Linear Methods for Regression

Dept. Computer Science & Engineering, Shanghai Jiao Tong University

Key Points in Previous Talk

- The objective of statistical learning is to identify the model with best generalization performance or with minimum training error?
- In what conditions, linear regression is the best as a classifier?
- KNN is one of implementations of the optimal decision function, but why
 we do not use it as a classifier in high dimensional space?

Outline

- The simple linear regression model
- Multiple linear regression
- Regularization
 - Subset selection
 - Shrinkage
- Principal component Regression
- Partial least squares Regression

Objectives

- How to use LR methods appropriately
- How to evaluate the performance of LR methods
 - Confidence Interval
 - MSE / Generalization
- How to improve the generalization performance

Preliminaries

Data

$$(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$$

- $-x_i$ is the predictor (regressor, covariate, independent variable)
- \mathcal{Y}_i is the response (dependent variable, outcome)
- We denote the regression function by

$$\eta(x) = E(Y \mid x)$$

- This is the conditional expectation of Y given x.
- The linear regression model assumes a specific linear form for

$$\eta(x) = \alpha + \beta x$$

which is usually thought of as an approximation to the truth.

Fitting by least squares

- Minimize: $\hat{\beta}_0$, $\hat{\beta} = \arg\min_{\beta_0, \beta} \sum_{i=1}^N (y_i \beta_0 \beta x_i)^2$
- Solutions are

$$\hat{\beta} = \frac{\sum_{j=1}^{N} (x_i - \overline{x}) y_i}{\sum_{j=1}^{N} (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta} \overline{x}$$

- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}x_i$: the fitted or predicted values
- $r_i = y_i \hat{\beta}_0 \hat{\beta}_i x_i$ are called the residuals

Eigen 2.1 view of linear magnetic in I

Gaussian Distribution

• The normal distribution with mean μ , and variance σ^2 .

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)$$

Standard errors & confidence intervals

Assume further that

$$y_i = \beta_0 + \beta x_i + \varepsilon_i$$

where $E(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = \sigma^2$. Then

$$se(\hat{\beta}) = \left[\frac{\sigma^2}{\sum (x_i - \overline{x})^2}\right]^{1/2}$$

Estimate
$$\sigma^2$$
 by $\hat{\sigma}^2 = \sum (y_i - \hat{y}_i)^2 / (N - 2)$.

• Under additional assumption of normality for $\mathcal{E}_i\mathbf{S}$, a 95% confidence interval for is: β

$$\hat{\beta} \pm 1.96s\hat{e}(\hat{\beta}), \quad s\hat{e}(\hat{\beta}) = \left[\frac{\hat{\sigma}^2}{\sum (x_i - \bar{x})^2}\right]^{1/2}$$

Fitted Line and Standard Errors

Fitted regression line with pointwise standard errors:

$$\hat{\eta}(x) = \hat{\beta}_0 + \hat{\beta}x$$
$$= \bar{y} + \hat{\beta}(x - \bar{x})$$

$$se[\hat{\eta}(x)] = \left[var(\bar{y}) + var(\hat{\beta})(x - \bar{x})^2 \right]^{1/2}$$
$$= \left[\frac{\sigma^2}{n} + \frac{\sigma^2(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right]^{1/2}$$

Multiple linear regression

Statistical Model

$$y = \beta_0 + \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Model is

$$y_i = \beta_0 + \mathbf{x}_i^T \beta + \varepsilon_i, \quad i = 1, \dots, N$$

Equivalently in matrix notation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

- y is N-vector of predicted values
- \mathbf{X} is N \times p matrix of regresses, with ones in the first column
- β is a p-vector of parameters

Estimation by least squares

$$\hat{\beta} = \arg\min \sum_{i} (y_i - \beta_0 - \sum_{j=1}^{p-1} x_{ij} \beta_j)^2$$

$$= \arg\min (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

Solution is
$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

 $\hat{y} = \mathbf{X} \hat{\beta}$
Also $Var(\hat{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$

The Bias-variance tradeoff

• A good measure of the prediction performance for an estimator $\hat{f}(x)$ is the mean squared error. Let $f_0(x)$ be the true function.

$$MSE[\hat{f}(x)] = E[\hat{f}(x) - f_0(x)]^2$$

This can be written as

$$MSE[\hat{f}(x)] = Var[\hat{f}(x)] + [E\hat{f}(x) - f_0(x)]^2$$

$$variance + bias^2.$$

- When bias is low, variance is high and vice-versa.
 - Choose estimators ---- a tradeoff between bias and variance.

The Bias-variance tradeoff

- If the linear model is correct for a given problem, then the least squares
 prediction f is unbiased, and has the lowest variance among all unbiased
 estimators that are linear functions of y.
- Generally, by regularization (shrinking, dampening, controlling)
 - the estimator in some way, its variance will be reduced
 - if the corresponding increase in bias is small, this will be worthwhile.

Model Selection

- Examples of regularization: subset selection (forward, backward, all subsets); ridge regression, the lasso.
- In reality models are almost never correct, so there is an additional model bias between the closest member of the linear model class and the truth.

Question?

performance?

Assume that the true function

$$y = f(x), x \in R^{10}.$$

If we use higher dimensional variables $x \in \mathbb{R}^p$, (p > 10) to approximate the function, can we achieve better generalization

Expected Prediction Error of 1NN vs. OLS

Figure 2.9: The curves show the expected prediction error (at $x_0 = 0$) for 1-nearest neighbor relative to least squares for the model $Y = f(X) + \varepsilon$. For the red curve, $f(x) = x_1$, while for the green curve $f(x) = \frac{1}{2}(x_1 + 1)^3$.

Variable subset selection

- The first is prediction accuracy
 - often have low bias, but large variance.
- The second reason is interpretation.
 - to determine a smaller subset that exhibit the strongest effects.

- There are different strategies:
 - All subsets regression is to find the subset of size s that gives smallest residual sum of squares.
 - The question of how to choose s involves the tradeoff between bias and variance: can use cross-validation

Hypothesis Test

Hypothesis testing: the main steps

$$z^{0.05} = 1.96$$

Hypothesis Test

The linear regression model

$$Y = \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon, \qquad \varepsilon \sim N(0, \sigma^2)$$

The regression solutions

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \boldsymbol{\sigma}^2), \quad \hat{\boldsymbol{\sigma}}^2 \sim \boldsymbol{\sigma}^2 \chi_{N-p-1}^2 / (N-p-1)$$

• To test the hypothesis that a particular coefficient $\beta_j = 0$, we take the standardized coefficient or *Z-score*

$$z_{j} = \hat{\beta}_{j} / (\hat{\sigma} \sqrt{v_{j}})$$

where v_i is the *j*-th diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$.

Hypothesis Test (example: Prostate Cancer)

- Lcavol: log cancer volume,
- Iweight: log prostate weight,
- age,
- Lbph: log of the amount of benign prostatic hyperplasia(良性前列腺增生量)

Svi: seminal vesicle invasion,

Lcp: log of capsular penetration,

Gleason: Gleason score,

pgg45: percent of Gleason scores 4 or 5

TABLE 3.1. Correlations of predictors in the prostate cancer data.

to fit **lpsa**: the log of prostatespecific antigen(前列腺特异抗原)

- Training samples: 67
- Test samples: 30

4	lcavol	lweight	age	lbph	svi	lcp	gleason
lweight	0.300						
age	0.286	0.317					
lbph	0.063	0.437	0.287				
svi	0.593	0.181	0.129	-0.139			
lcp	0.692	0.157	0.173	-0.089	0.671		
gleason	0.426	0.024	0.366	0.033	0.307	0.476	
pgg45	0.483	0.074	0.276	-0.030	0.481	0.663	0.757

Hypothesis Test (example: Prostate Cancer)

• Roughly a *Z-score* larger than 2 in absolute value is significantly nonzero at the p = 0.05 level.

Significant

- Lcavol; lweight
- Lbph; svi

Non-significant

- Age; Icp
- Gleason; pgg45

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Variable subset selection

- Backward stepwise selection starts with the full OLS model, and sequentially deletes variables.
- There are also hybrid stepwise selection strategies which add in the best variable and delete the least important variable, in a sequential manner.
- Each procedure has one or more tuning parameters:
 - subset size
 - P-values for adding or dropping terms

Model Assessment

Objectives:

- 1. Choose a value of a tuning parameter for a model family
- 2. Estimate the prediction performance of a given model
- For both of these purposes, the best approach is to run the procedure on an independent test set, if one is available
- If possible one should use different test data for (1) and (2) above: a validation set for (1) and a test set for (2)
- Often there is insufficient data to create a separate validation or test set. In this
 instance Cross-Validation is useful.

K-Fold Cross-Validation

- Primary method for estimating a tuning parameter (such as subset size)
- Divide the data into K roughly equal parts (typically K=5 or 10)

K-Fold Cross-Validation

• For each k = 1, 2, ...K, fit the model with parameter to the other K - 1 parts, giving $\hat{\beta}^{-k}(\lambda)$ and compute its error in predicting the k-th part:

$$E_k(\lambda) = \sum_{i \in kth \ part} (y_i - \mathbf{x}_i^T \hat{\beta}^{-k}(\lambda))^2$$

This gives the cross-validation error

$$CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} E_k(\lambda)$$

Model selection by

$$\min CV(\lambda)$$

K-Fold Cross-Validation

- In our variable subsets example, λ is the subset size
- $\hat{\beta}^{-k}(\lambda)$ are the coefficients for the best subset of size, found from the training set that leaves out the k-th part of the data
- $E_{k}(\lambda)$ is the estimated test error for this best subset.

• Minimizing:
$$CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} E_k(\lambda)$$

The Bootstrap approach

- Bootstrap works by sampling
 B times with replacement
 from training set to form a
 "bootstrap" data set.
- This process is repeated many times and the results are averaged. Bootstrap most useful for estimating standard errors of predictions.

Shrinkage Methods

- Ridge regression
- Lasso regression
- PCA regression
- Partial least squares

Shrinkage methods

Ridge regression

Preprocessing: Data centering

$$x_{ij} \ll x_{ij} - \overline{x}_{j}, \beta_0 = \overline{y} = \frac{1}{N} \sum_{i} y_{i}$$

The ridge estimator is defined by

$$\hat{\beta}^{ridge} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

Shrinkage Methods

Ridge regression

The ridge estimator is defined by

$$\hat{\beta}^{ridge} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

Equivalently,

$$\hat{\beta}^{ridge} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

subject to
$$\sum \beta_j^2 \le s$$

Shrinkage methods

• The parameter $\lambda > 0$ penalizes β_j proportional to its size β_j^2 .

Solution:

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

where I is the identity matrix, $\lambda > 0$

• Note $\lambda=0$ gives the least squares estimator; if $\lambda\to\infty$, then $\hat{\beta}\to0$

Ridge regression

Ridge solution:

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Singular value Decomposition:

 $X=UDV^T$; **D** is a diagonal matrix with

$$d_1 \ge d_2 \ge d_3 \ge ... \ge d_p \ge 0$$

For ordinary Regression

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{ls} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{U}\mathbf{U}^T\mathbf{Y}$$

Ridge regression

Ridge solution:

$$\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

Singular value Decomposition:

$$X=UDV^T$$
; $D = diagonal(d_1, d_2, ..., d_p)$

For Ridge Regression

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{Y}$$

$$= \mathbf{U}D(\mathbf{D}\mathbf{D} + \lambda \mathbf{I})^{-1}D\mathbf{U}^T\mathbf{Y} = \sum_{j=1}^p \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T\mathbf{Y}$$

The Lasso

- The lasso (least absolute shrinkage and selection operator) is a shrinkage method like ridge, but acts in a nonlinear manner on the outcome y.
- The lasso is defined by

$$\hat{\beta}^{lasso} = \arg\min(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
subject to
$$\sum_{j=1}^{p} \left| \beta_{j} \right| \le t$$

• No constraint on β_0

The Lasso

- Notice that ridge penalty $\sum eta_j^2$ is replaced by $\sum \left|eta_j
 ight|$
- This makes the solutions nonlinear in *y*, and a quadratic programming algorithm is used to compute them.
- Because of the nature of the constraint, if t is chosen small enough then the lasso will set some coefficients exactly to zero. Thus the lasso does a kind of continuous model selection.

The Lasso

- The parameter t should be adaptively chosen to minimize an estimate of expected, using say cross-validation
- Ridge vs Lasso: if inputs are orthogonal,
 - ridge multiplies least squares coefficients by a constant < 1,
 - lasso translates them towards zero by a constant, truncating at zero.

A family of shrinkage estimators

Consider the criterion

$$\beta = \operatorname{arg\,min}_{\beta} (\mathbf{Y} - \mathbf{X}\beta)^{T} (\mathbf{Y} - \mathbf{X}\beta)$$
subject to
$$\sum |\beta_{i}|^{q} \le s$$

• for q >=0. The contours of constant value of $\sum_{j} \left| \beta_{j} \right|^{q}$ are shown for the case of two inputs.

$$q=4$$
 $q=2$ $q=1$ $q=0.5$ $q=0.1$

Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Contents

- The simple linear regression model
- Multiple linear regression
- Model selection and shrinkage —the state of the art
- Principal component Regression
- Partial least squares Regression

Use of derived input directions

- Principal components regression
- Choose a set of linear combinations of the x_j s, and then regress the outcome on these linear combinations.
- Principal components of the inputs
 - Uncorrelated and ordered by decreasing variance.
- If S is the sample covariance matrix of x_1, x_2, \cdots, x_p , then the eigenvector equations $Sq_l=d_j^2q_l$ define the principal components of S.

Geometric Interpretation

- Principal components of some input data points. The largest principal component is the direction that maximizes the variance of the projected data, and the smallest principal component minimizes that variance.
- Ridge regression projects y onto these components, and then shrinks the coefficients of the low variance components more than the high-variance components.

PCA regression

- Write q(j) for the ordered principal components, ordered from largest to smallest value of d_j^2 .
- Then principal components regression computes the derived input columns

$$z_j = Xq(j)$$

and then regresses y on Z_1, Z_2, \dots, Z_J for some J<=p.

PCA regression

• Since the \mathcal{Z}_j s are orthogonal, this regression is just a sum of univariate regressions:

$$\hat{y}^{pcr} = \overline{y} + \sum_{j=1}^{J} \hat{\gamma}_{j} z_{j}$$

- where $\hat{\mathscr{Y}}_j$ is the univariate regression coefficient of y on z_j .
- Principal components regression is very similar to ridge regression: both operate on the principal components of the input matrix.

PCA regression

- Ridge regression shrinks the coefficients of the principal components, with relatively more shrinkage applied to the smaller components than the larger
- Principal components regression discards the p-J+1 smallest eigenvalue components.

Partial least squares

- To construct a set of linear combinations of the x_j s for regression, but unlike principal components regression, it uses y (in addition to X) for this construction.
 - We assume that x is centered and begin by computing the univariate regression coefficient

$$\hat{\gamma}_j = \langle x_j, y \rangle$$

From this we construct the derived input

$$z_1 = \sum \hat{\gamma}_j x_j$$

The first partial least squares direction.

Partial least squares

From this we construct the derived input

$$z_1 = \sum \hat{\gamma}_j x_j$$

- The first partial least squares direction.
- The outcome y is regressed on \mathcal{Z}_1 , giving coefficient

$$z_1: r_1 = y - \hat{\beta}_1 z_1$$

• Orthogonalize $y, x_1, x_2, ..., x_p$ with respect to z_1 $x_1^* = x_1 - \hat{\theta}_1 z_1$

Repeat the procedure

Algorithm 3.3 Partial Least Squares.

- 1. Standardize each \mathbf{x}_j to have mean zero and variance one. Set $\hat{\mathbf{y}}^{(0)} = \bar{y}\mathbf{1}$, and $\mathbf{x}_j^{(0)} = \mathbf{x}_j$, $j = 1, \dots, p$.
- 2. For $m = 1, 2, \dots, p$
 - (a) $\mathbf{z}_m = \sum_{j=1}^p \hat{\varphi}_{mj} \mathbf{x}_j^{(m-1)}$, where $\hat{\varphi}_{mj} = \langle \mathbf{x}_j^{(m-1)}, \mathbf{y} \rangle$.
 - (b) $\hat{\theta}_m = \langle \mathbf{z}_m, \mathbf{y} \rangle / \langle \mathbf{z}_m, \mathbf{z}_m \rangle$.
 - (c) $\hat{\mathbf{y}}^{(m)} = \hat{\mathbf{y}}^{(m-1)} + \hat{\theta}_m \mathbf{z}_m$.
 - (d) Orthogonalize each $\mathbf{x}_{j}^{(m-1)}$ with respect to \mathbf{z}_{m} : $\mathbf{x}_{j}^{(m)} = \mathbf{x}_{j}^{(m-1)} [\langle \mathbf{z}_{m}, \mathbf{x}_{j}^{(m-1)} \rangle / \langle \mathbf{z}_{m}, \mathbf{z}_{m} \rangle] \mathbf{z}_{m}, j = 1, 2, \dots, p.$
- 3. Output the sequence of fitted vectors $\{\hat{\mathbf{y}}^{(m)}\}_1^p$. Since the $\{\mathbf{z}_\ell\}_1^m$ are linear in the original \mathbf{x}_j , so is $\hat{\mathbf{y}}^{(m)} = \mathbf{X}\hat{\beta}^{\text{pls}}(m)$. These linear coefficients can be recovered from the sequence of PLS transformations.

Ridge vs PCR vs PLS vs Lasso

- Recent study has shown that ridge and PCR outperform PLS in prediction, and they are simpler to understand.
- Lasso outperforms ridge when there are a moderate number of sizable effects, rather than many small effects. It also produces more interpretable models.
- These are still topics for ongoing research.

Summary

- How to use LR methods appropriately.
- How to evaluate the performance of LR methods
 - Confidence Interval
 - MSE / Generalization
- How to improve the generalization performance
 - Data: Feature selection (based on p-value); Cross-validation
 - Shrinkage: Ridge; Lasso; PC regression; Partial least squares
- What is the purpose for imposing constraints on models?

The End of Talk

