Face Recognition System

1. Project Summary

This project aimed to build a robust face recognition system divided into three phases: face detection, feature extraction, and classification. The final goal was to deploy the solution using a Streamlit web application.

- **Phase 1**: Detected and extracted faces from input images using Haar Cascade Classifier.
- **Phase 2**: Generated face embeddings using the VGG16 pre-trained model.
- **Phase 3**: Trained classifiers using the extracted embeddings and deployed the best-performing model via Streamlit.

2. What I Learned

- **Understanding Face Recognition Systems**: Gained theoretical knowledge about the full pipeline, including detection, embedding, and classification.
- Image Preprocessing: Face detection using Haar Cascades and image resizing.
- **Transfer Learning**: Leveraging VGG16 for feature extraction without fine-tuning.
- **Feature Embedding**: Generating 4096-dimensional vectors representing facial features.
- Classifier Evaluation: Comparing Random Forest, SVM and KNN.
- **App Deployment**: Developing and deploying an interactive face recognition app with Streamlit.
- Model Serialization: Saving and loading models and embeddings using joblib and NumPy.
- **Version Control & Dependency Management**: Debugging dependency conflicts using requirements.txt.

3. Challenges & Solutions

Challenge	Solution
Understanding different components of face recognition systems	Invested time in learning the theory behind detection, embeddings, and classification
FaceNet model download issues or corruption	Switched to VGG16 which was more stable and compatible with the working environment

Challenge	Solution
VGG16 struggles with side-view facial images	Focused on frontal face images only for better results
Streamlit app failing to install dependencies	Manually corrected and verified requirements.txt file

4. Conclusion

This project allowed me to gain hands-on experience with the full machine learning pipeline, from data preprocessing and model building to real-world deployment. I faced technical hurdles such as import errors, deployment issues, and classifier limitations, but resolved them with structured debugging and experimentation.

Moving forward, I aim to:

- Integrate real-time webcam input.
- Use more advanced models.