

.

.

.

ONE LOVE. ONE FUTURE.

Chapter 4: Solving Nonlinear Equation

Vu Van Thieu, Dinh Viet Sang, Ban Ha Bang

SoICT Hanoi University of Science and Technology

ONE LOVE. ONE FUTURE.

Introduction

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method
- A STATE OF THE STA

Problem

Given the non-linear function f(x), we need to find x satisfying

$$f(x) = 0.$$

The solution x is the solution of the equation and is also called the (zero point) solution of the function f(x). The problem of finding x is called the root finding problem.

Examples of problems finding solutions of nonlinear equations

$$1 + 4x - 16x^2 + 3x^3 - 3x^4 = 0$$

$$\frac{x\sqrt{(2.1-0.5x)}}{(1-x)\sqrt{(1.1-0.5x)}} - 369 = 0$$
 with $(0 < x < 1)$

3
$$tg(x) - tanh(x) = 0$$
 where $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Problem

If the equations f(x) are nonlinear then

- it usually does not have an explicit formula solution
- numerical methods that allow us to find solutions based on iterative procedure

Solution interval

For function $f : \mathbb{R} \to \mathbb{R}$ the interval [a, b] is called **solution interval** if function f has opposite signs at both ends a, b, i.e. f(a)f(b) < 0.

Existence of solutions

If f is a continuous function on the interval [a, b] and f(a)(f(b) < 0 then there exists $x^* \in [a, b]$ such that $f(x^*) = 0$.

Examples of solutions to nonlinear equations

- $e^x + 1 = 0$ has no solution
- 2 $e^{-x} x = 0$ has a solution
- $x^2 4\sin(x) = 0$ has two solutions
- $x^3 6x^2 + 11x 6 = 0$ has three solutions

Conditions for solving equations

- The absolute value of the Condition number x^* of the function $f: \mathbb{R} \mapsto \mathbb{R}$ is $\frac{1}{|f'(x^*)|}$.
- A solution of x^* is said to be *ill-conditioned* (well) if the tangent line to the graph of the function f(x) at x^* is almost horizontal (vertical).

Iterative procedure

Nonlinear equations often do not have an explicit solution. Therefore, to find solution we often have to use numerical methods based on iterative procedures.

- Stop condition: $|f(x_k)| < \epsilon$ or $|x^* x_k| < \epsilon$ where ϵ is the given *precision* and x_k is the approximate solution obtained at step k
- Convergence rate: We denote *error* at iteration k as: $e_k = x_k x^*$. The sequence $\{e_k\}$ is said to converge to the degree r if

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^r}=C$$

where C is a non-zero constant

Iterative procedure Nonlinear equations often do not have an explicit solution. Therefore, to find solution we often have to use numerical methods based on iterative empedures v Stop condition: $|f(x_0)|$ < ∈ or $|x^* - x_0|$ < ∈ where ∈ is the given precision and x_0 is the approximate solution obtained at sten & v Convergence rate: We denote error at iteration k as: $e_k = x_k - x^*$. The sequence $\{e_k\}$ is said to converse to the degree r if where C is a non-zero constant

Name of the speed of convergence in some cases

- r = 1 linear convergence rate
- r > 1 linear convergence rate
- r = 2 convergence rate squared

Question

- 1 Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Wewton's method
- Secant method
- 6 Iterative method
- Bairstow method

Iterative procedure

Assume that the solution interval [a, c] has only one solution

- Reduce the size of the solution interval through division
- ② The division to be performed is halving $b = \frac{(a+c)}{2}$ If f(b) = 0 then b is the correct solution, otherwise if $f(b) \neq 0$ we have
 - f(a)f(b) < 0 then the new solution interval is [a, b]
 - ightharpoonup Otherwise, the new interval is [b, c]

Steps 1-2 are repeated until $[a, c] < \epsilon$ (the given error)

ction method

Iterative procedure
Assume that the solution int

Assume that the solution interval [a, c] has only one solution • Reduce the size of the solution interval through division

The division to be performed is halving b = (3+4) If f(b) = 0 then b is the correct solution, otherwise if f(b) ≠ 0 we have

f(a)f(b) < 0 then the new solution interval is [a,b].

Otherwise, the new interval is [b,c].

Steps 1-2 are repeated until $[a,c] < \epsilon$ (the given error).

If precision ϵ is given, the number of iterations is an integer n satisfying

$$n \geq \log_2 \frac{ca}{\epsilon}$$

because of

$$\frac{3n}{2^n} < n$$

Example 1:

Find the solution of the equation $e^x-2=0$, given a solution interval [0.2] with precision $\epsilon=0.01$

Loops	а	b	С	f(a)	f(b)	f(c)	error
1	0.0000	1.0000	20000	-1.0000	0.7183	5.0389	20000
2	0.0000	0.5000	1,00000	-1.0000	-0.3513	0.7183	1,0000
3	0.5000	0.7500	1,0000	-0.3513	0.1170	0.7183	0.5000
4	0.5000	0.6250	0.7500	-0.3513	-0.1318	0.1170	0.2500
5	0.6250	0.6875	0.7500	-0.1318	-0.0113	0.1170	0.1250
6	0.6875	0.7188	0.7500	-0.0113	0.0519	0.1170	0.0625
7	0.6875	0.7031	0.7188	-0.0113	0.0201	0.0519	0.0313
8	0.6875	0.6953	0.7031	-0.0113	0.0043	0.0201	0.0156
9	0.6875	0.6914	0.6953	-0.0113	-0.00349	0.0043	0.0078

Example 2

Consider the solution of the equation $f(x) = 1/(xe^{-x})$, given a solution interval [0,1] with precision $\epsilon = 0.00001$

Error: $e_k = \max\{x^* - a_k, c_k - x^*\}$ Horizontal axis: number of iterations kVertical axis: $-\log_2(e_k)$ Apparently $e_k \approx 2^{-k}$

Comment on the Bisection method

- Strengths: Works even with non-analytic functions.
- Weaknesses:
 - Need to determine a solution interval and find only one solution.
 - Could not find a double solution.
 - \triangleright When the function f has singularities, the bisection method can treat them as solutions.

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method

Iterative procedure

Assume that the solution interval [a, c] has only one solution

- Reduce the size of the solution interval through division
- ② The division to be performed is $b = a \frac{ca}{f(c) f(a)} f(a) = \frac{af(c) cf(a)}{f(c) f(a)}$ If f(b) = 0 then b is the solution, Otherwise, if $f(b) \neq 0$, we have:
 - If f(a)f(b) < 0 then the new interval is [a, b]
 - ightharpoonup Otherwise, the new interval is [b,c]

Steps 1-2 are repeated until $[a, c] < \epsilon$ (given error).

So b is the intersection of the horizontal axis with the line segment connecting A(a,f(a)) to B(c,f(c))

Comment

- ullet Advantages: like bisection, we do not need the analytic form of the equation f
- Disadvantages:
 - Need to know the solution interval.
 - Single-sided convergence is slow, especially when the solution interval is large
 - Can be improved by using together with the bisection method

- 1 Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method

Description

The basic idea of the method is to replace the nonlinear equation f(x) = 0 with an approximate, linear equation for x based on Taylor expansion.

Assuming f(x) is continuously differentiable to the order n+1 then there exists $\xi \in (a,b)$

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \cdots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \frac{(b-a)^{(n+1)}}{(n+1)!}f^{(n+1)}(\xi)$$

Description (continued)

Taylor expansion of f(x) at the neighborhood of the original approximate solution x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O(h^2)$$

where $h = x - x_0$.

Solve the approximate equation for x:

$$f(x_0) + f'(x_0)(x - x_0) = 0$$

Obtained: $x = x_0 - \frac{f(x_0)}{f'(x_0)}$

x is an incorrect solution, but this solution will be closer to the correct solution than the initial

value x_0 .

Iterative procedure

- 1 Initialize with x_0
- ② Calculates with k > 0

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

3 Repeat step 2 until $|f(x_k)| < \epsilon$ where ϵ is the given precision

Comment

- Advantages:
 - For a smooth enough function and we start from the point near the solution, the convergence rate of the method is squared or r = 2
 - No need to know the solution dissociation, just the initial point x_0
- Disdvantages:
 - Need to calculate the first derivative $f'(x_k)$, we can also approximate it with the formula $f'(x_k) = \frac{f(x_k+h)-f(x_k-h)}{2h}$ where h is a very small value eg h = 0.001
 - Not always converges

Example 1

Use Newton's method to find the solution of the equation

$$f(x) = x^2 - 4\sin(x) = 0$$

First derivative of f(x)

$$f'(x) = 2x - 4\cos(x)$$

The iterative formula of Newton's method is

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 4\sin(x_k)}{2x_k - 4\cos(x_k)}$$

Approximate starting point $x_0 = 3$

k	x_k	$f(x_k)$
0	3.000000	8.435520
1	2.153058	1.294773
2	1.954039	0.108439

Example 2

Solve the equation $f(x) = x^2 - 2 = 0$ because f'(x) = 2x so the iterative formula will be $x_{k+1} = x_k - \frac{x_k^2 - 2}{2x_k}$ error $e_k = x_k - x^* = x_k - \sqrt{2}$

k	x_k	e_k	
0	4,000000000	2.5857864376	
1	2.250000000	0.8357864376	
2	1.569444444	0.1552308821	
3	1.421890364	0.0076768014	
4	1.414234286	0.0000207236	
5	1.414213563	0.0000000002	

Example 3

Solve the equation

$$f(x) = \operatorname{sign}(xa)\sqrt{|xa|}$$

This equation satisfies:

$$xa - \frac{f(x)}{f'(x)} = -(xa)$$

The zero point of the function is $x^* = a$.

If we draw a tangent to the graph at any point, it always intersects the horizontal axis at the point of symmetry with the line x = a.

Newton's method infinitely iterative, neither convergent nor divergent.

Newton's method

- 1 Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method

Iterative procedure

An improvement of Newton's method, instead of using the derivative f'(x), we use an approximate difference based on two successive iterations.

- **①** Starts with two starting points x_0 and x_1
- ② With $k \ge 2$, we iterate by the formula

$$s_{k} = \frac{f(x_{k}) - f(x_{k-1})}{x_{k} - x_{k-1}}$$
$$x_{k+1} = x_{k} - \frac{f(x_{k})}{s_{k}}$$

3 Repeat step 2 until $|f(x_k)| < \epsilon$ (given error).

Comment

- Advantages:
 - No need to know the solution interval, just two initial points x_0 and x_1
 - No need to calculate first derivative $f'(x_k)$
- Disdvantages:
 - Two initialization points are required
 - Convergence rate of method on linear 1 < r < 2, specifically golden ratio $r pprox rac{1+\sqrt{5}}{2} = 1.618$

Example 1

Solve the equation

$$f(x) = \operatorname{sign}(x-2)\sqrt{|x-2|} = 0$$

with two starting points $x_0 = 4$, $x_1 = 3$ and $\epsilon = 0.001$

$$s_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$= \frac{\operatorname{sign}(x_k - 2)\sqrt{|x_k - 2|} - \operatorname{sign}(x_{k-1} - 2)\sqrt{|x_{k-1} - 2|}}{x_k - x_{k-1}}$$

$$f(x_n) \qquad \operatorname{sign}(x_k - 2)\sqrt{|x_k - 2|}$$

$$x_{k+1} = x_k - \frac{f(x_n)}{s_n} = x_k - \frac{\operatorname{sign}(x_k - 2)\sqrt{|x_k - 2|}}{s_k}$$

k	× _k	e_k
0	4,000000000	2,000,000000000
1	3,000000000	1,000,000,000,000
2	0.585786438	1.4142135624
3	1.897220119	0.1027798813
:	:	i:
26	1.999989913	0.0000100868
27	1.999998528	0.0000014716
28	2,000003853	0.0000038528
29	2.000000562	0.0000005621

Example 2

Solve the equation

$$f(x) = e^{-x/2}\sin(3x) = 0$$

with two starting points x_0 , x_1 and precision ϵ entered from the keyboard

$$s_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$= \frac{e^{-x_k/2} \sin(3x_k) - e^{-x_{k-1}/2} \sin(3x_{k-1})}{x_k - x_{k-first}}$$

$$x_{k+1} = x_k - \frac{f(x_n)}{s_n} = x_k - \frac{e^{-x_k/2} \sin(3x_k)}{s_k}$$

Two starting points $x_0 = 4$ $x_1 = 5$ Accuracy $\epsilon = 0.001$

- 1 Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method
- 8

Fixed point

Instead of writing the equation as f(x) = 0, we rewrite it as a problem

Find x satisfying
$$x = g(x)$$

The point x^* is called *fixed point* of the function g(x) if $x^* = g(x^*)$, i.e. the point x^* is not transformed by g. mapping

Examples

- Newton's method, according to the formula $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$, the function g that we need to find the fixed point x^* would be g(x) = x f(x)/f'(x)
- Find the solution $f(x) = x e^{-x} \Rightarrow g(x) = e^{-x}$
- Find the solution $f(x) = x^2 x 2 \Rightarrow g(x) = \sqrt{x+2}$ or $g(x) = x^2 2$
- Find the solution $f(x) = 2x^2 x 1 \Rightarrow g(x) = 2x^2 1$

Iterative procedure

Approach to problem solving

$$x_{k+1} = g(x_k)$$
 with $k = 1, 2, \cdots$

The above iterative procedure is often called an iterative **find fixed point** with a given starting point x_1

Comment

- Advantages:
 - No need to know the solution interval
- Disdvantages:
 - does not always converge

Example 1

Finding the solution of the equation $f(x) = x^2 - x - 2 = 0$ can lead to finding a fixed point

$$g(x) = \sqrt{x+2}$$

Approximate starting point $x_1 = -1$

Starting point $x_1 = -1$ Number of iterations n = 3

Example 2

Find the solution of the equation $f(x) = x^2 - x - 2$ by finding the point of disagreement of the function

$$g(x) = x^2 - 2$$

The starting point $x_1 = 2.02$ is very close to the solution

Starting point $x_1 = 2.02$ Number of iterations n = 50

Convergence theorem of iterative methods

Theorem 1: Assume the function g(x) is continuous and the sequence repeats

$$x_{k+1}=g(x_k), k=1,2,\cdots$$

then if $x_k \to x^*$ when $k \to \infty$ then x^* is the fixed point of g.

Theorem 2: Suppose $g \in C^1$ and |g'(x)| < 1 in some interval containing the fixed point x^* . If x_0 is also in this range, the iterative sequence $\{x_k\}$ converges to x^* .

Theorem 3: If g is a **co function** then it has only one fixed point and the iterative sequence $\{x_k\}$ converges to x^* for all points starting x_0 .

Note: The function g is called a co function if there is a constant L < 1 such that for every x, y we have: |g(x) - g(y)| < L(xy)).

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method

Description

This is the method used to find the solution of a polynomial,:

$$y = a_0 + a_1 x + \dots + a_N x_N$$

It can be rewritten as a quadratic factor plus a remainder

$$y = (x^2 + px + q)G(x) + R(x)$$

Where:

- p and q are arbitrary values.
- G(x) is a polynomial of degree N-2
- R(x) is the remainder, usually a first degree polynomial.

Description (continued)

So the polynomial G(x) and the remainder R(x) have the form

$$G(x) = b_2 + b_3 x + b_4 x^2 + \dots + b_N x^{N-2}$$

 $R(x) = b_0 + b_1 x$

The value of b_0 and b_1 depends on the choice of p and q, the goal is to find $p=p^*$ and $q=q^*$ such that

- $b_0(p^*, q^*) = b_1(p^*, q^*) = 0 \Rightarrow R(x) = 0$
- $(x^2 + p^*x + q^*) \Rightarrow$ square factor of y

Iterative procedure

- Initializes p and q and calculates b_0 and b_1 (see formular in the Ref book)
- 2 Calculates the values $(b_0)_p, (b_1)_p$ and $(b_0)_q, (b_1)_q$ (see formular in the Ref book)
- **3** Find Δp and Δq when solving equation (9)
- **3** Obtained p^* and q^* by the formula $p^* = p + \Delta p$ and $q^* = q + \Delta q$

Comment

- Advantages:
 - method that converges to the quadratic factor $(x^2 + px + q)$ regardless of the initialization value p, q
 - the coefficients of the polynomial G(x) are also automatically obtained
- Disdvantages:
 - the accuracy of the solution is not high
 - to improve, you can use Newton's method to recalculate each solution

