Lecture 4 From Directed to Undirected Graphical Models

Xuanxi Zhang

Topics:

- Gibbs distributions / Markov Models
- Existence and Uniqueness of Markov Models
- Directed vs Undirected Graphical Models

Recall from Lecture 3: Bayesian Nets / Directed Graphical Models

$$P(X_1, X_d) = \prod_i P(X_i \mid X_{A(i)})$$

Pros:

- Efficient: Generative process along topological order.
- Self-normalised: Local factors are probabilities, so the joint model is automatically normalised.

Cons

- Conditional independencies are not explicit (rely on d-separation!).
- Lack of existence & uniqueness.

Can we alleviate some of these issues?

1 Undirected Graph Representation

Consider a graph G = (V, E) with $V = \{X_1, \dots, X_n\}$ (random variables) and E (undirected edges)

• In the directed case, we first build a factorization of the joint probability, i.e.,

$$P(X_1,\ldots,X_n) = \prod_i P(X_i \mid X_{A(i)})$$

Then, we "draw" an edge $j \to i$ whenever $j \in A(i)$.

• In the undirected case, first, we postulate that:

$$X \perp Y \mid Z$$

whenever nodes in Z separate (topologically) node X from Y on G. This represents the **Markov** property on G.

Conceptual Relationship

- Undirected Graphical Models starts with a **Conditional Independence** to define the graph, then obain the **Factorization** from the graph.
- Directed Graphical Models starts with a **Factorization** to define the graph, then obtain the **Conditional Independence** from the graph.

Question: Are directed and undirected graphical models expressing the same class of distributions? NO!

Example 1: Given Conditional Independencies

$$B \perp C \mid \{A, D\}$$

 $A \perp D \mid \{B, C\}$

Can we build a directed graphical model consistent with these conditional independencies?

Example 2: Given

- 1. $X \perp Y$
- $2. X \not\perp Y \mid Z$

Issue: Constructing a undirected model leads to failures:

- If X Z Y, then (2) fails!
- If full connected, then (1) fails!

Conclusion: Bayesian Nets (Directed Graphical Models) and Graphical Models (Undirected Graphical Models) have intersection but **not** equivalent!

- BN: Models with "canonical" topological order.
- GM: Models with some exchangeability.

2 Parameterization of GM and Gibbs Distributions

Recall BN Factorization:

$$P(X_1,\ldots,X_n) = \prod_i P(X_i \mid X_{A(i)})$$

"Building blocks" are **conditional probabilities**. This form compatible with topological order; however, **undirected models aim to remove this constraint**.

We still want a **local factorization** of the joint density (in order to beat the curse of dimensionality (CoD)). Let start with following formulation:

$$P(X_1,\ldots,X_n)=\prod_{C\in\mathcal{C}}\psi_C(X_C),$$

where $C \subseteq 2^V$ to be determined. $X_C = \{X_i \mid i \in C\}$ and ψ_C is a potential function locally on X_C (usually not a probability distribution).

We want this factorization to be compatible with the **Markov property** on G, which means X_i and X_j are conditionally independent given the rest if i, j are not neighbors in the graph, which means

$$P(X_i, X_i | \{X_k\}_{k \neq i, j}) = F(X_i)G(X_j)$$

Some calculation

$$P(X_{i}, X_{j} \mid \{X_{k}\}_{k \neq i, j}) = \frac{P(X_{1}, \dots, X_{n})}{\int P(X_{1}, \dots, X_{n}) dX_{i} dX_{j}} = \frac{\prod_{C \in \mathcal{G}} \psi_{C}(X_{C})}{\int \prod_{C \in \mathcal{G}} \psi_{C}(X_{C}) dX_{i} dX_{j}}$$

Expanding the terms,

$$\prod_{C \in \mathcal{G}} \psi_C(X_C) = \prod_{(i,j) \in C} \psi_C(X_C) \cdot \prod_{j \in C, i \notin C} \psi_C(X_C) \cdot \prod_{i \in C, j \notin C} \psi_C(X_C) \cdot \prod_{i \notin C, j \notin C} \psi_C(X_C)$$

Taking the integral leads to

$$P\left(X_{i}, X_{j} \mid \{X_{k}\}_{k \neq i, j}\right) = \frac{\prod_{(i, j) \in C} \psi_{C}(X_{C})}{\int \prod_{(i, j) \in C} \psi_{C}(X_{C}) dX_{i} dX_{j}} \cdot \frac{\prod_{j \in C, i \notin C} \psi_{C}(X_{C})}{\int \prod_{j \in C, i \notin C} \psi_{C}(X_{C}) dX_{j}} \cdot \frac{\prod_{i \in C, j \notin C} \psi_{C}(X_{C})}{\int \prod_{i \in C, j \notin C} \psi_{C}(X_{C}) dX_{i}} \cdot \frac{\prod_{i \in C, j \notin C} \psi_{C}(X_{C})}{\int \prod_{i \in C, j \notin C} \psi_{C}(X_{C})} dX_{i}$$

We want this function to be of the form: $F(X_i) \cdot G(X_i)$

- \Rightarrow (i,j) cannot belong to any C
- \Rightarrow C on; y contains nodes X_i that are connected with each other.
- $\Rightarrow C$ only contains **cliques** of G.
- Since a clique C contains all smaller cliques $C' \subset C$, we can reduce ourselves to the set \mathcal{G} of maximal cliques.
- C is a **maximal clique** if $C \cup \{x_i\}$ is not a clique for all $i \notin C$.

Summary

$$\mathcal{G} = \{C \mid C \text{ is a maximal clique of } G\}$$

 $\psi_C(X_C)$ is an arbitrary non-negative potential.

Probability distribution is parameterized as

$$p(x) = \frac{1}{Z} \prod_{C \in \mathcal{G}} \psi_C(X_C),$$

where the partition function is:

$$Z = \int \left(\prod_C \psi_C(X_C) \right) dx.$$

We say that P is a **Gibbs distribution** that factorizes over G.

Question: What is the meaning of the local potentials ψ_C ?

Example:

Given the independence:

$$X \perp Z \mid Y$$

we can factorize:

$$P(X,Y,Z) = P(X \mid Y)P(Y)P(Z \mid Y)$$

Rewriting,

$$P(X,Y,Z) = P(X)P(Y)^{\alpha}P(Y)^{1-\alpha}P(Z \mid Y)$$

which gives us:

$$\psi_1(X,Y), \quad \psi_2(Y,Z)$$

where ψ_1, ψ_2 are **not** probability distributions.

General Case:

$$P(X, Y, Z) \neq P(X, Y)P(Y, Z).$$

Question: How to list all conditional independencies involving a given variable X?

Definition (Markov Blanket):

A set $A \subseteq \mathcal{X}$ is a **Markov Blanket** for X if:

- $X \notin A$, and - A is a minimal set such that:

$$X \perp X \setminus A \cup \{X\} \mid A$$
.

Definition

What is the Markov Blanket in undirected graphical models?

• It is precisely the set of neighbors in G!

Example

Gibbs Model:

$$P(a,b,c) = \frac{1}{Z}\psi_1(a,b) \cdot \psi_2(b,c)$$

Verifying the Markov Property

If $A \perp C \mid B$, then:

$$P(a, c \mid b) = \frac{\psi_1(a, b) \cdot \psi_2(b, c)}{Z \cdot P(b)}$$

Expanding:

$$P(a,c\mid b) = \frac{\psi_1(a,b)\psi_2(b,c)}{\int \psi_1(a,b)\psi_2(b,c)\,da\,dc}$$

Factorizing:

$$P(a, c \mid b) = \frac{\psi_1(a, b)}{\int \psi_1(a, b) \, da} \cdot \frac{\psi_2(b, c)}{\int \psi_2(b, c) \, dc}$$

Conditional Independence

$$P(a \mid b) = \frac{P(a,b)}{P(b)}$$

$$= \frac{\psi_1(a,b)}{\int \psi_1(a,b) \, da} \cdot \frac{\int \psi_2(b,c) \, dc}{\int \psi_1(a,b) \, da \int \psi_2(b,c) \, dc}$$

$$= \frac{\psi_1(a,b)}{\int \psi_1(a,b) \, da}$$

Thus, $A \perp C \mid B$ holds.

A General Property

This is an instance of a more general property:

Fact: [K&F, Theorem 4.1] If P is a Gibbs distribution factorizing over G, then G is an \mathcal{I} -map for P, i.e.,

$$\mathcal{I}(G) \subseteq \mathcal{I}(P)$$

Proof Sketch

If Y separates X and Z, then there are no direct edges between X and Z.

• Any clique is either in $X \cup Y$ or in $Z \cup Y$.

Thus,

$$P(X_1,\ldots,X_n) = \frac{1}{Z}\psi_1(X,Y)\cdot\psi_2(Z,Y)$$

which reduces to the **previous example**. \square

Gibbs Factorization and Markov Property

In other words, we have:

Gibbs Factorization \Rightarrow Markov Property

Gibbs Factorization ← Markov Property ?

Question

Can we deduce that P is Gibbs with G just from the Markov property?

Theorem [Hammersley-Clifford]

Let P > 0 over X, and let G be an **undirected graph** over X. If G is an \mathcal{I} -map over P, then P is a **Gibbs distribution** w.r.t. G.

Proof Recitation

Interpretation: The Hammersley-Clifford theorem gives us an **equivalence** between two sources of structure:

• Factorization (expressed at the level of the density)

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_C \psi_C(X_C)$$

$$P(x) = e^{-F}$$

(Gibbs distribution)

 \iff

• Independence (expressed at the level of random variables)

$$X_i \perp X_j \mid X_k, k \notin \{i, j\}$$

(Markov Assumption)

Remark

Positivity assumption is necessary!

(We'll see a counter-example in HW 2.)

Definition of Factor Graphs

- A bipartite graph where nodes are both variables and factors.
- We draw an edge $X_i \to C_j$ if variable X_i appears in factor C_j .
- Ambiguity between cliques and maximal cliques disappears.

Factor Graph Representation

Question

Translation between directed and undirected models?