AI 6102: Machine Learning Methodologies & Applications

L9: Evaluation & Density Estimation

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: http://www.ntu.edu.sg/home/sinnopan

Outline

- Other evaluation metrics for classification
 - Imbalance classification problems
- Density estimation
 - Estimate unknown probability density function
 - Parametric & Non-parametric

Metrics for Classification

Confusion Matrix

		Predicte	ed Class
		Class = 1	Class = 0
Actual	Class = 1	f_{11}	f_{10}
Class	Class = 0	f_{01}	f_{00}

 f_{11} : TP (true positive)

 f_{10} : FN (false negative)

 f_{01} : FP (false positive)

 f_{00} : TN (true negative)

Most widely-used metric:

Accuracy =
$$\frac{\text{\# correct predictions}}{\text{\# predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate =
$$\frac{\text{# incorrect predictions}}{\text{# predictions}} = 1 - \text{accuracy}$$

Initialization:

$$TP = 0$$
, $FN = 0$, $FP = 0$, $TN = 0$

		Predicted Class					
		Class = 1	Class = 0				
Actual	Class = 1	f ₁₁ (TP)	f ₁₀ (FN)				
Class	Class = 0	f ₀₁ (FP)	f ₀₀ (TN)				

Prediction Actual

		Predic	ted Class
		1	0
Actual	1	3	1
Class	0	1	3

$$\checkmark$$

$$TN++ \rightarrow TN=2$$

$$\checkmark$$

1
$$\checkmark$$
 TP++ \rightarrow TP=2

$$\checkmark$$

$$TN++ \rightarrow TN=3$$

$$\sqrt{TP++} \rightarrow TP=3$$

$$Acc = \frac{TP + TN}{\#} = \frac{3+3}{8} = 0.75$$

Potential Issue of Accuracy

- Consider a 2-class classification problem
 - Number of Class 0 data instances = 99
 - Number of Class 1 data instances = 1
- If model predicts every data instance to be class 0, accuracy is 99/100 = 99%
 - Accuracy is misleading because model does not detect any class 1 data instance

Class Imbalance Problem

- In many real-world applications, data sets may have imbalanced class distributions
 - In medical domain, to diagnose whether a patient has cancer or not, the number of patients without cancer is much larger than that with cancer
 - In software engineering, to predict whether a source file has potential defect, the number of non-defective source files is much larger than that of defective files
 - In information retrieval, among all the retrieved webpages,
 the number of relevant webpages is much smaller than that
 of irrelevant webpages

Alternative Metrics

- Accuracy measure treats every class as equally important
- It is not suitable for analyzing imbalance data sets, where the rare class is considered more interesting than the majority class
 - e.g., the patients who really have cancer
- For binary classification, the rare class is often denoted as the positive class, while the majority class is denoted as the negative class
 - i.e., f_{11} (TP) is more important

		Predicted Class					
		Class = 1	Class = 0				
Actual	Class = 1	<i>f</i> ₁₁ (TP)	f ₁₀ (FN)				
Class	Class = 0	f ₀₁ (FP)	f_{00} (TN)				

Recall and Precision

- Recall and precision are two widely used metrics employed in applications where successful detection of one of the classes is considered more significant than detection of the other classes.
- Precision:

$$p = \frac{\text{TP}}{\text{TP + FP}}$$

Precision is to measure among all the predicted positive instances, how many are true positive.

instances predicted as positive

Recall: # true positive instances

$$r = \frac{\text{TP}}{\text{TP + FN}}$$

Recall is to measure among all true positive instances, how many are predicted correctly by the classifier

A good model should have both high precision and recall

Recall and Precision (cont.)

Precision:
$$p = \frac{TP}{TP + FP}$$

The area of the overlapping region between yellow and blue divided by the area of the blue region

Recall:
$$r = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

The area of the overlapping region between yellow and blue divided by the area of the yellow region

F₁ Measure

• Recall and precision can be summarized into another metric known as F_1 measure

$$F_1 = \frac{2rp}{r+p}$$

• A high value of F_1 -measure ensures that precision and recall are reasonably high

ROC

• ROC (Receiver Operating Characteristic) is a graphical approach to displaying the trade-off between <u>true positive rate</u> and <u>false positive rate</u> of a classifier

		Predicted Class				
		Class = 1	Class = 0			
Actual	Class = 1	f_{11}	f_{10}			
Class	Class = 0	f_{01}	f_{00}			

 f_{11} : TP (true positive)

 f_{10} : FN (false negative)

 f_{01} : FP (false positive)

 f_{00} : TN (true negative)

True positive rate:
$$TPR = \frac{TP}{TP + FN} = \frac{TP}{\#POS}$$
 Recall

False positive rate:
$$FPR = \frac{FP}{TN + FP} = \frac{FP}{\#NEC}$$

Some Special Points

• (FPR, TPR):

$$-\left(FPR = \frac{FP}{\#NEG}, TPR = \frac{TP}{\#POS}\right)$$

- (0,0): to predict every data instance to be negative class
- (1,1): to predict every data instance to be positive class
- (0,1): ideal

Varying Decision Threshold

- For balanced classification problem, the decision threshold is usually 0.5
- For imbalanced problem, as there are only a few positive instances, the threshold is set to be a larger values, e.g., 0.8
 - The best threshold can be tuned via cross-validation
 - For each threshold, generatea 2D point (FPR, TPR)
 - By connecting this points,
 we can construct a curve

ID	$P(+ \mathbf{X})$	Truth
1	0.95	+
2	0.93	+
3	0.87	_
4	0.85	_
5	0.85	_
6	0.85	+
7	0.76	1
8	0.53	+
9	0.43	-
10	0.25	+

0.5	0.0
Pred	Pred
+	+
+	+
+	+
+	+
+	+
+	+
+	-/
+	_
	_
The same of the sa	_

0.5

ΛQ

How to Draw ROC Curve?

- Sort the instances according to $P(+|\mathbf{X})$ in decreasing order
- Apply threshold at each unique value of $P(+|\mathbf{X})$
- Count the number of TP, FP, TN, FN
 based on each threshold
 random

- TP Rate, TPR =
$$\frac{TP}{TP+FN}$$

- FP Rate, FPR =
$$\frac{FP}{TN+FP}$$

ID	$P(+ \mathbf{X})$	Truth
1	0.95	+
2	0.93	+
3	0.87	_
4	0.85	-
5	0.85	_
6	0.85	+
7	0.76	_
8	0.53	+1
9	0.43	<u> </u>
10	0.25	+

Not efficient

An Efficient Approach

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5										
	FP	5										
	TN	0										
	FN	0										
	TPR	1										
	FPR	1										

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4									
	FP	5	5									
	TN	0	0									
	FN	0	1									
·	TPR	1	0.8									
	FPR	1	1				1					

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4								
	FP	5	5	4								
	TN	0	0	1								
	FN	0	1	1								
	TPR	1	0.8	0.8								
	FPR	1	1	0.8								

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3							
	FP	5	5	4	4							
	TN	0	0	1	1							
	FN	0	1	1	2							
	TPR	1	0.8	0.8	0.6							
	FPR	1	1	0.8	0.8		1			1		

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3						
	FP	5	5	4	4	3						
	TN	0	0	1	1	2						
	FN	0	1	1	2	2						
	TPR	1	0.8	0.8	0.6	0.6						
	FPR	1	1	0.8	0.8	0.6						

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3					
	FP	5	5	4	4	3	2					
	TN	0	0	1	1	2	3					
	FN	0	1	1	2	2	2					
·	TPR	1	0.8	0.8	0.6	0.6	0.6	_				
	FPR	1	1	0.8	0.8	0.6	0.4					

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3				
	FP	5	5	4	4	3	2	1				
	TN	0	0	1	1	2	3	4				
	FN	0	1	1	2	2	2	2				
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6				
	FPR	1	1	0.8	0.8	0.6	0.4	0.2				

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2			
	FP	5	5	4	4	3	2	1	1			
	TN	0	0	1	1	2	3	4	4			
	FN	0	1	1	2	2	2	2	3			
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4			
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2			

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2		
	FP	5	5	4	4	3	2	1	1	0		
	TN	0	0	1	1	2	3	4	4	5		
	FN	0	1	1	2	2	2	2	3	3		
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4		
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0		

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	
	FP	5	5	4	4	3	2	1	1	0	0	
	TN	0	0	1	1	2	3	4	4	5	5	
	FN	0	1	1	2	2	2	2	3	3	4	
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	l >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

AUC for Classifiers Comparison

- In practice, on a specific dataset, a classifier may not consistently outperform the other with all the thresholds
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC Curve (<u>AUC</u>)
 - Ideal: AUC = 1Random guess: AUC = 0.5

Implementation using scikit-learn

• API: sklearn.metrics

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

Classification metrics	
See the Classification metrics section of the user g	uide for further details.
<pre>metrics.accuracy_score(y_true, y_pred, *[,])</pre>	Accuracy classification score.
metrics.auc(X, y)	Compute Area Under the Curve (AUC) using the trapezoidal rule
metrics.average_precision_score(y_true,)	Compute average precision (AP) from prediction scores
<pre>metrics.balanced_accuracy_score(y_true,)</pre>	Compute the balanced accuracy
metrics.brier_score_loss(y_true, y_prob, *)	Compute the Brier score.
<pre>metrics.classification_report(y_true, y_pred, *)</pre>	Build a text report showing the main classification metrics.
metrics.cohen_kappa_score(y1, y2, *[,])	Cohen's kappa: a statistic that measures inter-annotator agreement.
<pre>metrics.confusion_matrix(y_true, y_pred, *)</pre>	Compute confusion matrix to evaluate the accuracy of a classification.
<pre>metrics.dcg_score(y_true, y_score, *[, k,])</pre>	Compute Discounted Cumulative Gain.
metrics.f1_score(y_true, y_pred, *[,])	Compute the F1 score, also known as balanced F-score or F-measure
metrics.fbeta_score(y_true, y_pred, *, beta)	Compute the F-beta score
<pre>metrics.hamming_loss(y_true, y_pred, *[,])</pre>	Compute the average Hamming loss.
<pre>metrics.hinge_loss(y_true, pred_decision, *)</pre>	Average hinge loss (non-regularized)
metrics.jaccard_score(y_true, y_pred, *[,])	Jaccard similarity coefficient score
<pre>metrics.log_loss(y_true, y_pred, *[, eps,])</pre>	Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred, *)	Compute the Matthews correlation coefficient (MCC)
<pre>metrics.multilabel_confusion_matrix(y_true,)</pre>	Compute a confusion matrix for each class or sample
<pre>metrics.ndcg_score(y_true, y_score, *[, k,])</pre>	Compute Normalized Discounted Cumulative Gain.
<pre>metrics.precision_recall_curve(y_true,)</pre>	Compute precision-recall pairs for different probability thresholds
metrics.precision_recall_fscore_support()	Compute precision, recall, F-measure and support for each class
metrics.precision_score(y_true, y_pred, *[,])	Compute the precision
metrics.recall_score(y_true, y_pred, *[,])	Compute the recall
metrics.roc_auc_score(y_true, y_score, *[,])	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
metrics.roc_curve(y_true, y_score, *[,])	Compute Receiver operating characteristic (ROC)
metrics.zero_one_loss(y_true, y_pred, *[,])	Zero-one classification loss.

Outline

- Other evaluation metrics for classification
 - Imbalance classification problems
- Density estimation
 - Estimate unknown probability density function
 - Parametric & Non-parametric

Density Estimation

- Density estimation aims to estimate an unobservable underlying probability density function based on observed data
- Denote by $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ the set of observed data points, drawn from an unknown p(x),

$$x_i \sim p(x)$$
, for $i = 1, 2, ..., N$

• The goal is to estimate the probability density function p(x)

$$\int_{x} p(x)dx = 1$$

Probability Density Function

Approaches

- Parametric density estimation
 - Assume a form for $p(x; \theta)$, defined up to parameters, θ
 - E.g., Guassian distribution $\mathcal{N}(\mu, \sigma^2)$, $\boldsymbol{\theta} = \{\mu, \sigma^2\}$
 - Estimate $\boldsymbol{\theta}$ from the observed data points
 - Maximum Likelihood Estimation
 - To find θ that makes sampling x_i from $p(x; \theta)$ as likely as possible
- Nonparametric density estimation

Maximum Likelihood Estimation

• Likelihood of parameter θ given sample \mathcal{D} :

$$l(\boldsymbol{\theta}|\mathcal{D}) \triangleq p(\mathcal{D};\boldsymbol{\theta})$$

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are i.i.d., the above likelihood is the product of the likelihoods of the individual data points

$$l(\boldsymbol{\theta}|\mathcal{D}) \triangleq p(\mathcal{D};\boldsymbol{\theta}) = \prod_{i=1}^{n} p(\boldsymbol{x}_i;\boldsymbol{\theta})$$

• In MLE, we aim to find θ that makes \mathcal{D} the most likely to be drawn. Mathematically, we aim to search for $\widehat{\theta}$ such that

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}|\mathcal{D})$$

MLE (cont.)

• Recall that we maximize the log-likelihood:

$$\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) \triangleq \ln l(\boldsymbol{\theta}|\mathcal{D})$$

- Why (refer to logistic regression)?
 - 1. The ln(·) function is a strictly increasing function, one can maximize the likelilood without changing the value where it takes its maximum

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}|\mathcal{D}) \Longleftrightarrow \widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D})$$

2. The $ln(\cdot)$ function converts the product into a sum

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = \ln p(\mathcal{D};\boldsymbol{\theta}) = \ln \left(\prod_{i=1}^{N} p(\boldsymbol{x}_i;\boldsymbol{\theta})\right) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i;\boldsymbol{\theta})$$

Solution to MLE

• As $\max_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D})$ is an unconstrained optimization problem, to solve it, we first set to the derivative of $\ln l(\boldsymbol{\theta}|\mathcal{D})$ w.r.t. $\boldsymbol{\theta}$ to be zero

be zero
$$\nabla_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta} | \mathcal{D}) = \nabla_{\boldsymbol{\theta}} \left(\sum_{i=1}^{N} \ln p(\boldsymbol{x}_i; \boldsymbol{\theta}) \right) = \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{x}_i; \boldsymbol{\theta}) = \boldsymbol{0},$$

$$\nabla_{\boldsymbol{\theta}} = \left[\frac{\partial}{\partial \theta_1} \frac{\partial}{\partial \theta_2} \dots \frac{\partial}{\partial \theta_p} \right]^T$$

- If we can obtain a closed form solution $\widehat{\theta}$ by solving the p equations, then it is done
- Otherwise, we may use gradient descent to find $\widehat{\boldsymbol{\theta}}$

Univariate Gaussian

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$. Each data instance x_i is 1 dimensional, and drawn from Gaussian distribution with unknown μ and σ^2 :

$$\dot{\mathbf{x}}_i \sim p(\mathbf{x}; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}\right)}$$

The log-likelihood is

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i; \mu, \sigma^2) = \sum_{i=1}^{N} \ln \left(\exp\left(-\frac{(\boldsymbol{x}_i - \mu)^2}{2\sigma^2}\right) \right) - \sum_{i=1}^{N} \ln(\sqrt{2\pi\sigma^2})$$

$$= -\frac{\sum_{i=1}^{N} (\boldsymbol{x}_i - \mu)^2}{2\sigma^2} - \sum_{i=1}^{N} \frac{1}{2} \ln(2\pi\sigma^2)$$

$$= -\frac{\sum_{i=1}^{N} (\boldsymbol{x}_i - \mu)^2}{2\sigma^2} - \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \sigma^2$$

Univariate Gaussian (cont.)

• The log-likelihood:

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = -\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2\sigma^2} - \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \sigma^2$$

The derivative of the log-likelihood:

$$\nabla_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D}) = \begin{bmatrix} \nabla_{\boldsymbol{\mu}} \ln l(\boldsymbol{\theta}|\mathcal{D}) \\ \nabla_{\boldsymbol{\sigma}^{2}} \ln l(\boldsymbol{\theta}|\mathcal{D}) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^{2}} \sum_{i=1}^{N} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \\ \frac{\sum_{i=1}^{N} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{2}}{2(\sigma^{2})^{2}} - \frac{N}{2\sigma^{2}} \end{bmatrix}$$

Univariate Gaussian (cont.)

• By setting the derivative to be zero:

$$\begin{cases} \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0 \\ \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2(\sigma^2)^2} - \frac{N}{2\sigma^2} = 0 \end{cases}$$

We have

Unbiased estimation
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \mathbb{E}[\hat{\mu}] = \mu \qquad \text{True}$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2 \qquad \mathbb{E}[\hat{\sigma}^2] = \frac{N-1}{N} \sigma^2$$
Biased estimation

To correct bias

$$\tilde{\sigma}^2 = \frac{N}{N-1} \hat{\sigma}^2$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Multivariate Gaussian

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$, and each data instance x_i is mdimensional, and drawn from Guassian distribution with unknown μ and Σ --- $m \times m$ covariance matrix *m*-dimensional mean vector

$$\boldsymbol{x}_{i} \sim p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{m/2}} \frac{1}{[\boldsymbol{\Sigma}]^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$
The determinant of $\boldsymbol{\Sigma}$

By using MLE

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i$$

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \qquad \widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}}) (\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}})^{T} \qquad \mathbb{E}[\widehat{\boldsymbol{\Sigma}}] = \frac{N-1}{N} \boldsymbol{\Sigma}$$

Unbiased estimation:

$$\mathbb{E}[\widehat{\boldsymbol{\mu}}] = \boldsymbol{\mu}$$

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})(x_i - \widehat{\mu})^T$$
 Unbiased estimation

Non-Parametric Density Estimation

- Assume that $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are drawn from some unknown probability density p(x)
 - Without assuming any forms for the underlying density
- To learn the estimator $\hat{p}(x)$ for p(x)
 - Assume that similar inputs have similar outputs: if x_i and x_i are similar, then $p(x_i)$ and $p(x_i)$ are similar
- Approaches
 - Histogram Estimator
 - Naïve Estimator / Parzen Windows / Kernel Estimator

Histogram Estimator

Histogram Estimator (cont.)

- Simply partition x (suppose 1-dimensional for simplicity) into distinct bins of width Δ_t
- Count the number N_t of data instances falling into bin t
- Turn this count into a normalized probability density via dividing by the total number of observed data points N and by the width Δ_t of the bins:

$$p_t = \frac{N_t}{N\Delta_t}$$
 Suppose all the bins have the same width $\Delta_t = \Delta$ $p_t = \frac{N_t}{N\Delta}$

• The model for the density p(x) is constant over the width of each bin: find the bin where x is in (e.g., bin t), then

$$\hat{p}(x) = \frac{\#\{x_i \text{ in the same bin as } x\}}{N\Delta} = p_t$$

Histogram Estimator (cont.)

• Typically, the bins are chosen to have the same width $\Delta_t = \Delta$

$$p_t = \frac{N_t}{N\Delta}$$

Why divided by Δ ?

Histogram Estimator (cont.)

• For a specific bin denoted by t, the probability that a data instance x falls into the bin (e.g., $(x^{(t)}, x^{(t)} + \Delta]$) is

The start value of the bin
$$t$$

$$P = \int_{x^{(t)}}^{x^{(t)} + \Delta} p(x') dx' \approx \left[p(x) \Delta \right]$$

On the other hand,

$$P = \frac{\#\{\boldsymbol{x}_i \text{ in the bin } i\}}{N} = \boxed{\frac{N_t}{N}}$$

• Therefore:

$$p(\mathbf{x}) = \frac{N_t}{N\Delta}$$

Histogram Estimator (cont.)

• Histogram density as a function of bin width Δ

The green curve is the underlying true density from which the data points were drawn

When Δ is very small, the resulting density is quite spiky and hallucinates a lot of structure not present in the true density

 $\Delta = 0.04$ 0.5 $\Delta = 0.08$ 0.5 $\Delta = 0.25$ 0.5

When Δ is very big, the resulting density is quite smooth and consequently fails to — capture the bimodality of the true density

Discussion

Advantages:

- Simple to evaluate and simple to use
- One can throw away \mathcal{D} once the histogram is computed
- Can be updated incrementally

• Disadvantages:

- The estimated density has discontinuities due to the bin edges rather than any property of the underlying density
- Scales poorly to multivariate cases: we would have L^m bins if we divided each variable in a m-dimensional space into L bins

Naïve Estimator: An Alternative

In Histogram Estimator, besides Δ , we have to choose an origin x_0 as well, the bins are the intervals defined as

$$(x_0 + t\Delta, x_0 + (t+1)\Delta]$$
0, positive or negative integers

The Naïve Estimator does no need to set on origin

Estimator does no need to set on origin
$$\hat{p}(x) = \frac{\#\{x_i \text{ in the same bin as } x\}}{N\Delta} \xrightarrow{\Delta} \frac{\Delta}{2}$$

$$\hat{p}(x) = \frac{\#\{x_i \text{ in the same bin as } x\}}{N\Delta}$$

$$\hat{p}(x) = \frac{\#\{x_i \text{ in the same bin as } x\}}{N\Delta}$$

Histogram v.s. Naïve Estimator

Histogram Estimator

$$p(x) = \frac{2}{10 \times \Delta}$$

Count: 2 1 3 1 2

Naïve Estimator

$$p(x) = \frac{1}{10 \times \Delta}$$

$$\bullet x$$

1

Naïve Estimator: Example

Parzen Windows

• The Naïve Estimator can also be written as

Multiple Dimensions Case

- Given $\mathcal{D} = \{x_1, ..., x_N\}$, each data instance is m-dimensional
- We define \mathcal{R} is a m-dimensional hypercube with h being the length of each edge. The volume of the hypercube is given by $V = h^m$
- The window function can be defined as

$$w(\boldsymbol{u}) = \begin{cases} 1 & \text{if } -\frac{1}{2} \le u_i < \frac{1}{2} \text{ for all } i \in \{1, ..., m\} \\ 0 & \text{otherwise} \end{cases}$$

This window function defines a unit hypercube centered at the origin

Multiple Dimensions Case (cont.)

- Hence, $w\left(\frac{x-x_i}{h}\right)$ is equal to unity if x_i falls within the hypercube of volume V centered at x, and is zero otherwise
- The density estimator can be written as

$$\hat{p}(x) = \frac{\#\{x_i \text{ in the same hypercube as } x\}}{NV}$$

$$\hat{p}(x) = \frac{1}{NV} \sum_{i=1}^{N} w\left(\frac{x - x_i}{h}\right)$$

$$\hat{p}(x) = \frac{3}{10h^2}$$

Kernel Estimator

- To get a smooth estimate, we use a smooth weight function, kernel function, e.g., the Gaussian kernel
- For the univariate case, i.e., each data point is 1-dimensional, the Gaussian kernel is defined as

$$k(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

The Kernel Estimator is computed via

$$\hat{p}(x) = \frac{1}{N\Delta} \sum_{i=1}^{N} k\left(\frac{x - x_i}{\Delta}\right)$$

Kernel Estimator: An Example

Kernel Estimator (cont.)

• For the multivariate case, i.e., each data instance is *m*-dimensional, the Gaussian kernel is defined as

$$k(\mathbf{u}) = \frac{1}{(2\pi)^{m/2}} \exp\left(-\frac{\|\mathbf{u}\|_2^2}{2}\right)$$

• The Kernel Estimator is computed via

$$\hat{p}(x) = \frac{1}{NV} \sum_{i=1}^{N} k\left(\frac{x - x_i}{h}\right)$$

Implementation using scikit-learn

• API: sklearn.neighbors.KernelDensity

https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity

sklearn.neighbors.KernelDensity

class sklearn.neighbors. KernelDensity(*, bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None) [source]

Kernel Density Estimation.

Read more in the User Guide.

Parameters:	bandwidth:	float

The bandwidth of the kernel.

algorithm: str

The tree algorithm to use. Valid options are ['kd_tree'|'ball_tree'|'auto']. Default is 'auto'.

kernel: str

The kernel to use. Valid kernels are ['gaussian'|'tophat'|'epanechnikov'|'exponential'|'linear'|'cosine'] Default is 'gaussian'.

Example

```
>>> from sklearn.neighbors import KernelDensity
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> X = rng.randn(n_samples, n_features)
>>> kde = KernelDensity( kernel='gaussian', bandwidth=0.5 )
>>> kde.fit(X)
>>> log_den_X= kde.score_samples(X)
    Return log density of X
```

Thank you!