QUANTIFIERS

WHAT IS THAT?

- A quantifier is an expression that indicates the scope of a term to which it is attached.
 - <u>all</u> cars are red
 - <u>some</u> cars are green
- Quantifiers connect properties of elements to properties of sets.

Universal quantification: \forall

Employee	Gender	Salary
Al	male	60,000
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000

- Every employee makes less than \$70,000
- Each employee makes less than \$70,000.
- All employees make less than \$70,000.
- Employees make less than \$70,000

Universal quantification: \forall

Employee	Gender	Salary
Al	male	60,000
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000

- $\bullet\,$ All female employees earn less than \$65,000. (T or F?)
- \bullet Every employee earning less than \$55,000 is female. (T or F?)
- $\bullet\,$ Male employees earn less than \$55,000. (T or F?)

PROVE / DISPROVE UNIVERSAL QUANTIFICATION

Every P is a Q

- To prove, verify that every element of the domain is an example that satisfies the quantification.
- To disprove, give a single counter-example that does not satisfy the quantification

EXISTENTIAL QUANTIFICATION: ∃

Employee	Gender	Salary
Al	male	60,000
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000

- Some employee earns over \$57,000.
- There is an employee who earns over \$57,000.

EXISTENTIAL QUANTIFICATION: ∃

Employee	Gender	Salary
Al	male	60,000
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000

- Some employee earns over \$80,000. (T or F?)
- There exists a male employee who earns less than \$27,000. (T or F?)
- At least one female employee earns over \$42,000. (T or F?)

PROVE / DISPROVE EXISTENTIAL QUANTIFICATION

Some P is a Q

- To prove, give a single example that satisfies the quantification.
- To disprove, verify that every element of the domain is a counter-example that does not satisfy the quantification.

Prove/disprove with "no", "one", "example", "counter-example"

	Universal	Existential
Verify (prove)	no counter-example	one example
Falsify (disprove)	one counter-example	no example

"Duality", "anti-symmetric"

Sentences & Statements

Sentence and Statement

The employee earns less than \$55,000.

This is a sentence.

Every employee earns less than \$55,000.

This is a statement.

Sentence vs Statement

- → A **statement** is always a **sentence**.
- → A sentence is **NOT** always a **statement**.
- → A statement is a sentence that is NOT "open".
- → The object in an open sentence is unspecified (unquantified), thus the sentence cannot be evaluated.
- → The object in a statement is quantified, thus a statement can be evaluated true or false.

Predicate

Predicates

L: the employees who earn less than \$55,000.

To say: employee **x** earns less than \$55,000.

We can write: $x \in L$ x is in the set L or we can write: L(x) x has property L

L(x) is a boolean function returning True or False (whether x earns less than \$55,000)

L(x) is called a predicate.

Predicates

L(x): x earns less than \$55,000

 $L({
m Carlos})$ Carlos earns less than \$55,000.

 $\neg L(\text{Carlos})$

Carlos earns no less than \$55,000

"¬" means "not": negation

Predicates

F(x): x is a female employee

 $F({
m Ellen})$ Ellen is a female employee.

 $\neg F(\text{Carlos})$

Carlos is not a female employee

Predicates

L(x) without specifying *x* is an <u>open sentence</u>.

Turn it into a **statement** by **universally** quantifying it.

For each employee, the employee earns less than \$55,000.

 \forall employee \mathbf{x} : \mathbf{x} earns less than \$55,000.

 $\forall x \in E: L(x)$

Predicates

Similarly, turn it into a **statement** by **existentially** quantifying it.

There exists an employee, the employee earns less than \$55,000.

∃ employee **x**: **x** earns less than \$55,000.

 $\exists x \in E: L(x)$

Implication

Implication

If an employee is male, then he makes less than \$55,000.

"P implies Q"

Verify / falsify implication

If an employee is male, then he makes less

than \$55,000.

 $\forall x \in M: L(x)$

Employee	Gender	Salary
Al	male	60,000
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000

Same as verifying / falsifying a universal quantification.

Converse of implication

E: set of all employees

F(x): **x** is female

L(x): **x** earns less than \$55,000

Original: $\forall x \in E: F(x) \Rightarrow L(x)$

Converse: $\forall x \in E: L(x) \Rightarrow F(x)$

What's the relation between the two?

Contrapositive

E: set of all employees

F(x): x is female

L(x): **x** earns less than \$55,000

Original: $\forall x \in E : F(x) \Rightarrow L(x)$

Contrapositive: $\forall x \in E: \neg L(x) \Rightarrow \neg F(x)$

What's the relation between these two?