Diseño de controladores PID Métodos de Ziegler-Nichols

Dr. Edmundo Rocha Cózatl Depto. de Mecatrónica

Control P, PI, PID

$$u(t) = k_p e(t) + k_i \int e(t) dt + k_d \frac{de(t)}{dt}$$

$$u(t) = k_p \left[e(t) + \frac{1}{T_i} \int e(t) dt + T_d \frac{de(t)}{dt} \right]$$

Control PID: Efectos

$$G_{c}(s) = \frac{U(s)}{E(s)} = k_{p} \left[1 + \frac{1}{T_{i}s} + T_{d}s \right]$$

Acción	tr	Sp	ts	error ee
Р	Decrece	Aumenta	PC	Decrece
J	Decrece	Aumenta	Aumenta	Elimina
D	PC	Decrece	Decrece	PC

Control PID: Ziegler-Nichols

Control	Кр	Ti	Td
Р	1/RL	-	-
PI	0.9/RL	L/0.3	-
PID	1.2/RL	2L	0.5L

Ejemplo: Intercambiador de calor

 w_w = flujo másico del agua

 c_{vw} = calor específico del agua

 T_w , T_s = Temperatura del agua y del vapor a la salida

 C_w , C_s = Capacidad térmica del agua y del vapor

T_m = Temperatura del agua medida

 t_d = Tiempo de retardo

A_s = Área de apertura de la válvula de entrada del vapor

K_s = Constante de la válvula de entrada

R = Resistencia térmica de intercambio de calor promedio

 ΔT_s = constante (linealización)⁵

Respuesta al escalón

Diseño de controladores

Controlador P

$$K_{P} = \frac{1}{13} = \frac{90}{13}$$
RL 13

Controlador PI

$$K_{P} = \frac{0.9}{---} = 6.22$$
 y

$$T_i = \frac{L}{0.3} = \frac{13}{0.3}$$

$$K_i = K_P / T_i = 0.1436$$

Diseño de controladores

Controlador P

$$K_{P} = \frac{1}{13} = \frac{90}{13}$$
RL 13

Controlador PI

$$K_{P} = ---- = 6.22 \text{ y}$$
RL

$$T_i = \frac{L}{0.3} = 43.3$$

Control PID: Ziegler-Nichols

Segundo método

Control	Kp	Ti	Td
Р	0.5 Ku	-	-
PI	0.45 Ku	(1/1.2) Pu	-
PID	0.6 Ku	(1/2) Pu	(1/8) Pu

Ejemplo:

Diseño de controladores P, PI y PID para un sobrecalentador de vapor utilizando los dos métodos de Ziegler-Nichols

El sistema y su respuesta

$$G(s) = - \frac{(1 + 13.8 s)^2}{(1 + 59 s)^4}$$

Aplicación del primer método

$$K = -1$$
, $L = 66.6$, $R = -0.0043$

Controlador
$$P$$
:
$$K_p = -3.49 \qquad C_P(s) = -3.49$$
Controlador PI :
$$K_p = -3.141 \quad T_i = 222 \qquad C_{PI}(s) = -\frac{3.141(s + 0.0045)}{s}$$
Controlador PID :
$$K_p = -4.188$$

$$T_i = 132 \qquad C_{PID}(s) = -\frac{4.188(33.2s^2 + s + 0.0075)}{s}$$

$$T_d = 33.3$$

PID aproximado

$$C_{PID}(s) = -\frac{4.188(33.2s^2 + s + 0.0075)}{s(s+1)}$$

Lazo Cerrado

$$H_{P}(s) = \frac{5.4929 \times 10^{-5} (s+0.0724)^{-2}}{((s+0.0029)^2 + (0.0183)^2)((s+0.031)^2 + (0.0109)^2)}$$

$$H_{PI}(s) = \frac{4.9436 \times 10^{-5} (s+0.0045)(s+0.0724)^2}{((s+0.0018)^2 + (0.0168)^2)((s+0.03)^2 + (0.0106)^2)(s+0.004)}$$

$$H_{PID}(s) = \frac{0.0022(s+0.0155)(s+0.0145)(s+0.0724)^2}{((s+0.0048)^2 + (0.0189)^2)(s+0.03)(s+0.0155)(s+0.0145)(s+0.998)}$$

Simulaciones

Aplicación del segundo método

$$Ku = -7.52$$
, $Pu = 2 \pi / 0.02324$

Controlador
$$P$$
:
$$K_p = -3.76 \qquad C_p(s) = -3.76$$
Controlador PI :
$$K_p = -3.384 \quad T_i = 225.3 \quad C_{PI}(s) = -\frac{3.384(s + 0.0044)}{s}$$
Controlador PID :
$$K_p = -4.512$$

$$T_i = 135.18$$

$$T_d = 33.79$$

$$C_{PID}(s) = -\frac{4.512(33.799s^2 + s + 0.0074)}{s}$$

PID aproximado

$$C_{PID}(s) = -\frac{4.512(33.799s^2 + s + 0.0074)}{s(s+1)}$$

Lazo Cerrado

```
H_{PID}(s) = \frac{5.9179 \times 10^{-5} (s+0.0724)^2}{((s+0.0026)^2 + (0.0187)^2)((s+0.031)^2 + (0.011)^2)}
H_{PI}(s) = \frac{5.326 \times 10^{-5} (s+0.0044)(s+0.0724)^2}{((s+0.0015)^2 + (0.0172)^2)((s+0.03)^2 + (0.0107)^2)(s+0.004)}
H_{PID}(s) = \frac{0.0024 (s+0.0724)^2 ((s+0.0148)^2 + (0.0002)^2)}{((s+0.0049)^2 + (0.0197)^2)(s+0.0307)(s+0.0148)(s+0.0147)(s+0.998)}
```


Simulaciones

Comparaciones

Tabla 20.3. Índices de desempeño de los sistemas ajustados.

Ley de control	Sobrepaso Mp (%)	Tiempo de respuesta tr	Tiempo de asentamiento ta (±5 %)	Error e(∞)% para entrada escalón
lazo abierto	0	293	421	0
P (reacción)	50	76	923	22.66
P (límite)	76	68	923	21
PI (reacción)	*49	84	1557	0
PI (límite)	52	84	1707	0
PID (reacción)	39	71	553	0
PID (límite)	39	68	553	0

Referencias

G. Franklin, J. Powell, A. Emami-Naeini.
 Feedback Control of Dynamic Systems.
 3rd edition, 1994. Addison-Wesley.

 C. Verde, R. Carrera. Ejercicios resueltos de control analógico. 2ª edición, 2001. Trillas.