# Machine Learning 1 Lecture 03 - Linear Methods for Regression

Patrick Forré

Linear Methods for Regression

#### Linear Basis Function Model

- Training data:  $D = (x_1, \ldots, x_N)^T$  with targets  $T = (t_1, \ldots, t_N)^T$ , where every  $x_i \in \mathbb{R}^D$  is a D-dimensional vector  $x_i = (x_{i,1}, \ldots, x_{i,D})^T$ .
- Fix a number M and choose basis functions/"features" of x:  $(\phi_0(x), \ldots, \phi_{M-1}(x))^T =: \phi(x)$ , with  $\phi_0 \equiv 1$ .
- Model functions with parameters  $w = (w_0, \dots, w_{M-1}) \in \mathbb{R}^M$ :

$$y(x, w) = \sum_{i=0}^{M-1} w_i \cdot \phi_i(x) = w^T \phi(x).$$

• Sum-of-squares error function:

$$E(D, T, w) := \frac{1}{2} \sum_{i=1}^{N} (t_i - y(x_i, w))^2.$$

• Unique minimizer (if existent):  $w_{\rm ML} = (\Phi^T \Phi)^{-1} \Phi^T T$ , with  $\overline{N \times M}$ -matrix  $\overline{\Phi}$  with entries  $\Phi_{ik} = \phi_k(x_i)$ .

## Example: Polynomial Regression

- We now want to see how good the naive approach ("minimizing the training error") works in practice, measured by the test error (by root-mean-squared error, RMSE).
- We generate the function  $h(x) = \sin(2\pi x)$  and add Gaussian noise  $\epsilon$ :

$$t = \sin(2\pi x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(e|0,\sigma^2).$$

- We will take N=10 data points  $(x_1,\ldots,x_{10})$  and compute  $(t_1,\ldots,t_{10})$ .
- <u>Goal</u>: Try to infer the function h from the data points by 1-dimensional polynomial regression of degree M with  $w \in \mathbb{R}^{M+1}$ :

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \cdots + w_M x^M.$$

ullet We will minimize the training error, i.e. computing the Maximum Likelihood / Least-Sum-of-Square solution  $w_{
m ML}$ .

## Example: Polynomial Regression



Figure: "Unknown" sinoidal curve  $(h(x) = \sin(2\pi x))$  and observed data points  $(t = h(x) + \epsilon)$  (Bishop 1.2)

# Example: Underfitting and Overfitting



Table: Underfitting and Overfitting (Bishop 1.4)

#### Example: Training Error vs. Test Error by Complexity



Figure: Training Error vs. Test Error by Complexity (Bishop 1.5)

## Example: Size of Polynomial Coefficients vs. Overfitting

#### **Polynomial Coefficients**

|               | M = 0 | M = 1 | M = 3  | M = 9       |
|---------------|-------|-------|--------|-------------|
| $w_0^{\star}$ | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1^\star$   |       | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |       |       | -25.43 | -5321.83    |
| $w_3^{\star}$ |       |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |       |       |        | -231639.30  |
| $w_5^{\star}$ |       |       |        | 640042.26   |
| $w_6^{\star}$ |       |       |        | -1061800.52 |
| $w_7^{\star}$ |       |       |        | 1042400.18  |
| $w_8^{\star}$ |       |       |        | -557682.99  |
| $w_9^{\star}$ |       |       |        | 125201.43   |
|               |       |       |        |             |

Figure: Size of parameters indicates overfitting (Bishop Table 1.1)

# Size of Coefficients vs. Overfitting

#### Question

- Why does the model tend to overfit when the complexity M is big in comparison to the size of the training data N?
- And why is overfitting associated with relatively "big" coefficients?
- If *M* is big then the model is flexible enough to fit the random noise terms of the *N* data points, resulting in overfitting:
- Overfitting means that the test error is much bigger than the training error.
- ullet This means that on test data (x,t) the learned function

$$y(x, w) = w_0 + w_1\phi_1(x) + w_2\phi_2(x) + \cdots + w_{M-1}\phi_{M-1}(x)$$

- "hugely" differs from the expected target value t.
- But this means that some of the functions  $w_i\phi_i(x)$  must tend to overshoot in the sum.
- So if  $\phi_i$  is normalized then  $w_i$  must be "big".

# Example: Sample Size vs. Overfitting



Figure: Polynomial fit of degree M=9 and different number of data points N. Increase of N reduces overfitting (Bishop 1.6)

# Problems: Underfitting and Overfitting

• <u>Underfitting:</u> model not flexible/complex enough (*M* too low) to capture variability of true function *f*.

Detection: both training and test error comparatively high. Possible solutions:

- ullet Increase parameter space  ${\mathcal W}$ , i.e. complexity M,
- ullet create additional basis functions / "features"  $\phi_j$  of the data x,
- measure new meaningful properties of the samples.
- Overfitting: model too flexible (M too big in comparison to number of observations N). It will start to model variance and noise instead of true underlying function.

Detection: training error low, test error high. Possible solutions:

- get more data (increase N).
- ullet decrease parameter space  ${\mathcal W}$ , i.e. lower complexity M,
- penalize big parameters / coefficients w<sub>i</sub> ("Shrinkage",
   "Weight Decay", "Regularization", "Bayesian Approach").

# Regularization and Regularized Regression

- To avoid overfitting we introduce a new term in the error function to penalize for big parameters:
- Carefully choose a parameter  $\lambda\geqslant 0$  and q>0 for a data set  $D'=(x'_1,\ldots,x'_L)$  with targets  $T'=(t'_1,\ldots,t'_L)$  put

$$E_{RG}(D', T', w) := E(D', T', w) + \frac{\lambda}{q} ||w||_q^q$$
  
=  $\frac{1}{2} \sum_{i=1}^L (t_i - y(x_i, w))^2 + \frac{\lambda}{q} \sum_{k=0}^{M-1} |w_k|^q$ .

- Regularized Regression: Minimize  $E_{RG}(D_{tr}, T_{tr}, w)$  on the training set w.r.t. to w to get  $w_{RG}$
- $y(x, w_{RG})$  might do worse on training data (in terms of RMSE) but is supposed to do better on test data than  $y(x, w_{ML})$ .
- ullet q=1 is called Lasso- and q=2 the Ridge Regularization.
- For the Linear Basis Function Model we stick to q = 2. The Ridge Regression then has the unique closed form minimizer:

$$w_{\rm RG} = (\lambda \mathbb{1} + \Phi^T \Phi)^{-1} \Phi^T T.$$

#### Example: Regularization



Figure: Minimizing  $E_{\rm RG}(w)$  is equivalent to minimizing E(w) under the constraint  $||w||_q \le \eta$ . Small q (left: q=1) lead to values w with lots of zero-entries, whereas bigger q (right: q=2) lead to more equally sized entries of w. (Bishop 3.4)

# Example: Polynomial Ridge Regression



Figure: Penalized polynomial fit of degree M=9 with different size of regularization parameter  $\lambda$ . The fit might get worse if  $\lambda$  is too big (underfitting) or too small (overfitting). Left: unregularized, i.e.  $\ln \lambda = -\infty$ . (Bishop 1.7)

#### Example: Training Error vs. Test Error with Regularization



Figure: Training vs. test error by regularization parameter  $\lambda$  (Bishop 1.8)

## Example: Size of Polynomial Coefficients with Regularization

#### **Polynomial Coefficients**

|               | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$ | 0.35                    | 0.35                | 0.13              |
| $w_1^{\star}$ | 232.37                  | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83                | -0.77               | -0.06             |
| $w_3^*$       | 48568.31                | -31.97              | -0.05             |
| $w_4^{\star}$ | -231639.30              | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26               | 55.28               | -0.02             |
| $w_6^{\star}$ | -1061800.52             | 41.32               | -0.01             |
| $w_7^*$       | 1042400.18              | -45.95              | -0.00             |
| $w_8^{\star}$ | -557682.99              | -91.53              | 0.00              |
| $w_9^{\star}$ | 125201.43               | 72.68               | 0.01              |

Figure: Coefficients of polynomial ridge regression of degree M=9 by regularization parameter  $\lambda$ . In  $\lambda=-\infty$  corresponds to the unregularized fit. Coefficients tend to get smaller with increasing  $\lambda$ . (Bishop Table 1.2)

#### Model Comparison and Model Selection

#### Question

If we have different models (e.g. different M,  $\lambda$  etc.) to describe the data which should we choose?

- If we have enough data then evaluate every model (fully trained on the training set) on the <u>validation set</u>. Choose the one with lowest validation test error.
- If data is scarce one can use <u>S-fold cross validation</u> (see next slide).
- One could use information criteria, which penalize complexity:
  - Akaike IC (AIC): Choose model with minimal:

$$M - \ln p(D|w_{\rm ML})$$
.

- Bayesian IC (BIC): Bayesian + crude approximations.
- Full Bayesian: Penalties arise automatically.

#### Cross Validation



Figure: S-fold cross validation. (Bishop Table 1.18)

- Partition data into S groups (of similar size). In case data is very scarce use S = N (leave-one-out cross validaton).
- ullet Train model on S-1 groups and evaluate error on the last.
- Repeat S-times by changing the left out group and avarage the validation errors to get a test error estimate.
- Do this for every model and choose the one with lowest such test error.

#### Expected Test Error: Preliminaries: Conditional Expectation

- Let  $X, \epsilon$  be independent random variables with  $\mathbb{E}[\epsilon] = 0$  and  $T = h(X) + \epsilon$ . Then:
- $\mathbb{E}[T|X] = \mathbb{E}[h(X)|X] + \mathbb{E}[\epsilon|X] = h(X)$ . And furthermore:

$$\mathbb{E}[(T - g(X))^{2}] = \mathbb{E}[(T - h(X) + h(X) - g(X))^{2}]$$

$$= \mathbb{E}[(T - h(X))^{2} + (h(X) - g(X))^{2} + 2(T - h(X))(h(X) - g(X))]$$

$$= \mathbb{E}[(T - h(X))^{2}] + \mathbb{E}[(h(X) - g(X))^{2}] + 2\mathbb{E}\mathbb{E}[[(T - h(X))(h(X) - g(X))|X]]$$

$$= \mathbb{E}[(T - h(X))^{2}] + \mathbb{E}[(h(X) - g(X))^{2}] + 2\mathbb{E}[(\mathbb{E}[T|X] - h(X))(h(X) - g(X))]$$

$$= \mathbb{E}[(T - h(X))^{2}] + \mathbb{E}[(h(X) - g(X))^{2}]$$

$$\geqslant \mathbb{E}[(T - h(X))^{2}]$$

• I.e. under all functions g(X) the function  $h(X) = \mathbb{E}[T|X]$  minimized the quadratic distance  $\mathbb{E}[(T-g(X))^2]$ .

•

#### Expected Test Error: Bias - Variance - Decomposition

• Let  $X, \epsilon$  be independent random variables with  $\mathbb{E}[\epsilon] = 0$  and  $T = h(X) + \epsilon$  and  $D = (X_1, \dots, X_N)$  i.i.d. instances of X and W a noisy parameter "learned" from D and Y the predictive function. Then the expected (quadratic) test error is:

$$\begin{split} & \mathbb{E}[(T - y(X, W))^2] \\ &= \mathbb{E}[(T - h(X))^2] + \mathbb{E}[(h(X) - y(X, W))^2] \\ &= \mathbb{E}[(T - h(X))^2] & (\text{noise})^2 \\ &+ \mathbb{E}[(h(X) - \mathbb{E}_D[y(X, W)])^2] & (\text{bias})^2 \\ &+ \mathbb{E}[(\mathbb{E}_D[y(X, W)] - y(X, W))^2] & (\text{variance}) \end{split}$$

- Expected Test Error = Bias<sup>2</sup> + Variance + Noise<sup>2</sup>,
- Bias: measures the "difference" between desired regression function h and the avarage prediction over all data sets.
- Variance: measures sensitivity of y to particular choice of data set around the average over all data sets.
- Noise: just a constant coming from the variance of  $\epsilon$ .

#### Bias - Variance - Estimator

- Take L (e.g. L=100) groups, each of which has N (e.g. N=25) independent observations  $D^{(i)}=(x_{i,1},\ldots,x_{i,N}),$   $i=1,\ldots,L$ .
- For every i = 1, ..., L fit a model  $y^{(i)}$  on  $D^{(i)} = (x_{i,1}, ..., x_{i,N})$ .
- Average prediction estimate:  $\overline{y}(x) = \frac{1}{I} \sum_{i=1}^{L} y^{(i)}(x)$ .
- Take test data  $D' = (x_1, \dots, x_{N'})$  and calculate the estimates:
- Bias<sup>2</sup> =  $\frac{1}{N'} \sum_{k=1}^{N'} (\overline{y}(x_k) h(x_k))^2$ ,
- Variance=  $\frac{1}{N'} \sum_{k=1}^{N'} \frac{1}{L} \sum_{i=1}^{L} (y^{(i)}(x_k) \overline{y}(x_k))^2$ .

#### Example: Bias - Variance with Regularization



Figure: L=100 data sets, each having N=25 data points, M-1=24 Gaussian basis functions. Top: 20 of the 100 fits by regularization parameter  $\lambda$ . Bottom: Avarage over all 100 fits (red) along with data generating function (green). Left: Low variance, high bias. Right: High variance, low bias. (Bishop 3.5)

#### Example: Bias - Variance - Decomposition



Figure: Estimated bias<sup>2</sup> and variance with N'=1000 test data point. Minimal sum of bias<sup>2</sup>+variance for regularization parameter ln  $\lambda=-0.31$ . (Bishop 3.6)

# Bayesian Linear Regression (I)

- Training data:  $D = (x_1, ..., x_N)^T$  with targets  $T = (t_1, ..., t_N)^T$ .
- Linear Basis Function Model:  $t = w^T \phi(x) + \epsilon$  with Gaussian noise  $\epsilon$  and parameters  $w = (w_0, \dots, w_{M-1})^T \in \mathbb{R}^M$ .
- So for (x, t) we have  $p(t|x, w) = \mathcal{N}(t|w^T\phi(x), \beta^{-1})$ , where  $\beta = 1/\sigma^2$  is the precision, leading to:
- Likelihood:  $p(T|w, D, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_i|w^T\phi(x_i), \beta^{-1}).$
- Bayesian Approach: Gaussian Prior:  $p(w) = \mathcal{N}(w|\mu_0, \Sigma_0)$  with mean  $\mu_0$  and covariance  $\Sigma_0$ . This leads to:
- Gaussian Posterior:  $p(w|T, D, \beta) = \mathcal{N}(w|\mu_N, \Sigma_N)$  with mean  $\mu_N$  and covariance  $\Sigma_N$  calculated to (see Matrix Cook Book):

$$\Sigma_{N} = (\Sigma_{0}^{-1} + \beta \Phi^{T} \Phi)^{-1}$$
  
$$\mu_{N} = \Sigma_{N} (\Sigma_{0}^{-1} \mu_{0} + \beta \Phi^{T} T)$$

• So the Maximum A Posteriori estimate is  $w_{\text{MAP}} = \mu_N$ .

# Bayesian Linear Regression (II)

- Special case:  $\mu_0=0$  and  $\Sigma_0=\alpha^{-1}\mathbb{1}$  with  $\alpha>0$ . Leading to:
- Gaussian Prior:  $p(w|\alpha) = \mathcal{N}(w|0, \alpha^{-1}\mathbb{1})$ .
- Gaussian Posterior:  $p(w|T, D, \alpha, \beta) = \mathcal{N}(w|\mu_N, \Sigma_N)$  with:

$$\begin{array}{rcl} \boldsymbol{\Sigma}_{N} & = & (\alpha \mathbb{1} + \beta \boldsymbol{\Phi}^{T} \boldsymbol{\Phi})^{-1} \\ \boldsymbol{\mu}_{N} & = & \beta \boldsymbol{\Sigma}_{N} \boldsymbol{\Phi}^{T} \boldsymbol{T}. \end{array}$$

Maximizing the log-posterior (with Gaussian prior) w.r.t. w:

$$\ln p(w|T, D, \alpha, \beta) = -\frac{\beta}{2} \sum_{i=1}^{N} (t_i - w^T \phi(x_i))^2 - \frac{\alpha}{2} w^T w + \text{const}$$
$$= -\beta \left( E(D, T, w) + \frac{\alpha}{2\beta} ||w||_2^2 \right) + \text{const}.$$

is equivalent to Ridge Regression with regularization parameter  $\lambda = \frac{\alpha}{\beta}$ .

#### Sequential Bayesian Learning for Linear Regression



Figure: Predictive functions  $y(x, w) = w_0 + w_1 \cdot x$ . Likelihood p(t|x, w), prior/posterior p(w|D). White cross = true value (Bishop 3.7)