

Segue una tabella riepilogativa in cui, per ciascun elemento DFD viene riportato l'aspetto che assume nel diagramma, il significato e alcuni brevi esempi:

ELEMENTO DFD	ASPETTO	SIGNIFICATO	ESEMPIO
Processo	Rettangolo	Qualunque codice in	Codice scritto in C,
	arrotondato, cerchio o	esecuzione	C#, Python o PHP,
	cerchio concentrico		etc.
Flusso dati	Freccia	Comunicazione tra	Connessioni di rete,
		processi o tra processi	HTTP, RPC, LPC, etc.
		e archivi di dati	
Archivio dati	Due linee parallele con	Supporti di	File, database, registro
	etichetta nel mezzo	memorizzazione dati	di Windows, segmenti
			di memoria condivisi.
Entità esterna	Rettangolo con angoli	Persone o codice al di	Un utente, un sito web
	retti	fuori del nostro	esterno.
		controllo	

Tabella 5 - Caratteristiche degli elementi DFD

L'impiego di diverse tipologie di diagramma concepiti come diversi blocchi di costruzione aiutano a modellare ciò che si sta realizzando.

Nell'esempio che segue, viene rappresentato un modello di una semplice applicazione web che implementa una su logica di business che interagisce con un browser web, con un server web e con un database (vedi figura a seguire).

Figura 5 - Diagramma del sistema

Un modo semplice per migliorare il diagramma consiste nel delineare i confini per dare evidenza di "chi controlla cosa". Si può facilmente comprendere che le minacce che attraversano questi confini sono probabilmente le più importanti e possono essere un buon punto di partenza nel processo di identificazione. Questi confini prendono il nome di "trust boundaries" (confini di fiducia) e dovrebbero essere sicuramente disegnati ovunque esiste un controllo da parte di persone. Alcuni esempi significativi:

- Account (User ID sui sistemi Unix o i Security Identifiers su sistemi Microsoft Windows);
- Interfacce di rete;
- Macchine fisiche;
- Macchine virtuali;
- Perimetri organizzativi;
- Ovunque possa essere messa in discussione la diversificazione dei privilegi.

Nel diagramma riportato nella Figura che segue, si aggiungono i "trust boundaries" (rappresentati da rettangoli tratteggiati) e la descrizione di ciò che il perimetro contiene: