TECHNICAL NOTES.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 86

SURFACE AREA COEFFICIENTS FOR AIRSHIP ENVELOPES

By W. S. Diehl, Bureau of Aeronautics, U.S.N. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 86.

SURFACE AREA COEFFICIENTS FOR AIRSHIP ENVELOPES.*

 B_{V}

Walter S. Diehl.

In naval architecture it is customary to determine the wetted surface of a ship by means of some formula which involves the principal dimensions of the design and suitable constants. These formulas of naval architecture may be extended and applied to the calculation of the surface area of airship envelopes by the use of new values of the constants which have been determined for this purpose.

There are two obvious expressions connecting the surface area S with the dimensions of the airship:

where V = Volume

L = Overall length

and D = Maximum diameter.

The values of C_s and C_s have been calculated from the actual dimensions, surfaces and volumes of 52 streamline bodies, which form a series covering the entire range of shapes used in the present aeronautical practice. Although both C_s and C_s are non-dimensional it is found that neither is constant. Each depends to a certain extent upon the "prismatic coefficient" C_V , Originally prepared as Aircraft Technical Note No. 199, Bu. C. & R., Navy Dept.

which is the ratio of the volume of the streamline body (or spinile) to its circumscribing cylinder. That is,

$$V = C_{\tau \tau} A L$$

where A=A rea of the maximum cross section C_S and C_S^1 have been plotted against C_V in Fig. 1 and Fig. 2. It is to be noted that while neither of the coefficients is constant, C_S may be considered constant with a probable maximum error of less than 3%. The value recommended for use under these conditions is

$$C_{g} = 3.45$$

and it applies equally well to the average non-rigid or rigid airship shape.

Theoretical Limits to Cs.

It is of interest to define the limits of the coefficient C_S . Obviously the maximum and minimum values will be found from a cylinder and a double-cone. The expressions for C_S in these cases are:

Cylinder
$$C_g = 2\sqrt{\pi} \left(\frac{D + 2L}{2L} \right)$$

Double cone $C_g = \sqrt{3\pi} \left(\sqrt{\frac{D^2 + L^2}{L}} \right)$

These have been evaluated and are plotted in Fig. 3. It will be noted that the mean value of C_8 at L/D=7.0 is $C_8=3.45$ This is the general mean value for streamline bodies and is due to the fact that in order to obtain the least resistance per unit volume it has been found necessary to increase or decrease the fullness of the lines as the ratio L/D is increased or decreased.

Table I. Data on Airship Envelopes. Surface = $C_S \sqrt{VL} = C_S^1 \cdot DL$ Volume = $C_V \cdot AL$

	T	~		~ .		· · · · · · · · · · · · · · · ·	
Designation	Lengtn L	Diameter	volume V	Surface	G _g	۵۱	G^A
I.E.	a. 99	.641	. 596	4.59	3.44	2.40	.617
В	3.53	. 696	.831	5.80	3, 39	2. 36	.618
F	3.12	.541	.670	5.01	3.4 6	3.50	.661
E.P.	3.09	.641	₇ 589	4.59	3.40	2.32	. 590
C	2, 97	.641	.624	4.70	3.45	2.47	.651
P	5.21	.841	. 589	4.53	3.30	2.20	. 57 5
Goodyear #4	3,19	. 687	.784	5. 47	3.46	2,50	. 663
P-AA'	3.89	.641	.750	5.70	3.34	2. 29	. 597
P-AD'	5. 50	.641	.743	5. 57	3.45	2.48	.658
P-BA'	3.83	.641	.749	5.69	3.35	2.32	.616
P-BC'	3.58	.641	.745	5.61	3.43	2.45	. 646
P-CB!	3.64	.641	.744	5.62	3.41	3.41	. 633
P-CD'	3.39	.641	.737	5.51	3, 48	2, 53	.673
Göttingen #1	3.79	.638	. 643	5.16	3.30	2.13	. 531
Göttingen #2	3.41	.639	.643	5.16	3 . 48	3.37	. 5°8
Göttingen #3	3.47	. 589	.643	5.16	3.45	2. 52	681
Gottingen #4	3.79	.617	. 643	5.16	3.30	2.20	. 567
Göttingen #5	3.46	. 597	.643	5.16	3.46	2, 50	.664
Göttingen #6	3, 89	.630	.643	5. 16	3.26	3.10	.531

Table I (Contd.)

Data on Airship Envelopes.

Surface = $C_s \sqrt{VL} = C_s'$ DL

Volume = C_V AL

	AOT	$\omega = \sigma_i$, wn				
Designation	Length	Diameter D	r Volume V	Surface S	Cs	Сå	C _{∵7}
Pl	1.59	. 390	.0970	1.275	3, 25	2,06	.510
P4	1.23	. 387	.0714	0.953	3.22	2.00	. 494
E4	1, 37	. 392	.0972	1.214	3. 33	2,24	. 586
C.25	3.13	.641	.677	5.023	3.45	2.50	. 669
C. 50	3, 29	.641	.729	5.345	3.45	2.54	. 687
01.0	3.61	.641	. 833	5.99	3.46	2.59	.713
C2. 0	4.25	.641	1.040	7.28	3.46	3.68	.758
C3.0	4.89	.641	1.248	€.57	3. 47	2.73	.792
04.0	5.53	.641	1.455	9.86	3.47	2.78	.815
05.0	6.17	.641	1.663	11.15	3.48	2.83	. 834
3C	1.925	.641	. 404	3.07	3.48	2.49	.651
60	3.85	.641	.807	6.03	3.42	2.45	.651
£0	5.133	.641	1.077	8,00	3.41	2, 43	.651
2321	4.00	. 286	.1600	2.70	3.38	2.36	.613
2322	4.00	. 286	. 1823	2.91	3.41	2, 54	.715
2323	4.00	. 286	. 2059	3.12	3.44	2.73	. 803
2324	4.00	. 286	. 2265	3.33	3.50	2.91	. 883
2325	4.00	. 348	.2360	3.29	3, 39	2, 36	.621
2326	4,00	.348	. 2685	3.54	3.42	2,54	.706

Table I (Contd.)

Data on Airship Envelopes.

Surface = $C_8 \sqrt{VL} = C_8^{t}$ DL

Volume = C_V AL

Designation	Length	Diameter	Volume	Surface	······································		
	L	D		S	·	·	
2327	4.00	. 348	.301	3,79	3.45	2.72	.793
2328	4.00	. 348	. 334	4.06	3,51	2.92	. 878
2329	4.00	.444	. 382	4.21	3.40	2. 37	.616
2330	4.CO	. 444	. 436	4.53	3.43	2. 55	.704
2331	4.00	. 444	. 488	4,85	3.47	2.73	.788
2332	4.00	. 444	.541	5, 17	3.51	2.91	. 273
2333	4.00	.615	.726	5.82	3.41	2. 37	.611
2334	4.00	.615	. 827	6.28	3.45	2.55	. 696
2335 ·	4.00	.615	.930	6.72	3 . 4 8	2.73	. 782
2336	4.00	.615	1.030	7.18	3.54	2.92	. 866
2337	4.00	1,000	1.865	9.45	3.41	2.36	. 595
2338	4.00	1.000	2. 135	10.19	3,49	2. 55	.680
2339	4.00	1.000	2.405	10.92	3. 52	2.73	.766
2340	4.00	1.000	2.680	11.65	3.54	2.91	.853

Diameter Limits for the surface coefficient.

