Module MP(C)

Methods for predicting numerical variables Simon Malinowski

M1 Miage - M1 Data Science, Univ. Rennes

Schedule of this course

- Part 1 : Time series prediction
 - ▶ 4h30 CM
 - ▶ 10h30 TD/TP (including a graded work)
- Part 2 : Prediction using other variables (regression models)
 - ▶ 4h30 CM
 - ▶ 6h TD/TP
 - 4h30 Project (graded)
 - → Kaggle competition : Lien

Time series prediction

M1 Miage, Univ. Rennes 1

- Introduction : context, definitions
- 2 Time series decomposition
- Time series prediction

Time series examples

- electricity consumption of users every minute or hour
- number of people in the public transport every day
- average daily temperature in a given city

Our goal: predict the next value(s)

What is a time series?

Definition

A time series is a **finite series** of **numerical** data points that represents the evolution of a certain quantity over reguar time stamps

Also called sometimes chronolgical series

Denoted by
$$X(t) = x_1, x_2, ..., x_n$$
, or also $X(t) = x(1), x(2), ..., x(n)$

Graphical representations

1) Global representation : the points (t, x_t) are depicted on a plot Example 1 : number of unemployed people registered to "Pôle Emploi" in France every month from 2001 to 2014

Graphical representation

Global representation : the points (t, x_t) are depicted on a plot Example 2 : Monthly average temperature in Nottingham Period 1920-1940

Graphical representations

Global representation : the points (t, x_t) are depicted on a plot Example 3 : Average monthly air trafic Period 1949-1961

- Introduction : context, definitions
- 2 Time series decomposition
- Time series prediction

Analyzing and understanding a time series

Time series often represent a complex phenomenon, difficult to analyze in a straightforward manner

The methods that we will use to predict a time series are based on the decomposition of a TS into elements that are simpler to

- handle with
- control

The elements that are considered are:

- \bullet the trend T_t
- ② the seasonal component S_t
- \odot the residual component E_t

Decomposition models

Additive model

We assume that X_t can be written as

$$X_t = T_t + S_t + E_t$$

Multiplicative model

We assume that X_t can be written as

$$X_t = (T_t * S_t) + E_t$$

$$X_t = T_t * S_t * E_t$$

The trend

Definition

This component represents the global evolution of the considered phemomenon

Assumptions about this component

- slowly varying
- deterministic
- can be estimated as a (simple) mathematical function

Trend or not trend?

Kinds of trends

- Linear: $T_t = a + b \times t$
- 2 Polynomial : $T_t = a_0 + a_1 \times t + \cdots + a_n \times t^n$
- **3** Logarithmic : $T_t = a + b \times \log t$
- **9** Exponential : $T_t = a \times exp(bt)$

The seasonal component

Definition

The seasonal component represents periodic fluctuations around the mean inside a period (of length p) and that occur almost identically from period to period

Example: Temperature in Nottingham

The seasonal component

Definition

The seasonal component represents periodic fluctuations around the mean inside a period (of length p) and that occur almost identically from period to period

Example: Temperature in Nottingham

The seasonal component

This component is completely defined by p seasonal coefficients $s_1, \ldots s_p$ that represent the seasonal profile.

We have
$$S_t = s_1, \ldots, s_p, s_1, \ldots, s_p, \ldots$$

Hence, the seasonal component S_t is the repetition of these p coefficients over each period.

The residual component E_t

This component represents irregular and "unpredictable" fluctuations.

It is a random component, considered often as a zero-mean random variable

Determining the composition of a time series

All time series are not composed of both a trend and a seasonal component

The typical kinds of time series are

- completely random : $X_t = E_t$
- with a trend component only : $X_t = T_t + E_t$
- with a seasonal component only : $X_t = S_t + E_t$
- with both a trend and a seasonal component : $X_t = T_t + S_t + E_t$

Next step is a tool to help you determine in which case we are

Let $X_t = x_1, \dots, x_n$ be a time series, et k an integer $\in [0, n-1]$. The autocorrelation function of X_t is defined as :

$$\rho(k) = \frac{cov(x_t, x_{t-k})}{var(x_t)} = \frac{\sum_{t=k+1}^{n} (x_t - \overline{x})(x_{t-k} - \overline{x})}{\sum_{t=1}^{n} (x_t - \overline{x})^2}$$

Properties:

- $\rho(0) = 1$
- $\rho(k) \leq 1, \forall k > 0$

For a completely random time series $(X_t = E_t)$,

$$|\rho(I)| < 1.96 * \sqrt{1/n}, \, \forall I > 0$$

For a time series with a trend $(X_t = T_t + E_t)$, we have:

$$\rho(I) \rightarrow 1, \forall I > 0$$

For a time series with a trend $(X_t = T_t + E_t)$, we have:

$$\rho(I) \rightarrow 1, \forall I > 0$$

For a time series of the kind $x_t = cos(\frac{2\pi}{T}t)$ (with a seasonal component), we have :

$$\rho(I) \to cos(\frac{2\pi}{T}t), \forall I > 0$$

Example for a time series with a period of length 4

And for a series with both a trend and a seasonal component:

$$x_t = a + b \times t + \cos(\frac{2\pi}{T}t)$$

Detection of trend and/or seasonality

Summary:

- Intuition about the phenomenon
- @ Graphical representations of the time series
- Analysis of the autocorrelation function
 - lacktriangle slow decrease of the coefficients ightarrow trend
 - ▶ periodicity of the coefficients → seasonality
 - combination of both : trend + seasonality

Seasonal component: additive or multiplicative ?

 For an additive model, the time series stays inside a constant "strip" around the trend

Seasonal component: additive or multiplicative ?

 For a multiplicative model, the "strip" arounf the mean is not constant over time, i.e. the seasonal components depend on the trend

- Introduction : context, definitions
- 2 Time series decomposition
- Time series prediction
 - Series witout trend nor seasonality

Example

Prediction of a series without trend nor seasonality

It is the simplest case, rarely used in practice. But it allows to understand and apprehend some important things that will be used later.

Hypothesis: the time series takes its values around a stable level $\it a$, it has no trend an no seasonal component.

$$X_t = a + e_t$$

with e_t a residual component.

Problem : how to estimate a in order to predict the future values of X_t ?

Prediction of a series without trend nor seasonality

Let $X_t = x_1, \dots, x_n$ a series witout trend nor seasonality. We aim at predicting the next value : \hat{x}_{n+1} (and why not the next ones).

1 Naïve : the last value x_n is used as the prediction at time n+1

$$\hat{x}_{n+1} = x_n$$

- + next value is likely to be close to the previous one
- only the previous value is used to predict (the past information is lost)

On our example:

Prediction of a series without trend nor seasonality

prediction is the mean of all past values :

$$\hat{x}_{n+1} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

+ all past values are used for prediction

On our example:

Prediction using the mean of past values

Prediction of a series without trend nor seasonality

- prediction is the median of all past values
- + all available data is taken into account
- + extreme values have less influence
- the close past is as important than the far past

On our example:

Prediction using the median of past values

Prediction of a series without trend nor seasonality

Weighted sum of all past values

$$\hat{x}_{n+1} = \frac{\sum_{i=1}^{n} \omega_i x_i}{\sum_{i=1}^{n} \omega_i}$$

- + we can decide to give more influence to some past values
- + all available data is used
- choice of ω_i is tedious

On our example:

Prediction of a series without trend nor seasonality

- Simple exponential smoothing
- + more influence to recent values
- + all available data is used
- + flexible and easy to apply

Principle:

Simple exponential smoothing: analysis

$$\hat{x}_{n+1} = \alpha x_n + (1 - \alpha) \hat{x}_n
= \alpha x_n + (1 - \alpha) (\alpha x_{n-1} + (1 - \alpha) \hat{x}_{n-1})
= \alpha x_n + \alpha (1 - \alpha) x_{n-1} + (1 - \alpha)^2 (\alpha x_{n-2} + (1 - \alpha) \hat{x}_{n-2})
= ...
= \alpha x_n + \alpha (1 - \alpha) x_{n-1} + \alpha (1 - \alpha)^2 x_{n-2} + \cdots + \alpha (1 - \alpha)^k x_{n-k} + \alpha (1 - \alpha)^{n-1} x_1 + (1 - \alpha)^n \hat{x}_1$$

Simple Exponential smoothing: example

Simple exponential smoothing: analysis

Influence of the parameter α

- if α is big (close to 1), we give a lot of influence to recent values. At the limit ($\alpha = 1$), I predict the last observed value
 - ightarrow predictions are fluctuating; quick reaction to changes in the data
- ullet if lpha is small (close to 0), more influence is given to past values (tends toward the mean of all past values)
 - ightarrow predictions are stable but slow reactions to changes in the data

Simple Exponential Smoothing

Choice of α and \hat{x}_0

Auto-regressive models (AR)

Principle:

$$\hat{x}_n = \beta_0 + \sum_{k=1}^p \beta_k x_{n-k}$$

- p is the order of the model : AR(p)
- ullet the coefficients eta_j are estimated based on the original series

Auto-regressive models: example

How to choose the order p?

For a given p, when a model is fitted (coefficients are estimated), we can compute the BIC score (Bayesian Information Criterion).

It is a tradeoff between accuracy of the intermediate predictions and the complexity of the model (number of coefficients)

The best value of p for a given time series can be chosen according to this score (the lower BIC, the better)

Summary