

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

30.00 psf	Ground Snow Load, $P_g =$		
16.49 psf (ASCE 7-05,	ped Roof Snow Load, P _s =	CE 7-05, Eq.	7-2)
1.00	I _s =		
0.73	$C_s =$		
0.90	$C_e =$		

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.15 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 1.85 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1	applied away from the surface.

2.4 Seismic Loads - N/A

Ss	= 0.0	0	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
S_{DS}	= 0.0	0	$C_S = 0$	may be used to calculate the base shear, C_s , of
S_1	= 0.0	0	$\rho = 1.3$	structures under five stories and with a period, T,
S_{D1}	= 0.0	0	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a	= 0.0	0	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35	kei
Φ =	0.90	KOI
S _y =	0.02	in ³
É =	10100	ksi
I _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.006	k-ft
$P_n =$	0.047	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>14%</u>	

A cross brace kit is required every 14 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear
Tensile Load =	<u>2.11</u>	<u>1787.02</u> k
Compressive Load =	<u>1597.09</u>	<u>1387.51</u> k
Lateral Load =	<u>5.72</u>	<u>1100.66</u> k
Moment (Weak Axis) =	0.01	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 26796.0 in-lbs Resisting Force Required = 893.20 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1488.67 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding Force = 264.44 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 661.10 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion 264.44 lbs Sliding Force = Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	t Width	
	22 in	23 in	24 in	<u>25 in</u>
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs

ASD LC	1.0D + 1.0S					1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	631 lbs	631 lbs	631 lbs	631 lbs	444 lbs	444 lbs	444 lbs	444 lbs	750 lbs	750 lbs	750 lbs	750 lbs	2 lbs	2 lbs	2 lbs	2 lbs
FB	443 lbs	443 lbs	443 lbs	443 lbs	570 lbs	570 lbs	570 lbs	570 lbs	719 lbs	719 lbs	719 lbs	719 lbs	-857 lbs	-857 lbs	-857 lbs	-857 lbs
F_V	76 lbs	76 lbs	76 lbs	76 lbs	484 lbs	484 lbs	484 lbs	484 lbs	414 lbs	414 lbs	414 lbs	414 lbs	-529 lbs	-529 lbs	-529 lbs	-529 lbs
P _{total}	3068 lbs	3159 lbs	3249 lbs	3340 lbs	3008 lbs	3098 lbs	3189 lbs	3280 lbs	3462 lbs	3553 lbs	3644 lbs	3734 lbs	341 lbs	395 lbs	449 lbs	504 lbs
M	488 lbs-ft	488 lbs-ft	488 lbs-ft	488 lbs-ft	527 lbs-ft	527 lbs-ft	527 lbs-ft	527 lbs-ft	720 lbs-ft	720 lbs-ft	720 lbs-ft	720 lbs-ft	740 lbs-ft	740 lbs-ft	740 lbs-ft	740 lbs-ft
е	0.16 ft	0.15 ft	0.15 ft	0.15 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.17 ft	1.87 ft	1.65 ft	1.47 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	270.9 psf	268.5 psf	266.4 psf	264.5 psf	259.2 psf	257.4 psf	255.7 psf	254.2 psf	283.5 psf	280.6 psf	278.0 psf	275.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	398.5 psf	390.7 psf	383.4 psf	376.8 psf	397.1 psf	389.3 psf	382.1 psf	375.5 psf	472.0 psf	460.9 psf	450.8 psf	441.4 psf	379.1 psf	219.5 psf	175.7 psf	156.4 psf

Maximum Bearing Pressure = 472 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 276.2 \text{ ft-lbs}$

Resisting Force Required = 301.35 lbs S.F. = 1.67 Weight Required = 502.26 lbs

Minimum Width = 22 in in
Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E				
Width		22 in			22 in			22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	93 lbs	242 lbs	88 lbs	311 lbs	889 lbs	306 lbs	27 lbs	71 lbs	26 lbs		
F _V	6 lbs	6 lbs	0 lbs	25 lbs	24 lbs	1 lbs	2 lbs	2 lbs	0 lbs		
P _{total}			2556 lbs	2660 lbs	3239 lbs	2655 lbs	749 lbs	792 lbs	747 lbs		
М	10 lbs-ft	9 lbs-ft	0 lbs-ft	42 lbs-ft	35 lbs-ft	4 lbs-ft	3 lbs-ft	3 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.02 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.31 ft	1.83 ft	1.83 ft	1.80 ft	1.81 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft		
f _{min}	275.7 sqft	292.5 sqft	278.6 sqft	275.1 sqft	340.7 sqft	288.3 sqft	80.7 sqft	85.5 sqft	81.5 sqft		
f _{max}	283.0 psf 298.8 psf 279.0 psf			305.3 psf	366.0 psf	291.1 psf	82.7 psf	87.4 psf	81.6 psf		

Maximum Bearing Pressure = 366 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.229 k	Maximum Axial Load =	1.173 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>22%</u>	Utilization =	<u>21%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.624 k	Maximum Axial Load =	0.047 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>11%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.072 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 96.00 \text{ in}$$

$$J = 0.427$$

$$200.222$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 28.8 \text{ ksi}$$

3.4.16

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 96.00 \text{ in}$$

$$J = 0.427$$

$$217.57$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2})}]$$

ΨΓ_= ΨΕΙΔΕ-Τ.ΟΔΕ Υ((ΕΔΘΕ)/(CD Υ(199)/2)

$$\phi F_1 = 28.6$$

3.4.16

$$b/t = 37.95$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

h/t = 37.95

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

 $S2 = 79.7$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L St = 28.8 \text{ ksi}$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$
 $\phi F_L St = 498305 \text{ mm}^4$

0.746 in³

1.787 k-ft

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t = 6.6

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L \text{= } \phi y F c y$

 $\phi F_L = 33.3 \text{ ksi}$

b/t = 37.95S1 = 12.21

S2 = 32.70

 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$

 $\phi F_L = 21.4 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.42 \text{ ksi}$
 $\phi F_L = 620.02 \text{ mm}^2$
0.96 in²

20.59 kips

 $P_{max} =$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11 $\begin{array}{ccc} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.40 \\ & 20.7639 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \end{array}$

$$Dc$$

S1 = 1.37733
 $S2 = 1.2C_c$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.9 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.40$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

 $\phi F_1 = 29.9 \text{ ksi}$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\varphi F_L = \varphi b[Bc-Dc*Lb/(1.2*ry*\sqrt{Cb})]$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$(- - \theta_{V} - \phi_{V})^{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \\ \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$φF_L$$
 = 43.2 ksi

 $φF_L$ St= 29.9 ksi

 $lx = 364470 \text{ mm}^4$

0.876 in⁴
 $y = 37.77 \text{ mm}$

Sx = 0.589 in³
 M_{max} St = 1.466 k-ft

3.4.18

$$h/t = 4.29$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\begin{aligned} & \text{ly} = & 217168 \text{ mm}^4 \\ & & 0.522 \text{ in}^4 \\ & \text{x} = & 29 \text{ mm} \\ & \text{Sy} = & 0.457 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 0.513 \text{ k-ft} \end{aligned}$$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{\theta_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.2$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dn}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \cdot 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

15

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

0.163 in³

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$Cc = \frac{k_1 Bbr}{mDbr}$$

$$S2 = mDbr$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ks}$$

$$\phi F_L W k=$$
 31.2 ksi

$$ly = 39958.2 \text{ mm}^4$$

$$x = 15 \text{ mm}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.423 \text{ k-ft}$$

Sy =

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 1.17 \phi y F C y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$CC = 15$$
 k_1Rhr

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.408 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{\kappa_1 B B T}{2}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

SCHLETTER

Compression

3.4.7 $\lambda = 1.68476$ r = 0.437 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.81587$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 10.0603 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.05 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ		-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-36.38	-36.38	0	0
2	M16	٧	-58.525	-58.525	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
•	1	M13	V	72.761	72.761	0	0
	2	M16	V	34.799	34.799	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	207.464	2	307.48	2	004	15	0	15	0	1	0	1
2		min	-265.01	3	-419.758	3	226	1	0	1	0	1	0	1
3	N7	max	.005	3	472.786	1	093	15	0	15	0	1	0	1
4		min	194	2	7.949	12	-2.01	1	004	1	0	1	0	1
5	N15	max	.001	12	1228.532	1	.733	1	.001	1	0	1	0	1
6		min	-1.842	1	-1.62	3	356	3	0	3	0	1	0	1
7	N16	max	801.424	2	1067.319	1	303	10	0	1	0	1	0	1
8		min	-846.665	3	-1374.63	3	-43.014	3	0	3	0	1	0	1
9	N23	max	.006	3	472.413	1	4.399	1	.008	1	0	1	0	1
10		min	194	2	8.319	12	.193	15	0	15	0	1	0	1
11	N24	max	208.073	2	312.284	2	43.266	3	.002	1	0	1	0	1
12		min	-265.1	3	-416.951	3	.037	10	0	3	0	1	0	1
13	Totals:	max	1214.784	2	3816.143	1	0	10						
14		min	-1376.768	3	-2190.692	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	314.869	1	.653	4	.649	1	0	15	0	12	0	1
2			min	-360.782	3	.154	15	02	3	001	1	0	1	0	1
3		2	max	314.995	1	.602	4	.649	1	0	15	0	15	0	15
4			min	-360.688	3	.142	15	02	3	001	1	0	1	0	4
5		3	max	315.12	1	.551	4	.649	1	0	15	0	15	0	15
6			min	-360.594	3	.13	15	02	3	001	1	0	1	0	4
7		4	max	315.246	1	.5	4	.649	1	0	15	0	1	0	15
8			min	-360.499	3	.118	15	02	3	001	1	0	3	0	4
9		5	max	315.372	1	.449	4	.649	1	0	15	0	1	0	15
10			min	-360.405	3	.106	15	02	3	001	1	0	3	0	4
11		6	max	315.498	1	.398	4	.649	1	0	15	0	1	0	15
12			min	-360.31	3	.094	15	02	3	001	1	0	3	0	4
13		7	max	315.624	1	.346	4	.649	1	0	15	0	1	0	15
14			min	-360.216	3	.082	15	02	3	001	1	0	3	0	4
15		8	max	315.75	1	.295	4	.649	1	0	15	0	1	0	15
16			min	-360.122	3	.07	15	02	3	001	1	0	3	0	4
17		9	max	315.876	1	.244	4	.649	1	0	15	0	1	0	15
18			min	-360.027	3	.058	15	02	3	001	1	0	3	0	4
19		10	max	316.002	1	.193	4	.649	1	0	15	0	1	0	15
20			min	-359.933	3	.046	15	02	3	001	1	0	3	0	4
21		11	max	316.127	1	.142	4	.649	1	0	15	0	1	0	15
22			min	-359.838	3	.033	12	02	3	001	1	0	3	0	4
23		12	max	316.253	1	.099	2	.649	1	0	15	0	1	0	15
24			min	-359.744	3	.013	12	02	3	001	1	0	3	0	4
25		13	max	316.379	1	.059	2	.649	1	0	15	.001	1	0	15
26			min	-359.65	3	013	3	02	3	001	1	0	3	0	4
27		14	max	316.505	1	.019	2	.649	1	0	15	.001	1	0	15
28			min	-359.555	3	043	3	02	3	001	1	0	3	0	4
29		15	max	316.631	1	014	15	.649	1	0	15	.001	1	0	15
30			min	-359.461	3	073	3	02	3	001	1	0	3	0	4
31		16	max	316.757	1	026	15	.649	1	0	15	.001	1	0	15
32			min	-359.366	3	114	4	02	3	001	1	0	3	0	4
33		17	max	316.883	1	038	15	.649	1	0	15	.002	1	0	15
34			min	-359.272	3	165	4	02	3	001	1	0	3	0	4
35		18		317.008	1	05	15	.649	1	0	15	.002	1	0	15
36			min		3	216	4	02	3	001	1	0	3	0	4
37		19	max		1	062	15	.649	1	0	15	.002	1	0	15
															

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC \	/-y Mome		z-z Mome	. LC_
38			min	-359.083	3	267	4	02	3	001	1	0	3	0	4
39	M3	1	max	148.345	2	1.757	4	03	15	0	15	.002	1	0	4
40			min	-174.51	3	.413	15	726	1	0	1	0	15	0	15
41		2	max	148.276	2	1.58	4	03	15	0	15	.002	1	0	2
42			min	-174.562	3	.372	15	726	1	0	1	0	15	0	12
43		3	max	148.206	2	1.403	4	03	15	0	15	.002	1	0	2
44			min	-174.614	3	.33	15	726	1	0	1	0	15	0	3
45		4	max	148.137	2	1.226	4	03	15	0	15	.002	1	0	15
46			min	-174.666	3	.289	15	726	1	0	1	0	15	0	4
47		5	max	148.068	2	1.049	4	03	15	0	15	.002	1	0	15
48			min	-174.718	3	.247	15	726	1	0	1	0	15	0	4
49		6		147.998	2	.873	4	03	15	0	15	.002	1	0	15
50			min	-174.77	3	.205	15	726	1	0	1	0	15	0	4
51		7		147.929	2	.696	4	03	15	0	15	.001	1	0	15
52			min	-174.822	3	.164	15	726	1	0	1	0	15	0	4
53		8	max	147.86	2	.519	4	03	15	0	15	.001	1	0	15
54				-174.874	3	.122	15	726	1	0	1	0	15	001	4
55		9	max	147.79	2	.342	4	03	15	0	15	.001	1	0	15
56		 		-174.926		.081	15	726	1	0	1	0	15	001	4
57		10	max	147.721	2	.165	4	03	15	0	15	0	1	0	15
58		10	min	-174.978	3	.039	15	726	1	0	1	0	15	001	4
59		11		147.652	2	.015	2	03	15	0	15	0	1	0	15
60			min	-175.03	3	038	3	726	1	0	1	0	15	001	4
		12		147.582									1		
61		12			2	044	15	03	15	0	15	0		0	15
62		42	min	-175.082	3	188	4	726		0	15	0	15	001	4
63		13			2	086	15	03	15	0		0	1	0	15
64		4.4	min	-175.134	3	365	4	726	1	0	1	0	15	001	4
65		14		147.444	2	127	15	03	15	0	15	0	1	0	15
66		4.5			3	542	4	726	1	0	1 1	0	15	001	4
67		15	max	147.374	2	169	15	03	15	0	15	0	1	0	15
68		10	min	-175.238	3	719	4	726	1	0	1	0	12	0	4
69		16		147.305	2	21	15	03	15	0	15	0	1	0	15
70		-	min	-175.29	3	896	4	726	1	0	1	0	3	0	4
71		17		147.236	2	252	15	03	15	0	15	0	15	0	15
72			min	-175.342	3	-1.073	4	726	1	0	1	0	1	0	4
73		18	max		2	293	15	03	15	0	15	0	15	0	15
74			min	-175.394	3	-1.249	4	726	1	0	1	0	1	0	4
75		19		147.097	2	335	15	03	15	0	15	00	15	0	1
76			min	-175.446		-1.426	4	726	1	0	1	0	1	0	1
77	<u>M4</u>	1	max	471.621	1	0	1	094	15	0	1	0	3	0	1
78				7.366	12		1	-2.181	1	0	1	0	1	0	1
79		2	max	471.686	_1_	0	1	094	15	0	1	0	15	0	1
80			min	7.399	12	0	1	-2.181	1	0	1	0	1	0	1
81		3	max		1	0	1	094	15	0	1	0	15	0	1
82			min	7.431	12	0	1	-2.181	1	0	1	0	1	0	1
83		4	max	471.815	1	0	1	094	15	0	1	0	15	0	1
84			min	7.463	12	0	1	-2.181	1	0	1	0	1	0	1
85		5	max	471.88	1	0	1	094	15	0	1	0	15	0	1
86			min	7.496	12	0	1	-2.181	1	0	1	0	1	0	1
87		6	max	471.944	1	0	1	094	15	0	1	0	15	0	1
88			min	7.528	12	0	1	-2.181	1	0	1	001	1	0	1
89		7		472.009	1	0	1	094	15	0	1	0	15	0	1
90			min	7.56	12	0	1	-2.181	1	0	1	001	1	0	1
91		8		472.074	1	0	1	094	15	0	1	0	15	0	1
92			min	7.593	12	0	1	-2.181	1	0	1	001	1	0	1
93		9		472.139	1	0	1	094	15	0	1	0	15	0	1
94			min	7.625	12	0	1	-2.181	1	0	1	002	1	0	1
J4			1111111	1.020	14	U		-2.101		U		002		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	472.203	1	0	1	094	15	0	1	0	15	0	1
96			min	7.657	12	0	1	-2.181	1	0	1	002	1	0	1
97		11	max		1	0	1	094	15	00	1	00	15	0	1
98			min	7.69	12	0	1	-2.181	1	0	1	002	1	0	1
99		12	max	472.333	1	0	1	094	15	0	1	0	15	0	1
100		10	min	7.722	12	0	1	-2.181	1	0	1	002	1	0	1
101		13	max		1	0	1	094	15	0	1	0	15	0	1
102		4.	min	7.754	12	0	1	-2.181	1	0	1	002	1	0	1
103		14	max		1	0	1	094	15	0	1	0	15	0	1
104		4.5	min	7.787	12	0	1	-2.181	1	0	1	003	1	0	1
105		15	max		1	0	1	094	15	0	1	0	15	0	1
106		4.0	min	7.819	12	0	1	-2.181	1	0	1	003	1	0	1
107		16	max		1	0	1	094	15	0	1	0	15	0	1
108		47	min	7.852	12	0	1	-2.181	1	0	1	003	1	0	1
109		17	max	472.656	1	0	1	094	15	0	1	0	15	0	1
110		4.0	min	7.884	12	0		-2.181	1	0	-	003	1	0	1
111		18	max		1	0	1	094	15	0	1	0	15	0	1
112		40	min	7.916	12	0	1	-2.181	1	0	1	003	1	0	1
113		19	max		1	0	1	094	15	0	1	0	15	0	1
114	M6	1	min	7.949	12	0 657	1	-2.181	1	0	1	004	3	0	1
115	IVIO			1028.311	1	.657	4	.173	1	0	15	0	11	0	1
116		2	min		3	.154	15	122 .173	3	0		0	3	0	_
117				1028.437 -1172.633	1	.606	15	122	3	0	15	0	15	0	15
118		2	min		3	.142				0		0		0	4
119 120		3		1028.562 -1172.539	1	.554 .13	15	.173 122	3	0	15	<u> </u>	3 15	0	15
121		4	min	1028.688	3			.173		0	1	0		0	4
122		4		-1172.445	1	.503	15	122	3	0	15		1 15	0	15
123		5	min		<u>3</u> 1	.118			1	0	1	0	1	0	15
124		5	min	1028.814 -1172.35	3	.452 .103	12	.173 122	3	<u> </u>	15	<u> </u>	15	0 0	4
125		6	max		1	.409	2	.173	1	0	1	0	1	0	15
126		0	min	-1172.256	3	.083	12	122	3	0	15	0	12	0	4
127		7		1029.066	1	.369	2	.173	1	0	1	0	1	0	15
128			min	-1172.161	3	.063	12	122	3	0	15	0	3	0	4
129		8		1029.192	1	.329	2	.173	1	0	1	0	1	0	15
130		0	min	-1172.067	3	.043	12	122	3	0	15	0	3	0	4
131		9		1029.318	1	.29	2	.173	1	0	1	0	1	0	12
132			min	-1171.973	3	.023	12	122	3	0	15	0	3	0	4
133		10		1029.443	1	.25	2	.173	1	0	1	0	1	0	12
134		10	min	-1171.878	3	002	3	122	3	0	15	0	3	0	2
135		11		1029.569		.21	2	.173	1	0	1	0	1	0	12
136			min		3	032	3	122	3	0	15	0	3	0	2
137		12		1029.695	1	.17	2	.173	1	0	1	0	1	0	12
138				-1171.689	3	062	3	122	3	0	15	0	3	0	2
139		13		1029.821	1	.13	2	.173	1	0	1	0	1	0	12
140			min		3	092	3	122	3	0	15	0	3	0	2
141		14		1029.947	1	.09	2	.173	1	0	1	0	1	0	12
142			min		3	122	3	122	3	0	15	0	3	0	2
143		15	_	1030.073	1	.051	2	.173	1	0	1	0	1	0	12
144			min	-1171.406	3	151	3	122	3	0	15	0	3	0	2
145		16		1030.199	1	.011	2	.173	1	0	1	0	1	0	12
146			min		3	181	3	122	3	0	15	0	3	0	2
147		17		1030.325	1	029	2	.173	1	0	1	0	1	0	12
148			min		3	211	3	122	3	0	15	0	3	0	2
149		18		1030.45	1	05	15	.173	1	0	1	0	1	0	3
150			min		3	241	3	122	3	0	15	0	3	0	2
151		19		1030.576	1	062	15	.173	1	0	1	0	1	0	3
					_				•		• •				

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

1552		Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	. LC
154	152			min		3		3		3	0	15	0	3	0	2
156	153	M7	1	max	623.952	2	1.762	4	.016	1	0	2	0	2	0	2
156	154			min	-544.359	3	.414	15	004	10	0	3	0	3	0	3
157	155		2	max	623.883	2	1.585	4	.016	1	0	2	0	2	0	2
158	156			min	-544.411	3	.372	15	004	10	0	3	0	3	0	3
159	157		3	max	623.814	2	1.408	4	.016	1	0	2	0	2	0	2
160	158			min	-544.463	3	.331	15	004	10	0	3	0	3	0	3
160	159		4	max	623.744	2	1.231	4	.016	1	0	2	0	2	0	2
161	160			min		3	.289	15	004	10	0	3	0	3	0	
162			5	max	623,675	2		4		1	0	2	0	2	0	
163				min		3		15		10		3	0	3	0	
164	163		6	max		2	.878	4	.016	1	0	2	0	2	0	15
165				min						10			0			
166			7	max		2				1	0		0		0	15
167										10						
168			8								0		0		0	15
169								15		10	0		0		001	
170			9										0			
171																
172			10													
173			'													
174			11													
175																
176			12			_							-			_
177			12													
178			13													_
179			13													
180			1.1					_					-			_
181			14												_	
182			15										_			
183			15													
184			16													
185			16													
186			47			_							-			
187 18 max 622.774 2 293 15 .016 1 0 2 0 2 0 15 188 min -545.243 3 -1.244 4 004 10 0 3 0 3 0 4 189 19 max 622.705 2 334 15 .016 1 0 2 0 2 0 1 190 min -545.295 3 -1.421 4 004 10 0 3 0 3 0 1 191 M8 1 max 1227.368 1 0 1 .917 1 0 1 0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0			17													
188			4.0													_
189 19 max 622.705 2 334 15 .016 1 0 2 0 2 0 1 190 min -545.295 3 -1.421 4 004 10 0 3 0 3 0 1 191 M8 1 max 1227.368 1 0 1 .917 1 0 1 0 1 0 1 1 0 1			18													
190			40					+					-			
191 M8 1 max 1227.368 1 0 1 .917 1 0 1 0 1 192 min -2.494 3 0 1 356 3 0 1 0 1 193 2 max 1227.432 1 0 1 .917 1 0 1 0 1 194 min -2.445 3 0 1 -356 3 0 1 0 1 195 3 max 1227.497 1 0 1 .917 1 0 1 0 1 196 min -2.397 3 0 1 -356 3 0 1 0 1 0 1 197 4 max 1227.562 1 0 1 .917 1 0 1 0 1 0 1 0 1 0			19													
192		140											_			-
193 2 max 1227.432 1 0 1 .917 1 0 1 0 1 0 1 0 1 1		<u>IVI8</u>	1													
194 min -2.445 3 0 1 356 3 0 1 0 3 0 1 195 3 max 1227.497 1 0 1 .917 1 0 1 0 1 196 min -2.397 3 0 1 -356 3 0 1 0 3 0 1 197 4 max 1227.562 1 0 1 .917 1 0																$\overline{}$
195 3 max 1227.497 1 0 1 .917 1 0 1			2													
196 min -2.397 3 0 1 356 3 0 1 0 3 0 1 197 4 max 1227.562 1 0 1 .917 1 0 1 0 1 0 1 198 min -2.348 3 0 1 356 3 0 1 0 3 0 1 199 5 max 1227.626 1 0 1 .917 1 0 1 0 1 200 min -2.23 3 0 1 356 3 0 1 0 1 201 6 max 1227.691 1 0 1 .917 1 0 1 0 1 202 min -2.251 3 0 1 .917 1 0 1 0 1 203 7						_							-			
197 4 max 1227.562 1 0 1 .917 1 0 1 0 1 0 1 9 1 0			3					-								
198 min -2.348 3 0 1 -356 3 0 1 0 3 0 1 199 5 max 1227.626 1 0 1 .917 1 0 1 0 1 200 min -2.3 3 0 1 -356 3 0 1 0 1 201 6 max 1227.691 1 0 1 .917 1 0 1 0 1 202 min -2.251 3 0 1 -356 3 0 1 0 1 203 7 max 1227.756 1 0 1 .917 1 0 1 0 1 204 min -2.203 3 0 1 .917 1 0 1 0 1 205 8 max 1227.821 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td>							_	_							_	-
199 5 max 1227.626 1 0 1 .917 1 0 1 0 1 0 1 200 min -2.3 3 0 1 356 3 0 1 0 1 201 6 max 1227.691 1 0 1 .917 1 0 1 0 1 202 min -2.251 3 0 1 -356 3 0 1 0 1 203 7 max 1227.756 1 0 1 .917 1 0 1 0 1 204 min -2.203 3 0 1 -356 3 0 1 0 1 205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 206 min -2.154 3 0 <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			4									_				
200 min -2.3 3 0 1 356 3 0 1 0 3 0 1 201 6 max 1227.691 1 0 1																
201 6 max 1227.691 1 0 1 .917 1 0 1 0 1 202 min -2.251 3 0 1 -356 3 0 1 0 3 0 1 203 7 max 1227.756 1 0 1 .917 1 0 1 0 1 0 1 204 min -2.203 3 0 1 -356 3 0 1 0 3 0 1 205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 0 1 206 min -2.154 3 0 1 .917 1 0 1 0 1 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1			5													
202 min -2.251 3 0 1 356 3 0 1 0 3 0 1 203 7 max 1227.756 1 0 1 .917 1 0 1 0 1 204 min -2.203 3 0 1 356 3 0 1 0 3 0 1 205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 0 1 206 min -2.154 3 0 1 356 3 0 1 0 3 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1																-
203 7 max 1227.756 1 0 1 .917 1 0 1 0 1 0 1 204 min -2.203 3 0 1 356 3 0 1 0 3 0 1 205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 0 1 206 min -2.154 3 0 1 356 3 0 1 0 3 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1			6							•						-
204 min -2.203 3 0 1 356 3 0 1 0 3 0 1 205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 0 1 206 min -2.154 3 0 1 356 3 0 1 0 3 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1												-			_	•
205 8 max 1227.821 1 0 1 .917 1 0 1 0 1 0 1 206 min -2.154 3 0 1 356 3 0 1 0 3 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1			7	max			0	1			0	1	0		0	1
206 min -2.154 3 0 1 356 3 0 1 0 3 0 1 207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1						3	0	1		3	0	1	0	3	0	1
207 9 max 1227.885 1 0 1 .917 1 0 1 0 1 0 1			8	max		1_	0	1			0	1	0		0	1
						3	_	1	356	3		1	0	3	0	1
208 min -2.106 3 0 1356 3 0 1 0 3 0 1			9	max			0	1			0	1	0		0	
	208			min	-2.106	3	0	1	356	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	<u>LC</u>	y-y Mome	LC	z-z Mome	. LC
209		10	max	1227.95	1	0	1	.917	1	0	1	0	1	0	1
210			min	-2.057	3	0	1	356	3	0	1	0	3	0	1
211		11	max	1228.015	1	0	1	.917	1	0	1	0	1	0	1
212			min	-2.009	3	0	1	356	3	0	1	0	3	0	1
213		12	max	1228.079	1	0	1	.917	1	0	1	0	1	0	1
214			min	-1.96	3	0	1	356	3	0	1	0	3	0	1
215		13	max	1228.144	1	0	1	.917	1	0	1	0	1	0	1
216			min	-1.911	3	0	1	356	3	0	1	0	3	0	1
217		14	max	1228.209	1	0	1	.917	1	0	1	.001	1	0	1
218			min	-1.863	3	0	1	356	3	0	1	0	3	0	1
219		15	max	1228.273	1	0	1	.917	1	0	1	.001	1	0	1
220			min	-1.814	3	0	1	356	3	0	1	0	3	0	1
221		16	max	1228.338	1	0	1	.917	1	0	1	.001	1	0	1
222			min	-1.766	3	0	1	356	3	0	1	0	3	0	1
223		17	max	1228.403	1	0	1	.917	1	0	1	.001	1	0	1
224			min	-1.717	3	0	1	356	3	0	1	0	3	0	1
225		18	max	1228.468	1	0	1	.917	1	0	1	.001	1	0	1
226			min	-1.669	3	0	1	356	3	0	1	0	3	0	1
227		19	max	1228.532	1	0	1	.917	1	0	1	.001	1	0	1
228			min	-1.62	3	0	1	356	3	0	1	0	3	0	1
229	M10	1	max		1	.647	4	008	12	.001	1	0	1	0	1
230			min	-341.578	3	.153	15	235	1	0	3	0	3	0	1
231		2	max	331.911	1	.596	4	008	12	.001	1	0	1	0	15
232		_	min	-341.484	3	.141	15	235	1	0	3	0	3	0	4
233		3	max	332.037	1	.545	4	008	12	.001	1	0	1	0	15
234			min	-341.39	3	.129	15	235	1	0	3	Ö	3	0	4
235		4	max		1	.494	4	008	12	.001	1	0	1	0	15
236			min	-341.295	3	.117	15	235	1	0	3	0	3	0	4
237		5	max	332.289	1	.443	4	008	12	.001	1	0	1	0	15
238			min	-341.201	3	.105	15	235	1	0	3	0	3	0	4
239		6	max		1	.392	4	008	12	.001	1	0	1	0	15
240			min	-341.106	3	.093	15	235	1	0	3	0	3	0	4
241		7	max	332.54	1	.341	4	008	12	.001	1	0	1	0	15
242			min	-341.012	3	.081	15	235	1	0	3	0	3	0	4
243		8	max	332.666	1	.289	4	008	12	.001	1	0	1	0	15
244			min	-340.918	3	.069	15	235	1	0	3	0	3	0	4
245		9	max		1	.238	4	008	12	.001	1	0	2	0	15
246			min	-340.823	3	.057	15	235	1	0	3	0	3	0	4
247		10	max	332.918	1	.187	4	008	12	.001	1	0	2	0	15
248		10	min	-340.729	3	.045	15	235	1	0	3	0	3	0	4
249		11	max	333.044	1	.139	2	008	12	.001	1	0	15	0	15
250			min		3	.033	15	235	1	0	3	0	3	0	4
251		12	max		1	.099	2	008	12	.001	1	0	15	0	15
252		12	min		3	.021	15	235	1	0	3	0	3	0	4
253		13	max			.059	2	008	12	.001	1	0	15	0	15
254		13	min	-340.446	3	.007	1	235	1	0	3	0	1	0	4
255		1/		333.421	1	.019	2	008	12	.001	1	0	15	0	15
256		14	min		3	033	1	235	1	0	3	0	1	0	4
		15							1		1		15		15
257		15		333.547 -340.257	<u>1</u> 3	015 073	15	008 235	12	.001 0	3	0	1	0	4
258 259		16	min		<u> </u>	073	15	235 008	12	.001	1	0	15	0	15
		10								<u>.001</u>	3		1		
260		17	min	-340.162	3	12	15	235	1 12			0		0	15
261		17		333.799	<u>1</u>	039	15	008	12	.001	1	0	15	0	15
262		10		-340.068	3_	171	4	235		0	3	0	1 1 5	0	4
263		18	max		<u>1</u>	051	15	008	12	.001	3	0	15	0	15
264		10	min	-339.974	3	222	4	235	1	0		0	1 1 5	0	4
265		19	тах	334.051	1	063	15	008	12	.001	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft		/-y Mome	LC	z-z Mome	. LC
266			min	-339.879	3	273	4	235	1	0	3	0	1	0	4
267	M11	1	max		2	1.761	4	.809	1	.001	1	0	3	0	4
268			min	-175.154	3	.414	15	.011	12	0	15	002	1	0	12
269		2	max	148.046	2	1.584	4	.809	1	.001	1	0	3	0	1
270			min	-175.206	3	.372	15	.011	12	0	15	002	1	0	3
271		3	max	147.976	2	1.408	4	.809	1	.001	1	0	3	0	1
272			min	-175.258	3	.331	15	.011	12	0	15	002	1	0	3
273		4	max	147.907	2	1.231	4	.809	1	.001	1	0	3	0	15
274			min	-175.31	3	.289	15	.011	12	0	15	002	1	0	3
275		5	max	147.838	2	1.054	4	.809	1	.001	1	0	3	0	15
276			min	-175.362	3	.248	15	.011	12	0	15	002	1	0	4
277		6	max	147.768	2	.877	4	.809	1	.001	1	0	3	0	15
278			min	-175.414	3	.206	15	.011	12	0	15	001	1	0	4
279		7	max	147.699	2	.7	4	.809	1	.001	1	0	3	0	15
280			min	-175.466	3	.165	15	.011	12	0	15	001	1	0	4
281		8	max	147.63	2	.523	4	.809	1	.001	1	0	3	0	15
282			min	-175.518	3	.123	15	.011	12	0	15	001	1	001	4
283		9	max	147.561	2	.347	4	.809	1	.001	1	0	3	0	15
284			min	-175.57	3	.081	15	.011	12	0	15	0	1	001	4
285		10	max	147.491	2	.17	4	.809	1	.001	1	0	3	0	15
286			min	-175.622	3	.034	12	.011	12	0	15	0	1	001	4
287		11	max	147.422	2	.016	1	.809	1	.001	1	0	3	0	15
288			min	-175.674	3	055	3	.011	12	0	15	0	1	001	4
289		12	max	147.353	2	043	15	.809	1	.001	1	0	3	0	15
290			min	-175.726	3	184	4	.011	12	0	15	0	1	001	4
291		13	max	147.283	2	085	15	.809	1	.001	1	0	3	0	15
292			min	-175.778	3	361	4	.011	12	0	15	0	1	001	4
293		14	max	147.214	2	126	15	.809	1	.001	1	0	3	0	15
294			min	-175.83	3	538	4	.011	12	0	15	0	1	001	4
295		15	max	147.145	2	168	15	.809	1	.001	1	0	3	0	15
296			min	-175.882	3	714	4	.011	12	0	15	0	10	0	4
297		16	max		2	21	15	.809	1	.001	1	0	1	0	15
298			min	-175.934	3	891	4	.011	12	0	15	0	15	0	4
299		17	max	147.006	2	251	15	.809	1	.001	1	0	1	0	15
300			min	-175.986	3	-1.068	4	.011	12	0	15	0	15	0	4
301		18	max	146.937	2	293	15	.809	1	.001	1	0	1	0	15
302			min	-176.038	3	-1.245	4	.011	12	0	15	0	15	0	4
303		19	max	146.867	2	334	15	.809	1	.001	1	0	1	0	1
304			min	-176.09	3	-1.422	4	.011	12	0	15	0	15	0	1
305	M12	1	max	471.248	1	0	1	4.768	1	0	1	0	1	0	1
306			min		12	0	1	.193	15	0	1	0	3	0	1
307		2		471.313	1	0	1	4.768	1	0	1	0	1	0	1
308			min	7.769	12	0	1	.193	15	0	1	0	15	0	1
309		3	max		1	0	1	4.768	1	0	1	0	1	0	1
310			min	7.801	12	0	1	.193	15	0	1	0	15	0	1
311		4	max		1	0	1	4.768	1	0	1	.001	1	0	1
312			min	7.834	12	0	1	.193	15	0	1	0	15	0	1
313		5	max		1	0	1	4.768	1	0	1	.002	1	0	1
314			min	7.866	12	0	1	.193	15	0	1	0	15	0	1
315		6	max		1	0	1	4.768	1	0	1	.002	1	0	1
316		0	min	7.898	12	0	1	.193	15	0	1	0	15	0	1
317		7	max		1	0	1	4.768	1	0	1	.003	1	0	1
318			min	7.931	12	0	1	.193	15	0	1	<u>.003</u>	15	0	1
319		8	max		1	0	1	4.768	1	0	1	.003	1	0	1
320			min	7.963	12	0	1	.193	15	0	1	 0	15	0	1
321		9	max		1	0	1	4.768	1	0	1	.003	1	0	1
322		3	min	7.995	12	0	1	.193	15	0	1	0	15	0	1
JZZ			1111111	1.333	12	U		. 133	IU	U		U	IU	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
323		10	max	471.831	1	0	1	4.768	1	0	1	.004	1	0	1
324			min	8.028	12	0	1	.193	15	0	1	0	15	0	1
325		11	max	471.895	1	0	1	4.768	1	0	1	.004	1	0	1
326			min	8.06	12	0	1	.193	15	0	1	0	15	0	1
327		12	max	471.96	1	0	1	4.768	1	0	1	.005	1	0	1
328			min	8.092	12	0	1	.193	15	0	1	0	15	0	1
329		13	max	472.025	1	0	1	4.768	1	0	1	.005	1	0	1
330			min	8.125	12	0	1	.193	15	0	1	0	15	0	1
331		14	max	472.089	1	0	1	4.768	1	0	1	.006	1	0	1
332			min	8.157	12	0	1	.193	15	0	1	0	15	0	1
333		15	max	472.154	1	0	1	4.768	1	0	1	.006	1	0	1
334			min	8.189	12	0	1	.193	15	0	1	0	15	0	1
335		16	max	472.219	1	0	1	4.768	1	0	1	.006	1	0	1
336			min	8.222	12	0	1	.193	15	0	1	0	15	0	1
337		17	max	472.284	1	0	1	4.768	1	0	1	.007	1	0	1
338			min	8.254	12	0	1	.193	15	0	1	0	15	0	1
339		18	max	472.348	1	0	1	4.768	1	0	1	.007	1	0	1
340			min	8.287	12	0	1	.193	15	0	1	0	15	0	1
341		19	max		1	0	1	4.768	1	0	1	.008	1	0	1
342			min	8.319	12	0	1	.193	15	0	1	0	15	0	1
343	M1	1	max	162.228	1	338.41	3	-3.828	15	0	1	.184	1	.012	1
344			min	6.595	15	-311.124	1	-93.198	1	0	3	.008	15	011	3
345		2	max	162.367	1	338.229	3	-3.828	15	0	1	.164	1	.079	1
346			min	6.637	15	-311.366	1	-93.198	1	0	3	.007	15	084	3
347		3	max	95.178	1	7.576	9	-3.803	15	0	12	.142	1	.145	1
348			min	-8.058	10	-23.512	2	-93.133	1	0	1	.006	15	156	3
349		4	max	95.317	1	7.374	9	-3.803	15	0	12	.122	1	.146	1
350			min	-7.942	10	-23.754	2	-93.133	1	0	1	.005	15	153	3
351		5	max	95.457	1	7.173	9	-3.803	15	0	12	.102	1	.147	1
352			min	-7.825	10	-23.996	2	-93.133	1	0	1	.004	15	15	3
353		6	max	95.596	1	6.971	9	-3.803	15	0	12	.082	1	.148	1
354			min	-7.709	10	-24.238	2	-93.133	1	0	1	.003	15	147	3
355		7	max	95.736	1	6.77	9	-3.803	15	0	12	.062	1	.149	1
356			min	-7.593	10	-24.479	2	-93.133	1	0	1	.003	15	143	3
357		8	max	95.876	1	6.568	9	-3.803	15	0	12	.041	1	.152	2
358			min	-7.476	10	-24.721	2	-93.133	1	0	1	.002	15	14	3
359		9	max	96.015	1	6.367	9	-3.803	15	0	12	.021	1	.157	2
360			min	-7.36	10	-24.963	2	-93.133	1	0	1	0	15	137	3
361		10	max	96.155	1	6.165	9	-3.803	15	0	12	0	1	.163	2
362			min	-7.244	10	-25.205	2	-93.133	1	0	1	0	10	133	3
363		11	max				9	-3.803	15	0	12	0	12	.168	2
364			min	-7.127	10	-25.447	2	-93.133	1	0	1	019	1	13	3
365		12	1		1	5.762	9	-3.803	15	0	12	001	12	.174	2
366			min	-7.011	10	-25.689	2	-93.133	1	0	1	039	1	127	3
367		13	max	96.574	1	5.561	9	-3.803	15	0	12	002	12	.179	2
368			min	-6.894	10	-25.93	2	-93.133	1	0	1	06	1	123	3
369		14	max		1	5.359	9	-3.803	15	0	12	003	15	.185	2
370			min	-6.778	10	-26.172	2	-93.133	1	0	1	08	1	12	3
371		15	max		1	5.157	9	-3.803	15	0	12	004	15	.191	2
372			min	-6.662	10	-26.414	2	-93.133	1	0	1	1	1	116	3
373		16	max		2	96.111	2	-3.833	15	0	1	005	15	.195	2
374			min	-5.286	3	-163.712	3	-93.729	1	0	12	121	1	111	3
375		17	max		2	95.869	2	-3.833	15	0	1	006	15	.174	2
376			min	-5.181	3	-163.893	3	-93.729	1	0	12	141	1	076	3
377		18	max	-6.605	15	373.14	2	-3.927	15	0	3	007	15	.095	2
378		10	min	-161.689	1	-155.413	3	-96.153	1	0	2	007 162	1	042	3
379		10	max		15	372.898	2	-3.927	15	0	3	007	15	.014	2
513		ן וא	шах	-0.302	ΙÜ	312.030		-0.321	ΙÜ	U	J	007	LΙΌ	.014	

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	<u>LC</u>
380			min	-161.55	1	-155.594	3	-96.153	1	0	2	183	1	008	3
381	M5	1	max	356.5	1	1116.298	3	113	10	0	1	.006	1	.021	3
382			min	12.703	12	-1027.292	1	-38.658	3	0	3	0	10	023	1
383		2	max	356.64	1	1116.116	3	113	10	0	1	0	2	.2	1
384			min	12.773	12	-1027.534	1	-38.658	3	0	3	004	3	221	3
385		3	max	275.741	3	7.087	9	4.395	3	0	3	0	2	.418	1
386			min	-44.044	10	-85.264	2	543	2	0	1	012	3	458	3
387		4	max	275.845	3	6.885	9	4.395	3	0	3	0	2	.426	1
388			min	-43.928	10	-85.506	2	543	2	0	1	011	3	447	3
389		5	max	275.95	3	6.684	9	4.395	3	0	3	0	2	.433	1
390			min	-43.812	10	-85.748	2	543	2	0	1	01	3	437	3
391		6	max	276.055	3	6.482	9	4.395	3	0	3	0	2	.441	1
392			min	-43.695	10	-85.99	2	543	2	0	1	009	3	426	3
393		7	max	276.159	3	6.281	တ	4.395	3	0	3	0	2	.449	1
394			min	-43.579	10	-86.232	2	543	2	0	1	008	3	416	3
395		8	max	276.264	3	6.079	9	4.395	3	0	3	0	2	.456	1
396			min	-43.463	10	-86.473	2	543	2	0	1	007	3	405	3
397		9	max	276.369	3	5.878	9	4.395	3	0	3	0	2	.468	2
398			min	-43.346	10	-86.715	2	543	2	0	1	006	3	394	3
399		10	max	276.474	3	5.676	9	4.395	3	0	3	0	10	.487	2
400			min	-43.23	10	-86.957	2	543	2	0	1	005	3	383	3
401		11	max	276.578	3	5.475	9	4.395	3	0	3	0	10	.505	2
402			min	-43.114	10	-87.199	2	543	2	0	1	004	3	373	3
403		12	max	276.683	3	5.273	တ	4.395	3	0	3	0	10	.524	2
404			min	-42.997	10	-87.441	2	543	2	0	1	003	3	362	3
405		13	max	276.788	3	5.072	9	4.395	3	0	3	0	10	.543	2
406			min	-42.881	10	-87.683	2	543	2	0	1	003	1	351	3
407		14	max	276.892	3	4.87	9	4.395	3	0	3	0	10	.562	2
408			min	-42.765	10	-87.924	2	543	2	0	1	002	1	34	3
409		15	max	276.997	3	4.669	9	4.395	3	0	3	0	15	.581	2
410			min	-42.648	10	-88.166	2	543	2	0	1	002	1	329	3
411		16	max	316.453	2	435.635	2	4.373	3	0	1	0	3	.596	2
412			min	-21.694	3	-506.825	3	576	2	0	15	002	1	314	3
413		17	max	316.593	2	435.393	2	4.373	3	0	1	.001	3	.502	2
414			min	-21.589	3	-507.007	3	576	2	0	15	001	1	204	3
415		18	max	-13.536	12	1226.902	2	4.018	3	0	12	.002	3	.239	2
416			min	-357.556	1	-509.343	3	136	2	0	1	0	2	094	3
417		19	max	-13.466	12	1226.661	2	4.018	3	0	12	.003	3	.017	3
418			min	-357.416	1	-509.524	3	136	2	0	1	0	2	027	2
419	M9	1	max	161.456	1	338.388	3	123.996	1	0	3	008	15	.012	1
420			min		15	-311.105		5.32	15		1	184	1	011	3
421		2	max		1	338.207	3	123.996	1	0	3	005	12	.079	1
422			min	6.603	15	-311.347	1	5.32	15	0	1	157	1	084	3
423		3	max	95.096	1	7.547	9	87.862	1	0	1	.002	3	.145	1
424			min	-7.512	10	-23.526	2	1.901	12	0	15	129	1	156	3
425		4	max	95.235	1	7.345	9	87.862	1	0	1	.003	3	.146	1
426			min	-7.396	10	-23.767	2	1.901	12	0	15	11	1	153	3
427		5	max	95.375	1	7.144	9	87.862	1	0	1	.004	3	.147	1
428			min	-7.279	10	-24.009	2	1.901	12	0	15	09	1	15	3
429		6	max	95.515	1	6.942	9	87.862	1	0	1	.004	3	.148	1
430			min	-7.163	10	-24.251	2	1.901	12	0	15	071	1	147	3
431		7	max		1	6.741	9	87.862	1	0	1	.005	3	.149	1
432			min	-7.047	10	-24.493	2	1.901	12	0	15	052	1	143	3
433		8	max	95.794	1	6.539	9	87.862	1	0	1	.005	3	.152	2
434			min	-6.93	10	-24.735	2	1.901	12	0	15	033	1	14	3
435		9	max	95.934	1	6.338	9	87.862	1	0	1	.006	3	.157	2
436			min	-6.814	10	-24.977	2	1.901	12	0	15	014	1	137	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

438		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC_	z-z Mome	
449	437		10	max							0		.006	3		2
4440				min						12	0	15		2		
444			11											_		
442																
444			12			_								-		
444			40													
446			13													
446			4.4													
448			14													
Heat			15													
449			15													
450			16													
451			10													
452			17													
453			17							_				-		
455			18													
455			10													
456			19													
458			10													
458		M13	1													
459																
460			2													
461																
462			3	max						15						3
464				min		15		3				3		1		
465	463		4	max	124.324	1	36.545	1	-1.966	15	.012	1	002	12	.504	3
466	464			min	5.321	15	-39.572	3	-48.07	1	011	3	096	1	463	1
467 6 max 124.324 1 159.627 3 27.506 1 .012 1 004 12 .397 3 468 min 5.321 15 -146.097 1 .448 12 .011 3 114 1 365 1 470 min 5.321 15 -237.418 1 .942 12 .011 3 .073 1 195 1 471 8 max 124.324 1 358.826 3 103.082 1 .012 1 .002 1 .057 1 472 min 5.321 15 -328.739 1 3.437 12 .011 3 0 3 -,064 3 473 9 max 124.324 1 458.425 3 140.02 1 .111 1 .39 1 474 min 5.321 15 -513.381 6.426	465		5	max	124.324	1	60.028	3	434	15	.012	1	003	12	.495	3
468 min 5.321 15 -146.097 1 .448 12 011 3 114 1 365 1 469 7 max 124.324 1 259.226 3 65.294 1 .012 1 002 12 .211 3 470 min 5.321 15 -237.418 1 1.942 12 .011 3 073 1 195 1 471 8 max 124.324 1 358.826 3 103.082 1 .012 1 .002 1 .057 1 472 min 5.321 15 -328.739 1 3.437 12 011 3 0 3 064 3 473 9 max 124.324 1 558.025 3 140.87 1 .011 2 .253 1 .804 1 .474 .011 2 .253 1 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>3</td> <td></td> <td>•</td> <td></td> <td>_</td>				min		15				1		3		•		_
469 7 max 124.324 1 259.226 3 65.294 1 .012 1 002 12 .211 3 470 min 5.321 15 -237.418 1 1.942 12 011 3 073 1 195 1 471 8 max 124.324 1 358.826 3 103.082 1 .012 1 .002 1 .057 1 472 min 5.321 15 -328.739 1 3.437 12 011 3 0 3 064 3 473 9 max 124.324 1 458.425 3 140.87 1 .011 3 .004 12 -427 3 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 </td <td></td> <td></td> <td>6</td> <td>max</td> <td></td>			6	max												
470 min 5.321 15 -237.418 1 1.942 12 011 3 073 1 195 1 471 8 max 124.324 1 358.826 3 103.082 1 .012 1 .002 1 .057 1 472 min 5.321 15 -328.739 1 3.437 12 011 3 0 3 064 3 473 9 max 124.324 1 458.425 3 140.87 1 .012 1 .111 1 .39 1 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 879 3 477 11 max 93.565<				min												
471 8 max 124.324 1 358.826 3 103.082 1 .012 1 .002 1 .057 1 472 min 5.321 15 -328.739 1 3.437 12 .011 3 0 3 .064 3 473 9 max 124.324 1 458.425 3 140.87 1 .012 1 .111 1 .39 1 474 min 5.321 15 -420.06 1 4.931 12 .0011 3 .004 12 .427 3 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 .012 1 .009 12 .879 3 477 11 max 93.565			7													
472 min 5.321 15 -328.739 1 3.437 12 011 3 0 3 064 3 473 9 max 124.324 1 458.425 3 140.87 1 .012 1 .111 1 .39 1 474 min 5.321 15 -420.06 1 4.931 12 011 3 .004 12 427 3 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 879 3 477 11 max 93.565 1 420.059 1 -4.779 12 .011 3 .106 1 .39 1 478 12 max 93.565 <td></td>																
473 9 max 124.324 1 458.425 3 140.87 1 .012 1 .111 1 .39 1 474 min 5.321 15 -420.06 1 4.931 12 011 3 .004 12 427 3 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 -879 3 477 11 max 93.565 1 420.059 1 -4779 12 .011 3 .106 1 .39 1 478 min 3.829 15 -358.826 3 -10.022 1 .001 2 .057 1 480 min 3.829 15 -259.226 3			8							_				_		
474 min 5.321 15 -420.06 1 4.931 12 011 3 .004 12 427 3 475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 879 3 477 11 max 93.565 1 420.059 1 -4.779 12 .011 3 .106 1 .39 1 478 min 3.829 15 -458.425 3 -140.092 1 012 1 0 12 427 3 479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 1																
475 10 max 124.324 1 558.025 3 178.658 1 .011 2 .253 1 .804 1 476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 879 3 477 11 max 93.565 1 420.059 1 -4.779 12 .011 3 .106 1 .39 1 478 min 3.829 15 -458.425 3 -140.092 1 012 1 0 12 -427 3 479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 15 -358.826 3 -102.304 1 012 1 004 3 .064 3 481 min 3.829			9													
476 min 5.321 15 -511.381 1 6.426 12 012 1 .009 12 879 3 477 11 max 93.565 1 420.059 1 -4.779 12 .011 3 .106 1 .39 1 478 min 3.829 15 -458.425 3 -140.092 1 012 1 0 12 -427 3 479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 15 -358.826 3 -102.304 1 012 1 004 3 064 3 481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 <th< td=""><td></td><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			40													
477 11 max 93.565 1 420.059 1 -4.779 12 .011 3 .106 1 .39 1 478 min 3.829 15 -458.425 3 -140.092 1 012 1 0 12 427 3 479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 15 -358.826 3 -102.304 1 012 1 004 3 064 3 481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 15 -259.226 3 -64.516 1 012 1 076 1 195 1 483 14 max			10								-					
478 min 3.829 15 -458.425 3 -140.092 1 012 1 0 12 427 3 479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 15 -358.826 3 -102.304 1 012 1 004 3 064 3 481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 15 -259.226 3 -64.516 1 012 1 076 1 195 1 483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829			11			15										
479 12 max 93.565 1 328.738 1 -3.284 12 .011 3 .001 2 .057 1 480 min 3.829 15 -358.826 3 -102.304 1 012 1 004 3 064 3 481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 15 -259.226 3 -64.516 1 012 1 076 1 195 1 483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005																
480 min 3.829 15 -358.826 3 -102.304 1 0012 1 004 3 064 3 481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 15 -259.226 3 -64.516 1 012 1 076 1 195 1 483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829			12													
481 13 max 93.565 1 237.417 1 -1.79 12 .011 3 003 15 .211 3 482 min 3.829 15 -259.226 3 -64.516 1 002 1 076 1 195 1 483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 9			12													
482 min 3.829 15 -259.226 3 -64.516 1 012 1 076 1 195 1 483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 <th< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			13													
483 14 max 93.565 1 146.096 1 295 12 .011 3 005 15 .397 3 484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 </td <td></td> <td></td> <td>13</td> <td></td>			13													
484 min 3.829 15 -159.627 3 -26.728 1 012 1 117 1 365 1 485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15			14							-		_		-		
485 15 max 93.565 1 54.775 1 11.06 1 .011 3 005 15 .495 3 486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565			17													
486 min 3.829 15 -60.028 3 .468 15 012 1 124 1 455 1 487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15			15													
487 16 max 93.565 1 39.572 3 48.848 1 .011 3 004 12 .504 3 488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15 -219.188 1 5.063 15 012 1 .002 15 235 1			- '													
488 min 3.829 15 -36.546 1 2 15 012 1 097 1 463 1 489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15 -219.188 1 5.063 15 012 1 .002 15 235 1			16									_		12		_
489 17 max 93.565 1 139.171 3 86.636 1 .011 3 0 12 .424 3 490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15 -219.188 1 5.063 15 012 1 .002 15 235 1																
490 min 3.829 15 -127.867 1 3.531 15 012 1 037 1 39 1 491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15 -219.188 1 5.063 15 012 1 .002 15 235 1			17													
491 18 max 93.565 1 238.771 3 124.424 1 .011 3 .057 1 .256 3 492 min 3.829 15 -219.188 1 5.063 15 012 1 .002 15 235 1																
492 min 3.829 15 -219.188 1 5.063 15012 1 .002 15235 1			18					3				3		1		3
						15				15				15		
493 19 max 93.565 1 338.37 3 162.212 1 .011 3 .184 1 0 1	493		19	max	93.565	1	338.37	3	162.212	1	.011	3	.184	1	0	1

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC			z-z Mome	
494			min	3.829	15	-310.509	1	6.595	15	012	1	.008	15	0	3
495	M16	1	max	-2.241	12	373.192	2	-6.55	15	.008	3	.18	1	0	2
496			min	-93.028	1	-155.624	3	-161.234	1	014	2	.007	15	0	3
497		2	max	-2.241	12	263.456	2	-5.018	15	.008	3	.054	1	.118	3
498			min	-93.028	1	-110.015	3	-123.446	1	014	2	.002	15	283	2
499		3	max	-2.241	12	153.721	2	-3.487	15	.008	3	001	12	.196	3
500			min	-93.028	1	-64.406	3	-85.658	1	014	2	039	1	468	2
501		4	max	-2.241	12	43.986	2	-1.955	15	.008	3	004	15	.233	3
502			min	-93.028	1	-18.797	3	-47.87	1	014	2	098	1	556	2
503		5	max	-2.241	12	26.812	3	423	15	.008	3	005	15	.229	3
504			min	-93.028	1	-65.75	2	-10.082	1	014	2	124	1	547	2
505		6	max	-2.241	12	72.421	3	27.706	1	.008	3	005	15	.185	3
506			min	-93.028	1	-175.485	2	.66	12	014	2	116	1	439	2
507		7	max	-2.241	12	118.03	3	65.494	1	.008	3	003	15	.1	3
508			min	-93.028	1	-285.22	2	2.155	12	014	2	075	1	235	2
509		8	max	-2.241	12	163.639	3	103.282	1	.008	3	.002	2	.068	2
510			min	-93.028	1	-394.955	2	3.649	12	014	2	003	3	025	3
511		9	max	-2.241	12	209.248	3	141.07	1	.008	3	.109	1	.468	2
512			min	-93.028	1	-504.691	2	5.144	12	014	2	.002	12	191	3
513		10	max	-3.926	15	-14.86	15	178.858	1	0	15	.251	1	.965	2
514			min	-95.802	1	-614.426	2	-10.221	3	014	2	.009	12	397	3
515		11	max	-3.926	15	504.691	2	-5.334	12	.014	2	.109	1	.468	2
516			min	-95.802	1	-209.248	3	-140.738	1	008	3	.004	12	191	3
517		12	max	-3.926	15	394.955	2	-3.839	12	.014	2	.001	2	.068	2
518		'-	min	-95.802	1	-163.639	3	-102.95	1	008	3	0	3	025	3
519		13	max	-3.926	15	285.22	2	-2.345	12	.014	2	003	12		3
520		10	min	-95.802	1	-118.03	3	-65.162	1	008	3	074	1	235	2
521		14	max	-3.926	15	175.485	2	85	12	.014	2	004	12	.185	3
522		17	min	-95.802	1	-72.421	3	-27.374	1	008	3	115	1	439	2
523		15	max	-3.926	15	65.749	2	10.414	1	.014	2	005	12	.229	3
524		10	min	-95.802	1	-26.812	3	.435	15	008	3	123	1	547	2
525		16	max	-3.926	15	18.797	3	48.202	1	.014	2	003	12	.233	3
526		10	min	-95.802	1	-43.986	2	1.967	15	008	3	097	1	556	2
527		17	max	-3.926	15	64.406	3	85.99	1	.014	2	0	12	.196	3
528		11/	min	-95.802	1	-153.721	2	3.499	15	008	3	037	1	468	2
529		18	max	-3.926	15	110.015	3	123.778	1	.014	2	.056	1	.118	3
530		10	min	-95.802	1	-263.456	2	5.031	15	008	3	.002	15	283	2
531		19	max	-3.926	15	155.624	3	161.566	1	.014	2	.183	1	0	2
532		19		-95.802	1	-373.192	2	6.562	15	008	3	.007	15	0	3
533	M15	1	min	<u>-93.602</u> 0	2	2.793	4	.03	3	008 0	1	<u>.007</u> 	1	0	1
534	IVITO		max	-46.125	3	0	2	029	1	0	3	0	3	0	1
535		2		0 -40.125	2	2.483	4	.03	3	0	1	0	1	0	2
536			max	-46.195	3	0	2	029	1	0	3	0	3	001	4
		3	min			2.173	4	.03	3	0	1	0	1	<u>001</u> 0	2
537		3	max	<u>0</u>	2		2		1	0		0	3		
538		4	min	-46.266	2	1 000		029 .03	3	0	1	0	1	002	4
539		4	max	0		1.862	4							0	2
540		-	min	-46.336	3	0	2	029	1	0	3	0	3	003	4
541		5	max	0	2	1.552	4	.03	3	0	1	0	1	0	2
542			min	-46.407	3	0	2	029	1	0	3	0	3	004	4
543		6	max	0	2	1.241	4	.03	3	0	1	0	1	0	2
544		-	min	-46.477	3	0	2	029	1	0	3	0	3	005	4
545		7	max	0	2	.931	4	.03	3	0	1	0	3	0	2
546			min	<u>-46.548</u>	3	0	2	029	1	0	3	0	1	005	4
547		8	max	0	2	.621	4_	.03	3	0	1	0	3	0	2
548			min	<u>-46.618</u>	3	0	2	029	1	0	3	0	1	006	4
549		9	max	0	2	.31	4	.03	3	0	1	0	3	0	2
550			min	-46.689	3	0	2	029	1	0	3	0	1	006	4

: Schletter, Inc. : HCV

Job Number : Model Name : Standard PVMii

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

[[]]				_							z-z Mome	
	nax 0	2	0	1	.03	3	0	1	0	3	0	2
	min -46.75		0	1	029	1	0	3	0	1	006	4
	nax 0	2	0	2	.03	3	0	1	0	3	0	2
	min -46.83		31	4	029	1	0	3	0	1	006	4
	nax 0	2	0	2	.03	3	0	1	0	3	0	2
	min -46.9		621	4	029	1	0	3	0	1	006	4
	nax 0	2	0	2	.03	3	0	1	0	3	0	2
	min -46.97		931	4	029	1	0	3	0	1	005	4
	nax 0 min -47.04	1 2	0	2	.03	3	0	1	0	3	0	2
		1 3	-1.241 0	2	029 .03	3	0	1	0	3	005 0	2
	nax 0 min -47.11		-1.552	4	029	1	0	3	0	1	004	4
	nax 0	2 2	0	2	.03	3	0	1	0	3	0	2
	min -47.18		-1.862	4	029	1	0	3	0	1	003	4
	nax 0	2 2	0	2	.03	3	0	1	0	3	0	2
	min -47.25		-2.173	4	029	1	0	3	0	1	002	4
	nax 0	2	0	2	.03	3	0	1	0	3	0	2
	min -47.32		-2.483	4	029	1	0	3	0	1	001	4
	nax 0	2	0	2	.03	3	0	1	0	3	0	1
	min -47.39		-2.793	4	029	1	0	3	0	1	0	1
	nax -1.035		2.793	4	.021	1	0	3	0	3	0	1
	min -46.89		.657	15	013	3	0	2	0	1	0	1
	nax957		2.483	4	.021	1	0	3	0	3	0	15
	min -46.82		.584	15	013	3	0	2	0	1	001	4
575 3 n	nax878	10	2.173	4	.021	1	0	3	0	3	0	15
	min -46.75		.511	15	013	3	0	2	0	1	002	4
577 4 n	nax8	10	1.862	4	.021	1	0	3	0	3	0	15
578 r	min -46.68	1 3	.438	15	013	3	0	2	0	1	003	4
	nax722		1.552	4	.021	1	0	3	0	3	0	15
	min -46.61		.365	15	013	3	0	2	0	1	004	4
	nax643		1.241	4	.021	1	0	3	0	3	001	15
	min -46.54		.292	15	013	3	0	2	0	1	005	4
	nax565		.931	4	.021	1	0	3	0	3	001	15
	min -46.47		.219	15	013	3	0	2	0	1	005	4
	nax487		.621	4	.021	1	0	3	0	3	001	15
	min -46.39		.146	15	013	3	0	2	0	1	006	4
	nax408		.31	4	.021	1	0	3	0	3	001	15
	min -46.32		.073	15	013	3	0	2	0	1	006	4
	nax33	10	0	1	.021	3	0	3	0	3	001	15
	min -46.25 nax252		073	15	013 .021	1	0	3	0	3	006 001	15
	nax252 min -46.18		073	4	013	3	0	2	0	1	006	4
	nax173		146	15	.021	1	0	3	0	3	000 001	15
	min -46.11		621	4	013	3	0	2	0	1	006	4
	nax095		219	15	.021	1	0	3	0	2	001	15
	min -46.04		931	4	013	3	0	2	0	3	005	4
	nax017		292	15	.021	1	0	3	0	1	001	15
	min -45.97		-1.241	4	013	3	0	2	0	3	005	4
	nax .062	10	365	15	.021	1	0	3	0	1	0	15
	min -45.90		-1.552	4	013	3	0	2	0	3	004	4
	nax .14	10	438	15	.021	1	0	3	0	1	0	15
	min -45.83		-1.862	4	013	3	0	2	0	3	003	4
	nax .218		511	15	.021	1	0	3	0	1	0	15
	min -45.76		-2.173	4	013	3	0	2	0	3	002	4
	nax .297	10	584	15	.021	1	0	3	0	1	0	15
	min -45.69		-2.483	4	013	3	0	2	0	3	001	4
607 19 n	nax .375	10	657	15	.021	1	0	3	0	1	0	1

Model Name

Schletter, Inc.HCV

нсу

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-45 624	3	-2 793	4	- 013	3	0	2	0	3	0	1

Envelope Member Section Deflections

		_		ni Dene										
	Member	Sec		<u>x [in]</u>	LC	y [in]	LC	z [in]	LC x Rotate [r					
1	M2	1	max	.003	1	.01	2	.017	1 -6.216e-5	<u>15</u>	NC	3_	NC	3
2			min	003	3	01	3	0	3 -1.52e-3	1_	3952.211	2	2256.571	1
3		2	max	.003	1	.009	2	.016	1 -5.945e-5	15	NC	3	NC	3
4			min	003	3	009	3	0	3 -1.454e-3	1_	4304.16	2	2429.417	1
_ 5		3	max	.003	1	.008	2	.015	1 -5.674e-5	<u>15</u>	NC	3	NC	3
6			min	003	3	009	3	0	3 -1.388e-3	1	4720.966	2	2633.566	1
7		4	max	.003	1	.008	2	.014	1 -5.403e-5	<u> 15</u>	NC	3	NC	3
8			min	003	3	009	3	0	3 -1.322e-3	1	5217.831	2	2876.462	1
9		5	max	.002	1	.007	2	.012	1 -5.132e-5	15	NC	1_	NC	3
10			min	003	3	008	3	0	3 -1.256e-3	1	5814.88	2	3168.035	1
11		6	max	.002	1	.006	2	.011	1 -4.861e-5	15	NC	1	NC	3
12			min	003	3	008	3	0	3 -1.191e-3	1	6539.177	2	3521.769	1
13		7	max	.002	1	.005	2	.01	1 -4.589e-5	15	NC	1	NC	3
14			min	002	3	007	3	0	3 -1.125e-3	1_	7427.796	2	3956.352	1
15		8	max	.002	1	.005	2	.009	1 -4.318e-5	15	NC	1	NC	2
16			min	002	3	007	3	0	3 -1.059e-3	1	8532.625	2	4498.296	1
17		9	max	.002	1	.004	2	.008	1 -4.047e-5	15	NC	1	NC	2
18			min	002	3	006	3	0	3 -9.93e-4	1	9928.147	2	5186.276	1
19		10	max	.002	1	.003	2	.006	1 -3.776e-5	15	NC	1	NC	2
20			min	002	3	006	3	0	3 -9.271e-4	1	NC	1	6078.578	1
21		11	max	.001	1	.003	2	.005	1 -3.505e-5	15	NC	1	NC	2
22			min	002	3	005	3	0	3 -8.613e-4	1	NC	1	7266.558	1
23		12	max	.001	1	.002	2	.004	1 -3.234e-5	15	NC	1	NC	2
24			min	001	3	005	3	0	3 -7.954e-4	1	NC	1	8900.456	1
25		13	max	.001	1	.002	2	.004	1 -2.962e-5	15	NC	1	NC	1
26			min	001	3	004	3	0	3 -7.295e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.003	1 -2.691e-5	15	NC	1	NC	1
28			min	0	3	003	3	0	3 -6.637e-4	1	NC	1	NC	1
29		15	max	0	1	.001	2	.002	1 -2.42e-5	15	NC	1	NC	1
30			min	0	3	003	3	0	3 -5.978e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	.001	1 -2.149e-5	15	NC	1	NC	1
32			min	0	3	002	3	0	12 -5.32e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1 -1.878e-5	15	NC	1	NC	1
34			min	0	3	001	3	0	12 -4.661e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1 -1.607e-5	15	NC	1	NC	1
36			min	0	3	0	3	0	12 -4.003e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1 -1.165e-5	12	NC	1	NC	1
38			min	0	1	0	1	0	1 -3.344e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1 1.578e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1 5.61e-6	12	NC	1	NC	1
41		2	max	0	3	0	2	0	12 1.941e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1 7.801e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12 2.303e-4	1	NC	1	NC	1
44			min	0	2	002	3	001	1 9.297e-6	15	NC	1	NC	1
45		4	max	0	3	0	2	0	12 2.665e-4	1	NC	1	NC	1
46			min	0	2	003	3	001	1 1.079e-5	15	NC	1	NC	1
47		5	max	0	3	0	2	0	12 3.027e-4	1	NC	1	NC	1
48			min	0	2	004	3	001	1 1.229e-5	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3 3.389e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1 1.379e-5	15	NC	1	NC	1
51		7	max	0	3	0	2	0	3 3.752e-4	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

52 53 54			min	0	2	00E	_								
						005	3	001	1	1.528e-5	15	NC	1_	NC	1
5 /		8	max	0	3	.001	2	0	3	4.114e-4	_1_	NC	_1_	NC	1
			min	0	2	006	3	0	1	1.678e-5	<u>15</u>	NC	1_	NC	1
55		9	max	0	3	.002	2	0	3	4.476e-4	_1_	NC	1_	NC	1
56		40	min	0	2	006	3	0	2	1.827e-5	<u>15</u>	NC NC	1_	NC NC	1
57		10	max	0	3	.002	2	0	1	4.838e-4	1_	NC NC	1	NC	1
58		44	min	0	2	007	3	0	15	1.977e-5	<u>15</u>	NC NC	1_	NC NC	1
59		11	max	.001	3	.003	2	001	1	5.2e-4	1_	NC NC	1	NC NC	1
60		10	min	0		007	3	0		2.127e-5		NC NC	1	NC NC	1
61 62		12	max min	.001 001	3	.003 008	3	.002 0	15	5.563e-4 2.276e-5	<u>1</u> 15	NC NC	1	NC NC	1
63		13	max	.001	3	.004	2	.003	1	5.925e-4	1	NC	1	NC	1
64		13	min	001	2	008	3	<u>.003</u>	15	2.426e-5	15	NC NC	1	NC NC	1
65		14	max	.001	3	.005	2	.004	1	6.287e-4	1	NC	1	NC	1
66		14	min	001	2	008	3	0	15	2.575e-5		9415.819	2	NC	1
67		15	max	.002	3	.006	2	.005	1	6.649e-4	1	NC	1	NC	2
68		10	min	001	2	009	3	0	15	2.725e-5	15	7942.04	2	8880.786	1
69		16	max	.002	3	.007	2	.006	1	7.011e-4	1	NC	1	NC	2
70		-10	min	001	2	009	3	0		2.875e-5		6796.151	2	7404.633	1
71		17	max	.002	3	.008	2	.007	1	7.374e-4	1	NC	3	NC	2
72			min	001	2	009	3	0	15	3.024e-5		5895.903	2	6345.265	1
73		18	max	.002	3	.009	2	.008	1	7.736e-4	1	NC	3	NC	2
74			min	002	2	009	3	0	15	3.174e-5	15	5182.303	2	5558.556	1
75		19	max	.002	3	.01	2	.009	1	8.098e-4	1	NC	3	NC	2
76			min	002	2	009	3	0	15	3.323e-5	15	4612.692	2	4959.723	1
77	M4	1	max	.002	1	.012	2	0	15	-4.646e-5	12	NC	1	NC	3
78			min	0	12	01	3	007	1	-1.176e-3	1	NC	1	2769.475	1
79		2	max	.002	1	.011	2	0	15	-4.646e-5	12	NC	1_	NC	3
80			min	0	12	009	3	006	1	-1.176e-3	1_	NC	1_	3020.617	1
81		3	max	.002	1	.01	2	0	15	-4.646e-5	12	NC	_1_	NC	3
82			min	0	12	009	3	006	1	-1.176e-3	1_	NC	1_	3319.547	1
83		4	max	.002	1	.01	2	0	15	-4.646e-5		NC	1_	NC	3
84		_	min	0	12	008	3	005	1	-1.176e-3		NC	1_	3678.862	1_
85		5	max	.002	1	.009	2	0	15	-4.646e-5		NC	1_	NC	2
86		_	min	0	12	008	3	005	1	-1.176e-3	1_	NC NC	1_	4115.726	1_
87		6	max	.002	1	.008	2	0	15	-4.646e-5	12	NC	1	NC 4054 040	2
88		7	min	0	12	007	3	004	1	-1.176e-3	1_	NC NC	1_	4654.012	1
89		7	max	.001	1	800.	2	0	15	-4.646e-5	12	NC NC	1_	NC	2
90		0	min	0	12	006	3	004	1	-1.176e-3	12	NC NC	<u>1</u> 1	5327.725	1
91		8	max min	<u>.001</u> 0	12	.007 006	3	003	15	-4.646e-5 -1.176e-3	12	NC NC	1	NC 6186.661	1
93		9	max	.001	1	.006	2	<u>003</u> 0	15			NC NC	1	NC	2
94		9	min	0	12	005	3	003	1	-1.176e-3		NC	1	7306.145	
95		10	max	.001	1	.006	2	003	15	-4.646e-5		NC	1	NC	2
96		10	min	0	12	005	3	002	1	-1.176e-3		NC	1	8804.605	1
97		11	max	0	1	.005	2	0	15	-4.646e-5		NC	1	NC	1
98			min	0	12	004	3	002	1	-1.176e-3		NC	1	NC	1
99		12	max	0	1	.005	2	0	15	-4.646e-5		NC	1	NC	1
100		- 12	min	0	12	004	3	001	1	-1.176e-3		NC	1	NC	1
101		13	max	0	1	.004	2	0	15	-4.646e-5		NC	1	NC	1
102			min	0	12	003	3	001	1	-1.176e-3		NC	1	NC	1
103		14	max	0	1	.003	2	0	15	-4.646e-5		NC	1	NC	1
104			min	0	12	003	3	0	1	-1.176e-3		NC	1	NC	1
105		15	max	0	1	.003	2	0	15	-4.646e-5		NC	1	NC	1
106			min	0	12	002	3	0	1	-1.176e-3		NC	1	NC	1
107		16	max	0	1	.002	2	0	15	-4.646e-5		NC	1	NC	1
108			min	0	12	002	3	0	1	-1.176e-3		NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC y [in] LC z [in]		LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio L						LC		
109		17	max	0	1	.001	2	0	15	-4.646e-5	12	NC	1	NC	1
110			min	0	12	001	3	0	1	-1.176e-3	1	NC	1	NC	1
111		18	max	0	1	0	2	0	15	-4.646e-5	12	NC	1	NC	1
112			min	0	12	0	3	0	1	-1.176e-3	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-4.646e-5	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-1.176e-3	1	NC	1	NC	1
115	M6	1	max	.01	1	.033	2	.005	1	2.791e-4	3	NC	3	NC	2
116	1110		min	011	3	029	3	003	3	1.974e-6		1204.578	2	7644.399	
117		2	max	.009	1	.031	2	.005	1	2.701e-4	3	NC	3	NC	2
118			min	011	3	027	3	003	3	1.054e-6	10	1288.503	2	8310.695	
119		3	max	.009	1	.028	2	.004	1	2.61e-4	3	NC	3	NC	2
120		3	min	01	3	026	3	003	3	1.33e-7	10	1384.612	2	9099.158	
		1													1
121		4	max	.008	1	.026	2	.004	1	2.52e-4	3	NC	3	NC NC	1
122		_	min	009	3	024	3	003	3	-1.471e-6	2	1495.34	2	NC	1
123		5_	max	.008	1	.024	2	.004	1	2.43e-4	3_	NC 1000 000	3	NC	1
124			min	009	3	023	3	002	3	-5.213e-6	2	1623.823	2	NC	1
125		6	max	.007	1	.022	2	.003	1	2.34e-4	3	NC	3_	NC	1
126			min	008	3	021	3	002	3	-8.954e-6	2	1774.166	2	NC	1
127		7	max	.007	1	.02	2	.003	1	2.249e-4	3	NC	3	NC	1
128			min	008	3	02	3	002	3	-1.27e-5	2	1951.847	2	NC	1
129		8	max	.006	1	.018	2	.002	1	2.159e-4	3	NC	3	NC	1
130			min	007	3	018	3	002	3	-1.644e-5	2	2164.338	2	NC	1
131		9	max	.006	1	.016	2	.002	1	2.069e-4	3	NC	3	NC	1
132			min	006	3	016	3	002	3	-2.018e-5	2	2422.099	2	NC	1
133		10	max	.005	1	.014	2	.002	1	1.978e-4	3	NC	3	NC	1
134		10	min	006	3	015	3	001	3	-2.392e-5	2	2740.237	2	NC	1
135		11	max	.004	1	.013	2	.001	1	1.888e-4	3	NC	3	NC	1
136			min	005	3	013	3	001	3	-2.766e-5	2	3141.407	2	NC	1
137		12	max	.004	1	.011	2	.001	1	1.798e-4	3	NC	3	NC	1
138		12	min	004	3	012	3	0	3	-3.14e-5	2	3661.198	2	NC	1
139		13		.003	1	.009	2	0	1	1.708e-4	3	NC	3	NC	1
		13	max												1
140		4.4	min	004	3	01	3	0	3	-3.515e-5	2	4358.911	2	NC NC	1
141		14	max	.003	1	.007	2	0	1	1.617e-4	3_	NC	3	NC NC	1
142			min	003	3	008	3	0	3	-3.889e-5	2	5341.257	2	NC	1
143		15	max	.002	1	.006	2	0	1	1.527e-4	3_	NC	3_	NC	1
144			min	003	3	007	3	0	3	-4.263e-5	2	6821.61	2	NC	1
145		16	max	.002	1	.004	2	0	1	1.437e-4	3_	NC	_1_	NC	1
146			min	002	3	005	3	0	3	-4.637e-5	2	9297.773	2	NC	1
147		17	max	.001	1	.003	2	0	1	1.346e-4	3	NC	_1_	NC	1
148			min	001	3	003	3	0	3	-5.011e-5	2	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	1.256e-4	3	NC	1	NC	1
150			min	0	3	002	3	0	3	-5.385e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.166e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-5.759e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.692e-5	2	NC	1	NC	1
154			min	0	1	0	1	0	1	-5.473e-5	3	NC	1	NC	1
155		2	max	0	3	.002	2	0	3	2.248e-5	2	NC	1	NC	1
156			min	0	2	002	3	0	2	-4.021e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	2.119e-5	<u> </u>	NC	1	NC	1
158		J		0	2	004	3	0	2	-2.569e-5	3	NC NC	1	NC	1
		4	min		3		2						1		-
159		4	max	.001		.004		0	3	2.161e-5	1	NC NC		NC NC	1
160		-	min	001	2	006	3	0	2	-1.116e-5	3	NC NC	1_	NC NC	1
161		5	max	.001	3	.006	2	0	3	2.203e-5	1 -	NC	1_	NC NC	1
162			min	002	2	008	3	0	2	7.415e-7	15	7970.879	2	NC	1
163		6	max	.002	3	.007	2	.001	3	2.246e-5	1_	NC	3	NC	1
164			min	002	2	009	3	0	2	8.579e-7	15	6391.958	2	NC	1
165		7	max	.002	3	.009	2	.001	3	3.241e-5	3	NC	3	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
166			min	002	2	011	3	0	1	3.18e-7	2	5314.15	2	NC	1
167		8	max	.002	3	.01	2	.001	3	4.693e-5	3	NC	3	NC	1
168			min	003	2	013	3	0	1	-4.115e-6	2	4525.316	2	NC	1
169		9	max	.003	3	.012	2	.002	3	6.145e-5	3	NC	3	NC	1
170		4.0	min	003	2	014	3	001	1	-8.548e-6	2	3919.725	2	NC	1
171		10	max	.003	3	.013	2	.002	3	7.598e-5	3	NC	3	NC	1
172		44	min	004	2	016	3	001	1	-1.298e-5	2	3438.772	2	NC	1
173		11	max	.003	3	.015	2	.002	3	9.05e-5	3_	NC 2047 200	3	NC NC	1
174		40	min	004	2	017	3	001	1	-1.741e-5	2	3047.288	2	NC NC	1
175		12	max	.004	3	.017 018	3	.002 002	1	1.05e-4 -2.185e-5	2	NC 2722.793	2	NC NC	1
176 177		13	min	004 .004	3	.018 .019	2	.002	3			NC	3	NC NC	1
178		13	max min	005	2	02	3	002	1	1.195e-4 -2.628e-5	2	2450.16	2	NC NC	1
179		14	max	.003	3	.021	2	.002	3	1.341e-4	3	NC	3	NC NC	1
180		14	min	005	2	021	3	002	1	-3.071e-5	2	2218.754	2	NC	1
181		15	max	.005	3	.023	2	.002	3	1.486e-4	3	NC	3	NC	1
182		10	min	006	2	022	3	002	1	-3.515e-5	2	2020.822	2	NC	1
183		16	max	.005	3	.025	2	.002	3	1.631e-4	3	NC	3	NC	1
184		10	min	006	2	023	3	002	1	-3.958e-5	2	1850.536	2	NC	1
185		17	max	.005	3	.027	2	.002	3	1.776e-4	3	NC	3	NC	1
186		<u> </u>	min	006	2	023	3	002	1	-4.401e-5	2	1703.408	2	NC	1
187		18	max	.006	3	.029	2	.002	3	1.922e-4	3	NC	3	NC	1
188			min	007	2	024	3	003	1	-4.845e-5	2	1575.906	2	NC	1
189		19	max	.006	3	.031	2	.002	3	2.067e-4	3	NC	3	NC	1
190			min	007	2	025	3	003	1	-5.288e-5	2	1465.215	2	NC	1
191	M8	1	max	.006	1	.037	2	.003	1	-6.734e-6	10	NC	1	NC	2
192			min	0	3	028	3	001	3	-2.085e-4	1	NC	1	6679.983	1
193		2	max	.006	1	.035	2	.003	1	-6.734e-6	10	NC	1	NC	2
194			min	0	3	027	3	001	3	-2.085e-4	1	NC	1	7282.95	1
195		3	max	.005	1	.033	2	.002	1	-6.734e-6	10	NC	1_	NC	2
196			min	0	3	025	3	0	3	-2.085e-4	1_	NC	1	8000.784	1
197		4	max	.005	1	.031	2	.002	1	-6.734e-6	10	NC	_1_	NC	2
198			min	0	3	024	3	0	3	-2.085e-4	1_	NC	1_	8863.745	1
199		5	max	.005	1	.029	2	.002	1	-6.734e-6	10	NC	_1_	NC	2
200			min	0	3	022	3	0	3	-2.085e-4	_1_	NC	_1_	9913.052	1
201		6	max	.004	1	.027	2	.002	1	-6.734e-6	<u>10</u>	NC	_1_	NC	1
202		<u> </u>	min	0	3	02	3	0	3	-2.085e-4	1_	NC	1_	NC	1
203		7	max	.004	1	.025	2	.002	1	-6.734e-6	10	NC	1_	NC	1
204			min	0	3	019	3	0	3	-2.085e-4	1_	NC	_1_	NC	1
205		8	max	.004	1	.023	2	.001	1	-6.734e-6	10	NC	1_	NC	1
206			min		3	017	3	0		-2.085e-4		NC NC	1	NC NC	1
207		9	max	.003	1	.021	2	.001	1	-6.734e-6		NC NC	1	NC	1
208		10	min	0	3	016	2	0	1	-2.085e-4	10	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.003	3	.019	3	0		-6.734e-6		NC NC	1	NC NC	1
210		11	min max	.003	1	014 .017	2	<u> </u>	1	-2.085e-4 -6.734e-6	10	NC NC	1	NC NC	1
212			min	0	3	013	3	0	3	-0.734e-0 -2.085e-4	1	NC	1	NC	1
213		12	max	.002	1	.015	2	0	1	-6.734e-6		NC	1	NC	1
214		12	min	0	3	011	3	0	3	-0.734e-0 -2.085e-4	1	NC	1	NC	1
215		13	max	.002	1	.012	2	0	1	-6.734e-6	_	NC NC	1	NC NC	1
216		13	min	0	3	009	3	0	3	-2.085e-4	1	NC	1	NC	1
217		14	max	.002	1	.01	2	0	1	-6.734e-6	-	NC	1	NC	1
218			min	0	3	008	3	0	3	-2.085e-4	1	NC	1	NC	1
219		15	max	.001	1	.008	2	0	1	-6.734e-6	•	NC	1	NC	1
220		10	min	0	3	006	3	0	3	-2.085e-4	1	NC	1	NC	1
221		16	max	0	1	.006	2	0	1	-6.734e-6		NC	1	NC	1
222			min	0	3	005	3	0	3	-2.085e-4	1	NC	1	NC	1
										T	-		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio) LC
223		17	max	0	1	.004	2	0	1	-6.734e-6	10	NC	1_	NC	1
224			min	0	3	003	3	0	3	-2.085e-4	1_	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-6.734e-6	10	NC	_1_	NC	1
226			min	0	3	002	3	0	3	-2.085e-4	_1_	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-6.734e-6	<u>10</u>	NC	_1_	NC	1
228	1440	4	min	0	1	0	1	0	1	-2.085e-4	1_	NC	1_	NC NC	1
229	<u>M10</u>	1	max	.003	1	.01	2	0	3	1.231e-3	1_	NC	3	NC	1
230			min	003	3	01	3	002	1	-2.538e-4	3	3953.986	2	NC NC	1
231		2	max	.003	1	.009	2	0	3	1.167e-3	1_	NC 4000 400	3_	NC	1
232		2	min	003	3	009	2	002	3	-2.459e-4	3	4306.163 NC	2	NC NC	1
233		3	max	.003 003	3	.008 009	3	0 002	1	1.102e-3 -2.381e-4	<u>1</u> 3	4723.252	2	NC NC	1
235		4	min	.003	1	009 .008	2	<u>002</u> 0	3	1.037e-3		NC	3	NC NC	1
236		4	max	003	3	009	3	002	1	-2.302e-4	<u>1</u> 3	5220.473	2	NC NC	1
237		5		.003	1	.007	2	<u>002</u> 0	3	9.725e-4	<u> </u>	NC	1	NC NC	1
238		-	max	003	3	008	3	002	1	-2.223e-4	3	5817.972	2	NC	1
239		6	max	.002	1	.006	2	0	3	9.077e-4	1	NC	1	NC	1
240			min	002	3	008	3	002	1	-2.144e-4	3	6542.846	2	NC	1
241		7	max	.002	1	.005	2	0	3	8.43e-4	1	NC	1	NC	1
242			min	002	3	007	3	002	1	-2.066e-4	3	7432.214	2	NC	1
243		8	max	.002	1	.005	2	0	3	7.783e-4	1	NC	1	NC	1
244			min	002	3	007	3	002	1	-1.987e-4	3	8538.032	2	NC	1
245		9	max	.002	1	.004	2	0	3	7.135e-4	1	NC	1	NC	1
246			min	002	3	006	3	001	1	-1.908e-4	3	9934.883	2	NC	1
247		10	max	.002	1	.003	2	0	3	6.488e-4	1	NC	1	NC	1
248			min	002	3	006	3	001	1	-1.83e-4	3	NC	1	NC	1
249		11	max	.001	1	.003	2	0	3	5.841e-4	1	NC	1	NC	1
250			min	001	3	005	3	001	1	-1.751e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	5.193e-4	1	NC	1	NC	1
252			min	001	3	005	3	0	1	-1.672e-4	3	NC	1_	NC	1
253		13	max	.001	1	.002	2	0	3	4.546e-4	1_	NC	1_	NC	1
254			min	001	3	004	3	0	1	-1.594e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	3.898e-4	1_	NC	1_	NC	1
256			min	0	3	004	3	0	1	-1.515e-4	3	NC	1_	NC	1
257		15	max	0	1	.001	2	0	3	3.251e-4	_1_	NC	_1_	NC	1
258		40	min	0	3	003	3	0	1	-1.436e-4	3	NC	1_	NC NC	1
259		16	max	0	1	0	2	0	3	2.604e-4	1_	NC	1	NC	1
260		47	min	0	3	002	3	0	1	-1.358e-4	3	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	3	1.956e-4	1_	NC	1_	NC	1
262 263		10	min max	<u> </u>	3	002	2	0	3	-1.279e-4 1.309e-4	3	NC NC	<u>1</u> 1	NC NC	1
		18			3	0	3	0	1	-1.2e-4		NC NC	1	NC NC	1
264		19	min	<u> </u>	1	0		0	1		3	NC NC	1	NC NC	1
265 266		19	max min	0	1	0	1	0	1	6.616e-5 -1.122e-4	<u>1</u>	NC NC	1	NC NC	1
267	M11	1	max	0	1	0	1	0	1	5.286e-5	3	NC	1	NC	1
268	IVI I		min	0	1	0	1	0	1	-3.264e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	2	3.588e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-1.011e-4	1	NC	1	NC	1
271		3	max	0	3	0	2	0	10	1.889e-5	3	NC	1	NC	1
272			min	0	2	002	3	0	3	-1.696e-4	1	NC	1	NC	1
273		4	max	0	3	<u>002</u> 0	2	0	10	1.906e-6	3	NC	1	NC	1
274			min	0	2	003	3	0	3	-2.38e-4	1	NC	1	NC	1
275		5	max	0	3	<u>.003</u>	2	0	10		_	NC	1	NC	1
276		Ť	min	0	2	004	3	001	1	-3.065e-4	1	NC	1	NC	1
277		6	max	0	3	<u>.00+</u>	2	0	15	-1.529e-5	15	NC	1	NC	1
278		Ĭ	min	0	2	004	3	002	1	-3.75e-4	1	NC	1	NC	1
279		7	max	0	3	0	2	0		-1.817e-5	15	NC	1	NC	1
			,an											<u> </u>	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	2	005	3	003	1	-4.434e-4	1_	NC	1_	NC	1
281		8	max	0	3	.001	2	00	15		<u>15</u>	NC	_1_	NC	1
282			min	0	2	006	3	004	1	-5.119e-4	1_	NC	1_	NC	1
283		9	max	0	3	.002	2	0	15	-2.393e-5	15	NC	1_	NC	2
284		40	min	0	2	<u>007</u>	3	005	1_1_	-5.803e-4	1_	NC	1_	9566.919	1
285		10	max	0	3	.002	2	0	15	-2.681e-5	<u>15</u>	NC	1	NC 7040,007	2
286		44	min	0	2	007	3	006	1_	-6.488e-4	1_	NC NC	1_	7640.227	1
287		11	max	.001	3	.003	2	0	15	-2.969e-5	<u>15</u>	NC NC	1_	NC coop of	2
288		40	min	0	2	008	3	007	1	-7.173e-4	1_	NC NC	1_1	6292.05	1
289		12	max	.001	3	.003	3	0 009	15	-3.257e-5	<u>15</u>	NC NC	1	NC 5311.243	2
290 291		13	min	001	3	008	2		1 1 5	-7.857e-4	1_	NC NC	1	NC	2
291		13	max	.001 001	2	.004 008	3	0 01	15	-3.545e-5 -8.542e-4	<u>15</u> 1	NC NC	1	4575.551	1
293		14	max	.001	3	.005	2	<u>01</u> 0	15	-3.833e-5	15	NC NC	1	NC	2
294		14	min	001	2	008	3	011	1	-9.227e-4	1	9426.766	2	4010.117	1
295		15	max	.002	3	.006	2	0	15	-4.121e-5	15	NC	1	NC	3
296		10	min	001	2	009	3	013	1	-9.911e-4	1	7950.496	2	3566.992	1
297		16	max	.002	3	.007	2	0	15	-4.409e-5	15	NC	1	NC	3
298		10	min	001	2	009	3	014	1	-1.06e-3	1	6802.835	2	3214.306	1
299		17	max	.002	3	.008	2	0	15	-4.697e-5	15	NC	3	NC	3
300		<u> </u>	min	001	2	009	3	016	1	-1.128e-3	1	5901.306	2	2930.219	
301		18	max	.002	3	.009	2	0	15	-4.984e-5	15	NC	3	NC	3
302			min	002	2	009	3	017	1	-1.197e-3	1	5186.766	2	2699.388	1
303		19	max	.002	3	.01	2	0	15	-5.272e-5	15	NC	3	NC	3
304			min	002	2	009	3	018	1	-1.265e-3	1	4616.457	2	2510.814	1
305	M12	1	max	.002	1	.012	2	.015	1	1.181e-3	1	NC	1	NC	3
306			min	0	12	01	3	0	15	5.004e-5	15	NC	1	1275.919	1
307		2	max	.002	1	.011	2	.014	1	1.181e-3	1	NC	1	NC	3
308			min	0	12	009	3	0	15	5.004e-5	15	NC	1	1391.35	1
309		3	max	.002	1	.01	2	.013	1	1.181e-3	1_	NC	1_	NC	3
310			min	0	12	009	3	0	15	5.004e-5	15	NC	1_	1528.759	1
311		4	max	.002	1	.01	2	.011	1	1.181e-3	1_	NC	1_	NC	3
312			min	0	12	008	3	0	15	5.004e-5	15	NC	1_	1693.937	1
313		5	max	.002	1	.009	2	.01	1	1.181e-3	_1_	NC	_1_	NC	3
314			min	0	12	008	3	0	15	5.004e-5	15	NC	_1_	1894.773	1
315		6	max	.002	1	.008	2	.009	1	1.181e-3	_1_	NC	_1_	NC	3
316		<u> </u>	min	0	12	007	3	0	15	5.004e-5	15	NC	1_	2142.243	1
317		7	max	.001	1	.008	2	.008	1	1.181e-3	1_	NC	1_	NC	3
318			min	0	12	007	3	0	15	5.004e-5	15	NC	1_	2451.978	1
319		8	max	.001	1	.007	2	.007	1	1.181e-3	1_	NC NC	1_	NC 00.46.000	3
320			min	0	12	006	3	0		5.004e-5			1	2846.868	
321		9	max	.001	1	.006	2	.006	1	1.181e-3	1_	NC NC	1_1	NC	3
322		10	min	0	12	005	2	0	15		<u>15</u>	NC NC	<u>1</u> 1	3361.54	1
323		10	max	.001	12	.006	3	.005 0	1 1 5	1.181e-3	15	NC NC	1	NC 4050 43	2
324 325		11	min max	<u> </u>	1	005 .005	2	.004	1 <u>5</u>	5.004e-5 1.181e-3	<u>15</u> 1	NC NC	1	4050.43 NC	2
326			min	0	12	004	3	<u>.004</u> 0	15	5.004e-5	15	NC	1	5003.203	
327		12	max	0	1	.005	2	.003	1	1.181e-3	1	NC	1	NC	2
328		12	min	0	12	004	3	<u>.003</u>	15		15	NC	1	6376.28	1
329		13	max	0	1	.004	2	.002	1	1.181e-3	1	NC	1	NC	2
330		13	min	0	12	003	3	0	15	5.004e-5	15	NC NC	1	8463.098	
331		14	max	0	1	.003	2	.002	1	1.181e-3	1	NC	1	NC	1
332			min	0	12	003	3	0	15		15	NC NC	1	NC	1
333		15	max	0	1	.003	2	.001	1	1.181e-3	1	NC	1	NC	1
334		10	min	0	12	002	3	0	15	5.004e-5	15	NC NC	1	NC	1
335		16	max	0	1	.002	2	0	1	1.181e-3	1	NC	1	NC	1
336		1.5	min	0	12	002	3	0	15	5.004e-5	15	NC	1	NC	1
000			1111111		12	.002			- 10	J.0070 0	.0	110			

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
337		17	max	0	1	.001	2	0	1	1.181e-3	_1_	NC	_1_	NC	1
338			min	0	12	001	3	0	15	5.004e-5	15	NC	<u>1</u>	NC	1
339		18	max	0	1	00	2	00	1	1.181e-3	_1_	NC	_1_	NC	1
340			min	0	12	0	3	0	15	5.004e-5	15	NC	1_	NC	1
341		19	max	0	1	00	1	0	1_	1.181e-3	_1_	NC	_1_	NC	1_
342			min	0	1	0	1	0	1	5.004e-5	15	NC	1_	NC	1
343	M1	1	max	.009	3	.026	3	.002	3	1.389e-2	_1_	NC	_1_	NC	1
344			min	009	2	025	1	006	1	-1.504e-2	3	NC	1_	NC	1
345		2	max	.009	3	.015	3	.001	3	6.44e-3	1_	NC	4	NC	2
346			min	009	2	015	2	013	1	-7.457e-3	3	4173.375	1_	6495.872	1
347		3	max	.009	3	.005	3	0	3	-9.974e-6	12	NC	4_	NC	2
348			min	009	2	004	2	018	1	-8.738e-4	1_	2153.482	2	3938.948	1
349		4	max	.009	3	.005	1	0	3	-5.577e-6	12	NC	5	NC	3
350			min	009	2	003	3	02	1	-7.473e-4	1	1508.55	2	3259.339	
351		5	max	.009	3	.012	1	0	3	4.934e-7	3	NC	5	NC	3
352			min	009	2	01	3	02	1	-6.209e-4	1	1196.507	2	3129.579	1
353		6	max	.009	3	.019	2	0	12	7.023e-6	3	NC	5	NC	3
354			min	009	2	016	3	019	1	-4.945e-4	1	1018.385	2	3348.376	1
355		7	max	.009	3	.024	2	0	3	1.355e-5	3	NC	5	NC	2
356			min	009	2	02	3	017	1	-3.681e-4	1	908.728	2	3986.109	1
357		8	max	.009	3	.028	2	0	3	2.008e-5	3	NC	5	NC	2
358			min	009	2	023	3	014	1	-2.417e-4	1	840.19	2	5469.4	1
359		9	max	.009	3	.03	2	0	3	2.661e-5	3	NC	5	NC	2
360			min	009	2	025	3	01	1	-1.152e-4	1	799.87	2	9882.257	1
361		10	max	.009	3	.031	2	0	3	3.314e-5	3	NC	5	NC	1
362		1.0	min	009	2	025	3	006	1	-4.657e-6	2	781.633	2	NC	1
363		11	max	.009	3	.031	2	0	3	1.376e-4	1	NC	5	NC	1
364			min	009	2	024	3	001	1	6.001e-6	15	783.301	2	NC	1
365		12	max	.009	3	.028	2	.003	1	2.64e-4	1	NC	5	NC	2
366		12	min	009	2	022	3	0	15	1.115e-5	15	805.832	2	6292.367	1
367		13	max	.009	3	.025	2	.006	1	3.904e-4	1	NC	5	NC	2
368		10	min	009	2	019	3	0	15	1.629e-5	15	853.825	2	4375.741	1
369		14	max	.003	3	.019	2	.008	1	5.169e-4	1	NC	5	NC	3
370		17	min	009	2	015	3	0	15	2.143e-5	15	937.831	2	3590.437	1
371		15	max	.008	3	.012	2	.01	1	6.433e-4	1	NC	5	NC	3
372		15	min	009	2	009	3	0	15	2.658e-5	15	1080.945	2	3308.73	1
373		16	max	.008	3	.004	1	.009	1	7.309e-4	1	NC	5	NC	3
374		10		009	2	003	3	<u>.009</u>	15	3.017e-5	15	1339.477	2	3411.708	
		17	min		3				1			NC	4		2
375		17	max	.008		.005	3	.007		2.822e-5	<u>3</u>		2	NC 4004.0F0	1
376		10	min	009	2	007	2	0	15	-1.059e-4	_	1892.241		4094.959	•
377		18		.008	3	.013	3	.003	4.5	8.252e-3	2	NC	4	NC C700 005	2
378		10	min	009	2	019	2	<u> </u>	15	-3.526e-3	3	3655.521	2	6720.935	
379		19	max	.008	3	.022	3		3	1.672e-2	2	NC	1_	NC NC	1
380	N 45		min	009	2	032	2	004	1	-7.146e-3	3	NC NC	1_	NC NC	1
381	<u>M5</u>	1_	max	.025	3	.077	3	.002	3	1.122e-6	3	NC	1_	NC NC	1
382			min	03	2	079	1	007	1	5.612e-8	10	NC	1_	NC NC	1
383		2	max	.025	3	.046	3	.003	3	7.453e-5	3	NC 4000 000	5_	NC NC	1
384			min	03	2	046	1	006	1	-6.592e-5	1_	1389.906	_1_	NC	1
385		3	max	.025	3	.017	3	.003	3	1.465e-4	3	NC	5	NC	1
386			min	03	2	014	1	005	1	-1.315e-4	_1_	714.589	<u>1</u>	NC	1
387		4	max	.025	3	.012	1	.004	3	1.419e-4	3	NC	5	NC	1
388			min	03	2	008	3	004	1	-1.245e-4	1	502.994	1_	NC	1
389		5	max	.025	3	.036	1	.004	3	1.374e-4	3	NC	5	NC	1
390			min	03	2	028	3	004	1	-1.176e-4	1	401.076	1	NC	1
391		6	max	.025	3	.055	1	.005	3	1.329e-4	3	NC	15	NC	1
392			min	03	2	044	3	003	1	-1.107e-4	1	343.241	1	NC	1
393		7	max	.025	3	.07	2	.005	3	1.283e-4	3	NC	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
394			min	03	2	057	3	003	1	-1.038e-4	1_	306.701	2	NC	1
395		8	max	.025	3	.081	2	.005	3	1.238e-4	3	NC	15	NC	1
396			min	03	2	065	3	003	1	-9.687e-5	<u>1</u>	283.053	2	NC	1
397		9	max	.025	3	.089	2	.004	3	1.192e-4	3	NC	15	NC	1
398		40	min	03	2	07	3	003	1	-8.996e-5	1_	269.014	2	NC	1
399		10	max	.025	3	.092	2	.004	3	1.147e-4	3	NC	<u>15</u>	NC NC	1
400		44	min	03	2	<u>071</u>	3	002	1	-8.304e-5	1_	262.472	2	NC NC	1
401		11	max	.025	3	.09	2	.004	3	1.101e-4	3	NC occ ccc	15	NC NC	1
402		40	min	03	2	069	3	002	1	-7.612e-5	1	262.663	2	NC NC	1
403		12	max	.025	3	.084	3	.004 002	3	1.056e-4	<u>3</u>	NC 260 885	<u>15</u> 2	NC NC	1
404		13	min	03 .025	3	063 .073	2	.002	3	-6.921e-5 1.011e-4	3	269.885 NC	15	NC NC	1
406		13	max	03	2	054	3	002	1	-6.229e-5	1	285.668	2	NC NC	1
407		14	max	.025	3	.058	2	.002	3	9.651e-5	3	NC	15	NC NC	1
408		14	min	03	2	042	3	002	1	-5.538e-5	1	313.547	2	NC	1
409		15	max	.025	3	.037	2	.002	3	9.197e-5	3	NC	5	NC	1
410		13	min	03	2	026	3	003	1	-4.915e-5	2	361.303	2	NC	1
411		16	max	.024	3	.011	1	.002	3	8.399e-5	3	NC	5	NC	1
412		10	min	03	2	008	3	003	1	-5.153e-5	1	448.013	2	NC	1
413		17	max	.024	3	.014	3	.001	3	-3.796e-6	12	NC	5	NC	1
414			min	03	2	022	2	003	1	-2.924e-4	1	635.21	2	NC	1
415		18	max	.024	3	.037	3	0	3	-2.514e-6	12	NC	5	NC	1
416			min	03	2	059	2	003	1	-1.499e-4	1	1233.563	2	NC	1
417		19	max	.024	3	.061	3	0	3	-3.228e-8	15	NC	1	NC	1
418			min	03	2	098	2	003	1	-2.297e-7	3	NC	1	NC	1
419	M9	1	max	.009	3	.026	3	.001	3	1.504e-2	3	NC	1	NC	1
420			min	009	2	026	1	008	1	-1.389e-2	1	NC	1	NC	1
421		2	max	.009	3	.015	3	0	3	7.44e-3	3	NC	4	NC	2
422			min	009	2	015	1	002	1	-6.733e-3	1	4174.218	1	7608.705	1
423		3	max	.009	3	.005	3	.003	1	2.907e-4	1_	NC	4	NC	2
424			min	009	2	004	2	0	3	-2.353e-5	3	2154.327	2	4734.305	
425		4	max	.009	3	.005	1	.005	1	1.834e-4	1_	NC	5	NC	3
426			min	009	2	003	3	0	3	-3.153e-5	3	1509.154	2	4020.604	
427		5	max	.009	3	.012	2	.005	1	7.607e-5	_1_	NC	5_	NC	3
428		_	min	009	2	01	3	001	3	-3.953e-5	3	1196.984	2	3997.459	
429		6	max	.009	3	.019	2	.004	1	7.227e-6	10	NC	5	NC	3
430		_	min	009	2	016	3	002	3	-4.753e-5	3	1018.784	2	4508.845	
431		7	max	.009	3	.024	2	.002	1		10	NC	5	NC	2
432			min	009	2	02	3	002	3	-1.386e-4	1_	909.078	2	5885.164	
433		8	max	.009	3	.028	2	0	2	-1.007e-5	<u>15</u>	NC 040 FOC	5	NC 0047.007	2
434			min		2	023	3	003		-2.459e-4				9917.987	
435		9	max	.009	3	.03	2	0		-1.445e-5			5	NC NC	1
436		10	min	009	2	025	2	005	1 1 1 5	-3.532e-4	1_	800.163	2	NC NC	1
437		10	max	.009	3	.031	3	0	1	-1.883e-5		NC 791 012	5	NC NC	1
438 439		11	min max	009 .009	3	025 .03	2	008 0	15	-4.605e-4 -2.321e-5	<u>1</u> 15	781.912 NC	<u>2</u> 5	NC NC	2
440		11	min	009	2	024	3	012	1	-5.679e-4	1	783.573	2	6798.551	1
441		12	max	.009	3	.028	2	<u>012</u> 0	15			NC	5	NC	2
442		12	min	009	2	022	3	015	1	-6.752e-4	1	806.105	2	4496.915	
443		13	max	.009	3	.025	2	<u>015</u> 0	15		15	NC	5	NC	2
444		13	min	009	2	025	3	018	1	-3.197e-3 -7.825e-4	1	854.106	2	3526.951	1
445		14	max	.009	3	.019	2	<u>018</u> 0	15			NC	5	NC	3
446		14	min	009	2	015	3	019	1	-8.898e-4	1	938.129	2	3083.671	1
447		15	max	.008	3	.012	2	<u>019</u> 0	15		15	NC	5	NC	3
448		10	min	009	2	009	3	019	1	-9.972e-4	1	1081.276	2	2955.279	
449		16	max	.008	3	.004	1	0	15		15	NC	5	NC	3
450		1.5	min	009	2	003	3	018	1	-1.074e-3	1	1339.869	2	3128.828	
100			1111111	.000		.000		.010		1.07 70 0		.000.000		0120.020	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.008	3	.005	3	0	15	2.395e-5	3	NC	4	NC	2
452			min	009	2	007	2	015	1	-4.318e-4	1	1892.756	2	3827.137	1
453		18	max	.008	3	.013	3	0	15	3.553e-3	3	NC	4	NC	2
454			min	009	2	019	2	01	1	-8.377e-3	2	3656.478	2	6370.138	1
455		19	max	.008	3	.022	3	0	3	7.145e-3	3	NC	1	NC	1
456			min	009	2	032	2	002	1	-1.672e-2	2	NC	1	NC	1
457	M13	1	max	.008	1	.026	3	.009	3	4.097e-3	3	NC	1	NC	1
458	IWITO		min	001	3	026	1	009	2	-4.22e-3	1	NC	1	NC	1
459		2	max	.008	1	.181	3	.054	1	4.947e-3	3	NC	5	NC	3
460			min	001	3	169	1	0	10	-5.14e-3	1	1239.457	3	3273.687	1
461		3		.008	1	.308	3	.135	1	5.798e-3	3	NC	5	NC	3
		3	max								-				
462		-	min	001	3	286	1	.006	15	-6.059e-3	1_	681.453	3_	1372.085	
463		4	max	.008	1	.388	3	.204	1	6.648e-3	3	NC	5	NC_	3
464			min	001	3	36	1	.009	15	-6.979e-3	1_	530.958	3	920.455	1
465		5_	max	.007	1	.411	3	.237	1_	7.499e-3	3	NC	_5_	NC	3
466			min	001	3	383	1	.01	15	-7.898e-3	1_	498.008	3	793.099	1
467		6	max	.007	1	.381	3	.226	1	8.349e-3	3	NC	5_	NC	3
468			min	002	3	355	1	.01	15	-8.818e-3	1	541.528	3	832.609	1
469		7	max	.007	1	.306	3	.172	1	9.199e-3	3	NC	5	NC	3
470			min	002	3	287	1	.007	10	-9.737e-3	1	686.558	3	1084.581	1
471		8	max	.007	1	.208	3	.092	1	1.005e-2	3	NC	5	NC	3
472			min	002	3	198	1	003	10	-1.066e-2	1	1055.998	3	1979.675	
473		9	max	.007	1	.118	3	.024	3	1.09e-2	3	NC	4	NC	1
474		Ť	min	002	3	116	1	015	2	-1.158e-2	1	2087.325	3	NC	1
475		10	max	.002	1	.077	3	.025	3	1.175e-2	3	NC	4	NC	1
476		10	min	002	3	079	1	03	2	-1.25e-2	1	3607.5	1	9140.427	2
		11					3		3			NC	•	NC	2
477		11	max	.007	1	.118		.03	_	1.09e-2	3		4		
478		40	min	002	3	116	1	014	2	-1.158e-2	1_	2087.323	3	8007.204	
479		12	max	.007	1	.208	3	.1	1	1.005e-2	3_	NC 4055.000	5	NC 1001.071	5
480		10	min	002	3	198	1	003	10	-1.066e-2	1_	1055.998	3	1821.371	1
481		13	max	.006	1	.306	3	.182	1	9.201e-3	3	NC	5	NC	5
482			min	002	3	287	1	.007	10	-9.736e-3	_1_	686.557	3	1026.299	
483		14	max	.006	1	.381	3	.236	1_	8.351e-3	3_	NC	5	NC	5_
484			min	002	3	355	1	.01	15	-8.816e-3	1_	541.528	3	797.016	1
485		15	max	.006	1	.412	3	.247	1	7.502e-3	3	NC	5	NC	5
486			min	002	3	383	1	.01	15	-7.896e-3	1	498.008	3	763.375	1
487		16	max	.006	1	.388	3	.211	1	6.652e-3	3	NC	5	NC	5
488			min	002	3	36	1	.009	15	-6.976e-3	1	530.958	3	887.692	1
489		17	max	.006	1	.308	3	.14	1	5.802e-3	3	NC	5	NC	3
490			min	002	3	286	1	.006	15		1	681.453	3	1321.307	1
491		18	max	.006	1	.181	3	.056	1	4.952e-3	3	NC	5	NC	3
492		1.0	min	002	3	169	1	0		-5.137e-3	1	1239.457	3	3128.38	1
493		19	max	.006	1	.026	3	.009	3	4.103e-3	3	NC	1	NC	1
494		13	min	002	3	025	1	009	2	-4.217e-3	1	NC	1	NC	1
495	M16	1		.002	1	.023	3	.008	3	5.037e-3		NC	1	NC	1
496	IVITO	-	max	0	3	032	2	009	2	-3.313e-3	3	NC NC	1	NC NC	1
		2	min												
497		2	max	.002	1	.095	3	.057	1	6.124e-3	2	NC	5_	NC 0057.040	3
498		-	min	0	3	205	2	0	10	-3.969e-3	3	1114.758	2	3057.342	
499		3	max	.003	1	.156	3	.142	1	7.21e-3	2	NC	5	NC	3
500			min	0	3	346	2	.006	15	-4.626e-3	3	612.416	2	1305.838	
501		4	max	.003	1	.195	3	.212	1_	8.297e-3	2	NC	_5_	NC	5
502			min	0	3	435	2	.009	15	-5.282e-3	3	476.49	2	882.732	1
503		5	max	.003	1	.208	3	.246	1	9.384e-3	2	NC	5	NC	5
504			min	0	3	463	2	.01	15	-5.938e-3	3	445.849	2	762.658	1
505		6	max	.003	1	.196	3	.235	1	1.047e-2	2	NC	5	NC	5
506			min	0	3	43	2	.01	15	-6.594e-3	3	482.803	2	799.955	1
507		7	max	.003	1	.164	3	.18	1	1.156e-2	2	NC	5	NC	5

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
508			min	0	3	349	2	.007	10	-7.25e-3	3	607.321	2	1036.386	
509		8	max	.003	1	.12	3	.098	1	1.264e-2	2	NC	5_	NC	5
510			min	0	3	242	2	003	10	-7.906e-3	3	918.227	2	1860.942	1
511		9	max	.003	1	.08	3	.028	3	1.373e-2	2	NC	4	NC	2
512			min	0	3	143	2	015	2	-8.562e-3	3	1735.975	2	8664.082	1
513		10	max	.003	1	.061	3	.024	3	1.482e-2	2	NC	4	NC	1
514			min	0	3	098	2	03	2	-9.218e-3	3	2922.754	2	9176.41	2
515		11	max	.003	1	.08	3	.025	3	1.373e-2	2	NC	4	NC	2
516			min	0	3	143	2	014	2	-8.562e-3	3	1735.975	2	9331.17	1
517		12	max	.003	1	.12	3	.095	1	1.265e-2	2	NC	5	NC	3
518			min	0	3	242	2	003	10	-7.905e-3	3	918.227	2	1917.32	1
519		13	max	.004	1	.164	3	.176	1	1.156e-2	2	NC	5	NC	5
520			min	0	3	349	2	.007	10	-7.248e-3	3	607.321	2	1060.64	1
521		14	max	.004	1	.196	3	.23	1	1.047e-2	2	NC	5	NC	5
522			min	0	3	43	2	.01	15	-6.591e-3	3	482.803	2	817.254	1
523		15	max	.004	1	.208	3	.241	1	9.385e-3	2	NC	5	NC	5
524			min	0	3	463	2	.01	15	-5.934e-3	3	445.849	2	779.545	1
525		16	max	.004	1	.195	3	.207	1	8.299e-3	2	NC	5	NC	3
526			min	0	3	435	2	.009	15	-5.277e-3	3	476.49	2	904.542	1
527		17	max	.004	1	.156	3	.137	1	7.212e-3	2	NC	5	NC	3
528			min	0	3	346	2	.006	15	-4.621e-3	3	612.416	2	1345.556	
529		18	max	.004	1	.095	3	.055	1	6.125e-3	2	NC	5	NC	3
530			min	0	3	205	2	0	10	-3.964e-3	3	1114.758	2	3190.945	1
531		19	max	.004	1	.022	3	.008	3	5.039e-3	2	NC	1	NC	1
532			min	0	3	032	2	009	2	-3.307e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.76e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-8.315e-5	2	NC	1	NC	1
535		2	max	0	3	006	15	.001	1	8.745e-4	3	NC	5	NC	1
536			min	0	10	025	4	0	3	-6.306e-4	2	4103.476	4	NC	1
537		3	max	0	3	012	15	.004	1	1.373e-3	3	8883.158	15	NC	1
538		T .	min	0	10	05	4	003	3	-1.178e-3	1	2088.119	4	NC	1
539		4	max	0	3	017	15	.008	1	1.872e-3	3	6094.365	15	NC	4
540			min	0	10	073	4	007	3	-1.753e-3	1	1432.572	4	8212.859	
541		5	max	0	3	022	15	.013	1	2.37e-3	3	4755.495	15	NC	4
542		J	min	0	10	093	4	012	3	-2.328e-3	1	1117.85	4	5479.863	
543		6	max	0	3	0 <u>95</u> 026	15	.018	1	2.869e-3	3	4002.252	15	NC	4
544		T -	min	0	10	111	4	017	3	-2.902e-3	1	940.789	4	4036.279	
545		7	max	0	3	029	15	.024	1	3.367e-3	3	3549.275	15	NC	4
546		-	min	0	10	125	4	022	3	-3.477e-3	1	834.31	4	3182.252	
547		8	max	0	3	032	15	.029	1	3.866e-3	3	3277.421	15	NC	4
548			min	0	10	135	4	027	3	-4.052e-3		770.407		2641.041	
549		9	max	0	3	033	15	.034	1	4.365e-3	3	3131.093	15	NC	4
550		-	min	0	10	142	4	032	3	-4.626e-3	1	736.01	4	2279.568	
551		10		0	3	034	15	.037	1	4.863e-3	3	3084.802	15	NC	4
552		10	max min	0	10	034 144	4	036	3	-5.201e-3	1	725.129	4	2036.635	
		11		0	3	033	15	036 .04	1		3		15	NC	4
553			max							5.362e-3		3131.093 736.01		1882.499	
554		40	min	0	10	142	4	038	3	-5.776e-3	1_		4_		
555		12	max	0	3	032	15	.041	1	5.86e-3	3_1	3277.421	<u>15</u>	NC 1700 140	5
556		40	min	0	10	136	4	039	3	-6.351e-3	1_	770.407	4	1799.149	
557		13	max	0	3	029	15	.04	1	6.359e-3	3	3549.275	<u>15</u>	NC	5
558		4.4	min	0	10	125	4	038	3	-6.925e-3	1_	834.31	4_	1781.374	
559		14	max	0	3	026	15	.037	1	6.857e-3	3_	4002.252	<u>15</u>	NC 1000 001	4
560			min	0	10	<u>111</u>	4	034	3	-7.5e-3	1_	940.789	4_	1836.961	3
561		15	max	0	3	022	15	.031	1	7.356e-3	3	4755.495	15	NC	4
562			min	0	10	094	4	028	3	-8.075e-3	1_	1117.85	4_	1994.466	
563		16	max	.001	3	017	15	.022	1	7.854e-3	3	6094.365	<u>15</u>	NC	4
564			min	0	10	074	4	019	3	-8.649e-3	1	1432.572	4	2331.413	3

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	012	15	.009	1	8.353e-3	3	8883.158	15	NC	4
566			min	0	10	051	4	006	3	-9.224e-3	1	2088.119	4	3091.011	3
567		18	max	.001	3	006	15	.01	3	8.852e-3	3	NC	5	NC	4
568			min	0	10	027	4	013	2	-9.799e-3	1	4103.476	4	5503.56	3
569		19	max	.001	3	.003	2	.031	3	9.35e-3	3	NC	1	NC	1
570			min	0	10	003	9	034	2	-1.037e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.01	3	3.153e-3	3	NC	1_	NC	1
572			min	001	3	002	1	01	2	-3.147e-3	2	NC	1_	NC	1
573		2	max	0	10	006	15	.006	1	3.02e-3	3	NC	5	NC	2
574			min	001	3	026	4	002	10	-3.004e-3	2	4103.476	4	8629.704	1
575		3	max	0	10	012	15	.015	1	2.887e-3	3	8883.158	15	NC	4
576			min	001	3	05	4	003	3	-2.862e-3	2	2088.119	4	4876.88	1
577		4	max	0	10	017	15	.022	1	2.754e-3	3	6094.365	15	NC	4
578			min	001	3	073	4	008	3	-2.719e-3	2	1432.572	4	3704.218	1
579		5	max	0	10	022	15	.027	1	2.621e-3	3	4755.495	15	NC	4
580			min	0	3	094	4	011	3	-2.576e-3	2	1117.85	4	3194.165	1
581		6	max	0	10	026	15	.03	1	2.487e-3	3	4002.252	15	NC	4
582			min	0	3	111	4	013	3	-2.434e-3	2	940.789	4	2968.895	1
583		7	max	0	10	029	15	.031	1	2.354e-3	3	3549.275	15	NC	4
584			min	0	3	125	4	014	3	-2.291e-3	2	834.31	4	2909.694	1
585		8	max	0	10	032	15	.031	1	2.221e-3	3	3277.421	15	NC	4
586			min	0	3	135	4	014	3	-2.148e-3	2	770.407	4	2975.466	1
587		9	max	0	10	033	15	.029	1	2.088e-3	3	3131.093	15	NC	4
588			min	0	3	141	4	013	3	-2.006e-3	2	736.01	4	3159.692	1
589		10	max	0	10	034	15	.026	1	1.955e-3	3	3084.802	15	NC	4
590			min	0	3	144	4	012	3	-1.863e-3	2	725.129	4	3480.141	1
591		11	max	0	10	033	15	.023	1	1.821e-3	3	3131.093	15	NC	4
592			min	0	3	141	4	01	3	-1.72e-3	2	736.01	4	3982.353	1
593		12	max	0	10	032	15	.019	1	1.688e-3	3	3277.421	15	NC	4
594			min	0	3	135	4	008	3	-1.578e-3	2	770.407	4	4756.745	1
595		13	max	0	10	029	15	.015	1	1.555e-3	3	3549.275	15	NC	3
596			min	0	3	125	4	006	3	-1.435e-3	2	834.31	4	5982.428	1
597		14	max	0	10	026	15	.011	1	1.422e-3	3	4002.252	<u>15</u>	NC	2
598			min	0	3	111	4	004	3	-1.292e-3	2	940.789		8042.154	1
599		15	max	0	10	022	15	.007	1	1.289e-3	3	4755.495	<u>15</u>	NC	1
600			min	0	3	093	4	002	3	-1.15e-3	2	1117.85	4	NC	1
601		16	max	0	10	017	15	.004	1	1.155e-3	3	6094.365	15	NC	1
602			min	0	3	073	4	0	3	-1.007e-3	2	1432.572	4	NC	1
603		17	max	0	10	012	15	.002	1	1.022e-3	3	8883.158	15	NC	1
604			min	0	3	05	4	0	10	-8.644e-4	2	2088.119	4	NC	1
605		18	max	0	10	006	15	0	3	8.89e-4	3	NC	5	NC	1
606			min	0	3	025	4	0	2	-7.218e-4	2	4103.476	4	NC	1
607		19	max	0	1	0	1	0	1	7.558e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.791e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v Ψ _{ed,V} Ψ _{c,V} Ψ _{h,V}	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.