What is a CNN?

17 August 2022

06:47

Convolutional neural networks, also known as convnet, or CNNs, are a special kind of neural network for processing data that has a known grid-like topology like time series data(1D) or images(2D).

Convolution Neural Network (CNN)

Increase Image Resolution Using Deep ... mathworks.com

Deep Learning based image Super ... cv-tricks.com

semanticscholar.org

Image Super Resolution | Deep Learning ... analyticsvidhya.com

Deep-learning network structures for ... researchgate.net

5:37 [] 🕱 🔻 🕏 53% 🖥

D36 CNN vs Visual Cortex HOME INSERT DRAW

VIEW

Human Visual Cortex

18 August 2022 16:05

Development

18 August 2022 1

16:15

Introduction

19 August 2022

16:45

60	5.0	0.0	10	0.0	no	51	0.0	0.0	311	DUI	0.0	8	0.0	50	01	0.0	50	0.2	65	60	H	60	da	21.0	0.0	10	25
50	0.0	00	88	0.0	20	8	22	88	00	100		88	00	68		84	80	88	0.0	20	8	8			68		22
0.0	0.0	0.0		0.0	0.0	0.0	60	0.0	100	0.0	0.0	00	0.0	0.0	0.0	0.0	9.0		0.0	8.0		DO	00		0,0	10.0	AR
510	0.e	0.0	88	0.0	0.0	80	0.0	0.0	100	0.0	0.0	ES.	0.0	2.0	(62)	02	0.0	(AE)	0.0	U.Q	88	0.0	10	100	0.8	10	0.0
8.0	82	60	28	20	60	88	50	63	100	80	nn	50	tts	2.6	2.2	0.6	1.0	0.6	0.3	20	88	Ga	2.0	88	0.0	10	NW.
20	0.0	5.0	C.E	0.0	20	90	0.0	22	0.0	0.0	210	88	0.0	0.2	2.9	1.0	1.0	1.0	0.9	0.0	24	0.0	20.0	2.0	os	10	NB.
0.0	SA.	0.0	50	625	0.0	8.0	0.0	da	no	0.0	0.0	6.0	0.2	0.9	1.0	1.0	0.9	0.5	1.0	62	92	0.0	80	0.0	0.0	10	an
146	5.5	150	12	88	23	10		趨	100	NH.	24	1.2	0.9	1.0	10	1.0	0.8	2.3	10	1.0	2.5	00	2.0	Es.	42	28	28
0.0	0.0	0.0	61	0.0	0.0	nn.	0,0	0.0	80	Цú	0.6	1,0	1,0	1.0	10	10	1.0	0.4	0.7	1.0	0.7	0.0	0.0	0.0	au.	na	0.0
0.0	0.0	0.0	10	0.0	00	110	0.0	0.0	na	0.2	0.9	1.0	1.0	0.8	0.5	10	0.0	0.2	0.3	1.0	6.7	56	00	in	0.0	60	0.0
0.0	2,0	0.0	60	0.0	no	no	0.0	0.0	0.2	0.8	1.0	10	0.7	0.1	0.3	0.5	41	85	03	1.0	0.9	0.2	45	un	0.0	40	gn
0.0	DA	0.0	EO	ap.	60	0.0	0.0	93	0.7	10	0.9	0.0	0.3	(AR)	02	01	0.0	0.0	0.0	1.0	10	0.7	88	5,0	0.3	0.0	RP.
HO.	0.0	0.0	66	0.0	20	00	no.	0.7	1.0	0.9	0.1	8	0.1	0.0		0.0	40	08	20	1.0	10	0.8	tre	uo.	0.0	bà	nn
52	82	53	E2	0.0	80		2.5	1.8	12	83	0,0	8	60	88	88	82	60	魒	05	1.0	10	0.8	ac	82	0.3	80	88
00)	0.0	60	50	en.	no	na.	0.0	1.0	0.0	ħΩ	as	0.0	no	0,0		0.0	0.0	NA.	63	1.0	1.0	08	αn	En.	68	na	(qm)
86		00		9.0	no	63	121	10	B.s.	00	0.0	豳	άà	26	88	00	80	鰮	62	1.0	1.0	0.6	88	(68)	dit	20	
6.0	20	0.0	8	an	no	0.3	1.0	0.9	n.r.	na.	0.0	8	0.0		88	ůΩ	100	篋	01	1.0	0.7	88	99	88	an	na	88
0.0	20	60	8		0.0	0.3	1.0	0.0	0.0	0.0	0.0	圃	80	8	8	60	na	2.5	10	:0.9	0.8	0.0	99	88	08	DB	8
88	D.S.			an	0.0	83	10	0.6	BD.	00	88	an	nn.	88	88	0.2	8.7	1.0	0.7	80	000	0.0	0.0			100	(All
88		āp	翻		no		1.0	0.9	(nn)	66	8	88	86		0.5	0.9	1.0	0.6	02	66	88	100		圈			圈
0.0	50	00	篋	0.0	nn	03	3.0	10	0.8	0.7	01	(0.3)	0.7	ON	1.0	0.0	0.7	82	0.0	0.0	8	00	me	88	0.0	na	88
88	0.0	0.0		88	00	03	to	u	1.0	0.9	11.8	1.0	1.0	1.0	0.8	05		腿	0.0	00	88	tit	0.0		82	no	88
an	nn	0.0	88	an	no		CB	10	10	10	10	tn	0.9	0.6	80	0.0	an	80	8	0.0	40	no	no	nn	an	na	0.0
6.0	20	an		20	0.0	100		65	1.0	10	3.0	08	0,6	[04]	0.00	0.0	0.0	86	02	0.0	8	00	80	0.0	an	00	1
86	88	0.0	80		0.0	22	0.0	8.0	82	50	8.0	88	8.0		MA	0.0	8.0	00	0.3	0.0	88	80	0.0	20	0.0	50	100
44	20	8.0	10	0.0	na	ma.		na	(80)	nn	86	88	an	28	88	0.0	88	86		80		90	8	BR.	20	20	(88)

Edge Detection (Convolution Operation)

19 August 2022

16:53

à.											
0	0	0	0	0	0						
0	0	0	0,	0	0	*	-1	-1	-1		
0	0	0	o	0	0		0	-1	0	=	
255	255	255	255	255	255		1	1	1		
255	255	255	255	255	255		1	1	1		
255	255	255	255	255	255						

à.											
0	0	0	0	0	0						
0	0	0	0,	0	0	*	-1	-1	-1		
0	0	0	o	0	0		0	-1	0	=	
255	255	255	255	255	255		1	1	1		
255	255	255	255	255	255		1	1	1		
255	255	255	255	255	255						

0	0	0	0	0	0				7			
0	0	0	0,	0	0		70 (1)		10	D	0	O
0	0	0	o	0	0	*		=	235	255	257	255
255	-255	-255	255	255	255		1 1 (1)					255
255	-255	255	255	255	255				0	0	0	0
255	255	255	255	255	255							

Input

Output

Working with RGB Images

19 August 2022

16:54

Multiple Filters

23 August 2022

08:24

Image taken from Andrew NG's lecture

7	2	3	3	8				
4	4 5	5 3 8	5	5 3 8		3 8	3 8	
3	3	2	8	4				
2	8	7	2	7				
5	4	4	5	4				

1	0	-1
1	0	-1
1	0	-1

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

6	

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

6	-9	-8
-3	-2	

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

6	-9	-8
-3	-2	-3
-3		

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

What is Padding?

26 August 2022

14:26

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

	1	0	-1		6	
	1	0	-1	=		
	1	0	-1			
1	2x0-	+5x0-	+3x1+ +3x0+ 1+2x-1			

$$f \times f \rightarrow (n-f+1)(n-f+1)$$

 $3 \times 3 \qquad (5-3+1) = 3 \times 3$

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

0	-1	0
-1	5	-1
0	-1	0

114	328	-26	

			- P			
0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

0	-1	0
-1	5	-1
0	-1	0

114	328	-26	470	158
53	266	-61	-30	

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

0	-1	0
-1	5	-1
0	-1	0

114	328	-26	470	158
53	266	-61	-30	344
403	116	-47	295	244

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

0	-1	0
-1	5	-1
0	-1	0

114	328	-26	470	158
53	266	-61	-30	344
403	116	-47	295	244
108	-135	256	-128	344
314	346	279	153	421

フェネ

k

Pooling

01 September 2022

09:55

0	0	0	0	0	0
0	0	0	0,	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

*

=

01 September 2022

09:56


```
import tensorflow
     from tensorflow import keras
     from keras.layers import Dense, Conv2D, Flatten, AveragePooling2D
     from keras import Sequential
     from keras.datasets import mnist[
[ ] (X_train, y_train), (X_test, y_test) = mnist.load_data()
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz</a>
     11501568/11490434 [============== ] - 0s Ous/step
LeNet Architecture
```

LeNet Architecture

```
model = Sequential()
model.add(Conv2D(6,kernel_size=(5,5),padding='valid', activation='tanh', input_shape=(32,32,1)))
model.add(AveragePooling2D(pool_size=(2, 2), strides=2, padding='valid'))
model.add(Conv2D(16,kernel_size=(5,5),padding='valid', activation='tanh'))
model.add(AveragePooling2D(pool_size=(2, 2), strides=2, padding='valid'))
model.add(Flatten())
model.add(Dense(120, activation='tanh'))
model.add(Dense(84, activation='tanh'))
model.add(Dense(10, activation='softmax'))
```

moder: Sequential_I	Model:	"sequential	1
---------------------	--------	-------------	---

Layer (type)	Output Shape	Param # ======
conv2d_2 (Conv2D)	(None, 28, 28, 6)	156
<pre>average_pooling2d_2 (Averag ePooling2D)</pre>	(None, 14, 14, 6) I	0
conv2d_3 (Conv2D)	(None, 10, 10, 16)	2416
<pre>average_pooling2d_3 (Averag ePooling2D)</pre>	(None, 5, 5, 16)	0
flatten_1 (Flatten)	(None, 400)	0
dense_3 (Dense)	(None, 120)	48120
dense_4 (Dense)	(None, 84)	10164
dense_5 (Dense)	(None, 10)	850

