Video Compression Standards (II)

A/Prof. Jian Zhang

NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2009

jzhang@cse.unsw.edu.au

Tutorial 2 : Image/video Coding Techniques

- Discrete Cosine Transform
 - For a 2-D input block U, the transform coefficients can be found as $Y = CUC^T$
 - The inverse transform can be found as $Y = CUC^T$
 - The NxN discrete cosine transform matrix C=c(k,n) is defined as:

$$c(k,n) = \begin{cases} \frac{1}{\sqrt{N}} & for \ k = 0 \ and \ 0 \le n \le N-1, \\ \sqrt{\frac{2}{N}} \cos \frac{\pi (2n+1)k}{2N} & for \ 1 \le k \le N-1 \ and \ 0 \le n \le N-1. \end{cases}$$

The distribution of 2-D DCT Coefficients

Ref: H. Wu

JPEG DCT-Based Encoding Tutorial 2

Coding of DCT Coefficients (DC)

Tutorial 2

 DC coefficient is coded differentially as (size, amplitude). There are 12 size categories

$$\Delta DC_i = DC_i - DC_{i-1}$$
-3 36 39

S1ze: 2	
-3	00
-2	01
2	10
3	11

[Coeff]	Size	[Code]	Length
0	0	00	2+0
1	1	010	3+1
23	2	011	3+2
47	3	100	3+3
815	4	101	3+4
1631	5	110	3+5
3263	6	1110	4+6
64127	7	11110	5+7
128255	8	111110	6+8
256511	9	1111110	7+9
5121023	10	11111110	8+10
10242047	11	111111110	9+11

Final code:01100

Coding of DCT Coefficients (AC) Tutorial 2

- AC coefficients are re-arranged to a sequence of (run, level) pairs through a zigzag scanning process
- Level is further divided into (Size Categories, Amplitude).
- Run and size are then combined and coded as a single event (2D VLC)
 - An 8-bit code 'RRRRSSSS' is used to represent the nonzero coefficients
 - The SSSS is defined as size categories from 1 to 11
 - The RRRR is defined as run-length of zeros in the zig-zag scan or number of zeros before a nonzero coefficient
 - The composite value of RRRRSSSS is then Huffman coded
 - Ex: 1) RRRSSSS=11110000 represents 15 run '0' coef. and followed by a '0' coef.
 - 2) Multiple symbols used for run-length of '0' coef. exceeds 15
 - 3) RRRRSSS=00000000 represents end-of-block (EOB)

Coding of DCT Coefficients (AC)

Tutorial 2

Zig-Zag scan

SSSS

	0	1	2	9 10 11
)	EOB			
	N/A			
100	N/A			Composite values
	N/A			- Taraco
15	ZRL			
	- Secretar			

Zero Run	Category	Code length	Codeword
0	1	2	00
	2	2 2 3	01
30	1 2 3	3	100
0	4 5 6 7	4	10 11
0	5	5	11010
3113	6	- 6	111000
0	7	7	11111000
1	巍	\$8	
I	1	4	1100
	2	6	111001
	3	7	1111001
	4	9	1111110110
133			
3,35	- 1	86 as	110.11
<u> </u>		5	11011
2	2	8	11111000
3.9	337	558	3.00
33233	1	8338	
3	2	б 0	111010 111110111
03503	- 4	(9 k	11 1110 111
		- 39	- 1
100 E	1		111011
4	1	<u>6</u>	111011
5		7	1111010
6 7	I		1111011
	1	8	11111001
8 9	1	8	11111010
9	1	9	1111111000
10		9	1111111001
11	1	9	11 11111010
283	32	333	233
EOB	33		10 10

RRRR

Inter-frame Encoder Tutorial 2

Block Based Motion Estimation

Tutorial 2

Block base search

Reference Frame

Current Frame

Current Block

16x16 -- Macroblock

Block Based Motion Estimation

Tutorial 2

Block base search

Reconstructed Frame Current Frame W=Search Range Motion Vector 16 16 Current Block Position of Search Window 16x16 -- Macroblock **Current Block**

Block Based Motion Estimation

Tutorial 2

Block base search

Reconstructed Frame

Motion Compensated Frame

Digital Video Coding (DVC) Structure

— Hybrid MC/DPCM/DCT Tutorial 2

Codec = encoder/decoder

 Scalable video coding means the ability to achieve more than one video resolution or quality simultaneously.

- Spatial Scalability
 - A spatially scalable coder operates by filtering and decimating a video sequence to a smaller size prior to coding.
 - An up-sampled version of this coded base layer representation is then available as a predicator for the enhanced layer
 - As prediction is performed in the spatial domain, the coding at the base layer can take any other standards including (MPEG-1 or H.261).
 - This is an important feature to address compatibility in layered codec

Spatial Scalability – Spatial Scalability Codec

- Spatial Scalability Types
 - Progress to progress
 - Progress to interlaced
 - Interlaced to progress
 - Interlaced to interlaced

Spatiotemporal weighted Prediction

- Data partitioning
 - Data partitioning permits a video bitstream to be divided into two separate bitstreams
 - The BL contains the more info. including address and control info. as well as lower order DCT coef.
 - The HL contains the rest info. of the bitstream
 - The syntax elements in BL are indicated by proprity breakpoint (PBP)
 - Some syntax elements in BL are redundant in HL to facilitate error recovery
 - It has the advantage to introduce almost no additional overhead
 - The disadvantage of this scheme: considerable drift occurs if only the BL is available to a decoder.

Data partitioning

Data partitioning – bitstream example (PBP = 64)

	Quant Scale	DC Coeff	DCT Coeff Run/Level Pair 1	DCT Coeff Run/Level Pair 2	l .	EOB	DC Coeff	DCT Coeff Run/Level Pair 1	ЕОВ		
--	----------------	-------------	----------------------------------	----------------------------------	-----	-----	-------------	----------------------------------	-----	--	--

Data partitioning

Priority	Definition
Break Point	
65	All data at sequence, GOP, Pic and slice layers
66	PBP=65 plus MB data to MB type
67	PBP=66 plus data to MB motion Vectors
0	PBP=67 plus MB data from CBP to DC (or 1st non-zero) Coeff.
1	PBP=0 plus to first coeff. Following DC to first non-zero coeff after the first coeff. in the scan order
2	PBP=0 plus up to first non-zero coeff after the 2 nd coeff in the scan order
j	PBP=0 plus to first non-zero coeff after the jth coeff in the scan order

- Video Coding and Communication
 - MPEG-4 standard: video part -- content based video coding scheme
 - To enable all these content-based functionalities, MPEG-4 relies on a revolutionary, content based representation of audiovisual objects.
 - As opposed to classical rectangular video (eg: MPEG1/2), MPEG-4 treats a scene as a composition of several objects that are separately encoded and decoded
 - The scalability at the object or content level enables to distribute the available bit-rate among the objects in the scene
 - Visually, more important objects are allocated more bits.
 - Encoded once and automatically played out at different rates with acceptable quality for the communication environment and bandwidth at hand.

Access and manipulation of arbitrarily shaped images

content-based scalability bitstream VOP₁ layer VOPcontour motion texture. bitstream VOP₂ scene segmentation taver VOP₂ & depth layering contour. motion texture bitstream VOP₁ content-based laver VOP bitstream access contour & manipulation motion texture lavered separate encoding decoding

Object Based MPEG-4 Video Verification Model

- 1. In MPEG-4, scenes are composed of different objects to enable content-based functionalities.
- 2. Flexible coding of video objects
- 3. Coding of a "Video Object Plane" (VOP) Layer

4.2 MPEG-4 Visual Standard

Video Object Planes (VOP's)

Original

Binary Segmentation Mask

The binary segmentation Mask is to extract the back/fore-ground layers

Ref: MPEG-4 AKIYO testing video sequence

4.2 MPEG-4 Visual Standard

Decomposition into VOP's

Background Layer VOP

Foreground Layer VOP

The overlapping VOP's brining the opportunity to do the manipulation of Scene content

Video Object Plane" layered coding

Ref: Thomas Sikora

DCT-Based Approach for Coding VOP's

Ref: Thomas Sikora

Block diagram of the basic MPEG-4 hybrid DPCM/transform codec structure

• Coding of a "Video Object Plane"

Ref: Thomas Sikora

Background Padding for Motion Compensation

Padded background

Previous Frame

Current Frame

4.2 MPEG-4 Visual Standard One Typical Example -- Sprite Coding

- 1. A non-changing background only has to be transmitted once
- 2. Only foreground objects transmitted and re-Inserted at the decoder
- 3. Object are much smaller than full video

4.3 Introduction to H.264 Video Coding Standard

- It started from the ITU-T H.26L Project (Long term)
- It aims to improve the coding efficiency up to 50% compared to MPEG-4 video coding standard
- In Dec. 2001, MPEG and ITU-T experts set up joint video team (JVT) to focus on this new standard.
- The final version of the standard has been approved by ITU-T 2003. H.264 video coding standard or MPEG-4 Part 10.
- The new technical approaches:
 - An Adaptive deblocking loop filter to remove the artifacts
 - Multiple frame for ME/MC
 - Predication in Intra mode
 - Integer transform
 - Optimized rate control strategy (my opinion)

4.3 Video Codec Structure of H.264

4.3 Video Codec Structure of H.264 (H.26L TML-8 Design Part 1 of 4)

- Hybrid of DPCM/MC/Trans coding as in Prior standards. Common elements include:
 - 16x16 macroblocks
 - Conventional sampling of chrominance and association of luminance and chrominance data
 - Block motion displacement
 - Motion vectors over picture boundaries
 - Variable block-size motion
 - Block transforms (not DCT, wavelets or fractals)
 - Scalar quantization (weighted)

4.3 H.264: Motion Compensation Accuracy

4.3 H.264: Multiple Reference Frames

- Motion Compensation:
 - Multiple reference pictures (per H.263++ Annex U)
 - B picture prediction weighting
 - New "SP" transition pictures for sequence switching
 - Various block sizes and shapes for motion compensation (7 segmentations of the macroblock: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4)
 - 1/4 sample (sort of per MPEG-4) and 1/8 sample accuracy motion

