FUNCIONES DEL ÁLGEBRA DE BOOLE

Técnicas Digitales I

Luis Eduardo Toledo

DEFINICIÓN DE FUNCIÓN

Una función del álgebra de Boole es una expresión algebraica en las que aparecen las variables de las cuales la función depende en forma directa o negada y relacionadas por las operaciones de suma lógica y/o producto lógico.

$$f(a,b,c) = a.b.c + /a.b./c + /b./c + a./b$$

$$f(a,b,c) = (a+b+c).(/a+b+/c).(/b+/c).(a+/b)$$

TÉRMINO CANÓNICO

Un término es canónico cuando aparecen todas las variables de las cuales la función depende ya sea en forma directa o negada.

$$f(a,b,c) = a.b.c + /a.b./c + /b./c + a./b$$

Producto canónico

$$f(a,b,c) = (a+b+c) \cdot (/a+b+/c) \cdot (/b+/c) \cdot (a+/b)$$

Suma canónica

FUNCIÓN CANÓNICA

Una función es canónica cuando todos sus términos son canónicos. Puede ser expresada como suma de productos canónicos o como producto de sumas canónicas.

$$f(a,b,c) = a.b.c + /a.b./c + a./b./c + a./b./c$$

$$f(a,b,c) = (a+b+c).(/a+b+/c).(a+/b+/c).(a+/b+c)$$

FUNCIÓN CANÓNICA

En una función expresada como suma de productos canónicos, cada producto canónico representa un uno de la función. Basta que uno de los términos sea uno para que la función valga uno.

$$f(a,b,c) = a.b.c + /a.b./c + a./b./c + a./b./c$$

FUNCIÓN CANÓNICA

En una función expresada como producto de sumas canónicas, cada suma canónica representa un cero de la función. Basta que uno de los términos sea cero para que la función valga cero.

$$f(a,b,c) = (a+b+c).(/a+b+/c).(a+/b+/c).(a+/b+c)$$

Tanto la suma de productos como el producto de sumas constituyen la representación algebraica de la función.

MINTERMS Y MAXTERMS

Minterms and Maxterms for Three Binary Variables

x y z		М	interms	Maxterms				
X		Designation	Term	Designation				
0	0	0	x'y'z'	m_0	x + y + z	M_0		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	m_2	x + y' + z	M_2		
0	1	1	x'yz	m_3	x + y' + z'	M_3		
1	0	O	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy'z	m_5	x' + y + z'	M_5		
1	1	0	xyz'	m_6	x' + y' + z	M_6		
1	1	1	xyz	m_7	x' + y' + z'	M_7		

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4$$

REPRESENTACIÓN DE LA FUNCIÓN MEDIANTE TABLA DE VERDAD

<u>a</u>	b	С	f	f(a,b,c) = /a.b./c + a./b./c + a./b.c + a.b.c
0	0	0	0	
0	0	1	0	
0	1	0	1 1	
0	1	1	0	
1	0	0	1	
1	0	1		
1	1	0	0	
1	1	1	1	

REPRESENTACIÓN DE LA FUNCIÓN MEDIANTE PRODUCTO DE SUMAS

<u>a</u>	b	С	f	f(a,b,c) = /a.b./c + a./b./c + a./b.c + a.b.c
0	0	0	0	
0	0	1	0	suma de productos
0	1	0	1	
0	1	1	0	Y como producto de sumas?
1	0	0	1	
1	0	1	1	f(a,b,c)= (a+b+c).(a+b+/c).(a+/b+/c).(/a+/b+c)
1	1	0	0	
1	1	1	1	

REPRESENTACIÓN SIMPLIFICADA DE LA FUNCIÓN

				2 4 5 7
a	b	С	f	0 1 0 1 0 0 1 0 1 1 1 1 _ f(a,b,c)= /a.b./c + a./b./c + a./b.c + a.b.c
0	0	0	0	
0	0	1	0	$f(a,b,c) = \sum (2,4,5,7)$
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	f(a,b,c)= (a+b+c).(a+b+/c).(a+/b+/c).(/a+/b+c)
1	1	0	0	
1	1	1	1	$f(a,b,c) = \Pi(0,1,3,6)$

REPRESENTACIÓN ESQUEMÁTICA DE LA FUNCIÓN

f(a,b,c) = /a.b./c + a./b./c + a./b.c + a.b.c

a	b	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
f(a	a,b,c)	$=\sum_{i}(2i)^{i}$	2,4,5,7)

OTRAS OPERACIONES LÓGICAS

Truth Tables for the 16 Functions of Two Binary Variables

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0 1 0 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

OTRAS OPERACIONES LÓGICAS

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	\boldsymbol{x}
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

COMPUERTAS LÓGICAS

			х	y	F
AND	<i>x</i> — <i>F</i>	$F = x \cdot y$	0	0 1	0
	y —		1	0	0
			1	1	1
			x	y	F
OR	<i>x</i> — <i>F</i>	F = x + y	0	0	0
	y	,	0 1	1 0	1
			1	1	1
			х		F
Inverter	xF	F = x'	0		1
			1		0
D ((_		х		F
Buffer	xF	F = x	0		0
			1		1

COMPUERTAS LÓGICAS

			x	y	F
NAND	x — F	F = (xy)'	0	0	1
NAND	y	. (.5)		1	
	250		1	0	1
			1	1	0
			х	у	F
	$x \longrightarrow x$	F - (-1-3)	0	0	1
NOR	vF	F = (x + y)'	0	1	0
			0	0	0
			1	1	0
Exclusive-OR			x	y	I
	7 H- x	F = xy' + x'y	0	0	0
(XOR)	$y \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0	1	1
	1		1	0	1
			1	1	0
Exclusive-NOR			х	y	I
	$x \rightarrow 1$	F = xy + x'y'	0	0:	1
	$y \longrightarrow F$	$= (x \oplus y)^r$	0	1	0
Exclusive-OR (XOR)			1	0	0
			1	1	1

