Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 5. března 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 2:

Měření odporu rezistoru

 $T=24,1~^{\circ}\mathrm{C}$ $p=101,\!35~\mathrm{kPa}$ $\varphi=26,6~\%$

1. Úvod

1. Máme za úkol nepřímo změřit odpor dvour rezistorů pomocí ampermetru a voltmetru, použitím vztahu

$$R = \frac{U_R}{I_R},\tag{1}$$

kde U_R je napětí a I_R proud, který odporem protéká.

2. Druhou částí úlohy je změřit voltamperovou charakteristiku žárovky.

2. Postup měření

K měření napětí je zapotřebí voltmetr zapojený paralelně k odporu, zatímco měření ampermetrem vyžaduje seriové zapojení. Máme tedy 2 možnosti navržení obvodu, tak abychom obě veličny měřili zároveň

Obrázek 1: Schéma zapojení metodou A

Obrázek 2: Schéma zapojení metodou B

Ampermetr ale v zapojení A neměří proud přímo, měří proud i na Voltmeru $I_A = I_V + I_R$. Obdobně u metody B, $U_V = U_A + U_R$. Dosazením do vzorečků dostáváme,

Metodou A
$$R = \frac{U_R}{I_R} = \frac{U_V}{I_A - \frac{U_V}{R_V}}$$
 (2)

Metodou B
$$R = \frac{U_V}{I_R} = \frac{U_V - R_A I_A}{I_A} = \frac{U_V}{I_A} - R_A$$
 (3)

Kterou metodu zvolit? Naším cílem je provést měření co nejpřesněji, tedy získat odchylku u(R) co nejmenší. Lze ukázat, že metoda A bude výhodnější pro odpory, které jsou relativně mnohem menší než odpor Voltmetru, $R \ll R_V$, zatímco metoda B bude výhodnější pokud odpor Ampermetru, je mnohem menší, než měřený odpor $R_A \ll R$. V úloze měříme 2 různé odpory oběma způsoby a nakonec porovnáme výsledky.

K měření jsme použili tyto přístroje

- stolní Multimetr U3402A pro měření proudu $(R_A = \frac{150}{12} \ \Omega)$
- ruční multimer ESCORT pro měření napětí ($R_V=10~M\Omega$)

3. Výsledky měření

3.1. Měření odporů

Naměřené hodnoty oběma metodami jsou spolu s aritmetickým průměrem a nejistotou uvedeny v tabulce 1.

	Metoda A		Metoda B	
Odpor	R_1	R_2	R_1	R_2
$I_A [mA]$	30.36 ± 2	0.017 ± 2	54.74 ± 3	0.016 ± 2
U_V [V]	3.000 ± 5	16.00 ± 2	6.000 ± 8	16.16 ± 2
Vztah (1)	$98.9 \pm 0.2 \; [\Omega]$	$0.9 \pm 0.1 [\mathrm{M}\Omega]$	$109.6 \pm 0.2 \; [\Omega]$	$1.0 \pm 0.1 [\mathrm{M}\Omega]$
Vztah (2) a 3	$98.8 \pm 0.2 \ [\Omega]$	$1.0 \pm 0.1 [\mathrm{M}\Omega]$	$97.1 \pm 0.2 [\Omega]$	$1.0 \pm 0.1 [\mathrm{M}\Omega]$

Tabulka 1: Naměřené hodnoty

3.2. Měření voltamperové charakteristiky žárovky

Obrázek 3: graf voltamperové charakteristiky žárovky

4. Závěr

Z tabulky 1 je vidět, že použití metody A je pro menší odpory opravud vhodnější, zatímco metoda B je lepší pro ty větší. Bez velké ztráty přsnosti bychom mohli výpočet provést přímo z Ohmova zákona. Voltamperova charakteristika žárovky nasvědšuje malou nelinearitu, ale myslím že efekt by byl zřetelnější pro větší rozsah měření napětí.

Reference

- [1] Bochníček a kol. Fyzikální praktikum 1, návody k ulohám. Brno 2024. Dostupné z https://monoceros.physics.muni.cz/kof/vyuka/fp1_skripta.pdf.
- [2] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.