

B.M.S. COLLEGE OF ENGINEERING, BENGALURU-19 Autonomous Institute, Affiliated to VTU

DEPARTMENT OF MATHEMATICS STER Engineering

Sem &	FOU	RTH SEMESTER		TATHEMATICS Engineering	Sub	407			
Branch:	(Common to AS/CV/EEE/ECE/EIE/ML/TCE)		Subject:	Mathematics - 4	Code: 19MA4BS		SEM4		
Time:		00PM-2:15PM	Test Date:	17-05-2021	Ma	x Marks:	40		
Test No.	Q. No.	SOLUT	TIONS AND	SCHEME OF EVALU	ATION		Marks		
			PART						
	1	Establish the formula $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$ and hence find the coefficient of correlation between x and y when the variances of x , y and x - y respectively							
		are 3, 2.45 and 2.45 Let $z = x - y \Rightarrow \bar{z}$,				1		
	Solution	Then $(z - \bar{z})^2 = (x - \bar{x})^2 + (y - \bar{y})^2 - 2(x - \bar{x})(y - \bar{y})$ $\Rightarrow \sum (z - \bar{z})^2 = \sum (x - \bar{x})^2 + \sum (y - \bar{y})^2 - 2\sum (x - \bar{x})(y - \bar{y})$							
		$\Rightarrow \frac{\sum (z - \bar{z})^2}{n} = \frac{\sum (x - \bar{x})^2}{n} + \frac{1}{n}$ $\Rightarrow \sigma_z^2 = \sigma_x^2 + \sigma_y^2 - 2$	16	16	$\frac{(x-\bar{x})(y-\bar{y})}{n\sigma_x\sigma_y}$	<u>)</u>	1		
		Therefore we get $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x \sigma_y}$ (1)							
		Given $\sigma_x^2 = 3$, $\sigma_y^2 = 3$ $(1) \Rightarrow r = 0.55$	$2.45, \sigma_{x-y}^2 =$	= 2.45			1		
t - 1		PART-B							
Tesi	PART-B The two lines of regression of y on x and x on y are $7x - 16y + 9 = 0$, $5y - 4x - 3 = 0$ respectively. Calculate the coefficient of correlation \bar{x} and \bar{y} .						5		
		From the given lines of regression we get $b_{yx} = \frac{7}{16}$ and $b_{xy} = \frac{5}{4}$							
	Solution	So that $r = \sqrt{b_{yx} \times b_{xy}} = 0.7395$ Since the regression lines pass through (\bar{x}, \bar{y}) , therefore $7\bar{x} - 16\bar{y} + 9 = 0, 5\bar{y} - 4\bar{x} - 3 = 0$							
		On solving these equa	•		$\bar{y} = 0.53$	172	2		
	A manufacturer of cotter pins knows that 5% of his product is defective. I are sold in boxes of 100. He guarantees that not more than 3 pins will defective. Determine the probability that a box fail to meet the guarantee				pins will be	5			
	Solution	Let x represents the number of defective cotter pins. So that $p=0.05$ and $n=100 \Rightarrow \text{Mean}(m) = np = 5$ The probability of x number of defective blades is given by Poisson							
		function $P(x) = \frac{m^x}{x!} \epsilon$ The box fails to meet	$e^{-m} = \frac{5^x}{x!}e^{-m}$	-5			1		
		pins. Thus the probability the $P(x > 3)=1-P(x \le 1)$	_	antee is failed is give	en by		3		

		The table below shows the joint probability distribution of two random variables <i>X</i> and <i>Y</i> .							
	2 c)	(i) Find c (ii) Calcula	2 3c 3 2c 4 4c	nal distr		f X and Y		5	
	Solution	(i) $\sum_{i=1}^{4} \sum_{j=1}^{3} J_{ij} = 1 \Rightarrow 30c = 1 \Rightarrow c = \frac{1}{30}$ (ii) Marginal distributions of X Marginal distributions of Y							
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 4 6/30 6/30	0	g(y)	1 2 15/30 1	3 0/30 5/30	2	
		(iii) Since $J_{ij} \neq f(x_i)g(y_j) \forall i, j$, the random variable X and Y are not independent.							
	PART-C								
	3 a)	The velocity V of a liquid is known to vary with temperature T according to a quadratic law $V = a + bT + cT^2$. Find the best values of a , b and c for the following table: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		The normal equations are $\sum V = na + b \sum T + c \sum T^2$							
		$\sum VT = a \sum T + b \sum T^2 + c \sum T^3$ $\sum VT^2 = a \sum T^2 + b \sum T^3 + c \sum T^4$							
Test -2	Solution			a ∑ T -		$+ c \sum T^{+}$			
Tes		T V	T^2	TV	T^3	T^2V	T^4		
		1 2.31	1	2.31	1	2.31	1		
		2 2.01	4	4.02	8	8.04	16	3	
		3 3.80	9	11.40	27	34.2	81	3	
		4 1.66 5 1.55	16 25	6.64 7.75	64 125	26.56 38.75	256 625		
		$\begin{array}{ c c c c c c }\hline S & 1.55\\\hline \sum T = 15 & \sum V = 11.33\\\hline \end{array}$		32.12	225	109.86	979		
			$2^{I=15}$ $2^{V=11.33}$ $2^{T=55}$ 32.12 225 109.80 $9/9$						
		After solving the resulting normal equations we get							
	a = 1.0518, b = 1.3346 and $c = -0.2536$								
				OR					

3 b)	Find the coefficient of correlation between the industrial production and export using the following data and also find the export when the							
	production is 57 crore tons.						6	
	Production(crore tons) 55 56 58 59 60							
	Export(cro	ore tons)	35 38	38 39	44			
Solution	X	У	$X=x-\bar{x}$	$Y=y-\bar{y}$	XY	X^2	Y ²	
	(Production)	(Export)						
	55	35	-2.6	-3.8	9.88	6.76	14.44	
	56	38	-1.6	-0.8	1.28	2.56	0.64	
	58	38	0.4	-0.8	0.32	0.16	0.64	2
	59	39	1.4	0.2	0.28	1.96	0.04	2
	60	44	2.4	5.2	12.48	5.76	27.04	
	288	194			24.24	17.2	42.8	
	$r = \frac{\sum XY}{\sqrt{\sum X^2}} \sqrt{\sum X^2}$	= 0.89	9					1
								1
	and $b_{yx} = \frac{\sum XY}{\sum X^2}$	$\frac{1}{1} = 1.41$						1
	The required re		\mathbf{e} of \mathbf{v} on \mathbf{x}	is $v - \bar{v} =$	$= b_{vx}(x)$	$-\bar{x}$)		
	1	0	J	$\Rightarrow y = 1.$				
	When $x = 57 \text{ w}$	e get $y = 37$.95	,				
	Thus when the							2
4 a)	Fit a Poisson d		o the follow	ving data a	nd hence	e find the	2	
4 a)	theoretical freq	uencies						
	x 0 1 2 3 4							
~	f 46 38 22 9 1							
Solution	$Mean \Rightarrow m = \frac{\sum fx}{\sum f} = 0.9741$							1
	Therefore, the Poisson function $P(x) = \frac{m^x}{x!} e^{-m} = \frac{(0.9741)^x}{x!} e^{-0.9741}$						2	
	The corresponding Poisson distribution is							
						1.		
	$\begin{pmatrix} x & 0 \\ P(x) & 0 \end{pmatrix}$		<u>l</u>	2	3	4		
			0.3677 42.65	0.1791 20.77	0.058 6.74	-	.64	3
		J.17 '	12.03	20.11	0.74	1	.07	
							1	
	Thus the required theoretical frequencies are 44, 43, 21, 7, 1						<u> </u>	
	OR							
4 b)	In a normal distribution, 30% of the items are under 45 and 9% are over 64.							7
4 0)	Find the mean and S.D. of the distribution. (Given $\phi(0.53)=0.2$ and $\phi(1.35)=0.41$ where $\phi(z)$ is an area bounded by standard normal curve.							
	$\phi(1.35)=0.41$ where $\phi(z)$ is an area bounded by standard normal curve from 0 to z)							
Solution								
Solution	$x-\mu$ $x=0$ $45-\mu$ $45-\mu$							
	$z = \frac{x-\mu}{\sigma} \text{When } x=45 \text{ let } z_1 = \frac{45-\mu}{\sigma} \dots (1)$							
	And When $x=64$ let $z_2 = \frac{64-\mu}{\sigma}$ (2)					2		
	σ (2)							

	$\int_{-\infty}^{z_1} f(z)dz = 0.3 \Rightarrow z_1 = -0.53 \text{ and } \int_{z_2}^{\infty} f(z)dz = 0.09 \Rightarrow z_2 = 1.35$ On solving equations (1) and (2) we get $\mu = 50.35$ and $\sigma = 10.11$					
5 a)	The joint probability distributions of two random variables X and Y is given below: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7				
Solution	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2				
5 b)	$P(X \le 2, Y < 2) = J_{11} + J_{21} = 0.1$ OR Two cards are selected at random from a box which contains five cards numbered 1,1,2,2 and 3. Find the joint distributions of <i>X</i> and <i>Y</i> where <i>X</i> denotes the product of two numbers and <i>Y</i> denotes the minimum of two numbers drawn. Also determine $Cov(X,Y)$	7				
Solution	numbers drawn. Also determine $Cov(X, Y)$. Y 1 2 sum 1 0.1 0 0.1 2 0.4 0 0.4 3 0.2 0 0.2 4 0 0.1 0.1 6 0 0.2 0.2 sum 0.7 0.3 1	3				
	E(X)=3.1 $E(Y)=1.3$ $E(X, Y)=4.7$ $Cov(X,Y)=0.67$	4				

Suitable marks to be given for alternate methods