Peak & Valley Detector User Manual

A practical, step-by-step guide to using the Streamlit interface.

Heads-up: Refreshing or closing the page clears all uploaded data and results. Download what you need before you leave.

What this app does (in one breath)

It reads single-marker counts (as CSVs or from your full dataset), applies an *arcsinh* transform, fits KDE curves, finds peaks & valleys, scores stain quality, lets you tweak per sample, and (optionally) aligns landmarks across samples before exporting plots and CSVs.

Two workflows

- 1. **Counts CSV files** upload files named like *_raw_counts.csv.
- 2. Whole dataset upload expression_matrix_combined.csv and cell_metadata_combined.csv; select markers/samples; generate counts.

Incremental engine

Files are processed one-by-one; you'll see live plots and a progress bar. You can Pause and Resume mid-run.

Quick Start

Path A — Counts CSV files

- 1. In the sidebar, choose Counts CSV files.
- 2. **Upload** your _raw_counts.csv files and select which to use.
- 3. Set **Header row** (e.g., (-1) for no header) and **Rows to skip** if needed.

- 4. Pick detection settings (see "Controls" below), then click **Run detector**.
- 5. Inspect results under **Processed datasets** → *Plot / Parameters / Manual*.

Path B — Whole dataset

- 1. In the sidebar, choose **Whole dataset**.
- 2. Upload expression_matrix_combined.csv and cell_metadata_combined.csv.
- 3. (Optional) Filter by **batch**. Then select **Marker(s)** and **Sample(s)**.
- 4. Click **Generate counts CSVs** to cache per-sample counts. You can switch to **Counts CSV files** or just hit **Run detector** (it auto-uses the generated counts).

Expected columns

- expression_matrix_combined.csv: one column per marker; often a cell_id column (it's ignored).
- cell_metadata_combined.csv: must include sample; batch is optional but useful.

Controls and when to adjust them

The table shows what each control does and how to tune it for typical data patterns.

Controls, effects, and tuning guidance

Control	Screenshot		What it does	When to increase / decrease	Practical tips
Number of peaks Number of peaks (fixed 1–6 or "GPT Automatic") Key	Number of peaks GPT Automatic Maximum peaks (Automatic cap) 2	③ • • • •	How many peaks to target. In GPT mode, the model estimates up to <i>Maximum</i> peaks.	Increase if you clearly see separate subpopulations. Decrease if peaks are being split by noise.	Set a realistic Maximum peaks cap (e.g., 3–4) so auto-mode doesn't over- segment.
Bandwidth Bandwidth mode → Manual ("scott", "silverman", or numeric 0.5–1.0) or GPT	Bandwidth mode Manual Rule / scale scott	③ • •	KDE smoothness. Larger bandwidth → smoother curve; smaller → more detail.	Increase for noisy, jagged histograms (e.g., tiny n, many zeroes). Decrease to separate close peaks.	robust default; silverman slightly smoother. Numeric like 0.8 or 1.0 applies a scale factor.
Prominence Prominence (0.00-0.30) or GPT	Prominence Manual Prominence value 0.05 0.00	⑦ ~ ② 0.30	How tall a candidate peak must be above surroundings.	Increase to suppress tiny ripples / background. Decrease to keep shallow shoulders in	Start around 0.05. If you lose a known small peak, step down to 0.03.

Control	Screenshot		What it does	When to increase / decrease	Practical tips
				heterogeneous samples.	
Minimum peak width Min peak width (0-6)	Min peak width 0 0	6	Rejects peaks narrower than this width (KDE grid units).	Increase to remove needle-like false positives. Decrease to allow sharp, narrow peaks.	Try 1–2 for spiky data; keep 0 if genuine peaks are tight.
Curvature threshold Curvature thresh (0 = off)	Curvature thresh (0 = off) 0.00 0.00	0.01	Filters out peaks with too-flat curvature near the top.	Increase to avoid broad, flat plateaus being miscalled. Decrease (toward 0) for flat-topped biology that's still meaningful.	Small but non-zero (0.0001- 0.001) often stabilizes calls.
Turning points as peaks Treat concave- down turning points as peaks	☐ Treat concave-down turning points as peaks	3	Allows shoulders/inflections to count as peaks.	Turn on for plateau + shoulder shapes. Turn off if it over-splits broad peaks.	Pairs well with a slightly higher <i>Min peak width</i> to avoid tiny shoulders.
Minimum peak separation Min peak separation	Min peak separation 0.70 0.00 10	.00	Forbids peaks closer than this distance (data units).	Increase to merge twins into a single broad peak. Decrease to allow very close doublets.	If two true peaks keep merging, lower separation and slightly lower bandwidth.

Control	Screenshot	What it does	When to increase / decrease	Practical tips
Max KDE grid Max KDE grid (4k- 40k)	Max KDE grid 20000 4000 40000	Resolution of the KDE x-grid.	Increase for fine detail on tightly packed peaks. Decrease to speed up large runs.	20,000 is a good default; go ≥30,000 for ultra-close peaks.
Valley drop (% of peak)	Valley drop (% of peak) 10 1 50 First valley method ② Slope change Valley drop	For single-peak cases, forces a valley where the curve falls to X% of the peak height (to the right).	Increase (e.g., 20–30%) if a tail never dips low enough to mark a valley. Decrease to demand a deeper dip.	Useful for gating downstream even when only one clear mode exists.
Marker consistency Enforce marker consistency across samples	✓ Enforce marker consistency across samples	Harmonizes peak/valley counts and ordering for the same marker across samples after all files finish.	Keep on when you compare samples; turn off for unrelated markers or exploratory runs.	After harmonization, per-sample plots update to reflect the consistent set.

Choosing auto (GPT) vs manual

- Use **GPT Automatic** when you have an API key and heterogeneous patterns across files (it adapts per sample).
- Use **manual** when you want deterministic settings across a cohort (publication, reproducibility) or no API key.

Per-sample tuning

Parameters tab (per-sample overrides)

Processed datasets

- Choose Preset vs Numeric for bandwidth, set Prominence, and # peaks.
- Any change marks the sample *dirty*; the next **Run detector** re-processes it with your overrides.

Manual tab (drag & drop markers) Plot Parameters Manual **Peaks** SB67 NBM28 H14 CODEX Mesmer CD8 raw counts @ 0.4 0.56 9.99 Density 5.0 Delete peak #1 Peak #2 0.0 8 10 6 Delete peak #2 Arcsinh counts Add peak **Valleys** Valley #1 (?) 0.56 9.99 Delete valley #1 Add valley Apply changes

- Move existing **Peak** and **Valley** sliders; *Add* or *Delete*.
- Click **Apply changes** to finalize and refresh ridge plots.

Alignment & normalization (cross-sample harmonization)

1. Pick a Landmark set:

- (negPeak) align the negative (unstained) peak only.
- (valley) align by the valley (useful for gating thresholds).
- negPeak_valley stabilize background and threshold simultaneously.
- (negPeak_valley_posPeak) full anchor (background, threshold, positive mode).

2. Choose Target positions:

- Automatic uses the median landmark positions across samples.
- Custom type exact numeric targets (defaults shown when selected: e.g., 2.0, 3.0, 5.0).

3. Click Align landmarks & normalize counts.

- 4. Review Aligned per-sample plots and the stacked ridge under **Comparison** (Raw vs Aligned).
- 5. Export **alignedData.zip** (aligned counts per sample, aligned per-sample PNGs, aligned ridge, and aligned_summary.csv).

When to align

Use alignment if batches shift modes (e.g., background drift) or you need a common gate across samples. If your samples already coincide well, skip it.

Outputs & where to find them

Align landmarks & normalize counts

- Processed datasets → Plot: per-sample KDE with peak (dashed) and valley (dotted) markers;
 Parameters: the values used; Manual: editor.
- Summary | downloads tab:
 - o **summary.csv** (file, peaks, valleys, quality).
 - **SampleCurves.zip** per-sample (xs)/ys CSVs of the KDE curves.
 - **StainQuality.csv** file vs quality score.
 - Aligned Data (if you aligned): everything aligned + (aligned_summary.csv).
- **Quality** tab: bar chart of stain-quality scores (higher ≈ cleaner separation / contrast).
- **Comparison** tab: stacked ridge plots (*Raw* vs *Aligned*).
- Top-level **PeakValleyResults.zip**: (summary.csv) + all per-sample PNGs.

Quick recipes (set combos for common shapes)

Recommended parameter sets for common patterns

Pattern	Suggested settings	Why	Example
Noisy, jagged histogram (low n)	Bandwidth: silverman or 1.0 Prominence: 0.07-0.12 Min width: 1-2 Curvature: 0.0005	Smooths noise, rejects needle peaks, requires clearer bumps.	1.5 cite1_BF21_032123_TNC_CD4_raw_counts 1.5 cite1_BF21_032123_TNC_CD4_raw_counts 2
Two peaks very close	Bandwidth: 0.5- 0.8 Prominence: 0.03-0.06 Min separation: slightly <i>lower</i> than default Grid: ≥ 30,000	Sharper KDE + tighter separation + finer grid resolves the doublet.	Annotated Density of CD4-1 (arcsinh transformed) for sample: CL2
Broad plateau with a shoulder	Turn on Turning points as peaks Curvature: small (0.0001) or 0 Min width: 1	Treats the shoulder as a real peak; avoids filtering flat tops.	Annotated Density of CD4-1 (arcsinh transformed) for sample: 1-1 6.6 6.5 6.6 6.7 6.6 6.7 6.6 6.7 6.7
Long right tail, single clear peak	Bandwidth: scott or silverman Valley drop: 20- 30%	Forces a reasonable valley along the tail for downstream gating.	Annotated Density of CD19-1 (arcsinh transformed) for sample: 1-1
Over-segmentation (too many peaks)	Lower Maximum peaks or fix # peaks Bandwidth: nudge up (e.g., 0.8–1.0) Prominence: nudge up (e.g., 0.06– 0.1)	Suppresses minor ripples and merges spurious splits.	S867_NBM36_H26_CODEX_Mesmer_CD8_raw_counts 0.4 0.4 0.0 0.0 2 4 6 8 10

Pattern	Suggested settings	Why	Example
	Min separation: nudge up		
Under-segmentation (merging distinct peaks)	Bandwidth: nudge down (e.g., 0.5-0.7) Prominence: nudge down (0.03-0.05) Min separation: nudge down Grid: increase	Restores resolution and allows closer peaks to appear.	SB67_NBM27_H10_CODEX_Mesmer_CD4_raw_counts 0.3 0.2 0.0 1 2 3 4 5 6 7 8 9 Arcsinh counts

Using the GPT helper (optional)

- Pick a **Model** (e.g., o4-mini), gpt-4o-mini, gpt-4-turbo-preview, or *Custom*), and paste your **OpenAl API key**.
- Enable "GPT automatic" for Number of peaks, Bandwidth, and/or Prominence.
- If no key is provided, GPT features are disabled; the app falls back to your manual settings (and robust heuristics for peak count).

Run lifecycle, pausing, and clearing

Peak & Valley Detector — CSV or full dataset ∞

Heads-up: if you refresh or close this page, all of your uploaded data and results will be lost.

Run detector

Pause

- Run detector queues unprocessed or "dirty" files and processes them one-by-one.
- Pause / Resume toggles mid-batch; progress bar shows *done/total*.
- **Clear results** wipes results, plots, parameters, alignment artifacts, and queue (but not your cached uploads).
- Cached uploads/dataset: clear them in the sidebar (*Clear cached uploads / Clear loaded dataset*).