36710 - 36752

ADVANCED PROB. OVERVIEW

FALL 2020

36710 - 36752

ADVANCED PROBABILITY OVERVIEW FALL 2020

LECTURE 1: MON, AUG 31, 2020

- · WHAT IS THE PROBABILITY OF AN EVENT ?
- · CONCEPT OF A MEASURE AND INTEGRATION
- · NOTION OF CONVERGENCE

- · _ C : UNIVERSE SET we L
- · A,B = 1 AUB, ANB, A° \$ (EMPTY SET)
- POWER SET 2" = { A: A = 1}
- CARTESIAN PRODUCT A & B = { (x,y): xeA, yeB}

AB = {f. f.A = B}

SEQUENCES OF SETS. An. Az. Az. Az. BE SUBSETS OF
$$\mathcal{A}$$

IF A: \subseteq Az \subseteq Az \subseteq ... $A = UA$

THEN	{An} is an increasing	SEQUENCE A, 7A
IF A	≥ A2 ≥ A3 ≥	A = An , men
	? IS A DECREATING SEQ	
· IN BOTH CA	THES A IS THE LIMIT OF	THE SEQUENCE (MONOTONE SEQUENCES)
	us a sequence, we co	
Tim	sup An = 0 0 1	4×
		EAR FOR INFINERLY MANY M
		(OR INPINATELY OFTEN)
	¥n	, we Ak for some ken
lm 2h	of $An = \bigcup_{\kappa \in \mathcal{N}} A_{\kappa}$	
^	n=1 k=n	
α	se liminf An ilf	W ∈ AK FOR ALL K≥4, SOMEY
		WE AN EVENTUALLY
· RECALL	THAT IF {xn} is A	SEQUENCE OF NUMBERS, THEN
lims	w Xn = 1mf sup Xx	lining zn = sup imp xx
(F 15K	A SET A, WE DEFINE	LEA INDICATOR
	$1/4(\omega) = \begin{cases} 1/6 & 0 \end{cases}$	FUNCTION FUNCTION
THEN		
lins	PAn = lim sup Ilan AND	11 hours An = laninf 1/An

EXAMPLE IF
$$A_n = \begin{cases} (a_1b) & n & \text{even} \\ (c_1d) & n & \text{even} \end{cases}$$

WHERE $a_1b_1c_1d \in \mathbb{R}$ $(a_1b) \cap (a_1d) = \emptyset$
 $a_1b_1c_1d \in \mathbb{R}$ $(a_1b) \cap (a_1b) \cap (a_1d) = \emptyset$

If $a_1b_1c_1d \in \mathbb{R}$ $(a_1b) \cap (a_1b) \cap (a_1d) = \emptyset$

1 DE MORGAN LAWS: $(A_1b) \cap (A_1b) \cap (A$

AN INFINITE SET THAT IS NOT COUNTABLE IS UNCOUNTABLE

CLDIM IF As, AZ, ... ARE COUMMILE SETS, THEN SO IS UAN (COUNTABLE UNION OF COUNTABLE SETS IS COUNTABLE) PA/ IT IS ENOUGH TO SHOW THAT IN IS COUNTABLE LET P1 AND P2 OF TWO PRIME NUMBERS. THEN f: 1N2 -> 9 GIVEN 39 (n,m) -> P1 P2 15 an injection. L> THUS ALSO IMPLIES THAT IN AM INTEGER K IS COUNTABLE Claim IF A1, A2, ... ARE COUNTABLE SETS, A1 × A2 × A3 x... IS NOT COUNTABLE (IT IS UNCOUNTABLE)! PF/ TARE An = {0,1} FOR ALL N. THEN A = TI An IS THE SET OF ALL INFINITE BINARY SEQUENCES. ASSUME THAT A IS COUNTABLE. THEN WE CAN WRITE $A = \left\{ S^{(2)}, S^{(2)}, S^{(3)} \right\}$ WHERE SCA) IS AN WEINITE BINARY SEQUENCE. LET S BE AN INFINITE BINARY SEQUENCE S.T. LIB SI = $\left(1-S^{(a)}\right)$ (FLIP $S^{(a)}_a$). THEN $S \neq S^{(a)}$ ALL 1. SO A IS UNCOUMABLE! SEE EXAMPLE 5 IN NOTES TO SEE HOW THIS RESULT CAN BE USED TO PROVE THAT (0,1) IS AN UNCOUNTABLE SET.