V302

Elektrische Brückenschaltung

 $Christopher\ Krause \\ christopher 2. krause @tu-dortmund.de$

Lucas Witthaus lucas.witthaus@tu-dortmund.de

Durchführung: 09.01.2018 Abgabe: 25.01.2018

Korrektur

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	3
2	The 2.1 2.2 2.3 2.4 2.5	Wheatstonesche Brücke Kapazitätsmessbrücke Induktivitätsmessbrücke Maxwell-Brücke Wien-Robinson-Brücke	4 5 6
3	Dur	chführung	8
4	A us:	wertung Wheatsonesche Brückenschaltung	9
	4.2	Berechnung der Kapazität	11
	4.4 4.5 4.6	Berechnung der Induktivität mit der Maxwell-Brücke	12
5	Disk	kussion	15
Lit	teratı	ur	15

1 Zielsetzung

In diesem Versuch werden mithilfe von verschiedenen elektrischen Brückenschaltungen, Widerstände, Kapazitäten, Induktivitäten und die Qualität von generierten Sinusspannungen ermittelt. Zudem wird die Frequenzabhängigkeit einer Wien-Robinson-Brücke untersucht.

2 Theorie

Brückenschaltungen können jede physikalische Größe messen, welche eindeutig durch einen elektrischen Widerstand darstellbar ist. In einer Brückenschaltung wird die Potentialdifferenz zweier elektrischer Leiter in Abhängigkeit von ihrem Widerstandsverhältnis untersucht.

Abbildung 1: Darstellung einer allgemeinen Brückenschaltung. [1]

Mithilfe der beiden Kirchhoffschen Gesetze lässt sich die Spannung U der Brückenschaltung wie folgt darstellen.

$$U = \frac{R_2 R_3 - R_1 R_4}{(R_3 + R_4)(R_1 + R_2)} U_S \tag{1}$$

Dabei ist U_S die Speisespannung. Für den Fall $R_2R_3=R_1R_4$ verschwindet die gemessene Spannung, wodurch der Fall der abgeglichene Brücke vorliegt. Ist R_1 ein unbekannter Widerstand, kann dieser durch das variieren der anderen Widerstände bestimmt werden, indem untersucht wird, wann die Spannung verschwindet.

Sind die Widerstände komplex, also R=X+jY, so müssen zwei Bedingungen gleichzeitig erfüllt sein:

$$X_1 X_4 - Y_1 Y_4 = X_2 X_3 - Y_2 Y_3 \tag{2}$$

$$X_1Y_4 + X_4Y_1 = X_2Y_3 + X_3Y_2 \tag{3}$$

Im folgenden werden verschiedene Brückenschaltungen beschrieben, welche die für diesen Versuch gesuchten Größen ermitteln.

2.1 Wheatstonesche Brücke

Die Wheatstonesche Brückenschaltung besteht aus vier Widerständen.

Abbildung 2: Darstellung einer Wheatstoneschen Brückenschaltung. [1]

Für den unbekannten Widerstand ${\cal R}_x$ gilt die Abgleichbedingung:

$$R_x = R_2 \frac{R_3}{R_4} \tag{4}$$

2.2 Kapazitätsmessbrücke

Mit dieser Schaltung werden Kapazitäten bestimmt, weshalb mit komplexen Widerständen gerechnet werden muss.

Abbildung 3: Darstellung einer Kapazitätsmessbrücke. [1]

Jeder reale Kondensator besitzt einen Widerstand, welcher auch in Abbildung 3 dargestellt wird. Der Widerstand eines Kondensators ist:

$$R_{C_{real}} = R - \frac{j}{\omega C} \tag{5}$$

Die unbekannten Größen ${\cal C}_x$ und ${\cal R}_x$ betragen:

$$C_x = C_2 \frac{R_4}{R_3} \tag{6}$$

$$R_x = R_2 \frac{R_3}{R_4} \tag{7}$$

Für Frequenzen in dem Bereich von $10^4 {\rm Hz}$ und kleiner gilt $R_2 \approx 0.$

2.3 Induktivitätsmessbrücke

Der komplexe Widerstand einer realen Spule ist definiert durch:

$$R_{L_{real}} = R - j\omega L \tag{8}$$

Die Induktivitätsmessbrücke ist analog zur Kapazitätsmessbrücke aufgebaut.

Abbildung 4: Darstellung einer Induktivitätsmessbrücke. [1]

Die Abgleichbedingungen sind:

$$L_x = L_2 \frac{R_3}{R_4} \tag{9}$$

$$L_{x} = L_{2} \frac{R_{3}}{R_{4}}$$
 (9)

$$R_{x} = R_{2} \frac{R_{3}}{R_{4}}$$
 (10)

Damit diese Schaltung präzise Werte misst, muss die Spule einen möglichst kleinen Widerstand haben, für kleine Frequenzen ist dieser dennoch zu groß, weshalb in diesem Fall die Maxwell-Brücke verwendet wird.

2.4 Maxwell-Brücke

Abbildung 5: Darstellung einer Maxwell-Brücke. [1]

Der Widerstand R_2 soll dabei bekannt sein und als Abgleichelement dienen R_3 und R_4 . Für L_x und R_x ergibt sich dann:

$$L_x = R_2 R_3 C_4 (11)$$

$$R_x = \frac{R_2 R_3}{R_4} \tag{12}$$

2.5 Wien-Robinson-Brücke

Prinzipiell lassen sich Brückenschaltungen bei allen Frequenzen abgleichen. Es gibt jedoch einen Frequenzbereich in dem ein Abgleich unter optimalen Bedingungen durchgeführt werden kann. Mit der Wien-Robinson-Brücke soll dieser Bereich untersucht werden.

Abbildung 6: Darstellung einer Wien-Robinson-Brücke. [1]

Der Kondensator sollte in dieser Schaltung möglichst geringe Verluste besitzen.

Für das Betragsquadrat des Verhältnisses von der Brückenspannung U_{Br} und der Speisespannung U_S folgt:

$$\left|\frac{U_{Br}}{U_S}\right|^2 = \frac{(\omega^2 R^2 C^2 - 1)^2}{9((1 - \omega^2 R^2 C^2) + 9\omega^2 R^2 C^2)}$$
(13)

Das Frequenzverhältnis $\Omega = \frac{\omega}{\omega_0}$ wird eingeführt. Dabei gilt:

$$\omega_0 = \frac{1}{RC} \tag{14}$$

Die Brückenspannung verschwindet bei der Frequenzt ω_0 .

Dann folgt aus Gleichung (13):

$$\left|\frac{U_{Br}}{U_S}\right|^2 = \frac{1}{9} \frac{(\Omega^2 - 1)^2}{(1 - \Omega^2)^2 + 9\Omega^2} \tag{15}$$

Gleichung (15) hat die Form eines Filters. Die Wien-Robinson-Brücke schwächt Schwingungen in einem Bereich um ω_0 ab. Mit dieser Schaltung wird der Klirr-Faktor gemessen. Ein Sinusgenerator kann keine Sinuschwingungen ohne Oberwellen erzeugen. Eine ideale Sinusschwingung besteht nur aus einer Grundschwingung. Der Klirr-Faktor ist ein Maß für die Qualität des Sinusgenerators. Hat der Sinusgenerator die Sperrfrequenz ω_0 der Wien-Robinson-Brücke, bleiben an dem Ausgang nur noch die Oberwellen. Die Summe deren Amplituden wird mit einem Breitband-Millivoltmeter gemessen. Der Klirr-Faktor k lässt sich mit Gleichung (16) berechnen, wobei nur die zweite Oberwelle betrachtet wird:

$$k = \frac{U_2}{U_1} \tag{16}$$

Dabei ist U_1 die Grundschwingung und U_2 die erste Oberschwingung. Die erste Oberschwingung lässt sich wie folgt berechnen:

$$U_2 = \frac{U_{Br}}{f(2)} \tag{17}$$

Die Funktion f(2) ist Gleichung (15) mit $\Omega = 2$.

3 Durchführung

Es wird die Schaltung einer Wheatstoneschen Brücke aufgebaut (siehe Abbildung 2). Um die Brückenspannung zu messen, wird sie auf einem Oszilloskop ausgegeben. Das Widerstandsverhältnis des Potentiometers wird solange variiert, bis eine minimale Brückenspannung gemessen wird. Es werden die Beträge aller Widerstände in dieser Verhältnislage notiert. Diese Messung wird zur späteren Fehlerbestimmung bei gleichem zu vermessenden Widerstand R_x mit drei unterschiedlichen Widerständen für R_2 durchgeführt. Es werden mit diesem Verfahren insgesamt zwei Widerstände (R_x) vermessen.

Anschließend wird eine Schaltung entsprechend der Kapazitätsmessbrücke (siehe Abbildung 3) aufgebaut. Auch hier wird die Brückenspannung auf einem Oszilloskop ausgegeben. Das Widerstandsverhältnis des Potentiometers und des Widerstands R_2 wird solange variiert, bis eine minimale Brückenspannung gemessen wird. Dabei wird festgestellt, dass bei keiner der vermessenen Kapazitäten (Wert 1 und Wert 3) der Einbau eines Widerstands R_2 überhaupt von Nöten ist, da dieser zur Minimierung der Brückenspannung ohnehin auf den Wert Null eingestellt werden muss. Lediglich bei der RC-Kombination (Wert 8) ist er unverzichtbar. Die Beträge aller Widerstände in den jeweiligen Verhältnislagen werden notiert. Zur Fehlerbestimmung wird jede Messung (Wert 1, Wert 3, Wert 8) mit drei unterschiedlichen Kapazitäten C_2 durchgeführt.

Nun wird die Schaltung einer Induktivitätsmessbrücke (siehe Abbildung 4) aufgebaut. Als zu untersuchende Induktivität wird Wert 17 gewählt. Die Brückenspannung wird wiederum auf einem Oszilloskop ausgegeben. Das Widerstandsverhältnis von Potentiometer und Widerstand R_2 wird wieder variiert um die diese zu minimieren. Die Widerstände der entsprechenden Verhältnislage werden notiert. Hier wird die Messung zur Fehlerbestimmung mit drei unterschiedlichen Induktivitäten L_2 durchgeführt. Da bei der Verwendung bestimmter Induktivitäten L_2 keine verschwindende Brückenspannung eingestellt werden konnte, wurden die Widerständsverhältnisse bei ihrer höchstens zu erreichenden Minimallage notiert.

Dieselbe Induktivität wird noch einmal mit einer Maxwell-Brücke (siehe Abbildung 5) untersucht. Hier werden zur Minimierung der erneut auf dem Oszilloskop ausgegebenen Brückenspannung die Widerstände R_3 und R_4 variiert. Zur Fehlerbestimmung werden unterschiedliche Widerstände R_2 verwendet.

Zuletzt wird dann die Frequenzabhängigkeit einer Wien-Robinson Brücke (siehe Abbildung 6) überprüft. Es wird eine entsprechende Schaltung aufgebaut. Die Frequenz der Speisespannung U_s wird über einen Frequenzbereich von 20 - 30000 Hz variiert. Dabei werden bei 30 unterschiedlichen Frequenzwerten jeweils die Amplitude eben dieser Speisespannung sowie die der Brückenspannung gemessen. Aus dieser Messung können auch sämtliche zur Bestimmung des Klirrfaktors wichtigen Daten entnommen werden.

4 Auswertung

4.1 Wheatsonesche Brückenschaltung

Der unbekannte Widerstand R_{x_1} (Wert 10) in der Brückenschaltung wird mit Gleichung (4) bestimmt. Die gemessenen Widerstände werden in Tabelle 1 dargestellt.

Tabelle 1: Gemessene Widerstände für R_{x_1}

R_2/Ω	R_3/Ω	R_4/Ω	R_{x_1}/Ω
500 1000	321 190	679 810	236.4 234.6
332	417	583	234.0 237.5

Das Bauteil R_2 hat eine Toleranz von 0.2% und das Verhältnis $\frac{R_3}{R_4}$ hat eine Abweichung von 0.5%.

Daraus folgt für den Mittelwert des unbekannten Widerstands:

$$R_{x_1} = (236.1 \pm 1.3 (\text{Bauteile}) \pm 0.7 (\text{Mittelwert})) \Omega$$

Die Fehler der unbekannnten Größen werden allesamt mit Python berechnet.

Für den zweiten unbekannten Widerstand R_{x_2} (Wert 12) werden die gemessenen Widerstände in Tabelle 2 dargestellt.

Tabelle 2: Gemessene Widerstände für R_{x_2}

R_2/Ω	R_3/Ω	R_4/Ω	R_{x_2}/Ω
332	530	470	374.4
500	428	572	374.1
1000	263	737	356.9

Daraus folgt für den Mittelwert des unbekannten Widerstandes:

$$R_{x_2} = (368 \pm 2 (\mathrm{Bauteile}) \pm 6 (\mathrm{Mittelwert})) \, \Omega$$

4.2 Berechnung der Kapazität

Zur Bestimmung der Messgrößen C_x und R_x werden die gemessenen Wiederstände und Kapazitäten in Tabelle 3 dargestellt.

Tabelle 3: Gemessene Widerstände und Kapazitäten für $C_{x_1} und R_{x_1}$

C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω	C_{x_1}/nF	R_{x_1}/Ω
992	0	600	400	661.3	0
597	0	474	526	662.5	0
399	0	376	624	662.2	0

Die unbekannten Größen C_{x_1} (Wert 1) und R_{x_1} werden mit Gleichung (6) und (7) berechnet.

$$\begin{split} C_{x_1} &= (662.0 \pm 3.8 (\text{Bauteile}) \pm 0.4 (\text{Mittelwert})) \cdot \text{nF} \\ R_{x_1} &= 0 \, \Omega \end{split}$$

Die gemessene Werte der zweiten Messreihe werden in Tabelle 4 dargestellt.

Tabelle 4: Gemessene Widerstände und Kapazitäten für $C_{x_2} und R_{x_2}$

C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω	C_{x_2}/nF	R_{x_2}/Ω
992	0	703	297	419.1	0
597	0	587	413	420.0	0
399	0	487	513	420.3	0

Die Kapazität C_{x_2} (Wert 3) wird analog berechnet.

$$C_{x_2} = (419.8 \pm 2.3 ({\rm Bauteile}) \pm 0.4 ({\rm Mittelwert})) {\rm nF}$$

$$R_{x_2} = 0 \, \Omega$$

Die gemessene Werte der dritten Messreihe werden in Tabelle 5 dargestellt.

Tabelle 5: Gemessene Widerstände und Kapazitäten für $C_{x_3} und R_{x_3}$

C_2/nF	R_2/Ω	R_3/Ω	R_4/Ω	C_{x_3}/nF	R_{x_3}/Ω
992	170	771	229	294.6	572.4
597	281	671	329	292.7	573.1
399	422	576	424	2.93.7	573.3

Die Kapazität C_{x_3} (Wert 8) eines verlustbehafteten Kondensator und R_{x_3} werden analog berechnet. Der Fehler von R_2 beträgt 3%

$$\begin{split} C_{x_3} &= (293.7 \pm 1.6 (\text{Bauteile}) \pm 0.5 (\text{Mittelwert})) \text{nF} \\ R_{x_3} &= (572.9 \pm 17.4 (\text{Bauteile}) \pm 0.3 (\text{Mittelwert})) \Omega \end{split}$$

4.3 Berechnung der Induktivität mit der Induktivitätsmessbrücke

Die gemessenen Induktivitäten und Widerstände werden in Tabelle 6 dargestellt.

Tabelle 6: Gemessene Widerstände und Induktivitäten für $L_x und R_x$ mit der Induktivitätsmessbrücke

L_2/mH	R_2/Ω	R_3/Ω	R_4/Ω	L_x/mH	R_x/Ω
27.5	61	607	393	42.5	94.2
20.1	1000	91	909	2.0	100.1
14.6	1000	99	901	1.6	109.9

Die Induktivität L_x und der Widerstand R_x werden mit den Gleichungen (9) und (10) berechnet. Dabei hat das Bauteil L_2 eine Toleranz von 0.2%.

$$L_x = (15.36 \pm 0.08 ({\rm Bauteile}) \pm 13.57 ({\rm Mittelwert})) \, {\rm mH}$$

$$R_x = (101 \pm 3 ({\rm Bauteile}) \pm 5 ({\rm Mittelwert})) \, \Omega$$

Da bei der Messung des Widerstandes R_2 etwas schiefgegangen sein muss, sind die Messwerte nicht aussagekräftig.

4.4 Berechnung der Induktivität mit der Maxwell-Brücke

Die Induktivität derselben Spule wird nun mit der Maxwell-Brücke gemessen. Die gemessenen Werte, werden in Tabelle 7 dargestellt.

Tabelle 7: Gemessene Widerstände und Induktivitäten für $L_x und R_x$ mit der Maxwell-Brücke

R_2/Ω	R_3/Ω	R_4/Ω	L_x/mH	R_x/Ω
332	203	715	40.2	94.3
500	139	715	41.5	97.2
1000	68	715	40.6	95.1

Die Induktivität L_x und der Widerstand R_x werden mit den Gleichungen (11) und (12) berechnet. Die Toleranz von R_3 und R_4 beträgt 3%.

$$\begin{split} L_x &= (40.8 \pm 1.2 (\text{Bauteile}) \pm 0.4 (\text{Mittelwert})) \, \text{mH} \\ R_x &= (95.5 \pm 4.0 (\text{Bauteile}) \pm 1.0 (\text{Mittelwert})) \, \Omega \end{split}$$

4.5 Berechnung der Frequenzabhängigkeit der Wien-Robinson-Brücke

Die gemessenen Werte von Speise- und Brückenspannung der Wien-Robinson-Brücke bei den entsprechenden Frequenzen werden in Tabelle 8 dargestellt.

Tabelle 8: Gemessene Spannungen ${\cal U}_{Br}$ und ${\cal U}_s$ für Frequenzen f.

f/Hz	$U_{Br}/{\rm V}$	$U_s/{\rm V}$
20	1.51	4.38
50	1.47	4.56
100	1.33	4.64
150	1.09	4.56
200	0.86	4.48
250	0.63	4.40
300	0.46	4.44
350	0.30	4.40
400	0.18	4.40
420	0.13	4.27
440	0.08	4.27
460	0.04	4.27
470	0.03	4.27
480	0.02	4.27
482.7	0.02	4.27
490	0.02	4.27
500	0.03	4.27
550	0.12	4.27
600	0.20	4.32
700	0.35	4.32
800	0.46	4.32
900	0.57	4.24
1000	0.66	4.24
2000	1.08	4.12
3000	1.24	4.08
4000	1.29	4.04
5000	1.31	4.00
10000	1.35	3.96

Aus diesen Werten lässt sich das Verhältnis von Brücken- und Speisespannung gegen das Frequenzverhältnis $\frac{f}{f_0}$ auftragen. Für f_0 ergibt sich gemäß Gleichung (14):

$$f_0=482,7\,\mathrm{Hz}$$

Quotient der Spannungsamplituden in Abhängigkeit der Frequenz.

Abbildung 7: Spannungsverhältnis von Brücken- und Speisespannung in Abhängigkeit von der Frequenz.

Die Theoriekurve ergibt sich dabei aus Gleichung (15).

4.6 Berechnung des Klirrfaktors

Zur Berechnung des Klirrfaktors wird zur Vereinfachung angenommen, dass die Summe der Oberwellen nur aus der zweiten Oberwelle besteht.

Der Klirrfaktor ergibt sich dann aus Gleichung (16). Wobei U_2 durch Gleichung (17) ausgedrückt wird. f(2) ist dabei gegeben durch:

$$f(2) = \sqrt{\frac{(2^2 - 1)^2}{9 \cdot ((1 - 2^2)^2 + 9 \cdot 2^2)}} = \frac{\sqrt{5}}{15}$$

Nun ist U_1 die Speisespannung und U_{Br} die Brückenspannungbei der entsprechenden Frequenz f_0 (kann Tabelle 8 entnommen werden). Für den Klirrfaktor ergibt sich damit:

 $k = \frac{0.02 \text{V} \cdot 15}{4.27 \text{V} \cdot \sqrt{5}} = 0.03$

5 Diskussion

Die berechneten Fehler zu den ermittelten Messgrößen befinden sich bei den meisten Brückenschaltungen in dem Toleranzbereich. Die Fehler sind durch systematische Fehler zu erklären. Das Minimieren der Spannung ist nur endlich präzise durchführbar. Der Widerstand der Kabel und des Oszilloskop wird idealisiert als Null angenommen, was in der Realität nicht der Fall ist. Bei der Induktivitätsmessbrücke ist dies für L_x nicht der Fall. Da die Spannung für zwei Spulen nicht auf Null minimiert werden kann, lässt sich dies als primärer Faktor für die Abweichung erklären. Die Induktivität, welche mit der Maxwell-Brücke berechnet wird, weist nur kleine Abweichungen im Mittelwert auf und kann somit als präziser angesehen werden. Die Kondensatoren zu den beiden Kapazitäten ${\cal C}_{x_1}$ und ${\cal C}_{x_2}$ besitzen einen sehr kleinen Widerstand, sodass mit dem Messverfahren der Widerstand nicht berechnet werden kann. Die gemessene Frequenzabhängigkeit der Wien-Robinson-Brücke entspricht sehr genau der theoretisch erwarteten Abhängigkeit. Vor allem im Bereich um die errechnete Frequenz f_0 liegen die gemessenen Werte unmittelbar auf der Theoriekurve. Ihr tatsächlicher Wert sollte also nur gering von diesem abweichen. Auch der Klirrfaktor fällt wie erwartet klein aus, was bedeutet, dass es sich bei der Eingangsspannung um ein relativ reines Sinussignal handelt. Es ist dabei auch anzumerken, dass das Einstellen der entsprechenden Frequenz, bei welcher das Signal verschwinden sollte aufgrund der oben bereits genannten idealisierten Annahmen nur mit endlicher Genauigkeit durchgeführt werden kann. Jedoch erweist sich die tatsächliche Bewertung dieses Werts als schwierig, da kein entsprechender Vergleichswert existiert.

Literatur

[1] TU Dortmund. Versuchsanleitung des Versuchs V302-Brückenschaltungen. 2017.