

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 17.11.2016

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Darstellung

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Was macht die Funktion val_l?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

- Was macht die Funktion val_l?
- Was bedeutet Äquivalenz?

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

- Was macht die Funktion val_I?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

- Was macht die Funktion val_l?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?
- Welche dieser Aussagen sind Tautologien, welche sind erfüllbar?

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

- Was macht die Funktion val_I?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?
- Welche dieser Aussagen sind Tautologien, welche sind erfüllbar?

$$\neg (P \land Q) = \neg P \lor \neg Q$$

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

- Was macht die Funktion val_I?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?
- Welche dieser Aussagen sind Tautologien, welche sind erfüllbar?

$$\neg (P \land Q) = \neg P \lor \neg Q$$

$$P \land P = P \lor P$$

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation:

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation: Wir haben unendlich viele Dominosteine.

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung:

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

Vollständige Induktion

■ Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable *n* dar:

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable *n* dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Wir haben immernoch unendlich viele Aussagen...

Zeige: A(1) ist wahr

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Wir haben immernoch unendlich viele Aussagen...

■ Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also:

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie:

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie: falls der i-te Stein fällt, so fällt auch der i + 1-te Stein.

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

Vollständige Induktion

• Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}

Formale Sprache

Wie zeigen wir unendlich viele Aussagen?

- Übersetzung und Kodierung
- Stelle Aussagen in Abhängigkeit einer Laufvariable *n* dar:

odierung

• A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.

Kodierung von Zahlen

■ Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Repräsentation vo Zahlen Wir haben immernoch unendlich viele Aussagen...

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie: falls der i-te Stein fällt, so fällt auch der i + 1-te Stein.
- Nach dem Prinzip der vollständigen Induktion fallen dann alle Steine um.

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Beweisverfahren

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von

Zweierkomplement-Darstellung

<□ > < □ > < □ > < 亘 > < 亘 > □ ≥ 9 < ℃

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von

Zahlei

Zweierkomplement-

Darstellung

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu Behauptung: (*kurz* **Beh.:**)
Beweis: (*kurz* **Bew.:**)

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - lacktriangle Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - lacktriangle Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - lacktriangle Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - lacktriangle Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Vorhin:

kas.bach@student.kit.edu

Lukas Bach lu-

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - **Teigen**, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Vorhin:

 $\underbrace{A(1) \text{ ist wahr}}_{IA}$, sowie $\underbrace{A(i) \text{ gilt}}_{IV} \to \underbrace{A(i+1) \text{ gilt}}_{IS}$ für beliebiges i $\in \mathbb{N}$

Übung zu Vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Aufgabe

Formale Sprache

 $x_0 := 0$

Übersetzung und Kodierung

Für alle $n \in \mathbb{N}_0$: $x_{n+1} := x_n + 2n + 1$

Kodierung von

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

Repräsentation vo

 $x_n = n^2$

Zahlen

gilt.

Zweierkomplement-Darstellung

Übung zu vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übungsaufgaben

Zeige die Wahrheit folgender Aussagen mit vollständiger Induktion:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \forall n \in \mathbb{N}$$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

•
$$A := \{b, n, a\}.$$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation voi Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{ banana, bananana, banananana, ... \}$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch.

Formale Sprache

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zweierkomplement-

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise?

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Übersetzung und Kodierung

Kodierung von

Repräsentation voi

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Ubersetzung und Kodierung

Sprache L₁ ⊆ A*, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? L₁ = {aaa} · {bb, aaaa}.

Kodierung von Zahlen

Repräsentation voi Zahlen

Zweierkomplement-Darstellung

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^*$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Übersetzung und Kodierung

d

■ Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.

Kodierung von Zahlen • Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}$.

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Kodierung

Kodierung von

Zweierkomplement-

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{ w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2 \}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Ubersetzung und Kodierung

Sprache L₁ ⊆ A*, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? L₁ = {aaa} · {bb, aaaa}.

Kodierung von Zahlen

• Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$

Repräsentation vo Zahlen ■ Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:

Zweierkomplement-Darstellung Zwei beliebigen Zweichen aus B.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Übersetzung und Kodierung

■ Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.

Kodierung von Zahlen

• Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$

Repräsentation vo Zahlen ■ Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:

Zweierkomplement-Darstellung

- Zwei beliebigen Zweichen aus B.
- Dann einem C oder zwei D's.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Zweierkomplement-Darstellung ■ Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.

- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}$.
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:
 - Zwei beliebigen Zweichen aus B.
 - Dann einem C oder zwei D's.
 - Dann vier Zeichen aus A.

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Kodierung

Kodierung von

Zweierkomplement-

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{ w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2 \}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:
 - Zwei beliebigen Zweichen aus B.
 - Dann einem C oder zwei D's.
 - Dann vier Zeichen aus A.
- La

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Ubersetzung und Kodierung

■ Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.

Kodierung von Zahlen

• Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$

Reprasentation voi Zahlen ■ Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:

Zweierkomplement-Darstellung

- Zwei beliebigen Zweichen aus B.
- Dann einem *C* oder zwei *D*'s.
- Dann vier Zeichen aus A.
- $L_3 = B \cdot B \cdot \{C, DD\} \cdot A \cdot A \cdot A \cdot A.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\} = 2^A$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen. Zeige:

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

Die Verknüpfung · ist assoziativ.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion ■ Die Verknüpfung · ist assoziativ:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

 $\bullet (L_1 \cdot L_2) \cdot L_3$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

• $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\}$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

Formale Sprache

• $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\})$

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

Formale Sprache

 $\begin{array}{l} \bullet \quad (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

Formale Sprache

• $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$

Übersetzung und Kodierung

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)

Kodierung von Zahlen

Repräsentation von Zahlen

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

Formale Sprache

• $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$

Übersetzung und Kodierung

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

Kodierung von

 $x \cdot e = e \cdot x = x$. (neutrales Element)

Repräsentation von Zahlen • $e := \{\varepsilon\}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

• $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:
 - $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion ■ Die Verknüpfung · ist assoziativ:

•
$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$$

Formale Sprache

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)

Übersetzung und Kodierung

 $\bullet := \{\varepsilon\}.$

Kodierung von

Repräsentation vor Zahlen

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige

Die Verknüpfung · ist assoziativ:

Formale Sprache

$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1\})$$

Kodierung

 $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_2\}$ $L_1, w_2 \in L_2, w_3 \in L_3$ = $L_1 \cdot (\{w_2w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3)$.

Kodierung von

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot e = e \cdot x = x$. (neutrales Element)

•
$$e := \{\varepsilon\}.$$

$$L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

•
$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$$

Formale Sprache

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)

Ubersetzung und Kodierung

 $\mathbf{e} := \{ \varepsilon \}.$

Kodierung von

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Repräsentation vor Zahlen ■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

Formale Sprache

$$\begin{array}{l} \bullet \ \ (L_1 \cdot L_2) \cdot L_3 = \big(\{ w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2 \} \big) \cdot L_3 = \{ w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3 \} = L_1 \cdot \big(\{ w_2 w_3 : w_2 \in L_2, w_3 \in L_3 \} \big) = L_1 \cdot \big(L_2 \cdot L_3 \big). \end{array}$$

Übersetzung und Kodierung

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

. 10 0.101 0.119

 $x \cdot e = e \cdot x = x$. (neutrales Element)

Kodierung von

 $e := \{\varepsilon\}.$

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Repräsentation vor Zahlen ■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

• o := ∅

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

•
$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$$

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

Formale Sprache

Kodierung und

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung • $e := \{\varepsilon\}.$ • $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

 $x \cdot e = e \cdot x = x$. (neutrales Element)

■ *o* := ∅

 (M, \cdot) ist damit trotzdem keine Gruppe

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige

Die Verknüpfung · ist assoziativ:

•
$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$$

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

Formale Sprache

Kodierung

Kodierung von

Zweierkomplement-

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

 $x \cdot e = e \cdot x = x$. (neutrales Element)

 $e := \{\varepsilon\}.$

 (M, \cdot) ist damit trotzdem keine Gruppe, denn es existieren keine Invers-Element.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

•
$$L^0 := \{\varepsilon\}$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{ \varepsilon \}$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_+.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-

• $L_1 := \{a\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung • $L_1 := \{a\}.$ • $L_1^0 = \{\varepsilon\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{ \varepsilon \}$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation vo

•
$$L_1 := \{a\}.$$

• $L_0 = \{\varepsilon\}, L_1 = \{\varepsilon\}, L_4 = \{\varepsilon\}$

$$L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$$

$$L_1^{2} = (\{\varepsilon\} \cdot L_1) \cdot L_1$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_+.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation voi

$$L_1 := \{a\}.$$

$$L_0 = \{s\}, L_1 = \{s\}, L_2 = \{s\}, L_3 = \{s\}, L_4 =$$

$$L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{ \varepsilon \}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Zahlen

Repräsentation vor Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $^{\bullet} L^{0} := \{ \varepsilon \}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_+.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Zahlen

Repräsentation vor Zahlen

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_2^1 = \dots$$

Potenz von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Repräsentation von

•
$$L_1 := \{a\}.$$

• $L_0 = \{\varepsilon\}, L_1 = \{\varepsilon\}, L_2$

$$L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_2^1 = \dots$$
• L_2^2

$$L_2^2$$

Potenz von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

Übersetzung und Kodierung

Formale Sprache

 $L_1 := \{a\}.$

Kodierung von

Repräsentation von

1.
$$- \{a\}$$
.

$$L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_2^1 = \dots$$

•
$$L_2^{\bar{2}} = (\{ab\}^{\bar{3}}\{c\}^4)^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

Übersetzung und Kodierung

Formale Sprache

Kodierung von

Zahlen

Repräsentation von Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$

$$L_1 = \{\varepsilon\}, L_1 = \{\varepsilon\}, L_1 = L_1$$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_2^1 = \dots$$

$$L_2^{\overline{2}} = (\{ab\}^{\overline{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von Zahlen

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_2^1 = \dots$$

•
$$L_2^{\overline{2}} = (\{ab\}^{\overline{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababcccc\}^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

Übersetzung und

Formale Sprache

Kodierung

Kodierung von

Zahlen

Repräsentation vor Zahlen

•
$$L_1 := \{a\}.$$

• $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_2^1 = \dots$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{5}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$$

Potenz von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
 - $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_2^1 = \dots$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{5}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$$

•
$$L_3 := (\{a\} \cup \{b\})^2$$

Potenz von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

Übersetzung und Kodierung

Formale Sprache

Kodierung von

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_2^1 = ...$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{5}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$$

•
$$L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L

Kodierung von

Repräsentation vo

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert

Kodierung von Zahlen

Repräsentation vo

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

Kodierung von Zahlen

Repräsentation vol Zahlen

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

Kodierung von Zahlen

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

Repräsentation vo Zahlen

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

Kodierung von Zahlen

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

Repräsentation vo Zahlen

• $L := \{a, b, c\}.L^*$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige

Zu einer formalen Sprache L ist der Konkatenationsabschluss L* definiert als $L^* := \bigcup L^i$. i∈N∩

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+ := \{ \} L^i$. $i \in \mathbb{N}_+$

Kodierung von

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

• $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, ..., b, ba, bb, ...\}$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i.$

Kodierung von Zahlen

Repräsentation vor Zahlen

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^*$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup L^i$. i∈N∩

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+ := \bigcup L^i$. $i \in \mathbb{N}_+$

Kodierung von

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

• $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, ..., b, ba, bb, ...\}$

Zweierkomplement-

• $L := \{aa, bc\}.L^* =$ $\{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \dots\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung ■ Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Formale Sprache Sprache Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^* \{a\}^*$.

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vo Zahlen

- Sprache $L_1 \subseteq A^*$, die das Teilwort ab nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

- Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^*\{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.

$$B := \{_, a, b, ..., z, A, B, ..., Z\}$$

- $C := B \cup \mathbb{Z}_9$
- $L_2 \subseteq C$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Übersetzung und Kodierung

Kodierung von

Repräsentation vol Zahlen

Zweierkomplement-Darstellung Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die das Teilwort ab nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.

$$B := \{_, a, b, ..., z, A, B, ..., Z\}$$

- $C := B \cup \mathbb{Z}_9$
- $L_2 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

Was ist alles in L drin?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von

Zahler

Zweierkomplement-

Darstellung

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L^* drin?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus {a, b}*!

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus $\{a,b\}^*! \rightarrow L^* = \{a,b\}^*$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweise: $L^* \cdot L = L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweise: $L^* \cdot L = L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

Vorraussetzung:

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

mit w = w'w'', $w' \in L^*$ und

 $w'' \in L$

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und

 $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

Beweise: $L^* \cdot L = L^+$.

mit w = w'w'', $w' \in L^*$ und

 $w'' \in L$

Repräsentation von

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L$

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L$$

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

Beweise: $L^* \cdot L = L^+$.

mit w = w'w'', $w' \in L^*$ und

 $w'' \in L$

Repräsentation von

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

Beweise: $L^* \cdot L = L^+$.

mit w = w'w'', $w' \in L^*$ und

 $w'' \in L$

Repräsentation von

Darstellung

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Formale Sprache

Übersetzung und \subset :

Kodierung

Kodierung von

Repräsentation von

Beweise: $L^* \cdot L = L^+$.

Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt:

$$L^{i+1} \subseteq L^+$$

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

 \supset :

Formale Sprache

Übersetzung und

Kodierung Kodierung von

Repräsentation von

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Beweise: $L^* \cdot L = L^+$. \subset :

Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

Weil $i + 1 \in \mathbb{N}_+$, gilt:

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Formale Sprache

Übersetzung und

Kodierung Kodierung von

Repräsentation von

Beweise: $L^* \cdot L = L^+$.

 \subset : Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

> Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$.

 \supset :

Vorraussetzung:

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Beweise: $L^* \cdot L = L^+$.

 \subset : Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Übung zu Konkatenationsabschluss

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

> Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$.

 \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Erinnerung

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

Zweierkomplement- $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt:

 $L^{i+1} \subset L^+$, also $w \in L^+$.

 \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übung zu Konkatenationsabschluss

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+$$

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

 $w'' \in L$

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

 $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übung zu Konkatenationsabschluss

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $i \in \mathbb{N}_0$: $w \in L^{j+1}$

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übung zu Konkatenationsabschluss

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 L^i

$$L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L^j$

Wegen $L^j \subset L^*$

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übung zu Konkatenationsabschluss

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$ ist w = w'w''

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

 L_1, L_2 seien formale Sprachen.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

 L_1, L_2 seien formale Sprachen.

• Wie sieht $L_1 \cdot L_2$ aus?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zamen

Repräsentation von Zahlen

Zweierkomplement-

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

 L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L₁³ aus?

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L₁³ aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L₁³ aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Herführung zu Zahlendarstellungen

Was können wir daraus machen?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{\textit{dez}} := \mathbb{Z}_{10}, A_{\textit{bin}} := \{0, 1\}, A_{\textit{oct}} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 101001111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vol Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{\textit{dez}} := \mathbb{Z}_{10}, A_{\textit{bin}} := \{0, 1\}, A_{\textit{oct}} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A^*_{bin} \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 101001111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Num_k

Einer Zeichenkette Z_k aus Ziffern

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon)=0$$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

$\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

$\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

• Wichtig: $Num_k(w) \neq num_k(w)$!

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Iständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: num₁₀(3)

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Kodierung

Kodierung von Zahlen

Zweierkomplement-

Numk

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

 num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

N (-)

Ubersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

$\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7)$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Kodierung

Kodierung von Zahlen

Zweierkomplement-

Numk

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

 num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

 $\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) = 7$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Kodierung

Kodierung von Zahlen

Zweierkomplement-

Numk

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)!$
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) = nicht definiert.$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Ubersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Kodierung von Zahlen $\overline{num_k}$

Repräsentation vor Zahlen Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(x) = 0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

■ *Num*₁₀(123)

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

 $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3)$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon) = 0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3)$

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$\operatorname{\textit{Num}}_k(\mathit{wx}) = k \cdot \operatorname{\textit{Num}}_k(\mathit{w}) + \operatorname{\textit{num}}_k(\mathit{x}) \text{ mit } \mathit{w} \in \mathit{Z}_k^* \text{ und } \mathit{x} \in \mathit{Z}_k.$$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3)$

Ubersetzung un Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + num_{10}(3)) = 10 \cdot (num_{10}(1) + num_{10}(1) + num_{10}(1)) = 10 \cdot (num_{10}(1) + num_{10}(1) + num_{10}(1) + num_{10}(1) + num_{10}(1) + num_{10}(1) = 10 \cdot (num_{10}(1) + num_{10}(1) + num_{10}(1) = 10 \cdot$

Übersetzung und Kodierung

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3$

Kodierung von Zahlen

Repräsentation von

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $\mathit{Num}_k(\mathit{wx}) = k \cdot \mathit{Num}_k(\mathit{w}) + \mathit{num}_k(\mathit{x}) \ \mathsf{mit} \ \mathit{w} \in \mathit{Z}_k^* \ \mathsf{und} \ \mathit{x} \in \mathit{Z}_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + Num_{10}(3) = 10 \cdot (Num_{10}(1) + Num_{10}(3)) = 10 \cdot (Num_{10}(1) + Num_{10}(1)) =$

Übersetzung und Kodierung

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Übersetzung und Kodieruna

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung von Zahlen

Yay?

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Kodierung un

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung von Zahlen Yay?

Repräsentation vo

Was ist der dezimale Zahlenwert der Binärzahl 1010?

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ Formale Sprache $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo

Zweierkomplement-Darstellung ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

■ Num₂(1010)

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Ubersetzung und Kodierung

Yay?

Kodierung von Zahlen Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Zahlen

• $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0)$

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Formale Sprache

 $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung

Yay?

Kodierung von Zahlen

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$ $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0)$

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Vollständige

Was ist $Num_{10}(123)$?

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ Formale Sprache $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$ $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$ $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0)$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Übersetzung und Kodierung

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung von Zahlen Yay?

k=2.

 $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$

Repräsentation von Zahlen

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

Zweierkomplement-Darstellung $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0)$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist
$$Num_{10}(123)$$
?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

■
$$Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) =$$

 $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$
 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10)) + num_2(10) + num_2(10)$

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$

Übersetzung und Kodierung

 $\begin{array}{l} 10 \cdot (\textit{Num}_{10}(1) + \textit{num}_{10}(2)) + \textit{num}_{10}(3) = \\ 10 \cdot (\textit{num}_{10}(1) + 10 \cdot \textit{num}_{10}(2)) + \textit{num}_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123. \end{array}$

Kodierung von Zahlen Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Repräsentation von Zahlen Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

Zweierkomplement-Darstellung $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Yay!

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- *Num*₈(345).
- *Num*₂(11001).
- Num₂(1000).
- *Num*₄(123).
- \blacksquare Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

■ *Num*₈(345)

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$.

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$.

Übersetzung und Kodierung

■ *Num*₂(11001)

Kodierung von Zahlen

Repräsentation von

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

• $Num_8(345) = 229$.

• $Num_2(11001) = 25.$

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zweierkomplement-

• $Num_8(345) = 229$.

• $Num_2(11001) = 25.$

■ *Num*₂(1000)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

• $Num_8(345) = 229$.

• $Num_2(11001) = 25$.

• $Num_2(1000) = 8$.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- *Num*₄(123)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- *Num*₁₆(4*DF*)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- $Num_{16}(4DF) = 1247$.

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0$

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahler

Zweierkomplement-

Darstellung

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Es gilt:

Formale Sprache

 $2\big(2\big(2(2(2\cdot 1+0)+1)+0\big)+1\big)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$

Daher, einfachere Rechenweise:

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Kodierung von

Zahlen

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$

Daher, einfachere Rechenweise:

Übersetzung und

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Kodierung

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

Kodierung von

Zahlen

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

 $Num_2(10101)$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2(2(2(1+0)+1)+0)+1)+0)+1)+0)=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

 $Num_2(10101) = 21.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktio

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung Es gilt:

$$2(2(2(2(2(2 \cdot 1 + 0) + 1) + 0) + 1) + 0 = 2^4 \cdot 1 + 2^4 \cdot 0 + 2^3 \cdot 1 + 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- *Num*₂(11101)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- Num₂(1111111111)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Einfachere Umrechnung von Zahlendarstellungen

 \blacksquare Num₁₆(A1)

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

• $Num_{16}(A1) = 161.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

- $Num_{16}(A1) = 161.$
- *Num*₁₆(*BC*)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation voi Zahlen

Zweierkomplement-Darstellung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- *Num*₁₆(14)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

div Funktion

Die Funktion div dividiert ganzzahlig.

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div 8

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

■ 22 div 8 = 2

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

div Funktion

Vollständige Induktion Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen $22 \text{ div } 8 = 2 \left(\frac{22}{8} = 2,75 \right).$

Repräsentation von Zahlen

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

Zarnen

22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Zweierkomplement-

x 0 1 2 3 4 5 6 7 8 9 10 11 12

x div 4

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

Zahlen

22 mod 8 = 6.

Repräsentation von

Fülle die Tabelle aus:

X			3	4	5	6	7	8	9	10	11	12	
x div 4	0												

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von

Fülle die Tabelle aus:

Zweierkomplement-

4 5 6 7 8 9 Χ x *div* 4 0

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

4 5 6 7 8 9

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Darstellung

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

22 mod 8 = 6.

Repräsentation von

Fülle die Tahelle aus:

rulle die 18	abell	e ai	JS.											
Х	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0										

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von

Fülle die Tabelle aus:

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Vollständige Induktion

mod Funktion

Übersetzung und Kodierung

Formale Sprache

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Zahlen x 0 1 2 3 4 5 6 7 8 9

Zweierkomplement- x div 4 0 0 0 0 1 1

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

Repräsentation von

22 mod 8 = 6.

Fülle die Tabelle aus:

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

and all it		ic a	٦٥.										
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1					

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Zweierkomplement- x div 4 0 0

Darstellung

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Zweierkomplement- x div 4 0 0

x div 4 0 0 0 0 0 1 1 1 1 1 2 2

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

X	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2		

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

Übersetzung und zurück.

Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

Fülle die Tabelle aus:

Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.
- 22 mod 8 = 6.

Fülle die Tabelle aus:

I UIIE UIE I														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4														

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

div Funktion

Vollständige Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Zweierkomplement-

mod Funktion

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

Fülle die Tabelle aus:

i une ule id														
Х	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0													

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

22 mod 8 = 6.

Fülle die Tabelle aus:

i une ule ig														
Х	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1												

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

div Funktion

Vollständige Induktion Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

Zanier

■ 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

Y	0	1	23. 2	3	4	5	6	7	8	9	10	11	12	
^				U		<u> </u>	0	'	U	J	10		12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2											

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

i une ule it	ווסטג	ic ai	JJ.											
Х	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3										

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division ung und zurück.

Übersetzung und Kodierung

eierung von 22 div 8 = 2 ($\frac{22}{8}$ = 2,75).

mod Funktion

Kodierung von

Zahlen

■ 22 mod 8 = 6.

Repräsentation von

Fülle die Tabelle aus:

i dile die it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0									

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

D

22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

i une ule il														
Х	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1								

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

Zahlen

22 mod 8 = 6.

Repräsentation von Zahlen Fülle die Tabelle aus:

i une ule il														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2							

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

22 mod 8 = 6.

Repräsentation von

Fülle die Tabelle aus:

i une ule it	ווסטג	c a	JJ.											
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3						

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

div Funktion

Vollständige

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Übersetzung und Kodierung

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$. Kodierung von

Zahlen

22 mod 8 = 6.

Fülle die Tabelle aus:

i une ule re														
											10			
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0					

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion
Die Modulo Fur

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0	1				

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

22 mod 8 = 6.

Repräsentation von Zahlen

Fülle die Tabelle aus:

	0	1	2								10			
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0	1	2			

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von

22 div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.

Zahlen

22 mod 8 = 6.

Fülle die Tabelle aus:

i ulle die 18	0	1	ມຣ. ົ່າ	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3		

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

mod Funktion

Übersetzung und Kodierung

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

Kodierung von Zahlen

- **22** div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.
- 22 mod 8 = 6.

Fülle die Tabelle aus:

i une ule id	ווסטג	c a	JO.											
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	0	

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀.

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

k-äre Darstellung

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahlen

Zweierkomplement-

Die Repräsentation einer Zahl n

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k*

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

k-äre Darstellung

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

k-äre Darstellung

Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-

k-äre Darstellung

Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung!

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Formale Sprache

k-äre Darstellung

Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-

Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung! Das · Symbol steht für Konkatenation, nicht für Multiplikation!

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Zweierkomplement-

 $Repr_{2}(29) = Repr_{2}(29 \text{ div } 2) \cdot repr_{2}(29 \text{ mod } 2)$ $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$ = $\operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$ $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$ $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ $= \mathbf{Repr}_{2}(3) \cdot \mathbf{repr}(1) \cdot 01$ $= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ $= \mathbf{Repr}_{2}(1) \cdot \mathbf{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Zweierkomplement-Darstellung $Repr_{2}(29)$ $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$ $= \operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$ $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$ = $\operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ $= \mathbf{Repr}_{2}(3) \cdot \mathbf{repr}(1) \cdot 01$ $= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ $= \mathbf{Repr}_{2}(1) \cdot \mathbf{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

Repr₂(

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Zweierkomplement-Darstellung **Repr**₂(29)

$$= \operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$$

$$= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$$

$$= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$$

$$= \operatorname{Repr}_{2}(3) \cdot \operatorname{repr}(1) \cdot 01$$

$$= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$$

$$= \operatorname{Repr}_{2}(1) \cdot \operatorname{repr}(1) \cdot 101$$

$$= 11101$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Zweierkomplement-Darstellung **Repr**₂(29)

$$= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$$

$$= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$$

$$= \operatorname{Repr}_{2}(3) \cdot \operatorname{repr}(1) \cdot 01$$

$$= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$$

$$= \operatorname{Repr}_{2}(1) \cdot \operatorname{repr}(1) \cdot 101$$

$$= 11101$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

 $Repr_2(29)$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ $= \operatorname{Repr}_{2}(3) \cdot \operatorname{repr}(1) \cdot 01$ $= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ $= \operatorname{Repr}_{2}(1) \cdot \operatorname{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Zum Beispiel:

 $Repr_2(29)$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$\begin{split} &= \text{Repr}_2(3) \cdot \text{repr}(1) \cdot 01 \\ &= \text{Repr}_2(3 \text{ div } 2) \cdot \text{repr}(3 \text{ mod } 2) \cdot 101 \\ &= \text{Repr}_2(1) \cdot \text{repr}(1) \cdot 101 \\ &= 11101 \end{split}$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

 $Repr_2(29)$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung = $\operatorname{Repr}_2(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ = $\operatorname{Repr}_2(1) \cdot \operatorname{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Repr₂(29)

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$= \mathbf{Repr}_2(1) \cdot \mathbf{repr}(1) \cdot 101$$
$$= 11101$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Zum Beispiel:

 $Repr_2(29)$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung $Repr_2(29) = Repr_2(29 \text{ div } 2) \cdot repr_2(29 \text{ mod } 2)$ $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$ = $\operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$ $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$ $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ $= \mathbf{Repr}_{2}(3) \cdot \mathbf{repr}(1) \cdot 01$ $= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ $= \mathbf{Repr}_{2}(1) \cdot \mathbf{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

$$\begin{aligned} \text{Repr}_{16}(29) &= \text{Repr}_{16}(29 \text{ div } 16) \cdot \text{repr}_{16}(29 \text{ mod } 16) \\ &= \text{Repr}_{16}(1) \cdot \text{repr}_{16}(13) \\ &= 1 \cdot D = 1D \end{aligned}$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Repr₁₆(29)
= Repr₁₆(1) · repr₁₆(13)
= 1 ·
$$D = 1D$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\operatorname{\mathbf{Repr}}_k(n) = egin{cases} \operatorname{\mathbf{repr}}_k(n) & \operatorname{falls} \ n < k \\ \operatorname{\mathbf{Repr}}_k(n \operatorname{div} k) \cdot \operatorname{\mathbf{repr}}_k(n \operatorname{mod} k) & \operatorname{falls} \ n \ge k \end{cases}$

$$Repr_{16}(29)$$

$$= 1 \cdot D = 1D$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\operatorname{\mathbf{Repr}}_k(n) = egin{cases} \operatorname{\mathbf{repr}}_k(n) & \operatorname{falls} \ n < k \\ \operatorname{\mathbf{Repr}}_k(n \operatorname{div} k) \cdot \operatorname{\mathbf{repr}}_k(n \operatorname{mod} k) & \operatorname{falls} \ n \ge k \end{cases}$

$$Repr_{16}(29)$$

$$= 1D$$

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

$$\begin{aligned} \text{Repr}_{16}(29) &= \text{Repr}_{16}(29 \text{ div } 16) \cdot \text{repr}_{16}(29 \text{ mod } 16) \\ &= \text{Repr}_{16}(1) \cdot \text{repr}_{16}(13) \\ &= 1 \cdot D = 1D \end{aligned}$$

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

Lösungen:

Repr₂(13)

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

Lösungen:

Repr₂(13) = 1101.

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Repr_k

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

- $Repr_2(13) = 1101.$
- Repr₄(15)

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

- $Repr_2(13) = 1101.$
- **Repr**₄(15) = 33.

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101.$
- **Repr**₄(15) = 33.
- Repr₁₆(268)

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übung zu Repr_k

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101.$
- **Repr**₄(15) = 33.
- **Repr**₁₆(268) = 10C.

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

bin_ℓ

Die Funktion **bin** $_\ell \colon \mathbb{Z}_{2^\ell} \to \{0,1\}^\ell$

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

bin_ℓ

Die Funktion $\textbf{bin}_\ell\colon\mathbb{Z}_{2^\ell}\to\{0,1\}^\ell$ bringt eine gegebene Binärzahl auf eine feste Länge

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_ℓ

Die Funktion $bin_\ell \colon \mathbb{Z}_{2^\ell} \to \{0,1\}^\ell$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird.

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_ℓ

Die Funktion $\mathbf{bin}_\ell\colon\mathbb{Z}_{2^\ell}\to\{0,1\}^\ell$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_\ell\colon\mathbb{Z}_{2^\ell}\to\{0,1\}^\ell$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\textbf{bin}_{\ell}(\textit{n}) = 0^{\ell - |\textbf{Repr}_2(\textit{n})|} \textbf{Repr}_2(\textit{n})$$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_ℓ

Die Funktion $\mathbf{bin}_\ell\colon\mathbb{Z}_{2^\ell}\to\{0,1\}^\ell$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Beispiel:

■ **bin**₈(3)

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

•
$$bin_8(3) = 0^{8-|Repr_2(3)|}Repr_2(3)$$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

$$ullet$$
 bin₈(3) = $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

■
$$bin_8(3) = 0^{8-|Repr_2(3)|}Repr_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11$$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Beispiel:

bin₈(3) = $0^{8-|\text{Repr}_2(3)|}\text{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$.

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

- **bin**₈(3) = $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$.
- **bin** $_{16}(3)$

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung

bin_{ℓ}

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

- **bin**₈(3) = $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$.
- **bin**₁₆(3) = 000000000000011.

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahler

Repräsentation von Zahlen

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Was ist mit negative Zahlen?

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Was ist mit negative Zahlen?

Vollständige Induktion Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Was ist mit negative Zahlen?

Vollständige Induktion Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.

Formale Sprache

Beispiel:

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: 5 = 0101_{zkpl}

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Was ist mit negative Zahlen?

Vollständige Induktion Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.

Formale Sprache

■ Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Übersetzung und Kodierung

Kodierung von

Repräsentation vo Zahlen

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge ℓ ist wie folgt definiert:

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge ℓ ist wie folgt definiert:

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Zweierkomplement

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zweierkomplement-Darstellung

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge ℓ ist wie folgt definiert:

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Wieso ℓ − 1?

Aufgaben zu Zweierkomplement-Darstellung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation voi Zahlen

Zweierkomplement-Darstellung $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$

- **Zkpl**₄(3) = 0011.
- Zkpl₄(7)
- Zkpl₄(-5)
- Zkpl₈(13)
- **Zkpl** $_{8}(-34)$
- Zkpl₈(-9)

Aufgaben zu Zweierkomplement-Darstellung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Torriale opracin

Übersetzung und Kodierung

Kodierung von

Repräsentation vo

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- Zkpl₄(3)
- **Zkpl**₄(7) = 0111.
- Zkpl₄(-5)
- **Zkpl**₈(13)
- **Zkpl** $_{8}(-34)$
- **Zkpl** $_{8}(-9)$

Aufgaben zu **Zweierkomplement-Darstellung**

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- \blacksquare **Zkpl**₄(3)
- \blacksquare **Zkpl**₄(7)
- **Zkpl**₄(-5) = 1101.
- **Zkpl**₈(13)
- **Zkpl**₈(-34)
- \blacksquare Zkpl₈(-9)

Aufgaben zu Zweierkomplement-Darstellung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- Zkpl₄(3)
- **Zkpl**₄(7)
- Zkpl₄(-5)
- **Zkpl**₈(13) = 00001101.
- **Zkpl** $_{8}(-34)$
- **Zkpl** $_{8}(-9)$

Aufgaben zu Zweierkomplement-Darstellung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und

Kodierung

Kodierung von

Danië a satati a sasa

Zahlen

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- Zkpl₄(3)
- **Zkpl**₄(7)
- **Zkpl**₄(-5)
- **Zkpl**₈(13)
- **Zkpl**₈(-34) = 10100010.
- Zkpl₈(-9)

Aufgaben zu **Zweierkomplement-Darstellung**

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Übersetzung und Kodierung

Kodierung von

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- \blacksquare **Zkpl**₄(3)
- \blacksquare **Zkpl**₄(7)
- \blacksquare **Zkpl**₄(-5)
- **Zkpl** $_{8}(13)$
- **Zkpl**₈(-34)
- **Zkpl**₈(-9) = 10001001.

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

