Eundamental 2D Potantial Flow To Intime Muth satisfy

UR [istrangin" =
$$m = \frac{velsome flux}{unit 2 thickness} \int \frac{m^3}{s} \frac{m^2}{s}$$

\$2D Flow around a cyphilar

-combine: a source + sinh + uniform flow = 4.+4.+4.=0to get solution for flow around a cylinder!

Recipe.

Receive 1 Combine a some + sink in a "doublet"

$$Q_1 + Q_2 = \frac{1}{2\pi} \ln r^+ - \frac{m}{2\pi} \ln r^{-1}$$
(some) (such)

then take limit E - 0 last m increases

so
$$\frac{m\epsilon}{\pi}$$
) μ (a constant)
use power scries expansions and drop term $O(\epsilon^2)$ (compand to ϵ)

$$Q_{t} + Q_{t} = \frac{m}{L\pi} \left(\ln r^{+} - \ln r^{-} \right) = \frac{m}{L\pi} \ln \left(\frac{r^{+}}{r^{-}} \right)$$

$$\int_{\Gamma} \frac{1}{r} = \frac{1 + \epsilon x/r}{1 - \epsilon x/r} = \frac{1 + \epsilon x/r}{1 - \epsilon x/r} = \left(1 + \frac{\epsilon x}{r}\right)\left[1 + \frac{\epsilon x}{r} + O(\epsilon^{2})\right]$$

$$\frac{Q_1 + Q_2}{R} = \lim_{\epsilon \to 0} \left[\frac{m}{m} \ln \left(\frac{r_1}{r} \right) \right] = \frac{m}{n} \frac{x_{\epsilon X}}{r_1} = \frac{u \times x_{\epsilon X}}{r_2}$$

$$m_{\epsilon \to \mu} \left[\frac{m}{m} \ln \left(\frac{r_1}{r} \right) \right] = \frac{m}{n} \frac{x_{\epsilon X}}{r_1} = \frac{u \times x_{\epsilon X}}{r_2}$$

$$BC \Rightarrow U + \frac{M}{\alpha^2} - \frac{2M}{\alpha^2} = 0 \Rightarrow U = \frac{M}{\alpha^2}$$

$$\varphi = r \cos \theta \left(\mathcal{U} + \frac{a^2 \mathcal{U}}{r^2} \right) = \mathcal{U} \left(r + \frac{a^2}{r^2} \right) \cos \theta = \varphi$$

Table of power series expansions

(In some cases the remainder term $R_n(x)$ is given)

(B_n =Bernoulli numbers, E_n =Euler numbers, see sec. 12.3)

Function	Power series expansion	Interval of convergence
	Algebraic functions	
	$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-n+1)}{n!}, \ \alpha \text{ real number}$	
$(1+x)^{\alpha}$	$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \dots + {\alpha \choose n} x^n + \dots,$	-1 <x<1< td=""></x<1<>
	$R_n(x) = \binom{\alpha}{n} (1 + \theta x)^{\alpha - n} x^n, \ 0 < \theta < 1$	
$\frac{1}{1-x}$	$1+x+x^2+x^3+\ldots+x^n+\ldots$	-1< <i>x</i> <1
$\frac{1}{1+x}$	$1-x+x^2-x^3++(-1)^nx^n+$	-1< <i>x</i> <1
$\frac{1}{a-bx}$	$\frac{1}{a} \left[1 + \frac{bx}{a} + \left(\frac{bx}{a}\right)^2 + \ldots + \left(\frac{bx}{a}\right)^n + \ldots \right] \text{or}$	$ x < \left \frac{a}{b} \right $
	$-\frac{1}{bx}\left[1+\frac{a}{bx}+\left(\frac{a}{bx}\right)^2+\ldots+\left(\frac{a}{bx}\right)^n+\ldots\right]$	$ x > \left \frac{a}{b} \right $
$\frac{1}{(1-x)^2}$	$1+2x+3x^2++(n+1)x^n+$	-1 < x < 1
$\sqrt{1+x}$	$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \dots + \binom{1/2}{n} x^n + \dots$	-1≤ <i>x</i> ≤1
$\frac{1}{\sqrt{1+x}}$	$1 - \frac{x}{2} + \frac{3x^2}{8} - \frac{5x^3}{16} + \frac{35x^4}{128} - \dots + {\binom{-1/2}{n}} x^n + \dots$	-1< <i>x</i> ≤1
Note: $\begin{pmatrix} \alpha \\ n \end{pmatrix}$	$\bigg)\bigg \sim C_a n^{-\alpha-1}, n\to\infty$	

Table of fractional binomial coefficients, see below.

	Exponential, hyperbolic, logarithmic and inverse hyperbolic functions	*
ex	$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+\ldots$	-∞< <i>x</i> <∞
	$R_n(x) = \frac{e^{\theta x}}{n!} x^n, \ 0 < \theta < 1$	
a^{x}	$1+x \ln a + \frac{(x \ln a)^2}{2!} + \ldots + \frac{(x \ln a)^n}{n!} + \ldots$	-∞< <i>x</i> <∞

ental)

ant, irrational, ?)

•	$\frac{1}{e^x-1}$	$\frac{1}{x} - \frac{1}{2} + \frac{x}{12} - \frac{x^3}{30 \cdot 4!} + \dots + \frac{B_{2n} x^{2n-1}}{(2n)!} + \dots$	
	sinh x	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
	$\cosh x$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$	-∞< <i>x</i> <∞
	tanh x	$x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \dots + \frac{2^{2n}(2^{2n} - 1)}{(2n)!} B_{2n} x^{2n - 1} + \dots$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
	coth x	$\frac{1}{x} + \frac{x}{3} - \frac{x^3}{45} + \frac{2x^5}{945} + \dots + \frac{2^{2n} B_{2n}}{(2n)!} x^{2n-1} + \dots$	$-\pi < x < \pi, x \neq 0$
	$\frac{1}{\sinh x}$	$\frac{1}{x} - \frac{x}{6} + \frac{7x^3}{360} - \dots - \frac{2^{2n} - 2}{(2n)!} B_{2n} x^{2n-1} + \dots$	$-\pi < x < \pi, \ x \neq 0$
	$\frac{1}{\cosh x}$	$1 - \frac{x^2}{2} + \frac{5x^4}{24} - \dots + \frac{E_{2n}}{(2n)!} x^{2n} + \dots$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
	ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$	-1< <i>x</i> ≤1
	i	$R_n(x) = \frac{(-1)^{n-1}}{1+\theta x} \cdot \frac{x^n}{n}, \ 0 < \theta < 1$	
	$\ln(a+x)$	$\ln a + \frac{x}{a} - \frac{1}{2} \left(\frac{x}{a} \right)^2 + \frac{1}{3} \left(\frac{x}{a} \right)^3 - \dots + \frac{(-1)^{n-1}}{n} \left(\frac{x}{a} \right)^n + \dots$	$-a < x \le a$
	$\ln(1+x)$	$\frac{x}{1+x} + \frac{1}{2} \left(\frac{x}{1+x} \right)^2 + \dots + \frac{1}{n} \left(\frac{x}{1+x} \right)^n + \dots$	$x > -\frac{1}{2}$
	arsinh x	$x - \frac{x^3}{6} + \frac{3x^5}{40} - \dots + (-1)^n \cdot \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{2n+1} + \dots$	-1< <i>x</i> <1
	arcoshx	$\ln 2x - \frac{1}{4x^2} - \frac{3}{32x^4} - \dots - \frac{(2n-1)!!}{(2n)!!} \cdot \frac{1}{2nx^{2n}} - \dots$	x >1
	artanh x	$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$	-1< <i>x</i> <1
	arcoth x	$\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots$	x >1

	Trigonometric and inverse trigonometric functions	
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$	-∞< <i>x</i> <∞
	$R_{2n+1}(x) = (-1)^n \frac{\cos \theta x}{(2n+1)!} x^{2n+1}, \ 0 < \theta < 1$	
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$	-∞< <i>x</i> <∞
	$R_{2n}(x) = (-1)^n \frac{\cos \theta x}{(2n)!} x^{2n}, \ 0 < \theta < 1$	

tan x

 $\cot x$

 $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{\sin x}$

 $\arcsin x$

 $\arctan x$

 $\arccos x$

 $\operatorname{arccot} x$

Graphs of s

 $y = \sin x$

 $y = \ln(1+x)$

$< x < 2\pi$, <i>x≠</i> (
:x<∞	
: <i>χ</i> <∞	

$$x < \frac{\pi}{2}$$

$$x < \pi, \ x \neq 0$$

$$x < \pi, x \neq 0$$

$$2x < \frac{\pi}{2}$$

$$-\frac{1}{2}$$

<*x*<1

-1

>1

tan x	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots + (-1)^{n-1} \frac{2^{2n}(2^{2n}-1)}{(2n)!} B_{2n}x^{2n-1} + \dots$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
$\cot x$	$\frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \dots + (-1)^n \frac{2^{2n}}{(2n)!} B_{2n} x^{2n-1} + \dots$	$ \begin{array}{l} -\pi < x < \pi, \\ x \neq 0 \end{array} $
$\sec x = \frac{1}{\cos x}$	$1 + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \dots + (-1)^n \frac{E_{2n}}{(2n)!} x^{2n} + \dots$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
$\csc x = \frac{1}{\sin x}$	$\frac{1}{2!} + \frac{x}{4!} + \frac{7x^3}{6!} + \dots + (-1)^{n-1} \cdot \frac{2^{2n}-2}{(2n)!} B_{2n}x^{2n-1} + \dots$	$-\pi < x < \pi$, $x \neq 0$
arcsin x	$x + \frac{x^3}{6} + \frac{3x^5}{40} + \dots + \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} + \dots$	-1 < x < 1
arctan x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$	-1≤ <i>x</i> ≤1
	$R_{2n+1}(x) = (-1)^n \frac{1}{1+\theta^2 x^2} \cdot \frac{x^{2n+1}}{2n+1}, \ 0 < \theta < 1$	
arccos x	$=\frac{\pi}{2}-\arcsin x$	
arccot x	$=\frac{\pi}{2}-\arctan x$	

Graphs of some Taylor polynomials $P_n(x)$ of degree n

