Calculus II

Integrals of the form $\int \sqrt{ax^2+c} dx$, a,c>0

Todor Miley

2019

Euler substitution:
$$x = \frac{1}{2} \left(\frac{1}{t} - t \right), \sqrt{x^2 + 1} = \frac{1}{2} \left(\frac{1}{t} + t \right),$$

 $t = \sqrt{x^2 + 1} - x, dx = -\frac{1}{2} \left(\frac{1}{t^2} + 1 \right) dt$. Recall $t > 0$.

Example

$$\int \sqrt{x^2 + 1} \, dx = -\int \frac{1}{2} \left(\frac{1}{t} + t \right) \frac{1}{2} \left(\frac{1}{t^2} + 1 \right) dt$$

$$= -\frac{1}{4} \int \left(\frac{1}{t^3} + 2\frac{1}{t} + t \right) dt$$

$$= -\frac{1}{4} \left(-\frac{t^{-2}}{2} + 2 \ln|t| + \frac{t^2}{2} \right) + C$$

$$= \frac{1}{2} \left(\frac{1}{2} \left(t^{-1} - t \right) \frac{1}{2} \left(t^{-1} + t \right) \right) - \frac{1}{2} \ln t + C$$

$$= \frac{1}{2} x \sqrt{x^2 + 1} - \frac{1}{2} \ln \left(\sqrt{x^2 + 1} - x \right) + C$$

$$= \frac{1}{2} x \sqrt{x^2 + 1} + \frac{1}{2} \ln \frac{\sqrt{x^2 + 1} + x}{\left(\sqrt{x^2 + 1} - x \right) \left(\sqrt{x^2 + 1} + x \right)} + C$$

$$= \frac{1}{2} x \sqrt{x^2 + 1} + \frac{1}{2} \ln \left(\sqrt{x^2 + 1} + x \right) + C$$

Example

$$\int \frac{1}{x^2 \sqrt{x^2 + 9}} dx = \int \frac{1}{x^2 3 \sqrt{\left(\frac{x}{3}\right)^2 + 1}} dx$$

$$= \int \frac{1}{(3 \cot \theta)^2 3 \sqrt{\cot^2 \theta + 1}} d(3 \cot \theta)$$

$$= \int \frac{1}{27 \cot^2 \theta \sqrt{\csc^2 \theta}} \left(-3 \csc^2 \theta\right) d\theta$$

$$= \frac{1}{9} \int \frac{-\csc^2 \theta}{\cot^2 \theta \csc \theta} d\theta$$

$$= \frac{1}{9} \int \frac{-\sin \theta}{\cos^2 \theta} d\theta = \frac{1}{9} \int \frac{1}{\cos^2 \theta} d(\cos \theta)$$

$$= \frac{1}{9} \int \frac{du}{u^2} = -\frac{1}{9u} + C = -\frac{\sec \theta}{9} + C$$

$$= -\frac{\sqrt{x^2 + 9}}{9x} + C$$
Set $\frac{x}{3} = \cot \theta$

$$x = 3 \cot \theta$$

$$\theta \in (0, \pi)$$

$$\theta \in (0, \pi) \Rightarrow$$

$$\csc \theta > 0$$
Set $u = \cos \theta$