CS 341 Automata Theory Geoffrey Parker - grp352

Homework 10

Due: Tuesday, March 27

This assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.

1) For each of the following languages L, state whether L is regular, context-free but not regular, or not context-free and prove your answer.

a)
$$\{w : w = uu^R \text{ or } w = ua^n : n = |u|, u \in \{a, b\}^*\}.$$

Answer. Context-free but not regular.

Proof. This language is generated by this context-free grammar so it must be context-free:

$$\begin{split} S &\to A \mid B \\ A &\to aAa \mid bAa \mid \epsilon \\ B &\to aBa \mid bBb \mid \epsilon \end{split}$$

This language L is not regular. Let $w = b^k a^k$ for some integer $k \ge 1$. Then y must be b^p for some integer p such that $1 \le p \le n$. Pumping out y generates a new string $w' = b^{k-p} a^k$ which is not in the language. Therefore by the pumping theorem this language is not regular.

b) $\{a^nb^{2n}c^m\} \cap \{a^nb^mc^{2m}\}.$

Answer. Not context-free. This language is equivalent to $L = \{a^n b^{2n} c^{4n}\}.$

Proof. Let $w = a^k b^{2k} c^{4k}$. Let region 1 be the a's, region 2 be the b's and region 3 be the c's. In any case where vxy crosses a region boundry, pumping in will result in a new string with out of order a's b's or c's, and thus not in the language. If vxy is contained solely within a region, pumping out will disrupt the cardinality requirement, thus also generating a string not in the language. Therefore by the pumping theorem for context-free languages this language is not context-free.

c) L^* , where $L = \{0^*1^i0^*1^i0^* : i \ge 0\}$.

Answer. Regular \Box

Proof. L^* is equivalent to $\{w: w \in \{0,1\}^* \text{ where } \#_1(w) \text{ is even.}\}$, which we have already established to be regular.

d) $\neg L_0$, where $L_0 = \{ww : w \in \{a, b\}^*\}.$

Answer. Context-free but not regular.

Proof. CFG:

$$S \rightarrow AB \mid BA \mid A \mid B$$

$$A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$$

$$B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$$

	If $\neg L_0$ were regular, then L_0 would be regular. Let $w = a^k b^k a^k b^k$, which is an element of L_0 . The y must be a^p for some integer p where $1 \le p \le k$ and y is in the first a region. So pumping out give $w' = a^{k-p} b^k a^k b^k$, which is not an element of L_0 . Therefore by the pumping theorem L_0 is not regular so $\neg L_0$ is not regular.
	e) $\{x \in \{a,b\}^* : x \text{ is even and the first half of } x \text{ has one more a than does the second half} \}.$
	Answer. Not context-free.
	Proof. Let $w = ab^{2k+1}$. If vxy does not contain the a there are two cases. If $ vxy $ is odd, pump out once to generate an odd length string. If $ vxy $ is even, pump in twice to generate an odd length string. If vxy contains the a, pump out to generate a string without an a, violating the requirement that the first half contains one more a than the second half.
2)	Give a decision procedure to answer the following question: given a context-free grammar G , does generate any even length strings?
	Solution. Let L be the language generated by G. Let $L' = L \cap ((a \cup b)(a \cup b))^*$. Construct a new gramma G' to generate L.
3)	Construct a standard, one-tape Turing machine M to decide the language $L = \{x*y = z : x, y, z \in 1^+ \text{ and when } x, y, \text{ and } z \text{ are viewed as unary numbers, } xy = z\}$. For example, the string $1111*11 = 111111111 \in R$. Describe M in the macro language described in Section 17.1.5.
	Solution.
4)	Construct a standard 1-tape Turing machine M to compute the function sub_3 , which is defined as follows
	$sub_3(n) = n-3 \text{if } n > 2$ $0 \text{if } n \le 2.$
	Specifically, compute sub_3 of a natural number represented in binary. For example, on input 1011 M should output 10100. On input 11101, M should output 11010. (Hint: you may want to define subroutine.)
	Solution.