Isolated Word Speech Recognition

Speech recognition — Given a recording of an utterance, produce a text transcription of that utterance.

Isolated Word Speech Recognition

- Speech recognition Given a recording of an utterance, produce a text transcription of that utterance.
- Continuous speech recognition is a hard problem!
 - Word boundary detection, elision, context
- We make several simplifying assumptions:
 - Isolated

Overview of Speech Recognition

Preprocessing

Spectral coefficient extraction

In order to use the speech waveform for recognition, we convert our input from the time domain into Mel Frequency -1.14

Feature Vectors and HMMs

How can we use a 12-dimensional

A 2D example (from

HMM Training

- We use the Tl20 isolated-word speech corpus:
 - 16 speakers (8 male, 8 female)
 - Digits 0 9, commands such as 'go' and 'enter'
 - 16 repetitions of each word from each speaker

HMM Training

■ We use the TI20 isolated-word speech cor

Speech Recognition

To recognise an utterance:

Extract the feature vectors of the utterance, and optionally quantiz

Experimental Results

- All 16 speakers used for training
 - Accuracy when using vector v

Experimental Results

- All 16 speakers used for training
 - Accuracy when using vector quantization depends on the codebook size

Conclusion

Speech recognition in general is hars