誤差逆伝播-公式 まとめ 行列表現

出力層

$$\frac{\partial L}{\partial W^K} = X^{(K-1)T} \Delta^K$$
$$\frac{\partial L}{\partial B^K} = \Delta^K$$
$$\Delta^K = \frac{\partial f_L}{\partial X^K} \odot \frac{\partial h_K}{\partial A^K}$$

中間層

$$\begin{split} \frac{\partial L}{\partial W^l} &= X^{(l-1)T} \Delta^l \\ \frac{\partial L}{\partial B^l} &= \Delta^l \\ \Delta^l &= \Delta^{l+1} W^{(l+1)T} \odot \frac{\partial h_l}{\partial A^l} \end{split}$$

63

誤差逆伝播-公式 まとめ 誤差/活性化関数の微分

誤差関数(cross-entropy)

$$\frac{\partial f_L}{\partial x_j^K} = \left(-\frac{t_j}{x_j^K} + \sum_{i=1 \land i \neq j}^n \frac{t_i}{x_i^K} \right)$$

活性化関数(ReLU)

$$\frac{\partial h_l}{\partial a_j^l} = \begin{cases} 1(a_j^l > 0) \\ 0(a_j^l \le 0) \end{cases}$$

活性化関数(soft-max)

$$\frac{\partial h_K}{\partial a_j^K} = x_j^K \left(1 - x_j^K\right)$$

- (1) A¹を求めよ.
- (2) X¹を求めよ.
- (3) A²を求めよ.
- (4) X2を求めよ.
- (5) A³を求めよ.
- (6) X³を求めよ.
- (7) $CE(X^3,T)$ を求めよ.
- (8) $\frac{\partial f_L}{\partial X^3}$ を求めよ.
- (9) $\frac{\partial h_3}{\partial A^3}$ を求めよ.
- (10) Δ^3 を求めよ.
- (11) $\frac{\partial L}{\partial B^3}$ を求めよ.
- (12) $\frac{\partial L}{\partial W^3}$ を求めよ.
- (13) $\frac{\partial h_2}{\partial A^2}$ を求めよ.
- (14) **△**²を求めよ.
- (15) $\frac{\partial L}{\partial B^2}$ を求めよ.
- (16) $\frac{\partial L}{\partial w^2}$ を求めよ.
- (17) $\frac{\partial h_1}{\partial A^1}$ を求めよ.
- (18) **△**¹を求めよ.
- (19) $\frac{\partial L}{\partial R^1}$ を求めよ.
- (20) $\frac{\partial L}{\partial W^1}$ を求めよ.
- (21) W¹を更新せよ.
- (22) W²を更新せよ.
- (23) W³を更新せよ.

- (24) B^1 を更新せよ.
- (25) B²を更新せよ.
- (26) B³を更新せよ.
- (27) 更新した重みを用いて再度 $CE(X^3,T)$ を求め、ロスが改善したかどうかを検証せよ.