Homework 3

B07502166 魏子翔

Q1: Model.

1. Model

```
"_name_or_path": "google/mt5-small",
       "architectures": [
         "MT5ForConditionalGeneration"
       "d ff": 1024,
       "d kv": 64,
       "d model": 512,
       "decoder_start_token_id": 0,
       "dense act fn": "gelu new",
       "dropout rate": 0.1,
11
       "eos_token_id": 1,
       "feed_forward_proj": "gated-gelu",
       "initializer factor": 1.0,
       "is encoder decoder": true,
       "is gated act": true,
       "layer norm epsilon": 1e-06,
       "model_type": "mt5",
       "num decoder layers": 8,
       "num_heads": 6,
20
21
       "num layers": 8,
       "pad token id": 0,
       "relative attention max distance": 128,
23
       "relative attention num buckets": 32,
       "tie_word_embeddings": false,
       "tokenizer class": "T5Tokenizer",
       "torch dtype": "float32",
       "transformers version": "4.24.0",
29
       "use cache": true,
       "vocab size": 250112
```

MT5 是 T5 模型的多語言版,使用來自MC4之100多種語言數據集訓練。而T5模型與Transformer相似,皆由encoder與decoder構成。在此次的訓練情境下,input爲文章內文(maintext),output爲每個subword出現之機率。

2. Preprocessing

MT5使用的Tokenizer是sentencepiece,其使用byte-pair-encoding 與unigram language model,可將sentence切割成最高機率的subword,並做適當的後處理。

Q2: Training.

1. Hyperparameter

per_device_train_batch_size=4, gradient_accumulation_steps=4(根據VRAM大小) lr=3e-5(根據測試)

num_epoch=10(根據測試及時間考量)

2. Learning Curves

Q3: Generation Strategies.

- 1. Strategies
 - (1) Greedy: 直接選擇機率最高者
 - (2) Beam Search: 每一步驟皆保持N個機率最高者作爲候選,最後再選擇其中最高者
 - (3) Top-k: 每一步驟皆從機率分佈前K大者隨機sample出其一
 - (4) Top-p: 每一步驟皆從機率分佈由大到小累積至P者隨機sample出其一
 - (5) Temperature: 在softmax中加入temperature t以改變vocabulary probability distribution。當t→ 0時爲greedy decoding;當t→ ∞時,則爲uniform sampling

2. Hyperparameters

(1) Greedy

	strategy	rouge-1_f	rouge-2_f	rouge-L_f
ſ	greedy	25.093	9.3624	22.439
ľ	sample	20.2158	6.2428	17.6276

從表中可以看出, greedy的結果比隨機sample要好很多,推測是因爲隨機sample並無任何限制,使其經常選到較差之結果,進而影響分數。將此greedy分數與其他strategy做比較亦可發現greedy並不爲一個太差的結果。

(2) Beam Search

strategy	rouge-1_f	rouge-2_f	rouge-L_f
2	26.4221	10.3462	23.5885
3	26.6921	10.5945	23.7148
4	26.6354	10.6663	23.6884
5	26.533	10.6083	23.5828
6	26.5281	10.6813	23.6157

相較於greedy,beam search避免了在計算過程中選錯一步,產生連帶效應後導致的表現下滑,因此其整體表現皆比greedy好了一截。而從表中可以看出,num_beams=3時會有最好的表現,

(3) Top-k

strategy	rouge-1_f	rouge-2_f	rouge-L_f
10	22.6592	7.4765	19.8508
30	20.6602	6.3977	17.9715
50	20.2158	6.2428	17.6276

在k值足夠小的情況下,使用top-k之結果優於隨機sample,但隨著k增大,其效果也越差。推測是因爲k過大之情況下,一次考慮的選項過多,機率較低之選項亦在考慮範圍內,進而sample出表現較差之結果。

(4) Top-p

strategy	rouge-1_f	rouge-2_f	rouge-L_f
0.2	25.0526	9.3756	22.3651
0.5	23.9653	8.5203	21.1648
0.8	22.3392	7.5344	19.5487

使用top-p之結果皆優於隨機sample,但隨著p值增大,表現有下降之趨勢,推測其原因與top-k相似,在p過大的情況下會考慮進機率較低的選項,造成表現下降。

(5) Temperature

strategy	rouge-1_f	rouge-2_f	rouge-L_f
0.2	25.0859	9.3646	22.4321
0.5	25.0783	9.3871	22.4302
0.8	25.1146	9.3773	22.4188

在固定top-p=0.2之條件下,使用不同的temperature皆會使表現略微上升,雖其變動幅度不大,但還是可以顯現出temperature對於模型表現之正面影響。

Final generation strategy: beam search (n_beams=3)