2.6 三相异步电动机的制动

1 能耗制动

这种方法在机床上常被采用。制动平稳、能耗小,但需要直流电源。

2 反接制动

这种方法制动效果好、比较简单、但是能量消耗较大、制动的准确度较差。

3 发电反馈制动

当受到外力因素的干扰,电动机转子的转速大于旋转磁场的转速时,产生的转矩也是制动转矩。起重机快速放下重物时,重物拖动转子使其转速大于旋转磁场的转速,从而感应出如图所示的感应电动势和电流,产生制动转矩,使重物等速下降。

2.7 常用低压电器

1 闸刀开关和组合开关

在自动控制电路中刀开关常用于电源的隔离开关,其额定电流只需稍大于电动机的额定电流。

2 熔断器

熔断器是最简单有效的短路保护电器。

- 3 按钮
- (1) 常用按钮

在无外加作用力下,闭合的触点称之为常闭触点,断开的触点称之为常开触点。

在有外力按下按钮时,常闭触点被断开,用于切断某一控制电路,常开触点被闭合,用于接通某一控制电路。

一个按钮中既有常开的触点又有常闭的触点,称之为复合按钮。

(2) 行程开关

行程开关时利用生产机械的某些运动部件碰撞行程开关的触杆, 使内部闭合的触点断开, 断开的触点闭合, 从而发出控制指令.

4 交流接触器

交流接触器是继电接触器控制中的主要控制电器。 通常用于接通和断开交流电动机或者大容量电器的主电路。

8

交流接触器的符号图

5 中间继电器

中间继电器的结构和原理与交流接触器基本相同。

不同之处在于中间继电器的触点容量较小,触点数目较多。

中间继电器器的符号图

6 热继电器

热继电器是利用电流的热效应原理实现对电动机的过载保护。

7 自动空气断路器

自动空气断路器是常用的一种低压保护电器,可实现短路、过载和失压保护。

自动空气断路器原理图

8 时间继电器

按工作原理可以分为: 空气阻尼式、电磁式、电动式等按延时方式可分为通电延时型和断电延时型。

通电延时的空气式时间继电器原理图

时间继电器的符号图

2.8 三相异步电动机的基本控制电路1三相异步电动机直接起动的控制电路(1)点动控制

动作过程

按下按钮(SB) ➡ 线圈(KM)通电

➡ 触头 (KM) 闭合 ➡ 电机转动;

按钮松开 → 线圈 (KM) 断电 → 触头 (KM) 打开 → 电机停转。

(2) 连续控制

按下按钮(SB2), 线圈(KM)通电, 电机起动;同时,辅 助触头(KM)闭合, 即使按钮松开,线圈 保持通电状态,电机 连续运转。

停机

按下SB₁ → KM线圈断电

→ KM主触点断开

➡ KM辅助触点断开

➡电机断电停车 ➡松开SB₁,线圈保持断电

(3) 点动和连续控制

点动控制:按下SB3,常闭先断开,常开后闭合

⇒电机通电

松开SB₃,常开先断开,常闭后闭合 ⇒ 电机断电

2 三相异步电动机 Y-△换接起动的控制电路

KM1线圈通电,KT线圈通电 按下SB₂

KM2线圈断电,KM3线圈通电

通电延时继电→ KM₁线圈断电→ KM₂线圈通电 → 器开关断开 **KM**₁线圈通电 ← KM₃线圈断电 ←

3 三相异步电动机正反转的控制电路

电机正转 KM₁主触点闭合 → KM₁线圈通电 按下SB₂ KM₁常开触点闭合,并自锁 KM」常闭触点断开,不能反转

按下SB₃ → KM₂线圈通电

电机反转:

→ KM₂主触点闭合 → 电机反转
→ KM₂常开触点闭合,并自锁
→ KM₂常闭触点断开,不能正转

4 三相异步电动机能耗制动的控制电路

2.9 三相异步电动机的常用控制电路

1 行程控制

(1) 单程前进或者单程后退

当工作台在原点时,按下 ST_1 ,常闭的行程开关断开,使得 KM_2 断电,即电动机不能反转。按下启动按钮 SB_2 , KM_1 通电,电动机正转,工作台前进直至终点。当工作台到终点时,按下 ST_2 ,常闭的行程开关断开,使得 KM_1 断电,即电动机不能正转。按下启动按钮 SB_3 , KM_2 通电,电动机反转,工作台后退直至原点。

- -

(2) 前进一次后自动后退

当工作台在原点时,按下 ST_1 ,常闭的行程开关断开,使得 KM_2 断电,即电动机不能反转。按下启动按钮 SB_2 , KM_1 通电,电动机正转,工作台前进直至终点。当工作台到终点时,按下 ST_2 ,常闭的行程开关断开,使得 KM_1 断电,即电动机不能正转,同时常开的行程开关闭合,使得 KM_2 通电,电动机自动反转,工作台后退直至原点。

(3) 自动反复运动

当工作台在原点时,按下 ST_1 ,常闭的行程开关断开,使得 KM_2 断电,即电动机不能反转,同时常开的行程开关闭合,使得 KM_1 通电,电动机正转,工作台前进直至终点。当工作台到终点时,压下 ST_2 ,常闭的行程开关断开,使得 KM_1 断电,即电动机不能正转,同时常开的行程开关闭合,使得 KM_2 通电,电动机自动反转,工作台后退至原点,如此反复运动。

2 先后顺序控制

(1) 按顺序起动

若有两台三相异步电动机要求实现: M_1 起动后 M_2 才起动 M_1 停车时 M_2 停车

(2) 按顺序停止

若有两台三相异步电动机 要求实现: M_1 起动后 M_2 才起动 M_2 停车后 M_1 停车

本章小结

- 1、三相异步电动机的工作原理;
- 2、三相异步电动机的机械特性,启动,调速与制动的方法;
- 3、三相异步电动机起动、正反转和能耗制动的控制电路;
- 4、三相异步电动机的各种常用的驱动控制电路;