TOPOLOGY QUALIFYING EXAM Spring 1995

(Strecker and Wu)

Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. **Do not turn in more than six problems.** A space always means a topological space below.

- **1.** Let $f, g: X \to Y$ be continuous. Assume that Y is Hausdorff. Show that the set $\{x \in X \mid f(x) = g(x)\}$ is closed in X.
- **2.** Consider the function $f: X \to Y$ between topological spaces and the following statements:

Statement 1. f is continuous iff for every subset A of X $f[cl_X[A]] \subseteq cl_Y f[A]$.

Statement 2. f is continuous iff for each open set U in Y the set $f^{-1}[U]$ is open in X.

Statement 3. f is continuous iff for each convergent net $\alpha: \Lambda \to X$ the net $f \circ \alpha: \Lambda \to Y$ is convergent.

Statement 4. f is continuous iff for each convergent filter \mathcal{F} on X the filter on Y generated by $\{f[F]|F \in \mathcal{F}\}$ is convergent.

Choose one of the above statements as the definition of continuity and use it to show that one of the other statements is true.

- **3.** Prove that every retract of the real line with the usual topology is a closed subset of the line.
- **4.** Show that the following two statements about a topological space X are equivalent:
 - (a) X is connected.
 - (b) No two-point discrete space is a quotient space of X.
- **5.** A space X is called *locally metrizable* if each point x of X has a neighborhood base consisting of metrizable subspaces. Show that a compact Hausdorff space X is metrizable if and only if it is locally metrizable.
- **6.** Prove that the sequence $a: \mathbb{N} \to \mathbb{R}$ given by $a_n = \frac{1}{n}$ is **not** an ultranet in \mathbb{R} .
- **7.** Prove that for any function f between spaces, the following are equivalent:
 - (a) f is a homeomorphism.
 - (b) f is a one-to-one quotient map.
 - (c) f is a surjective embedding.
- **8.** Prove or disprove the following statements:
 - (a) A connected open set in a locally path connected space is path connected.
 - (b) A path connected open set in a locally connected space is connected.

9. Let C_n be the subspace of \mathbb{R}^2 defined by

$$C_n := \left\{ (x, y) \mid \left(x - \frac{1}{n} \right)^2 + y^2 = \frac{1}{n^2} \right\}$$

and let $Y = \bigcup_{n=1}^{\infty} C_n \subseteq \mathbb{R}^2$ with the subspace topology. Let $X = C_1 \times \{1, 2, \dots, \} \subseteq \mathbb{R}^2 \times \mathbb{R}$ with the subspace topology. Define $g: X \to Y$ by

$$g((x,y),n) := \left(\frac{x}{n}, \frac{y}{n}\right).$$

Show that g is continuous and surjective. Is g a quotient map?

10. Consider $X \times Y$ where Y is a compact space. Let $\{x_0\} \times Y \subseteq N$ where N is open in $X \times Y$. Show that there is a neighborhood W of x_0 , W open in X such that

$$\{x_0\} \times Y \subseteq W \times Y \subseteq N.$$

- 11. (a) Give an example of an ultrafilter on the set \mathbb{N} of natural numbers.
 - (b) Give an example of a filter on \mathbb{N} that is not an ultrafilter.
 - (c) Prove that every filter on \mathbb{N} in contained in an ultrafilter on \mathbb{N}
- **12.** Prove or disprove the following statements:
- (a) \mathbb{R} (with the standard topology) is not a countable union of closed subsets each having empty interior.
- (b) \mathbb{R} (with the standard topology) is not a countable union of subsets each having empty interior.
- 13. Let X be a topological space and (Y, d) a metric space. Let C(X, Y) be the set of continuous maps from X to Y. Show that the compact-open topology and the topology of uniform convergence on compact subsets on C(X, Y) coincide.
- **14.** Find an error in the following purported "proof" of the jactitation that if K is compact, \mathbb{R} has the usual topology, and $f:K\to\mathbb{R}$ is continuous, then f is an open mapping.
- "PROOF": Let U be open in K. Then $E = K \setminus U$ is closed. So E is compact. Hence f[E] is a compact subset of \mathbb{R} . Thus f[E] must be closed, so that $\mathbb{R} \setminus f[E] = W$ is open. But W = f[U]. Hence f preserves open sets and is thus an open mapping.
- 15. Let Ω_0 be the set of all ordinals less than the first uncountable ordinal, with the order topology. We know that Ω_0 is T_4 and that every real-valued function on Ω_0 is constant on some tail. Find the Stone-Čech compactification of Ω_0 . [Give your reasoning].