H4 Comments

ATAM

AARHUS UNIVERSITET

Adaptation to HS-07

- Size of system/organization
 - Fewer people necessary, person <> role
 - · Shorter presentations
 - Merge phase 1 and phase 2
 - Possibly external consultants (because of lack of skills)
 - · Probably internal evaluators (because of cost)
- Type of system
 - In-house vs contract vs product
 - Need to represent customer somehow
 - Questionnaires
 - Market survey
 - Constructing "personas"

Observations

- Architect is forced to make architecture precise
- Stakeholders are involved
- Thorough and well-validated process
 - · Can find new angles to problems
- Resource demanding
 - Requires substantial work
 - · Requires stakeholder presence
 - Not suitable for small projects

CBAM

Observations

- May be inaccurate
 - Description of utility/response graph => uncertainty
 - Cost estimates may be inaccurate
- Forces focus on benefits and cost of design decisions
- Encourages considering multiple possible decisions
- Heavyweight
- Not necessarily for developers
 - Business-oriented
- Forward-looking

aSQA

AARHUS UNIVERSITET

Observations

- Good idea to evaluate repeatedly
 - · Fits with iterative development
 - · But requires organizational backing
- Validity depends on validity of metrics
- Lightweight
 - Easy to use (a.o. due to orientation towards components)
 - Manageable workload, suitable for repetition
 - Would prefer in daily practice (in comparison to ATAM and CBAM)
 - May suit different project types
 - In particular if focus is on improving quality
- Heavyweight
 - · Requires projects of a certain size
- Gives overview for decision makers
 - Can track changes
 - Forward-looking
- Mostly suitable for completed system under modification
 - Requires well-composed system (including stability of interfaces)
 - · Cannot apriori handle changes in C&C structure
- Generelle kvalitetsattributter giver kunstig opdeling, bedre med scenarier
- Complements CBAM and ATAM
 - · All three methods have their application
 - · Overlaps with CBAM in some activities
- Need to become more mature (and validated)

aSQA Revisited

Architectural Prototyping

AARHUS UNIVERSITET

Architectural	Prototyp	es - aSAi	P 2008																	
	Alpha.1	Alpha.2	Bravo.1	Bravo.2	Bravo.3	Bravo.4	Charlie.1	Charlie.2	Delta.1	Delta.2	Delta.3	Foxtrot.1	Foxtrot.2	Foxtrot.3	Golf.1	Golf.2	Hotel.1	Hotel.2	Lima.1	Lima.2
			e Client-server,																	
Classification	Experimenta	Experiment	al Experimental	Exploratory	Experimental	Experimental	Experimental	Exploratory	Experimental	Exploratory	Experimental	Exploratory +	Exploratory +	Experimental						
Characteristics																				
Learning	2	2	4 4		5 5	5 4	. 4	. 4	. 5	5	5 4	3	4	4	5	2	. 5	4	4	+ 4
Quality issues	5	5	5 5		5 5	5 5	5	5	5 5	5	5 5	5 5	5	4	3	4	. 5	5 5	4	÷ 5
Performance	>	<	x >	: :	x >	c x)	()	: >	()	c x	X		X		>	C X	×	< x
Buildability	>	<				×									X			×	:	
Modifiability		1		,	x		×		>	: >	(X		X	: >	(×	<
Availability								>	(×
Usability												X			X	×				
Security																	>	(
Conceptual in	tegrity	Ì	Ì	ĺ	ĺ			Ì		Ì				ĺ			ĺ	×	:	Î
Testability																				×
No functionality	4	1	3 5	1	1 5	5 4	4	. 4	1 2	. 2	2	2 5	2	3	2	1	. 2	2	. 4	4
Address risks	4	1	5 5	4	1 5	5 4	4	. 2	2 4	. 4	4	5	5	4	2	3	5	5	4	Į 5
Transfer knowledg		3	3 2	-	5	. 4	. 2	1 2	1	1 7	1 4	. 4	4	4	4	4		. 4		. 4

			Alpha.1	Alpha.2			
Des	scrij	otion	XSLT-overbyg	"Suggest" per			
Cla	ssif	ication	Experimental	Experimental			
Cha	arac	teristics					
	Lea	rning	2	4			
	Qua	ality issues	5	5			
		Performance	X	X			
		Buildability	X				
		Modifiability					
		Availability					
		Usability					
		Security					
		Conceptual in	tegrity				
		Testability					
	No	functionality	4	3			
	Add	lress risks	4	5			
	Tran	nsfer knowledg	3	3			

Likert scale

- 1 = highly disagree, 5 = highly agree

"Architectural prototypes are constructed for exploration and learning of the architectural design space"

"Architectural prototyping addresses issues regarding architectural quality attributes in the target system"

"Architectural prototypes do not provide functionality per se"

"Architectural prototypes typically address architectural risks"

"Architectural prototypes address the problem of knowledge transfer and architectural conformance"

Architectural Prototypes

AARHUS UNIVERSITET

Advantages

- Good help in architectural decisions (2)
- Little effort, early verification (4)
 - Save money
- Objectivity (3)
- Classification of PTs leads to a common vocabulatry
- Does not overlook problems (4)
 - "executables do not forget to think about a problem"
 - Discover new issues

- May express architectural intent (2)
 - in a way that developers understand
 - Work as executable specification
- Tangible for stakeholders(3)
 - Formalized => easier management buyin
- Gives real opportunities for learning (5)
 - Gain knowledge
 - Learn new technologies concepts
 - Playground/learning vehicle
 - Try alternative solutions
- Can experiment with goals as well as solutions

Architectural Prototypes

AARHUS UNIVERSITET

Disadvantages

- Focus on "easy" quality attributes – can hide important quality attributes (3)
 - Hard to measure, e.g., modifiability
- May lead to skeleton systems even if not intended (4)
 - Hard to throw away
- Customer may feel system is almost complete (3)
- May yield misleading results (3)
 - In particular for performance
 - Hard to create realistic environment

- Cannot replace traditional analysis
- Prototypes may not be maintained as architecture evolves
- May be costly to produce and maintain (4)
 - Collecting and processing measurement data may require substantial workload
 - May be costly when quality tightly coupled to functionality
 - Documentation needed