Lesson 2

Functions Quadratic functions

Part 1: What is a function?

A **function**= a process, a relationship, where each input number has a <u>single</u> output. The **Domain** of a function= part of the set of real where the function can be defined <u>example</u>:

if $f(x)=x^2-3x+2$, the domain of f is \mathbb{R}

if $f(x) = \frac{1}{x-3}$ the domain is $\mathbb{R} \setminus \{3\} =]-\infty; 3[\cup]3; +\infty[$ because dividing by 0 is forbidden

 $\underline{https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:functions/x2f8bb11595b61c86:evaluating-functions/v/what-is-a-function}$

different sorts of functions=

linear function: functions with f(x)=mx+p as formula. Their graph is a <u>straight line</u>

square function: $f(x)=x^2$

quadratic functions: functions with $f(x)=ax^2+bx+c$. Their graph is a parabola

cube function: $f(x) = x^3$, its graph is a <u>hyperbola</u>

Variation table of a function:

Exercises:

[In this coordinate system, $\mathscr{C}_p \mathscr{C}_g$ and \mathscr{C}_h are graphs of ,the functions f,g and g for the interval [0;8].

In each case, find the solution set with a graphic reading.

a)
$$f(x) \le g(x) \le h(x)$$

b)
$$h(x) \le g(x) \le f(x)$$

c)
$$f(x) \le h(x) \le g(x)$$

Square ABCD has a side of 4 cm and a centre O.

The point M moves around the perimeter of the square in alphabetical order starting from A. x is the distance travelled by M from A and f the

function giving the straight line distance OM, depending on x.

Do not try to find a general formula for f(x).

- 1. a) Explain why f is defined on [0; 16].
- **b)** Compute f(x) when x is equal to 0; 2; 4; 6; 8.
- 2. a) Describe the variations of f.
- b) Give the extremes of function f on [0; 16].For what values of x are they reached?

Part 2: the quadratic functions

$$f(x) = a^2x^2 + bx + c$$
, $a \ne 0$

the graph of a quadratic function is a parabola

The curve opens up.

The curve opens down.

the number of x-intercepts depends on the value of

 $\Delta = b^2 - 4 ac$ named **the discriminant:**

- if %DELTA<0, there is no x-intercept
- if %DELTA=0, there is only one x-intercept, which is also the vertex of the parabola S
- if %DELTA>0, there are 2 x-intercepts P and Q: $P(\frac{-b-\sqrt{\Delta}}{2a};0)$ and $Q(\frac{-b+\sqrt{\Delta}}{2a};0)$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 and $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ are the **roots** of the quadratic equation $ax^2 + bx + c = 0$

Exercises: exercise 1:

Exercise 3:

Exercise 2:

A fish-farmer wants to use $1,800 \text{ m}^2$ of field to dig a new rectangular tank surrounded by a terrace, as shown below:

- 1. Express y in terms of x.
- 2. What are the values taken by x?
- 3. Express the area of the tank A(x) in terms of x.
- **4.** The farmer wants to breed as many fish as possible: find the value of x that makes the area of the tank maximum and give the dimensions of the tank.