Al 2002 Artificial Intelligence

First Order Logic

Propositional Logic

- Propositional logic is a declarative language.
 - its <u>semantics</u> is based on a <u>truth relation</u> <u>between sentences and</u> <u>possible worlds</u>.
- Propositional logic allows partial information using disjunction & negation (unlike most data structures and databases).
- Propositional logic has a third property that is compositionality. Propositional logic is compositional, i.e., the meaning of a sentence is a function of the meaning of its parts.
 - For example: The meaning of $B_{1,1} \wedge P_{1,2}$ is derived from the meaning of $B_{1,1}$ and of $P_{1,2}$

Propositional Logic

- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context).
- Propositional logic has very limited expressive power (unlike natural language)

For example: cannot say

"Pits cause Breezes in adjacent squares".

we have to write a separate rule about breezes and pits for **EACH** square.

First-order Logic

- The propositional logic assumes the world <u>contains</u> facts while,
- The <u>first-order logic</u> (like natural language) assumes the world <u>contains</u>, *objects*, *relations*, and *functions*.

Objects:

- The nouns and noun phrases refer to objects
 - In Wumpus-world, the object examples are (squares, pits, and Wumpus)
 - The people, houses, numbers, theories, baseball games, wars, centuries, etc.

First-order Logic

Relations:

- The verbs and verb phrases refer to relations
 - In Wumpus-world, the relation examples are (is breezy, is adjacent to, shoots)
 - red, round, bogus, prime, brother of, bigger than, inside, part of, has colour, occurred after, owns, etc.

Functions:

- ▶ Some of these relations are **functions**—*relations in* which there is only **ONE** "value" for a given "input".
 - father of, best friend, third inning of, one more than, end of

FOL Motivation

- The statements that cannot be made in propositional logics but can be expressed with FOL.
- First-order logic can also express facts about some or all of the objects in the universe.
- When you paint a block with green paint, it becomes green.
 - In proposition logic, one would need a statement about every single block ... for every single aspect of the situation, "if this block is black and I paint it, it becomes green" and "if block # 5 is red and I paint it, it becomes green"
- 2. When you sterilize the jar, all the bacteria are dead.
 - In FOL, we can talk about all the bacteria without naming them explicitly.

Logics

Logics

Ontological commitment

what exists in world

- what it assumes about the nature of reality (facts).
- Mathematically, this commitment is expressed through the nature of the formal models with respect to which the truth of sentences is defined.
 - For example, propositional logic assumes that there are facts that either hold or do not hold in the world.

Logics

Epistemological commitment

- the possible states of knowledge that it allows with respect to each fact.
- In both propositional and first order logic, a sentence represents a fact and the agent either believes the sentence to be <u>true</u> or <u>false</u> or has <u>no opinion</u>.
- Thus, the possible values are:

true/false/unknown

Types of Logic

Temporal logic

- assumes that facts hold at particular times and
- those times (which may be points or intervals) are ordered.

Probability theory

- Systems using probability theory can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).
 - For example, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with probability 0.75

Types of Logic

Fuzzy logic

Fuzzy logic has a degree of truth between 0 and 1.

<u>For example</u>, the sentence "Vienna is a large city" might be true in our world only to a degree of 0.6 in fuzzy logic.

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts with degree of truth $\in [0,1]$	true/false/unknown true/false/unknown true/false/unknown degree of belief ∈ [0, 1] known interval value

First-order Logic Models

Models for first-order logic have objects in them.

Domain

- The domain of a model is the set of objects or domain elements it contains.
- The domain is required to be nonempty—every possible world must contain at least one object.

The <u>first-order logic</u> assumes the world <u>contains</u>, *objects*, *relations* and *functions*.

- Mathematically speaking, it doesn't matter what these objects are,
- □ all that matters is <u>how</u> <u>many</u> there are in each particular model.

Example

A model contains

- □ Five objects,
- □ Two binary relations, person,
 - "brother"
 - o "on head"
- □ Three unary relations,
 - o "person"
 - "king"
 - o "crown"
- □ One unary function,
 - o "left leg"

Tuple:

A tuple is a **collection of objects** arranged in a <u>fixed</u> order and is written with <u>angle brackets</u> surrounding the objects.

Tuple Example:

- The "brotherhood" relation in the model" is the set: {<Richard the Lionheart, King John>, <King John, Richard the Lionheart>}.
- The crown is on King John's head, so the "on head" relation contains just one tuple,

<the crown, King John>.

Example:

- The "brother" and "on head" relations are <u>binary</u> relations.
- The model also contains <u>unary</u> <u>relations</u>, or <u>properties</u>:
 - The "person" property is true of both Richard and John;
 - The "king" property is true only of John,
 - The "crown" property is true only of the crown

FOL Symbols and Interpretations

FOL Symbols and Interpretations

Symbol:

- The basic syntactic elements of first-order logic are the symbols that stand for objects, relations, and functions
- ▶ The symbols will begin with UPPERCASE letters.
- ▶ The symbols come in three kinds:
- constant symbol --- which stands for objects, like Richard and John
- predicate symbol --- which stands for relations, like Brother, OnHead, Person, King, and Crown
- 3. function symbol --- which stands for functions, like LeftLeg

Syntax of FOL: Basic Elements

```
Constants KingJohn, 2, Predicates Brother, >, ... Functions Sqrt, LeftLegOf, ... Variables x, y, a, b, ... Connectives \land \lor \lnot \Rightarrow \Leftrightarrow Equality = Quantifiers \forall \exists
```

FOL Symbols and Interpretations

Interpretation specifies exactly which objects, relations, and functions are referred to by the constant, predicate, and function symbols.

Arity:

Each predicate and function symbol comes with an arity that fixes the number of arguments.

FOL Symbols and Interpretations

Term:

- A term is a logical expression that refers to an object.
- A term may contain:
 - 1. Constant symbol: Fred, Japan, Bacterium 39
 - 2. Variables: a,b, x
 - **Functional symbols** are applied to one or more terms. F(x), Mother-of(John)

A term with no variables is called a ground term.

FOL Sentences

Sentence

- A predicate symbol may be applied to terms. On(a, b), Sister(Jane, John), Sister(Mother-of(Jane), Jen)
- $term_1 = term_2$
- 3. A **functional symbol** may be applied to one or more terms. **F(x)**, **Mother-of(John)**.
- 4. If \boldsymbol{v} is a variable and \boldsymbol{S} is a sentence, then
 - $(\forall v S)$ and $(\exists v S)$ are sentences too.

FOL Sentences

Atomic sentence

 (or atom for short) is formed from a predicate symbol optionally followed by a parenthesized list of terms, such as

Brother (Richard, John)

Atomic sentences can have complex terms as arguments.

Married(Father (Richard), Mother (John))

FOL Sentences

Complex sentence

We can use logical connectives to construct more complex sentences, with the same syntax and semantics as in propositional calculus.

Example

There are four sentences,

```
\neg Brother(LeftLeg(Richard), John)

Brother(Richard, John) \land Brother(John, Richard)

King(Richard) \lor King(John)

\neg King(Richard) \Rightarrow King(John).
```

Quantifiers

"All kings are persons" is written in first-order logic as,

$$\forall x \ King(x) \Rightarrow Person(x)$$

- ▶ ∀ is usually pronounced "For all . . ."
- Intuitively, the sentence $\forall x P$, where P is any logical expression, says that P is true for every object x.
- More precisely, ∀x P is true in a given model if P is true in ALL possible extended interpretations constructed from the interpretation given in the model,
 - where each extended interpretation specifies a domain element to which x refers.

"All kings are persons" is written in first-order logic as,

$$\forall x \ King(x) \Rightarrow Person(x)$$

- ▶ ∀ is usually pronounced "For all . . ."
- Example: "For all x, if x is a king, then x is a person."

We can extend the interpretation in **five** ways:

 $x \rightarrow$ Richard the Lionheart,

 $x \to \text{King John},$

 $x \rightarrow$ Richard's left leg,

 $x \rightarrow$ John's left leg,

 $x \rightarrow$ the crown.

The universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person.

King John is a king \Rightarrow King John is a person.

Richard's left leg is a king \Rightarrow Richard's left leg is a person.

John's left leg is a king \Rightarrow John's left leg is a person.

The crown is a king \Rightarrow the crown is a person.

- Asserting the universally quantified sentence is equivalent to asserting a whole list of individual implications.
- ► The implication is true whenever its premise is false—regardless of the truth of the conclusion.

Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person. King John is a king \Rightarrow King John is a person. Richard's left leg is a king \Rightarrow Richard's left leg is a person. John's left leg is a king \Rightarrow John's left leg is a person. The crown is a king \Rightarrow the crown is a person.

"King John has a crown on his head", we write

```
\exists x \ Crown(x) \land OnHead(x, John)
```

- ► ∃x is pronounced "There exists an x such that . . ." or "For some x . . .".
- Intuitively, the sentence $\exists x P$ says that P is true for at least one object x.
- More precisely, $\exists x \ P$ is true in a given model if P is true in at least one extended interpretation that assigns x to a domain element.

▶ That is, at least one of the following is true:

Richard the Lionheart is a crown \land Richard the Lionheart is on John's head; King John is a crown \land King John is on John's head; Richard's left leg is a crown \land Richard's left leg is on John's head; John's left leg is a crown \land John's left leg is on John's head; The crown is a crown \land the crown is on John's head.

The <u>fifth assertion is true in the model</u>, so the original existentially quantified sentence is true in the model.

Notice that, by the definition, the sentence would also be true in a model in which King John was wearing two crowns.

▶ There is a variant of the existential quantifier, usually written \exists^1 or $\exists!$, that means

"There exists exactly one."

Quantifiers

▶ Typically \rightarrow is the main connective with \forall .

ightharpoonup Typically, Λ is the main connective with \exists .

Common Mistake:

▶ Using Λ as the main connective with \forall .

Everyone at Berkeley is smart:

 $\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$

 $\forall x \ At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Common Mistake:

Using → as the main connective with ∃

Someone at Stanford is smart:

$$\exists x \ At(x, Stanford) \land Smart(x)$$

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

The implication is true whenever its premise is false—regardless of the truth of the conclusion.

Nested Quantifiers

▶ For example, "Brothers are siblings" can be written as

$$\forall x \ \forall y \ Brother(x,y) \Rightarrow Sibling(x,y)$$
.

- Consecutive quantifiers of the same type can be written as one quantifier with several variables.
- For example, to say that siblinghood is a symmetric relationship, we can write,

```
\forall x, y \mid Sibling(x, y) \Leftrightarrow Sibling(y, x)
```

Nested Quantifiers

The <u>order of quantification</u> is very important. For example: "Everybody loves somebody" means that for every person, there is someone that person loves:

$$\forall x \; \exists y \; Loves(x,y)$$

On the other hand, to say "There is someone who is loved by everyone" we write

$$\exists y \ \forall x \ Loves(x,y)$$

Nested Quantifiers

- Some confusion may arise when two quantifiers are used with the same variable name.
- Consider the sentence

```
\forall x \ (Crown(x) \lor (\exists x \ Brother(Richard, x)))
```

- Here the x in Brother (Richard, x) is existentially quantified.
- The <u>rule</u> is that the variable belongs to the innermost quantifier that mentions it; then it will not be subject to any other quantification.

 $\exists z \ Brother(Richard, z).$

Reading Material

- Artificial Intelligence, A Modern Approach Stuart J. Russell and Peter Norvig
 - Chapter 8.