

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Análisis Funcional

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

José Juan Urrutia Milán

Índice general

1.	El Espacio Dual			
	1.1.	Repaso		5
		1.1.1. Ejemplos		6
	1.2.	Espacios de Lebesgue		8
		1.2.1. Designaldades importantes		8
		1.2.2. Definición de los espacios de Lebesgue	. 1	11
		1.2.3. Más ejemplos de espacios de Banach	. 1	11
	1.3.	Espacio dual	. 1	12

Análisis FuIncional Índice general

1. El Espacio Dual

El objetivo de este capítulo es definir el concepto de espacio dual de un espacio normado, así como sus principales propiedades, que nos dotan de muchos ejemplos de espacios de Banach. Para ello, será necesario primero repasar conceptos básicos vistos ya en asignaturas anteriores de Análisis Matemático.

1.1. Repaso

Definición 1.1 (Espacio métrico). Un espacio métrico es una tupla (E, d) donde E es un conjunto no vacío y $d: E \times E \to \mathbb{R}$ es una aplicación que verifica:

- Designaldad triangular. $d(x,z) \leq d(x,y) + d(y,z)$ $\forall x,y,z \in E$
- Simetría. $d(x,y) = d(y,x) \quad \forall x,y \in E$
- No degeneración. $d(x,y) = 0 \iff x = y$

Definición 1.2 (Espacio normado). Un espacio normado es una tupla $(E, \|\cdot\|)$ donde E es un espacio vectorial $y \|\cdot\| : E \to \mathbb{R}$ es una aplicación que verifica:

- Desigualdad triangular. $||x + y|| \le ||x|| + ||y||$ $\forall x, y \in E$
- Homogeneidad por homotecia. $\|\lambda x\| = |\lambda| \|x\|$ $\forall \lambda \in \mathbb{R}, \forall x \in E$
- No degeneración. $||x|| = 0 \Longrightarrow x = 0$

A partir de estas propiedades pueden deducirse muchas otras, entre las cuales destacamos:

Proposición 1.1. Si $(E, \|\cdot\|)$ es un espacio normado, entonces:

- ||0|| = 0.
- $\blacksquare \|x\| \geqslant 0 \qquad \forall x \in E.$

Demostración. Veamos cada propiedad:

- Para la primera: $||0|| = ||0 \cdot 1|| = 0||1|| = 0$.
- Para la segunda, basta observar que si $x \in E$, entonces:

$$0 = ||0|| = ||x + (-x)|| \le 2||x|| \Longrightarrow ||x|| \ge 0$$

Proposición 1.2. Si $(E, \|\cdot\|)$ es un espacio normado y definimos la aplicación $d: E \times E \to \mathbb{R}$ dada por:

$$d(x,y) = \|y - x\| \qquad \forall x, y \in E$$

Se verifica que (E,d) es un espacio métrico.

Definición 1.3 (Espacio métrico completo). Sea (E, d) un espacio métrico, decimos que es completo (o que la distancia d es completa) si toda sucesión de Cauchy para la distancia d es también convergente a un elemento de E para la distancia d.

Hemos visto ya que cualquier espacio normado puede dotarse de estructura de espacio métrico, así como la definición de espacio métrico completo, ambos conceptos tratados ya en asignaturas previas.

Definición 1.4 (Espacio de Banach). Sea $(E, \| \cdot \|)$ un espacio normado, decimos que es de Banach si el espacio métrico (E, d) obtenido de la forma usual a partir de la norma $\| \cdot \|$ es un espacio métrico completo.

Definición 1.5 (Espacio prehilbertiano). Un espacio prehilbertiano es una tupla $(E, \langle \cdot, \cdot \rangle)$ donde H es un espacio vectorial y $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ es una aplicación que verifica:

- Bilinealidad. La aplicación $\langle \cdot, \cdot \rangle$ es lineal en ambas variables.
- Simetría. $\langle x, y \rangle = \langle y, x \rangle$ $\forall x, y \in E$
- Definida positiva. $\langle x, x \rangle > 0$ $\forall x \in H \setminus \{0\}$

Proposición 1.3. Si $(E, \langle \cdot, \cdot \rangle)$ es un espacio prehilbertiano y definimos la aplicación $\|\cdot\|: E \to \mathbb{R}$ dada por:

$$||x|| = \sqrt{\langle x, x \rangle} \qquad \forall x \in E$$

Se verifica que $(E, \|\cdot\|)$ es un espacio normado.

Definición 1.6 (Espacio de Hilbert). Sea $(E, \langle \cdot, \cdot \rangle)$ un espacio prehilbertiano, decimos que es de Hilbert si el espacio normado $(E, \| \cdot \|)$ obtenido de la forma usual a partir del producto escalar $\langle \cdot, \cdot \rangle$ es un espacio métrico de Banach.

1.1.1. Ejemplos

■ Sea $N \in \mathbb{N}$, en \mathbb{R}^N podemos definir para cada $p \geqslant 1$ la aplicación $\|\cdot\|_p : \mathbb{R}^N \to \mathbb{R}$ dada por:

$$||x||_p = \left(\sum_{i=1}^N |x_i|^p\right)^{\frac{1}{p}} \quad \forall x \in \mathbb{R}^N$$

Que hace que $(\mathbb{R}^N, \|\cdot\|_p)$ sea un espacio normado, que de hecho es de Banach (hágase).

■ En el caso anterior, si tomamos p=2 se verifica que además si definimos $\langle \cdot, \cdot \rangle : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ dada por:

$$\langle x, y \rangle = \sum_{i=1}^{N} x_i y_i \qquad \forall x, y \in \mathbb{R}^N$$

Obtenemos que $(\mathbb{R}^N, \langle \cdot, \cdot \rangle)$ es un espacio prehilbertiano (compruébese) cuyo espacio normado canónico coincide con $(\mathbb{R}^N, \|\cdot\|_2)$, por lo que es un espacio de Hilbert.

■ Como otro ejemplo de espacio normado sobre \mathbb{R}^N , podemos definir $\|\cdot\|_{\infty}$: $\mathbb{R}^N \to \mathbb{R}$ dado por:

$$||x||_{\infty} = \sup\{|x_i| : i \in \{0, \dots, N\}\}$$

Se cumple igualmente que $(\mathbb{R}^N, \|\cdot\|_{\infty})$ es un espacio normado que además es de Banach (compruébese).

• Como primer ejemplo de espacio normado que no se construye sobre los vectores de un espacio de la forma \mathbb{R}^N , si tomamos un conjunto $A \subset \mathbb{R}^N$, y definimos¹:

$$C_b(A) = \{ f : A \to \mathbb{R} : f \text{ es continua y } f \text{ es acotada en } A \}$$

Junto con la aplicación $\|\cdot\|: \mathcal{C}_b(A) \to \mathbb{R}$ dada por:

$$||f|| = \sup\{||f(x)|| : x \in A\}$$

Se verifica que $(C_b(A), \|\cdot\|)$ es una espacio normado que de hecho es de Banach (compruébese).

• Sea ahora $K \subset \mathbb{R}^N$ un compacto, si definimos:

$$\mathcal{C}(K) = \{ f : K \to \mathbb{R} : f \text{ es continua} \}$$

resulta que podemos definir una aplicación $\langle \cdot, \cdot \rangle : \mathcal{C}(K) \times \mathcal{C}(K) \to \mathbb{R}$ dada por:

$$\langle f, g \rangle = \int_K f(x)g(x) \ dx$$

que hace que $(\mathcal{C}(K), \langle \cdot, \cdot \rangle)$ sea un espacio prehilbertiano, que nos induce un espacio normado donde la norma es:

$$||f||_2 = \left(\int_K f(x)^2 dx\right)^{\frac{1}{2}} \quad \forall f \in \mathcal{C}(K)$$

Sin embargo, este espacio prehilbertiano no es de Hilbert:

Por ejemplo, si tomamos $K = [0,2] \subset \mathbb{R}$, si tomamos $f_n : K \to \mathbb{R}$ de forma que la gráfica de f_n sea algo parecido a la de la Figura 1.1

¹El subíndice "b" de $C_b(A)$ viene de la palabra inglesa "bounded".

Figura 1.1: Gráfica de la función f_n .

Si definimos $f = \chi_{[1,2]}$ la función característica del intervalo [1,2] (que no pertence a C(K)), tenemos que:

$$||f - f_n||_2^2 = \int_0^2 (f(x) - f_n(x))^2 dx = \frac{1}{2n} \to 0$$

Por lo que f_n es una sucesión de Cauchy pero cuyo límite no está en el espacio que consideramos, por lo que no es convergente, luego $\mathcal{C}(K)$ no es un espacio completo.

1.2. Espacios de Lebesgue

Un ejemplo interesante de espacios de Banach son los espacios de Lebesgue, que ya se trabajaron un poco en la asignatura de Análisis Matemático II. En este documento volveremos a definir dicho espacio, puesto que la construcción es importante tenerla clara. En un primer lugar, hemos de repasar ciertas desigualdades para poder construir la estructura de espacio normado.

1.2.1. Desigualdades importantes

Para la primera desigualdad, es conveniente la siguiente motivación, que nos dará una breve justificación del origen de la desigualdad: sean $a, b \in \mathbb{R}_0^+$ dos números reales no negativos, es bien conocido que:

$$0 \geqslant (a-b)^2 = a^2 + b^2 - 2ab \Longrightarrow ab \leqslant \frac{a^2}{2} + \frac{b^2}{2}$$

Definición 1.7. Sea $p \ge 1$ un número real, definimos su "exponente conjugado" por:

$$p' = \begin{cases} \frac{p}{p-1} & \text{si } p \neq 1\\ \infty & \text{si } p = 1 \end{cases}$$

De esta forma (admitiendo el convenio de que $0 = 1/\infty$ de la recta real extendida), tenemos que:

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Usaremos en esta sección la notación p' para denotar al exponente conjugado de p.

Proposición 1.4 (Designaldad de Young). Sean $a, b \in \mathbb{R}_0^+$ y $p \in \mathbb{R}$ con p > 1, se verifica que:

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

Demostración. La concavidad² del logaritmo nos dice:

$$\log\left(\frac{a^p}{p} + \frac{b^{p'}}{p'}\right) \geqslant \frac{1}{p}\log(a^p) + \frac{1}{p'}\log\left(b^{p'}\right) = \log(a) + \log(b) = \log(ab)$$

Y si ahora aplicamos la función exponencial y usamos que es creciente obtenemos:

$$ab\leqslant \frac{a^p}{p}+\frac{b^{p'}}{p'}$$

Recordemos que en Análisis Matemático I definíamos para cualquier conjunto $\Omega \subset \mathbb{R}$ medible el conjunto de las funciones integrables sobre Ω :

$$\mathcal{L}(\Omega) = \left\{ f : \Omega \to \mathbb{R} : \int_{\Omega} f < \infty \right\}$$

Pues bien, dado $p \ge 1$, podemos definir ahora:

$$\mathcal{L}_p(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f|^p < \infty \right\}$$

Teorema 1.5 (Desigualdad de Hölder). Sea p > 1, si $f \in \mathcal{L}_p(\Omega)$ y $g \in \mathcal{L}_{p'}(\Omega)$, entonces $fg \in \mathcal{L}(\Omega)$ y además:

$$\int_{\Omega} |fg| \leqslant \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}} \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}$$

Demostración. Si notamos por comodidad:

$$\alpha = \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}}, \qquad \beta = \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}$$

Si $\alpha=0$, entonces $f^p=0$ casi por doquier, de donde |fg|=0 casi por doquier, luego:

$$\int_{\Omega} |fg| = 0$$

Si $\beta = 0$ la situación es simétrica. Suponiendo ahora que $\alpha, \beta \in \mathbb{R}^+$, la desigualdad de Young nos dice que:

$$\frac{|f(x)|}{\alpha}\frac{|g(x)|}{\beta}\leqslant \frac{|f(x)|^p}{p\alpha^p}+\frac{|g(x)|^{p'}}{p'\beta^{p'}}\qquad \forall x\in\Omega$$

²Recordamos que si f era una función cóncava, entonces $f(tx+(1-t)y) \ge tf(x)+(1-t)f(y)$, para cualquier $t \in [0,1]$, x,y en el dominio de definición de f.

Si ahora aplicamos la integral de Lebesgue a ambos lados usando el crecimiento de dicho funcional, obtenemos que (usando la definición de α y β):

$$\frac{1}{\alpha\beta} \int_{\Omega} |fg| \leqslant \frac{1}{p\alpha^p} \int_{\Omega} |f|^p + \frac{1}{p'\beta^{p'}} \int_{\Omega} |g|^{p'} = \frac{1}{p} + \frac{1}{p'} = 1$$

de donde $fg \in \mathcal{L}(\Omega)$ y despejando de la desigualdad:

$$\frac{1}{\alpha\beta}\int_{\Omega}|fg|\leqslant 1$$

Obtenemos la desigualdad buscada.

La desigualdad de Hölder nos proporcionará la desigualdad de Cauchy-Schwartz de la norma del futuro espacio normado, y nos permitirá probar la desigualdad de Minkowski.

Teorema 1.6 (Desigualdad de Minkowski). Para $p \in \mathbb{R}$ con $p \geqslant 1$ y $f, g \in \mathcal{L}_p(\Omega)$, se cumple que:

$$\left(\int_{\Omega} |f+g|^p\right)^{\frac{1}{p}} \leqslant \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^{p'}\right)^{\frac{1}{p'}}$$

Demostración. Si notamos por comodidad:

$$\alpha = \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}}, \qquad \beta = \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}, \qquad \gamma = \left(\int_{\Omega} |f + g|^p \right)^{\frac{1}{p}}$$

Si p=1, entonces la desigualdad triangular nos dice que $|f+g| \leq |f| + |g|$, donde aplicamos el crecimiento de la integral y ya tenemos el Teorema demostrado. Sabemos por el resultado anterior que $\gamma < \infty$, puesto que $\mathcal{L}_p(\Omega) \subset \mathcal{L}(\Omega)$, y la desigualdad buscada es obvia si $\gamma = 0$. Supuesto ahora que p > 1 y $\gamma > 0$, si tomamos:

$$h = |f + g|^{p-1}$$

tenemos entonces que:

$$h^{p'} = |f + g|^{(p-1)p'} = |f + g|^p$$

luego:

$$\int_{\Omega} h^{p'} = \gamma^p < \infty$$

Por lo que $h \in \mathcal{L}_p(\Omega)$. Tenemos:

$$|f+g|^p = |f+g|h \leqslant |f|h + |g|h$$

Y por la desigualdad de Hölder:

$$\gamma^{p} \leqslant \int_{\Omega} |f|h + \int_{\Omega} |g|h \leqslant (\alpha + \beta) \left(\int_{\Omega} h^{p'} \right)^{\frac{1}{p'}} = (\alpha + \beta) \gamma^{\frac{p}{p'}}$$

Y si dividimos por $\gamma^{\frac{p}{p'}}$ tenemos la desigualdad buscada.

1.2.2. Definición de los espacios de Lebesgue

Fijado $p \geqslant 1$, podemos tratar de dotar a $\mathcal{L}_p(\Omega)$ de una norma. Pensamos en un principio en la aplicación $\varphi_p : \mathcal{L}_p(\Omega) \to \mathbb{R}$ dada por:

$$\varphi_p(f) = \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} \quad \forall f \in \mathcal{L}_p(\Omega)$$

Que:

- Verifica la desigualdad triangular gracias a la desigualdad de Minkowski.
- Verifica la homegeneidad por homotecias, ya que:

$$\varphi_p(\alpha f) = |\alpha|\varphi_p(f) \quad \forall \alpha \in \mathbb{R}$$

• $\varphi_p(f) = 0 \iff f = 0$ casi por doquier.

Por lo que dicha función **no es una norma** en $\mathcal{L}_p(\Omega)$ al no verificar la no degeneración de la norma, puesto que la integral "es ciega" a la hora de diferenciar la función constantemente igual a 0 de otras funciones con integral cero.

Para solucionar el problema con el que nos acabamos de topar (el problema de no poder definir una norma de dicha forma), podemos constuir una relación de equivalencia \sim en $\mathcal{L}_p(\Omega)$ que identifique a las funciones que son iguales casi por doquier, pudiendo considerar el espacio cociente:

$$L_p(\Omega) = \frac{\mathcal{L}_p(\Omega)}{\sim}$$

Donde ya $(L_p(\Omega), \varphi_p)$ sí que es un espacio normado, donde denotaremos normalmente $\varphi_p = ||\cdot||_p$.

Teorema 1.7 (Riesz-Fischer). Sea $\Omega \subset \mathbb{R}^N$ un conjunto medible $y p \ge 1$, se cumple que $(L_p(\Omega), \|\cdot\|_p)$ es un espacio de Banach.

1.2.3. Más ejemplos de espacios de Banach

• Sea $\Omega \subset \mathbb{R}$ un conjunto medible, si definimos:

$$\sup_{\Omega} |f| = \inf\{M \geqslant 0 : |f(x)| \leqslant M \text{ casi para todo } x \in \Omega\}$$

El conjunto:

$$\mathcal{L}^{\infty}(\Omega) = \left\{ f : \Omega \to \mathbb{R} : f \text{ es medible y } \sup_{\Omega} |f| < \infty \right\}$$

junto con la norma:

$$||f||_{\infty} = \sup_{\Omega} |f|$$

es un espacio de Banach, donde la desigualdad de Hölder se comple considerando que $p=\infty$ y p'=1:

Si $f \in \mathcal{L}^{\infty}(\Omega)$ y $g \in \mathcal{L}(\Omega)$, entonces $fg \in \mathcal{L}(\Omega)$, con:

$$||fg||_1 \leq ||f||_{\infty} ||g||_1$$

■ Para $1 \leq p < \infty$ podemos considerar otro tipo de espacios:

$$l^p = \left\{ x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} |x(n)|^p < \infty \right\}$$

que junto con la aplicación:

$$||x||_p = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{\frac{1}{p}} \quad \forall x \in l^p$$

forman un espacio de Banach (compruébese).

En dichos espacios, se tiene que si $x \in l^p$ y $y \in l^{p'}$, entonces $xy \in l$, con:

$$||xy|| \leq ||x||_p ||y||_{p'}$$

• En el caso anterior, si p=2, podemos definir la aplicación:

$$\langle x, y \rangle_2 = \sum_{n=1}^{\infty} x(n)y(n) \quad \forall x, y \in l^2$$

Con lo que $(l^2, \langle \cdot, \cdot \rangle_2)$ es un espacio de Hilbert.

 \blacksquare Al igual que sucedía con las normas p-ésimas en $\mathbb{R}^N,$ podemos considerar:

$$l^{\infty} = \{x : \mathbb{N} \to \mathbb{R} : x \text{ acotada}\}$$

junto con la aplicación $\|\cdot\|: l^{\infty} \to \mathbb{R}$ dada por:

$$||x||_{\infty} = \sup\{|x(n)| : n \in \mathbb{N}\}$$

y obtenemos un espacio de Banach.

- $C = \{x : \mathbb{N} \to \mathbb{R} : x \text{ es convergente}\}\$ es un subespacio de l^{∞} .
- $C_0 = \{x : \mathbb{N} \to \mathbb{R} : x \text{ converge a } 0\}$ es un subespacio de C.

1.3. Espacio dual

Para introducir la nocíon de espacio dual, nos será necesario primero destacar unos resultados:

Proposición 1.8. Si H es un espacio prehilbertiano, entonces:

1. Se cumple la designaldad de Cauchy-Schwartz:

$$|\langle u, v \rangle| \le ||u|| ||v||$$
 $\forall u, v \in H$

2. Se cumple la identidad del paralelogramo:

$$\left\| \frac{u+v}{2} \right\| + \left\| \frac{u-v}{2} \right\| = \frac{1}{2} (\|u\|^2 + \|v\|^2) \quad \forall u, v \in H$$

Teorema 1.9 (de la Proyección). Sea H un espacio de Hilbert, sea $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, entonces $\forall f \in H \exists_1 u \in K$ de forma que:

$$||f - u|| = d(f, K) = \inf\{d(f, v) : v \in K\}$$

Además, dicho elemento u está caracterizado por:

- $u \in K$.

Por tanto, a dicho único elemento u lo notaremos por $P_K f$.

Demostración. Como $0 \le d(f,v) \quad \forall v \in K$, tenemos entonces que dicho ínfimo existe. Tenemos por tanto que existe $\{v_n\}$ una sucesión de elementos de K de forma que $\{d(f,v_n)\} \to d(f,K)$. Sean $n,m \in \mathbb{N}$ y usando la identidad del paralelogramo con $f - v_n$ y $f - v_m$, tenemos:

$$\left\| \frac{f - v_n + f - v_m}{2} \right\|^2 + \left\| \frac{f - v_n - (f - v_m)}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\left\| f - \frac{v_n + v_m}{2} \right\|^2 + \left\| \frac{v_m - v_n}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\frac{\|v_m - v_n\|^2}{4} = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

$$\|v_m - v_n\|^2 = 2 \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - 4 \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

Como K es convexo, tenemos que $\frac{v_n+v_m}{2} \in K$, por lo que:

$$\left\| f - \frac{v_n + v_m}{2} \right\| \geqslant d(f, K)$$

Por lo que:

$$0 \leqslant ||v_m - v_n||^2 \leqslant 2(||f - v_n||^2 + ||f - v_m||^2) - 4d(f, K)^2$$

Como $\{\|f-v_n\|^2\} \to d(f,K)^2$ y $\{\|f-v_m\|^2\} \to d(f,K)^2$, tenemos por el Lema del Sandwitch que $\{\|v_n-v_m\|^2\} \to 0$, por lo que $\{v_n\}$ es de Cauchy. Como H es completo, existe $u \in H$ de forma que $\{v_n\} \to u$, pero por ser K cerrado tendremos que $u \in K$.

Como $\{v_n\} \to u$, tenemos entonces que $\{d(f, v_n)\} \to d(f, v)$, pero $\{d(f, v_n)\}$ convergía también a d(f, K). No queda más salida que d(f, v) = d(f, K).

Una vez probada la existencia de u, veamos que:

$$u \in K \text{ con } ||f - u|| = d(f, K) \iff u \in K \text{ y } \langle f - u, v - u \rangle \leqslant 0 \quad \forall v \in K$$

 \Longrightarrow) Supongamos que $u \in K$ y sabemos que $||f - u|| \le ||f - v||$ para todo $v \in K$. Tomamos ahora $w \in K$ y consideramos el segmento que une u con w. Entonces $\forall w \in K$ y $\forall t \in [0, 1]$, al ser K convexo tendremos que

$$(1-t)u + tw \in K$$
 y $||f - u||^2 \le ||f - (1-t)u - tw||^2$

Aplicando la bilinealidad podemos reescribir esta última expresión como

$$||f - (1 - t)u - tw||^2 = \langle f - (1 - t)u - tw, f - (1 - t)u - tw \rangle =$$

$$= ||f - u||^2 + t^2 ||w - u||^2 - 2t(f - u, w - u)$$

Sustituyendo en la expresión que teníamos anteriormente nos queda que:

$$0 \le t^2 ||w - u||^2 - 2t \langle f - u, w - u \rangle \quad \forall t \in (0, 1]$$

Al dividir entre t nos queda

$$0 \le t ||w - u||^2 - 2\langle f - u, w - u \rangle \quad \forall t \in (0, 1]$$

y tomando ahora el límite cuando t tiende a 0 por la derecha queda que

$$0 \leqslant -2\langle f - u, w - u \rangle \Rightarrow \langle f - u, w - u \rangle \leqslant 0 \qquad \forall w \in K$$

 \iff

$$||f - v||^2 = ||f - u + u - v||^2 = ||f - u||^2 + 2\langle f - u, u - v \rangle + ||u - v||^2 \qquad \forall v \in K$$

De donde:

$$0 \geqslant 2\langle f - u, v - u \rangle - \|u - v\|^2 = \|f - u\|^2 - \|f - v\|^2$$

Luego:

$$||f - u||^2 \leqslant ||f - v||^2 \qquad \forall v \in K$$

Para probar finalmente la unicidad, supongamos que existen $u, w \in K$ de forma que:

$$\langle f-u,v-u\rangle, \langle f-w,v-w\rangle\leqslant 0 \qquad \forall v\in K$$

Entonces:

$$\langle f - u, w - u \rangle, \langle f - w, u - w \rangle = \langle u - f, w - u \rangle \leqslant 0$$

Por lo que:

$$\langle f - u, w - u \rangle + \langle w - f, w - u \rangle = \langle w - u, w - u \rangle \leqslant 0$$

de donde $\langle w-u,w-u\rangle=0$, por lo que $\|w-u\|^2=d(w,u)^2=0$, luego w=u. \qed

Proposición 1.10. Dado $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, tenemos que la aplicación

$$P_K: H \longrightarrow H$$
 $f \longmapsto P_K f$

es lipschitziana. De hecho:

$$||P_K f_1 - P_K f_2|| \le ||f_1 - f_2|| \quad \forall f_1, f_2 \in H$$

Demostración. Sean $f_1, f_2 \in H$, $u_1 = P_K f_1$, $u_2 = P_K f_2$, estos verifican:

$$\langle f_1 - u_1, v - u_1 \rangle, \langle f_2 - u_2, v - u_2 \rangle \leqslant 0 \quad \forall v \in K$$

Por lo que:

$$\langle f_1 - u_1, u_2 - u_1 \rangle \leqslant 0$$

 $\langle f_2 - u_2, u_1 - u_2 \rangle \leqslant 0 \Longrightarrow \langle f_2 - u_2, u_2 - u_1 \rangle \geqslant 0$

De donde $\langle f_1 - u_2 - f_2 + u_2, u_2 - u_1 \rangle \leq 0$, por lo que:

$$\langle f_1 - f_2 + (u_2 - u_1), (u_2 - u_1) \rangle = \langle f_1 - f_2, u_2 - u_1 \rangle + \langle u_2 - u_1, u_2 - u_1 \rangle$$

Luego:

$$||u_2 - u_1||^2 = \langle u_2 - u_1, u_2 - u_1 \rangle \leqslant -\langle f_1 - f_2, u_2 - u_1 \rangle \stackrel{\text{Cauchy-Schwartz}}{\leqslant} ||f_1 - f_2|| ||u_2 - u_1||$$

Por lo que:

$$||u_2 - u_1|| \le ||f_1 - f_2||$$

Si
$$||u_2 - u_1|| \neq 0$$
, cierto también si $||u_2 - u_1|| = 0$.