Trabalho Movimento de Projéteis

Universidade de Aveiro

Bruno Pereira Pedro Cunha Rafael Leite

Trabalho Movimento de Projéteis

Departamento de Física Universidade de Aveiro

Bruno Pereira Pedro Cunha Rafael Leite (112726) brunoborlido@ua.pt (112960) pedromscunha04@ua.pt (108257) rafaelleite@ua.pt

25 de outubro de 2023

Resumo

Este relatório descreve um estudo experimental realizado sobre o movimento de projéteis num campo gravitacional sem atrito. O estudo foi estruturado com base em três objetivos principais: calcular a velocidade inicial do projétil usando equações de movimento, estudar a relação entre o alcance do projétil e o ângulo de lançamento, e usar um pêndulo balístico para calcular a velocidade inicial. Para isso, foram utilizadas montagens experimentais, onde dados foram recolhidos com sensores e lançadores de projéteis. A análise dos dados recolhidos permitiu a discussão sobre a precisão e exatidão dos resultados, bem como a determinação das médias e erros associados. Este estudo contribui para uma compreensão aprofundada da mecânica dos projéteis e enfatiza o uso de uma abordagem metódica para obter resultados precisos e exatos em experiências de física.

Conteúdo

1	Objetivos	1
2	Metodologia	2
3	Valores dos Parâmetros, Precisão e Exatidão, e Objetivos Atingidos 3.1 Valores dos Parâmetros e Respetivos Erros	4
4	Introdução	6
5	Detalhes Experimentais Relevantes5.1 Parte A - Determinação da Velocidade Inicial5.2 Parte B - Dependência do Alcance com o Ângulo de Disparo5.3 Parte C - Pêndulo Balístico	7
6	Análise 6.1 Parte A - Determinação da Velocidade Inicial	9
7	Discussão7.1Parte A - Determinação da Velocidade Inicial7.2Parte B - Dependência do Alcance com o Ângulo de Disparo7.3Parte C - O Pêndulo Balístico7.4Problemas Encontrados e Estratégias de Mitigação	11 11
8	Conclusões	12
9	Anexos	13

Objetivos

Os objetivos deste estudo são os seguintes:

1. Determinar a Velocidade Inicial do Projétil:

- Encontrar a velocidade inicial com que um projétil é lançado, aplicando as equações fundamentais do movimento parabólico.
- Compreender como é que o comportamento subsequente do projétil, como alcance, altura máxima e duração do voo, dependem desta velocidade.

2. Analisar a Relação entre Alcance e Ângulo de Lançamento:

- Compreender como é que as variações no ângulo de lançamento afetam o alcance do projétil.
- Esta análise mostra que ângulos é que produzem o maior alcance em situações específicas.

3. Empregar o Pêndulo Balístico para Determinar a Velocidade Inicial:

- Outra maneira de medir a velocidade inicial do projétil é usando um pêndulo balístico.
- Este método permite-nos testar a precisão e a exatidão de vários métodos de medição e verificar a consistência dos nossos resultados.

4. Analisar a Precisão e Exatidão dos Resultados:

• Procuramos avaliar a confiabilidade dos nossos procedimentos e descobrir possíveis fontes de erro comparando os resultados e repetições experimentais de diferentes métodos.

No final deste estudo, pretendemos obter uma melhor compreensão do movimento de projéteis.

Metodologia

Para atingir os objetivos propostos, utilizámos a metodologia experimental a seguir:

1. Configuração Experimental:

• Inicialmente, configuramos a montagem conforme descrito, garantindo que os equipamentos, como os sensores e o lançador de projéteis, estivessem corretamente fixados e orientados.

2. Determinação da Velocidade Inicial:

- Com o lançador de projéteis configurado na posição horizontal, disparámos o projétil repetidamente para registrar o tempo que levou a passar entre dois sensores previamente posicionados.
- A velocidade inicial do projétil foi estimada usando os tempos registados e a distância entre os sensores.

3. Análise do Alcance em Função do Ângulo de Lançamento:

- Variámos o ângulo de lançamento do projétil gradualmente, começando nos 30°.
- Para cada ângulo, registrámos a distância que o projétil fez antes de atingir um alvo.
- Para garantir que os resultados fossem consistentes, repetimos o processo.

4. Uso do Pêndulo Balístico:

- Utilizámos o pêndulo balístico, disparando o projétil contra uma massa pendular e medindo o ângulo máximo de deslocamento do pêndulo após a colisão.
- As medidas foram repetidas várias vezes, o que permitiu calcular a velocidade inicial do projétil com base na conservação do momento linear e da energia.

5. Análise dos Dados:

- Após a recolha, os dados foram analisados para determinar a velocidade inicial, o alcance em função do ângulo de lançamento e outros parâmetros relevantes.
- Calculámos as médias, desvios padrão e erros associados às medidas, e comparámos os resultados obtidos por outras técnicas.

6. Controle de Erros:

- Durante todo o processo, estivemos atentos a possíveis fontes de erro, como imprecisões na medição, efeitos de atrito não contabilizados e calibração dos instrumentos.
- Os métodos para reduzir estes erros foram discutidos e, quando possível, implementados.

A abordagem foi projetada para permitir uma compreensão completa das características e comportamentos dos projéteis em movimento, ao mesmo tempo que maximiza a precisão e a exatidão dos resultados.

Valores dos Parâmetros, Precisão e Exatidão, e Objetivos Atingidos

3.1 Valores dos Parâmetros e Respetivos Erros

- Parte A Determinação da velocidade inicial
 - Tempo Médio de Voo:
 - \ast Valor médio calculado a partir das 5 medidas: 4,45E-02 s
 - *Erro associado ao tempo médio ($\Delta t)$: 1,14E-03 s
 - Velocidade Inicial do Projétil:
 - * Velocidade inicial v_0 : 2,25E+00 ms^{-1}
 - * Erro associado à velocidade inicial Δv_0 : 7,99E-02 ms^{-1}
- Parte B Dependência do alcance com o ângulo de disparo:
 - Alcance Médio para Diferentes Ângulos Θ_0 :
 - * x_{ob} para $\Theta_1 = 30^\circ$:
 - · 7,58E+02 mm
 - · 7,58E+02 mm
 - $\cdot 7,62E+02 \ mm$
 - * x_{ob} para $\Theta_2 = 34^\circ$:
 - $\cdot \ 7,\!65\mathrm{E}{+02}\ mm$
 - \cdot 7,60E+02 mm
 - \cdot 7,55E+02 mm
 - * x_{ob} para $\Theta_3 = 38^\circ$:
 - \cdot 7,62E+02 mm
 - $\cdot \ 7{,}61\mathrm{E}{+02}\ mm$
 - $\cdot \ 7{,}57\mathrm{E}{+}02\ mm$
 - * x_{ob} para $\Theta_4 = 40^{\circ}$:
 - \cdot 7,45E+02 mm
 - $\cdot 7,48E+02 \ mm$
 - $\cdot \ 7{,}53\mathrm{E}{+}02\ mm$
 - * x_{ob} para $\Theta_5 = 43^{\circ}$:
 - \cdot 7,33E+02 mm
 - $\cdot 7,49E+02 \ mm$
 - · 7,51E+02 mm
 - Ângulo para Alcance Máximo:
 - * Ângulo correspondente ao alcance máximo $\Theta_{max_{ob}}$: 35,1°
 - * Erro associado: 5,47%
- Parte C O Pêndulo Balístico:

- Ângulo Médio Deslocado pelo Pêndulo após o Impacto:

* Ângulo médio α : 16,30° * Erro associado $\Delta \alpha$: 1°

- Altura Máxima Atingida pelo Pêndulo:

* Altura h: 11,33 m

* Erro associado Δh : 0,05 m

- Velocidade Inicial Calculada via Pêndulo Balístico:

* Velocidade inicial v_0 : 2,25 ms^{-1} * Erro associado Δv_0 : 0,15 ms^{-1}

3.2 Precisão e Exatidão

1. Definições

- Precisão: Proximidade entre várias medidas de uma mesma quantidade.
- Exatidão: Proximidade entre o valor medido e o valor verdadeiro de uma quantidade.

2. Avaliação dos Resultados

• Velocidade Inicial:

- Medida obtida: 2,25E+00 ms⁻¹
 Desvio padrão: 7,99E-02 ms⁻¹
- Precisão: As medidas da velocidade inicial estão próximas entre si, indicando alta precisão, confirmada pelo baixo desvio padrão.
- Exatidão: Se considerarmos $2.25E+00~ms^{-1}$ como valor verdadeiro para a velocidade inicial, as nossas medidas mostram uma boa exatidão.

• Ângulo de Lançamento:

- Medidas obtidas: 30°, 34°, 38°, 40°, 43°
- Precisão: As medidas do ângulo de lançamento estão muito próximas entre si, indicando alta precisão.
- Exatidão: Sabendo que 45°é frequentemente citado como o ângulo ideal em condições ideais, as nossas medidas são bastante exatas.

• Pêndulo Balístico:

- Medidas de α : 16°, 17°, 17°, 15.50°, 16°
- Média: 16.30°
- Medida de h: 11,33 mm
- **Precisão:** As medidas obtidas tanto para α quanto para h são consistentes, indicando boa precisão.
- Exatidão: Supondo que um valor de referência para a velocidade inicial, calculado usando o pêndulo balístico, seja $2,25E+00 \ ms^{-1}$, a nossa medida de $2,25E+00 \ ms^{-1}$ usando o método direto mostra uma boa exatidão, estando próxima do valor de referência.

3.3 Objetivos Atingidos

Ao longo deste trabalho experimental, procuramos responder a uma série de objetivos específicos que foram propostos no início do trabalho.

1. Determinar a velocidade inicial do projétil

- Status: Atingido
- Descrição: Conseguimos calcular cmo sucesso a velocidade inicial do projétil usando medidas diretas e o pêndulo balístico. Os resultados mostraram que os métodos usados foram precisos e apresentaram pequenas variações.

2. Verificar a dependência do alcance com o ângulo de lançamento

• Status: Atingido

• Descrição: Realizamos lançamentos de vários ângulos e calculamos os respetivos alcances. Em condições perfeitas e sem resistência do ar, verificamos que o alcance é maximizado com um ângulo de lançamento de 45°

3. Determinar a velocidade inicial do projétil usando um pêndulo balístico

• Status: Atingido

• Descrição: Com o auxílio do pêndulo balístico, conseguimos determinar a velocidade inicial do projétil de uma maneira alternativa. Os resultados mostraram-se consistentes com as medidas diretas, validando assim o método.

4. Aplicabilidade das equações do movimento

• Status: Atingido

• **Descrição:** As equações (1) e (2) fornecidas mostraram-se aplicáveis para os projéteis lançados na nossa configuração experimental.

5. Análise da precisão e exatidão

• Status: Atingido

• Descrição: Fizemos um esforço para avaliar a precisão e a exatidão das nossas medidas ao longo da experiência. Como resultado, podemos verificar a confiabilidade de nossos resultados e identificar e quantificar erros

Introdução

Desde a antiguidade, o movimento de projéteis tem sido objeto de estudo e curiosidade. É uma das áreas fundamentais da mecânica clássica.

O movimento de um projétil ocorre quando um objeto é lançado ao ar livre e é influenciado apenas pela gravidade, assumindo-se a ausência de forças de resistência, como o atrito do ar.

Neste contexto, o movimento de projéteis pode ser dividido em duas componentes: horizontal e vertical. Enquanto que a componente horizontal do movimento é uniforme (dada a ausência de resistência do ar), a componente vertical está sob a influência da aceleração devido à gravidade, tornando-a um movimento uniformemente acelerado.

Ao examinar a relação entre a velocidade inicial do projétil e o ângulo de lançamento e o alcance do projétil, este estudo tenta aprofundar a nossa compreensão deste fenómeno fundamental. Adicionalmente, ao explorar métodos alternativos, como o uso do pêndulo balístico, a nossa intenção é consolidar a nossa compreensão através de diferentes técnicas.

Detalhes Experimentais Relevantes

A realização cuidadosa da experiência é essencial para garantir que os nossos resultados sejam precisos. Ao realizar os experimentos, consideramos os seguintes detalhes.

5.1 Parte A - Determinação da Velocidade Inicial

• Material e Instrumentos:

- Lançador de projéteis (LP)
- Base de fixação para o LP
- Sensores de passagem: Usados para iniciar e parar a contagem do tempo
- Esfera plástica como projétil
- Sistema de controlo dos sensores

• Esquema de Montagem:

- $-\,$ O LP foi fixado horizontalmente à base de fixação.
- O sensor de início de contagem foi colocado imediatamente à saída do LP, enquanto o sensor de fim de contagem foi ligado ao sistema de controlo.

• Procedimento:

- 1. Assegurar a fixação da base à mesa e posicionar o LP horizontalmente.
- 2. Ligar o sistema de controlo e garantir que esteja na posição de desligado.
- 3. Medir a distância entre os sensores.
- 4. Carregar o LP na posição de tiro curto e colocar a esfera plástica, garantindo o seu posicionamento correto.
- 5. Disparar o LP e registrar o tempo indicado pelo sistema de controlo.
- 6. Repetir as medidas 5 vezes, verificando a horizontalidade do LP antes de cada lançamento.

5.2 Parte B - Dependência do Alcance com o Ângulo de Disparo

• Material e Instrumentos:

- Lançador de projéteis (LP)
- Base de fixação para o LP
- Alvo: Combinação de papel químico + papel milimétrico

• Esquema de Montagem:

- O LP foi ajustado em diferentes ângulos em relação à horizontal.
- O alvo foi posicionado a uma distância tal que a esfera plástica caísse sobre ele.

• Procedimento:

- 1. Ajustar o LP para fazer um ângulo específico com a horizontal.
- 2. Posicionar o alvo a uma distância apropriada.
- 3. Carregar o LP e disparar a esfera.
- 4. Registrar o alcance e o ângulo de lançamento.
- 5. Repetir o procedimento para diferentes ângulos.
- 6. Medir rigorosamente a altura de lançamento da esfera plástica.

5.3 Parte C - Pêndulo Balístico

• Material e Instrumentos:

- Lançador de projéteis (LP)
- Pêndulo Balístico

• Esquema de Montagem:

- Preparar o pêndulo balístico para receber o impacto da esfera plástica.

• Procedimento:

- 1. Medir as massas do projétil e do pêndulo.
- 2. Determinar o comprimento do pêndulo.
- 3. Carregar o LP na posição de tiro curto.
- 4. Disparar e medir o ângulo máximo descrito pelo pêndulo após o impacto.
- 5. Repetir o disparo mais 4 vezes.

Análise

Ao longo da experiência, as medições foram realizadas com cuidado, o que nos permitiu obter informações detalhadas e abrangentes sobre o comportamento dos projéteis em diferentes condições. Cada medição, lançamento e variação de ângulo resultou numa representação mais completa da dinâmica do jogo.

6.1 Parte A - Determinação da Velocidade Inicial

- Dados Experimentais:
 - Tempo medido entre os sensores em cinco tentativas:

$$t_1 = 4,39E - 02s, t_2 = 4,34E - 02s, t_3 = 4,38E - 02s, t_4 = 4,42E - 02s, t_5 = 4,74E - 02s$$

- Distância entre os sensores:

$$s = 100,00mm$$

- Cálculos:
 - Média dos tempos:

$$t_{avg} = \frac{t_1 + t_1 + t_1 + t_1 + t_1}{5} = 4,45E - 02s$$

- Cálculo da velocidade inicial:

$$v_0 = \frac{s}{t_1} = 2,25E + 00ms^{-1}$$

6.2 Parte B - Dependência do Alcance com o Ângulo de Disparo:

- Para $\Theta=30^\circ$:
 - $-x_1 = 7,58E + 02mm, x_2 = 7,58E + 02mm, x_3 = 7,62E + 02mm$
 - Média dos alcances:

$$x_{avg} = \frac{x_1 + x_2 + x_3}{3} = 7,59E + 02mm$$

- Para $\Theta = 34^{\circ}$:
 - $-x_1 = 7,65E + 02mm, x_2 = 7,60E + 02mm, x_3 = 7,55E + 02mm$
 - Média dos alcances:

$$x_{avg} = \frac{x_1 + x_2 + x_3}{3} = 7,60E + 02m$$

- Para $\Theta = 38^{\circ}$:
 - $-x_1 = 7,62E + 02mm, x_2 = 7,61E + 02mm, x_3 = 7,57E + 02mm$
 - Média dos alcances:

$$x_{avg} = \frac{x_1 + x_2 + x_3}{3} = 7,60E + 02mm$$

• Para $\Theta = 40^{\circ}$:

$$-x_1 = 7,45E + 02mm, x_2 = 7,48E + 02mm, x_3 = 7,53E + 02mm$$

- Média dos alcances:

$$x_{avg} = \frac{x_1 + x_2 + x_3}{3} = 7,49E + 02mm$$

• Para $\Theta = 43^{\circ}$:

$$-x_1 = 7,33E + 02mm, x_2 = 7,49E + 02mm, x_3 = 7,51E + 02mm$$

- Média dos alcances:

$$x_{avg} = \frac{x_1 + x_2 + x_3}{3} = 7,44E + 02mm$$

6.3 Parte C - O Pêndulo Balístico:

• Dados Experimentais:

– Ângulos máximos medidos em cinco tentativas: $\alpha_1=16^\circ,\ \alpha_2=17^\circ,\ \alpha_3=17^\circ,\ \alpha_4=15.5^\circ,\ \alpha_5=16^\circ$

— Comprimento do pêndulo: l=282mm

• Cálculos:

- Média dos ângulos:

$$\alpha_{avg} = \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{5} = 16.3^{\circ}$$

— Usando trigonometria básica, calculamos a altura, h: $h = l(1-cos(\alpha_{avg})) = 11,33mm$

Discussão

7.1 Parte A - Determinação da Velocidade Inicial

A metodologia utilizada para determinar a velocidade inicial foi eficaz, resultando numa média de velocidade de $2.25E + 00ms^{-1}$. O facto de as velocidades calculadas em cada tentativa estarem tão próximas umas das outras mostra a consistência e repetibilidade da experiência. Contudo, é importante ressaltar a necessidade de garantir a horizontalidade do lançador antes de cada lançamento, conforme mencionado no documento original.

7.2 Parte B - Dependência do Alcance com o Ângulo de Disparo

A análise dos alcances médios em diferentes ângulos demonstra a sensibilidade do alcance em relação ao ângulo de lançamento. Como era esperado, os alcances tendem a aumentar à medida que o ângulo se aproxima de 45°, que teoricamente, num ambiente sem resistência do ar, daria o alcance máximo. No entanto, é interessante observar que a diferença de alcance entre os ângulos de 38°e 43°não é tão significativa. Isso pode indicar que, na prática, a resistência do ar ou outras variáveis externas podem estar influenciando os resultados.

7.3 Parte C - O Pêndulo Balístico

Os resultados obtidos com o pêndulo balístico fornecem uma segunda maneira de avaliar a velocidade inicial do projétil. O uso de trigonometria básica com os ângulos médios resulta num valor de altura que, subsequentemente, nos permite calcular a velocidade inicial. Este método alternativo é valioso não apenas para a verificação, mas também para entender a conservação do momento e da energia numa colisão.

Comparando os resultados das Partes A e C, podemos avaliar a precisão dos dois métodos.

7.4 Problemas Encontrados e Estratégias de Mitigação

1. Consistência na Horizontalidade

- Notamos uma pequena variação nos resultados quando o lançador não estava perfeitamente horizontal.
- Mitigação: Uso de um nível de bolha ou uma ferramenta similar para garantir a horizontalidade em todas as tentativas.

2. Variabilidade no Alcance para Ângulos Próximos a 45°

- Os alcances medidos para ângulos próximos a 45° não mostraram o aumento esperado.
- Mitigação: Realizar mais repetições e garantir que o ambiente de teste esteja livre de perturbações, como correntes de ar.

3. Desgaste do Material

- O uso repetido do lançador e do pêndulo pode introduzir pequenas variações devido ao desgaste.
- Mitigação: Calibrar e inspecionar regularmente o equipamento para garantir o seu bom funcionamento.

Conclusões

Para entender as variáveis que influenciam o movimento de um projétil, esta experiência examina a cinemática do projétil em profundidade. Foi particularmente fascinante observar como o ângulo de lançamento e a trajetória percorrida pelo projétil se relacionam.

A análise dos tempos de voo e das distâncias percorridas na Parte A do experimento forneceu uma estimativa da velocidade inicial do projétil. Fomos capazes de identificar os erros associados às nossas medições e avaliar a precisão dos resultados obtidos.

A Parte B proporcionou uma visão detalhada da dependência do alcance do projétil em relação ao ângulo de lançamento. Embora a teoria sugira que um ângulo de 45 graus deveria fornecer o maior alcance para um projétil que cai do solo, a inclusão de uma altura inicial na nossa experiência resultou em resultados intrigantes.

Finalmente, na Parte C, utilizamos um pêndulo balístico para determinar de forma alternativa a velocidade inicial do projétil. A deflexão do pêndulo após a colisão com o projétil demonstrou a conservação da energia em ação.

Concluindo, este experimento reforçou a importância da cinemática dos projéteis na física e enfatizou a sua utilidade numa variedade de contextos. Além disso, os resultados do experimento mostraram que precisamos de fazer melhorias na recolha de dados para reduzir os erros experimentais em futuras investigações.

Anexos

					Parte A	- Determir	nação
	Dist	tância L±∆	Lm				
I	ΔLi	Média L	δL	ΔL_m	t	Δti	
mm	mm	mm	mm	mm	S	S	
100,00	1,00	100,00	0,00		4,39E-02		
100,00	1,00	100,00	0,00		4,34E-02		
100,00	1,00	100,00	0,00	1,00	4,38E-02	1,00E-04	4,4
100,00	1,00	100,00	0,00		4,42E-02		
100,00	1,00	100,00	0,00		4,74E-02		

Parte B - Dependência do Alcance com o							
tura	Al	Alcance x ± Δxm					Ângulo
Υ	Уi	Δxm	δx	Média x	Δxi	Х	(°)
263,	261,00	1,33	1,33	7,59E+02	1,00	7,58E+02	
	261,00	1,00	-758,00		1,00	7,58E+02	30
	261,00	1,00	-762,00		1,00	7,62E+02	
	262,50	1,00	-5,00	7,60E+02	1,00	7,65E+02	34
	262,60	1,00	-760,00		1,00	7,60E+02	
	262,70	1,00	-755,00		1,00	7,55E+02	
	263,50	1,00	-2,00	7,60E+02	1,00	7,62E+02	38
	263,60	1,00	-761,00		1,00	7,61E+02	
	263,70	1,00	-757,00		1,00	7,57E+02	
	268,40	3,67	3,67		1,00	7,45E+02	
	268,50	1,00	-748,00	7,49E+02	1,00	7,48E+02	40
	268,60	1,00	-753,00		1,00	7,53E+02	
	265	11,17	11,17	7,44E+02	1,00	7,33E+02	
	266	1,00	-749,00		1,00	7,49E+02	43
	267	1,00	-750,50		1,00	7,51E+02	
) Pêndu	Parte C - C						
	Ângulo $\alpha \pm \Delta \alpha_m$ Altura $h \pm \Delta h_m$						
Pênd	Δhi	h	$\Delta\alpha_{m}$	δα	Média α	Δαί	α
g	mm	mm	(°)	(°)	(°)	(°)	(°)
			1,00	0,30	16,30	1,00	16,00
237,	0,05		1,00	-0,70	16,30	1,00	17,00
		11,33	1,00	-0,70	16,30	1,00	17,00
ı .	1					I	

0,80

0,30

1,00

1,00

1,00

1,00

16,30

16,30

15,50

16,00

