#### Tema 3

# Variables Aleatorias y Distribuciones de Probabilidad

- Variable aleatoria: Definición
- Variable aleatoria Discreta (VAD) y Continua (VAC)
- Propiedades de una Función de Distribución de Probabilidad de VAD f(x)
- Función de distribución acumulada F(x)
- Función de Densidad de Probabilidad de una VAC
- Propiedades de una f.d.p
- Relación entre F(x) y f(x)
- Distribución de Probabilidad Distribución Conjunta (f.d.c)
- Propiedades de una f.d.c
- Distribuciones Marginales
- Distribución de Probabilidad Condicional de una f.d.c
- Independencia Estadística

#### Variable Aleatoria: Definición

Es una función que asocia un número real a cada elemento o subconjunto (evento) del Espacio Muestral.

Este valor es el resultado de realizar un experimento y tiene por tanto una connotación aleatoria ya que no están controladas todas las variables (eventos fortuitos) ó se realiza ex profeso al azar.

Evento → subconjunto del Espacio Muestral ⇒ Variable Aleatoria

 $\begin{array}{cccc} \mathsf{E} & \mathsf{Asigno} & \mathsf{X} \\ \mathsf{P}(\mathsf{E}) & \mathsf{Asigno} & \mathsf{P}(\mathsf{X}=\mathsf{x}) \end{array}$ 

Toda la terna de conjuntos es válida para la variable aleatoria.

#### Variable Aleatoria Discreta (VAD)

Se puede contar conjunto de resultados posibles (Escala discreta) aunque el número de elementos sea infinito (Ej: Arrojar un dado muchas veces)

#### Variable Aleatoria Continua (VAC)

No es posible contar el número de posibilidades que puede tomar un valor de la VAC. (Escala Continua).

Ej: medición de temperaturas.

<u>VAD:</u> la VAD toma c/u de sus valores con cierta probabilidad según el experimento y el evento asociado.

Ej: experimento: seleccionar 3 artículos de una cadena de fabricación.

Observación: clasificar como Def (D) o No Def. (N)

 $N^{\circ}$  de elementos =  $2^3 = 8$ 

S = {DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}

Variable aleatoria X = N° de artículos defectuosos.

#### Eventos:

A:{N° de artículos defectuosos igual a 3} 
$$X = 3$$
  $P(A) \rightarrow P(X = 3)$ 

B:{N° de artículos defectuosos mayor o igual a 2}  $x \ge 2$ 

$$P(B) = P(X \ge 2)$$

.-etc.

SI X es una VAD que representa el N° de artículos defectuosos:

$$X = 0$$
 con  $P(X) = \frac{1}{8} \Rightarrow P(X = 0) = \frac{1}{8}$   
 $X = 1$  con  $P(X) = \frac{3}{8} \Rightarrow P(X = 1) = \frac{3}{8}$   
 $X = 2$  con  $P(X) = \frac{3}{8} \Rightarrow P(X = 2) = \frac{3}{8}$   
 $X = 3$  con  $P(X) = \frac{1}{8} \Rightarrow P(X = 3) = \frac{1}{8}$ 

$$\sum_{\forall x} P(X = x) = 1$$

Se puede también utilizar una expresión matemática ligada a la probabilidad de la VA donde f(x) = P(X = x)

El conjunto ordenado (x, f(x)) se llama Función de Probabilidad o Distribución de Probabilidad (fdp)

# Propiedades de una fdp de VAD

1. 
$$f(x) \ge 0$$

$$2. \sum_{\forall x} f(x) = 1$$

3. 
$$P(X = x) = f(x)$$

| Χ | f(x) |
|---|------|
| 0 | 1/8  |
| 1 | 3/8  |
| 2 | 3/8  |
| 3 | 1/8  |

Ejemplo de tomar 3 artículos y clasificarlos como defectuosos o no defectuosos.

Definir  $X = N^{\circ}$  de artículos defectuosos.

Ej. 2: un embarque de 8 computadoras similares para una tienda contiene 3 defectuosos. Una escuela compra 2 computadoras en esa tienda.

Encuentre la Distribución de Probabilidad para el N° de computadoras defectuosas que compra la escuela. (Comparar con el caso de fabricación en serie. No es lo mismo)

$$P(X) = \frac{n}{N}$$

X: N° de computadoras defectuosas en la compra de la escuela.



a) No compra ninguna defectuosa.

$$P(x) = \frac{n}{N} = \frac{n_1 \cdot n_2}{N}$$

$$X = 0 \Rightarrow f(x = 0) = ?$$
  
 $n_1: 0 \ de \ 3, \quad n_2: 2 \ de \ 5$ 

N: 2 de 8

$$f(0) = \frac{n_1 \cdot n_2}{N} = \frac{\left(\frac{3}{0}\right) \cdot \left(\frac{5}{2}\right)}{\left(\frac{8}{2}\right)} = \frac{\frac{3!}{0! (3!)} \cdot \frac{5!}{2! (3!)}}{\frac{8!}{2! (6!)}}$$
$$f(0) = \frac{1 \cdot 10}{28}$$

⇒ Hay una sola forma de no tomar defectos. Hay 10 formas de tomar 2 no defectuosas de 5. Hay 28 formas de tomar 2 computadoras de 8 totales.

$$f(1) = \frac{\left(\frac{3}{1}\right) \cdot \left(\frac{5}{1}\right)}{\left(\frac{8}{2}\right)} = \frac{3.5}{28}$$

b)

$$f(2) = \frac{\left(\frac{3}{2}\right) \cdot \left(\frac{5}{0}\right)}{\left(\frac{8}{2}\right)} = \frac{3 \cdot 1}{28}$$

Distribución de Probabilidad:

| X | f(x)          |
|---|---------------|
| 0 | 10/28 = 0,357 |
| 1 | 15/28 = 0,536 |
| 2 | 3/28 = 0,107  |

Otra forma de plantear el problema es sacar primero un artículo y luego otro.

$$P(x) = 1^{\circ} extracción \cdot 2^{\circ} extracción = \frac{n_1}{N_1} \cdot \frac{n_2}{N_2}$$

 $n_1$ : opciones de la primera extracción.

 $N_1$ :  $n^{\circ}$  total de artículos primera extracción.

 $n_2$ : opciones de la segunda extracción.

 $N_2$ : n° total de artículos en la segunda extracción.

$$P(X = 0): No \ sacar \ ninguna \ defectuosa$$

$$P(X = 0) = \frac{5}{8} \cdot \frac{4}{7} = \frac{20}{56} = \frac{10}{28}$$

$$P(X = 1) = \frac{3}{8} \cdot \frac{5}{7} + \frac{5}{8} \cdot \frac{3}{7} = \frac{15}{56} + \frac{15}{56} = \frac{30}{56} = \frac{15}{28}$$

$$P(X = 2) = \frac{3}{8} \cdot \frac{2}{7} = \frac{6}{56} = \frac{3}{28}$$

Este método da resultados iguales al anterior.

## Distribución acumulada

La F(X) de una VAD con distribución de probabilidad f(x) es:

$$F(X) = P(X \le x) = \sum_{t \le x} f(t)$$
 para  $-\infty < x < +\infty$ 

Para el ejemplo anterior: ¿Qué probabilidad existe de comprar a lo sumo 1 defectuosa?

$$F(X \le 1) = \sum_{t \le 1} f(t) = f(0) + f(1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$$

¿Qué probabilidad existe de comprar al menos 1 defectuosa?

$$F(X \ge 1) = 1 - \sum_{t \le 1} f(t) = 1 - [f(0) + f(1)] = \frac{28}{28} - \frac{25}{28} = \frac{3}{28}$$



# Distribución Acumulada Discreta



| (x, F(x)) |          |
|-----------|----------|
| X         | f(x)     |
| 0         | 0,357    |
| 1         | 0,893    |
| 2         | 1        |
| 1         | I        |
| X         | 1 - f(x) |
| 0         | 0,643    |
|           | 0.40=    |

#### **Distribuciones Continuas**

Una Variable Aleatoria Continua tiene una probabilidad P(X=x) = 0 de tomar exactamente cualquiera de sus valores.

$$P_{(n)} = \frac{n}{N}$$
  $si N \to \infty$   $P_{(n)} \to \infty$ 

Si en cambio se trata de un intervalo (a < x < b)

 Una Variable Aleatoria Continua no se puede presentar de forma tabular ⇒ se utiliza una función f(x)

f(x) en una Variable Aleatoria Continua se denomina: **Función de Densidad de Probabilidad.** 





$$P(a < x < b) = \int_a^b f(x) dx$$

Una función f(x) es una función de densidad de probabilidad para una  $VAC \in \mathbb{R}$  si:

1-  $f(x) \ge 0 \quad \forall x \in \mathbb{R}$ 

$$2-\int_{-\infty}^{+\infty}f(x)\ dx = 1$$

3- 
$$P(a < x < b) = \int_a^b f(x) dx$$

Ejemplo: sea f(x)

$$\frac{x^2}{2}$$
 ;  $-1 < x < 2$ 

 $\frac{x^2}{3}$  ; -1 < x < 20 ; para cualquier otro caso

a) Comprobar que f(x) es una f.d.p.

1) 
$$f(x) \ge 0$$
 si  $\frac{x^2}{3} \ge 0$   $\forall x \in \mathbb{R}$  se cumple

2) 
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \frac{x^2}{3} dx = \frac{x^3}{9}$$
;  $(para(x = 2) - (x = -1)) = \frac{8}{9} + \frac{1}{9} = 1$ 

b) Obtener P(-1 < x < 1)

$$P(-1 < x < 1) = \int_{-1}^{1} \frac{x^2}{3} dx = \frac{x^3}{9} ; (para(x = 1) - (x = -1)) = \frac{2}{9}$$

c) Obtener P(x < 1.5)

$$P(x < 1,5) = P(x < \frac{3}{2}) = \int_{-\infty}^{3/2} f(x) dx = \int_{-1}^{3/2} \frac{x^2}{3} dx$$

$$P(x < 1,5) = \frac{x^3}{9}; (para(x = 3/2) - (x = -1)) = \frac{27}{9.8} + \frac{1}{9} = \frac{27}{72} + \frac{8}{72}$$

$$= \frac{35}{72}$$

Función de distribución Acumulada de una VAC

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Relación entre F(x) y f(x)

Si 
$$F(x) = \int_{-\infty}^{x} f(t) dt \Rightarrow f(x) = \frac{d F(x)}{dx}$$

Ejemplo: Obtener F(x) del ejemplo anterior

$$F(x) = \int_{-\infty}^{x} \frac{t^2}{3} dt = \int_{-1}^{x} \frac{t^2}{3} dt = \frac{x^3}{9} + \frac{1}{9} = \frac{x^3 + 1}{9} \checkmark$$

<u>Distribuciones Empíricas</u>: A menudo no sabemos la forma de la distribución de probabilidad (caso discreto) o la función de distribución de probabilidad (caso continuo).

### Ejemplo:



¿Cómo sabemos que tienen esta forma?

Se han realizado mediciones → se han tabulado y graficado este conjunto de mediciones (muestra) → se infiere según estas gráficas que el comportamiento de la variable (población) tiene esta forma.

# Distribuciones Conjuntas

Espacios muestrales multidimensionales.

### **Propiedades**

| Discreta                                          | Continua                                                                                                   |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $F(x,y) \ge 0$ ; $\forall (x,y)$                  | $f(x,y) \ge 0$ ; $f(x,y)$                                                                                  |
| $\sum_{x} \sum_{y} f(x, y) = 1; \ \forall (x, y)$ | $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y)  dx  dy = 1$                                    |
| P(X = x, Y = y) = f(x, y)                         | $P(a < x < b, c < y < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$ $si \{a \le x \le b ; c \le y \le d\}$ |

$$P[(x,y) \in \mathbb{R}] = \sum_{x} \sum_{y} f(x,y)$$

## Distribuciones Marginales

Distribución de una variable cuando la otra toma todos los valores posibles.

$$g(x) = \sum_{y} f(x, y)$$

$$h(y) = \sum_{x} f(x, y)$$

$$g(x) = \sum_y f(x,y)$$
 y  $h(y) = \sum_x f(x,y)$  caso Discreto  $g(x) = \int_{y=-\infty}^{y=+\infty} f(x,y) \, dy$  y  $h(x) = \int_{x=-\infty}^{x=+\infty} f(x,y) \, dx$  caso Continuo

$$h(x) = \int_{x=-\infty}^{x=+\infty} f(x,y) \, dx$$

## Distribución de Probabilidad Condicional

De la definición:

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
;  $P(A) > 0$ 

A y B son dos eventos definidos por X = x; Y = y (Variables aleatorias asociadas a los eventos)

$$P(Y = y / X = x) = \frac{P(X = x; Y = y)}{P(X = x)} = \frac{f(x,y)}{g(x)}$$

si g(x) > 0;

Siendo g(x) todos los valores posibles de y

$$f(y/x) = \frac{f(x,y)}{g(x)}$$
 y a la inversa  $f(x/y) = \frac{f(x,y)}{h(y)}$  con  $g(x), h(y) > 0$ 

$$f(x/y) = \frac{f(x,y)}{h(y)}$$

$$con g(x), h(y) > 0$$

Siendo h(y) todos los valores posibles de x

# Independencia Estadística

Al igual que con la teoría de conjuntos:

$$P\left(A/B\right) = P(A)$$

$$P\left(B/A\right) = P(B)$$

Se dice que los eventos A y B son independientes.

Como consecuencia:

$$P\left(A/B\right) = \frac{P(A \cap B)}{P(B)} - \longrightarrow P(A \cap B) = P(A).P(B)$$

$$P\left(B/A\right) = \frac{P(A \cap B)}{P(B)} - \longrightarrow P(A \cap B) = P(B).P(A)$$

De la misma forma entonces para la variable aleatoria de distribución conjunta (x,y):

$$f(^{\chi}/_{\mathcal{V}}) = g(x)$$

$$f\left(\frac{y}{x}\right) = h(y)$$

Se dice que x e y son independientes.

**Entonces:** 

$$f(x/y) = g(x) = \frac{f(x,y)}{h(y)} - \longrightarrow f(x,y) = f(x).h(y)$$

$$f\left(\frac{y}{x}\right) = h(y) = \frac{f(x,y)}{g(x)} - \longrightarrow f(x,y) = h(y).f(x)$$

Que son las consecuencias de la independencia estadística entre las variables x,y