化学原理 Chemical Principles

(8)

内容回顾

> 原子结构的Bohr理论

三大假设 成功之处 局限性

- > 微观粒子的波粒二象性
- > 海森堡测不准原理

$$\lambda = \frac{h}{P} = \frac{h}{mv}$$

$$\Delta x \cdot \Delta v \ge \frac{h}{2\pi m}$$

内容回顾

> 波函数和原子轨道

> 薛定谔方程

$$\left(\frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{\partial^{2}\psi}{\partial z^{2}}\right) + \frac{8\pi^{2}m}{h^{2}}(E - V)\psi = 0$$

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}\frac{\partial\psi}{\partial r}) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\psi}{\partial\theta}) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}$$

$$+ \frac{8\pi^{2}m}{h^{2}}(E - V)\psi = 0$$

径向部分 角度部分

$$\psi(r,\theta,\phi) = R(r) \cdot Y(\theta,\phi)$$

$$\frac{1}{R} \frac{d}{dr} (r^2 \frac{dR}{dr}) + \frac{8\pi^2 m r^2}{h^2} (E - V) = \beta$$

$$\frac{\sin \theta}{\Theta} \frac{d}{d\theta} (\sin \theta \frac{\partial \Theta}{\partial \theta}) + \beta \sin^2 \theta = \nu$$

$$-\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = \nu$$

(3) 为保证解的合理性,引入三个参数 (量子数): n, l, m

解得的 ψ 不是具体的数值,而是包括三个参数 (n, l, m) 和三个变量 (r, θ, φ) 的函数式 $\psi_{n, l, m}(r, \theta, \varphi)$,每一个解对应着某一种运动状态及相应的能量。

$$n = 1, 2, 3, ...$$

 $l = 0, 1, 2, 3, ..., (n-1)$
 $m = 0, \pm 1, \pm 2, \pm 3, ..., \pm l$

波函数和原子轨道

波函数 ψ 是量子力学中描述核外电子运动状态的函数式,一定的波函数表示电子的一种运动状态,也叫<mark>原子轨道</mark>。

一般把与 /= 0, 1, 2, 3, ...对应的波函数称为s, p, d, f, ...态:

$\psi_{1,0,0}$	1s轨道
----------------	------

$$\Psi_{2,1,0}$$
 2p_z轨道

$$\psi_{100}(\vec{g}, \psi_{1s}) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$$

$$\psi_{200}(\vec{\mathbf{g}}, \psi_{2s}) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$$

$$\psi_{210}(\vec{x}, \psi_{2p_x}) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos\theta$$

小结

- 1. 波函数 y 就是原子轨道,原子轨道只是代表原子中电子运动状态的一个函数,代表核外电子的一种运动状态。
- 2. 每一种原子轨道 (即每一种波函数) 都有与之相对应的能量。

对于氢原子或类氢离子:
$$E_n = -13.6 \times \frac{Z^2}{n^2}$$
 eV

3.2.5 概率密度和电子云

概率密度(|y|²):由理论计算得到,电子在原子核外空间某点附近单位体积内出现的概率。

电子云: 概率密度的形象化图示, 是| y| 2的图像。

可以用统计的方法描述电子 在核某一区域内出现机会的 多少

氢原子的1s电子云示意图

要掌握的几个概念:

- 1. 概率: 电子在空间内出现的几率。
- 2. 概率密度:单位体积内出现的概率。
- 3. $|y|^2$: 电子在核外空间出现的概率密度, 通过理论计算得到。
- 4. 电子云: |ψ|² 的空间图像。是从统计的概念出发,对核外电子出现的概率密度作形象化的图示。

s 电子云 (/ = 0的状态)

球形对称,处于s状态的电子,它在核外空间中半径相同的各个方向上出现的概率相同

p 电子云 (/ = 1的状态)

哑铃形,3种空间取向

d 电子云 (l=2的状态)

*f电子云(l=3的状态)

3.2.6 波函数的空间图象

径向部分 角度部分
$$/\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) \cdot Y_{l,m}(\theta,\phi)$$

径向分布

球面的面积: $4\pi r^2$

球壳薄层的体积: $4\pi r^2 \cdot \Delta r$

概率密度: $|\psi|^2$

球壳内发现电子的概率: $4\pi r^2 \cdot |\psi|^2 \cdot \Delta r$ 单位厚度球壳中的概率: $4\pi r^2 \cdot |\psi|^2$ 令 $D(r) = 4\pi r^2 |\psi|^2$,D(r) 是 r 的函数

径向分布函数

D(r) 只随半径 r 变化,由量子数 n、l 决定

氢原子各种状态的径向分布图

小结:

- 1. $|y|^2$ 为概率密度,指核外空间某点附近单位体积内发现电子的概率; D(r) 指在半径为 r 的单位厚度球壳内发现电子的概率。
- 2. 电子在核外是按层分布的: 主峰离核的距离1s最近, 2s、2p次之, 3s、3p、3d更次之, 同理4s、4p、4d、4f更远。
- 3. 主量子数 n 的取值,代表电子层离核的远近, 当 n 相同时,电子在核附近出现的机会为:

ns > np > nd

问题:

1s 电子的概率密度在原子核附近最大,为什么它的概率的径向分布却在离核 52.9 pm 处最大呢?

球壳体积与|\psi|²值的变化 趋势相反。

靠近核时,|\psi|^2值大,但 球壳体积小; 离核较远时,球 壳体积大,但|\psi|^2值小;

两个变化趋势相反的因素导致在某一点上出现极大值。

> 三个参数 (量子数)

$$n = 1, 2, 3, ...$$

 $l = 0, 1, 2, 3, ..., (n-1)$
 $m = 0, \pm 1, \pm 2, \pm 3, ..., \pm l$

概率密度随半径变化

概率密度: |火|2

球壳内发现电子的概率: $4\pi r^2 \cdot |\psi|^2 \cdot \Delta r$ 单位厚度球壳中的概率: $4\pi r^2 \cdot |\psi|^2$

单位厚度球壳中的<mark>概率</mark> 随半径变化

小结:

- 1. $|\psi|^2$ 为概率密度,指核外空间某点附近单位体积内发现电子的概率; D(r) 指在半径为 r 的单位厚度球壳内发现电子的概率。
- 2. 电子在核外是按层分布的: 主峰(峰的高度,最强峰)离核的距离1s最近(1s主峰离核近于2s), 2s、2p次之, 3s、3p、3d更次之, 同理4s、4p、4d、4f更远。
- 3. 主量子数 n 的取值,代表电子层离核的远近,当 n 相同时,电子在核附近出现的机会为:

ns > np > nd

4. 离核较近的小峰都伸到 (n-1) 各峰的内部,伸入的程度各不相同。

外层电子钻到内层空间而靠近原子核的现象, 称为 "钻穿效应"。

径向分布图的意义:

电子概率的径向分布图表示了电子在整个空间 出现的<mark>概率</mark>随半径变化的情况,从而反映了核 外电子概率分布的层次性和穿透性。

角度分布

- \triangleright 波函数 ψ (r, θ , ϕ) 的角度部分: $Y(\theta, \phi)$, 只随 θ 和 ϕ 角度变化,由量子数 I 和 m 决定,与 n 无关。
- ho 原子轨道的角度分布图: $Y(\theta, \phi)$ 随 θ 和 ϕ 角度变化作图。(波函数的角度分布图)
- \triangleright 电子云的角度分布图: $|Y(\theta, \phi)|^2$ 随 θ 和 ϕ 角度变化作图。

原子轨道的角度分布图

 $Y(\theta, \phi)$ 只与量子数 l 和 m有关, l 和 m相同的轨道,角度分布相同。

	氢原子和类氢离子几个波函数(a₀=Bohr 半径)				
几组允许的 n,l,m 值			$\psi_{n,l,m}(r,\theta,\phi)$	$R_{n,l}(r)$	$Y_{l,m}(\theta,\phi)$
$n \mid l \mid m$		m	-	<u> </u>	- 1,m (V / 1 /
1	0	0	$\psi_{100}(\vec{x}, \psi_{1s}) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	$2\sqrt{\frac{1}{a_0^3}}e^{-2r/a_0}$	$\sqrt{rac{1}{4\pi}}$
2	0	0	$\psi_{100}(\vec{x}, \psi_{1s}) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$ $\psi_{200}(\vec{x}, \psi_{2s}) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$ $\psi_{210}(\vec{x}, \psi_{2p_x}) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos\theta$ $\left\{\psi_{2p_x} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin\theta \cos\phi$ $\psi_{2p_y} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin\theta \sin\phi$	$\sqrt{\frac{1}{8a_0^3}} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	$\sqrt{rac{1}{4\pi}}$
2	1	0	$\psi_{210}(\vec{x}, \psi_{2p_x}) = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos\theta$		$\sqrt{\frac{3}{4\pi}}\cos\theta$
2	1	+1	$\int \psi_{2p_x} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin\theta \cos\phi$	$\sqrt{\frac{1}{24a_0^3}} \left(\frac{Zr}{a_0}\right) \mathrm{e}^{-Zr/2a_0}$	$\sqrt{\frac{3}{4\pi}}\sin\theta\cos\phi$
2	1		$\left[\psi_{2p_y} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0} \right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin\theta \sin\phi \right]$		$\sqrt{\frac{3}{4\pi}}\sin\theta\sin\phi$

对于p_z轨道:
$$Y(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta$$

θ	$Y = \cos \theta$			
0°	1.00			
15°	0.97			
30°	0.87			
45°	0.71			
60°	0.50			
90°	0.00			
120°	-0.50			
135°	-0.71			
150°	-0.87			
165°	-0.97			
180°	-1.00			

注意:图中的"+"、"-"号没有正负电性的意思

对于
$$\mathbf{p}_x$$
轨道: $Y(\theta,\phi) = \sqrt{\frac{3}{4\pi}} \sin \theta \cos \phi$

- 通过坐标原点画出若干条射线,每条对应一组 θ 和 φ 值;
- 将该组θ和φ 值代入波函数式中进行计算,以计算 结果标在该射线上某一点(有射线变成了点);
- 用同样方法标出其它射线上的点,然后将所有的点相联,得沿 *x* 轴伸展的哑铃形面。

原子轨道(波函数)角度分布图 (剖面图)

电子云的角度分布图

θ	$Y = \cos \theta$	$ Y ^2 = \cos^2\theta$	
0°	1.00	1.00	
15°	0.97	0.94	
30°	0.87	0.75	
45°	0.71	0.50	
60°	0.50	0.25	
90°	0.00	0.00	
120°	-0.50	0.25	
135°	-0.71	0.50	
150°	-0.87	0.75	
165°	-0.97	0.93	
180°	-1.00	1.00	

pz电子云的角度分布图:表示电子在空间不同角度出现的概率密度的大小。反映了电子概率密度分布的方向性。

> 电子云的空间分布

3.2.7 四个量子数

由n、l、m 这三个量子数所确定的一套参数,就可以表示一种波函数。除了在解薛定谔方程的过程中引入的这三个量子数之外,后来根据实验和理论的要求,又引入了一个描述电子自旋特征的量子数 m_s。

这些量子数对描述核外电子的运动状态,确定原子中电子的能量,原子轨道或电子云的形状和空间的伸展方向,以及多电子原子核外电子的排布非常重要。

主量子数n

1. 决定电子层数,规定着电子出现最大概率区域离核的远近,以及原子能量的高低。

n 的取值范围: n = 1, 2, 3, 4,, n n 越大,电子与原子核的平均距离越远。

1s电子 n=1 r=52.9 pm 2s电子 n=2 r=213 pm 3s电子 n=3 r=477 pm 主量子数 n = 1 2 3 4 5 6 7 K L M N O P O ...

2. 主量子数 n 是决定电子能量高低的主要因素。对于单电子原子或类氢离子来说,n值越大,电子的能量越高。 $E_n = -13.6 \frac{Z^2}{n^2} \quad (n=1,2,3,\cdots)$

n=1 时, $r_1=1^2\times 52.9$ pm, $E_1=-1312.17$ kJ·mol⁻¹ n=2 时, $r_2=2^2\times 52.9$ pm, $E_2=-328.04$ kJ·mol⁻¹ n=3 时, $r_3=3^2\times 52.9$ pm, $E_3=-145.80$ kJ·mol⁻¹

对于多电子原子,核外电子能量既与n有关,又与l有关。

角量子数 l

l的取值: l=0, 1, 2, 3,, (n-1)

1的值常用英文小写字母代替:

 l:
 0
 1
 2
 3
 4

 代号:
 s
 p
 d
 f
 g

1. *l* 决定了原子轨道或电子云的形状。它与电子运动角动量的大小有关,决定了电子云在空间角度的分布的情况。

如: *l* = 0时,角动量为0,此时电子的运动与角度无关。s 原子轨道与电子云形状为球形。

2. 主量子数 n 表示电子层时,角量子数 l 表示同一电子层中具有不同状态的分 (亚) 层。对于给定的 n ,就有 n 个不同的角量子数 l 。

n	电子层数	l	分层数	n=1	<i>l</i> =0	1s	1s电子
1	1	0	1s	n=2	<i>l</i> =0	2s	2s电子
	9977 C	0	2-		<i>l</i> =1	2p	2p电子
2	2	0 1	2s		<i>l</i> =0	38	3s电子
		10000	2 p	(10-54)			
3	3	0	3s	n=3	<i>l</i> =1	3 p	3p电子
		1	3 p		<i>l</i> =2	3d	3d电子
		2	3d		<i>l</i> =0	48	4s电子
4	4	0	4s	n=4	<i>l</i> =1	4 p	4p电子
		1	4 p		<i>l</i> =2	4d	4d电子
		2	4d		<i>l</i> =3	4f	4f电子
		3	4f				

3. 角量子数 l 与多电子原子中电子的能量有关, 多电子原子中电子的能量取决于 n 和 l 。

$$n$$
 不同, l 相同时, n 值越大,能量越高: $E_{1\mathrm{s}} < E_{2\mathrm{s}} < E_{3\mathrm{s}} < E_{4\mathrm{s}} < E_{5\mathrm{s}}$ $E_{2\mathrm{p}} < E_{3\mathrm{p}} < E_{4\mathrm{p}} < E_{5\mathrm{p}}$

$$n$$
 相同, l 不同时,同一电子层能量:
对于单电子体系, $E_{4s} = E_{4p} = E_{4d} = E_{4f}$

对于多电子原子,主量子数n相同时,l数值越大,其电子的能量越高。

$$l$$
 取值 0 1 2 3 $E_{4s} < E_{4p} < E_{4d} < E_{4f}$

磁量子数m

m 的取值与角量子数 l 有关: m = 0, ± 1 , ± 2 , ± 3 ,, $\pm l$

1. 磁量子数 m 决定了原子轨道或电子云在空间的伸展方向。它的取值表示伸展方向是被限制在某些特定的方向上。

l=1 时 (p 轨道), m 有 0、+1、-1 三个值:

2. 在没有外加磁场的作用时,磁量子数 *m* 与能量无关。

l=1 时 (p 轨道), m 有 0、+1、-1 三个值:

在一般情况下,l相同m不同的轨道能量相同,这样的轨道称为简并轨道。p轨道具有三种伸展方向不同,但能量相同的简并轨道。

当有外加磁场时,由于伸展方向不同,会显示出微小的能量差别。

n, l, m 一组量子数可以决定一个原子轨道离核的远近、形状和伸展方向,对应一组合理的n, l, m 取值,就会有一个确定的波函数 $\psi_{n,l,m}(r,\theta,\phi)$ 。

例如:
$$n=2$$
, $l=0$, $m=0$, $2s$ $n=3$, $l=1$, $m=0$, $3p_z$ $n=3$, $l=2$, $m=0$, $3d_{z^2}$