PENSÉE COMPUTATIONNELLE ET PROGRAMMATION

2ème INFO2

Enseignante: Mme Houda Ben Saïd Mangour

Séance: 06/10/2022

OBJECTIFS DE LA SÉANCE

Utiliser les structures de contrôle répétitives(itératives) pour:

P1-2

- Représenter la solution sous forme d'un algorigramme
 Ecrire l'algorithme sous forme de pseudo-code

Enoncé du sous-Problème P1-2

P1: A+B, A-b et n²

P1_2
n²

Ecrire l'algorithme **Carré** qui permet de calculer le carré des 10 premiers entiers positifs

Démarche à faire

En appliquant les étapes de résolution de problèmes on va procéder ainsi:

1. Ecrire l'algorithme **Carré** qui permet de calculer le carré d'un entier **n** donné.

2. Apporter les modifications nécessaires à l'algorithme **Carré** pour résoudre la partie P1-2 du problème?

Les variables des sous-problèmes

Les Types de données

Les Entiers

Réels

booléens

Caractères

Chaine de carctère

ENTIERS

Les opérateurs arithmétique valides

1	Alexavitleness Death are Nieuwin suli are Effect. Escapeur		e consta		
R	Algorithme	Python	Nomination	Effet	Exemple
	+	+	Addition	Ajouter deux valeurs	≻X+2 Résultat:5 si x=3
	-	-	Soustraction	Soustraire deux valeurs	≻X-2 Résultat:1 si x=3
	*	*	Multiplication	Multiplier deux valeurs	≻X*2 Résultat:6 si x=3
	DIV	//	Quotient de la division entière	Le quotient de la division entière	≻X//2 Résultat:1 si x=3
	MOD	%	Reste de la division entière	Le reste de la division entière	≻X%2 Résultat:1 si x=3

Attention à la division Entière

ENTIERS Les opérateurs de comparaison valides

11 7					
	Algorithme	Python	Effet	exemple	
	=	==	Compare deux valeurs et vérifie leur égalité.	>X==3 Résultat: Faux pour x valant 7	
	≠	i=	Vérifie qu'une variable est différente d'une valeur	>X!=3 Résultat: Vrai pour x valant 7	
	<	<	Vérifie qu'une variable est strictement inférieure d'une valeur	>X<3 Résultat: Faux pour x valant 7	
	>	>	Vérifie qu'une variable est strictement supérieure d'une valeur	>X>3 Résultat: Vrai pour x valant 7	
	≤	<=	Vérifie qu'une variable est inférieure ou égale à une valeur	>X<=3 Résultat: Faux pour x valant 7	
	<u>></u>	>=	Vérifie qu'une variable est supérieure ou égale à une valeur	>X>=3 Résultat: Vrai pour x valant 7	

Attention au signe "=" En Python

Lorsque on est entrain d'écrire une expression booléenne de comparaison qui exprime l'égalité (Test Logique):

On utilise le « = = » (tester une égalité),

Lorsque on est entrain de traduire la structure d'affectation (←)

System On utilise le « = » car il est réservé à l'affectation

RETOUR AU SOUS-PROBLÈME CARRÉ

1. Ecrire l'algorithme **Carré** qui permet de calculer le carré d'un entier **n** donné.

Les données :

Les Objets utilisés

Objet	Identificateur/ Nom de Objet	Туре
n	n	entier
carré	С	entier

L'ALGORITHME CARRÉ

L'ALGORITHME CARRÉ EN PSEUDO-CODE

L'ALGORITHME « CARRÉ » EN PSEUDO-CODE:

```
ALGORITHME
             Carré
DÉBUT
   Ecrire(''Donner la valeur de n:'')
   Lire(n)
    c ←n*n
   Ecrire(''Le carré de n est:'',c)
        T.D.O:
FIN
         Objet
                       Type
                      Entier
          n
                      Entier
```


2. Apporter les modifications nécessaires à l'algorithme **Carré** pour résoudre la partie P1-2 du problème?

Rappelons qu'on veut modifier l'algorithme pour calculer le carré des **10 premiers entiers:** On commence de l'entier **0** et on finit avec l'entier **9**

On a trouvé la solution pour calculer une seule fois le carré d'un entier.

Maintenant il va falloir refaire ce traitement 10 fois

Comment réduire ce travail laborieux???

Quelle est la structure utilisée pour réaliser ce parcours?

les Structures répétitives

les boucles

Pour mieux comprendre le mécanisme des boucles, cette vidéo peut vous être utile:

Lien de la vidéo: https://youtu.be/IBAv89hky8g

QR code de la page qui contient la vidéo:

L'ALGORITHME P1-2 EN PSEUDO-CODE

Solution pour les 10 premiers entiers positifs

ALGORITHME P1-2

DÉBUT

Pour N de 0 à 9 faire

| c ← N*N

| Ecrire(''le carré de:'',N,''est:'',C)

Fin pour

<u>FIN</u>

T.D.O:

Objet	Туре
N	Entier
С	Entier