HW#5 (CSC390)

Due: 02/19/2018 (**Monday**) by **11:00PM** (**Please turn in your code on the Blackboard**)

#Q1.

Convert the C function below to MIPS assembly language. Also write a MIPS assembly code to call the function with some initial value of n=5 and store the result in a suitable memory location, labeled as **F**. Consider \$S0 will have the base address to store the result into F memory location. Also consider, the procedure uses \$S0 to store the final result (i.e. 5+4+3+2+1) before it returns the results to the main program through \$V0. Make sure that your assembly language code could be called from a standard C program (that is to say, make sure that you follow the MIPS calling conventions).

```
unsigned int sum(unsigned int n)
{
if (n == 0) return 0;
else return (n + sum(n-1));
}
```

Note down and explain the value of \$PC, \$ra, \$Sp, and the content of stack memory location every time you call the procedure.

The stack grows downward (toward lower memory addresses). The following registers are used in the calling convention:

Register Name	Register Number	Usage
\$zero	0	Constant 0
\$at	1	Reserved for assembler
\$v0, \$v1	2, 3	Function return values
\$a0 - \$a3	4 – 7	Function argument values
\$tO - \$t7	8 – 15	Temporary (caller saved)
\$s0 - \$s7	16 – 23	Temporary (callee saved)
\$t8, \$t9	24, 25	Temporary (caller saved)
\$kO, \$k1	26, 27	Reserved for OS Kernel
\$gp	28	Pointer to Global Area
\$sp	29	Stack Pointer
\$fp	30	Frame Pointer
\$ra	31	Return Address

Q2. [Q2.26 of your text book];

2.26 Consider the following MIPS loop:

```
LOOP: slt $t2, $0, $t1
beq $t2, $0, DONE
subi $t1, $t1, 1
addi $s2, $s2, 2
j LOOP
DONE:
```

- **2.26.1** [5] < \$2.7> Assume that the register \$t1 is initialized to the value 10. What is the value in register \$s2 assuming \$s2 is initially zero?
- **2.26.2** [5] <\$2.7> For each of the loops above, write the equivalent C code routine. Assume that the registers \$\$1, \$\$2, \$\$1, and \$\$2 are integers A, B, i, and temp, respectively.
- **2.26.3** [5] <\$2.7> For the loops written in MIPS assembly above, assume that the register \$t1 is initialized to the value N. How many MIPS instructions are executed?