Outline

- Motivation and taxonomy of crawlers
- Basic crawlers and implementation issues
- Universal crawlers
- Preferential (focused and topical) crawlers
- Crawler ethics and conflicts

Preferential crawlers

- Assume we can estimate for each page an importance measure, I(p)
- Want to visit pages in order of decreasing I(p)
- Maintain the frontier as a priority queue sorted by I(p)
- Possible figures of merit:
 - Precision ~| p: crawled(p) & I(p) > threshold | / | p: crawled(p) |
 - Recall ~| p: crawled(p) & I(p) > threshold | / | p: I(p) > threshold |

Preferential crawlers

 Selective bias toward some pages, eg. most "relevant"/topical, closest to seeds, most popular/largest PageRank, unknown servers, highest rate/amount of change, etc...

Focused crawlers

Supervised learning: classifier based on labeled examples

Topical crawlers

- Best-first search based on similarity(topic, parent)
- Adaptive crawlers
 - Reinforcement learning
 - Evolutionary algorithms/artificial life

Preferential crawling algorithms: Examples

- Breadth-First
 - Exhaustively visit all links in order encountered
- Best-N-First
 - Priority queue sorted by similarity, explore top N at a time
 - Variants: DOM context, hub scores
- PageRank
 - Priority queue sorted by keywords, PageRank
- SharkSearch
 - Priority queue sorted by combination of similarity, anchor text, similarity of parent, etc. (powerful cousin of FishSearch)
- InfoSpiders
 - Adaptive distributed algorithm using an evolving population of learning agents

Preferential crawlers: Examples

For I(p) = PageRank (estimated based on pages crawled so far), we can find high-PR pages faster than a breadth-first crawler (Cho, Garcia-Molina & Page 1998)

Focused crawlers: Basic idea

- Naïve-Bayes classifier based on example pages in desired topic, c*
- Score(p) = Pr(c*|p)
 - Soft focus: frontier is priority queue using page score
 - Hard focus:
 - Find best leaf ĉ for p
 - If an ancestor c' of ĉ is in c* then add links from p to frontier, else discard
 - Soft and hard focus work equally well empirically

Example: Open Directory

Focused crawlers

- Can have multiple topics with as many classifiers, with scores appropriately combined (Chakrabarti et al. 1999)
- Can use a distiller to find topical hubs periodically, and add these to the frontier
- Can accelerate with the use of a critic (Chakrabarti et al. 2002)
- Can use alternative classifier algorithms to naïve-Bayes, e.g. SVM and neural nets have reportedly performed better (Pant & Srinivasan 2005)

Context-focused crawlers

Context graph

- Same idea, but multiple classes (and classifiers) based on link distance from relevant targets
 - □ ℓ=0 is topic of interest
 - □ ℓ=1 link to topic of interest
 - □ Etc.
- Initially needs a back-crawl from seeds (or known targets) to train classifiers to estimate distance
- Links in frontier prioritized based on estimated distance from targets
- Outperforms standard focused crawler empirically

Topical crawlers

- All we have is a topic (query, description, keywords) and a set of seed pages (not necessarily relevant)
- No labeled examples
- Cosine similarity may be used
- Original idea: Menczer 1997, Menczer & Belew 1998

Topical locality

- Topical locality is a necessary condition for a topical crawler to work, and for surfing to be a worthwhile activity for humans
- Links must encode semantic information, i.e. say something about neighbor pages, not be random
- It is also a sufficient condition if we start from "good" seed pages
- Indeed we know that Web topical locality is strong:
 - Indirectly (crawlers work and people surf the Web)
 - From direct measurements (Davison 2000; Menczer 2004, 2005)

Quantifying topical locality

- Different ways to pose the question:
 - How quickly does semantic locality decay?
 - How fast is topic drift?
 - How quickly does content change as we surf away from a starting page?
- To answer these questions, let us consider exhaustive breadth-first crawls from 100 topic pages

The "link-cluster" conjecture

- Connection between semantic topology (relevance) and link topology (hypertext)
 - □ G = Pr[rel(p)] ~ fraction of relevant/topical pages (topic generality)
 - \neg R = Pr[rel(p) | rel(q) AND link(q,p)] ~ cond. prob. Given neighbor on topic
- Related nodes are clustered if R > G
 - Necessary and sufficient condition for a random crawler to find pages related to start points
 - Example:
 2 topical clusters
 with stronger
 modularity within
 each cluster than outside

Link-cluster conjecture

Stationary hit rate for a random crawler:

$$\eta(t+1) = \eta(t) \cdot R + (1-\eta(t)) \cdot G \ge \eta(t)$$

$$\eta \xrightarrow{t \to \infty} \eta^* = \frac{G}{1-(R-G)}$$
Conjecture
$$\eta^* > G \Leftrightarrow R > G$$
Value
added
of links
$$\frac{\eta^*}{G} - 1 = \frac{R-G}{1-(R-G)}$$

where η(t) is the probability that the crawler hits a relevant page at time t

Outline

- Motivation and taxonomy of crawlers
- Basic crawlers and implementation issues
- Universal crawlers
- Preferential (focused and topical) crawlers
- Evaluation of preferential crawlers
- Crawler ethics and conflicts

Crawler ethics and conflicts

- Crawlers can cause trouble, even unwillingly, if not properly designed to be "polite" and "ethical"
- For example, sending too many requests in rapid succession to a single server can amount to a Denial of Service (DoS) attack!
 - Server administrator and users will be upset
 - Crawler developer/admin IP address may be blacklisted

Crawler etiquette (important!)

- Identify yourself
 - Use 'User-Agent' HTTP header to identify crawler, website with description of crawler and contact information for crawler developer
 - Use 'From' HTTP header to specify crawler developer email
 - Do not disguise crawler as a browser by using their 'User-Agent' string
- Always check that HTTP requests are successful, and in case of error, use HTTP error code to determine and immediately address problem
- Pay attention to anything that may lead to too many requests to any one server, even unwillingly, e.g.:
 - redirection loops
 - spider traps

Crawler etiquette (important!)

- Spread the load, do not overwhelm a server
 - Make sure that no more than some max. number of requests to any single server per unit time, say < 1/second
- Honor the Robot Exclusion Protocol
 - A server can specify which parts of its document tree any crawler is or is not allowed to crawl by a file named 'robots.txt' placed in the HTTP root directory, e.g. http://www.indiana.edu/robots.txt
 - Crawler should always check, parse, and obey this file before sending any requests to a server
 - More info at:
 - http://www.google.com/robots.txt
 - http://www.robotstxt.org/wc/exclusion.html

More on robot exclusion

- Make sure URLs are canonical before checking against robots.txt
- Avoid fetching robots.txt for each request to a server by caching its policy as relevant to this crawler
- Let's look at some examples to understand the protocol...

www.apple.com/robots.txt

www.microsoft.com/robots.txt

www.springer.com/robots.txt

More crawler ethics issues

- Is compliance with robot exclusion a matter of law?
 - No! Compliance is voluntary, but if you do not comply, you may be blocked
 - Someone (unsuccessfully) sued Internet Archive over a robots.txt related issue
- Some crawlers disguise themselves
 - Using false User-Agent
 - Randomizing access frequency to look like a human/browser
 - Example: click fraud for ads

More crawler ethics issues

- Servers can disguise themselves, too
 - Cloaking: present different content based on User-Agent
 - E.g. stuff keywords on version of page shown to search engine crawler
 - Search engines do not look kindly on this type of "spamdexing" and remove from their index sites that perform such abuse

Gray areas for crawler ethics

- If you write a crawler that unwillingly follows links to ads, are you just being careless, or are you violating terms of service, or are you violating the law by defrauding advertisers?
 - Is non-compliance with Google's robots.txt in this case equivalent to click fraud?
- If you write a browser extension that performs some useful service, should you comply with robot exclusion?