Digital Logic Assignment 1

Solution

September 2023

1 Convert numbers into destination bases

a) $(234.5)_{10}$ in base 3

Solution:

Take integer and repeat the division.

Iterations	Quotient	Remainder	Coefficient
234/3	78	0	$a_0 = 0$
78/3	26	0	$a_1 = 0$
26/3	8	2	$a_2 = 2$
8/3	2	2	$a_3 = 2$
2/3	0	2	$a_4 = 2$

Thus the integer part is $(22200)_3$

Take fraction part and repeat the multiplication.

Iterations	Integer	Fraction	Coefficient
0.5*3	1	.5	$a_{-1} = 1$
0.5*3	1	.5	$a_{-2} = 1$

Thus the fraction part is $(.11)_3$

So the final answer should be $(22200.11)_3$.

b) $(234.5)_{10}$ in base 12

Solution:

Take integer and repeat the division.

Iterations	Quotient	Remainder	Coefficient
${234/12}$	19	6	$a_0 = 6$
19/12	1	7	$a_1 = 7$
1/12	0	1	$a_2 = 1$

Thus the integer part is $(176)_{12}$

Take fraction part and repeat the multiplication.

Iterations	Integer	Fraction	Coefficient
0.5*12	6	0	$a_{-1} = 6$

Thus the fraction part is $(.6)_{12}$

So the final answer should be $(176.6)_{12}$.

c) $(435)_6$ in base 10

Solution:

$$4 * 6^2 + 3 * 6^1 + 5 * 6^0 = 167$$

Thus the final answer is 167_{10} .

d) $(10110.0101)_2$ in base 8 Solution:

Divide the binary into groups

010 110.010 100

Thus the binary is 26.24 in octal.

2 Correct number systems for arithmetic operations

a) 1234 + 5432 = 6666

Solution:

Since all numbers are smaller than 7 and no carry is needed, the operation is correct in any number system that radix $r \ge 7$.

b) 302/20=12.1

Solution:

Assume the radix of the number system is r, then

$$3r^{2} + 2 = (r + 2 + r^{-1})2r$$
$$r^{2} - 4r = 0$$
$$r = 4$$

Thus the radix is 4.

3 Simplify the Boolean expressions to the indicated number of literals

a) Simplify (a'+c)(a'+c')(a+b+c'd) to 4 literals

Solution:

$$(a' + c)(a' + c')(a + b + c'd) = (a' + cc')(a + b + c'd)$$

$$= a'(a + b + c'd)$$

$$= a'a + a'(b + c'd)$$

$$= a'(b + c'd)$$

b) Simplify abc'd+a'bd+abcd to 2 literals

Solution:

$$abc'd + a'bd + abcd = bd(ac' + a' + ac)$$
$$= bd(a(c' + c) + a')$$
$$= bd(a + a')$$
$$= bd$$

4 Simplify the Boolean expressions to minimum number of literals

a) (a+c)(a'+b+c)(a'+b'+c)

Solution:

$$(a+c)(a'+b+c)(a'+b'+c) = (a+c)(a'+(b+c)(b'+c))$$

$$= (a+c)(a'+c+bb')$$

$$= (a+c)(a'+c)$$

$$= c+aa'$$

$$= c$$

b) $F(a,b,c) = \sum (0,1,2,3,5)$ Solution:

$$F(a,b,c) = \sum (0,1,2,3,5) = a'b'c' + a'b'c + a'bc' + a'bc + ab'c$$

$$= a'b'(c'+c) + a'b(c'+c) + ab'c$$

$$= a'b' + a'b + ab'c$$

$$= a'(b'+b) + ab'c$$

$$= a' + ab'c$$

$$= (a'+a)(a'+b'c)$$

$$= a'+b'c$$

5 Convert to sum of minterm and product of maxterm

a) F(a,b,c,d)=bd'+acd'+ab'c+a'c'Solution:

$$F(a,b,c,d) = (a+a')b(c+c')d' + a(b+b')cd' + ab'c(d+d') + a'(b+b')c'(d+d')$$

$$= abcd' + abc'd' + a'bcd' + a'bc'd' + ab'cd' + ab'cd + a'bc'd + a'b'c'd'$$

$$= \sum (1110,1100,0110,0100,1010,1011,0101,0001,0000)$$

$$= \sum (0,1,4,5,6,10,11,12,14)$$

$$= \prod (2,3,7,8,9,13,15)$$

b) F(x,y,z)=(x'+z)(y+x')Solution:

$$F(x,y,z) = (x' + yy' + z)(x' + y + zz')$$

$$= (x' + y + z)(x' + y' + z)(x' + y + z')$$

$$= \prod (4,5,6)$$

$$= \sum (0,1,2,3,7)$$

6 Simplify the Boolean functions

a) To indicated literals, algebraic method.
 Solution:

$$F_1 = A'BC' + A'BC + ABC$$

$$= A'BC' + A'BC + A'BC + ABC$$

$$= A'B(C + C') + (A' + A)BC$$

$$= A'B + BC$$

$$= B(A' + C)$$

$$F_2 = A'B'C' + A'BC' + AB'C + ABC$$

$$= A'(B+B')C' + A(B+B')C$$

$$= A'C' + AC$$

$$= (A \oplus C)'$$

b) To indicated literals, using k-map.

Solution

Draw the 3-map with the data in truth table for F_1

BO	00	01	11	10
0	0	0	1	1
1	0	0	1	0

Thus F = BC + A'B = B(A'+C)

Draw the 2-map with the data in truth table for F_2 with varible A and C

180	00	01	11	10
0	1	0	0	1
1	0	1	1	0

Thus $F = A'C' + AC = (A \oplus C)'$

7 Using K maps to find simpliest sum of peoducts expression

a) F(W,X,Y,Z) = \sum (0,2,3,6,7,10,11,12,13,15) Solution:

00	00	01	11	10
00	1	0	1	
01	0	0	1	1
11	1	1	1	0
10	0	0	1	1

Thus F(W,X,Y,Z) = X'W'Z'+XY'W+YZ+YW'+X'Y

b) F(A,B,C,D) = \prod (1,3,4,5,6,7,9,12,13,14) Solution:

$$F(A, B, C, D) = \prod (1, 3, 4, 5, 6, 7, 9, 12, 13, 14)$$
$$= \sum (0, 2, 8, 10, 11, 15)$$

Thus F(A,B,C,D) = B'D' + ACD

8 Find the simplest sum-of-products expression

Solution:

$$\begin{split} f &= abd' + c'd + a'cd' + b'cd' \\ &= ab(c+c')d' + (a+a')(b+b')c'd + a'(b+b')cd' + (a+a')b'cd' \\ &= abcd' + abc'd' + abc'd + ab'c'd + a'bc'd + a'b'c'd + a'bcd' + a'b'cd' + ab'cd' \\ &= \sum (1,2,5,6,9,10,12,13,14) \\ &= \prod (0,3,4,7,8,11,15) \end{split}$$

$$\begin{split} g &= (a+b+d')(b'+c'+d)(a'+c+d') \\ &= (a+b+c+d')(a+b+c'+d')(a+b'+c'+d)(a'+b'+c'+d)(a'+b+c+d')(a'+b'+c+d') \\ &= \prod (1,3,6,9,13,14) \end{split}$$

$$\begin{split} F &= fg \\ &= \prod (0,3,4,7,8,11,15) \prod (1,3,6,9,13,14) \\ &= \prod (0,1,3,4,6,7,8,9,11,13,14,15) \\ &= \sum (2,5,10,12) \end{split}$$

We can use the map with the sum of minterms function derived from the question.

Thus F = abc'd'+a'bc'd+b'cd'

9 Simplest sum of products and implement...

a) NAND gates only

Solution:

$$F(A,B,C,D) = \sum (1,2,4,7,8,9,11) + d(0,3,5)$$

With only NAND gates,

00 00	00	01	11	10
00		[1]	x	1
01	1		1	0
11	0	0	0	0
10	1	1	1	0

The simplest sum-of-products expression is F=A'B'+A'C'+A'D+B'C'+B'D From the sum of product function, we can derive the NAND implementation

$$F = A'B' + A'C' + A'D + B'C' + B'D$$

$$= [(A'B' + A'C' + A'D + B'C' + B'D)']'$$

$$= [(A'B')'(A'C')'(A'D)'(B'C')'(B'D)']'$$

b) NOR gates implementation Solution:

$$F = \sum (1, 2, 4, 7, 8, 9, 11) + d(0, 3, 5)$$

$$F' = \sum (6, 10, 12, 13, 14, 15) + d(0, 3, 5)$$

180 00	00	01	11	10
00	x	0	x	0
01	0	x	0	1
11	1	1	1	1
10	0	0	0	1

Thus, F' = AB + BCD' + ACD' and F = (AB + BCD' + ACD')' = (A' + B')(B' + C' + D)(A' + C' + D)From the product of sum function, we can derive the NOR implementation

$$F = (A' + B')(B' + C' + D)(A' + C' + D)$$

= $[(A' + B')' + (B' + C' + D)' + (A' + C' + D)']'$

c) Draw the two logic diagrams

NAND Implementation

NOR Implementation