Total Number of Pages: 02

B.Tech. PCS4I104

4th Semester Regular / Back Examination 2017-18 FORMAL LANGUAGE & AUTOMATA THEORY

BRANCH: CSE Time: 3 Hours Max Marks: 100 Q.CODE: C1008

Answer Part-A which is compulsory and any four from Part-B.

The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.

Part-A(Answer all questions)

Q1 Answer the following questions:

(2 x 10)

- a) What do you mean by an alphabet and a string?
- b) Give the formal definition of Greibach Normal Form.
- c) Define Kleene closure of a language.
- **d)** If the number of states in an NFA is n, then what is the number of states in its equivalent DFA?
- e) Construct an NFA for the regular expression (aUb)*aba.
- f) What do you mean by instantaneous description of a Turing Machine?
- g) Design a DFA that accepts odd number of ones.
- h) Differentiate between P and NP class of problems.
- i) Give example of a total and a partial function.
- j) What is meant by Halting Problem of a Turing Machine?

Q2 Answer the following questions :

(2 x 10)

- a) Discuss the significance of a stack in PDA.
- **b)** What do you mean by Pigeonhole Principle?
- c) Distinguish between a DPDA and NPDA.
- d) What is the time complexity of CYK algorithm?
- e) Define a Post Correspondence Problem (PCP).
- **f)** Give two examples of NP-Complete problems.
- g) What do you mean by €-closure (epsilon closure) of a state?
- h) Define a primitive recursive function.
- i) What is meant by leftmost and rightmost derivation? Give example.
- j) What is the difference between a recursive language and a recursively enumerable language?

Part-B(Answer any four questions)

Q3 a) Design a PDA that recognizes the language A= {0ⁿ1ⁿ | n>=0}.

(5) (5)

- **b)** Prove that the class of regular languages is closed under union operation.
- c) Convert the following NFA to DFA. (5)

Q4	a) b)	Design a minimized DFA for the regular expression (a*b)(a U b)* State and prove pumping lemma for Regular languages. Using pumping lemma prove that the language L={0 ⁿ 1 ⁿ n>=0} is not regular.	(8) (5)
	c)	Differentiate between a deterministic Turing Machine and a non-deterministic Turing Machine.	(2)
Q5	a)	Give the formal definition of Chomsky's Normal Form (CNF). Define ambiguity in grammars with a suitable example.	(5)
	b)	Design the DFA's for the language that accepts all strings i) Starting with 1 and ending with 0. ii) Starting with 0 and having odd length or starting with 1 and having even length.	(5)
	c)	Define Ackermann's function. Using the function, find out the values of A (2,1) and A (2,2).	(5)
Q6	a) b)	Design a Turing Machine to accept the language L= {w#w $w \in \{0,1\}^*$ }. Convert the following context free grammar to Chomsky's Normal Form (CNF): $S \longrightarrow ASA \mid aB$ $A \longrightarrow B \mid S$ $B \longrightarrow B \mid \in$	(10) (5)
Q7	a)	Design the NFA's accepting strings over the alphabet {0,1} i) Not containing the substring 110. ii) Containing the substring 110.	(5)
	b) c)	Design a PDA that recognizes the language L= {aibick i,j,k>=0 and i=j or i=k}. Show that the following functions are primitive recursive. i) f(x,y)= x*y ii) f(x,y)= xy	(5) (5)
Q8	a)	Compute the Godel number for the following sequence: i) 1,1,2,0 ii) 4,0,0,1 iii) 0,0,1,1 iv) 1,0,3,0	(5)
	b)	Design a DFA over the alphabet {a,b} accepting strings that does not contain exactly two a's.	(5)
	c)	Explain the Chomsky's hierarchy with a suitable diagram.	(5)
Q9	a) b) c) d)	Write short answer on any THREE: Class NP-Complete Decidability Pumping Lemma for context free languages CYK algorithm	(5 x 3)