## A Radius Determination of Exoplanets and the Typicality of Earth

Haley Bates-Tarasewicz



Figure 1: The transit method of detecting and imaging exoplanets<sup>1</sup>

1: Introduction to Differential Photometry. (2013, February 18). Retrieved November 1, 2015.

Table 1: Observational Circumstances for Observed Exoplanet Transits at Wallace Astrophysical Observatory in September and October <sup>1</sup>

| Date (EDT) | Transit     | Apparent<br>Magnitude<br>(R) | Delta<br>Magnitude<br>(milimags) | Elevation<br>(start, mid,<br>end) | Time (EDT)<br>(start, mid,<br>end) |
|------------|-------------|------------------------------|----------------------------------|-----------------------------------|------------------------------------|
| 9/14/2015  | Tres-3 b    | 12.1                         | 29.3                             | 37°, 30°, 24°                     | 22:44—23:24—<br>00:04              |
| 10/5/2015  | Tres-1 b    | 11.2                         | 19.8                             | 53°, 39°, 26°                     | 22:01—23:16—<br>00:31              |
| 10/16/2015 | Kepler-6 b  | 15.6                         | 10.4                             | 72°, 52°, 34°                     | 20:25—22:23—<br>00:21              |
| 10/25/2015 | Kepler-45 b | 15.7                         | 34.2                             | 77°, 71°, 65°                     | 20:53—21:25—<br>21:57              |

1: This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in A&AS 143, 23

Table 2: Comparison Star Specification for Transit Star Fields<sup>1</sup>

| Transit     | Target<br>Magnitude (R) | Magnitude<br>(R) |  |
|-------------|-------------------------|------------------|--|
| Tres-3 b    | 12.1                    | 13.4             |  |
|             |                         | 13.9             |  |
|             |                         | 13.0             |  |
| Tres-1 b    | 11.2                    | 12.8             |  |
|             |                         | 11.2             |  |
|             |                         | 10.7             |  |
| Kepler-6 b  | 15.6                    | 14.4             |  |
|             |                         | 12.6             |  |
|             |                         | 14.0             |  |
| Kepler-45 b | 15.7                    | 15.1             |  |
|             |                         | 15.4             |  |
|             |                         | 14.9             |  |



Figure 3: Tres-1 b finding chart and detail

Table 3: Data Taken at Wallace Astrophysical Observatory in September and October 2015

| Transit     | Date<br>(2015) (EDT) | Frame | Data Amount<br>(Images) | Weather | Telescope      |
|-------------|----------------------|-------|-------------------------|---------|----------------|
| Tres-3 b    | Sep. 14              | Light | 382                     | Clear   | Ealing 16in    |
| Tres-1 b    | Oct. 5               | Light | 354                     | Clear   | Ealing 16in    |
| Kepler-6 b  | Oct. 16              | Light | 716                     | Clear   | 14in Celestron |
| Kepler-45 b | Oct. 25              | Light | 173                     | Cloudy  | 14in Celestron |

- All data taken in the R filter
- 10 Bias frames taken at the beginning of every night
- 10 Dark frames taken at the end of every night

Figure 3: Calibration images and reduction process using dark/bias subtraction and flat division.





Figure 4: Seeing profile and aperture/annulus radii for Tres-1 b



Figure 5: Comparison star quality test for Tres-1 b to determine flux uniformity

Multi-Aperture Photometry using circular apertures with concentric background annulus

Figure 6: Tres-3 b Transiting Exoplanet



**Figure 7: Tres-1 b Transiting Exoplanet** 



**Figure 8: Kepler-6 b Transiting Exoplanet** 



**Figure 9: Kepler-45 b Transiting Exoplanet** 





$$\Delta f = \left(\frac{r}{R}\right)^2$$

- 92% certain from Student's t Test
- Depth of transit: 0.0059 +/- 0.0042
- 0.62 R<sub>Jupiter</sub> +/- 0.27



$$\Delta f = \left(\frac{r}{R}\right)^2$$

- Standard deviation of set is 0.039
- Maximum radius: 0.87 R<sub>Jupiter</sub>

## Conclusions

## Two hypotheses:

Exoplanets are comparable to Jupiter in size and Earth is atypical

 The types of planets the transit method can detect are comparable to Jupiter in size