EM

The Expectation-Maximization Algorithm

We know: How to estimate μ given data

More Complex Example

(A modeling decision, not a math problem..., but if later, what math?)

A Real Example:

CpG content of human gene promoters

[&]quot;A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Parameters θ

means

variances

mixing parameters

P.D.F.

$$\mu_1$$
 μ_2

$$\sigma_1^2$$
 σ_2^2

$$\tau_2 = 1 - \tau_1$$

No

form

max

closed-

$$f(x|\mu_1,\sigma_1^2) \quad f(x|\mu_2,\sigma_2^2)$$

Likelihood

$$L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

A What-If Puzzle

Likelihood
$$L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

Messy: no closed form solution known for finding $\boldsymbol{\theta}$ maximizing \boldsymbol{L}

But what if we knew the hidden data?

$$z_{ij} \ = \ \left\{ \begin{array}{ll} 1 & \text{if } x_i \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{array} \right.$$

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence $\mu_2,\,\sigma_2$

IF parameters θ known, could estimate z_{ij}

E.g., if
$$|\mathbf{x}_i - \mu_1|/\sigma_1 << |\mathbf{x}_i - \mu_2|/\sigma_2$$
, then $z_{i1} >> z_{i2}$

But we know neither; (optimistically) iterate:

E: calculate expected z_{ij}, given parameters

M: calc "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $z_{ij} < .5$, pretend it's 0; $z_{ij} > .5$, pretend it's 1

I.e., classify points as component 0 or 1

Now recald θ , assuming that partition

Then recalc z_{ij} , assuming that θ

Then re-recald θ , assuming new z_{ij} , etc., etc.

"Full EM" is a bit more involved, but this is the crux.

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to "hidden parameters" driving the visible data

EM is extremely widely used for "hidden-data" problems

Hidden Markov Models

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if hidden data, and if analysis is more tractable when 0/1 hidden data z known

Iterate:

E-step: estimate E(z) for each z, given θ

M-step: estimate θ maximizing E(log likelihood)

given E(z) [where "E(logL)" is wrt random $z \sim E(z) = p(z=1)$]

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will *converge*.

But it may converge to a local, not global, max.

Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are NP-hard

Nevertheless, widely used, often effective