In the Claims

Claims 1 - 10 (Cancelled)

11. (Previously Presented) A method of treating nausea and vomiting comprising administering a therapeutically effective amount of an agent comprising a morphinan derivative represented by general formula (I):

$$\begin{array}{c|c}
R^1 & R^2 \\
R^6 & R^5 \\
R^3
\end{array}$$

or a pharmacologically acceptable acid addition salt thereof as an active ingredient,

where R¹ represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a cycloalkylalkyl group having 4 to 7 carbon atoms, a cycloalkenylalkyl group having 5 to 7 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, an alkenyl group having 3 to 7 carbon atoms, a furanylalkyl group (where the alkyl moiety has 1 to 5 carbon atoms), or a thiophenylalkyl group (where the alkyl moiety has 1 to 5 carbon atoms); R² and R³ are mutually independent and represent a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 5 carbon atoms, an alkenyloxy group having 3 to 5 carbon atoms, an aralkyloxy group having 7 to 16 carbon atoms, an arylalkenyloxy group having 7 to 16 carbon atoms, an alkanoyloxy group having 2 to 6 carbon atoms, an alkenoyloxy group having 4 to 6 carbon atoms, an arylalkanoyloxy group having 7 to 16 carbon atoms, or an alkyloxyalkoxy group having 2 to 10 carbon atoms; R⁴ and R⁵ together form an -O-, -S-, or -CH₂- bond, or are mutually independent and R⁴ represents a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 5 carbon atoms, or an alkanoyloxy group having 2 to 6 carbon atoms and R⁵ represents a hydrogen atom; R⁶ represents a hydrogen atom, an

alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an arylalkyl group having 7 to 16 carbon atoms, an arylalkenyl group having 7 to 16 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, a COOH-group, or an alkoxycarbonyl group having 2 to 6 carbon atoms; and -Q-moiety represents a group as follows:

(where these structures may have one or more substituents selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, an alkyl group having 1 to 5 carbon atoms, a hydroxyl group, an oxo group, an alkoxy group having 1 to 5 carbon atoms, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, a phenyl group, a hydroxyalkyl group having 1 to 5 carbon atoms, an isothiocyanato group, SR⁸, SOR⁸, SOOR⁸, (CH₂)_rOR⁸, (CH₂) rCOOR⁸, SOONR⁹R¹⁰, CONR⁹R¹⁰, (CH₂) rNR⁹R¹⁰, and (CH₂) rN (R⁹) COR¹⁰ (where r is an integer from 0 to 5, R⁸ represents an alkyl group having 1 to 5 carbon atoms, R⁹ and R¹⁰ are mutually independent and represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a cycloalkylalkyl group having 4 to 7 carbon atoms), and where X represents an oxygen atom, sulfur atom, a CH=CH, or NR⁷ group (where R⁷ represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 5 carbon atoms, an arylcarbonyl group having 7 to 13 carbon atoms, an alkylsulfonyl group having 1 to 5 carbon atoms, an arylsulfonyl group having 6 to 12 carbon atoms, an aralkylsulfonyl group having 7 to 13 carbon atoms, an aralkyl group having 7 to 16 carbon atoms, an arylalkenyl group having 7 to 16 carbon atoms, an alkanoyl group having 2 to 6 carbon atoms); Y represents a nitrogen atom or a CH group; and Z represents a bridge bond having 2 to 5

carbon atoms (where one or more carbon atoms may be replaced with a nitrogen, oxygen, or sulfur atom, and an aromatic or heteroaromatic ring having 5 to 12 carbon atoms or a cycloalkyl ring having 5 to 9 carbon atoms may be fused so as to share 2 or 3 skeletal carbon atoms), to a mammal.

12. (Previously Presented) The method according to claim 11, wherein the -Q-moiety in general formula (I) represents a group:

(where X is as defined above and the group may have the substituents above).

13. (Previously Presented) The method according to claim 11, wherein the -Q-moiety in general formula (I) represents a group:

(where Z is as defined above and the group may have the substituents above).

- 14. (Previously Presented) The method according to claim 11, wherein R⁴ and R⁵ in general formula (I) together form an -O- bond.
- 15. (Currently Amended) The method according to any one of claims claim 11 to 14, wherein the agent pre-vents prevents nausea and vomiting caused by a μ-opioid agonist compound.
- 16. (Previously Presented) The method according to claim 15, wherein the μ -opioid agonist compound is morphine.
- 17. (Previously Presented) The method according to claim 11, wherein the nausea or vomiting is caused by radiotherapy for cancer, a toxic agent, a toxin, metabolic disorder, hyperemesis, rotatory vertigo, kinetosis, postoperative sequelae, gastrointestinal dysfunction,

gastrointestinal hypokinesia, visceral pain, migraine, an increase in intra-cranial pressure, and a decrease in intra-cranial pressure.

- 18. (Previously Presented) The method according to claim 17, wherein the nausea or vomiting is caused by postoperative sequelae.
- 19. (Previously Presented) The method according to claim 17, wherein the nausea or vomiting is caused by gastrointestinal dysfunction.
- 20. (New) The method according to claim 12, wherein the agent prevents nausea and vomiting caused by a μ -opioid agonist compound.
- 21. (New) The method according to claim 13, wherein the agent prevents nausea and vomiting caused by a μ -opioid agonist compound.
- 22. (New) The method according to claim 14, wherein the agent prevents nausea and vomiting caused by a μ -opioid agonist compound.