MA 102 Calculus Tutorial-2

Note: $f_{xy} = \frac{\partial^2 f}{\partial y \partial x}, f_{xyz} = \frac{\partial^3 f}{\partial z \partial y \partial x}$

- (1) Sketch the domain and graph for the functions $f(x,y) = \ln(x^2 + y^2 4), f(x,y) =$ $e^{-(x^2+y^2)}$.
- (2) Label level curve with its function value of the function $f(x,y) = \sqrt{x^2 + y^2}$.
- (3) At what points (x,y) in the plane are the functions $f(x,y) = \frac{x+y}{x-y}$, $f(x,y) = \frac{x^2}{x^2-y}$, $f(x, y, z) = \sqrt{4 - x^2 - y^2 - z^2}$ continuous.
- (4) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.
 - (a) $f(x,y) = x^2 xy + y^2$
 - (b) $f(x,y) = (2x 3y)^3$
 - (c) $f(x,y) = e^{xy} ln(y)$
- (5) Find $f_x, f_y, f_z, f_{xy}, f_{yz}, f_{zx}, f_{xyz}$. (a) $f(x, y, z) = 1 xy^2z + 2z^2$
- (b) f(x,y,z) = ln(xy+2yz+3xyz)(6) Find $\frac{dw}{dt}$ where $w = ln(x^2+y^2+z^2), x = cos(t), y = sin(t), z = 4\sqrt{t}$ (using the Chain Rule).
- (7) Find ∇f at (1, 1, 1) where $f(x, y, z) = x^2 + y^2 2z^2 + z \ln x$.
- (8) Find the derivative of the function f(x, y, z) = xy + yz + zx at (1, -1, 2) in the direction u = 3i + 6j - 2k.
- (9) Find the directions of $f(x, y, z) = \ln xy + \ln yz + \ln xz$ in which the functions increase and decrease most rapidly
- (10) In what direction is the derivative of $f(x,y) = xy + y^2$ at (3,2) equal to zero? Ans: $\nabla f(3,2) = 2i + 7j, v = 7i - 2j, u = v/|v|, -u$ is the directions where the derivative is zero.
- (11) Find equations of the tangent plane and normal line of $x^2 + 2xy y^2 + z^2 = 7$ at (1,-1,3). Ans: $\nabla f(1,-1,3) = 4j+6k$. Tangent plane: 4(y+1)+6(z-3)=0 and normal line: x = 1, y = -1 + 4t, z = 3 + 6t.
- (12) By about how much will $f(x,y,z) = e^x \cos(yz)$ change as the point (x,y,z) moves from the origin a distance of ds = 0.1 unit in the direction of 2i + 2j - 2k. Ans: $\nabla f(0,0,0) = i, u = v/|v| = \frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j - \frac{1}{\sqrt{3}}k. \ \nabla f(0,0,0) \cdot u = \frac{1}{\sqrt{3}}, df = (\nabla f(0,0,0) \cdot u)ds.$ (13) Find the linearization L(x,y) of the function $f(x,y) = e^{2y-x}$ at (0,0). Ans: $f(0,0) = e^{2y-x}$
- $1, f_x(0,0) = -1, f_y(0,0) = 2, L(x,y) = f(0,0) + 1(x-0) + 2(y-0).$
- (14) Find all the local maxima, local minima, and saddle points of the $f(x,y) = x^2 4xy +$ $y^2 + 6y + 2$. Ans: Critical point: (2,1), $f_{xx}f_{yy} - f_{xy}^2 < 0$, the point is saddle point.
- (15) Among all closed rectangular boxes of volume 27 cm^3 , what is the smallest surface area? Ans: f(x, y, z) = 2xy + 2yz + 2zx, xyz = 27. Hence, $f(x, y) = 2xy + (2y + 2x)\frac{27}{xy}$. Critical point: (3,3,3). Now, $f_{xx}f_{yy} - f_{xy}^2 = 12 > 0$, $f_x(3,3,3) > 0$, so, (3,3,3) is a minima. So, the smallest surface area = 54.
- (16) Suppose that the Celsius temperature at the point (x, y, z) on the sphere $x^2 + y^2 + z^2 = 1$ is T = 6xyz. Locate the highest and lowest temperatures on the sphere. Ans: The dimensions of the box are $\frac{2}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$ by for maximum volume. Note that there is no minimum volume since the box could be made arbitrarily thin.
- (17) Use Taylor's formula for f(x,y) at the origin to find quadratic and cubic approximations of $f(x,y) = \sin(x)\cos(y)$ near the origin. Ans: $L(x,y) = f(0,0) + (x-0)f_x(0,0) + (y-1)f_x(0,0) + (y-1)f_x(0,0)$ $0)f_y(0,0) + \frac{1}{2}[x^2f_{xx} + 2xyf_{xy} + y^2f_{yy}(0,0)].$