Записки по ДИС2 - Лекция 2

22 марта 2023 г.

 ${f Th.\ 1}$ Нека $f:[a,b] o \mathbb R$ и нека съществува $\lim_{x o\infty}\sigma_f(au;\ \xi)=I.$ Тогава f е ограничена, f е интегруема по Риман и $\int_a^b f=I.$

Доказателство: Нека $f:[a,b]\to\mathbb{R}$ и $\epsilon>0$ е достатъчно голямо. Нека $\epsilon=3>0$ е фиксирано, откъдето следва:

 $\exists \delta > 0 \forall \tau, d(\tau) < \delta \forall \xi - \tau : |\sigma_f(\tau, \xi) - I| < 3.$

Нека $\tau: a=x_0 < x_1 < x_2 < \ldots < x_n=b$ е такова, че $d(\tau) < \delta$. Тогава за всеки избор на $\xi_i \in [x_{i-1},\ x_i]\,,\ i\in\{1,\ldots,n\}$ е в сила

$$I - 3 < \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) < I + 3$$

Достатъчно е да докажем, че f е ограничена в $[x_{i-1}, x_i]$. Фиксираме $\xi_j \in [x_{j-1}, x_j], j \neq i$.

Th. 2 $A\kappa o\ f:[a,b]\to\mathbb{R}\ e\ интегруема\ no\ Риман\ (следователно\ u\ f\ e\ ограничена),\ mo\ съществува <math>\lim_{x\to\infty}\sigma_f\left(\tau;\ \xi\right)=\int_a^bf.$