Intuïtieve mens-machineinterface met live actieherkenning

Master of Science in de industriële wetenschappen: informatica Bert De Saffel

prof. dr. ir. Peter Veelaert & prof. dr. ir. Wilfried Philips ing. Sanne Roegiers & ing. Dimitri van Cauwelaert

04 april 2019

- Context
- Probleemstellingen
- Methodologie

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

- Oorzaken van ernstige arbeidsongevallen in 2015
 - Verlies van controle over een machine of voertuig
 - ② Uitglijden of struikelen
 - 4 Het tillen of neerzetten van lasten
 - Vrijkomen van giftige producten

- Oorzaken van ernstige arbeidsongevallen in 2015
 - Verlies van controle over een machine of voertuig
 - Uitglijden of struikelen
 - 4 Het tillen of neerzetten van lasten
 - Vrijkomen van giftige producten
- Gevolgen
 - Langdurige ongeschiktheid
 - Permanente letsels
 - Sterfgeval

Figuur: Frequentiegraad ernstige arbeidsongevallen in de privésector.

- Mogelijke oplossing
 - Het inzetten van robotica in gevaarlijke omgevingen

- Mogelijke oplossing
 - Het inzetten van robotica in gevaarlijke omgevingen
 - Hoe besturen?
 - Remote control
 - Autonoom
 - Actieherkenning

• De verplaatsing van een robot uitvoeren met enkel actieherkenning

- De verplaatsing van een robot uitvoeren met enkel actieherkenning
- Met de kinect sensor
 - Kan skeletbeelden genereren vanuit RGB-D data

- Context
- Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Probleemstellingen

- Verschillen in lichaamsbouw mogelijk (klein vs groot)
- Verschillen in camerahoek

Probleemstellingen

- Verschillen in lichaamsbouw mogelijk (klein vs groot)
- Verschillen in camerahoek
- Real-time actieherkenning
 - De actie herkennen op het moment dat deze uitgevoerd wordt

Onderzoek

- 1 De features moeten rotatie- en lichaamsinvariant zijn
- Actie moet vroeg genoeg herkend worden om live te kunnen classificeren

Actieherkenning met de Kinect sensor

10 / 30

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Machine Learning - Classificatieprobleem

- Een verzameling van klassen (labels, uitvoerwaarden, ...)
- Gegeven een observatie, tot welke klasse behoort deze observatie?
- Bij actieherkenning:
 - Klassen = acties
 - Observaties = frames

Machine Learning - Features

- Een observatie wordt getransformeerd naar features
 - Pixel: RGB-waarden
 - Persoon: leeftijd, geslacht, haarkleur, lengte, ...
- Features op basis van skeletbeelden
 - Elk skelet *joint* wordt gekenmerkt door zijn (x, y, z) coördinaten en (a, b, c, d) quaternionen.
 - Quaternion:

$$\mathbf{q} = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

- Het skelet bestaat uit 25 joints
- → 175-dimensionale *feature vector*

$$\mathbf{f} = \begin{pmatrix} x_1 & y_1 & \dots & y_{25} & z_{25} & a_1 & b_1 & \dots & c_{25} & d_{25} \end{pmatrix}$$

Negative (0)

Actual Values

TN

Machine Learning - Classificatie

- De feature vector kan als input dienen voor eender welke classifier
- Welke classifier is de beste? → Evalueren a.d.h.v. een confusion matrix:

FN

- Precision = $\frac{TP}{TP+FP}$
- Recall = $\frac{TP}{TP+FN}$
- F1 score = $2 * \frac{precision*recall}{precision+recall}$

- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Dataset

- Onderzoek naar intuïtieve handelingen
- \approx 30 FPS

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Preprocessing

- 1. Plaats-invariantie \rightarrow Translatie
 - Spine base joint als oorsprong:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

met x_0, y_0, z_0 de drie-dimensionale coördinaten van de Spine base joint

Preprocessing

- 1. Plaats-invariantie \rightarrow Translatie
 - Spine base joint als oorsprong:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

met x_0, y_0, z_0 de drie-dimensionale coördinaten van de *Spine base joint*

- 2. Schaal-invariantie \rightarrow Vectornormalisatie
 - Elk component van elke positievector delen door lengte van de neck joint positievector:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \frac{x}{||n||} \\ \frac{y}{||n||} \\ \frac{z}{||n||} \end{pmatrix}$$

met

$$||n|| = \sqrt{(neck_x)^2 + (neck_y)^2 + (neck_z)^2}$$

- 3. Rotatie-invariantie \rightarrow Lokaal skeletcoördinatensysteem (X', Y', Z')
 - X'-as = de as door de Right Hip joint (RH) en Left Hip joint (LH)
 - Y'-as = de as door de Spine Base joint (SB) en Spine Mid joint (SM)
 - Z'-as = orthogonaal met X' en Y'

Preprocessing

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Feature transformatie

Momenteel: Features zijn invariant t.o.v. locatie, schaal en camerahoek

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Classificatie

- Enerzijds vergelijken verschillende classifiers
 - K-Nearest Neighbors
 - Vergelijk de k dichtste feature vectoren, de gelabelde klasse is diegene die het meest voorkomt
 - Support Vector Machine
 - Zoek een hypervlak dat de positieve observaties van de negatieve onderscheidt.

Classificatie

- Anderzijds verschillende classificatiestrategieën toepassen
 - Frame per frame classificeren zonder temporaal aspect
 - Buffer bijhouden van 30 frames, met majority voting de actie bepalen
 - Buffer bijhouden van 30 frames, met een gewogen vote de actie bepalen

- Context
- 2 Probleemstellingen
- Methodologie
 - Machine Learning
 - Dataset
 - Preprocessing
 - Feature transformatie
 - Classificatie
 - Evaluatie

Evaluatie

Evaluatie

Vragen, opmerkingen, ...?

