# Set-Valued Fan-Takahashi Inequalities with Set-Relations Based on Scalarization Methods

Ryota Iwamoto\*\* and Tamaki Tanaka\*

17th, January, 2025

<sup>a</sup>Graduate school of Science and Technology, Niigata University, Niigata 950–2181, Japan,

E-mail: lengtaiyanben@math.sc.niigata-u.ac.jp

<sup>b</sup>Faculty of Science, Niigata University, Niigata 950–2181, Japan,

E-mail: tamaki@math.sc.niigata-u.ac.jp





### Contents

Introduction

**Preliminaries** 

Main results

Conclusion

Introduction

# Background

- Georgiev and Tanaka [2] extended Fan-Takahashi minimax inequality to the form of set-valued maps.
- Kuwano, Tanaka, and Yamada [4] constructed the result of four types of set-valued minimax inequalities with set relations.
- Our goal is to generalize the result of four types of set-valued minimax inequalities which is not related to the specific set-relations and scalarization functions.

<sup>[2]</sup> Pando Gr. Georgiev and Tamaki Tanaka. "Vector-valued set-valued variants of Ky Fan's inequality". In: J. Nonlinear Convex Anal. 1.3 (2000), pp. 245–254.

<sup>[5]</sup> Issei Kuwano, Tamaki Tanaka, and Syuuji Yamada. "Unified scalarization for sets and set-valued Ky Fan minimax inequality". In: J. Nonlinear Convex Anal. 11.3 (2010), pp. 513–525.

# Background

- Georgiev and Tanaka [2] extended Fan-Takahashi minimax inequality to the form of set-valued maps.
- Kuwano, Tanaka, and Yamada [4] constructed the result of four types of set-valued minimax inequalities with set relations.
- Our goal is to generalize the result of four types of set-valued minimax inequalities which is not related to the specific set-relations and scalarization functions.

<sup>[2]</sup> Pando Gr. Georgiev and Tamaki Tanaka. "Vector-valued set-valued variants of Ky Fan's inequality". In: J. Nonlinear Convex Anal. 1.3 (2000), pp. 245–254.

<sup>[5]</sup> Issei Kuwano, Tamaki Tanaka, and Syuuji Yamada. "Unified scalarization for sets and set-valued Ky Fan minimax inequality". In: J. Nonlinear Convex Anal. 11.3 (2010), pp. 513–525.

# Fan-Takahashi Minimax Inequality

## Theorem (Fan-Takahashi [5])

Let X be a nonempty compact convex subset of a Hausdorff topological vector space and  $f: X \times X \to \mathbb{R}$ . If f satisfies the following conditions:

- 1. for each fixed  $y \in X$ ,  $f(\cdot, y)$  is lower semicontinuous,
- 2. for each fixed  $x \in X$ ,  $f(x, \cdot)$  is quasi concave,
- 3.  $f(x,x) \leq 0$  for all  $x \in X$ ,

then there exists  $\bar{x} \in X$  such that  $f(\bar{x}, y) \leq 0$  for all  $y \in X$ .

### Ordering and Set-relations

Let  $(Y, \leq)$  be an ordered space, generally.  $A, B \subset Y$ : nonempty sets.  $A \leq (j) B (j = 1, 2L, 2U, 3L, 3U, 4)$ is defined below. (1)  $\forall a \in A, \forall b \in B, a \leq b$ (2L)  $\exists a \in A \text{ s.t. } \forall b \in B, a \leq b$  (3L)  $\forall b \in B, \exists a \in A \text{ s.t. } a \leq b$  $(2U) \exists b \in B \text{ s.t. } \forall a \in A, a \leq b$  $(3U) \forall a \in A, \exists b \in B \text{ s.t. } a \leq b$  $(4)\exists a \in A, \exists b \in B \text{ s.t. } a \leq b$ 

# Ordering and Set-relations

#### Lemma

Let Y be a real topological vector space, C a convex cone with int  $C \neq \emptyset$ , and  $A, \{\theta_Y\} \subset Y$ . Then

- 1.  $A \leq_C^{(1)} \{\theta_Y\} \Leftrightarrow A \leq_C^{(2U)} \{\theta_Y\} \Leftrightarrow A \leq_C^{(3U)} \{\theta_Y\} \Leftrightarrow A \subset -C$ ,
- 2.  $A \leq_C^{(2L)} \{\theta_Y\} \Leftrightarrow A \leq_C^{(3L)} \{\theta_Y\} \Leftrightarrow A \leq_C^{(4)} \{\theta_Y\} \Leftrightarrow A \cap (-C) \neq \emptyset$ ,
- 3.  $\{\theta_Y\}_{\text{int }C}^{(1)}A \Leftrightarrow \{\theta_Y\}_{\text{int }C}^{(2L)}A \Leftrightarrow \{\theta_Y\}_{\text{int }C}^{(3L)}A \Leftrightarrow A \cap \text{int } C = \emptyset,$
- 4.  $\{\theta_Y\}_{\text{int }C}^{(2U)}A \Leftrightarrow \{\theta_Y\}_{\text{int }C}^{(3U)}A \Leftrightarrow \{\theta_Y\}_{\text{int }C}^{(4)}A \Leftrightarrow A \not\subset \text{int }C.$













### Our Result

Assumption: F is (j) naturally quasi C-concave



# Preliminaries

#### **Preliminaries**

Let X be a topological space, Y a real topological vector space, and  $\theta_Y$  be a zero vector in Y. Define that  $\mathcal{P}_0(Y)$  is the set of all nonempty subsets of Y. The sets of neighborhoods of  $x \in X$  and  $y \in Y$  is denoted by  $\mathcal{N}_X(x)$  and  $\mathcal{N}_Y(y)$ , respectively.

#### **Definition**

For  $A, B \in \mathcal{P}_0(Y)$ , we define two binary relations on  $\mathcal{P}_0(Y)$ :

$$A \leq_1 B \stackrel{\mathsf{def}}{\Longleftrightarrow} A \cap B \neq \emptyset$$
 and  $A \leq_2 B \stackrel{\mathsf{def}}{\Longleftrightarrow} B \subset A$ .

### **Definition**

A is said to be C-bounded if for each neighborhood U of  $\theta_Y$  there exists t > 0 such that  $A \subset tU + C$ .

# Preliminaries (Lower Semicontinuity)

#### Definition

Let  $f: Y \to \mathbb{R} \cup \{\pm \infty\}$  and  $y_0 \in Y$ . We say that f is lower semicontinuous (l.s.c. shortly) at  $y_0$  if

$$\forall r < f(y_0), \exists V \in \mathcal{N}_Y(y_0) \text{ s.t. } r < f(y), \forall y \in V;$$

### Definition [1]

Let  $F: X \to \mathcal{P}_0(Y)$ ,  $x_0 \in X$ ,  $\leq$  a binary relation on  $\mathcal{P}_0(Y)$  and  $C \subset Y$  a convex cone. We say that F is  $(\leq, C)$ -continuous at  $x_0$  if

$$\forall W \subset Y, W \text{ open}, W \leq F(x_0), \exists V \in \mathcal{N}_X(x_0) \text{ s.t. } W + C \leq F(x), \forall x \in V.$$

#### Remark

As special cases,  $(\leq_1, C)$ -continuity and  $(\leq_2, C)$ -continuity coincide with "C-lower continuity" and "C-upper continuity" for set-valued maps, respectively.

# Preliminaries (Lower Semicontinuity)

### Definition [1]

Let  $\varphi \colon \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$ ,  $A_0 \in \mathcal{P}_0(Y)$ ,  $\leqslant$  a binary relation on  $\mathcal{P}_0(Y)$ , and C a convex cone in Y with  $C \neq Y$ . Then, we say that  $\varphi$  is  $(\leqslant, C)$ -lower semicontinuous at  $A_0$  if

$$\forall r < \varphi(A_0), \exists W \in \mathcal{P}_0(Y), W \text{ open, s.t. } W \leq A_0 \text{ and } r > \varphi(A), \forall A \in U(W + C, \leq);$$

where  $U(V, \leq) := \{A \in \mathcal{P}_0(Y) \mid V \leq A\}.$ 

### Theorem [1]

Let  $F: X \to \mathcal{P}_0(Y)$ ,  $\varphi: \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$ ,  $x_0 \in X$ ,  $\leqslant$  a binary relation on  $\mathcal{P}_0(Y)$ , and C a convex cone. If F is  $(\leqslant, C)$ -continuous at  $x_0$  and  $\varphi$  is  $(\leqslant, C)$ -lower semicontinuous at  $F(x_0)$ , then  $(\varphi \circ F)$  is lower semicontinuous at  $x_0$ .

# Preliminaries (Convexity)

#### **Definition**

Let X be a nonempty set, Y a real topological vector space, C a convex cone in Y, and  $F: X \to \mathcal{P}_0(Y)$  a set-valued map.

1. F is called type (j) properly quasi C-concave if for each  $x, y \in X$  and  $\lambda \in (0, 1)$ ,

$$F(x) \leq_C^{(j)} F(\lambda x + (1 - \lambda)y)$$
 or  $F(y) \leq_C^{(j)} F(\lambda x + (1 - \lambda)y)$ 

2. F is called type (j) naturally quasi C-concave if for each  $x, y \in X$  and  $\lambda \in (0,1)$ , there exists  $\mu \in [0,1]$  such that

$$\mu F(x) + (1-\mu)F(y) \leq_C^{(j)} F(\lambda x + (1-\lambda)y).$$

#### Remark

If F is type (j) properly quasi C-concave, then F is type (j) naturally quasi C-concave.

# Preliminaries (Convexity)

### Definition [3]

Let  $A \subset \mathcal{P}_0(Y)$ . A is said to be convex if for each  $A_1, A_2 \in A$  and  $\lambda \in (0,1)$ ,

$$\lambda A_1 + (1 - \lambda)A_2 \in A$$
.

### Definition [3]

Let  $\varphi \colon \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$ . Then,

- 1.  $\varphi$  is concave if for  $A, B \in \mathcal{P}_0(Y)$ ,  $\varphi(\lambda A + (1 \lambda)B) \ge \lambda \varphi(A) + (1 \lambda)\varphi(B)$ ,
- 2.  $\varphi$  is quasi concave if for any  $\alpha \in \mathbb{R}$ , lev  $(\varphi, \geq, \alpha) := \{A \in \mathcal{P}_0(Y) \mid \varphi(A) \geq \alpha\}$  is convex.

#### Remark

If  $\varphi$  is concave, then  $\varphi$  is quasi concave.

# Preliminaries (Monotonicity)

#### Definition

Let C be a convex cone in Y. A scalarization function  $\varphi$  is  $(\preccurlyeq_C^{(j)})$ -monotone if for any  $A, B \in \mathcal{P}_0(Y)$  with  $A \preccurlyeq_C^{(j)} B$ ,  $\varphi(A) \leq \varphi(B)$ .

#### Definition

Let C be a convex cone in Y. A scalarization function  $\varphi$  is  $(\preccurlyeq_{\text{int }C}^{(j)})$ -monotone if for any  $A, B \in \mathcal{P}_0(Y)$  with  $A \preccurlyeq_{\text{int }C}^{(j)} B, \ \varphi(A) < \varphi(B)$ .

### Proposition

Let  $\varphi$  be  $(\preccurlyeq_C^{(j)})$ -monotone and quasi concave. If F is type (j) naturally quasi C-concave, then  $(\varphi \circ F)$  is quasi concave.

# Proposition

Let  $\varphi$  be  $(\leq_{\text{int }C}^{(j)})$ -monotone and quasi concave. If F is type (j) naturally quasi C-concave, then  $(\varphi \circ F)$  is quasi concave.

Main results

# Specific Scalarization Function

Let  $\varphi: \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$ ,  $\leq$  a binary relation on  $\mathcal{P}_0(Y)$ , and  $C' \subset Y$  a convex cone. In order to generalize four types of set-valued minimax inequalities [4], we provide a new class of scalarization functions which satisfy;

- 1.  $\varphi$  is ( $\leq$ , C')-lower semicontinuous,
- 2.  $\varphi$  is quasi concave,
- $3. \ \varphi(\{\theta_Y\}) = 0,$

In addition, we define conditions between inequalities and set-relations as follows;

(A1) 
$$\varphi$$
 is  $(\leqslant_{\text{int }C}^{(j)})$ -monotone,  
(A2)  $\varphi(A) > 0 \Rightarrow \{\theta_Y\} \leqslant_{\text{int }C}^{(j)} A$  for any  $A \in \mathcal{P}_0(Y)$ .

If  $\varphi$  satisfies conditions (i)–(iii), (A1), and (A2), we write the notation as  $\varphi \in \Phi(\leqslant_{\mathrm{int }C}^{(j)}, \leqslant, C')$ .

#### Main Result

#### **Theorem**

Let X be a nonempty compact convex subset of a Hausdorff topological vector space, Y a real topological vector space,  $\leq$  a binary relation on  $\mathcal{P}(Y)$ , C a convex cone in Y, C' a convex cone in Y,  $\varphi \colon \mathcal{P}_0(Y) \to \mathbb{R} \cup \{\pm \infty\}$ , and  $F \colon X \times X \to \mathcal{P}_0(Y)$ . For the scaralization function  $\varphi \in \Phi(\leq_{\mathrm{int}}^{(j)} C, \leq, C')$ , if F satisfies the following conditions:

- 1.  $(\varphi \circ F)(x,y) \in \mathbb{R}$  for all  $x,y \in X$ ,
- 2. for each fixed  $y \in X$ ,  $F(\cdot, y)$  is  $(\leq, C')$ -continuous,
- 3. for each fixed  $x \in X$ ,  $F(x, \cdot)$  is *j*-naturally quasi *C*-concave,
- 4. for all  $x \in X$ ,  $\{\theta_Y\} \not\leqslant_{\text{int } C}^{(j)} F(x, x)$ ,

then there exists  $\bar{x} \in X$  such that  $\{\theta_Y\}_{\text{int }C}^{(j)} F(\bar{x},y)$  for all  $y \in X$ .

# Conclusion

### Conclusion

- We introduce the background and the basic notion.
- We gave a new result of set-valued Fan-Takahashi inequalities via scalarization methods.
- Next step is to check other scalarization functions to satisfy new assumption.

### References

- [1] Premyuda Dechboon. "Inheritance properties on cone continuity for set-valued maps via scalarization". PhD thesis. 新潟大学, 2022. URL: https://ci.nii.ac.jp/naid/500001551932.
- [2] Pando Gr. Georgiev and Tamaki Tanaka. "Vector-valued set-valued variants of Ky Fan's inequality". In: *J. Nonlinear Convex Anal.* 1.3 (2000), pp. 245–254. ISSN: 1345-4773,1880-5221.
- [3] Shogo Kobayashi, Yutaka Saito, and Tamaki Tanaka. "Convexity for compositions of set-valued map and monotone scalarizing function". In: *Pac. J. Optim.* 12.1 (2016), pp. 43–54. ISSN: 1348-9151,1349-8169.

#### Reference ii

- [4] Issei Kuwano, Tamaki Tanaka, and Syuuji Yamada. "Unified scalarization for sets and set-valued Ky Fan minimax inequality". In: J. Nonlinear Convex Anal. 11.3 (2010), pp. 513–525. ISSN: 1345-4773,1880-5221.
- [5] Wataru Takahashi. "Nonlinear variational inequalities and fixed point theorems". In: J. Math. Soc. Japan 28.1 (1976), pp. 168–181. ISSN: 0025-5645,1881-1167. DOI: 10.2969/jmsj/02810168. URL: https://doi.org/10.2969/jmsj/02810168.

Thank you for your listening!

### Theme

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

