Core String Edits, Alignments, and Dynamic Programming

2015. 03. 10

Lee. Kang bae

Introduction

• Inexact matching problem

- What is the inexact matching problem?
 - Equal to the edit distance problem
 - The most classic inexact matching problem

• Edit distance

- To measure of the difference or distance between two strings by a series of edit operations
 - So, the edit distance between two strings is defined as the minimum number of edit operations
- Edit operations are on transforming one string into the other on individual characters such as *I*, *D*, *R*, *M*
 - *I* : the insert operation
 - *D* : the delete operation
 - *R* : the substitute operation (or replace)
 - *M* : the match operation

What is valuable Edit distance?

• As the **minimum number** of edit operations except match needed to transform the first string in to the second.

	R	I	M	D	M	D	M	M	I
S_1	V		i	n	t	n	е	r	
S_2	W	r	i		t		е	r	S

	I	D	I	М	D	М	D	М	M	I
S_1		V		i	n	t	n	е	r	
S_2	W		r	i		t		е	r	S

• Edit distance problem

- To compute the edit distance between two given strings, along with an optimal edit transcript
 - Optimal edit transcript
 - Edit transcript uses the minimum number of edit operations
 - Cooptimal edit transcript
 - there may be more than one optimal transcript

	R	R	R	M	D	М	M	I	
S_1	V	i	n	t	n	е	r		
S_2	W	r	i	t		е	r	S	
	R	I	М	D	М	D	М	М	I
S_1	V		i	n	t	n	е	r	

• Edit transcript

• A string over the alphabet I, D, R, M that describes transformation of one string to another

	R	I	M	D	M	D	M	M	I
\mathcal{S}_1	V		i	n	t	n	е	r	
S_2	W	r	i		t		е	r	S

String Alignment

• String Alignment

- Display two compared strings by edit distance
- Place the two resulting strings one above the other
 - So, every character or space in either string is opposite a unique character or a unique space in the other string

q	а	С	-	d	b	d
q	a	W	X	-	b	-

V	-	i	n	t	n	е	r	-
W	r	i	-	t	-	е	r	S

- How to compute edit distance of edit transcript or alignment?
 - Using dynamic programming
 - Dynamic programming
 - Solves problems by combining the solutions to subproblems

- D(i,j)
 - the edit distance of $S_1[1..i]$ and $S_2[1..j]$ For two strings S_1 and S_2

•
$$D(1, 1) = 0$$

S_1	q	а	-	С	d	b	d
S_2	q	а	W	Х	-	b	-

•
$$D(3, 3) = 1$$

S_1	q	а	С	-	d	b	d
S_2	q	а	W	Χ	-	b	-

•
$$D(2, 3) = 1$$

S_1	q	a	-	С	d	b	d
S_2	q	a	W	X	-	b	-

- The dynamic programming approach has three essential components
 - 1) The recurrence relation
 - 2) The tabular computation
 - 3) The traceback

The recurrence relation

- This establishes
 - A recursive relationship between the value of D(i,j)Ex. D(i,j) is used to compute D(i+1,j+1)
 - For *i* and *j* both positive

The recurrence relation

- The base conditions
 - D(i, 0) = i
 - Because zero characters of S_2 is **deleted** all the *i* characters of S_1

	1	2	3	4	5	6
S_1	q	а	С	d	b	d
S_2	-	-	-	-	-	-

$$D(6,0)=6$$

- D(0, j) = j
 - Because zero characters of S_1 is **inserted** all the j characters of S_2

	1	2	3	4	5
S_1	-	-	-	-	-
S_2	q	а	W	X	b

$$D(0,5) = 5$$

• The recurrence relation

•
$$D(i,j) = \min[D(i-1,j)+1, D(i,j-1)+1, D(i-1,j-1)+t(i,j)]$$

- Where t(i,j) is defiend
 - t(i, j) = 1, if $S_1(i) \neq S_2(j)$
 - t(i, j) = 0, if $S_1(i) = S_2(j)$

The recurrence relation

- Two string is given
 - vintner
 - writers

	D'') 2)	~ 1
•	D(2	رر د ,	, — 4

•
$$D(1,3) = 3$$

1	2	3	4	5	6	7
V	i	n	t	n	е	r
W	r	i	t	е	r	S

V	-	-	i
W	r	i	_

$$D(2,3) = D(1,3) + 1$$

The recurrence relation

- Two string is given
 - vintner
 - writers

	D(2)	3)	_ 1
•	D(2,	3)	— 4

1	2	3	4	5	6	7
V	i	n	t	n	е	r
W	r	i	t	е	r	S

V	-	i	_
W	r	-	i

$$D(2,3) = D(2,2) + 1$$

• The recurrence relation

- Two string is given
 - vintner
 - writers

•	D(2.	3)	=2
	L (2,	9,	

1	2	3	4	5	6	7
V	i	n	t	n	е	r
W	r	i	t	е	r	S

V	-	i
W	r	i

$$D(2,3) = D(1,2)$$

Correctness of the general recurrence

- Establish correctness in the next two lemmas using the concept of an edit transcript
 - Lemma 11.3.1
 - The value of D(i, j) must be D(i, j 1) + 1, D(i 1, j) + 1, or D(i, j) + t(i, j). There are no other possibilities.
 - Lemma 11.3.2
 - $D(i, j) \le \min[D(i-1, j) + 1, D(i, j-1) + 1, D(i-1, j-1) + t(i, j)]$

Theorem 11.3.1

• When both i and j are strictly positive, $D(i, j) = \min[D(i-1, j) + 1, D(i, j-1) + 1, D(i-1, j-1) + t(i, j)]$

- It is to use the **bottom-up**
 - First, compute D(i, j) for the smallest possible values for i and j
 - And then compute values of D(i, j) for increasing values of i and j

Tabular computation of edit distance

- Bottom-up computation used a size (i+1)*(j+1) of dynamic programming table
 - Vertical axis is string S_1
 - Horizontal axis is string S_2

• Ex) $S_1[1..3]$ and $S_2[1..3]$, Size of table = 4*4

Δ(; A	0	1	2	3
D(i, j)			a	b	С
0		0	1	2	3
1	а	1	0	1	2
2	b	2	1	0	1
3	d	3	2	1	1

- $S_1 = w r i t e r s$
- $S_2 = v i n t n e r$
- Compute edit distance of S_1 and S_2
 - Hence, Compute D(m, n)

DY	<i>;</i>	0	1	2	3	4	5	6	7
D(<i>(, </i>		W	r	i	t	е	r	S
0		0	1	2	3	4	5	6	7
1	V	1							
2	i	2							
3	n	3							
4	t	4							
5	n	5							
6	е	6							
7	r	7							

D	; _A	0	1	2	3	4	5	6	7
D(i, j)			W	r	i	t	е	r	S
0		0	1	2	3	4	5	6	7
1	V	1	1	2	3	4	5	6	7
2	i	2	2	2	2	3	4	5	6
3	n	3	3	3	3	3	4	5	6
4	t	4	4	4	4				
5	n	5							
6	е	6							
7	r	7							

D (<i>;</i>	0	1	2	3	4	5	6	7
D(I)	i, <i>J</i>)		W	r	i	t	е	r	S
0		0	1	2	3	4	5	6	7
1	V	1	1	2	3	4	5	6	7
2	i	2	2	2	2	3	4	5	6
3	n	3	3	3	3	3	4	5	6
4	t	4	4	4	4	,			
5	n	5					3		
6	е	6							
7	r	7							

Dr	; A	0	1	2	3	4	5	6	7
D(i, <i>j</i>)		W	r	i	t	е	r	S
0		0	1	2	3	4	5	6	7
1	V	1	1	2	3	4	5	6	7
2	i	2	2	2	2	3	4	5	6
3	n	3	3	3	3	3	4	5	6
4	t	4	4	4	4	3			
5	n	5							
6	е	6							
7	r	7							

D (; s	0	1	2	3	4	5	6	7
D(I)	i, <i>J</i>)		W	r	i	t	е	r	S
0		0	1	2	3	4	5	6	7
1	V	1	1	2	3	4	5	6	7
2	i	2	2	2	2	3	4	5	6
3	n	3	3	3	3	3	4	5	6
4	t	4	4	4	4	3	4	5	6
5	n	5	5	5	5	4	4	5	6
6	е	6	6	6	6	5	4	5	6
7	r	7	7	6	7	6	5	4	5

- Theorem 11.3.2 (= Time complexity)
 - Using dynamic programming, edit distance D(n, m) can be computed in O(nm) time
 - Because the dynamic programming table for computing the edit distance between a string of length *n* and a string of length *m* can be filled in with O(nm) work.

D	<i>i</i>	0	1	2	•••	n
D()	', J)		W	r		t
0		0	← 1	← 2	•••	← 4
1	V	↑ 1	× 1	₹ ←2	•••	₹ ←4
2	i <i>M</i>	↑ 2	₹ ↑2	₹ 2	•••	← 3
			•••			₹ 3
m	t	<u>† 4</u>	₹ ↑4	₹ ↑4	₹ ↑4	× 3

- How is the associated optimal edit transcript extracted?
 - The easiest way is to establish pointers in the table when the table value are computed
 - The pointers allow easy recovery of an optimal edit transcript

D (<i>:</i> A	0		2	3	4	5	6	7
D(I)	D(i, j)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1							
2	i	↑ 2							
3	n	↑ 3							
4	t	↑ 4							
5	n	↑ 5							
6	е	↑ 6							
7	r	↑ 7							

D(<i>:</i> A	0	1	2	3	4	5	6	7
D(1	', <i>J</i>)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	↑ 1	× 1	₹ ←2	₹ ←3	~ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑ 2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	↖ ↑ 3	↖ ↑ 3	₹ 3	~ ←4	₹ ←5	₹ ←6
4	t	↑ 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	~ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	₹ ↑ 7	₹ 6	↑ ► ←7	↑ 6	↑ 5	₹ 4	← 5

	; A	0	1	2	3	4	5	6	7
D(I	, J)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	~ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	₹ ↑3	₹ ↑3	₹ 3	~ ←4	₹ ←5	₹ ←6
4	t	↑ 4	₹ ↑4	₹ ↑ 4	₹ ↑ 4	₹ 3	~ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑ 6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	► ↑7	₹ 6	↑ ► ←7	↑ 6	↑ 5	₹ 4	← 5

D (; A	0	1	2	3	4	5	6	7
D(1	(, <i>J</i>)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	~ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	↑ 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	₹ ↑ 3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	↑ 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	~ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	► ↑ 7	₹ 6	↑ ∿ ←7	↑ 6	↑ 5	₹ 4	← 5

D(<i>:</i> A	0	1	2	3	4	5	6	7
D(1	(, <i>J</i>)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	~ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	₹ ↑3	₹ ↑3	₹ 3	~ ←4	₹ ←5	₹ ←6
4	t	↑ 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	~ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	► ↑ 7	₹ 6	↑	↑ 6	↑ 5	₹ 4	← 5

D (<i>:</i> A	0	1	2	3	4	5	6	7
D(1	(, <i>J</i>)		W	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	~ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	₹ ↑3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	↑ 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	~ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	► ↑ 7	₹ 6	↑ ∿ ←7	↑ 6	↑ 5	₹ 4	← 5

w	r	i	t	-	е	r	S	
V	i	n	t	n	е	r	-	
w	r	i	-	t	-	е	r	S
V	-	i	n	t	n	е	r	-
w	r	i	-	t	-	е	r	S
-	v	i	n	t	n	е	r	-

Ο.	<i>;</i> λ	0	1	2	3	4	5	6	7
D(i	<i>(, J</i>)		w	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	₹ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑3	₹ ↑ 3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	† 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	₹ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	↑ 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	₹ ↑7	₹ 6	↑ ↖ ←7	↑ 6	↑ 5	₹ 4	← 5

D Y	: A	0	1	2	3	4	5	6	7
D(I)	i, j)		w	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	₹ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	† 3	₹ ↑ 3	₹ ↑3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	† 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	₹ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	† 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	₹ ↑7	₹ 6	↑ ↖ ←7	↑ 6	↑ 5	₹ 4	← 5

w	r	i	t	-	е	r	S	
V	i	n	t	n	е	r	-	
W	r	i	-	t	-	е	r	S
V	-	i	n	t	n	е	r	-
w	r	i	-	t	-	е	r	S
-	v	i	n	t	n	е	r	-

D(i, j)		0	1	2	3	4	5	6	7
			w	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	× 1	₹ ←2	₹ ←3	₹ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	↑ 3	₹ ↑ 3	₹ ↑ 3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	† 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	₹ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	† 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	↖↑7	₹ 6	↑ ↖ ←7	↑ 6	↑ 5	₹ 4	← 5

w	r	i	t	-	е	r	S	
V	i	n	t	n	е	r	-	
w	r	i	-	t	-	е	r	S
V	-	i	n	t	n	е	r	-
w	r	i	-	t	-	е	r	S
-	V	i	n	t	n	е	r	-

D(i, j)		0	1	2	3	4	5	6	7
			w	r	i	t	е	r	S
0		0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
1	V	† 1	₹ 1	₹ ←2	₹ ←3	₹ ←4	₹ ←5	₹ ←6	₹ ←7
2	i	† 2	₹ ↑2	₹ 2	₹ 2	← 3	← 4	← 5	← 6
3	n	† 3	₹ ↑ 3	₹ ↑3	₹ ↑3	₹ 3	₹ ←4	₹ ←5	₹ ←6
4	t	† 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	₹ ←4	₹ ←5	₹ ←6
5	n	↑ 5	₹ ↑ 5	₹ ↑ 5	₹ ↑ 5	† 4	₹ 4	₹ ←5	₹ ←6
6	е	↑ 6	₹ ↑6	₹ ↑6	₹ ↑6	↑ 5	₹ 4	₹ ←5	₹ ←6
7	r	↑ 7	₹ ↑7	₹ 6	↑ ↖ ←7	↑ 6	↑ 5	₹ 4	← 5

- Theorem 11.3.3. (= Time complexity)
 - Once the dynamic programming table with pointers has been computed, an optimal edit transcript can be found in O(n + m) time.
 - This case is worst case

D(i, j)		0		2	•••	n	
D(I)	<i>i J)</i>		W	r	•••	t	
0		^ 0	← 1	← 2	•••	← 4	
1	V	† 1	× 1	₹ ←2		₹ ←4	
2	i <i>M</i>	↑ 2	₹ ↑2	₹ 2		← 3	
•••				•••		₹ 3	
m	t	↑ 4	₹ ↑4	₹ ↑4	₹ ↑4	₹ 3	

- Theorem 11.3.4.
 - Any path from (n, m) to (0, 0) specifies an edit transcript with the minimum number of edit operations
 - Conversely, any optimal edit transcript is specified by such a path.
 - Moreover, since a path describes only one transcript, the correspondence between paths and optimal transcripts is **one to one**
 - The number of path from (n, m) to (0, 0) = the number of optimal edit transcript