CSI 3125 Fall 1999 Midterm

Professor: Ken Barker

Monday, Novermber 1, 14:30

Family Name	
Given Name	
Student Number	

Notes:

- 1. This is a closed book midterm. Textbooks, notes, cheat sheets and microfiche are **not** allowed.
- 2. Calculators, computers, Palm V's and all other computing devices are **not** allowed.
- 3. There are 10 pages. Write your name and student number on **every** page.
- 4. There are 6 questions. Answer **all** 6 of them.
- 5. Write **all** answers and work in the space provided. Use **no** other paper.
- 6. You have 80 minutes to complete the midterm.

Marks:

Question						
1 (7 marks)	2 (4 marks)	3 (3 marks)	4 (5 marks)	5 (6 marks)	6 (1 mark)	Total (25 marks)

Name: Student	Number:

Question 1: Extended BNF Grammars

- a) Write an extended BNF (EBNF) grammar for the language of freight trains. Here is some information about freight trains:
 - the terminal symbols are:
 engine cattlecar tanker fridgecar lumbercar caboose
 - the goal symbol is: <train>
 - every train starts with one or two engines and ends with a caboose
 - a tanker must not come right after an engine
 - a lumbercar must not come right after an engine
 - sequences of cattlecar must be preceded and followed by a lumbercar

Here are some legal sentences in the language:

- engine fridgecar lumbercar lumbercar caboose
- engine engine caboose
- engine fridgecar lumbercar tanker tanker tanker caboose
- engine fridgecar lumbercar cattlecar cattlecar lumbercar caboose

b) Here is an EBNF grammar for some language:

```
<S> ::= <A> <B>
<A> ::= [ <C> ] <D>
<B> ::= <H> [ <A> ]
<C> ::= d
<D> ::= { <E> } <F>
<E> ::= j
<F> ::= n [ <G> <A> ]
<G> ::= p
<H> ::= v
```

Show a parse tree for the sentence djjnvjnpdn

Name:	Student Number:
-------	-----------------

Question 2: Names, Binding, Scope

Here is a Pascal program that does nothing of interest

```
program main;
var X, Y: integer;
   procedure foo(A: integer);
   var X: integer;
   begin
      X := 10;
      bar(X)
   end;
   procedure bar(foo: integer);
   var Z: integer;
      procedure foobar(X: integer);
      begin
         Z := X * foo
      end;
   begin
      foobar(foo);
      X := Z
   end;
begin
   X := 5;
   Y := 13;
   foo(Y)
end.
```

Na	ne:	Student Number:
a)	Give the <i>scope</i> of the follow	wing names:
	main.X	
	main.foo	
	main.bar.foo	
	main.bar.foobar.X	
b)		conment for the following statements. To the statements in procedure procedurename.
	S(main)	
	S(main.foo)	
	S(main.bar)	

Name:	Student Number:	
-------	-----------------	--

Question 3: Data Types

The following Pascal program is perfectly correct given the proper variable declarations. Show the variable declarations necessary to make the program correct.

Question 4: Parameter Passing

Show the output (if any) for the following Pascal-style program for each of the five parameter passing modes. Use the table below to show your answers.

```
program main;
var X, i: integer;
    A: array[1..5] of integer;
   procedure p(mode U, V: integer);
   var i: integer;
   begin
     U := U + V;
      V := U;
      write(U); write(', '); writeln(V)
   end;
begin
   X := 1;
   for i := 1 to 5 do
      A[i] := 5 - i;
   p(X, A[X]);
   write(X); write(', '); writeln(A[X])
end.
```

parameter passing mode	program output
pass-by-value	
pass-by-result	
pass-by-value-result	
pass-by-reference	
pass-by-name	

Question 5: Subprogram Implementation

Here is yet another useless Pascal program

```
L01
        program main;
L02 var X: integer;
L03
           B: boolean;
L04
           function f(W: integer): integer;
L05
           begin
L06
             if B then begin
               B := false;
L07
                f := f(W + 1)
L08
L09
             end
L10
             else begin
L11
                write(W);
L12
                f := W
L13
              end
L14
           end;
           procedure p(U: integer);
L15
           var X, i: integer;
L16
L17
          begin
L18
             X := U;
              for i := 1 to 4 do
L19
L20
                X := X * U;
L21
             write(f(X))
L22
           end;
L23
        begin
L24
        B := true;
          X := 2;
L25
          p(X);
L26
L27
          writeln(X)
L28 end.
```

Using the empty stack on the next page, draw the complete activation stack when IP = L12. Twenty-five rows in the stack should be *more* than enough.

Name: _	Student	Number:

		1
S01	(dynamic link)	(main)
S02	(static link)	_
S03	(return address)	-
S04	(return value)	
S05		-
S06		-
S07		-
S08		=
S09		=
S10		=
S11		=
S12		=
S13		
S14		=
S15		=
S16		=
S17		=
S18		=
S19		=
S20		=
S21		
S22		-
S23		-
S24		-
S25		

Name:	Student Number:
Name:	Siudeni Ivamber.

Question 6: Concepts of Programming Languages

- 1. The term *orthogonality* refers to
 - a) a kind of abstraction in which the same symbol is used for different operations
 - b) the extent to which constructs in a language can be combined freely
 - c) the incompatibility between row-major and column-major arrays
 - d) the use of prostheses for amputated limbs
- 2. A *non-terminal* symbol
 - a) is a name that cannot be resolved by the compiler due to a circular reference
 - b) is a symbol in a grammar that is *not* composed of sequences of other symbols
 - c) appears on the left side of production rules
 - d) is used for public washrooms in museums and theatres, but not bus stations
- 3. Which of the following is a *primitive type* in most languages?
 - a) float
 - b) enum
 - c) pointer
 - d) CSI 3125 prof
- 4. Row-major and column-major refer to
 - a) conventions for mapping multi-dimensional arrays to one-dimensional memory
 - b) conventions for determining whether two arrays are compatible
 - c) conventions for the Baton Twirlers Association
 - d) two different designations of the Bachelor of Arts degree
- 5. A dangling reference
 - a) is prohibited in strongly-typed languages
 - b) may go undetected by a Pascal compiler
 - c) is the sort of nonsense up with which I will not put
 - d) can get you arrested in this town
- 6. Control statements
 - a) prevent the evaluation of the rest of an expression once the value of the expression has been unambiguously determined
 - b) determine the order of execution of statements in a program
 - c) were often overheard due to Cone of Silence malfunctions
 - d) or the government will control them for you!
- 7. Yashin should
 - a) swallow it and hook up with the Sens on their next road trip
 - b) listen to his agent, 'cause agents are really smart
 - c) seriously consider a U of O degree: The right choice. The right University.
 - d) come out Sunday nights... it's only 10 bucks!
- 8. This exam
 - a) bites
- b) stinks c) rocks
- d) grooves, daddy-o