# 3.1 练习题

1. 试证明确界的唯一性.

### 解答

反证. 不妨设有 a > b 都为 A 上确界,

取  $0 < \varepsilon < a - b$ , 则由确界定义知  $\exists a_n > a - \varepsilon > b$  且  $a_n < a$ ; 这与 b 也为上确界矛盾, 故上确界唯一. 下确界同理可证.

2. 设对每个  $x \in A$  成立 x < a. 问: 在  $\sup A < a$  和  $\sup A \leqslant a$  中哪个是对的?

## 解答

后者. 显然  $\sup A \leq a$  必然成立.

设  $A = \left\{1 - (\frac{1}{2})^n \mid n \in N_+\right\}$ , 显然 x < 1 对  $x \in A$  都成立, 而无论多小的  $\varepsilon$ , 都  $\exists n \in N_+ s.t. 1 - (\frac{1}{2})^n > 1 - \varepsilon$ , 即  $\sup A = 1$ .

3. 设数集 A 以  $\beta$  为上界, 又有数列  $\{x_n\} \subset A$  和  $\lim_{n \to \infty} x_n = \beta$ . 证明  $\beta = \sup A$ .

## 解答

由收敛定义可知无论多小的  $\varepsilon > 0$  都  $\exists N \in N_+$  s.t.  $n > N, \beta - x_n < \varepsilon \Rightarrow \beta - \varepsilon < x_n$ . 这就是上确界定义.

- 4. 求下列数集的上确界和下确界:
  - (1)  $\{x \in Q \mid x > 0\}$ ;

#### 解答

显然下确界是 0, 上确界是  $+\infty$ .

(2)  $\{y \mid y = x^2, x \in (-\frac{1}{2}, 1)\};$ 

#### 解答

如右图所示,下确界为0,上确界为1.

 $(3)\ \left\{\left(1+\frac{1}{n}\right)^n\ \left|\ n\in N_+\right.\right\};$ 

#### 解答

下确界为 2, 上确界为 e.

前已证  $\left(1+\frac{1}{n}\right)^n$  单调递增且极限为 e.

- $(4) \{ ne^{-n} \mid n \in N_+ \};$
- (5)  $\{\arctan x \mid x \in (-\infty, +\infty)\};$
- (6)  $\left\{ (-1)^n + \frac{1}{n}(-1)^{n+1} \mid n \in N_+ \right\};$
- $(7) \left\{ 1 + n \sin \frac{n\pi}{2} \,\middle|\, n \in N_+ \right\}.$



- 5. 证明:
  - (1)  $\sup\{x_n + y_n\} \le \sup\{x_n\} + \sup\{y_n\};$
  - (2)  $\inf\{x_n + y_n\} \ge \inf\{x_n\} + \inf\{y_n\}.$
- 6. 设有两个数集 A 和 B, 且对数集 A 中的任何一个数 x 和数集 B 中的任何一个数 y 成立不等式  $x \leq y$ . 证明: $\sup\{x_n\} \leq \{y_n\}$ .
- 7. 设数集 A 有上界, 数集  $B = \{x + c \mid x \in A\}$ , 其中 c 是一个常数. 证明:

$$\sup B = \sup A + c, \inf B = \inf A + c.$$

- 8. 设 A, B 是两个有上界的数集, 又有数集  $C \subset \{x + y \mid x \in A, y \in B\}$ , 则  $\sup C \leq \sup A + \sup B$ . 举出成立严格不等号的例子.
- 9. 设 A,B 是两个有上界的数集, 又有数集  $C \supset \{x+y \mid x \in A, y \in B\}$ , 则  $\sup C \geqslant \sup A + \sup B$ . 举出成立严格不等号的例子.

(合并以上两题可见: 当且仅当  $C = \{x + y \mid x \in A, y \in B\}$  时成立  $\sup C = \sup A + \sup B$ .)