Intelligent Multimedia Systems Master AI, 2012, Lecture 2

Lecturer: Theo Gevers

Lab: Intelligent Systems Lab Amsterdam (ISLA)

Email: th.gevers@uva.nl

http://staff.science.uva.nl/~gevers

Image Formation

Projective Geometry and Camera Models

Light and Color Models

Reflection Models

Including slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth, James Hays

Projective Geometry and Camera Models

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Slide source: Seitz

Pinhole camera

f = focal length
c = center of the camera

Camera Obscura

 Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

Joseph Niepce, 1826

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Projective Geometry

What is lost?

Length

Length is not preserved

Vanishing Points and Lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points and lines

Vanishing Points and Lines

Vanishing Points

World Coordinates > Image Coordinates

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \left| \begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right|$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous coordinates

Invariant to scaling

$$k\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$
Homogeneous
Coordinates
Coordinates

Point in Cartesian is ray in Homogeneous

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Things to remember

 Vanishing points and vanishing lines

 Pinhole camera model and camera projection matrix

Image Formation

Projective Geometry and Camera Models

Light and Color Models

Reflection Models

Light and Color Models

The science of Light and Colour

Fundamentals of colour science Hall of fame

Pythagoras: undulation theory

Aristoteles: curpus theory

Newton 1665 "Opticks"

Planck, Einstein and Bohr "Quantum mechanics"

Goethe 1840 "Farbenlehre"

Munsell 1905 "A Colour Notation"

Descartes, Schopenhauer,

Hegel, Wittgenstein...and many others

Mondrian

Fundamentals Electromagnetic Spectrum

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Electromagnetic Spectrum

Electromagnetic Spectrum

Spectral Power Distribution

Hue: dominant wavelength of the SPD: EH

Saturation: purity of the colour: EH-EW

Intensity: brightness of the colour: EW

What makes an image?

the triplet light-objects-observer

Light source

Object(s)

Sensor

What makes an image?

the triplet light-objects-observer

Light source

 $e(\lambda)$

Object

 $\rho(\lambda$

Sensor

 $e(\lambda)\rho(\lambda)$

Light sources and illuminants;

Light sources:

sun, candle,
fluorescent lamp,
incandescent lamp

Illuminants:

illuminant A
illuminant D65
illuminant C

Light sources and illuminants

Incandescent lamp

Fluorescent lamp

The Physics of Light

Some examples of the spectra of light sources

Influence of Light Sources

Average daylight

Incandescent lamp

Fluorescent lamp

Materials:

Transparent

Opaque

Spectral Reflectance $\rho(\lambda)$

Object Colours

Material spectrophotometer Reflectance curve

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Wavelength (nm)

More Spectra

Observer

Eyes: rods and cones

Theories:

Trichromaticity theory

Opponent theory

Retinex theory

Observer: The Eye

The human eye is a camera!

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Observer: The Retina

Two Types of Light-Sensitive Receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Distribution of Rods and Cones

Night Sky: why are there more stars off-center? Averted vision: http://en.wikipedia.org/wiki/Averted_vision

Visible Light

Observer: Trichromacy

Young-Helmholtz approach
Tristimulus values R, G, and B
Wright (7) Guild (10)
Stiles and Burch (50)

Other Species

Most birds, and many other animals, have cones for ultraviolet light.

Some humans, mostly female, seem to have slight tetrachromatism.

Metamers

Perception of Intensity

Perception of Intensity

Illusions

Image Formation

Projective Geometry and Camera Models

Light and Color Models

Reflection Models

Reflection Models

What makes an image?

the triplet light-objects-observer

Light source

 $e(\lambda)$

Object

 $\rho(\lambda)$

Sensor

 $e(\lambda)\rho(\lambda)$

$$R = \int_{\lambda} e(\lambda) \rho(\lambda) f_R(\lambda) d\lambda, \quad G = \int_{\lambda} e(\lambda) \rho(\lambda) f_G(\lambda) d\lambda, \quad B = \int_{\lambda} e(\lambda) \rho(\lambda) f_B(\lambda) d\lambda$$

Imaging

A color imaging systemobtains N measurements at each location p given by:

$$q_k = \int_{\lambda} e(\lambda)^p \, \rho(\lambda)^p \, f_k(\lambda) d\lambda$$

where $e(\lambda)$ is the illumination spectrum, $\rho(\lambda)^p$ is the surface reflectance (surface albedo) at the point p, and $f_k(\lambda)$ and q_k for $1 \le k \le N$ are the spectral response and the camera outputs, respectively. For the ease of illustration, we consider $1 \le k \le 3$ corresponding to R, G, B.

Color spaces: RGB

Some drawbacks

- Strongly correlated channels
- Non-perceptual

Slide: James Hays

Colorimetry: CIE XYZ-system

$$X = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{x}(\lambda) d\lambda$$

$$Y = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{y}(\lambda) d\lambda$$

$$Z = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{z}(\lambda) d\lambda$$

The Eye

Young-Helmholtz approach
Tristimulus values R, G, and B
Wright (7) Guild (10)
Stiles and Burch (50)

Colorimetry: CIE xy-system

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

Colorimetry: Illuminants in the xy-plane

Light Sources and Illuminants

Light sources:

sun, candle,
fluorescent lamp,
incandescent lamp

Illuminants:

illuminant A
illuminant D65
illuminant C

Colorimetry: HSI in the xy-plane

Spectral power distribution

Hue: dominant wavelength of the SPD: EH

Saturation: purity of the colour: EH-EW

Intensity: brightness of the colour: EW

White light

Green light

Color Spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

V (H=1,S=0)

Colour Gamuts in the xy-plane

Image Formation

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

The Raster Image (Pixel Matrix)

Slide: James Hays

The Raster Image (Pixel Matrix)

Color Images: Bayer Grid

Estimate RGB at 'G' cells from neighboring values

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Slide by Steve Seitz

Color Image

j

Image Formation

Projective Geometry and Camera Models

Light and Color Models

Reflection Models