3rd Aug, 2016

Recap

- Looked at a few applications of Data Mining.
- Motivation for Data Mining.
- Introduced the concept and importance of Data.

Data Mining and Knowledge Discovery

Question: Take out a few examples from the discussion till now and tell me how you represent the data.

¹Tan, P.-N., Steinbach, M., and Kumar, V. (2005). *Introduction to Data Mining.*Addison-Wesley

Question: Take out a few examples from the discussion till now and tell me how you represent the data.

- KNOW YOUR DATA.
- Procuring Data.
- Quality of Data.
- Preprocessing Steps.
- Similarity/Dissimilarity measures.

 $^{^1}$ Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison-Wesley

Question: Take out a few examples from the discussion till now and tell me how you represent the data.

- KNOW YOUR DATA.
- Procuring Data.
- Quality of Data.
- Preprocessing Steps.
- Similarity/Dissimilarity measures.
- ▶ See Example 2.1¹

¹Tan, P.-N., Steinbach, M., and Kumar, V. (2005). *Introduction to Data Mining.*Addison-Wesley

What makes data

- A data set is a collection of data objects.
 - Record
 - Point
 - Sample
 - Vector
- Data objects are described by a number of attributes.
- An attribute is a property of an object.
 - ▶ To define and then measure a characteristic of the data object.

Attributes

- A property or characteristic of an object. You have to decide what makes an attribute.
- Needs a measurement scale.
- Character of attribute: Age and ID are both integers, but with different characteristics.
- Operations on numbers can be used for values of attributes
 - \triangleright = and \neq
 - **▶** <, ≤, >, ≥
 - ▶ +, -, ×, /
- Attribute types
 - ▶ Nominal: ZIP codes, ID. $(=, \neq)$
 - ▶ Ordinal: $\{Good, better, best\}$. $(=, \neq, <, \leq, >, \geq)$
 - ▶ Interval: calender dates. ($=, \neq, <, \leq, >, \geq, +, -$)
 - Ratio: monetary quantities, counts, mass, length.

$$(=, \neq, <, \leq, >, \geq, +, -, \times, /)$$

Attributes

- Categorical vs Numeric.
- Discrete vs Continuous.
- Special consideration:
 - Asymmetric attributes (zero or nonzero).
 - Binary.

Datasets

Characteristics

- Dimensionality.
 - ▶ No. of attributes.
 - Curse of Dimensionality.
 - Dimensionality reduction.
- Sparsity
 - If most of the attribute values are zeros.
 - Advantage or Disadvantage?
- Resolution.
 - Number of students in an institute, in a dept, in a course, yearwise, batch,...
 - Girls and boys distribution.

Datasets

Characteristics

- Dimensionality.
 - ▶ No. of attributes.
 - Curse of Dimensionality.
 - Dimensionality reduction.
- Sparsity
 - If most of the attribute values are zeros.
 - Advantage or Disadvantage?
- Resolution.
 - Number of students in an institute, in a dept, in a course, yearwise, batch,...
 - Girls and boys distribution.

Datasets

Types and representation

- Record data.
 - Relational Database.
- Transaction or Market Basket Data.
 - ► TID and list of items
- Data Matrix.
 - Think of a real matrix.
- Document-term matrix (sparse matrix).
 - Each doc represented as a vector corresponding the vocabulary.

Other datasets and types

- Graph-based
 - Graph capturing relationships among data objects.
 - WWW
 - Links between page objects.
 - Data objects themselves are represented as graphs.
 - Structure of chemical compounds.
- Ordered data.
 - Sequential data.
 - Sequence data.
 - Time series data.
 - Spatial data
 - Temporal and spatial autocorrelation.

Data Quality

Some Issues

- Many a times, data is collected without an application in mind.
- Applications are developed on available data.
- Dealing with data quality issues.
 - 1. Data cleaning.
 - 2. Make algorithms tolerant to poor data quality.

Measurement and data collection issues

► Errors, Errors, and more errors...

Measurement and data collection issues

- Errors, Errors, and more errors...
- Human errors
- Limitations of measuring device.
- Procedural errors.

Measurement and data collection issues

- ► Errors, Errors, and more errors...
- Human errors
- Limitations of measuring device.
- Procedural errors.
- Types of errors.
 - Changes from the true value.
 - Missing values.
 - Even typos.
- NOISE

Evaluating Measurements.

- ▶ How do you evaluate the accuracy of weighing machine?
 - ► Test it with some standards.
- Precision: variation of repeated measurement.
- Bias: variation of measurement from the (correct) quantity being measured
- ► And finally the accuracy: closeness to the true value.

Other issues

- Outliers
 - ▶ Within object.
 - Within attribute.
- Missing values.
- Handling Missing values.
 - ▶ Eliminate them
 - Objects.
 - Attributes.
 - Estimate the missing values.
 - Ignore them.
- Inconsistent Values.

Data Preprocessing

Assuming a clean (or unclean) data, we further do the following for making the DM tasks easier (or rather not complicated)

- Aggregation.
- Sampling.
- Dimensionality reduction (Remember the curse).
- Feature subset selection.
- Feature creation
- Discretization and binarization.
- Variable Transformation.

Aggregation

Less is more sometimes!

- Our purpose is data reduction.
- Reduce the number of objects or attributes by combining them.
- Represent the quantities as a sum or an average across objects.
- Collect items to form a set of all items sold.

Why aggregation

- Less memory and processing time.
- Implies permissibility to use more expensive algos.
- A high-level view against a low-level view
 - ▶ But this could be disadvantage as we loose interesting details.
- More stability and less variability.

Sampling

Handling 10000000 points vs handling 1000 representative samples.

- Selecting a subset of data objects for analysis, instead of the entire population.
- ► For statisticians, obtaining the entire dataset is expensive, even though desirable.
- ► For data miners, processing all data is expensive.

Representative samples

- ► Sample should work as effectively as using the entire data set.
- Characteristics of data shouldn't be lost.
- Mean, variance, covariance of the sample and the population should ideally be close.

Representative samples

- Sample should work as effectively as using the entire data set.
- Characteristics of data shouldn't be lost.
- Mean, variance, covariance of the sample and the population should ideally be close.
- How do we get such samples?
 - Sampling techniques.
 - Sample size.

Sampling Approaches

- Simple random sampling
 - Sampling without replacement
 - Sampling with replacement (Gives independent and identically distributed (i.i.d))
- Stratified sampling
 - Giving importance to objects in different classes, either equally or proportionally.

Sample Size

- ► Sampling should not lead to loss of information: See Figure 2.9²
- What is the proper sample size?
- Progressive sampling
 - ► Try increasing sample size, until..

² Tan, P.-N., Steinbach, M., and Kumar, V. (2005). *Introduction to Data Mining.*Addison-Wesley

Sample Size

- ► Sampling should not lead to loss of information: See Figure 2.9²
- What is the proper sample size?
- Progressive sampling
 - Try increasing sample size, until...
 - accuracy levels off (leveling-off point)

²Tan, P.-N., Steinbach, M., and Kumar, V. (2005). *Introduction to Data Mining*. Addison-Wesley

Dimensionality Reduction

- Scenario is when you have lots of attributes, but the values could be sparse.
- Dimensionality Reduction can eliminate irrelevant features.
- More handy representation.

Dimensionality Reduction

- Scenario is when you have lots of attributes, but the values could be sparse.
- Dimensionality Reduction can eliminate irrelevant features.
- More handy representation.
- ▶ New attributes are created as a combination of old attributes.
- Principal Component Analysis (PCA).
- Singular Value Decomposition (SVD).

Feature Subset Selection

- Eliminate unwanted features.
 - Redundant features.
 - Irrelevant features.
- ▶ The problem is to find the best subset of features.
- Best, based on performance compared to the entire set of features.
- ▶ Brute force: Try out 2^n subsets of features (n is the total no. of features).

Finding the best subset of features

- Embedded approaches
 - ▶ Feature selection is embedded in the data mining algorithm.
 - Decision Trees (Wait for it!)
- Filter approaches
 - Features selected before the DM algorithm is run.
 - ► Hence independent of DM algorithm.
 - ► For instance, select attributes whose pairwise correlation is low.
- Wrapper approaches.
 - DM algorithm is a black box to find the best subset.
 - Certain procedure for selecting subsets without enumerating all of them.
- ► Feature Weighing.

Feature Creation

- Create new features, with or without retaining the original set of features.
- Feature extraction.
 - Domain specific.
 - Human face detection: Look for specific lines and edges and shades.
- Map data to a new space
 - ▶ Fourier Transformation.
 - Ask Image Processing guys.
- Feature Construction
 - density = mass/volume

Winding up

- Binarization
- Descritization
- Variable Transformation
 - using functions, say log, order reversal
- Normalization or Standardization.