Specification and Implementation of Replicated List

— The Jupiter Protocol Revisited

(OPODIS'2018)

Hengfeng Wei, Yu Huang, Jian Lu

Nanjing University

December 17, 2018

Does Jupiter satisfy the weak list specification?

Yes, it does.

The Main Contribution

The Jupiter protocol [Nichols et al., 1995]^a for replicated list satisfies the weak list specification [Attiya et al., 2016]^b.

This was proposed as a conjecture in a PODC paper [Attiya et al., 2016].

^aDavid A. Nichols et al. (1995). "High-latency, Low-bandwidth Windowing in the Jupiter Collaboration System". In: *Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology*. UIST '95. ACM, pp. 111–120.

^bHagit Attiya et al. (2016). "Specification and complexity of collaborative text editing". In: *Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing*. PODC '16. ACM, pp. 259–268.

Replicated List

Replicated collaborative text editing systems

(a) Google Docs

(c) Wikipedia

(b) Apache Wave

(d) \LaTeX Editor

Replicated collaborative text editing systems

Replicas are required to respond to user operations immediately.

Updates are propagated to other replicas asynchronously.

Replicated list object: to model the core functionality

INS(a, p): Insert a at position p.

Delta L(p): Delete the element at position p.

READ: Return the list.

Weak List Specification

Specification and Complexity of Collaborative Text Editing

Hagit Attiya Technion Sebastian Burckhardt Microsoft Research Alexey Gotsman IMDEA Software Institute

Adam Morrison Technion Hongseok Yang University of Oxford Marek Zawirski* Inria & Sorbonne Universités, UPMC Univ Paris 06, LIP6

Definition (Weak List Specification A_{weak} [Attiya et al., 2016])

Informally, A_{weak} requires the ordering between elements that are not deleted to be consistent across the system.

Specify a global property on all states across the system.

Pairwise state compatibility property:

For any pair of list states, there cannot be two elements a and b such that a precedes b in one state but b precedes a in the other.

Jupiter

Jupiter adopts the client-server architecture [Nichols et al., 1995]:

Jupiter adopts the client-server architecture [Nichols et al., 1995]:

Operations are totally ordered at the server (replica).

Client (replica) $\xrightarrow{\mathsf{FIFO}}$ server $\xrightarrow{\mathsf{FIFO}}$ other clients

To achieve convergence, Jupiter uses 2D state spaces [Xu, Sun, and Li, 2014] to manage how and when to perform OTs ¹ [Ellis and Gibbs, 1989].

There can be ≤ 2 edges coming from the same node (LOCAL or GLOBAL).

¹OT: Operational Transformation

Each client maintains a 2D state space.

The server maintains $n = 3 \cdot 2D$ state spaces, one for each client.

Global property on all replica states specified by $\mathcal{A}_{\mathsf{weak}}$

Local view each replica maintains in Jupiter

CJupiter (Compact Jupiter)

CJupiter maintains an n-ary ordered state space for each replica.

There can be more than two edges coming from the same node.

Edges from the same node are totally ordered by associated operations.

Proposition (Compactness of CJupiter (Informal))

At a high level, CJupiter maintains only one n-ary ordered state space.

Each replica behavior corresponds to a path going through this state space.

Theorem (Equivalence of CJupiter and Jupiter)

Under the same schedule, the behaviors of corresponding replicas in CJupiter and Jupiter are the same.

From the perspectives of both the server and the clients.

CJupiter Satisfies the Weak List Specification

We focus on a single n-ary ordered state space.

We show the pairwise state compatibility property in three steps.

1 Take any two nodes/states v_1 and v_2 .

Lemma (LCA (Lowest Common Ancestor))

Each pair of states in the n-ary ordered state space has a unique LCA.

$$v_0 = \mathsf{LCA}(v_1, v_2)$$

2 Consider the paths to v_1 and v_2 from their LCA v_0 .

Lemma (Disjoint Paths)

The set of operations $O_{v_0 \leadsto v_1}$ along $P_{v_0 \leadsto v_1}$ is disjoint from the set of operations $O_{v_0 \leadsto v_2}$ along $P_{v_0 \leadsto v_2}$.

$$v_0 = \mathsf{LCA}(v_1, v_2)$$

3 Consider the states in these two paths.

Lemma (Compatible Paths)

Each pair of states consisting of one state v in $P_{v_0 \sim v_1}$ and the other v' in $P_{v_0 \sim v_2}$ are compatible.

$$v_0 = \mathsf{LCA}(v_1, v_2)$$

In particular, v_1 and v_2 are compatible.

Brief Announcement

The Jupiter protocol [Nichols et al., 1995]^a for replicated list satisfies the weak list specification [Attiya et al., 2016]^b.

^aDavid A. Nichols et al. (1995). "High-latency, Low-bandwidth Windowing in the Jupiter Collaboration System". In: *Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology*. UIST '95. ACM, pp. 111–120.

^bHagit Attiya et al. (2016). "Specification and complexity of collaborative text editing". In: *Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing*. PODC '16. ACM, pp. 259–268.

Thank You!

- Attiya, Hagit et al. (2016). "Specification and complexity of collaborative text editing". In: *Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing.* PODC '16. ACM, pp. 259–268.
- Ellis, C. A. and S. J. Gibbs (1989). "Concurrency Control in Groupware Systems". In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data. SIGMOD '89. ACM, pp. 399–407.
- Nichols, David A. et al. (1995). "High-latency, Low-bandwidth Windowing in the Jupiter Collaboration System". In: Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology. UIST '95. ACM, pp. 111–120.
- Roh, Hyun-Gul et al. (Mar. 2011). "Replicated Abstract Data Types: Building Blocks for Collaborative Applications". In: *J. Parallel Distrib. Comput.* 71.3, pp. 354–368.
- Shapiro, Marc et al. (2011). "Conflict-free Replicated Data Types". In: *Proceedings of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems.* SSS'11. Springer-Verlag, pp. 386–400.
- Xu, Yi, Chengzheng Sun, and Mo Li (2014). "Achieving Convergence in Operational Transformation: Conditions, Mechanisms and Systems". In: *Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work*. CSCW '14. ACM, pp. 505–518.

We are now actively working on model checking/verifying Jupiter using TLA+/TLAPS.

Backup

Replication (for availability)

Replication (for availability)

Replicas respond to user operations immediately
Updates are propagated asynchronously

Definition (Eventual Convergence (EC) [Ellis and Gibbs, 1989])

The lists at all replicas are identical at quiescence.

Definition (Strong Eventual Consistency (SEC) [Shapiro et al., 2011])

The lists at the replicas that *have executed the same set of user operations* are identical.

Specify little on *intermediate states* going through by replicas.

Strong/weak list specification [Attiya et al., 2016]

Specify global properties on all states across the system.

Specification and Complexity of Collaborative Text Editing

Hagit Attiya Technion

Adam Morrison

Sebastian Burckhardt Microsoft Research

> Hongseok Yang University of Oxford

Alexey Gotsman IMDEA Software Institute

Marek Zawirski*
Inria & Sorbonne Universités,
UPMC Univ Paris 06. LIP6

5/12

Strong/weak list specification [Attiya et al., 2016]

Specify global properties on all states across the system.

Specification and Complexity of Collaborative Text Editing

Hagit Attiya Technion

Adam Morrison

Sebastian Burckhardt Microsoft Research

> Hongseok Yang University of Oxford

Alexey Gotsman IMDEA Software Institute

Marek Zawirski^{*}
Inria & Sorbonne Universités, UPMC Univ Paris 06, LIP6

Proved: RGA [Roh et al., 2011] satisfies the strong list specification.

Conjecture: Jupiter [Nichols et al., 1995] satisfies the weak list specification.

It is still challenging to achieve convergence despite the server.

Serializability may not be desirable.

It does not imply that clients process operations in the same order.

$$\forall \sigma, \sigma' : a, b \in \sigma \cap \sigma' \implies (a \prec_{\sigma} b \iff a \prec_{\sigma'} b)$$
$$(\sigma, \sigma' : \mathsf{list}; \quad a, b : \mathsf{element}; \quad \prec_{\sigma} : \mathsf{precedes})$$

 $\sigma_1:ba$

 $\sigma_0:ax$

 $\sigma_1: xb$

 $\sigma_2:ba$

Jupiter utilizes OT ² [Ellis and Gibbs, 1989] to achieve convergence.

 $\sigma; o_1; o_2' \equiv \sigma; o_2; o_1'$

²OT: Operational Transformation

OT functions for a replicated list object [Ellis and Gibbs, 1989]

$$OT(\text{Ins}(a_1, p_1, pr_1), \text{Ins}(a_2, p_2, pr_2)) = \begin{cases} \text{Ins}(a_1, p_1, pr_1) & p_1 < p_2 \\ \text{Ins}(a_1, p_1 + 1, pr_1) & p_1 > p_2 \end{cases}$$

$$NOP \qquad p_1 = p_2 \land a_1 = a_2$$

$$\text{Ins}(a_1, p_1 + 1, pr_1) \quad p_1 = p_2 \land a_1 \neq a_2 \land pr_1 > pr_2$$

$$\text{Ins}(a_1, p_1, pr_1) \quad p_1 = p_2 \land a_1 \neq a_2 \land pr_1 \leq pr_2$$

$$OT(INS(a_1, p_1, pr_1), DEL(_, p_2, pr_2)) = \begin{cases} INS(a_1, p_1, pr_1) & p_1 \le p_2 \\ INS(a_1, p_1 - 1, pr_1) & p_1 > p_2 \end{cases}$$

$$OT\Big(\text{Del}(_, p_1, pr_1), \text{Ins}(a_2, p_2, pr_2) \Big) = \begin{cases} \text{Del}(_, p_1, pr_1) & p_1 < p_2 \\ \text{Del}(_, p_1 + 1, pr_1) & p_1 \ge p_2 \end{cases}$$

$$OT(\text{Del}(_, p_1, pr_1), \text{Del}(_, p_2, pr_2)) = \begin{cases} \text{Del}(_, p_1, pr_1) & p_1 < p_2 \\ \text{Del}(_, p_1 - 1, pr_1) & p_1 > p_2 \\ \text{NOP} & p_1 = p_2 \end{cases}$$

Consider a replicated system with n (= 3) clients.

Theorem (Equivalence of CJupiter and Jupiter)

Under the same schedule, the behaviors of corresponding replicas in CJupiter and Jupiter are the same.

At the server side:

Proposition $(n \leftrightarrow 1 \text{ (Informal)})$

The single n-ary ordered state space at the server side in CJupiter is a compact representation of $n\ 2D$ state spaces at the server side in Jupiter.

At the client side:

Proposition $(1 \leftrightarrow 1 \text{ (Informal)})$

Jupiter is <u>slightly optimized in implementation</u> at clients by eliminating redundant OTs than CJupiter.