Aufgabe 1: Mittelwerte eines periodischen Signals

Daten:

$$\hat{u} = 100 \text{ V}$$

$$T = 10 \text{ ms}$$

- a) Berechnen Sie den Gleichwert der Spannung.
- b) Berechnen Sie den Effektivwert der Spannung.

Aufgabe 2: Transformation in die symbolische Methode und zurück

- a) Transformieren Sie die im Zeitbereich beschriebene Spannung in die komplexe Darstellung. zwei Resultate angeben:
 - 1. nach der Methode der Projektion auf die vertikale Achse.
 - 2. nach der Methode der Projektion auf die horzontale Achse.

$$u = 311 \cdot \sin(\omega t + \pi/6) + 311 \cdot \cos(\omega t + \pi/3) + 311 \cdot \sin(\omega t - \pi/6)$$
, V

b) Transformieren Sie die in der komplexen Darstellung beschriebene Spannung mit der Kreisfrepuenz ω in den Zeitbereich.

zwei Resultate angeben:

- 1. nach der Methode der Projektion auf die vertikale Achse.
- 2. nach der Methode der Projektion auf die horzontale Achse.

$$\underline{U} = 19 + \text{j} \cdot 30 + 60 \angle -45^{\circ} - 10 \angle 90^{\circ}$$
, V

Aufgabe 3: Äquivalente Schaltung, Strom und Spannung

Daten:

$$U_{\rm q} = 10 \text{ V}$$

 $R = 100 \text{ C}$

$$f = 1 \text{ kHz}$$
 $C = 2 \mu\text{F}$

$$\underline{Z}_i = (10 + j \cdot 20) \Omega$$

- a) Bestimmen Sie die äquivalente Serieschaltung für R parallel zu C.
- b) Welche Werte zeigen das Ampèremeter und das Voltmeter an?

Aufgabe 4: Phasenbedingung

Daten:

$$U_{\rm q} = 10 \,\mathrm{V}$$
 $f = 1 \,\mathrm{kHz}$
 $R_1 = 1 \,\mathrm{k}\Omega$ $C = 10 \,\mathrm{\mu F}$ $L = 5 \,\mathrm{mH}$

Bestimmen Sie $\it R_{\rm 2}$, so dass $\it \underline{\it U}_{\rm q}$ gegenüber $\it \underline{\it I}_{\rm L}$ um 30° voreilt.

Aufgabe 5: Leistungsanpassung

Daten:

$$U_{\rm q} = 10 \, {\rm V}$$
 $f = 1 \, {\rm kHz}$
 $R_{\rm 1} = 1 \, {\rm k}\Omega$ $R_{\rm C} = 33 \, \Omega$ $C = 10 \, \mu {\rm F}$

- a) Bestimmen Sie R_2 und L, so dass die in R_2 umgesetzte Leistung maximal wird.
- b) Berechnen Sie die maximale Leistung P_{max} , die bei Anpassung umgesetzt wird.