Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 13

Bellman-Ford algorithm:
 Shortest path with negative weight

Credit: based on slides by A.Smith and K.Wayne

Logistics

Write up your algorithm

- Start with "Idea": short description of the key to your algorithm. [Your peer should be able to take it and come up with an algorithm with *a bit*, if any, thought]
- Pseudocode: write in a nice format as you'd do in a real program, even if you are using plain-English descriptions [Your peer should be able to implement your algorithm without thinking other than implementation details]
- Comments in your pseudocode are helpful

When studying

- Identify what you don't understand
- Test yourself via (a) rederiving algorithms, proofs from class and (b) exercises in book.
- Read alternative explanations (e.g. KT,E,DPV)

Recall: shortest path problem

- Input. graph G, node s and t
- Output. dist(s,t)

- Every edge has a length l_e (can be negative)
- Length of a path $l(P) = \sum_{e \in P} l_e$
- Distance $dist(u, v) = \min_{P: u \sim v} l(P)$
- Special cases
 - All edge of equal length: BFS O(m + n)
 - DAG: DP in topological order O(m + n)

Length of shortest path: dist(s,t) = 9 - 3 - 6 + 11 = 11

A technical issue: negative length cycles

- Observation.
 - If some $s \sim t$ path contains a negative length cycle, there does not exist a shortest $s \sim t$ path;
 - Otherwise there exists a simple (i.e., no repetition node) path $\leq n-1$ edges
- For simplicity: assuming G has no NegativeLengthCycle
 - can be detected with little overhead

DP1: develop a recursion

Def. for all
$$i = 0, ..., n - 1, v \in V$$

 $OPT(i, v) := length of shortest <math>v \sim t$ path P using $\leq i$ edges

- Case 1. P uses at most i 1 edges
 - OPT(i, v) := OPT(i 1, v)
- Case 2. P uses exactly i edges
 - If (v, w) the first edge, then OPT uses (v, w) and then selects best $w \sim t$ path using $\leq i 1$ edges

- Goal. Find OPT(n-1,s)
- Basis: c(i, v) = 0 or ∞ if i = 0
- Recursion: how to define OPT(i, v) recursively?

$$\frac{\text{OPT}(i, v)}{\text{OPT}(i - 1, v)} = \begin{cases} 0 & \text{if } v = t; \ \infty \text{ if } i = 0\\ \min\left\{\text{OPT}(i - 1, v), \min_{v \to w \in E} \{\text{OPT}(i - 1, w) + l_{v \to w}\}\right\} \text{ otherwise} \end{cases}$$

DP2: build up solutions

- Subproblems: $O(n^2)$
- Memoization data struture
 - 2-D array $M[0, ... n 1, v_1, ..., v_n]$
- Dependencies
 - Each OPT(i, v) depends on subproblems on the row above
- Evaluation order
 - Row by row, each row arbitrary order

$$\frac{\text{OPT}(i, v)}{\text{OPT}(i - 1, v)} = \begin{cases} 0 & \text{if } v = t; \ \infty \text{ if } i = 0\\ \min\left\{\text{OPT}(i - 1, v), \min_{v \to w \in E} \{\text{OPT}(i - 1, w) + l_{v \to w}\}\right\} \text{ otherwise} \end{cases}$$

DP2: build up solutions


```
SPLen(G,t)

// M[i,v] memoize subproblem values

// M[0,t] = 0 and M[0,v] = \infty otherwise

For i = 1, ..., n-1 // row by row

For v \in V // any order

M[i,v] \leftarrow M[i-1,v] // case 1

For edge (v \rightarrow w) \in E // case 2

M[i,v]

\leftarrow \min\{M[i,v],M[i-1,w]+l_{vw}\}
```

This actually gives us dist(v, t) for all $v \in V$

- Analysis: $O(n^2)$ space; O(mn) time [visit all edges for each i]
- Finding a shortest path: maintain a "successor" for each entry

Example

0	∞	∞	∞	∞	∞
0	-3	8	3	4	2
0	-3	0	3	3	0
0	-4	-2	3	3	0
0	-6	-2	3	2	0
0	-6	-2	3	0	0

```
For i=1,\ldots,n-1 // row by row

For v\in V // any order

M[i,v]\leftarrow M[i-1,v] // case 1

For edge (v\rightarrow w)\in E // case 2

M[i,v]\leftarrow \min\{M[i,v],M[i-1,w]+l_{vw}\}
```

A simple but impactful improvement

Maintain only one array $M[v] = \text{length of shortest } v \sim t \text{ path found so far.}$ No need to check edge (v, w) unless M[w] changed in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some $v \sim t$ path, and after i rounds of updates, the value M[v] is no larger than the length of shortest $v \sim t$ path using $\leq i$ edges.

- Memory: O(m+n).
- Running time: O(mn) worst case, but faster in practice.
- → Bellman-Ford algorithm: efficient implementation
 - Application: (distance-vector) routing protocol on Internet [more to come]

Single-source shortest paths with negative weights

Year	Worst case	Discovered by
1955	$O(n^4)$	Shimbel
1956	$O(mn^2W)$	Ford
1958	O(mn)	Bellman, Moore
1983	$O(n^{3/4}m\log W)$	Gabow
1989	$O(mn^{1/2}\log(nW))$	Gabow-Tarjan
1993	$O(mn^{1/2}\log W)$	Goldberg
2005	$O(n^{2.38}W)$	Sankowsi, Yuster-Zwich
2016	$O(n^{10/7} \log W)$	Cohen-Madry-Sankowski-Vladu
20XX	???	You???

weights between [-W, W]