

AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions, and listings, of claims in the application:

LISTING OF THE CLAIMS

1. (currently amended) A compound having the formula $L^1[MQ^1Q^2]L^2$ in which M is a metal selected from the group consisting of Nb, Ta, Mo, W, Mn and Re, Q¹ and Q² are each a univalent, and L¹ and L² are ligands coordinated to M, wherein each one of L¹ and L² contains a first coordinating atom that is a nitrogen atom contained within a C=N group, and a second coordinating atom that is either a second nitrogen atom, optionally present in a second C=N group, or an oxygen, sulfur or phosphorus atom, and the other of L¹ and L² contains a first coordinating atom that is a nitrogen atom contained within a C=N group, and a second coordinating atom that is either a second nitrogen atom, optionally present in a second C=N group, or a sulfur or phosphorus atom.

2. (original) The compound of claim 1, wherein, in each of L¹ and L², the second coordinating atom is a second nitrogen atom.

3. (original) The compound of claim 2, wherein, in each of L¹ and L², the second nitrogen atom is present in a second C=N group.

4. (original) The compound of claim 3, wherein L¹ and L² are identical.

5. (original) The compound of claim 4, wherein the first nitrogen atom in each of L¹ and L² is bound to a first substituent R_S, and the second nitrogen atom in each of L¹ and L² is bound to a second substituent R_L, wherein the difference in steric bulk between R_S and R_L is sufficient to result in isospecificity when the compound is used as a polymerization catalyst.

6. (original) The compound of claim 3, wherein L¹ and L² are different.

7. (original) The compound of claim 6, wherein the first and second nitrogen atoms in the ligand L¹ are bound to a first substituent R_S, and the first and second nitrogen atoms in the ligand L² are bound to a second substituent R_L, wherein the difference in steric bulk between R_S and R_L is sufficient to result in syndiospecificity when the compound is used as a polymerization catalyst.

8. (original) The compound of claim 1, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.

9. (original) The compound of claim 8, wherein y and z are independently integers in the range of 1 to 4 inclusive.

10. (original) The compound of claim 9, wherein y and z are independently 1 or 2.

11. (original) The compound of claim 8, wherein the anions are selected from the group consisting of halide and pseudohalide.

12. (currently amended) A compound having the structure of formula (I)

wherein:

M is a metal selected from the group consisting of Groups VA, VIA and VIIA of the periodic table of the elements;

Q¹ and Q² are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C₁-C₃₀ hydrocarbyl, C₁-C₃₀ hydrocarbyl substituted with one or more substituents, and C₁-C₃₀ hydrocarbyl-substituted Group IVB elements, or Q¹ and Q² may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group;

m and n are independently zero or 1;

q is an optional double bond;

X is N, O, S or P, with the provisos that (a) when X is N or P, then either n is 1 or q is present as a double bond, but not both, and (b) when X is O or S, then n is zero and q is absent;

R¹, R⁶, and R⁷ are independently hydrido, hydrocarbyl or substituted hydrocarbyl, and R² and R⁵ are independently hydrido, halo, hydrocarbyl or substituted hydrocarbyl, or R¹ and R² and/or R⁵ and R⁶ may be taken together to form a linkage -Q-, resulting in a five- or six-membered ring, wherein Q is -[(CR)_a(Z)_b]- in which a is 2, 3 or 4, Z is N, O or S, b is zero or 1, the sum of a and b is 3 or 4, and R is selected from the group consisting of hydrido, halo, hydrocarbyl, hydrocarbyloxy, trialkylsilyl, NR⁸₂, OR⁹, and NO₂, wherein R⁸ and R⁹ are each independently hydrocarbyl, or wherein R moieties on adjacent carbon atoms may be linked to form an additional five- or six-membered ring, or R² and R⁵ may together form a linkage -Q- as just defined;

R³ and R⁴ are independently selected from the group consisting of hydrido and hydrocarbyl, or at least one of R³ and R⁴ may be bound through a lower alkylene linkage to an atom contained within L^A or L^B;

L^A and L^B are ligands which may be are the same or different and are independently selected from the group consisting of nitrogen-containing, sulfur-containing and oxygen-containing heterocycles, tertiary amines and phosphines, or L^A and L^B may together form a single bidentate ligand that may or may is or is not be the same as L¹,

with the proviso that when (a) L^A and L^B form a single bidentate ligand that is identical to L¹ and M is V or Cr, then either (b) R¹ and R² or R⁵ and R⁶ are taken together to form a linkage -Q- as defined above, or (c) X is other than N, or both (b) and (c).

13. (original) The compound of claim 12, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.

14. (original) The compound of claim 13, wherein y and z are independently integers in the range of 1 to 4 inclusive.

15. (original) The compound of claim 14, wherein y and z are independently 1 or 2.

16. (previously presented) The compound of claim 13, wherein the anions are selected from the group consisting of halide and pseudohalide.

17. (previously presented) The compound of claim 12, having the structure of formula (II)

wherein, q^a , ma , na , and R^{1a} through R^{7a} are defined as for q , m , n and R^1 through R^7 , respectively.

18. (original) The compound of claim 17, wherein the compound has a positive charge $+y$ and is associated with y/z anions each bearing a negative charge $-z$.

19. (original) The compound of claim 18, wherein y and z are independently integers in the range of 1 to 4 inclusive.

20. (original) The compound of claim 19, wherein y and z are independently 1 or 2.

21. (previously presented) The compound of claim 18, wherein the anions are selected from the group consisting of halide and pseudohalide.

22. (original) The compound of claim 17, having the structure of formula (V)

wherein:

R²⁰, R^{20a}, R²¹, R^{21a}, R²², R^{22a}, R²³ and R^{23a} are hydrido or hydrocarbyl of 1 to 10 carbon atoms, or any two adjacent R²⁰, R^{20a}, R²¹, R^{21a}, R²², R^{22a}, R²³ and R^{23a} groups may be linked to form a five- or six-membered aromatic ring.

23. (original) The compound of claim 22, wherein R²⁰, R^{20a}, R²¹, R^{21a}, R²², R^{22a}, R²³ and R^{23a} are hydrido.

24. (original) The compound of claim 22, wherein R²⁰ and R^{20a} are methyl, and R²¹, R^{21a}, R²², R^{22a}, R²³ and R^{23a} are hydrido.

25. (currently amended) The compound of ~~any one of claims 21, either claim 22 or 23,~~ wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.

26. (original) The compound of claim 25, wherein y and z are independently integers in the range of 1 to 4 inclusive.

27. (original) The compound of claim 26, wherein y and z are independently 1 or 2.

28. (original) The compound of claim 25, wherein the anions are selected from the group consisting of halide and pseudohalide.

29. (currently amended) A compound having the structure of formula (III)

wherein:

M is a metal selected from the group consisting of Groups VA, VIA and VIIA of the periodic table of the elements;

Q^1 and Q^2 are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C₁-C₃₀ hydrocarbyl, C₁-C₃₀ hydrocarbyl substituted with one or more substituents, and C₁-C₃₀ hydrocarbyl-substituted Group IVB elements, or Q^1 and Q^2 ~~may~~ together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group;

L^A and L^B are ligands which ~~may be~~ are the same or different and are independently selected from the group consisting of nitrogen-containing, sulfur-containing and oxygen-containing heterocycles, tertiary amines and phosphines, or L^A and L^B ~~may~~ together form a single bidentate ligand that ~~may or may~~ is or is not ~~be~~ the same as L^3 ;

i and j are independently zero, 1, 2 or 3; and

R^{10} , R^{11} , R^{12} and R^{13} are independently hydrido, hydrocarbyl or substituted hydrocarbyl.

Claims 30-51 (canceled).

52. (currently amended) The compound of claim 12, wherein Q¹ and Q² are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C₁-C₃₀ hydrocarbyl, C₁-C₃₀ hydrocarbyl substituted with one or more electron-withdrawing groups, and C₁-C₃₀ hydrocarbyl-substituted Group IVB elements, or Q¹ and Q² may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group.

53. (currently amended) The compound of claim 29, wherein Q¹ and Q² are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C₁-C₃₀ hydrocarbyl, C₁-C₃₀ hydrocarbyl substituted with one or more electron-withdrawing groups, and C₁-C₃₀ hydrocarbyl-substituted Group IVB elements, or Q¹ and Q² may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group.

Claim 54 (canceled).