CS 325 – Asymptotic Analysis

Week 1 Part 3: Limits

Relations Between Θ , O, Ω

Rate of Growth

The low order terms in a function are relatively insignificant for **large** *n*

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

$$\lim_{n \to \infty} \frac{n^4 + 100n^2 + 10n + 50}{n^4} = 1$$

That is we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Mathematics a **tilde symbol** (~) indicating equivalency or similarity between two values.

Limit Method: The Process

Say we have functions f(n) and g(n). We set up a limit quotient between f and g as follows

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & then f(n) \text{ is } O(g(n)) \\ c > 0 & then f(n) \text{ is } \Theta(g(n)) \\ \infty & then f(n) \text{ is } \Omega(g(n)) \end{cases}$$

- The above can be proven using calculus, but for our purposes, the limit method is sufficient for showing asymptotic inclusions
- Always try to look for algebraic simplifications first
- If f and g both diverge or converge on zero or infinity, then you need to apply the l'Hôpital Rule

L'Hôpital Rule

Theorem (L'Hôpital Rule):

- Let f and g be two functions,
- if the limit between the quotient f(n)/g(n) exists,
- Then, it is equal to the limit of the derivative of the numerator and the denominator

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

- Example: Let f(n) =2ⁿ, g(n)=3ⁿ. Determine a tight inclusion of the form f(n) ∈ Δ (g(n))
- What is your intuition in this case? Which function grows quicker?

Using algebra

$$\lim_{n\to\infty} 2^n/3^n = \lim_{n\to\infty} (2/3)^n$$

Now we use the following Theorem

$$\lim_{n\to\infty}\alpha^n = \begin{cases} 0 & \text{if }\alpha<1\\ 1 & \text{if }\alpha=1\\ \infty & \text{if }\alpha>1 \end{cases}$$

$$\lim_{n\to\infty} 2^n/3^n = \lim_{n\to\infty} (2/3)^n$$
$$= 0$$

Therefore we conclude that 2ⁿ is O(3ⁿ)

Using Wolfram Alpha

https://www.wolframalpha.com/

 $\lim(x-\sin f)(2^x/3^x)$

Example: Let $f(n) = \log_2 n$, $g(n) = \log_3 n^2$. Determine a tight inclusion of the form

$$f(n) \in \Delta(g(n))$$

What is your intuition in this case?

We set up our limit

$$\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} \log_2 n/\log_3 n^2$$
$$= \lim_{n\to\infty} \log_2 n/(2\log_3 n)$$

Here we use the change of base formula for logarithms:

```
\begin{split} \log_3 n &= \log_2 n \ / \log_2 3 \\ &\lim_{n \to \infty} \log_2 n / (2\log_3 n) = \lim_{n \to \infty} \left(\log_2 n \log_2 3\right) \ / (2\log_2 n) \\ &= \lim_{n \to \infty} \left(\log_2 3\right) / 2 \\ &= \left(\log_2 3\right) \ / 2 \\ &\approx 0.7924, \text{ a positive constant} \end{split}
```

So we conclude that $f(n) \in \Theta(g(n))$ that is $\log_2 n \in \Theta(\log_3 n^2)$ which implies that $\log_3 n^2 \in \Theta(\log_2 n)$

Using Wolfram Alpha

https://www.wolframalpha.com/

 $\lim(x-\sin f)(2^x/3^x)$

Important Result

- All logs have the same asymptotic growth rate no what the base is.
- In many CS algorithms the base is 2.
- But we get sloppy since lg(n) is ⊕(logn)

Properties

Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Let f_, g and h be asymptotically positive functions. Prove or disprove each of the following conjectures.

Transitivity
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

- 1. By definition $f(n) = \Theta(g(n))$ implies there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- 2. By definition $g(n) = \Theta(h(n))$ implies there exist positive constants c_3 , c_4 , and n_1 such that $0 \le c_3 h(n) \le g(n) \le c_4 h(n)$ for all $n \ge n_1$
- 3. Show $f(n) = \Theta(h(n))$ that is there exist positive constants c_5 , c_6 , and n_2 such that $0 \le c_5 h(n) \le f(n) \le c_6 h(n)$ for all $n \ge n_2$

By combining 1 and 2: $c_1c_3h(n) \le c_1g(n) \le f(n)$ let $c_5 = c_1c_3$ so $c_5h(n) \le f(n)$ Again from 1 and 2: $f(n) \le c_2g(n) \le c_2c_4h(n)$ let $c_6 = c_2c_4$ so $c_6h(n) \le f(n)$ And let $n_2 = \max\{n_0, n_1\}$

Let f_, g and h be asymptotically positive functions. Prove or disprove each of the following conjectures.

If
$$f(n) = O(g(n))$$
 and $h(n) = O(g(n))$, then $f(n) = \Theta(h(n))$?

- 1. By definition f(n) = O(g(n)) implies there exist positive constants c_1 and n_0 such that $0 \le f(n) \le c_1 g(n)$ for all $n \ge n_0$
- 2. By definition h(n) = O(g(n)) implies there exist positive constants c_2 and n_1 such that $0 \le h(n) \le c_2 g(n)$ for all $n \ge n_1$
- 3. Show $f(n) = \Theta(h(n))$ that is there exist positive constants c_3 , c_3 , and n_2 such that $0 \pm c_3 h(n) \le f(n) \le c_4 h(n)$ for all $n \ge n_2$?????????

Counter Example: Disprove conjecture

Let
$$f(n) = n$$
. $g(n) = n^2$ and $h(n) = n^2$