1 Fundamentals	Manipulation A. Dantoniani	Maximize Marginal Likelihood:	(1)	A distribution π is stationary iff
	Maximum A Posteriori (MAP) estimate: $\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta \in \Theta} p(\theta)$	$\hat{\theta}_{\text{MLE}} \stackrel{.}{=} \operatorname{argmax}_{\theta} p(y_{1:n} \mid \mathbf{x}_{1:n}, \theta)$	the parameters of the variational posterior q_{λ} . Laplace Approximation:	$\pi(x) = \sum_{x' \in S} p(x x') \pi(x')$ aka $\pi = \pi P$. $\pi(P-I) = 0$
$\exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T\Sigma^{-1}(\mathbf{x}-\mu)\right)$	$\mathbf{x}_{1:n}, y_{1:n}) = \operatorname{argmin}_{\theta \in \Theta} -\log p(\theta) + \ell_{\operatorname{nll}}(\theta; \mathcal{D}_n)$	$= \operatorname{argmax}_{\theta} \int p(y_{1:n} \mathbf{x}_{1:n}, f, \theta) p(f \theta) df.$	Idea: find a Gaussian approximation	
Normal: $\frac{1}{\sqrt{(2\pi)^k \det(\Sigma)}}$		Update: Joint distribution of	(i.e. second-order Taylor) of the posterior around its	
1 1 2 1	regularization quality of fit Common regularizers:	the observations $y_{1:n}$ and the noise-free prediction	mode: $q(\theta) \stackrel{\cdot}{=} \mathcal{N}(\theta; \hat{\theta}, \mathbf{\Lambda}^{-1}) \propto \exp(\hat{\psi}(\theta))$, with $\hat{\theta}$ the	A MC is irreducible if every state is reachable from any state with positive probability.
	$p(\theta) = \mathcal{N}(\theta; 0, \lambda \mathbf{I}) \rightarrow -\log p(\theta) = \frac{\lambda}{2} \theta _2^2 + \text{const}$	f^* at a test point \mathbf{x}^* as $\begin{bmatrix} \mathbf{y} \\ f^* \end{bmatrix} \mathbf{x}^*, \mathbf{x}_{1:n} \sim \mathcal{N}(\tilde{\mu}, \tilde{\mathbf{K}})$	mode (i.e. MAP estimate) and with H the Hessian:	reachable from any state with positive probability.
	$p(\theta) = \text{Laplace}(\theta; 0, \lambda) \rightarrow -\log p(\theta) = \lambda \ \theta\ _1 + \text{const},$	$\begin{bmatrix} k(x,x_1) \end{bmatrix}$	$\mathbf{\Lambda} \doteq -\mathbf{H}_{\psi}(\hat{\boldsymbol{\theta}}) = -\mathbf{H}_{\theta} \log p(\boldsymbol{\theta} \mathbf{x}_{1:n}, y_{1:n}) \big _{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}.$	
Properties of Expectation:	uniform prior \rightarrow const	$\tilde{\mu} \doteq \begin{bmatrix} \mu_A \\ \mu(\mathbf{x}^*) \end{bmatrix}, \tilde{K} \doteq \begin{bmatrix} K_{AA} + \sigma_n^2 I & k_{\mathbf{x}^*,A} \\ k_{\mathbf{x}^*,A}^\top & k(\mathbf{x}^*,\mathbf{x}^*) \end{bmatrix}, k_{\mathbf{x},A} \doteq \begin{bmatrix} K(A,A) \\ \vdots \end{bmatrix}$	Perform inference using the approximation:	A MC is ergodic iff there exists a $t \in \mathbb{N}_0$ such that
	Expected calibration error: For m bins: $\ell_{\text{ECE}} =$	$\begin{bmatrix} \mu(x) \end{bmatrix} \begin{bmatrix} \kappa_{x^*,A} & \kappa(x^*,x^*) \end{bmatrix} \begin{bmatrix} k(x,x_n) \end{bmatrix}$	$p(y^{\star} \mathbf{x}^{\star}, \mathbf{x}_{1:n}, y_{1:n}) \approx \int p(y^{\star} \mathbf{x}^{\star}, \theta) q_{\lambda}(\theta) d\theta.$	for any $x, x' \in S$ we have: $p^{(t)}(x' \mid x) > 0$. Equiva-
Tyry] Tiring [Tyry]	$\sum_{m=1}^{M} \frac{ B_m }{n} \text{freq}(B_m) - \text{conf}(B_m) $	GP posterior : $f \mathbf{x}_{1:n}, y_{1:n} \sim \mathcal{GP}(\mu', k')$ where	(Suprise of an event prob. $u: S[u] = -\log u$.) (Entropy: $H(q) = \mathbb{E}_q[-\log q(\theta)] = -\int q(\theta) \log q(\theta) d\theta$	lently: for some $t \in \mathbb{N}_0$ all entries of \mathbf{P}^t are strictly
L J	2 Bayesian Linear Regression	$\mu'(\mathbf{x}) = \mu(\mathbf{x}) + \mathbf{k}_{\mathbf{x},A}^{\top} (\mathbf{K}_{AA} + \sigma_{n}^{2} \mathbf{I})^{-1} (\mathbf{y}_{A} - \mu_{A})$ and	$-\sum_{\theta} q(\theta) \log q(\theta); H(\prod_{i=1}^{n} q_i(\theta_i)) = \sum_{i=1}^{n} H(q_i);$	positive
	$\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon, \epsilon \sim \mathcal{N}(\mu, \sigma_n^2 \mathbf{I}_d)$	$k'(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_{\mathbf{x}, A}^{\top} (\mathbf{K}_{AA} + \sigma_{n}^{2} \mathbf{I})^{-1} \mathbf{k}_{\mathbf{x}', A}$ For	$H(N(\mu,\Sigma)) = \frac{1}{2}\ln 2\pi e\Sigma ; H(p,q) = H(p) + H(q)$	or that the MC is irreducible and aperiodic.
		GP-Regression $(y_{1:n} \mathbf{x}_{1:n}, \theta \sim \mathcal{N}(0, \mathbf{K}_{f,\theta} + \sigma_n^2 \mathbf{I})),$	p)	
		write $\mathbf{K}_{\mathbf{y},\theta} \doteq \mathbf{K}_{f,\theta} + \sigma_{\mathbf{p}}^{2}\mathbf{I}$, and obtain:	Gaussian: $H[\mathcal{N}(\mu, \Sigma)] = \frac{1}{2} \log \left((2\pi e)^d \det(\Sigma) \right)$	Irreducible MC to ergodic MC use $\mathbf{P}' = \frac{1}{2}\mathbf{P} + \frac{1}{2}\mathbf{I}$
		$\hat{\theta}_{\text{MLE}} = \operatorname{argmin}_{\theta} \frac{1}{2} \mathbf{y}^{\top} \mathbf{K}_{\mathbf{y}, \theta}^{-1} \mathbf{y} + \frac{1}{2} \operatorname{logdet}(\mathbf{K}_{\mathbf{y}, \theta}).$	Highest entropy among all	
	- : - : - : - : - : - : - : - : - : - :	Also: $\frac{\partial}{\partial \theta_d} \log p(y_{1:n} $	distributions on \mathbb{R} with fixed mean and variance. Jensen's Inequality: Given a convex function g , we have: $a(\mathbb{R}[X]) \leq \mathbb{R}[a(X)]$ and if h is concave.	
FF1 1	r <u>-</u>	9	Jensen's Inequality: Given a convex function g	An ergodic MC has a unique stat. dist. π s.t
V and V is a normalized severience	$\log p(\mathbf{w} \mid \mathbf{x}_{1:n}, y_{1:n}) = -\frac{1}{2} \mathbf{w}^{\top} \mathbf{\Sigma}^{-1} \mathbf{w} - 2\mu + \text{const},$	$\mathbf{x}_{1:n}, \theta) = \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{\top} - \mathbf{K}_{\mathbf{y}, \theta}^{-1}) \frac{\partial \mathbf{K}_{\mathbf{y}, \theta}}{\partial \theta_{i}} \right).$	we have: $g(\mathbb{E}[X]) \leq \mathbb{E}[g(X)]$ and if h is concave: $h(\mathbb{E}[X]) > \mathbb{E}[h(X)]$	$\forall x: \pi(x) > 0$ and $\lim_{t\to\infty} q_t = \pi$, independently of
$\operatorname{Cor}[\mathbf{X},\mathbf{Y}](i,j) \doteq \frac{\operatorname{Cov}[X_i,Y_j]}{\sqrt{[i-1]!}} \in [-1,1]$		Approximations: Gaussian process need	Observe that the surprise $S[u]$ is convex in u .	40.
$\sqrt{\operatorname{Var}[X_i]}\operatorname{Var}[Y_j]$	- ("n "p -) , /" "n J	to invert Matrices \rightarrow computational cost of $\mathcal{O}(n^3)$.	The cross-entropy of q relative to p is:	
$Var[X] \stackrel{.}{=} Cov[X,X]$	have $\mathbf{w} \mid \mathbf{x}_{1:n}, y_{1:n} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$: Gaussian's with known variance and linear likelihood are self-conjugate.	Local method : When sampling at x only condition	$ \mathbf{H}[p q] = \mathbb{E}_{x \sim p}[\mathbf{S}[q(x)]] = \mathbb{E}_{x \sim p}[-\log q(x)].$	
$Val(A + I) = Val(A) + Val(I) + 2 \cup 0 \vee (A, I)$	2 _	on the samples \mathbf{x}' , that are close, i.e. where	Kullback-Leibler (KL) divergence: $KL(p q) = \sum_{n=0}^{\infty} \frac{n(n)}{n(n)}$	
$\frac{\operatorname{Var}(X-Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X,Y)}{2\operatorname{Cov}(X,Y)}$	$\hat{\mathbf{w}}_{\text{MAP}} = \operatorname{argmin}_{\mathbf{w}} \ \mathbf{y} - \mathbf{X}\mathbf{w}\ _{2}^{2} + \frac{\sigma_{n}^{2}}{\sigma_{n}^{2}} \ \mathbf{w}\ _{2}^{2},$	$ k(\mathbf{x},\mathbf{x}') \ge \tau$ for some $\tau > 0$, instead of all samples.	$\left[\mathbf{H}[p q] - \mathbf{H}[p] = \mathbb{E}_{\theta \sim p} \left[\log \frac{p(\theta)}{q(\theta)} \right] $	A MC satisfies the detailed balance equation
Inverse of a 2x2 matrix $\begin{pmatrix} a & b \\ -1 & 1 \\ -1 & -1 \end{pmatrix}$	identical to ridge regression with $\lambda = \sigma_{\rm p}^2/\sigma_{\rm p}^2$.	Problem: τ has to be chosen carefully: if τ is chosen	It measures the additional	w.r.t. π iff $\pi(x)p(x'\mid x) = \pi(x')p(x\mid x')$, for any
$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \mathbf{A} = \frac{a}{ad-bc} \begin{pmatrix} a \\ -c & a \end{pmatrix}$		Kernel Approximation: Construct	expected surprise when observing samples from p that is due to assuming the (wrong) distribution q .	TOTAL 3.2 . TD/3.2 3.2 . TD/3.2
Frobenius Norm		a low dimensional feature map $\phi: \mathbb{R}^d \to \mathbb{R}^m$	Properties of KL: $KL(p q) \ge 0$ (Gibbs):	
	Bayesian inference: For	that approximates the kernel: $k(\mathbf{x},\mathbf{x}') \approx \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$.	KL(p q) = 0 if and only if $p = q$ almost surely	$(\omega_1, \dots, \omega_1 - \omega_n)$.
Properties of variance:	test point \mathbf{x}^* , $y^* y_{1:n} \sim \mathcal{N}(\mu^+ \mathbf{x}^*, \mathbf{x}^{*+} \mathbf{\Sigma} \mathbf{x}^* + \sigma_n^2)$.	Then apply Bayesian linear regression \rightarrow time	and there exist distributions p and q such that	
$Var[\mathbf{AX} + \mathbf{b}] = \mathbf{A}Var[\mathbf{X}]\mathbf{A}^{\top}$		complexity of $\mathcal{O}(nm^2+m^3)$. This can be done with	$\mathrm{KL}(p\ q) \neq \mathrm{KL}(q\ p)$. In general, $\mathrm{KL}(q\ p) \not\leq \mathrm{KL}(q\ r) + \mathrm{KL}(r\ p)$. Also, $\mathrm{KL}(q_{\theta}q_{\alpha}\ p_{\theta}p_{\alpha}) =$	If MC is reversible w.r.t. π , then π is a stat. dist.
$Var[\mathbf{X} + \mathbf{Y}] = Var[\mathbf{X}] + Var[\mathbf{Y}] + 2Cov[\mathbf{X}, \mathbf{Y}]$	aleatoric uncertainty epistemic uncertainty	Random Fourier features: a stationary kernel	$\text{KL}(q_{\theta} p_{\theta}) + \text{KL}(r p)$. Also, $\text{KL}(q_{\theta}q_{\alpha} p_{\theta}p_{\alpha}) = \text{KL}(q_{\theta} p_{\theta}) + \text{KL}(q_{\alpha} p_{\alpha})$.	
Var[X+Y] = Var[X] + Var[Y] (if X, Y independent)	Aleatoric → noise in	k can be interpreted as a function in one variable, and has an associated Fourier transform which we	$H[p q] = H[p] + KL(p q) \ge H[p].$	
		denote by $p(\omega)$: $k(\mathbf{x}-\mathbf{x}') = \int_{\mathbb{R}^d} p(\omega) e^{i\omega^\top (\mathbf{x}-\mathbf{x}')} d\omega$.	$KL(Bern(p) Bern(q)) = p\log \frac{p}{q} + (1-p)\log \frac{(1-p)}{(1-q)}$	Ergodic theorem For an ergodic MC and a stat. dist. π as well as $f: S \to \mathbb{R}$.
		Bochner's Theorem A continuous Kernel on \mathbb{R}^d is	Gaussians: $p = \mathcal{N}(\mu_p, \Sigma_p)$ and $q = \mathcal{N}(\mu_q, \Sigma_q)$:	$\frac{1}{n}\sum_{i=1}^{n}f(x_i) \stackrel{a.s.}{\to} \sum_{x \in S}\pi(x)f(x) = \mathbb{E}_{x \sim \pi}[f(x)], \text{ for }$
Change of variables formula Let g be differentiable and invertible. Then for $Y = g(X)$ we	Elogistic regression (BLogit). $\sigma(x_1, x_2, \theta) = \sigma(x_1, x_2, \dots, x_n) = \sigma(x_1, \dots, x_n)$	p.s.d iff its Fourier transform $p(\omega)$ is non-negative,		$n \to \infty$ where $x_i \sim X_i \mid x_{i-1}$.
have $p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{X}}(\mathbf{g}^{-1}(\mathbf{y})) \cdot \det(\mathbf{D}\mathbf{g}^{-1}(\mathbf{y})) $ where	(Applying linear regression to non-linear function)	⇒ If continuous and stationary kernel is p.s.d. and	$RE(p q) = \frac{2}{2} (R(2q 2p))$	
	,	scaled correctly then $p(\omega)$ is a probability distribution	$+(\mu_p - \mu_q)^{\top} \mathbf{\Sigma}_q^{-1} (\mu_p - \mu_q) - d + \log \frac{\det(\mathbf{\Sigma}_q)}{\det(\mathbf{\Sigma}_r)}$.	
= $n(y y), n(y)$		named spectral density of k . The spectral density		Metropolis-Hastings: Proposal
	$\Phi = \phi(\mathbf{X})$, so-called Kernel . With a Gaussian prior	can be compared by: $p(\omega) = \int_{\mathbb{D}^d} h(\omega)e^{-\omega}$	Forward KL: $q_1^{\star} \doteq \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(p q);$	distribution $r(\mathbf{x}' \mathbf{x})$. Accept with probability
$P(A B,C) = \frac{P(B A,C)P(A C)}{P(B C)}$	we get: $\mathbf{f} \mid \mathbf{X} \sim \mathcal{N}(\mathbf{\Phi}\mathbb{E}[\mathbf{w}], \mathbf{\Phi} \text{Var}[\mathbf{w}] \mathbf{\Phi}^{\top}) = \mathcal{N}(0, \mathbf{K}),$	Now write the kernel as an expectation: $k(\mathbf{x} - \mathbf{x}') =$	Reverse KL: $q_2^{\star} \doteq \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q p)$.	$\alpha(\mathbf{x}' \mathbf{x}) \doteq \min\left\{1, \frac{q(\mathbf{x}')r(\mathbf{x} \mathbf{x}')}{q(\mathbf{x})r(\mathbf{x}' \mathbf{x})}\right\}$ to decide
Fosterior $p(\mathbf{x} \mid \mathbf{y})$, updated belief about \mathbf{x} after	with $\mathbf{K} = \sigma_{\mathbf{p}}^2 \mathbf{\Phi} \mathbf{\Phi}^{\top}$. We define the Kernel-function :	$\int_{\mathbb{R}^d} p(\omega) e^{i\omega^{\top}(\mathbf{x} - \mathbf{x}')} d\omega = \mathbb{E}_{\omega \sim p} \left[e^{i\omega^{\top}(\mathbf{x} - \mathbf{x}')} \right] =$	Reverse KL tends to greedily	whether to follow the proposal yields a Markov
	$k(\mathbf{x}, \mathbf{x}') = \sigma_{\mathbf{p}}^2 \cdot \phi(\mathbf{x})^{\top} \phi(\mathbf{x}') = \operatorname{Cov}[f(\mathbf{x}), f(\mathbf{x}')].$	$\mathbf{z}(\mathbf{x})^{\top}\mathbf{z}(\mathbf{x}')$, where $z_{\omega,b}(\mathbf{x}) = \sqrt{2}\cos(\omega^{\top}\mathbf{x} + b)$,	select the mode and underestimate the variance. Evidence lower bound , for data \mathcal{D}_n : $L(q,p;\mathcal{D}_n) = \log p(y_{1:n}) - \text{KL}(q p(\cdot y_{1:n}))$	chain with stationary distribution $p(\mathbf{x}) = \frac{1}{Z}q(\mathbf{x})$.
	Linear : $\kappa(\mathbf{x},\mathbf{x}) = t\mathbf{x} \cdot \mathbf{x}$ or $t\phi(\mathbf{x}) \cdot \phi(\mathbf{x})$		$L(q,p;\mathcal{D}_n) = \log p(y_{1:n}) - \text{KL}(q p(\cdot y_{1:n}))$	Algorithm 6.20: Gibbs sampling
Conditional likelihood $p(y \mid x)$: how likely the observations y are under a given value x.	RBF/Gaussian: $k(\mathbf{x}, \mathbf{x}') = \exp{-\frac{(\mathbf{x} - \mathbf{x}')^2}{2\sigma_p^2}}$	and $\mathbf{z}(\mathbf{x}) \doteq \frac{1}{\sqrt{m}} [z_{\omega(1),b(1)}(\mathbf{x}),,z_{\omega(m),b(m)}(\mathbf{x})]^{\top}$ is a randomized feature map of	$= \mathbb{E}_{\theta \sim q}[\log p(y_{1:n} \mathbf{x}_{1:n}, \theta)] - \text{KL}(q p(\cdot))$	initialize $x = [x_1, \dots, x_n] \in \mathbb{R}^n$
Loint likelihood $m(x_1, x_2) = m(x_1, x_2)m(x_1)$		is a randomized feature map of Fourier transforms $\omega^{(i)} \stackrel{\text{iid}}{\sim} p$ and $b^{(i)} \stackrel{\text{iid}}{\sim} \text{Unif}([0,2\pi])$.	$= \mathbb{E}_{\theta \sim q}[\log p(y_{1:n}, \theta)] + \mathbf{H}[q]$	for $t=1$ to T do
Marginal likelihood $p(y)$: how likely the observa-		The error probability decays exponentially in ϵ .	The gradient of ELBO is generally	pick a variable <i>i</i> uniformly at random from $\{1,, n\}$
tions y are across all values of x.		Inducing Points SoR/FITC: runtime $\mathcal{O}(n^3)$ in	intractable. We use the reparametrization	$ set x_{-i} = [x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n] $ undet x, by compling according to the posterior distribution
Marginal likelihood $p(\mathbf{y}) = \int_{\mathbf{X}(\Omega)} p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$	Symmetry: $k(\mathbf{x} \mathbf{x}') = k(\mathbf{x}' \mathbf{x})$ and \mathbf{K}_{AA} is n.s.d.	number of inducing points, $\mathcal{O}(n)$ in number of points.	trick : For $\epsilon \sim \phi$ independent of λ) and given a differentiable and invertible function $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^d$.	update x_i by sampling according to the posterior distribution $p(x_i \mid x_{-i})$
If prior $p(\mathbf{x})$ and posterior $p(\mathbf{x} \mathbf{y})$ from same family	Kernels can be composed in the following ways: ad-	Inducing points can be seen as hyperparameters to	Let $\theta = \mathbf{g}(\epsilon; \lambda)$: $q_{\lambda}(\theta) = \phi(\epsilon) \cdot \det(\mathbf{D}_{\epsilon}\mathbf{g}(\epsilon; \lambda)) ^{-1}$,	
of distributions, the prior is a conjugate prior	dition, multiplication, positive scalar multiplication	Kalman Filter	which yields: $\mathbb{E}_{\theta \sim q_{\lambda}}[\mathbf{f}(\theta)] = \mathbb{E}_{\epsilon \sim \phi}[\mathbf{f}(\mathbf{g}(\epsilon;\lambda))]$,	The stationary distribution of the simulated Markov chain is $p(\mathbf{x})$. A Gibbs distribution is a continuous
	and composition with a function f if f is polynomial with positive coefficients or exp.	$\mathbf{X}_{t+1} \perp \mathbf{X}_{1:t-1} \mathbf{X}_t, \mathbf{Y}_t \perp \mathbf{Y}_{1:t-1} \mathbf{X}_t$	for a <i>nice</i> f (continuous random variable).	distribution p whose PDF is of the form $p(\mathbf{x}) =$
Normal Distribution	Positive Semidefiniteness:	$P(\mathbf{X}_1) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	For ELBO: $\nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}} [\mathbf{f}(\theta)] = \mathbb{E}_{\epsilon \sim \phi} [\nabla_{\lambda} \mathbf{f}(\mathbf{g}(\epsilon; \lambda))]$. If	$\frac{1}{2} \exp(-f(\mathbf{x}))$ f is also called an energy function
$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}) \cdot \mathbf{A} \mathbf{X} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mu + \mathbf{b}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}^T)$	If kernel matrix K is p.s.d., then $\forall \mathbf{x} \neq 0$, $\mathbf{x}^T \mathbf{K} \mathbf{x} > 0$.	Motion: $P(\mathbf{X}_{t+1} \mathbf{X}_t) = \mathcal{N}(\mathbf{F}\mathbf{X}_t, \mathbf{\Sigma}_x), \mathbf{X}_{t+1} =$	we can find g and a suitable reference density ϕ which	When the energy function f is convey its Cibbs die
Let X be Gaussian and index sets $A,B\subseteq [n]$. For any	If $det(\mathbf{K}) > 0$, K is p.s.d. If $det(\mathbf{K}) < 0$, K is not p.s.d. No result for $det(\mathbf{K}) = 0$. Quick check (neces-		is independent of λ , we say q_{λ} is reparametrizable .	tribution is called log-concave distribution. Can
		LV m	Gaussian : $q_{\lambda}(\theta) = \mathcal{N}(\theta; \mu, \Sigma)$; $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, set: $\theta = \mathbf{I}$	write: $\alpha(\mathbf{x}' \mathbf{x}) = \min \left\{ 1, \frac{r(\mathbf{x} \mathbf{x}')}{r(\mathbf{x}' \mathbf{x})} \exp(f(\mathbf{x}) - f(\mathbf{x}')) \right\}$
and that for any such conditional distribution : $\mathbf{X}_A \mid \mathbf{X}_B = \mathbf{x}_B \sim \mathcal{N}(\mu_{A B}, \mathbf{\Sigma}_{A B})$ where:	sary not sufficient): $\kappa(x,x) \le \sqrt{\kappa(x,x)\kappa(x',x')}$	Update: $\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t),$	$\mathbf{g}(\epsilon;\lambda) = \mathbf{\Sigma}^{1/2} \epsilon + \mu$, then: $\phi(\epsilon) = q_{\lambda}(\theta) \cdot \left \det \left(\mathbf{\Sigma}^{1/2} \right) \right $	For $p(\mathbf{x}) \propto \exp(-f(\mathbf{x}))$: $S[p(\mathbf{x})] = f(\mathbf{x}) + \log Z$
and the second s	Stationary if there exists a \tilde{k} s.t. $\tilde{k}(\mathbf{x}-\mathbf{x}')=k(\mathbf{x},\mathbf{x}')$, and Isotropic	$\mathbf{\Sigma}_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1} \mathbf{H}) (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x)$	and $\epsilon = \mathbf{g}^{-1}(\theta;\lambda) = \mathbf{\Sigma}^{-1/2}(\theta - \mu)$	2 () · · · · 2 (0 ()) · · · · · · · · · · · · · · · · ·
	exists a κ s.t. $\kappa(\mathbf{x} - \mathbf{x}) = \kappa(\mathbf{x}, \mathbf{x})$, and isotropic	Gain: $\mathbf{K}_{t+1} = (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top [\mathbf{H} (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top +$	5 Markov Chains	
	II THERE EXISTS a κ S.t. $\kappa(\mathbf{X} - \mathbf{X} _{2}) = \kappa(\mathbf{X}, \mathbf{X})$.	$[\mathbf{\Sigma}_x)\mathbf{H}^{ op} + \mathbf{\Sigma}_y]^{-1}$	A Markov Chain over $S = \{0,, n-1\}$, is a	Langevin Dynamics: $r(\mathbf{x}' \mid \mathbf{x}) = \mathcal{N}(\mathbf{x}'; \mathbf{x} - \mathbf{x}')$
		$[-x)^{-1}$ $[-y]$		
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} =$	3 Gaussian Processes	Filtering:	sequence $(X_t)_{t\in\mathbb{N}_0}\in S$, such that the Markov	
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} \doteq \sum_{n=0}^{\infty} a_{n}(x) ^{2}$	3 Gaussian Processes A Gaussian process is characterized by a mean function w. X > R and a covariance function (or	Filtering: $P(\mathbf{X}_t \mathbf{y}_{1:t}) = \frac{1}{Z} P(\mathbf{y}_t \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t-1}),$	property : $X_{t+1} \perp X_{0:t-1} \mid X_t$ is satisfied.	Langevin Algorithm): Use Langevin dynamics
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} \doteq \sum_{n=0}^{\infty} a_{n}(x) ^{2}$	3 Gaussian Processes A Gaussian process is characterized by a mean function $\mu: \mathcal{X} \to \mathbb{R}$ and a covariance function (or kernel function) $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for any	Filtering: $P(\mathbf{X}_t \mathbf{y}_{1:t}) = \frac{1}{Z} P(\mathbf{y}_t \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t-1}), \\ P(\mathbf{X}_{t+1} \mathbf{y}_{1:t}) = \int P(\mathbf{X}_{t+1} \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t}) d\mathbf{X}_t$	property: $X_{t+1} \perp X_{0:t-1} \mid X_t$ is satisfied. It is time-homogeneous	Langevin Algorithm): Use Langevin dynamics with accept-reject step, mixing time polynomial in d
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} \doteq \underset{\theta \in \Theta}{\operatorname{argmax}} p(y_{1:n} \mid \mathbf{x}_{1:n}, \theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(y_{i} \mid \mathbf{x}_{i}, \theta)$	3 Gaussian Processes A Gaussian process is characterized by a mean function $\mu: \mathcal{X} \to \mathbb{R}$ and a covariance function (or kernel function) $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for any $A = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \subset \mathcal{X}$, we have $\mathbf{f}_A = [\mathbf{f}_{\mathbf{x}_1}, \dots, \mathbf{f}_{\mathbf{x}_m}]^\top \sim$	Filtering: $P(\mathbf{X}_t \mathbf{y}_{1:t}) = \frac{1}{Z} P(\mathbf{y}_t \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t-1}), \\ P(\mathbf{X}_{t+1} \mathbf{y}_{1:t}) = \int P(\mathbf{X}_{t+1} \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t}) d\mathbf{X}_t$ 4 Variational Inference	property : $X_{t+1} \perp X_{0:t-1} \mid X_t$ is satisfied.	Langevin Algorithm): Use Langevin dynamics
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} \doteq \underset{\theta \in \Theta}{\operatorname{argmax}} p(y_{1:n} \mathbf{x}_{1:n}, \theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(y_{i} \mathbf{x}_{i}, \theta)$ $\ell_{-n}(\theta; \mathcal{D}_{-n}): \text{ negative log-likelihood The}$	3 Gaussian Processes A Gaussian process is characterized by a mean function $\mu: \mathcal{X} \to \mathbb{R}$ and a covariance function (or kernel function) $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for any $A = \{\mathbf{x}_1,, \mathbf{x}_m\} \subseteq \mathcal{X}$, we have $\mathbf{f}_A = [f_{\mathbf{x}_1} \cdots f_{\mathbf{x}_m}]^\top \sim \mathcal{N}(\mu_A, \mathbf{K}_{AA})$ We write $f \sim \mathcal{GP}(\mu, k)$. In particular,	Filtering: $P(\mathbf{X}_t \mathbf{y}_{1:t}) = \frac{1}{Z} P(\mathbf{y}_t \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t-1}),$ $P(\mathbf{X}_{t+1} \mathbf{y}_{1:t}) = \int P(\mathbf{X}_{t+1} \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t}) d\mathbf{X}_t$ 4 Variational Inference Approximate the true posterior distribution with a simpler posterior that is easy to sample:	property: $X_{t+1} \perp X_{0:t-1} \mid X_t$ is satisfied. It is time-homogeneous if there is a transition function: $p(x'\mid x) = \mathbb{P}(X_{t+1} = x'\mid X_t = x)$, with transition	Langevin Algorithm): Use Langevin dynamics with accept-reject step, mixing time polynomial in d SGLD (Stochastic Gradient Langevin Dynam
Maximum likelihood estimate (MLE): $\hat{\theta}_{\text{MLE}} = \underset{\theta \in \Theta}{\operatorname{argmax}} p(y_{1:n} \mid \mathbf{x}_{1:n}, \theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(y_i \mid \mathbf{x}_i, \theta)$ $\ell_{\text{nll}}(\theta; \mathcal{D}_n): \text{ negative log-likelihood The MLE is consistent and asymptotically normal}$	3 Gaussian Processes A Gaussian process is characterized by a mean function $\mu: \mathcal{X} \to \mathbb{R}$ and a covariance function (or kernel function) $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for any	Filtering: $P(\mathbf{X}_t \mathbf{y}_{1:t}) = \frac{1}{Z} P(\mathbf{y}_t \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t-1}),$ $P(\mathbf{X}_{t+1} \mathbf{y}_{1:t}) = \int P(\mathbf{X}_{t+1} \mathbf{X}_t) P(\mathbf{X}_t \mathbf{y}_{1:t}) d\mathbf{X}_t$ 4 Variational Inference Approximate the true posterior distribution with a simpler posterior that is easy to sample:	property: $X_{t+1} \perp X_{0:t-1} \mid X_t$ is satisfied. It is time-homogeneous if there is a transition function:	Langevin Algorithm): Use Langevin dynamics with accept-reject step, mixing time polynomial in d SGLD (Stochastic Gradient Langevin Dynamics): Use Langevin dynamics, but always accept

6 Payreign Deep Learning	Bayesian active learning by disagreement	If for example to to the are	init $Q(x,a) = \frac{R_{\text{max}}}{1-\gamma}$ for all (x,a) pairs. The	Maximum Entropy Reinforcement Learning
6 Bayesian Deep Learning A deep neural network is a function)	(BALD): This identifies those points \mathbf{x} where the models disagree about the label $y_{\mathbf{x}}$ (that is, each	is a unique action that maximizes the state-action	update rule can also be expressed as: $Q^*(x,a) \leftarrow$	Encourage exploration by regularizing policies to wards uncertainty: $i_{\lambda}(\omega) = i(\omega) + \lambda H[\Pi_{\omega}]$.
$\mathbf{f}(\mathbf{x};\theta) \doteq \varphi(\mathbf{W}_{T}\varphi(\mathbf{W}_{T-1}(\cdots \varphi(\mathbf{W}_{1}\mathbf{x}))))$, where		value function, the policy π^* is deterministic	update rule can also be expressed as. $Q'(x,a) \leftarrow Q^*(x,a) + \alpha_t (r + \gamma \max_{a' \in A} Q^*(x',a') - Q^*(x,a))$.	12 Model-based Reinforcement Learning
$\theta = [\mathbf{W}_1, \dots, \mathbf{W}_L]$ is a vector of weights , and	ent labele): v aromay I(A:21 v 21) -	and unique, $\pi^*(x) = \operatorname{argmax}_{a \in A} q^*(x,a)$.	Both converge if α_t satisfy RM conditions	Algorithm 13.1: Model-based reinforcement learning (outline)
$\varphi: \mathbb{R} \to \mathbb{R}$ is a component-wise nonlinear activation		Policy Iteration Repeatedly compute v^{π} , $\pi_{v^{\pi}}$ un-	and every state-action pair is visited infinitely	start with an initial policy π and no (or some) initial data \mathcal{D}
	8 Bayesian Optimization	til converged. For finite Markov decision processes, policy iteration converges to an optimal policy in a	often. RM: $\alpha_t > 0, \sum_{t=1}^{\infty} \alpha_t = \infty, \sum_{t=1}^{\infty} \alpha_t^2 < \infty$.	for several episodes do
$Tanh(z) \doteq \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$		polynomial number of iterations.	(Step sizes diminish but not too quickly.)	roll out policy π to collect data
$\operatorname{ReLU}(z) \doteq \max\{z,0\} \in [0,\infty).$	with choices $\{\mathbf{x}_t\}_{t=1}^T$ is defined as: $R_T \doteq$	Value Iteration Use any $v_0(x)$. In a loop, compute		learn a model of the dynamics f and rewards r from data
	$\nabla^T \max_{\mathbf{x}} f^*(\mathbf{x}) - f^*(\mathbf{x})$	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	Can view TD-learning as SGD on the	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Bayesian neural networks: Gaussian prior on	Goal: sublinear regret: $\lim_{T\to\infty} \frac{R_T}{T} = 0$.	Break if $\ v_t - v_{t-1}\ _{\infty} \le \varepsilon$. Choose π_v . Value itera-	squared loss $\ell(\theta; x, r, x') \doteq \frac{1}{2} \left(r + \gamma \theta^{\text{old}}(x') - \theta(x) \right)$.	Algorithm 13.2: Model predictive control, MPC
weights $\theta \sim \mathcal{N}(0, \sigma_{\mathbf{p}}^{2}\mathbf{I})$, and Gaussian likelihood:	Algorithm 9.3: Bayesian optimization (with GPs)	tion converges to an optimal policy. It converges to an ε -optimal policy in polynomial time.	The gradient of this loss is called TD error,	for $t = 0$ to ∞ do
$y \mathbf{x}, \theta \sim \mathcal{N}(f(\mathbf{x}; \theta), \sigma_n^2)$. MAP estimate:	initialize $f \sim \mathcal{GP}(\mu_0, k_0)$	Value iteration	$\delta_{\text{TD}} = \nabla_{\theta(x)} \ell(\theta; x, r, x') = \theta(x) - (r + \gamma \theta^{\text{old}}(x'))$	observe x_t plan over a finite horizon H ,
	for $t = 1$ to T do		Parametric value function approximation:	plan over a finite norizon H , $t+H-1$
$\hat{\theta}_{\text{MAP}} = \operatorname{argmin}_{\theta} \frac{1}{2\sigma_{\text{p}}^2} \ \theta\ _2^2 + \frac{1}{2\sigma_{\text{n}}^2} \sum_{i=1}^n (y_i - y_i)^{-1}$	choose $x_t = \arg\max_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}; \mu_{t-1}, k_{t-1})$	cess (POMDP) is a Markov process, with a set of	To scale to large state spaces, learn approximation of (action) value function $V(\mathbf{x};\theta)$ or $O(\mathbf{x} \mathbf{a};\theta)$	$\max_{a_{tt+H-1}} \sum_{\tau=t}^{t+H-1} \gamma^{\tau-t} r(x_\tau, a_\tau) \text{such that } x_{\tau+1} = f(x_\tau, a_\tau) (1)$
$f(\mathbf{x}_i; \theta))^2$. Update rule: $\theta \leftarrow \theta(1 - \frac{\eta_t}{\sigma^2}) +$		supplementary observations Y , and observation	For e.g. the parameters θ of a neural network.	
$ \eta_t \sum_{i=1}^n \nabla \log p(y_i \mathbf{x}_i, \theta) $	perform a Bayesian update to obtain u_t and k_t	probabilities $o(u x) = \mathbb{P}(V_t - u X_t - x)$	Q-learning with function approximation: In	\lfloor carry out action a_t
Hetenessedestie Neise, Hee	Use acquisition function to greedily pick the		state \mathbf{x} , pick action a ; Observe \mathbf{x}' , reward r . Up-	
a neural network with 2 outputs f_1, f_2 , and define:	next point to sample based on the current model.		date $\theta \leftarrow \theta + \alpha_t \delta_{\rm B} \nabla_{\theta} Q^*(\mathbf{x}, \mathbf{a}; \theta)$, where $\delta_{\rm B} \doteq Q^*(\mathbf{x}, \mathbf{a}; \theta)$	
$y \mid \mathbf{x}, \theta \sim \mathcal{N}(\mu(\mathbf{x}; \theta), \sigma^2(\mathbf{x}; \theta)) \text{ where } \mu(\mathbf{x}; \theta) = f_1(\mathbf{x}; \theta)$		how beliefs change over time is Bayesian filtering : Given a prior belief b_t , an action taken a_t ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
and $\sigma^2(\mathbf{x};\theta) \doteq \exp(f_2(\mathbf{x};\theta))$. $\log p(y_i \mid$		and a new observation y_{t+1} , the belief state can be		
\mathbf{x}_{i}, θ) = const $-\frac{1}{2} \left[\log \sigma^{2}(\mathbf{x}_{i}; \theta) + \frac{(y_{i} - \mu(\mathbf{x}_{i}; \theta))^{2}}{\sigma^{2}(\mathbf{x}_{i}; \theta)} \right]$.	$\sqrt{k_t(\mathbf{x},\mathbf{x})}$. If $\beta_t = 0$ then UCB is purely exploitative; if $\beta_t \to \infty$, UCB recovers uncertainty sampling.	updated as: $b_{t+1}(x) = \mathbb{P}(X_{t+1} = x \mid y_{1:t+1}, a_{1:t}) =$	$\frac{1}{2} \sum_{(\mathbf{x}, \mathbf{a}, r, \mathbf{x}') \in \mathcal{D}} (r + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q^*(\mathbf{x}', \mathbf{a}'; \theta^{\text{old}}) -$	
_ (1,-)	Choosing β_t appropriately we get: $R_T =$	$\frac{1}{Z}o(y_{t+1} x)\sum_{x'\in X}p(x x',a_t)b_t(x'), \text{ where}$	$Q^*(\mathbf{x}, \mathbf{a}, r, \mathbf{x}') \in \mathcal{D} (1 + \gamma \operatorname{India}_{\mathbf{a}'} \in \mathcal{A} \leftarrow (1 + \gamma \mathbf{a}, \mathbf{x}))$	
Approximate predictive distribution by sampling from the variational posterior $n(a^* \mid x^* \mid x_0) \sim$	$\mathcal{O}(\sqrt{T\gamma_T})$, where $\gamma_T = \max_{S \subseteq \mathcal{X}} I(\mathbf{f}_S; \mathbf{y}_S) =$	$Z = \sum_{x \in \mathbf{V}} o(y_{t+1} x) \sum_{x' \in \mathbf{V}} p(x x', a_t) b_t(x').$	Double Deep Q Networks Loss function of	
from the variational posterior $p(y^* \mid \mathbf{x}^*, \mathbf{x}_{1:n}, \mathbf{y}_{1:n}) \approx \mathbb{E}_{\theta \sim \sigma_i} [p(y^* \mid \mathbf{x}^*, \theta)] \approx \frac{1}{m} \sum_{i=1}^{m} p(y^* \mid \mathbf{x}^*, \theta^{(i)}).$	S =T	10 Tabular Reinforcement Learning	DQN uses noisy estimate of q^* , leading to a biased	
$\frac{\mathbb{E}_{\theta \sim \sigma_{\lambda}}[p(y \mid \mathbf{x}, \theta)] \approx \frac{1}{m} \sum_{i=1}^{m} p(y \mid \mathbf{x}, \theta^{*, \gamma})}{\text{7 Active Learning}}$	$\max_{\substack{S \subseteq \mathcal{X} \\ S = T}} \frac{1}{2} \operatorname{logdet}(\mathbf{I} + \sigma_{n}^{-2} \mathbf{K}_{SS})$, is the maximum		estimate of $\max q^*$. Instead of picking the optimal	
	information gain after T rounds. Information gain of some kernels: Linear:	$\tau \doteq (\tau_0, \tau_1, \tau_2,), \text{ with } \tau_i \doteq (x_i, a_i, r_i, x_{i+1}).$	action with respect to the old network, pick the optimal action with respect to the new network.	
$ \begin{array}{ccc} \textbf{Conditional} & \textbf{Entropy:} & \text{H}[\textbf{X} \textbf{Y}] & {=} \\ \mathbb{E}_{\textbf{y} \sim p(\textbf{y})}[\text{H}[\textbf{X} \textbf{Y} = \textbf{y}]] & & \end{array} $		No choice of policy \rightarrow off-policy method.	$\mathbf{a}^*(\mathbf{x}';\theta) = \operatorname{argmax}_{\mathbf{a}' \in \mathcal{A}} Q^*(\mathbf{x}',\mathbf{a}';\theta), \ell_{\mathrm{DDQN}}(\theta;\mathcal{D}) =$	
	$\gamma_T = \mathcal{O}(d\log T)$	$\mathbf{Model\text{-}based} \rightarrow \mathbf{Learn}$ the underlying MDP	$\frac{1}{2} \sum_{(\mathbf{x}, \mathbf{a}, r, \mathbf{x}') \in \mathcal{D}} (r + \gamma Q^*(\mathbf{x}', a^*(\mathbf{x}'; \theta); \theta^{\text{old}}) -$	
$\begin{array}{ccc} -\mathbb{E}(\mathbf{x},\mathbf{y}) \sim p(\mathbf{x},\mathbf{y}) & \log p(\mathbf{x} \mathbf{y}) \\ \mathbf{Joint} & \mathbf{entropy:} & \mathbb{H}[\mathbf{X},\mathbf{Y}] & \doteq \end{array}$	Gaussian: $\gamma_T = \mathcal{O}\left((\log T)^{d+1}\right)$	$\mathbf{Model\text{-}free} ightarrow \mathbf{Learn}$ value function directly. All model-based methods are off-policy.	$Q^*(\mathbf{x}, \mathbf{a}; \theta))^2$	
$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim p(\mathbf{x},\mathbf{y})}[-\mathrm{log}p(\mathbf{x},\mathbf{y})]$	Matérn $\nu > \frac{1}{2}$: $\gamma_T = \mathcal{O}\left(T^{\frac{d}{2\nu+d}}(\log T)^{\frac{2\nu}{2\nu+d}}\right)$	RM conditions: $\alpha_t \ge 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2 < 0$	The policy value function measures the discounted	
	- ()	Monte Carlo Control Estimate underlying MDP	cc c 1: ·/ \: m [G 1 m [\sigma \tan]	
Properties: $H[X,Y] = H[Y] + H[X Y] = H[X] + H[Y X]$	1 9 -	Wionice Carlo Control Estimate underlying Wibi	and the bounded variant: $j_T(\pi) \doteq \mathbb{E}_{\pi}[G_{0:T}] =$	
	$t+1$, we sample a function $f_{t+1} \sim p(\cdot \mathbf{x}_{1:t}, y_{1:t})$ from our posterior distribution. Then, we simply	using Monte carlo estimation: $\hat{p}(x' x,a) = \frac{N(x' x,a)}{N(a x)}$	$\mathbb{E}_{\pi}\left[\sum_{t=0}^{T-1} \gamma^t R_t\right]$. Abbreviate $j(\varphi) = j(\pi_{\varphi})$	
$H[X Y] \le H[X]$ (Information never hurts)	maximize \tilde{f}_{t+1} , $\mathbf{x}_{t+1} \doteq \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \tilde{f}_{t+1}(\mathbf{x})$.	and $\hat{r}(x,a) = \frac{1}{N(a x)} \sum_{t=0, x_t=x, a_t=a}^{\infty} r_t$	Score Gradient Estimator	
Mutual Information: $I(X;Y) = H[X] + H[Y] -$	9 Markov Decision Processes		$\nabla_{\varphi} \mathbb{E}_{\tau \sim \Pi_{\varphi}}[G_0] = \mathbb{E}_{\tau \sim \Pi_{\varphi}}[G_0 \nabla_{\varphi} \log \Pi_{\varphi}(\tau)]$	
	A (finite) Markov decision process is specified	Algorithm 11.2: ε-greedy	We have $\nabla_{\varphi} \log \Pi_{\varphi}(\tau) = \sum_{t=0}^{T-1} \nabla_{\varphi} \pi_{\varphi}(\mathbf{a}_t \mathbf{x}_t)$	
pendant.	by a (finite) set of states $X = \{1,,n\}$; a (finite)	for $t = 0$ to ∞ do $ \text{sample } u \in \text{Unif}([0,1]) $	Baselines	
Have: $I(\mathbf{X}; \mathbf{Y}) = \mathbb{E}_{\mathbf{y} \sim p}[KL(p(\mathbf{x} \mathbf{y}) p(\mathbf{x}))].$	set of actions $A = \{1,, m\}$; transition proba-	if $u < \epsilon_t$ then pick action uniformly at random among all action	For $b \in \mathbb{R}$, $\mathbb{E}_{\tau \sim \Pi_{\varphi}}[G_0 \nabla_{\varphi} \log \Pi_{\varphi}(\tau)) = \mathbb{E}_{\tau \sim \Pi_{\varphi}}[(G_0 - \nabla_{\varphi}) \nabla_{\varphi} \log \Pi_{\varphi}(\tau))$. This holds true, even for baselines	
Conditional mutual information: $I(X;Y \mid Z) = H[X \mid Z] - H[X \mid Y,Z]$.	bilities $p(x' x,a) = \mathbb{P}(X_{t+1} = x' X_t = x, A_t = a);$ a	else pick best action under the current model	depending on previous states.	
I(X;Y Z) = I(X;Y,Z) - I(X;Z),	reward function $r: X \times A \to \mathbb{R}$ which maps the current state x and an action a to some reward .	ε -greedy converges to the optimal	Algorithm 12.11: REINFORCE algorithm	
I(X; Y; Z) = I(X; Y) - I(X; Y)	r induces a sequence of rewards: $R_t = r(X_t, A_t)$.	policy if the RM conditions are satisfied for ε_t and all state-action pairs are visited infinitely often.	initializa policy projekte e	
$ Z\rangle$ (Y Z shared info on X). Symmetric; Positive		Algorithm 11.6: R_{max} algorithm	repeat	
\rightarrow redundancy of Y and Z on X, Negative \rightarrow synergy of Y and Z on X (together their sums).	distribution over the actions. That is, for any $t > 0$: $\pi(a \mid x) \doteq \mathbb{P}(A_t = a \mid X_t = x)$.	add the fairy-tale state x^* to the Markov decision process	generate an episode (i.e., rollout) to obtain trajectory τ for $t=0$ to $T-1$ do	
Given a (discrete) function	The discounted payoff from time <i>t</i> is:	set $\hat{r}(x, a) = R_{\text{max}}$ for all $x \in X$ and $a \in A$	set $g_{t:T}$ to the downstream return from time t	
$F:\mathcal{P}(\mathcal{X})\to\mathbb{R}$, the marginal gain of $\mathbf{x}\in\mathcal{X}$ given	$G_t = \sum_{m=0}^{\infty} \gamma^m R_{t+m}$, for $\gamma \in [0,1)$, the discount	set $\hat{p}(x^* \mid x, a) = 1$ for all $x \in X$ and $a \in A$	$\varphi \leftarrow \varphi + \eta \gamma^t g_{t:T} \nabla_{\varphi} \log \pi_{\varphi}(a_t \mid x_t) $ // (12.45)	
$F: \mathcal{P}(\mathcal{X}) \to \mathbb{R}$, the marginal gain of $\mathbf{x} \in \mathcal{X}$ given $A \subseteq \mathcal{X}$ is defined as $\Delta_F(\mathbf{x} A) = F(A \cup \{\mathbf{x}\}) - F(A)$.	factor. The bounded discounted payoff from	compute the optimal policy $\hat{\pi}$ for \hat{r} and \hat{p}	until converged	
The function is called	Lima a 1 sentil time a T in C $\rightarrow \begin{cases} 1 - 1 - t \\ M D \end{cases}$	for $t = 0$ to ∞ do execute policy $\hat{\pi}$ (for some number of steps)	Given a policy π , the advantage function is	
submodular iff for any $\mathbf{x} \in \mathcal{X}$ and any $A \subseteq B \subseteq \mathcal{X}$ it satisfies $F(A \cup \{\mathbf{x}\}) - F(A) \ge F(B \cup \{\mathbf{x}\}) - F(B)$,	In a state value function: $\mathbb{E}_{\pi}[\cdot] = \mathbb{E}_{(X_t^{\pi})_{t \in \mathbb{N}_0}}[\cdot]$	for each visited state-action pair (x, a) , update $\hat{r}(x, a)$	$\begin{bmatrix} a^{\pi}(\mathbf{x}, \mathbf{a}) & \doteq q^{\pi}(\mathbf{x}, \mathbf{a}) - v^{\pi}(\mathbf{x}) & = q^{\pi}(\mathbf{x}, \mathbf{a}) - v^{\pi}(\mathbf{x}) \end{bmatrix}$	
it is called monotone it satisfies $F(A) \le F(B)$.	measures the average discounted payoff from time t	estimate transition probabilities $\hat{p}(x' \mid x, a)$	$\mathbb{E}_{\mathbf{a}' \sim \pi(\mathbf{x})} [q^{\pi}(\mathbf{x}, \mathbf{a}')]$	
Maximization objective: monotone submodular	starting from state $x \in X$. The state-action value function (Q-function):	after observing "enough" transitions and rewards, recompute the	π is optimal $\iff \forall \mathbf{x} \in \mathcal{X}, \mathbf{a} \in \mathcal{A} : a^{\pi}(\mathbf{x}, \mathbf{a}) \leq 0$ Policy Gradient Theorem	
function: $I(S) \doteq I(\mathbf{f}_S; \mathbf{y}_S) = H[\mathbf{f}_S] - H[\mathbf{f}_S \mathbf{y}_S].$	$q_t^{\pi}(x, a) \doteq \mathbb{E}_{\pi}[G_t X_t = x, A_t = a] = r(x, a) +$	$igspace$ optimal policy $\hat{\pi}$ according the current model \hat{p} and \hat{r} . With probability at least $1-\delta$, R_{\max} reaches	The policy gradient can be represented	
Croody: Pick the locations v. through	$ f _{T}/ f \times p(x - x,u) \cdot v_{t+1}(x)$ incastics the average	lan ϵ -optimal policy in a number of steps that	in terms of the Q-function: $\nabla_{\varphi} j(\varphi) =$	
\mathbf{x}_n individually by greedily finding the location with	age discounted payoff from time t starting from	is polynomial in $ X $, $ A $, T , $1/\epsilon$, $1/\delta$, and R_{max} .	$\sum_{t=0}^{\infty} \mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t} [\gamma^t q^{\pi \varphi} (\mathbf{x}_t, \mathbf{a}_t) \nabla_{\varphi} \log \pi_{\varphi} (\mathbf{a}_t \mathbf{x}_t)].$	
the maximal mutual information, this provides a	$\begin{array}{ccc} \text{state } x \in X \text{ playing action } a \in A. \\ \textbf{Bellman Expectation Equation:} & v^{\pi}(x) \end{array} =$	Algorithm 11.9: Temporal-difference (TD) learning	Actor-Critic methods consist of two components a parameterized policy, $\pi(\mathbf{a} \mid \mathbf{x}; \varphi) = \pi_{\varphi}$, which is	
(1-1/e)-approximation of the optimum. Maximizing a subset's info gain otherwise is NP-hard.	$\mathbb{E}_{a \sim \pi(x)}[q^{\pi}(x,a)].$ Also get: $q^{\pi}(x,a) = r(x,a) +$	initialize V^{π} arbitrarily (e.g., as 0)	called actor ; and a value function approximation	
Uncertainty sampling: Have already	$\gamma \mathbb{E}_{x' x,a} \mathbb{E}_{a' \sim \pi(x')} \left[q^{\pi}(x',a') \right].$	for $t=0$ to ∞ do	$q^{\pi\varphi}(\mathbf{x}, \mathbf{a}) \approx Q^{\pi\varphi}(\mathbf{x}, \mathbf{a}; \theta)$, which is called critic .	
	Policy Evaluation: Either solve linear system of	follow policy π to obtain the transition (x, a, r, x')	Algorithm 12.16: Online actor-critic	
$\operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \Delta_{I}(\mathbf{x} S_{t}) = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} I(f_{\mathbf{x}}; y_{\mathbf{x}})$	equations $\mathbf{v} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}$ in $\mathcal{O}(\mathcal{X} ^3)$ time or apply		initialize parameters $oldsymbol{arphi}$ and $oldsymbol{ heta}$	
\mathbf{y}_{S_t}) = $\operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sigma_t^2(x)$. Does not work with	fixed-point iteration $\mathbf{B}^{\pi}\mathbf{v} \doteq \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi}\mathbf{v}$. A greedy policy w.r.t. to a state-action value	This is an on-policy method.	repeat use π_{ω} to obtain transition (x, a, r, x')	
	function q is $\pi_q(x) = \operatorname{argmax}_{a \in A} q(x, a)$; a greedy	initialing O*(n, a) ambitmatile (a.e 0)	$\delta = r + \gamma Q(x', \pi_{\varphi}(x'); \theta) - Q(x, a; \theta)$	
incorrespondent includes, task arginax $\mathbf{x} \in \mathcal{X} \frac{\sigma_n^2(x)}{\sigma_n^2(x)}$. Tall ge	policy w.r.t. a state value function v is: $\pi_v(x) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{$	initialize $Q^*(x, a)$ arbitrarily (e.g., as 0) for $t = 0$ to ∞ do	// actor update	
aleatoric uncertainty may dominate the epistemic	$\underset{\text{argmax}_{a \in A}}{\operatorname{rr}(x,a) + \gamma \sum_{i=1}^{N} p(x' x,a) v(x')}$	observe the transition (x, a, r, x')	$\phi \leftarrow \phi + \eta \gamma^t Q(x, a; \theta) \nabla_{\!\!\!/} \log \pi_{\!\!\!/}(a \mid x) $ // critic update	(12.64)
selecting the label that maximizes the entropy of the	$\begin{array}{l} \operatorname{argmax}_{a \in A} r(x,a) + \gamma \sum_{x' \in X} p(x' \mid x,a) v(x'). \\ \textbf{Bellman's Theorem: A policy } \pi^{\star} \text{ is optimal iff it} \end{array}$	$Q^{\star}(x,a) \leftarrow (1-\alpha_t)Q^{\star}(x,a) + \alpha_t(r+\gamma \max_{a' \in A} Q^{\star}(x',a'))$		(12.65)
predicted label: $\mathbf{x}_{t+1} \doteq \underset{\sim}{\operatorname{argmax}} \mathcal{X}_{t+1} = \mathbf{x}_{t+1} \mathcal{X}_{t+1} \mathcal{X}_$	is greedy with respect to its own value function.	This is an off-policy method. Optimistic:	until converged	