République Islamique de Mauritanie
Ministère d'Etat à l'Education Nationale, à l'Enseignement
Supérieur et à la Recherche Scientifique
Direction des Enginement et de l'Evaluation

Service des Examens

Baccalauréat

51

2012

Session Complémentaire رمضان 1433 هـ

Honneur - Fraternité - Justice

Séries : Science de la Nature Zprouvo: Mathematiques Durée: 4 heures Coefficient: 6

Exercice 1(3 po	ints)						1.
Soit (U _n) la suite numérique définie pour tout entier naturel n par :							
$ \begin{cases} \dot{\mathbf{U}}_0 = 2 \\ \mathbf{U}_{n+1} = 3\mathbf{U}_n - 2 \end{cases} $							
pour chacune des questions suivantes, une seule des réponses proposées est correcte. 1) La suite (V_n) définie par : $V_n = U_n - 1$ est une suite							
1) La suite (\sqrt{n}) definite par $\sqrt{n} = 0$, —1 est une suite A : géométrique B : arithmétique C : ni géométrique et ni arithmétique							(0,5 pt)
A: géométrique	A : géométrique B : arithmétique C : ni géométrique et ni arithmétique 2) La suite (T_n) définie par : $T_n = \ln(V_n)$ est une suite						
A: géométrique B: arithmétique C: bornée							(0,5 pt)
3) La suite (W_n) définie par : $W_n = U_{n+1} - U_n$ est une suite							(0,5 pt)
A : croissante B : décroissante C : non monotone							
4) Le terme général de la suite (U _n) est							(0,5 pt)
A: $U_n = 1 + 3^n$ B: $U_n = 2 \times 3^n$ C: $U_n = 2n + 1$							
5) La somme $S_n = U_0 + U_1 + \cdots + U_n$ est égale à							(0,5 pt)
A: $S_n = \frac{1+3^{n+1}}{2}$ B: $S_n = n + \frac{1}{2} + \frac{3^{n+1}}{2}$ C: $S_n = \frac{1-3^n}{2}$							A 1
A: $S_n = \frac{1+3^{n+1}}{2}$		$S_n = n + \frac{1}{2} + \frac{1}{2}$	2	$C: S_0 = \frac{1-3}{2}$			
6) La limite de la suite (U _n) est							
A: -∞ B: 0 C: +∞							(0,5 pt)
Recopie sur la feuille de réponse et complète le tableau suivant en choisissant la bonne réponse.							(0,5 pe)
Question n°	ŀ	2	3	4	5	6	
Réponse B		A	A	_ C.	A	C .	
Exercice 2(5 points)							
Le plan complexe est rapporté à un repère orthonormé (O; u, v).							
Pour tout nombre complexe z tel que $z \neq -3 - 2i$ on pose : $f(z) = \frac{z - 2 - i}{z + 3 + 2i}$.							
1) Résoudre dans \mathbb{C} l'équation : $z^2 - 2z + 5 = 0$.							(1 pt)
2) Calculer le nombre $p = f(1-2i)$ puis l'écrire sous forme algébrique.							(1 pt)
3) On considère les points A, B et C d'affixes respectives $z_A = 2 + i$, $z_B = -3 - 2i$ et $z_C = 1 + 2i$.							
a) Placer les points A, Bet Cdans le repère (O; u, v).							(1 pt)
b) Extrice le nombre $q = f(z_c)$ sous forme trigonométrique. En déduire la nature du triangle ABC.							(0,5 pt)
c) Déterminer et représenter dans le même repère les ensembles des points M du plan d'affixe z dans							
chacun des cas suivants :							
• Γ_1 tel que $ f(z) =1$.							(0,5 pt)
• Γ_2 tel que $f(z)$ soit imaginaire pur.							(0,5 pt)
							(0,5 pt)
• Γ_3 tel que $ \mathbf{f}(\mathbf{z}) - 1 = 2\sqrt{34}$.							
Baccalauréat 2012 Session Complémentaire Epreuve de Mathématiques Séries Science de la nature 1/							
	201011 C01	"blementaire	T.F.				

Exercice 3 (6 points)

Soit f la fonction définie sur $]0; +\infty[$ par : $f(x) = x-2-2 \ln x$.

- 1. Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} \frac{f(x)}{x}$ et $\lim_{x\to +\infty} (f(x)-x)$ et interpréter graphiquement.
- 2. Calculer f'(x) et dresser le tableau de variation de f.
- 3. Donner l'équation de la tangente T à (C) au point A d'abscisse $x_0 = 1$.
- 4. Montrer que l'équation f(x) = 0 admet exactement deux solutions α et β et que $0,4 < \alpha < 0,5$; $5,3 < \beta < 5,4$. Démontrer que $\alpha^2 e^{\beta} = \beta^2 e^{\alpha}$.
- 5. Soit g la restriction de f sur I =]0;2[.
- a) Montrer que g réalise une bijection de I sur un intervalle J que l'on déterminera.
- b) Calculer (g⁻¹)'(-1), (On pourra utiliser la question 3)
- 6.a) Tracer les courbes (C) et (C') respectivement des fonctions \mathbf{i} et \mathbf{g}^{-1} dans un repère orthonormé $(0; \bar{\mathbf{i}}, \bar{\mathbf{j}})$
- b) Discuter graphiquement, suivant les valeurs du paramètre réel m le nombre de solutions de l'équation $2x-2-m-2\ln x=0$.
- 7.a) En utilisant une intégration par parties, calculer \int_2^2 \ln x dx.
- b) Calculer l'aire du domine plan délimité par la courbe (C), l'axe des abscisses et les droites d'équations x = 1 et x = 2.

Exercice 4 (6 points)

Soit g la fonction définie sur \mathbb{R} par : $g(x) = xe^x - 1$.

- 1.a) Calculer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- b) Calculer g'(x) et dresser le tableau de variation de g.
- 2.a) Montrer que l'équation g(x) = 0 admet une unique solution α . Vérifier que $0.5 < \alpha < 0.6$.
- b) Justifier que : si $x \le \alpha$ alors $g(x) \le 0$ et si $x \ge \alpha$ alors $g(x) \ge 0$.
- 3. Soit f la fonction définie sur $]-\infty;-1[\cup]-1;+\infty[$ par : $f(x)=\frac{e^x-x}{x+1}$.
- a) Justifier et interpréter les limites suivantes : $\lim_{x \to -1^-} f(x) = -\infty$, $\lim_{x \to -1^+} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -1$,

$$\lim_{x\to+\infty} f(x) = +\infty \text{ et } \lim_{x\to+\infty} \frac{f(x)}{x} = +\infty.$$

- b) Calculer f'(x) et montrer que $f'(x) = \frac{g(x)}{(x+1)^2}$.
- c) Dresser le tableau de variation de f.
- d) Vérifier que $f(\alpha) = \frac{1-\alpha^2}{\alpha^2 + \alpha}$ et donner une valeur approchée de $f(\alpha)$ à 10⁻¹ près.
- 4. Tracer la courbe (C) de la fonction f dans un repère orthonormé $(O; \overline{i}, \overline{j})$.

Fin.