Student Information

Full Name : Alperen OVAK

 $Id\ Number:\ 2580801$

Answer 1

a)

p	q	$\neg q$	$p \rightarrow q$	$p \land \neg q$	$p \to q \oplus p \land \neg q$
Т	Т	F	${ m T}$	F	T
T	F	Γ	\mathbf{F}	Т	T
F	Т	F	${ m T}$	F	${ m T}$
F	F	Т	${ m T}$	F	T

b)

$$p \to ((q \lor \neg p) \to r) \equiv \neg p \lor ((q \lor \neg p) \to r)$$

$$\equiv \neg p \lor (\neg (q \lor \neg p) \lor r)$$

$$\equiv \neg p \lor ((\neg q \land \neg \neg p) \lor r)$$

$$\equiv \neg p \lor ((\neg q \land p) \lor r)$$

$$\equiv (\neg p \lor (\neg q \land p)) \lor r$$

$$\equiv ((\neg p \lor \neg q) \land (\neg p \lor p)) \lor r$$

$$\equiv ((\neg p \lor \neg q) \land (T)) \lor r$$

$$\equiv (\neg p \lor \neg q) \lor r$$

$$\equiv \neg (p \land q) \lor r$$

$$\equiv (p \land q) \to r$$

 $table\ 7, Equivalence\ 1$

table 7, Equivalence 1

 $table\ 6, De\ Morgan's\ Second\ Law$

 $table\ 6, Double\ Negation\ Law$

 $table\ 6, Associative\ Law$

table 6, Distributive Law

 $table\ 6, Negation\ First\ Law$

table 6, Identity First Law

table 6, De Morgan's Second Law

 $table\ 7, Equivalence\ 3$

c)

- 1. F
- 2. F
- 3. F
- 4. T
- 5. T

Answer 2

```
a) \exists x (P(Can, x) \land T(x, L))

b) \forall x (T(x, S) \rightarrow \exists y (N(y, Turkish) \land P(y, x)))

c) \forall x (T(x, S) \rightarrow \exists y (R(x, y) \land T(y, S) \land \forall z ((R(x, z) \land T(z, S)) \rightarrow (y = z))))

d) \forall y (W(M, y) \rightarrow \neg \exists z (P(z, y) \land N(z, English)))

e) \exists x \exists y ((x \neq y) \land N(x, Turkish) \land N(y, Turkish) \land P(x, G) \land P(y, G) \land \forall z ((N(z, Turkish) \land P(z, G)) \rightarrow (z = x \lor z = y)))

f) \exists x \exists y \exists z (T(x, y) \land T(x, z) \land (y \neq z))
```

Answer 3

	$p \to q, (r \land s) \to p, (r$	$\land \neg q) \vdash \neg s$
1.	$p \rightarrow q$	premise
2.	$(r \wedge s) \to p$	premise
3.	$(r \land \neg q)$	premise
4.	r	$\wedge e, 3$
5.	$\neg q$	$\wedge e, 3$
6.	$r \wedge s$	assumption
7.	p	\rightarrow e 2,6
8.	q	\rightarrow e 1,7
9.	上	$\neg e \ 5, 8$
10.	$\neg(r \land s)$	$\neg i 6 - 9$
11.	s	assumption
12.	$r \wedge s$	$\wedge i 4, 11$
13.	上	$\neg e 10, 12$
14.	$\neg s$	¬i 11 − 13

Answer 4

a)

- $\bullet \ (First \ premise) \ \exists x (P(x) \to S(x))$
- (Second premise) $\forall x (P(x))$
- $(Claim) \exists y S(y)$

b)

$\exists x (P(x) \to S(x)), \forall x (P(x)) \vdash \exists y S(y)$

1.	$\exists x (P(x) \to S(x))$	premise
2.	$\forall x (P(x))$	premise
3.	$P(c) \to S(c)$	assumption
4.	P(c)	$\forall e \ 2$
5.	S(c)	\rightarrow e 3,4
6.	$\exists y S(y)$	∃i 5
7.	$\exists y S(y)$	$\exists e \ 3 - 6$