Correction DL 4 : Algèbre linéaire 1

Ex.1: Une base de \mathbb{R}^2

On considère les deux vecteurs $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

1. (Résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = 0$. Que peut-on en déduire sur la famille (\vec{u}, \vec{v}) ?)

On résout pour $\lambda, \mu \in \mathbb{R}$: $\lambda \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\vec{n}} + \mu \underbrace{\begin{pmatrix} 5 \\ 3 \end{pmatrix}}_{\vec{n}} = \underbrace{\begin{pmatrix} 0 \\ 0 \end{pmatrix}}_{\vec{n}} \Longleftrightarrow \left\{ \begin{array}{c} 3\lambda + 5\mu = 0 \\ 2\lambda + 3\mu = 0 \end{array} \right.$

On trouve donc pour seule solution : $\left\{ \begin{array}{l} \lambda=0\\ \mu=0 \end{array} \right.$. La famille \vec{u},\vec{v} est donc **libre**.

(on remarque immédiatement que \vec{u}, \vec{v} ne sont pas colinéaires.)

2. (Résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = \binom{3}{5}$, d'inconnues $\lambda, \mu \in \mathbb{R}$.)

On résout pour $\lambda, \mu \in \mathbb{R}$: $\lambda \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\vec{u}} + \mu \underbrace{\begin{pmatrix} 5 \\ 3 \end{pmatrix}}_{\vec{v}} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \Longleftrightarrow \begin{cases} 3\lambda + 5\mu = 3 \\ 2\lambda + 3\mu = 5 \end{cases}$

On trouve donc pour seule solution : $\left\{ \begin{array}{l} \lambda = 16 \\ \mu = -9 \end{array} \right.$

3. (Pour $x, y \in \mathbb{R}$, résoudre l'équation $\lambda \vec{u} + \mu \vec{v} = {x \choose y}$. Qu'en déduit-on sur la famille (\vec{u}, \vec{v}) ?)

De même on résout pour $\lambda, \mu \in \mathbb{R}$ inconnus le système de paramètres $x, y : \begin{cases} 3\lambda + 5\mu = x \\ 2\lambda + 3\mu = y \end{cases}$

On trouve pour seule solution : $\begin{cases} \lambda = -3x + 5y \\ \mu = 2x - 3y \end{cases}$

4. (Soit $P = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$. Montrer que P est inversible et calculer P^{-1} .) La matrice P est la matrice de la famille \vec{u}, \vec{v} dans la base canonique.

On a résolu le système $P\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ ci-dessus.

La solution s'écrit $P^{-1} {x \choose y} = {\lambda \choose \mu}$, où : $P^{-1} = \begin{bmatrix} -3 & 5 \\ 2 & -3 \end{bmatrix}$

5. (Graphiquement, à quoi voit-on que (\vec{u}, \vec{v}) est une famille libre de \mathbb{R}^2 ? une base de \mathbb{R}^2 ?)
Les deux vecteurs ne sont pas colinéaires : pas alignés avec l'origine (ils forment un « angle »).

Ex.2 : Deux sous-espaces vectoriels de \mathbb{R}^3

Soit F le sous-ensemble (un **plan**) de \mathbb{R}^3 tel que $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ tels que $x + 2y + z = 0 \right\}$.

- **1.** (Vérifier que F est un sous-espace vectoriel de \mathbb{R}^3 .)
 - ▶ F est non-vide et $\vec{0} \in F$ Les coordonnées du vecteur nul $\vec{0}$ sont x = y = z = 0, et l'équation x + 2y + z = 0 est alors bien vérifiée, ainsi $\vec{0} \in F$.

ightharpoonup F est stable par combinaisons linéaires

Soient
$$\vec{v}_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 et $\vec{v}_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in F$, $\lambda_1, \lambda_2 \in \mathbb{R}$. Alors, $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 = \begin{pmatrix} \lambda_1 x_1 + \lambda_2 x_2 \\ \lambda_1 y_1 + \lambda_2 y_2 \\ \lambda_1 z_1 + \lambda_2 z_2 \end{pmatrix}$.

On vérifie l'équation du plan F:

$$(\lambda_1 x_1 + \lambda_2 x_2) + 2(\lambda_1 y_1 + \lambda_2 y_2) + (\lambda_1 z_1 + \lambda_2 z_2) \lambda_1 \underbrace{(x_1 + 2y_1 + z_1)}_{=0 \text{ car } \vec{v}_1 \in F} + \lambda_2 \underbrace{(x_2 + 2y_2 + z_2)}_{=0 \text{ car } \vec{v}_1 \in F} = 0$$

Ainsi on a bien $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 \in F$, et F est donc stable par combinaison linéaire.

L'ensemble F est donc bien un sous-espace vectoriel de \mathbb{R}^3 .

2. (Trouver une base de F.)

On réecrit l'équation du plan F soit x+2y+z=0 pour paramétrer une coordonnée en x=-2y-z fonction des deux autres, en ajoutant une équation tautologique pour y=y Notons

 $\vec{u} = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \text{ et } \vec{v} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \text{ Ainsi, on a } \vec{X} = \begin{bmatrix} x\\y\\z \end{bmatrix} \in F \Leftrightarrow \vec{X} = y\vec{u} + z\vec{v}, \text{ et les deux vecteurs } \vec{u}, \vec{v}$

forment donc une base de F.

3. (Soit $G = \text{Vect} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$. Trouver une équation du plan G.)

On cherche une équation du plan G sous la forme ax + by + cz = 0, où $a, b, c \in \mathbb{R}$.

On recherche les coefficients scalaires a, b, c, en traduisant $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \in G$.

Il vient : a + b = 0 On trouve b = -a et c = -a, et on peut choisir a = 1. 2a + b + c = 0

On a trouvé l'équation du plan G: x - y - z = 0.

4. (Trouver une base de la droite $F \cap G$.)

Résolvons le système de deux équations de l'intersection $F \cap G$ (l'équation de F et celle de G):

$$\begin{cases} x + 2y + z = 0 \\ x - y - z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + 2y + z = 0 \\ 2x + y = 0 \end{cases} \Longleftrightarrow \begin{cases} -3x + z = 0 \\ 2x + y = 0 \end{cases} \Longleftrightarrow \begin{cases} y = -2x \\ z = 3x \end{cases}$$

Ainsi, en notant $\vec{d} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, on a $\vec{x} \in F \cap G \Longleftrightarrow \vec{X} = x\vec{d}$, et donc $F \cap G \operatorname{Vect}(\vec{d})$.

Ex.3 : Ma matrice 3×3 préférée

On étudie quelques propriétés de la matrice $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

1. Calcul des puissances de A

- **a)** (Montrer que l'on $a \ \forall n \in \mathbb{N}, \ A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$ avec les relations : $a_{n+1} = 2b_n$) $b_{n+1} = a_n + b_n$

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence :

$$A^n$$
 est sous la forme : $A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$ (H_n)

- $A^{0} = I_{3} = \begin{bmatrix} a_{0} & b_{0} & b_{0} \\ b_{0} & a_{0} & b_{0} \\ b_{0} & b_{0} & a_{0} \end{bmatrix} \text{ avec } \begin{vmatrix} a_{0} = 1 \\ b_{0} = 0 \end{vmatrix}$ ▶ Initialisation On a bien : (H_0)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose
$$(H_n)$$
 soit : $A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$ (H_n)
d'où $A^{n+1} = A \cdot A^n = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix} = \begin{bmatrix} 2b_n & a_n + b_n & a_n + b_n \\ a_n + b_n & 2b_n & a_n + b_n \\ a_n + b_n & a_n + b_n & 2b_n \end{bmatrix} (H_{n+1})$

d'où
$$A^{n+1} = A \cdot A^n = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix} = \begin{bmatrix} 2b_n & a_n + b_n & a_n + b_n \\ a_n + b_n & 2b_n & a_n + b_n \\ a_n + b_n & a_n + b_n & 2b_n \end{bmatrix} (H_{n+1})$$

$$pour a_{n+1} = 2b_n
b_{n+1} = a_n + b_n$$

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$ (H_n)

avec les relations indiquées : $a_{n+1} =$ $b_{n+1} = a_n + b_n$

b) (Montrer que les suites définies par $u_n = a_n - b_n$ et $v_n = a_n + 2b_n$ sont géométriques.) On a: $a_{n+1} = 2b_n$ Il vient donc: $b_{n+1} = a_n + b_n.$

$$u_{n+1} = a_{n+1} - b_{n+1} = 2b_n - (a_n + b_n) = -a_n + b_n = -u_n$$

$$v_{n+1} = a_{n+1} + 2b_{n+1} = 2b_n + 2(a_n + b_n) = 2a_n + 4b_n = 2v_n$$

et les deux suites (u_n) et (v_n) sont géométriques, respectivement de raison -1 et 2.

- c) (Donner l'expression du terme général des suites (u_n) et (v_n) .)
 - ▶ Terme général de (u_n) On a $u_0 = a_0 - b_0 = 1 - 0 = 1$. Ainsi on trouve $\forall n \in \mathbb{N}, \ u_n = (-1)^n$.
 - Terme général de (v_n) On a $v_0 = a_0 + 2b_0 = 1 + 2 \times 0 = 1$. Ainsi on trouve $\forall n \in \mathbb{N}, \ v_n = 2^n$.

d) (Montrer que $\forall n \in \mathbb{N}, a_n = \frac{1}{3}(2u_n + v_n)$, et trouver $\lambda, \mu \in \mathbb{R}$ tels que $b_n = \lambda u_n + \mu v_n$.)

Approche

Pour changer, on va utiliser une notation matricielle du système linéaire.

On a :
$$u_n = a_n - b_n$$
 , soit $\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \underbrace{\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}}_{-P} \begin{pmatrix} a_n \\ b_n \end{pmatrix}$

Or la matrice $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ est inversible, avec $P^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ (Formule de Cramer).

La formule $\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \underbrace{\frac{1}{3} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}}_{=P^{-1}} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ donne donc les relations : $\begin{cases} a_n = \frac{1}{3} \left(2u_n + v_n \right) \\ b_n = \frac{1}{3} \left(-u_n + v_n \right) \end{cases}$

e) (Conclure sur le terme général des suites (a_n) et (b_n) .)

On a trouvé :
$$\forall n \in \mathbb{N}, \ u_n = (-1)^n \text{ et } v_n = 2^n. \text{ Ainsi : } \begin{cases} a_n = \frac{1}{3} \left(2(-1)^n + 2^n \right) \\ b_n = \frac{1}{3} \left(-(-1)^n + 2^n \right) \end{cases}$$

 $\textbf{f)} \ \ (\textit{V\'erifier} \ \forall n \in \mathbb{N}, \ \textit{que} : A^n = \frac{2^n}{3}E + \frac{(-1)^n}{3}F \ \textit{pour deux matrices} \ E \ \textit{et} \ F \ \grave{a} \ \textit{d\'etailler}.)$

On a trouvé :
$$\forall n \in \mathbb{N}, \ A^n = \begin{bmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{bmatrix}$$

On remplace $a_n = \frac{1}{3} \left(2(-1)^n + 2^n \right)$ et on regroupe les termes en 2^n et $(-1)^n$ dans $b_n = \frac{1}{3} \left(-(-1)^n + 2^n \right)$

deux matrices $\frac{1}{3}E$ et $\frac{1}{3}F$.

Chaque coefficient a_n contribue pour 1 à la matrice E et chaque coefficient b_n contripuir 2 à la matrice F

bue pour pour 1 à la matrice E pour -1 à la matrice F.

Ainsi on trouve bien : $A^n = \frac{2^n}{3}E + \frac{(-1)^n}{3}F$ pour $E = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ et $F = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$.

2. Inversion de A

a) (Vérifier $A^2 = A + 2I_3$.)

On vérifie que les deux membres valent $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. Ils sont donc bien égaux.

b) (En déduire que $A_{\frac{1}{2}}(A-I_3)=\frac{1}{2}(A-I_3)A=I_3$.) On a $A^2=A+2I_3$, soit $\frac{1}{2}(A^2-A)=I$ d'où les formes demandées.

c) (En déduire que la matrice A est inversible et donner l'expression de A^{-1} .)

On reconnaît la formule :
$$AA^{-1} = A^{-1}A = I_3$$
, pour $A^{-1} = \frac{1}{2}(A - I_3) = \frac{1}{2}\begin{bmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{bmatrix}$

3. Réduction Dans cette question, on utilise les notations suivantes :

$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{v} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \vec{w} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, P = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{u} & \vec{v} & \vec{w} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- a) (Résoudre l'équation $x^2 = x + 2$, pour $x \in \mathbb{R}$. (équation tirée de 2.a))) On a $x^2 = x + 2 \iff x^2 - x - 2 = 0 \iff (x - 2)(x + 1) = 0$ L'ensemble des solutions est donc $\{-1, 2\}$.
- **b)** (Montrer que $Ker(A 2I_3) = Vect(\vec{u})$.)

On a
$$A - 2I_3 = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
. On résout le noyau pour $\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$:

$$\vec{X} \in \text{Ker}(A - 2I_3) \Leftrightarrow \begin{cases} -2x + y + z = 0 \\ x - 2y + z = 0 \\ x + y - 2z = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z = 0 \\ -3y + 3z = 0 \\ 3y - 3z = 0 \end{cases} \Leftrightarrow \begin{cases} x = z \\ y = z \\ z = z \end{cases}$$

Ainsi
$$\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A - 2I_3) \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \underbrace{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}_{\text{d'où Ker}} \text{d'où Ker}(A - 2I_3) = \text{Vect}(\vec{u}).$$

c) (Montrer que $Ker(A + I_3) = Vect(\vec{v}, \vec{w})$.)

On a
$$A + I_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. On résout le noyau pour $\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$:

$$\vec{X} \in \operatorname{Ker}(A+I_3) \Leftrightarrow \begin{cases} x+y+z=0 \\ x+y+z=0 \\ x+y+z=0 \end{cases} \Leftrightarrow \begin{cases} x=-y-z \\ y=y \\ z=z \end{cases} \Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

On reconnaît \vec{v} et \vec{w} , et il vient donc $\operatorname{Ker}(A + I_3) = \operatorname{Vect}(\vec{u}, \vec{v})$.

d) (Montrer que AP = PD.)

On vérifie qu'on a bien
$$AP = PD = \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$
.