CSE3241: Operating System and System Programming

Lecture-1 (Syllabus)

Sangeeta Biswas (Ph.D.)

Assistant Professor

Dept. of Computer Science and Engineering (CSE)

Faculty of Engineering University of Rajshahi (RU)

Rajshahi-6205, Bangladesh

 $E\text{-mail: sangeeta.cse} @ ru.ac.bd \ / \ sangeeta.cse.ru @ gmail.com$

November 1, 2017

At a Glance

- 1. Operating System (OS) is a software which
 - manages the computer resources (harware, software) and
 - provides an environment where application software can run in order to fullfill users' demands.
- 2. In this course, students will
 - learn very basic things of OS.
 - be familiar with the Command Line Interface (CLI) of Linux kernel based OS.
- 3. Recommended Books: [1] and [2].

Summary of Syllabus

- Overview
 - Introduction
 - System Structures
- Process Management
 - Process Concept
 - Threads
 - CPU Scheduling
- Process Coordination
 - Synchronization
 - Deadlocks
- Memory Management
 - Memory-Management Strategy
 - Virtual Memory
- Storage Management
 - File System
 - Disk Management
- Protection and Security
 - System Protection
 - System Security

Syllabus I

Overview

- Introduction
 - * What is OS?
 - * Tasks of OS
 - * Evaluation of OS
 - * Types of OS
- System Structures
 - * Computer System Operation
 - * I/O structure
 - * Storage Structure
 - * Storage Hierarchy
 - * Different Types of Protections
 - * Operating System Structure
 - * Operating System Services
 - * System Call

Process Management

- Process Concept
 - * What is Process?
 - * Operations on Process

Syllabus II

- * Co-operating Processes
- * Interprocess Communication
- Threads
 - * Overview
 - * Benefits of Threads
 - * User and Kernel Threads
- CPU Scheduling
 - * Process Scheduling
 - * Scheduling Criteria
 - * Preemptive & Non-Preemptive Scheduling
 - * Scheduling Algorithms
 - * Algorithm Evaluation
 - * Multi-Processor Scheduling

Process Coordination

- Synchronization
 - * Background
 - * Critical Section Problems
 - * Critical Region
 - * Synchronization Hardware

Syllabus III

- * Classical Problems of Synchronization
- * Semaphores
- Deadlocks
 - * What is Deadlock?
 - * Deadlock Characterization
 - * Methods for Handling Deadlocks
 - * Deadlock Prevention
 - * Deadlock Avoidance
 - * Deadlock Detection
 - * Recovery from Deadlock

Memory Management

- Memory-Management Strategy
 - * Background
 - * Logical Vs. Physical Address Space
 - * Swapping
 - * Contiguous Memory Allocation
 - * Paging
 - * Segmentation
 - * Segmentation with Paging

Syllabus IV

- Virtual Memory
 - * Background
 - * Demand Paging
 - * Page Replacement
 - * Page Replacement Algorithm
 - * Allocation of Frames
 - * Trashing

Storage Management

- File System
 - * File Concept
 - * Access Methods
 - * Directory Structure
 - * File System Structure
 - * Allocation Methods
 - * Free-Space Management
 - * Directory Implementation
 - * Efficiency and Performance
- Disk Management
 - * Disk Reliability

Syllabus V

- * Disk Formatting
- * Boot Block
- * Bad Blocks
- * Swap-Space Management
- - * I/O Hardware
 - * Polling
 - * Interrupts
 - * DMA
 - * Application I/O Interface
 - * Kernel I/O Subsystem
 - * Performance
- Protection and Security
 - System Protection
 - * Goals of Protection
 - * Domain of Protection
 - System Security
 - * Security Problem
 - * User Authentication

Syllabus VI

- * One Time Password
- * Program Threats
- * System Threats
- * Threat Monitoring
- * Encryption

Recommended Books

P. B. Galvin A. Silbeschatz and G. Gagne. Operating System Concepts. John Wiley & Sons, 9 edition, 2012.

A. S. Tanenbaum and A. S. Woodhull. Operating Systems—Design and Implementation. Pearson Prentice Hall, 3 edition, 2006.