Seat No.: _____

Enrolment No.

Marks

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 EXAMINATION - WINTER 2021

Subject Name: Mathematics - 2

Time:10:30 AM TO 01:30 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) Find $L\{t^3e^{-4t}\}$. 03 (b) Find $L^{-1}\{\frac{6e^{-2s}}{s^2+4}\}$.

(c) Verify Green's theorem for the function $\overline{F} = (x + y)i + 2xyj$ and C is the rectangle in the xy-plane bounded by x = 0, y = 0, x = a, y = b.

Q.2 (a) Find $L\{te^{4t}\cos 2t\}$.

(b) Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$.

(c) (i) Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point (2,1,3) in the direction of a = (1,0,-2).

(ii) If $\overline{F} = (2y+3)i + xzj + (yz-x)k$, evaluate $\int_C \overline{F}.d\overline{r}$ along the path **04**

C: $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.

OR

(c) Solve in series 3xy''+2y'+y=0 using Frobeneous method. **07**

Q.3 (a) Find the arc length of the curve (semi-circular) 03 $x(t) = \cos t$, $y(t) = \sin t$, z(t) = 0; $0 \le t \le \pi$.

(b) A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that \overline{F} is irrotational and find its scalar potential.

(c) Use divergence theorem for $\overline{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ over the surface of rectangular parallelepiped, $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ to evaluate $\iint_S \overline{F} \cdot \hat{n} ds$.

OR

Q.3 (a) Solve $\frac{dy}{dx} - y \cot x = 2x \sin x$.

(b) Solve $y'' + y' - 12y = e^{6x}$.

Solve $\frac{dy}{dt} - 4y = 2e^{2t} + e^{4t}$ by Laplace transformation.

07

Q.4 (a) Solve
$$\frac{dy}{dx} + \frac{y}{x} = y^3$$
.
(b) Solve $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$.
(c) Solve $y" + 9y' = 2x^2$ using the method of undetermined coefficients.
OR

Q.4 (a) Solve $4xp^2 = (3x - a)^2$.
(b) Solve $x^2y" + xy' - 4y = x^2$.
(c) (i) Express $2 - 3x + 4x^2$ in terms of Legendre's polynomial.
(ii) Find ordinary and singular points of $2x^2y" + 6xy' + (x + 3)y = 0$.

Q.5 (a) Solve $(y - px)(p - 1) = p$.
(b) Solve $(D^3 + D)y = \cos x$.
(c) Solve $y" + 4y = \sec 2x$ by using the method of variation of parameters.

OR

Q.5 (a) Solve $(D^3 - 6D^2 + 11D - 6)y = 0$.
(b) Solve $(2x + 3)^2y" - 2(2x + 3)y' - 12y = 6x$.
(c) Find the series solution of $(1 + x^2)y" + xy' - 9y = 0$ near the ordinary point $x = 0$.
