2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 3 Suggested Solutions

1. Transition matrix V corresponding to a change of basis from $\{v_1, v_2, v_3\}$ to $\{e_1, e_2, e_3\}$

$$V = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

then V^{-1} is a transition matrix corresponding to a change of basis from $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ to $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$

$$V^{-1} = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix}$$

thus, the matrix B representing L with respect to $\{v_1, v_2, v_3\}$ is

$$B = V^{-1}AV = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & -2 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 0 & -4 \\ 6 & 1 & 4 \\ 8 & 0 & 7 \end{pmatrix}.$$

2. (a) $||k\mathbf{v}||^2 = (k\mathbf{v})^T(k\mathbf{v}) = k^2(\mathbf{v}^T\mathbf{v}) = k^2||\mathbf{v}||^2$. Take square roots of both sides; note that $\sqrt{k^2} = |k|$. Thus $||k\mathbf{v}|| = |k|||\mathbf{v}||$.

(b)
$$\|\mathbf{u}\| = \underbrace{\left\|\frac{1}{\|\mathbf{v}\|}\mathbf{v}\right\|}_{\text{Based on (a)}} = 1$$
, as claimed.

3.

$$\mathbf{z}^T \mathbf{p} = \mathbf{x}^T \mathbf{p} - \mathbf{p}^T \mathbf{p} = \frac{(\mathbf{x}^T \mathbf{y})^2}{\mathbf{y}^T \mathbf{y}} - \left(\frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}\right)^2 \mathbf{y}^T \mathbf{y} = 0.$$

- 4. No. For example, let $\mathbf{x}_1 = \mathbf{e}_1$, $\mathbf{x}_2 = \mathbf{e}_2$, $\mathbf{x}_3 = 2\mathbf{e}_1$, then $\mathbf{x}_1 \perp \mathbf{x}_2$, $\mathbf{x}_2 \perp \mathbf{x}_3$, but \mathbf{x}_1 is not orthogonal to \mathbf{x}_3 .
- 5. By the plane equation, we know that a normal vector to the plane is $\mathbf{n} = (6, 2, 3)^T$ and the point Q(1, 3, -2) lies in the plane. Then the distance from the point P(2, 1, -2) to the plane is the absolute value of the scalar projection of $\overrightarrow{PQ} = (-1, 2, 0)^T$ onto \mathbf{n} .

$$d = \left| \frac{\overrightarrow{PQ} \cdot \mathbf{n}}{\|\mathbf{n}\|} \right| = \left| \frac{-2}{\sqrt{49}} \right| = \frac{2}{7}.$$

1

6. Let $\mathbf{v} = (1,2)^T$. To find the distance, we need to find the scalar projection of \mathbf{v} onto a normal vector to the line 4x - 3y = 0, say $\mathbf{n} = (-4,3)^T$:

$$\alpha = \frac{\mathbf{v}^T \mathbf{n}}{\|\mathbf{n}\|} = \frac{(1,2)(-4,3)^T}{5} = 0.4$$

7. Pick two points (0,2) and (2,6) on the line y=2x+2.

Let $\mathbf{v} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ be the vector from (0,2) to the point (5,2), and $\mathbf{w} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ be a vector along the line y = 2x + 2, then the vector projection of \mathbf{v} onto \mathbf{w} is

$$\vec{p} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \mathbf{w} = \frac{(5,0)(2,4)^T}{(2,4)(2,4)^T} \begin{pmatrix} 2\\4 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}.$$

Thus, the closest point to (5,2) on the line y=2x+2 should be the point $(0,2)+\vec{p}=(1,4)$.

8. Y^{\perp} is not empty since $\mathbf{0} \in Y^{\perp}$. If $\mathbf{x} \in Y^{\perp}$ and $\alpha \in \mathbb{R}$, then for all $\mathbf{y} \in Y$,

$$(\alpha \mathbf{x})^T \mathbf{y} = \alpha (\mathbf{x})^T \mathbf{y} = \alpha \cdot 0 = 0.$$

Therefore, $\alpha \mathbf{x} \in Y^{\perp}$. If \mathbf{x}_1 and \mathbf{x}_2 are in Y^{\perp} , then

$$(\mathbf{x}_1 + \mathbf{x}_2)^T \mathbf{y} = \mathbf{x}_1^T \mathbf{y} + \mathbf{x}_2^T \mathbf{y} = 0 + 0 = 0,$$

for each $\mathbf{y} \in Y$. Thus, $\mathbf{x}_1 + \mathbf{x}_2 \in Y^{\perp}$. Hence, Y^{\perp} is a subspace of \mathbb{R}^n .

9. (a)

$$Col(A) = span \{(1, 2)', (3, 4)'\}, \quad N(A) = span \{(2, -1, 1)'\}$$

$$Col(A^T) = span \{(1, 0, -2)', (0, 1, 1)'\}, \quad N(A^T) = span \{\mathbf{0}\}$$

Notice that $Col(A^T) \oplus N(A) = \mathbb{R}^3$ and $Col(A) \oplus N(A^T) = \mathbb{R}^2$.

(b)

$$Col(A) = span \{(1, 2, 1)', (3, 4, 4)'\}, \quad N(A) = span \{(2, -1, 1)'\}$$

$$\mathrm{Col}(A^T) = \mathrm{span} \left\{ (1,0,-2)', (0,1,1)' \right\}, \quad \mathrm{N}(A^T) = \mathrm{span} \left\{ (-4,1,2)' \right\}$$

Notice that $\operatorname{Col}(A^T) \oplus \operatorname{N}(A) = \mathbb{R}^3$ and $\operatorname{Col}(A) \oplus \operatorname{N}(A^T) = \mathbb{R}^3$.

10. Since V is the solution space of the linear system $A\mathbf{x} = \mathbf{0}$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 5x_3 + 4x_4 = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 4 \end{pmatrix} \mathbf{x} = \mathbf{0} \quad \text{i.e. } V = \mathcal{N}(A).$$

Then $V^{\perp} = [N(A)]^{\perp} = \text{Col}(A^T) = \text{Row}(A)$. Since (1, 1, 1, 1) and (1, 2, 5, 4) are linearly independent, they form a basis for Row(A).