Формула Тейлора.

1. Представить формулой Маклорена с $o(x^n)$ фунцию

a)
$$f(x) = (x+5) \cdot e^{2x}$$
, b) $f(x) = \ln \frac{3+x}{2-x}$.

2. Представить формулой Маклорена с $o(x^{2n+1})$ функцию

$$f(x) = \sin^2 x \cdot \cos^2 x.$$

3. Представить формулой Маклорена с $o(x^3)$ функцию

$$f(x) = e^{x \cos x}.$$

4. Представить формулой Маклорена с $o(x^6)$ функцию

$$f(x) = \frac{x^2}{1 + \sin x}.$$

5. Представить формулой Тейлора в окрестности точки $x_0 = -1$ с $o((x+1)^{2n})$ функцию

$$f(x) = \frac{3x+3}{\sqrt{3-2x-x^2}}.$$

6. Представить формулой Маклорена с $o(x^{2n+1})$ функцию

$$f(x) = \arcsin x$$
.

Домашнее задание

1. Представить формулой Маклорена с $o(x^n)$ фунцию

a)
$$f(x) = \frac{x^2 + 3e^x}{e^{2x}}$$
, b) $f(x) = x\sqrt[3]{4 - 4x + x^2}$.

2. Представить формулой Маклорена с $o(x^{2n})$ функцию

$$f(x) = \sin x \cdot \cos 2x.$$

3. Представить формулой Тейлора в окрестности точки $x_0 = -1$ с $o((x+1)^{2n+1})$ функцию

$$f(x) = (x+1)^2 \cdot 2^{x^2+2x}.$$

4. Представить формулой Маклорена с $o(x^3)$ функцию

$$f(x) = \sqrt{1 + 2x - x^2} - \sqrt[3]{1 - 3x + x^3}.$$

5. Представить формулой Маклорена с $o(x^4)$ функцию

$$f(x) = \sin(\arctan x).$$

6. Представить формулой Маклорена с $o(x^5)$ функцию

$$f(x) = (1+x)^{\sin x}.$$

Задачи для самостоятельного решения

1. Представить формулой Маклорена с $o(x^n)$ фунцию

a)
$$f(x) = (x-1)e^{x/2}$$
, b) $f(x) = (x^2 - x)e^{-x}$,

c)
$$f(x) = (2x+1)\sqrt{1-x}$$
, $d)$ $f(x) = \ln(x^2 + 3x + 2)$,

e)
$$f(x) = \frac{x}{\sqrt[3]{9 - 6x + x^2}}$$
, $f(x) = \ln\left(\frac{2x^2 - 5x + 2}{2}\right)^{1/x}$.

2. Представить формулой Маклорена с $o(x^{2n})$ функцию

a)
$$f(x) = x \sin^2 2x$$
, b) $f(x) = \sin^3 x \cdot \cos x$,

3. Представить формулой Тейлора в окрестности точки $x_0 = c\ o((x-x_0)^n)$ функцию

a)
$$f(x) = (x^2 - 1)e^{2x}$$
, $x_0 = -1$, b) $f(x) = \ln(x^2 - 7x + 12)$, $x_0 = 1$.

4. Представить формулой Тейлора в окрестности точки x_0 с $o((x-x_0)^{2n+1})$ функцию

a)
$$f(x) = \frac{x^2 + x}{2x + 1}\cos \pi x$$
, $x_0 = -\frac{1}{2}$, b) $f(x) = \frac{x - 2}{\sqrt[3]{x^2 - 4x + 5}}$, $x_0 = 2$.

5. Представить формулой Маклорена с $o(x^3)$ функцию

a)
$$f(x) = \sqrt[3]{1 - 3x \cos 2x}$$
, b) $f(x) = e^{\sin x}$,

c)
$$f(x) = \sqrt[3]{1 + 3\sin x}$$
, d $f(x) = \ln(1 + \arcsin x)$.

6. Представить формулой Маклорена с $o(x^4)$ функцию

a)
$$f(x) = e^{\frac{x}{\sin x}},$$
 b) $f(x) = \frac{x}{e^x - 1},$

c)
$$f(x) = \sqrt{\cos x}$$
, d $f(x) = \frac{x}{\arcsin x}$.

7. Представить формулой Маклорена с $o(x^5)$ функцию

a)
$$f(x) = \ln(1 + x + x^2 + x^3)$$
, b) $f(x) = \frac{1}{\cos x}$,

c)
$$f(x) = e^{\frac{x}{\sqrt{1+x^2}}}$$
, d $f(x) = \ln \frac{\sin x}{x}$,

$$f(x) = \frac{1}{-\ln^2(1+x)}.$$