SUMMER BOOT CAMP PROJECT 2024

Srishti Singh Chauhan

INDEX

S No. Topic

- 1. Cover Page
- 2. Index
- 3. List of Figures
- 4. Problem Description
- 5. Data Dictionary
- 6. Basic EDA
- 7. Application and Enrollment Analysis
- 8. Academic Excellence
- 9. Student Demographics
- 10. Cost and Spending
- 11. Faculty Qualifications
- 12. Student-Faculty Interaction
- 13. Alumni Engagement
- 14. Graduation Rates
- 15. Overall Insights

List of Figures

- 1. Boxplot for checking the outliers
- 2. Boxplot of Numerical Columns after the removal of outliers
- 3. Scatter plot of Top 10% vs Top 25%
- 4. Distribution of Instructional Expenditure per Student
- 5. Scatter plot of Ph.D. percentage vs Graduation Rate
- 6. Scatter plot of Student/Faculty Ratio vs Graduation Rate

- 7. Scatter plot of % Alumni who donate vs Graduation Rate
- 8. Scatter plot of Instructional expenditure per student vs Graduation Rate
- 9. Factors Correlated with Graduation Rate

Problem Description

Data

The objective of this analysis is to gain insights into the characteristics of colleges and answer key questions related to the educational landscape. By understanding the data, we aim to inform strategies for improving the quality of education and enhancing the overall college experience. The analysis will provide valuable insights and recommendations for stakeholders in the education sector.

Data Description

- Names: Names of various university and colleges
- Apps: Number of applications received
- Accept: Number of applications accepted
- Enroll: Number of new students enrolled
- **Top10perc**: Percentage of new students from top 10% of Higher Secondary class
- **Top25perc**: Percentage of new students from top 25% of Higher Secondary class
- **F.Undergrad**: Number of full-time undergraduate students
- P.Undergrad: Number of part-time undergraduate students
- Outstate: Number of students for whom the particular college or university is Outof-state tuition
- Room.Board: Cost of Room and board
- Books: Estimated book costs for a student
- Personal: Estimated personal spending for a student
- **PhD**: Percentage of faculties with Ph.D.'s
- **Terminal**: Percentage of faculties with terminal degree
- S.F.Ratio: Student/faculty ratio
- **perc.alumni**: Percentage of alumni who donate
- **Expend**: The Instructional expenditure per student
- Grad.Rate: Graduation rate

Importing the necessary libraries

```
In [57]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Loading the provided datasets

In [58]: df = pd.read_csv("1-Education_Post_12th_Standard_New.csv")

Basic Description (EDA):

Display the top 5 rows

In [59]: df.head()

3

	. [22].	u1111cau()										
0u	ıt[59]:	: Names		Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad		
	0	Abilene Christian University	1660.0	1232	721.0	23.0	52	2885	537			
		1	Adelphi University	2186.0	1924	512.0	16.0	29	2683	1227		
	2	Adrian College	1428.0	1097	336.0	22.0	50	1036	99			

60.0

16.0

89

44

510

249

63

869

Based on the above result we can observe that the following columns:

NaN

55.0

- Enroll have null value as 'NaN' on index 3.
- S.F.Ratio have incorrect value as '?' on index 1.

349

146

Display the last 5 rows

Agnes

College

Alaska

Pacific

University

Scott

417.0

193.0

In [60]: df.tail()

Out[60]:		Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Unde
	772	Worcester State College	2197.0	1515	543.0	4.0	26	3089	
	773	Xavier University	1959.0	1805	695.0	24.0	47	2849	
	774	Xavier University of Louisiana	2097.0	1915	695.0	34.0	61	2793	
	775	Yale University	10705.0	2453	1317.0	95.0	99	5217	
	776	York College of Pennsylvania	2989.0	1855	691.0	28.0	63	2988	
	4								•

Check the shape of dataset

In [61]: df.shape

Out[61]: (777, 18)

It shows that the dataset have 777 rows and 18 columns.

Check the datatypes of each feature.

In [62]:	df.dtypes	
Out[62]:	Names	object
	Apps	float64
	Accept	int64
	Enroll	float64
	Top10perc	float64
	Top25perc	int64
	F.Undergrad	int64
	P.Undergrad	int64
	Outstate	int64
	Room.Board	int64
	Books	int64
	Personal	float64
	PhD	int64
	Terminal	int64
	S.F.Ratio	object
	perc.alumni	int64
	Expend	int64
	Grad.Rate	int64
	dtype: object	

The data type of **S.F.Ratio** is **object type which** is **incorrect**. It should be of float type as it contains numeric data. This shows that the column might contain some string values which can hinder the analysis of data.

Check the Statistical summary

3]: df. d	<pre>df.describe()</pre>									
	Apps		Accept	Enroll	Top10perc	Top25perc	F.Undergrad			
cou	ınt	775.000000	777.000000	775.000000	773.000000	777.000000	777.000000			
mea	an	3007.592258	2018.804376	780.961290	27.620957	55.796654	3699.907336			
S	td	3873.414660	2451.113971	930.077779	17.645470	19.804778	4850.420531			
m	nin	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000			
25	5%	778.000000	604.000000	242.500000	15.000000	41.000000	992.000000			
50)%	1561.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000			
75	5%	3635.000000	2424.000000	902.500000	35.000000	69.000000	4005.000000			
ma	ах	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000			

Minimum value of **Books** and **perc.alumni** is 0, which needs to be checked.

Check the null values

df.isnull().	sum()
64]: Names	0
Apps	2
Accept	0
Enroll	2
Top10perc	4
Top25perc	0
F.Undergrad	0
P.Undergrad	0
Outstate	0
Room.Board	0
Books	0
Personal	3
PhD	0
Terminal	0
S.F.Ratio	0
perc.alumni	0
Expend	0
Grad.Rate dtype: int64	0 L

In the given dataset we have null values in the following columns only:

- **Apps** have **2** missing values.
- Enroll have 2 missing values.
- **Top10perc** have **4** missing values.
- **Personal** have **3** missing values.

Check the duplicate values

```
In [65]: df.duplicated().sum()
Out[65]: 0
```

It shows that there are **0 duplicate values** in the dataset.

Check the outliers and their authenticity.

```
In [66]: plt.figure(figsize=(20,20))
    sns.boxplot(data=df)
    plt.title('Boxplot for checking the outliers')
    plt.xlabel('Features')
    plt.ylabel('Values')
    plt.xticks(rotation=45)
    plt.show()
```


• Since outliers are present in the dataset, so we will be replacing NULL values in Numerical columns with Median.

Check the anomalies or wrong entries.

```
df[df['S.F.Ratio']=="?"]
In [67]:
Out[67]:
                           Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad
                  Names
                 Adelphi
                          2186.0
                                    1924
                                           512.0
                                                       16.0
                                                                    29
                                                                                2683
                                                                                             122
                University
                Campbell
                          2087.0
                                                       20.0
                                    1339
                                           NaN
                                                                     54
                                                                                3191
                                                                                             120
                University
                Gwynedd
          241
                   Mercy
                           380.0
                                     237
                                           104.0
                                                       30.0
                                                                    56
                                                                                 716
                                                                                             110
                  College
In [68]:
          df['S.F.Ratio']=df['S.F.Ratio'].replace('?', np.nan)
```

• Converting data type of **S.F.Ratio** from Object type to Float type

```
In [69]: def clean_numeric(value):
    try:
        return float(value)
    except ValueError:
        return pd.NA
df['S.F.Ratio'] = df['S.F.Ratio'].apply(clean_numeric)
```

Do the necessary data cleaning steps like dropping duplicates, unnecessary columns, null value imputation, outliers treatment etc.

```
In [70]: df[df.isnull().sum(axis=1)>0]
```

Out[70]:		Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Underg
	1	Adelphi University	2186.0	1924	512.0	16.0	29	2683	1
	3	Agnes Scott College	417.0	349	NaN	60.0	89	510	
	9	Alderson- Broaddus College	NaN	498	172.0	21.0	44	799	
	41	Bellarmine College	NaN	707	308.0	39.0	63	1198	
	81	Campbell University	2087.0	1339	NaN	20.0	54	3191	1
	102	Central Connecticut State University	4158.0	2532	902.0	NaN	24	6394	3
	103	Central Missouri State University	4681.0	4101	1436.0	NaN	35	8094	1
	128	College of Notre Dame	344.0	264	97.0	NaN	42	500	
	129	College of Notre Dame of Maryland	457.0	356	177.0	NaN	61	667	1
	166	Dillard University	1998.0	1376	651.0	41.0	88	1539	
	175	Earlham College	1358.0	1006	274.0	35.0	63	1028	
	177	East Tennessee State University	3330.0	2730	1303.0	15.0	36	6706	2
	241	Gwynedd Mercy College	380.0	237	104.0	30.0	56	716	1
	4								>
In [71]:	medi medi medi	an1=df['Apps an2=df['Enro an3=df['Top1 an4=df['Pers an5=df['S.F.	oll'].me LOperc'] sonal'].	dian() .median() median())				
	df['	Apps'].repla	ce(np.r	an,media	an1,inpl	lace=True)			

```
df['Enroll'].replace(np.nan,median2,inplace=True)
df['Top10perc'].replace(np.nan,median3,inplace=True)
df['Personal'].replace(np.nan,median4,inplace=True)
df['S.F.Ratio'].replace(np.nan,median5,inplace=True)
```

Removing Outliers

```
In [72]: def remove_outlier(column):
             q1 = column.quantile(0.25)
             q3 = column.quantile(0.75)
             iqr = q3 - q1
             lower_range = q1 - (1.5 * iqr)
             upper_range = q3 + (1.5 * iqr)
             return lower_range, upper_range
         for column in df.columns:
             if df[column].dtype != 'object': # Only process numeric columns
                 lr, ur = remove_outlier(df[column])
                 df[column] = np.where(df[column] > ur, ur, df[column])
                 df[column] = np.where(df[column] < lr, lr, df[column])</pre>
         plt.figure(figsize=(20,20))
         sns.boxplot(data=df)
         plt.title('Boxplot of Numerical Columns after the removal of outliers')
         plt.xlabel('Features')
         plt.ylabel('Values')
         plt.xticks(rotation=45)
         plt.show()
```


1. Application and Enrollment Analysis

What is the average number of applications received by colleges?

```
In [73]: df['Apps'].mean()
```

Out[73]: 2573.042471042471

What percentage of applications are accepted on average across all colleges?

```
In [74]: df['Acceptance Rate'] = df['Accept'] / df['Apps'] * 100
average_acceptance_rate = df['Acceptance Rate'].mean()
average_acceptance_rate
```

Out[74]: 74.40919070193466

What is the average enrollment rate (number of students enrolled divided by number of applications accepted)?

```
In [75]: df['Enrollment Rate'] = df['Enroll'] / df['Accept'] * 100
   average_enrollment_rate = df['Enrollment Rate'].mean()
   average_enrollment_rate
```

Out[75]: 40.78222021043922

Which college has the highest number of applications received?

```
In [76]: df.loc[df['Apps'].idxmax(), 'Names']
Out[76]: 'Arizona State University Main campus'
```

2. Academic Excellence

What is the average percentage of new students from the top 10% of their higher secondary class across all colleges?

```
In [77]: df['Top10perc'].mean()
Out[77]: 26.88159588159588
```

What is the average percentage of new students from the top 25% of their higher secondary class?

```
In [78]: df['Top25perc'].mean()
Out[78]: 55.7966537966538
```

Is there a correlation between the percentage of students from the top 10% and the top 25% of their higher secondary class?

```
In [79]: corr_perc= df['Top10perc'].corr(df['Top25perc'])
corr_perc

Out[79]: 0.9119061816018964

In [80]: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='Top10perc', y='Top25perc', data=df)
    plt.title('Scatter plot of Top 10% vs Top 25%')
    plt.xlabel('Top 10% of Students')
    plt.ylabel('Top 25% of Students')
    plt.show()
```

Scatter plot of Top 10% vs Top 25%

3. Student Demographics

What is the average number of full-time undergraduate students per college?

```
In [81]: df['F.Undergrad'].mean()
Out[81]: 2935.6480051480053
```

What is the average number of part-time undergraduate students per college?

```
In [82]: df['P.Undergrad'].mean()
Out[82]: 655.8841698841699
```

Which college has the highest number of out-of-state students?

```
In [83]: df.loc[df['Outstate'].idxmax(), 'Names']
Out[83]: 'Bennington College'
```

4. Cost and Spending

What is the average cost of room and board across all colleges?

```
In [84]: avg_room_board_cost = df['Room.Board'].mean()
    avg_room_board_cost
```

Out[84]: 4355.438223938224

What is the average estimated book cost for a student?

```
In [85]: avg_books_cost = df['Books'].mean()
avg_books_cost
```

Out[85]: 538.7471042471043

What is the average estimated personal spending for a student?

```
In [86]: avg_personal_spending = df['Personal'].mean()
avg_personal_spending
```

Out[86]: 1320.065637065637

How does the instructional expenditure per student vary across colleges?

```
In [87]: plt.figure(figsize=(10, 5))
    sns.histplot(df['Expend'])
    plt.title('Distribution of Instructional Expenditure per Student')
    plt.xlabel('Instructional Expenditure per Student')
    plt.ylabel('Frequency')
    plt.show()
```

C:\Users\kunwa\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin
g: use_inf_as_na option is deprecated and will be removed in a future version. Co
nvert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):

5. Faculty Qualifications

What is the average percentage of faculties with Ph.D.s across all colleges?

```
In [88]: average_phds = df['PhD'].mean()
average_phds
```

Out[88]: 72.77477477477

What is the average percentage of faculties with terminal degrees?

```
In [89]: average_terminal = df['Terminal'].mean()
    average_terminal
```

Out[89]: 79.78249678249678

Is there a correlation between the percentage of faculties with Ph.D.s and the graduation rate?

```
In [90]: df['PhD'].corr(df['Grad.Rate'])
Out[90]: 0.31001938561605374

In [91]: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='PhD', y='Grad.Rate', data=df)
    plt.title('Scatter plot of Ph.D. percentage vs Graduation Rate')
    plt.xlabel('Percentage of Faculties with Ph.D.s')
    plt.ylabel('Graduation Rate')
    plt.show()
```


6. Student-Faculty Interaction

What is the average student/faculty ratio across all colleges?

```
In [92]: average_ratio = df['S.F.Ratio'].mean()
   average_ratio
```

Out[92]: 14.04993564993565

Which college has the lowest student/faculty ratio?

```
In [93]: min_ratio_row = df.loc[df['S.F.Ratio'].idxmin()]

college = min_ratio_row['Names']
    min_ratio = min_ratio_row['S.F.Ratio']
    college
```

Out[93]: 'Case Western Reserve University'

Is there a correlation between the student/faculty ratio and the graduation rate?

7. Alumni Engagement

What is the average percentage of alumni who donate across all colleges?

```
In [96]: average_donation_rate = df['perc.alumni'].mean()
    average_donation_rate
```

Out[96]: 22.72200772200772

Is there a correlation between the percentage of alumni who donate and the graduation rate?

```
In [97]: df['perc.alumni'].corr(df['Grad.Rate'])
Out[97]: 0.4914075031779878

In [98]: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='perc.alumni', y='Grad.Rate', data=df)
    plt.title('Scatter plot of % Alumni who donate vs Graduation Rate')
    plt.xlabel('% Alumni who donate')
    plt.ylabel('Graduation Rate')
    plt.show()
```


8. Graduation Rates

What is the average graduation rate across all colleges?

```
In [99]: average_graduation_rate = df['Grad.Rate'].mean()
    average_graduation_rate
```

Out[99]: 65.46846846846847

Which college has the highest graduation rate?

Out[100... 'Cazenovia College'

Is there a correlation between the instructional expenditure per student and the graduation rate?

9. Overall Insights

Which factors (applications, acceptance rate, enrollment, academic excellence, costs, faculty qualifications, student/faculty ratio, alumni donations, expenditures) are most strongly associated with higher graduation rates?

```
In [103...
          columns = ['Apps', 'Accept', 'Enroll', 'Top10perc', 'Top25perc', 'F.Undergrad',
                                'Books', 'Personal', 'PhD', 'Terminal', 'S.F.Ratio', 'perc.
          correlation_matrix = df[columns].corr()
          grad_rate_correlations = correlation_matrix['Grad.Rate'].sort_values(ascending=F
          grad_rate_correlations
          Grad.Rate 1.000000
Out[103...
                       0.572458
          Outstate
          perc.alumni 0.491408
          Top10perc 0.490772
Top25perc 0.478985
          Room.Board 0.425790
          Expend
                       0.415291
          PhD
                       0.310019
          Terminal
                      0.292803
                       0.150912
          Apps
          Accept
                       0.078982
          Books
                       -0.003957
                       -0.023394
          Enroll
          F.Undergrad -0.082239
          P.Undergrad -0.265158
          Personal
                        -0.283462
          S.F.Ratio
                       -0.306276
          Name: Grad.Rate, dtype: float64
In [104...
          plt.figure(figsize=(12, 8))
          sns.barplot(x=grad_rate_correlations.index, y=grad_rate_correlations.values, pal
          plt.xticks(rotation=90)
          plt.xlabel('Factors')
          plt.ylabel('Correlation with Graduation Rate')
          plt.title('Factors Correlated with Graduation Rate')
          plt.show()
```


What recommendations can be made to colleges to improve their graduation rates based on the data analysis?

Based on the data analysis and correlation of various factors with graduation rates, the following recommendations can be made to colleges to improve their graduation rates:

Enhance Academic Excellence:

- Focus on High Achievers: Encourage enrollment of students from the top 10% and top 25% of their high school class. High academic performers tend to have higher graduation rates.
- Offer Academic Support: Provide tutoring, mentoring, and academic advising to help students succeed in their studies.

Increase Faculty Qualifications:

- Hire More Qualified Faculty: Increase the percentage of faculty with Ph.D. degrees and terminal degrees. Higher faculty qualifications are associated with better academic outcomes for students.
- Faculty Development Programs: Invest in professional development for faculty to enhance their teaching skills and keep them updated with the latest educational practices.

Improve Student-Faculty Ratio:

• Smaller Class Sizes: Aim to lower the student-faculty ratio. Smaller class sizes allow for more personalized attention and support, which can improve student outcomes.

 Hire More Faculty: Increase the number of full-time faculty members to reduce the student-faculty ratio.

Increase Instructional Expenditure:

- Invest in Instructional Resources: Allocate more funds towards instructional expenditure per student. This includes spending on teaching materials, technology, and classroom resources.
- Enhance Learning Environments: Upgrade classrooms, labs, and libraries to create conducive learning environments.

Support Alumni Engagement:

- Encourage Alumni Donations: Foster strong relationships with alumni and encourage them to donate. Higher alumni donation rates are positively correlated with graduation rates, possibly due to the improved resources and support they help provide.
- Alumni Mentorship Programs: Develop programs where alumni can mentor current students, providing guidance and support.

Improve Enrollment Strategies:

- Balanced Enrollment: Manage enrollment numbers to ensure that resources are not stretched too thin, which can negatively impact student support and graduation rates.
- Targeted Recruitment: Focus on recruiting students who are a good fit for the college's academic programs and culture.

Enhance Student Support Services:

- Comprehensive Support Services: Offer a range of support services, including academic advising, career counseling, mental health services, and financial aid counseling.
- Early Intervention Programs: Implement early warning systems to identify and support at-risk students before they fall behind.

Improve Cost Management:

- Affordable Education: Manage costs such as room and board, books, and personal
 expenses to ensure they are not prohibitive for students. This can reduce financial
 stress and help students focus on their studies.
- Financial Aid Programs: Expand scholarships, grants, and work-study programs to make college more affordable for students from diverse economic backgrounds.