

Precision, Unity-Gain Differential Amplifier

AMP-03

FEATURES

• High CMRR	100dB Typ
Low Nonlinearity	
• Low Distortion	0.001% Typ
Wide Bandwidth	3MHz Typ
Fast Slew Rate	9.5V/μs Typ
• Fast Settling (0.01%)	1μs Typ
Low Cost	,

APPLICATIONS

- Summing Amplifiers
- Instrumentation Amplifiers
- Balanced Line Receivers
- Current-Voltage Conversion
- Absolute Value Amplifier
- 4-20mA Current Transmitter
- Precision Voltage Reference Applications
- Lower Cost and Higher Speed Version of INA105

ORDERING INFORMATION †

PACK	AGE	OPERATING
TO-99	PLASTIC 8-PIN	TEMPERATURE RANGE
AMP03BJ*	_	MIL
AMP03FJ	AMP03GP	XIND

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in plastic DIP, and TO-can packages.

FUNCTIONAL DIAGRAM

GENERAL DESCRIPTION

The AMP-03 is a monolithic unity-gain, high-speed differential amplifier. Incorporating a matched thin-film resistor network, the AMP-03 features stable operation over temperature without requiring expensive external matched components. The AMP-03 is a basic analog building block for differential amplifier and instrumentation applications.

The differential amplifier topology of the AMP-03 serves to both amplify the difference between two signals and provide extremely high rejection of the common-mode input voltage. By providing common-mode rejection (CMR) of 100dB typical, the AMP-03 solves common problems encountered in instrumentation design. As an example, the AMP-03 is ideal for performing either addition or subtraction of two signals without using expensive externally-matched precision resistors. The large common-mode rejection is made possible by matching the internal resistors to better than 0.002% and maintaining a thermally symmetric layout. Additionally, due to high CMR over frequency, the AMP-03 is an ideal general amplifier for buffering signals in a noisy environment into data acquisition systems.

The AMP-03 is a higher speed alternative to the INA105. Featuring slew rates of $9.5V/\mu s$, and a bandwidth of 3MHz, the AMP-03 offers superior performance for high speed current sources, absolute value amplifiers, and summing amplifiers than the INA105.

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS (Note 1)

ADOCEOTE MAXIMOM HATIMGO (III	JiC 1)
Supply Voltage	±18V
Input Voltage (Note 2)	Supply Voltage
Output Short-Circuit Duration	
Storage Temperature Range	
P, J Package	65°C to +150°C
Lead Temperature (Soldering, 60 sec)	
Junction Temperature	
Operating Temperature Range	
AMP-03B	55°C to +125°C
AMP-03F, AMP-03G	40°C to +85°C

PACKAGE TYPE	Θ _{JA} (Note 3)	Θ _{jC}	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W

NOTES:

- 1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- 2. For supply voltages less than $\pm 18V$, the absolute maximum input voltage is
- equal to the supply voltage.
 θ_{jA} is specified for worst case mounting conditions, i.e., θ_{jA} is specified for device in socket for TO and P-DIP packages.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25^{\circ}C$, unless otherwise noted.

				AMP-03	F		AMP-03	В		AMP-03	3G	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	v _{os}	V _{C M} = 0V	-400	10	400	700	20	700	-750	25	750	μV
Gain Error		No Load, $V_{iN} = \pm 10V$, $R_S = 0\Omega$		0.00004	0.008	-	0.00004	0.008	-	0.001	0.008	%
Input Voltage Range	IVR		±20	-	-	±20	_	-	±20	-	-	٧
Common-Mode Rejection	CMR	V _{CM} = ±10V	85	100	-	80	95	_	80	95	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±6V to ±18V	-	0.6	10	_	0.6	10	-	0.7	10	μV/V
Output Swing	v _o	R _L = 2kΩ	±12	±13.7	-	±12	±13.7	_	±12	±13.7	-	V
Short-Circuit Current Limit	Isc	Output Shorted To Ground	+45/–15	-	-	+45/–15	_	_	+45/–15	_	_	mA
Small-Signal Bandwidth (-3dB)	BW	R _L = 2kΩ	_	3	_	<u></u>	3	-	-	3	_	MHz
Slew Rate	SR	$R_L = 2k\Omega$	6	9.5	_	6	9.5	-	6	9.5	-	V/μs
Capacitive Load Drive Capability	CL	No Oscillation	-	300	-	-	300	-	-	300	-	pF
Supply Current	Isy	No Load	_	2.5	3.5	_	2.5	3.5	_	2.5	3.5	mA

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for B grade. Continued

		- -		AMP-03B		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Offset Voltage	v _{os}	V _{CM} = 0V	-1500	150	1500	μV
Gain Error		No Load, $V_{IN} = \pm 10V$, $R_{S} = 0\Omega$	-	0.0014	0.02	%
Input Voltage Range	IVR		±20		_	٧
Common-Mode Rejection	CMR	$V_{CM} = \pm 10V$	75	95		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 6V \text{ to } \pm 18V$	-	0.7	20	μ V /V
Output Swing	v _o	$R_L = 2k\Omega$	±12	±13.7	_	٧
Slew Rate	SR	$R_L = 2k\Omega$	_	9.5	_	V/µs
Supply Current	I _{SY}	No Load		3.0	4.0	mA

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15 V$, $-40 ^{\circ}C \le T_A \le +85 ^{\circ}C$ for F and G grades.

<u> </u>				AMP-03	F	AMP-03G			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	Vos	V _{CM} = 0V	-1000	100	1000	-2000	200	2000	μV
Gain Error		No Load, $V_{IN} = \pm 10V$, $R_S = 0\Omega$	-	0.0008	0.015	_	0.002	0.02	%
Input Voltage Range	IVR		±20	-	_	±20	_	_	٧
Common-Mode Rejection	CMR	V _{CM} = ±10V	80	95	_	75	90	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±6V to ±18V	-	0.7	15	_	1.0	15	μV/V
Output Swing	v _o	$R_L = 2k\Omega$	±12	±13.7	-	±12	±13.7	-	٧
Slew Rate	SR	$R_L = 2k\Omega$	-	9.5	-	_	9.5	_	V/µs
Supply Current	I _{SY}	No Load		2.6	4.0	_	2.6	4.0	mA

BURN-IN CIRCUIT

SLEW RATE TEST CIRCUIT

DICE CHARACTERISTICS

DIE SIZE 0.076 x 0.076 inch, 5,776 sq. mils (1.93 x 1.93 mm, 3.73 sq. mm)

- 1. REFERENCE
- 2. –IN
- 3. +IN
- 4. V-
- 5. SENSE
- 6. OUTPUT
- 7. V+
- 8. N.C.

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = +25^{\circ}C$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	AMP-03BC LIMITS	UNITS
Offset Voltage	v _{os}	V _S = ±18V	0.5	mV MAX
Gain Error		No Load, $V_{IN} = \pm 10V$, $R_S = 0\Omega$	0.008	% MAX
Input Voltage Range	IVR		±10	V MIN
Common-Mode Rejection	CMR	V _{CM} = ±10V	80	dB MIN
Power Supply Rejection Ratio	PSRR	V _S = ±6V to ±18V	8	μV/V MAX
Output Swing	v _o	$R_L = 2k\Omega$	±12	V MAX
Short-Circuit Current Limit	l _{sc}	Output Shorted To Ground	+45/–15	mA MIN
Supply Current	I _{s Y}	No Load	3.5	mA MAX

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

SMALL-SIGNAL TRANSIENT RESPONSE

 $T_A = +25^{\circ}0$ $V_S = \pm 15V$

COMMON-MODE REJECTION VS FREQUENCY

TOTAL HARMONIC DISTORTION VS FREQUENCY

LARGE-SIGNAL TRANSIENT RESPONSE

 $T_A = +25^{\circ}C$ $V_S = \pm 15V$

POWER SUPPLY REJECTION vs FREQUENCY

DYNAMIC INTERMODULATION DISTORTION vs FREQUENCY

TYPICAL PERFORMANCE CHARACTERISTICS Continued

TYPICAL PERFORMANCE CHARACTERISTICS Continued

FIGURE 1: AMP-03 serves to reject common-mode voltages in instrumentation systems. Common-mode voltages occur due to ground current returns. V_{SIGNAL} and E_{CM} must be within the common-mode range of AMP-03.

APPLICATIONS INFORMATION

The AMP-03 represents a versatile analog building block. In order to capitalize on fast settling time, high slew rate, and high CMR, proper decoupling and grounding techniques must be employed. Figure 1 illustrates the use of $0.1 \mu F$ decoupling capacitors and proper ground connections.

MAINTAINING COMMON-MODE REJECTION

In order to achieve the full common-mode rejection capability of the AMP-03, the source impedance must be carefully controlled. Slight imbalances of the source resistance will result in a degradation of DC CMR - even a 5Ω imbalance will degrade CMR by 20dB. Also, the matching of the reactive source impedance must be matched in order to preserve the CMRR over frequency.

APPLICATION CIRCUITS

FIGURE 2: Precision Difference Amplifier. Rejects Common-Mode Signal = $\frac{[E_1 + E_2]}{2}$ by 100dB

FIGURE 3: Precision Unity-Gain Inverting Amplifier

FIGURE 4: ±10V Precision Voltage Reference

FIGURE 5: ±5V Precision Voltage Reference

FIGURE 6: Precision Summing Amplifier

FIGURE 7: Precision Summing Amplifier with Gain

FIGURE 8: Differential input voltage-to-current converter for low I_{OUT} . OP-80EJ maintains 250fA max. input current, allowing I_O to be less than 1pA.

FIGURE 9: Suitable instrumentation amplifier requirements can be addressed by using an input stage consisting of A_1 , A_2 , R_1 and R_2 . The following matrix suggests a suitable amplifier.

SYSTEM DESIGN REQUIREMENT	SUGGESTED OP AMP FOR A ₁ AND A ₂
	OP-27, OP-37
	OP-227 (Dual Matched)
Source impedance low,	OP-270 (Dual)
need low voltage noise	OP-271
performance	OP-470
	OP-471
	OP-80
Source impedance high	OP-41
$(R_S \ge 15K\Omega)$	OP-43
need low current noise	OP-249
	OP-97
	OP-80
B	OP-97
Require ultra-high input impedance	OP-41
	OP-43
Alddddd-	OP-42
Need wider bandwidth and	OP-43
high speed	OP-249