Análisis e Interpretación de Datos

MÁSTER UNIVERSITARIO EN ANÁLISIS Y VISUALIZACIÓN DE DATOS MASIVOS / VISUAL ANALYTICS AND BIG DATA

Miller Janny Ariza Garzón

Tema 6. Distribución en el muestreo

Tabla de contenido

- Tema 6: Distribuciones en el muestreo
 - Distribución en el muestreo del conteo y la proporción muestral.
 - Teorema Central del Límite y distribución de la media muestral.
 - Estimación puntual vs estimación por intervalos.
 - Propiedades de los estimadores.
 - Aplicabilidad del Teorema Central del Límite en ámbitos Big Data. (leer)

Contenido

Distribución en el muestreo

Distribución del conteo y la proporción muestral

$$X \sim Bi(n, p)X$$

= Número de éxitos

$$p = \frac{X}{np}$$
= Proporción de éxitos

Distribución del conteo y la proporción muestral

$$X v.a. con$$

 $E(X) = \mu y V(X) = \sigma$

4

Muestra X_i independientes $X_1, X_2, ..., Xn$

 $\overline{x} \sim N(\mu; \frac{\sigma}{\sqrt{n}})$

Distribución de la media muestral

Una propiedad útil en muestreo

• Sean $X_1, X_2, ..., X_n$ un conjunto de variables aleatorias, entonces:

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

• Sean $X_1, X_2, ..., X_n$ un conjunto de variables aleatorias iid, independientes e igualmente distribuidas (muestra aleatoria), con media μ y varianza σ^2 , entonces:

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = n\mu$$

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$
$$= n\sigma^2$$

Estimador vs Parámetro

Parámetro:

Valor numérico que describe una característica poblacional o de la distribución de una variable aleatoria.

Ej.

 $X \sim N(\mu, \sigma^2)$; $\mu y \sigma^2$ son los parámetros $X \sim B(n, p)$; p es un parámetro.

Estimador:

Función de variables aleatorias que describe características medidas en una muestra buscando estimar un parámetro.

Muestra aleatoria y distribución muestral

¿Qué distribución tiene $\hat{\theta} = h(X_1, X_2, ..., X_n)$ -el estimador- que permite estimar θ ?

Ej. $\bar{X} = h(X_1, X_2, ..., X_n) = \frac{\sum_{i=1}^n X_i}{n}$?

Distribución muestral, necesaria para estimar μ

Distribución muestral de \hat{p}

DISTRIBUCIÓN BINOMIAL

Función de Masa de Probabilidad:

-P(X) = Probabilidad de éxito dados los parámetros n y p.

-n = Tamaño de la muestra

−p = Probabilidad de Éxito

-1 - p = Probabilidad de fracaso

 $P(X) = \binom{n}{X} p^X (1-p)^{n-X}$

-X = Número de éxitos en n ensayos independientes

Parámetros Poblacionales

$$E(X) = np$$
$$Var(X) = np(1 - p)$$

Media y varianza depende de p, parámetro desconocido.

Distribución muestral de \hat{p}

Estimador de p:

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} \qquad X_i = \begin{cases} 1 \text{ si se da un \'exito} \\ 0 \text{ en otro caso} \end{cases}$$

Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada $X_i \sim B(1, p)$

$$E(X_i) = 1 * p = p$$

 $V(X_i) = 1 * p = p(1 - p)$

Luego:

$$E(\hat{p}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = p$$

$$V(\hat{p}) = \left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{p(1-p)}{n}$$

$$\sum_{i=1}^{n} X_i \sim B(n, p) \quad \text{y} \quad \hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} \sim ? \quad \text{¿Podrá ser normal?}$$

Distribución muestral de $\hat{\mu} = X$

$$\cdot X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada $X_i \sim N(\mu, \sigma^2)$

$$E(X_i) = \mu$$
$$V(X_i) = \sigma^2$$

Luego:

$$E(\bar{X}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \mu$$
$$V(\bar{X}) = \left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{\sigma^2}{n}$$

$$\rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Afirma que cuando tenemos n variables $X_1, X_2, ..., X_n$ iid (con n suficientemente grande), con media μ y varianza σ^2 , su suma $X_1 + X_2 + \cdots + X_n$ es una variable aleatoria que se distribuye aproximadamente como una normal. Esta aproximación será mejor cuanto mayor sea n.

Si n es grande:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$X \sim ?$$
, n grande $(n \ge 30)$, $\bar{X} \sim N$

https://www.geeksforgeeks.org/python-centra

Consecuencias (n grande):

• Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada $X_i \sim B(1, p)$

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$X_i = \begin{cases} 1 \text{ si se da un \'exito} \\ 0 \text{ en otro caso} \end{cases}$$

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

• Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada X_i

$$E(X_i) = \mu$$

$$V(X_i) = \sigma^2$$

$$Si X \sim ? \qquad \overline{X} \sim ?$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

 $X_1, X_2 \dots$ are iid Uniform(0,1)

$$Z_1 = \frac{X_1 - \frac{1}{2}}{\sqrt{\frac{1}{12}}} \qquad \qquad \text{PDF of } Z_1$$

$$Z_2 = \frac{X_1 + X_2 - 1}{\sqrt{\frac{2}{12}}}$$
 PDF of Z_2

$$Z_3 = \frac{X_1 + X_2 + X_3 - \frac{3}{2}}{\sqrt{\frac{3}{12}}}$$
 PDF of Z_3

$$Z_{30} = \frac{\sum_{i=1}^{30} X_i - \frac{30}{2}}{\sqrt{\frac{30}{12}}}$$
 PDF of Z_{30}

 $X_1, X_2 \dots$ are iid Bernoulli(p)

Ejemplo 3: Una votación independentista Imaginemos (aunque se trata de un tema perfectamente posible) que un conocido periódico catalán desea interrogar a sus lectores por medio de una encuesta sobre si están a favor o no de ser independientes de España. Supongamos ahora que en este periódico se asume que el 70% de sus lectores tiene tendencia independentista y por tanto votarían a favor de esta. ¿Cuál sería entonces la probabilidad qué con una muestra aleatoria de 500 lectores se alcance al menos una cifra del 65% a favor de la independencia o mayor?

$$X_i \sim B(1, p = 0.7)$$

$$n = 500$$

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} \sim N\left(0.7, \frac{0.7(1 - 0.7)}{500}\right)$$

$$P(\hat{p} \ge 0.65) = 1 - F\left(\frac{0.65 - 0.7}{\sqrt{\frac{0.7(1 - 0.7)}{500}}}\right) = 1 - \Phi\left(\frac{0.65 - 0.7}{\sqrt{\frac{0.7(1 - 0.7)}{500}}}\right) \cong 0.99$$

• Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada X_i

$$E(X_i) = \mu$$

$$V(X_i) = \sigma^2$$

$$Si \ X \sim ? \qquad \bar{X} \sim N \left(\mu \right)^{\frac{1}{2}}$$

Su raíz, equivale al error típico o error estándar. Se disminuye cuando el tamaño de muestra crece.

Estimación por intervalo

$$\widehat{\theta} \longrightarrow \theta$$
 Estimador Puntual

Estimador por intervalo

Si se extraen repetida e independientemente muestras aleatorias de n observaciones de la población y se calculan intervalos de confianza al $(1-\alpha)$ %, entonces en el $(1-\alpha)$ % de estos intervalos contendrá el verdadero valor del parámetro.

confianza representa el porcentaje de intervalos que incluirían el parámetro de población si se tomara muestras de la misma población una y otra vez. Confianza valida la formula

Estimación por intervalo

Intervalo para μ :

• Para una muestra aleatoria $X_1, X_2, ..., X_n$ donde cada X_i

$$E(X_i) = \mu$$

$$V(X_i) = \sigma^2$$

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\bar{x} \pm z_{1-\alpha/2} * \sigma/\sqrt{n}$$
Intervalo de confianza para la verdadera media μ

Ej. Queremos estudiar cuánto tarda (tiempo) el COVID-19 en ser sintomático en la población española. Elegir muestra representativa, determinar qué parámetro podemos estudiar (media casos confirmados). Lo podemos calcular en una muestra y extender a la población.

Propiedades de un buen estimador $\widehat{\theta}$

Insesgado: $sesgo(\hat{\theta}) = E(\hat{\theta}) - \hat{\theta} = 0$, $si\ E(\hat{\theta}) = \theta$

Eficiente: $Var(\hat{\theta}) < Var(\hat{\theta}_i)$ (Varianza mínima)

Propiedades de un buen estimador $\widehat{\theta}$

- \bar{X} es un estimador insesgado y eficente de μ (UMVUE)
- \hat{p} es un estimador insesgado y eficente de p (UMVUE)

¿Cuál será un buen estimador de σ^2 ?

Estimador de la varianza σ^2

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$
 Es un estimador sesgado

$$E(s^2) = E\left(\frac{\sum (x_i - \bar{x})^2}{n}\right) \neq \sigma^2$$

$$s_c^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Cuasivarianza $s_c^2 = \frac{\sum (x_i - \bar{x})^2}{\sum_{j=1}^{n}}$ **Es un estimador insesgado**

$$E(s_c^2) = E\left(\frac{\sum (x_i - \bar{x})^2}{n - 1}\right) = \sigma^2$$

Hemos de usar la cuasivarianza de cara a los análisis de Estadística Inferencial

Próxima sesión

Tema 7: Intervalos de confianza

- Distribución en el muestreo del conteo y la proporción muestral
- Introducción a los intervalos de confianza
- Intervalo de confianza para la media de una población normal: varianza conocida y desconocida
- Calculando el tamaño de la muestra
- Intervalo de confianza para la proporción
- Intervalo de confianza para la varianza de una población normal
- Intervalo de confianza para la diferencia de medias y proporciones
- Intervalos de confianza robustos

www.unir.net