Ejercicios 6 y 7: EYP1027 Modelos Probabilísticos

Profesor: Reinaldo B. Arellano-Valle Ayudante: Camilo I. González

EJERCICIOS 6

Ejercicio 1: Sean $X_1, ..., X_n$, n variables aleatorias independientes cada una con distribución $\text{Exp}(\lambda)$. Encuentre la fdp de conjunta de $X_{(1)} = \min\{X_i\}_{i=1}^n$ y $X_{(n)} = \max\{X_i\}_{i=1}^n$.

Ejercicio 2: Sea (X,Y) un vector aleatorio con fdp dada por:

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Pruebe que X + Y y X/(X + Y) son variables aleatorias independientes.
- (b) Sea V = (X + Y)/2. Encuentre la fdp de V.
- (c) Encuentre la fgm de (X,Y) y el valor esperado de X^2Y .

Ejercicio 3: Considere la siguiente distribución de probabilidades del vector aleatorio (X,Y):

$y \setminus x$	1	2	3
2	0.1	0.2	0.1
4	0.1	0.2	0.3

- (a) Encuentre la distribución conjunta de X + Y y X Y.
- (c) Encuentre el vector de medias y la matriz de covarianza de (X,Y) y de (X+Y,X-Y).
- (b) Encuentre la distribución condicional de Y dado X=x, y obtenga la media y varianza de esta distribución para cada x tal que P(X=x)>0.

Ejercicio 4: Sean X_1 y X_2 variables aleatorias independientes, cada una con distribución normal estándar. Sean $Y_1 = X_1$ e $Y_2 = X_1 + X_2$.

- (a) Encuentre la distribución conjunta de Y_1 e Y_2 .
- (b) Muestre $Y_2 \sim N(0,2)$.
- (c) Encuentre la distribución condicional de X_1 dado $X_1 + X_2 = z$.

Ejercicio 5: Sea (X,Y) un vector aleatorio con fdp dada por:

$$f(x,y) = \frac{1}{2\pi} e^{-(x^2 + y^2)/2}, -\infty < x, y < \infty$$

- (a) Obtenga la distribución condicional de Y dado X=x. Son X e Y variables aleatorias independientes ?
- (b) Sea Z = X Y. Encuentre la fgm de Z. Cuál es la distribución de Z?
- (c) Use la fgm de (X,Y) para calcular el valor esperado de XY.
- (d) Encuentre la fgm conjunta de (X + Y, X Y) y calcule Cov(X + Y, X Y).

Ejercicio 6: Sean X_1 y X_2 variables aleatorias discretas iid con función de probabilidad: p(1) = 3/4 y p(3) = 1/4.

- (a) Encuentre la distribución conjunta de X_1 y X_2 .
- (b) Encuentre la fgm de (X_1, X_2) .
- (c) Encuentre la distribución y fgm conjunta de $Y_1 = (X_1 + X_2)/2$ e $Y_2 = (X_1 X_2)^2/2$.

Ejercicio 7: Sea (X_1, X_2) un vector aleatorio con fdp dada por:

$$f(x_1, x_2) = 4x_1x_2, \ 0 < x_1, x_2 < 1.$$

- (b) Encuentre el vector de medias y la matriz de varianza-covarianza de (X_1, X_2) .
- (c) Sea $Y_1 = X_1/X_2$ e $Y_2 = X_1X_2$. Encuentre la distribución conjunta de Y_1 e Y_2 .

Ejercicio 8: Sea (X,Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \begin{cases} 24x^2/y^3, & 0 < x < 1, \ y > 2, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Calcule P(X < 1/2|Y > 6)
- (b) Encuentre la fdp condiconal de X e Y = 6, y calcule P(X < 1/2|Y = 6)

EJERCICIOS 7

Ejercicio 1: Sean X_1 y X_2 va con fdp conjunta dada por:

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{x_1x_2}{36}, & x_1 = 1,2,3; \ x_2 = 1,2,3, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Encuentre la fdp conjunta de $Y_1 = X_1 X_2$ e $Y_2 = X_2$.
- (b) Encuentre la fdp marginal de Y_1 .

Ejercicio 2: Si $f_{X|Y=y}(x) = 3x^2/y^3$, para 0 < x < y, y $f_Y(y) = 5y^4$, para 0 < y < 1, encuentre P(X > 1/2).

Ejercicio 3: Sean X, Y, Z variables aleatorias con fdp conjunta dada por

$$f_{X,Y,Z}(x,y,z) = \begin{cases} 8xyz, & 0 < x < 1, \ 0 < y < 1, \ 0 < z < 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Alguien afirma que P(X < Y < Z) = 1/3. Pruebe o refute dicha afirmación. Se puede extender el resultado a n variables aleatorias iid f? Discuta!

Nota: el ejercicio se adaptó debido a la apregunta de un alumno en la clase del martes 5 de Nov.

Ejercicio 4: Suponga que X e Y tienen una fdp conjunta dada por:

$$f_{X,Y}(x,y) = \begin{cases} 1, & 0 < x < 1; \ 0 < y < 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Encuentre la fdp del producto Z = XY.

Ejercicio 5: Sea (X, Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \begin{cases} 4xye^{-(x^2+y^2)}, & x > 0, \ y > 0, \\ 0, & \text{en otro caso.} \end{cases}$$

Encuentre la fdp de $Z = \sqrt{X^2 + Y^2}$.

Ejercicio 6: Sean X_1 , X_2 y X_3 variables aleatorias independientes cada una con la misma densidad,

$$f_X(x) = \begin{cases} 5x^4, & 0 < x < 1, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Encuentre el vector de medias y la matriz de varianza-covarianza de (X_1, X_2, X_3) .
- (b) Encuentre la fdp condicional de (X_1, X_2) dado $X_3 = x_3$.
- (b) Encuentre la fdp y la función de distribución de $Y = \max\{X_1, X_2, X_3\}$.

Ejercicio 7: Sean X_1 y X_2 variables aleatorias independientes con distribución de Poisson con parámetros λ_1 y λ_2 , respectivamente. Encuentre la distribución condicional X_2 dado $X_1 + X_2 = x$.

Ejercicio 8: Sea (X,Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \begin{cases} e^{-x}, & 0 \le y < x < \infty, \\ 0, & \text{en otro caso.} \end{cases}$$

Encuentre i) P(X<2,Y>1),ii) P(X>2Y)y iii) $P(X-Y\geq 1)$.

Ejercicio 9: Sean $X_1, X_2,..., X_n$ variables aleatorias independientes cada una con distribución chicuadrado con un grado de libertad. Muestre que $Y = \sum_{i=1}^n X_i \sim \chi^2(n)$. Aplique el resultado al caso en que $X_i = Z_i^2$ para i = 1, ..., n, donde $Z_1, ..., Z_n$ son variables aleatorias iid N(0,1).

Ejercicio 10: Sean X_1 , X_2 y X_3 variables aleatorias independientes con varianzas σ_1^2 , σ_2^2 y σ_3^2 respectivamente. Calcule el coeficiente de correlación entre, $X_1 - X_2$ y $X_2 + X_3$.

Ejercicio 11: Sea X un vector aleatorio n-dimensional con vector de medias 0 y matriz de covarianza I_n . Sea A una matriz cuadrada no singular de orden n e $Y = AX + \mu$.

- (a) Encuentre el vector de medias y la matriz de covarianza de Y.
- (b) Si $X \sim N_n(\mathbf{0}, I_n)$, encuentre la fgm de Y.
- (c) Si $\boldsymbol{X} \sim N_n(\boldsymbol{0}, \boldsymbol{I}_n)$, encuentre la fdp de \boldsymbol{Y} .
- (d) Si $X \sim N_n(\mathbf{0}, \mathbf{I}_n)$ y $\mathbf{A}\mathbf{A}^{\top}$ es una matriz diagonal, muestre que las componentes Y_1, \dots, Y_n del vector \mathbf{Y} son variables aleatorias independientes y normamente distribuidas.

Ejercicio 12: Sean X_1 , X_2 y X_3 variables aleatorias no correlacionadas con medias 2, 1 y 4 y varianzas 9, 20 y 12, respectivamente.

- (a) Encuentre la media y la varianza de $Y_1 = X_1 2X_2 + 5X_3$.
- (b) Encuentre la covarianza entre $Y_2 = X_1 + 5X_2$ y $Y_3 = 2X_2 X_3 + 5$.
- (c) Suponga que la distribución conjunta de X_1 , X_2 y X_3 es normal trivariada. Encuentre la fgm y la fdp conjunta de (Y_1, Y_2, Y_3) , e indique las respectivas marginales. Finalmente, estudie como obtener la distribución condicional de Y_3 dado $(Y_1, Y_2) = (y_1, y_2)$.

Ejercicio 13: Considere una variable aleatoria $Y \sim P(\Lambda)$, donde Λ es también una variable aleatoria con distribución $\Gamma(\alpha, \beta)$. Calcule $f_{\Lambda|Y}(\lambda|y)$.

Ejercicio 14: Sean X e Y variables aleatorias reales definidas en un mismo espacio de probabilidad, y h una función real valorada tal que h(X) sea una variable aleatoria. Si E(h(Y)) existe, muestre que $E(h(Y)) = E\{E(h(Y))|X\}$

– Santiago, 5 de Noviembre de 2020 –