarrow sum((Yp - mean(Y))^2)
SSE \leftarrow sum((Y - Yp)^2)
MSR <- SSR / 1
MSE \leq -SSE/(n-2)
Fval <- MSR / MSE
p F \leftarrow pf(Fval, df1 = 1, df2 = n - 2, lower.tail = FALSE)
c(SSR = SSR, SSE = SSE, MSR = MSR, MSE = MSE, F = Fval, p value = p F)
        SSR
                  SSE
                                       MSE
                            MSR
                                                       p value
## 5.160908e+01 2.466788e+03 5.160908e+01 1.158117e+01 4.456294e+00 3.593904e-02
anova(lm obj)
## Analysis of Variance Table
## Response: pb100k dec
         Df Sum Sq Mean Sq F value Pr(>F)
## teique sf 1 51.61 51.609 4.4563 0.03594 *
```

```
## Residuals 213 2466.79 11.581
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The hand-caculated F matches the one from anova().

### 5-3

```
tval <- summary(lm_obj)$coefficients["teique_sf", "t value"]

Fval <- anova(lm_obj)[1, "F value"]

c(t_value = tval,
    t_squared = tval^2,
    F_value = Fval)

## t_value t_squared F_value
## 2.110994 4.456294 4.456294
```

The F-statistic is the square of t-statistic.

#### 5-4

At  $\alpha = 0.05$ , there is statistically significant evidence (p = 0.036) that emotional intelligence affects ultramarathon times. The estimated slope (0.71) indicates that for each 1-point increase in EI, the expected 100k time increases by about 0.7 hours, although the effect size is small and likely not meaningful in real performance terms.

## **5-5**

Although the relationship between emotional intelligence and ultramarathon time is statistically significant (p = 0.036), the magnitude of the effect is very small. The estimated slope ( $\hat{\beta}_1 = 0.71$ ) indicates that a one-point increase in the TEIQUE-SF score corresponds to an average increase of only about 0.7 hours ( $\approx$  43 minutes) in the 100k finishing time. Given the wide variability in ultramarathon performances (often spanning many hours) and the many other physical and environmental factors that affect running time, such a difference is not meaningful in practice. Therefore, while statistically significant, the effect is not clinically or practically significant.