

CONDITIONAL EVENT PROBABILITIES

Why

Given that we know that one event has occured, we want language for what the new probabilities should be.¹

Definition

Let $\mathbf{P}: \mathcal{P}(\Omega) \to \mathbf{R}$ be a finite probability measure. Let $A, B \subset \Omega$ and $\mathbf{P}(B) \neq 0$. The *conditional probability* of A given B is fraction of the probability of $A \cap B$ over the probability of B.

Notation

In a slightly slippery but universally standard notation, we denote the conditional probability of A given B by $\mathbf{P}(A \mid B)$. In other words, we define

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)},$$

whenever $A, B \subset \Omega$ and $\mathbf{P}(B) \neq 0$.

Induced conditional distribution

Conditioning on an event B induces a new distribution on the set of outcomes. For P_p , define $q: \Omega \to \mathbb{R}$ by

$$q(\omega) = \begin{cases} \frac{p(\omega)}{\mathbf{P}(B)} & \text{if } \omega \in B\\ 0 & \text{otherwise.} \end{cases}$$

In this case $P_q(A) = P_p(A \mid B)$. We call q the conditional distribution induced by conditioning on the event B.

¹Future editions will improve.

Total probability

Using the notation $\mathbf{P}(\cdot \mid \cdot)$, we can express the law of total probability for $\mathbf{P}(B)$, $B \subset \Omega$, as

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(A_i) \mathbf{P}(B \mid A_i),$$

where A_1, \ldots, A_n partition Ω .

