Fundamentos de Algoritmos e Estrutura de Dados - Aula 03 - Hashing

Prof. André Gustavo Hochuli

<u>gustavo.hochuli@pucpr.br</u> <u>aghochuli@ppgia.pucpr.br</u>

Plano de Aula

- Revisão Aula 02
 - Inserção e Remoção em Listas
 - Lista Duplamente Encadeada
- Tabela Hash
 - Problema
 - Funções Hash
 - Colisões
 - Trabalho

Problema

Buscar um elemento em tempo constante independente da chave

Família	1	2	3	4	5	6
	José Maria	Leila	Artur	Jolinda	Gisela	Alciene

- Imagine um problema para armazenar identificadores de 11 dígitos
 - \cdot 10^11 = 100.000.000.000 (100bi)
- A busca é custosa
- Aplicar métodos de ordenação a cada 'evento' é custoso

Dicionário de Dados

- Tipo de dados abstrato que representa um objeto/entidade
- Implementa as funções Inserir, Buscar e Remover
- Utiliza chaves para indexar a informação (função hash)

Função Hash e Tabela Hash

- Funções Hash ou Funções de Espalhamento é uma função de mapeamento do dados para outro domínio
- Não permite caminho inverso (reconstrução)
- A colisão é um fator importante

Funções Hash - h(k)

- Módulo
 - Valor de M é crítico (M colisões)
- Outros métodos
 - Multiplicação
 - Fibonacci
 - Etc...

int hashcode(int k){

return (k % m);

- Qualidade da hash determina:
 - Colisões vs Custo computacional

Colisão

- Um ou mais itens mapeados para a mesma chave
- Solução*: Encadeamento
- Tamanho da lista (#colisões) depende de h(x)

*Existem outras soluções disponíveis no estado da arte

Trabalho

- Implementar uma tabela hash
- Avaliar diferentes funções e seus parâmetros
 - Modular
- Analises Críticas e Comparações
- Formalização no AVA