Analog Transmission of Vocoder Features

February 16, 2024

Given a vector of vocoder features \mathbf{f} , use an autoencoder E to map them to a dimension d latent vector \mathbf{z} where d is even. The magnitude of each element z_i of \mathbf{z} is constrained to a maximum of 1, but unlike digital modulation is continuously valued and not constrained to a discrete set of points. For bandwidth efficient transmission over the channel the elements of \mathbf{z} are mapped to d/2 complex symbols \mathbf{q} . Compared to classical digital modulation, the elements of \mathbf{z} can be considered BPSK symbols (continuously valued, analog bits), and the elements of \mathbf{q} analog QPSK symbols.

Our goal is to determine if reasonable speech quality can be obtained over a channel of bandwidth B < 3000 Hz and SNR between 0 and 6dB, roughly the lower limit of Single Side Band (SSB) - a common power and bandwidth efficient form of analog radio communication.

1 Noise Simulation

The autoencoder output **z** is updated every $T_z = 1/R_z$ seconds, giving a BPSK symbol rate of:

$$R_b = d/T_z \tag{1}$$

For example with $T_z=0.04, d=80, R_b=2000$ symbols/s. The QPSK symbol rate is given by:

$$R_q = \frac{d}{2T_z} \tag{2}$$

For example with $T_z = 0.04, d = 80, R_q = 1000$ symbols/s.

We wish to simulate a channel with a user-defined E_b/N_0 , where E_b is the energy of each BPSK symbol, and N_0 is the noise power per unit bandwidth. We will follow the digital PSK models and treat the signal and noise as bandpass or "single sided". Thus the signal and noise will be complex valued. The energy of each BPSK symbol E_b is the signal power S divided by the symbol rate $R_b = 1/T_b$. The noise per unit bandwidth is the total noise power S divided by the bandwidth S of the system. If we are simulating at one sample per symbol,

 $B=R_b$:

$$\frac{E_b}{N_0} = \frac{S/R_b}{N/R_b}$$

$$= \frac{S}{N}$$

$$= \frac{A^2}{\sigma^2}$$
(3)

where A is the amplitude of each BPSK symbol and $\sigma^2 = N$ is the variance of the complex noise (mean noise energy per sample). Given a set point E_b/N_0 :

$$\sigma = \frac{A}{\sqrt{E_b/N_0}}\tag{4}$$

If the noise is zero mean, we can estimate σ^2 over K noise samples r_i as:

$$\sigma^2 = E[|r_i|^2] = \frac{1}{K} \sum_{i=0}^{K-1} |r_i|^2$$
 (5)

The noise sample r_i and be generated as:

$$r_i = \frac{\sigma}{\sqrt{2}} (\mathcal{N}_{2i}(0,1) + j\mathcal{N}_{2i+1}(0,1))$$
 (6)

where $\mathcal{N}_i(0,1)$ is the i-th sample of a unit variance, zero mean, real Gaussian noise source.

2 SNR Measurement

In order to compare with other methods of speech communication, it is useful to formulate expressions for estimating SNR from the BPSK and QPSK symbols. The Signal to Noise ratio (SNR) is given by:

$$\frac{S}{N} = \frac{E_b R_b}{N_0 B}$$

$$= \frac{E_q R_q}{N_0 B}$$
(7)

A noise bandwidth B needs to be selected; common choices for HF radio are B=3000 Hz to compare with existing analog and digital voice modes, and B=1 to obtain a normalised C/N_0 carrier power to noise density ratio.

At one sample per symbol, the power, the mean energy of each QPSK symbol over a window of K samples is given by:

$$E_q = E[|q_i|^2] = \frac{1}{K} \sum_{i=0}^{K-1} |q_i|^2$$
 (8)

As each QPSK symbol contains 2 BPSK symbols, the energy is split evenly:

$$E_b = E_q/2 \tag{9}$$

For example if the symbol amplitude is A=1, $E_b=A^2=1$, then $E_q=1+1=2$. To simulate transmission over multipath channels we arrange the QPSK symbols as N_c parallel carriers, each running at a symbol rate of $R_s=R_q/N_c$ symbols/s, where R_s is chosen based on delay spread considerations. Typical values for HF modems are $N_c=20$ and $R_s=50$ Hz. However the OFDM carriers are arranged such that the total symbol rate over the channel remains constant. So for a given signal power E_q and E_b remain constant (Table 1).

Waveform	N_c	R_s	R_q	R_b	E_q	E_b
Single Carrier BPSK	1	-	-	2000	-	S/2000
Single Carrier QPSK	1	-	1000	2000	S/1000	S/2000
OFDM QPSK	20	50	1000	2000	S/1000	S/2000

Table 1: E_b and E_q examples for single and multi-carrier OFDM waveforms for constant carrier power S

In order to evaluate the ML system early in the development process it is important to ensure the noise is correctly calibrated. The expressions above can be used to check the noise injection process:

- 1. Set a target E_b/N_0 for the simulation run, and calculate σ using (4).
- 2. Establish the equivalent target SNR from (7) evaluated using the target E_b/N_0 .
- 3. After the simulation run measure $E_q=E[|q_i|^2]$ over a sample of transmitted symbols. Note that in general $E_q\neq 2$ as the encoder outputs continuous values.
- 4. Calculate measured SNR using (7) and compare.

The calibration of the noise injection can be checked by replacing the encoder output z_i with discrete PSK symbols to create a digital modem, then measuring the BER at E_b/N_0 points, and comparing to the theoretical BER given by:

$$BER_{awgn} = 0.5erfc(\sqrt{E_b/N_0})$$

$$BER_{multipath} = 0.5\left(1 - \sqrt{\frac{E_b/N_0}{E_b/N_0 + 1}}\right)$$
(10)

3 Glossary

Symbol	Explanation	Units
\overline{B}	noise or signal bandwidth	Hz
d	dimension of latent vector \mathbf{z}	
E_b/N_0	energy per BPSK symbol on spectral noise density	
E_q/N_0	energy per QPSK symbol on spectral noise density	
N	total noise power	Watts
N_c	Number of carriers	
\mathbf{q}	vector of QPSK symbols	
q_i	single QPSK symbol, element of \mathbf{q}	
R_b	BPSK symbol rate	symbols/second
R_q	QPSK symbol rate	symbols/second
R_s	OFDM per carrier QPSK symbol rate	symbols/second
R_z	latent vector update rate	Hz
SNR	signal to noise Ratio	
S	total signal (carrier) power	Watts
T_b	BPSK symbol period	seconds
T_q	QPSK symbol period	seconds
T_s	OFDM per carrier QPSK symbol period	seconds
T_z	time between latent vector updates	seconds
r_i	noise sample	
${f z}$	Autoencoder output latent vector	
z_i	single latent vector element of \mathbf{z} , a BPSK symbol	

Table 2: Glossary of Symbols