Alternating Groups

Definition

The subgroup of S_n consisting of the even permutations of n letters, denoted A_n , is called the *alternating group* on n letters:

$$A_n = \{ \sigma \in S_n \mid \sigma \text{ is an even} \}$$

Theorem

$$A_n \leq S_n$$

Proof

Assume $\sigma, \tau \in A_n$

 σ and τ can each be expressed as an even number of transpositions $\sigma\tau$ can be expressed as an even number of transpositions

- \therefore A_n is closed under the operation.
- () has length 0 and so () $\in A_n$
- $\therefore A_n$ has an identity.

Assume σ^{-1} can be expressed by listing the same transpositions in reverse order So σ^{-1} has an even number of transpositions $o^{-1}\in A_n$

- $\therefore A_n$ is closed under inverses
- $A_n \leq S_n$

Example

$$S_{2} = \{(), (12)\}$$

$$A_{2} = \{()\}$$

$$|S_{2}| = 2! = 2$$

$$|A_{2}| = \frac{|S_{2}|}{2} = \frac{2}{2} = 1$$

$$S_{3} = \{(), (12), (13), (23), (123), (132)\}$$

$$|S_{3}| = 3! = 6$$

$$|A_{3}| = \frac{|S_{3}|}{2} = \frac{6}{2} = 3$$

$$S_{4} = \{(), 6 \cdot (ab), 8 \cdot (abc), 6 \cdot (abcd), 3 \cdot (ab)(cd)\}$$

$$|S_{4}| = 4! = 1 + 6 + 8 + 6 + 3 = 24$$

$$A_{4} = \{(), 8 \cdot (abc), 3 \cdot (ab)(cd)\}$$

$$|A_{4}| = \frac{|S_{4}|}{2} = \frac{24}{2} = 12$$

Theorem

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$

Proof

Let
$$B_n=\{\tau\in S_n\mid \tau \text{ is odd}\}$$
 $(1,2)\in B_n$ Let $\phi:A_n\to B_n$ be defined by $\phi(\sigma)=(1,2)\sigma$

Assume
$$\phi(\sigma) = \phi(\tau)$$
 $(1,2)\sigma = (1,2)\tau$

 $\sigma = \tau$

 $\therefore \phi$ is one-to-one.

Assume
$$\tau \in B_n$$

Let $\sigma = (1,2)\tau$
 $\phi(\sigma) = (1,2)(1,2)\tau = ()\tau = \tau$
 $\therefore \phi$ is one-to-one.

So
$$\phi$$
 is a bijection and $|A_n|=|B_n|$
But $|S_n|=|A_n|+|B_n|=|A_n|+|A_n|=2\,|A_n|$
 $\therefore |A_n|=\frac{|S_n|}{2}=\frac{n!}{2}$

Theorem

 A_n can be generated by 3-cycles.

<u>Proof</u>

Assume $\sigma \in A_n$ σ is composed of an even number of transpositions

Case 1:
$$(ab)(cd)$$

 $(ab)(cd) = (acb)(acd)$
Case 2: $(ab)(ac)$
 $(ab)(ac) = (acb)$

Therefore, each pair of transpositions can be condensed into a single 3-cycle.