$12a_{0733} \ (K12a_{0733})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{36} - u^{35} + \dots + u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{36} - u^{35} + \dots + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{20} - 5u^{18} - 11u^{16} - 10u^{14} + 2u^{12} + 13u^{10} + 9u^{8} - 2u^{6} - 5u^{4} - u^{2} + 1 \\ -u^{22} - 6u^{20} - 17u^{18} - 26u^{16} - 20u^{14} + 13u^{10} + 10u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{34} - 9u^{32} + \cdots - u^{2} + 1 \\ -u^{35} + u^{34} + \cdots + u^{2} - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{23} + 6u^{21} + \cdots + 6u^{5} + 2u^{3} \\ -u^{23} - 7u^{21} + \cdots - 3u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =

$$\begin{matrix} \grave{4}u^{35} - 4u^{34} + 40u^{33} - 36u^{32} + 188u^{31} - 156u^{30} + 524u^{29} - 408u^{28} + 908u^{27} - 688u^{26} + 880u^{25} - 720u^{24} + 124u^{23} - 340u^{22} - 868u^{21} + 236u^{20} - 1120u^{19} + 600u^{18} - 444u^{17} + 592u^{16} + 280u^{15} + 332u^{14} + 360u^{13} + 20u^{12} + 84u^{11} - 172u^{10} - 60u^{9} - 156u^{8} - 24u^{7} - 52u^{6} + 16u^{5} + 4u^{4} + 20u^{3} - 10u^{10} - 10u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{36} + 21u^{35} + \dots - 2u + 1$
c_2, c_8	$u^{36} - u^{35} + \dots + u^2 - 1$
c_3, c_4, c_7 c_9	$u^{36} + u^{35} + \dots - 6u - 5$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{36} + u^{35} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} - 11y^{35} + \dots - 30y + 1$
c_{2}, c_{8}	$y^{36} + 21y^{35} + \dots - 2y + 1$
c_3, c_4, c_7 c_9	$y^{36} - 43y^{35} + \dots - 166y + 25$
c_5, c_6, c_{10} c_{11}, c_{12}	$y^{36} + 45y^{35} + \dots - 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.282875 + 1.062700I	-1.68586 + 0.53085I	-10.75192 + 0.82754I
u = 0.282875 - 1.062700I	-1.68586 - 0.53085I	-10.75192 - 0.82754I
u = 0.891515 + 0.048885I	2.90046 - 5.74969I	-5.68594 + 2.68814I
u = 0.891515 - 0.048885I	2.90046 + 5.74969I	-5.68594 - 2.68814I
u = 0.890163	-8.32989	-11.7240
u = -0.888293 + 0.024901I	-5.76957 + 3.65801I	-7.50646 - 3.88825I
u = -0.888293 - 0.024901I	-5.76957 - 3.65801I	-7.50646 + 3.88825I
u = 0.498093 + 0.734304I	12.00850 + 2.05861I	-1.12178 - 3.75231I
u = 0.498093 - 0.734304I	12.00850 - 2.05861I	-1.12178 + 3.75231I
u = -0.375034 + 1.064500I	-3.45066 - 3.25878I	-14.9165 + 5.6693I
u = -0.375034 - 1.064500I	-3.45066 + 3.25878I	-14.9165 - 5.6693I
u = -0.210685 + 1.118540I	6.42157 + 0.49356I	-9.63907 + 0.32963I
u = -0.210685 - 1.118540I	6.42157 - 0.49356I	-9.63907 - 0.32963I
u = 0.444121 + 1.051070I	-0.51949 + 5.89850I	-7.49197 - 8.58873I
u = 0.444121 - 1.051070I	-0.51949 - 5.89850I	-7.49197 + 8.58873I
u = -0.490379 + 1.047610I	8.45002 - 7.20201I	-5.83680 + 6.79259I
u = -0.490379 - 1.047610I	8.45002 + 7.20201I	-5.83680 - 6.79259I
u = -0.405042 + 0.735070I	2.86862 - 1.80232I	-0.91103 + 4.87236I
u = -0.405042 - 0.735070I	2.86862 + 1.80232I	-0.91103 - 4.87236I
u = 0.149662 + 0.790037I	-0.605604 + 0.932135I	-9.94128 - 6.89796I
u = 0.149662 - 0.790037I	-0.605604 - 0.932135I	-9.94128 + 6.89796I
u = -0.622331 + 0.303894I	10.53390 + 2.88470I	-2.43200 - 2.46197I
u = -0.622331 - 0.303894I	10.53390 - 2.88470I	-2.43200 + 2.46197I
u = 0.439815 + 1.266880I	-1.13178 - 1.06458I	-9.26896 - 0.31777I
u = 0.439815 - 1.266880I	-1.13178 + 1.06458I	-9.26896 + 0.31777I
u = -0.454338 + 1.261880I	-9.69160 - 1.09254I	-10.99035 - 0.80742I
u = -0.454338 - 1.261880I	-9.69160 + 1.09254I	-10.99035 + 0.80742I
u = -0.481098 + 1.254150I	-9.49472 - 8.55149I	-10.56405 + 6.84602I
u = -0.481098 - 1.254150I	-9.49472 + 8.55149I	-10.56405 - 6.84602I
u = 0.468539 + 1.259380I	-12.15810 + 4.83267I	-14.8489 - 3.1819I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.468539 - 1.259380I	-12.15810 - 4.83267I	-14.8489 + 3.1819I
u = 0.493269 + 1.250710I	-0.73827 + 10.71510I	-8.69637 - 5.67492I
u = 0.493269 - 1.250710I	-0.73827 - 10.71510I	-8.69637 + 5.67492I
u = 0.539657 + 0.237187I	1.69494 - 1.97215I	-3.23018 + 4.60396I
u = 0.539657 - 0.237187I	1.69494 + 1.97215I	-3.23018 - 4.60396I
u = -0.450859	-0.804226	-12.6090

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{36} + 21u^{35} + \dots - 2u + 1$
c_2, c_8	$u^{36} - u^{35} + \dots + u^2 - 1$
c_3, c_4, c_7 c_9	$u^{36} + u^{35} + \dots - 6u - 5$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{36} + u^{35} + \dots - 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} - 11y^{35} + \dots - 30y + 1$
c_2,c_8	$y^{36} + 21y^{35} + \dots - 2y + 1$
c_3, c_4, c_7 c_9	$y^{36} - 43y^{35} + \dots - 166y + 25$
c_5, c_6, c_{10} c_{11}, c_{12}	$y^{36} + 45y^{35} + \dots - 2y + 1$