514 Rec'd T/PTO 1 3 MAR 2000 PCT/IB98/01516

FILED IN PATENT OFFICE

Verfahren zur Aufnahme und zur Abspeicherung optisch erfaßbarer Daten

Stand der Technik

Die Erfindung geht aus von einem Verfahren zur Aufnahme und Abspeicherung der optisch erfaßbaren Daten eines Objektes auf einem Speichermedium nach dem Oberbegriff des Anspruchs 1.

Derartige Verfahren finden in unterschiedlichen-Wellenlängenbereichen Anwendung, beispielsweise Bereich infraroter oder ultravioletter Strahlung, sichtbaren Lichtes oder der Wärmestrahlung. Je nach Wellenlängenbereich werden entsprechende Kameras und die hierzu notwendige Optik eingesetzt. Das interessierende Objekt wird entweder als Ganzes oder in einzelnen Ausschnitten aufgenommen. Jede der einzelnen Aufnahmens hat eine gewisse Größe. Aufgrund der Einstellung der optischen Komponenten der Kamera und des räumlichen Abstandes zwischen dem Objekt und der Kamera weist die Aufnahme scharfe und weniger scharfe Bereiche auf. Eine in allen Bereichen scharf abgebildete Aufnahme kann nicht

Best Available Copy

da jeweils nur erreicht werden, die im Fokus verwendeten Optik liegenden Teile des Objektes scharf abgebildet sind. Der Fokus ist räumlich begrenzt und meist" kleiner als das Objekt. Ist das Objekt zudem dreidimensional, ·können mit Hilfe einer Aufnahme nicht alle Bereiche der Oberfläche oder der unmittelbar unter der Oberfläche liegenden Schichten scharf abgebildet werden. Als nachteilig erweist sich außerdem, daß die Blende der Kamera nicht weit geöffnet werden kann und damit die Helligkeit Aufnahme gering ist, da eine weit geöffnete Blende die Schärfentiefe verkleinern würde und damit nur entsprechend kleiner Teil des Objektes scharf abgebildet werden könnte.

Aus dem Stand der Technik (DE 39 31 934 C2, DE 39 05 619 A1) ist eine Bild-Eingabe- und Ausgabevorrichtung bekannt, (**) bei der eine Fokussiereinrichtung vorgesehen ist. Mittels dieser Fokussiereinrichtung werden die optischen Komponenten Bildeingabevorrichtung der auf unterschiedliche Objektebenen scharf eingestellt. Aufnahme von Bildinformationen werden von einem Objekt mehrere Bilder bei unterschiedlichen Einstellung optischen Komponenten aufgenommen und die erhaltenen Informationen zusammengesetzt. Hierzu numerische Verfahren notwendig. Als nachteilig erweist sich bei dieser bekannten Vorrichtung, daß die veränderbare in der Einstellung der optischen Komponenten eine Mechanik erfordert, die mit hoher Genauigkeit die optischen Komponenten verschiebt. Diese Mechanik ist aufwendig in Herstellung und anfällig gegen Beschädigungen, und Beeinträchtigungen bei der Benutzung. Verschleiß Außerdem kann das Zusammenfügen der Informationen. wegen der unterschiedlichen optischen Einstellungen nur mit Aufwand erreicht werden, da sich bei jeder Aufnahme aufgrund der Veränderung der optischen Komponenten der Maßstab ändert.

Demgegenüber hat das erfindungsgemäße Verfahren zur Aufnahme und Abspeicherung der optisch erfaßbaren Daten eines Objektes den Vorteil, daß mit einer Kamera eine Sequenz von mehreren Einzelaufnahmen des Objektes unter verschiedenen räumlichen Einstellungen bezüglich Position zwischen Objekt Kamera. und aufgenommen wird. Die Einstellung der optischen Komponenten und der daraus resultierende Fokus bleiben. hierbei unverändert. Dadurch läßt sich das Verfahren einfacher anwenden als das aus dem Stand der Technik bekannte Verfahren. Eine Mechnik zur präzisen Veränderung der optischen Komponenten ist nicht notwendig. Aufgrund dessen ist das Verfahren in seiner Anwendung kostengünstiger als bekannte Verfahren und in seiner Durchführung weniger anfällig gegen Beeinträchtigungen, Störungen oder Verschleiß.

Die scharf abgebildeten Bereiche der Einzelaufnahmen werden ermittelt und zu einem oder mehreren Resultatbildern zusammengesetzt. Da die optischen Komponenten bei den vschiedenen Einzelaufnahmen unverändert sind, ändert sich der Maßstab nicht. Dies führt dazu, daß beim Zusammenfügen der Einzelaufnahmen eine Anpassung hinsichtlich des Maßstabs unterbleibt. Das Zusammensetzen der Informationen ist daher weniger aufwendig als bei bekannten Verfahren.

Das Verfahren kann sowohl Aufnahme zur Abbilder von Objekten als auch zur Aufnahme von Filmen dienen. Das Verfahren kann von Hand durch Ausschneiden und Zusammenfügen der scharfen Bereiche oder mittels durchgeführt werden, es eignet sich Blenden insbesondere zur Durchführung mit Hilfe eines Computers. Bei zweidimensionalen Objekten oder bei Objekten, bei denen zweidimensionales Resultatbild genügt, ausreichend sein, die scharfen Bereiche zu einem einzigen Resultatbild zusammenzusetzen. Bei dreidimensionalen Objekten können scharfen Bereiche verschiedener die

Ebenen des Objektes einem zu oder mehreren Resultatbildern zusammengesetzt werden. Letzteres hat den daß verschiedene Merkmale in unterschiedlichen Resultatbildern dargestellt sind. Dadurch Bearbeitung Bilder erleichtert, der insbesondere Zur Wiedererkennung der Merkmale. Es können auch zu den verschiedenen Eindringtiefen der verwendeten Strahlung in das Objekt unterschiedliche Resultatbilder zusammengestellt werden. Vorteilhafterweise können die Einzelaufnahmen auch bei großer Blendenöffnung des Objektivs der Kamera aufgenommen werden. Hierbei werden trotz der großen Blendenöffnung scharfe Resultatbilder erzielt. Lichtempfindlichkeit der Aufnahmen wird hierbei erhöht. Die Kamera muß nicht für jede Einzelaufnahme scharf eingestellt werden, da die scharfen Bilder elektronisch ausgewählt und gespeichert werden und die unscharfen Bilder nicht gespeichert werden. Auch das Bewegen des Objektes während der Aufnahme führt zu einem scharfen Resultatbild. Die Anzahl der je Objekt aufgenommenene Einzelaufnahmen ist von der betreffenden Anwendung abhängig. In der Regel werden etwa 20 Einzelaufnahmen ausreichend sein. In besonderen Fällen können es jedoch weit mehr sein, beispielsweise mehr Einzelaufnahmen oder weniger, beispielsweise Einzelaufnahmen. Die Belichtungszeit wird in Abhängigkeit von Objekt und Kamera gewählt. Sie hängt ab von der Anzahl. der gewünschten Einzelaufnahmen je Sekunde oder Minute. Manche Arten von Kameras, wie beispielsweise CCD-Kameras, erlauben eine elektronische Verkürzung der Belichtungszeit.

Bei den aufgenommenen Objekten kann es sich um Gegestände wie beispielsweise Maschinen, Bauteile, Kunstwerke, Schmuckstüche oder sonstige Wertgegenstände oder auch um Personen oder Tiere handeln. Zur Erkennung oder Identifikation von Personen oder Tieren, insbesondere Zuchttiere, werden biometrische oder anatomische Merkmale herangezogen und in den Einzelaufnahmen aufgenommen

Sowohl absichtliche als auch unabsichtliche Bewegungen des können zur Gewinnung von Informationen verwendet werden. Parallelverschiebungen oder Drehungen senkrecht zur optischen Achse werden benutzt, um mit der Kamera eine höhere Auflösung zu erhalten. Die höhere Auflösung kann auch durch Berechnungen erreicht werden. Parallelverschiebungen des Objekts senkrecht zur optischen Achse können auch zur Erzielung von stereoskopischen oder dreidimensionalen Resultatbildern ausgewertet werden, auch wenn nur eine Kamera zur Aufnahme einer Sequenz von Einzelaufnahmen verwendet wird. Hierbei wird ausgenutzt, daß bestimmte Bereiche des aufgenommenen Objekts in aufeinanderfolgenden Einzelaufnahmen hinsichtlich ihrer Schärfe kontinuierlich verändert abgebildet werden. Auf diese Weise können auch Informationen über die Topografie und die Oberflächengestaltung eines Objekts werden.

Anhand einer Sequenz von mehreren Aufnahmen vorgegebenen Zeitabständen können auch dynamische" Vorgänge des Objekts ermittelt werden. Das Verfahren erlaubt damit auch zeitaufgelöste Untersuchungen des Objektes. So kann die Bewegung eines Objektes verfolgt und aufgenommen werden. Diese aufgenommene Bewegung kann beispielsweise zur Erkennung oder Identifierzierung des odeг Steuerung bestimmter zur Vorgänge. herangezogen werden. So können zum Beispiel fehlerhafte Teile in einem Produktionsprozeß erkannt oder Personen identifiziert werden. Absichtliche Bewegungen einer Person können zusätzliche Informationen liefern.

Die beschränkte Schärfentiefe kann dazu verwendet werden, Merkmale unter der Oberfläche des Objektes zu erfassen, abzubilden und auszuwerten.

Das erfindungsgemäße Verfahren ermöglicht die Verwendung einer großen Blendenöffnung. Hierbei wird dennoch eine bestimmte Abbildungsschärfe erreicht.

Nach einer vorteilhaften Ausgestaltung der Erfindung werden die Einzelaufnahmen in einem Rechner abgespeichert und die scharf abgebildeten Bereiche der Einzelaufnahme mit ·Hilfe numerischer Methoden durch den Rechner ermittelt. Das Zusammensetzen der Resultatbilder erfolgt ebenfalls mit Hilfe des Rechners. Hierzu wird eine geeignete Software verwendet. Diese bestimmt auch die Grenzen der scharfen Abbildungsbereiche. Beim Zusammensetzen Resultatbildes können auch die aus der Informationstheorie und den Signalerkennungsverfahren bekannten Erkenntnisse Trelly-Verfahrens verwendet werden. Einzelaufnahmen werden beispielsweise im RAM oder auf der Harddisc des Computers zwischengespeichert. Die ... Sequenz der Einzelaufnahmen wird nur solange benötigt, bis ein Resultatbild erzeugt ist. Danach wird die Sequenz der Einzelaufnahmen gelöscht.

Es sind verschiedene Methoden zur Erzeugung eines Resultatbildes möglich. Bei einer ersten Methode werden n Einzelbilder mit Hochpaß gefiltert und die scharfen Bereiche kopiert. Die Übergangsfrequenz des Filters wird dabei auf die Schärfentiefenbereiche abgestimmt. Das Filter kann auch ausverschiedenen Filtern zusammengesetzt sein. Als numerische Methoden können hierfür beispielsweise Fourier-Transformationen, Wavelet-Transformationen, digitale Filter, Differenzial- oder Differenzbildung, Bessel-, Butterworthoder Gauss-Filter eingesetzt werden. Neben den scharf abgebildeten Bereichen der Einzelbilder können auch weitere Informationen ausgewertet werden, so beispielsweise die Vergrößerung bzw. Verkleinerung der Abbildung gegenüber der Fokusebene in der Nachbarschaft auf beiden Seiten der Fokusebene. Das Zusammensetzen der scharf abgebildeten Bereiche der Einzelbilder geschieht beispielsweise mit Hilfe bekannter numerischer Verfahren. Je nach Form Objektes und seiner Oberflächengestaltung sowie der Anzahl interessierenden Schichttiefen oder Merkmalsarten werden ein oder mehrere Resultatbilder zusammengesetzt.

WO 99/13431 PCT/IB98/01516

7

Bei einer zweiten Methode wird im Vergleich zur ersten zusätzlich die Topologie bzw. Morphologie charakteristischer Merkmale des Objektes berücksichtigt. Handelt es sich beispielsweise bei dem aufzunehmenden Objekt um einen Finger, so können mit dieser Methode unterschiedliche Hautschichten und Drüsen, beispielsweise die Papillarschicht oder Schweiß-Talgdrüsen ausgewertet werden. Hierbei kann berücksichtigt werden, daß die Papillarlinien weitgehend zusammenhängend sind und an der Oberfläche verlaufen.

Bei einer dritten Methode werden mit Hilfe numerischer Funktionen aus der Sequenz Einzelaufnahmen der dreidimensionale Resultatbilder erzeugt. Diese können später im Computer gedreht, gekippt, geneigt oder beliebig bewegt werden, so daß der Benutzer auf dem Bildschirm mehrere Ansichten des Objektes betrachten kann. Diese Methode eignet sich insbesondere auch dann, wenn die mit dem erfindungsgemäßen Verfahren aufgenommenen Daten in später aufgenommenen Datensatz wiedererkannt werden sollen. Eine Verdrehung oder Verschiebung des Objektes im ersten Datensatz relativ zum zweiten Datensatz kann numerisch korrigiert und kompensiert werden, so daß eine Wiedererkennung trotzdem möglich ist.

einer weiteren vorteilhaften Ausgestaltung Erfindung werden die scharf abgebildeten Bereiche durch numerisches Bilden der Ableitung ermittelt. Die Ableitung ist i n beiden Dimensionen der zweidimensionalen Einzelaufnahmen zu bilden. An den scharf abgebildeten Stellen ist die Ableitung maximal bzw. minimal. Die scharf abgebildeten Bereiche können auch bei Verwendung geeigneter Filter durch Vergleich der mit unterschiedlichem Filter aufgenommenen Bilder gewonnen werden.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden die Parameter zur Aufnahme der Sequenz

4.

der Einzelaufnahmen durch einen Rechner vorgegeben und der Ablauf der Aufnahme von diesem Rechner gesteuert.

weiteren vorteilhaften Nach einer Ausgestaltung -Erfindung wird die Aufnahme der Sequenz von automatisch So kann Einzelaufnahmen gestartet. beispielsweise die Aufnahme zu einer festen Zeit oder bei einer bestimmten Position des Objektes gestartet werden. Die Aufnahme kann auch gestartet werden, wenn ein Einzelaufnahmen verarbeitender Computer abgebildete Bereiche erkennt.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Aufnahme der Sequenz von Einzelaufnahmen durch eine Lichtschranke gestartet. Dies eignet sich insbesondere dann, wenn das Objekt während der Aufnahme auf die Kamera zu- und von der Kamera wegbewegt wird. Die Aufnahme wird dann automatisch gestartet, wenn sich das Objekt bis auf einen vorgegebenen Abstand an die Kamera angenähert hat.

einer weiteren vorteilhaften Ausgestaltung der Erfindung werden die Einzelaufnahmen in fest vorgegebenen Zeitabständen aufgenommen. So kann die Kamera beispielsweise 25 Einzelaufnahmen als Bilder oder 50% Einzelaufnahmen als Halbbilder pro Sekunde aufnehmen welche in den Speicher des Computers übertragen werden. Dies gilt für den Fall eines CCIR-Standards. Bei anderen Standards ergeben sich entsprechend andere Werte. Nicht, :.. alle Einzelaufnahmen müssen abgespeichert werden. zeitliche Beginn der Aufnahme und der Beginn Abspeicherung im Computer können unterschiedlich sein. Grundsätzlich sind die Aufnahme der Sequenz Einzelaufnahmen und deren Abspeicherung im Computer voneinander entkoppelte Vorgänge.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden die Einzelaufnahmen in fest vorgegebenen

relativen Abständen zwischen Kamera und Objekt aufgenommen. Dies kann beispielsweise durch entsprechend angeordnete Lichtschranken erreicht werden.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird als Kamera zur Aufnahme der Sequenz von Einzelaufnahmen eine CCD-Kamera verwendet. Anstelle einer CCD-Kamera kann auch eine Zeilenkamera oder ein Scanner verwendet werden.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden zunächst alle Einzelaufnahmen der Sequenz auf dem Rechner abgespeichert. Nach Abschluß der Aufnahme der Sequenz werden die scharf abgebildeten Bereiche der Einzelaufnahmen ermittelt und zu einem Resultatbild zusammengesetzt.

einer weiteren vorteilhaften Ausgestaltung Erfindung werden aus jeder Einzelaufnahme der Sequenz unmittelbar nach deren Aufnahme die scharfen Bereiche ermittelt und in das Resultatbild eingefügt. Einzelaufnahmen werden nicht abgespeichert. Sofern der Prozessor des Rechners schnell genug arbeitet, können das Ermitteln der scharfen Bereiche und das Einfügen in das Resultatbild in Echtzeit ablaufen. Ist dies nicht der Fall, so müssen die Daten der Einzelaufnahmen zwischengespeichert Werden aus den Einzelaufnahmen mehrere: Resultatbilder erzeugt, so kann das Zusammensetzen der in einzelnen Resultatbilder nach verschiedenen Methoden erfolgen. Um das Aufnehmen der Daten und Abspeichern im Rechner zusätzlich zu beschleunigen, können für die Zusammensetzung eines oder mehrerer Resultatbilder mehrere Prozessoren verwendet werden. Zusammenarbeiten der Prozessoren kann unter verschiedenen Gesichtspunkten organisiert sein. Zum einen die numerischen Berechnungen geschilderten Methoden 1 bis 3 in so viele Abschnitte unterteilt werden, wie gleichzeitig ablaufen können. Jeder

Abschnitt wird von einem unterschiedlichen Prozessor bearbeitet. Die Synchronisation der Prozessoren erfolgt durch Input bzw. Output bzw. durch das Prozeßende pro Abschnitt." Die Daten werden weitergereicht oder es wird ein RAM mit mehr als einem Zugriffspfad verwendet (multiported RAM). Zusammensetzung mehrerer Resultatbilder kann teilweise parallelisiert werden. So können bereits beim Annähern des Objektes an die Kamera alle Resultatbilder entstehen. Sofern dies nicht möglich ist, werden die fehlenden Resultatbilder anschließend berechnet. entstehen Gittermuster mit allen ausgelesenen berechneten Informationen.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden aus der Sequenz von Einzelaufnahmen mehrere Resultatbilder zusammengestellt, wobei in den Resultatbildern jeweils unterschiedliche Bereiche des Objekts dargestellt sind.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Bildebene in mehrere Bereiche unterteilt und die Bereiche werden parallel bearbeitet. Dieses Vorgehen eignet sich insbesondere dann, wenn mehrere Prozessoren für die Bearbeitung zur Verfügung stehen. Bei den Bereichen kann es sich um Quadrate, Rechtecke, Kreise, Ovale oder andere Formen handeln. Diese können nebeneinander liegen oder sich gegenseitig überlappen.

Nach einer weiteren vorteilhaften Ausgestaltung Erfindung wird das Verfahren zur Erkennung der Merkmale eines Fingers, insbesondere der Fingerspitze, eingesetzt. Zur Aufnahme der Daten wird der Finger an eine Kamera. angenähert. Bereits beim Annähern wird die Aufnahme der Sequenz von Einzelaufnahmen gestartel. Auch beim" Entfernen des Fingers von der Kamera können поch Einzelaufnahmen aufgenommen werden. Wiedererkennung werden besonders charakteristische Merkmale der Fingerspitze aus dem Resultatbild ermittelt

WO 99/13431 PCT/IB98/01516

11

und bei einer erneuten Aufnahme des Fingers gesucht. Besonders charakteristische Merkmale einer Fingerspitze sind die Schweiß- und Talgdrüsen sowie die Papillarschicht, welche die Oberflächenform der Lederhaut und teilweise auch die der Oberhaut bestimmt. Die Papillen sind auch die Grundlage der Hautleisten. Papillarschicht, Schweiß- und Talgdrüsen sowie die Öffnungen der Drüsen Hautoberfläche können in unterschiedlichen Resultatbildern aufgenommen sein. Dies erleichert die Wiedererkennung. Mithilfe des erfindungsgemäßen Verfahrens kann auch festgestellt werden, ob der Finger durchblutet ist. Bei Durchleuchtung des Fingers mit einer Infrarotlichtquelle können anhand einer Sequenz von Einzelaufnahmen? Helligkeitsschwankungen in Abhängigkeit des Herzpulses der Person aufgenommen werden. Darüber hinaus bewirkt die Durchblutung des Fingers eine periodische Verschiebung der Gefäßzellen des Fingers, die mit Hilfe des erfindungsgemäßen Verfahrens festgestellt werden kann.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das Objekt mit einer Lichtquelle beleuchtet.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird eine gepulste Lichtquelle verwendet, die mit der Kamera synchronisiert ist. Das Objekt wird immer nur dann beleuchtet, wenn eine Einzelaufnahme gemacht wird.

einer weiteren vorteilhaften Ausgestaltung Erfindung wird das Objekt durch mehrere Lichtquellen unterschiedlichen Wellenlängenbereichs unterschiedlichen Anordnungen beleuchtet. Es können Beleuchtungsarten verwendet unterschiedliche werden. 🌣 Durch die verschiedenen räumlichen Anordnungen ergeben sich unterschiedliche Einfallswinkel des Lichts. Auf diese Weise lassen sich unterschiedliche räumliche, geometrische oder perspektivische Einzelaufnahmen erreichen. Lichtquellen können beispielsweise Blitzröhren unterschiedlichen optischen Filtern verwendet werden.

Durch die Filter wird mithilfe einer Lichtquellen elektromagnetische Strahlung unterschiedlicher Wellenlängenbereiche erreicht.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das Objekt solange beleuchtet, wie es sich auf die Kamera zu und von der Kamera weg bewegt. In diesem Zeitintervall werden auch Einzelaufnahmen gemacht. Auf diese Weise erhält man Einzelaufnahmen in unterschiedlicher Distanz zur Kamera und damit in unterschiedlicher Schärfentiefe.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden lediglich die im Fokus der Kamera liegenden Bereiche des Objektes beleuchtet. Dies ist möglich da sich der Fokus der Kamera zwischen dem Aufnehmen der Einzelaufnahmen nicht ändert. Die Auswertung und das Zusammenfügen der Einzelaufnahmen wird erleichtert, da von den unscharfen Bereichen in den Einzelaufnahmen keine Informationen vorliegen.

Zur Durchführung des erfindungsgemäßen Verfahrens wird vorteilhafterweise eine Vorrichtung verwendet, bei der ein Rechner, eine Kamera und eine Steuerungsvorrichtung vorgesehen sind.

Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind den Ansprüchen entnehmbar.

Alle in der Beschreibung und den Ansprüchen dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.

FILED IN PATENT OFFICE

Ansprüche

- Verfahren zur Aufnahme und zur Abspeicherung der 1. optisch erfaßbaren Daten eines Objektes auf einem Speichermedium dadurch gekennzeichnet, daß mit einer Kamera eine Sequenz von mehreren Einzelaufnahmen des Objektes unter verschiedenen räumlichen Einstellungen bezüglich der relativen Position zwischen Objekt und Kamera gemacht werden, ohne daß die Einstellung der optischen Komponenten und der daraus resultierende Fokus verändert wird. abgebildeten Bereiche daß die scharf Einzelaufnahmen ermittelt werden, und abgebildeten Bereiche aller die scharf oder mehreren einem zu Einzelaufnahmen Resultatbildern zusammengesetzt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einzelaufnahmen in einem Rechner abgespeichert werden, daß die scharf abgebildeten Bereiche der Einzelaufnahmen mithilfe numerischer Methoden durch den Rechner ermittelt werden und daß die Resultatbilder mithilfe des Rechners zusammengesetzt werden.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die scharf abgebildeten Bereiche durch numerisches Bilden der Ableitung ermittelt werden.
- 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Parameter zur Aufnahme der Sequenz von Einzelaufnahmen durch einen Rechner vorgegeben werden, und daß der Ablauf der Aufnahme von diesem Rechner gesteuert wird.

GEÄNDERTES BLATT

- 5. Verfahren nach einem der vorhergehenden Ansprüche; dadurch gekennzeichnet, daß die Aufnahme der Sequenz von Einzelaufnahmen automatisch gestartet wird.
- 6. Verfahren nach Anspruch 5, dadruch gekennzeichnet, daß die Aufnahme der Sequenz von Einzelaufnahmen durch eine Lichtschranke gestartet wird.
- 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einzelaufnahmen in fest vorgegebenen Zeitabständen aufgenommen werden.
- 8. Verfahren nach einem der vorhergehenden Ansprücher dadurch gekennzeichnet, daß die Einzelaufnahmen in fest vorgegebenen relativen Abständen zwischen Kamera und Objekt aufgenommen werden.
- 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Kamera zur Aufnahme der Sequenz von Einzelaufnahmen eine CCD-Kamera verwendet wird.
- 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zunächst alle Einzelaufnahmen der Sequenz auf dem Rechner abgespeichert werden und daß nach Abschluß der Aufnahme der Sequenz aus den Einzelaufnahmen die scharf abgebildeten Bereiche ermittelt werden.
- 11 Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß aus jeder Einzelaufnahme der Sequenz unmittelbar nach deren Aufnahme die scharfen Bereiche ermittelt und in das Resultatbild eingefügt werden.
- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß aus der Sequenz von Einzelaufnahmen mehrere Resultatbilder

zusammengestellt werden, wobei in den Resultatbildern jeweils unterschiedliche Bereiche des Objekts oder unterschiedliche Merkmale dargestellt sind.

ERSATZBLATT (REGEL 26)

- 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bildebene in mehrere Bereiche unterteilt wird, und daß die Bereiche parallel bearbeitet werden.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es zur Erkennung der Merkmale eines Fingers eingesetzt wird.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Objekt mit einer Lichtquelle beleuchtet wird.
- 16. Verfahren nach Anspruch 15, daurch gekennzeichnet, daß eine gepulste Lichtquelle verwendet wird, die mit der Kamera synchronisiert ist.
- 17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß das Objekt durch mehrere Lichtquellen unterschiedlichen Wellenlängenbereichs und in unterschiedlichen Anordnungen beleuchtet wird.
- 18. Verfahren nach einem der Ansprüche 15 bis 17. dadurch gekennzeichnet, daß das Objekt solange, beleuchtet wird, wie es sich auf die Kamera zu und von der Kamera weg bewegt.
- 19. Verfahren nach einem er Ansprüche 15 bis 18, dadurch gekennzeichnet, daß lediglich die im Fokus der Kamera liegenden Bereiche des Objektes beleuchtet werden.
- 20. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 18. dadurch gekennzeichnet, daß ein Rechner, eine Kamera und eine Steuerungsvorrichtung vorgesehen sind.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.