

Section 4.4: Locality-Sensitive Hashing Focus on pairs of signatures likely to be

from similar documents

Content

- 1 Locality-Sensitive Hashing
- Partition M into Bands
- 3 Analysis of LSH

4.4.1 LSH: First Cut

 2
 1
 4
 1

 1
 2
 1
 2

 2
 1
 2
 1

□**Goal:** Find documents with Jaccard similarity at least *s* (for some similarity threshold, e.g., *s*=0.8)

Locality-Sensitive Hashing(局部敏感哈希, 位置敏感哈希, LSH) (or called near-neighbor search, 近邻搜索), general idea: Use a function f(x, y) that tells whether x and y is a *candidate pair* (候选对)---a pair of elements whose similarity must be evaluated

4.4.1 Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

□For Min-Hash matrices:

- ➤ Hash columns of signature matrix *M* to many buckets
- \triangleright Pick a similarity threshold s (0 < s < 1)
- Columns **x** and **y** of **M** are a **candidate pair** if their signatures agree on at least fraction **s** of their rows: **M** (**i**, **x**) = **M** (**i**, **y**) for at least frac. **s** values of **i**. We expect documents **x** and **y** to have the same (Jaccard) similarity as their signatures

4.4.1 LSH example

Assume one hash function here

4.4.1 LSH for Min-Hash

- 2 1 4 1
 1 2 1 2
 2 1 2 1
- ■Big idea: Hash columns of signature matrix M several times (Note this is a general approach)
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- □ Candidate pairs are those that hash to the same bucket

4.4.2 Partition M into Bands

 \square An effective way to choose the hashing is to: **divide matrix** M into b bands of r rows

4.4.2 Partition M into Bands

- □ For each band, hash its portion of each column to a hash table with *k* buckets
 - \triangleright Make k as large as possible
- ■We can use different hash functions for each band; Or, we can use the same hash function for all band, but use a separate bucket array for each band
 - > Columns with same vector in same band will hash to the same bucket.
 - > Columns with same vector in different bands, not hash to the same bucket.
- □Candidate pairs are those that hash to the same bucket for ≥ 1 band
- \Box Tune **b** and **r** to catch most similar pairs, but few non-similar pairs

Note: b bands, r rows per band

4.4.2 Hashing Bands Example

4.4.3 Analysis of LSH

- Simplifying Assumption: There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
 - >Hereafter, we assume that "same bucket" means "identical in that band"
 - Assumption needed only to simplify analysis, not for correctness of algorithm

■ Assume the following case:

- ➤ Suppose 100,000 columns of M (100k docs)
- ➤ Signatures of 100 integers (rows)
- ➤ Therefore, signatures take 40Mb
- \triangleright Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

4.4.3 C₁, C₂ are 80% Similar

- 2
 1
 4
 1

 1
 2
 1
 2

 2
 1
 2
 1
- □ Find pairs of $\ge s = 0.8$ similarity, set b = 20, r = 5
- \square Assume: $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1 , C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- □Probability C₁, C₂ identical in one particular band: (0.8)⁵ = 0.328
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - ▶i.e., about 1/3000th of the 80%-similar column pairs are false negatives (伪反例, we miss them)
 - **▶** We would find 99.965% pairs of truly similar documents

False positive(伪正例):某些文档对不是相似的,但它被认为是相似的

4.4.3 C₁, C₂ are 30% Similar

- 2
 1
 4
 1

 1
 2
 1
 2

 2
 1
 2
 1
- □ Find pairs of $\ge s = 0.8$ similarity, set b = 20, r = 5
- \square Assume: $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1 , C_2 to hash to **NO common buckets** (all bands should be different)
- □ Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- □ Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 (1 $0.00243)^{20} = 0.0474$
 - ➤In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives (伪正例) since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

4.4.3 LSH Involves a Tradeoff

2 1 4 1 1 2 1 2 2 1 2 1

□Pick:

- The number of Min-Hashes (rows of *M*)
- The number of bands b, and
- ➤ The number of rows r per band

to balance false positives(伪正例)/negatives(伪反例)

■ Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

False positive(伪正例):某些文档对不是相似的,但它被认为是相似的False negative(伪反例):某些文档对是相似的,但它却认为是不相似的

4.4.3 Analysis of LSH – What We Want

4.4.3 What 1 Band of 1 Row Gives You

4.4.3 b bands, r rows/band

Note: b bands, r rows per band

□Columns C₁ and C₂ have similarity *t*

- ■Pick any band (r rows)
 - ➤ Prob. that all rows in band equal = t
 - ▶ Prob. that some row in band unequal = 1 t

 \square Prob. that no band identical = $(1 - t')^b$

□Prob. that at least 1 band identical (签名在最少一个行条中全部相等的概率, 也就是成为候选对的概率) = 1 - (1 - t*)^b

4.4.3 What b Bands of r Rows Gives You

成为候选对的概率:

$$b = 20; r = 5$$

t	1-(1-t ^r)b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Similarity $t=sim(C_1, C_2)$ of two sets \longrightarrow

S-curve (S 曲线)

4.4.3 Picking r and b: The S-curve

□ Picking *r* and *b* to get the best S-curve

阈值s近似估计为 $(1/b)^{1/r}$

> 50 hash-functions (r=5, b=10)

- ▶ 如果避免<mark>伪反例的产生很重要</mark>, 蓝色区域要降低 (红色线条右移), 选择合适的b和r以产生小于s 的阈值;
- 如果速度很重要且限制伪正例的数量, 绿色区域要减少(红色线条左移), 选择合适的b和r以获得更高的阈值

Green area: False Positive(伪正例) rate Blue area: False Negative(伪反例) rate

False positive(伪正例):某些文档对不是相似的, 但它被认为是相似的False negative(伪反例):某些文档对是相似的, 但它却认为是不相似的

4.4.3 LSH小结

- □Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- □(Optional) In another pass through data, check that the remaining candidate pairs really represent similar documents

Chapter 4 总结

- □1. Shingling: Convert documents to sets
 - >We used hashing to assign each shingle an ID
- ■2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - >We used hashing to get around generating random permutations
- □3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - ightharpoonup We used hashing to find **candidate pairs** of similarity \geq **s**