Data Visualization & Exploratory Data Analysis

Statistics can be ugly

```
> summary(model)
Call:
lm(formula = y \sim x + z, data = df)
Residuals:
   Min
           10 Median 30
                                 Max
-2.8090 -0.7421 0.0217 0.6816 3.7718
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.035250 0.032817 -1.074 0.283
     0.021991 0.033189 0.663 0.508
          -0.003659 0.031512 -0.116 0.908
Residual standard error: 1.036 on 997 degrees of freedom
Multiple R-squared: 0.0004585, Adjusted R-squared: -0.001547
F-statistic: 0.2287 on 2 and 997 DF, p-value: 0.7956
```

Numbers are scary

OLS: Actual Class Size - gktmaths				
	(1)	(2)	(3)	(4)
VARIABLES	1	2	3	4
1.gkclasst	7.73**	8.93***	9.01***	8.84***
1.gkciassi	(3.76)	(2.38)	(2.33)	(2.32)
3.gkclasst	-0.40	0.28	0.63	0.42
J.gkciassi				****
-41:4!	(3.87)	(2.18)	(2.15) 16.82***	(2.14)
st_whiteasian				16.91***
			(2.38)	(2.40)
st_girl			6.53***	6.46***
			(1.12)	(1.12)
freelunch			-20.15***	-20.08***
			(1.32)	(1.33)
t_whiteasian				-1.01
				(3.80)
gktyears				0.42**
				(0.20)
teacher_MA				-2.20
				(2.08)
Constant	483.20***	482.60***	477.63***	475.52***
Constant	(2.80)	(1.57)	(2.37)	(4.49)
	(2.00)	(2.27)	(2.57)	()
Observations	5,871	5,871	5,852	5,809
R-squared	0.01	0.01	0.07	0.07
Number of gkschid		79	79	79
	Robust standard	errors in parent	heses	
		* p<0.05, * p<0		

Walls of numbers

Table 4: Simulation results

N=4000; 500 runs per variation and motivation; standard deviation in parentheses.

ve_prevalence	objective_value	e dv	baseline_social	market_social	costless_social	with_cost_social	baseline_individual	market_individual	costless_indi
	High	al	0.373 (0.112)	0.93 (0.069)	1 (0)	0.955 (0.054)	0.372 (0.112)	0.649 (0.114)	0.865 (0.098)
	Low	a2	0.368 (0.113)	0.999 (0.006)	1 (0)	0.611 (0.131)	0.378 (0.113)	0.784 (0.107)	0.863 (0.103)
	High	bl	0.38 (0.208)	1 (0)	1 (0)	0.909 (0.129)	0.375 (0.213)	0.993 (0.038)	0.994 (0.035)
	Low	b2	0.38 (0.21)	1 (0)	1 (0)	0.664 (0.222)	0.375 (0.209)	0.996 (0.033)	0.994 (0.036)
	High	cl	0.128 (0.077)	0.519 (0.1)	1 (0)	0.872 (0.089)	0.13 (0.078)	0.26 (0.094)	0.455 (0.117)
	Low	c2	0.128 (0.079)	0.133 (0.088)	1 (0)	0.463 (0.133)	0.121 (0.077)	0.388 (0.095)	0.449 (0.121)
	High	dl	0.127 (0.147)	0.995 (0.031)	1 (0)	0.781 (0.19)	0.13 (0.145)	0.612 (0.21)	0.558 (0.219)
	Low	d2	0.123 (0.14)	0.961 (0.112)	1 (0)	0.385 (0.221)	0.121 (0.144)	0.68 (0.202)	0.549 (0.215)
	-								

Exploratory Data Analysis

"Interocular traumatic impact"

Enhance probabilistic analysis

Check shape and assumptions

Right between the eyes...

Right between the eyes...

Right between the eyes...

Two types of visualization

Exploratory

Scatterplots, histograms, etc.

Publishable

Vox, FiveThirtyEight, NYT

Infographics and chart porn

http://terribleinfographics.tum blr.com/

http://wtfviz.net/

http://vizwiz.blogspot.com/201 4/06/makeover-monday-facepie-taking-analogy.html

https://source.opennews.org/ en-US/articles/when-mapshouldnt-be-map/

EDA: Understand your data

Visualize every variable individually

Visualize relationships between variables

Visualize models

Which visualization do I

Chart Suggestions—A Thought-Starter

Boxplots

Univariate visualization

Continuous data

Histograms

Univariate visualization

Continuous data

Density plots

Univariate visualization

Continuous data

Bar charts

Univariate visualization

Categorical data

Bivariate visualization

	Continuous	Categorical
Continuous	Scatterplots	Grouped plots
Categorical		Mosaic plots, grouped plots

Pack in as much data as you can

Scatterplots

Bivariate visualization

MOAR DATA!!!!

Bivariate visualization

Lines

Bivariate visualization

Filled lines

Bivariate visualization

Grouped points

Bivariate visualization

Continuous + categorical

Violin plots

Bivariate visualization

Continuous + categorical

Mosaic plots

Bivariate visualization

Categorical + categorical

Scatterplot matrices

Model diagnostics

Regression

Coefficient plots

Model visualization

Regression

Predicted probabilities

Model visualization

Logit/Ologit

Other models

Diff-in-diff

(link to file)

Regression discontinuity

(link to file)

How do I do all this?

Stata

R + ggplot2

How do I do all this?

Ask for help!

Go make pretty pictures.

http://andhs.co/stataviz http://andhs.co/statadata