

Unit-5

——Multi-Level Gate Circuits NAND and NOR Gates

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

5.5 几种典型的组合逻辑部件

——三态门

- ■三态门特点
- ■三态门的应用

三态——

- **0**
- **1**
- Z: 高阻态

三态门(恒等)

B: 使能端, 高电平有效

真	值	表
~ ~		~~

В	Α	С
0	0	Z
0	1	Z
1	0	0
1	1	1

- 包括三态恒等门、三态非门、三态与非门等, 商品名称为**缓冲器**(驱动门)。
- 用途之一可用来增强输出驱动能力

理解三态门-

- 高阻态: 电阻很大, 相当于开路
- 高阻态相当于该门同与它连接的电路处于断开的状态。(实际电路中你不可能去断开它)

应用

■ 三态总线

■ 管脚输入输出可编程

■ 双向数据总线

例: $X_3X_2X_1X_0$ 为8421BCD码,设计一个电路,要求选择那些能被5整除的数输出。

①真值表(F为控制信号)

$X_3 X_2 X_1 X_0$	F	$X_3 X_2 X_1 X_0$	F
0 0 0 0	1	1 0 0 0	0
0 0 0 1	0	1 0 0 1	0
0 0 1 0	0	1 0 1 0	×
0 0 1 1	0	1 0 1 1	×
0 1 0 0	0	1 1 0 0	×
0 1 0 1	1	1 1 0 1	×
0 1 1 0	0	1 1 1 0	×
0 1 1 1	0	1 1 1 1	×

② 化简

$$F = \overline{X_{2}\overline{X_{1}}X_{0} + \overline{X_{3}}\overline{X_{2}}\overline{X_{1}}\overline{X_{0}}}$$

$$= (\overline{X_{2}\overline{X_{1}}X_{0}}) (\overline{\overline{X_{3}}\overline{X_{2}}\overline{X_{1}}\overline{X_{0}}})$$

③ 逻辑图

$$\overline{F} = (\overline{X_2}\overline{X_1}X_0) (\overline{X_3}\overline{X_2}\overline{X_1}\overline{X_0})$$

5.5 几种典型的组合逻辑部件

——三态门

- ■三态门特点
- ■三态门的应用