▼ 第十一次作业

▼ 定义

- **3.1**
- **3.2**
- **3.3**
- **3.4**
- **3.5**
- **3.6**

▼ 定理

- **3.1**
- **3.2**
- **3.3**
- **3.5**
- **3.6**

▼ 例题

- **3.1**
- **3.2**

▼习题

- **3.1.2**
- **3.2.1**
- **3.2.3**
- **3.2.4**

第十一次作业

2022211363 谢牧航

定义

3.1

设有矩阵序列 $\{A^{(k)}\}$, 其中 $A^{(k)}=(a^{(k)}_{ij})_{m\times n}\in\mathbb{C}^{m\times n}$, 且 $a^{(k)}_{ij}\to a_{ij}$ 当 $k\to\infty$ 时, 称 $\{A^{(k)}\}$ 收敛,或称矩阵 $A=(a_{ij})_{m\times n}$ 为 $\{A^{(k)}\}$ 的极限,或称 $\{A^{(k)}\}$ 收敛于 A,记为

$$\lim_{k o\infty}A^{(k)}=A$$
亞文 $A^{(k)} o A$

不收敛的矩阵序列称为发散。

3.2

矩阵序列 $\{A^{(k)}\}$ 称为**有界**的,如果存在常数 M>0,使得对一切 k 都有

$$|a_{ij}^{(k)}| < M \quad (i=1,2,\ldots,m; j=1,2,\ldots,n)$$

3.3

设 A 为方阵, 且 $A^k \to O$ $(k \to \infty)$, 则称 A 为**收敛矩阵**。

3.4

把定义 3.1 中的矩阵序列所形成的无穷和 $A^{(0)}+A^{(1)}+A^{(2)}+\dots$ 称为**矩阵级数**,记为 $\sum\limits_{k=0}^{\infty}A^{(k)}$,则有

$$\sum_{k=0}^{\infty} A^{(k)} = A^{(0)} + A^{(1)} + A^{(2)} + \ldots + A^{(k)} + \ldots$$

3.5

记 $S^{(N)} = \sum\limits_{k=0}^{N} A^{(k)}$,称其为级数和的部分和。如果矩阵序列 $\{S^{(N)}\}$ 收敛,且有极限 S,则有

$$\lim_{N o\infty} S^{(N)} = S$$

那么就称矩阵级数式收敛,而且有和为S,记为

$$S = \sum_{k=0}^{\infty} A^{(k)}$$

不收敛的矩阵级数称为发散的。

3.6

如果 $\sum\limits_{k=0}^{\infty}a_{ij}^{(k))}=s_{ij}$,如果式左端 mn 个数项级数都是绝对收敛的,则称矩阵级数式是**绝对收敛**的。

定理

3.1

设 $A^{(k)} \in \mathbb{C}^{m imes n}$,则

- 1. $A^{(k)} \to O$ 的充要条件是 $||A^{(k)}|| \to 0$;
- 2. $A^{(k)} o A$ 的充要条件是 $\|A^{(k)} A\| o 0$.

这里, $\|\cdot\|$ 是 $\mathbb{C}^{m\times n}$ 上的任何一种矩阵范数。

3.2

A 为收敛矩阵的充要条件是 $\rho(A) < 1$ 。

3.3

A 为收敛矩阵的充分条件是只要有一种矩阵范数使得 $\|A\| < 1$ 。

3.5

设方阵 A 对某一种矩阵范数 $\|\cdot\|$ 有 $\|A\|<1$,则对任何非负整数 N,以 $(I-A)^{-1}$ 为部分和 $I+A+A^2+\ldots+A^N$ 的近似矩阵时,其误差为

$$\|(I-A)^{-1}-(I+A+A^2+\ldots+A^N)\| \leq rac{\|A\|^{N+1}}{1-\|A\|}$$

3.6

设幂级数

$$f(z) = \sum_{k=0}^{\infty} c_k z^k$$

的收敛半径为 r, 如果方阵 A 的谱半径 $\rho(A) < r$, 则相应矩阵幂级数

$$\sum_{k=0}^{\infty} c_k A^k$$

是绝对收敛的; 如果 $\rho(A) > r$, 则矩阵幂级数式是发散的。

例题

3.1

判断矩阵 $A = egin{bmatrix} 0.1 & 0.3 \ 0.7 & 0.6 \end{bmatrix}$ 是否为收敛矩阵。

注:矩阵 A 的 1-范数为 $\|A\|_1=0.9$,因此 A 是收敛矩阵。

3.2

研究矩阵级数 $\sum\limits_{k=0}^{\infty}A^{(k)}$ 的收敛性,其中

$$A^{(k)} = egin{bmatrix} rac{1}{2^k} & rac{\pi}{3 imes 4^k} \ 0 & rac{1}{k(k+1)} \end{bmatrix} \quad (k=1,2,\ldots)$$

$$S^{(N)} = \sum_{k=1}^{N} A^{(k)} = \begin{bmatrix} \sum_{k=1}^{N} \frac{1}{2^k} & \sum_{k=1}^{N} \frac{\pi}{3 \times 4^k} \\ 0 & \sum_{k=1}^{N} \frac{1}{k(k+1)} \end{bmatrix} = \begin{bmatrix} 1 - \left(\frac{1}{2}\right)^N & \frac{\pi}{9} 1 - \left(\frac{1}{4}\right)^N \\ 0 & \frac{N}{N+1} \end{bmatrix}$$

所以

$$S = \lim_{N o \infty} S^{(N)} = egin{bmatrix} 1 & rac{\pi}{9} \ 0 & 1 \end{bmatrix}$$

习题

3.1.2

设
$$A=egin{bmatrix} 0 & c & c \ c & 0 & c \ c & c & 0 \end{bmatrix}$$
 $(c\in\mathbb{R})$,讨论 c 为何值时, A 为收敛矩阵。

解:A 的谱半径为 ho(A)=2|c|,因此 $-rac{1}{2}< c<rac{1}{2}$ 时,A 为收敛矩阵。

3.2.1

计算得到谱半径 $\rho(A)=1$,因此 A 不是收敛矩阵。

3.2.3

(1) 求得 A 的特征值为 $\lambda_1=\lambda_2=-2$, $\rho(A)=2$ 。由于级数 $\sum\limits_{k=1}^\infty \frac{1}{k^2}z^k$ 的收敛半径为 $r=\lim\limits_{k\to\infty}\left|\frac{a_k}{a_{k+1}}\right|=\lim\limits_{k\to\infty}\frac{(k+1)^2}{k^2}=1$ 。

由于 $\rho(A) = 2 > r$, 所以矩阵幂级数发散。

(2) 求得 A 的特征值为 $\lambda_1=-3$, $\lambda_2=5$,所以 ho(B)=5。

级数
$$\sum\limits_{k=0}^{\infty}rac{k}{6^k}z^k$$
 的收敛半径为 $r=\lim\limits_{k o\infty}\left|rac{a_k}{a_{k+1}}
ight|=\lim\limits_{k o\infty}rac{k6^{k+1}}{(k+1)6^k}=6$ 。

由于 $\rho(B) < r$, 所以矩阵幂级数绝对收敛。

3.2.4

由于收敛,可得 $\lim_{k \to \infty} S^{(k)} = S$,于是有

$$\lim_{k\to\infty}A^{(k)}=\lim_{k\to\infty}(S^{(k)}-S^{(k-1)})=O$$