Association Rule Learning Apriori Intuition

ARL - What is it all about?

People who bought also bought ...

Playback Rate

ARL - Movie Recommendation

User ID		Movies liked
46578		Movie1, Movie2, Movie3, Movie4
98989		Movie1, Movie2
71527		Movie1, Movie2, Movie4
78981		Movie1, Movie2
89192		Movie2, Movie4
61557		Movie1, Movie3
	Movie1	Movie2
Potential Rules:	Movie2	Movie4
	Movie1	Movie3

ARL - Market Basket Optimisation

Transaction ID	Products purchased
46578	Burgers, French Fries, Vegetables
98989	Burgers, French Fries, Ketchup
71527	Vegetables, Fruits
78981	Pasta, Fruits, Butter, Vegetables
89192	Burgers, Pasta, French Fries
61557	Fruits, Orange Juice, Vegetables
87923	Burgers, French Fries, Ketchup, Mayo

Apriori - Support

Here M: sets of two or more than two movies

Movie Recommendation: support(
$$\mathbf{M}$$
) = $\frac{\text{# user watchlists containing } \mathbf{M}}{\text{# user watchlists}}$

Here P: sets of two or more than two Transactions

Market Basket Optimisation: support(
$$I$$
) = $\frac{\# \text{ transactions containing } I}{\# \text{ transactions}}$

<

Apriori - Confidence

Movie Recommendation: confidence(
$$M_1 \rightarrow M_2$$
) = $\frac{\text{\# user watchlists containing } M_1 \text{ and } M_2}{\text{\# user watchlists containing } M_1}$

Market Basket Optimisation: confidence $(I_1 \rightarrow I_2) = \frac{\# \text{ transactions containing } I_1 \text{ and } I_2}{\# \text{ transactions containing } I_1}$

Apriori - Confidence

Apriori - Lift

Movie Recommendation:

$$\operatorname{lift}(\textit{M}_1 \rightarrow \textit{M}_2) = \frac{\operatorname{confidence}(\textit{M}_1 \rightarrow \textit{M}_2)}{\operatorname{support}(\textit{M}_2)}$$

Market Basket Optimisation:

$$\operatorname{lift}(\mathbf{I_1} \to \mathbf{I_2}) = \frac{\operatorname{confidence}(\mathbf{I_1} \to \mathbf{I_2})}{\operatorname{support}(\mathbf{I_2})}$$

Apriori - Lift

191. Apriori Intuition - Algorithm

Step 1: Set a minimum support and confidence

Step 2: Take all the subsets in transactions having higher support than minimum support

(

Step 3: Take all the rules of these subsets having higher confidence than minimum confidence

Step 4: Sort the rules by decreasing lift

[222]

Markdown

Logout

Python 3 O

Importing the libraries

▶ Run

```
In [1]: !pip install apyori

Collecting apyori

Downloading apyori-1.1.2.tar.gz (8.6 kB)

Building wheels for collected packages: apyori

Building wheel for apyori (setup.py): started

Building wheel for apyori (setup.py): finished with status 'done'

Created wheel for apyori: filename-apyori-1.1.2-py3-none-any.whl size=5979 sha256=623b42fc38f4d65256246d0312be407496ccfbd1c75

81e150b862eafda8d5e6b

Stored in directory: c:\users\rajne\appdata\local\pip\cache\wheels\lb\02\6c\a45230be8603bd95c0a51cd2b289aefdd860c1a100eab7366

1

Successfully built apyori

Installing collected packages: apyori

Successfully installed apyori-1.1.2

In [2]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
```

Data Preprocessing

```
In [3]: dataset = pd.read_csv('Market_Basket_Optimisation.csv', header = None)
    transactions = []
    for i in range(0, 7501):
        transactions.append([str(dataset.values[i,j]) for j in range(0, 20)])
```

Training the Apriori model on the dataset

```
In [0]: from apyori import apriori
rules = apriori(transactions = transactions, min_support = 0.003, min_confidence = 0.2, min_lift = 3, min_length = 2, max_length
```

Association Rule Learning Eclat Intuition

Eclat - Support

Movie Recommendation: support(
$$\mathbf{M}$$
) = $\frac{\text{# user watchlists containing } \mathbf{M}}{\text{# user watchlists}}$

Market Basket Optimisation: support(
$$I$$
) = $\frac{\text{\# transactions containing }I}{\text{\# transactions}}$

Eclat - Algorithm

Step 1: Set a minimum support

Step 2: Take all the subsets in transactions having higher support than minimum support

Step 3: Sort these subsets by decreasing support