Sistemas Computacionais Distribuídos

Prof. Marcos José Santana SSC-ICMC-USP

São Carlos, 2008

Grupo de Sistemas Distribuídos e Programação Concorrente

Departamento de Sistemas de Computação - SSC

Sistemas Computacionais Distribuídos

Servidores de Arquivos

Conteúdo

- Segurança
- Confiabilidade
- Consistência de dados
- Implementação de transações atômicas

Segurança

- Controle de acesso
 - Capability-based
 - Identity-based
 - Control list
 - Criptografia

Segurança [*Capability-based*]

- O cliente deve apresentar "capability" para poder ter acesso ao arquivo
- Deve haver um bom mecanismo para gerar as "capabilities"
- Maioria dos sistemas usa o FID como uma capability

Segurança [*Identity-based* + *Control list*]

- Neste caso os clientes apresentam algum tipo de prova de sua identidade, junto com o FID
- Existe uma lista de controle de acesso que fornece os direitos de acesso de cada cliente para o arquivo

Segurança [Criptografia]

- Nos sistemas baseados em criptografia, cada arquivo tem sua "chave" e o arquivo é armazenado e recuperado em sua forma codificada
- A chave funciona como uma "capability", mas o servidor não precisa validar

Confiabilidade

- Importância
- Servidor compartilhado
- Inclusão de mecanismo para garantir:
 - Um dado grau de confiança
 - Consistência dos dados
 - Recuperação dos dados
 - Robustez
 - Problemas de comunicação
 - Problemas de crash do servidor
 - Problemas de crash do cliente
 - Problemas nos discos

Confiabilidade

- Problema da concorrência
 - Ambiente multi-usuário
 - Controle de acesso aos dados compartilhados
- Mecanismos adotados
 - Maioria vem de propostas implementadas em outros tipos de sistemas
 - Banco de dados!

Consistência de dados

- Problema tradicional
- Transações atômicas
 - Dados são alterados "automaticamente"
 - Um dado tem um novo estado consistente <u>ou</u> é mantido no seu estado inicial, inalterado
 - Ou tudo, ou nada
- Transações NÃO atômicas
 - Permitem que um estado intermediário, não consistente, seja apresentado ao cliente.

Consistência de dados

Exemplo (tradicional – banco de dados)

 Contas bancárias A e B com saldos a e b. Transação T transfere x de A para B.

begin-trans

- 1. read A to get a
- 2. read B to get b
- 3. write a-x to A
- 4. write b+x to B end-trans

Consistência de dados

- T é atômica
 - Ou os saldos são: a e b
 - Ou a-x e b+x
- T NÃO é atômica
 - Podem reter: a-x; b
 - Estado inconsistente

Implementação de Transações Atômicas

- Requer mecanismos especiais
- Lampon => Modelo hierárquico para máquinas mais confiáveis
 => Transações atômicas
- Requisitos
 - Operações atômicas (Cj)
 - Recuperação de dados (mecanismo)
 - Controle de concorrência

Implementação de Transações Atômicas

- Mecanismos para a recuperação de dados e para controle de concorrência
 - "reliable storage"
- Reliable storage => algum tipo de memória não volátil
- Mecanismos para garantir "recuperação" em uma transação
 - Shadow-page
 - Undo-redo log
 - Intentions log
 - Tentative versions

Fim!