Databases Mini-Project

Design flaws of the giant table

The bad_giant_table contains lots of repeating data across the table as it is poorly normalised. It is not even in the first normal form (1NF) as a few attributes violate the condition such that every attribute should take atomic value. Other than the three attributes below, every other attribute takes atomic value. And all attributes take only a single value from the same domain.

- 1) The user_name attribute stores both first name and surname.
- 2) The created_at and user_created_at attributes stores both timestamp and timezone.

And functional dependencies are not treated properly as well. I could find a few functional dependencies in the bad_giant_table.

- 1) tweet_id → created_at, text, retweet_count, tweet_source, user_id, hashtag
- 2) user_id → user_name, user_sceen_name, user_location, user_utc_offset, user_timezone, user_followers_count, user_friends_count, user_lang, user_description, user_status_count, user_created_at
- 3) user_time_zone → user_utc_offset

Even though tweet_id, user_id and user_time_zone should be the primary key in separate relation, only tweet_id is set to a primary key in bad_giant_table.

• Redesigned database schema

I redesigned the bad_giant_table in the third normal form (3NF).

Exceptions:

- Theoretically, user_name attribute should be divided into user_surname and user_firstname, however, I
 kept it with user_name for simplicity as query parts do not explicitly ask to extract surname or first name
 separately.
- 2) Theoretically, to normalise the Twitter dataset in the third normal form, user_location, user_timezone and user_utc_offset should separately form a relation. Because the user_timezone and user_utc_offset depend on user_location attribute, which is not the primary key of the users relation. However, in this Twitter dataset, user_location attribute contains some random words such as 'FarFarAway', 'In My Own World', 'Behind you', etc, which are not related to geographic location. So, functional dependencies are not formed.
- 3) There were issues with foreign key constraint while copying values from bad_giant_table to redesigned database as some tweets replied to tweets which are not included in the bad_giant_table. Theoretically, in reply relation, reply(in_reply_to_status_id) and reply(in_reply_to_user_id) attributes should be a foreign key to the PK of 'tweets' and 'users', respectively. However, I did not specify those attributes as a foreign key as it violates referential integrity.

```
DETAIL: Key (in_reply_to_status_id)=(260212715052756993) is not present in table "tweets".

Key (in_reply_to_user_id)=(165989321) is not present in table "users".
```

- * The underlined attribute represents Primary Key (PK).
- Tweets = (<u>tweet_id</u>, created_at, text, retweet_count, tweet_source, user_id)
 Attribute 'Tweets(user_id)' is a foreign key to the PK of 'Users'
- Reply = (<u>tweet id</u>, in_reply_to_screen_name, in_reply_to_status_id, in_reply_to_user_id)
 Attribute 'Reply(tweet_id)' is a foreign key to the PK of 'Tweets'
 Attribute 'Reply(in_reply_to_status_id)' is a foreign key to the PK of 'Tweets'
 Attribute 'Reply(in_reply_to_user_id)' is a foreign key to the PK of 'Users'
- Retweet = (<u>tweet id</u>, retweet_of_tweet_id)
 Attribute 'Retweet(tweet_id)' is a foreign key to the PK of 'Tweets'
 Attribute 'Retweet(retweet_of_tweet_id)' is a foreign key to the PK of 'Tweets'
- Hashtag = (tweet_id, hashtag)
 Attribute 'Hashtag(tweet_id)' is a foreign key to the PK of 'Tweets'
- Users = (<u>user id</u>, user_name, user_screen_name, user_location, user_timezone, user_followers_count, user_friends_count, user_lang, user_description, user_status_count, user_created_at)
 Attribute 'Users(user_timezone)' is a foreign key to the PK of 'Timezone'
- Timezone = (timezone, utc offset)

In particular, in the bad_giant_table hashtags are stored in 6 attributes from hashtag 1 to hashtag 6 and a huge portion of those attributes are null (There were only 507, 332, 222 values in hashtag 4, hashtag 5, and hashtag 6, respectively, out of 110,574 tweets). This is badly inefficient in terms of both memory usage and writing queries. So, I separated hashtag relation and did not specify tweet_id as a primary key so that all hashtags can be copied to one column.

Outputs of queries

1. Tweets, users and languages

- 1-1. How many tweets are there in total? 110574
- 1-2. How are these tweets distributed across languages?

Ouerv:

select user_lang, count(tweet_id) from users inner join tweets on users.user_id = tweets.user_id group by user_lang;

1-3. Compute, for each language, the fraction of total tweets that have that language setting, as well as the fraction of the number of users that have that language setting.

Query:

- the fraction of total tweets that have that language setting

```
with nr_tweets as (select count(tweet_id) from tweets)
select user_lang, count(tweet_id)::float / (select * from nr_tweets) as fraction_of_tot_tweets
from users inner join tweets on users.user_id = tweets.user_id
group by user_lang;
```

- the fraction of the number of users that have that language setting

with nr_users as (select count(user_id) from users) select user_lang, count(user_id)::float / (select * from nr_users) as fraction_of_nr_users from users group by user_lang;

1-2 & 1-3 Results:

From the left side, results for 1-2, 1-3 fraction of total tweets that have that language setting, and 1-3 fraction of the number of users that have that language setting.

user_lang	ser_lang count		fraction_of_tot_tweets	user_lang	fraction_of_nr_users	
ar	1405	ar	0.01270642284804746	fr	0.0021293610953202233	
ca	7	ca	6.330602130699803e-05	tr	0.0011658492874830181	
CS	j 2	cs	1.8087434659142295e-05	en	0.6675113453515373	
de	75	de	0.000678278799717836	fi	9.63511807837205e-06	
el	1 2	el	1.8087434659142295e-05	ru	0.0036806151059381232	
en	74077	en	0.6699314486226419	CS	1.92702361567441e-05	
es	17910	es	0.16197297737261923	ja	0.0924585930800582	
eu	j 1	eu	9.043717329571148e-06	sv	1.92702361567441e-05	
fi	j 1	fi	9.043717329571148e-06	fil	8.671606270534846e-05	
fil	j 9	fil	8.139345596614032e-05	eu	9.63511807837205e-06	
fr	231	fr	0.0020890987031309347	de	0.0006840933835644156	
hu	1	hu	9.043717329571148e-06	nl	0.0005781070847023231	
id	1423	id	0.012869209759979742	id	0.013103760586585989	
it	26	it	0.00023513665056884982	zh-cn	0.00020233747964581306	
ja	9861	ja	0.08918009658690108	zh-tw	0.0001348916530972087	
ko	691	ko	0.006249208674733662	ar	0.012795436808078082	
msa	14	msa	0.00012661204261399606	no	9.63511807837205e-06	
nl	61	nl	0.0005516667571038399	th	0.002090820623006735	
no	1	no	9.043717329571148e-06	ca	6.744582654860436e-05	
pl	4	pl	3.617486931828459e-05	pt	0.03549577500072263	
pt	3977	pt	0.03596686381970445	ur	9.63511807837205e-06	
ru	396	ru	0.0035813120625101742	hu	9.63511807837205e-06	
sv	1 2	sv	1.8087434659142295e-05	pl	3.85404723134882e-05	
th	233	th	0.002107186137790077	el	1.92702361567441e-05	
tr	123	tr	0.001112377231537251	ko	0.006291732105176949	
ur	1	ur	9.043717329571148e-06	it	0.00024087795195930125	
zh-cn	26	zh-cn	0.00023513665056884982	es	0.16101245820767535	
zh-tw	14	zh-tw	0.00012661204261399606	msa	0.00012525653501883666	
28 rows)		(28 rows)	i.	(28 rows)	*	

2. Retweeting habits

- 2-1. What fraction of the tweets are retweets? 0.194
- 2-2. Compute the average number of retweets per tweet. 121
- 2-3. What fraction of the tweets are never retweeted? 0.669
- 2-4. What fraction of the tweets are retweeted fewer times than the average number of retweets? 0.936 From the result, we can see that approximately 94% of tweets are retweeted fewer times than the average number of retweets, and only 6% of tweets have more retweeted than the average. This means the distribution of retweet_count values is highly biased.

3. Hashtags

3-1. What is the number of distinct hashtags found in these tweets? 10158

3-2. What are the top ten most popular hashtags, by number of usages?

Rank	Hashtag			
1	ReasonsIFailAtBeingAGirl			
2	RED			
3	oomf			
4	HonestyHour			
5	EresGuapaSi			
6	10PeopleYouTrulyLove			
7	TeamFollowBack			
8	TweetLikeAGirl			
9	ImSingleBecause			
10	WeAllGotThatOneFriend			

hashtag
ReasonsIFailAtBeingAGirl
RED
oomf
HonestyHour
EresGuapaSi
10PeopleYouTrulyLove
TeamFollowBack
TweetLikeAGirl
ImSingleBecause
WeAllGotThatOneFriend
(10 rows)

3-3. Write a query giving, for each language, the top three most popular hashtags in that language.

Query:

with hashtag_rank as (with nr_hashtag_per_lang as (select user_lang, hashtag, count(hashtag) as nr_used from users inner join tweets on users.user_id = tweets.user_id inner join hashtag on tweets.tweet_id = hashtag.tweet_id group by user_lang, hashtag) select user_lang, hashtag, nr_used, rank() over (partition by user_lang order by nr_used desc) as rank from nr_hashtag_per_lang) select user_lang, hashtag from hashtag_rank where rank < 4;

Result:

user_lang	hashtag	nl	TeamFollowBack
	+	nl	sweetdreams
ar	سوريا	nl	1000ADAY
ar	غرد_بصورة	nl	i 500ADAY
ar	الكويت	nl	i Truste
ar	مسيرة_كرامة_وطن	nl	FollowBack
ca	SoyelIngrato	nl	Spotify
ca	EseMomentoEnElQue	nl	voetbalnieuws
CS	continuous	nl	TEAMFOLLOWBACK
CS	fermentation	nl	TEAMFOLLOWWACK
de	Hamburg	nl	I F4F
de	Noporquemeenamoro	nl	TeamFollow
de	Thesis	nl	actrices
de	Hannover	nl	Verveel
de	gratis	nl	verveet
de	Wittmund	nl	I TFBJP
de	tracking		
de	A7	nl	FOLLOWNGAIN
de	Telmi	nl	acteurs
de	Koblenz	nl	sport
de	jazz	nl	teek
de	nowplaying	nl	Breaking
de	typo12	nl	TEAMASOCIAAL

From the result, we can see that some user_lang (e.g., de, nl) shows unnecessarily many hashtags even though it is supposed to show the top three popular hashtags. This is because there are not explicitly popular hashtags as all the hashtags in that language setting are only used once or twice and resulted in rank 1 or 2 altogether.

user_lang	nr_used	rank
ar	18	1
ar	13	2
ar	11	3
ar	11	3
ca	1 1	1
ca	1	1
CS	1 1	1
CS	1 1 1 1 2 1	1
de	2	1
de	1	2
de	1 1	2
de	1 1	2
de	1 1	2
de	1	2
de	1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
de	1 1	2
de	1	2
de	1	2

If we add another condition such that a hashtag has to be used more than ten times to be classified as a popular hashtag, then we can get a more meaningful result than the previous one.

Queries:

with hashtag_rank as (with nr_hashtag_per_lang as (select user_lang, hashtag, count(hashtag) as nr_used from users inner join tweets on users.user_id = tweets.user_id inner join hashtag on tweets.tweet_id = hashtag.tweet_id group by user_lang, hashtag) select user_lang, hashtag, nr_used, rank() over (partition by user_lang order by nr_used desc) as rank from nr_hashtag_per_lang) select user_lang, hashtag from hashtag_rank where rank < 4 and nr_used > 10;

Result:

user_lang	hashtag
ar	+ سوريا ا ا
ar	غرد بصورة
ar	مسيرة كرامة وطّن
ar	الكويت ا
en	ReasonsIFailAtBeingAGirl
en	RED
en	oomf
es	EresGuapaSi
es	LoAdmito
es	SoloElVenezolano
id	TeamFollowBack
ja	countkun
ja	sougofollow
ja	followmejp
pt	YGDONTFORGETBRAZIL
ru	gameinsight
(16 rows)	

4. Replies

- 4-1. How many tweets are neither replies, nor replied to? 88136
- 4-2. If a user user1 replies to another user user2, what is the probability that they have the same language setting? 0.142
- 4-3. How does this compare to the probability that two arbitrary users have the same language setting?