Homework 01

Yesid Cano Castro, Moritz Lönker and Tim Niklas Witte

Task 01

You are tasked with creating an AI for the game of chess. To solve the problem using Reinforcement Learning, you have to frame the game of chess as a Markov Decision Process (MDP). Describe both the game of chess formally as a MDP, also formalize the respective policy.

Solution

- Set of states $S^{\text{Num rows} \times \text{Num columns} \times \text{Chess pieces}}$.
- Set of actions A: Let be $d = \{\text{up, down, right, left} \dots\}$. $A = \bigcup_{i=1}^{\text{Chess pieces}} \hat{A}_i$ with $\hat{A}_i = \{x : x \in d \land \text{isAvaibleAction}(\mathbf{x}, \mathbf{i})\}$.
- State dynamics/state transition function p(s'|s, a) = makeMove(s, a). makeMove(s, a) returns a next state given action a and current state s.
- Reward dynamics $p(R_{t+1}|s, a) = \text{killEnemyPiece}(s, a)$. $\text{killEnemyPiece}(s, a) = \begin{cases} 1 & \text{if action } a \text{ does capture a enemy piece in current state } s \\ 0 & \text{otherwise} \end{cases}$
- Initial state $\mu = \text{start state} \in S$.
- Policy: $\pi(s) = \underset{a \in A}{\operatorname{arg \, max}} V_{\pi}(s)$ with $V_{\pi}(s) = N$ umber of captured chess pieces from the enemy.

Task 02

Task 03