

SEQUENCE LISTING

<110> Garvan Institute of Medical Research
<120> Method for inducing mammary epithelial cell differentiation
<130> 501746/JEP
<150> US 60/413,978
<151> 2002-09-25
<160> 29
<170> PatentIn version 3.1
<210> 1
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Artificial sequence
<400> 1

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro
1 5 10

<210> 2
<211> 30
<212> PRT
<213> Homo sapiens

<400> 2

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Val
1 5 10 15

Gly Asn His Arg Ser Phe Ser Asp Lys Asn Gly Leu Thr Ser
20 25 30

<210> 3
<211> 29
<212> PRT
<213> Bos taurus

<400> 3

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Leu
1 5 10 15

Asp Ser His Arg Ser Phe Gln Asp Lys His Gly Leu Ala
20 25

<210> 4
<211> 29
<212> PRT
<213> Sus scrofa

<400> 4

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Ile
1 5 10 15

Asp Asn His Arg Ser Phe His Asp Lys Tyr Gly Leu Ala
20 25

<210> 5
<211> 29
<212> PRT
<213> Rattus rattus

<400> 5

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Ile
1 5 10 15

Asp Asn His Arg Ser Phe Ser Asp Lys His Gly Leu Thr
20 25

<210> 6
<211> 29
<212> PRT
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 6

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Val
1 5 10 15

Asn His Arg Ser Phe Ser Asp Lys Asn Gly Leu Thr Ser
20 25

<210> 7
<211> 123
<212> PRT
<213> Homo sapiens

<400> 7

Met Ala Arg Gly Ser Ala Leu Leu Leu Ala Ser Leu Leu Leu Ala Ala
1 5 10 15

Ala Leu Ser Ala Ser Ala Gly Leu Trp Ser Pro Ala Lys Glu Lys Arg
20 25 30

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Val
35 40 45

Gly Asn His Arg Ser Phe Ser Asp Lys Asn Gly Leu Thr Ser Lys Arg
50 55 60

Glu Leu Arg Pro Glu Asp Asp Met Lys Pro Gly Ser Phe Asp Arg Ser
65 70 75 80

Ile Pro Glu Asn Asn Ile Met Arg Thr Ile Ile Glu Phe Leu Ser Phe
85 90 95

Leu His Leu Lys Glu Ala Gly Ala Leu Asp Arg Leu Leu Asp Leu Pro
100 105 110

Ala Ala Ala Ser Ser Glu Asp Ile Glu Arg Ser
115 120

<210> 8
<211> 123
<212> PRT
<213> Bos taurus

<400> 8

Met Pro Arg Gly Ser Val Leu Leu Leu Ala Ser Leu Leu Leu Ala Ala
1 5 10 15

Ala Leu Ser Ala Thr Leu Gly Leu Gly Ser Pro Val Lys Glu Lys Arg
20 25 30

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Leu
35 40 45

Asp Ser His Arg Ser Phe Gln Asp Lys His Gly Leu Ala Gly Lys Arg
50 55 60

Glu Leu Glu Pro Glu Asp Glu Ala Arg Pro Gly Ser Phe Asp Arg Pro
65 70 75 80

Leu Ala Glu Asn Asn Val Val Arg Thr Ile Ile Glu Phe Leu Thr Phe
85 90 95

Leu His Leu Lys Asp Ala Gly Ala Leu Glu Arg Leu Pro Ser Leu Pro
100 105 110

Thr Ala Glu Ser Ala Glu Asp Ala Glu Arg Ser
115 120

<210> 9
<211> 123
<212> PRT
<213> Sus scrofa

<400> 9

Met Pro Arg Gly Cys Ala Leu Leu Leu Ala Ser Leu Leu Ala Ser
1 5 10 15

Ala Leu Ser Ala Thr Leu Gly Leu Gly Ser Pro Val Lys Glu Lys Arg
20 25 30

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Ile
35 40 45

Asp Asn His Arg Ser Phe His Asp Lys Tyr Gly Leu Ala Gly Lys Arg
50 55 60

Glu Leu Glu Pro Glu Asp Glu Ala Arg Pro Gly Gly Phe Asp Arg Leu
65 70 75 80

Gln Ser Glu Asp Lys Ala Ile Arg Thr Ile Met Glu Phe Leu Ala Phe
85 90 95

Leu His Leu Lys Glu Ala Gly Ala Leu Gly Arg Leu Pro Gly Leu Pro
100 105 110

Ser Ala Ala Ser Ser Glu Asp Ala Gly Gln Ser
115 120

<210> 10
<211> 116
<212> PRT
<213> Homo sapiens

<400> 10

Met Ala Pro Pro Ser Val Pro Leu Val Leu Leu Val Leu Leu Leu
1 5 10 15

Ser Leu Ala Glu Thr Pro Ala Ser Ala Pro Ala His Arg Gly Arg Gly

20

25

30

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro Val Leu His
35 40 45

Leu Pro Gln Met Gly Asp Gln Asp Gly Lys Arg Glu Thr Ala Leu Glu
50 55 60

Ile Leu Asp Leu Trp Lys Ala Ile Asp Gly Leu Pro Tyr Ser His Pro
65 70 75 80

Pro Gln Pro Ser Lys Arg Asn Val Met Glu Thr Phe Ala Lys Pro Glu
85 90 95

Ile Gly Asp Leu Gly Met Leu Ser Met Lys Ile Pro Lys Glu Glu Asp
100 105 110

Val Leu Lys Ser
115

<210> 11
<211> 60
<212> PRT
<213> Homo sapiens

<400> 11

Ala Pro Ala His Arg Gly Arg Gly Trp Thr Leu Asn Ser Ala Gly
1 5 10 15

Tyr Leu Leu Gly Pro Val Leu His Leu Pro Gln Met Gly Asp Gln Asp
20 25 30

Gly Lys Arg Glu Thr Ala Leu Glu Ile Leu Asp Leu Trp Lys Ala Ile
35 40 45

Asp Gly Leu Pro Tyr Ser His Pro Pro Gln Pro Ser
50 55 60

<210> 12
<211> 60
<212> PRT
<213> Sus scrofa

<400> 12

Ala Pro Val His Arg Gly Arg Gly Trp Thr Leu Asn Ser Ala Gly
1 5 10 15

Tyr Leu Leu Gly Pro Val Leu His Pro Pro Ser Arg Ala Glu Gly Gly
 20 25 30

Gly Lys Gly Lys Thr Ala Leu Gly Ile Leu Asp Leu Trp Lys Ala Ile
 35 40 45

Asp Gly Leu Pro Tyr Pro Gln Ser Gln Leu Ala Ser
 50 55 60

<210> 13
 <211> 60
 <212> PRT
 <213> Rattus rattus

<400> 13

Ala Pro Ala His Arg Gly Arg Gly Gly Trp Thr Leu Asn Ser Ala Gly
 1 5 10 15

Tyr Leu Leu Gly Pro Val Leu His Leu Ser Ser Lys Ala Asn Gly Gly
 20 25 30

Arg Lys Thr Asp Ser Ala Leu Glu Ile Leu Asp Leu Trp Lys Ala Ile
 35 40 45

Asp Gly Leu Arg Tyr Ser Arg Ser Pro Arg Met Thr
 50 55 60

<210> 14
 <211> 765
 <212> DNA
 <213> Homo sapiens

<400> 14
 ccacgcgtcc gggacccggc cccgcgccttc tgccccgtt gcccggcgcc ccatgcggtg 60
 agcgccccag gccgcccagag cccacccgac cccggcccgac gcccggacct gcccggccaga 120
 cccgccaccg caccggacc cccgcgtcc gaacccgggc gcagccgcag ctcaagatgg 180
 cccgaggcag cgccctcctt ctcgcctccc tcctcctcgc cccggccctt tctgcctctg 240
 cggggctctg gtcgcccggcc aaggaaaaac gaggctggac cctgaacagc gcgggctacc 300
 tgctgggccc acatgcgtt ggcaaccaca ggtcattcag cgacaagaat ggccctcacca 360
 gcaaggcggga gctgcggccc gaagatgaca tgaaaccagg aagctttgac aggtccatac 420
 ctgaaaacaa tatcatgcgc acaatcattt agtttctgtc tttcttgcat ctcaaagagg 480

ccgggtgcctt	cgaccgcctc	ctggatctcc	ccgcccgcagc	ctcctcagaa	gacatcgagc	540
ggtcctgaga	gcctcctggg	catgtttgtc	tgtgtgtgt	aacctgaagt	caaaccttaa	600
gataatggat	aatcttcggc	caatttatgc	agagtcagcc	attcctgttc	tctttgcctt	660
gatgttgtgt	tgttatcatt	taagattttt	tttttttgtt	aattattttg	agtggcaaaa	720
taaagaatag	caattaaaaa	aaaaaaaaaca	aaaaaaaaaaa	aaaaaa		765

<210> 15
<211> 675
<212> DNA
<213> Bos taurus

<400> 15	cttccgcgtc	cccgaggccg	cgcgcgtcgg	tgagcgtccc	cgccctgtcc	ccgacccgac	60
tcgacggacg	cgcgcccccg	ccgacacagg	acctgcagac	accccaaggac	ccgcagacat		120
cccccgaccc	tccgggcccc	gctcaagatg	cccagaggct	ccgtcctgt	gctgcctcc		180
ctgctcctcg	cagcgccctt	ttcagccacc	ctgggcctcg	ggtcacccgt	gaaggagaag		240
agaggctgga	ccctgaacag	cgctgggtac	cttctcgac	cacatgcgt	cgacagccac		300
aggcatttc	aagacaagca	tggcctcgcc	ggcaagcggg	aactcgagcc	tgaagacgaa		360
gcccgccag	gaagcttga	cagaccactg	gcggagaaca	acgtcgtgac	cacgataatc		420
gagtttctga	ctttcctgca	tctcaaagac	gccggcgccc	tggagcgcct	gcccaagtctc		480
cccacagcag	agtccgcaga	agacgcccag	aggcctgag	cgggctcccg	cgcgctggtc		540
tccctgtgtc	acgcgcagtc	gtgctcccg	gaggatgccc	atcgcatggc	aaccgccccca		600
tccccgctgc	cctgatgctg	tgtccgtacc	attcaggtt	tttccccctt	ggtcataagt		660
ttcagtggca	aaattt						675

<210> 16
<211> 774
<212> DNA
<213> Sus scrofa

<400> 16	acacgtcgaa	ggagccccggc	tgccgcgtt	ccctctctgt	gtccccgagg	ccacgcccatt	60
cggtagcgc	cctccagccc	tgcccgaccc	aaccggaccc	gcgtccccgc	cgacagccca		120
ggacccgctg	gcacccgggg	acccctggc	atctcagacc	cgccgacccc	cggggccccgc		180
cgacacccca	agacccacccg	acactccggg	acccggccgtc	gctcaagatg	cccagaggct		240
gcgcctcct	gctggcctcc	ctactcctcg	cttcggccct	ttcagccacc	ctggggctcg		300
ggtcacccgt	gaaggaaaag	agaggctgga	ctctgaacag	cgctggctac	cttcttgggc		360

cacatgccat cgacaaccac agatcattcc acgacaaga tggccttgct ggcaagcgaa	420
aactcgaacc cgaagacgaa gccaggccgg gaggcttga ccggctgcag tcagaggaca	480
aagccatacg cacgataatg gagtttctgg ctttcttgca tctcaaagag gcggggggccc	540
tggggcgcct gcccggcctc ccctcgccag catcctcaga agacgcggga cagtcctgag	600
gtggctccgg catttcgtc tcggcggtgt cgagctccga gacggtgacg gtctcacgcc	660
agcgaaggca gcgttaaccac ccctgtcgtc cctgcccagt gctgtgttgc tgtggtgtca	720
gatcttcttc ctttggqqaqt aqgaaaaataaa aactgcgac tqact	774

```
<210> 17
<211> 20
<212> DNA
<213> Artificial sequence
```

<220>
<223> Artificial sequence

<400> 17
tgcagtaagc gaccatccaq

```
<210> 18
<211> 20
<212> DNA
<213> Artificial sequence
```

<220>
<223> Artificial sequence

<400> 18
agcacaggac acacgtgcac

```
<210> 19
<211> 20
<212> DNA
<213> Artificial sequence
```

<220>
<223> Artificial sequence

<400> 19
cgcccttcatc tgcaaggttta

```
<210> 20
<211> 18
<212> DNA
<213> Artificial sequence
```

<220>
<223> Artificial sequence

<400> 20
caggacggtc tgtgcagt 18

<210> 21
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 21
tgcccttcca ggccaccatc 20

<210> 22
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 22
gcgttaagtgg cacgcgtgag 20

<210> 23
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 23
cctggctctt tggggctttc gtg 23

<210> 24
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 24
agcgcgtaga gcgccggcac tg 22

<210> 25
<211> 23
<212> DNA
<213> Artificial sequence

<220>

<223> Artificial sequence

<400> 25

tgacatcaag aaggtggtga agc

23

<210> 26

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Artificial sequence

<400> 26

aaggtggaag agtggagtt gctg

24

<210> 27

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Artificial sequence

<400> 27

aatggccacg tagcgatcca

20

<210> 28

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Artificial sequence

<400> 28

gtagctgcag gtcagggttc c

21

<210> 29

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Artificial sequence

<400> 29

tgggccgtgg tgaggctggc ct

22