Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

PATIENT		
Name: 林慧英		Patient ID: 44587113
Date of Birth: Mar 13, 1971		Gender: Female
Diagnosis: Adenoid cystic carcinom	a, metastatic	
ORDERING PHYSICIAN		
Name: 周德盈醫師		Tel: 886-228712121
Facility: 臺北榮總		
Address: 臺北市北投區石牌路二段	201 號	
SPECIMEN		
Specimen ID: S11175186E	Collection site: Lung	Type: FFPE tissue
Date received: Jan 25, 2022	Lab ID: AA-22-00476	D/ID: NA

ABOUT ACTORGO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in P	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KMT2C R1196fs	Olaparib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 22

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KMT2C	R1196fs	36.6%
NOTCH1	V2476*	16.9%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr1	ARID1A	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.2 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 58% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **22**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS TARGETED THERAPIES

Genomic Alterations	Therapies Effect	
Level 4		
KMT2C R1196fs	Olaparib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **22**

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations Pote	ential Clinical Effects
Not detected	

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

VARIANT INTERPRETATION

KMT2C R1196fs

Biological Impact

Lysine methyltransferase 2C (KMT2C) gene encodes the histone methyltransferase MLL3, which methylates lysine residue four on the tail of histone H3 (H3K4)^[1]and regulates the gene expression during development and hematopoiesis^{[2][3][4]}. KMT2C is ubiquitously expressed, and its function is essential for normal embryonal development and cell proliferation^[6]. Genetic deletion of the region containing KMT2C is the most common chromosomal abnormality in acute myeloid leukemia^{[6][7]}, and KMT2C mutation has been reported in breast cancer, cutaneous squamous cell carcinoma, and leukemia^{[6][9][10][11][12]}. KMT2C was implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[13]. Animal studies revealed that MLL3 haploinsufficiency enhances hematopoietic stem cells (HSCs) self-renewal capacity and induces extensive division of HSCs (AACR; Cancer Res 2018;78(13 Suppl): Abstract nr 4996).

R1196fs mutation results in a change in the amino acid sequence beginning at 1196, likely to cause premature truncation of the functional KMT2C protein (UniProtKB). This mutation is predicted to lead to a loss of KMT2C protein function, despite not being characterized in the literature.

Therapeutic and prognostic relevance

Preclinical studies of cell lines and xenograft models demonstrated that cells with reduced KMT2C expression and activity are deficient in homologous recombination-mediated double-strand break DNA repair and therefore, are more sensitive to olaparib, a PARP1/2 inhibitor^[14].

A meta-analysis indicated that low levels of KMT2C expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC) patients^[15]. However, another study of ER-positive breast cancer patients (n = 401) demonstrated that low KMT2C expression was associated with worse overall survival^[16].

NOTCH1 V2476*

Biological Impact

The NOTCH1 gene encodes for a transmembrane receptor and transcription factor which exist in a wide range of tissue and organisms^[17]. NOTCH1 is proposed to be an oncogene or tumor suppressor in human cancer development^[18]. The inactivation of NOTCH1 has been linked to squamous cell differentiation is also suggested by studies using cultured cervical and esophageal keratinocytes^{[19][20]}. Somatic mutations in NOTCH1 have been reported to highly associate betel quid chewing, which are involved in the occurrence and development of head and neck squamous cell carcinoma (HNSCC)^[21].

V2476* mutation results in a premature truncation of the NOTCH1 protein at amino acid 2476 (UniProtKB). This mutation is predicted to lead to a loss of NOTCH1 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Omipalisib and bimiralisib, PI3K/mTOR inhibitors, induced cell apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines with NOTCH1 loss-of-function mutations and reduced tumor growth in xenograft models^[22]. Of note, a clinical trial evaluating bimiralisib in HNSCC patients harboring NOTCH1 loss of function mutations is ongoing (NCT03740100).

Loss of NOTCH1 was found to be associated with poor survival and shorter time to recurrence in patients with early stage hepatocellular carcinoma undergoing hepatectomy^[23]. Head and neck squamous cell carcinoma (HNSCC) patients harboring NOTCH1 somatic mutations in EGF-like domain had significantly higher recurrence rate and lower survival rate^[21].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

ARID1A Heterozygous deletion

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription^{[24][25]}. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers^[26]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers^{[27][28][29][30][31]}.

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesis-based therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor^{[32][33]}; 2) AKT-inhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib^[34]; 3) multiple kinase inhibitor, dasatinib^[35].

Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression^[36]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinum-based chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients^{[37][38]}.

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients^{[39][40]}. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation^[41]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression^[42].

ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347).

The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways^[43].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

DASISION ^[44]	Chronic myeloid leukemia (Approved on 2010/10/28)
NCT00481247	
NC100481247	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[45]	Chronic myeloid leukemia (Approved on 2007/11/08)
NCT00123474	
NC100123474	Dasatinib [ORR(%): 63.0]
[46]	Acute lymphocytic leukemia (Approved on 2006/06/28)
	. 4
NCT00123487	Dasatinib [ORR(%): 38.0]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

	Ovarian cancer (Approved on 2019/10/23)
QUADRA ^[47]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation,
NCT02354586	and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
NOVA ^[48]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
	gBRCA+ CR/PR to platinum-based chemotherapy
NCT01847274	Niraparib vs. Placebo [PFS(M): 21 vs. 5.5]
188]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[48]	gBRCA- CR/PR to platinum-based chemotherapy
NCT01847274	Niraparib vs. Placebo [PFS(M): 9.3 vs. 3.9]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

	Prostate cancer (Approved on 2020/05/19)
PROfound ^[49]	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm,
NCT02987543	PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **22**

ACTOnco® + Report

Ovarian cancer (Approved on 2020/05/08)					
HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation,					
and/or genomic instability)					
Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
Pancreatic adenocarcinoma (Approved on 2019/12/27)					
Germline BRCA mutation (deleterious/suspected deleterious)					
Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)					
Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Breast cancer (Approved on 2018/02/06)					
Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative					
Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
gBRCA+					
Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					
Ovarian cancer (Approved on 2014/12/19)					
Germline BRCA mutation (deleterious/suspected deleterious)					
Olaparib [ORR(%): 34.0, DOR(M): 7.9]					

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2	Prostate cancer (Approved on 2020/05/15)
	gBRCA+, sBRCA
NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [57]	AII HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]
ARIEL2 ^[58]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **8** of **22**

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[59]	[59]	Breast cancer (Approved on 2018/10/16)
		Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775		Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **9** of **22**

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **10** of **22**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
KMT2C	R1196fs	23	c.3586del	NM_170606	-	36.6%	1008
NOTCH1	V2476*	34	c.7426del	NM 017617	-	16.9%	509

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-00476

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 22

ACTOnco® + Report

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADAMTSL1	D1494N	25	c.4480G>A	NM_001040272	-	52.4%	267
FGFR3	S520L	12	c.1559C>T	NM_000142	-	54.7%	422
IDH2	M397V	10	c.1189A>G	NM_002168	-	45.2%	648
IL7R	S105N	3	c.314G>A	NM_002185	-	46.4%	2166
KMT2D	T698_P706del	10	c.2088_2114del	NM_003482	-	76.5%	290
MTOR	S922P	18	c.2764T>C	NM_004958	-	8.5%	950
PSME1	Splice region	-	c.459+6A>T	NM_006263	COSM147751	50.3%	1321
RAD54L	R716Q	18	c.2147G>A	NM_003579	COSM314662	50.4%	1027
RUNX1T1	R10T	2	c.29G>C	NM_175634	-	48.8%	951

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **22**

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jan 2022
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11175186E
- Collection site: Lung
- Examined by: Dr. Pei-Yi Chu
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 85%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 85%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 895x
- Target Base Coverage at 100x: 95%

RNA test

Average unique RNA Start Sites per control GSP2: 125

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 22

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 25, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號 Yun Yu Chen

Sign Off

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(06) page 15 of 22

ACTOnco® + Report

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	ЕРНА5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	MUTYH	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQO1*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

 $^{{}^{\}star}\mbox{\sc Analysis}$ of copy number alterations NOT available.

FUSION

ALK BRAF EGFR FGFR1 FGFR2 FGFR3 MET NRG1 NTRK1 NTRK2 NTRK3 RET ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **16** of **22**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
ARID1A	Dasatinib, Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 22

ACTOnco® + Report

REFERENCE

- PMID: 25998713; 2015 Nat Rev Cancer; 15(6):334-46
 Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
- PMID: 24081332; 2013, Mol Cell Biol;33(23):4745-54
 The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers.
- 3. PMID: 23166019; 2012, Genes Dev;26(23):2604-20
 Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian MII3/MII4.
- PMID: 27926873; 2016, Cell Rep;17(10):2715-2723
 FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3.
- PMID: 17021013; 2006, Proc Natl Acad Sci U S A;103(42):15392-7
 Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases.
- 6. PMID: 11891048; 2002, Gene; 284(1-2):73-81

 MLL3, a new human member of the TRX/MLL gene family, maps to 7q36, a chromosome region frequently deleted in myeloid leukaemia.
- 7. PMID: 22234698; 2012, Blood;119(10):e67-75
 High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations.
- PMID: 25537518; 2015, Oncotarget;6(4):2466-82
 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer.
- PMID: 25303977; 2014, Clin Cancer Res;20(24):6582-92
 Mutational landscape of aggressive cutaneous squamous cell carcinoma.
- PMID: 25151357; 2014, Nat Genet;46(10):1097-102
 Genetic landscape of esophageal squamous cell carcinoma.
- PMID: 28801450; 2017, Blood;130(14):1644-1648
 Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations.
- PMID: 25794446; 2015, Cancer Genet; 208(5):178-91
 The cancer COMPASS: navigating the functions of MLL complexes in cancer
- PMID: 24794707; 2014, Cancer Cell;25(5):652-65
 MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
- PMID: 30665945; 2019, EMBO Rep;20(3):
 The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer
- PMID: 27280393; 2016, Cancer Res;76(16):4861-71
 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- 16. PMID: 27986439; 2017, Clin Breast Cancer;17(3):e135-e142 Expression Levels of KMT2C and SLC20A1 Identified by Information-theoretical Analysis Are Powerful Prognostic Biomarkers in Estrogen Receptor-positive Breast Cancer.
- PMID: 22326375; 2012, Semin Cell Dev Biol;23(4):421-8
 Notch receptor-ligand binding and activation: insights from molecular studies.
- PMID: 21948802; 2011, J Exp Med;208(10):1931-5
 Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think.
- 19. PMID: 24115441; 2013, Science;342(6155):250-3

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer.

PMID: 11532872; 2001, Carcinogenesis;22(9):1497-503
 Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese.

- 21. PMID: 27035284; 2016, Sci Rep;6():24014
 Somatic Mutations and Genetic Variants of NOTCH1 in Head and Neck Squamous Cell Carcinoma Occurrence and Development.
- PMID: 30770351; 2019, Clin Cancer Res;25(11):3329-3340
 PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition.
- PMID: 26398566; 2015, Oncol Rep;34(6):3174-86
 Loss of function of Notch1 identifies a poor prognosis group of early stage hepatocellular carcinoma following hepatectomy.
- 24. PMID: 10757798; 2000, Mol Cell Biol; 20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- PMID: 25387058; 2015, Annu Rev Pathol;10():145-71
 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science; 330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas
- PMID: 21412130; 2011, Am J Surg Pathol;35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet; 43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.
- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther; 15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance
- PMID: 22101352; 2012, Mod Pathol;25(2):282-8
 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63
 Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 22

Project ID: C22-M001-00247 Report No.: AA-22-00476_ONC Date Reported: Feb 10, 2022

ACTOnco® + Report

- PMID: 26770240, 2015, J Breast Cancer;18(4):339-46
 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- PMID: 21889920; 2012. Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 41. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.
- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- PMID: 20525995; 2010, N Engl J Med;362(24):2260-70
 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 45. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12
 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 46. PMID: 17496201; 2007, Blood;110(7):2309-15

 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib; interim results of a phase 2 study.
- PMID: 30948273; 2019, Lancet Oncol;20(5):636-648
 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer,
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 54. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 55. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- 57. PMID: 28916367; 2017, Lancet;390(10106):1949-1961

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 22

ACTOnco® + Report

Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.

- 58. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87
 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **22** of **22**