Computer Networks and Applications

Dong Xiao

School of Computer Science and Engineering College of Software Engineering, Southeast University, Nanjing

Introduction 1

OSI model

7. Application layer

6. Presentation layer

MIME · XDR · TLS · SSL

5. Session layer

· PPTP · SOCKS

4. Transport layer

3. Network layer

IPX • AppleTalk

2. Data link layer

Network switch

1. Physical layer

Bluetooth · Hubs

- Physical (Addressing by multiplexing)
 - Communication resource ---- bandwidth
 - How to share the channel --- multiplexing (Addressing in level 1)
- Data Link (Addressing by MAC address)
 - Data transmission across a link ----- flow/error control
 - Interconnecting links ----- switch/bridge → LAN
 - Interface between layer 1-2 ----- MAC
- Network (Addressing by IP)
 - Interconnecting multiple LAN ----- multi-protocol gateway
 - Routing / switching ---- circuit/packet/virtual circuit
- Transport (Addressing by IP+port)
 - End-to-end channels ----connection/connectionless/(un)reliable
- Application

Basic communication concepts

- Theoretical basis for data communication
 - Basic concepts of communication system
 - Communication system model and terminologies
 - Basic information theory
- Transmission
 - Channel and channel capacity
 - Bandwidth, SNR, distance
 - Multiplexing technologies
 - TDMA, FDMA, SDMA, CDMA
- Switching
 - Packet / circuit / virtual circuit

FIGURE 1.1-1
Basic elements of a digital communication system.

FIGURE 3.2 A three-dimensional view of communications space.

Physical layer

- Transmission media
 - Guided media:
 - twisted pairs
 - co-axial cable
 - optic fibre
 - Wireless channel:
 - Microwave
 - Satellite
 - Mobile communication

Introduction 8

- Maximum data rate of a channel
 - Channel capacity of a noisy Gaussian channel

$$C = F \log(1 + SNR) = F \log(1 + \frac{P}{\sigma^2})$$

- Maximum data rate of a noiseless band-limited channel
 - Nyquist's sampling theorem

Maximum data rate = $2F \log_2(V)$ bits/sec

Data Link Layer

- Link layer services
 - Framing
 - flow control:
 - error detection:
 - error correction:
 - half-duplex and full-duplex
 - Inter-connection of links
 - Switches
 - Hubs
 - Bridges

Data link layer

- Sub-layer structure of data link layer
 - Media access control (MAC)
 - The media access control (MAC) data communication protocol sub-layer, also known as the medium access control, is a sublayer of the data link layer specified in the seven-layer OSI model (layer 2).
 - It provides addressing and channel access control mechanisms that make it possible for several terminals or network nodes to communicate within a multiple access network that incorporates a shared medium
 - Logic link control (LLC)
 - Multiplexing protocols transmitted over the MAC layer (when transmitting) and decoding them (when receiving).
 - Providing node-to-node flow and error control

- Medium Access Control Sublayer
 - General channel allocation problem
 - Multiple access protocols
 - Static
 - Random
 - ALOHA
 - CSMA / CSMA/CD
 - Collision-free protocols
 - Limited contention protocols
 - WDMA
 - Wireless LAN protocols --- CSMA/CA
 - LAN examples
 - Ethernet (CSMA/CD), Addressing (MAC)Wireless LANS (CSMA/CA)

 - Broadband wireless
 - Bluetooth
 - Data link layer switching (How frames are delivered to the receiver)

Network layer

- Network layer
 - General design issues
 - Services and their implementation
 - Routing algorithms
 - Key task: How to learn the network structure / find the route in distributed network system
 - The optimal principle of routing
 - Shortest path routing
 - Flooding
 - Distance vector routing
 - Link state routing
 - Hierarchical routing
 - Broadcast routing
 - Multicast routing
 - Routing for mobile hosts
 - Routing in Ad Hoc networks
 - Node lookup in peer-to-peer networks

- Congestion control algorithms
 - General principles of congestion control
 - Congestion control in virtual-circuit subnet
 - Congestion control in datagram subnet
 - Load shedding
 - Jitter control
- Internetworking
 - How networks can be connected
 - Interconnecting devices
 - Hub, switch, router
- Network layer in reality
 - IP address and related issues
 - Routing table using CIDR
 - Addressing mapping between IP/MAC addresses:
 - ARP, RARP, BOOTP, DHCP

Transport layer

- The transport service
 - Services provided to the upper layer
 - Transport service primitives
 - Socket
- Elements of transport layer protocols
 - Addressing, connection establish/release
 - Flow control and buffering
 - Multiplexing
 - Crash recovery
- UDP/TCP
 - Comparison
 - How they are used for different applications

Application layer

- DNS
- Electronic mail
- World Wide Web
- Multimedia

Network security

- Network security
 - Introduction
 - OSI security architecture
 - Cryptography
 - Symmetric cryptography
 - Asymmetric cryptography
 - Public key cryptography
 - Security services
 - Confidentiality
 - Authentication
 - Data integrity
 - Network and Internet security

- Basic concepts
 - Physical
 - Bandwidth, multiplexing, switching
 - Data link
 - FEC, flow control, MAC address, MAC protocols, switch/bridge, LAN, VLAN
 - Network
 - Routing algorithms, IP/CIDR, ICMP, NAT, routing table, routers, internetworking
 - Transport
 - Transport service primitives, TCP/UDP and their applications

- Application
 - Web, DNS, Email
- Security
 - Encryption, symmetric/asymmetric encryption, authentication, data integrity, confidentiality

- Questions to be answered
 - What's the structure of communication systems?
 - Hosts, links/channel, internetworking, information theory
 - How users can exchange information through the network?
 - Multiplexing, MAC, Addressing(MAC/IP), routing/switching, connection establishment
 - How to exchange information safely?
 - FEC, flow control(data link/transport), routing, connection, security
 - What's the essential components of LANs?
 - Framing, MAC, addressing, switching

- How to send data across network?
 - Transport->network->data link-> physical layer
 - How the protocols are implemented in this procedure?
- Internet / TCP/IP
 - How to design a subnetwork?
 - IP, CIDR, routers, routing table
 - What kind of devices/protocols/technologies will be involved in a campus network?
 - LAN (Ethernet/WLAN), MAC, IP, DNS, ARP, NAT, switch, bridge, router, routing, TCP/UDP, VLAN, VPN, security
 - How to access a web?
 - Protocols/hardwares involved in this procedure (access network, Ethernet/WLAN/MAC, routers/routing, IP, TCP, DNS, Web server)

- Network security
 - How to protect data?
 - Integrity, confidentiality, data authentication
 - How to identify users?
 - Authentication
 - How to identify user/protect data
 - Digital signature
 - How to use symmetric/asymmetric encryption and other mechanisms to achieve network security

OSI model

7. Application layer

NNTP · SIP · SSI · DNS · FTP ·
Gopher · HTTP · NFS · NTP · SMPP
· SMTP · SNMP · Teinet · DHCP ·
Netconf · RTP · SPDY · (more)

6. Presentation layer

MIME · XDR · TLS · SSL

5. Session layer

Named pipe · NetBIOS · SAP · L2TP · PPTP · SOCKS

4. Transport layer

TCP · UDP · SCTP · DCCP · SPX

3. Network layer

IP (IPv4, IPv6) · ICMP · IPsec · IGMP · IPX · AppleTalk

2. Data link layer

ATM · SDLC · HDLC · ARP · CSLIP · SLIP · GFP · PLIP · IEEE 802.2 · LLC · IEEE 802.3 · Frame Relay · ITU-T G.hn DLL · PPP · X.25 · Network switch

1. Physical layer

