

D. Y. Patil College of Engineering & Technology Kasaba Bawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Course: Differential Equations and Numerical Techniques Course Code: 231FYL111

Tutorial-V

Numerical Solution of Ordinary Differential Equations of First Order and First Degree (Picard's Method and Taylor's Series Method)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:

111.3 Apply the numerical methods to solve ordinary differential equations.

Q.1	Apply Picard's method to solve $\frac{dy}{dx} = y - x$ with the initial condition $y = 2$ at $x = 0$ up to third approximation
Q.2	Apply Picard's method to solve $\frac{dy}{dx} = 2y - 1$ with the initial condition $y(0) = 1$ up to third approximation
Q.3	Apply Picard's method to solve $\frac{dy}{dx} = 3x + y^2$ with the initial condition $y(0) = 1$ up to third approximation
Q.4	Apply Picard's method to solve $\frac{dy}{dx} = x + x^4y$ with the initial condition $y(0) = 3$ up to third approximation
Q.5	Solve $\frac{dy}{dx} = x^2y - 1$ with $y_0 = 1$ when $x_0 = 0$ and find y at $x = 0.03$ by Taylor's method up to four decimal places.
Q.6	Using Taylor's series method, obtain a solution of the differential equation $\frac{dy}{dx} = y - xy, \text{ with } x_0 = 0, y_0 = 1 \text{ at } x = 0.1$
Q.7	Using Taylor's series method, solve the differential equation $\frac{dy}{dx} = 1 + xy$, with $y(0) = 1$ and compute $y(0.1)$ correct to four decimal places
Q.8	Solve $\frac{dy}{dx} = x^2 + y$ with $y(0) = 1$ and find y at $x = 0.1$ by Taylor's method up to four decimal places.

D. Y. Patil College of Engineering & Technology KasabaBawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Tutorial-VI

Numerical Solution of Ordinary Differential Equations of First Order and First Degree (Euler's Method and Runge-Kutta Method)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:				
111.3	Apply the numerical methods to solve ordinary differential equations.			

Q.1	Using Euler's methods, calculate the approximate value of y when $x = 0.1$
	Given that $\frac{dy}{dx} = x + y + xy$ with $y(0) = 1$ taking $h = 0.025$
Q.2	Solve by Euler's method,
	$\frac{dy}{dx} = x + \sqrt{y}$, $y(2) = 4$, $h = 0.2$ at $x = 3$
Q.3	Solve by Euler's method,
	$\frac{dy}{dx} = x + y,$ $y(0) = 1, h = 0.2 \text{ at } x = 1$
Q.4	Calculate approximate value of y by Runge-Kutta method. Given that
	$\frac{dy}{dx} = 3x + y^2$ with $x_0 = 1$, $y_0 = 1.2$, at $x = 1.1$ taking h=0.1
Q.5	Calculate approximate value of y by Runge-Kutta method. Given that
	$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ with $y(1) = 1$, at $x = 1.1$ taking h=0.1
Q.6	Calculate approximate value of y by Runge-Kutta method. Given that
	$\frac{dy}{dx} = \frac{1}{x+y} \text{ with } y(0) = 1, \text{ at } x = 1 \text{ taking h} = 1$

D. Y. Patil College of Engineering & Technology

Kasaba Bawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Course: Differential Equations and Numerical Techniques Course Code: 231FYL111

Tutorial-VII

Numerical Solutions of Algebraic and Transcendental Equations-I (Bisection Method and Newton-Raphson Method)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:

Course Outcomes (COS). Their successions completion of this totolial, the students will be use to:		
111.4	Apply the numerical techniques to solve algebraic and transcendental equations.	
Q.1	Using Bisection method, find approximate root of $x^3 - 6x + 3 = 0$ in the interval (0,1). Perform four iterations only.	
Q.2	Using Bisection method, find approximate root of $xe^x - 1 = 0$ in the interval (0,1). Perform four iterations only.	
Q.3	Using Bisection method, find approximate root of $x^2 - logx - 12 = 0$ in the interval (3,4). Perform four iterations only.	
Q.4	Find the approximate root of $x^3 - 2x - 5 = 0$ using Newton-Raphson method by taking $x_0 = 2$. Carry out three iterations only.	
Q.5	Use Newton-Raphson method to find the approximate value of $\sqrt{3}$ by taking $x_0 = 1$. Carry out three iterations only.	
Q.6	Find the approximate root of $2x + sinx + 5 = 0$ using Newton-Raphson method by taking $x_0 = -2$. Carry out three iterations only.	