McGill University Department of Mathematics and Statistics MATH 243 Analysis 2, Winter 2017 Assignment 3

You should carefully work out **all** problems. However, you only have to hand in solutions to **problems 2 and 5(a).**

This assignment is due Tuesday, January 31, at 2:30am in class. Late assignments will not be accepted!

1. Let $c \in [a, b]$ and let

$$f: [a,b] \to \mathbb{R}, \ f(x) := \begin{cases} 1 & \text{if } x = c \\ 0 & \text{if } x \neq c \end{cases}$$

Prove that f is Riemann integrable on [a,b] and that $\int_a^b f = 0$.

2. (a) Let f and g be Riemann integrable on [a,b] such that $f(x) \leq g(x)$ for all $x \in [a,b]$. Prove that $\int_a^b f \leq \int_a^b g$.

<u>Hint</u>: Prove first that $S(f; \dot{\mathcal{P}}) \leq S(g; \dot{\mathcal{P}})$ for all tagged partitions $\dot{\mathcal{P}}$ of [a, b].

- (b) Let f be Riemann integrable on [a,b] and let $M \in \mathbb{R}$ be a constant such that $|f(x)| \leq M$ for all $x \in [a,b]$. Prove that $\left| \int_a^b f \right| \leq M(b-a)$.
- 3. Use induction to prove that if f_1, \ldots, f_n are Riemann integrable on [a, b] and $k_1, \ldots, k_n \in \mathbb{R}$, then the linear combination $f := k_1 f_1 + \ldots k_n f_n$ is Riemann integrable on [a, b] and

$$\int_a^b f = k_1 \int_a^b f_1 + \dots + k_n \int_a^b f_n$$

- 4. (a) Let $c_1, \ldots, c_n \in [a, b]$ and let $f : [a, b] \to \mathbb{R}$ be a function such that f(x) = 0 for all $x \in [a, b] \setminus \{c_1, \ldots, c_n\}$. Prove that f is Riemann integrable on [a, b] and that $\int_a^b f = 0$.
 - (b) Let $c_1, \ldots, c_n \in [a, b]$ and let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be functions such that f(x) = g(x) for all $x \in [a, b] \setminus \{c_1, \ldots, c_n\}$. Prove that if f is Riemann integrable on [a, b] then g is Riemann integrable on [a, b] and $\int_a^b f = \int_a^b g$.

5. Let

$$f_1(x) := \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

Prove that f_1 is Riemann integrable on [-1,1] and compute $\int_{-1}^{1} f_1$.

(b) Let

$$f_2(x) := \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x = 0 \\ 2 & \text{if } x > 0 \end{cases}$$

Prove that f_2 is Riemann integrable on [-1,1] and compute $\int_{-1}^{1} f_2$. Hint: Use questions 3 or 4.

- 6. (a) Let f be Riemann integrable on [a, b] and let (\dot{P}_n) be any sequence of tagged partitions of [a, b] with $\lim_{n \to \infty} \left(|\dot{P}_n| \right) = 0$. Prove that $\left(S(f; \dot{P}_n) \right)$ converges and that $\int_a^b f = \lim_{n \to \infty} \left(S(f; \dot{P}_n) \right)$.
 - (b) Let f(x) := 0 if $x \in [0,1]$ is rational and f(x) := 1/x if $x \in [0,1]$ is irrational.
 - (i) Prove that f is not Riemann integrable on [0,1].
 - (ii) However, prove that there exists a sequence (\dot{P}_n) of tagged partitions of [0,1] such that $\lim \left(||\dot{P}_n||\right) = 0$ and $\lim \left(S(f;\dot{P}_n)\right)$ exists. The converse of part (a) thus does not hold.