苏州大学 抽象代数 课程(期末)试卷答案 共2页

(考试形式 闭卷 2008年7月)

院系	_年级	专业
学号 <u></u>	姓名	成绩

- 一. 在括号中填写正确答案
- 1. $\alpha^{-1} = (53412)$.
- 2. (r, n) = 1.
- 3. $\bar{1}; \bar{3}$.
- 4. 4.

5.
$$-a_0^{-1}(\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_1).$$

 $+1+\sqrt{-3}$ 是R 的既约元, 但不是R 的素元.

二.回答下列问题

- 1. 不同构, 证明: Z_4 中有四阶元, 而 $Z_2 \oplus Z_2$ 中没有四阶元.
- 2. 相同. 设a 的阶为n,则可知 bab^{-1} 阶小于等于n,反之可知a 的阶小于等于 bab^{-1} 的阶,从而可知 bab^{-1} 与a 的阶相同.
- 3. 解: (1) 整环中的素元一定是既约元: 因为设p 是素元, 则 $p \neq 0$ 而且p 不是单位. 设a 是p 的一个因子, 则有 $b \in R$ 使得p = ab,则p|ab,于是p|a 或者p|b,因而 $a = pa_1$ 或者 $b = pb_1$,其中 $a_1,b_1 \in R$,于是 $p = pa_1b$ 或者 $p = pab_1$,从而 $a_1b = 1$ 或者 $ab_1 = 1$. 因而b 为单位或者a 为单位,所以p 为既约元. 而既约元不一定是素元. 反例: 设 $R = \{a + b\sqrt{-3}|a,b \in Z\}$ 可以验证: 整环R
- 4. 首先1-2i 非零且不是单位. 设 $1-2i=(a+bi)(c+di), a+bi, c+di \in Z[i]$. 则 $|1-2i|^2=|a+bi|^2|c+di|^2$, 即 $5=(a^2+b^2)(c^2+d^2)$. 而 a^2+b^2, c^2+d^2 都是正整数, 所以 $a^2+b^2=1, c^2+d^2=1$. 于是a+bi 或者c+di 为单位. 1-2i 是Z[i] 的既约元.
- 5. 不能。因为四元域的元素的个数为 2^2 , 八元域的元素个数为 2^3 . 由于 $2 \nmid 3$,故四元域不能同构于八元域的子域.
- 三. 不妨设该子群为H, 由于H 的任一共轭子群与H 的阶数相同, 而G中只一个阶为n 的子群, 即H 的任一共轭子群等于H, 从而H 是G 的正规子群.

四. 因为对于任意的 $a \in N_1, b \in N_2$ 及 N_1, N_2 是G 的正规子群,则 $aba^{-1}b^{-1} \in N_1 \cap N_2$,从而结合题意得: $aba^{-1}b^{-1} = e$, 进而ab = ba.

Ξ.

- (1) 根据R 是交换环及理想的定义很容易验证.
- (2) 若R/N 中有非零的幂零元,即存在 $a \in R, n \in N^+$ 但 $a \notin N$,使得 $a^n \in N$,又因为N 是R 中幂零元组成的集合,所以存在 $m \in N^+$,使得 $(a^n)^m = a^{nm} = 0$,从而这与 $a \notin N$ 矛盾,原命题得证.

六. 证明: 由题意, $a^{p^n}-a=0$, 从而 $a=a^{p^n}=(a^{p^{n-1}})^p=b_1^p$, 即证得存在性. 若 $b_1^p=b_2^p$, 即 $(b_1-b_2)^p=0$, 从而可知 $b_1=b_2$. 即证得唯一性.

七.

证明: (1) 因为 $(1-f)^2 = 1 - 2f + f^2 = 1 - f$, 所以1 - f 是幂等元.

(2) 因为 $\forall \ a \in M$ 均有a = (a - f(a)) + f(a), 且 $f(a - f(a)) = f(a) - f^2(a) = 0$, 即 $a - f(a) \in kerf$, 从而可得M = kerf + Imf.又因为对于 $\forall b \in kerf \cap Imf$. 则存在 $c \in M$ 使得f(c) = b, 从而 $b = f(c) = f^2(c) = f(b) = 0$, 即 $kerf \cap Imf = \{0\}$, 综上可得 $M = kerf \oplus Imf$.