CIRCUITOS DIGITAIS

CIRCUITOS SEQUENCIAIS

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Registrador de Armazenamento

Registrador de 4 bits

Registrador de Armazenamento

Registrador de Armazenamento

Registrador de 4 bits

Entrada Serial / Saída Paralela

Entrada Serial / Saída Paralela

Exemplo: 1010

O valor é armazenado no registrador após 4 ciclos de clock

FORMA DE ONDA COM ATRASO

Entrada Serial / Saída Serial

Exemplo: 1010

A partir do 4º ciclo de clock o valor começa a sair de forma serial em Q₃

Entrada Serial / Saída Serial

Exemplo: 1010

A partir do 4º ciclo de clock o valor começa a sair de forma serial $em Q_3$

Entrada Serial / Saída Serial

Exemplo: 1010

$$Q_3 = 101$$

A partir do 4º ciclo de clock o valor começa a sair de forma serial em Q₃

Entrada Serial / Saída Serial

Exemplo: 1010

$$Q_3 = 1010$$

A partir do 4° ciclo de clock o valor começa a sair de forma serial em Q_3

Entrada Serial / Saída Paralela

Exemplo: 1010

1

Entrada Serial / Saída Paralela

Exemplo: 1010

1

Entrada Serial / Saída Paralela

Exemplo : 1 0 1 0

Entrada Serial / Saída Paralela

Entrada Serial / Saída Paralela

Saída Serial

Saída Serial

Saída Serial

Saída Serial

- Dado armazenado é deslocado para esquerda ou para a direita (shift de bits)
 - Multiplicação ou divisão por 2 :
 - □ 1010 → 1 bit deslocado para esquerda → 10100 → multiplicação
 - □ 1010 → 1 bit deslocado para direita → 0101 → divisão
- Executar operações um bit por vez
 - Adição, Complemento 2, paridade,...
- Atraso de tempo do clock
- □ Conversor Serial → Paralelo e Paralelo → Serial
- Contadores Anel e Johnson

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	0	0	0	1	—
1°	0	0	1	0	
2°	0	1	0	0	
3°	1	0	0	0	
4º (reciclagem)	0	0	0	1	

Exemplo – Contador em Anel de 4 bits

COMO INICIALIZAR O CONTADOR?

Contador em Anel

Exemplo – Contador em Anel de 4 bits

Contador em Anel

Exemplo – Contador em Anel de 4 bits

Exemplo – Contador de Johnson de 4 bits

Pulso de Clock	Q_3	Q_2	Q_1	Q_0	
Valor inicial	0	0	0	0	←
1°	0	0	0	1	
2°	0	0	1	1	
3°	0	1	1	1	
4 °	1	1	1	1	
5°	1	1	1	0	
6°	1	1	0	0	
7°	1	0	0	0	
8º (reciclagem)	0	0	0	0	

Só muda um bit entre um estado e outro

Exemplo – Contador de Johnson de 4 bits

COMO INICIALIZAR O CONTADOR?

Entrada Paralela / Saída Serial

Entrada Paralela / Saída Serial

No modo SHIFT $D_0 = Entrada Serial$

Entrada Paralela / Saída Serial

Load → carrega valor em paralelo

Load → carrega valor em paralelo **Exemplo: 1010**

Shift → desloca para saída serial

Registrador Bidirecional

Reg. Bidirecional – Exemplo 1101

Reg. Bidirecional – Exemplo 1101

Entrada Serial / Saída Serial

Entrada Serial / Saída Serial

Entrada Serial / Saída Serial

Esquerda

Esquerda

Direita

Direita

UNIDADE LÓGICA E ARITMÉTICA

S1	S0	Ш
0	0	A + B
0	1	A AND B
1	0	A OR B
1	1	A XOR B

Exemplo - MIPS

Instruções Lógico-Aritméticas

Formato de uma instrução tipo R no MIPS:

- Semântica:
 - \$rd ← op(\$rs, \$rt)
- Estrutura de suporte: banco de registradores

Exemplo - R2 = R1 AND R0

