Secure Data Analytics

Feifei Li

School of Computing University of Utah

September 21, 2014

The Motivation

 Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.

The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.

Cloud Database

The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.
- Data owner might not want to reveal data values to SP; clients might not want SP to learn their queries and/or the query results.

Cloud Database

Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing SQL over encrypted data in the database-service-provider model. SIGMOD 2002

cloud server

cloud server

Secure Query Processing

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

 Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model.
 In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model.
 In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently
- Fully homomorphic encryption encryption due to Craig Gentry, "A Fully Homomorphic Encryption Scheme (Ph.D. thesis)": mostly of theoretical interest, impractical, and inefficient for large data.
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model.
 In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

• Three parties:

• Three parties:

- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.

- Three parties:
 - A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
 - A client (or multiple of them) who wants to access and pose queries to D.
 - A server that is honest but potentially curious in the tuples in the database and the queries from the clients.
- Objective:

Three parties:

- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.

Objective:

- To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
- To ensure the SNN method is as secure as the encryption method E
 used by the data owner.

• Three parties:

- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.

Objective:

- To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
- To ensure the SNN method is as secure as the encryption method E
 used by the data owner.
- Adversary model: same as whatever model in which E is secure, e.g, IND-CPA, IND-CCA.

• Database $D = \{p_1, \dots, p_N\}$, where $p_i \in \mathbb{R}^d$.

- Database $D = \{p_1, \dots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.

- Database $D = \{p_1, \dots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that $S(E(q), E(D)) = E(\operatorname{nn}(q, D))$, where $q \in \mathbb{R}^d$, without letting the SP learn contents about either the query (and its results) or the tuples in D.

- Database $D = \{p_1, \dots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that $S(E(q), E(D)) = E(\operatorname{nn}(q, D))$, where $q \in \mathbb{R}^d$, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).

 First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
 - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
 - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.
 - Attack we found: after learning only d query points and their encryptions, a linear system of d equations can be formed to decrypt any encrypted $p \in D$.

 Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
 - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) q and entry e.

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
 - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) q and entry e.
 - Attack we found: In the above process, the server learns if *q* lies to the left or the right of another point, in each dimension, which leads to a binary search to efficiently recover any encrypted point.

Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, such that:
 - $\mathcal{E}(m) = c$, $\mathcal{E}^{-1}(c) = m$ (here we omit the keys).
 - $op(c_1, c_2) = 1$ if $m_1 < m_2$; $op(c_1, c_2) = -1$ if $m_1 > m_2$.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004

Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, such that:
 - $\mathcal{E}(m) = c$, $\mathcal{E}^{-1}(c) = m$ (here we omit the keys).
 - $op(c_1, c_2) = 1$ if $m_1 < m_2$; $op(c_1, c_2) = -1$ if $m_1 > m_2$.

Theorem

A truly secure OPE does not exist in standard security models, such as IND-CPA. It also does not exist even in much relaxed security models, such as the indistinguishability under ordered chosen-plaintext attack (IND-OCPA).

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004 Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O'Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009 Alexandra Boldyreva, Nathan Chenette, Adam O'Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions. CRYPTO 2011

• Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(nn(q, D))$ without the knowledge of E^{-1} .

- Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

- Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \to E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

- Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \to E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

$$\mathcal{E}(m_i) = E(h(m_i) = E(p_i), \, \mathcal{E}^{-1}(c) = h^{-1}(E^{-1}(c))$$

- Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \to E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

- Given $E(D) = \{E(p_1), \dots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \to E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

• How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

4: $S(E(p_5), E(D) = E(p_4)$, Repetition FOUND!

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs i!

4: $S(E(p_5), E(D) = E(p_4)$, Repetition FOUND! i = N - (number of steps -2)!

• It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of D.

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of *D*.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of *D*.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
 - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of *D*.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
 - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

Challenge: minmax($|G_i|$)!

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

 G_i : a subset of dataset D

 \mathcal{B}_i : the geometric boundary of \mathcal{G}_i

 G_i : a subset of dataset D

 B_i : the geometric boundary of G_i

1 B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$

 G_i : a subset of dataset D

 B_i : the geometric boundary of G_i

- **1** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_i = \emptyset$ for any $i \neq j$
- ② $G_i = \{p_i | vc_i \text{ is contained or intersected by } B_i\}$

- $G_2 = \{\mathbf{p_5}, \mathbf{p_6}, \mathbf{p_7}, \mathbf{p_8}, \mathbf{p_{10}}, p_9, p_{11}, p_{12}, p_{13}, p_{14}, p_{15}, p_{16}\}$
- **①** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- **②** $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- **②** $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- **②** $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$

$$G_1 = \{p_1, p_2, p_3, p_4, \mathbf{p_5}, \mathbf{p_6}, \mathbf{p_7}, \mathbf{p_8}, \mathbf{p_{10}}\}\$$

$$G_2 = \{\mathbf{p_5}, \mathbf{p_6}, \mathbf{p_7}, \mathbf{p_8}, \mathbf{p_{10}}, p_9, p_{11}, p_{12}, p_{13}, p_{14}, p_{15}, p_{16}\}\$$

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- ② $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum $|G_x|$ and minimum $|G_x| |G_i|$, which means low storage and communication overheads, as well as cheap encryption cost

- **9** B_i is an axis-parallel d-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- **②** $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum $|G_x|$ and minimum $|G_x| |G_i|$, which means low storage and communication overheads, as well as cheap encryption cost

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Merits:

• Demerits:

- Merits:
 - simple
 - minimum storage cost at client
- Demerits:

- Merits:
 - simple
 - minimum storage cost at client
- Demerits:
 - high storage and communication overheads, as well as expensive encryption cost because of highly unbalanced partitions when the data distribution is skewed

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Minimum Space Grid (MinSG)

Minimum Space Grid (MinSG)

Minimum Space Grid (MinSG)

$$|G| = 26$$

$$|G| = 26$$

ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions

$$|G| = 26$$

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x

|G| = 26

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in $B_{\rm x}$

$$|G| = 26$$

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in $B_{\rm x}$

|G| = 26

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in $B_{\rm x}$

$$|G| = 26$$

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in $B_{\rm x}$

$$|G| = 26$$

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in $B_{\rm x}$

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- \bullet use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- ullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

- ullet A greedy algorithm: always split the maximum partition G_x into smaller partitions
- ullet use a line going though the entire space and intersected with the voronoi vertex in B_x
- ullet choose the ℓ that leads to the minimum maximum partition

Merits:

Demerits:

- Merits:
 - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

- Merits:
 - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
 - complicated partitioning process
 - not most balanced: small-sized partitions introduced by some unnecessary splitting

 $|G_{11}| = 2!!$

• We need a method that produce more balanced partitions!!

SVD Partitioning

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

$$|G| = 26$$

• similar to MinSG in most part

$$|G| = 26$$

• similar to MinSG in most part

|G| = 26

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

|G| = 26

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G| = 26$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G| = 26$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G| = 26$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G| = 26$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G_1| = 11$$
$$|G_2| = 15$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G_1| = 11$$
$$|G_2| = 15$$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

$$|G_1| = 11$$

 $|G_2| = 10$
 $|G_3| = 10$
 $|G_4| = 11$

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

Merits:

• Demerits:

- Merits:
 - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

- Merits:
 - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
 - high storage cost at client

Comparison between MinSG and MinMax

Comparison between MinSG and MinMax

 $\mathsf{Min}\mathsf{SG}$

MinMax

 $|G_2| = 10$ $|G_3| = 10$ $|G_4| = 11$

 $|G_1| = 11$

 $|G_{11}| = 11$

 $|G_{12}| = 10$

 $|G_{21}| = 14$

 $|G_{22}| = 6$

Comparison between MinSG and MinMax

 Clearly, MinMax achieves more balanced partitions than MinSG, which means lower storage and communication overheads, as well as cheaper encryption cost.

• We examine the three methods: SG, MinSG and MinMax.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
 - Points of interest in California(CA) and Texas(TX) from the OpenStreetMap project.
 - In each dataset, we randomly select 2 million points to create the largest dataset D_{\max} and form smaller datasets based on D_{\max} .

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
 - Points of interest in California(CA) and Texas(TX) from the OpenStreetMap project.
 - In each dataset, we randomly select 2 million points to create the largest dataset D_{\max} and form smaller datasets based on D_{\max} .
- Default settings.

Symbol	Definition	Default Value
D	size of the dataset	10 ⁶
k	number of partitions	625
DT	dataset type	CA

Attack on Existing SNN Methods

• Vary |D|: Wai Kit Wong, David Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

Attack on Existing SNN Methods

• Vary |D|: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

Partition size in different methods

Vary k

Partition size in different methods

Vary |D|

Query communication cost

Vary k

Query communication cost

Vary |D|

Total running time of the preprocessing step

Vary k

Total running time of the preprocessing step

Vary |D|

Query time for different methods

Vary k

Query time for different methods

Vary |D|

Running time of the partition phase

Vary k

Running time of the partition phase

Vary |D|

Total size of E(D)

Vary k

Total size of E(D)

Vary |D|

Other similarity metrics?

- Other similarity metrics?
- 4 High dimensions (beyond 2)?

- Other similarity metrics?
- 4 High dimensions (beyond 2)?
- Secure k nearest neighbors?

- Other similarity metrics?
- 4 High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Updates?

- Other similarity metrics?
- High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Updates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.

- Other similarity metrics?
- High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Updates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.
- Variants of similarity search: reverse nearest neighbors, skylines, etc.

Conclusion

• Design a new partition-based secure voronoi diagram (SVD) method.

Conclusion

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.

Conclusion

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.
- Future work
 - extending our investigation to higher dimensions, k nearest neighbors

Thank You

Q and A