ABSTRACT

1	ABSTRACT
2	A negative ions generating circuit design with decreasing high frequency noise
3	includes a power indication circuit, an oscillation circuit, an amplifying circuit and a
4	radial frequency filtering circuit. The power indicating circuit, the oscillation circuit
5	and the amplifying circuit are used for generating negative ions. The radial frequency
6	filtering circuit has a capacitance to be utilized for limiting the high frequency in a coil so
7	that the high frequency will not be amplified by through the transistor of the oscillation
8	circuit. The coil creates an inductance to limit the high frequency so as to effectively
9	eliminate the high frequency created by the oscillation circuit.
10	
11	
12	
13	
14	
15	
16	
17	
18	
1,9	
20	
21	
22	
23	
24	
25	
26	
27	