

Tópicos em Ciência de Dados

Pontifícia Universidade Católica de Campinas

Prof. Dr. Denis M. L. Martins

Diferentes Mecanismos de Atenção

Problema com longas sequências de texto

Certain words in the generated translation require access to words that appear earlier or later in the original sentence

RNN perdem referência em longas sequências

© 2024 Sebastian Raschka

RNNs/GRUs apresentam dificuldade de capturar dependências longas. Custo computacional linear no comprimento da sequência.

Resolvendo o problema através de atenção

The dotted line width is proportional to how important the input token is for the respective output token

Self-Attention: Visão Geral

Visão geral do mecanismo de atenção em Transformers. Fonte: Jaiyam Sharma @LearnOpenCV.

- Keys (K), queries (Q) e values (V) são vetores fundamentais em mecanismos de atenção. Eles são obtidas através de projeções lineares, onde os embeddings dos tokens são multiplicados por matrizes de projeção (pesos) W^K , W^Q e W^V que funcionam como parâmetros da rede neural e, portanto, são aprendidas durante o treinamento.
- *K*: representam o token de origem.
- Q: representam os tokens de destino.
- V: representam a semântica e contexto dos tokens.

Primeiro passo no mecanismo de atenção. Fonte: Jaiyam Sharma @LearnOpenCV.

Mapeia uma query e pares de key-value em uma saída.

$$A = \operatorname{Softmax}\!\left(rac{Q\,K^{+}}{\sqrt{d_{k}}}
ight)V$$

onde:

- $X \in \mathbb{R}^{n imes d_{\mathrm{model}}}$ é a matriz de embeddings da sequência (n = comprimento).
- ullet $W_Q, W_K, W_V \in \mathbb{R}^{d_{\mathrm{model}} imes d_k}$ são as matrizes de projeção treináveis.

$$Q=XW_Q, \qquad K=XW_K, \qquad V=XW_V$$

- d_k é a dimensionalidade dos vetores ${f query}$ e ${f key}$ (normalmente $d_{
 m model}/h$ quando há h cabeças).
- Softmax opera ao longo da dimensão das posições de sequência, produzindo pesos de atenção.

- Cada palavra cria uma query e recebe
 keys e values das demais palavras.
- 2. O produto escalar $Q \cdot K$ mede a similaridade entre a pergunta de A e as chaves dos outros termos.
- 3. Softmax transforma esses números em pesos (probabilidades).
- 4. Os **values** são então somados ponderadamente, produzindo uma representação que leva em conta todas as palavras relevantes.

Fonte: Illustrated Transformer

Elemento	Intuição	Como aparece na prática?
Queries (Q)	Pergunta: Cada palavra da frase está "fazendo uma pergunta" sobre quais outras palavras ela quer saber.	Vetor que representa a própria palavra, gerado por multiplicação do embedding pela matriz W_{Q} .
Keys (K)	Chaves de um armário : As demais palavras têm "chaves" que podem ser comparadas com as perguntas. Se uma chave for semelhante à pergunta, ela "abre" a porta para a informação relevante.	Vetor gerado pela mesma palavra, mas usando $W_{K}. \label{eq:weak_eq}$
Values (V)	Conteúdo guardado nas portas : Quando a porta abre, o que vem dentro é a informação que a palavra quer transmitir à pergunta.	Vetor resultante da multiplicação do embedding por $W_{V}. \label{eq:WV}$

Resumo e Próximos Passos

- Objetivo: Permitir que cada token acesse e combine informação de todas as posições da sequência simultaneamente.
- Queries (Q): Vetores "perguntas" gerados a partir do próprio token.
- Keys (K): Vetores "chaves" que representam o conteúdo de cada token na mesma sequência.
- Values (V): Vetores contendo a informação real que será combinada.
- $ullet A = \operatorname{Softmax}\Bigl(rac{QK^ op}{\sqrt{d_k}}\Bigr)V$
- Próximos Passos: Compreender Multi-Head
 Attention: Repete o mecanismo em (h)
 sub-espaços diferentes e concatena os resultados,
 permitindo capturar múltiplas relações
 simultaneamente.

Multi-Head Attention. Fonte: Illustrated Transformer