Surveys, Sampling and Observational Data

Derek Li

Contents

1	Rev	view
	1.1	Basic Definition
	1.2	Basic Notations
	1.3	Population Parameters
		1.3.1 Population Mean (μ_y)
		1.3.2 Population Variance (σ_y^2)
		1.3.3 Population Total (τ_y)
		1.3.4 Population Proportion
		1.3.5 Population Ratio
	1.4	Basic Rules from Probability
	1.5	Sample

1 Review

1.1 Basic Definition

Definition 1.1. Random experiment is the process of observing the outcome of a chance event.

Definition 1.2. *Elementary outcomes* are all possible results of the random experiment.

Definition 1.3. Sample space (Ω) is the set of all the elementary outcomes.

Definition 1.4. Random variable Y is a real-valued function defined over a sample space.

Definition 1.5. Sample survey is a partial investigation of the finite population using samples.

The purpose of the sample survey is to obtain information about the population.

Definition 1.6. *Population* is a set of elements defined according to the aims and objects of the survey.

Definition 1.7. *Variable* is the function defined on population elements, characteristic of population elements. Variable can be quantitative (numerical) or qualitative (categorical).

Definition 1.8. Distribution or frequency distribution is the proportion of elements with value in an interval $[a, b], \forall a, b$.

Definition 1.9. Sampling is the selection of part of the population.

Definition 1.10. Sampling method is a scientific and objective procedure of selecting units from a population. It provides a sample that is expected to be representative of the population as a whole, and procedures for estimation of the population parameters.

1.2 Basic Notations

- Population: $E = \{e_1, e_2, \dots, e_N\}$ with population size N, where e_i 's are elements.
- Variable: y, x, z, t, \cdots .
- Range: $\{y(e), e \in E\}$.
- Probability: In discrete case,

$$P(y_i) = \frac{|\{e, y(e) = y_i\}|}{N} = \frac{N_i}{N}.$$

In continuous case,

$$P(a,b) = P(a < y < b) = \int_{a}^{b} f(y) dy,$$

where f(y) is the density function s.t.

$$f(y) \ge 0, \forall y \text{ and } \int_{-\infty}^{\infty} f(y) dy = 1.$$

1.3 Population Parameters

1.3.1 Population Mean (μ_y)

• Using distribution:

$$\mu_y = \sum_{i=1}^k y_i P(y_i) = \frac{1}{N} \sum_{i=1}^k N_i y_i.$$

• Using population values:

$$\mu_y = \frac{1}{N} \sum_{i=1}^{N} y(e_i) = \frac{1}{N} \sum_{i=1}^{N} y_i.$$

1.3.2 Population Variance (σ_y^2)

• Using distribution:

$$\sigma_y^2 = \sum_{i=1}^k (y_i - \mu_y)^2 P(y_i) = \frac{1}{N} \sum_{i=1}^k N_i (y_i - \mu_y)^2.$$

• Using population values:

$$\sigma_y^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \mu_y)^2 = \frac{1}{N} \sum_{i=1}^N y_i^2 - \mu_y^2.$$

• Population standard deviation is $\sigma_y = \sqrt{\sigma_y^2}$.

1.3.3 Population Total (τ_y)

$$\tau_y = \sum_{i=1}^{N} y(e_i) = \sum_{i=1}^{N} y_i = \sum_{i=1}^{N} N_i y_i = N\mu_y.$$

1.3.4 Population Proportion

Define

$$y(e) = \begin{cases} 0, & e \text{ does not have the property} \\ 1, & e \text{ has the property} \end{cases},$$

then

$$p = \frac{1}{N} \sum_{i=1}^{N} y(e_i) = \frac{M}{N} = \mu,$$

where M is the number of elements with the property.

1.3.5 Population Ratio

Ratio of two variables' means or totals:

$$R_{y/x} = \frac{\mu_y}{\mu_x} = \frac{N\mu_y}{N\mu_x} = \frac{\tau_y}{\tau_x}.$$

1.4 Basic Rules from Probability

In probability, the covariance of X and Y is

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

In statistics, the covariance of x and y is

$$Cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y) = \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \mu_x \mu_y$$
$$= \frac{1}{N} \sum_{i,j} N_{ij} (x_i - \mu_x)(y_j - \mu_y) = \frac{1}{N} \sum_{i,j} N_{ij} x_i y_j - \mu_x \mu_y.$$

In probability, the correlation of X and Y is

$$\rho_{X,Y} = \rho_{Y,X} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}.$$

In statistics, the correlation of x and y is

$$\rho_{x,y} = \rho_{y,x} = \frac{\operatorname{Cov}(x,y)}{\sigma_x \sigma_y}.$$

1.5 Sample

Definition 1.11. *Sample* is a subset of the population.

Definition 1.12. Random sample is a sequence of random variables (independent or dependent)

$$Y_1 = y_1, \cdots, Y_n = y_n,$$

where Y_i is the random variable and y_i is the obtained value.

Definition 1.13. Sample function is also called statistic, such sample mean (average), sample variance, etc.

Definition 1.14. Sampling distribution is the distribution of the sample function. This distribution depends on the population distribution of y and function f.