Name Surname	:		10/04/2017 10:30
~			Duration: 60 min
Student Id	•	Signature:	

Akdeniz University, Engineering Faculty Computer Engineering Department CSE206 Computer Organization Midterm Exam

. (5pts) Define th	e terms word and wafer?
(10pts) Write th	ne full name of the abbreviated terms considering the context of computer organization.
a) MBR	:
b) MAR	:
c) IBR	:
d) PC	:
e) AC	:
f) ARM	·
g) QPI	:
n i ivi ivi i i	•
h) MMU i) RAID	:
i) RAID	· · · · · · · · · · · · · · · · · · ·
i) RAID j) SIMD	:
i) RAID j) SIMD	· · · · · · · · · · · · · · · · · · ·
i) RAID j) SIMD L (10pts) If 20%	:
i) RAID j) SIMD . (10pts) If 20% solution.	:
i) RAID j) SIMD . (10pts) If 20% solution.	:
i) RAID j) SIMD (10pts) If 20% solution.	: of an application is performed serially, what is the maximum speedup? Write the formula
i) RAID j) SIMD (10pts) If 20% solution.	:
i) RAID j) SIMD (10pts) If 20% solution.	: of an application is performed serially, what is the maximum speedup? Write the formula
i) RAID j) SIMD . (10pts) If 20% solution	: of an application is performed serially, what is the maximum speedup? Write the formula is a speedup of an application is performed serially, what is the maximum speedup? Write the formula is cornect, assuming that it was created using an even parity Hamman
i) RAID j) SIMD . (10pts) If 20% solution	:
i) RAID j) SIMD (10pts) If 20% solution	: of an application is performed serially, what is the maximum speedup? Write the formula is a speedup of an application is performed serially, what is the maximum speedup? Write the formula is cornect, assuming that it was created using an even parity Hamman
i) RAID j) SIMD , (10pts) If 20% solution	: of an application is performed serially, what is the maximum speedup? Write the formula is a speedup of an application is performed serially, what is the maximum speedup? Write the formula is cornect, assuming that it was created using an even parity Hamman
i) RAID j) SIMD (10pts) If 20% solution	: of an application is performed serially, what is the maximum speedup? Write the formula the code word 011101100011 is correct, assuming that it was created using an even parity Hamm
i) RAID j) SIMD , (10pts) If 20% solution	: of an application is performed serially, what is the maximum speedup? Write the formula is a speedup of an application is performed serially, what is the maximum speedup? Write the formula is cornect, assuming that it was created using an even parity Hamman
i) RAID j) SIMD (10pts) If 20% solution	:
i) RAID j) SIMD (10pts) If 20% solution. (10pts) Test if the Code. a) If it is incorr	: of an application is performed serially, what is the maximum speedup? Write the formula the code word 011101100011 is correct, assuming that it was created using an even parity Hamm
i) RAID j) SIMD (10pts) If 20% solution. (10pts) Test if the Code. a) If it is incorr	:
i) RAID j) SIMD (10pts) If 20% solution. (10pts) Test if the Code. a) If it is incorr	:
i) RAID j) SIMD (10pts) If 20% solution. (10pts) Test if the Code. a) If it is incorr	:

Q 6. (20pts) Given the **memory contents** of the IAS computer shown below:

Figure 1.	Address	Contents
	08A	010FA210FB
	08B	010FA0F08D
	08C	020FA210FB
	08D	

b)	Explain what this program does?
	ots) Consider a machine with a byte addressable main memory of 2 ¹⁶ bytes and block size of 8 byte a direct mapped cache consisting of 32 lines is used with this machine.
	and continue pear events consisting of car mice to made mine mis machine.
a)	How is a 16-bit memory address divided into tag, line number, and byte number?
a) b)	
	Into what line would bytes with each of the following addresses be stored? 0001 0001 0001 1011 -> 1100 0011 0011 0100 -> 1101 0000 0001 1101 ->
	Into what line would bytes with each of the following addresses be stored? 0001 0001 0001 1011 -> 1100 0011 0011 0100 ->
<i>b</i>)	Into what line would bytes with each of the following addresses be stored? 0001 0001 0001 1011 -> 1100 0011 0011 0100 -> 1101 0000 0001 1101 -> 1010 1010 1010 1010 -> Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are the address
<i>b</i>)	Into what line would bytes with each of the following addresses be stored? 0001 0001 0001 1011 -> 1100 0011 0011 0100 -> 1101 0000 0001 1101 -> 1010 1010 1010 1010 -> Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are the address

64-byte line size. Assume a di	ystem that uses a 32-bit address to address at the byte level, plus a cache that uses a rect mapped cache with a tag field in the address of 20 bits. Show the address formal arameters: number of addressable units, number of blocks in main memory, number
- 0	
	ne-address machine for performing the following operations in sequence. You allowed
X = (A + B) * (C -	D);
Y = X / (A * D);	
Table 1 One-address instruction	
1 Address Instructions	
LOAD M	
STORE M	
ADD M	
SUB M	
MUL M	
DIV M	

 Table 2
 The IAS Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description
Data transfer	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	$LOAD\ MQ,M(X)$	Transfer contents of memory location X to MQ
	00100001	STOR M(X)	Transfer contents of accumulator to memory location X
	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator
	00000011	LOAD M(X)	Transfer absolute value of $M(X)$ to the accumulator
	00000100	$LOAD - \left M(X) \right $	Transfer $- M(X) $ to the accumulator
Unconditional branch	00001101	JUMP M(X.0:19)	Take next instruction from left half of $M(X)$
	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$
Conditional branch	00001111	JUMP + M(X,0:19)	If number in the accumulator is nonnegative, take next instruction from left half of $M(X)$
	00010000	JUMP + M(X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of $M(X)$
	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD $ M(X) $	Add $ M(X) $ to AC; put the result in AC
	00000110	SUB M(X)	Subtract M(X) from AC; put the result in AC
	00001000	SUB M(X)	Subtract $ M(X) $ from AC; put the remainder in AC
Arithmetic	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in
Artimete	00001100	DIV M(X)	AC. put least significant bits in MO Divide AC by M(X); put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2; that is, shift left one bit position
	00010101	RSH	Divide accumulator by 2; that is, shift right one position
Address	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12 rightmost bits of AC
modify	00010011	STOR M(X,28:39)	Replace right address field at $M(X)$ by 12 rightmost bits of AC

Figure 1. IAS Instruction format