5 Adequate sets of connectives: Solutions

1. Show that $\{\neg, \rightarrow\}$ is an adequate set of connectives.

Solution $p \lor q$ is logically equivalent to $\neg p \to q$; $p \land q$ is equivalent to $\neg (p \to \neg q)$; $p \leftrightarrow q$ is equivalent to $\neg ((p \to q) \to \neg (q \to p))$

2. The NOR connective has the truth table shown. Determine whether or not this connective is, on its own, adequate, justifying your answer.

p	q	pNORq
\mathbb{T}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{F}	\mathbb{F}	${\mathbb T}$

Solution Note that pNORq is equivalent to $\neg(p\lor q)$. Hence pNORp is equivalent to $\neg(p\lor p)$, that is, to $\neg p$, and we've got \neg . Also $p\land q$ is equivalent to $\neg(\neg p\lor \neg q)$ so this is equivalent to $(\neg p)NOR(\neg q)$, hence to (pNORp)NOR(qNORq) and we've got \land as well. Therefore NOR is adequate.

3. Prove that the connective § with truth table shown below is not adequate.

p	q	$p\S q$		
\mathbb{T}	\mathbb{T}	\mathbb{F}		
\mathbb{T}	\mathbb{F}	\mathbb{F}		
\mathbb{F}	\mathbb{T}	\mathbb{T}		
\mathbb{F}	\mathbb{F}	\mathbb{F}		

Solution We prove by induction on complexity of terms, that for any term built up from a set \mathcal{L} of propositional variables using \S only - let us denote the set of such terms by $\operatorname{Term}_\S(\mathcal{L})$ - and for any valuation v, if $v(p) = \mathbb{F}$ for every $p \in \mathcal{L}$, then $v(s) = \mathbb{F}$ for every $s \in \operatorname{Term}_\S(\mathcal{L})$. That will be enough since then there will be no term in $\operatorname{Term}_\S(\mathcal{L})$ which is a tautology.

Base case (s a propositional variable): this is our hypothesis.

Induction step (just one): Suppose that $s = t\S u$ where, by induction, we may assume that $v(t) = \mathbb{F} = v(u)$. Then, consulting the truth table for \S , we see that $v(s) = \mathbb{F}$, as required.

4. Determine whether or not the set $\{\land, \rightarrow\}$ is adequate, justifying your answer.

Solution No. We prove by induction on complexity of terms, that for any term built up from a set \mathcal{L} of propositional variables using \to and \wedge only - let us denote the set of such terms by $\operatorname{Term}_{\to \wedge}(\mathcal{L})$ - and for any valuation v, if $v(p) = \mathbb{T}$ for every $p \in \mathcal{L}$, then $v(s) = \mathbb{T}$ for every $s \in \operatorname{Term}_{\to \wedge}(\mathcal{L})$.

Base case (s a propositional variable): this is our hypothesis on v.

Induction steps (two of them): Suppose that $s=t\to u$ where, by induction, we may assume that $v(t)=\mathbb{T}=v(u)$. Then $v(s)=v(t\to u)=\mathbb{T}$, by the truth table for \to . Similarly $v(t\wedge u)=\mathbb{T}$.

By induction we conclude that $v(s) = \mathbb{T}$ for every term in $\operatorname{Term}_{\to \wedge}(\mathcal{L})$. In particular there is no term in $\operatorname{Term}_{\to \wedge}(\mathcal{L})$ which is equivalent to $\neg p$. Hence $\{\to \wedge\}$ is not adequate.

5. Prove that the connective \neg is not adequate.

Solution Let $\mathcal{L} = \{p, q\}$. We claim that no term in $\operatorname{Term}_{\neg}(\mathcal{L})$ is logically equivalent to $p \wedge q$. To prove this, suppose that $s \in \operatorname{Term}_{\neg}(\mathcal{L})$ is equivalent

to $p \wedge q$. Then only one propositional variable appears in s (an easy inductive proof), say p appears. Let v and w be defined by $v(p) = \mathbb{T}$, $v(q) = \mathbb{T}$, $w(p) = \mathbb{T}$, $w(q) = \mathbb{F}$. Then $v(p \wedge q) \neq w(p \wedge q)$ yet v(s) = w(s), so s is not equivalent to $p \wedge q$, contradiction as desired.

6. What does it mean to say that a set of propositional connectives is adequate? Suppose that the propositional connectives * and \circ have the truth tables shown. Show that $\{*, \circ\}$ is adequate. (You may use the fact that the set $\{\land, \neg\}$ is adequate.)

p	q	p*q	p	q	$p \circ q$
$\overline{\mathbb{T}}$	\mathbb{T}	\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{F}	\mathbb{T}	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{F}	\mathbb{F}	\mathbb{F}

Solution (Very precise (more so than in the notes) answer to first part): A set C of propositional connectives is adequate if for every set \mathcal{L} of propositional variables and every term $s \in S\mathcal{L}$ there is a term $t \in \operatorname{Term}_{\mathcal{C}}\mathcal{L}$ such that, for every function $v_0 : \mathcal{L} \to \{\mathbb{T}, \mathbb{F}\}$, if v is the (unique) extension of v_0 to a valuation on $S\mathcal{L}$ and w is the unique extension of v_0 to a valuation on $\operatorname{Term}(\mathcal{L})$ then w(t) = v(s).

(Perfectly adequate answer to first part): A set C of propositional connectives is adequate if for every propositional term s there is a term built using just the connectives in C to which s is logically equivalent.

(Answer to the rest) Note that p*q is equivalent to $\neg p$ - so we have \neg - and that $p \circ q$ [which we've seen already in Question 3] is equivalent to $\neg p \wedge q$. It will be enough to produce a term involving * and \circ which is equivalent to $p \wedge q$: $(p*q) \circ q$ (or $(p*p) \circ q$) will do.