

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு முதலாம் தவணைப் பரீட்சை - 2025 National Field Work Centre, Thondaimanaru.

F\	fwc 1st Term Examination - 2025						
'	ரசாயனவியல் - I nemistry - I	Three Hour		02 T I			
	லவாயு மாறிலி $R=8.314\ Nm$ காதரோ மாறிலி $N_A=6.022\ >$		பிளாங்கின் மாறிலி ஒளியின் வேகம் <i>c</i>	$h = 6.63 \times 10^{-34} Js$ $= 3 \times 10^8 ms^{-1}$			
01)	நுண்ணலைக் கதிர்ப்பின் அன $12Js^{-1}$ எனும் வீதத்தில் தேவைப்பட்டதெனின் கனலடும் (1) 1.325×10^{-25} (4) 720	வெளியேற்றுகின்றத	நுண்ணலை கனல ப. குறித்த உண பறிய போட்டோன்	ுவைச் சூடாக்க 1 நிமிடம்			
02)	Mg, Al, C, S, Cl, F எனும் மூ வரிசை (1) $Al < Mg < C < S < Cl <$ (3) $C < Al < Mg < S < Cl <$ (5) $Al < Mg < C < S < F <$	< F	(2) Mg < A	சக்தி அதிகரிக்கும் சரியான $l < C < Cl < S < F$ $g < S < C < Cl < F$			
03)	$n=3, m_\ell=-1$ எனும் சக்திக் $(1)\ 2$ $(2)\ 4$	ச் சொட்டெண்களுக்கு (3) 5	தரிய அதிகூடிய இ (4) 6	இலத்திரன் எண்ணிக்கை (5) 8			
04)	இரண்டாம் ஆவர்த்தன மூலக என்பன தொடர்பான பின்வரு (1) இவை ஒவ்வொன்றும் த (2) இவற்றின் மைய அணுவ (3) இவை யாவும் ஒரே வன (4) இவற்றின் பிணைப்புக் ((5) இவற்றின் மூலக்கூற்றில் ஒழுங்கில் அமையும்.	ம் கூற்றுகளில் சரிய நத்தமது கூட்ட ஐதன க்கள் வெவ்வேறு க கை இலத்திரன் சோ கோணங்கள் <i>CH</i> ₄ <	ானது எது? றரட்டுக்களில் கொ _? லப்பாக்கத்திற்குட்ட டிக்கேத்திரகணிதத் <i>NH</i> 3 < <i>H</i> 2 <i>0</i> என்	திநிலை கூடியவையாகும். பட்டுக் காணப்படும். தை கொண்டுள்ளன. ற ஒழுங்கில் அமையும்.			
05)	அமில <i>KMnO</i> 4 இனால் <i>CH</i> 3C 	CH — CH ₃ ஆனது ₍ DH எண்ணிக்கை	0 CH ₃ − C − CH ₃ ²	_ந க மாற்றப்படும் தாக்கத்தில்			
	(1) 2 (2) 5	(3) 7	(4) 10	(5) 12			

- பிழையான கூற்றை தெரிந்தெடுக்க. 06)
 - (1) F^-,Cl^-,S^{2-} ஆகிய அயன்களின் முனைவாகு தகவு $F^- < Cl^- < S^{2-}$ எனும் ஒழுங்கில் அதிகரிக்கின்றது.
 - (2) K^+, Mg^{2+}, Na^+ ஆகியவற்றின் முனைவாக்கும் வலு $Mg^{2+} > Na^+ > K^+$ எனும் ஒழுங்கில் குறைகின்றது.
 - (3) அணுவெண் அதிகரிக்கும் போது சம இலத்திரன் ஓரணு அயன்களின் அயன் ஆரைகள் குறைகின்றன.
 - (4) 0, F, Cl, S ஆகியவற்றின் மின்னெதிர்த்தன்மை F>0>S>Cl எனும் வரிசையில் குறைகின்றது.
 - (5) Na^+ இன் அயனாரை Li இன் அணுவாரையிலும் சிறிதாகும்.
- $FBrO_3, XeF_5^+, ClF_2^-, IBrCl_3^-$ ஆகியவற்றின் மைய அணுவை சூழவுள்ள இலத்திரன் சோடிக் 07) கேத்திர கணித வடிவங்கள் முறையே
 - (1) நான்முகி, சதுரக் கூம்பகம், நேர்கோடு, சதுரத்தளம்.
 - (2) நான்முகி, எண்முகி, முக்கோண இருகூம்பகம், எண்முகி
 - (3) சதுரத்தளம், சதுரக்கூம்பகம், T –வடிவம், சீசோ
 - (4) முக்கோண கூம்பகம், முக்கோண இருகூம்பகம், முக்கோணக் கூம்பகம், சதுரத்தளம்.
 - (5) நான்முகி, முக்கோண இருகூம்பகம், தளமுக்கோணம், சதுரத்தளம்.
- உப அணுத்துணிக்கைகள் பற்றிய சரியான கூற்று எது? 08)
 - (1) எல்லா அணுக்கருக்களிலும் நியூத்திரன்கள் காணப்படும்.
 - (2) மின்புலமொன்றில் β துணிக்கையின் திரும்பலை விட α துணிக்கையின் திரும்பல் உயர்வானதாகும்.
 - (3) புரோத்தன் ஒன்றின் திணிவுடன் ஒப்பிடுகையில் இலத்திரனொன்றின் திணிவு ஏறத்தாழ $\frac{1}{1840}$ பங்காகும்.
 - (4) lpha துகள்களை He அணுவுக்கு ஒப்பானதாக கருதமுடியும்.
 - (5) நேர்க்கதிர்ப்பரிசோதனையில் பெறப்படும் துணிக்கைகள் யாவும் புரோத்தன்களாகும்.
- 09) பின்வருவனவற்றுள் எது முனைவுப் பங்கீட்டுவலுப் பிணைப்பு, அயன் பிணைப்பு, முனைவற்ற பங்கீட்டுப்பிணைப்பு என்பவற்றை கொண்ட இரசாயன இனங்களை முறையே குறிப்பிடுகின்றது?
 - (1) HCl, $BeCl_2$, I_2
- (2) HF, CaO, I_2 (3) SiO_2 , NaCl, CO_2
- (4) $CaCl_2$, MgO, Cl_2
- (5) I₂, CaO, HF
- 10) இரு முனைவு-தூண்டிய இருமுனைவை துணையிடைக் கவர்ச்சியாகக் கொண்ட சந்தர்ப்பம்
 - $(1)\ I_{2(s)}$ நீரில் கரைதல்.

- (2) $I_{2}{}_{(s)}$ ஆனது $I^{-}{}_{(aq)}$ இல் கரைதல்.
- (3) $MgCl_{2(s)}$ நீரில் கரைதல்.
- (4) $NH_{3(q)}$ நீரில் கரைதல்.
- (5) $H_2S_{(q)}$ நீரில் கரைதல்.

- 11) பின்வருவனவற்றில் **தவறான** கூற்று எது?
 - $(1)\ PCl_3, BrF_3, CO_3^{2-}, SO_3^{2-}$ எனும் இரசாயன இனங்களிடையே PCl_3, SO_3^{2-} ஆகியவற்றுக்கு மாத்திரம் ஒரே வடிவம் உண்டு.
 - (2) *O,S,Cl,F* ஆகிய மூலகங்களிடையே மிகக்கூடிய இலத்திரன் மறை பெறுகைச் சக்திப்பெறுமானத்தை F காட்டுகின்றது.
 - (3) Be,B,C,Al என்பவற்றில் மிகத் தாழ்ந்த முதலாம் அயனாக்கத் சக்தியை Al காட்டுகின்றது.
 - (4) NCl_3 , SO_3 , PCl_5 , XeF_4 எனும் இரசாயன இனங்களிடையே ஒரே முனைவு இனம் NCl_3 ஆகும்.
 - அயன்களிடையே பருமனில் மிகப் பெரிய வித்தியாசம் \mathcal{O}^{2-} $(5) Na^+, Al^{3+}, O^{2-}, F^-$ எனும் இற்கும் Al^{3+} இற்கும் இடையே உள்ளது.
- அமோனியாவைப் பின்வரும் சமன்படுத்தாத இரசாயச் சமன்பாட்டினாற் காட்டப்பட்டவாறு உயர் 12) வெப்பநிலையில் தொகுக்கலாம்.

$$NO_{(g)} + H_{2(g)} \longrightarrow NH_{3(g)} + H_2O_{(g)}$$

தொழின்முறைத் தயாரிப்பொன்றில் NOஇன் 45g இலிருந்தும் H_2 இன் $12\,g$ இலிருந்தும் NH_3 இன் $17\ g$ தொகுக்கப்பட்டதெனின் மேற்படி தாக்கத்தில் எல்லைப்படுத்தும் தாக்கியும் NH_3 இன் சதவீத விளைவும் முறையே,

(1) NO, 40%

- (2) H_2 , 66.67%
- (3) H_2 , 39.75%

- (4) $NO_{(g)}$, 66.67%
- (5) NO, 46.4%
- பின்வரும் தாக்கங்களில் இருவழி விகாரத் தாக்கமாக அமையக் கூடியது? 13)
 - (1) $Fe_3O_4 + 8HCl \rightarrow FeCl_2 + 2FeCl_3 + 4H_2O$
 - (2) $NH_4NO_3 \rightarrow N_2O + 2H_2O$
 - (3) $2H_2S + SO_2 \rightarrow 3S + 2H_2O$
 - (4) $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
 - (5) $Na_2S_2O_3 + 2HCl \rightarrow 2NaCl + S + SO_2 + H_2O$
- சூடான நிபந்தனையில் $\mathcal{CO}_{(g)}$ ஆனது $\mathit{Fe}_2\mathit{O}_3$ இற்கு மேலாகச் செலுத்தப்படுகையில் $\mathit{Fe}_2\mathit{O}_3$ 14) இன் ஒரு பகுதியானது முதலில் Fe_3O_4 ஆக மாற்றப்பட்டடு இந்த Fe_3O_4 தொடர்ந்து FeO ஆக முற்றாக மாற்றப்படுகின்றது. ஆரம்பத்தில் $16\ g\ Fe_2O_3$ பயன்படுத்தப்பட்டு மேற்குறித்த செயன்முறையின் வழி $15.6\ g$ இறுதி விளைபொருள் கிடைக்கப் பெற்றதெனின் பிரிகையடைந்த Fe_2O_3 இன் திணிவுச் சதவீதம் ($Fe_2O_3=160~g~mol^{-1}$, $FeO=72g~mol^{-1}$)
 - (1) 10
- (2) 25
- (3) 40
- (4) 50
- $0.07\ g$ திணிவுள்ள ஐதரோகாபனொன்ற மிகை O_2 உடன் தகனமடையச் செய்யப்பட்ட போது 15) STPவெளியேறிய CO_2 இன் இல் $112 \ cm^{3}$ கனவளவு ஆகும். தாக்கமடைந்த ஐதரோகாபனிற்கும் வெளியேறிய CO₂ இற்குமான மூல்விகிதம் முறையே 1:4 எனின் தகனமுற்ற ஐதரோகாபனாக அமைவது
 - (1) C_3H_6
- (2) C_4H_{10}
- (3) C_4H_8 (4) C_4H_6
- (5) C_5H_{10}

💠 16 – 20 வரையான வினாக்களுக்கான அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)
(a), (b) ஆகி யன மாத்திரம் திருத்தமானவை.	(b), (c) ஆகி யன மாத்திரம் திருத்தமானவை.	(c), (d) ஆகி யன மாத்திரம் திருத்தமானவை.	(a), (d) ஆகி யன மாத்திரம் திருத்தமானவை.	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை.

- சோடிக் 16) பின்வருவனவற்றில் ஒரே இலத்திரன் கேத்திர கணித எது ௭வை ഖഥ്പ്പുള്ളെ പ്രവേശ് ?
 - (a) CF_4 , SF_4
- (b) XeF_2 , PCl_5 (c) NH_3 , CH_4
- $(d) H_2O_1SO_2$
- 17) H — அணுநிறமாலை பற்றிய **தவறான** கூற்று / கூற்றுக்கள் எது / எவை?
 - (a) $H_{\mathcal{B}}$ எனும் கோடானது n=4 இலிருந்து n=2 இற்கான இலத்திரன் தாண்டலுடன் தொடர்பானது.
 - (b) $n=\propto, n=1$ எனும் சக்தி மட்டங்களிற்கிடையிலான சக்தி வேறுபாடு H இன் முதலாம் அயனாக்கற்சக்தியை குறிக்கும்.
 - (c) நிறமாலையின் ஒவ்வொரு கோடும் H அணுவின் சக்திமட்டமொன்றைக்குறிக்கும்.
 - (d) n=5=n=3இற்கிடையிலான சக்தி வித்தியாசம் n=6, n=4இற்கிடையிலான சக்தி வித்தியாசத்திலும் சிறிதாகும்.
- $90cm^{3}$ 18) திணிவுள்ள NaOHதிண்மம், நீரில் 10 gதூய முற்றாகக் கரைக்கப்பட்டுக் கரைசலொன்று தயாரிக்கப்பட்டது. (நீரின் அடர்த்தி $1~g~cm^{-3}$, (Na=23, O=16, H=1) இக்கரைசல் பற்றிய சரியான கூற்று / கூற்றுகள்
 - (a) கரைசலில் NaOH இன் மூல்ப்பின்னம் $rac{1}{21}$ ஆகும்.
 - (b) கரைசலின் மூலர்ச்செறிவு $rac{0.25\,mol}{0.09\,dm^3}$ இனால் தரப்படலாம்.
 - (c) கரைசலின் மூலல் திறன் $2.5 \ mol \ kg^{-1}$ ஆகும்.
 - (d) கரைசலில் NaOH இன் திணிவு நூற்றுவீதம் 10% ஆகும்.
- 19) கதோட்டுக் கதிர்கள் பற்றிய பின்வரும் கூற்றுகளில் எது / எவை **தவறானது** / **தவறானவை?**
 - (a) இவை மின்காந்தக் கதிர்ப்பின் ஒருவகையைச் சார்ந்தவை.
 - (b) இவற்றின் $^{oldsymbol{e}}/_{m}$ விகிதம் பயன்படுத்தும் வாயுவுக்கேற்ப வேறுபடும்.
 - $\left(c
 ight)$ இவை கதோட்டுலிருந்து உருவாவதுடன் கதோட்டுக்குச் செங்குத்தாகவே வெளியேறிச் செல்லும்.
 - (d) இவை சில சந்தர்ப்பங்களில் துணிக்கை இயல்பையும் வேறு சில சந்தர்ப்பங்களில் அலை இயல்பையும் வெளிக்காட்டுகின்றன.
- 20) பின்வரும் மூலக்கூறுகள் எதில் /எவற்றில் அணுக்கள் யாவும் ஒரே தளத்தில் காணப்படும்?
 - (a) SF_4
- (b) ClF_3
- (c) XeF_4
- $(d) BrF_5$

💠 21 – 25 வரையான வினாக்களுக்கான அறிவுறுத்தல் சுருக்கம்

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று		
(01)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்		
		திருத்தமான விளக்கத்தைத் தருவது.		
(02)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்குத்		
		திருத்தமான விளக்கத்தைத் தராதது.		
(03)	உண்மை	பொய்		
(04)	பொய்	உண்மை		
(05)	பொய்	பொய்		

கூற்று I

- SO_2, H_2S என்பன ஒரே மூலக்கூற்று வடிவத்தைக் கொண்டவை.
- 22) NaCl ஐ விட *KF* இற்கு அயன் தன்மை உயர்வாகும்.
- 23) COCl₂ இலுள்ள C ஐ விட HCN இலுள்ள C இற்கு மின்னெதிர்த்தன்மை குறைவாகும்.
- அசற்றிக்கமிலத்தின் (CH₃COOH)
 கொதிநிலையானது எதனொலின் (C₂H₅OH) கொதிநிலையைக் காட்டிலும் உயர்வானது.
- 25) HNO_3 மூலக்கூறிலுள்ள எல்லா N-O பிணைப்பு நீளங்களும் சமனானவை.

கூற்று II

SO₂, H₂S என்பவற்றின் பிணைப்புக் கோணங்கள் சமனானவை. கற்றயனின் பருமன் அதிகரிக்கும் போது முனைவாக்கும் ஆற்றல் குறைந்து அயன் தன்மை அதிகரிக்கும்.

COCl₂ ,HCN ஆகியவற்றில் C இன் ஒட்சியேற்ற நிலைகள் முறையே +4,+2 ஆகும்.

 CH_3COOH இன் மூலர்த்திணிவு C_2H_5OH இன் மூலர்த்திணிவை விட அதிகம்.

 HNO_3 மூலக்கூறுக்கு மூன்று உறுதியான பரிவுக்கட்டமைப்புக்கள் வரையப்படலாம்.

(25 x 2 = 50 புள்ளிகள்)