(19) Weltorganisation für geistiges Eigentum Internationales Büro



554160

T CONTROL OF CONTROL OF CONTROL OF CONTROL OF THE CONTROL OF CONTR

(43) Internationales Veröffentlichungsdatum 11. November 2004 (11.11.2004)

**PCT** 

# (10) Internationale Veröffentlichungsnummer WO 2004/097199 A1

(51) Internationale Patentklassifikation<sup>7</sup>: F02B 1/12

\_\_\_\_

F02D 41/00,

- (21) Internationales Aktenzeichen: PCT/EP2004/002670
- (22) Internationales Anmeldedatum:

15. März 2004 (15.03.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 19 330.8

29. April 2003 (29.04.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BAUER, Erwin [DE/DE]; Salzgasse 1 A, 93059 Regensburg (DE). ELLMER, Dietmar [DE/DE]; Böhmerwaldstr.11, 93057 Regensburg (DE). LAUER, Thorsten [DE/DE]; Donaustauferstr. 206B, 93059 Regensburg (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[Fortsetzung auf der nächsten Seite]

(54) Title: SYSTEM AND METHOD FOR INFLUENCING THE INDUCTION GAS TEMPERATURE IN THE COMBUSTION CHAMBER OF AN INTERNAL COMBUSTION ENGINE

(54) Bezeichnung: SYSTEM UND VERFAHREN ZUM BEEINFLUSSEN DER ANSAUGGASTEMPERATUR IM BRENN-RAUM EINES VERBRENNUNGSMOTORS



(57) Abstract: The invention relates to a system and method for use in a homogeneous charge compression ignition (HCCI) combustion engine that is preferably equipped with an exhaust gas recirculation device (14). This system and method enable an improved adjustment of the temperature level inside the combustion chamber. In addition to adjusting the temperature by using the exhaust gas recirculation device (14), an influencing of the temperature, which is independent thereof, ensues based on the compression of the induced fresh air by the exhaust gas turbocharger (16). An increase in temperature is maintained even after the compressed air is expanded on a throttle valve (18), and this increase in temperature can, in the end, be used for influencing the energy content inside the combustion chamber (12).



## WO 2004/097199 A1

TO THE PROPERTY OF THE PROPERT

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

<sup>(57)</sup> Zusammenfassung: Bei einem HCCI-fähigen Verbrennungsmotor, der vorzugsweise mit einer Abgasrückführeinrichtung (14) ausgestattet ist, werden ein System und ein Verfahren vorgeschlagen, auf deren Grundlage eine verbesserte Einstellung des Temperaturniveaus im Brennraum erfolgen kann. Neben der Temperatureinstellung über die Abgasrückführeinrichtung (14) erfolgt eine davon unabhängige Beeinflussung der Temperatur aufgrund der Verdichtung der angesaugten Frischluft durch den Abgasturbolader (16), wobei auch nach Expansion der verdichteten Luft an einer Drosselklappe (18) eine Temperaturerhöhung erhalten bleibt, die letztlich gezielt zur Beeinflussung des Energieinhalts im Brennraum (12) genutzt werden kann.

### Beschreibung

System und Verfahren zum Beeinflussen der Ansauggastemperatur im Brennraum eines Verbrennungsmotors

5

Die Erfindung betrifft ein System zum Beeinflussen der Ansauggastemperatur und damit des Energieniveaus im Brennraum eines Verbrennungsmotors, insbesondere eines HCCI-fähigen Verbrennungsmotors, mit einer Verdichtungseinrichtung zum Verdichten von angesaugter Frischluft, die vor der Verdichtung eine Temperatur  $T_1$  aufweist, sowie Expansionsmitteln, die eine Expansion der verdichteten angesaugten Frischluft bewirken, wobei die verdichtete und nachfolgend expandierte Frischluft eine Temperatur  $T_2 > T_1$  aufweist.

15

20

10

Die Erfindung betrifft weiterhin ein Verfahren zum Beeinflussen der Ansauggastemperatur und damit des Energieniveaus im Brennraum eines Verbrennungsmotors, insbesondere eines HCCI-fähigen Verbrennungsmotors, bei dem angesaugte Frischluft, die vor der Verdichtung eine Temperatur  $T_1$  aufweist, verdichtet wird, und die verdichtete angesaugte Frischluft expandiert wird, wobei die verdichtete und nachfolgend expandierte Frischluft eine Temperatur  $T_2 > T_1$  aufweist.

Im Zusammenhang mit Benzin-Direkteinspritzsystemen sind unterschiedliche Betriebsbedingungen bekannt. Diesen ist gemeinsam, dass eine Direkteinspritzung von Kraftstoff unter Hochdruck direkt in einen Brennraum erfolgt. Die Gemischbildung erfolgt dann innerhalb des Brennraums. Herkömmlich unterscheidet man die Betriebsarten Homogenbetrieb und Schichtbeziehungsweise Magerbetrieb. Beim Homogenbetrieb liegt ein homogen über den gesamten Brennraum verteiltes Gemisch vor. Beim Schicht- beziehungsweise Magerbetrieb liegt nur im Bereich der Zündkerze ein Gemisch mit einer Luftzahl λ ≤ 1 vor.

35 Das verbleibende Volumen des Brennraums ist mit angesaugter Frischluft, einem Inertgas aus der Abgasrückführung oder ei-

2

nem sehr mageren Luft-Kraftstoff-Gemisch gefüllt, so dass sich insgesamt eine Luftzahl von  $\lambda > 1$  ergibt.

Neben diesen herkömmlichen Betriebsarten wird vermehrt eine
weitere Betriebsart als erfolgversprechend eingeschätzt, die
dem Betrieb des selbstzündenden Dieselmotors ähnelt. Diese
ist als HCCI-Betriebsart (Homogeneous Charge Compression
Ignition) bekannt und stellt ein selbstzündendes Brennverfahren dar, bei dem der Zündzeitpunkt und damit der Verbrennungsverlauf über die reaktive Energiemenge im Zylinder gesteuert wird. Um ein ausreichendes Energieniveau bereitzustellen, bedient man sich üblicherweise einer Abgasrückführung über externe Stellmittel im Rahmen einer externen Abgasrückführung oder durch eine geeignete Gaswechselventilsteuerung im Rahmen einer internen Abgasrückführung.

Bei der Einstellung des Temperaturniveaus und damit des Energieniveaus im Brennraum über die Abgasrückführrate ist jedoch zu berücksichtigen, dass dies nur innerhalb bestimmter Grenzen erfolgen kann. Da die Abgasrückführrate nicht nur das Temperaturniveau im Brennraum sondern auch das Mischungsverhältnis von Luft, Kraftstoff und Abgas beeinflusst, ist es unter Umständen nicht möglich, die Abgasrückführrate sowohl im Hinblick auf die Temperatur im Brennraum als auch im Hinblick auf das genannte Mischungsverhältnis optimal zu wählen. Somit können Kompromisse bei der Einstellung der Abgasrückführrate erforderlich werden, um einen zuverlässigen Betrieb des Verbrennungsmotors sicherzustellen.

Im Zusammenhang mit herkömmlich gezündeten Verbrennungsmotoren wurde bereits vorgeschlagen, eine gekühlte Abgasrückführung zu verwenden, wobei diese Kühlung des Abgases insbesondere auf eine Reduzierung der Stickoxidemissionen abzielte.
Hierzu wird beispielsweise auf MTZ Motortechnische Zeitschrift 60 (1999) 7/8, Seite 470 ff. verwiesen: "Einhaltung
zukünftiger Emissionsvorschriften durch gekühlte Abgasrückführung" von Karl-Heinrich Lösing und Rainer Lutz.

3

Der Erfindung liegt die Aufgabe zugrunde, die Nachteile des Standes der Technik zu beseitigen und insbesondere ein System und ein Verfahren zur Verfügung zu stellen, durch die die Einstellung der Temperatur im Brennraum des Verbrennungsmotors zumindest teilweise von der Einstellung des optimalen Mischungsverhältnisses von Luft, Kraftstoff und Abgas entkoppelt werden kann.

Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst.

Vorteilhafte Ausführungsformen der Erfindung werden in den abhängigen Ansprüchen angegeben.

15

20

25

5

Die Erfindung baut auf dem gattungsgemäßen System dadurch auf, dass die Temperaturerhöhung der Frischluft von  $T_1$  auf  $T_2$  zur Beeinflussung des Temperaturniveaus und damit des Energieniveaus im Brennraum gezielt eingesetzt wird. Auf diese Weise kann das Energieniveau im Brennraum durch Temperaturerhöhung beziehungsweise Temperaturregelung der Frischgastemperatur sehr fein variiert und eingestellt werden. Somit kann der Verbrennungsprozess im HCCI-Modus genau kontrolliert werden. Das Temperaturniveau im Brennraum kann dabei über den Verdichtungsgrad und die anschließende Expansion beeinflusst werden.

Das erfindungsgemäße System ist in besonders nützlicher Weise dadurch weitergebildet, dass eine Abgasrückführeinrichtung

zum Zuführen von Abgas eines früheren Verbrennungszyklus zu Frischluft beziehungsweise zu einem Frischluft aufweisenden Gemisch vorgesehen ist, um nach Einspritzung von Kraftstoff ein Luft/Kraftstoff/Abgas-Gemisch mit einem für die Verbrennung vorteilhaften Energieniveau bereitzustellen. Neben der Beeinflussung des Temperaturniveaus durch Verdichtung und Expansion kann somit zusätzlich die Abgasrückführung und dabei

4

insbesondere die Abgasrückführrate gezielt zur Einstellung des Energieniveaus im Brennraum eingesetzt werden.

Das erfindungsgemäße System ist insbesondere dann nützlich einsetzbar, wenn die Verdichtungseinrichtung ein Abgasturbolader ist. Dabei handelt es sich um eine häufig verwendete Vorrichtung zur Erhöhung der Gasdichte im Ansaugsystem, so dass im Brennraum eine erhöhte Luftmenge bereitgestellt werden kann, was zu einer Leistungserhöhung des Verbrennungsmotors führt. Angetrieben wird die Verdichtungseinrichtung durch eine im Abgasstrom liegende Turbine.

5

10

Ebenso ist das System nützlich einsetzbar, wenn die Verdichtungseinrichtung ein Kompressor ist. Dieser dient ebenfalls zur Verdichtung des Gasdrucks im Ansaugsystem, wobei die Antriebsenergie mechanisch vom Verbrennungsmotor zur Verfügung gestellt wird. Alternativ hierzu kann der Kompressor auch mittels elektrischer Energie angetrieben werden.

Nützlicherweise ist vorgesehen, dass die Expansion an einer Drosselklappe erfolgt. Bei Direkteinspritzsystemen dient die Drosselklappe dem dosierten Zuführen von Frischluft, wobei durch die Drosselwirkung eine Verringerung des Druckes erfolgt. Letztlich weist die im Abgasturbolader oder im Kompressor verdichtete und an der Drosselklappe expandierte Luft gemäß thermodynamischer Grundregeln eine höhere Temperatur auf als die ursprünglich angesaugte Frischluft.

Die Erfindung ist in besonders vorteilhafter Weise dadurch
weitergebildet, dass ein Temperatursensor zum Erfassen der
Temperatur T2 in Strömungsrichtung des Frischgases stromab
den Expansionsmitteln angeordnet ist, so dass diese im Rahmen
einer Regelung der Ansauggastemperatur berücksichtigt werden
kann. Die Temperatur der Frischluft stromab der Drosselklappe
ist somit eine wichtige Eingangsgröße, um letztlich das Energieniveau im Brennraum für die HCCI-Betriebsart vorteilhaft
festzulegen.

5

Im Zusammenhang mit einem mit Abgasrückführung ausgestatteten System erweist es sich als besonders nützlich, dass mindestens ein als Abgaskühler wirkender Wärmetauscher zur Absenkung der Temperatur des zurückgeführten Abgases vorgesehen 5 ist und dass ein Kühlmittelstellventil vorgesehen ist, so dass durch Beeinflussung des Kühlmitteldurchflusses durch den Abgaskühler unter Berücksichtigung von Messwerten beziehungsweise modelltechnisch ermittelten Werten die Ansauggastemperatur eingestellt beziehungsweise geregelt werden kann. Die 10 zurückgeführte Abgasmenge ist daher nicht mehr zwingend an die mit der Abgasrückführung erreichte Temperaturerhöhung im Brennraum gekoppelt. Vielmehr lässt sich über die einstellbare Abgaskühlung der Energieinhalt im Brennraum in gewissen Grenzen unabhängig von der Abgasrückführrate einstellen. So-15 mit können sowohl das Mischungsverhältnis und das Energieniveau im Brennraum optimal eingestellt werden.

Das erfindungsgemäße System ist in vorteilhafter Weise da20 durch weitergebildet, dass der Abgaskühler in einem separaten
Wärmetauscherkreis angeordnet ist. Der Abgaskühler kann somit
autark ohne Beeinflussung durch andere Komponenten des Kraftfahrzeugs arbeiten. Ebenso findet keine Beeinflussung anderer
Komponenten des Kühlsystems des Fahrzeugs durch den Abgasküh25 ler statt. Der autarke Kühlkreislauf umfasst dann einen separaten Kühler und eine separate Kühlmittelpumpe.

Es kann aber auch nützlich sein, dass der Abgaskühler in einem Motorkühlmittelkreis angeordnet ist. Auf diese Weise können Komponenten des Motorkühlmittelkreises für die Abgaskühlung genutzt werden, so dass insgesamt ein effizientes System realisiert wird.

30

Ebenso kann vorgesehen sein, dass der Abgaskühler als Motor-35 beziehungsweise Getriebeölwärmetauscher ausgelegt ist. Auch hierdurch können bestehende Komponenten des Fahrzeugs mitgenutzt werden.

6

Die Erfindung ist in besonders vorteilhafter Weise dadurch weitergebildet, dass die Messwerte beziehungsweise die modelltechnisch ermittelten Werte mindestens einer der folgenden Größen zugeordnet sind:

- Abgastemperatur,
- zurückgeführte Abgasmasse beziehungsweise -menge,
- Frischgastemperatur,
- 10 Frischgasmasse beziehungsweise -menge,
  - Ansauggastemperatur,
  - Ansauggasmasse beziehungsweise -menge,
  - Kühlmitteltemperatur beziehungsweise Öltemperatur des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls und
- 15

5

- Kühlmittelmasse beziehungsweise Ölmasse beziehungsweise Kühlmittelmenge beziehungsweise Ölmenge des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls.
- Wenn nachfolgend der Begriff "Menge" verwendet wird, kann 20 auch eine "Masse" gemeint sein und umgekehrt. Die aktuelle Abgastemperatur und die zurückgeführte Abgasmenge sind in modernen Motorsteuerungen als Motorbetriebsgrößen bekannt. Sie können entweder modelltechnisch errechnet oder über entspre-25
- chende Sensoren direkt gemessen werden. Ebenso verhält es sich mit der Frischgasmenge und der Frischgastemperatur. Die Kühlmitteltemperaturen und die Öltemperaturen sind ebenfalls bekannt. Ist ferner die Kühlmittelmenge beziehungsweise die Ölmenge bekannt, die durch den Abgaswärmetauscher strömt,
- können in Kenntnis der Wärmetauschercharakteristik die Abgas-30 temperatur am Wärmetauscheraustritt und damit die Mischtemperatur der Ansaugluft bestimmt werden.
- Als besonders nützlich hat es sich erwiesen, dass ein Temperatursensor zum Erfassen der Frischgastemperatur, ein Tempe-35 ratursensor zum Erfassen der Abgastemperatur am Motoraustritt, eine Luftmassen- beziehungsweise -mengenmessein-

7

richtung zum Erfassen der Frischgasmasse beziehungsweise - menge und eine Abgasmassen- beziehungsweise -mengenmessein- richtung zum Erfassen der Abgasmasse beziehungsweise -menge vorgesehen sind. Aus diesen Größen lassen sich in Kenntnis bestimmter Modelle beziehungsweise bestimmter Charakteristiken die wesentlichen Größen für eine zuverlässige Regelung der Ansauggastemperatur bestimmen.

So ist das System in nützlicher Weise dadurch weitergebildet, 10 dass die Ansauggastemperatur gemäß der Gleichung

$$T_{ASG} = \dot{m}_{FG}C_{p,FG} + \dot{m}_{AG}C_{p,AG}$$

berechnet wird, wobei

15

30

35

5

 $\dot{m}_{FG}$ : Frischgasmassenstrom

 $\dot{m}_{AG}$ : Abgasmassenstrom

 $T_{FG}$ : Frischgastemperatur

 $T_{AG}$ : Abgastemperatur

20  $T_{ASG}$ : Ansauggastemperatur

 $C_{p,FG}$ : Wärmekapazität des Frischgases

 $c_{p,\mathrm{AG}}$ : Wärmekapazität des Abgases.

Die Ansauggastemperatur kann somit in Kenntnis von gemesse-25 nen, bekannten beziehungsweise ebenfalls bereits modelltechnisch berechneten Größen ermittelt werden.

In diesem Zusammenhang ist es nützlich, dass die Abgastemperatur am Wärmetauscherausgang unter Verwendung des folgenden Gleichungssystems berechnet wird:

$$\begin{aligned} \left| \Delta \dot{\mathcal{Q}}_{KM} \right| &= \left| \Delta \dot{\mathcal{Q}}_{AG} \right| &= \dot{\mathcal{Q}}_{NT} \\ \\ \Delta \dot{\mathcal{Q}}_{KM} &= \dot{m}_{KM} C_{P,KM} \left( T_{KM,AUS} - T_{KM,EIN} \right) \\ \\ \Delta \dot{\mathcal{Q}}_{AG} &= \dot{m}_{AG} C_{P,AG} \left( T_{AG,EIN} - T_{AG,AUS} \right) \end{aligned}$$

8

 $\dot{Q}_{WT} = kA\Delta T_m$ 

wobei

5  $\cdot \dot{Q}$ : Wärmestrom

KM: Kühlmittel

AG: Abgas

WT: Wärmetauscher  $C_p:$  Wärmekapazität

10 k: Wärmedurchgangskoeffizient des Wärmetauschers

A: Heizfläche des Wärmetauschers

 $arDelta T_{\scriptscriptstyle m}$ : mittlere logarithmische Temperaturdifferenz.

Aus der Kenntnis der Charakteristik des Wärmetauschers, das heißt insbesondere in Kenntnis der Parameter k und A lässt sich unter Berücksichtigung der mittleren logarithmischen Temperaturdifferenz  $\Delta T_m$  also der im Wärmetauscher vorliegende Wärmestrom  $\dot{Q}_{WT}$  errechnen. Hieraus ergibt sich in Kenntnis von Massenströmen, Wärmekapazitäten und weiteren Temperaturen die Abgastemperatur am Wärmetauscherausgang  $T_{AG,AUS}$ .

Die Erfindung baut auf dem gattungsgemäßen Verfahren dadurch auf, dass die Temperaturerhöhung der Frischluft von T<sub>1</sub> auf T<sub>2</sub> zur Beeinflussung des Temperaturniveaus und damit des Energieniveaus im Brennraum gezielt eingesetzt wird. Auf diese Weise werden die Vorteile und Besonderheiten des erfindungsgemäßen Systems auch im Rahmen eines Verfahrens umgesetzt. Dies gilt auch für die nachfolgend angegebenen besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens.

Das Verfahren ist in besonders vorteilhafter Weise dadurch weitergebildet, dass Abgas eines früheren Verbrennungszyklus Frischluft beziehungsweise einem Frischluft aufweisenden Gemisch zugeführt wird, um nach Einspritzung von Kraftstoff ein Luft/Kraftstoff/Abgas-Gemisch mit einem für die Verbrennung vorteilhaften Energieniveau bereitzustellen.

9

Das Verfahren zeichnet sich besonders dann als vorteilhaft aus, wenn die Verdichtung durch einen Abgasturbolader erfolgt.

5 Gleichermaßen ist das Verfahren dann nützlich, wenn die Verdichtung durch einen Kompressor erfolgt.

Nützlicherweise ist weiterhin vorgesehen, dass die Expansion an einer Drosselklappe erfolgt.

10

Das Verfahren ist in besonders vorteilhafter Weise dadurch weitergebildet, dass die Temperatur  $T_2$  nach der Expansion erfasst wird, so dass diese im Rahmen einer Regelung der Ansauggastemperatur berücksichtigt werden kann.

15

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass Abgas in einem als Abgaskühler wirkenden Wärmetauscher zur Absenkung der Temperatur des zurückgeführten Abgases gekühlt wird und dass durch Beeinflussung des Kühlmitteldurchflusses durch den Abgaskühler mittels eines Kühlmittelstellventils unter Berücksichtigung von Messwerten beziehungsweise modelltechnisch ermittelten Werten die Ansauggastemperatur eingestellt beziehungsweise geregelt wird.

25

Es ist besonders bevorzugt, dass die Messwerte beziehungsweise die modelltechnisch ermittelten Werte mindestens einer der folgenden Größen zugeordnet sind:

- 30 Abgastemperatur,
  - zurückgeführte Abgasmasse beziehungsweise -menge,
  - Frischgastemperatur,
  - Frischgasmasse beziehungsweise -menge,
  - Ansauggastemperatur,
- 35 Ansauggasmasse beziehungsweise -menge,

10

 Kühlmitteltemperatur beziehungsweise Öltemperatur des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls und

Kühlmittelmasse beziehungsweise Ölmasse beziehungsweise
 Kühlmittelmenge beziehungsweise Ölmenge des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls.

Als besonders nützlich hat es sich erwiesen, dass die Frischgastemperatur, die Abgastemperatur am Motoraustritt, die

Frischgasmasse beziehungsweise -menge und die Abgasmasse beziehungsweise -menge gemessen werden.

Das Verfahren ist in nützlicher Weise dadurch weitergebildet, dass die Ansauggastemperatur gemäß der Gleichung

 $T_{ASG} = \dot{m}_{FG}C_{p,FG} + \dot{m}_{AG}C_{p,AG}$ 

berechnet wird, wobei

15

35

20  $\dot{m}_{\rm FG}$ : Frischgasmassenstrom

 $\dot{m}_{AG}$ : Abgasmassenstrom

 $T_{\rm FG}:$  Frischgastemperatur

 $T_{AG}$ : Abgastemperatur

 $T_{ASG}$ : Ansauggastemperatur

25  $c_{\scriptscriptstyle p,FG}$ : Wärmekapazität des Frischgases

 $c_{p,AG}$ : Wärmekapazität des Abgases.

In diesem Zusammenhang ist es nützlich, dass die Abgastemperatur am Wärmtauscherausgang unter Verwendung des folgenden 30 Gleichungssystems berechnet wird:

$$\left|\Delta\dot{Q}_{KM}\right| = \left|\Delta\dot{Q}_{AG}\right| = \dot{Q}_{WT}$$

$$\Delta \dot{Q}_{KM} = \dot{m}_{KM} C_{p,KM} (T_{KM,AUS} - T_{KM,EIN})$$

 $\Delta \dot{Q}_{AG} = \dot{m}_{AG} C_{p,AG} (T_{AG,EIN} - T_{AG,AUS})$ 

11

 $\dot{Q}_{WT} = kA\Delta T_{m}$ 

#### wobei

5  $\dot{Q}$ : Wärmestrom

KM: Kühlmittel

AG: Abgas

WT: Wärmetauscher

 $c_p$ : Wärmekapazität

 $10 \quad k$ : Wärmedurchgangskoeffizient des Wärmetauschers

A: Heizfläche des Wärmetauschers

 $\Delta T_m$ : mittlere logarithmische Temperaturdifferenz.

Der Erfindung liegt die Erkenntnis zugrunde, dass durch die gezielte Beeinflussung beziehungsweise die gezielte Berück-15 sichtigung der Frischgastemperatur das Energieniveau im Brennraum des Verbrennungsmotors sehr fein variiert und genau kontrolliert werden kann. Neben dem Prinzip der Abgasrückführung steht somit ein weiteres unabhängiges Instrument zur Beeinflussung des Temperaturniveaus und damit zur Verbrennungs-20 prozesskontrolle zur Verfügung. Die Erfindung bietet insbesondere den Vorteil, dass, ausgehend von Kaltstartbedingungen, unter denen ein HCCI-Betrieb aufgrund des zu niedrigen Temperaturniveaus nicht möglich ist, das Frischgas aufgeheizt und somit ein früheres Umschalten in den emissionsgünstigen 25 HCCI-Modus möglich ist. In einer besonders bevorzugten Ausführungsform ist es besonders nützlich, dass über die kontrollierte Einstellung der Abgastemperatur mittels Abgaskühlung neben der Abgasrückführrate und dem Prinzip von Verdichtung und Expansion eine weitere unabhängige Stellgröße zum 30 Beeinflussen des Temperaturniveaus und damit des Energieniveaus im Brennraum zur Verfügung steht und damit ein zusätzliches Mittel zur Verbrennungsprozesskontrolle. Die Einflussnahme auf den Prozess erfolgt hinsichtlich des Entzündungszeitpunktes des komprimierten Luft/Kraftstoff/Abgas-Gemisches 35 und der sich daraus ergebenden Folgegrößen, wie Druckverlauf und Verbrennung, Spitzendruck, Verbrennungsschwerpunkt und

12

Verbrennungsgeschwindigkeit. Diese wiederum sind entscheidend verantwortlich für das gesamtmotorische Verhalten im Hinblick auf Wirkungsgrad, Emissionen, Laufunruhe und Akustik. Der Erfindung kommt die Tatsache entgegen, dass in modernen Motorsteuerungen alle relevanten Informationen und Betriebsgrößen, beispielsweise Temperaturen und Stoffmassen beziehungsweise Mengen, bereits vorliegen, die zur Kontrolle des HCCI-Verbrennungsprozesses mittels Abgastemperaturregelung nötig sind. Die Erfindung kann auch wirksam eingesetzt werden, um veränderten Umgebungs- oder Betriebsbedingungen verbrennungsmotorisch zu begegnen, wie es zum Beispiel beim Motorwarmlauf oder im Sommer-/Winterbetrieb bei stark unterschiedlichen Umgebungstemperaturen der Fall ist.

Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand bevorzugter Ausführungsformen beispielhaft erläutert.

#### Es zeigen:

20

5

10

- Figur 1 ein Temperatur-Entropie-Diagramm zur Erläuterung thermodynamischer Grundlagen einer bevorzugten Ausführungsform der vorliegenden Erfindung;
- 25 Figur 2 eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Systems;
  - Figur 3 eine schematische Darstellung eines erfindungsgemäßen Systems; und

30

- Figur 4 ein Funktionsblockdiagramm zur Erläuterung der Ansauggastemperaturregelung im Rahmen eines erfindungsgemäßen Verfahrens.
- 35 Figur 1 zeigt ein Temperatur-Entropie-Diagramm zur Erläuterung thermodynamischer Grundlagen einer bevorzugten Ausführungsform der vorliegenden Erfindung. In dem Diagramm sind

13

die Temperatur-Entropie-Verläufe in einem Gas für zwei verschiedene Drücke pl und p2 dargestellt. Wird ein Gas ausgehend vom Druck pl und der Temperatur Tl auf den Druck p2 verdichtet, so verläuft dieser Vorgang nicht entlang einer Isentropen (Vorgang 1-2s), sondern unter Entropiezunahme 5 (Vorgang 1-2). Findet nach der Verdichtung eine Expansion, das heißt eine Druckabnahme statt, so wird auch dieser Vorgang nicht entlang einer Isentropen erfolgen (Vorgang 2-3s), sondern ebenfalls unter Zunahme der Entropie (Vorgang 2-3). Die hier dargestellten Vorgänge einer Druckerhöhung von pl 10 auf p2 und der nachfolgenden Expansion auf das Ausgangsniveau pl stellen einen Sonderfall dar. Eine Expansion auf ein beliebiges anderes Druckniveau erfolgt ebenfalls unter Zunahme der Entropie. Letztlich hat das Gas nach Verdichtung von pl auf p2 und Expansion von p2 auf p1 ein höheres Temperaturni-15 veau als vor der Verdichtung; die Temperatur ist von Tl auf T3 gestiegen. Die gewünschte Temperaturänderung kann beim Verbrennungsmotor somit über den Verdichtungsgrad und die anschließende Expansion, beispielsweise an der Drosselklappe, 20 eingestellt werden.

Figur 2 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Systems. Es ist ein Verbrennungsmotor 10 mit Abgasrückführeinrichtung 14 und Abgasturbolader 16 dargestellt. In der Frischluftzufuhr des 25 Verbrennungsmotors 10 ist eine Drosselklappe 18 angeordnet. Der Abgasstrang des Verbrennungsmotors 10 ist mit einem Abgaskühler 32 ausgestattet. Auf die besonderen Merkmale des Abgaskühlers 32 wird im Rahmen der vorliegenden Darstellung gemäß Figur 2 nicht eingegangen. In der Abgasrückführung 14 30 ist ein Abgasrückführventil 36 vorgesehen. Weiterhin umfasst das System an verschiedenen Stellen Messeinrichtungen beziehungsweise Sensoren 20, 22, 24, 26, 28, 30, deren Ausgangssignale einer Steuer-/Regel-/Recheneinheit 34 zugeführt werden können. Im Einzelnen sind vorgesehen: eine Luftmassen-35 messeinrichtung 28, ein Temperatursensor 20, der in Strömungsrichtung der Frischluft stromab der Drosselklappe 18 zur

14

Erfassung der Frischlufttemperatur angeordnet ist, ein Temperatursensor 22 zur Erfassung der Temperatur des Ansauggases vor Einströmen in den Brennraum 12 des Verbrennungsmotors 10, ein Abgastemperatursensor 24 sowie ein Temperatursensor 26 zur Erfassung der Temperatur am Luft/Abgas-Mischpunkt. Diese Sensoren müssen nicht zwingend vorhanden sein, um die vorliegende Erfindung zu realisieren. Beispielsweise kann der Temperatursensor 26 fortgelassen werden, wenn die Ansauggastemperatur gemäß den im Zusammenhang mit Figur 3 erläuterten Berechnungen ermittelt wird. Ausgangssignale dieser Messein-10 richtungen und Sensoren 20, 22, 24, 26, 28 können der Steuer-/Regel-/Recheneinheit 34 zugeführt werden, die wiederum Komponenten des Systems ansteuern kann, wie zum Beispiel das Abgasrückführventil 36, den Abgaskühler 32, die Drosselklappe 18 und den Abgasturbolader 16. Diese Komponenten können somit 15 in ihrer Funktion beeinflusst werden und letztlich zur Bereitstellung des gewünschten Energieniveaus im Brennraum 12 des Verbrennungsmotors 10 beitragen.

Das in Figur 2 dargestellte System arbeitet wie folgt. 20 Frischluft wird angesaugt und vom Abgasturbolader 16, der vom Abgasstrom angetrieben wird, verdichtet. Diese verdichtete Luft muss die Drosselklappe 18 passieren, so dass es zu einer Expansion kommt. Aufgrund der im Zusammenhang mit Figur 1 dargestellten thermodynamischen Prinzipien hat die Luft hin-25 ter der Drosselklappe 18 eine höhere Temperatur als die ursprünglich angesaugte Frischluft. Die Luft gelangt in den Brennraum 12 des Verbrennungsmotors 10. Nach der Verbrennung wird Abgas ausgestoßen, das in einem Abgaskühler 32 gekühlt wird. Das gekühlte Abgas wird teilweise über den Abgasstrang 30 emittiert. Teilweise wird das gekühlte Abgas 32 über die Abgasrückführung 14 und insbesondere das Abgasrückführventil 36 zur Eingangsseite des Verbrennungsmotors 10 zurückgeführt. Aufgrund der von den Messeinrichtungen und Sensoren 20, 22, 24, 26, 28 erfassten Signale kann die Steuer-/Regel-/Rechen-35 einheit 34 das System so beeinflussen, dass letztlich ein für

den HCCI-Betrieb geeignetes Energieniveau im Brennraum 12 des

15

Verbrennungsmotors 10 vorliegt. Ein wesentlicher Teil der Ansauggastemperaturregelung wird im Zusammenhang mit Figur 4 beschrieben.

Figur 3 zeigt eine schematische Darstellung eines erfindungs-5 gemäßen Systems, wobei hier speziell auf die besonders bevorzugte Ausführungsform mit Abgaskühlung eingegangen wird. Es ist ein Verbrennungsmotor 10 mit einer äußeren Abgasrückführeinrichtung 14 dargestellt. Die Abgasrückführeinrichtung 14 umfasst ein Abgasrückführventil 36, über das die Abgasrück-10 führrate einstellbar ist. Die Abgasrückführeinrichtung 14 umfasst weiterhin einen als Abgaskühler wirkenden Wärmetauscher 32. Der Abgaswärmetauscher 32 wird weiterhin über ein Kühlmittelsystem 46 von einem Kühlmittel durchströmt. Zur Kühlung des Kühlmittels ist ein Kühler 48 vorgesehen. Im vorliegenden 15 Beispiel ist der Abgaswärmetauscherkreis als Parallelkreis ausgelegt. Es sind jedoch auch zahlreiche andere Varianten zur Abgaskühlung denkbar, wobei insbesondere der Kühler 48 als separater Kühler ausgelegt sein kann; ebenfalls ist es denkbar, den Kühler der Motorkühlung mitzubenutzen. Die Küh-20 lung kann auch durch Motor- oder Getriebeöl erfolgen.

Das Kühlmittelsystem 46 umfasst weiterhin ein Kühlmittelstellventil 50, über das die Kühlmittelmenge, die durch den Abgaskühler 32 strömt, einstellbar ist.

25

Das dargestellte System arbeitet wie folgt. Aus dem Verbrennungsmotor 10 austretendes Abgas wird teilweise über die Abgasrückführeinrichtung 14 zur Einlassseite des Verbrennungsmotors 10 zurückgeführt. Dabei lässt sich der Abgasmassenstrom  $\dot{m}_{AG}$  mittels des Abgasrückführventils 36 einstellen. Am Eingang des Abgaskühlers 32 hat das Abgas eine Temperatur  $T_{AG,EIN}$ , und am Ausgang das Abgaskühlers 32 hat das Abgas eine Temperatur  $T_{AG,AUS}$ , die im Allgemeinen kleiner sein wird als die Temperatur am Eingang. Die Kühlwirkung das Abgaskühlers 32 kann dadurch eingestellt werden, dass über das Kühlmittelstellventil 50 der Kühlmittelmassenstrom  $\dot{m}_{KM}$  eingestellt

wird. Das Kühlmittel hat am Eingang des Abgaskühlers 32 die Temperatur  $T_{\rm KM,EIN}$  und am Ausgang des Abgaskühlers 32 die Temperatur  $T_{\rm KM,AUS}$ , wobei letztere im Allgemeinen höher sein wird als die Temperatur am Eingang. Eine Abkühlung des Kühlmittels erfolgt dann im Kühler 48. Über die Beeinflussung des Kühlmitteldurchflusses durch den Abgaskühler 32 durch das Kühlmittelstellventil 50 kann somit unter Berücksichtigung von Messwerten beziehungsweise modelltechnisch ermittelten Werten die Ansauggastemperatur des in den Verbrennungsmotor 10 einströmenden Abgases eingestellt beziehungsweise geregelt werden.

Die Abgastemperatur  $T_{AG,AUS}$  am Ausgang des Abgaskühlers 32 kann dabei beispielsweise unter Verwendung des folgenden Gleichungssystems berechnet werden:

$$\left|\Delta\dot{Q}_{KM}\right| = \left|\Delta\dot{Q}_{AG}\right| = \dot{Q}_{NT}$$

$$\Delta\dot{Q}_{KM} = \dot{m}_{KM}C_{p,KM}\left(T_{KM,AUS} - T_{KM,EIN}\right)$$

$$\Delta\dot{Q}_{AG} = \dot{m}_{AG}C_{p,AG}\left(T_{AG,EIN} - T_{AG,AUS}\right)$$

$$\dot{Q}_{WT} = kA\Delta T_{m}$$

25 wobei

35

5

10

15

 $\dot{Q}$ : Wärmestrom KM: Kühlmittel

AG: Abgas

30 WT: Wärmetauscher

 $c_p$ : Wärmekapazität

k: Wärmedurchgangskoeffizient des Wärmetauschers

A: Heizfläche des Wärmetauschers

 $\Delta T_{m}$ : mittlere logarithmische Temperaturdifferenz.

17

Die Temperatur des Ansauggases, nachfolgend als  $T_{\rm asg}$  bezeichnet, kann dann gemäß der folgenden Gleichung ermittelt werden:

 $T_{ASG} = \dot{m}_{FG}C_{p,FG} + \dot{m}_{AG}C_{p,AG}$ 

berechnet wird, wobei

 $\dot{m}_{FG}$ : Frischgasmassenstrom

10  $\dot{m}_{AG}$ : Abgasmassenstrom

 $T_{FG}$ : Frischgastemperatur

 $T_{AG}$ : Abgastemperatur

 $T_{\mathit{ASG}}$ : Ansauggastemperatur

 $C_{p,FG}$ : Wärmekapazität des Frischgases

15  $c_{_{p,AG}}\colon$  Wärmekapazität des Abgases.

Figur 4 zeigt ein Funktionsblockdiagramm zur Erläuterung der Ansauggastemperaturregelung im Rahmen eines erfindungsgemäßen Verfahrens. Die dargestellten Funktionseinheiten können Bestandteile der in Figur 1 dargestellten Steuer-/Regel-20 /Recheneinheit 34 sein. Es ist eine Einrichtung 38 zur Berechnung der Abgassolltemperatur vorgesehen. Diese ist mit einer Einrichtung 40 zur Berechnung des Kühlmitteldurchflusses durch den in Figur 1 dargestellten Abgaskühler 32 verbunden. Die Einrichtung 40 zur Berechnung des Kühlmitteldurch-25 flusses steht wiederum über eine Regelstrecke 42 mit einem Regler 44 in Verbindung. Weiterhin sind in Figur 2 Signale dargestellt, wobei Signale, die die Endung AV aufweisen, aktuelle Werte kennzeichnen, während Signale, die die Endung SP aufweisen, Sollwerte kennzeichnen. 30

Die Ansauggastemperaturregelung gemäß Figur 4 arbeitet wie folgt. Entsprechend den Motorbetriebsbedingungen wird ein Sollwert für die Temperatur der Ansaugluft im Saugrohr

(TIA\_IM\_SP) vorgegeben. Dieser wird zusammen mit der aktuellen Frischgastemperatur (TIA\_AV) und den Massen des zugeführten Frischgases (MAF\_KGH\_AV) sowie des zurückgeführten Abga-

18

ses (M\_EGR\_AV) der Einrichtung 38 zur Berechnung der Abgassolltemperatur zugeführt. Diese berechnet unter Berücksichtigung der spezifischen Wärmekapazitäten der zugeführten Frischluft ( $c_p$ , Luft) und des Abgases ( $c_p$ , Abgas) die Abgastemperatur am Mischpunkt (T\_EGR\_DOWN\_SP), die erforderlich ist, um 5 die gewünschte Gastemperatur im Saugrohr zu erhalten. In der Einrichtung 40 zur Berechnung des Kühlmitteldurchflusses wird der von der Einrichtung 38 zur Berechnung der Abgassolltemperatur ermittelte Sollwert (T\_EGR\_DOWN\_SP) mit der tatsächlichen Abgastemperatur am Motoraustritt (T\_EGR\_UP\_AV) vor dem 10 Abgaskühler verglichen. Aus der Differenz wird ein Kühlmitteldurchfluss (M\_COOL) durch den Abgaskühler bestimmt, der erforderlich ist, um die gewünschte Abgastemperatur am Mischpunkt (T\_EGR\_DOWN\_SP) zu erhalten. Dieser Kühlmittelfluss wird dann durch eine entsprechende Ansteuerung einer elektri-15 schen Kühlmittelpumpe realisiert, wobei ebenso gut andere Arten der Durchflussregelung möglich sind. Der Kühlmitteldurchfluss wird entsprechend der vorliegenden Regelung über die Regelstrecke 42 in eine bestimmte Gastemperatur im Saugrohr (TIA\_IM\_AV) umgesetzt, wobei diese nach einer gewissen Ein-20 schwingphase vorliegen wird. Diese Gastemperatur im Saugrohr (TIA\_IM\_AV) wird mit dem Sollwert (TIA\_IM\_SP) im Regler 44 verglichen. Weichen die Werte voneinander ab, so wird der Kühlmitteldurchfluss durch den Abgaskühler um einen Wert ( $\Delta M_{COOL}$ ) korrigiert, so dass sich letztlich über eine ge-25 eignete Abgastemperatur am Mischpunkt (T\_EGR\_DOWN\_AV) die gewünschte Ansauglufttemperatur gemäß dem Sollwert (TIA\_IM\_SP) einstellt.

30 Um die im Zusammenhang mit Figur 4 erläuterte Regelung mit dem in Figur 2 dargestellten System besser in Beziehung setzen zu können, wird nachfolgend im Einzelnen angegeben, wo die für die Regelung verwendeten Werte gemessen beziehungsweise eingestellt werden sollen. Die Luftmassenmesseinrichtung 28 ermittelt den Wert MAF\_KGH\_AV. Der zurückgeführte Abgasanteil M\_EGR\_AV ist im Rahmen der Abgasrückführung durch entsprechende Ansteuerung des Abgasrückführventils 36 be-

19

kannt. Die Frischgastemperatur TIA\_AV wird durch den Temperatursensor 20 hinter der Drosselklappe 18 gemessen. Die Ansauggastemperatur TIA\_IM\_AV wird durch den Temperatursensor 22 vor dem Eintritt in den Brennraum 12 des Verbrennungsmotors 10 erfasst. Der Temperatursensor 24 am Austritt aus dem Brennraum 12 des Verbrennungsmotors 10 erfasst die Abgastemperatur T\_EGR\_UP\_AV. Zusätzlich kann die Temperatur TIA\_EGR\_DOWN\_AV am Mischpunkt durch den Temperatursensor 26 erfasst werden, wobei dieser allerdings für die im Zusammenhang mit Figur 4 beschriebene Regelung nicht unbedingt erforderlich ist.

10

30

Die Erfindung lässt sich wie folgt zusammenfassen: Bei einem HCCI-fähigen Verbrennungsmotor, der vorzugsweise mit einer Abgasrückführeinrichtung 14 ausgestattet ist, werden ein Sys-15 tem und ein Verfahren vorgeschlagen, auf deren Grundlage eine verbesserte Einstellung des Temperaturniveaus im Brennraum erfolgen kann. Neben der Temperatureinstellung über die Abgasrückführeinrichtung 14 erfolgt eine davon unabhängige Beeinflussung der Temperatur aufgrund der Verdichtung der ange-20 saugten Frischluft durch den Abgasturbolader 16, wobei auch nach Expansion der verdichteten Luft an einer Drosselklappe 18 eine Temperaturerhöhung erhalten bleibt, die letztlich gezielt zur Beeinflussung des Energieinhalts im Brennraum 12 25 genutzt werden kann.

Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein.

20

### Patentansprüche

5

- 1. System zum Beeinflussen der Ansauggastemperatur und damit des Energieniveaus im Brennraum (12) eines Verbrennungsmotors (10), insbesondere eines HCCI-fähigen Verbrennungsmotors (10), mit
- einer Verdichtungseinrichtung (16) zum Verdichten von angesaugter Frischluft, die vor der Verdichtung eine Temperatur T<sub>1</sub> aufweist, sowie
  - Expansionsmitteln (18), die eine Expansion der verdichteten angesaugten Frischluft bewirken,
- 15 wobei die verdichtete und nachfolgend expandierte Frisch-luft eine Temperatur  $T_2 > T_1$  aufweist,

dadurch gekennzeichnet, dass die Temperaturerhöhung der Frischluft von  $T_1$  auf  $T_2$  zur 20 Beeinflussung des Temperaturniveaus und damit des Energieniveaus im Brennraum (12) gezielt eingesetzt wird.

2. System nach Anspruch 1, dadurch gekennzeichnet,

- dass eine Abgasrückführeinrichtung zum Zuführen von Abgas eines früheren Verbrennungszyklus zu Frischluft beziehungsweise zu einem Frischluft aufweisenden Gemisch vorgesehen ist, um nach Einspritzung von Kraftstoff ein Luft/Kraftstoff/Abgas-Gemisch mit einem für die Verbrennung vorteilhaften Energieniveau bereitzustellen
- System nach Anspruch 1 oder 2,
   dadurch gekennzeichnet,
   dass die Verdichtungseinrichtung ein Abgasturbolader (16)
   ist.
  - 4. System nach einem der vorangehenden Ansprüche,

21

dadurch gekennzeich net, dass die Verdichtungseinrichtung ein Kompressor ist.

- 5. System nach einem der vorangehenden Ansprüche,5 dadurch gekennzeichnet,dass die Expansion an einer Drosselklappe (18) erfolgt.
  - 6. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
- dass ein Temperatursensor (20) zum Erfassen der Temperatur  $T_2$  in Strömungsrichtung des Frischgases stromab den Expansionsmitteln angeordnet ist, so dass diese im Rahmen einer Regelung der Ansauggastemperatur berücksichtigt werden kann.
- 15 7. System nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet,
- dass mindestens ein als Abgaskühler (32) wirkender Wärmetauscher zur Absenkung der Temperatur des zurückgeführten
   Abgases vorgesehen ist, und
- dass eine Kühlmittelstellventil (50) vorgesehen ist, so dass durch Beeinflussung des Kühlmitteldurchflusses durch den Abgaskühler (32) unter Berücksichtigung von Messwerten beziehungsweise modelltechnisch ermittelten Werten die Ansauggastemperatur eingestellt beziehungsweise geregelt werden kann.
- 8. System nach einem der vorangehenden Ansprüche,
  30 dadurch gekennzeichnet,
  dass der Abgaskühler (32) in einem separaten Wärmetauscherkreis (46) angeordnet ist.
- System nach einem der vorangehenden Ansprüche,
   dadurch gekennzeichnet,
   dass der Abgaskühler in einem Motorkühlmittelkreis angeordnet ist.

22

- 10. System nach einem der vorangehenden Ansprüche, dad urch gekennzeichnet, dass der Abgaskühler als Motor- beziehungsweise Getriebeölwärmetauscher ausgelegt ist.
- 11. System nach einem der vorangehenden Ansprüche,
  d a d u r c h g e k e n n z e i c h n e t ,
  dass die Messwerte beziehungsweise die modelltechnisch ermit10 telten Werte mindestens einer der folgenden Größen zugeordnet
  sind:
  - Abgastemperatur,
  - zurückgeführte Abgasmasse beziehungsweise -menge,
- 15 Frischgastemperatur,
  - Frischgasmasse beziehungsweise -menge,
  - Ansauggastemperatur,
  - Ansauggasmasse beziehungsweise -menge,
- Kühlmitteltemperatur beziehungsweise Öltemperatur des 20 durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls und
  - Kühlmittelmasse beziehungsweise Ölmasse beziehungsweise Kühlmittelmenge beziehungsweise Ölmenge des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls.

25

5

12. System nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass ein Temperatursensor (20) zum Erfassen der Frischgastemperatur, ein Temperatursensor (24) zum Erfassen der Abgastemperatur am Motoraustritt, eine Luftmassen- beziehungsweise mengenmesseinrichtung (28) zum Erfassen der Frischgasmasse
beziehungsweise -menge und eine Abgasmassen- beziehungsweise
-mengenmesseinrichtung (28) zum Erfassen der Abgasmasse beziehungsweise -menge vorgesehen sind.

35

13. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,

23

dass die Ansauggastemperatur gemäß der Gleichung

$$T_{\mathrm{ASG}} = \dot{m}_{\mathrm{FG}} C_{\mathrm{p,FG}} + \dot{m}_{\mathrm{AG}} C_{\mathrm{p,AG}}$$

5 berechnet wird, wobei

 $\dot{m}_{FG}$ : Frischgasmassenstrom

 $\dot{m}_{AG}$ : Abgasmassenstrom

 $T_{\rm FG}:$  Frischgastemperatur

10  $T_{AG}$ : Abgastemperatur

 $T_{ASG}$ : Ansauggastemperatur

 $c_{p,\mathrm{FG}}$ : Wärmekapazität des Frischgases

 $C_{p,AG}$ : Wärmekapazität des Abgases.

15 14. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Abgastemperatur am Wärmtauscherausgang unter Verwendung des folgenden Gleichungssystems berechnet wird:

$$\left|\Delta \dot{Q}_{KM}\right| = \left|\Delta \dot{Q}_{AG}\right| = \dot{Q}_{WT}$$

$$\Delta \dot{Q}_{KM} = \dot{m}_{KM} C_{p,KM} (T_{KM,AUS} - T_{KM,EIN})$$

$$\Delta \dot{Q}_{AG} = \dot{m}_{AG} C_{p,AG} (T_{AG,EIN} - T_{AG,AUS})$$

 $\dot{Q}_{_{m{W}m{T}}} \; = \; k A \Delta T_{_{m{m}}}$ 

wobei

25

30  $\dot{Q}$ : Wärmestrom

KM: Kühlmittel

AG: Abgas

WT: Wärmetauscher  $C_D$ : Wärmekapazität

35 k: Wärmedurchgangskoeffizient des Wärmetauschers

A: Heizfläche des Wärmetauschers

 $\Delta T_{m}$ : mittlere logarithmische Temperaturdifferenz.

WO 2004/097199

5

10

15

20

- 15. Verfahren zum Beeinflussen der Ansauggastemperatur und damit des Energieniveaus im Brennraum (12) eines Verbrennungsmotors (10), insbesondere eines HCCI-fähigen Verbrennungsmotors (10), bei dem
- angesaugte Frischluft, die vor der Verdichtung eine Temperatur  $T_1$  aufweist, verdichtet wird und
- die verdichtete angesaugte Frischluft expandiert wird,
- wobei die verdichtete und nachfolgend expandierte Frisch-luft eine Temperatur  $T_2 \,>\, T_1$  aufweist,
- d a d u r c h g e k e n n z e i c h n e t, dass die Temperaturerhöhung der Frischluft von  $T_1$  auf  $T_2$  zur Beeinflussung des Temperaturniveaus und damit des Energieniveaus im Brennraum (12) gezielt eingesetzt wird.
- 16. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , dass Abgas eines früheren Verbrennungszyklus Frischluft beziehungsweise einem Frischluft aufweisenden Gemisch zugeführt wird, um nach Einspritzung von Kraftstoff ein Luft/Kraftstoff/Abgas-Gemisch mit einem für die Verbrennung vorteilhaften Energieniveau bereitzustellen.
- 17. Verfahren nach Anspruch 15 oder 16,
  30 dadurch gekennzeichnet,
  dass die Verdichtung durch einen Abgasturbolader (16) erfolgt.
- 18. Verfahren nach einem der Ansprüche 15 bis 17, 35 dadurch gekennzeichnet, dass die Verdichtung durch einen Kompressor erfolgt.

25

- 19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass die Expansion an einer Drosselklappe (18) erfolgt.
- 5 20. Verfahren nach einem der Ansprüche 15 bis 19, dad urch gekennzeichnet, dass die Temperatur T2 nach der Expansion erfasst wird, so dass diese im Rahmen einer Regelung der Ansauggastemperatur berücksichtigt werden kann.

21. Verfahren nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet,

- dass Abgas in einem als Abgaskühler (32) wirkenden Wärme tauscher zur Absenkung der Temperatur des zurückgeführten Abgases gekühlt wird, und
- dass durch Beeinflussung des Kühlmitteldurchflusses durch den Abgaskühler (32) mittels eines Kühlmittelstellventils (50) unter Berücksichtigung von Messwerten beziehungsweise modelltechnisch ermittelten Werten die Ansauggastemperatur eingestellt beziehungsweise geregelt wird.
  - 22. Verfahren nach Anspruch 21,
- 25 dadurch gekennzeichnet, dass die Messwerte beziehungsweise die modelltechnisch ermittelten Werte mindestens einer der folgenden Größen zugeordnet sind:
- 30 Abgastemperatur,
  - zurückgeführte Abgasmasse beziehungsweise -menge,
  - Frischgastemperatur,
  - Frischgasmasse beziehungsweise -menge,
  - Ansauggastemperatur,
- 35 Ansauggasmasse beziehungsweise -menge,

- Kühlmitteltemperatur beziehungsweise Öltemperatur des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls und
- Kühlmittelmasse beziehungsweise Ölmasse beziehungsweise
   Kühlmittelmenge beziehungsweise Ölmenge des durch den Abgaskühler strömenden Kühlmittels beziehungsweise Öls.
  - 23. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet,
- dass die Frischgastemperatur, die Abgastemperatur am Motoraustritt, die Frischgasmasse beziehungsweise -menge und die Abgasmasse beziehungsweise -menge gemessen werden.
- 24. Verfahren nach einem der Ansprüche 21 bis 23, 15 dadurch gekennzeichnet, dass die Ansauggastemperatur gemäß der Gleichung

$$T_{ASG} = \dot{m}_{FG}C_{p,FG} + \dot{m}_{AG}C_{p,AG}$$

20 berechnet wird, wobei

 $\dot{m}_{FG}$ : Frischgasmassenstrom

 $\dot{m}_{AG}$ : Abgasmassenstrom

 $T_{FG}$ : Frischgastemperatur

25  $T_{AG}$ : Abgastemperatur

 $T_{ASG}$ : Ansauggastemperatur

 $c_{\it p, \rm FG}$ : Wärmekapazität des Frischgases

 $c_{\it p,AG}$ : Wärmekapazität des Abgases.

25. Verfahren nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass die Abgastemperatur am Wärmtauscherausgang unter Verwendung des folgenden Gleichungssystems berechnet wird:

$$\left|\Delta \dot{Q}_{\rm KM}\right| = \left|\Delta \dot{Q}_{\rm AG}\right| = \dot{Q}_{\rm NT}$$

$$\Delta \dot{Q}_{KM} = \dot{m}_{KM} C_{p,KM} \left( T_{KM,AUS} - T_{KM,EIN} \right)$$

27

$$\Delta \dot{Q}_{AG} = \dot{m}_{AG} C_{p,AG} (T_{AG,EIN} - T_{AG,AUS})$$

$$\dot{Q}_{WT} = kA\Delta T_{m}$$

5

wobei

 $\dot{\mathcal{Q}}$ : Wärmestrom  $\mathit{KM}$ : Kühlmittel

10 AG: Abgas

WT: Wärmetauscher  $c_p:$  Wärmekapazität

k: Wärmedurchgangskoeffizient des Wärmetauschers

A: Heizfläche des Wärmetauschers

15  $\Delta T_m$ : mittlere logarithmische Temperaturdifferenz.









#### INTERNATIONAL SEARCH REPORT

Internal Application No PCT/EP2004/002670

PCT/EP2004/002670 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F02D41/00 F02B F02B1/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) F02D F02B F02F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US 2 633 698 A (FREDERICK NETTEL) 1-5, 7 April 1953 (1953-04-07) 7-10, 15-19,21 claim 1; figures 1-4 column 2, line 45 -column 3, line 73 column 5, line 29 -column 5, line 69 US 4 078 387 A (DE BOISJEAN MICHEL DE X LAMBERT ET AL) 14 March 1978 (1978-03-14) 1-3,5,6,11,13, 15~17, 19,20, abstract; claim 1; figures 1,3 22,24 column 3, line 41 -column 4, line 43 column 7, line 39 -column 8, line 25 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. 'O' document referring to an oral disclosure, use, exhibition or other means document published prior to the International filing date but later than the priority date claimed \*&\* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 June 2004 06/07/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Van der Staay, F

## INTERNATIONAL SEARCH REPORT

Interconal Application No PC17EP2004/002670

| C.(Continua | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                  | PCT/EP2004/002670       |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Category °  |                                                                                                             | Indo-                   |  |  |
|             | , and the family passed good                                                                                | Relevant to claim No.   |  |  |
| X           | DE 39 09 932 A (DAIMLER BENZ AG)<br>27 September 1990 (1990-09-27)                                          | 1-3,5,<br>11,<br>15-17, |  |  |
|             | abstract; claim 1; figure 1 column 1, line 68 -column 2, line 69                                            | 19,22                   |  |  |
|             | US 4 452 044 A (MATUSHIRO RYUICHI ET AL)<br>5 June 1984 (1984-06-05)                                        | 1,3,5,<br>11,15,        |  |  |
|             | abstract; claim 1; figure 1<br>column 1, line 24 -column 2, line 15<br>column 7, line 25 -column 7, line 53 | 17,19,22                |  |  |
|             | AT 5 646 U (AVL LIST GMBH) 25 September 2002 (2002-09-25) the whole document                                | 1-25                    |  |  |
|             | WO 99/42718 A (CUMMINS ENGINE CO INC) 26 August 1999 (1999-08-26) abstract page 30 -page 35                 | 1-25                    |  |  |
|             | · ·                                                                                                         |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
| ļ           |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             | ·                       |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             |                                                                                                             |                         |  |  |
|             | <u> </u>                                                                                                    |                         |  |  |

# INTERNATIONAL SEARCH REPORT

F..ormation on patent family members

PCT/EP2004/002670

|                                        |   |                  |          |                           | 10047 002070     |
|----------------------------------------|---|------------------|----------|---------------------------|------------------|
| Patent document cited in search report |   | Publication date |          | Patent family member(s)   | Publication date |
| US 2633698                             | Α | 07-04-1953       | NONE     |                           | 1                |
| US 4078387                             | A | 14-03-1978       | FR       | 2308784 A1                | 19-11-1976       |
|                                        |   |                  | AR       | 212965 A1                 | 19-11-19/0       |
|                                        |   |                  | AÙ       | 515377 B2                 | 30-11-1978       |
|                                        |   |                  | AU       | 3133// BZ                 | 02-04-1981       |
|                                        |   |                  |          | 1322376 A                 | 27-10-1977       |
|                                        |   |                  | BE       | 841060 A1                 | 25-10-1976       |
|                                        |   |                  | CA       | 1049270 A1                | 27-02-1979       |
|                                        |   |                  | CH       | 601656 A5                 | 14-07-1978       |
|                                        |   |                  | DE       | 2617709 A1                | 04-11-1976       |
|                                        |   |                  | DE       | 2660433 C2                | 01-10-1987       |
|                                        |   |                  | DK       | 182376 A ,B,              | 25-10-1976       |
|                                        |   |                  | ES       | 447099 A1                 | 16-06-1977       |
|                                        |   |                  | GB       | 1528069 A                 | 11-10-1978       |
|                                        |   |                  | IN       | 147330 A1                 | 02-02-1980       |
|                                        |   |                  | ΙT       | 1060557 B                 | 20-08-1982       |
| •                                      |   |                  | JР       | 1040766 C                 | 23-04-1981       |
|                                        |   |                  | JP       | 51130716 A                |                  |
|                                        |   |                  | ĴΡ       | 55031300 B                | 13-11-1976       |
|                                        |   |                  | ŇĹ       | 7604333 A ,B,             | 16-08-1980       |
|                                        |   |                  | NO       | 761400 A B                | 26-10-1976       |
|                                        |   |                  | PL       | 761408 A ,B,<br>115576 B1 | 26-10-1976       |
|                                        |   |                  | SE       |                           | 30-04-1981       |
|                                        |   |                  | SE       | 435645 B                  | 08-10-1984       |
|                                        |   |                  | ⊃E<br>   | 7604593 A                 | 25-10-1976       |
| DE 3909932                             | Α | 27-09-1990       | DE       | 3909932 A1                | 27-09-1990       |
|                                        |   |                  | FR       | 2644845 A1                | 28-09-1990       |
|                                        |   |                  | GB       | 2229937 A                 | 10-10-1990       |
|                                        |   | •                | IT       | 1239437 B                 | 02-11-1993       |
|                                        |   |                  | JP       | 3067014 A                 | 22-03-1991       |
| US 4452044                             |   | <br>05-06-1984   | JP       | 57171029 A                |                  |
|                                        |   |                  |          | 3/1/1029 A                | 21-10-1982       |
| AT 5646                                | U | 25-09-2002       | AT       | 5646 U1                   | 25-09-2002       |
|                                        |   |                  | DE       | 10239065 A1               | 03-04-2003       |
|                                        |   |                  | US       | 2003047148 A1             | 13-03-2003       |
| HO 0042710                             |   |                  | <u>-</u> | ,<br>                     | 10-00-2003       |
| WO 9942718                             | Α | 26-08-1999       | BR       | 9904839 A                 | 18-07-2000       |
| •                                      |   |                  | CN       | 1263583 T                 | 16-08-2000       |
|                                        |   | • •              | EP       | 0983433 A1                | 08-03-2000       |
|                                        |   |                  | JP       | 3421059 B2                | 30-06-2003       |
|                                        |   |                  | JP       | 2000513788 T              | 17-10-2000       |
|                                        |   |                  |          | 2001020784 A              | 23-01-2001       |
|                                        |   |                  | WO       | 9942718 A1                | 26-08-1999       |
|                                        |   |                  | ÜS       | 6276334 B1                | 21-08-1999       |
|                                        |   |                  |          |                           |                  |

#### INTERNATIONALER RECHERCHENBERICHT

nales Aktenzeichen

PCT/EP2004/002670 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES K 7 F02D41/00 F02B1/12 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 F02D F02B F02F Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, PAJ, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie\* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X US 2 633 698 A (FREDERICK NETTEL) 1-5. 7. April 1953 (1953-04-07) 7-10. 15-19,21 Anspruch 1; Abbildungen 1-4 Spalte 2, Zeile 45 -Spalte 3, Zeile 73 Spalte 5, Zeile 29 -Spalte 5, Zeile 69 χ US 4 078 387 A (DE BOISJEAN MICHEL DE 1-3,5,6,LAMBERT ET AL) 14. März 1978 (1978-03-14) 11,13, 15-17, 19,20, 22,24 Zusammenfassung; Anspruch 1; Abbildungen Spalte 3, Zeile 41 -Spalte 4, Zeile 43 Spalte 7, Zeile 39 -Spalte 8, Zeile 25 X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen Besondere Kategorien von angegebenen Veröffentlichungen 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist \*E\* älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kenn allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L' Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheilegend ist ausgeführt) ausgetunn)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist \*&\* Veröffentlichung, die Mitglied derselben Patentfamlile ist Datum des Abschlusses der internationalen Recherche Absendedatum des Internationalen Recherchenberichts 25. Juni 2004 06/07/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Van der Staay, F

## INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PC 17 E P 2004/002670

| C.(Fortest | ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN                                                                                    | CT/EP20  | 04/002670                        |
|------------|------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|
| Kategorie* |                                                                                                                              |          |                                  |
| erchous    | Bezeichnung der Veröffentllichung, soweit erforderlich unter Angabe der in Betracht kommende                                 | en Telle | Betr. Anspruch Nr.               |
| Х          | DE 39 09 932 A (DAIMLER BENZ AG)<br>27. September 1990 (1990-09-27)                                                          |          | 1-3,5,<br>11,<br>15-17,<br>19,22 |
|            | Zusammenfassung; Anspruch 1; Abbildung 1<br>Spalte 1, Zeile 68 -Spalte 2, Zeile 69                                           |          | 10,22                            |
| x          | US 4 452 044 A (MATUSHIRO RYUICHI ET AL)<br>5. Juni 1984 (1984-06-05)                                                        |          | 1,3,5,<br>11,15,                 |
| ,          | Zusammenfassung; Anspruch 1; Abbildung 1<br>Spalte 1, Zeile 24 -Spalte 2, Zeile 15<br>Spalte 7, Zeile 25 -Spalte 7, Zeile 53 |          | 17,19,22                         |
| ,          | AT 5 646 U (AVL LIST GMBH) 25. September 2002 (2002-09-25) das ganze Dokument                                                |          | 1-25                             |
|            | WO 99/42718 A (CUMMINS ENGINE CO INC) 26. August 1999 (1999-08-26) Zusammenfassung Seite 30 -Seite 35                        | · .      | 1-25                             |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          | ,                                |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              | ·        |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |
|            |                                                                                                                              |          |                                  |

#### INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/002670

| im Recherchenberich<br>ngeführtes Patentdokur |          | Datum der<br>Veröffentlichung |                                      | Mitglied(er) der<br>Patentfamilie                                                                                                                                                                                                                                   | Datum der<br>Veröffentlichung                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------|-------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 2633698                                    | A        | 07-04-1953                    | KEIN                                 | E                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |
| US 4078387                                    | A        | 14-03-1978                    | FR AUU BE CH DE CH DE GB IT JP NO PI | 2308784 A1<br>212965 A1<br>515377 B2<br>1322376 A<br>841060 A1<br>1049270 A1<br>601656 A5<br>2617709 A1<br>2660433 C2<br>182376 A ,B,<br>447099 A1<br>1528069 A<br>147330 A1<br>1060557 B<br>1040766 C<br>51130716 A<br>55031300 B<br>7604333 A ,B,<br>761408 A ,B, | 19-11-1976<br>30-11-1978<br>02-04-1981<br>27-10-1977<br>25-10-1976<br>27-02-1979<br>14-07-1978<br>04-11-1976<br>01-10-1987<br>25-10-1976<br>16-06-1977<br>11-10-1978<br>02-02-1980<br>20-08-1982<br>23-04-1981<br>13-11-1976<br>16-08-1980<br>26-10-1976<br>26-10-1976 |
| DE 3909932                                    | <br>А    | 27-09-1990                    | PL<br>SE<br>SE<br>DE<br>FR<br>GB     | 115576 B1<br>435645 B<br>7604593 A<br>3909932 A1<br>2644845 A1<br>2229937 A                                                                                                                                                                                         | 30-04-1981<br>08-10-1984<br>25-10-1976<br>                                                                                                                                                                                                                             |
|                                               |          |                               | JP                                   | 1239437 B<br>3067014 A                                                                                                                                                                                                                                              | 10-10-1990<br>02-11-1993<br>22-03-1991                                                                                                                                                                                                                                 |
| US 4452044                                    | A        | 05-06-1984                    | JP                                   | 57171029 A                                                                                                                                                                                                                                                          | 21-10-1982                                                                                                                                                                                                                                                             |
| AT 5646                                       | U        | 25-09-2002                    | AT<br>DE<br>US                       | 5646 U1<br>10239065 A1<br>2003047148 A1                                                                                                                                                                                                                             | 25-09-2002<br>03-04-2003<br>13-03-2003                                                                                                                                                                                                                                 |
| WO 9942718                                    | <b>A</b> | 26-08-1999                    |                                      | 9904839 A<br>1263583 T<br>0983433 A1<br>3421059 B2<br>2000513788 T<br>2001020784 A<br>9942718 A1<br>6276334 B1                                                                                                                                                      | 18-07-2000<br>16-08-2000<br>08-03-2000<br>30-06-2003<br>17-10-2000<br>23-01-2001<br>26-08-1999<br>21-08-2001                                                                                                                                                           |