

Lazo de tensión

Lazo de corriente

Abriendo el lazo e inyectando señal de prueba

RL= 0Ω R18=18K Ω

RL= 0Ω R18=18K Ω

RL= 0Ω R18=18K Ω

RL= 0Ω R18=18K Ω

Ccomp=10n

RL= 10Ω R18= 0Ω

RL= 10Ω R18= 0Ω

Ramort

RL= 10Ω R18= 0Ω

Camort

RL= 10Ω R18= 0Ω

Respuesta dinámica

RL=5 Ω R18=0 Ω

Respuesta dinámica

RL=5 Ω R18=0 Ω

Respuesta dinámica

RL= 1Ω R18= 0Ω R9=90K Ω

Respuesta dinámica ante un cortocircuito súbito a la salida

Tiempo que demora en cerrarse el lazo de corriente

Respuesta dinámica (con limitador de corriente a transistor)

Mientras se está por cerrar el lazo de corriente, actúa el limitador de corriente local (Q15) que se establece mucho más rápido

NOTAR QUE SE REDUCE EL TIEMPO DE ESTABLECIMIENTO DEL LAZO DE CORRIENTE PRINCIPAL

RL= 0Ω R18= 0Ω R9= $90K\Omega$

Respuesta dinámica (con limitador de corriente a transistor)

Con un valor mayor de RS se logra reducir más la corriente inicial por Q5 y además se establece un vaor mas bajo de limitación con Q15

NOTAR QUE SE REDUCE AÚN MÁS EL TIEMPO DE ESTABLECIMIENTO DEL LAZO DE CORRIENTE PRINCIPAL

RL= 0Ω R18= 0Ω R9= $90K\Omega$

RL= 10Ω R18= 0Ω R9=90K Ω

RL= 1Ω R18= 0Ω R9=90K Ω Ccomp3=200pF

RL= 1Ω R18= 0Ω R9=90K Ω Ccomp3=1nF

Rcomp4 (surge de la necesidad de mejorar la respuesta a bajas corrientes de limitación)

RL= 1Ω R18=18K Ω R9=90K Ω Ccomp3=1nF Ccomp4=10nF

Circuito sugerido luego del análisis de la compensación de la fuente del TP 20172

Circuito del amplificador de la fuente del TP 20172

Etapas del amplificador

Estabilización de la tensión de salida (sobre la carga)

Estabilización de la corriente de salida (sobre la carga)

