Exercícios de Matrizes

- 1:-) Uma empresa de transporte interestadual deseja calcular a distância percorrida pelos seus ônibus. São várias linhas de percurso interestadual. Para cada linha, é fornecido o percurso de cada ônibus, contendo os seguintes dados:
 - Número da linha;
 - Número de cidades percorridas;
 - Códigos de todas as cidades percorridas.

Exemplo: Nº linha: 103

Nº cidades percorridas: 08

Códigos das cidades percorridas: 01, 05, 07, 03, 09, 06, 08, 11

Esses dados indicam que a linha número 103 percorre oito cidades, na seguinte ordem:

Da cidade 01 para a cidade 05;
Da cidade 05 para a cidade 07;
Da cidade 07 para a cidade 03;
Da cidade 03 para a cidade 09;
Da cidade 09 para a cidade 06;
Da cidade 06 para a cidade 08;
Da cidade 08 para a cidade 11.

Cada ônibus percorre no máximo de 24 cidades.

Para calcular a distância entre as cidades, a empresa possui uma matriz de distâncias (30x30):

	1	2	3	4	5		30
1	0	15	10	18	50		90
2	15	0	25	42	120		
3	10	25	0	12	95		
4	18	42	12	0	135		
5	50	120	95	135	0		
:	:	:		:		:	:
30	90						0

Faça um programa em Pascal, contendo:

- a) A leitura da matriz de distâncias de cidades;
- b) A leitura das várias linhas interestaduais (a leitura da linha termina quando se digita 9999) e o cálculo da distância que o ônibus percorre em cada linha;
- c) A linha que tem a maior e a menor distância a ser percorrida.

- 2:-) Faça um programa que leia uma matriz 12 x 12 e calcule e escreva:
 - a) o menor elemento e a sua posição (índices) da área hachurada;
 - b) a média dos elementos da área hachurada.

3:-) Um elemento Aij de uma matriz é dito ponto de sela da matriz A se, e somente se, Aij for ao mesmo tempo o menor elemento da linha i e o maior elemento da coluna j. Faça um programa que carregue uma matriz de ordem 5x7, verifique se a matriz possui ponto de sela e, se possuir, mostre seu valor e sua localização.

Exemplo:

1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	8
3	13	14	15	10	15	14	13
4	4	5	6	7	8	9	10
5	5	6	7	8	9	10	11
	1	2	3	4	5	6	7

Resultado:

O ponto de sela da matriz é o número 10 e está na linha 3 e coluna 4.

4:-) Faça um algoritmo que permita ao usuário escolher o tamanho de uma matriz quadrada (NxN), sendo este tamanho menor ou igual ao tamanho físico definido para ela, em seguida preencha-a conforme exemplo:

Tamanho da matriz: 9

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	1
2	1	2	2	2	2	2	2	2	1
3	1	2	3	3	3	3	3	2	1
4	1	2	3	4	4	4	3	2	1
5	1	2	3	4	5	4	3	2	1
6	1	2	3	4	4	4	3	2	1
7	1	2	3	3	3	3	3	2	1
8	1	2	2	2	2	2	2	2	1
9	1	1	1	1	1	1	1	1	1