HOLONOMY UNIVERSALITY BEYOND THE DISK: RIEMANN MAPS, DOMAINS, AND HARDY/SMIRNOV CLASSES ON A SINGLE HEISENBERG SLICE

MICHAEL SEILER

ABSTRACT. We demonstrate the universality of the Heisenberg slice $H_1 \cong S^1 \times \mathbb{R}$ as the native space for one-variable complex analysis, extending the holonomy realization from the unit circle to arbitrary Jordan domains and annuli. The geometry of any domain $\Omega \subset \mathbb{C}$ (itself a Heisenberg shadow) is encoded entirely within weights on this universal space. Let $\Phi : \mathbb{D} \to \Omega$ be a Riemann map. Pulling back contour integrals on $\partial\Omega$ converts all Cauchy, Laurent, and residue functionals into holonomy integrals on H_1 against the fixed kernel $\alpha_H = d\theta$ with conformal weight

$$\mathcal{W}_{\Omega,z_0,n}(w) = \frac{w \Phi'(w)}{\left(\Phi(w) - z_0\right)^{n+1}} .$$

Clarification. The identities below are classical consequences of the conformal change of variables $z = \Phi(w)$; the role of the Heisenberg slice is to provide a uniform representation on the fixed base H_1 , with all domain dependence encoded in the conformal weight $\mathcal{W}_{\Omega,z_0,n}$. Thus for f holomorphic near $\overline{\Omega}$,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_0^{2\pi} f(\Phi(e^{J\theta})) \frac{e^{J\theta} \Phi'(e^{J\theta})}{\left(\Phi(e^{J\theta}) - z_0\right)^{n+1}} \alpha_H,$$

and for meromorphic g with no poles on $\partial\Omega$,

$$\frac{1}{2\pi J} \oint_{\partial\Omega} g(z) \, dz = \frac{1}{2\pi} \int_0^{2\pi} \left(\mathrm{e}^{J\theta} \, \Phi'(\mathrm{e}^{J\theta}) \right) g\!\!\left(\Phi(\mathrm{e}^{J\theta}) \right) \, \alpha_H = \sum_{z \in \Omega} \mathop{\mathrm{Res}}_{z=a} g.$$

We treat annuli and multiply connected domains via oriented sums of boundary components (each pulled back to S^1), discuss Hardy/Smirnov classes on Ω by pullback from $H^p(\mathbb{D})$, and formulate residues as *vertical holonomy* of a weighted connection. All domain geometry is absorbed into explicit weights; the kernel and slice are unchanged.

License. © 2025 The author(s). This preprint is distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Contents

1. Introduction	2
Context from Paper I	2
Aim of this paper	2
Main claims	2
2. Preliminaries	2
2.1. Heisenberg slice and circle parameter	2
2.2. Domains and Riemann maps	2
3. Conformal pullback of Cauchy kernels	3
4. Residues as vertical holonomy on $\partial\Omega$	3
5. Hardy and Smirnov classes on Ω	4
6. Annuli and multiply connected domains	4

Date: September 3, 2025.

²⁰²⁰ Mathematics Subject Classification. Primary 30E20; Secondary 30C35, 53C17.

Key words and phrases. Heisenberg holonomy, Riemann mapping, universality, Hardy/Smirnov, residues on domains.

6.1. Annuli		4
6.2. Multiply connected domains	\mathbf{s}	4
7. Distributional refinements and	d singular kernels	5
8. Examples		5
9. The Universality of the Heiser	enberg Slice	6
10. Conclusion and outlook		6
Appendix A. Referee checklist		6
Acknowledgements		7
References		7

1. Introduction

Context from Paper I. Paper I established the kernel identity on the unit circle

(1)
$$\alpha_C := \frac{dz}{z} = J \alpha_H \quad \text{on } |z| = 1,$$

with $\alpha_H = d\theta$ along $H_1 \cong S^1 \times \mathbb{R}$. This revealed that complex analysis on the disk is natively the geometry of holonomy on H_1 , and that the complex plane \mathbb{C} is a projection, or Heisenberg shadow, of this structure.

Aim of this paper. We show that the entire one-variable analytic functional calculus, regardless of domain complexity, lives universally on the same H_1 slice. The act of changing domains (e.g., via a Riemann map) is merely the management of conformal weights on this fixed space.

Main claims. For a bounded simply connected $C^{1,\alpha}$ Jordan domain $(0 < \alpha \le 1)$ Ω and a boundary-extendable Riemann map $\Phi : \mathbb{D} \to \Omega$:

- Cauchy evaluation/derivatives at $z_0 \in \Omega$ become holonomy integrals on H_1 with weight $W_{\Omega,z_0,n}$.
- Residues on Ω correspond to vertical holonomy of the pulled-back connection $dt + (w \Phi'(w) g(\Phi(w))) \alpha_H$.
- Hardy and Smirnov classes on Ω are the pullback of $H^p(\mathbb{D})$ and $E^p(\mathbb{D})$ via Φ , with norms realized on S^1 against α_H .
- \bullet Annuli and multiply connected domains reduce to sums over boundary components, each handled by the same S^1 -holonomy with the appropriate conformal weight and orientation.

2. Preliminaries

2.1. Heisenberg slice and circle parameter. We retain $H_1 \cong S^1 \times \mathbb{R}$, $\alpha_H = d\theta$, and $w = e^{J\theta}$ from Paper I. Along |w| = 1,

$$dw = J w d\theta = J w \alpha_H.$$

2.2. **Domains and Riemann maps.** Let $\Omega \subset \mathbb{C}$ be a bounded simply connected Jordan domain with $C^{1,\alpha}$ boundary $(0 < \alpha \le 1)$. By Carathéodory's theorem, any conformal map $\Phi : \mathbb{D} \to \Omega$ extends to a homeomorphism $\Phi : \overline{\mathbb{D}} \to \overline{\Omega}$; Φ' extends continuously and is nonvanishing on S^1 .

We parametrize $\partial\Omega$ by

$$z(\theta) = \Phi(w(\theta)), \quad w(\theta) = e^{J\theta}, \quad 0 \le \theta < 2\pi.$$

Then

$$dz = \Phi'(w) dw = \Phi'(w) J w \alpha_H.$$

Remark 2.1 (Boundary regularity). For a bounded simply connected domain Ω with Jordan boundary:

- If $\partial\Omega$ is C^1 , then Φ' extends continuously and is nonvanishing on S^1 ; all identities here are classical line integrals.
- If $\partial\Omega$ is rectifiable (finite length), then Φ extends continuously to S^1 , non-tangential boundary values of Φ' exist a.e., and the weights $\mathcal{W}_{\Omega,z_0,n} \in L^1(S^1)$; the resulting H_1 integrals are interpreted as a.e. boundary limits/principal values and agree with arc-length integrals on $\partial\Omega$.
- If $\partial\Omega$ has corners (piecewise C^1), then near a corner of interior angle $\beta\pi$ one has $\Phi'(e^{J\theta}) \approx |\theta \theta_0|^{\beta-1}$; the weights may develop power singularities but remain integrable for $\beta > 0$, with principal-value interpretations when needed.

See, e.g., Pommerenke, Boundary Behaviour of Conformal Maps; Duren, Theory of H^p Spaces; and Garnett-Marshall, Harmonic Measure, for precise statements.

Remark 2.2 (Orientation). The parameter θ increases counterclockwise on S^1 ; under Φ this induces the positive orientation on $\partial\Omega$.

3. Conformal pullback of Cauchy Kernels

Lemma 3.1 (Pulled-back Cauchy kernel). Fix $z_0 \in \Omega$. For $n \geq 0$ and f holomorphic on a neighborhood of $\overline{\Omega}$,

$$\frac{1}{2\pi J} \oint_{\partial\Omega} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{1}{2\pi} \int_0^{2\pi} f(\Phi(e^{J\theta})) \underbrace{\frac{e^{J\theta} \Phi'(e^{J\theta})}{(\Phi(e^{J\theta}) - z_0)^{n+1}}}_{\mathcal{W}_{\Omega, z_0, n}(e^{J\theta})} \alpha_H.$$

Proof. Substitute $z = \Phi(w)$ and $dz = \Phi'(w) dw = \Phi'(w) J w \alpha_H$; divide by $2\pi J$ to cancel J.

Theorem 3.2 (Evaluation and derivatives on Ω via H_1). Under the hypotheses of Lemma 3.1,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_0^{2\pi} f(\Phi(e^{J\theta})) \mathcal{W}_{\Omega,z_0,n}(e^{J\theta}) \alpha_H.$$

Remark 3.3 (Choice of basepoint). If $\Phi(0) = z_0$, the weight simplifies to $\mathcal{W}_{\Omega,\Phi(0),n}(w) = w \Phi'(w)/(\Phi(w) - \Phi(0))^{n+1}$. Different choices of z_0 correspond to precomposing Φ with a disk automorphism sending 0 to $w_0 = \Phi^{-1}(z_0)$.

4. Residues as vertical holonomy on $\partial\Omega$

Theorem 4.1 (Residue/holonomy on general domains). Let g be meromorphic on an open set containing $\overline{\Omega}$ with no pole on $\partial\Omega$. Then

$$\frac{1}{2\pi J} \oint_{\partial\Omega} g(z) dz = \frac{1}{2\pi} \int_0^{2\pi} \left(e^{J\theta} \Phi'(e^{J\theta}) \right) g(\Phi(e^{J\theta})) \alpha_H = \sum_{a \in \Omega} \mathop{\mathrm{Res}}_{z=a} g.$$

Equivalently, the connection

$$A_{\Omega,q} = dt + (w \Phi'(w) g(\Phi(w))) \alpha_H$$

Using $dz = \Phi'(w) J w \alpha_H$ on |w| = 1, this connection can equivalently be written intrinsically along $\partial \Omega$ as

$$A_g = dt + \frac{1}{J}g(z) dz,$$

which is independent of the choice of Riemann map Φ . has vertical holonomy

$$\Delta t = -\int_0^{2\pi} (w \Phi'(w) g(\Phi(w))) \alpha_H = -2\pi \sum_{a \in \Omega} \underset{z=a}{\text{Res }} g.$$

Proof. Pull back dz as above and apply the residue theorem.

Remark 4.2 (The $w \Phi'(w)$ factor). As in Paper I where $dz = J z \alpha_H$ produced the z-factor, here $dz = \Phi'(w) J w \alpha_H$ produces $w \Phi'(w)$ in the weight. Omitting it breaks the identity.

5. Hardy and Smirnov classes on Ω

Define $H^p(\Omega) := \{ f \in \mathcal{O}(\Omega) : f \circ \Phi \in H^p(\mathbb{D}) \}$ with norm

$$||f||_{H^p(\Omega)} := ||f \circ \Phi||_{H^p(\mathbb{D})} = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(\Phi(e^{J\theta}))|^p \alpha_H\right)^{1/p}.$$

This is independent of the choice of Riemann map up to disk automorphisms.

Remark 5.1 (On rectifiability and harmonic measure). When $\partial\Omega$ is rectifiable, boundary values for $E^p(\Omega)$ (Smirnov) exist a.e. with respect to arc length, and the integral over θ is the push-forward of harmonic measure under Φ . For rougher Jordan curves one works a.e. with non-tangential limits; the holonomy formulas above remain valid in this interpretation.

Proposition 5.2 (Boundary Fourier/holonomy picture). For $f \in H^2(\Omega)$ and $z_0 \in \Omega$,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(\Phi(e^{J\theta})) \mathcal{W}_{\Omega, z_0, 0}(e^{J\theta}) \alpha_H,$$

and

$$||f||_{H^2(\Omega)}^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(\Phi(e^{J\theta}))|^2 \alpha_H.$$

Remark 5.3 (Inner-outer factorization). Inner/outer factorization on Ω is transported from \mathbb{D} via Φ . Outer parts are characterized by $\log |f| \in L^1(d\theta)$ on S^1 after pullback; Blaschke products pull forward to Ω -inner functions. All statements live on H_1 via the boundary function $\theta \mapsto f(\Phi(e^{J\theta}))$.

Remark 5.4 (Harmonic measure). Choosing $\Phi(0) = z_0$ identifies the harmonic measure ω_{z_0} on $\partial\Omega$ with the pushforward of Lebesgue measure $d\theta/2\pi$ under $w \mapsto \Phi(w)$. Cauchy and Poisson kernels on Ω are the conformal images of their disk counterparts, hence realized on H_1 by explicit weights.

6. Annuli and multiply connected domains

6.1. **Annuli.** Let $A(\rho,1) = \{ \rho < |w| < 1 \}, 0 < \rho < 1, \text{ and } \Psi : A(\rho,1) \to \Omega \text{ be a conformal map extending continuously to boundary components } \mathbb{T} \text{ and } \rho \mathbb{T}.$ Then for f holomorphic near $\overline{\Omega}$ and $z_0 \in \Omega$,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \left[\int_0^{2\pi} f(\Psi(e^{J\theta})) \frac{e^{J\theta} \Psi'(e^{J\theta})}{(\Psi(e^{J\theta}) - z_0)^{n+1}} \alpha_H - \int_0^{2\pi} f(\Psi(\rho e^{J\theta})) \frac{\rho e^{J\theta} \Psi'(\rho e^{J\theta})}{(\Psi(\rho e^{J\theta}) - z_0)^{n+1}} \alpha_H \right],$$

where the inner boundary is traversed with negative orientation. Residue statements are analogous with g in place of $f/(\cdot - z_0)^{n+1}$.

6.2. Multiply connected domains. Assume each boundary component Γ_j is C^1 . Then there exist boundary collars (local charts) Φ_j mapping S^1 onto Γ_j with Φ'_j continuous and nonvanishing near S^1 ; in this setting, If Ω has boundary components $\Gamma_1, \ldots, \Gamma_m$ (each $C^{1,\alpha}$ Jordan curve), choose conformal charts Φ_j from $\mathbb D$ to collars of each component and write

$$\frac{1}{2\pi J} \oint_{\partial\Omega} G(z) dz = \sum_{j=1}^{m} \sigma_j \frac{1}{2\pi} \int_0^{2\pi} \left(e^{J\theta} \Phi'_j(e^{J\theta}) \right) G(\Phi_j(e^{J\theta})) \alpha_H,$$

with $\sigma_j \in \{\pm 1\}$ the orientation signs (outer +, inner –). This yields H_1 -holonomy formulas as oriented sums over a single loop with different conformal weights.

7. Distributional refinements and singular kernels

Theorem 7.1 (Distributional host on quasicircles). If $\partial\Omega$ is a quasicircle and $\Phi: S^1 \to \partial\Omega$ is the boundary extension of a conformal map $\mathbb{D} \to \Omega$, then for each $z_0 \in \Omega$ and $n \geq 0$ the weight

$$\mathcal{W}_{\Omega,z_0,n}(\mathbf{e}^{J\theta}) = \frac{\mathbf{e}^{J\theta} \, \Phi'(\mathbf{e}^{J\theta})}{\left(\Phi(\mathbf{e}^{J\theta}) - z_0\right)^{n+1}}$$

defines a distribution on S^1 of order at most 1 (indeed in $H^{-1/2}(S^1)$), and for $f \in H^2(\Omega)$ with non-tangential boundary values $f \circ \Phi \in L^2(S^1)$,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_0^{2\pi} (f \circ \Phi)(e^{J\theta}) \mathcal{W}_{\Omega, z_0, n}(e^{J\theta}) \alpha_H,$$

with the pairing understood in the distributional sense. The assignment is natural with respect to quasisymmetric reparameterizations of S^1 .

If the pulled-back weight develops boundary singularities (e.g. $z_0 \in \partial \Omega$ or approach limits), interpret the H_1 -integrals in the principal value sense. The identity $dz = \Phi'(w) J w \alpha_H$ holds distributionally, so Plemelj jump relations and Hilbert transform identities on $\partial \Omega$ are transported to S^1 with explicit conformal weights.

8. Examples

Example 8.1 (Half-plane via Cayley). Map \mathbb{D} to the right half-plane $\mathsf{H} = \{\Re z > 0\}$ by $\Phi(w) = \frac{1+w}{1-w}$ (sending $0 \mapsto 1$). Then

$$\frac{f^{(n)}(1)}{n!} = \frac{1}{2\pi} \int_0^{2\pi} f\left(\frac{1 + e^{J\theta}}{1 - e^{J\theta}}\right) \frac{e^{J\theta} \Phi'(e^{J\theta})}{\left(\Phi(e^{J\theta}) - 1\right)^{n+1}} \alpha_H, \quad \Phi'(w) = \frac{2}{(1 - w)^2}.$$

For n = 0 this is the half-plane Cauchy integral pulled back to H_1 .

Example 8.2 (Annulus). For $\Omega = \{R^{-1} < |z| < R\}$, one can take $\Psi(w) = \exp(\lambda \frac{1+w}{1-w})$ with suitable $\lambda > 0$ mapping a round annulus to Ω . The two boundary integrals appear with opposite orientation, each realized on S^1 with its weight.

Example 8.3 (Small perturbations of the circle). If $\partial\Omega$ is a C^1 perturbation of S^1 , write $\Phi(w) = w + \varepsilon h(w) + O(\varepsilon^2)$; expanding the weight writing $\Phi(w) = w + \varepsilon h(w) + O(\varepsilon^2)$, a first-order expansion gives, for n = 0,

$$W_{\Omega,z_0,0}(w) = \frac{w}{w - z_0} + \varepsilon \left(\frac{w \, h'(w)}{w - z_0} - \frac{w \, h(w)}{(w - z_0)^2} \right) + O(\varepsilon^2),$$

and similarly for $n \geq 0$ by differentiating the Cauchy kernel.

Definition 8.4 (Holonomy host). Let \mathcal{J} be the groupoid of finite unions of $C^{1,\alpha}$ Jordan domains with boundary charts. A holonomy host is a triple (M, β, \mathcal{W}) where M is an oriented 1-manifold, β a nowhere-vanishing real 1-form on M, and for each $(\Omega, \Phi) \in \mathrm{Ob}(\mathcal{J})$, $z_0 \in \Omega$, and $n \in \mathbb{Z}_{\geq 0}$ there is a distribution $\mathcal{W}_{\Omega, z_0, n} \in \mathcal{D}'(M)$ such that, for every f holomorphic on a neighborhood of $\overline{\Omega}$,

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_{\mathcal{M}} (f \circ \Phi) \, \mathcal{W}_{\Omega, z_0, n} \, \beta,$$

and the assignment is natural under composition of boundary charts.

9. The Universality of the Heisenberg Slice

Theorem 9.1 (Representation on a Single Heisenberg Slice for Finite Unions of $C^{1,\alpha}$ Jordan Curves). For every finite union of $C^{1,\alpha}$ Jordan curves $\Gamma = \partial \Omega$ and every contour functional of the form

$$\mathcal{F}[F] = \frac{1}{2\pi J} \oint_{\Gamma} K(z; z_0) F(z) dz$$

with K a finite linear combination of Cauchy/Laurent kernels and meromorphic weights without poles on Γ , there exists a single loop on H_1 and finitely many conformal weights $W_i(e^{J\theta})$ such that

$$\mathcal{F}[F] = \sum_{j} \epsilon_{j} \cdot \frac{1}{2\pi} \int_{0}^{2\pi} (F \circ \Phi_{j})(e^{J\theta}) W_{j}(e^{J\theta}) \alpha_{H},$$

with $\epsilon_i \in \{\pm 1\}$ encoding orientations.

Theorem 9.2 (Functoriality under boundary composition). Let $\Phi: S^1 \to \partial\Omega$ and $\Psi: \Omega \to \Omega'$ be conformal with $C^{1,\alpha}$ boundary extensions. Fix $z_0 \in \Omega$ and set $z_0' = \Psi(z_0)$. Then for all $n \geq 0$,

$$\mathcal{W}_{\Omega',z_0',n}(\mathrm{e}^{J\theta}) = \mathcal{W}_{\Omega,z_0,n}(\mathrm{e}^{J\theta}) \cdot (\Psi' \circ \Phi)(\mathrm{e}^{J\theta}) \cdot \left(\frac{\Phi(\mathrm{e}^{J\theta}) - z_0}{\Psi(\Phi(\mathrm{e}^{J\theta})) - z_0'}\right)^{n+1}.$$

Equivalently, for all f holomorphic near $\overline{\Omega'}$,

$$\frac{1}{2\pi} \int_0^{2\pi} (f \circ \Psi \circ \Phi)(e^{J\theta}) \, \mathcal{W}_{\Omega,z_0,n}(e^{J\theta}) \, \alpha_H = \frac{1}{2\pi} \int_0^{2\pi} f(\Psi(\Phi(e^{J\theta}))) \, \mathcal{W}_{\Omega',z_0',n}(e^{J\theta}) \, \alpha_H,$$

so
$$\mathcal{F}_{\Omega',z'_0,n}[f] = \mathcal{F}_{\Omega,z_0,n}[f \circ \Psi].$$

Proof. Start from
$$\frac{f^{(n)}(z_0')}{n!} = \frac{1}{2\pi} \int f(\Psi(\Phi)) \frac{e^{J\theta}(\Psi' \circ \Phi)\Phi'}{\left(\Psi(\Phi) - z_0'\right)^{n+1}} \alpha_H$$
 and insert $1 = \frac{\Phi - z_0}{\Phi - z_0}$ to factor

$$\frac{\mathrm{e}^{J\theta}\Phi'}{(\Phi-z_0)^{n+1}}; \text{ the remaining multiplicative cocycle is } (\Psi'\circ\Phi)\big(\frac{\Phi-z_0}{\Psi(\Phi)-\Psi(z_0)}\big)^{n+1}.$$

This theorem establishes H_1 as the universal stage for one-variable complex analysis. The geometry of the domain, traditionally central to the analysis, is entirely offloaded into the weights W_j . We are always performing the same geometric operation (holonomy) on the same space (H_1) with the same kernel (α_H) .

Remark 9.3 (Reparameterizations). Any C^1 diffeomorphism $\theta \mapsto \vartheta(\theta)$ of S^1 changes α_H by a positive scalar factor and correspondingly rescales the weight; the functional is invariant.

10. Conclusion and outlook

We have demonstrated the universality of the Heisenberg slice H_1 as the native home for the entire one-variable analytic calculus, regardless of domain geometry. This reinforces the perspective that the complex plane is a Heisenberg shadow, and its analysis is fundamentally the geometry of holonomy. Next steps include: (i) developing the profound implications of this foundational shift (Paper III); (ii) generalizations to higher dimensions (H_n) ; and (iii) connections to non-commutative geometry and physics.

APPENDIX A. REFEREE CHECKLIST

- Assumptions on Ω : bounded simply connected, $C^{1,\alpha}$ Jordan boundary $(0 < \alpha \le 1)$; Φ extends continuously to S^1 with $\Phi' \ne 0$.
- Pullback identities: $dz = \Phi'(w) J w \alpha_H$ on |w| = 1; hence the conformal weight $w \Phi'(w)$ in all formulas.
- Residues: no poles on $\partial\Omega$; orientations of inner boundaries are negative.

- Function classes: f holomorphic on a neighborhood of $\overline{\Omega}$; g meromorphic on a neighborhood of $\overline{\Omega}$.
- $Hardy/Smirnov: H^p(\Omega)$ defined by pullback via Φ ; norms realized on S^1 against α_H .

ACKNOWLEDGEMENTS

References

- [1] G. B. Folland and E. M. Stein, *Hardy Spaces on Homogeneous Groups*, Mathematical Notes, Princeton University Press, 1982.
- [2] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, 1992.
- [3] P. L. Duren, Theory of H^p Spaces, Dover, 2000 (reprint of 1970 edition).
- [4] J. B. Garnett and D. E. Marshall, *Harmonic Measure*, Cambridge University Press, 2008.

Email address: mgs33@cornell.edu

 $\it URL$: https://orcid.org/0009-0009-5529-2008