ASSIGNMENT 1

Name	ID
Fares Mohamed Fouad	18011223
Ali Ahmed Ibrahim	18011064
Ahmed Mohamed Abd-Elmonem	18010225
Mohamed Ebrahem El-Sayed	18011333
Fares Waheed Abd-Elhakeem	18011224

1. How to Run the Program:

- 1. Open the "numerical Backend" folder using any java IDE and Run
- "NumericalBackendApplication.java" to run the spring Boot App.
- 2.Run the Vue.js Applications using VS codes:
- *Make sure you have installed node.js and yarn
- *open the "assignment1" folder in VS codes.

Then write this command in terminal of:

>cd project

>yarn run serve

- *Make sure you have the extension "Vuetify for vs".
- *Write the command "yarn add axios" in the terminal of VS code.
- *Run the application using the command "yarn run serve".
- *The program will run at: http://localhost:8080/

The First Three Functions:

Pseudo Code:

First of all, some helping methods for Gauss elimination without/with pivoting and for Gauss-Jordan elimination:

```
/**
a: Coefficients matrix
b: Free terms vector (aX=b)
p: precesion
**/
Double[] substitute(a, b, p){
temp = b.length;
sum = 0;
x = new Double[]
x[temp-1] = round (b[temp -1] / round(a[temp-1][temp-1], p), p)
for i = temp-2 downTo 0
     sum = 0;
     for j = i+1 upTo temp -1
           sum = round(sum + round(a[i][j] * x[j], p), p);
     end for
     x[i] = round(round(b[i] - sum, p), p);
end for
```

```
return x;
}
/**
This method helps with rounding to certain precision
value: value to be rounded
places: The precision in decimal places
**/
Double round(value, places){
If places < 0 then
     Throw illegalArgumentException
End if
bd = new BigDecimal(Double.toString(value));
bd = bd.setScale(places, roundingMode.HALF UP);
return bd.doubleValue;
}
/**
This method checks if the given linear equations have a unique solution
pivot: indicate whether we are using pivoting or not
sn: Scaling factors array
**/
Boolean hasUniqueSolution(a, b, p, pivot, sn){
```

```
Stack s = eliminate(a, b, p, pivot, sn);
If size of s = 0 then
     Return false
end if
a = s.pop();
rank = 0;
n = b. length
for i = 0 upTo n-1
     for j = i upTo n-1
           if a[i][j] != 0 then
                 rank ++;
                 break;
           end if
     end for
end for
if rank = n then
     return true
end if
return false;
}
/**
Elimination method
```

```
**/
Eliminate(a, b, p, pivot, sn){
factor = 0
for k = 0 upTo b.length-2
     if pivot = true then
           pivot(a, b, sn, k)
      end if
     for i = k+1 upTo b.length - 1
           factor = round(a[i][k]/a[k][k], p)
           for j = k+1 upTo b.length -1
                 a[i][j] = round(a[i][j] - round(factor * a[k][j], p));
           end for
           b[i] = round(b[i] -round(factor * b[k], p), p);
      end for
end for
s = new Stack
s.push(b); s.push(a)
return s;
/**
This method is responsible for pivoting
S: scaling factor for each row
```

```
K: current row
**/
void pivot (a, b, s, k){
pivot = k;
big = absolute of (a[k][k] / s[k]);
temp = 0;
for i = k+1 upTo b.length -1
     temp = absolute of (a[i][k] / s[i]);
     if temp > big then
           big = temp;
           pivot = I;
      end if
end for
if pivot not equal k then
     for j = k upTo b.lenght-1
           swap a[pivot][j], a[k][j];
      end for
      swap b[pivot], b[k]
     swap s[pivot], s[k]
end if
}
/**
```

```
This method is responsible for getting the scaling factors
n: number of variables
**/
Double[] scalingFactores(a, n){
Sn = new Double array of size n
For i = 0 upTo n-1
     Sn[i] = absolute of a[i][0]
     For j = 1 upTo n-1
           If absolute of a[i][j] > Sn[i] then
                 Sn[i] = absolute of a[i][j]
           End if
     End for
end for
return Sn
}
/**
Backward elimination method
**/
Boolean backwardEliminate(a, b, p){
factor = 0;
for k = b.length downTo 0
```

```
for i = k-1 downTo 0
           factor = round(a[i][k]/a[k][k], p);
           b[i] = round(b[i] -round(factor * b[k], p), p);
     end for
end for
return true
}
Gauss elimination without pivoting:
/**
a: Coefficients matrix
b: Free terms vector (aX=b)
p: precesion
**/
Double[] gaussElimination (a, b, p){
If aX = b doesn't have a unique solution then
     Return null;
End if
Return substitute(a, b, p);
}
Gauss elimination with pivoting:
Double gaussEliminationPivot(a, b, p){
```

```
Sn = scalingFactors(a, b.length);
check = hasUniqueSolution(a, b, p, true, sn);
if check = true then
     return substitute(a, b, p);
end if
return null;
}
Gauss-Jordan with pivoting:
Double[] gaussJordan(a, b, p){
     Sn = scaling;
     check = true if equations has unique solution
     if check = false then
           return null;
     end if
     for i = 0 upTo b.length-1
           factor = a[i][j];
           for j = i upTo b.length-1
                 a[i][j] = round(a[i][j] / factor, p);
           end for
           b[i] = round(b[i]/factor, p);
     end for
     check2 = backwardEliminate(a, b, p);
```

```
if check2 then
return b;
end if
return null;
}
```

Data structures used:

2D array has been used to carry coefficient and, 1D array has been used to carry free terms. This was a good decision because it was easy to manipulate the array elements.

Stack data structure has been used in elimination method. It was useful in sending back 2 or more variables of different types as a response from the method.

Comparison between the methods:

Method	Gauss elimination	Gauss-Jordan elimination
	with/without pivoting	
Elimination	Forward Elimination – only	Needs to eliminate coefficients
steps	needs to eliminate the	below and above the diagonal.
	coefficients below the	Cost ~ 2 *2n ³ /3
	diagonal.	
	Cost ~ 2n ³ /3	
Substitution	Back Substitution	No substitution steps
steps	Cost ~ O(n ²)	
Total	$2n^3/3 + O(n^2)$	4n ³ /3
Precision	More precise when using a	Less precise than Gauss
	certain number of significant	elimination when using a
	bits	certain number of significant
		bits

Problematic functions:

For Gauss elimination without pivoting we have a problem when getting the scaling factor, we might divide by zero. However, to overcome this we can apply pivoting with scaling (for extra precision)

For Gauss-Jordan elimination, it doesn't have a problematic function.

4.LU Decomposition:

Data Structure Used:

2D array has been used to carry coefficient and, 1D array has been used to carry free terms. This was a good decision because it was easy to manipulate the array elements.

Problems:

-When there is a zero on the mail diagonal, this introduces some error As Dividing by that can be avoided using Pivoting with Scaling.

3.1. Doo Little Form:

*This is the pseudocode for decomposition phase:

function Decompose (A, n)

DO, FOR
$$k = 1$$
, $n - 1$

DO, FOR $i = k + 1$, n

factor $= A_{i,k} / A_{k,k}$
 $A_{i,k} = factor$

DO, FOR $j = k + 1$, n
 $A_{i,j} = A_{i,j} - factor * A_{k,j}$

END DO

END DO

END DO

END Decompose

*Then we can get L from the lower bound of A and get U from the upper bound of A. Store them, then using two steps:

- 1. Forward Substitution with L, B.
- 2.Backward Substitution with U and result from Forward Substitution.
- *Time Complexity:

$$T(\frac{8n^3}{3} + 12 n^2 + \frac{4n}{3})$$

Where T = clock cycle time and n = size of the matrix.

3.2. Crout Decomposition:

Pseudo code:

```
Input is Matrix A and B;
sum;
L[][];
U[][];
for i=0, n-1
    U[i][i] = 1.0D; // set elements in the diagonal to 1
    for j = 0, n-1 {
        // set lower triangle values.
        for i = j, n-1 {
            sum = 0;
        }
}
```

```
for k = 0, j-1 {
        sum = sum + L[i][k] * U[k][j];
       }
     I[i][j] = A[i][j] - sum;
  }
  // set upper triangle values.
  for i = j, n - 1{
     sum = 0;
    for k=0, j {
       sum = sum + L[j][k] * U[k][i];
       }
     if L[j][j] == 0 {
      return null; // Can't divide by zero
     }
     U[j][i] = (A[j][i] - sum) / L[j][j];
  }
}
```

Then doing last 2 steps:

- 1. Forward Substitution with L, B.
- 2.Backward Substitution with U and result from Forward Substitution.

*Time Complexity: (As the first method)

$$T(\frac{8n^3}{3} + 12 n^2 + \frac{4n}{3})$$

3.3 Chelosky Form:

*Matrix should be symmetric to use this form.

Pseudocode:

```
Input is Matrix A and B;
sum;
 L[][];
 U[][]; // transpose of L.
    For i=0, n-1 {
      for j=0, i {
         sum =0;
         if(i==j) {// diagonal elements
          for k=0, j-1
            sum = sum + L[i][k] * L[i][k];
          L[i][j] = Math.sqrt(A[i][j]-sum);
          U[j][i] = L[i][j];
         }
         else {// non diagonal
          for k=0, j-1
            sum = sum + L[i][k] * L[j][k];
          if(L[j][j] == 0) {// divide by zero}
             return null;
          }
          L[i][j] = (A[i][j]-sum)/L[j][j];
          U[j][i] = L[i][j];
         }
```

} ι

*Time Complexity:

$$T(\frac{2n^3}{3} - \frac{n}{3} - 1)$$

.....

-Iterative Methods:

-Data structure used and how helpful was your choice:

ArrayLists for the iteration methods to be dynamic according to the absolute relative error the user wants.

-Comparison between different methods (time complexity, convergence, best and worst case for each method and precisions)

- -This two iterative methods begin with initial guess for solution and successively improve it until desired accuracy attained.
- -It might take infinite number of iterations to converge to exact solution theoretically, but in practice iterations are terminated when residual is as small as desired.

The difference between the 2 methods:

- -Gauss-Seidel is same as Jacobi technique except with one important difference:
- -A newly computed x value is substituted in the subsequent equations in the same iteration.
- -So Gauss-Seidel converges faster than Jacobi.

<u>Pitfalls:</u> This two iterative methods not all systems of equations will converge or it converges very slowly.

<u>Best Case</u>: One class of system of equations always converges a diagonally dominant coefficient matrix but not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

```
time complexity: Each iteration takes O(n2) time.
```

```
Gauss-Siedel pseudo-code:
do {
      for ( i < noOfEquations ){</pre>
             element = round(b[i]/a[i][i] , p)
             for (j < n)
                    if (i != j) {
                           m = k
                           if (i < j)
                           x[i][k] = round(x[i][k] - round(round(a[i][j]*x[i][m]*,p)
/a[i][i],p),p)
                     }
             }
      for (i < noOfEquations){  //to calculate relative errors</pre>
             relErrors[i] = (x[i][k]-x[i][k-1]) / x[i][k] * 100
       }
       k++
} while (!relativeErrorTest && k <= noOfIterations)</pre>
```

return x

```
<u>Jacobi pseudo-code:</u>
```

```
do {
    for ( i < noOfEquations ){</pre>
```

-Analysis of the Runtime of each method with the same data:

Method	Time(micro sec)
Gauss Elimination	765 micro sec
Gauss with pivoting	1786.2 micro sec
Gauss Jordan	1655.25 micro sec
Doolittle	869.5 micro sec
Crout	793.75 micro sec
Cholesky	873.6 micro sec
Gauss Seidel (30 Itera, 0.05 error)	533.16 micro sec
Jacobi(30 Itera,0.05 error)	271 micro sec

Snapshots:

