2/2

3/3

2/2

+65/1/52+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS Quizz du 13/11/2013

Nom et prénom	:							
TEIR	HMED.	 						

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
double rampe - flash - approximation successives - simple rampe
approximation successives - flash - simple rampe - double rampe
flash - approximation successives - simple rampe - double rampe
approximation successives - flash - double rampe - simple rampe
flash - approximation successives - double rampe - simple rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C. $R_0 = 1$ k Ω la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient

L'étendu de mesure est [-25°C; 60°C].

Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.

$V_G \ge 10 \text{V}$	$V_G \ge 11,6$ V	$V_G \leq 5V$	$V_G \le 10 \text{V}$
 $V_G \le 12 \mathrm{V}$	$V_G \ge 5 \text{V}$	$V_G \leq 11,6V$	$V_G \ge 12 \mathrm{V}$

Question 3 •

Quelle est la capacité d'un condensateur plan? On note :

- \bullet ϵ : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d: Distance entre les armatures.

$$\Box C = \frac{\epsilon d}{S} \qquad \Box C = \frac{\epsilon S}{d} \qquad \Box C = \frac{\epsilon}{Sd} \qquad \Box C = \epsilon dS$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

4	des potentiels des températures.	des différences de température des courants des rédes différences de potentiels.	
---	----------------------------------	--	--

	Question 5 • Pourquoi faire du sur-échantillonnage ?
2/2	Pour supprimer les perturbations de mode commun. Pour réduire le bruit de quantification Pour améliorer l'efficacité du filtre antireplicment.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	Le pas de bobinage La taille des grains de la poudre utilisée La course électrique. La longueur du potentiomètre La résistance maximale du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des flux lumineux des courants des grands déplacements des déformations des résistances des températures.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des flux lumineux des déplacements angulaires des déplacement linéaire des courants des températures
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
3/3	De rejeter les perturbations de mode différentiel. Les voies sont symétriques. Les impédances d'entrées sont élevés. Le gain est fixé par une seule résistance.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN?
1/1	78 mV 1.25 V 80 mV.s ⁻¹ 39 mV
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$