Blockchain e Smart contract per giuristi 3.0

Biagio Distefano

HASH

sha256

"siena" ———	sha256()		d01ba29d08682f7dca2b88778c9a62f26 7b8de9e6e7928d68062cddbe37e31ab
"Siena" ———	sha256()		4f0330ebcf315c82899e61e942084d755 8d842d11208f3de55c9ccb10170bd69
"Palio di Siena"	sha256()		7e010733a266c2ce7e63f03c6d3e74e08 8eac1b594dc47d7e0caa50d696dec26
	sha256()		bfd1e56aba2696014c123bc8912663a0 1a758081a921632ff6571505f52e33dd

Caratteristiche dell'HASH

- Deterministico: gli stessi bit in input daranno sempre lo stesso output
- Dimensione fissa: indipendentemente dall'input,
 l'output avrà sempre la stessa dimensione
- Unidirezionale: non è possibile ricavare l'input dall'output

https://anders.com/blockchain/hash.html

Mettiamo i dati in un Blocco

N. Blocco	1
Nonce	30306
Dati	Ciao, Siena!
HASH	0000b3169547f3012b53026af434b84c9c83ecef64c0aeecbf63d38302caf8f4

Validità del Blocco Mining

- Nel nostro esempio, per essere valido, il blocco deve avere un hash che inizia con 0000
- Per validare il blocco, cambiamo il valore del Nonce e ricalcoliamo l'hash fin quando non inizia con 0000
- Questa operazione, detta **Mining**, è estremamente complessa e computazionalmente costosa

https://anders.com/blockchain/block.html

Concateniamo più Blocchi

https://anders.com/blockchain/blockchain.html

Dove si trova la blockchain, fisicamente?

- Non c'è un server centrale
- Non c'è un'Autorità che controlla
- Chiunque può partecipare come "Nodo"
- Ogni nodo (peer) ha una copia integrale della blockchain
- Per questo si chiama Registro Distribuito (DLT: Distributed Ledger Technology)

Registri distribuiti

Nodo di Tizio

#Bloc	:o 1		#Blocco	2		#Blocco	3
Nonc	e 30306		Nonce	44329		Nonce	11447
Dat	i Ciao, Siena!	-	Dati	Oggi sei più smart!	+	Dati	Che bella la blockchain!
HASI prev			HASH prev	0000 7721391f93cf1fd3c061 ad117e0ad3cdd4b9a7a0c4		HASH prev	0000 2f913be209a8c449dfc3 78fbb2516a7b5329cf5936d
HAS	00007721391f93cf1fd3c061 ad117e0ad3cdd4b9a7a0c4		HASH	0000 2f913be209a8c449dfc3 78fbb2516a7b5329cf5936d		HASH	0000 84db93c8ff3fa84e2f40 76611d2488c3977001db40

Nodo di Caio

https://anders.com/blockchain/distributed.html

Ok, ma i Bitcoin?

Dati strutturati!

#Blocco	1						
Nonce	11622						
Transazioni	Da	Α	₿				
1	Tizio	Caio	10				
2	Sempronio	Mevio	5				
3	Filano	Calpurnio	3				
4	Caio	Sempronio	1				
5	Calpurnio	Mevio	6				
HASH prev	000000000000000000000000000000000000000						
HASH	0000 a36214cf88221c68011fe76215146268f8ea3a4a5db80335b9 0e12e80363						

https://anders.com/blockchain/tokens.html

Le transazioni in BTC

- "Tizio manda a Caio 1 BTC"
- Questa transazione viene comunicata a tutta la rete Bitcoin (ossia ai nodi, cd peers)
- Le transazioni vengono raggruppate per creare un blocco
- Il blocco viene validato (minato) e viene applicata una marcatura temporale (c.d. timestamp)
- Il nodo-minatore che per primo valida il blocco (c.d. Proof of Work - PoW) ha il diritto di inserirlo nella blockchain e viene ricompensato in BTC
- Tutto ciò è chiamato "Consesus Protocol"

La sicurezza delle transazioni

• "Tizio manda a Caio 1 BTC" ———— Come accertarlo?

Crittografia Asimmetrica

Crittografia Asimmetrica

Chiavi pubbliche e private

Chiave privata

- Deve essere tenuta segreta
- Viene usata per criptare un documento (o qualsiasi dato)

Chiave pubblica

- Deriva unidirezionalmente dalla chiave privata (provate su https://anders.com/blockchain/public-private-keys/keys.html)
- Va comunicata ai destinatari
- Viene usata per decriptare il documento (o qualsiasi dato) criptato con la chiave privata corrispondente

Firma Digitale

- Per firmare digitalmente un documento (o una transazione BTC):
 - Genero l'hash del documento
 - Cripto l'hash con la chiave privata
- Per verificare la genuinità della firma:
 - Decripto l'hash criptato con la chiave pubblica
 - Genero l'hash del documento
 - Verifico che l'hash del documento e l'hash decriptato coincidano

https://anders.com/blockchain/public-privatekeys/signatures.html

E

https://anders.com/blockchain/public-privatekeys/transaction.html

Е

https://anders.com/blockchain/public-privatekeys/blockchain.html

Indirizzi Bitcoin

Nella blockchain Bitcoin (e in tutte le altre) non avremo "Tizio" e "Caio" ma indirizzi di portafogli che derivano dalle chiavi pubbliche

- Deriviamo la chiave pubblica dalla privata con l'algoritmo ECDSA512
- Criptiamo la chiave pubblica applicando SHA256 e RipeMD-160
- Calcoliamo il checksum con doppio SHA256
- Aggiungiamo il byte di rete
- Compriamo in base58
- Indirizzo bitcoin

Interagiamo con la blockchain Ethereum

Installate MetaMask

https://metamask.io/

(Firefox, Chrome o Opera)

Esplorate la blockchain su Etherscan

Rete Principale: https://etherscan.io/

Rete di prova Ropsten: https://ropsten.etherscan.io/

Accedete alla Chat

https://tlk.io/ smartsiena