DSE - Data-Driven Economic Analysis Econometrics Module Lecture 6 - Logit and Probit Models

Michele De Nadai michele.denadai@unimi.it

Trimester II, 2023

Limited Dependent Variables

- ➤ So far we focused on modelling dependent variables with support on the entire real line (or supposedly so).
- ► In real-life applications we often deal with dependent variables with **limited support**:
 - ▶ income, $[0, +\infty)$,
 - stock property, {0, 1},
 - proportion of preferences during elections, [0, 1].
- These kind of variables are in general not well suited to be modelled by means of the linear regression model (or are they?).

Why is that?

Recall that the first, crucial, assumption for the linear regression model is linearity of the conditional expectation:

$$\mathsf{E}[\mathsf{Y}|\mathsf{X}=\mathsf{x}]=\mathsf{x}'\mathsf{\beta}.$$

- ► However, there is in general no guarantee that, by varying x, the linear combination x'β will produce values **coherent** with the support of Y.
- This is not the only problem arising when applying linear models to limited dependent variables.
- ▶ We will focus on models for binary outcomes, i.e. random variables Y with support {0, 1}.

Example - Labour force participation

- ► As a running example consider female labour force participation as a binary outcome Y.
- ightharpoonup Y = 1 if female is employed and Y = 0 otherwise.
- We are interested in understanding how labour market attachment is affected by several observed characteristics of the female such as: age, education, county unemployment rate etc...

Binary outcomes

► First recall that, when Y takes only two values {0, 1}, then Y is a **Bernoulli** random variable with some parameter p

$$Y \sim Be(p)$$

▶ It follows that, if we are interested in the conditional distribution of Y given a set of controls X, it is:

$$Y|X = x \sim Be(p(x)),$$

for some function p(x).

- Finally note that the **expected value** of a Bernoulli random variable with parameter p is equal to p
- It follows that we can write:

$$E[Y|X=x] = Pr(Y=1|X=x) = p(x).$$

Problem 1 - Support

Assuming **linearity** of the conditional expectations entails:

$$E[Y|X = x] = x'\beta = Pr(Y = 1|X = x),$$

but
$$0 \leqslant Pr(Y = 1|X = x) \leqslant 1$$
.

- ▶ If the support of X is unbounded there will exist values of β and x for which $x'\beta \notin [0,1]$.
- In general it is not guaranteed that $x'\beta$ lies in the admissible range for E[Y|X=x].

Problem 2 - Heterosckedasticity

- We also know that Var(Y) = p(1-p).
- Linearity of the conditional expectation E[Y|X=x]=p(x) will then imply:

$$Var(Y|X = x) = p(x) (1 - p(x)) = x'\beta(1 - x'\beta),$$

which is not constant by definition.

► This is in contrast with the usual **omosckedasticity** assumption typical of the linear regression settings:

$$Var(Y|X = x) = \sigma^2$$

Linear probability model

- ► For all these reasons applying a linear model to binary outcomes bears several disadvantages.
- Still, when this occur we talk about Linear Probability Models (LPM), since we are modelling the conditional probability of success (Y = 1) through a linear function.
- Coefficients are still interpreted as the marginal effect of the corresponding variable on the **probability** of Y = 1.
- ➤ Since errors are heteroskedastic by construction, standard errors robust to heteroskedasticity must be considered.
- Let's take a look at more appealing alternatives to model binary outcomes.

Latent Index Models

- ▶ If problems are originated from limited support of Y, let us assume that there exists a continuous unobserved latent variable, Y*, whose support is the entire real line, that might be thought as a proxy for Y.
- We could think of Y^* as the **propensity** to observe Y = 1. The higher Y^* the more likely it is to observe Y = 1.
- ▶ If we could observe Y^* , in place of Y, there would be no problems in modelling the conditional distribution $Y^*|X$ with a linear regression model. For instance:

$$Y^* = \mathbf{x}'\mathbf{\beta} - \mathbf{\varepsilon}$$

Latent Index Models

▶ Unfortunately, Y* is unobserved, what we actually observe is:

$$Y = \left\{ \begin{array}{ll} 1 & \text{if } Y^* > 0 \\ 0 & \text{if } Y^* \leqslant 0 \end{array} \right.$$

- ► Hence we will observe Y = 1 for higher values of Y^* and Y = 0 for lower values of Y^* .
- ► The choice of the threshold (0) is purely **arbitrary**, since Y* is unobserved and has no meaningful scale.
- We might then ask what can we say about the conditional expectation of the **observed** Y given X if the latent variable Y* has a linear conditional expectation.

Latent Index Models

▶ If $Y^* = x'\beta - \epsilon$, it is easy to show that:

$$\begin{split} \mathsf{E}[\mathsf{Y}|\mathbf{X}=\mathbf{x}] &= \mathsf{Pr}(\mathsf{Y}=1|\mathbf{X}=\mathbf{x}), \\ &= \mathsf{Pr}(\mathsf{Y}^*>0|\mathbf{X}=\mathbf{x}), \\ &= \mathsf{Pr}(\mathbf{x}'\boldsymbol{\beta}-\boldsymbol{\varepsilon}>0|\mathbf{X}=\mathbf{x}), \\ &= \mathsf{Pr}(\boldsymbol{\varepsilon}<\mathbf{x}'\boldsymbol{\beta}), \\ &= \mathsf{F}(\mathbf{x}'\boldsymbol{\beta}), \end{split}$$

where $F(\cdot)$ is the **cumulative distribution function** (c.d.f.) of the (unobserved) random variable ε .

Non-linear conditional expectation

- ► The conditional expectation E[Y|X=x] is given by the familiar linear combination $x'\beta X$ transformed through the cumulative distribution function of ϵ .
- Linearity of $E[Y^*|X=x]$ implies non-linearity of E[Y|X=x], since $F(\cdot)$ is a non-linear function that maps values on the entire real line to values in the range (0,1).
- ▶ Unfortunately, $F(\cdot)$ is unknown. We will then need to make explicit assumptions on the distribution of ϵ .
- ▶ Different assumptions on the form of $F(\cdot)$ will translate into different models for the conditional expectation of Y given X.

Probit Model

- A very common choice is $\varepsilon \sim N(0,1)$, that is $F(t) = \Phi(t)$, where $\Phi(\cdot)$ is the c.d.f. of the standard normal distribution.
- ▶ We will refer to this model as to the **Probit Model**.
- ► It is:

$$\mathsf{E}[\mathsf{Y}|\mathbf{X}=\mathbf{x}] = \Phi(\mathbf{x}'\boldsymbol{\beta}),$$

or equivalently:

$$Y|X = x \sim Be(\Phi(x'\beta)).$$

Logit Model

Another very common choice is ϵ distributed according to a **logistic** distribution, that is $F(t) = \Psi(t)$, where $\Psi(\cdot)$ is the c.d.f. of a ligistic distribution given by:

$$\Psi(t) = \frac{e^t}{1 + e^t}.$$

- We will refer to this model as to the Logit Model.
- ► It is:

$$E[Y|X = x] = \Psi(x'\beta),$$

or equivalently:

$$Y|X = x \sim Be(\Psi(x'\beta)).$$

Assumptions

- ► We still need to make the assumptions typical of the linear regression model, suitably restated in terms of Y*:
 - **indipendence** the errors ϵ are independent and identically distributed,
 - ▶ incorrelation $E[\epsilon | \mathbf{X}] = 0$,
 - ▶ **distribution** the errors ϵ are distributed according to a random variable with c.d.f. $F(\cdot)$.
- ▶ Keep in mind that ϵ here are the residuals of the population regression of Y* on X.
- ▶ Since $Y|X = x \sim Be(F(x'\beta))$ it then follows that:

$$Var(Y|X = x) = F(x'\beta)(1 - F(x'\beta)).$$

Estimation

ightharpoonup An estimate for β could be obtained by means of least squares estimation, that is minimizing the sample analogue of the quantity:

$$E[(Y - F(x'\beta))^2].$$

- This is the so called non-linear least squares estimator.
- An estimation method more often adopted in this case is however based on the **likelihood function**, which exploits full knowledge of the distribution of ϵ .
- **b** Both methods provide unbiased estimates for the vector β . The maximum likelihood estimator is the most efficient one in this case.

Interpreting the Coefficients

- ightharpoonup Once we have obtained estimates of β how do we interpret the coefficients?
- \triangleright β is the vector of marginal effects of the regressors on Y^* :

$$\frac{\partial \mathsf{E}[\mathsf{Y}^*|\mathbf{X}=\mathbf{x}]}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}'\boldsymbol{\beta}}{\partial \mathbf{x}} = \boldsymbol{\beta}.$$

- Is this quantity really interesting by itself? No it isn't!
- ➤ Since Y* is a latent random variable without any meaningful scale, the marginal effect of X on Y* alone does not tell us anything about the **magnitude** of the effect on Y.
- ▶ How can we use β to obtain the marginal effect of X on Y?

Interpreting the Coefficients

► Non-linearity of the conditional expectation of Y given X implies **non-constant** marginal effects of X on Y:

$$\begin{array}{rcl} \frac{\partial \mathsf{E}[\mathsf{Y}|\mathbf{X}=\mathbf{x}]}{\partial \mathbf{x}} & = & \frac{\partial \mathsf{F}(\mathbf{x}'\boldsymbol{\beta})}{\partial \mathbf{x}}, \\ & = & \mathsf{f}(\mathbf{x}'\boldsymbol{\beta})\boldsymbol{\beta}, \end{array}$$

where $f(\cdot)$ is the derivative of the function $F(\cdot)$, that is the **density function** of ε .

- Marginal effects of X on Y actually depend on the value of x, i.e. it is not constant for all individuals.
- ▶ Still, since $f(\cdot)$ is a strictly positive function in its support, the marginal effect is:
 - ightharpoonup of the same sign of β ;
 - equal to zero only when $\beta = 0$.

Interpreting the Coefficients

- When β is a vector of coefficients, the marginal effect of one regressor on E[Y|X] depends on the entire vector of coefficients β and on the full vector \mathbf{x} .
- As a consequence, when dealing with non-linear models the marginal effect is almost individual specific.
- ▶ If the interest is on interpreting and reporting marginal effects we need to summarize this information.
- How can we report estimates about marginal effects?
- Mostly two choices:
 - Average marginal effects over the observed population;
 - Compute marginal effects for a representative individual in the population;

Average partial effect

▶ The average partial effect (APE) of X on Y is given by the average, over the distribution of X, of the individual marginal effects:

$$APE = E[f(\mathbf{x}'\boldsymbol{\beta})\boldsymbol{\beta}] = \boldsymbol{\beta}E[f(\mathbf{x}'\boldsymbol{\beta})].$$

This is easily computed from raw data, given an estimate for β, as:

$$\widehat{\mathsf{APE}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta} f(\mathbf{x}_i' \widehat{\beta}) = \widehat{\beta} \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i' \widehat{\beta}).$$

► Standard errors for APE could be obtained through Delta method or bootstrap techniques.

Partial effect at the average

- It might be interesting to summarize individual marginal effects by reporting the marginal effect for a representative individual.
- ▶ A common choice is the (hypothetical) individual with average value of the regressors. This is how we define the partial effect at the average (PEA) of X on Y:

$$PEA = \beta f(E[X]'\beta)$$

This is again easily computed from raw data, given an estimate for β , as:

$$\widehat{\mathsf{PEA}} = \widehat{\beta} \mathsf{f} \left(\left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)' \beta \right).$$

▶ Non-linearity of the function $f(\cdot)$ implies $\widehat{APE} \neq \widehat{PAE}$.

Evaluating the model

- ▶ We should not rely on the R² index when comparing different probit/logit models.
- ► The R² index does not vary between 0 and 1 when the support of the dependent variable is {0, 1}.
- ► For this purpose there exist pseudo-R² indices computed from quantities linked to the likelihood function.
- When interested in comparing the predictive power of competing models we could instead compute the proportion of statistical units that we could correctly classify into the two groups.
- ► This will be our measure of goodness of fit.

Predictive power of the model

▶ Define \widehat{p}_i as the model predicted probability for Y=1 for individual i. We could then classify individuals according to \widehat{y}_i such that:

$$\widehat{\mathbf{y}}_{i} = \left\{ \begin{array}{ll} 0 & \widehat{\mathbf{p}}_{i} < 0.5 \\ 1 & \widehat{\mathbf{p}}_{i} \geqslant 0.5 \end{array} \right.$$

b By comparing y_i and \hat{y}_i we obtain the two way table:

$$\begin{array}{c|ccccc} & & & y_i \\ & \mathbf{0} & \mathbf{1} \\ \hline \hat{y}_i & \mathbf{0} & e_{00} & e_{01} \\ \hline \hat{y}_i & \mathbf{1} & e_{10} & e_{11} \\ \end{array}$$

where $e_{00} + e_{11}$ is the proportion of correctly classified statistical units.

Classification errors

- $ightharpoonup e_{10} + e_{01}$ will be the proportion of observations incorrectly classified.
- $ightharpoonup e_{10}$ will be the proportion of observation incorrectly classified among those with $y_i = 0$ **false positive**.
- ho_{01} will be the proportion of observation incorrectly classified among those with $y_i = 1$ **false negatives**.
- ► These proportions are sometimes referred in the literature in terms of:
 - **sensitivity** $e_{11}/(e_{11}+e_{01})$,
 - **>** specificity $e_{00}/(e_{10}+e_{00})$

Back to the linear probability model

- ► The LPM is obtained by applying a linear model in the presence of a binary outcome.
- OLS consistently identify the coefficients of the linear regression when assuming:

$$E[Y|X] = \beta_0 + \beta_1 X.$$

- Omosckedasticity of the errors, i.e. $Var(Y|X) = \sigma^2$, is not holding by construction in this context, hence robust standard errors must be considered.
- ▶ One major disadvantage: predicted probability of "success" might fall outside the range [0, 1].
- One major advantage: estimated coefficients can be directly interpreted as marginal effects of the corresponding covariate on the probability of "success".

Marginal effects - Binary covariate

When X is a dummy variable LPM and Latent Index Models provide the same results in terms of estimated probabilities, since we could write:

$$E[Y|X] = F(\beta_0^* + \beta_1^*X),$$

= $F(\beta_0^*) + [F(\beta_0^* + \beta_1^*) - F(\beta_0^*)] X,$
= $\beta_0 + \beta_1 X,$

with
$$\beta_0=F(\beta_0^*)$$
 and $\beta_1=F(\beta_0^*+\beta_1^*)-F(\beta_0^*).$

► The conditional expectation of Y given X can then be written as a linear function of the dummy variable X.

Marginal effects - Binary covariate

► We will interpret the coefficients of the linear probability model as:

```
\beta_0 = predicted probability of Y = 1 when X = 0;

\beta_1 = difference in the predicted probabilities of Y = 1

when X = 1 and X = 0:
```

The same argument holds when we consider saturated models, that is regression modesl whith only discrete covariates coded as dummies with all interactions.

Marginal effects - Continuous covariate

- ▶ When X is a continuous random variable then predicted probabilities for LPM and Latent Index Models differ.
- ▶ Still, $\beta_0 + \beta_1 X$ can be shown to be the **best linear approximation** to the true conditional expectation function E[Y|X], while Latent Index Models rely on the correct specification of the function $F(\cdot)$.
- As a consequence we might think of β_1 as the best approximation to the marginal effect for X on the probability that Y=1.

Marginal effects - Continuous covariate

- The advantage here comes from the fact that there is no need for computing individual marginal effects and summarizing the information, since β_1 is already a summary of the marginal effect of interest.
- In practice APE or PEA from Latent Index Models and marginal effects for LPM are very similar.
- ▶ If this is not the case you might wonder why...

Bottom line

- Latent Index Models provide a useful alternative to model binary outcomes.
- ► These models are well suited for making predictions, since they closely approximate the underlying conditional expectation function E[Y|X].
- When it comes to reporting marginal effects though there is usually little gain in adopting these more flexible specifications.
- Linear probability models provide an interesting alternative for this task, in that estimated coefficients are directly interpreted as (average) marginal effects.
- ▶ An additional advantage is given by the straightforward applicability of Instrumental Variables estimators to account for potential endogeneity of X.