

W66 N220 Commerce Court

 Cedarburg, WI 53012

 USA Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

TEST REPORT # 313269 LSR Job #: C-1822

Compliance Testing of:

Opticom GPS Priority System with Dipole Antenna, Mobile Mark Antenna & Multi-Mode Emitter Antenna

Test Date(s):

September 19-26th, October 8-10, 2013

Prepared For:

Attn: Timothy J. Hall Global Traffic Technologies, LLC 7800 Third Street North **BLDG 100** Saint Paul, MN 55128

In accordance with:

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Industry Canada (IC) RSS 210 Annex 8 Frequency Hopping Spread Spectrum (FHSS) Operating in the Frequency Band 2400-2483.5 MHz

This Test Report is issued under the Authority of: Peter Feilen, EMC Engineer

Signature: Date: 12/19/13

Test Report Reviewed by: Shane Rismeyer, EMC Engineer

Tested by: Peter Feilen, EMC Engineer

Signature:

Date: 12/18/13

Signature:

Date: 10/10/13

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

LSR Job #: C-1822

EXHIBIT 1. INTRODUCTION		4
1.1 - Scope	4	
1.2 – Normative References		4
1.3 - LS Research, LLC Test Facility		5
1.4 – Location of Testing	5	
1.5 – Test Equipment Utilized		5
EXHIBIT 2. PERFORMANCE ASSESSMENT	Г	6
2.1 – Client Information		6
2.2 - Equipment Under Test (EUT) Inform	mation	6
2.3 - Associated Antenna Description		6
2.4 EUT'S Technical Specifications		7
2.5 Product Description		8
EXHIBIT 3. EUT OPERATING CONDITIONS	& CONFIGURATIONS DURING TES	TS9
3.1 - Climate Test Conditions		9
3.2 - Applicability & Summary Of EMC E	mission Test Results	9
3.3 - Modifications Incorporated In The E	EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test	Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMI	TY	10
EXHIBIT 5. RADIATED EMISSIONS TEST		11
5.1 Test Setup		11
5.2 Test Procedure		11
5.3 Test Equipment Utilized		11
5.4 Test Results		11
5.5 Calculation of Radiated Emissions L	_imits	12
5.6 Radiated Emissions Test Data Char	t – Transmit Mode	13
5.8 Screen Captures – Transmit Mode.		15
5.9 Receive Mode Testing		18
5.10 Screen Captures - Receive Mode.		19
EXHIBIT 6. CONDUCTED EMISSIONS TEST	T, AC POWER LINE	21
EXHIBIT 7. OCCUPIED BANDWIDTH		22
7.1 Method of Measurements		22
7.2 Limit		22
7.3 Test Results		22
7.4 - Test Data		22
7.5 Screen Captures		23
Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LC Doggarah III
Report # 313269	Model #: OPTICOMGPS3	LS Research, LL

Serial#: Engineering Sample

Page 2 of 48

EXHIBIT 8. BAND-EDGE MEASUREMENTS	24
8.1 Method of Measurements	24
8.2 Limit	24
8.3 Test Results	24
8.4 Screen Captures	24
EXHIBIT 9: PEAK CONDUCTED OUTPUT POWER	26
9.1 Method of Measurements	26
9.2 Limit	26
9.3 Test Results	26
9.4 Test Data	26
9.5 Screen Captures	27
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS:	28
10.1 Method of Measurement	28
10.2 Limits	28
10.3 Results	28
10.4 Conducted Harmonic And Spurious RF Measurements	28
10.5 Screen Captures	29
EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	32
11.1 Method of Measurement	32
11.2 Test Results	32
11.3 Test Data	32
EXHIBIT 12. CHANNEL PLAN AND SEPARATION	33
12.1 Setup	33
12.2 Limits:	33
12.3 Data Summary:	33
12. 4 Results:	33
12.5 Data and Plots:	33
EXHIBIT 13. CHANNEL OCCUPANCY	37
EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE	39
EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH	40
APPENDIX A – Test Equipment List	41
APPENDIX B – Test Standards Publication Dates	42
APPENDIX C - Uncertainty Statement	43
APPENDIX D - Antenna Specification(s)	44
APPENDIX E – Duty-Cycle Justification	48

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 3 of 48

EXHIBIT 1. INTRODUCTION

<u> 1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 RSS GEN and RSS 210 Annex 8
Title:	FCC: Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC: Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

1.2 - Normative References

Please see Appendix B

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 4 of 48

1.3 - LS Research, LLC Test Facility

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted.

1.4 - Location of Testing

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber Semi-Anechoic Chamber Open Area Test Site (OATS)

1.5 - Test Equipment Utilized

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 5 of 48

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	Global Traffic Technologies
Address:	7800 Third Street North, Bldg 100, Saint Paul, MN 55120
Contact Name:	Timothy J. Hall

2.2 - Equipment Under Test (EUT) Information The following information has been supplied by the applicant.

Product Name:	Next Gen GPS Radio
Model Number:	OPTICOMGPS3
Serial Number:	31XX, 21XX

2.3 - Associated Antenna Description

There are three possible antennas associated to the 2.4GHz radio. They are:

- A.) HOW TSEN # S-00101 Dipole Antenna
- B.) Mobile Mark #DM2-2400/1575Antenna
- C.) Laird #MAF94192

For further information please see Appendix D

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 6 of 48

2.4 EUT'S Technical Specifications

2401.02-2476.80 MHz
28.3 dBm
28.6 dBm
0.676 W
0.724 W
975 kHz
FSK
975KF1D
43.4 dBuV/m @ 3m
52.0 dBuV/m @ 3m
1.1 MHz
-86 dBm
Better than 100 ppm
OMAPL138BZCE3
Detachable
A.) HOW TSEN # S-00101 Dipole
B.) Mobile Mark #DM2-2400/1575
C.) Laird #MAF94192
A.) 2.62 dBi
B.) 2.50 dBi
C.) 3.50 dBi
15.247
RSS 210
Mobile

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Χ	RF Evaluation

If RF Evaluation checked above, test engineer to complete the following:

Evaluated against exposure limits: General Public Use Duty Cycle used in evaluation: 100 %	☐ Controlled Use
Standard used for evaluation: OET 65	
Measurement Distance: 20 cm	
RF Value: $3.23 \boxtimes W/m^2 \square V/m \square A/m$	_
oximes Measured $oximes$ Computed	☐ Calculated

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 7 of 48

2.5 Product Description

The GPS based priority control system uses a proprietary 2.4 GHz FHSS/TDMA transceiver to transfer data between any vehicles, and traffic intersection controllers within radio range.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 8 of 48

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	20-25 °C
Humidity:	35-50 % R.H.

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)	
FCC: 15.207 IC: RSS GEN sect. 7.2.4	Power Line Conducted Emissions Measurements	Note 1	
FCC: 15.247 (a)(1)(i) IC: RSS 210 A8.1 (a)	20 dB Bandwidth	Yes	
FCC: 15.247(b) & 1.1310 IC: RSS 210 A8.4	Maximum Output Power	Yes	
FCC :15.247(d) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes	
FCC:15.247 (a)(1)(i) IC: RSS 210 A8.1(b)	Carrier Frequency Separation	Yes	
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Number of hopping channels	Yes	
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 A8.1(d)	Time of occupancy (Dwell Time)	Yes	
FCC: 15.247(c), 15.209 & 15.205 IC: RSS 210 A8.5, section 2.2	Transmitter Radiated Emissions	Yes	

Note 1: Power Line Conducted Emissions Measurements test is not applicable as the EUT will only be supplied with voltage derived from a host board with voltage regulation on-board. The host board will contain other elements of a final system, independent of this module. DC Power was supplied for all test purposes, relative to the voltage supplied to the module on the host board.

<u>3.3 - Modifications</u>	<u>Incorporated In The EUT F</u>	<u>for Compliance Purposes</u>
None Non	☐ Yes (explain below)	•

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 9 of 48	

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Section Annex 8 (section A8.1) for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 10 of 48	

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a bench DC supply. 3 separate units were provided for testing on 3 different channels.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2401.02 MHz), middle (2440.96 MHz) and high (2476.80 MHz) to comply with FCC Part 15.31(m). The channels and operating modes were controlled via laptop PC.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz. A standard gain horn was used from 18 to 25 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height from 30-4000 MHz and from 1 to 1.8m from 4000-25000 MHz, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

5.3 Test Equipment Utilized

Please see Appendix A

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8 for a FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 11 of 48	

5.5 Calculation of Radiated Emissions Limits

The maximum peak output power of an intentional radiator in the 2400 to 2483.5 MHz band, as specified in Title 47 CFR 15.247 and RSS 210 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.5, shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2, 2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m): dB μ V/m = 20 log ₁₀ (100)= 40 dB μ V/m (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz $500\mu\text{V/m}$ or 54.0 dB/ $\mu\text{V/m}$ at 3 meters 54.0 + 9.5 = 63.5 dB/ $\mu\text{V/m}$ at 1 meter

Sample Calculation using correction factors from the device

Raw Receiver Data + Antenna Factor + Cable Factor + = Reported Value

Generic example of reported data at 258 MHz:

Reported Measurement data = 20.7 (raw receiver measurement) + 12.9 (antenna factor) + 1.4 (cable factor) = 35.0 dB μ V

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 12 of 48	

5.6 Radiated Emissions Test Data Chart - Transmit Mode

Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	Globa	Global Traffic Technologies, LLC					
Date(s) of Test:	Septe	ember 19-23, October 8-10), 20	13			
Project Engineer:	Peter	Feilen					
Voltage:	3.3VE	DC					
Operation Mode:	Conti	nuous transmit, modulated	l mo	de			
EUT Power:		Single PhaseVAC			3 PhaseVAC		
EUT FOWEI.		Battery		Χ	Other: Bench DC Supply		
EUT Placement:	Χ	80cm non-conductive tab	le		10cm Space	ers	
EUT Test	Х	3 Meter Semi-Anechoic			3/10m OAT	-0	
Location:	^	FCC Listed Chamber 3/10m OATS					
Measurements:		Pre-Compliance		Pr	eliminary	Χ	Final
Detectors Used:	Χ	Peak X		Qι	uasi-Peak	Χ	Average

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBµV/m)	Quasi Peak Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
129.0	1.00	139	20.2	43.5	23.4	V	V
141.3	1.00	59	21.8	43.5	21.7	V	V
172.0	1.00	0	19.8	43.5	23.7	V	V
221.0	1.00	230	25.5	46.0	20.5	V	V
240.0	1.00	0	27.2	46.0	18.8	V	V
933.9	1.22	282	37.3	46.0	8.7	V	V
724.9	1.00	280	35.8	46.0	10.2	V	V
564.9	1.00	300	35.1	46.0	10.9	V	V
933.9	1.00	273	43.4	46.0	2.7	Н	F
933.9	1.00	52	38.2	46.0	7.8	V	F
958.5	1.00	306	39.7	46.0	6.3	Н	F
750.0	1.20	279	36.2	46.0	9.8	Н	F
750.0	1.00	245	34.3	46.0	11.7	V	F
516.1	1.95	108	34.5	46.0	11.5	Н	F
94.1	1.00	0	17.8	43.5	25.7	V	V
122.9	1.00	121	22.6	43.5	20.9	V	V
245.8	1.00	0	31.1	46.0	14.9	V	V

Note: Data table shows accumulation of worst-case emissions from all EUT setups, including the various antennas applicable.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 13 of 48	

The following table depicts the level of significant spurious radiated RF emissions found:

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low:

Fı	equency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dΒμV/m)	Duty-Cycle Adjusted Reading (dBuV/m) Peak-D.C. Relaxation Value	Avg Limit (dBμV/m)	Margin (dB) (Average Limit- Adjusted Reading)	Antenna Polarity	EUT orientation
	4802.04	1.03	285	69.0	68.4	39.0	63.5	24.5	Horizontal	Side
1	2005.10	1.00	337	66.8	65.5	36.8	63.5	26.7	Vertical	Vertical

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Duty-Cycle Adjusted Reading (dBuV/m) Peak-D.C. Relaxation Value	Avg Limit (dBμV/m)	Margin (dB) (Average Limit- Adjusted Reading)	Antenna Polarity	EUT orientation
4881.92	1.12	313	64.1	62.7	34.1	63.5	29.4	Horizontal	Side
7322.88	1.05	60	74.1	73.4	44.1	63.5	19.4	Horizontal	Side
12204.80	1.00	201	64.9	60.6	34.9	63.5	28.6	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel High:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Avg Reading (dBμV/m)	Duty-Cycle Adjusted Reading (dBuV/m) Peak-D.C. Relaxation Value	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4953.60	1.14	38	64.6	63.4	34.6	63.5	28.9	Vertical	Vertical
7430.40	1.03	303	72.6	71.6	42.6	63.5	20.9	Horizontal	Side
12384.00	1.14	206	68.4	67.4	38.4	63.5	25.1	Vertical	Flat

Notes:

- 1. A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.
- 2. Measurements above 4 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.
- 3. Duty-Cycle Adjusted Reading = Peak Duty-Cycle Correction Value; Margin Calculation: Margin = (Average Limit Duty-Cycle Adjusted Reading); Justification in Appendix E.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 14 of 48	

5.8 Screen Captures - Transmit Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2401.02 MHz, 2440.96 MHz, or 2476.80 MHz, with the sense antenna in vertical or horizontal polarity for worst case presentations.

Antenna Horizontally Polarized, 300-1000 MHz, at 3m

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 15 of 48

Screen Captures (continued)

Antenna Vertically Polarized, 1000-2310 MHz, at 3m R T Trace

Note: The frequency range 2310-2390 MHz and 2483.5-2500.0 MHz is in the Band-edge section (Exhibit 8).

Antenna Vertically Polarized, 2500-4000 MHz, at 3m R T Peak Search

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 16 of 48

Screen Captures (continued)

Antenna Vertically Polarized, 4000-18000 MHz, at 3m ** Aglient 20:28:51 Sep 19, 2013 R T Trace

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 17 of 48
		-

5.9 Receive Mode Testing

Per the requirements of RSS-210 and CFR 47 part 15, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10 and CFR 47 15.109.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBμV/m)	Quasi Peak Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
565.3	1.00	0	34.3	46.0	11.7	V	V
700.4	1.03	167	32.4	46.0	13.6	V	V
823.8	1.00	88	31.8	46.0	14.2	V	V
798.7	1.00	94	34.4	46.0	11.6	V	V
700.4	1.31	307	34.0	46.0	12.1	Н	V
565.3	1.47	0	32.3	46.0	13.7	Н	V
749.6	1.16	321	33.9	46.0	12.1	Н	V
823.0	1.00	103	33.6	46.0	12.4	Н	V
933.9	1.00	314	34.4	46.0	11.7	Н	F

Frequency (GHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Average Reading (dBµV/m)	Average Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
2366.0	1.49	212	51.6	49.6	54.0	4.4	V	V
2366.0	1.04	182	47.7	44.5	54.0	9.5	Н	V
2366.0	1.04	68	53.4	52.0	54.0	2.0	Н	F
2366.0	1.00	67	49.0	46.6	54.0	7.4	V	F
2366.0	1.04	138	48.8	46.1	54.0	7.9	V	S
2366.0	1.16	207	52.7	51.0	54.0	3.0	Н	S
1057.0	1.04	336	41.4	35.5	54.0	18.5	Н	F
2290.0	1.00	106	51.5	49.7	54.0	4.3	V	V
2330.0	1.06	69	52.5	50.9	54.0	3.2	Н	F
2330.0	1.39	136	51.6	49.7	54.0	4.3	Н	F
2330.0	1.00	205	51.4	49.3	54.0	4.7	V	F
2366.0	1.15	266	54.0	52.0	54.0	2.0	Н	F
2366.0	1.02	190	51.7	50.0	54.0	4.0	V	F
2366.0	1.00	192	50.1	47.9	54.0	6.1	V	V
2366.0	1.23	56	51.2	49.1	54.0	4.9	Н	V
4660.7	1.00	185	57.7	55.9	63.5	7.6	V	V
4580.9	1.00	182	56.0	54.2	63.5	9.3	V	V
4580.9	1.00	128	58	56.4	63.5	7.1	Н	S
4732.4	1.00	124	58.2	56.5	63.5	7.0	Н	S

Notes:

- A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak
- detector with video averaging was used for measurements above 1 GHz. Measurements above 4 GHz were made at 1 meters of separation from the EUT.
- H: Horizontal, V: Vertical, S: Side, F: Flat
 Data table shows accumulation of worst-case emissions from all EUT setups, including the various antennas applicable.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 18 of 48

5.10 Screen Captures - Receive Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels 2401.02 MHz, 2440.96 MHz, or 2476.80 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 300 MHz to 1000 MHz

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 19 of 48

Screen Captures - Radiated Emissions Testing - Receive Mode (continued)

Antenna Vertically Polarized, 1000 MHz to 4000 MHz

Antenna Horizontally Polarized, 4000 MHz to 18000 MHz

Antenna Horizontally Polarized, 18000 MHz to 25000 MHz ** Aglient 22:34:47 Oct 10, 2013 R T Peak Search

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 20 of 48

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

This test is not applicable as the EUT will only be supplied with voltage derived from a host board with voltage regulation on-board. The host board will contain other elements of a final system, independent of this module. DC Power was supplied for all test purposes, relative to the voltage supplied to the module on the host board.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 21 of 48

EXHIBIT 7. OCCUPIED BANDWIDTH

7.1 Method of Measurements

The transmitter output was connected to the Spectrum Analyzer. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 10 kHz RBW and VBW=30 kHz. Measurements were made in accordance to ANSI C63.10 measurement methodology.

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 1 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

7.2 Limit

For a frequency hopping system in the 2400 to 2483.5 MHz band, channel separation shall be at minimum 25 kHz or the 20 dB bandwidth, for transmitters with a conducted power of greater than .125W. Therefore, the 20 dB bandwidth must be measured, to test channel separation requirement.

7.3 Test Results

The EUT is compliant to channel separation requirements, therefore the 20 dB Occupied Bandwidth is sufficient.

7.4 - Test Data

Channel	Center Frequency (MHz)	Measured -20 dBc Occ. BW (kHz)
Low	2401.02	917
Middle	2440.96	975
High	2476.80	958

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 22 of 48

7.5 Screen Captures

Middle Channel -20 dBc Occupied Bandwidth

Channel high -20 dBc Occupied Bandwidth

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 23 of 48
	-	

EXHIBIT 8. BAND-EDGE MEASUREMENTS

8.1 Method of Measurements

The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge. Measurements were taken with a peak detector. Average measurements were taken with a 1 MHz Resolution bandwidth and 10 Hz Video Bandwidth, and Peak measurements were taken with Resolution Bandwidth = Video Bandwidth = 1 MHz.

8.2 Limit

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex.

At the lower band-edge, 2310-2390 MHz, the average limit is 54 dBuV/m, peak limit is 74 dBuV/m. At the upper band-edge, 2483.5-2500 MHz, the average limit is 54 dBuV/m, peak limit is 74 dBuV/m.

8.3 Test Results

The EUT meets the requirements for spurious emissions at the band-edges.

8.4 Screen Captures

Screen Capture Demonstrating Compliance at the Lower Band-Edge; 2310-2390 MHz

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 24 of 48

Screen Capture Demonstrating Compliance at the Higher Band-Edge, 2483.5-2500 MHz

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 25 of 48

EXHIBIT 9: PEAK CONDUCTED OUTPUT POWER

9.1 Method of Measurements

The conducted RF output power of the EUT was measured per FCC Public Notice DA 00-705 and RSS-210 at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with resolution bandwidths set to 3 MHz and a span of 20 MHz, with measurements from a peak detector presented in the chart below.

9.2 Limit

The limit for this test is 30.0 dBm.

9.3 Test Results

The greatest measurement is 28.6 dBm, which is under the allowable limit of 1.4 dB. The EUT meets the allowable limit.

9.4 Test Data

CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
LOW	2401.02	30.0	28.4	1.6
MIDDLE	2440.96	30.0	28.6	1.4
HIGH	2476.80	30.0	28.3	1.7

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 26 of 48	

9.5 Screen Captures

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 27 of 48

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS:

10.1 Method of Measurement

For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below.

10.2 Limits

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.3 Results

Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured. The greatest measured value is -41.6 dBm, which is under the allowable limit.

10.4 Conducted Harmonic And Spurious RF Measurements Conducted harmonics:

Chan/Freq	1\2401 MHz	18\2440 MHz	24\2476.8 MHz
2fo	-63.8	-61.2	-62.2
3fo	-52.7	-51.9	-50.8
4fo	-65.9	-60.8	-63.2
5fo	Note 1	Note 1	Note 1
6fo	Note 1	Note 1	Note 1
7fo	Note 1	Note 1	Note 1
8fo	Note 1	Note 1	Note 1
9fo	Note 1	Note 1	Note 1
10fo	Note 1	Note 1	Note 1

Note 1: measurement at system noise floor

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 28 of 48	

Conducted spurious emissions:

Freq(MHz)	Channel	Level(dBm)
440.6	1	-41.6
2290.00	1	-58.6
1641.70	1	-67.4
481.00	40	-45.2
2335.00	40	-59.1
1701.70	40	-62.7
2365.00	75	-57.3
516.6	75	-52.9

10.5 Screen Captures

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 29 of 48

Spurious Conducted Emissions (continued)

10000 MHz up to 18000 MHz

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 30 of 48

Spurious Conducted Emissions (continued)

Prepared For: Global Traffic Technolog	ies EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 31 of 48

EXHIBIT 11. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

11.1 Method of Measurement

For measurements of the frequency and power stability, the transmitter was powered by an external bench-type variable power supply. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers and also the output power at the antenna port.

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

11.2 Test Results

The maximum shift in frequency is **160 kHz** which is better than 100 ppm in the 2400 MHz to 2483.5 MHz band.

11.3 Test Data

2.8 VDC		3.3 VDC		3.8	3 VDC	
Power	Frequency	Power	Frequency	Power	Frequency	Channel
26.7	2400863000	28.4	2400903000	27.3	2400.973000	1
27.9	2440837000	28.6	2440903000	28.8	2440.997000	40
25.8	2476683000	28.3	2476775000	28.7	2476813000	75

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 32 of 48

EXHIBIT 12. CHANNEL PLAN AND SEPARATION

12.1 Setup

A spectrum analyzer was used with a resolution bandwidth of 100 kHz to measure the channel separation of the EUT.

12.2 Limits:

The minimum channel separation limit as stated in FCC CFR 47 15.247 and IC RSS210 is 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

The minimum number of channels limit as stated in FCC CFR 47 15.247 and IC RSS210 is 15 channels.

12.3 Data Summary:

This EUT uses 75 channels and has a minimum and maximum channel-separation measured for this device as 1017 kHz and 1033 kHz respectively. The maximum occupied bandwidth of the device, as reported in the previous section is 975 kHz.

12. 4 Results:

Therefore, the requirements are met, as the minimum number of channels is satisfied, and the channel separation is greater than the maximum 20 dB occupied bandwidth.

12.5 Data and Plots:

The following plots describe this spacing, and also establish the channel separation and plan.

RANGE (MHz)	Max separation (kHz)
2400-2410	1017
2410-2420	1033
2420-2430	1033
2430-2441.5	1033
2441.5-2450.7	1033
2450.7-2461	1033
2461-2470	1017
2470-2483.5	1035

Total Channels	75
Max separation	1035
Min Separation	1017

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 33 of 48

<u>Screen Captures – Channel Separation</u>

Channels 01 through 09

Channels 10 through 19

Channels 20 through 29

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 34 of 48

Screen Captures – Channel Separation (continued)

Channels 30 through 39

Channels 39 through 49

Channels 49 through 59

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 35 of 48
	-	

Screen Captures – Channel Separation (continued)

Channels 60 through 69

Channels 69 through 75

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 36 of 48

EXHIBIT 13. CHANNEL OCCUPANCY

Part 15.247(a)(1) requires a channel occupancy, for this device, of no more than 400 milliseconds in a 30 second window. The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels.

The longest time any transmission will occur on a single channel is 3.0 milliseconds. In a 30 second window, each channel has 1 transmission cycle. The maximum occupancy in a 30 second window is calculated by multiplying 1 transmission cycle by 3.0 milliseconds transmission duration per cycle, to arrive at 3.0 milliseconds total occupancy.

Channel	Frequency (MHz)	Total Occupancy in 30 seconds (ms)	Occupancy in 10 ms window (ms)
Low	2401.02	3 ms	3 ms
Middle	2440.96	3 ms	3 ms
High	2476.80	3 ms	3 ms

Plots of Channel Occupancy

Low Channel Occupancy

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 37 of 48

Middle Channel Occupancy

Channel High Occupancy

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO RESEARCH, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 38 of 48

EXHIBIT 14. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

A new hop channel is selected every 333ms.

2	50	58
4	52	6
8	60	10
48	42	12
46	44	40
62	38	64
14	16	66
18	32	20
68	22	30
72	1	74
34	36	24
28	26	3
70	53	5
55	59	9
49	7	47
51	11	45
61	13	63
41	39	15
43	65	19
37	67	69
17	21	73
31	29	33
71	75	27
35	25	23
56	57	54

Note: The information in this section is provided by the manufacturer.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LO Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 39 of 48

EXHIBIT 15. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

The receiver input bandwidth is 1.1 MHz.

The receiver is a dual conversion design with a FSK discriminator based demodulator. The discriminator output is connected to an A/D converter.

Note: The information in this section is provided by the manufacturer.

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 40 of 48

<u>APPENDIX A - Test Equipment List</u>

Description

N9038A MXE 26.5GHz Receiver

No. Asset#

Date : 10-Oct-2013 Type Test: Radiated Emissions Job # : C-1822 Prepared By:_ Customer: GTT Quote #: 313269 Manufacturer Model# No. Asset# Description Serial# Cal Date Cal Due Date Equipment Status EE 960156 100kHz-1GHz Analog Signal Generator MY49060062 Agilent N5181A 9/5/2013 9/5/2014 Active Calibration EE 960157 3Hz-13.2GHz Spectrum Analyzer MY48250225 9/5/2013 9/5/2014 Agilent Agilent EMCO EE 960158 RF Preselecter N9039A MY46520110 9/5/2013 9/5/2014 Active Calibration AA 960007 Double Ridge Horn Antenna 3115 9311-4138 6/10/2013 6/10/2014 Active Calibration AA 960081 Double Ridge Horn Antenna EMCO 3115 6907 1/29/2013 1/29/2014 Active Calibration 0003-3346 AA 960150 Bicon Antenna ETS 3110B 12/12/2012 12/12/2013 Active Calibration Log Periodic Antenna EMCO 9701-4855 12/10/2012 12/10/2013 Active Calibration EE 960147 Pre-Amp Adv. Micro WLA612 HPF-L-14186 123101 2/1/2013 2/1/2014 Active Calibration 2.4GHz High Pass Filter KWM AA 960153 7272-04 4/1/2014 4/1/2013 Active Calibration LS RESEARCH LLC Wireless Product Developmer Equipment Calibration Type Test : Conducted Emissions Job # : C-1822 Date : 24-Oct-2013 Prepared By: Customer: GTT Quote #: 313269

Serial#

Manufacturer Model#

Agilent

Cal Date Cal Due Date Equipment Status

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 41 of 48	

<u>APPENDIX B - Test Standards Publication Dates</u>

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2003		
ANSI C63.10	2009		
RSS 210	2010-12		
CISPR 11	2009-05	2009-12 P	
RSS GEN	2007-06		
FCC 47 CFR, Parts 0-15, 18,	2009		
FCC Procedures	2012		
FCC Public Notice DA 00-705	2000		

Prepared For: Global Traffic Technologie	s EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 42 of 48

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 43 of 48

APPENDIX D - Antenna Specification(s)

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	I S Bosoarah I I C	
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 44 of 48	

S-001-1 2D pattern

2008 12 04

Date/Time	2008.12.15	
Measurement space	9mX4mX3.6m	
Product No.	S-001-1	
Temp. / Humidity	idity 20°C / 55%	
Network analyzer Agilent 50MHz-20GHz 8720ET		

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC
LSR Job #: C-1822	Serial#: Engineering Sample	Page 45 of 48

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 46 of 48	

Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
Report # 313269	Model #: OPTICOMGPS3	Lo Research, LLC	
LSR Job #: C-1822	Serial#: Engineering Sample	Page 47 of 48	

APPENDIX E - Duty-Cycle Justification

Average (Relaxation) Factor

Average Factor = 20^*Log_{10} (Worst Case EUT On-time over _X_ ms time window)

The transmit packet occupies 3 ms of time, within any 100 ms window. Therefore, the relaxation factor allowance is calculated as:

Average Factor = $20* \text{Log}_{10} (3 / 100 \text{ ms}) = -30.46$

A relaxation factor of 30.46 dB would be allowable for this product.

A single transmission, with an on-time of 3 ms.

Period greater than 100 ms demonstrated.

	Prepared For: Global Traffic Technologies	EUT: Opticom GPS Priority System	LS Research, LLC	
	Report # 313269	Model #: OPTICOMGPS3	LS Research, LLC	
	LSR Job #: C-1822	Serial#: Engineering Sample	Page 48 of 48	
•				