Задачи к семинарам 20.01.2025

- 1 Пусть $\varphi(t)$ характеристическая функция. Покажите, что выполняются неравенства
 - (a) $1 \operatorname{Re} \varphi(2t) \le 4 (1 \operatorname{Re} \varphi(t))$,
 - (b) $(\text{Im } \varphi(t))^2 \le \frac{1}{2} (1 \text{Re } \varphi(2t)),$
 - (c) $(\text{Re } \varphi(t))^2 \le \frac{1}{2} (1 + \text{Re } \varphi(2t)),$
 - (d) $\left| \frac{1}{2h} \int_{t-h}^{t+h} \varphi(u) du \right| \le (1 + \operatorname{Re} \varphi(h))^{\frac{1}{2}}.$
- ${f 2}$ а) При каких неотрицательных целых n функция $\varphi(t)=e^{-|t|^n}$ является характеристической?
 - б) Случайная величина ξ имеет характеристическую функцию

$$\varphi(t) = (1 - |t|)I\{|t| \le 1\}.$$

Найдите плотность с.в. ξ . Чему равно математическое ожидание ξ ?

- 3 Пусть случайная величина ξ имеет характеристическую функцию $\varphi(t)$. Докажите, что $|\varphi(t_0)|=1$ в какой-либо точке $t_0\neq 0$ тогда и только тогда, когда распределение ξ является дискретным, сосредоточенным на периодическом множестве точек прямой вида $\alpha\mathbb{Z}$.
- **4** Пусть $\xi_n \sim \text{Bin}(n,p)$, где $p=p(n)\to 0$ и $np\to +\infty$. Используя теорему непрерывности, докажите, что

$$\frac{\xi_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$