Je vois avec mes yeux

Jeff Abrahamson

20 avril 2017

Le chat est orange. Le chien court vite.

6 1 7 2
Le chat est orange.
Le chien court vite.
6 3 4 5

6 1 7 2
Le chat est orange.
Le chien court vite.
6 3 4 5

```
[[6, 1, 7, 2]
[1, 1, 0, 0, 0, 1, 1]
[0, 0, 1, 1, 1, 1, 0]
[6, 3, 4, 5]]
```

```
Le chat est orange.

[1, 1, 0, 0, 0, 1, 1]

[0, 0, 1, 1, 1, 1, 0]

Le chien court vite.
```

Cosine Similarity

$$\cos \theta = \frac{u \cdot v}{\parallel u \parallel \parallel v \parallel}$$

$$\cos \theta = u \cdot v$$

(if *u* and *v* have norm 1)

Cosine Similarity

```
Le chat est orange.

[1, 1, 0, 0, 0, 1, 1]

[0, 0, 1, 1, 1, 1, 0]

Le chien court vite.
```

$$u = [1, 1, 0, 0, 0, 1, 1]$$

 $v = [0, 0, 1, 1, 1, 1, 0]$
 $u \cdot v = 0 + 0 + 0 + 0 + 0 + 1 + 0 = 1$

$$\cos \theta = \frac{u \cdot v}{\parallel u \parallel \parallel v \parallel} = \frac{1}{\sqrt{4} \cdot \sqrt{4}} = \frac{1}{4}$$

1 5 4 3 75353 5906 5 3 00

Copyright 2016 Jeff Abrahamson

4

Un exemple (trop) vite

Linear neuron

$$y = b + \sum_{i} x_{i} w_{i}$$

$$y = b + \sum_{i} x_{i} w_{i}$$

where

```
y = \text{output}
b = \text{bias}
x_i = i^{\text{th}} \text{ input}
w_i = \text{weight on } i^{\text{th}} \text{ input}
```


Example: handwriting recognition of digits

- Input neurons: pixels
- Output neurons: classes (digits)
- Connect them all! (bipartite)

Example: handwriting recognition of digits

- Input neurons: pixels
- Output neurons: classes (digits)
- Connect them all! (bipartite)
- Initialize input weights to random

- Input neurons: pixels
- Output neurons: classes (digits)
- Connect them all! (bipartite)
- Initialize input weights to random

Example: handwriting recognition of digits

To train this ANN:

- Increment weights from active pixels going to correct class
- Decrement weights from active pixels going to predicted class

Example: handwriting recognition of digits

To train this ANN:

- Increment weights from active pixels going to correct class
- Decrement weights from active pixels going to predicted class

When it's right, nothing happens. This is good.

	Term	Similarity
	"shift"	0.933104
	"gown"	0.887743
	"skirt"	0.881672
	"bandage"	0.880162
Å	"midi"	0.869786

Meetup Machine Learning Rennes

https://www.meetup.com/Meetup-Machine-Learning-Rennes/

Resources

http://www.meetup.com/Nantes-Machine-Learning-Meetup/

http://www.ml-week.com/

Questions?