When a question asks to *show* a result, it means you have to give a formal proof. Try to give a sufficient amount of details to support your computations and make use of the knowledge you acquired during lectures and recitations. Needless to say, cheating will not be tolerated.

Name:

Consider a random sample $\{X_1, \ldots, X_n\}$ drawn from an exponential distribution with parameter θ . The pdf of an exponential distribution is given by

$$f_X(X_i|\theta) = \begin{cases} \theta e^{-\theta X_i} & \text{if } X_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

- a) For $t < \theta$, find the moment generating function (MGF) of the exponential distribution in (1).
- b) Find the mean and the variance of the exponential distribution in (1).
- c) Let \bar{X} be the sample mean. Derive the MGF of \bar{X} .
- d) The Gamma distribution has density

$$f(\bar{x}; \alpha, \beta) = \frac{\beta^{\alpha} \bar{x}^{\alpha - 1} e^{-\beta \bar{x}}}{\Gamma(\alpha)},$$

for $\bar{x} > 0$, and $\alpha, \beta > 0$, where α is the shape parameter, β is the rate parameter and $\Gamma(\alpha) = (\alpha - 1)!$ is the so-called Gamma function. The MGF of a Gamma distribution is equal to

$$MGF(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$
, for $t < \beta$.

Show that the MGF derived in c is the one of a Gamma distribution, upon appropriate choices of α and β .

- e) Compute $E(1/\bar{x})$.
- f) Derive the maximum likelihood (ML) estimator of θ for the one parameter exponential distribution in (1) and its asymptotic distribution.
- g) Using your computation in e), show that the maximum likelihood estimator is biased, and derive a bias corrected estimator of θ . Show that the bias corrected estimator is asymptotically equivalent to the ML estimator.