Exercise 1.4.3.

Proof (including reasoning)	
Firstly, what product topology is being referred to? $\Sigma_m = A_m^{\mathbb{Z}}$, which is the space of sequences of elements in $\{1,\ldots,m\}$ indexed by \mathbb{Z} , which can be seen as a product $\prod_{z\in\mathbb{Z}}A_m$.	(2
The product topology is generated by products of open sets. Is there a general result that countable product topologies are generated by cylinders, instead of just by countable products of open sets?	(3
Yes, the result is that the <i>n</i> -dimensional cylinders form a basis for the product topology. This is exactly the topology on Σ_m and Σ_m^+ .	(4
How does (4) help us? From a metric we can generate the collection of open balls around all points. A metric generates a topology when, given a basis set B and any point $x \in B$, there is an open ball containing x	
that is contained in B .	(5
Let $C := C_{j_1,\ldots,j_k}^{n_1,\ldots,n_k} = \{x = (x_\ell) : x_{n_i} = j_i, i = 1,\ldots,k\}$ where $n_1 < n_2 < \cdots < n_k$ are indices in $\mathbb Z$ or $\mathbb N$, and $j_i \in A_m$.	(6
Let $x := (x_i) \in C$.	(7
We want to show that C contains an open ball B such that $x \in B$.	(8
Recall that the metrics on Σ_m and Σ_m^+ are given by $d(x, x') = 2^{-l}$, where $l = \min\{ i : x_i \neq x_i'\}$. If we pick ε small enough, we can construct $B(x, \varepsilon)$ such that all points in $B(x, \varepsilon)$ agree with x up to the 'largest'	
index in the definition of C .	(9
Let $m = \max\{ n_i : i \le k\}, y \in B(x, 2^{-m}), \text{ and } l = \min\{ i : y_i \ne x_i\}.$	(10
We have $2^{-l} = d(x, y) < 2^{-m}$.	(11
From (11), $l > m$, so $x_{n_i} = y_{n_i} \ \forall i \leq k$, hence $y \in C$.	(12
Therefore $B(x, 2^{-m}) \subseteq C$.	(13
By (13), and the fact that the collection of sets such as $C_{j_1,,j_k}^{n_1,,n_k}$ form a basis for the product topology, the metrics generate the product topology.	(14

Verify that the metrics on Σ_m and Σ_m^+ generate the product topology

(1)

(14)