A Novel Hierarchical Binary Tagging Framework for Joint Extraction of Entities and Relations

Zhepei Wei¹, Jianlin Su², Yue Wang³, Yuan Tian¹, Yi Chang¹

¹School of Artificial Intelligence, Jilin University ²Shenzhen Zhuiyi Technology Co., Ltd.

³School of Information and Library Science, University of North Carolina at Chapel Hill weizp19@mails.jlu.edu.cn, bojonesu@wezhuiyi.com, wangyue@email.unc.edu, yuantian@jlu.edu.cn, yichang@jlu.edu.cn

Relation Extraction Models

1. Table Filling

2. Seq2Seq

3. GNN

4. Tagging

一个实体/词语最多只能 被指派到一个relation中

Figure 1: Examples of *Normal*, *EntityPairOverlap* (*EPO*) and *SingleEntityOverlap* (*SEO*) overlapping patterns.

提出能够解决实体属于多个relation的基于标注的模型:HBT(Hierarchical Binary Tagging)

Method	NYT			WebNLG		
	Prec.	Rec.	$\overline{F1}$	Prec.	Rec.	<i>F1</i>
NovelTagging (Zheng et al. 2017)	62.4	31.7	42.0	52.5	19.3	28.3
CopyR _{OneDecoder} (Zeng et al. 2018)	59.4	53.1	56.0	32.2	28.9	30.5
$CopyR_{MultiDecoder}$ (Zeng et al. 2018)	61.0	56.6	58.7	37.7	36.4	37.1
GraphRel _{1p} (Fu, Li, and Ma 2019)	62.9	57.3	60.0	42.3	39.2	40.7
GraphRel _{2p} (Fu, Li, and Ma 2019)	63.9	60.0	61.9	44.7	41.1	42.9
$\overline{{ ext{HBT}_{random}}}$	84.7	72.3	78.0	67.9	40.4	50.6
HBT	89.7	85.4	87.5	89.5	88.0	88.8

Table 2: Results of different methods on NYT and WebNLG datasets.

Two-step process:

- 1. Identify all possible subjects in a sentence
- 2. Apply relation-specific taggers to identify all possible relations and the corresponding objects

$$\prod_{j=1}^{|D|} \left[\prod_{(s,r,o)\in T_j} p((s,r,o)|x_j) \right]$$

$$= \prod_{j=1}^{|D|} \left[\prod_{s\in T_j} p(s|x_j) \prod_{(r,o)\in T_j|s} p((r,o)|s,x_j) \right]$$

$$= \prod_{j=1}^{|D|} \left[\prod_{s\in T_j} p(s|x_j) \prod_{r\in T_j|s} p_r(o|s,x_j) \prod_{r\in R\setminus T_j|s} p_r(o_\varnothing|s,x_j) \right]$$

$$(2)$$

$$(3)$$

$$p_i^{start_o} = \sigma(\mathbf{W}_{start}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{start}^r)$$
$$p_i^{end_o} = \sigma(\mathbf{W}_{end}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{end}^r)$$

Relation-Specific Object Taggers

Subject Tagger

$$p_i^{start_s} = \sigma(\mathbf{W}_{start}\mathbf{x}_i + \mathbf{b}_{start})$$
$$p_i^{end_s} = \sigma(\mathbf{W}_{end}\mathbf{x}_i + \mathbf{b}_{end})$$

监督信号/Loss计算

$$p_{\theta}(s|\mathbf{x}) = \prod_{t \in \{start_s, end_s\}} \prod_{i=1}^{L} (p_i^t)^{\mathbf{1}\{y_i^t = 1\}} (1 - p_i^t)^{\mathbf{1}\{y_i^t = 0\}}$$
(8)

$$p_{\phi_r}(o|s, \mathbf{x}) = \prod_{t \in \{start_o, end_o\}} \prod_{i=1}^{L} (p_i^t)^{\mathbf{1}\{y_i^t = 1\}} (1 - p_i^t)^{\mathbf{1}\{y_i^t = 0\}} . (11)$$

实验部分

数据集:NYT+WebNLG

Category	NY	T	WebNLG			
cutegory	Train	Test	Train	Test		
Normal	37013	3266	1596	246		
EPO	9782	978	227	26		
SEO	14735	1297	3406	457		
ALL	56195	5000	5019	703		

Table 1: Statistics of datasets. Note that a sentence can belong to both *EPO* class and *SEO* class.

Method	NYT			WebNLG		
Welliou	Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>
NovelTagging (Zheng et al. 2017)	62.4	31.7	42.0	52.5	19.3	28.3
CopyR _{OneDecoder} (Zeng et al. 2018)	59.4	53.1	56.0	32.2	28.9	30.5
$CopyR_{MultiDecoder}$ (Zeng et al. 2018)	61.0	56.6	58.7	37.7	36.4	37.1
GraphRel _{1p} (Fu, Li, and Ma 2019)	62.9	57.3	60.0	42.3	39.2	40.7
Graph Rel_{2p} (Fu, Li, and Ma 2019)	63.9	60.0	61.9	44.7	41.1	42.9
$\overline{\hspace{1cm}}^{\hspace{1cm}}_{\hspace{1cm} HBT_{random}}$	84.7	72.3	78.0	67.9	40.4	50.6
HBT	89.7	85.4	87.5	89.5	88.0	88.8

Table 2: Results of different methods on NYT and WebNLG datasets.

Figure 3: F1-score of extracting relational triples from sentences with different overlapping pattern.

- 1. 对基于标注方法目前的缺点进行改进,对每个relation分开判断
- 2. 参数量随relation种类数增加而增加,对于relation种类比较大的不友好
- 3. 这都能work?效果还这么好?
- 4. BERT+Tagging