Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

F	1 I	T -			
	1	2	3	4	Запас
					Ы
1	8	7	3	4	10
2	4	6	5	2	12
3	5	2	7	6	15
Потре бност	7	7	7	16	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 10 + 12 + 15 = 37$$

$$\sum b = 7 + 7 + 7 + 16 = 37$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	8	7	3	4	10
2	4	6	5	2	12
3	5	2	7	6	15
Потре	7	7	7	16	
Потре бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	8	7	3[7]	4[3]	10
2	4	6	5	2[12]	12
3	5[7]	2[7]	7	6[1]	15
Потре	7	7	7	16	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 3*7 + 4*3 + 2*12 + 5*7 + 2*7 + 6*1 = 112$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 3$	$v_2 = 0$	$v_3 = 3$	$v_4 = 4$
$u_1 = 0$	8	7	3[7]	4[3]

$u_2 = -2$	4	6	5	2[12]
$u_3 = 2$	5[7]	2[7]	7	6[1]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ij}$.

Минимальные затраты составят:

$$F(x) = 3*7 + 4*3 + 2*12 + 5*7 + 2*7 + 6*1 = 112$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.