First Hit

Previous Doc

Next Doc

Go to Doc#

L32: Entry 2 of 4

File: JPAB

Jun 21, 1994

PUB-NO: JP406171236A

DOCUMENT-IDENTIFIER: <u>JP 06171236 A</u> TITLE: OPTICAL RECORDING MEDIUM

PUBN-DATE: June 21, 1994

INVENTOR-INFORMATION:

NAME

HARIGAI, MASATO

IDE, YUKIO

NONOYAMA, OSAMU

KAGEYAMA, YOSHIYUKI

IWASAKI, HIROKO

ASSIGNEE-INFORMATION:

NAME

RICOH CO LTD

COUNTRY

COUNTRY

APPL-NO: JP04337193

APPL-DATE: December 17, 1992

US-CL-CURRENT: 369/283

INT-CL (IPC): B41M $\overline{5}/26$; G11B 7/24; G11B 7/24

ABSTRACT:

PURPOSE: To obtain an optical recording medium having high reliability by utilizing the reflectivity difference due to thermal diffusion between Al or Au and Ge in a write-once optical recording medium recordable only once by providing a recording layer consisting of an Al- or Au-layer and a Ge-layer.

CONSTITUTION: A write-once optical recording medium is constituted so as to be recordable only once. For example, a recording layer 3 is laminated on the upper surface of a substrate 1 through a heat-resistance protective layer 2. In this case, the recording layer 3 is formed from an Al- or Au-layer 3-2 and a Ge-layer 3-1. The Ge-layer 3-1 is arranged on the side of the substrate 1 and the Al- or Au-layer 3-2 is arranged on the upper surface of the Ge-layer 3-1. Further, a Ge or Al oxide layer is not allowed to be present between the Ge-layer 3-1 and the A-layer 3-2. At the time of recording, Al or Au and Ge is mutually thermally diffused to generate large reflectivity difference to enable writing.

COPYRIGHT: (C) 1994, JPO& Japio

Previous Doc Next Doc Go to Doc#

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A) (11)特許出願公開番号

特開平6-171236

(43)公開日 平成6年(1994)6月21日

(51) Int.Cl. ⁵	識別記号	識別配号 庁内整理番号			技術表示箇所			
B41M 5/26 G11B 7/24	5 1 1 5 2 1 C	7215-5D 7215-5D 8305-2H	B41M	5/26		Y		
		•	1	審査請求	定請求	請求項の数3(全 5	頁)	
(21)出願番号	特顧平4-337193		(71)出願人	000006747 株式会社リ	17-			
(22)出顧日	平成4年(1992)12月	17日	(72)発明者	東京都大田	区中馬	馬込1丁目3番6号		
(31)優先権主張番号 (32)優先日	特願平4-265919 平4(1992)10月5日	I		東京都大田会社リコー		易込1丁目3番6号	株式	
(33)優先権主張国	日本 (J P)		(72)発明者	東京都大田	区中馬	队1丁目3番6号	株式	
			(72)発明者	東京都大田	i 区中馬	5込1丁目3番6号	株式	
			(74)代理人	会社リコー 弁理士 小		条岳 (外2名) 最終頁に	続く	

(54) 【発明の名称】 光記録媒体

(57)【要約】

【目的】 信頼性の高い追記形の光記録材料を提供する

【構成】 基板1上にA1層3-1とGe層3-2とか らなる記録層3を有することを特徴とする光記録媒体。

1

【特許請求の範囲】

【請求項1】 A1層又はAu層とGe層とからなる記 録層を有することを特徴とする光記録媒体。

【請求項2】 基板側にGe層が存在し、そのGe層の 上にA1層又はAu層が存在することを特徴とする請求 項1記載の光記録媒体。

【請求項3】 Ge層とA1層との間にGeまたはA1 の酸化物層が存在しないことを特徴とする請求項1また は請求項2記載の光記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、書き込み可能な光記録 媒体例えばCDに関する。

[0002]

【従来の技術】現在記録可能なCDとしては有機物質で ある色素を配録材料として用いたものが市販されてい る。しかし、この材料は光による劣化を起したり、再生 光の波長によって反射率の変化が大きいという問題があ った。

は、70%以上の高反射率を得るために金属を記録材料 として用いる必要があり、この金属材料の融点が高いの で記録感度が低いという欠点がある。

【0004】現在知られている光ディスクを分類する と、オーディオコンパクトディスクに代表される再生専 用形、一回記録が可能な迫記形、光磁気効果および相転 移を利用した書き換え可能形のものが存在する。

【0005】一回記録形の材料である無機材料はTe系 を代表とした穴明け形と相変化形のものがある。穴明け 典型である。

【0006】一方、有機材料ではポリメチン系、環状ア ザアヌレン系等の色素が利用される。

【0007】しかし、無機材料の穴明け型に用いられる Teは耐湿性に問題があり、相変化型のTeO2型は反 射率の点で従来のCDとの互換性がないのが問題であ る。

【0008】一方、有機材料は耐光性が充分でない。 [0009]

【発明が解決しようとする課題】本発明は、従来技術の 40 上記問題点を解決し、信頼性の高い追記形の光記録材料 を提供しようとするものである。

【課題を解決するための手段】上記課題を解決するため の本発明の構成は特許請求の範囲に記載のとおりの光記 緑媒体である。

【0011】すなわち、A1とGeの2層構造の記録層 とし、これに電磁波、特に、半導体レーザーを照射する ことによりAIとGeの間に相互拡散を起させ、AIと Geの偏析を生じさせて大きな反射率変化を起させる光 50 それがある。

記録媒体である。

【0012】記録のために照射されるLD光を効率的に 利用するためには配録媒体の基板側にGe層を配置する のがよい。

2

【0013】この様にして得られた記録膜は基板側から の反射率をみると、波長830nmに対して初期状態で は10%の反射率であったものが、熱によるA1又はA uとGeの相互拡散による偏析の結果、70%台の反射 率に上昇する。

【0014】従って従来のCD-ROMに近い反射率変 10 化を有すると同時にA1系のためTe系に比較して耐候 性が向上する。従って本発明の材料系においては、従来 のCD-ROMと互換が可能な追記形記録媒体を提供す ることが可能となる。又、基板側にAI又はAuを、そ してその上にGeを配置する記録媒体においてもこの2 層の膜厚を制御すれば、比較的高感度な記録媒体を提供 することが可能である。

【0015】このように本発明の基体はGe層とAl層 又はAu2層が記録層であり、記録時にこの2層間での 【0003】一方無機材料を記録材料として用いる場合 20 A1又はAuとGeの拡散・偏析により光学定数の変化 を得ることである。これにより極めて大きな反射率を獲 得することが可能となる。又、A1系又はAu系のため 耐候性もTe系や有機系に比較して良好である。

【0016】本発明は追記形光記録材料に関するもので あり、その特徴とするところはGe層とA1層又はAu の2層を記録層とするものであり、記録に際して電磁 波、特には半導体レーザを照射することにより、A1層 又はAu層とGe層との間にA1又はAuとGeの相互 拡散を記させ、これによりA1又はAuとGeの偏析が 形はTeC、TeSe等であり、相変化形はTeO2が 30 生じて、光学定数の変化が起ることを利用するものであ る。この時入射する半導体レーザー光を効率的に利用す るためには記録媒体の基板側にGe層を配置するのが好 ましい。またAI層はGe層に直接接していることが必 要である。すなわちA1層とGe層の間に酸化物、例え ば酸化ゲルマニウムや酸化アルミニウム層等が存在する とAlとGeの相互拡散が阻害され記録感度が低下する 場合があるからである。

【0017】この記録層の機能を具体的に説明する。レ ーザーの照射により記録層即ちGe層上のスポット部の 温度が上昇するとGe層とA1層のGeとA1が相互に 熱拡散し、記録前のGe層部分に比較し、スポット部は Alリッチになる(Ge及びAlの膜厚によってはその スポット部がGeからAlのみになる場合がある。これ はGeが蒸発してなくなっているのではなく拡散による ことがオージエ電子分光法から確認されている)。従っ て反射率が上昇することになる。 いわゆるロウ→ハイ記 録が実現される。もちろんハイ→ロウ記録を行いたい場 合はA1層とGe層をいれかえればよい。 但しレーザー 入射側にA1層が設置されるため記録感度が低下するお 3

【0018】本発明の記録媒体の構成を図1に示す基板 1としては通常ガラス、セラミックスあるいは樹脂であ るが、樹脂基板が成型性、コスト等の点で好適である。 樹脂の代表例としてはポリカーポネート樹脂、アクリル 樹脂、エポキシ樹脂、ポリプレン樹脂、シリコン系樹 脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂等が挙げ られるが、加工性、光学特性等の点でポリカーポネート 樹脂、アクリル系が好ましい。又、基板の形状としては ディスク状、カード状、あるいはシート状であってもよ

【0019】耐熱性保護層2の材料としては、SiO、 SiO2, ZnO, SnO2, Al2O3, TiO2, In2 Os、MgO、ZrOz等の金属酸化物、SisNa、Al TiN、BN、ZrNなどの窒化物、ZnS、I n₂S₃、TaS₄等の硫化物、SiC、TaC、B₄C、 WC、TiC、ZrCなどの炭化物やダイヤモンド状力 ーポンあるいはそれらの混合物があげられる。又、必要 に応じて不純物を含んでいてもよい。このような耐熱性 保護層は各種気相成長法、例えば真空蒸着法、スパッタ ーティング法、電子ピーム蒸着法等によって形成でき

【0020】耐熱性保護層の膜厚としては200~50 00人、好適には500~3000人とするのがよい。 200Åより薄くなると耐熱性保護層としての機能を果 たさなくなり、逆に5000人よりも厚くなると、威度 の低下をきたしたり、界面剥離を生じやすくなる。又、 必要に応じて保護層を多層化することもできる。

【0021】又、記録層3としてのGe層3-1並びに*

*A1層3-2は真空蒸着法、スパッタリング法等により 形成できる。この時のGe層の膜厚としては50人から 1000人がより好ましくは150人から500人がよ い。又AIの膜厚は50Åから1500Åの間がよく、 好ましくは100人から500人の間がよい。

【0022】記録、再生に用いる電磁波としてはレーザ 一光、電子線、X線、紫外線、可視光線、赤外線、マイ クロ波等、数種のものが採用可能であるが、ドライブに 取付ける際、小型でコンパクトな半導体レーザーが最適 10 である。

[0023]

【実施例】以下、実施例によって本発明を具体的に説明 する。ただし、この実施例は本発明をなんら制限するも のではない。

【0024】 実施例1

ピッチ1. 6 µm、深さ700 Aの溝付き、厚さ1. 2 mm、直径86mmφのポリカーポネート基板上にrf スパッタリング法により耐熱保護層としてZnS-Si Oz膜を2000A、配録層としてGe膜を250A、 リング法、プラズマCVD法、光CVD法、イオンプレ 20 A1膜を300A頃次積層し、評価用光デイスクを作製 した。又このディスクの反射率を測定するため30mm ×30mm×1mmのガラス基板を取りつけた。

> 【0025】成膜後のガラス基板の分光反射率を測定 し、さらにこれを300℃、30分で熱処理した後の分 光反射率を測定した。その値を表1に示す。反射率はガ ラス基板側から測定した。

[0026]

【表1】

分 光 特 性

		分	光 5	支射	率	(%)	
武料	500nm	600nm	650nm	700nm	750an	800nm	850pm
熱処理前	3 2	2 6	2 2	16	11	8	6
熱処理後	78	78	77	75·	7 4	71	7 1

【0027】表1からわかる様に本記録膜を熱処理する ことより大きく反射率が増加することがわかる。又、本 試料をオージエ電子分光法により厚さ方向にA1とGe 40 の濃度プロフィルを求めてみると熱処理前は基板側でG e、自由表面側でAlであったものが熱処理することに より基板倒でAlリッチになっており、AlとGeが相 互拡散していることがわかった。

【0028】次に線速1.3m/sのもとで波長830 nmの半導体レーザーを用いて680KHzの信号を記 録した。この時のディスク面のレーザーパワーは10m Wとした。

【0029】そしてこの記録信号をオーディオコンパク トディスク用の評価装置で評価したところC/Nとして 50 53dBの値を得た。

【0030】実施例2

実施例1と同様な手続きにより記録媒体を製作した。耐 熱保護層のZnS-SiО₂は2000Å、そして記録 層のGe層は250Å、A1層は150Åとした。又こ の時の媒体の反射率を測定するため30mm×30mm ×1mmのガラス基板を取りつけておいた。そして製膜 後、このガラス基板の分光反射率を測定し、さらに30 0℃で30分間熱処理した後の分光反射率も測定した。 その結果を表2に示す。

[0031]

【表2】

分光特性

		分	光 5	支 射	78	(%)	
試料	550nm	600nm	650nm	700nm	750nm	800nm	850nm
熱処理前	26%	20%	16%	12%	10%	10%	10%
熱処理後	69%	70%	72%	72%	70%	67%	65%

【0032】表2からわかる様に本記録膜を熱処理する 施例1と同様に線速1.3m/sのもとで波長830n mの半導体レーザーを用いて680KHzの信号を記録 した。この時のレーザーパワーはディスク面で10mW とした。そしてこの記録信号のC/Nをオーディオコン パクトディスク用の評価装置で評価したところ50dB の値を得た。

【0033】実施例3

実施例1,2と同様な手続きにより記録媒体を製作し*

*た。耐熱保護層のZnS、SiO2の厚みは2000 ことより反射率が大きく増加することがわかる。次に実 10 Å、記録層のGe層は250Å、A1層は500Åとし た。又この時の記録媒体の反射率を測定するために30 mm×30mm×1mmのガラス基板を取りつけておい た。そして製膜後このガラス基板の分光反射率を測定 し、さらに350℃で30分間熱処理した後の分光反射 率も測定した。その結果を表3に示す。

[0034]

【表3】

分光特性

		分	光 5	芝 射	塞	(%)	
試料	550nm	600nm	650nm	700nm	750am	800nm	850am
熱処理前	26%	20%	16%	10%	8%	9%	10%
熱処理後	83%	82%	82%	82%	80%	77%	77%

【0035】表3から明らかな様に本発明による記録膜 は熱処理により反射率が大きく増加することがわかる。 この反射率の増大は熱処理することにより、AIとGe ージエ電子分光法から確認された。

【0036】次に実施例1,2と同様に線速1.3m/ sのもとで波長830nmの半導体レーザーを用いて6 80KHzの信号を記録した。その時のレーザーパワー はディスク面で10mWとした。そしてこの記録信号の※ ※C/Nをオーディオコンパクトディスク用の評価装置で 評価したところ53dBの値を得た。

【0037】実施例4

A、Au層250A、耐熱保護層としてSiO2:20 00 Aを設けた記録媒体を作製した。この膜の分光特性 を表4に示す。

[0038]

【表4】

分 光 特 性

試料		分	光 5	支射	率	(%)	
	550nm	600nm	650nm	700nm	750nm	800nm	850nm
熱処理前	34%	24%	18%	13%	7%	5 %	5 %
熱処理後	37%	65%	66%	70%	75%	79%	80%

【0039】この結果から本発明における記録膜は熱処 理により反射率が大いに増加することがわかる。オージ 工電子分光法によれば、Al-Ge系と同様なAuとG eの相互拡散が起っていることが確認された。次に線速 1. 3 m/s のもとで波長830 n mの半導体レーザを 用いて680kHzの信号を記録した。その時のパワー は10mWとし、そのC/Nを評価したところ51dB 50 の値を得た。

【0040】以上実施例1,2,3,4から明らかな様 に本発明によるGeとAl又はAuを記録層とした光記 録媒体は書き込みが可能なコンパクトディスク用として 十分に使用が可能である。

[0041]

【発明の効果】本発明の光記録媒体はその記録層がA1

7

層又はAu層とGe層の2層からなることを特徴とするものであり、記録時にAl又はAuとGeが相互に熱拡散することにより、大きな反射率差を起させることができ、掛き込みが可能なコンパクトデイスクを提供することができる。

【図面の簡単な説明】

【図1】本発明の光記録媒体の一例を示す断面の模式図

である。

【符号の説明】

- 1 基板
- 2 耐熱保護層
- 3 記録層
- 3-1 Ge周
- 3-2 A1層

[図1]

フロントページの続き

(72)発明者 影山 喜之

東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 岩崎 博子

東京都大田区中馬込1丁目3番6号 株式 会社リコー内 THIS PAGE BLANK (USPTO)