Programming theory midterm test - sample

You are allowed to use the short form $(a_1, \ldots a_n)$ in order to denote the state $\{v_1: a_1, \ldots v_n: a_n\}$.

1. Let A = [1..5] be a statespace, $S \subseteq A \times (A \cup \{fail\})^{**}$ a program over the statespace A.

$$S = \begin{cases} 1 \to <1, 2, 5, 1> & 1 \to <1, 4, 3, 5, 2> & 1 \to <1, 3, 2, 3, \dots > \\ 2 \to <2, 1> & 2 \to <2, 4> & 3 \to <3, 3, 3, \dots > \\ 4 \to <4, 1, 5, 4, 2> & 4 \to <4, 3, 1, 2, 5, 1> & 5 \to <5, 2, 3, 4> \end{cases}$$

Let $F \subseteq A \times A$ denote the following problem: $F = \{(2, 1), (2, 4), (4, 1), (4, 2), (4, 5)\}$

- (a) Determine the program function of S and the domain of p(S).
- (b) Determine the following two sets: S(1) and p(S)(2).
- (c) Decide whether S solves the problem F.

(12 points)

- 2. (a) Consider the statespace A and program S that were given in task 1. (6 points) Let $Q, R : A \to \mathbb{L}$ be logical functions given such that $\lceil R \rceil = \{1, 5\}$ and $\lceil Q \rceil = \{5\}$.
 - Determine the truth-set $\lceil wp(S,R) \rceil$.
 - Decide whether 4 is an element of [wp(S, Q)].
 - (b) Find a program S_2 over A so that S is deterministic and solves problem F. Detailed explanation is required. (6 points)

3. (a) Let
$$H = \{a \in \mathbb{Z} \mid a \geqslant -5\}$$
 (6 points) $A = (x: H)$

<u>S</u>
$x \neq 10$
x := x + sgn(x)

- Write down the sequences assigned to the states 4, 13, -2, 0 and 10 by the program S.
- Determine the program function of S.

(b) $A=(x:\mathbb{Z},y:\mathbb{Z})$ is the base-statespace and $z:\mathbb{Z}$ is an auxiliary variable of the program. (6 points)

S	
z := x	
x := y	
y := z	

- Write down the sequences assigned to the state $\{x:3, y:8\}$ by the program S.
- What does the program function of S addign to the state $\{x:3, y:8\}$?
- 4. (a) Let $S_1, S_2 \subseteq A \times (A \cup \{fail\})^{**}$ be any arbitrary programs, such that $S_1 \subseteq S_2$. Decide whether $D_{p(S_1)} \subseteq D_{p(S_2)}$ holds or not. (6 points)
 - (b) Problem: Given two integer numbers. Find a common divisor of them. (6 points)
 - What is the statespace of the problem?
 - Draw a picture to illustrate the given problem.
- 5. Problem *F* is given by its specification:

(12 points)

$$A = (n:\mathbb{N}, p:\mathbb{N})$$

$$B = (n':\mathbb{N})$$

$$Q = (n = n')$$

$$R = (Q \land prime(p) \land \forall i \in \mathbb{N}^+ : prime(i) \rightarrow |n-i| \geqslant |n-p|)$$

- Determine the following sets: $\lceil Q_{\{n':9\}} \rceil$ and $\lceil R_{\{n':9\}} \rceil$.
- What does F assign to the following states: $\{n:9, p:5\}$ and $\{n:10, p:1\}$?