

# Micro-macro changepoint inference for periodic data sequences

Rebecca Killick

r.killick@lancs.ac.uk

Owen Li, Anastasia Ushakova (Lancaster) and Simon Taylor (Edinburgh) RSS, Sept 2025

### **Outline**



- Motivation
- What are changepoints?
- Micro changepoint model
  - Bayesian Implementation
  - Frequentist Implementation
- Macro changepoint model
- Simulations
- Application



### Motivation

# At home monitoring



#### The Howz Smart System:

- Discreet passive sensors.
- Measure activity in the home.
- Learn about your daily routine.

#### Objective:

- Identify abnormal behaviour:
- Indicate a decline in health or well-being in an older person.

#### Data:

Binary yes/no activity in 15 mins





RSS, Sept 2025

#### Howz



• How can we study changes in periodic and cyclical behaviours?



# What are changepoints?



For data  $y_1, \ldots, y_n$ , a changepoint is a location  $\tau$  where the statistical properties of  $y_1, \ldots, y_\tau$  are different from  $y_{\tau+1}, \ldots, y_n$  in some way. Traditional changepoints include: mean, regression, variance.







### **Problem**





- How many changes?
- Where are the changes?  $2^{n-1}$  possible solutions!

# Periodic Changepoints







#### Our Contribution



Create method for periodic and global changepoint detection

- Wide range of data structures (assume likelihood available)
- Present frequentist method for local periodic changes
- Use PELT to extend to global changes in periodic

Create layered visualizations for ease of inference.

We denote changepoints as micro (periodic) and macro (global).



# Periodic level changepoint detection

# **Thinking**



Challenge: How to encorporate circular nature

Soution: Reframe t = cN + i,  $c \in \mathbb{N}_0$  and  $i \in \{0, 1, ..., N - 1\}$ 

Challenge: How to detect using (c, i) instead of t?

Challenge: There is no single changepoint setting anymore!

# Segment Neighbourhood





Challenge: No single changepoint setting to build upon. Standard:

$$c_{0,t}^{m} = \min_{\tau_{1},...,\tau_{m}} \sum_{j=1}^{m+1} \mathcal{C}(x_{(\tau_{j-1}+1):\tau_{j}})$$

$$= \min_{\tau_{m-1}} [c_{0,\tau_{m-1}}^{m-1} + \mathcal{C}(x_{(\tau_{m-1}+1):t})].$$

Circular:

$$\begin{split} c_{0,t}^2 &= \min_{\tau_1,\tau_2} [\mathcal{C}(x_{(\tau_1+1):\tau_2}) + \mathcal{C}(x_{(\tau_2+1):\tau_1})] \\ c_{0,t}^m &= \min_{\tau_{m-1}} [c_{0,\tau_{m-1}}^{m-1} + \mathcal{C}(x_{(\tau_{m-1}+1):t})] \qquad m = 3,\dots M \end{split}$$

# Frequentist



#### Correct detection (1- $\alpha$ and power rates)

| $d$ $\tau_1$ | 4     | 8     | 16    | 24    | 32    | 48    |
|--------------|-------|-------|-------|-------|-------|-------|
| 0.0          | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 0.1          | 0.000 | 0.004 | 0.042 | 0.102 | 0.123 | 0.156 |
| 0.2          | 0.177 | 0.467 | 0.550 | 0.540 | 0.519 | 0.570 |
| 0.3          | 0.842 | 0.846 | 0.828 | 0.856 | 0.866 | 0.873 |
| 0.4          | 0.973 | 0.975 | 0.971 | 0.972 | 0.966 | 0.976 |

#### Simulation Results





### Simulation Results





Bayesian

Frequentist



# Macro Level Changepoint Detection

#### PELT in a nutshell



- Dynamic programming allows us to only worry about the location of the *last* change.
- Pruning means that as we go through the data we are smart about which locations are potential last change locations.



# Macro Level Changepoints Mathematical Sciences | Lancaster University



- Treat the micro-level detection as a "fit" for a segment . . .
- ... thus we can use traditional, linear time algorithms.

We use PELT which optimizes:

$$\sum_{i=1}^{q+1} \left[ \mathcal{C}(y_{(\alpha_{i-1}+1):\alpha_i}) \right] + \beta q. \tag{1}$$

where q is the number of macro level changepoints and  $\mathcal{C}(\cdot)$  is the likelihood:

$$C(y_{(\alpha_{i-1}+1):\alpha_i}) = -2\sum_{j=1}^{\hat{m}_i} \sum_{t \in B_{i,j}^*} \log f(y_t|\hat{\mu}_{i,j}, \hat{\sigma}_{i,j}^2)$$



### **Simulations**

See pre-print for simulation study.



# **Application**

# Application Results:Howz







#### Discussion



#### Overview:

 A new approach for identifying within-period changepoint events for time series.

```
Taylor, S. A. C., Killick, R., Burr, J. and Rogerson, L. (2021)
```

- 'Changepoint Detection within Periodic Binary Time Series'. JRSS:Series C.
- Bayesian pooling of evidence across multiple periods by applying a circular perspective to time.
- Introduced the micro-macro level changepoint approach Ushakova, A., Taylor, S. A. C., Killick, R. (2023)
  - 'Micro-Macro Changepoint Inference for Periodic Data Sequences'. JCGS.
- Bayesian and Frequentist viewpoints for a wide set of data types Li, O., Killick, R. (2025+)
  - 'Detecting changes in periodic data'. Submitted

# WBS performance







#### Scenario 7

