- 2) A partir das duas (2) variáveis adotadas para análise:
- a) Desenvolva uma breve análise exploratória/descritiva das mesmas

Problema

Como dito anteriormente, estaremos analisando a relação entre as variáveis "chutes_man" e "gols_man" que serão referentes ao quantidade de chutes e gols do time mandante (equipe que joga em casa) respectivamente.

Importanto pacotes utilizados na análise

```
library(ggplot2)
library(car)
library(ggpubr)
library(dplyr)
library(knitr)
library(DataExplorer)
```

Conhecendo nossa base de dados, temos 36 variáveis:

```
dados <- read.csv("brasileirao_serie_a.csv")
colnames(dados)</pre>
```

```
[1] "ano_campeonato"
                                    "data"
##
                                    "rodada"
##
    [3] "horario"
                                    "arbitro"
##
   [5] "estadio"
##
   [7] "publico"
                                    "publico_max"
##
  [9] "time_man"
                                    "time_vis"
## [11] "tecnico_man"
                                    "tecnico_vis"
## [13] "colocacao_man"
                                    "colocacao_vis"
## [15] "valor equipe titular man" "valor equipe titular vis"
## [17] "idade_media_titular_man"
                                    "idade_media_titular_vis"
                                    "gols vis"
## [19] "gols man"
## [21] "gols_1_tempo_man"
                                    "gols_1_tempo_vis"
## [23] "escanteios_man"
                                    "escanteios_vis"
## [25] "faltas man"
                                    "faltas vis"
## [27] "chutes_bola_parada_man"
                                    "chutes_bola_parada_vis"
## [29] "defesas_man"
                                    "defesas_vis"
## [31] "impedimentos_man"
                                    "impedimentos_vis"
## [33] "chutes_man"
                                    "chutes_vis"
## [35] "chutes_fora_man"
                                    "chutes_fora_vis"
```

Selecionando da base de dados apenas as colunas que serão analisadas:

```
dados_filtrados <- dados %>%
   select(time = time_man, chutes = chutes_man, gols = gols_man) %>%
   filter(!is.na(chutes))
kable(head(dados_filtrados), caption="Primeiras linhas da base de dados")
```

Table 1: Primeiras linhas da base de dados

time	chutes	gols
Santos FC	3	1
CearÃ; SC	5	0
Atlético-PR	4	1
CearÃ; SC	4	0
EC Bahia	6	1
Atlético-MG	4	3

Visualizar a relação entre chutes e gols de cada time mandante

Média de gols por time:

```
media_de_gols_por_time <- dados_filtrados %>%
group_by(time) %>%
summarise_at(vars(gols),
list(media_gols=mean))
knitr::kable(media_de_gols_por_time, digits=2, caption="Média de gols por time")
```

Table 2: Média de gols por time

time	$media_gols$
América-MG	0.90
Athletico-PR	1.15
Atlético-GO	1.26
Atlético-MG	1.84
Atlético-PR	2.42
Avaà FC	0.25
Botafogo	0.95
CearÃ; SC	1.16
Chapecoense	1.15
Corinthians	1.29
Coritiba FC	0.68
Cruzeiro	1.00
CSA	0.50
EC Bahia	1.30
EC Vitória	1.00
Flamengo	1.97
Fluminense	1.30
Fortaleza	1.28
GoiÃjs EC	1.19
$Gr \tilde{A}^a mio$	1.89
Internacional	1.74
Palmeiras	2.00
ParanÃ;	0.70
RB Bragantino	1.79
São Paulo	1.28
Santos FC	1.74
Sport Recife	0.97

time	media_gols
Vasco da Gama	1.19

O time Atlético-PR tem a maior média de gols.

Média de chutes por time:

```
media_de_chutes_por_time <- dados_filtrados %>%
group_by(time) %>%
summarise_at(vars(chutes),
list(media_chutes=mean))
knitr::kable(media_de_chutes_por_time, digits=2, caption="Média de chutes por time")
```

Table 3: Média de chutes por time

time	$media_chutes$
América-MG	3.00
Athletico-PR	10.19
Atlético-GO	12.47
Atlético-MG	10.92
Atlético-PR	6.42
Avaà FC	8.00
Botafogo	10.18
CearÃ; SC	10.41
Chapecoense	5.75
Corinthians	9.97
Coritiba FC	10.63
Cruzeiro	7.20
CSA	6.50
EC Bahia	9.54
EC Vitória	3.64
Flamengo	12.43
Fluminense	8.95
Fortaleza	10.24
Goiás EC	10.74
$Gr \tilde{A}^a mio$	11.43
Internacional	9.56
Palmeiras	11.47
ParanÃ;	3.00
RB Bragantino	16.16
São Paulo	10.67
Santos FC	10.33
Sport Recife	8.14
Vasco da Gama	8.75

O time RB Bragantino tem a maior média de chutes

Plot quantil-quantil pra verificarmos a validade de cada distribuição das variáveis:

plot_qq(dados_filtrados, by="gols")

plot_qq(dados_filtrados, by="chutes")

Visualizando por meio do gráfico de barra o número de gols de cada time

```
ggplot(as.data.frame(media_de_gols_por_time),
        aes(x=time, y=media_gols, fill = time))+
geom_col(position="dodge")+labs(x="Time", y="Quantidade de gols")+
theme(axis.text.x = element_blank())
```


Visualizando por meio do gráfico de barra o número de chutes de cada time

```
ggplot(as.data.frame(media_de_chutes_por_time), aes(x=time, y=media_chutes, fill = time))+
geom_col(position="dodge")+
labs(x="Time", y="Quantidade de chutes")+
theme(axis.text.x = element_blank())
```


b) Desenvolva e interprete de forma prática uma análise de correlação.

```
#Calculando coeficiente de correlação de pearson cor(dados_filtrados$chutes,dados_filtrados$gols)
```

[1] 0.1723087

```
#Teste estatístico do grau de correlação
cor.test(dados_filtrados$chutes,dados_filtrados$gols)
```

```
##
## Pearson's product-moment correlation
##
## data: dados_filtrados$chutes and dados_filtrados$gols
## t = 4.7937, df = 751, p-value = 1.974e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1021200 0.2407902
## sample estimates:
## cor
## 0.1723087
```

```
#Outros tipos de correlação
cor(dados_filtrados$chutes,dados_filtrados$gols, method="kendall")
## [1] 0.1412668
cor(dados_filtrados$chutes,dados_filtrados$gols, method="spearman")
## [1] 0.1814503
  c) Desenvolva e interprete de forma prática uma análise de regressão linear simples, incluindo a
     análise de resíduos e previsões para alguns valores estabelecidos para a variável independente, X = x.
# Modelo de Regressao Linear Simples (MRLS)
mod <- lm(chutes ~ gols, data = dados_filtrados)</pre>
# Coeficientes Estimados
mod
##
## Call:
## lm(formula = chutes ~ gols, data = dados_filtrados)
## Coefficients:
## (Intercept)
                       gols
##
         8.511
                      0.977
# Inferências
summary(mod)
##
## lm(formula = chutes ~ gols, data = dados_filtrados)
##
## Residuals:
       Min
                1Q Median
                                 3Q
                                        Max
## -10.465 -5.465 -1.442
                             4.489
                                     20.535
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 8.5111
                             0.3598 23.655 < 2e-16 ***
## gols
                 0.9770
                             0.2038
                                     4.794 1.97e-06 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 6.178 on 751 degrees of freedom
## Multiple R-squared: 0.02969,
                                     Adjusted R-squared: 0.0284
## F-statistic: 22.98 on 1 and 751 DF, p-value: 1.974e-06
#Gráfico de relação
plot(dados_filtrados$chutes, dados_filtrados$gols, xlab="chutes", ylab="gols")
```



```
## Analise grafica baseada no modelo estimado
par(mfrow=c(2,2), mar=c(3,3,3,3))
plot(mod)
```


Normalidade dos residuos: shapiro.test(mod\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: mod$residuals
## W = 0.93874, p-value < 2.2e-16</pre>
```

Outliers nos residuos: summary(rstandard(mod))

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -1.695425 -0.885386 -0.233911 0.000022 0.727833 3.326820

Independencia dos residuos

durbinWatsonTest(mod)

```
## lag Autocorrelation D-W Statistic p-value ## 1 0.5278336 0.9413638 0 ## Alternative hypothesis: rho != 0
```

Ajuste de um Modelo de Regressão Linear Simples Chutes x gols marcados


```
# Prevendo a quantidade de chutes para um time com 5 gols
df_chutes <- data.frame(gols = c(5))
predict(mod, df_chutes)</pre>
```

1 ## 13.39601