Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a IX-a

Problema 1. Rezolvați în mulțimea numerelor reale ecuația

$$[x]^5 + \{x\}^5 = x^5.$$

Notă: prin[x] şi $\{x\}$ se notează partea întreagă, respectiv partea fracționară a numărului real x.

Problema 2. Demonstrați că, dacă a,b,c sunt numere reale strict pozitive, atunci

$$\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\leq \frac{3}{4}.$$

Gazeta Matematică

Problema 3. Un cerc care trece prin vârfurile B şi C ale unui triunghi ABC taie din nou laturile (AB) şi (AC) în N, respectiv M. Luăm punctele $P \in (MN), \ Q \in (BC)$ astfel încât unghiurile $\angle BAC$ şi $\angle PAQ$ să aibă aceeaşi bisectoare.

a) Arătați că

$$\frac{PM}{PN} = \frac{QB}{QC}.$$

b) Arătați că mijloacele segmentelor (BM), (CN), (PQ) sunt coliniare.

Problema 4. Un şir $(a_n)_{n\geq 1}$ de numere naturale este crescător, neconstant şi are proprietatea: a_n divide n^2 , oricare ar f_i $n\geq 1$. Arătaţi că una dintre următoarele afirmaţii este adevărată:

- există un număr natural n_1 astfel încât $a_n = n$ pentru orice $n \ge n_1$;
- există un număr natural n_2 astfel încât $a_n = n^2$ pentru orice $n \ge n_2$.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.