Computer Graphics

Lab 3
Midpoint Circle Algorithm
Eng.Takwa

A Simple Circle Drawing Algorithm

- The equation for a circle is:
- where r is the radius of the circle
- So, we can write a simple circle drawing algorithm by solving the equation for *y* at unit *x* intervals using:
- $(x)^2 + (y)^2 = r^2$

A Simple Circle Drawing Algorithm

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

A Simple Circle Drawing Algorithm

- However, unsurprisingly this is not a brilliant solution!
- Firstly, the resulting circle has large gaps where the slope approaches the vertical
- Secondly, the calculations are not very efficient
- The square (multiply) operations
- The square root operation –try really hard to avoid these!
- We need a more efficient, more accurate solution

Eight-Way Symmetry

• The first thing we can notice to make our circle drawing algorithm more efficient is that circles centred at (0, 0) have eight-way symmetry

Eight-Way Symmetry

- Consider symmetry of circles
- Shape of the circle is similar in each quadrant
- i.e. if we determine the curve positions in the 1stquadrant, we can generate the circle section in the 2ndquadrant of the xy plane (the 2 circle sections are symmetric with respect to the y axis)
- The circle section in the 3rdand 4thquadrant can be obtained by considering symmetry about the x axis
- Calculation of a circle point (x, y) in 1 octant yields the circle points for the other 7 octants

Bresenham to Midpoint

- Bresenham's line algorithm for raster displays is adapted to circle generation by setting up decision parameters for finding the closest pixel to the circumference at each sampling step.
- Bresenham's circle algorithm avoids square-root calculations by comparing the squares of the pixel separation distances.

For any given pixel (x, y), the next pixel to be plotted is either (x, y+1) or (x-1, y+1). This can be decided by following the steps below.

- Find the mid-point p of the two possible pixels i.e (x-0.5, y+1)
- If **p** lies inside or on the circle perimeter, we plot the pixel (x, y+1), otherwise if it's outside we plot the pixel (x-1, y+1)
- Boundary Condition: Whether the mid-point lies inside or outside the circle can be decided by using the formula:-
- Given a circle centered at (0,0) and radius r and a point p(x,y) $F(p) = x^2 + y^2 - r^2$

if F(p)<0, the point is inside the circle

F(p)=0, the point is on the perimeter

F(p)>0, the point is outside the circle

- F(p) with P. The value of P is calculated at the mid-point of the two contending pixels i.e. (x-0.5, y+1). Each pixel is described with a subscript k.
- $P_{\nu} = (X_{\nu} 0.5)^2 + (y_{\nu} + 1)^2 r^2$
- Now,

 $circle(x_{\nu+1} = x_{\nu}-1)$

• Now,

$$x_{k+1} = x_k \text{ or } x_{k+1}, y_{k+1} = y_k + 1$$

$$\therefore P_{k+1} = (x_{k+1} - 0.5)^2 + (y_{k+1} + 1)^2 - r^2$$

$$= (x_{k+1} - 0.5)^2 + [(y_k + 1) + 1]^2 - r^2$$

$$= (x_{k+1} - 0.5)^2 + (y_k + 1)^2 + 2(y_k + 1) + 1 - r^2$$

$$= (x_{k+1} - 0.5)^2 + [P_k - (X_k - 0.5)^2 + r^2] + 2(y_k + 1) - r^2 + 1$$

$$= P_k + (x_{k+1} - 0.5)^2 - (x_k - 0.5)^2 + 2(y_k + 1) + 1$$

$$= P_k + (x_{k+1}^2 - x_k^2) + (x_k - x_{k+1}) + 2(y_k + 1) + 1$$

$$= P_k + 2(y_k + 1) + 1, \text{ when } P_k < 0 \text{ i.e the midpoint is inside the circle}$$

$$(x_{k+1} = x_k)$$

$$P_k + 2(y_k + 1) - 2(x_k - 1) + 1, \text{ when } P_k > 0 \text{ l.e the mid point is outside the}$$

- The first point to be plotted is (r, 0) on the x-axis. The initial value of P is calculated as follows:-
- P1 = $(r 0.5)^2 + (0+1)^2 r^2$ = 1.25 - r = 1 -r (When rounded off)

Example:

- Draw using Midpoint algorithm circle with given radious=10.
- Step 1: Obtain the first point on the circumference of the circle centered on the origin as $(X_0, Y_0) = (r,0) = (10,0)$
- Step 2: Calculate the starting value for the decision parameter as P_0
- $P_0 = 1 r = -9$
- Step 3: set K=0

K	$X_{k+1} Y_{new}$	\mathbf{P}_{k}	I	Points
0	- 9	10	0+1 =1	(10,1)
1	-9+2+1=-6	10	1+1 =2	(10,2)
2	-6+4+1=-1	10	2+1 =3	(10,3)
3	-1+6+1=6	9	3+1 =4	(9,4)
4	6+8+1- 18=-3	9	4+1 =5	(9,5)
5	- 3+10+1=8	8	5+1 =6	(8,6)
6	8+12+1- 16=5	7	6+1 =7	(7,7)

Swap the values of axis coordinates

multiply values of X coordinate by -1

Pleating Points	Pleating Points
(0,10)	(0,10)
(1,10)	(-1,10)
(2,10)	(-2,10)
(3,10)	(-3,10)
(4,9)	(-4,9)
(5,9)	(-5,9)
(6,8)	(-6,8)
(7,7)	(-7,7)
(10,0)	(-10,0)
(10,1)	(-10,1)
(10,2)	(-10,2)
(10,3)	(-10,3)
(9,4)	(-9,4)
(9,5)	(-9,5)
(8,6)	(-8,6)
(7,7)	(-7,7)

Multiply values of Y coordinates by -1 & Swap the values of axis coordinates

Pleating Points	Pleating Points
(0,10)	(-10,0)
(-1,10)	(-10,-1)
(-2,10)	(-10,-2)
(-3,10)	(-10,-3)
(-4,9)	(-9,-4)
(-5,9)	(-9, -5)
(-6,8)	(-8,-6)
(-7,7)	(-7,-7)
(-10,0)	(0,-10)
(-10,1)	(-1,-10)
(-10,2)	(-2,-10)
(-10,3)	(-3,-10)
(-9,4)	(-4,-9)
(-9,5)	(-5,-9)
(-8,6)	(-6,-8)
(-7,7)	(-7,-7)

Multiply values of Y coordinates by -1 &Swap the values of axis coordinates

Pleating Points	Pleating Points
(-10,0)	(0,-10)
(-10,-1)	(1,-10)
(-10,-2)	(2,-10)
(-10,-3)	(3,-10)
(-9,-4)	(4,-9)
(-9, -5)	(5,-9)
(-8,-6)	(8,-6)
(-7,-7)	(7,-7)
(0,-10)	(10,0)
(-1,-10)	(10,-1)
(-2,-10)	(10,-2)
(-3,-10)	(10,-3)
(-4,-9)	(9,-4)
(-5,-9)	(9,-5)
(-6,-8)	(8,-6)
(-7,-7)	(7,-7)

• Step 7: Move each calculated pixel position(X,Y) onto • the circular path centered at (X_c, Y_c) and plot the coordinate values $X=X+X_c$, $Y=Y+Y_c$?

Example 2:

- Centre -> (4, 4), Radius -> 2
- Radius (r) = 10, Centre = (3, 4)

• -----

```
(2,0) (-2,0)
P0=1-r=1-2= -1<0 (2,1) (-2,1)
P1=2>0 (1,2) x (0,2) (0,2) (1,2) (-1,2)
```