Logic - Reviewed Notes

Dom Hutchinson

May 12, 2020

Contents

1.1 1.2 1.3 1.4 1.5 1.6	General
1.3 1.4 1.5	Induction
1.4 1.5	Free Variables
1.5	Consistency
1.6	A1 1 1 1 T7 T 1
	Alphabetic Variants
Sen	nantics
2.1	Satisfaction Relation
2.2	Substitution
2.3	Homomorphism
2.4	Definable
Ded	luctive Reasoning 15
3.1	Hilbert Calculus
3.2	Deduction Theorem
	3.2.1 Facts
3.3	Completeness & Soundness Theorems
3.4	Consequences & Applications of Completeness Theorem
Göd	del's Incompleteness Theorem 20
4.1	Theory A_E of Arithmetic with Exponentiation
4.2	Fixed-Point Lemma
App	pendix 24
0.1	Standard Models
0.2	Notation
0.3	Definitions
0.4	Indentities
	Techniques
	Sem 2.1 2.2 2.3 2.4 Dec 3.1 3.2 3.3 3.4 Göc 4.1 4.2 App 0.1 0.2 0.3

NOTES

- Not included any proofs.
- Not included any examples.

1 Syntax

1.1 General

Definition 1.1 - Alphabet, A

An Alphabet is a set of characters, A. These characters do not have any assigned values (yet).

Definition 1.2 - String

A String, $a := \langle a_1, \dots, a_n \rangle$, over an alphabet \mathcal{A} is an element of \mathcal{A}^n for $n \in \mathbb{N}$. Here a is said to have length n.

Remark 1.1 -
$$\langle a, b \rangle = \langle \langle a_1, \dots, a_n \rangle, \langle b_1, \dots, b_m \rangle \neq \langle a_1, \dots, a_n, b_1, \dots, b_m \rangle$$

Definition 1.3 - Set of all Strings, A^*

Let \mathcal{A} be an *Alphabet*.

We define the set of all strings, \mathcal{A}^* , over the alphabet as

$$\mathcal{A}^* := \{ \langle a_1, \dots, a_n \rangle : n \in \mathbb{N} \text{ and } a_1, \dots, a_n \in \mathcal{A} \} \equiv \bigcup_{n \in \mathbb{N}} \mathcal{A}^n$$

Remark 1.2 - If an alphabet, \mathcal{A} , is countable then \mathcal{A}^* is countable Further \mathcal{A}^* is countably infinite if $\mathcal{A} \neq \emptyset$.

Definition 1.4 - Declarative Sentence

A Declarative Sentence is a sentence which is either true or false.

N.B. These are the focus of mathematical logic.

Definition 1.5 - Characteristic Function, χ_R

Let $R \subset \mathbb{N}^m$ be an m-arity Relation.

The Characteristic Function $\chi_R : \mathbb{N}^m \to \mathbb{N}$ is defined as

$$\chi_R(n_1,\ldots,n_m) := \begin{cases} 0 & \text{if } \langle n_1,\ldots,n_m \rangle \in R \\ 1 & \text{otherwise} \end{cases}$$

N.B. R is Recursive if χ_R is recursive by **Definition 4.5**.

1.2 First Order Languages

Definition 1.6 - Common Components of Alphabets

Below are some common classes of characters used in mathematical alphabets

- i) Propositional Connectives (Describe locagical relations between predicates). 'not', 'and', 'or', 'if...then...'.
- ii) Quantifiers 'for all', 'there is'.
- iii) Variables 'x', 'y', 'z', ...
- iv) Punctuation (','), ,', ...
- v) Equality '='.

- vi) Constants $(1, 2, 3, e, \dots)$
- vii) Predicates $' \prec '$.
- viii) Functions 'o'.

Definition 1.7 - Alphabet of First-Order Language

The Alphabet of a First-Order Language comprises the following elements

- i) Propositional Connectives \neg , \rightarrow
- ii) Quantifiers \forall
- iii) Variables v_1, v_2, \dots (Infinetly many).
- $\begin{array}{c} {\rm iv)} \ \ {\rm Punctuation} \\ \ \ (\) \ {\rm and} \ , \end{array}$
- v) Equality ≡ (This is a 2-arity logical predicate)
- vi) Constants c_1, c_2, \ldots (Countable many since we use countable alphabets).
- vii) Predicates P_i^n is an *n*-arity predicate for $n \in \mathbb{N}$.
- viii) Functions f_i^n is an *n*-arity function for $n \in \mathbb{N}$.
- i) v) are Logical Symbols & vi) viii) are Non-Logical Symbols of First-Order Languages. The Non-Logical Symbols will vary depending on the subject matter of the language.

Remark 1.3 - \equiv is the only logical predicate symbol in FOLs

Definition 1.8 - Negation, \neg , and Implication, \rightarrow Let P,Q be Predicates.

$$\begin{array}{c|cccc} P & \neg P & \hline T & T & T \\ \hline T & \mathbf{F} & T & F & \mathbf{F} \\ T & \mathbf{T} & \mathbf{F} & \mathbf{F} & \mathbf{T} \\ \end{array}$$

Proposition 1.1 - Extension to Alphabet of First-Order Language

For concisness of notation we usually allow the following extra propositional connectives & quantifiers to be used.

- Propositional Connectives \wedge, \vee

- Quantifiers \exists

Definition 1.9 - And, \wedge , and Or, \vee

Let P, Q be Predicates.

P	Q	$P \wedge Q$	P	Q	$P \lor Q$
T	Т	\mathbf{T}	Т	Т	\mathbf{T}
${ m T}$	F	\mathbf{F}	\mathbf{T}	F	\mathbf{T}
T T F F	Γ	\mathbf{F}	\mathbf{F}	Γ	${f T}$
\mathbf{F}	F	\mathbf{F}	\mathbf{F}	F	\mathbf{F}

Remark 1.4 - $P \land Q \Leftrightarrow \neg(P \to \neg Q)$ and $P \lor Q \Leftrightarrow (\neg P) \to Q$

Definition 1.10 - L-Term (and L-Term Complexity)

Let \mathcal{L} be a FOL.

We define \mathcal{L} -Terms & \mathcal{L} -Term Complexity recursively.

T1 Let s be a variable or constant symbol. s is an \mathcal{L} -Term with cp(s) = 0.

T2 Let f be a k-arity function symbol and t_1, \ldots, t_k be \mathcal{L} -Terms. $f(t_1, \ldots, t_k)$ is an \mathcal{L} -Term with $cp(f) = \max\{cp(t_1), \ldots, cp(t_k)\} + 1 \ge 1$.

N.B. By this definition we cannot have infinitely long \mathcal{L} -Terms.

Definition 1.11 - Atomic L-Term

Let \mathcal{L} be a FOL and $t \in Tm_{\mathcal{L}}$.

t is an Atomic L-Term iff cp(t) = 0.

i.e. An Atomic \mathcal{L} -Term is either a constant or variable symbol.

Definition 1.12 - Compound L-Term

Let $t \in Tm_{\mathcal{L}}$.

t is a Compound \mathcal{L} -Term iff $cp(t) \geq 1$.

i.e. An Atomic \mathcal{L} -Term is function symbol.

Definition 1.13 - Atomic Formulae

Let \mathcal{L} be a FOL, P be a k-arity predicate symbol of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$.

An Atomic Formulae has the form

$$P(t_1,\ldots,t_k)$$

i.e. Atomic Formulae are predicates on \mathcal{L} -Terms.

Definition 1.14 - \mathcal{L} -Formula (and \mathcal{L} -Formulae Complexity)

Let \mathcal{L} be a FOL.

We define \mathcal{L} -Formulae & \mathcal{L} -Formulae Complexity recursively

F1 Let ϕ be an Atomic \mathcal{L} -Formula. ϕ is an \mathcal{L} -Formula with $cp(\phi) = 0$.

F2 Let ϕ be an \mathcal{L} -Formula. $\neg \phi$ is an \mathcal{L} -Formula with $cp(\neg \phi) = cp(\phi) + 1$.

F3 Let ϕ, ψ be a \mathcal{L} -Formulae. $\phi \to \psi$ is an \mathcal{L} -Formula with $cp(\phi \to \psi) = \max\{cp(\phi), cp(\psi)\} + 1$.

- F4 Let ϕ be an \mathcal{L} -Formula & x be any variable. $\forall x \phi$ is an \mathcal{L} -Formula with $cp(\forall x \phi) = cp(\phi) + 1$.
- N.B. By this definition we cannot have infinitely long \mathcal{L} -Formulae.

Remark 1.5 - \mathcal{L} -Term & \mathcal{L} -Formulae complexity is a measure of syntactic complexity and is unrelated to any semantic meaning.

 \mathcal{L} -Formulae complexity is unrelated from the complexity of any terms in it.

Remark 1.6 - F4 necessitates the use of parentheses

Otherwise $\phi \to \psi \to \theta$ is ambiguous as it could be read as either $(\phi \to \psi) \to \theta$ or $\phi \to (\psi \to \theta)$ which don't necessarily have the same semantic meaning.

Definition 1.15 - Compound L-Formula

Let $\phi \in Fml_{\mathcal{L}}$.

 ϕ is a Compound \mathcal{L} -Formula iff $cp(\phi) \geq 1$.

1.3 Induction

Theorem 1.1 - Induction on Terms

Let \mathcal{L} be a FOL and P be a property that \mathcal{L} -Terms may have.

If

- i) All Atomic \mathcal{L} -terms have P; And,
- ii) For all k-arity function symbols f of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$ which have property P, $f(t_1, \ldots, t_k)$ has P.

Then all $t \in Tm_{\mathcal{L}}$ have property P.

Theorem 1.2 - Induction on Formulae

Let \mathcal{L} be a FOL and P be a property that \mathcal{L} -Formulae may have. If

- i) All Atomic \mathcal{L} -Formulae have P; And,
- ii) ϕ, ψ have P then $\neg \phi, \phi \rightarrow \psi$ and $\forall x \phi$ (for all variables x) have property P.

Then all $\phi \in Fm_{\mathcal{L}}$ have property P.

1.4 Free Variables

Definition 1.16 - Set of Variables, $Var(\cdot)$

 $\operatorname{Var}: \mathcal{A}_{\mathcal{L}}^* \to 2^{\operatorname{Var}}$ is a function which maps from a string to the set of variables in it. Variables are defined by the *Alphabet* of the language being used.

Definition 1.17 - Closed L-Term

Let $t \in Tm_{\mathcal{L}}$ for some FOL, \mathcal{L} .

If $Var(t) = \emptyset$ then t is said to be a Closed \mathcal{L} -Term.

Definition 1.18 - Free Variables, $FV(\cdot)$

Let \mathcal{L} be a FOL.

Free Variables are unbounded variables in an \mathcal{L} -Formula.

We define the Set of Free Variables of an \mathcal{L} -Formula inductively

FV1 Let
$$P$$
 be a k -arity $Predicate \& t_1, \ldots, t_k \in Tml_{\mathcal{L}}$.

$$FV(P(t_1, \ldots, t_k)) := Var(P(t_1, \ldots, t_k)).$$

FV2 Let
$$\phi \in Fml_{\mathcal{L}}$$
.
 $FV(\neg \phi) := FV(\phi)$.

FV3 Let
$$\phi, \psi \in Fml_{\mathcal{L}}$$
.
 $FV(\phi \to \psi) := FV(\phi) \cup FC(\psi)$.

FV4 Let
$$\phi \in Fml_{\mathcal{L}}$$
 and x be any variable.
 $FV(\forall x\phi) := FV(\phi) \setminus \{x\}.$

FV-EXT1 Let
$$\phi, \psi \in Fml_{\mathcal{L}}$$
.
 $FV(\phi \wedge \psi) := FV(\phi) \cup FV(\psi)$.

FV-EXT2 Let
$$\phi, \psi \in Fml_{\mathcal{L}}$$
.
 $FV(\phi \lor \psi) := FV(\phi) \cup FV(\psi)$.

FV-EXT3 Let
$$\phi \in Fml_{\mathcal{L}}$$
 and x be any variable.

$$FV(\exists x\phi) := FV(\phi) \setminus \{x\}.$$

N.B.
$$FV(\cdot): \mathcal{A}_{\mathcal{L}}^* \to 2^{\text{Var}}$$
.

Definition 1.19 - \mathcal{L} -Sentence

Let $\phi \in Fml_{\mathcal{L}}$ for some FOL, \mathcal{L} .

If $FV(\phi) = \emptyset$ then ϕ is said to be a \mathcal{L} -Sentence.

Remark 1.7 - The meaning anthonof formulae depends on how we interpret their free variables

1.5 Consistency

Definition 1.20 - Consistent

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subset Fml_{\mathcal{L}}$.

- ϕ is Consistent iff $\not\equiv \phi \in Fml_{\mathcal{L}}$ st $\phi \vdash \psi$ and $\phi \vdash \neg \psi$.
- Φ is Consistent iff $\nexists \phi \in Fml_{\mathcal{L}}$ st $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$.

Proposition 1.2 - Φ is Consistent iff $\exists \phi \in Fml_{\mathcal{L}}$ st $\Phi \nvdash \psi$

Proposition 1.3 - Φ is Consistent iff $\forall \ \Sigma \subset \Phi, \ \Sigma$ is Consistent

Proposition 1.4 - *If* $\Gamma \vdash \phi$ *then* $\exists \ \Sigma \subset \Gamma$ *st* $\Sigma \vdash \phi$.

Theorem 1.3 - Inconsistency

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subset Fml_{\mathcal{L}}$.

- i) $\Phi \vdash \phi$ iff $\Phi \cup \{\neg \phi\}$ is *Inconsistent*.
- ii) $\Phi \cup \{\phi\}$ is Inconsistent iff $\Phi \cup \{\neg \neg \phi\}$ is Inconsistent.
- iii) $\Phi \vdash \neg \phi$ iff $\Phi \cup \{\phi\}$ is *Inconsistent*.

Theorem 1.4 - If $\Gamma \cup \{\neg \phi\}$ is Satisfiable then $\Gamma \nvdash \phi$.

Theorem 1.5 - Chain of Consistency

Let \mathcal{L} be a FOL and $\Gamma_0 \subset \cdots \subset \Gamma_n \subset \cdots \subset Fml_{\mathcal{L}}$.

If $\forall i, \Gamma_i$ is Consistent, then $\Gamma := \bigcup_i \Gamma_i$ is Consistent.

Definition 1.21 - Maximally Consistent

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

 Γ is Maximally Consistent if Γ is Consistent and $\Gamma \not\subset \Delta$ where Δ is any consistent set of $Fml_{\mathcal{L}}$.

Proposition 1.5 -

Let \mathcal{L} be a FOL and $\Sigma \subset Fml_LL$.

If Σ is Consistent then $\exists \ \Delta \subset Fml_{\mathcal{L}} \text{ st } \Delta \supset \Sigma \text{ and } \Delta \text{ is } Maximally Consistent.$

Definition 1.22 - Henkin

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

 Γ is Henkin if \forall formula of the form $\exists x \phi \in Fml_{\mathcal{L}}, \exists t \in Tm_{\mathcal{L}} \text{ st SubSt}(t, x, \phi) \text{ and } \Gamma \vdash (\exists x \phi \to [\phi] \frac{t}{x}).$

Proposition 1.6 - Let $\Gamma \subset \Sigma \subset Fml_{\mathcal{L}}$ if Γ is Henkin then Σ is Henkin.

Theorem 1.6 -

Let \mathcal{L} be a FOL and $\Gamma \subseteq Fml_{\mathcal{L}}$ be Consistent st $FV(\Gamma)$ is finite. Then

 $\exists \ \Sigma \subseteq Fml_{\mathcal{L}} \text{ st } \Gamma \subset \Sigma \text{ and } \Sigma \text{is a consistent Henkin.}$

Proposition 1.7 - If $\Gamma \subset Fml_{\mathcal{L}}$ is Consistent and $\Gamma \vdash \gamma \implies \Gamma \cup \{\phi\}$ is Consistent.

Proposition 1.8 - If $\Gamma \subset Fml_{\mathcal{L}}$ is Consistent then Γ is Maximally Consistent $\underline{iff} \ \psi \in \Gamma \ \underline{or} \ \neg \psi \in \Gamma \ holds \ \forall \ \psi \in Fml_{\mathcal{L}}$.

Proposition 1.9 - If Γ is Maximally Consistent then $\Gamma \vdash \phi$ iff $\phi \in \Gamma$.

Hence, by **Proposition 1.6**, if Γ is Maximally Consistent then $\forall \ \psi \in Fml_{\mathcal{L}}$ either $\Gamma \vdash \psi \ \underline{\text{xor}}$ $\Gamma \vdash \neg \psi$ holds.

Proposition 1.10 - Properties Maximally Consistent Henkin Sets

Let \mathcal{L} be a FOL, $\Gamma \subseteq Fml_{\mathcal{L}}$ be Maximally Consistent Henkin and $\phi, \psi \in Fml_{\mathcal{L}}$.

$$\begin{array}{cccc} \Gamma \vdash \neg \phi & \Longleftrightarrow & \Gamma \nvdash \phi \\ \Gamma \vdash (\phi \to \psi) & \Longleftrightarrow & \text{if } \Gamma \vdash \phi \text{ then } \Gamma \vdash \psi \\ \Gamma \vdash \forall x \phi & \Longleftrightarrow & \forall \; t \in Tm_{\mathcal{L}} \text{ if SubSt}(t, x, \phi) \text{ then } \Gamma \vdash [\phi] \frac{t}{x} \end{array}$$

Proposition 1.11 -

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$ be Consistent st $FV(\Gamma)$ is finite. Then

 $\exists \ \Sigma \subset \Delta \subset Fml_{\mathcal{L}} \ \text{st} \ \Delta \ \text{is Maximially Consistent Henkin set}$

Theorem 1.7 - Henkin's Theorem

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$ be a Maximally Consistent Henkin set. Then

$$\forall \phi \in Fml_{\mathcal{L}}, \ \mathfrak{M}^{\Gamma}, s^{\Gamma} \vDash \phi \ \underline{\text{iff}} \ \Gamma \vdash \phi$$

N.B. $\Gamma \vdash \phi$ iff $\phi \in \Gamma$ since Γ is Maximally Consistent.

1.6 Alphabetic Variants

Theorem 1.8 - Alphabetic Variants

 $\forall \phi \in Fml_{\mathcal{L}}, \ t \in Tm_{\mathcal{L}}, \ z \in Var, \ \exists \psi \in Fml_{\mathcal{L}} \text{ with } cp(\psi) = cp(\phi) \text{ st}$

$$\vdash (\phi \leftrightarrow \psi)$$
 and $SubSt(t, z, \psi)$

N.B. This ψ is called an Alphabetic Variant of ϕ .

2 Semantics

Definition 2.1 - L-Structure

Let \mathcal{L} be a FOL.

An \mathcal{L} -Structure assigns meaning to the Non-Logical symbols of \mathcal{L} .

An \mathcal{L} -Structure is an ordered pair $\mathfrak{M} := (D, \mathfrak{I})$ where

Domain D is a non-empty set.

Often \mathbb{R} or similar.

Interpretation \Im is a function over the non-logical symbols of \mathcal{L} .

 $\mathfrak{I}(c) \in D$ where c is a constant symbol of \mathcal{L}

 $\mathfrak{I}(P) \subset D^n$ where P is a k-arity predicate symbol of \mathcal{L}

 $\mathfrak{I}(f)$: $D^n \to D$ where f is a k-arity function symbol of \mathcal{L}

Remark 2.1 - Interpretation, 3

The *Interpretation* is a function which assigns meaning to non-logical symbols.

 $\mathfrak{I}(P)$ gives the property or relation on D by which P is interpreted.

 $\mathfrak{I}(f)$ gives the function on D^n by which f is interpreted.

 $\mathfrak{I}(P)$ gives the object in D which c denotes.

Definition 2.2 - Variable Assignment, s

Let \mathcal{L} be a FOL and $\mathfrak{M} := (|\mathfrak{M}|, \mathfrak{I})$ be an \mathcal{L} -Structure.

A Variable Assignment maps variables to a value in the domain of \mathfrak{M} .

$$s: \mathrm{Var} \to |\mathfrak{M}|$$

Definition 2.3 - Variable Assignment for \mathcal{L} -Terms, \bar{s}

Let \mathcal{L} be a FOL and $\mathfrak{M} := (|\mathfrak{M}|, \mathfrak{I})$ be an \mathcal{L} -Structure.

We define Variable Assignment over \mathcal{L} -Terms recursively

V1 Let x be a variable symbol of \mathcal{L} .

$$\bar{s}(x) := s(x)$$

V2 Let c be a constant symbol of \mathcal{L} .

$$\bar{s}(c) := c^{\mathfrak{M}}$$

V3 Let f be a k-arity function symbol of \mathcal{L} and t_1, \ldots, t_k be \mathcal{L} -Terms.

$$\bar{s}(f(t_1,\ldots,t_k)):=f^M(\bar{s}(t_1),\ldots,\bar{s}(t_k))$$

N.B. $\bar{s}: Tm_{\mathcal{L}} \to |\mathfrak{M}|$.

Remark 2.2 - $\bar{s}(t)$ is the <u>Semantic Value</u> of term t in struture \mathfrak{M} under assignement s.

 $\bar{s}(t)$ gives a description of what t designates in \mathfrak{M} under the assignment s.

2.1 Satisfaction Relation

Definition 2.4 - Satisfaction Relation, \vDash

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure and s a Variable Assignment over \mathfrak{M} .

The Satisfaction Relation (states whether a given formula is true under a given model)?? We define the Satisfaction Relation, \vDash , recursively

S1 Let
$$t_1, t_2 \in Tm_{\mathcal{L}}$$
.
 $\mathfrak{M}, s, \vDash (t_1 \equiv t_2) :\Leftrightarrow \bar{s}(t_1) = \bar{s}(t_2)$.

- S2 Let P be a k-arity predicate symbol of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$. $\mathfrak{M}, s, \models P(t_1, \ldots, t_k) : \Leftrightarrow \langle \bar{s}(t_1), \ldots, \bar{s}(t_k) \rangle \in P^{\mathfrak{M}}$.
- S3 Let $\phi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s, \models \neg \phi : \Leftrightarrow \mathfrak{M}, s \not\models \phi$.
- S4 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s, \models (\phi \to \psi) :\Leftrightarrow \text{if } \mathfrak{M}, s \models \phi \text{ then } \mathfrak{M}, s \models \psi$.
- S5 Let $\phi \in Fml_{\mathcal{L}}$ and x be any variable. $\mathfrak{M}, s, \models \forall x\phi : \Leftrightarrow \mathfrak{M}, s\frac{d}{r} \models \phi \text{ for all } d \in |\mathfrak{M}|.$
- S-EXT1 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \land \psi) :\Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ and } \mathfrak{M}, s \vDash \psi$.
- S-EXT2 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \lor \psi) :\Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ or } \mathfrak{M}, s \vDash \psi$.
- S-EXT3 Let $\phi \in Fml_{\mathcal{L}}$ and x be any variable. $\mathfrak{M}, s \vDash \exists x \phi : \Leftrightarrow \mathfrak{M}, s \frac{d}{x} \vDash \phi$ for at least one $d \in |\mathfrak{M}|$.
- S-EXT2 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \leftrightarrow \psi) : \Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ iff } \mathfrak{M}, s \vDash \psi$.

Remark 2.3 - When $\mathfrak{M}, s \models \phi$ holds we say " ϕ is true in \mathfrak{M} under s" Or, " ϕ is satisfied by \mathfrak{M} under s". Or, " \mathfrak{M}, s models ϕ ".

Definition 2.5 - *Model*

Let \mathcal{L} be a FOL, $\Phi \subseteq Fml_{\mathcal{L}}$, \mathfrak{M} be an L-Structure and s a Variable Assignment. \mathfrak{M}, s is a Model of Φ if $\mathfrak{M}, s \models \Phi$.

Remark 2.4 - Semantic Value of a Term

Let $t \in Tm_{\mathcal{L}}$ for some FOL, \mathcal{L} , and s be a Variable Assignment.

The semantic value of t, $\bar{s}(t)$, only depends on

- i) The Interpretation of the constant & function symbols that occur in t. And,
- ii) The Assignment of values to variables in t, given by s.

Remark 2.5 - Truth of a Formula

Let $\phi \in Fml_{\mathcal{L}}$ for some FOL, \mathcal{L} .

The truth of ϕ only depends on

- i) The domain of discourse, $|\mathfrak{M}|$, over which the quantifiers range
- ii) The Interpretation of the constants, functions & predicate symbols in ϕ .
- iii) The Assignment of values to Free Variables in ϕ , given by s.

Theorem 2.1 - Coincidence Lemma

Let $\mathcal{L}_1, \mathcal{L}_2$ be unique FOLs, $\mathfrak{M}_1 := (D, \mathfrak{I}_1)$ be an \mathcal{L}_1 -Structure and $\mathfrak{M}_2 := (D, \mathfrak{I}_2)$ be an \mathcal{L}_2 -Structure.

Note that both structures have the same domain.

Let $\mathcal{L} := \mathcal{L}_1 \cap \mathcal{L}_2$. Then the following are true

i) $\forall t \in Tm_{\mathcal{L}}, \forall \text{ variable assignments } s_1 \text{ over } \mathfrak{M}_2 \text{ and } s_2 \text{ over } \mathfrak{M}_2$

If
$$\begin{cases} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} \ \forall \ c \text{ that occur in } t \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} \ \forall \ f \text{ that occur in } t \\ s_1(x) = s_2(x) \ \forall \ x \text{ that occur in } t \end{cases}$$
 then $\overline{s_1}(t) = \overline{s_2}(t)$.

i.e. If these conditions hold then t has the same semantic value under both variable assignments.

ii) $\forall \phi \in Fml_{\mathcal{L}}, \forall \text{ variable assignments } s_1 \text{ over } \mathfrak{M}_2 \text{ and } s_2 \text{ over } \mathfrak{M}_2$

$$\text{If} \left\{ \begin{array}{l} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} \ \forall \ c \ \text{that occur in} \ \phi \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} \ \forall \ f \ \text{that occur in} \ \phi \\ P^{\mathfrak{M}_1} = P^{\mathfrak{M}_2} \ \forall \ P \ \text{that occur in} \ \phi \\ s_1(x) = s_2(x) \ \forall \ x \ \text{that occur in} \ \phi \end{array} \right\} \ \text{then} \ \mathfrak{M}_1, s_2 \vDash \phi \ \text{iff} \ \mathfrak{M}_2, s_2 \vDash \phi.$$

i.e. If these conditions hold ϕ is equivalent truth values under both \mathcal{L} -structures & variable assignemnts.

N.B. AKA Reduct Property of First-Order Logic.

Remark 2.6 - Semantic Interpretations Closed \mathcal{L} -Terms & \mathcal{L} -Sentences Let \mathcal{L} be a FOL, t be a Closed \mathcal{L} -Term, ϕ be an \mathcal{L} -Sentence, \mathfrak{M} be an \mathcal{L} -Structure. Let s_1, s_2 be arbitrary Variable Assignments over \mathfrak{M} . Then

$$\overline{s_1}(t) = \overline{s_2}(t)$$
 and $\mathfrak{M}, s_1 \models \phi$ iff $\mathfrak{M}, s_2 \models \phi$

i.e. Choice of variable assignment does not affect semantic value of closed \mathcal{L} -Terms & \mathcal{L} -Sentences.

Definition 2.6 - Logical Consequence, $\Phi \models \phi$ Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$. ϕ is a Logical Consequence of Φ iff

 $\forall \mathcal{L}$ -Structures $\mathfrak{M}, \forall \text{ variable assignments } s \text{ over } \mathfrak{M} \text{ it holds that } (\mathfrak{M}, s \models \Phi) \rightarrow (\mathfrak{M}, s \models \phi).$

N.B. When this is the case, it is denoted $\Phi \vDash \phi$.

N.B. AKA " ϕ logically follows from Φ " or " Φ logically implies ϕ ".

Proposition 2.1 - For unary predicates $P, P(x) \models P(x) \lor P(y)$

Proposition 2.2 - $\forall \phi, \psi \in Fml_{\mathcal{L}} \& \Phi \subseteq Fml_{\mathcal{L}}, \Phi, \phi \vDash \psi \text{ iff } \Phi \vDash \phi \rightarrow \psi$

Definition 2.7 - Logically Valid, $\vDash \phi$

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$.

 ϕ is Logically Valid iff $\mathfrak{M}, s \vDash \phi$ for all \mathcal{L} -Structures \mathfrak{M} and variable assignemnts s over \mathfrak{M} . N.B. This is denoted $\vDash \phi$.

Definition 2.8 - Satisfiable

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$.

 ϕ is Satisfiable iff \exists an \mathcal{L} -Structure \mathfrak{M} and variable assignment s over \mathfrak{M} , st $\mathfrak{M}, s \models \phi$. Φ is Satisfiable iff \exists an \mathcal{L} -Structure \mathfrak{M} and variable assignment s over \mathfrak{M} , st $\mathfrak{M}, s \models \Phi$.

Theorem 2.2 -

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$. Then

- i) ϕ is Logically Valid iff $\emptyset \vDash \phi$.
- ii) ϕ is Logically Valid iff $\neg \phi$ is <u>not</u> Satisfiable.
- iii) $\Phi \vDash \phi$ iff $\Phi \cup \{\neg \phi\}$ is <u>not</u> Satisfiable.

Definition 2.9 - Logical Equivalence

Let \mathcal{L} be a FOL and $\phi, \psi \in Fml_{\mathcal{L}}$.

 ϕ is Logically Equivalent to ψ iff $\phi \models \psi$ and $\psi \models \phi$.

i.e. ϕ is Logically Equivalent to ψ iff $\models \phi \leftrightarrow \psi$.

N.B. For formulae this is the Equivalence Relation.

Proposition 2.3 - Logical Equivalences

The following are Logically Equivalent

- i) $((\phi \wedge \psi) \wedge \theta)$ is logically equivalent to $(\phi \wedge (\psi \wedge \theta))$.
- ii) $((\phi \lor \psi) \lor \theta)$ is logically equivalent to $(\phi \lor (\psi \lor \theta))$.
- iii) $\neg \neg \phi$ is logically equivalent to ϕ .
- iv) $\phi \wedge \psi$ is logically equivalent to $\neg((\neg \phi) \vee (\neg \psi))$.

Definition 2.10 - True of, $\mathfrak{M} \models \phi \llbracket a_1, \dots, a_n \rrbracket$

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ with $FV(\phi) \subset \{x_1, \ldots, x_n\}$.

Let \mathfrak{M} be an \mathcal{L} -Structure, s_1, s_2 be variable assignments over \mathfrak{M} and $a_1, \ldots, a_n \in |\mathfrak{M}|$. By the Conincidence Lemma, **Theorem 2.1**

if
$$s_1(x_i) = s_2(x_2) \ \forall \ i \in [1, n]$$
 then $\mathfrak{M}, s_1 \models \phi \Leftrightarrow \mathfrak{M}, s_2 \models \phi$

Equivalently

 $\mathfrak{M}, s \vDash \phi$ for all variable assignments s over \mathfrak{M} st $s(x_1) = a_1, \ldots, s(x_n) = a_n$ $\Leftrightarrow \mathfrak{M}, s \vDash \phi$ for some variable assignments s over \mathfrak{M} st $s(x_1) = a_1, \ldots, s(x_n) = a_n$

We denote these holding by $\mathfrak{M} \models \phi \llbracket a_1, \dots, a_n \rrbracket$.

N.B. $\mathfrak{M} \models \phi \llbracket a_1, \ldots, a_n \rrbracket$ means " ϕ is true of the objects $a_1, \ldots, a_n \in \mathfrak{M}$ ".

2.2 Substitution

Definition 2.11 - Substitution

Substitution is the process of replacing one expression with another.

Substituting t for x in a is denoted by $[a] \frac{t}{x}$.

N.B. Usually t is an \mathcal{L} -term, x is a variable & a is an \mathcal{L} -term or \mathcal{L} -Formula.

Definition 2.12 - Substitution of a Term for a Variable in a Term

Let \mathcal{L} be a FOL, $a, t \in Tm_{\mathcal{L}}$ and x be a variable.

We define the Substitution $[a] \frac{t}{x}$ recursively

Sub-T1 If a is an Atomic \mathcal{L} -Term then

$$[a]^{\underline{t}}_{x} := \begin{cases} t & \text{if } a = x \\ a & \text{if } a \neq x \end{cases}$$

Sub-T2 If a is a Compound \mathcal{L} -Term of the form $a := f(a_1, \ldots, a_k)$ where $a_1, \ldots, a_k \in Tm_{\mathcal{L}}$

$$[a]_{\frac{t}{x}} := f\left([a_1]_{\frac{t}{x}}, \dots, [a_k]_{\frac{t}{x}}\right)$$

Remark 2.7 - $[a]\frac{t}{x} = a$ for all constant symbols in a

Definition 2.13 - Substitution of a Term for a Variable in a Formula

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and x, z be variables.

We define the Substitution $[\phi]_{\overline{x}}^{\underline{t}}$ recursively

SUB1 If ϕ is an Atomic \mathcal{L} -Formula of the form $P(a_1, \ldots, a_k)$ where $a_1, \ldots, a_k \in Tm_{\mathcal{L}}$. $[\phi] \frac{t}{x} := P\left([a_1] \frac{t}{x}, \ldots, [a_k] \frac{t}{x}\right)$

SUB-F2 $[\neg \phi] \frac{t}{x} := \neg [\phi] \frac{t}{x}$.

SUB-F3 $[(\phi \to \psi)] \frac{t}{x} := [\phi] \frac{t}{x} \to [\psi] \frac{t}{x}$.

 $\text{SUB-F4} \ [\forall z\phi] \frac{t}{x} := \begin{cases} \forall z[\phi] \frac{t}{x} & \text{if } x \neq z \\ \forall z\phi & \text{if } x = z \end{cases}.$

SUB-F-EXT1 $[\phi \wedge \psi] \frac{t}{x} := [\phi] \frac{t}{x} \wedge [\psi] \frac{t}{x}$.

 $\text{SUB-F-EXT2} \ \ [\phi \lor \psi] \tfrac{t}{x} := [\phi] \tfrac{t}{x} \lor [\psi] \tfrac{t}{x}.$

SUB-F-EXT3 $[\exists x\phi]\frac{t}{x} := \begin{cases} \exists x[\phi]\frac{t}{x} & \text{if } x \neq z \\ \exists x\phi & \text{otherwise} \end{cases}$

N.B. We never substitute bound variables (only Free Variables).

Proposition 2.4 - $\forall t \in Tm_{\mathcal{L}}, \ [t]^{\frac{x}{x}} = t$

Proposition 2.5 - $\forall \phi \in Fml_{\mathcal{L}}, \ [\phi]_{\frac{x}{x}} = \phi$

Proposition 2.6 - If $x \notin var(t)$ then $[a] \frac{a}{x} = t$

Proposition 2.7 - If $x \notin FV(\phi)$ then $[\phi] \frac{a}{x} = \phi$

Proposition 2.8 - Let $x \notin var(a)$ then $x \notin var([t]\frac{a}{x})$ and $x \notin FV([\phi]\frac{a}{x})$

Proposition 2.9 - Substitution of Free Variables

Let $x, y \in Var$ with $x \neq y$, $t \in Tm_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

- If $y \notin Var(t)$ then $\left[[t] \frac{y}{x} \right] \frac{y}{x} = t$.
- If $y \notin \operatorname{Var}(\phi)$ then $\operatorname{SubSt}\left(x,y,[\phi]\frac{x}{y}\right)$ and $\left[[\phi]\frac{y}{x}\right]\frac{x}{y}=\phi$.

Definition 2.14 - Substitutable

Let \mathcal{L} be a FOL, $t \in Tm_{\mathcal{L}}$ and x be a variable.

Let $\phi, \psi \in Fml_{\mathcal{L}}$.

We define whether t is Substitutable for a variable x in a formula ϕ recursively

SU1 If ϕ is an Atomic \mathcal{L} -Formula. Then $SubSt(t, x, \phi)$ always.

SU2 SubSt $(t, x, \neg \phi)$ iff SubSt (t, x, ϕ) .

SU3 SubSt $(t, x, \phi \to \psi)$ iff SubSt (t, x, ϕ) and SubSt (t, x, ψ) .

 $\mathrm{SU4} \ \mathtt{SubSt}(t,x,\forall z\phi) \ \mathrm{if} \ \begin{cases} &z \not\in var(t) \ \underline{\mathrm{and}} \ mathttSubSt(t,x,\phi) \\ \mathrm{or} & x \not\in FV(\phi) \end{cases}$

SU-EXT1 SubSt $(t, x, \phi \land \psi)$ iff SubSt (t, x, ϕ) and SubSt (t, x, ψ) .

SU-EXT2 SubSt $(t, x, \phi \lor \psi)$ iff SubSt (t, x, ϕ) and SubSt (t, x, ψ) .

$$\text{SU-EXT3 SubSt}(t,x,\exists z\phi) \ \underline{\text{if}} \ \begin{cases} z \in var(t) \ \underline{\text{and}} \ \text{SubSt}(\phi) \\ \text{or} \quad x \not\in FV(\exists z\phi) \end{cases}$$

N.B. If $SubSt(t, x, \phi)$, t is said to be Free for x in ϕ .

Proposition 2.10 - Every variable is Substitutable for itself, in all formulae

Proposition 2.11 - If $x \notin FV(\phi)$ all $t \in Tm_{\mathcal{L}}$ are Substitutable for x in Φ

Proposition 2.12 - If $var(t) \cap var(\phi) = \emptyset$ then t is substitutable for any variable in ϕ . Notably, every closed \mathcal{L} -term is substitutable for any variable in any formula.

Proposition 2.13 - Substitution order doesn't matter

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -structure, s be a variable assignment and $d_1, \ldots, d_k \in |\mathfrak{M}|$. Let x_1, \ldots, x_k be distinct variables and π be a permutation over k. Then

$$\left(\left(\dots\left(s\frac{d_1}{x_1}\right)\dots\right)\frac{d_{k-1}}{x_{k-1}}\right)\frac{d_k}{x_k} = \left(\left(\dots\left(s\frac{d_{\pi(1)}}{x_{\pi(1)}}\right)\dots\right)\frac{d_{\pi(k-1)}}{x_{\pi(k-1)}}\right)\frac{d_{\pi(k)}}{x_{\pi(k)}}$$

Theorem 2.3 - Substitution Lemma

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure, $t \in Tm_{\mathcal{L}}$, $\phi \in Fml_{\mathcal{L}}$ and x be a variable.

i) For every variable assignment s over $\mathfrak{M}, \forall a \in Tm_{\mathcal{L}}$

$$\overline{s}\left([a]\frac{t}{x}\right) = \overline{s\frac{\overline{s}(t)}{x}}(a)$$

ii) For every variable assignment s over $\mathfrak{M}, \forall a \in Tm_{\mathcal{L}}$ where a is Substitutable for x in ϕ

$$\mathfrak{M}, s \vDash \phi \frac{t}{x}$$
 iff $\mathfrak{M}, s \frac{\overline{s}(t)}{x} \vDash \phi$

Proposition 2.14 - $\forall t \in Tm_{\mathcal{L}}$ if t is substitutable for x then $\models (\forall x \phi \rightarrow [\phi] \frac{t}{x})$ for all $t \in Tm_{\mathcal{L}}$

Proposition 2.15 - $\forall \phi \in Fml_{\mathcal{L}} \text{ if } t \text{ is substitutable for } x \text{ then } \vDash \left([\phi] \frac{t}{x} \to \exists x \phi \right) \text{ for all } t \in Tm_{\mathcal{L}}$

2.3 Homomorphism

Definition 2.15 - Homomorphism

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

A function $H: \mathfrak{M}_1 \to \mathfrak{M}_2$ is a *Homomorphism* if it fulfils the following

- $H(c^{\mathfrak{M}_1}) = c^{\mathfrak{M}_2}$ for all constant symbols, c, of \mathcal{L} .
- $H(f^{\mathfrak{M}_1}(t_1,\ldots,t_k)=f^{\mathfrak{M}_2}(H(t_1),\ldots,H(t_k))$ for all k-arity function symbols f of \mathcal{L} and
- $\langle t_1, \ldots, t_k \rangle \in P^{\mathfrak{M}_1} \Leftrightarrow \langle H(t_1), \ldots, H(t_k) \rangle \in P^{\mathfrak{M}_2}$ for all k-arity predicates symbols P of \mathcal{L} and $t_1, \ldots, t_k \in |\mathfrak{M}_1|$.

i.e. $\langle t_1, \ldots, t_k \rangle$ has property $P^{\mathfrak{M}_1}$ iff $\langle H(t_1), \ldots, H(t_k) \rangle$ has property $P^{\mathfrak{M}_2}$.

Theorem 2.4 - Semantic Value of a Homomorphism

Let \mathcal{L} be a FOL, $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures and s be a variable assignment over \mathfrak{M}_1 .

Let H be a Homomorphism from \mathfrak{M}_1 to \mathfrak{M}_2 .

Then, $\forall t \in Tm_{\mathcal{L}}$

$$H \circ \overline{s}(t) = \overline{H \circ s}(t)$$

Definition 2.16 - *Isomorphism*

Let H be a Homomorphism.

H is an Isomorhpism if it is Bijective.

N.B. If there exists an Isomorphism between \mathfrak{M}_1 and \mathfrak{M}_2 they are said to be Isomorphic.

Definition 2.17 - Substructure

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

 \mathfrak{M}_1 is a Substructure of \mathfrak{M}_2 if

- $|\mathfrak{M}_1| \subset |\mathfrak{M}_2|$. And,
- The function $i(d) = d \ \forall \ d \in |\mathfrak{M}_1|$ is a Homomorphism

N.B. \mathfrak{M}_2 is called an Extension of \mathfrak{M}_1 .

Definition 2.18 - Elementary Equivalence

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

 \mathfrak{M}_1 and \mathfrak{M}_2 are Elementary Equivalent if

$$\mathfrak{M}_1 \vDash \sigma \Leftrightarrow \mathfrak{M}_2 \vDash \sigma \quad \forall \ \sigma \in Sent_{\mathcal{L}}$$

Proposition 2.16 - Isomorphic L-Structures are Elementary Equivalence

Definition 2.19 - Elementary Embedding

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

An Elementary Embedding of \mathfrak{M}_1 in \mathfrak{M}_2 is a function $H: |\mathfrak{M}_1| \to |\mathfrak{M}_2|$ st

$$\forall \phi \in Fml_{\mathcal{L}}, \forall \text{ variable assignments } s \text{ over } \mathfrak{M}_1 \quad \mathfrak{M}_1, s \vDash \phi \Leftrightarrow \mathfrak{M}_2, H \circ s \vDash \phi$$

 $N.B. H \circ s : Var \rightarrow |\mathfrak{M}_2|.$

N.B. If there exists an Elementary Embedding of \mathfrak{M}_1 in \mathfrak{M}_2 , then \mathfrak{M}_1 and \mathfrak{M}_2 are Elementary Equivalent.

Proposition 2.17 - An Isomorphism is an Elementary Embedding

Proposition 2.18 - An Elemenetary Embedding of \mathfrak{M}_1 in \mathfrak{M}_2 is an Injective Homomorphism from \mathfrak{M}_1 to \mathfrak{M}_2

N.B. The converse may not be true.

2.4 Definable

Definition 2.20 - Definable

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure and \mathcal{R} be a k-arity relation on $|\mathfrak{M}|$.

 \mathcal{R} is Definable in \mathfrak{M} if $\exists \phi \in Fml_{\mathcal{L}}$ where $FV(\phi) \subset \{x_1, \ldots, x_k\}$ and $\forall a_1, \ldots, a_k \in |\mathfrak{M}|$ it holds that

$$\langle a_1, \dots, a_k \rangle \in \mathcal{R} \quad \text{iff} \quad \mathfrak{M} \models \phi \llbracket a_1, \dots, a_k \rrbracket$$

N.B. \mathcal{R} is **not** a predicate and is **not** related to any symbols in \mathfrak{M} .

N.B. We say \mathcal{R} is defined by ϕ in \mathfrak{M} .

Proposition 2.19 - \mathcal{R} is defined by ϕ in \mathfrak{M} iff $\mathfrak{M}, s \models \phi \Leftrightarrow \langle s(x_1), \dots, s(x_k) \rangle \in \mathcal{R}$ for all variable assignments s over \mathfrak{M} .

3 Deductive Reasoning

Remark 3.1 - Structure of Deductive Mathematical Proofs

Deductive mathematical proofs take (roughly) the following structure

- i) Assumptions Axioms, definitions & proved theorems. N.B. These depend on the subject matter.
- ii) Deduction Steps.
- iii) Theorem The consequent of the deductions.

Remark 3.2 - Logical Axioms are assumptions in almost all mathemtical proofs

Definition 3.1 - Generalisation

Let L be a FOL & $\phi, \psi \in Fml_{\mathcal{L}}$. ϕ is a Generalisation of ψ if

$$\phi = \psi$$
;

Or, $\phi = \forall x_1, \dots, \forall x_n \psi$ for some $x_1, \dots, x_n \in \text{Var}$.

N.B. Every \mathcal{L} -Formula is a Generalisation of itself.

3.1 Hilbert Calculus

Definition 3.2 - Hilbert Calculus

Hilbert Calculus is a formal system of deductive logic, used in mathematical proofs.

Definition 3.3 - Logical Axioms of Hilbert Calculus, $\Lambda_{\mathcal{L}}$

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}}, t, t_0, t_1 \in Tm_{\mathcal{L}}$ and x is an arbitrary variable.

The Logical Axioms of Hilbert Calculus over \mathcal{L} comprises all Generalisations of the following forms of an \mathcal{L} -Formula:

H1
$$\phi \rightarrow (\psi \rightarrow \theta)$$
.

H2
$$(\phi \to (\psi \to \theta)) \to ((\phi \to \psi) \to (\phi \to \theta))$$
.

H3
$$(\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$
.

H4 $\forall x \phi \rightarrow [\phi] \frac{t}{x}$ where $SubSt(t, x, \phi)$.

H5
$$\phi \to \forall x \psi$$
 for $x \notin FV(\phi)$.

H6
$$[\forall x(\phi \to \psi)] \to [\forall x\phi \to \forall x\psi].$$

H7 $t \equiv t$.

H8 $t_0 \equiv t_1 \rightarrow \left([\phi] \frac{t_0}{x} \rightarrow [\phi] \frac{t_1}{x} \right)$ where $\operatorname{SubSt}(t_0, x, \phi)$ and $\operatorname{SubSt}(t_1, x, \phi)$.

N.B. This set is denoted as $\Lambda_{\mathcal{L}}$.

Remark 3.3 - Logical Axioms are formulae

Definition 3.4 - Deduction in Hilbert Calculus

Let \mathcal{L} be a FOL & $\Gamma \subset Fml_{\mathcal{L}}$ in Hilbert Calculus.

A Deduction, \mathcal{D} from Γ is a finite sequence, $\langle \phi_1, \ldots, \phi_n \rangle$, of \mathcal{L} -Formulae where $\forall k \in [1, n]$:

 $\phi_k \in \Lambda_{\mathcal{L}} \cup \Gamma$.

i.e. ϕ_k is assumed to be true.

or, $\exists i, j, k$ with i, j < k st $\phi_j = \phi_i \rightarrow \phi_k$. *i.e.* ϕ_k is true by implication.

N.B. We say \mathcal{D} is a *Deduction* of ϕ_n since ϕ_n is the last formula.

Proposition 3.1 - Deductions from Deductions

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}} \& \mathcal{D} := \langle \phi_1, \dots, \phi_n \rangle$ be a *Deduction* from Γ .

- $\forall m \leq n, \ \mathcal{D} \upharpoonright_m := \langle \phi_1, \dots, \phi_m \rangle$ is a *Deduction* of θ_m from Γ . *i.e.* All subsequences of a *Deduction* are *Deductions*.
- $\forall \Sigma \supset \Gamma$, \mathcal{D} is a *Deduction* of ϕ_n from Σ .
- For all deductions $\mathcal{D}' := \langle \psi_1, \dots, \phi_m \rangle$ from Γ

 $\mathcal{D} * \mathcal{D} = \langle \phi_1, \dots, \phi_n, \psi_1, \dots, \psi_m \rangle$ is a deduction of θ_m from Γ .

Definition 3.5 - Deducibility in Hilbert Style

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma \subset Fml_{\mathcal{L}}$.

 ϕ is *Deducible* from Γ if \exists a deduction of ϕ from Γ .

N.B. This is denoted $\Gamma \vdash \phi$ (If $\Gamma \equiv \emptyset$ then we write $\vdash \phi$).

Remark 3.4 - If $\Gamma \vdash \phi$ we say ϕ is a Theorem of Γ

Definition 3.6 - Modus Ponens

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If $\Gamma \vdash \psi$ is obtained from $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$ we say

 $\Gamma \vdash \phi$ is obtained by applying *Modus Ponens* to $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$.

N.B. "Modus Ponens" translates to "Putting the limit".

Theorem 3.1 - Monotonicity of Deducibility

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If $\Gamma \vdash \phi$ and $\Sigma \supset \Lambda$ then $\Sigma \vdash \phi$.

Theorem 3.2 - Generalisation Theorem

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \phi \text{ and } x \not\in FV(\Gamma)$$
 then $\Gamma \vdash \forall x \phi$ where $FV(\Gamma) := \bigcup_{\psi \in \Gamma} FV(\psi)$

Proposition 3.2 - Alternative Expressions of prev theorems

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

AX $\Gamma \vdash \phi \ \forall \ \phi \in \Gamma \cup \Lambda_{\mathcal{L}}$.

MP If $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$ then $\Gamma \vdash \psi$.

GEN If $\Gamma \vdash \phi$ and $x \notin FV(\Gamma)$ then $\Gamma \vdash \forall x \phi$.

3.2 Deduction Theorem

Theorem 3.3 - Law of Excluded Middle - $\forall \phi \in Fml_{\mathcal{L}}, \vdash \phi \lor \neg \phi$ Since $(\phi \lor \neg \phi) \Leftrightarrow (\neg \phi \to \neg \phi)$.

Theorem 3.4 - Deduction Theorem

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

$$\Gamma, \phi \vdash \psi \text{ iff } \Gamma \vdash (\phi \rightarrow \psi).$$

Theorem 3.5 - Transitivity of Conditional

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash (\phi \rightarrow \psi)$$
 and $\Gamma \vdash (\psi \rightarrow \theta)$ then $\Gamma \vdash (\phi \rightarrow \theta)$

Theorem 3.6 - \rightarrow *Exchange*

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash (\phi \to (\psi \to \theta))$$
 then $\Gamma \vdash (\psi \to (\phi \to \theta))$.

Theorem 3.7 - Ex Falso Quodlibet

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \phi \text{ and } \Gamma \vdash (\neg \phi) \text{ then } \Gamma \vdash \psi \ \forall \ \psi \in Fml_{\mathcal{L}}$$
.

N.B. "Ex Falso Quodlibet" translates to "From a false proposition".

Theorem 3.8 - Double Negation Elimination

Let \mathcal{L} be a FOL.

$$\forall \ \phi \in Fml_{\mathcal{L}}, \ \vdash ((\neg \neg \phi) \rightarrow \phi)$$

Theorem 3.9 - Double Negation Introduction

Let \mathcal{L} be a FOL.

$$\forall \phi \in Fml_{\mathcal{L}}, \vdash (\phi \to (\neg \neg \phi))$$

Theorem 3.10 - Contraposition

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

$$\forall \phi, \psi \in Fml_{\mathcal{L}}, \ \Gamma \vdash (\phi \to \psi) \text{ iff } \Gamma \vdash (\neg \psi \to \neg \phi).$$

Theorem 3.11 - Reductio ad Absurdum - 1

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

If
$$\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \neg \phi \vdash \psi \text{ and } \Gamma, \neg \phi \vdash \neg \psi \text{ then } \Gamma \vdash \phi.$$

N.B. "Reductio ad Absurdum" translates to "Reduction to absurdity".

Theorem 3.12 - Reductio ad Absurdum - 2

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

If
$$\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \phi \vdash \psi \text{ and } \Gamma, \phi \vdash \neg \psi \text{ then } \Gamma \vdash \neg \phi.$$

Theorem 3.13 - Left \forall Introduction

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

If
$$\Gamma$$
, $[\phi] \frac{t}{x} \vdash \psi$ and $SubSt(t, x, \phi)$ then Γ , $\forall x \phi \vdash \psi$.

Theorem 3.14 - $Right \ \forall \ Elimination$

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \forall x \phi$$
 and $SubSt(t, x, \phi)$ then $\Gamma \vdash [\phi] \frac{t}{x}$.

3.2.1 Facts

Proposition 3.3 - $\forall \phi, \psi \in Fml_{\mathcal{L}}, \vdash ((\phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \phi))$

Proposition 3.4 - $\vdash (\phi \rightarrow \theta) \rightarrow ((\psi \rightarrow \theta) \rightarrow ((\phi \lor \psi) \rightarrow \theta))$

Proposition 3.5 - \vdash $((\phi \land \psi) \rightarrow \phi)$

Proposition 3.6 - $\vdash ((\phi \land \psi) \rightarrow \psi)$

Proposition 3.7 - $\vdash (\phi \rightarrow (\psi \rightarrow (\phi \land \psi)))$

Theorem 3.15 - Left \wedge Introduction

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi, \theta \in Fml_{\mathcal{L}}$.

- If $\Gamma, \phi \vdash \theta$ then $\Lambda, (\phi \land \psi) \vdash \theta$.
- If $\Gamma, \psi \vdash \theta$ then $\Lambda, (\phi \land \psi) \vdash \theta$.

Theorem 3.16 - $Right \wedge$

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

Introduction If $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$ then $\Gamma \vdash (\phi \land \psi)$.

Elmination If $\Gamma \vdash (\phi \land \psi)$ then $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$.

Proposition 3.8 -

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

- If $\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \neg \phi \vdash (\psi \land \neg \psi) \text{ then } \Gamma \vdash \phi.$
- If $\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \phi \vdash (\psi \land \neg \psi) \text{ then } \Gamma \vdash \neg \phi.$

Proposition 3.9 - If t, x, ϕ then $\vdash ([\psi] \frac{t}{x} \to \exists x \phi)$

Proposition 3.10 - *If* $x \notin FV(\phi)$ *then* $\vdash (\exists x \phi \rightarrow \phi)$

Proposition 3.11 - $\vdash (\forall x(\phi \to \psi) \to (\exists x\phi \to \exists x\psi))$

Proposition 3.12 - \vdash $(t_0 \equiv t_1) \rightarrow (t_1 \equiv t_0)$

Proposition 3.13 - \vdash $(t_0 \equiv t_1) \leftrightarrow (t_1 \equiv t_0)$

Proposition 3.14 - \vdash $(t_0 \equiv t_1) \to ((t_1 \equiv t_2) \to (t_0 \equiv t_2))$

Proposition 3.15 - $\{\langle t_0, t_1 \rangle \in Tm_{\mathcal{L}} \times Tm_{\mathcal{L}} : \Gamma \vdash (t_0 \equiv t_1)\}$ is an Equivalence Relation.

3.3 Completeness & Soundness Theorems

Theorem 3.17 - Every Logical Axiom is logically true Let \mathcal{L} be a FOL.

$$\forall \lambda \in \Lambda_{\mathcal{L}}, \models \lambda \ (i.e. \ \emptyset \models \lambda)$$

Theorem 3.18 - Soundess Theorem Let \mathcal{L} be a FOL.

$$\forall \ \Gamma \subset Fml_{\mathcal{L}}, \ \forall \ \phi \in Fml_{\mathcal{L}} \ \text{if} \ \Gamma \vdash \phi \ \text{then} \ \Gamma \vDash \phi.$$

Equivalently

 $\forall \ \Gamma \subset Fml_{\mathcal{L}} \text{ if } \Gamma \text{ is } Satisfiable, \text{ then } \Gamma \text{ is } Consistent.$

 ${\bf Theorem~3.19~-~} {\it Completeness~Theorem}$

Let \mathcal{L} be a FOL.

$$\forall \ \Gamma \subset Fml_{\mathcal{L}}, \ \phi \in Fml_{\mathcal{L}} \ \text{if} \ \Gamma \vDash \phi \ \text{then} \ \Gamma \vdash \phi$$

$$\iff \forall \ \Gamma \subset Fml_{\mathcal{L}}, \ \text{if} \ \Gamma \ \text{is consistent, then} \ \Gamma \ \text{is satisfiable}.$$

This is the coverse of the *Soundess Theorem* (**Theorem 3.17**).

Remark 3.5 - The Completeness Theorem makes Hilbert Calculus unnecessary. Proving $(\vdash \phi) \leftrightarrow (\neg \neg \phi)$ is not obvious but $(\models \phi) \leftrightarrow (\neg \neg \phi)$ is obvious.

Theorem 3.20 - Restricted Completeness Theorem

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

If Γ is Consistent and $FV(\Gamma)$ is finite then

 \exists a model \mathfrak{M}, s of Γ st $|\mathfrak{M}|$ is Countable

Remark 3.6 - Combining Soundness & Completeness Theorem

Let \mathcal{L} be a FOL.

As a result of the Soundness Theorem and Completeness Theorem we have that

$$\forall \ \Gamma \subset Fml_{\mathcal{L}} \text{ and } \phi \in Fml_{\mathcal{L}}, \ \Gamma \vDash \phi \text{ iff } \Gamma \vdash \phi$$

This means that logical implication and deducibility are equivalent.

Definition 3.7 - Equivalence Relation \sim_{Γ}

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $t, t' \in Tm_{\mathcal{L}}$.

We define the relation \sim_{Γ} as

$$t \sim_{\Gamma} t' : \Leftrightarrow \Gamma \vdash (t \equiv t')$$

N.B. This is an equivalence relation by **Proposition 3.15**.

Proposition 3.16 - Equivalence Relation for Functions and Predicates

Let \mathcal{L} be a FOL, f be a function symbol of arity n, P be a predicate symbol of arity n and $t_1, \ldots, t_n, t'_1, \ldots, t'_n \in Tm_{\mathcal{L}}$.

Then

$$t_1 \sim_{\Gamma} t'_1, \dots, t_n \sim_{\Gamma} t'_n \Rightarrow f(t_1, \dots, t_n) \sim_{\Gamma} f(t'_1, \dots, t'_n) \\ \Rightarrow (\Gamma \vdash P(t_1, \dots, t_n) \Leftrightarrow \Gamma \vdash P(t'_1, \dots, t'_n))$$

Definition 3.8 - Canonical Model \mathfrak{M}^{Γ} and Canonical Variable Assignment s^{Γ}

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $t_1, \ldots, t_n \in Tm_{\mathcal{L}}$.

The Canonical Model \mathfrak{M}^{Γ} and Canonical Variable Assignment s^{Γ} over \mathfrak{M}^{Γ} are defined as

$$|\mathfrak{M}^{\Gamma}| := \{[t]_{\sim_{\Gamma}} : t \in Tm_{\mathcal{L}}\}$$

$$c^{\mathfrak{M}^{\Gamma}} := [c]_{\sim_{\Gamma}}$$

$$f^{\mathfrak{M}^{\Gamma}}([t_{1}]_{\sim_{\Gamma}}, \dots, [t_{n}]_{\sim_{\Gamma}}) := [f(t_{1}, \dots, t_{n})]_{\sim_{\Gamma}}$$

$$P^{\mathfrak{M}^{\Gamma}} := \{\langle [t_{1}]_{\sim_{\Gamma}}, \dots, [t_{n}]_{\sim_{\Gamma}} \rangle : \Gamma \vdash (t_{1}, \dots, t_{n})\}$$

$$s^{\Gamma}(x) := [x]_{\sim_{\Gamma}}$$

Remark 3.7 - $|\mathfrak{M}^{\Gamma}|$ is Countable

Proposition 3.17 - Properties of Canonical Model

Let \mathcal{L} be a FOL and $\Gamma \subseteq Fml_{\mathcal{L}}$ (not necessarily Maximally Consistent or a Henkin).

- $\forall t \in Tm_{\mathcal{L}}, \ \overline{s^{\Gamma}}(t) = [t]_{\sim_{\Gamma}}$
- \forall atomic formulae $\phi \in Fml_{\mathcal{L}}, \ \mathfrak{M}^{\Gamma}, s^{\Gamma} \vDash \phi \text{ iff } \Gamma \vdash \phi$

3.4 Consequences & Applications of Completeness Theorem

Theorem 3.21 - Downward Löwenheim-Skolem Theorem

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

If Γ is Satisfiable then Γ has a Countable model \mathfrak{M} .

Theorem 3.22 - Compactness Theorem

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

Then Γ is Satisfiable iff every finite subset $\Delta \subseteq \Gamma$ is Satisfiable.

Definition 3.9 - Theory of M

Let \mathcal{L} be a FOL and \mathfrak{M} be an \mathcal{L} -Strucutre.

The *Theory of* \mathfrak{M} is defined as

$$Th(\mathfrak{M}) := \{ \phi \in Sent_{\mathcal{L}} : \mathfrak{M} \vDash \phi \}$$

Definition 3.10 - Consequences of Γ

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Strucutre and $\Gamma \subset Fml_{\mathcal{L}}$.

The Consequences of Γ is defined as

$$Cn(\Gamma) := \{ \phi \in Sent_{\mathcal{L}} : \Gamma \vdash \phi \}$$

4 Gödel's Incompleteness Theorem

Remark 4.1 - In this chapter we focus on a specific language $\mathcal{L}_{\mathbb{N}} = \{0, S, +, \cdot, E, <\}$ This is just for simplicity's sake, everything applies to many other languages.

Definition 4.1 - Gödel Numbering

Let \mathcal{L} be a FOL.

A Gödel Numbering of \mathcal{L} is a 'Computable Encoding' of the symbols $\mathcal{A}_{\mathcal{L}}$, expressions $\mathcal{A}_{\mathcal{L}}^*$ and finite sequences of expressions $(\mathcal{A}_{\mathcal{L}}^*)^*$ of \mathcal{L} to natural numbers \mathbb{N} .

Definition 4.2 - Gödel Numbers for Symbols, $\#(\cdot): A_{\mathcal{L}_{\mathbb{N}}} \to \mathbb{N}$

This is an injection $\#: \mathcal{A}_{\mathcal{L}_{\mathbb{N}}} \to \mathbb{N}$

Logical Symbols	Non-Logical Symbols
$(\mapsto 2$	$0 \mapsto 1$
$\rightarrow 4$	$S \mapsto 3$
$, \mapsto 6$	$+ \mapsto 5$
$\equiv \mapsto 8$	$\cdot \mapsto 7$
$\neg \mapsto 10$	$E \mapsto 9$
$\rightarrow \mapsto 12$	$< \mapsto 11$
$\forall \mapsto 14$	
$v_i \mapsto 16 + 2i$	

Definition 4.3 - Gödel Numbers for Expressions, $\#^*(\cdot): A_{\mathcal{L}_{\mathbb{N}}}^* \to \mathbb{N}$ Let \mathcal{L} be a FOL and $e_1, \ldots, e_n \in \mathcal{A}_{\mathcal{L}}$. Define

$$\#^*(\langle e_1, \dots, e_n \rangle) = p_1^{\#(e_1)+2} \cdot \dots \cdot p_n^{\#(e_n)+2}$$

where p_i is the i^{th} prime number.

Definition 4.4 - Gödel Numbers for Sequences of Expressions, $\#^{**}(\cdot): A_{\mathcal{L}_{\mathbb{N}}}^{**} \to \mathbb{N}$ Let \mathcal{L} be a FOL and $s_1, \ldots, s_n \in \mathcal{A}_{\mathcal{L}}^*$. Define

$$\#^{**}(\langle s_1,\ldots,s_n\rangle)=p_2^{\#^*(s_1)}\cdot\cdots\cdot p_{n+1}^{\#^*s_n}$$

Remark 4.2 - The ranges of #, #* & #** are disjoint Further, $\# \cup \#$ * $\cup \#$ ** is still injective.

Definition 4.5 - $\#R: \mathbb{N}^m$

Let $R \subset \mathbb{N}^m$ be a relation on $\mathcal{A}_L, \mathcal{A}_L^*$ or $(\mathcal{A}_L^*)^*$. Then

$$\#R := \{ \langle \#(x_1), \dots, \#(x_m) : \langle x_1, \dots, x_m \rangle \in R \}$$

Definition 4.6 - $\#F(\cdot): \mathbb{N}^m \to \mathbb{N}$

Let $F: \mathbb{N}^m \to \mathbb{N}$ be a suntactic operation on $\mathcal{A}_L, \mathcal{A}_L^*$ or $(\mathcal{A}_L^*)^*$. Then

$$\#F(\#(x_1),\ldots,\#(x_m)) := \#(F(x_1,\ldots,x_m))$$

Definition 4.7 - *Total Recursive Functions*

The class of *Total Recursive Functions* on \mathbb{N} is defined by induction.

Base Functions The following are Recursive Function

- Successor function S(n) := n + 1
- Addition +
- Multiplication ·
- Exponential function $E(n,m) := n^m$
- Characteristic function of equality relation $\chi_{=}(n_1, n_2) = \begin{cases} 0 & \text{if } n_1 = n_2 \\ 0 & \text{otherwise} \end{cases}$
- Characteristic function of less-than relation $\chi_{<}(n_1, n_2) = \begin{cases} 0 & \text{if } n_1 < n_2 \\ 0 & \text{otherwise} \end{cases}$
- Constant function $c_m(n) =: m$
- Projection functions $I_i^m(n_1,\ldots,n_m) := n_i$

Substitution Let $G: \mathbb{N}^k \to \mathbb{N}$ and $H_1L\mathbb{N}^m \to \mathbb{N}, \dots, H_k: \mathbb{N}^m \to \mathbb{N}$ be Recursive Function. Then

$$F(n_1, ..., n_m) := G(H_1(n_1, ..., n_m), ..., H_k(n_1, ..., n_m))$$
 is recursive.

Minimalisation Let $G: \mathbb{N}^{m+1} \to \mathbb{N}$ be a Recursive Function st $\forall n_1, \dots, n_m \in \mathbb{N} \exists n \in \mathbb{N} \text{ st } G(n_1, \dots, n_m, n) = 0$. Define $\mu[G]: \mathbb{N}^m \to \mathbb{N}$ as

$$\mu[G](n_1,\ldots,n_m) = \min\{k : G(n_1,\ldots,n_m,k) = 0\}$$

 $\mu[G]$ is Recursive.

Remark 4.3 - A relation R is Recursive if χ_R is Recursive

Notation 4.1 -

Let $R \subset \mathbb{N}^{m+1}$ be a relation.

If $\forall n_1, \ldots, n_m \in \mathbb{N} \exists n \text{ st } \langle n_1, \ldots, n_m, n \rangle \in R$ we denote $\mu[\chi_R]$ by $\mu[R]$.

N.B.
$$\mu[R]: \mathbb{N}^m \to \mathbb{N}$$
 and $\mu[R](n_1, \dots, n_{m+1}) = \min\{\langle n_1, \dots, n_m, l \rangle \in R\}.$

Remark 4.4 - If R is Recursive then $\mu[R]$ is Recursive

Theorem 4.1 - Church-Turing Thesis

- A function $F: \mathbb{N}^m \to \mathbb{N}$ has an effective computation procedure (which effectively gives the value of F on each given arguments $n_1, \ldots, n_m \in \mathbb{N}$) iff F is Recursive.
- A relation $R \subset \mathbb{N}^m$ is effectively deciable (*i.e.* has a decision procedure which determines whether or not n_1, \ldots, n_m satisfy $R(n_1, \ldots, n_m)$) iff R is Recursive.

Remark 4.5 -

A syntactic relation R or operation F is effective deciable $\underline{\text{iff}} \# R$ or # F is Recursive, respectively. **Definition 4.8** - Representation

Let \mathcal{L} be a FOL and $R \subset \mathbb{N}^m$ be an m-arity relation.

We say $\phi \in Fml_{\mathcal{L}}$ Represents R in $\Gamma \subset Fml_{\mathcal{L}_{\mathbb{N}}}$ when \exists distinct x_1, \ldots, x_m st

- $FV(\phi) \subset \{x_1, \dots, x_m\}.$
- $\forall n_1, \ldots, n_m \in \mathbb{N}$, if $R(n_1, \ldots, n_m)$ holds then $\Gamma \vdash [\phi] \frac{\overline{n_1, \ldots, n_m}}{x_1, \ldots, x_m}$
- $\forall n_1, \ldots, n_m \in \mathbb{N}$, if $R(n_1, \ldots, n_m)$ does <u>not</u> hold then $\Gamma \vdash [\neg \phi] \frac{\overline{n_1, \ldots, n_m}}{x_1, \ldots, x_m}$

R is Representable in $\Gamma \subset Fml_{\mathcal{L}}$ when R is Represented by some $\phi \in \Gamma$.

Definition 4.9 - Functional Representation

Let $F: \mathbb{N}^m \to \mathbb{N}$ and $\phi \in Fml_{\mathcal{L}}$.

F is Functionally Represented by ϕ where \exists distinct x_1, \ldots, x_m, z st

- $FV(\phi) \subset \{x_1, \dots, x_m, z\}.$
- $\forall n_1, \dots, n_m \in \mathbb{N} \ A_E \vdash \forall z (\phi(\overline{n_1}, \dots, \overline{n_m}, z)) \leftrightarrow (z \equiv \overline{F(n_1, n_m)}).$ N.B. $F(n_1, \dots, n_m)$ denotes $\underbrace{S \dots S}_{F(\vec{n}) \text{times}} 0.$

4.1 Theory A_E of Arithmetic with Exponentiation

Definition 4.10 - Theory A_E of Arithmetic with Exponentiation The axiom set A_E comprises the following axioms

- (S1) $\forall x \ S(x) \not\equiv 0$
- (S2) $\forall x \forall y \ (S(x) \equiv S(y) \rightarrow (x \equiv y))$
- (L1) $\forall x \forall y \ (x < S(y) \leftrightarrow (x < y \land x \equiv y))$
- (L2) $\forall x \neg (x < 0)$
- (L3) $\forall x \forall y \ (x < y \land x \equiv y \land y < x)$
- (A1) $\forall x \ x + 0 \equiv x$
- (A2) $\forall x \forall y \ x + S(y) \equiv S(x+y)$
- (M1) $\forall x \ x \cdot 0 \equiv 0$

- (M2) $\forall x \forall y \ x \cdot S(y) \equiv (x \cdot y) + x$
- (E1) $\forall x \ E(x,0) \equiv S(0)$
- (E2) $\forall x \forall y \ E(x, S(y)) \equiv E(x, y) \cdot x$

Theorem 4.2 - $\mathfrak{N} \vDash A_E$. Hence, if $A_E \vdash \phi$ then $\mathfrak{N} \vDash \phi$

Proposition 4.1 -

Let $R \subset \mathbb{N}^m$.

If $\phi \in Fml_{\mathcal{L}_{\mathbb{N}}}$ Represents R in A_{E} then ϕ defines R in \mathfrak{N} .

Hence, if a relation over \mathbb{N} is Representable in A_E , then it is definable in \mathfrak{N} .

4.2 Fixed-Point Lemma

TODO from here if happy with rest

0 Appendix

0.1 Standard Models

Definition 0.1 - Standard Model of Arithmetic Let language of arithmetic is $\mathcal{L}_{\mathbb{N}} := \{\overline{<}, S, \overline{+}, \overline{\cdot}, E, \overline{0}\}$ where

- $\overline{<}$ is a binary relation symbol.
- S is a unary function symbol.
- $\overline{+}, \overline{\cdot}, E$ are binary function symbols.
- $\overline{0}$ is the constant symbol for $0 \in \mathbb{N}$.

Let \mathfrak{M} be a $\mathcal{L}_{\mathbb{N}}$ -Structure with the domain $|\mathfrak{M}| = \mathbb{N}$ defined as

 $\overline{<}$ is interpreted as the usual 'less-than' relation on \mathbb{N} .

i.e.
$$\langle x, y \rangle \in \overline{<}^{\mathfrak{M}} \Leftrightarrow x < y$$

- S is interpreted as the successor function '+1' on \mathbb{N} .

$$i.e.S^{\mathfrak{M}}(n) = n+1$$

- $\overline{+}$, $\overline{\cdot}$, E are interpreted as the usual 'addition', 'multiplication' and 'exponentitation' on \mathbb{N} respectively.

$$i.e.E^{\mathfrak{M}}(n,m) = n^m$$

- $\overline{0}$ is interpreted as the natural numbers 0.

0.2 Notation

Proposition 0.1 - Formal Notation

Notation	Use
$\langle a_1,\ldots,a_n\rangle$	A string of length n
$\langle a,b \rangle$	Two consecutive strings
a * b	Concatenation of two strings
\mathcal{A}^*	Set of all strings over alphabet \mathcal{A}
$\mathcal{A}_{\mathcal{L}}$	Alphabet of language \mathcal{L}
$Tm_{\mathcal{L}}$	Set of \mathcal{L} -Terms of language \mathcal{L}
$Fml_{\mathcal{L}}$	Set of \mathcal{L} -Formulae of language \mathcal{L}
Var	Set of variables in the alphabet??
$Sent_{\mathcal{L}}$	Set of \mathcal{L} -Sentences of language \mathcal{L}
\rightarrow	Implication
\leftrightarrow	Equivalence
V	Or
\land	And
\forall	For all
3	There exists
∃!	There exists a unique
	Syntactic +, has no semantic value.
	signals this for all symbols
:⇔	Defined to have same logical value (true or false)
$\Phi \vDash \phi$	$\phi \in Fml_{\mathcal{L}}$ is a logical consequence of $\Phi \subseteq Fml_{\mathcal{L}}$.
$\models \phi$	$\phi \in Fml_{\mathcal{L}}$ is logically valid.
$\mathfrak{M}_1\cong\mathfrak{M}_2$	Structures \mathfrak{M}_1 and \mathfrak{M}_2 are isomorphic.
$\mathfrak{M} \vDash \phi[\![a_1,\ldots,a_n]\!]$	ϕ is true for the objects $a_1, \ldots, a_n \in \mathfrak{M} $.
$\Lambda_{\mathcal{L}}$	Logical axioms for Hilbert Calculus.
$\Gamma \vdash \phi$	ϕ is deducible from Γ .
$t \sim_{\Gamma} t'$	$t \equiv t'$ is deducible from Γ .
$[t]_{\sim_{\Gamma}}$	Equivalence class of t modulo \sim_{Γ} .
χ_R	Characteristic Equation of Relation R .
$\mu[G]$	Minimalisation of recursive function G .
$\#(\cdot), \#^*(\cdot), \#^**(\cdot)$	Gödel Number injections.

Proposition 0.2 - Convential Notation

Notation	Use
\mathcal{A}	Alphabet
\mathcal{L}	Language (First-Order)
t	Term
ϕ, ψ, \dots	Formulae (Lower case greek).
Λ, Γ, \dots	Sets of Formulae (Upper case greek).
$x \circ y$	$\circ(x,y)$ where \circ is a function or predicate
$c \not\prec d$	$\neg \prec (c,d)$
\mathfrak{M}	$\mathcal{L} ext{-Structure}$
$Th(\mathfrak{M})$	Theory of \mathfrak{M}
$Cn(\Gamma)$	Consequences of Γ
I	Interpretaion from an \mathcal{L} -Structure
$D \text{ or } \mathfrak{M} $	Domain of an \mathcal{L} -Structure
$P^{\mathfrak{M}}$	$\Im(P)$
$f^{\mathfrak{M}}$	$\Im(f)$
$c^{\mathfrak{M}}$	$\Im(c)$
$\mathfrak{M} \vDash \phi$	$\mathfrak{M}, s \vDash \phi \ \forall \ s \text{ over } \mathfrak{M} \text{ since } \phi \text{ is an } \mathcal{L}\text{-sentence}.$
$t^{\mathfrak{M}}$	$d \in \mathfrak{M} $ st $\bar{s}(t) = d \forall s$ over \mathfrak{M} since t is a Closed \mathcal{L} -Term.
$\mathtt{SubSt}(t,x,\phi)$	$t \in Tm_{\mathcal{L}}$ is substitutable for $x \in Var$ in $\phi \in Fml_{\mathcal{L}}$.
$\Gamma, \phi \vdash \psi$	$\Gamma \cup \{\phi\} \vdash \psi$.
$\Gamma, \phi \vDash \psi$	$\Gamma \cup \{\phi\} \vDash \psi.$

0.3 Definitions

Definition 0.2 - Arity

The Arity of a function is the number of arguments it takes.

N.B. Unary, Binary, Ternary, Quaternary, ...

Definition 0.3 - Countable Set

Let X be a set.

X is Countable if

$$\exists \ f: \mathbb{N} \to X \ \text{st} \ f \ \text{is surjective}.$$
 Or
$$\exists \ f: X \to \mathbb{N} \ \text{st} \ f \ \text{is injective}.$$

Definition 0.4 - Predicate

A *Predicate* is an expression over a set of variables and returns a logical conclustion (*i.e.* True or False).

N.B. Practically a function from set of variables to true or false.

0.4 Indentities

Theorem 0.1 - Complex Connectives & Quantifiers in terms of FOL

Term	In FOL
$\exists x, P(x)$	$\neg(\forall x, \neg P(x))$
$P \lor Q$	$(\neg P) \to Q$
$P \wedge Q$	$\neg (P \rightarrow \neg Q)$
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$ $\Leftrightarrow \neg((P \to Q) \to \neg(Q \to P))$

0.5 Techniques

Proposition 0.3 - Induction on Terms

Proposition 0.4 - Induction on Formulae