Tomografía y la transformada de Radon Lección 07.2

Dr. Pablo Alvarado Moya

MP6123 Procesamiento Digital de Imágenes Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

II Cuatrimestre 2012

Contenido

- Tomografía
- 2 Teorema del corte central
- Transformada de Radon

¿Qué es tomografía?

- Reconstrucción 3D a partir de múltiples proyecciones
- Radiación debe atravezar los objetos a reconstruir
- Se reducirá problema a sensor 1D y un corte transversal
- Se asume fuente de radiación paralela

Interpretación de proyección

- Canal del rayo $P\Delta r\Delta z$
- Sensor $\Delta r \Delta z$
- Elemento $\Delta p \Delta r \Delta z$ en p
- Incide flujo $\phi_i(p)$
- Transfiere flujo $\phi_o(p)$
- ullet Coefic. de absorción μ

$$\phi_o(p) = \phi_i(p)e^{-\mu\Delta p}$$

• Flujo total recibido

$$\phi(r,\psi) = \phi_0 \prod_{p=0}^{P-1} e^{-\mu(p)\Delta p}$$

P. Alvarado Tomografía

Flujo total recibido

$$\phi(r,\psi) = \phi_0 \prod_{p=0}^{P-1} e^{-\mu(p)\Delta p}$$

• Sustitución de producto por sumas

$$-g_p(r,\psi) = \ln \frac{\phi(r,\psi)}{\phi_0} = \ln \left(\prod_{p=0}^{P-1} e^{-\mu(p)\Delta p} \right) = -\sum_{p=0}^{P-1} \mu(p)\Delta p$$

P. Alvarado

Teorema del corte central y la rotación

• Recuérdese el teorema del corte central:

$$I(\omega_{\mathsf{x}},0) = \mathscr{F}\left\{\sum_{y=0}^{R-1} i(x,y)\right\}$$

o en el espacio continuo

$$I(\Omega_x,0) = \mathscr{F}\left\{\int_0^R i(x,y)\,dy\right\}$$

• Recuérdese la propiedad de rotación:

$$i(\mathbf{R}\underline{\mathbf{x}}) \hookrightarrow I(\mathbf{R}\underline{\Omega})$$

Combinación:

Proyección en ángulo ψ — Linea espectral en ψ

llustración de proyección con ángulo ψ

Transformada de Radon

Proyección sobre r, con ángulo ψ :

$$P(r,\psi) = \iint i(\underline{\mathbf{x}}) \delta(\underline{\mathbf{x}}^T \underline{\mathbf{n}}_{\psi} - r) \, dx \, dy$$

- Si <u>x</u> sobre rayo de proyección
- y <u>n</u>_w vector normal a <u>rayo</u>
- entonces $\underline{\mathbf{x}} \cdot \underline{\mathbf{n}}_{\psi} = \underline{\mathbf{x}}^T \underline{\mathbf{n}}_{\psi} = r$
- r: mínima distancia de rayo a origen
- $\delta(\underline{\mathbf{x}}^T\underline{\mathbf{n}}_{\psi}-r)$

Reconstrucción espectral

Reconstrucción espectral en coordenadas polares:

$$I(\Omega_r, \psi) = \mathscr{F} \{ P(r, \psi) \}$$

donde para cada ψ se realiza una TF-1D

- El resultado de cada ψ se suma al espectro (una línea que pasa por la frecuencia cero).
- Muestreo angular elevado para poder cubrir espectro
- Traslape de líneas espectrales alrededor del origen conduce a a distorsión de forma $D(\underline{\Omega}) = 1/\rho(\underline{\Omega})$ ($\rho(\cdot)$: distancia a origen)
- Corrección de espectro resultante con $H(\underline{\Omega}) = \rho(\underline{\Omega})$
- Transformada inversa reconstruye imagen en el espacio
- Todos los pasos anteriores se realizan en el espacio.

P. Alvarado

Resumen

- Tomografía
- 2 Teorema del corte central
- Transformada de Radon

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2012 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica