Simulating and Estimating CTRM processes

Simulation

We assume i.i.d. waiting times drawn from the positively skewed stable distribution with stability parameter $\beta=0.8$, scaled with $n^{-1/\beta}$. This defines a renewal process, at whose renewal times we assume i.i.d. magnitudes, drawn from a Generalized Extreme Value Distribution with shape parameter $\xi=0.7$:

CTRM process

sides the magnitude of large events, their timing is of interest to us. We define the exceedance time of level $\ell \in [x_0, x_F]$ as the random variable

$$T_{\ell} = \inf\{t : M(t) > \ell\}$$

and the exceedance as

$$X_{\ell} = M(T_{\ell}) - \ell.$$

Probability distribution of Exceedance Times

Result by Anderson (1987)

Anderson (1987) has shown that as $\ell \uparrow x_F$ (the right end-point of the distribution of magnitudes) the following weak convergence holds:

$$\frac{T_{\ell}}{n(1/(1-F_{J}(\ell)))} \Rightarrow W_{\beta}. \tag{1}$$

Be-

Here,

Exceedances

Figure 1: Exceedance times (blue circles) and Exceedance sizes (red lines).

- $F_J(\cdot)$ is the CDF of the magnitudes J_1, J_2, \ldots
- $n(\cdot)$ is a norming function which varies regularly at ∞ with parameter $1/\beta$
- W_{β} is a Mittag-Leffler random variable, defined via its Laplace transform

$$\mathbf{E}[\exp(-\lambda W_{\beta})] = \frac{1}{1+\lambda^{\beta}}.$$
 (2)

More precisely, n(t) is an asymptotic inverse to the function

$$g(t) := \frac{t}{\Gamma(2-\beta) \int_0^t (1 - F_W(u)) du} \in RV_\infty(\beta)$$
(3)

Approach in this paper

Meerschaert and Stoev (2008) have derived a scaling limit theorem for the Continuous Time Random Maxima (CTRM) process

$$M(t) = \bigvee_{k=1}^{N(t)} J_k \tag{4}$$

where N(t) is the renewal process as above: Assume that

•
$$\left[\bigvee_{k=1}^{\lfloor ct \rfloor} J_k - d(c)\right] / a(c) \Rightarrow A(t)$$

•
$$b(c)^{-1} \sum_{k=1}^{\lfloor ct \rfloor} W_k \Rightarrow D(t)$$

converge (weakly in Skorokhod space) for some norming sequences a(c), d(c) and b(c). Then

$$\frac{M(ct) - d(\tilde{b}(c))}{a(\tilde{b}(c))} \Rightarrow A(E(t))$$
 (5)

where $\tilde{b}(c)$ is asymptotically inverse to b(c) and $E(t) = \inf\{r : D(r) > t\}$ is the stochastic process inverse to D(t).

For large c and t comparable to c, we may hence approximate

$$M(t) \approx a(\tilde{b}(c))A(E(t/c)) + d(\tilde{b}(c)). \tag{6}$$

Recalling that $c \sim b(\tilde{b}(c))$, may substitute $n = \tilde{b}(c)$ to get

$$M(t) \approx a(n)A(E(t/b(n))) + d(n). \tag{7}$$

Then we have

$$T_{\ell} > t \iff M(t) \le \ell \stackrel{\approx}{\iff} A(E(t/b(n))) \le \frac{\ell - d(n)}{a(n)} =: \ell^*$$
 (8)

$$\iff \xi_{\ell^*} > t/b(n) \iff b(n)\xi_{\ell^*} > t$$
 (9)

where $\xi_a := \inf\{t : A(E(t)) > a\}$ is the hitting time of level a by the process A(E(t)). Hence we may approximate the distribution of T_ℓ by the distribution of the random variable ξ_{ℓ^*} , rescaled with b(n). It was shown by Meerschaert & Stoev (2008) that

$$\xi_a \stackrel{d}{=} (-\log F_A(a))^{-1/\beta} W_\beta$$

where $F_A(\cdot)$ is the CDF of A := A(1). Summing up, the exceedance time T_ℓ is asymptotically Mittag-Leffler distributed:

$$T_{\ell} \stackrel{a}{\sim} \mathrm{ML}\left(\beta, -b(n)[\log F_A(\ell^*)]^{-1/\beta}\right)$$
 (10)

Estimation

Since

$$\bigvee_{k=1}^{n} J_k \le \ell \stackrel{\approx}{\iff} A \le \ell^*, \tag{11}$$

we may estimate $F_A(\ell^*)$ empirically by

$$\varepsilon(\ell^*) := 1 - F_A(\ell^*) \approx \#\{k : J_k \le \ell\}/n. \tag{12}$$

Assume now a time series of magnitudes, and that interest lies in the estimation of the timings of the large magnitudes. Consider a minimum threshold ℓ_0 , e.g. at the 0.9 quantile. Vary the threshold ℓ on the interval $[\ell_0, x_F]$, and consider the resulting sequences of exceedance sizes and exceedance times $\{(X_{\ell,i}, T_{\ell,i})\}$. Due to the renewal property, this sequence is i.i.d., and $T_{\ell,1}, T_{\ell,2}, \ldots$ can be modelled by a Mittag-Leffler distribution. We use the method of log-moments estimator, taken from Cahoy (2012), which provides a point-estimate and an asymptotically normal confidence interval, at default confidence level 95%.

tail parameter

Figure 2: Estimate of tail parameter of Mittag Leffler distribution (y-axis), for observations thresholded at the top k observations (x-axis). The dotted line represents the correct value.

Since the scale parameter $\delta := -b(n)[\log(1 - \varepsilon(\ell^*))]^{-1/\beta}$ depends on the threshold ℓ^* as well as on the tail parameter β , we plot the estimate of b(n)

$$b(n) = \delta \times (-\log(1 - \varepsilon(\ell^*)))^{1/\beta}$$
(13)

with an estimate for β plugged in from the previous step.

scale parameter

Figure 3: Estimate of scale parameter of Mittag Leffler distribution (y-axis), for observations thresholded at the top k observations (x-axis). The dotted line represents the true scaling parameter.