long title

- W. Schoenell 1* , N. Benítez 1† † Departamento de Física CFM Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- ²LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; Place Jules Janssen 92190 Meudon, France
- ³ Main Astronomical Observatory, Ukrainian National Academy of Sciences, Zabolotnoho 27, Kyiv 03680, Ukraine

Accepted Received; in original form

ABSTRACT

blabla

Key words: galaxies: evolution – galaxies: statistics – galaxies: stellar content – galaxies: active.

INTRODUCTION

PROBLEM

Outline of this section: We do not have the true redshift for each galaxy! We have to deal with p(z,T)instead of collapsing it on T. Why?

REFERENCES

Abazajian K. N., et al., 2009, ApJS, 182, 543

APPENDIX A: APP 1

SYNTHETIC LIBRARY

Outline of this section: Tell how we did our synthetic library. MCMC to randomly select 2000 spectra for each template of BPZ, etc and so on...

SIMULATIONS

We can generate fake data from i.e. SDSS spectroscopy and try to recover the properties of the galaxies. Another way to do is to compare with a simulated light-cone like the one of Merson et al 2013.

COMPARISON WITH REAL DATA

Which data will we compare our results to??

ACKNOWLEDGMENTS

W. S. acknowledge support and hospitality of the IAG-USP for short term visits.

- * E-mail:william@iaa.es
- † E-mail:benitez@iaa.es

2 Schoenell et al.

Parameters list and description

Parameter	Units	min/max values	Meaning
$t_0^Y \\ \theta^Y$	yr	6×10^6 to 6.3×10^9	Age of the younger burst
	-	0.001 to 100	$\theta = \tau \times t_0$. Where τ is burst e-folding time
$t_0^O \\ au^O$	yr	$10^9 \text{ to } 1.76 \times 10^{10}$	Age of the older burst
$ au^O$	-	0.001 to 100	$\theta = \tau \times t_0$. Where τ is burst e-folding time
Z	[FeH]	0.0004 to 0.05	Stellar metallicity
θ_V	-	0 to 0.2	Extinction. See ? for details.
f^{Y}	%	0 to 100	Light fraction on the younger component

 ${\bf Table~1.~Synthetic~templates~library~parameters}$