Question 14	(12 marks)
-------------	------------

An electron microscope creates a coherent beam of electrons which then travels through two narrow slits. The resulting interference pattern is detected on a photographic plate. The speed of the electrons is 1.00% of the speed of light.

Show that the de Broglie wavelength of the electrons used is 2.43 × 10 ⁻¹⁰ m.	(2 marks)
Describe what you expect to see on the photographic plate.	(2 marks)
Explain the behaviour of the electrons in this experiment	(2 marks)
Explain the behaviour of the electrons in this experiment.	(2 marks

(d)	If the experiment were to be repeated using protons, at what speed would to travel to have the same de Broglie wavelength as the electrons?	a proton need (2 marks)
(e)	Answer Calculate the potential difference required for the electron microscope to a electrons to 1.00% of the speed of light.	