

데이터 분석은 대량의 데이터를 분석하여 비즈니스 가치가 있는 정보를 추출하는 것으로 데이터 유형/기술 발전으로 기존에 다루지 못했던 분석기법의 적용이 가능해짐



- 다양한 유형의 정형, 비정형 데이터
- 지속적으로 고도 화되는 분석 기법 (ML/DL 고급 분 석)
- 분산처리, Cloud,
   Platform 기술 등
   낮은 비용과 빠른
   속도로 데이터 저장
   과 분석이 용이
- 실시간 분석에 대한 요구

## 분석 업무는 분석 주제 발굴, 분석 모델링, 시스템 구축 영역으로 구분됨



## CRISP-DM(Cross Industry Standard for Data Mining) Process Diagram

\* 통계기반 분석 방법론으로, 업계에서 준용함



#### **Biz. Understanding**

비즈니스의 목적과 분석 목표를 수립하고 프 로젝트 계획을 수립 업무 문제를 분석을 위한 문제정의로 전환

#### **Data Understanding**

분석에 필요한 초기 데이터를 수집하고 품질 을 검토(분석용 데이터 확보를 위한 준비 단 계)

Data Preparation 데이터를 획득하여 선별,통합,정제 과정을 통 해 분석용 Data Set을 전처리

#### Modeling

다양한 분석 기법을 활용하여 최적의 모델을 찾기 위한 학습 과정을 반복

#### **Evaluation**

분석 결과를 평가하고 검토

#### **Deployment**

배호 및 모니터링 계획을 수립하고 과제를 종료

전반적인 데이터 분석절차는 분석기법과 관계 없이 유사하며, [4] 모델 생성 및 평가 부분은 분석기법에 따라 상세 내용이 달라짐



#### Machine Learning은 아래 방식으로 진행됨

- ✓ 수집한 데이터의
- ✓ 탐색적 데이터 분석(EDA-Exploratory Data Analysis)을 통한 이해를 바탕으로,
- ✓ 모델링에 사용할 데이터를 가공하는 전처리(Pre-processing)
- ✓ 모델 트레이닝을 위한 위한 특성을 선택하는 특성 공학(Feature Engineering)
- ✓ 학습 데이터를 기반으로 머신러닝 알고리즘을 적용해 모델을 학습(Modeling) /최적화(Optimization) 하고, 테스트 데이터로 모델에 대한 평가(Evaluation)를 수행





# 탐색적 데이터 분석(EDA)은 분석의 첫 단계로서 데이터의 형태/구조 및 변수간 관계 등을 파악함

"데이터가 말하려는 것을 수학이나 그래프를 이용하여 탐색하는 것" (by Tukey, 1977)

#### 탐색적 데이터 분석 (EDA: Exploratory Data Analysis)

• 기 수집된 데이터로부터 데이터의 형태, 관계 파악

- '경찰이 증거를 찾는 일'
- 귀납적

주요 분석 내용

정의

• 데이터 요약(중앙값, 사분위)와 그래프(산포도 등)

- 데이터를 재표현(re-expression, transformation)
- 데이터가 어떤 분포에 적합한지 알아보는 방법 (적합성 검증)
- 통계적 가설 설정 과정 없음(기술 통계)

활용

- 기술통계량과 경험(Biz 노하우)에 따른 결론 유추
- 분석의 첫 단계 데이터 분포의 적합성 검증
- 통계적 가설이나 모형 수립

모델링 방향에 대한 감잡기!!

VS.

확증적 데이터 분석 (CDA: Confirmatory Data Analysis)

- 모집단 추정과 가설의 검정
- '배심원이나 판사가 증거의 강도를 평가하는 일'
- 연역적

# 귀납법



과찰

관찰과 실험으로 출발해 가설이나 이론을 구성하고 최종적으로 자연현상을 이해

# 연역법 (가설 연역법)



가성/이루

가설을 제안하고 그 가설로부터 현상에 적용할 관찰결과를 연역하여 그것을 경험적 자료와 맞춰봄

탐색적 데이터 분석을 기반으로 데이터의 특성, 변수간의 관계를 이해하고 모델링 방향을 설정함



**EDA** 탐색적 데이터 분석 (Exploratory Data Analysis)

통계량 분석 (기초 통계량) with 그래프 분석

중심화

균: mean() 중 앙 값: median()

퍼짐(분산)

표준편차: std()

변동계수: std() / mean()

범 최 위:range()

소: min()

최 대: max()

분포/대칭

왜 도: skew () 첨 도: kurtosis()



# 데이터 탐색의 기본 개념/용어를 이해하기 위해서,

"기술통계 및 그래프 분석" 참고

## 한 변수의 값이 가지는 분포를 파악함. 정규분포 가정, 이상치 검출 등에 이용





# 이변수 탐색, 다변수 탐색 . 어떤 변수들이 서로 상관관계가 높은지 탐색하여, 대표성을 갖는 적은 수의 변수를 선택할 때 사용 가능 (회귀분석은 X, Y의 선형성 전제)



#### 상관계수 + Heatmap

• 데이터 셋이 너무 크지 않을 때는 모든 특성 간의 상관계수(Correlation Coefficient)를 쉽게 확인해 볼 수 있음

|                     | sepal length (d   | m) sepal wid            | th (cm)            | petal lengti | n (cm)    | petal width | (cm)         |
|---------------------|-------------------|-------------------------|--------------------|--------------|-----------|-------------|--------------|
| sepal length (cm    | 1.0000            | 000 0.7                 | 742547             | 0.2          | 67176     | 0.27        | 78098        |
| sepal width (cm     | 0.7428            | 547 1.0                 | 000000             | 0.1          | 77700     | 0.23        | 32752        |
| petal length (cm    | n) 0.267          | 176 0.                  | 177700             | 1.0          | 00000     | 0.33        | 31630        |
| petal width (cm     | 0.2780            | 0.2                     | 232752             | 0.3          | 31630     | 1.00        | 00000        |
|                     |                   | Ir                      | ris                |              |           |             |              |
| sepal length (cm) - | 1                 | -0.12                   | 0.                 | 87           | 0.8       | 32          | - 1.<br>- 0. |
| sepal width (cm) -  | -0.12             | 1                       | -0                 | .43          | -0.3      | 37          | - 0.         |
| petal length (cm) - | 0.87              | -0.43                   |                    | 1            | 0.9       | 96          | - 0.<br>- 0. |
| petal width (cm) -  | 0.82              | -0.37                   | 0.                 | 96           | 1         |             |              |
| 5                   | sepal length (cm) | sepal width (cm)<br>Fea | petal ler<br>tures | ngth (cm)    | petal wid | dth (cm)    |              |



# 데이터 분석은 데이터 속에 있는 차이를 확인하고 설명(Model)하는 일임 데이터의 차이를 설명할 수 있으면 미지의 입력에 대한 예측/추론도 가능함



## 좋은 모델은 표현력과 유연성(일반화) 사이에 균형이 필요

$$y = f(x)$$
  
모델은 데이터를 설명함(표현)





- 결과를 이해하기 쉬움
- 학습이 쉬움
- 가정 자체가 강력해서 <mark>모델의 표현력에 제약</mark>



복잡한 모델

- 데이터가 어떻게(간단?복잡?) 생겼을 거라는 가정 자체가 별로 없음
- 결과를 이해하기 어려울 수 있음
- 학습이 복잡함
- 한정된 데이터를 그대로 학습하여 새로운 데이터에 대해 성능이 떨어질 수 있음(Overfitting)

머신러닝의 가장 골치 아픈 문제는 단연 과적합

학습데이터에서 완벽하게 작동하는 것 같지만 학습에 사용하지 않은 데이터를 사용하면 잘 작동하지 않는, <u>일반화를 못하는 문제</u>

<u>모델이 학습용 데이터를 단순히 외운것인지, 아니면 실제로 유용한 패턴을 학습했는지</u> 검증이 필요함





복잡한 모델은 데이터에서 미묘한 패턴을 감지할 수 있지만, 훈련 데이터 셋에 잡음이 많거나, 데이터셋이 너무 적으면(샘플링 잡음 발생) 잡음이 섞인 패턴을 감지하게 됨

# 과적합(Overfitting) 원인 및 방안

#### More Data, Simple Model, Generalization performance measure

# 과적합의 원인 및 증상

- 부족한 데이터
- ■불필요하게 과도하게 복잡한 모델
- 과적합은 모델이 훈련 데이터 자체를 암기하기 시작할 때 발생 학습 데이터에 대해 완벽한 성능 → Unseen data, New data에 대해서 는 성능 폭락

#### 과적합 방지 방안

- 추가 데이터 확보
  - The more, the better ↔ 비용
- ■모델 복잡도 통제
  - 변수 선별 (Feature Selection)
  - 변수 차원 축소 (Dimension Reduction)
  - Regularization (Ridge, LASSO)
  - Early stopping, Pruning
- 모델 일반화(Generalization) 성능 평가
  - Unseen data를 가지고 모델 성능 Test
  - Cross-validation 기법 활용

# 과적합(Overfitting)을 방지하기 위해서 Training에 사용하는 학습 데이터와 모델의 성능을 검증하기 위한 평가(Test) 데이터를 철저히 분리하여 검증해야 함



# Training Data Algorithm A-1 Algorithm A-2 Algorithm A-3 Algorithm B-1 Algorithm B-2 Algorithm B-3

# Validation Data Algorithm A-1 Algorithm A-2 Algorithm A-3 Algorithm B-1 Algorithm B-2 Algorithm B-3

# Test Data Algorithm A-1 Algorithm A-2 Algorithm A-3 Algorithm B-1 Algorithm B-2 Algorithm B-3

#### 학습 데이터(Training Set)

✓ 모델을 학습하는데 사용

#### 검증 데이터(Validation Set)

✓ 모델의 최적 하이퍼파라 미터를 선택하는데 사용

#### 테스트 데이터(Test Set)

✓ 새로운 데이터를 적용하여 모델의 실제 예측력을 평가 하는데 사용

# 데이터가 적은 경우 검증과 테스트에 데이터를 더 뺏기면 성능이 미달되는 모델이 학습됨. 교차검증을 적용하여 정확도를 향상시킬 수 있음

#### K겹 교차검증(K-Fold Cross Validation)

- ✓ 데이터셋을 K개로 나눕니다.
- ✓ 그 중 첫번째 세트를 제외하고 나머지에 대해 모델을 학습합니다. 그리고 첫번째 세트를 이용해서 평가를 수행합니다. (다음 세트를 이용하여 이 과정을 반복)
- ✓ 각 세트에 대해 구한 평가 결과의 평균을 구함

※ 교차검증은 여러 부분을 학습과 평가로 사용한 결과로 일반화 특성을 평가하므로 더 안정적이고 정확함. 하지만 여러번 학습하고 평가하는 과정을 거치기 때문에 계산량이 많음

|              | <b>◄</b> Total Number of | f Dataset — |            |
|--------------|--------------------------|-------------|------------|
| Experiment 1 |                          |             |            |
| Experiment 2 |                          |             | Training   |
| Experiment 3 |                          |             |            |
| Experiment 4 |                          |             | Validation |
| Experiment 5 |                          |             |            |



#### 원본 데이터를 분석에 사용하기 좋은 형태로 바꾸는 일.

낮은 품질의 데이터는 나쁜 모델을 만든다.



# 머신러닝 알고리즘이 처리 가능하고 성 능을 높일 수 있는 형태로(품질,형식) 데이터를 준비하는 작업

- ✓ 변수 타입 변환
- ✓ 결측치 처리(삭제, 대체, 예측)
- ✓ 이상 데이터(Outlier) 처리
- ✓ 데이터 인코딩(Label encoding,One-Hot Encoding 등)
- ✓ 연속형 → 범주화(Binning)
- ✓ 로그, 제곱근 변환 등



titanic.info()

#### 데이터 의미에 맞도록 데이터 유형을 변환함

- ✓ 명목형 변수는 object 또는 String으로,
- ✓ 수치형 변수는 int64 또는 float64 으로 변환

예시) Titanic Data Set에서 Survived(생존여부) 와 Pclass(티켓의 클래스)를 명목형 변수라고 가정한다면 "Object"로 형식 변환

■ Survived : 0, 1

■ Pclass: 1=1st, 2=2nd, 3=3rd

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
               891 non-null int64
Survived
Pclass
               891 non-null int64
               891 non-null object
Name
               891 non-null object
Sex
               891 non-null float64
Age
               891 non-null int64
SibSp
               891 non-null int64
Parch
               891 non-null object
Ticket
               891 non-null float64
Fare
               204 non-null object
Cabin
Embarked
               889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```

```
titanic['Survived'] = titanic['Survived'].astype(object)
titanic['Pclass'] = titanic['Pclass'].astype(object)
```

존재하지 않거나 관측되지 않은 값(운영/휴먼 에러). 대부분의 ML 알고리즘은 데이터에 Null 값을 허용하지 않음(연산불가). 따라서, 해당 행을 삭제하거나 다른 값으로 대체함

- ✓ 결측치가 적은 경우 평균값, 중앙값, 최빈값 등으로 대치
- ✓ 결측치가 많은 경우는 해당 특성 자체를 Drop



# 【NA 처리】 분석 제외 ※ 비즈니스 관점에서 제외해도 되는지 반드시 검토 필요 - NA인 행을 제거 - 대다수의 값이 NA이고, 분석영향도가 적다면 특성 제거 2 다른 값으로 대체 - 제외되는 데이터 유실을 최소화해야 할 경우 - 대표값 또는 트랜드값으로 대체 → 0, 평균, 유사 개체값 등 [주의] NA 처리 시 정보손실, 왜곡 이슈 잔존 전처리 항목/내용에 대해 반드시 공유!

#### 대다수의 데이터와 달리 분포에서 비정상적으로 벗어난 값

값은 존재하되 실질적으로 가능하지 않은 값(나이 990살, 키 30cm) 이상치는 평균 등 중심값 수치를 왜곡시킴 기술통계량 만으로는 이상치 판별이 쉽지 않고, 통상 Visualization을 통해서 이상치를 판별함

#### 해결방안

- ✓ 레코드 수가 충분히 많으면 제거
- ✓ 레코드 수가 충분치 않으면 합리적인 값으로 대치

#### 주의

- ✓ 이상치 처리 시 비즈니스 관점에서 필요한 데이터인지 반드시 확인 필요
- Ex) Fraud Detection 분석과제



Boxplot을 이용한 이상치 확인

# 머신러닝 알고리즘은 문자열 값을 입력 값으로 허용하지 않음. (연산에 사용할 수 있도록) 숫자형으로 변환해야 함

#### 원본데이터

| 가격        |
|-----------|
| 1,000,000 |
| 1,500,000 |
| 200,000   |
| 800,000   |
| 100,000   |
| 100,000   |
| 50,000    |
| 50,000    |
|           |



#### 상품분류 레이블 인코딩 데이터

| 가격        |
|-----------|
| 1,000,000 |
| 1,500,000 |
| 200,000   |
| 800,000   |
| 100,000   |
| 100,000   |
| 50,000    |
| 50,000    |
|           |

```
from sklearn.preprocessing import LabelEncoder

items=['TV','냉장고','전자렌지','컴퓨터','선풍기','선풍기','믹서','믹서']

# LabelEncoder를 객체로 생성한 후 , fit( ) 과 transform( ) 으로 label 인코딩 수행.
encoder = LabelEncoder()
encoder.fit(items)
labels = encoder.transform(items)
print('인코딩 변환값:',labels)
```

인코딩 변환값: [0 1 4 5 3 3 2 2]

#### 주의

단순 코드의 의미를 가지는 레이블이 크기가 의미를 가지는 숫자로 변경되므로 선형회귀와 같은 알고리즘에 이를 적용할 경우 예측 성능이 떨어지는 경우가 있음(크고 작 음에 대한 특성이 반영)

→ 원-핫 인코딩 (One-Hot Encoding) 방식 사용 문자열 값을 숫자형으로 변환하기 위한 방법 중 하나로, 행 형태로 표현된 특성의 고유값을 열 형태로 차원을 변환하고 해당 컬럼만 1로 표시하고 나머지 컬럼은 0으로 표시하는 방식 (Dummy Coding)

#### 원본데이터

상품 분류

TV

선풍기

믹서

믹서



| 상품분류_<br>TV | 상품분류_<br>냉장고 | 상품분류_<br>전자렌지 | 상품분류_<br>컴퓨터 | 상품분류_<br>선풍기 | 상품분류_<br>믹서 |
|-------------|--------------|---------------|--------------|--------------|-------------|
| 1           | 0            | 0             | 0            | 0            | 0           |
| 0           | 1            | 0             | 0            | 0            | 0           |
| 0           | 0            | 1             | 0            | 0            | 0           |
| 0           | 0            | 0             | 1            | 0            | 0           |
| 0           | 0            | 0             | 0            | 1            | 0           |
| 0           | 0            | 0             | 0            | 1            | 0           |
| 0           | 0            | 0             | 0            | 0            | 1           |
| 0           | 0            | 0             | 0            | 0            | 1           |

**One-Hot Encoding** 

```
import pandas as pd

2

3 df = pd.DataFrame({'item':['TV','냉장고','전자렌지','컴퓨터','선풍기','선풍기','믹서','믹서'] })

4 pd.get_dummies(df)
```

# 상품명, 상품 카테고리, 성별과 같은 비수치적 데이터 사이의 유사도 계산에 원-핫 인코딩(Dummy coding) 방식을 이용할 수 있음

#### 사용자 상품 구매내역

| 사용자1 | 상품 A | 상품 C | 상품 D |
|------|------|------|------|
| 사용자2 | 상품 A | 상품 B |      |
| 사용자3 | 상품 A | 상품 C |      |



#### **One-Hot Encoding**

| 사용자  | 상품 A | 상품 B | 상품 C | 상품 D |
|------|------|------|------|------|
| 사용자1 | 1    | 0    | 1    | 1    |
| 사용자2 | 1    | 1    | 0    | 0    |
| 사용자3 | 1    | 0    | 1    | 0    |

사용자 1과 누가 더 유사한지를 알아보기 위해서 제곱유클리드 거리를 계산함

$$\alpha$$
(사용자1, 사용자2)<sup>2</sup> =  $(1-1)^2 + (0-1)^2 + (1-0)^2 + (1-0)^2 = 3$ 

$$\phi$$
(사용자1, 사용자3)<sup>2</sup> =  $(1-1)^2 + (0-0)^2 + (1-1)^2 + (1-0)^2 = 1$ 

즉, 사용자1과 사용자3이 비슷한 상품을 구매하므로 같은 클러스터에 속할 가능성이 높다고 할 수 있음 이처럼 카테고리를 원-핫 인코딩 방식을 이용하여 수치 데이터로 변환하면 유사도 계산을 할 수 있음

#### 서로 다른 변수의 값 범위를 일정한 수준으로 맞추는 작업을 피쳐 스케일링이라고 함

#### 표준화(Standardization)

키와 몸무게, 구매상품 수와 구매 개격 등 단위가 다른 두 수치 데이터를 직접 비교하는 것은 의미가 없음. 이럴 때는 데이터의 Feature 각각이 평균이 0이고, 분산이 1인 표준정규분포를 가진 값으로 변환하여 비교하면 효과적임 (z-score 표준화)





서로 다른 변수의 값 범위를 일정한 수준으로 맞추는 작업을 피쳐 스케일링이라고 함

## **Min-Max Scaling**

서로 다른 피처의 크기를 통일하기 위해 크기를 0~1 또는 -1~1로 변환해 주는 것

$$N = \frac{x_{I} - \min(x)}{\max(x) - \min(x)}$$

집값  $y = ax_1 + bx_2 + c$  (모델은 a, b, c 값을 찾는 것이 목표)

모델이 a, b, c 값을 바꿔가며 y를 계산하는데,  $x_2$  값이  $x_1$  에 비해 너무 커서 y 값이 의도치 않게 휘청거림. 따라서, 크기를 맞추어 줌

|     | 방수 x <sub>1</sub> | 면적 x <sub>2</sub> |
|-----|-------------------|-------------------|
| 단위  | 개                 | m <sup>2</sup>    |
| 최소값 | 0                 | 0                 |
| 최대값 | 10                | 20,000            |



|     | 방수 x <sub>1</sub> | 면적 x <sub>2</sub> |
|-----|-------------------|-------------------|
| 단위  | -                 | -                 |
| 최소값 | 0                 | 0                 |
| 최대값 | 1                 | 1                 |



특성의 수가 증가할수록 동일한 설명력을 유지하기 위해 필요한 레코드의 수는 기하급수적 으로 증가함. 이는 훈련을 느리게 할 뿐 아니라, 최적의 솔루션을 찾기 어렵게 함

이 때문에

어떤 현상을 표현하기 위한 논리적인 방법이 여러가지 있다면

Simple is the Best - Occam's Razor(오컴의 면도날)

※ 이론적으로 차원의 저주를 해결하는 해결책 중 하나는 훈련 샘플의 밀도가 충분히 높아질 때가지 훈련 데이터의 크기를 키우는 것임. 하지만, 데이터가 무한정 있지 않기 때문에 차원을 축소하는 것임

label = 1

label = 6



label = 3

label = 4

label = 0

label = 5

MNIST 손글씨 ML 학습용 데이터 28 \* 28 = 784 픽셀로 이루어져 있어 차원이 784차원이 됨 특성이 많으면 학습에 사용하는 데이터가 많아 학습률이 느려지고, 모델이 복잡해져서 과적합을 할 우려가 있음. 중요한 특성만 선택하거나, 특성을 합쳐서 수를 줄이는 방법이 있고, 어떤 방법을 사용하든 성능에 도움되는 특성은 고르고, 최소한으로 유지하는 방향으로 진행됨

♦ 특성 삭제(Feature Deletion)

불필요한 속성부터 삭제하는 것이 좋은 방법임

- ♦ 특성 선택(Feature Selection)
- ✓ 전체 변수 중에서 유의미한 변수만을 선택
- ✓ 원래 변수의 형태가 그대로 보존됨

♦ 특성 추출(Feature Extraction, 파생변수 생성)

전체 데이터 집합을 잘 설명할 수 있는 적은 수의 변수를 생성

- ✓ 원래 변수의 형태가 그대로 보존되지 않음
- ✓ Original variables: Age, sex, height, weight
- ✓ Constructed variables : Age+3\*I(sex=female) + 0.2\*height 0.3\*weight

→ 차원축소 알고리즘 적용 (Dimension Reduction)



# 편향(Bias)과 분산(Variance)의 균형

- 예측값들과 정답이 대체로 멀리 떨어져 있으면 결과의 편향(bias)이 높음
- 예측값들이 자기들끼리 대체로 멀리 흩어져있으면 결과의 분산(variance)이 높음



#### 편향은

알고리즘이 잘못된 가정을 했을 때 발생 → 과소적합

# 분산은

모델이 노이즈까지 학습하여 새로운 트레이닝셋에 성능이 낮게 나옴 → 과적합

편향과 분산은 한쪽이 증가하면 다른 한쪽이 감소하고, 한쪽이 감소하면 다른 한쪽이 증가하는 경향을 보임

# 편향(Bias)과 분산(Variance)의 균형





모델이 복잡도가 높아서 학습할 때마다 나타나는 모델 편차가 커짐 → 분산이 높음

# <u>앙상블(Ensemble)</u> 기법

- ✓ Boosting : 간단한 모델을 여러 개 조립하여 편향을 줄이는 방법 (표현력 보완)
- ✓ Random Forest : 복잡한 모델인 결정트리를 여러 개 조합하여 분산을 줄이는 방법 (유연성 보완)

# 정규화(Regularization): Ridge, LASSO

✓ 정해진 모델이 필요이상으로 복잡해지지 않도록 모델에 들어 있는 인자에 제한을 주는 방식

# Black Box: 더 정확하지만 이해하기 힘듦. 해석력이 중요할 때는 간단한 모델 적용

#### → 결국, 선택의 문제











#### 간단한 모델에서 복잡한 모델로



https://scikit-learn.org/stable/tutorial/machine learning map/

learn

## 간단한 모델부터?

머신러닝은 모델에 따라 성능이 크게 좌우됨 딥러닝이 발전하고, 데이터양이 증가하면서 모델 자체에 대한 고민은 예전보다 적어진 듯 그럼에도 더 좋은 성능을 얻으려면 데이터에 적합한 모델을 이용한 학습이 필요함

# 어차피 복잡한 모델이 더 좋은 성능을 낼 확률이 높은데 왜 굳이 시간을 낭비?



- ✓ 간단한 모델은 구현이 쉽고 학습이 쉬 움
- ✓ 간단한 모델의 성능은 다른 모델이 얼마나 잘 동작하는지에 대한 지표가 됨. 즉, 간단한 모델 성능보다 복잡한 모델이 성능이 안나오면 뭔가 문제가 있는것. (개선 방법을 찾아야함)
- ✓ 간단한 모델은 원인 찾기가 상대적으로 쉬움.





| 구분       | 분석 기법          | 목적                      | 비고                                            |
|----------|----------------|-------------------------|-----------------------------------------------|
| 변수 선택 모형 | Lasso          | 영향도(가중치)가 높은 변수 선택 알고리즘 | 2개 분석 기법 적용 후 "<br>- 성능(정확도)"이 높은 알<br>고리즘 선택 |
|          | Neural Network | 상동 (1 Layer 딥러닝 기법)     |                                               |
| 분류모형     | 의사결정나무         | 분류 기준에 따른 적합도 산출 모형     | - 3개 분석 기법 적용 후<br>"성능(정확도)이 높은<br>- 알고리즘 선택  |
|          | 랜덤 포레스트        | 의사결정나무의 앙상블 모델          |                                               |
|          | 컨볼루션 뉴럴네트워크    | 분류를 위한 딥러닝 분석 모델        |                                               |



모델의 수식화된 학습 목표

모델이 실제로 데이터를 바르게 표현했는지, 얼마나 예측이 정확한지(부정확한지) 수학적으로 표현하는 것이 손실함수(Loss Function)임

손실함수의 값이 작을수록 모델이 더 정확하게 학습된 것. 이때 손실함수로 얻은 결과값을 보통 에러라고 부름

손실함수의 값을 줄여가는 과정이 곧 모델을 학습하는 과정임



#### 손실(Loss)?

- ✓ 실제 데이터에서 관측된 결과vs. 모델에 의해 생성된 결과
- ✓ 둘의 차이에 의해 '손실'이 발생
- ✓ 이 '손실'이 작다면? → 모델 성능이 좋음

#### 모델 성능 평가 지표는 일반적으로 모델이 분류냐 회귀냐에 따라 여러 종류로 나뉨

#### 예시) 회귀의 손실함수



**MSE**(Mean Squared Error), **RMSE**(Root Mean Squared Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - y'_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2}$$

회귀문제는 손실함수의 값이 작은 것이 성능이 좋다고 평가함

동일한 재료(데이터)와 동일한 오븐(알고리즘)을 사용하되, 오븐에 각각 다른 세팅을 주어 빵을 구웠을 때 최상의 세팅값을 찾는 것



모델 파라메터는 데이터로부터 학습되는 것 (아래 a, b, c)  $y = ax_1 + bx_2 + cx_3 + ...$ 

하이퍼 파라메터는 사람들이 선험적 지식으로 설정을 미리 하거나 외부 모델 매커니즘을 통해 자동으로 설정이 되는 변수. 훈련 전에 미리 설정하는 값.

## 예시) Learning Rate

학습 진도율이 너무 작으면 학습의 속도가 느리고, 너무 크면 학습이 안되고 발산할 수 있음. 적절한 값을 찾아야 효율적인 학습이 가능함



Learning Rate( $\theta$ )만큼 이동하면서 기울기 최소값 찾기 : 경사하강법

#### 분석 모델의 과적합 여부와 모델의 결과값에 대한 평가 지표를 정의하여 모델을 평가함

# 모델 평가 종류

모델 평가 내용

3 Round • 학습 데이터에서는잘 맞는데,실제 학습 (fold1) 학습 학습 상황(검증데이터)에서도잘 맞는 과 학습 (fold2) 학습 학습 학습(train) 가? 적 학습용 데이터 K fold 데이터 학습 (fold2) 학습 • 방법: 과적합(over-fiting)파악 분석결과 = 5합 (60%)학습 (fold3) 전체 평 검증 데이터 검증 데이터 • 검증: "학습 데이터"에서는 잘 Gap 맞는데, "평가 데이터"에서 정확도의 가 Gap이 크면 과적합되었음 평가(Test) 평가용 데이터 데이터(40%) 분석결과

### 모 델

# 평 가

#### 예측 모델 평가 지표

- 제곱근 오차(MSE)
- 평균 제곱근 *오*차 (RMSE)
- 여러 지표 중 1개 선택하여 평가

#### 분류 모델 평가 지표

- 정확도(accuracy)
- 정밀도(Precision)
- 재현율(recall)
- 정확도, 정밀도 증 여러 지표의 trade off를 고 려한 평가

#### 분석모델별 다양한 평가지표 존재함

- 모델이 "값"을 잘 예측 하 는가?
- 방법: 분석 유형/모델별 평가 지표적용
- 평가지표:
  - 분류 : accuracy
  - 예측: RMSE
  - -....

# 머신러닝 절차 (세부 Task 중심)

#### Machine Learning은 아래 방식으로 진행됨

- ✓ 수집한 데이터의
- ✓ 탐색적 데이터 분석(EDA-Exploratory Data Analysis)을 통한 이해를 바탕으로,
- ✓ 모델링에 사용할 데이터를 가공하는 전처리(Pre-processing)
- ✓ 모델 트레이닝을 위한 위한 특성을 선택하는 특성 공학(Feature Engineering)
- ✓ 학습 데이터를 기반으로 머신러닝 알고리즘을 적용해 모델을 학습(Modeling) /최적화(Optimization) 하고, 테스트 데이터로 모델에 대한 평가(Evaluation)를 수행



# Thank you