

Large-Scale, Open Domain Semantic Mining: Basic Techniques

Shuming Shi Microsoft Research Asia August 2011

Outline

- Overview
- Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- Demo
- Summary

Semantic Mining: Introduction

- (Semi-)Automatically obtaining semantic knowledge
 - Semantic knowledge: Entities, concepts, relations
 - Similarity(significantly, substantially, 0.9)
 - Synonym(China, People's Republic of China)
 - IsA(pear, fruit)
 - Peer(Beijing, Shanghai, Guangzhou...)
 - InClass(Beijing, C1)
 - Attribute(Capital, China, Beijing)
 - BornIn(Barack Obama, 1961)
 - DefeatedIn(Dallas Mavericks, Miami Heat, 2011 NBA Finals)
 - Data sources:
 - Web documents, query logs, web search results
 - Existing dictionaries & knowledge-bases

Semantic Mining: Introduction (cont.)

Motivation

- Build "smarter" computer systems with the semantic knowledgebase
- Better fulfill the information needs of end users
 - Better web search
 - Better QA
 - Better machine translation
 - •

Outline

- Overview
- > Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- Demo
- Summary

Semantic Class Mining

- Goal
 - Discover peer terms (or coordinate terms)
 - Sample: {C++, C#, Java, PHP, Perl, ...}
- Main techniques
 - First-order co-occurrences
 - Standard co-occurrences
 - Patterns: Special first-order co-occurrences
 - Second-order co-occurrences
 - Distributional similarity

Pattern-Based (PB)

Hours may vary on holidays, such as Easter, Thanksgiving and Christmas.

PB Implementation

RASC mining

 Employ predefined patterns to extract Raw Semantic Classes (RASCs)

Type	Pattern	
	$T \{, T\}^* \{,\} $ (and or) {other} T	
Lexical	(such as including) T {,T}* (and , .)	
	T, T, T {,T}*	
	T 	
	 T T 	
Tag	<select> <option> T<option> T </option></option></select>	
	T T	
	Other Html-tag repeat patterns	

PB Implementation

- Compute Term Similarity
 - Based on the RASCs containing both terms

$$Sim(a,b) = \sum_{i=1}^{m} \log(1 + \sum_{j=1}^{k_i} w(P(C_{i,j})))$$
 (Zhang et al., ACL'09)

$$Sim^*(a, b) = Sim(a, b) \cdot \sqrt{IDF(a) \cdot IDF(b)}$$

$$IDF(a) = \log(1 + N/N(a))$$

Distributional Similarity (DS)

- Distributional hypothesis (Harris, 1985): Terms occurring in analogous (lexical or syntactic) contexts tend to be similar
- Contexts shared by <u>Easter</u> and <u>Christmas</u>
 - the date _ is celebrated
 - | _ is a religious festival
 - history of the _ festival
 - ...
- Contexts shared by <u>significantly</u> and <u>d</u>
 - is _ improved by
 - unlikely to _ alter the
 - can _ increase health risks
 - _ ...

DS Implementation

- Define context
 - Syntactic context, lexical context...
- Represent each term by a feature vector
 - Feature: A context in which the term appears
 - Feature value: "Weight" of the context w.r.t. the term
- Compute term similarity
 - Term similarity = similarity between corresponding feature vectors

DS Implementation

Contexts	Text window (window size: 2, 4) Syntactic
Feature value	PMI
Similarity measure	Cosine, Jaccard

DC aparababa implamented in the atual

Pointwise mutual information:

$$f_{w,c} = PMI_{w,c} \neq log \frac{F(w,c) \cdot F(*,*)}{F(w,*) \cdot F(*,c)}$$

$$Cosine(\vec{x}, \vec{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \cdot \sqrt{\sum_{i} y_{i}^{2}}}$$

$$Jaccard(\vec{x}, \vec{y}) = \frac{\sum_{i} \min(x_{i}, y_{i})}{\sum_{i} x_{i} + \sum_{i} y_{i} - \sum_{i} \min(x_{i}, y_{i})}$$

Compare DS and PB with Set Expansion (Shi et al., COLING'2010)

- Set Expansion: Problem statement
 - Given a list of seed terms in a semantic class

•
$$Q = \{s_1, s_2, ..., s_k\}$$
 (e.g. $Q = \{Lent, Epiphany\}$)

- To find other members of the $R(t,s_i)$: the rank of term t
 - E.g., {Advent, Easter, Chri among the neighbors of s_i
- Set Expansion with a similarity/graph G
 - Select the terms most similar to the seeds

$$f(t,Q) = \sum_{i=1}^{k} w_i \cdot Sim(t,s_i)$$
$$Sim(t,s_i) = \frac{1}{\log(\lambda + r(t,s_i))}$$

Compare and Combine PB & DS (cont.)

- Corpus: ClueWeb (500 million English pages)
- Five term categories: **proper nouns, common nouns, verbs, adjectives, adverbs**
- Key observations: PB performs better for proper nouns; DS has better performance for other term categories

Samples (Query: significantly)

D:\Pro	jects\NeedleSeek\bin\T	ermGraph(Clie	X
1	significar	itly	187.419	
2	and 54	1.8759		
3	slightly		23.4412	
4	but 21			=
5	moderately			
6	english 20			
2 3 4 5 6 7 8 9	seriously		20.4479	
8	yiddish 20			
	hebrew 19	7871		
10	too 19			
11	kigezi 18			
12	bunyoro 17			
13	specifical		17.8268	
14	also 17			
15	mbale 17			
16	especially			
17	rich ameri	.cans	17.1207	
18	surely 16			
19	sharply 16	5.5638		
20	it 15	6.6475		+
4	III			. ⊩ ai

```
D:\Projects\NeedleSeek\bin\TermGraphClie...
        significantly
                        0.121576
        substantially
                        0.0162357
        considerably
                        0.0154982
        greatly 0.0138213
        dramatically
                        0.013429
        slightly
                        0.0100923
        drastically
                        0.0089119
                        0.00800886
        somewhat
        vastly 0.0074269
        steadily
10
                        0.00731532
        severely
                        0.00688791
        importantly
                        0.00640118
13
        remarkably
                        0.0061907
        inherently
                        0.00606039
        comparatively
                        0.00604854
16
        strongly
                        0.0060448
        consistently
                        0.00603508
18
        sufficiently
                        0.00602135
19
        rapidly 0.00601235
20
        gradually
                        0.00590148
```

PB results

DS results

Samples (Query: Apple)

```
D:\Projects\NeedleSeek\bin\TermGraphClie...
                  1741.13
         apple
        microsoft
                           639.909
                                        3
         ibm
                  617.503
                  613.111
         sony
5
         dell
                  601.909
6
                  597.473
         hp
         toshiba 546.464
8
                  537.578
         orange
9
         samsung 528.885
10
                  490.275
         compaq
11
                  476.098
         canon
12
         cherry
                  472.247
13
                  470.911
         pear
14
         panasonic
                           467.727
15
                  460.441
         peach
16
         pineapple
                           444.158
17
         intel
                  434.583
18
                  433.825
         acer
19
         lemon
                  424.788
20
         strawberry
                           423.942
```

```
D:\Projects\NeedleSeek\bin\TermGraphClie...
        apple
                 0.0808821
        microsoft
                          0.00336825
3
                          0.00237455
        the government
        the company
                          0.00223547
5
        google
                 0.00212872
6
                 0.00193015
        sony
        ibm
                 0.00185744
8
                 0.00163117
        obama
9
        dell
                 0.00161188
10
        nintendo
                          0.00135578
11
        bush
                 0.00129623
12
        hp
                 0.00127199
13
                 0.00126387
        banana
14
        intel
                 0.00124417
15
        someone 0.00123563
16
        mccain 0.00119849
17
                          0.00114992
        congress
18
        israel 0.00111276
19
        the team
                          0.00110751
20
                 0.00108731
        adobe
```

PB results DS results

Explain by Frequency

• Normalized frequency (F_{norm}) of term tFrequency in the RASCs

Frequency in the sentences of the original documents

Mean normalized frequency (MNF) of a query set S

$$MNF(S) = \frac{\sum_{t \in S} F_{norm}(t)}{|S|}$$

Seed Categories	Terms	MNF
Proper nouns	40	0.2333
Common nouns	40	0.0716
Verbs	40	0.0099
Adjectives	40	0.0126
Adverbs	40	0.0053

Related Papers

- Harris, 1985 (in The Philosophy of Linguistics)

 Distributional Structure
- Pantel & Lin, SIGKDD'2002
 Discovering Word Senses from Text
- Etzioni et al., WWW'2004
 Web-Scale Information Extraction in KnowltAll
- Wang & Cohen, ICDM'2008
 Itera-tive Set Expansion of Named Entities Using the Web
- Pantel, EMNLP'2009
 Web-Scale Distributional Similarity and Entity Set Expansion
- Agirre et al., NAACL'2009
 A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches
- Shi et al., COLING'2010 Corpus-based Semantic Class Mining: Distributional vs. Pattern-Based Approaches

Outline

- Overview
- Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- Demo
- Summary

Semantic Hierarchy Construction

Semantic hierarchy construction

- Major subtasks
 - Assign category labels (hypernyms) to terms
 - Beijing → city, capital...
 - Apple \rightarrow company, fruit...
 - Red \rightarrow color...
 - Canon EOS 400D → digital camera, product...
 - Assign category labels to semantic classes
 - {Beijing, Shanghai, Dalian...} → cities, Chinese cities...
 - {Microsoft, IBM, Apple...} → companies, manufacturers...
 - Build the hierarchy

Subtask: Term→Label

Approach: Pattern matching + counting

Tuple:

```
<term, label, pattern, source, weight>
<pear, fruit, P1, S1, 1.0>
<pear, shape, P2, S2, 1.0>
<pear, fruit, P3, S3, 1.0>
<new York, city, P1, S4, 1.0>
<new York, office, P2, S6, 1.0>
<new York, state, P4, S7, 1.0>
```

Research

Subtask: Term→Label (cont.)

Pattern matching

- Manually designed or automatically generated patterns
- Text patterns or HTML tables

Label	Label	Label
Term	Term	Term
Term	Term	Term
•••	•••	•••

Type	Pattern
Hearst-I	NP_L {,} (such as) {NP,}* {and or} NP
Hearst-II	NP _L {,} (include(s) including) {NP,}* {and or} NP
Hearst-III	NP_L {,} (e.g. e.g) {NP,}* {and or} NP
IsA-I	NP (is are was were being) (a an) NP _L
IsA-II	NP (is are was were being) {the, those} NP _L
IsA-III	NP (is are was were being) {another, any} NP _L

- Output: <term, label, pattern, source, weight> tuples
- Challenges
 - Boundary detection: term boundary, label boundary
 - Label selection

Subtask: Term→Label (cont.)

- Merge tuples
 - For each term T and label L, compute w(T, L)
- Methods
 - Simple counting
 - Count the number of <T, L, P, S, W> tuples for each (T, L) pair
 - Or TF-IDF
 - Nonlinear evidence fusion (Shi et al., ACL'2011)

$$Score(T, L) = \left(\sum_{i=1}^{K} \sqrt[p]{m_i}\right) \cdot IDF(L)$$

 m_i : #tuples for pattern i

 $x_{i,j}$: Gain value given the j'th tuple for pattern i

Subtask: Class→Label

- Input
 - Class C: {orange, apple, pear, banana...}
- Output
 - Label list for C: fruit, tree, flavor...
- Method: Voting
 - orange: color, flavor, client, network, fruit, county, tree...
 - apple: company, brand, fruit, manufacturer, client, tree...
 - pear: fruit, tree, shape, flavor, juice, cut, wood...
 - banana: fruit, crop, flavor, tree, food, plant, vegetable...

Related Papers

- Hearst, COLING'1992
 Automatic Acquisition of Hyponyms from Large Text Corpora
- Pantel & Ravichandran, HLT-NAACL'2004
 Automatically Labeling Semantic Classes
- Snow et al., COLING-ACL'2006 Semantic Taxonomy Induction from Heterogenous Evidence
- Banko et al., IJCAI'2007
 Open Information Extraction from the Web
- Cafarella et al., VLDB'2008
 WebTables: Exploring the Power of Tables on the Web
- Durme & Pasca, AAAI'2008
 Finding cars, Goddesses and Enzymes: Parametrizable Acquisition of Labeled Instances for Open-Domain Information Extraction
- Zhang et al., ACL'2011
 Nonlinear Evidence Fusion and Propagation for Hyponymy Relation Mining

Outline

- Overview
- Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- Demo
- Summary

Semantic Attributes


```
(city, population)
(country, flag)
(country, capital)
(company, CEO)
```

```
(China, capital, Beijing)
(Microsoft, CEO, Steve Ballmer)
(Barack Obama, Birth year, 1961)
```


Attribute Name Extraction from Unstructured Text

Attribute Name Extraction from Unstructured Text

Major papers:

- Pasca, WWW'2007
 Organizing and Searching the World Wide Web of Facts Step Two: Harnessing the Wisdom of the Crowds
- Durme et al., COLING'2008
 Class-Driven Attribute Extraction
- Pasca et al., CIKM'2007
 The Role of Documents vs. Queries in Extracting Class Attributes from Text
- Bellare et al., NIPS'2007
 Lightly-Supervised Attribute Extraction
- Reisinger & Pasca, 2009
 Low-Cost Supervision for Multiple-Source Attribute Extraction
- Tokunaga et al., IJCNLP'2005 (Japanese data)

 Automatic Discovery of Attribute Words from Web Documents
- ...

Attribute Name & Value Extraction

- From Unstructured Text
 - Similar with extracting attribute names from unit

	- C	Mountain Peak	Continent	Height
	<u>-</u> C	Mount Everest	Asia	8,850 m
		<u>Aconcagua</u>	South America	6,959 m
•	Fron	Mount McKinley (Denali)	North America	6,194 m
		<u>Kilimanjaro</u>	Africa	5,895 m
		Mount Elbrus	Europe	5,642 m
		<u>Vinson Massif</u>	Antarctica	4,897 m
•	Fron	Carstensz Pyramid Mount Kosciuszko (The highest point on the Australian landmass)	Australia - Oceania	4,884 m 2,228 m

http://woodlandsjunior.kent.sch.uk/Homework/mountains/tallest.htm 9/9/2011 10:47 AM Kinect for Xbox 360

Product Xbox family

Generation Seventh generation era

Units Sold 10 million (as of March 9, 2011)^[1]

Release date NA November 4, 2010[2]

^{EU} November 10, 2010^[3]

^{co} November 14, 2010^[4]

Aus November 18, 2010^[5]

P November 20, 2010^[6]

Platform Xbox 360, Microsoft Windows

Connectivity USB 2.0 (type-A for original model;

proprietary for Xbox 380 S)

Resolution 640×480 pixels @ 30 Hz (RGB

camera)

640×480 pixels @ 30 Hz (IR depth-

finding camera)[7]

Predecessor Xbox Live Vision

Outline

- Overview
- Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- Demo
- Summary

General Relations

- Relations: Facts involving entities
 - [PER Susan Dumais] works for [ORG Microsoft Research], which is headquartered in [LOC Redmond, WA]
 - DefeatedIn(Dallas Mavericks, Miami Heat, 2011 NBA Finals)
- Relations vs. Events
 - Vague boundary
- History
 - Introduced in MUC-7 (1997),
 extended by ACE, continued by KBP
 - Gain popularity in molecular biology, recent works including extracting protein-protein interaction

Туре	Subtype
ART (artifact)	User-Owner-Inventor-Manufacturer
GEN-AFF (Gen-affiliation)	Citizen-Resident-Religion-Ethnicity, Org-Location
METONYMY*	none
ORG-AFF (Org-affiliation)	Employment, Founder, Ownership, Student-Alum, Sports-Affiliation, Investor-Shareholder, Membership
PART-WHOLE (part-whole)	Artifact, Geographical, Subsidiary
PER-SOC* (person-social)	Business, Family, Lasting-Personal
PHYS* (physical)	Located, Near

ACE' 05 relation types

Research

Supervised Learning

- Treat relation mining as a classification problem
 - Use relational and non-relational mentions as positive and negative data, respectively
- Solve it with supervised Machine learning algorithms
 - Popular choices include SVM, MaxEnt, KNN
- Key: data representation
 - Feature based methods
 - Kernel based methods
- Evaluate metrics: Precision, Recall, F1 on relation mention level

Features

- List of common features (Kambhatla 2004)
 - Words: Words of both the entity mentions and all the words in between.
 - **Entity Type:** Entity type of both the mentions.
 - **Mention Level:** Mention level of both the mentions.
 - Overlap: Number of words separating the two mentions, number of other mentions in between, flags indicating whether the two mentions are in the same noun phrase, verb phrase or prepositional phrase.
 - **Dependency:** Words and PoS and chunk labels of the words on which the mentions are dependent in the dependency tree
 - **Parse Tree:** Path of non-terminals (removing duplicates) connecting the two mentions in the parse tree, and the path annotated with head words.
- Other features (Zhou et al. 2005)
 - **Based phrase chunking** chunk labels and chunk heads in between
 - **Semantic resources** (country list, etc)

Kernel based Methods

- Kernel (X, Y) defines similarity between X and Y
- X and Y can be
 - Vectors of features (as in previous slides)
 - Objects (string sequence, Parse trees)
- Kernel-based methods
 - Don't require extensive feature engineering
 - Maybe computational expensive
- Multiple Kernels can also be used in combination with a composite kernel (Zhao and Grishman, 2005)

Subsequence Kernel (Bunescu and Mooney, 2005)

- Implicit features are sequences of words anchored at the two entity names
 - s = a word sequence

$$\langle e_1 \rangle \dots$$
 bought ... $\langle e_2 \rangle \dots$ billion ... deal.

- x =an example sentence, containing s as a subsequence

Google has bought video-sharing website YouTube in a controversial \$1.6 billion deal.
$$g_1=1 g_2=3 g_3=4 g_4=0$$

- $\varphi_s(x) = \text{the value of feature } s \text{ in example } x$ $\varphi_s(x) = \lambda^{\sum g_i} = \lambda^{gap(s,x)} = \lambda^{1+3+4+0}$
- $K(x_1,x_2) = \varphi(x_1)\varphi(x_2)$ = the number of common "anchored" subsequences between x_1 and x_2 , weighted by their total gap

Tree Kernel for RDC

- Convolution kernels for NLP (Collins and Duffy. 2001)
 - K(T1, T2) defined over trees T1 and T2
 - Measured as number of overlapping fragments.

An example parse tree(a) and its sub-trees(b)

- Parse tree needs to be augmented before used for RDC
- Tree kernel for RDC differs in ways to augment/prune trees

Tree kernels for RDC

• An example of pruned parse tree augmented with entity types (Zhang et al. 2006)

Semi-Supervised Learning

- Supervised learning requires sufficient amount of annotated data
 - Expensive to obtain
 - Annotation error still occurs even dual annotated and adjudicated (ACE 2005)
- Semi-supervised learning (SSL) use a handful of seed tuples or patterns
- Bootstrapping alternates between finding pairs of arguments and contexts(pattern) of them

Bootstrapping

Initial Seed Tuples:

ORGANIZATION	LOCATION
MICROSOFT	REDMOND
IBM	ARMONK
BOEING	SEATTLE
INTEL	SANTA CLARA

DIRPRE (Brin 1998) patterns:

< STR/NG1>'s headquarters in < STR/NG2>

Snowball patterns:

<left, NE tag1, middle, NE tag2, right>,
left, middle, right are weighted terms

Evaluating Patterns and tuples (Snowball)

$$Conf(Pat) = \frac{Positive}{Positive + Negative}$$

 $Conf(Tuple) = 1 - \prod (1 - Conf(P_i))$

Research

Weakly Supervision

Handful of seeds for supervision

+/-	$\mathbf{Arg}\ a_1$	$\mathbf{Arg}\ a_2$
+	Google	YouTube
+	Adobe Systems	Macromedia
+	Viacom	DreamWorks
+	Novartis	Eon Labs
_	Yahoo	Microsoft
_	Pfizer	Teva

Table 1: Corporate Acquisition Pairs.

Bunescu and Mooney, 2007

 $+/S_1$: Search engine giant **Google** has bought videosharing website **YouTube** in a controversial \$1.6 billion deal.

 $-/S_2$: The companies will merge **Google**'s search expertise with **YouTube**'s video expertise, pushing what executives believe is a hot emerging market of video offered over the Internet.

 $+/S_3$: Google has acquired social media company, YouTube for \$1.65 billion in a stock-for-stock transaction as announced by Google Inc. on October 9, 2006.

 $+/S_4$: Drug giant **Pfizer Inc.** has reached an agreement to buy the private biotechnology firm **Rinat Neuroscience Corp.**, the companies announced Thursday.

 $-/S_5$: He has also received consulting fees from Alpharma, Eli Lilly and Company, **Pfizer**, Wyeth Pharmaceuticals, **Rinat Neuroscience**, Elan Pharmaceuticals, and Forest Laboratories.

Figure 1: Sentence examples.

Weakly Supervision (cont.)

A SVM solution to tolerate noisy positive instances

minimize:

$$\mathbf{J}(w,b,\xi) = \frac{1}{2} \|w\|^2 + \frac{C}{L} \left(c_p \underline{L}_n \Xi_p + c_n \underline{L}_p \Xi_n \right)$$

$$\Xi_p = \sum_{X \in \mathcal{X}_p} \sum_{x \in X} \xi_x$$
Use a lower factor for potototolerate respectively.

Use a lower penalize factor for positive errors to tolerate noises from positive instances

subject to:

$$w \phi(x) + b \ge +1 - \xi_x, \quad \forall x \in X \in \mathcal{X}_p$$

 $w \phi(x) + b \le -1 + \xi_x, \quad \forall x \in X \in \mathcal{X}_n$
 $\xi_x \ge 0$

Unsupervised Learning

- Automatically find major relations and respective arguments
- builds on the same duality of name pairs and contexts as relation bootstrapping methods

Hasegawa et al. 2004

- Uses Sekine's Extended NE tagger
- A domain is defined as a pair of name classes
- Bag-of-words features to model relational context
- hierarchical clustering Microsoft

Research

References for General Relation Mining

- MUC-7, http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html
- ACE, http://www.itl.nist.gov/iad/mig/tests/ace/
- KBP, http://nlp.cs.qc.cuny.edu/kbp/2011/
- Nanda Kambhatla. Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Information Extraction. ACL 2004
- GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring Various Knowledge in Relation Extraction. ACL 2005
- Shubin Zhao and Ralph Grishman. Extracting Relations withh Integrated Information Using Kernel Methods. ACL 2005
- Razvan Bunescu and Raymond J. Mooney. Subsequence Kernels for Relation Extraction. In Proceedings of the 19th Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, December 2005

References for General Relation Mining (cont.)

- Michael Collins and Nigel Duffy. Convolution Kernels for Natural Language. NIPS 2001.
- Min ZHANG, Jie ZHANG, Jian SU, Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel, In ACL 2006.
- Sergei Brin. Extracting Patterns and Relations from the World Wide Web.
 In Proc. World Wide Web and Databases International Workshop, pages 172-183. Number 1590 in LNCS, Springer, March 1998.
- Eugene Agichtein and Luis Gravano, Snowball: Extracting Relations from Large Plain-Text Collections, In Proc. 5th ACM International Conference on Digital Libraries (ACM DL), 2000
- Razvan Bunescu and Raymond J. Mooney. Learning to Extract Relations from the Web using Minimal Supervision. ACL 2007
- Takaaki Hasegawa, Satoshi Sekine, Ralph Grishman Discovering Relations among Named Entities from Large Corpora. ACL 2004.

Outline

- Overview
- Semantic class mining
- Semantic hierarchy construction
- Mining attribute names and values
- General relation extraction
- > Demo
- > Summary

Demo: NeedleSeek

- A sub-project of the Sempute (Semantic Computing) project in WSM group, MSRA

- URL: http://needleseek.msra.cn

Semantic Mining: Summary

- Semantic class mining
 - Sample: {C++, C#, Java, PHP, Perl, ...}
 - Methods: Pattern matching (1st-order co-occurrences); distributional similarity (2nd-order co-occurrences)
- Semantic hierarchy construction
 - Key task: Hypernymy extraction (Beijing→city; pear→fruit; pear→shape)
 - Pattern matching; tuple aggregation; Label voting
- Mining attribute names and values
 - Samples: (company, CEO); (China, capital, Beijing)
 - Pattern learning; pattern matching; Table extraction; Wikipedia Infobox
- General relation extraction
 - Sample: WorkFor(Susan Dumais, Microsoft Research)
 - Supervised, semi-supervised, & unsupervised learning
 - Process contexts (especially middle contexts)

