[CS200]- Software Tool and Technologies Lab-II

23-10-2020

Homework: 3

Team Name: Peaky Blinders Roll Numbers:11940150, 11940370, 11940380

Solution of Problem 2:

Git graph after operating- **git checkout HEAD** $^{\wedge}$ command on both the cases are demonstrated below:-(Figure-1.1 and 1.2)

Figure 1.1: Git graph before git checkout $HEAD^{\wedge}$

Git graph after git checkout HEAD^

In the 1st case, on branch Master we execute the command:- git merge test

Then we combined 2 branches together so our merge commit has 2 parents. So, on running the code:-

git checkout HEAD^

We would find that HEAD has moved to Master's 1st commit (i.e. Commit number- 0aad0b9... in Figure-1.1).

.

Lecture 1 1-2

Figure 1.2: Git graph before git checkout HEAD[∧]

Git graph after git checkout HEAD^

Similarly in the 2nd case, on branch test we execute the command:- **git merge master**Then we combined 2 branches together so our merge commit has 2 parents. So, on running the code:-

git checkout HEAD^

We would find that HEAD has moved to test branch's 1st commit (i.e. Commit number-719176d... in Figure-1.2).

Now we will see how git resolves this ambiguity

Caret $^{\wedge}$ suggests an interesting segment of a tree or a fork in the road. The caret selector becomes useful with merge commits because each one is the child of two or more parents. In the other hand, Tilde \sim is almost linear in appearance and wants to go backward in a straight line, favoring the first parent on merge commits.

Both $^{\wedge}$ and $^{\sim}$ on their own refer to the parent of the commit ($^{\wedge}$ and $^{\sim}$ both refer to the grandparent commit) But they have different meaning when they are used with numbers: $^{\wedge}$ 2 means the second parent where a commit has more than one parent because it's a merge. $^{\sim}$ 2 means up two levels in the hierarchy via the first parent if a commit has more than one parent.

Caret $^{\wedge}$ is Branch selector, So **git checkout HEAD^{\wedge}2** selects the 2nd branch of a (merge) commit by moving onto the selected branch (one step backwards on the commit-tree). Whereas Tilde \sim is Commit selector, So **git checkout HEAD\sim2** moves 2 commits backwards on the selected branch.

Lecture 1 1-3

Some Examples are shown below:-

We can specify one or more branches when merging. Then a commit has two or more parents and then $^{\land}$ is useful to indicate parents. Suppose we are on branch B1 and we have two more branches B2 and B3 (Figure-1.3). On each branch the three last commits are:

B1: A, B, C B2: P, Q, R B3: X, Y, Z

If now on branch B1 we execute the command: git merge B2 B3

Then we combined 3 branches together so our merge commit has three parents.

Figure 1.3: Git graph after git merge

We found-

 $^{\wedge}$ indicates the n'th parent, while \sim indicates the n'th ancestor in the first branch. Hence, the following result occured:

HEAD^ indicates A

HEAD^2 indicates P

 $HEAD^{\wedge}3$ indicates X

HEAD∼ indicates A

HEAD~2 indicates B

HEAD~3 indicates C

- **1.** HEAD \sim 3 = HEAD $\sim\sim\sim$ = to HEAD $^{\wedge\wedge\wedge}$ (each indicating C)
- **2.** HEAD \sim n = HEAD \sim ... \sim (n times \sim) = HEAD $^{\wedge}$... $^{\wedge}$ (n times $^{\wedge}$).
- **3.** HEAD^{\wedge 3 \neq HEAD^{$\wedge\wedge\wedge$} (HEAD^{\wedge 3 = X but HEAD^{$\wedge\wedge\wedge$} = C)}}
- **4.** HEAD $^{\wedge}$ 1 = HEAD $^{\wedge}$, but for n > 1 HEAD $^{\wedge}$ n \neq HEAD $^{\wedge}$... $^{\wedge}$ (n times $^{\wedge}$) always.

Lecture 1 1-4

One more Example is described below:-

Here is an illustration given of a sample git graph (Figure-1.4). Both commit nodes c2 and c3 are parents of commit node c1. Parent commits are ordered left-to-right.

Figure 1.4: Git-graph Sample

We found-

$$\begin{split} c1 &= c1^{\wedge}0 \\ c2 &= c1^{\wedge} = c1^{\wedge}1 = c1 \sim 1 \\ c3 &= c1^{\wedge}2 \\ c5 &= c1^{\wedge\wedge} = c1^{\wedge}1^{\wedge}1 = c1 \sim 2 \\ c4 &= c2^{\wedge}2 = c1^{\wedge\wedge}2 \\ c6 &= c2^{\wedge}3 = c1^{\wedge}3 = c1^{\wedge}2^{\wedge} \\ c7 &= c3^{\wedge}2 = c1^{\wedge}2^{\wedge}2 \end{split}$$

Thus in the two cases given in the question the HEAD always moves to the first parent i.e. last commit of the branch that **we merged into** (master in 1st case and test in the 2nd).

Reference Site:- https://stackoverflow.com/questions/2221658/whats-the-difference-between-head-and-head-in-git