Quadratic Sorts

Mayaank Vadlamani & Kashif Peshimam

Random

Ascending

Descending

All

Explain why these are called quadratic sorts. O(n2)

- Number of comparisons increases as a quadratic relationship with array size
- Ex: Insertion sort
 - Outer loop runs N times
 - Inner loop runs N/2 times
 - \circ N * N/2 = N^2

Which is the most efficient sort of a random array? Why?

- Insertion Sort
 - Insertion sort provides a O(n²) worst case algorithm that adapts to O(n) tir data is nearly sorted.
 - o requires less memory
 - Fewer comparisons

Which is the least efficient sort of a reverse ordered array? Why?

Bubble Sort

- Because of a large amount of possible swaps.
- It compares every element to a lot of other elements. That slows it down
- Worst case: O(n^2)
- Average Case: O(n^2)
- Best Case: O(n)

Which of these sort situations will produce a linear relationship O(n). Why?

- Bubble and Insertion Sort with ascending ordered array
 - The array is already sorted
 - So the methods only pass through once (O(n))
 - do not swap anything, everything is already in order.