Recap:

•
$$p = \{(\theta_1, \theta_2)\}$$

$$\begin{bmatrix} \dot{n} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

dimensions
$$J = J_v : (3 \times n)$$

- to get · differentiali position p = Ju Ou Jacobian.
 - · g singular configuration, det (J) = 0

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} \int_{-$$

SINGULARITIES

STATICS Study of forces acting on the body without an motion (or acceleration)	بد
· torque: C = rxF (rotational equivalent. of josce)
ne chanical powers: $P = \underline{w}$	
for linear motion, $P = Fd = F \cdot \sigma$	
PRINCIPLE OF CONSERVATION OF POWERS:	
PRINCIPLE OF CONSERVATION OF POWERS: power at joints = power to more robot + (power at end effector)	
Because of Statics, power to move robot =0	
=> power at joints = power at end-effector	
nous parage at most of CTur	
now, power at joints = CTw power at end-effector = FTv	
$\mathbf{a} \cdot \mathbf{c}^{T} \cdot \mathbf{c} = \mathbf{F}^{T} \cdot \mathbf{c}$	
Thus. C'W = F'U (T'O = F' JO (U = JO)	
Thus. $\overrightarrow{C} w = F^{T} v$ $ \overrightarrow{C} \overrightarrow{O} = F^{T} \overrightarrow{O} \overrightarrow{O} \qquad [v = \overline{J} \overrightarrow{O}] $ $ \overrightarrow{C} \overrightarrow{T} = \overline{J} \overrightarrow{V} F^{T} $ $ \overrightarrow{C} \overrightarrow{J} \overrightarrow{F} \qquad \text{if it jiggles when she walks,} $ $ \overrightarrow{i} \text{ listen when she talks.} $	
Thus, C = JTF	

Test 1 Test 2

The quick brown for jumped over the lary day

humanoids have non-singulae cohjavectors for walking because of manipulability ellipsoid.

$$\theta_{1} = 0^{\circ}$$
, $\theta_{2} = 47^{\circ}$,
 $F_{y} = -1N$
 $F_{z} = 1$

$$F: \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \begin{cases} = \overline{J}^T F \end{cases}$$

$$\frac{1}{\sqrt{3}} = \begin{bmatrix} -l_{1}S\theta_{12} - l_{2}S\theta_{12} & -l_{1}S\theta_{12} \\ l_{1}c\theta_{1} + l_{2}c\theta_{12} & l_{2}c\theta_{12} \end{bmatrix}$$

$$= \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} \\ (1+1/\sqrt{2}) & 1/\sqrt{2} \end{bmatrix}$$

· For a spahral manipulator, use a full Tacobian mateix.

· velocity dispoid is _ to configuration while fosce ellipsoid is in the disection.

-> Trajectory: path parameterized wrt fine t.

Motion planning: finding robot's motion from a start position to an end position.

Path planning: finding a collision - few path from initial to find configuration.

$$\theta(S): [0,1] \rightarrow \Theta$$

When $S=0 \Longrightarrow \theta(0): \theta$ initial

 $S=1 \Longrightarrow \theta(1): 0$

final

linear motion in task strace

· linear motion in task space will have non-linear motion in joint space (and vice-versa)

- ·i) we take linear motion in task space -> velocity and acceleration will be non-linear
- · to have mooth velocity 4 acceleration => Cubic polynomial.

$$P_{t} = (n_{t}, y_{t})$$

$$P_{t} = (n_{o}, y_{o})$$

$$=$$
 $\rho(s) = (1-s) \rho_0 + s \rho_f$

- · When doing linas configuration, the intermediate points
 may be out of the seachable workspace.
- · To satisfy n constraints, we need to consider in independent coefficients.

Cay,
$$S(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$

 $\dot{S}(t) = a_1 + 2a_2t + 3a_3t^2$

$$s(t_0)$$
; $s(t_f) = 0$; $s(t_f) = 0$

Now,
$$S(0) = a_0$$
 (initial posⁿ)
 $\dot{S}(0) = a_1$

s(t+)=; (C+)-

• no. of constraints = 6 (considering acceleration & velocity constraints)

=> order of polynomial - 6-1 = 5

you physically only feel acceleration of that subject to keep it smooth.

But past that your soul shudders.

· det (m) = -4(tf-t6)9