MATH10101 Foundations of Pure Mathematics A

Solutions to Exercise Sheet 5

1. Write $A \cup B \cup C = A \cup (B \cup C)$ and apply the Inclusion-Exclusion Principle to get

$$|A \cup (B \cup C)| = |A| + |B \cup C| - |A \cap (B \cup C)|$$

$$= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|$$

$$= |A| + |B| + |C| - |B \cap C| - (|(A \cap B)| + |(A \cap C)| - |(A \cap B) \cap (A \cap C)|$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

2. Let U be the set of all tiles. Let T be the set of triangular tiles, R denote the set of red tiles and W denote the set of wooden tiles. The number we require is $|U\backslash (T\cup R\cup W)|=144-|T\cup R\cup W|$. By Ex 1,

$$|T \cup R \cup W| = |T| + |R| + |W| - |T \cap R| - |T \cap W| - |R \cap W| + |T \cap R \cap W|$$
$$= 68 + 69 + 75 - 36 - 40 - 38 + 23 = 121.$$

Therefore the number of blue, plastic, square tiles is 23.

- 3. (i) When $A = \{1\}$ we have $\mathcal{P}(A) = \{\emptyset, \{1\}\}$ and $\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}.$
 - (ii) The graph G_c of $c \colon \mathcal{P}(A) \to \mathbb{Z}^{\geq}$ is the subset of $\mathcal{P}(A) \times \mathbb{Z}^{\geq}$ consisting of the ordered pairs (X, |X|) where $X \subset A$. In the case $A = \{1\}$, we get $G_c = \{(\emptyset, 0), (\{1\}, 1)\}$.
 - (iii) The image of $c \colon \mathcal{P}(\mathcal{P}(A)) \to \mathbb{Z}^{\geq}$ is the subset of \mathbb{Z}^{\geq} whose elements are the cardinalities of elements of $\mathcal{P}(\mathcal{P}(A))$. In the case $A = \{1\}$, we get $\mathrm{Im} c = \{0, 1, 2\}$.
- 4. By long division of 7 into 2 we get $2/7 = 0.\overline{285714}$.

Let
$$x=1.778\overline{2345}$$
. Then $10000x=17782.345\overline{2345}$ and so
$$9999x=10000x-x=17780.567=17780567/1000.$$

Therefore x = 17780567/9999000.

- 5. We use proof by contradiction. Assume that $X \setminus A$ is countable, ie. finite or denumerable. Since $X = A \cup (X \setminus A)$ we can apply Proposition 5.12 to show that X is denumerable. (Prop 5.12 states that the union of two denumerable sets is denumerable but the proof can easily be modified to show that the union of a denumerable set and a finite set is denumerable.) This contradicts the fact that X is uncountable. Therefore $X \setminus A$ is uncountable.
- 6. (i) We need to show that f is a bijection. The easiest way to do this is to show it has an inverse. Let y=f(x)=x/(1-x). Rearranging we get x=y/(1+y). Therefore the inverse of f is $f^{-1}:\mathbb{R}^+ \to (0,1)$, defined by $f^{-1}(x)=x/(1+x)$. Therefore \mathbb{R}^+ and (0,1) are equipotent.
 - (ii) The function $g:(1,0) \to (10,0)$ defined by g(x)=10x is a bijection and so (1,0) and (10,0) are equipotent. We can interpret this in terms of the decimal representation. Every infinite decimal of the form $0.a_1a_2a_3\dots$ (where $a_i\in\{0,1,2,\dots,9\}$ for all $i\in\mathbb{N}$ and the digits are not all 0 and not all 9) corresponds bijectively to the infinite decimal $a_1.a_2a_3\dots$ This shows there is a one-to-one correspondence between the elements of (0,1) and (0,10).

We can generalize the argument in (ii) to show that (0,1) and $(0,10^n)$ are equipotent for any $n\in\mathbb{Z}$ by shifting the decimal point to the right or left by |n| places, depending on whether n is positive or negative. Using (i) and the fact that the composite of two bijections is a bijection, \mathbb{R}^+ is equipotent to $(0,10^n)$ for all $n\in\mathbb{Z}$.

- 7. (i) For every integer $n \geq 2$, $2^{1/n}$ satisfies the equation $x^n 2 = 0$ and so it is algebraic.
 - Suppose, for a contradiction, that $2^{1/n}$ is rational and write it as a/b for positive integers a,b with no common factors except 1. Then $2=a^n/b^n$ and so $a^n=2b^n$. Therefore $2|a^n$ and so 2|a because 2 is prime. Let a=2k for some integer k. Then $2^nk^n=2b^n$ and so $b^n=2^{n-1}a^n$. Since $n\geq 2$ this means that $2|b^n$ and therefore 2|b. This contradicts our choice of a/b in its lowest terms. Hence $2^{1/n}$ is irrational.
 - (ii) Suppose, for a contradiction, that 2e is algebraic. Then by definition we can find integers a_0, a_1, \ldots, a_n , with $n \ge 1$ and $a_n > 0$, such that

$$a_0 + a_1(2e) + \ldots + a_n(2e)^n = 0.$$

Rewriting this as $a_0+2a_1e+\ldots+2^na_ne^n=0$ implies that e is algebraic which contradicts the fact that e is transcendental. Therefore 2e must be transcendental.

(iii) Suppose, for a contradiction, that π^3 is algebraic. Then we can find integers a_0,a_1,\ldots,a_n , with $n\geq 1$ and $a_n>0$, such that

$$a_0 + a_1(\pi^3) + \ldots + a_n(\pi^3)^n = 0.$$

This means that $a_0+a_1(\pi)^3+\ldots+a_n(\pi)^{3n}=0$ and so π is algebraic. This contradicts the fact that π is transcendental and therefore π^3 is transcendental.