VE281

Data Structures and Algorithms

Recitation Class

Nov. 12 2018

VE281 TA Group

Fibonacci Heap

Fibonacci Heap

Operation	Binary Heap (worst case)	Fibonacci Heap (amortized analysis)	
insert	$\Theta(\log n)$	$\Theta(1)$	
extractMin	$\Theta(\log n)$	$O(\log n)$	
getMin	$\Theta(1)$	$\Theta(1)$	
makeHeap	$\Theta(1)$	$\Theta(1)$	
union	$\Theta(n)$	$\Theta(1)$	
decreaseKey	$\Theta(\log n)$	$\Theta(1)$	

Fibonacci Heap

- **Insert**: Put into the root list
- getMin: Return H.min
- makeHeap: H.min = NULL and H.n = 0
- **extractMin**: Remove min and concatenate its children into root list
- **Union:** Connect the two root lists and determine the minimum
- decreaseKey:
 - min heap property violated
 - Cut between the node and its parent.
 - Move the subtree to the root list.
 - if a node n not in the root list has lost a child for the second time, cut again

Binary Search Tree

- Each node is associated with a key.
- The key of <u>any</u> node is greater than the keys of all nodes in its left subtree and smaller than the keys of all nodes in its right tree.
- Search, Insert, Remove by key $O(\log n)$

Binary Search Tree

Search

```
node *search(node *root, Key k) {
    if(root == NULL) return NULL;
   if(k == root->item.key) return root;
    if(k < root->item.key)
      return search(root->left, k);
   else return search(root->right, k);
Insert
 void insert(node *&root, Item item) {
   if(root == NULL) {
     root = new node(item);
     return;
   if(item.key < root->item.key)
     insert(root->left, item);
   else if(item.key > root->item.key)
     insert(root->right, item);
```

Binary Search Tree

Remove:

- Remove a leaf: delete root;
 root = NULL;
- Remove a degree-one node
 - With right child root = root->left;
 - With right child delete tmp;
- Remove a degree-two node

Average-Case Time Complexity of BST

- If the successful search reaches a node at level d, the number of nodes visited is d + 1.
- depth of the i-th node d_i
- Internal path length $\sum_{i=1}^{n} d_i$
- Average internal path length of a tree containing n nodes I(n)
 - $\bullet I(1) = 0.$
- For a tree of *n* nodes, suppose it has *l* nodes in its left subtree.
 - The number of nodes in its right subtree is n-1-l.
 - The average internal path length for such a tree is T(n; l) = I(l) + I(n 1 l) + n 1
- I(n) is average of T(n; l) over l = 0, 1, ..., n 1.

Average-Case Time Complexity of BST

$$I(n) = \frac{1}{n} \sum_{l=0}^{n-1} T(n; l) = \frac{1}{n} \sum_{l=0}^{n-1} [I(l) + I(n-1-l) + n - 1]$$

$$= \frac{2}{n} \sum_{l=0}^{n-1} I(l) + (n-1)$$

$$I(n-1) = \frac{2}{n-1} \sum_{l=0}^{n-2} I(l) + (n-2)$$

$$\sum_{l=0}^{n-2} I(l) = \frac{(n-1)[I(n-1) - (n-2)]}{2}$$

$$\leq \frac{I(n-1)}{n} + \frac{1}{n}$$

$$I(n) = \frac{n+1}{n}I(n-1) + \frac{2(n-1)}{n}$$

$$\frac{I(n)}{n+1} = \frac{I(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$

 $\leq \frac{I(n-1)}{2} + \frac{2}{n}$

$$\leq 2\sum_{k=2}^{n} \frac{1}{k} < 2\ln n$$

$$I(n) = O(n \log n)$$

Average-Case Time Complexity of BST

Thus, the average complexity for a search is

$$\Theta\left(\frac{1}{n}I(n)\right) = O(\log n)$$

	Search	Insert	Remove
Linked List	O(n)	O(n)	O(n)
Sorted Array	$O(\log n)$	O(n)	O(n)
Hash Table	0(1)	0(1)	0(1)
BST	$O(\log n)$	$O(\log n)$	$O(\log n)$

BST Additional Operations

Other Operations Supported by BST

• Output in Sorted Order O(n)

• Get Min/Max $O(\log n)$

• Get Predecessor/Successor $O(\log n)$

• Rank Search $O(\log n)$

• Range Search O(n)

Note: Hash table does not support efficient implementation of the above methods.