California State University, Sacramento The College of Engineering and Computer Science

EEE 180 Signals & Systems

Midterm 2

Spring 2023

Student Name:	

Unilateral Laplace	Transform
Table	

	f(t)	F(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$

Unilateral Z-transform Pair Table

	f[k]	F[z]
1	$\delta[k-j]$	z-j
2	u[k]	$\frac{z}{z-1}$
3	ku[k]	$\frac{z}{(z-1)^2}$
4	$k^2u[k]$	$\frac{z(z+1)}{(z-1)^3}$
5	$k^3u[k]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^{k-1}u[k-1]$	$\frac{1}{z-\gamma}$
7	$\gamma^k u[k]$	$\frac{z}{z-\gamma}$

1.[25 points]

The discrete system equation and initial conditions are given below:

$$y[k+2] + \frac{3}{2}y[k+1] + \frac{1}{2}y[k] = 0, y[-1] = -3, y[-2] = 1.$$

Please find the system output response for the above discrete-time system by using the following three steps.

- (1). What is the characteristic polynomial equation for the above system?
- (2). What are the values of the two roots of the characteristic polynomial equation for this system?
- (3). Find the output system response of this discrete time system.

2. [35 points]

(1). Determine the Inverse Laplace transform of $F(s) = \frac{5}{s+3} + \frac{8}{s-4}$ by using the unilateral Laplace transform table.

Your solution: f(t) =

(2). Determine the Inverse Laplace transform of $F(s) = 2 + \frac{2}{s^2}$ by using the unilateral Laplace transform table.

Your solution: f(t) =

(3). Calculate Laplace transform $F(s) = \int_0^\infty f(t) \ e^{-st} dt$ of the following signal and find the region of convergence.

$$f(t) = \begin{cases} 1, & 1 \le t < 2 \\ 2, & 2 \le t < 3 \end{cases}.$$

3. [40 points]

(1). The discrete-time system is described by y[k+1] + 2y[k] = f[k], with f[k] = u[k] and y[0] = 0. Solve the above equation iteratively to determine y[1] and y[2] values.

(2). The transformed direct form II structure is shown below.

2 5 -5 Y[z] -4 8 8 3 7 -2

The system transfer function is:

$$H[z] = \frac{Y[z]}{X[z]} = \frac{Az^{-1} + Bz^{-2} + Cz^{-3}}{D + Ez^{-1} + Fz^{-2} + Gz^{-3}}$$

According to the structure on the left,

A=____, B=____, C=____, D=____

E=_____, F=_____, G=______.

(3). Find the z-transform for the following discrete-time signal.

(4). Find the inverse z-transform of the following function with ROC: |z| > 4.

$$F[z] = \frac{z(z-3)}{z^2 - 6z + 8}$$