A Contextual Formalization of Structural Coinduction

Paul Downen and Zena M. Ariola

ICFP — Monday, October 13, 2025

COINDUCTION FOR MODERN COMPUTER SCIENCE

INTERACTING WITH OTHERS

Induction has been the workhorse of PL in theory & practice

Programs that interact with the outside world while they run are coinductive:

Operating systems & User Interfaces

Web servers & Networks

Control software & robotics

...

Coinduction also arises in semantics of languages

Bisimulation & (potentially) infinite processes

Interaction trees & effects

Automata & formal languages

COINDUCTION FOR MODERN COMPUTER SCIENCE

INTERACTING WITH OTHERS

Induction has been the workhorse of PL in theory & practice

Programs that interact with the outside world while they run are coinductive:

Operating systems & User Interfaces

Web servers & Networks

Control software & robotics

. . .

Coinduction also arises in semantics of languages

Bisimulation & (potentially) infinite processes

Interaction trees & effects

Automata & formal languages

So let's just use coinduction like we do induction!

What's So Hard

ABOUT COINDUCTION?

THE "HELLO, WORLD!" OF COINDUCTION

$$map: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b$$

 $map \ f \ xs = More \ (f \ (Head \ xs)) \ (map \ f \ (Tail \ xs))$

Theorem

For all xs: Stream a, map id xs = xs.

Proof. By general coinduction. Assume the CoIH: $map\ id\ xs = xs$.

THE "HELLO, WORLD!" OF COINDUCTION

$$map: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b$$

 $map \ f \ xs = More \ (f \ (Head \ xs)) \ (map \ f \ (Tail \ xs))$

Theorem

For all xs: Stream a, map id xs = xs.

Proof. By general coinduction. Assume the CoIH: map id xs = xs.

Then by CoIH, already know *map id xs* = xs. Easy!

 \boxtimes

Obviously that won't do! Need to do some work...

THE "HELLO, WORLD!" OF COINDUCTION

$$map: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b$$

 $map \ f \ xs = More \ (f \ (Head \ xs)) \ (map \ f \ (Tail \ xs))$

Theorem

For all xs: Stream a, map id xs = xs.

Proof. By general coinduction.

Assume the CoIH: $map\ id\ xs = xs$.

$$\underline{map \ id \ xs} = \text{More} \ (\underline{id(\text{Head} \ xs)}) \ (map \ id \ (\text{Tail} \ xs)) \qquad (map)$$

$$= \text{More} \ (\text{Head} \ xs) \ (\underline{map \ id \ (\text{Tail} \ xs)}) \qquad (id)$$

$$= \underline{\text{More} \ (\text{Head} \ xs) \ (\text{Tail} \ xs)} \qquad (ColH)$$

$$= xs \qquad (\eta)$$

What's different this time?

THE "HELLO, WORLD!" OF COINDUCTION

$$map: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b$$

 $map \ f \ xs = More \ (f \ (Head \ xs)) \ (map \ f \ (Tail \ xs))$

Theorem

For all xs: Stream a, map id xs = xs.

Proof. By general coinduction.

Assume the CoIH: map id xs = xs.

$$\underline{map \ id \ xs} = \text{More} \ (\underline{id}(\text{Head} \ xs)) \ (map \ id \ (\text{Tail} \ xs))$$

$$= \text{More} \ (\text{Head} \ xs) \ (\underline{map \ id \ (\text{Tail} \ xs)})$$

$$= \underline{More} \ (\text{Head} \ xs) \ (\text{Tail} \ xs)$$

$$= xs$$

$$(\eta)$$

What's different this time? The CoIH is only used in a productive context.

A MIRACULOUS DISCOVERY!

WHAT IS "PRODUCTIVE," ANYWAY?

always : $a \rightarrow \text{Stream } a$

always x = More x (always x)

Theorem

More 0 (always 1) = always 0.

Corollary: 1 = 0.

Proof. By general coinduction.

Assume the CoIH: More 0 (always 1) = always 0.

• • •

A MIRACULOUS DISCOVERY!

WHAT IS "PRODUCTIVE," ANYWAY?

always :
$$a \rightarrow \text{Stream } a$$

$$always x = More x (always x)$$

Theorem

More 0 (always 1) = always 0.

Corollary: 1 = 0.

Proof. By general coinduction.

Assume the CoIH: More 0 (always 1) = always 0.

```
More 0 (always 1)
```

$$= More 0 (Tail(\underline{More 0 (always 1)}))$$
 (Tail⁻¹)

$$= More 0 (Tail(always 0)) (CoIH)$$

$$= More 0 (Tail(More 0 (always 0))) (always)$$

$$= \underline{\mathsf{More}\,0\;(\mathit{always}\,0)} \tag{Tail}$$

$$= always 0 (always^{-1})$$

What went wrong??

A MIRACULOUS DISCOVERY!

WHAT IS "PRODUCTIVE," ANYWAY?

$$always: a \rightarrow Stream a$$
 $always x = More x (always x)$

Theorem

More 0 (always 1) = always 0.

Corollary: 1 = 0.

Proof. By general coinduction.

Assume the CoIH: More 0 (always 1) = always 0.

```
More 0 (always 1)
```

$$= More 0 (Tail(More 0 (always 1))) (Tail-1)$$

$$= More 0 (Tail(always 0)) (CoIH)$$

$$= More 0 (Tail(More 0 (always 0))) (always)$$

$$= \underline{\mathsf{More}\,0\;(\mathit{always}\,0)} \tag{Tail}$$

$$= always 0 (always^{-1})$$

What went wrong?? The CoIH looked productive, but it wasn't.

COINDUCTION VIA PRODUCTIVITY IS SUBTLE

WHAT WE DO TO MANAGE TODAY

The coinductive hypothesis (CoIH) is too powerful

Status quo: avoid vicious cycles by using CoIH in good contexts

"Good" and "bad" contexts have subtle semantic content

Possible if your proof has a certain "shape"

Calculations have obvious contexts around axiom use Good luck analyzing the "context" in a paragraph of prose

Proof assistants can help sort out good contexts from bad

COINDUCTION VIA PRODUCTIVITY IS SUBTLE

WHAT WE DO TO MANAGE TODAY

The coinductive hypothesis (CoIH) is too powerful

Status quo: avoid vicious cycles by using CoIH in good contexts

"Good" and "bad" contexts have subtle semantic content

Possible if your proof has a certain "shape"

Calculations have obvious contexts around axiom use Good luck analyzing the "context" in a paragraph of prose

Proof assistants can help sort out good contexts from bad

...using (rigidly) syntactic approximations of semantics

A FRUSTRATING PROOF IN ROCQ

I HOPE YOU LIKE PORING OVER AUTO-GENERATED PROOF TERMS...

```
CoInductive Stream A : Type := More { Head : A ; Tail : Stream A }.
CoFixpoint map {A} {B} (f : A -> B) xs := More (f (Head xs)) (map f (Tail xs)).
CoInductive StreamEq {A} (xs ys : Stream A) : Prop :=
    MoreEq { HeadEq : Head xs = Head ys;
        TailEq : StreamEq (Tail xs) (Tail ys) }.
```

A Frustrating Proof in Rocq

I HOPE YOU LIKE PORING OVER AUTO-GENERATED PROOF TERMS...

```
CoInductive Stream A : Type := More { Head : A : Tail : Stream A }.
CoFixpoint map \{A\} \{B\} \{f: A \rightarrow B\} \{xs: More\ (f (Head\ xs)) (map\ f (Tail\ xs)).
CoInductive StreamEq {A} (xs vs : Stream A) : Prop :=
  MoreEq { HeadEq : Head xs = Head vs:
           TailEq : StreamEq (Tail xs) (Tail vs) }.
 Theorem map id1
                                                          Theorem map id2
   : forall {A} (xs : Stream A),
                                                            : forall {A} (xs : Stream A),
                                                              StreamEq (map id xs) xs.
     StreamEq (map id xs) xs.
 Proof
                                                          Proof
                                                            intro A
   intro A
   intro xs.
                                                            cofix ColH.
   cofix CoIH.
                                                            intro xs.
   apply MoreEq.
                                                            apply MoreEq.
   * reflexivity.
                                                            * reflexivity.
  * apply CoIH.
                                                            * apply CoIH.
                                                          Oed.
 Oed.
```

A FRUSTRATING PROOF IN ROCQ

I HOPE YOU LIKE PORING OVER AUTO-GENERATED PROOF TERMS...

```
CoInductive Stream A : Type := More { Head : A : Tail : Stream A }.
CoFixpoint map \{A\} \{B\} \{f: A \rightarrow B\} \{xs: B\} \{xs:
CoInductive StreamEq {A} (xs vs : Stream A) : Prop :=
        MoreEq { HeadEq : Head xs = Head vs:
                                               TailEq : StreamEq (Tail xs) (Tail vs) }.
    Theorem map id1
                                                                                                                                                                                                                                                         Theorem map id2
            : forall {A} (xs : Stream A),
                                                                                                                                                                                                                                                                 : forall {A} (xs : Stream A),
                    StreamEq (map id xs) xs.
                                                                                                                                                                                                                                                                        StreamEq (map id xs) xs.
     Proof
                                                                                                                                                                                                                                                         Proof
             intro A
                                                                                                                                                                                                                                                                 intro A
             intro xs.
                                                                                                                                                                                                                                                                cofix ColH.
             cofix COIH
                                                                                                                                                                                                                                                                intro vs
             apply MoreEq
                                                                                                                                                                                                                                                                 apply MoreEq
            * reflexivity.
                                                                                                                                                                                                                                                                * reflexivity.
             * apply CoIH.
                                                                                                                                                                                                                                                                  * apply CoIH.
    Oed.
                                                                                                                                                                                                                                                        Oed.
```

No more goals.

No more goals.

A Frustrating Proof in Rocq

I HOPE YOU LIKE PORING OVER AUTO-GENERATED PROOF TERMS...

```
CoInductive Stream A : Type := More { Head : A : Tail : Stream A }.
CoFixpoint map \{A\} \{B\} \{f: A \rightarrow B\} \{xs: More\ (f\ (Head\ xs))\ (map\ f\ (Tail\ xs)).
CoInductive StreamEq {A} (xs vs : Stream A) : Prop :=
  MoreEq { HeadEq : Head xs = Head vs:
           TailEq : StreamEq (Tail xs) (Tail vs) }.
 Theorem map id1
                                                           Theorem map id2
   : forall {A} (xs : Stream A),
                                                             : forall {A} (xs : Stream A),
     StreamEq (map id xs) xs.
                                                               StreamEq (map id xs) xs
 Proof
                                                           Proof
                                                             intro A
   intro A
   intro xs.
                                                             cofix ColH.
   cofix COIH
                                                             intro vs
   apply MoreEq.
                                                             apply MoreEq
   * reflexivity.
                                                             * reflexivity.
   * apply CoIH.
                                                             * apply CoIH.
 Oed.
                                                           Oed.
```

No more goals.

Error: ... ColH is ill-formed...

No more goals.

Ok. Ü

LIBERATING STRUCTURAL COINDUCTION FROM SYNTAX

MAKING COINDUCTION AS STRAIGHTFORWARD AS INDUCTION OUTSIDE A PROOF ASSISTANT

Want: A coinduction principle useful for informal proofs, pen-and-paper prose style, with the same confidence as structural induction

No question when the Inductive Hypothesis applies, even in informal contexts:

assume
$$IH : P(n)$$
 prove $Goal : P(n + 1)$

The usual basis of coinduction is begging the question:

assume
$$CoIH : P(xs)$$
 prove $Goal : P(xs)$

Need: A re-formulation of the Colnductive Hypothesis that

- (1) Can be checked for valid applications immediately
- (2) Is not dependent on a particular syntax / proof context
- (3) Gives an axiom that is sound by definition without secondary syntactic checks

Confidence

COINDUCTION WITH

WHAT IS THE PRINCIPLE BEHIND COPATTERNS?

RESTORING THE STRUCTURE TO STRUCTURAL (CO)INDUCTION

```
record Stream (A : Set) : Set where
  coinductive
  field Head : A
         Tail: Stream A
map : \forall \{A B\} \rightarrow (A \rightarrow B) \rightarrow Stream A \rightarrow Stream B
map f xs .Head = f (xs .Head)
map f xs .Tail = map f (xs .Tail)
record Stream_≈_ {A} (xs ys : Stream A) : Set where
  coinductive
  field Head : xs . Head \equiv vs . Head
         Tail : Stream xs .Tail \approx ys .Tail
map-id : \forall {A} (xs : Stream A) \rightarrow Stream map id xs \approx xs
map-id xs .Head = refl
map-id xs .Tail = map-id (xs .Tail)
```

STRUCTURAL (Co)INDUCTION

Main idea 1: Coinduction = Induction on the Observing Context

Principle (Induction on Natural Number Values)

Property P holds on all natural number values n: Nat (i.e., P(n)) if and only if

P(0) holds, and

for all values n: Nat, P(n) implies P(n + 1).

STRUCTURAL (Co)INDUCTION

Main idea 1: Coinduction = Induction on the Observing Context

Principle (Induction on Natural Number Values)

Property P holds on all natural number values n: Nat (i.e., P(n)) if and only if

P(0) holds, and

for all values n: Nat, P(n) implies P(n + 1).

Principle (Coinduction on Stream Observations*)

Property P holds on all stream observations f: Stream $A \rightsquigarrow B$ (i.e., P(f)) if and only if

for all observations $g: A \rightsquigarrow B$, $P(g \circ Head)$ holds, and

for all observations h: Stream $A \rightsquigarrow B$, P(h) implies $P(h \circ Tail)$.

STRUCTURAL (Co)INDUCTION

Main idea 1: Coinduction = Induction on the Observing Context

Principle (Induction on Natural Number Values)

Property P holds on all natural number values n : Nat (i.e., P(n)) if and only if

P(0) holds, and

for all values n: Nat, P(n) implies P(n + 1).

Principle (Coinduction on Stream Observations*)

Property P holds on all stream observations f: Stream $A \rightsquigarrow B$ (i.e., P(f)) if and only if

for all observations $g: A \rightsquigarrow B$, $P(g \circ Head)$ holds, and

for all observations h: Stream $A \rightsquigarrow B$, P(h) implies $P(h \circ Tail)$.

Main idea 2: Sound Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence) Given values x : A and y : A,

Given values x : A and y : A,

x = y if and only if

for all observations f, f(x) = f(y).

Main idea 2: Sound Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)

```
Given values x : A and y : A, x = y
if and only if
for all observations f, f(x) = f(y).
```

Corollary (Contextual Stream Equality)

Given stream values xs: Stream A and ys: Stream A, xs = ysif and only if for all observations g, g(Head(xs)) = g(Head(ys))and for all obs. h, h(xs) = h(ys) implies h(Tail(xs)) = h(Tail(ys))

Main idea 2: Sound Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)

Given values x : A and y : A,

$$x = y$$

if and only if

for all observations f, f(x) = f(y).

Corollary (Contextual Stream Equality)

Given stream values xs: Stream A and ys: Stream A,

$$xs = vs$$

if and only if

for all observations g, g(Head(xs)) = g(Head(ys))

and

for all obs.
$$h$$
, $h(xs) = h(ys)$ implies $h(Tail(xs)) = h(Tail(ys))$

Proof. By Contextual Equivalence + Coinduction on Stream Observations, where P(f) = (f(xs) = f(ys)).

Main idea 2: Sound Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)

Given values x : A and y : A,

$$x = y$$

if and only if

for all observations f, f(x) = f(y).

Corollary (Contextual Stream Equality)

Given stream values xs: Stream A and ys: Stream A,

$$xs = ys$$

if and only if

$$Head(xs) = Head(ys)$$

and

for all obs.
$$h$$
, $h(xs) = h(ys)$ implies $h(Tail(xs)) = h(Tail(ys))$

Proof. By Contextual Equivalence + Coinduction on Stream Observations, where P(f) = (f(xs) = f(ys)).

AN INFORMAL PROOF BY CONTEXTUAL STREAM EQUALITY

Now with more confidence!

$$Head(map f x) = f (Head x)$$

$$Tail(map f x) = map f (Tail x)$$

Theorem $map\ id\ xs = map\ id\ xs$

Proof. By contextual stream equality:

(Head) Show Head(
$$map id xs$$
) = Head(xs)

$$Head(map \ id \ xs) = id(Head(xs)) = Head(xs)$$

 $(Head \circ map, id)$

AN INFORMAL PROOF BY CONTEXTUAL STREAM EQUALITY

Now with more confidence!

Head
$$(map f x) = f$$
 (Head x) Tail $(map f x) = map f$ (Tail x)

Theorem map $id xs = map id xs$

Proof. By contextual stream equality:

(Head) Show Head $(map id xs) = Head(xs)$

Head $(map id xs) = id(Head(xs)) = Head(xs)$ (Head $\circ map, id$)

(Tail) Assume ColH: $h(map id xs) = h(xs)$.

Show $h(Tail(map id xs)) = h(Tail(xs))$.

$$h(Tail(map id xs)) = h(map id (Tail(xs)))$$
 (Tail $\circ map$)
$$= h(Tail(xs))$$

AN INFORMAL PROOF BY CONTEXTUAL STREAM EQUALITY

Now with more confidence!

$$\mathsf{Tail}(\mathit{map}\,f\,x) = f\,(\mathsf{Head}\,x) \qquad \mathsf{Tail}(\mathit{map}\,f\,x) = \mathit{map}\,f\,(\mathsf{Tail}\,x)$$

$$\mathsf{Theorem}$$

$$\mathit{map}\,id\,xs = \mathit{map}\,id\,xs$$

Proof. By contextual stream equality:

(Head) Show Head(
$$map \ id \ xs$$
) = Head(xs)

Head($map \ id \ xs$) = id (Head(xs)) = Head(xs)

(Tail) Assume ColH: $h(map \ id \ xs) = h(xs)$.

Show $h(Tail(map \ id \ xs)) = h(Tail(xs))$.

(Tail omap)

= $h(Tail(xs))$

The "guard" is now explicitly part of CoIH! It can't be misapplied!

STOPPING INCORRECT STEPS AS SOON AS THEY HAPPEN

Can't use the CoIH in the wrong context!

$$Head(always x) = x$$

$$Tail(always x) = always x$$

Theorem

More 0 (always 1) = always 0

Proof (attempt). By contextual stream equality:

$$Head(More 0 (always 1)) = 0 (Head \circ More)$$
$$= Head(always 0) (Head \circ always^{-1})$$

STOPPING INCORRECT STEPS AS SOON AS THEY HAPPEN

Can't use the ColH in the wrong context!

```
Tail(always x) = always x
                   Head(always x) = x
  Theorem
  More 0 (always 1) = always 0
  Proof (attempt). By contextual stream equality:
(Head) Show Head(More 0 (always 1)) = Head(always 0).
                  Head(More 0 (always 1)) = 0
                                                                            (Head o More)
                                                                         (\text{Head} \circ always}^{-1})
                                            = Head(always 0)
 (Tail) Assume CoIH: h(More\ 0\ (always\ 1)) = h(always\ 0).
        Show h(Tail(More 0 (always 1))) = h(Tail(always 0)).
                h(Tail(More 0 (always 1)))
                = h(Tail(More 0 (Tail(More 0 (always 1)))))
                                                                     (Tail \circ More^{-1})
                \neq \dots
```

STOPPING INCORRECT STEPS AS SOON AS THEY HAPPEN

Can't use the ColH in the wrong context!

Head(
$$always\ x$$
) = x Tail($always\ x$) = $always\ x$

Theorem

More 0 ($always\ 1$) = $always\ 0$

Proof (attempt). By contextual stream equality:

(Head) Show Head(More 0 ($always\ 1$)) = Head($always\ 0$).

Head(More 0 ($always\ 1$)) = 0 (Head \circ More)

= Head($always\ 0$) (Head \circ $always\ 1$)

(Tail) Assume ColH: $h(More\ 0\ (always\ 1)) = h(always\ 0)$.

Show $h(Tail(More\ 0\ (always\ 1))) = h(Tail(always\ 0))$.

$$h(\underline{Tail(always\ 0})) = h(always\ 0)$$
 (Tail \circ $always$)

= $h(More\ 0\ (always\ 1))$ (ColH⁻¹)

 $\neq h(Tail(More\ 0\ (always\ 1)))$ (????)

IN CLASSICAL LOGIC

Coinductive Rules

DUALITIES OF COMPUTATION

EMBODYING THE CONTEXT

A producer x : A gives an answer of type A

A consumer $\alpha \div A$ asks a question of type A

A command $\langle x || \alpha \rangle$ is an interaction at a type

$$\frac{\Gamma \vdash x : A \quad \Gamma \vdash \alpha \div A}{\Gamma \vdash \langle x || \alpha \rangle} Cut$$

Consider property $P: Nat \rightarrow Prop$

Is P(x) true for any value x: Nat?

All the cases of x:

$$x = 0$$

x = y + 1 for some other y : Nat

$$\frac{\Gamma \vdash P(0) \quad \Gamma, y : \text{Nat}, P(y) \vdash P(y+1)}{\Gamma, x : \text{Nat} \vdash P(x)} \text{ Nat } Ind$$

The sound axiom of primitive induction on Nat:

$$P(0) \implies (\forall y : \text{Nat. } P(y) \implies P(y+1)) \implies \forall x : \text{Nat. } P(x)$$

A CLASSICAL COINDUCTION PRINCIPLE

SUMMARIZING INFINITE CASES OF OBSERVERS

Consider property $P:-\operatorname{Stream} A \to \operatorname{Prop}$ Is $P(\alpha)$ **true** for any observation $\alpha \div \operatorname{Stream} A$

All the cases of α :

$$\alpha = \beta$$
 • Head for some observation $\beta \div A$

$$\alpha = \delta \circ \mathsf{Tail}$$
 for some other $\delta \div \mathsf{Stream}\, A$

$$\frac{\Gamma, \beta \div A \vdash P(\beta \circ \mathsf{Head}) \quad \Gamma, \delta \div \mathsf{Stream} \, A, P(\delta) \vdash P(\delta \circ \mathsf{Tail})}{\Gamma, \alpha \div \mathsf{Stream} \, A \vdash P(\alpha)} \, \mathsf{Stream} \, Color$$

A CLASSICAL COINDUCTION PRINCIPLE

SUMMARIZING INFINITE CASES OF OBSERVERS

Consider property $P : - \operatorname{Stream} A \to \operatorname{Prop}$

Is $P(\alpha)$ true for any observation α ÷ Stream A

All the cases of α :

$$\alpha = \beta \circ \text{Head for some observation } \beta \div A$$

$$\alpha = \delta \circ \mathsf{Tail}$$
 for some other $\delta \div \mathsf{Stream}\, A$

$$\frac{\Gamma, \beta \div A \vdash P(\beta \circ \mathsf{Head}) \quad \Gamma, \delta \div \mathsf{Stream} \, A, P(\delta) \vdash P(\delta \circ \mathsf{Tail})}{\Gamma, \alpha \div \mathsf{Stream} \, A \vdash P(\alpha)} \, \mathsf{Stream} \, CoInd$$

The sound axiom of primitive corecursion on Stream *A*:

$$(\forall \beta \div A. \ P(\beta \circ \mathsf{Head})) \implies \\ (\forall \delta \div \mathsf{Stream} \ A. \ P(\delta) \implies P(\delta \circ \mathsf{Tail})) \implies \\ \forall \alpha \div \mathsf{Stream} \ A. \ P(\alpha)$$

Coinductive Principles for Other Types

COMPUTING WITH CONTEXTUAL Coinduction

CONSISTENCY OF EQUALITY

Do the Syntactic Rules Mean Anything?

Theorem

If
$$\Gamma \vdash \langle v || e \rangle = \langle v' || e' \rangle$$
, then $\langle v || e \rangle$ and $\langle v' || e' \rangle$ are contextually equivalent.

Proof.

By a logical relation based on orthogonal fixed points in a subtyping lattice.

Key idea: Knaster-Tarski and Kleene fixed points defining types coincide.

CONSISTENCY OF EQUALITY

Do the Syntactic Rules Mean Anything?

Theorem

If
$$\Gamma \vdash \langle v || e \rangle = \langle v' || e' \rangle$$
, then $\langle v || e \rangle$ and $\langle v' || e' \rangle$ are contextually equivalent.

Proof.

By a logical relation based on orthogonal fixed points in a subtyping lattice.

Key idea: Knaster-Tarski and Kleene fixed points defining types coincide.

Corollary

If
$$\alpha \div \text{Bool} \vdash \langle v || e \rangle = \langle v' || e' \rangle$$
, then either

$$\langle v || e \rangle \mapsto \langle tt || \alpha \rangle \iff \langle v' || e' \rangle \text{ or } \langle v || e \rangle \mapsto \langle ff || \alpha \rangle \iff \langle v' || e' \rangle.$$

Corollary

• \vdash tt = ff : Bool is not derivable.

WHAT ABOUT EFFECTS?

Programs can do some funny things

Conventional side effects

Mutable state / references

Input / Output

Exceptions and Jumps

Infinite loops

Surprising wrinkle: Information effects

Dual to control effects (manipulating control flow)

Erasing answers

Duplicating answers

Both can cause (co)inductive reasoning principles to go awry

For example, they can cause inconsistency

(Co)Induction and Evaluation Strategy

Adjusting Strength to Save Consistency

Induction principles (like Nat *Ind*) + Effects are

Fully consistent under call-by-value evaluation

Safe for strict properties in call-by-name evaluation

Strict on
$$x \ni \qquad \Psi(x) ::= \langle x | E \rangle = \langle x | E' \rangle \qquad (E, E' \in Eval.Cxt.)$$

$$| \dots$$

(Co)Induction and Evaluation Strategy

Adjusting Strength to Save Consistency

Induction principles (like Nat Ind) + Effects are

Fully consistent under call-by-value evaluation

Safe for strict properties in call-by-name evaluation

Strict on
$$x \ni \qquad \qquad \Psi(x) ::= \langle x | E \rangle = \langle x | E' \rangle \qquad (E, E' \in Eval.Cxt.)$$

Coinduction principles (like Stream *CoInd*) + Effects are

Fully consistent under call-by-name evaluation

Safe for productive properties in call-by-value evaluation

Productive on
$$\alpha \ni \qquad \qquad \Psi(\alpha) ::= \langle V | \alpha \rangle = \langle V' | \alpha \rangle \qquad \qquad (V, V' \in Value)$$

Other reasoning principles like...

Mutual (co)induction: Multiple (Co)IHs over multiple goals

Strong (co)induction: Assume (Co)IH over <u>all</u> smaller structures

Bisimulation: Proof by relationship preservation

... are all derivable from structural (co)induction.

Other reasoning principles like...

Mutual (co)induction: Multiple (Co)IHs over multiple goals

Strong (co)induction: Assume (Co)IH over <u>all</u> smaller structures

Bisimulation: Proof by relationship preservation

... are all derivable from structural (co)induction.

Caveat: Bisimulation & strong coinduction requires unrestricted CBN rule

Dual caveat: strong induction requires unrestricted CBV rule

Answers $\langle Me || You \rangle$ Questions

What's So Hard About Coinduction?

Coinduction With Confidence

Coinductive Rules in Classical Logic

Computing With Contextual Coinduction

REFERENCES

- [1] Downen & Ariola, A Contextual Formalization of Structural Coinduction, Journal of Funcional Programming '25.
- [2] Downen & Ariola, <u>Classical (Co)Recursion: Mechanics</u>, Journal of Functional Programming '23.
- [3] Downen & Ariola, Classical (Co)Recursion: Programming, ArXiv '21.
- [4] Downen & Ariola, A Computational Understanding of Classical (Co)Recursion, PPDP '20.
- [5] Downen & Ariola, Structures for Structural Recursion, ICFP '16. (extended version)

Bonus

MUTUAL COINDUCTION

```
evens (x_0, x_1, x_2, x_3, x_4, x_5, ...) = x_0, x_2, x_4, ...

odds (x_0, x_1, x_2, x_3, x_4, x_5, ...) = x_1, x_3, x_5, ...

merge (x_0, x_1, x_2, ...) (y_0, y_1, y_2, ...) = x_0, y_0, x_1, y_1, x_2, y_2, ...
```

MUTUAL COINDUCTION

```
evens (x_0, x_1, x_2, x_3, x_4, x_5, ...) = x_0, x_2, x_4, ...

odds (x_0, x_1, x_2, x_3, x_4, x_5, ...) = x_1, x_3, x_5, ...

merge (x_0, x_1, x_2, ...) (y_0, y_1, y_2, ...) = x_0, y_0, x_1, y_1, x_2, y_2, ...
```

$$Head(evens \ xs) = Head \ xs$$
 $Tail(evens \ xs) = odds \ (Tail \ xs)$
 $odds \ xs = evens \ (Tail \ xs)$

```
Head(merge \ xs \ ys) = Head \ xs
Head(Tail(merge \ xs \ ys)) = Head \ ys
Tail(Tail(merge \ xs \ ys)) = merge \ (Tail \ xs) \ (Tail \ ys)
```

PROOF BY MUTUAL COINDUCTION

Theorem

```
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys
```

Proof. By mutual contextual stream equality:

```
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys
```

PROOF BY MUTUAL COINDUCTION

```
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys
   Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs vs)) = Head(merge xs vs) = Head xs
         Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))
                                     = Head(Tail(merge xs vs)) = Head vs
 (Tail) \forall xs, ys, ColH_1: h(evens(merge xs ys)) = h(xs), AND ColH_2: h(odds(merge xs ys)) = h(ys).
      h(Tail(evens (merge xs vs))) = h(evens (Tail(Tail(merge xs vs))))
                                    = h(evens (merge (Tail xs) (Tail vs)))
                                    = h(Tail xs) (ColH<sub>1</sub>[(Tail xs)/xs, (Tail vs)/vs])
       h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))
                                    = h(odds (merge (Tail xs) (Tail vs)))
                                    = h(\text{Tail } ys) \qquad (ColH_2[(\text{Tail } xs)/xs, (\text{Tail } ys)/ys])
```

Theorem

```
for all xs, merge (evens xs) (odds xs) = xs.
```

Proof. By strong contextual stream equality:

```
(Head) Head(merge(evens xs)(odds xs)) = Head xs
```

```
Head(merge (evens xs) (odds xs)) = Head(evens xs)
= Head xs
```

Theorem

```
for all xs, merge (evens xs) (odds xs) = xs.
```

Proof. By strong contextual stream equality:

```
(Head) Head(merge(evens xs)(odds xs)) = Head xs
```

```
Head(merge (evens xs) (odds xs)) = Head(evens xs)
= Head xs
```

```
(Head \circ Tail) \quad Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)
```

```
Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)
= Head(evens (Tail xs))
```

$$= Head(Evens (Tail xs))$$

```
for all xs, merge (evens xs) (odds xs) = xs.
   Proof. By strong contextual stream equality:
(Tail \circ Tail) Assume ColH: \forall xs, h(merge (evens xs) (odds xs)) = h(xs).
        Show \forall xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).
                 h(Tail(Tail(merge (evens xs) (odds xs))))
                  = h(merge (Tail(evens xs)) (Tail(odds xs)))
                  = h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))
```

```
for all xs, merge (evens xs) (odds xs) = xs.
   Proof. By strong contextual stream equality:
(Tail \circ Tail) Assume ColH: \forall xs, h(merge (evens xs) (odds xs)) = h(xs).
        Show \forall xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).
                 h(Tail(Tail(merge (evens xs) (odds xs))))
                  = h(merge (Tail(evens xs)) (Tail(odds xs)))
                  = h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))
```

```
for all xs, merge (evens xs) (odds xs) = xs.
   Proof. By strong contextual stream equality:
(Tail \circ Tail) Assume ColH: \forall xs, h(merge (evens xs) (odds xs)) = h(xs).
        Show \forall xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).
                 h(Tail(Tail(merge (evens xs) (odds xs))))
                  = h(merge (Tail(evens xs)) (Tail(odds xs)))
                  = h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))
                  = h(Tail(Tail xs))
                                                    (ColH[(Tail(Tail xs))/xs])
```