Calcul Différentiel I

STEP, MINES ParisTech

30 août 2020 (#59ca161)

Question 1 Déterminer le gradient de la fonction $(x_1, x_2) \in \mathbb{R}^2 \mapsto x_1 x_2 \in \mathbb{R}$.

Question 2 Déterminer en tout point la matrice jacobienne de l'application $(x_1, x_2, x_3) \in \mathbb{R}^3 \mapsto (x_2 - x_1^2, x_3 - x_2^2) \in \mathbb{R}^2.$

Question 3 Soit $f: \mathbb{R} \to \mathbb{R}^m$ une fonction dérivable. Dans l'expression $df(x) \cdot h$, à quels ensembles appartiennent df(x) et h? Que vaut l'expression en fonction de f'(x)?

Question 4 Soit $p: \mathbb{R}^n \to]0, +\infty[$ une fonction différentiable. Calculer le gradient de $x \in \mathbb{R}^2 \mapsto \ln p(x) \in \mathbb{R}$ en fonction du gradient de p.

Question 5 Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une fonction différentiable, bijective et dont l'inverse $g:=f^{-1}$ est également différentiable. Déterminer l'expression de la différentielle de g en $y \in \mathbb{R}^n$ en fonction de la différentielle de f.

Question 6 En exploitant la loi des gaz parfaits PV = nRT, donner une expression de dT en fonction de dP et dV (n et R sont des constantes).

Question 7 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que f(0,0) = 0 et $\nabla f(x_1, x_2) =$ $(2x_1 + x_2, x_1)$ en tout point. Déterminer la valeur de $f(x_1, x_2)$ en tout point.

Question 8 Soit $f: \mathbb{R}^2 \to \mathbb{R}^m$ une fonction différentiable et vérifiant $\|df(x_1,x_2)\| \leq 1$ quand $|x_1| \geq 1$ et $|x_2| \geq 1.$ Quelle(s) inégalité(s) êtes-vous en mesure de prouver?

- \Box A: $||f(1,1) f(-1,-1)|| \le 2\sqrt{2} \approx 2.83$
- □ B: $||f(1,1) f(-1,-1)|| \le 4$ □ C: $||f(1,1) f(-1,-1)|| \le \pi\sqrt{2} \approx 4.44$