## Introduction aux Réseaux

#### DIU « Enseigner l'Informatique au Lycée »

Université de Bordeaux

aurelien.esnard@u-bordeaux.fr abdou.guermouche@u-bordeaux.fr

#### Plan

- Introduction
- Modèle client/serveur et modèle OSI
- Protocoles de communication d'Internet et du Web
  - Routage, DNS, Web (HTTP), mail (SMTP & IMAP)
- Sécurité des communication
- Les outils réseaux
  - Les commandes en ligne : ping, ifconfig, route, ...
  - Socket en python3, Scapy, Wireshark, ...
- Utilisation de réseaux virtuels



#### Internet

- Internet: réseau informatique mondial, résultant de l'interconnexion d'une multitude de réseaux informatiques à travers la planète, unifiées grâce au protocole IP. [1983]
- <u>Protocole réseau</u> : un protocole définit de manière formelle et interopérable l'échange des informations entre ordinateurs.



ARPANET. Source: Tannenbaum



Source: Wikipedia

#### Web

 Web (ou la toile): l'ensemble des <u>hyperliens</u> (ou liens hypertextes) qui relient les pages web entre elles. [1990]



L'ordinateur utilisé au CERN par Tim Berners-Lee pour inventer le Web. <u>Source</u>: Wikipedia.

→ Ne pas confondre Internet et le Web, qui est un des nombreux services Internet!

#### Web

- <u>Serveur Web</u>: ordinateur qui contient les ressources du Web (pages, media, ...) et les met à disposition sur Internet.
  - Ex.: www.google.com, fr.wikipedia.org, ...
- Navigateur Web : logiciel (client du serveur Web) permettant de consulter les ressources du Web.
  - Ex.: Internet Explorer, Firefox, Chromium, ...



#### Web

- <u>HTTP</u> (HyperText Transfert Protocol) : protocole de transfert des pages HTML permettant de naviguer sur le Web (HTTPS pour la version sécurisée).
- <u>HTML</u> (Hypertext Markup Language) : langage à balise pour représenter les pages Web (mise en forme, liens hypertextes, ressources multimédias, ...).

```
<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>
Exemple de HTML
</title>
</head>
<body>
Ceci est une phrase avec un <a href="cible.html">hyperlien</a>.

Ceci est un paragraphe où il n'y a pas d'hyperlien.

</body>
</html>
Source: Wikipedia
```

### Moteur de Recherche

- Moteur de recherche : outil permettant de retrouver des pages Web à partir d'une requête
  - Ex.: Google, Yahoo Search, Bing, ...
- Indexation automatique : les pages du Web sont parcourues automatiquement par un « robot » et analysées pour en extraire des mots-clés significatifs.
- Ordre des réponses : il dépend de l'adéquation des mot-clefs et de la « popularité » de la page web
  - nombre de liens vers la page (PageRank de Google)
  - les clics des utilisateurs sur la page de réponse



## Messagerie Electronique

- Messagerie électronique : outil permettant d'échanger des messages (courriel ou mail) de manière asynchrone par l'intermédiaire d'une boîte à lettres électronique identifiée par une adresse électronique.
- Adresse életronique : prenom.nom@etu.u-bordeaux.fr
- Client de messagerie local ou application webmail
  - Ex.: Thunderbird, Outlook, ... vs Gmail, Yahoo!, ...



## Latence & Débit

#### Débit

nombre de bits que le réseau peut transporter par seconde

#### Latence

- nombre de secondes que met le premier bit pou aller de la source à la destination
- Quelques exemples de débits (en bit/s)
  - modem RTC 56K, ADSL (1M à 8M), FTTH (1G)
  - Ethernet (10M, 100M, 1G, 10G), ATM (155M), FDDI (100M), ...
  - sans-fil : IEEE 802.11 (11M à 54M)
  - GSM: 3G (144K-1,9M), EDGE (64k-384k), 3G+ (3,6M, 14,4M), 4G (100M-1G), 5G (10G) ...

## Structure d'Internet



Source: Wikipedia

## Le réseau Internet

• Interconnexion de multiples réseaux hétérogènes et distants...



# Exemple de Renater



## Notion de protocole

- Protocole : Spécification de plusieurs règles pour communiquer sur une même couche d'abstraction entre deux machines
- Exemple du protocole HTTP
- Plusieurs niveaux d'interactions
  - le niveau de l'application : le client clique sur un lien, le serveur renvoie une page web
  - le niveau des messages : le client envoie un message contenant une URI, le serveur renvoie un message contenant un fichier HTML
  - le niveau des paquets : le message du client est découpé en paquets, les différents routeurs du réseau les acheminent vers le serveur (idem pour le retour)
  - le niveau de la transmission des bits : pour envoyer les paquets, chaque bit (0 ou 1) est transmis comme un signal électrique sur une ligne.
- Chaque niveau utilise les fonctions du niveau inférieur

# Modèle OSI & TCP/IP

Modèle en couches



## Les couches OSI

#### (1) Couche physique (physical layer)

- transmission effective des signaux entre les interlocuteurs
- service typiquement limité à l'émission et la réception d'un bit ou d'un train de bit continu

#### (2) Couche liaison de données (datalink layer)

 communications entre 2 machines adjacentes, i.e. directement reliés entre elle par un support physique

#### (3) Couche réseaux (network layer)

 communications de bout en bout, généralement entre machines : adressage logique et routage des paquets

#### (4) Couche transport (transport layer)

communications de bout en bout entre processus

## Les couches OSI

#### (5) Couche session (session layer)

 synchronisation des échanges et transaction, permet l'ouverture et la fermeture de session

#### (6) Couche présentation

 codage des données applicatives, et plus précisément conversion entre données manipulées au niveau applicatif et chaînes d'octets effectivement transmises

#### (7) Couche application

- point d'accès aux services réseaux
- elle n'a pas de service propre spécifiable et entrant dans la portée de la norme

## Illustration



## Piles de protocoles



Deux machines dans un même réseau

# Piles de protocoles



Prise en compte de l'hétérogénéité

# Encapsulation



## Le protocole IP

Couche réseau : communications entre machines



IP - protocole d'interconnexion, best-effort

- acheminement de datagrammes (mode non connecté)
- peu de fonctionnalités,
- pas de garanties simple mais robuste (défaillance d'un noeud intermédiaire)

## Le protocole TCP

Couche transport : communications entre applications



TCP - protocole de transport de bout en bout

- uniquement présent aux extrémités
- transport fiable de segments (mode connecté)
- protocole complexe (retransmission, gestion des erreurs, séquencement, . . . )

## IPv4

#### Internet Protocol (IP)

- communication de bout en bout entre des machines qui ne sont pas connectés directements, c'est-à-dire situées dans des réseaux locaux différents (géographie, technologie)
- adressage logique : identifier les machines indépendament de l'adressage physique (Ethernet, ...)
- routage : acheminement des données entre les réseaux via des routeurs/passerelles intermédiaires

#### Versions

- IPv4, RFC 791, sept. 1981 (2<sup>32</sup> adresses)
- IPv6, le successeur de IPv4, RFC 2460, déc. 1998 (2<sup>128</sup> adresses)

#### IPv6

- Adresse IPv6 (8 groupe de 2 octets, noté en hexa)
  - Adresse de 128 bits
  - Exemple: 2001:0db8:0000:85a3:0000:0000:ac1f:0001
  - Forme canonique : 2001:db8::85a3:::ac1f:1
- Epuisement des adresses IPv4
  - En février 2011, IANA annonce qu'il n'y a plus de bloc d'adresse libre !
- Combien d'adresse IPv6 par mm² de surface terrestre ?
  - 667 millions de milliards d'appareils connectés sur chaque millimètre carré de la surface de la Terre!
- A compléter : https://fr.wikipedia.org/wiki/IPv6

### Protocole IP

- Communication directe de A vers B
- Communication de A vers C via P<sub>0</sub>, puis P<sub>2</sub>, ...
  - la passerelle permet de passer d'un réseau à un autre ; elle possède donc deux interfaces réseau



## Adressage IP

Format des adresses IP



- Les adresses spéciales
  - Adresse de la boucle locale (loopback) : 127.0.0.1 ou *localhost*
  - Adresse d'un réseau : tous les bits de l'adresse hôte à 0
     192.168.10.0 / 24
  - Adresse de diffusion d'un réseau : tous les bits de l'adresse hôte à 1
     192.168.10.255
  - Adresse du routeur (par convention) : adresse de diffusion 1
- Les masques
  - 255.255.255.0 *↔* /24

## Routage

#### Principe

- Mécanisme par lequel le message d'un expéditeur est acheminé jusqu'à son destinataire, même si aucun des deux ne connaît le chemin complet que le message doit suivre...
- Deux types logiques d'ordinateur dans le WAN
  - les hôtes (hosts) ou stations, qui sont reliés à un seul réseau et qui ont par conséquent une table de routage simple
  - les routeurs/passerelles (gateway), qui relient au moins deux réseaux et possèdent une table de routage plus complexe
- Deux types d'algorithmes : statiques et dynamiques (OSPF, BGP, ...)

## Table de routage

- Un nœud (un hôte ou un routeur) a besoin des informations sur le routeur suivant (next-hop) vers lequel il doit envoyer un paquet pour atteindre la destination.
- La table de routage fournit cette information



## Algorithme de routage

- Algorithme exécuté sur chaque intermédiaire (R)
- Supposons que destFinal est l'adresse de destination de B du paquet à transmettre, destAddr est une adresse dans la table de routage.

```
si (destAddr == destFinal)
  envoyer le paquet au next-hop de l'entrée;
sinon
si (destAddr & Masque == destFinal & Masque)
  envoyer le paquet directement à destAddr;
sinon
  envoyer au next-hop de l'entrée par défaut;
```

| Gateway       | Genmask                 | Flags         | Interface     |
|---------------|-------------------------|---------------|---------------|
| 140.252.13.35 | 255.255.255.224         | UG            | eth0          |
| *             | 0.0.0.0                 | UH            | lo            |
| *             | 255.255.255.224         | U             | eth0          |
| 140.252.13.33 | 0.0.0.0                 | UG            | eth0          |
|               | 140.252.13.35<br>*<br>* | 140.252.13.35 | 140.252.13.35 |

## Le protocole ARP

- Au sein d'un réseau local, les adresses physiques (Ethernet par exemple) sont utilisées pour communiquer
- Comment faire le lien entre les adresses IP et les adresses Ethernet ?
- Address Resolution Protocol (ARP), RFC 826
  - Protocole de résolution des adresses IP
  - Récupérer l'adresse Ethernet correspondant à une adresse IP
  - Mécanisme à base de broadcast dans le réseau :
    - Diffusion de la requête "qui a l'adresse @IP<sub>dest</sub> répondre à @E<sub>source</sub>"
    - La machine ayant pour adresse @IP<sub>dest</sub> répond au message fournissant ainsi son adresse Ethernet

# Comment connecter des machines entre elles?

Hub, Switch



Source: http://bencello.net/Tutos.php

 Passerelle/routeur Matériel reliant deux réseaux différents et les faisant communiquer

## Le modèle Client / Serveur

#### Le client

- effectue une demande de service auprès du serveur (requête)
- initie le contact (parle en premier), ouvre la session

#### Le serveur

- est la partie de l'application qui offre un service
- est à l'écoute des requêtes clientes
- répond au service demandé par le client (réponse)
- Le client et le serveur ne sont pas identiques, ils forment un système coopératif
- Un serveur peut répondre à plusieurs clients simultanément



# Numéro de ports et sockets

- Une adresse de transport = une adresse IP + un numéro de port (16 bits) → adresse de socket
- Une connexion Client/Serveur = (@Ip<sub>src</sub>,port<sub>src</sub>,@IP<sub>dest</sub>,port<sub>dest</sub>)
- Les ports permettent un multiplexage de connexions au niveau transport
- Les ports inférieurs à 1024 sont appelés ports réservés



# Protocoles de Communication d'Internet et du Web

## Les services de l'Internet

- Services principaux (applications) disponibles sur l'Internet
  - Courrier électronique (mail) protocole SMTP (Simple Mail Transfer Protocol) pour l'envoi, IMAP et POP3 pour la récupération
  - Forums de discussion (news) protocole NNTP (Network News Transfer Protocol)
  - Transfert de fichiers protocole FTP (File Transfer Protocol)
  - Accès à une machine distante protocoles telnet, SSH
  - Accès au World Wide Web protocole HTTP, formats HTML, XML, ...
  - Extensions diverses pour la sécurité (SSL/TLS, PGP, ...)
- Ces services utilisent les protocoles de transport (TCP, UDP), ainsi que le service de noms DNS (Domain Name System)

## Le protocole DNS

- Comment relier les adresses IP utilisées pour acheminer les paquets aux noms utilisés par les applications?
  - Utilisation de DNS
  - modèle client/serveur : un émetteur interroge un serveur de noms (serveur DNS) et attend la réponse
  - Protocole central dans Internet
  - Rarement utilisé directement par l'utilisateur
- Espace de noms hiérarchique permettant de garantir l'unicité d'un nom dans une structure arborescente



Espace de nommage

# Messagerie Electronique

- Principe d'acheminement d'un courriel
  - Envoi : lorsqu'un expéditeur envoie un courriel, son ordinateur soumet une reqûete au <u>serveur sortant</u> (SMTP), qui l'achemine vers le <u>serveur entrant</u> du destinataire
  - <u>Réception</u>: lorsqu'un destinataire relève ses courriels, ils sont téléchargés sur son ordinateur depuis le <u>serveur entrant</u> (POP3 ou IMAP)



### HTTP

- HTTP (HyperText Transfer Protocol)
  - Protocole stateless basé sur TCP/IP (port 80)
  - Le navigateur effectue une requête HTTP pour obtenir la ressource URI (Uniform Ressource Identifier)
  - Le serveur traite la requête puis retourne une réponse HTTP, typiquement une page HTML



## HTTP

### Requêtes

- GET: demander une ressource (la plus courante)
- POST : ajouter une nouvelle ressource (ex. message de forum)
- HEAD : demander uniquement l'en-tête HTTP
- TRACE : echo de la requête
- CONNECT, PUT, DELETE, ...

### Historique

- Version 0.9 : requête GET, réponse HTML
- Version 1.0 : gestion de cache, description du type MIME des ressources (content-type), ...
- Version 1.1 : connexion persistante (keep-alive), négociation de contenu (accept-\*), ...

# Un peu de HTML

### Structure classique

### Formulaire HTML

Passage de paramètres (POST)

First Name:

Last Name:

Submit Query

# Exemple HTTP

### Requête

#### **GET /HelloWorld.html HTTP/1.1**

commande GET

Host: localhost:8080

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.15)

Gecko/2009102815 Ubuntu/9.04 (jaunty) Firefox/3.0.15

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,\*/\*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,\*;q=0.7

Keep-Alive: 300

Connection: keep-alive

If-Modified-Since: Thu, 19 Nov 2009 14:06:01 GMT

If-None-Match: W/"153-1258639561000"

Cache-Control: max-age=0

header

# Exemple HTTP

### Réponse

```
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Accept-Ranges: bytes
ETag: W/"153-1258639561000"
Last-Modified: Thu, 19 Nov 2009 14:06:01 GMT
Content-Type: text/html
                                                 type MIME de la ressource
Content-Length: 153
Date: Tue, 24 Nov 2009 15:48:32 GMT
Connection: close
<html>
 <head>
   <title>Hello World!</title>
 </head>
 <body>
                                          corps de la réponse
   <center>
     <h1>Hello World!</h1>
   </center>
 </body>
</html>
```

## **Annexes Diverses**

## Sous-réseaux

- Délimitation de plusieurs sous-réseaux dans un réseau
  - Adresse IP découpée en trois parties (network, subnet, host)
  - On utilise une partie des bits de l'hôte pour identifier le sous-réseau (subnet).



- Masque de sous-réseau
  - Le masque du sous-réseau s'obtient en mettant à 1 tous les bits du réseau et du sous-réseau, puis le reste à 0.
  - (adresse IP) AND (masque) = (adresse sous-réseau)

# En-tête du paquet IP (v4)



# En-tête du paquet IP (v4)

- <u>Version</u>: v4
- IHL (Internet Header Length): longueur de l'en-tête en mot de 32 bits
- <u>Type of Service</u>: qualité de service (minimal cost: 0x02, reliability: 0x04, throughput: 0x08, low delay: 0x10)
- <u>Identification</u>: identifiant d'un ensemble de fragments pour leur rassemblage
- Flags: DF (Don't Fragment) / MF (More Fragment)
- Fragment Offset: position du fragment dans le message
- Time To Live (TTL): temps de vie maximal en sec.
- Protocol : protocole de la couche supérieur encapsulé dans le paquet (ICMP, UDP, TCP, etc.)
- Header Checksum: contrôle d'erreurs de l'en-tête
- Adresses IP source et destination

# Commandes de base (1/2)

- Configuration du réseau 192.168.10.0/24
  - Configuration des interfaces réseaux de la machine A ?

```
$ Ifconfig -a
                                                                         Adresse Ethernet
            eth0 Link encap:Ethernet HWaddr 00:15:c5:3d:52:b6
                  inet addr: 192.168.10.1 Bcast: 192.168.10.255 Mask: 255.255.255.0
                  UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                  *XX packets:66 errors:0 dropped:0 overruns:0 frame:0
                  TX packets:70 errors:0 dropped:0 overruns:0 carrier:0
                  collisions:0 txqueuelen:1000
 Adresse IP
                  RX bytes:7571 (7.3 KB) TX bytes:9560 (9.3 KB)
de la machine
                                                                         Masque du Réseau IP
                  Interrupt:18
            eth1 Link encap:Ethernet HWaddr 00:13:02:dc:2a:fd
                  Link encap:Local Loopback
            lo
                  inet addr: 127.0.0.1 Mask: 255.0.0.0
```

# Commandes de base (2/2)

netstat -tnap (liste des connexions TCP/IP)

| Proto R-Q S-Q |   | S-Q | Local Address      | Foreign Address   | State PID/Program name   |
|---------------|---|-----|--------------------|-------------------|--------------------------|
| tcp           | 0 | 0   | 127.0.0.1:2208     | *:*               | LISTEN 3266/hpiod        |
| tcp           | 0 | 0   | 127.0.0.1:34818    | *:*               | LISTEN 3275/python       |
| tcp           | 0 | 0   | 127.0.0.1:3306     | *:*               | LISTEN 3642/mysqld       |
| tcp           | 0 | 0   | 0.0.0.0:25         | *:*               | LISTEN 3525/exim4        |
| tcp           | 0 | 0   | 82.225.96.37:35551 | 147.210.8.143:993 | ESTABLISHED10503/mozilla |
| tcp           | 0 | 0   | 82.225.96.37:39243 | 147.210.13.65:22  | ESTABLISHED13758/ssh     |
| tcp           | 0 | 0   | 82.225.96.37:35750 | 147.210.9.15:22   | ESTABLISHED13763/ssh     |
| tcp6          | 0 | 0   | *:80               | *:*               | LISTEN 3979/apache2      |
| tcp6          | 0 | 0   | *:22               | *:*               | LISTEN 3746/sshd         |
| tcp6          | 0 | 0   | *:25               | *:*               | LISTEN 3525/exim4        |

## ICMP

- Internet Control Message Protocol (ICMP), RFC 792
  - accompagne IP pour gérer les erreurs et propager des informations de routage

| Message type            | Description                              |  |
|-------------------------|------------------------------------------|--|
| Destination unreachable | Packet could not be delivered            |  |
| Time exceeded           | Time to live field hit 0                 |  |
| Parameter problem       | Invalid header field                     |  |
| Source quench           | Choke packet                             |  |
| Redirect                | Teach a router about geography           |  |
| Echo request            | Ask a machine if it is alive             |  |
| Echo reply              | Yes, I am alive                          |  |
| Timestamp request       | Same as Echo request, but with timestamp |  |
| Timestamp reply         | Same as Echo reply, but with timestamp   |  |

 Exemple du ping : envoi d'une requête ICMP 'echo request' et attente de la réponse 'echo reply'

# En-tête TCP



## En-tête TCP

- Source Port et <u>Destination Port</u>
- Numéro de séquence : le numéro du segment TCP
- Numéro d'accusé de réception : numéro du prochain octet attendu
- <u>6 flags binaires</u> :
  - ACK : indique si le numéro d'accusé de réception est valide
  - SYN : demande d'établissement d'une connexion
  - FIN : libération de la connexion
  - RST: réinitialisation d'une connexion (reset); rejet d'une connexion
  - Autres: PSH, URG
- <u>Window size</u> : nombre d'octets souhaités pour la réception ; si 0, stoppe temporairement la transmission

# TCP

• Exemples de service TCP standards (ports < 1024)

| Port | Protocol | Use                            |  |
|------|----------|--------------------------------|--|
| 21   | FTP      | File transfer                  |  |
| 23   | Telnet   | Remote login                   |  |
| 25   | SMTP     | E-mail                         |  |
| 69   | TFTP     | Trivial File Transfer Protocol |  |
| 79   | Finger   | Lookup info about a user       |  |
| 80   | HTTP     | World Wide Web                 |  |
| 110  | POP-3    | Remote e-mail access           |  |
| 119  | NNTP     | USENET news                    |  |

## Connexion TCP

- La "poignée de main" en 3 étapes
  - Synchronisation des numéros de séquence



# TCP

### • Les états d'une connexion TCP

| State       | Description                                      |  |  |
|-------------|--------------------------------------------------|--|--|
| CLOSED      | No connection is active or pending               |  |  |
| LISTEN      | The server is waiting for an incoming call       |  |  |
| SYN RCVD    | A connection request has arrived; wait for ACK   |  |  |
| SYN SENT    | The application has started to open a connection |  |  |
| ESTABLISHED | The normal data transfer state                   |  |  |
| FIN WAIT 1  | The application has said it is finished          |  |  |
| FIN WAIT 2  | The other side has agreed to release             |  |  |
| TIMED WAIT  | Wait for all packets to die off                  |  |  |
| CLOSING     | Both sides have tried to close simultaneously    |  |  |
| CLOSE WAIT  | The other side has initiated a release           |  |  |
| LAST ACK    | Wait for all packets to die off                  |  |  |

## TCP



E/M

Lorsque l'evènement E se produit, envoyé le message M ou ne rien faire si M='-'.

## La trame Ethernet

- Format des trames (frames)
  - Adresse MAC du destinataire (60) et du source (60)
  - Type de protocole : 0800 = IP ; 0806 = ARP ; ... (20)
  - Code CRC-32 (4o)
  - Données : au minimum 460, jusqu'à 15000
    - caractères de bourrage si données < 460

| @MAC<br>destinataire | @MAC<br>source | type de<br>trame | données              | CRC |
|----------------------|----------------|------------------|----------------------|-----|
|                      |                |                  | Exemple du paquet IP |     |