

<u>Gameboard</u>

Maths

Transformations of Graphs 3ii

Transformations of Graphs 3ii

The graph of y=f(x) for $-2 \le x \le 2$ is shown in Figure 1.

Figure 1: The graph of y=f(x) for $-2 \le x \le 2$.

Sketch the curve y = f(-x) for $-2 \le x \le 2$.

What is the y-value of the curve y = f(-x) when x = 1?

The following symbols may be useful: y

Part B Sketch y = f(-x) + 2

Sketch the curve y=f(-x)+2 for $-2\leq x\leq 2$.

What is the y-value of the curve y=f(-x)+2 when x=-2?

The following symbols may be useful: y

Part C Sketch
$$y=-\frac{1}{x^2}$$

Sketch the curve $y=-rac{1}{x^2}.$

Part D Sketch $y=3-rac{1}{x^2}$

Sketch the curve $y=3-\frac{1}{x^2}$.

Part E State the equation

The curve $y=-\frac{1}{x^2}$ is stretched parallel to the y-axis by scale factor 2. State the equation of the transformed curve.

The following symbols may be useful: x, y

Used with permission from UCLES, A level, January 2012, Paper 4721, Question 2 and June 2010, Paper 4721, Question 2.

<u>Gameboard</u>

Maths

Transformations of Graphs 1i

Transformations of Graphs 1i

Find the roots of the curve $y=x^2(3-x)$ and sketch it.

The curve $y=x^2(3-x)$ is translated by two units in the positive direction parallel to the x axis.

State the equation of the curve after this transformation.

The following symbols may be useful: x, y

${\bf Part \ C} \qquad {\bf Find \ transformation \ of} \ y$

Which of these describes the transformation of the curve $y=x^2(3-x)$ to $y=\frac{1}{2}x^2(3-x)$?

- A stretch of scale factor 2 parallel to the y-axis.
- A stretch of scale factor 2 parallel to the x-axis.
- A stretch of scale factor $\frac{1}{2}$ parallel to the y-axis.
- A stretch of scale factor $\frac{1}{2}$ parallel to the x-axis.

Part D Vertical translation of f(x)

The curve y = f(x) passes through the point P with coordinates (2, 5).

State the coordinates of the point corresponding to P on the curve y=f(x)+2.

Part E Lateral stretching of f(x)

The curve y = f(x) passes through the point P with coordinates (2,5).

State the coordinates of the point corresponding to P on the curve y=f(2x).

Part F Find transformation of f(x)

Which o	of the following describes the single transformation that maps the curve $y=f(x)$ onto $y=f(x+4)$?
	A translation of 4 units parallel to the x -axis.
	A translation of -4 units parallel to the x -axis.
	A translation of -4 units parallel to the y -axis.
	A translation of 4 units parallel to the y -axis.

Used with permission from UCLES, A level, June 2016, Paper 4721, Question 7 and June 2014, Paper 4721, Question 4.

Gameboard:

STEM SMART Double Maths 17 - Transformations and

Circles

<u>Home</u> <u>Gameboard</u> Maths Functions General Functions Reflection and Symmetry

Reflection and Symmetry

Pre-Uni Maths for Sciences E2.10

The following questions ask you to deduce the symmetry properties of a number of functions. There are three choices:

- ullet even a function for which f(x)=f(-x) which is also described as being symmetric about the vertical axis,
- odd a function for which f(x) = -f(-x) which is also described as being antisymmetric about the vertical axis (or symmetric about zero),
- neither even nor odd.

Where relevant you may assume that a and b are non-zero constants.

Part A Even functions

Decide which of the following functions are even.

- $\frac{a}{x^2} + b$
- $(x-a)(x+b) \ (a\neq b)$
- $ax^2 + bx^4$
- $x^2(a+bx)$
- $a\cos x$
- ax^2
- $a(x+b)^2$
- $\frac{a}{x^2} + bx^2$
- $ax^2 + b$
- $a\sin x$

Part B Odd functions

Decide which of the following functions are odd.

- ax
- $x^2(a+bx)$
- r
- $\frac{a}{x}$
- $\frac{a}{x} + b$
- $\frac{a}{x} + bx^3$
- $a\sin x$
- $x(a+bx^2)$
- $a \tan x$

Part C Neither odd nor even functions

Decide which of the following functions are neither odd nor even.

- $x(ax^2+b)$
- $\cos x + \sin x$
- $(x-a)(x+a)^2$
- $a\left(\frac{1}{x^2} \frac{1}{b^2}\right)$
- $a(b-x)^{rac{1}{2}}$
- $a an(x+45^\circ)$
- (x-a)(x+a)
- ax-b
- $x^2(ax+b)$
- $\frac{a}{(x-b)^2}$
- $ax^{\frac{1}{2}}$

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 17 - Transformations and

Circles

<u>Gameboard</u>

Maths

Circles 1ii

Circles 1ii

The circle with equation $x^2 + y^2 - 6x - k = 0$ has radius 4.

The points A(3, a) and B(-1, 0) lie on the circumference of the circle, with a > 0.

Part A Centre

By completing the square for x and y find the coordinates of the centre of the circle.

Part B Value of k

Find the value of k.

The following symbols may be useful: k

Part C Length AB

Calculate the length of AB, giving your answer in simplified surd form.

Part D Equation

Find the equation of the line AB. Give your answer in the form y=mx+c.

The following symbols may be useful: x, y

Used with permission from UCLES, A level, June 2007, Paper 4721, Question 9.

Gameboard:

STEM SMART Double Maths 17 - Transformations and Circles

Gameboard

Maths

Circles 3ii

Circles 3ii

A circle has centre $(3,1)$ and radius 5 , and a line has equation $y=2x$.	
Part A Circle equation	
Write down the equation of the circle.	
The following symbols may be useful: x, y	
Part B Intersection points	
Find the coordinates of the points of intersection of the line and the circle.	
(
Part C Point on the line	
Find the coordinates of the point on the line which is closest to the centre of the circle.	
(

Used with permission from UCLES, A level, January 2010, Paper 4721, Question 8.

Gameboard:

STEM SMART Double Maths 17 - Transformations and

<u>Circles</u>

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Game</u>

<u>Gameboard</u> Maths

Circles 2i

Circles 2i

Figure 1: The circle with equation $x^2 + y^2 - 8x - 6y - 20 = 0$.

Figure 1 shows the circle with equation $x^2 + y^2 - 8x - 6y - 20 = 0$. The circle crosses the positive x axis at point A.

Part A Find centre

By completing the square for x and y find the coordinates of the centre of the circle.

(, ()

_			
Part	B 1	Find	radius

Find the radius of the circle.

Part C Tangent to the circle at A

Find the equation of the tangent to the circle at A. Give your answer in the form y = mx + c.

The following symbols may be useful: x, y

Part D Another tangent to the circle

A second tangent to the circle is parallel to the tangent at A. Find the equation of this second tangent in the form y=mx+c.

The following symbols may be useful: x, y

Part E Find a radius

Another circle has its centre at the origin O and radius r. This circle lies wholly inside the first circle and r > 0. Find the upper bound for r. Give your answer as an inequality.

The following symbols may be useful: <, <=, >, >=, r

Adapted with permission from UCLES, A level, June 2016, Paper 4721, Question 10.

Gameboard:

STEM SMART Double Maths 17 - Transformations and

Circles

<u>Gameboard</u>

Maths

Transformations and Area 2i

Transformations and Area 2i

Part A Enlargement

The matrix **A** represents an enlargement, centre (0,0), with scale factor $\sqrt{2}$.

Complete the matrix **A** using the items below.

$$\mathbf{A} = \begin{pmatrix} \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{pmatrix}$$

Items:

Part B Matrix B

The matrix ${f B}$ is given by ${f B}=(egin{matrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \\ -rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{pmatrix}$.

Which of the following transformations is represented by **B**?

- Stretch, scale factor $\frac{\sqrt{2}}{2}$ parallel to the y axis.
- Rotation, about the origin, 45° clockwise.
- Reflection in the line $y = \frac{x}{\sqrt{2}}$
- Enlargement, centre (0,0), scale factor $\frac{1}{\sqrt{2}}$.

Part C Successive transformations

 ${f C}$ is given by ${f C}={f A}{f B}.$ Find ${f C}.$

$$\mathbf{C} = \begin{pmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{pmatrix}$$

Items:

Part D Transformed area

Find the area of the image of the unit square under the transformation represented by ${f C}$.

Part E Unit square

Which of the figures below shows the unit square and its image under the transformation represented by ${f C}$?

Figure 1: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

Figure 2: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

Figure 3: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

Figure 4: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

Figure 5: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

Figure 6: The unit square, shown with a solid blue line, and its image, shown with a dashed yellow line.

- Figure 1
- Figure 2
- Figure 3
- Figure 4
- Figure 5
- Figure 6

Adapted with permission from UCLES, A Level, Jan 2007, Paper 4725, Question 5.

Gameboard

STEM SMART Double Maths 17 - Transformations and

Circles

<u>Gameboard</u>

Maths

Transformations - Successive 3i

Transformations - Successive 3i

The diagram in Figure 1 shows the unit square OABC, and its image OAB'C' after a transformation.

Figure 1: The unit square is shown in black, and the image after transformation is shown in blue.

Part A Matrix X

Find the matrix, \mathbf{X} , for this transformation.

$$\mathbf{X} = \begin{pmatrix} \bigcirc & \bigcirc \\ \bigcirc & \bigcirc \end{pmatrix}$$

Items:

Part B Transformations P & Q

The transformation represented by \mathbf{X} is equivalent to a transformation P followed by a transformation Q, which can be represented by the matrices \mathbf{P} and \mathbf{Q} .

Fill in the gaps below to describe a pair of possible transformations P and Q, and find the matrices \mathbf{P} and \mathbf{Q} that represent them.

$$ullet Q$$
 is a ______, and is represented by $\left(\begin{array}{c} \ \ \ \ \ \end{array}\right)$

Now instead find the matrix that represents transformation Q followed by transformation P.

$$ullet$$
 Q followed by P is represented by $\left(\begin{array}{c} & & & \\ & & & \\ & & & \end{array}\right)$

Items:

Adapted with permission from UCLES, A Level, Jan 2013, Paper 4725, Question 6.

Gameboard:

STEM SMART Double Maths 17 - Transformations and

<u>Circles</u>

<u>Gameboard</u>

Maths

Algebra Matrices

Matrices - Transformations 1

Matrices - Transformations 1

 ${f P}$ and ${f Q}$ are 3 imes 3 matrices which carry out a reflection in the plane y=0 and a rotation about the x-axis, respectively. The matrix ${f R}={f Q}{f P}$.

Part A Reflection in the y=0 plane

The 3×3 matrix ${f P}$ carries out a reflection in the plane y=0.

Complete the matrix ${f P}$ using the items below.

Items:

$$\begin{bmatrix} -3 \\ -2 \end{bmatrix}$$
 $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Part B Rotation about the x-axis

The 3×3 matrix ${\bf Q}$ carries out an anticlockwise rotation about the x-axis through an angle A.

Complete the matrix ${f Q}$ using the items below.

Items:

Part C Reflection followed by rotation

Find the 3×3 matrix $\mathbf{R} = \mathbf{QP}$ which carries out a reflection in the plane y = 0 followed by a rotation anticlockwise about the x-axis through an angle A.

$$\mathbf{R} = \begin{pmatrix} oxed{\Box} & oxed{\Box} &$$

Items:

${\bf Part \ D} \qquad {\bf Reflection \ in \ the} \ z=0 \ {\bf plane}$

If the value of A is such that the 3×3 matrix ${\bf R}$ matrix represents a reflection in the plane z=0, find the angle A. Assume $0\le A<2\pi$ and give your answer in radians.

The following symbols may be useful: A, pi

Created for isaacphysics.org by Julia Riley