Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №1 Сигналы телекоммуникационных систем

> Работу выполнил:

Беседин Д.С. Группа: 33501/3 **Преподаватель:**

Богач Н.В.

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Теоретическая информация	2
	3.1. Понятие сигналов как векторов отсчетов функций	2
	3.2. Затухающие сигналы	2
	3.3. Одиночные импульсы	2
	3.4. Ограниченная полоса частот	3
	3.5. Гауссов радиоимпульс	3
	3.6. Функция Дирихле	3
	3.7. Математические законы изменения мгновенной частоты	4
	3.8. Преобразование Фурье	4
	3.9. Корреляция	4
4.	Ход работы	5
	4.1. Генерация затухающего гармонического сигнала	5
	4.2. Многоканальный сигнал	7
	4.3. Кусочные зависимости	8
	4.4. Прямоугольный импульс	12
	4.5. Трапецевидный импульс	13
	4.6. Импульс с ограниченной полосой частот	15
	4.7. Гауссов радиоимпульс	17
	4.8. Последовательности импульсов	18
	4.9. Генерация периодических сигналов	21
	4.10. Функция Дирихле	24
	4.11. Сигнал с меняющейся частотой	26
	4.12. Сравнение методов корреляции	28
5.	Выволы	29

1. Цель работы

Целью данной работы является приобретение навыков генерации и визуализации простых сигналов в среде MatLab, а также разложение этих сигналов в ряд Фурье для построения спектра сигналов.

2. Постановка задачи

Задачей работы является промоделировать сигналы в командном окне MATLAB и в среде Simulink из Главы 3, сс. 150–170 справочного пособия и получить их разложение в ряд Φ урье.

3. Теоретическая информация

3.1. Понятие сигналов как векторов отсчетов функций

Аналоговый сигнал, с математической точки зрения, представляет собой функцию. Поэтому в среде MatLab может быть удобно представлен как вектор дискретных отсчетов этой функции, а затем отобразить в виде графика зависимости значений этого вектора от значений вектора отсчетов времени. Второй вектор удобно формировать как возрастающую последовательность чисел, шаг между которыми есть величина, обратная частоте дискретизации.

Таким образом, определив вектор отсчетов времени и некоторые константы, необходимые для представления вида сигнала в математической формуле, такие как амплитуда колебаний, частота колебаний и так далее, мы может задать вектор значений функции в известных нам моментах времени для дальнейшего построения графика. Делается это путем использования известных математических законов и встроенных в MatLab функций генерации специальных сигналов.

3.2. Затухающие сигналы

Затухание обычного гармонического сигнала получается путем его домножения на убывающую экспоненциальную функцию:

$$s2 = exp^{-\alpha t}s1\tag{1}$$

где s1 - гармонический сигнал

3.3. Одиночные импульсы

Встроенная функция rectpuls работает по следующему принципу:

$$y = \begin{cases} 1, & -\frac{width}{2} \leqslant t \leqslant \frac{width}{2} \\ 0, & t < -\frac{width}{2}, t > \frac{width}{2} \end{cases}$$
 (2)

где у-возвразаемое значение, t-вектор значений времени, сгенерированный заранее, width-ширина (длительность) импульса.

Встроенная функция tripuls работает по следующему принципу:

$$y = \begin{cases} \frac{2t + width}{width(skew+1)}, & -\frac{width}{2} \leqslant t < \frac{width*skew}{2} \\ \frac{2t - width}{width(skew-1)}, & \frac{width*skew}{2} \leqslant t < \frac{width}{2} \\ 0, & |t| > \frac{width}{2} \end{cases}$$

$$(3)$$

где параметр skew - коэффициент ассимметрии импульса (по-умолчанию равен 0), а другие параметры имеют те же значения.

3.4. Ограниченная полоса частот

Для формирование сигнала, имещего ограниченный спектр, используется функция вида:

$$y = \frac{\sin(\pi x)}{\pi x} \tag{4}$$

Спектральная функция сигнала в этом случае имеет прямоугольный вид:

$$y = \begin{cases} 1, & |\omega| < \pi \\ 0, & |\omega| > \pi \end{cases} \tag{5}$$

3.5. Гауссов радиоимпульс

Функция для получение отсчетов радиоимпульса имеет фнутри себя следую математичскию формулу:

$$y = exp^{-\alpha t^2}cos(2\pi f_c t) \tag{6}$$

А спектр такого сигнала можно получить путем рпеобразования Фурье, формула которого представлена ниже:

$$S(\omega) = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \left(exp^{-\frac{(\omega + 2\pi f_c)^2}{4\alpha}} + exp^{-\frac{(\omega - 2\pi f_c)^2}{4\alpha}} \right)$$
 (7)

3.6. Функция Дирихле

Функция Дирихле описывается формулой:

$$diric_n(x) = \frac{\sin(n\frac{x}{2})}{n\sin(\frac{x}{2})} \tag{8}$$

где n - целое положительное число.

Функцию Дирихле еще называют периодический sinc функцией. При нечетном / четном значении параметра n функция приобретает вид:

$$diric_n(x) = \sum_{k=-\infty}^{\infty} sinc\left(n\left(\frac{t}{2\pi} - k\right)\right)$$
(9)

$$diric_n(x) = \sum_{k=-\infty}^{\infty} (-1)^k sinc\left(n\left(\frac{t}{2\pi} - k\right)\right)$$
(10)

3.7. Математические законы изменения мгновенной частоты

В данной работе рассматриваются 3 закона - линейный, квадратичный и логарифмический. Формулы этих законов представлены ниже:

$$f(t) = f_0 + \beta t$$
, где $\beta = \frac{f_1 - f_0}{t_1}$ (11)

$$f(t) = f_0 + \beta t^2$$
, где $\beta = \frac{f_1 - f_0}{t_1^2}$ (12)

$$f(t) = f_0 + e^{\beta t}$$
, где $\beta = \frac{\ln(f_1 - f_0)}{t_1}$ (13)

Стоит отметить, что логарифмический закон противоречит своему названию, т.к. зависимость частоты от времени в нем экспоненциальная, а не логарифмическая.

3.8. Преобразование Фурье

Для нахождение спектра сигнала чаще всего применяют разложение функции в ряд Фурье, или же преобразование Фурье. Формула прямого преобразования Фурье выглядит следующим образом:

$$S(\omega) = \int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt \tag{14}$$

Обратное преобразование Фурье строится по следующей формуле:

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega)e^{j\omega t} d\omega$$
 (15)

3.9. Корреляция

Для нахождения синхропосылки в сигнале часто используется метод взаимной корреляции. Значение корреляции двух векторов х и у строится по формуле:

$$R = \frac{1}{N} \sum_{i=1}^{N} x_i * y_i \tag{16}$$

где N - длина векторов x и y. Если искомая посылка y короче передаваемого вектора x, то она дополняется нулями до необходимой длины.

Для определения позиции синхропосылки в передаче необходимо сдвигать вектор у пошагово, на каждом шаге высчитывая значение корреляции и, таким образом, получая вектор значений корреляции. Максимальное значение этого вектора будет соответствовать сдвигу, при котором была найдена искомая посылка или же максимально похожая на нее часть вектора.

Для ускорения вычисления корреляции, особенно в больших посылках, применим метод быстрой корреляции:

$$R = \frac{1}{N} F_D^- 1[X^* * Y] \tag{17}$$

Где X^* - комплексно-сопряженный вектор от вектора преобразования Фурье от посылки x, Y - результат преобразования Фурье от вектора искомой синхропосылки, F_D^-1 - Обратное преобразование Фурье.

Данная формула позволяет найти вектор значений взаимной корреляции двух векторов быстрее, нежели обычный алгоритм нахождения корреляции.

4. Ход работы

4.1. Генерация затухающего гармонического сигнала

Листинг 1: Код в МатЛаб

```
1|Fs = 8e3;
  t = 0:1/Fs:1;
3
  |t| = t';
4|A_{\downarrow}=_{\downarrow}2;
5 \mid f0 = 1e3;
6 phi = pi / 4;
7|s1 = A_* \cos(2*pi*f0*t + phi);
8 \mid alpha = 1e3;
9 \mid s2 = \exp(-alpha*t) = .* = s1;
10 | \text{FFT} = fft (s2);
11 | subplot_{\sim}(2,2,1); \sim plot(t(1:100), \sim s2(1:100))
12 subplot (2,2,2); plot(t(1:100), s2(1:100), '.')
13 subplot (2,2,3); stem(t(1:100), s2(1:100))
14 subplot (2,2,4); stairs (t(1:100), s2(1:100))
15 figure;
16 plot_(t(1:8001),_FFT(1:8001))
```

Здесь представлен код программы, генерирующей затухающий сигнал и выводящий на экран 4 различных графика этого сигнала.

Рис. 4.1.1. Графики сигнала

На первом графике виден обычный вид затухающего гармонического сигнала, построенный средой МатЛаб по дискретным отсчетам. Второй график представляет из себя точки того же сигнала, соответствующие дискретным отсчетам. Третий график (stem) представляет собой те же точки, но в виде «лепестков» - как некоторые значения, отклоненные от нулевого. Четвертый график (stairs) — ступенчатый графк.

Рис. 4.1.2. Спектр сигнала

Спектр представленного выше сигнала получен с помощью разложение в ряд Фурье.

4.2. Многоканальный сигнал

Листинг 2: Код в МатЛаб

```
1 Fs = 8e3;
2 t = 0:1/Fs:1;
3 t = t';
4 f_=_[600_1200_1400];
5 s3_=_cos(2*pi*t*f);
6 FFT_=_fft(s3);
7 plot(t(1:100),_s3(1:100,:))
8 figure;
9 plot(t(1:8001),_FFT(1:8001,:))
```

Данный код генерирует сразу несколько сигналов, записываемых в одну матрицу, различающихся по частоте.

Рис. 4.2.1. График сигналов

На данном графике видно несколько гармонических сигналов, различающихся по частоте.

Рис. 4.2.2. Спектр сигналов

На этом рисунке видны спектры данных синусоид. Линии спектра сигнала с более высокой частотой распологаются ближе к нулю.

4.3. Кусочные зависимости

Листинг 3: Код в МатЛаб

```
 \begin{array}{l} 1 \\ Fs = 8e3; \\ t = 0:1/Fs:1; \\ 3 \\ t = t \ \ ; \\ 4 \\ A \_ = \_2; \end{array}
```

```
5| f0 = 1e3;
   phi = pi / 4;
 7
   alpha_=_1e3;
 8
   T = 0.01;
 9|s1 = A_* = \exp(-alpha_* t) = *(t) = 0;
10 FFT1 = fft (s1);
11 \mid s2 = A = A = (abs(t) = T/2);
12 | \text{FFT2} = \text{fft} (s2);
13 \mid s3 = A_* \cdot t \mid /T_* \cdot t \mid (T_* = 0) \mid .* \mid (t = T);
14|FFT3 = fft(s3);
15 | figure (1);
16 plot (t (1:100), s1 (1:100))
17 figure (2);
18 plot (t (1:100), s2 (1:100))
19 figure (3);
20 plot (t (1:100), s3 (1:100))
21 figure (4);
22 plot (t (1:8001), FFT1(1:8001))
23 figure (5);
24 plot (t (1:8001), FFT2(1:8001))
25 | figure (6);
26 plot (t (1:8001), FFT3(1:8001))
```

Данный участок кода генерирует и выводит на экран односторонний экспоненциальный импульс, прямоугольный импульс и несимметричный треугольный импульс согласно заданным уравнениям.

Рис. 4.3.1. Экспоненциальный импульс

Рис. 4.3.2. Прямоугольный импульс

Рис. 4.3.3. Несимметричный треугольный импульс

На рисунках 4.3.1-4.3.3 представлены графики сгенерированных сигналов, выведенных с помощью стандартной функции построения графиков в Мат Π аб.

Рис. 4.3.4. Спектр экспоненциального импульса

Рис. 4.3.5. Спектр прямоугольного импульса

Рис. 4.3.6. спектр несимметричного треугольного импульса

На рисунках 4.3.4 - 4.3.6 представлены спектры сигналов 4.3.1 - 4.3.3.

4.4. Прямоугольный импульс

Листинг 4: Код в МатЛаб

Данный сигнал генерируется путем соединения двух прямоугольных импульсов, с использованием встроенных функций.

Рис. 4.4.1. Прямоугольные импульсы

На данном рисунке представлен график прямоугольных импульсов.

Рис. 4.4.2. Спектр прямоугольных импульсов

Спектр прямоугольного импульса получен как разложение сигнала в ряд Фурье.

4.5. Трапецевидный импульс

Листинг 5: Код в МатЛаб

```
1 | Fs = 1e3;
2 | t = -50e-3:1/Fs:50e-3;
3 | A = 10;
4 | T1 = 20e-3;
5 | T2 = 60e-3;
6 | s = A * (T2*tripuls(t,T2) - T1*tripuls(t,T1))/(T2-T1);
7 | plot(t, s);
8 | FFT = fft(s);
9 | figure;
10 | plot(t(1:101), FFT(1:101))
```

Данный сигнал генерируется разностью двух треугольных импульсов, с использованием встроенной функции tripuls.

Рис. 4.5.1. Трапецевидный импульс

На данном рисунке представлен вид трапецевидного импульса в среде МатЛаб.

Рис. 4.5.2. Спектр трапецевидного импульса

На рисунке представлен спектр трапецевидного импульса.

4.6. Импульс с ограниченной полосой частот

Листинг 6: Код в МатЛаб

```
 \begin{array}{l} 1 \\ Fs = 1e3; \\ 2 \\ t = -0.1:1/Fs:0.1; \\ 3 \\ f0 = 10; \\ 4 \\ T = 1/f0; \\ 5 \\ s = rectpuls(t,T) .* cos (2*pi*f0*t); \\ 6 \\ f = -50:50; \\ 7 \\ sp = T/2 * (sinc((f-f0)*T) + sinc((f+f0)*T)); \\ 8 \\ plot(t,s) \\ 9 \\ ylim([-1.1 \ 1.1]); \\ 10 \\ figure; \\ 11 \\ plot(f, abs(sp)) \end{array}
```

Данный код генерирует сигнал, у которого спектр ограничен по частоте. Затем выводится и сам спектр данного сигнала, что можно увидеть на рисунках ниже:

Рис. 4.6.1. Сигнал с ограниченным спектром

Рис. 4.6.2. Ограниченный спектр сигнала

Спектр сигнала получен с помощь функции sinc.

4.7. Гауссов радиоимпульс

Листинг 7: Код в МатЛаб

```
Fs = 16e3;
   t = -10e - 3:1 / Fs:10e - 3;
3
  Fc = 4e3;
  bw = 0.1;
  bwr = -20;
  s = gauspuls(t, Fc, bw, bwr);
  Nfft = 2^n extpow2(length(s));
  sp = fft(s, Nfft);
  sp_dB = 20*log10(abs(sp));
10 | f = (0: Nfft - 1) / Nfft *Fs;
11 plot (t,s);
12 figure;
13 plot (f (1: Nfft /2), sp_dB (1: Nfft /2))
14 | \text{sp}_{\text{max}} db = 20 * \log 10 (\max(abs(sp)));
|15| \text{ edges} = \text{Fc} * [1-\text{bw}/2 \ 1+\text{bw}/2];
16 hold on;
17 plot (edges, sp_max_db([1 1])+bwr, 'o');
18 hold off;
```

Данный код генерирует Гауссов радиоимпульс с помощью встроенной функции gauspuls, а затем находит спектр этого сигнала, выражая его в дБ.

Рис. 4.7.1. Гауссов радиоимпульс

Рис. 4.7.2. Амплитудный спектр радиоимпульса

На графике спектра также отмечены расчетные границы этого спектра.

4.8. Последовательности импульсов

Листинг 8: Код в МатЛаб

```
1 Fs = 1e3;

t = 0:1/Fs:0.5;

3 tau = 20e-3;

4 d = [20 80 160 260 380] '_*_1e-3;

5 d(:,2)_=_0.8.^(0:4) ';

y = pulstran(t, d, 'tripuls', tau);

7 plot(t,y)

8 FFT = fft(y);

9 figure;

10 plot(t(1:501), FFT(1:501))
```

Данный код генерирует треугольные импульсы с заданными амплитудами, через заданные промежутки времени.

Рис. 4.8.1. Треугольные импульсы

Рис. 4.8.2. Спектр импульсов

На рисунках представлены - треугольные импульсы, сгенерированные с помощью встроенной функции, (4.8.1) и спектр этого сигнала (4.8.2).

Листинг 9: Код в МатЛаб

```
Fs0 = 400;

tau = 60e-3;

t0 = 0:1/Fs0:tau;

s0 = sin(pi*t0/tau).^2;

Fs = 1e3;
```

```
6 t = 0:1/Fs:0.5;

7 d = (1:6) '_*_64e-3;

8 d(:,2)_=_0.6.^(0:5) ';

9 y = pulstran(t, d, s0, Fs0);

10 plot(t,y)

11 FFT = fft(y);

12 figure;

13 plot(t(1:501), FFT(1:501))
```

Данный код генерирует и выводит гармонические импульсы.

Рис. 4.8.3. Гармонические импульсы

Данные импульсы сгенерированы функцией pulstran из вектора отсчетов одиночного импульса.

Рис. 4.8.4. Спектр гармонических импульсов

На рисунке представлен спектр гармонических импульсов.

4.9. Генерация периодических сигналов

Листинг 10: Код в МатЛаб

```
1 Fs = 1e3;
2 t = -10e-3:1/Fs:50e-3;
3 A = 3;
4 f0 = 50;
5 tau = 5e-3;
6 s = (square(2*pi*t*f0, f0*tau*100) + 1) * A/2;
7 plot(t, s)
8 ylim([0 5]);
9 FFT = fft(s);
10 figure;
11 plot(t(1:61), FFT(1:61))
```

Данная программа создает и выводит на экран периодически повторяющиеся прямоугольные сигналы, создаваемые с помощью функции square.

Рис. 4.9.1. Периодические прямоугольные импульсы

Импульсы обладают одинаковой длительностью и временем паузы между ними, что можно увидеть более отчетливо, если увеличить частоту дискретизации.

Рис. 4.9.2. Спектр прямоугольных импульсов

Листинг 11: Код в МатЛаб

```
5 | t1 = 5e-3;
6 | s = (sawtooth(2*pi*t/T, 1-t1/T) - 1) * A/2;
7 | plot(t,s);
8 | FFT = fft(s);
9 | figure;
10 | plot(t, FFT)
```

Эта программа, используя функцию sawtooth, создает импульсы треугольной формы с заданными параметрами.

Рис. 4.9.3. Треугольные импульсы sawtooth

Рис. 4.9.4. Спектр прямоугольных импульсов

4.10. Функция Дирихле

Листинг 12: Код в МатЛаб

```
1 x = 0:0.01:15;
2 plot(x, diric(x,7));
3 grid on
4 title('n_=_7');
5 figure;
6 plot(x, diric(x,8));
7 grid on
8 title('n_=_8');
9 FFT1 = fft(diric(x,7));
10 FFT2 = fft(diric(x,8));
11 figure;
12 plot(x, FFT1)
13 figure;
14 plot(x, FFT2)
```

Программа использует встроенную функцию diric для создания выборки из функции Дирихле с четным и нечетным значением параметра.

Рис. 4.10.1. Функция Дирихле с параметром равным 7

Рис. 4.10.2. Функция Дирихле с параметром равным 8

Видно, что нечетный параметр обеспечивает однонаправленные импульсы, а большее значение параметра увеличивает частоту колебаний.

Рис. 4.10.3. Спектр функции Дирихле с параметром равным 7

Рис. 4.10.4. Српектр функция Дирихле с параметром равным 8

4.11. Сигнал с меняющейся частотой

Листинг 13: Код в МатЛаб

```
Fs = 8e3;
  t = 0:1/Fs:1;
3
  f0 = 1e3;
  t1 = 1;
5| f1 = 2e3;
6|s1 = chirp(t, f0, t1, f1, 'linear');
  s2 = chirp(t, f0, t1, f1, 'quadratic');

s3 = chirp(t, f0, t1, f1, 'logarithmic');
9
  specgram (s1, [], Fs);
10 title ('linear');
11 colormap gray
12 figure
13 specgram (s2, [], Fs);
14 title ('quadratic');
15 colormap gray
16 figure
17 specgram (s3, [], Fs);
18 title ('logarithmic');
19 colormap gray
```

Эта программа с помощью функции chirp генерирует колебания, мгновенная частота которых изменяется согласно выбранной функции. В данном примере рассмотрены 3 таких функции — линейная, квадратичная и логарифмическая. На экран выводятся спектрограммы этих сигналов — зависимость мгновенного амплитудного спектра от времени.

Рис. 4.11.1. Спектрограмма линейной функции chirp

Рис. 4.11.2. Спектрограмма квадратичной функции chirp

Рис. 4.11.3. Спектрограмма логарифмической функции chirp

На рисунках 4.11.2, 4.11.2 и 4.11.3 показаны спектрограммы, наглядно демонстрирующие характер изменения мгновенной частоты сигнала.

4.12. Сравнение методов корреляции

В качестве исходного примера была взята задача нахождения синхропосылки 101 в сигнале 0001010111000010.

Листинг 14: Код в МатЛаб

```
x \ = \ [ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 0 ] \, ;
 2
   y = [1 \ 0 \ 1];
 3
 |4|
   xx = x;
 5
   yy = [];
   for i = 1: length(y)
 7
         if (y(i) == 1)
              yy(i) = 1;
 8
 9
         else
10
              yy(i) = -1;
         end
11
12
   end
13
   for i = 1: length(x)
14
         if(i \le length(y))
15
              yy(i) = yy(i);
16
         else
17
              yy(i) = 0;
18
         end
19
   end
20
```

```
21|R = [];
22|BR = [];
23
24
  tic
25 | \mathbf{for} i = 1 : length(xx)
       R(i) = sum(xx \cdot * circshift(yy, i-1, 2)) / length(xx);
26
27
28 toc
29
30 tic
31 \mid xx = fft(xx);
32 | yy = fft(yy);
33 | xx = conj(xx);
34|BR = ifft(xx .* yy)/length(xx);
35 | t o c
```

Перед началом вычисления корреляции синхропосылка была изменена - 101 на 1-11 для улучшения качества этой посылки с целью ее более надежного нахождения в посылке, а затем она была дополнена нулями для совпадения длин двух векторов. Далее производились 2 рассчета корреляции - обычным алгоритмом и быстрым с контролем времени на каждую операцию. Оба алгоритма показали, что синхропосылка была найдена в сигнале 2 раза - по смещениею +3 и +5. Первый алгортм показал время выполнения - 0,13 мс, в то время как второй - 0,043 мс. Из чего можно сделать вывод, что алгоритм быстрой корреляции на самом деле много быстрее стандартного.

5. Выводы

В данной работе исследованы методы генерации и визуализации различных сигналов в среде МатЛаб.

Нами рассмотрены различные виды сигналов - детерминиированные сигналы, периодические, конечне (финитные) и бесконечные, гармонические колебания и сигналы, полученные на из основе, сигналы, представляюзие из себя единичные импульсы различной формы.

Полученыи построены спектры сигналов с помощью преобразования Фурье, встроенного в среду МатЛаб. Преобразование Фурье - одна из фундаментальных операций в телекоммуникационных технологиях, т.к. с его помощью можно относительно легко и быстро получать спектры сигналов для их анализа и модификации. Благодаря нему существует возможность моделировать сигналы, придавая им различные, необходимые нам, свойства, оставляя вложенную важную информацию нетронутой. Благодаря нему же эта информация может быть извлечена из сигнала.

Были опробованы 2 метода подсчета корреляции на простм примере. Стоит отметить, что даже на таком простом и коротком примере быстрй алгоритм оказался во много раз быстрее обычного алгоритма.