History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021

 $Q(\beta^{-})=-14780 SY; S(n)=15470 40; S(p)=5057 4; Q(\alpha)=-2566 4$ 2021Wa16

Estimated $\Delta Q(\beta^{-})=200 \ (2021Wa16)$.

 $Q(\varepsilon)=4517\ 4$, $Q(\varepsilon p)=609\ 4$, $S(2n)=28320\ 140$ (syst), $S(2p)=7725\ 4$ (2021Wa16).

Mass measurements: 2007Cl01, 2007Sc24, 2005Cl08, 2002Li24.

Theory references: consult the NSR database at www.nndc.bnl.gov for 101 primary references, 96 dealing with nuclear structure calculations, and five for half-lives in β and cluster decays.

Additional information 1. The decay scheme of $^{64}\mathrm{As}$ to $^{64}\mathrm{Ge}$ is not known.

⁶⁴Ge Levels

Cross Reference (XREF) Flags

- 64 As ε decay (69.0 ms)
- ⁶⁵Se εp decay (34.2 ms) 12 C(54 Fe,2nγ), 54 Fe(12 C,2nγ) C
- 40 Ca(32 S,2 $\alpha\gamma$)

E(level)	J^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
0.0‡	0+	63.7 s 25	BCD	$%ε+%β^+=100; %εp=?$ $T_{1/2}$: from 1974Ro16. Other: 70 s 7 (1973Da01).
901.7‡ 3	2+	2.29 ps <i>35</i>	BCD	J^{π} : E2 γ to 0 ⁺ . T _{1/2} : from recoil-distance method (2007St16) in 12 C(65 Ge, 64 Ge); listed in 12 C(54 Fe, 21 Y), 54 Fe(12 C, 21 Y) dataset.
1578.7 [@] 3	(2+)	5.5 ps +28–14	CD	J^{π} : γ to 0^+ ; γ from (4^+) . $T_{1/2}$: from recoil-distance method (2007St16) in $^{12}C(^{65}Ge,^{64}Ge)$; listed in $^{12}C(^{54}Fe,2n\gamma),^{54}Fe(^{12}C,2n\gamma)$ dataset.
2052.6 [‡] 4	4+		CD	J^{π} : $\Delta J=2$, E2+M3 γ to 2 ⁺ .
2154.8 [@] 4	(4^{+})		С	J^{π} : γ to (2^+) ; γ from (6^+) .
2669.6 5	(4^{+})		CD	J^{π} : $\Delta J=1$, (E1) γ from (5 ⁻) (2003Fa01).
2969.7 [#] 5	(3^{-})		CD	J^{π} : γ to 2^+ ; $\Delta J=2 \gamma$ from (5^-) .
3406.7 [@] 5	(6^+)		C	J^{π} : γ to 4^{+} ; possible band assignment.
3465.6 [‡] 6	(6^{+})		C	J^{π} : $\Delta J=(2) \gamma$ to 4^{+} .
3716.9 [#] 7	(5-)	16.8 ps +24-20	CD	E(level): only one level at this energy is proposed by 2003Fa01, the authors do not confirm two levels near this energy as in 1991En01. J^{π} : $\Delta J=1$, (E1+M2) γ to 4 ⁺ .
4245.7 [#] 6 5025.5 8	(7-)	29.9 ps +20-17	CD C	J^{π} : $\Delta J=2$, E2 γ to (5 ⁻). J^{π} : γ to 5 ⁻ .
5175.2 [@] 7	(8^{+})		C	J^{π} : γ to (6 ⁺), possible band assignment.
5180.0 [‡] 8	(8^{+})		C	J^{π} : γ to (6^+) ; band assignment.
5372.9 [#] 7	(9^{-})	≤2.8 ps	CD	J^{π} : $\Delta J=2$, E2 γ to (7^{-}) .
6564.4 [#] 8	(11^{-})		C	J^{π} : γ to (9 ⁻); band assignment.
6606.8 20	(10)		D	J^{π} : $\Delta J=1 \ \gamma$, D+Q γ to (9 ⁻). Positive parity proposed by 2003Fa01.
7578.9 20	(10)		D	J^{π} : $\Delta J=1$, D+Q γ to (9 ⁻). Positive parity proposed by 2003Fa01.
8006.8 [#] 10	(13-)		C	J^{π} : γ to (11 ⁻); band assignment.
8426.9 <i>21</i>	(12)		D	E(level): 1820γ in 12 C(54 Fe, 2 n γ), 54 Fe(12 C, 2 n γ) (1991En01) is placed from a 6065 level, instead.

⁶⁴Ge Levels (continued)

E(level)	J^{π}	XREF	Comments
			J^{π} : $\Delta J=2 \gamma$ to (10). Positive parity proposed by 2003Fa01.
9299.9 <i>23</i>	(14)	D	J^{π} : $\Delta J=2 \gamma$ to (12). Positive parity proposed by 2003Fa01.

[†] From recoil-distance Doppler-shift (RDDS) method in 40 Ca(32 S,2 $\alpha\gamma$) (2003Fa01), unless otherwise stated.

γ (⁶⁴Ge)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad J_f^\pi$	Mult.‡	δ^{\ddagger}	Comments
901.7	2+	901.5 3	100	$0.0 \ 0^{+}$	E2		B(E2)(W.u.)=27 +5-4
1578.7	(2+)	677.0 3	100 5	901.7 2+	(M1+E2)		B(M1)(W.u.)=0.0056 19; B(E2)(W.u.)=21 7 Mult.: from $\gamma(\theta)$ in 12 C(54 Fe,2n γ), and RUL. B(M1)(W.u.) and B(E2)(W.u.) for δ (E2/M1)=1.0.
		1579.0 <i>4</i>	16.0 10	$0.0 \ 0^{+}$	[E2]		B(E2)(W.u.)=0.095 33
2052.6	4+	1150.8 4	100	901.7 2+	E2+M3	+0.06 1	()()
2154.8	(4^{+})	576.2 <i>3</i>	100	$1578.7 (2^+)$			
2669.6	(4+)	1090.9 4	100	1578.7 (2+)			Mult.: $\Delta J=1 \gamma$ from $^{12}C(^{54}\text{Fe},2n\gamma),^{54}\text{Fe}(^{12}C,2n\gamma)$ is inconsistent with $\Delta J=2$ from ΔJ^{π} .
2969.7	(3^{-})	2067.8 5	100 8	901.7 2+			
	(-)	2970 [#]	≤5	$0.0 \ 0^{+}$	[E3]		
3406.7	(6^+)	1252.1 4	100 5	2154.8 (4 ⁺)			
3 100.7	(0)	1353.7 5	53 3	2052.6 4+			
3465.6	(6^+)	1413.0 4	100	2052.6 4+	(Q)		
3716.9	(5^{-})	747.5 3	12.9 28	2969.7 (3-)	(E2)		B(E2)(W.u.)=0.92 22
	(-)		,	_, (, ,	()		I_{γ} : unweighted average of 10.0 9 (54 Fe,2n $_{\gamma}$) and 15.7 11 (32 S,2 α_{γ}).
		1047.3 <i>4</i>	19.8 <i>31</i>	2669.6 (4+)	(E1)		$B(E1)(W.u.)=3.3\times10^{-6} 6$
					,		I_{γ} : unweighted average of 16.7 9 (54 Fe,2n γ) and 22.9 16 (32 S,2 $\alpha\gamma$).
		1664.8 <i>4</i>	100.0 32	2052.6 4+	(E1+M2)	-0.09 3	I_{γ} : unweighted average of 100.0 32 (54 Fe,2n γ) and 100.0 54 (32 S,2 $\alpha\gamma$).
							δ : $-3.9 + 7 - 4$ or $-0.09 \ 3$, the latter is rejected by 2003Fa01 based on $\chi^2 = 0.54$ for the former and 0.80 for the latter. In the opinion of the evaluator the difference in the two χ^2 values is not significant enough to reject one value. The study of 1991En01 preferred the lower mixing ratio. See also B(M2) values below which support the lower value of the mixing ratio. B(E1)(W.u.)= $4.1 \times 10^{-6} \ 6$, B(M2)(W.u.)= $0.055 + 43 - 30$ for δ (M2/E1)= $0.09 \ 3$. B(E1)(W.u.)= $0.55 + 12 - 5$, B(M2)(W.u.)= $0.45 + 12 - 5$, B(M
4245.7	(7-)	528.4 3	100	3716.9 (5 ⁻)	E2		$+8-10$ for $\delta(\text{M2/E1})=-3.9+7-4$, which gives unreasonably high B(M2)(W.u.), as RUL(M2)=1. B(E2)(W.u.)=30.2 20 $\delta(\text{M3/E2})=+0.07$ 8.

[‡] Band(A): g.s. band.

[#] Band(B): Band based on 3⁽⁻⁾. The 3⁻ level is probably an octupole vibrational state but its collectivity is not established (1991En01). The higher states in this sequence may arise from weak coupling of quasiparticles to the g.s.

[@] Band(C): Band based on (2⁺).

γ (64Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
5025.5		1308.5 5	100	3716.9 (5 ⁻)			
5175.2	(8^{+})	1768.5 <i>5</i>	100	$3406.7 (6^+)$			
5180.0	(8^{+})	1714.4 5	100	3465.6 (6 ⁺)			
5372.9	(9^{-})	1127.2 <i>4</i>	100	$4245.7 (7^{-})$	E2		B(E2)(W.u.)≥7.3
							$\delta(M3/E2) = -0.04 4.$
6564.4	(11^{-})	1191.5 <i>4</i>	100	5372.9 (9-)			
6606.8	(10)	1234 <i>1</i>	100	5372.9 (9-)	D+Q	-3.5 + 34 - 24	
7578.9	(10)	2206 <i>1</i>	100	5372.9 (9-)	D+Q	-6 + 6 - 7	
8006.8	(13^{-})	1442.4 5	100	6564.4 (11 ⁻)			
8426.9	(12)	848 <i>1</i>	73 8	7578.9 (10)	Q(+O)	+0.08 5	
		1819.8 <i>6</i>	100 10	6606.8 (10)	Q(+O)	-0.067	
9299.9	(14)	873 <i>1</i>	100	8426.9 (12)	Q(+O)	0.00 7	

[†] From $^{12}\text{C}(^{54}\text{Fe},2n\gamma)$, $^{54}\text{Fe}(^{12}\text{C},2n\gamma)$, when a level is populated in this reaction as well as in $^{40}\text{Ca}(^{32}\text{S},2\alpha\gamma)$. Otherwise, the data are from separate reactions. Exception is for 3717 level, where branching ratios from the two reactions are averaged.

[‡] From $\gamma\gamma(\theta)(\text{DCO})$, $\gamma(\theta)$ and $\gamma(\text{lin pol})$ data in $^{40}\text{Ca}(^{32}\text{S},2\alpha\gamma)$. # Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{64}_{32}\mathrm{Ge}_{32}$

Band(B): Band based on $\mathbf{3}^{(-)}$

$$^{64}_{32}\mathrm{Ge}_{32}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111,1093 (2010)	3-Mar-2009

 $Q(\beta^{-})=-9582\ 7;\ S(n)=13200\ 4;\ S(p)=6239\ 3;\ Q(\alpha)=-2864.4\ 25$ 2012Wa38

Note: Current evaluation has used the following Q record -1.01E+4 7 13.28E3 106260 30 -2.88×10³³ 2009AuZZ,2003Au03. Recent theory, calculations: 2008Mi17, 2007Ah04, 2007Mi19, 2006Ba23, 2005Ha19, 2004Ha43, 2000Su15, 1999Ga16, 1999Sa46.

⁶⁶Ge Levels

All data are from (HI, $xn\gamma$), except where indicated otherwise.

Cross Reference (XREF) Flags

- $^{66}\mathrm{As}\;\varepsilon$ decay
- $(HI,xn\gamma)$ $^{64}Zn(^{3}He,n)$ C

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
0.0&	0+	2.26 h 5	ABC	%ε+%β ⁺ =100 $T_{1/2}$: weighted average of 2.23 h 10 (1969Bo21), and 2.27 h 5 (1970De39). Others: ≈2.5 h (1950Ho26,1965He08).
956.94 <mark>&</mark> 8	2+	3.7 ps 7	ВС	J ^{π} : J=2 from $\gamma(\theta)$ (1979Wa23,1990HeYS); π =+ from E2 to 0 ⁺ . T _{1/2} : from 1979Wa23.
1693.19 ^b 8	2+	4.5 ps <i>17</i>	В	J^{π} : J=2 from $\gamma(\theta)$ (1979Wa23,1982So04,1990HeYS); π =+ from E2 to 0 ⁺ . $T_{1/2}$: from 1979Wa23.
2173.29 ^{&} 10	4+	<1.4 ps	В	J^{π} : J=4 from $\gamma(\theta)$ (1982So04,1990HeYS), DCO (1982So04); π =+ from E2 to 2 ⁺ .
2495.26 ^e 11	3+		В	$T_{1/2}$: from 1980Cl01. $T_{1/2}$ <2 ps from 1979Wa23. J^{π} : J=3 from $\gamma(\theta)$ (1990HeYS); 3 supported by $\gamma(\theta)$ and DCO (1982So04).
2725.70 ^b 12	4+		В	J^{π} : J=4 from $\gamma(\theta)$ (1982So04,1990HeYS), and DCO (1982So04).
2796.86 11	3-		BC	J^{π} : J=3 from $\gamma(\theta)$ (1990HeYS).
3022.43 ^e 12	4(+)		В	J^{π} : J=(3,5) from $\gamma(\theta)$ (1982So04). Configuration= $(\pi f_{5/2})_{4+}^{+2}$ (1990Bo27).
3242.21? 22			В	E(level): Not seen in 2003St05.
3639.04 19			В	
3654.00 ^{&} 13	6+	<4.2 ps	В	J ^π : J=6 from $\gamma(\theta)$ (1979Wa23,1990HeYS); π =+ from E2 to 4 ⁺ . DCO measurements support J=6 (1982So04). T _{1/2} : from 1980Cl01.
3683.40 <i>11</i>	5-	22 ps 2	В	J^{π} : J=5 from $\gamma(\theta)$, π =- from E1+M2 to 4 ⁺ (1980Cl01). $\gamma(\theta)$ (1982So04,1990HeYS) and DCO measurements give J=5 (1982So04). $T_{1/2}$: from 1980Cl01. $T_{1/2}$ <2 ps from 1980WaZY.
3736.80 ^e 12	5 ⁺	>2 ps	В	J^{π} : J=5 from $\gamma(\theta)$ (1982So04,1990HeYS), and DCO (1982So04).
3828.01 ^d 14	5-	0.76 ps +35-21	В	J^{π} : J=(3,5) from $\gamma(\theta)$ (1982So04); configuration=($(\pi p_{3/2})(\pi g_{9/2})$)5 ⁻ (1990Bo27).
3980.00 <i>16</i>			В	(
4080.91? ^b 19	6+		В	
4204.82 ^c 13	7-	191 ps 9	В	J ^π : J=7 from $\gamma(\theta)$ (1980Cl01,1990HeYS); π =– from E2 to 5 ⁻ . Configuration=((ν f _{5/2})(ν g _{9/2}))7 ⁻ (1990Bo27). T _{1/2} : weighted average of 190 ps <i>10</i> (1980Cl01) and 204 ps 28 (1979Wa23).
4320.21 ^d 14	6(-)		В	1,2 0 0 1 0 1
4425.40 ^e 14	6(+)		В	

⁶⁶Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
4543.01 <i>14</i>	7-	60 ps 4	В	J^{π} : Suggested configuration= $((\pi f_{5/2})(\pi g_{9/2}))7^{-}$ (1990Bo27).
4680.01 22			В	T _{1/2} : from 1980Cl01.
4845.62 <i>16</i>	7-		В	
4920? 50	,		В	E(level): reported only in 1990Bo27 in ⁶⁴ Zn(¹² C, ¹⁰ Be).
5172.01 18			В	_(\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot
5184.22 <i>14</i>		0.6 ps +5-3	В	T _{1/2} : By DSAM from 1988ZhZX.
5307.40 ^d 14	(8^{-})		В	
5358.42 <mark>&</mark> <i>17</i>	8+		В	J^{π} : J=8 from $\gamma(\theta)$ (1990HeYS).
5492.33 ^c 14	9-	1.94 ps <i>21</i>	В	$T_{1/2}$: from 1980Cl01. Other: 1.2 ps +5-3 (1988ZhZX). J^{π} : J=9 from $\gamma(\theta)$ (1990HeYS).
5532.32 ^b 15	8+		В	J ^π : J=8 from $\gamma(\theta)$ (1990HeYS) configuration=($\nu g_{9/2}$) ₈₊ ⁺² (1990Bo27).
5557.99 ^e 17			В	
5947.32 14	9-		В	TT I (0.11) C (0) (1000H 170)
6033.41 <i>15</i> 6163.23 <i>18</i>	9-		В	J^{π} : J=(9,11) from $\gamma(\theta)$ (1990HeYS).
6418.44 21	9-		B B	
6502.11 ^{&} 16	10 ⁺	>1.4 ps	В	J^{π} : J=10 from $\gamma(\theta)$ (1990HeYS); π =(+) from E2 to 8 ⁺ .
6580.93 ^b 15	10 ⁽⁺⁾	> 1.1 ps	В	3 . 3 - 10 Hom y(0) (1990He 10), x - (1) Hom E2 to 0 .
6635.84 ^d 16	(10^{-})		В	Configuration= $(\pi g_{9/2})_{8+}^{+2}$ (1990Bo27).
6948.02 ^e 20	(10)		В	$configuration = (\pi gg/2)_{8+} (1770D027).$
7130.43° 16	11-		В	J^{π} : J=11 consistent with $\gamma(\theta)$ data (1990HeYS); E2 to 5492-keV (9 ⁻) level.
7270? 50			В	E(level): from 1990Bo27 in 64 Zn(12 C, 10 Be). J^{π} : configuration=((π g _{9/2})(π d _{5/2}))6 ⁺ (1990Bo27).
7280.88 22			В	
7575.41 [#] <i>a</i> 18	(11^{+})		В	
7601.31 ^d 19	11,12		В	
7636.74 <i>15</i>	11-		В	$J=J(5947)+2 \text{ from } \gamma(\theta) \text{ (1990HeYS)}.$
7727.01 [#] & <i>16</i>	12+		В	J^{π} : J=12 from $\gamma(\theta)$ (1990HeYS).
7737.41 <i>16</i>	11-		В	
7847.79 <i>17</i> 7994.69 <i>20</i>	11 ⁻ 12 ⁽⁺⁾		B B	
8427.18 [#] <i>a</i> 18	13(+)			
8543.00 ^C 15	13		B B	
8801.31 ^{#&} 18	14 ⁺		В	
9404.51 ^c 18	15-		В	
9653.0? <i>3</i>			В	
9685.71 ^{#a} 22	15 ⁽⁺⁾		В	
10473.94 & 20	(16^{+})		В	
10691.4 ^c 4	17-		В	
11549.1 ^a 3	4.0		В	
12660.9 ^c 4 13439.2? ^a 5	19-		В	
13439.2? ^a 3 15327.9? ^c 11	21-		B B	
18080.0? ^C 23	(23^{-})		В	
	` ′			

[†] From a least-squares fit to Ey data. ‡ From DCO, $\gamma(\theta)$, linear polarization measurements in (HI,xny), unless indicated otherwise. # The level is also proposed (2003St05) as a member of a deformed 4-qp structure ($\pi g_{9/2}^2 v g_{9/2}^2$) with staggered M1 transitions.

⁶⁶Ge Levels (continued)

 $^{@}$ By recoil-distance method (1980Cl01), unless indicated otherwise. & Band(A): g.s. band.

^a Band(B): Band based on (11^+) . ^b Band(C): γ band.

^c Band(D): Band based on 7^- . ^d Band(E): γ cascade based on 5^- .

^e Band(F): γ cascade based on 3^+ .

 $\gamma(^{66}\text{Ge})$

All data are from (HI,xny), except where indicated otherwise.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.	δ	$lpha^\dagger$	Comments
956.94	2+	956.9 1	100.0	0.0 0+	E2		0.000393 6	$\alpha(K)=0.000351 \ 5; \ \alpha(L)=3.61\times10^{-5} \ 5; \ \alpha(M)=5.38\times10^{-6} \ 8;$ $\alpha(N+)=3.51\times10^{-7} \ 5$ $\alpha(N)=3.51\times10^{-7} \ 5$
1693.19	2+	736.1 <i>1</i>	100 3	956.94 2+	M1+E2	-1.15 26	0.000691 25	B(E2)(W.u.)=12.0 23 α (K)=0.000617 22; α (L)=6.36×10 ⁻⁵ 24; α (M)=9.5×10 ⁻⁶ 4; α (N+)=6.18×10 ⁻⁷ 22 α (N)=6.18×10 ⁻⁷ 22 B(M1)(W.u.)=0.0041 19; B(E2)(W.u.)=16 7
		1693.2 <i>I</i>	30.2 8	0.0 0+	E2		0.000282 4	$\alpha(K)=0.0001027$ 15; $\alpha(L)=1.042\times10^{-5}$ 15; $\alpha(M)=1.554\times10^{-6}$ 22 $\alpha(N)=1.024\times10^{-7}$ 15; $\alpha(IPF)=0.0001672$ 24 $\alpha(E)=0.001672$ 15; $\alpha(E)=0.0001672$ 15; $\alpha(E)=0.0001672$ 15; $\alpha(E)=0.0001672$ 16; $\alpha(E)=0.0001672$ 17 $\alpha(E)=0.0001672$ 18 $\alpha(E)=0.0001672$ 18 $\alpha(E)=0.0001672$ 18 $\alpha(E)=0.0001672$ 18 $\alpha(E)=0.0001672$ 19 $\alpha(E)$
2173.29	4+	1216.4 <i>I</i>	100.0	956.94 2+	E2		0.000238 4	$\alpha(K)=0.000203 \ 3; \ \alpha(L)=2.07\times10^{-5} \ 3; \ \alpha(M)=3.08\times10^{-6} \ 5; \ \alpha(N+)=1.131\times10^{-5} \ 16 \ \alpha(N)=2.02\times10^{-7} \ 3; \ \alpha(IPF)=1.111\times10^{-5} \ 16$
2495.26	3+	802.0 1	100 7	1693.19 2+	M1+E2	-2.91 14	0.000599 9	B(E2)(W.u.)>9.6 α (K)=0.000535 8; α (L)=5.51×10 ⁻⁵ 8; α (M)=8.23×10 ⁻⁶ 12; α (N+)=5.35×10 ⁻⁷ 8 α (N)=5.35×10 ⁻⁷ 8
		1538.4 2	3.3 17	956.94 2+	M1+E2		0.000226 15	$\alpha(K)=0.000121 \ 4; \ \alpha(L)=1.23\times10^{-5} \ 4; \ \alpha(M)=1.84\times10^{-6} \ 5; \ \alpha(N+)=9.0\times10^{-5} \ 11$ $\alpha(N)=1.21\times10^{-7} \ 3; \ \alpha(IPF)=9.0\times10^{-5} \ 11$
2725.70	4+	552.5 <i>1</i>	3.4 6	2173.29 4+	M1		0.001111 <i>16</i>	$\alpha(K)$ =0.000993 14; $\alpha(L)$ =0.0001020 15; $\alpha(M)$ =1.524×10 ⁻⁵ 22 $\alpha(N)$ =1.003×10 ⁻⁶ 14
		1032.4 3	100 3	1693.19 2+	E2		0.000328 5	$\alpha(K) = 0.000293 \ 5; \ \alpha(L) = 3.01 \times 10^{-5} \ 5; \ \alpha(M) = 4.48 \times 10^{-6} \ 7;$ $\alpha(N+) = 2.93 \times 10^{-7} \ 5$ $\alpha(N) = 2.93 \times 10^{-7} \ 5$
		1768.8 2	54.0 23	956.94 2+	E2		0.000307 5	$\alpha(K) = 9.45 \times 10^{-5} \ 14; \ \alpha(L) = 9.57 \times 10^{-6} \ 14; \ \alpha(M) = 1.428 \times 10^{-6} \ 20; \ \alpha(N+) = 0.000201 \ 3$ $\alpha(N) = 9.41 \times 10^{-8} \ 14; \ \alpha(IPF) = 0.000201 \ 3$
2796.86	3-	1103.6 <i>I</i>	<31	1693.19 2+	E1		0.0001354 19	$\alpha(K)=0.0001136\ 16;\ \alpha(L)=1.150\times10^{-5}\ 16;\ \alpha(M)=1.715\times10^{-6}\ 24$ $\alpha(N)=1.126\times10^{-7}\ 16;\ \alpha(IPF)=8.47\times10^{-6}\ 12$
		1840.0 2	100 6	956.94 2 ⁺	E1		0.000569 8	$\alpha(K)=4.81\times10^{-5}\ 7;\ \alpha(L)=4.84\times10^{-6}\ 7;\ \alpha(M)=7.22\times10^{-7}\ 11;$ $\alpha(N+)=0.000515\ 8$ $\alpha(N)=4.76\times10^{-8}\ 7;\ \alpha(IPF)=0.000515\ 8$
3022.43	4 ⁽⁺⁾	297.1 [#] 2		2725.70 4+				α(1)-4.70Λ10 7, α(111)-0.000313 0

$^{66}_{32}\text{Ge}_{3}$

Adopted Levels, Gammas (continued)

$\gamma(^{66}\text{Ge})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments
3022.43	4 ⁽⁺⁾	527.1 2	3 15	2495.26 3+	(M1)		0.001236 18	$\alpha(K)$ =0.001104 <i>16</i> ; $\alpha(L)$ =0.0001135 <i>16</i> ; $\alpha(M)$ =1.696×10 ⁻⁵ <i>24</i> $\alpha(N)$ =1.116×10 ⁻⁶ <i>16</i>
		849.1 <i>1</i>	100 6	2173.29 4+	(M1)		0.000436 7	$\alpha(N)=1.116 \times 10^{-1}6$ $\alpha(K)=0.000390 \ 6; \ \alpha(L)=3.97 \times 10^{-5} \ 6; \ \alpha(M)=5.93 \times 10^{-6} \ 9;$ $\alpha(N+)=3.92 \times 10^{-7} \ 6$ $\alpha(N)=3.92 \times 10^{-7} \ 6$
3242.21?		1549.0 [#] 2	100.0	1693.19 2 ⁺				
3639.04		1143.8 <i>3</i>	≈100.0	2495.26 3 ⁺				
3654.00	6+	1480.7 <i>1</i>	100.0	2173.29 4+	E2		0.000229 4	$\alpha(K)$ =0.0001339 <i>19</i> ; $\alpha(L)$ =1.361×10 ⁻⁵ <i>19</i> ; $\alpha(M)$ =2.03×10 ⁻⁶ 3; $\alpha(N+)$ =7.91×10 ⁻⁵ <i>1</i> $\alpha(N)$ =1.336×10 ⁻⁷ <i>19</i> ; $\alpha(IPF)$ =7.89×10 ⁻⁵ <i>11</i>
								B(E2)(W.u.)>1.2
3683.40	5-	661.0 2	≈1.934	3022.43 4 ⁽⁺⁾	(E1)		0.000363 5	$\alpha(K)=0.000325$ 5; $\alpha(L)=3.30\times10^{-5}$ 5; $\alpha(M)=4.93\times10^{-6}$ 7; $\alpha(N+)=3.21\times10^{-7}$ 5 $\alpha(N)=3.21\times10^{-7}$ 5
		886.5 <i>1</i>	18.8 4	2796.86 3	E2		0.000474 7	$\alpha(K)$ =0.000423 6; $\alpha(L)$ =4.36×10 ⁻⁵ 7; $\alpha(M)$ =6.50×10 ⁻⁶ 10; $\alpha(N+)$ =4.23×10 ⁻⁷ 6 $\alpha(N)$ =4.23×10 ⁻⁷ 6
		057.7.2	67.5.0	2725.70 4+	F1		0.0001662.24	B(E2)(W.u.)=0.30 3
		957.7 2	67.5 8	2725.70 4+	E1		0.0001663 24	$\alpha(K)=0.0001488 \ 2I; \ \alpha(L)=1.508\times 10^{-5} \ 22; \ \alpha(M)=2.25\times 10^{-6} \ 4$ $\alpha(N)=1.475\times 10^{-7} \ 2I$
		1510.1 <i>1</i>	100 0 12	2173.29 4+	E1+M2	-0.023 +5-8	0.000334 5	B(E1)(W.u.)=7.7×10 ⁻⁶ 7 α (K)=6.59×10 ⁻⁵ 10; α (L)=6.65×10 ⁻⁶ 10; α (M)=9.92×10 ⁻⁷
		1310.1 1	100.0 12	2173.29 4	E1+W12	-0.023 +3-8	0.000334 3	14; $\alpha(N+)=0.000261$ 4 $\alpha(N)=6.53\times10^{-8}$ 10; $\alpha(IPF)=0.000261$ 4
2726.00	- +	71442	52.4	2022 42 4(+)	(1)		0.000(20.0	B(E1)(W.u.)= 2.9×10^{-6} 3; B(M2)(W.u.)= 0.0031 14
3736.80	5+	714.4 2	53 4	3022.43 4 ⁽⁺⁾	(M1)		0.000630 9	$\alpha(K)=0.000563 \ 8; \ \alpha(L)=5.76\times10^{-5} \ 8; \ \alpha(M)=8.61\times10^{-6} \ 12; \ \alpha(N+)=5.67\times10^{-7} \ 8 \ \alpha(N)=5.67\times10^{-7} \ 8$
								B(M1)(W.u.)<0.0079
		1011.1 <i>3</i>	100 7	2725.70 4+	M1		0.000303 5	$\alpha(K)=0.000271$ 4; $\alpha(L)=2.76\times10^{-5}$ 4; $\alpha(M)=4.12\times10^{-6}$ 6; $\alpha(N+)=2.72\times10^{-7}$ 4
								$\alpha(N) = 2.72 \times 10^{-7} 4$
								B(M1)(W.u.)<0.0053
		1241.5 2	9 4	2495.26 3+	E2		0.000232 4	$\alpha(K)=0.000194 \ 3; \ \alpha(L)=1.98\times10^{-5} \ 3; \ \alpha(M)=2.95\times10^{-6} \ 5;$ $\alpha(N+)=1.581\times10^{-5} \ 23$ $\alpha(N)=1.93\times10^{-7} \ 3; \ \alpha(IPF)=1.561\times10^{-5} \ 23$
								$\alpha(N)=1.93\times10^{-7} \text{ 3; } \alpha(1PF)=1.561\times10^{-5} \text{ 23}$ B(E2)(W.u.)<0.27

S

γ (66Ge) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}	$_{\rm I_{\gamma}}{}^{\ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
3828.01	5-	805.6 2	30 9	3022.43	4 ⁽⁺⁾	(E1)	0.000236 4	$\alpha(N+)=9.9\times10^{-5}$ 12 $\alpha(N)=1.17\times10^{-7}$ 3; $\alpha(IPF)=9.9\times10^{-5}$ 12 $\alpha(K)=0.000211$ 3; $\alpha(L)=2.14\times10^{-5}$ 3; $\alpha(M)=3.20\times10^{-6}$ 5; $\alpha(N+)=2.09\times10^{-7}$
		1031.1 2	100 9	2796.86	3-	E2	0.000329 5	$\alpha(N)=2.09\times10^{-7}$ 3 B(E1)(W.u.)=0.00015 +6-9 $\alpha(K)=0.000294$ 5; $\alpha(L)=3.01\times10^{-5}$ 5; $\alpha(M)=4.50\times10^{-6}$ 7; $\alpha(N+)=2.94\times10^{-7}$
		1654.7 2	83 5	2173.29	4+	E1	0.000440 7	$\alpha(N)=2.94\times10^{-7}$ 5 B(E2)(W.u.)=19 +6-9 $\alpha(K)=5.68\times10^{-5}$ 8; $\alpha(L)=5.72\times10^{-6}$ 8; $\alpha(M)=8.54\times10^{-7}$ 12; $\alpha(N+)=0.000376$ 6 $\alpha(N)=5.62\times10^{-8}$ 8; $\alpha(IPF)=0.000376$ 6 B(E1)(W.u.)=4.7×10 ⁻⁵ +14-22
3980.00		957.6 2 1484.7 2	$1.0 \times 10^2 \ 7$	3022.43 2495.26				$D(E1)(W.u.)=4.7\times10^{-5}+14-22$
4080.91?	6+	1355.2 2	100.0	2725.70		E2	0.000221 3	$\alpha(K)$ =0.0001607 23; $\alpha(L)$ =1.636×10 ⁻⁵ 23; $\alpha(M)$ =2.44×10 ⁻⁶ 4; $\alpha(N+)$ =4.15×10 ⁻⁵ 6 $\alpha(N)$ =1.604×10 ⁻⁷ 23; $\alpha(IPF)$ =4.13×10 ⁻⁵ 6
4204.82	7-	376.8 2	0.364 12	3828.01	5-	E2	0.00587 9	$\alpha(K) = 0.00523 \ 8; \ \alpha(L) = 0.000557 \ 8; \ \alpha(M) = 8.29 \times 10^{-5} \ 12; \ \alpha(N+) = 5.19 \times 10^{-6} \ 8$ $\alpha(N) = 5.19 \times 10^{-6} \ 8$ $\alpha(N) = 0.0089 \ 6$
		521.4 2	100.0 10	3683.40	5-	E2	0.00207 3	$\alpha(K)$ =0.00184 3; $\alpha(L)$ =0.000193 3; $\alpha(M)$ =2.88×10 ⁻⁵ 4; $\alpha(N+)$ =1.84×10 ⁻⁶ 3 $\alpha(N)$ =1.84×10 ⁻⁶ 3 B(E2)(W,u,)=4.81 24
		550.8 2	0.59 12	3654.00	6+	E1	0.000555 8	$\alpha(K)=0.000497$ 7; $\alpha(L)=5.06\times10^{-5}$ 8; $\alpha(M)=7.55\times10^{-6}$ 11; $\alpha(N+)=4.91\times10^{-7}$ 7 $\alpha(N)=4.91\times10^{-7}$ 7 B(E1)(W.u.)=7.6×10 ⁻⁸ 16
4320.21	6(-)	115.4 3	<4.167	4204.82	7-	D		
	Ü	492.2 3	100 9	3828.01		(M1)	0.001444 <i>21</i>	$\alpha(K)$ =0.001290 <i>19</i> ; $\alpha(L)$ =0.0001328 <i>19</i> ; $\alpha(M)$ =1.98×10 ⁻⁵ <i>3</i> ; $\alpha(N+)$ =1.305×10 ⁻⁶
		583.4 3	96 9	3736.80	5 ⁺	(E1)	0.000484 7	$\alpha(N)=1.305\times10^{-6}\ 19$ $\alpha(K)=0.000433\ 6;\ \alpha(L)=4.41\times10^{-5}\ 7;\ \alpha(M)=6.58\times10^{-6}\ 10;$ $\alpha(N+)=4.28\times10^{-7}\ 6$ $\alpha(N)=4.28\times10^{-7}\ 6$
		636.8 2	79 5	3683.40	5-	(M1+E2)	0.00098 17	$\alpha(K)=0.00087$ 15; $\alpha(L)=9.0\times10^{-5}$ 17; $\alpha(M)=1.35\times10^{-5}$ 24; $\alpha(N+)=8.8\times10^{-7}$ 15 $\alpha(N)=8.8\times10^{-7}$ 15
		681.2 2	≈41.67	3639.04				$u(N)=0.0\times 10^{-1}$

6

γ (66 Ge) (continued)

$E_i(level)$	J_i^{π}	Ε _γ	Ι _γ ‡	E_f J_f^{π}	Mult.	$lpha^\dagger$	Comments
4425.40	6(+)	445.4 2 597.4 <i>3</i>	33 25	3980.00 3828.01 5 ⁻	(E1)	0.000458 7	$\alpha(K)$ =0.000410 6; $\alpha(L)$ =4.17×10 ⁻⁵ 6; $\alpha(M)$ =6.22×10 ⁻⁶ 9; $\alpha(N+)$ =4.05×10 ⁻⁷ 6 $\alpha(N)$ =4.05×10 ⁻⁷ 6
		688.6 <i>3</i>	100 9	3736.80 5+	(M1+E2)	0.00080 12	$\alpha(K)=4.03\times10^{-6}$ $\alpha(K)=0.00072$ 11 ; $\alpha(L)=7.4\times10^{-5}$ 12 ; $\alpha(M)=1.10\times10^{-5}$ 17 ; $\alpha(N+)=7.2\times10^{-7}$ 11 $\alpha(N)=7.2\times10^{-7}$ 11
		742.0 2	$7.\times10^{1} 4$	3683.40 5	D		
151001	_	786.3 <i>3</i>	<8.333	3639.04	3.54	0.00240.5	gr. a seed 7 gr. a seed 7 gr. d 8 gr.
4543.01	7-	338.2 1	100.0 22	4204.82 7	M1	0.00348 5	$\alpha(K)$ =0.00311 5; $\alpha(L)$ =0.000323 5; $\alpha(M)$ =4.82×10 ⁻⁵ 7; $\alpha(N+)$ =3.16×10 ⁻⁶ 5 $\alpha(N)$ =3.16×10 ⁻⁶ 5 B(M1)(W.u.)=0.0074 6
		859.6 2	28.2 14	3683.40 5-	E2	0.000512 8	$\alpha(K)$ =0.000457 7; $\alpha(L)$ =4.71×10 ⁻⁵ 7; $\alpha(M)$ =7.03×10 ⁻⁶ 10; $\alpha(N+)$ =4.57×10 ⁻⁷ 7 $\alpha(N)$ =4.57×10 ⁻⁷ 7 B(E2)(W.u.)=0.279 24
4680.01		943.2 2	<100.0	3736.80 5 ⁺			
4845.62	7-	302.6 <i>3</i>	11 9	4543.01 7	M1	0.00455 7	$\alpha(K)$ =0.00406 6; $\alpha(L)$ =0.000423 6; $\alpha(M)$ =6.32×10 ⁻⁵ 9; $\alpha(N+)$ =4.14×10 ⁻⁶ 6 $\alpha(N)$ =4.14×10 ⁻⁶ 6
		640.8 2	100 6	4204.82 7	M1	0.000799 12	$\alpha(K)=0.000714 \ 10; \ \alpha(L)=7.32\times10^{-5} \ 11; \ \alpha(M)=1.093\times10^{-5} \ 16; \ \alpha(N+)=7.20\times10^{-7} \ \alpha(N)=7.20\times10^{-7} \ 10$
5172.01		629.0 2	<100.0	4543.01 7-			
		746.6 2	<100.0	4425.40 6(+)		
5184.22		641.2 2	61 7	4543.01 7			
		758.8 2	<1.563	4425.40 6(+))		
		979.4 <i>1</i>	100 4	4204.82 7			
5307.40	(8^{-})	882.0 2	< 2.500	4425.40 6(+))		
		987.2 1	100 5	4320.21 6(-)	(E2)	0.000365 6	$\alpha(K)=0.000326 5$; $\alpha(L)=3.34\times10^{-5} 5$; $\alpha(M)=4.99\times10^{-6} 7$; $\alpha(N+)=3.26\times10^{-7} 5$ $\alpha(N)=3.26\times10^{-7} 5$
		1102.4 2	5.0 25	4204.82 7	(M1)	0.000255 4	$\alpha(K)=0.000228 \ 4; \ \alpha(L)=2.31\times10^{-5} \ 4; \ \alpha(M)=3.45\times10^{-6} \ 5; \ \alpha(N+)=8.24\times10^{-7} \ 13 \ \alpha(N)=2.28\times10^{-7} \ 4; \ \alpha(IPF)=5.96\times10^{-7} \ 10$
5358.42	8+	1704.4 2	100.0	3654.00 6+	E2	0.000285 4	$\alpha(N)=2.28 \times 10^{-4}$; $\alpha(IPF)=3.90 \times 10^{-10}$ $\alpha(K)=0.0001014$ 15; $\alpha(L)=1.028 \times 10^{-5}$ 15; $\alpha(M)=1.535 \times 10^{-6}$ 22 $\alpha(N)=1.011 \times 10^{-7}$ 15; $\alpha(IPF)=0.0001722$ 25
5492.33	9-	308.1 <i>3</i>	0.6 4	5184.22			
		949.3 2	8.6 12	4543.01 7	E2	0.000401 6	$\alpha(K)=0.000358\ 5;\ \alpha(L)=3.68\times10^{-5}\ 6;\ \alpha(M)=5.48\times10^{-6}\ 8;$

$\gamma(^{66}\text{Ge})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
5492.33	9-	1287.5 <i>I</i>	100.0 14	4204.82	7-	E2	0.000226 4	$\alpha(N+)=3.58\times10^{-7} 5$ $\alpha(N)=3.58\times10^{-7} 5$ B(E2)(W.u.)=1.9 4 $\alpha(K)=0.000179 3; \ \alpha(L)=1.83\times10^{-5} 3; \ \alpha(M)=2.72\times10^{-6} 4; \ \alpha(N+)=2.54\times10^{-5} 4$
								$\alpha(N)=1.79\times10^{-7} \ 3; \ \alpha(IPF)=2.52\times10^{-5} \ 4$ B(E2)(W.u.)=4.8 6
5532.32	8+	173.9 2	1.3 9	5358.42	8+	M1	0.0183	$\alpha(K)$ =0.01630 24; $\alpha(L)$ =0.001720 25; $\alpha(M)$ =0.000257 4; $\alpha(N+)$ =1.673×10 ⁻⁵ 24 $\alpha(N)$ =1.673×10 ⁻⁵ 24
		852.3 5	< 0.4255	4680.01	_			
		1327.5 2	26.4 13	4204.82		E1	0.000225 4	$\alpha(K)=8.17\times10^{-5}$ 12; $\alpha(L)=8.25\times10^{-6}$ 12; $\alpha(M)=1.231\times10^{-6}$ 18; $\alpha(N+)=0.0001333$ $\alpha(N)=8.10\times10^{-8}$ 12; $\alpha(IPF)=0.0001333$ 19
		1451.4 2	13 5	4080.91?	6+	E2	0.000225 4	$\alpha(K)$ =0.0001395 20; $\alpha(L)$ =1.418×10 ⁻⁵ 20; $\alpha(M)$ =2.12×10 ⁻⁶ 3; $\alpha(N+)$ =6.90×10 ⁻⁵ 1
								$\alpha(N)=1.391\times10^{-7} \ 20; \ \alpha(IPF)=6.89\times10^{-5} \ 10$
		1878.3 2	100 3	3654.00	6+	E2	0.000346 5	$\alpha(K)$ =8.43×10 ⁻⁵ 12; $\alpha(L)$ =8.54×10 ⁻⁶ 12; $\alpha(M)$ =1.274×10 ⁻⁶ 18; $\alpha(N+)$ =0.000252
								$\alpha(N)=8.40\times10^{-8} 12$; $\alpha(IPF)=0.000252 4$
5557.99		373.8 2 712.3 2	40 <i>14</i> 100 <i>7</i>	5184.22 4845.62	7-			
		1015.0 2	×6.667	4543.02				
		1132.6 3	~6.667	4425.40	6 ⁽⁺⁾			
5947.32	9-	455.0 <i>1</i>	63 3	5492.33	9-	(M1)	0.001730 25	$\alpha(K)$ =0.001546 22; $\alpha(L)$ =0.0001593 23; $\alpha(M)$ =2.38×10 ⁻⁵ 4; $\alpha(N+)$ =1.564×10 ⁻⁶ $\alpha(N)$ =1.564×10 ⁻⁶ 22
		763.1 2	24 3	5184.22				4(-)
		1404.3 <i>1</i>	100 6	4543.01	7-	E2	0.000221 3	$ \alpha(\mathrm{K}) = 0.0001493 \ 21; \ \alpha(\mathrm{L}) = 1.518 \times 10^{-5} \ 22; \ \alpha(\mathrm{M}) = 2.27 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 5.45 \times 10^{-5} \ 8 $
								$\alpha(N)=1.489\times10^{-7} \ 21; \ \alpha(IPF)=5.44\times10^{-5} \ 8$
		1742.5 2	6 3	4204.82	7-	E2	0.000298 5	$\alpha(K)=9.72\times10^{-5}\ 14;\ \alpha(L)=9.85\times10^{-6}\ 14;\ \alpha(M)=1.470\times10^{-6}\ 21;\ \alpha(N+)=0.000189$ $\alpha(N)=9.69\times10^{-8}\ 14;\ \alpha(IPF)=0.000189\ 3$
6033.41	9-	541.1 <i>3</i>	100 3	5492.33	9-	M1	0.001165 <i>17</i>	$\alpha(K)=0.001041$ 15; $\alpha(L)=0.0001069$ 15; $\alpha(M)=1.598\times10^{-5}$ 23 $\alpha(N)=1.051\times10^{-6}$ 15
		726.0 2	<1.282	5307.40	(8-)	(M1)	0.000608 9	$\alpha(K)=0.000544$ 8; $\alpha(L)=5.56\times10^{-5}$ 8; $\alpha(M)=8.31\times10^{-6}$ 12; $\alpha(N+)=5.48\times10^{-7}$ 8 $\alpha(N)=5.48\times10^{-7}$ 8
		849.2 2	15 6	5184.22				
		1187.8 <i>1</i>	27 4	4845.62	7-	E2	0.000246 4	$\alpha(K)=0.000213\ 3;\ \alpha(L)=2.18\times10^{-5}\ 3;\ \alpha(M)=3.25\times10^{-6}\ 5;\ \alpha(N+)=7.11\times10^{-6}\ 10$ $\alpha(N)=2.13\times10^{-7}\ 3;\ \alpha(IPF)=6.90\times10^{-6}\ 10$
6163.23		979.0 2	100 17	5184.22				
		991.2 <i>3</i>	<4.167	5172.01				

 ∞

γ (66 Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
6163.23 6418.44	9-	1620.2 1572.8 <i>4</i>	<4.167 100.0	4543.01 7 4845.62		E2		0.000248 4	$\alpha(K)$ =0.0001187 17; $\alpha(L)$ =1.205×10 ⁻⁵ 17; $\alpha(M)$ =1.80×10 ⁻⁶ 3; $\alpha(N+)$ =0.0001151
6502.11	10 ⁺	969.8 2	100.0 16	5532.32	8+	E2		0.000381 6	$\alpha(N)=1.183\times10^{-7}\ 17;\ \alpha(IPF)=0.0001150\ 17$ $\alpha(K)=0.000340\ 5;\ \alpha(L)=3.49\times10^{-5}\ 5;\ \alpha(M)=5.21\times10^{-6}\ 8;$ $\alpha(N+)=3.40\times10^{-7}\ 5$
		1009.8 2	27.9 16	5492.33	9-	E1+M2	-0.05 3	0.000151 3	$\alpha(N)=3.40\times10^{-7} 5$ B(E2)(W.u.)<14 $\alpha(K)=0.000135 3$; $\alpha(L)=1.37\times10^{-5} 3$; $\alpha(M)=2.05\times10^{-6} 4$; $\alpha(N+)=1.34\times10^{-7} 3$
		1143.7 2	81.2 16	5358.42	8 ⁺	E2		0.000262 4	$\alpha(N)=1.34\times10^{-7} 3$ B(E1)(W.u.)<3.8×10 ⁻⁵ ; B(M2)(W.u.)<0.95 $\alpha(K)=0.000232 4$; $\alpha(L)=2.37\times10^{-5} 4$; $\alpha(M)=3.54\times10^{-6} 5$; $\alpha(N+)=2.90\times10^{-6} 5$
6580.93	10 ⁽⁺⁾	1048.6 2	100 5	5532.32	8+	(E2)		0.000316 5	$\alpha(N)=2.32\times10^{-7} 4$; $\alpha(IPF)=2.67\times10^{-6} 4$ B(E2)(W.u.)<5.1 $\alpha(K)=0.000283 4$; $\alpha(L)=2.90\times10^{-5} 4$; $\alpha(M)=4.32\times10^{-6} 6$; $\alpha(N+)=2.83\times10^{-7} 4$
		1222.5 <i>3</i> 1396.7 <i>I</i>	10 5	5358.42 5184.22	8+				$\alpha(N)=2.83\times10^{-7} 4$
6635.84	(10-)	688.5 <i>3</i>	3.8 19	5947.32	9-	(M1)		0.000683 10	$\alpha(K)=0.000610 \ 9; \ \alpha(L)=6.25\times10^{-5} \ 9; \ \alpha(M)=9.33\times10^{-6} \ 13; \ \alpha(N+)=6.15\times10^{-7} \ 9 \ \alpha(N)=6.15\times10^{-7} \ 9$
		1328.3 2	100 6	5307.40	(8-)	(E2)		0.000222 4	$\alpha(K)$ =0.0001677 24; $\alpha(L)$ =1.708×10 ⁻⁵ 24; $\alpha(M)$ =2.55×10 ⁻⁶ 4; $\alpha(N+)$ =3.49×10 ⁻⁵ 5 $\alpha(N)$ =1.673×10 ⁻⁷ 24; $\alpha(IPF)$ =3.47×10 ⁻⁵ 5
60.40.00		1451.6 2	19 19	5184.22					
6948.02 7130.43	11-	1390.0 <i>3</i> 1638.0 2	<100.0 100.0	5557.99 5492.33	9-	E2		0.000265 4	$\alpha(K)=0.0001096\ 16$; $\alpha(L)=1.112\times10^{-5}\ 16$; $\alpha(M)=1.659\times10^{-6}\ 24$ $\alpha(N)=1.092\times10^{-7}\ 16$; $\alpha(IPF)=0.0001429\ 20$
7280.88		699.9 2	100.0	6580.93					
7575.41	(11+)	994.5 2	32 4	6580.93	10 ⁽⁺⁾	(M1)		0.000314 5	$\alpha(K)=0.000281$ 4; $\alpha(L)=2.85\times10^{-5}$ 4; $\alpha(M)=4.26\times10^{-6}$ 6; $\alpha(N+)=2.82\times10^{-7}$ 4 $\alpha(N)=2.82\times10^{-7}$ 4
		1073.3 2	100 5	6502.11	10 ⁺	(M1)		0.000268 4	$\alpha(K)$ =0.000240 4; $\alpha(L)$ =2.44×10 ⁻⁵ 4; $\alpha(M)$ =3.65×10 ⁻⁶ 6; $\alpha(N+)$ =2.41×10 ⁻⁷ 4
7601.31	11,12	965.3 2	100.0	6635.84	(10 ⁻)				$\alpha(N)=2.41\times10^{-7} 4$
7001.51	11,12	905.5 2	100.0	0055.04	(10)				

9

γ (66 Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
7636.74	11-	506.4 2	40 4	7130.43	11-	M1	0.001353 19	$\alpha(K)$ =0.001209 17; $\alpha(L)$ =0.0001244 18; $\alpha(M)$ =1.86×10 ⁻⁵ 3; $\alpha(N+)$ =1.222×10 ⁻⁶ $\alpha(N)$ =1.222×10 ⁻⁶ 18
		688.7 2 1000.9 2	<1.099 9 7	6948.02 6635.84	(10-)			4(1) 1122/110 10
		1218.3 2	6.6 22	6418.44	. ,	E2	0.000237 4	$\alpha(K)$ =0.000202 3; $\alpha(L)$ =2.06×10 ⁻⁵ 3; $\alpha(M)$ =3.07×10 ⁻⁶ 5; $\alpha(N+)$ =1.163×10 ⁻⁵ 17
								$\alpha(N)=2.01\times10^{-7} \ 3; \ \alpha(IPF)=1.143\times10^{-5} \ 17$
		1473.5 3	5.5 22	6163.23	_			
		1603.3 4	7.7 11	6033.41	9-	E2	0.000256 4	$\alpha(K)=0.0001143\ 16;\ \alpha(L)=1.160\times10^{-5}\ 17;\ \alpha(M)=1.731\times10^{-6}\ 25$ $\alpha(N)=1.139\times10^{-7}\ 16;\ \alpha(IPF)=0.0001279\ 18$
		1689.4 <i>1</i>	100 4	5947.32		E2	0.000281 4	$\alpha(K)=0.0001032 \ 15; \ \alpha(L)=1.046\times10^{-5} \ 15; \ \alpha(M)=1.561\times10^{-6} \ 22$ $\alpha(N)=1.028\times10^{-7} \ 15; \ \alpha(IPF)=0.0001655 \ 24$
7727.01	12+	125.6 2	3.5 25	7601.31		D		
		151.6 <i>3</i>	3.0 15	7575.41	(11^{+})	(M1)	0.0261	$\alpha(K)$ =0.0233 4; $\alpha(L)$ =0.00247 4; $\alpha(M)$ =0.000369 6; $\alpha(N+)$ =2.39×10 ⁻⁵ 4 $\alpha(N)$ =2.39×10 ⁻⁵ 4
		596.7 2	≤4.5	7130.43	11-	E1	0.000459 7	$\alpha(K)$ =0.000411 6; $\alpha(L)$ =4.18×10 ⁻⁵ 6; $\alpha(M)$ =6.24×10 ⁻⁶ 9; $\alpha(N+)$ =4.06×10 ⁻⁷ 6 $\alpha(N)$ =4.06×10 ⁻⁷ 6
		1224.9 <i>I</i>	100 4	6502.11	10+	E2	0.000236 4	$\alpha(K)$ =0.000200 3; $\alpha(L)$ =2.04×10 ⁻⁵ 3; $\alpha(M)$ =3.04×10 ⁻⁶ 5; $\alpha(N+)$ =1.276×10 ⁻⁵ 18 $\alpha(N)$ =1.99×10 ⁻⁷ 3; $\alpha(IPF)$ =1.256×10 ⁻⁵ 18
7737.41	11-	606.4 2	24.5 19	7130.43	11-	M1+E2	0.00111 <i>21</i>	$\alpha(N)=1.99\times10^{-7}$ 3; $\alpha(IPF)=1.256\times10^{-7}$ 18 $\alpha(K)=0.00099$ 19; $\alpha(L)=0.000103$ 20; $\alpha(M)=1.5\times10^{-5}$ 3; $\alpha(N+)=9.9\times10^{-7}$ 18 $\alpha(N)=9.9\times10^{-7}$ 18
		789.4 <i>3</i>	< 1.887	6948.02				
		1574.3 <i>4</i>	15 6	6163.23				
		1704.1 2	100 6	6033.41	9-	E2	0.000285 4	$\alpha(K)=0.0001015 \ 15; \ \alpha(L)=1.029\times10^{-5} \ 15; \ \alpha(M)=1.535\times10^{-6} \ 22$ $\alpha(N)=1.011\times10^{-7} \ 15; \ \alpha(IPF)=0.0001720 \ 24$
		2245.1 2	8 4	5492.33	9-	E2	0.000498 7	$\alpha(K)=6.10\times10^{-5}$ 9; $\alpha(L)=6.16\times10^{-6}$ 9; $\alpha(M)=9.19\times10^{-7}$ 13; $\alpha(N+)=0.000430$
7847.79	11-	717.7 3	25 5	7130.43	11-	M1	0.000624 9	$\alpha(N)=6.07\times10^{-8}$ 9; $\alpha(IPF)=0.000430$ 6 $\alpha(K)=0.000558$ 8; $\alpha(L)=5.70\times10^{-5}$ 8; $\alpha(M)=8.52\times10^{-6}$ 12; $\alpha(N+)=5.62\times10^{-7}$ 8
		1429.3 3	100 9	6418.44	9-	E2	0.000223 4	$\alpha(N)=5.62\times10^{-7} 8$ $\alpha(K)=0.0001439 \ 2I; \ \alpha(L)=1.464\times10^{-5} \ 2I; \ \alpha(M)=2.18\times10^{-6} \ 3;$ $\alpha(N+)=6.19\times10^{-5} \ 9$ $\alpha(N)=1.436\times10^{-7} \ 2I; \ \alpha(IPF)=6.18\times10^{-5} \ 9$
		1684.5 2	13 17	6163.23				
		1814.3 2	25 5	6033.41	0-	E2	0.000323 5	$\alpha(K)=9.00\times10^{-5}\ 13;\ \alpha(L)=9.12\times10^{-6}\ 13;\ \alpha(M)=1.361\times10^{-6}\ 19;$

10

γ (66 Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	$lpha^\dagger$	Comments
							α(N+)=0.000222 4
7947 70	11-	2255 4 2	12.0	5402.22 0=	E2	0.000546 8	$\alpha(N)=8.97\times10^{-8}$ 13; $\alpha(IPF)=0.000222$ 4 $\alpha(K)=5.61\times10^{-5}$ 8; $\alpha(L)=5.66\times10^{-6}$ 8; $\alpha(M)=8.45\times10^{-7}$ 12; $\alpha(N+)=0.000484$
7847.79	11-	2355.4 3	13 9	5492.33 9	E2	0.000346 8	$\alpha(\mathbf{K}) = 3.01 \times 10^{-5} \delta; \ \alpha(\mathbf{L}) = 3.00 \times 10^{-5} \delta; \ \alpha(\mathbf{M}) = 8.43 \times 10^{-5} 12; \ \alpha(\mathbf{N} +) = 0.000484$
							$\alpha(N)=5.58\times10^{-8}$ 8; $\alpha(IPF)=0.000484$ 7
7994.69	$12^{(+)}$	1492.6 5	100.0	6502.11 10 ⁺	(E2)	0.000231 4	$\alpha(K)=0.0001318\ 19;\ \alpha(L)=1.339\times10^{-5}\ 19;\ \alpha(M)=2.00\times10^{-6}\ 3;$
							$\alpha(N+)=8.34\times10^{-5} I$
8427.18	13(+)	432.5 2	25 4	7994.69 12(+)	(M1)	0.00195 3	$\alpha(N)=1.314\times10^{-7}$ 19; $\alpha(IPF)=8.32\times10^{-5}$ 12 $\alpha(K)=0.001738$ 25; $\alpha(L)=0.000179$ 3; $\alpha(M)=2.68\times10^{-5}$ 4; $\alpha(N+)=1.761\times10^{-6}$
0427.10	15	432.3 2	23 4	7994.09 12	(IVII)	0.00193 3	$u(\mathbf{K}) = 0.001738 \ 23; \ u(\mathbf{L}) = 0.000179 \ 3; \ u(\mathbf{M}) = 2.08 \times 10^{-5} \ 4; \ u(\mathbf{N}+) = 1.701 \times 10^{-5}$ 25
							$\alpha(N)=1.761\times10^{-6} \ 25$
		700.2 2	64 4	7727.01 12+	M1	0.000658 10	$\alpha(\mathrm{K}) = 0.000588~9;~\alpha(\mathrm{L}) = 6.02 \times 10^{-5}~9;~\alpha(\mathrm{M}) = 8.99 \times 10^{-6}~13;~\alpha(\mathrm{N}+) = 5.93 \times 10^{-7}$
							9 an 5 ag 10=7 a
		825.8 2	25.5 19	7601.31 11,1	2		$\alpha(N)=5.93\times10^{-7} 9$
		851.8 2	100 4	7575.41 (11 ⁺		0.000524 8	$\alpha(K)=0.000468\ 7;\ \alpha(L)=4.82\times10^{-5}\ 7;\ \alpha(M)=7.19\times10^{-6}\ 10;\ \alpha(N+)=4.68\times10^{-7}$
							7
		1146 2 2	2 6 10	7280.88			$\alpha(N)=4.68\times10^{-7} 7$
8543.00	13-	1146.2 <i>3</i> 548.3 2	3.6 <i>19</i> 3.9 <i>7</i>	7280.88 7994.69 12 ⁽⁺⁾	(E1)	0.000561 8	$\alpha(K)=0.000502\ 7;\ \alpha(L)=5.12\times10^{-5}\ 8;\ \alpha(M)=7.63\times10^{-6}\ 11;\ \alpha(N+)=4.96\times10^{-7}$
0545.00	13	540.5 2	3.7 7	1774.07 12	(LI)	0.000301 0	$7 \qquad \qquad 7$
							$\alpha(N)=4.96\times10^{-7}$ 7
		695.3 <i>3</i>	81.8 <i>13</i>	7847.79 11 ⁻	E2	0.000895 <i>13</i>	$\alpha(K)=0.000799 \ 12; \ \alpha(L)=8.29\times10^{-5} \ 12; \ \alpha(M)=1.236\times10^{-5} \ 18;$
							$\alpha(N+)=7.98\times10^{-7}$ $\alpha(N)=7.98\times10^{-7}$ 12
		805.5 <i>1</i>	22.7 20	7737.41 11-	E2	0.000605 9	$\alpha(N) = 7.98 \times 10^{-7} 12$ $\alpha(K) = 0.000540 \text{ 8}; \ \alpha(L) = 5.57 \times 10^{-5} \text{ 8}; \ \alpha(M) = 8.31 \times 10^{-6} 12; \ \alpha(N+) = 5.39 \times 10^{-7}$
		003.3 1	22.7 20	7737.11 11	22	0.000003 >	8
							$\alpha(N)=5.39\times10^{-7} 8$
		816.0 2	3.9 7	7727.01 12 ⁺	E1	0.000230 4	$\alpha(K) = 0.000206 \ 3; \ \alpha(L) = 2.09 \times 10^{-5} \ 3; \ \alpha(M) = 3.11 \times 10^{-6} \ 5; \ \alpha(N+) = 2.04 \times 10^{-7} \ 3$
		906.3 1	100.0 20	7636.74 11-	E2	0.000449 7	$\alpha(N)=2.04\times10^{-7}$ 3 $\alpha(K)=0.000401$ 6; $\alpha(L)=4.12\times10^{-5}$ 6; $\alpha(M)=6.15\times10^{-6}$ 9; $\alpha(N+)=4.00\times10^{-7}$ 6
		900.3 1	100.0 20	7030.74 11	EZ	0.000449 /	$\alpha(N)=0.000401$ 6; $\alpha(L)=4.12\times10^{-2}$ 6; $\alpha(M)=0.13\times10^{-2}$ 9; $\alpha(N+)=4.00\times10^{-1}$ 6
		1412.7 2	38.3 20	7130.43 11-	E2	0.000222 4	$\alpha(K)=0.0001474 \ 21; \ \alpha(L)=1.500\times10^{-5} \ 21; \ \alpha(M)=2.24\times10^{-6} \ 4;$
							α (N+)=5.69×10 ⁻⁵ 8
							$\alpha(N)=1.471\times10^{-7} \ 21; \ \alpha(IPF)=5.68\times10^{-5} \ 8$
8801.31	14 ⁺	1074.3 <i>1</i>	100.0	7727.01 12 ⁺	E2	0.000299 5	$\alpha(K) = 0.000268 \ 4; \ \alpha(L) = 2.74 \times 10^{-5} \ 4; \ \alpha(M) = 4.09 \times 10^{-6} \ 6; \ \alpha(N+) = 2.67 \times 10^{-7} \ 4$
9404.51	15-	603.2 2	12.2 <i>4</i>	8801.31 14+	E1	0.000448 7	$\alpha(N)=2.67\times10^{-7}$ 4 $\alpha(K)=0.000401$ 6; $\alpha(L)=4.08\times10^{-5}$ 6; $\alpha(M)=6.08\times10^{-6}$ 9; $\alpha(N+)=3.96\times10^{-7}$ 6
7404.31	13	003.2 2	14.4	0001.51 14	ĽΙ	0.000440 /	$\alpha(N)=3.96\times10^{-7}$ 6

$\gamma(^{66}\text{Ge})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
9404.51	15-	861.5 <i>1</i>	100.0 12	8543.00	13-	E2	0.000509 8	$\alpha(K)$ =0.000455 7; $\alpha(L)$ =4.68×10 ⁻⁵ 7; $\alpha(M)$ =6.99×10 ⁻⁶ 10; $\alpha(N+)$ =4.54×10 ⁻⁷ 7 $\alpha(N)$ =4.54×10 ⁻⁷ 7
9653.0?		851.7 [#] 4	<100.0	8801.31	14+			
		1225.8 [#] 2	≈100.0	8427.18	13(+)			
9685.71	15 ⁽⁺⁾	884.4 2	30 6	8801.31	14+	(M1)	0.000400 6	$\alpha(K)=0.000358 \ 5; \ \alpha(L)=3.65\times10^{-5} \ 6; \ \alpha(M)=5.45\times10^{-6} \ 8; \ \alpha(N+)=3.59\times10^{-7} \ 5 \ \alpha(N)=3.59\times10^{-7} \ 5$
		1258.5 2	100 6	8427.18	13 ⁽⁺⁾	(E2)	0.000229 4	$\alpha(K)=0.000188\ 3;\ \alpha(L)=1.92\times10^{-5}\ 3;\ \alpha(M)=2.86\times10^{-6}\ 4;$ $\alpha(N+)=1.92\times10^{-5}\ 3$ $\alpha(N)=1.88\times10^{-7}\ 3;\ \alpha(IPF)=1.90\times10^{-5}\ 3$
10473.94	(16 ⁺)	1672.6 <i>1</i>	100.0	8801.31	14+	E2	0.000276 4	$\alpha(K)=0.0001052 \ 15; \ \alpha(L)=1.067\times10^{-5} \ 15; \ \alpha(M)=1.592\times10^{-6} \ 23$ $\alpha(N)=1.048\times10^{-7} \ 15; \ \alpha(IPF)=0.0001581 \ 23$
10691.4	17-	1286.9 <i>3</i>	100.0	9404.51	15-	E2	0.000226 4	$\alpha(K)=0.000179 \ 3; \ \alpha(L)=1.83\times10^{-5} \ 3; \ \alpha(M)=2.73\times10^{-6} \ 4; \ \alpha(N+)=2.53\times10^{-5} \ 4 \ \alpha(N)=1.79\times10^{-7} \ 3; \ \alpha(IPF)=2.51\times10^{-5} \ 4$
11549.1		1863.4 2	100.0	9685.71	15 ⁽⁺⁾			
12660.9	19-	1969.4 2	100.0	10691.4	17-	E2	0.000382 6	$\alpha(K)=7.72\times10^{-5}\ II;\ \alpha(L)=7.82\times10^{-6}\ II;\ \alpha(M)=1.166\times10^{-6}\ I7;$ $\alpha(N+)=0.000296\ 5$ $\alpha(N)=7.69\times10^{-8}\ II;\ \alpha(IPF)=0.000295\ 5$
13439.2?		1890.0 <i>4</i>	100.0	11549.1				
15327.9?	21-	2667 1	100.0	12660.9	19-	E2	0.000681 10	$\alpha(K)=4.53\times10^{-5}$ 7; $\alpha(L)=4.57\times10^{-6}$ 7; $\alpha(M)=6.82\times10^{-7}$ 10; $\alpha(N+)=0.000631$ 9 $\alpha(N)=4.51\times10^{-8}$ 7; $\alpha(IPF)=0.000631$ 9
18080.0?	(23 ⁻)	2752 2	100.0	15327.9?	21-	(E2)	0.000718 10	$\alpha(K)=4.30\times10^{-5}$ 6; $\alpha(L)=4.33\times10^{-6}$ 6; $\alpha(M)=6.47\times10^{-7}$ 9; $\alpha(N+)=0.000670$ 10 $\alpha(N)=4.28\times10^{-8}$ 6; $\alpha(IPF)=0.000670$ 10

12

[†] Additional information 1.

‡ Relative branching from each level is given.

Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{66}_{32}\mathrm{Ge}_{34}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

14

Level Scheme (continued)

Intensities: Relative photon branching from each level

15

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $_{32}^{66}$ Ge $_{34}$ -17

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 113,1735 (2012)	1-Mar-2012

 $Q(\beta^{-})=-8084\ 3$; $S(n)=12392\ 5$; $S(p)=7388.9\ 23$; $Q(\alpha)=-3399.9\ 20$ 2012Wa38

Note: Current evaluation has used the following Q record -8084 3 12392 5 7388.9 23 -3400.0 20 2011AuZZ.

S(2n)=21514 3, S(2p)=12657.7 21 (2011AuZZ).

 α : Additional information 1.

⁶⁸Ge Levels

Cross Reference (XREF) Flags

		A B C D	68 As ε decay 69 Se εp decay 70 Ge(p,t) 66 Zn(12 C, 10 F	y (27.4 s) $F = {}^{64}Zn({}^{6}Li,d)$ $G = {}^{58}Ni({}^{12}C,2p\gamma),{}^{64}Zn({}^{7}Li,p2n\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF	Comments
0@	0+	270.93 d <i>13</i>	ABCDEFGH	$\%\varepsilon$ =100 $T_{1/2}$: weighted average of 270.82 d 27 (1981Wa26) and 270.99 d 19 (1994Sc44). Others: 228 d 6 (Rudstam thesis, Uppsala University, Sweden) and 275 d 20 (1956Cr29).
1015.81 [@] 8	2+	2.08 ps 11	ABCDE GH	μ =+1.1 3 J ^{π} : L(p,t)=2. μ : from transient field method (2011StZZ,2005Le19). T _{1/2} : weighted average of 2.15 ps <i>14</i> from DSAM in ¹² C(⁶⁴ Zn, ⁸ Be γ) and 1.98 ps <i>17</i> from DSAM and RDM in ⁵⁸ Ni(¹² C,2p γ), ⁶⁴ Zn(⁷ Li,p2n γ). Others: 2.1 ps 7 (1981De03), 3.5 ps +2 <i>1</i> -14 (1977Mo20), and 1.4 ps 7 (1977Gu08) all from DSAM/RDM in ⁵⁸ Ni(¹² C,2p γ), ⁶⁴ Zn(⁷ Li,p2n γ).
1754.5 <mark>&</mark> 4	0^{+}		A Cd GH	J^{π} : L(p,t)=0.
1777.42 ^a 10	2+	1.80 ps <i>14</i>	A CdE GH	$T_{1/2}$: from DSAM in $^{12}C(^{64}Zn,^{8}Be\gamma)$. Others: >3.5 ps (1982Pa03), 3.5 ps $+2I-14$ (1977Mo20), and 4.2 ps 7 (1977Gu08) from $^{58}Ni(^{12}C,2p\gamma),^{64}Zn(^{7}Li,p2n\gamma)$. J^{π} : E2 1777 γ to 0^{+} g.s.
2267.83 [@] 11	4+	0.87 ps <i>10</i>	A CDE GH	J^{π} : L(p,t)=4. $T_{1/2}$: weighted average of 0.90 ps 14 from 12 C(64 Zn, 8 Be γ) and 0.83 ps 14 from 64 Zn(7 Li,p2n γ).
2428.59 ^a 12	3 ⁺	2.1 ps 7	A E GH	J^{π} : J=3 from $\gamma(\theta)$, $\gamma\gamma(\theta)(DCO)$, π from 651 γ to 2 ⁺ .
2457.15 ^{&} 13	2+	1.3 ps 4	A E GH	$T_{1/2}$: from DSAM in ${}^{12}C({}^{64}Zn, {}^{8}Be\gamma)$. J^{π} : 190 γ to 4^+ , 2457 γ to 0^+ .
2617 3	0_{+}		C	J^{π} : L(p,t)=0.
2648.67 ^b 11	3-	2.1 ps +14-7	A CDE GH	J^{π} : L(p,t)=3; J=3 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO).
2831.86 ^a 11 2900.2 ^c 7	4 ⁺ (4 ⁻)	0.8 ps + 7 - 3	A C E GH H	J^{π} : $L(p,t)=4$.
2947.1 5	2+		A C G	XREF: $C(2942)$. J^{π} : $L(p,t)=2$.
3023.1 5	2+		A C	J^{π} : L(p,t)=2.
3040.73 23	$(4)^{+}$		A d GH	
3061.87 11	(3^{-})		Cd GH	
3087.5 4	2 ⁽⁺⁾		A G	J^{π} : γ' s to 0 ⁺ , $\log ft = 6.7$ from ⁶⁸ As ε decay ($J^{\pi} = 3^+$).
3182.26 ^{&} 11 3204 3	4 ⁺ 0 ⁺		C GH C	J^{π} : L(p,t)=4; E2 1405 γ to 2 ⁺ . J^{π} : L(p,t)=0.

⁶⁸Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	${{{ m T}_{1/2}}^{\#}}$	XREF		Comments		
3287.8 7	2(+)		A		J^{π} : 3288 γ to 0 ⁺ ; log ft =7.0 from ⁶⁸ As ε decay (J^{π} =3 ⁺).		
3400.3 <i>4</i>	2+		A C	G	J^{π} : γ' s to 0^+ ; log $ft=6.2$ from ⁶⁸ As ε decay $(J^{\pi}=3^+)$.		
3417.0 <i>4</i>			A		, , , , , , , , , , , , , , , , , , , ,		
3474.7 10			A		E(level): $\log ft = 6.2$ from 68 As ε decay ($J^{\pi} = 3^{+}$) suggests this is a distinct level from the 0^{+} 3476 3.		
3476 <i>3</i>	0_{+}		C	F	J^{π} : $L(p,t)=L(^{6}Li,d)=0$.		
3509.67 12	4-			H			
3522.1 <i>10</i>	2+		A C		J^{π} : L(p,t)=2.		
3581.98 ^b 12	5-	1.2 ps 4	С	GH	E(level): doublet suggested by L(p,t)= $(5+1)$. J^{π} : E2 933 γ to 3 ⁻ , E2 472 γ from 7 ⁻ .		
3604 <i>3</i>	4+		C		J^{π} : L(p,t)=4.		
3649.05 ^d 11 3675.34 ^a 14	5 ⁻ 5 ⁺	0.4 ps +3-1	Cd d	GH GH	J^{π} : E2 1000 γ to 3 ⁻ , E2 405 γ from 7 ⁻ ; L(p,t)=(4) discrepant. J^{π} : 1247 γ to 3 ⁺ , band member.		
3695.94 [@] 12	6+	0.49 ps <i>14</i>		GH	J^{π} : J=6 from $\gamma(\theta)$, DCO and yield function; E2 1428 γ to 6 ⁺ .		
3735 <i>3</i>	(2^{+})		C		J^{π} : L(p,t)=(2).		
3809.3 10	2+		A C		J^{π} : L(p,t)=2.		
3882.95 ^c 12	6-	132 ps <i>35</i>		GH	μ =0.53 11		
					μ : from recoil into gas perturbed angular correlations (2011StZZ,1986Ba64). Relative to g=0.44 2 for the 596 2+ state in 74 Ge.		
					J^{π} : J=6 from $\gamma(\theta)$, DCO and yield function; M1(+E2) 234 γ to 5 ⁻ .		
4021 3	4+		C		J^{π} : L(p,t)=4.		
4037 3	(2^{+})		C		J^{π} : $L(p,t)=(2)$.		
4053.72 ^d 11	7-	118 ps 21	CD	GH	μ =0.78 12		
					J^{π} : L(p,t)=(7); J=7 from $\gamma(\theta)$, DCO and yield function.		
					μ : from recoil into gas perturbed angular correlations (2011StZZ,1986Ba64). Relative to g=0.44 2 for the 596 2+ state in 74 Ge.		
4078 <i>3</i>	0_{+}		C		J^{π} : L(p,t)=0.		
4144.07 <mark>&</mark> <i>11</i>	6+		C	H	J^{π} : 962 γ to 4 ⁺ , band member.		
4238.5 10	(2^{+})		A C		J^{π} : L(p,t)=(2).		
4322 3	2+		C		J^{π} : $L(p,t)=2$.		
4358 <i>3</i>	0_{+}		C		J^{π} : L(p,t)=0.		
4453.89 ^b 13	7-	0.97 ps 21	С	GH	J^{π} : J=7 from $\gamma(\theta)$, DCO and yield function; M1+E2 400 γ to 7 ⁻ . L(p,t)=(6) discrepant (but the fit is poor).		
4567.5 10	(2^{+})		A C		J^{π} : L(p,t)=(2).		
4614 <i>3</i> 4659.46 <i>13</i>	(3 ⁻) 7 ⁻	0.3 ps <i>1</i>	C CD	GH	J^{π} : L(p,t)=(3). T _{1/2} : the B(E2)(606γ) exceeds RUL by a factor of ≈3, suggesting that		
4736 3	0 ⁺	0.5 ps 1	С	GII	the $T_{1/2}$ value may be too small. J^{π} : $L(p,t)=0$.		
4789 <i>3</i>	0+		Č		J^{π} : L(p,t)=0.		
4836.97 [@] 12	8+	1.04 ps 21		GH	$\mu = +0.8 \ 3$		
1030.57 12	O	1.01 ps 21		GII	μ : from transient field method (2011StZZ,1986Ba64); measured relative		
					to a theoretical value of $g=0.4$ for the 3696, 6^+ state in 68 Ge.		
					J^{π} : J=8 from $\gamma(\theta)$, DCO and yield function; E2 1141 γ to 6 ⁺ .		
4857 10			C		•		
4877.7 10	_		A C				
4957.40 ^c 15	8-	0.9 ps +4-2		GH	J^{π} : J=8 from $\gamma(\theta)$, DCO and yield function; E2 1074 γ to 6 ⁻ .		
4999? 5049.58 ^e 12	8+	>0.35 ps		G	u= 22 10		
JU47.J8 12	0	0.49 ps +21-14		GH	μ =-2.2 10 μ : from transient field method (2011StZZ,1986Ba64); measured relative		
					to a theoretical value of g=0.4 for the 3696, 6 ⁺ state in ⁶⁸ Ge. J^{π} : J=8 from $\gamma(\theta)$, DCO and yield function; E2 1354 γ to 6 ⁺ .		

⁶⁸Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
5074 10	(0-)		C	
5148.69 <i>13</i> 5217 <i>10</i>	(8-)	1.2 ps <i>3</i>	D G	H
5266.6 ^a 10	7+			H J^{π} : 1591 γ to 5 ⁺ , band member.
5330.11 ^d 13	9-	0.69 ps +21-14	G	
5366.08 ^{&} 13 5560 50	8+	0.83 ps +28-21	D G	H J ^{π} : J=8 from $\gamma(\theta)$, DCO and yield function; E2 1670 γ to 6 ⁺ .
5678.02 ^b 13 5821.61 14 5873.98 23	9- 9- 9+	0.5 ps 2 0.8 ps 4 1.5 ps +10-6	G G G	H , , , , , , , , , , , , , , , , , , ,
5961.49 [@] 14 6214.89 ^e 14 6300 50	10 ⁺ 10 ⁺ (8 ⁺)	0.76 ps +21-14 <0.7 ps	G G D	
6420.36 ^c 25 6556.52 14	10 ⁻ (10) ⁻			H H
6595.71 ^{&} 16 6663.81 24	10 ⁺ 10 ⁺		1	H J^{π} : 1230 γ to 8^+ , band member.
6671.10? <i>16</i> 6960 <i>50</i>	(6 ⁺)		D	J^{π} : from crude shell-model calculations (1990Bo27). Configuration:($\pi g_{9/2} \pi d_{5/2}$) ₆₊ (1990Bo27).
7044.83 ^d 16	11^{-}	1.0 ps +4-3	G	
7145.30 ^b 16 7242.1? 10 7251.12 13	11 ⁻ (10 ⁺) 11 ⁻ (12 ⁺)	0.7 ps +7-4		J^{π} : (E2) 1876 γ to 8^+ .
7320.1? <i>10</i> 7371.21 [@] <i>15</i> 7495.95 <i>16</i> 7516.89 ^e <i>14</i>	(12 ⁺) 12 ⁺ (11 ⁻) 12 ⁺	0.7 ps +14-3	G	H J^{π} : J=12 from $\gamma(\theta)$, DCO and yield function; E2 1410 γ to 10 ⁺ .
7532.5 ^f 10 7559.38 ^g 14 7761.85 14 7881.5? 10	12 ⁺ 12 ⁺ 12 ⁺	0.8 ps +6-4	G .	H J^{π} : J=12 from $\gamma(\theta)$, DCO and yield function; E2 1344 γ to 10^{+} . H
8043.38 ^l 16 8171.94 14 8621.5? 10 8660.57 ^g 15	13 ⁺ 13 ⁻ 14 ⁺]]]	H J^{π} : J=13 from $\gamma(\theta)$; E2 921 γ to 11 $^-$.
8663.3? <i>10</i> 8781.4? <i>10</i>			1	H H
8790.26 ^h 17 8868.18 19 8930.9? 10 9012.1 ^e 6	15 ⁻ 14 ⁻ (14 ⁺) 14 ⁺]]]	H J ^{π} : J=15 from $\gamma(\theta)$; E2 618 γ to 13 $^-$. H
9112.5 <i>6</i> 9170.0 [@] <i>5</i> 9386.56 <i>17</i>	14 ⁺ 14 ⁺ 15 ⁽⁻⁾	0.4 ps 2	G	H J^{π} : J=12 from $\gamma(\theta)$; E2 1798 γ to 12 ⁺ .
9418.9 ^f 14 9563.9 ^j 8	14 ⁺ 15 ⁽⁻⁾			H H
9605.7 ^l 7	15 ⁺		1	H
10024.58? <i>18</i> 10126.6 <i>8</i>	16 ⁽⁻⁾			H H

68 Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
10217.53 ^g 24	16 ⁺	Н
10295.51 ^h 25	$17^{(-)}$	Н
10493.4 6	$16^{(-)}$	H
10664.0 ^e 7	16+	H
10665.6 6	$17^{(-)}$	Н
10688.8? <i>10</i> 10896.0 <i>7</i>	16 ⁺	H
10897.0? 12	10	H H
$10927.0^{j} 5$	17 ⁽⁻⁾	H
10927.03 3	16 ⁺	H
10988.1 6	16 ⁺	H
10989.8 ^l 12	17 ⁺	Н
10990.0 [@] 11	16 ⁺	Н
11085.6 ^f 17 11406.4? 10	16 ⁺	Н
11406.4? 10		H
11417.4 <i>17</i>	16 ⁺	H
11542.7? 19	(17^+)	H
11793.4? <i>13</i> 11794.2? <i>10</i>	(10=)	H
11794.27 10	(19^{-}) (20^{-})	H H
11994.4 ⁸ 6	18+	Н
12136.9 ^h 3	19(-)	Н
12165.0 8	(19^{-})	H
12246.0 ^e 6	18+	H
12262.5 ⁱ 8	(18^{-})	H
12363.4 ^j 7	(19^{-})	H
12501.8? <i>12</i>		Н
12535.8? 10	(10±)	H
12641.7 <i>17</i> 12652.3 <i>13</i>	(18^+) (18^-)	H H
$12032.3 \ 13$ $12719.4^{f} \ 19$	18+	Н
12779.1? 12	10	н Н
12817.2^{l} 16	19 ⁺	н
12884.1? 12	1)	H
13104.3? 10		H
13265.3? 10		H
13617.4? 12		H
13751.3? 10	20+	H
13953.0 ^e 12 13991.0? 12	20+	H H
14085.5^{i} 7	(20^{-})	Н
14085.5 / 14116.5 ^g 12	20+	н Н
14360.9? 10	20	H
14401.9 ^h 10	21(-)	Н
14426.6? 16	(21)	H
14485.6 ^j 8	(21^{-})	Н
14504.9 ^l 19	21+	Н
14560.4 6	(21)	H
15562.8 ^g 15	22+	H
15835.1 ^e 15	22+	Н
16130.5 ⁱ 12	$22^{(-)}$	Н

⁶⁸Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
16733.9 ^l 21	23+	Н	
17360.5? 21		H	
17496.0 ^h <i>14</i>	$23^{(-)}$	Н	
18022.1 ^e 18	24 ⁺	H	
18132.5 ⁱ 16	$24^{(-)}$	Н	
18274.1 <i>18</i>		H	
19785.0 ^l 23	25 ⁺	H	
20356.6 ⁱ 19	$26^{(-)}$	Н	
20821.2 ^e 21	26+	H	
22958.6 ⁱ 21	$28^{(-)}$	H	
\mathbf{x}^{k}	(14)	Н	Additional information 2.
1575.0+x? ^k 6	(16)	H	Additional information 3.
1620.0+x ^k 10	(16)	H	
3425.0+x ^k 12	(18)	H	
5440.1+x ^k 16	(20)	H	
7677.1+x ^k 19	(22)	H	
10126.2+x ^k 21	(24)	Н	
12815.2+x ^k 23	(26)	Н	

[†] From a least squares fit to Ey's for levels connected by γ 's; $\Delta E=0.3$ keV assumed when not given.

[‡] Unless noted otherwise, from 40 Ca(32 S,4p γ) in (HI,xn γ) by 2001Wa02. Based on a DCO analysis (no explicit values given) and the assumption that levels decaying predominantly to negative parity levels have themselves negative parity. The 3649 5-, 3883 6-, and 4054 7- J^{π} assignments are taken from previous measurements.

[#] From DSAM and RDM in ⁵⁸Ni(¹²C,2py), ⁶⁴Zn(⁷Li,2ny)..., except where noted.

[@] Band(A): Yrast band.

[&]amp; Band(B): Band based on 0⁺, 1755 level. 2001Wa02 and 1996Ch34 differ in the assignment of the 10⁺ member of this band, 1996Ch34 assign the 6671 level, while 2001Wa02 assign the 6597 level. The latter is adopted here.

^a Band(C): γ band (2001Wa02).

^b Band(D): Two ν quasiparticle band. One rotationally-aligned quasiparticle in $g_{9/2}$ and one deformation-aligned quasiparticle in $p_{1/2}$, $p_{3/2}$, or $f_{5/2}$ (2001Wa02).

^c Band(E): Even-spin signature partner of Band d (1981De03,2001Wa02).

^d Band(F): Two π quasiparticle band. One rotationally-aligned quasiparticle in $g_{9/2}$ and one deformation-aligned quasiparticle in $p_{1/2}$, $p_{3/2}$, or $f_{5/2}$ (2001Wa02).

^e Band(G): Band based on 8⁺ 5050 level. Proposed configuration of $\pi(g_{9/2})^2(f_{5/2},p_{3/2})^2$ and $\nu(g_{9/2})^2(f_{5/2},p_{3/2})^6$ (2001Wa02).

f Band(H): Side-band based on 12+ 7533 level.

^g Band(I): Side-band based on 12⁺ 7560 level.

^h Band(J): Octupole band based on 15⁻ 8790 level. Proposed configuration of $\pi(g_{9/2})^1(f_{5/2},p_{3/2})^3$ and $\nu(g_{9/2})^2(f_{5/2},p_{3/2})^6$ (2001Wa02).

ⁱ Band(K): Octupole band based on (18⁻) 12263 level. Proposed configuration of $\pi(g_{9/2})^2(f_{5/2},p_{3/2})^2$ and $\nu(g_{9/2})^3(f_{5/2},p_{3/2})^5$ (2001Wa02).

^j Band(L): Octupole band built on the 15⁻ 9564 level.

^k Band(M): Super-deformed band (2001Wa02). Percent population=0.2%.

¹ Band(N): Band based on 13⁺ 8043 level. Proposed configuration of $\pi(g_{9/2})^1(f_{5/2},p_{3/2})^3$ and $\nu(g_{9/2})^3(f_{5/2},p_{3/2})^5$ (2001Wa02).

		4	+		_ +	4		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult. \ddagger	δ^{\ddagger}	α	Comments
1015.81	2+	1015.74 4	100	0 0	+ E2		0.000341 5	$\alpha(K)=0.000305$ 5; $\alpha(L)=3.12\times10^{-5}$ 5; $\alpha(M)=4.66\times10^{-6}$ 7; $\alpha(N+)=3.04\times10^{-7}$ 5 B(E2)(W.u.)=15.3 8 E _{γ} : from 64 Zn(7 Li,p2n $_{\gamma}$). Mult.: from $\gamma(\text{lin pol})$ in (HI,xn $_{\gamma}$).
1754.5	0+	738.4 [@] 5	100@	1015.81 2	+ E2		0.000760 11	$\alpha(K)$ =0.000679 10; $\alpha(L)$ =7.03×10 ⁻⁵ 10; $\alpha(M)$ =1.048×10 ⁻⁵ 15; $\alpha(N+)$ =6.78×10 ⁻⁷ Mult.: from $\gamma\gamma(\theta)$ (DCO) in ⁵⁸ Ni(¹² C,2p γ) (1981De03).
1777.42	2+	761.6 [@] 1		1015.81 2	⁺ M1+E2	-0.15 3	0.000552 8	$\alpha(K)$ =0.000494 7; $\alpha(L)$ =5.05×10 ⁻⁵ 8; $\alpha(M)$ =7.54×10 ⁻⁶ 11; $\alpha(N+)$ =4.97×10 ⁻⁷ 7 B(E2)(W.u.)=1.0 5; B(M1)(W.u.)=0.0169 18 δ: Others: -0.49 7 from $\gamma(\theta)$ in ⁴⁸ Ca(³² S,4p γ), -0.09 2 from $\gamma(\theta)$ in ⁶³ Cu(⁷ Li,2n γ), -6 +2-5 or -0.65 10 from $\gamma(\theta)$ in ⁶⁴ Zn(⁷ Li,p2n γ), and -0.18 +20-10 from $\gamma(\theta)$ in ⁶⁶ Zn(α ,2n γ).
		1777.3 [@] 2	60 [@] 4	0 0	+ E2 [#]		0.000310 5	$\alpha(K)=9.36\times10^{-5}$ 14; $\alpha(L)=9.48\times10^{-6}$ 14; $\alpha(M)=1.415\times10^{-6}$ 20 $\alpha(N+)=0.000205$ 3 B(E2)(W.u.)=0.40 5 I_{γ} : Others: 63 3 in 58 Ni(12 C,2p $_{\gamma}$) and 44.2 16 in (HI,xn $_{\gamma}$).
2267.83	4+	1252.0 <i>I</i>	100	1015.81 2	+ E2 [#]		0.000230 4	$\alpha(K)=0.000190 \ 3; \ \alpha(L)=1.94\times10^{-5} \ 3; \ \alpha(M)=2.89\times10^{-6} \ 4; \ \alpha(N+)=1.79\times10^{-5} \ 3 \ B(E2)(W.u.)=12.8 \ 15 \ \delta : \ \delta(M3/E2)=0.0 \ 1 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{66}\text{Zn}(\alpha,2n\gamma).$
2428.59	3+	651.2 [@] 3		1777.42 2	⁺ M1+E2	+0.06 2	0.000772 11	$\alpha(K)$ =0.000690 10; $\alpha(L)$ =7.07×10 ⁻⁵ 10; $\alpha(M)$ =1.056×10 ⁻⁵ 15; $\alpha(N+)$ =6.96×10 ⁻⁷ B(E2)(W.u.)=0.34 +28-24; B(M1)(W.u.)=0.026 +13-7 δ: Others: +0.11 2 from $\gamma(\theta)$ in ${}^{48}\text{Ca}({}^{32}\text{S},4\text{p}\gamma)$, -0.02 2 from $\gamma(\theta)$ in ${}^{63}\text{Cu}({}^{7}\text{Li},2\text{n}\gamma)$, and -0.15 +10-50 from $\gamma(\theta)$ in ${}^{66}\text{Zn}(\alpha,2\text{n}\gamma)$.
		1413.3 [@] 5	47.6 [@] 24	1015.81 2	⁺ M1+E2	+0.16 8	0.000200 3	$\alpha(K)=0.0001396\ 20;\ \alpha(L)=1.415\times10^{-5}\ 20;\ \alpha(M)=2.11\times10^{-6}\ 3$ $\alpha(N+)=4.42\times10^{-5}\ 8$ $B(E2)(W.u.)=0.023\ +31-19;\ B(M1)(W.u.)=0.0012\ +6-3$ I_{γ} : Others: 36.6 19 in 58 Ni(12 C,2p γ) and 6.9 15 in (HI,xn γ).
2457.15	2+	190.3 10	47 3	2267.83 4	+ [E2]		0.0669 17	$\alpha(K)$ =0.0592 15; $\alpha(L)$ =0.00669 17; $\alpha(M)$ =0.000992 25; $\alpha(N+)$ =5.81×10 ⁻⁵ 14 B(E2)(W.u.)=2.5×10 ⁴ 8
		702.2 10	28.7 18	1754.5 0	+ [E2]		0.000871 13	$\alpha(K)$ =0.000778 12; $\alpha(L)$ =8.06×10 ⁻⁵ 12; $\alpha(M)$ =1.203×10 ⁻⁵ 18; $\alpha(N+)$ =7.77×10 ⁻⁷ B(E2)(W.u.)=22 7 I _{γ} : Other: 69 8 in ⁶⁸ As ε decay (151.6 s).

γ (68 Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
2457.15	2+	1441.0 <i>10</i> 2457.1 2	22 <i>3</i> 100 <i>7</i>	1015.81 2 ⁺ 0 0 ⁺	[E2]		0.000591 9	$\alpha(K)=5.21\times10^{-5}~8;~\alpha(L)=5.26\times10^{-6}~8;~\alpha(M)=7.85\times10^{-7}~11;$ $\alpha(N+)=0.000533~8$
2648.67	3-	871.2 2	5.27 24	1777.42 2+	[E1]		0.000201 3	B(E2)(W.u.)=0.15 5 α (K)=0.000180 3; α (L)=1.82×10 ⁻⁵ 3; α (M)=2.72×10 ⁻⁶ 4; α (N+)=1.781×10 ⁻⁷ 25 B(E1)(W.u.)=1.5×10 ⁻⁵ +7-6
		1632.8 2	100 4	1015.81 2+	E1+M2	+0.09 3	0.000423 6	I _γ : Other: 15 4 in ⁵⁸ Ni(¹² C,2pγ). α (K)=5.91×10 ⁻⁵ 13; α (L)=5.96×10 ⁻⁶ 13; α (M)=8.90×10 ⁻⁷ 19; α (N+)=5.86×10 ⁻⁸ 13 B(E1)(W.u.)=4.2×10 ⁻⁵ +20-17; B(M2)(W.u.)=0.6 5
								δ: Others: $-0.05 \ 3 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{48}\text{Ca}(^{32}\text{S},4\text{p}\gamma), +0.01 \ 2 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{63}\text{Cu}(^{7}\text{Li},2\text{n}\gamma), -0.11 \ 9 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{64}\text{Zn}(^{7}\text{Li},\text{p}2\text{n}\gamma), \ \text{and} \ -0.16 \ +20-50 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{66}\text{Zn}(\alpha,2\text{n}\gamma).$
2831.86	4+	403.8 10	2.5 3	2428.59 3+				
		564.0 10	6.8 6	2267.83 4+	П2		0.000212.5	(H) 0.000070 4 (I) 2.06 10=5 4 (II) 4.07 10=6 6
		1054.4 2	100 3	1777.42 2+	E2		0.000312 5	$\alpha(K)=0.000279 \ 4; \ \alpha(L)=2.86\times10^{-5} \ 4; \ \alpha(M)=4.27\times10^{-6} \ 6; \ \alpha(N+)=2.79\times10^{-7} \ 4$ B(E2)(W.u.)=24 +14-10 Mult.: from $\gamma\gamma(\theta)$ (DCO).
		1816.1 2	30.1 11	1015.81 2+	E2		0.000323 5	$\alpha(K)=8.98\times10^{-5}\ 13;\ \alpha(L)=9.10\times10^{-6}\ 13;\ \alpha(M)=1.358\times10^{-6}\ 19$ $\alpha(N+)=0.000223\ 4$ $B(E2)(W.u.)=0.47\ +28-22$ I_{γ} : Others: 33 3 in $^{58}Ni(^{12}C,2p\gamma)$ and 78 9 in 68 As ε decay (151.6 s).
2900.2	(4^{-})	251.5 10	100	2648.67 3-				(131.0 3).
2947.1	2+	1169.7 [@] 5	100 [@]	1777.42 2+				
3023.1	2+	1245.1 [@] 10	13.0 [@] 22	1777.42 2+				
		2007.4 [@] 5	100 [@] 9	1015.81 2+				
3040.73	$(4)^{+}$	612.0 [@] 3	100 [@] 6	2428.59 3+	M1+E2	+0.24 4	0.000906 15	$\alpha(K)=0.000810\ 13;\ \alpha(L)=8.31\times10^{-5}\ 14;\ \alpha(M)=1.242\times10^{-5}\ 21;$ $\alpha(N+)=8.16\times10^{-7}$
3061.87	(3-)	1263.4 [@] 3 2025.3 [@] 10 230.0 1	53 [@] 3 5.6 [@] 8 17 28	1777.42 2 ⁺ 1015.81 2 ⁺ 2831.86 4 ⁺				
3001.07	(5)	413.2 ^{&} 1 633.3 1 794.0 2	17 28 100 28	2648.67 3 ⁻ 2428.59 3 ⁺ 2267.83 4 ⁺				
		2046.0 2	78 28	1015.81 2+				

γ (68Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
3087.5	2 ⁽⁺⁾	1309.6 [@] 10	47 [@] 7	1777.42 2+				
		1332.8 [@] 5	100 [@] 7	1754.5 0 ⁺				
		2071.8 [@] 10	27 [@] 7	1015.81 2+				
		3088.3 [@] 10	87 [@] 7	$0 0^{+}$				
3182.26	4+	725.1 <i>I</i>	59.8 22	2457.15 2+				
		915.0 <i>10</i>	21.2 11	2267.83 4+				
		1404.8 2	100 4	1777.42 2+	E2		0.000221 3	$\alpha(K)=0.0001492\ 21;\ \alpha(L)=1.517\times10^{-5}\ 22;\ \alpha(M)=2.26\times10^{-6}\ 4$ $\alpha(N+)=5.47\times10^{-5}\ 8$
		2166.4 2	27.4 12	1015.81 2+				u(11+)-3.+1×10 0
3287.8	$2^{(+)}$	2271.3 [@] 10	100 [@] 10	1015.81 2 ⁺				
		3288.4 [@] 10	40 [@] 10	$0 0^{+}$				
3400.3	2+	1622.5 [@] 5	100 [@] 6	1777.42 2 ⁺				
		1645.9 [@] 10	24.1 [@] 19	1754.5 0 ⁺				
		2384.6 [@] 10	22.2 [@] 19	1015.81 2+				
		3401.3 [@] 10	5.6 [@] 19	$0 0^{+}$				
3417.0		988.3 [@] 5	59 [@] 5	2428.59 3 ⁺				
		1639.9 [@] 7	100 [@] 5	1777.42 2+				
3474.7		2458.8 [@] 10	100 [@]	1015.81 2 ⁺				
3509.67	4-	861.0 <i>I</i>	63 4	2648.67 3-				
		1081.1 <i>I</i>	100 5	2428.59 3+				
3522.1	2+	2506.2 [@] 10	100 [@]	1015.81 2+				
3581.98	5-	520.1 & 1	10.4.4	3061.87 (3 ⁻)				
		750.1 2 933.3 2	13.4 <i>4</i> 22.2 <i>7</i>	2831.86 4 ⁺ 2648.67 3 ⁻	E2		0.000418 6	$\alpha(K)=0.000373 \ 6; \ \alpha(L)=3.83\times10^{-5} \ 6; \ \alpha(M)=5.72\times10^{-6} \ 8;$
		933.3 2	22.2 /	2048.07 3	EZ		0.000418 0	$\alpha(N)=0.000375$ 6; $\alpha(L)=3.83\times10^{-6}$ 6; $\alpha(NI)=3.72\times10^{-6}$ 6; $\alpha(N+)=3.73\times10^{-7}$ 6
								B(E2)(W.u.)=6.623
		1314.1 2	100 <i>3</i>	2267.83 4+	E1+M2	+0.04 3	0.000218 3	$\alpha(K)=8.35\times10^{-5}$ 15; $\alpha(L)=8.44\times10^{-6}$ 15; $\alpha(M)=1.259\times10^{-6}$ 22;
								$\alpha(N+)=0.0001244$
								B(E1)(W.u.)= $0.00011 \ 4$; B(M2)(W.u.)= $0.5 + 8 - 5$
								δ: Others: $-0.08 \ 3 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{48}\text{Ca}(^{32}\text{S},4\text{p}\gamma), +0.06 \ 2 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{63}\text{Cu}(^{7}\text{Li},2\text{n}\gamma), \ \text{and} \ -0.15 \ +10-50 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{66}\text{Zn}(\alpha,2\text{n}\gamma).$
								Mult.: E1 from γ (lin pol) in 58 Ni(12 C,2p γ), 64 Zn(7 Li,p2n γ).
3649.05	5-	587.2 <i>1</i>	8.5 15	3061.87 (3-)				
		817.2 <i>1</i>	2.6 15	2831.86 4+				
		1000.4 <i>I</i>	12.8 4	2648.67 3-	E2		0.000353 5	$\alpha(K)=0.000316\ 5;\ \alpha(L)=3.24\times10^{-5}\ 5;\ \alpha(M)=4.83\times10^{-6}\ 7;$

 ∞

γ (68 Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α	Comments
3649.05	5-	1381.2 <i>I</i>	100 3	2267.83 4+	E1+M2	+0.04 2	0.000253 4	$\alpha(N+)=3.15\times10^{-7}$ 5 B(E2)(W.u.)=8.8 +23-67 $\alpha(K)=7.67\times10^{-5}$ 12; $\alpha(L)=7.75\times10^{-6}$ 12; $\alpha(M)=1.156\times10^{-6}$ 18; $\alpha(N+)=0.0001676$ B(E1)(W.u.)=0.00031 +7-14; B(M2)(W.u.)=1.2 +16-11 δ : Others: +0.01 2 from $\gamma(\theta)$ in 63 Cu(7 Li,2n γ), and -0.02 +2-15 from $\gamma(\theta)$ in 66 Zn(α ,2n γ).
3675.34	5+	843.2 10	28.5 21	2831.86 4+				Mult.: E1 from γ (lin pol) in 58 Ni(12 C,2p γ), 64 Zn(7 Li,p2n γ).
3695.94	6+	1246.7 2 1428.1 <i>I</i>	100 <i>6</i> 100	2428.59 3 ⁺ 2267.83 4 ⁺	E2		0.000223 4	$\alpha(K)=0.0001442\ 2I;\ \alpha(L)=1.466\times10^{-5}\ 2I;\ \alpha(M)=2.19\times10^{-6}\ 3$ $\alpha(N+)=6.16\times10^{-5}\ 9$ B(E2)(W.u.)=12 4 δ : $\delta(M3/E2)=-0.1\ I$ from $\gamma(\theta)$ in $^{66}Zn(\alpha,2n\gamma)$.
3809.3 3882.95	2 ⁺ 6 ⁻	2793.4 [@] 10 207.6 1	100 [@] 1.0 <i>16</i>	1015.81 2 ⁺ 3675.34 5 ⁺				
3002.73	0	233.9 1	100 3	3649.05 5	M1(+E2)	0.01 2	0.00860 13	$\alpha(K)$ =0.00767 11; $\alpha(L)$ =0.000803 12; $\alpha(M)$ =0.0001201 17; $\alpha(N+)$ =7.84×10 ⁻⁶ B(E2)(W.u.)=0.04 +15-4; B(M1)(W.u.)=0.012 4 Mult., δ : from $\gamma(\theta)$ in 63 Cu(7 Li,2n γ). Others: +0.07 1 from $\gamma(\theta)$ in 40 Ca(32 S,4p γ) and 0.00 +2-20 from $\gamma(\theta)$ in 66 Zn(α ,2n γ).
		373.3 <i>1</i> 982.7 & 10	1.44 <i>5</i> 1.33 <i>5</i>	3509.67 4 ⁻ 2900.2 (4 ⁻				
4053.72	7-	982.7 10 170.7 1	1.33 3	2900.2 (4 3882.95 6	M1+E2	+0.04 2	0.0193 4	$\alpha(K)=0.0172\ 3;\ \alpha(L)=0.00182\ 3;\ \alpha(M)=0.000272\ 5;$ $\alpha(N+)=1.77\times10^{-5}\ 3$ $B(E2)(W.u.)=1.6\ +17-16;\ B(M1)(W.u.)=0.019\ 4$ δ : Others: $+0.07\ I$ from $\gamma(\theta)$ in $^{40}Ca(^{32}S,4p\gamma)$ and $+0.05\ I$ from $\gamma(\theta)$ in $^{66}Zn(\alpha,2n\gamma)$.
		357.8 1	25.5 8	3695.94 6+	E1		0.0017 7	$\alpha(K)$ =0.0015 6; $\alpha(L)$ =0.00016 7; $\alpha(M)$ =2.4×10 ⁻⁵ 10; $\alpha(N+)$ =1.5×10 ⁻⁶ 7 B(E1)(W.u.)=9.8×10 ⁻⁶ 18 Mult.: from $\gamma(\theta)$ in 66 Zn(α ,2n γ).
		404.7 1	26.8 8	3649.05 5	E2		0.00463 7	δ: $\delta(\text{M2/E1}) = -0.07 + 10 - 20$. $\alpha(\text{K}) = 0.00412 \ 6$; $\alpha(\text{L}) = 0.000438 \ 7$; $\alpha(\text{M}) = 6.52 \times 10^{-5} \ 10$; $\alpha(\text{N+}) = 4.10 \times 10^{-6} \ 6$ $B(\text{E2})(\text{W.u.}) = 3.7 \ 7$ δ: $\delta(\text{M3/E2}) = 0.0 + 3 - 1 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{66}\text{Zn}(\alpha, 2\text{n}\gamma)$.
		471.7 <i>1</i>	40.1 14	3581.98 5	E2		0.00282 4	I _{γ} : Other: 31.7 <i>16</i> in ⁵⁸ Ni(¹² C,2p γ). α (K)=0.00252 <i>4</i> ; α (L)=0.000265 <i>4</i> ; α (M)=3.95×10 ⁻⁵ <i>6</i> ;

9

γ (68 Ge) (continued)

\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	J_f^{π} M	ult.‡	δ^{\ddagger}	α	Comments
_								$\alpha(N+)=2.51\times10^{-6} 4$ B(E2)(W.u.)=2.6 5 δ : $\delta(M3/E2)=-0.07 \ I0 \ \text{from} \ \gamma(\theta) \ \text{in} \ ^{66}\text{Zn}(\alpha,2n\gamma)$. I _y : Other: 52 3 in $^{58}\text{Ni}(^{12}\text{C},2p\gamma)$.
6+	448.2 10	6.4 5	3695.94	6 ⁺				ιγ. Other. 32 3 m - N(- C,2pγ).
	961.8 <i>1</i>	100 <i>3</i>						
. ,								_
7-	400.1 <i>I</i>	100 3	4053.72	7- M	1+E2	+0.5 2	0.0028 4	$\alpha(K)=0.0025$ 3; $\alpha(L)=0.00026$ 4; $\alpha(M)=3.9\times10^{-5}$ 5; $\alpha(N+)=2.5\times10^{-6}$ 3
				_				B(E2)(W.u.)=4.E+2 3; B(M1)(W.u.)=0.17 5
								I_{γ} : Other: 18 5 in ⁵⁸ Ni(12 C,2p γ).
(a+)								I_{γ} . Other: 18 3 iii **Ni(*-C,2p γ).
		100						
/	605.7 3	100 3					0.001322 19	$\alpha(K)$ =0.001180 <i>17</i> ; $\alpha(L)$ =0.0001230 <i>18</i> ; $\alpha(M)$ =1.83×10 ⁻⁵ <i>3</i>
								$\alpha(N+)=1.178\times10^{-6}$ B(E2)(W.u.)=1.2×10 ³ +6-3
	776.6 <i>1</i>	20.2 7	3882.95	6-				_()() =
8+	692.9 <i>1</i>	5.69 19	4144.07	6+				
	783.3 2	18.2 6	4053.72	7-				I_{γ} : Other:13.2 10 in 58 Ni(12 C,2p γ).
	1141.0 2	100 3	3695.94	6 ⁺ E2			0.000264 4	$\alpha(K)=0.000233$ 4; $\alpha(L)=2.38\times10^{-5}$ 4; $\alpha(M)=3.56\times10^{-6}$ 5; $\alpha(N+)=2.73\times10^{-6}$ 4
								B(E2)(W.u.)=14 3
	@	@						δ : δ (M3/E2)=0.0 <i>I</i> from γ (θ) in ⁶⁶ Zn(α ,2n γ).
0-								1 01 147 01: 582:/1200
8-							0.000200.7	I_{γ} : Other:14.7 21 in ⁵⁸ Ni(¹² C,2p γ).
	10/4.4 10	100 3	3882.95	6 E2			0.000299 3	$\alpha(K)$ =0.000267 4; $\alpha(L)$ =2.74×10 ⁻⁵ 4; $\alpha(M)$ =4.08×10 ⁻⁶ 6; $\alpha(N+)$ =2.67×10 ⁻⁷ 4 B(E2)(W.u.)=19 +5-9
	1303.0	100	3605.04	6 ⁺				E_{γ},I_{γ} : from ⁵⁸ Ni(¹² C,2p γ).
8+								L_{γ} , I_{γ} . Hold I_{γ} (C,2 p_{γ}).
5								
	995.9 10	7.2 3						
	1353.6 2	100 3	3695.94	6 ⁺ E2			0.000221 3	$\alpha(K)$ =0.0001611 23; $\alpha(L)$ =1.640×10 ⁻⁵ 23; $\alpha(M)$ =2.45×10 ⁻⁶ 4 $\alpha(N+)$ =4.11×10 ⁻⁵ 6
	6 ⁺ (2 ⁺) 7 ⁻ (2 ⁺) 7 ⁻	6 ⁺ 448.2 10 961.8 1 1312.2 1 1876.2 1 (2 ⁺) 3222.6 10 7 ⁻ 400.1 1 570.9 2 804.9 10 871.9 2 (2 ⁺) 3551.6 10 7 ⁻ 205.5 1 605.7 3 8 ⁺ 692.9 1 783.3 2 1141.0 2 8 ⁻ 903.7 2 1074.4 10 8 ⁺ 1303.0 8 ⁺ 212.6 1 905.5 1 995.9 10	6 ⁺ 448.2 10 6.4 5 961.8 1 100 3 1312.2 1 39.7 15 1876.2 1 73.7 24 (2 ⁺) 3222.6 10 100 7 400.1 1 100 3 570.9 2 24.6 8 804.9 10 9 6 871.9 2 32.3 10 (2 ⁺) 3551.6 10 100 7 205.5 1 605.7 3 100 3 8 ⁺ 692.9 1 5.69 19 783.3 2 18.2 6 1141.0 2 100 3 8 ⁻ 903.7 2 41 11 1074.4 10 100 3 8 ⁺ 1303.0 100 8 ⁺ 212.6 1 3.32 12 905.5 1 20.6 7 995.9 10 7.2 3	6 ⁺ 448.2 10 6.4 5 3695.94 961.8 1 100 3 3182.26 1312.2 1 39.7 15 2831.86 1876.2 1 73.7 24 2267.83 (2 ⁺) 3222.6 10 100 100 1015.81 7 ⁻ 400.1 1 100 3 4053.72 570.9 2 24.6 8 3882.95 804.9 10 9 6 3649.05 871.9 2 32.3 10 3581.98 (2 ⁺) 3551.6 10 100 100 1015.81 7 ⁻ 205.5 1 4453.89 605.7 3 100 3 4053.72 1074.4 10 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3882.95 1074.4 10 100 3 3882.95 1074.4 10 100 3 3882.95 1074.4 10 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 1100 3 3695.94 1141.0 2 100 3 3695.94 1141.0 1141	6 ⁺ 448.2 10 6.4 5 3695.94 6 ⁺ 961.8 1 100 3 3182.26 4 ⁺ 1312.2 1 39.7 15 2831.86 4 ⁺ 1876.2 1 73.7 24 2267.83 4 ⁺ (2 ⁺) 3222.6 [©] 10 100 [©] 1015.81 2 ⁺ 7 ⁻ 400.1 1 100 3 4053.72 7 ⁻ M 570.9 2 24.6 8 3882.95 6 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ (2 ⁺) 3551.6 [©] 10 100 [©] 1015.81 2 ⁺ 4453.89 7 ⁻ 605.7 3 100 3 4053.72 7 ⁻ E2 8 ⁺ 692.9 1 5.69 19 4144.07 6 ⁺ 783.3 2 18.2 6 4053.72 7 ⁻ 1141.0 2 100 3 3695.94 6 ⁺ E2 8 ⁻ 903.7 2 41 11 4053.72 7 ⁻ 1074.4 10 100 3 3695.94 6 ⁺ E2 8 ⁺ 1303.0 100 3695.94 6 ⁺ E2 8 ⁺ 1303.0 100 3695.94 6 ⁺ 905.5 1 20.6 7 4144.07 6 ⁺ 995.9 10 7.2 3 4053.72 7 ⁻	6 ⁺ 448.2 10 6.4 5 3695.94 6 ⁺ 961.8 1 100 3 3182.26 4 ⁺ 1312.2 1 39.7 15 2831.86 4 ⁺ 1876.2 1 73.7 24 2267.83 4 ⁺ (2 ⁺) 3222.6 [@] 10 100 [@] 1015.81 2 ⁺ 7 ⁻ 400.1 1 100 3 4053.72 7 ⁻ M1+E2 570.9 2 24.6 8 3882.95 6 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ (2 ⁺) 3551.6 [@] 10 100 [@] 1015.81 2 ⁺ 4453.89 7 ⁻ 605.7 3 100 3 4053.72 7 ⁻ E2 8 ⁺ 776.6 1 20.2 7 3882.95 6 ⁻ 878.3 2 18.2 6 4053.72 7 ⁻ E2 8 ⁺ 692.9 1 5.69 19 4144.07 6 ⁺ 783.3 2 18.2 6 4053.72 7 ⁻ 1141.0 2 100 3 3695.94 6 ⁺ E2 8 ⁻ 903.7 2 41 11 4053.72 7 ⁻ 1074.4 10 100 3 3882.95 6 ⁻ E2 8 ⁺ 1303.0 100 3695.94 6 ⁺ E2 8 ⁺ 1303.0 100 3695.94 6 ⁺ 905.5 1 20.6 7 4144.07 6 ⁺ 995.9 10 7.2 3 4053.72 7 ⁻	6 ⁺ 448.2 10 6.4 5 3695.94 6 ⁺ 961.8 1 100 3 3182.26 4 ⁺ 1876.2 1 73.7 24 2267.83 4 ⁺ (2 ⁺) 3222.6 [©] 10 100 [©] 1015.81 2 ⁺ 7 ⁻ 400.1 1 100 3 4053.72 7 ⁻ M1+E2 +0.5 2 570.9 2 24.6 8 3882.95 6 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ (2 ⁺) 3551.6 [©] 10 100 [©] 1015.81 2 ⁺ 7 ⁻ 205.5 1 4453.89 7 ⁻ 605.7 3 100 3 4053.72 7 ⁻ E2 8 ⁺ 692.9 1 5.69 19 4144.07 6 ⁺ 783.3 2 18.2 6 4053.72 7 ⁻ 1141.0 2 100 3 3882.95 6 ⁻ E2 8 ⁺ 903.7 2 41 11 4053.72 7 ⁻ 1074.4 10 100 3 3882.95 6 ⁻ E2 8 ⁺ 1303.0 100 3695.94 6 ⁺ 905.5 1 20.6 7 4144.07 6 ⁺ 905.5 1 20.6 7 4144.07 6 ⁺ 995.9 10 7.2 3 4053.72 7 ⁻	6 ⁺ 448.2 10 6.4 5 3695.94 6 ⁺ 961.8 1 100 3 3182.26 4 ⁺ 1312.2 1 39.7 15 2831.86 4 ⁺ 1876.2 1 73.7 24 2267.83 4 ⁺ (2 ⁺) 3222.6 [©] 10 100 [©] 1015.81 2 ⁺ 7 ⁻ 400.1 1 100 3 4053.72 7 ⁻ M1+E2 +0.5 2 0.0028 4 570.9 2 24.6 8 3882.95 6 ⁻ 804.9 10 9 6 3649.05 5 ⁻ 871.9 2 32.3 10 3581.98 5 ⁻ (2 ⁺) 3551.6 [©] 10 100 [©] 1015.81 2 ⁺ 4453.89 7 ⁻ 605.7 3 100 3 4053.72 7 ⁻ E2 0.001322 19 8 ⁺ 776.6 1 20.2 7 3882.95 6 ⁻ 84453.89 7 ⁻ 605.7 3 100 3 4053.72 7 ⁻ E2 0.001322 19 8 ⁺ 692.9 1 5.69 19 4144.07 6 ⁺ 783.3 2 18.2 6 4053.72 7 ⁻ 1141.0 2 100 3 3695.94 6 ⁺ E2 0.000264 4 8 ⁻ 2229.0 [©] 10 100 [©] 2648.67 3 ⁻ 1141.0 2 100 3 3882.95 6 ⁻ E2 0.000299 5 8 ⁺ 1303.0 100 3695.94 6 ⁺ E2 0.000299 5

γ (68Ge) (continued)

5148.69	(8-)				Mult.‡	α	Comments
		489.1 <i>10</i>	7.4 3	4659.46 7			
		695.4 <mark>&</mark>		4453.89 7-			
		1095.0 2	100 <i>3</i>	4053.72 7			
		1265.7 <i>1</i>	15.7 7	3882.95 6-			
5266.6	7+	1591.2 <i>10</i>	100	3675.34 5 ⁺			
5330.11	9-	1276.4 <i>1</i>	100	4053.72 7	E2	0.000227 4	$\alpha(K)=0.000183 \ 3; \ \alpha(L)=1.86\times10^{-5} \ 3; \ \alpha(M)=2.78\times10^{-6} \ 4;$
							$\alpha(N+)=2.30\times10^{-5} 4$ B(E2)(W.u.)=15 +3-5
5366.08	8+	316.5 <i>1</i>	11.5 7	5049.58 8 ⁺			D(D2)(11.d.) 13 13 3
2200.00	O	1222.0 <i>I</i>	70 27	4144.07 6+			
		1670.1 2	100 4	3695.94 6 ⁺	E2	0.000275 4	$\alpha(K)$ =0.0001055 15; $\alpha(L)$ =1.070×10 ⁻⁵ 15; $\alpha(M)$ =1.597×10 ⁻⁶ 23 $\alpha(N)$ =1.051×10 ⁻⁷ 15 B(E2)(W.u.)=1.8 +6-7
5678.02	9-	347.9 <i>1</i>	14.0 4	5330.11 9-			2(22)(114) 110 10 7
3070.02		720.6 <i>I</i>	14.7 5	4957.40 8			
		1224.1 2	100 3	4453.89 7	E2	0.000236 4	$\alpha(K)=0.000200 \ 3; \ \alpha(L)=2.04\times10^{-5} \ 3; \ \alpha(M)=3.04\times10^{-6} \ 5; \ \alpha(N)=1.99\times10^{-7} \ 3$
		122 (.1 2	100 3	1133.07	LL	0.000230 7	$\alpha(N+)=1.262\times10^{-5}$ 18 B(E2)(W.u.)=19 8
		1624.3 2	4 4	4053.72 7-			D(D2)((1.d.) 17 0
5821.61	9-	491.5 2	66.6 20	5330.11 9			I_{γ} : Other: 36 4 in ⁵⁸ Ni(12 C,2p γ).
3021.01		672.9 <i>I</i>	34.4 10	5148.69 (8-)			17. Other. 30 4 III 141(C,2py).
		985.1 10	24 10	4836.97 8+			
		1162.9 10	100 3	4659.46 7			
5873.98	9+	1037.0 2	100	4836.97 8 ⁺			
5961.49	10 ⁺	631.4 2	5.43 17	5330.11 9-			
		1124.5 2	100 3	4836.97 8+	E2	0.000271 4	$\alpha(K)$ =0.000241 4; $\alpha(L)$ =2.46×10 ⁻⁵ 4; $\alpha(M)$ =3.68×10 ⁻⁶ 6; $\alpha(N)$ =2.41×10 ⁻⁷ 4 $\alpha(N+)$ =1.85×10 ⁻⁶ 3 B(E2)(W.u.)=24 +5-7
							δ : 0.0 I from $\gamma(\theta)$ in 66 Zn(α ,2n γ) (1977Mo20).
6214.89	10+	848.5 10	3.24 14	5366.08 8+			
		1165.3 2	100 3	5049.58 8+	E2	0.000253 4	$\alpha(K)$ =0.000223 4; $\alpha(L)$ =2.27×10 ⁻⁵ 4; $\alpha(M)$ =3.39×10 ⁻⁶ 5; $\alpha(N)$ =2.22×10 ⁻⁷ 4 $\alpha(N+)$ =4.62×10 ⁻⁶ 7 B(E2)(W.u.)>19
		1377.9 <i>1</i>	18.7 6	4836.97 8+			- (/(······/··
6420.36	10^{-}	1463.0 2	100	4957.40 8			
6556.52	(10)	1226.4 ^{&} 1		5330.11 9			
0550.52	(10)	1407.8 <i>I</i>	100	5148.69 (8-)			
6595.71	10 ⁺	1229.6 <i>I</i>	100 3	5366.08 8+			
		1759.4 [@] 10	28 28	4836.97 8+			
6663.81	10+	789.82 7	100	5873.98 9 ⁺			

γ (68 Ge) (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	α	Comments
		1305.0 ^{&} 1					
6671.10? 7044.83	11-	1305.0° <i>I</i> 1714.7 2	100 100	5366.08 8 ⁺ 5330.11 9 ⁻	E2	0.000289 4	$\alpha(K)=0.0001003 \ 14; \ \alpha(L)=1.016\times10^{-5} \ 15; \ \alpha(M)=1.517\times10^{-6} \ 22$
7044.83	11	1/14./ 2	100	5550.11 9	E2	0.000289 4	$\alpha(K)$ =0.0001003 14; $\alpha(L)$ =1.010×10 ° 13; $\alpha(M)$ =1.317×10 ° 22 $\alpha(N)$ =9.99×10 ⁻⁸ 14 B(E2)(W.u.)=2.3 +7-10
7145.30	11-	588.0 [@] 10	2.82 13	6556.52 (10)	_		_(=-)(\(\cdot\) = \(\cdot\) = \(\cdot\)
,		1467.2 2	100 4	5678.02 9	E2	0.000227 4	$\alpha(K)$ =0.0001364 20; $\alpha(L)$ =1.387×10 ⁻⁵ 20; $\alpha(M)$ =2.07×10 ⁻⁶ 3 $\alpha(N+)$ =7.43×10 ⁻⁵ 1
7242.1?	(10+)	1876.0 ^{&}	100	5366.08 8+	(E2)	0.000345 5	$\alpha(K)=8.45\times10^{-5}$ 12; $\alpha(L)=8.56\times10^{-6}$ 12; $\alpha(M)=1.277\times10^{-6}$ 18 $\alpha(N+)=0.000251$ 4 B(E2)(W.u.)=2.1 +12-21 E _{γ} , I _{γ} : from ⁵⁸ Ni(¹² C,2p γ).
7251.12	11-	694.6 <i>I</i> 1289.6 <i>I</i> 1429.5 <i>I</i> 1573.1 <i>3</i> 1921.0 2	13.5 5 38 5 100 3 50.4 15 5.08 19	6556.52 (10) 5961.49 10 ⁺ 5821.61 9 ⁻ 5678.02 9 ⁻ 5330.11 9 ⁻	-		
7371.21	12+	1409.7 2	100	5961.49 10+	E2	0.000221 4	$\alpha(K)$ =0.0001481 21; $\alpha(L)$ =1.506×10 ⁻⁵ 21; $\alpha(M)$ =2.25×10 ⁻⁶ 4 $\alpha(N+)$ =5.61×10 ⁻⁵ 8 B(E2)(W.u.)=9 +18-7
7495.95	(11-)	1077.1 <i>10</i> 1817.9 2	28.7 <i>15</i> 100 <i>3</i>	6420.36 10 ⁻ 5678.02 9 ⁻			_()() /
7516.89	12 ⁺	1302.0 <i>I</i>	100	6214.89 10 ⁺			
7532.5	12+	1571.0 <i>10</i>	100	5961.49 10+			
7559.38	12 ⁺	963.1 10	5.86 21	6595.71 10+	E.C	0.000221 3	(II) 0.0001(05.02
		1344.4 2	100 3	6214.89 10+	E2	0.000221 3	$\alpha(K)$ =0.0001635 23; $\alpha(L)$ =1.664×10 ⁻⁵ 24; $\alpha(M)$ =2.48×10 ⁻⁶ 4 $\alpha(N+)$ =3.88×10 ⁻⁵ 6 B(E2)(W.u.)=8 +9-3
		1597.9 2	18.1 5	5961.49 10+			
7761.85	12+	202.5 1	20.4 7	7559.38 12 ⁺			
		245.0 <i>I</i> 1800.4 2	9.2 <i>4</i> 100 <i>3</i>	7516.89 12 ⁺ 5961.49 10 ⁺			
7881.5?		1920.0 ^{&} 10	100 3	5961.49 10 ⁺			
8043.38	13 ⁺	281.5 <i>I</i>	18.4 7	7761.85 12 ⁺			
50 15.50	1.5	672.2 <i>I</i>	100 3	7371.21 12+			
		723.3 10	40 11	7320.1? (12+)		
8171.94	13-	410.5 2	3.27 11	7761.85 12+			
		612.5 <mark>&</mark> 1		7559.38 12+			
		655.0 <i>1</i>	6.70 19	7516.89 12 ⁺			
		676.0 <i>1</i>	3.24 11	7495.95 (11)		

γ (68 Ge) (continued)

E (11)	τπ	ъ †	, †	Е	τπ 1	Mult.‡		Community
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}			ıvıuıt."	α	Comments
8171.94	13-	800.7 <i>I</i>	13.7 4	7371.21			0.000.433	(T) 0 00000 (G) 0 0 (40-5 (G) 0 7 (40-6 (G) 0 7 (40-7 (G) 7 (G)
		920.8 <i>1</i>	100 3	7251.12	11-	E2	0.000432 6	$\alpha(K)=0.000386 \ 6$; $\alpha(L)=3.96\times10^{-5} \ 6$; $\alpha(M)=5.91\times10^{-6} \ 9$; $\alpha(N)=3.85\times10^{-7} \ 6$ $\alpha(N+)=3.85\times10^{-7} \ 6$
								$\alpha(N+)=5.83\times 10^{-6}$ Mult.: from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (HI,xn γ).
		1026.6 <i>1</i>	39.6 14	7145.30	11-			realt Iron y(o) and y(iii poi) iii (rii,xiiy).
		1127.1 <i>I</i>	22.8 7	7044.83	11^{-}			
8621.5?		1062.1 ^{&} 10	100	7559.38				
8660.57	14 ⁺	898.7 1	25.0 8	7761.85				
		1101.2 <i>I</i> 1143.7 <i>I</i>	100 <i>3</i> 45.6 <i>14</i>	7559.38 7516.89				
8663.3?		1618.5 ^{&} 10	100	7044.83				
8781.4?		1736.5 ^{&} 10	100	7044.83				
8790.26	15-	618.3 1	100	8171.94		E2	0.001246 18	$\alpha(K)=0.001112\ 16;\ \alpha(L)=0.0001158\ 17;\ \alpha(M)=1.726\times10^{-5}\ 25$
								$\alpha(N)=1.110\times10^{-6}\ 16$
								Mult.: from $\gamma(\theta)$ in ${}^{40}\text{Ca}({}^{32}\text{S},4\text{p}\gamma)$.
8868.18	14-	696.0 <i>10</i>	100 3	8171.94				
		824.8 <i>1</i>	48.8 18	8043.38				
8930.9?	(14+)	1559.7	100	7371.21				
9012.1	14 ⁺	1452.6 [@] 10	14.5 5	7559.38				
9112.5	14 ⁺	1495.2 [@] 10 1068.8 10	100 <i>3</i> 100 <i>4</i>	7516.89 8043.38				
9112.3	14	1595.0 <i>10</i>	47.6 21	7516.89				
9170.0	14 ⁺	1410.0 <mark>&</mark>	.,,,,	7761.85				
71,010		1798.1 <i>10</i>	100	7371.21		E2	0.000317 5	$\alpha(K)=9.16\times10^{-5}$ 13; $\alpha(L)=9.27\times10^{-6}$ 13; $\alpha(M)=1.384\times10^{-6}$ 20
								$\alpha(N+)=0.000215 \ 3$
	()							B(E2)(W.u.)=4.6 23
9386.56	$15^{(-)}$	596.1 <i>10</i> 1214.6 <i>1</i>	20.0 <i>6</i> 100 <i>4</i>	8790.26 8171.94				
9418.9	14 ⁺	1886.4 <i>10</i>	100 4	7532.5				
9563.9	15 ⁽⁻⁾	904.0 10	100	8660.57				
9605.7	15 ⁺	945.4 10	73.6 23	8660.57	14 ⁺			
		1562.1 10	100 3	8043.38				
10024.58?		854.4 ^{&} 10	100	9170.0				
	()	1364.0 ^{&} 1		8660.57				
10126.6	16 ⁽⁻⁾	1336.7 10	100	8790.26				
10217.53	16 ⁺	1425.8 <i>10</i> 1557.0 2	14.7 <i>6</i> 100 <i>3</i>	8790.26 8660.57				

γ (68Ge) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	E_i (level)	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}
10295.51	17 ⁽⁻⁾	908.5 10	5.17 17	9386.56	15(-)	12246.0	18+	1949.5 <i>10</i>	38.4 14	10295.51	17(-)
		1505.2 2	100 3	8790.26		12262.5	(18^{-})	1967.0 <i>10</i>	100	10295.51	
10493.4	$16^{(-)}$	1106.4 10	40.4 18	9386.56	$15^{(-)}$	12363.4	(19^{-})	1436.7 10	100 <i>3</i>	10927.0	$17^{(-)}$
		1625.7 10	70.8 23	8868.18	14-			2067.4 10	54 18	10295.51	$17^{(-)}$
		1702.9 10	100 4	8790.26	15-	12501.8?		1837.8 <mark>&</mark> <i>10</i>	100	10664.0	16 ⁺
10664.0	16 ⁺	1651.7 [@] 10	100	9012.1	14+	12535.8?		2318.2 ^{&} 10	100	10217.53	16 ⁺
10665.6	$17^{(-)}$	369.2 10	16.0 <i>6</i>	10295.51		12641.7	(18^{+})	1224.9 10	$1.0 \times 10^2 \ 17$	11417.4	16 ⁺
		1278.8 10	100 <i>3</i>	9386.56				1555.5 10	$1.0 \times 10^2 \ 17$	11085.6	16 ⁺
10688.8?		1898.5 <mark>&</mark> <i>10</i>	100	8790.26		12652.3	(18^{-})	2525.6 10	100	10126.6	$16^{(-)}$
10896.0	16 ⁺	1727.3 10	100 4	9170.0	14 ⁺	12719.4	18+	1633.8 10	100	11085.6	16 ⁺
		2105.8 10	93 4	8790.26		12779.1?		2115.1 ^{&} 10	100	10664.0	16 ⁺
10897.0?		1884.8 <mark>&</mark> <i>10</i>	100	9012.1	14+	12817.2	19+	1274.5 10	100 16		(17^{+})
10927.0	$17^{(-)}$	631.4 10	9.1 7	10295.51				1827.4 10	81 <i>16</i>	10989.8	17+
		800.8 10	50.0 16	10126.6	16 ⁽⁻⁾	12884.1?		2220.1 20	100	10664.0	16+
		1363.8 10	99 <i>3</i>	9563.9	$15^{(-)}$	13104.3?		2808.7 ^{&} 10	100	10295.51	
		1540.4 10	100 <i>3</i>	9386.56	$15^{(-)}$	13265.3?		2969.7 ^{&} 10	100		$17^{(-)}$
		2136.2 10	53 26	8790.26		13617.4?		1623.0 ^{&} 10	100	11994.4	18+
10957.9	16 ⁺	1845.0 <i>10</i>	100	9112.5	14 ⁺	13751.3?		3455.7 ^{&} 10	100	10295.51	$17^{(-)}$
10988.1	16 ⁺	1875.2 <i>10</i>	94 <i>3</i>	9112.5	14 ⁺	13953.0	20+	1707.0 10	100	12246.0	18+
		1975.8 10	100 4	9012.1	14+	13991.0?	(20-)	1996.6 ^{&} 10	100	11994.4	18+
10989.8	17 ⁺	2328.1 <i>10</i> 1384.0 <i>10</i>	42.5 <i>20</i> 100	8660.57 9605.7	14 ⁺ 15 ⁺	14085.5	(20^{-})	1823.0 <i>10</i> 1921.0 <i>10</i>	40 <i>50</i> 20.7 <i>10</i>	12262.5 12165.0	(18^{-}) (19^{-})
10989.8	17 16 ⁺	1820.0 <i>10</i>	100	9170.0	13 14 ⁺			1921.0 10 1948.0 10	100 3	12136.9	(19) 19 ⁽⁻⁾
11085.6	16 ⁺	1666.0 <i>10</i>	100	9418.9	14 ⁺	14116.5	20 ⁺	2122.0 10	100 5	11994.4	18 ⁺
11406.4?		2616.1 ^{&} 10	100	8790.26		14360.9?		2224.0 ^{&} 10	100	12136.9	19(-)
11417.4	16 ⁺	1999.0 10	100	9418.9	14+	14401.9	21(-)	2265.0 10	100	12136.9	19(-)
11793.4?		1666.8 <mark>&</mark> <i>10</i>	100	10126.6	$16^{(-)}$	14485.6	(21^{-})	2122.1 10	100 23	12363.4	(19^{-})
11794.2?	(19^{-})	1498.7 <i>10</i>	100	10295.51	$17^{(-)}$,	2348.7 10	27 23	12136.9	19(-)
11832.2	(20^{-})	1536.7 10	100	10295.51		14504.9	21+	1687.7 <i>10</i>	100	12817.2	19 ⁺
11994.4	18 ⁺	1006.4 10	36.0 10	10988.1	16 ⁺	15562.8	22+	1446.3 <i>10</i>	100	14116.5	20+
		1036.3 10	14.4 6	10957.9	16+	15835.1	22+	1882.0 <i>10</i>	100	13953.0	20+
		1330.5 <i>10</i> 1776.9 <i>10</i>	15.6 <i>6</i> 100 <i>11</i>	10664.0 10217.53	16 ⁺ 16 ⁺	16130.5	$22^{(-)}$	1703.9 <i>10</i> 2045.0 <i>10</i>	39.0 <i>14</i> 100 <i>3</i>	14426.6? 14085.5	(21) (20 ⁻)
12136.9	19(-)	1470.0 10	32.0 10	10217.55	17 ⁽⁻⁾	16733.9	23+	2229.0 10	100 3	14083.3	21+
12130.9	19.	1841.32 <i>4</i>	100 3	10295.51		17360.5?	23	2855.5 ^{&} 10	100	14504.9	21+
12165.0	(19 ⁻)	1870.0 <i>10</i>	100 3	10295.51		17300.37	23(-)	3094.0 10	100	14304.9	21(-)
12246.0	18+	1287.8 10	57 3	10255.51	16 ⁺	18022.1	24 ⁺	2187.0 10	100	15835.1	22 ⁺
		1351.3 10	65.3 20	10896.0	16 ⁺	18132.5	24 ⁽⁻⁾	2002.0 10	100	16130.5	$22^{(-)}$
		1581.9 <i>10</i>	100 3	10664.0	16 ⁺	18274.1		2439.0 10	100	15835.1	22+

γ (68Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^π	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
19785.0	25 ⁺	3051.0 10	100	16733.9	23 ⁺	3425.0+x	(18)	1850.0 <mark>&</mark> <i>10</i>		1575.0+x? (1	16)
20356.6	$26^{(-)}$	2224.0 10	100	18132.5	$24^{(-)}$	5440.1+x	(20)	2015.0 10	100	3425.0+x (1	18)
20821.2	26 ⁺	2799.0 10	100	18022.1	24+	7677.1+x	(22)	2237.0 10	100	5440.1+x (2	20)
22958.6	$28^{(-)}$	2602.0 10	100	20356.6	$26^{(-)}$	10126.2+x	(24)	2449.0 10	100	7677.1+x (2	22)
1620.0+x	(16)	1620.0 <i>10</i>	100	X	(14)	12815.2+x	(26)	2689.0 10	100	10126.2+x (2	24)
3425.0+x	(18)	1805.0 <i>10</i>		1620.0+x	(16)						

[†] From (HI,xn γ), except where noted. [‡] From $\gamma(\theta)$ in ⁵⁸Ni(¹²C,2p γ) (1981De03), except where noted. [#] From γ linear polarization in ⁶³Cu(⁷Li,2n γ) (1981De03). [@] From ⁶⁸As ε decay (151.6 s). [&] Placement of transition in the level scheme is uncertain.

 $^{68}_{32}\mathrm{Ge}_{36}$

Level Scheme (continued)

Intensities: Type not specified

Legend

Adopted Levels, Gammas Legend Level Scheme (continued) $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified $I_{\gamma} < 10\% \times I_{\gamma}^{\gamma}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) 16⁺ 10688.8 10665.6 17(-) 16⁺ 10664.0 $16^{(-)}$ | 155.0 100 | | 45.8 100 | | 45.8 14.9 | 10493.4 $17^{(-)}$ 10295.51 16⁺ 10217.53 16(-) 10126.6 10024.58 15⁺ 9605.7 15(-) 9563.9 14+ 9418.9 15(-) 9386.56 14+ 9170.0 0.4 ps 2 14^{+} 9112.5 14+ 9012.1 (14^{+}) 8<u>930.9</u> 14 8868.18 15 8790.26 8781.4 8663.3 8660.57 _ _ _8621.5 13-8171.94 13+ 8043.38 12+ 7761.85 12+ 7559.38 0.8 ps + 6 - 412+ 7532.5 12⁺ (11⁻) 7516.89 7495.95 12+ 0.7 ps + 14 - 37371.21 11-7251.12 7145.30 11-11-7044.83 1.0 ps +4-3 270.93 d 13

 $^{68}_{32}\mathrm{Ge}_{36}$

Band(M): Super-deformed band (2001Wa02)

Band(N): Band based on 13^+ 8043 level

$$^{68}_{32}\mathrm{Ge}_{36}$$

History

Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016		

 $Q(\beta^-)=-6.22\times 10^3$ 5; S(n)=11532.5 16; S(p)=8523.0 15; $Q(\alpha)=-4087.7$ 11 2012Wa38 S(2n)=19725.7 21; S(2p)=15132.9 11 (2012Wa38). α : Additional information 1.

$^{70}\mathrm{Ge}$ Levels

Cross Reference (XREF) Flags

A	70 Ga $β$ ⁻ decay	J	69 Ga(p, γ)	S	70 Ge(p,p'),(pol p,p')
В	70 As ε decay	K	⁶⁹ Ga(d,n)	T	70 Ge(d,d')
C	70 Zn $2\beta^-$ decay	L	69 Ga(α ,t)	U	⁷⁰ Ge(⁶ Li, ⁶ Li')
D	$^{12}C(^{66}Zn.^{8}Bev)$	M	69 Ga(3 He,d)	٧	$^{70}\mathrm{Ge}(\alpha,\alpha')$
E	$^{46}\text{Ti}(^{28}\text{Si},4\text{p}\gamma)$	N	Coulomb excitation	W	70 Ge(e,e')
F	64 Ni(12 C, α 2n γ)	0	$^{70}\mathrm{Ge}(\gamma,\gamma')$	X	72 Ge(p,t)
G	65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ)	P	70 Ge(pol γ, γ')	Y	74 Se(d, 6 Li)
H	⁶⁶ Zn(⁶ Li,d)	Q	70 Ge(n,n' γ)		
I	68 Zn(α ,2n γ), 67 Zn(α ,n γ)	R	70 Ge(p,p' γ)		

		$I = {}^{68}Zn(a$	$(\alpha,2n\gamma)$, 6^{\prime} Zn($(\alpha,n\gamma)$	R 700	$Ge(p,p'\gamma)$				
E(level) [†]	J^{π}	T _{1/2}	XREF		Comments				
0.0 ^b	0+	stable	ABCDEFGHI JKLMNOI	PQRSTUVWXY	R=4.055 fm 8; where R is the rms value of charge distribution from (e,e').				
1039.506 ^b 9	2+	1.31 ps 2	AB DEFG IJ LMN	QRSTUVWXY	Q=+0.04 3 (2003Su01); μ =+0.91 5 T _{1/2} : from B(E2)=0.179 3 in Coulomb excitation. Others: 1.38 ps 8 from B(E2)=0.169 10 from (e,e'), 1.32 ps 14 from DSAM in ¹² C(⁶⁶ Zn, ⁸ Be), 1.3 ps 3 from DSAM in ⁶⁸ Zn(α,2nγ), ⁶⁷ Zn(α,nγ) and >5 ps in (⁷ Li,2nγ). J ^π : from 1039.49γ E2 to 0+. Q: from multiple Coulomb Excitation (2003Su01). μ : from weighted average of 0.88 8 (2013Gu23, from g-factor using TF), 0.90 16 (2007Bo41, from g-factor using TF), 0.740 178 (1987La20, from g-factor using TF), 0.94 52 (1984Pa20, from g-factor using TF), 0.94 20 (1977Fa07, from g-factor using IMPAC). Others: 0.76 16 (1977Fa07), 1.18 58 (1969He11); the same data reanalyzed by 1974Hu01 gave μ =1.76 42; the same data reanalyzed by 1977Fa07 according to the latest understanding of the experiment and corrections μ = 0.94 20 (from g=0.47 10)				
1215.621 ^e 15	0+	3.7 ns 2	AB DE GHIJKLMN	QRSTUV XY	 (this value is included in the weighted average). T_{1/2}: from electron spectrometer measurement with pulsed-cyclotron beam in (p,p'γ). Others: 2.9 ns 4 from ⁷⁰Ga β⁻ decay; 4.8 ns 7 from B(E2) in Coulomb excitation. J^π: L=0 from ⁷²Ge(p,t) and ⁶⁶Zn(⁶Li,d); E0 transition to g.s The level interpreted as deformed-intruder state 				
1707.689 ^c 14	2+	1.94 ps 28	B DEFG IJ LMN	QRSTUV X	(2003Su01). Q=-0.07 4 (2003Su01); μ =+1.3 7 (2013Gu23) J ^{π} : from 1708 γ E2 transition to g.s. T _{1/2} : from DSAM in ¹² C(⁶⁶ Zn, ⁸ Be). Other: 1.1 ps +10-4 from (α ,2n γ), (α ,n γ), 4.2 ps +26-14 from Coulomb				

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
					excitation and > 7 ps in ⁶⁵ Cu(⁷ Li, 2nγ), ⁶⁰ Ni(¹² C,2pγ). Q: from multiple Coulomb Excitation. μ: from g-factor measurements using TF in Coulomb excitation. Other: 0.8 <i>12</i> from ¹² C(⁶⁶ Zn, ⁸ Be) using TF.
2153.084 ^b 20	4+	0.76 ps <i>14</i>	B DEFG IJ L N	QR UV X	Q=+0.22 5 (2003Su01); μ=+1.7 8 T _{1/2} : from DSAM in ¹² C(⁶⁶ Zn, ⁸ Be). Others: 4 ps <i>I</i> from DSAM in ⁶⁵ Cu(⁷ Li,2nγ), ⁶⁰ Ni(¹² C,2pγ) and 1.7 ps <i>4</i> from Coulomb excitation and 0.8 ps 2 from DSAM in ⁶⁸ Zn(α.2nγ), ⁶⁷ Zn(α,nγ). J ^π : from 1113.60γ E2 to 2+; assumed E2 cascade member. Q: from multiple Coulomb Excitation (2003Su01). μ: from g-factor measurements using TF in Coulomb
2156.744 ^e 21	2+		B D G J MN	QRS	excitation (2013Gu23,2007Bo41). Q=+0.26 10 (2003Su01) J ^π : 941.10y E2 to 0 ⁺ . Q: from multiple Coulomb Excitation.
2160				ST	
2307.0 5	0_{+}	≤40 ps	J LM	QRS X	$T_{1/2}$: centroid-shift time measurement in $(p,p'\gamma)$. J^{π} : E0 transition to g.s.
2451.313 ^c 21	3+	1.7 [#] ps +10-3	B D FG IJ LM	QRS	J^{π} : from 743.62 γ M1(+E2) to 2 ⁺ ; J = 3 from angular distribution and yield function in $(\alpha, 2n\gamma)$.
2534.95 4	2+	0.6 [#] ps 2	B D IJ LM	QRS X	J ^{π} : L(p,t)=2; J ^{π} not consistent with observed log f t=7.8 from 4 ⁺ . T _{1/2} : Other: >0.4 ps from DSAM in (n,n' γ).
2562.049 ^d 20	3-	0.50 ps 7	B DE G I LMN	QRSTUVWX	μ=0.3 9 (2007Bo41) T _{1/2} : weighted average of 0.55 ps 7 in ¹² C(⁶⁶ Zn, ⁸ Beγ) (from DSAM) and 0.4 ps <i>I</i> in ⁶⁵ Cu(⁷ Li,2nγ), ⁶⁰ Ni(¹² C,2pγ) (from DSAM). Others: 2.3 ps 5 from ⁶⁵ Cu(⁷ Li,2nγ), ⁶⁰ Ni(¹² C,2pγ). J ^π : L(p,t)=3. B(E3)=0.073 10 in ⁷⁰ Ge(e,e'); 0.068 from Coulomb excitation. μ: from transient field method in Coulomb excitation (2007Bo04).
2806.25 ^c 3	4+	0.6 [#] ps 2	B DEFG IJ LM	QRS V X	J ^{π} : L(p,t)=4; 1098.54 γ E2 to 2 ⁺ . Discrepant with L(α , α')=3 for E=2800 keV <i>10</i> which may be a different level.
2887.4 7	0^{+}		LM	QRS X	J^{π} : from $L(p,t)=0$.
2945.0 <i>10</i> 3046.439 <i>20</i>	2 ⁺ 3 ⁺		J LM B 1M	QRS V X QRS U X	J^{π} : from L(p,t)=2. J^{π} : from 889.72 γ D+Q to 2 ⁺ ; 893.59 γ D+Q to 4 ⁺ ,
			2	2.0 J 1	$\log ft$ =5.75 from 4 ⁺ parent.
3058.695 ^e 16	4+	1.4 [#] ps <i>3</i>	B DE G I m	QRST V	$T_{1/2}$: other: 1.0 ps 5 from DSAM in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ). J^{π} : L(p,t)=4.
3105.7 7	(0^{+})		M	QRS X	J^{π} : from excitation function in $(p,p'\gamma)$.
3130 <i>10</i> 3180.6 <i>10</i>	2+	0.015 ps 6	M	V QRS UV X	J^{π} : L(p,t)=2.
3194.2 6	4+		L	s v x	$T_{1/2}$: from DSAM in $(n,n'\gamma)$. J^{π} : L(p,t)=4; discrepant with L(α,α')=(5) for E=3200 keV 10. Also, L(p,p')=4.

E(level) [†]	J^π	T _{1/2}		XREF	1		Comments
3240.5 10	1+			LM O	RS		J^{π} : 1 from $\gamma(\theta)$ in (γ, γ') and π =+ from L=1 in (³ He,d).
3294.79 8	3+,4+		Ве		QR	X	J^{π} : from 1587 γ to 2 ⁺ and L(p,p') = 4.
3296.98 ^b 3	6+	0.5 [#] ps <i>I</i>	eFG I		Q S		$T_{1/2}$: others: 2.6 ps 6 from DSAM in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ). J^{π} : from 1143.89 γ E2 to 4 $^{+}$; band assignment.
3308						X	, , , ,
3314.5 7	1-			МО	QRS I	JV X	J ^{π} : 1 from $\gamma(\theta)$ in (γ, γ') , π =− from L (α, α') =1. B(E1)↑: from ⁷⁰ Ge (γ, γ') .
3334.8 10	0+ to 3+			LM	QRS	X	J^{π} : from L=1(+3) in (³ He,d) and from observed 2295.3 γ to 2 ⁺ .
3345 2 3351 2					S S		,
3371.57 10	(3,4)	0.3 ps 2	В		Q		J ^{π} : log $ft=7.7\ 1$ from 4 ⁺ in ε decay; J=5 unlikely because of 2333 γ to 2 ⁺ level. T _{1/2} : from DSAM in $(n,n'\gamma)$.
3416.32 ^d 4	5-	13.7 [@] ps 10	DE G I	M	QS	X	J^{π} : L(p,t)=5.
		Pr ss					$T_{1/2}$: Other: > 14 ps in 65 Cu(7 Li, 2 n γ), 60 Ni(12 C, 2 p γ).
3423 2	(2^{+})					V X	J^{π} : from L(p,t)=(2).
3428 2	5-				STU		J^{π} : from $L(\alpha, \alpha') = 5$.
3432 2	3-			M		V X	J^{π} : from $L(\alpha, \alpha') = 3$.
3456 2	4 ⁺				S		J^{π} : from L=4 in (p,p') and (${}^{6}Li, {}^{6}Li'$).
3466? 6	1+ 0+ 0+			M	D.C		IT C 1 1 2 3 3 1 1
3482.3 <i>5</i> 3488.276 <i>21</i>	$1^+, 2^+, 3^+$ $(3, 4^+)$		В	M	RS QRS	X	J ^{π} : from L=1+3 in (³ He,d). J ^{π} : log ft =6.0 I from 4 ⁺ in ε decay; J=4 ⁻ and 5 unlikely because of 2449 γ to 2 ⁺ level.
3517? <i>6</i> 3540?				M	Т		unlikely because of 2449y to 2 level.
3562.7 6				M	RS	X	
3570.44 7	(3)-		В	M	S T		J ^{π} : from 2531.7 γ to 2 ⁺ ; 1471.24 γ to 4 ⁺ ; L=4(+2) in (³ He,d).
3580.7 10	4+	0.6 ps 2			QS		J^{π} : $L(\alpha,\alpha')=4$.
							$T_{1/2}$: from DSAM in $(n,n'\gamma)$.
3590.3 <i>5</i>				M	RS		
3631.5 10	(2)+	0.5 ps <i>I</i>		LM	QRS	X	J^{π} : from L(p,t)=(2); π =+ from L(³ He,d)=1. T _{1/2} : from DSAM in (n,n' γ).
3637 10	0^{+}	@				V	J^{π} : $L(\alpha, \alpha')=0$.
3666.78 ^d 6	6-	35 [@] ps 3	EGI	M	QS		J ^π : J=6 from $\gamma(\theta)$ in ⁴⁶ Ti(²⁸ Si,4p γ), π from 250 γ M1(+E2) to 5 ⁻ .
		,,					$T_{1/2}$: others: 40 ps 8 in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and 74 ps 6 in (HI,xn γ).
3669.4 ^c 10	(5^{+})	1 [#] ps <i>I</i>	FI	M			J^{π} : 1218 γ to 3 ⁺ ; band assignment.
3675.76 7	4+		В	L	RS	V	J^{π} : from $L(\alpha, \alpha')=4$.
3683 <i>3</i>	0+					X	J^{π} : from L(p,t)=0.
3687 <i>3</i>	$1^+, 2^+, 3^+$			M	S		J^{π} : L=1+3 in (³ He,d).
3708.5 9	1+ 0 0			M	RS		17 1 1 2 1 3 1 N
3733 <i>3</i>	$1^+, 2^+, 3^+$			M	_		J^{π} : L=1+3 in (³ He,d).
3740 <i>3</i>	0+	#			S	X	J^{π} : $L(p,t)=0$.
3753.2 ^c 4	6+	1.6 [#] ps 5	EFG I		S		J^{π} : from stretched 946.7 γ E2 to 4 ⁺ , L(p,p')=(6); band assignment.
3776 2	3-				S	V X	J^{π} : from $L(\alpha,\alpha')=3$.
3782 2	2+			M	S		XREF: M(3775). J^{π} : from L(p,t)=2.

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$			XREF	ì		Comments
3850 <i>3</i>					LM	S		
3856 2	$(2)^{-}$					S		J^{π} : from L=4+2(+0) in (³ He,d).
3870 2	3-					S	V X	J^{π} : from $L(\alpha, \alpha')=3$.
3890 <i>3</i>	$1^+, 2^+, 3^+$				M	S		J^{π} : from L=1+3 in (³ He,d).
3895.2 10	1				L C)	X	J^{π} : from 3895.1 γ D to 0 ⁺ .
3900.6 7	$(4^-,5,6,7^-)$			E				J^{π} : from 234 γ to 6 ⁻ , 484 γ to 5 ⁻ .
3903.9 7	+				M	RS	V	J^{π} : L=1+3 in (³ He,d), L(p,p')=(0).
2011 2						•		E(level): from $(p,p'\gamma)$.
3911 3	4+					S	v	III. forms I (o. 4) A
3928 <i>3</i> 3941? <i>10</i>	4					S S	X	J^{π} : from L(p,t)=4.
3955.11 ^d 8	7-	17.0 [@] ps 10		гст			77	IT. I 7 form (0) in (2 2m) = form 200.
3933.11° 8	7-	17.0° ps 10		E G I		Q S	V	J ^{π} : J=7 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, π from 288 γ M1+(E2) to 6 ⁻ .
2064-2	(2)-				T M		V	J^{π} : from L=4+2(+0) in (³ He,d).
3964 <i>3</i> 3976 <i>3</i>	$(2)^{-}$ $1^{+}, 2^{+}, 3^{+}$				LM	S	V	J': from $L=4+2(+0)$ in (*He,d). J^{π} : from $L(\alpha,\alpha')=2$.
3990 <i>3</i>	1 ,2 ,3				M	S		J . Holli $L(u,u)=2$.
4003 2						RS	٧	
4024 3	4+				M		X	J^{π} : from L(p,t)=4.
4037 <i>3</i>	(4^{+})					S	V	J^{π} : from $L(\alpha, \alpha') = (4)$.
4053.3 10				E				
4054 3					M	S		
4061 2	$1^+, 2^+, 3^+$					S		J^{π} : from L=1+3 in (3 He,d).
4080 <i>3</i>	$1^+, 2^+, 3^+$				M			J^{π} : from L=1+3 in (³ He,d).
4086 <i>3</i>	4+						V X	$J^{\pi}: L(p,t)=4.$
4096.1 20	3-		_			RS		J^{π} : from $L(\alpha, \alpha') = 3$.
4101.45 5	3-,4-		В			S		J^{π} : from 688 γ to 5 ⁻ and L(p,p')=3.
4103.5 [‡] <i>e</i> 5	6+			G				J^{π} : 1295 γ Q to 4 ⁺ ; band assignment in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C, 2p γ) (2010Su05).
4119 <i>3</i>					M	S		211/), 141(C, 2p/) (20100000).
4131 2	2-				M	S		J^{π} : from L=4+2+0 in (³ He,d).
4144.7 20	<u>1</u> -					RS	V	J^{π} : from $L(\alpha, \alpha')=1$.
4155 2	$1^+, 2^+, 3^+$				M	S		J^{π} : L=1+3 in (³ He,d).
4166 <i>3</i>						S		, , ,
4180 <i>3</i>	2+					S	X	J^{π} : L(p,t)=2.
4203.5 ^b 4	8+	8 [@] ps 2		EFG I	M	S		J^{π} : from 906.6 γ E2 to 6 ⁺ ; band assignment.
4212 3	3+,4+,5+				M	S		J^{π} : from L(p,p')=4.
4226 <i>3</i>	2+					S	X	J^{π} : from $L(p,t)=2$.
4238 <i>3</i>	1+,2+,3+				M	S	X	J^{π} : from L=1+3 in (³ He,d).
4243.11 <i>15</i>	a.t.		В					TT 0 T () A
4261 10	2 ⁺					S	, X	J^{π} : from L(p,t)=2.
4268 <i>10</i> 4282 <i>10</i>	5 ⁻ 3 ⁺ ,4 ⁺ ,5 ⁺					S	V	J^{π} : from $L(\alpha, \alpha') = 5$. J^{π} : from $L(p, p') = 4$.
4282 10	1 ⁺ ,2 ⁺ ,3 ⁺				M	3		J^{π} : from $L(P,P) = 4$. J^{π} : from $L(^{3}He,d) = 1 + 3$.
4299.3 3	7 ⁻	3 [@] ps 1		EGI	п	c	77	
	1	5 ps 1		EGI	T M	S	V	J^{π} : from $L(\alpha, \alpha') = 7$.
4330 3	(2)=				LM M	S	VX	L=4+2(+0) in (3 He,d); L(α,α')=(3+5), L(p,t)=0.
4352 3	(2) ⁻ 1 ⁽⁻⁾ &						X	J^{π} : from L=4+2(+0) in (³ He,d).
4356.7 7	10,000					P		$B(E1)\uparrow=0.0023$ 4
1257 10	+					c	v	B(E1) from 70 Ge(pol γ , γ').
4357 <i>10</i> 4365 <i>10</i>	(3 ⁻)					S S	V X	L(p,t)=2 at 4357 20; L(p,p')=4 at 4357 10. J^{π} : from L(α,α')=(3) for 4373 10.
4378 10	(3)					S	V	J . 110111 L(u,u)-(J) 101 43/3 10.
4391 3	1+,2+,3+				M	S		J^{π} : from L(³ He,d)=1+3.
4409 10	4 ⁺				11	S	٧	J^{π} : from $L(\alpha, \alpha')=4$.
4419 3	2-,3-,4-				M	S		J^{π} : from L(3 He,d)=4+2.
	, ,							

E(level) [†]	J^{π}	$T_{1/2}$		XREF			Comments
4431.4 4	8+	0.4 [#] ps 2	EFG I				J^{π} : from 1134.6 γ E2 to 6 ⁺ and yield function in 68 Zn(α ,2n γ).
4447.5 8	1-&			M P			B(E1)↑=0.0036 7
4448 2	2+				c	17 V	B(E1) from 70 Ge(pol γ , γ').
4448 <i>2</i> 4473 <i>2</i>	4 ⁺			M	S S	V X V X	J^{π} : from L(p,t)=2. J^{π} : from L(p,t)=4. Other: L(α,α')=(3+5) is
							discrepant.
4520 <i>3</i>	2 ⁻ ,3 ⁻ ,4 ⁻			M	S		J^{π} : from L(³ He,d)=4+2.
4520.9 8	1			P			B(E1) \uparrow <0.0005 B(E1) from ⁷⁰ Ge(pol γ , γ').
4534 10	(4^{+})				S	٧	J^{π} : from $L(\alpha, \alpha') = (4)$.
4539 3	0_{+}				c	X	J^{π} : from L(p,t)=0.
4546 <i>10</i> 4552.1 <i>10</i>	(8)	104 [@] ps +70-35	I		S		J^{π} : from 253 γ to 7 ⁺ and 1253.2 γ to 6 ⁺ .
4555 3	(6)	104 ps +70-33	_	M	S		3 . Hom 255y to 7 and 1255.2y to 6 .
4574 3	(0.44)		_	M			
4577.18 <i>15</i>	$(3,4^+)$		В		S		J^{π} : log $ft=6.4$ from 4^+ in ε decay; J=5 unlikely because of 2421 γ to 2^+ level.
4606 10					S		
4613 3	$1^+, 2^+, 3^+$			M	S	17 V	J^{π} : from $L(^{3}He,d)=1+3$.
4629 <i>3</i> 4642 <i>3</i>	(4^+) $(2)^-$			M	S S	V X	J^{π} : L(α , α')=(4). J^{π} : L(3 He,d)=4+2(+0).
4657 10	(2)			n	3	V	E(level): multiplet.
4675.39 21	$(3,4^+)$		В		S	•	J^{π} : log ft =6.2 2 from 4 ⁺ in ε decay; J=5 or 4 ⁻ are
							unlikely because of 2968.1 γ to 2 ⁺ level.
4687 2 4707 <i>10</i>	$(2)^{-}$			LM	S S	X	J^{π} : L=4+2(+0) in (³ He,d).
4716 <i>10</i>	(2^{+})				S	V	J^{π} : from L(p,t)=(2).
4727 10	(-)				S	•	(<u>r</u> ,,,) (=).
4736 <i>3</i>				M			- 2
4768 <i>3</i> 4775 <i>10</i>	$(2)^{-}$ (4^{+})			M		٧	J^{π} : L(³ He,d)=4+2(+0). J^{π} : from L(α , α')=(4).
4790.6 19	1(-)&			P	•	٧	J. Holli $L(\alpha,\alpha)$ –(4).
4810 <i>10</i>	3-			•		V	J^{π} : from $L(\alpha, \alpha')=3$.
4820.2 ^c 11	(8^{+})		F				J^{π} : 1067 γ to 6 ⁺ ; band assignment.
4851.9 <i>4</i>	$(8^{-})^{a}$	>3 [#] ps	ΕGΙ	M			J^{π} : from (M1+E2) γ to 7 ⁻ .
4877 <i>3</i>	2-			M			J^{π} : L=4+2+0 in (³ He,d).
4886.6 <i>13</i> 4905 <i>3</i>	1& 3-			P M)		J^{π} : from $L(\alpha, \alpha')=3$.
4908.1 ^d 10	$(9^{-})^{a}$		E	п			J . Holli $L(\alpha,\alpha)=3$.
4915 10	(>)		-			٧	
4935 3	1-					X	J^{π} : from $L(p,t)=1$.
4940 10	3-			м		V	J^{π} : from $L(\alpha, \alpha') = 3$. J^{π} : $L(^{3}\text{He,d}) = 4 + 2(+0)$.
4943 <i>3</i> 4979 <i>3</i>	(2) ⁻ (2) ⁻			M M			J^{π} : L(*He,d)=4+2(+0). J^{π} : L=4+2(+0) in (³ He,d).
4985.0 10	(2)		I	11			J : L = 4 + 2(+0) in (IIC,u).
5008 <i>3</i>	2^{-}			M		٧	J^{π} : from L=4+2+0 in (³ He,d); L(α,α')=(3).
5024 3	2+		_			X	J^{π} : from L(p,t)=2.
5040 <i>10</i> 5048.4 <i>10</i>	(3 ⁻) (4 ⁻)		I I	M M		V	J^{π} : L(α , α')=(3). J^{π} : from L(3 He,d)=4+2+0; 1381.g γ to 2 $^{-}$.
5050 3	0+			L		X	J^{π} : from L(p,t)=0.
5078 <i>3</i>	1+,2+,3+			M		V	J^{π} : L=1+3 in (³ He,d).
5102 <i>3</i>	$1^+, 2^+, 3^+$			M			J^{π} : L=1+3 in (³ He,d).
5113 10	(3 ⁻)					V	J^{π} : $L(\alpha, \alpha') = (3)$.

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	X	REF		Comments
5129.6 7	1-&			P		B(E1)↑=0.0029 8 B(E1) from 70 Ge(pol γ , γ').
5145 <i>3</i>	(3-)			M	V	J^{π} : L(α,α')=(3); discrepant with L(3 He,d)=(4+2+0).
5184 <i>3</i>	0_{+}				X	J^{π} : $L(p,t)=0$.
5195 <i>10</i>	(4^{+})				V	J^{π} : $L(\alpha,\alpha')=(4)$.
5222.3 14	(2-)		E			TT 1 (1) (2)
5227 10	(3-)				V	J^{π} : $L(\alpha, \alpha') = (3)$.
5242.7 ^b 11	10+		EFG I			J^{π} : from 1039.2 γ Q to 8 ⁺ ; band assignment.
5263.4 8	1(-)&			P		B(E1)↑=0.0022 4
5265.82 14			В			B(E1) from 70 Ge(pol γ , γ').
5290 <i>3</i>	0+		Ь		X	J^{π} : $L(p,t)=0$.
5299.2 <i>4</i>	9(-)		EGI			J^{π} : from 1344.1 γ (E2) to 7 ⁻ , 1273 γ from 11 ⁽⁻⁾ ; inconsistent
						with $(6,7,8)$ from $\gamma(\theta)$ in $(^{7}\text{Li},2n\gamma)$.
5338 <i>3</i>	0_{+}				X	J^{π} : L(p,t)=0.
5370.11 5	- 1		В			
5403 3	0_{+}				X	$J^{\pi}: L(p,t)=0.$
5410 <i>3</i>	0+		_		X	17 C 1222 C 15 L 1 L 1 C 15 C 71
5435.5 [‡] <i>e</i> 11	8+		G			J^{π} : from 1332 γ Q to 6 ⁺ ; band assignment in ⁶⁵ Cu(⁷ Li, 2n γ), ⁶⁰ Ni(¹² C, 2p γ) (2010Su05).
5441 3	(2^{+})				х	J^{π} : L(p,t)=(2).
5465.3 8	1-&			P	A	B(E1)↑=0.0023 4
3403.3 0	1			1		B(E1) from 70 Ge(pol γ , γ').
5467 <i>3</i>	0^{+}				X	J^{π} : $L(p,t)=0$.
5512.5 10	1 ⁽⁻⁾ &			P		$B(E1)\uparrow=0.0019 \ 3$
						B(E1) from 70 Ge(pol γ , γ').
5539.7 5	(10)	5 ns 2	FG I			$T_{1/2}$: from electronic timing in 68 Zn(α ,2n γ), 67 Zn(α ,n γ). J^{π} : $T_{1/2}$ of this level suggests that the 1108 γ to 8^+ may be M2, suggesting an assignment of J^{π} =10 $^-$. However, level is assigned as side band member based on 8^+ in 64 Ni(12 C, α 2n γ), suggesting an assignment of J^{π} =10 $^+$.
	2(-)		_			Other: 9^+ in 65 Cu(7 Li, 2 Cn $^\gamma$), 60 Ni(12 C, 2 Cp $^\gamma$).
5552.5 [‡] 5	9 ⁽⁻⁾ 1 ⁽⁻⁾ &		G	_		J^{π} : 1253.2 γ Q to 7^{-} .
5876.9 7	I(-)&			P		$B(E1)\uparrow=0.0014$ 4
5000 7 7	1(+)&			ъ		B(E1) from 70 Ge(pol γ , γ').
5989.7 <i>7</i> 6006.9 <i>11</i>	1(1)		E	P		
$6160.1^{\frac{d}{14}}$	(11 ⁻) ^a		E			
6297.0 14	1&		2	P		
6362.8 8	1&			P		
6549.1 <i>14</i>	1		E	•		
6572.2 11	11 ⁽⁻⁾		G			J^{π} : from 1273 γ Q to $9^{(-)}$.
6587.7 8	1(+)&			P		
6604.2 11			E			
6636.6 <i>15</i>	1 ^{&}			P		
6702.5 <i>13</i>	$1^{(-)}$ &			P		B(E1)↑=0.0027 5
						B(E1) from 70 Ge(pol γ , γ').
6716.8 ^b 15	12+		FG			J^{π} : Q 1474 γ to 10 ⁺ ; band assignment.
6779.7 11	(12)		F			
6786.1 ^d 17	$(13^{-})^{a}$		E			
7306.3 8	1(+)&			P		

E(level) [†]	J^{π}		KREF	Comments
7426.0 8	1(-)&		P	B(E1)↑=0.0022 4
7619.7 <i>15</i>	(14)	F		B(E1) from 70 Ge(pol γ , γ'). J ^{π} : Q 840 γ to (12).
7753.5 10	1(-)&		P	B(E1) \uparrow =0.0026 6 B(E1) from ⁷⁰ Ge(pol γ , γ').
7767.8 <mark>b</mark> 18	14 ⁺	F		J^{π} : Q 1051 γ to 12 ⁺ , band assignment.
8058.1 ^d 20	$(15^{-})^{a}$	E		
8245.7 18	(16)	F		J^{π} : Q 626 γ to (14).
8283.7 <i>15</i>	1 ⁽⁺⁾ &		P	
8878.5 <i>14</i>	1 &		P	
9423.7 <i>21</i>	(18)	F		J^{π} : Q 1178 γ to (16).
9619.2 ^d 22	$(17^{-})^{a}$	E		
10269.7 23	(20)	F		J^{π} : 846 γ to (18).
11336.2 ^d 25	$(19^{-})^{a}$	E		
13173 ^d 3	$(21^{-})^{a}$	E		

 $^{^{\}dagger}$ From a least-squares fit for levels connected by $\gamma's$ and from reaction data sets for others. ‡ This level was only reported in 2010Su05 in $^{65}\text{Cu}(^{7}\text{Li},2n\gamma),~^{60}\text{Ni}(^{12}\text{C},2p\gamma).$ # From DSAM in $^{68}\text{Zn}(\alpha,2n\gamma),~^{67}\text{Zn}(\alpha,n\gamma).$ @ From RDM in $^{68}\text{Zn}(\alpha,2n\gamma),~^{67}\text{Zn}(\alpha,n\gamma)$ (1982Cl02).

[&]amp; From mult in (pol γ, γ').

^a From (²⁸Si,4py) based on DCO, and level cascades.

^b Band(A): sequence based on g.s..

^c Band(B): sequence based on 2⁺, 1707.7 keV level.

^d Band(C): sequence based on 3⁻, 2562.05 keV level. ^e Band(D): sequence based on 0⁺, 1215.62 keV level.

γ (⁷⁰Ge)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
1039.506	2+	1039.513 10	100	0.0 0+	E2 ^d		3.23×10 ⁻⁴		$\alpha(K)=0.000289 \ 4; \ \alpha(L)=2.96\times10^{-5} \ 5; \ \alpha(M)=4.41\times10^{-6} \ 7; \ \alpha(N)=2.88\times10^{-7} \ 4$ B(E2)(W.u.)=20.8 4 E _{\gamma} : from ⁷⁰ Ga \beta^- decay.
1215.621	0+	176.115 <i>13</i>	100 9	1039.506 2+	E2 ^f		0.0894		$\alpha(K)=0.0790 \ 11; \ \alpha(L)=0.00902 \ 13;$ $\alpha(M)=0.001337 \ 19; \ \alpha(N)=7.73\times10^{-5} \ 11$ $B(E2)(W.u.)=48 \ 7$ E_{γ} : from 70 Ga β^{-} decay.
		1215.8 ^b		0.0 0+	E0 <i>f</i>			1.00 4	$I_{(\gamma+ce)}$: for 100 transitions of 176 γ from $(p,p'\gamma)$ (1985Pa15).
1707.689	2+	492.09 5	4.9 <i>4</i>	1215.621 0+	E2		0.00247		$\alpha(K)$ =0.00220 3; $\alpha(L)$ =0.000232 4; $\alpha(M)$ =3.45×10 ⁻⁵ 5; $\alpha(N)$ =2.20×10 ⁻⁶ 3 B(E2)(W.u.)=16 3 Mult.: from RUL and decay pattern.
		668.21 4	100 6	1039.506 2+	M1+E2	-3.6 +11-6	9.80×10 ⁻⁴ 2		$\alpha(K)$ =0.000875 21; $\alpha(L)$ =9.08×10 ⁻⁵ 22; $\alpha(M)$ =1.35×10 ⁻⁵ 4; $\alpha(N)$ =8.74×10 ⁻⁷ 20 B(E2)(W.u.)=64 11; B(M1)(W.u.)=0.0015 9 Mult., δ : from RUL, δ and decay pattern. δ as evaluated by 1977Kr17;
		1707.61 2	79.2 23	0.0 0+	E2		2.87×10 ⁻⁴		$\alpha(K)$ =0.0001011 15; $\alpha(L)$ =1.025×10 ⁻⁵ 15; $\alpha(M)$ =1.529×10 ⁻⁶ 22; $\alpha(N)$ =1.007×10 ⁻⁷ 15 B(E2)(W.u.)=0.50 8 Mult.: from angular distribution in ⁶⁸ Zn(α ,2n γ), $\alpha(M)$ =1.007×10 ⁻⁷ 15 Mult.: from angular distribution in $\alpha(M)$ =1.007×10 ⁻⁷ 2n(α ,n γ) and RUL.
2153.084	4+	445.6 10	0.7 4	1707.689 2+	[E2]		0.00338 6		$\alpha(K)=0.00301$ 5; $\alpha(L)=0.000318$ 5; $\alpha(M)=4.74\times10^{-5}$ 8; $\alpha(N)=3.00\times10^{-6}$ 5 B(E2)(W.u.)=17 10
		1113.60 4	100 6	1039.506 2+	E2		2.77×10 ⁻⁴		$\alpha(K)=0.000247$ 4; $\alpha(L)=2.52\times10^{-5}$ 4; $\alpha(M)=3.76\times10^{-6}$ 6; $\alpha(N)=2.46\times10^{-7}$ 4 B(E2)(W.u.)=25 5 Mult.: from 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL. $\delta=-0.1$ 2 in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) gives
2156.744	2+	450.4 5	4.7 24	1707.689 2+	E2		0.00327		a large B(M3) which is excluded by RUL. $\alpha(K)=0.00291\ 5;\ \alpha(L)=0.000308\ 5;$ $\alpha(M)=4.58\times10^{-5}\ 7;\ \alpha(N)=2.90\times10^{-6}\ 5$ Mult.: from $(p,p'\gamma)$. Other: D from 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ).
		941.10 <i>4</i>	62 3	1215.621 0+	E2		4.09×10^{-4}		$\alpha(K)=0.000366 \ 6; \ \alpha(L)=3.76\times10^{-5} \ 6; \ \alpha(M)=5.60\times10^{-6} \ 8; \ \alpha(N)=3.65\times10^{-7} \ 6$
		1117.28 <i>4</i>	100 6	1039.506 2+	E2		2.75×10^{-4}		Mult.: from $(p,p'\gamma)$. $\alpha(K)=0.000245 \ 4$; $\alpha(L)=2.50\times10^{-5} \ 4$;

 ∞

γ (⁷⁰Ge) (continued)

E_i (level)	${\rm J}_i^\pi$	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f J	f^{π}	Mult.	δ	α	$\mathrm{I}_{(\gamma+ce)}$	Comments
2156.744	2+	2156.65 6	17.1 9) ⁺	[E2]		4.60×10 ⁻⁴		$\alpha(M)=3.73\times10^{-6} \ 6$; $\alpha(N)=2.44\times10^{-7} \ 4$ Mult.: from $(p,p'\gamma)$. $\alpha(K)=6.55\times10^{-5} \ 10$; $\alpha(L)=6.62\times10^{-6} \ 10$; $\alpha(M)=9.88\times10^{-7} \ 14$; $\alpha(N)=6.52\times10^{-8} \ 10$
2307.0	0+	599.1 ^b	82 [@] 7	1707.689 2	2+	E2 ^b		1.36×10^{-3}		$\alpha(K)$ =0.001218 <i>17</i> ; $\alpha(L)$ =0.0001270 <i>18</i> ; $\alpha(M)$ =1.89×10 ⁻⁵ <i>3</i> ; $\alpha(N)$ =1.216×10 ⁻⁶ <i>17</i> B(E2)(W.u.)>4.8
		1091.3 ^b		1215.621 0)+	E0 f			0.013 2	$I_{(\gamma+ce)}$: for 100 transitions of 1268 γ from $(p,p'\gamma)$ (1985Pa15).
		1267.5 ^b	100 [@] 7	1039.506 2	2+	E2 ^b		2.28×10 ⁻⁴		$\alpha(K)$ =0.000185 3; $\alpha(L)$ =1.89×10 ⁻⁵ 3; $\alpha(M)$ =2.82×10 ⁻⁶ 4; $\alpha(N)$ =1.85×10 ⁻⁷ 3 B(E2)(W.u.)>0.14
		2307.1 ^b		0.0)+	E0 f			0.040 9	$I_{(\gamma+ce)}$: for 100 transitions of 1268 γ from $(p,p'\gamma)$ and includes pair production (1985Pa15).
2451.313	3+	294.60 <i>16</i> 297.88 <i>8</i>	0.37 <i>15</i> 2.4 <i>4</i>	2156.744 2 2153.084 4						
		743.62 4	100 7	1707.689 2	2+	M1(+E2)	+0.04 8	5.78×10 ⁻⁴ 9		$\alpha(K)$ =0.000517 8; $\alpha(L)$ =5.28×10 ⁻⁵ 8; $\alpha(M)$ =7.89×10 ⁻⁶ 12; $\alpha(N)$ =5.20×10 ⁻⁷ 8 B(E2)(W.u.)<0.5; B(M1)(W.u.)=0.022 +14-5 Mult., δ : D+Q from 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ), M1+(E2) from RUL. Other: δ =+3.5 9 from $\gamma(\theta)$ in (n,n' γ).
		1411.86 <i>4</i>	39.3 23	1039.506 2	2+	M1+E2	-2.2 +5-3	2.18×10 ⁻⁴ 4		$\alpha(K)$ =0.0001463 22; $\alpha(L)$ =1.487×10 ⁻⁵ 22; $\alpha(M)$ =2.22×10 ⁻⁶ 4; $\alpha(N)$ =1.460×10 ⁻⁷ 22 B(E2)(W.u.)=0.79 +48–17; B(M1)(W.u.)=0.00022 +15–10 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); M1+E2 from RUL. δ : from $\gamma(\theta)$ in (n,n' γ).
2534.95	2+	827.24 <i>10</i> 1319.6	32 <i>4</i> 9.5 <i>10</i>	1707.689 2 1215.621 0						I _{γ} : from (n,n' γ); I γ (827)/I γ (1495)=76 10/100 10, in (n,n' γ) which ratio is different from the adopted
		1495.43 5	100 8	1039.506 2	2+	M1+E2	-0.75	2.15×10 ⁻⁴		Iγ from ⁷⁰ As ε decay. $\alpha(K)$ =0.0001274 $l8$; $\alpha(L)$ =1.291×10 ⁻⁵ $l8$; $\alpha(M)$ =1.93×10 ⁻⁶ 3 ; $\alpha(N)$ =1.273×10 ⁻⁷ $l8$ B(E2)(W.u.)=1.9 7; B(M1)(W.u.)=0.0050 $l8$ Mult.,δ: D+Q from $\gamma(\theta)$ in (n,n' γ); M1+E2 from RUL.
2562.049	3-	1522.55 2	100	1039.506 2	2+	E1+M2 ^d	-0.11 ^d 10	3.42×10^{-4}		$\alpha(K)=6.7\times10^{-5} \ 6; \ \alpha(L)=6.8\times10^{-6} \ 6;$ $\alpha(M)=1.01\times10^{-6} \ 8; \ \alpha(N)=6.6\times10^{-8} \ 6$

9

γ (⁷⁰Ge) (continued)

						• • • • • • • • • • • • • • • • • • • •	
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f J^r	Mult.	α	Comments
2806.25	4+	653.15 6	11.8 14	2153.084 4	(M1)	7.66×10 ⁻⁴	B(E1)(W.u.)=0.00022 4 δ : other: -0.11 4 from $\gamma(\theta)$ in (n,n' γ); 0.02 5 from ⁶⁵ Cu(⁷ Li,2n γ). $\alpha(K)$ =0.000685 10; $\alpha(L)$ =7.01×10 ⁻⁵ 10; $\alpha(M)$ =1.048×10 ⁻⁵ 15; $\alpha(N)$ =6.90×10 ⁻⁷ 10 B(M1)(W.u.)=0.014 5
		1098.54 4	100 6	1707.689 2	+ E2	2.84×10 ⁻⁴	Mult.: D from 65 Cu(7 Li,2p γ), 60 Ni(12 C,2p γ) based on $\Delta J = 0$ dipole transition; $\Delta \pi = no$ from level scheme. $\alpha(K) = 0.000254$ 4; $\alpha(L) = 2.60 \times 10^{-5}$ 4; $\alpha(M) = 3.88 \times 10^{-6}$ 6; $\alpha(N) = 2.54 \times 10^{-7}$ 4 B(E2)(W.u.)=31 11 Mult.: from 68 Zn(α ,2n γ), 67 Zn(α ,n γ) gives a large B(M3) which is excluded by RUL.
2887.4	0^{+}	730.8 [‡]	100 [‡] <i>10</i>	2156.744 2	+		Zii(d,ii/) gives a large B(vis) which is excluded by Re2.
		1179.5‡	100 [‡] 15	1707.689 2			
2945.0	2+	1237.3 <mark>b</mark>	100 <mark>b</mark>	1707.689 2			
3046.439	3 ⁺	239.90 10	1.1 3	2806.25 4			
		595.11 <i>4</i>	100 6	2451.313 3			
		889.72 <i>4</i>	14.0 9	2156.744 2			
		893.50 <i>4</i>	10.0 5	2153.084 4			
		1338.76 4	48 <i>3</i>	1707.689 2			
		2006.87 <i>3</i>	14.8 5	1039.506 2			
3058.695	4+	252.46 <i>4</i>	16.3 10	2806.25 4		4	
		496.74 <i>4</i>	15.3 10	2562.049 3	E1]	7.15×10^{-4}	$\alpha(K)$ =0.000639 9; $\alpha(L)$ =6.52×10 ⁻⁵ 10; $\alpha(M)$ =9.72×10 ⁻⁶ 14; $\alpha(N)$ =6.31×10 ⁻⁷ 9
							B(E1)(W.u.)=0.00015 4
					1		Mult.: D from $\gamma(\theta)$ in 65 Cu(7 Li,2p γ), 60 Ni(12 C,2p γ).
		607.34 <i>4</i>	26.2 15	2451.313 3	()		7
		901.95 5	5.9 <i>4</i>	2156.744 2		4.54×10^{-4}	$\alpha(K)$ =0.000406 6; $\alpha(L)$ =4.17×10 ⁻⁵ 6; $\alpha(M)$ =6.22×10 ⁻⁶ 9; $\alpha(N)$ =4.05×10 ⁻⁷ 6 B(E2)(W.u.)=1.00 23
		905.61 2	67 <i>4</i>	2153.084 4			
		1350.90 6	2.8 3	1707.689 2	F [E2]	2.21×10^{-4}	$\alpha(K)$ =0.0001618 23; $\alpha(L)$ =1.647×10 ⁻⁵ 23; $\alpha(M)$ =2.46×10 ⁻⁶ 4; $\alpha(N)$ =1.614×10 ⁻⁷ 23
		2019.16 2	100.0 25	1039.506 2	+ E2	4.02×10 ⁻⁴	B(E2)(W.u.)=0.063 <i>16</i> α (K)=7.38×10 ⁻⁵ <i>11</i> ; α (L)=7.46×10 ⁻⁶ <i>11</i> ; α (M)=1.114×10 ⁻⁶ <i>16</i> ; α (N)=7.35×10 ⁻⁸ <i>11</i> B(E2)(W.u.)=0.30 <i>7</i>
							Mult.: from 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL. M3 is ruled out because δ =+0.2 2 from 68 Zn(α ,2n γ), 67 Zn(α ,n γ) gives a large B(M3).
3105.7	(0^+)	1397.9 [‡]	33 [‡] 10	1707.689 2	+		(1) (1) (1) (1) (1) (1) (1) (1)
~ = ~ * * * * *	()	2066.3 [‡]	100 [‡] 7	1039.506 2			
3180.6	2+	2141.1 [‡]	100	1039.506 2			
2100.0	_	21 11.1	100	1007.000 2			

10

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
240.5	1+	3240.4	100	0.0 0+	M1		8.29×10 ⁻⁴	$\alpha(K)=3.21\times10^{-5}$ 5; $\alpha(L)=3.23\times10^{-6}$ 5; $\alpha(M)=4.82\times10^{-7}$ 7; $\alpha(N)=3.19\times10^{-8}$ 5 E _{γ} : from (γ,γ') . Mult.: D from $\gamma(\theta)$ in (γ,γ') , $\Delta\pi=$ yes from level scheme.
294.79	3+,4+	760.2 <i>5</i> 1587.17 <i>12</i> 2255.16 <i>11</i>	8.×10 ¹ 4 100 <i>13</i> 44 6	2534.95 2 ⁺ 1707.689 2 ⁺ 1039.506 2 ⁺				
3296.98	6+	490 ⁸	0.80 ^g 20	$2806.25 4^+$	[E2]			
		1143.89 ^{&} 2	100 ^g	2153.084 4+	E2		2.62×10 ⁻⁴	$\alpha(K)$ =0.000232 4; $\alpha(L)$ =2.37×10 ⁻⁵ 4; $\alpha(M)$ =3.53×10 ⁻⁶ 5; $\alpha(N)$ =2.31×10 ⁻⁷ 4 B(E2)(W.u.)=34 7 Mult.: From angular distribution in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL. δ = 0.0 2 from $\gamma(\theta)$.
3314.5	1-	2274.6 [‡]		1039.506 2+				
		3314.8		0.0 0+	E1		1.41×10 ⁻³	$\alpha(K)=2.09\times 10^{-5} \ 3; \ \alpha(L)=2.10\times 10^{-6} \ 3; \ \alpha(M)=3.14\times 10^{-7} \ 5; \ \alpha(N)=2.07\times 10^{-8} \ 3$ E _{γ} : from (γ,γ') . Mult.: D from $\gamma(\theta)$ in (γ,γ') , $\Delta\pi=$ yes from level scheme.
3334.8 3371.57	0 ⁺ to 3 ⁺ (3,4)	2295.3 [‡] 1218.57 <i>11</i> 2331.59 24	100 100 <i>21</i> 26 <i>6</i>	1039.506 2 ⁺ 2153.084 4 ⁺ 1039.506 2 ⁺				
3416.32	5-	357.72 5	59 4	3058.695 4 ⁺	E1 ^d		1.68×10 ⁻³	$\alpha(K)$ =0.001499 21; $\alpha(L)$ =0.0001533 22; $\alpha(M)$ =2.28×10 ⁻⁵ 4; $\alpha(N)$ =1.475×10 ⁻⁶ 21 B(E1)(W.u.)=0.000146 16 Mult.: From ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α , n γ) and RUL. δ =-0.06 3 in ⁶⁸ Zn(α ,2n γ), ⁶⁷ Zn(α , n γ) gives a large B(M2). δ : Other: 0.00 4 in ⁶⁵ Cu(⁷ Li, 2n γ) ⁶⁰ Ni(¹² C, 2p γ).
		854.6 4	97 6	2562.049 3	E2		5.20×10 ⁻⁴	$\alpha(K) = 0.000464 \ 7; \ \alpha(L) = 4.78 \times 10^{-5} \ 7;$ $\alpha(M) = 7.13 \times 10^{-6} \ 10; \ \alpha(N) = 4.64 \times 10^{-7} \ 7$ $B(E2)(W.u.) = 2.00 \ 21$ Mult.: From 68 Zn(α ,2n γ), 67 Zn(α , n γ) and RUL. $\delta = 0.02 \ 5$ in 68 Zn(α ,2n γ), 67 Zn(α , n γ) gives a large B(M3).
		1263.09& 6	100 6	2153.084 4+	E1(+M2) ^d	-0.05 <i>d</i> 5	1.90×10 ⁻⁴ 4	$\alpha(K)=8.98\times10^{-5} \ 24; \ \alpha(L)=9.07\times10^{-6} \ 25;$ $\alpha(M)=1.35\times10^{-6} \ 4; \ \alpha(N)=8.90\times10^{-8} \ 25$ $\alpha(M)=8.90\times10^{-6} \ 6; \ \beta(M2)(W.u.)=0.040 \ 4$
3488.276	(3,4+)	953.30 <i>7</i> 1036.99 <i>4</i>	11.3 <i>11</i> 64 5	2534.95 2 ⁺ 2451.313 3 ⁺				D(L1)(W.u.)-3.3^10 0, D(M2)(W.u.)-0.040 4

γ (⁷⁰Ge) (continued)

							<u> </u>		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
3488.276	$(3,4^+)$	1331.58 7	10.0 9	2156.744					
		1335.28 10	8.1 9	2153.084					
		1780.52 2	100.0 22	1707.689					
2570.44	(2)=	2448.82 9	7.7 5	1039.506					
3570.44	(3)	1417.24 <i>7</i> 2531.7 2	100 <i>10</i> 6.0 <i>20</i>	2153.084 1039.506					
3580.7	4+	1427.6 [‡]	100	2153.084					
3631.5	$(2)^{+}$	2591.9 [‡]	100	1039.506					
		250.46 ^{&} 5				MICEON	$0.03^{d} + 2 - 5$	0.00727	(II) 0.00(40.10 (I) 0.000(70.10
3666.78	6-		100	3416.32		M1(+E2) ^d	0.034 +2-5	0.00727	$\alpha(K)$ =0.00648 10; $\alpha(L)$ =0.000678 10; $\alpha(M)$ =0.0001013 15; $\alpha(N)$ =6.62×10 ⁻⁶ 10 B(E2)(W.u.)=0.85 7; B(M1)(W.u.)=0.040 3 δ : Other: +0.05 2 in ⁶⁵ Cu(⁷ Li,2n γ), 60 Ni(¹² C,2p γ).
3669.4	(5^+)	1218.1 <mark>&</mark>	100	2451.313					
3675.76	4+	1523.2 7	100 19	2153.084					
		2636.20 7	43.6 19	1039.506				4	_
3753.2	6+	946.7 [#] <i>4</i>	100#	2806.25	4+	E2		4.03×10 ⁻⁴	$\alpha(K)$ =0.000360 5; $\alpha(L)$ =3.70×10 ⁻⁵ 6; $\alpha(M)$ =5.52×10 ⁻⁶ 8; $\alpha(N)$ =3.60×10 ⁻⁷ 5 B(E2)(W.u.)=27 9 Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, M2 excluded by comparison to RUL.
3895.2	1	3895.1	100	0.0	0+	D		1.07×10^{-3}	$\alpha(K)=2.40\times10^{-5} \ 4; \ \alpha(L)=2.41\times10^{-6} \ 4;$ $\alpha(M)=3.60\times10^{-7} \ 5; \ \alpha(N)=2.39\times10^{-8} \ 4$ E_{γ} : from (γ,γ') . Mult.: from $\gamma(\theta)$ in (γ,γ') .
3900.6	$(4^-,5,6,7^-)$	234		3666.78	6-				E_{γ} : From ⁴⁶ Ti(²⁸ Si, 4p γ).
		484		3416.32	5-				E_{γ} : From ⁴⁶ Ti(²⁸ Si, 4p γ).
3955.11	7-	288.33 ^{&} 5	100 ^{&} 10	3666.78	6-	M1(+E2) ^d	0.01 ^d 3	0.00512	$\alpha(K)$ =0.00457 7; $\alpha(L)$ =0.000476 7; $\alpha(M)$ =7.12×10 ⁻⁵ 11; $\alpha(N)$ =4.66×10 ⁻⁶ 7 B(E2)(W.u.)=0.081 12; B(M1)(W.u.)=0.045 7
		658.1 <mark>&</mark> 4	19 <mark>&</mark> 4	3296.98	6+	E1(+M2)	+0.02 5	3.67×10 ⁻⁴ 10	$\alpha(K)=0.000329 \ 9; \ \alpha(L)=3.34\times10^{-5} \ 9;$
									$\alpha(M)$ =4.98×10 ⁻⁶ <i>13</i> ; $\alpha(N)$ =3.25×10 ⁻⁷ 9 B(E1)(W.u.)=1.3×10 ⁻⁵ <i>3</i> ; B(M2)(W.u.)=0.056 <i>13</i> Mult., δ : D+Q from ⁶⁵ Cu(⁷ Li,2n γ), $\Delta \pi$ = yes from level scheme.
4053.3		1247 <mark>#</mark>	100 [#]	2806.25	4+				
4101.45	3-,4-	688 [@]		3416.32	5-				
- /		1045 [@]		3058.695					
		1295.24 6	100 11	2806.25	4+	Q			Mult.: Q from $\gamma(\theta)$ in 65 Cu(7 Li, $2n\gamma$), 60 Ni(12 C, $2p\gamma$).

12

							γ (**Ge)	(continued)	
$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
4101.45	3-,4-	1539.29 <i>20</i> 1944.21 <i>16</i>	31 <i>9</i> 25 <i>4</i>	2562.049 2156.744					
		1944.21 <i>10</i> 1948.35 <i>11</i>	59 5	2153.084					
4103.5	6+	688 ^C	7.3° 6	3416.32					
		1045 ^c 1295 ^c	100 ^c 9 14.8 ^c 13	3058.695 2806.25	4 · 4 +	Q			Mult.: from angular distribution of oriented nuclei (ADO)
									radios in 65 Cu(7 Li, 2n γ), 60 Ni(12 C, 2p γ) (2010Su05).
		1948 ^c	5.5 ^c 6	2156.744	2+				E_{γ} : 1948 γ populates 2 ⁺ state according to level scheme given in 2010Su05. Placement of 1948 γ is questionable due to ΔJ .
4203.5	8+	450 ^g	2.9 <mark>8</mark> 6	3753.2	6+	[E2]			
		906.6 [@] 4	100 ^g 10	3296.98	6+	E2		4.48×10^{-4}	$\alpha(K)$ =0.000401 6; $\alpha(L)$ =4.12×10 ⁻⁵ 6; $\alpha(M)$ =6.14×10 ⁻⁶ 9; $\alpha(N)$ =4.00×10 ⁻⁷ 6 B(E2)(W.u.)=6.7 17
									Mult.: from angular distribution and linear-polarization data
									in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL. δ =-0.2 2 is
									68 Zn(α ,2n γ), 67 Zn(α ,n γ) gives a large B(M3) value, M3 is not possible because of RUL.
4243.11		1196.66 <i>15</i>	100	3046.439	3+				•
4299.3	7-	344.1 ^{&} 4	73 & 15	3955.11	7-	M1(+E2)	0.1 3	0.0034 6	$\alpha(K)$ =0.0030 6; $\alpha(L)$ =0.00031 6; $\alpha(M)$ =4.7×10 ⁻⁵ 9; $\alpha(N)$ =3.1×10 ⁻⁶ 6
									$\alpha(N)=3.1\times10^{-6}$ B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.08 3
									Mult., δ : D+Q from angular distribution data in
		1002.4 ^{&} 4	100 <mark>&</mark> 20	2207.00	c +	E1 . 1/2	0.11.2	1.5010=4.4	⁶⁵ Cu(⁷ Li,2nγ), $\Delta \pi$ = no from level scheme.
		1002.4 4	100 20	3296.98	6 ⁺	E1+M2	0.11 2	$1.59 \times 10^{-4} \ 4$	$\alpha(K)$ =0.000142 3; $\alpha(L)$ =1.44×10 ⁻⁵ 4; $\alpha(M)$ =2.15×10 ⁻⁶ 5; $\alpha(N)$ =1.41×10 ⁻⁷ 3 B(E1)(W.u.)=8.E-5 4
									B(E1)(W.u.)=8.E-5.4 Mult., δ : D+Q from angular distribution data in
									65 Cu(7 Li,2n γ), $\Delta \pi$ = yes from level scheme.
4356.7	1 ⁽⁻⁾	4356.6 ^a 7	100	0.0	0+	E1 ^a		0.00182	$\alpha(K)=1.480\times10^{-5} \ 2I; \ \alpha(L)=1.483\times10^{-6} \ 2I; \ \alpha(M)=2.21\times10^{-7} \ 3; \ \alpha(N)=1.463\times10^{-8} \ 2I$
4431.4	8+	677	3.4 10	3753.2	6+	[E2]		4	
		1134.6 [@] 4	100 9	3296.98	6+	E2		2.66×10^{-4}	$\alpha(K)$ =0.000236 4; $\alpha(L)$ =2.42×10 ⁻⁵ 4; $\alpha(M)$ =3.60×10 ⁻⁶ 5; $\alpha(N)$ =2.36×10 ⁻⁷ 4
									B(E2)(W.u.)=44 22
									Mult.: from angular distribution in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL. δ = -0.1 2 in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) gives large B(M3). RUL rules out M3.
4447.5	1-	4447.3 ^a 8	100	0.0	0^{+}	E1 ^a		0.00185	$\alpha(K)=1.443\times10^{-5}\ 21;\ \alpha(L)=1.446\times10^{-6}\ 21;$
						- · a			$\alpha(M)=2.16\times10^{-7} \ 3; \ \alpha(N)=1.426\times10^{-8} \ 20$
4520.9	1-	4520.7 ^a 8	100	0.0	0_{+}	E1 ^a		0.00188	$\alpha(K)=1.414\times10^{-5}\ 20;\ \alpha(L)=1.417\times10^{-6}\ 20;\ \alpha(M)=2.11\times10^{-7}\ 3;\ \alpha(N)=1.398\times10^{-8}\ 20$
									$\alpha(N) = 2.11 \times 10^{-6} \text{ 3; } \alpha(N) = 1.398 \times 10^{-6} \text{ 20}$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
4552.1	(8)	252.8 <mark>&</mark>	100	4299.3	7-				
4577.18	$(3,4^+)$	2419.88 24	86 15	2156.744					
		2424.41 20	100 15	2153.084					
4675.39	$(3,4^+)$	2521.8 <i>3</i>	49 13	2153.084					
		2968.1 <i>3</i>	100 <i>15</i>	1707.689					
4790.6	1 ⁽⁻⁾	4790.4 ^a 19	100	0.0	0+	E1 ^a		0.00196	$\alpha(K)=1.317\times10^{-5}$ 19; $\alpha(L)=1.319\times10^{-6}$ 19; $\alpha(M)=1.97\times10^{-7}$ 3; $\alpha(N)=1.302\times10^{-8}$ 19
4820.2	(8^{+})	1067 <mark>8</mark>	100	3753.2	6+				
4851.9	(8-)	896.8 ^{&} 4	100	3955.11	7-	(M1+E2) ^e	0.4 ^e 2	3.98×10 ⁻⁴ 11	$\alpha(K)=0.000356 \ 10; \ \alpha(L)=3.64\times10^{-5} \ 11; \ \alpha(M)=5.43\times10^{-6} \ 15; \ \alpha(N)=3.58\times10^{-7} \ 10$ B(E2)(W.u.)<4.9; B(M1)(W.u.)<0.01 δ : Other: +1.1 3 in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2n γ).
4886.6	1	4886.4 ^a 13	100	0.0	0^{+}	D^a			0. out
4908.1	(9^{-})	953 [#]	100 [#]	3955.11	7-				
4985.0	()	1029.9 <mark>&</mark>	100	3955.11	, 7-				
5048.4	(4-)	1381.6 <mark>&</mark>	100	3666.78	6-				
5129.6	1-	5129.4 ^a 7	100	0.0	0+	E1 ^a		0.00207	$\alpha(K)=1.212\times10^{-5}\ 17;\ \alpha(L)=1.214\times10^{-6}\ 17;$
	1				U	EI		0.00207	$\alpha(\mathbf{K}) = 1.212 \times 10^{-7} \ \beta(\mathbf{K}) = 1.214 \times 10^{-7} \ \beta(\mathbf{K}) = 1.198 \times 10^{-8} \ 17$
5222.3		1169 [#]	100 [#]	4053.3					
5242.7	10 ⁺	1039.2 ^{&}	100	4203.5	8+	E2		3.23×10^{-4}	$\alpha(K)=0.000289$ 4; $\alpha(L)=2.96\times10^{-5}$ 5; $\alpha(M)=4.41\times10^{-6}$ 7 $\alpha(N)=2.88\times10^{-7}$ 4
									Mult.: Q from $\gamma(\theta)$ in 65 Cu(7 Li, $^{2n}\gamma$), 60 Ni(12 C, $^{2p}\gamma$), assumed E2 band member.
5263.4	1(-)	5263.2 ^a 8	100	0.0	0+	E1 ^a		0.00211	$\alpha(K)=1.175\times10^{-5}\ 17;\ \alpha(L)=1.177\times10^{-6}\ 17;$ $\alpha(M)=1.756\times10^{-7}\ 25;\ \alpha(N)=1.162\times10^{-8}\ 17$
5265.82		2219.34 <i>14</i>	100	3046.439	3 ⁺				a(ii) inconto 20, a(ii) ino2/10 1/
5299.2	9(-)	1344.1 [@] 4	100	3955.11	7-	(E2)			Mult.: from $\gamma(\theta)$ in 65 Cu(7 Li, 2 n γ), 60 Ni(12 C, 2 n γ).
5370.11		1881.67 <i>5</i>	100 6	3488.276		,			
		2325.42 18	21 2	3046.439					
5435.5	8+	1332 ^c	100 ^C	4103.5	6+	Q			Mult.: from angular distribution of oriented nuclei (ADO) radios in ⁶⁵ Cu(⁷ Li, 2ny), ⁶⁰ Ni(¹² C, 2py) (2010Su05).
5465.3	1-	5465.1 ^a 8	100	0.0	0+	E1 ^a		0.00216	$\alpha(K)=1.124\times10^{-5}\ 16;\ \alpha(L)=1.125\times10^{-6}\ 16;$ $\alpha(M)=1.678\times10^{-7}\ 24;\ \alpha(N)=1.111\times10^{-8}\ 16$
5512.5	1 ⁽⁻⁾	5512.3 ^a 10	100	0.0	0+	E1 ^a		0.00217	$\alpha(K) = 1.112 \times 10^{-5} \ 16; \ \alpha(L) = 1.114 \times 10^{-6} \ 16;$ $\alpha(M) = 1.661 \times 10^{-7} \ 24; \ \alpha(N) = 1.099 \times 10^{-8} \ 16$
5539.7	(10)	1108.3 [@] 4	100 [@]	4431.4	8+	Q^b		5.54×10^{-4}	$\alpha(\text{M})$ =1.001×10 24, $\alpha(\text{N})$ =1.099×10 10 $\alpha(\text{K})$ =0.000495 7; $\alpha(\text{L})$ =5.10×10 ⁻⁵ 8; $\alpha(\text{M})$ =7.62×10 ⁻⁶ 11; $\alpha(\text{N})$ =5.03×10 ⁻⁷ 7 Mult.: from R(DCO) in ⁶⁴ Ni(¹² C, α 2n γ). From T _{1/2}

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								considerations, M2 is more likely. However, assignment to a band structure in 64 Ni(12 C, α 2n γ) suggests E2 character. Other: D in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ).
5552.5	9(-)	1253.2 [@] 4	100	4299.3	7-	Q	2.30×10 ⁻⁴	$\alpha(K)$ =0.000190 3; $\alpha(L)$ =1.94×10 ⁻⁵ 3; $\alpha(M)$ =2.89×10 ⁻⁶ 4; $\alpha(N)$ =1.89×10 ⁻⁷ 3 Mult.: Q from angular distribution of oriented nuclei (ADO) ratio in 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ).
5876.9	1 ⁽⁻⁾	5876.6 ^a 7	100	0.0	0+	E1 ^a	0.00227	$\alpha(K)=1.031\times10^{-5}$ 15; $\alpha(L)=1.032\times10^{-6}$ 15; $\alpha(M)=1.540\times10^{-7}$ 22; $\alpha(N)=1.019\times10^{-8}$ 15
5989.7	1(+)	5989.4 ^a 7	100	0.0	0+	M1 ^a	1.66×10^{-3}	$\alpha(K) = 1.272 \times 10^{-5} \ 18; \ \alpha(L) = 1.276 \times 10^{-6} \ 18; \ \alpha(M) = 1.90 \times 10^{-7} \ 3;$ $\alpha(N) = 1.262 \times 10^{-8} \ 18$
6006.9		1155 [#]	100 [#]	4851.9	(8-)			4(-), -11
6160.1	(11^{-})	1252#	100#	4908.1				
6297.0	1	6296.7 ^a 14	100	0.0		D^a		
6362.8	1	6362.5 ^a 8	100	0.0		D^a		
6549.1		1641 [#]	100 [#]	4908.1				
6572.2	11(-)	1273 [@]	100	5299.2		Q		Mult.: from Angular Distribution of Oriented nuclei (ADO) ratio in ⁶⁵ Cu(⁷ Li,
								$2n\gamma$), 60 Ni(12 C, $2p\gamma$) and level scheme.
6587.7	1 ⁽⁺⁾	6587.4 ^a 8	100	0.0		M1 ^a		
6604.2		1305 [#]	100 [#]	5299.2				
6636.6	1	6636.3 ^a 15	100	0.0		D^a		
6702.5	1 ⁽⁻⁾	6702.2 ^a 13	100	0.0		E1 a		
6716.8	12+	1474 <mark>8</mark>	100	5242.7	10+	E2		Mult.: Q in 65 Cu(7 Li, 2 n γ), 60 Ni(12 C, 2 p γ) and 64 Ni(12 C, 2 2n γ), assumed E2 from placement in band structure.
6779.7	(12)	1240 ^g	100	5539.7	(10)	Q		Mult.: from R(DCO) in 64 Ni(12 C, α 2n γ).
6786.1	(13^{-})	626 [#]	100 [#]	6160.1	(11^{-})			
7306.3	1(+)	7305.9 ^a 8	100	0.0		M1 ^a		
7426.0	1(-)	7425.6 <mark>a</mark> 8	100	0.0	0^{+}	E1 ^a		
7619.7	(14)	840 <mark>8</mark>	100	6779.7		Q		Mult.: from R(DCO) in 64 Ni(12 C, α 2n γ).
7753.5	1(-)	7753.0 ^a 10	100	0.0		E1 ^a		•
7767.8	14+	1051 ^g	100	6716.8	12+	E2		Mult.: Q from R(DCO) in 64 Ni(12 C, α 2n γ), E2 from assumed band structure.
8058.1	(15^{-})	1272 [#]	100 <mark>#</mark>	6786.1	(13^{-})			
8245.7	(16)	626 <mark>8</mark>	100	7619.7		Q		Mult.: from R(DCO) in 64 Ni(12 C, α 2n γ).
8283.7	1(+)	8283.2 ^a 15	100	0.0		$M1^{a}$		
8878.5	1	8877.9 ^a 14	100	0.0		D^a		
9423.7	(18)	1178 <mark>8</mark>	100	8245.7	(16)	Q		Mult.: from R(DCO) in 64 Ni(12 C, α 2n γ).
9619.2	(17^{-})	1561 [#]	100 <mark>#</mark>	8058.1	(15^{-})			
10269.7	(20)	846 <mark>8</mark>	100	9423.7				
11336.2	(19 ⁻)	1717 <mark>#</mark>	100 [#]	9619.2				
13173	(21-)	1837 [#]	100 [#]	11336.2				

- [†] From ⁷²As ε decay, unless otherwise stated.
- [‡] From $(n,n'\gamma)$. # From ⁴⁶Ti(²⁸Si, 4p γ).
- [@] From ⁶⁵Cu(⁷Li, 2n γ), ⁶⁰Ni(¹²C, 2p γ). & From ⁶⁸Zn(α ,2n γ), ⁶⁷Zn(α , n γ).
- ^a From ⁷⁰Ge(pol γ, γ').
- ^b From $(p,p'\gamma)$.
- ^c from 65 Cu(7 Li,2n γ), 60 Ni(12 C,2p γ) (2010Su05).
- ^d From angular distribution and linear-polarization data in 68 Zn(α ,2n γ), 67 Zn(α ,n γ). ^e From angular distribution in 68 Zn(α ,2n γ), 67 Zn(α ,n γ) and RUL.
- f From internal conversion data in $(p,p'\gamma)$.
- g From 64 Ni(12 C, α 2n γ). h From $\gamma(\theta)$ in 70 As ε decay, cases of D+Q with large, non-zero values for δ have been assumed to be M1+E2 in character.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Band(A): Sequence based on g.s.

 $^{70}_{32}{
m Ge}_{38}$

$$^{70}_{32}{
m Ge}_{38}$$

	Histor	y	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 111.1 (2010)	1-May-2009

 $Q(\beta^{-})=-4356\ 4;\ S(n)=10750.8\ 9;\ S(p)=9735.8\ 9;\ Q(\alpha)=-5004.0\ 10$ 2012Wa38 Note: Current evaluation has used the following Q record -4356 4 10750.5 109735.7 10-5003.8 11 2009AuZZ. α : Additional information 1.

⁷²Ge Levels

Cross	Reference	(XRFF)	Flage
CIUSS	Kelelelice	(AREF	1 11428

	A B C D E F G	⁷² Ga $β$ ⁻ decay ⁷² As $ε$ decay ⁷² Ge(p,p'), (po ⁷¹ Ga(³ He,d) ⁷² Ge(α,α') ⁷⁴ Ge(p,t) ⁷⁰ Ge(t,p) ⁷⁰ Zn(α,2nγ), ⁷	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ⁶ Li') '), (pol d,d') ,npγ)) excitation 'γ)	$\begin{array}{lll} \mathbf{Q} & ^{72}\mathrm{Ge}(\mathbf{p},\mathbf{p}'\gamma) \\ \mathbf{R} & ^{69}\mathrm{Ga}(\alpha,\mathbf{p}) \\ \mathbf{S} & ^{68}\mathrm{Zn}(^{6}\mathrm{Li},\mathrm{d}) \\ \mathbf{T} & ^{76}\mathrm{Se}(\mathrm{d},^{6}\mathrm{Li}) \\ \mathbf{U} & ^{72}\mathrm{Ge}(\mathbf{e},\mathbf{e}'),(\gamma,\gamma') \\ \mathbf{V} & ^{72}\mathrm{Ge}(^{16}\mathrm{O},^{16}\mathrm{O}'),(^{18}\mathrm{O},^{18}\mathrm{O}') \\ \mathbf{W} & ^{72}\mathrm{Ge}(\alpha,\alpha'\gamma) \\ \mathbf{X} & ^{72}\mathrm{Ge}(\gamma,\gamma') \end{array}$			
E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{c}$	XREF		Comments			
0 <u>e</u>	0+	stable	ABCDEFGHIJKLMNOPQRSTUV	WX				
691.43 ^f 4	0+‡	444.2 ns 8	ABCD FG IJK MNOPQRST V	T _{1/2} : fr detect decay	$T_{1/2}$: from delayed auto-coincidence of a Ge(Li) detector (1984Br24). Others: 0.40 μ s II in ⁷² Ga β ⁻ decay; 427 ns II in (n,n' γ); 439 ns 4 in (p,p' γ); and 404 ns 45 in (α , α ' γ).			
834.011 ^e 19	2 ^{+‡}	3.35 ps 5	ABCDEFGHIJKLMNOPQR TU	T _{1/2} : fi ⁷² Ge 2 (e, μ: Weig trans 18 fr	Q=-0.13 6; μ =+0.77 5 T _{1/2} : from B(E2) in Coul excitation. Others: 3.3 ps 4 ⁷² Ge(γ , γ'); 2.8 ps +2 I -7 ⁷⁰ Zn(α ,2n γ), DSA; 2.9 ps 2 (e,e'). μ : Weighted average of +0.734 88, +0.798 66 from transient field IPAC (1987La20, 1984Pa20) and +0.74 18 from IMPAC, recalculation (1989Ra17). Q: Coul excitation reorientation (1980Le16,2005St24).			
1463.99 ^f 3	2+‡	4.5 ps +8-6	ABCDEFGHIJKLMNOPQ	T _{1/2} : fi	rom Coul excitation. Other: 3 ps $+4-2$ in $(\alpha,2n\gamma)$, DSA.			
1728.30 ^e 3	4+#	1.55 ps <i>16</i>	ABCDEFGHIJKLMNOP		rom Coul excitation. Other: 1.2 ps $+14-3$ in $(\alpha,2n\gamma)$.			
2029 3	0+#		CD FG		· · · · ·			
2049 10	4+‡		C F I K		F(2035). $(p')=(2)$ is inconsistent with 4^+ .			
2064.93 3	3+	≥2 ps	AB D F H LM O Q		m M1+E2 γ to 2 ⁺ and $\gamma\gamma(\theta)$ in ⁷² Ga β ⁻			
2116.9 <i>4</i> 2396.10 <i>20</i>	1 ^d	0.41 fs 8	c gH m r	X				
2402.30 <i>3</i>	2+‡		ABcD Fg JK m r					
2463.90 ^f 3	4+‡	1.4 ps +35-7	ABCD FGH L					
2505 5		1	I	L=1+4	doublet in (p,d).			
2514.79 ⁸ 3	3-‡	4.7 ps 9	ABCDEFGH JKLMN P U		rom B(E3)=0.061 15 (average of (e,e') and Coul and adopted branching. Other: $0.7 \text{ ps } +7-4 \text{ in } 17$).			
2572 10			C					

E(level) [†]	J^{π}	T _{1/2} ^c	XREF		Comments
2583.4? 4			A		
2754.27 12	(0+)		ABCD G I	S	J ^{π} : from L(t,p) and L(6 Li,d). However, $J^{\pi}=3^-$ to 6^- from L(p,d)=1, and L(3 He,d)=1+3 not consistent with 0.
2772.03 ^e 14 2875.61 20	6+	0.7 ps +7-4	C H L H		J^{π} : stretched E2 γ to 4 ⁺ .
2897 5	0+#		CD G		
2939.96 5	1-		ABC I		J^{π} : $J^{\pi}=1,2^{+}$ from γ' s to 0^{+} and 2^{+} ; $L(p,d)=3$.
2943.47 <i>4</i>	3-#		ABc EFG J		, , , , , , , , , , , , , , , , , , , ,
2950.4 3	1 ⁺ ,2 ⁺ @		AB D K		
3034 3	2+#		CDEFG		XREF: E(3024).
3035.64 4	2-		AB I		J^{π} : from $\gamma\gamma(\theta)$ and circular polarization in β^{-} decay.
3080.34 20	4 ^{+‡}		CDEFGHIJKL		XREF: E(3062)K(3092).
3089.4 9	1 ^d	0.38 fs 19		X	
3094.18 <i>14</i>	2+‡		ABCDEF	X	
3128.86 ^g 11	5 ^{-&}	3.5 ps +7-21	C E GHI		J^{π} : E2 γ to 3 ⁻ and γ' s to 4 ⁺ and 6 ⁺ .
3131 10	$(4^+)^{b}$	1	E		,
3139 <i>3</i>	0+‡		F		
3182 3	4+‡		CD F J		
3223 3	+ @		D		
3228 10	-&		I		
3250 4	3 ⁺ ,4 ⁺ ,5 ⁺ <i>a</i>		C		
3325.01 3	3-		ABc E IJ		J^{π} : from $\gamma\gamma(\theta)$ and E1+M2 γ to 2 ⁺ , D(+Q) to 4 ⁺ .
3327 <i>3</i>	2+‡		cD FG		XREF: D(3324).
3338.0 <i>3</i>	$1^{(+)}d$	89 ps 21	AB	X	
3341.76 <i>4</i>	(2)		ABC		J^{π} : from $\gamma\gamma(\theta)$ and E1 γ to 2^{+} in β^{-} decay.
3358.4 <i>24</i>	+ @		CD		
3378 <i>3</i>	4+‡		F		
3394 10	5^{-b}		E i		
3402.06 ^f 12 3403 5	(6+)	1 ps +4-1	H c GiK		(E2) γ to 4 ⁺ . Possibly a doublet: J^{π} =(4 ⁺) from (t,p), (2 ⁺) from (d,d'), (pol d,d').
3409 10	3 ^{-b}		сЕ		
3419.79 <i>18</i>	2+‡		BCD F		
3427 5	4 ^{+#}		G J		
3439.34 10	+@		A CD		J^{π} : L(p,p')=(6).
3455.32 <i>4</i>	2-,3-		AB		J^{π} : from E1 γ to 2 ⁺ and log ft =7.3 from 3 ⁻ , ⁷² Ga.
3468 <i>3</i>	$0^{-},1^{-},2^{-a}$		CD		
3509 <i>3</i>	2+‡		CD F		
3511 <i>10</i>	4+ b		E G		
3528 <i>3</i>	4+‡		C F		
3536 10	1^{-b}		E		
3550.66 17	(1)-		BC EF I		J^{π} : L(p,t)=(1); L(p,d)=1+3. Also L(p,p')=1 for 3556 4, and L(α , α')=(3) for 3551 10.
3565.9 3	(-)		A CD		J^{π} : L(p,d)=1+3; probably the L=1 component of the 3554 <i>10</i> level.

E(level) [†]	J^{π}	T _{1/2} ^c	XR	EF	Comments
3586 <i>4</i>	0+‡		FG		
3591 <i>4</i>	$3^+,4^+,5^+$		С		
3619.3 <i>3</i>	2 ^{+‡}		AB D G		
3624 10			C F		J^{π} : $L(p,p')=(1)$, $L(p,t)=(2)$.
3644 10	(+) b		CE		
3652 5	,		EFG I		J^{π} : L(α, α')=(3) for 3657 10.
3666.2 5	1^{+d}			X	
3667.26 23	6 ⁺	>2.1 ps	c F H		J^{π} : from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ and yield function in $(\alpha,2n\gamma)$.
3667.3 <i>3</i>	+@		BcD		
3678.08 7	2-,3-		ABC		J^{π} : from E1 γ to 2 ⁺ and log ft =6.1 from 3 ⁻ , ⁷² Ga.
3688 10	6 ⁻ ,7 ⁻ ,8 ⁻ <i>a</i>		C		
3691 <i>3</i>	$1^+, 2^+, 3^{+\#}$		D G		J^{π} : L(³ He,d)=1+3.
3708.5 <i>5</i>	2+‡		ABC F		
3722 10	3- b		E		
3745 10			C		
3757.2 <i>3</i>	-&		A I		
3760.50 ^e 22	8+	0.8 ps +5-2	H L		J^{π} : stretched E2 γ to 6^+ .
3777 <i>3</i>	$3^{+},4^{+},5^{+a}$		CDE G		J^{π} : L(t,p)=(0+2), L(α,α')=(2) for 3769 10.
3784.18 <i>8 17</i>	7-&	≥2.8 ps	C H		J^{π} : E2 γ to 5 ⁻ and yield function in $(\alpha,2n\gamma)$.
3803.55 <i>6</i>	1,2+		BC e I		J^{π} : γ to 0^+ and 2^+ .
3815.4 <i>3</i>	2-,3-		AB De		J^{π} : L(³ He,d)=2+4. γ to 2 ⁺ .
3821 <i>3</i>	5-‡		c F		
3840.2 <i>3</i>	4+‡		c E GH		
3858 10	$3^{+},4^{+},5^{+}$		CdEF		
3872.2 <i>4</i>	2+#		BCde		
3882 5	1+,2+,3+#		CeG		
3892 10	$(3^{-})^{b}$		c E I		
3895.0 <i>5</i>	$1^{@d}$		cD F	X	
3898.48 <i>21</i>	(7^{-})		C H		J^{π} : from $\gamma(\theta)$, $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3915 10	4- 5- 6-0		C		T# 5- 'C' 1 1 ' ()
3937 10	4 ⁻ ,5 ⁻ ,6 ⁻ <i>a</i>		CE		J^{π} : 5 ⁻ if indeed excited in (α, α') .
3965 10	3- <i>b</i>		CEI		XREF: E(3954).
3966 5	2+#		cD fG		
3983.75 <i>16</i> 3985.91 <i>15</i>			Bc ef		
3985.91 <i>13</i> 3995 <i>10</i>	$0^-, 1^-, 2^{-a}$		Bc e C		
3995.24 25	1^{+d}		B d G	X	XREF: d(4002).
4004 10			CdE g		J^{π} : L(³ He,d)=1+3 and (M1) γ to 0 ⁺ .
4017 6	4+‡		C F		
4027 5	3 ⁺ ,4 ⁺ ,5 ⁺ #		c G		
4031 10	$5-\frac{b}{b}$		c E		
4041.0 4	0 ⁻ ,1 ⁻ ,2 ⁻ <i>a</i>		ВС		Possible multiplet: L(3 He,d)=1+3 at 4047 3 implies J^{π} =1+ to 3+; L(p,d)=1+3 at 4047 10 implies
	6				$J^{\pi}=3^{-}$ to 6 ⁻ .
4046 10	+@		cDE		J^{π} : $L(\alpha, \alpha') = (4)$.
4047 10	-&		c I		

E(level) [†]	$_ J^\pi$	T _{1/2} ^c	S		XREF		Comments
4049.6 3	$\frac{1d}{1}$		61 5			X	
4065 10	5 ⁻ b			ΞE			
4075.8 6	5-‡			C F			
4077.57 22	8+	0.8 ps + 15 - 7	·	Н			J^{π} : E2 γ to 6 ⁺ , M1 γ to 8 ⁺ .
4082 10	$3^{+},4^{+},5^{+}$	•	(Cd			,
4090.4 5	+@		В	d			
4108 <i>3</i>	2+‡			F			
4144 3	4+‡			EF			
4147 5	+@			DE			
4171 <i>3</i>	+@			DE			
4191 <i>3</i>	0+‡			F			
4194 5	-&			I			
4228 <i>3</i>	3^{-b}			DEF			
4245 5	+@			D			
4256.1 <i>3</i>	1^d					X	
4257 10	$(3^{-})^{b}$			E			
4285 <i>3</i>	3^{-b}			EF			XREF: E(4269).
4291.85 25	+@	0.5 ps +7-1		D H			
4315 5	+@			D			
4335 5	. A			D I			
4358.7 3	1^d					X	
4369 10	3 ^{-b} +@			E			
4374 5	+ @			D			T 1311 1 (1.2) 1 (1.4)
4419 5	(2) = (0)			DE			J^{π} : L(³ He,d)=(1+3), but L(α,α')=(1).
4454 3	(2) ⁻ @ -&			DE			
4458 <i>5</i> 4483 <i>5</i>				I De			XREF: e(4498).
1103 3				DC			J^{π} : L(α, α')=3 for 4498 10.
4512 <i>5</i>	$(2)^{-}$ @			De			XREF: e(4498).
4521.07? <i>24</i>				F H			J^{π} : L(p,t)=(2).
4534 10	3 ^{-b}			E			
4575 5				DE			J^{π} : L(³ He,d)=(1+3), but L(α,α')=(3).
4601 10	+@			E			
4620 3				DE			
4634 10	$(5^{-})^{b}$			E			TT 1 (/) (A) C 4670 10
4650 5	-@			DE			J^{π} : L(α, α')=(4) for 4659 10.
4679 3				DE			J^{π} : L(α, α')=(4) for 4676 10.
4705 5	$(4^+)^b$			DE			
4724 <i>10</i> 4741.34 ^g 22	(3 ⁻) ^b 9 ⁻	0.90 ps +14-7		E H			J^{π} : E2 γ to 7^{-} and yield function in $(\alpha,2n\gamma)$.
4755 <i>5</i>	-@			D			
4766 10	$(4^+)^{b}$			E			
4804 10	$(4^{+})^{b}$			E			
4820.0 ^e 3	(10^{+})	0.51 ps +7-4		Н	L		J^{π} : stretched E2 γ to 8 ⁺ .
4840 <i>3</i>	+@			D			

E(level) [†]	J^{π}	T _{1/2} ^c		XREF		Comments
4875 4903 5 4926 10 4950.2 3	(⁺) [@] (4) ⁺			Н		J^{π} : L(α,α')=(4). J^{π} : L(p,t)=4 for 4895, L(α,α')=(4) for 4899 10.
5004 <i>5</i> 5076 <i>5</i>	(2) ⁻		D			
5076 3 5082.5 <i>3</i>	(2)		D	Н		
5100 <i>3</i>	-@		D			
5160 <i>3</i>	-		D			
5164.8 <i>3</i>	1^{+d}				X	
5199.2 <i>11</i>	1^d				X	
5280.4 <i>6</i>	1 ^d				X	
5315.0 6	1 ^d				X	
5395.5? 3				H		
5421.4? <i>3</i> 5435.8 <i>5</i>	1+ <i>d</i>			Н	v	
5837.8 ⁸ 3	11-	0.9 ps +4-2		Н	X	J^{π} : E2 γ to 9 ⁻ and yield function in $(\alpha, 2n\gamma)$.
5849.8 <i>3</i>	1(-)d	0.5 ps 17 2			X	3 . 122 y to 5 and yield function in (a,211y).
5919.8 <i>4</i>	1^{-d}				X	
5974.6 12	1 ^d				X	
6115.0 ^e 4	(12^+)	0.33 ps +7-4		Н		J^{π} : stretched E2 γ to (10 ⁺).
6131.7 7	1^d	-			X	
6146.0 <i>11</i>	1^d				X	
6163.5 4	$1^{(-)}d$				X	
6383.2 7	1^d				X	
6470.0 <i>7</i>	1^d				X	
6629.9 <i>6</i>	1^d				X	
6736.8 <i>6</i>	1^d				X	
6811.7 <i>12</i>	1^{-d}				X	
7061.2 10	1^d				X	
7450.4 11	1 ^d				X	
7518.5 8	1^d				X	
7673.7 4	1^{-d}				X	
7805.0 <i>13</i>	$1^{(-)}d$				X	
8441.7 8	$1^{(-)}d$				X	
8486.9 10	$1^{(-)}d$				X	
8867.9 5	1 ^d				X	

[†] Level energies with accuracy better than 2 keV are from a least-squares fit to adopted γ -ray energies. Level energies deduced from scattered particles have the following typical accuracies: 3-5 keV ⁷⁴Ge(p,t), ⁷⁰Ge(t,p) and ⁷¹Ga(³He,d); 5-10 keV ⁷³Ge(p,d), ⁷²Ge(p,p'). Weighted averages have been calculated where possible.

[‡] From L(p,t).

[#] From L(t,p).

[@] From L(³He,d).

[&]amp; From L(p,d).

- a From L(p,p'). b From L(α , α'). c From 70 Zn(α ,2n γ) DSA (1979Mo01), except as noted.
- ^d From (γ, γ') .

 ^e Band(A): Yrast cascade.
- f Band(B): Cascaded based on 0+2.
- ^g Band(b): Negative parity cascade.

Eγ and Iγ data are mainly from 72 Ga β^- decay, 72 As ε decay and 70 Zn(α ,2nγ). Also included: 72 Ge(n,n'γ) and 72 Ge(x,x'γ). Averages have been calculated.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	$\mathrm{I}_{(\gamma+ce)}$	Comments
691.43 834.011	0 ⁺ 2 ⁺	689.6 <i>5</i> 142.52 <i>5</i>	0.011	0 691.43	0 ⁺	E0 E2		0.197	100	I _γ : totally internally converted E0 transition. $\alpha(K)$ =0.1731 25; $\alpha(L)$ =0.0205 3; $\alpha(M)$ =0.00303 5; $\alpha(N)$ =0.0001690 24; $\alpha(N+)$ =0.0001690 24 B(E2)(W.u.)=17.8 3
		834.01 2	100	0	0+	E2		0.000553 8		$\alpha(K)=0.000494\ 7;\ \alpha(L)=5.09\times10^{-5}\ 8;$ $\alpha(M)=7.59\times10^{-6}\ II;\ \alpha(N)=4.93\times10^{-7}\ 7$ $\alpha(N+)=4.93\times10^{-7}\ 7$
1463.99	2+	629.95 3	100.0 12	834.011	2+	M1+E2	-10.3 13	0.001178 17		B(E2)(W.u.)=23.5 4 α (K)=0.001051 15; α (L)=0.0001094 16; α (M)=1.631×10 ⁻⁵ 23 α (N)=1.050×10 ⁻⁶ 15 B(E2)(W.u.)=62 +9-11; B(M1)(W.u.)=0.00016 5 δ: other values: -2.9 11 from ⁷⁰ Zn(α ,2n γ), and -5 +3-1 from ⁷² Ge(n,n γ).
		772.6 3	0.134 11	691.43	0+	E2#		0.000674 10		$\alpha(K)=0.000602 \ 9; \ \alpha(L)=6.22\times10^{-5} \ 9;$ $\alpha(M)=9.28\times10^{-6} \ I3; \ \alpha(N)=6.01\times10^{-7} \ 9$ $\alpha(N+)=6.01\times10^{-7} \ 9$ $B(E2)(W.u.)=0.030 \ +5-6$
		1463.95 <i>15</i>	14.16 <i>17</i>	0	0+	E2 [#]		0.000226 4		$\alpha(K)=0.0001371 \ 20; \ \alpha(L)=1.393\times10^{-5} \ 20; \ \alpha(M)=2.08\times10^{-6} \ 3 \ \alpha(N+)=7.32\times10^{-5} \ I \ B(E2)(W.u.)=0.130 \ +18-24$
1728.30	4+	894.26 <i>4</i>	100	834.011	2+	E2(+M3)	≈0.0	0.000464		$\alpha(K) \approx 0.000414$; $\alpha(L) \approx 4.26 \times 10^{-5}$; $\alpha(M) \approx 6.36 \times 10^{-6}$; $\alpha(N) \approx 4.14 \times 10^{-7}$ B(E2)(W.u.)=37 5 Mult.: Q+O from $\gamma \gamma(\theta)$ in β^- decay; Q in $(\alpha, 2n\gamma)$. M2 excluded by RUL. δ: $\beta(M3)$ (W.u.) from RUL suggests $\delta \approx 0$.
2064.93	3+	336.63 <i>4</i> 600.94 <i>3</i>	1.93 <i>5</i> 100.0 <i>15</i>	1728.30 1463.99	4 ⁺ 2 ⁺	M1+E2 [‡]	≈+4.0	0.001327		$\alpha(K) \approx 0.001184$; $\alpha(L) \approx 0.0001234$; $\alpha(M) \approx 1.84 \times 10^{-5}$ $\alpha(N) \approx 1.183 \times 10^{-6}$ B(E2)(W.u.)<150; B(M1)(W.u.)<0.0023 δ : from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		1230.83 4	26.2 6	834.011	2+	D+Q	-2.0 + 15 - 25			

γ (72Ge) (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	Comments
	2116.9	1	2116.9 4	100	0	0+	D		-	
ı	2396.10		932.1 2	100	1463.99	2+				
ı	2402.30	2+	938.50 14	19.8 7	1463.99	2+				
ı			1568.19 7	51.7 14	834.011	2+				
ı			1710.90 <i>6</i>	100.0 25	691.43	0_{+}				
			2402.2 <i>3</i>	6.3 <i>3</i>	0	0_{+}				
	2463.90	4+	735.59 22	46.0 8	1728.30	4+	M1 [‡]		0.000592 9	$\alpha(K)=0.000529 \ 8; \ \alpha(L)=5.41\times10^{-5} \ 8; \ \alpha(M)=8.08\times10^{-6} \ 12; \ \alpha(N)=5.32\times10^{-7} \ 8 \ \alpha(N+)=5.32\times10^{-7} \ 8$
ı										B(M1)(W.u.)=0.012 +6-12
			999.86 <i>4</i>	100.0 18	1463.99	2+	E2 [‡]		0.000354 5	$\alpha(K)=0.000316\ 5;\ \alpha(L)=3.24\times10^{-5}\ 5;\ \alpha(M)=4.84\times10^{-6}\ 7;$ $\alpha(N)=3.16\times10^{-7}\ 5$
ı										$\alpha(N+)=3.16\times10^{-7}$ 5
ı			4 < 2 0 - 3		004044	- 1				B(E2)(W.u.)=15 +8-15
			1630 <i>I</i>	4.1 7	834.011	2+	[E2]		0.000263 4	$\alpha(K)=0.0001106 \ 16; \ \alpha(L)=1.122\times10^{-5} \ 16; \ \alpha(M)=1.675\times10^{-6} \ 24$
										$\alpha(N)=1.103\times10^{-7}$ 16
	2514.70	2-	5 0.00 <i>1</i>	0.15.2	2462.00	4+	0711		0.510	B(E2)(W.u.)=0.05 +3-5
	2514.79	3-	50.88 4	0.15 2	2463.90	4.	[E1]		0.518	$\alpha(K)$ =0.462 7; $\alpha(L)$ =0.0488 7; $\alpha(M)$ =0.00718 11; $\alpha(N)$ =0.000418 6; $\alpha(N+)$ =0.000418 6 B(E1)(W.u.)=0.00057 14
			112.52 <i>3</i>	2.1 5	2402.30	2+	[E1]		0.0484	$\alpha(K)=0.0433 \ 6; \ \alpha(L)=0.00447 \ 7; \ \alpha(M)=0.000662 \ 10;$
							. ,			$\alpha(N)=4.11\times10^{-5} 6$; $\alpha(N+)=4.11\times10^{-5} 6$
			449.55 21	1.4 3	2064.93	2+				B(E1)(W.u.)=0.00074 23
			786.44 <i>7</i>	46.2 8		3 4 ⁺	E1(+M2)	+0.02 5	0.000249 6	$\alpha(K)=0.000223 \ 6; \ \alpha(L)=2.26\times10^{-5} \ 6; \ \alpha(M)=3.37\times10^{-6} \ 9;$
			780.44 7	40.2 6	1720.30	4	E1(+W12)	T0.02 J	0.000249 0	$\alpha(N)=2.20\times10^{-7} 6$
										$\alpha(N+)=2.20\times10^{-7} 6$
			1070 70 1	1000 10	4.460.00			0.24.5		B(E1)(W.u.)= $(4.8\times10^{-5}\ I0)$; B(M2)(W.u.)= $(0.14+71-14)$
ı			1050.73 4	100.0 13	1463.99	2+	E1+M2	-0.31 5	0.000182 <i>14</i>	$\alpha(K)=0.000163 \ 12; \ \alpha(L)=1.66\times10^{-5} \ 13; \ \alpha(M)=2.48\times10^{-6} \ 19$
										$\alpha(N+)=1.63\times10^{-7} I$
										$B(E1)(W.u.)=3.9\times10^{-5} 8$
										B(M2)(W.u.): This mixing ratio leads to a B(M2)(W.u.)=16 6, which exceeds the RUL of 1.0.
			1680.75 <i>6</i>	12.1 4	834.011					
			2515.1 3	3.59 12	0	0+	[E3]		0.000445 7	$\alpha(K)=7.72\times10^{-5}$ 11; $\alpha(L)=7.84\times10^{-6}$ 11; $\alpha(M)=1.170\times10^{-6}$ 17 $\alpha(N+)=0.000359$ 5 B(E3)(W.u.)=29 6
	2583.4?		2583.4 [@] 4	100	0	0^{+}				(- X()
	2754.27	(0^+)	1920.21 13	100	834.011	-				
-1		(-)				_				

 ∞

γ (72Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	Comments
2772.03	6+	1043.8 2	100	1728.30	4+	E2 [‡]		0.000320 5	$\alpha(K)=0.000286 \ 4; \ \alpha(L)=2.93\times10^{-5} \ 5; \ \alpha(M)=4.37\times10^{-6} \ 7;$ $\alpha(N)=2.86\times10^{-7} \ 4$ $\alpha(N+)=2.86\times10^{-7} \ 4$ $\alpha(N+)=37 + 21 - 37$
2875.61		1411.6 2	100	1463.99	2+				B(E2)(W.u.) = 37 + 21 = 37
2939.96	1-	1475.90 6	79.6 15	1463.99	2 ⁺				
		2105.90 <i>17</i>	100 4	834.011	2+				
		2248.5 <i>1</i>	49.6 19	691.43	0_{+}				
		2940.07 12	47 3	0	0_{+}				
2943.47	3-	428.44 11	22 4	2514.79	3-				
		479.27 11	8.5 5	2463.90	4+				
		878.40 <i>18</i>	6.9 4	2064.93	3+				
		1215.14 <i>4</i>	76.1 <i>12</i>	1728.30	4+	D+Q			
		2109.52 8	100.0 17	834.011					
2950.4	$1^+, 2^+$	2116.5 [@] 3	100 6	834.011	2+				
		2950.0 [@] 5	17 <i>3</i>	0	0_{+}				
3035.64	2-	520.74 24	0.210 18	2514.79	3-				
		970.55 6	4.3 1	2064.93	3 ⁺				
		1571.63 <i>12</i>	3.2 1	1463.99	2+				
		2201.69 5	100.0 <i>16</i>	834.011	2+	E1(+M2)	-0.05 4	0.000810 <i>12</i>	$\alpha(K)=3.70\times10^{-5}$ 7; $\alpha(L)=3.72\times10^{-6}$ 7; $\alpha(M)=5.54\times10^{-7}$ 10; $\alpha(N)=3.66\times10^{-8}$ 7 $\alpha(N+)=0.000769$ 12
		3034.6 4	0.018 <i>3</i>	0	0+	M2		0.000549 8	$\alpha(K)=5.65\times10^{-5} 8$; $\alpha(L)=5.72\times10^{-6} 8$; $\alpha(M)=8.53\times10^{-7} 12$; $\alpha(N)=5.66\times10^{-8} 8$
2000 24	4+	1015 4 2	100	2074.02	2+				α(N+)=0.000486 7
3080.34	4+	1015.4 2	100	2064.93	3+				
3089.4	1	3089.3 9	100	0	0+	D			
3094.18	2+	1029.3 5	23.5 14	2064.93	3 ⁺ 0 ⁺				
		2402.89 21	95 4	691.43	0+	F-0		0.000060.13	$\alpha(K)=3.55\times10^{-5}$ 5; $\alpha(L)=3.57\times10^{-6}$ 5; $\alpha(M)=5.33\times10^{-7}$ 8;
		3093.92 20	100 20	0	0.	E2		0.000860 12	$\alpha(K)=3.53\times10^{-5}$ 5; $\alpha(L)=5.57\times10^{-5}$ 5; $\alpha(M)=5.53\times10^{-7}$ 8; $\alpha(N)=3.53\times10^{-8}$ 5 $\alpha(N+)=0.000820$ 12
3128.86	5-	357.0 2	56	2772.03	6+				
		614.2 2	71	2514.79	3-	E2 [‡]		0.001270 18	$\alpha(K)$ =0.001133 <i>16</i> ; $\alpha(L)$ =0.0001180 <i>17</i> ; $\alpha(M)$ =1.760×10 ⁻⁵ 2 $\alpha(N)$ =1.131×10 ⁻⁶ <i>16</i> B(E2)(W.u.)=29 +18-6
		667.0 <i>5</i>	29	2463.90	4+				2(22)() 27 110 0
		1400.4 2	100	1728.30	4+				
3325.01	3-	230.6 6	0.30 9	3094.18	2+				
	-	289.31 7	2.49 17	3035.64	2-				

9

γ (72Ge) (continued)

$E_i(level)$	J_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	Comments
3325.01	3-	381.24 8	3.49 13	2943.47	3-				
		810.20 9	26.2 5	2514.79	3-				
		861.11 5	11.9 <i>3</i>	2463.90	4+				
		1260.10 7	14.7 <i>4</i>	2064.93	3+				
		1596.70 7	56 <i>5</i>	1728.30	4+	D(+Q)	+0.05 6		
		1861.09 5	68.4 <i>10</i>	1463.99	2+	D+Q			
		2490.98 6	100 3	834.011	2+	E1+M2	+0.15 4	0.000974 <i>16</i>	$\alpha(K)=3.20\times10^{-5} 8$; $\alpha(L)=3.22\times10^{-6} 9$; $\alpha(M)=4.80\times10^{-7} 13$; $\alpha(N)=3.17\times10^{-8} 9$ $\alpha(N+)=0.000939 16$
		2633.9 4	0.19 2	691.43	0^{+}				u(1\1)=0.000/37 10
		3324.6 4	0.040 11	0	0+				
3338.0	1(+)	3337.9 3	100	0	0+	(M1)		0.000866 13	$\alpha(K)=3.06\times10^{-5}$ 5; $\alpha(L)=3.08\times10^{-6}$ 5; $\alpha(M)=4.60\times10^{-7}$ 7;
	-	200	-00	J	•	(1.11)		5.000000 15	$\alpha(N)=3.04\times10^{-8}$ 5
									$\alpha(N+)=0.000832 12$
									$B(M1)(W.u.)=6.7\times10^{-6}$ 16
3341.76	$(2)^{-}$	306.0 <i>3</i>	0.165 15	3035.64	2-				2(111)(1141) 01/110 10
	. ,	401.3 4	0.254 15	2939.96	1-				
		587.44 <i>24</i>	0.95 5	2754.27	(0^+)				
		939.36 7	2.03 5	2402.30	2+				
		1276.77 <i>6</i>	12.25 <i>13</i>	2064.93	3 ⁺				
		1877.90 <i>21</i>	1.81 5	1463.99	2+				
		2507.82 6	100.0 15	834.011	2+	E1+M2	+0.09 5	0.000993 16	$\alpha(K)=3.10\times10^{-5}$ 8; $\alpha(L)=3.11\times10^{-6}$ 8; $\alpha(M)=4.64\times10^{-7}$ 11 $\alpha(N)=3.07\times10^{-8}$ 8 $\alpha(N+)=0.000958$ 16
3402.06	(6^+)	273.6 [@] 2	23	3128.86	5-				
	(-)	937.9 2	100	2463.90		(E2) [‡]		0.000413 6	$\alpha(K)$ =0.000369 6; $\alpha(L)$ =3.79×10 ⁻⁵ 6; $\alpha(M)$ =5.65×10 ⁻⁶ 8; $\alpha(N)$ =3.68×10 ⁻⁷ 6
									$\alpha(N)=3.68\times10^{-6}$ $\alpha(N+)=3.68\times10^{-7}$ 6
		1673.6 2	93	1728.30	4+				B(E2)(W.u.)=20 +21-20
3419.79	2+	905.22 22	93 39 <i>7</i>	2514.79	3-				
J T 17./7	4	2585.3 <i>3</i>	100 23	834.011					
3439.34	+	495.88 24	40 3	2943.47	3-				
		924.22 18	100 3	2514.79	3-				
		975.5 <i>5</i>	23 7	2463.90	4 ⁺				
		1037.2 6	14.4 13	2402.30	2+				
		1711.15 <i>15</i>	32 7	1728.30	4 ⁺				
		2605.5 4	13 <i>3</i>	834.011					
	$2^{-},3^{-}$	113.5 <i>1</i>	4.3 7	3341.76	$(2)^{-}$				
3455.32	2,5	113.5 1	1.5 /	33 11.70	(-)				

10

γ (72Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	α	Comments
3455.32	2-,3-	1390.44 5	62.2 19	2064.93	3+			
		1991.16 8	85.6 20	1463.99	2+			
		2621.38 <i>16</i>	100.0 18	834.011	2+	E1	0.001063 15	$\alpha(K)=2.87\times10^{-5}$ 4; $\alpha(L)=2.89\times10^{-6}$ 4; $\alpha(M)=4.30\times10^{-7}$ 6; $\alpha(N)=2.84\times10^{-8}$ 4 $\alpha(N+)=0.001031$ 15
3550.66	$(1)^{-}$	1148.4 <i>3</i>	58 <i>15</i>	2402.30	2+			
		2086.4 <i>3</i>	70 4	1463.99	2+			
		2716.7 4	58 12	834.011				
		2859.9 <i>6</i>	93 19	691.43	0_{+}			
		3550.4 <i>5</i>	100 8	0	0_{+}			
3565.9	(-)	1500.9 <i>5</i>	9.1 5	2064.93	3+			
		1837.6 <i>3</i>	100 5	1728.30	4+			
3619.3	2+	1155.7 [@] 6	35 6	2463.90	4+			
		2785.1 [@] 3	100 5	834.011				
3666.2	1+	3666.1 5		0	0+	M1	0.000985 14	$\alpha(K)=2.64\times10^{-5}$ 4; $\alpha(L)=2.65\times10^{-6}$ 4; $\alpha(M)=3.96\times10^{-7}$ 6; $\alpha(N)=2.62\times10^{-8}$ 4 $\alpha(N+)=0.000956$ 14
3667.26	6+	538.4 2	100	3128.86	5-	(E1) [‡]	0.000587 9	$\alpha(K)=0.000525 \ 8; \ \alpha(L)=5.35\times10^{-5} \ 8; \ \alpha(M)=7.97\times10^{-6} \ 12; \ \alpha(N)=5.19\times10^{-7} \ 8$
						, ,		$\alpha(N+)=5.19\times10^{-7} 8$
								B(E1)(W.u.)<0.0012
3667.3	+	1939.0 <i>4</i>	91 9	1728.30	4+			
		2833.2 6	100 18	834.011	2+			
3678.08	$2^{-},3^{-}$	738.5 <i>4</i>	12.7 9	2939.96	1-			
		1163.11 <i>13</i>	19 <i>3</i>	2514.79	3-			
		1613.6 <i>4</i>	9.1 <i>13</i>	2064.93	3+			
		2214.19 <i>15</i>	46 5	1463.99	2+			
		2843.99 11	100 6	834.011	2+	E1	0.001179 <i>17</i>	$\alpha(K)=2.57\times10^{-5}$ 4; $\alpha(L)=2.58\times10^{-6}$ 4; $\alpha(M)=3.85\times10^{-7}$ 6; $\alpha(N)=2.54\times10^{-8}$ 4 $\alpha(N+)=0.001150$ 17
3708.5	2+	1193.7 5	100	2514.79	3-			
3757.2	-	317.5 4	17.8 <i>16</i>	3439.34	+			
		2029.4 5	100 5	1728.30	4+			
3760.50	8+	988.6 2	100	2772.03	6+	E2 [‡]	0.000364 5	$\alpha(K)$ =0.000325 5; $\alpha(L)$ =3.33×10 ⁻⁵ 5; $\alpha(M)$ =4.97×10 ⁻⁶ 7; $\alpha(N)$ =3.24×10 ⁻⁷ 5 $\alpha(N+)$ =3.24×10 ⁻⁷ 5
								B(E2)(W.u.)=42 +11-27
3784.18	7-	655.4 2	100	3128.86	5-	E2 [‡]	0.001055 15	$\alpha(K)=0.000942\ 14;\ \alpha(L)=9.79\times10^{-5}\ 14;\ \alpha(M)=1.460\times10^{-5}\ 21;$
								$\alpha(N+)=9.41\times10^{-7}$ B(E2)(W.u.)<47
		1011.9 2	100	2772.03	6+			B(B2)(11.4.) \ 17
3803.55	1,2+	2339.72 18	36.4 21	1463.99	2+			
	-,-	3112.04 5	63 10	691.43	0^{+}			
		3803.40 <i>21</i>	100 6	0	0_{+}			

γ (⁷²Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	Εγ	I_{γ}	E_f	$\frac{\mathbf{J}_f^{\pi}}{\mathbf{J}_f}$	Mult. [†]	<u>α</u>	Comments
5082.5 5164.8	1+	1322.0 2 5164.6 <i>3</i>	100 100	3760.50 0	0 ⁺	M1	0.001448 <i>21</i>	$\alpha(K)=1.572\times10^{-5}$ 22; $\alpha(L)=1.577\times10^{-6}$ 22; $\alpha(M)=2.35\times10^{-7}$ 4; $\alpha(N+)=0.001431$
5199.2	1	5199.0 <i>11</i>	100	0	0^{+}	D		
5280.4	1	5280.2 <i>6</i>	100	0	0_{+}	D		
5315.0	1	5314.8 <i>6</i>	100	0	0_{+}	D		
5395.5?		1497.0 [@] 2	100	3898.48	(7^{-})			
5421.4?		1343.8 [@] 2	100	4077.57	8+			
5435.8	1+	5435.6 5	100	0	0+	M1	0.001526 22	$\alpha(K)=1.460\times10^{-5}\ 2I;\ \alpha(L)=1.465\times10^{-6}\ 2I;\ \alpha(M)=2.19\times10^{-7}\ 3;$ $\alpha(N+)=0.001510$
5837.8	11-	1096.5 2	100	4741.34	9-	E2 [‡]	0.000286 4	$\alpha(K)$ =0.000255 4; $\alpha(L)$ =2.61×10 ⁻⁵ 4; $\alpha(M)$ =3.90×10 ⁻⁶ 6; $\alpha(N)$ =2.55×10 ⁻⁷ 4 $\alpha(N+)$ =2.55×10 ⁻⁷ 4 B(E2)(W.u.)=22 +5-10
5849.8	1 ⁽⁻⁾	5849.5 <i>3</i>	100	0	0+	(E1)	0.00226 4	$\alpha(K)=1.037\times10^{-5}\ 15;\ \alpha(L)=1.038\times10^{-6}\ 15;\ \alpha(M)=1.548\times10^{-7}\ 22;$ $\alpha(N)=1.024\times10^{-8}\ 15$ $\alpha(N+)=0.00225\ 4$
5919.8	1-	5919.5 4	100	0	0+	E1	0.00228 4	$\alpha(K)=1.022\times10^{-5}\ 15;\ \alpha(L)=1.023\times10^{-6}\ 15;\ \alpha(M)=1.526\times10^{-7}\ 22;$ $\alpha(N)=1.010\times10^{-8}\ 15$ $\alpha(N+)=0.00227\ 4$
5974.6	1	5974.3 12	100	0	0^{+}	D		
6115.0	(12^+)	1295.0 2	100	4820.0	(10^{+})	E2 [‡]	0.000225 4	$\alpha(K)=0.0001770\ 25;\ \alpha(L)=1.80\times10^{-5}\ 3;\ \alpha(M)=2.69\times10^{-6}\ 4;\ \alpha(N+)=2.71\times10^{-5}\ 4;\ B(E2)(W.u.)=26\ +4-6$
6131.7	1	6131.4 7	100	0	0^{+}	D		
6146.0	1	6145.7 <i>11</i>	100	0	0_{+}	D		
6163.5	1(-)	6163.2 <i>4</i>		0	0_{+}	(E1)		
6383.2	1	6382.9 7	100	0	0_{+}	D		
6470.0	1	6469.7 7	100	0	0_{+}	D		
6629.9	1	6629.6 <i>6</i>	100	0	0_{+}	D		
6736.8	1	6736.5 <i>6</i>	100	0	0+	D		
6811.7	1-	6811.4 <i>12</i>	100	0	0+	E1		
7061.2	1	7060.8 10		0	0+	D		
7450.4	1	7450.0 11	100	0	0+	D		
7518.5	1	7518.1 8	100	0	0+	D		
7673.7	1-	7673.3 4	100	0	0+	E1		
7805.0	1(-)	7804.5 <i>13</i>		0	0_{+}	(E1)		
8441.7	1(-)	8441.2 8	100	0	0_{+}	(E1)		
8486.9	1 ⁽⁻⁾	8486.4 10		0	0_{+}	(E1)		
8867.9	1	8867.3 <i>5</i>	100	0	0^{+}	D		

[†] From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in ⁷²Ga β^- decay, except as noted. [‡] From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in ⁷⁰Zn(α ,2n γ). [#] From Coul excitation. [@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

·---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Ameenah R. Farhan	NDS 107,1923 (2006)	30-Apr-2006

 $Q(\beta^{-}) = -2562.4 \ 17$; $S(n) = 10196.24 \ 6$; $S(p) = 11012.1 \ 17$; $Q(\alpha) = -6282.6 \ 20$ 2012Wa38

Note: Current evaluation has used the following Q record -2562.5 1710196.22 6 11012.123 -6282.725 2003Au03.

Giant-dipole resonance work (photonuclear reactions) has been reported by 1976Ca06, 1975Mc06, 1973McZP, 1973Mc15.

Nuclear structure calculations: 2004Br44.

Additional information 1.

Mass measurements: 1993Hy02, 1985El01, 1977De20, 1976De21, 1964Ba03, 1963Ri07.

⁷⁴Ge Levels

Levels populated in reactions with XREF=Y:

Cross Reference (XREF) Flags

		B 74 As ε do C 70 Zn(6 Li D 71 Ga(α ,p E 72 Ge(t,p) F 72 Ge(α , 2	He)	K L M N O P	73 Ge(n, γ) 73 Ge(n, γ) 73 Ge(d,p) 74 Ge(γ , γ') 74 Ge(n,n'		U V W X Y Z	⁷⁵ As(d, ³ He) ⁷⁶ Ge(p,t) ⁷⁸ Se(d, ⁶ Li) ¹⁹² Os(⁸² Se, Χγ) ⁷⁴ Ge(⁶ Li, ⁶ Li), (⁶ Li, ⁶ Li') ⁷⁴ Ge(¹⁶ O, ¹⁶ O'), (¹⁸ O, ¹⁸ O')			
	G 73 Ge(n, γ) H 73 Ge(n, γ)) E=102.6 eV	R	⁷⁴ Ge(p,p'),(pol p,p') ⁷⁴ Ge(pol d,d')		AA	75 As(n,d)			
) E=224 eV	S	74 Ge(α,α'		AB	77 Se(n, α) E=th			
	$\frac{1}{3} \frac{\text{Ge}(n,\gamma)}{\text{Ge}(n,\gamma)} = 22$			T	Coulomb			50(1.,0) 2 11			
E(level) [†]	$J^{\pi \ddagger} T_{1/2}^{\#}$		XR	EF		Comments					
0.0^{j}	0 ⁺ stable ABCDEFGHIJKLN				RSTUVWXYZ	XREF: Others: AA, AB $(r^2)^{1/2}$ =4.0744 fm 12 (2004An14).					
595.850 ^j 6	2+			NOPQF	RSTUVWXYZ	XREF: Others: μ =+0.87 4 (19) Q=-0.19 2 (20) μ : transient-fie (1987La20), compilation. Q: reorientation 6 (1980Le16) β_2 =0.290, 0.29 β_2 (from (pol d β_2 (from (pol p) (1986MoZR J $^{\pi}$: L=2 in (t,p T _{1/2} from B(E2) method in (r	AA, Al 84Pa20 000To1 eld PA0 +0.70 n effect (5,1989F) (8,1989F) (8,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (9,1989F) (19,1989F	B 0,1989Ra17) 2) C (1984Pa20). Others: +0.70 4 24 (1977Fa07). See also 2005St24 t in Coul. ex. (2000To12). Other: -0.25 Ra17). See also 2005St24 compilation. 1 (16O,16O') (1979Fe03,1976Co04). 0.28 (1978Sz08), 0.197 10 (1985Se05).			

⁷⁴Ge(⁶Li, ⁶Li), (⁶Li, ⁶Li'): 0, 596.

⁷⁴Ge(¹⁶O, ¹⁶O'),(¹⁸O, ¹⁸O'): 0, 596, 1200.

⁷⁵As(n,d): 0, 596, 1200, 1470, 2200.

⁷⁷Se(n, α) E=th: 0, 596.

E(level) [†]	J^{π}	T _{1/2} #	XREF Comments
1204.205 7	2+	5.4 ps 8	AB E GH K OPQRSTUVW Z XREF: Others: AA, AB μ =+0.82 24 (1984Pa20,1989Ra17) Q=+0.26 6 (2000To12) μ : transient-field PAC (1984Pa20). See also 2005St24 compilation. β_2 =0.07 from (p,p') (1982Ta16). J^{π} : L=2 in (t,p), (p,p'), (d,d'), (α , α '), (p,t) and (d, Li). J^{π} : T _{1/2} from DSA method in (n,n' γ). Other: 5.9 ps 9 from B(E2)'s in Coul. ex.
1463.759 ^{<i>j</i>} 8	4+	1.53 ps <i>10</i>	AB DEFGHI KLMN PQRSTUVWX J^{π} : L=4 in (p,p'), (d,d') and (α , α'). $T_{1/2}$ from B(E2) in Coul. ex. β_4 =0.02 from (p,p') (1982Ta16), -0.015 15 from (pol p,p') (1986MoZR).
1482.81 <i>4</i>	0+	6 ps +15-3	ABCDEFG OPQ ST VW J^{π} : $\gamma\gamma(\theta)$ in ⁷⁴ As ε decay and (γ,γ') . $L=0$ in (t,p) , $(^{6}Li,d)$ and (α,α') . $T_{1/2}$ from B(E2) in Coul. ex.
1697.140 8	(3)+		AB E GHI L PQ UV XREF: E(?). J^{π} : L(d, 3 He)=(1+3) and $\gamma(\theta)$ of 493 γ and 1101 γ in (n,n' γ).
1724.954 <i>14</i> 1913 <i>14</i>	(0 ⁺)		G R J^{π} : L(d,d')=(0) for E=1720 20. E N XREF: N(?). J^{π} : L(t,p)=0.
2165 4	(1-)		E Q V J^{π} : $L(p,p)=0$. $L(t,p)=0$ inconsistent with $J^{\pi}=(1^{-})$.
2165.259 8	(3,4)+		A GHI LM PQ U J^{π} : γ to 2^+ and strong primary γ from 4^+ , 5^+ . The L=3 group in (d, 3 He) at 2168 10 probably corresponds to this level rather than to the 2165 level of J^{π} =(1 ⁻). L(p,p')=(1) for a doublet E=2165 5, the second component is probably L=4.
2197.933 24	2+		AB E G I OPQR UV XREF: Others: AA J^{π} : γ' s to 0^+ and 4^+ , L=2 in (t,p), (p,p') and (p,t). L=(4) for a 2210 group in (d,d') inconsistent with J^{π} =2 $^+$.
2227.77 <i>10</i> 2300	0+		E G OPQ U XREF: Others: AA $\mathbf{J}^{\pi}\colon \gamma\gamma(\theta) \text{ in } (\gamma,\gamma') \text{ and } \mathbf{L}(\mathbf{t},\mathbf{p}) = 0.$ C
2403.5 <i>4</i> 2490? <i>5</i>	1&	0.0004 eV I	O N
2536.310 <i>13</i>	3-	0.24 [@] ps +14-10	A E GH KLMN PQRS V β_3 =0.16 ((p,p'),1982Ta16), 0.15 I ((pol p,p'),1986MoZR). B(E3)(p,p')=0.020 T (2002Ki06,evaluation). J ^{π} : L=3 in (t,p), (p,p'), (d,d') and (α , α ').
2569.329 ^j 14 2572 5	(6 ⁺) 4 ⁺		G IJ P X J^{π} : yrast population in (82 Se,x). XREF: E(?). J^{π} : $L(p,t)=4$; $L(\alpha,\alpha')=(4)$. $L(p,p')=(3)$ inconsistent with $J^{\pi}=4^+$, but assignment perturbed by ⁷⁰ Ge impurity.
2600.32 9	(1,2,3)+	0.31 [@] ps +12-10	E G OPQ VW XREF: W(?). J^{π} : L=2 in (p,p'). L=(0) for 2610 in (t,p) and L=(1) for 2605 in (p,t) inconsistent

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XI	REF	Comments
					with $J^{\pi}=2^+$.
2669.62 <i>4</i> 2690.6 <i>3</i>	4 ⁺ 1&	0.0015 eV <i>3</i>	ΕGΙ	N PQRS V	J^{π} : L=4 in (t,p), (p,p') and (α,α') .
2693.68 4	(3,4 ⁺)	0.052 [@] ps +24-16	A e GHI K	n Pq s v	XREF: e(?). J^{π} : γ' s to 2^+ and primaries from thermal capture and from two $J^{\pi}=4^+$ neutron resonances gives $J^{\pi}=3,4^+$. If $L(p,p')=(2+3)$ for $E=2690~5$ corresponds to this level, then $J^{\pi}=(3^-)$. $L(\alpha,\alpha')=(1)$ for $E=2695~10$ inconsistent with $J^{\pi}=3,4^+$.
2696.918 <i>10</i>	(2+)		e G	n Pq s v	XREF: e(?). J^{π} : γ to 4 ⁺ and no feeding from thermal capture and from any of the five neutron resonances studied. $L(\alpha,\alpha')=(1)$ for E=2695 10 inconsistent with $J^{\pi}=2^+$.
2711 <i>6</i> 2750.61 <i>23</i> 2828.507 <i>11</i>	(4 ⁺) 0 ⁺ 4 ⁺		EF C E GHIJ L1	PQ 1 PQ	J^{π} : $L(t,p)=(4)$. J^{π} : $L(t,p)=0$. J^{π} : $L(p,p')=4$.
2833.41 <i>15</i>	(2+)	0.009 [@] ps +4-3	e	Pqr uv	E(level): it appears that 2833 and 2836 are two different levels the first populated in (n,n'γ) and the second in (n,γ) E=th, although, existence of a doublet near this energy does not seem definitive. The γ rays in both reactions proceed to the same final levels but are about 3 keV different in energy. Also the branching ratios are different in the two reactions. J ^π : L=2 in (t,p) and (p,t) for a probable doublet. L(p,p')=4 for a doublet E=2833 5, the second component is probably L=2.
2835.923 24 2842 5 2856.04 25	(2 ⁺) (3 ⁻ & 5 ⁻) 0 ⁺		e G E	qr uv N S PQ UV	E(level), J^{π} : see comment for 2833 level. J^{π} : $L(\alpha,\alpha')=(3+5)$ and $L(d,p)=1$. XREF: E(?).
2878.14 <i>17</i> 2925.45 <i>9</i>	(5 ⁻) (3,4 ⁺)		G	PQ P	J^{π} : L(p,t)=0. J^{π} : L(p,p')=(5). J^{π} : γ to 2 ⁺ , possible γ to (3) ⁺ and
2935.475 12	3-		E GHI KLI		primary from thermal capture. J^{π} : $L(d,p)=1$ and γ to 4^{+} .
2936.8	(5-)			n PQ s u	$L(d,^{3}He)=1+3$ and $L(\alpha,\alpha')=(3+5)$. J^{π} : $L(p,p')=(5)$, $L(d,p)=1$, $L(d,^{3}He)=1+3$
2938.7 2 2949.48 <i>10</i>	2 ⁺ (3 ⁻)	0.26 [@] ps +15-7	A E G	P V Pr	and $L(\alpha, \alpha') = (3+5)$. J^{π} : $L(p,t) = 2$. J^{π} : $\log f t = 5.7$ from (3^{-}) and γ to 2^{+} . $L(d,d') = (3)$. $L(t,p) = 4$ inconsistent with J^{π} .
2961.0 2 2973.472 <i>13</i>	(5 ⁻) (3)		A GH KL	PQrS PQ	J ^{π} : L(α,α')=(5). J ^{π} : γ to 0 ⁺ , primaries from thermal capture and from two J ^{π} =4 ⁺ neutron resonances.
2999.2	2+			OPQ S U	J^{π} : γ from 1^- in (γ, γ') and L=2 in (p,p') , (α,α') .

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #		XRE	EF	Comments
3017 3	2+			E	Q S UV	J^{π} : L=2 in (t,p), (p,t) and L=(2) in (p,p'). L=1(+3) in (d, 3 He).
3032.8 2	1 ^{&}	0.0112 eV 6			0	
3034.00 3	(3,4+)	0.059 [@] ps +10-7	A	GIKM	P	J^{π} : γ' s to 2 ⁺ and primaries from thermal capture and from $J^{\pi}=4^+$ neutron resonance.
3048.564 <i>24</i>	4 ⁺			E GH	PQ S V	J^{π} : L=4 in (t,p), (p,p'), (p,t) and (α,α') .
3060.1 5	$(2^+ \text{ to } 6^+)$			H K M	P	J^{π} : primary γ from 4^+ .
3081.321 15	(3 ⁺)	0.21 [@] ps +7-5	A	GHI KLM	PQR UV	J ^{π} : L=1+3 in (d, ³ He), L=(3,4) in (d,d'), γ to 4 ⁺ and primaries from thermal capture and from J^{π} =4 ⁺ neutron resonance. In (p,p'), either the L=(5) assignment for a 3081 group is incorrect or there is a different level near this energy.
3092.2 2	1 ⁽⁺⁾ &	0.0104 eV 11			0	-
3104.506 <i>19</i>	5-			E GHIJ LM		J^{π} : L=5 in (t,p) and (α,α') .
3118.0 <i>5</i> 3139.32 22	3-,4-,5-,6-			N	P P	J^{π} : L(d,p)=1.
3140.30 4	3-		Α	E GHI K	PQRS V	J^{π} : L=3 in (t,p), (p,p') and (α , α').
3175.47 <i>3</i>	3-	$0.097^{\text{@}} \text{ ps } +35-28$	Α	GH	PQ S U	J^{π} : L=3 in (α, α') and (p, p') .
3199.5 3211.8? 7	2+	$0.024 \text{ ps}^{1} + 8 - 4$	A		PQ S UV	J^{π} : L=2 in (α, α') , (p,t) and (p,p') .
3224.680 <i>13</i>	4+		А	E G	Q S UV	L(p,t)=2+5 unresolved doublet. J^{π} : L=4 in (t,p), (α,α') and (p,p') .
3242 <i>5</i> 3271.51 <i>5</i>	$\leq 9^+$ (2^+)			N GHI KL	Q	J^{π} : L(d,p)=4. J^{π} : γ to 4 ⁺ , possible γ to 0 ⁺ .
3276.3 2	1&	0.0013 eV 4			0	3 . y to 4 , possible y to 0 .
3270.3 <i>2</i> 3293 <i>5</i>	3-,4-,5-,6-	0.0013 6 7		N		J^{π} : L(d,p)=1.
3315.72 3	4 ⁺			G	SU	J^{π} : $L(\alpha, \alpha') = 4$.
3342.94 7	$(3^-,4^+)$		A		Q V	J^{π} : L(p,t)=3 for E=3342 <i>10</i> and L(p,p')=4 for E=3342 <i>4</i> .
3356 <i>3</i>	0+			E		J^{π} : L(t,p)=0.
3358.517 22	$(2^+,3,4^+)^b$			G L		7T 7 () F
3360 <i>4</i> 3372.4 <i>5</i>	5 ⁻ 2 ⁺ ,3 ⁺ ,4 ⁺ ,5 ⁺ ,6 ⁺			G IJ MN	Q S V	J ^{π} : L(p,t)=5. J ^{π} : L(d,p)=2 and primaries from 4 ⁺ ,5 ⁺ .
3381.74 5	3 ⁻ 2 ⁺		A	GH	Q S uV	J^{π} : L=3 in (p,p'), (α , α ') and (p,t).
3392.618 <i>18</i>	2			E G K M	Qr uV	E(level): $E(p,p')=3401 5$, E(p,t)=3400 10.
3409.931 25	(3,4+)			GHI	r U	J ^{π} : L=2 in (t,p), (p,t) and (p,p'). J ^{π} : possible γ 's to 4 ⁺ , (2 ⁺) and primaries from thermal capture and from J ^{π} =4 ⁺ neutron resonance.
3423.8 6	$(2 \text{ to } 6)^{a}$			G I M		_
3436.3 9	(2 to 6) ^a			E G J		J ^{π} : L=(0,1) in (t,p) inconsistent with J=2 to 6. The level in (t,p) may be different.
3478.37 3	$(2,3)^+$		A	GHI L	Q S UV	E(level): E(p,t)=3490. J^{π} : L=1+3 in (d, 3 He) and γ to 4 ⁺ .
3501.4 <i>10</i>	4			E LMn	QrS V	J^{π} : L=4 in (p,p') and (p,t).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
3515.441 <i>13</i>	(3,4*)		GHI K 1		J^{π} : γ' s to (2^+) , (4^+) and primaries from thermal capture and from two $J^{\pi}=4^+$ neutron resonances. If same as L=3 in (d,p) then $J^{\pi}=(3^-)$. If same as L=(4) in (d,d') then $J^{\pi}=(4^+)$.
3557.9 <i>3</i>	1(-)&	0.050 eV 8		0	TT
3566.75 8 3578.93 3	$(2^+,3,4^+)$ 2^+		A E G	Q S UV	J^{π} : γ to 2^+ and log $ft=7.3$ from (3^-) . J^{π} : L=2 in (t,p) and (p,t).
3603? <i>5</i> 3617 <i>7</i>	0+		C	N QSV	J^{π} : L=0 in (p,t) and (α, α') .
3629 7	(6^+)		F	Q S V	XREF: F(3590).
2620.59.2					J ^{π} : L=(6) in (α,α') , L=7,6 in (p,t) and L=6+8 or 6+7 in $(\alpha,^2$ He). L(p,p')=(5) inconsistent with J^{π} .
3639.5? 2 3642 2	(4 ⁺)		A E		J^{π} : L(t,p)=(4).
3647 ^d 10	1-		a	q S	J^{π} : $L(\alpha, \alpha')=1$.
3647 ^{de} 10	2+		a g	q V	J^{π} : L(p,t)=2.
3647.9 7	1+&	0.028 eV 6		0	
3654.4 ^e 11	$(4^+,5^+)$		g L I		J^{π} : L(d,p)=(0).
3681 ^j 1 3683 4	(8 ⁺) 5 ⁻		E	Х	J^{π} : yrast cascade in (⁸² Se,X). J^{π} : L(t,p)=5.
3685.42 <i>12</i>	$(2 \text{ to } 5^+)$		G	v q v	J^{π} : γ to (3 ⁺) and primary from thermal
					capture. If same as L=4 in (p,p') then $J^{\pi}=4^+$.
3691.79 <i>4</i> 3696.59 <i>9</i>	3 ⁻ (3,4) ^c		G A H JKL 1	qSv nsv	J ^{π} : L(α,α')=3. L(p,p')=4 inconsistent with J ^{π} . J ^{π} : log ft =6.6 from (3 ⁻). Feeding from 4 ⁺ and
			A II SKL I		5 ⁺ resonances.
3700 <i>10</i> 3707.20 <i>14</i>	(0 ⁺) (3,4,5) ^c		G IJ 1	Q nsv	J ^{π} : L(p,p')=(0). J ^{π} : γ to 3 ⁻ and primaries from thermal capture
2707.2011			0 10		and from 4 ⁺ and 5 ⁺ resonances.
3716.7 <i>4</i>	$(1^-,2^+)^{\mathcal{C}}$			n s v	J^{π} : γ' s to 0^+ , (3^-) .
3720.79 5	$(3,4^+)$		A G 1	n	J^{π} : log ft =6.3 from (3 ⁻) and primary from thermal capture.
3733 7	4+		E 1	n Q S	J^{π} : L(t,p)=4. L(p,p')=3 is not consistent with J^{π} .
3743.348 23	$(3^-,4^+)$			n	J^{π} : γ to 5 ⁻ and possible γ to (3,4 ⁺).
3748 5	2^{+}			n QS V	J^{π} : L=2 in (p,t) and (p,p').
3771.74 <i>5</i> 3778 <i>5</i>	$(2^+,3,4^+)^b$ 0^+		GH L E	QSV	J^{π} : L=0 in (t,p) and (p,t).
3783.41 5	$(2^+,3,4^+)^{b}$		G		() = ((·) ₁ (+,·)
3790.90 8	(3,4+)		GΙ		J^{π} : γ to (2 ⁺) and primaries from thermal capture and from $J^{\pi}=4^{+},5^{+}$ neutron
3806.772 23	3-		GH	S	resonances. J^{π} : $L(\alpha, \alpha')=3$.
3807.03 11	3		A	J	v . E(a,a) 3.
3828.23 ^f 10	$(1^- \text{ to } 4^+)^f$		A		J^{π} : γ' s to 2^+ and 3^- .
$3832.23 \frac{f}{f} 5$	$(2^+,3,4^+)^{bf}$		G		
3835.27 ^f 4 3853 10	$(2^+,3,4^+)^{bf}$		GHI KL	S	
3870	$(6^+, 7^-, 8^+)$ 2^+		F		J^{π} : L(α , ² He)=6+7 or 6+8 for 3590+3870.
3874.17 <i>4</i>	2'		E G	Q V	J ^{π} : γ to 3 ⁻ ; L(p,t)=2; L(p,p')=(2) assuming the same levels are populated in (p,t), (p,p') and (n, γ) E=th.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			XRE	EF		Comments
3874.9 <i>3</i>	1+&	0.099 eV 18				0		
3876 ^h 10	3-	0.077 CV 10						\mathbf{I}^{π} , \mathbf{I} (a. \mathbf{a}^{f})=2
3889.69 <i>3</i>	$(2^+,3,4^+)$			G		S		J^{π} : $L(\alpha, \alpha')=3$. J^{π} : γ to 4^{+} .
3895.01 6	$(2,3,4^+)$ $(2,3,4^+)$		Α	G				J^{π} : γ' s to 2^+ , $(3)^+$ and $(3^-,4^+)$.
3897.98 <i>4</i>	$(2^+, 5, 4^-)$ $(2^+ \text{ to } 6^+)$		А	G				J^{π} : possible γ to 4^{+} .
3916 <i>5</i>	0+			E		Q	٧	J^{π} : L=0 in (t,p), (p,t).
3932.98 ^g 4	$(1^+,2,3,4^+)^g$			G		ď	•	J^{π} : γ to $(2^+,3,4^+)$.
3941.09 ⁸ 16	$(2^+,3^-)^g$			G				J^{π} : γ' s to (3) ⁺ and (4) ⁺ .
3949.80 ⁸ 10	$(2^+,3,4^+)^{bg}$			ď				3 . y 3 to (3) and (4) .
3949.808 <i>10</i> 3958.03 <i>20</i>	3-		Α	GHI	L	S		J^{π} : $L(\alpha,\alpha')=3$.
3975.86 <i>9</i>	(2^+)			G	L	3		J^{π} : $L(\alpha, \alpha) = 3$. J^{π} : γ' s to 0^+ , (3^+) , (3^-) .
3975.80 9	$(2,3,4^+)$		Α	G				J^{π} : γ' s to 0^+ , (3^-) , (3^-) . J^{π} : γ' s to 2^+ , $(3)^+$ and log ft =6.0 from (3^-) .
3995.05 <i>10</i>	$(2,3,4^+)$ $(2^+,3,4^+)$		A					J^{π} : γ to 2^{+} and $\log f$ 6.7 from (3 ⁻).
3995.83 <i>6</i>	$(2^+,3,4^-)$ (2^+)		А	GHI	n			J^{π} : γ' s to 0^+ , 2^+ and 4^+ .
3999 <i>10</i>	5-			GIII	n			J^{π} : $L(\alpha, \alpha')=5$.
	1 <mark>&</mark>	0.044 - 17.6						\mathbf{J} . $\mathbf{L}(\alpha,\alpha)=\mathbf{J}$.
4006.8 <i>4</i> 4008 <i>10</i>	(0^+)	0.044 eV 6				0		$I\pi$. I $\langle n, n' \rangle = \langle 0 \rangle$
	2+			E C		Q S		J^{π} : L(p,p')=(0).
4022.94 <i>7</i> 4024 <i>7</i>	5-			E G		Q S	٧	J^{π} : L(t,p)=2. J^{π} : L=5 in (α,α') and (p,t) .
						Ų 3	V	$J : L=3 \text{ in } (\alpha,\alpha) \text{ and } (p,t).$
4030.1 5	$(2^+,3,4^+)^b$			G	L	C		VDEE C(9)
4045.43 4	(2 + 5)(1			G		S		XREF: $G(?)$.
4064.66 3	$(2 \text{ to } 5)^a$			G				J^{π} : γ to 3.
4069 5	3 ⁻ ,4 ⁻ ,5 ⁻ ,6 ⁻ (0 ⁺)				N			$J^{\pi}: L(d,p)=1.$
4083 10						Q		J^{π} : L(p,p')=(0).
4084.9 5	1+&	0.060 eV 8		_		0		TT T 41 (1) (0) C (1) 1 (1)
4085 10	4+			E		Q S	V	J^{π} : L=4 in (α, α') . $\sigma(\theta)$ for (p,t) and (t,p)
4002 10	(5-)					•		peaks can' $T_{1/2}$ be fit by a single L value.
4093 10	(5^{-})			G		Q		E(level): $E=4094.02$ 4 for a tentative level in
								(n,γ) .
4110.5	2- 4- 5- 6-				3.7			J^{π} : L(p,p')=(5).
4119 5	3-,4-,5-,6-			G	N			E(level): E=4114.16 4 for a tentative level in
								(n,γ) .
4120	(7- 0+)							J^{π} : L(d,p)=1.
4130	$(7^-,8^+)$			F		•		J^{π} : $L(\alpha,^{2}He)=(7,8)$.
4138 10	2.			G		Q	V	E(level): E=4137.27 6 for a tentative level in
								(n,γ) .
4144 400				•				$J^{\pi}: L(p,t)=2.$
4144.48? ⁱ 10				G				
4155.25? ⁱ 13				G				
4164 10	2+					Q	V	J^{π} : $L(p,t)=2$.
4171.5 <i>3</i>	₁ &					0		
4174 <i>4</i>	3-			E	N	Q		J^{π} : L(t,p)=3 and L(d,p)=1.
4191.32? ⁱ 5				G				
4201.55 8	2+		Α	E		Q	V	J^{π} : L(t,p)=2.
4202.94? ⁱ 5				G				***
4204.67 16	$(2^+ \text{ to } 5^-)$			Ğ	KL			J^{π} : γ' s to 4^+ and 3^- .
4217.30 5	$(2^+,3,4^+)^{b}$			G				,
4217.30 3	$(2^+,3^+,4^+)$		Α	ď				J^{π} : log $ft=7.1$ from (3 ⁻).
	1-&	0.000 -17.10	21			^		5 . 10g ji – 1.1 110m (5).
4224.9 <i>8</i>	$(3,4^+)$	0.090 eV 10		CH		0		E(laval): this laval may be the same as
4234.77 6	(3,4)			GH	L			E(level): this level may be the same as 4235.33 seen in.
								J^{π} : primary γ' s from thermal capture and
								from $J^{\pi}=4^{+}$ neutron resonance.
								nom v i nout on resonance.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$			XREI	7		Comments
4235.33 13	$(2,3,4)^+$		A		N	Q		J^{π} : γ to 2^+ and $L(d,p)=2$.
4239 10	0^{+}		Λ	G	14	Q	V	E(level): $E=4238.19 6$ for a tentative level in
4239 10	U			ď			•	(n,γ) .
								J^{π} : L(p,t)=0.
4272 10	(0±)					^	77	
4273 10	(0^+)					Q	V	J^{π} : $L(p,t)=(0)$.
4276.4? ⁱ 3				G				
4290 7	2+			E G			V	E(level): $E=4292.28 6$ for a tentative level in
								(n,γ) .
								J^{π} : L=2 in (t,p) and (p,t).
4305.8 <i>13</i>	₁ &	0.047 eV 7			0)		
4320 10	4 ⁺	0.017 0 7		E	•	Q	V	J^{π} : L=4 in (p,t) and L=(4) in (t,p).
4339.67 5	(2^+)			G		Q	•	J^{π} : γ to 0^+ .
				ď	_			J. 7 to 0.
4342.6 3	1 &				0)		
4344.25? ⁱ 5				G				
4353 5	4 ⁺			E	N	Q		J^{π} : L(t,p)=4.
4367.2 5	$(1^- \text{ to } 5^-)$		Α			-		J^{π} : γ to (3^{-}) .
4368.15 7	(2+)			G		q		J^{π} : γ to 0^+ .
4387 5	2+			Е	N	q	V	J^{π} : L=2 in (p,t), L=(2) in (t,p) and (d,p).
4408.58 10	$(4^+)^a$			G		-1	V	J^{π} : $L(p,t)=0,4$.
4413.54 10	2+			E G	N		•	J^{π} : L=2 in (t,p) and (d,p).
4439.98 5	$(2,3,4)^a$			G	14			J^{π} : γ to (2^+) .
								J . y to (2).
4442.18 5	$(2^+,3,4^+)^{b}$			G				
4477.49 6	$(0^+ \text{ to } 4^+)$		Α					J^{π} : γ to 2^+ .
4493 7	4+			E	N		V	J^{π} : L=4 in (t,p) and (p,t).
4527.89 <i>4</i>	(2^{+})			G				J^{π} : γ to 0^+ .
4535 10	0^{+}						V	J^{π} : L(p,t)=0.
4538 10	2+			E				J^{π} : L(t,p)=2.
4544 5	$4^{+},5^{+}$				N			J^{π} : L(d,p)=0.
4586 9	4 ⁺			E				J^{π} : L(t,p)=4.
4591 <i>10</i>	2+						V	J^{π} : L(p,t)=2.
4594 5	3-,4-,5-,6-				N			J^{π} : $L(d,p)=1$.
4611.42 <i>16</i>	$(2^{-},3^{-},4^{-})$		Α					J^{π} : log $ft=5.7$ from (3 ⁻).
4630.43 7	(2+)			E G	N		V	J^{π} : L(p,t)=(2).
4664 10	4+						V	J^{π} : $L(p,t)=4$.
4685 6	(0^+)			E			V	J^{π} : L(p,t)=(0).
4698.29 <i>13</i>	$(2^-,3^-,4^-)$		Α	-			•	J^{π} : log $ft=5.0$ from (3 ⁻).
4731 5	4 ⁺ ,5 ⁺		А		N			J^{π} : L(d,p)=0.
4767 11	$(0^+,1^-)$			E	14			J^{π} : $L(t,p)=(0,1)$.
4824 5	4 ⁺ ,5 ⁺			E	N			J^{π} : $L(d,p)=(0,1)$. J^{π} : $L(d,p)=0$.
				C	IN			
4840.92 13	(2^+)			G				J^{π} : γ to 0^+ .
4853 8	$(0^+,2^+)$			E				J^{π} : $L(t,p)=(0+2)$.
4874 5	(2+)				N			TT 1 () (0)
4920 10	(2+)						V	J^{π} : L(p,t)=(2).
4951 10	(2+)						V	J^{π} : L(p,t)=(2).
4972.55 9	(2^{+})			G				J^{π} : γ to 0^+ .
4981 5					N			
5021 10	(2+)						V	J^{π} : L(p,t)=(2).
5062 5	$4^{+},5^{+}$				N			J^{π} : L(d,p)=0.
5107.82? ⁱ 5				G				
5131.45 8	$(2 \text{ to } 6)^{a}$			Ğ				
5147 5	4 ⁺ ,5 ⁺			,	N		V	J^{π} : L(d,p)=0. L(p,t)=5 is reported by 1972IsZV
51175	. ,5						•	for E=5313; however, in the work of $1977Gu12$,
								the 5148 peak is not fit by any single L value.
5288.5				G				J^{π} : (2 ⁺ ,3 ⁺) proposed by 2000PoZV in (n, γ).
3200.3				ď				3. (2,3) proposed by 20001 02 v iii (ii, y).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF		Comments
5323 5	4+,5+			N		$J^{\pi}: L(d,p)=0.$
5352 10	0				V	
5434.8 5	1-&	0.40 eV 3		0		
5435.76? ⁱ 7	Q.		G	N		XREF: N(5440).
5485.1 <i>12</i>	1&	0.075 eV 11		0		
5493.1 <i>10</i>	1&	0.087 eV 17	6	0		III (2- 4-)
5510.3 5514.8 <i>8</i>	₁ &	0.22 -1/4	G	0		J^{π} : $(3^-,4^-)$ proposed by 2000PoZV in (n,γ) .
5514.8 8 5580 <i>10</i>	(0^+)	0.23 eV 4		0	V	J^{π} : L(p,t)=(0).
5617 5	(0)			N	•	J. E(p,t)=(0).
5717 5				N		
5743.7 10	1 ^{&}	0.110 eV <i>13</i>		0		
5758.76? ⁱ 4			G			
5766.7 4	1(+)&	0.167 eV 26		0		
5787 <i>5</i> 5850 <i>5</i>				N N		
5926.86? ⁱ 6			G	N		XREF: N(5930).
5934.16? ⁱ 9			G	N		ARLF. 14(3)30).
6017.4 24	1-&	0.120 eV <i>15</i>		NO		XREF: N(?).
0017.127	1	0.120 0 13		110		Γ from 1970Mo26.
6190?				N		
6200	$(6^+,8^+)$		F	17		J^{π} : L(α , 2 He)=(6,8).
6330?	$(4^+,5^+)$ $1^{\&}$	0.39 eV <i>11</i>		N		J^{π} : L(d,p)=(0).
6445.1 <i>11</i> 6477.9 <i>6</i>	1-&	0.39 eV 11 0.226 eV 21		0		
6530?	1	0.220 eV 21		O N		
6650.3 <i>3</i>	1-&	0.92 eV 7		0		
6660.5 <i>5</i>	1-&	0.337 eV 20		0		
6680?				N		
6732.7 8	1+&	0.29 eV 3		0		
6862.00? ⁱ 7	0		G			
6942.6 6	1-&	0.35 eV 3		0		
6992.70? ⁱ 6	0		G			
7150.8 <i>16</i>	1-&	0.58 eV 9		0		
7173.18? ⁱ 4	Q _r		G			
7264.6 <i>6</i>	1-&	0.81 eV 3		0		
$7275.90?^{i}$ 4			G			
7359.39? ⁱ 9	₁ &	0.25 37.4	G	•		
7379.9 <i>10</i> 7445.3 <i>11</i>	1& 1&	0.25 eV 4		0		
7445.3 11 7493.60? ⁱ 6	I		C	0		
7493.00? 0 7506.7 <i>10</i>	1(-)&	0.40 eV 3	G	0		
7506.7 <i>10</i> 7550.7 <i>7</i>	1-&	0.40 eV 3 0.80 eV 11		0 0		
7578.96? ⁱ 5	1	0.00 C V 11	G	U		
7616.0 8	1&		3	0		
7610.0 8 7621.77? ⁱ 7	1		G	· ·		
7652.1 6	1-&	1.51 eV <i>12</i>	•	0		
$7702.02?^{i}$ 5	•		G	Ŭ		
· · · · · ·			-			

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
7882.23? ⁱ 4			G
7980.64? ⁱ 6			G
8219.0 8	1 ^{&}	0.36 eV 5	0
8250.2 8	1&	0.33 eV 8	0
8361.1 <i>12</i>	1 ^{&}	0.88 eV 18	0
8375.70? ⁱ 8			G
8440.13? ⁱ 9			G
8560.09? ⁱ 6			G
8873.33? ⁱ 7			G
8928.00? ⁱ 8			G
9004.38? ⁱ 6			G
9133.79? ⁱ 8			G
9457.91? ⁱ 5			G

[†] In (p,p'), level energies above 3600 are too high by 10-30 keV, the evaluators have considered this deviation in establishing the level correspondences. See (n, γ) E=th for many additional levels that are considered as tentative. The 2630 and 3050 groups in (α , ²He) cannot be associated uniquely with any of the levels here due to the poor resolution in this reaction and high level density in this energy region.

 $^{^{\}ddagger}$ When arguments are based on L values in particle-transfer reactions, L(d,p) is from $9/2^{+}$ 73 Ge target; and L(d, 3 He) is from $3/2^{-}$ As target.

[#] Γ are from (γ, γ') .

[@] From $(n,n'\gamma)$.

[&]amp; From $\gamma\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\gamma,\gamma'),(\text{pol }\gamma,\gamma')$.

^a Primary γ from $4^+,5^+$.

^b γ' s to 2⁺ and 4⁺.

^c L(p,t)=(2) for E=3607 10.

^d E=3639.77 10 with probable $J^{\pi}=1,2^{+}$ is reported in β^{-} decay.

^e E=3651.93 3 with probable $J^{\pi}=1^{+},2,3,4,5^{+}$ is reported in (n,γ) E=th.

^f L=2 for E(t,p)=3824 5, L=(2) for E(p,p')=3825 10, L=4 for E(p,p')=3849 10, L=3+5 for E(α,α')=3836 10, L=1+3 for E(d, α)=3837 10 and L=1 for E(d,p)=3841 5 probably correspond to any of these levels.

^g L=2 for E(t,p)=3953 δ , L=4 for E(p,p')=3966 δ 10, L=(3+5) for E(α , α ')=3948 δ 10, L=3 for E(p,t)=3935 δ and L=3 for E(p,t)=3950 δ probably correspond to any of these levels.

^h E=3874.17 4 is reported in (n,γ) , and probably corresponds to either the 3874 or 3876 levels.

ⁱ For γ rays from this level see ⁷³Ge(n, γ) E=th.

^j Band(A): g.s. band.

Gammas are known mainly from 74 Ga β^- decay and 73 Ge(n, γ) E=thermal. Low energy γ' s are from curved-crystal spectrometer data in (n, γ). See (n, γ) E=th for many additional γ rays from tentative levels.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ	Comments
595.850	2+	595.847 6	100	0.0	0+	E2		B(E2)(W.u.)=33.0 4
	- 1				- 1			Mult.: from $\gamma(\text{pol},\theta)$.
1204.205	2+	608.353 5	100 <i>I</i>	595.850	2+	E2+M1	+3.4 4	B(M1)(W.u.)=0.00099 15; B(E2)(W.u.)=43 6
		1204 200 12	46.2	0.0	0+	F2		δ: from $\gamma\gamma(\theta)$ in ⁷⁴ As ε decay. Other: +2.2 3 from (n,n' γ).
1463.759	4+	1204.208 <i>12</i> 867.898 <i>6</i>	46 <i>3</i> 100	0.0 595.850	0 ⁺	E2 E2		$B(E2)(W.u.)=0.71 \ 11$
1482.81	0 ⁺	887.19 <i>7</i>	100	595.850		E2 E2		B(E2)(W.u.)=41 3 B(E2)(W.u.)=9 +9-6
1402.01	U	1482.6	100	0.0	0^{+}	E2 E0		From ce data (1983Pa10).
		1402.0		0.0	U	LU		$I_{(\gamma+ce)}$: <0.006 from ⁷⁴ As ε decay.
								$q_K^2(E0/E2) < 0.12$, $X(E0/E2) < 0.052$, $\rho^2(E0) > 0.032$ (2005Ki02, evaluation).
1697.140	$(3)^{+}$	233.395 12	2.1 2	1463.759	1 +			$q_{K}(E0/E2)<0.12$, $A(E0/E2)<0.032$, ρ (E0)>0.032 (2003K102, evaluation).
1097.140	(3)	492.936 6	58 1	1204.205		(M1+E2)	+1.3 4	δ: from $\gamma(\theta)$ in $(n,n'\gamma)$ (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6
		492.930 0	30 1	1204.203	2	(WIT+L2)	⊤1.5 ₹	(1987Do14).
								Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
		1101.267 12	100 <i>I</i>	595.850	2+	(M1+E2)	+0.34 5	δ: from $\gamma(\theta)$ in $(n,n'\gamma)$ (1970Ch15). Other: 0.47 5 (1987Do14).
				-,-,-,	_	()		Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
1724.954	(0^+)	520.744 12	100	1204.205	2+			
2165.259	$(3,4)^{+}$	468.11 <i>3</i>	6.5 <i>3</i>	1697.140	$(3)^{+}$			
		701.487 <i>6</i>	42.7 3	1463.759				
		961.055 <i>10</i>	100 <i>I</i>	1204.205	2+	(M1(+E2))	0.01 <i>1</i>	δ : from $\gamma(\theta)$ in (n,n' γ) (1987Do14).
								Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
2197.933	2+	715.17 3	35 2	1482.81	0+			
		734.17 4	25 4	1463.759				74.
		993.67 <i>6</i>	100 5	1204.205	2+	(E2+M1)	$-2.8\ 2$	δ : $\gamma\gamma(\theta)$ in ⁷⁴ As ε. Mult from ΔJ^{π} .
		1602.0.2	15 1	505.050	2+			Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.
		1602.0 2	45 <i>4</i> 82 <i>10</i>	595.850	0 ⁺			
2227.77	0^{+}	2197.95 8 1021.9 <i>I</i>	38	0.0 1204.205				
2221.11	U	1621.9 <i>1</i> 1631.89 <i>12</i>	100	595.850				
2403.5	1	2403.5 4	100	0.0	0^{+}			
2536.310	3-	839.152 <i>14</i>	2.8 3	1697.140	-			
2000.010		1332.12 7	31 2	1204.205				
		1940.53 <i>15</i>	100 2	595.850		(E1(+M2))	+0.02 2	δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ (1987Do14).
						, //		Mult.: D+Q from $\gamma(\theta)$. ΔJ^{π} =yes from placement in level scheme.
2569.329	(6^{+})	1105.562 <i>12</i>	100	1463.759				•
2600.32	$(1,2,3)^+$	2004.45 9	100 9	595.850				
2669.62	4+	972.38 5	22 1	1697.140	$(3)^{+}$			

10

γ (74Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Εγ	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathtt{J}_i^{π}	Εγ	I_{γ}	E_f	\mathbf{J}_f^{π}
2669.62	4+	1205.88 9	74 9	1463.759		3032.8	1	1828.6		1204.205	
2690.6	1	2073.85 <i>7</i> 2690.6 <i>3</i>	100 10	595.850 0.0	2 ⁺ 0 ⁺	3034.00	$(3,4^+)$	3032.8 <i>2</i> 497.62 <i>10</i>	51 <i>5</i>	0.0 2536.310	0^{+}
2693.68	$(3,4^+)$	1489.35 5	100 2	1204.205		3034.00	(3,4)	1337.18 ^{#c} 10	<85	1697.140	
2093.08	(3,4)	2098.00 7	31 3	595.850				1570.26 10	51 2	1463.759	
2696.918	(2^{+})	531.650 9	8.3 2	2165.259				1829.86 10	100 3	1204.205	
		999.781 <i>12</i>	100 <i>I</i>	1697.140	$(3)^{+}$			2438.45 [#] <i>14</i>	14 2	595.850	2+
		1233.23 <i>15</i>	6.0 6	1463.759		3048.564	4+	850.64 <i>5</i>	33 <i>1</i>	2197.933	
2750.61	0_{+}	1546.4 <i>3</i>	100 15	1204.205				883.25 3	100 3	2165.259	
2020 507	4+	2154.6 3	100 15	595.850				1844.62 10	100 10	1204.205	
2828.507	4+	663.19 <i>6</i> 1131.360 <i>9</i>	1.2 <i>I</i> 100 2	2165.259 1697.140		3060.1	$(2^+ \text{ to } 6^+)$	3048.5 <i>4</i> 1596 <i>1</i>	9 2 100	0.0 1463.759	0 ⁺
2833.41	(2 ⁺)	667.8 3	35 <i>3</i>	2165.259		3081.321	$(2 \ 0 \ 0)$ (3^+)	545.01 [‡] <i>I</i>	11.8 3	2536.310	
2833.41	(2.)					3081.321	(3.)	916.07 [‡] 5			
		1135.9 2	20 3	1697.140					20 1	2165.259	
2835.923	(2^{+})	2237.9 <i>2</i> 670.59 <i>7</i>	100 <i>4</i> 5.8 <i>6</i>	595.850 2165.259				1384.11 [‡] 8 1617.64 8	57 <i>3</i> 100 <i>4</i>	1697.140 1463.759	
2033.923	(2)	1138.79 6	3.8 0 100 6	1697.140		3092.2	1(+)	1888.0	100 4	1204.205	
		2240.1 3	23 3	595.850		3092.2	1. 7	3092.2 2		0.0	0 ⁺
2856.04	0^{+}	1651.8 3	100 20	1204.205		3104.506	5-	939.23 2	100 2	2165.259	
		2260.0 4	100 20	595.850				1640.8 <i>1</i>	47 3	1463.759	
2878.14	(5^{-})	712.8 2	100 13	2165.259		3118.0	3-,4-,5-,6-	182.4 2	100 5	2935.475	
	(a. (±)	1414.4 2	67 13	1463.759				1654.1 2	12 2	1463.759	
2925.45	$(3,4^+)$	1228.29 <i>9</i> 1721.3 <i>2</i>	100 <i>4</i> 19 <i>1</i>	1697.140 1204.205		3139.32 3140.30	3-	1675.6 2 604.21 <i>10</i>	100 100 7	1463.759 2536.310	
2935.475	3-	399.08 <i>3</i>	0.42 3	2536.310		3140.30	3	942.47 7	45 2	2197.933	
2733.473	5	770.212 12	14.0 2	2165.259				975.1 3	9.4 10	2165.259	
		1471.72 3	100 <i>I</i>	1463.759				1443.38 <mark>dc</mark> 7	<125 ^d	1697.140	
2938.7	2+	2342.8 2	100	595.850				1676.77 14	25 1	1463.759	· /
2949.48	(3^{-})	784.3 [#] 2	1.5 2	2165.259	$(3,4)^+$	3175.47	3-	141.52 [‡] 3	21 6	3034.00	$(3,4^+)$
		1744.9 2	10.8 3	1204.205	2+			481.7 ^{‡&e} 1	56 12	2693.68	$(3,4^+)$
		2353.46 19	100 3	595.850	2+			639.10 [#] <i>10</i>	65 <i>4</i>	2536.310	3-
2961.0	(5^{-})	1756.7 2	100	1204.205	2+			1478.2 <i>3</i>	24 3	1697.140	
2973.472	(3)	437.20 [‡] <i>3</i>	0.8 1	2536.310	3-			1971.0 2	16 <i>4</i>	1204.205	2+
		808.23 [‡] 2	33 1	2165.259	$(3,4)^{+}$			2580.07 ^a 10	100 5	595.850	2+
		1509.66 9	100 2	1463.759		3199.5	2+	663.2 2	100 10	2536.310	3-
		2973.1 [‡] 4	2.5 3	0.0	0^{+}			2603.6 2	100 10	595.850	2+
2999.2	2+	777 [@] 4		2227.77	0^{+}	3211.8?		2616.67 ^e 9		595.850	2+
		1794.3 <i>1</i>	30 5	1204.205	2+			3211.11 ^{de} 11	d	0.0	0^{+}
		2402.7 <i>1</i>	100 8	595.850	2+	3224.680	4+	251.22 <i>I</i>	34 <i>1</i>	2973.472	
		2999 <i>1</i>	25 5	0.0	0_{+}			289.19 <i>I</i>	100 2	2935.475	3-

γ (74Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}
3224.680	4+	396.18 <i>3</i>	26 2	2828.507 4+	3639.5?		3639.45 <i>de</i> 13	<160 ^d	0.0	0^{+}
3271.51	(2 ⁺)	1043.6 <i>3</i>	8 2	2227.77 O ⁺	3647.9	1+	3647.9 7		0.0	0+
	(-)	1546.7 <i>4</i>	4 1	1724.954 (0+)	3681	(8+)	1112		2569.329	
		1807.5 <i>1</i>	100 10	1463.759 4+	3685.42	$(2 \text{ to } 5^+)$	604.10 12	100	3081.321	
3276.3	1	3276.3 2		$0.0 0^{+}$	3691.79	3-	657.84 <i>4</i>	5.2 <i>3</i>		$(3,4^+)$
3315.72	4+	746.40 <i>4</i>	13 <i>I</i>	2569.329 (6 ⁺)			756.24 9	4.6 5	2935.475	
		1150.43 <i>4</i>	100 <i>3</i>	2165.259 (3,4)+			1022.05 10	10 2	2669.62	4 ⁺
3342.94	$(3^-,4^+)$	1177.42 <i>18</i>	29 <i>3</i>	$2165.259 (3,4)^{+}$	3696.59	(3,4)	521.0 5	19 <i>4</i>	3175.47	3-
		2138.62 <i>10</i>	100 5	$1204.205 \ 2^{+}$			1160.33 <i>10</i>	100 7	2536.310	
		2747.13 <i>10</i>	100 6	595.850 2+			1999.3 2	64 6	1697.140	
3358.517	$(2^+,3,4^+)$	530.01 2	100 4	2828.507 4+			2231.9 5	16 <i>15</i>	1463.759	
2204 = 4	-	1160.5 2	98 10	2197.933 2+	3707.20	(3,4,5)	1170.88 <i>14</i>	100	2536.310	
3381.74	3-	2785.83 5	100	595.850 2 ⁺	3716.7	$(1^-,2^+)$	540.9 5	100 18	3175.47	3-
3392.618	2+	311.32 <i>3</i>	16 <i>I</i>	3081.321 (3+)			3717.1 7	18 6	0.0	0+
		556.68 <i>3</i>	7.5 6	2835.923 (2+)	3720.79	$(3,4^+)$	545.5 [#] 5	3.7 11	3175.47	3-
		695.69 2	30.0 6	2696.918 (2 ⁺)			1184.4 [#] 2	16 2	2536.310	
		1227.2 2	100 <i>I</i>	$2165.259 (3,4)^{+}$			2023.6 3	30 7	1697.140	
3409.931	$(3,4^+)$	574.03 <i>4</i>	5.1 4	2835.923 (2+)			2257.0 <i>1</i>	100 3	1463.759	
		581.47 <i>4</i>	3.1 6	2828.507 4+	3743.348	$(3^-,4^+)$	472.04 16	32 10		(2^{+})
		712.99 5	7.4 4	2696.918 (2+)			567.92 7	8 3	3175.47	3-
		1712.96 <i>12</i>	100 6	1697.140 (3) ⁺	2771 74	(2+ 2 4+)	638.83 2	100 3	3104.506	
2479.27	(2.2)+	1945.9 2	16 2	1463.759 4+	3771.74	$(2^+,3,4^+)$	723.21 5	7.7 7	3048.564	
3478.37	$(2,3)^+$	302.98 <i>3</i>	10 2	3175.47 3			1573.75 9	100 4	2197.933	
		429.73 [‡] 5	8 2	3048.564 4+			2307.5 6	3.6 7	1463.759	
		444.2 [#] 5	4 2	$3034.00 (3,4^+)$			2567.4 <i>1</i>	24 3	1204.205	
		942.15 [‡] <i>10</i>	7 3	2536.310 3-	3783.41	$(2^+,3,4^+)$	467.68 <i>6</i>	43 10	3315.72	4+
		1312.81 <i>11</i>	51 4	2165.259 (3,4)+			2579.15 ^b 8	100	1204.205	
		2014.50 6	100 5	1463.759 4 ⁺	3790.90	$(3,4^+)$	519.47 9	5.4 14		(2^{+})
3515.441	$(3,4^+)$	541.96 <i>1</i>	76 2	2973.472 (3)			1254.47 10	100 3	2536.310	
		579.97 <i>1</i>	96 2	2935.475 3-	3806.772	3-	291.33 2	24 3	3515.441	
		679.4 1	8 2	2835.923 (2+)			2342.89 12	75 1	1463.759	
		686.90 6	9 1	2828.507 4+	2007.02		3210.94 8	100 4	595.850	
	.()	1350.19 <i>12</i>	100 7	2165.259 (3,4)+	3807.03		2109.8 ^e 6	d	1697.140	
3557.9	1 ⁽⁻⁾	2962.1		595.850 2+			3211.11 ^d 11		595.850	
2566.75	(0+ 0, 4+)	3557.9 3	15.0	$0.0 0^{+}$	3828.23	$(1^- \text{ to } 4^+)$	484.9 3	100 5		$(3^-,4^+)$
3566.75	$(2^+,3,4^+)$	2362.36 <i>13</i>	15 2	1204.205 2 ⁺			652.5 5	6 3	3175.47	3-
2579 02	2+	2970.92 10	100 4	595.850 2 ⁺			1134.5 3	36 4	2693.68 2197.933	$(3,4^+)$
3578.93	۷.	643.44 <i>3</i> 2115.5 <i>4</i>	64 <i>3</i> 51 <i>6</i>	2935.475 3 ⁻ 1463.759 4 ⁺			1630.7 <i>10</i> 2131.5 <i>4</i>	9 8 19 <i>1</i>	1697.140	
		3578.9 2	100 6	$0.0 0^+$			2625.3 ^e 4	19 <i>1</i> 7 <i>1</i>	1204.205	
3639.5?		3043.6 ^e 4	100 0	595.850 2 ⁺			3232.34 11	56 7	595.850	
3039.31		JUTJ.U T	100 20	373.030 2	1		J4J4.JT 11	50 /	575.050	_

12

γ (74Ge) (continued)

3832.23	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathtt{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3832.23	$(2^+,3,4^+)$	560.68 3	13 <i>I</i>	3271.51 (2 ⁺)	3995.05	$(2^+,3,4^+)$	3992.4 ^e 10	7 2	0.0	0+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			692.46 ^c 8	10 2	3140.30 3-	3995.83		212.40 [‡] 7	6.2	3783.41	$(2^+,3,4^+)$
1003.5 2 55 14 2828.507 4" 2790.4 4 11 1 1204.205 2" 2780.4 1 17 2780.205 2" 2780.4 1 2780.4 1 2780.5 2 2888.507 4" 3996.1 2 21 2 0.0 0 0" 2828.507 4" 476.75 5 23 6 3358.517 (2*3,4*) 4006.8 1 4006.8 4 20 0.0 0" 4006.8 1 4006.8 4 4002.94 2" 443.94 12 22 6 3578.93 2" 2780.6 1 2780.6 1 2780.6 1 2780.6 1 2780.6 1 2780.6 1 2780.6 1 2780.6 1 2888.507 4" 4006.8 1 4006.8 4 4002.94 2" 443.94 12 22 6 3578.93 2" 2780.6 1 2780.6							,				
3835.27 (2+3,4+) 476.75 5 23 6 3358.517 (2+3,4+) 4006.8 1 4006.8 4 0.0 0 the second se					2828 507 4+						
3835.27								3996 1 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3835.27	$(2^+,3.4^+)$				4006.8	1		21 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000.27	(= ,0,.)							22.6		
3874.17 2+ 182.40 2 61.5 3691.79 3- 1338.05 8 100 10 2536.310 3- 1338.05 8 100 10 2536.310 3- 3434.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.850 2+ 3454.2 6 12 4 555.8 6 12 4 12 4 555.8 6 12 4 12 4 12 6 12 4 12 6 12 4 12 6 12 4 12 6 12 4 12 6 12 4 12 6 12 6							_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
138,05	3874.17	2+				4030.1	$(2^+,3,4^+)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3874.9	1+	3874.9 <i>3</i>		$0.0 0^{+}$	4064.66	(2 to 5)	174.96 <i>1</i>	17 <i>3</i>	3889.69	$(2^+,3,4^+)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3889.69	$(2^+,3,4^+)$	146.33 <i>3</i>					654.79 <i>4</i>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									100 <i>13</i>	1463.759	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3895.01	$(2,3,4^+)$			$3342.94 (3^-,4^+)$	4084.9	1+	4084.9 5		0.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4171.5				0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4201.55	2+				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											` /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3932.98	$(1^+,2,3,4^+)$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
3941.09 (2 ⁺ ,3 ⁻) 1112.6 2 100 13 2828.507 4 ⁺ 1776.1 4 99 10 2165.259 (3,4) ⁺ 2243.7 3 32 3 1697.140 (3) ⁺ 1534.9 3 32 6 2669.62 4 ⁺ 3949.80 (2 ⁺ ,3,4 ⁺) 471.1 5 55 7 3478.37 (2,3) ⁺ 4217.30 (2 ⁺ ,3,4 ⁺) 1136.0 3 24 5 3081.321 (3 ⁺) 809.3 3 42 9 3140.30 3 ⁻ 1381.6 2 28 4 2835.923 (2 ⁺) 999.9 2 37 13 2949.48 (3 ⁻) 2486.3 4 11 6 1463.759 4 ⁺ 2753.62 12 100 9 1463.759 4 ⁺ 3354.03 12 100 8 595.850 2 ⁺ 4222.9 (2 ⁺ ,3 ⁺ ,4 ⁺) 3018.8 4 100 15 1204.205 2 ⁺ 3975.86 (2 ⁺) 1282.1 3 100 15 2693.68 (3,4 ⁺) 4224.9 1 ⁻ 4224.9 8 0.0 0 ⁺ 3975.7 2 50 4 0.0 0 ⁺ 3976.23 (2,3,4 ⁺) 2279.05 9 100 4 1697.140 (3) ⁺ 4305.8 1 4305.8 13 00.0 0 ⁺						1201 -					2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2041.00	(2± 2=)				4204.67	$(2^+ \text{ to } 5^-)$				(2±)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3941.09	$(2^{+},3^{-})$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2040.90	(2+ 2.4+)				4217.20	(2+ 2.4+)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3949.80	(2,3,4)				4217.30	$(2^{+},3,4^{+})$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4222 9	$(2^{+} \ 3^{+} \ 4^{+})$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3958 03	3-				7222.)	(2 ,5 ,7)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4224 9	1-		30 22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3773.00	(2)							67 17		~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1233.33	(2,3,1)				
$3976.23 (2,3,4^+) 2279.05 9 100 4 1697.140 (3)^+ 4305.8 1 4305.8 13 0.0 0^+$											
********* (=)**,* / ==****** *** ****** ****** *********	3076 23	$(2.3.4^{+})$				1305.8	1		\ 11		
	3910.23	(2,3,7)					-		65 13		
$3995.05 (2^+,3,4^+) 2790.79 10 100 9 1204.205 2^+ 618.90 8 4.8 11 3720.79 (3,4^+)$	3995.05	$(2^+,3.4^+)$				1337.07	(2)				

γ (74Ge) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	Εγ	I_{γ}	\mathbb{E}_f	J_f^π	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	J_f^π
4339.67	(2+)	648.2 2 1258.37 8 1739.2 6 2111.9 2	4.8 <i>11</i> 100 <i>4</i> 67 <i>16</i> 20 <i>2</i>	3691.79 3081.321 2600.32 2227.77	3 ⁻ (3 ⁺) (1,2,3) ⁺ 0 ⁺	4611.42 4630.43	(2 ⁻ ,3 ⁻ ,4 ⁻) (2 ⁺)	2074.14 ^c 25 516.27 12 2094.0 2 2905.23 9	100 <i>14</i> 100 <i>33</i> 9 <i>1</i> 23 2	2536.310 4119 2536.310 1724.954	3 ⁻ ,4 ⁻ ,5 ⁻ ,6 ⁻ 3 ⁻
4342.6	1	4342.6 3		0.0	0+			4034.70 10	16 <i>I</i>	595.850	
4367.2	$(1^- \text{ to } 5^-)$	1024.3 5	100 20	3342.94	$(3^-,4^+)$			4630.6 7	1.7 6	0.0	0+
4269 15	(2+)	1417.6 7	80 <i>7</i> 47 <i>10</i>	2949.48	(3^{-})	4698.29	$(2^-,3^-,4^-)$	1131.52 14	100 <i>6</i> 57 <i>6</i>	3566.75	$(2^+,3,4^+)$
4368.15	(2+)	1009.64 <i>8</i> 1263.6 <i>3</i> 1394.8 <i>5</i> 1539.58 <i>10</i>	100 <i>13</i> 27 <i>7</i> 32 <i>3</i>	3104.506 2973.472 2828.507	(3)	4840.92	(2+)	2004.6 2 685.66 3 966.7 2 1482.5 4	21 <i>I</i> 48 9 100 <i>I</i> 9	2693.68 4155.25? 3874.17 3358.517	(3,4 ⁺) 2 ⁺ (2 ⁺ ,3,4 ⁺)
		2202.4 <i>7</i> 4368.4 <i>5</i>	8 2 5.7 10	2165.259 0.0	(3,4) ⁺ 0 ⁺			1735.9 ^{dc} 9 2171.3 2	90 ^d 24 8.6 3	3104.506 2669.62	5 ⁻ 4 ⁺
4413.54	2+	606.87 ^d 13 2716.2 2 2949.6 2	100 ^d 24 11 <i>I</i> 22 <i>3</i>	3806.772 1697.140 1463.759	(3) ⁺ 4 ⁺			2675.9 <i>4</i> 3377.0 2 4245.0 <i>5</i>	14 <i>3</i> 40 <i>3</i> 32 <i>6</i>	2165.259 1463.759 595.850	4 ⁺ 2 ⁺
4439.98	(2,3,4)	100.31 1	16 4	4339.67	(2 ⁺)	4052.55	(a+)	4840.9 <i>9</i>	71 <i>3</i>	0.0	0+
		1058.0 3	24 5	3381.74	3-	4972.55	(2^{+})	1200.9^{d} 2	$100^{d} 33$ $13^{d} 2$	3771.74	$(2^+,3,4^+)$
		1839.9 <i>4</i> 2742.9 2	45 <i>5</i> 100 <i>10</i>	2600.32 1697.140	$(1,2,3)^+$ $(3)^+$			1393.3 ^d 3 2037.03 11	13 ⁴ 2 38 3	3578.93 2935.475	2 ⁺ 3 ⁻
4442.18	$(2^+,3,4^+)$	606.87 ^d 13 750.37 5	100 ^d 24 10 I	3835.27 3691.79	$(2^+,3,4^+)$ 3^-			3275.5 <i>3</i> 3489.9 <i>3</i>	6 <i>I</i> 10 2	1697.140 1482.81	(3) ⁺ 0 ⁺
		1049.50 ^d 9	21^{d} 2	3392.618	2+			4972.0 4	20 2	0.0	0+
		1303.0 ^{dc} 3 1393.3 ^d 3 1872.82 13	15 ^d 2 16 ^d 3 38 3	3140.30 3048.564 2569.329		5131.45	(2 to 6)	691.48 8 1735.9 ^d 9 2082.3 6	10 3 100 ^d 26 15 3	4439.98 3392.618 3048.564	
4477.49	$(0^+ \text{ to } 4^+)$	999.9 ^c 2 1134.5 <i>3</i> 1337.18 <i>10</i>		3478.37 3342.94 3140.30	$(2,3)^+$ $(3^-,4^+)$ 3^-			2562.13 <i>13</i> 2965.9 <i>3</i> 3668.0 <i>4</i>	95 8 33 4 37 6	2569.329 2165.259 1463.759	$(3,4)^+$
		1443.38 ^d 7	d	3034.00	$(3,4^+)$	5434.8	1-	5434.8 5		0.0	0 ⁺
4527.89	(2 ⁺)	3274.1 <i>12</i> 784.55 <i>3</i>	100 2	1204.205 3743.348		5485.1 5493.1	1 1	5485.1 <i>12</i> 5493.1 <i>10</i>		$0.0 \\ 0.0$	0+
	, ,	1049.50 ^d 9	71 ^d 6	3478.37	$(2,3)^{+}$	5514.8	1	5514.8 8		0.0	0+
		1303.0 ^d 3	49 ^d 6	3224.680		5743.7	1	5743.7 10		0.0	0+
		1958.1 4	16 3	2569.329		5766.7	1 ⁽⁺⁾	5766.7 <i>4</i>	40.25	0.0	0+
		2362.7 <i>4</i> 3044.8 2	24 <i>3</i> 47 <i>5</i>	2165.259 1482.81	$(3,4)^{+}$ 0^{+}	6017.4	1-	3017 <i>4</i> 3418 <i>4</i>	4.9 25 2.4 <i>1</i> 2	2999.2 2600.32	2^+ $(1,2,3)^+$
		3064.8 <i>2</i> 3064.5 <i>9</i>	8 3	1462.81				3789 <i>4</i>	9.8 24	2000.32	0+
4611.42	$(2^-,3^-,4^-)$	1471.7 2	72 8	3140.30	3-			3818 4	22.0 24	2197.933	2+

γ (⁷⁴Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$\underline{\mathbf{E}_f} \underline{\mathbf{J}_f^{\pi}}$
6017.4	1-	4301 ^e 4	·	1724.954	(0^{+})		7150.8	1-	7150.8 16	$0.0 \ 0^{+}$
		4532 <i>4</i>	14.6 <i>24</i>	1482.81	0^{+}		7264.6	1-	7264.6 6	$0.0 \ 0^{+}$
		4812 <i>4</i>	39 5	1204.205	2+		7379.9	1	7379.9 10	$0.0 \ 0^{+}$
		5422 <i>4</i>	100 10	595.850	2+	E1	7445.3	1	7445.3 11	$0.0 \ 0^{+}$
		6018 4	46 5	0.0	0_{+}	E1	7506.7	$1^{(-)}$	7506.7 10	$0.0 \ 0^{+}$
6445.1	1	6445.1 <i>11</i>		0.0	0_{+}		7550.7	1-	7550.7 <i>7</i>	$0.0 \ 0^{+}$
6477.9	1-	6477.9 <i>6</i>		0.0	0_{+}		7616.0	1	7616.0 8	$0.0 0^{+}$
6650.3	1-	6650.3 <i>3</i>		0.0	0_{+}		7652.1	1-	7652.1 6	$0.0 \ 0^{+}$
6660.5	1-	6660.5 5		0.0	0_{+}		8219.0	1	8219.0 8	$0.0 \ 0^{+}$
6732.7	1+	6732.7 8		0.0	0_{+}		8250.2	1	8250.2 8	$0.0 0^{+}$
6942.6	1-	6942.6 <i>6</i>		0.0	0_{+}		8361.1	1	8361.1 <i>12</i>	$0.0 \ 0^{+}$

 $^{^\}dagger$ From measured $T_{1/2}$ of levels and RUL of Weisskopf estimates for transitions of E2 or M2 multipolarity.

[†] Reported in (n,γ) E=th only.

Reported in 74 Ga β^- only.

@ Reported in (γ,γ') only.

& Placement in (n,γ) uncertain since no γ seen in 74 Ga β^- .

a Poor energy fit. Possible a doublet. See 3783 level.

^b Most probably a doublet. The second component belongs with the 3175 level.

^c Poor energy fit.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)


```
History
                                                               Author
                                                                                                         Citation
                                                                                                                             Literature Cutoff Date
                        Type
                                       Balraj Singh, Jun Chen and Ameenah R. Farhan
                                                                                                   NDS 194,3 (2024)
                 Full Evaluation
                                                                                                                                   8-Jan-2024
Q(\beta^{-}) = -921.5 \ 9; S(n) = 9427.24 \ 5; S(p) = 12041.2 \ 7; Q(\alpha) = -7492.3 \ 21
Q(2\beta^{-})=2039.06 \ I, S(2n)=15933.08 \ 2, S(2p)=22034.1 \ 25 \ (2021Wa16).
<sup>76</sup>Ge 2\beta^- decay (to <sup>76</sup>Se) by 0\nu\beta\beta or 2\nu\beta\beta decay modes:
^{76}Ge 2β<sup>-</sup> decay (experimental): 2013Ag11 (also 2013Ag02), 2013Ac01, 2008Me06, 2008Ra09, 2006Gr17, 2005Ba60, 2004Kl03
    (also 2005Kl02,2003Do12,2002Kl12,2001Kl11), 2003Aa01 (also 2000Aa01,1999Aa01, 1999Aa02,1996Aa02), 2001Kl12 (also
    2002K110,2001Va29,2000Va23), 2000Go25, 1999Bb30, 1997Ba70, 1997Gu13, 1996He31, 1995Ba44, 1995Ba84 (also 1994Ba15),
    1994Ma70, 1993Br22, 1993Be14, 1992Re03 (also 1991Tr07, 1987Fi05,1984Fo06), 1992Be20 (also 1992Ba25), 1991Mo28 (also
    1991Mo27, 1991Mo23,1988Mo35,1985Hu01,1983Le27), 1991Ca34 (also 1987Ca21, 1986Ca07), 1991Av04 (also
    1991Av01,1990Mi23,1987Av05,1987Av01,1986Av03, 1985Av02,1983Av01,1979Av01,1978Pi07), 1991Hy01 (also 1993Hy02,
    1984El01), 1990Bu15, 1990Va18, 1988Ok01 (also 1987Ej01,1986Ka33, 1986Ej01), 1986Zd01 (also 1985Zd01), 1984Si08,
    1984Fi16 (also 1984Be48, 1983Be65, 1982Be20,1973Fi01,1970Fi09,1967Fi14), 1952Fr23.
Additional information 1.
<sup>76</sup>Ge(e,e),E=225 MeV: 1990Kh03.
^{76}Ge(γ,α) E=18-25 MeV: 1990An13, measured emission of α particles in GDR region.
Giant dipole resonances in (\gamma,xn): 1976Ca06.
Mass measurement: 2010Mo03, 2008Ra09, 2001Do08, 2001Fr25, 1977De20, 197 1964Ba03, 1963Ri07.
Measurement of mass difference (<sup>76</sup>Ge-<sup>76</sup>Se): 1991Hy01 (also 1993Hy02, 1985El01, 1984El01, 1984ElZY).
                                                                             <sup>76</sup>Ge Levels
                                                                  Cross Reference (XREF) Flags
                                ^{76}Ga β<sup>-</sup> decay (30.5 s)
                                                                                                                 ^{80}Se(d, ^{6}Li)
                                                                       ^{76}Ge(n,n'\gamma)
                                                                       ^{76}\mathrm{Ge}(p,p'),(\mathrm{pol}\ p,p')
                                                                                                                 ^{192}Os(^{82}Se,X\gamma)
                                <sup>76</sup>As ε decay (26.254 h)
                                                                Н
                         В
                                                                                                          N
                                                                                                                 Pb(^{76}Ge,^{76}Ge'\gamma):inelastic
                                ^{74}Ge(t,p)
                                                                       <sup>76</sup>Ge(pol d,d')
                                                                                                          0
                                <sup>74</sup>Ge(<sup>18</sup>O, <sup>16</sup>O)
                                                                                                                 ^{238}\text{U}(^{76}\text{Ge}, ^{76}\text{Ge}'\gamma)
                                                                       ^{76}Ge(\alpha,\alpha')
                         D
                                                                J
                                                                       <sup>76</sup>Ge(<sup>16</sup>O, <sup>16</sup>O'),(<sup>18</sup>O, <sup>18</sup>O')
                                ^{76}Ge(\gamma, \gamma')
                                                                K
                                ^{76}Ge(n,n')
                                                                       Coulomb excitation
                                                                Ť.
                            T_{1/2} or \Gamma^{\#}
                                                        XREF
                                                                                                               Comments
                                                ABCDEFGHIJKLMNOP
                                                                            \%2\beta^{-}=100
                                                                            XREF: B(?).
                                                                            RMS charge radius (\langle r^2 \rangle)^{1/2} = 4.0811 fm 12 (2013An02 evaluation).
                                                                           Spin 0 is consistent with microwave absorption measurement
                                                                              (1949To09).
                                                                            T_{1/2}: for 2\nu\beta\beta decay, from GERDA collaboration (2015Ag06, see
                                                                              also 2015Ag10, 2015Ag01,2013Ag02). Others: 1.5 \times 10^{21} y I (as
                                                                              recommended in evaluation by 2010Ba07 and 2011Ba28; see
                                                                              values and references therein for input data), 1.43×10<sup>21</sup> y 53 in
                                                                              \beta\beta decay database at NNDC-BNL, 1.88 \times 10^{21} y 8 in 2021Ko07;
                                                                              >7.5\times10^{23} y (2021Ar01); >2.022\times10^{21} y (2023Ag05).
                                                                           T_{1/2} for 0\nu\beta\beta decay mode: >8.3\times10^{25} y (2023Ar02); >5.62\times10^{22} y (2022Da13); >9.0\times10^{25} y (2020Da08); >1.8\times10^{26} (2020Ag05); >4.8\times10^{25} y (2019Al24); >1.9\times10^{25} y (2018Aa02); >8.0\times10^{25} y
                                                                              (2018Ag03,2017Ag04); >2.1\times10^{25} y (2013Ag11, GERDA) at
```

90% confidence level, authors give $T_{1/2}>3.0\times10^{25}$ y by

combining results from measurements by 2001K111 and 2002Aa01. 2012Zu07 compilation lists $T_{1/2}>1.9\times10^{25}$ or $2.23\times10^{25}+44-31$, both at 90% confidence level. First value is also quoted in article

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	Comments
				 by 2013Ac01. The source reference for the second value needs to be confirmed. T_{1/2} for one Majoron emission 0νββ decay mode, measured T_{1/2}>4.2×10²³ y (2015He19, GERDA collaboration). See also 2011Ba28 for a review of experimental half-life measurements for different 2β decay modes. Consult NSR database at www.nndc.bnl.gov for an extensive list of experimental and theoretical articles on 2β decay of ⁷⁶Ge. Additional information 2. 2009Ka06: deduced occupancy of valence neutron and proton orbitals from single-particle transfer reaction studies using ⁷⁶Ge target.
562.917 ^b 23	2+	18.14 ps <i>13</i>	ABCDEFGHIJKLMNOP	μ =+0.53 8 (2013Gu23,2020StZV) Q=-0.19 6 (2001To13,2021StZZ) XREF: B(?). J ^π : L(t,p)=2 from 0 ⁺ . μ : transient-field technique in Coulomb excitation (2019Mc05), measured g ⁷⁶ Ge/g ⁷⁴ Ge=0.88 5 for the first 2 ⁺ states. Other: +0.64 2 (transient-field technique in Coulomb excitation, 2013Gu23); +0.838 46 from $\gamma(\theta, H)$ in Coul. ex. (1984Pa20), +0.67 8 ($\gamma(\theta, H)$) in Coul. ex.,1987La20); +0.56 12 (IMPAC,1969He11,1974Hu01,1977Fa07). Weighted average (NRM method) of all the four values is 0.67 5.
1108,416 ^c 27	2+	9.9 ps <i>9</i>	A C E GH J LM OP	method) of all the four values is 0.67 s. Q: reorientation effect in Coul. ex. (2001To13, previous value from authors was $-0.19\ 2$ in 2000To12). Other: $-0.19\ 6$ for constructive interference and $-0.03\ 6$ for destructive interference (1980Le16), 1972Gr37, 1969Si15. 2016St14 give $-0.19\ 6$ from 1980Le16 and 2000To12. $\beta_2(\text{pol p,p'})=0.25\ 1$ (1993Mo05). See also other values in (p,p'). $\beta_2(\text{pol d,d'})=0.197\ 10$ (1985Se05). $\beta_2(\alpha,\alpha')=0.265$ (1988Ba70), deduced from $\beta_2\text{R}=1.313$. $\beta_2((^{16}\text{O},^{16}\text{O'}),(^{18}\text{O},^{18}\text{O'}))=0.26$ (Coulomb), 0.23 (nuclear) (1976Co04). $\beta_2(\text{Coul.ex.})=0.267$ (1980Le24). $T_{1/2}$: from B(E2) \uparrow =0.276 2, weighted average of 0.277 2 (2023Ay02), 0.278 3 (1980Le16), 0.27 2 (1972Sa27), 0.260 5 (1969Si15), 0.263 +32-24 (1962St02), 0.29 3 (1960Wi18), 0.230 35 (1956Te26) from various Coulomb excitation measurements. Other Coulomb excitation measurements with beam energies above the Coulomb barrier: B(E2) \uparrow =0.299 27 (2006Pe13), 0.292 35 (2005Di05), 0.280 42 (1962Er05). Lifetime measurements $T_{1/2}$ =18.4 ps 21 (2013Lo04,RDM), and 18.2 ps 21 (1988DoZU, $\gamma\gamma$ Y(t)) are in a good agreement. 2008StZT: measured attenuation parameters G_2 and G_4 . μ =+0.64 10 (2013Gu23,2020StZV)
	2	·	A C E GH J LH OP	Q=+0.28 6 (2001To13) J ^π : L(t,p)=2. T _{1/2} : from B(E2) in Coul. ex. and adopted γ branching ratios. β ₂ (pol p,p')=0.058 (1993Mo05,1986MoZR). See (p,p') for other values. β ₂ (α,α')=-0.057 (1988Ba70). β ₂ (coul.ex.)=0.047 (1980Le24). μ: transient-field method in Coul. ex. (2013Gu23), measured value of +0.78 10 is re-evaluated to +0.64 10 in 2020StZV. Q: reorientation effect in Coul. ex. (2001To13).
1409.982 ^b 34	4+	1.86 ps <i>4</i>	A C GH J LMNOP	μ=+0.8 6 (2013Gu23,2020StZV)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XREI	7		Comments
							Q=-0.01 5 (2001To13) J ^π : L(t,p)=4. T _{1/2} : from B(E2) in Coul. ex. β ₄ (pol p,p')=0.064 11, 0.024 6, 0.020 20, 0.001 (1993Mo05,1986MoZR), 0.02 ((p,p'),1983Ra32). μ: transient-field method in Coul. ex. (2013Gu23), measured value of +1.0 7 is re–evaluated to +0.8 6 in 2020StZV. Q: reorientation effect in Coul. ex. (2001To13).
1539.383 ^d 33	3+	35 ps 7	A	GH	L	P	J^{π} : spin from 976 $\gamma(\theta)$ in $(n,n'\gamma)$; M1+E2 gammas to 2 ⁺ . $T_{1/2}$: from B(E2) in Coul. ex.
1911.12 6	0+	1.77 ps 8	A C	GH J	L		J^{π} : $L(t,p)=0$. $T_{1/2}$: from B(E2) in Coul. ex. Other: 1.25 ps +62-35 from DSAM in $(n,n'\gamma)$. Intruder spherical state based on very small value of expectation value of $<$ Q ² >=0.01 2 deduced by 2001To13 in their Coul. ex. experiment.
2021.68 ^c 4	4+	1.6 ps 4	A C	GH	LM	P	XREF: M(1970). J^{π} : $\gamma\gamma(\theta)$ (⁷⁶ Ge, ⁷⁶ Ge' γ); E2 γ to 2 ⁺ . $T_{1/2}$: from B(E2) in Coul. ex. Other: 1.5 ps +10-4 from DSAM in (n,n' γ).
2203.84 <i>5</i> 2284.22 <i>24</i>	$(1,2^+)$ $(3)^-$	0.010 ps 4	A	G H			J^{π} : γ to 0^+ . J^{π} : $L(p,p')=3$.
2453.74 ^b 6	6 ⁺	0.47 ps +19-16		GH	L N	P	J^{π} : E2 γ to 4 ⁺ ; g.s. band member. $T_{1/2}$: weighted average of 0.59 ps +19-12 from B(E2) in Coul. ex. and 0.26 ps +29-10 from DSAM in (n,n' γ).
2478.2 5	$(1,2^+)$			G			J^{π} : γ to 0^+ .
2487.07 ^d 9 2504.10 4	5 ⁺ 2 ⁺	1.04 ps +55-28 0.7 ps 5	C E	G GH	L L	P	J^{π} : E2 γ to 3 ⁺ ; M1+E2 γ to 4 ⁺ . J^{π} : L(t,p)=2.
2554? 5	(1+ 0+)			Н			$T_{1/2}$: other: 0.15 ps 2 from B(E2) \downarrow of 2504 γ in Coul. ex.
2591.04 <i>16</i> 2624? <i>5</i>	$(1^+,2^+)$		A	G H			J^{π} : γ rays to 0^+ and 3^+ .
2654.51 <i>20</i> 2655.15 <i>30</i>	$(0^+,1^+)$		A E	G			J^{π} : γ to 2^+ suggests $0^+,1,2,3,4^+$. $J^{\pi}=0^+,1^+$ suggested (1984KoZN) from $(n,n'\gamma)$ excitation functions. J^{π} : from $\gamma\gamma(\theta)$ in (γ,γ') .
2669.12 5	(1) 3 ⁺ ,4 ⁺	1.9 ps +14-6		G		P	J^{π} : M1+E2 γ s to 3 ⁺ and 4 ⁺ .
2692.347 <i>33</i>	3-	0.162 ps <i>14</i>	A C	GH J	L		J^{π} : L(t,p)=L(α,α')=3. $T_{1/2}$: other: values from B(E1)↓ in Coul. ex. are about 3 fs, which are discrepant. $β_3$ (pol p,p')=0.15 I (1993Mo05,1986MoZR). See also other values in (p,p').
2697.20 <i>4</i> 2733.23 <i>5</i>	(0) ⁺ 4 ⁺	0.70 ps +36-18 0.33 ps 8	С	G GH j	L	P	$\beta_3(\alpha,\alpha')=0.11$ (1988Ba70). J^{π} : proposed in $(n,n'\gamma)$; E2 γ to 2 ⁺ . J^{π} : L(t,p)=L(p,p')=4.
2747.75 5	(2)+	0.182 ps <i>21</i>	A	GH j			$T_{1/2}$ from DSAM in $(n,n'\gamma)$ (1987Do14,1990DoZU). J^{π} : M1+E2 γ s to 2 ⁺ and 3 ⁺ . Excitation function analysis in
2766.68 5	2+	14.6 fs 21	С	Gh j	1		$(n,n'\gamma)$ supports $2^+,4^+$. XREF: $c(2766)h(2768)j(2769)l(2767)$.
2768.73 14	2+		A c	h j	1		J^{π} : L(t,p)=L(α,α')=2. XREF: c(2766)h(2768)j(2769)l(2767). E(level): 2766.7 and 2768.8 levels could be the same level.
2841.61 <i>10</i> 2856.79 <i>10</i>	2 ⁺ 4 ⁺	0.0277 ps 28 97 fs 8	A C	GH G	L		J^{π} : $L(t,p)=L(\alpha,\alpha')=2$. J^{π} : $L(t,p)=L(p,p')=2$. J^{π} : $M1(+E2) \gamma$ to 4^{+} ; 4^{+} proposed in $(n,n'\gamma)$ based on excitation function.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	Comments
2897.55 9	0+	0.310 ps +56-44	C GH L	$J^{\pi}: L(t,p)=0.$
2919.74 8	1+	0.154 ps <i>14</i>	A E G	J ^π : M1 γ to 0 ⁺ ; $\gamma\gamma(\theta)$ in (γ,γ') . T _{1/2} : other: 0.30 ps +20–9 from Γ=0.0015 eV 6 from (γ,γ') .
2921 5	3-		НЈ	J ^π : L(α,α')=L(p,p')=3. 2921 level is treated as different from 2920 level since an intense g.s. transition from 2920 level is
2958.06 ^e 16	5-		C GH J P	inconsistent with $L(\alpha,\alpha')=3$ for a 2921 group. J^{π} : E2 γ to 3 ⁻ , E1 γ to 4 ⁺ . Also supported by $L(t,p)=5$ and $L(\alpha,\alpha')=(5)$. But $L(p,p')=3$ suggests 3 ⁻ .
2986.08 7	$(2^+,3^+)$	99.8 fs 62	G	J^{π} : proposed in $(n,n'\gamma)$ based on excitation functions.
2988.09 <i>21</i>			P	J^{π} : γ s to 5 ⁺ and 6 ⁺ .
2993.89 4	4 ⁺	0.50 ps + 13 - 8	C GH J	J^{π} : $L(t,p)=L(\alpha,\alpha')=4$.
3004.73 <i>8</i> 3007.16 <i>6</i>	(0) ⁺ 1 ⁺	0.214 ps +38-28 19 fs 7	G E G	J^{π} : proposed in $(n,n'\gamma)$; E2 γ to 2^+ . J^{π} : M1 γ to 0^+ .
3014.2 4	1&	0.0016 eV 2	E	
3021.14 <i>7</i> 3033.75 ^c 18	$(2^+,3^+)^a$ (6^+)	0.340 ps +47-36	G L P	J^{π} : γ to 4^+ ; γ s to 6^+ and 5^+ ; band member.
3041.37 8	2 ⁺	0.0638 ps 42	C GH	J^{π} : L(t,p)=2.
3052.55 10	2+,3+,4+	0.035 ps 5	GH	J^{π} : M1+E2 γ to 3 ⁺ .
3062.13 9	$(4^+,5^+)^a$	0.122 ps 22	G	,
3066.86 10	$(2^+,3^+,4^+)^a$	0.90 ps + 56 - 28	G	
3070.41 11	4^{+a}	0.76 ps +49-21	GH	J^{π} : M1+E2 γ to 4 ⁺ .
3088.4 7	₁ &	0.0017 eV 5	E	
3092.10 <i>10</i>	$(3^+,5^+)^a$	0.268 ps +42-32	GH	XREF: H(3090?).
3129.86 8	2+	0.245 ps +26-24	GH L	J^{π} : E2 γ to 0^+ .
				$T_{1/2}$: other: 0.26 ps +36–11 from B(E2) \downarrow of 3129.8 γ in Coul. ex.
3141.39 6	1+	119 fs + <i>14</i> – <i>10</i>	ACEG	J^{π} : $\gamma\gamma(\theta)$ in (γ, γ') ; $L(t,p)=L(p,p')=2$ with assumed S=1.
				$T_{1/2}$ from DSAM in $(n,n'\gamma)$ (2015Cr06). Other: 0.06 ps +7-4 (1990DoZU).
3147.54 10	$(2)^{+}$	118 fs <i>13</i>	GH	J^{π} : L(p,p')=2.
3162.65 6	$(4)^{+a}$	14.6 fs 21	GH L	J^{π} : E2+M1 γ to 4 ⁺ .
3181.95 <i>6</i> 3182.19 <i>6</i>	$(2^+,3^+)^a$ (2^+)	0.59 ps +42-18 0.25 ps +35-11	G A G O	J^{π} : L(p,p')=2+5 for a 3195 group; L(p,t)=(2,3).
3191.05 <i>4</i>	2+	0.128 ps 14	C Gh	XREF: h(3195).
31)1.03 /	-	0.120 ps 17	c dii	J^{π} : E2 γ to 0^+ .
3195 5	$(4^-,5^-,6^-)$		h	J^{π} : L(p,p')=2+5 for a 3195 5 level.
3200.01 <i>13</i>	$(3)^{+a}$	0.7 ps + 16 - 3	G	J^{π} : M1+E2 γ to 2 ⁺ .
3200.07 20	$(1,2^+)$		E	J^{π} : γ to 0^+ .
3224 <i>5</i> 3231.8 <i>4</i>	4+		H ACH J	XREF: A(?)H(3240).
				J^{π} : $L(t,p)=L(\alpha,\alpha')=4$.
3236.02 9	$(5)^{+a}$	30.5 fs +35–28	G P	J^{π} : M1+E2 γ to 4 ⁺ , γ to 6 ⁺ . Other: (6 ⁺) in (⁷⁶ Ge, ⁷⁶ Ge').
3243.79 7	1+	40.9 fs +35-28	G	J^{π} : M1 γ to 0^+ .
3268 5	(4 ⁺)		H J	J^{π} : L(α,α')=(4). But L(p,p')=(5) suggests 4 ⁻ ,5 ⁻ ,6 ⁻ .
3312.29 11	3-		Ach J	J^{π} : L(α , α')=3. Also L(p,p')=0+3 for a doublet. L(t,p)=0,1 and 3,4 also indicates a doublet with
3317 5	(0 ⁺)		c h	$J^{\pi}=0^{+}$ or 1 ⁻ and 3 ⁻ or 4 ⁺ . J^{π} : L(p,p')=0+3 for a doublet and L(t,p)=0,1 and

E(level) [†]	${\rm J}^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	Comments
3322.80 <i>6</i>	(2+)	0.16 ps + <i>14</i> -6	A G	3,4 for a doublet. L=3 component is associated with the 3312 level. J^{π} : γ s to 2^{+} and 4^{+} . Excitation function analysis in
3349 <i>5</i> 3391 <i>5</i> 3409.19 <i>18</i> 3419.47 <i>31</i> 3436.9 <i>4</i> 3453 <i>5</i> 3477.62 <i>17</i>	$(4^{+},5^{-})$ $(1,2,3)^{\textcircled{@}}$ 1^{+} $(4)^{+}$ $(2^{+},3)^{\textcircled{@}}$		C H J A H E G H P H	$(n,n'\gamma)$ suggests 2^+ . J^π : $L(p,p')=5$ but $L(t,p)=(4)$. XREF: $H(3402)$. J^π : γ to 0^+ ; $\gamma\gamma(\theta)$ in (pol γ,γ'). J^π : $L(p,p')=4$. E(level), J^π : $L(t,p)=1$ or 0 (and $L>1$); γ from 4^+ . Probably a doublet with 1^- or 0^+ for one of the components.
3484.0 <i>7</i> 3506 <i>5</i>	3-		GH J H	J^{π} : $L(\alpha, \alpha') = 3$.
3532.81 ^d 30 3536.0 4	(7+)		h P h P	J^{π} : γ to 5 ⁺ ; member of γ band.
3543.27 ^b 34 3545 5	8 ⁺ 2 ⁺		L N P	J^{π} : γ to 6^+ ; g.s. band member. J^{π} : $L(\alpha,\alpha')=2$. But $L(t,p)=0,1$ and 3,4 suggests 0^+ or 1^- and 3^- or 4^+ for a doublet.
3576.96 26 3585 5 3596.79 31	(2) ⁺ 2 ⁺ &	30 fs +6-5	G H J E	J^{π} : $L(\alpha, \alpha')=(2)$ and $L(p,p')=2$.
3606 <i>5</i> 3632.92 <i>10</i> 3640 <i>5</i>	(2 ⁺) (4 ⁻ ,5 ⁻ ,6 ⁻)		A P C H j	J ^π : γ rays to 0 ⁺ and (4 ⁺). XREF: c(3648). J ^π : L(p,p')=5. But L(t,p)=(2) for 3648 suggests 2 ⁺ .
3658 <i>5</i> 3680.70 <i>10</i> 3691 <i>5</i>	1-&		c Hj E H	XREF: c(3648).
3721 <i>5</i> 3727.83 ^e 26 3748 <i>5</i>	(5) ⁻ (7 ⁻) 2 ⁺ 1 ⁺ &		C H J P H J	J^{π} : $L(\alpha,\alpha')=(5)$ and $L(p,p')=5$. J^{π} : γ rays to 6^+ and $(5)^-$; possible band member. J^{π} : $L(\alpha,\alpha')=2$.
3763.40 <i>18</i> 3783.57 <i>28</i> 3805 <i>5</i> 3815 <i>5</i> 3848 <i>5</i> 3868 <i>5</i>	(4 ⁺ ,5,6,7 ⁻)		E H P C H H H H H	J^{π} : γ rays to (5^{-}) and 6^{+} .
3883 <i>5</i> 3886.97 <i>19</i>	(3-)		c H J A c H J	XREF: J(3871). XREF: H(3904)J(3893). J^{π} : L(α , α')=L(p,p')=3.
3951.88 7	1-	28 fs 5	A E G	J^{π} : from (pol γ, γ') data at HIGS-TUNL facility (priv. comm. of Feb 20, 2016 from W. Tornow); also γ s to 0^+ , 2^+ and 3^- . $T_{1/2}$ from DSAM in $(n, n'\gamma)$ (2015Cr06).
3972 5	(4 ⁺)		Н Ј	$XREF: J(3952).$ $J^{\pi}: L(\alpha,\alpha')=(4).$
3997 5	4+		НЈ	XREF: J(3978). J^{π} : L(α,α')=L(p,p')=4.
4024.11 20 4035.12 20 4057? 5 4073 5	1 ⁽⁻⁾ & 1&	0.0055 eV <i>11</i> 0.0053 eV <i>20</i>	E H E H H J	XREF: H(?). XREF: J(4052).

E(level) [†]	J^{π}	$T_{1/2}$ or $\Gamma^{\#}$		XREF		Comments
4099 5 4116.02 20 4122.28? 31 4129.8° 5 4130.6 4	5 ⁻ 1& (1,2 ⁺) 8 ⁺		A	H J E H L	P P	XREF: J(4073). $J^{\pi}: \gamma \text{ to } 0^{+}.$ $J^{\pi}: \gamma \text{ to } 6^{+}; \text{ member of } \gamma \text{ band.}$
4153 <i>5</i> 4192.80? <i>12</i> 4209 <i>5</i>	(2 ⁺ ,3) 3 ⁻		A	н н н ј		XREF: J(4126). J^{π} : L(p,p')=4 suggests 3 ⁺ ,4 ⁺ ,5 ⁺ but L(α , α')=(1) suggests 1 ⁻ . J^{π} : γ rays to 4 ⁺ and 1. XREF: J(4180). J^{π} : L(α , α')=L(p,p')=3.
4239.36 <i>14</i> 4249 <i>5</i>	(1,2,3) [@] 4 ⁺		A	H H J		XREF: J(4220). J^{π} : L(α , α')=4.
4250.93 <i>30</i> 4272 <i>5</i> 4311.1 <i>4</i>	1&			E H	P	
4326.43 <i>16</i> 4331.3 <i>12</i> 4363.47 <i>19</i>	(1,2,3) [@] 1 ^{&} 4 ⁺	0.050 eV <i>10</i>	A A	Н Е Н Ј		XREF: J(4332).
4399 <i>5</i> 4426 <i>10</i>	$(3^+,4^+,5^+)$			н ј		J^{π} : $L(\alpha,\alpha')=L(p,p')=4$. XREF: J(4367). J^{π} : $L(p,p')=4$. XREF: J(4402).
4444 <i>10</i> 4476.67? <i>21</i>	$(3^+,4^+,5^+)$ (≤ 4)		A	H H		J^{π} : L(p,p')=(4). XREF: H(4468). J^{π} : γ to 2 ⁺ suggests 0 ⁺ ,1,2,3,4 ⁺ .
4488 <i>10</i> 4536 <i>10</i>	3 ⁻ (3 ⁺ ,4 ⁺ ,5 ⁺)			н ј н ј		XREF: J(4453). J^{π} : L(α , α')=3. XREF: J(4500).
4546.8 ^d 5	9+				P	J^{π} : L(p,p')=4. L(α , α')=(3,4) suggests a doublet with 3 ⁻ and 4 ⁺ . J^{π} : γ to 7 ⁺ ; member of γ band.
4570 <i>10</i> 4611 <i>10</i>	(3-)		A	н Ј		XREF: J(4530). J^{π} : L(α,α')=(3,5) suggests a doublet with 3 ⁻ and 5 ⁻ . XREF: J(4570).
4613.0 ^b 5 4623.7 11	10 ⁺			E	P	J^{π} : $L(\alpha, \alpha') = (3)$. J^{π} : γ to 8^+ ; band member.
4659 <i>10</i> 4661.2 <i>4</i>	(5 ⁻)			H J		XREF: J(4615). J^{π} : L(α , α')=(5).
4678.26 <i>10</i> 4686.8 ^e 4 4698 <i>10</i>	1& (9 ⁻)			E H	P	J^{π} : γ rays to 8^+ and (7^-) ; possible band member.
4719.88 <i>18</i> 4720.5 <i>4</i> 4722.36 <i>20</i>	$(2^+,3,4^+)$ $(1)^{&}$		A	E	P	J^{π} : γ rays to (2^+) and (4^+) .
4722.36 20 4736 10 4741.16 20 4767 10	(1)			H E H		
4784.04? <i>26</i> 4789.06 <i>30</i>	(1,2,3)		A	E		

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		2	XREF		Comments
4812.47? 18	$(2^+,3)$		A		h		J^{π} : γ rays to 4 ⁺ and 1.
4814.92? 27	$(1,2,3)^{@}$		Α		h		, . , . ,
4837.2 <i>4</i> 4839 <i>10</i>	$(1)^{\&}$ $(3^+,4^+,5^+)$			E	Н		J^{π} : L(p,p')=(4).
4846.07 <i>30</i>	1&			F			J : L(p,p) = (+).
4874.67 20	1			E E	Н		
4917.2 6	₁ &			E			
4936.07 20	1 &		Α	E	Н		
5116.59 20	1&			E			
5122.47 <i>14</i>	$(1,2,3)^{@}$		Α	-			
5166.89 20	$(1)^{\&}$			E			
5185.99 10	(1) &			E			
5202.49 20	1&			E			
5222.19 30	1			E			
5267.00 30	1			E	h		XREF: h(5276).
5273.8 6	(1) &			E	Н		
5285.10 20	1&			E	h		XREF: h(5276).
5304.30 <i>30</i>	₁ &			E			
5365.80 <i>30</i>	₁ &		Α	E			XREF: A(5350).
5379.7 4	₁ &			E			
5390.8 5	(1)&			E			
5418.8 <i>4</i>	(1) <mark>&</mark>			E			
5434.51 <i>30</i>	1&			E			
5450.0? ^b 7	(12^{+})			_		P	J^{π} : possible band member.
5522.58 20	$(1,2,3)^{@}$		Α			•	v. possible band memoer.
5540.42 20	1&	0.103 eV 18		E			
5567.62 20	(1) &	0.103 € 1 10		E			
5579.0 <i>5</i>	1&			E			
5626.7 8	1&	0.133 eV 20		E			
5663.32 14	(2^{+})	0.133 CV 20	Α				J^{π} : γ rays to 0^+ and 4^+ .
5665.43 30	1&			E			, ,
5677.83 30	₁ &			E			
5699.03 20	1-&	0.256 eV 22		E			
5708.6 <i>6</i>	(1)&			E			
5748.53 10	1-&	0.166 eV 24		E			
5749.90? 32	$(1,2,3)^{@}$		Α				
5785.24 20	1&			E			
5794.34 20	1&			E			
5821.0 6	-			E			
5825.5 8	1 &			E			
5843.2 ^e 6	(11^{-})					P	J^{π} : γ to (9^{-}) ; possible band member.
5846.7 7				E			
5865.0 <i>6</i>	(1.2.2.0			E			
5882.92? <i>24</i> 5909.05 <i>30</i>	$(1,2,3)^{@}$		A	E.			
	₁ &	0.104 -37.22		E			
5955.9 8	1	0.194 eV 23		E			

E(level) [†]	$\mathrm{J}^\pi \ddagger$	$T_{1/2}$ or $\Gamma^{\#}$		XREF
5983.25 20	1-&	0.150 eV 20		E
6021.13? 28	$(1,2,3)^{@}$	0.130 e v 20	Α	E
6048.7 4	1&		А	E
6065.1? 4	$(1,2,3)^{@}$		Α	E
6081.7 4	(1,2,3)		А	E
6102.3 9	(1)			E
6113.86 <i>30</i>	₁ &			E
6130.57 20	1 &			E
6145.87 <i>20</i> 6162.7 <i>9</i>	1&			E E
6191.57 20 6223.7 7	1&			E E
6228.5 4	1&			E
6235.1 9	1			E
6240.98 30	1 &			E
6272.98 30	1 &			E
6285.58 20	1&			E
6315.7 4	1&			E
6330.48 <i>20</i> 6366.5 <i>11</i>	1 &			E E
6393.5 5	1 ^{&}			E
6408.4 5	1 &			E
6436.4 9				E
6448.6 11	. Sr			E
6472.50 30	1& 1&			E
6498.20 <i>30</i>	1&			E
6513.6 <i>4</i> 6572.3 <i>6</i>	1			E E
6601.51 20	1&			E
6611.4 6	1			E
6629.31 30	₁ &			E
6642.2 5				E
6661.7 9	Q _r			E
6670.91 <i>30</i>	1&			E
6741.9 6	(1)&			E
6765.1 4	1&			E
6787.03 20	1&			E
6816.83 <i>30</i>	1&			E
6835.83 20	1&			E
6846.53 <i>30</i>	1&			E
6880.6 4	1&			E
6884.5 <i>10</i> 6899.2 <i>5</i>	1&			E
6899.2 3 6908.3 <i>18</i>	1			E E
6938.9 7	1&			E
6960.24 <i>30</i>	1&			E
	=			

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF
6985.4 5	1&		E	8018.0 14	(1) &		E
6999.05 <i>30</i>	1-&	0.28 eV 4	E	8027.0 8	(1) &		E
7011.4 9	1		E	8049.8 <i>6</i>	(1) &		E
7026.35 30	1(-)&	0.39 eV 4	E	8063.9 8	1		E
7048.3 9	₁ &		E	8094.7 8			E
7081.6 9	1 <mark>&</mark>		E	8103.3 5			E
7091.8 <i>4</i>	1 &		E	8110.0 8			E
7102.8 6	1 <mark>&</mark>		E	8135.0 <i>11</i>			E
7121.66 30	1 ^{&}		E	8152.3 5	1 ⁽⁻⁾ &	0.71 eV 7	E
7130.46 30	1 ^{&}		E	8160.7 9			E
7147.7 <i>4</i>	1 ^{&}		E	8178.3 <i>4</i>	1 ^{&}		E
7172.0 9			E	8188.3 5	1 &		E
7250.9 7	1 ^{-&}		E	8236.9 <i>4</i>	$(1)^{\&}$		E
7290.1 <i>4</i>	0		E	8253.4 9	0_		E
7301.08 <i>30</i>	1-&		E	8260.1 <i>6</i>	(1) &		E
7407.09 <i>30</i>	1&		E	8284.99 <i>30</i>	(1) ^{&}		E
7416.0 4			E	8294.8 12	₁ &		E
7452.6 5			E	8304.0 5	1& 1&		E
7479.0 5	1 &		E	8318.29 30	1&		E
7485.40 <i>30</i>	1& 1&		E	8329.4 7	I.		E
7521.6 <i>5</i> 7537.0 <i>4</i>	(1)&		E	8348.2 9	(1) &		E
	(1)& (1)&		E	8357.9 7	(1)		E
7549.2 <i>7</i> 7585.0 <i>4</i>	(1) ² 1 ^{&}		E	8397.8 <i>5</i> 8418.5 <i>15</i>			E
7643.0 <i>4</i>	1&		E E	8425.70 30	1 &	0.29 eV 5	E E
7651.2 <i>4</i>	1&			8446.6 7	(1) &	0.29 eV 3	
7631.2 <i>4</i> 7678.1 <i>4</i>	1&		E E	8462.4 9	(1)		E E
7678.1 <i>4</i> 7694.6 <i>11</i>	1&	0.30 eV 5	E	8500.51 <i>30</i>	₁ &		
7723.1 4	(1)&	0.30 6 V 3	E	8521.2 6	1		E E
7777.3 7	(1) & (1) &		E	8535.6 <i>5</i>	1 &		E
7784.2 9	(1)		E	8546.6 <i>5</i>	1-&	0.76 eV 9	E
7797.0 4	₁ &		E	8552.8 8	1&	0.70 CV)	E
7804.1 6	1 <mark>&</mark>		E	8567.42 <i>30</i>	1 <mark>&</mark>		E
7814.7 7	1&		E	8602.8 5	1		E
7817.63 20	1		E	8626.2 7	₁ &		E
7836.7 <i>6</i>			E	8649.6 8	•		E
7849.7 <i>5</i>	(1)&		E	8662.5 4	(1)&		E
7861.6 <i>4</i>	1 <mark>&</mark>		E	8696.7 7			E
7883.7 10	1 <mark>&</mark>		E	8741.2 <i>4</i>	(1) ^{&}		E
7894.0 <i>12</i>			E	8753.2 6	1-&		E
7916.2 24	1-&	0.72 eV 17	E	8768.9 9	1 &		E
7950.35 20	1&		E	8806.8 <i>5</i>			E
7976.1 7	(1) &		E	8844.3 <i>4</i>	₁ &		E
7996.3 4	(1) ^{&}		E	8889.1 9			E

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
9014.2 <i>14</i>	1-&	0.71 eV 8	E	9305.6 4		E
9020.1 10	$(1)^{\&}$		E	9316.4 <i>4</i>		E
9033.7 9			E	9338.4 6		E
9052.3 12	(1) &		E	9355.1 8	(1) &	E
9059.1 <i>11</i>			E	9366.5 5	1 &	E
9163.9 9	1&		E	9378.5 4	(1) &	E
9176.1 8	1 &		E	9400.0 6	₁ &	E
9188.0 4	1&		E	9410.5 <i>4</i>	₁ &	E
9255.2 7			E	9418.2 5	1 &	E
9264.7 <i>6</i>			E	9557.2 <i>5</i>	1 &	E

[†] For levels populated in γ -ray studies, E(level) values are from least-squares fit to E γ data, assuming 0.5 keV uncertainty when stated. Normalized χ^2 =1.1. In other cases values are averages from different reaction studies. In (p,p') and (α , α'), values for similar levels differ systematically (higher by 12 keV to 45 keV in the 3700-4600 range). Values from (p,p') are adopted here (since many more levels are reported in (p,p') than in (α , α')), although, it is difficult to know as to which dataset is more accurate.

[‡] Log ft values from ⁷⁶Ga decay have not been used in assigning J^{π} values since $J^{\pi}(^{76}\text{Ga g.s.})=(3^{-})$ is only tentative. Moreover, several γ -ray placements remain uncertain. For levels above ≈ 3000 , values are given in parentheses when available only from L(p,p') and/or L(t,p) due to following reasons: 1. The agreement of $\sigma(\theta)$ fits to DWBA is not good over the whole angular range. 2. The correspondence between levels in different reactions is not unique due to large level density and large uncertainties in E(level) from particle reactions.

[#] From DSA in $(n,n'\gamma)$ (1990DoZU,1984KoZN,2015Cr06) for levels above 2.1 MeV, unless otherwise stated. Below this energy, values are deduced by the evaluators from B(E2) values in Coul. ex. Level widths are from 76 Ge (γ,γ') ,(pol γ,γ').

[@] Possible β^- feeding from $2^{(-)}$ (see 76 Ga β^- decay). Since the level scheme is not well established, the J^{π} assignment is considered as tentative.

[&]amp; From $\gamma\gamma(\theta)$ in (γ,γ') , parity from (pol γ,γ').

^a Proposed in $(n,n'\gamma)$ based on excitation functions and γ decay pattern.

^b Band(A): The g.s. band.

^c Band(B): γ band, even spin.

^d Band(b): γ band, odd spin.

^e Band(C): Band based on 5⁻.

γ (76Ge)

Additional information 3.

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{^{\ddag}}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
562.917	2+	562.93 3	100	0.0 0+	E2		1.64×10 ⁻³ 2	B(E2)(W.u.)=28.81 21 α (K)=0.001463 20; α (L)=0.0001529 21; α (M)=2.279×10 ⁻⁵ 32
1108.416	2+	545.51 3	100 3	562.917 2+	E2+M1	+2.4 2	1.70×10 ⁻³ 3	$\alpha(N)=1.460\times10^{-6}\ 20$ B(M1)(W.u.)=0.00119 +24-18; B(E2)(W.u.)=31.0 +34-29 $\alpha(K)=0.001520\ 25;\ \alpha(L)=0.0001588\ 27;\ \alpha(M)=2.37\times10^{-5}\ 4$ $\alpha(N)=1.519\times10^{-6}\ 25$ δ : weighted average of +2.5 2 from $\gamma(\theta)$ in (n,n' γ) and
		1108.41 8	70 4	0.0 0+	E2		0.000280 4	+2.1 4 from $\gamma\gamma(\theta)$ in (⁷⁶ Ge, ⁷⁶ Ge'). B(E2)(W.u.)=0.74 +8-7 α (K)=0.0002491 35; α (L)=2.55×10 ⁻⁵ 4; α (M)=3.80×10 ⁻⁶ 5
1409.982	4+	847.11 5	100	562.917 2+	E2		0.000531 7	$\alpha(N)=2.487\times10^{-7} \ 35; \ \alpha(IPF)=1.013\times10^{-6} \ 14$ B(E2)(W.u.)=36.5 8 $\alpha(K)=0.000475 \ 7; \ \alpha(L)=4.89\times10^{-5} \ 7; \ \alpha(M)=7.29\times10^{-6} \ 10$
1539.383	3+	430.95 5	69 5	1108.416 2+	M1+E2	+1.86 +17-11	0.00336 7	$\alpha(N)=4.74\times10^{-7}$ 7 $\alpha(K)=0.00300$ 6; $\alpha(L)=0.000316$ 7; $\alpha(M)=4.71\times10^{-5}$ 10 $\alpha(N)=2.99\times10^{-6}$ 6 B(M1)(W.u.)= 7.2×10^{-4} +19–15; B(E2)(W.u.)= 18.0 +46–31 I γ : from 238 U(76 Ge, 76 Ge' γ) (2013To05). Value of 75 from (n,n' γ) is in agreement, but 200 15 in β ⁻ decay (1971Ca39) is in severe disagreement. Value from 2013To05 is preferred here as the branching ratio in this work is supported by $\gamma\gamma$ -coin data, whereas no coincidence data were obtained in 1971Ca39. Moreover, there are many contaminants present in γ -ray spectrum from 76 Ga decay obtained by 1971Ca39. δ : weighted average of +1.8 4 from (76 Ge, 76 Ge' γ) and +1.87 +17–11 from (n,n' γ). The smaller values in those datasets are less likely.
		976.48 5	100 3	562.917 2+	M1+E2	+2.61 20	0.000368 5	$\alpha(K)=0.000329 \ 5; \ \alpha(L)=3.37\times10^{-5} \ 5; \ \alpha(M)=5.03\times10^{-6} \ 7$ $\alpha(N)=3.29\times10^{-7} \ 5$ B(M1)(W.u.)= $5.1\times10^{-5} +16-10$; B(E2)(W.u.)= $0.49 +12-8$ δ : weighted average of +2.5 2 from (76 Ge, 76 Ge' γ) and +2.72 20 from (16 y).
1911.12	0+	1348.19 6	100	562.917 2+	E2		0.0002213 31	B(E2)(W.u.)=3.75 +18-16 α (K)=0.0001625 23; α (L)=1.654×10 ⁻⁵ 23;

γ (⁷⁶Ge) (continued)

						/(30)	(Continued)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	δ#	α^{\dagger}	Comments
2021.68	4+	482.33 5	14.2 15	1539.383 3+	M1+E2		0.0021 6	$\alpha(M)=2.469\times10^{-6} 35$ $\alpha(N)=1.621\times10^{-7} 23$; $\alpha(IPF)=3.96\times10^{-5} 6$ $\alpha(K)=0.0018 5$; $\alpha(L)=1.9\times10^{-4} 5$; $\alpha(M)=2.9\times10^{-5} 8$ $\alpha(N)=1.9\times10^{-6} 5$ δ : $+0.48 +9-7$ or $+2.9 1$ from $(n,n'\gamma)$ (2017Mu03). B(M1)(W.u.)=0.0096 $+34-22$ if M1, B(E2)(W.u.)=55 $+20-13$ if
		611.72 4	67.9 33	1409.982 4+	M1+E2	+0.50 8	0.000965 25	E2. $\alpha(K)=0.000862$ 22; $\alpha(L)=8.88\times10^{-5}$ 23; $\alpha(M)=1.326\times10^{-5}$ 35 $\alpha(N)=8.68\times10^{-7}$ 22 B(M1)(W.u.)=0.018 +6-4; B(E2)(W.u.)=16 +7-5
		913.2 4	100 4	1108.416 2+	E2		0.000440 6	δ: from $\gamma\gamma(\theta)$ in (⁷⁶ Ge, ⁷⁶ Ge'). B(E2)(W.u.)=16 +6-3 α (K)=0.000394 6; α (L)=4.04×10 ⁻⁵ 6; α (M)=6.03×10 ⁻⁶ 8 α (N)=3.93×10 ⁻⁷ 6 E _γ : from (⁷⁶ Ge, ⁷⁶ Ge'γ). Other: 913.2 5 in (n,n'γ). Eγ=911.40 11 from β ⁻ decay is inconsistent.
2203.84	$(1,2^+)$	1097.4 <i>5</i> 2203.79		$1108.416 2^{+} \\ 0.0 0^{+}$				17 Homp deed, is meetisticin.
2284.22 2453.74	(3) ⁻ 6 ⁺	1175.7 <i>5</i> 1043.75 <i>5</i>	100 100	1108.416 2 ⁺ 1409.982 4 ⁺	E2		0.000320 4	B(E2)(W.u.)=51 +26-15 α (K)=0.000286 4; α (L)=2.93×10 ⁻⁵ 4; α (M)=4.37×10 ⁻⁶ 6 α (N)=2.86×10 ⁻⁷ 4
2478.2	$(1,2^+)$	1915 <i>I</i>		562.917 2 ⁺				$\alpha(N) = 2.86 \times 10^{-7} 4$
2487.07	5+	2478.2 <i>5</i> 465.33 <i>10</i>	10.9 10	0.0 0 ⁺ 2021.68 4 ⁺	M1+E2		0.0023 7	$\alpha(K)=0.0020 \ 6; \ \alpha(L)=2.1\times10^{-4} \ 6; \ \alpha(M)=3.2\times10^{-5} \ 9$ $\alpha(N)=2.1\times10^{-6} \ 6$ $\delta: +0.65 +93-18 \ \text{or} +1.4 \ 10 \ (2017\text{Mu03}) \ \text{in} \ (\text{n,n'}\gamma).$
		947.77 17	100.0 33	1539.383 3+	E2		0.000402 6	B(M1)(W.u.)=0.020 +8-7 if M1, B(E2)(W.u.)=123 +46-42 if E2. α (K)=0.000359 5; α (L)=3.69×10 ⁻⁵ 5; α (M)=5.51×10 ⁻⁶ 8 α (N)=3.59×10 ⁻⁷ 5 B(E2)(W.u.)=32 +12-11
		1077.2 ^d 4	5 5	1409.982 4+	[M1,E2]		0.000282 16	$\alpha(K)=0.000252$ 14; $\alpha(L)=2.57\times10^{-5}$ 15; $\alpha(M)=3.84\times10^{-6}$ 23 $\alpha(N)=2.52\times10^{-7}$ 14
2504.10	2+	964.68 5	16.0 14	1539.383 3+	E2+M1		0.000360 26	B(M1)(W.u.)<0.002 if M1, B(E2)(W.u.)<2.3 if E2. α (K)=0.000322 23; α (L)=3.29×10 ⁻⁵ 25; α (M)=4.9×10 ⁻⁶ 4 α (N)=3.22×10 ⁻⁷ 23 δ : +2.8 +11-8 or +0.57 +18-12 (2017Mu03) in (n,n' γ).
		1094.22 12	20.2 14	1409.982 4+	E2		0.000287 4	B(M1)(W.u.)=0.0033 +40-15 if M1, B(E2)(W.u.)=5 +6-2 if E2. α (K)=0.000257 4; α (L)=2.62×10 ⁻⁵ 4; α (M)=3.92×10 ⁻⁶ 5

 γ (⁷⁶Ge) (continued)

Adopted Levels, Gammas (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f J_j^r	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2504.10	2+	1395.66 5	100 5	1108.416 2	E2+M1		0.000210 11	$\alpha(N)=2.56\times10^{-7} 4$ B(E2)(W.u.)=3.2 +38-14 $\alpha(K)=0.000147 5$; $\alpha(L)=1.49\times10^{-5} 5$; $\alpha(M)=2.23\times10^{-6} 7$ $\alpha(N)=1.47\times10^{-7} 4$; $\alpha(IPF)=4.6\times10^{-5} 6$ δ : +1.9 2 or +0.08 4 (2017Mu03) in (n,n' γ).
		2504.08 6	35.3 17	0.0	E2		0.000611 9	B(M1)(W.u.)=0.007 +8-3 if M1, B(E2)(W.u.)=5 +6-2 if E2. B(E2)(W.u.)=0.09 +11-4 α (K)=5.04×10 ⁻⁵ 7; α (L)=5.09×10 ⁻⁶ 7; α (M)=7.59×10 ⁻⁷ 11 α (N)=5.02×10 ⁻⁸ 7; α (IPF)=0.000555 8
2591.04	(1+,2+)	1051.7 2 1482.5 3 2591.0 4	95 <i>14</i> 100 <i>15</i> 55 <i>10</i>	1539.383 3 ⁻¹ 1108.416 2 ⁻¹ 0.0 0 ⁻¹	+			$u(N)=3.02\times10^{-7}$; $u(N)=0.000333$ 8
2654.51 2655.15	$(0^+,1^+)$ (1)	1546.0 <i>4</i> 2091.9 <i>4</i> 2655.1 <i>3</i>	100 20 42 10	1108.416 2 ⁻ 562.917 2 ⁻ 0.0 0 ⁻	+			
2669.12	3 ⁺ ,4 ⁺	647.44 4	25.6 20	2021.68 4			0.00094 16	$\alpha(K)$ =0.00084 14; $\alpha(L)$ =8.6×10 ⁻⁵ 15; $\alpha(M)$ =1.29×10 ⁻⁵ 22 $\alpha(N)$ =8.4×10 ⁻⁷ 14
								δ: -0.01 10 or $+1.1$ 2 (2017Mu03) in $(n,n'γ)$. B(M1)(W.u.)=0.0059 $+28-24$ if M1, B(E2)(W.u.)=19 $+9-8$ if E2.
		1129.79 <i>10</i>	100 6	1539.383 3	M1(+E2)	+0.01 2	0.0002434 34	$\alpha(K)$ =0.0002166 30; $\alpha(L)$ =2.200×10 ⁻⁵ 31; $\alpha(M)$ =3.29×10 ⁻⁶
		1259.12 5	59.7 22	1409.982 4 ⁻	M1+E2		0.000219 10	$\alpha(N)=2.171\times10^{-7} \ 30; \ \alpha(IPF)=1.330\times10^{-6} \ 19$ $B(M1)(W.u.)=0.0043 +23-20; \ B(E2)(W.u.)<0.0063$ $\alpha(K)=0.000181 \ 7; \ \alpha(L)=1.84\times10^{-5} \ 8; \ \alpha(M)=2.75\times10^{-6} \ 11$ $\alpha(N)=1.81\times10^{-7} \ 7; \ \alpha(IPF)=1.66\times10^{-5} \ 25$ δ : $-0.002 \ 63 \ \text{or} +1.09 \ 2 \ (2017Mu03) \ \text{in} \ (n,n'\gamma).$
2692.347	3-	1282.36 ^c 4	<14 ^c	1409.982 4	÷ E1		0.0002001 28	B(M1)(W.u.)=0.0019 +9-8 if M1, B(E2)(W.u.)=1.6 +8-6 if E2. B(E1)(W.u.)<1.4×10 ⁻⁴ α (K)=8.68×10 ⁻⁵ 12; α (L)=8.77×10 ⁻⁶ 12; α (M)=1.308×10 ⁻⁶ 18
		1583.93 <i>3</i>	6.5 7	1108.416 2	± E1		0.000388 5	$\alpha(N)=8.60\times10^{-8}$ 12; $\alpha(IPF)=0.0001032$ 14 B(E1)(W.u.)=3.16×10 ⁻⁵ +48-43 $\alpha(K)=6.09\times10^{-5}$ 9; $\alpha(L)=6.14\times10^{-6}$ 9; $\alpha(M)=9.16\times10^{-7}$ 13
		2129.38 6	100 3	562.917 2 ⁻	E1		0.000765 11	$\alpha(N)=6.03\times10^{-8} 8$; $\alpha(IPF)=0.000320 4$ B(E1)(W.u.)= $2.00\times10^{-4} +2I-I8$ $\alpha(K)=3.86\times10^{-5} 5$; $\alpha(L)=3.88\times10^{-6} 5$; $\alpha(M)=5.80\times10^{-7} 8$
		2691.6 ^d 4	6.9 18	0.0	E3]		0.000501 7	$\alpha(N)=3.82\times10^{-8}$ 5; $\alpha(IPF)=0.000722$ 10 $\alpha(K)=6.77\times10^{-5}$ 9; $\alpha(L)=6.86\times10^{-6}$ 10; $\alpha(M)=1.024\times10^{-6}$

γ (76Ge) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult.#	δ#	α^{\dagger}	Comments
									14 $\alpha(N)=6.77\times10^{-8}$ 9; $\alpha(IPF)=0.000425$ 6 Tentative B(E3)(W.u.)=700 350. I _γ : this value is questionable since reduced transition probability is 9.4 W.u. in (p,p'); and 11.7 W.u. in (α,α'), which suggest I $\gamma\approx0.1$. This γ ray was reported in ⁷⁶ Ga β^- decay only, where it may have been contributed mainly by a
	2697.20	$(0)^{+}$	1588.76 <i>4</i>	26.7 13	1108.416 2+	E2		0.0002517 35	sum line. B(E3)(W.u.)=1.22×10 ³ 32 exceeds RUL=100. α (K)=0.0001163 16; α (L)=1.181×10 ⁻⁵ 17; α (M)=1.762×10 ⁻⁶
									25 $\alpha(N)=1.160\times10^{-7}$ 16; $\alpha(IPF)=0.0001217$ 17 B(E2)(W.u.)=0.88 +32-29
			2134.25 5	100 4	562.917 2+	E2		0.000451 6	$\alpha(K)=6.67\times10^{-5} 9$; $\alpha(L)=6.75\times10^{-6} 9$; $\alpha(M)=1.007\times10^{-6} 14$ $\alpha(N)=6.65\times10^{-8} 9$; $\alpha(IPF)=0.000376 5$
1 1	2733.23	4+	1193.92 12	63 27	1539.383 3+	E2+M1		0.000233 11	B(E2)(W.u.)=0.75 +27-25 α (K)=0.000202 9; α (L)=2.06×10 ⁻⁵ 10; α (M)=3.08×10 ⁻⁶ 14 α (N)=2.02×10 ⁻⁷ 9; α (IPF)=6.7×10 ⁻⁶ 11
			1624.78 5	100 4	1108.416 2+	E2		0.000262 4	δ: +4.3 9 or +0.36 +6-5 (2017Mu03) in (n,n'γ). B(M1)(W.u.)=0.015 +6-5 if M1, B(E2)(W.u.)=14 +6-5 if E2. α (K)=0.0001113 16; α (L)=1.129×10 ⁻⁵ 16; α (M)=1.686×10 ⁻⁶ 24
	2747.75	(2) ⁺	1208.19 <i>17</i>	32 5	1539.383 3+	M1+E2	+0.09 5	0.0002191 <i>31</i>	$\alpha(N)=1.110\times10^{-7}$ 16; $\alpha(IPF)=0.0001372$ 19 B(E2)(W.u.)=4.9 +20-11 $\alpha(K)=0.0001896$ 27; $\alpha(L)=1.924\times10^{-5}$ 27; $\alpha(M)=2.87\times10^{-6}$ 4
			1639.31 5	100.0 24	1108.416 2+	M1(+E2)	-0.002 29	0.0002321 32	$\alpha(N)=1.899\times10^{-7}$ 27; $\alpha(IPF)=7.17\times10^{-6}$ 11 B(M1)(W.u.)=0.0155 +28-26; B(E2)(W.u.)=0.12 +16-9 $\alpha(K)=0.0001053$ 15; $\alpha(L)=1.065\times10^{-5}$ 15; $\alpha(M)=1.590\times10^{-6}$ 22
			2185.02 <i>19</i>	8.5 7	562.917 2+	M1+E2		0.000442 31	$\alpha(N)=1.052\times10^{-7}$ 15; $\alpha(IPF)=0.0001145$ 16 B(M1)(W.u.)=0.0195 +36-29; B(E2)(W.u.)<0.011 $\alpha(K)=6.32\times10^{-5}$ 12; $\alpha(L)=6.38\times10^{-6}$ 12; $\alpha(M)=9.53\times10^{-7}$ 18 $\alpha(N)=6.30\times10^{-8}$ 11; $\alpha(IPF)=0.000371$ 30 δ : +2.9 +23-11 or -0.07 +15-6 (2017Mu03) in (n,n' γ).
	2766.68	2+	2203.71 6	100 4	562.917 2+	E2+M1	-0.09 2	0.000419 6	B(M1)(W.u.)=7.0×10 ⁻⁴ +11-9 if M1, B(E2)(W.u.)=0.198 +32-26 if E2. α (K)=6.15×10 ⁻⁵ 9; α (L)=6.21×10 ⁻⁶ 9; α (M)=9.27×10 ⁻⁷ 13 α (N)=6.14×10 ⁻⁸ 9; α (IPF)=0.000350 5

γ (76Ge) (continued)

						, , , ,		
E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	α^{\dagger}	Comments
2766.68	2+	2766.65 8	2.7 8	0.0 0+	E2		0.000724 10	B(M1)(W.u.)=0.136 +23-17; B(E2)(W.u.)=0.31 +17-13 $E_{\gamma}I_{\gamma}$: from (n,n' γ). δ : from (n,n' γ). α (K)=4.26×10 ⁻⁵ δ ; α (L)=4.30×10 ⁻⁶ δ ; α (M)=6.41×10 ⁻⁷ 9 α (N)=4.24×10 ⁻⁸ δ ; α (IPF)=0.000676 θ B(E2)(W.u.)=0.33 +12-10 $E_{\gamma}I_{\gamma}$: from (n,n' γ).
2768.73	2+	1358.9 <i>6</i> 1660.30 <i>14</i>	24 8 100 7	1409.982 4 ⁺ 1108.416 2 ⁺				
2841.61	2+	1732.97 <i>16</i>	100 4	1108.416 2+	E2+M1	+0.01 +3-2	0.000255 4	$\alpha(K)=9.49\times10^{-5}\ 13;\ \alpha(L)=9.60\times10^{-6}\ 13;\ \alpha(M)=1.433\times10^{-6}$
		2278.82 14	52 9	562.917 2 ⁺	E2+M1		0.000480 33	$\alpha(N)=9.48\times10^{-8}\ 13;\ \alpha(IPF)=0.0001494\ 21$ $B(M1)(W.u.)=0.100\ +20-16;\ B(E2)(W.u.)<0.086$ $\alpha(K)=5.87\times10^{-5}\ 11;\ \alpha(L)=5.93\times10^{-6}\ 11;\ \alpha(M)=8.84\times10^{-7}\ 17$ $\alpha(N)=5.85\times10^{-8}\ 10;\ \alpha(IPF)=0.000415\ 32$ δ : $+3.0\ +9-5\ or\ -0.08\ 6\ (2017Mu03)\ in\ (n,n'\gamma).$ $B(M1)(W.u.)=0.0230\ +37-35\ if\ M1,\ B(E2)(W.u.)=6.0\ +10-9\ if\ E2.$
2856.79	4+	1446.79 9	100	1409.982 4+	M1(+E2)	-0.08 8	0.0002012 28	$\alpha(K)$ =0.0001334 19; $\alpha(L)$ =1.351×10 ⁻⁵ 19; $\alpha(M)$ =2.017×10 ⁻⁶ 28
2897.55	0+	1789.23 <i>13</i>	38.1 19	1108.416 2+	E2		0.000314 4	$\begin{array}{l} \alpha({\rm N}){=}1.334{\times}10^{-7}\ 19;\ \alpha({\rm IPF}){=}5.22{\times}10^{-5}\ 8\\ {\rm B}({\rm M1})({\rm W.u.}){=}0.075\ 7;\ {\rm B}({\rm E2})({\rm W.u.}){<}1.3\\ \alpha({\rm K}){=}9.24{\times}10^{-5}\ 13;\ \alpha({\rm L}){=}9.36{\times}10^{-6}\ 13;\ \alpha({\rm M}){=}1.397{\times}10^{-6}\\ 20 \end{array}$
		2334.51 11	100 4	562.917 2+	E2		0.000537 8	$\alpha(N)=9.21\times10^{-8}$ 13; $\alpha(IPF)=0.0002105$ 29 B(E2)(W.u.)=1.44 +25-23 $\alpha(K)=5.69\times10^{-5}$ 8; $\alpha(L)=5.75\times10^{-6}$ 8; $\alpha(M)=8.58\times10^{-7}$ 12 $\alpha(N)=5.67\times10^{-8}$ 8; $\alpha(IPF)=0.000474$ 7 B(E2)(W.u.)=1.00 16
2919.74	1+	1811.22 <i>18</i>	14 5	1108.416 2+	M1+E2	-0.8 +63-6	0.000295 26	$\alpha(K)=8.86\times10^{-5}\ 20;\ \alpha(L)=8.96\times10^{-6}\ 22;\ \alpha(M)=1.338\times10^{-6}$
		2356.81 <i>13</i> 2919.72 <i>13</i>	27.4 <i>12</i> 100 <i>4</i>	562.917 2 ⁺ 0.0 0 ⁺	M1+E2	+1.3 +50-9	0.000522 <i>34</i> 0.000705 <i>10</i>	$\alpha(N)=8.84\times10^{-8}\ 19;\ \alpha(IPF)=0.000196\ 24$ B(M1)(W.u.)=0.0015 +21-14; B(E2)(W.u.)<1.4 $\alpha(K)=5.55\times10^{-5}\ 10;\ \alpha(L)=5.60\times10^{-6}\ 10;\ \alpha(M)=8.36\times10^{-7}\ 15$ $\alpha(N)=5.53\times10^{-8}\ 10;\ \alpha(IPF)=0.000460\ 33$ B(M1)(W.u.)=8×10 ⁻⁴ +11-6; B(E2)(W.u.)=0.32 +15-26 $\alpha(K)=3.81\times10^{-5}\ 5;\ \alpha(L)=3.83\times10^{-6}\ 5;\ \alpha(M)=5.72\times10^{-7}\ 8$ $\alpha(N)=3.79\times10^{-8}\ 5;\ \alpha(IPF)=0.000662\ 9$

γ (⁷⁶Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2958.06	5-	265.3 5	3.6 6	2692.347	3-	E2		0.01991 31	$\alpha(K)$ =0.01768 27; $\alpha(L)$ =0.001930 30; $\alpha(M)$ =0.000287 4 $\alpha(N)$ =1.745×10 ⁻⁵ 27
		1548.02 <i>18</i>	100 4	1409.982	4+	E1		0.000362 5	$\alpha(K)=6.32\times10^{-5} 9$; $\alpha(L)=6.37\times10^{-6} 9$; $\alpha(M)=9.51\times10^{-7} 13$
2986.08	$(2^+,3^+)$	1576.02 8	23.2 14	1409.982	4+	[E2]		0.0002484 35	$\alpha(N)=6.26\times10^{-8} 9$; $\alpha(IPF)=0.000291 4$ $\alpha(K)=0.0001182 17$; $\alpha(L)=1.200\times10^{-5} 17$; $\alpha(M)=1.791\times10^{-6} 25$ $\alpha(N)=1.179\times10^{-7} 16$; $\alpha(IPF)=0.0001163 16$
		1877.76 12	100 4	1108.416	2+	[M1,E2]		0.000323 24	B(E2)(W.u.)=5.7 +6-5 α (K)=8.32×10 ⁻⁵ 17; α (L)=8.41×10 ⁻⁶ 18; α (M)=1.255×10 ⁻⁶ 26 α (N)=8.29×10 ⁻⁸ 16; α (IPF)=0.000230 22 B(M1)(W.u.)=0.0270 +18-16 if M1, B(E2)(W.u.)=10.4 7 if E2.
2988.09		319.0 ^a 3 500.9 ^a 4 534.4 ^a 4	100 8 <i>3</i> 25 <i>10</i>	2487.07					/ II L2.
2993.89	4+	972.30 6	86.3 34	2021.68	4 ⁺	M1+E2	-0.61 +7-5	0.000342 5	$\alpha(K)$ =0.000306 5; $\alpha(L)$ =3.12×10 ⁻⁵ 5; $\alpha(M)$ =4.66×10 ⁻⁶
									$\alpha(N)=3.07\times10^{-7}$ 5 B(M1)(W.u.)=0.0149 +32-30; B(E2)(W.u.)=7.9 +18-22 δ : -5.2 +75-36 or -0.08 +13-59 (2017Mu03) in (n,n' γ).
		1454.37 9	15.8 <i>16</i>	1539.383	3+	M1+E2		0.000213 12	$\alpha(K)=0.000135 \ 4; \ \alpha(L)=1.37\times10^{-5} \ 4; \ \alpha(M)=2.05\times10^{-6}$
									$\alpha(N)=1.35\times10^{-7}$ 4; $\alpha(IPF)=6.2\times10^{-5}$ 8 B(M1)(W.u.)=0.00111 25 if M1, B(E2)(W.u.)=0.71 16 if E2.
		2430.91 5	100 5	562.917	2+	E2		0.000579 8	$\alpha(K)=5.31\times10^{-5} \ 7; \ \alpha(L)=5.36\times10^{-6} \ 7;$ $\alpha(M)=7.99\times10^{-7} \ II$ $\alpha(N)=5.28\times10^{-8} \ 7; \ \alpha(IPF)=0.000520 \ 7$
3004.73	(0) ⁺	2441.77 7	100	562.917	2+	E2		0.000584 8	$\alpha(N)=5.28\times10^{-6}$ 7; $\alpha(IPF)=0.000320$ 7 B(E2)(W.u.)=0.35 7 $\alpha(K)=5.27\times10^{-6}$ 7; $\alpha(L)=5.32\times10^{-6}$ 7;
3001.73	(0)	2111.///	100	302.717	2	1.2		0.0005010	$\alpha(M)=7.93\times10^{-7} 11$ $\alpha(N)=5.24\times10^{-8} 7$; $\alpha(IPF)=0.000525 7$
3007.16	1+	1898.73 6	100 4	1108.416	2+	M1(+E2)	-0.8 +18-7	0.000325 15	B(E2)(W.u.)=1.59 24 α (K)=8.12×10 ⁻⁵ 13; α (L)=8.21×10 ⁻⁶ 14; α (M)=1.226×10 ⁻⁶ 21
									α (N)=8.10×10 ⁻⁸ 13; α (IPF)=0.000234 14 B(M1)(W.u.)=0.07 +11-4; B(E2)(W.u.)<45

γ (76Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ \sharp}$	$_{\mathrm{I}_{\gamma}}{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
3007.16	1+	3007.02 13	57.7 29	0.0	0+	M1		0.000739 10	$\alpha(K)=3.63\times10^{-5} 5$; $\alpha(L)=3.65\times10^{-6} 5$; $\alpha(M)=5.45\times10^{-7} 8$ $\alpha(N)=3.61\times10^{-8} 5$; $\alpha(IPF)=0.000699 10$ B(M1)(W.u.)=0.016 +10-4
3014.2	1	3014.1 4	100	0.0	0^{+}				_()()
3021.14	$(2^+,3^+)$	1481.73 9	78 <i>4</i>	1539.383	3+	[M1,E2]		0.000216 <i>13</i>	$\alpha(K)=0.000131 \ 4$; $\alpha(L)=1.32\times10^{-5} \ 4$; $\alpha(M)=1.98\times10^{-6} \ 6$ $\alpha(N)=1.304\times10^{-7} \ 35$; $\alpha(IPF)=7.1\times10^{-5} \ 9$ B(M1)(W.u.)=0.0073 9 if M1, B(E2)(W.u.)=4.5 6 if E2.
		1611.36 <i>16</i>	33.5 19	1409.982	4+	[E2]		0.000258 4	$\alpha(K)=0.0001131 \ 16; \ \alpha(L)=1.148\times10^{-5} \ 16; \ \alpha(M)=1.713\times10^{-6}$
									α (N)=1.128×10 ⁻⁷ 16; α (IPF)=0.0001314 18 B(E2)(W.u.)=1.27 17
		1912.59 <i>13</i>	100 4	1108.416	2+	[M1,E2]		0.000335 25	$\alpha(K)=8.04\times10^{-5}$ 16; $\alpha(L)=8.13\times10^{-6}$ 17; $\alpha(M)=1.213\times10^{-6}$ 25
		_							$\alpha(N)=8.02\times10^{-8}$ 15; $\alpha(IPF)=0.000245$ 23 B(M1)(W.u.)=0.0044 6 if M1, B(E2)(W.u.)=1.60 20 if E2.
3033.75	(6^+)	546.6 <mark>a</mark> 4	20 20	2487.07					_
		580.1 ^a 4	60 15	2453.74	6+	(M1+E2)	+1 4	0.00125 23	$\alpha(K)$ =0.00111 21; $\alpha(L)$ =0.000116 22; $\alpha(M)$ =1.72×10 ⁻⁵ 33 $\alpha(N)$ =1.12×10 ⁻⁶ 20
		1012.2 ^a 4	100	2021.68					
		1623.8 ^a 4	40 15	1409.982					
3041.37	2+	1130.24		1911.12					
		2478.8 <i>11</i>	100	562.917	2+	[M1,E2]		0.00056 4	$\alpha(K)=5.07\times10^{-5}$ 9; $\alpha(L)=5.12\times10^{-6}$ 9; $\alpha(M)=7.64\times10^{-7}$ 14 $\alpha(N)=5.05\times10^{-8}$ 9; $\alpha(IPF)=0.00051$ 4
									B(M1)(W.u.)=0.0227 +16-14 if M1, B(E2)(W.u.)=4.95 +35-31 if E2.
3052.55	$2^+,3^+,4^+$	1513.15 9	100	1539.383	3 ⁺	M1+E2		0.000221 14	$\alpha(K) = 0.0001253 \ 34; \ \alpha(L) = 1.27 \times 10^{-5} \ 4; \ \alpha(M) = 1.90 \times 10^{-6} \ 5$
									$\alpha(N)=1.251\times10^{-7}$ 32; $\alpha(IPF)=8.1\times10^{-5}$ 10
									$δ$: $-0.05 + 6 - 5$ or $+1.64$ 2 (2017Mu03) in $(n,n'\gamma)$. B(M1)(W.u.)= $0.182 + 31 - 23$ if M1, B(E2)(W.u.)= $107 + 18 - 14$ if E2.
3062.13	$(4^+,5^+)$	1652.13 8	100	1409.982	4+	[M1,E2]		0.000252 18	$\alpha(K)=0.0001057\ 25;\ \alpha(L)=1.071\times10^{-5}\ 26;\ \alpha(M)=1.60\times10^{-6}\ 4$
3002.13	(1,5)	1032.13	100	1107.702	•	[1411,152]		0.000232 10	$\alpha(N)=1.055\times10^{-7}$ 24; $\alpha(IPF)=0.000134$ 15
									B(M1)(W.u.)=0.040 +9-6 if M1, B(E2)(W.u.)=19.7 +44-31 if E2.
3066.86	$(2^+, 3^+, 4^+)$	1527.46 9	100	1539.383	3 ⁺	[M1,E2]		0.000224 14	$\alpha(K) = 0.0001230 \ 33; \ \alpha(L) = 1.248 \times 10^{-5} \ 35; \ \alpha(M) = 1.86 \times 10^{-6} \ 5$
									α (N)=1.228×10 ⁻⁷ 31; α (IPF)=8.6×10 ⁻⁵ 10 B(M1)(W.u.)=0.0069 +31-26 if M1, B(E2)(W.u.)=4.0 +18-15
			100	1105				0.0005-1	if E2.
3070.41	4 ⁺	1660.41 <i>10</i>	100	1409.982	4+	M1+E2		0.000254 18	$\alpha(K)$ =0.0001047 24; $\alpha(L)$ =1.061×10 ⁻⁵ 26; $\alpha(M)$ =1.58×10 ⁻⁶ 4 $\alpha(N)$ =1.045×10 ⁻⁷ 23; $\alpha(IPF)$ =0.000137 15

γ (⁷⁶Ge) (continued)

$E_i(level)$	\mathbf{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbb{E}_f	$\underline{J_f^{\pi}}$ Mult.#	$lpha^\dagger$	Comments
2000 4	1	2000 2 7	100	0.0	0+		δ: -0.13 8 or +1.5 3 (2017Mu03) in (n,n' $γ$). B(M1)(W.u.)=0.0063 +25-23 if M1, B(E2)(W.u.)=3.1 +12-11 if E2.
3088.4 3092.10	$(3^+,5^+)$	3088.3 <i>7</i> 1682.10 <i>9</i>	100 100	1409.982	O .	0.000260 18	$\alpha(\mathrm{K}){=}0.0001022$ 23; $\alpha(\mathrm{L}){=}1.035{\times}10^{-5}$ 25; $\alpha(\mathrm{M}){=}1.54{\times}10^{-6}$ 4 $\alpha(\mathrm{N}){=}1.020{\times}10^{-7}$ 22; $\alpha(\mathrm{IPF}){=}0.000146$ 16
3129.86	2+	2022.4 9	100 4	1108.416	2+ M1+E2	0.000377 27	B(M1)(W.u.)=0.0173 24 if M1, B(E2)(W.u.)=8.2 11 if E2. α (K)=7.26×10 ⁻⁵ 14; α (L)=7.34×10 ⁻⁶ 15; α (M)=1.095×10 ⁻⁶ 22 α (N)=7.24×10 ⁻⁸ 13; α (IPF)=0.000296 26 δ : -0.31 +5-6 or +10 +11-3 (2017Mu03) in (n,n' γ).
		3129.78 8	17.8 11	0.0	0 ⁺ E2	0.000874 12	B(M1)(W.u.)=0.0092 +10-9 if M1, B(E2)(W.u.)=3.03 +34-29 if E2. α (K)=3.48×10 ⁻⁵ 5; α (L)=3.51×10 ⁻⁶ 5; α (M)=5.23×10 ⁻⁷ 7 α (N)=3.46×10 ⁻⁸ 5; α (IPF)=0.000835 12 B(E2)(W.u.)=0.061 +8-7
3141.39	1+	1230.2 [@] d 5		1911.12	0+		
		2578.48 8	58 6	562.917	2 ⁺ M1+E2	0.00061 4	$\alpha(K)=4.74\times10^{-5}$ 9; $\alpha(L)=4.78\times10^{-6}$ 9; $\alpha(M)=7.14\times10^{-7}$ 13 $\alpha(N)=4.72\times10^{-8}$ 8; $\alpha(IPF)=0.00055$ 4 δ : $+0.7$ +150-10 or $+3$ +13-3 (2017Mu03) in $(n,n'\gamma)$.
		3141.24 8	100.0 18	0.0	0+ M1	0.000791 11	B(M1)(W.u.)=0.00396 +44-51 if M1, B(E2)(W.u.)=0.80 +9-10 if E2. B(M1)(W.u.)=0.00378 +39-43 α (K)=3.38×10 ⁻⁵ 5; α (L)=3.40×10 ⁻⁶ 5; α (M)=5.07×10 ⁻⁷ 7 α (N)=3.36×10 ⁻⁸ 5; α (IPF)=0.000754 11
3147.54	(2)+	1608.29 <i>13</i>	100.0 <i>21</i>	1539.383	3 ⁺ [M1,E2]	0.000241 16	$\alpha(N)=3.30\times10^{-4}$ 3; $\alpha(IFF)=0.000734$ 11 $\alpha(K)=0.0001113$ 27; $\alpha(L)=1.128\times10^{-5}$ 29; $\alpha(M)=1.68\times10^{-6}$ 4 $\alpha(N)=1.111\times10^{-7}$ 26; $\alpha(IPF)=0.000117$ 13 $\alpha(M)=0.0284+35-29$ if M1, B(E2)(W.u.)=14.8 +18-15 if E2.
		2038.2 7	13.3 16	1108.416	2 ⁺ [M1,E2]	0.000383 28	$\alpha(K)=7.16\times10^{-5}$ 14; $\alpha(L)=7.24\times10^{-6}$ 14; $\alpha(M)=1.080\times10^{-6}$ 21 $\alpha(N)=7.14\times10^{-8}$ 13; $\alpha(IPF)=0.000303$ 26 $\alpha(M)=0.00186$ 13; $\alpha(M)=0.00186$ 13; $\alpha(M)=0.00186$ 13; $\alpha(M)=0.00186$ 14; $\alpha(M)=0.00186$ 15.
		2584.41 <i>15</i>	44.7 19	562.917	2 ⁺ [M1,E2]	0.00061 4	$\alpha(K)=4.72\times10^{-5}$ 9; $\alpha(L)=4.76\times10^{-6}$ 9; $\alpha(M)=7.11\times10^{-7}$ 13 $\alpha(N)=4.70\times10^{-8}$ 8; $\alpha(IPF)=0.00056$ 4 $\alpha(M)=0.00306$ 8; $\alpha(IPF)=0.00056$ 4 $\alpha(M)=0.00306$ 8; $\alpha(IPF)=0.00056$ 4 $\alpha(M)=0.00306$ 8; $\alpha(IPF)=0.00056$ 9; $\alpha(M)=0.00306$ 16 $\alpha(M)=0.00306$ 17 $\alpha(M)=0.00306$ 18 $\alpha(M)=0.00306$ 18 $\alpha(M)=0.00306$ 19 $\alpha(M)=0.0036$ 19 $\alpha($
3162.65	(4) ⁺	1752.65 5	100	1409.982	4 ⁺ E2+M1	0.000281 21	$\alpha(K)=9.45\times10^{-5} \ 21; \ \alpha(L)=9.57\times10^{-6} \ 22; \ \alpha(M)=1.428\times10^{-6} \ 32$ $\alpha(N)=9.43\times10^{-8} \ 20; \ \alpha(IPF)=0.000175 \ 19$ δ : $-0.09 \ 9 \ or +1.4 \ 3 \ (2017Mu03) \ in \ (n,n'\gamma).$
3181.95	$(2^+,3^+)$	489.73 9	33.5 26	2692.347	3- [E1]	0.000741 10	B(M1)(W.u.)=0.280 +47-35 if M1, B(E2)(W.u.)=123 +21-15 if E2. α (K)=0.000662 9; α (L)=6.76×10 ⁻⁵ 9; α (M)=1.007×10 ⁻⁵ 14 α (N)=6.54×10 ⁻⁷ 9 B(E1)(W.u.)=0.0014 +6-5
		2618.93 6	100 5	562.917	2 ⁺ [M1,E2]	0.00062 4	$\alpha(K)=4.62\times10^{-5} 8$; $\alpha(L)=4.66\times10^{-6} 9$; $\alpha(M)=6.95\times10^{-7} 13$ $\alpha(N)=4.60\times10^{-8} 8$; $\alpha(IPF)=0.00057 4$ B(M1)(W.u.)=0.0016 +7-6 if M1, B(E2)(W.u.)=0.31 +13-12 if E2.

γ (⁷⁶Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
3182.19	(2+)	1642.80 <i>15</i>	22 2	1539.383	3+	[M1,E2]		0.000250 17	$\alpha(K)$ =0.0001069 25; $\alpha(L)$ =1.083×10 ⁻⁵ 27; $\alpha(M)$ =1.62×10 ⁻⁶ 4 $\alpha(N)$ =1.067×10 ⁻⁷ 24; $\alpha(IPF)$ =0.000130 15
		2073.75 7	100 3	1108.416	2+	[M1,E2]		0.000397 28	B(M1)(W.u.)=0.0025 +2 <i>I</i> - <i>I</i> 3 if M1, B(E2)(W.u.)=1.2 + <i>II</i> -6 if E2. α (K)=6.94×10 ⁻⁵ <i>I</i> 3; α (L)=7.01×10 ⁻⁶ <i>I</i> 4; α (M)=1.047×10 ⁻⁶ 20 α (N)=6.92×10 ⁻⁸ <i>I</i> 3; α (IPF)=0.000319 27
		2619.20 <i>10</i>	53	562.917	2+	[M1,E2]		0.00062 4	B(M1)(W.u.)=0.0056 +47-28 if M1, B(E2)(W.u.)=1.8 +15-9 if E2. α (K)=4.62×10 ⁻⁵ 8; α (L)=4.66×10 ⁻⁶ 9; α (M)=6.95×10 ⁻⁷ 13 α (N)=4.60×10 ⁻⁸ 8; α (IPF)=0.00057 4
3191.05	2+	2082.51 9	34.2 25	1108.416	2+	M1+E2		0.000400 29	B(M1)(W.u.)=0.0015 +12-8 if M1, B(E2)(W.u.)=0.29 +24-15 if E2. α (K)=6.89×10 ⁻⁵ 13; α (L)=6.96×10 ⁻⁶ 14; α (M)=1.039×10 ⁻⁶ 20 α (N)=6.87×10 ⁻⁸ 13; α (IPF)=0.000324 27 δ : -3 +13-3 or -1 +20-1 (2017Mu03) in (n,n' γ).
		2628.08 <i>12</i>	100 4	562.917	2+	M1+E2		0.00063 4	B(M1)(W.u.)=0.0044 +6-5 if M1, B(E2)(W.u.)=1.36 +19-16 if E2. α (K)=4.59×10 ⁻⁵ 8; α (L)=4.63×10 ⁻⁶ 9; α (M)=6.91×10 ⁻⁷ 13 α (N)=4.57×10 ⁻⁸ 8; α (IPF)=0.00058 4 δ : +0.36 +21-10 or +1.03 +25-81 (2017Mu03) in (n,n' γ).
		3190.99 4	13.8 13	0.0	0+	E2		0.000898 13	B(M1)(W.u.)=0.0064 +8-7 if M1, B(E2)(W.u.)=1.25 +16-13 if E2. $\alpha(K)=3.37\times10^{-5}$ 5; $\alpha(L)=3.40\times10^{-6}$ 5; $\alpha(M)=5.07\times10^{-7}$ 7 $\alpha(N)=3.35\times10^{-8}$ 5; $\alpha(IPF)=0.000860$ 12
3200.01	(3)+	2091.67 14	82 4	1108.416	2+	M1+E2		0.000404 29	B(E2)(W.u.)=0.065 +10-9 α (K)=6.83×10 ⁻⁵ 13; α (L)=6.90×10 ⁻⁶ 13; α (M)=1.030×10 ⁻⁶ 20 α (N)=6.81×10 ⁻⁸ 12; α (IPF)=0.000328 28 δ : +0.05 +9-1 or -7 +14-3 (2017Mu03) in (n,n' γ).
		2636.64 27	100 4	562.917	2+	M1+E2		0.00063 4	B(M1)(W.u.)=0.0016 +13-8 if M1, B(E2)(W.u.)=0.48 +38-24 if E2. α (K)=4.57×10 ⁻⁵ 8; α (L)=4.60×10 ⁻⁶ 8; α (M)=6.87×10 ⁻⁷ 13 α (N)=4.55×10 ⁻⁸ 8; α (IPF)=0.00058 4 δ : -8 +13-3 or +0.08 8 in (n,n' γ). B(M1)(W.u.)=9×10 ⁻⁴ +8-5 if M1, B(E2)(W.u.)=0.18 +15-9 if E2.
3200.07	$(1,2^+)$	3200.0 2		0.0	0+				$D(M11)(W.U.)=9\times10^{-1}+\delta-3$ II M1, $B(E2)(W.U.)=0.1\delta+13-9$ II E2.
3231.8	4+	2668.8 ^{&d} 4	100	562.917	2+				
3236.02	$(5)^{+}$	782.1 ^a 4		2453.74	6+				I_{γ} : $I(782.1\gamma)/I(1826\gamma)=100/40$ in $(^{76}Ge, ^{76}Ge')$.

า	,(76	Ge)	(con	tinue	d
- >	ή.	UC)	(COII	unuc	u

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_j^{r}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
3236.02	(5) ⁺	1214.23 11	85 4	2021.68 4+	M1+E2	+2.2 +31-18	0.000235 15	$\alpha(K)=0.000201 \ II; \ \alpha(L)=2.05\times10^{-5} \ I2; \ \alpha(M)=3.05\times10^{-6}$
		1826.15 <i>12</i>	100 4	1409.982 4+	M1+E2		0.000305 23	$\alpha(N)=2.00\times10^{-7}\ II;\ \alpha(IPF)=1.03\times10^{-5}\ 20$ B(M1)(W.u.)<0.13; B(E2)(W.u.)=140 +26-96 $\alpha(K)=8.76\times10^{-5}\ I8;\ \alpha(L)=8.86\times10^{-6}\ I9;$ $\alpha(M)=1.322\times10^{-6}\ 29$ $\alpha(N)=8.73\times10^{-8}\ I7;\ \alpha(IPF)=0.000207\ 2I$
3243.79	1+	2680.90 <i>10</i>	100 5	562.917 2+	M1+E2		0.00065 4	δ: $+0.48 + 13 - 20$ or $+1.9 + 10 - 17$ (2017Mu03) in $(n,n'\gamma)$. B(M1)(W.u.)=0.064 7 if M1, B(E2)(W.u.)=25.8 28 if E2. α (K)=4.44×10 ⁻⁵ 8; α (L)=4.48×10 ⁻⁶ 8; α (M)=6.68×10 ⁻⁷
		3243.66 9	16.8 <i>1</i> 2	0.0 0+	M1		0.000830 12	$\alpha(N)=4.42\times10^{-8}$ 8; $\alpha(IPF)=0.00060$ 4 δ : $-4 +60-2$ or $+0.04$ 2 (2017Mu03) in $(n,n'\gamma)$. B(M1)(W.u.)=0.0239 +18-20 if M1, B(E2)(W.u.)=4.47 +33-37 if E2. $\alpha(K)=3.20\times10^{-5}$ 4; $\alpha(L)=3.22\times10^{-6}$ 5; $\alpha(M)=4.81\times10^{-7}$ 7
		3243.00 9	10.8 12	0.0 0	IVII		0.000830 12	$\alpha(K)=5.20\times10^{-4}$, $\alpha(L)=5.22\times10^{-5}$; $\alpha(M)=4.81\times10^{-7}$ $\alpha(N)=3.19\times10^{-8}$ 4; $\alpha(IPF)=0.000795$ 11 B(M1)(W.u.)=0.00226 24
3312.29	3-	1902.2 2	31 3	1409.982 4+				2(111)(1111) 0100220 27
		2203.86 <i>16</i>	100 8	1108.416 2+				5 6
3322.80	(2 ⁺)	1912.7 <i>I</i>	26 2	1409.982 4+	[E2]		0.000359 5	$\alpha(K)=8.15\times10^{-5} \ 11; \ \alpha(L)=8.25\times10^{-6} \ 12;$ $\alpha(M)=1.232\times10^{-6} \ 17$
								α (N)=8.12×10 ⁻⁸ 11; α (IPF)=0.000268 4 B(E2)(W.u.)=1.1 +7-5
		2214.36 8	100 3	1108.416 2+	[M1,E2]		0.000454 32	$\alpha(K)=6.18\times10^{-5} \ 11; \ \alpha(L)=6.23\times10^{-6} \ 12;$ $\alpha(M)=9.31\times10^{-7} \ 18$
								α (N)=6.15×10 ⁻⁸ 11; α (IPF)=0.000385 31 B(M1)(W.u.)=0.0072 +45-31 if M1, B(E2)(W.u.)=2.0 +12-9 if E2.
		2759.95 14	49 3	562.917 2+	[M1,E2]		0.00068 4	$\alpha(K)=4.23\times10^{-5} \ 8; \ \alpha(L)=4.26\times10^{-6} \ 8; \ \alpha(M)=6.36\times10^{-7}$ 12
								α (N)=4.21×10 ⁻⁸ 7; α (IPF)=0.00063 4 B(M1)(W.u.)=0.0018 +12-8 if M1, B(E2)(W.u.)=0.32 +20-14 if E2.
3409.19 3419.47	(1,2,3) 1 ⁺	661.4 ^d 2 2310.9 2856.4	100	2747.75 (2) 1108.416 2 ⁺ 562.917 2 ⁺	+			·
		3419.7 6		0.0 0+	M1		0.000896 13	$\alpha(K)$ =2.94×10 ⁻⁵ 4; $\alpha(L)$ =2.96×10 ⁻⁶ 4; $\alpha(M)$ =4.42×10 ⁻⁷ 6 $\alpha(N)$ =2.93×10 ⁻⁸ 4; $\alpha(IPF)$ =0.000863 12

γ (76Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}		J_f^{π} Mult.#	$lpha^\dagger$	Comments
3436.9		767.8 <i>4</i>	100	2669.12 3 ⁺	*		
3477.62	$(2^+,3)$	335.9 ^d 5	100 25	3141.39 1+	-		
		2369.8 ^d 6	5 2	1108.416 2+	-		
		2914.6 ^d 2	14 2	562.917 2+			
3484.0	3-	2074 1		1409.982 4+			
		2921 <i>I</i>		562.917 2+			
3532.81	(7^+)	499.1 ^{ad} 4	20 20	3033.75 (6			
3536.0		1045.7 ^a 4 547.9 4	100 100	2487.07 5 ⁺ 2988.09			
3543.27	8+	1089.6 <i>4</i>	100	2453.74 6 ⁺	-		
3576.96	Ü	2037.5 ^d	100	1539.383 3 ⁺			
3370.70		3014.0 ^a 3		562.917 2+			
3596.79	2+	3033.8		562.917 2+			
		3596.7 4		$0.0 0^{+}$	E2	$1.05 \times 10^{-3} \ 2$	$\alpha(K) = 2.79 \times 10^{-5} 4$; $\alpha(L) = 2.81 \times 10^{-6} 4$; $\alpha(M) = 4.19 \times 10^{-7} 6$
2.522.02	(a.t.)	1.51 2 - h 2	40.	2024 50 44			$\alpha(N)=2.77\times10^{-8}$ 4; $\alpha(IPF)=0.001018$ 14
3632.92	(2^{+})	1612.7 ^b 3 1721.9 7	49 7	2021.68 4 ⁺ 1911.12 0 ⁺			E_{γ} : poor fit; level-energy difference=1611.6.
		2524.0 2	16 <i>5</i> 86 <i>6</i>	1911.12 0 1108.416 2 ⁺			
		3069.90 <i>13</i>	100 6	562.917 2+			
3680.70	1-	3117.7	100 0	562.917 2+			
		3680.6 <i>1</i>		0.0 0+	E1	$1.57 \times 10^{-3} \ 2$	$\alpha(K)=1.830\times10^{-5} \ 26; \ \alpha(L)=1.835\times10^{-6} \ 26; \ \alpha(M)=2.74\times10^{-7} \ 4$
2525 22	(7-)	760.50	20.20	2050.06 5-			$\alpha(N)=1.809\times10^{-8} \ 25; \ \alpha(IPF)=0.001545 \ 22$
3727.83	(7-)	769.5 ^a 4	30 20	2958.06 5		0.0001077.34	(T) 0.04 10=5.20 (T) 0.14 10=6.20 (AD 1.26 10=6.5
		1274.3 ^a 4	100	2453.74 6+	(E1+M2)	0.0001977 34	$\alpha(K)=9.04\times10^{-5}$ 29; $\alpha(L)=9.14\times10^{-6}$ 30; $\alpha(M)=1.36\times10^{-6}$ 5 $\alpha(N)=8.96\times10^{-8}$ 30; $\alpha(IPF)=9.68\times10^{-5}$ 17 δ : +9 7 or +0.2 δ .
3763.40	1+	2655.0		1108.416 2+			
		3200.3		562.917 2+			
		3763.3 2		$0.0 0^{+}$	M1	$1.02 \times 10^{-3} I$	$\alpha(K)=2.531\times10^{-5} \ 35; \ \alpha(L)=2.54\times10^{-6} \ 4; \ \alpha(M)=3.80\times10^{-7} \ 5$ $\alpha(N)=2.517\times10^{-8} \ 35; \ \alpha(IPF)=0.000991 \ 14$
3783.57	$(4^+,5,6,7^-)$	750.0 <mark>a</mark> 4	100	3033.75 (6			
		825.3 ^a 4	25 20	2958.06 5			
3886.97	(3^{-})	2347.40 25	55 6	1539.383 3+			
		2476.60 <i>40</i> 2779.1 <i>4</i>	27 <i>6</i> 100 <i>10</i>	1409.982 4 ⁺ 1108.416 2 ⁺			
		3325.2 12	14 7	562.917 2 ⁺			
3951.88	1-	1259.9 5	7 2	2692.347 3		0.0002292 32	B(E2)(W.u.)=10.6 +39-33
							$\alpha(K)=0.0001877\ 26;\ \alpha(L)=1.914\times10^{-5}\ 27;\ \alpha(M)=2.86\times10^{-6}$

γ (⁷⁶Ge) (continued)

$E_i(level)$	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
3951.88	1-	2040.70 25	8 2	1911.12	0+	[E1]	0.000707 10	4 $\alpha(N)=1.873\times10^{-7}\ 26$; $\alpha(IPF)=1.929\times10^{-5}\ 29$ $B(E1)(W.u.)=5.8\times10^{-5}\ +20-16$ $\alpha(K)=4.11\times10^{-5}\ 6$; $\alpha(L)=4.14\times10^{-6}\ 6$; $\alpha(M)=6.17\times10^{-7}\ 9$ $\alpha(N)=4.07\times10^{-8}\ 6$; $\alpha(IPF)=0.000661\ 9$
		2843.50 9	38 2	1108.416	2+	[E1]	1.18×10 ⁻³ 2	I _y : preliminary result in 2014Do08 suggests ≈11. B(E1)(W.u.)=1.01×10 ⁻⁴ +23−16 α (K)=2.57×10 ⁻⁵ 4; α (L)=2.58×10 ⁻⁶ 4; α (M)=3.85×10 ⁻⁷ 5
		3388.75 12	67 4	562.917	2+	[E1]	$1.45 \times 10^{-3} \ 2$	$\alpha(N)=2.54\times10^{-8} 4$; $\alpha(IPF)=0.001150 16$ B(E1)(W.u.)= $1.05\times10^{-4} +24-17$ $\alpha(K)=2.035\times10^{-5} 28$; $\alpha(L)=2.042\times10^{-6} 29$; $\alpha(M)=3.05\times10^{-7} 4$
		3951.70 <i>14</i>	100 8	0.0	0+	[E1]	1.68×10 ⁻³ 2	$\alpha(N)=2.013\times10^{-8}\ 28;\ \alpha(IPF)=0.001424\ 20$ $B(E1)(W.u.)=9.9\times10^{-5}\ +22-16$ $\alpha(K)=1.672\times10^{-5}\ 23;\ \alpha(L)=1.676\times10^{-6}\ 23;\ \alpha(M)=2.500\times10^{-7}\ 35$ $\alpha(N)=1.653\times10^{-8}\ 23;\ \alpha(IPF)=0.001661\ 23$
4024.11	1 ⁽⁻⁾	4024.0 2	100	0.0	0^+	(E1)	$1.71 \times 10^{-3} \ 2$	$\alpha(K)=1.634\times10^{-5}$ 23; $\alpha(L)=1.638\times10^{-6}$ 23; $\alpha(M)=2.443\times10^{-7}$ 34 $\alpha(N)=1.616\times10^{-8}$ 23; $\alpha(IFF)=0.001688$ 24
4035.12 4116.02	1 1	4035.0 2 4115.9 2	100	0.0 0.0	0 ⁺			$\alpha(N)=1.616\times 10^{-6}$ 23; $\alpha(IPF)=0.001688$ 24
4122.28?	$(1,2^+)$	3559.5 ^d 4	100 8	562.917				
4129.8 4130.6	8+	4121.8 ^d 5 1096.0 ^a 4 894.6 ^a 4	43 <i>6</i> 100 100	0.0 3033.75 3236.02	0 ⁺ (6 ⁺) (5) ⁺			
4192.80?	$(2^+,3)$	1273.05 ^d 10 2782.70 ^d 40	100 <i>6</i> 84 <i>7</i>	2919.74 1409.982	1+			
4239.36	(1,2,3)	927.05 ^d 10	100 6	3312.29	3-			
4250.93 4311.1	1	3130.7 ^d 6 4250.8 3 775.1 ^a 4	23 <i>5</i> 70 <i>20</i>	1108.416 0.0 3536.0	2 ⁺ 0 ⁺			
4326.43	(1,2,3)	$1323.0^a 4$ $1014.2^d 2$	100 31 <i>5</i>	2988.09 3312.29	3-			
		1634.0 ^d 2	100 5	2692.347	3-			
4331.3 4363.47	1 4 ⁺	4331.2 <i>12</i> 885.83 ^d <i>10</i>	100 100 8	0.0 3477.62	0^+ $(2^+,3)$			
4303.47	+	1443.9 ^d 5	20 5	2919.74	1+	[M3]	0.000548 8	$\alpha(K)$ =0.000483 7; $\alpha(L)$ =5.01×10 ⁻⁵ 7; $\alpha(M)$ =7.50×10 ⁻⁶ 11 $\alpha(N)$ =4.94×10 ⁻⁷ 7; $\alpha(IPF)$ =6.52×10 ⁻⁶ 9

γ (⁷⁶Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ} ‡	$\mathrm{I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^{\dagger}$	Comments
								E_{γ} : this γ from $J^{\pi}=4^+$ to J=1 requiring high multipolarity is questionable.
4476.67?	(≤4)	843.8 ^d 2	100 10	3632.92	(2^{+})			
		3913.3 ^d 5	11 <i>3</i>	562.917	2+			
4546.8	9+	1014.0 4	100	3532.81	(7^{+})			
4613.0	10+	1069.7 ^a 4	100	3543.27	8+		2	
4623.7	1+	4623.5 11		0.0	0+	M1	$1.30 \times 10^{-3} \ 2$	$\alpha(K)=1.849\times10^{-5}\ 26;\ \alpha(L)=1.857\times10^{-6}\ 26;\ \alpha(M)=2.77\times10^{-7}\ 4$ $\alpha(N)=1.837\times10^{-8}\ 26;\ \alpha(IPF)=0.001275\ 18$
4661.2	1	4661.0 <i>4</i>		0.0	0^{+}			
4678.26	1	4678.1 <i>1</i>		0.0	0^{+}			
4686.8	(9-)	958.9 ^a 4	100	3727.83	(7-)			
		1143.6 ^a 4	40 30	3543.27	8+			
4719.88	$(2^+,3,4^+)$	1310.6 ^d 3	75 13	3409.19	(1,2,3)			
		1878.3 2 2435.6 <i>3</i>	98 <i>11</i> 100 <i>13</i>	2841.61 2284.22	2 ⁺ (3) ⁻			
4720.5		936.9 <i>4</i>	100 13	3783.57	$(4^+,5,6,7^-)$			
7720.3		992.7 ^d 4	5 5	3703.37	(7^{-})			
4722.36	(1)	4722.2 2	3 3	0.0	0+			
4741.16	(1)	4741.0 2		0.0	0+			
4784.04?	(1,2,3)	1461.2 ^d 3	74 15	3322.80	(2^{+})			
		3675.60 ^d 45	100 11	1108.416				
4789.06		4788.9 <i>3</i>		0.0	0^{+}			
4812.47?	$(2^+,3)$	1892.7 <mark>d</mark> 2	100 7	2919.74	1+			
		3402.4 ^d 3	33 5	1409.982	4+			
4814.92?	(1,2,3)	1182.1 ^d 3	100 15	3632.92	(2^{+})			
	(-,-,-)	1502.3 ^d 5	96 13	3312.29	3-			
4837.2	(1)	4837.0 4	,010	0.0	0+			
4846.07	ì	4845.9 <i>3</i>		0.0	0^{+}			
4874.67		4874.5 2		0.0	0_{+}			
4917.2	1	4917.0 6		0.0	0+			
4936.07	1	4935.9 2		0.0	0+			
5116.59	1	5116.4 2	24.10	0.0 3632.92	0^{+}			
5122.47	(1,2,3)	1489.6 <i>4</i> 1940.30 <i>14</i>	34 <i>10</i> 100 <i>7</i>	3032.92	(2^+) (2^+)			
		1980.4 5	32 6	3141.39	1+			
5166.89	(1)	5166.7 2	320	0.0	0+			
5185.99	(1)	5185.8 <i>1</i>		0.0	0+			
5202.49	ì	5202.3 2		0.0	0^{+}			

γ (76Ge) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
5222.19		5222.0 <i>3</i>		0.0	0+			
5267.00	1	5266.8 <i>3</i>		0.0	0_{+}			
5273.8	(1)	5273.6 6		0.0	0^{+}			
5285.10	1	5284.9 2		0.0	0_{+}			
5304.30	1	5304.1 <i>3</i>		0.0	0+			
5365.80	1	5365.6 <i>3</i>		0.0	0+			
5379.7	1	5379.5 4		0.0	0+			
5390.8	(1)	5390.6 5		0.0	0+			
5418.8	(1)	5418.6 <i>4</i>		0.0	0+			
5434.51	1	5434.3 3		0.0	0_{+}			
5450.0?	(12^{+})	837.0 ^{ad} 4	100	4613.0	10 ⁺			
5522.58	(1,2,3)	1282.9 ^{cd} 4	<81 ^c	4239.36	(1,2,3)			
		2680.9 <i>3</i>	92 10	2841.61	2+			
		2868.1 2	100 14	2654.51	$(0^+,1^+)$			
5540.42	1	5540.2 2	100	0.0	0+			
5567.62	(1)	5567.4 2		0.0	0+			
5579.0	1	5578.8 <i>5</i>		0.0	0+			
5626.7	1	5626.5 8	100	0.0	0+			
5663.32	(2^{+})	2481.1 4	50 10	3182.19	(2^{+})			
		2970.90 15	100 12	2692.347				
		3752.10 <i>50</i>	42 9	1911.12	0+			
5665 12	1	4253.3 5	57 9	1409.982	0 ⁺			
5665.43 5677.83	1	5665.2 <i>3</i> 5677.6 <i>3</i>		0.0	0 ⁺			
			100			E1	2.23×10 ⁻³ 3	$\alpha(K)=1.069\times10^{-5}$ 15; $\alpha(L)=1.070\times10^{-6}$ 15; $\alpha(M)=1.597\times10^{-7}$ 22
5699.03	1-	5698.8 2	100	0.0	0+	E1	2.23×10 5	$\alpha(K)=1.069\times10^{-6}$ 15; $\alpha(L)=1.070\times10^{-6}$ 15; $\alpha(M)=1.597\times10^{-6}$ 22 $\alpha(N)=1.057\times10^{-8}$ 15; $\alpha(IPF)=0.002215$ 31
5708.6	(1)	5708.4 6		0.0	0+			
5748.53	1-	5748.3 <i>I</i>	100	0.0	0+	E1	$2.24 \times 10^{-3} \ 3$	$\alpha(K)=1.058\times10^{-5}\ 15;\ \alpha(L)=1.059\times10^{-6}\ 15;\ \alpha(M)=1.580\times10^{-7}\ 22$ $\alpha(N)=1.046\times10^{-8}\ 15;\ \alpha(IPF)=0.002227\ 31$
5749.90?	(1,2,3)	2981.2 ^d 4	100 20	2768.73	2+			
		3465.5 ^d 4	68 13	2284.22	$(3)^{-}$			
5785.24	1	5785.0 2		0.0	0+			
5794.34	1	5794.1 2		0.0	0+			
5821.0		5820.8 6		0.0	0+			
5825.5	1	5825.3 8		0.0	0_{+}			
5843.2	(11^{-})	1156.4 <mark>a</mark> 4	100	4686.8	(9^{-})			
5846.7		5846.5 7		0.0	0+			
5865.0		5864.8 <i>6</i>		0.0	0_{+}			
5882.92?	(1,2,3)	2700.5 ^d 4	94 16	3182.19	(2^{+})			

γ (76Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
5882.92?	(1,2,3)	3190.6 ^d 3	100 13	2692.347				
5909.05		5908.8 <i>3</i>	400	0.0	0+			
5955.9	1	5955.6 8	100	0.0	0+			
5983.25	1-	5983.0 2	100	0.0	0+	E1	$2.30 \times 10^{-3} \ 3$	$\alpha(K)=1.009\times10^{-5}\ 14;\ \alpha(L)=1.010\times10^{-6}\ 14;\ \alpha(M)=1.507\times10^{-7}\ 21$ $\alpha(N)=9.98\times10^{-9}\ 14;\ \alpha(IPF)=0.002285\ 32$
6021.13?	(1,2,3)	3328.7 ^d 8	100 30	2692.347	3-			
		3366.5 d 3	73 14	2654.51	$(0^+,1^+)$			
		3736.90 ^d 45	80 20	2284.22	(3)-			
6048.7	1	6048.4 4	00 20	0.0	0+			
6065.1?	(1,2,3)	2882.9 ^d 9	47 16	3182.19	(2^{+})			
	())-)	3145.3 ^d 4	100 20	2919.74	1+			
6081.7	(1)	6081.4 4	100 20	0.0	0+			
6102.3	(1)	6102.0 9		0.0	0^{+}			
6113.86	1	6113.6 3		0.0	0+			
6130.57	1	6130.3 2		0.0	0+			
6145.87	1	6145.6 2		0.0	0+			
6162.7		6162.4 9		0.0	0+			
6191.57	1	6191.3 2		0.0	0^{+}			
6223.7		6223.4 7		0.0	0^{+}			
6228.5	1	6228.2 <i>4</i>		0.0	0^{+}			
6235.1		6234.8 9		0.0	0^{+}			
6240.98	1	6240.7 <i>3</i>		0.0	0^{+}			
6272.98	1	6272.7 3		0.0	0_{+}			
6285.58	1	6285.3 2		0.0	0+			
6315.7	1	6315.4 <i>4</i>		0.0	0+			
6330.48	1	6330.2 2		0.0	0+			
6366.5		6366.2 11		0.0	0+			
6393.5	1	6393.2 5		0.0	0+			
6408.4	1	6408.1 5		0.0	0+			
6436.4		6436.1 9		0.0	0+			
6448.6	1	6448.3 11		0.0	0^{+}			
6472.50 6498.20	1	6472.2 <i>3</i> 6497.9 <i>3</i>		0.0	0+			
6513.6	1	6513.3 <i>4</i>		0.0	0+			
6572.3	1	6572.0 6		0.0	0+			
6601.51	1	6601.2 2		0.0	0+			
6611.4	•	6611.1 6		0.0	0+			
6629.31	1	6629.0 3		0.0	0+			
6642.2	-	6641.9 5		0.0	0+			
6661.7		6661.4 9		0.0	0+			

γ (76Ge) (continued)

										-	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\underline{\mathbf{E}_f} \underline{\mathbf{J}_f^{\pi}}$	Mult.#	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#
6670.91	1	6670.6 <i>3</i>		$0.0 \ 0^{+}$		7723.1	(1)	7722.7 4		$0.0 \ 0^{+}$	
6741.9	(1)	6741.6 <i>6</i>		$0.0 \ 0^{+}$		7777.3	(1)	7776.9 7		$0.0 \ 0^{+}$	
6765.1	1	6764.8 <i>4</i>		$0.0 \ 0^{+}$		7784.2	. ,	7783.8 9		$0.0 \ 0^{+}$	
6787.03	1	6786.7 2		$0.0 \ 0^{+}$		7797.0	1	7796.6 <i>4</i>		$0.0 \ 0^{+}$	
6816.83	1	6816.5 <i>3</i>		$0.0 \ 0^{+}$		7804.1	1	7803.7 <i>6</i>		$0.0 \ 0^{+}$	
6835.83	1	6835.5 2		$0.0 \ 0^{+}$		7814.7	1	7814.3 7		$0.0 \ 0^{+}$	
6846.53	1	6846.2 <i>3</i>		$0.0 \ 0^{+}$		7817.63		7817.2 2		$0.0 \ 0^{+}$	
6880.6	1	6880.3 <i>4</i>		$0.0 \ 0^{+}$		7836.7		7836.3 <i>6</i>		$0.0 \ 0^{+}$	
6884.5		6884.2 10		$0.0 \ 0^{+}$		7849.7	(1)	7849.3 <i>5</i>		$0.0 \ 0^{+}$	
6899.2	1	6898.9 <i>5</i>		$0.0 \ 0^{+}$		7861.6	1	7861.2 <i>4</i>		$0.0 \ 0^{+}$	
6908.3		6908.0 <i>18</i>		$0.0 \ 0^{+}$		7883.7	1	7883.3 10		$0.0 \ 0^{+}$	
6938.9	1	6938.6 7		$0.0 \ 0^{+}$		7894.0		7893.6 <i>12</i>		$0.0 \ 0^{+}$	
6960.24	1	6959.9 <i>3</i>		$0.0 \ 0^{+}$		7916.2	1-	7915.8 24	100	$0.0 \ 0^{+}$	E1
6985.4	1	6985.1 <i>5</i>		$0.0 \ 0^{+}$		7950.35	1	7949.9 2		$0.0 \ 0^{+}$	
6999.05	1-	6998.7 <i>3</i>	100	$0.0 \ 0^{+}$	E1	7976.1	(1)	7975.6 <i>7</i>		$0.0 \ 0^{+}$	
7011.4	1	7011.0 9		$0.0 \ 0^{+}$		7996.3	(1)	7995.8 <i>4</i>		$0.0 \ 0^{+}$	
7026.35	1(-)	7026.0 <i>3</i>		$0.0 \ 0^{+}$	(E1)	8018.0	(1)	8017.5 <i>14</i>		$0.0 \ 0^{+}$	
7048.3	1	7047.9 9		$0.0 \ 0^{+}$, ,	8027.0	(1)	8026.5 8		$0.0 \ 0^{+}$	
7081.6	1	7081.2 9		$0.0 \ 0^{+}$		8049.8	(1)	8049.3 6		$0.0 \ 0^{+}$	
7091.8	1	7091.4 <i>4</i>		$0.0 \ 0^{+}$		8063.9	1	8063.4 8		$0.0 \ 0^{+}$	
7102.8	1	7102.4 6		$0.0 \ 0^{+}$		8094.7		8094.2 8		$0.0 \ 0^{+}$	
7121.66	1	7121.3 <i>3</i>		$0.0 \ 0^{+}$		8103.3		8102.8 5		$0.0 \ 0^{+}$	
7130.46	1	7130.1 <i>3</i>		$0.0 \ 0^{+}$		8110.0		8109.5 8		$0.0 \ 0^{+}$	
7147.7	1	7147.3 <i>4</i>		$0.0 \ 0^{+}$		8135.0		8134.5 <i>11</i>		$0.0 \ 0^{+}$	
7172.0		7171.6 9		$0.0 \ 0^{+}$		8152.3	1(-)	8151.8 <i>5</i>	100	$0.0 \ 0^{+}$	(E1)
7250.9	1-	7250.5 7		$0.0 \ 0^{+}$	E1	8160.7		8160.2 9		$0.0 \ 0^{+}$	
7290.1		7289.7 <i>4</i>		$0.0 \ 0^{+}$		8178.3	1	8177.8 <i>4</i>		$0.0 \ 0^{+}$	
7301.08	1-	7300.7 <i>3</i>		$0.0 \ 0^{+}$	E1	8188.3	1	8187.8 <i>5</i>		$0.0 \ 0^{+}$	
7407.09	1	7406.7 <i>3</i>		$0.0 \ 0^{+}$		8236.9	(1)	8236.4 <i>4</i>		$0.0 \ 0^{+}$	
7416.0		7415.6 <i>4</i>		$0.0 \ 0^{+}$		8253.4		8252.9 9		$0.0 \ 0^{+}$	
7452.6		7452.2 5		$0.0 \ 0^{+}$		8260.1	(1)	8259.6 <i>6</i>		$0.0 \ 0^{+}$	
7479.0		7478.6 <i>5</i>		$0.0 \ 0^{+}$		8284.99	(1)	8284.5 <i>3</i>		$0.0 \ 0^{+}$	
7485.40	1	7485.0 <i>3</i>		$0.0 \ 0^{+}$		8294.8		8294.3 12		$0.0 \ 0^{+}$	
7521.6	1	7521.2 <i>5</i>		$0.0 \ 0^{+}$		8304.0	1	8303.5 5		$0.0 \ 0^{+}$	
7537.0	(1)	7536.6 <i>4</i>		$0.0 \ 0^{+}$		8318.29	1	8317.8 <i>3</i>		$0.0 \ 0^{+}$	
7549.2	(1)	7548.8 <i>7</i>		$0.0 \ 0^{+}$		8329.4	1	8328.9 7		$0.0 \ 0^{+}$	
7585.0	1	7584.6 <i>4</i>		$0.0 \ 0^{+}$		8348.2		8347.7 9		$0.0 \ 0^{+}$	
7643.0	1	7642.6 <i>4</i>		$0.0 \ 0^{+}$		8357.9	(1)	8357.4 7		$0.0 \ 0^{+}$	
7651.2	1	7650.8 <i>4</i>		$0.0 \ 0^{+}$		8397.8		8397.3 <i>5</i>		$0.0 \ 0^{+}$	
7678.1	1	7677.7 4		$0.0 \ 0^{+}$		8418.5		8418.0 <i>15</i>		$0.0 \ 0^{+}$	
7694.6	1	7694.2 11	100	$0.0 \ 0^{+}$		8425.70	1	8425.2 <i>3</i>	100	$0.0 \ 0^{+}$	

γ (⁷⁶Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\underline{\mathbf{E}_f} \ \underline{\mathbf{J}_f^{\pi}}$	Mult.#	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	E_f J_f^{π}
8446.6	(1)	8446.1 7		$0.0 \ 0^{+}$		9020.1	(1)	9019.5 10	$0.0 \ 0^{+}$
8462.4	()	8461.9 9		$0.0 \ 0^{+}$		9033.7	()	9033.1 9	$0.0 0^{+}$
8500.51	1	8500.0 <i>3</i>		$0.0 \ 0^{+}$		9052.3	(1)	9051.7 12	$0.0 0^{+}$
8521.2		8520.7 <i>6</i>		$0.0 \ 0^{+}$		9059.1	. ,	9058.5 11	$0.0 0^{+}$
8535.6	1	8535.1 5		$0.0 \ 0^{+}$		9163.9	1	9163.3 9	$0.0 0^{+}$
8546.6	1-	8546.1 5		$0.0 \ 0^{+}$	E1	9176.1	1	9175.5 8	$0.0 0^{+}$
8552.8	1	8552.3 8		$0.0 \ 0^{+}$		9188.0	1	9187.4 <i>4</i>	$0.0 0^{+}$
8567.42	1	8566.9 <i>3</i>		$0.0 \ 0^{+}$		9255.2		9254.6 7	$0.0 0^{+}$
8602.8		8602.3 5		$0.0 \ 0^{+}$		9264.7		9264.1 <i>6</i>	$0.0 0^{+}$
8626.2	1	8625.7 7		$0.0 \ 0^{+}$		9305.6		9305.0 4	$0.0 0^{+}$
8649.6		8649.1 8		$0.0 \ 0^{+}$		9316.4		9315.8 <i>4</i>	$0.0 0^{+}$
8662.5	(1)	8662.0 <i>4</i>		$0.0 \ 0^{+}$		9338.4		9337.8 6	$0.0 0^{+}$
8696.7		8696.2 7		$0.0 \ 0^{+}$		9355.1	(1)	9354.5 8	$0.0 0^{+}$
8741.2	(1)	8740.7 <i>4</i>		$0.0 \ 0^{+}$		9366.5	1	9365.9 5	$0.0 0^{+}$
8753.2	1-	8752.7 6		$0.0 \ 0^{+}$	E1	9378.5	(1)	9377.9 4	$0.0 0^{+}$
8768.9	1	8768.4 9		$0.0 \ 0^{+}$		9400.0	1	9399.4 6	$0.0 0^{+}$
8806.8		8806.2 5		$0.0 \ 0^{+}$		9410.5	1	9409.9 <i>4</i>	$0.0 0^{+}$
8844.3	1	8843.7 <i>4</i>		$0.0 \ 0^{+}$		9418.2	1	9417.6 5	$0.0 0^{+}$
8889.1		8888.5 9		$0.0 \ 0^{+}$		9557.2	1	9556.6 <i>5</i>	$0.0 0^{+}$
9014.2	1-	9013.6 <i>14</i>	100	$0.0 \ 0^{+}$	E1				

[†] Additional information 4. ‡ When a level is populated in more than one gamma-ray datasets, averages of all available data of comparable precision are taken. Exceptions are noted.

[#] From $\gamma(\theta)$ in $(n,n'\gamma)$. RUL for E2 and M2 restricts to E2 and M1+E2 for mult=Q and D+Q, respectively. Exceptions are noted.

[@] From $(n,n'\gamma)$ only.

[&]amp; Placement suggested by the evaluators. a γ from 238 U(76 Ge, 76 Ge' γ) only.

^b Poor fit, level-energy difference=1611.6.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

0.0 1.926×10²¹ y 94

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain) 1/21.9 + 35.40 86 + 1612> 49 3632.92 3596.79 3576.96 30 fs +6-5 8+ 3543.27 3536.0 2988.09 2453.74 0.47 ps +19-16 6+ 2021.68 1.6 ps 4 4+ 1911.12 1.77 ps 8 0^+ 1539.383 35 ps 7 1108.416 9.9 ps 9 562.917 18.14 ps *13*

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110,1917 (2009)	30-Jun-2009

 $Q(\beta^{-})=955\ 11;\ S(n)=8721\ 4;\ S(p)=13159\ 5;\ Q(\alpha)=-8530\ 5$ 2012Wa38

Note: Current evaluation has used the following Q record \$ 955 10 8719 4 13159 5 -8530 4 2009AuZZ,2003Au03.

S(2n)=14792 4, s(2p)=24137 4 (2009AuZZ).

Values in 2003Au03: $Q(\alpha) = -8580\ 50$, $s(2p) = 24300\ 80\ (2003Au03)$; others same as in 2009AuZZ.

Other reaction: ²³⁸U(p,F), E=25 MeV, measured fission fragment mass distribution (1997Hu09).

Additional information 1.

Nuclear structure calculations: 2008Yo07 (high-spin levels, B(E2), shell model), 1992Er02, 1992Hs02.

Double β decay calculation: 2001Ka15.

⁷⁸Ge Levels

Cross Reference (XREF) Flags

Α	78 Ga β ⁻ decay (5.09 s)	D	Coulomb excitation
В	⁷⁹ Ga $β$ ⁻ n decay (2.847 s)	E	82Se(d,6Li)
C	76 Ge(t.p)	F	$^{192}Os(^{82}Se.Xy)$

				· · · · · · · · · · · · · · · · · · ·
E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0	0^{+}	88.0 min 10	ABCDEF	%β ⁻ =100
				$T_{1/2}$: from 1965Kv01. Others: 88 min 2 (1965Fr04), 86 min 1 (1953Su04).
619.36 [@] <i>12</i>	2+	13.5 ps 24	A CDEF	J^{π} : level is Coulomb excited from 0^+ ; $L(t,p)=2$.
				$T_{1/2}$: weighted average of 15.9 ps 28 from βγγ(t) in β ⁻ decay (1993Ch05) and 11.1 ps 7 from B(E2)↑=0.222 14 (2005Pa23).
1186.51 <i>12</i>	2+	12 ps 6	ACE	J^{π} : L(t,p)=2.
1546.6 <i>4</i>	0_{+}	25 ps 11	ACE	J^{π} : L(t,p)=0.
1570.20 [@] 19	4+	<3.5 ps	A C EF	J^{π} : L(t,p)=4.
1644.58 <i>14</i>	$(2,3,4^+)$	15 ps 6	Α	J^{π} : log ft =6.64 from (3 ⁺); γ to 2 ⁺ .
1842.73 22	2+	•	A C	J^{π} : L(t,p)=2.
2292 3	(4^+)		C	J^{π} : L(t,p)=(4).
2319.57 20	(2,3,4)	43 ps 5	A	J^{π} : log ft =6.26 from (3 ⁺).
2330 3			С	J^{π} : L(t,p)=(4,5) suggests (4 ⁺ ,5 ⁻), another L(t,p)=(0,4) suggests (0 ⁺ ,4 ⁺). The
				2330 peak in (t,p) may contain contribution from 2319 level as well.
2404? 5			C	
2438.71 <i>19</i>	(2^{+})	<7 ps	A C	J^{π} : L(t,p)=2.
2652 <i>3</i>	(5 ⁻)		С	J^{π} : L(t,p)=5.
2665.63 17	$(2,3,4^+)$	4.2 ps 25	Α	J^{π} : log ft =5.81 from (3 ⁺); γ to 2 ⁺ .
2706.01 19	(2^{+})		Α	J^{π} : log ft =6.29 from (3 ⁺); γ to 0 ⁺ .
2748.2 [@] 11	(6^+)		F	J^{π} : yrast population in (82 Se,X).
2759 10	$(3^-,4^+)$		C	J^{π} : L(t,p)=(3,4).
2850 10	(5^{-})		С	J^{π} : L(t,p)=5.
2857.14 19	$(2,3,4^+)$		Α	J^{π} : log ft =6.20 from (3 ⁺); γ to 2 ⁺ .
2952.9 <i>3</i>	(4^{+})	9 ps <i>4</i>	A C	J^{π} : L(t,p)=4.
3120.60 20	$(2,3,4^+)$	<2.8 ps	A	J^{π} : log ft =5.65 from (3 ⁺); γ to 2 ⁺ .
3183 <i>10</i>	(2^{+})		С	$J_{\underline{-}}^{\pi}$: L(t,p)=2.
3236 10	$(1^-\&3^-)$		С	J^{π} : L(t,p)=1+3.
3287 10	(6 ⁺)		C	J^{π} : L(t,p)=6.
3350 10	(0^+)		C	J^{π} : L(t,p)=0.
3389.91 22	$(2^+,3,4^+)$		A C	J^{π} : log f t=6.18 from (3 ⁺); γ' s to 2 ⁺ and (4 ⁺).
3615 10	(3^{-})		C	J^{π} : L(t,p)=3.
3638 10	(2^{+})		C	J^{π} : L(t,p)=2.
3667 10	0^{+}		С	J^{π} : $L(t,p)=0$.

Continued on next page (footnotes at end of table)

⁷⁸Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3687.73 17	(4 ⁺)	A C	XREF: C(3707).
	` /		J^{π} : L(t,p)=4.
3714.2 [@] 15	(8^{+})	F	J^{π} : yrast population in (82Se,X).
3797 10	(3^{-})	C	J^{π} : L(t,p)=3.
3816 <i>10</i>	(2^{+})	C	J^{π} : L(t,p)=2.
3898 10	0+	С	J^{π} : L(t,p)=0.
3965 10	(2^{+})	C	J^{π} : L(t,p)=2.
4015 10	(0^+)	C	J^{π} : $L(t,p)=0$.
4036 10	(5^{-})	C	J^{π} : L(t,p)=5.
4070 10	(2^{+})	C	J^{π} : L(t,p)=2.
4083.7 5	$(2,3,4^+)$	Α	J^{π} : log f t=5.64 from (3 ⁺); γ to 2 ⁺ .
4115 10	(1^{-})	C	J^{π} : $L(t,p)=1$.
4134 10	(2^{+})	C	J^{π} : L(t,p)=2.
4270.08 23	$(2,3,4^+)$	A C	XREF: C(4259).
			J^{π} : log $ft=5.76$ from (3 ⁺); γ to 2 ⁺ .
4279.4 <i>4</i>	$(2,3,4^+)$	Α	J^{π} : log ft =5.81 from (3 ⁺); γ to 2 ⁺ .
4305 10		C	
4335 10		C	
4378 10		C	
4745 10		C	
4816 <i>10</i>	(2.2.4±)	. C	TT 1 6 5 (0 C (24)) 24
5078.2 10	$(2,3,4^+)$	A	J^{π} : log $ft=5.68$ from (3 ⁺); γ to 2 ⁺ .
5191 <i>10</i>		C	
5324 10		C	

 $^{^{\}dagger}$ From least squares fit to Ey's.

y (GC)	γ(⁷⁸ (Ge)
---------	----	-----------------	-----

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f \mathbb{J}_f^{π}	Mult.	Comments
619.36	2+	619.40 <i>16</i>	100	$0.0 0^{+}$	[E2]	B(E2)(W.u.)=23 4
1186.51	2+	567.06 <i>16</i>	91 5	619.36 2+	[E2]	B(E2)(W.u.)=19 11
		1186.42 <i>16</i>	100 5	$0.0 0^{+}$	[E2]	B(E2)(W.u.)=0.53 24
1546.6	0_{+}	927.2 <i>3</i>	100	619.36 2+		
1570.20	4 ⁺	950.77 <i>17</i>	100	619.36 2+	[E2]	B(E2)(W.u.)>11
1644.58	$(2,3,4^+)$	458.00 <i>15</i>	47 <i>3</i>	1186.51 2 ⁺		
		1025.11 <i>17</i>	100 6	619.36 2 ⁺		
1842.73	2+	1223.36 18	100	619.36 2 ⁺		
2319.57	(2,3,4)	674.86 <i>17</i>	100	$1644.58 (2,3,4^+)$		
2438.71	(2^{+})	891.3 <i>16</i>	12 7	$1546.6 0^+$		
		1251.96 20	65 8	1186.51 2 ⁺		
		1819.59 <i>21</i>	100 16	$619.36 \ 2^{+}$		
2665.63	$(2,3,4^+)$	345.76 <i>26</i>	63 9	2319.57 (2,3,4)		
		1021.2 4	15 <i>4</i>	$1644.58 (2,3,4^+)$		
		1479.13 <i>18</i>	100 7	$1186.51 \ 2^{+}$		
		2046.32 25	67 7	$619.36 \ 2^{+}$		
2706.01	(2^{+})	862.8 <i>15</i>	25 11	$1842.73 \ 2^{+}$		
		1061.9 <i>4</i>	20 6	1644.58 (2,3,4+)		

From L transfer in (t,p) except as noted. The evaluators consider all assignments as tentative for levels above 1843 since there seem disagreements between the (t,p) data of 1978Ar12 and 1987Ma21. Moreover, L(t,p)>2 distribution patterns are generally not characteristic of a unique L value.

[#] From $\beta \gamma \gamma(t)$ fast timing technique in β^- decay (1993Ch05), except as noted.

[@] Band(A): yrast structure.

γ (⁷⁸Ge) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^π
2706.01	(2+)	1519.32 24	47 7	1186.51	2+
	,	2706.2 4	100 11	0.0	0^{+}
2748.2	(6^+)	1178 [‡]	100 [‡]	1570.20	4+
2857.14	$(2,3,4^+)$	1212.41 <i>24</i>	100 13	1644.58	$(2,3,4^+)$
		1670.67 <i>23</i>	83 10	1186.51	2+
		2237.9 4	63 13	619.36	2+
2952.9	(4^{+})	1308.4 <i>3</i>	20 10	1644.58	$(2,3,4^+)$
		1382.6 9	39 <i>35</i>	1570.20	4+
		2333.3 4	100 17	619.36	2+
3120.60	$(2,3,4^+)$	1475.5 <i>4</i>	15 6	1644.58	$(2,3,4^+)$
		1934.10 <i>21</i>	100 7	1186.51	2+
		2501.4 <i>3</i>	27 5	619.36	2+
3389.91	$(2^+,3,4^+)$	532.7 4	18 5	2857.14	$(2,3,4^+)$
		1745.4 <i>4</i>	55 <i>13</i>	1644.58	$(2,3,4^+)$
		1819.59 <i>21</i>	58 24	1570.20	4+
		2771.2 6	100 24	619.36	2+
3687.73	(4^{+})	2043.1 <i>1</i>	100 18	1644.58	$(2,3,4^+)$
		2501.4 <i>3</i>	47 <i>24</i>	1186.51	2+
3714.2	(8^{+})	966 [‡]	100 [‡]	2748.2	(6^+)
4083.7	$(2,3,4^+)$	962.5 <i>15</i>	18 9	3120.60	$(2,3,4^+)$
		2241.0 6	19 5	1842.73	2+
		3464.3 8	100 12	619.36	2+
4270.08	$(2,3,4^+)$	1564.2 <i>3</i>	75 12	2706.01	(2^{+})
		1604.38 <i>23</i>	100 14	2665.63	$(2,3,4^+)$
		3083.0 <i>15</i>	25 15	1186.51	2+
4279.4	$(2,3,4^+)$	1573.4 <i>3</i>	59 11	2706.01	(2^{+})
		3092.8 7	100 17	1186.51	2+
5078.2	$(2,3,4^+)$	3508.4 <i>16</i>	7 5	1570.20	4+
		4458.5 12	100 18	619.36	2+

 $^{^{\}dagger}$ From $^{78} Ga~\beta^-$ decay unless otherwise stated. ‡ From $^{192} Os(^{82} Se, X\gamma)$ only.

Level Scheme

Level Scheme (continued)

Band(A): Yrast structure

