5.254 min_dist_between_inflexion

DESCRIPTION LINKS AUTOMATON

Origin Derived from inflexion

Constraint min_dist_between_inflexion(MINDIST, VARIABLES)

Arguments MINDIST : int

VARIABLES : collection(var-dvar)

Restrictions MINDIST > 0

 $\begin{aligned} & \texttt{MINDIST} \leq | \texttt{VARIABLES}| \\ & & \\$

Given an integer value MINDIST and a sequence of variables VARIABLES enforce MINDIST to be greater than or equal to the smallest distance between two consecutive inflexions in the sequence VARIABLES, or to |VARIABLES| if no more than one inflexion exists

An *inflexion* of a sequence of variables VARIABLES is a set of consecutive variables $V_i, V_{i+1}, \dots, V_{j-1}, V_j$ (i+1 < j) such that one of the following conditions holds:

• $V_i < V_{i+1} \wedge V_{i+1} = \cdots = V_{j-1} \wedge V_{j-1} > V_j$,

• $V_i > V_{i+1} \wedge V_{i+1} = \cdots = V_{i-1} \wedge V_{i-1} < V_i$.

In this context, the index j is the *position* of the inflexion (i.e., the first instant when the inflexion is discovered when scanning the sequence of variables VARIABLES from left to right. The *distance between two consecutive inflexions* is the absolute value of the difference of their corresponding positions.

Example

Purpose

 $(2, \langle 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 \rangle)$

Figure 5.550 shows the three inflexions associated with the sequence 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 and their respective positions 5, 8 and 10 in red. The min_dist_between_inflexion constraint holds since its first argument MINDIST = 2 is greater than or equal to the smallest distance 2 between two consecutive inflexions of the sequence of variables VARIABLES.

Typical

```
\begin{split} & \texttt{MINDIST} > 1 \\ & | \texttt{VARIABLES}| > 3 \\ & \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{split}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Counting

20121023 1675

Figure 5.550: Illustration of the **Example** slot: a sequence of ten variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_{10} respectively fixed to values 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 and its three inflexions, two peaks and one valley; each red point denotes an instant where a new inflexion is discovered while scanning the sequence from left to right; as shown by the rightmost arrow, the minimum distance between two consecutive inflexions is equal to 2.

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	1135	25444	574483	13287476	328156407

Number of solutions for $min_dist_between_inflexion$: domains 0..n

Solution density for min_dist_between_inflexion

 $Solution\ density\ for\ {\tt min_dist_between_inflexion}$

Length (n)		2	3	4	5	6	7	8
Total		9	64	1135	25444	574483	13287476	328156407
Parameter value	1	-	-	170	3598	73794	1543512	35152278
	2	9	-	170	4690	91098	1819764	39992562
	3	-	64	170	4690	97314	1932012	41360676
	4	-	-	625	4690	97314	1965012	42025560
	5	-	-	-	7776	97314	1965012	42192870
	6	-	-	-	-	117649	1965012	42192870
	7	-	-	-	-	-	2097152	42192870
	8	•	-	-	-	-	1	43046721

Solution count for $\min_{\text{dist_between_inflexion:}} \text{domains } 0..n$

Solution density for ${\tt min_dist_between_inflexion}$

Parameter value as fraction of length

Solution density for min_dist_between_inflexion

Parameter value as fraction of length

See also

common keyword: inflexion, longest_decreasing_sequence,
longest_increasing_sequence, peak, valley (sequence).

Keywords

characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(3).

Automaton

Figure 5.551 depicts the automaton associated with the min_dist_between_inflexion constraint.

STATES SEMANTICS

```
\begin{array}{lll} s & : \text{stationary mode} & (=^*) \\ i0 & : \text{increasing mode (no inflexion yet found)} & (< \{< \mid = \}^*) \\ d0 & : \text{decreasing mode (no inflexion yet found)} & (> \{> \mid = \}^*) \\ i1 & : \text{increasing mode (at least one inflexion already found)} & (< \{< \mid = \}^*) \\ d1 & : \text{decreasing mode (at least one inflexion already found)} & (> \{> \mid = \}^*) \end{array}
```


Figure 5.551: Automaton of the min_dist_between_inflexion constraint (state s means that we are in *stationary* mode, state i0 means that we are in *increasing* mode and that we did not yet found any inflexion, state d0 means that we are in *decreasing* mode and that we did not yet found any inflexion, state i1 means that we are in *increasing* mode and that we already found at least one inflexion, state d1 means that we are in *decreasing* mode and that we already found at least one inflexion, the minimum distance between two consecutive inflexions is updated each time we switch from i1 to d1 mode – or conversely from d1 to i1 mode – and the counter D is updated accordingly)

Figure 5.552: Hypergraph of the reformulation corresponding to the automaton of the min_dist_between_inflexion constraint where V is a shortcut for VARIABLES (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

20121023 1681