Introduction to electronic structure calculations

QM/MM and ab initio Molecular Dynamics Summer School

June 23 - June 27, 2025

Solving for physical quantities using DFT outputs

Mario F. Borunda

Vibrations of an isolated molecule

Bond length: $b = x_C - x_O$

Taylor expansion of energy:

$$E = E_o + (b - b_0) \left[\frac{dE}{db} \right]_{b=b_0} + \frac{1}{2} (b - b_0)^2 + \left[\frac{d^2E}{db^2} \right]_{b=b_0} + \dots$$

Harmonic approximation:

$$E = E_o + \frac{\alpha}{2}(b - b_0)^2; \alpha = \left[\frac{d^2 E}{db^2}\right]_{b = b_0}$$

A little algebra...

$$\frac{d^2b(t)}{dt^2} = -\alpha \left(\frac{m_C + m_O}{m_C m_O}\right) (b(t) - b_0)$$

Solving the PDE...

$$b(t) = b_0 + a\cos\omega t$$

$$\omega^2 = \alpha \frac{m_C + m_O}{m_C m_O}$$

Using finite differences:
$$\alpha = \left[\frac{d^2E}{db^2}\right]_{b=b_0} \approx \frac{E(b_0+\delta b)-2E(b_0)+E(b_0-\delta b)}{(\delta b)^2}$$

Another approach: Time dependent

From a Molecular-Dynamics run, obtain the Velocity Autocorrelation

$$C_v(t) = \sum_{i=1}^{N_{atoms}} \vec{v}_i(t) \cdot \vec{v}_i(t_0)$$

The mdanalysis.py utility can calculate the velocity autocorrelation

Afterwards, we can calculate the spectrum by taking the Fourier transform of the data.

Python scripts...

Amorphous Structures

Observations?

$g(\vec{r}_1,\vec{r}_2) \rightarrow g(r)$.

$$g(r) \propto \left\langle \frac{\text{\# particle centers in dV}}{4\pi r^2 dr} \right\rangle$$

$$g(r) = \frac{\langle n(r) \rangle_{\text{excl}}}{\langle n \rangle} = \frac{1}{\langle n \rangle} \left\langle \frac{\text{# particle centers in dV}}{4\pi r^2 dr} \right\rangle.$$

Radial distribution function Coordination numbers

 $\langle \# \text{ particle centers in } dV \rangle = \langle n \rangle g(r) 4\pi r^2 dr.$

Improving the Density of Jammed Disordered Packings Using Ellipsoids

Aleksandar Donev,^{1,4} Ibrahim Cisse,^{2,5} David Sachs,² Evan A. Variano,^{2,6} Frank H. Stillinger,³ Robert Connelly,⁷ Salvatore Torquato,^{1,3,4*} P. M. Chaikin^{2,4}

SCIENCE, 2004, Vol 303, pp. 990-993.