

Sri Chaitanya IIT Academy, India a.p, telangana, karnataka, tamilnadu, maharashtra, delhi, ranchi

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr. IPLCO JEE ADVANCED DATE: 09-08-15 2013_P1 MODEL **MAX MARKS: 180 TIME: 3:00**

KEY & SOLUTIONS

PHYSICS

1	A	2	C	3	C	4	A	5	В	6	В
7	В	8	В	9	С	10	В	11	AD	12	BCD
13	AC	14	ABD	15	ABCD`	16	2	17	5	18	3
19	6	20	6					6			

CHEMISTRY

21	D	22	С	23	C	24	В	25	D	26	C
27	В	28	A	29	D	30	D	31	ABCD	32	A
33	ABCD	34	CD	35	BCD	36	1	37	_1	38	6
39	9	40	6								

MATHEMATICS

41	В	42	A	43	D	44	В	45	D	46	В
47	A	48	A	49	С	50	В	51	ABC	52	ABCD
53	ABD	54	BC	55	В	56	3	57	1	58	5
59	4	60	2								

Sec: Sr.IPLCO Page 1

MATHS

- 41. Let O is the intersection of AC and BD. R is one extremity of the chord containing B and D. So, the angles AOR and ROC are right angles and AR=RC. Further AC and RC are radii hence the triangle ARC is equilateral.
- 42. Center of such circle in the case of parabolas $y^2 = 4ax$, $x^2 = 4ay$ is $\left(\frac{3a}{2}, \frac{3a}{2}\right)$
- 43. The parabolas are $y^2 = 4\sin^2\alpha(x + \sin^2\alpha)$ and $y^2 = 4\cos^2\alpha(x + \cos^2\alpha)$, hence the locus is $x + \cos^2\alpha + \sin^2\alpha = 0 \Rightarrow x + 1 = 0$
- 44. The x-axis touches at A(1, 0) and x=y touches at B(1, 1). Hence the equation to the curve through these points is given by $y(y-x)+k(x-1)^2=0$. For this to represent a parabola, 4k=1. The equation is $x^2-4xy+4y^2-2x+1=0$. Vertex $\left(\frac{13}{25},\frac{4}{25}\right)$, focus $\left(\frac{3}{5},\frac{1}{5}\right)$
- 45. Taking the new axes as $X = \frac{4x + 3y}{5}$, $Y = \frac{3x 4y}{5}$, we see that the parabola can be $Y = \pm \frac{X^2 25}{10}$ with the required condition $|X| \le 200$
- 46. Eliminating t, we get $(3x-4y+2)^2 = 16x+12y-27$. Vertex is $(\frac{21}{25}, \frac{113}{100})$. Hence k=29 and the area is 3π
- 47. If P(t) is the point and Q(T) is another point in the question, we have $T = t + \frac{2}{t}$ and $\tan \theta = \left| \frac{T t}{1 + Tt} \right| \Rightarrow \frac{2}{t(t^2 + 3)} = \pm \tan \theta$. As $t(t^2 + 3) = \pm 2 \cot \theta$ can have only one real root, there will be only one such point P.
- 48. Assume the point $P\left(-4\cos\frac{\pi}{4} \sin\frac{\pi}{12}, \ 2\sin\frac{\pi}{4} + \cos\frac{\pi}{12}\right)$ as origin and line joining it to the centre as x-axis, the equation to the circle becomes $x^2 + y^2 2x = 0$, center is $A_1(1,0)$ and the second circle has the equation $x^2 + y^2 2\sqrt{2}y = 0$ center $A_2(0,\sqrt{2})$. Similarly $A_3(-2,0)$, $A_4(0,-2\sqrt{2})$ etc.

Sec: Sr.IPLCO Page 5

- 49. If AB=14, AD=8, radius of circle is 5, the points C, E and V are given by (17¹/₃,8), (9, 8) and (8, 1) respectively. Required area = area of triangle CEV area of minor segment CEV of the circle.
- 50. Let the parabola is $y^2 = 4x$. The equations $(x t^2)^2 + (y 2t)^2 + 2\lambda(x yt + t^2) = 0$ and $(x 1)^2 + y^2 + 2\mu(mx y m) = 0$ should represent the same circle touching mx y m = 0 at (1, 0) and the parabola at $(t^2, 2t)$. Eliminating λ and μ , we get $mt^3 3t^2 3mt + 1 = 0$ will give three values of t for any given m.
- 51. Let A(t), B(s), C(p), D(q) are the points on the parabola $y^2 = 4x$. P is (h, k) So we have p, q, s, t roots of $r^4 + (4+2g)r^2 + 4fr + c = 0$. So, p+q+t+s=0, ts(p+q)+pq(t+s)=-4f As AB is diameter, we have t+s=-f hence ts-pq=-4If the line 2x-(t+s)y+2ts=0 passes through P(h, k) then $2h-(t+s)k+2ts=0 \Rightarrow 2h+(p+q)k+2(pq-4)=0$ hence CD passes through Q(h-4,-k)
- 52. Take the circle as $x^2 + y^2 = 25$. Chords can be on either of side or on the same side of the center, take them $y = \pm 3$, $y = \pm 4$. Two of the tangents are perpendicular and other two are NOT.
- 53. For the ends of normal chords to be lattice points, the combinations are $(1, \pm 2), (9, \pm 6)$ and $(4, \pm 4), (9, \pm 6)$
- 54. We have a, b, c are roots of $x^3 7x 6 = 0$ and p, q, r are roots of $x^3 7x + 6 = 0$ and $\Delta = 2(a-b)(b-c)(c-a)(p-q)(q-r)(r-p) = -800$ because b
- 55. Let the circles are $x^2 + y^2 + 2ax k^2 = 0$, $x^2 + y^2 + 2bx k^2 = 0$ intersecting at A(0,k), B(0,-k) If $P(\alpha,\beta), Q(\gamma,\delta)$ and their mid point $R(x_1,y_1)$ and slope of AP and BQ is m, then we have $\alpha, 0$ are roots of $x^2 + (mx + k)^2 + 2ax k^2 = 0$ hence $\alpha = -\frac{2(mk + a)}{1 + m^2}$ Similarly, $\gamma, 0$ are roots of $x^2 + (mx k)^2 + 2bx k^2 = 0$ hence $\gamma = -\frac{2(-mk + b)}{1 + m^2}$ This gives $\alpha + \gamma = 2x_1 = -\frac{2(a + b)}{1 + m^2}$ $\beta k = \alpha m, \delta + k = \gamma m \Rightarrow y_1 = mx_1$. Eliminating m, we get $x^2 + y^2 + (a + b)x = 0$

Sec: Sr.IPLCO Page 6

Sri Chaitanya IIT Academy

09-08-15 Sr. IPLCO_Jee-Adv_2013-P1_Key Solutions

- 56. The equation to the parabola can be given by $(x \sin \alpha y \cos \alpha + \cos \alpha)^2 = k(x \cos \alpha + y \sin \alpha \sin \alpha).$ If it is to be touched by x-axis, then $(x \sin \alpha + \cos \alpha)^2 = k(x \cos \alpha \sin \alpha)$ should have equal roots.
- So, $k = \frac{4\sin\alpha}{\cos^2\alpha}$ and the magnitude of equal root is $\left|\frac{2-\cos^2\alpha}{\sin\alpha\cos\alpha}\right|$, square of whose minimum value is 8.
- 57. If a > b are the radii of the externally touching circles and direct common tangents include 60° , we have $b = \frac{a}{3} = \frac{2}{3}$. Starting with next largest circle, the total area of the circles is $\frac{4\pi}{9} \left(1 + \frac{1}{9} + \frac{1}{81} + \dots \right) = \frac{\pi}{2}$. Area of the quadrilateral formed with the tangents and the radii of largest circle is $4\sqrt{3}$. So, the required area is $A = 4\sqrt{3} \left(\frac{1}{3} \times 4\pi + \frac{\pi}{2}\right) = 4\sqrt{3} \frac{11}{6}\pi$
- 58. The line y = 8 + m(x + 3) should not have intersection with the parabola $y = 2x^2 + 3x + 22$ Hence we should have $m^2 + 18m - 103 < 0$
- 59. We have $t_1 + t_2 + t_3 = 0$ and $\frac{2}{t_2} \frac{2}{t_3} = -1 \Rightarrow t_2 t_3 = -4$. Area $|(t_1 t_2)(t_2 t_3)(t_3 t_1)| = 70$ gives 3,1,-4;-3,-1,4 for t_1,t_2,t_3 . Fourth vertex is either (8,-12) or (8,12)
- 60. Shortest normal chord makes and angle $Tan^{-1}\sqrt{2}$ with positive x-axis.

Sec: Sr.IPLCO Page 7