Problem 1. Prove the Brouwer fixed point theorem for maps $f: D^n \to D^n$ by applying degree theory to the map $S^n \to S^n$ that sends both the northern and southern hemispheres of S^n to the southern hemisphere via f . [This was Brouwer's original proof.]	
Proof.	
Problem 2. Given a map $f: S^{2n} \to S^{2n}$, show that there is some point $x \in S^{2n}$ with either $f(x) = x$ or $f(x) = -x$. Deduce that every map $\mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ has a fixed point. Construct maps $\mathbb{R}P^{2n-1} \to \mathbb{R}P^{2n-1}$ without fixed points from linear transformations $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ without eigenvectors.	
Proof.	
Problem 3. Let $f: S^n \to S^n$ be a map of degree zero. Show that there exist points $x, y \in S^n$ with $f(x) = x$ and $f(y) = -y$. Use this to show that if F is a continuous vector field defined on the unit ball D^n in \mathbb{R}^n such that $F(x) \neq 0$ for all x , then there exists a point on ∂D^n where F points radially outward and another point on ∂D^n where F points radially inward.	
Proof.	