La fonction inverse E03

EXERCICE N°4 (Le corrigé)

Lorsqu'un véhicule roule entre 10 km.h^{-1} et 130 km.h^{-1} , sa consommation d'essence (en litres) s'exprime en fonction de sa vitesse v (en km.h^{-1}) par l'expression :

$$c(v) = 0.06v + \frac{150}{v}$$

Vérifier que pour tout *v* appartenant à l'intervalle [10; 130],

$$c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$$

Calculons c'(v) pour [10; 130]

D'une part,

$$c(v) = 0.06v + \frac{150}{v}$$

$$c(v) = 0.06 \times v + 150 \times \frac{1}{v}$$

$$c'(v) = 0.06 \times 1 + 150 \times \frac{-1}{v^2}$$
$$c'(v) = 0.06 - \frac{150}{v^2}$$

$$c'(v) = 0.06 - \frac{150}{v^2}$$

D'autre part.

$$\frac{0.06(v-50)(v+50)}{v^2} = \frac{0.06[v^2-2500]}{v^2} = \frac{0.06v^2-150}{v^2} = \frac{0.06v^2}{v^2} - \frac{150}{v^2} = 0.06 - \frac{150}{v^2}$$

On en déduit que : $c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$

- 2) Étudier le signe de c'(v) sur l'intervalle [10; 130] puis dresser le tableau de variation de la fonction c.
- 0,06 est toujours positif,
- $v-50 > 0 \Leftrightarrow v > 50 ;$
- $v+50 > 0 \Leftrightarrow v > -50$ et
- v^2 est positif

Et là, on fait bien attention à l'ensemble de définition... [10; 130]

v	10		50		130
0,06		+		+	
v-50		_	0	+	
v+50		+		+	
v^2		+		+	
c'(v)		_	0	+	
2(21)	15,6				9
c(v)			4 6 /		

$$c(10)=15.6$$
; $c(50)=6$ et $c(130)=\frac{582}{65}\approx 9$

3) En déduire la vitesse à laquelle doit rouler ce véhicule pour que sa consommation d'essence soit minimale. Déterminer la consommation minimale en litres.

D'après le tableau de variation, la consommation minimale est de 6 Litres/100km pour une vitesse de | 50 km/h