Devoir surveillé n°8 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Étude d'un endomorphisme.

On note $\mathscr{E} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et f l'application

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + y - z \\ x + 2y + z \\ -x + y + 2z \end{pmatrix}.$$

- 1) Montrer que $f \in \mathcal{L}(\mathbb{R}^3)$ et déterminer les vecteurs $f(e_1)$, $f(e_2)$ et $f(e_3)$.
- 2) Déterminer une base et la dimension du noyau de f. L'application f est-elle injective?
- 3) a) Résoudre l'équation f(x, y, z) = (1, -1, 1) dans \mathbb{R}^3 .
 - b) En déduire que Im $f \neq \mathbb{R}^3$.
 - c) Soit $v_1 = f(e_1)$ et $v_2 = f(e_2)$. Montrer que (v_1, v_2) est une base de Im f.
 - d) Vérifier que $\operatorname{Im} f$ est stable par f.
- 4) Montrer que $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont supplémentaires dans \mathbb{R}^3 .
- 5) Soit v_3 un vecteur non nul de Ker f. Montrer que (v_3) est une base de Ker f et que $\mathscr{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- 6) Écrire $f(v_1)$, $f(v_2)$ et $f(v_3)$ en fonction de v_1 , v_2 et v_3 .

On appelle p la projection sur $F = \operatorname{Im} f$ parallèlement à $G = \operatorname{Ker} f$.

- 7) Soit u un vecteur de \mathbb{R}^3 de coordonnées (a,b,c) dans la base \mathscr{B} .
 - a) Écrire les coordonnées de p(u) dans la base \mathscr{B} .
 - b) Écrire les coordonnées de f(u) dans la base \mathscr{B} .
- 8) En déduire que f est la composée de p et d'une homothétie h dont on déterminera le rapport. Montrer que $f = p \circ h = h \circ p$.
- 9) Démontrer que pour tout $n \in \mathbb{N}^*$, $f^n = h^n \circ p = p \circ h^n$.

II. Calcul d'une intégrale.

Partie A: Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \frac{x \ln x}{x+1}$ si x > 0 et f(0) = 0.

- 1) Montrer que l'équation $x + 1 + \ln x = 0$ admet sur \mathbb{R}_+^* une solution unique α , comprise entre 0 et 1.
- 2) a) La fonction f est-elle continue en 0? Est-elle dérivable en ce point?
 - b) Étudier les variations de f et préciser sa limite en $+\infty$.
 - c) Soit (\mathscr{C}) la courbe représentant f dans un repère orthonormé du plan. Déterminer les points d'intersection de (\mathscr{C}) et de la droite d'équation y = -x. Représenter (\mathscr{C}) .

L'objet de la suite du problème est le calcul de l'intégrale

$$I = \int_0^1 f(x) dx = \int_0^1 \frac{x \ln x}{x+1} dx.$$

Partie B: Limite d'une suite réelle

On considère la suite (S_n) définie sur \mathbb{N}^* par $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k^2}$.

3) Déterminer un réel a tel que pour tout $n \in \mathbb{N}^*$,

$$\int_0^{\pi} at^2 \cos(nt) \, \mathrm{d}t = \frac{(-1)^{n-1}}{n^2}.$$

Indication: on pourra procéder par intégrations par parties.

- 4) Pour chaque $n \in \mathbb{N}^*$, exprimer S_n à l'aide d'une intégrale.
- 5) Démontrer que, pour tout réel t différent de $2p\pi$ pour tout $p \in \mathbb{Z}$,

$$\sum_{k=1}^{n} \cos(kt) = \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{t}{2}\right)} - \frac{1}{2}.$$

6) On considère la fonction g définie sur $[0,2\pi[$ par $g(t)=\frac{t^2}{\sin\left(\frac{t}{2}\right)}$ si $t\in]0,2\pi[$ et

q(0) = 0.

Montrer que g est de classe \mathscr{C}^1 sur $[0, 2\pi[$.

7) a) Vérifier que, pour tout $n \in \mathbb{N}^*$,

$$S_n = \frac{\pi^2}{12} - \frac{1}{4\pi} \int_0^{\pi} g(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt.$$

b) À l'aide d'une intégration par parties, montrer que si h est une fonction de classe \mathscr{C}^1 sur $[0, \pi]$, on a, pour tout $n \in \mathbb{N}^*$,

$$\left| \int_0^{\pi} h(t) \sin\left(\left(n + \frac{1}{2} \right) t \right) dt \right| \leqslant \frac{|h(0)|}{n + \frac{1}{2}} + \frac{\pi}{n + \frac{1}{2}} \max_{t \in [0, \pi]} |h'(t)|.$$

c) En déduire l'existence et la valeur de la limite de la suite (S_n) .

Partie C: Calcul de I.

Pour tout entier $k \ge 1$, on considère les fonctions f_k définies sur \mathbb{R}_+ par : $f_k(x) = x^k \ln x$ si x > 0 et $f_k(0) = 0$.

- 8) a) Étudier la continuité de f_1 sur [0,1].
 - **b)** Pour $k \ge 2$, montrer que f_k est dérivable sur [0,1] et exprimer sa dérivée à l'aide de f_{k-1} .
- 9) Pour tout entier $k \ge 1$, calculer l'intégrale $I_k = \int_0^1 f_k(x) dx$.
- **10)** On pose $m = \max_{t \in [0,1]} |f(t)|$. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\left| I - \sum_{k=1}^{n} (-1)^{k-1} I_k \right| \le m \int_0^1 x^n \, \mathrm{d}x.$$

11) En déduire la valeur de I.

— FIN —