block name 1

1. One-dimensional discrete dynamical systems

introduction

block name 3

Fixed points theorem

Let:

$$\cdot I \subset \mathbb{R}$$
 open

$$\cdot f : I \to I$$
 differentiable

$$\cdot x \in I$$

Then, holds:

$$|f'(x)| < 1 \rightarrow x \text{ attractive}$$

$$|f'(x)| > 1 \to x$$
 repulsive

Demonstration:

demonstration

Attractiveness of periodic points does not involve the chosen point

Let:

 (M, \mathbb{N}, f) functional dynamical system

 $\cdot \, x \in M$ n-periodic point

$$\{x_i\}_{i=1}^r$$
 orbit of x

Then, holds:

$$\cdot x \text{ attractive} \leftrightarrow \forall x' \in o(x)$$
:

$$x'$$
 attractive

Demonstration:

$$\forall x' \in o(x)$$
:

$$f^{n'}(x') = \prod_{i=1}^r f'(x_i) = f^{n'}(x)$$

block name 5

Partition of attraction set

Let:

- $\cdot \left(M,\mathbb{N},f\right)$ functional dynamical system
- $\cdot\,x$ n-periodic point
- $\cdot o(x)$ orbit of x

Then, holds:

$$\cdot \quad \forall \ x' \in o(x)$$
:

 $\exists \mathcal{U} \subset M \text{ open} :$

$$\forall y \in \mathcal{U}$$
:

$$f^n(y) \stackrel{n}{\longrightarrow} x'$$

Demonstration:

demonstration