6.842 Randomness and Computation	April 11, 2022
Homework 4	
Yuchong Pan	MIT ID: 911346847

1. Collaborators and sources: Guanghao Ye, Zixuan Xu. $Proof. \end{solution}$

2. (a) Collaborators and sources: none.

Proof. Note that $\mathbb{1}_{\text{test accepts}} = (1 + f(x)f(y)f(z))/2$. By the Fourier transform of f and by linearity of expectation,

$$\mathbb{E}[f(x)f(y)f(z)] = \mathbb{E}\left[\left(\sum_{S\subset[n]}\hat{f}(S)\chi_S(x)\right)\left(\sum_{T\subset[n]}\hat{f}(T)\chi_T(y)\right)\left(\sum_{U\subset[n]}\hat{f}(U)\chi_U(z)\right)\right]$$
$$= \sum_{S,T,U\subset[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\,\mathbb{E}\left[\chi_S(x)\chi_T(y)\chi_U(x\circ y\circ w)\right].$$

Let $S, T, U \subset [n]$. For all $i \in [n]$, since $x_i, y_i \in \{\pm 1\}$, then $x_i^2 = y_i^2 = 1$. Hence,

$$\chi_{S}(x)\chi_{T}(y)\chi_{U}(x \circ y \circ w) = \left(\prod_{i \in S} x_{i}\right) \left(\prod_{i \in T} y_{i}\right) \left(\prod_{i \in U} x_{i} y_{i} w_{i}\right)$$

$$= \left(\prod_{i \in S \cap U} x_{i}^{2}\right) \left(\prod_{i \in T \cap U} y_{i}^{2}\right) \left(\prod_{i \in S \triangle U} x_{i}\right) \left(\prod_{i \in T \triangle U} y_{i}\right) \left(\prod_{i \in U} w_{i}\right)$$

$$= \chi_{S \triangle U}(x)\chi_{T \triangle U}(y)\chi_{U}(w).$$

If S = T = U, since w_1, \ldots, w_n are all chosen independently and since $\mathbb{E}[w_i] = (-1) \cdot \delta + 1 \cdot (1 - \delta) = 1 - 2\delta$ for all $i \in [m]$, then

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\prod_{i\in S}w_{i}\right] = \prod_{i\in S}\mathbb{E}\left[w_{i}\right] = (1-2\delta)^{|S|}.$$

Now, suppose that either $S \neq U$ or $T \neq U$. WLOG assume that $S \neq U$. Then $S \triangle U \neq \emptyset$. Let $j \in S \triangle U$. For $x \in \{\pm 1\}^n$, let $x^{\oplus j}$ be the vector obtained by flipping the j^{th} bit in x. Then we can partition $\{\pm 1\}^n$ into (unordered) pairs $(x, x^{\oplus j})$. Therefore,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\right] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} \chi_{S\triangle U}(x) = \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(\chi_{S\triangle U}(x) + \chi_{S\triangle U}\left(x^{\oplus j}\right)\right)$$
$$= \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(x_j \prod_{i \in (S\triangle U) \setminus \{j\}} x_i + (-x_j) \prod_{i \in (S\triangle U) \setminus \{j\}} x_i\right) = 0.$$

Since x, y and w are chosen independently, then for all $S, T, U \subset [n]$ such that either $S \neq U$ or $T \neq U$,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\chi_{S\triangle U}(x)\right]\mathbb{E}\left[\chi_{T\triangle U}(y)\right]\mathbb{E}\left[\chi_{U}(w)\right] = 0.$$

Therefore,

$$\begin{split} \mathbb{P}[\text{test accepts}] &= \mathbb{E}\left[\mathbbm{1}_{\text{test accepts}}\right] = \mathbb{E}\left[\frac{1+f(x)f(y)f(z)}{2}\right] = \frac{1}{2} + \frac{1}{2}\,\mathbb{E}[f(x)f(y)f(z)] \\ &= \frac{1}{2} + \frac{1}{2}\sum_{S,T,U\subset[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\,\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] \\ &= \frac{1}{2} + \frac{1}{2}\sum_{S\subset[n]}(1-2\delta)^{|S|}\hat{f}(S)^3. \end{split}$$

This completes the proof.