

Now lagrange (G comutation) $G = \begin{cases} g_1, g_2, g_3, \dots, g_n \end{cases} G = n g^n = e$ $f(k) = k \circ g$ $f(k) = k \circ g (f(k_1) = f(k_2) =) k = k_2$ $f(k_1) = k \circ g (f(k_1) = f(k_2) =) k = k_2$	
G limition, l im $j = 1$, by $ \begin{cases} l(g_1), l(g_2), \dots, l(g_n) \\ l$	mouldes
Qls 2017 dtimbe 2 sipe: The Examen M	
(M, o) se numerte monoid deco: (M, o) se numerte monoid deco: (Xo(y)) = (Xoy) = Xo = X, $\forall X \in M$ 2) $\exists e \in M \text{ a. r. eoX} = Xo = X, \forall X \in M$ (Soi. e. neutral) 2- unic	

Scanned by CamScanner

Scanned by CamScanner