## CORRIGÉ DU DM N°4 (X M', 1988) Endomorphismes conservant le rang...

### Première partie

- **I.1**  $\Gamma(M) = \lambda M \iff (\lambda + 1)M = \operatorname{tr} M \cdot I \quad (*) \text{ d'où 2 cas}$ :
  - Pour  $\lambda = -1$ , M est un vecteur propre associé si et seulement si tr M = 0. Le sous-espace propre associé à la valeur propre -1 est donc l'ensemble des matrices de trace nulle ; c'est un hyperplan de  $\mathbb{M}_n(\mathbb{C})$  (noyau d'une forme linéaire non nulle), il est donc de dimension  $n^2 1$ .
  - Si  $\lambda \neq -1$ , la relation (\*) implique M colinéaire à I. Or, si  $M = \alpha I$ ,  $\Gamma(M) = (n-1)\alpha I = (n-1)M$ . Il en résulte que n-1 est aussi valeur propre de  $\Gamma$ , le sous-espace propre associé étant la droite vectorielle  $\mathbb{C} \cdot I$  (ensemble des matrices scalaires).
- **I.2** Γ possède deux valeurs propres -1 et n-1, et la somme des dimensions des sous-espaces propres associés est égale à  $n^2 = \dim \mathbb{M}_n(\mathbb{C})$ , donc Γ est diagonalisable.
  - Pour tout  $M \in \mathbb{M}_n(\mathbb{C})$ ,  $\Gamma^2(M) = -\Gamma(M) + \operatorname{tr} M\Gamma(I) = M \operatorname{tr}(M)I + \operatorname{tr}(M)(n-1)I = M + (n-2)\operatorname{tr}(M)I = M + (n-2)(\Gamma(M) + M)$  d'où

$$\Gamma^2 - (n-2)\Gamma - (n-1)\mathscr{I} = 0$$

Plus astucieusement, , on pouvait dire que,  $\Gamma$  étant diagonalisable de valeurs propres -1 et n-1, son polynôme minimal est égal à (X+1)(X-(n-1)), puisque ses racines sont exactement les valeurs propres de  $\Gamma$  et qu'il est scindé à racines simples (cf. deux th. du cours)...

- On en déduit facilement :  $\Gamma^{-1} = \frac{1}{n-1} (\Gamma (n-2) \mathscr{I}).$
- **I.3** On suppose ici M inversible. On sait aussi que  $M-\lambda I$  est inversible si et seulement si  $\lambda \notin Sp\ M$ . Donc  $rg(\Gamma(M))=rg\ M \Longleftrightarrow tr\ M \notin Sp\ M$ .
- I.4 a) Si n=2,  $\Gamma^{-1}=\Gamma$ . Si  $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\Gamma(M)=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$  donc M et  $\Gamma(M)$  ont même déterminant et même polynôme caractéristique, donc même spectre. Elles ont aussi même rang car  $rg\ M=0 \iff M=0 \iff \Gamma(M)=0 \iff rg(\Gamma(M))=0$  et  $rg\ M=2 \iff det\ M\neq 0 \iff det(\Gamma(M))\neq 0 \iff rg(\Gamma(M))=2$ .
  - **b)** Une question fort calculatoire : on pose  $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$  et  $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ . Après calcul, on trouve que l'équation  $\Gamma(M) = A^t M A^*$  équivaut au système

$$\begin{cases} a\alpha\overline{\alpha} + b\beta\overline{\alpha} + c\alpha\overline{\beta} + d\beta\overline{\beta} &= d \\ a\alpha\overline{\gamma} + b\beta\overline{\gamma} + c\alpha\overline{\delta} + d\beta\overline{\delta} &= -b \\ a\gamma\overline{\alpha} + b\delta\overline{\alpha} + c\gamma\overline{\beta} + d\delta\overline{\beta} &= -c \\ a\gamma\overline{\gamma} + b\delta\overline{\gamma} + c\gamma\overline{\delta} + d\delta\overline{\delta} &= a \end{cases}$$

Ce système devant être vérifié pour tous  $\alpha,b,c,d\in\mathbb{C}$ , on obtient :  $\alpha=\gamma=0$ ,  $|\gamma|=|\beta|=1$  et  $\beta\overline{\gamma}=-1$ . Le fait que A est unitaire donne ensuite  $|\gamma|=1$ , donc finalement, les matrices qui conviennent sont celles de la forme  $\begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$  avec  $|\beta|=1$ .

#### Deuxième partie

**II.1 a)** Dire que rg A=1 équivaut à dire qu'il existe une colonne  $C_j$  de A qui est non nulle et que toutes les autres colonnes sont proportionnelles à  $C_j$ . On a donc :  $\forall i \in [1, n]$ ,  $C_i = \lambda_i C_j$ . On prend alors  $X=C_j$  et  $Y={}^t(\lambda_1,\ldots,\lambda_n)$ . On aura bien  $A=X^tY$ , avec X,Y non nulles. La réciproque est facile : si  $A=X^tY$ , avec X,Y non nulles, alors toutes les colonnes de A sont proportionnelles à X, donc A est de rang  $\leq 1$ , et, étant non nulle, elle est de rang 1.

# Remarque : Cette question et son corrigé figurent dans la feuille d'exos n° 3 (exercice 46) ainsi que dans le DS n°3 (Exercice 4, question 6.a). No comment!

On a alors, si  $Z \in E : AZ = X^tYZ = \lambda X$  avec  $\lambda = {}^tYZ \in \mathbb{C}$ , donc Im A = Vect(X) et Ker  $A = \{Z \in E \text{ tq } {}^tYZ = 0\}$ . (*Rem :* C'est l'orthogonal de la droite vectorielle engendrée par Y lorsqu'on munit E du produit scalaire canonique...).

Si  $A = X^tY = X'^tY' = A'$  alors  $\operatorname{Im} A = \operatorname{Im} A'$  donc  $\operatorname{Vect}(X) = \operatorname{Vect}(X')$ , donc il existe  $\lambda \in \mathbb{C}$  tel que  $X' = \lambda X$ . Et on a alors  $Y = \lambda Y'$ .

La réciproque est immédiate.

b) Dire que  $\operatorname{rg} A=2$  équivaut à dire qu'il existe deux colonnes  $C_j$  et  $C_k$  ( $j\neq k$ ) linéairement indépendantes et que toutes les autres colonnes sont combinaisons linéaires de  $C_j$  et  $C_k$ . Donc  $\forall i\in [\![1,n]\!],\ C_i=\lambda_i C_j+\mu_i C_k$ .

On prend alors  $X = C_j$ ,  $Z = C_k$ ,  $Y = {}^t(\lambda_1, ..., \lambda_n)$  et  $W = {}^t(\mu_1, ..., \mu_n)$ . On a bien alors  $A = X^tY + Z^tW$ , avec (X, Z) libre, et (V, W) est aussi libre puisque  $\lambda_j = 1$ ,  $\mu_j = 0$  et  $\lambda_k = 0$ ,  $\mu_k = 1$ .

Réciproquement, si  $A = X^tY + Z^tW$  avec (X, Z) libre et (V, W) libre, alors toutes les colonnes de A sont combinaisons linéaires de X et de Y, donc  $\operatorname{rg} A \leqslant 2$ . Si  $Y = {}^t(\lambda_1, \ldots, \lambda_n)$ 

et  $W={}^t(\mu_1,\ldots,\mu_n)$ , il existe  $j\neq k$  tels que  $\begin{vmatrix} \lambda_j & \mu_j \\ \lambda_k & \mu_k \end{vmatrix}\neq 0$  puisque la famille (V,W) est de rang 2. Les vecteurs  $\lambda_j X + \mu_j Y$  et  $\lambda_k X + \mu_k Y$ , qui sont les j-ème et k-éme colonne de A sont

rang 2. Les vecteurs  $\lambda_j X + \mu_j Y$  et  $\lambda_k X + \mu_k Y$ , qui sont les j-ème et k-éme colonne de A sont alors linéairement indépendants (car ce sont les vecteurs du plan Vect(X,Y) de coordonnées  $(\lambda_j,\lambda_k)$  et  $(\mu_j,\mu_k)$  dans la base (X,Y) de ce plan). Ainsi, A possède deux colonnes linéairement indépendantes, donc est de rang  $\geqslant 2$ .

Finalement, A est bien de rang 2.

II.2 a) Puisque  $\Phi$  conserve le rang, et que  $\operatorname{rg}(X^tY)=1$ , alors  $\operatorname{rg}(\Phi(X^tY))=1$  donc d'après II.1.a, il existe U et V non nuls dans E tels que  $\Phi(X^tY)=U^tV$ .

U et V ne sont pas uniques : s'ils conviennent, alors, pour tout  $\lambda \neq 0$ , le couple  $\left(\lambda U, \frac{1}{\lambda}V\right)$  convient également.

b) La matrice  $(X_1+X_2)^tY_0$  est de rang  $\leq 1$ , et  $\Phi\left((X_1+X_2)^tY_0\right)=U_1^tV_1+U_2^tV_2$  a même rang que  $(X_1+X_2)^tY_0$ . Or  $(U_1,U_2)$  est libre par hypothèse; si  $(V_1,V_2)$  était libre, alors  $U_1^tV_1+U_2^tV_2$  serait de rang 2 d'après II.1.b, ce qui est impossible. Donc  $(V_1,V_2)$  est lié.

Soit  $X \in E$ , non nul. Il existe  $U, V \in E$ , non nuls, tels que  $\Phi(X^tY_0) = U^tV$ . Deux cas sont possibles :

- Si  $(U, U_1)$  est libre, alors  $(V, V_1)$  est lié (même démonstration que ci-dessus, en considérant  $\Phi((X + X_1)^t Y_0)$ ).
- Si  $(U, U_1)$  est liée, alors  $(U, U_2)$  est libre, et, en reprenant le raisonnement précédent, on obtient  $(V, V_2)$  lié; or  $(V_1, V_2)$  est lié, donc on a aussi ici  $(V, V_1)$  lié.

Dans les deux cas, on a  $(V,V_1)$  lié et,  $V_1$  étant non nul, il existe  $\lambda \in \mathbb{C}$  tel que  $V=\lambda V_1$ . On a alors  $\Phi(X^tY)=\left(\frac{1}{\lambda}U\right){}^tV_1$ , i.e qu'on peut choisir  $V_0=V_1$ . (on a supposé  $X\neq 0$  dans la démonstration précédente, pour pouvoir appliquer les résultats précédents ; dans le cas X=0, il suffit de prendre U=0.)

c) On a donc :  $\forall X \in E$ ,  $\exists U \in E$  tq  $\Phi(X^tY_0) = U^tV_0$ . Pour X donné, le vecteur U ainsi obtenu est unique (en appliquant II.1.a). On peut donc définir une application  $X \mapsto U$ , et il est facile de vérifier que cette application est linéaire. Donc il existe une matrice  $A \in \mathbb{M}_n(\mathbb{C})$  telle que U = AX.

De plus, pour  $X \neq 0$ , on a vu que  $U \neq 0$ . Le noyau de A est donc réduit à  $\{0\}$ , donc A est inversible.

II.3 — Fixons  $X_0$  non nul. Alors il existe  $U_0, V_0 \in E$ , non nuls, tels que  $\Phi(X_0^t Y_0) = U_0^t V_0$ . Si maintenant X est un autre vecteur non nul de E, en appliquant l'hypothèse  $(H_2)$  avec  $X_1 = X_0$  et  $X_2 = X$ , on obtient qu'il existe  $(U_1, U_2) \in E^2$  liée telle que  $\Phi(X_0^t Y_0) = U_1^t V_1$  et  $\Phi(X^t Y_0) = U_2^t V_2$ . Or

 $\begin{array}{l} U_1{}^tV_1=U_0{}^tV_0 \text{ implique } (U_0,U_1) \text{ li\'ee d'après II.1.a, donc } (U_0,U_2) \text{ est aussi li\'ee. Il existe donc} \\ \lambda\in\mathbb{C} \text{ tel que } U_2=\lambda U_0\text{, d'où } \Phi(X^tY_0)=U_0{}^tV \text{ avec } V=\frac{1}{\lambda}V_2. \end{array}$ 

- Comme dans la question précédente, il existe  $B' \in \mathbb{M}_n(\mathbb{C})$  telle que V = B'X; on a encore  $X \neq 0 \Rightarrow V \neq 0$  donc B' est inversible, d'où  $\Phi(X^tY_0) = U_0{}^tXB$  avec  $B = {}^tB'$ .
- **II.4 a)** Par l'absurde, on suppose  $(Y_0, Y_0')$  lié; il existe donc  $\lambda \in \mathbb{C}$  tel que  $Y_0' = \lambda Y_0$ . On aurait alors  $U_0^t XB = \lambda A X^t V_0$  donc d'après II.1.a il existe  $\mu$  tel que  $\lambda A X = \mu U_0$  et  ${}^t XB = \mu^t V_0$ . En particulier on aurait Im  $A \subset \text{Vect}(U_0)$ , soit  $\text{rg } A \leqslant 1$  ce qui est impossible car A est inversible (et  $n \geqslant 2$ ).
  - **b)** On sait d'après II.1.b que  $\operatorname{rg}(X^tY_0 + X'^tY_0') = 2$  donc  $\operatorname{rg}\Phi(X^tY_0 + X'^tY_0') = 2$ . D'autre part :  $\Phi(X^tY_0 + X'^tY_0') = AX^tV_0 + U_0{}^tX'B = U_0{}^tV_0 + U_0{}^tX'B = U_0({}^tV_0 + {}^tX'B)$  qui est une matrice de rang 1 d'après II.1.a, d'où la contradiction.
  - c) L'hypothèse (H) est une conséquence des hypothèses  $(H_1)$  et  $(H_2)$  faites simultanément. (H) étant fausse, il en résulte que les hypothèses  $(H_1)$  et  $(H_2)$  s'excluent mutuellement.
- II.5 a) En reprenant la démonstration de II.2 avec Y à la place de Y<sub>0</sub>, on obtient qu'il existe une matrice inversible A<sub>1</sub> et un vecteur V ≠ 0 tels que Φ(X<sup>t</sup>Y) = A<sub>1</sub>X<sup>t</sup>V pour tout X ∈ E.
  Montrons (V, V<sub>0</sub>) libre; en choisissant alors (X, X') libre, on aura Φ(X<sup>t</sup>Y<sub>0</sub> + X'<sup>t</sup>Y) = AX<sup>t</sup>V<sub>0</sub> + A<sub>1</sub>X'<sup>t</sup>V. Or X<sup>t</sup>Y<sub>0</sub> + X'<sup>t</sup>V est de rang 2 d'après II.1.b, donc AX<sup>t</sup>V<sub>0</sub> + A<sub>1</sub>X'<sup>t</sup>V est de rang 2 puisque Φ conserve le rang. Si (V, V<sub>0</sub>) était liée, cette matrice serait de rang ≤ 1, d'où le résultat.
  - **b)** On a  $\Phi(X({}^tY_0 + {}^tY)) = AX^tV_0 + A_1X^tV$ . Or, pour  $X \neq 0$ ,  $X^t(Y_0 + Y)$  est de rang 1, donc  $AX^tV_0 + A_1X^tV$  est de rang 1, ce qui implique, puisque  $(V, V_0)$  est libre, que AX et  $A_1X$  sont liés, donc que X et  $A^{-1}A_1X$  sont liés.

D'après un résultat classique (voir exercice.... feuille...), cela implique que  $A^{-1}A_1$  est une homothétie, i.e  $A^{-1}A_1 = \lambda I_n$  puis  $A_1 = \lambda A$ . Quitte à remplacer V par  $\lambda V$ , on peut donc supposer  $A_1 = A$ .

On a alors :  $\forall Y \in E$ ,  $\exists V \in E$  tq  $\Phi(X^tY) = AX^tV$ . Comme dans la question II.2.c, on peut définir une application linéaire  $Y \mapsto V$ , donc on peut poser V = BX, et on montre comme dans II.2.c que B est inversible.

c) Soit  $M \in \mathbb{M}_n(\mathbb{C})$ . Notons  $C_1, \ldots, C_n$  les colonnes de M et  $E_1, \ldots, E_n$  la base canonique de E. Alors  $M = \sum_{i=1}^n C_i{}^t E_i$  donc

$$\Phi(M) = \sum_{i=1}^{n} \Phi(C_i^t E_i) = A\left(\sum_{i=1}^{n} C_i^t E_i\right) B = AMB$$

- II.6 a) facile
  - b) On a  $\Phi'(X^tY_0) = {}^tBX^tU_0$  pour tout  $X \in E$ . On est donc, pour  $\Phi'$ , dans les conditions de la question précédente; on en déduit qu'il existe une matrice inversible A telle que  $\Phi'(M) = {}^tBMA$  pour toute  $M \in \mathbb{M}_n(\mathbb{C})$ , d'où  $\Phi(M) = {}^tA^tMB$
- II.7 En conclusion, puisque l'on est soit dans le cas de la question II.5, soit dans celui de la question II.6, on en déduit que les endomorphismes de  $\mathbb{M}_n(\mathbb{C})$  qui conservent le rang sont les applications de la forme

$$M \longmapsto AMB$$
 ou  $M \longmapsto A^{t}MB$ 

avec A, B inversibles. (on n'a en fait montré qu'une implication, mais il est clair que, réciproquement, les applications ci-dessus conservent le rang...)

### Troisième partie

III.1  $\lambda M + N = P(\lambda J_r + K_r)Q$  donc  $\det(\lambda M + N) = \det P \det Q \det(\lambda J_r + K_r) = \det P \det Q \lambda^r$ .

- III.2 Puisque  $\operatorname{rg}\Phi(M)=s$ , il existe P',Q' inversibles telles que  $\Phi(M)=P'J_sQ'$ . Si on pose  $\Phi(N)=P'N'Q'$ , on aura  $\det(\lambda\Phi(M)+\Phi(N))=\det P'\det Q'\det(\lambda J_s+N')$ , ce qui permet de montrer que ce déterminant est un polynôme en  $\lambda$  de degré  $\leq s$ .
  - Or  $\Phi$  conserve le déterminant donc  $det(\lambda\Phi(M)+\Phi(N))=det(\Phi(\lambda M+N))=det(\lambda M+N)=det\, P\, det\, Q\lambda^r$ , donc  $r\leqslant s$ .
  - Si  $M \in \text{Ker } \Phi$ , alors  $\Phi(M) = 0$  d'où s = 0 d'où r = 0 d'où M = 0. Ainsi  $\Phi$  est injective; puisqu'il s'agit d'un endomorphisme d'un espace vectoriel de dimension finie, elle est bijective.
- III.3 La question précédente donne :  $\operatorname{rg} M \leqslant \operatorname{rg} \Phi(M)$ . Puisque  $\Phi^{-1}$  est aussi un endomorphisme de  $\mathbb{M}_n(\mathbb{C})$  qui conserve le déterminant, on a aussi  $\operatorname{rg} M \leqslant \operatorname{rg} \Phi^{-1}(M)$  d'où  $\operatorname{rg} \Phi(M) \leqslant \operatorname{rg} \Phi^{-1}(\Phi(M))$  ce qui donne  $\operatorname{rg} \Phi(M) \leqslant \operatorname{rg} M$ .
  - Finalement  $rg \Phi(M) = rg M : \Phi$  conserve le rang.
- III.4 Il découle alors de la partie II que les endomorphismes de  $\mathbb{M}_n(\mathbb{C})$  qui conservent le déterminant sont les applications de la forme

$$M \longmapsto AMB$$
 ou  $M \longmapsto A^tMB$ 

avec A, B telles que det  $A \cdot \det B = 1$ .

### Quatrième partie

- **IV.1** Le déterminant d'une matrice est égal au produit des valeurs propres (distinctes ou non); donc si  $\Phi$  conserve le spectre, il conserve le déterminant. D'après la partie précédente, il conserve donc aussi le rang.
- $\text{IV.2} \ \det(\lambda I G\Phi(M)) = \det G \det(\lambda \Phi(I) \Phi(M)) = \det(\Phi(\lambda I M)) = \det(\lambda I M) \ \text{(en effet, } \det G = \frac{1}{\det \Phi(I)} = \frac{1}{\det I} = 1).$ 
  - Donc  $Sp(G\Phi(M)) = Sp M$  et en posant  $M' = \Phi(M)$ , Sp(GM') = Sp M' (M' décrit  $\mathbb{M}_n(\mathbb{C})$  lorsque M décrit  $\mathbb{M}_n(\mathbb{C})$  puisque  $\Phi$  est bijective).
- **IV.3** En prenant M = I dans le résultat précédent, on obtient  $Sp G = \{1\}$ .
  - D'autre part, si l'on applique le résultat précédent avec  $M=E_{ij}$  et  $i\neq j$ ,  $GE_{ij}$  est la matrice dont toutes les colonnes sont nulles sauf la j-ième qui vaut  ${}^t(g_{1i},\ldots,g_{ni})$ . Le spectre de  $GE_{ij}$  est donc  $\{0,g_{ji}\}$  et est égal au spectre de  $E_{ij}$  qui est réduit à  $\{0\}$ , donc  $g_{ji}=0$  pour  $i\neq j$ .
  - Finalement, G est diagonale et sont spectre est  $\{1\}$ , donc G = I.
- IV.4 Puisque  $\Phi(I)=I$ , il découle alors de III.4 que les endomorphismes de  $\mathbb{M}_n(\mathbb{C})$  qui conservent le spectre sont les applications de la forme

$$M \longmapsto AMA^{-1}$$
 ou  $M \longmapsto A^{t}MA^{-1}$ 

avec  $A \in GL_n(\mathbb{C})$ .

