

CRESCIMENTO DA CONCENTRAÇÃO DE MATERIAIS PARTICULADOS E OZÔNIO EM CAPITAIS BRASILEIRAS

Arthur Boari¹
Marcelo Vieira-Filho²

Poluição atmosférica

Resumo

A poluição do ar é bem presente nas capitais brasileiras e suas regiões metropolitanas, principalmente na região Sudeste do país. Embora não existam situações como a de Cubatão, os poluentes atmosféricos afetam diretamente a saúde da população. O objetivo deste trabalho foi avaliar séries históricas de material particulado e ozônio para as capitais da região Sudeste do Brasil visando a computação de ultrapassagens e verificação de tendências das concentrações dos poluentes. Os dados de MP_{2.5}, MP₁₀ e O₃ foram obtidos em resolução horária através dos órgãos estaduais de meio ambiente e concentrados em médias diárias, conforme recomendações da Resolução CONAMA nº 491/2018, para cálculo das ultrapassagens. A série diária foi agrupada em série mensal para execução do teste de Mann-Kendall e estimador de Sen's Slope. Em termos de ultrapassagens foram registradas 1.393 ocorrências para o Padrão Iintermediário-1 e 25.491 para o Padrão Final, ocorrendo um aumento de 1.830% nas ultrapassagens. Quanto às tendências, Belo Horizonte apresenta tendência significativa de incremento das concentrações de MP₁₀, enquanto O₃ apresenta comportamento diverso entre as estações. No Rio de Janeiro as tendências para MP₁₀ e O₃ contrastam, mas em São Paulo, e Vitória, há tendência de redução do material particulado e acréscimo da concentração de O₃. Por fim, o trabalho demonstra a necessidade de investimento em políticas públicas para redução de ambos poluentes bem como avanço dos padrões de qualidade do ar em vigência, em nível nacional.

Palavras-chave: Material Particulado; Ozônio Troposférico; Teste De Mann-Kendall; Estimador De Sen's Slope; Qualidade Do Ar.

¹Mestrando em Engenharia Ambiental; Escola de Engenharia/Departamento de Engenharia Ambiental (UFLA), arthur1995boari@gmail.com.

²Prof. Dr. Universidade Federal de Lavras (UFLA) – Escola de Engenharia/Departamento de Engenharia Ambiental, marcelo.filho@ufla.br.

Introdução

O processo de industrialização do Brasil obteve um grande incentivo do Governo Federal a partir da década de 1930, causando um crescimento do setor industrial brasileiro e consequente expansão na região Sudeste do país (FONSECA; SALOMÃO, 2017). Devese recordar, em específico, o caso da poluição atmosférica registrada em Cubatão, São Paulo, uma vez que a cidade ficou conhecida pelos altos níveis de poluição do ar, recebendo título de "cidade mais poluída do mundo" e "vale da morte" por parte da imprensa internacional, como o The New York Times. Por essas razões o desenvolvimento de políticas públicas para controlar os poluentes atmosféricos foi acelerado na década de 80's no Brasil (VIEIRA-FILHO; LEHMANN; FORNARO, 2015). Especificamente sobre a saúde pública, estima-se a perda de 41,7 anos de vida a cada 100.000 habitantes brasileiros entre 2010 e 2018 pela exposição a poluentes atmosféricos (YU *et al.*, 2022), e 48.700 mortes seriam evitadas entre 2014 e 2018 se fossem adotados padrões de qualidade do ar mais restritivos (ANDREÃO; ALBUQUERQUE, 2021).

Da ampla gama de poluentes atmosféricos destacam-se o material particulado e o ozônio troposférico (O₃). O primeiro é caracterizado em relação ao diâmetro aerodinâmico (ϕ) das partículas, sendo dividido em partículas totais suspensas (PTS, $\phi \leq 50~\mu m$), partículas inaláveis (MP₁₀, $\phi \leq 10~\mu m$), partículas respiráveis (MP_{2,5}, $\phi \leq 2,5~\mu m$) e partículas ultrafinas (MP_{1,0}, $\phi \leq 1,0~\mu m$). Sua composição é variada e é bom indicador de sua fonte de emissão. Em relação ao seu impacto na saúde humana, quanto menor o tamanho da partícula, maior o seu poder de alcançar os alvéolos pulmonares (GONÇALVES *et al.*, 2021).

Por sua vez, o O₃ é um poluente secundário, ou seja, diferente do material particulado, não é emitido. A sua formação se dá pela reação de óxidos de nitrogênio (NOx), monóxido de carbono (CO) e compostos orgânicos voláteis (COVs) quando em presença da radiação solar, sendo esse elemento imprescindível para a sua formação. Pode originar

consciência, conservação e educação

em até duas horas após a emissão de seus precursores e ser transportado a longas distâncias, sendo detectado em estações de monitoramento localizadas a quilômetros do local de emissão destes. Seu impacto na saúde humana ocorre nas vias respiratórias, agravando quadros de asma crônica e outras síndromes respiratórias (SICARD et al., 2020; VALDAMBRINI; RIBEIRO, 2021).

À face do exposto acima, o monitoramento da qualidade do ar é de suma importância para gestão das políticas públicas que visam assegurar a saúde das populações expostas a poluição atmosférica. No Brasil, 298 das 371 estações de monitoramento da qualidade do ar estão localizadas na região Sudeste do país (VORMITTAG; CIRQUEIRA; WICHER NETO; SALDIVA, 2021). É importante ressaltar que as capitais de seus estados comportam mais de 22 milhões de habitantes, 9,7 milhões de automóveis e 1,7 milhão de motocicletas (IBGE, 2021; RENAVAM, 2021). Portanto, esse trabalho objetiva analisar séries históricas de MP_{2.5}, MP₁₀ e O₃ de estações de monitoramento automáticas da qualidade do ar das capitais estaduais da região Sudeste. Em específico, contabilizar ocorrências de ultrapassagens do padrão de qualidade do ar estabelecido pela Resolução CONAMA nº 491/2018, e calcular a tendência estatística de séries temporais da concentração dos mesmos.

METODOLOGIA

Os dados de concentração horária de MP_{2.5}, MP₁₀ e O₃ foram obtidos nos sítios eletrônicos dos órgãos estaduais de meio ambiente, a nomear: Instituto de Meio Ambiente e Recursos Hídricos (IEMA/ES), Fundação Estadual de Meio Ambiente (FEAM/MG), Instituto Estadual do Ambiente (INEA/RJ) e Companhia Ambiental do Estado de São Paulo (CETESB/SP). Ao todo foram utilizados dados de 40 estações automáticas, descritas na Tabela 1.

Tabela 1 – Descrição das estações de qualidade do ar das capitais dos estados da Região Sudeste do Brasil: localização, período de estudo por poluente e porcentagem de completude dos dados horários. A completude é calculada através da relação entre dados numéricos presentes na série histórica e a quantidade total de observações horárias, incluindo lacunas nos dados

		Coore	denadas			
Código	Estação	(SIRGAS2000)		Poluente	Período	Comp. (%)
		Lat.	Long.			
ES1	Jardim Camburi	-20,26	-40,27	MP_{10}	2001 – 2019	87,58
ES2	Enseada do Suá	-20,31	-40,29	$\begin{array}{c} MP_{10} \\ MP_{2.5} \end{array}$	$2001 - 2019 \\ 2014 - 2019$	87,19 72,49
				O_3	2001 - 2019	70,88
ES3	Vitória Centro	-20,32	-40,33	MP_{10}	2005 - 2019	85,27
MG1	Centro	-19,91	-43,94	MP_{10}	2014 - 2019	87,32
	(Avenida do			$MP_{2,5}$	2015 - 2019	64,86
	Contorno)			O_3	2014 - 2019	84,7
MG2	Delegacia	-19,94	-44,00	MP_{10}	2015 - 2019	77,5
	Amazonas			$MP_{2,5}$	2015 - 2019	62,91
				O_3	2013 - 2019	79,17
RJ1	Campos dos Afonsos	-22,88	-43,38	O_3	2013 – 2016	73,94
RJ2	Centro	-22,91	-43,20	MP_{10}	2000 - 2010	69,65
				O_3	2000 - 2010	76,01
RJ3	Engenhão	-22,89	-43,29	MP_{10}	2013 - 2016	51,11
	C			O_3	2013 - 2019	74,8
RJ4	Gamboa	-22,90	-43,20	O_3	2013 - 2015	74,81
RJ5	Gericinó	-22,86	-43,41	O_3	2013 - 2016	71,19
RJ6	Ilha de Paquetá	-22,77	-43,11	MP_{10}	2018 - 2019	62,09
	•			O_3	2016 - 2019	72,69
RJ7	Ilha do	-22,80	-43,18	MP_{10}	2016 - 2019	66,29
	Governador			O_3	2016 - 2019	88,2
RJ8	Jacarepaguá	-22,97	-43,38	O_3	2015 - 2016	65,2
RJ9	Lab. INEA	-22,99	-43,42	MP_{10}	2008 - 2016	65,88
				O_3	2007 - 2016	65,91
RJ10	Lagoa	-22,97	-43,22	O_3	2012 - 2019	66,52
RJ11	Leblon	-22,97	-43,22	O_3	2012 - 2019	73,12

PLANETA TERRA, ÁGUA E AR -

consciência, conservação e educação

ISSN on-line n° 2317-9686 V.14 .1 2022

RJ12	Maracanã	-22,91	-43,23	O ₃	2013 – 2016	72,71
RJ13	Taquara	-22,93	-43,37	MP_{10}	1999 - 2015	67,14
				O_3	1999 - 2016	77,86
RJ14	URCA	-22,96	-43,17	O_3	2013 - 2016	73,6
SP1	Cambuci	-23,57	-46,61	MP_{10}	1998 - 2008	80,65
SP2	Capão	-23,67	-46,78	MP_{10}	2012 - 2019	85,71
	Redondo			O_3	2012 - 2019	81,17
SP3	Centro	-23,55	-46,64	MP_{10}	1998 - 2010	72,23
SP4	Cerqueira	-23,55	-46,67	MP_{10}	1998 - 2019	90,33
	César					
SP5	Cidade	-23,57	-46,74	$MP_{2.5}$	2011 - 2019	84,34
	Universitária -	,	ŕ	O_3	2007 - 2019	91,73
	USP Ipen					,
SP6	Congonhas	-23,62	-46,66	MP_{10}	1998 - 2019	89,14
	C	,	ŕ	$MP_{2,5}$	2011 - 2019	93,49
				O_3	1998 – 1999	65,98
SP7	Grajaú-	-23,78	-46,70	MP_{10}	2007 - 2019	88,59
	Parelheiros	,	,	$MP_{2.5}$	2013 - 2019	85,63
				$O_3^{2,3}$	2007 - 2019	80,01
SP8	Ibirapuera	-23,59	-46,66	MP_{10}	1998 - 2014	90,05
	- · · · ·	- ,	- ,	$MP_{2.5}$	2014 - 2019	88,25
				O_3	1998 - 2019	91,65
SP9	Interlagos	-23,68	-46,68	MP_{10}	2012 - 2019	90,41
	C	,	,	O_3	2012 - 2019	88,98
SP10	Itaim Paulista	-23,50	-46,42	MP_{10}	2013 - 2019	83,18
		,	,	$MP_{2,5}$	2015 - 2019	63,22
				O_3	2012 - 2019	85,21
SP11	Itaquera	-23,58	-46,47	MP_{10}	2007 - 2010	60,53
	1	,	,	O_3	2007 - 2019	77,51
SP12	Lapa	-23,51	-46,70	MP_{10}	1998 - 2005	48,8
	· T · ·	- ,-	- 7	O_3	1998 - 2000	80,45
SP13	Marginal Tietê	-23,52	-46,74	MP_{10}	2012 - 2019	87,72
	- Ponte	,	,	$MP_{2,5}$	2012 - 2019	81,58
	Remédios			2,0		- ,
SP14	Mooca	-23,55	-46,60	MP_{10}	2003 - 2018	78,37
		- ,	- ,	$MP_{2,5}$	2018 - 2019	77,68
				O_3	1998 - 2019	85,87
SP15	N. Sra. do Ó	-23,48	-46,69	MP_{10}	2002 - 2015	85,06
		- ,	- ,	O_3	2004 - 2015	88,1
SP16	Parque D.	-23,55	-46,63	MP_{10}	2004 - 2019	82,97
	Pedro II	- ,	- ,	$MP_{2,5}$	2016 - 2019	71,2
				O_3	2004 - 2019	79,54
SP17	Pico do Jaraguá	-23.46	-46,77	$MP_{2,5}$	2016 - 2019	72,02
~- * '		,	• • •	O_3	2016 - 2019	69,92
				9 ,		,- <u>-</u>

SP18	Pinheiros	-23,56	-46,70	MP_{10}	1999 - 2011	56,51
				$MP_{2,5}$	2017 - 2019	80,79
				O_3	1999 - 2019	84,74
SP19	S. Miguel	-23,50	-46,45	MP_{10}	1998 - 2005	74,46
	Paulista			O_3	1998 - 2005	79,56
SP20	Santana	-23,51	-46,63	MP_{10}	2003 - 2016	87,66
				$MP_{2,5}$	2017 - 2019	81,17
				O_3	2006 - 2019	89,43
SP21	Santo Amaro	-23,66	-46,71	MP_{10}	2012 - 2019	88,53
				O_3	2012 - 2019	89,47

Fonte: FEAM (2020), INEA (2020), IEMA (2021) e CETESB (2022).

Os dados foram processados em linguagem R de programação (R CORE TEAM, 2021) com auxílio da interface RStudio (RSTUDIO TEAM, 2020). Foram eliminadas sequências de valores igual a zero, e, posteriormente, selecionados apenas os dias que continham até duas lacunas de dados na resolução horária. Em seguida, foram geradas as séries diárias para avaliação de ultrapassagens do padrão, seguindo as recomendações da Resolução CONAMA nº 491 de 2018 (CONAMA, 2018), com valores descritos na Tabela 2.

Tabela 2 – Padrão de Qualidade do Ar (Resolução CONAMA nº 491/2018) com os valores dos padrões intermediários (PIs) e padrão final (PF) para material particulado e ozônio

Poluente Atmosférico	Período de Referência	PI-1	PI-2	PI-3	PF
		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$
MP_{10}	24 horas	120	100	75	50
$MP_{2,5}$	24 horas	60	50	37	25
O_3	8 horas	140	130	120	100

Fonte: CONAMA (2018).

A computação de uma série mensal tem o propósito de servir a análise de tendência, e será agregada conforme adaptação de Nunifu e Fu (2019), a saber: validação de meses com no mínimo 20 médias diárias. Tal técnica objetiva reduzir o efeito de *outliers* e autocorrelação presente nos dados. As autocorrelações foram removidas através de processo de pré-branqueamento descrito por Wang e Swail (2001). Em seguida foram realizados os testes de Mann-Kendall e o estimador de *Sen's Slope* para computação da magnitude da tendência (ALYOUSIFI *et al.*, 2021).

Os pacotes utilizados no R foram: importação e exportação dos dados: *lubridate* (GROLEMUND; WICKHAM, 2011), *openair* (CARSLAW; ROPKINS, 2012), *dplyr* (WICKHAM *et al.*, 2021), *MannKendallTrends* (COEN; BIGI, 2021); e *trend* (POHLERT, 2020).

Resultados e Discussão

As ocorrências de ultrapassagens dos padrões definidos pela Resolução CONAMA nº 491/2018 estão sumarizadas e acumuladas por estados na Tabela 3. São descritas também as observações totais (série diária) segregadas por poluente. Os valores destacados em

Realização

Apoio

negrito são acumulações dos valores para o PI-1 e PF, cuja referência pode ser encontrada na Tabela 2.

Tabela 3 – Análise concentrada de ultrapassagens do padrão (Padrão Intermediário-1 e Padrão Final) dos parâmetros MP₁₀, MP_{2,5} e O₃ definido pela Resolução CONAMA nº 491/2018 para os dados das capitais estaduais da região Sudeste

			Observ	ações		Ultrapassagens			
Est	ado	Totais	MP_{10}	$MP_{2,5}$	O_3	Totais	MP_{10}	$MP_{2,5}$	O_3
	ES	22.498	16.105	1.525	4.868	0	0	0	0
	MG	7.953	2.955	1.329	3.669	63	2	0	61
	RJ	26.427	8.305	-	18.122	61	30	-	31
PI-1	SP	128.77 6	65.907	15.868	47.001	1.269	324	47	898
	Total	185.65	93.272	18.722	73.660	1.393	356	47	990
	(%)	4	50,24	10,08	39,68	0,75	25,56	3,37	71,07
	ES	22.498	16.105	1.525	4.868	170	161	7	2
	MG	7.953	2.955	1.329	3.669	429	181	92	156
	RJ	26.427	8.305	-	18.122	1.438	1.104	-	334
PF	SP	128.77 6	65.907	15.868	47.001	23.454	13.902	3.245	6.307
	Total	185.65	93.272	18.722	73.660	<u>25.491</u>	15.348	3.344	6.799
	(%)	4	50,24	10,08	39,68	13,73	60,21	13,12	26,67

Fonte: Do Autor (2022).

Dos resultados demonstrados acima se pode discutir a discrepância em relação ao total de ultrapassagens contabilizadas utilizando o PI-1 e o PF como referência. Com a restrição do padrão há um aumento de 1.829,94% (24.098 ocorrências) de ultrapassagens demonstrando a necessidade de adoção de padrões mais restritivos. Além disso, a adoção de padrões menos restritivos criam uma falsa sensação de segurança para a população, como definido pela Organização Mundial da Saúde (OMS) no Air Quality Guidelines.

Apoio

A Tabela 4 apresenta os valores de tendência, intervalos de confiança, significância e período das séries mensais. 22,5% das estações apresentaram período insuficiente de dados para cálculo de Mann-Kendall e *Sen's Slope* foram omitidas. Alguns poluentes de estações também apresentaram o mesmo comportamento sendo retirados de análise.

Tabela 4 – Tendências de concentrações de MP₁₀, MP_{2,5} e O₃ para as estações das capitais da região Sudeste

Código	Poluente	Tendência (µg/m³.ano)	Intervalo de Confiança	Período
ES1	MP_{10}	-0,7***	(-0,9; -0,5)	2001-2006, 2008-2019
	MP_{10}	-0,24**	(-0,4;-0,09)	2001-2006, 2008-2019
ES2	$MP_{2,5}$	-0,26	(-0.85; 0.43)	2015-2018
ES2	O_3	0,36*	(0,1; 0,63)	2001-2004, 2006, 2008,2010- 2012, 2015, 2018
ES3	MP_{10}	-0,57***	(-0.81; -0.28)	2005-2006, 2008-2019
MG1	MP_{10}	2,16*	(0,17;4,64)	2015-2019
MOI	O_3	2,59**	(0,65;4,56)	2015-2019
MG2	O_3	-5,41***	(-8,43; -2,27)	2013-2017
DIO	MP_{10}	-2,42***	(-2,43;-2,39)	2002, 2005
RJ2	O_3	-3,48***	(-4,4;-2,54)	2003-2005, 2007-2008
RJ9	O_3	3,6***	(2,5;4,39)	2010, 2012, 2013, 2015
RJ10	O_3	-1,53***	(-2,64;-0,62)	2013-2015, 2019
RJ12	O_3	-1,24	(-4,36;3,68)	2014-2016
	MP_{10}	0,49***	(0,27;0,77)	2002-2007, 2014
RJ13	O_3	2,54***	(1,75; 3,53)	2005-2007, 2009-2010, 2013- 2016
RJ14	O_3	0,39	(-2,97;4,83)	2013, 2015
SP1	MP_{10}	-0,36	(-1,74;1,21)	1999, 2001-2007
SP2	MP_{10}	-0,97*	(-2,09; -0,25)	2013-2019
SFZ	O_3	0,64	(-0,67;1,77)	2013-2019
SP3	MP_{10}	-0,28	(-0.83; 0.37)	1998-2003, 2007-2009
SP4	MP_{10}	-0,99***	(-1,26;-0,74)	1998-2012, 2014-2019
SP5	$MP_{2,5}$	-0,29	(-0.76; 0.21)	2012-2015, 2017-2019
SFS	O_3	-1,75**	(-3,49; -0,43)	2011-2012, 2014-2015, 2019
SP6	MP_{10}	-1,48***	(-1,79,-1,19)	1998-2004, 2006-2019
210	$MP_{2,5}$	-0,35*	(-0,69; -0,05)	2011-2019
	MP_{10}	-0,7*	(-1,27; -0,23)	2008-2019
SP7	$MP_{2,5}$	-0,57*	(-1,15; -0,07)	2014-2019
	O_3	1,87***	(1,25; 2,42)	2010, 2012-2014, 2017-2019

consciência, conservação e educação

	MP_{10}	-0,95***	(-1,52; -0,41)	1998-2005, 2007-2013
SP8	$MP_{2,5}$	-1	(-2,61;0,38)	2017-2019
	O_3	0,11	(-0,24;0,45)	1998-2002, 2005, 2008-2019
SP9	MP_{10}	-1,28*	(-2,45; -0,16)	2012-2018
319	O_3	-0,36	(-1,65;0,98)	2012-2019
SP10	MP_{10}	-0,07	(-1,38;1,39)	2014-2019
SP10	O_3	0	(-1,51;1,06)	2016, 2018-2019
SP11	O_3	1,13	(-1,3;3,08)	2013-2019
SP12	MP_{10}	2,34	(-1,22;5,93)	2000-2002
SP13	MP_{10}	-0,95	(-2,57;0,31)	2013-2019
SP15	$MP_{2,5}$	-0,62	(-2; 0,49)	2014-2019
	MP_{10}	-0,95***	(-1,4;-0,46)	2004-2005, 2007-2017
SP14	O ₃	0,53***	(0,29; 0,75)	1999-2000,2002-2005, 2008-
	O_3	0,33****	(0,29,0,73)	2009, 2012, 2017-2019
SP15	MP_{10}	-0,7*	(-1,35; -0,09)	2003-2004, 2006-2015
SP13	O_3	0,07	(-0,27;0,43)	2009, 2012, 2015
	MP_{10}	-0,86***	(-1,29; -0,49)	2006-2019
SP16	$MP_{2,5}$	0,46	(-1,12;1,88)	2017-2019
	O_3	0,97***	(0,54;1,43)	2006-2007, 2017-2019
	MP_{10}	-3,56**	(-5,36; -1,62)	2002, 2005-2006
SP18	0	0.64**	(0.22, 1.00)	2000-2002, 2004-2007, 2010-
	O_3	0,64**	(0,22;1,09)	2011,2017
SP19	MP_{10}	-4,77***	(-5,95; -3,05)	1998-1999,2001, 2003-2004
SP 19	O_3	0,61	(-0.91; 1.78)	1998-2002, 2004
	MP_{10}	-0,19	(-0,79;0,39)	2004-2016
SP20	0	0,99***	(0.42, 1.56)	2007-2008, 2012-2016, 2018-
	O_3	0,99***	(0,43;1,56)	2019
SP21	MP_{10}	-1,21**	(-2,02;-0,52)	2012-2018

Código de significância: p < 0.001 = ***, p < 0.01 = ***, p < 0.05 = *ep < 0.1 = +.

Fonte: Do Autor (2022).

Em Vitória há tendência significativa de redução de MP₁₀ e de aumento de O₃, porém há tendência não significativa de redução para MP_{2,5}. Por ser uma cidade litorânea, há a facilidade de dispersão do MP₁₀ emitido pelas indústrias da Ponta do Tubarão, porém o mesmo comportamento não é observado para o O₃ e, tal comportamento, pode ser justificado pela formação e transporte atmosférico de O₃. Em contraste, para Belo Horizonte são observadas tendências significativas de incremento de MP₁₀ e O₃ para a MG1 e decréscimo de O₃ para MG2 com magnitude -5,41 μg/m³ anuais. As tendências de

crescimento em MG1, para O₃ pode ser explicada por ser localizada próximo a área florestada, enquanto a MG2 está próxima a via de tráfego intenso.

Nas estações do Rio de Janeiro foram significativas tendências de redução de MP₁₀ e/ou O₃ para RJ2 e RJ10, enquanto tendências significativas de aumento foram encontradas para MP₁₀ e/ou O₃ para RJ9 e RJ13. Algumas estações SP obtiveram tendências significativas de redução de MP₁₀ (SP2, SP4, SP6, SP7, SP8, SP9, SP14, SP15, SP16, SP18, SP19 e SP21), MP_{2,5} (SP6 e SP7) e O₃ (SP5), porém só foram registradas tendências significativas de aumento para O₃ (SP7, SP14, SP16, SP18 e SP20).

Conclusões

A quantificação de ultrapassagens demonstra que os padrões de qualidade do ar em vigência (PI-1 da Resolução CONAMA nº 491/2018), em nível nacional, requerem avanços em suas fases para garantir redução da poluição do ar. O aumento de 1.830% das ocorrências de ultrapassagens quando compara os valores de PI-1 e PF corroboram a necessidade de maior paridade da legislação brasileira com a preconizada pela OMS.

Em relação às tendências, em Vitória há indícios de redução na concentração de material particulado (-0,7 μg/m³.ano), em contraste, há incremento nas concentrações de ozônio (0,36 μg/m³.ano). Em Belo Horizonte, os comportamentos entre as estações é contrastante apenas para O₃ (2,59 e -5,41 μg/m³.ano), sendo registrada tendência de aumento de MP₁₀ (2,16 μg/m³.ano). A capital carioca registrou tendências contrastantes para MP₁₀ e O₃, ao passo que a capital paulista apresentou tendências gerais de redução de MP₁₀ e MP_{2,5} e aumento para O₃. É notável a necessidade de incentivos para que a poluição do ar seja cada vez mais controlada não só nas capitais objetos desse estudo, mas em todo o território brasileiro.

Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pela concessão de bolsa de pós-graduação e as entidades estaduais (Instituto de Meio Ambiente e Recursos Hídricos (IEMA/ES), Fundação Estadual de Meio Ambiente (FEAM/MG), Instituto Estadual do Ambiente (INEA/RJ) e Companhia Ambiental do Estado de São Paulo (CETESB/SP)) pela concessão dos bancos de dados utilizados.

REFERÊNCIAS

ALYOUSIFI, Y. et al. Trend analysis and change point detection of air pollution index in Malaysia. **International Journal Of Environmental Science And Technology**, [S.L.], v. 19, n. 8, p. 7679-7700, 21 nov. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s13762-021-03672-w.

ANDREÃO, Willian Lemker; ALBUQUERQUE, Taciana Toledo de Almeida. Avoidable mortality by implementing more restrictive fine particles standards in Brazil: an estimation using satellite surface data. **Environmental Research**, [S.L.], v. 192, n. 110288, p. 1-11, jan. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.envres.2020.110288.

CARSLAW, D. C.; ROPKINS, K. openair — an r package for air quality data analysis. **Environmental Modelling & Software**, v. 27–28, n. 0, p. 52–61, 2012. ISSN 1364-8152.

COEN, M. C.; BIGI, A. **MannKendallTrends**: MannKendall trends for geophysical time series. [S.l.], 2021. R package version 1.1.0. Disponível em: https://mannkendall.github.io/R/ >.

Conselho Nacional do Meio Ambiente (CONAMA). Resolução nº 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar. **Diário Oficial [da] República Federativa do Brasil** — 1, Brasília, DF, 2018. ISSN 1677-7042. Disponível em: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895. Acesso em: 02 mar. 2022.

Companhia Ambiental do Estado de São Paulo (CETESB). **QUALAR**: Sistema de informações da qualidade do ar. 2022. Disponível em: https://qualar.cetesb.sp.gov.br/qualar/home.do. Acesso em: 01 mar. 2022

Fundação Estadual do Meio Ambiente (FEAM). **Informações Complementares das Estações.** 2020. Disponível em:

http://www.feam.br/images/stories/2020/QUALIDADE_DO_AR/Tabela_Inform%C3%A7%C3%B5es.xlsx. Acesso em: 01 mar. 2022.

FONSECA, Pedro Cezar Dutra; SALOMÃO, Ivan Colangelo. Industrialização brasileira: notas sobre o debate historiográfico. Tempo, [S.L.], v. 23, n. 1, p. 86-104, abr. 2017. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/tem-1980-542x2017v230105.

GONÇALVES, Priscila Boleta et al. Occurrence of polar organic compounds in atmospheric particulate matter: a system review in South America. Environmental Monitoring And Assessment, [S.L.], v. 193, n. 2, p. 1-10, fev. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10661-021-08881-x.

GROLEMUND, Garrett; WICKHAM, Hadley. Dates and Times Made Easy with lubridate. Journal Of Statistical Software, [S.L.], v. 40, n. 3, p. 1-25, abr. 2011. Foundation for Open Access Statistic. http://dx.doi.org/10.18637/jss.v040.i03.

Instituto Brasileiro de Geografia e Estatística. (IBGE). Estimativas da população residente no Brasil e Unidades da Federação com data de referência em 1º de julho de 2021. 2021. Disponível em:

https://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2021/estimativa_dou_2021.ods>. Acesso em: 20 fev. 2022.

Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). Relatório da Qualidade do Ar na Grande Vitória: 2020. Cariacica, 2021. Disponível em: https://iema.es.gov.br/Media/iema/CQAI/Relatorios_anuais/IEMA_CQAI_Relat%C3%B3rio_A nual da Qualidade do Ar 2020.pdf>. Acesso em: 01 mar. 2022.

Instituto Estadual do Ambiente (INEA). Relatório da Qualidade do Ar do estado do Rio de Janeiro: Ano base 2018. Rio de Janeiro, 2020. Disponível em: http://www.inea.rj.gov.br/wp- content/uploads/2020/11/relatorio-qualidade-ar-2018.pdf>. Acesso em: 01 mar. 2022.

NUNIFU, T.; FU, L. Methods and Procedures for Trend Analysis of Air Quality Data. Edmonton, 2019. 76 p. Disponível em: .

POHLERT, T. trend: Non-Parametric Trend Tests and Change-Point Detection. [S.l.], 2020. R package version 1.1.4. Disponível em: https://CRAN.R-project.org/package=trend>.

R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2021. Disponível em: https://www.R-project.org/.

Registro Nacional de Veículos Automotores (RENAVAM). Frota de veículos, por tipo e com placa, segundo os Municípios da Federação: Out/2021. 2021. Disponível em: https://www.gov.br/infraestrutura/pt-br/assuntos/transito/arquivos- senatran/estatisticas/renavam/2021/outubro/frota-munic-modelo-outubro-2021.xls>. Acesso em: 22 fev. 2022.

RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA, 2020. Disponível em: http://www.rstudio.com/>.

SICARD, Pierre et al. Ozone weekend effect in cities: deep insights for urban air pollution control. **Environmental Research**, [S.L.], v. 191, p. 1-12, dez. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.envres.2020.110193.

VALDAMBRINI, Natasha Murgu; RIBEIRO, Flávia Noronha Dutra. Avaliação das Ultrapassagens dos Padrões de Ozônio Troposférico no Estado de São Paulo de 2014 a 2019. **Revista Brasileira de Meteorologia**, [S.L.], v. 36, n. 4, p. 735-747, dez. 2021. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0102-7786360046.

VIEIRA-FILHO, Marcelo S.; LEHMANN, Christopher; FORNARO, Adalgiza. Influence of local sources and topography on air quality and rainwater composition in Cubatão and São Paulo, Brazil. **Atmospheric Environment**, [S.L.], v. 101, p. 200-208, jan. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.atmosenv.2014.11.025.

VORMITTAG, Evangelina da Motta P. A. de Araújo; CIRQUEIRA, Samirys Sara Rodrigues; WICHER NETO, Hélio; SALDIVA, Paulo Hilário N.. Análise do monitoramento da qualidade do ar no Brasil. **Estudos Avançados**, [S.L.], v. 35, n. 102, p. 7-30, ago. 2021. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0103-4014.2021.35102.002.

WANG, Xiaolan L.; SWAIL, Val R.. Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes. **Journal Of Climate**, [S.L.], v. 14, n. 10, p. 2204-2221, maio 2001. American Meteorological Society. http://dx.doi.org/10.1175/1520-0442(2001)0142.0.co;2.

WICKHAM, H. et al. **dplyr**: A Grammar of Data Manipulation. [S.l.], 2021. R package version 1.0.7. Disponível em: https://CRAN.R-project.org/package=dplyr.

YU, Pei et al. Loss of life expectancy from PM2.5 in Brazil: a national study from 2010 to 2018. **Environment International**, [S.L.], v. 166, n. 107350, p. 1-9, ago. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.envint.2022.107350.

