

Geometria

Licenciatura em Ciências da Computação 13/07/2020

Exame de recurso

Todas as respostas devem ser justificadas e os cálculos devem ser apresentados.

- 1. Seja \mathcal{A} um **plano** euclidiano associado ao espaço vetorial E. Sejam \overrightarrow{u} e \overrightarrow{v} dois vetores não paralelos de E e \mathcal{P} o paralelogramo formado por \overrightarrow{u} e por \overrightarrow{v} .
 - (a) Mostre que área $(\mathcal{P}) = \sqrt{\|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 (\overrightarrow{u} \cdot \overrightarrow{v})^2}$.
 - (b) Suponha agora que A está munido de um referencial ortonormado e considere os vetores

$$\overrightarrow{p} = (1,1)$$
 e $\overrightarrow{q} = (1,-2)$.

Determine a área do paralelo formado pelos vetores \overrightarrow{p} e \overrightarrow{q} .

2. Seja \mathcal{A} um espaço euclidiano tridimensional munido de referencial ortonormado. Considere os subespaços afins

$$\pi_1 = (0,0,1) + \langle (1,0,-1), (1,-1,1) \rangle$$
 e $\pi_2 = (1,-1,1) + \langle (0,1,-2), (-2,1,0) \rangle$.

- (a) Mostre que π_1 e π_2 são planos.
- (b) Mostre que π_1 e π_2 são subespaços paralelos.
- (c) Determine a distância entre π_1 e π_2 .
- (d) Seja r a reta perpendicular a π_1 e incidente em (0,0,1). Determine a interseção de $r \in \pi_2$.
- 3. Seja \mathcal{A} um espaço euclidiano de dimensão n.

Seja $h: \mathcal{A} \longrightarrow \mathcal{A}$ uma homotetia. Considere \mathcal{U} um subespaço afim de \mathcal{A} de dimensão k ($k \leq n$). Mostre que \mathcal{U} e $h(\mathcal{U})$ são paralelos.

4. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado.

Considere a aplicação afim $\sigma: \mathcal{A} \longrightarrow \mathcal{A}$ definida por

$$\sigma(x,y) = \left(\frac{3x - 4y + 2}{5}, \frac{-4x - 3y + 4}{5}\right).$$

- (a) Mostre que σ se trata de uma reflexão e determine a sua reta de reflexão.
- (b) Seja r a reta de reflexão de σ . Escolhendo um vetor \overrightarrow{v} apropriado, apresente a expressão matricial da reflexão deslizante na reta r segundo o vetor \overrightarrow{v} .
- 5. Seja \mathcal{A} um espaço euclidiano tridimensional munido de referencial ortonormado.

Seja σ a reflexão no plano z=0. Seja ρ a rotação de ângulo π segundo o eixo incidente em (1,0,1) e dirigido por \overrightarrow{e}_3 . Mostre que $\sigma \circ \rho$ é uma simetria central e indique o seu centro.

- 6. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado.
 - (a) Determine o redimensionamento de parâmetros 1 e 2 centrado no ponto (1,1) segundo as direções principais.
 - (b) Determine o redimensionamento de parâmetros 1 e 2 centrado na origem segundo as bissetrizes do terceiro e quarto quadrantes.
- 7. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado.

Indique, justificando, se a seguinte afirmação é verdadeira ou falsa.

"Se s é uma reta de \mathcal{A} e $f:\mathcal{A}\longrightarrow\mathcal{A}$ é uma transvecção de fator $r\neq 0$ então f(s) é uma reta perpendicular a s".

Cotações: 1. a) 2 valores, b) 1 valor;

2. a) 1 valor, b) 1.5 valores, c) 2 valores, d)1.5 valores;

3. 1.5 valores

4. a) 1.5 valores, b) 1 valor;

5. 2 valores;

6. a) 1.5 valores, b) 2 valores;

7. 1.5 valores.