$$\underline{E_{\times} \lambda}$$
. $f(x) = \frac{x^2}{x-1}$ $\underline{T} =]1; +\infty[$

1.
$$\lim_{x\to 1} f(x) = \frac{1}{0} = +\infty$$
 cer $x-1>0$ sur I

$$2. \quad f(x) = x + 1 + \underbrace{1}_{x-1} = \underbrace{(x+1)(x-1)+1}_{x-1} = \underbrace{x^2 - 1 + x}_{x-1} = \underbrace{x^2}_{x-1}$$

$$f - D = x + 1 + \frac{1}{x - 1} - (x + 1) = \frac{1}{x - 1}$$

$$\lim_{x\to+\infty} (f-D) = \lim_{x\to+\infty} \frac{1}{x-1} = 0$$

$$Q-D=\frac{1}{x-1}$$

$$\frac{1}{x-1}$$
+\infty

Danc l'est su dessus de D

$$E \times 3 = f(x) = x + 2 \frac{\ln x}{x}$$
 $I =]0; + \infty[$

lim f(x)=-00 danc x=0 asymptote verticale.

$$\ell-D = x+2 \frac{\ln x}{x} - x = 2 \frac{\ln x}{x}$$

3. Étudier le signe de C-D = 2 lnx

	γ	0	1		+∞
	lnx		- ф	+	
	X			+	
1	e-D	1/1	<u> </u>	+	

$$\frac{E_{x}}{4}$$
: 1. $\lim_{x\to -\infty} f(x) = -\infty + 0 = -\infty$

1.
$$\ell - D = x + 2^{2x} - x = e^{2x}$$

$$\lim_{x \to +\infty} (\ell - D) = \lim_{x \to +\infty} e^{2x} = +\infty$$

$$\lim_{x \to +\infty} \ell P = D = \lim_{x \to +\infty} e^{-2x}$$

Destasymptote à l'en - 00

