Construção de Compiladores Período Especial Aula 4: MEPA

Bruno Müller Junior

Departamento de Informática UFPR

2020

- Introdução
- Modelo Esquemático
 - Instruções
 - Constantes e Aritmética
- Roteiro
 - Compilador
- Tradução
 - Regra Sintática (regra 1)
 - Regra Tradução
- Notação
 - Regras que indicam repetição
 - Regras que indicam opcional
 - Tarefas
 - Simulador Mepa
 - Compilador

Compilador

•00

Partes que Compõe um Compilador

- O bison pode gerar código assembly diretamente nos nós "executáveis", mas não "encaixa" fácil.
- A MEPA (Máquina de Execução de Pascal) é uma linguagem intermediária que simplifica a geração de código.
- Características
 - Máquina que usa uma pilha para cálculos (como na notação posfixa: abc+-)e demais operações.
 - Memória (M)
 - Registradores de base (D)
 - Contador de instruções (i)
 - apontador da pilha (s) (stack pointer).

000

- Modelo Esquemático da MEPA.
- A pilha cresce para cima.
- Da posição 0 (zero) até o topo (s), a pilha contém valores válidos. De s+1 para cima, são valores desconhecidos ou inválidos.

Modelo Esquemático

Instruções

- As instruções da MEPA implementam o modelo de execução.
- Todas elas são descritas com um mnemônico de quatro letras precedidas ou não de um rótulo seguido do símbolo dois pontos (:)
- Estas instruções serão apresentadas gradualmente, mas todas podem ser encontradas no livro do Tomasz (usaremos só o modelo básico).

Constantes e Aritmética

Instrução	Ação	Significado
CRCT k	s:=s+1;	Carrega
	M[s]:=k	Constante
	i:=i+1	
SOMA	M[s-1] := M[s-1] + M[s];	Soma
	s:=s-1;	
	i:=i+1	
SUBT	M[s-1]:=M[s-1]-M[s];	Subtrai
	s:=s-1;	
	i:=i+1	
MULT		multiplica
DIVI		divide

Exemplo de Tradução			
Expressão	Código MEPA equivalente		
	CRCT 1		
	CRCT 2		
	SOMA		
(1+2)*3-4/4	CRCT 3		
	MULT		
	CRCT 4		
	CRCT 4		
	DIVI		
	SURT		

Execução (1)

Execução (1)

Execução (2)

Execução (3)

Execução (4)

Modelo Esquemático

00000

- Objetivo: Explicar a tradução Pascal ⇒ MEPA
- A cada aula, serão explicados os seguintes tópicos:
 - Construção a ser implementada;
 - Esquema de tradução;
 - Regras gramaticais a serem usadas;
 - Adaptação para bison;
- Como cada aula é construída sobre as construções já conhecidas nas aulas anteriores, cada aluno DEVE implementar cada aula o quanto antes.
- Regras gramaticais: apêndice B do livro do Tomasz (notação a ser corrigida).

Compilador

Compilador

Partes que Compõe um Compilador

• Regra 1:

- O que está escrito em vermelho são tokens;
- O que está entre "<" e ">" são regras;
- Considere que a regra <bloco> está vazia. Assim, uma entrada válida para esta regra é: program exemplo (input, output);

Traducão

- O compilador é um programa que verifica se uma entrada está de acordo com as regras sintáticas e semânticas de uma gramática e se estiver gera código "executável" (que nesta disciplina é o código MEPA).
- As regras sintáticas do bison ajudam nesta geração de código. Um exemplo é quando usar as instruções INPP e PARA.

Instrução	Ação	Significado
INPP	s:=-1;	Inicia Programa
	D[0]:=0;	Pascal
	i:=i+1	
PARA		Finaliza

 Ao encontrar o token program, o bison deve imprimir a instrução INPP, e ao encontrar o ponto final, imprimir PARA.

• Regra 1:

• Uma sugestão de implementação é:

 onde a função geraCodigo(rotulo, comando MEPA) tem dois parâmetros: o rótulo e o comando MEPA a ser gerado no arquivo de saída.

- O apêndice 1 contém todas as regras que usaremos na disciplina (não usaremos as que tem um (*) ao final.
- Porém, há um problema: elas estão num formato não aceito pelo bison, em especial:
- { e } para indicar repetição;
- [e] para indicar opcional;
- A seguir, será explicado como converter as regras que contém estes símbolos nas regras equivalentes, apropriadas ao bison.

- Exemplo de regra que indica repetição
 - 10. 15. 10. <l
- entrada válida: $\alpha =$ "a, g1,b".
- Formato livro: $A ::= \beta\{\alpha\}$
- Equivalente em bison: $A ::= A\alpha | \beta$
- Mapeamento:
 - A ⇒ < lista de identificadores >
 - $\alpha \Rightarrow$, < identificador >
 - $\bullet \ \beta \Rightarrow < \mathtt{identificador} >$
- Logo:

10. <l

- Exemplo de regra que indica repetição
 - 10. 15. 10. <l
- entrada válida: $\alpha = \text{"a, g1,b"}$.
- Formato livro: $A ::= \beta\{\alpha\}$
- Equivalente em bison: $A ::= A\alpha | \beta$
- Mapeamento:
 - *A* ⇒ < lista de identificadores >
 - $\alpha \Rightarrow$, < identificador >
 - $\beta \Rightarrow < identificador >$
- Logo:

10. <l

- Exemplo de regra opcional:
 - 2.

 := [<parte de declaração de rótulos>] ...
- <parte de declaração de rótulos> é opcional.
- Formato livro: A ::= [B]
- Como B é opcional, a regra A pode ser lida como "ou B ou vazio", ou seja:

 Isto funciona porque nestes no Pascal simplificado, o primeiro token de B indicará se a regra deve ser usada ou não.

Introdução

- De http://www.inf.ufpr.br/bmuller/CI211.html, baixe o Interpretador MEPA.
- Este arquivo contém o programa que desenvolvi para simular o funcionamento da MEPA.
- Compile (make).
- Verifique o conteúdo de MEPA4.
- Execute o simulador para MEPA4.

- De http://www.inf.ufpr.br/bmuller/CI211.html, baixe o arquivo Projeto.tar.bz2;
- Este arquivo contém o início do compilador (arquivos flex, bison, header (.h) e subrotinas C (.c)).
- Compile (make) e execute o compilador com entradas simples.
- Acrescente a geração de código para INPP e PARA.

Tarefas

Página para anotações

Licença

- Slides desenvolvidos somente com software livre:
 - LATEX usando beamer;
 - Inkscape.
- Licença:
 - Creative Commons Atribuição-Uso Não-Comercial-Vedada a Criação de Obras Derivadas 2.5 Brasil License. http://creativecommons.org/licenses/by-nc-nd/2.5/br/