6SENG001W Reasoning about Programs

Tutorial 4: Logic

Exercises 4.2, 4.3 & 4.7 Solutions

Complete the truth table for the following proposition:

$$((P \land Q) \lor \neg R) \Rightarrow P$$

					$(P \wedge Q)$	$((P \land Q) \lor (\neg R))$
P	Q	R	$P \wedge Q$	$\neg R$	$\vee (\neg R)$	$\Rightarrow P$
true	true	true	true	false	true	true
true	true	false	true	true	true	true
true	false	true	false	false	false	true
true	false	false	false	true	true	true
false	true	true	false	false	false	true
false	true	false	false	true	true	false
false	false	true	false	false	false	true
false	false	false	false	true	true	false

Completing the truth table for:

$$(P \land Q) \Rightarrow R$$

P	Q	R	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$
true	true	true	true	true
true	true	false	true	false
true	false	true	false	true
true	false	false	false	true
false	true	true	false	true
false	true	false	false	true
false	false	true	false	true
false	false	false	false	true

Consider the PaperRound machine again, it uses a state variable houseset; it might be altered by adding the following constraints:

```
  ( houseset /= {} ) => ( 3 : houseset )
  Literal translation:
```

If houseset is not empty then house No. 3 is in it.

or in plain English, i.e. more naturally:

If papers are delivered to at least one house then one of them is house No. 3.

not (houseset = {})
literal translation:

houseset is not empty.

,,,,

or in plain English, i.e. more naturally:

At least one house has papers are delivered.

(card(houseset) >= 40) or (139 /: houseset)
Literal translation:

The number of house numbers in houseset is at least 40 or house No. 139 is not in houseset.

or in plain English, i.e. more naturally:

At least 40 houses have papers delivered or house No. 139 doesn't have a paper delivered.

! (hh).(hh : houseset => hh < 163)
Literal translation:</pre>

For all house numbers in houseset then the house No. is less than 163.

or in plain English, i.e. more naturally:

Only house numbers up to 162 can have a paper delivered.

or

No house numbered 163 or above can have a paper delivered.