Summations and geometric progressions/series

• Author: Fabio Furini

Contents

1	1 Summations	Summations									2					
	1.1 Summation pro	perties														3
	1.2 Some importan	t summations														4
2 Geo	2 Geometric progress	metric progressions										(
	2.1 Summations of	terms in geometric	c prog	ressi	on											•
	2.2 Geometric serie	es														9

1 Summations

Definition 1: summation

Given *n* values $a_i \in \mathbb{R}$ with $j \in \{1, 2, ..., n\}$, the **summation**

$$a_1 + a_2 + ... + a_n$$

can be indicated in compact form with the summation symbol:

$$\sum_{j=1}^{n} a_j$$

which reads: "summation for j from 1 to n of a_j ". The symbol j is called **summation** index.

• The summation symbol is therefore very useful when the terms a_j are explicitly defined as a function of the summation index j.

Example 1: summations

$$\sum_{i=1}^{10} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}$$

$$\sum_{j=3}^{n} j^2 = 3^2 + 4^2 + 5^2 + \dots + n^2$$

• The summation index is a **dummy index**. This means that if *j* is replaced with *i*, *k* or any other index in all its occurrences the value of the summation does not change.

Example 2: dummy index

We have:

$$\sum_{j=1}^{n} j^2 = \sum_{i=1}^{n} i^2 = \sum_{k=1}^{n} k^2$$

as the two symbols indicate the summation of the squares of the first n the natural numbers (without zero). On the contrary, we have:

$$\sum_{i=1}^{n} j^2 \neq \sum_{i=1}^{m} j^2$$

as the two symbols indicate the summation, respectively, of the first n and the first m squares of the natural numbers (without zero). Clearly, if $n \neq m$, the result is different.

1.1 Summation properties

Observation 1

Given $c \in \mathbb{R}$, we have:

$$\sum_{j=1}^{n} (c \cdot a_j) = c \sum_{j=1}^{n} a_j \qquad \text{(product by a constant)}$$
 (1)

$$\sum_{i=1}^{n} c = n \cdot c \qquad \text{(summation with constant terms)} \tag{2}$$

Proof. First property (1). From the distributive property we have:

$$\underbrace{c \, a_1 + c \, a_2 + \ldots + c \, a_n}_{=\sum_{j=1}^n (c \cdot a_j)} = \underbrace{c \, (a_1 + a_2 + \ldots + a_n)}_{=c \, \sum_{j=1}^n a_j}$$

Second property (2):

$$\underbrace{c + c + \ldots + c}_{=\sum_{j=1}^{n} c, c \text{ summed up } n \text{ times}} = n c$$

Observation 2

Given two summations $\sum_{j=1}^{n} a_j e \sum_{j=1}^{n} b_j$, we have:

$$\sum_{j=1}^{n} a_j + \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} (a_j + b_j)$$
(3)

Proof. We have:

$$\underbrace{a_1 + a_2 + \ldots + a_n + b_1 + b_2 + \ldots + b_n}_{=\sum_{j=1}^n a_j + \sum_{j=1}^n b_j} = \underbrace{a_1 + b_1 + a_2 + b_2 + \ldots + a_n + b_n}_{=\sum_{j=1}^n (a_j + b_j)}$$

Observation 3

Given two natural numbers $n, m \in \mathbb{N}$, we have:

$$\sum_{j=1}^{n+m} a_j = \sum_{j=1}^{n} a_j + \sum_{j=n+1}^{n+m} a_j$$
 (scomposition) (4)

$$\sum_{j=1}^{n} a_j = \sum_{j=1+m}^{n+m} a_{j-m} = \sum_{j=1-m}^{n-m} a_{j+m}$$
 (index translation) (5)

$$\sum_{j=1}^{n} a_j = \sum_{j=1}^{n} a_{n-j+1} = \sum_{j=0}^{n-1} a_{n-j} \qquad \text{(index reflexion)}$$
 (6)

Proof. The three properties are simply different notations and/or arrangements of the terms in the summations. \Box

1.2 Some important summations

Observation 4: sum of the first *n* natural numbers (without zero)

For any natural number $n \ge 1$:

$$\sum_{j=1}^{n} j = \frac{n^2 + n}{2} \tag{7}$$

Proof. We have:

$$\sum_{j=1}^{n} j = \frac{1}{2} \left(\sum_{j=1}^{n} j + \sum_{j=1}^{n} j \right) = \frac{1}{2} \left(\sum_{j=1}^{n} j + \sum_{j=1}^{n} (n - j + 1) \right)$$
$$= \frac{1}{2} \sum_{j=1}^{n} (j + n - j + 1) = \frac{1}{2} \sum_{j=1}^{n} (n + 1) = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}$$

Observation 5: sum of the first n odd numbers

For any natural number $n \ge 1$:

$$\sum_{j=1}^{n} (2j-1) = n^2 \quad \text{ or equivalently } \quad \sum_{j=0}^{n-1} (2j+1) = n^2$$

Proof. We have:

$$\sum_{j=1}^{n} (2j-1) = 2 \sum_{j=1}^{n} j - \sum_{j=1}^{n} 1$$

$$= 2 \left(\frac{n^2 + n}{2} \right) - n = n^2 + n - n = n^2$$

$$\sum_{j=0}^{n-1} (2j+1) = 2\sum_{j=0}^{n-1} j + \sum_{j=0}^{n-1} 1 = 2\sum_{j=1}^{n} (j-1) + \sum_{j=1}^{n} 1$$

$$= 2\left(\sum_{j=1}^{n} j - \sum_{j=1}^{n} 1\right) + n$$

$$= 2\left(\frac{n^2 + n}{2} - n\right) + n = n^2 + n - 2n + n = n^2$$

Observation 6: sum of the first n even numbers (without zero)

For any natural number $n \ge 1$:

$$\sum_{j=1}^{n} 2j = n^2 + n \tag{8}$$

Proof. We have:

$$\sum_{j=1}^{n} 2j = 2\sum_{j=1}^{n} j = 2\left(\frac{n^2 + n}{2}\right) = n^2 + n$$

2 Geometric progressions

Definition 2: geometric progression

A sequence of real numbers is in a **geometric progression** if the ratio between each term (starting from the second) and its predecessor is constant. This constant is called the **common ratio** of the progression.

Given the first term $a \in \mathbb{R}$ and the common ratio $r \in \mathbb{R}$, the associated geometric progression is:

$$a, ar, ar^2, ar^3, ar^4, \dots$$

• Each term (starting from the second) is obtained by multiplying the previous term by b. The j-th term ($j \in \mathbb{N}$) can be expressed as ab^j and we have:

$$a r^0 = a$$

$$a r^1 = a b$$

$$ar^2$$

$$ar^3$$

first term, in position j = 0

second term, in position j = 1

third term, in position j = 2

fourth term, in position j = 3

. . .

Example 3: geometric progression

• With a = 1 and $r = \frac{1}{2}$, the first 4 terms are:

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$$

Example 4: geometric progression

• With a = 1 and r = 2, the first 4 terms are:

2.1 Summations of terms in geometric progression

Observation 7: sum of the first n terms of the geometric progression with a = 1

Given a common ratio $r \in \mathbb{R}$ and $n \in \mathbb{N}_+$ we have:

$$\sum_{j=0}^{n-1} r^j = \begin{cases} \frac{r^{n-1}}{r-1} & \text{if } r \neq 1\\ n & \text{otherwise} \end{cases}$$
 (9)

Proof. If $r \neq 1$, applying the properties of summations, we have:

$$(r-1)\sum_{j=0}^{n-1} r^j = r\sum_{j=0}^{n-1} r^j - \sum_{j=0}^{n-1} r^j$$

$$= \sum_{j=0}^{n-1} r^{j+1} - \sum_{j=0}^{n-1} r^j = \sum_{j=1}^n r^j - \sum_{j=0}^{n-1} r^j$$

$$= \sum_{j=1}^{n-1} r^j + r^n - \left(1 + \sum_{j=1}^{n-1} r^j\right) = r^n - 1$$

Proof. If r = 1, we have:

$$\sum_{j=0}^{n-1} r^j = \sum_{j=0}^{n-1} 1^j = \sum_{j=0}^{n-1} 1 = n$$

• Given $r \in \mathbb{R}$, $n \in \mathbb{N}_+$ and $a \in \mathbb{R}$, the formula (9) can be extended as follows:

$$\sum_{j=0}^{n-1} a r^j = \begin{cases} a\left(\frac{r^n - 1}{r - 1}\right) = a\left(\frac{1 - r^n}{1 - r}\right) & \text{if } r \neq 1\\ a n & \text{otherwise} \end{cases} \quad \text{since} \quad \sum_{j=0}^{n-1} a r^j = a \sum_{j=0}^{n-1} r^j \quad (10)$$

Example 5: sum of the first n terms of geometric progressions

• With a = 1 and $r = \frac{1}{2}$, the first 4 terms are:

1,
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$ and $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{8+4+2+1}{8} = \frac{15}{8}$

The sum of the first n = 4 terms is given by the formula:

$$\sum_{j=0}^{3} \left(\frac{1}{2}\right)^{j} = \sum_{j=1}^{4} \frac{1}{2^{j}} = \frac{1 - \frac{1}{2^{4}}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{16}}{\frac{1}{2}} = \frac{15}{16} = \frac{15}{8}$$

• With a = 1 and r = 2, the first four terms are:

1, 2, 4, 8 and
$$1+2+4+8=15$$

The sum of the first n = 4 terms is given by the formula:

$$\sum_{j=1}^{3} 2^{j} = \frac{2^{4} - 1}{2 - 1} = 16 - 1 = 15$$

• With a = 1 and r = -2, the first four terms are:

1,
$$-2$$
, 4, -8 and $1-2+4-8=5$

The sum of the first n = 4 terms is given by the formula:

$$\sum_{j=1}^{3} -2^{j} = \frac{-2^{4} - 1}{-2 - 1} = \frac{-15}{-3} = 5$$

2.2 Geometric series

Definition 3: geometric series

Given a common ratio $r \in \mathbb{R}$, the limit

$$\lim_{n \to +\infty} \sum_{j=0}^{n} r^{j}$$

is called the **geometric series** of common ratio r and it is denoted by $\sum_{j=0}^{\infty} r^j$.

Observation 8: convergence of the geometric series

Given a common ration $r \in \mathbb{R}$,

$$\text{the geometric series } \sum_{j=0}^{\infty} r^j \quad \text{is} \quad \begin{cases} \text{convergent} & \text{if } |r| < 1 \\ \text{divergent at } + \infty & \text{if } r \geq 1 \\ \text{irregular} & \text{if } r \leq -1 \end{cases}$$

If the geometric series is convergent, we have $\sum_{j=0}^{\infty} r^j = \frac{1}{1-r}$

Proof. Given $r \in \mathbb{R}$, we have

$$\lim_{n \to +\infty} r^n = \begin{cases} +\infty & \text{if } r > 1\\ 1 & \text{if } r = 1\\ 0 & \text{if } |r| < 1\\ \text{does not exist} & \text{if } r \le -1 \end{cases}$$

If $r \neq 1$ we have $\sum_{j=0}^{n} r^j = \frac{r^{n+1}-1}{r-1}$ and:

$$\lim_{n \to +\infty} \sum_{j=0}^{n} r^{j} = \lim_{n \to +\infty} \frac{r^{n+1} - 1}{r - 1} = \frac{1}{r - 1} \lim_{n \to +\infty} (r^{n+1} - 1) = \begin{cases} \frac{1}{1 - r} & \text{if } |r| < 1 \\ +\infty & \text{if } r > 1 \end{cases}$$

$$\text{does not exist} \quad \text{if } r < -1$$

If r = 1, we have $\sum_{j=0}^{n} r^{j} = n + 1$ and accordingly:

$$\lim_{n \to +\infty} \sum_{j=0}^{n} r^{j} = \lim_{n \to +\infty} (n+1) = +\infty$$

Example 6: geometric series

For the following geometric series we have:

$$\sum_{j=0}^{\infty} \left(\frac{1}{2}\right)^j = \frac{1}{1 - \frac{1}{2}} = 2$$

since the common ration r is 1/2 and |1/2| < 1.

For the following geometric series we have:

$$\sum_{k=0}^{\infty} \left(\frac{13}{12}\right)^k = +\infty$$

since the common ration r is 13/12 and 13/12 > 1.

