You must justify your answers to receive full credit.

1. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis of \mathbb{R}^3 , and suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation with

$$T(\mathbf{v_1}) = \mathbf{v_2}, \quad T(\mathbf{v_2}) = \mathbf{v_1}, \quad T(\mathbf{v_3}) = \mathbf{v_1} + \mathbf{v_3}.$$

- a) Show that $\mathbf{v_1} + \mathbf{v_2}$ is an eigenvector of T, and find its corresponding eigenvalue.
- b) Find the matrix for T relative to \mathcal{B} .

Now let

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ -5 \\ 2 \end{bmatrix}.$$

- c) Find the change-of-coordinates matrix from the standard basis in \mathbb{R}^3 to \mathcal{B} .
- d) Find the standard matrix for T.
- 2. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be bases for a vector space V, and suppose

$$f_1 = 2b_1 - b_2 + b_3$$
, $f_2 = 3b_2 + b_3$, $f_3 = -3b_1 + 2b_3$

- a) What is the dimension of V?
- b) Find the change-of-coordinates matrix from \mathcal{F} to \mathcal{B} .
- c) Now suppose $V = \mathbb{P}_2$, the set of polynomials of degree at most 2, and \mathcal{B} is the standard basis $\{1, t, t^2\}$. If $[\mathbf{p}]_{\mathcal{F}} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, find \mathbf{p} .
- 3. (to be announced later)
- 4. (to be announced later)
- 5. Let A be a 2 x 2 matrix.
 - a) Explain why there is a polynomial p of degree at most 4 (i.e. $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$) such that p(A) = 0. (Hint: think about linear independence of the set $\{I, A, A^2, \dots\}$ in the vector space of 2 x 2 matrices.)
 - b) **Optional**: Show that, if $a_0 \neq 0$, then A is invertible and A^{-1} is a polynomial in A.

- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If V is a 6-dimensional vector space, then any set of 6 vectors in V is a basis for V.
 - b) If A is 4×7 matrix and rankA = 4, then $ColA = \mathbb{R}^4$.
 - c) If A is 4×7 matrix and rankA = 4, then Nul $A = \mathbb{R}^3$.
 - d) The sum of the dimensions of the row space and the null space of A equals the number of rows in A.
 - e) If λ is an eigenvalue of A, then $\lambda + 2$ is an eigenvalue of A + 2I.
 - f) Let $V = \mathbb{P}_3$ be the set of polynomials of degree at most 3. Then \mathbb{R}^3 and \mathbb{P}_3 are isomorphic vector spaces.

- END -