Intro to ML

marco milanesio
MS DATA SCIENCE 2020-2021

The problem

- *n* samples
- predict properties of the unknown

The problem

- *n* samples
- predict properties of the unknown
- that is: learn what the properties are

The problem

- *n* samples
- predict properties of the unknown
- that is: learn what the properties are
- learning:
 - supervised
 - we know some of the attributes
 - unsupervised
 - we know nothing (almost)

ML in a nutshell

- supervised learning
 - classification
 - finite set of labels
 - regression
 - "classification" in the continuum
- unsupervised learning:
 - clustering
 - "similarity"
 - density estimation
 - distribution
 - dimensionality reduction

pipeline

- gather the data
- clean the data
- create a model
- fit a model
- predict
- evaluate

training/testing

- learning from training set
- predicting on testing set (unknown)
- 80-20 / 70-30
- overfitting
- imbalanced datasets:
 - oversampling
 - undesampling

scikit-learn

```
from sklearn import modelXYZ
from sklearn.metrics import some_score

my_model = modelXYZ(*args, **kwargs)
my_model.fit(training_set)
prediction = my_model.predict(testing_set)

print(some_score(ground_truth, prediction))
```

SUPERVISED LEARNING

- Goal: predict the <u>categorical</u> class labels
 - discrete
 - unordered
 - group membership
- Binary classification
 - -spam / no spam
 - -cat / no cat
- Multi-class classification
 - handwritten digits

- logistic regression
- support vector machine
- decision tree
- random forest
- KNN

logistic regression

- perfect for linearly separable
- can be extended to multiclass

$$logit(P) = log \frac{P}{1 - P}$$

logistic regression

- the logit function takes input in [0,1] and returns in (-inf, +inf)
- express linear relationships between feature values and the log-odds

$$logit(P(y=1|X)) = sum(W_iX_i) = W^TX$$

• where is the conditional probability that a particular sample belongs to class 1 given its features x.

sigmoid function

- the inverse of the logit function
- sigmoid(logit(p)) = p

sigmoid

- from (-inf, +inf) to [0,1]
- takes real values and transform them in the [0,1] range with an intercept at 0.5
- THIS IS WHAT THE logit function does while trained.
- the output of the sigmoid is the probability of a certain sample to be of class 1, given its feature x parametrized by the weigths w

regression

- Goal: model the relation between a number of features and a <u>continuous</u> target
 - continuous
 - -fitting a line through the data
- Predict the house pricing given the neighborhood
- Predict how many seconds a user will watch a video

• ...

regression

error evaluation

• gradient descent

UNSUPERVISED LEARNING

unsupervised

- trickier
 - no answer labels (no ground truth)
 - external evaluation vs internal evaluation
 - experts vs objective function
- but:
 - annotating large datasets is very costly (Speech Recognition)
 - -we don't know how many classes can be (Data Mining)
 - gain some insight into the structure of the data before designing a classifier

clustering

- more problems:
 - define distance
 - define similarity
 - define clusters
- Examples:
 - Kmeans
 - Fuzzy Kmeans
 - GMM
 - Hierarchical

— ...