Back-Propagation

Lecture 0 2

Yann Le Cun

Facebook Al Research,
Center for Data Science, NYU
Courant Institute of Mathematical Sciences, NYU
http://yann.lecun.com

the internal state of the network will be kept in a "state" class that contains two scalars, vectors, or matrices: (1) the state proper, (2) the derivative of the energy with respect to that state.

The input vector is multiplied by the weight matrix.

- \blacksquare fprop: $X_{\text{out}} = WX_{\text{in}}$
- bprop to input:

$$\frac{\partial E}{\partial X_{\rm in}} = \frac{\partial E}{\partial X_{\rm out}} \frac{\partial X_{\rm out}}{\partial X_{\rm in}} = \frac{\partial E}{\partial X_{\rm out}} W$$

by transposing, we get column vectors:

$$\frac{\partial E}{\partial X_{\rm in}}' = W' \frac{\partial E}{\partial X_{\rm out}}'$$

bprop to weights:

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial X_{\text{out}i}} \frac{\partial X_{\text{out}i}}{\partial W_{ij}} = X_{\text{in}j} \frac{\partial E}{\partial X_{\text{out}i}}$$

We can write this as an outer-product:

$$\frac{\partial E}{\partial W}' = \frac{\partial E}{\partial X_{\text{out}}}' X'_{in}$$

Tanh module (or any other pointwise function) Y LeCun MA Ranzato

- \blacksquare fprop: $(X_{\text{out}})_i = \tanh((X_{\text{in}})_i + B_i)$
- bprop to input: $(\frac{\partial E}{\partial X_{in}})_i = (\frac{\partial E}{\partial X_{out}})_i \tanh'((X_{in})_i + B_i)$
- bprop to bias:

$$\frac{\partial E}{\partial B_i} = (\frac{\partial E}{\partial X_{\text{out}}})_i \tanh'((X_{\text{in}})_i + B_i)$$

 $= \tanh(x) = \frac{2}{1 + \exp(-x)} - 1 = \frac{1 - \exp(-x)}{1 + \exp(-x)}$

- fprop: $X_{\text{out}} = \frac{1}{2}||X_{\text{in}} Y||^2$
 - bprop to X input: $\frac{\partial E}{\partial X_{\rm in}} = X_{\rm in} Y$
- bprop to Y input: $\frac{\partial E}{\partial Y} = Y X_{\text{in}}$

The PLUS module: a module with K inputs X_1, \ldots, X_K (of any type) that computes the sum of its inputs:

$$X_{
m out} = \sum_k X_k$$

back-prop:
$$\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{\text{out}}} \quad \forall k$$

The BRANCH module: a module with one input and K outputs X_1, \ldots, X_K (of any type) that simply copies its input on its outputs:

$$X_k = X_{\text{in}} \quad \forall k \in [1..K]$$

back-prop:
$$\frac{\partial E}{\partial \text{in}} = \sum_{k} \frac{\partial E}{\partial X_{k}}$$

- A module with K inputs X_1, \ldots, X_K (of any type) and one additional discrete-valued input Y.
- The value of the discrete input determines which of the N inputs is copied to the output.

$$X_{\mathrm{out}} = \sum_{k} \delta(Y - k) X_{k}$$

$$\frac{\partial E}{\partial X_k} = \delta(Y - k) \frac{\partial E}{\partial X_{\text{out}}}$$

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.

SoftMax Module (should really be called SoftArgMax)

- Transforms scores into a discrete probability distribution
 - Positive numbers that sum to one.
- Used in multi-class classification

SoftMax Module: Loss Function for Classification

- -LogSoftMax: $-\frac{1}{p}\log_{p} P_{k} = -\times_{k} + \frac{1}{p}\log_{j} \sum_{j} e^{\beta X_{j}}$
 - Maximum conditional likelihood
 - Minimize -log of the probability of the correct class.

LogSoftMax Module

- Transforms scores into a discrete probability distribution
- LogSoftMax = Identity LogSumExp

LogSumExp Module

Log of normalization term for SoftMax

Fprop

$$X_{out} = \frac{1}{\beta} \sum_{j} e^{\beta X_{j}}$$

Bprop

• Or:

Backprop works through any modular architecture

Any connection is permissible

Networks with loops must be "unfolded in time".

Any module is permissible

As long as it is continuous and differentiable almost everywhere with respect to the parameters, and with respect to non-terminal inputs.

Backprop in Practice

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
 - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
 - ► Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

Deep Learning is Non-Convex

- Example: what is the loss function for the simplest 2-layer neural net ever
 - Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5 (identity function) with quadratic cost: $y = \tanh(W_1 \tanh(W_0.x))$ $L = (0.5 \tanh(W_1 \tanh(W_00.5)^2)$

The Objective Function of Multi-layer Nets is Non Convex Y LeCun MA Ranzato

1-1-1 network

- Y = W1*W2*X

Objective: identity function with quadratic

One sample: X=1, Y=1 L(W) = (1-W1*W2)

X