Sigma-point methods

Sensor fusion & nonlinear filtering

Lars Hammarstrand

SIGMA-POINT METHODS - INTEGRAL APPROXIMATION

General idea

• Suppose $\mathbf{x} \sim \mathcal{N}(\hat{\mathbf{x}}, \mathbf{P})$, we can then approximate

$$\mathbb{E}\{\mathbf{g}(\mathbf{x})\} = \int \mathbf{g}(\hat{\mathbf{x}} + \mathbf{P}^{1/2}\boldsymbol{\xi}) \mathcal{N}(\boldsymbol{\xi}; \mathbf{0}, \mathbf{I}) d\boldsymbol{\xi} \approx \sum_{i=1}^{N} W_{i} \mathbf{g}(\hat{\mathbf{x}} + \mathbf{P}^{1/2}\boldsymbol{\xi}^{(i)})$$

where $\boldsymbol{\xi}^{(i)}$ are called σ -points and W_i are weights.

SIGMA-POINT METHOD IN GAUSSIAN FILTERING

Filtering idea

- Idea 1: it is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear function or transformation.
- Idea 2: if $\mathbf{y} = \mathbf{g}(\mathbf{x})$ and $\mathbf{x} \sim \mathcal{N}(\hat{\mathbf{x}}, \mathbf{P})$ we can approximate $p(\mathbf{y})$ using

$$\mathbb{E}\{\mathbf{y}\} pprox oldsymbol{\mu}_y = \sum_{i=0}^N W_i \, \mathbf{g}(\mathcal{X}^{(i)})$$
 $\mathbf{Cov}\{\mathbf{y}\} pprox \sum_{i=0}^N W_i \, \left(\mathbf{g}(\mathcal{X}^{(i)}) - \mu_y\right) \left(\mathbf{g}(\mathcal{X}^{(i)}) - \mu_y\right)^T$

where $\mathcal{X}^{(i)}$ are σ -points and W_i the associated weights.

THE UNSCENTED TRANSFORM (UT)

Unscented transform (UT)

• Form a set of $2n + 1 \sigma$ -points as follows:

$$\mathcal{X}^{(0)} = \hat{\mathbf{x}}$$

$$\mathcal{X}^{(i)} = \hat{\mathbf{x}} + \sqrt{\frac{n}{1 - W_0}} \mathbf{P}_i^{1/2}, \quad i = 1, 2, \dots, n,$$

$$\mathcal{X}^{(i+n)} = \hat{\mathbf{x}} - \sqrt{\frac{n}{1 - W_0}} \mathbf{P}_i^{1/2}, \quad i = 1, 2, \dots, n,$$

$$W_i = \frac{1 - W_0}{2n} \sum_{k=0}^{2n} W_i (\mathbf{x}^{(n)} - \mathbf{x}^{(k)}) \cdot \mathbf{y}^{(n)} = \mathbf{y}^{(n)}$$

where $P_i^{1/2}$ is the *i*th column of $P^{1/2}$.

- Other versions with more design parameters.
- If **x** is Gaussian, set $W_0 = 1 n/3$.

AN ILLUSTRATION OF THE UNSCENTED TRANSFORM

UT for polar measurements

· Consider again the example where

$$\mathbf{y} = \mathbf{g}(\mathbf{x}) = \begin{bmatrix} \sqrt{x_1^2 + x_2^2} \\ \arctan\left(\frac{x_2}{x_1}\right) \end{bmatrix}$$

and

$$\mathbf{x} \sim \mathcal{N}\left(egin{bmatrix} 2 \\ 2 \end{bmatrix}, egin{bmatrix} 2 & -1.8 \\ -1.8 & 2 \end{bmatrix}
ight)$$

THE CUBATURE RULE

Cubature rule

• Forms a set of $2n \sigma$ -points as follows:

$$\mathcal{X}^{(i)} = \hat{\mathbf{x}} + \sqrt{n} \mathbf{P}_i^{1/2}, \qquad i = 1, 2, \dots, n,$$
 $\mathcal{X}^{(i+n)} = \hat{\mathbf{x}} - \sqrt{n} \mathbf{P}_i^{1/2}, \qquad i = 1, 2, \dots, n,$
 $W_i = \frac{1}{2n}$

where $P_i^{1/2}$ is the *i*th column of $P^{1/2}$.

Note:

- Special case of UT: $W_0 = 0!$
- No tuning parameters and no negative weights.
- Popularized in 2009.

AN ILLUSTRATION OF THE CUBATURE RULE

Cubature rule for polar measurements

· Consider again the example where

$$\mathbf{y} = \mathbf{g}(\mathbf{x}) = \begin{bmatrix} \sqrt{x_1^2 + x_2^2} \\ \arctan\left(\frac{x_2}{x_1}\right) \end{bmatrix}$$

and

$$\mathbf{x} \sim \mathcal{N}\left(egin{bmatrix} 2 \\ 2 \end{bmatrix}, egin{bmatrix} 2 & -1.8 \\ -1.8 & 2 \end{bmatrix}
ight)$$

AN ILLUSTRATION OF EKF

EKF for polar measurements

· An EKF would instead handle

$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} \sqrt{x_1^2 + x_2^2} \\ \arctan\left(\frac{x_2}{x_1}\right) \end{bmatrix}$$

by linearization:

$$\mathbf{y} pprox \mathbf{g} \left(egin{bmatrix} 2 \ 2 \end{bmatrix}
ight) + \mathbf{g}' \left(egin{bmatrix} 2 \ 2 \end{bmatrix}
ight) \, \left(\mathbf{x} - egin{bmatrix} 2 \ 2 \end{bmatrix}
ight)$$

REMARKS ON THE UT AND THE CUBATURE RULE

Unscented transform:

- W₀ = 1 − n/3 is negative for n > 3
 ⇒ Cov{y} can in become negative definite.
- UT variant with more design parameters but less intuitive.

Cubature rule:

- No theoretical risk of covariance becoming negative definite.
- No design parameters
- The spread of the σ -points increase with n, since $\mathcal{X}^{(i)} = \hat{\mathbf{x}} \pm \sqrt{n} \mathbf{P}_i^{1/2}$.

 Both the Unscented transform and the cubature rule computes the mean exactly for polynomials up to order 3, but the covariance is only exact when g(x) is of order 1.

SELF ASSESSMENT

Check all that apply!

- The number of σ -points used in an UT grows linearly with the dimension of \mathbf{x} .
- The number of σ -points in UT is determined by the dimensionality of $\mathbf{y} = \mathbf{g}(\mathbf{x})$.
- We need to evaluate g(x) at 4n + 2 different points since need 2n + 1 points to approximate the mean and later 2n + 1 points to approximate the covariance.

SELF ASSESSMENT

Suppose that n = 1 and $p(x) = \mathcal{N}(x; 0, 1)$, the cubature rule is then simply

$$\mathbb{E}\{\mathsf{g}(\mathsf{x})\}\approx\mathsf{g}(-1)\frac{1}{2}+\mathsf{g}(1)\frac{1}{2}.$$

Compute the cubature rule approximation to $\mathbb{E}\{\mathbf{g}(x)\}$ when we further assume that

$$\mathbf{g}(x) = \begin{vmatrix} 1 + x + 5x^4 \\ 3x^2 + 4 \\ 2x^3 + x^5 \end{vmatrix}.$$

(You can also ask yourself which elements of $\mathbb{E}\{\mathbf{g}(x)\}$ that we have thus computed exactly.)

•
$$\begin{bmatrix} 3 & 3.5 & 1.5 \end{bmatrix}^T$$
 • $\begin{bmatrix} 6 & 7 & 3 \end{bmatrix}^T$ • $\begin{bmatrix} 7 & 3 \end{bmatrix}^T$ • $\begin{bmatrix} 6 & 7 & 0 \end{bmatrix}^T$