FORMATION DATA SCIENTIST

PROJET 6: CLASSIFIEZ AUTOMATIQUEMENT DES BIENS DE CONSOMMATION

Presented By: Kourouma Sekouba

SOMMAIRE

- 1. MISSION
- 2. PRESENTATION DU JEU DE DONNÉE
- 3. ANALYSE EXPLORATOIRE

- 4. ETUDE DE FAISABILITE DE CLASSIFICATION (TEXTE)
- 5. ETUDE DE FAISABILITE DE CLASSIFICATION (IMAGE)
- 6. LA CLASSIFICATION
- 7. CONCLUSION

1. MISSION

Les vendeurs proposent des articles à des acheteurs en postant une photo et une description.

L'objectif est de simplifier l'expérience utilisateur pour les vendeurs et les acheteurs en rendant plus fiable et efficace le processus de catégorisation des articles, afin de faciliter l'expansion de la place de marché

- Comment pouvons-nous automatiser la catégorisation des articles d'une place de marché en utilisant les données disponibles (images et descriptions textuelles) pour garantir une expérience fluide pour les utilisateurs et assurer une catégorisation cohérente ?
- Quels modèles et techniques d'extraction de fonctionnalités textuelles et visuelles seraient les plus adaptés pour garantir une classification précise et évolutive des articles en catégories ?

2. PRESENTATION DU JEU DE DONNÉE

• La taille: (1050, 15)

3. ANALYSE EXPLORATOIRE

Category_1 présente une répartition plus équilibrée, contrairement aux catégories

Category_2et Category_3

Le nombre de caractère des mots

4. ETUDE DE FAISABILITE DE CLASSIFICATION (TEXTE)

4.1 Méthodes NLP basique

4.1a Prétraitement des textes

- Tokenisation
- stemming
- lemmatization

4.1b méthodes basiques d'encodage de texte et réduction de dimension

- Bag of Words
- Tfldf

CountVectorizer, TF-IDF, Universal Sentence Encoder, Word2Vec, et BERT – sont des méthodes courantes en NLP pour représenter des mots, phrases ou documents sous une forme numérique compréhensible pour les modèles d'apprentissage automatique.

4.2 Méthodes NLP avancées

- Word2Vec
- BERT

• Universal Sentence Encoder

4.1 Méthodes NLP basique

4.1a Prétraitement des textes

Tokenisation

processus de division d'un texte en unités plus petites, appelées tokens. (split, regex, nltk et spaCy)

- Désaccentuation
- mettre en minuscule
- Suppression des stop Word

Simplifier nos tokens

stemming

est une technique qui réduit les mots à leur racine (ou stem), en supprimant généralement les suffixes et prefixe.

lem	mati	zati	on
	HIGU	4 000	

Retrouver la racine du mot appelé lemme . l'infinitif , ou singulier etc.

	longueur_texte
count	1050.000000
mean	473.820952
std	457.910422
min	109.000000
25%	192.000000
50%	278.000000
75%	588.250000
max	3490.000000

dtype: float64

	long_apres_traitement
count	1050.000000
mean	324.009524
std	300.156251
min	61.000000
25%	131.250000
50%	200.000000
75%	423.000000
max	2330.000000
dtype: flo	at64

4.1b méthodes basiques d'encodage de texte et réduction de dimension

countvectorizer

est une méthode simple pour transformer des textes en vecteurs. Il compte le nombre d'occurrences de chaque mot dans un document, créant un vecteur pour chaque document en fonction de la fréquence brute des mots.

the dog is on the table

Anciennes dimensions: (1050, 4553)
Nouvelles dimensions après PCA: (1050, 576)

TF-IDF VECTORIZER (TERM FREQUENCY INVERSE DOCUMENT FREQUENCY)

Est une méthode d'encodage qui pondère l'importance d'un mots dans le document par rapport à l'ensemble du corpus. $poids = fréquence du terme \times indicateur similarité$

Anciennes dimensions: (1050, 4553)
Nouvelles dimensions après PCA: (1050, 822)

Visualisation t-SNE des Catégories 20 Composante 2 Catégories Beauty and Personal Care Home Decor & Festive Needs Home Furnishing Kitchen & Dining Watches -20 20 40 Composante 1

4.2 Méthodes NLP avancées

Universal Sentence Encoder

est un modèle de Google qui représente des phrases ou des textes plus longs en vecteurs, tout en tenant compte des relations sémantiques entre les mots.

Word2Vec

Propose d'apprendre les représentations vectorielles des mots présents dans un corpus en utilisant des réseaux de neurones.

T.Mikolov, (Google), 2013

BERT

BERT est un modèle de traitement de langage naturel basé sur les transformateurs, développé par Google. Il capture les significations contextuelles des mots de manière bidirectionnelle, ce qui signifie qu'il prend en compte le contexte des mots avant et après chaque mot cible dans une phrase.

5. ETUDE DE FAISABILITE DE CLASSIFICATION (IMAGE)

• Algorithme SIFT (Scale-Invariant Feature Transform)

Chaque image contient des descripteurs, qui sont des vecteurs de 128 éléments.

Algorithme de type CNN Transfer Learning

Le transfer learning, ou apprentissage par transfert, est une technique en apprentissage automatique qui utilise des modèles déjà entraînés sur des tâches similaires pour résoudre de nouveaux problèmes.

6. METHODE DE CLASSIFICATION

ALGORITHME VGG16

TESTER AVEC LA DATA AUGMENTATION

• TESTER EN MODIFIANT UN PARAMÈTRE COMME LE LEARNING RATE OU LE DROPOUT

ALGORITHME EFFICIENTNET

ALGORITHME VGG16

VGG16 EST UN MODÈLE DE RÉSEAU DE NEURONES CONVOLUTIFS (CNN) DÉVELOPPÉ PAR L'ÉQUIPE DE RECHERCHE VISUAL GEOMETRY GROUP (VGG) DE L'UNIVERSITÉ D'OXFORD.

- VGG16 possède 16 couches de poids
- pré-entraîné sur le dataset ImageNet

Validation Accuracy : 0.8143 Test Accuracy : 0.8333

TESTER AVEC LA DATA AUGMENTATION


```
# Création du générateur de Data Augmentation pour l'entraînement
train datagen = ImageDataGenerator(
                                # rotation aléatoire des images entre -20 et 20 degrés
    rotation_range=20,
    width_shift_range=0.2,
                               # décalage horizontal aléatoire jusqu'à 20%
    height_shift_range=0.2,
                                # décalage vertical aléatoire jusqu'à 20%
    shear range=0.15,
                                # cisaillement aléatoire des images
    zoom_range=0.15,
                                # zoom avant/arrière aléatoire
    horizontal_flip=True,
                                # inversion horizontale aléatoire
    fill mode='nearest'
                                # mode de remplissage pour les pixels hors cadre
train generator = train datagen.flow(X train, y train, batch size=32)
```

Validation Accuracy: 0.8333333134651184

Test Accuracy: 0.8380952477455139

• TESTER EN MODIFIANT UN PARAMÈTRE COMME LE LEARNING RATE OU LE DROPOUT

```
models = {
    'model_lr_0.0001_dr_0.5': create_model_fct(learning_rate=0.0001, dropout_rate=0.5),
    'model_lr_0.0001_dr_0.3': create_model_fct(learning_rate=0.0001, dropout_rate=0.3)
}
```


Evaluating model_lr_0.0001_dr_0.5 on the test set...
Test Accuracy for model_lr_0.0001_dr_0.5: 0.6619

Evaluating model_lr_0.0001_dr_0.3 on the test set...
Test Accuracy for model_lr_0.0001_dr_0.3: 0.6905

ALGORITHME EFFICIENTNET

Evaluating model_lr_0.0001_dr_0.5 on the test set...
Test Accuracy for model_lr_0.0001_dr_0.5: 0.6667

Evaluating model_lr_0.0001_dr_0.3 on the test set...
Test Accuracy for model_lr_0.0001_dr_0.3: 0.6952

APERÇU CHRONOLOGIQUE DE QUELQUES CNN

Xception

Evaluating model_xception_lr_0.0001_dr_0.5 on the test set...
Test Accuracy for model_xception_lr_0.0001_dr_0.5: 0.3286

Evaluating model_xception_lr_0.0001_dr_0.3 on the test set...
Test Accuracy for model_xception_lr_0.0001_dr_0.3: 0.3190

Resnet50

Evaluating model_resnet50_lr_0.0001_dr_0.5 on the test set...

Test Accuracy for model_resnet50_lr_0.0001_dr_0.5: 0.8476

Evaluating model_resnet50_lr_0.0001_dr_0.3 on the test set... Test Accuracy for model_resnet50_lr_0.0001_dr_0.3: 0.8381

Modèle	Année	Paramètres	Performance	Architecture et Innovations
LeNet-5	1998	60 000	~99% sur MNIST	7 couches, premières convolutions et pooling, conçu pour la reconnaissance de chiffres manuscrits
AlexNet	2012	60 millions	16,4% erreur (top- 5) sur ImageNet	8 couches (5 conv + 3 FC), activation ReLU, utilisation de GPU et dropout
VGGNet	2014	138-144 millions	7,3% erreur (top-5) sur ImageNet (VGG-19)	Convolutions 3x3 empilées, très profond mais coûteux en calcul
GoogLeNet (Inception v1)	2014	4 millions	6,7% erreur (top-5) sur ImageNet	Modules Inception (1x1, 3x3, 5x5), optimisation des paramètres avec convolutions 1x1
ResNet	2015	18 à 60 millions	3,6% erreur (top-5) sur ImageNet (ResNet-152)	Connexions résiduelles, très profond (jusqu'à 152 couches), permet un entraînement efficace des réseaux profonds
Inception v3	2015	23 millions	3,5% erreur (top-5) sur ImageNet	Modules Inception améliorés, factorisation des convolutions pour réduire les calculs
Xception	2017	23 millions	Similaire à Inception v3	Convolutions séparables en profondeur, inspiré de l'Inception pour plus d'efficacité
EfficientNet	2019	5 à 66 millions	84,4% précision (EfficientNet-B7)	Technique de "scaling" (ajustement largeur, profondeur, résolution), très efficace pour un bon rapport taille/performance
Vision Transformer (ViT)	2020	12 à 630 millions	88,5% précision (ViT-Large)	Transformateurs appliqués aux images, divisées en patches, offrant des performances élevées dans la classification d'images

7. CONCLUSION

• Efficacité des techniques employées

Avantages de l'approche choisie

• Perspectives d'amélioration

• Impact sur l'expérience utilisateur