

## **PROBLÉMATIQUE**

- Association de protection des animaux
- Augmentation de leur nombre de pensionnaires
- Mission: Algorithme de classification
  d'images de chien en fonction de la race
- Données: Stanford Dogs Dataset



#### SOMMAIRE

- Exploration des données
- Pré-processing des images
- Classification d'images avec SIFT
- Construction d'un réseau CNN
- CNN et transfer learning
- Conclusion

# I. EXPLORATION DES DONNÉES

- 20580 photos de chiens, 119 races différentes
- Entre 150 et 300 photos par race
- Photos couleurs avec dimensions différentes
- Suppression d'une photo disposant d'une couche Alpha













- Réduction de la taille des images
  - Réduction des coûts mémoire et calcul
  - Diminution qualité image
- Passage en noir et blanc
  - Pas d'apportd'information de la couleur







- Exposition/Luminosité: répartition des valeurs des pixels sur la plage de valeurs
- Bonne exposition:
   répartition homogène
   sur toute la plage de
   valeurs





- Réduction du bruit: corriger la valeur des pixels
- Dé-bruitage de Bergman: Minimisation de la variation totale des valeurs de pixels de l'image

- Data Augmentation: création superficielle d'images à partir d'une seule image
- Changement orientation, échelle, centrage







- Détection de features: points d'intérêts et caractéristiques d'une image
- Description des features: vecteurs de représentation
- Création de visual words: clustering sur les features
- Construction de bag of features: matrice de comptage des visual words dans une image





### **RÉSULTATS SIFT**

- Classification avec méthode SVC multiclasses
- Visualisation des résultats avec matrice de confusion
- Pas de calcul d'accuracy car pas modèle final retenu
- Résultats correctes mais uniquement 3 races assez différentes



## IV. CONSTRUCTION D'UN RÉSEAU CNN

- Extraction et description des features automatiques
- Structure en deux blocs principaux
  - Extraction, description des features
  - Classification
- Optimisation d'hyperparamètres
  - Fonction d'activation
  - Fonction d'optimisation
  - Nombre d'epochs





## OPTIMISATION GRAPHIQUE





### **RÉSULTATS CNN**

- Séparation jeux entraînement/test
- Visualisation des résultats avec matrice de confusion
- Accuracy:
  - 0.69 avec 3 races différentes
  - 0.28 avec 20 races
- Résultats insuffisants





#### **MODÈLE RETENU**

- Xception avec fine-tuning partiel
- Test de l'apport de la data augmentation:
  - Résultats similaires
  - Erreur plus faible avec
- Xception avec fine-tuning partiel et data augmentation
- Entraîné sur Kaggle avec toutes
  les photos: 5h

| Temps entraînement | accuracy train            | accuracy val                           | accuracy test                |
|--------------------|---------------------------|----------------------------------------|------------------------------|
| 1379.809457        | 1.0                       | 0.638734                               | 0.661699                     |
| 513.711118         | 0.746157                  | 0.078212                               | 0.117735                     |
| 742.636825         | 0.993945                  | 0.828678                               | 0.862891                     |
|                    | 1379.809457<br>513.711118 | 1379.809457 1.0<br>513.711118 0.746157 | 513.711118 0.746157 0.078212 |



### VI. CONCLUSION

- Nouvelles compétences
  - Travail sur images
  - SIFT
  - Deep learning
- Difficultés
  - Limites liées aux temps de calcul
- Pistes d'amélioration(avec ressources suffisantes)
  - Modèle SIFT optimisé
  - Travail de recadrage des photos