САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторным работам №5-6 по дисциплине «Математическая статистика»

Выполнил студент: Колосков Александр группа: 3630102/80301

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

		Страница
1	Постановка задачи	4
2	Теория	4
	2.1 Двумерное нормальное распределение	4
	2.2 Корреляционный момент и коэффициент корреляции	
	2.3 Выборочные коэффициенты корреляции	
	2.3.1 Выборочный коэффициент корреляции Пирсона	
	2.3.2 Выборочный квадрантный коэффициент корреляции	
	2.3.3 Выборочный коэффициент ранговой корреляции Спирмена	
	2.4 Эллипсы рассеивания	
	2.5 Простая линейная регрессия	
	2.5.1 Модель простой линейной регрессии	
	2.5.2 Метод наименьших квадратов	
	2.5.3 Расчётные формулы для МНК-оценок	
	2.6 Робастные оценки коэффициентов линейной регрессии	
	2.7 Метод максимального правдоподобия	
	2.8 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи	
	2.9 Критерий Фишера	
3	Реализация	7
4	Результаты	8
	4.1 Выборочные коэффициенты корреляции	8
	4.2 Эллипсы рассеивания	9
	4.3 Оценки коэффициентов линейной регрессии	11
	4.3.1 Выборка без возмущений	11
	4.3.2 Выборка с возмущениями	11
	4.4 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи	
	4.5 Исследование сигнала с использованием критерия Фишера	12
5	Обсуждение	14
	5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания	14
	5.2 Оценки коэффициентов линейной регрессии	14
	5.3 Проверка гипотезы о нормальном распределении выборки методом хи-квадрат .	14
	5.4. Исследование сигнада с использованием критерия Фишера	14

Список иллюстраций

		Страница
1	Эллипсы рассеивания. $\rho=0(4)$	
2	Эллипсы рассеивания. $\rho=0.5(4)$	10
3	Эллипсы рассеивания. $\rho = 0.9(4)$	10
4	Выборка без возмущений	11
5	Выборка с возмущениями	11
6	Входной сигнал	12
7	Гистограмма сигнала	13
8	Входной сигнал без возмущение	13
9	Разделенные области сигнала	13

Список таблиц

	Страни	ща
1	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0(4)$	8
2	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0.5(4)$	8
3	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0.9(4)$	8
4	Выборочные коэффициенты корреляции смешанного распределения. (1)	9
5	Проверка гипотезы о законе $N(\widehat{\mu}, \widehat{\sigma})$ для выборки на 100 элементов с распределением $N(0, 1)$	12
6	Проверка гипотезы о законе $N(\widehat{\mu}, \widehat{\sigma})$ для выборки на 20 элементов с распределением	
	$U([\widehat{\mu}-3\widehat{\sigma},\widehat{\mu}+3\widehat{\sigma}])$	12
7		12
8	Характеристики выделенных областей	14

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9).$$
(1)

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

- 2. Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой с параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1 и y_{20} вносятся возмущения 10 и -10.
- 3. Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x,\hat{\mu},\hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 . Исследовать точность (чувствительность) критерия χ^2 сгенерировать выборки равномерного распределения и распределения Лапласа малого объема (например, 20 элементов). Проверить их на нормальность.
- 4. Провести дисперсионный анализ с применением критерия Фишера по данным регистраторов для сигнала длиной 1024 устранить явные выбросы использованием медианного фильтра; разведочным анализом с применением гистограммы определить области однородности и переходные области для сглаженного сигнала; с помощью критерия Фишера определить тип областей.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределенной нормально, если её плотность вероятности определяется формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho_{XY}) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1 - \rho_{XY}^2}} \times \left\{ -\frac{1}{2(1 - \rho_{XY}^2)} \left[\frac{(x - \overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x - \overline{x})(y - \overline{y})}{\sigma_x\sigma_y} + \frac{(y - \overline{y})^2}{\sigma_y^2} \right] \right\}, \quad (2)$$

где $\overline{x}, \overline{y}, \sigma_x, \sigma_y$ - математические ожидания и средние квадратические отклонения компонент X, Y соответственно, а ρ_{XY} - коэффициент корреляции.

2.2 Корреляционный момент и коэффициент корреляции

K oppeляционный момент (ковариация) двух случайных величин X,Y:

$$K_{XY} = \operatorname{cov}(X, Y) = \mathbf{M}\left[(X - \overline{x})(Y - \overline{y}) \right]. \tag{3}$$

Коэффициент корреляции ρ_{XY} случайных величин X,Y:

$$\rho_{XY} = \frac{K_{XY}}{\sigma_x \sigma_y}. (4)$$

Kosapuauuonhoй матрицей случайного вектора <math>(X,Y) называется симметричная матрица вида

$$K = \begin{pmatrix} D_X & K_{XY} \\ K_{YX} & D_Y \end{pmatrix}. \tag{5}$$

Кореляционной матрицей случайного вектора (X,Y) называется нормированная ковариационная матрица вида

$$R = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix}. \tag{6}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{K_{XY}}{s_X s_Y},$$
(7)

где K, s_X^2, s_Y^2 — выборочные ковариация и дисперсии случайных величин X, Y.

2.3.2 Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{8}$$

где n_1, n_2, n_3, n_4 — количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями $x^{'} = x - \text{med } x, y^{'} = y - \text{med } y$ и с центром в точке с координатами (med x, med y).

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum_{i=1}^n (u_i - \overline{u}) (v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (u_i - \overline{u})^2 \frac{1}{n} \sum_{i=1}^n (v_i - \overline{v})^2}},$$
(9)

где $\overline{u}=\overline{v}=\frac{1+2+\ldots+n}{n}=\frac{n+1}{2}$ — среднее значение рангов.

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = C, \quad C - \text{const.}$$
 (10)

Центр эллипса (10) находится в точке с координатами $(\overline{x}, \overline{y})$, оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$\tan 2\alpha = \frac{2\rho_{XY}\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (11)$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регрессии

Регрессионую модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n, \tag{12}$$

где $x_1, ..., x_n$ – заданные числа (значения фактора); $y_1, ..., y_n$ – наблюдаемые значения отклика; $\varepsilon_1, ..., \varepsilon_n$ – независимые, нормально распределенные $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0, β_1 – неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (13)

2.5.3 Расчётные формулы для МНК-оценок

МНК-оценки параметров β_0 и β_1 :

$$\widehat{\beta}_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2},\tag{14}$$

$$\widehat{\beta}_0 = \overline{y} - \overline{x}\widehat{\beta}_1. \tag{15}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1} . \tag{16}$$

$$\widehat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{17}$$

$$\widehat{\beta}_{0R} = \operatorname{med} y - \widehat{\beta}_{1R} \operatorname{med} x, \tag{18}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(x_i - \operatorname{med} x) \operatorname{sign}(y_i - \operatorname{med} y), \tag{19}$$

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, \quad q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$
 (20)

$$l = \left\{ egin{array}{ll} [n/4] + 1 & \mbox{при} \ n/4 & \mbox{дробном}, \\ n/4 & \mbox{при} \ n/4 & \mbox{целом}. \end{array}
ight.$$

$$j = n - l + 1.$$

$$\operatorname{sign} z = \begin{cases} 1 & \text{при } z > 0, \\ 0 & \text{при } z = 0, \\ -1 & \text{при } z < 0. \end{cases}$$

Уравнение регрессии здесь имеет вид

$$y = \widehat{\beta}_{0R} + \widehat{\beta}_{1R} \cdot x.$$

$$k_q(20) = 1.491.$$

$$(21)$$

2.7 Метод максимального правдоподобия

 $L(x_1,...,x_n,\theta)$ — функция правдоподобия($\Phi\Pi$), рассматриваемая как функция неизвестного параметра θ :

$$L(x_1, ..., x_n, \theta) = f(x_1, \theta) f(x_2, \theta) ... f(x_n, \theta).$$
(22)

Оценка максимального правдоподобия:

$$\widehat{\theta}_{\text{MII}} = \arg\max_{\theta} L(x_1, ..., x_n, \theta). \tag{23}$$

Система уравнений правдоподобия (в случае дифференцируемости функции правдоподобия):

$$\frac{\partial L}{\partial \theta_k} = 0$$
 или $\frac{\partial \ln L}{\partial \theta_k} = 0, \quad k = 1, ..., m.$ (24)

2.8 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x).

Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения по методу χ^2

- 1. Выбираем уровень значимости α .
- 2. По таблице [1, с. 358] находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k-1 степенями свободы порядка $1-\alpha$.
- 3. Вычисляем вероятности $p_i = P(X \in \Delta_i), i = 1, ..., k, c$ помощью гипотетической функции распределения F(x).
- 4. Находим частоты n_i попадания элементов выборки в подмножества Δ_i , i=1,...,k.
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$\chi_{\rm B}^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$$
 (25)

- 6. Сравниваем $\chi_{\rm B}^2$ и квантиль $\chi_{1-\alpha}^2(k-1)$.
 - (a) Если $\chi_{\rm B}^2 < \chi_{1-\alpha}^2 (k-1)$, то гипотеза H_0 на данном этапе проверки принимается.
 - (b) Если $\chi_{\rm B}^2 \geq \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

2.9 Критерий Фишера

Внутригрупповая дисперсия:

$$s_{In}^2 = \frac{1}{k} \sum_{i=1}^k s_i^2, \quad s_i = \frac{\sum_{j=1}^{n_i} (x_{ij} - \overline{x_i})^2}{n_i - 1},$$
(26)

где k - количество разбиений выборки, n_i - количество элементов в i-ом разбиении. Межсгрупповая дисперсия:

$$s_{Inter}^2 = \frac{k}{k-1} \sum_{i=1}^k (\overline{x_i} - \overline{x})^2 \tag{27}$$

Значение критерия Фишера:

$$F = \frac{s_{Inter}^2}{s_{In}^2} \tag{28}$$

3 Реализация

Лабораторная работа выполнена на языке Python в среде PyCharm с использованием библиотек numpy, scipy.stats, matplotlib.pyplot, statsmodels

4 Результаты

4.1 Выборочные коэффициенты корреляции

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	E(z) -0.0077		0.0067
$E(z^2)$	0.0498	0.0498	0.0497
D(z)	0.0497	0.0497	0.0496
n=60	r	r_S	r_Q
E(z)	E(z) -0.0057		-0.0168
$E(z^2)$	$E(z^2) = 0.0535$		0.0507
D(z)	D(z) = 0.0535		0.0504
n=100	r	r_S	r_Q
E(z)	-0.0048	-0.0069	-0.0088
$E(z^2)$	$E(z^2) = 0.0517$		0.056
D(z)	D(z) = 0.0517		0.056

Таблица 1: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho=0(4)$

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	E(z) = 0.4922		0.3296
$E(z^2)$	0.252	0.2318	0.1233
D(z)	0.0098	0.0108	0.0147
n=60	r	r_S	r_Q
E(z)	0.4986	0.4768	0.334
$E(z^2)$	$E(z^2) = 0.2574$		0.1269
D(z)	D(z) = 0.0088		0.0153
n=100	r	r_S	r_Q
E(z)	E(z) = 0.4988		0.329
$E(z^2)$	$E(z^2)$ 0.2584		0.1237
D(z)	D(z) = 0.0097		0.0155

Таблица 2: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho=0.5(4)$

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	0.8997	0.8869	0.7142
$E(z^2)$	0.81	0.7872	0.5151
D(z)	0.0004	0.0007	0.005
n = 60	r	r_S	r_Q
E(z)	0.8977	0.8843	0.7133
$E(z^2)$	0.8062	0.7826	0.5138
D(z)	D(z) = 0.0004		0.0051
n=100	r	r_S	r_Q
E(z)	0.8985	0.8854	0.7118
$E(z^2)$	$E(z^2)$ 0.8076		0.512
D(z)	0.0004	0.0006	0.0053

Таблица 3: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho=0.9(4)$

n=20	r	r_S	r_Q
E(z)	-0.3039	0.4771	0.1509
$E(z^2)$	0.5442	0.3042	0.2747
D(z)	0.4518	0.0765	0.2519
n=60	r	r_S	r_Q
E(z)	-0.6378	0.4742	0.3501
$E(z^2)$	$E(z^2) = 0.487$		0.2017
D(z)	0.0802	0.0264	0.0791
n=100	r	r_S	r_Q
E(z)	-0.6888	0.4756	0.3935
$E(z^2)$	0.5051	0.2422	0.2105
D(z)	D(z) = 0.0307		0.0556

Таблица 4: Выборочные коэффициенты корреляции смешанного распределения. (1)

4.2 Эллипсы рассеивания

Для всех экспериментов – Const=3

Рис. 1: Эллипсы рассеивания. $\rho = 0(4)$

Рис. 2: Эллипсы рассеивания. $\rho = 0.5(4)$

Рис. 3: Эллипсы рассеивания. $\rho = 0.9(4)$

4.3 Оценки коэффициентов линейной регрессии

4.3.1 Выборка без возмущений

• Критерий наименьших квадратов:

$$\hat{a} = 1.8986 \quad \hat{b} = 1.9533$$

• Критерий наименьших модулей:

$$\hat{a} = 1.9332 \quad \hat{b} = 1.6795$$

Рис. 4: Выборка без возмущений

4.3.2 Выборка с возмущениями

• Критерий наименьших квадратов:

$$\hat{a} = 0.7764$$
 $\hat{b} = 1.9022$

• Критерий наименьших модулей:

$$\hat{a} = 2.6911 \quad \hat{b} = 1.8674$$

Рис. 5: Выборка с возмущениями

4.4 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Метод максимального правдоподобия:

$$\widehat{\mu} = -0.039 \quad \widehat{\sigma} = 1.098$$

Критерий согласия χ^2 :

- Количество промежутков k = 6.
- \bullet Уровень значимости $\alpha=0.05$
- Квантиль $\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(5) = 11.07$

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -3.337]$	0	0.0013	0.135	-0.135	-1.0
2	[-3.337, -1.688]	7	0.0655	6.5457	0.4543	0.0694
3	[-1.688, -0.038]	45	0.4332	43.3193	1.6807	0.0388
4	[-0.038, 1.610]	41	0.4332	43.3193	-2.3193	-0.0535
5	[1.610, 3.259]	7	0.0655	6.5457	0.4543	0.0694
6	$[3.259,\infty]$	0	0.013	0.135	-0.135	-1.0
Σ	_	100	1.000	100.0	0.00	$\chi_B^2 = 0.387$

Таблица 5: Проверка гипотезы о законе $N(\widehat{\mu},\widehat{\sigma})$ для выборки на 100 элементов с распределением N(0,1)

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -3.337]$	0	0.0013	0.027	-0.027	-1.0
2	[-3.337, -1.688]	6	0.0655	1.3091	4.6909	3.5831
3	[-1.688, -0.038]	5	0.4332	8.6639	-3.6639	-0.4229
4	[-0.038, 1.610]	5	0.4332	8.6639	-3.6639	-0.4229
5	[1.610, 3.259]	4	0.0655	1.3091	2.6909	2.0554
6	$[3.259,\infty]$	0	0.013	0.027	-0.027	-1.0
Σ	_	20	1.000	20.0	0.00	$\chi_B^2 = 25.465$

Таблица 6: Проверка гипотезы о законе $N(\widehat{\mu},\widehat{\sigma})$ для выборки на 20 элементов с распределением $U([\widehat{\mu}-3\widehat{\sigma},\widehat{\mu}+3\widehat{\sigma}])$

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\infty, -3.337]$	0	0.0013	0.027	-0.027	-1.0
2	[-3.337, -1.688]	0	0.0655	1.3091	-1.3091	-1.0
3	[-1.688, -0.038]	8	0.4332	8.6693	-0.6639	-0.0766
4	[-0.038, 1.610]	11	0.4332	8.6639	2.3361	0.2696
5	[1.610, 3.259]	1	0.0655	1.3091	-0.3091	-0.2361
6	$[3.259,\infty]$	0	0.013	0.027	-0.027	-1.0
Σ	_	20	1.000	20.0	0.00	$\chi_B^2 = 2.0898$

Таблица 7: Проверка гипотезы о законе $N(\widehat{\mu},\widehat{\sigma})$ для выборки на 20 элементов с распределением $L(\widehat{\mu},\frac{\widehat{\sigma}}{\sqrt{2}})$

4.5 Исследование сигнала с использованием критерия Фишера

Рис. 6: Входной сигнал

Рис. 7: Гистограмма сигнала

Рис. 8: Входной сигнал без возмущение

Рис. 9: Разделенные области сигнала

Промежуток	Тип	Количество разбиений	Критерий Фишера
1	Фон	5	0.186
2	Переход	4	20.5
3	Сигнал	4	0.047
4	Переход	5	20.33
5	Фон	4	0.195

Таблица 8: Характеристики выделенных областей

5 Обсуждение

5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания

Для двумерного нормального распределения дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $D(r) < D(r_S) < D(r_Q)$. Аналогичные неравенства наблюдаются для величины $|\rho - r_{ind}|$, из чего можно сделать вывод, что оценка Пирсона коэффициента корреляции (7) является оптимальной в анализе двумерного нормального распределения.

Для смеси нормальных распределений наименьшая выборочная дисперсия наблюдается у коэффициента корреляции Спирмена. Кроме того коэффициент Спирмена наиболее устойчив к изменению размеров анализируемой выборки, из чего можно сделать вывод, что оценка Спирмена коэффициента корреляции (9) является оптимальной в анализе смеси нормальных распределений.

Процент попавших элементов выборки в эллипс рассеивания (95%-ная доверительная область) примерно равен его теоретическому значению.

5.2 Оценки коэффициентов линейной регрессии

Для сравнительно небольшой выборки (n=20) без возмущений критерий наименьших квадратов и критерий наименьших модулей дают сравнимые результаты (с небольшим выигрышем МНК в оценке коэффициента сдвига и небольшим выигрышем МНМ в оценке коэффициента наклона)

Метод наименьших модулей оказывается более устойчивым в оценке коэффициента наклона для выборки с возмущениями на краях.

5.3 Проверка гипотезы о нормальном распределении выборки методом хиквадрат

По результатам проверки на близость с помощью критерия хи-квадрат можно принять гипотезу о нормальном распределении $N(\widehat{\mu},\widehat{\sigma})$ на уровне значимости $\alpha=0.05$ для выборки, сгенерированной согласно N(0,1).

Для небольшой выборки критерий хи-квадрат не почувствовал разницы между распределением $N(\widehat{\mu}, \widehat{\sigma})$ и распределением $L(\widehat{\mu}, \frac{\widehat{\sigma}}{\sqrt{2}}))$, что можно объяснить малым размером выборки и схожестью законов при заданных параметрах.

Гипотезу о распределении выборки $U([\widehat{\mu}-3\widehat{\sigma},\widehat{\mu}+3\widehat{\sigma}])$ по закону $N(\widehat{\mu},\widehat{\sigma})$ метод отвергнул.

5.4 Исследование сигнала с использованием критерия Фишера

Промежутки 1, 3 и 5 (фон и сигнал) - области однородности, так как значение критерия Фишера близко к нулю. Промежутки 2 и 5 (переходы) - области неоднородности, так как значение критерия Фишера для них много больше единицы.

Репозиторий

https://github.com/KoloskovAleksandr/MathStatLabs2021

Список литературы

[1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей : учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. — СПб. : Изд-во Политехн. ун-та, 2009. - 395 с. (Математика в политехническом университете).