10. LITTLE - OH NOTATION

DEFINITION: Let f and g be two functions that map a set of natural numbers to a set of positive real numbers, $f: \mathbb{N} \to \mathbb{R}$.

Let o(g) be the set of all functions with a similar rate of growth.

The relation f(n) = o(g(n)) holds good, if there exist two positive constants c and n_0 such that $f(n) < c \times g(n)$, for all $n > n_0$.

Some points over little-oh notion:

- The little-oh notion is used very rarely.
- Here the value of *c* is very small.
- The *little oh* notation can be used instead of the big-Oh notation as the little-oh notation represents a *loose* upper bound.

LITTLE OH DEFINITION IN LIMITS - LITTLE OH RATIO THEOREM

DEFINITION: The function
$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(g)}{g(n)} = 0$, which implies that $f(n) = o(g(n))$.

EXAMPLES OF LITTLE OH

Example 1

Let f(n) = 7n + 6. Show that f(n) is in $o(n^2)$.

Solution

As we know,
$$f(n) = o(n^2)$$
 as $\lim_{n \to \infty} \frac{7n+2}{n^2}$

$$= \lim_{n\to\infty} \frac{7n+2}{n^2}$$

$$=\lim_{n\to\infty}\frac{7n}{n^2}+\frac{2}{n^2}$$

$$=\lim_{n\to\infty}\frac{7}{n}+\frac{2}{n^2}$$

As per infinity theory of limit $\lim_{n\to\infty}\frac{c}{\chi^a}=0$

$$=\lim_{n\to\infty}\frac{7}{n}+\lim_{n\to\infty}\frac{2}{n^2}$$

- = 0 + 0
- = 0

Therefore, we can say that $7n + 6 \in o(n^2)$.

Example 2

Let f(n) = 7n + 6. Show that f(n) is in $o(n^2)$.

[Without Limit]

Solution

$$7n + 6 < c \times n^2$$

One can write it as:

$$f(n) < 7n^2 + 6n^2$$

 $f(n) < 13n^2$

Now c = 13

$$\Rightarrow 13n^2 - 7n - 6 < 0$$

$$\Rightarrow 13n^2 + 6n - 13n - 6 < 0$$

$$\Rightarrow 13n^2 + 6n - 13n - 6 < 0$$

$$\Rightarrow n(13n+6)-1(13n+6)<0$$

$$\Rightarrow$$
 $(13n+6)(n-1) < 0$

$$= 13n + 6 < 0$$

$$= 13n < -6$$

$$= n < -\frac{6}{13}$$

$$= n - 1 < 0$$

= $-1 < -n$
= $n > 1$

Hence, we got n > 1 and c = 13

Now if we see it through a table

N	7n + 6	$13n^2$
2	20	52
3	27	117
4	34	208
5	41	325

Hence, we can tell $c \times g(n)$ is loosely bound and $f(n) = o(n^2)$.

NOW COMPARE IF IT IS TIGHTLY UPPER BOUND O(n) THEN:

$$\implies f(n) \le 7n + 6n = 13n$$

Therefore

$$\Rightarrow 7n + 6 \le 13n$$

$$\Rightarrow 6 \leq 6n$$

$$\implies 1 \le n$$

$$\implies n \ge 1$$

N	f(n)=7n+6	g(n)=13n
1	13	13
2	20	26
3	27	39
4	34	52
5	41	65

Hence, we see O(n) is tightly upper bound other than o(n)which is loosely upper bound and graph to see the difference.
