CE203 ساختمان داده ها و الگوریتم ها

سجاد شیرعلی شهرضا پاییز 1400

شنبه،10 مهر 1400

اطلاع رسابي

• ایمیل دانشگاه من:

shirali@aut.ac.ir

- نظرسنجي اول
- ٥ مهلت جدید ارسال آن: 8 صبح شنبه آینده، 17 مهر 1400
 - امتحانک اول
 - دوشنبه هفته آینده، 19 مهر 1400

 - به صورت برخط (آنلاین)
 از طریق سامانه دروس دانشگاه
 - ۰ در طی ساعت کلاس
 - به صورت انفرادی!

بحسهای مرتبط در کتاب

- جلسه دوم (ضرب و تقسیم و حل): 2.3 و 4.4
 این جلسه (تحلیل زمانی): 3
 واژه نامه ی انگلیسی به فارسی و فارسی به انگلیسی (پیوستهای 3 و 4 کتاب دکتر قدسی): http://sharif.edu/~ghodsi/books/ds-algf-dics-both.pdf

FROM LAST WEEK

THE POINT OF ASYMPTOTIC NOTATION

suppress constant factors and lower-order terms

too system dependent

irrelevant for large inputs

- **Some guiding principles:** we care about how the running time/number of operations *scales* with the size of the input (i.e. the runtime's *rate of growth*), and we want some measure of runtime that's independent of hardware, programming language, memory layout, etc.
 - We want to reason about high-level algorithmic approaches rather than lower-level details

A NOTE ON RUNTIME ANALYSIS

There are a few different ways to analyze the runtime of an algorithm:

Worst-case analysis:

What is the runtime of the algorithm on the *worst* possible input?

Best-case analysis:

What is the runtime of the algorithm on the *best* possible input?

Average-case analysis:

What is the runtime of the algorithm on the average input?

A NOTE ON RUNTIME ANALYSIS

There are a few different ways to analyze the runtime of an algorithm:

We'll mainly focus on worst case analysis since it tells us how fast the algorithm is on any kind of input

Worst-case analysis:

What is the runtime of the algorithm on the worst possible input?

Best-case analysis:

What is the runtime of the algorithm on the best possible input?

Average-case analysis:

What is the runtime of the algorithm on the average input?

We'll work with this more when we cover Randomized Algorithms!

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

English
Definition

Pictorial Definition

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

In English

T(n) = O(f(n)) if and only if T(n) is eventually upper bounded by a constant multiple of f(n) Pictorial Definition

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

In English

T(n) = O(f(n)) if and only if T(n) is eventually upper bounded by a constant multiple of f(n)

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

In English

T(n) = O(f(n)) if and only if T(n) is eventually upper bounded by a constant multiple of f(n)

In Math

T(n) = O(f(n)) if and only if there exists positive **constants** c and n_0 such that for all $n \ge n_0$

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{c} \cdot \mathsf{f}(\mathsf{n})$$

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

In English

T(n) = O(f(n)) if and only if T(n) is eventually upper bounded by a constant multiple of f(n)

In Math

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \le c \cdot f(n)$$

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is O(f(n))"?

In English

T(n) = O(f(n)) if and only if T(n) is eventually upper bounded by a constant multiple of f(n)

T(n) = O(f(n))"if and only if" $\Longrightarrow \Leftrightarrow$ $\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$ $T(n) \le c \cdot f(n) \text{ "such that"}$

"there exists"

In Math

If you're ever asked to formally prove that T(n) is O(f(n)), use the *MATH* definition:

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \le c \cdot f(n)$$

must be constants! i.e. c & n₀ cannot depend on n!

- To prove T(n) = O(f(n)), you need to announce your c & n₀ up front!
 - \circ Play around with the expressions to find appropriate choices of c & n₀ (positive constants)
 - Then you can write the proof! Here how to structure the start of the proof:

If you're ever asked to formally prove that T(n) is O(f(n)), use the *MATH* definition:

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \le c \cdot f(n)$$

must be constants! i.e. c & n₀ cannot depend on n!

- To prove T(n) = O(f(n)), you need to announce your c & n₀ up front!
 - Play around with the expressions to find appropriate choices of c & n₀ (positive constants)
 - Then you can write the proof! Here how to structure the start of the proof:

```
"Let c = \underline{\hspace{0.2cm}} and n_0 = \underline{\hspace{0.2cm}}. We will show that T(n) \le c \cdot f(n) for all n \ge n_0."
```

PROVING BIG-O BOUNDS: EXAMPLE

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \le c \cdot f(n)$$

Prove that $3n^2 + 5n = O(n^2)$.

Let c = 4 and $n_0 = 5$. We will now show that $3n^2 + 5n \le c \cdot n^2$ for all $n \ge n_0$. We know that for any $n \ge n_0$, we have:

$$5 \le n$$

$$5n \le n^2$$

$$3n^2 + 5n \le 4n^2$$

Using our choice of c and n_0 , we have successfully shown that $3n^2 + 5n \le c \cdot n^2$ for all $n \ge n_0$. From the definition of Big-O, this proves that $3n^2 + 5n = O(n^2)$.

If you're ever asked to formally disprove that T(n) is O(f(n)), use **proof by contradiction!**

If you're ever asked to formally disprove that T(n) is O(f(n)), use **proof by contradiction!**

For sake of contradiction, assume that T(n) is O(f(n)). In other words, assume there does indeed exist a choice of $c \& n_0$ s.t. $\forall n \ge n_0$, $T(n) \le c \cdot f(n)$

pretend you have a friend that comes up and says "I have a c & n_0 that will prove T(n) = O(f(n))!!!", and you say "ok fine, let's assume your c & n_0 does prove T(n) = O(f(n))"

If you're ever asked to formally disprove that T(n) is O(f(n)), use **proof by contradiction!**

For sake of contradiction, assume that T(n) is O(f(n)). In other words, assume there does indeed exist a choice of $c \& n_0$ s.t. $\forall n \ge n_0$, $T(n) \le c \cdot f(n)$

pretend you have a friend that comes up and says "I have a c & n_0 that will prove T(n) = O(f(n))!!!", and you say "ok fine, let's assume your c & n_0 does prove T(n) = O(f(n))"

Treating c & n₀ as variables, derive a contradiction!

although you are skeptical, you'll entertain your friend by saying: "let's see what happens. [some math work... and then...]
AHA! regardless of what your constants c & n_o, trusting you has led me to something *impossible!!!*"

If you're ever asked to formally disprove that T(n) is O(f(n)), use **proof by contradiction!**

For sake of contradiction, assume that T(n) is O(f(n)). In other words, assume there does indeed exist a choice of $c \& n_0$ s.t. $\forall n \ge n_0$, $T(n) \le c \cdot f(n)$

pretend you have a friend that comes up and says "I have a c & n $_0$ that will prove T(n) = O(f(n))!!!", and you say "ok fine, let's assume your c & n $_0$ does prove T(n) = O(f(n))"

Treating c & n₀ as variables, derive a contradiction!

although you are skeptical, you'll entertain your friend by saying: "let's see what happens. [some math work... and then...]

AHA! regardless of what your constants c & n₀, trusting you has led me to something *impossible!!!*"

Conclude that the original assumption must be false, so T(n) is **not** O(f(n)).

you have triumphantly proven your silly (or lying) friend wrong.

DISPROVING BIG-O: EXAMPLE

Prove that $3n^2 + 5n$ is *not* O(n).

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \le c \cdot f(n)$$

For sake of contradiction, assume that $3n^2 + 5n$ is O(n). This means that there exists positive constants $c \& n_0$ such that $3n^2 + 5n \le c \cdot n$ for all $n \ge n_0$. Then, we would have the following:

$$3n^2 + 5n \le c \cdot n$$

 $3n + 5 \le c$
 $n \le (c - 5)/3$

However, since (c - 5)/3 is a constant, we've arrived at a contradiction since n cannot be bounded above by a constant for all $n \ge n_0$. For instance, consider $n = n_0 + c$: we see that $n \ge n_0$, but n > (c - 5)/3. Thus, our original assumption was incorrect, which means that $3n^2 + 5n$ is not O(n).

BIG-O EXAMPLES

$$\log_2 n + 15 = O(\log_2 n)$$

Polynomials

Say p(n) = $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_n$ is a polynomial of degree $k \ge 1$.

Then:

i.
$$p(n) = O(n^k)$$

i.
$$p(n) = O(n^k)$$

ii. $p(n)$ is **not** $O(n^{k-1})$

$$3^n = O(4^n)$$

$$6n^3 + n \log_2 n = O(n^3)$$

BIG-O EXAMPLES

lower order terms don't matter!

$$\log_2 n + 15 = O(\log_2 n)$$

Polynomials

Say p(n) = $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ is a polynomial of degree $k \ge 1$.

Then:

i.
$$p(n) = O(n^{k})$$

i.
$$p(n) = O(n^k)$$

ii. $p(n)$ is **not** $O(n^{k-1})$

$$3^n = O(4^n)$$
 remember, big-0 is upper bound!

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is $\Omega(f(n))$ "?

English
Definition

Pictorial Definition

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is $\Omega(f(n))$ "?

In English

 $T(n) = \Omega(f(n))$ if and only if T(n) is eventually **lower bounded** by a constant multiple of f(n) Pictorial Definition

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is $\Omega(f(n))$ "?

In English

 $T(n) = \Omega(f(n))$ if and only if T(n) is eventually **lower bounded** by a constant multiple of f(n)

Let T(n) & f(n) be functions defined on the positive integers.

(In this class, we'll typically write T(n) to denote the worst case runtime of an algorithm)

What do we mean when we say "T(n) is $\Omega(f(n))$ "?

In English

 $T(n) = \Omega(f(n))$ if and only if T(n) is eventually **lower bounded** by a constant multiple of f(n)

In Math

$$T(n) = \Omega(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$T(n) \ge c \cdot f(n)$$
inequality switched directions!

```
We say "T(n) is \Theta(f(n))" if and only if both T(n) = O(f(n))
and T(n) = \Omega(f(n))
```

$$T(n) = \Theta(f(n))$$

$$\Leftrightarrow$$

$$\exists c_1, c_2, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$

ASYMPTOTIC NOTATION CHEAT SHEET

BOUND	DEFINITION (HOW TO PROVE)	WHAT IT REPRESENTS
T(n) = O(f(n))	$\exists c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, T(n) \le c \cdot f(n)$	upper bound
$T(n) = \Omega(f(n))$	$\exists c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, T(n) \ge c \cdot f(n)$	lower bound
$T(n) = \Theta(f(n))$	$T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$	tight bound

