**22.24.** Bok kwadratu wpisanego w okrąg o promieniu  $6\sqrt{3}$  ma długość:

A.  $6\sqrt{6}$ 

190

B.  $12\sqrt{3}$ 

C.  $12\sqrt{6}$ 

D.  $3\sqrt{6}$ 

22.25. Okrąg o średnicy 6 jest opisany na kwadracie. Obwód tego kwadratu jest równy

A. 12

B. 24

C.  $24\sqrt{2}$ 

D.  $12\sqrt{2}$ 

**22.26.** Dany jest trójkąt prostokątny ABC, w którym  $|AB| = 4\sqrt{3} < |BC|$  oraz |AC| = 1. Pole koła opisanego na trójkącie ABC jest równe:

A. 11,  $75\pi$ 

B.  $12,25\pi$ 

C.  $14\pi$ 

D. 24,  $5\pi$ 

**22.27.** Promień koła opisanego na trójkącie prostokątnym o przyprostokątnych a = 6, b = 8jest równy:

A. 7

B. 20

C. 5

D. 10

**22.28.** Cięciwy okręgu o promieniu r i środku S, o długościach |AB| = 9 i |BC| = 12 przecinają się w punkcie B pod kątem prostym (zobacz rysunek):



Wówczas

A. r < 8

B.  $8 \le r < 10,5$ 

C.  $10, 5 \le r < 12$ 

D.  $12 \le r \le 15$ 

22.29. W okrąg o promieniu r wpisano trójkąt prostokątny, którego dwa krótsze boki mają długości  $3\sqrt{2}$  oraz  $2\sqrt{3}$ . Wtedy r jest równy:

A.  $\frac{15\sqrt{2}}{2}$ 

C.  $\sqrt{15}$ 

D.  $\sqrt{30}$ 

**22.30.** Dany jest trójkąt ABC, w którym |AB| = 3, |BC| = 4, |AC| = 5. Promień okręgu opisanego na tym trójkącie ma długość:

A. 1

**22.31.** W prostokącie *ABCD* dane są długości sąsiednich boków  $|AB| = 3\sqrt{5}$  oraz |BC| = 2. Pole koła opisanego na prostokącie ABCD jest równe:

A.  $\frac{49}{4}\pi$ 

B.  $49\pi$ 

C.  $\frac{49}{2}\pi$ 

**22.32.** Promień okręgu opisanego na prostokącie o bokach  $3\sqrt{2}$  i  $2\sqrt{3}$  ma długość:

A.  $\sqrt{15}$ 

B.  $2\sqrt{7}$ 

D.  $\sqrt{7}$ 

**22.33.** W okrąg o promieniu r wpisano prostokąt ABCD o bokach |AB| = 4, |BC| = 8. Wtedy

A.  $r = 8\sqrt{10}$  B.  $r = 2\sqrt{10}$  C.  $r = 8\sqrt{5}$