BEHIND THE SALES TAG: AN ANALYTICAL REPORT ON BALANCED TREE CLOTHING TRANSACTIONS Fatih Sahin

https://8weeksglchallenge.com/case-study-7/

CONTENTS

Introduction	3
Problem Statement	4
Creating Schema and Tables	5
Entity Relationship Diagram	7
Data Structure	7
Entity Relationship Diagram	8
Case Study Questions	9
A.HIGH LEVEL SALES ANALYSIS	9
1. What was the total quantity sold for all products?	9
2. What is the total generated revenue for all products before discounts?	9
3. What was the total discount amount for all products?	9
B. TRANSACTION ANALYSIS	10
How many unique transactions were there?	10
2. What is the average unique products purchased in each transaction?	10
 What are the 25th, 50th and 75th percentile values for the revenue per transa 11 	ction?
4. What is the average discount value per transaction?	11
5. What is the percentage split of all transactions for members vs non-members'	? 12
6. What is the average revenue for member transactions and non-member transactions?	12
C.PRODUCT ANALYSIS	13
1. What are the top 3 products by total revenue before discount?	13
2. What is the total quantity, revenue and discount for each segment?	13
3. What is the top selling product for each segment?	14
4. What is the total quantity, revenue and discount for each category?	14
5. What is the top selling product for each category?	15
6. What is the percentage split of revenue by product for each segment?	16
7. What is the percentage split of revenue by segment for each category?	17
8. What is the percentage split of total revenue by category?	18
9. What is the total transaction "penetration" for each product?	19
10. What is the most common combination of at least 1 quantity of any 3 produc	
single transaction?	20
Key Findings and Observations	21 23
CONCLUSION	シンス

Introduction

This report illuminates the findings from the "Balanced Tree Clothing Co." case study, an integral segment of the '8WeekSQLChallenge' orchestrated by Danny Ma. This specific case study presents an analytical expedition into the world of Balanced Tree, a distinguished fashion brand celebrated for its optimized clothing range tailored for modern adventurers. Embracing this challenge granted me the opportunity to emulate the role of a data analyst at Balanced Tree, deciphering insights into sales performance, product popularity, and customer buying behaviors.

Venturing into the "Balanced Tree Clothing Challenge" felt like setting sail into the vast ocean of retail analytics, charting through significant datasets that echoed genuine sales transactions, product hierarchies, and customer preferences. Those enthusiastic about grasping the nuances of this challenge can further explore at https://8weeksglchallenge.com/case-study-7/

Such endeavors elevate beyond routine SQL tasks; they mirror authentic business scenarios, prompting analysts to derive significant, actionable intelligence from a multitude of data.

For this analytical endeavor, I utilized the MS SQL Server Management Studio, an adaptable tool designed for accurate and intricate data querying. Every revelation and insight presented in this report is the fruit of diligent analysis, bolstered by the expertise I've cultivated on my SQL voyage.

The dual objective of this report is to spotlight the salient discoveries from the Balanced Tree dataset and to emphasize the profound potential of SQL in deriving strategic business insights. I ardently hope that this case study not only imparts invaluable understandings but also exemplifies the indispensable role of data analytics in sculpting the retail and fashion industries of the contemporary era.

Problem Statement

Clique Bait, an innovative player in the digital realm, finds itself at a transformative crossroads. Guided by the principles of engaging user experiences and robust digital campaigns, the platform aims to deeply understand its **user's behavior**, **product interactions**, and the **effectiveness of its campaigns**. However, before embarking on this analytical journey, there was an imperative step of refining and preparing the data:

- **Data Consistency**: Ensured that all event types and identifiers adhered to a uniform categorization system, facilitating a seamless event-based analysis.
- **Temporal Metrics Augmentation:** Enriched the dataset with calculated metrics like visit durations, session lengths, and interactivity times, enhancing the granularity of user interactions.
- **User Segmentation**: Introduced new columns that categorized users based on their engagement levels, preferences, and patterns, aiming for a nuanced user behavior analysis.
- **User Journey Metrics**: Calculated metrics like average interactions per visit and bounce rates, offering a deeper perspective into user journey dynamics.

With the data in its optimal state, the investigative challenges for the business took shape:

- **User Interaction Analysis**: Delve into how users navigate and interact with the platform, identifying potential areas of improvement in UI/UX.
- **Product Preference Assessment**: Understand which products captivate user attention the most, guiding inventory and marketing decisions.
- **Campaign Effectiveness**: Evaluate the performance of various campaigns in terms of impressions, clicks, and conversions, aiming to refine future campaign strategies.
- **Platform Dynamics**: Understand user behavior across different devices and platforms, offering insights into platform-specific optimizations.
- **User Conversion Insights**: Analyze the funnel from views to cart additions and eventually to purchases, identifying bottlenecks and opportunities for increased conversions.

Creating Schema and Tables

All datasets exist within the balanced tree database schema.

```
1 CREATE SCHEMA balanced_tree;
        3 CREATE TABLE balanced tree.product hierarchy (
                 "id" INTEGER,
        5 "parent_id" INTEGER,
6 "level_text" VARCHAR(19),
               "level_name" VARCHAR(8)
       8);
     10 INSERT INTO balanced_tree.product_hierarchy
     11 ("id", "parent_id", "level_text", "level_name")
     12 VALUES
    12 VALUES

13 ('1', NULL, 'Womens', 'Category'),

14 ('2', NULL, 'Mens', 'Category'),

15 ('3', '1', 'Jeans', 'Segment'),

16 ('4', '1', 'Jacket', 'Segment'),

17 ('5', '2', 'Shirt', 'Segment'),

18 ('6', '2', 'Socks', 'Segment'),

19 ('7', '3', 'Many Quesized', 'Styl,
                ('6', '2', 'Socks', 'Segment'),
('7', '3', 'Navy Oversized', 'Style'),
('8', '3', 'Black Straight', 'Style'),
('9', '3', 'Cream Relaxed', 'Style'),
('10', '4', 'Khaki Suit', 'Style'),
('11', '4', 'Indigo Rain', 'Style'),
('12', '4', 'Grey Fashion', 'Style'),
('13', '5', 'White Tee', 'Style'),
('14', '5', 'Feal Button Up', 'Style'),
('15', '5', 'Blue Polo', 'Style'),
                ('15', '5', 'Blue Polo', 'Style'),
('16', '6', 'Navy Solid', 'Style'),
('17', '6', 'White Striped', 'Style'),
               ('18', '6', 'Pink Fluro Polkadot', 'Style');
     32 CREATE TABLE balanced_tree.product_prices (
     33 "id" INTEGER,
     34 "product_id" VARCHAR(6),
35 "price" INTEGER
     36 );
38 INSERT INTO balanced_tree.product_prices
                ("id", "product_id", "price")
     40 VALUES
     41 ('7', 'c4a632', '13'),
                ('8', 'e83aa3', '32'),
                ('9', 'e31d39', '10'),
('10', 'd5e9a6', '23'),
('11', '72f5d4', '19'),
     45
                 ('12', '9ec847', '54'),
                   '13', '5d267b', '40'),
             ('14', 'c8d436', '10'),
('15', '202353', '57'),
('16', 'f084eb', '36'),
('17', 'b9a74d', '17'),
('18', '2feb6b', '29');
     48
     49
     54 CREATE TABLE balanced_tree.product_details (
                "product_id" VARCHAR(6),
             "price" INTEGER,
                 "product_name" VARCHAR(32),
     57
                   'category_id" INTEGER,
               "segment_id" INTEGER,
               "style_id" INTEGER,
     61
               "category_name" VARCHAR(6),
                "segment_name" VARCHAR(6),
     62
               "style_name" VARCHAR(19)
     66 INSERT INTO balanced tree.product details
               ("product_id", "price", "product_name", "category_id", "segment_id", "style_id", "category_name", "segment_name", "style_name")
     68 VALUES
            VALUES
('c4a632', '13', 'Navy Oversized Jeans - Womens', '1', '3', '7', 'Womens', 'Jeans', 'Navy Oversized'),
('e83aa3', '32', 'Black Straight Jeans - Womens', '1', '3', '8', 'Womens', 'Jeans', 'Black Straight'),
('e31d39', '10', 'Cream Relaxed Jeans - Womens', '1', '3', '9', 'Womens', 'Jeans', 'Cream Relaxed'),
('d5e9a6', '23', 'Khaki Suit Jacket - Womens', '1', '4', '10', 'Womens', 'Jacket', 'Khaki Suit'),
('72f5d4', '19', 'Indigo Rain Jacket - Womens', '1', '4', '11', 'Womens', 'Jacket', 'Indigo Rain'),
('9ec847', '54', 'Grey Fashion Jacket - Womens', '1', '4', '12', 'Womens', 'Jacket', 'Grey Fashion'),
('5d267b', '40', 'White Tee Shirt - Mens', '2', '5', '13', 'Mens', 'Shirt', 'White Tee'),
('C8d436', '10', 'Teal Button Up Shirt - Mens', '2', '5', '14', 'Mens', 'Shirt', 'Blue Polo'),
                ('88436', '12', 'Teal Button Up Shirt - Mens', '2', '5', '14', 'Mens', 'Shirt', 'Teal Button Up'),
('2a2353', '57', 'Blue Polo Shirt - Mens', '2', '5', '15', 'Mens', 'Shirt', 'Blue Polo'),
('f0846b', '36', 'Mavy Solid Socks - Mens', '2', '6', '16', 'Mens', 'Socks', 'Mavy Solid'),
('b9a74d', '17', 'White Striped Socks - Mens', '2', '6', '17', 'Mens', 'Socks', 'White Striped'),
('2feb6b', '29', 'Pink Fluro Polkadot Socks - Mens', '2', '6', '18', 'Mens', 'Socks', 'Pink Fluro Polkadot');
```

```
82 CREATE TABLE balanced_tree.sales (
      "prod_id" VARCHAR(6),
84
       "gty" INTEGER.
       'price" INTEGER,
85
      "discount" INTEGER
"member" BOOLEAN,
87
      "txn_id" VARCHAR(6),
      "start_txn_time" TIMESTAMP
90);
   INSERT INTO balanced_tree.sales
   ("prod_id", "qty", "price", "discount", "member", "txn_id", "start_txn_time")
93
      ('c4a632',
                              '17'.
                        '13',
                                           '54f307'.
                                                      '2021-02-13 01:59:43.296'),
       '5d267b', '4', '40', '17',
'b9a74d', '4', '17', '17',
96
                                           '54f307'
                                                      '2021-02-13 01:59:43.296')
                                           '54f307
                                                       2021-02-13 01:59:43.296'),
        '2feb6b'
                        '29'
                               '17
                                           '54f307
                                                       2021-02-13 01:59:43.296'
                        13',
        'c4a632'
                               '21'
                                           '26cc98
                                                       2021-01-19 01:39:00.3456').
        'e31d39'.
                        '10',
                                           '26cc98
                                                       2021-01-19 01:39:00.3456'),
                               '21'.
                                                       2021-01-19 01:39:00.3456'),
101
        '72f5d4'
                        '19'
                               '21'
                                           '26cc98
102
        '2a2353'.
                        '57
                               '21'
                                           '26cc98
                                                       2021-01-19 01:39:00.3456')
                                                       2021-01-19 01:39:00.3456'),
        'f084eb',
                        '36',
                               '21'.
                                           '26cc98
103
                               '21',
104
        c4a632
                        '13
                                           'ef648d'
                                                       2021-01-27 02:18:17.1648'),
                        '32',
                                                       2021-01-27 02:18:17.1648').
105
        'e83aa3'
                               '21'
                                           'ef648d
                                                       2021-01-27 02:18:17.1648'),
106
        d5e9a6',
                        '23'.
                               '21'.
                                           ef648d
107
        72f5d4
                        '19'
                               '21'
                                           'ef648d
                                                       2021-01-27 02:18:17.1648'),
                        '40',
        '5d267b'.
                                                       2021-01-27 02:18:17.1648').
108
                               '21'
                                           'ef648d
                                                       2021-01-27 02:18:17.1648'),
109
        f084eb',
                        '36',
                                           ef648d
                               '21'.
110
        b9a74d
                        '17
                               '21',
                                           'ef648d
                                                       2021-01-27 02:18:17.1648'),
        'c4a632'
                        '13'
                               '23'
                                           fba96f
                                                       2021-03-03 00:32:56.0544').
        e31d39'.
                                           fba96f
                                                       2021-03-03 00:32:56.0544'),
                        '10',
        '9ec847'
                        '54'
                               '23'
                                           fba96f
                                                       2021-03-03 00:32:56.0544'),
                        '36',
        f084eb'.
                               '23'
                                           fba96f
                                                       2021-03-03 00:32:56.0544').
        '2feb6b',
                                           fba96f
                                                       2021-03-03 00:32:56.0544'),
                                                       2021-01-23 14:18:54.0576'),
116
        c4n632
                        '13'
                               '11'
                                           4e9268
                        '10',
        e31d39'
                               '11'
                                           '4e9268
                                                       2021-01-23 14:18:54.0576').
                                           '4e9268
        72f5d4',
                        '19',
                               '11'.
                                                       2021-01-23 14:18:54.0576'),
118
        f084eb
                        1361
                               '11'
                                           4e9268
                                                       2021-01-23 14:18:54.0576').
120
        b9a74d '
                        17
                               '11'.
                                           '4e9268
                                                       2021-01-23 14:18:54.0576').
        e83aa3',
                                          '9717d4'
                                                      2021-01-29 07:22:13.2672'),
                        '23',
                               4',
        'd5e9a6'
                                          '9717d4
                                                     2021-01-29 07:22:13.2672'),
        c8d436'
                        '10',
                               '4'.
                                          9717d4
                                                      2021-01-29 07:22:13.2672').
                                                      2021-01-29 07:22:13.2672'),
        2a2353'
124
                        '36',
        f084eb
                               141
                                          '9717d4
                                                     2021-01-29 07:22:13.2672"
                        '19',
        72f5d4
                               '14
                                           'e9a1dd
                                                      '2021-03-28 20:01:43.1328').
        9ec847',
                                                       2021-03-28 20:01:43.1328'),
                                           e9aldd'
128
        2a2353
                        157
                               '14'
                                           'e9a1dd
                                                       2021-03-28 20:01:43.1328'),
                        '36',
        'f084eb'
                               '14'.
                                           e9a1dd
                                                      '2021-03-28 20:01:43.1328').
130
        c4a632'.
                                           003ea6'
                                                      2021-01-20 14:21:00.9792'),
        e31d39
                        '10'
                                          '003ea6
                                                      2021-01-20 14:21:00.9792')
                        '23',
        'd5e9a6'
                                          '003ea6
                                                      2021-01-20 14:21:00.9792').
133
        9ec847
                                                      2021-01-20 14:21:00.9792'),
134
        e31d39'
                        10
                               '20'
                                           '5d749c
                                                      '2021-03-28 22:24:25.8048')
                        '23',
                                                       2021-03-28 22:24:25.8048').
        'd5e9a6'
                               '20'.
                                           '5d749c
        5d267b',
                                           '5d749c
                                                       2021-03-28 22:24:25.8048'),
        '2a2353'
                        57
                               '20'
                                           547496
                                                       2021-03-28 22:24:25.8048')
                                           '5d749c
138
        f084eb
                        '36'
                               '20'
                                                       2021-03-28 22:24:25.8048').
                                           cf6517
                                                       2021-02-21 21:45:33.3504'),
                                                       2021-02-21 21:45:33.3504').
149
        72f5d4
                        '19'
                               '14'
                                           'cf6517
141
        '5d267b'
                        '40'
                               '14'
                                           cf6517
                                                       2021-02-21 21:45:33.3504').
        b9a74d',
                                           cf6517
                                                       2021-02-21 21:45:33.3504'),
143
        'c4n632'
                        1131
                               '19'
                                           '48h9d7
                                                       2021-02-26 06:49:17.3856'),
                                                       2021-02-26 06:49:17.3856').
144
        'e83aa3'
                        '32'
                               '19'
                                           '48b9d7
        e31d39'.
                                                       2021-02-26 06:49:17.3856'),
        'd5e9a6'
                        1231
                               '19'
                                           '48h9d7
                                                       2021-02-26 06:49:17.3856'),
        '5d267b'
                        '40'
                               '19',
                                           '48b9d7
                                                       2021-02-26 06:49:17.3856'),
                                                       2021-02-26 06:49:17.3856'),
        c8d436'
149
        '2a2353'
                        157
                               '19'
                                           '48h9d7
                                                       2021-02-26 06:49:17.3856'),
                        '17'
                                                       2021-02-26 06:49:17.3856'),
                               '19'.
        'b9a74d'.
                                           '48b9d7
                                                       2021-02-26 06:49:17.3856'),
                               '19'.
                        '19',
                                                     '2021-01-27 22:53:10.7808'),
'2021-01-27 22:53:10.7808'),
        72f5d4
                                          '47251d'
                               '5',
        '5d267b'
                        '40'.
                                          '47251d'
        2a2353',
                                                      2021-01-27 22:53:10.7808'),
                        '36',
        fastoh'
                                          '47251d
                                                      2021-01-27 22:53:10.7808
        e83aa3
                        '32'.
                               15
                                           'c75ea6
                                                      '2021-03-03 04:17:19.8528').
                                                       2021-03-03 04:17:19.8528'),
        e31d39
                        '19',
                                                       2021-03-03 04:17:19.8528'),
158
        72f5d4
                               15
                                           'c75ea6
                                                       2021-03-03 04:17:19.8528').
                                           c75ea6
        9ec847
                        54
                               '15'
                                                       2021-03-03 04:17:19.8528'),
        5d267b
                                           c75ea6
                                                       2021-03-03 04:17:19.8528'),
        'f084eh'
                        1361
                               '15'
                                           'c75ea6
        b9a74d
                                           c75ea6
                                                       2021-03-03 04:17:19.8528').
                        17
                               '15'
                                                       2021-03-03 04:17:19.8528'),
                                           'c75ea6
                                                       2021-03-19 23:33:38.2752'),
164
        c4a632
                        '13'
                               '19'
                                           '84a0f1
        e31d39
                                           '84a0f1
                                                       2021-03-19 23:33:38.2752').
                        '10
                               '10'
                                                       2021-03-19 23:33:38.2752'),
         9ec847
                                           '84a0f1
                                                       2021-03-19 23:33:38.2752')
167
        h9a74d'
                        177
                               '10'
                                           '84a0f1
                                                       2021-03-19 23:33:38.2752'),
168
        '2feb6b'.
                        '29
                               '10'
                                           '84a0f1
        c4a632',
                                                      2021-01-13 08:41:16.4544'),
                               '9',
170
        'e83aa3'
                        '32',
                                          786c60
                                                     2021-01-13 08:41:16.4544')
```

Entity Relationship Diagram

Data Structure

Balanced Tree Clothing Company employs an intricate data system to manage and analyze its broad range of clothing and lifestyle wear sales. The heart of this system consists of tables that record product details, sales transactions, product hierarchies, and product pricing. Here's a detailed breakdown of these tables:

- balanced_tree.product_details: This table stands central to the company's product offerings. It contains essential product details such as:
 - **product_id**: A unique identifier for each product.
 - **product_name**: The name or title of the product.
 - **price**: The base price of the product.
 - category_name, segment_name, style_name: Various classifications of the product.
- 2. **balanced_tree.sales**: Capturing the essence of customer transactions, this table includes:
 - **txn_id**: A unique identifier for each transaction.
 - **prod_id**: Identifier for the specific product in the transaction.
 - **qty**: Quantity of the product sold in the transaction.
 - **price**: The selling price of the product in the transaction.
 - **discount**: Discounts applied to the product during the sale.
 - **member**: Indicates if the sale was made to a member ('t' for true and 'f' for false).
 - **start txn time**: Timestamp indicating when the transaction occurred.
- 3. **balanced_tree.product_hierarchy:** This table elucidates the hierarchical structure of products, enabling a layered understanding:
 - **id**: A unique identifier for each hierarchy level.
 - **parent_id**: Identifier pointing to the parent level in the hierarchy.
 - **level_name**: Name of the hierarchy level, e.g., "Category" or "Segment".

- 4. **balanced_tree.product_prices**: While the core product details table provides base prices, this auxiliary table offers insights into specific product pricing:
 - id: A unique identifier for each pricing entry.
 - **product_id**: Reference to the specific product.
 - **price**: The price associated with that product.

Through the combined power of these tables, especially the connection between balanced_tree.sales and balanced_tree.product_details, Balanced Tree Clothing Company can harness a comprehensive view of its sales performance. The structured relationship of these tables not only offers clarity on sales and product trends but also primes the ground for in-depth financial analyses, segmentation, and sales forecasting.

Entity Relationship Diagram

Case Study Questions

A.HIGH LEVEL SALES ANALYSIS

1. What was the total quantity sold for all products?

```
SELECT
SUM(qty) AS total_qty
FROM
balanced_tree.sales

ORDER BY total_qty
total_qty
1 45216
```

2. What is the total generated revenue for all products before discounts?

```
SELECT
SUM(qty*price) as total_revenue_bd
FROM
balanced_tree.sales
ORDER BY total_revenue_bd

total_revenue_bd

1 1289453
```

3. What was the total discount amount for all products?

```
ROUND(SUM((s.price * s.qty) * (CAST(s.discount AS NUMERIC) / 100)), 2 ) AS total_item_discounts

FROM balanced_tree.sales s

JOIN balanced_tree.product_details pd

ON pd.product_id = s.prod_id

GROUP BY pd.product_name
```

	product_name	total_item_discounts
1	Black Straight Jeans - Womens	14744.960000
2	Blue Polo Shirt - Mens	26819.070000
3	Cream Relaxed Jeans - Womens	4463.400000
4	Grey Fashion Jacket - Womens	25391.880000
5	Indigo Rain Jacket - Womens	8642.530000
6	Khaki Suit Jacket - Womens	10243.050000
7	Navy Oversized Jeans - Womens	6135.610000
8	Navy Solid Socks - Mens	16650.360000
9	Pink Fluro Polkadot Socks - Mens	12952.270000
10	Teal Button Up Shirt - Mens	4397.600000
11	White Striped Socks - Mens	7410.810000
12	White Tee Shirt - Mens	18377.600000

B. TRANSACTION ANALYSIS

1. How many unique transactions were there?

```
SELECT
COUNT(DISTINCT txn_id) AS unique_txns
FROM balanced_tree.sales

unique_txns
2500
```

What is the average unique products purchased in each transaction?

```
avg_unique_products_per_transaction

1 6
```

3. What are the 25th. 50th and 75th percentile values for the revenue per transaction?

```
WITH TransactionRevenue AS (
    SELECT
        s.txn_id,
        SUM(s.price * s.qty * (1 - (CAST(s.discount AS NUMERIC)/100))) AS revenue
    FROM balanced_tree.sales AS s
    GROUP BY s.txn id
 , Percentiles AS (
    SELECT
        txn_id,
        PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY revenue) OVER () AS P25,
        PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY revenue) OVER () AS P50,
        PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY revenue) OVER () AS P75
    FROM TransactionRevenue
SELECT
    DISTINCT
    P25 AS "25th Percentile",
    P50 AS "50th Percentile",
    P75 AS "75th Percentile"
FROM Percentiles;
      25th Percentile
                     50th Percentile
                                  75th Percentile
      326.405
                     441.225
                                    572.7625
```

4. What is the average discount value per transaction?

```
WITH get_discounts AS(
SELECT
          txn_id,
          SUM((price * qty) * (CAST(discount AS NUMERIC) / 100)) AS discounts
FROM balanced_tree.sales
GROUP BY txn_id
)
SELECT ROUND(AVG(discounts),2) AS avg_discount
FROM get_discounts
```

	avg_discount
1	62.490000

5. What is the percentage split of all transactions for members vs non-members?

```
WITH MemberTransactionCounts AS (
    SELECT
        member,
        COUNT(DISTINCT txn_id) AS transaction_count
    FROM balanced_tree.sales
    GROUP BY member
)
SELECT
    member,
    transaction_count,
    (transaction_count * 100.0 / SUM(transaction_count) OVER()) AS percentage
FROM MemberTransactionCounts;
     member
             transaction_count percentage
1
    f
              995
                              39.800000000000
2
              1505
                              60.200000000000
     t
```

6. What is the average revenue for member transactions and non-member transactions?

	member	average_revenue
1	f	452.007768
2	t	454.136963

C.PRODUCT ANALYSIS

1. What are the top 3 products by total revenue before discount?

```
SELECT TOP 3
    pd.product_name,
    SUM(s.price * s.qty) AS revenue
FROM balanced_tree.sales s
JOIN balanced_tree.product_details pd ON pd.product_id=s.prod_id
GROUP BY product_name
ORDER BY revenue DESC;
```

	product_name	revenue
1	Blue Polo Shirt - Mens	217683
2	Grey Fashion Jacket - Womens	209304
3	White Tee Shirt - Mens	152000

2. What is the total quantity, revenue and discount for each segment?

```
SELECT
    pd.segment_id,
    pd.segment_name,
    SUM(s.qty) AS total_quantity,
    SUM(s.price * s.qty) AS total_revenue,
    ROUND(SUM((s.price * s.qty) * (CAST(s.discount AS NUMERIC) / 100)), 2 ) AS total_item_discounts
FROM balanced_tree.sales s
JOIN balanced_tree.product_details pd ON pd.product_id=s.prod_id
GROUP BY segment_id,segment_name
ORDER BY total_quantity DESC;
```

	segment_id	segment_name	total_quantity	total_revenue	total_item_discounts
1	4	Jacket	11385	366983	44277.460000
2	3	Jeans	11349	208350	25343.970000
3	5	Shirt	11265	406143	49594.270000
4	6	Socks	11217	307977	37013.440000

3. What is the top selling product for each segment?

```
SELECT
        pd.segment_name,
        pd.product_name,
        SUM(s.qty) AS total_qty
     FROM balanced_tree.sales s
     JOIN balanced_tree.product_details pd ON pd.product_id = s.prod_id
     GROUP BY pd.segment_name, pd.product_name
 , RankedProducts AS (
    SELECT
        segment_name,
        product_name,
        total_qty,
        ROW_NUMBER() OVER(PARTITION BY segment_name ORDER BY total_qty DESC) AS product_rank
     FROM get_segments_revenue
 SELECT
    segment_name,
     product_name,
    total_qty
 FROM RankedProducts
 WHERE product_rank = 1;
```

	segment_name	product_name	total_qty
1	Jacket	Grey Fashion Jacket - Womens	3876
2	Jeans	Navy Oversized Jeans - Womens	3856
3	Shirt	Blue Polo Shirt - Mens	3819
4	Socks	Navy Solid Socks - Mens	3792

4. What is the total quantity, revenue and discount for each category?

SELECT

```
pd.category_name,
SUM(s.qty) AS total_qty,
SUM(s.price * s.qty * (1 - CAST(s.discount AS NUMERIC) / 100)) AS total_revenue
FROM balanced_tree.sales s
JOIN balanced_tree.product_details pd ON pd.product_id = s.prod_id
GROUP_BY_category_name
```

	category_name	total_qty	total_revenue
1	Mens	22482	627512.290000
2	Womens	22734	505711.570000

5. What is the top selling product for each category?

```
∃WITH get_category_revenue AS (
SELECT
     pd.category_name,
     pd.product_name,
     SUM(s.qty) AS total_qty
 FROM balanced_tree.sales s
 JOIN balanced_tree.product_details pd ON pd.product_id = s.prod_id
GROUP BY category_name,product_name
į),
¦ranked_categories AS (
SELECT
     category_name,
     product_name,
     total_qty,
     ROW_NUMBER() OVER(PARTITION BY category_name ORDER BY total_qty DESC) AS category_rank
 FROM get_category_revenue
SELECT
     category_name,
     product_name,
     total_qty
 FROM ranked_categories
 WHERE category_rank = 1;
      category_name
                     product_name
                                               total_qty
 1
      Mens
                     Blue Polo Shirt - Mens
                                                3819
 2
       Womens
                     Grey Fashion Jacket - Womens
                                                3876
```

6. What is the percentage split of revenue by product for each segment?

```
JWITH ProductSegmentRevenue AS (
    SELECT
        pd.segment_name,
        pd.product_name,
        SUM(s.price * s.qty * (1 - CAST(s.discount AS NUMERIC) / 100)) AS product_revenue
    FROM balanced_tree.sales AS s
    JOIN balanced_tree.product_details AS pd ON pd.product_id = s.prod_id
    GROUP BY pd.segment_name, pd.product_name
 , SegmentTotalRevenue AS (
    SELECT
        segment_name,
        SUM(product_revenue) AS total_segment_revenue
    FROM ProductSegmentRevenue
    GROUP BY segment_name
SELECT
    psr.segment_name,
    psr.product_name,
    psr.product_revenue,
    (psr.product_revenue * 100.0 / str.total_segment_revenue) AS revenue_percentage
FROM ProductSegmentRevenue AS psr
JOIN SegmentTotalRevenue AS str ON psr.segment_name = str.segment_name
ORDER BY psr.segment_name, revenue_percentage DESC;
```

	segment_name	product_name	product_revenue	revenue_percentage
1	Jacket	Grey Fashion Jacket - Womens	183912.120000	56.990691
2	Jacket	Khaki Suit Jacket - Womens	76052.950000	23.567289
3	Jacket	Indigo Rain Jacket - Womens	62740.470000	19.442018
4	Jeans	Black Straight Jeans - Womens	106407.040000	58.144007
5	Jeans	Navy Oversized Jeans - Womens	43992.390000	24.038765
6	Jeans	Cream Relaxed Jeans - Womens	32606.600000	17.817227
7	Shirt	Blue Polo Shirt - Mens	190863.930000	53.530952
8	Shirt	White Tee Shirt - Mens	133622.400000	37.476616
9	Shirt	Teal Button Up Shirt - Mens	32062.400000	8.992431
10	Socks	Navy Solid Socks - Mens	119861.640000	44.235335
11	Socks	Pink Fluro Polkadot Socks - Mens	96377.730000	35.568520
12	Socks	White Striped Socks - Mens	54724.190000	20.196143

7. What is the percentage split of revenue by segment for each category?

```
WITH SegmentCategoryRevenue AS (
    SELECT
        pd.category_name,
        pd.segment_name,
        SUM(s.price * s.qty * (1 - CAST(s.discount AS NUMERIC) / 100)) AS segment_revenue
    FROM balanced_tree.sales AS s
    JOIN balanced_tree.product_details AS pd ON pd.product_id = s.prod_id
    GROUP BY pd.category_name, pd.segment_name
, CategoryTotalRevenue AS (
    SELECT
        category_name,
        SUM(segment_revenue) AS total_category_revenue
    FROM SegmentCategoryRevenue
    GROUP BY category_name
SELECT
    scr.category_name,
    scr.segment_name,
    scr.segment_revenue,
    (scr.segment_revenue * 100.0 / ctr.total_category_revenue) AS revenue_percentage
FROM SegmentCategoryRevenue AS scr
JOIN CategoryTotalRevenue AS ctr ON scr.category_name = ctr.category_name
ORDER BY scr.category_name, revenue_percentage DESC;
     category_name
                    segment_name segment_revenue
                                                  revenue_percentage
                    Shirt
                                  356548.730000
                                                   56.819401
1
     Mens
2
      Mens
                    Socks
                                  270963.560000
                                                  43.180598
      Womens
                    Jacket
                                  322705.540000
                                                  63.812172
```

183006.030000

36.187827

Womens

Jeans

8. What is the percentage split of total revenue by category?

```
WITH CategoryRevenue AS (
   SELECT
        pd.category_name,
        SUM(s.price * s.qty * (1 - CAST(s.discount AS NUMERIC) / 100)) AS category_revenue
   FROM balanced_tree.sales AS s
   JOIN balanced_tree.product_details AS pd ON pd.product_id = s.prod_id
   GROUP BY pd.category_name
, TotalRevenue AS (
   SELECT
        SUM(category_revenue) AS total_revenue
   FROM CategoryRevenue
)
SELECT
   cr.category_name,
   cr.category_revenue,
   (cr.category_revenue * 100.0 / tr.total_revenue) AS revenue_percentage
FROM CategoryRevenue AS cr
CROSS JOIN TotalRevenue AS tr
ORDER BY revenue_percentage DESC;
```

	category_name	category_revenue	revenue_percentage
1	Mens	627512.290000	55.374080
2	Womens	505711.570000	44.625919

9. What is the total transaction "penetration" for each product?

(hint: penetration = number of transactions where at least 1 quantity of a product was purchased divided by total number of transactions)

```
WITH ProductTransactions AS (
    SELECT
        s.prod_id,
        COUNT(DISTINCT s.txn_id) AS product_txn_count
    FROM balanced_tree.sales AS s
    GROUP BY s.prod_id
, TotalTransactions AS (
    SELECT
        COUNT(DISTINCT txn_id) AS total_txn_count
    FROM balanced_tree.sales
SELECT
    pt.prod_id,
    pd.product_name,
    pt.product_txn_count,
    (pt.product_txn_count * 100.0 / tt.total_txn_count) AS penetration_percentage
FROM ProductTransactions AS pt
JOIN balanced_tree.product_details AS pd ON pd.product_id = pt.prod_id
CROSS JOIN TotalTransactions AS tt
ORDER BY penetration_percentage DESC;
```

	prod_id	product_name	product_txn_count	penetration_percentage
1	f084eb	Navy Solid Socks - Mens	1281	51.240000000000
2	9ec847	Grey Fashion Jacket - Womens	1275	51.000000000000
3	c4a632	Navy Oversized Jeans - Womens	1274	50.96000000000
4	5d267b	White Tee Shirt - Mens	1268	50.72000000000
5	2a2353	Blue Polo Shirt - Mens	1268	50.72000000000
6	2feb6b	Pink Fluro Polkadot Socks - Mens	1258	50.32000000000
7	72f5d4	Indigo Rain Jacket - Womens	1250	50.00000000000
8	d5e9a6	Khaki Suit Jacket - Womens	1247	49.88000000000
9	e83aa3	Black Straight Jeans - Womens	1246	49.840000000000
10	e31d39	Cream Relaxed Jeans - Womens	1243	49.720000000000
11	b9a74d	White Striped Socks - Mens	1243	49.720000000000
12	c8d436	Teal Button Up Shirt - Mens	1242	49.680000000000

10. What is the most common combination of at least 1 quantity of any 3 products in a 1 single transaction?

```
UNITH TripleProductCombinations AS (
    SELECT
        s1.txn id,
        s1.prod_id AS product1,
        s2.prod_id AS product2,
        s3.prod_id AS product3
    FROM balanced_tree.sales AS s1
    JOIN balanced_tree.sales AS s2 ON s1.txn_id = s2.txn_id AND s1.prod_id < s2.prod_id
    JOIN balanced_tree.sales AS s3 ON s1.txn_id = s3.txn_id AND s2.prod_id < s3.prod_id
, CombinationCounts AS (
    SELECT
        product1.
        product2,
        product3,
        COUNT(*) AS combination_count
    FROM TripleProductCombinations
    GROUP BY product1, product2, product3
SELECT TOP 1
    product1,
    product2,
    product3,
    combination_count
FROM CombinationCounts
ORDER BY combination_count DESC
     product1 product2 product3
                                  combination_count
      5d267b
               9ec847
                         c8d436
                                  352
```

Key Findings and Observations

1. Sales Overview:

- Volume: A substantial volume of products was sold, with a total quantity of
 45,216 items. This underscores the brand's popularity and market penetration.
- Revenue: Before considering discounts, the company generated an impressive revenue of \$1,289,453. This is a testament to the brand's considerable sales capabilities and product appeal.
- **Discounts**: The products had varying discount amounts, with notable mentions being the "**Black Straight Jeans Womens**" and the "**Blue Polo Shirt Mens**" which had discounts amounting to \$14,744.96 and \$26,819.07 respectively. This indicates strategic pricing and promotional tactics employed by the company.

2. Transaction Analysis:

- Volume & Diversity: There were 2,500 unique transactions, with an average
 of 6 unique products in each transaction. This suggests a diverse shopping
 pattern among customers.
- **Revenue Distribution**: The median (50th percentile) revenue per transaction stood at \$441.225, with the 25th and 75th percentiles at \$326.405 and \$572.7625 respectively. This highlights a significant spread in transaction values.
- Membership Insights: Members contributed to 60.2% of all transactions, with an average revenue slightly higher (\$454.13) compared to non-members (\$452.01). This implies the importance of loyalty programs and member engagement strategies.

3. Product Analysis:

Top Performers: The "Blue Polo Shirt - Mens", "Grey Fashion Jacket - Womens", and "White Tee Shirt - Mens" emerged as revenue leaders, collectively contributing to a significant portion of the company's sales.

- Segment Insights: Jackets led in the segments with a total revenue of \$366,983, followed closely by Shirts and Jeans. This suggests seasonal or fashion trends influencing purchasing patterns.
- Category Differentiation: The Mens category outperformed the Womens category in revenue, making up 55.37% of the total revenue. This indicates a potential market segment that could be further targeted for growth.
- Product Penetration: The product "Navy Solid Socks Mens" had the highest penetration with 51.24% of transactions including at least one purchase of this product. Such products can be deemed as popular or essential items in the product range.
- 4. Unique Combinations: The most common product combination in a single transaction was "White Tee Shirt Mens", "Grey Fashion Jacket Womens", and "Teal Button Up Shirt Mens", with 352 occurrences. This insight can be pivotal for bundling strategies or marketing campaigns.

CONCLUSION

This case study delves into the world of fashion retail, shedding light on sales patterns, product preferences, and customer behavior.

Through the use of Microsoft SQL Server Management Studio, I was able to sift through vast amounts of data to uncover meaningful insights. SQL not only made the data more accessible but also transformed it into actionable information.

The insights gathered provide a clearer picture of consumer choices and preferences. Such knowledge is invaluable for businesses aiming to tailor their offerings or enhance their marketing strategies. This analysis, inspired by Danny's real-world experiences, underlines the significance of sales analytics in today's retail landscape. It showcases the immense potential of SQL in drawing out patterns and stories hidden within numbers, making it an essential tool for modern businesses.