Lecture 5

COMP 3760

Transform and Conquer algorithms

Text sections 6.1, 6.4

Transform and Conquer

- This technique solves a problem by a transformation to:
 - a more convenient instance of the same problem (aka instance simplification)
 - a different representation of the same instance (aka representation change)

Transform and Conquer examples

Instance simplification (pre-sorting)

- Checking element uniqueness in an array
- Computing the mode
- Searching (again)

Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

Instance simplification

• Transform a problem into a *more convenient* instance of the same problem

Element uniqueness in an array

- Problem: Determine if all elements in an array are distinct
 - I.e.: "Are there any duplicated values?"

56	98	11	49	1	45	99	37	33	27	39	33	49	
----	----	----	----	---	----	----	----	----	----	----	----	----	--

- Brute force algorithm
 - Compare all pairs of elements
 - Efficiency: $O(n^2)$

1	11	27	33	33	37	39	45	49	49	56	98	99
---	----	----	----	----	----	----	----	----	----	----	----	----

- Instance simplification (presorting) approach:
 - Part 1: sort by efficient sorting algorithm (e.g. mergesort)

Part 2: scan array to check pairs of adjacent elements

Efficiency: O(nlogn) + O(n) = O(nlogn)

```
ALGORITHM PresortElementUniqueness (A[0..n-1])

//Solves the element uniqueness problem by sorting the array first

//Input: An array A[0..n-1] of orderable elements

//Output: Returns "true" if A has no equal elements, "false" otherwise

sort the array A

for i \leftarrow 0 to n-2 do

if A[i] = A[i+1] return false

return true
```

 The mode is the value that occurs most often in a given list of numbers.

5 1	6 7	6	5	7	6
-----	-----	---	---	---	---

Mode: 6

- Brute Force:
 - Scan the list
 - Compute the frequencies of all distinct values
 - Find the value with the largest frequency

5	1	6	7	6	5	7	6
---	---	---	---	---	---	---	---

• Brute Force:

Data

Frequency

5

1

• Brute Force:

5	1	6	7	6	5	7	6
	, †						

Data

5	1
1	1

• Brute Force:

5	1	6	7	6	5	7	6
		i					

Data

5	1	6
1	1	1

• Brute Force:

5	1	6	7	6	5	7	6
			i				

Data

5	1	6	7
1	1	1	1

• Brute Force:

5	1	6	7	6	5	7	6
				i 🕇			

Data

5	1	6	7
1	1	2	1

• Brute Force:

5	1	6	7	6	5	7	6
					<u>, † </u>		

Data

5	1	6	7
2	1	2	1

• Brute Force:

5	1	6	7	6	5	7	6
						i T	

Data

5	1	6	7
2	1	2	2

• Brute Force:

5	1	6	7	6	5	7	6

Data

Frequency

5	1	6	7
2	1	3	2

Max

- Efficiency (worst-case):
 - List has no repeated elements
 - ith element must be compared to i 1 existing elements in the "Data" array

	i-	1 distino	t items	
Data				A[i]
Frequency				1

• Efficiency (worst-case):

- Creating auxiliary list ("Data" array): $0 + 1 + 2 + \cdots + (n 1) = O(n^2)$
- Finding max: O(n)
- Efficiency (worst-case): $O(n^2)$

Computing a mode (pre-sorting)

- Part 1: Sort the input
 - All equal values will be adjacent to each other

1 5 5 6 6 6 7

 Part 2: Find the longest run of adjacent equal values in the sorted array

Computing a mode (pre-sorting)

```
ALGORITHM PresortMode(A[0..n-1])
    //Computes the mode of an array by sorting it first
    //Input: An array A[0..n-1] of orderable elements
    //Output: The array's mode
    sort the array A
    i \leftarrow 0
                               //current run begins at position i
    modefrequency \leftarrow 0 //highest frequency seen so far
    while i \le n-1 do
         runlength \leftarrow 1; \quad runvalue \leftarrow A[i]
         while i + runlength \le n - 1 and A[i + runlength] = runvalue
             runlength \leftarrow runlength + 1
         if runlength > modef requency
             modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
         i \leftarrow i + runlength
    return modevalue
```

Computing a mode (pre-sorting)

• Efficiency:

```
T(n) = Sorting time + Scanning time
= O(n \log n) + O(n)
= O(n \log n)
```

Searching with presorting

Searching with presorting

- Problem: Search for a given key K in an array A[0..n-1]
- Presorting-based algorithm:
 - Part 1: Sort the array by an efficient sorting algorithm
 - Part 2: Apply binary search
- Efficiency: O(n log n) + O(log n) = O(n log n)
- Good or bad? (Note that sequential search is O(n))
- Why do we have our dictionaries, telephone directories, etc. sorted?

Linear vs Binary Search

- We know that Binary Search is better
 - O(N) vs. O(logN)
- But Binary Search requires a sorted list
 - Sorting is O(NlogN)
- Q: How does this help?

A: If we have to search MANY times

Why is presorting better?

- What if we have A[1000] and search a million times?
- With Linear/Sequential Search:
 - Search is $O(n) \rightarrow 500$ steps per search (average)
 - 1,000,000 searches \rightarrow 500,000,000 steps
 - Total time: 500,000,000 steps
- With Presort + Binary Search
 - Presort = O(nlogn) = 1000*10 = 10,000 steps
 - Search is O(logn) → 10 steps per search (max)
 - 1,000,000 searches \rightarrow 10,000,000 steps
 - Total time: 10,010,000 steps
- Presort+BinarySearch is about 50x better
 - Bigger input → even MORE better!

Transform and Conquer

- Previous examples:
 - Instance simplification
 - More specifically, pre-sorting
- Next example:
 - Representation change

Representation change: Heaps and Heapsort

Sample problem

- You're running a hospital ER
- Patients are coming in with different priority

We need two operations

- Insert()
 - Add a new person to the waiting room
 - Each person has a designated priority
- deleteMax()
 - Determine the person with the highest priority
 - Remove them from the waiting room

Simple implementations

- ArrayList
 - Insert: O(1)
 - deleteMax: O(n)

7 5 8 1 9

- SortedArrayList
 - Insert: O(logn + n) = O(n)
 - deleteMax: O(1)

1 5 7 8 9

Representation change

- Idea:
 - Given an array
 - Transform to a new data structure (Make a "heap" out of it)

- Efficiency of heap:
 - Insert an item: O(logn)
 - deleteMax: O(logn)

Heap definition

- Almost complete binary tree
 - filled on all levels, except last, where filled from left to right
- Every parent is greater than (or equal to) children

Heap or No Heap?

Heap characteristics

- Max value is in the root
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$

Heap implementation

- Use an array: no need for explicit parent or child pointers.
 - Parent(i) = $\lfloor i/2 \rfloor$
 - Left(i) = 2i
 - Right(i) = 2i + 1

Example 1

Draw the tree representation of this heap

Example 2

• Draw the array representation of this heap

Index	1	2	3	4	5	6	7	8	9	10	11	12
value	24	13	17	9	6	11	15	5	7	2	4	10

Heap insertion

- Insert into next available slot
- Bubble up until it's heap ordered ("heapify")

• Insert 17

A = 16 15 10 14 7 9 3 2 8 1

A = 17 16 10 14 15 9 3 2 8 1 7

Efficiency is O(log n)

Delete max from heap

- Exchange root with "last" leaf (bottom-most, right-most)
- Delete element
- Bubble root down until it's heap ordered

A = 16 15 10 14 7 9 3 2 8 1

Efficiency is O(log n)

Heaps – RECAP

Previously:

- Heap properties (structure & values)
- Array vs. tree representation
- Insert & deleteMax algos (both are O(logn))
- Constructing a heap of N elements
 - "Straightforward": For each item x in the input, call H.insert(x)

• Today:

- Another way to "build" a heap
- Heapsort algorithm

Heap construction

- What if we are given an entire array?
- How can we transform it into a heap?

Heap construction

- Step 0: Initialize the structure with keys in the order given
 - (Done already)
- Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds
- Step 2: Repeat Step 1 for the preceding parental node

Example of heap construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

Complexity of heap construction

- ~ n/2 "parental" nodes → O(n)
- logn steps to fix each node → O(logn)
- Overall → O(nlogn)

Heapsort

Heapsort

- How can we use a Heap to sort an arbitrary array?
 - Stage 1: Transform the array into a heap (Construct a heap)
 - Stage 2: Call deleteMax N times to get all array elements in sorted order

Analysis of Heapsort

- Stage 1: Build heap for a given list of n keys
 - O(nlogn)

- Stage 2: Repeat operation of root removal n times (fix heap each time)
 - O(nlogn)

Practice problems

- Chapter 6.1, page 205, questions 2, 3, 7
- Chapter 6.4, page 233, question 1, 2, 7