Initial Data Exploration

This notebook will be used to explore the dataset and to check key values, changes to be made, overall quality of the data. The following hidden cell is where the data is loaded into the workspace and the csv transformed into a dataFrame.

```
In [8]: # The code was removed by Watson Studio for sharing.
```

The dataFrame is renamed and the ld column renamed so that it can be known what that column is.

```
In [9]: #Change the dataFrame name
data_df = df_data_1

#Rename Unnamed: 0 to Id for readability
data_df.rename(columns = {data_df.columns[0]: 'Id'}, inplace = True)
data_df.head()
```

Out[9]:

	ld	timestamp	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sensor_05	sensor_06
0	0	2018-04- 01 00:00:00	2.465394	47.09201	53.2118	46.310760	634.3750	76.45975	13.41146
1	1	2018-04- 01 00:01:00	2.465394	47.09201	53.2118	46.310760	634.3750	76.45975	13.41146
2	2	2018-04- 01 00:02:00	2.444734	47.35243	53.2118	46.397570	638.8889	73.54598	13.32465
3	3	2018-04- 01 00:03:00	2.460474	47.09201	53.1684	46.397568	628.1250	76.98898	13.31742
4	4	2018-04- 01 00:04:00	2.445718	47.13541	53.2118	46.397568	636.4583	76.58897	13.35359

In [3]: #Check the types of each of the dataFrames data_df.dtypes

	data_dr.acypes	
Out[3]:	Id	int64
	timestamp	object
	sensor_00	float64
	sensor_01	float64
	sensor_02	float64
	sensor_03	float64
	sensor_04	float64
	sensor_05	float64
	sensor 06	float64
	sensor_07	float64
	sensor 08	float64
	sensor 09	float64
	sensor_10	float64
	sensor_11	float64
	sensor_12	float64
	sensor_13	float64
	_	float64
	sensor_14	float64
	sensor_15 sensor 16	float64
	sensor 17	float64
	-	float64
	sensor_18	
	sensor_19	float64
	sensor_20	float64
	sensor_21	float64
	sensor_22	float64
	sensor_23	float64
	sensor_24	float64
	sensor_25	float64
	sensor_26	float64
	sensor_27	float64
	sensor_28	float64
	sensor_29	float64
	sensor_30	float64
	sensor_31	float64
	sensor_32	float64
	sensor_33	float64
	sensor_34	float64
	sensor_35	float64
	sensor_36	float64
	sensor_37	float64
	sensor_38	float64
	sensor_39	float64
	sensor_40	float64
	sensor_41	float64
	sensor_42	float64
	sensor_43	float64
	sensor_44	float64
	sensor_45	float64
	sensor_46	float64
	sensor_47	float64
	sensor_48	float64
	sensor_49	float64
	sensor_50	float64
	sensor_51	float64

machine_status
dtype: object

object

The data types seem to make sense. All the sensors are float values and the machine_status is object. The machine_status will eventually need to be turned to int and the timestamp to a datetime, if timestamp column is needed.

In [4]: #Pandas describe is called to check the mean and other key statistics in the data
data_df.describe()

ο.		Γ / 1	١.
υι	Iτ	4	١.

	ld	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04
count	220320.000000	210112.000000	219951.000000	220301.000000	220301.000000	220301.000000
mean	110159.500000	2.372221	47.591611	50.867392	43.752481	590.673936
std	63601.049991	0.412227	3.296666	3.666820	2.418887	144.023912
min	0.000000	0.000000	0.000000	33.159720	31.640620	2.798032
25%	55079.750000	2.438831	46.310760	50.390620	42.838539	626.620400
50%	110159.500000	2.456539	48.133678	51.649300	44.227428	632.638916
75%	165239.250000	2.499826	49.479160	52.777770	45.312500	637.615723
max	220319.000000	2.549016	56.727430	56.032990	48.220490	800.000000

In [5]: #Due to inconsistent numbers in the describe function, Nan amounts are needed.
data_df.isna().sum()

		- () ()
Out[5]:	Id	0
	timestamp	0
	sensor_00	10208
	sensor_01	369
	sensor_02	19
	sensor 03	19
	sensor 04	19
	sensor 05	19
	sensor 06	4798
	sensor_07	5451
	sensor_08	5107
	sensor 09	4595
	sensor 10	19
	sensor 11	19
	sensor 12	19
	sensor 13	19
	sensor 14	21
	sensor_15	220320
	sensor_16	31
	sensor 17	46
	sensor 18	46
	sensor 19	16
	sensor 20	16
	sensor 21	16
	sensor 22	41
	sensor_23	16
	sensor 24	16
	sensor_25	36
	sensor 26	20
	sensor 27	16
	sensor 28	16
	sensor 29	72
	sensor 30	261
	sensor 31	16
	sensor 32	68
	sensor_33	16
	sensor 34	16
	sensor 35	16
	sensor 36	16
	sensor 37	16
	sensor 38	27
	sensor 39	27
	sensor_40	27
	sensor_41	27
	sensor_42	27
	sensor 43	27
	sensor 44	27
	sensor 45	27
	sensor 46	27
	sensor_47	27
	sensor_48	27
	sensor_49	27
	sensor 50	77017
	sensor 51	15383
	203331	1000

machine_status
dtype: int64

0

As shown by the previous cell their is a decent amount of nans. Sensor_15 will need to be removed as it has no data and will not benefit from being replaced by zeros. The others will need to have to be replaced by zeros or more likely the mean of the sensor data.

```
In [6]:
        import seaborn as sns
        from matplotlib import rcParams
        # figure size in inches
        rcParams['figure.figsize'] = 15,8.27
        box_data = data_df.loc[:, 'sensor_22':'sensor_35']
        print(box data.head())
        sns.boxplot(data = box data)
            sensor_22
                       sensor_23
                                   sensor_24
                                               sensor_25
                                                          sensor_26
                                                                      sensor_27
        0
             498.8926
                        975.9409
                                    627.6740
                                                741.7151
                                                           848.0708
                                                                       429.0377
        1
             498.8926
                        975.9409
                                                741.7151
                                                                       429.0377
                                    627.6740
                                                           848.0708
        2
             501.3617
                        982.7342
                                    631.1326
                                                740.8031
                                                           849.8997
                                                                       454.2390
                        977.7520
        3
             499.0430
                                    625.4076
                                                739.2722
                                                           847.7579
                                                                       474.8731
        4
             498.5383
                        979.5755
                                    627.1830
                                                737.6033
                                                           846.9182
                                                                       408.8159
            sensor_28
                       sensor_29
                                   sensor_30
                                               sensor_31
                                                          sensor_32
                                                                      sensor_33
        0
             785.1935
                        684.9443
                                    594.4445
                                                682.8125
                                                                       433.7037
                                                           680.4416
                                                                       433.7037
        1
             785.1935
                        684.9443
                                    594.4445
                                                682.8125
                                                           680.4416
        2
             778.5734
                                    661.5740
                                                721.8750
                        715.6266
                                                           694.7721
                                                                       441.2635
        3
             779.5091
                        690.4011
                                    686.1111
                                                754.6875
                                                           683.3831
                                                                       446.2493
        4
             785.2307
                        704.6937
                                    631.4814
                                                766.1458
                                                            702.4431
                                                                       433.9081
            sensor 34
                       sensor 35
                        341.9039
        0
             171.9375
             171.9375
        1
                        341.9039
        2
             169.9820
                        343.1955
        3
             166.4987
                        343.9586
        4
             164.7498
                        339.9630
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe742c5a810>

The above figure shows off some of the sensors in a boxplot graph. As shown by the plots their is a decent amount of outliers within the data, but with the large amount of data there is definitely going to be a large amount of outliers as well.

```
In [7]: #Check to see all of the categorical data bins.
data_df.machine_status.value_counts()
```

Out[7]: NORMAL 205836 RECOVERING 14477 BROKEN 7

Name: machine_status, dtype: int64

In the final dataset, the broken will be merged with recovering as the goal is to check if the pump is in normal or not normal, recovering and broken, operation.