Project subject

- Simulation and implementation of quantum transform fourier algorithm using FPGA device and classic PC while comparing the two.
- Using a new method, untested method to simulate the quantum gates while making translation into the classical world.

A little bit on quantum computing

- Qubits are bits which are built from phase and size. They represent bits of quantum computers.
- The main advantage of quantum computers, is that because of quantum theory nature they allow to solve some problems more efficiently than their classical counterpart.
- QFT $O(\log^2(n))$, FFT O(nlog(n)) 0 0 $\log^{|0\rangle}(n)$ 1 $\log^{|0\rangle}(n)$ Classical Bit Qubit

QFT

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} , CP(\varphi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\varphi} \end{pmatrix} , SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Theoretical background – translating to the classical world

$$\varphi|0\rangle_{quantum} = \begin{pmatrix} 2\\1\\0\\1\\1\\1\\1 \end{pmatrix}, \quad \varphi|1\rangle_{quantum} = \begin{pmatrix} 1\\2\\1\\0\\1\\1\\1 \end{pmatrix}_{classical}, \quad \varphi|k\rangle_{quantum} = \frac{1}{8}(\vec{u}_{classical} + \vec{p}_{classical}), \quad \vec{u} = \begin{pmatrix} 1\\1\\1\\1\\1\\1\\1 \end{pmatrix}, \quad \vec{p} = \begin{pmatrix} \vec{x}\\0\\1\\1\\1\\1\\1 \end{pmatrix}$$

$$s_{12...n} = s_{1,n} = \frac{1}{8^n} \left(\vec{u}^{\otimes n} + \vec{p_1} \otimes \vec{p_2} \otimes ... \otimes \vec{p_n} \right)$$

$$M[Gate] = \begin{pmatrix} \mathcal{R}e(Gate) & 0 & 0 & \mathcal{I}m(Gate) \\ 0 & \mathcal{R}e(Gate) & \mathcal{I}m(Gate) & 0 \\ \mathcal{I}m(Gate) & 0 & \mathcal{R}e(Gate) & 0 \\ 0 & \mathcal{I}m(Gate) & 0 & \mathcal{R}e(Gate) \end{pmatrix}$$

And if $Gate = A \otimes B + C$ we get

$$M[Gate] = M[A] \otimes M[B] + M[C]$$

$$\mathit{Cgate}_{1,n} = \mathit{P}_0 \otimes \mathbb{I}_{2^{n-1},2^{n-1}} + \mathit{P}_1 \otimes \mathbb{I}_{2^{n-2},2^{n-2}} \otimes \mathit{gate}$$

$$Cgate_{n,1} = \mathbb{I}_{2^{n-1},2^{n-1}} \otimes P_0 + \mathbb{I}_{2^{n-2},2^{n-2}} \otimes gate \otimes P_1$$

And therefore:

$$M\big[Cgate_{1,n}\big] = M[P_0] \otimes M\big[\mathbb{I}_{2^{n-1},2^{n-1}}\big] + M[P_1] \otimes M\big[\mathbb{I}_{2^{n-2},2^{n-2}}\big] \otimes M[gate]$$

$$M\big[\mathit{Cgate}_{n,1}\big] = M\big[\mathbb{I}_{2^{n-1},2^{n-1}}\big] \otimes M[P_0] + M\big[\mathbb{I}_{2^{n-2},2^{n-2}}\big] \otimes M[\mathit{gate}] \otimes M[P_1]$$

$$j < k$$
: $Cgate_{1,j,k,n} = \mathbb{I}_{2^{j-1},2^{j-1}} \otimes Cgate_{1,k-j+1} \otimes \mathbb{I}_{2^{n-k},2^{n-k}}$

$$j>k\colon \operatorname{Cgate}_{i,j,k,n}=\mathbb{I}_{2^{j-1},2^{j-1}}\otimes\operatorname{Cgate}_{j-k+1,1}\otimes\mathbb{I}_{2^{n-k},2^{n-k}}$$

And therefore:

$$M\big[\mathit{Cgate}_{1,j,k,n}\big] = M\big[\mathbb{I}_{2^{j-1},2^{j-1}}\big] \otimes M\big[\mathit{Cgate}_{1,k-j+1}\big] \otimes M\big[\mathbb{I}_{2^{n-k},2^{n-k}}\big]$$

Example

$$CP\left(\frac{\pi}{8}\right)_{1,4}^{4Qbits} = P_0 \otimes \mathbb{I}_{8x8} + P_1 \otimes \mathbb{I}_{4x4} \otimes P\left(\frac{\pi}{8}\right)$$

$$CNOT_{1,2,3,4}^{4Qbits} = \mathbb{I}_{2x2} \otimes (P_0 \otimes \mathbb{I}_{2x2} + P_1 \otimes NOT) \otimes \mathbb{I}_{2x2}$$

Data representation

- 2's complement and floating point
- 24 bits per word to save memory while keeping high precision
- Broken down to 8 bits part as part of the UART-USB limitations
- Read from the serial port using python and rebuilt as the original
 24 bits words

Block diagram

Xilinx VC709 connectivity board- החומרה

- 128 Mb memory flash
- 200Mhz default clock speed
- User switches/LEDs/buttons

Implementation

- Python simulation
- System Verilog simulation
- Creating a communication bridge between the FPGA and PC using UART-USB bridge
 - Creating the final FPGA firmware, burning and running it

System Verilog simulation results

Name	Value		100.00	00 ns	200.00	ns	300.000) ns	400.00	0 ns	500.0	00 ns	600.0	00 ns	700.	000	ns	800	.000	ns	900.00	0 ns
₩ q0_in	1																					
₩ q1_in	1																					
₩ q2_in	1																					
₩ q3_in	1																					
 clk	0																					
> W s0_out[7:0][23:0]	0,00000	00000	00,000	000,0000	00,0	0000	00,0000	00,0000	00,0000	00,f	X. X00	0000,000	000,00	0000,00	0000,f	χ	X0000	000,0	00000	,00000	0,0000	000,f
> 🗤 s1_out[7:0][23:0]	0,00000	00000	00,000	000,0000	00,0	V X0000	00,0000	00,0000	00,0000	00,f	χ. χοο	0000,000	000,00	0000,00	0000,f	X	X000C	000,0	00000	,00000	0,0000	000,f
> W s2_out[7:0][23:0]	0,000000	00000	00,000	000,0000	00,0	0000	00,0000	00,0000	00,0000	00,f	χ. χοο	0000,000	000,00	0000,00	0000,f	 χ	X0000	000,0	00000	,00000	0,0000	000,f
> 🗤 s3_out[7:0][23:0]	0,000000	00000	00,000	000,0000	00,0	0000	00,0000	00,0000	00,0000	00,f	χ. χοο	0000,000	000,00	0000,00	0000,f	 χ	X0000	000,0	00000	,00000	0,0000	000,f
> W s23_out[63:0][23:0]	0,000080	08000	00,0800	0080,000	00,0	0800	00,0800	00,0800	00,0800	00,0	X- X 08	30000,080	0000,00	30000,0	80000,.	 χ	0800	000,0	80000	,08000	0,0800	00,0
> W s123_out[511:0][23:0]	0,000080	0800	00,080	000,0800	00,0800	00,0800	00,08000	00,08000	0,08000	00,08000	00,0800	00,08000	00,0800	00,080	080,080	000,	,080000	,080	0000,0	80000	,080000	0,080
> W prob0000[23:0]	007fff	XX	XXXX	Χ								007fff										
> W prob0001[23:0]	007fff	XX	xxxx	χ								007fff										
> W prob0010[23:0]	007fff	XX	xxxx	χ								007fff										
> W prob0011[23:0]	007fff	XX	XXXX	χ								007fff										
> W prob0100[23:0]	007fff	XX	XXXX	χ								007fff										
> W prob0101[23:0]	007fff	XX	XXXX	χ								007fff										
> 👹 prob0110[23:0]	007fff	XX	XXXX	X								007fff										
> W prob0111[23:0]	007fff	XX	xxxx	χ								007fff										
> W prob1000[23:0]	007fff	XX	XXXX	χ								007fff										
> W prob1001[23:0]	007fff	XX	XXXX	χ								007fff										
> <section-header> prob1010[23:0]</section-header>	007fff	XX	XXXX	χ								007fff										
> 🗤 prob1011[23:0]	007fff	XX	XXXX	X								007fff										
> 1 prob1100[23:0]	007fff	XX	XXXX	χ								007fff										
> W prob1101[23:0]	007fff	XXX	XXX	X								007fff										
> <section-header> prob1110[23:0]</section-header>	007fff	XXX	XXX	χ								007fff										
> 👹 prob1111[23:0]	007fff	XXX	XXX	X								007fff										

UART-USB Bridge explained

Project results

Qubits amount	Method used	Runtime[sec]
2	Paper method python	0.008976
2	FPGA device	0.06144
2	Python Qiskit	0.006490
4	Paper method python	8.035774
4	Python Qiskit	0.007016

Memory limitations

- 2 qubits ~Kb per gate
- 4 qubits ~150Kb per gate
- 6 qubits ~10Mb per gate
- 8 qubits ~650-750Mb per gate

•

•

•

•

Conclusion and future work

- Higher qubits implementations using the FPGA
- Testing alternative methods to simulate quantum circuits using an FPGA device
 - Testing the effects on different quantum circuits, implementing different algorithms.
 - Testing implementation with GPUs and comparing to FPGAs