127. Sea $b \in \mathbb{R}$ arbitrario. Demuestra que $b/n \to 0$ cuando $n \to \infty$.

Solución. Si b = 0 es la sucesión constante 0, la cual trivialmente converge a 0, de manera que supongamos en adelante que $b \neq 0$.

Sea así $\varepsilon > 0$, observamos en primer lugar que $\varepsilon/|b| > 0$, claramente.

Por la propiedad arquimediana aplicada a $|b|/\varepsilon$ sabemos que existe $N_{\varepsilon} \in \mathbb{N}$ tal que $|b|/\varepsilon \leq N_{\varepsilon}$ o, equivalentemente, $1/N_{\varepsilon} \leq \varepsilon/|b|$.

Dado que para todo $n \ge N_{\varepsilon}$ se tiene que $1/n \le 1/N_{\varepsilon} \le \varepsilon/|b|$, tenemos que $|b/n| \le \varepsilon$ para todo $n \ge N_{\varepsilon}$.

Esto es la definición de que $b/n \to 0$ cuando $n \to \infty$, como queríamos.

128. Emplea la definición de límite de una sucesión para demostrar que:

$$(1) \quad \lim_{n \to \infty} \frac{n}{n^2 + 1} = 0,$$

(3)
$$\lim_{n \to \infty} \frac{3n+1}{2n+5} = \frac{3}{2},$$

$$(2) \quad \lim_{n \to \infty} \frac{2n}{n+1} = 2,$$

(4)
$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}.$$

Solución. (1) Dado que $n^2 < n^2 + 1$ para todo $n \in \mathbb{N}$, deducimos que

$$\left| \frac{n}{n^2 + 1} - 0 \right| = \frac{n}{n^2 + 1} \le \frac{n}{n^2} = \frac{1}{n},$$

para todo $n \in \mathbb{N}$. Sea así un número real cualquiera $\varepsilon > 0$, sabemos por la Propiedad Arquimediana que existe $N_{\varepsilon} \in \mathbb{N}$ tal que $1/\varepsilon \leq N_{\varepsilon}$ i.e. $1/N_{\varepsilon} \leq \varepsilon$. De aquí se deduce que para todo $n \geq N_{\varepsilon}$ necesariamente $1/n \leq 1/N_{\varepsilon} \leq \varepsilon$, como queríamos probar.

El resto de apartados se prueba de manera análoga:

(2)
$$\left| \frac{2n}{n+1} - 2 \right| = \frac{2}{n+1} \le 2 \cdot \frac{1}{n}$$

(3)
$$\left| \frac{3n+1}{2n+5} - \frac{3}{2} \right| = \frac{13}{4n+10} \le 13 \cdot \frac{1}{n}$$

$$(4) \quad \left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| = \frac{5}{4n^2 + 6} \le 5 \cdot \frac{1}{n^2} \le 5 \cdot \frac{1}{n}$$

129. Demuestra que:

$$(1) \quad \lim_{n \to \infty} \frac{1}{\sqrt{n+7}} = 0,$$

$$(3) \quad \lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = 0,$$

$$(2) \quad \lim_{n \to \infty} \frac{2n}{n+2} = 2,$$

(4)
$$\lim_{n \to \infty} \frac{(-1)^n n}{n^2 + 1} = 0.$$

Solución. (1) Sea $\underline{\varepsilon} \geq 0$; por la propiedad arquimediana existe, dado el número real $1/\varepsilon^2$, cierto $\underline{N_{\varepsilon}} \in \mathbb{N}$ con $N_{\varepsilon} \geq 1/\varepsilon^2 \iff 1/\sqrt{N_{\varepsilon}} \leq \varepsilon$ de forma que para todo $n \geq N_{\varepsilon}$

$$\frac{1}{\sqrt{n+7}} \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N_{\varepsilon}}} \le \frac{1}{\sqrt{1/\varepsilon^2}} = \varepsilon_{\infty}.$$

(2)
$$\left| \frac{\sqrt{n}}{n+1} \right| \le \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} \le \dots \le \varepsilon$$

$$(3) \left| \frac{2n}{n+2} - 2 \right| = \frac{4}{n+2} \le \frac{4}{n} \le \dots \le \varepsilon$$

$$(4) \left| \frac{(-1)^n n}{n^2 + 1} \right| = \frac{n}{n^2 + 1} \le \frac{n}{n^2} = \frac{1}{n} \le \dots \le \varepsilon$$

130. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales. Demuestra que $x_n \to 0$ cuando $n \to \infty$ si y solo si $|x_n| \to 0$ cuando $n \to \infty$. Proporciona un ejemplo que muestre que la convergencia de la sucesión $\{|x_n| : n \in \mathbb{N}\}$ no implica la convergencia de la sucesión $\{x_n : n \in \mathbb{N}\}$ en general.

Solución. Sea $\varepsilon > 0$, dado que $|x_n - 0| = |x_n| = ||x_n| - 0|$ para cualquier $n \in \mathbb{N}$, encontrar $N_{\varepsilon} \in \mathbb{N}$ de forma que para todo $n \ge N_{\varepsilon}$ se verifique $|x_n - 0| \le \varepsilon$ es equivalente a que $||x_n| - 0| \le \varepsilon$, esto es, $x_n \to 0$ si y solo si $|x_n| \to 0$, cuando $n \to \infty$.

Para lo segundo, basta considerar la sucesión con término general $x_n = (-1)^n$ para cada $n \in \mathbb{N}$. Se verifica que $|x_n| = 1$ para cada $n \in \mathbb{N}$ de forma que la sucesión de valores absolutos es trivialmente convergente, pero la sucesión original no es convergente ya que se pueden extraer dos subsucesiones, las correspondientes a los números impares y pares, respectivamente, con límites distintos.

131. Demuestra que $1/n - 1/(n+1) \to 0$ cuando $n \to \infty$.

Solución. Sea $\varepsilon > 0$, sabemos que existe $N_{\varepsilon} \in \mathbb{N}$ tal que $1/N_{\varepsilon} \leq \varepsilon$ por la Propiedad Arquimediana, con lo que

$$\left| \left(\frac{1}{n} - \frac{1}{n+1} \right) - 0 \right| = \frac{1}{n} - \frac{1}{n+1} \le \frac{1}{n} \le \frac{1}{N_{\varepsilon}} \le \varepsilon$$

para todo $n \geq N_{\varepsilon}$, y por ende la sucesión converge a cero, como queríamos probar.

132. Demuestra que $1/3^n \to 0$ cuando $n \to \infty$.

Solución. Demostremos que $n < 3^n$ para todo $n \in \mathbb{N}$, de donde sacamos que

$$\left|\frac{1}{3^n} - 0\right| = \frac{1}{3^n} \le \frac{1}{n} \le \frac{1}{N_{\varepsilon}} \le \varepsilon$$

donde lo último sale de la Prop. Arquimediana, como en los otros ejs.

Caso base trivial: $1 < 3^1 = 3$. Caso inductivo:

$$n+1 < 3^n + 1 \le 3^n + 2 \cdot 3^n = 3 \cdot 3^n = 3^{n+1}$$

donde hemos usado que $1 < 2 \cdot 1 \le 2 \cdot 3^n$ pues $1 \le 3^n$.

133. Sea $b \in \mathbb{R}$ con 0 < b < 1, demuestra que $nb^n \to 0$ cuando $n \to \infty$. Como sugerencia, puedes emplear el Teorema del Binomio.

Solución. Es fácil probar que $1 \le 1/b$ y por tanto $b = \frac{1}{1/b} = \frac{1}{1+\delta}$ para cierto $\delta > 0$.

Por el teorema del binomio, para todo $n \geq 1$

$$(1+\delta)^n = 1 + n\delta + \frac{1}{2}n(n-1)\delta^2 + \dots + \delta^n \overset{\text{canc. todos excepto 3ro}}{\geq} \frac{1}{2}n(n-1)\delta^2$$

Por consiguiente, para todo n > 1

$$0 \le nb^n = \frac{n}{(1+\delta)^n} \le \frac{n}{\frac{1}{2}n(n-1)\delta^2} = \frac{2}{(n-1)\delta^2} = \frac{2}{\delta^2} \frac{1}{n-1} \to 0.$$

y por la Regla del Sandwich tenemos que $nb^n \to 0$.

134. Demuestra que $(2n)^{1/n} \to 1$ cuando $n \to \infty$.

Solución. Dado que $(2n)^{1/n} > 1$ cualquiera que sea $n \in \mathbb{N}$, podemos escribir $(2n)^{1/n} = 1 + \delta_n$, para cierto $\delta_n \in \mathbb{R}$, $\delta_n > 0$.

Demostrar que $\lim_{n \to \infty} (2n)^{1/n} = 1$ es equivalente a probar que $\lim_{n \to \infty} \delta_n = 0$.

Con ello, en virtud del Teorema del Binomio,

$$2n = [(2n)^{1/n}]^n = (1 + \delta_n)^n = 1 + n\delta_n + \frac{n(n-1)}{2}\delta_n^2 + \dots + \delta_n^n \overset{\text{canc. todos excepto 3ro}}{\geq} \frac{1}{2}n(n-1)\delta_n^2,$$

de forma que $\delta_n^2 \leq 4/(n-1)$ para todo $n \in \mathbb{N}$, $n \geq 2$, y por ende $\delta_n \to 0$.

135. Demuestra que $n^2/n! \to 0$ cuando $n \to \infty$.

Solución. Para $n \geq 3$,

$$0 \le \left| \frac{n^2}{n!} - 0 \right| = \frac{n^2}{n!} \le \frac{n^2}{n(n-1)(n-2)} = \frac{n}{(n-1)(n-2)} = \frac{n}{n^2 - 3n + 2} \le \frac{n}{n^2 - 3n} = \frac{1}{n-3} \to 0$$

y por la Regla del Sandwich tenemos el resultado.

136. Demuestra que $2^n/n! \to 0$ cuando $n \to \infty$. Como sugerencia, prueba que para todo $n \ge 3$ se verifica que $0 < 2^n/n! \le 2(2/3)^{n-2}$.

Solución. Para todo $n \geq 3$,

$$0 \le \frac{2^n}{n!} = \frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot \frac{2}{2} \cdot \frac{2}{1} \le \underbrace{\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \dots \cdot \frac{2}{3}}_{n-2 \text{ veces}} \cdot \underbrace{\frac{2}{2}}_{=1} \cdot \underbrace{\frac{2}{3}}_{=2} = 2 \cdot \left(\frac{2}{3}\right)^{n-2} = \frac{9}{2} \left(\frac{2}{3}\right)^n \to 0$$

y por la Regla del Sandwich tenemos el resultado.

Rigurosamente se prueba por inducción: el caso base n=3 es trivial, $0 < 2^3/3! = 4/3 \le 2 \cdot (2/3) = 4/3$; el caso inductivo:

$$\frac{2^{n+1}}{(n+1)!} = \frac{2^n}{n!} \frac{2}{n+1} \le 2\left(\frac{2}{3}\right)^{n-2} \underbrace{\frac{2}{n+1}}_{\le 2/3} \le 2\left(\frac{2}{3}\right)^{n-2} \frac{2}{3} = 2 \cdot \left(\frac{2}{3}\right)^{(n+1)-2},$$

lo cual concluye el ejercicio.

Recordatorio. Que para 0 < c < 1 se tenga lím $c^n = 0$ se prueba usando el teorema de la convergencia monótona, pues $c^{n+1} = c \cdot c^n \le 1 \cdot c^n = c^n$. O bien, más fácil de la Desigualdad de Bernoulli $(1+\alpha)^n \ge 1 + n\alpha$, escribiendo $c = 1/(c^{-1}) = 1/(1+\alpha)$ para cierto $\alpha > 0$, pues $c^{-1} > 1$.

137. Sea $\{x_n:n\in\mathbb{N}\}$ una sucesión de números reales convergente y denotemos por x>0 su límite, que suponemos positivo. Demuestra que existe $n_0\in\mathbb{N}$ de forma que para todo $n\geq n_0$ se verifica que $x/2< x_n<2x$.

Solución. Intuitivamente, dado que eventualmente x_n tiene que estar arbitrariamente cerca de x, el límite de la sucesión, al menos tiene que estar en un entorno de x, un concreto es el del enunciado, (x/2, 2x).

Rigurosamente, sea $\varepsilon = x/2$, el cual es un número real positivo pues x > 0 por hipótesis. Sabemos por la definición de límite de la sucesión que existe $n_0 = N(x/2)$, de forma que para todo $n \ge n_0$, $|x_n - x| \le x/2$, es decir, $-x/2 < x_n - x < x/2$ o, equivalentemente sumando x, $x/2 < x_n < 3x/2 \le 2x$, como queríamos demostrar.