Models of Computation Revision Notes

James Brown March 28, 2017

Contents

1	Introduction	1
2		1 1 1
3	Finite State Automata	1
4	Bisimulation and Minimisation	1
5	The Halting Problem	1
6	Properties of Code	1
7	Turing Machines	1
8	Church's Thesis	1
9	Complexity and P	1
10	NP	1
11	Lambda-calculus	1

1 Introduction

These are notes I have written in preparation for the upcoming 2017 Models of Computation exam. This year the module was run by Paul Levy (P.B.Levy@cs.bham.ac.uk). This module is about problems and *computers*. We ask ourselves:

- What problems can be solved on a computer?
- What problems can be solved on a computer with finitely many states?
- What problems can be solved on a computer with only finitely many states, but also a stack of unlimited size?
- What problems can be solved on a computer with only finitely many states, but also a tape of unlimited size that it can read and write to?
- What problems can be solved *fast* on a computer?
- What does "fast" mean anyway?
- What does *computer* mean anyway?

2 Language Membership Problems and Regular Expressions

2.1 Language Membership Problems

Suppose we have a set of characters Σ , which we will call the *alphabet*.

2.2 Regex

Regular Expressions are a useful notation for describing languages.

- 3 Finite State Automata
- 4 Bisimulation and Minimisation
- 5 The Halting Problem
- 6 Properties of Code
- 7 Turing Machines
- 8 Church's Thesis
- 9 Complexity and P
- 10 NP
- 11 Lambda-calculus