Low dropout micro power consumption LDO

JC53XX series

CMOS voltage regulator circuit

500mA

JC53XX series are low dropout, high precision output developed using CMOS technology Voltage, ultra-low power consumption current, positive voltage type voltage regulator circuit. Due to built-in Low on-resistance transistor, so the input and output voltage difference is low. Maximum working voltage can Up to 10V, suitable for application circuits requiring higher withstand voltage.

■ Features

·High output voltage accuracy. Accuracy ±2%

•The input and output pressure difference is low. Typical value 15mV Iout=1mA

·Ultra-low power consumption current. Typical value 1.2uA ·Low output voltage temperature drift Typical value 50 PPm / $^{\circ}$ C

·Input withstand voltage. Increase to 10V to maintain output regulation

·Output short circuit protection Short circuit current 50 mA

■ Purpose:

- · Regulated power supply using battery-powered equipment
- ·Stabilized power supply for communication equipment
- ·Stabilized power supply for home appliances and toys
- ·Stabilized power supply for mobile phones
- ·Portable Medical Instrument Power Supply

■ Product catalog

model	Output voltage (Note)	error	Print MARK	Print MARK
			SOT-89 TO-92	SOT-23-3
JC5312	1.2V	±2%	M5312B	5312B
JC5315	1.5V	±2%	M5315B	5315B
JC5317	1.7V	±2%	M5317B	5317B
JC5318	1.8V	±2%	M5318B	5318B
JC5321	2.1V	±2%	M5321B	5321B
JC5325	2.5V	±2%	M5325B	5325B
JC5327	2.7V	±2%	M5327B	5327B
JC5328	2.8V	±2%	M5328B	5328B
JC5330	3.0V	±2%	M5330B	5330B
JC5333	3.3V	±2%	M5333B	5333B
JC5336	3.6V	±2%	M5336B	5336B
JC5338	3.8V	±2%	M5338B	5338B
JC5344	4.4V	±2%	M5344B	5344B
JC5350	5.0V	±2%	M5350B	5350B

Note: If you want to use products other than the above output voltage range, customers can request customization. The output voltage range is $1.2V \sim 7V$, every 0.1V Subdivide.

Page 1 of 15

Package type and pin:

	(Unless otherwise specific	ed: Ta=25°C)
mark	Absolute maximum rating	unit
V_{IN}	12	V
V_{OUT}	V ss -0.3~ V $_{\rm IN}$ +0.3	
P _D	SOT_89 500	Mw
	TO_92 300	
	SOT_23 200	
T opr	-40~+85	°C
$T_{\rm stg}$	-40~+125	
	V in V out P d T opr	$\begin{array}{ccccc} V_{\text{ IN}} & & 12 \\ V_{\text{ OUT}} & V_{\text{ ss}} \text{ -} 0.3 V_{\text{ IN}} + 0.3 \\ P_{\text{ D}} & \text{SOT_89 500} \\ & & \text{TO_92 300} \\ & & \text{SOT_23 200} \\ T_{\text{ opt}} & & \text{-}40 + 85 \end{array}$

Note that the absolute maximum rating refers to the rating that cannot be exceeded under any conditions.

If this rating is exceeded, it may cause physical damage such as product deterioration.

\blacksquare Electrical properties:

JC53XX series (JC53	312, output voltag	ge +1.2V)	(Unless of	therwise s	pecified: T	a=25°C)	
project	mark	condition	The small value	es t ypical value	maximun value	n unit	Determination Circuit
The output voltage	V out	V IN =2. 2V, I OUT =40mA	1.176	1.2	1.224	V	1
Output current *1	I out	V IN = $2.2V$	180			mA	3
Input and output pressur	re *2 V drop	I OUT = 10 mA I OUT = 100 mA		25 280	35 380	mV	1
Input stability	ΔV OUT1 ΔV IN ·V OUT	$2.2V \le V$ IN $\le 10V$ I OUT = $10mA$		0.05	0.2	%/V	
Load stability	ΔV out2	V IN =2.2V 1.0mA <i 100ma<="" out<="" td=""><td></td><td>15</td><td>30</td><td>mV</td><td></td></i>		15	30	mV	
Output voltage temperat number	ure sy \$t√mo ∪т ∆Ta·V o∪т	V IN =2.2V, I OUT =1mA -40°C≤Ta≤85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit cu	arrent Ilim	Vout=0V		50	70	mA	

53XX series (JC53)	is, output voitu	56 (1.5 ()	`	therwise s			
project	mark	condition	The small	estypical	maximum	unit	Determination
			value	value	value		Circuit
The output voltage	V out	V IN =2. 5V, I OUT =40mA	1.470	1.5	1.530	V	1
Output current *1	I out	V IN = $2.5V$	220			mA	3
nput and output pressure	*2 V drop	I OUT =10 mA		20	28	mV	1
		I OUT =100 mA		200	280		
Input stability	$\triangle V$ out1	2.5V≤V IN≤ 10V		0.05	0.2	%/V	
	△V IN ·V OUT	I OUT =10mA					
Load stability	$\triangle V$ out2	V in =2.5 V		15	30	mV	
		1.0mA≤I out≤ 100mA					
utput voltage temperatu	re sy∆at&тио∪т	V in =2.5V, I out = $1mA$		±50	± 100	Ppm/	
number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C				°C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit cur	rent Ilim	Vout=0V		50	70	mA	

JC53XX series (JC5317,	output volta	age +1.7V)	(Unless of	herwise s	pecified: T	a=25°C)		
project	mark	condition	The small	estypical	maximum unit		Determination	
			value	value	value		Circuit	
The output voltage	V out	V in =2.7V, I out = $40mA$	1.666	1.7	1.734	V	1	
Output current *1	I out	V in = 2.7 V	260			mA	3	
Input and output pressure *2	V_{drop}	I OUT =10 mA		17	twenty	foumV	1	
		I OUT =100 mA		160	240			

Input stability	$\triangle V_{\text{IN}}^{\triangle V}. \overset{\text{OUT1}}{V}_{\text{OUT}}$	$\begin{array}{c} 2.7 V \leq V \text{ IN} \leq 10 V \\ I \text{ OUT} = l \text{ mA} \end{array}$	0.05	0.2	%/V	
Load stability	ΔV out2	V IN =2.7V	30	45	mV	
		$1.0mA \le I \text{ outs } 150mA$				
Output voltage temperate	ure sy \$t∛ np∪⊤	V in =2.7V, I out = $1mA$	±50	± 100	Ppm/	
number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C			$^{\circ}\mathrm{C}$	
Current consumption	I ssı	V IN =10V without load	1.2	2.5	uA	2
Input voltage	VIN	-		10	V	
Output short circuit cu	rrent Ilim	Vout=0V	50	70	mA	

JC53XX series (JC53	18, output volta	ge +1.8V)	(Unless o	therwise s	specified:	Ta=25°C)	
project	mark	condition	The smal value	lestypical value	maximu value	m unit	Determination Circuit
The output voltage	V out	V IN =2. 8V, I OUT =40mA	1.764	1.8	1.836	V	1
Output current *1	I out	V IN = 2.8V	280			mA	3
Input and output pressure	e *2 V drop	I OUT =10 mA I OUT =100 mA		15 140	twenty 210	one mV	1
Input stability	ΔV out i ΔV in $\cdot V$ out	$2.8V \le V$ IN $\le 10V$ I OUT = 1mA		0.05	0.2	%/V	
Load stability	ΔV out2	$V \text{ in } = 2.8V$ $1.0\text{mA} \leq I \text{ outs} \leq 150\text{mA}$		30	45	mV	
Output voltage temperatu number	ure sy ∆t& houт △Ta·V оuт	V in =2.8V, I out =1mA -40°C≤Ta≤85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit cu	rrent Ilim	Vout=0V		50	70	mA	

JC53XX series (JC53	21, output volta	ge +2.1V)	(Unless o	therwise s	pecified: T	a=25°C)	
project	mark	condition	The small	lestypical	maximun	n unit	Determination
			value	value	value		Circuit
The output voltage	V out	V in = 3.1 V , I out =40 mA	2.058	2.1	2.142	V	1
Output current *1	I out	V IN = 3.1V	320			mA	3
Input and output pressur	e *2 V drop	I out =10 mA		13	18	mV	1
		I out = 100 mA		130	180		
Input stability	ΔV out 1	3.1V≤V IN≤ 10V		0.05	0.2	%/V	
	$\Delta V_{\text{ IN}} \cdot V_{\text{ OUT}}$	I OUT = 1mA					
Load stability	ΔV out2	V IN =3.1V		30	45	mV	
		1.0mA≤I out≤ 150mA					
Output voltage temperate	ure s y∆t& nъ∪т	V IN =3.1V, I OUT =10mA		±50	± 100	Ppm/	
number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C				°C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit curre	nt Ilim	Vout=0V		50	70	mA	

Page 3 of 15

53XX series (JC53	25, output volta	ge +2.5V)	(Unless o	inerwise s	pecified: T	a-25°C)		
project	mark	condition	The smallestypical		maximun	n unit	Determination	
			value	value	value		Circuit	
The output voltage	V out	V IN = 3.5 V , I OUT = 50 m A	2.450	2.5	2.550	V	1	
Output current *1	I out	V IN = $3.5V$	350			mA	3	
nput and output pressure	*2 V drop	I OUT =10 mA		12	17	mV	1	
		I OUT =100 mA		120	170			
Input stability	ΔV out1	3.5V≤V IN≤ 10V		0.05	0.2	%/V		
	ΔV in $\cdot V$ out	I OUT =1mA						
Load stability	$\triangle V$ out2	V IN =3.5 V		30	45	mV		
		1.0mA≤I out≤ 150mA						
Output voltage temperatu	ire sy ste mo⊔⊤	V in =3.5V, I out = $10mA$		±50	± 100	Ppm/		
number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C				°C		
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2	
Input voltage	VIN	-			10	V		
utput short circuit curre	nt Ilim	Vout=0V		50	70	mA		

JC53XX series (JC53	327, output vol	tage +2.7V)	(Unless	otherwise	specified: T	[a=25°C])
project	mark	condition	The small value	es t ypical value	maximum value	unit	Determination Circuit
The output voltage	V out	V in = 3.7 V , I out =50 mA	2.646	2.7	2.754	V	1
Output current *1	I out	V IN = $3.7V$	400			mA	3
Input and output pressure	*2 V drop	I OUT = 10 mA I OUT = 200 mA		12 220	18 300	mV	1
Input stability	ΔV outi ΔV in ·V out	$3.7V \le V \text{ in} \le 10V$ $I \text{ out} = lmA$		0.05	0.2	%/V	
Load stability	ΔV out2	V in =3.7V 1.0mA≤I out≤ 150mA		25	40	mV	
Output voltage temperatur number	e sy∆t&mout ∆Ta·V out	V in =3.7V, I out = 10mA - $40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}$		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit current	t Ilim	Vout=0V		50	70	mA	

JC53XX series (JC5	328, output vol	tage +2.8V)	(Unless	otherwise	specified:	Ta=25°C)	
project	mark	condition	The small	estypical	maximun	n unit	Determination
			value	value	value		Circuit
The output voltage	V out	V in = 3.8 V, I out = 50 mA	2.744	2.8	2.856	V	1
Output current *1	I out	V IN = $3.8V$	400			mA	3
Input and output pressure	*2 V drop	I OUT $=10 \text{ mA}$		12	18	mV	1
		I OUT =200 mA		220	300		
Input stability	ΔV out 1	3.8V≤V IN≤ 10V		0.05	0.2	%/V	
	$\Delta V \text{ in } \cdot V \text{ out}$	I OUT = 1mA					
Load stability	$\triangle V$ out2	V IN =3.8V		25	40	mV	
		$1.0mA \le I \text{ outs} 150mA$					
Output voltage temperatu	re sy∆at&mouт	V IN =3.8V, I OUT = $10mA$		±50	± 100	Ppm/	
number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C				°C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit curren	nt Ilim	Vout=0V		50	70	mA	

Page 4 of 15

project	mark	condition	The smallestypical		maximun	n unit	Determination
			value	value	value		Circuit
The output voltage	V out	V in = 4V, I out = 50mA	2.940	3.0	3.060	V	1
Output current *1	I out	V IN = 4V	450			mA	3
Input and output pressure	*2 V drop	I OUT =10 mA I OUT =200 mA		10 200	14 280	mV	1
Input stability	∆V out1 ∆V in ·V out	$4V \le V \text{ in} \le 10V$ I out = 1mA		0.05	0.2	%/V	
Load stability	ΔV out2	V IN =4V 1.0mA≤I out≤ 200mA		30	45	mV	
Output voltage temperatur number	re sy ∆t& rnout △Ta·V out	V IN =4V, I OUT = 10 mA - 40 °C \leq Ta \leq 85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit curren	t Ilim	Vout=0V		50	70	mA	

JC53XX series (JC5	555, output volta;	gc 13.3 V)	(pecified: T		
project	mark	condition	The small	estypical	maximun	n unit	Determination
			value	value	value		Circuit
The output voltage	V OUT	V IN = 4.3 V , I OUT =50 mA	3.234	3.3	3.366	V	1
Output current *1	I оит	V IN = $4.3V$	500			mA	3
Input and output pressu	ire *2 V drop	I OUT =10 mA		10	14	mV	1
		I out = 200 mA		200	280		
Input stability	ΔV out1	4.3V≤V IN≤ 10V		0.05	0.2	%/V	
	$\triangle V \text{ in } \cdot V \text{ out}$	I OUT = 1 mA					
Load stability	ΔV out2	V in =4.3 V		30	45	mV	
		$1.0mA{\le}I \text{ outs } 200mA$					
Output voltage tempera	iture sy∆t&houт	V IN = 4.3 V, I OUT = 10 mA		±50	± 100	Ppm/	

number	$\triangle Ta \cdot V$ out	-40°C≤Ta≤85°C			$^{\circ}\mathrm{C}$	
Current consumption	I ssı	V IN =10V without load	1.2	2.5	uA	2
Input voltage	VIN	-		10	V	
Output short circuit curren	t Ilim	Vout=0V	50	70	mA	

JC53XX series (JC533	36, output volta	ge +3.6V)	(Unless o	therwise s	pecified: T	~a=25°C)	
project	mark	condition	The small value	lestypical value	maximur value	n unit	Determination Circuit
The output voltage	V out	V IN = 4.6V, I OUT = 50mA	3.528	3.6	3.672	V	1
Output current *1	I out	V IN = $4.6V$	500			mA	3
Input and output pressure	*2 V drop	I OUT =10 mA I OUT =200mA		10 200	14 280	mV	1
Input stability	ΔV OUT I ΔV IN ·V OUT	4.6V≤V IN≤ 10V I out =1mA		0.05	0.2	%/V	
Load stability	$\triangle V$ out2	$V \text{ in } = 4.6V$ $1.0\text{mA} \leq I \text{ outs} \leq 200\text{mA}$		30	45	mV	
Output voltage temperatu number	re sy∆t&rhout ∆Ta·V out	V in =4.6V, I out =10mA -40°C \leq Ta \leq 85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit curren	t Ilim	Vout=0V		50	70	mA	

Page 5 of 15

JC53XX series (JC5338, output voltage +3.8V)			(Unless otherwise specified: Ta=25°C)				
project	mark	condition	The smal value	lestypical value	maximun value	n unit	Determination Circuit
The output voltage	V out	V IN = 4.8V, I OUT =50mA	3.724	3.8	3.876	V	1
Output current *1	I out	V IN = $4.8V$	500			mA	3
Input and output pressur	re *2 V drop	I OUT =10 mA I OUT =200mA		10 200	14 280	mV	1
Input stability	ΔV out i ΔV in $\cdot V$ out	$4.8V \le V \text{ IN} \le 10V$ I out =1mA		0.05	0.2	%/V	
Load stability	ΔV out2	V IN =4.8V 1.0mA≤I out≤ 200mA		30	45	mV	
Output voltage temperat number	ure sy ∆t& hoo⊓ △Ta·V о∪т	V in =4.8V, I out =10mA -40 $^{\circ}$ C \leq Ta \leq 85 $^{\circ}$ C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit curre	ent Ilim	Vout=0V		50	70	mA	

JC53XX series (JC534	44, output volta	ge +4.4V)	(Unless o	therwise s	specified: T	a=25°C)	
project	mark	condition	The small	lestypical	maximun	n unit	Determination
			value	value	value		Circuit
The output voltage	V out	V in = 5.4 V , I out =50 mA	4.312	4.4	4.488	V	1
Output current *1	I оит	V in = 5.4 V	500			mA	3
Input and output pressure	*2 V drop	I OUT =10 mA I OUT =200mA		10 200	14 280	mV	1
Input stability	ΔV out 1 ΔV in $\cdot V$ out	5.4V≤V IN≤ 10V I out =1mA		0.05	0.2	%/V	
Load stability	ΔV out2	$V \text{ in } = 5.4V$ $1.0 \text{mA} \leq I \text{ outs} \leq 200 \text{mA}$		30	45	mV	
Output voltage temperaturnumber	ire sy ∆tρ ut ∆Ta·V out	V IN =5.4V, I OUT = 10 mA - 40 °C \leq Ta \leq 85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			10	V	
Output short circuit currer	nt Ilim	Vout=0V		50	70	mA	

JC53XX series (JC5350, output voltage +5.0V)			(Unless otherwise specified: Ta=25°C)			
project	mark	condition	The smallestypical		maximum u	nit Determination
			value	value	value	Circuit

The output voltage Output current *1	V out I out	V in = 6V, i out = 50mA V in = 6V	4.900 500	5.0	5.100	V mA	1 3
Input and output pressure	*2 V drop	I out =10 mA I out =200 mA		10 200	14 280	mV	1
Input stability	∆V outi ∆V in ·V out	6V≤V IN≤ 10V I out =1mA		0.05	0.2	%/V	
Load stability	ΔV out2	$V \text{ IN } = 6V$ $1.0\text{mA} \leq I \text{ outs} \leq 200\text{mA}$		30	45	mV	
Output voltage temperatur number	е sy∆t&hю шт △Та∙V ошт	V in =6V, I out =10mA -40°C \leq Ta \leq 85°C		±50	±100	Ppm/ °C	
Current consumption	I ssı	V IN =10V without load		1.2	2.5	uA	2
Input voltage	VIN	-			15	V	
Output short circuit current	t Ilim	Vout=0V		50	70	mA	

^{* 1.} Slowly increase the output current, when the output voltage is equal to 98% of V $_{\text{OUT}}$, the output current value

2.V * $_{drop} = V_{IN1}$ - (V $_{OUT(E)} \times 0.98V$)

V $\mbox{out}(E)$: The output voltage value when V in =V \mbox{out} +2V, I \mbox{out} =1 \mbox{mA}

 $V \ {\rm INI: Slowly \ decrease \ the \ output \ voltage, \ the \ input \ voltage \ when \ the \ output \ voltage \ drops \ to \ 98\% \ of \ V \ {\rm OUT \ (E)}} \\ Page \ 6 \ of \ 15$

Page 7

Application circuit :

Test circuit:

1.

2.

3.

Page 7 of 15

Page 8

Standard circuit:

Note that the above connection diagrams and parameters are not a guarantee for circuit operation. For the actual application circuit, please conduct sufficient actual measurement Set the parameters on the basis.

■ Conditions of use:

Input capacitor (CIN): 1.0 µF or more

Output capacitor (CL): 2.2 µF or more (tantalum capacitor) or 10.0 µF or more (aluminum electrolytic capacitor).

Note that in general, linear stabilized power supplies may cause oscillations due to the selection of external parts. Please confirm before using the above capacitor No oscillation occurs on the application circuit.

\blacksquare Explanation of terms

1. Low dropout voltage regulator

A low-dropout voltage regulator with a built-in low on-resistance transistor is used.

2. Output voltage (V \mbox{out})

Output voltage, input voltage*1, output current, and temperature can guarantee output voltage accuracy under certain conditions

Is +2.0%.

*1. Varies depending on the product.

Note that when these conditions change, the value of the output voltage also changes, which may cause the output

The accuracy of the voltage is outside the above range. For details, please refer to electrical characteristics and each characteristic data.

3. Input stability { ΔV out1 / ΔV in *V out }

Indicates the dependence of output voltage on input voltage. That is, when the output current is constant, the output voltage changes with the input power. The amount of change caused by the change in pressure.

4. Load stability (ΔV out2)

Indicates the dependence of output voltage on output current. That is, when the input voltage is constant, the output voltage varies with the output voltage. The amount of change caused by a change in flow.

5. Input and output voltage difference (Vdrop)

Represents the output when the input voltage V $_{\mbox{\footnotesize{IN}}}$ is slowly reduced , when the output voltage drops to V $_{\mbox{\footnotesize{IN}}}$ =V $_{\mbox{\footnotesize{OUT}}}$ +2.0V

The difference between the input voltage VIN1 and the output voltage at 98% of the output voltage V out (E).

 $V_{drop} = V_{IN1} - (V_{OUT(E)} \times 0.98)$

Page 8 of 15

■ Job description

1. Basic work

Figure 11 shows the block diagram of the JC53XX series.

The error amplifier is based on the input voltage Vfb of the voltage divider formed by the feedback resistors Rs and Rf with the reference voltage

(Vref) Compare. The error amplifier provides the necessary gate voltage to the output transistor, and the output

The output voltage is not affected by the input voltage or temperature changes and remains constant.

VIN

2. Output transistor

The output transistor of JC53XX series adopts P-channel MOSFET transistor with low on-resistance.

In the structure of the transistor, because there is a parasitic diode between the VIN-VOUT terminal, when the potential of VOUT is high

At VIN, the IC may be destroyed due to reverse current. Therefore, please note that VOUT should not exceed V

IN+0.3V or more.

3. Short circuit protection circuit

The JC53XX series is designed to The output transistor is protected during a short-circuit between the terminals. Short-circuit protection can be selected even in VOUT-VSS In the case of a short circuit between the terminals, the output current can be suppressed by approximately 40 mA.

However, the short-circuit protection circuit does not have a heating protection function. Under the operating conditions including short-circuit conditions, please fully

Pay attention to the conditions of input voltage and load current to ensure that the power dissipation of the IC does not exceed the power dissipation of the package. Even when there is

If the output current is large and the voltage difference between input and output is large, in order to protect the output transistor short circuit protection

The circuit starts to work, and the current is limited to the set value.

Page 9 of 15

Page 10

Selection of output capacitor (CL)

In the JC53XX series, in order to make stable operation even when the output load changes, it uses
The phase compensation circuit and the ESR (Equivalent Series Resistance) of the output capacitor come in
Line phase compensation. Therefore, please use a capacitor (CL) of 2.2uF or more between VOUT and VSS.

Low dropout micro power consumption LDO JC53XX series CMOS voltage regulator circuit 500mA

In order to make the JC53XX series work stably, a capacitor with an appropriate range of ESR must be used. With appropriate

The range (about $0.5\sim5\Omega$) is larger or smaller than ESR, which may make the output unstable and cause oscillation. Therefore, push

Tantalum electrolytic capacitors are recommended.

When ceramic capacitors or OS capacitors with small ESR are used, it is necessary to increase the resistance and

The output capacitor is connected in series. The resistance value to be increased is about 0.5~5Ω. It depends on the usage conditions, so please charge

The decision will be made after the actual measurement and verification of the points. Generally, it is recommended to use a resistance of about 1.0Ω .

Aluminum electrolytic capacitors may increase in ESR and cause oscillation at low temperatures. Please pay special attention. In use

, Please perform sufficient actual measurement and verification including temperature characteristics.

■ Note:

· For wiring of VIN terminal, VOUT terminal and GND, pay attention to the wiring method to reduce impedance. In addition, please try

The container is connected near the VOUT.VSS terminal.

When the linear stabilized power supply is generally used under a low load current (1.0 mA or less), the output voltage may increase, so please be aware.

This IC uses a phase compensation circuit and the ESR of the output capacitor inside the IC for phase compensation. Therefore, between the VOUT-VSS pin

Be sure to use a capacitor of $2.2~\mu F$ or more between them. Tantalum capacitors are recommended.

In addition, in order for the JC53XX series to work stably, a capacitor with an appropriate range ($0.5 \sim 5~\Omega$) of ESR must be used . With this

The proper range is larger or smaller than the ESR, which may make the output unstable and cause the possibility of oscillation. Therefore, under the actual conditions of use,

Make a decision after performing sufficient actual test verification.

·In the case of high impedance of the power supply, when the input terminal of the IC is not connected to the capacitor or the value of the connected capacitor is very small, oscillation will occur note.

Please pay attention to the use conditions of input and output voltage and load current so that the power dissipation in the IC does not exceed the power dissipation of the package.

Although this IC has a built-in anti-static protection circuit, please do not add excessive static electricity to the IC that exceeds the performance of the protection circuit.

Page 10 of 15

P	a	q	е	1	1

Application circuit:

Basic circuit

High output current positive voltage regulator circuit	
Short circuit protection circuit	
Output voltage extension 1	
$V_{\text{out}} = V_{\text{XX}} (1+R2/R1)+IssXR2$	
Page 11 of 15	
Page 11 of 15 Output voltage extension 2	
Output voltage extension 2	
Output voltage extension 2	
Output voltage extension 2	
Output voltage extension 2 Vout = V xx + V DI	

IOUT=Vxx/RA+Iss

Dual power output

Page 12 of 15

Page 13 of 15

Page 14 of 15

Page 15

The version is subject to update without notice

Version: 090407

Shanghai Jichi Electronics Co., Ltd.