AK 速度测试

AmberFrame

June 11, 2018

题目名称	湖人	总冠军	哟
输入文件名	lakers.in	champion.in	yo.in
输出文件名	lakers.out	champion.out	yo.out
单个测试点时限	1s	1s	3s

Problem A. 湖人 (lakers.c/cpp/pas)

Input file: lakers.in
Output file: lakers.out
Time limit: 1 second

Memory limit: 512 megabytes

呱正在玩一个游戏,现在黑板上有 n 个数,每一轮呱都会进行一个呱呱的操作,呱会从黑板上的数中等概率选取一个数 x,再将桌上 x 的倍数全部擦掉。呱一直重复呱呱的操作,直到黑板上所有的数都被擦掉,求呱期望进行多少次呱呱的操作才能结束游戏,请输出模 p 意义下的结果。

Input

一行, n 和 p。

Output

一行,答案。

Examples

lakers.in	lakers.out
3 998245553	2

Notes

- 对于 30% 的数据, $n \le 10$ 。
- 对于 60% 的数据, $n \le 10^6$.
- 对于 100% 的数据, $n \le 10^9, 10^8 .$

Problem B. 总冠军 (champion.c/cpp/pas)

Input file: champion.in
Output file: champion.out

Time limit: 1 second

Memory limit: 512 megabytes

现在有 n_1 个哇, n_2 个哇哇,和 n_3 个哇哇哇在双排。已知哇、哇哇和哇哇哇的战斗力分别为 b_1, b_2, b_3 。哇、哇哇和哇哇哇们会组队双排,若两个哇组队,它们双排的战斗力会是 $b_1 + b_1$,一个哇和一个哇哇组队的战斗力会是 $b_1 + b_2$,依此类推。

现在保证 $m = n_1 + n_2 + n_3$ 是偶数,共有 $\frac{m}{2}$ 局比赛进行,要求每一个哇、哇哇和哇哇哇都恰好参与一次双排。第 i 局的战术加成为 u_i ,则该局双排的攻击力会是参与该局双排组合的战斗力与 u_i 的乘积。请找出一种组队参赛方式,使得攻击力最小的比赛中的攻击力最大。

Input

第一行, n_1 , n_2 和 n_3 。

第二行, b_1 , b_2 和 b_3 。

接下来一行, m 个数 u_i 。

Output

一行,表示最小战斗力的最大值。

Examples

champion.in	champion.out
1 1 2	7
5 2 4	
1 1	

Notes

- 对于 30% 的数据, $n_1 = 0$.
- 对于 60% 的数据, $m \le 10^3$.
- 对于 100% 的数据, $1 \le b1, b2, b3 \le 10^3$, $2 \le m \le 10^5$ 。

Problem C. 哟 (yo.c/cpp/pas)

Input file: yo.in
Output file: yo.out
Time limit: 3 seconds

Memory limit: 512 megabytes

莫斯科革命广场是莫斯科通勤系统的中心,广场所在位置标为 (0,0)。市区内共有 m 条放射状通勤轨道,每条轨道交通的承载量为 c_i ,即能承载 c_i 个大型小区的客流,该轨道是从革命广场连接到郊区外无限远处的一条射线,其中一点 $(x_i,y_i)\neq (0,0)$ 在这条射线上。当然,考虑到成本因素,不同轨道交通不会重合。

市区内有 n 个大型小区,位于 (a_i,b_i) ,每天高峰时,该小区的居民都会选择最近的一条轨道交通在城区内通勤,假设有两条轨道交通与小区之间距离相同,那么小区居民可以任选一条搭乘。

普京大帝想知道: 莫斯科轨道交通当今的容量能满足多少个小区居民的通勤需求。

Input

第一行, n 和 m。

接下来 n 行, a_i, b_i 。

接下来 m 行, x_i, y_i, c_i 。

Output

第一行,一个整数 ans 表示答案。

接下来 ans 行,每行输出 u 和 v 表示 u 小区的居民会选择第 v 条交通轨道出行。

(剩下的小区居民可以不用管,让他们走路上班就好啦!)

Examples

yo.in	yo.out
3 2	3
2 0	0 1
-1 0	1 1
-2 -1	2 0
1 -1 1	
1 1 2	

Notes

- 对于 30% 的数据, $n, m \le 5$.
- 对于 60% 的数据, $m \le 5000$ 。
- 对于 100% 的数据, $n, m \le 2*10^5$,坐标都为整数且绝对值不超过 1000。