Tracking San Francisco Bay water quality using generalized additive models in an R Shiny framework

Marcus W. Beck¹ Ian Wren² Rebecca Murphy³ Perry de Valpine⁴ David Senn⁵

¹Tampa Bay Estuary Program
²San Francisco Baykeeper
³Cheseapeake Bay Program
⁴University of California Berkeley
⁵San Francisco Estuary Institute

Nov. 4, 2019

Why do we care about trends?

- Provide information on natural variation of water quality parameters - identify 1st order principles to understand a system
- Document historical changes in response to management actions did investments make a difference?
- Anticipate future changes with proposed restoration or management - understand the past to predict the future

Trends vary in space and time

Observed data represent effects from many processes

Climate

precipitation temperature wind events ENSO effects

Local

light/turbidity residence time invasive species trophic effects

Regional/historical

watershed inputs point sources management actions flow changes

Must translate data into information

Observed data represents effects of many processes

 $Models\ should\ describe\ components\ to\ evaluate\ effects$

Must translate data into information

Observed data represents effects of many processes

Models should describe components to evaluate effects

Annual

Seasonal

Must translate data into information

Observed data represents effects of many processes

Models should describe components to evaluate effects

Time

 Historically a high-nutrients, high-turbidity, low-productivity system

[Cole and Cloern, 1984,

Alpine and Cloern, 1988]

South San Francisco Bay Long-term monitoring stations

 Historically a high-nutrients, high-turbidity, low-productivity system

[Cole and Cloern, 1984,

Alpine and Cloern, 1988]

 Recent increases observed in summer-fall chl-a concentrations

[Cloern et al., 2007, Cloern and Jassby, 2012]

South San Francisco Bay Long-term monitoring stations

 Historically a high-nutrients, high-turbidity, low-productivity system

[Cole and Cloern, 1984,

Alpine and Cloern, 1988]

 Recent increases observed in summer-fall chl-a concentrations

[Cloern et al., 2007, Cloern and Jassby, 2012]

 Lead to creation of a Nutrient Management Strategy (NMS) to characterize status/trends and management needs

South San Francisco Bay Long-term monitoring stations

Questions of concern:

Questions of concern:

• Since changes are visually apparent, which are significant?

Questions of concern:

- Since changes are visually apparent, which are significant?
- What has been the estimated rate and direction of any linear or non-monotonic change?

Questions of concern:

- Since changes are visually apparent, which are significant?
- What has been the estimated rate and direction of any linear or non-monotonic change?
- Do any of these changes coincide with changes in other water quality parameters?

- The Chesapeake Bay Program (CBP) has been wrestling with similar issues, i.e., can a flexible statistical analysis method be applied to evaluate significant, non-linear changes in water quality parameters? [Beck and Murphy, 2017, Murphy et al., 2019b]
- We applied Generalized Additive Models (GAMs) developed by CBP to characterize long-term trends at nine stations over thirty years in South SF Bay
- An interactive website was also developed using R Shiny to explore trends and communicate results with stakeholders

For each station, chlorophyll was modelled as a function of annual and seasonal changes over time $_{\rm baytrends\ R\ package,\ [Murphy\ et\ al.,\ 2019a]}$

Four GAMs were evaluated and compared using standard methods for model comparison (AIC, R², GCV)

- gam0: $chl \sim year + s(doy)$
- gam1: $chl \sim year + s(doy) + s(year)$
- gam2: $chl \sim year + s(doy) + s(year) + ti(doy, year)$
- gam6: chl \sim year + s(doy) + s(year, k = large)

gam0: $chl \sim year + s(doy)$

gam1: $chl \sim year + s(doy) + s(year)$

gam2: $chl \sim year + s(doy) + s(year) + ti(doy, year)$

gam6: chl \sim year + s(doy) + s(year, k = large)

Descriptive results of additive models

Station 32 example

Descriptive results of additive models

Overall comparisons of model structure across stations

Descriptive results of additive models

Extension to other response endpoints

Why do we need this? Synthesis of results in a communicable format Answer to specific questions Understand implications and limitations of different methods

Example 1

Example 2

Example 3

Summary and next steps

References

Alpine AE, Cloern JE. 1988.

Phytoplankton growth rates in a light-limited environment, San Francisco Bay.

Marine Ecology Progress Series, 44(2):167-173.

Beck MW, Murphy RR. 2017.

Numerical and qualitative contrasts of two statistical models for water quality change in tidal waters. Journal of the American Water Resources Association, 53(1):197–219.

Cloern JE, Jassby AD. 2012.

Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bav.

Reviews of Geophysics, 50(4):1-33.

Cloern JE, Jassby AD, Thompson JK, Hieb KA. 2007.

A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay.

Proceedings of the National Academy of Sciences of the United States of America, 104(47):18561–18565.

Cole BE, Cloern JE. 1984.

Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay.

Marine Ecology Progress Series, 17(1):15-24.

Murphy R, Perry E, Keisman J, Harcum J, Leppo EW. 2019a.

baytrends: Long Term Water Quality Trend Analysis.

R package version 1.1.0.

Murphy RR, Perry E, Harcum J, Keisman J. 2019b.

A Generalized Additive Model Approach to evaluating water quality: Chesapeake Bay case study. Environmenal Modelling & Software, 118:1–13.