線形代数学・同演習 B

演習問題 5

- 1! $T:U \to V$ をベクトル空間 U,V 間の線形写像とするとき , $\operatorname{rank}(T) + \operatorname{null}(T) =$ $\dim(U)$ が成り立つことを次の方針に従って示せ.ここで $r = \operatorname{rank}(T), s = \operatorname{null}(T)$ とおき , u_1, \ldots, u_r を $\operatorname{Ker}(T)$ の基底 , v_1, \ldots, v_s を $\operatorname{Im}(T)$ の基底とする .
 - (1) U の要素 u_{r+1},\ldots,u_{r+s} で, $T(u_{r+j})=v_j$ かつ $u_{r+j}\not\in \mathrm{Ker}(T)$ $(j=1,\ldots,s)$ をみたすものが存在することを示せ.
 - (2) U の任意の元 $m{u}$ は , $m{u}_1,\dots,m{u}_r,m{u}_{r+1},\dots,m{u}_{r+s}$ の線形結合で書けることを示せ *1 .
 - (3) u_1, \ldots, u_{r+s} は線形独立であることを示せ.
- 2^{\dagger} U, V を一般のベクトル空間とし $T: U \to V$ はその間の線形写像とするとき $\operatorname{Im}(T)$ は V の部分空間 , $\mathrm{Ker}(T)$ は U の部分空間となることを示せ .
- 3. 次の行列 A に対して A に対して A の退化次元と A に対して A の退化次元と A の基底 A の基底 A の階数と A に対して A の間数と A の間数と A に対して A の間数と A の間数と A に対して A の間数と A の間数と A に対して A の間数 A に対して A の間 A に対して A の間 A に対して A の間 A に対して A に対して A の間 A に対して A に対し A に対して A に対し A に対して A に対して A に対して A に対して A に対して A に対して A に対し A に対して A に対して A に対し A に対 の基底,をそれぞれ求めよ.

$$\begin{pmatrix}
1 & -1 & 1 \\
-2 & 2 & 1 \\
-5 & 5 & -5
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 2 & 2 & -4 \\
5 & 1 & 1 & 3 \\
4 & -4 & -4 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & -5 & -6 \\
-5 & 1 & -3 & 2 \\
-2 & -1 & -4 & -2
\end{pmatrix}$$

4. 次の写像は線形となるか調べよ.

(1)
$$T_2 : \mathbb{R}^2 \ni \binom{x_1}{x_2} \mapsto x_1 x_2 \in \mathbb{R}$$
 (2) $T_3 : \mathbb{R}^2 \ni \binom{x_1}{x_2} \mapsto \binom{x_1 + x_2}{x_2} \in \mathbb{R}^3$
(3) $T_4 : \mathbb{R}[x]_3 \ni p \mapsto \int_{-1}^1 p(t) \, dt \in \mathbb{R}$ (4) $T_5 : \mathbb{R}[x]_3 \ni p \mapsto p(0) \in \mathbb{R}$

- $5.~V=\mathbb{R}[x]_3$ とし,写像 $T\colon V\to V$ を $T\colon p(x)\longmapsto xp'(x)-3p(x-1)$ により定義す る.このとき,(i) T は線形写像となることを示せ.(ii) T の退化次元と階数をそれぞ れ求めよ . (iii) Im(T) の基底を一組求めよ .
- 6^{\dagger} $V=M(2,\mathbb{C})$ を複素数を成分に持つ 2 次正方行列全体の空間とし , V 上の写像 σ を $\sigma(X) := {}^t\overline{X}$ (各成分の複素共役をとって行列として転置)

により定義する. さらに $W := \{X \in V; \ \sigma(X) = X\}$ とおく.

- (i) σ は $\mathbb R$ 上では線形写像になるが , $\mathbb C$ 上では線形写像にならないことを示せ .
- (ii) W は V の (\mathbb{R} 上のベクトル空間としての) 部分空間になることを示せ.
- (iii) W の次元と基底を求めよ.

¹¹月7日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html

 $^{^{*1}}$ まず $T(oldsymbol{u})$ を考える .