Experimento #6

Diodo Zener

Objetivo: Introdução ao comportamento do diodo Zener. Obtenção de sua curva característica I x V, e a extração dos seus parâmetros principais de operação.

Material:

- Multímetro Digital Modelo:

- Fonte DC Modelo:__

- Diodo Zener

1) Verifique com o multímetro (Modo Ohmímetro) qual o real valor do resistor R_{1A} de 1 k Ω e R_{1B} de 1M Ω , e anote a precisão da medida de resistência.

$$\mathbf{R}_{1A} (1 \text{ k}\Omega) = \underline{\hspace{1cm}} +/-\underline{\hspace{1cm}} [Ohms]$$

$$\mathbf{R}_{1B} (1 \text{ M}\Omega) = \underline{\hspace{1cm}} +/-\underline{\hspace{1cm}} [Ohms]$$

- 2) Monte o circuito da figura, para obtenção das curvas $I \times V$ do diodo Zener. Utilize o resistor de 1 k Ω para realizar as medidas no primeiro quadrante ($V_{DC} > 0$), e o resistor de 1 M Ω para as medidas no terceiro quadrante ($V_Z < V_{DC} < 0$). No terceiro quadrante, para $V_{DC} < V_Z$, utilize novamente o resistor de 1k Ω . Considere a influência da resistência interna do multímetro (modo voltímetro) nas medidas.
- 3) A partir dos pontos experimentais, plote o gráfico I x V e extraia os valores dos parâmetros abaixo.

$$\mathbf{V}_{\mathbf{D}} = \underline{\hspace{1cm}} [V] \quad \mathbf{R}_{\mathbf{D}} = \underline{\hspace{1cm}} [\Omega] \quad \mathbf{I}_{\mathbf{S}} = \underline{\hspace{1cm}} [A] \quad \mathbf{V}_{\mathbf{Z}} = \underline{\hspace{1cm}} [V]$$

- **4**) Ajuste o modelo elétrico do diodo Zener aos dados experimentais obtidos (curva I x V), pelo método dos mínimos quadrados e plote o gráfico do modelo ajustado junto com os pontos experimentais.
- 5) (Opcional) Monte um circuito para traçar a curva de corrente (I) vs. tensão (V) de um diodo Zener, no osciloscópio (Modo X-Y), para uma entrada de tensão senoidal (~ 30 Hz).
- 6) (Opcional) Verifique como o aumento da temperatura afeta a curva de corrente (I) vs. tensão (V) de um Diodo Zener. Utilize uma fonte de calor para aquecer o diodo. Explique seus resultados.
- 7) Responda
- a) Pesquisa: Por que a Tensão de Ruptura do Diodo Zener varia com a Temperatura? Cite suas referências.
- b) Pesquisa: Liste algumas das aplicações tecnológicas do diodo Zener. Cite suas referências.

Grupo:

Dados Experimentais

$\mathbf{R}_{1\mathbf{A}} = 1 \ k\Omega$

$V_{DC} > 0$	V_{A}	$V_{\rm B}$	I

$\mathbf{R}_{1\mathbf{B}} = 1 \ \mathrm{M}\Omega$

$V_Z < V_{DC} < 0$	V_{A}	V_{B}	I

$\mathbf{R}_{1\mathbf{A}} = 1 \text{ k}\Omega$

$V_{DC} < V_{Z}$	V_{A}	V_{B}	I

Obs: Use tensões e correntes que não excedam a potência máxima do Diodo Zener.