12-Stage Binary Ripple Counter

High-Performance Silicon-Gate CMOS

The MC54/74C4040A is identical in pinout to the standard CMOS MC14040. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of 12 master–slave flip–flops. The output of each flip–flop feeds the next and the frequency at each output is half of that of the preceding one. The state counter advances on the negative–going edge of the Clock input. Reset is asynchronous and active–high.

State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and may have to be gated with the Clock of the HC4040A for some designs.

- · Output Drive Capability: 10 LSTTL Loads
- · Outputs Directly Interface to CMOS, NMOS, and TTL
- · Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- · High Noise Immunity Characteristic of CMOS Devices
- In Compliance With JEDEC Standard No. 7A Requirements
- Chip Complexity: 398 FETs or 99.5 Equivalent Gates

LOGIC DIAGRAM

MC54/74HC4040A

J SUFFIX CERAMIC PACKAGE CASE 620–10

N SUFFIX PLASTIC PACKAGE CASE 648–08

D SUFFIX SOIC PACKAGE CASE 751B-05

DT SUFFIX TSSOP PACKAGE CASE 948F-01

ORDERING INFORMATION

MC54HCXXXXAJ Ceramic
MC74HCXXXXAN Plastic
MC74HCXXXXAD SOIC
MC74HCXXXXADT TSSOP

FUNCTION TABLE

Clock	Reset	Output State
\	L	No Charge
	L	Advance to Next State
Х	Н	All Outputs Are Low

10/95

REV 1

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature Range	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package Ceramic DIP	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC).

Unused outputs must be left open.

 $\label{problem:commended} \mbox{ Functional operation should be restricted to the Recommended Operating Conditions.}$

†Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C

Ceramic DIP: - 10 mW/°C from 100° to 125°C

SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
VCC	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	VCC	V
TA	Operating Temperature Range, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time VCC (Figure 1) VCC VCC VCC	= 2.0 V = 3.0 V = 4.5 V = 6.0 V	0 0 0	1000 600 500 400	ns

DC CHARACTERISTICS (Voltages Referenced to GND)

			VCC	Guara	nteed Lin	nit	
Symbol	Parameter	Condition	V	–55 to 25°C	≤85°C	≤125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{Out} = 0.1V \text{ or } V_{CC} - 0.1V$ $ I_{Out} \le 20\mu\text{A}$	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
VIL	Maximum Low-Level Input Voltage	$V_{Out} = 0.1V$ or $V_{CC} - 0.1V$ $ I_{Out} \le 20\mu A$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
Voн	Minimum High–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{aligned} V_{\text{in}} = & V_{\text{IH}} \text{ or } V_{\text{IL}} & I_{\text{out}} \leq 2.4 \text{mA} \\ & I_{\text{out}} \leq 4.0 \text{mA} \\ & I_{\text{out}} \leq 5.2 \text{mA} \end{aligned} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
VOL	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

DC CHARACTERISTICS (Voltages Referenced to GND)

			vcc	Guara	nteed Lin	nit	
Symbol	Parameter	Condition	V	–55 to 25°C	≤85°C	≤125°C	Unit
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{aligned} I_{Out} &\leq 2.4 \text{m}_{\text{N}} \\ I_{Out} &\leq 4.0 \text{m}_{\text{N}} \\ I_{Out} &\leq 5.2 \text{m}_{\text{N}} \end{aligned}$	4.5	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	±0.1	±1.0	±1.0	μΑ
lcc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0\mu A$	6.0	4	40	160	μΑ

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Vcc	Gu	aranteed Lim	nit	
Symbol	Parameter	v	–55 to 25°C	≤85°C	≤125°C	Unit
fmax	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 3.0 4.5 6.0	10 15 30 50	9.0 14 28 45	8.0 12 25 40	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q1* (Figures 1 and 4)	2.0 3.0 4.5 6.0	96 63 31 25	106 71 36 30	115 88 40 35	ns
^t PHL	Maximum Propagation Delay, Reset to Any Q (Figures 2 and 4)	2.0 3.0 4.5 6.0	45 30 30 26	52 36 35 32	65 40 40 35	ns
^t PLH [,] ^t PHL	Maximum Propagation Delay, Qn to Qn+1 (Figures 3 and 4)	2.0 3.0 4.5 6.0	69 40 17 14	80 45 21 15	90 50 28 22	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 15	110 36 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

* For $T_A = 25^{\circ}C$ and $C_L = 50$ pF, typical propagation delay from Clock to other Q outputs may be calculated with the following equations: $V_{CC} = 2.0 \text{ V}$: tp = [93.7 + 59.3 (n-1)] ns $V_{CC} = 4.5 \text{ V}$: tp = [30.25 + 14.6 (n-1)] ns $V_{CC} = 6.0 \text{ V}$: tp = [24.4 + 12 (n-1)] ns

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	31	pF

* Used to determine the no-load dynamic power consumption: PD = CPD VCC2f + ICC VCC. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

3

TIMING REQUIREMENTS (Input $t_f = t_f = 6 \text{ ns}$)

		VCC	Gu			
Symbol	Parameter	V	–55 to 25°C	≤85°C	≤125°C	Unit
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	2.0 3.0 4.5 6.0	30 20 5 4	40 25 8 6	50 30 12 9	ns
t _W	Minimum Pulse Width, Clock (Figure 1)	2.0 3.0 4.5 6.0	70 40 15 13	80 45 19 16	90 50 24 20	ns
t _W	Minimum Pulse Width, Reset (Figure 2)	2.0 3.0 4.5 6.0	70 40 15 13	80 45 19 16	90 50 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

PIN DESCRIPTIONS

INPUTS

Clock (Pin 10)

Negative—edge triggering clock input. A high—to—low transition on this input advances the state of the counter.

Reset (Pin 11)

Active-high reset. A high level applied to this input asynch-

ronously resets the counter to its zero state, thus forcing all Q outputs low.

OUTPUTS

Q1 thru Q12 (Pins 9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1)

Active–high outputs. Each Qn output divides the Clock input frequency by $2^{\hbox{\scriptsize N}}.$

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

SWITCHING WAVEFORMS (continued)

*Includes all probe and jig capacitance

Figure 3.

Figure 4. Test Circuit

Figure 5. Expanded Logic Diagram

5

Figure 6. Timing Diagram

APPLICATIONS INFORMATION

Time-Base Generator

A 60Hz sinewave obtained through a 1.0 Megohm resistor connected directly to a standard 120 Vac power line is applied to the input of the MC54/74HC14A, Schmitt-trigger inverter. The HC14A squares—up the input waveform and

feeds the HC4040A. Selecting outputs Q5, Q10, Q11, and Q12 causes a reset every 3600 clocks. The HC20 decodes the counter outputs, produces a single (narrow) output pulse, and resets the binary counter. The resulting output frequency is 1.0 pulse/minute.

Figure 7. Time-Base Generator

OUTLINE DIMENSIONS

В

D 16 PL

⊕ 0.25 (0.010) M T A M

-A

G

16

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
- 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.750	0.785	19.05	19.93
В	0.240	0.295	6.10	7.49
С	_	0.200	_	5.08
D	0.015	0.020	0.39	0.50
E	0.050 BSC		1.27	BSC
F	0.055	0.065	1.40	1.65
G	0.100 BSC		2.54	BSC
J	0.008	0.015	0.21	0.38
K	0.125	0.170	3.18	4.31
L	0.300	BSC	7.62	BSC
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

N SUFFIX

PLASTIC PACKAGE CASE 648-08 **ISSUE R**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.070	1.02	1.77
G	0.	100 BSC	2	.54 BSC
Н	0.	050 BSC	1	.27 BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- T 14-30M, 1962.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)

- 4. MAXIMUM MOLLD PROTRUSION 0.15 (0.006)
 PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT

 MAXIMUM STEPLING DEBITION. MAXIMUM MATERIAL CONDITION.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC54/74HC4040A/D