PHIL3110 - Exam

Maxwell Bo

June 20, 2018

Part A

Problem 1

1. Let $\beta = \{ \varphi \mid \varphi \in \Gamma \land \varphi \in \Delta \}.$

Say there's some φ such that $\beta \models \varphi$ but $\varphi \notin \beta$. If $\varphi \notin \beta$, then $\varphi \notin \Gamma$ and $\varphi \notin \Delta$.

2. If there is no proper subset Ξ of Γ such that Ξ is a theory, there always exists a φ such that $\Xi \models \varphi$ but $\varphi \notin \Xi$.

Problem 2

$$(P \to Q) \to P$$

Problem 3

Problem 6

1. Let \mathcal{M} be a model with domain $M = \{\}$.

 $\not\exists x(x=x)$ is a consequence.

Furthermore, we run into some strangeness when we find that $\forall x(x \neq x)$ is a consequence.

 $\forall x \varphi(x) \Rightarrow \exists x \varphi(x)$ no longer holds either.

In other words, free logic admits existentially quantified formulas always being false in the empty domain, and universally quantified formulas always being true.

Furthermore, the notion that $\neg \exists x \varphi(x) \Rightarrow \forall x \neg \varphi(x)$ ceases to be meaningful.

2. Rules

We're also going to consider \exists in the set logical vocabulary, because, why not?

where E!c expands to $\exists x(x=c)^1$.

By new we mean that the name a has not occurred anywhere on the branches above.

3. Our goal is to show that if $\models_f \varphi$, then $\vdash_{Tab} \varphi$. In other words, if every model \mathcal{M} (of the language φ) is such that if $\mathcal{M} \models \varphi$ then the tableau commencing with $\neg \varphi$ is closed.

By contraposition, if $\not\vdash_{Tab} \varphi$ then $\not\models_f \varphi$.

In other words, if the tableau commencing with $\neg \varphi$ does not close, then there is some \mathcal{M} such that $M \models \neg \varphi$.

Rather than choosing some open branch \mathcal{B} of a tableau commencing with $\neg \varphi$, and defining a $\mathcal{M}^{\mathcal{B}}$, and reasoning with +-complexity, we'll use a Δ that is maximally consistent² and existentially witnessed³ set of of sentences.

Let \mathcal{M}^{Δ} be such that:

- M^{Δ} is the set of constant symbols a occurring in the stentences in Δ .
- for each constant symbol a, let $a^{\mathcal{M}} = a$
- for each n-ary relation symbol R of $\mathcal{L}(C)$ let $R^{\mathcal{M}}$ be the set of n-tuples $\langle a_1, ..., a_n \rangle$ such that $Ra_1, ..., a_n$ is in Δ .

Reiterating

Claim 120 Suppose Δ is maximal consistent. Then $\varphi \in \Delta \Leftrightarrow \mathcal{M}^{\Delta} \models \varphi$

but eliding Proof 120^4 .

We will show $\varphi \in \Delta \Rightarrow \mathcal{M}^{\Delta} \models \varphi$

We proceed by induction on the complexity of the forumula.

Base

Suppose $\psi := \chi$. Then

$$\chi \in \Delta \Leftrightarrow \mathcal{M}^{\Delta} \models \chi$$

This flows trivially from Claim 120.

Induction Step

• Suppose $\psi := \chi \wedge \delta \in \Delta$.

We claim that $\chi \wedge \delta \in \Delta$ iff both $\chi \in \Delta$ and $\delta \in \Delta$.

If $\chi \wedge \delta \in \Delta$, then by Claim 120 and tableau rule (\wedge), we have both χ and δ in Δ .

$$\chi \wedge \delta \in \Delta \Rightarrow \chi \in \Delta \text{ and } \delta \in \Delta$$

 $\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \text{ and } \mathcal{M}^{\Delta} \models \delta$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \wedge \delta$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the last \Leftrightarrow is from the \models definition.

¹I had to do this because the forest package wouldn't typeset leaves over a certain number of characters

² for an arbitrary φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$

³if $\exists x \varphi(x) \in \Delta$, then for some constant symbol $a, \varphi(a) \in \Delta$

⁴Page 77 of course notes

• Suppose $\psi := \neg \chi$.

If $\chi \in \delta$, then by Claim 120 and tableau rule (\neg) , $\chi \notin \Delta$.

$$\neg \chi \in \Delta \Leftrightarrow \chi \not\in \Delta$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \not\models \chi$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \models \neg \chi$$

The first \Leftrightarrow is via the completeness of Δ ; the second \Leftrightarrow is by the induction hypothesis; and the last is via the \models definition.

• Suppose $\psi := \forall x \chi(x)$.

We claim $\forall x \chi(x) \in \Delta$ for every constant symbol $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$.

Suppose $\forall x \chi(x) \in \Delta$.

Suppose $\mathcal{L}(C) \neq \{\}$, which given our definition of \mathcal{M}^{Δ} , occurs when $M^{\Delta} \neq \{\}$.

Then by claim CLAIM 120 and tableau rule (\forall) , for all $a \in \mathcal{L}(C)$, $\chi(a) \in \Delta$.

Suppose $\mathcal{L}(C) = \{\}$. We assert that there must be something in Δ that says there is no $a \in \mathcal{L}(C)$.

Then by Claim 120 and tableau rule (\forall) , there is some φ of the form $\neg \exists y (y = a)$ such that $\varphi \in \Delta$.

On the other hand, if for some some $a \in \mathcal{L}(C)$, $\chi(a) \in \Delta$, then by Claim 120 and (\forall) , $\forall x \chi(x) \in \Delta$.

Then we have

$$\forall x \chi(x) \in \Delta \Rightarrow \text{ for all } a \in M^{\Delta}, \ \chi(a) \in \Delta \text{ or } \neg \exists y (y = a) \in \Delta$$

 $\Leftrightarrow \text{ for all } a \in M^{\Delta}, \ \mathcal{M}^{\Delta} \models \chi(a) \in \Delta \text{ or } \mathcal{M}^{\Delta} \models \neg \exists y (y = a)$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \forall x \chi(x)$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the final \Leftrightarrow is was via the \models definition.

• Suppose $\psi := \exists x \chi(x)$.

Then we claim $\exists x \chi(x) \in \Delta$ iff there is some constant symbol $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$. Suppose $\exists x \chi(x) \in \Delta$.

By the construction of Δ^5 , Claim 120 and tableau rule (\exists), there is some $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$.

Furthermore we may also say that there exists some φ of the form $\exists y(y=a)$, such that $\varphi \in \Delta$. We would not be able to say this if Δ were not existentially witnessed.

Then we have

$$\exists x \chi(x) \in \Delta \Leftrightarrow \text{there is some } a \in M^{\Delta} \text{ such that } \chi(a) \in \Delta \text{ and } \exists y(y=a) \in \Delta$$

 $\Leftrightarrow \text{ there is some } a \in M^{\Delta} \text{ such that } \mathcal{M}^{\Delta} \models \chi(a) \text{ and } \mathcal{M}^{\Delta} \models \exists y(y=a)$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \exists x \chi(x)$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the final \Leftrightarrow is was via the \models definition.

The other cases are left as exercises for the marker.

⁵it is existentially witnessed