

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Моделирование трехмерного горного ландшафта

Дисциплина: Компьютерная графика

<u>Студент:</u> Беляев Никита Александрович

Научный руководитель: Вишневская Татьяна Ивановна

Цель и задачи

Цель работы – разработка ПО для построения трехмерного горного ландшафта.

Для достижения поставленной цели требуется решить задачи:

- 1. Формализовать объекты сцены, описать и сравнить некоторые существующие методы построения ландшафта.
- 2. Спроектировать выбранные для реализации алгоритмы.
- 3. Реализовать и протестировать ПО для построения ландшафта.
- 4. Провести серию исследований временных характеристик реализованного ПО.

Формализация объектов сцены

Сцена содержит следующие объекты:

- 1. Модель ландшафта трехмерная модель, заданная полигональной сеткой.
- 2. Источник света вектор.
- 3. Наблюдатель вектор.

Сравнение способов представления карты высот

Способ	Совместимость с матричными преобразованиями	Совместимость с декартовой системой координат
Регулярная сетка	+	+
Симплексная сетки	_	_
Карта сегментов	_	_

Сравнение алгоритмов генерации карты высот

Алгоритм	Количество дополнительных точек для вычисления высоты в данной точке	Возможность модификации	Отсутствие артефактов
Value Noise	0	-	-
Perlin Noise 4		+	-
Simplex Noise	3	+	+

Сравнение алгоритмов удаления невидимых ребер

Алгоритм	Трудоемкость	Допустимые полигоны
Алгоритм Z-буфер	O(CN)	Произвольные
Алгоритм Робертса	O(N^3)	Выпуклые

N - количество ребер

С - количество пикселей

Сравнение моделей освещения и алгоритмов закраски

Модели освещения

Модель	Поддержка отражения света от поверхности
Модель Фонга	+
Модель Гуро	-

Алгоритмы закраски

Алгоритм	Поддержка бликов
Алгоритм Гуро	_
Алгоритм Фонга	+

Схема алгоритма построения кадра с ландшафтом

Диаграмма классов

Средства реализации ПО

- 1. Язык программирования C++.
- 2. Графическая библиотека ОҒ.
- 3. Математическая библиотека *GLFW*.

Данный набор средств предоставляет достаточный функционал для реализации ПО для построения трехмерного ландшафта.

Пример работы программы

Интерфейс программы

 Изменение параметров генерации с помощью ползунков и кнопок на экране.

 Вращение и изменение масштаба ландшафта с помощью клавиш стрелок на клавиатуре.

Пример работы программы

Функциональное тестирование

<u>Условие прохождения</u> <u>теста:</u>

5 независимых опрошенных человек согласились с тем, что ожидаемый результат совпал с фактическим.

Nº	Описание теста	Ожидаемый результат	Тест пройден	
1	Установка летних текстур	По кадру ясно, что время года – лето	+	
2	Установка зимних текстур	По кадру ясно, что время года – зима	+	
3	Шаг сетки 10 10 октав	Уступы гор детализированы	+	
4	Шаг сетки 10	Горы стали более гладкими	+	
4	5 октав	в сравнении с предыдущим тестом		
5	Шаг сетки 80	Горы сглажены	+	
9	10 октав	больше походят на мультяшные		
6	Разреженность ландшафта 80	Горы редки, большая часть сцены – вода	+	
7	Разреженность ландшафта 10	Большая часть ландшафта – горы	+	
8	Высотность 0	Сцена плоская, только вода	+	
9	Поворот влево	Сцена повернулась влево	+	
10	Поворот вправо	Сцена повернулась вправо	+	
11	Приближение сцены	Сцена стала ближе	+	
12	Отдаление сцены	Сцена стала дальше	+	

Исследование №1. Зависимость процессорного времени генерации карты высот от количества октав

<u>Аппроксимирующая</u> зависимость:

$$F(x) = 0.038x$$

Результирующая сложность <u>линейная</u>.

Оптимальное количество октав с точки зрения скорости генерации и визуальной реалистичности равно 6-9.

Исследование №2. Зависимость процессорного времени построения ландшафта от размера карты

<u>Аппроксимирующая зависимость:</u>

$$F(x) = 8.337 * 10^{-5} * x^2 - 9.681 * 10^{-3} * x + 2.970$$

Результирующая сложность <u>квадратичная</u>.

<u>Оптимальный размер</u> карты 150-350 элементов

Заключение

В ходе курсовой работы выполнены задачи:

- 1. Объекты сцены формализованы, описаны существующие методы построения ландшафта.
- 2. Спроектированы выбранные алгоритмы.
- 3. Реализовано и протестировано ПО.
- 4. Проведена серия исследований временных характеристик реализованного ПО.

Цель работы достигнута.