PROBLEMA 1

a)
$$E_0 = \frac{V_c}{d} = 10^6 \frac{V}{m}$$
 ; $\sigma_0 = \varepsilon_0 E_0 = 8.854 \frac{\mu C}{m^2}$

a)
$$E_0=rac{V_C}{d}=10^6rac{V}{m}$$
 ; $\sigma_0=arepsilon_0 E_0=8.854rac{\mu C}{m^2}$
b) $E_0=E_d=rac{\sigma_{0d}}{arepsilon}$; $\sigma_p=P=\chi_e arepsilon_0 E_d=31rac{\mu C}{m^2}$ oppure $\sigma_{0d}=arepsilon E_d$; $\sigma_p=rac{\chi_e}{arepsilon_r}\sigma_{0d}$

c)
$$U = \frac{1}{2}C_{eq}V_c^2 = \frac{1}{2}(C_d + C_0)V_c^2 = \frac{1}{2}\left(\frac{\varepsilon(xL)}{d} + \frac{\varepsilon_0(x(L-x))}{d}\right)V_c^2$$
; $x = 3$ cm

PROBLEMA 2

- a) Nel punto P i campi B_1 e B_2 sono opposti e con lo stesso modulo. $B_P = B_3 = \frac{\mu_0 I_3}{2\pi L^{\sqrt{3}}} = 1.54 \ nT$
- b) $L = -\Delta U = U_i U_f$; $U_i = -\boldsymbol{m} \cdot \boldsymbol{B_P} = mB_P = 0.924 \, pJ$ Nel punto Q $U_f = -\mathbf{m} \cdot \mathbf{B_Q} = mB_1 = 0.924 \, pJ$ (\Rightarrow in Q il campo $\mathbf{B_Q} = \mathbf{B_3} + \mathbf{B_2} + \mathbf{B_1}$ ${\it B}_{\it 2}$ ${\it e}$ ${\it B}_{\it 3}$ hanno lo stesso modulo e stessa direzione e verso e sono perpendicolari al momento magnetico m. Quindi L = 0 J.
- c) La forza per unità di lunghezza risulta dai campi $B_1=B_2$ la cui somma vettoriale dà un campo B_χ diretto secondo l'asse delle x verso positivo, di modulo

$$B_x = 2B_1\cos 30^\circ = 2\frac{\mu_0 I_1}{2\pi L}\cos 30^\circ = 231~nT$$

La forza $\frac{F}{l} = B_x~I_3 = 462~nT$

PROBLEMA 3

Al tempo t=0 s la corrente che circola vale $i_0=\frac{V_{\mathcal{E}}}{R}=100$ A ; la forza di Laplace che agisce sulla sbarra vale $F_{LP}=i_0Bb=35N$; sulla sbarra la risultante delle forze è $F_{LP}+mg\sin30^\circ-Mg=+23.24\,N$.

Quindi la sbarra scende e le equazioni elettrodinamiche all'istante t generico sono:

$$F_{LP} + mg \sin 30^{\circ} - Mg = ma$$

$$V_{\varepsilon} - vBb = Ri$$

Raggiunta la condizione di velocità limite, sarà a=0 $\frac{m}{c^2}$ per cui le due equazioni diventano:

$$i_{lim}Bb + mg \sin 30^{\circ} - Mg = 0$$

$$V_{\varepsilon} - v_{lim}Bb = Ri_{lim}$$

a,b) Dalla prima equazione $i_{lim}=\frac{Mg-mg\,sin30^{\circ}}{Bb}=33.6\,A\,$ e, $dalla\,seconda,\,$ $v_{lim}=\frac{V_{\varepsilon}-Ri_{lim}}{Bb}=19\frac{m}{s}$