University of Pisa Department of Chemistry and Industrial Chemistry (DCCI) Virtual International Seminar on Theoretical Advancements

Surface hopping dynamics with Frenkel exciton model in a semiempirical framework

Eduarda Sangiogo Gil, Prof. Giovanni Granucci

Challenges in simulating photo processes in silico

1. Long time scale simulations;

2. Simulate large systems, for instance, multichromophoric systems.

Mixed quantum-classical dynamics >>> Computational cost: electronic structure method

• The study of EET and other aspects of nonadiabatic dynamics in multichromophoric systems calls for employing some sort of 'divide and conquer' strategy.

• Exciton model.

Objective

Method

Frenkel exciton model

$$E^{GS} = E_{tot}^{MM} + \sum_{i} (E_{i}^{QM/MM (S0)} - E_{tot}^{MM})$$

Method

Couplings (off-diagonal terms)

$$V_{ai,bj} \simeq \int \frac{\rho_{0i}^{(a)}(\mathbf{r}_1)\rho_{0j}^{(b)}(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$

$$V_{ai,bj} = \sum_{A \in a} \sum_{B \in b} \sum_{\mu\nu \in A} \sum_{\sigma\tau \in B} \rho_{0i,\mu\nu}^{(a)} \rho_{0j,\sigma\tau}^{(b)} \left(\mu\nu | \sigma\tau\right) \longrightarrow \text{"Exact Coulomb" (EC)}$$

It scales quadratically with the number of chromophores.

$$V_{ai,bj} \simeq \sum_{A \in a} \sum_{B \in b} \frac{q_{A,ai}q_{B,bj}}{R_{AB}}$$
 "Transition charges "(TC)

It scales linearly with the number of chromophores.

Method

Gradients and integration of the electronic TD Schrodinger equation

Gradients;

• Integration of the electronic TD Schrodinger equation: Local diabatization.

$$S_{KL} = \langle K(t)|L(t+\Delta t)\rangle$$

Sangiogo Gil, E.; Granucci, G.; Persico, M., Surface hopping dynamics with Frenkel exciton model in a semiempirical framework. *J. Chem. Theory Comput.* **2021**, *17* (12), 7373-7383.

Application

Photodynamics of SAMs of ABPT

Side view:

Top view:

- Thermalization trajectories with 10; 12 and 20 monomers; → Absorption Spectra;
- SH dynamics with 12 monomers;
- S₁ and S₂ state of each monomer were included in the exciton Hamiltonian.

Application

Photodynamics of SAMs of ABPT

Absorption Spectra

10 monomers:

12 monomers:

20 monomers:

Application

Photodynamics of SAMs of ABPT

Cantatore, V.; Granucci, G.; Rousseau, G.; Padula, G.; Persico, M. Photoisomerization of Self-Assembled Monolayers of Azobiphenyls: Simulations Highlight the Role of Packing and Defects. J. Phys. Chem. Lett. 2016, 7, 4027 – 4031.

Extended exciton model

LIMITATION OF THE FRANKEL EXCITON MODEL:

It can only describe local excitation

Monomers:

Dimers:

Davide Accomasso, Maurizio Persico, and Giovanni Granucci. Diabatization by localization in the framework of conguration interaction based on oating occupation molecular orbitals (FOMO-CI). ChemPhotoChem, 3(9):933-944, 2019.

Extended exciton model

		ABC	Arbc	ABTC	ABC	ABC	ABC	ABC	AB C	ABC	ABC
$\widehat{H}^{ex} =$	ABC	E^{GS}	0	0	0	0	0	0	0	0	0
	A*BC	0	\mathcal{E}^1_A	$\mathcal{C}_{AB}^{1,1}$	$C_{AC}^{1,1}$	D_{CT}^{A*}	D_{CT}^{A*}	0	0	D_{CT}^{A*}	D_{CT}^{A*}
	AB*C	0		$arepsilon_B^1$	$C_{BC}^{1,1}$	D_{CT}^{B*}	D_{CT}^{B*}	D_{CT}^{B*}	D_{CT}^{B*}	0	0
	ABC*	0			$arepsilon_{C}^{1}$	0	0	D_{CT}^{C*}	D_{CT}^{C*}	D_{CT}^{C*}	D_{CT}^{C*}
	A ⁺ B ⁻ C	0				$arepsilon_{CT}^1$	D_{CT}^{CT}	0	0	0	0
	A-B+C	0					$arepsilon_{CT}^2$	0	0	0	0
	AB ⁺ C ⁻	0						$arepsilon_{CT}^3$	D_{CT}^{CT}	0	0
	AB ⁻ C ⁺	0							$arepsilon_{CT}^4$	0	0
	A ⁺ BC ⁻	0								$arepsilon_{CT}^{5}$	D_{CT}^{CT}
	A ⁻ BC ⁺	0									$arepsilon_{CT}^6$

• The *null terms* are coupled via NAD;

Gradients;

• Overlap martix (local diabatization).

Conclusions

- Overall, the two Frenkel exciton approaches (EC and TC) showed very close matching results in terms of absorption spectra, lifetimes, and photoisomerization quantum yields;
- The Frenkel exciton model combined with SH dynamics makes possible the study of EET in multichromophoric systems;
- The extended exciton model can open up new scenarios for the study of more complex systems.

Remarks

- The Frenkel exciton model was implemented in Newton-X program within:
 - ✓ Semiempirical FOMO-CI MOPAC
 - ✓ TDDFT Gaussian

University of Pisa Department of Chemistry and Industrial Chemistry (DCCI) Virtual International Seminar on Theoretical Advancements

Surface hopping dynamics with Frenkel exciton model in a semiempirical framework

Eduarda Sangiogo Gil, Prof. Giovanni Granucci

