Lecture 6: Neural Operators 2, Theory and Practice

Chris Budd¹

¹University of Bath

Seattle, June 2025

Some papers to look at

- Stuart et. al. Fourier Neural Operator for PDEs
- Kovachi et. al. Operator learning: algorithms and analysis
- Liu at. al. Phil Trans

Motivation: Solving PDEs

Seek to solve PDE problems of the form

$$\mathbf{u}_t = F(\mathbf{x}, u, \nabla u, \nabla^2 u)$$
 with BC

$$u(x,0) = u_0(x) \in H^1$$
.

eg.

$$-\Delta u = f(x), \quad iu_t + \Delta u + u|u|^2 = 0, \quad u_t = \Delta u + f(x, u).$$

In the previous lecture we saw how the solution $u_T(x) \equiv u(x, T)$ could be described using an operator over an infinite dimensional function space

Now use machine learning to approximate this operator over a subset of H^1

Operator based methods such as FNO

Idea: Evolutionary PDE defined for $x \in \Omega$

$$u_t = F(x, t, u, u_x, u_x x), \quad u(0, x) \equiv u_0(x) \in H^1(\Omega).$$

If $u_T(x) \equiv u(T,x)$ this can induce a map $N: H^1(\Omega) \to H^1(\Omega)$

$$N: u_0 \equiv u_T$$

- If F is linear then so is N. Otherwise nonlinear
- If F is Lipschitz then N is continuous. Otherwise properites of N are unclear and it may not even exist!
- If u satisfies a conservation law then so should N.

Neural operator methods try to learn the map N. Most literature is for the linear case. At best for the Lipshitz case

Basic construction

Assume that

$$u_T = N(u_0), \quad N: H^1 \to H^1$$
 (or similar), N continuous

 Use a high accurate 'traditional' or PINN based numerical method to construct a training set comprising a large number of solution pairs

$$(u_0^i, u_T^i), \quad i = 1 \dots M \quad M \gg 1$$

ullet Train a NN to find a Neural Operator $\Psi: H^1 \to H^1$ so that

$$L = \sum_{i} \|\Psi(u_0^i) - u_T^i\|^2$$

(or similar) is minimised over the training set

- Test over a suitable test set of solution pairs
- If valid, use Ψ as an emulator for the PDE, for example in control applications or uncertainty quantification or weather forecasting

Notes

- Many different architectures for NN. Many make use of latent finite dimensional structures. Examples include DeepONet and FNO.
- This is supervised learning of the operator as we are generating the pairs in advance. It differs significantly from the semi-supervised training of a PINN.
- Quality of the NN depends significantly on the quality of the training set.
- Various theorems exist on the convergence/accuracy of the Neural operator. They rely on properties of N which depend in a very subtle way on the properties of the underlying PDE. See [Kovachi et. al.]

Before we start

Some key issues with the construction of the Neural Operator

- How to construct an operator over on infinite dimensional space
- Architecture of the NN (FNO, DeepONet, CNO) etc.
- Selection of the training set (convex hulls etc.)
- Convergence as $W, L, M \rightarrow \infty$
- Building in the physics (conservation laws etc.)

Example

Simplest example is the linear heat equation

$$u_t = u_{xx}, \quad x \in \Omega.$$

Then have if $\Omega = R$ we have the convolution

$$N: u_0 \to u_1 \equiv G * u_0 \equiv \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/t} u_0(y) dy.$$

Also if u satisfies periodic boundary conditions $x \in [0, 2\pi]$

$$N: u_0(x) \equiv \sum_n a_n e^{inx} \rightarrow u_1(x) \equiv \sum_n e^{-n^2} a_n e^{inx}.$$

So the linear map N is defined in terms of convolutional integral operators and simple spectral operations.

The FNO: In general

The FNO architecture is based on the process of solving the linear heat equation:

$$\Psi(a,\theta)_{FNO} \equiv Q \circ \mathcal{L}_L \circ \ldots \circ \mathcal{L}_2 \circ \mathcal{L}_1 \circ P(a).$$

 $\mathcal{L}_n(v)(x,\theta) = \sigma(W_n v(x) + b_n + K(v))$

Here W is a pointwise linear local map. K(v) is a global convolutional integral operator, kernal $G_n(\theta)$. Evaluate Kv using an FFT via

$$FFT(Kv) = FFT(G_n) FFT(v).$$

FFT restricted to M modes. Nonlinearity and higher order modes introduced via the activation function σ .

Figure from FNO paper

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers. Start from input v. On top: apply the Fourier transform F; a linear transform R on the lower Fourier modes and filters out the higher modes; then anothy to inverse Fourier transform F-1. On the bottom; anothy a local linear transform W.

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.

FNO online 1

FNO online 2

FNO online 3

FNO in detail 1

- Input $a_j(x) \in \mathcal{A}$ output $u_j(x) = N(a_j) \in \mathcal{U}$ are functions on $x \in D \subset R^d$
- Assume have access to pointwise observations of a only at points in $x_i \in D_i \subset D$. Output u does not depend on D_i : super-resolution
- Lift a to a higher dimensional representation $v_0(x) = P(a(x))$ by a shallow NN.
- Calculate a series of updates $v_n \to v_{n+1}$ via the local W_n and global (integral) K_n operators:

$$v_{n+1}(x) = \sigma \left(W_n v_n(x) + (K_n(\theta) v_n) \right)(x).$$

- For example $\sigma = ReLU$: This introduces nonlinearity into the map.
- Project $v_L \rightarrow u(x) = Q(v_L)$
- Learn P, Q, W_n, K_n from the data pairs

FNO in detail 2

If $u(x), x \in R^d$ have Fourier Transform (FT)

$$F(u)(\omega) = \int e^{-i\omega \cdot x} u(x) \ dx.$$

If $u_k = u(x_k)$, with $x_k \in R, k = 0 \dots N-1$ have DFT approximation

$$F_j = \sum_{k=0}^{N-1} e^{-2\pi i j k/N} u_k, \quad u_k = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i j k/N} F_j$$

with a natural extension to d-dimensions.

This can be evaluated very rapidly using the FFT np.fft.fft in Python

Chris Budd (Bath) Lecture 6 Seattle, June 2025 15 / 23

Implement the FNO using the FFT to calculate all Fourier Transforms. Efficient, but requires a uniform discretisation of u(x).

If K is a convolutional kernal with Fourier Transform G then

$$FT(K * u) = FT(K)FFT(u) = GFT(u)$$

Hence if we have a FFT approximation G_j to G

Truncate the number of modes through the DFT.

The nonlinearity of the activation function σ generates higher order modes automatically, albeit in a somewhat uncontrolled manner!

Training

- Assume input $a \in \mathcal{A}$
- In the original FNO paper take a_j as an i.i.d sequence from A.
- Construct pairs $(a_j, N(a_j))$ using an accurate solver
- In FNO paper take N=1000 training and 200 training instances. Adam optimiser to find parameters θ via:

$$min_{\theta}E_{\mathsf{a}\sim\mu}[\|\psi(\mathsf{a},\theta)-\mathsf{N}(\mathsf{a})\|]$$

Examples:

2D Allen-Cahn equation modeling phase separation:

$$u_{t} = u - u^{3} + \epsilon^{2} \Delta u, \quad \mathbf{x} \in [0, 1]^{2}, t \in (0, T)$$

$$u(0, \mathbf{x}) = u_{0}(\mathbf{x}), \qquad \mathbf{x} \in [0, 1]^{2}$$
(1)

Navier-Stokes eqns (vorticity formulation)

$$\omega_t = -u \cdot \omega_x - v \cdot \omega_y + \nu \Delta \omega + f, \quad \mathbf{x} \in [0, 1]^2, t \in (0, T)$$

$$\omega = v_x - u_y, \quad w(0, \mathbf{x}) = w_0(\mathbf{x}), \quad \mathbf{x} \in [0, 1]^2,$$
(2)

Chris Budd (Bath) Lecture 6 Seattle, June 2025 18 / 23

more examples

Burgers Equation

$$u_t + uu_x = \nu u_{xx}, \quad \nu \ll 1, \quad \textit{periodic BC}$$

$$N: u_0(x) \rightarrow u_1(x).$$

Darcy Flow

$$-\nabla \cdot (a(x)\nabla u)) = f(x), \quad x \in [0,1] \times [0,1] \quad u = 0, \quad x \in \partial [0,1] \times [0,1].$$

 $N: a \rightarrow u$.

Results 1

Predictions of FNO trained on different datasets for the Allen-Cahn equation ($\epsilon=0.05$). (a) inputs with noise (b) 1000 data pairs (c) 10000 data pairs (d) 1000 data pairs + 1000 generated data pairs (e) 5000 data pairs + 5000 generated data pairs (f) ground truth [with Chaoyu Liu]

Results 2

Test error of neural operators on PDE datasets with 1000 and 10000 training samples.

PDE Dataset	Training Samples	FNO	UNO	CNO	UNet-FNO
2*Darcy Flow	1000	3.157E-2	3.141E-2	2.295E-2	1.312e-2
	10000	1.686E-2	1.770E-2	1.034E-2	7.142e-3
2*Navier-Stokes ($\nu = 1e - 3$)	1000	7.940E-3	7.775E-3	1.090E-2	4.250e-3
	10000	2.626E-3	1.937E-3	2.016E-3	1.204e-3
2*Navier-Stokes ($\nu=1e-4$)	1000	9.410E-2	9.282E-2	6.701E-2	4.135e-2
	10000	5.271E-2	5.617E-2	2.036E-2	1.570e-2
2*Allen-Cahn ($\epsilon = 0.05$)	1000	1.376E-2	1.646E-2	2.980E-2	5.008e-3
	10000	2.945E-3	2.967E-3	1.321E-2	2.060e-3
2*Allen-Cahn ($\epsilon=0.01$)	1000	1.050E-2	1.511E-2	1.910E-2	3.347e-3
	10000	7.098E-3	1.173E-2	9.981E-3	1.135e-3
2*Compressible Navier-Stokes	1000	2.740E-1	2.846E-1	5.644E-1	2.355e-1
	10000	2.330E-1	2.089E-1	2.911E-1	1.640e-1

Convergence

Deep-O-Net

Areas for improvement and research

NONE of this applies, for example, to the nonlinear heat equation

$$u_t = u_{xx} + u^2.$$

- Observe poor conservation laws at the moment
- Generating a good training set is crucial and can be slow. How to make it good and fast?
- FNO struggles away from the traning set. Need to broaden its scope and extend the theorems on its convergence

Summary

- PINNS and NOs both show promise as a quick way of solving PDEs but have only really been tested on quite simple problems so far
- PINS not (yet) competitive with FE in like-for-like comparisons
- PINNs need careful meta-parameter tuning to work well
- NOs proving more promising. Now used for weather forecasting!
- Long way to go before we understand PINNS or NOs completey and have a satisfactory convergence theory for them in the general case.
- Lots of great stuff to do!