Problem 1 (8 points)

The energy delivering to the circuit element and the charge flowing through the element are given below:

$$E(t) = e^{t^2} \sin(2t^2) J$$
$$q(t) = t^2 C$$

- (a) Determine the voltage at the terminals of the element.
- (b) Determine the power supplied to the element.

1. (a).
$$V = \frac{dE}{dq} = \frac{d[e^{t}\sin(\omega t^{2})]}{d(t^{2})} = e^{t^{2}}\sin(\omega t^{2}) + 2e^{t^{2}}\cos(\omega t^{2})$$
 V
(b). $P = \frac{dE}{dt} = 2te^{t^{2}}\sin(\omega t^{2}) + 4te^{t^{2}}\cos(\omega t^{2})$ W.

Problem 2 (12 points)

Use the principle of superposition to find the current i_0 in the circuit shown in Fig. 2.

2. Open
$$I_1 \cdot I_2 :$$
 $5n^{\frac{1}{2}} \stackrel{\text{def}}{\Rightarrow} 23n = \frac{10n^{\frac{1}{2}}}{3n^{\frac{1}{2}}} 23n = \frac{32}{60} A \approx 0.544$

Short V_1 , Open I_2 .

 $\frac{6n}{4} \stackrel{\text{def}}{\Rightarrow} 23n = \frac{10n^{\frac{1}{2}}}{3n^{\frac{1}{2}}} 23n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.544$

Short V_{12} Open I_1 :

 $\frac{6n}{4} \stackrel{\text{def}}{\Rightarrow} 23n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$
 $\frac{1}{10} \stackrel{\text{def}}{\Rightarrow} 10n = \frac{10n^{\frac{1}{2}}}{60} A \approx 0.59 A$

Problem 3 (12 points)

Find voltage difference value $\,V_{ab}\,$ between node a and b from Fig. 3.

Use supermesh to deal with the problem.

$$(2+3)I_1 - 2I_2 - 8 = 0$$

$$(5+2)I_2 + (6+5)I_3 - 2I_1 + 2 = 0$$
 Supermesh

$$I_2 - I_3 = 1A$$

Problem 4 (12 points)

In the circuit of Fig. 4, the maximum power delivered to R_L is 10W. When R_L equals Thevenin equivalent resistance, the power of R_L reaches maximum. Find the current I_1 in Fig. 4 so that the power delivered to R_L is maximum.

Fig. 4

Problem 5 (12 points)

In the circuit shown in Fig. 5, find the Thevenin equivalent circuit for the net work to the left of ab.

Fig. 5

Problem 6 (12 points)

In the circuit shown in Fig. 6, find the voltage V_0 .

Fig. 6

Problem 7 (12 points)

In the circuit shown in Fig. 7, find the output voltage V_{OUT} .

Fig. 7

7. Unit a difference amplifier.

=7 Unout)=
$$\frac{R^2}{R_1}(V_2-V_1)=3V$$
.

Uz is a noninverting amplifier.

=> $\frac{R^2}{R_1}(V_2-V_1)=3V$.

Uz is a noninverting amplifier.

Uz is an inverting amplifier.

=> $\frac{R^2}{R_2}(V_2-V_1)=3V$.

Uz is an inverting amplifier.

=> $\frac{R^2}{R_2}(V_2-V_1)=3V$.

Uz is an inverting amplifier.

=> $\frac{R^2}{R_2}(V_2-V_1)=3V$.

Uz is a summer amplifier.

=> $\frac{R^2}{R_2}(V_2-V_1)=3V$.

Problem 8 (16 points)

The circuit inside the shaded area in Fig. 8 is a constant current source for a limited range of R_L . (You can assume that $i_n = i_p \approx 0$ under all operation conditions.)

- (a) Find the value of i_L for $R_L = 4k\Omega$.
- (b) Find the maximum value for R_L for which i_L will have the value in (a).
- (c) Assume that $R_L = 16k\Omega$. Explain the operation of the circuit.
- (d) Find the relation between i_L and R_L for $0 \le R_L \le 16k\Omega$, and sketch it out in a plot.

Fig.8

[a] Assume the op-amp is operating within its linear range, then

$$i_L = \frac{8}{4000} = 2 \,\mathrm{mA}$$

For
$$R_L = 4 \,\mathrm{k}\Omega$$
 $v_o = (4+4)(2) = 16 \,\mathrm{V}$

Now since $v_o < 20$ V our assumption of linear operation is correct, therefore

$$i_L = 2 \,\mathrm{mA}$$

- **[b]** $20 = 2(4 + R_L);$ $R_L = 6 \,\mathrm{k}\Omega$
- [c] As long as the op-amp is operating in its linear region i_L is independent of R_L . From (b) we found the op-amp is operating in its linear region as long as $R_L \leq 6 \,\mathrm{k}\Omega$. Therefore when $R_L = 6 \,\mathrm{k}\Omega$ the op-amp is saturated. We can estimate the value of i_L by assuming $i_p = i_n \ll i_L$. Then $i_L = 20/(4000 + 16{,}000) = 1 \,\mathrm{mA}$. To justify neglecting the current into the op-amp assume the drop across the 50 $\mathrm{k}\Omega$ resistor is negligible, since the input resistance to the op-amp is at least $500 \,\mathrm{k}\Omega$. Then $i_p = i_n = (8-4)/(500 \times 10^3) = 8 \,\mu\mathrm{A}$. But $8 \,\mu\mathrm{A} \ll 1 \,\mathrm{mA}$, hence our assumption is reasonable.

