第五节 孤立奇点

- 一、孤立奇点的概念
- 二、函数在无穷远点的性态
- 三、小结与思考

一、孤立奇点的概念

定义 如果函数 f(z)在 z_0 不解析, 但 f(z)在 z_0 的某一去心邻域 $0 < |z-z_0| < \delta$ 内处处解析, 则称 z_0 为 f(z)的孤立奇点.

例
$$z=0$$
 是函数 $e^{\frac{1}{z}}$, $\frac{\sin z}{z}$ 的孤立奇点.

注意: 孤立奇点一定是奇点, 但奇点不一定是孤立奇点.

例1 指出函数
$$f(z) = \frac{z^2}{\sin \frac{1}{z}}$$
 在点 $z = 0$ 的奇点特性.

解 函数的奇点为

$$z = 0, z = \frac{1}{k\pi}$$
 $(k = \pm 1, \pm 2, \cdots)$

因为
$$\lim_{k\to\infty}\frac{1}{k\pi}=0$$
,

即在z=0的不论怎样小的去心邻域内, 总有 f(z)的奇点存在, 所以 z=0不是孤立奇点.

孤立奇点的分类

依据 f(z)在其孤立奇点 z_0 的去心邻域

- $0 < |z-z_0| < \delta$ 内的洛朗级数的情况分为三类:
- 1. 可去奇点; 2. 极点; 3. 本性奇点.
- 1. 可去奇点
- 1) 定义 如果洛朗级数中不含 z z₀ 的负幂项,

那末孤立奇点 z_0 称为f(z)的可去奇点.

- 2) 可去奇点的判定
- (1) 由定义判断:如果 f(z)在 z_0 的洛朗级数无负幂项则 z_0 为 f(z)的可去奇点.
- (2) 判断极限 $\lim_{z\to z_0} f(z)$: 若极限存在且为有限值,

则 z_0 为 f(z)的可去奇点.

定理 设函数 f(z) 在 $0 < |z-z_0| < \delta(0 \le \delta < +\infty)$ 内解析,则 z_0 为 f(z) 的可去奇点的充分必要条件是 $\lim_{z \to z_0} f(z)$ 存在且有限.(4.16)

证 必要性

设 z_0 为f(z)的可去奇点,从而在 $0 < |z-z_0| < \delta$ 内有

$$f(z) = c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

因为上式右端幂级数的和函数g(z)在 $|z-z_0|$ < δ 内解析,

特别在 $z=z_0$ 处连续, 当 $z\neq z_0$ 时, 记f(z)=g(z), 则

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} g(z) = c_0.$$

充分性 设在 $0 < |z-z_0| < \delta$ 内 f(z) 的洛朗展式为

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n.$$

由于 $\lim_{z\to z_0} f(z)$ 存在,则存在正数 M 和 $\rho(<\delta)$ 使得

$$0 < |z-z_0| < \rho$$
 时, $|f(z)| \le M$. 所以

$$0 \le |c_{-n}| = \left| \frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{(\zeta - z_{0})^{-n+1}} d\zeta \right|$$

$$\le \frac{1}{2\pi} \left| \int_{C} \frac{|f(\zeta)|}{|\zeta - z_{0}|^{-n+1}} |d\zeta| \right|$$

$$\leq \frac{1}{2\pi} M 2\pi \rho / \rho^{-n+1} \quad (n = 1, 2, \cdots)$$

 $\phi \rho \to 0$ 得 $c_{-n} = 0$, (n = 1, 2, ...), $z_0 \not\in f(z)$ 的可去奇点.

例2
$$z=0$$
 为 $\frac{e^z-1}{z}$ 的哪种孤立奇点.

解
$$\frac{e^z - 1}{z} = \frac{1}{z} (1 + z + \frac{1}{2!}z^2 + \dots + \frac{1}{n!}z^n + \dots - 1)$$

$$= 1 + \frac{1}{2!}z + \dots + \frac{1}{n!}z^{n-1} + \dots, \quad 0 < |z| < +\infty$$
无负幂项

所以 z=0 为 $\frac{e^z-1}{z}$ 的可去奇点.

另解 因为
$$\lim_{z\to 0} \frac{e^z-1}{z} = \lim_{z\to 0} e^z = 1$$
,

所以 z=0 为 $\frac{e^z-1}{7}$ 的可去奇点.

2. 极点

1) 定义 如果洛朗级数中只有有限多个 z-z0的

负幂项, 且

$$f(z) = c_{-m}(z - z_0)^{-m} + \dots + c_{-2}(z - z_0)^{-2} + c_{-1}(z - z_0)^{-1}$$
$$+ c_0 + c_1(z - z_0) + \dots \qquad (m \ge 1, \ c_{-m} \ne 0)$$

那末孤立奇点 z_0 称为函数 f(z) 的 m 级极点.

- 2)极点的判定方法
- (1) 由定义判别

f(z)的洛朗展开式中含有z-z。的负幂项为有限项.

(2) 由定义的等价形式判别

在点
$$z_0$$
的某去心邻域内 $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$

其中 $\varphi(z)$ 在 z_0 的邻域内解析,且 $\varphi(z_0) \neq 0$.

- (3) 利用零点和极点关系判断
- (4) 利用极限 $\lim_{z\to z_0} f(z) = \infty$ 判断.

定理4.17 设函数 f(z) 在 $0 < |z-z_0| < \delta$ 内解析,则 z_0 为 f(z) 的 m 级极点的充分必要条件是 f(z) 在 $0 < |z-z_0| < \delta$ 内可表示为

$$f(z) = \frac{\varphi(z)}{(z-z_0)^m}$$

的形式,其中 $\varphi(z)$ 在 z_0 解析,且 $\varphi(z_0) \neq 0$.

证 必要性 设f(z) 在 $0 < |z-z_0| < \delta$ 内解析, z_0 为f(z)的m级极点,那么在 $0 < |z-z_0| < \delta$ 内,f(z)有洛朗展式

$$f(z) = c_{-m}(z - z_0)^{-m} + c_{-m+1}(z - z_0)^{-m+1} + \cdots$$

$$+ c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \cdots + c_n(z - z_0)^n + \cdots$$

这里 $c_{-m}\neq 0$. 于是

$$f(z) = \frac{1}{(z-z_0)^m} \varphi(z),$$

其中 $\varphi(z)$ 是在 z_0 附近 的幂级数,收敛半径仍为 δ .

故在 z_0 解析,且 $\varphi(z_0) \neq 0$.

充分性 设

$$f(z) = \frac{1}{(z-z_0)^m} \varphi(z),$$

把 $\varphi(z)$ 在 $z=z_0$ 的邻域内展开成幂级数,则

$$f(z) = \frac{b_0}{(z-z_0)^m} + \dots + \frac{b_{m-1}}{z-z_0} + b_m + b_{m+1}(z-z_0) + \dots$$

于是 z_0 为f(z) 的 m 级极点.

定理4.18 $z = z_0$ 为函数f(z)的 m 级极点的充分必要

条件是 $g(z) = \frac{1}{f(z)}$ 在 z_0 解析且以 z_0 为m 级零点.

定理4.19 设 z_0 为函数f(z)的孤立奇点,则 z_0 为 f(z)的极点的充分必要条件是

$$\lim_{z\to z_0}f(z)=\infty.$$

 $(b_0 \neq 0)$

课堂练习

求
$$\frac{1}{z^3-z^2-z+1}$$
 的奇点, 如果是极点, 指出它的级数.

答案 由于
$$\frac{1}{z^3-z^2-z+1}=\frac{1}{(z+1)(z-1)^2}$$

所以:z = -1是函数的一级极点,

z=1是函数的二级极点.

例3 函数 $\frac{1}{\sin z}$ 有些什么奇点, 如果是极点, 指出它的级.

解 函数的奇点是使 $\sin z = 0$ 的点,

这些奇点是 $z = k\pi (k = 0, \pm 1, \pm 2 \cdots)$.是孤立奇点.

因为
$$(\sin z)'|_{z=k\pi} = \cos z|_{z=k\pi} = (-1)^k \neq 0,$$

所以 $z = k\pi$ 是 sin z的一级零点,即 $\frac{1}{\sin z}$ 的一级极点.

例4 问
$$z = 0$$
是 $\frac{e^{z} - 1}{z^{2}}$ 的二级极点吗?

解
$$\frac{e^z - 1}{z^2} = \frac{1}{z^2} \left(\sum_{n=0}^{\infty} \frac{z^n}{n!} - 1 \right)$$
 解析且 $\varphi(0) \neq 0$

$$= \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \cdots = \frac{1}{z} \varphi(z),$$

所以z=0不是二级极点,而是一级极点.

思考
$$z = 0$$
是 $\frac{\sin z}{z^3}$ 的几级极点?

注意: 不能以函数的表面形式作出结论.

3. 本性奇点

如果洛朗级数中含有无穷多个 $z-z_0$ 的负幂项,那末孤立奇点 z_0 称为 f(z)的本性奇点.

例如,
$$e^{\frac{1}{z}} = 1 + z^{-1} + \frac{1}{2!}z^{-2} + \dots + \frac{1}{n!}z^{-n} + \dots$$
,
含有无穷多个z的负幂项 $(0 < |z| < \infty)$

所以z=0为本性奇点,

特点: 在本性奇点的邻域内 $\lim_{z \to z_0} f(z)$ 不存在且不为 ∞ .

例5
$$z=0$$
是 $\frac{\sin z}{z}$, $\frac{\sin z}{z^2}$, $\sin \frac{1}{z}$ 的孤立奇点.

这三个函数在z=0的去心邻域的洛朗展式分别为

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots + (-1)^n \frac{z^{2n}}{(2n+1)!} + \dots$$

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \dots + (-1)^{n-1} \frac{z^{2n-3}}{(2n-1)!} + \dots \quad 0 < |z| < +\infty.$$

$$\sin\frac{1}{z} = \frac{1}{z} - \frac{1}{3!} \frac{1}{z^3} + \dots + (-1)^{n-1} \frac{1}{(2n-1)!} \frac{1}{z^{2n-1}} + \dots$$

所以z=0分别为 $\sin z/z$, $\sin z/z^2$, $\sin \frac{1}{z}$ 的可去奇点,

一级极点和本性奇点.

综上所述:

孤立奇点	洛朗级数特点	$\lim_{z\to z_0}f(z)$	
可去奇点	无负幂项	存在且为 有限值	
m级极点	含有限个负幂项 关于 $(z-z_0)^{-1}$ 的最高幂 为 $(z-z_0)^{-m}$,	定义和零点
本性奇点	含无穷多个负幂项	不存在 且不为∞	

二、函数在无穷远点的性态

1. 定义 如果函数 f(z) 在无穷远点 $z = \infty$ 的去心

邻域 $R < z < +\infty$ 内解析, 则称点 ∞ 为 f(z)的孤

立奇点.

令变换
$$t = \frac{1}{z}$$
:则 $f(z) = f\left(\frac{1}{t}\right) = \varphi(t)$, 规定此变换将:

$$z = \infty$$

映射为 t=0,

$$t=0,$$

扩充 z 平面 映射为 扩充 t 平面

$$\{z_n\} (z_n \to \infty) \quad \frac{映射为}{z_n} \quad \left\{t_n = \frac{1}{z_n}\right\} (t_n \to 0)$$

$$R < |z| < +\infty$$
 映射为 $0 < |t| < \frac{1}{R}$

结论:

在去心邻域 $R < |z| < +\infty$ 内对函数 f(z)的研究

 \longrightarrow 在去心邻域 $0 < |t| < \frac{1}{R}$ 内对函数 $\varphi(t)$ 的研究

因为 $\varphi(t)$ 在去心邻域 $0 < |t| < \frac{1}{R}$ 内是解析的, 所以 t = 0是 $\varphi(t)$ 的孤立奇点.

规定: 如果 t=0 是 $\varphi(t)$ 的可去奇点、m级极点或本性奇点,那末就称点 $z=\infty$ 是 f(z)的可去奇点、m级极点或本性奇点.

因为 $\varphi(t)$ 在去心邻域 $0 < |t| < \frac{1}{R}$ 内是解析的, t = 0 是它的一个孤立奇点,在 $0 < |t| < \frac{1}{R}$ 内有洛朗展式

$$\varphi(t) = \sum_{n=-\infty}^{+\infty} c_{-n} t^n,$$

因而

$$f(z) = \sum_{n=-\infty}^{+\infty} c_{-n} \frac{1}{z^n},$$

所以

2.判别方法:判别法1 (利用洛朗级数的特点)

如果 f(z)在 $R < |z| < +\infty$ 内的洛朗级数中:

- 1)不含正幂项;
- 2)含有有限多的正幂项且 z " 为最高正幂;
- 3)含有无穷多的正幂项;

那末 $z = \infty$ 是 f(z)的 1)可去奇点;

- 2) m 级极点;
- 3)本性奇点.

判别法2:(利用极限特点)

如果极限 $\lim_{z\to\infty} f(z)$

- 1)存在且为有限值;
- 2) 无穷大;
- 3)不存在且不为无穷大;

那末 $z = \infty$ 是 f(z) 的 1)可去奇点;

- 2)极点;
- 3)本性奇点.

例6 z=∞是下列函数的那种类型奇点?

(1)
$$f(z) = \frac{z}{z+1}$$
 (2) $f(z) = z + \frac{1}{z}$ (3) $f(z) = \sin z$ (1) $f(z) = \frac{z}{z+1}$ 在圆环域1<|z|<+∞内的洛朗展开式为:

所以 $z = \infty$ 是 f(z) 的可去奇点.

(2)函数 $f(z) = z + \frac{1}{z}$ 含有正幂项且 z 为最高正幂项,

所以 $z = \infty$ 是 f(z)的 1级极点.

(3)函数 sin z 的展开式:

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots$$

含有无穷多的正幂项

所以 $z = \infty$ 是 f(z) 的本性奇点.

课堂练习

说出函数 $f(z) = z + e^z$ 的奇点及其 类型.

答案 $z = \infty$ 是一级极点, z = 0是本性奇点.

例7 函数
$$f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$$
在扩充复平面内

有些什么类型的奇点?如果是极点,指出它的级.

解 函数 f(z) 除点 $z=0,\pm 1,\pm 2\cdots$ 外,

在 z < +∞ 内解析.

因 $(\sin \pi z)' = \cos \pi z$ 在 $z = 0, \pm 1, \pm 2, \cdots$ 处均不为零.

所以这些点都是 sin πz 的一级零点,

故这些点中除1,-1,2外,都是 f(z)的三级极点.

因 $z^2-1=(z-1)(z+1)$, 以1与-1为一级零点,

所以 15-1是 f(z)的2级极点.

当
$$z = 2$$
时,因为
$$\lim_{z \to 2} f(z) = \lim_{z \to 2} \frac{(z^2 - 1)(z - 2)^3}{(\sin \pi z)^3}$$

$$= \frac{3}{\pi^3},$$

那末 z=2是 f(z)的可去奇点.

当 $z = \infty$ 时,因为 $k \to \infty$,

所以 $z = \infty$ 不是 f(z) 的孤立奇点.

例8 判断 $z = \infty$ 是下列函数的什么类型奇点,

对于极点,指出它们的级.

(1)
$$f(z) = e^{\frac{1}{z}}$$
; (2) $f(z) = \frac{1 - \cos z}{z^4}$.

解 (1) 由于 $f(z) = e^{z}$ 在∞的邻域 $0 < |z| < +\infty$

内的洛朗级数为

$$f(z) = e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n} + \dots$$

所以 $z = \infty$ 为 f(z) 的可去奇点.

z = 0处的泰勒级数

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

从而

$$f(z) = \frac{1 - \cos z}{z^4}$$

$$= \frac{1}{2!z^2} - \frac{1}{4!} + \frac{z^2}{6!} + \dots + (-1)^{n-1} \frac{z^{2(n-2)}}{(2n)!} + \dots$$

所以 $z = \infty$ 为 f(z) 的本性奇点. $(0 < |z| < +\infty)$

三、小结与思考

理解孤立奇点的概念及其分类;掌握可去奇点、极点与本性奇点的特征;熟悉零点与极点的关系.

作业: P76 17(1)(2)(3)(4)(5), 18

思考题

确定函数
$$f(z) = \frac{1}{z^3(e^{z^3}-1)}$$
的有限孤立奇点的类型.

思考题答案

z = 0是分母的6级零点,

也即是函数 f(z)的6级极点.