# Techniques et systèmes de communications numériques sans-fil (TS218)

**Romain Tajan** 

- Contexte
- Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

## Signal émis

Expression du signal émis en bande de base :

$$s(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s)$$

Expression du signal émis en bande étroite (ou bande transposée) :

$$\tilde{s}(t) = Re\left(s(t)e^{j2\pi f_c t}\right)$$

### **Notations**

- $a_m$ : symboles complexes,
- s(t): enveloppe complexe du signal émis,
- T<sub>s</sub>: temps symbole,
- $R_s = T_s^{-1}$  : débit symbole,
- h(t): filtre de mise en forme à l'émission, (filtre demi-Nyquist)
- fc: fréquence porteuse.

### Signal reçu dans le cas mono-trajet BBAG 1 :

$$ilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t- au-mT_s)e^{j2\pi f_c(t- au)}
ight) + ilde{w}(t)$$

On considère une "imperfection" au niveau du récepteur, il récupère le signal r(t) tel que

$$\tilde{r}(t) = Re\left(r(t)e^{j2\pi(f_c+\delta_f)t}\right)$$

### 1. Bruit Blanc Additif Gaussien

### Signal reçu dans le cas mono-trajet BBAG 1 :

$$ilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t- au-mT_s)e^{j2\pi f_c(t- au)}
ight) + ilde{w}(t)$$

On considère une "imperfection" au niveau du récepteur, il récupère le signal r(t) tel que

$$ilde{r}(t) = extit{Re}\left(r(t)e^{j2\pi(f_c+\delta_f)t}
ight) \ = extit{Re}\left(r(t)e^{j2\pi\delta_f t}e^{j2\pi f_c t}
ight)$$

### 1. Bruit Blanc Additif Gaussien

### Signal reçu dans le cas mono-trajet BBAG 1 :

$$ilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t- au-mT_s)e^{j2\pi f_c(t- au)}
ight) + ilde{w}(t)$$

On considère une "imperfection" au niveau du récepteur, il récupère le signal r(t) tel que

$$ilde{r}(t) = extit{Re}\left(r(t)e^{j2\pi(f_c+\delta_f)t}
ight) \ = extit{Re}\left(r(t)e^{j2\pi\delta_f t}e^{j2\pi f_c t}
ight)$$

r(t) s'exprime donc comme suit :

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi(\delta_f t - f_c \tau)} + w(t)$$
$$= \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

### 1. Bruit Blanc Additif Gaussien

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles  $a_n$ )

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

**But** : Récupérer l'information transmise (détection des symboles  $a_n$ )

**Problème**: Les paramètres  $\mathbf{p} = [\phi, \tau, T_s, \delta_t]$  sont inconnus ...

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles  $a_n$ )

### Problème :

Les paramètres  $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$  sont inconnus ...

- lacktriangle  $\phi$ : Déphasage entres oscillateurs aux émetteur/récepteur
  - ⇒ Synchronisation en phase

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles a<sub>n</sub>)

### Problème :

Les paramètres  $\mathbf{p} = [\phi, \tau, T_s, \delta_t]$  sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
  - ⇒ Synchronisation en phase
- $\bullet$   $\tau$ : Temps de propagation du signal
  - ⇒ Synchronisation en temps

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles a<sub>n</sub>)

### Problème:

Les paramètres  $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$  sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
  - ⇒ Synchronisation en phase
- $\bullet$   $\tau$ : Temps de propagation du signal
  - ⇒ Synchronisation en temps
- T<sub>s</sub>: Rythme symbole
  - ⇒ Synchronisation du rythme

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles  $a_n$ )

### Problème:

Les paramètres  $\mathbf{p} = [\phi, \tau, T_s, \delta_t]$  sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
  - ⇒ Synchronisation en phase
- $\bullet$   $\tau$ : Temps de propagation du signal
  - ⇒ Synchronisation en temps
- T<sub>s</sub>: Rythme symbole
  - Synchronisation du rythme
- $\delta_f$ : Décalage en fréquence (effet Doppler, différences  $f_c$  émetteur/récepteur)
  - ⇒ Synchronisation en fréquence

- Contexte
- 2 Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

- Contexte
- 2 Synchronisation en phase / fréquence
  - Contexte
  - Cas d'une porteuse non-modulée
- 3 Synchronisation temporelle / récupération du rythme

- Synchronisation en phase / fréquence
  - Contexte

### **Problématique**

### Approche retenue pour la synchronisation

- Estimations des paramètres  $[\tau, T_s]$  et  $[\phi, \delta_f]$  réalisées séparément
- Erreur sur  $[\tau, T_s]$  négligée : paramètres connus

### Autre approche possible

- Estimations conjointe des paramètres  $[\tau, T_s, \phi, \delta_t]$
- plus complexe, non abordé en cours

### Avant de commencer ...

Expression de r(t)

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$
$$= \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j\phi(t)} + w(t)$$

• En supposant que h(t) vérifie le critère de Nyquist, un décalage fréquentiel  $\delta_t \ll T_s^{-1}$  et une transmission sans bruit.

Représenter la constellation  $r_k = r(kT_s)$  pour des symboles 4-QAM dans les cas suivants:

- $\rightarrow$  Déphasage constant  $\phi(t) = \phi$
- $\rightarrow$  Déphasage variant linéairement dans le temps  $\phi(t) = 2\pi \delta_t t + \phi_0$

## Déphasage constant



# Déphasage variant linéairement dans le temps

- Synchronisation en phase / fréquence
- Cas d'une porteuse non-modulée

On se concentre ici sur le cas d'une porteuse non modulée (avec  $s(t) = 1, \forall t \in \mathbb{R}$ ), le cas d'une porteuse modulée par un signal sera traité ensuite.

On se concentre ici sur le cas d'une porteuse non modulée (avec  $s(t) = 1, \forall t \in \mathbb{R}$ ), le cas d'une porteuse modulée par un signal sera traité ensuite.

### Expression de r(t)

$$r(t) = e^{j\phi(t)} + w(t)$$
 où  $\phi(t) = 2\pi\delta_f t + \phi_0$ .

 $\rightarrow$  On veut estimer  $\phi(t)$ 

On se concentre ici sur le cas d'une porteuse non modulée (avec  $s(t) = 1, \forall t \in \mathbb{R}$ ), le cas d'une porteuse modulée par un signal sera traité ensuite.

### Expression de r(t)

$$r(t) = e^{j\phi(t)} + w(t)$$
 où  $\phi(t) = 2\pi\delta_f t + \phi_0$ .

 $\rightarrow$  On veut estimer  $\phi(t)$ 

### Expression de $r_k$ (après échantillonnage de r(t) avec une période $T_e$ )

Sous l'hypothèse 
$$\delta_f \in \left[\frac{-1}{2T_e}, \frac{1}{2T_e}\right]$$
 (non-repliement)

$$r_k = e^{j\phi_k} + w_k$$
 où  $\phi_k = 2\pi\delta_f kT_e + \phi_0$ .

 $\rightarrow$  On veut estimer  $\phi_k$ 

### Hypothèse supplémentaire

• On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$ , la variable  $\phi$  est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations :  $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ 

### Hypothèse supplémentaire

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$ , la variable  $\phi$  est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations :  $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid  $\mathcal{CN}(0, \sigma^2)$ 

$$p(\mathbf{r}_k|\phi) =$$

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$ , la variable  $\phi$  est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations :  $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid  $\mathcal{CN}(0, \sigma^2)$ 

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

### Hypothèse supplémentaire

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$ , la variable  $\phi$  est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations :  $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid  $\mathcal{CN}(0, \sigma^2)$ 

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

### Devoir Maison - Estimation de $\phi$ par maximum de vraisemblance

 $\hat{\phi}_k$  est la valeur de  $\phi$  vérifiant  $\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k | \phi)) = 0$ .

### Hypothèse supplémentaire

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$ , la variable  $\phi$  est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations :  $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid  $\mathcal{CN}(0, \sigma^2)$ 

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

### Devoir Maison - Estimation de $\phi$ par maximum de vraisemblance

 $\hat{\phi}_k$  est la valeur de  $\phi$  vérifiant  $\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k | \phi)) = 0$ .

Montrer que 
$$\hat{\phi}_k = \arg\left(\sum_{n=0}^k r_n\right) \mod \pi$$

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0$$

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence  $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(\mathit{ze}^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$ 

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence  $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(ze^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$ 

 $\Rightarrow \hat{\phi}_k$  peut s'écrire récursivement :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu_k Im(r_k e^{-j\hat{\phi}_{k-1}})$$
 avec  $\mu_k^{-1} = \sum_{n=0}^k Re(r_n e^{-j\hat{\phi}_{k-1}})$ 

**But** : calculer  $\hat{\phi}_k$  à partir de  $\hat{\phi}_{k-1}$ 

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence  $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(ze^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$ 

 $\Rightarrow \hat{\phi}_k$  peut s'écrire récursivement :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu_k Im(r_k e^{-j\hat{\phi}_{k-1}})$$
 avec  $\mu_k^{-1} = \sum_{n=0}^K Re(r_n e^{-j\hat{\phi}_{k-1}})$ 

Cette relation est parfois appelée boucle à verrouillage de phase à temps discret.

### Ordre 1

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \alpha Im(r_k e^{-j\hat{\phi}_{k-1}})$$

### Ordre 2

$$\hat{\delta}_{k} = \hat{\delta}_{k-1} + \beta \operatorname{Im}(r_{k} e^{-j\hat{\phi}_{k-1}})$$

$$\hat{\phi}_{k} = \hat{\phi}_{k-1} + \hat{\delta}_{k} + \alpha \operatorname{Im}(r_{k} e^{-j\hat{\phi}_{k-1}})$$

### Détecteur de phase



Romain Tajan

17 / 31

- Synchronisation en phase / fréquence

  - Cas de la porteuse modulée

#### Dans notre cas, la porteuse est modulée

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\phi(t)} + w(t)$$

⇒ On ne peut pas utiliser directement la méthode précédente sur ce signal!

#### Dans notre cas, la porteuse est modulée

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\phi(t)} + w(t)$$

⇒ On ne peut pas utiliser directement la méthode précédente sur ce signal!

#### Les solutions proposées sont les suivantes :

- → Boucle à quadrature
- → Boucle avec séquence d'apprentissage
- → Boucle à remodulation

• Cas de la modulations BPSK :  $a_m \in \{1, -1\}$ 

Dans ce cas, après filtrage adapté et échantillonnage au temps  $T_s$ 

$$r_n^2 = (a_n e^{\phi_n} + w_n)^2$$

• Cas de la modulations BPSK :  $a_m \in \{1, -1\}$ 

Dans ce cas, après filtrage adapté et échantillonnage au temps  $T_s$ 

$$r_n^2 = (a_n e^{\phi_n} + w_n)^2$$

D'où

$$r_n^2 = e^{2\phi_n} + \tilde{w}_n$$

Dans ce cas, après filtrage adapté et échantillonnage au temps  $T_s$ 

$$r_n^2 = (a_n e^{\phi_n} + w_n)^2$$

D'où

$$r_n^2 = e^{2\phi_n} + \tilde{w}_n$$

#### $\rightarrow$ On peut récupérer $2\phi_n$ avec une PLL





## Comment faire pour une M-PSK?

$$a_n \in (1, e^{j \frac{2\pi}{M}}, e^{j \frac{4\pi}{M}} \dots e^{j \frac{2\pi(M-1)}{M}})$$



#### Comment faire pour une M-PSK?

$$a_n \in (1, e^{j\frac{2\pi}{M}}, e^{j\frac{4\pi}{M}} \dots e^{j\frac{2\pi(M-1)}{M}})$$

 $\rightarrow$  Méthode généralisable en élevant à la puissance M.



Quand la boucle est accrochée on a  $\hat{\phi}_n = \phi_n \mod \pi$ 

## Boucle à quadrature



Quand la boucle est accrochée on a  $\hat{\phi}_n = \phi_n \mod \pi$ 

⇒ ambiguïté sur la phase

## Boucle à quadrature



Quand la boucle est accrochée on a  $\hat{\phi}_n = \phi_n \mod \pi$ 

- ⇒ ambiguïté sur la phase
- → Solutions : codage différentiel ou insertion de pilotes

## Boucles sur séquence d'apprentissage / à remodulation

- Les systèmes présentés jusqu'ici sont des estimateurs aveugles.
- ⇒ Ils n'exploitent pas une éventuelle **séquence d'apprentissage**.
- ⇒ Ils ont une ambiguïté de phase.

# Boucles sur séquence d'apprentissage / à remodulation

- Les systèmes présentés jusqu'ici sont des estimateurs aveugles.
- ⇒ Ils n'exploitent pas une éventuelle séquence d'apprentissage.
- ⇒ Ils ont une ambiguïté de phase.

Soit une séquence d'apprentissage  $\{a_n\}_{n=1...N}$ , en sortie de filtre adapté, et échantillonnage on peut montrer que l'estimateur MV est le suivant.

$$\hat{\phi}_{k} = \arctan \frac{\sum_{n=0}^{N} Im(r_{n}a_{n}^{*})}{\sum_{n=0}^{N} Re(r_{n}a_{n}^{*})}$$

# Boucles sur séquence d'apprentissage / à remodulation

- Les systèmes présentés jusqu'ici sont des estimateurs aveugles.
- ⇒ Ils n'exploitent pas une éventuelle séquence d'apprentissage.
- ⇒ Ils ont une ambiguïté de phase.

Soit une séquence d'apprentissage  $\{a_n\}_{n=1...N}$ , en sortie de filtre adapté, et échantillonnage on peut montrer que l'estimateur MV est le suivant.

$$\hat{\phi}_{k} = \arctan \frac{\sum_{n=0}^{N} Im(r_{n}a_{n}^{*})}{\sum_{n=0}^{N} Re(r_{n}a_{n}^{*})}$$

⇒ l'estimateur en ligne suivant :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu \operatorname{Im}(r_k a_k^* e^{-j\hat{\phi}_{k-1}})$$

#### Plan

- Contexte
- 2 Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

#### Retour sur le signal reçu dans le cas mono-trajet BBAG en bande de base :

$$r_l(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) + w_l(t)$$

But:

Estimer  $\tau$  et  $T_s \Leftrightarrow$  estimer les instants d'échantillonnage  $mT_s + \tau_m$ 

#### Retour sur le signal reçu dans le cas mono-trajet BBAG en bande de base :

$$r_l(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) + w_l(t)$$

But:

Estimer  $\tau$  et  $T_s \Leftrightarrow$  estimer les instants d'échantillonnage  $mT_s + \tau_m$ 

Contexte:

On suppose que la synchronisation en fréquence/phase est réalisée

#### Retour sur le signal reçu en bande de base, en sortie du filtre adapté :

$$y_l(t) = \sum_{m=-\infty}^{+\infty} a_m g(t - \tau - mT_s) + w'_l(t)$$

Le critère considéré ici est le critère d'Erreur Quadratique Moyenne (EQM) :

$$J_{EQM}( au') = \mathbb{E}\left[\left|y_l(mT_s + au') - a_m\right|^2\right]$$

#### Algorithme du Gradient Stochastique :

#### Retour sur le signal reçu en bande de base, en sortie du filtre adapté :

$$y_l(t) = \sum_{m=-\infty}^{+\infty} a_m g(t - \tau - mT_s) + w'_l(t)$$

Le critère considéré ici est le critère d'Erreur Quadratique Moyenne (EQM) :

$$J_{EQM}( au') = \mathbb{E}\left[\left|y_l(mT_s + au') - a_m\right|^2\right]$$

## Algorithme du Gradient Stochastique :

$$\tau_{m+1} = \tau_m - \mu \left. \frac{d}{d\tau'} \left| y_l(mT_s + \tau') - a_m \right|^2 \right|_{\tau' = \tau}$$

## Algorithme du Gradient Stochastique (suite) :

$$au_{m+1} = au_m - \mu Re \left( \left. rac{d}{dt} y_l(t) 
ight|_{t=mT_S + au_m} [y_l(mT_S + au_m) - a_m]^* 
ight)$$

**En théorie** : La dérivée du signal reçu est obtenue à partir de la formule d'interpolation de Shannon.

## Algorithme du Gradient Stochastique (suite) :

$$au_{m+1} = au_m - \mu Re \left( \left. rac{d}{dt} y_l(t) 
ight|_{t=mT_S + au_m} [y_l(mT_S + au_m) - a_m]^* 
ight)$$

**En théorie** : La dérivée du signal reçu est obtenue à partir de la formule d'interpolation de Shannon.

En pratique : On utilise une estimation par différence finie (à deux points).

## **Idée générale** : le signal $r_i(t)$ est cyclostationnaire de période $T_s$

- $\Rightarrow$  on applique une non-linéarité à  $r_l(t)$  qui fait apparaître des composantes sinusoïdales aux fréquences  $\frac{k}{T_c}$
- $\Rightarrow$  on récupère  $1/T_s$  avec une PLL

#### Exemple de non-linéarité :

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = \sigma_{a}^{2} \sum^{+\infty} \left|g(t - mT_{s} - \tau)\right|^{2} + \sigma^{2}$$

Décomposition en série de Fourier de  $\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right]$  :

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = \sum_{k} c_{k} e^{j2\pi kt/T_{s}}$$

avec

$$c_k = \frac{1}{T} \int_0^T \mathbb{E}\left[|\eta(t)|^2\right] e^{-j2\pi kt/T_s} dt$$
$$= \frac{\sigma_a^2}{T} e^{-j2\pi \frac{k\tau}{T_s}} \int_{-\infty}^{\infty} G(t) G^*(t - \frac{k}{T_s}) dt + \sigma^2 \delta(k)$$

## Remarques

- Généralement,  $c_k = 0$  pour k > 1, en effet le filtre de mise en forme possède généralement une bande passante inclue dans  $\left[\frac{-1}{T_c}, \frac{1}{T_c}\right]$
- Roll-off faible  $\Rightarrow |c_1| = |c_{-1}|$  faible

## Remarque (suite)

On obtient finalement

$$\mathbb{E}\left[|r_{l}(t)|^{2}\right] = c_{0} + c_{1}e^{j2\pi\frac{t}{T_{S}}} + c_{-1}e^{j2\pi\frac{t}{T_{S}}}$$

En supposant que g(t) est paire on a

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = c_{0} + \left|c_{1}\right| \cos(2\pi \frac{t-\tau}{T_{c}})$$

Donc

$$|r_l(t)|^2 = c_0 + |c_1|\cos(2\pi\frac{t-\tau}{T_s}) + w_l''(t)$$

⇒ c<sub>0</sub> est enlevé via filtrage passe haut/bande

 $\Rightarrow \tau/T_s$  estimés avec une PLL

Synchro. temps / rythme

Contact : Romain Tajan

- THE END -