

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Introduction to ML Lecture 8: Perceptron

Hamed Tabkhi

Department of Electrical and Computer Engineering, University of North Carolina Charlotte (UNCC)

htabkhiv@uncc.edu

Perceptron Model (Minsky-Papert in 1969)

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

However, according to the convention, instead of hand coding the thresholding parameter *thetha*, we add it as one of the inputs, with the weight *-theta* like shown below, which makes it learn-able (more on this in my next post — *Perceptron Learning Algorithm*).

A more accepted convention,

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

Dot Product

Imagine you have two vectors oh size n+1, w and x, the
dot product of these vectors (w.x) could be computed as
follows:

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$

$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathrm{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

- Here, w and x are just two lonely arrows in an n+1 dimensional space
- Intuitively, their dot product quantifies how much one vector is going in the direction of the other
- The decision boundary line which a perceptron gives out that separates positive examples from the negative ones is really just $\mathbf{w} \cdot \mathbf{x} = 0$.

Perceptron Learning Algorithm

- Our goal is to find the **w** vector that can perfectly classify positive inputs and negative inputs in our data.
 - Set t=1, start with the all zero vector w_1 .
 - Given example x, predict positive iff $w_t \cdot x \ge 0$
 - On a mistake, update as follows:
 - Mistake on positive, then update $w_{t+1} \leftarrow w_t + x$
 - Mistake on negative, then update $w_{t+1} \leftarrow w_t x$

Example

Example:
$$(-1,2) - \times$$

 $(1,0) + \checkmark$
 $(1,1) + \times$
 $(-1,0) - \checkmark$
 $(-1,-2) - \times$
 $(1,-1) + \checkmark$

$$w_1 = (0,0)$$

 $w_2 = w_1 - (-1,2) = (1,-2)$
 $w_3 = w_2 + (1,1) = (2,-1)$
 $w_4 = w_3 - (-1,-2) = (3,1)$

Convergence Rule in perceptron

Are you wondering seemingly arbitrary operations
 of x and w would help you learn that perfect w that can
 perfectly classify P and N?

Kernelization

Feature Mapping

Problem: data not linearly separable in the most natural feature representation.

Solution: Feature Mapping and Kernelization

- Map an original feature vector $x = \langle x_1, x_2, x_3, \dots, x_D
 angle$ to an expanded version $\phi(x)$
- The aim is to make nonlinear classification problem to a linearly separatable problem at higher dimensions.
- If data is linearly separable by large margin in the Φ-space, then don't overfit (i.e., good sample complexity).

Feature Mapping Example

Non-linearly separable data in 1D

Becomes linearly separable in new 2D space defined by the following mapping:

$$x \to \{x, x^2\}$$

Feature Mapping Example

Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

$$\mathbf{x} = \{x_1, x_2\} \to \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

Common Kernel Functions

Name	Kernel Function (implicit dot product)	Feature Space (explicit dot product)
Linear	$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z}$	Same as original input space
Polynomial (v1)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^d$	All polynomials of degree d
Polynomial (v2)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^d$	All polynomials up to degree d
Gaussian	$K(\mathbf{x}, \mathbf{z}) = \exp(-\frac{ \mathbf{x} - \mathbf{z} _2^2}{2\sigma^2})$	Infinite dimensional space
Hyperbolic Tangent (Sigmoid) Kernel	$K(\mathbf{x}, \mathbf{z}) = \tanh(\alpha \mathbf{x}^T \mathbf{z} + c)$	(With SVM, this is equivalent to a 2-layer neural network)

Kernelization Summary

Pros:

can help turn non-linear classification problem into linear problem

Cons:

- "feature explosion" creates issues when training linear classifier in new feature space
- -More computationally expensive to train
- -More training examples needed to avoid overfitting

