

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF **SCIENCE**

ECV 211: ELECTRICAL ENGINEERING

DATE: THURSDAY, 19TH APRIL 2012 TIME: 11.00 A.M. - 1.00 P.M.

INSTRUCTIONS:

- (i) There are **Five** questions.
- (ii) Question No.1 is Compulsory and carries 30 Marks.
- (iii) Select any other Two questions, each of which carries 20 Marks.
- (iv) Define all symbols used.
- Marks will be awarded for procedure, methodologies used and not necessarily on the (v) final answer.
- Q1. (a) (i) Determine the resistance of a copper wire which is 500m long and has a diameter of 1.5 mm. Take resistivity for copper as $1.732 \times 10^{-8} \Omega$ -m. (4 MARKS)
 - (ii) State Joule's Law and give its application. (3 MARKS)
 - (iii) Determine the equivalent inductances for each of the two circuits depicted in Fig.Q1a. (3 MARKS)
 - (b) (i) For a given R-C circuit, distinguish between zero-state response and zero-input response. (4 MARKS)
 - Explain the concept of Power Triangle in sinusoidal steady state systems. (ii) (3 MARKS)

		(iii)	From first principles, show that the impedance of a Capacitor of		
			capacitance c farads, through which a sinusoidal current of		
			radians is flowing is $1/j\omega c$ ohms.	(3 MARKS)	
	(c)	(i)	Indicate what Mutual Inductance is.	(3 MARKS)	
		(ii)	The driving point impedance (Z) of the circuit given in Fig.Q1c is 1Ω .		
		,	Determine Z_x .	(4 MARKS)	
		(iii)	Draw the Phasor diagram for a Star connected balanced Source supplying		
			a Delta connected balanced <i>Load</i> , power factor Cos φ.	(3 MARKS)	
Q2.	The Switch S in the circuit given in Fig.Q2 is opened at $t=0$, having been closed long enough for the circuit to attain steady state.				
			raw the circuit with equivalent capacitance and resistance.	(6 MARKS)	
	(i)			(14 MARKS)	
	(ii)	Find	v(t) for $t>0$.	(*) * * * * * * * * * * * * * * * * * *	
Q3	Consider the circuit given in Fig. Q3.				
	(i)	Drav	with the vector diagram of the source voltage, V .	(3 MARKS)	
	(ii)	Find	the current flowing in the impedance $(3+j4)\Omega$.	(14 MARKS)	
	(iii)	c the promont in (ii) above		(3 MARKS)	
			Draw phasor diagrams for resistive, inductive and capac	itive loads.	
Q4.	(a)	(i)	Draw phasor diagrams for resistive, inductive and capaci	(6 MARKS)	
		(;;)	Clarify the phase status of each category.	(4 MARKS)	
		(ii)	Claimy the phase status of each caregory.		
	(b)			d 3-phase star and delta loads, use suitable diagrams to indicate	
	their respective configuration for:-				
		(i)	Line and phase voltage.	(5 MARKS)	
		(ii)	Line and phase current.	(5 MARKS)	
				Page 2 of 4	

Demonstrate thorough understanding of:-Q5. (a) (3 MARKS) (i) Capacitance. (3 MARKS) (ii) Magnetic Leakage. (3 MARKS) Magnetic Fringing. (iii) (3 MARKS) Define Electrostatic Field Intensity. (b) (i) (2 MARKS) (ii) State Gauss' Law. (6 MARKS) (iii) Show what Mutual Inductance is.

Page 4 of 4