הסתברות בדידה - טענות

מורת ההסתברות (1) - 80420

מרצה: אורי גוראל-גורביץי

מתרגל: אמיר בכר

סוכם עייי שריה אנסבכר

סמסטר בי תשפייד, האוניברסיטה העברית

הסתברות בדידה - טענות

תוכן העניינים

3	התחלה	1
Grand Control of the	11/11/11	_

2 מרחבי הסתברות בדידה

סביר להניח שהסיכומים שלי מכילים טעויות רבות - אני מוצא כאלה כל יום (רשימת טעויות נפוצות), אני מפציר בכם לעדכן אותי בכל טעות שאתם מוצאים (ממש כל טעות ללא יוצא מן הכלל); אתם מוזמנים להגיב על גבי המסמכים ב-Google Drive, לשלוח לי דוא״ל או למלא פנייה באתר.

> : לסיכומים נוספים היכנסו לאתר אקסיומת השלמות - סיכומי הרצאות במתמטיקה

https://srayaa.wixsite.com/math

1 התחלה

1 התחלה

 $\mathbb{P}_p:\mathcal{F} o\mathbb{R}$ ותהא Ω , ותהא $\mathcal{F}\subseteq\mathcal{P}(\Omega)$ תהא Ω , תהא מרחב מדגם מרחב פונקציית הסתברות על מרחב מדגם $\mathcal{F}:\mathcal{P}\cap\mathcal{P}$ קבוצות מאורעות של $\mathcal{F}:\Omega\to\mathbb{R}$ פונקציה המוגדרת עייי (לכל

$$\mathbb{P}_{p}\left(A\right) := \sum_{a \in A} p\left(a\right)$$

.Supp (p) איא נתמכת על (Ω,\mathcal{F}), והיא נתמכת על \mathbb{P}_p

לא כל פונקציית הסתברות נוצרת ע"י פונקציית הסתברות נקודתית; לדוגמה: הפונקציה המחזירה לכל תת-קטע של \mathfrak{F} אלא \mathcal{F} אינה הסתברות על $(0,1],\mathcal{F})$, כאשר \mathcal{F} אינה קבוצת כל תתי-הקטעים של [0,1] אלא [0,1] את אורכו, היא פונקציית הסתברות על $(0,1],\mathcal{F})$, כאשר (0,1] אינה המכילה את הקבוצה הזו.

. מרחב הסתברות $(\Omega,\mathcal{F},\mathbb{P})$ יהי

טענה 1.2. מתקיימות כל התכונות הבאות:

- $\mathbb{P}\left(\emptyset
 ight)=0$ הסתברות המאורע הריק. 1
- : מתקיים $A_1,A_2,\ldots,A_n\in\mathcal{F}$ מתקיים מאורעות ארים מאורעות לכל לכל סכימות מופית) סכימות מאורעות אורעות היים 2.

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)$$

- $\mathbb{P}\left(A
 ight) \leq \mathbb{P}\left(B
 ight)$ מתקיים $A \subseteq B$ כך ש- $A, B \in \mathcal{F}$ מאורעות לכל שני מאורעות 3
 - $\mathbb{P}\left(A
 ight)\leq1$ מתקיים $A\in\mathcal{F}$ 4.
- $\mathbb{P}\left(\Omega\setminus A\right)=1-\mathbb{P}\left(A\right)$ מתקיים $A\in\mathcal{F}$ מאורע לכל מאורע המשלים הסתברות המאורע 5.

משפט 1.3. הכלה והדחה

 $\mathbb{P}\left(A\cup B
ight)=\mathbb{P}\left(A
ight)+\mathbb{P}\left(B
ight)-\mathbb{P}\left(A\cap B
ight)$ מתקיים $A,B\in\mathcal{F}$ מאורעות

כמובן שניתן להכליל את הנוסחה עבור כל איחוד סופי כפי שעשינו בקורס יימתמטיקה בדידהיי.

מסקנה 1.4. חסם האיחוד

eta מתקיים: מאורעות מאורעות בת-מנייה

$$\mathbb{P}\left(\bigcup_{A\in\mathcal{A}}A\right)\leq\sum_{A\in\mathcal{A}}\mathbb{P}\left(A\right)$$

משפט 1.5. נוסחת ההסתברות השלמה

: מתקיים $B\in\mathcal{F}$ מאורע $A\in\mathcal{A}$ לכל $A\cap B\in\mathcal{F}$ מתקיים מתקיים מתקיים בת-מנייה של

$$\mathbb{P}\left(B\right) = \sum_{A \in \mathcal{A}} \mathbb{P}\left(A \cap B\right)$$

: משפט 1.6. נניח ש $\{\omega\}\in\mathcal{F}$ לכל $\{\omega\}\in\mathcal{F}$. נניח משפט 1.6.

- . הוא מרחב הסתברות בדידה $(\Omega,\mathcal{F},\mathbb{P})$.1
- . מנייה או סופית. על קבוצה בת-מנייה או סופית. ${\mathbb P}$
- $\mathbb{P}(A) = \sum_{\omega \in \mathcal{F}} \mathbb{P}\left(\{\omega\}\right)$ מתקיים $A \in \mathcal{F}$ מאורע 3.
 - $\sum_{\omega \in \Omega} \mathbb{P}\left(\{\omega\}\right) = 1$ 4.

מסקנה 1.7. אם מרחב המדגם Ω בן-מנייה אז $(\Omega,\mathcal{F},\mathbb{P})$ הוא מרחב הסתברות בדידה.

הסתברות בדידה - טענות

2 מרחבי הסתברות בדידה

 $\mathbb{P}_p\left(A
ight)=rac{|A|}{|\Omega|}$ מתקיים $A\in\mathcal{F}$ מתקיים, לכל לכל לכל מרחב הסתברות מרחב $(\Omega,\mathcal{F},\mathbb{P})$

מסקנה 2.2. מרחב המדגם של מרחב הסתברות אחידה הוא סופי.

טענה ($\Omega,\mathcal{F},\mathbb{P}$) יהיו ($\Omega,\mathcal{F},\mathbb{P}$) מרחב המכפלה שלהם. מרחבי הסתברות ($\Omega_1,\mathcal{F}_1,\mathbb{P}_1$), $(\Omega_2,\mathcal{F}_2,\mathbb{P}_2)$, ..., $(\Omega_n,\mathcal{F}_n,\mathbb{P}_n)$ מרחב המכפלה שלהם. כל לכל (A_1,A_2,\ldots,A_n) מתקיים:

$$\mathbb{P}\left(A_1 \times A_2 \times \ldots \times A_n\right) = \prod_{k=1}^n \mathbb{P}_k\left(A_k\right)$$