

Support Vector Machines (SVM) and Sequential Minimal Optimization (SMO)

Technische Universität Berlin and Max Planck Institute of Microstructure Physics

25 Jun 2014

Slack variables

Slack variables

Introduce slack variables ξ_i :

$$egin{aligned} \min_{\mathbf{w},b,\xi_i} & ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i \ & \text{subject to} & y_i(\mathbf{w}\cdot\mathbf{x_i}+b) \geq 1 - \xi_i \ & \xi_i \geq 0 \end{aligned}$$

Non-linear hyperplanes

Non-linear hyperplanes

Map into a higher dimensional feature space:

$$\begin{array}{cccc} \Phi: & \mathbb{R}^2 & \rightarrow & \mathbb{R}^3 \\ & (x_1,x_2) & \mapsto & (x_1^2,\sqrt{2}x_1x_2,x_2^2) \end{array}$$

Dual SVM

Primal

$$\min_{\mathbf{w},b,\xi_i} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to $y_i(\mathbf{w} \cdot \Phi(\mathbf{x_i}) + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$ for $i = 1 \dots N$

Dual

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j}) \right)$$

subject to $\sum_{i=1}^{N} \alpha_i y_i = 0$ and $C \ge \alpha_i \ge 0$ for $i = 1 \dots N$

Data points x_i only appear in scalar products $(\Phi(\mathbf{x_i}) \cdot \Phi(\mathbf{x_j}))$.

The Kernel Trick

Replace scalar products with kernel function (?):

$$k(x, y) = \Phi(x) \cdot \Phi(y)$$

- ▶ Compute kernel matrix $K_{ij} = k(x_i, x_i)$, i.e. never use Φ directly
- Underlying mapping Φ can be unknown
- ► Kernels can be adopted to specific task, e.g. using prior knowledge (kernels for graphs, trees, strings, ...)

Common kernels

Gaussian Kernel:
$$k(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$$

Linear Kernel:
$$k(x, y) = x \cdot y$$

Polynomial Kernel:
$$k(x,y) = (x \cdot y + c)^d$$

The Support Vectors in SVM

$$\max_{\alpha} \quad \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\Phi(\mathbf{x_{i}}) \cdot \Phi(\mathbf{x_{j}}) \right)$$
 subject to
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \text{ and } C \geq \alpha_{i} \geq 0 \text{ for } i = 1 \dots N$$

KKT conditions

$$y_i [\mathbf{w} \Phi(\mathbf{x_i})) + b] > 1 \Longrightarrow \qquad a_i = 0 \longrightarrow \qquad x_i \text{ irrelevant}$$

 $y_i [\mathbf{w} \Phi(\mathbf{x_i})) + b] = 1 \Longrightarrow \qquad \text{on/in margin} \longrightarrow \qquad x_i \text{ Support Vector}$

Old model $f(x) = w \cdot \Phi(x_i) + b$ becomes via $w = \sum_{i=1}^{N} \alpha_i y_i \Phi(x_i)$:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b \longrightarrow f(x) = \sum_{x_i \in SV} \alpha_i y_i k(x_i, x) + b$$

Quadratic Programming (QP)

Reminder: The SVM optimization problem

$$\max_{\alpha} \quad \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$
 subject to
$$\sum_{i=1}^{N} \alpha_i y_i = 0 \text{ and } C \geq \alpha_i \geq 0 \text{ for } i = 1 \dots N$$

Quadratic Programming

$$\min_{x} \quad \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$$
s.t.
$$Gx \leq h$$

$$Ax = h$$

⇒ We can solve the SVM problem with a QP solver.

Coordinate Descent

Imagine a multivariate function $W(x_1, x_2, ..., x_N)$ and the problem $\operatorname{argmax}_{\mathbf{x}} W(x_1, x_2, ..., x_N)$

Coordinate Descent Algorithm

while not converged do

for
$$i = 1 \dots N$$
 do

$$x_i \leftarrow \operatorname{argmax}_{x_i} W(x_1, \dots, x_i, \dots, x_N)$$

end for

end while

Sequential Minimal Optimization (SMO) Idea

We have to solve the SVM optimization problem subject to the condition

$$\sum_{i=1}^{N} \alpha_i y_i = 0.$$

I.e. we can *not* optimize one single variable individually.

Solution: Optimize two variables α_i and α_j with $y_i \neq y_j$ while keeping the other α fixed.

From KKT conditions, we get (optimizing α_1 and α_2 WLOG)

$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{i=3}^{N} \alpha_i y_i$$

where the right handside is fixed $\zeta = -\sum_{i=3}^{N} \alpha_i y_i$.

Box constraints

- From the second contraint $0 \le \alpha_i \le C$, we know that α_1 and α_2 have to lie inside the pictured box:
- We can see, that there exists a upper and lower bound for α₂: L ≤ α₂ ≤ H.

- ▶ If we write $\alpha_1 = (\zeta \alpha_2 y_2) y_1$, we have to solve a quadratic function in one variable (α_2) .
- ▶ The new α_2 then has to be clipped to the box constraints L and H (!)
- ▶ Find α_1 via $\alpha_1 = (\zeta \alpha_2 y_2)y_1$. Then pick two new α and repeat.