Der Satz von Serre über die Endlichkeit der Homotopiegruppen der Sphären

Bachelorarbeit

von

Tim Baumann

Eingereicht am TODO: ??. ??. 2015

Erstgutachter: Prof. Dr. Bernhard Hanke

Zweitgutachter: TODO: ???

Inhaltsverzeichnis

1	Einleitung	2
2	Homotopiegruppen der Sphären	2

1 Einleitung

Satz 1. Die Homotopiegruppen $\pi_i(S^n, *)$, i > n, sind endlich bis auf die Gruppen $\pi_{4k-1}(S^{2k})$, $k \ge 1$, welche jeweils isomorph zu einer direkten Summe von \mathbb{Z} und einer endlichen Gruppe sind.

2 Homotopiegruppen der Sphären

Definition 1. Es sei (X, x_0) ein punktierter topologischer Raum. Für $n \ge 0$ sei

$$\pi_n(X, x_0) := [(S^n, *), (X, x_0)]$$

die Menge der basispunkterhaltenden Abbildungen $S^n \to X$ modulo basispunkterhaltender Homotopie. Für $n \ge 1$ heißt $\pi_n(X)$ die n-te Homotopiegruppe von X (mit Basispunkt x_0).

Die Gruppenstruktur auf $\pi_n(X)$ wird induziert durch die Kogruppenstruktur auf S^n , welche durch die Abbildung $S^n \to S^n \vee S^n$ gegeben ist, die die Südkappe D^n_+ auf die erste S^n , die Nordkappe D^n_- auf die zweite S^n und den Äquator $D^n_+ \cap D^n_-$ auf den Anklebepunkt von $S^n \vee S^n$ abbildet. Das neutrale Element der Homotopiegruppen wird repräsentiert durch die konstante Abbildung auf den Basispunkt x_0 . Man kann zeigen, dass $\pi_n(X, x_0)$ für $n \ge 2$ abelsch ist (vgl. [Hat02]).

Eine basispunkterhaltende Abbildung $g:(X,x_0)\to (Y,y_0)$ induziert Abbildungen $g_*=\pi_i(g):\pi_i(X,x_0)\to\pi_i(Y,y_0)$ durch Nachkomponieren mit g. Auf diese Weise wird π_i zu einem Funktor von der Kategorie der punktierten topologischen Räume in die Kategorie der (abelschen) Gruppen.

Die Menge $\pi_0(X, x_0)$ ist die Menge der Wegzusammenhangskomponenten von X. Wir schreiben $\pi_0(X, x_0) = 0$, falls die einzige Wegzusammenhangskomponente von X die von x_0 ist.

Falls ein Weg von x_0 nach x_0' in X existiert, so sind $\pi_n(X, x_0)$ und $\pi_n(X, x_0')$ isomorph. Für nicht leere, wegzusammenhängende Räume X kann man daher den Basispunkt in der Notation weglassen von der Homotopiegruppe $\pi_n(X)$ von X sprechen.

Für i < n gilt $\pi_i(S^n) = 0$: Wir können die Sphären S^i und S^n als CW-Komplexe mit jeweils einer Nullzelle und einer i-Zelle bzw. n-Zelle realisieren. Das zelluläre Approximationstheorem besagt, dass jede Abbildung $f: S^i \to S^n$ homotop relativ Basispunkt zu einer zellulären Abbildung ist, d. h. einer Abbildung $\tilde{f}: S^i \to S^n$, die das i-Skelett von S^i (das ist ganz S^i) auf das i-Skelett von S^n (das ist $\{*\}$) abbildet. In anderen Worten ist jede Abbildung $S^i \to S^n$ homotop zur konstanten Abbildung und repräsentiert daher das neutrale Element in $\pi_i(S^n)$.

Mit der universellen Überlagerung $p: \mathbb{R} \to S^1$, $t \mapsto e^{it}$ kann man die Homotopiegruppen von S^1 bestimmen: Die Fundamentalgruppe von S^1 ist isomorph zur Decktransformationsgruppe dieser Überlagerung, von der man leicht zeigen kann, dass diese isomorph zu \mathbb{Z} ist. Es sei nun i > 1 und $f: S^i \to S^1$ stetig. Dann existiert eine Hochhebung $\tilde{f}: S^i \to \mathbb{R}$, da $f_*(\pi_1(S^n)) = f_*(0) = 0 = p_*(\pi_0(\mathbb{R}))$. Da \mathbb{R} zusammenziehbar ist, finden wir eine Homotopie H von \tilde{f} zur konstanten Abbildung $x \mapsto 0$. Dann ist $p \circ H$ eine Homotopie zwischen f und der konstanten Abbildung. Somit ist $\pi_i(S^1) = 0$ für i > 1.

Definition 2. Die (reduzierte) Einhängung ΣX eines punktierten Raumes (X, x_0) ist

$$\Sigma X := (X \times I)/(X \times \{0,1\} \cup \{x_0\} \times I).$$

Der Basispunkt * von ΣX ist der auf einen Punkt zusammengezogene Teilraum.

Einhängung ist ein Endofunktor der Kategorie der punktierten topologischen Räume: Für $f:(X,x_0)\to (Y,y_0)$ ist

$$\Sigma f: (\Sigma X, *) \to (\Sigma Y, *), \quad [(x, t)] \mapsto [(f(x), t)].$$

Die Einhängung eines CW-Komplexes ist wieder ein CW-Komplex. Man sieht leicht, dass $\Sigma S^i \approx S^{i+1}$. Somit induziert Einhängung eine Abbildung $E: \pi_i(X, x_0) \to \pi_i(\Sigma X, *)$. Da Einhängung mit den Kogruppenstruktur von S^i und S^{i+1} verträglich ist, ist E sogar ein Gruppenhomomorphismus.

Definition 3. Ein nicht leerer topologischer Raum X heißt n-zusammenhängend, falls $\pi_i(X) = 0$ für $0 \le i \le n$.

Satz 2 (Freudenthal'scher Einhängungssatz). Es sei $n \ge 0$ und X ein n-zusammenhängender CW-Komplex. Dann ist $E: \pi_i(X) \to \pi_{i+1}(\Sigma X)$ bijektiv für $0 \le i \le 2n$ und surjektiv für i = 2n + 1.

Insbesondere ist die *i*-fach iterierte Einhängung $\Sigma^i X$ eines *n*-zusammenhängenden CW-Komplexes X ein (n+i)-zusammenhängender CW-Komplex.

Für einen beliebigen CW-Komplex X gilt daher $\pi_{n+j}(\Sigma^j X) \cong \pi_{n+j+1}(\Sigma^{j+1} X)$ für $n+j \leq 2(j-1) \Leftrightarrow n+2 \leq j$. Somit ist

$$\pi_{2n+2}(\Sigma^n X) \cong \pi_{2n+3}(\Sigma^{n+1} X) \cong \pi_{2n+4}(\Sigma^{n+2} X) \cong \dots \cong \operatorname{colim} \pi_{n+j}(\Sigma^j X).$$

Diese Gruppe heißt n-te stabile Homotopiegruppe von X. Im Fall der Sphären haben wir mit $X = S^0$:

$$\pi_{2n+2}(S^{n+2}) \cong \pi_{2n+3}(S^{n+3}) \cong \pi_{2n+4}(S^{n+4}) \cong \dots \cong \operatorname{colim}_j \pi_{n+j}(S^j) =: \pi_n^s.$$

Wir behaupten, dass $E: \pi_1(S^1) \to \pi_2(S^2)$ ein Isomorphismus ist. Aus dem Einhängungssatz folgt, dass diese Abbildung surjektiv ist. Somit ist $\pi_2(S^2)$ ein zyklische Gruppe mit Erzeuger id_{S^2} . Es sei nun $k \in \mathbb{Z}$. Dann ist $H_2(k \cdot \mathrm{id}_{S^2}) : H_2(S^2) \to H^2(S^2)$ gegeben durch Multiplikation mit k. Angenommen, $k \cdot \mathrm{id}_{S^2}$ ist nullhomomotop. Dann ist auch $H_2(k \cdot \mathrm{id}_{S^2}) = 0$ und somit k = 0. Somit ist E injektiv. Es folgt

$$\mathbb{Z} \cong \pi_1(S^1) \cong \pi_2(S^2) \cong \ldots \cong \pi_i(S^i) \cong \ldots \cong \operatorname{colim}_j \pi_j(S^j) = \pi_0^s.$$

Dabei ist id_{S^i} ein Erzeuger von $\pi_i(S^i)$.

	π_k^s	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_8 \times \mathbb{Z}_3$	0	0	\mathbb{Z}_2	$\mathbb{Z}_{16} \times \mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2^2	\mathbb{Z}_2^3
-	n=11									:	\mathbb{Z}_2^3
	$n=10$ $n=11$ π_k^s								:	\mathbb{Z}_2^2	$\mathbb{Z} \times \mathbb{Z}_2^3$
	n=9							:	$\mathbb{Z}_{16} \! \times \! \mathbb{Z}_{3} \! \times \! \mathbb{Z}_{5}$	\mathbb{Z}_2^3	\mathbb{Z}_2^4
	n=8						:	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \mathbb{Z}_{16} \times \mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2^4	Z 5
	u=7					:	0	\mathbb{Z}_2	$\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2^3	\mathbb{Z}_2^4
	9=u				:	0		\mathbb{Z}_2	$\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_8 \! imes \! \mathbb{Z}_2 \! imes \! \mathbb{Z}_3$	\mathbb{Z}_2^3
	n=5			:	$\mathbb{Z}_8{\times}\mathbb{Z}_3$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2	\mathbb{Z}_2^3
	n=4		:	\mathbb{Z}_2	$\mathbb{Z}_8{\times}\mathbb{Z}_3$	$\mathbb{Z}_2{\times}\mathbb{Z}_2$	\mathbb{Z}_2^2	$\mathbb{Z}_8 \times \mathbb{Z}_3^2$	$\mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2	\mathbb{Z}_2^3
	n=3	:	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}{\times}\mathbb{Z}_4{\times}\mathbb{Z}_3$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	$\mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2	\mathbb{Z}_2^2
	n=2			\mathbb{Z}_2	$\mathbb{Z}_4{\times}\mathbb{Z}_3$	$\mathbb{Z}_4{\times}\mathbb{Z}_3$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	$\mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2
	n=1	\square	0	0	0	0	0	0	0	0	0
-	$\pi_{n+k}(S^n) \mid n=1$	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9

Zusammengefasst wissen wir also

$$\pi_i(S^n, *) \cong \begin{cases} 0, & \text{für } i < n \text{ und } i > n = 1 \\ \mathbb{Z}, & \text{für } i = n, \\ \mathbb{Z} \oplus \text{endliche Gruppe}, & \text{für } i = 2n - 1 \text{ und } n \text{ gerade}, \\ \text{endliche Gruppe}, & \text{sonst.} \end{cases}$$