

indirect proofs: proof by contrapositive

indirect proofs: proof by contrapositive

Theorem

For any $n \in \mathbb{Z} n$, if n^2 is even, then n is even.

Proof.

- By contrapositive; we prove that if n is odd, then n^2 is odd
- Let *n* be an arbitrary odd integer.
- Since n is odd, there is some integer k such that n=2k+1.
- Squaring both sides of this equality and simplifying yields the following:

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

- From this we see that there is an integer m (namely $2k^2 + 2k$) such that $n^2 = 2m + 1$.
- Therefore n^2 is odd.

indirect proofs: proof by contradiction

Theorem

For any $n \in \mathbb{Z} n$, if n^2 is even, then n is even.

Proof.