

## Direct Kinematics - Exponential Coordinates and Screws



Prof. Dr. Karsten Berns
Robotics Research Lab
Department of Computer Science
University of Kaiserslautern, Germany



#### **Contents:**

- Exponential Coordinates
- Screws
  - From central Screws to Homogenous Matrices
  - From Homogenous Matrices to Screws
  - Principle Screws
  - D-H with Screws
  - D-H with Screws-compound
  - Exponential Representation of a Screw



### **Reminder: Euler Theorem from chapter 3**

Every rotation matrix  $R_3$  is equivalent to a rotation around a fixed axis

$$\vec{g} \in \mathbb{R}^3$$
,  $\|\vec{g}\| = 1$ ,

And a rotation angle

$$\theta \in [0,2\pi)$$
.



#### **Screws**

- A screw  $S = S(h, \theta, \vec{g}, \vec{P})$  is defined by:
  - a normalized screw axis  $\vec{g}$
  - a twist angle  $\theta$
  - a translation h
  - a location  $\vec{P}$



### **Screw types**

- $p = \frac{h}{\theta}$  is called the pitch of screw  $S = S(h, \theta, \vec{g}, \vec{P})$
- If p > 0, S is called right handed
- If p < 0, S is called left handed

If  $\vec{P} = 0$ , then we write  $S(h, \theta, \vec{g}) := S(h, \theta, \vec{g}, 0)$ , and S is called a central screw.



#### **Chasles Theorem**

For all homogenous Matrices

$$\begin{bmatrix} R & \vec{u} \\ 0 & 1 \end{bmatrix}$$

• There exists  $\overrightarrow{g}$  and  $\theta$  such that:

$$\begin{bmatrix} R & \overrightarrow{u} \\ 0 & 1 \end{bmatrix}$$
 can be described as

$$\begin{bmatrix} R_{\vec{g}}(\theta) & \vec{g} \\ 0 & 1 \end{bmatrix}$$

- $\overrightarrow{g}$  is called the screw axis
- $\theta$  is called the twist angle
  - Direction of  $\overrightarrow{g}$  is given by Rodrigues formula, but needs to be scaled.





### **Screw Motion of a rigid body**





### From central Screws to Homogenous Matrices

• If we have  $S(h, \theta, \vec{g})$  then,

$$R_{\vec{g}}(\theta) = \begin{bmatrix} g_1^2 \eta \theta + C \theta & g_1 g_2 \eta_{\theta} - g_3 S \theta & g_1 g_3 \eta \theta + g_2 S \theta \\ g_1 g_2 \eta \theta + g_3 S \theta & g_2^2 \eta \theta + C \theta & g_2 g_3 \eta \theta - g_1 S \theta \\ g_1 g_3 \eta \theta - g_2 S \theta & g_2 g_3 \eta \theta + g_1 S \theta & g_3^2 \eta \theta + C \theta \end{bmatrix}$$

and hence,

$$A_{S}(h,\theta,\vec{g}) = \begin{bmatrix} R_{\vec{g}}(\theta) & h\vec{g} \\ 0 & 1 \end{bmatrix}$$

$$A_{S}(h,\theta,\vec{g},\vec{P}) = \begin{bmatrix} C\theta I_{3} + \vec{g}\vec{g}^{T}\eta\theta + \hat{g}S\theta & ((I - \vec{g}\vec{g}^{T})\eta\theta - \hat{g}S\theta)\vec{P} + h\vec{g} \\ 0 & 1 \end{bmatrix}$$

$$S\theta = \sin\theta, \ C\theta = \cos\theta, \ \eta\theta = 1 - \cos\theta, \ \vec{g} = (g_{1},g_{2},g_{3})^{T} = \frac{1}{2S\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$



### From Homogenous Matrices to Screws

- By Rodrigues formula we get
  - $\theta = \cos^{-1}\left(\frac{tr(R)-1}{2}\right) \in [0,\pi]$ , and

$$\vec{g} = \frac{1}{2S_{\theta}} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

- $\vec{P}$  is any point on the screw.
- h and  $\vec{P}$  are still missing.



### From Homogenous Matrices to Screws

Goal:

Find 
$$\vec{P} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$$
 and  $h$ , such that:

$$\begin{bmatrix} R & \vec{u} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{bmatrix} = \begin{bmatrix} R_{\vec{g}}(\theta) & h\vec{g} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} R - R_{\vec{g}}(\theta) & \vec{u} - h\vec{g} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \left(R - R_{\vec{g}}(\theta)\right) \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} + \vec{u} - h\vec{g} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



### From Homogenous Matrices to Screws

$$\iff \vec{u} = h\vec{g} - \left(R - R_{\vec{g}}(\theta)\right) \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

• W.l.o.g.,  $P_1 = 0$ , since any point on the screw is fine

$$\Rightarrow \vec{u} = \left[\vec{g}, \left(R - R_{\vec{g}}(\theta)\right)_{2}, \left(R - R_{\vec{g}}(\theta)\right)_{3}\right] \begin{bmatrix} h \\ P_{2} \\ P_{3} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} h \\ P_2 \\ P_3 \end{bmatrix} = \left[ \vec{g}, \ \left( R - R_{\vec{g}}(\theta) \right)_2, \ \left( R - R_{\vec{g}}(\theta) \right)_3 \right]^{-1} \vec{u}$$

• Here  $(\cdot)_i$  denotes the *i*-th column



### **Principle Screws**

For a central screw we have

$$A_S(h,\phi,\vec{g}) = \begin{bmatrix} R_{\vec{g}}(\theta) & h\vec{g} \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{4\times4}$$

Example for D-H

If 
$$\vec{g} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, i.e.  $\vec{g} = \vec{x}_{i-1}$  (D-H- axis)

$$\Rightarrow A(h, \phi, \vec{x}_{i-1}) = \begin{vmatrix} 1 & 0 & 0 & h \\ 0 & C\theta & -S\theta & 0 \\ 0 & S\theta & C\theta & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$



### **Compound Screws**

Similar for homogeneous Matrices, screws can be combined:

$${}^{k-2}S(h,\phi,\vec{g},\vec{P}) = {}^{k-2}S(h_1,\phi_1,\vec{g}_1,\vec{P}_1) \odot {}^{k-1}S(h,0,0,0)$$

General solution is lengthy, but not needed.



#### **D-H with Screws**

• We have  $\theta_i, d_i, a_i$  and  $\alpha_i$  from D-H for  ${}^{i-1}_iA$ . Then,

$$i^{-1}{}_{i}A = S(d_{i}, \theta_{i}, z_{i-1}) \odot S(\alpha_{i}, \alpha_{i}, x_{i})$$

$$= \begin{bmatrix} C\theta_{i} & -S\theta_{i}C\theta_{i} & S\theta_{i}S\alpha_{i} & \alpha_{i}C\theta_{i} \\ S\theta_{i} & C\theta_{i}C\alpha_{i} & -C\theta_{i}S\theta_{i} & \alpha_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



- From this, we can compute the compound  $S(h, \phi, \vec{g}, \vec{P})$ :
  - $\cos \phi = \frac{1}{2} \left( tr({}^{G}R_{B}) 1 \right)$  $= \frac{1}{2} \left( \cos \theta_{i} + \cos \theta_{i} \cos \alpha_{i} + \cos \alpha_{i} 1 \right)$ 
    - $\vec{g} = \frac{1}{2S\phi} \begin{bmatrix} \sin \alpha_i + \cos \theta_i \sin \alpha_i \\ \sin \theta_i \sin \alpha_i \\ \sin \theta_i + \cos \alpha_i \sin \theta_i \end{bmatrix}$

#### based on theorem of Rodrigues

$$\begin{split} & S\theta = \sin\theta, \ C\theta = \cos\theta, \ \eta\theta = 1 - \\ & \cos\theta, \ \vec{g} = (g_1, g_2, g_3)^T = \frac{1}{2S\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} \end{split}$$



• Screw with x = 0: (intersection with y-z plane)

$$\begin{bmatrix} h \\ y \\ z \end{bmatrix} = \begin{bmatrix} g_1 & -r_{12} & -r_{13} \\ g_2 & 1 - r_{22} & -r_{23} \\ g_3 & -r_{32} & 1 - r_{33} \end{bmatrix}^{-1} \begin{bmatrix} r_{14} \\ r_{24} \\ r_{34} \end{bmatrix}$$

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & 1 - C\theta_i C\alpha_i & -C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & S\alpha_i & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

$$\vec{P} = (0, y, z)^T$$



• Screw with y = 0: (intersection with x-z plane)

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & 1 - C\theta_i & S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & S\theta_i & -C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & 0 & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

$$\vec{P} = (x, 0, z)^T$$



• Screw with z = 0: (intersection with x-y plane)

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & 1 - C\theta_i & -S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & S\theta_i & 1 - C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & 0 & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

$$\vec{P} = (x, y, 0)^T$$



### **Direct Kinematics: Example 1**

$$\phi_i = \theta_i$$

• 
$$\hat{g}_i = (0,0,1)^T$$

$$\vec{P}_i = \left(\frac{a(2C\theta - 1)}{4S\theta}, \frac{a(2C\theta - 1)}{4C\theta - 1}, 0\right)^T$$

$$^{0}_{3}S(h,\phi,\vec{g},\vec{P}) = {}^{0}_{1}S(h_{1},\phi_{1},\vec{g}_{1},\vec{P}_{1})$$

• 
$${}_{2}^{1}S(h_{2},\phi_{2},\vec{g}_{2},\vec{P}_{2})$$

• 
$${}^{2}_{3}S(h_{3},\phi_{3},\vec{g}_{3},\vec{P}_{3})$$

| Joint | $a_i$ | $\alpha_i$ | $d_i$ | $\theta_i$ |
|-------|-------|------------|-------|------------|
| 1     | $a_1$ | 0          | 0     | $	heta_1$  |
| 2     | $a_2$ | 0          | 0     | $	heta_2$  |
| 3     | $a_3$ | 0          | 0     | $	heta_3$  |





### **Exponential coordinates: Motivation**

- Rotation axis  $\vec{g}$ , rotation angle  $\theta$
- Motivation:

Rotate a point  $\vec{q}$  with a velocity of 1 around an axis  $\vec{g}$ 

$$\Rightarrow \dot{\vec{q}}(t) = \vec{g} \times \vec{q}(t) =: \hat{g}\vec{q}(t)$$

With:

$$\hat{g} = \begin{bmatrix} 0 & -g_3 & g_2 \\ g_3 & 0 & -g_1 \\ -g_2 & g_1 & 0 \end{bmatrix}$$



### **Exponential coordinates**

• Rotate by angle  $\theta$  with integral equation:

$$\int_0^\theta \hat{g} \, \vec{q}(t) dt = e^{\hat{g}\theta} \vec{q}(0)$$

Where  $e^{\hat{g}\theta}$  is exponential of a matrix.

$$e^{\hat{g}\theta} := 1 + \hat{g}\theta + \frac{(\hat{g}\theta)^2}{2!} + \frac{(\hat{g}\theta)^3}{3!} + \dots$$
$$= 1 + \hat{g}\sin\theta + \hat{g}^2(1 - \cos\theta)$$



### **Exponential Representation of a Screw**

Similar to Exponential coordinates for a rotation, a transformation can be rotated.

As in image,

$$Q'' = P + e^{\phi \hat{g}(q-P)} + h\vec{g}$$
$$=: [T]$$

Where,

$$[T] = \begin{bmatrix} e^{\phi \vec{g}} & (I - e^{\phi \vec{g}})P + h\vec{g} \\ 0 & 1 \end{bmatrix}$$





### **Exponential representation of central Screws**

• For central screws  $(\vec{P}=0)$  the same holds. And:

$$T] = \begin{bmatrix} e^{\phi \hat{\vec{g}}} & h\vec{g} \\ 0 & 1 \end{bmatrix}$$

Note that:

$$e^{\begin{bmatrix} \phi \hat{g} & 0 \\ 0 & 0 \end{bmatrix}} = \begin{bmatrix} e^{\phi \hat{g}} & 0 \\ 0 & 1 \end{bmatrix}$$
 Rotation

and,

$$e^{\begin{bmatrix} 0 & h\vec{g} \\ 0 & 0 \end{bmatrix}} = \begin{bmatrix} I_3 & h\vec{g} \\ 0 & 1 \end{bmatrix}$$
 Translation



### **Exponential representation of D&H**

Therefore:

$$[T] = e^{\begin{bmatrix} \phi \hat{g} & h \vec{g} \\ 0 & 0 \end{bmatrix}} =: e^{\xi(h,\phi,\vec{g})}$$

For D-H this means:

$$i^{-1}{}_{i}A = S(d_{i}, \theta, z_{i-1}) \odot S(a_{i}, \alpha_{i}, x_{i-1})$$
$$= e^{\xi(d_{i}, \theta_{i}, z_{i-1})} e^{\xi(a_{i}, \alpha_{i}, x_{i})}$$



### **Exponential Representation of Example 1**

$$^{i-1}_{i}A = e^{\xi(0,\theta_{i},z_{i-1})}e^{\xi(a_{i},0,x_{i})}$$

$$i^{-1}{}_{i}A = e^{\begin{bmatrix} \theta_{i}\hat{z}_{i-1} & 0 \\ 0 & 0 \end{bmatrix}} e^{\begin{bmatrix} 0 & a_{i}x_{i} \\ 0 & 0 \end{bmatrix}}$$

$$= e^{\begin{bmatrix} \theta_{i}\hat{z}_{i-1} & a_{i}x_{i} \\ 0 & 0 \end{bmatrix}}$$

$${}_{3}A = e^{\begin{bmatrix} \theta_{1}\hat{z}_{0} & a_{1}x_{1} \\ 0 & 0 \end{bmatrix}} e^{\begin{bmatrix} \theta_{2}\hat{z}_{1} & a_{2}x_{2} \\ 0 & 0 \end{bmatrix}} e^{\begin{bmatrix} \theta_{3}\hat{z}_{2} & a_{3}x_{3} \\ 0 & 0 \end{bmatrix}}$$

$$= e^{\begin{bmatrix} \theta_{1}\hat{z}_{0} + \theta_{2}\hat{z}_{1} + \theta_{3}\hat{z}_{2} & a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} \\ 0 & 0 \end{bmatrix}}$$

| Joint | $a_i$ | $\alpha_i$ | $d_i$ | $\theta_i$ |
|-------|-------|------------|-------|------------|
| 1     | $a_1$ | 0          | 0     | $	heta_1$  |
| 2     | $a_2$ | 0          | 0     | $	heta_2$  |
| 3     | $a_3$ | 0          | 0     | $\theta_3$ |





### Coming up next ...

# Inverse Kinematics Problem

