

UNIVERSIDADE FEDERAL DE ALAGOAS

Instituto de Computação – IC Engenharia de Computação

Sistemas de Controle 2

ANÁLISE DE UM SISTEMA ELÉTRICO EM ESPAÇO DE ESTADOS

Aldemir Melo Rocha Filho Sandoval da Silva Almeida Junior Tayco Murilo Santos Rodrigues

ÍNDICE

1.	Introdução2
2.	Apresentação do sistema
3.	Modelagem em Espaço de Estados
4.	Calculado a Função de Transferência Equivalente
5.	Simulação do modelo
6.	Análise de comportamento
	6.1. Tipo
	6.2. Critérios de desempenho
	6.2.1. Estabilidade9
	6.2.2. Amortecimento9
	6.2.3. Tempo de pico
	6.2.4. Sobressinal Máximo9
	6.2.5. Tempo de Subida9
	2.2.6. Tempo de acomodação9
	2.2.7. Representação gráfica dos critérios de desempenho9
7.	Controlabilidade e Observabilidade
	7.1. Análise quanto à Matriz de Controlabilidade10
	7.2. Análise quanto à Matriz de Observabilidade11
8.	Conclusões
9.	Anexos
10). Bibliografia13

1. Introdução

Este relatório tem como objetivo apresentar os resultados da análise de um sistema elétrico de ordem três modelado em espaço de estados. A análise foi realizada através de implementações computacionais feitas em linguagem *Python*, com auxílio de módulos presentes na biblioteca *control* e *numpy*.

O link para acesso ao notebook com todos os algoritmos utilizados pode ser encontrado nos anexos deste documento.

2. Apresentação do sistema

O sistema elétrico de ordem três escolhido para ser realizada a análise e a modelagem em espaço de estados pode ser visualizado abaixo.

Imagem 2.1: Sistema Elétrico escolhido para análise

O circuito da **imagem 2.1** possui uma fonte de alimentação DC, um indutor com o valor de indutância L=1H, um resistor com valor de resistência $R=1\Omega$ e dois capacitores com valores de capacitância C=1F.

3. Modelagem em Espaço de Estados

Se tratando de um sistema elétrico, podemos partir dos elementos armazenadores de energia para montar a matriz de estados. Dessa forma, vamos considerar a corrente que passa por L e as tensões em C_1 e C_2 . Logo, temos que:

$$x = \begin{bmatrix} v_{C_1} \\ i_L \\ v_{C_2} \end{bmatrix}$$

Agora, precisamos escrever as equações diferencias para cada elemento armazenador de energia, levando em consideração o seguinte:

$$\frac{di_L}{dt} = \frac{1}{L} v_L \quad e \quad \frac{dv_c}{dt} = \frac{1}{c} i_c$$

Temos que para o nosso caso onde L=1H e $C_1=C_2=1F$, as equações diferencias vão assumir o seguinte formato:

$$\frac{di_L}{dt} = v_L$$
; $\frac{dv_{C_1}}{dt} = i_{C_1}$; $\frac{dv_{C_2}}{dt} = i_{C_2}$

Portanto temos que:

$$\dot{x} = \begin{bmatrix} i_{C_1} \\ v_L \\ i_{C_2} \end{bmatrix}$$

Agora, aplicando a *Lei de Kirchhoff* temos as seguintes relações para as tensões:

1:
$$v_{C_1} = v_R \rightarrow v_{C_1} = i_R \cdot R \rightarrow v_{C_1} = i_R$$
;
2: $v_e = i_R + v_L + v_{C_2}$;
3: $v_e = v_{C_1} + v_L + v_{C_2}$;

E para as correntes:

1':
$$i_{C_2} = i_L = (i_R + i_{C_1})$$

Assim, partindo de 3:

$$1'': v_L = -v_{C_1} - v_{C_2} + v_e$$

Usando o resultado anterior em conjunto de 2:

$$i_R = v_e - v_{C_2} - v_L = v_e - v_{C_2} - (-v_{C_1} - v_{C_2} + v_e) \rightarrow i_R = v_{C_1}$$

Usando o resultado anterior em conjunto de 1':

$$i_L = (i_R + i_{C_1}) \rightarrow i_L = (v_{C_1} + i_{C_1}) \rightarrow i_{C_1} = i_L - v_{C_1}$$

 $2'': i_{C_2} = i_L - v_{C_2}$

Usando 1' temos:

$$3'': i_{C_2} = i_L$$

Dessa forma, considerando a entrada do sistema como v_e e partindo de 1", 2" e 3", podemos escrever as equações diferencias das variáveis de estados como o seguinte sistema:

$$S = \begin{cases} \dot{x}_1 = -1x_1 + 1x_2 + 0x_3 + 0u \\ \dot{x}_2 = -1x_1 + 0x_2 - 1x_3 + 1u \\ \dot{x}_3 = 0x_1 + 1x_2 + 0x_3 + 0u \end{cases}$$

Agora, podemos fazer uso do sistema de equações diferenciais S para descrever o sistema em espaço de estados partindo da seguinte relação:

$$\begin{cases} \dot{x} = Ax + Bu \\ v = Cx + Du \end{cases}$$

 \dot{x} e x já foram definidas anteriormente, as matrizes A e B podem ser escritas partindo dos coeficientes das equações em S e a matriz C é escrita em função do estado que se busca observar:

$$\dot{x} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \cdot x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot u$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot x + \begin{bmatrix} 0 \end{bmatrix} \cdot u$$

Por fim, é preciso fazer uso do método *control.matlab.ss()* que recebe quatro argumentos, que são as matrizes que representam o nosso sistema dentro do Espaço de Estados e retorna a modelagem da maneira que os outros métodos possam interpretá-la. O trecho de código utilizado para este fim pode ser observado abaixo.

```
from control import matlab

A = [[-1,1,0],[-1,0,-1],[0,1,0]]
B = [[0],[1],[0]]
C = [0,0,1]
D = [0]

system = matlab.ss(A,B,C,D)
```

Imagem 3.1: Trecho de código utilizado para gerar a modelagem em E.E.

4. Calculando a Função de Transferência Equivalente

Partindo da modelagem em Espaço de Estados realizada no tópico 3, podemos fazer uso das matrizes A, B, C e D para encontrar a Função de Transferência do sistema. Para isso foi utilizado o método control.matlab.ss2tf() que recebe quatro argumentos, que são as matrizes que representam o nosso sistema dentro do Espaço de Estados e retorna a Função de Transferência correspondente do sistema. O trecho de código utilizado para este fim e a saída obtida podem ser observados abaixo.

```
system_tf = matlab.ss2tf(A,B,C,D)
print(system_tf)
```

Imagem 4.1: Trecho de código utilizado para gerar a Função de Transferência.

Imagem 4.2: Saída do método control.matlab.ss2tf().

Levando em conta que o coeficiente -3.331e - 16 presente no numerador é um valor muito próximo de 0 podemos interpretar a saída do código presente na **imagem 4.2** como a seguinte Função de Transferência:

$$G(s) = \frac{s^2 + 1}{s^3 + s^2 + 2s + 1}$$

5. Simulação do modelo

Inicialmente para que fosse possível realizar a simulação do modelo se fez necessário a montagem de quatro *arrays* que representam nosso vetor de tempo e nossos sinais de entrada:

$$Degrau = \begin{cases} u = k, t \ge 0 \\ 0, t < 0 \end{cases}$$

$$Rampa = r(t) = t$$

$$Parábola = p(t) = t^{2}$$

O trecho de código utilizado para este fim e as saídas obtidas podem ser observados abaixo:

```
import numpy as np

tempo = np.arange(0,60,0.01) #Vetor de tempo (60 segundos)
u_degrau = np.full(len(tempo),1) #Degrau unitario
u_rampa = np.full(len(tempo),tempo) #Rampa
u_parabola = np.full(len(tempo),tempo**2) #Parabola

print(u_degrau)
print(u_rampa)
print(u_parabola)
```

Imagem 5.1: Trecho de código utilizado para gerar os sinais de entrada.

```
Degrau:

[1 1 1 1 ... 1 1 1]

Rampa

[0.000 e+00 1.000 e-02 2.000 e-02 ... 5.997 e+01 5.998 e+01 5.999 e+01]

Parabola:

[0.0000000 e+00 1.0000000 e-04 4.0000000 e-04 ... 3.5964009 e+03

3.5976004 e+03

3.5988001 e+03]
```

Imagem 5.2: Print dos sinais de entrada.

Agora, partindo do vetor de tempo e dos vetores que representam nossos sinais de entrada, podemos fazer uso do método *control.matlab.lsim()* para obtermos a resposta do sistema. O método em questão recebe como parâmetro o sistema, que está representado pela variável chamada *system*, o sinal de entrada e o vetor de tempo. O trecho de código utilizado para este fim pode ser observado abaixo:

```
y_d, t_d, x_d = matlab.lsim(system, u_degrau, tempo) #Resposta do
sistema ao Degrau
y_r, t_r, x_r = matlab.lsim(system, u_rampa, tempo) #Resposta do
sistema a Rampa
y_p, t_p, x_p = matlab.lsim(system, u_parabola, tempo) #Resposta do
sistema a Parabola
```

Imagem 5.3: Trecho de código utilizado para gerar a resposta do sistema.

Uma vez que os passos anteriores foram realizados e os retornos do método control.matlab.lsim() foram armazenados em variáveis, podemos utilizar a biblioteca matplotlib para exibir os resultados. A função utilizada para este fim pode ser observada abaixo:

```
import matplotlib.pyplot as plt
2
  def Resposta(t, y, sinal, title, xlabel, ylabel):
3
     plt.plot(t, sinal, 'red',)
     plt.plot(t, y, 'black',)
     plt.title(title)
6
     plt.xlabel(xlabel)
     plt.ylabel(ylabel)
     plt.grid(0.5)
9
     plt.show()
10
     print()
11
12
Resposta (tempo, y_d, u_degrau, 'DEGRAU', 'Tempo', 'Amplitude')
Resposta(tempo, y_r, u_rampa, 'RAMPA', 'Tempo', 'Amplitude')
Resposta(tempo, y_p, u_parabola, 'PARBOLA', 'Tempo', 'Amplitude')
```

Imagem 5.4: Trecho de código utilizado para exibir na tela a resposta do sistema.

Os gráficos *tempo* x *amplitude* das respostas do sistema para cada sinal de entrada podem ser observados abaixo:

Imagem 5.5: Resposta do sistema ao Degrau

Imagem 5.6: Resposta do sistema à Rampa

Imagem 5.7: Resposta do sistema à Parábola

As linhas destacadas em vermelho e preto representam respectivamente o sinal de entrada e a resposta do sistema.

6. Análise de comportamento

6.1. Tipo

A análise quanto ao Tipo do sistema pode ser feita partindo dos polos. Esses polos podem ser observados calculando os autovalores da matriz A de nosso sistema. Dessa forma foi feito o uso do método eigvals() presente na biblioteca numpy. O trecho de código utilizado pode ser observado abaixo:

```
autovalores = eigvals (A)
print ('POLOS DO SISTEMA EM MALHA ABERTA:')
print (autovalores)
```

Imagem 6.1: Trecho de código utilizado para determinar os polos do sistema

```
POLOS DO SISTEMA EM MALHA ABERTA:
[-0.56984029+0.j, -0.21507985+1.30714128j, -0.21507985-1.30714128j]
```

Imagem 6.2: Saída do método eigvals().

Partindo do número de polos localizados na origem, que é 0, e do erro em regime permanente apresentado pelo sistema na **Imagem 5.5**, que aparenta ser um valor constante próximo de 0, podemos concluir que nosso sistema é do *tipo* 0.

6.2. Critérios de desempenho

As análises a seguir foram realizadas partindo de uma aproximação da resposta temporal de nosso sistema de terceira ordem para um de segunda ordem. Também foi feito uso do método $step_info()$ presente na biblioteca control para determina os valores apresentados. O trecho de código utilizado e sua saída podem ser observados abaixo.

```
import control as ctrl
ctrl.step_info(system)
```

Imagem 6.3: Trecho de código utilizado para determinar os critérios de desempenho

```
{'Overshoot': 27.412024245469247,
'Peak': 1.2741202424546925,
'PeakTime': 2.6449430397438554,
'RiseTime': 1.133547017033081,
'SettlingMax': 1.2741202424546925,
'SettlingMin': 0.7591090829563235,
'SettlingTime': 15.302884729946593,
'SteadyStateValue': 1.0,
'Undershoot': 0}
```

Imagem 6.4: Saída do método control.step_info().

6.2.1. Estabilidade

Usando os resultados descritos na **Imagem 6.2** podemos admitir que nosso sistema é *estável* uma vez que todos os seus polos estão contidos no semiplano esquerdo.

6.2.2. Amortecimento

Usando os resultados descritos na imagem **6.4** e observando a resposta do sistema ao degrau na **Imagem 5.5** podemos admitir que nosso sistema é subamortecido uma vez que seus polos estão contidos no semiplano esquerdo e sua resposta é próxima à resposta típica de um sistema de segunda ordem subamortecido.

6.2.3. Tempo de pico (t_p)

O tempo de pico é definido como o instante que ocorre o primeiro pico de y(t). Para o nosso sistema temos que $t_p \cong 2.64s$. Partindo do último resultado podemos calcular $y(t_p)$, que é o valor da resposta do sistema no tempo de pico e também o valor de regime do sistema. Para nosso sistema temos que $y(t_p) \cong 1.27$.

6.2.4. Sobressinal Máximo (M_p)

O valor de sobressinal (*overshoot*) é realizado levando em consideração o resultado de $y(t_p)$ obtido no item **6.2.3** da seguinte forma:

$$M_p = \frac{y(t_p) - y_{ss}}{y_{ss}}$$

Onde:

$$y_{ss} = \lim_{t \to \infty} y(t)$$

Dessa forma, para o nosso sistema temos que $M_p = 27.41$.

6.2.5. Tempo de subida (t_r)

Observando a **Imagem 6.4** podemos admitir que para o nosso sistema temos $t_r \cong 1.13s$.

6.2.6. Tempo de acomodação (t_s)

O tempo de acomodação é o tempo que y(t) leva para atingir e permanecer em uma faixa de $\pm 2\%$ ($ou \pm 5\%$) do valor final. Temos que para o nosso sistema $t_s \cong 15.3s$.

6.2.7. Representação gráfica dos critérios de desempenho

Os valores apontados nos itens anteriores podem ser observados graficamente abaixo:

Imagem 6.5: Representação gráfica dos critérios de desempenho

7. Controlabilidade e Observabilidade

Do livro: Engenharia de Sistemas de Controle - 6ª edição, temos as seguintes definições para um Sistema controlável e um Sistema observável:

- Controlabilidade: Se para um sistema for possível obter uma entrada capaz de transferir todas as variáveis de estado de um estado inicial desejado para um estado final desejado, o sistema é dito controlável; caso contrário, o sistema é não controlável.
- Observabilidade: Se o vetor de estado inicial, $x(t_0)$, puder ser obtido a partir de u(t) e y(t) medidos durante um intervalo de tempo finito a partir de t_0 , o sistema é dito observável; caso contrário o sistema é dito não observável.

Uma das formas de se realizar a análise de um sistema quanto a esses critérios é construir suas matrizes, tanto de controlabilidade quanto de observabilidade.

7.1. Análise quanto à Matriz de Controlabilidade

Temos que um sistema de ordem n definido em Espaço de Estados pelas matrizes A, B, C e D é dito completamente controlável se sua matriz de controlabilidade C_M possui posto n. Onde C_M é definida da seguinte forma:

$$C_M = [B \ A^1 B \ A^2 B \ ... \ A^{n-1} B]$$

Temos que para o nosso sistema, uma vez que as matrizes A e B já estão definidas, podemos fazer uso do método ctrb() presente no módulo matlab da biblioteca control

para gerar a matriz C_M . O trecho de código utilizado para este fim e a saída obtida podem ser observados abaixo.

```
from control import matlab

#Matriz de Controlabilidade do sistema

CTR = matlab.ctrb(A,B)

print(CTR)
```

Imagem 7.1: Trecho de código utilizado para gerar C_M .

Imagem 7.2: Saída do método matlab.ctrb().

Dessa forma, temos que a saída mostrada na **Imagem 7.2** que representa nossa matriz C_M assume a seguinte forma:

$$C_M = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

Agora, para critério de análise quanto a controlabilidade do sistema é preciso calcular o posto da mesma, para isso foi utilizado o método *matrix_rank()* presente na biblioteca *numpy*. O trecho de código utilizado para este fim e a saída obtida podem ser observados abaixo.

```
from numpy.linalg import matrix_rank

print(matrix_rank(CTR))
```

Imagem 7.3: Trecho de código utilizado para calcular o posto de CTR.

```
POSTO DA MATRIZ DE CONTROLABILIDADE:
```

Imagem 7.4: Saída do método matriz_rank().

Portanto, uma vez que o sistema possui ordem n=3 e o método que calcula o posto retornou 3, podemos concluir que o sistema é completamente controlável.

7.2. Análise quanto à Matriz de Observabilidade

Temos que um sistema de ordem n definido em Espaço de Estados pelas matrizes A, B, C e D é dito completamente observável se sua matriz de observabilidade \boldsymbol{O}_{M} possui posto n. Onde \boldsymbol{O}_{M} é definida da seguinte forma:

$$\boldsymbol{O}_{\boldsymbol{M}} = \begin{bmatrix} C \\ CA^1 \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Temos que para o nosso sistema, uma vez que as matrizes A e C já estão definidas, podemos fazer uso do método obsv() presente no módulo matlab da biblioteca control para gerar a matriz O_M . O trecho de código utilizado para este fim e a saída obtida podem ser observados abaixo.

```
from control import matlab

#Matriz de Observabilidade do sistema
OBS = matlab.obsv(A,C)
print(OBS)
```

Imagem 7.5: Trecho de código utilizado para gerar \boldsymbol{O}_{M}

Imagem 7.6: Saída do método matlab.obsv().

Dessa forma, temos que a saída mostrada na **Imagem 7.6** que representa nossa matriz O_M assume a seguinte forma:

$$O_M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

Agora, para critério de análise quanto a observabilidade do sistema é preciso calcular o posto da mesma, para isso foi utilizado o método $matrix_rank()$ presente na biblioteca numpy. O trecho de código utilizado para este fim e a saída obtida podem ser observados abaixo.

```
from numpy.linalg import matrix_rank
print(matrix_rank(OBS))
```

Imagem 7.7: Trecho de código utilizado para calcular o posto de OBS.

```
POSTO DA MATRIZ DE OBSERVABILIDADE:
```

Imagem 7.8: Saída do método matriz_rank().

Portanto, uma vez que o sistema possui ordem n=3 e o método que calcula o posto retornou 3, podemos concluir que o sistema é completamente observável.

8. Conclusões

A partir das atividades elaboradas para este relatório podemos concluir que ao realizarmos a modelagem em Espaço de Estados de um sistema qualquer, a priori com suas características desconhecidas, e em seguida partindo desta modelagem, é possível determinar o comportamento desse sistema quando alimentamos sua entrada com um sinal referência, por exemplo um degrau. Levando em conta esse comportamento podemos determinar os seus critérios de desempenho e partindo de seus critérios de desempenho podemos classificar este sistema.

As características que dizem respeito a controlabilidade e a observabilidade também podem ser obtidas partindo da modelagem em E.E. Por fim, a função de transferência do sistema também pode ser descrita, junto de seus *polos* e *zeros*.

9. Anexos

ANEXO A – Notebook com as implementações realizadas para a análise deste documento:

< Sistemas de Controle 2 - Parte 1 - AB1 - Colaboratory (google.com) >

10. Bibliografia

NISE, Norman. Engenharia de Sistemas de Controle. 6ª ED. Rio de Janeiro: LTC - Livros Técnicos e Científicos Editora Ltda, 2012.

OGATA, Katsushiro. Engenharia de controle Moderno. 5ª ED. São Paulo: Pearson Education do Brasil, 2011.

KLUEVER, Craig. Sistemas Dinâmicos – Modelagem, Simulação e Controle. 1ª ED. Rio de Janeiro: LTC - Livros Técnicos e Científicos Editora Ltda, 2017.

PYTHON SOFTWARE FOUNDATION. Python Language Site: Python Control Systems Library, 2022. Página de documentação. Disponível em: https://python-control.readthedocs.io/en/0.9.1/. Acesso em: 06 de Maio. de 2022.

PYTHON SOFTWARE FOUNDATION. Python Language Site: Signal processing, 2022. Página de documentação. Disponível em: < https://docs.scipy.org/doc/scipy/reference/signal.html>. Acesso em: 06 de Maio. de 2022.