Cricket Analysis and Predictions

Cricket...

a sport that doesn't require any introduction in India

a sport for which people worship to make their favorite team win the battle

a sport which is liked by all people irrespective of the age

a sport where players create carnage in the field

a sport which unites all the people

a sport which increases the physical fitness of the people

a sport which unites players across all countries

Apart from the sport, it teaches us many lessons including life lessons

It teaches us Statistics It teaches us Math It teaches us Visualizations It teaches us Predictions

As a cricket lover, I made this Notebook which teaches us the life cycle of a Data Science project with facts and figures.

Data Credits: ESPN-CRICINFO

With all the context set, Now Let's Dive into the technical part.

You can see visualizations, player statistics, country wise data, SQL Queries in accordance with Pandas and Vice Versa

Importing Required Packages

In [1]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import string
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from sklearn.metrics import roc_curve, auc
import re
import pickle
```

Importing Data

In [2]:

```
batting_data = pd.read_csv('All_Countries_ODI_Bats_Orig.csv',encoding = 'cp1252')
bowling_data = pd.read_csv('All_Countries_ODI_Bowls_Orig.csv',encoding = 'cp1252')
```

Have a Look at Batting and Bowling Data

SQL Query:

Select top 5 * from batting_data

In [3]:

```
batting_data.head()
```

Out[3]:

	Player_Name	Span	Matches	Innings	Not_Outs	Runs_Scored	Highest_Score	Α
0	V Kohli (INDIA)	2008- 2019	242	233	39	11609	183	
1	KC Sangakkara (Asia/ICC/SL)	2005- 2015	281	269	25	11054	169	
2	MS Dhoni (Asia/INDIA)	2005- 2019	347	294	83	10754	183*	
3	AB de Villiers (Afr/SA)	2005- 2018	228	218	39	9577	176	
4	TM Dilshan (SL)	2005- 2016	278	260	28	9426	161*	
4								•

SQL Query:

Select top 5 * from bowling_data

In [4]:

bowling_data.head()

Out[4]:

	Player_Name	Span	Matches	Innings	Overs	Maidens	Runs_Given	Wickets	Bowl
0	Shakib Al Hasan (BDESH)	2006- 2019	206	203	1752.5	83	7857	260	
1	Mashrafe Mortaza (Asia/BDESH)	2005- 2019	203	203	1680.5	112	8143	251	
2	Shahid Afridi (Asia/ICC/PAK)	2005- 2015	207	201	1729.4	33	8035	242	
3	MG Johnson (AUS)	2005- 2015	153	150	1248.1	74	6038	239	
4	B Lee (AUS)	2005- 2012	130	129	1101.3	81	5263	220	
4									•

Cleaning Data

We can see that Player Name is clubbed with his country name. So separate them

In [5]:

```
sbat = pd.Series(batting_data['Player_Name'])
sbow = pd.Series(bowling_data['Player_Name'])
```

In [6]:

```
batting_data['Player_Country']=sbat.apply(lambda st: st[st.find("(")+1:st.find(")")])
bowling_data['Player_Country']=sbow.apply(lambda st: st[st.find("(")+1:st.find(")")])
```

In [7]:

```
batting_data['Player_Name'] = batting_data['Player_Name'].str.split('(').str[0]
bowling_data['Player_Name'] = bowling_data['Player_Name'].str.split('(').str[0]
```

In [8]:

```
batting_data['Player_Country']=batting_data['Player_Country'].str.split('/').str[-1]
bowling_data['Player_Country']=bowling_data['Player_Country'].str.split('/').str[-1]
```

Split the Span column by From and Till

In [9]:

```
batting_data['Played_From']=batting_data['Span'].str.split('-').str[0]
batting_data['Played_Till']=batting_data['Span'].str.split('-').str[-1]
bowling_data['Played_From']=bowling_data['Span'].str.split('-').str[0]
bowling_data['Played_Till']=bowling_data['Span'].str.split('-').str[-1]
```

SQL Query:

```
Alter Table batting_data
Drop column Span

Alter Table bowling_data
Drop column Span
```

In [10]:

```
batting_data.drop(['Span'], axis=1,inplace=True)
bowling_data.drop(['Span'], axis=1,inplace=True)
```

Rearrange the columns

In [11]:

```
cols_bat = list(batting_data)
cols_bat.insert(1, cols_bat.pop(cols_bat.index('Player_Country')))
cols_bat.insert(2, cols_bat.pop(cols_bat.index('Played_From')))
cols_bat.insert(3, cols_bat.pop(cols_bat.index('Played_Till')))

cols_bowl = list(bowling_data)
cols_bowl.insert(1, cols_bowl.pop(cols_bowl.index('Player_Country')))
cols_bowl.insert(2, cols_bowl.pop(cols_bowl.index('Played_From')))
cols_bowl.insert(3, cols_bowl.pop(cols_bowl.index('Played_Till')))
```

In [12]:

```
batting_data = batting_data.ix[:, cols_bat]
bowling_data = bowling_data.ix[:, cols_bowl]
```

In [13]:

```
batting_data.head()
```

Out[13]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Not_Outs	Runs_
0	V Kohli	INDIA	2008	2019	242	233	39	
1	KC Sangakkara	SL	2005	2015	281	269	25	
2	MS Dhoni	INDIA	2005	2019	347	294	83	
3	AB de Villiers	SA	2005	2018	228	218	39	
4	TM Dilshan	SL	2005	2016	278	260	28	
4								•

In [14]:

```
bowling_data.head()
```

Out[14]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Overs	Maidens
0	Shakib Al Hasan	BDESH	2006	2019	206	203	1752.5	83
1	Mashrafe Mortaza	BDESH	2005	2019	203	203	1680.5	112
2	Shahid Afridi	PAK	2005	2015	207	201	1729.4	33
3	MG Johnson	AUS	2005	2015	153	150	1248.1	74
4	B Lee	AUS	2005	2012	130	129	1101.3	81
4								+

Drop some junk data rows

SQL Query:

```
Delete from batting_data where Player_Country ='1'

Delete from batting_data where Player_Country ='3'

Delete from batting_data where Average ='-'

Delete from batting_data where Strike_Rate ='-'
```

In [15]:

```
batting_data.drop(batting_data[batting_data.Player_Country == '1'].index,inplace=True)
batting_data.drop(batting_data[batting_data.Player_Country == '3'].index,inplace=True)
batting_data.drop(batting_data[batting_data.Average == '-'].index,inplace=True)
batting_data.drop(batting_data[batting_data.Strike_Rate == '-'].index,inplace=True)
batting_data['Highest_Score'] = batting_data['Highest_Score'].str.replace('\W', '')
```

SQL Query:

```
Delete from bowling_data where Player_Country ='1'

Delete from bowling_data where Player_Country ='3'

Delete from bowling_data where Bowling_Average ='-'

Delete from bowling_data where Bowling_Strike_Rate ='-'
```

In [16]:

```
bowling_data.drop(bowling_data[bowling_data.Player_Country == '1'].index,inplace=True)
bowling_data.drop(bowling_data[bowling_data.Player_Country == '3'].index,inplace=True)
bowling_data.drop(bowling_data[bowling_data.Bowling_Average == '-'].index,inplace=True)
bowling_data.drop(bowling_data[bowling_data.Bowling_Strike_Rate == '-'].index,inplace=True)
```

In [17]:

```
batting_data.dtypes
```

Out[17]:

```
Player_Name
                   object
                   object
Player Country
Played_From
                   object
Played Till
                   object
                    int64
Matches
Innings
                    int64
Not_Outs
                    int64
                    int64
Runs_Scored
Highest Score
                   object
Average
                   object
Balls_Faced
                    int64
Strike Rate
                   object
Centuries
                    int64
Half_Centuries
                    int64
Duck Out
                    int64
Fours
                    int64
Sixes
                    int64
                    int64
Is_Selected
dtype: object
```

In [18]:

```
bowling_data.dtypes
```

Out[18]:

Player_Name object Player Country object Played_From object Played_Till object Matches int64 Innings int64 float64 0vers int64 Maidens Runs Given int64 Wickets int64 Bowling_Average object float64 Economy Bowling Strike Rate object int64 Four_Wicket_Hauls Five Wicket Hauls int64 int64 Is_Selected dtype: object

We can see that the Average, Strike Rate, Played_From, Played_Till columns are loaded as Objects. So convert them into floats and ints to make them useful

In [19]:

```
batting_data["Average"]=batting_data["Average"].astype(float)
batting_data["Strike_Rate"]=batting_data["Strike_Rate"].astype(float)
batting_data["Highest_Score"]=batting_data["Highest_Score"].astype(int)
batting_data["Played_From"]=batting_data["Played_From"].astype(int)
batting_data["Played_Till"]=batting_data["Played_Till"].astype(int)
```

In [20]:

```
bowling_data["Bowling_Average"]=bowling_data["Bowling_Average"].astype(float)
bowling_data["Bowling_Strike_Rate"]=bowling_data["Bowling_Strike_Rate"].astype(float)
bowling_data["Played_From"]=bowling_data["Played_From"].astype(int)
bowling_data["Played_Till"]=bowling_data["Played_Till"].astype(int)
```

Group by country to get the understanding of the batsman across all countries

SQL Query:

```
select sum(Runs_Scored) as Total_Runss from batting_data group by Player_Country
select sum(Centuries) as Total_Centuriess from batting_data group by Player_Country
select sum(Half_Centuries) as Total_Half_Centuriess from batting_data group by
Player_Country
select sum(Fours) as Total_Fourss from batting_data group by Player_Country
select sum(Sixes) as Total Sixess from batting data group by Player Country
```

In [21]:

```
Total_Runss=batting_data.groupby(['Player_Country'])['Runs_Scored'].sum()
Total_Centuriess=batting_data.groupby(['Player_Country'])['Centuries'].sum()
Total_Half_Centuriess=batting_data.groupby(['Player_Country'])['Half_Centuries'].sum()
Total_Fourss=batting_data.groupby(['Player_Country'])['Fours'].sum()
Total_Sixess=batting_data.groupby(['Player_Country'])['Sixes'].sum()
```

SQL Query:

select sum(Strike_Rate)/count(Player_Country) as Average_Strike_Rates from batting_data
group by Player_Country

In [22]:

```
Average_Strike_Rates=batting_data.groupby(['Player_Country'])['Strike_Rate']\
.agg(lambda x: x.astype(float).sum())/batting_data.groupby(['Player_Country'])['Strike_Rate
```

In [23]:

```
country_batting_data=pd.DataFrame()
country_batting_data['Total_Runs']=Total_Runss
country_batting_data['Total_Centuries']=Total_Centuriess
country_batting_data['Total_Half_Centuries']=Total_Half_Centuriess
country_batting_data['Total_Fours']=Total_Fourss
country_batting_data['Total_Sixes']=Total_Sixess
country_batting_data['Average_Strike_Rates']=Average_Strike_Rates
```

In [24]:

```
country_batting_data.reset_index(level=0, inplace=True)
```

View the Country wise Batting data

In [25]:

country_batting_data

Out[25]:

	Player_Country	Total_Runs	Total_Centuries	Total_Half_Centuries	Total_Fours	Total_Sixes
0	AFG	24502	19	133	2111	544
1	AUS	73633	94	430	6442	1224
2	BDESH	54023	52	295	5117	709
3	BMUDA	5575	2	20	536	112
4	CAN	11941	4	58	1136	165
5	ENG	62010	86	312	5731	905
6	HKG	4347	1	20	390	100
7	ICC	17459	36	98	1815	276
8	INDIA	92492	166	504	8967	1529
9	IRE	36248	49	175	3319	624
10	KENYA	15350	6	72	1384	205
11	NAM	1068	1	4	77	30
12	NEPAL	1053	1	5	104	13
13	NL	11912	8	62	1104	175
14	NZ	64210	84	339	5760	1316
15	OMAN	772	0	4	51	9
16	PAK	71938	89	402	6412	1094
17	PNG	5507	3	17	433	92
18	SA	69923	123	368	6407	1096
19	SCOT	20605	24	101	1931	268
20	SL	82740	109	450	7831	988
21	UAE	9014	5	45	881	146
22	USA	1473	0	7	106	24
23	WI	62945	79	299	5419	1571
24	ZIM	48319	32	253	4197	744

Group by country to get the understanding of the bowlers across all countries

SQL Query:

select sum(Wickets) as Total_Wicketss from bowling_data group by Player_Country select sum(Overs) as Total_Overss from bowling_data group by Player_Country

select sum(Maidens) as Total Maidenss from bowling data group by Player Country localhost:8888/notebooks/Downloads/Cricket_Analysis_Prediction.ipynb#

select sum(Four_Wicket_Hauls) as Total_Four_Wicket_Haulss from bowling_data group by
Player_Country

select sum(Five_Wicket_Hauls) as Total_Five_Wicket_Haulssfrom bowling_data group by
Player_Country

In [26]:

```
Total_Wicketss=bowling_data.groupby(['Player_Country'])['Wickets'].sum()
Total_Overss=bowling_data.groupby(['Player_Country'])['Overs'].sum()
Total_Maidenss=bowling_data.groupby(['Player_Country'])['Maidens'].sum()
Total_Four_Wicket_Haulss=bowling_data.groupby(['Player_Country'])['Four_Wicket_Hauls'].sum()
Total_Five_Wicket_Haulss=bowling_data.groupby(['Player_Country'])['Five_Wicket_Hauls'].sum()
```

SQL Query:

select sum(Economy)/count(Player_Country) as Average_Economy_Rates from bowling_data
group by Player_Country

select sum(Bowling_Strike_Rate)/count(Player_Country) as Average_Bowling_Strike_Rates
from bowling_data group by Player_Country

In [27]:

```
Average_Economy_Rates=bowling_data.groupby(['Player_Country'])['Economy']\
.agg(lambda x: x.astype(float).sum())/bowling_data.groupby(['Player_Country'])['Economy'].s

Average_Bowling_Strike_Rates=bowling_data.groupby(['Player_Country'])['Bowling_Strike_Rate'
.agg(lambda x: x.astype(float).sum())/bowling_data.groupby(['Player_Country'])['Bowling_Str
```

In [28]:

```
country_bowling_data=pd.DataFrame()
country_bowling_data['Total_Wickets']=Total_Wicketss
country_bowling_data['Total_Overs']=Total_Overss
country_bowling_data['Total_Maidens']=Total_Maidenss
country_bowling_data['Total_Four_Wicket_Hauls']=Total_Four_Wicket_Haulss
country_bowling_data['Total_Five_Wicket_Hauls']=Total_Five_Wicket_Haulss
country_bowling_data['Average_Economy_Rate']=Average_Economy_Rates
country_bowling_data['Average_Bowling_Strike_Rate']=Average_Bowling_Strike_Rates
```

In [29]:

```
country_bowling_data.reset_index(level=0, inplace=True)
```

View the Country wise bowling data

In [30]:

country_bowling_data

Out[30]:

	Player_Country	Total_Wickets	Total_Overs	Total_Maidens	Total_Four_Wicket_Hauls	Total_l
0	AFG	870	5360.9	304	24	,
1	AUS	2673	15877.4	780	75	
2	BDESH	1757	11914.8	572	50	
3	BMUDA	202	1398.5	80	5	
4	CAN	413	2870.1	173	12	
5	ENG	2243	14684.8	587	72	
6	HKG	172	974.6	60	8	
7	INDIA	2793	17907.5	814	75	
8	IRE	1015	6689.9	362	34	
9	KENYA	531	3609.7	240	13	
10	NAM	41	178.5	14	1	
11	NEPAL	49	236.2	16	3	
12	NL	441	2726.1	156	9	
13	NZ	2050	12884.9	656	62	
14	OMAN	39	226.5	15	2	
15	PAK	2149	14339.8	610	57	
16	PNG	191	1230.7	72	5	
17	SA	2202	13217.1	714	69	
18	SCOT	701	4572.3	244	20	
19	SL	2162	14369.4	625	49	
20	UAE	305	2007.7	80	6	
21	USA	83	381.6	34	3	
22	WI	1909	13264.1	568	55	
23	ZIM	1496	11210.3	567	31	
4						>

Visualizations

In [31]:

```
plt1=country_batting_data.plot(x="Player_Country", y="Total_Runs", kind='bar',title="Runs S
plt1.set_ylabel("Runs Scored")
```

Out[31]:

Text(0,0.5,'Runs Scored')

In [32]:

```
plt2=country_batting_data.plot(x="Player_Country", y="Total_Centuries", kind='bar',title="Country | plt2.set_ylabel("Centuries | Scored")
```

Out[32]:

Text(0,0.5,'Centuries Scored')

In [33]:

```
plt3=country_batting_data.plot(x="Player_Country", y="Total_Half_Centuries", kind='bar',tit
plt3.set_ylabel("Half Centuries Scored")
```

Out[33]:

Text(0,0.5, 'Half Centuries Scored')

In [34]:

```
plt.figure(figsize=(20,5))
Total_Fours=country_batting_data['Total_Fours']
Total_Runs=country_batting_data['Total_Runs']
Total_Sixes=country_batting_data['Total_Sixes']
Country=country_batting_data['Player_Country']
p1 = plt.bar(Country,Total_Fours)
plt.ylabel('Total Fours')
plt.title('Number of Fours Hit By Players of Each Country')
```

Out[34]:

Text(0.5,1,'Number of Fours Hit By Players of Each Country')

Number of Sixes scored by Players of each Country

In [35]:

```
fig = plt.figure(figsize=[15, 15])
ax = fig.add_subplot(111)
ax = ax.pie(Total_Sixes, labels=Country, labeldistance=1.02);
```


In [36]:

```
plt4=country_batting_data.plot(x="Player_Country", y="Average_Strike_Rates", kind='bar',tit
plt4.set_ylabel("Strike Rate")
```

Out[36]:

Text(0,0.5,'Strike Rate')

Get the Top 20 Batsman across all countries who played atleast 100 matches and is playing till 2019

SQL Query:

select top 20 * from batting_data where Matches>=100 and Played_Till=2019 order by
Average desc

In [37]:

Top_Twenty_Batsman=batting_data[(batting_data.Matches>=100)&(batting_data.Played_Till==2019
reset_index(drop=True)

In [38]:

Top_Twenty_Batsman

Out[38]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Not_Outs	Runs _.
0	V Kohli	INDIA	2008	2019	242	233	39	
1	JE Root	ENG	2013	2019	143	135	21	
2	MS Dhoni	INDIA	2005	2019	347	294	83	
3	HM Amla	SA	2008	2019	181	178	14	
4	RG Sharma	INDIA	2007	2019	221	214	32	
5	KS Williamson	NZ	2010	2019	149	142	14	
6	LRPL Taylor	NZ	2006	2019	228	212	37	
7	F du Plessis	SA	2011	2019	143	136	20	
8	DA Warner	AUS	2009	2019	116	114	5	
9	Q de Kock	SA	2013	2019	115	115	6	
10	S Dhawan	INDIA	2010	2019	133	131	7	
11	AD Mathews	SL	2008	2019	214	184	48	
12	MJ Guptill	NZ	2009	2019	179	176	19	
13	SPD Smith	AUS	2010	2019	118	104	12	
14	JC Buttler	ENG	2012	2019	142	117	23	
15	AJ Finch	AUS	2013	2019	119	115	2	
16	EJG Morgan	IRE	2006	2019	233	217	32	
17	DA Miller	SA	2010	2019	126	110	31	
18	JP Duminy	SA	2006	2019	194	174	40	
19	Shakib Al Hasan	BDESH	2006	2019	206	194	27	

 $local host: 8888/notebooks/Downloads/Cricket_Analysis_Prediction.ipynb\#$

In [39]:

plt5=Top_Twenty_Batsman.plot(x="Player_Name", y="Average", kind='bar',title="Top 20 Batsmar
plt5.set_ylabel("Average")

Out[39]:

Text(0,0.5,'Average')

In [40]:

```
plt5=country_bowling_data.plot(x="Player_Country", y="Total_Wickets", kind='bar',title="Wickets Taken")
```

Out[40]:

Text(0,0.5,'Wickets Taken')

In [41]:

```
plt6=country_bowling_data.plot(x="Player_Country", y="Average_Economy_Rate", kind='bar',tit
plt6.set_ylabel("Average_Economy_Rate")
```

Out[41]:

Text(0,0.5, 'Average_Economy_Rate')

In [42]:

```
plt6=country_bowling_data.plot(x="Player_Country", y="Total_Maidens", kind='bar',title="Mai
plt6.set_ylabel("Maidens Bowled")
```

Out[42]:

Text(0,0.5, 'Maidens Bowled')

In [43]:

```
plt7=country_bowling_data.plot(x="Player_Country", y="Total_Four_Wicket_Hauls", kind='bar',
plt7.set_ylabel("Number of Four Wickets Hauls")
```

Out[43]:

Text(0,0.5, 'Number of Four Wickets Hauls')

In [44]:

```
plt8=country_bowling_data.plot(x="Player_Country", y="Total_Five_Wicket_Hauls", kind='bar',
plt8.set_ylabel("Number of Five Wickets Hauls")
```

Out[44]:

Text(0,0.5,'Number of Five Wickets Hauls')

In [45]:

```
plt10=country_bowling_data.plot(x="Player_Country", y="Average_Bowling_Strike_Rate", kind='
plt10.set_ylabel("Average Bowling Strike Rate")
```

Out[45]:

Text(0,0.5,'Average Bowling Strike Rate')

In [46]:

```
plt.figure(figsize=(20,5))
Average_Bowling_Strike_Rates=country_bowling_data['Average_Economy_Rate']
Country=country_bowling_data['Player_Country']
p1 = plt.bar(Country,Average_Bowling_Strike_Rates)
plt.ylabel('Economy Rate')
plt.title('Economy Rates of bowlers by Each Country')
```

Out[46]:

Text(0.5,1,'Economy Rates of bowlers by Each Country')

Get the Top 20 Bowlers who played atleast 50 matches and is playing till 2019

SQL Query:

select top 20 * from bowling_data where Matches>=50 and Played_Till=2019 and Wickets>65 order by Bowling_Average asc

In [47]:

```
Top_Twenty_Bowlers=bowling_data[(bowling_data.Matches>=50)&(bowling_data.Played_Till==2019)
reset_index(drop=True)
```

In [48]:

Top_Twenty_Bowlers

Out[48]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Overs	Maidens
0	Rashid Khan	AFG	2015	2019	71	67	593.0	26
1	MA Starc	AUS	2010	2019	85	85	719.1	39
2	JJ Bumrah	INDIA	2016	2019	58	58	501.3	35
3	Mustafizur Rahman	BDESH	2015	2019	56	55	468.5	22
4	Kuldeep Yadav	INDIA	2017	2019	56	54	492.0	12
5	Imran Tahir	SA	2011	2019	107	104	923.3	38
6	Mohammed Shami	INDIA	2013	2019	73	72	618.1	39
7	TA Boult	NZ	2012	2019	89	89	814.0	58
8	DW Steyn	SA	2005	2019	125	124	1042.4	71
9	YS Chahal	INDIA	2016	2019	50	49	443.1	12
10	MJ Henry	NZ	2014	2019	52	50	450.3	27
11	PJ Cummins	AUS	2011	2019	58	58	505.3	30
12	K Rabada	SA	2015	2019	75	73	640.2	42
13	WB Rankin	IRE	2007	2019	73	71	600.0	41
14	Hasan Ali	PAK	2016	2019	53	51	424.4	14
15	Junaid Khan	PAK	2011	2019	76	76	600.1	33
16	Mohammad Amir	PAK	2009	2019	61	60	502.1	34
17	LE Plunkett	ENG	2005	2019	89	87	689.3	14
18	Dawlat Zadran	AFG	2011	2019	82	80	628.1	42
19	Shakib Al Hasan	BDESH	2006	2019	206	203	1752.5	83

Featurization

Check how the Is_Selected class label related with Average

In [49]:

%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

In [50]:

```
g=sns.FacetGrid(batting_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Average") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Batting Average')
plt.show();
```


We can see that the players whose Average is greater than 30 are having positive class label (1)

In [51]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [52]:

```
g=sns.FacetGrid(batting_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Played_Till") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Played Till')
plt.show();
```


We can see that the players who are playing from 2017 are having positive class label (1)

In [53]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [54]:

```
g=sns.FacetGrid(batting_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Matches") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Matches')
plt.show();
```


We can see that the players who played more than 50 matches are having positive class label (1)

So, we can use the above three features Matches, Played_Till, Average to analyse the class label

In [55]:

```
sns.set_style("whitegrid");
sns.pairplot(batting_data, hue="Is_Selected", size=3,vars=['Matches','Played_Till','Average
plt.show()
```


SQL Query:

select * from batting_data where Matches>=50 and Played_Till in ('2019','2018','2017')

In [56]:

Batsman_Latest=batting_data[(batting_data.Matches>=50)&(batting_data.Played_Till.isin(['201

In [57]:

Batsman_Latest

Out[57]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Not_Outs	Run
0	V Kohli	INDIA	2008	2019	242	233	39	
1	MS Dhoni	INDIA	2005	2019	347	294	83	
2	AB de Villiers	SA	2005	2018	228	218	39	
3	RG Sharma	INDIA	2007	2019	221	214	32	
4	LRPL Taylor	NZ	2006	2019	228	212	37	
147	Junaid Khan	PAK	2011	2019	76	31	17	
148	MA Wood	ENG	2015	2019	51	17	10	
149	CB Mpofu	ZIM	2005	2019	80	38	20	
150	YS Chahal	INDIA	2016	2019	50	8	3	
151	JJ Bumrah	INDIA	2016	2019	58	13	8	

152 rows × 18 columns

In [58]:

%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

In [59]:

```
g=sns.FacetGrid(Batsman_Latest, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Average") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Batting Average')
plt.show();
```


After filtering the data with the above found features, we can see a clear separation of class labels with Average at 30

In [60]:

```
sns.set_style("whitegrid");
sns.pairplot(Batsman_Latest, hue="Is_Selected", size=3,vars=['Matches','Played_Till','Avera
plt.show()
```


By observing the above pairplots, we can clearly classify the output class label

Now Lets see the features for Bowling Data

In [61]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [62]:

```
g=sns.FacetGrid(bowling_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Wickets") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Wickets')
plt.show();
```


We can see that the bowlers who took more than 60 wickets are having positive class (1)

In [63]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [64]:

```
g=sns.FacetGrid(bowling_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Played_Till") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Played Till')
plt.show();
```


We can see that the players who are playing since 2017 are having positive class (1)

In [65]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

In [66]:

```
g=sns.FacetGrid(bowling_data, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Matches") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Matches')
plt.show();
```


We can see players who played atleast 50 matches are having positive class label (1)

So, we can use the above three features Matches, Played_Till, Wickets to analyse the class label

In [67]:

```
sns.set_style("whitegrid");
sns.pairplot(bowling_data, hue="Is_Selected", size=3,vars=['Matches','Played_Till','Wickets
plt.show()
```


We can filter the data based on above feature values

SQL Query:

select * from bowling_data where Matches>=50 and Played_Till in ('2019','2018','2017')

In [68]:

Bowlers_Latest=bowling_data[(bowling_data.Matches>=50)&(bowling_data.Played_Till.isin(['201

In [69]:

Bowlers_Latest

Out[69]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Overs	Maiden		
0	Shakib Al Hasan	BDESH	2006	2019	206	203	1752.5	8		
1	Mashrafe Mortaza	BDESH	2005	2019	203	203	1680.5	11		
2	KMDN Kulasekara	SL	2006	2017	178	175	1337.1	10		
3	DW Steyn	SA	2005	2019	125	124	1042.4	7		
4	M Morkel	SA	2007	2018	117	114	960.0	4		
105	A Balbirnie	IRE	2010	2019	64	3	10.0			
106	F du Plessis	SA	2011	2019	143	11	32.0			
107	CK Kapugedera	SL	2006	2017	102	10	44.0			
108	KJ Coetzer	SCOT	2008	2019	59	7	29.5			
109	MS Dhoni	INDIA	2005	2019	347	2	6.0			
110 rows × 16 columns										

In [70]:

```
g=sns.FacetGrid(Bowlers_Latest, hue="Is_Selected", size=5) \
    .map(sns.distplot, "Wickets") \
    .add_legend();

g.fig.suptitle('Plot of Is_Selected with Wickets')
plt.show();
```


After filtering the data with the above found features, we can see a clear separation of class labels with Wickets at 50

In [71]:

```
sns.set_style("whitegrid");
sns.pairplot(Bowlers_Latest, hue="Is_Selected", size=3, vars=['Matches','Played_Till','Wicket]
plt.show()
```


By observing the above pairplots, we can clearly classify the output class label

Modeling

We can use classfication models like

Logistic Regression

K-Nearest Neighbor

Naive Bayes

Support Vector Machine

Random Forest

We use the above models and check which model is giving us better results

Now Let's Build Models on Batting Data

In [72]:

Batsman_Latest

Out[72]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Not_Outs	Run
0	V Kohli	INDIA	2008	2019	242	233	39	
1	MS Dhoni	INDIA	2005	2019	347	294	83	
2	AB de Villiers	SA	2005	2018	228	218	39	
3	RG Sharma	INDIA	2007	2019	221	214	32	
4	LRPL Taylor	NZ	2006	2019	228	212	37	
147	Junaid Khan	PAK	2011	2019	76	31	17	
148	MA Wood	ENG	2015	2019	51	17	10	
149	CB Mpofu	ZIM	2005	2019	80	38	20	
150	YS Chahal	INDIA	2016	2019	50	8	3	
151	JJ Bumrah	INDIA	2016	2019	58	13	8	

152 rows × 18 columns

In [73]:

```
Y_Bat=batting_data['Is_Selected']
batting_data.drop(['Player_Name','Player_Country','Played_From','Innings','Not_Outs','Duck_
```

In [74]:

```
print(batting_data.shape)
Y_Bat.shape
```

(1306, 11)

Out[74]:

(1306,)

In [75]:

```
from sklearn.model_selection import train_test_split

X_train_bat, X_test_bat, y_train_bat, y_test_bat = train_test_split(batting_data, Y_Bat, test_
X_train_bat, X_cv_bat, y_train_bat, y_cv_bat = train_test_split(X_train_bat, y_train_bat, test_split(X_train_bat, te
```

```
In [76]:
print("Number of data points in train data :",X_train_bat.shape)
print("Number of data points in CV data :",X_cv_bat.shape)
print("Number of data points in test data :",X_test_bat.shape)
Number of data points in train data: (835, 11)
Number of data points in CV data: (209, 11)
Number of data points in test data: (262, 11)
In [77]:
def find_best_threshold(threshould, fpr, tpr):
    t = threshould[np.argmax(tpr*(1-fpr))]
    print("the maximum value of tpr*(1-fpr)", max(tpr*(1-fpr)), "for threshold", np.round(t
    return t
def predict_with_best_t(proba, threshould):
    predictions = []
    for i in proba:
        if i>=threshould:
            predictions.append(1)
        else:
```

Logistic Regression

return predictions

Tune to get the best HyperParameter Value

predictions.append(0)

In [78]:

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.metrics import log loss
import matplotlib.pyplot as plt
train_auc = []
cv_auc = []
log_error_array=[]
for i in alpha:
    clf = LogisticRegression(penalty='12',C=i,class_weight='balanced')
    clf.fit(X_train_bat, y_train_bat)
    y_train_pred=clf.predict_proba(X_train_bat)[:,1]
    y cv pred=clf.predict proba(X cv bat)[:,1]
    train_auc.append(roc_auc_score(y_train_bat,y_train_pred))
    cv_auc.append(roc_auc_score(y_cv_bat, y_cv_pred))
    y_test_pred = clf.predict_proba(X_test_bat)
    log_error_array.append(log_loss(y_test_bat, y_test_pred, labels=clf.classes_, eps=1e-15
    print('For values of alpha = ', i, ",The log loss is:",log_loss(y_test_bat, y_test_pred
best_alpha = np.argmin(log_error_array)
best_alpha_value=alpha[best_alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
For values of alpha = 0.0001 , The log loss is: 0.3537812744748513
For values of alpha = 0.001 ,The log loss is: 0.347013017385422
For values of alpha = 0.01 ,The log loss is: 0.35444320803681184
For values of alpha = 0.1 ,The log loss is: 0.3564065851104026
For values of alpha = 1 ,The log loss is: 0.35867899976506906
For values of alpha = 10 ,The log loss is: 0.3588866389397202
For values of alpha = 100 , The log loss is: 0.3588791262805762
For values of alpha = 1000 , The log loss is: 0.35889378448099557
Value of best Hyper Parameter is 0.001
```

```
Cross Validation Error for each alpha
           10, 9,(3500) 0.359)
                                                                            (1000, 0.359)
0.358
          (0.1, 0.356)
0.356
         (0.01, 0.354)
```

In [79]:

```
clf = LogisticRegression(C=best_alpha_value,penalty='12',class_weight='balanced')
clf.fit(X_train_bat, y_train_bat)
y_train_pred = clf.predict(X_train_bat)
y_test_pred = clf.predict(X_test_bat)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bat, clf.predict_proba(X_train_bat)
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bat, clf.predict_proba(X_test_bat)[:,1
plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t)))
```



```
the maximum value of tpr*(1-fpr) 0.9041401704776079 for threshold 0.517
Train confusion matrix
[[729 49]
   2 55]]
Test confusion matrix
[[224 25]
 [ 0 13]]
```

In [80]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[80]:

<matplotlib.axes._subplots.AxesSubplot at 0xa01543e208>

In [81]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t))
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[81]:

<matplotlib.axes._subplots.AxesSubplot at 0xa013355400>

Lets Test with a Query Point for Logistic Regression

In [82]:

```
X_Query_Point_Pos=[2019,120,9564,102,42,11000,84.5,29,50,250,125]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the Logistic Regression classifier is',y_train_pred_Query_p)
```

Predicted Value by the Logistic Regression classifier is [1]

In [83]:

```
X_Query_Point_Neg=[2010,15,800,20,12,1000,44.5,0,0,6,3]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the Logistic Regression classifier is',y_train_pred_Query_n)
```

Predicted Value by the Logistic Regression classifier is [0]

K Nearest Neighbor

In [84]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_auc_score
train_auc = []
cv auc = []
K = [1, 5, 10, 15, 21, 31, 41]
for i in K:
    clf = KNeighborsClassifier(n neighbors=i)
    clf.fit(X_train_bat, y_train_bat)
    y_train_pred=clf.predict_proba(X_train_bat)[:,1]
    y_cv_pred=clf.predict_proba(X_cv_bat)[:,1]
    train_auc.append(roc_auc_score(y_train_bat,y_train_pred))
    cv_auc.append(roc_auc_score(y_cv_bat, y_cv_pred))
    print('For values of K = ', i, ",The auc score is:",roc_auc_score(y_train_bat,y_train_p
best_k = np.argmax(train_auc)
best_k_value=K[best_k]
print("\nValue of best Hyper Parameter is",best k value)
fig, ax = plt.subplots()
ax.plot(K, train_auc,c='g')
for i, txt in enumerate(np.round(train_auc,3)):
    ax.annotate((K[i],np.round(txt,3)), (K[i],train_auc[i]))
plt.title("Cross Validation Score for each K")
plt.xlabel("K:Hyper Parameter")
plt.ylabel("Area Under Curve")
plt.grid()
plt.show()
For values of K = 1, The auc score is: 1.0
For values of K = 5, The auc score is: 0.9819713164659721
For values of K = 10, The auc score is: 0.9787804988048527
For values of K = 15 ,The auc score is: 0.9782731249718126
For values of K = 21, The auc score is: 0.978927073467731
For values of K = 31, The auc score is: 0.9768186533170973
For values of K = 41 ,The auc score is: 0.9741464844630857
Value of best Hyper Parameter is 1
```


In [85]:

```
clf = KNeighborsClassifier(n neighbors=5)
clf.fit(X_train_bat, y_train_bat)
y_train_pred = clf.predict(X_train bat)
y_test_pred = clf.predict(X_test_bat)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bat, clf.predict_proba(X_train_bat)
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bat, clf.predict_proba(X_test_bat)[:,1
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t)))
```



```
the maximum value of tpr*(1-fpr) 0.9331619537275064 for threshold 0.2
Train confusion matrix
[[761 17]
[ 17 40]]
Test confusion matrix
[[237 12]
[ 4 9]]
```

In [86]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[86]:

<matplotlib.axes._subplots.AxesSubplot at 0xa013230400>

In [87]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t))
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[87]:

<matplotlib.axes._subplots.AxesSubplot at 0xa0131cdf28>

Lets Test with a Query Point for KNN Classifier

In [88]:

```
X_Query_Point_Pos=[2019,120,9564,102,42,11000,84.5,29,50,250,125]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the KNN Classifier is',y_train_pred_Query_p)
```

Predicted Value by the KNN Classifier is [1]

In [89]:

```
X_Query_Point_Neg=[2010,15,800,20,12,1000,44.5,0,0,6,3]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the KNN Classifier is',y_train_pred_Query_n)
```

Predicted Value by the KNN Classifier is [0]

Naive Bayes

In [90]:

```
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import roc auc score
train_auc = []
cv auc = []
alpha = [0.0001,0.001,0.01,0.1,1,10,100,1000]
for i in alpha:
               clf = MultinomialNB(alpha=i,class_prior=[0.5,0.5])
               clf.fit(X train bat, y train bat)
               y train_pred=clf.predict_proba(X_train_bat)[:,1]
               y_cv_pred=clf.predict_proba(X_cv_bat)[:,1]
               train_auc.append(roc_auc_score(y_train_bat,y_train_pred))
               cv_auc.append(roc_auc_score(y_cv_bat, y_cv_pred))
                print('For values of alpha = ', i, ", The auc score is:", roc_auc_score(y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_train_bat,y_trai
best_alpha = np.argmax(train_auc)
best_alpha_value=alpha[best_alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
```

```
For values of alpha = 0.0001 ,The auc score is: 0.9383258918504488

For values of alpha = 0.001 ,The auc score is: 0.9383258918504488

For values of alpha = 0.01 ,The auc score is: 0.9383258918504488

For values of alpha = 0.1 ,The auc score is: 0.9383258918504488

For values of alpha = 1 ,The auc score is: 0.9383258918504488

For values of alpha = 100 ,The auc score is: 0.9383258918504488

For values of alpha = 1000 ,The auc score is: 0.9383258918504488

For values of alpha = 1000 ,The auc score is: 0.9383484417985839
```

Value of best Hyper Parameter is 1000

```
In [91]:
```

```
clf = MultinomialNB(alpha=best alpha value,class prior=[0.5,0.5])
clf.fit(X_train_bat, y_train_bat)
y_train_pred = clf.predict(X_train bat)
y_test_pred = clf.predict(X_test_bat)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bat, clf.predict_proba(X_train_bat)
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bat, clf.predict_proba(X_test_bat)[:,1
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion matrix(y train bat, predict with best t(y train pred, best t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t)))
```



```
the maximum value of tpr*(1-fpr) 0.8511703423082126 for threshold 0.0 Train confusion matrix
[[716 62]
[ 5 52]]
Test confusion matrix
[[223 26]
[ 0 13]]
```

In [92]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[92]:

<matplotlib.axes._subplots.AxesSubplot at 0xa0131c1f98>

In [93]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t))
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[93]:

<matplotlib.axes._subplots.AxesSubplot at 0xa012def6d8>

Lets Test with a Query Point for Naive Bayes

In [94]:

```
X_Query_Point_Pos=[2019,120,9564,102,42,11000,84.5,29,50,250,125]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the Naive Bayes classifier is',y_train_pred_Query_p)
```

Predicted Value by the Naive Bayes classifier is [1]

In [95]:

```
X_Query_Point_Neg=[2010,15,800,20,12,1000,44.5,0,0,6,3]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the Naive Bayes classifier is',y_train_pred_Query_n)
```

Predicted Value by the Naive Bayes classifier is [0]

Support Vector Machine

In [96]:

```
from sklearn.linear model import SGDClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import roc auc score
import matplotlib.pyplot as plt
train_auc = []
cv_auc = []
log_error_array=[]
for i in alpha:
    clf = SGDClassifier(loss='hinge',penalty='12',alpha=i,class_weight='balanced')
    clf.fit(X_train_bat,y_train_bat)
   calibrated = CalibratedClassifierCV(clf,method='sigmoid',cv='prefit')
   calibrated.fit(X_train_bat,y_train_bat)
   y_train_pred=calibrated.predict_proba(X_train_bat)[:,1]
   y_cv_pred=calibrated.predict_proba(X_cv_bat)[:,1]
   train_auc.append(roc_auc_score(y_train_bat,y_train_pred))
   cv_auc.append(roc_auc_score(y_cv_bat, y_cv_pred))
best_alpha = np.argmax(train_auc)
best alpha value=alpha[best alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
plt.plot(alpha, train_auc, label='Train AUC')
plt.plot(alpha, cv auc, label='CV AUC')
plt.xscale('log')
plt.legend()
plt.xlabel("Alpha: Hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
```

Value of best Hyper Parameter is 1

In [97]:

```
from sklearn.metrics import roc curve, auc
clf = SGDClassifier(loss='hinge',alpha=10,penalty='12',class_weight='balanced')
clf.fit(X_train_bat, y_train_bat)
calibrated = CalibratedClassifierCV(clf,method='sigmoid',cv='prefit')
calibrated.fit(X_train_bat,y_train_bat)
y_train_pred = calibrated.predict_proba(X_train_bat)[:,1]
y test pred = calibrated.predict proba(X test bat)[:,1]
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bat, calibrated.predict_proba(X_tra
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bat, calibrated.predict_proba(X_test_t
plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t)))
```



```
[[225 24]
[ 0 13]]
```

In [98]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bat, predict_with_best_t(y_train_pred, best_t
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[98]:

<matplotlib.axes._subplots.AxesSubplot at 0xa015590a90>

In [99]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bat, predict_with_best_t(y_test_pred, best_t))
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[99]:

<matplotlib.axes. subplots.AxesSubplot at 0xa013287860>

Lets Test with a Query Point for Support Vector Machine

In [100]:

```
X_Query_Point_Pos=[2019,120,9564,102,42,11000,84.5,29,50,250,125]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the SVM classifier is',y_train_pred_Query_p)
```

Predicted Value by the SVM classifier is [1]

In [101]:

```
X_Query_Point_Neg=[2010,15,800,20,12,1000,44.5,0,0,6,3]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the SVM classifier is',y_train_pred_Query_n)
```

Predicted Value by the SVM classifier is [0]

Random Forest

In [102]:

```
from sklearn.ensemble import RandomForestClassifier
estimators = [10,50,100,250,450]
train_scores = []
test_scores = []
for i in estimators:
    clf = RandomForestClassifier(bootstrap=False, class_weight=None, criterion='gini',
            max_depth=4, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min weight fraction leaf=0.0, n estimators=i,verbose=0,warm start=False)
    clf.fit(X_train_bat,y_train_bat)
    train_sc = roc_auc_score(y_train_bat,clf.predict(X_train bat))
    test_sc = roc_auc_score(y_test_bat,clf.predict(X_test_bat))
    test_scores.append(test_sc)
    train_scores.append(train_sc)
    print('Estimators = ',i,'Train Score',train_sc,'test Score',test_sc)
plt.plot(estimators,train_scores,label='Train Score')
plt.plot(estimators,test_scores,label='Test Score')
plt.xlabel('Estimators')
plt.ylabel('Score')
plt.title('Estimators vs score at depth of 4')
```

```
Estimators = 10 Train Score 0.9824561403508771 test Score 0.961538461538461 6

Estimators = 50 Train Score 0.9473684210526316 test Score 0.961538461538461 6

Estimators = 100 Train Score 0.956140350877193 test Score 0.961538461538461 6

Estimators = 250 Train Score 0.956140350877193 test Score 0.961538461538461 6

Estimators = 450 Train Score 0.9473684210526316 test Score 0.96153846153846 16
```

Out[102]:

Text(0.5,1, 'Estimators vs score at depth of 4')

In [103]:

```
features = batting_data.columns
importances = clf.feature_importances_
indices = (np.argsort(importances))[-25:]
plt.figure(figsize=(10,12))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='r', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


Lets Test with a Query Point for Random Forest

In [104]:

```
X_Query_Point_Pos=[2019,120,9564,102,42,11000,84.5,29,50,250,125]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the Random Forest classifier is',y_train_pred_Query_p)
```

Predicted Value by the Random Forest classifier is [1]

In [105]:

```
X_Query_Point_Neg=[2010,15,800,20,12,1000,44.5,0,0,6,3]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the Random Forest classifier is',y_train_pred_Query_n)
```

Predicted Value by the Random Forest classifier is [0]

Now Let's Build Models for Bowling Data

In [106]:

bowling_data

Out[106]:

	Player_Name	Player_Country	Played_From	Played_Till	Matches	Innings	Overs	Maiden
0	Shakib Al Hasan	BDESH	2006	2019	206	203	1752.5	8
1	Mashrafe Mortaza	BDESH	2005	2019	203	203	1680.5	11
2	Shahid Afridi	PAK	2005	2015	207	201	1729.4	3
3	MG Johnson	AUS	2005	2015	153	150	1248.1	7
4	B Lee	AUS	2005	2012	130	129	1101.3	8
898	CG Williams	NAM	2019	2019	5	4	21.0	
899	JW Wilson	NZ	2005	2005	2	2	15.0	
900	DJ Worrall	AUS	2016	2016	3	3	26.2	
901	J Yadav	INDIA	2016	2016	1	1	4.0	
902	Zain Abbas	HKG	2008	2008	1	1	6.0	

902 rows × 16 columns

In [107]:

```
Y_Bowl=bowling_data['Is_Selected']
bowling_data.drop(['Player_Name','Player_Country','Played_From','Innings','Runs_Given','Is_
```

```
In [108]:
```

```
print(bowling_data.shape)
Y_Bowl.shape

(902, 10)
Out[108]:
  (902,)
In [109]:
```

```
from sklearn.model_selection import train_test_split

X_train_bowl, X_test_bowl, y_train_bowl, y_test_bowl = train_test_split(bowling_data,Y_Bowl,
    X_train_bowl, X_cv_bowl, y_train_bowl, y_cv_bowl = train_test_split(X_train_bowl, y_train_b
```

In [110]:

```
print("Number of data points in train data :",X_train_bowl.shape)
print("Number of data points in CV data :",X_cv_bowl.shape)
print("Number of data points in test data :",X_test_bowl.shape)
```

```
Number of data points in train data : (576, 10)
Number of data points in CV data : (145, 10)
Number of data points in test data : (181, 10)
```

Logistic Regression

Tune to get the best HyperParameter Value

In [111]:

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.metrics import log loss
train_auc = []
cv_auc = []
log_error_array=[]
alpha = [0.0001,0.001,0.01,0.1,1,10,100,1000]
for i in alpha:
    clf = LogisticRegression(penalty='12',C=i,class_weight='balanced')
    clf.fit(X train bowl, y train bowl)
   y_train_pred=clf.predict_proba(X_train_bowl)[:,1]
    y_cv_pred=clf.predict_proba(X_cv_bowl)[:,1]
    train_auc.append(roc_auc_score(y_train_bowl,y_train_pred))
    cv_auc.append(roc_auc_score(y_cv_bowl, y_cv_pred))
    y_test_pred = clf.predict_proba(X_test_bowl)
    log_error_array.append(log_loss(y_test_bowl, y_test_pred, labels=clf.classes_, eps=1e-1
    print('For values of alpha = ', i, ",The log loss is:",log_loss(y_test_bowl, y_test_pre
best alpha = np.argmin(log error array)
best_alpha_value=alpha[best_alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
For values of alpha = 0.0001 , The log loss is: 0.44034607359268496
For values of alpha = 0.001 ,The log loss is: 0.44774109507542964
For values of alpha = 0.01 ,The log loss is: 0.4658448840345075
```

```
For values of alpha = 0.0001 ,The log loss is: 0.44034607359268496

For values of alpha = 0.001 ,The log loss is: 0.44774109507542964

For values of alpha = 0.01 ,The log loss is: 0.4658448840345075

For values of alpha = 0.01 ,The log loss is: 0.4658448840345075

For values of alpha = 1 ,The log loss is: 0.5085079287056263

For values of alpha = 10 ,The log loss is: 0.5096692413920616

For values of alpha = 1000 ,The log loss is: 0.5110625050040631
```

localhost:8888/notebooks/Downloads/Cricket_Analysis_Prediction.ipynb#

Value of best Hyper Parameter is 0.0001

In [112]:

```
clf = LogisticRegression(C=best alpha value,penalty='12',class weight='balanced')
clf.fit(X_train_bowl, y_train_bowl)
y_train_pred = clf.predict(X_train bowl)
y_test_pred = clf.predict(X_test bowl)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bowl, clf.predict_proba(X_train_bowl
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bowl, clf.predict_proba(X_test_bowl)[:
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)))
```


In [113]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[113]:

<matplotlib.axes._subplots.AxesSubplot at 0xa014b24128>

In [114]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[114]:

<matplotlib.axes._subplots.AxesSubplot at 0xa01356ff28>

Lets Test with a Query Point for Logistic Regression

In [115]:

```
X_Query_Point_Pos=[2019,120,1500,50,250,24.5,4.45,30.3,7,3]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the Logistic Regression classifier is',y_train_pred_Query_p)
```

Predicted Value by the Logistic Regression classifier is [1]

In [116]:

```
X_Query_Point_Neg=[2014,40,100,2,45,44.5,6.45,50.3,0,0]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the Logistic Regression classifier is',y_train_pred_Query_n)
```

Predicted Value by the Logistic Regression classifier is [0]

K Nearest Neighbor

In [117]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_auc_score
train_auc = []
cv auc = []
K = [1, 5, 10, 15, 21, 31, 41]
for i in K:
    clf = KNeighborsClassifier(n neighbors=i)
    clf.fit(X_train_bowl, y_train_bowl)
    y_train_pred=clf.predict_proba(X_train_bowl)[:,1]
    y_cv_pred=clf.predict_proba(X_cv_bowl)[:,1]
    train_auc.append(roc_auc_score(y_train_bowl,y_train_pred))
    cv_auc.append(roc_auc_score(y_cv_bowl, y_cv_pred))
    print('For values of K = ', i, ",The auc score is:",roc_auc_score(y_train_bowl,y_train_
best_k = np.argmax(train_auc)
best_k_value=K[best_k]
print("\nValue of best Hyper Parameter is",best k value)
fig, ax = plt.subplots()
ax.plot(K, train_auc,c='g')
for i, txt in enumerate(np.round(train_auc,3)):
    ax.annotate((K[i],np.round(txt,3)), (K[i],train_auc[i]))
plt.grid()
plt.title("Cross Validation Score for each K")
plt.xlabel("K:Hyper Parameter")
plt.ylabel("Area Under Curve")
plt.show()
For values of K = 1, The auc score is: 1.0
For values of K = 5 ,The auc score is: 0.9815447710184553
For values of K = 10 ,The auc score is: 0.9782552973342447
For values of K = 15 ,The auc score is: 0.9782125768967874
For values of K = 21 ,The auc score is: 0.9709928229665072
For values of K = 31, The auc score is: 0.9700956937799043
For values of K = 41 ,The auc score is: 0.9662935748462064
```

Value of best Hyper Parameter is 1

In [118]:

```
clf = KNeighborsClassifier(n neighbors=best k value)
clf.fit(X_train_bowl, y_train_bowl)
y_train_pred = clf.predict(X_train bowl)
y_test_pred = clf.predict(X_test_bowl)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bowl, clf.predict_proba(X_train_bowl
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bowl, clf.predict_proba(X_test_bowl)[:
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)))
```



```
the maximum value of tpr*(1-fpr) 1.0 for threshold 1.0 Train confusion matrix
[[532 0]
  [ 0 44]]
Test confusion matrix
[[166 8]
  [ 0 7]]
```

In [119]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[119]:

<matplotlib.axes._subplots.AxesSubplot at 0xa0135989b0>

In [120]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[120]:

<matplotlib.axes._subplots.AxesSubplot at 0xa012e67080>

Lets Test with a Query Point for KNN Classifier

In [121]:

```
X_Query_Point_Pos=[2019,120,1500,50,250,24.5,4.45,30.3,7,3]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the KNN Classifier is',y_train_pred_Query_p)
```

Predicted Value by the KNN Classifier is [1]

In [122]:

```
X_Query_Point_Neg=[2014,40,100,2,45,44.5,6.45,50.3,0,0]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the KNN Classifier is',y_train_pred_Query_n)
```

Predicted Value by the KNN Classifier is [0]

Naive Bayes

In [123]:

```
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import roc auc score
train_auc = []
cv auc = []
alpha = [0.0001,0.001,0.01,0.1,1,10,100,1000]
for i in alpha:
    clf = MultinomialNB(alpha=i,class_prior=[0.5,0.5])
    clf.fit(X train bowl, y train bowl)
    y train pred=clf.predict proba(X train bowl)[:,1]
   y_cv_pred=clf.predict_proba(X_cv_bowl)[:,1]
    train_auc.append(roc_auc_score(y_train_bowl,y_train_pred))
    cv_auc.append(roc_auc_score(y_cv_bowl, y_cv_pred))
    print('For values of alpha = ', i, ", The auc score is:", roc_auc_score(y_train_bowl, y_tr
best_alpha = np.argmax(train_auc)
best_alpha_value=alpha[best_alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
```

```
For values of alpha = 0.0001 ,The auc score is: 0.9473684210526316

For values of alpha = 0.001 ,The auc score is: 0.9473684210526316

For values of alpha = 0.01 ,The auc score is: 0.9473684210526316

For values of alpha = 1 ,The auc score is: 0.9473684210526316

For values of alpha = 1 ,The auc score is: 0.9473684210526316

For values of alpha = 100 ,The auc score is: 0.9473684210526316

For values of alpha = 1000 ,The auc score is: 0.9473684210526316

For values of alpha = 1000 ,The auc score is: 0.9576213260423787
```

Value of best Hyper Parameter is 1000

In [124]:

```
clf = MultinomialNB(alpha=best alpha value,class prior=[0.5,0.5])
clf.fit(X_train_bowl, y_train_bowl)
y_train_pred = clf.predict(X_train bowl)
y_test_pred = clf.predict(X_test bowl)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bowl, clf.predict_proba(X_train_bowl
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bowl, clf.predict_proba(X_test_bowl)[:
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)))
```



```
the maximum value of tpr*(1-fpr) 0.9135338345864662 for threshold 0.991
Train confusion matrix
[[484 48]
        [ 0 44]]
Test confusion matrix
[[150 24]
        [ 0 7]]
```

In [125]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_
df_cm.columns = ['Predicted No','Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[125]:

<matplotlib.axes._subplots.AxesSubplot at 0xa0148b2f60>

In [126]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[126]:

<matplotlib.axes._subplots.AxesSubplot at 0xa0130072b0>

Lets Test with a Query Point for Naive Bayes

In [127]:

```
X_Query_Point_Pos=[2019,120,1500,50,250,24.5,4.45,30.3,7,3]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
y_train_pred_Query_p
print('Predicted Value by the Naive Bayes classifier is',y_train_pred_Query_p)
```

Predicted Value by the Naive Bayes classifier is [1]

In [128]:

```
X_Query_Point_Neg=[2014,40,100,2,45,44.5,6.45,50.3,0,0]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
y_train_pred_Query_n
print('Predicted Value by the Naive Bayes classifier is',y_train_pred_Query_n)
```

Predicted Value by the Naive Bayes classifier is [0]

Support Vector Machine

In [129]:

```
from sklearn.linear model import SGDClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
train_auc = []
cv_auc = []
log_error_array=[]
for i in alpha:
    clf = SGDClassifier(loss='hinge',penalty='12',alpha=i,class_weight='balanced')
    clf.fit(X_train_bowl,y_train_bowl)
   calibrated = CalibratedClassifierCV(clf,method='sigmoid',cv='prefit')
   calibrated.fit(X_train_bowl,y_train_bowl)
   y_train_pred=calibrated.predict_proba(X_train_bowl)[:,1]
   y_cv_pred=calibrated.predict_proba(X_cv_bowl)[:,1]
   train_auc.append(roc_auc_score(y_train_bowl,y_train_pred))
   cv_auc.append(roc_auc_score(y_cv_bowl, y_cv_pred))
best_alpha = np.argmax(train_auc)
best_alpha_value=alpha[best_alpha]
print("\nValue of best Hyper Parameter is",best_alpha_value)
plt.plot(alpha, train_auc, label='Train AUC')
plt.plot(alpha, cv auc, label='CV AUC')
plt.xscale('log')
plt.legend()
plt.xlabel("Alpha: Hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
```

Value of best Hyper Parameter is 1

In [130]:

```
from sklearn.metrics import roc curve, auc
clf = SGDClassifier(loss='hinge',alpha=10,penalty='12',class_weight='balanced')
clf.fit(X_train_bowl, y_train_bowl)
calibrated = CalibratedClassifierCV(clf,method='sigmoid',cv='prefit')
calibrated.fit(X_train_bowl,y_train_bowl)
y_train_pred = calibrated.predict_proba(X_train_bowl)[:,1]
y test pred = calibrated.predict proba(X test bowl)[:,1]
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train_bowl, calibrated.predict_proba(X_tr
test_fpr, test_tpr, te_thresholds = roc_curve(y_test_bowl, calibrated.predict_proba(X_test_
plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr)))
plt.plot(test fpr, test tpr, label="test AUC ="+str(auc(test fpr, test tpr)))
plt.legend()
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.show()
print("="*100)
from sklearn.metrics import confusion matrix
best_t = find_best_threshold(tr_thresholds, train_fpr, train_tpr)
print("Train confusion matrix")
print(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_t)))
print("Test confusion matrix")
print(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)))
```



```
[[150 24]
[ 0 7]]
```

In [131]:

```
import seaborn as sns
df_cm = pd.DataFrame(confusion_matrix(y_train_bowl, predict_with_best_t(y_train_pred, best_
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[131]:

<matplotlib.axes._subplots.AxesSubplot at 0xa013406ba8>

In [132]:

```
df_cm = pd.DataFrame(confusion_matrix(y_test_bowl, predict_with_best_t(y_test_pred, best_t)
df_cm.columns = ['Predicted No', 'Predicted Yes']
df_cm = df_cm.rename({0: 'Actual No', 1: 'Actual Yes'})
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Out[132]:

<matplotlib.axes. subplots.AxesSubplot at 0xa0134dad30>

Lets Test with a Query Point for Support Vector Machine

In [133]:

```
X_Query_Point_Pos=[2019,120,1500,50,250,24.5,4.45,30.3,7,3]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the SVM classifier is',y_train_pred_Query_p)
```

Predicted Value by the SVM classifier is [1]

In [134]:

```
X_Query_Point_Neg=[2014,40,100,2,45,44.5,6.45,50.3,0,0]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the SVM classifier is',y_train_pred_Query_n)
```

Predicted Value by the SVM classifier is [0]

Random Forest

In [135]:

```
from sklearn.ensemble import RandomForestClassifier
estimators = [10,50,100,250,450]
train_scores = []
test_scores = []
for i in estimators:
    clf = RandomForestClassifier(bootstrap=False, class_weight=None, criterion='gini',
            max_depth=4, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min weight fraction leaf=0.0, n estimators=i,verbose=0,warm start=False)
    clf.fit(X_train_bowl,y_train_bowl)
    train_sc = roc_auc_score(y_train_bowl,clf.predict(X_train_bowl))
    test_sc = roc_auc_score(y_test_bowl,clf.predict(X_test_bowl))
    test_scores.append(test_sc)
    train_scores.append(train_sc)
    print('Estimators = ',i,'Train Score',train_sc,'test Score',test_sc)
plt.plot(estimators,train_scores,label='Train Score')
plt.plot(estimators,test_scores,label='Test Score')
plt.xlabel('Estimators')
plt.ylabel('Score')
plt.title('Estimators vs score at depth of 4')
```

```
Estimators = 10 Train Score 1.0 test Score 1.0
Estimators = 50 Train Score 1.0 test Score 1.0
Estimators = 100 Train Score 1.0 test Score 1.0
Estimators = 250 Train Score 1.0 test Score 1.0
Estimators = 450 Train Score 1.0 test Score 1.0
```

Out[135]:

Text(0.5,1, 'Estimators vs score at depth of 4')

In [136]:

```
features = bowling_data.columns
importances = clf.feature_importances_
indices = (np.argsort(importances))[-25:]
plt.figure(figsize=(10,12))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='r', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


In [137]:

```
X_Query_Point_Pos=[2019,120,1500,50,250,24.5,4.45,30.3,7,3]
X_Query_Point_Pos_Arr=np.array(X_Query_Point_Pos)
y_train_pred_Query_p = clf.predict(X_Query_Point_Pos_Arr.reshape(1,-1))
print('Predicted Value by the Random Forest classifier is',y_train_pred_Query_p)
```

Predicted Value by the Random Forest classifier is [1]

In [138]:

```
X_Query_Point_Neg=[2014,40,100,2,45,44.5,6.45,50.3,0,0]
X_Query_Point_Neg_Arr=np.array(X_Query_Point_Neg)
y_train_pred_Query_n = clf.predict(X_Query_Point_Neg_Arr.reshape(1,-1))
print('Predicted Value by the Random Forest classifier is',y_train_pred_Query_n)
```

Predicted Value by the Random Forest classifier is [0]

Conclusion

We did the following things in this notebook

- 1.Loaded the required Data into dataframes
- 2.Performed Exploratory Data Analysis
- 3. Analysed which features are important to predict the class label
- 4. Built the classification Models
- 5. Tested the output with a guery point