Tarea 3

UEA: Temas Selectos de Procesos Químicos Análisis de Datos con Python

Profesor: Abigail Marín

Fecha: 13 de octubre de 2025

1. Instrucciones

Desarrolla en Python la solución de las siguientes ecuaciones, mostrando el procedimiento, código utilizado y resultado final con las unidades correspondientes.

2. Ejercicios

1. Ley de los gases ideales

La ecuación de los gases ideales relaciona la presión, el volumen, la cantidad de sustancia y la temperatura mediante la expresión:

$$PV = nRT$$

Datos:

$$n = 2.0 \mod R = ?$$

$$T = 298 \text{ K}$$

$$V = 10 \text{ L}$$

Realice una busqueda para obtener el valor de la constante de los gases (R) en las unidades requeridas. Determina el valor de la presión P del sistema.

2. Ecuación de Arrhenius (Cinética química)

Esta ecuación describe la dependencia de la constante de velocidad k con la temperatura:

$$k = Ae^{\frac{-E_a}{RT}}$$

Datos:

$$A = 5 \times 10^{7} \text{ s}^{-1}$$

 $E_a = 75,000 \text{ J} \cdot \text{mol}^{-1}$
 $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
 $T = 350 \text{ K}$

Calcula la constante de velocidad k.

3. Ecuación de Antoine (Presión de vapor)

La ecuación de Antoine permite calcular la presión de vapor de una sustancia en función de la temperatura:

$$\log_{10}(P) = A - \frac{B}{C+T}$$

Constantes de Antoine para el agua:

$$A = 8,07131, \quad B = 1730,63, \quad C = 233,426$$

 $T = 80$ °C

Determina la presión de vapor P en mmHg.

4. Número de Reynolds (Flujo de fluidos)

El número de Reynolds (Re) se utiliza para caracterizar el régimen de flujo (laminar, de transición o turbulento):

$$Re = \frac{\rho v D}{\mu}$$

Datos:

$$\rho = 1000 \text{ kg·m}^{-3}$$

$$v = 1,2 \text{ m·s}^{-1}$$

$$D = 0,05 \text{ m}$$

$$\mu = 0,001 \text{ Pa·s}$$

Calcula el valor del número de Reynolds.

5. Uso de condicionales: Determinación del régimen de flujo

Aplicar estructuras de control if, elif y else para determinar el tipo de flujo a partir del número de Reynolds calculado.

El programa deberá solicitar al usuario los valores necesarios mediante la función input(), correspondientes a:

- \bullet Densidad del fluido, ρ [kg/m³]
- Velocidad promedio del fluido, v [m/s]

- ullet Diámetro interno de la tubería, D [m]
- Viscosidad dinámica, μ [Pa·s]

Con los valores introducidos, el código deberá calcular el número de Reynolds:

$$Re = \frac{\rho v D}{\mu}$$

Posteriormente, el programa determinará el régimen de flujo de acuerdo con los siguientes criterios:

- Re < 2300 \rightarrow Flujo laminar
- $2300 \le Re \le 4000$ \rightarrow Flujo de transición
- Re > 4000 \rightarrow Flujo turbulento

Indicaciones:

- 1. Utiliza la función input() para leer los datos ingresados por el usuario.
- 2. Convierte los valores a tipo float antes de realizar los cálculos.
- 3. Emplea las estructuras condicionales if, elif y else para determinar el tipo de flujo.
- 4. Muestra el resultado en pantalla con un mensaje descriptivo.

Entrega

Envía tu solución en formato PDF al correo: **temas.datosiq@gmail.com** y adjunta el código en un archivo .py debidamente comentado.