Chaotic Functions

Caden Hewlett

2024-08-25

Logistic Map

The Logistic Map depends on the parameter r, which controls the behaviour of the system and ranges between 0 and 4.

For $r \in [0,1)$ the population will eventually die out, i.e. $x_n \to 0$. For $r \in [1,3)$ the system stabilizes to a fixed point dependent on r, and for $r \in [3, \approx 3.57]$ the system exhibits period-doubling bifurcations between two points. Finally, for $r \in [3.57, 4]$ the system is chaotic and the values of x_n are highly dependent on the initial condition x_0 .

The general evolution of a logistic map is given by:

$$x_{n+1} = r \cdot x_n \cdot (1 - x_n)$$
, where $r \in [0, 4]$ and $x_0 \in \mathbb{R}$

Below is a plot of a logistic map, with $x_0 = 0.15$ and r = 3.9.

Poincare Plot of Logistic Map

Henon Map

A Henon Map is a two-dimensional discrete time chaotic system that can produce strange attractors. It was developed in 1976 as a simplified model of the Poincaré section of the Lorenz system.

It is defined by state variables x_n and y_n alongside real-valued coefficients a and b, in the system below.

$$x_{n+1} = 1 - a \cdot x_n^2 + y_n$$
$$y_{n+1} = b \cdot x_n$$

Like all of these systems, the Henon Map evolves iteratively, i.e. with (x_0, y_0) you can compute (x_1, y_1) , etc. Critically, the squaring of x_n in line one introduces nonlinearity in the evolution that tends to chaotic behaviour and strong dependence on the initial conditions.

For the standard initialization a = 1.4 and b = 0.3, the system is chaotic and does not settle into a cycle but instead a **strange attractor**.

In dynamic systems, an attractor is a set of states that the system tends towards over time. This can be a fixed point attractor $S = \{(x^*, y^*)\}$. Alternatively, it can be a limit **cycle attractor**, wherein the system settles into a periodic orbit dictated by some function, i.e. $S = \{(x(t), y(t)) \mid t \in T\}$ where T is the period (i.e. past discrete time T the cycle repeats.) The system can also form a **torus attractor** which is quasiperiodic and forms a donut-like shape without ever exactly repeating. Finally, a **strange attractor** tends to a fractal structure that is non-periodic. The system never follows a periodic or repeating cycle, insead following some complex pattern appearing random (but is actually determined by the initial conditions.)

Below is a plot of a Henon Map forming a Strange Attractor in \mathbb{R}^2 , with $x_0 = y_0 = 0$.

Hénon Map – Strange Attractor

Lorenz System

The Lorenz System is a set of three non-linear differential equations introduced by Edward Lorenz in 1963. The System is defined by the following ODEs.

$$\frac{dx}{dt} = \varsigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

Where x, y, z are the variables that evolve over time, and ς, ρ and β define the behaviour.

The first coefficient, ς , is known as the Prandtl number. It is related to the viscosity of the fluid. The second coefficient, ρ , is the Rayleigh number. It is related to the temperature difference controlling the convection. Finally β is the geometric factor of the series.

The first equation controls how x evolves over time. In a physical sense, it represents the rate of change of the convective velocity, where ς controls the sensitivity of the system to the difference between y and x. The second equation describes the change in y over time, by combination of convection through x and cooling through y. Finally, the third equation governs the evolution of z, which is related to the heat transfer (xy) and the dissipation βz .

Below is a plot of the system with $\varsigma = 10$, $\rho = 28$, $\beta = 8/3$ and $x_0 = y_0 = z_0 = 1$.

Warning: package 'deSolve' was built under R version 4.4.1

Lorenz Attractor

