NASA Low-Emissions Research

(And Things Related to Alternative Fuels)

Clarence T. Chang, Ph.D.

NASA Glenn Research Center Cleveland, Ohio, USA

CRC Aviation Meeting
May 1, 2016
Alexandria, Virginia

Contents

- Current work
 - ERA low-NOx fuel-flexible combustors Finished
 - NJFCP LBO test
 - ACCESSS II Finished
 - APU test
 - MIT upper atmosphere modeling
- Coming up...
 - Woodward N+3
 - Direct particulate extraction from combustor

~50% NOx Reduction Every 15 Years

ERA Fuel-Flexible Low-Emissions Combustors

-75% CAEP /6 LTO NOx, 50/50 JP/Rentech blend

GE TAPS-X 5-cup Sector Combustor

P&W ACS Annular Combustor

ERA LTO NOx Reduction Goal Met!

Superior Cruise-Level Emissions Advantage

From Staged Partially-Premixed Lean-Burn Combustor

NOx flight cycle comparison (GE TAPS vs. traditional RQL combustor)

GE Aviation

Fuel Composition Effect on Lean-blowout (LBO) and Ignition Characteristics in a Lean-Burn Combustor

Q: Why test fuels in a Lean-Burn Combustor?

Where Do Pollutants Come From?

Lean-Burn: A Simpler Platform for Testing Fuels

Complex aerodynamic & chemical processes

- Makes little soot
- Very limited residence time
- Fast F/A mixing
- Ignition delay shows up
- •Kinetics rate show up

Glenn Research Center

LBO / Ignition of A-2 (JP) vs C-1 (ATJ-IP, 2 comp.) _Nation Jet Fuel Combustion Program

- •9-point Lean Direct Injection
- •1-inch spacing
- 4 Fueling stages
- Center-injector pilot
- •Flow throttling boundary conditioning

CO Key Indicator for LBO

A-2 vs C-1 at 575 °F 160 psia

<u>Discernible LBO Difference</u> Between A-2 and C-1

Discernible NOx Difference

A-2 vs C-1 (ATJ-IP) at T3=700 °F P3=160 psia

National Jet Fuel Combustion Program

A-2 vs. C-1 (GEVO ATJ) in LDI hardware

LBO Adjusted Equivalence Ratio			
P3, psi (bar)	T3,°F (degC)	A-2	C-1
100 (7)	575 (300)	0.362	_
160 (11)	575 (300)	0.342	0.36
160 (11)	700 (370)	0.32	0.33
250 (17)	850 (455)	0.28	0.295

No ignition for C-1 until 1000°F (absence of light components)

Alternative-Fuel Effect on Contrails and Cruise-Level Emissions (ACCESS II)

Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS)

ACCESS Sponsored by NASA Fundamental Aeronautics, Fixed-Wing Project

Engine Thrust Varied to Study Power-Dependent Emissions

Inboard Engines Idled Back

Outboard Engines Idled Back

Varied Engine FF from ~1000 to 3000 lbs/hr, balancing Inboard/Outboard thrust to maintain constant 200 knots IAS

HEFA Blend Reduces Black Carbon Number and Mass Emissions by 30 to 60% at Cruise

Cruise Els Consistent with Ground Test Measurements

HEFA Blend Reduces Black Carbon Number and Mass Emissions by 30 to 80% during Ground Op

Alt-Fuel GRC APU Test

- Soot measurement (with Langley truck)
- Contrail formation mechanism in altitude chamber (Controlled environment)

Global Environmental Impact of Supersonic Cruise Aircraft in Atmosphere

Steven Barrett
Laboratory for Aviation and the Environment
MIT
2014-2018

SST Routing Replacement Assessment

Effect of SST Fleet on Ozone Change

Figure 7.2. Column ozone change due to subsonic (top) and supersonic (bottom) aviation emissions

Coming Up...

N+3 Small Core (AATT)

and Extractive PM Measurement

Technological Challenges for N+3 Small Core, Fuel- Flexible Combustors (AATT)

Space Act Agreement (SAA) Woodward, FST

Objective: Develop a lean direct injection (LDI) combustor for a small-core N+3 engine what will reduce NOx emissions by 80% wrt CAEP/6.

Small Core N+3 SV-LDI 3-cup hardware in flame-tube (TRL 3)

Recent CFD Flame Temperature Results

Particulate Measurement from Combustor Direct Extraction

- Early combustor design-life PM assessment
- Assess viability of ground-to-altitude emissions level extrapolation
 - Q: Is E31 (ground PM) measurement useful predictor of altitude PM?
- Develop repeatable process to drop pressure from 250 psi (16 bar) to ambient
- Lean-burn PM peaking diam. ~25-30 nm

For More Info...

Clarence.T.Chang@NASA.gov

