

Industrobot4.0

Pick and Place robot for Material Handling

Team #14
Kalra, Nitesh (005528195)
Sanghai, Nikunj (505730005)
Wani, Shubham Kiran (105730007)

Agenda

- 1. Motivation and Task Definition
- 2. Literature Review
- 3. Object Detection and Sorting
- 4. Computed Feedforward Controller
- 5. PD controller with Gravity Compensation
- 6. Inverse Dynamics Control
- 7. Discussion and Conclusions
- 8. Q&A

Motivation and Task Definition

Motivation

- Material handling/manipulation is a routine task in every industry, esp. e-commerce and manufacturing due to staffing issues.
- The global pick-n-place robot market was valued at USD 148.1 million in 2020 and it is expected to reach USD 2870.13 million by 2026 [7].

Objectives of controller design (KPI)

- Cycle Time < 10 sec (sort frequency)
- Torque i/p 75% of Max Torques
- Error (Joint position) < 5°
- Velocity of Conveyor = 0.3 m/s

Phase 1 - Object Interception Trajectory

Task Definition

Phase 3 - Object Placement Trajectory

Joint N°	1	2	3	4	5	6
τ _{max} (N m)	97.6	186.4	89.4	24.2	20.1	21.3

Figure 1: Max Joint Torques

Literature Review

Dynamics and Modelling Assumptions

Robot - Unimation Puma 560 [2]

Dynamics Equations - Inertia, Coriolis, Centrifugal, Gravity [3]

The first 3 axis provide position whereas the next 3 provide orientation. Moment of Inertia (M.o.I) is comparatively higher and hence control effort focuses on first 3. [3]

Uses Explicit Dynamics for simulation.

Modified D-H frame notation for a six degrees of freedom PUMA 560 robot manipulator[3]

Figure 2: Puma 560

	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6
Gear Ratio	62.61	107.36	53.69	76.01	71.91	76.73
Maximum Torque (N-m)	97.6	186.4	89.4	24.2	20.1	21.3
Break Away Torque (N-m)	6.3	5.5	2.6	1.3	1.0	1.2

Figure 3: Motor and Drive Parameters [3]

Object Detection and Sorting

Actual Conveyor Simulated Conveyor RGB Channel Separation Red Original RGB Image Green Blue

Figure 5: RGB Layers

Samueli

School of Engineering

Parameters

Random Parameters: Shape, Size, Colour

Set Parameters Speed, Width, Time Step

Single frame

Figure 4: Flowchart

MATLAB Image Processing Toolbox imfindcircles

- - Circular Hough Transform
 - Centre, Radii, No. of Circles

bwlabel

- Circularity R= 4*pi*A/P^2
- Blob Perimeter, Area, Location, Circularity

https://www.videvo.net/video/electric-waste-on-conveyor-belt-1/2200/ 5

Computed Torque Controller

Figure 6: Computed Torque Control

Computed Torque Controller

Desired Trajectory Actual Trajectory

Figure 7: End Effector - Desired vs Actual Trajectory

 Decentralized controller does not consider dynamic coupling of links.

- The calculation of feedforward compensation is not able to account for couplings between the links thus accounting for very high error.
- The speeds are quite high, and hence the controller failed.

Initial -
$$K_p = 200^*I_{6x6}$$
; $K_d = 50^*I_{6x6}$

Final -
$$K_p = 280^* I_{6x6}$$
; $K_d = 70^* I_{6x6}$

Figure 8: PD Control with Gravity Comp.

$$\boldsymbol{u} = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{K}_{P}\widetilde{\boldsymbol{q}} - \boldsymbol{K}_{D}\dot{\boldsymbol{q}},$$

Video 1: Trajectory Tracking

Figure 9: End Effector - Desired vs Actual Trajectory

Controller Design

- Assumption: Speeds very low i.e. q ~ 0 for global asymptotic stability for any Kp & Kd.
- Simulation: q ≠ 0 so errors expected
- Result: Max error ~10 degree, moderate error but not suitable for pick and place.
- Advantages:
 - Computationally inexpensive.
 - o Great for low speeds.
 - Will always converge

Initial -
$$K_p = 200^*I_{6x6}$$
; $K_d = 40^*I_{6x6}$

Final -
$$K_p = 150^*I_{6x6}$$
; $K_d = 30^*I_{6x6}$

Figure 10: Joint Position Errors

Figure 11: Joint Positions

Figure 12: Joint Velocities

Inverse Dynamics Control

Inverse Dynamics Controller

End Effector - Desired vs Actual Trajectory Desired Trajectory Actual Trajectory 0.44 0.43 0.42 0.41 0.4 0.39 0.38 0.37 0.36 0.35 0.6 0.4 0.3 0.2 0.1 0 -0.2 -0.1 -0.2 -0.4 -0.3

Video 2: Trajectory Tracking

Figure 14: End Effector - Desired vs Actual Trajectory

Inverse Dynamics Controller

Controller Design

Trial 1 -
$$K_p = 150^* I_{6x6}$$
; $K_d = 25^* I_{6x6}$

Trial 2 -
$$K_p = 1200^*I_{6x6}$$
; $K_d = 100^*I_{6x6}$

Final Design -
$$K_p = 200^*I_{6x6}$$
; $K_d = 40^*I_{6x6}$

Result - Max error < 3.5° (Joint 1)

Challenges

- Accuracy of parameters of the system dynamic model
- Online computation

Figure 15: Joint Position Errors

Inverse Dynamics Controller

Figure 16: Joint Positions

Figure 17: Joint Velocities

Discussion and Conclusion

Studied 3 controllers for high speed pick and place operation

- \circ Cycle time, t = 9.5 [sec]
- CTFA = Max error
- PDGF = Max error < 10° in Joint 1
- O IDC = Max error < 3.5° in Joint 1

Error analysis for task at higher speed

- To further demonstrate the robustness of Inverse Dynamics Control for these applications, we ran the task with higher speeds
- \circ Cycle time, t = 7.1 [sec]
- Max error ~5° in Joint 1

Figure 18: Joint Position Errors

References

- 1. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2010. Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated.
- 2. B. Armstrong, O. Khatib and J. Burdick, "The explicit dynamic model and inertial parameters of the PUMA 560 arm," Proceedings. 1986 IEEE International Conference on Robotics and Automation, 1986, pp. 510-518, doi: 10.1109/ROBOT.1986.1087644.
- 3. Farzin Piltan, S. Emamzadeh, Z. Hivand, F. Shahriyari & Mina Mirazaei. "PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses" International Journal of Robotics and Automation, 3(3): 2012.
- 4. P.I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7
- 5. MATLAB. (2019). 9.7.0.1190202 (R2020b). Natick, Massachusetts: The MathWorks Inc
- 6. https://manipulation.csail.mit.edu/pick.html
- 7. https://www.mordorintelligence.com/industry-reports/piece-picking-robots-market

Q&A

