This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Rank 1 of 1

Search Result

Database WPI

(c) 1998 Derwent Info Ltd. All rights reserved.

199703

Micro-manipulation appts. - comprises fluid-filled micro-pipette, piezoelectric element contacted with fluid via diaphragm, and power source for piezoelectric element

Patent Assignee: PRIMA MEAT PACKERS LTD (PRIM-N)

Number of Countries: 001 Number of Patents: 002

?atent Family:

Main IPC Week Patent No Kind Date Applicat No Kind Date A 19950421 B25J-007/00 199703 B JP 8290377 A 19961105 JP 9597143 JP 2783984 B2 19980806 JP 9597143 A 19950421 C12M-001/00 199836

Priority Applications (No Type Date): JP 9597143 A 19950421

?atent Details:

Application Patent ?atent Kind Lan Pg Filing Notes

9 JP 8290377 Α

10 Previous Publ. JP 2783984 B2

JP 8290377

Abstract (Basic): JP 8290377 A

The micro-manipulation appts. comprises a micro-pipette (21) filled with a fluid, a piezoelectric element (28) disposed through a diaphragm contacting the fluid, and a power source (29) driving the piezoelectric element (28). The fluid in the micro-pipette (21) is driven by driving the piezoelectric element (28).

JSE - The micro-manipulation appts. gives reliable insertion into cells, and smooth operation.

Citle Terms: MICRO; MANIPULATE; APPARATUS; COMPRISE; FLUID; FILLED; MICRO; PIPETTE; PIEZOELECTRIC; ELEMENT; CONTACT; FLUID; DIAPHRAGM; POWER; SOURCE ; PIEZOELECTRIC; ELEMENT

Derwent Class: D16; J04; P62; P81; V06; X25 [nternational Patent Class (Main): B25J-007/00

International Patent Class (Additional): C12M-001/00; G02B-021/32

File Segment: CPI; EPI; EngPI

Manual Codes (CPI/A-N): D05-H; J04-B

Manual Codes (EPI/S-X): V06-M06D; X25-A03E

<Image 1 (8.50" X 11.00") is available via Offline Print to FAX>

END OF DOCUMENT

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-290377

(43)公開日 平成8年(1996)11月5日

	_	1149-dr-=2666C				
	識別記号	庁内整理番号	F I		•	技術表示箇所
(51) Int CL.°	BWW.1bm.1	/// /	B 2 5 J	7/00		
B26J 7/00			G02B			
G02B 21/32			-		A	
// C 1 2 M 1/00			C12M	1/00	• •	

審査請求 有 端求項の数7 OL (全9頁)

(21) 出顧番号	特國平7 -97143	(71)出額人 000113067 プリマハム株式会社	
(22) 出質日	平成7年(1995) 4月21日	東京都品川区東大井 3 丁目17年 (72)発明者 上野 久雄 茨城県土浦市中向原635 プリ 会社技術開発センター内	
	·	(72)発明者 三松 停 変域以土浦市中向原635 プリ 会社技術開発センター内	マハム株式
		(74) 任)

(54) 【発明の名称】 マイクロマニピュレーション装置及びそれを用いた細胞操作方法

(57)【要約】

【目的】 細胞に対して的確に挿入することができるとともに、細胞操作を円滑に行い得る動作流体を、直接的に駆動するマイクロマニピュレーション装置及びそれを用いた細胞操作方法を提供する。

【構成】 マイクロマニピュレーション装置において、配管内に流体が充填されるマイクロピペット21と、前記流体に接触するダイヤフラム27を介して配置される圧電素子28と、この圧電素子28を駆動する駆動電源29とを備え、前記圧電素子28の駆動により前記マイクロピペット21内の流体を駆動するようにしたものである。

(2)

特開平8-290377

【特許請求の範囲】

【請求項1】 マイクロマニピュレーション装置において、(a)配管内に流体が充填されるマイクロピペットと、(b)前記流体に接触するダイヤフラムを介して配置される圧電素子と、(c)該圧電素子を駆動する駆動電源とを備え、(d)前記圧電素子の駆動により前記マイクロピペット内の流体を駆動することを特徴とするマイクロマニピュレーション装置。

1

【請求項2】 マイクロマニピュレーション装置を用いた細胞操作方法において、(a)固定された卵細胞にマイクロピペットを接触させる工程と、(b)前記マイクロピペットに速通する流体に接触するダイヤフラムを介して配置される圧電業子の駆動により前記マイクロピペット内の流体の吸引を行い、前記細胞の透明帯の微小部分を弱体化又は開孔する工程と、(c)該弱体化又は開孔された卵細胞の透明帯の微小部分に前記マイクロピペットを挿入する工程とを施すことを特徴とするマイクロマニピュレーション装置を用いた細胞操作方法。

【請求項3】 請求項2記載のマイクロマニピュレーション装置を用いた細胞操作方法において、

前記(c)工程における挿入されたマイクロビベットを 前記圧電素子の駆動により卵細胞の細胞膜の微小部分を 弱体化又は開孔し、該卵細胞の細胞質を前記マイクロビ ベットで吸引することを特徴とするマイクロマニピュレ ーション装置を用いた細胞操作方法。

【請求項4】 請求項2記載のマイクロマニピュレーション装置による細胞操作方法において、

前記(c)工程における挿入されたマイクロピペットを 前記圧電素子の駆動により卵細胞の細胞膜の微小部分を 弱体化又は開孔し、該卵細胞の細胞質内に前記マイクロ ピペットで薬液、DNA溶液、精子、細胞の核などの物 質を注入することを特徴とするマイクロマニピュレーション装置を用いた細胞操作方法。

【請求項5】 請求項2記載のマイクロマニピュレーション装置による細胞操作方法において、前記(c)工程における挿入されたマイクロピペットを卵細胞の細胞膜の手前に位置決めし、精子を注入することを特徴とするマイクロマニピュレーション装置を用いた細胞操作方法

【請求項6】 マイクロマニピュレーション装置を用い 40 た細胞操作方法において、(a) 固定された動物細胞にマイクロピペットを接触させる工程と、(b) 前記マイクロピペットに連通する流体に接触するダイヤフラムを介して配置される圧電素子の駆動により前記マイクロピペット内の流体の吸引を行い、前記動物細胞の細胞膜の微小部分を弱体化又は開孔する工程と、(c) 該弱体化又は開孔された動物細胞の細胞膜の微小部分に前記マイクロピペットを挿入する工程とを施すことを特徴とするマイクロマニピュレーション装置を用いた細胞操作方

2

【請求項7】 マイクロマニピュレーション装置を用いた細胞操作方法において、(a) 固定された植物細胞にマイクロピペットを接触させる工程と、(b) 前記マイクロピペットに連通する流体に接触するダイヤフラムを介して配置される圧電素子の駆動により前記マイクロピペット内の流体の吸引を行い、前記植物細胞の細胞膜の微小部分を弱体化又は開孔された植物細胞の細胞膜の微小部分に面記マイクロピペットを挿入する工程とを施すことを特徴とするマイクロマニピュレーション装置を用いた細胞操作方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マイクロマニピュレーション装置及びそれを用いた細胞操作方法に関する。 【0002】

【従来の技術】従来、このような分野の技術としては、 以下に示すようなものがあった。 図9は従来のマイクロ マニヒュレーションシステムの全体構成図である。図 中、1はベース、2はベース1上に配置された顕微鏡、 3は位置検出器、1は微動部、5は粗動部、6はTVカ メラ、7はマイクロインジェクタ、8は左操作ボック ス、9は右操作ボックス、10はカメラ制御ユニット、 11はビデオモニタ、12は主制御ユニットである。 【0003】この図に示すように、2つの操作ボックス 8,9では、左右の微動部4、粗動部5を操作する一方 で、注入液量測定など各種の機能の制御も行う。また、 顕微鏡2にはTVカメラ6が設けられており、細胞の状 低や微細操作の様子がビデオモニタ11に写し出され、 観察される。ここで、マイクロインジェクタフはノブを 有し、マイクロマニピュレーション操作は、専ら操作者 の手によって行われている。

【0005】操作対象の細胞の性質、あるいはマイクロビベットの先端の径、先端の形状により挿入のし易さは異なるが、一般に容易ではなく、針先を砥石で研密し鋭利にする。または、マイクロビベットの先端を更に熱加工し、細いスパイクを作る。あるいは針先を軸線方向に振動させるなど工夫を強いられている。

[0006]

【発明が解決しようとする課題】このように、従来のマイクロマニピュレータによれば、細胞の操作には不十分であり、満足のいくものではなかった。特に、細胞の外の 皮を質通する場合には、内部に大きなダメージを与え、

(3)

その細胞の操作における成功率は低く、信頼性の面で問

【0007】図10はかかる従来の細胞操作の一例を示 す工程図である。

(1) まず、図10(a)に示すように、吸着孔を有す る保持ピペット13で細胞14を保持する。

(2) 次に、図10(b) に示すように、細胞14の透 明帯15にマイクロピペット18の先端を押し当てて透 明帯15を貫通する。しかし、透明帯15は結構厚いの で、細胞14の卵細胞質16にダメージを与えることに なる。この透明帯15を貫通し易いように、マイクロビ ベット18日体を圧電索子の駆動により振動させるよう にしたものが提案されている(例えば、特別平6-90 770号公報参照)が、それでも、卵細胞質16にダメ ージを与えることは避けられない。また、マイクロピペ ット18の針先は卵細胞質16の奥深くまで挿入されて しまい、不用意に細胞を偽つける結果になる。

【0008】(3)次に、図10(c)に示すように、 マイクロピペット18が卵細胞膜17を貫通して、卵細 胞質16へ刺入されて、薬液の注入が行われる。また、 上記したマイクロビペットによる透明体の貫通時の卵細 胞質のダメージをやわらげるために、圧電素子によるマ イクロピペットの微小移動を行わせるようにしたもの が、本願出願人等によって提案されている(特公平6… 98582号公報、特公平6-98583号公報、特公 平6-98584号公禄等参照).

【0009】本発明では、上記圧電素子によるマイクロ ビペットの微小移動に加えて、更に、マイクロピペット 内の流体を、ダイヤフラムを介して別の圧電素子の駆動 により、直接的に駆動し、細胞の操作を行うようにして 30 いる。本発明は、上記した従来のマイクロピペットのよ うに、砥石での研磨や先端のスパイク加工などを必要と せず、細胞に対して的確に挿入することができるととも に、細胞操作を円滑に行い得る動作流体を、直接的に駆 動するマイクロマニヒュレーション装置及びそれを用い た細胞操作方法を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明は、上記目的を達 成するために、

(1) マイクロマニピュレーション装置において、配管 内に流体が充填されるマイクロピペットと、前記流体に 接触するダイヤフラムを介して配置される圧電素子と、 この圧電素子を駆動する駆動電源とを備え、前記圧電素 子の駆動により前記マイクロビペット内の流体を駆動す るようにしたものである。

【0011】(2)マイクロマニピュレーション装置を 用いた細胞操作方法において、固定された卵細胞にマイ クロピペットを接触させる工程と、前記マイクロピペッ トに連選する流体に接触するダイヤフラムを介して配置 される圧電素子の駆動により前記マイクロピペット内の 50 は雰瓏することができる。そして、圧電素子を駆動させ

流体の吸引を行い、前記卵細胞の透明帯の微小部分を弱 体化又は開孔する工程と、この弱体化又は開孔された卵 細胞の透明帯の微小部分に前記マイクロピペットを挿入 する工程とを施すようにしたものである。

【0012】(3)上記(2)記載のマイクロマニビュ レーション装置を用いた細胞操作方法において、前記揮 入されたマイクロピペットを前記圧電素子の駆動により 卵細胞の細胞膜の微小部分を弱体化又は閉孔し、この卵 細胞の細胞質を前記マイクロビペットで吸引するように したものである。

(4)上記(2)記載のマイクロマニピュレーション誌 置による細胞操作方法において、前記挿入されたマイク ロピペットを前記圧電素子の駆動により卵細胞の細胞膜 の微小部分を弱体化又は開孔し、この卵細胞の細胞質内 に前記マイクロピペットで薬液、DNA溶液、精子、細 胞の核などの物質を注入するようにしたものである。

【0013】(5)上記(2)記載のマイクロマニピュ レーション装置による細胞操作方法において、前記挿人 されたマイクロピペットを卵細胞の細胞膜の手前に位置 決めし、椅子を注入するようにしたものである。

(6) マイクロマニピュレーション装置を用いた細胞操 作方法において、固定された動物細胞にマイクロビベッ トを接触させる工程と、前記マイクロピペットに連通す る流休に接触するダイヤフラムを介して配置される圧電 素子の駆動により前記マイクロビペット内の流体の吸引 を行い、前記動物細胞の細胞膜の微小部分を弱体化又は 師孔する工程と、この弱体化又は開孔された動物細胞の 細胞膜の微小部分に前記マイクロピペットを挿入する工 程とを施すようにしたものである。

【0014】(7)マイクロマニピュレーション装置を 用いた細胞操作方法において、固定された植物細胞にマ イクロピペットを接触させる工程と、前記マイクロピペ ットに連通する流体に接触するダイヤフラムを介して配 置される圧電素子の駆動により前記マイクロピペット内 の流体の吸引を行い、前記植物細胞の細胞膜の微小部分 を弱体化又は開孔する工程と、この弱体化又は開孔され た植物細胞の細胞膜の微小部分に前記マイクロピベット を挿入する工程とを施すようにしたものである。

[0015]

【作用】本発明によれば、圧電茶子を駆動すると、ダイ ヤフラムを介してマイクロヒペット内の流体を駆動させ ることができる。卵細胞に対しては、まず、マイクロピ ベットを卵細胞の透明帯に接触させ、圧電素子を駆動さ せて、マイクロピペット内を負圧にすると、透明帯がマ イクロピペットの先端に吸着されて、その吸着された透 明帯の微小部分が弱休化又は穿通される。

【0016】そこで、マイクロピペットをその部分から 卵細胞内に微小移動させる。更に、卵細胞の細胞膜に対 しても圧電索子の駆動により、その微小部分を弱体化又

20

5

て、マイクロピペット内を負圧にして、マイクロピペッ トの先還から細胞質を吸入したり、圧電素子を駆動させ て、マイクロピペット内を正圧にして、マイクロピペッ ト内の精子を細胞質に注入することができる。

【0017】また、動物細胞に対しては、まず、マイク ロピペットを動物細胞の細胞膜に接触させ、圧電素子を 駆動させて、マイクロピペット内を負圧にすると、細胞 膜がマイクロピペットの先端に吸着されて、その吸着さ れた細胞膜の微小部分が弱体化又は穿通される。そこ で、マイクロヒペットをその部分から細胞膜に微小移動 10

【0018】そして、圧電素子を駆動させて、マイクロ ピペット内を負圧にして、マイクロピペットの先端から 細胞質を吸入したり、圧電素子を駆動させて、マイクロ ピペット内を正圧にして、マイクロピペット内へ薬液、 DNA溶液、精子、細胞の核などの物質を注入すること ができる。このような操作により、動物細胞内の細胞質 に何らダメージを与えることなく、細胞の操作を行うこ とができる。

【0019】更に、植物細胞に対しては、まず、マイク ロピペットを植物細胞の細胞壁に接触させ、圧電素子を 駆動させて、マイクロピペット内を負圧にすると、細胞 壁がマイクロビベットの先端に吸着されて、その吸着さ れた細胞量の微小部分が弱体化又は穿通される。そこ で、マイクロピペットをその部分から細胞壁内に微小移 動させる。

【0020】そして、圧電素子を駆動させて、マイクロ ピペット内を負圧にして、マイクロピペットの先端から 細胞質を吸入したり、圧電素子を駆動させて、マイクロ ピペット内を正圧にして、マイクロピペット内へ薬液や 30 細胞の核などの物質を注入することができる。上記した 機構は、換言すれば、マイクロピペットの近傍に配置さ れた圧電素子によるマイクロピストン機構であると言え る、

[0021]

【実施例】以下、本発明の実施例について図面を参照し ながら詳細に説明する。図1は本発明の第1実施例を示 すマイクロマニピュレーション装置の概略図であり、図 1 (a) はそのマイクロマニピュレーション装置の全体 構成図、図1(b)はそのA部(微小移動機構)の拡大 40 図でる。

【0022】この図に示すように、マイクロピペット2 1 をマイクロシリンジ22に取り付け、このマイクロシ リンジ22はスクリュ付き注射器の構造をしており、マ イクロインジェクタ30(例えば、本願出願人の提案に 係る特開平3-119989号公報参照)によって、正 負の圧力を加えることができるが、また、マイクロシ リンジ22は微小移動機構25により、直線方向へ移動 可能にする。

22の一部にチャンバー26を設け、マイクロシリンジ 22内の流休に接触するようにダイヤフラム27を設 け、このダイヤフラム27とチャンバー26間に圧電素 子28を配置して、この圧電素子28を圧電素子駆動電 源29からの印加電圧によって駆動して、マイクロシリ ンジ22内の流体を駆動することができる。なお、24 はマイクロシリンジホルダであり、係合部24aにおい て摩擦係合させるようにしている。23はプランジャで ある。

6

【0024】したがって、圧電素子28の縮小により、 マイクロシリンジ22内の流体は負圧となり、マイクロ ピペット21により試料の吸入を行うことができ、圧電 素子28の伸長により、マイクロシリンジ22内の流体 はJE圧となり、マイクロピペット21から流体を試料へ 注入することができる。 また、 図1 (b) に示すよう に、微小移動機構25は、図1 (b) に示すように、マ イクロシリンジ22に固定される鍔25aと、この鍔2 5aに固定される圧電素子25bと、この圧電素子25 bに取り付けられる慣性体25cとを有し、圧電素子2 5 bにはリード線25 dにより、パルスが加えられる。 また、25 eはカバーである。

【0025】図2は本発明の第2実施例を示すマイクロ マニヒュレーション装置の構成図であり、図2(a)は そのマイクロマニピュレーション装置の全体構成図、図 2 (b) はそのマイクロマニピュレーション装置のマイ クロシリンジ部の要部断面図、図2(c)はそのマイク ロマニピュレーション装置の直線方向への微小移動機構 である。

【0026】図2(a)において、31はベース、32 はステージ、33はマイクロシリンジホルダ、35は微 小移動機構であり、図2(c)に示すように、鍔35a に固着される圧電素子356と、この圧電素子356の 後端に固着される價性体35cを具備する直線方向への 微小移動機構35であり、圧電素子350にはリード線 35dが接続されて、駆動バルストが印加される(詳細 は、特公平6-98582号公報参照)。

【0027】また、40はマイクロシリンジであり、こ のマイクロシリンジ40の役端部には上記した歐小移動 機構35が配置されている。このマイクロシリンジ40 はマイクロシリンジホルダ33の係合部34で摩擦係合 するようになっている。また、マイクロシリンジ40の 先端にはマイクロピペット41が装着されている。50 はこのマイクロインジェクション装置のマイクロビベッ ト41の駆動を行うための微小移動機構35を駆動する ための制御ボックス、51は位置検出器、52は顕微鏡 である。

【0028】この実施例においては、更に、図2(b) に示すように、マイクロシリンジ40に、凸状のフレー ム53を設けて、チャンバー54を形成し、マイクロシ 【0023】更に、この実施例では、マイクロシリンジ 50 リンジ40内の流体57に接触するようにダイヤフラム

FAXPAT INC

55をチャンパー54の底部に張設し、そのダイヤフラ ム55と凸状のフレーム53間に圧電索子56を配置す る。この圧電素子56は、圧電素子駆動電源58からの 直流印加電圧Vによって、縮小・仲長駅動可能である。 【0029】なお、この圧電素子駆動電源58は、前記 した制御ボックス50に統合し、総合的に制御するよう にしてもよいことは言うまでもない。 図3は本発明の第 3実施例を示すマイクロマニピュレーション装置のマイ クロピペットによる細胞操作状態を示す図である。 図3 に示すように、吸着孔62を有する保持ピペット61に 10 よって卵細胞63を固定する。その卵細胞63の透明帯 64にマイクロピペット71の先端を接触させる。ここ で、マイクロピペット71の先端の部分には、培養液、 DNA液や精子を有する浮遊液72などが入っている。 その液体の後方には動作流体73が充填されている。さ らには、ダイヤフラムの後方に電磁力を設けることによ り、動作流体73の容量を少なくしてピストン効果を高 めることができる。

【0030】 このようにして、ダイヤフラムを介した圧 電素子 (図示なし) の駆動により、マイクロピペット7 1の内部を介圧にして、卵細胞63の微小部分を吸着し て、その微小部分を弱体化乃至穿通する。なお、65は 細胞質、66は細胞質を包む細胞膜である。そこで、制 御ポックス50 (図2参照) からのパルスによる圧電素 子の駆動により、マイクロピペット71を前方へ微小移 動機構35を駆動することにより、前記した弱体化乃至 穿通された卵細胞63の微小部分にマイクロピペット7 1を挿入し、卵細胞63の内部にマイクロピペット71 を進める(図示なし)。

【0031】以下、木発明のマイクロマニピュレーショ 30 ン装置を用いた細胞操作について説明する。 図4は本発 明のマイクロマニピュレーション装置を用いた第1の細 胞操作工程図である。ここでは、卵細胞の操作(顕微接 枱)について説明する。

(1)まず、図4 (a)に示すように、吸着孔62を有 する保持ピベット61で卵細胞63を保持した後、その 卵細胞63の透明帯64に、マイクロピペット81の先 端を接触させる。

【0032】(2)次に、図4(b)に示すように、電 磁弁85を閉じて、圧電素子84が縮小するように駆動 して、液体86を負圧にして透明帯64の微小部分を吸 着して、その微小部分を弱体化乃至穿通する。

(3) 次いで、図4 (c) に示すように、電磁弁85は 閉じたままで、透明帯64の弱体化乃至穿通した微小部 分にマイクロピペット81を微小移動して、細胞膜66 の微小部分を圧電素子84が縮小するように駆動して、 液休86を負圧にして細胞膜66の微小部分を吸着し て、その敵小部分を弱体化乃至穿通してマイクロピペッ ト81を細胞質65内に挿入する。

【0033】そこで、圧電素子84を伸長して、マイク 50 5内に挿入する。

ロピペット81内の液体86を駆動して細胞質65内に 注入する。ここで、液体86としては、例えば、薬液、 DNA溶液、精子、細胞の核などの物質である。なお、 82は凸状のフレーム、83はダイヤフラムである。図 5は本発明のマイクロマニピュレーション装置を用いた 第2の細胞操作工程図である。ここでは、マイクロピペ ット81の先端部には精子浮遊液とともに、精子が存在

8

する液体87を入れておく。 【0034】 (1) まず、 図5 (a) に示すように、 吸 者孔62を有する保持ピペット61で卵細胞63aを保 持した後、その卵細胞63aの透明帯64に先端内径約 5 mmのマイクロピペット81の先端を接触させる。

(2)次に、図5 (b)に示すように、電磁弁85を閉 じて、凸状のフレーム82とダイヤフラム83間に設け られる圧電素子84が縮小するように駆動して、液体8 7を負圧にして透明帯64の微小部分を吸着して、その 微小部分を弱休化乃至穿通する。

【0035】(3)次いで、図5(c)に示すように、 電磁弁85は閉じたままで、透明帯64の弱体化乃至穿 通した微小部分に、マイクロピペット81を微小移動し て、透明帯64にマイクロピペット81の先端を巡過さ せ、細胞質65aの手前に位置決めし、そこで、電磁弁 85を閉じたままで、圧電素子84を伸長して、マイク ロピペット81から精子浮遊液とともに、精子が存在す る液体87を注入する。

【0036】すると、自力では透明帯64を穿通できな い液休87内の精子も細胞膜66aは薄いので、自力で 細胞質65a内に進入することができる。その後、圧電 素子84を縮小して、マイクロビベット81を負圧にし て、注入された精子浮遊液を吸引、回収する。最後に、 マイクロビペット81を抜去する。

【0037】図6は本発明のマイクロマニピュレーショ ン装置を用いた第3の細胞操作工程図である。ここで も、卵細胞の操作について説明する。

(1)まず、図6 (a)に示すように、吸着孔62を有 する保持ピペット61で卵細胞63を保持した後、その 卵細胞63の透明帯64にマイクロビベット81の先端 を接触させる。

【0038】(2)次に、図6(b)に示すように、電 磁弁85を閉じて、凸状のフレーム82とダイヤフラム 83間に設けられる圧電素子84が縮小するように駆動 して、液体88を負圧にして透明帯64の微小部分を吸 若して、その微小部分を弱体化乃至穿通する。

(3)次いで、図6 (c)に示すように、電磁弁85は 閉じたままで、透明帯 6 4 の弱体化乃至穿通した微小部 分にマイクロピペット81を微小移動する。そこで、圧 電索子84が縮小するように駆動して、液体88を負圧 にして細胞膜66の微小部分を吸者して、その微小部分 を弱体化乃至穿通してマイクロピペット81を細胞質6

09/14/98

9

【0039】そこで、圧電素子84を縮小して、マイクロビベット81内の液体88を駆動して負圧にし、細胞質65内から細胞質をマイクロビベット81に吸入する。このように、上記実施例によれば、透明帯の局所にのみ応力がかかり、また、マイクロビベットは挿入された時点でも、細胞の中に必要以上に挿入されることがなく、細胞へのダメージが小さい。

【0040】また、圧電素子の縮小・仲長の程度を、印加されるパルスの高さ、パルス幅等を調整することにより、注入・吸入圧力や、注入・吸人量を変化させることができ、被対象細胞に対して最適な設定が可能であり、この点からも細胞へのダメージを小さくすることができる。更に、細胞への挿入以外に微量の吸引と注入を行うマイクロインジェクタとしても利用できることは第1実 節例からも明らかである。

【0041】また、コントローラを介して、手動で吸引あるいは注入を行うマイクロマニピュレータ用微小器具として構成できることも明らかである。このように、従来の手動式マイクロインジェクタに比べ、自動で操作できるという利点以外に、上記したマイクロピストン機構をマイクロピベットに極めて近い位置に設置することができるため、配管による応答遅れがなく、応答性の高い操作ができる。

【0042】図7は本発明のマイクロマニヒュレーション装置を用いた第4の細胞操作工程図である。ここでは、動物細胞の操作について説明する。

(1)まず、図7(a)に示すように、吸着孔62を有する保持ピペット61で動物細胞91を保持した後、動物細胞91の細胞膜92に、マイクロピペット81の先端を接触させる。93は核である。

【0043】(2)次に、図7(b)に示すように、電 磁介85を閉じて、圧電素子84が縮小するように駆動 して、液休86を負圧にして細胞膜92の微小部分を吸 着して、その微小部分を弱体化乃至穿通する。

(3)次いで、図7(c)に示すように、電磁弁85は 閉じたままで、細胞膜92の場体化乃至穿通した微小部 分にマイクロビペット81を微小移動して、圧電素子8 4を伸長して、マイクロピペット81内の液体86を駆 動して動物細胞91の核93内に注入する。ここで、液 体86としては、例えば、薬液、DNA溶液などの物質 である。なお、82は凸状のフレーム、83はダイヤフ ラムである。

【0044】図8は本発明のマイクロマニピュレーション装置を用いた第5の細胞操作工程図である。ここでは、植物細胞の操作について説明する。

(1) まず、図8(a) に示すように、吸着孔62を有する保持ピペット61で植物細胞101を保持した後、その植物細胞101の細胞壁102にマイクロピペット81の先端を接触させる、103は細胞膜、104は核である。

10

【0015】(2)次に、図8(b)に示すように、電磁が85を閉じて、凸状のフレーム82とダイヤフラム83間に設けられる圧電素子84が縮小するように駆動して、液体88を負圧にして植物組胞101の細胞採102の微小部分を吸着して、その微小部分を弱体化乃至穿通する。

(3)次いで、図8(c)に示すように、電磁弁85は 閉じたままで、細胞壁102の弱体化乃至穿通した微小 部分にマイクロピペット81を微小移動して、圧電素子 84を縮小して、マイクロピペット81内の液体88を 駆動して液体88を負圧にして植物細胞101から細胞 質等をマイクロピペット81に吸入する。

【0046】なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。

[0047]

【発明の効果】以上、詳細に説明したように、本発明によれば、卵細胞、動物細胞や植物細胞等の細胞内の細胞質に何らダメージを与えることなく、細胞の操作を行うことができる。上記した機構は、換電すれば、マイクロピペットの近傍に配置された圧電素子によるマイクロピストン機構であると言える。

【0048】また、従来の手動式マイクロインジェクタに比べ、自動で操作できるという利点以外に、上記したマイクロピストン機構をマイクロピペットに極めて近い位置に設置することができるため、配管による応答遅れがなく、応答性の高い操作ができる。

【図面の簡単な説明】

50

【図1】本発明の第1実施例を示すマイクロマニピュレ ―ション装置の概略図である。

【図2】木発明の第2実施例を示すマイクロマニピュレーション装置の構成図である。

【図3】本発明の第3実施例を示すマイクロマニピュレーション装置のマイクロピペットによる細胞操作状態を示す例である。

【図4】本発明のマイクロマニビュレーション装置を用いた第1の細胞操作工程図である。

【図5】本発明のマイクロマニピュレーション装置を用いた第2の細胞操作工程図である。

【図6】本発明のマイクロマニビュレーション装置を用いた第3の細胞操作工程図である。

【図7】本発明のマイクロマニピュレーション装置を用いた第4の細胞操作工程図である。

【図8】本光明のマイクロマニピュレーション装置を用いた第5の細胞操作工程図である。

【図9】従来のマイクロマニピュレーションシステムの 全体構成図である。

【図10】従来の細胞操作の一例を示す工程図である。 【符号の説明】 (7)

特開平8-290377

1 1

21.41.71.81 マイクロピペット

22,40 マイクロシリンジ

23 プランジャ

24.33 マイクロシリンジホルダ

25, 35 微小移動機構

25a, 35a 鍔

256, 28, 356, 56, 84 圧電素子

25c, 35c 慣性体

25d リード線

25e カバー

26.54 チャンバー

27, 55, 83 ダイヤフラム

29.58 圧電素子駆動電源

30 マイクロインジェクタ

31 ベース

32 ステージ

34 係合部

35d リード線

50 制御ボックス

【図1】

51 位置検出器

52 類微鏡 53.82 凸状のフレーム

57 流体

保持ピペット 61

吸着孔 62

63,63a 卵細胞

透明带 64

65,65a 細胞質

10 66,66a,92,103 細胞膜

培養液、DNA液や柿子を有する浮遊液 72

12

73 動作流体

85 電磁弁

86,87,88 液体

91 動物細胞

66,92,103 細胞膜

93,104 核

101 植物細胞

細胞壁 102

【図2】

(8)

特開平8-290377

[図3]

【図4】

(図5)

【図6】

@ 010

(9)

特開平8-290377

