HW₅

1. TASK 1: PING PONG LATENCY

Summary:

I have used 1000 iterations of ping-pong loop to get accurate timings. Finally ran the code for 16 data points with data following message_length(L) in bytes: 0, 100, 1000, 10000, 100000, 1000000, 2000000, 3000000, 4000000, 5000000, 6000000, 7000000, 8000000, 9000000, 100000000. The code calculates total timing Tmsg for all the above mentioned data points.

To calculate T_s , I simply used the value of Tmsg for message_length(L) =0. To calculate T_w , I am using mean of T_w value for all the 16 data points.

 $T_s = 0.007997999 \text{ sec}$ $T_w = 0.00005823312 \text{ sec}$

Loop Iterations used:

1000

Data Points:

Data Points	X Axis -> Message Length(L)	Y Axis -> T _{msg}
1	0	0.007997999
2	100	0.013313002
3	1000	0.048486501
4	10000	0.363008
5	100000	4.0599218
6	500000	34.8613816
7	1000000	51.0772118

8	2000000	132.3538463
9	3000000	179.9873296
10	4000000	297.8985994
11	5000000	351.6244534
12	6000000	427.94704218
13	7000000	441.8691686
14	8000000	481.82289031
15	9000000	539.689148131
16	10000000	574.63355542

Graph:

NOTE: X axis denotes Message length(L) in bytes, and Y axis denotes $T_{\mbox{\tiny msg}}$ in seconds

Calculation for T_s:

- For L=0, $T_{msg} = T_s$
- From above data points, T_{msg} for L=0 is 0.007997999 sec
- Therefore, $T_s = 0.007997999$ sec

Calculation for T_w:

- For any data point (L, T_{msg})

$$T_{msg} = T_s + T_w * L$$
$$=> T_w = (T_{msg} - T_s)/L$$

Data Points	X Axis -> Message Length(L)	Y Axis -> T _{msg}	(T _{msg} - T _s)/L
1	0	0.007997999	
2	100	0.013313002	0.00005315002000000007 10
3	1000	0.048486501	0.00004048850099999982 79
4	10000	0.363008	0.0000355009999999999 97
5	100000	4.0599218	0.00004051923799999984 07
6	500000	34.8613816	0.00006970676720000000 78
7	1000000	51.0772118	0.00005106921379999996 89
8	2000000	132.3538463	0.00006617292415000002 06
9	3000000	179.9873296	0.00005999311053333331 51
10	4000000	297.8985994	0.00007447265034999998 89
11	5000000	351.6244534	0.00007032329
12	6000000	427.94704218	0.00007132317
13	7000000	441.8691686	0.00006312302437142862 4
14	8000000	481.82289031	0.00006022686
15	9000000	539.689148131	0.00005996457223677777 879
16	10000000	574.63355542	0.00005746255574200000 90
SUM -> $\sum_{n=1}^{15} (T_{msg} - T_s)/L$			0.00087349689

- Now, we will take mean of all the values for all data points m to get most accurate value for $T_{\rm w}$, i,e,

$$T_{w} = \left(\sum_{n=1}^{m} (T_{msg} - T_{s})/L\right) \div m$$

$$T_{w} = \left(\sum_{n=1}^{15} (T_{msg} - T_{s})/L\right) \div m$$

$$T_{w} = \left(\sum_{n=1}^{15} (T_{msg} - T_{s})/L\right) \div 15$$

$$T_{w} = \left(\sum_{n=1}^{m} (T_{msg} - T_{s})/L\right) \div 15$$

$$T_{w} = 0.00087349689 \div 15$$

$$T_{w} = 0.00005823312 \sec$$

2. TASK 2: FINITE-DIFFERENCE FOR 2D DATA DECOMPOSITION

Assume

- **Dimentions** = $Nx \times Ny \times Nz$, where Nx = Ny = N for simplicity
- 9-point stencil
- Number of processes = P