Study Design - definitions - STAT110 Otago

Students also viewed

Terms in this set (62)

	To test hypotheses (quantify population).
The purpose of Analytic studies	For example Do government subsidy programs impact the profitability of fisheries? Does IT investment impact productivity in industry? Does a Mediterranean diet impact life expectancy?
Replication definition	More than one time experiments Allows us to separate out true effects from chance effects.
Control definition	Provides context for evaluating the effect of interest.
Types of analytic study designs	observational studies and experimental studies
	To describe.
The purpose of	eg. the characteristics of people with a disease
Descriptive studies	(person; place; time); lifestyle patterns in a population ; attitudes to health care.

Surveys
Experimental studies e.g. randomised controlled
trials (with placebo).
Observational studies e.g. cohort studies; case-
control studies.
Complete set of entities or elements or units or
people
that we wish to describe or make inference about.
Well-defined:
- The collection of words in poems by W. B. Yeats.
- All patients diagnosed with colorectal cancer in
New Zealand in 2015.
Not well-defined:
- The population of New Zealand. Right now? Past?
Future? (Time)
- Target population for a particular cancer treatment.
Which type/stage of cancer? Existing or future
patients(time)? Over a certain age? On other
medications?
a subset of the population
Known-chance
Equal-chance
If dosen't have those traits, define the sample has
representative or not.

error?*	
Why there is *random error?*	Due to natural variability . Increasing the sample size will reduce the random fluctuations in the sample mean. Statistical methods allow us to quantify the
The sources of error for sample mean	systematic error(bias) random errors Population + (true) mean Systematic errors Systematic error(bias)
Sampling frame definition	For example, to draw 200 out of 10,000 employees to form a sample, the roster of 10,000 employees, is the sampling frame. May be sourced from census, company data base or other secondary data. Completeness may be an issue when sourcing Sampling Frame. Sometimes need to use/combine multiple sample frames. Non-probability sampling techniques don't require a sampling frame.

Why probability sampling?	We want our sampling frame to match the population of interest and provide a way to draw a sample. Probability sampling is important because it helps to justify the statistical models. For a finite population of size N draw a sample of size n such that each possible sample has the same probability of being selected.
what is the <i>key</i> <i>characteristic</i> of probability sampling?	The key characteristic is that we know the probability of being selected for everyone in the sample frame.
What is the simplest form of probability sampling?	simple random sampling
types of probability sampling	simple random sampling stratified random sampling cluster sampling
Traits of simple random sampling	same chance of selection (e.g., Lotto)
Advantages of Stratified sampling	More precise estimate than for the same sample size from a simple random sample Can take different sized samples from different strata (a device for reducing overall variability) Useful if you are interested in the results for each stratum and some of the strata are small. Example: colon cancer treatment, samples of colon cancer patients, stratified by ethnicity.
two types of Stratified sampling	 proportionate stratified sample disproportionate stratified sample (equal number from each stratum)
Why cluster sampling?	The population may be composed of similar and naturally occurring groups.
Two types of cluster sampling	one-stage two-stage

case control study	outcome trace back to reason
Cons for observational studies	We can't know the confounding factors
observational studies	The idea is to get as close as possible to the information that would have been obtained if the experimental study could have been done.
How to conduct an	The investigator does not intervene, simply observes a naturally occurring process, and collects information.
Why NOT experimental studies?	Ethical problems
why randomisation?	Randomisation can be used to ensure that effects of unmeasured factors are equalised across the intervention and control groups.
Why experimental studies?	Best way to study causation
The aim for conduct an experimental studies	To control all other factor s to isolate the effects of the intervention.
How to conduct an experimental studies	The researcher manipulates the conditions (intervenes in a natural process) and records the results.
What is cluster sampling?	Dividing the population into a group/cluster (then selecting a sample from each cluster)
Pros and cons for two stage cluster sampling	reduce cost & time less precise

Traits of Randomised controlled trial (RCT)	 is considered the "gold standard" analytic study Randomisation - or random allocation, is used to create two comparable groups, one who will have the placebo treatment and the other the experimental treatment. At the end of follow-up any difference between the groups can be attributed to the difference in treatment. Control group - is used to isolate the effects of the intervention.
	Blinding refers to not knowing whether the participant is in the intervention or the control group.
What is blinding?	Several people may be blinded to the allocation including the participants, the people caring for patients, the people measuring outcomes, the lead researcher.
Pros and cons for RCT	Advantages Experiment – the best way to test an hypothesis. If the trial is well conducted, differences in outcome can be attributed to the intervention.
	Disadvantages May not be ethical or feasible.
Example cohort study	British doctors and smoking Aim: to investigate the relationship between smoking and lung cancer.
Pros and cons for cohort study	Pros: Clear chronological order from reason to outcome can evaluate the relationship between multiple results and factor(s) Cons: Large time consumption bias affect small sample size

What is a case-control	Observational study, generally carried out to test
study?	hypotheses
	Participants are chosen on the basis of their outcome
	status: a group with the outcome (cases) and a group without (controls).
Characteristics of a case-	
control study	Information is collected from people with and
	without outcome about exposures that occurred in
	the past (retrospective). i.e. in general before disease
	was diagnosed.
	Advantages
	Relatively quick.
	Smaller than cohort studies, particularly for rare
	outcomes.
Pros and cons for Case-	Can examine the effects of multiple exposures.
control study	Disadvantages
	Events have already occurred so the potential for
	bias is higher. It is very hard (if not impossible) to remove all the
	effects of
	confounding.
	confounding
Sources of error in	bias population story design
analytic studies	chance(random variation)
	from the study sample
	Confounding is a distortion of the association
	between exposure and outcome caused by the
what is Confounding	presence of a third factor.
	A confounder is a variable which causes this
	distortion.
	associated with the exposure (independent of
A variable must be both (outcome);
) to become a	anf
confounder	associated with the outcome (independent of
	exposure);

Bias in an analytic study	Selection bias Information bias
	arising from the way participants are selected for
	inclusion in the study.
	In an analytic study, selection bias occurs if the
	selection processes cause a systematic difference
	between the groups of participants selected for the
Selection bias	study.
	Prospective analytic studies rarely obtain
	participants through random sampling from a
	population. The issue of representativeness must be
	considered, but for analytic studies we consider it a
	generalisability issue rather than bias.
	arising from the way study information is obtained,
	interpreted and recorded.
Information bias	In an analytic study, information bias is a particular
information bias	problem if there are systematic differences in the
	information obtained from groups under
	comparison in the study.
	Observer
	Study individual (respondent)
Information bias may be	Instruments used to collect the data (e.g. badly-
introduced by	designed questionnaire)
	Missing measurements (e.g. from loss to follow-up in
	a prospective study)
Classification by purpose	Descriptive (describe things) vs. analytic (testing
of study:	hypotheses).
Classification by form of	- Experimental (researcher intervenes) vs.
the design:	observational (researcher observes).
	Randomised controlled trial
	Analytic, experimental, prospective.
RCT, Cohort study, Case-	Cohort study
control study	Analytic, observational, usually prospective.
	Case-control study
	Analytic, observational, retrospective.

Summary for the classification	The second secon
Discrete	A type of variable that can only take on specific values . These values are typically whole numbers or counts and cannot be subdivided further. For example, the number of children in a family is a discrete variable because it can only be a whole number (e.g., 1, 2, 3, etc.).
Categorical	Represent data that falls into specific categories or groups. The categories in nominal variables do not have any inherent order or ranking. Examples of nominal variables include gender (e.g., male, female), eye colour (e.g., blue, brown, green), or types of fruit (e.g., apple, banana, orange).
Continuous	Measurements that can take on any value within a specific range. They can be subdivided infinitely, and there are no gaps or interruptions in the possible values. Examples of continuous variables include height, weight, temperature, and time. These variables are often represented by real numbers and can include decimal values.
Ordinal	Similar to categorical variables, but they have an inherent order or ranking associated with their categories. The order represents the relative magnitude or importance of the categories, but the actual differences between the categories may not be uniform or measurable. Examples of ordinal variables include educational attainment (e.g., high school, bachelor's, master's, Ph.D.), socioeconomic status (e.g., low, medium, high), or survey ratings (e.g., strongly agree, agree, neutral, disagree, strongly disagree).

If a data set is Categorical, must it also be Nominal?	No. All nominal data is categorical data, but not all categorical data is nominal data. Nominal data refers specifically to categorical data without any order or hierarchy.
Types of data	Types Of Data Countries Countri
How to identify whether a study uses probability sampling?	To find sampling fame
note for Stratified sampling	Stratified sampling involves dividing the population into distinct subgroups (strata) based on certain characteristics.
why Non-response can cause bias in surveys?	because non-respondents tend to(maybe) behave differently compared to people who respond.