Задача 1. Рассмотрим последовательность «уголков»: □, □, □, □, □, □, ...

а) Сколько клеток в k-том уголке? **б**) Чему равна суммарная площадь первых k уголков?

Задача 2. а) Чему равно k-е нечётное число и сумма первых k нечётных чисел?

- **б)** Чему равно k-е чётное число и сумма первых k чётных чисел?
- в) Вычислите сумму 100 последовательных нечётных чисел, начиная со 179.

Задача 3. Числа $T_1 = 1$, $T_2 = 3$, $T_3 = 6$, $T_4 = 10$, . . . греческий математик Диофант называл *треуголь* ными: \square , \boxplus , \boxplus , ... Четырёхугольные числа \square , \boxplus , \boxplus , \boxplus , ... — это квадраты.

- а) Сложите из двух последовательных треугольных чисел квадрат.
- **б)** Что получится при сложении T_n с T_n ?
- в) выразив T_n через n, найдите сумму $1+2+3+\cdots+n$.

Задача 4. а) Чему равна сумма первой сотни натуральных чисел?

б) А сумма второй сотни?

Задача 5. Докажите геометрически, что $T_{m+n} = T_m + T_n + mn$.

Задача 6. (Пифагорова таблица умножения)

а) Докажите тождество mk = km

(т. е. докажите, что $\underbrace{k+k+\ldots+k}_m = \underbrace{m+m+\ldots+m}_k$).

Рис. 1. Пифагорова таблица умножения чисел от 1 до n

Задача 7. а) Докажите геометрически, что $1+2+\cdots+(n-1)+n+(n-1)+\cdots+2+1=n^2$.

б) Сколько клеток в k-м, считая от левого верхнего угла пифагоровой таблицы, «толстом» уголке, «вершина» которого — квадрат $k \times k$, а «стороны» составлены из прямоугольников $1 \times k$, $2 \times k$, ..., $(k-1) \times k$? (На рисунке 1 зелёным цветом отмечен 4-й уголок.)

в) Найдите сумму $1^3 + 2^3 + \ldots + n^3$.

Задача 8. Объясните равенство на рисунке 2 и получите формулу для суммы квадратов $1^2 + 2^2 + \dots + n^2$.

Рис. 2. Сумма квадратов — 1

Задача 9*. С помощью рисунка 3 получите ещё один способ найти формулу для суммы кубов.

Задача 10*. С помощью рисунка 4 получите ещё один способ найти формулу для суммы квадратов.

Задача 11.** Используя таблицу на рисунке 5, выведите формулу для суммы $1^4 + 2^4 + \ldots + n^4$.

Рис. 3. Сумма кубов — 2

Рис. 4. Сумма квадратов — 2

	1^2	2^2	3^2	k^2	n^2
1	1.1^{2}	1.2^{2}	1.3^{2}	$1 \cdot k^2$	$1 \cdot n^2$
2	$2 \cdot 1^{2}$	$2 \cdot 2^2$	2.3^{2}	$2 \cdot k^2$	$2 \cdot n^2$
3	3.1^{2}	3.2^{2}	3.3^{2}	$3 \cdot k^2$	$3 \cdot n^2$
k	$k \cdot 1^2$	$k \cdot 2^2$	$k \cdot 3^2$	$k \cdot k^2$	$k \cdot n^2$
n	$n \cdot 1^2$	$n \cdot 2^2$	$n \cdot 3^2$	$n \cdot k^2$	$n \cdot n^2$

Рис. 5. Сумма четвёртых степеней

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	$\begin{bmatrix} 1 \\ 6 \end{bmatrix}$	2 a	2 6	2 B	3 a	3 6	3 B	4 a	4 6	5	6 a	6 6	7 a	7 6	7 B	8	9	10	11