1 Euler's Formula

One of the most famous equations in maths was discovered by Leonhard Euler. In it, he ties together i, π and e.

He found that any complex number $z = r(\cos \theta + i \sin \theta)$ could be written in the form $z = re^{i\theta}$. This means that $e^{i\theta} = \cos \theta + i \sin \theta$, where θ is the argument in radians of the complex number. Since the argument is the rotation about the origin, it leads to the most famous result, called Euler's Identity:

$$e^{i\pi} = -1$$

Euler's Formula is often referred to as polar form at university, and makes it similarly easy for us to solve problems involving complex numbers.

For example:

$$2e^{2i} \times 3e^{5i} = 6e^{7i}$$
$$e^{2i} \div e^{3i} = e^{-i}$$

If you have to change from rectangular into polar form:

If
$$z = 1 - i$$
, find z^7 .
 $|1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$
 $arg(1 - i) = -\frac{\pi}{4}$
Hence, $z = \sqrt{2}e^{-\frac{i\pi}{4}}$
 $z^7 = (\sqrt{2})^7 e^{-\frac{7i\pi}{4}}$
 $z^7 = 2^{\frac{7}{2}}e^{\frac{i\pi}{4}}$

A harder example:

Find the value of i^i

Since we know that $i = e^{\frac{i\pi}{2}}$, as it is only a revolution of $\frac{\pi}{2}$ radians to get to the imaginary axis, we can rewrite the expression as $i^i = e^{(\frac{i\pi}{2})^i}$

Then, using power rules, we simply multiply the powers together:

$$i^i = e^{\frac{i^2\pi}{2}} = e^{-\frac{\pi}{2}} = -i$$

Questions

- 1. Find the value of $(-i)^i$
- 2. Find the value of $\ln(-1)$
- 3. Suppose you have forgotten the formulas for the sine and cosine of a sum and a difference, but do remember the formula $e^{z+w}=e^ze^w$, with $z,w\in\mathbb{C}$.

Use this latter formula to find formulas for $\cos(A-B)$ and $\sin(A+B)$ with A and B real.

- 4. Determine the exact **real** value of i^{i^2}
- 5. Write the complex number $\ln{(-25e^{i^i})}$ in exact rectangular form.