académie Lyon	Baccala	CCF nř 2 Session juin 2023		
Épreuve	Physique/Chi- mie	Groupement : 3	Durée :	60 min

Modules sur lesquels portent l'évaluation :

- Pression
- Variation de pression dans un fluide

Établissement	MonLycée	Date : 12/22		
Ville:	Saint I	Etienne		
Nom et Prénom du candidat :			Note:	/ 10
Professeur examinateur :	Mon	Prof		

- ✓ La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation de la copie.
 - \checkmark L'emploi des instruments de calcul est autorisé pour cette épreuve.
 - \checkmark L'examinateur intervient à la demande du candidat ou quand il le juge utile.
 - \checkmark Le candidat est invité à prendre connaissance des annexes en fin de sujet.
 - \checkmark Les symboles suivants signifient :

Appel enseignant

Utilisation des TICE (notice disponible)

Ce sujet comporte 8 pages, merci de vérifier qu'il est complet avant de démarrer.

Profondeur maximale en plongée

Anna, élève de terminale Bac Pro Agencement, part en vacances au bord de la Mer Morte en Jordanie. Elle envisage de se baigner et de faire un petit peu de plongée peu profonde.

Cette mer est la mer la plus salée du monde, la poussée d'Archimède est très grande et la flottabilité améliorée.

La masse volumique de l'eau douce est $\rho_{eau}=1\,000\,\mathrm{kg\,m^{-3}}$, celle de l'eau de mer classique vaut environ $\rho_{mer}=1\,030\,\mathrm{kg\,m^{-3}}$ mais celle de la mer morte est de $\rho_{morte}=1\,240\,\mathrm{kg\,m^{-3}}$.

Anna possède une montre d'une marque avec une pomme sur laquelle on trouve des indications en annexe 1 de ce sujet. Elle se souvient de ses cours de Physique et d'une loi permettant de calculer la pression selon la profondeur dans un fluide.

Problématique 1 : Comment aider Anna à vérifier le bon fonctionnement de cette loi?

L		Première partie : Appropriation du sujet	
	1.	Sur l'annexe 1, relever dans les informations relatives à la montre deux unités pour la pression.	
			Ť
	2.	Expliquer la notation 10atm comme unité de pression.	
	3.	Donner l'unité légale de la pression dans le système international.	
	4.	Expliquer pourquoi la masse volumique de l'eau influence la valeur de pression lors d'une plongée.	
	5.	Proposer un protocole expérimental permettant de vérifier si la loi de l'hydrostatique s'applique pour répondre à la problématique 1. Faire un schéma.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

•	Je choisi le protocole :	
	\Box Avec l'acquisition informatique $\ \Box$ Avec acquisition manuelle et tableur	
2	Acquisition et modélisation	
	Pour établir la validité de la loi, on utilise votre protocole ou à défaut celui donné par l'enseignant ecours.	
	. Rappeler l'expression du principe de l'hydrostatique	
2	. Préparer la manipulation en remplissant une éprouvette avec de l'eau de la mer Morte et en réunissant le matériel nécessaire.	
	3. Appel enseignant pour vérification et mise en place de la manipulation	
4	. Réaliser l'expérience.	
	5. Appel enseignant pour vérification des résultats	(III)
6	. Sur le logiciel sélectionné, tracer la courbe de la pression en fonction de la profondeur (la pression doit être sur l'axe vertical).	
7	. Ajouter une courbe de modélisation "linéaire". Afficher l'équation.	X
8	Recopier l'équation de modélisation :	
9	. Justifier que le principe de l'hydrostatique s'applique dans la mer morte.	\odot
3	Aller plus loin	
	Cette partie va permettre de vérifier si une plongée dans la mer morte est compatible avec lisation de la montre proposée.	
1	. Sachant que la montre supporte au maximum 10 bar, convertir la pression maximale supportée en Pascal. (On pourra s'aider des annexes)	

2.	En utilisant l'équation obtenue en 2.8, écrire la formule autrement qui permet de calculer la grandeur h pour la profondeur.	
	3. Appel enseignant pour montrer la formule avant utilisation	(<u>=</u>
4.	Calculer la profondeur maximale qui correspond à la pression maximale supportée par la montre dans la mer Morte.	X
5.	Commenter la phrase suivante à l'aide des résultats précédents : le constructeur prévoit toujours une marge de sécurité par rapport aux données. (Une réponse chiffrée est attendue en utilisant le résultat à la question précédente).	\odot

Fin du sujet

Annexe 1: Informations Montre à la Pomme

Résistante à 10 bar / 10 atm.

Ne pas dépasser 50 m d'immersion.

Possibilité d'utilisation pour douche / natation / plongée en eau peu profonde.

Ne convient pas à la plongée en bouteilles ou professionnelle.

Après passage dans l'eau de mer bien rincer la montre et la sécher.

Annexe 2: Relations et informations utiles

Calcul d'une pression : $P = \frac{F}{S}$ avec P en pascal (Pa) si F en newton (N) et S en m^2 .

Principe de l'hydrostatique : $P_B - P_A =
ho g h$ ou : $P_B =
ho g h + P_A$

Avec :

- P_B la pression (Pa) à un niveau dans un fluide
- P_A la pression à un autre niveau (souvent égale à $P_0=10^5\,\mathrm{Pa}$)
- ho la masse volumique du fluide en kg m $^{-3}$
- q = 9.81 la valeur de la pesanteur sur Terre
- h l'altitude (ou profondeur) en mètres

Rappel: $1 \text{ bar} = 10^5 \text{ Pa}$ 1 hPa = 100 Pa 1 m = 100 cm

Annexe 3 : Utiliser Excel pour représenter un nuage de points

Note : les captures d'écran peuvent ne pas correspondre exactement à la version utilisée selon le poste.

- 1. On commence par entrer ses valeurs en colonne
- 2. On fait attention éventuellement à convertir et à placer les colonnes pour obtenir la bonne courbe.

Le coefficient \mathbb{R}^2 doit être tel que $\mathbb{R}^2 > 0.99$ pour avoir un bon modèle.

Annexe 4 : Utiliser Latis Pro pour acquisition et traitement

Pour préparer l'acquisition :

- 1. Brancher le capteur de pression sur la carte
- 2. Brancher la carte sur l'ordinateur via le câble USB
- 3. Brancher le tuyau sur le capteur de pression
- 4. Ouvrir le logiciel LATIS PRO, à gauche la carte doit être détectée

Pour acquérir :

- 1. Choisir "PAS A PAS" à la place de temporelle
- 2. Abcisse clavier entrer: profondeur
- 3. Menu EXECUTER puis "ACQUISITION DES ENTREES" (ou flèche verte)
- 4. Renseigner la profondeur dans la boite de dialogue pour chaque valeur

Attention à la petite hauteur de décalage dans le tuyau

Pour tracer la modélisation :

- 1. Sélectionner modéliser :
- 2. Compléter la fenêtre en faisant glisser la courbe, en choisissant le modèle puis en développant la fenêtre et en calculant pour obtenir l'équation.

On obtient ainsi l'équation de la courbe de modélisation ainsi que le paramètre R^2 qui indique si le modèle est bon (il doit être tel que $R^2 > 0.99$).

Évaluation de Physique/Chimie

Classe de : Term

Etablissement :	MonLycée	e $\mathbf{Dat}\epsilon$	e de	l'éva	luation	:	12	/2	2
-----------------	----------	--------------------------	------	-------	---------	---	----	----	---

NOM et Prénom de l'élève/apprenti :

 ${\bf Professeur: MonProf} \qquad \qquad {\bf Grille\ Chronologique}$

Nu- méro	Réponse attendue	Comp	TI	Ι	В	ТВ
(1.1)	bar pascal atm	8				
(1.2)	10 atmosphères donc 10 bar	8				
(1.3)	Le pascal (Pa)	<u>Q</u>				
(1.4)	la grandeur masse volumique est dans la formule du principe de l'hydrostatique donc le milieu a une influence.	<u>(</u>				
(1.5)	Mesure de la pression selon la profondeur par exao ou pressiometre : on réalise une dizaine de point à profondeurs différentes.					
(2.1)	$P_B - P_A = \rho g h$	8				
(2.2)	Vérifier une mesure de pression en cours de réalisation	X				
(2.3)	Appel 1 pour vérifier la bonne manipulation					
(2.4)	Expérience	X				
(2.5)	Appel 2 : vérifier le tableau de valeurs	F				
(2.6)	Vérifier l'obtention d'une droite	X				
(2.7)	Vérifier l'équation de la droite	X				
(2.8)	Vérifier l'équation obtenue	Ħ				
(2.9)	On obtient une fonction affine ou linéaire (selon le capteur) et c'est bien ce qu'on devait obtenir on peut donc utiliser la relation	\bigcirc				
(3.1)	conversion à vérifier (réponse 10 ⁶ Pa)	Ħ				
(3.2)	$h = \frac{P_B - P_A}{\rho \times g}$	Ġ				
(3.3)	Appel 3 : vérification de la formule obtenue - si fausse la donner					
(3.4)	Calcul qui dépend de la formule obtenue	X				
(3.5)	On doit trouver une bonne marge d'erreur - valeur dépendante de la manipulation.	\bigcirc				

Évaluation de Physique/Chimie

Classe de : Term

Établissement : MonLycée **Date** de l'évaluation : 12/22

NOM et Prénom de l'élève/apprenti :

 ${\bf Professeur}: {\bf MonProf}$

1. Liste des capacités, connaissances et attitudes évaluées.

Capacités	Mesurer la pression d'un liquide en un point Déterminer expérimentalement les variations de pression au sein d'un fluide Utiliser la formule permettant de calculer la différence de pression dans un fluide
Connaissances	Notion de pression, surface pressée, force pressante Unité du système international de mesure et unités usuelles

2. Évaluation

Compétence	Capacités	Question	Niveau
S'approprier	Rechercher, extraire et organiser l'information. Traduire des informations, des codages.	(1.1), (1.2), (1.3), (2.1)	/1
Analyser / Raisonner	Émettre des conjectures, formules des hypothèse. Proposer, choisir une méthode de résolution, un protocole expérimental. Élaborer un algorithme.	(1.4), (1.5), (2.8), (3.1), (3.2)	/2,5
Réaliser	Mettre en uvre une méthode de résolution, des algorithmes ou un protocole expérimental en respectant les règles de sécurité. Utiliser un modèle, représenter, calculer. Expérimenter, faire une simulation.	(2.2), (2.4), (2.6), (2.7), (3.4)	/2,5
Valider	Exploiter et interpréter des résultats ou des observations de façon critique et argumentée. Contrôler la vraisemblance d'une conjecture, de la valeur d'une mesure. Valider un modèle ou une hypothèse. Mener un raisonnement logique et établir une conclusion.	(2.9), (3.5)	/1
Communi- quer	Rendre compte dun résultat, à loral ou à lécrit en utilisant des outils et un langage approprié. Expliquer une démarche.	(2.3), (2.5), (3.3)	/3
	TOTAL		/ 10