FYS-MEK 1110 / Vår 2018 / Ukesoppgaver #9 (3.-6.4.)

Test deg selv: (Disse oppgavene bør du gjøre hjemme før du kommer på gruppetimen.)

- T1. NASA bruker en sentrifuge ved Ames Research Center for å studere effekten av store akselerasjoner på astronauter. Hvis sentrifugen roterer med en vinkelhastighet på 45 omdreiinger per minutt (rpm) føler astronauten en akselerasjon som er 20 ganger større enn tyngdeakselerasjonen på jorden, $a_{\rm rad}=20~g$. (Det er tvilsomt om astronauten vil overleve det.) Hvor stor er radiusen til sentrifugen?
- T2. En vifte slås av og vinkelhastigheten avtar jevnt fra 400 til 200 omdreiinger per minutt i løpet av 4 sekunder.
 - a. Finn vinkelakselerasjonen.
 - b. Hvor mange omdreininger gjorde viften i løpet av disse 4 sekunder?
 - c. Hvor mye mer tid trenger viften for å stanse rotasjonen fullstendig hvis vi antar at vinkelakselerasjonen er konstant?

Gruppeoppgaver: (Disse oppgaver skal du jobbe med i gruppetimen.)

G1. En person på 80 kg står helt bak i en båt som veier 320 kg og som er 5 m lang på innsiden. Båten, som er symmetrisk, ligger på en rolig innsjø uten strømning og vind. Personen går 5 m relativ til båten helt til den andre enden. Vi skal finne ut hvor mye båtens massesenter har flyttet seg.

- a) Definer et koordinatsystem festet til vannet (ikke båten) og bestem posisjon til personens og båtens massesenter i dette systemet.
- b) Finn massesenteret til systemet som består av båten og personen i dette systemet. Er massesenterets posisjon det samme før og etter forflytning? Forklar!
- c) Hvor mye har båtens massesenter forflyttet seg?
- G2. Vi skal finne massesenteret til en sektor med vinkel heta av en flat, homogen sylinder med radius R og tykkelse d («kakestykke»).
 - a) Uttrykk koordinatene x, y, z og volumelement dV i
 - sylinderkoordinater.

$$M = \int_{V} \rho dV$$

- c) Hvilken betydning har det at sylinderen er homogen?
- d) Finn massesenteret i x, y og z retning. Hint: $MX = \int_V x \rho dV$

Fasit:

T1. 8.84 m

T2. a)
$$\alpha = -5.24 \, \frac{\rm rad}{\rm s^2}$$
 b) 20 omdreiinger c) 8 s

G1. Massesenteret til båten har flyttet seg 1 m til venstre.

G2.
$$M = \frac{1}{2}\rho R^2 \theta d$$
, $X = \frac{2}{3}R\frac{\sin\theta}{\theta}$, $Y = \frac{2}{3}R\frac{1-\cos\theta}{\theta}$, $Z = \frac{1}{2}d$