POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER'S FORMULA

PETRO KOLOSOV

Contents

1. Conclusions 1

1. Conclusions

In this manuscript we have shown that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$ such that the polynomial identity holds

$$n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}$$

In particular, the coefficients $\mathbf{A}_{m,r}$ may be evaluated both ways, by constructing and solving a system of linear equations or applying recurence relation, all these approaches are explained in section (1,2 refs), respectively, including detailed examples.

 $Email\ address: {\tt kolosovp940gmail.com}$

URL: https://kolosovpetro.github.io

Date: July 15, 2023.

²⁰¹⁰ Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial theorem, Polynomial identities, Binomial coefficients, Bernoulli numbers, Pascal's triangle, Faulhaber's formula.