

TD no 1

1 Automates

- 1. Étant donné un automate \mathcal{A} , donner un automate \mathcal{A}_* tel que $(L_{\mathcal{A}})^* = L_{\mathcal{A}_*}$
- 2. Montrons que $(a|b)^* = (a^*b^*)^*$.
- 3. Donner un DFA sur $\Sigma = \{a,b\}$ reconnaissant tous les mots n'ayant pas plus de deux occurrences consécutives de la même lettre :
- 4. On définit le dédoublement d'un mot par : $dd(\epsilon)=\epsilon$ et $\forall x\in \Sigma: dd(v\cdot x)=dd(v)\cdot xx$. Exemple : $\text{sur }\Sigma=\{a,b\}$, dd(aba) est aabbaa. Supposons que L est un langage rationnel. Montrer que $dd(L)=\{dd(v)\mid v\in L\}$ est rationnel.
- 5. Étant donné un automate $\mathcal A$ donner un automate (non déterministe) reconnaissant $L_{\mathcal A}^{\mathsf R}$ le langage mirroir de $L_{\mathcal A}$.
- 6. On considère l'alphabet $\Sigma=\{0,1\}$. On considère le langage L_2 comme l'ensemble des mots binaires représentant un multiple de deux (sans zéro non significatif). Ce langage est-il reconnaissable? Même question pour L_3 l'ensemble des mots binaires représentant un multiple de 3 (sans zéro non significatif). Ce langage est-il reconnaissable? Qu'en est-il du langage L_6 des mots binaires représentant un multiple de 6?

Indication pour L_3 on pourra remarquer que pour tout nombre, son reste dans la division par 3 est 0 (multiple de 3), 1 ou 2. Pour chacun de ces cas, on poura examiner ce que signifie rajouter un 0 ou un 1 à la fin de ce nombre.

- 7. On appelle langage de Dyck un l'ensemble D des mots bien parenthésés sur un alphabet $\{(,)\}$. Par exemple, le mot (()())(()()) est bien parenthésé. On peut définir formellement cette propriété. Un mot w est bien parenthésé si :
 - pour tout préfixe u de w, le nombre de) dans u est inférieur au nombre de (
 - il y a autant de (que de) dans le mot

Montrer que *D* n'est pas un langage rationnel.