Теория вероятностей и математическая статистика—2

Винер Даниил @danya_vin

Версия от 19 февраля 2025 г.

Содержание

1	Закон больших чисел. Центральная предельная теорема								
	1.1 Закон больших чисел в форме Бернулли	2							
	1.2 Центральная предельная теорема	2							
	1.3 Теорема Муавра-Лапласа								
	1.4 Неравенство Берри-Эссена								
2	Многомерное нормальное распределение—1	4							
	2.1 Одномерное нормальное распределение	4							
	2.2 Многомерное нормальное распределение								
	2.3 Свойства многомерного нормального распределения	4							
	2.4 Условное нормальное распределение	5							
3	Многомерное нормальное распределение—2								
	3.1 Условное нормальное распределение	6							
	3.2 Многомерная центральная предельная теорема	6							
4	TBA	7							
5	Введение в математическую статистику	8							
6	Оптимальные оценки, характеристики выборок	11							
	6.1 Свойства оптимальных оценок	11							
	6.2 Способы организации выборки								
	6.3 Характеристики выборки								

1 Закон больших чисел. Центральная предельная теорема

1.1 Закон больших чисел в форме Бернулли

Пусть имеются некоторые случайные величины $\xi_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$, где p — вероятность, что какое-то событие произошло. Тогда $\mathbb{E}\left[\xi\right] = p, \, \mathbb{D}\left[\xi\right] = p(1-p) \leqslant \frac{1}{4}$

Теорема. Пусть $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ — доля успехов в n испытаниях Бернулли, тогда $\hat{p} \stackrel{p}{\longrightarrow} p$

Доказательство. Распишем по неравенству Чебышёва:

$$\mathbb{P}(|\hat{p} - p| \geqslant \varepsilon) \leqslant \frac{p(1 - p)}{n\varepsilon^2} \leqslant \frac{1}{4n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

Пример

Пусть 87% новорожденных доживают до 50 лет. Тогда p=0,87 — вероятность дожить до 50. Рассмотрим n=1000 новорожденных

Опредедлим с какой вероятностью данная случайная величина отклонится от своего математического ожидания не более, чем на $0,04-\mathbb{P}(|\hat{p}-0,87|\leqslant 0,04)$. По Чебышёву:

$$\mathbb{P}(|\hat{p} - p| \le 0, 04) \ge 1 - \frac{\mathbb{D}[\hat{p}]}{(0, 04)^2} = 1 - \frac{0.87 \cdot 0.13}{0.0016 \cdot 1000} = 0.929$$

1.2 Центральная предельная теорема

Рассмотрим сумму независимых одинаково распределенных случайных величин:

$$S_n = \xi_1 + \ldots + \xi_n,$$

при этом существует $\mathbb{D}\left[\xi_{i}\right]\leqslant c,\,\mathbb{E}\left[\xi_{i}\right]=\mu,\,\mathbb{D}\left[\xi_{n}\right]=\sigma^{2}$

Тогда, $Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{d} Z$, где $Z \sim \mathcal{N}(0;1)$ — имеет стандартное нормальное распределение

Функция плотности:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}}$$

1.3 Теорема Муавра-Лапласа

Теорема. Имеется $\xi_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$. $S_n = \sum \xi_i$ — число успехов в n испытаниях. Тогда

$$Z_n = \frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} Z \sim \mathcal{N}(0;1)$$

Пример

Проходит суд над Бенджамином Споком. Из 300 человек 90 — женщины, которые симпатизируют Споку, при этом 12 присяжных будут судить Спока. Требуется определить мог ли отбор присяжных быть случайным.

Число успехов в данном случае — число женщин среди 300 присяжных. Будем считать, что p=0.5, то есть половина женщин.

$$\mathbb{P}\left(\frac{S_{300} - 150}{\sqrt{0.5 \cdot 0.5 \cdot 300}} \leqslant \frac{90 - 150}{\sqrt{75}}\right) \simeq \Phi(-6.93) \simeq 2.3 \cdot 10^{-12}$$

Значит, практически невозможно случайным образом выбрать 90 или меньше женщин среди 300 присяжных при справедливом распределении, то есть отбор был предвзятым

1.4 Неравенство Берри-Эссена

$$|F_n - \Phi| \leqslant \frac{C_0 \cdot \mathbb{E}\left[|\xi_1 - \mu|^3\right]}{\sigma^3 \sqrt{n}}, \text{ где } \begin{cases} F_n - \text{функция распределения стандартизированной CB} \\ C_0 - \text{константа} \\ \mathbb{E}\left[|\xi_1 - \mu|^3\right] - \text{третий абсолютный центральный момент} \end{cases}$$

Пример

Пусть имеется n=1000 заключенных договоров страхования с 1 января на 1 год. С вероятностью p=0.05 произойдет страховой случай, выплаты по каждому договору — 2000 у.е. R — резерв страховой компании

Требуется определить какой должен быть размер резерва, чтобы страховая компания выполнила свои обязательства с вероятностью 0.99

$$S_n = 2000(\xi_1 + \ldots + \xi_n), \, \xi_i \sim Bi(p = 0.05)$$

$$\mathbb{P}\left(S_n \leqslant R\right) = \mathbb{P}\left(\frac{\sum \xi_i - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} \leqslant \frac{\frac{R}{2000} - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}}\right) \geqslant 0,99$$

Значит, требуется найти квантиль уровня 0.99. Он равен 2.33, тогда

$$\frac{\frac{R}{2000} - 0.05 \cdot 1000}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} = 2.33 \Longrightarrow R = 132117$$

То есть, для покрытия 99% страховых случаев у страховой компании резерв должен быть размером 132117 у.е. Напротив, для покрытия всех случаев R=2000000

2 Многомерное нормальное распределение—1

2.1 Одномерное нормальное распределение

Определение. Случайная величина имеет нормальное распределение $X \sim \mathcal{N}(\mu, \sigma^2)$, если функция плотности равна

 $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

2.2 Многомерное нормальное распределение

Определение. Пусть случайные величины z_1, \dots, z_n независимы и $\sim N(0,1)$. Тогда $z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ имеет многомерное нормальное распределение N(0,I), где I — единичная матрица

Функция плотности:

$$f_Z(z) = \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2} \sum_{i=1}^n z_i^2} = \frac{1}{(\sqrt{2\pi})^n} e^{-0.5Z^T Z}$$

Примечание. Пусть $Z \sim N(0,I), A \in \mathrm{Mat}_{k \times n}$ — матрица полного ранга и k < n, то есть $\mathrm{rank} A = k.$ Тогда

$$Y = AZ + b \sim N(b, AA^T)$$

$$f_Y(y) = \frac{1}{|\det A|} f_Z(A^{-1}(y - b))$$

$$= \frac{1}{(\sqrt{2\pi})^n} \frac{1}{|\det A|} e^{-0.5(y - b)^T (A^{-1})^T A^{-1}(y - b)}$$
пусть $AA^T = C$

$$= \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{|C|}} e^{-0.5(y - b)^T C^{-1}(y - b)}$$

Определение. Случайная величина $Y \sim N(b, C)$, если

$$f_Y(y) = \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{|C|}} e^{-0.5(y-b)^T C^{-1}(y-b)}$$

Определение. Случайный вектор $Y \sim N(0, C)$, если $\forall a_1, \dots, a_n$

$$a_1Y_1 + a_2Y_2 + \ldots + a_nY_n$$

либо $N(0,\dot{)}$ либо const

2.3 Свойства многомерного нормального распределения

Пусть $Y \sim N(b, C)$

1. $\mathbb{E}[Y] = b, cov(Y) = C$

Доказательство. $Y = AZ + b, Z \sim N(0, I)$

$$cov(Y) = \mathbb{E}\left[(AZ + b - \mathbb{E}\left[AZ + b\right])(AZ + b - AEZ - b)^T \right] = AcovZA^T = AA^T = C$$

2. Любое линейное невырожденное преобразование многомерного нормаьного дает многомерный нормальный вектор

4

$$\forall B, a : BY + a \sim N(Bb + a, BCB^T)$$

3. ∀ подвектор нормального вектора нормален

4. Если $Y \sim N(b, D)$, то его компоненты независимы **Примечание.** Некоррелированность = независимость

Доказательство.

$$f_Y(y) = \frac{1}{(\sqrt{2\pi}^n)} e^{-0.5(y-b)^T D^{-1}(y-b)}$$

$$= \frac{1}{(\sqrt{2\pi}^n)} e^{-0.5 \sum_{i=1}^n \left(\frac{y_i - b_i}{\sigma_i}\right)^2}$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-0.5\left(\frac{y_i - b_i}{\sigma_i}\right)^2}$$

Пример.
$$Y_1 \sim N(0,1), \; \lambda = \begin{cases} 1, & p = 0.5 \\ -1, & p = 0.5 \end{cases}, \; Y_2 = 2Y_1$$

$$\mathbb{P}\left(Y_2 \leqslant y\right) = \mathbb{P}\left(Y_1 \leqslant y | \alpha = 1\right) \cdot \mathbb{P}\left(\alpha = 1\right) + \mathbb{P}\left(-Y_1 \leqslant y | \alpha = -1\right) \cdot \frac{1}{2}$$

$$= \Phi(y)$$

 $cov(Y_1,Y_2)=cov(Y_1,2Y_1)=\mathbb{E}\left[\alpha Y_1^2\right]-\mathbb{E}\left[Y\right]\mathbb{E}\left[\alpha Y_1\right]=0.$ То есть они не коррелированы

2.4 Условное нормальное распределение

Имеется случайный вектор $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$, пишут $\Phi_2(z_1,z_2;\rho)$

Допустим, что z_1 фиксирован, тогда $z_2|z_1=z\sim N(\rho z,1-\rho^2)$

 $z_2 = \rho z_1 + u$, где z_1 и u независимы и $u \sim N(.,.)$

3 Многомерное нормальное распределение—2

3.1 Условное нормальное распределение

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$
, пишут $\Phi_2(z_1, z_2; \rho)$

Допустим, что z_1 фиксирован, тогда $z_2|z_1=z\sim N(\rho z,1-\rho^2)$

Утверждение. $z_2 = \rho z_1 + u$, где z_1 и u независимы и $(u, z_1) \sim N(.,.)$

Доказательство.
$$u=z_1-\rho z_1\Longrightarrow (z_1,u)=(z_1,z_2-\rho z_1)=\begin{pmatrix} 1&0\\-\rho&1\end{pmatrix}\begin{pmatrix} z_1\\z_2\end{pmatrix}\sim N\begin{pmatrix} \begin{pmatrix} 0\\0\end{pmatrix},\begin{pmatrix} 1&0\\0&1-\rho^2\end{pmatrix}\end{pmatrix}$$

$$cov(z_1, u) = A \cdot cov(z_1, z_2) \cdot A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 - \rho^2 \end{pmatrix}$$

Доказательство свойства. $\mathbb{E}\left[z_{2}\right]=\rho\mathbb{E}\left[z_{1}\right]+\mathbb{E}\left[u\right]=0,\,\mathbb{D}\left[z_{2}\right]=\rho^{2}\mathbb{D}\left[z_{1}\right]+\mathbb{D}\left[u\right]=\rho^{2}+1-\rho^{2}=1$

$$(z_2|z_1=z) = \rho z + u \Longrightarrow \begin{cases} \mathbb{E}\left[z_2|z_1=z\right] = \rho z + \mathbb{E}\left[u\right] = \rho z \\ \mathbb{D}\left[z_2|z_1=z\right] = \mathbb{D}\left[u\right] = 1 - \rho^2 \end{cases} \square$$

Примечание. Пусть вектор Y такой, что $AY \sim N(.,.)$ (многомерное нормальное), меньшей размерности, чем Y, тогда говорят, что Y имеет обобщенное нормальное распределение

Примечание. Двумерная Гауссова копула представима в виде $\Phi_2(\Phi^{-1}(F_1(u_1)), \Phi^{-1}(F_2(u_2)); \rho)$

3.2 Многомерная центральная предельная теорема

Теорема. Пусть $\xi_1^{(1)}, \dots, \xi_n^{(n)}$ — последовательность независимых одинаково распределенных случайных векторов, у каждого из которых $\mathbb{E}\left[\xi^{(k)}\right] = b \ \forall k, \ cov(\xi^{(k)}) = c, \ \det C > 0.$

Обозначим $S_n = \xi_1^{(1)} + \ldots + \xi_n^{(n)}$ — вектор частичных сумм. Тогда, при $n \to \infty$ последовательность $\eta^{(n)}$, где $\eta^{(n)} = \frac{S_n - nb}{\sqrt{n}}$ сходится по распределению к вектору $\eta \sim N\left(\overrightarrow{0}, C\right)$

4 TBA

5 Введение в математическую статистику

- Имеется n независимых случайных величин X_1, \ldots, X_n , которые имеют одинаковые функции распределения: $F_{X_1}(x) = \ldots = F_{X_n}(x) = F(x)$
- Пусть функция распределения F(x) зависит от некоторого вектора неизвестных параметров $\theta = (\theta_1, \dots, \theta_r)$
- $F(x) = F(x; \theta)$, где x переменная, а θ вектор неизвестных параметров
- Θ множество допустимых значений вектора θ Пример. Если $X_i \sim N(\mu, \sigma^2)$, то $\theta = (\mu, \sigma^2) \in (-\infty, +\infty) \times (0; +\infty)$

Определение. Случайной выборкой объема n наблюдений из распределения с функицей распределения $F(x;\theta)$ называется случайный вектор $X=(X_1,\ldots,X_n)$, компоненты которого удовлетворяют следующим условиям

- \bullet случайные величины X_1, \ldots, X_n независимы
- случайные величины X_1, \ldots, X_n имеют одну и ту же функцию распределения $F(x; \theta)$:

$$F_{X_1}(x;\theta) = \ldots = F_{X_n}(x;\theta) = F(x;\theta)$$

Примечание. Продифференцировав эти равенства, получаем, что все функции плотностей распределения равны

Примечание. Если все величины X_1, \dots, X_n дискретны, то они должны иметь одинаковые таблицы распределения

Примечание. При $i \neq j$: $cov(X_i, X_j) = \mathbb{E}\left[X_i X_j\right] - \mathbb{E}\left[X_i\right] \cdot \mathbb{E}\left[X_j\right] = 0$, так как X_i и X_j независимы

Имеются случайные величины $X_1(\omega), \ldots, X_n(\omega)$. Пусть произошел вероятностый эксперимент, в результате которого реализовался исход $\omega_0 \in \Omega$. То есть

$$X_1(\omega_0),\ldots,X_n(\omega_0)$$

Тогда, вектор $x = (X_1(\omega_0), \dots, X_n(\omega_0))$ называется реализацией случайной выборки

Пример. $\Omega = \{a, b, c, d, e, f, g, h\}, \ \mathcal{F} =$ все подмножества Ω

ω	a	b	С	d	e	f	g	h
$\mathbb{P}\left(\omega ight)$	p^3	p^2q	p^2q	pq^2	p^2q	pq^2	pq^2	q^3
$X_1(\omega)$	1	1	1	1	0	0	0	0
$X_2(\omega)$	1	1	0	0	1	1	0	0
$X_3(\omega)$	1	0	1	0	1	0	1	0

- $\mathbb{P}(X_1 = 1) = p^3 + p^2q + p^2q + pq^2 = p(p^2 + pq + pq + q^2) = p \Longrightarrow X_1 \sim Be(p)$
- $\mathbb{P}(X_2 = 1) = p^3 + p^2q + p^2q + pq^2 = p(p^2 + pq + pq + q^2) = p \Longrightarrow X_2 \sim Be(p)$
- $\mathbb{P}(X_3 = 1) = p^3 + p^2q + p^2q + pq^2 = p(p^2 + pq + pq + q^2) = p \Longrightarrow X_3 \sim Be(p)$

$$\mathbb{P}(\{X_1 = 1\} \cap \{X_2 = 1\} \cap \{X_3 = 1\}) = p^3$$

$$\mathbb{P}(X_1 = 1) \cdot \mathbb{P}(X_2 = 1) \cdot \mathbb{P}(X_3 = 1) = p^3$$

Рассуждая аналогично, перебираем оставшиеся 7 случаев и получаем, что X_1, X_2, X_3 — независимы Пусть $\omega_0 = c$, тогда $(X_1(\omega_0), X_2(\omega_0), X_3(\omega_0)) = (1, 0, 1)$

- Пусть $X=(X_1,\ldots,X_n)$ случайная выборка
- ullet Для каждого $\omega \in \Omega$ расположим числа $X_1(\omega),\ldots,X_n(\omega)$ в порядке возрастания
- Получим набор чисел $X_{(1)}(\omega) \leqslant \ldots \leqslant X_{(n)}(\omega)$, где (i) означает уже отсортированный номер При этом $X_{(1)}(\omega) = \min(X_1(\omega), \ldots, X_n(\omega))$, а $X_{(n)}(\omega) = \max(X_1(\omega), \ldots, X_n(\omega))$

Определение. Набор случайных величин $X_{(1)},\dots,X_{(n)}$ называется вариационным рядом

Определение.
$$\overline{X} := \frac{X_1 + \ldots + X_n}{n}$$
 — выборочное среднее

Определение.
$$s^2:=rac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2$$
 — выборочная дисперсия

Определение.
$$\widehat{\sigma}^2:=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$$
 — исправленная выброчная дисперсия

Определение.

$$\hat{F_n}(x)=rac{\mbox{число элементов случайной выборки, которые нестрого меньше }x}{n}$$

$$=rac{\#\{i\in\{1,\ldots,n\}:\ X_i\leqslant x\}}{n}$$

Пример. Рассмотрим $\hat{F}_3(x;\omega=c)$ и выборку (1,0,1). Тогда график будет выглядеть так

Утверждение. Пусть $X=(X_1,\dots,X_n)$ — случайная выборка, компоненты которой имеют конечное матожидание. Тогда

$$\mathbb{E}\left[\overline{X}\right] = \mathbb{E}\left[X_i\right]$$

Утверждение. Пусть $X=(X_1,\dots,X_n)$ — случайная выборка, компоненты которой имеют конечные дисперсии. Тогда

$$\mathbb{D}\left[\overline{X}\right] = \frac{\mathbb{D}\left[X_i\right]}{n}$$

Доказательство.

$$\mathbb{D}\left[\overline{X}\right] = \mathbb{D}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\mathbb{D}\left[\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{D}\left[X_{i}\right]$$

$$= \frac{1}{n^{2}}n\mathbb{D}\left[X_{i}\right]$$

$$= \frac{\mathbb{D}\left[X_{i}\right]}{n}$$

Определение. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с функцией распределения $F(x;\theta)$, где θ — неизвестный параметр

Оценкой параметра θ называется случайная величина $\hat{\theta}$, которая является произвольной борелевской функцией от элементов случайной выборки, то есть

$$\hat{\theta} = g(X_1, \dots, X_n),$$

где $g:\mathbb{R}^2\longrightarrow\mathbb{R}$ — произвольная борелевская функция

Пример. $X=(X_1,\dots,X_n)$ — случайная выборка из распределения Бернулли с параметром $p\in(0;1)$ $\hat{p}=\frac{X_1+\dots+X_n}{n}$ — оценка параметра p

Определение. Оценка $\hat{\theta}$ неизвестного параметра $\theta \in \Theta$ называется несмещенной, если

$$\mathbb{E}\left[\hat{\theta}\right] = \theta \ \forall \theta \in \Theta$$

Пример. $X=(X_1,\dots,X_n)$ — случайная выборка из распределения Бернулли с параметром $p\in(0;1)$. Определим, является ли $\hat{p}=\frac{X_1+\dots+X_n}{n}$ несмещенной оценкой для параметра p

$$\mathbb{E}\left[\hat{p}\right] = \frac{\mathbb{E}\left[X_1 + \dots + X_n\right]}{n}$$

$$= \frac{\mathbb{E}\left[X_1\right] + \dots + \mathbb{E}\left[X_n\right]}{n}$$

$$= \frac{np}{p}$$

$$= n$$

То есть \hat{p} — несмещенная оценка

Определение. Говорят, что последовательность случайных величин $(X_n)_{n=1}^{\infty}$ сходится по вероятности к случайной величине X, если

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mathbb{P}\left(|X_n - X| > \varepsilon\right) = 0$$

Обозначение: $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ при $n \to \infty$ ИЛИ $p \lim_{n \to \infty} X_n = x$

Определение. Оценка $\hat{\theta}_n$ называется состоятельной оценкой неизвестного параметра $\theta \in \Theta$, если

$$\forall \theta \in \Theta \ \hat{\theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta$$
 при $n \to \infty$

Пример. Проверим, что $\hat{p} = \frac{X_1 + \ldots + X_n}{n}$ является состоятельной. По ЗБЧ:

$$\hat{p} = \frac{X_1 + \ldots + X_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}\left[X_i\right] = p$$

Значит, \hat{p} — состоятельная оценка

6 Оптимальные оценки, характеристики выборок

6.1 Свойства оптимальных оценок

Определение. Оценкой для параметра будет некоторая функция $\hat{\Theta} = T(X_1, \dots, X_n)$

Определение. Оценка cocmosme.rona, если $\hat{\Theta} \xrightarrow[n \to \infty]{\mathbb{P}} \Theta$

Определение. Оценка *жеелательно* должна обладать свойством *несмещенности*, то есть $\mathbb{E}\left[\hat{\Theta}\right] = \Theta$

Пример. X_1, \ldots, X_n . Построим две оценки

1.
$$\hat{\mu_1} = \frac{1}{4}(X_1, \dots, X_4)$$

2.
$$\hat{\mu}_2 = \frac{1}{8}X_1 + \frac{1}{8}X_2 + \frac{1}{4}X_3 + \frac{1}{2}X_4$$

Первая оценка лучше как минимум потому, что в ней веса каждого наблюдения равны

Определение. Среднеквадратичная ошибка оценки — это

$$\mathbb{E}\left[\hat{\Theta} - \Theta\right]^2$$

$$\begin{split} \mathbb{E}\left[\hat{\Theta} - \Theta\right]^2 &= \mathbb{E}\left[\left(\hat{\Theta} - \mathbb{E}\left[\hat{\Theta}\right]\right) + \underbrace{\left(\mathbb{E}\left[\hat{\Theta}\right] - \Theta\right)}_{b(\Theta) - \text{ смещение}}\right]^2 \\ &= \underbrace{\mathbb{E}\left[\hat{\Theta} - \mathbb{E}\left[\hat{\Theta}\right]\right]^2}_{\mathbb{D}\left[\hat{\Theta}\right]} + b^2(\Theta) + 2\underbrace{\mathbb{E}\left[\hat{\Theta} - \mathbb{E}\left[\hat{\Theta}\right]\right]}_{=0} \cdot b(\Theta) \\ &= \underbrace{\mathbb{E}\left[\hat{\Theta} - \mathbb{E}\left[\hat{\Theta}\right]\right]^2}_{\mathbb{D}\left[\hat{\Theta}\right]} + b^2(\Theta) \end{split}$$

Определение. $\hat{\Theta}_1$ эффективнее, чем $\hat{\Theta}_2$, если

$$\begin{split} & \mathbb{E}\left[\hat{\Theta_1} - \Theta\right]^2 \leqslant \mathbb{E}\left[\hat{\Theta_2} - \Theta\right]^2 \text{причем } \exists \Theta_0: \\ & \mathbb{E}\left[\hat{\Theta_1} - \Theta_0\right]^2 < \mathbb{E}\left[\hat{\Theta_2} - \Theta_0\right]^2 \end{split}$$

Определение. Оценка $\hat{\Theta}$ называется эффективной (=оптимальной, the best) в классе K, если $\forall \ \overline{\Theta} \in K$

$$\begin{split} & \mathbb{E}\left[\hat{\Theta} - \Theta\right]^2 \leqslant \mathbb{E}\left[\overline{\Theta} - \Theta\right]^2 \text{причем } \exists \Theta_0: \\ & \mathbb{E}\left[\hat{\Theta} - \Theta_0\right]^2 < \mathbb{E}\left[\overline{\Theta} - \Theta_0\right]^2 \end{split}$$

Класс K обладает смещением $b(\Theta)$

Определение. Оценка $\hat{\Theta}$ называется эффективной в классе несмещенных оценок, если $\forall \ \overline{\Theta} \in K$

$$\mathbb{D}\left[\hat{\Theta}\right]\leqslant\mathbb{D}\left[\overline{\Theta}\right], \text{причем } \exists\Theta_0:$$

$$\mathbb{D}\left[\hat{\Theta}\right]<\mathbb{D}\left[\overline{\Theta}\right] \text{для } \Theta_0$$

6.2 Способы организации выборки

Определение. Генеральная совокупность — выборка, которая в теории может быть доступна, но на практике вряд ли ее можно собрать. Например, точное население $P\Phi$

- 1. Простой случайный отбор практически нереализуемо
- 2. Отбор с помощью механистической процедуры, не влияющий на случайность Например, на автоматическом производстве надо посчитать процентр брака. Тогда, для выборки можно ограничиться промежутком времени 14:20-14:30
- 3. Стратифицированные выборки выборка производится из страт, то есть берут людей из всех социальных слоев населения
- 4. Комбинирование

Таким образом, важно следить, чтобы выборка обладали всеми или большинством свойств генеральной совокупности

6.3 Характеристики выборки

1. Вариационный ряд — наблюдения, упорядоченные по возрастанию

$$X_{(1)}\leqslant X_{(2)}\leqslant\ldots\leqslant X_{(n)}$$
— случайные величины

При этом, $X_{(1)}$ и $X_{(n)}$ — экстремальные статистики

2. Гистограмма и выборочная функция распределения

Определение. Выборочная (эмпирическая) функция распределения — это

$$\hat{F}_n(x) = \frac{\sum_{i=1}^n I\{X_i \leqslant x\}}{n},$$

где $I\{X_i \leqslant x\}$ — индикаторная функция, показывающая сколько наблюдений меньше либо равны какого-то x

Определение. $\hat{p}_i = \frac{m(\Delta i)}{|\Delta i| \cdot n}$, где $m(\Delta i)$ — число наблюдений, попавших в интервал Δi , $|\delta i|$ — длина интервала, n — число наблюдений

Гистограмма — тоде своего рода функция плотности