Chapitre 5: Lois de probabilité usuelles

I. Lois de probabilités discrètes

*La loi uniforme

C'est la loi de l'équiprobabilité. On peut la présenter sous forme de tableau.

Soit n le nombre d'événements possibles. On dit qu'une variable aléatoire X suit la loi uniforme sur l'univer $\{1,2,\ldots,n\}$ si X prend toutes ses valeurs avec une même probabilité de $\frac{1}{n}$ i.e.

$$\forall i \in \{1, \dots n\}$$
 $P(X=x_i) = \frac{1}{n}$

On écrit $X \rightarrow (U\{1,...,n\})$.

Dans ce cas
$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2-1}{12}$

Exemples:

1) Si on prend un dé à 6 faces équilibrées, alors le score obtenu en lançant le dé suit une loi uniforme sur{1,...,6}:

$X = x_i$	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	<u>1</u> 6	$\frac{1}{6}$	<u>1</u> 6	<u>1</u> 6	<u>1</u> 6

2) On dispose d'une urne dans laquelle sont disposées 100 boules numérotées de 1 à 100. On tire une boule au hasard et on note le résultat obtenu. Ce résultat suit une loi uniforme sur{1,...,100}

*La loi de Bernouilli

Soit une épreuve aléatoire dans laquelle il n'existe que deux résultats possibles, l'un étant qualifié de favorable et l'autre de défavorable (échec et succès). Soit p la proportion du cas favorable q=1-p celle du cas défavorable. La variable aléatoire X qui s'intéresse au sucés suit une loi de Bernouilli de paramètre p notée sur l'univers $\{0,1\}$;

$$P(X=1)=p, P(X=0)=q$$

On écrit $X \rightarrow \mathcal{B}(p)$.

Dans ce cas E(X) = p et V(X) = pq

Exemple: On lance un dé. On gagne si l'on obtient 5 ou 6. Sinon on a perdu.

Le dé a certes six faces mais le jeu n'a que deux issues (gagné ou perdu). Par conséquent, c'est la loi de

Bernoulli avec $p = \frac{1}{3}$.

*La loi Binomiale

Soit une épreuve aléatoire dans laquelle il n'existe que deux résultats possibles, l'un étant qualifié de favorable et l'autre de défavorable (échec et succès). On réalise n épreuves identiques et indépendantes. Soit p la proportion du cas favorable q=1-p celle du cas défavorable. La variable aléatoire X qui compte le nombre de résultats favorables suit une loi Binomiale de paramètres p et p. La probabilité que cette variable prenne une valeur particulière p est :

$$P(X=k)=C_n^k p^k q^{n-k} \quad k \in \{0,1,...,n\}$$

On écrit $X \rightarrow \mathcal{B}(n, p)$.

Dans ce cas E(X)=np et V(X)=npq

Exemples: On jette dix fois une pièce de monnaie et on considère X la variable aléatoire qui compte le nombre de faces obtenues. On aura alors $X \to \mathcal{B}(10, \frac{1}{2})$

*La loi hypergéométrique

La loi hypergéométrique est considérée comme semblable à la loi binomiale. Elle correspond à un tirage sans remise n objets d'un ensemble de N objets dont K possèdent une caractéristique particulière. Son univers est $\Omega = max(0; n-qN)$, ..., min(pN; n) où $p = \frac{K}{N}$ et q = 1-p.

La probabilité que cette variable prenne une valeur particulière k est :

$$P(X=k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}$$

On écrit $X \to \mathfrak{H}(N, n, p)$.

Dans ce cas E(X)=n p et $V(X)=n p q \frac{N-n}{N-1}$

Exemple: Une caisse contient 12 cartes graphiques parmi lesquelles 3 sont défectueuses. 4 cartes graphiques sont prises au hasard et sans remise de la caisse. Soit X le nombre de cartes graphiques dans l'échantillon, alors

$$X \to \mathfrak{H}(12,4,\frac{3}{12})$$

Approximation d'une loi hypergéométrique par une binomiale:

• Soit X
$$\sim H(n,a,b)$$
, alors $P(X=k) = \frac{C_a^k C_b^{n-k}}{C_a^n}$

Si
$$N=a+b\rightarrow\infty$$
, alors $H(n,a,b)\rightarrow B\left(n,\frac{a}{N}\right)$

- Soit X \sim H(n,a,b), alors $P(X=k) = \frac{C_a^k C_b^{n-k}}{C_{a+b}^n}$ Si $N=a+b \rightarrow \infty$, alors $H(n,a,b) \rightarrow B\left(n,\frac{a}{N}\right)$ $X \sim B(n,p) \Longrightarrow P(X=k) = C_n^k p^k (1-p)^{n-k}$ En pratique, cette approximation est vraie de que $\frac{n}{N} < 0,1$

*La loi de Pascal

Soit $r \ge 1$ et $p \in]0;1[$. On note Pa(r,p) la loi de Pascal de paramètres r et p ayant pour univers $\{n \ge r, n \in \mathbb{N}\}$. et vérifiant

$$\forall k \ge r$$
, $P(X = k) = C_{r-1}^{(k-1)} p^r (1-p)^{k-r}$

Concrètement, cette loi correspond à la probabilité pour avoir r succès d'un événement qui a une probabilité p.

Dans ce cas
$$E(X) = \frac{r}{p}$$
 et $V(X) = \frac{r(1-p)}{p^2}$

Exemple: On lance une pièce de monnaie (truquée) dont la probabilité d'obtenir pile est 0,2. On note par X le nombre de lancers nécessaires pour obtenir le 10-ème pile. Alors $X \rightarrow Pa(10,0.2)$.

*La loi de Poisson

Lorsque le nombre n des épreuves devient très grand, et que la probabilité p devient très faible on démontre que la loi binomiale tend vers la forme limite :

$$P(X=k) = \frac{e^{np}(np)^k}{k!} \quad k \in \{0,1,\dots,n\}$$

La nouvelle loi ainsi définie est appelée loi de Poisson qui est qualifiée de loi des événements rares du fait que p est très faible. On note souvent . On écrit $X \to \wp(\lambda)$. Dans ce cas $E(X) = \lambda$ et $V(X) = \lambda$

Cette loi s'applique au cas d'un nombre rare d'évènement pendant une période de temps. Si un événement surgit avec une proportion p pendant une période de temps limité t, alors la probabilité que ledit événement se produise k fois pendant dans une période plus longue T est régie par une loi de Poisson de paramètre $\lambda = n p$ avec n = [T/t].

Supposons qu'un standardiste reçoit deux appels par minute, t doit correspondre à une unité de temps plus faible que la minute soit, la seconde avec une probabilité de recevoir un appel de 2/60= 1/30, le nombre d'appels reçus pendant cinq minutes suit une loi de Poisson de paramètre $\lambda = n p = 300/30 = 10$.

Approximation d'une loi binomiale par une loi de Poisson:

Si les conditions suivantes pour n et p sont réalisées:

- n est grand ($n \ge 50$),
- p est voisin de 0 (p<0,1),

C'est-à-dire dans le cas de la réalisation d'événements rares, la loi binomiale B(n,p) peut-être approximée par une loi de Poisson $P(\lambda)$:

$$P(X=k) = C_n^k p^k (1-p)^{n-k} \approx e^{-\lambda} \frac{\lambda^k}{k!}$$

dont le paramètre λ est défini par: $\lambda = np$.

II. Lois de probabilités continues

*La loi uniforme

La loi uniforme est une loi de probabilité définie sur un segment [a;b]. Elle est notée U(a,b). On appelle parfois cette loi par la loi rectangulaire. Lorsque a=0 et b=1, on parle de loi uniforme standard. La densité de probabilité de la loi uniforme continue est

$$f_X(t) = \frac{1}{b-a}$$

La fonction de répartition de la loi uniforme continue est la suivante :

$$F_X(x) = \left\{egin{array}{ll} 0 & x < a \ rac{x-a}{b-a} & x \in [a,b] \ 1 & x > b \end{array}
ight.$$

Dans ce cas
$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-1)^2}{12}$

Exemple:

Ahmed et Amine ont rendez-vous à la gare entre 14 h et 15 h. Ils arrivent indépendamment et au hasard entre 14h et 15h. Quelle est la probabilité que tous les deux arrivent entre 14 h 25 et 14 h 35 ?

Réponse: notons X la minute d'arrivée, X suit une loi uniforme U(1,60):

$$P(25 \le X \le 35) = \frac{35 - 25}{60} = \frac{1}{6}$$
.

*La loi normale

La loi normale (ou loi de Gauss-Laplace) est une loi de probabilité continue dont la densité de probabilité est donnée par l'expression :

$$f(x) = \frac{1}{\sigma \sqrt{2II}} \exp^{-\frac{1}{2}(\frac{x-m}{\sigma})^2}$$

m et σ sont les paramètres de la loi, respectivement sa moyenne et son écart type. Pour noter qu'une variable aléatoire X suit une loi normale de moyenne m et d'écart type σ on écrit : $X \to \Re(m, \sigma)$ Dans ce cas E(X) = m et $V(X) = \sigma^2$

Remarque: Si on définit la variable aléatoire $Z\frac{X-m}{\sigma}$, alors $Z \to \Re(0,1)$ c'est la loi normale centrée réduite.

L'intérêt de ce changement de variable est qu'il permet de ramener n'importe quelle distribution normale à une même loi de probabilité qui est la loi normale centrée réduite pour laquelle on dispose de tables de probabilité. Puisque cette loi est symétrique alors on a

 $P(Z < -a) = 1 - P(Z < a), a \ge 0, P(a < Z < b) = P(Z < b) - P(Z < a) et P(-a < Z < a) = 2P(Z < 2) - 1$ **Exemple**:

Soit $X \to \Re(100,10)$. Calculer les probabilités: P(X < 110) , P(X > 105) = et P(110 < X < 120)