計量経済 I: 宿題 10

村澤 康友

提出期限: 2024年7月16日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例の結果を正確に再現すること (乱数は除く). グループで取り組んでよいが,個別に提出すること.解答例をコピペした場合は提出点を 0 点とし,再提出も認めない.すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・文字化け不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. (教科書 p. 251, 実証分析問題 10-A) 母親の就業が既婚女性の就業確率に与える平均処置効果(ATE)をマッチング法で推定したい. データセット「 10_2 _work.dta」を gretl に読み込み,以下の分析を行いなさい.
 - (a) 両親の学歴・15 歳時の暮らし向き・学業成績・家庭の蔵書数で 15 歳時の母親の就業を説明する線 形確率モデルを推定しなさい.また回帰予測値(傾向スコア)を保存しなさい.※推定結果の画面 のメニューの「保存」→「理論値」で保存.
 - (b) 傾向スコアの範囲を (0,0.65), (0.65,0.7), (0.7,0.74), (0.74,0.78), (0.78,0.82), (0.82,1) の 6 つの 区間に分け,区間ごとに 15 歳時の母親の就業の有無で既婚女性の就業割合を比較しなさい.※メニューの「標本」 \rightarrow 「基準に基づいて制限する」で傾向スコアに基づいて標本を制限し,メニューの「表示」 \rightarrow 「クロス集計」でクロス表を作成する.
- 2. (教科書 p. 251, 実証分析問題 10-A の続き)傾向スコアは回帰分析でも利用できる. 母親の就業が既婚女性の就業確率に与える ATE を以下の 3 つの方法で推定し、結果を比較しなさい.
 - (a) 15 歳時の母親の就業で本人の就業を説明する単回帰モデル
 - (b) 前問(a)の説明変数で共変量調整した重回帰モデル
 - (c) 前問(a)で求めた傾向スコアで共変量調整した重回帰モデル

解答例

1. (a) 傾向スコアの推定

モデル 1: 最小二乗法 (OLS), 観測: 1–1132 従属変数: mowork15

	係数		Std. Error		t-ratio	p 値
const	0.905	5716	0.0	0468994	19.31	0.0000
mocograd	0.073	37983	0.0	701761	1.052	0.2932
pacograd	-0.105	6651	0.0	357027	-2.959	0.0031
life15	-0.028	84479	0.0	0170811	-1.665	0.0961
academic15	-0.002	221650	0.0	0120106	-0.1845	0.8536
books15	-0.021	4158	0.0	00594938	-3.600	0.0003
Mean dependent	var	0.74293	33	S.D. depe	endent var	0.437210
Sum squared res	sid	210.267	70	S.E. of re	gression	0.432132
R^2		0.02741	13	Adjusted	\mathbb{R}^2	0.023094
F(5, 1126)		6.34730)1	P-value(I	7)	8.03e-06
Log-likelihood	-	-653.455	50	Akaike cr	iterion	1318.910
Schwarz criterion	n	1349.10)1	Hannan-	Quinn	1330.315

```
i. 傾向スコア: (0,0.65)
         [ 0][ 1] 計
      0] 49.1% 50.9%
                       55
  [ 1] 39.5% 60.5%
                       76
  TOTAL 43.5% 56.5%
                      131
  ピアソン (Pearson) のカイ二乗検定 = 1.20072 (1 df, p-value = 0.273178)
ii. 傾向スコア: (0.65, 0.7)
        [ 0][ 1] 計
  [ 0] 61.0% 39.0%
                       59
  [ 1] 46.5% 53.5%
                     142
  TOTAL 50.7% 49.3%
                      201
  ピアソン (Pearson) のカイ二乗検定 = 3.52464 (1 df, p-value = 0.0604629)
iii. 傾向スコア: (0.7, 0.74)
        [ 0][ 1] 計
  [ 0] 45.5% 54.5%
                       44
  [ 1] 43.5% 56.5%
                       85
  TOTAL 44.2% 55.8%
                      129
  ピアソン (Pearson) のカイ二乗検定 = 0.0435688 (1 df, p-value = 0.834658)
iv. 傾向スコア: (0.74, 0.78)
        [ 0][ 1] 計
  [ 0] 59.3% 40.7%
                       54
  [ 1] 43.8% 56.2%
                     178
  TOTAL 47.4% 52.6%
                      232
  ピアソン (Pearson) のカイ二乗検定 = 3.96086 (1 df, p-value = 0.0465699)
v. 傾向スコア: (0.78, 0.82)
        [ 0][ 1] 計
  [ 0] 37.2% 62.8%
                       43
  [ 1] 43.7% 56.3%
                      222
  TOTAL 42.6% 57.4%
                      265
  ピアソン (Pearson) のカイ二乗検定 = 0.619275 (1 df, p-value = 0.431317)
vi. 傾向スコア: (0.82,1)
        [ 0][ 1] 計
  [ 0] 47.2% 52.8%
                       36
  [ 1] 37.0% 63.0%
                     138
  TOTAL 39.1% 60.9%
                    174
  ピアソン (Pearson) のカイ二乗検定 = 1.26384 (1 df, p-value = 0.260925)
```

(b) 15 歳時の母親の就業の有無による既婚女性の就業割合の比較

2. (a) 単回帰モデル

モデル 1: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

		係数	標準誤差		t-ratio	p1	值
	const	0.491409	0.0	291013	16.89	0.00	000
	mowork15	0.0817183	0.0	337627	2.420	0.01	157
Mean	dependent v	ar 0.552	120	S.D. de	ependent	var	0.497496
Sum	squared resid	278.48	812	回帰の	票準誤差		0.496431
\mathbb{R}^2		0.005	158	Adjust	$ed R^2$		0.004277
F(1, 1)	1130)	5.858	194	P-value	e(F)		0.015662
Log-li	ikelihood	-812.48	853	Akaike	criterion		1628.971
Schwa	arz criterion	1639.0	034	Hannai	n–Quinn		1632.772

(b) 重回帰モデル

モデル 2: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

	係数	標	準誤差	t-ratio	p 値
const	0.543209	0.06	322282	8.729	0.0000
mowork15	0.0756420	6 0.03	342710	2.207	0.0275
mocograd	0.100619	0.08	807418	1.246	0.2130
pacograd	-0.0324454	4 0.04	112173	-0.7872	0.4313
life15	-0.004766	16 0.01	196673	-0.2423	0.8086
academic15	-0.0095348	36 0.01	138124	-0.6903	0.4901
books15	-0.0037280	0.00	0688101	-0.5418	0.5881
Mean dependent	var 0.5	52120	S.D. depe	ndent var	0.497496
Sum squared res	id 277	.8289	回帰の標準	些 誤差	0.496950
R^2	0.0	07488	Adjusted	R^2	0.002194
F(6, 1125)	1.4	14561	P-value(F	")	0.205617
Log-likelihood	-811	.1579	Akaike cri	iterion	1636.316
Schwarz criterion	n 167	1.538	Hannan-C	Quinn	1649.622

(c) 傾向スコアで共変量調整した重回帰モデル

モデル 3: 最小二乗法 (OLS), 観測: 1–1132 従属変数: work

	係数	標準誤差	t-ratio	p 値
const	0.331259	0.152207	2.176	0.0297
mowork15	0.0756426	0.0342330	2.210	0.0273
yhat1	0.221641	0.206762	1.072	0.2840
Mean dependent v	ar 0.5521	20 S.D. de	ependent	var 0.497496
Sum squared resid	278.19	80 回帰の	標準誤差	0.496398
R^2	0.0061	69 Adjust	$ed R^2$	0.004408
F(2, 1129)	3.5040	36 P-value	e(F)	0.030403
Log-likelihood	-811.90	95 Akaike	criterion	1629.819
Schwarz criterion	1644.9	14 Hannai	n–Quinn	1635.522