Geometric Deep Learning of RNA Structure

Townshend, Raphael JL, et al. Science 373.6558 (2021): 1047-1051.

Hyeonseo Hwang, Advanced Bioinformatics

Background

Benchmark

1. RNA 3-D Structure has Biological Importance

1. Two Strategies for RNA 3-D Structure Prediction

Comparative Sequence Analysis Folding Algorithms
+
Scoring Schemes

Experimental Machine Learning

1. RNA 3-D Structure Prediction is Challenging

Robust Prediction (AlphaFold2)

Performance ceiling at ~80% Precision

1. Why is it Difficult to Predict RNA Structures?

Results of tertiary interaction

Pseudoknot

Triplet Interaction

Noncanonical Pairing

1. Why is it Difficult to Predict RNA Structures?

- Low availability of closely related template structures.
- Low value of sequence coevolution information.
- Characteristics of energetically favorable RNA structures are not well understood.

2. FARFAR2 Predicts RNA 3-D Structure

2. FARFAR2 Predicts RNA 3-D Structure

V. cholerae tandem glycine riboswitch

B. subtilis T-box riboswitch

VARNAI

G. kaustophilus T-box riboswitch

There are rooms for improvement.

2. FARFAR2 Predicts RNA 3-D Structure

How can we find the BEST model from the pool of thousand structures?

3. ARES Scores Candidate RNA Structures

RNA structure prediction with ARES

Atomic

Rotationally

Equivariant

Scorer

3. ARES Scores Candidate RNA Structures

RNA structure prediction with ARES

Learns from known RNA structures to assess the accuracy of RNA structures.

3. Challenges in Scoring Candidate RNA Structures

RNA structure prediction with ARES

ARES has to:

- Avoid assumptions about known structural characteristics.
- Learn from the limited number of RNA structures.

4. Convolutional Neural Network (CNN)

4. Convolutional Neural Network (CNN)

Each neuron gets input from its receptive field.

4. Tensor Field Network and Rotation Equivariance

Translation equivariance
Convolutional neural
network ✓

Rotation equivariance?

4. Why is Rotation Equivariance Important?

Invariance of physics to rotation or translation

Preserve orientation and position \rightarrow Recognise larger motifs.

4. Tensor Field Network and Rotation Equivariance

Spherical Harmonics

 Eigenfunctions of the angular part of the Laplacian in 3-D

(Wikimedia)

4. Tensor Field Network and Rotation Equivariance

Spherical harmonics of a given L transform together under rotation.

Spherical harmonics are basis functions for irreducible representations of SO(3).

$$=$$
 b_{-1} $+b_0$ $+b_1$

Architecture Benchmark Background & Training

5. ARES Architecture: Overview

A ARES predicts the accuracy of a structural model, given only atomic coordinates and element types

= Point Convolution

5. ARES Only Receives Atomic Information

Structural Model Input File (.pdb)

A ARES predicts the accuracy of a st Structural model of an RNA

								· · · · · ·			
1	ATOM	1	C5'	G A	13	-18.149	-2.986	72.212	1.00	0.00	С
2	ATOM	2	C4'	G A	13	-18.733	-2.791	70.831	1.00	0.00	С
3	ATOM	3	04'	G A	13	-20.018	-2.119	70.941	1.00	0.00	0
4	ATOM	4	C3'	G A	13	-17.944	-1.903	69.884	1.00	0.00	С
5	ATOM	5	03'	G A	13	-16.865	-2.590	69.259	1.00	0.00	0
6	ATOM	6	C1'	G A	13	-20.201	-1.246	69.842	1.00	0.00	С
7	MOTA	7	C2'	G A	13	-19.019	-1.468	68.899	1.00	0.00	С
8	MOTA	8	02'	G A	13	-19.363	-2.476	67.969	1.00	0.00	0
9	MOTA	9	N1	G A	13	-20.904	3.631	68.639	1.00	0.00	N
10	ATOM	10	C2	G A	13	-20.974	2.516	67.843	1.00	0.00	С
11	ATOM	11	N2	G A	13	-21.261	2.722	66.554	1.00	0.00	N
12	ATOM	12	N3	G A	13	-20.776	1.287	68.278	1.00	0.00	N
13	ATOM	13	C4	G A	13	-20.504	1.257	69.600	1.00	0.00	С
14	ATOM	14	C5	G A	13	-20.415	2.308	70.485	1.00	0.00	С
15	ATOM	15	C6	G A	13	-20.618	3.625	70.002	1.00	0.00	С
16	ATOM	16	06	G A	13	-20.562	4.691	70.626	1.00	0.00	0
17	ATOM	17	N7	G A	13	-20.116	1.855	71.763	1.00	0.00	N
18	ATOM	18	C8	G A	13	-20.026	0.559	71.634	1.00	0.00	С
19	ATOM	19	N9	G A	13	-20.245	0.128	70.345	1.00	0.00	N
20	ATOM	20	RPB1	G A	13	-23.581	0.923	71.444	1.00	0.00	Z
21	ATOM	21	RPB2	G A	13	-24.021	2.216	69.838	1.00	0.00	Z

Base

x, y, z-coordinates

Element

5. ARES Architecture in Detail

One-hot representation of atoms: C/N/O

Predicted

RMSD

Dense - 1

5. ARES Architecture in Detail

- Mixes information across channels.
- Analogous to 1x1 convolutions.

5. Equivariant Point Convolution is the Key of ARES

- Neighboring atom's information is shared with the source atom.
- Captures geometric information.
- Rotation and translation equivariant.

5. ARES Filter is a Product of Radial and Angular Functions

Distance relationships between atoms

Orientations between atoms

B.

5. ARES Architecture in Detail

Point-wise and Feature-wise Norm

SoftPlus Activation Function

6. Training and Benchmark sets

C Training set: 18 older, smaller RNA structures

D Benchmark sets: newer, larger RNA structures

6. Training and Benchmark sets

- Puzzles blind RNA structure prediction challenges.
- Benchmark 2: 16 High-resolution RNA structures from PDBs, published in 2008 or later.

6. Training Details

- Optimizer: Adam
- Loss Function: Huber
 - Applied to (predicted RMSD) (true RMSD)
- Trained on 18 RNAs.
 - 14 RNAs: training parameters
 - 4 RNAs: hyperparameter optimization.
- 1,000 structural models generated by FARFAR2 were randomly selected and used for each RNA.
- Batch Size: 16
- Learning Rate: 0.01
- Number of Epoch: 1

Background

Architecture
& Training

Benchmark

7. ARES Outperforms Other RNA Scorers

7. ARES Outperforms Other RNA Scorers

B Lowest RMSD among 10 best-scoring structural models

C Rank of best-scoring near-native structural model

Benchmark 1: near-native models added

7. ARES Excels in Blind RNA Structure Prediction

A Blind prediction accuracy (RMSD, Å)

Method	RNA						
	Α	В	С	D			
ARES	4.8	12.5	9.5	14.5			
Adamiak	9.8	18.7	19.1	18.2			
Bujnicki	9.8	14.0	15.6	20.0			
Chen	11.0	18.1	11.7	32.8			
Ding	19.1	17.4	_	34.3			
Das (Human)	13.6	13.3	10.1	28.8			
iFoldRNA	10.3	23.5	53.3	22.4			
RNAComposer	10.2	19.0	14.1	19.6			
Rosetta	7.7	14.3	10.1	22.2			
SimRNA	13.7	16.2	42.2	22.2			
Xiao	15.4	20.6	27.2	29.4			

A: Adenovirus VA-I RNA

B-D: Bacterial tRNAs

8. ARES Identifies Key Structural Characteristics

A ARES learns helix width for optimal base pairing

B ARES learns to identify key RNA characteristics

8. ARES Recovers of a Non-trained Structural Motif

A. Crystal Structure

B. ARES Prediction

C. Best Competing Prediction

An unusual 3-way junction, whose geometry is defied by a pseudoknot.

8. ARES Identifies RNA Tertiary Interactions

Closely packed tertiary structure results **ARES Prediction** ARES Prediction **Crystal Structure Crystal Structure** Intercalated T-loop Closely packed helices Loop-into-helix Base triplet

9. Conclusion

- ARES learns atomic structures of RNA and scores the accuracy of predicted structures.
- 2. ARES network has translational and rotational equivariance, which allows ARES to properly capture geometric information.
- 3. ARES outperforms competing RNA structure scorers.
- 4. ARES can be used to identify structural characteristics, motifs, and tertiary interactions.

10. Further Research Directions

- ARES relies on external programs to generate candidate structural models.
- 2. ARES can be incorporated into folding programs to guide candidate model generation.
- 3. ARES can be trained to predict structures of proteins, DNA, or Drugs.
- 4. ARES can be used outside of structure prediction.

References

- Townshend, R. J., Eismann, S., Watkins, A. M., Rangan, R., Karelina, M., Das, R., & Dror, R. O. (2021). Geometric deep learning of RNA structure. Science, 373(6558), 1047-1051.
- Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., & Riley, P. (2018). Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219.
- 3. Singh, J., Hanson, J., Paliwal, K., & Zhou, Y. (2019). RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nature communications, 10(1), 1-13.
- Watkins, A. M., Rangan, R., & Das, R. (2020). FARFAR2: Improved de novo Rosetta prediction of complex global RNA folds. *Structure*, *28*(8), 963-976.
- 5. Andrzejewska, A., Zawadzka, M., & Pachulska-Wieczorek, K. (2020). On the way to understanding the interplay between the RNA structure and functions in cells: A genome-wide perspective. International Journal of Molecular Sciences, 21(18), 6770.
- Deshpande, A. (2016). A Beginner's Guide To Understanding Convolutional Neural Networks, (https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks)
- 7. Smidt, T. (2018), Machine Learning for Molecules and Materials, NeurIPS Workshop

How to Use: Pre-trained ARES Webserver

To make a prediction with ARES, submit a Rosetta 'silent file' or a PDB file containing candidate structural models (not both!), and ARES will output a single score (lower is better) for each model in the submitted file. For more details on ARES, please check out our paper!

Server ready with 9152 job(s) in queue.	
Email for results:	
[either] Rosetta 'silent file': Browse No file selected.	
[or] PDB file: Browse No file selected.	
Submit	

Upload progress:

https://colab.research.google.com/drive/1yczwMBkQ-M0Bw00ilqukW0Puzav1tK5K?usp=sharing

Geometric Deep Learning of RNA Structure

Thank you for your attention!