Man soll ein passendes Modell suchen	Lineare regression
Testen eines Zufallgenerators , ob er gut ist oder nicht	Smirnov test auf Gleichverteilung
OHypothese: Die Zufallszahlen sind gleichverteilt	
Testen ob ein Würfel fair ist	
OHypothese: Das Auftreten jedes Wertes des Würfels ist gleichverteilt.	
Startrack Tote in verschiedenen Abteilungen	χ2 Test
Anzahl Farben in Fizzers wegen Diskriminierung	
Weiteres Indiz: Allgemein dort wo Wahrscheinlichkeiten für	
verschiedene Kategorien vorkommen.	
Zwei Skirennfahrer vergleichen ihre Skirennzeiten	T Test
OHypothese: Beide Fahrer haben normalverteilte	
Fahrzeiten mit gleichem Mittelwert u. Varianz.	

Alle Funktionen müssen im "Calculator" ausgeführt wertden.

Die Übergabeparameter dürfen aber auch im notes definiert werden.

Lineare regression

Wann? Verwenden um die best mögliche **Gerade** auf viele Datenpunkte (x,y) zu legen.

Form: $f(x) = a \cdot x + b$

Wie? Gegeben: N Datenpunkte (X,Y)

1) Matrix erstellen mit 2 Spalten und N Zeilen

2) Füllen mit Datenpunkte

3) Funktionsaufruf "wrstat\linreg(matrix)"

4) Resultat in Tabelle abschreiben

wrstat\linreg \begin{pmatrix} x & y \\ 8 & 288.09 \\ 9 & 282.94 \\ 10 & 255.09 \\ 11 & 182.92 \\ 12 & 109.1 \end{pmatrix}

Spezial

Regression für nicht lineare Zusammenhänge

Bei diesen Formen muss die Vorgedruckte Funktion auf dem Tabellenblatt überschrieben werden

Form: $f(x) = e^{a \cdot Ln(x) + b}$

Aufruf: wrstat\potreg(matrix)

Form: $f(x) = e^{a \cdot x + b}$

Aufruf: wrstat\exporeg(matrix)

Form: $f(x) = Ln(a \cdot x + b)$

Aufruf: wrstat\logreg(matrix)

Unsicher welche du nehmen sollst?

Aufruf: wrstat\bestreg(matrix)
Findet die beste dieser 4 varianten.
Achte auf die Ausgabe des Rechners,
er zeigt um welche Form es sich handelt.

cov(X,Y)=-91.6 var(X)=2, var(Y)=
4687.38
a½cov(X,Y)/var(X)=-45.8
b=E(Y)-a*E(X)=681.628
y(x)=a*x+by a=-45.8 b=681.628
Qualität der linearisierung kann mit r
bestummen werden.
r=cov(X,Y)/(√(var(X)*var(Y))

Wann? Testet ob eine gegebene Zufallsvariable einer Gleichverteilung folgt. Wie? Gegeben: N Werte die scheinbar gleichverteilt sind Grenzen: Minimal und maximal möglicher Wert den die Messpunkte annehmen könnten Nicht min(Werte), max(Werte)! 1) Vektor mit den Werten der Zufallsvariable erstellen 2) Funktionsaufruf "wrstat\smirnovtest(vector,minVal,maxVal)" 3) Resultat in Tabelle abschreiben

χ2 Test	
Wann?	Um zu prüfen, ob sich die Häufigkeitsverteilung einer kategorialen Variable von
	einer theoretisch angenommenen Gleichverteilung unterscheidet.
Wie?	Gegeben: Mehrere Kategorien mit einem Anteil pro Kategorie und
	eine Messung für jede Kategorie
	 Matrix mit 2 Spalten und N Zeilen erstellen. N=Anzahl Kategorien Spalte 1: Anteil der Kategorie
	(muss so angegeben werden, dass die Summe aller Anteile = 1 ist)
	Spalte 2: Messwerte für jede Kategorie. Z.B. Anzahl tote für diese T-Shirt Farbe
	2) α bestimmen, üblicherweise 0.05
	3) Funktionsaufruf "wrstat\x2test(matrix,α)"
	4) Resultat in Tabelle abschreiben

	z) w bestimmen, ubilener weise 0.05
	 Funktionsaufruf "wrstat\x2test(matrix,α)"
	4) Resultat in Tabelle abschreiben
est	
Wann?	Testet ob sich zwei Stichproben nicht signifikant von einander unterscheiden
Wie?	Variante A: Gegeben: 2 Listen an Datenwerte
	1) 2 Vektoren für beide Daten erstellen.
	Die Anzahl Datenpunkte kann unterschiedlich sein
	2) α bestimmen, üblicherweise 0.05 (für zweiseitiger Test α halbieren)
	 Funktionsaufruf "wrstat\tverttest(vec1, vec2, α)"
	4) Resultat in Tabelle abschreiben
	Variante B : Gegeben: Zwei Datengruppen mit den Werten:
	- Anzahl Messpunkte
	- Durchschnittswert
	- Standardabweichung
	1) Paramerter definieren oder dann direkt in die Funktion eigeben.
	n:=Anzahl Werte aus Messreihe X
	mx:=Durchschnitt der X-Werte
	sx:=Standardabweichung der X-Werte
	m:=Anzahl Werte aus Messreihe Y
	my:=Durchschnitt der Y-Werte
	sy:=Standardabweichung der Y-Werte
	2) α bestimmen, üblicherweise 0.05 (für zweiseitiger Test α halbieren)

3) Funktionsaufruf "wrstat\tverttest2(n,mx,sx, m,my,sy, α)"

4) Resultat in Tabelle abschreiben (Oberer Teil mit den Messdaten bleibt leer)