Вспомогательный сервис BTA-JSON

Емельянов Эдуард Владимирович

21 мая 2013 г.

1 Введение

Для осуществления возможности удаленного мониторинга состояния телескопа БТА (в т.ч. для заполнения стандартного заголовка FITS-файлов) на основе разработанной В.С. Шергиным программы bta_print был создан простой сетевой сервис, выдающий по запросу пользователя всю необходимую информацию в формате JSON.

Необходимость создания данного сервиса была обоснована тем, что прохождение multicastпакетов из локальной сети БТА в локальную сеть ННП зачастую блокируется многочисленым промежуточным сетевым оборудованием.

Данный сервис в режиме демона работает на компьютере tb.sao.ru, отвечая на запросы, адресованные ресурсу /bta_par на порту 12345. Демон принимает запросы как от вебклиентов, так и от непосредственно подключенных клиентских сокетов. Полный адрес запроса для веб-клиента выглядит так:

http://tb.sao.ru:12345/bta_par

По полному запросу сервер возвращает объект JSON с переменными, аналогичными выводу программы bta_print.

```
"ACS_BTA": true,
  "M_time": "13:58:57.74",
  "JDate": 2456432.915943,
  "S_time": "04:37:37.01",
  "Tel_Mode": "Stopping",
  "Tel_Focus": "Prime",
  "ValFoc": 98.77,
  "Tel_Taget": "Zenith",
  "P2_Mode": "Stop",
  "CurAlpha": "04:12:28.25",
11
  "CurDelta": "+39:56:53.4",
  "SrcAlpha": "06:25:53.48",
  "SrcDelta": "+10:00:00.0",
  "InpAlpha": "11:41:52.03",
  "InpDelta": "+24:40:36.4",
  "TelAlpha": "04:57:06.82",
  "TelDelta": "+39:57:14.6",
  "InpAzim": "-118:27:18.0",
```

```
"InpZenD": "83:52:29.3",
"CurAzim": "+053:55:21.3",
"CurZenD": "05:57:00.7",
"CurPA": "049:36:52.7",
"SrcPA": "329:54:01.0",
"InpPA": "315:37:58.0",
"TelPA": "317:08:11.1",
"ValAzim": "-045:59:40.4",
"ValZenD": "05:09:31.2",
"ValP2": "219:33:16.7",
"ValDome": "+134:55:41.6"
"DiffAzim": "+000:00:00.0",
"DiffZenD": "+00:00:00.0",
"DiffP2": "+000:00:00.0",
"DiffDome": "-180:55:22.0",
"VelAzim": "+00:00:00.0",
"VelZenD": "-00:00:00.0",
"VelP2": "+00:00:00.0",
"VelPA": "+00:00:00.0",
"VelDome": "+00:00:00.0",
"CorrAlpha": "+0:00:00.00",
"CorrDelta": "+0:00:00.0",
"CorrAzim": "+0:00:00.0",
"CorrZenD": "+0:00:00.0",
"ValTind": 010.4,
"ValTmir": 010.3,
"ValPres": 595.8,
"ValWind": 01.7,
"Blast10": 18633.4,
"Blast15": 59794.7,
"ValHumd": 86.3,
"Precipt": 1087.4
```

Момимо запуска утилиты из веб-браузеров можно использовать клиент командной строки. Образцы клиентов находятся в директории /Users/eddy/BTA_utils компьютера tb.sao.ru, а также—в репозитории btautils по адресу https://sourceforge.net/projects/btautils/. Помимо однократных запросов клиент может создать постоянное подключение к сокету демона для регулярных запросов интересующих его данных (см. п. 3).

2 Определение полей объекта JSON

В таблице 1 приведено описание полей объекта JSON, возвращаемого сервером клиенту. Тип данных поля имеет одно из следующих значений:

```
текст — строковая величина (например, "Zenith");
```

время — строковая величина, характеризующая время, вида HH:MM:SS.SS (для времени и прямых восхождений);

угол — строковая величина вида [+]D:MM:SS.S (для угловых величин); число — число с плавающей точкой.

Таблица 1: Поля объектов

Название	0	T	Г
поля	Описание	Тип данных	Блок
1	2	3	4
ACS_BTA	Унаследованное от bta_print поле, всегда	_	_
	true		
M_time	Текущее московское время	время	mtime
JDate	Текущая юлианская дата (сут.)	число	sidtime
S_time	Текущее звездное время	время	sidtime
Tel_Mode	Режим работы телескопа	строка	telmode
Tel_Focus	Активный фокус телескопа	строка	telfocus
ValFoc	Отсчет датчика фокуса телескопа, мм	число	telfocus
Tel_Taget	Текущая цель телескопа	строка	target
P2_Mode	Режим работы поворотного стола	строка	p2mode
CurAlpha	Текущие координаты предыдущей цели	время	eqcoor
	(а – прямое восхождение)		
CurDelta	Текущие координаты предыдущей цели	угол	eqcoor
	$(\delta$ – склонение $)$		
SrcAlpha	Текущие координаты цели (α)	время	eqcoor
SrcDelta	Текущие координаты цели (δ)	угол	eqcoor
InpAlpha	Введенные пользователем координаты (α)	время	eqcoor
InpDelta	Введенные пользователем координаты (δ)	угол	eqcoor
TelAlpha	Текущие координаты телескопа (α)	время	eqcoor
TelDelta	Текущие координаты телескопа (δ)	угол	eqcoor
InpAzim	Введенные горизонтальные координаты	угол	horcoor
	(A - азимут $)$		
InpZenD	Введенные горизонтальные координаты	угол	horcoor
	(Z – зенитное расстояние)		
CurAzim	Текущие горизонтальные координаты	угол	horcoor
	предыдущей цели (A)		
CurZenD	Текущие горизонтальные координаты	угол	horcoor
	предыдущей цели (Z)		
CurPA	Текущий позиционный угол предыдущей	угол	horcoor
	цели		
SrcPA	Текущий позиционный угол цели	угол	horcoor
InpPA	Введенный пользователем позиционный	угол	horcoor
	угол		
TelPA	Текущий позиционный угол телескопа	угол	horcoor
ValAzim	Отсчет датчика азимута	угол	valsens
ValZenD	Отсчет датчика зенитного расстояния	угол	valsens
ValP2	Отсчет датчика положения поворотного	угол	valsens
	стола		

(продолжение см. на следующей странице)

Таблица 1: Продолжение

1	2	3	4
ValDome	Отсчет датчика азимута купола	угол	valsens
DiffAzim	Рассогласование по азимуту	угол	diff
DiffZenD	Рассогласование по зенитному расстоянию	угол	diff
DiffP2	Рассогласование по углу вращения пово-	угол	diff
	ротного стола		
DiffDome	Рассогласование по азимуту купола	угол	diff
VelAzim	Текущая скорость движения телескопа по	угол	vel
	азимуту		
VelZenD	Текущая скорость движения телескопа по	угол	vel
	зенитному расстоянию		
VelP2	Текущая скорость движения поворотного	угол	vel
	стола		
VelPA	Текущая скорость «вращения неба»	угол	vel
VelDome	Текущая скорость движения купола	угол	vel
CorrAlpha	Введенная поправка по прямому восхож-	угол	corr
	дению		
CorrDelta	Введенная поправка по склонению	угол	corr
CorrAzim	Введенная поправка по азимуту	угол	corr
CorrZenD	Введенная поправка по зенитному рассто-	угол	corr
	оинк		
ValTind	Температура в подкупольном, °С	число	meteo
ValTmir	Температура зеркала, °С	число	meteo
ValPres	Атмосферное давление, мм.рт.ст.	число	meteo
ValWind	Скорость ветра, м/с	число	meteo
Blast10	Время от последнего порыва ветра, превы-	число	meteo
	шающего 10 м/с, секунд		
Blast15	Время от последнего порыва ветра, превы-	число	meteo
	шающего 15 м/с, секунд		
ValHumd	Влажность воздуха, %	число	meteo
Precipt	Время, прошедшее с момента последнего	число	meteo
	выпадения осадков, секунд		

3 Осуществление постоянного подключения

Для осуществления постоянного удаленного подключения к демону для периодического получения необходимых данных, необходимо создать сокет, подключенный к хосту tb.sao.ru по порту 12345.

Для запроса конкретного блока данных во время постоянного подключения, в качестве запроса необходимо отправлять текст, указанный в строке «Блок» таблицы 1.

Формирование строки запроса можно сделать одним из следующих способов:

• посредством перечисления названий нужных блоков через разделитель (разделителем является пробел, амперсанд, символ табуляции или символ новой строки);

- посредством формирования запроса вида GET /bta_par&blocks, где blocks запрос аналогичный предыдущему пункту;
- посредством формирования запроса вида GET /bta_par, в этом случае демон формирует ответ с перечислением всех блоков, а затем отключается.

Для обработки JSON-объекта можно использовать библиотеку libjson, либо же обрабатывать его вручную (т.к. структура объекта элементарная и однообразная).

Учитывая то, что мультикаст-пакеты с данными по БТА распространяются не чаще 15 раз в секунду, не стоит делать запросы чаще 10 раз в секунду.