2.2. Bivariate Random Variable:

Exercise

1. The joint probability mass function of (X,Y) is given in the following table:

Y	1	2	3	4	5	6
$X \sim$						
0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
2	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$

Find (i) $P(X \le 1, Y = 2)$, (ii) $P(X \le 1)$, (iii) $P(Y \le 3)$, iv) $P(X < 3, Y \le 4)$.

2. The j.p.m.f. of (X,Y) is given by: $P(X=0,Y=1)=\frac{1}{3}, P(X=1,Y=-1)=\frac{1}{3}$ and $P(X=1,Y=1)=\frac{1}{3}$.

Find (i) m.p.m.fs of X and Y and (ii) conditional p.m.f. of X given Y = 1.

3. The j.p.m.f. of (X, Y) is given by

$$p(x,y) = \frac{x^2+y}{32}$$
 for $x = 0,1,2,3$ and $y = 0,1$

Find the m.p.m.fs of X and Y.

4. The j.p.m.f. of (X, Y) is given by

$$p(x,y) = \frac{1}{27}(2x + y)$$
 for $x = 0,1,2$ and $y = 0,1,2$

Find the conditional p.m.f of Y for given X.

5. The j.p.d.f. of (X, Y) is given by

$$f(x,y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4}$$
, $0 < x < \infty$, $0 < y < \infty$

Find i) m.p.d.fs of X and Y.

ii) Conditional p.d.f. of Y given X.

6. The j.p.d.f. of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{1}{4}(1+xy) & , & |x| < 1, |y| < 1 \\ 0 & , & \text{otherwise} \end{cases}$$

- i) Find the m.p.d.fs of X and Y.
- ii) Are *X* and *Y* independetn?
- 7. The j.p.d.f. of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{x^3 y^3}{16} & , & 0 < x < 2, 0 < y < 2 \\ 0 & , & \text{otherwise} \end{cases}$$

Find m.p.d.fs of X and Y.

8. The j.p.d.f. of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{8}{9}xy & , & 1 \le x \le y \le 2\\ 0 & , & \text{otherwise} \end{cases}$$

Find i) m.p.d.fs of X and Y. ii) c.p.d.fs of X and Y.

Answers:

1. (i)
$$\frac{1}{16}$$
 (ii) $\frac{7}{8}$ (iii) $\frac{23}{64}$ (iv) $\frac{9}{16}$

(ii)
$$\frac{7}{8}$$

(iii)
$$\frac{23}{64}$$

(iv)
$$\frac{9}{16}$$

2. i)

х	0	1
$p_1(x)$	1	2
	$\frac{\overline{3}}{3}$	3

у	-1	1
$p_2(y)$	1	2
	3	3

ii)

х	0	1
$p_{1 2}(2 1)$	1	1
. 1	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{2}$

3.

x	0	1	2	3
$p_1(x)$	1	3	9	19
	32	32	32	32

у	0	1
$p_2(y)$	14	18
. = .	32	32

4.

_			
X	0	1	2
Y			
0	0	1	2
0	0	3	3
1	2	3	4
1	$\frac{2}{9}$	3 3 9	$\frac{2}{3}$ $\frac{4}{9}$
2	4	5	6
2	$\overline{15}$	$\frac{\overline{15}}{15}$	$\overline{15}$

5. (i)
$$f_1(x) = \frac{3}{4} \cdot \frac{3+2x}{(1+x)^4}$$
 for $0 < x < \infty$, $f_2(y) = \frac{3}{4} \cdot \frac{3+2y}{(1+y)^4}$ for $0 < y < \infty$.

(ii)
$$f_{2|1}(y|x) = \frac{6(1+x+y)}{(1+y)^4(3+2x)}$$
 for $0 < y < \infty$.

6. (a)
$$f_1(x) = \frac{1}{2}$$
, $-1 < x < 1$, $f_2(y) = \frac{1}{2}$, $-1 < y < 1$. (b) No

7.
$$f_1(x) = \frac{x^3}{4}$$
 for $0 < x < 2$, $f_2(y) = \frac{y^3}{4}$ for $0 < y < 2$.

8.
$$f_1(x) = \begin{cases} \frac{4}{9}x(4-x^2) & , & 1 \le x \le 2 \\ 0 & , & \text{otherwise} \end{cases}$$
 and $f_2(y) = \begin{cases} \frac{4}{9}y(y^2-1) & , & 1 \le y \le 2 \\ 0 & , & \text{otherwise} \end{cases}$ $f_{1|2}(x|y) = \frac{2x}{y^2-1}$, $1 \le x \le y$ and $f_{2|1}(y|x) = \frac{2y}{4-x^2}$, $x \le y \le 2$