

AOD409/AOI409

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD/I409 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and low gate resistance. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications.

Features

$$\begin{split} &V_{DS}\left(V\right) = -60V \\ &I_{D} = -26A\left(V_{GS} = -10V\right) \\ &R_{DS(ON)} < 40m\Omega\left(V_{GS} = -10V\right) \textcircled{20} -20A \\ &R_{DS(ON)} < 55m\Omega\left(V_{GS} = -4.5V\right) \end{split}$$

UIS TESTED! Rg,Ciss,Coss,Crss Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	-60	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _C =25°C		-26					
Current ^G	T _C =100°C	I _D	-18	A				
Pulsed Drain Current ^C		I _{DM}	-60	\neg				
Avalanche Current ^C		I _{AR}	-26	Α				
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	33.8	mJ				
	T _C =25°C	В	60	W				
Power Dissipation ^B	T _C =100°C	$-P_{D}$	30	T vv				
	T _A =25°C	В	2.5	10/				
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.6	W				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient ^A	t ≤ 10s Steady-State R _{θJA}		16.7	25	°C/W				
Maximum Junction-to-Ambient ^A			40	50	°C/W				
Maximum Junction-to-Case ^C	Steady-State	$R_{ heta JC}$	1.9	2.5	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC P	ARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-48V, V _{GS} =0V		-0.003	-1 -5	μА
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.2	-1.9	-2.4	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-60			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-20A		32	40	mΩ
		T _J =125°C		53		1115.2
		V _{GS} =-4.5V, I _D =-20A		43	55	mΩ
9 _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-20A		32		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.73	-1	V
Is	Maximum Body-Diode Continuous Current				-30	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			2977	3600	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-30V, f=1MHz		241		pF
C _{rss}	Reverse Transfer Capacitance			153		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		2	2.4	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			44	54	nC
$Q_g(4.5V)$	Total Gate Charge	V _{GS} =-10V, V _{DS} =-30V, I _D =-20A		22.2	28	nC
Q_{gs}	Gate Source Charge	Vgs- 10 V, Vbs- 00 V, 1b- 20/1		9		nC
Q_{gd}	Gate Drain Charge			10		nC
t _{D(on)}	Turn-On DelayTime			12		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-30V, R_L =1.5 Ω ,		14.5		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		38		ns
t _f	Turn-Off Fall Time			15		ns
t _{rr}	Body Diode Reverse Recovery Time	I_F =-20A, dI/dt=100A/ μ s		40	50	ns
Q_{rr}	Body Diode Reverse Recovery Charge I _F =-20A, dl/dt=100A/μs			59		nC

A: The value of R qJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\rm A}$ =25°C. The Power dissipation PDSM is based on R $_{\rm 0JA}$ and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB allows it.

- B. The power dissipation PD is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C: Repetitive rating, pulse width limited by junction temperature T $_{\text{J(MAX)}}$ =175°C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R qJC and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 ms pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T $_{J(MAX)}$ =175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\rm A}$ =25°C. The SOA curve provides a single pulse rating.
- *This device is guaranteed green after data code 8X11 (Sep 1 $^{\rm ST}$ 2008). Rev 5: Jan 2011

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

6

-V_{GS} (Volts)

Figure 5: On-Resistance vs. Gate-Source Voltage

8

10

-V_{SD} (Volts)

Figure 6: Body-Diode Characteristics

2

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability

Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

