Falling Behind: Has Rising Inequality Fueled the American Debt Boom?

Moritz Drechsel-Grau Fabia

<u>Fabian Greimel</u>

University of Amsterdam

Dutch Institute for Emergent Phenomena | February 2, 2023

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusio

Mechanism: Keeping up with the *richer* Joneses

- when somebody wins in the lottery their neighbors buy bigger cars (Kuhn et al., 2011)
- when top incomes rise, the bottom 80% shift expenditures towards visible goods (like housing; see Bertrand and Morse, 2016a)
- when someone builds a big house, their neighbors will lose satisfaction with their own house (Bellet, 2019)

Fact I: Top Incomes Drive Inequality

Pre-tax incomes in the US. Base year: 1980. Based on Piketty et al. (2018).

Fact II: US Household Debt Boom and Income Inequality

Source: US Flow of funds and World Inequality Database (Piketty et al.) • alternative inequality measure

Fact III: Mortgages of Non-Rich and Top Incomes Across US States

Figure shows changes between 1980 and 2007 for mortgages of the bottom 90% and incomes of the top 10%. Data: Distributional National Accounts.

In the paper: various specifications that confirm this result.

Research Question and Method

Research Question

Can rising income inequality account for (part of) the mortgage debt boom?

Research Question and Method

Research Question

Can rising income inequality account for (part of) the mortgage debt boom?

Macroeconomic Model

- heterogeneous agents (income and wealth)
- · durable housing and non-durable consumption, mortgages
- social preferences (Keeping up with the Joneses)

Data

 US State-Level Distributional National Accounts (Piketty et al., 2018; Mian et al., 2020)

Findings

Analytical Results

- 1. individual debt is increasing in the incomes of the reference group
- 2. aggregate debt/income is increasing in top incomes if rich are *sufficiently popular*
- 3. house prices are increasing in top incomes if the rich are *sufficiently popular*

Empirical Results

- 1. non-rich mortgages are associated with lagged top incomes
- 2. house prices are associated with lagged top incomes

Quantitative Result

1. Rising inequality and social comparisons generate about 50% of observed mortgage and house price booms

How rising income inequality induces demand for mortgages

rising top inequality

Keeping up with the *richer* Joneses

mortgage boom

- 1. rich become richer (exogenously)
- 2. rich improve their houses, raise reference point
- 3. non-rich want to keep up with the richer Joneses
- 4. non-rich improve their houses using a mortage
- 5. higher debt-to-income ratios across the distribution

Note: non-rich ≈ bottom 90 % (almost everyone!)

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusio

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2020, JPE), Mian et al. (2021, QJE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- "Distributional macroeconomics"
 e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015,
 → another reason why "inequality matters for macro"
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 - → infinite-horizon network model

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2020, JPE), Mian et al. (2021, QJE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015, → another reason why "inequality matters for macro"
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 infinite-horizon network model

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2020, JPE), Mian et al. (2021, QJE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- "Distributional macroeconomics"
 e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015)
 another reason why "inequality matters for macro"
 - e.g. De Giorgi et al. (2019, REStud), Bertrand and Morse (2016b, REStat), Bellet (2019 → quantify effects on macroeconomic outcomes
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 infinite-horizon network model

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2020, JPE), Mian et al. (2021, QJE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- "Distributional macroeconomics"
 e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015)
 another reason why "inequality matters for macro"
- Empirical consumption externalities
 e.g. De Giorgi et al. (2019, REStud), Bertrand and Morse (2016b, REStat), Bellet (2019)
 quantify effects on macroeconomic outcomes
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 infinite-horizon network model

- Macroeconomics with housing and mortgages, housing (debt) boom
 e.g. Kumhof et al. (2015, AER), Favilukis et al. (2017, JPE), Kaplan et al. (2020, JPE), Mian et al. (2021, QJE)
 new (demand-side) mechanism, extended time-horizon
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990, AER P&P), Campbell and Cochrane (1999, JPE), Ljungqvist and Uhlig (2000, AER)
 heterogenous agent model, use micro-evidence for parameterization
- "Distributional macroeconomics"
 e.g. Kaplan and Violante (2014, Ecma), Kaplan et al. (2016, AER), Achdou et al. (2015)
 another reason why "inequality matters for macro"
- Empirical consumption externalities
 e.g. De Giorgi et al. (2019, REStud), Bertrand and Morse (2016b, REStat), Bellet (2019)
 quantify effects on macroeconomic outcomes
- Network economics e.g. Ballester et al. (2006, Ecma), Ghiglino and Goyal (2010, JEEA)
 - → infinite-horizon network model

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusion

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- · constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- flow utility is $\frac{((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- constant incomes $\tilde{v}^1 < \tilde{v}^2 < \dots < \tilde{v}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\cdot \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- $\cdot \text{ flow utility is } \tfrac{\left((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon}\right)^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{\mathbf{y}}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- flow utility is $\frac{((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- · constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t \frac{c_t}{c_t} p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\cdot \int_0^\infty e^{-\rho t} u(\mathbf{c_t}, s(h_t, \bar{h}_t)) dt$
- $\cdot \text{ flow utility is } \tfrac{\left((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon}\right)^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- constant incomes $\tilde{v}^1 < \tilde{v}^2 < \dots < \tilde{v}^N$
- consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t \frac{p_t x_t}{2}$
- $\cdot \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\cdot \int_0^\infty e^{-\rho t} u(c_t, s(\frac{\mathbf{h_t}}{\mathbf{h_t}}, \bar{h}_t)) dt$
- flow utility is $\frac{((1-\xi)c^{1-\varepsilon}+\xi s({\bf h},\bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- \cdot reference measure $ar{m{h}}=Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- constant incomes $\tilde{v}^1 < \tilde{v}^2 < \dots < \tilde{v}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- $\cdot \text{ flow utility is } \tfrac{\left((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon}\right)^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- · constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- flow utility is $\frac{((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{m{h}} = Gm{h}$,

- types $i \in \{1, \ldots, N\}$
- population weights ω_i
- constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- · consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\dot{h}_t = -\delta h_t + x_t$

Preferences

- $\cdot \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$ $\cdot \text{ flow utility is } \frac{((1-\xi)c^{1-\varepsilon} + \xi s(h, \bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $\bar{h} = Gh$. e.g.

$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix}}_{G} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

- types $j \in \{1, \dots, N\}$
- \cdot population weights ω_j
- constant incomes $\tilde{y}^1 < \tilde{y}^2 < \dots < \tilde{y}^N$
- \cdot consumption c, durable housing h
- asset a (savings device and mortgage)
- house price p, interest rate $r = \rho$

Endogenous States

- $\dot{a}_t = \tilde{y}_t + r_t a_t c_t p_t x_t$
- $\cdot \ \dot{h}_t = -\delta h_t + x_t$

Preferences

- $\int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t)) dt$
- flow utility is $\frac{((1-\xi)c^{1-\varepsilon}+\xi s(h,\bar{h})^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

- housing status $s(h, \bar{h}) = h \phi \bar{h}$
- · reference measure $ar{\mathbf{h}} = G\mathbf{h}$, e.g.

How optimal debt depends on others' incomes

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_2 \underbrace{\left(\sum_{i=1}^{\infty} \tilde{\phi}^i G^i\right)}_{\approx l \text{ contief inverse of } G} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where
$$\tilde{\phi} = \kappa_3 \phi \in (0,1)$$
, $\kappa_1, \kappa_2 > 0$.

How optimal debt depends on others' incomes

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_2 \begin{pmatrix} 0 & \tilde{\phi} \cdot g_{PM} & \tilde{\phi} \cdot g_{PR} + \tilde{\phi}^2 \cdot g_{PM} \cdot g_{MR} \\ 0 & 0 & \tilde{\phi} \cdot g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where $\tilde{\phi} = \kappa_3 \phi \in (0,1)$, $\kappa_1, \kappa_2 > 0$.

How optimal debt depends on others' incomes

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_2 \begin{pmatrix} 0 & \tilde{\phi} \cdot g_{PM} & \tilde{\phi} \cdot g_{PR} + \tilde{\phi}^2 \cdot g_{PM} \cdot g_{MR} \\ 0 & 0 & \tilde{\phi} \cdot g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where $\tilde{\phi} = \kappa_3 \phi \in (0,1)$, $\kappa_1, \kappa_2 > 0$.

- → Households need not be directly linked! (effects trickle-down)
- \rightarrow Impact determined by column sums of $\sum_{i=1}^{\infty} \tilde{\phi}^i G^i$

Why Is Debt Increasing in Others' Incomes?

1. others' houses (and \bar{h}) increase in others' incomes

Why Is Debt Increasing in Others' Incomes?

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses

$$h = c \left(\frac{\xi}{(1-\xi)rp} \right)^{\frac{1}{1-\varepsilon}} + \phi \bar{h}$$

Why Is Debt Increasing in Others' Incomes?

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- 3. bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

→ Own credit demand is increasing in others' income!

Helpful definition

Let $\boldsymbol{\omega}^T = (\omega_P, \omega_M, \omega_R)$ be the types' population weights.

Popularity

The vector of popularities are population-weighted column sums

$$oldsymbol{b}^T = oldsymbol{\omega}^T {\displaystyle \sum_{i=1}^{\infty} ilde{\phi}^i G^i}$$

and type i's popularity be the ith component b_i .

Helpful definition

Let $\boldsymbol{\omega}^T = (\omega_P, \omega_M, \omega_R)$ be the types' population weights.

Popularity

The vector of popularities are population-weighted column sums

$$oldsymbol{b}^T = oldsymbol{\omega}^T {\displaystyle \sum_{i=1}^{\infty}} ilde{\phi}^i G^i$$

and type i's popularity be the ith component b_i .

Popularity measures

- how many weighted paths end at a given type i (Bonacich-Katz in-centrality)
- \cdot how strongly the other types care about type i
- $b_i \geq 0$ for all i

Four examples

	no Joneses	mean Joneses	richer Joneses	rich Joneses
G	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 & x & 1 - x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
b	(0, 0, 0)	$rac{ ilde{\phi}}{1- ilde{\phi}}(\omega_P,\omega_M,\omega_R)$	$\left(0,\omega_P\tilde{\phi}x,(*)\right)$	$\frac{ ilde{\phi}}{1- ilde{\phi}}(0,0,1)$

where
$$(*) = \omega_P(ilde{\phi}(1-x) + ilde{\phi}^2x) + \omega_M ilde{\phi}$$

Effects on aggregates

Lemma

Aggregate housing demand and aggregate debt can be written in terms of popularity.

$$\sum_i \omega_i h_i = \kappa_4 (oldsymbol{\omega} + oldsymbol{b})^T oldsymbol{y}, \quad - \sum_i \omega_i a_i = \kappa_5 (oldsymbol{\omega} + oldsymbol{b})^T oldsymbol{y}$$

Proposition

The impact of a change in type j's income y_j on aggregate housing and aggregate debt is proportional to j's popularity.

The Consequences of Redistribution

Redistribute income from type i to type j

$$(\omega_j \underbrace{\Delta y_j}_{+} + \omega_i \underbrace{\Delta y_i}_{-} = 0)$$

Result

· housing & debt rise iff j is more popular than i

Definition: Type j is more popular than type i

$$\frac{b_j}{\omega_j} > \frac{b_i}{\omega_i}$$

The Consequences of Uneven Income Growth

Income grows only for type j

$$(\Delta y_j > 0$$
, but $\Delta y_i = 0$ for all $j \neq i$)

Result

 \cdot housing-to-income & debt-to-income rises iff j's popularity is above average

Definition: Type j's popularity is above average

$$\frac{b_j}{\omega_j} > \sum_{i \neq j} \lambda_i \frac{b_i}{\omega_i}$$

Towards General Equilibrium: Clearing the housing market

Housing demand

$$H = \sum_{i=1}^{N} \omega_i h_i$$

Housing supply (as in Favilukis et al., 2017; Kaplan et al., 2020)

· use effective labor ΘN_h and land permits \bar{L} for new construction

$$I_h = (\Theta N_h)^{\alpha} \bar{L}^{1-\alpha}$$

· optimal construction is $I_h^* = (p\alpha)^{rac{lpha}{1-lpha}} ar{L}$

Market clearing

$$I_h = \delta H$$

General Equilibrium I: Top incomes and house prices

Special case: Cobb-Douglas (arepsilon o 1)

- optimal debt is independent of p (previous results survive)
- the equilibrium house price is

$$p = \alpha^{-\alpha} \left(\frac{\delta \xi (\boldsymbol{\omega} + \boldsymbol{b})^T \boldsymbol{y}}{\bar{L}(r + \delta)} \right)^{1 - \alpha}$$

- · Redistribution increases $p \iff j$'s popularity is above average
- · Uneven income growth increases* $p \iff j$ is more popular than i
- (*) increase beyond the income effect

Does inequality drive debt and house prices? (I)

	no Joneses mean Joneses		richer Joneses	rich Joneses
G	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$ \begin{pmatrix} 0 & x & 1 - x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} $
b	(0,0,0)	$rac{ ilde{\phi}}{1- ilde{\phi}}(\omega_P,\omega_M,\omega_R)$	$\left(0,\omega_P\tilde{\phi}x,(*)\right)$	$\frac{\tilde{\phi}}{1-\tilde{\phi}}(0,0,1)$
$\frac{b_R}{\omega_R} > \frac{b_P}{\omega_P}$	no	no	yes	yes
$\frac{b_R}{\omega_R} > \frac{b_M}{\omega_M}$	no	no	yes*	yes

where
$$(*) = \omega_P(\tilde{\phi}(1-x) + \tilde{\phi}^2x) + \omega_M\tilde{\phi}$$

Does inequality drive debt and house prices? (II)

- What comparison matrix G is empirically relevant?
 - comparison motive is strongest (and best documented) with respect to the rich (e.g. Clark and Senik, 2010; Ferrer-i-Carbonell, 2005; Card et al., 2012)
 - this would correspond to rich(er) Joneses
- · model suggests: yes, income inequality drives mortgages and house prices
- · what about non-mortgage debt?
 - · mechanism only holds for durable and conspicuous goods
 - · expect similar mechanism for cars, jewelry; but not for fancy food and hotels
 - · model predicts weaker correlation, if any

General Equilibrium Beyond Cobb-Douglas: Pick parameters

- 1. income types: Bottom 50%, Middle 40%, Top 10%
 - · match income shares in 1980
- 2. strength of the comparison motive
 - match sensitivity w.r.t others' housing
 - · use estimate from Bellet (2019) as upper bound
- 3. comparison matrix: no Joneses vs mean Joneses vs rich(er) Joneses
- 4. elasticity ($c \vee h$)
 - · literature uses $\frac{1}{1-\varepsilon} \in \{0.15, 1.0, 1.25\}$
 - · structural estimation using micro data vs time series data

Calibration

Parameter description		Source	Value	
Prefe	Preferences			
$\frac{1}{m}$	average life-time	working age 20–65	45.0	
ρ	discount factor	internally calibrated	0.271	
ξ	utility weight of housing	internally calibrated		
$\frac{1}{1-\varepsilon}$	elasticity of substitution $(s(h,ar{h})$ vs $c)$	literature, see text	$\{0.15, 1.0, 1.25\}$	
ϕ	strength of the comparison motive	internally calibrated	0.351	
Technology				
$\frac{\alpha}{1-\alpha}$	housing supply elasticity	Saiz (2010)	1.5	
δ	depreciation rate of housing	internally calibrated	0.052	
\bar{L}	flow of land permits	ad hoc	1.0	

Model Fit

	Ν	lodel		
Moment	KURJ	Standard	Target	Source
employment share in construction sector	0.05	0.05	0.05	Kaplan et al. (2020)
loan-to-value	0.294	0.294	0.294	DINA (1980)
mortgage-to-income	0.462	0.462	0.462	DINA (1980)
sensitivity to top housing	0.7		0.7	Bellet (2019)

Varying the Comparison Network G

Varying the Comparison Network ${\it G}$

Take-away: Classic Keeping up with the average Joneses doesn't have a big effect

- price effect dominates

The Consequences of Doubling Top Incomes in General equilibrium

The Consequences of Doubling Top Incomes in General equilibrium

Take-away: Social comparisons not needed to drive house prices, but to drive debt

Varying the Strength of the Comparison Motive ϕ

Decomposing the Aggregate Effect

Decomposing the Aggregate Effect

Take-away: Significant reaction of the Bottom 90%

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusion

 positive correlation between top incomes and bottom debt

 positive correlation between top incomes and bottom mortgage debt

- positive correlation between top incomes and bottom mortgage debt
- robust to many specifications

- positive correlation between top incomes and bottom mortgage debt
- robust to many specifications
- findings are consistent with theoretical predictions of KURJ

- positive correlation between top incomes and bottom mortgage debt
- robust to many specifications
- findings are consistent with theoretical predictions of KURJ
- Caveat: cannot claim causality from empirical analysis alone

Data

- · US State-Level Distributional National Accounts (Piketty et al., 2018)
- state-level identifiers imputed from IRS data for top incomes (Mian et al., 2020)
- · aggregate to state-year panel 1980–2007

Baseline regressions: Top Incomes and Mortgages of Non-Rich

	$\log(NonRic$	$HousePrice_t$	
	(1)	(2)	(3)
$\log(\mathit{TopIncomes}_{t-2})$	0.3218*** (0.0923)	0.2922*** (0.0862)	2.0311*** (0.4456)
$HousePrice_t$		0.0002 (0.0003)	
Non-Rich Income FE	Yes	Yes	-
Total Income FE	-	_	Yes
Demographic Controls	Yes	Yes	Yes
State & Year FE	Yes	Yes	Yes
Method	OLS	IV	OLS
F-test (first stage)	-	13.54	-

Additional results and robustness checks

- effect builds up over time: significant effects for lags $\in \{2, ..., 7\}$
- effect is strongest in reaction to top incomes
- effect survives controlling for house prices (though: bad control)
- plus: house prices correlate with lagged top incomes as well (consistent with model)

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusio

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

- adjust permanent component of incomes (σ_{α}^2) to match difference in P90/P50 ratio between 1980 and 2007
- all other parameters are kept constant

Rising inequality, mortgages and house prices 1980–2007 (2)

Take-away: Inequality & keeping up with the Joneses generate

- · 40% of the observed mortgage boom
- 55% of the observed house price boom

Social Comparisons are an Important Amplifier — Rising Inequality is not Enough

Note: Keeping reference measure \bar{h} constant at \bar{h}_{1980} .

Take-away: Keeping up with the Joneses contributes 61% of the mortgage debt increase and 30% of the house price increase

Outline

Introduction

Relation to the Literature

Model & Results

Empirical Evidence

Quantitative Results

Conclusion

Conclusion

- We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"
- We show analytically that aggregate debt-to-income ratio is increasing in top incomes if the rich are *sufficiently popular*
- We show empirically that higher top incomes are associated with higher mortgage debt and house prices across states and time
- We show that rising income inequality "keeping up with the Joneses" are a quantitatively important driver of mortgage debt

References i

- ABEL, A. B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80, 38–42.
- ACHDOU, Y., J. HAN, J.-M. LASRY, P.-L. LIONS, AND B. MOLL (2015): "Heterogeneous Agent Models in Continuous Time," .
- BALLESTER, C., A. CALVÓ-ARMENGOL, AND Y. ZENOU (2006): "Who's Who in Networks. Wanted: The Key Player," *Econometrica*, 74, 1403–1417.
- Bellet, C. (2019): "The McMansion Effect: Top Size Inequality, House Satisfaction and Home Improvement in US Suburbs," Working paper, Erasmus University Rotterdam.
- BERTRAND, M. AND A. MORSE (2016a): "Trickle-Down Consumption," *Review of Economics and Statistics*, 98, 863–879.
- —— (2016b): "Trickle-down Consumption," Review of Economics and Statistics.

References ii

- CAMPBELL, J. Y. AND J. H. COCHRANE (1999): "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," *Journal of Political Economy*, 107, 205–251.
- CARD, D., A. MAS, E. MORETTI, AND E. SAEZ (2012): "Inequality at Work: The Effect of Peer Salaries on Job Satisfaction," *American Economic Review*, 102, 2981–3003.
- CLARK, A. E. AND C. SENIK (2010): "Who Compares to Whom? The Anatomy of Income Comparisons in Europe," *Economic Journal*, 120, 573–594.
- DE GIORGI, G., A. FREDERIKSEN, AND L. PISTAFERRI (2019): "Consumption Network Effects," *The Review of Economic Studies*.
- FAVILUKIS, J., S. C. LUDVIGSON, AND S. VAN NIEUWERBURGH (2017): "The macroeconomic effects of housing wealth, housing finance, and limited risk sharing in general equilibrium," *Journal of Political Economy*, 125, 140–223.
- FERRER-I-CARBONELL, A. (2005): "Income and Well-being: An Empirical Analysis of the Comparison Income Effect," *Journal of Public Economics*, 89, 997–1019.

References iii

- GHIGLINO, C. AND S. GOYAL (2010): "Keeping up with the Neighbors: Social Interaction in a Market Economy," *Journal of the European Economic Association*, 8, 90–119.
- GUVENEN, F., G. KAPLAN, J. SONG, AND J. WEIDNER (2018): "Lifetime incomes in the United States over six decades," .
- KAPLAN, G., K. MITMAN, AND G. L. VIOLANTE (2020): "The housing boom and bust: Model meets evidence," *Journal of Poltical Economy*.
- KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2016): "Monetary Policy According to HANK," Working Paper 21897, National Bureau of Economic Research.
- KAPLAN, G. AND G. L. VIOLANTE (2014): "A Model of the Consumption Response to Fiscal Stimulus Payments," *Econometrica*, 82, 1199–1239.
- KUHN, P., P. KOOREMAN, A. SOETEVENT, AND A. KAPTEYN (2011): "The Effects of Lottery Prizes on Winners and Their Neighbors: Evidence from the Dutch Postcode Lottery," *American Economic Review*, 101, 2226–47.

References iv

- Кимноғ, М., R. Rancıère, and P. Winant (2015): "Inequality, Leverage, and Crises," American Economic Review, 105, 1217–45.
- LJUNGQVIST, L. AND H. UHLIG (2000): "Tax policy and aggregate demand management under catching up with the Joneses," *American Economic Review*, 356–366.
- MIAN, A., L. STRAUB, AND A. SUFI (2021): "Indebted Demand," *The Quarterly Journal of Economics*, qjab007.
- MIAN, A. R., L. STRAUB, AND A. SUFI (2020): "The Saving Glut of the Rich and the Rise in Household Debt," Working Paper 26941, National Bureau of Economic Research.
- PIKETTY, T., E. SAEZ, AND G. ZUCMAN (2018): "Distributional national accounts: methods and estimates for the United States," *Quarterly Journal of Economics*, 133, 553–609.
- SAIZ, A. (2010): "The geographic determinants of housing supply," *Quarterly Journal of Economics*, 125, 1253–1296.