РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №6. Разложение чисел на множители

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Аронова Юлия Вадимовна, 1032212303

Группа: НФИмд-01-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Факторизация чисел	7 7
4	Выполнение лабораторной работы 4.1 Алгоритм, реализующий ρ -метод Полларда	11 12
5	Выводы	14
Сп	исок литературы	15

List of Figures

3.1	Зацикливание числовой последовательности, получаемой мето-	
	дом $ ho$ -методом Полларда	8
4.1	Примеры нахождения нетривиальных делителей чисел посред-	
	ством программной реализации $ ho$ -метода Полларда	13

List of Tables

3.1	Пример применения $ ho$ -метода Полларда для числа $1,359,331$	9
3.2	Пример применения $ ho$ -метода Полларда для числа $8,051$ (1)	9
3.3	Пример применения ρ -метода Полларда для числа $8.051~(2)$	9

1 Цель работы

Целью данной лабораторной работы является краткое ознакомление с ρ -методом Полларда для нахождения нетривиального делителя целого числа, а также его последующая программная реализация.

2 Задание

Рассмотреть и реализовать на языке программирования Python ho-метод Полларда для нахождения нетривиального делителя целого числа.

3 Теоретическое введение

3.1 Факторизация чисел

Факторизацией целого числа называется его разложение в произведение простых сомножителей [1]. Такое разложение, согласно основной теореме арифметики, всегда существует и является единственным (с точностью до порядка следования множителей).

3.2 ρ -метод Полларда

Этот метод был разработан Джоном Поллардом в 1975 г. Пусть $n \in \mathbb{N}$ – число, которое следует разложить. ρ -метод Полларда работает следующим образом [2]:

- **1 шаг:** Выбрать отображение $f:\mathbb{Z}_n o\mathbb{Z}_n$. Обычно f(x) многочлен степени большей или равной 2, например, $f(x)=x^2+1$.
- **2 шаг:** Случайно выбрать $x_0 \in \mathbb{Z}_n$ и вычислять члены рекуррентной последовательности x_0, x_1, x_2, \ldots по правилу $x_i \equiv f(x_{i-1}) \pmod n$.
- **3 шаг:** Для некоторых номеров j,k проверять условие $1 < \mathrm{HOД}(x_j x_k,n) < n$ до тех пор, пока не будет найден делитель числа n.

Сложность алгоритма оценивается как $O(n^{1/4})$ [3]. Метод строит числовую последовательность, элементы которой образуют цикл, начиная с некоторого номера n, что может быть проиллюстрировано расположением чисел в виде греческой буквы ρ (см. Рис. 3.1).

Figure 3.1: Зацикливание числовой последовательности, получаемой методом ρ -методом Полларда

Алгоритм 1. Алгоритм, реализующий ρ -метод Полларда

Bxod. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Выход. Нетривиальный делитель числа n.

- 1. Положить $a \leftarrow c, b \leftarrow c$.
- 2. Вычислить $a \leftarrow f(a) \pmod{n}, b \leftarrow f(f(b)) \pmod{n}$.
- 3. Найти $d \leftarrow \text{HOД}(a-b, n)$.
- 4. При 1 < d < n положить $p \leftarrow d$ и результат: d. При d = n результат: "Делитель не найден". При d = 1 вернуться на шаг 2.

Пример 1. Найдём ho-методом Полларда нетривиальный делитель числа n=1359331. Положим $c=1, f(x)=x^2+5\pmod n$. Работа алгоритма проиллюстрирована в Таблице 3.1.

Table 3.1: Пример применения ρ -метода Полларда для числа 1,359,331

i	a	b	d
0	1	1	_
1	6	41	1
2	41	123,939	1
3	1,686	391,594	1
4	123,939	438,157	1
5	435,426	582,738	1
6	391,594	1,144,026	1
7	1,090,062	885,749	1,181
_	Ответ:	1,181	

Пример 2. Повторим процедуру для числа n=8051 при c=2 и $f(x)=x^2+1$ (см. Табл. 3.2) или $f(x)=x^2+3$ (см. Табл. 3.3).

Table 3.2: Пример применения ho-метода Полларда для числа 8,051 (1)

i	a	b	d
0	2	2	-
1	5	26	1
2	26	7,474	1
3	677	871	97
_	Ответ:	97	

Table 3.3: Пример применения ρ -метода Полларда для числа 8,051 (2)

i	a	b	d
0	2	2	-
1	7	52	1

i	a	b	d
2	52	1,442	1
3	2,707	778	1
4	1,442	3,932	83
-	Ответ:	83	

4 Выполнение лабораторной работы

Реализуем описанный выше алгоритм на языке **Python** в среде Jupyter Notebook. Для работы нам понадобится функция нахождения наибольшего общего делителя. Возьмем функцию, реализующую алгоритм Евклида, реализованную в рамках 4-ой лабораторной работы:

```
def euclidean_algorithm(a, b):
    """
    Haxoдит HOД чисел а и b с помощью алгоритма Евклида
    """
    (a, b) = (abs(int(a)), abs(int(b)))

if b > a:
        (a, b) = (b, a)

r = [a, b] # war 1; задаем r0 и r1

# waru 2-3

while r[1] != 0:
        (r[0], r[1]) = (r[1], r[0] % r[1])

return r[0] # war 4
```

4.1 Алгоритм, реализующий ho-метод Полларда

Создадим функцию pollard_rho_method(n, f, c) следующего вида:

```
def pollard_rho_method(n, f, c = 1):
   a = c; b = c # шаг 1
   while True:
       x = a
       a = eval(f) % n #
       x = eval(f) #
       b = eval(f) % n #
       d = euclidean_algorithm(abs(a - b), n) # шаг 3
       if d > 1 and d < n:
          return d
       if d == n:
          print("Делитель не найден") #
         return 0
```

Теперь с помощью данной функции найдём нетривиальные делители некоторых чисел (см. Рис. 4.1).

```
print(pollard_rho_method(8051, "x ** 2 + 1"))
    print(pollard_rho_method(8051, "x ** 2 + 3"))

print(pollard_rho_method(1359331, "x ** 2 + 5"))
    print(pollard_rho_method(13562997737, "x ** 2 + 5"))
    print(pollard_rho_method(13562997737, "x ** 2 + 1"))

✓ 0.4s

... 97

83

1181

89

419
```

Figure 4.1: Примеры нахождения нетривиальных делителей чисел посредством программной реализации ρ -метода Полларда

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: было проведено краткое знакомство с алгоритмом, реализующим ρ -метод Полларда для нахождения нетривиального делителя целого числа, после чего алгоритм был успешно реализован на языке программирования **Python**.

Список литературы

- 1. Ишмухаметов Ш.Т. Методы факторизации натуральных чисел: учебное пособие. Казань: Казанский университет, 2011. С. 190.
- 2. Василенко О.Н. Теоретико-числовые алгоритмы в криптографии. Москва: МЦНМО, 2003.
- 3. Википедия. Ро-алгоритм Полларда Википедия, свободная энциклопедия. 2021.