בחינה 6

שאלה 1

- : א. הוכח או הפרך את הטענות $B=A\setminus\{1\}$ ש- נתון ש- A,B יהיו או הפרך את הטענות
 - . אם $A \neq B$ ואם A שקולה ל- A, אז $A \neq B$ ואם .1
 - .2 אם $\{2\}$ שקולה ל- B אז $A \setminus \{2\}$ אם
 - . $P(A \setminus B) \neq P(A) \setminus P(B)$ ב. $P(A \setminus B) \neq P(A) \setminus P(B)$ אם A, B הוכח או הפרך: אם

תשובה

- א. 1. הטענה נכונה. הקבוצה B היא חלקית ל- A (כל איבר של B הוא איבר של $A \setminus \{1\}$ ולכן A איבר של A). מצד שני, על-פי הנתון, B לא שווה ל- A, לפיכך B חלקית ממש ל- A ושקולה לה ולכן A קבוצה אינסופית .
- $A\setminus\{2\}=\{1\}$ אז $B=A\setminus\{1\}=\{2\}$ ו- $A=\{1,2\}$ אז A נכונה. ניקח לדוגמה לכן A שקולה ל- B (ההתאמה A + 1 היא חחייע בין שתי הקבוצות), אבל A קבוצה סופית בניגוד לטענה הנתונה.
- ב. כידוע לכל קבוצה X מתקיים $X \subseteq X$ ולכן $\emptyset \in P(A \setminus B)$. מכאן נובע ש- $\emptyset \in P(A \setminus B)$ אבל $\emptyset \in P(A \setminus B) \neq P(A \setminus B)$ פיכך $\emptyset \notin P(A \setminus B)$. לפיכך $\emptyset \notin P(A \setminus B)$

שאלה 2

- א. (10 נקי) תהי A קבוצה שעליה מוגדרת פעולה בינרית המקיימת את תכונת הסגירות א. x*e=x מתקיים $x\in A$ כך שלכל $e\in A$ מתקיים ידוע שיש איבר a ביחס לפעולה a ביחס לפעולה a פעולה קיבוצית, אז a ניטרלי ב- a ביחס לפעולה
- ב. $A = \{2n \mid n \in \mathbb{Z}\}$ ב. $A = \{2n \mid n \in \mathbb{Z}\}$ ב. $A = \{2n \mid n \in \mathbb{Z}\}$ ב. לכל A * b = a + b ab , לכל A * b = a + b ab , לכל A * b = a + b ab . בדוק אלו מן התכונות שבהגדרת מושג החבורה מתקיימות ב- A = a + b + ab בדוק אלו מן התכונות שבהגדרת מושג החבורה מתקיימות ב- A = a + b + ab ביחס לפעולה

תשובה

e א. עלינו להוכיח כי אם * פעולה המקיימת את תנאי השאלה וגם את חוק הקיבוציות, אז פעולה איבר נטרלי. לשם כך נשאר להראות שלכל $x\in A$ שלכל לשם כך נשאר להראות שלכל הראות שלכל

(על-ידי צמצום x מימין) e*x=x

לפיכך, e נטרלי.

ב. סגירות:

יש להוכיח שלכל $a,b\in A$ אכן, אם $a+b-ab\in A$ מתקיים מתקיים $a,b\in A$ אז לפי הגדרת יש להוכיח שלכל a=2m , b=2n כך ש- $m,n\in {\bf Z}$

נקבל
$$(m+n-2mn)\in {\bf Z}$$
 -ש מאחר ש- $a*b=a+b-ab=2m+2n-4mn=2(m+n-2mn)$

. הסגירות הסגירות את מקיימת הנתונה ולכן ולכן $a*b=2(m+n-2mn)\in A$ כי

: קיבוציות

(a*b)*c = a*(b*c) מתקיים $a,b,c \in A$ יש להוכיח שלכל

$$(a*b)*c = (a+b-ab)*c = (a+b-ab)+c-(a+b-ab)c =$$

= $a+b+c-ab-ac-bc+abc$

ומצד שני,

$$a*(b*c) = a*(b+c-bc) = a+(b+c-bc) - a(b+c-bc) =$$

= $a+b+c-ab-ac-bc+abc$

מכאן שהפעולה קיבוצית.

קיום איבר נטרלי.

. נניח שיש איבר כזה. x*e=e*x=x יתקיים $x\in A$ כך שלכל $e\in A$ כך עלינו למצוא איבר

e=0 -ש אומכאן ש-2+e-2e=2 לכן, 2*e=2 ומכאן ש-2*e=2

לכן, קיבלנו ש**אם** קיים איבר נטרלי, אז הוא 0. כעת נראה שאכן 0 נטרלי. אכן, $0 \in A$ לכן, קיבלנו שאם זוגי) ולכל $x*0=x+0-x\cdot 0=x$ מתקיים: $x*0=x+0-x\cdot 0=x$

. נטרלי.
$$0 * x = 0 + x - 0 \cdot x = x$$

: קיום איבר נגדי

a*b=0 -כך ש- $b\in A$ קיים $a\in A$ כך ש-

a+b-ab=0 אנו מחפשים b כך ש- b כלומר . $a\in A$

מכאן ש-a קיים נגדי ל-a אז הוא שווה b = -a/(1-a) ולכן b(1-a) = -a

-4/(1-4)=4/3 אבל אז אם למשל ל- a=4 יש נגדי אז הוא בהכרח . -a/(1-a)

. מאחר שמספר זה אינו שייך ל- A, נקבל כי ל- A אין נגדי ולכן לא לכל איבר של A יש נגדי.

שאלה 3

 $C \neq D$ -כך ש- $C,D \subseteq A$ וקבוצות $f:A \to B$ כך ש

- . א. (8 נקי) הוכח כי אם f א נובע שf , f לא נובע f היא בהכרח חד-חד-ערכית א.
 - $f(C)\neq f(D)$ גי אז חד-חד-ערכית אז f הוכח שאם ב. (9 נקי) הוכח ב.
- $f(C)=f(C)\cup f(D)$ כך ש- f:A o B כך ש- f:A o D , ופונקציה (8 נקי) הדגם קבוצות (8 נקי) הדגם קבוצות תשובה
 - . ערכית חד-חד-ערכית $f(C) \neq f(D)$ ו- אינה חד-חד-ערכית.

$$f:A\to B$$
 ופונקציה $D=\{2\}$, $C=\{1,B=\{a,l,A=\{1,2,3\}\}$ ופונקציה נבחר למשל

f(1) = a, f(2) = f(3) = b :המוגדרת כך

ערכית, אינה חד-חד-ערכית, לכן $f(C) \neq f(D)$ לכן $f(C) = \{a\}, f(D) = \{\}b$ ו- $C \neq D$ ברור כי $f(C) = \{a\}$

- ב. נניח כעת כי $C \neq D$ ש- $C,D \subseteq A$ כך ש- $C,D \subseteq A$ נוכיח כי $C \neq D$ היא חד-חד-ערכית וכי $C \neq D$ כך ש- $C,D \neq f(D)$. $f(C) \neq f(D)$. לשם כך נשים לב שאם $C \neq D$ אז לפחות באחת מן הקבוצות האלה קיים איבר שאינו שייך לקבוצה האחרת. לכן נניח למשל כי קיים $c \in C$ כך ש- $c \in C$. לפי ההגדרה של תמונת הקבוצה $c \in C$ ביחס לפונקציה $c \in C$ נובע כי $c \in C$ נראה כעת כי $c \in C$ אכן, אם נניח כי $c \in C$ אז לפי ההגדרה של $c \in C$ נקבל כי $c \in C$ הוא תמונה של איבר אכן, אם נניח כי $c \in C$ אז לפי ההגדרה של $c \in C$ נקבל כי $c \in C$ הוא תמונה של היבר אכן, אם במילים אחרות, קיים איבר $c \in C$ כך ש- $c \in C$ אבל אז, מאחר ש- $c \in C$ היא חד-חד-ערכית נקבל כי $c \in C$ ומכאן ש- $c \in C$ וזו סתירה. כך מצאנו כי האיבר $c \in C$ מקיים $c \in C$ ומכאן ש- $c \in C$ כפי שרצינו להוכיח.

שאלה 4

נתונות f,g איזומטריות של המישור ו- A,B נקודות שונות במישור. ידוע כי הנקודות של התונות $f\circ g$ הן נקודות שבת של האיזומטריה

- א. (12 נקי) הוכח כי אם fו ו- g הופכות את מגמת המשולשים אז הן איזומטריות הפוכות זו לזו.
 - f=g אז שבת אז fיש נקודת שבת אז fו- פ. (13 נקי) הוכח שאם fו- הופכות מגמת משולשים ואם ל-

תשובה

- א. אם $f\circ g$ ו- g הופכות את מגמת המשולשים אז ההרכבה $f\circ g$ שומרת מגמת משולשים. הסבר: את $f\circ g$ ואת g אפשר להציג כהרכבות של מספר אי-זוגי של שיקופים, כי הן הופכות מגמה, לכן את $g\circ g$ נקבל כך כהרכבה של מספר זוגי של שיקופים ולכן $g\circ g$ שומרת מגמה. בנוסף לפי ההנחה, ל- $g\circ g$ יש שתי נקודות שבת שונות, לכן $g\circ g$ יכולה להיות רק הזהות או שיקוף. אבל שיקוף הופך מגמת משולשים, לפיכך בהכרח $f\circ g=I$ מאחר שכל איזמטריה היא פונקציה הפיכה הרי שקיימת למשל הפונקציה f^{-1} שהופכית ל- f^{-1} . נרכיב את f^{-1} מימין, בשני האגפים של השוויון האחרון ונקבל: $f^{-1}\circ I\circ g=f^{-1}\circ I$. הרכבת פונקציות היא קיבוצית, לכן נוכל לרשום זאת גם כך: $f^{-1}\circ I\circ g=f^{-1}\circ I$ כלומר $f^{-1}\circ g=f^{-1}\circ I$ מכאן נובע כי $f^{-1}\circ g=f^{-1}\circ I$ ולכן $f^{-1}\circ g=g$ ולכן $f^{-1}\circ g=g$ ולכן $f^{-1}\circ g=g$ ולכן $f^{-1}\circ g=g$
- ב. אם f הופכת מגמת משולשים אז f יכולה להיות רק שיקוף או שיקוף מוזז. אבל אם בנוסף ב. אם f יש נקודת שבת, אז f היא בהכרח שיקוף.

. $g=f^{-1}$ ו- g הופכות את מגמת המשולשים נקבל כמו בסעיף בי כי g ו- g היא שיקוף וכידוע כל שיקוף הופכי לעצמו. לכן $f=f^{-1}$ ולכן ולכן $f=f^{-1}$

שאלה 5

בשאלה זו נתייחס למערכת הכוללת את ארבע האקסיומות של החבורה כפי שהוגדרו בעמוד 45, יחידה 4. מושג היסוד שלה הוא פעולה בינרית.

- א. (8 נקי) הוכח כי מערכת האקסיומות היא חסרת סתירה.
- ב. (8 נקי) הוכח כי אקסיומה 2 אינה נובעת מן האקסיומות האחרות.
- ג. (9 נקי) הוכח כי אקסיומה 4 אינה נובעת מן האקסיומות האחרות.

תשובה

- א. כדי להוכיח שהמערכת חסרת סתירה נצביע על מודל שמקיים את כל האקסיומות שלה. למשל, קבוצת כל המספרים השלמים Z יחד עם פעולת החיבור הרגיל (וכן, כל חבורה אחרת) היא מודל למערכת. לכן המערכת חסרת סתירה.

נטרלי ושלכל איבר ב- A יש נגדי (שכן, כל איבר נגדי לעצמו). לכן המודל שבחרנו מקיים אקסיומות 1,3,4 אילו היה מודל זה מקיים גם אקסיומה 2 אז היה מדובר על חבורה. אך כידוע בטבלה של חבורה לא תיתכן הופעה כפולה של איבר באותו טור. מכאן שאקסיומה 2 מידוע בטבלה של חבורה לא תיתכן הופעה ישירות: למשל, (a*b)*a=b*a=a ואילו אינה מתקיימת. (ניתן להוכיח זאת ישירות: למשל, a*b*a=a*a=e , לכן תכונת הקיבוציות לא מתקיימת).

ג. כדי להוכיח כי אקסיומה 4 אינה נובעת מן האקסיומות האחרות, עלינו להדגים קבוצה ופעולה בינרית שמקיימת שלוש האקסיומות הראשונות מהגדרת מושג החבורה, אך לא מקיימת את תכונת קיום הנגדי. דוגמה כזו היא קבוצת המספרים הטבעיים N עם פעולת הכפל הרגיל. ברור שתכונות הסגירות והקיבוציות מתקיימות, ו- 1 הוא איבר נטרלי. אך לא לכל שאיבר יש נגדי. למשל, ל- 2 אין נגדי, כי לא קיים $n \in \mathbb{N}$ כך ש- 2n = 1.

שאלה 6

- $a_{n+2}=a_{n+1}+a_n$ אב ולכל $a_2=3,a_1=2$ ולכל $a_2=3,a_1=2$ א. א. $a_{n+2}^2=a_{n+1}-a_{n+2}\cdot a_n=(-1)^n$ טבעי מתקיים וולכל $a_1=a_1$
 - ב. הוכח כי לכל a טבעי, המספר (a בa מתחלק ב- 6, ללא שימוש באינדוקציה.

תשובה

. $a_{n+1}^2 - a_{n+2} \cdot a_n = (-1)^n$: א. עלינו להוכיח באינדוקציה כי לכל לכל מתקיים

. אם $a_{n+1}^2-a_{n+2}\cdot a_n=a_2^2-a_3\cdot a_1=3^2-5\cdot 2=-1=(-1)^1$ אם n=1 אם אם $a_{n+1}^2-a_{n+2}\cdot a_n=(-1)^n$ מסוים כלומר מסוים מסוים נניח כעת כי הטענה נכונה עבור $a_{n+1}^2-a_{n+2}\cdot a_n=(-1)^n$

 $a_{n+3}=a_{n+2}+a_{n+1}:$ נכונה $a_{n+3}=a_{n+2}-a_{n+3}\cdot a_{n+1}=(-1)^{n+1}:$ נכונה $a_{n+3}=a_{n+2}+a_{n+1}=(-1)^{n+1}$

$$a_{n+2}^2 - a_{n+3} \cdot a_{n+1} = a_{n+2}^2 - (a_{n+2} + a_{n+1}) \cdot a_{n+1}$$

$$= a_{n+2}^2 - a_{n+2} \cdot a_{n+1} - a_{n+1}^2 = a_{n+2}(a_{n+2} - a_{n+1}) - a_{n+1}^2$$
: total

יאת בביטוי אחם ואם מור ואם מו $a_{n+2}-a_{n+1}=a_n$ נובע כי מובע $a_{n+2}=a_{n+1}+a_n$ (הנתון) אבל מן אבל מו

$$a_{n+2}^2-a_{n+3}\cdot a_{n+1}=a_{n+2}(a_{n+2}-a_{n+1})-a_{n+1}^2$$
הקודם נקבל כי
$$=a_{n+2}\cdot a_n-a_{n+1}^2=-(a_{n+1}^2-a_{n+2}\cdot a_n)$$

: לכן $a_{n+1}^2 - a_{n+2} a_n = (-1)^n$ לכן מהנחת האינדוקציה ידוע כי

. n+1 - ומכאן שהטענה נכונה $a_{n+2}^2-a_{n+3}\cdot a_{n+1}=-(a_{n+1}^2-a_{n+2}\cdot a_n)=-(-1)^n=(-1)^{n+1}$. ומכאן שהטענה נכונה $a_{n+1}^2-a_{n+2}\cdot a_n=(-1)^n$ טבעי.

 $a(a^2+11)=a(a^2-1+12)=a(a^2-1)+12a$ וכי וכי מיתן לפשט את ההוכחה אם שמים לב כי $a(a^2+11)=a(a^2-1+12)=a(a^2-1)+12a$ וכי

.6 -ב מתחלק a(a-1)(a+1) כלומר, $a(a^2-1)$ מתחלק ב- 6.

, אבית, שאריות עם החלוקה ב- 6. לפי ב- 6. לפי שאריות אפשריות של האפשריות אריות אפשריות כך נסתכל על השאריות אריות של מa=6k+r- כך של $k,r\in \mathbf{N}_0$ קיימים קיימים

$$a(a-1)(a+1) = 6k(a-1)(a+1)$$
 : אם $a = 6k$ אם $a = 6k$ אם $a = 6k$

.6 - מתחלק ב- מתחלק ב- 6.

$$a(a-1)(a+1) = a(6k+1-1)(a+1) = 6ak(a+1)$$
 אם $a=6k+1$ אם $a=6k+1$ אם $a=6k+1$ אם

.6 -ב מתחלק $a(a^2-1)$ זה מתחלק ב-

$$a(a-1)(a+1)=(6k+2)(a-1)(6k+3)= \ 2(3k+1)(a-1)3(2k+1)=6(3k+1)(a-1)(2k+1)$$
 : אם $a=6k+2$ אם $a=6k+2$ אם $a=6k+2$ אם $a=6k+2$

.6 -ב מתחלק $a(a^2-1)$ זה מתחלק ב-

$$a(a-1)(a+1)=(6k+3)(6k+2)(a+1)= \ 3(2k+1)2(3k+1)(a+1)=6(2k+1)(3k+1)(a+1) :$$
 אם $a=6k+3$ אם $r=3$

.6 -ב מתחלק $a(a^2-1)$ מתחלק ב-

$$a(a-1)(a+1) = (6k+4)(6k+3)(a+1) =$$
 $2(3k+2)3(2k+1)(a+1) = 6(3k+2)(2k+1)(a+1)$: אם $a=6k+4$ אם $a=6k+4$ אם $a=6k+4$ אם $a=6k+4$

.6 -ב מתחלק $a(a^2-1)$ זה מתחלק ב-

לכן גם a(a-1)(a+1)=a(a-1)(6k+6)=6a(a-1)(a+1): אם a=6k+5 אז a=6k+5 אם a=6k+5 אם a(a-1)(a+1)=a(a-1)(6k+6)=6a(a-1)(a+1) מתחלק ב- a(a-1)(a+1)=a(a-1)(6k+6)=6a(a-1)(a+1)

. $a(a^2-1)=6b$ כך ש- $b\in \mathbf{N}$ כלומר קיים המספר $a(a^2-1)=a$ מתחלק ב- 6, כלומר קיים לכל

. $a(a^2+11)=a(a^2-1)+12a=6b+12a=6(b+2a)$ מכאן נקבל ש

.6 -ב מתחלק $a(a^2 + 11)$ לכן גם