Information Retrieval

Recommender Systems

Dr. Iqra Safder

Recommender Systems

Recommendations

Recommendations

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance

Types of Recommendations

- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller (http://www.wired.com/wired/archive/12.10/tail.html)
- Examples
 - Books, movies, music, news articles
 - People (friend recommendations on Facebook, LinkedIn, and Twitter)

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings

1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items

1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Approaches to recommender systems
 - 1) Content-based
 - 2) Collaborative

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

User Profile and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

rating for item
$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Prediction heuristic:

Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

User-User Collaborative Filtering Item-Item Collaborative Filtering

Similar Users

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Consider users x and y with rating vectors r_x and r_y
- We need a similarity metric sim(x, y)
- Capture intuition that sim(A,B) > sim(A,C)

Option 1: Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

$$= sim(A,B) = | r_A \cap r_B | / | r_A \cup r_B |$$

- $\sin(A,B) = 1/5$; $\sin(A,C) = 2/4$
 - sim(A,B) < sim(A,C)</p>

Option 2: Cosine Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
$\frac{B}{C}$	5	5	4				
C				2	4	5	
D		3					3

- = sim(A,B) = cos(r_A , r_B)
- = sim(A,B) = 0.38, sim(A,C) = 0.32
 - sim(A,B) > sim(A,C), but not by much

Option 2: Cosine Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4	0	0	5	1	D	0
B	5	5	4	0.	O	0	0
C				2	`4	5	
D		3					3

= sim(A,B) = cos(r_A , r_B)

- Problem with cosine:
 - C really loves SW
 - A hates SW
 - B just hasn't seen it
- Another problem: we'd like to normalize the raters
 - D rated everything the same; not very useful
- sim(A,B) = 0.38, sim(A,C) = 0.32
 - sim(A,B) > sim(A,C), but not by much
- Problem: treats missing ratings as negative

Option 3: Centered Cosine

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Option 3: Centered Cosine

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3	(
A	4_			5				10/3
B	5	5	4					14/2
C				2	4	5		10
D		3					3	

Option 3: Centered Cosine

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3
	HP1	HP2	HP3	TW	SW1	SW2	SW3
		111 2	111 0	1	5111	2112	DIII
\overline{A}	2/3	111 2	111 0		-7/3	5,12	5115
B			-2/3			5,12	5115
	2/3			5/3			5115

Option 3: Centered Cosine Similarity

	HP1	$_{ m HP2}$	HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

- = sim(A,B) = cos(r_A , r_B) = 0.09; sim(A,C) = -0.56
 - sim(A,B) > sim(A,C)
- Captures intuition better
 - Missing ratings treated as "average"
 - Handles "tough raters" and "easy raters"

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

Item-Item Collaborative Filtering

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

Item-Item Collaborative Filtering

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
E	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	
OVIES	3	2	4		1	2		3		4	3	5		?
	4		2	4		5			4			2		
	5			4	3	4	2					2	5	
	<u>6</u>	1		3		3			2			4		

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i between rows
- 2) Compute (item-overlapping) cosine similarities

-	 -	_	 -
		-	•
	•		•
	-		•

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	

Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 18/5$

_				,				,				
L	1	2	3	4	5	6	7	8	9	10	11	12
1	-13/5		-3/5		?	7/5			7/5		2/5	
3	-1	1		-2	-1		0		1	0	2	
6	-8/5		2/5		2/5			-3/5			7/5	

Showing computation only for #3 and #6

Neighbor selection:

movies

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i
- 2) Compute (item-overlapping) cosine similarities between rows

users

١,

•		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	-13/5		-3/5		?	7/5			7/5		2/5		1.00
	2			5	4			4			2	1	3	
movies	3	-1	1		-2	-1		0		1	0	2		?
Ĕ	4		2	4		5			4			2		
	5			4	3	4	2					2	5	
	6	-8/5		2/5		2/5			-3/5			7/5		<u>?</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i
- 2) Compute (item-overlapping) cosine similarities between rows

users

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i
- 2) Compute (item-overlapping) cosine similarities between rows

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i
- 2) Compute (item-overlapping) cosine similarities between rows

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m; from each movie i
- 2) Compute (item-overlapping) cosine similarities between rows

Compute Cosine Similarity:

For rows 1 and 3, they both have values for users 1, 9 and 11.

$$sim(1, 3) = \frac{(-13/5)(-1) + (7/5)(1) + (2/5)(2)}{\sqrt{(-13/5)^2 + (7/5)^2 + (2/5)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (2)^2}} \approx 0.658$$

For rows 1 and 6, they both have values for users 1, 3 and 11.

$$sim(1, 6) = \frac{(-13/5)(-8/5) + (-3/5)(2/5) + (2/5)(7/5)}{\sqrt{(-13/5)^2 + (-3/5)^2 + (2/5)^2} \cdot \sqrt{(-8/5)^2 + (2/5)^2 + (7/5)^2}} \approx 0.768$$

Stanford

							user	S						1	
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m	1)
	1	1		3		?	5			5		4		1.000	
	2			5	4			4			2	1	3		
movies	<u>3</u>	2	4		1	2		3		4	3	5		.658	4
ш	4		2	4		5			4			2			
	5			4	3	4	2					2	5		
	<u>6</u>	1		3		3			2			4		.768	4

Compute similarity weights:

Stanford

 $s_{1,3}$ =.658, $s_{1,6}$ =.768 (we compute $s_{1,2}$, $s_{1,4}$, $s_{1,5}$ too; let's assume those are smaller)

Slides adapted from Jure Leskovec, CS246 and J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		2.54	5			5		4		1.000
	2			5	4			4			2	1	3	
movies	<u>3</u>	2	4		1	2		3		4	3	5		.658
Ш	4		2	4		5			4			2		
	5			4	3	4	2					2	5	
	<u>6</u>	1		3	(3			2			4		.768

Predict by taking weighted average:

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{jx}}{\sum s_{ij}}$$

 $r_{1.5} = (0.658*2 + 0.768*3) / (0.658+0.768) = 2.54$

Item-Item vs. User-User

- In theory, user-user and item-item are dual approaches
- In practice, item-item outperforms user-user in many use cases
- Items are "simpler" than users
 - Items belong to a small set of "genres", users have varied tastes
 - Item Similarity is more meaningful than User Similarity

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

Cannot recommend an item that has not been previously rated

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

- Ethical and social issues:

Can lead to filter bubbles and radicalization spirals

Stanford

Thank you