A FIRST COURSE

IN

ANALYSIS

A FIRST COURSE

IN

ANALYSIS

MAT2006 Notebook

Lecturer

Prof. Weiming Ni The Chinese University of Hongkong, Shenzhen

Tex Written By

Mr. Jie Wang

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	vii
Notat	tions	ix
1	Week1	1
1.1	Wednesday	1
1.1.1	Introduction to Set	1
1.2	Quiz	5
1.3	Friday	6
1.3.1	Proof of Schroder-Berstein Theorem	6
1.3.2	Connectedness of Real Numbers	10
2	Week2	13
2.1	Wednesday	13
2.1.1	Review and Announcement	13
2.1.2	Irrational Number Analysis	13
2.2	Friday	21
2.2.1	Set Analysis	21
2.2.2	Set Analysis Meets Sequence	22
2.2.3	Completeness of Real Numbers	23
3	Week3	27
3.1	Tuesday	27
3.1.1	Application of Heine-Borel Theorem	27
3.1.2	Set Structure Analysis	29
3.1.3	Reviewing	31

3.2	Friday	33
3.2.1	Review	. 33
3.2.2	Continuity Analysis	. 34
4	Week4	41
4.1	Wednesday	41
4.1.1	Function Analysis	. 41
4.1.2	Continuity Analysis	. 46

Acknowledgments

This book is taken notes from the MAT2006 in fall semester, 2018. These lecture notes were taken and compiled in LATEX by Jie Wang, an undergraduate student in Fall 2018. Prof. Weiming Ni has not edited this document.

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

2.2. Friday

2.2.1. Set Analysis

This lecture will discuss different kinds of sets. Now recall our common sense:

Definition 2.4 [Interval]

• Open interval:

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

• Closed interval:

$$[a,b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

• Half open intervals:

$$[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \}$$

$$(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

Definition 2.5 [Open sets] A set A is open if $\forall x \in A$, there exists $(a,b) \subseteq A$ such that $x \in (a,b)$.

Theorem 2.2 1. An open set in \mathbb{R} is a **disjoint** union of finitely many or countably many open intervals.

- 2. The union of any collection of open sets is open.
- 3. The intersection of **finitely** many open sets is open.

The proof is omitted, check Rudin's book for reference.

Note that the intersection of **countably** many open sets may be open.

$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1]$$

Definition 2.6 [Neighborhood] A **neighborhood** N of a point $a \in \mathbb{R}$ is an open set containing a.

Definition 2.7 [Limit Point] x is a **limit point** of the set A if for any neighborhood N of x, N contains a point $a \in A$ such that $a \neq x$.

Definition 2.8 [Closed Set] A set **A** is **closed** if **A** contains all of its limit points.

Proposition 2.2 *A* is **closed** of and only if $\mathbb{R} \setminus A$ is open.

2.2.2. Set Analysis Meets Sequence

Definition 2.9 [Limit Point of sequence] Given a sequence $\{a_n\}$, i.e.,

$$a_1, a_2, a_3, \ldots,$$

a point x is said to be the **limit point** of $\{a_n\}$ if there exists a subsequence $\{x_{n_1}, x_{n_2}, \dots\}$ converging to x.

Does there exist a sequence of rational numbers such that every irrational number is a limit point? Yes, and we use an example as illustration.

■ Example 2.3 $\{q_1, q_2, ...\}$ is a sequence of all rational numbers. For example, to construct a subsequence with limit $\sqrt{2}$, we pick:

$$q_{m_1} \in (\sqrt{2} - 1, \sqrt{2} + 1) \setminus (\sqrt{2} - \frac{1}{2}, \sqrt{2} + \frac{1}{2})$$

$$q_{m_2} \in (\sqrt{2} - \frac{1}{2}, \sqrt{2} + \frac{1}{2}) \setminus (\sqrt{2} - \frac{1}{3}, \sqrt{2} + \frac{1}{3})$$

$$\dots$$

$$q_{m_k} \in (\sqrt{2} - \frac{1}{k}, \sqrt{2} + \frac{1}{k}) \setminus (\sqrt{2} - \frac{1}{k+1}, \sqrt{2} + \frac{1}{k+1})$$

2.2.3. Completeness of Real Numbers

Now we use Cauchy sequence to construct the completeness of real numbers. First let's give a proof of three important theorems. Note that the proof and applications of these theorems are mandatory.

Theorem 2.3 — **Bolzano-Weierstrass.** Every bounded sequence has a convergent subsequence.

Theorem 2.4 — Cantor's Nested Interval Lemma. A sequence of nested closed bounded intervals $I_1 \supseteq I_2 \supseteq \cdots$ has a non-empty intersection, i.e., $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$.

Theorem 2.5 — Heine-Borel. Any open cover $\{\mathcal{U}\}$ of a bounded closed set E consists of a finite sub-cover, i.e, $E \subseteq$ the union of $\{\mathcal{U}\}$.

Proof for Bolzano-Weierstrass Theorem.

- Suppose $\{a_1, a_2, ...\}$ is a bounded sequence, w.l.o.g., $\{a_1, a_2, ...\} \subseteq [-M, M]$. We pick $a_{n_1} = a_1$.
- w.l.o.g., assume that $[0,M] \cap \{a_1,a_2,...\}$ is infinite (otherwise $[-M,0] \cap \{a_1,a_2,...\}$ is infinite), then we pick $a_{n_2} \neq a_{n_1}$ such that $a_{n_2} \in [0,M]$.
- w.l.o.g., assume that $[0, \frac{M}{2}] \cap \{a_1, a_2, \dots\}$ is infinite, then we pick $a_{n_3} \neq a_{n_1}, a_{n_2}$ such that $a_{n_3} \in [0, \frac{M}{2}]$.

In this case, $\{a_{n_1}, a_{n_2}, ...\}$ is Cauchy (by showing $|a_{n_k} - a_{n_l}| < \epsilon$ for large k, l), hence converges.

Proof for Cantor's Nested Interval Lemma.

1. Pick $a_k \in I_k$ for k = 1, 2, ..., thus the sequence $\{a_1, ..., a_k, ...\}$ is bounded. By Theorem (2.3), there exists a convergent sub-sequence $\{a_{k_l}\}$ (with limit a). It suffices to show $a \in \bigcup_{m=1}^{\infty} I_k$.

- 2. For fiexed m, there exists index j such that $a_{k_l} \in I_m$ for all $l \ge m$. Since I_m is closed, it must contain a_{k_l} 's limit point, i.e., $a \in I_m$.
- 3. Our choice is arbitrary *m* and hence *a* belongs to the intersection of all nested closed intervals. The proof is complete.

Before the proof of third theorem, let's have a review for open cover definitions:

Definition 2.10 [Open Cover] Let E be a subset of a metric space X. An open cover $\{\mathcal{U}_{\alpha}\}_{\alpha\in A}$ of E is a collection of open sets in X whose union contains E, i.e., $E\subseteq \bigcup_{\alpha\in A}\mathcal{U}_{\alpha}$. A finite subcover of $\{\mathcal{U}_{\alpha}\}_{\alpha\in A}$ is a finite sub-collection of $\{\mathcal{U}_{\alpha}\}_{\alpha\in A}$ whose union still contains E.

For example, consider $E := [\frac{1}{2}, 1)$ in metric space \mathbb{R} . Then the collection

$$\{I_n\}_{n=3}^{\infty}$$
, where $I_n := (\frac{1}{n}, 1 - \frac{1}{n})$

is a open cover of E. Note that the finite subcover may not necessarily exist. In this example, the finite subcover of $\{I_n\}_{n=3}^{\infty}$ does not exist.

Proof for Heine-Borel Theorem.

Suppose E := [0, M] is a bounded closed interval with an open cover $\{\mathcal{U}\}$. The trick of this proof is to construct a sequence of nested closed bounded intervals.

- Base case We choose $I_1 = \mathbf{E} = [0, M]$
- **Inductive step** For example, Assume that E cannot be covered by finitely many open sets from $\{\mathcal{U}\}$, then at least one sub-interval $[0, \frac{M}{2}]$ or $[\frac{M}{2}]$ cannot be covered. Let I_2 be one of these sub-intervals that cannot be covered by finitely many elements of $\{\mathcal{U}\}$.

Repeating this process, we attain a nested bouned closed intervals $I_1 \supseteq I_2 \supseteq \cdots \supseteq$, which implies $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$ (suppose $a \in \bigcap_{k=1}^{\infty}$), and $|I_k| = \frac{M}{2^k} \to 0$.

Note that $a \in \mathbf{E}$ implies that there exists an open set ξ in $\{\mathcal{U}\}$ such that $a \in \xi$. Thus $(a - \epsilon, a + \epsilon) \in \xi$ for small ϵ . Note that there exists sufficiently large k such that $\frac{M}{2^k} < 2\epsilon$, and $a \in I_k$, which implies $I_k \subseteq \xi$, which is a contradiction.

These theorems have simple applications:

Proposition 2.3 Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ with the series convergent for |x| < 1. If for $\forall x \in [0,1)$, there exists n := n(x) such that $\sum_{k=n}^{\infty} a_k x^k = 0$, then f is a polynomial (that is independent from x, i.e., n does not depend on x.)

In next lecture we will continue to study the completeness of real numbers and will speed up.