Group Cohomology with Values in a Picard Category

Milind Gunjal

Department of Mathematics Florida State University

December 7^{th} , 2023

A 2-crossed module^a G_* consists of a complex of G_0 -groups

$$\begin{array}{ccc} G_1 \times G_1 \\ & & \\ \{\cdot,\cdot\} \bigg| & & \\ G_2 & \stackrel{\partial_2}{----} & G_1 & \stackrel{\partial_1}{----} & G_0 \end{array}$$

- ∂ 's are G_0 -equivariant.
- $G_2 \xrightarrow{\partial_2} G_1$ is a crossed module.
 - \triangleright ∂_2 is G_1 -equivariant.
 - $f^{\partial_2 g} = g^{-1} f g \text{ for all } f, g \in G_2.$

A 2-crossed module^a G_* consists of a complex of G_0 -groups

$$G_1 imes G_1$$
 $\{\cdot,\cdot\} \downarrow$
 $G_2 \longrightarrow G_1 \longrightarrow G_0$
The region of $G_1 imes G_1 \longrightarrow G_0$

- ∂ 's are G_0 -equivariant.
- $G_2 \xrightarrow{\partial_2} G_1$ is a crossed module.
 - \triangleright ∂_2 is G_1 -equivariant.
 - $f^{\partial_2 g} = g^{-1} f g$ for all $f, g \in G_2$.
- $(\alpha^f)^x = (\alpha^x)^{f^x}$ for all $\alpha \in G_2, f \in G_1, x \in G_0$.
- Compatibility conditions.

^aRonald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: *Applied Categorical Structures* (2003), p. 193.

SM 2-Cat structure on a 2-CM

• Given a 2-CM G_*

$$G_2 \xrightarrow{\partial} G_1 \xrightarrow{\partial} G_0$$

• $Ob(\Gamma(G_*)) = G_0$.

$$x_0 \in G_0$$
.

• 1-Mor $(\Gamma(G_*)) = G_0 \rtimes G_1$. $x_0 \xrightarrow{f_0} x_1$ such that $x_1 = x_0 \cdot \partial(f_0)$.

SM 2-Cat structure on a 2-CM

• Given a 2-CM G_*

$$G_2 \xrightarrow{\partial} G_1 \xrightarrow{\partial} G_0$$

• $Ob(\Gamma(G_*)) = G_0$.

$$x_0 \in G_0$$
.

- 1-Mor $(\Gamma(G_*)) = G_0 \rtimes G_1$. $x_0 \xrightarrow{f_0} x_1$ such that $x_1 = x_0 \cdot \partial(f_0)$.
- 2-Mor($\Gamma(G_*)$) = $G_0 \rtimes G_1 \rtimes G_2$.

Such that $f_1 = f_0 \cdot \partial(\alpha)$.

• Vertical composition

• Horizontal composition

Special cases: Whiskering.

•

•

• Monoidal product

• Monoidal product

• Braiding

• Monoidal product

• Braiding

Hexagonators

• Syllepsis

• Syllepsis

• Symmetry condition:

$$\gamma_{x,y}^{\beta_{x,y}} = \gamma_{y,x}$$

 \bullet (2,1)-Syllepsis axiom:

$$\eta_{z|x,y} = \eta_{x,y|z}^{-\beta_{z,xy}} \cdot \gamma_{xy,z}^{-1} \cdot \gamma_{y,z} \cdot (\gamma_{x,z}^y)^{\beta_{z,y}}.$$

• (1,2)-Syllepsis axiom:

$$\eta_{y,z|x} = \gamma_{x,yz}^{-1} \cdot \gamma_{x,y}^z \cdot \gamma_{x,z}^{\beta_{y,x}^z} \cdot (\eta_{x|y,z})^{-\beta_{z,x} \cdot \beta_{y,x}^z}.$$

- Are these two axioms equivalent?
 - ▶ Yes! (Using the symmetry condition).
- Goal
 - ► Generalize to SM bi-Cat.
- What is so special about these axioms?
 - Cocycles

Group cohomology with values in an Abelian group

Definition 2

Cohomology of a group G with coefficients in an abelian group A is: $H^n(G,A) = H^n(\mathbf{B}G,A) = \pi_0(\mathrm{Hom}_{Top}(\mathbf{B}G,K(A,n))).$

Group cohomology with values in an Abelian group

Definition 2

Cohomology of a group G with coefficients in an abelian group A is: $H^n(G,A) = H^n(\mathbf{B}G,A) = \pi_0(\mathrm{Hom}_{Top}(\mathbf{B}G,K(A,n))).$

• K(A, n) is the Eilenberg-MacLane space.

Group cohomology with values in an Abelian group

Definition 2

Cohomology of a group G with coefficients in an abelian group A is: $H^n(G,A) = H^n(\mathbf{B}G,A) = \pi_0(\mathrm{Hom}_{Top}(\mathbf{B}G,K(A,n))).$

- K(A, n) is the Eilenberg-MacLane space.
- **B**G is the classifying space due to the bar construction ($\bar{W}G$):

$$\cdots \longrightarrow G \times G \times G \Longrightarrow G \times G \Longrightarrow *$$

- $\partial_n^0[g_1|\cdots|g_n] = [g_2|\cdots|g_n]^{g_1},$
- $\partial_n^n[g_1|\cdots|g_n] = [g_1|\cdots|g_{n-1}].$
- $\overline{W}G$ is also nerve of the groupoid $G \Longrightarrow *$.

For a given R-module M, a projective resolution is an exact sequence of projective modules P_i 's as follows:

$$\cdots \to P_2 \to P_1 \to P_0 \to M \to 0.$$

For a given R-module M, a projective resolution is an exact sequence of projective modules P_i 's as follows:

$$\cdots \to P_2 \to P_1 \to P_0 \to M \to 0.$$

- $\operatorname{Hom}(-, D)$ is a left-exact functor.
 - ▶ $0 \to A \to B \to C \to 0$ is exact implies $\operatorname{Hom}(A,D) \leftarrow \operatorname{Hom}(B,D) \leftarrow \operatorname{Hom}(C,D) \leftarrow 0$ is exact.

For a given R-module M, a projective resolution is an exact sequence of projective modules P_i 's as follows:

$$\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0.$$

- $\operatorname{Hom}(-, D)$ is a left-exact functor.
 - ▶ $0 \to A \to B \to C \to 0$ is exact implies $\operatorname{Hom}(A,D) \leftarrow \operatorname{Hom}(B,D) \leftarrow \operatorname{Hom}(C,D) \leftarrow 0$ is exact.
- For a given projective resolution $P_{\bullet} \to M$, we get a complex

$$0 \to \operatorname{Hom}(P_0, D) \to \operatorname{Hom}(P_1, D) \to \operatorname{Hom}(P_2, D) \to \cdots$$

• Cohomology groups of this complex are defined as Right-derived functor:

$$R^{i}\operatorname{Hom}(M,D) := H^{i}(\operatorname{Hom}(P_{\bullet},D)).$$

For a given R-module M, a projective resolution is an exact sequence of projective modules P_i 's as follows:

$$\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0.$$

- $\operatorname{Hom}(-, D)$ is a left-exact functor.
 - ▶ $0 \to A \to B \to C \to 0$ is exact implies $\operatorname{Hom}(A,D) \leftarrow \operatorname{Hom}(B,D) \leftarrow \operatorname{Hom}(C,D) \leftarrow 0$ is exact.
- For a given projective resolution $P_{\bullet} \to M$, we get a complex

$$0 \to \operatorname{Hom}(P_0, D) \to \operatorname{Hom}(P_1, D) \to \operatorname{Hom}(P_2, D) \to \cdots$$

 Cohomology groups of this complex are defined as Right-derived functor:

$$R^i \operatorname{Hom}(M, D) := H^i (\operatorname{Hom}(P_{\bullet}, D)).$$

- $\bullet \ H^n(G,A) \cong \operatorname{Ext}^n_{\mathbb{Z}[G]}(\mathbb{Z},A) = H^n\left(\operatorname{Hom}_{\mathbb{Z}[G]}(P_\bullet(\mathbb{Z}),A)\right).$
 - $P_n = F(U(G^{\times n})).$

Cohomology of Picard categories

Definition 4

A Picard category is a SM Cat such that objects are invertible up to 1-morphisms and 1-morphisms are also invertible.

• Picard categories form a SM 2-Cat.

Cohomology of Picard categories

Definition 4

A Picard category is a SM Cat such that objects are invertible up to 1-morphisms and 1-morphisms are also invertible.

- Picard categories form a SM 2-Cat.
- A complex of Picard categories^[2] looks like:

Cohomology of Picard categories

Definition 4

A Picard category is a SM Cat such that objects are invertible up to 1-morphisms and 1-morphisms are also invertible.

- Picard categories form a SM 2-Cat.
- A complex of Picard categories^[2] looks like:

▶ Satisfies wave:

• $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).$

¹K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.

- $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).$
- $\mathfrak{P}^n(\mathfrak{C}_{\bullet}) = \{(P,g)|P \in \mathfrak{C}_n, g: \delta(P) \to I \in \mathrm{Hom}_{\mathfrak{C}_{n+1}}\}$: Category of n-psuedocycles.

¹K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.

- $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).$
- $\mathfrak{P}^n(\mathfrak{C}_{\bullet}) = \{(P,g)|P \in \mathfrak{C}_n, g: \delta(P) \to I \in \operatorname{Hom}_{\mathfrak{C}_{n+1}}\}$: Category of n-psuedocycles.
- $\mathcal{L}^n(\mathcal{C}_{\bullet}) \subseteq \mathcal{P}^n(\mathcal{C}_{\bullet})$ for which

$$I_{n+2} \xrightarrow{\chi_n^{-1}} \delta(\delta(P)) \xrightarrow{\delta(g)} \delta(I_{n+1}) \longrightarrow I_{n+2} = I_{n+2} \xrightarrow{id} I_{n+2}$$

¹K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.

- $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).$
- $\mathfrak{P}^n(\mathfrak{C}_{\bullet}) = \{(P,g)|P \in \mathfrak{C}_n, g: \delta(P) \to I \in \operatorname{Hom}_{\mathfrak{C}_{n+1}}\}$: Category of n-psuedocycles.
- $\mathcal{L}^{n}(\mathcal{C}_{\bullet}) \subseteq \mathcal{P}^{n}(\mathcal{C}_{\bullet})$ for which $I_{n+2} \xrightarrow{\chi_{n}^{-1}} \delta(\delta(P)) \xrightarrow{\delta(g)} \delta(I_{n+1}) \longrightarrow I_{n+2} = I_{n+2} \xrightarrow{id} I_{n+2}$
- $\mathcal{Z}^n(\mathcal{C}_{\bullet})$ = Isomorphism classes of objects of $\mathcal{L}^n(\mathcal{C}_{\bullet})$.

¹K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.

- $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).$
- $\mathfrak{P}^n(\mathfrak{C}_{\bullet}) = \{(P,g)|P \in \mathfrak{C}_n, g: \delta(P) \to I \in \operatorname{Hom}_{\mathfrak{C}_{n+1}}\}$: Category of n-psuedocycles.
- $\mathcal{L}^{n}(\mathcal{C}_{\bullet}) \subseteq \mathcal{P}^{n}(\mathcal{C}_{\bullet})$ for which $I_{n+2} \xrightarrow{\chi_{n}^{-1}} \delta(\delta(P)) \xrightarrow{\delta(g)} \delta(I_{n+1}) \longrightarrow I_{n+2} = I_{n+2} \xrightarrow{id} I_{n+2}$
- $\mathcal{Z}^n(\mathcal{C}_{\bullet})$ = Isomorphism classes of objects of $\mathcal{L}^n(\mathcal{C}_{\bullet})$.
- $\mathcal{B}^n(\mathcal{C}_{\bullet}) \subseteq \mathcal{Z}^n(\mathcal{C}_{\bullet})$ of elements of the form

$$(\delta(Q), \chi_Q), Q \in \mathcal{C}_{n-1}.$$

• $H^n(\mathcal{C}_{\bullet}) = \mathcal{Z}^n(\mathcal{C}_{\bullet})/\mathcal{B}^n(\mathcal{C}_{\bullet}).^1$

¹K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.

Group cohomology with values in a Picard category

- Any set X, category \mathfrak{C} : $\mathfrak{C}^X = \text{Funct } (X \to \mathfrak{C})$
 - ightharpoonup X as a discrete category, i.e., Ob = X, Mor = id.

Group cohomology with values in a Picard category

- Any set X, category \mathfrak{C} : $\mathfrak{C}^X = \text{Funct } (X \to \mathfrak{C})$
 - \blacktriangleright X as a discrete category, i.e., Ob = X, Mor = id.
- Given any sSet X_{\bullet} , consider $\mathcal{C}^{X_{\bullet}}$ $\mathcal{C}^{X_0} \longrightarrow \mathcal{C}^{X_1} \longrightarrow \mathcal{C}^{X_2} \longrightarrow \cdots$

Group cohomology with values in a Picard category

- Any set X, category \mathfrak{C} : $\mathfrak{C}^X = \text{Funct } (X \to \mathfrak{C})$
 - \blacktriangleright X as a discrete category, i.e., Ob = X, Mor = id.
- Given any sSet X_{\bullet} , consider $\mathcal{C}^{X_{\bullet}}$ $\mathcal{C}^{X_0} \Longrightarrow \mathcal{C}^{X_1} \Longrightarrow \mathcal{C}^{X_2} \Longrightarrow \cdots$
- By taking the alternating sum

$$\partial_n = \sum_{i=0}^{n+1} (-1)^i d_n^{i^*}$$

• We get a cochain complex:

• We can calculate cohomology $H^n(X_{\bullet}, \mathcal{C})$ for this.

Application to SM Cat

- SM Cat \mathcal{E} .
- $G = \pi_0(\mathcal{E}) = \mathrm{Ob}(\mathcal{E})/\cong$. (Group).
- $A = \pi_1(\mathcal{E}) = \operatorname{Aut}_{\mathcal{E}}(I)$. (Abelian Group).

Application to SM Cat

- SM Cat \mathcal{E} .
- $G = \pi_0(\mathcal{E}) = \mathrm{Ob}(\mathcal{E}) / \cong$. (Group).
- $A = \pi_1(\mathcal{E}) = \operatorname{Aut}_{\mathcal{E}}(I)$. (Abelian Group).
- $s: G \to \mathcal{E}$ be an arbitrary section of $p: \mathcal{E} \to G$.
 - ▶ For each $x, y \in G$, $\exists c_{x,y} : s(x) \otimes s(y) \xrightarrow{\cong} s(xy)$ along with

$$(s(x) \otimes s(y)) \otimes s(z) \xrightarrow{c_{x,y} \otimes id_{s(z)}} s(xy) \otimes s(z) \xrightarrow{c_{xy,z}} s(xyz)$$

$$\alpha_{s(x),s(y),s(z)} \downarrow \qquad \qquad \downarrow f_{x,y,z}$$

$$s(x) \otimes (s(y) \otimes s(z)) \xrightarrow{id_{s(x)} \otimes c_{y,z}} s(x) \otimes s(yz) \xrightarrow{c_{x,yz}} s(xyz)$$

• Such that it satisfies the pentagon:

• Such that it satisfies the pentagon:

- $f \in H^3(G, A)$.
 - ightharpoonup f satisfies the cocycle condition due to the pentagon.

Application to SM bi-Cat

- SM bi-Cat E.
- $G = \pi_0(\mathbb{E}) = \mathrm{Ob}(\mathbb{E})/\cong$. (Group).
- $\mathcal{A} = \Pi_1(\mathbb{E}) = \operatorname{Aut}_{\mathbb{E}}(I)$. (Picard category).

Application to SM bi-Cat

- SM bi-Cat E.
- $G = \pi_0(\mathbb{E}) = \mathrm{Ob}(\mathbb{E})/\cong$. (Group).
- $\mathcal{A} = \Pi_1(\mathbb{E}) = \operatorname{Aut}_{\mathbb{E}}(I)$. (Picard category).
- $s: G \to \mathbb{E}$ be an arbitrary section of $p: \mathbb{E} \to G$.
 - ▶ For each $x, y \in G, \exists c_{x,y} : s(x) \otimes s(y) \xrightarrow{\cong} s(xy)$ along with

$$(s(x) \otimes s(y)) \otimes s(z) \xrightarrow{c_{x,y} \otimes id_{s(z)}} s(xy) \otimes s(z) \xrightarrow{c_{xy,z}} s(xyz)$$

$$\alpha_{s(x),s(y),s(z)} \downarrow \qquad \qquad \downarrow f_{x,y,z}$$

$$s(x) \otimes (s(y) \otimes s(z)) \xrightarrow{id_{s(x)} \otimes c_{y,z}} s(x) \otimes s(yz) \xrightarrow{c_{x,yz}} s(xyz)$$

• And the pentagon:

• Such that this satisfies the associahedron K_5 .

• And the pentagon:

- Such that this satisfies the associahedron K_5 .
 - ► Compatibility with 5 variables.

²Jean-Louis Loday. "The diagonal of the Stasheff polytope". In: *Higher structures in geometry and physics, Volume 287* (2011), pp. 269–292.

- $\mathfrak{P}^n(\mathfrak{C}_{\bullet}) = \{(P,g)|P \in \mathfrak{C}_n, g: \delta(P) \to I \in \operatorname{Hom}_{\mathfrak{C}_{n+1}}\}$: Category of n-psuedocycles.
- $\mathcal{L}^n(\mathcal{C}_{\bullet}) \subseteq \mathcal{P}^n(\mathcal{C}_{\bullet})$ for which $I_{n+2} \xrightarrow{\chi_n^{-1}} \delta(\delta(P)) \xrightarrow{\delta(g)} \delta(I_{n+1}) \longrightarrow I_{n+2} = I_{n+2} \xrightarrow{id} I_{n+2}$
- $\mathcal{Z}^n(\mathcal{C}_{\bullet}) = \text{Isomorphism classes of objects of } \mathcal{L}^n(\mathcal{C}_{\bullet}).$

- $(f,\theta) \in H^3(G,\mathcal{A})$.
 - $f \in \mathcal{C}_3 = \mathcal{A}^{G_3} = \mathcal{A}^{G \times G \times G}$. (Bar construction).
 - $\bullet \ \theta \in \mathrm{Hom}_{\mathcal{C}_4} = \mathrm{Hom}_{\mathcal{A}^{G_4}} = \mathrm{Hom}_{\mathcal{A}^{G \times G \times G \times G}}.$
 - $(f,\theta) \in \mathcal{L}^3(\mathcal{C}_{\bullet}) = \mathcal{L}^3(\mathcal{A}^{G_{\bullet}})$ due to the associahedron K_5 .

Long exact seuence of cohomology groups

$$\cdots \longrightarrow H^{n+1}(G, \pi_1(\mathcal{A})) \longrightarrow H^n(G, \mathcal{A}) \longrightarrow H^n(G, \pi_0(\mathcal{A})) \longrightarrow H^{n+2}(G, \pi_1(\mathcal{A})) \longrightarrow \cdots$$

- Already too complicated just with the associator (α) .
- For braiding, we need a different tool.

- Already too complicated just with the associator (α) .
- For braiding, we need a different tool.

Definition 5

 \triangleright E is an extension of B by A if there is a short exact sequence

$$0 \to A \xrightarrow{i} E \xrightarrow{p} B \to 0.$$

If $A \to E$ factors through the center of E, it is called a central extension.

- Already too complicated just with the associator (α) .
- For braiding, we need a different tool.

Definition 5

 \triangleright E is an extension of B by A if there is a short exact sequence

$$0 \to A \xrightarrow{i} E \xrightarrow{p} B \to 0.$$

If $A \to E$ factors through the center of E, it is called a central extension.

$$\bullet \qquad H^2(B,A) \xrightarrow{\varphi \\ \cong_{\mathbf{Grp}}} CentrExt(B,A)$$

- Already too complicated just with the associator (α) .
- For braiding, we need a different tool.

Definition 5

 \triangleright E is an extension of B by A if there is a short exact sequence

$$0 \to A \xrightarrow{i} E \xrightarrow{p} B \to 0.$$

▶ If $A \to E$ factors through the center of E, it is called a central extension.

$$H^2(B,A) \xrightarrow{\varphi \\ \cong_{\mathbf{Grp}}} CentrExt(B,A)$$

• $[c] \in H^2(B, A)$: $c: B \times B \to A$. Define a group with $U(G) \times U(A)$, $(b_1, a_1) \cdot (b_2, a_2) = (b_1 \cdot b_2, a_1 + a_2 + c(b_1, b_2))$.

• Choose a section $s: U(B) \to U(E)$, define $c(b_1,b_2) = s(b_1)s(b_2)s(b_1b_2)^{-1}.$

Extensions		Cohomology
$0 \to A \to E \to G \to 0$	\longleftrightarrow	$H^2(G,A)$
$0 \to \mathcal{A} \to \mathcal{E} \to G \to 0$	\longleftrightarrow	$H^3(G,A)$

- E is a SM Cat.
- $G = \pi_0(\mathcal{E})$.
- \mathcal{A} is the groupoid corresponding to $A = \pi_1(\mathcal{E}) = \operatorname{Aut}_{\mathcal{E}}(I)$.
 - $A = \Sigma A.$

Theorem 6 (Universal Coefficient Theorem)

For an abelian group G and a trivial G-module A, there exists a split short exact sequence:

$$0 \to \operatorname{Ext}^1(H_{n-1}(G),A) \to H^n(G,A) \to \operatorname{Hom}_{\operatorname{Ab}}(H_n(G),A) \to 0.$$

Theorem 6 (Universal Coefficient Theorem)

For an abelian group G and a trivial G-module A, there exists a split short exact sequence:

$$0 \to \operatorname{Ext}^1(H_{n-1}(G), A) \to H^n(G, A) \to \operatorname{Hom}_{\operatorname{Ab}}(H_n(G), A) \to 0.$$

- $L_p\Lambda^q B \to H_{p+q}(B)$.
 - ▶ L is a left-derived functor, Λ is the exterior power.

Theorem 6 (Universal Coefficient Theorem)

For an abelian group G and a trivial G-module A, there exists a split short exact sequence:

$$0 \to \operatorname{Ext}^1(H_{n-1}(G), A) \to H^n(G, A) \to \operatorname{Hom}_{\operatorname{Ab}}(H_n(G), A) \to 0.$$

- $L_p\Lambda^q B \to H_{p+q}(B)$.
 - ▶ L is a left-derived functor, Λ is the exterior power.
- p = 0: $\Lambda^q B \to H_q(B)$ give us extensions.
- p = 1: $L\Lambda^q B \to H_{q+1}(B)$ give us biextensions.

Theorem 6 (Universal Coefficient Theorem)

For an abelian group G and a trivial G-module A, there exists a split short exact sequence:

$$0 \to \operatorname{Ext}^1(H_{n-1}(G), A) \to H^n(G, A) \to \operatorname{Hom}_{\operatorname{Ab}}(H_n(G), A) \to 0.$$

- $L_p\Lambda^q B \to H_{p+q}(B)$.
 - ▶ L is a left-derived functor, Λ is the exterior power.
- p = 0: $\Lambda^q B \to H_q(B)$ give us extensions.
- p = 1: $L\Lambda^q B \to H_{q+1}(B)$ give us biextensions.

Extensions		Cohomology		Biextensions
$A \to E \to G$	\longleftrightarrow	$H^2(G,A)$		
$\mathcal{A} \to \mathcal{E} \to G$	\longleftrightarrow	$H^3(G,A)$	\longleftrightarrow	$A \to E \to G \times G$

• $E_{x,y} = \operatorname{Hom}_{\mathcal{E}}(XY, YX)$.

• For a SM bi-Cat E:

Extensions		Cohomology		Biextensions ³
$A \to E \to G$	\longleftrightarrow	$H^2(G,A)$		
$A \to \mathcal{E} \to G$	\longleftrightarrow	$H^3(G,A)$	\longleftrightarrow	$A \to E \to G \times G$
$\mathbb{A} \to \mathbb{E} \to G$	\longleftrightarrow	$H^3(G,\mathcal{A})$	\longleftrightarrow	$\mathcal{A} \to \mathcal{E} \to G \times G$

- $\mathbb{A} = \Sigma \mathcal{A} = \Sigma^2 A$.
- $\mathcal{E}_{x,y} = \mathcal{H}om_{\mathbb{E}}(XY,YX)$ along with the contracted product:
 - $\triangleright \otimes_1 : \mathcal{E}_{x,y} \wedge^A \mathcal{E}_{x',y} \to \mathcal{E}_{xx',y}.$
 - $\triangleright \otimes_2 : \mathcal{E}_{x,y} \wedge^A \mathcal{E}_{x,y'} \to \mathcal{E}_{x,yy'}.$

 $^{^3{\}rm Lawrence}$ Breen. "Monoidal Categories and Multiextensions". In: Compositio Mathematica Volume 117 (1999), pp. 295–335.

• For a SM bi-Cat \mathbb{E} :

Extensions		Cohomology		Biextensions ³
$A \to E \to G$	\longleftrightarrow	$H^2(G,A)$		
$\mathcal{A} \to \mathcal{E} \to G$	\longleftrightarrow	$H^3(G,A)$	\longleftrightarrow	$A \to E \to G \times G$
$\mathbb{A} \to \mathbb{E} \to G$	\longleftrightarrow	$H^3(G,\mathcal{A})$	\longleftrightarrow	$\mathcal{A} \to \mathcal{E} \to G \times G$

- $\mathbb{A} = \Sigma \mathcal{A} = \Sigma^2 A$.
- $\mathcal{E}_{x,y} = \mathcal{H}om_{\mathbb{E}}(XY,YX)$ along with the contracted product:
 - $\triangleright \otimes_1 : \mathcal{E}_{x,y} \wedge^A \mathcal{E}_{x',y} \to \mathcal{E}_{xx',y}.$
 - $\triangleright \otimes_2 : \mathcal{E}_{x,y} \wedge^A \mathcal{E}_{x,y'} \to \mathcal{E}_{x,yy'}.$
- Work in progress...

³Lawrence Breen. "Monoidal Categories and Multiextensions". In: *Compositio Mathematica Volume 117* (1999), pp. 295–335.

Thank you!

References I

- [1] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: *Applied Categorical Structures* (2003), p. 193.
- [2] Michael Horst. Cohomology of Picard Categories. The Ohio State University, 2020, pp. 54–62.
- [3] K.-H. Ulbrich. "Group Cohomology for Picard Categories". In: *Journal of Algebra, Volume 91* (1984), pp. 464–498.
- [4] Jean-Louis Loday. "The diagonal of the Stasheff polytope". In: Higher structures in geometry and physics, Volume 287 (2011), pp. 269–292.
- [5] Lawrence Breen. "Monoidal Categories and Multiextensions". In: Compositio Mathematica Volume 117 (1999), pp. 295–335.

Cochain complex of Picard categories

- Definition of Relative Kernel and Cokernel.
- $H^n(\mathcal{C}_{\bullet}) \in \mathbf{Pic}$.