Metodologias de Otimização e Apoio à Decisão Folha Prática nº1

Pós-otimização e análise de sensibilidade

1. Considere o seguinte problema de programação linear:

Maximizar $z = 2x_1 + x_2$

sujeito a

$$x_1 + 2x_2 \le 6$$

$$5x_1 + 3x_2 \le 15$$

$$-2x_1 + x_2 \le 2$$

$$x_1 \geq 0$$
 , $x_2 \geq 0$

Considerando x_3 , x_4 e x_5 as variáveis *slack* das restrições funcionais (1), (2) e (3), respetivamente, o quadro ótimo do *simplex* é:

	\mathbf{c}_{j}	2	1	0	0	0	
Хв	c _B \ x _j	X ₁	X ₂	X ₃	X 4	X 5	b
X ₃	0	0	7/5	1	-1/5	0	3
\mathbf{X}_1	2	1	3/5	0	1/5	0	3
X 5	0	0	11/5	0	2/5	1	8
2	Z _j -C _j	0	1/5	0	2/5	0	6

Determine as implicações na solução ótima decorrentes das variações referidas nas diferentes alíneas abaixo.

a)

1) Suponha que o vetor dos termos independentes das restrições é alterado de

$$\begin{bmatrix} 6 \\ 15 \\ 2 \end{bmatrix}$$
 para $\begin{bmatrix} 9 \\ 15 \\ 5 \end{bmatrix}$.

2) Suponha que o vetor dos termos independentes das restrições é alterado de

$$\begin{bmatrix} 6 \\ 15 \\ 2 \end{bmatrix}$$
 para $\begin{bmatrix} 3 \\ 20 \\ 2 \end{bmatrix}$.

b)

1) Suponha que o coeficiente na função objetivo da variável x_2 , é alterado de c_2 =1 para c_2 =1/2.

- 2) Suponha que o coeficiente na função objetivo da variável x_1 , é alterado de c_1 =2 para c_1 =4.
- - 2) Suponha que o vetor dos coeficientes das restrições associado à variável x1 é alterado de $\begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix}$ para $\begin{bmatrix} 1 \\ 6 \\ -3 \end{bmatrix}$.
- d) Suponha agora que foi acrescentada ao problema a restrição funcional $x_1 \le 2$.
- **e)** Determine para que intervalo de c_1 (coeficiente na função objetivo da variável x_1), a solução atrás continuará ótima.
- f) Determine para que intervalo de b₃ (coeficiente do termo independente da 3ª restrição), a base ótima apresentada atrás se mantém.
- 2. Considere agora o seguinte problema de programação linear:

Maximizar $z = x_1 + 2x_2$

sujeito a

$$-x_1 + x_2 \le 2$$
 (1)

$$x_1 + 3x_2 \le 12$$
 (2)

$$-x_1 + 2x_2 \ge 1$$
 (3)

$$x_1 \geq 0$$
, $x_2 \geq 0$

a) Resolva-o pelo método gráfico;

Sendo x₃ e x₆ as variáveis *surplus* e *artificial* da restrição funcional (3), e x₄ e x₅ as variáveis *slack* das restrições funcionais (1) e (2), respetivamente, o quadro ótimo do *simplex* para este problema é o apresentado abaixo.

	Cj	1	2	0	0	0	-M	
ΧB	c _B \ x _j	X 1	X 2	X 3	X 4	X 5	X 6	b
X ₄	0	0	0	4/5	1	1/5	-4/5	18/5
\mathbf{X}_1	1	1	0	3/5	0	2/5	-3/5	21/5
X_2	2	0	1	-1/5	0	1/5	1/5	13/5
Z	zj-cj	0	0	1/5	0	4/5	M-1/5	47/5

Para cada uma das seguintes alterações no problema inicial determine, recorrendo a *análise de pós-otimização*, o que sucede ao quadro ótimo, à solução ótima e ao valor de z*, anteriormente obtidos.

- b) Alteração do vetor dos termos independentes das restrições, de $\begin{bmatrix} 2 \\ 12 \\ 1 \end{bmatrix}$ para $\begin{bmatrix} 2 \\ 13 \\ 1 \end{bmatrix}$.
- c) Alteração do coeficiente da variável x2 na função objetivo, de 2 para -2.
- d) Introdução de uma nova variável x_{Nova} com coeficientes nas restrições iguais a $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ e coeficiente na função objetivo igual a 3.
- 3. Considere o seguinte problema de programação linear:

Maximizar
$$z = 5x_1 + 2x_2$$

sujeito a
 $x_1 + 2x_2 \le 2$ (1)
 $3x_1 + x_2 \ge 3$ (2)
 $x_1 \ge 0$, $x_2 \ge 0$

a) Resolva-o pelo método gráfico;

Considere que o mesmo problema foi resolvido pelo método simplex, com x_3 e x_5 as variáveis *surplus* e artificial da restrição funcional (2) e x_4 a variável *slack* da restrição funcional (1), tendo sido obtido o seguinte quadro ótimo do *simplex* é:

	Cj	5	2	0	0	-M	
ΧB	с в\ х _ј	X 1	X_2	X 3	X_4	X 5	b
X ₃	0	0	5	1	3	-1	3
X 1	5	1	2	0	1	0	2
Z	j-cj	0	8	0	5	М	10

Para cada uma das seguintes alterações no problema inicial determine, recorrendo a <u>análise de pós-otimização</u>, o que sucede ao quadro ótimo, à solução ótima x* e ao valor de z*, anteriormente obtidos.

- b) Alteração da função objetivo para *Minimizar* z=2x₁ + 6x₂.
- c) Introdução de uma nova variável \mathbf{x}_{NOVA} , com coeficientes nas restrições iguais a $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ e coeficiente 1 na função objetivo.
- **d)** Alteração do vetor dos coeficientes da variável \mathbf{x}_1 nas restrições, de $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ para $\begin{bmatrix} 1 \\ 3/2 \end{bmatrix}$.
- e) Introdução de uma nova restrição no problema: x₁ + x₂ ≥ 3.

4. Considere o seguinte problema de programação linear:

Maximizar $z = 4x_1 + 5x_2 - 2x_3 + x_4$ sujeito a

$$2x_1 + 2x_2 + 3x_3 \le 10 \tag{1}$$

$$2x_1 - x_2 + 2x_4 \le 5$$
 (2)

$$x_1 \ \geq 0 \; , \;\; x_2 \; \geq 0 \; , \;\; x_3 \; \geq 0, \;\; x_4 \; \geq 0$$

Considerando x_5 e x_6 as variáveis *slack* das restrições funcionais (1) e (2), respetivamente, o quadro ótimo do *simplex* é:

	Cj	4	5	-2 X 3	1	0	0	
ΧB	c _B \ x _j	X 1	\mathbf{X}_{2}	X ₃	X 4	X 5	X 6	b
X ₂	5	1	1	3/2	0	1/2	0	5
X 4	1	3/2	0	3/4	1	1/4	1/2	5
1	Z _j -C _j	5/2	0	41/4	0	11/4	1/2	30

- a) Suponha que foi acrescentada ao problema uma nova variável x_{NOVA}, cujo coeficiente na função objetivo é 5 e os coeficientes das restrições funcionais associadas são [4]. Determine as implicações na solução ótima decorrentes desta variação.
- **b)** Determine para que *intervalo de* **b**₁ (coeficiente do termo independente da 1ª restrição), a base ótima apresentada atrás se mantém.
- c) Determine para que intervalos de c1 e c4 (coeficientes de x1 e x4 na função objetivo, respetivamente), a solução atrás continuará ótima. Faça a análise dos coeficientes separadamente.
- **5.** Considere o seguinte problema de programação linear:

$$Maximizar z = 3x1 + x2 + 3x3$$

sujeito a

$$x_1 + 2x_3 \le 3$$
 (1)

$$x_1 + 3x_2 + 3x_3 \le 6$$
 (2)

$$5x_1 + 5x_2 + x_3 \ge 5$$
 (3)

$$x_1, x_2, x_3 \ge 0$$

Considerando \mathbf{x}_4 e \mathbf{x}_7 respetivamente as variáveis **surplus** e **artificial** da restrição funcional **(3)** e \mathbf{x}_5 e \mathbf{x}_6 as variáveis **slack** das restrições funcionais **(1)** e **(2)** respetivamente, o quadro ótimo do **simplex** é o da página seguinte.

	Ci	3	1	3		0	0	- M	
\mathbf{X}_{B}	CB \ Xi	X 1	X_2	X 3	X 4	X 5	X 6	X 7	b
X 4	0	0		32/3		10/3	5/3	-1	15
X_2	1	0	1	1/3	0	-1/3	1/3	0	1
\mathbf{X}_{1}	3	1		2	0	1	0	0	3
Z	zj-cj	0	0	10/3	0	8/3	1/3	М	10

- a) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que **intervalo de** c_2 , coeficiente de x_2 na função objetivo, a **solução ótima** apresentada atrás **se mantém**.
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que intervalo de b₂ (coeficiente do termo independente da 2ª restrição), a base ótima apresentada atrás se mantém.

Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, **quais as implicações na solução ótima apresentada** (no valor de x*, no valor de z* e na base ótima), **decorrentes da variação**:

- c) Alteração dos termos independentes das restrições de $\begin{bmatrix} 3 \\ 6 \\ 5 \end{bmatrix}$ para $\begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix}$;
- d) Alteração dos coeficientes da variável \mathbf{x}_1 nas restrições de $\begin{bmatrix} 1\\1\\5 \end{bmatrix}$ para $\begin{bmatrix} 2\\-1\\17 \end{bmatrix}$;
- e) Introdução de uma nova variável \mathbf{x}_{NOVA} com coeficientes nas restrições funcionais $\mathbf{P}_{NOVA} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$, e coeficiente na função objetivo $\mathbf{c}_{NOVA} = \mathbf{2}$;
- f) Alteração do coeficiente da variável x₁ na função objetivo de 3 para 4.
- **6.** Considere o seguinte problema de programação linear:

$$Maximizar z = x_1 + 3x_2$$

sujeito a

$$x_1 + 2x_2 \le 16$$
 (1)

$$x_1 + x_2 \le 12$$
 (2)

$$x_1 - 2 x_2 \le 8$$
 (3)

$$x_1 \ge 0, x_2 \ge 0$$

Considerando x_3 , x_4 e x_5 as variáveis **slack** das restrições funcionais **(1)**, **(2)** e **(3)** respetivamente, o quadro ótimo do **simplex** é o que se apresenta na página seguinte.

ХB	Сі С в \ Хі	1 X 1	3 X 2	0 X 3	0 X 4	0 X 5	b
X ₂	3	1/2	1	1/2	0	0	8
X_4	0	1/2	0	-1/2	1	0	4
X 5	0	2	0	1	0	1	24
Z	zj-cj	1/2	0	3/2	0	0	24

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - 1) Alteração no vetor dos *termos independentes* das restrições de $\begin{bmatrix} 16\\12\\8 \end{bmatrix}$ para $\begin{bmatrix} 12\\10\\8 \end{bmatrix}$;
 - 2) O coeficiente na função objetivo da variável x2, é alterado de c2=3 para c2=2;
 - 3) Foi acrescentada ao problema inicial a restrição funcional 2x₁ + x₂ ≤ 10;
 - 4) Introdução de uma nova variável \mathbf{x}_{NOVA} com coeficientes nas restrições funcionais iguais a $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ e coeficiente na função objetivo igual a 2.
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo de* c₁ (coeficiente de x₁ na função objetivo), a solução ótima atrás apresentada continuará ótima.
- **7.** Considere o seguinte problema de programação linear com um só objetivo:

Maximizar
$$z = -1x_1 + 5x_2 + 2x_3 - x_4$$
 sujeito a

$$x_1 + x_2 - 2x_3 + 3x_4 \le 60$$
 (1)

$$5x_1 + 4x_2 + x_3 + 2x_4 \le 100$$
 (2)

$$2x_1 + x_2 + 3x_3 + 5x_4 \le 20$$
 (3)

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

Considerando x_5 , x_6 e x_7 as variáveis **slack** das restrições funcionais **(1)**, **(2)** e **(3)** respetivamente, o quadro ótimo do simplex é o que se apresenta na página seguinte.

ХB	Ci C B \ Xi		5 X 2	2 X ₃	-1 X 4	0 X 5	0 x ₆	0 x ₇	b
X 5	0	-1	0	-5	-2	1	0	-1	40
\mathbf{x}_{6}	0	-3	0	-11	-18	0	1	-4	20
X ₂	5	2	1	3	5	0	0	1	
Z	zj-cj	11	0	13	26	0	0	5	100

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - 1) Alteração no vetor dos *termos independentes* das restrições de $\begin{bmatrix} 60\\100\\20 \end{bmatrix}$ para $\begin{bmatrix} 30\\120\\20 \end{bmatrix}$;
 - 2) O vetor dos coeficientes das restrições funcionais associado à variável \mathbf{x}_1 é alterado de $\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$ para $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$;
 - 3) Introdução de uma nova variável x_{NOVA} com coeficientes nas restrições funcionais iguais a $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ e coeficiente na função objetivo igual a 3.
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo de* c₂ (coeficiente de x₂ na função objetivo), a solução ótima atrás apresentada continuará ótima.
- c) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo* de c₃ (coeficiente de x₃ na função objetivo), a solução ótima atrás apresentada continuará ótima.
- 8. Considere o seguinte problema de programação linear com um só objetivo:

 $Maximizar z = x_1 + 3x_2$

sujeito a

$$2x_1 + x_2 \ge 5$$

$$x_1 + 2x_2 \le 20$$

$$x_1 \leq 10$$

$$x_1 \geq 0$$
, $x_2 \geq 0$

Considerando x_3 e x_4 as variáveis *surplus* e *artificial* da restrição funcional *(1)*, e x_5 e x_6 as variáveis *slack* das restrições funcionais *(2)* e *(3)* respetivamente, o quadro ótimo do *simplex* é o que se apresenta na página seguinte.

	Ci	1	3	0	-M	0	0	
ΧB	c _B \ x _i	X 1	X 2	Х3	X 4	X 5	X 6	b
\mathbf{X}_{2}	3	1/2	1	0	0	1/2	0	10
X 3	0	-1/2	0	1	-1	1/2	0	5
X 6	0	1	0	0	0	0	1	10
	zj-cj	1/2	0	0	М	3/2	0	30

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - 1) Alteração no vetor dos *termos independentes* das restrições de $\begin{bmatrix} 5 \\ 20 \\ 10 \end{bmatrix}$ para $\begin{bmatrix} 6 \\ 10 \\ 8 \end{bmatrix}$;
 - 2) Alteração do coeficiente da variável x2 na função objetivo, de 3 para 2;
 - 3) Suponha agora que foi acrescentada uma nova restrição ao problema:
 2 x₁ + x₂ ≤ 20;
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo* de b₁ (coeficiente do termo independente da 1ª restrição), a base ótima apresentada atrás continuará ótima.
- c) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo* de b₂ (coeficiente do termo independente da 2ª restrição), a base ótima apresentada atrás continuará ótima.
- 9. Considere o seguinte problema de programação linear com um só objetivo:

Maximizar
$$z = 2x_1 + x_2$$
 sujeito a

$$x_1 + x_2 \le 12$$

$$2x_1 + x_2 \ge 6$$

$$x_2 \leq 9$$

$$x_1 \geq 0$$
, $x_2 \geq 0$

Considerando x_3 e x_5 as variáveis *surplus* e *artificial* da restrição funcional *(2)*, e x_4 e x_6 as variáveis *slack* das restrições funcionais *(1)* e *(3)* respetivamente, o quadro ótimo do *simplex* é o que se apresenta na página seguinte.

	Ci	2	1	0	0	-M	0	
ΧB	c _B \ x _i	X 1	X ₂	Х3	X 4	X 5	X 6	b
X ₃	0	0	1	1	2	-1	0	18
X 1	2	1	1	0	1	0	0	12
X 6	0	0	1	0	0	0	1	9
	zj-cj	0	1	0	2	М	0	24

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - 1) Alteração do coeficiente da variável x₂ na função objetivo, de 1 para -2;
 - 2) Suponha agora que foi **acrescentada** ao problema uma **nova variável**, x_{Nova} , com coeficientes nas restrições iguais a $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ e coeficiente na função objetivo igual a 5;
 - Suponha agora que foi acrescentada uma nova restrição ao problema:
 x₁ 2x₂ ≤ 6;
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que *intervalo* de c₁ (coeficiente de x₁ na função objetivo), a solução ótima atrás apresentada continuará ótima.