

Facultad de Ingeniería

Laboratorio de Fundamentos de Control(6655)

Profesor: Salcedo Ubilla María Leonor Ing.

Semestre 2019-1

Práctica No. 4

Ganancia en Amplificadores operacionales

Grupo 2

Brigada: 4

Vivar Colina Pablo

Ciudad Universitaria Agosto de 2018.

Índice

1.	Resumen	1
	Introducción 2.1. NI ELVIS	1 1
3.	Objetivos	1
4.	Materiales y métodos	1
5.	Resultados	2
6.	Análisis de Resultados	2
7.	Conclusiones	3
8.	Referencias	5

1. Resumen

2. Introducción

2.1. NI ELVIS

Para crear una aplicación completa de NI ELVIS, explore otras soluciones de laboratorio para NI ELVIS.

Proporciona una experiencia de aprendizaje basada en proyectos, usando medidas en línea y diseño práctico y embebido.

El NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) es un dispositivo modular de laboratorio educativo de ingeniería desarrollado específicamente para la academia. Con este enfoque práctico, los profesores pueden ayudar a los estudiantes a aprender habilidades de ingeniería prácticas y experimentales. NI ELVIS incluye un osciloscopio, multímetro digital, generador de funciones, fuente de alimentación variable, analizador de Bode y otros instrumentos comunes de laboratorio. Puede conectar una PC al NI ELVIS usando USB y desarrollar circuitos en su protoboard desmontable. [1]

3. Objetivos

 Utilizar la herramientas de National Instruments para verificar las ecuaciones de función de transferencia

4. Materiales y métodos

■ NI Elvis

• Computadora con Suite de herramientas Texas Instruments

5. Resultados

Se usa el circuito operacional con realimentacion negativa.

- 2->Entrada Inversora
- 3->Entrada no inversora
- 4->Fuente -10[V]
- 5->Vacío
- 6->Salida
- 7->Fuente +10[V]

Figura 1: Circuito de Amplificadores operacionales

En la figura 1 se puede apreciar el circuito con 2 amplificadores operacionales que se ocupó en la experimentación.

En la figura 2 se puede apreciar la configuración del generador de funciones el cual genera una señal senoidal de 100 [Hz] y con 0.25 [Vpp].

En la figura 1 se aprecia la respuesta del circuito mostrado anteriormente.

6. Análisis de Resultados

En las figuras 3 y 4 podemos apreciar que al variar la frecuencia en la entrada del sistema podemos cambiar la respuesta del sistema, a una frecuencia menor la entrad a y salida del sistema tiene den a tener una señal más cuadrada, y a frecuencias mayores tiene más forma de sinusoide.

Figura 2: Generador de funciones

Figura 3: Valor de la resistencia 5 del circuito 1 con 10 k, con frecuencia en la señal de 2[kHz]

7. Conclusiones

Logramos a través de la función de transferencia y variando los valores de los capacitores revisar diferentes escenarios de ganancia en el sistema, probamos valores que daban división entre cero en la función de transferencia y vimos experimentalmente que es lo que sucedía en el sistema, además de las variaciones que resultan de cambiar factores como la frecuencia.

Figura 4: Valor de la resistencia 5 del circuito 1 con 10 k, con frecuencia en la señal de 8[kHz]

Figura 5: Valor de la resistencia 5 del circuito 1 con 10 k

Figura 6: Valor de la resistencia 5 del circuito 1 con 100 k

8. Referencias

Referencias

[1] NationalInstruments. NI Elvis, 2018.