Smart Materials – III

(Magnetostriction)

Preface

- Magical power of magnets awed people of early civilizations as a strange force from the rocks that attracts shoes and swords without revealing itself!
- In 1842, James Prescott Joule noted that a ferromagnetic sample changed its length with the application of Magnetism.

Contents

- What is Magnetostriction?
- Some Examples
- A Brief History of Magnetostrictive Materials
- What are the different effects of Magnetostriction?

What is Magnetostriction?

Magnetostriction (e) in materials due to domain migration and reorientation under applied magnetic field H

Reference: mxp.physics.umn.edu

- If a crystal of ferromagnetic material is **initially** at a **compressed state**, the effect of Magnetostriction becomes **more pronounced**.
- All ferromagnetic elements show Magnetostriction to different degree.
- It is observed that the maximum one can achieve is for **Cobalt** which saturates around 50 µstrain (ppm).

Material	Magnetostriction (ppm)	Curie Temp. (K)	
Fe	14	633	
Ni	-33	1043	
Со	50	350 713 635 703 653	
Permalloy DyFe ₂	27		
	650		
TbFe ₂	2630		
Tb _{.3} Dy _{.7} Fe _{1.9}	2400		

A brief Time-Line

•	Year	Event
• 1	842	Magnetostriction discovered in Nickel by Joule
• 1	865	Villari discovers inverse Joule Effect
• 1	926	Anisotropy in single crystal iron
• 1	965	Rare-earth metal magnetostriction in Terbium and Dysprosium by Clark
• 1	972	TbFe ₂ and DyFe ₂ at 300 °K by Clark
• 1	975	Terfenol-D by Clark
• 1	994	Polymer Matrix and Terfenol-D particulate composite (Sandlund et al)
• 1	998	Discovery of Galfenol – a more rugged MS material at NSWC (Clark)
• 2	2002	Oriented particulate Composite (Carman)

Terfenol-D: A Magnetostrictive Smart Material

Terbium – Iron (Fe) – Naval Ordinance Laboratory – Dysprosium

(Explosive !!!)

Typical features	PZT	Terfenol-D	SMA
Actuation mechanism	Piezoelectric material	Magnetostrictive material	Shape memory alloys
Elongation	0.1%	0.2 %	5%
Energy density	2.5 kJ/m³	20 J/m³	1 J/m³ *
Bandwidth	100 kHz	10 kHz	0.5 kHz
Hysteresis	10%	2%	30%
Costs as reference	200 \$ / cm ³	400 \$ / cm ³	200 \$ / cm ³

Butterfly curve for TerFeNOL~D

Applied magnetic field H, Oe

Attraction of Magnetostrictive Transducer

- In general: Large Force, Deflection and Energy Conversion efficiency; does not decay with time.
- Magnetostrictive transducers: Cost-effective in the low-frequency band and could be effectively used for deep-sea measurements due to superior mechanical properties.

TALON (Tactical Acoustic Littoral Ocean Network) sonar system uses Magnetostrictive Terfenol-D for under-water submarine detection

Source: Etrema Products

Major Applications

- ✓ Active Vibration and Noise Control System
- ✓ Machine Tools
- ✓ Servo Valves
- ✓ Hybrid Motors
- ✓ Sonar Devices and Tomography
- ✓ Automotive Break Systems
- ✓ Micro-positioner
- ✓ Ultrasonic Cleaning Machining and Welding

Magnetostriction in Solid Rod

H – Magnetic field intensity (A/m)

- (a) Demagnetized State (b) Partial Magnetization
- (c) Irreversible Domain Magnetization (d) Technical Saturation

Magnetostrictive Effects for ACTUATION & SENSING

Const. Eqn. of Magnetostrictive Material

Joule Effect: $\varepsilon = S^H \sigma + dH$ (Actuator equation)

Villary Effect: $B = d\sigma + \mu^{\sigma}H$ (Sensor equation)

 σ – Stress (N/m²),

 ε - Strain,

B - magnetic flux density (Tesla or N/A-m or Volt-sec/m²)

 μ^{σ} - Permeability of the material at constant stress (T-m/A)

H – Magnetic field intensity (A/m)

 S^H - Compliance matrix of the material at constant magnetic field (m²/N)

d - Magnetostrictive constant (m/A or Tm²/N)

Vibration Sensing

Two approaches are taken to develop such sensors:

- (a) Development of particulate composite: Terfenol-D particles of micron to sub-micron size are dispersed in a suitable resin and cured to form sensors.
- (b) Development of thin-film metallic glasses as magnetostrictive (MS) sensors.

Magnetostrictive Mini Actuator (MMA)

Pre-load springs and permanent magnets are used to put the piston in the zero-position and also to reduce hysteresis. The energizing coil around the rod is used to activate the Terfenol-D rod for dynamic application.

A Kiesewetter Inchworm Motor

Magnetostrictive Delay Line (MDL) Sensor

Hybrid Transducers

Hybrid Sensors

