Preliminary PT4455 PLL-based OOK/ASK Transmitter IC

DESCRIPTION

PT4455 is a high performance OOK/ASK transmitter for the Remote Keyless Entry (RKE) systems. It consists of a power amplifier, one-shot circuit and phase-locked loop with internal voltage controlled oscillator and loop filter. The one-shot circuit control the phase-locked loop and power amplifier to have fast start-up time in operation.

APPLICATIONS

- · Keyless entry systems
- · Remote control systems
- Garage door openers
- Alarm systems
- Security systems
- Wireless sensors

FEATURES

- Highly integrated OOK/ASK transmitter
- High output power, 3 V /+11 dBm / 17 mA
- Low supply voltage, 2.2 V to 3.6 V operation range
- Low external component cost.
- PLL-based transmitter with frequency range from 250MHz to 450MHz
- · On-chip one-shot circuit
- 60 dB RF on-off ratio for OOK/ASK modulation
- SOT23-6 package

BLOCK DIAGRAM

APPLICATION CIRCUIT

BILL OF MATERIALS

Dort	Va	lue	l lmi4
Part	315MHz	433.92MHz	Unit
X1	9.844M	13.56M	Hz
R1	10K	10K	Ω
R2	100K	100K	Ω
R3	0	0	Ω
R4	0	0	Ω
C1	NC	NC	F
C2	27p	39p	F
C3	1u	1u	F
C4	15p	22p	F
C5	8.2p	6.8p	F
C6	8.2p	8.2p	F
C7	2.2u	2.2u	F
L1	47n	39n	Н
L2	39n	27n	Н

Notes:

2. L2/C5/C6 value will depend on PCB layout.

^{1.} C1/C2 can be used to trim the transmitted signal frequency for matching the specified value.

ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT4455	6 Pins, SOT23	PT4455

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	1/0	Description	Pin No.
XOUT	0	Oscillator output	1
VSS	G	Ground connection	2
PAOUT	0	Power amplifier output	3
DIN	I	Data input	4
VDD	Р	Power supply	5
XIN	I	Oscillator input	6

PRE1.1 3 August 2010

FUNCTION DESCRIPTION

PA OUTPUT MATCHING

The PA output is an open-drain structure. Its output connects a large choke inductor to supply voltage and follows by a DC block capacitor. After the DC block capacitor, a C-L-C π -type matching network is used to tune with the antenna impedance. The inductor and capacitor values may be different from the suggestion value depending on PCB material, PCB thickness, ground configuration, and the layout traces length.

For the open-drain structure in PA, the HBM (Human Body Mode) and MM (Machine Mode) ESD strength is 4KV and 400V.

REFERENCE OSCILLATOR

For a quartz crystal to oscillate in the specified frequency, it should work with vendor provided load capacitor value, called C_L . The load capacitor is about 12pF to 18pF in general. In PT4455, the Pierce type crystal oscillator is used, and the shunt capacitor over XIN and XOUT is in series together equivalently. The shunt capacitor should be placed as $2x C_L$ to oscillate with specified frequency. The temperature coefficient of quartz crystal will cause the VCO output frequency drift in high/low temperature range.

With a fixed divided-by-32 PLL, the f_{REFOSC} = f_{TX} / 32. The following table list f_{REFOSC} for some common transmit frequencies

Transmit Frequency f _{TX}	Reference Oscillator Frequency f _{REFOSC}
315 MHz	9.844 MHz
340 MHz	10.625 MHz
390 MHz	12.188 MHz
433.92 MHz	13.56 MHz

PHASE-LOCKED LOOP (PLL)

The PT4455 own a fixed divided-by-32 PLL to generate the transmitter signal. The PLL consists of the voltage-controlled oscillator (VCO), crystal oscillator, asynchronous \div 32 divider, charge pump, loop filter and phase-frequency detector (PFD). All these circuits are integrated on-chip. The PFD compares two signals and produces an error signal which is proportional to the difference between the input phases. The error signal passes through a loop filter with an approximately 180 KHz bandwidth, and is used to control the VCO. A frequency divider placed after the VCO and it will feedback the divided signal to PFD. In the final the VCO will get locked to reference signal as $f_{VCO} = f_{REFOSC} * 32$. The block diagram below shows the basic elements of the PLL.

The PLL chain circuit is supplied by internal voltage regulator to ease the PA pulling and crystal spur issue

ONE-SHOT CIRCUIT AND POWER-DOWN CONTROL

During the signal transmission, the crystal oscillator start-up time will limit its wake-up time to work. A one-shoot circuit is used to solve this problem by turning on/off the power amplifier and PLL circuit separately.

When apply "HIGH" to DIN, will enable the PLL chain and PA. When applied "LOW" to DIN, the PA will be turn-off immediately, and the PLL chain will be turn-off after one-shot period about 50ms.

To calculate the re-triggerable one-shot delay time, it can be counted as $688128 / f_{REFOSC}$. For $f_{REFOSC} = 9.844MHz$ and 13.56MHz, the delay time is about 70ms and 50ms.

ANTENNA DESIGN AND PCB LAYOUT CONSIDERATION

For a $\lambda/4$ dipole antenna and operating frequency, f (in MHz), the required antenna length, L (in cm), may be calculated by using the formula

$$L = \frac{7132}{f}$$

For example, if the frequency is 315 MHz, then the length of a λ /4 antenna is 22.6 cm. If the calculated antenna length is too long for the application, then it may be reduced to λ /8, λ /16, etc. without degrading the input return loss. Usually, when designing a λ /4 dipole antenna, it is better to use a single conductive wire (diameter about 0.8 mm to 1.6 mm) rather than a multiple core wire.

If the antenna is printed on the PCB, ensure there is neither any component nor ground plane underneath the antenna on the backside of PCB. For an FR4 PCB (ε_r = 4.7) and a strip-width of 30 mil, the length of the antenna, L (in cm), is calculated by

$$L = \frac{c}{4 \times f \times \sqrt{\varepsilon_r}}$$
 where "c" is the speed of light (3 x10¹⁰ cm/s)

Proper PCB layout is extremely critical in achieving good RF performance. At the very least, using a two-layer PCB is strongly recommended, so that one layer may incorporate a continuous ground plane. A large number of via holes should connect the ground plane areas between the top and bottom layers.

Careful consideration must also be paid to the supply power and ground at the board level. The larger ground area plane should be placed as close as possible to all the VSS pins. Grounding the metal case of quartz crystal and isolate the XIN/XOUT trace to other can suppress the crystal spur signal over PA output.

PRE1.1 5 August 2010

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS}=0V)$

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage Range	V_{DD}	-0.3	5	V
I/O Voltage	V _{I/O}	-0.3	5	V
Operating Temperature Range	T _A	-40	+85	°C
Storage Temperature Range	T _{STG}	-55	+125	°C

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS}=0V)$

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage Range	V_{DD}	-0.3	3.6	V
Operating Temperature Range	T _A	-40	+85	°C

ELECTRICAL CHARACTERISTICS Nominal conditions: V_{DD} = 3.0 V, V_{SS} = 0 V, T_A = +27°C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
General Characteristics						
Supply Voltage	V_{DD}		2.2	3.0	3.6	V
Operating Current (Note)	I _{DD}	DIN=High(CW mode); P _{OUT} =12dBm, <i>f</i> _{RF} = 315MHz		17		mA
Operating Current		DIN=High(CW mode); P _{OUT} =10dBm, <i>f</i> _{RF} = 434MHz		19		mA
Standby Current	I _{standby}	DIN=Low; T _{DELAY} >50ms			1	μА
RF						
Frequency Range	f _{RF}		250		450	MHz
Power Amplifier Output Power (Note)	P _{out}	<i>f</i> _{RF} = 315MHz		11		dBm
Cower Ampliller Output Power		f _{RF} = 434MHz		10		dBm
RF Power On / Off Ratio	P _{EXT}			60		dB
Phase Noise	P _{NOISE}	315MHz, 10KHz offset		-75		dBc/Hz
Harmonics (Note)	P _{HARM}	2x/3x f _{RF}		-40		dBc
Cryotal Caus	P _{SPUR}	f _{RF} = 315MHz		-50		dBc
Crystal Spur		f _{RF} = 434MHz		-50		dBc
Data Input and One-shot						
Data Rate	D _{RATE}		0.5	2	50	Kbps
Crystal Oscillator Start-up Time	T _{ON}	C _L not connected		1		ms
One-shot Delay Time	T _{DELAY}		50			ms

Note: Depend on power amplifier output matching

PACKAGE INFORMATION

6 Pins, SOT23-6

Symbol	Min.	Nom.	Max			
Α	-	-	1.45			
A1	0.00	-	0.15			
A2	0.90	1.15	1.30			
b	0.30	-	0.50			
С	0.080	0.130	0.200			
D	2.90 BSC					
E	2.80 BSC					
E1	1.60 BSC					
е	0.95 BSC					
e1	1.90 BSC					
θ	0°	-	8°			
L	0.30	0.45	0.60			

Notes;

- 1. Refer to JEDEC MO-178
- All dimensions are in millimeter

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan Tel: 886-2-66296288

Fax: 886-2-29174598 http://www.princeton.com.tw