Computer Science & Information Technology Theory of Computation

DPP: 2

Regular Expression and Closure Properties

Q1 Let

$$L_1 = a^* b^*$$

$$L_2 = b^*a^*$$

$$L_3 = (a + b)^*$$

$$L_4 = a^* b^* a$$

$$L = (L_1 \cap L_2) - (L_3 \cup L_4)$$

Number of strings in above language L will be

Q2 Consider a regular expression (R):

$$R = (a + b)^* (a + b)^2 (a + b)^*$$
.

How many equivalences classes are existing for above regular expression R?

(A) 2

(B) 3

(C) 4

- (D) None
- Q3 Let L be any formal language. If L* is regular language then what is L?
 - (A) L is regular.
 - (B) L is non-regular.
 - (C) L is CFL.
 - (D) None of these.
- **Q4** Consider the following two statements:
 - [1]: There exist a regular language L₁, such that for all language L_2 , $L_1 \cup L_2$ is always regular.
 - [II]: If all states of deterministic finite automata (DFA) except start state are final states then language accepted by DFA is \sum^{+} .

Which of the following is correct?

- (A) S_1 only.
- (B) S_2 only.
- (C) Both S_1 and S_2 are true.

- (D) None of these.
- Q5 Consider the language L given by the regular expression (a + b)* ab(a + b)* over the alphabet {a, b}. What is the correct regular expression of \overline{L} ?
 - (A) $(a + b)^*$ $(ab + ba + bb + aa) + \in$
 - (B) $(a^*b^*)^*$ (ba + bb + aa) $(a^*b^*)^* + a + b$
 - (C) $(a + b)^*$ ba $(a + b)^* + a + b$
 - (D) b*a*
- Q6 For language L = {Every odd bit is a}

On alphabet Σ = {a, b}. Which of the following is/are correct regular expression?

- (A) $(aa + ab)^* (\in + a)$
- (B) (aa + ab + ba + b)*a
- (C) $(aa + ba)^* (\in + a + b)$
- (D) $(a(a + b))^* + (a(a + b))^* a$
- Q7 Let us consider the following regular expression $R = a^*b^* + b^*a^*$.

How many equivalence classes of expression that represent language are equivalent to regular expression R?

Q8 Consider the following languages:

$$L_1 = \{a^m b^n c^p \mid m, n, p \ge 0\}.$$

$$L_2 = \{a^m b^m c^p \mid m, p \ge 0\}.$$

$$L_3 = \{a^{2m}b^{2m}c^p \mid m, p \ge 0\}.$$

Which of the following is/are correct?

- (A) $L_1 \subseteq L_2$ and $L_2 \subseteq L_1$.
- (B) $L_2 \subseteq L_1$ and $L_3 \subseteq L_1$.
- (C) $L_3 \subseteq L_2$ and $L_2 \subseteq L_1$.
- (D) $L_2 \subseteq L_3$ and $L_3 \subseteq L_1$

Answer Key

Q1 0

Q2 (B)

Q3 (D)

Q4 (A) Q5 (D)

Q6 (A, D)

Q7 6

(B, C) Q8

Hints & Solutions

Q1 Text Solution:

$$L_1 \cap L_2 = a^* + b^*$$

 $L_3 \cup L_4 = (a + b)^*$
 $L = (a^* + b^*) - (a + b)^*$
 $= \phi$

Number of strings = 0

Q2 Text Solution:

$$R = (a + b)^* (a + b)^2 (a + b)^*$$

Number of equivalence classes in my hill Nerode = Number of states in minimal DFA

DFA for R:

Number of states = 3

Number of equivalence classes = 3

Q3 Text Solution:

If L* is regular, L may or may not be a regular.

Example 1: $L^* = (a + b)^*$ is regular, L = (a + b) is regular.

Example 2: L* = $\{(a^P)^* \mid P \text{ is prime}\}\$ is regular but $L = \{a^P \mid P \text{ is prime}\}\$ is non-regular.

... Option (d) is correct.

Q4 Text Solution:

S₁ True:

$$L_1 = \sum^* L_1 \cup L_2 = \sum^* \cup L_2 = \sum^* \text{ (Regular)}$$

S₂ False:

May or may not be \sum^+

For example: DFA for language ending with "a" on alphabet {a, b}.

Q5 Text Solution:

$$L = (a + b)^* ab (a + b)^*$$

L = {containing 'ab' as a substring}

$$\overline{L} = \{b^*a^*\}$$

Q6 Text Solution:

FA:

Regular expression =
$$(a(a + b))^* a + (a (a + b))^* a$$

= $(a(a + b))^* (\in + a) : (aa + ab)^* (\in + a)$
Hence, (a, d) are correct.

Q7 Text Solution:

$$R = a^*b^* + b^*a^*$$
= (\(\in + aa^*\) = (\in + bb^*) + (\in + bb^*) (\in + aa^*)
= \(\in + aa^* + bb^* + aa^* bb^* + bb^* aa^*\)
[\(\cdot a^* = (\in + aa^*)]\)

Number of equivalence classes are equivalent to minimum number of states in DFA.

Regular expression for each state represents each equivalence class.

So,
$$[q_0] = \in$$

$$[q_1] = aa^*$$

$$[q_2] = bb^*$$

 $[q_3] = aa^* + bb^*$
 $[q_4] = bb^*aa^*$
 $[q_5] = (aa^*bb^*a + bb^*aa^*b) (a + b)^*$

Q8 Text Solution:

- $L_3 \subseteq L_1$ True
- $L_2 \subseteq L_1$ True
- $L_3 \subseteq L_2$ True
 - (a) False
- (b) True
- (c) True
- (d) False

