Representing Relations.

Representing Relations Using Matrices

→ A relation between finite sets can be represented using a zero-one matrix.

R is a relations from A={a1,a2,...,am}

to $B = \{b_1, b_2, ---- b_n\}.$

Relation R can be represented by matrix $M_R = [m_{ij}]$, where $m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in \mathbb{R}, \\ 0 & \text{if } (a_i, b_j) \notin \mathbb{R}. \end{cases}$

1) Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. Let R. be the relation from A to B Containing (a,b) if a \in A, b \in B, and a > b. what is the matrix representing R if $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $b_1 = 1$, $b_2 = 2$?

Solution: R= {(2,1), (3,1), (3,2)}

the mateix for R is $M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

The 1s in MR Show that the pairs (2,1),(3,1) & (3,2) belong to R.

O's show that no other paies belong to R.

1

2) Let $A = \{a_1, a_2, a_3\}$ of $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the Delation R graphesented by matrix.

Sol: R consists of those ordered pairs (a_1,b_1) with $m_1=1$. So, &R= $\{(a_1,b_2), (a_2,b_1), (a_3,b_3), (a_2,b_4),$ $(a_3,b_1), (a_3,b_3), (a_3,b_5)\}$.

- > The mataix of a relation on a set, which is a Square mataix. Can be used to determine whether the grelation has Certain properties.
- -> A relation R on A is reflexive if (a,a) ER. Whenever a EA.

Per Ris Reflexive if fonly if (ai,ai) ER forisherm.

Here Ris reflexive if only if mii=1 for islent.

Ris suffexive if all the elements on main diagonal of MR are equal to 1. [1,001]

Zero-one mateix [001].

Torreflexive Relation.

Symmetric Symmetric if $(a,b) \in R \rightarrow (b,a) \in R$.

The relation R on set $A = \{a_1, a_2, \dots, a_n\}$ is Symmetric iff $(a_j, a_i) \in R$. Whenever $(a_i, a_j) \in R$.

In terms of Matein entries MR.

R is Symmetric if f only if $m_{ji} = 1$. Wheneve $m_{ij} = 1$. $m_{ji} = 0$ whenever $m_{ij} = 0$.

i.e., R is Symmetric iff Mij=Mji.
i=1,2...n
j=1,2,...n.

$$M_R = (M_R)^t$$

-> Anti Symmetric

Relation R is antiSymmetric if 4 only is topber if $(a,b) \in \mathbb{R}^{+}(b,a) \in \mathbb{R}$ \longrightarrow that a=b.

The matrix of an anti-Symmetric relation if $m_{ij}=1$. with $i\neq j$ then $m_{ji}=0$. either $m_{ij}=0$ of $m_{ji}=0$ when $i\neq j$.

Exis) Suppose that the Relation R on a set is replesented by matein MR=[:0]. Is R replexive, Symmetric, antiSymmetric?

Sol: diagonal elements are equal to 1, it is reflexive.

R is Symmetric (0,1) = (1,0) = 1.

R is not Antisymmetric. by def ai;=1, aji=0

if(0,1)=1, then (1,0) \$\pm 0\$. here in

this matrix so, it is not

antisymmetric.

-> Boolean operations join and meet. used to find matrices representing the union of intersection of two relations.

-> R, & Re Sulations on a Set A represented by matrices MR, and MR. Steep.

Union - Mateix representing the union of these relations has a 1 in positions where either MR, of MR, has a 1.

Intersection - Matrix representing intersection of these orelations has a 1 in positions where both MR. FMR. has 1.

Ex. 4) Suppose that relations R, ER2 on a Set A are suppresented by the matrices.

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 $4 M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

What are the matrices superesenting RIUR24 RINR2?

Sol:

$$M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Composite of relations

Suppose that R is a relation from A to B. Assis.

S is a relation from B to C.

Suppose that A, B and C. have m, n, P elements. resp.

Matrices for SOR, R&S be $M_{SOR} = [t_{ij}]$ $M_R = [r_{ij}]$ $M_S = [S_{ij}].$

oldered pair $(a_i, c_j) \in SOR$. iff. there is an element b_k such that $(a_i, b_k) \in R$ of $(b_k, c_j) \in S$.

tij = 1 if f only if rik= Skj=1.

From definition of Boolean product.
i.e., MSOR = MROMs.

ENS Find the matrix representing the relations SOR, where the matrices representing R & S are

M = [101] & M = [0107]

 $M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Sol: MR ordered paies are (0,0), (0,2), (1,0) (1,1).
Ms ordered paies are (0,1), (1,2), (2,0) (2,2).

SO SOR = (0,1), (0,0), (0,2), (12), (12).

M_{SOR} = M_R O M_s = [1 1 1] [0 0 0].

The Matain representing the composite of two relations can be used to find matein for Mign.

MR" = MEN]

(EG) Find the matein representing the relation R2 where the matein representing R is MR2 0 107 (10) (1,1), (1,2) (2,0).

Sol: Mp ordered paies (1,0), (1,1), (1,2) (2,0).

Sol: Mp ordered paies (1,0), (1,1), (1,2) (2,0). $R^{2} = (1,0), (1,1), (1,2), (1,0), \quad \text{of } 0 \text{ old}$ $(0,2), (2,1) \quad \text{Mg}^{2} = (1,0)$

-

En:6. Find the matrix representing the relation R?
Where the matrix representing Ris

MR = 0 10

L 100

Sol: ordered paies for R (0,1), (1,1) (1,2) (2,0) R (0,1) (1,1) (1,2) (2,0)

 $R^2 = \{(0,1), (0,2), (1,1), (1,2), (2,1)\}$

 $M_{R^2} = M_{R^2} = 0$

Representing Relations Using Digraphs

- -> Representing Relation using a pictorial representation.
- -> Each element of a set supresented by a point.
- -) Each ordered pair is represented using an arc. with its direction indicated by an arrow.
 - -) Pictorial representations of relations on a finite set as directed graphs, or digraphs.

Def: A directed graph, or digraph, consists of a

Set V of vertices (or nodes) together with a

Set E of ordered pairs of elements of V

Called edges (or arcs)

Vertex a is called the initial vertex of

edge (a,b)

vertex b is Called the terminal vertex of this

edge.

-) An edge of form (a,a) is represented using an arc from verter a back to itself. It is called a loop.

Ex: 7. The directed graph with vertices a,b,c,d & edges (a,b), (a,d), b,b), (b,d), (c,a), (yb). & (d,b).

En:8 The directed graph of a relation. $R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (2,4), (3,1), (2,4), (3,1), (2,4), (3,1), (2,4), (3,1), (2,4), (3,1), (2,4), (3,4), (2,4), (3,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (3,4), (2,4), (2,4), (3,4), (2,4)$

(3,2), (4,1) }, on Set {1,2,3,4}.

