Heterogeneous Parallel Programming COMP4901D

CUDA Example: Matrix Multiplication

Overview

- Matrix multiplication as an example in CUDA
 - Math operation review
 - Baseline implementation
 - Tiling for shared memory/blocking

Math Review: Matrix Multiplication

 $A_{mxn} X B_{nxk} = C_{mxk}$

C[Row,Col] = A's row at Row B's column at Col = A[Row,0] * B[0, Col] + A[Row,1]*B[1,Col] + ...

3

Sequential C code

```
void MatrixMulOnHost(int m, int n, int k, float* A, float* B, float* C)
for (int Row = 0; Row < m; ++Row) for (int Col = 0; Col < k; ++Col) {
   float sum = 0;
   for (int i = 0; i < n; ++i) {
                                                            Col
   float a = A[Row*n + i];
   float b = B[Col + i*k];
                                                                k
    sum += a *b;
   C[Row*k + Col] = sum;
                                                   m
```

Baseline Kernel

```
_global___void MatrixMulKernel(int m,int n,int k,float* A,float* B, float* C)
    int Row = blockldx.y*blockDim.y+threadIdx.y;
    int Col = blockldx.x*blockDim.x+threadldx.x;
    if ((Row < m) \&\& (Col < k)) {
    float Cvalue = 0.0;
                                                        Col
    for (int i = 0; i < n; ++i)
        /* A[Row, i] and B[i, Col] */
        Cvalue += A[Row*n+i] * B[Col+i*k];
                                                            k
        C[Row*k+Col] = Cvalue;
                               Row
                                               m
                                     QiongLuo
```

Memory Access Pattern

Global Memory

6

Review: Tiling with Faster Memory

- Identify a tile of global memory content that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Have the multiple threads to access their data from the on-chip memory
- Move on to the next tile

Shared Memory Tiling/Blocking

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

Shared Memory Tiling/Blocking

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

Matrix Multiplication Tiled

Break up the execution of the kernel into phases so that the data accesses in each phase are focused on Col one tile of A and one tile of В k A Row m m

n

Loading a Tile

- All threads in a block participate
 - Each thread loads one A element and one B element in tiled code
- Assign the loaded element to each thread such that the accesses within each warp are coalesced

Phase 0: Load for Block (0,0) of C

Phase 0: Compute Block (0,0) Iteration 0

Phase 0: Compute Block (0,0) Iteration 1

Phase 1: Load for Block (0,0) of C

Phase 1: Compute Block (0,0) Iteration 0

Phase 1: Compute Block (0,0) Iteration 1

Barrier Synchronization

- An API function call in CUDA
 - __syncthreads()
- All threads in the same block must reach the __syncthreads() before any can move on
- Best used to coordinate tiled algorithms
 - To ensure that all elements of a tile are loaded
 - To ensure that all elements of a tile are consumed

Barrier Synchronization Timing

Caution: Syncthreads() can significantly reduce active threads in a block.

Loading a Tile: Element Index

Loading a Tile: Element Index (cont.)

Loading a Tile: Element Index (cont.)

```
A[Row][t*TILE_WIDTH+tx]

A[Row*n + t*TILE_WIDTH + tx]
```

```
B[t*TILE_WIDTH+ty][Col]

B[(t*TILE_WIDTH+ty)*k + Col]
```

where t is the tile sequence number of the current phase

```
A and B are using LD indexing
```

Tiled Matrix Multiplication Kernel

```
__global___void MatrixMulKernel(int m, int n, int k, float* A, float* B, float* C)
{
1. __shared__ float ds_A[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float ds_B[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
5. int Row = by * blockDim.y + ty;
6. int Col = bx * blockDim.x + tx;
7. float Cvalue = 0;
```

Tiled Matrix Multiplication Kernel (cont.)

```
^{\prime\prime} Loop over the A and B tiles required to compute the C
     element
     for (int t = 0; t < n/TILE_WIDTH; ++t) {
      // Collaborative loading of A and B tiles into shared
     memory
9.
       ds_A[ty][tx] = A[Row*n + t*TILE_WIDTH+tx];
10.
       ds_B[ty][tx] = B[(t*TILE_WIDTH+ty)*k + Col];
       __syncthreads();
11.
75.
      for (int i = 0; i < TILE_WIDTH; ++i)
          Cvalue += ds A[ty][i] * ds B[i][tx];
13.
14.
    __synchthreads();
1.5.
     }
    CERow*k+Coll = Cvalue;
16.
}
```

Block Size Consideration

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For 16, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (memory traffic reduced by a factor of 16)
- For 32, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (memory traffic reduced by a factor of 32)

Shared Memory Size Consideration

- Shared memory size is implementation dependent!
- For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
- For 16K shared memory, one can potentially have up to 8 thread blocks executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

What If Tiles Exceed Matrix Boundaries

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a D value will ensure that that the multiply-add step does not affect the final value of the output element

Compute Elements Exceeding Boundaries

- If a thread does not calculate a valid C element
 - Can still perform multiply-add into its register
 - As long as it is not allowed to write to the global memory at the end of the kernel
 - This way, the thread does not need to be turned off by an if-statement like in the basic kernel; it can participate in the tile loading process

Illustration

The multiply-add will not affect the output due to 0's.

Testing Boundary Condition on A

- Each thread loads
 - A[Row][t*TILE_WIDTH+tx]
 - A[Row*Width + t*TILE_WIDTH+tx]
- Need to test
 - (Row < m) && (t*TILE_WIDTH+tx < n)
 - If true, load A element
 - Else , load 0

Testing Boundary Condition on B

- Each thread loads
 - B[t*TILE_WIDTH+ty][Col]
 - B[(t*TILE_WIDTH+ty)*k+ Col]
- Need to test
 - (t*TILE_WIDTH+ty < n) && (Col< k)
 - If true, load B element
 - Else, load 0

Code: Loading A and B Tiles with Boundary Checks

```
Afor (intt = \square; t < (n-1)/TILE_WIDTH + 1; ++t) {
         if(Row < m && t*TILE_WIDTH+tx < n) {
++
                 ds_A[ty][tx] = A[Row*n + t*TILE_WIDTH
+ txli
         } else {
                ds_A[ty][tx] = 0.0;
         }
         if (t*TILE_WIDTH+ty < n && Col < k) {
                ds_B[ty][tx] = B[(t*TILE_WIDTH + ty)*k
ЪΠ
+ Colli
         } else {
               ds_B[ty][tx] = 0.0;
         }
        __syncthreads();
1, 1,
```

Code: Calculate C Values and Store

```
for (int i = 0; i < TILE_WIDTH; ++i) {

Cvalue += ds_AEtylEil * ds_BEilEtxl;
}

__syncthreads();

} /* end of outer for loop */

++ if (Row < m && Col < k)

PERow*k + Coll = Cvalue;
} /* end of kernel */
```

Summary

- Matrix multiplication is a common computation task in many applications.
- Its parallelization in CUDA can be optimized by tiling and use of shared memory.
- When tiles exceed matrix boundaries, loading the input and storing the result needs to check the boundary conditions.