20425 - תאריך הבחינה: 16.7.2012 (סמסטר 2012ב - מועד א4 / 86)

שאלה 1

 $\{R=0,L=2\}$, $\{R=2,L=0\}$ $\{R=L=1\}$ בשלושה מקרים: $\{R=0,L=2\}$, מקבל את הערך $\{R=0,L=2\}$, בלתי-תלויים, ומקיימים: $\{R=0,L=2\}$ המשתנים המקריים $\{R=0,L=2\}$ בלתי-תלויים, ומקיימים:

$$P\{L=i\} = P\{R=i\} = 0.75^i \cdot 0.25$$
 , $i = 0,1,...$

$$P\{X=3\} = (0.75 \cdot 0.25)^2 + 2 \cdot (0.75^2 \cdot 0.25) \cdot 0.25 = 0.1055$$

0.25 המשתנים המקריים R ו- R הם הזזה ב- (-1) של התפלגות גיאומטרית עם הפרמטר

. נסמן: $R = G_R$ והם בלתי-תלויים, $L = G_L - 1$ והם בלתי-תלויים.

$$E[X] = E[R + L + 1] = E[G_R + G_L - 1] = E[G_R] + E[G_L] - 1 = 2 \cdot \frac{1}{0.25} - 1 = 7$$
 ינקבל:

ג. מהאמור לעיל:

$$Var(X) = Var(R + L + 1) = Var(G_R + G_L - 1) = Var(G_R) + Var(G_L) = 2 \cdot \frac{0.75}{0.25^2} = 24$$

$$Y = X + 1 = R + L + 2 = G_R + G_L$$
 : ד. מהאמור לעיל

כלומר, המשתנה המקרי Y הוא סכום של שני משתנים מקריים גיאומטריים בלתי- תלויים, שלכל אחד מהם הפרמטר (0.25, 0.25,

שאלה 2

א. הוכחת הטענה מובאת בקובץ ההוכחות שבאתר הקורס.

$$i=1,2,...,10$$
 לכל $X_i=egin{cases} 1 & , & \text{ annm } A_i \\ 0 & , & \text{ with annm } A_i \end{cases}$: ב. נתונים 10 האינדיקטורים:

$$E[S] = E\left[\sum_{i=1}^{10} X_i\right] = \sum_{i=1}^{10} E[X_i] = \sum_{i=1}^{10} P(A_i) = 10 \cdot 0.1 = 1$$
 .1

$$\rho(X_1, X_2) = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}} = \frac{E[X_1 X_2] - E[X_1]E[X_2]}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}}$$
 .2

$$= \frac{P(A_1 \cap A_2) - P(A_1)P(A_2)}{\sqrt{P(A_1)P(A_1^C)P(A_2)P(A_2^C)}} = \frac{P(A_1 \cap A_2) - 0.1^2}{0.1 \cdot 0.9}$$

, מקבלת ערכים בין 0 (אם המאורעות ארים) ל-0.1 (אם המאורעות שווים אווים פון $P(A_1 \cap A_2)$

$$-\frac{1}{9} \le \rho(X_1, X_2) = \frac{P(A_1 \cap A_2) - 0.1^2}{0.1 \cdot 0.9} \le 1$$
ילכן:

שאלה 3

(j=1,2,3,4) j את המאורע שעובר זרם בענף $i=1,\ldots,8$, ב- $i=1,\ldots,8$, את המאורע שעובר זרם מנקודה i=1,2,3,4 לנקודה i=1,2,3,4

כל המאורעות B_j בלתי-תלויים זה בזה ושווי-הסתברות, ולכן גם המאורעות בלתי-תלויים זה בזה כל המאורעות.

$$P(C) = P(B_1 \cup B_2 \cup B_3 \cup B_4) = 1 - P(B_1^C \cap B_2^C \cap B_3^C \cap B_4^C)$$
 . א
$$P(B_1) = P(A_1 \cap A_2) = P(A_1)P(A_2) = 0.8^2 = 0.64$$
 : באשר:

$$P(B_1^C) = 1 - 0.64 = 0.36$$

$$P(C) = 1 - P(B_1^C \cap B_2^C \cap B_3^C \cap B_4^C) = 1 - 0.36^4 = 0.9832$$
 : נמכאן

- ב. מכיוון שהמתגים בלתי-תלויים, אם בשלושת הענפים העליונים יש 5 מתגים פתוחים, אז בוודאות לא עובר זרם דרכם. לפיכך, ההסתברות שיעבור זרם מנקודה A לנקודה B היא ההסתברות שיעבור זרם בענף התחתון (והיא אינה תלויה בידוע לגבי הענפים העליונים). כלומר, ההסתברות היא: $0.8^2 = 0.64$.
- נסמן ב-E את המאורע שנובר במעגל זים . עלינו לחשב נסמן ב-E את המאורע שנובר במעגל זים . עלינו לחשב את המצורים, מכיוון שכל המתגים בלתי-תלויים זה בזה ולכולם אותה הסתברות להיות סגורים, מדובר . $P(C \mid E)$ את למעשה בשאלה קומבינטורית (כפי שאפשר לראות בחישוב שלהלן) והתרחשות המאורע נקבעת לפי מיקום 5 המתגים הפתוחים.

כדי שהמאורע $C \cap E$ יתרחש, המתגים הפתוחים צריכים להיות מרוכזים ב-3 ענפים (כדי לאפשר מעבר זרם בענף הרביעי), כך שבשניים מהם יהיו 2 מתגים פתוחים ובשלישי רק מתג אחד פתוח . לפיכך, עלינו לבחור את שני הענפים שבהם יהיו 2 מתגים פתוחים, אחר-כך את הענף שיהיה בו מתג פתוח אחד בלבד , ולבסוף את מיקום המתג הפתוח בענף האחרון שנבחר. ומכאן :

$$P(C \mid E) = \frac{P(C \cap E)}{P(E)} = \frac{\binom{4}{2} \cdot 2 \cdot 2 \cdot 0.2^{5} \cdot 0.8^{3}}{\binom{8}{5} \cdot 0.2^{5} \cdot 0.8^{3}} = \frac{24}{56} = \frac{3}{7} = 0.4286$$

: נקבל . $P(E \mid C^C)$ את נשתמש בסמוני הסעיפים הקודמים, ונחשב את

$$P(E \mid C^{C}) = \frac{P(C^{C} \cap E)}{P(C^{C})} = \frac{P(E) - P(C \cap E)}{1 - P(C)}$$
$$= \frac{\binom{8}{5} \cdot 0.2^{5} \cdot 0.8^{3} - \binom{4}{2} \cdot 2 \cdot 2 \cdot 0.2^{5} \cdot 0.8^{3}}{1 - 0.9832} = \frac{0.005243}{0.0168} = 0.3121$$

שאלה 4

א. הניסוי המתואר בבעיה מקביל לניסוי שבו מסדרים תחילה את 20 הכדורים בשורה, ואז כביכול בוחרים אותם לפי הסדר שלהם בשורה . כעת, כאשר מסדרים בשורה 20 כדורים ששניים מהם אדומים , הכדורים האדומים יכולים להתמקם בכל זוג מקומות בשורה בהסתברויות שוות. לכן :

$$P\{X=i,Y=j\} = \frac{1}{{20 \choose 2}} = \frac{1}{190}$$
 , $1 \le i < j \le 20$; שלמים $j-1$ i

$$P\{X=i\} = \sum_{j=i+1}^{20} P\{X=i, Y=j\} = \sum_{j=i+1}^{20} \frac{1}{190} = \frac{20-i}{190} , \qquad i=1,2,...,19$$
 ...

$$P{Y = j} = \sum_{i=1}^{j-1} P{X = i, Y = j} = \sum_{i=1}^{j-1} \frac{1}{190} = \frac{j-1}{190}$$
, $j = 2, 3, ..., 20$

: מתקיים j = 2,3,...,20

$$P\{X=i \mid Y=j\} = \frac{P\{X=i,Y=j\}}{P\{Y=j\}} = \frac{\frac{1}{190}}{\frac{j-1}{190}} = \frac{1}{j-1} \qquad , \qquad i=1,2,...,j-1$$

. j-1 ל- לומר, למשתנה המקרי המותנה X בהינתן בהינתן Y=j יש התפלגות אחידה בדידה בין ל- ל- כלומר, למשתנה המקרי המותנה לווות היא $\frac{(j-1)^2}{12}=\frac{j(j-2)}{12}$ ושונותו היא $\frac{1+j-1}{2}=\frac{j}{2}$ ושונותו היא

שאלה 5

. $c=\frac{2}{3}$ לכן, 1.5c - לכן. ומצד שני ל- 1.1. לכן, אחד השטח הכלוא מתחת לעקומת הצפיפות שווה מצד אחד ל

$$E[X] = \int_{0}^{1} \frac{2}{3}x dx + \int_{1}^{2} \frac{2}{3}x(2-x)dx = \frac{2}{6}x^{2}\Big|_{0}^{1} + \left[\frac{4}{6}x^{2} - \frac{2}{9}x^{3}\right]_{1}^{2} = \frac{2}{6} + \frac{16}{6} - \frac{16}{9} - \frac{4}{6} + \frac{2}{9} = \frac{7}{9}$$

ג. את פונקציית ההתפלגות המצטברת נקבל בעזרת חישובי שטחים מתחת לעקומת הצפיפות.

$$F_X(x) = \begin{cases} 0 & , & x < 0 \\ \frac{2}{3}x & , & 0 \le x \le 1 \\ 1 - \frac{1}{3}(2 - x)^2 & , & 1 \le x \le 2 \\ 1 & , & x > 2 \end{cases}$$

: מתקיים של המשתנה משתנה המקרי Y הם בין $0 \leftarrow 4$. לכל $y \leq 4$ מתקיים ד.

$$F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\} = P\{-\sqrt{y} \le X \le \sqrt{y}\} = P\{0 \le X \le \sqrt{y}\} = F_X(\sqrt{y})$$

$$F_Y(y) = F_X(\sqrt{y}) = \begin{cases} 0 & , & y < 0 \\ \frac{2}{3}\sqrt{y} & , & 0 \le y \le 1 \\ 1 - \frac{1}{3}(2 - \sqrt{y})^2 & , & 1 \le y \le 4 \\ 1 & , & y > 4 \end{cases}$$