Примерно решение на изпита-задачи по Дискретни структури, специалност Информатика, първи курс, проведен на 11 юни 2018 г.

Зад. 1 Две от следните твърдения са еквивалентни. Намерете кои те и обяснете защо не са еквивалентни на другото твърдение. Обосновете формално и подборно отговорите си, използвайки съждителна логика.

Твърдение 1: Ако грее слънце, то уча и тренирам.

Твърдение 2: Не грее слънце или уча и тренирам.

Твърдение 3: Ако уча, то тренирам и грее слънце.

Решение: Еквивалентните твърдения са 1 и 2. Твърденията могат да бъдат записани по следния начин:

Твърдение $1: \mathfrak{p} \to \mathfrak{q} \wedge \mathfrak{t}$ Твърдение $2: \neg \mathfrak{p} \vee (\mathfrak{q} \wedge \mathfrak{t})$

Тогава, съграсно свойството на импликацията, $\mathfrak{p} \to \mathfrak{q} \wedge \mathfrak{t} \equiv \neg \mathfrak{p} \vee (\mathfrak{q} \wedge \mathfrak{t})$. Следователно твърдения 1 и 2 са еквивалентни.

Лесно се съобразява, че ако р е лъжа, то твърдение 1 е истина, но ако р е лъжа и q е истина, твърдение 3 е лъжа. От тука следва, че твърдение 3 не е еквивалентно на твърдения 1 и 2.

Зад. 2 Разгледайте следното твърдение:

$$\forall n \ge 0 : 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 + \dots + n \cdot 2n = \frac{1}{3} \cdot n \cdot (n+1) \cdot (2n+1)$$

- а) Докажете твърдението по индукция (10 т.).
- **б)** Докажете твърдението като съставите рекурентно уравнение ($\mathbf{5}$ **т.**), намерите общо решение на уравнението ($\mathbf{10}$ **т.**) и след това намерите решението на уравнението ($\mathbf{5}$ **т.**).

Решение:

а) По индукция

Базата е за n=0. Лявата страна е 0, защото сумираме върху празен интервал. Дясната е $\frac{1}{3}\cdot 0\cdot 1\cdot 1=0.$

Индуктивното предположение е, че твърдението е вярно за стойност на аргумента $\mathfrak n$. В индуктивната стъпка разглеждаме твърдението за стойност на аргумента $\mathfrak n+1$. Тогава твърдението, което трябва да докажем, е:

$$1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 + \ldots + n \cdot 2n + (n+1) \cdot (2n+2) = \frac{1}{3} \cdot (n+1) \cdot (n+2) \cdot (2n+3)$$

Ще преобразуваме лявата му страна до дясната чрез еквивалентни преобразувания:

$$1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 + \ldots + n \cdot 2n + (n+1) \cdot (2n+2) = \qquad (* \text{ от индуктивното предположение } *)$$

$$\frac{1}{3} \cdot n \cdot (n+1) \cdot (2n+1) + (n+1) \cdot (2n+2) =$$

$$(n+1) \cdot \left(\frac{1}{3} \cdot n \cdot (2n+1) + (2n+2)\right) =$$

$$(n+1) \cdot \frac{1}{3} \cdot (2n^2 + 7n + 6) =$$

$$(n+1) \cdot \frac{1}{3} \cdot (n+2) \cdot (2n+3) \checkmark$$

б) Нека

$$f(n) = 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 + ... + n \cdot 2n$$

Очевидно $f(n) - f(n-1) = n \cdot 2n = 2n^2$. Тогава $f(n) = f(n-1) + 2n^2$. За това рекурентно уравнение е необходимо само едно начално условие, а именно f(1) = 2.

Разглеждаме хомогенната част. Характеристичното уравнение е x-1=0 с мултимножество от корени $\{1\}_M$.

Сега разглеждаме нехомогенната част. Можем да я запишем като $1^n \cdot n^2$. Полиномът е от втора степен, така че към мултимножеството добавяме три единици и получаваме мултимножеството $\{1,1,1,1\}_M$. Тогава общото решение е:

$$f(n) = A + B \cdot n + C \cdot n^2 + D \cdot n^3$$

за някакви константи A, B, C, D.

Решението на уравнението е

$$f(n) = (2/3) * n^3 + n^2 + (1/3) * n$$

Зад. 3 Разглеждаме ориентирани графи, които не са мултиграфи и в които примки не са разрешени. За всеки такъв граф G казваме, че G e $\mathit{граф-турнир}$, ако за всеки два различни върха $\mathfrak u$ и $\mathfrak v$ е вярно точно едно от двете:

- (u, v) е ребро в графа;
- (v, u) е ребро в графа.

Докажете, че за всеки граф-турнир с поне един връх в графа съществува маршрут, който съдържа всеки връх точно веднъж.

Решение: С индукция по броя на върховете. Ако графът има точно един връх, твърдението е тривиално вярно. ✓

Нека твърдението е вярно за всеки граф-турнир с не повече от n върха, за някое $n \ge 1$. Да разгледаме произволен граф-турнир G = (V, E) с n+1 върха. Да фиксираме произволен връх u. По дефиниция, за всеки друг връх v, или има ребро (v, u), или има ребро (u, v). Тогава V се "разбива" на подмножества V_o и V_i , където V_o се състои от точно тези върхове, от които има ребро към u, а V_i са останалите. Това "разбиване" може да не отговаря на формалната дефиниция за разбиване, понеже тя иска всеки от дяловете да е непразен, а в случая е възможно всяко от V_o и V_i да е празно (но не и двете), но това не е съществено.

Да допуснем, че V_i е празно, което влече, че V_o е непразно. Разглеждаме графа G' = G - u. Очевидно G' е граф-турнир с $\mathfrak n$ върха и съгласно индуктивното предположение, в него има маршрут $\mathfrak p$, съдържащ всеки негов връх точно веднъж. Нека първият връх от $\mathfrak p$ е връх $\mathfrak a$, а последният е връх $\mathfrak z$. С други думи, $\mathfrak p = \mathfrak a \cdots \mathfrak z$. Но в G има ребро $\mathfrak e = (\mathfrak z, \mathfrak u)$ по дефиницията на V_o . Тогава $\mathfrak p, \mathfrak e, \mathfrak u$ е маршрут в G, съдържащ всеки връх точно веднъж.

Напълно аналогично доказваме съществуването на такъв маршрут и когато V_0 е празно. Остава да разгледаме случая $V_i \neq \emptyset$, $V_0 \neq \emptyset$. Нека G' и G'' съответно са подграфите, индуцирани от V_0 и V_i . Всеки от тях има поне един връх и по-малко от $\mathfrak n$ върха, така че индуктивното предположение е в сила и за двата. Следователно, в G' има маршрут $\mathfrak p' = \mathfrak a' \cdots \mathfrak z'$, съдържащ всеки негов връх точно веднъж, и в G'' има маршрут $\mathfrak p'' = \mathfrak a'' \cdots \mathfrak z''$, съдържащ всеки негов връх точно веднъж. Нещо повече, в G има ребро $\mathfrak e_1 = (\mathfrak z',\mathfrak u)$ и ребро $\mathfrak u,\mathfrak a''$). Очевидно $\mathfrak p'\mathfrak e_1\mathfrak u\mathfrak e_2\mathfrak p''$ е маршрут в G, съдържащ всички върхове на G.

Зад. 4 Heка $S = \{0, 1, 2, \dots, 49, 50\}$ и нека $R \subseteq S \times S$ е релацията:

$$aRb \leftrightarrow (b - a \equiv 0 \pmod{3}) \land (a - b \geqslant 0)$$

- а) Докажете, че R е релация на частична наредба (10 т.).
- б) Намерете максималните и минималните елементи на R (10 т.).

Решение:

а) За да докажем, че R е релация на частична наредба, трябва да проверим, че тя е рефлексивна, антисиметрична и транзитивна:

Рефлексивност: $(a,a) \in R$, защото $a - a \equiv 0 \pmod{3} \land a - a = 0 \geqslant 0$

Антисиметричност: Ако $(a, b) \in R$ и $a \neq b$, то a - b > 0, но тогава b - a < 0. Следователно $(b, a) \notin R$.

Транзитивност: Ако $(a,b) \in R$ и $(b,c) \in R$,то от транзитивността на \geqslant и \equiv следва, че и $(a,c) \in R$.

- **б)** Елементът \mathfrak{a} е минимален елемент по отношение на R, ако не съществува друг елемент \mathfrak{b} , за който $(\mathfrak{b},\mathfrak{a}) \in R$. Очевидно това са елементите 50,49 и 48. Аналогично \mathfrak{a} е максимален по отношение на R, ако не съществува друг елемент \mathfrak{b} , за който $(\mathfrak{a},\mathfrak{b}) \in R$. Това са елементите 0,1,2.
- **Зад.** 5 Нека \mathcal{G} е множеството от обикновените графи. За всеки $x \in \mathcal{G}$, нека V(x) означава множеството от върховете на x. Нека \mathcal{V} е множеството от всички върхове на графи. Тогава \mathcal{V} е безкрайно множество, а всеки граф $x \in \mathcal{G}$ е вярно, че $V(x) \subset \mathcal{V}$.

Дадени са три едноместни предиката $P(x),\ Q(x)$ и R(x), и трите с домейн $\mathcal{G},$ дефинирани по следния начин:

 $\forall x \in \mathcal{G} : P(x)$ е "x е двуделен."

 $\forall x \in \mathcal{G} : Q(x)$ е "x има Хамилтонов цикъл."

 $\forall x \in \mathcal{G} : R(x)$ е "x има нечетен брой върхове."

Даден е триместен предикат S(x,y,z) с първи домейн \mathcal{G} , втор домейн \mathcal{V} и трети домейн \mathbb{N} , дефиниран по следния начин:

$$\forall x \in \mathcal{G} \ \forall y \in \mathcal{V} \ \forall z \in \mathbb{N} : S(x,y,z) \ e$$
 "y е връх в x и степента на y в x е z."

Докажете следните две твърдения:

- a) $\forall x \in \mathcal{G} (P(x) \land R(x) \rightarrow \neg Q(x)) (10 \text{ T.}).$
- $\textbf{6)} \ \forall x \in \mathcal{G} \ \forall y \in \mathcal{V} \ \big(S(x,y,1) \to \exists y' \in \mathcal{V} \ \exists z \in \mathbb{N} \ \big(y' \neq y \ \land \ S(x,y',2z+1) \big) \big) \quad \textbf{(10 t.)}.$

Решение:

- а) На български език, твърдението е "Ако граф е двуделен и има нечетен брой върхове, то този граф не е Хамилтонов". Но това следва веднага от доказаното на лекции твърдение, че граф е двуделен тстк няма нечетни цикли и факта, че дължината на Хамилтонов цикъл е равна на броя на върховете.
- **б**) На български език, твърдението е "Ако граф има висящ връх, то той има друг връх, чиято степен е нечетна". Допускаме, че има висящ връх, но няма други върхове с нечетна степен. От тука следва, че сумата от степените на всички върхове е нечетно число. Но ние знаем, че в неориентиран граф сумата от степените на върховете винаги е четно число. От тук следва, че съществува поне още един връх с нечетна степен.

Зад. 6 Докажете или опровергайте, че следното множеството от булеви функции е пълно:

$$\{\vee,\wedge,\to\}$$

Решение: Това множество не е пълно. Да си представим произволна схема от функционални елементи, всеки от които е конюнкция, дизюнкция или импликация. Лесно е да се съобрази, че ако на входовете на схемата бъдат подадени само единици, на изхода ще излезе също единица. Следователно това множество не е пълно.