

Virtual Private Network (VPN)

Prof. Chien-Chao Tseng

曾建超教授

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

References: https://www.comparitech.com/blog/vpn-privacy/ipsec-vs-ssl-vpn/

Remote Accessing a Private Network

- Legacy approaches:
 - Site to site:
 - Leased line networks
 - Expensive
 - Remote access (for roaming user):
 - Use ISP allocated IP
 - Untrusted

ISP: Internet Service Provider

Virtual Private Network

- Extension of a private network that encompasses links across shared or public networks
 - emulates the properties of a point-to-point private link
 - Provide an encrypted connection
- Enables two hosts to send and receive data across shared or public networks
 - as if the two hosts were directly connected to each another

Advantages of VPN

- Advantages of VPN
 - Low cost
 - Scalable
 - Easy to scale and administer.
 - Extending a leased line connection is much more complex

Common Use Cases of VPN

Remote Access

3. Intranet Secured Network Access

Network Isolation

Site to Site Connection

Different from Virtual LAN (VLAN)

Operation Scenario with VPN

- 1. VPN Client (Remote user)
 - Acquires an IP from ISP and
 - Sends request to VPN server
- 2. VPN server
 - Authenticates VPN client (remote user)
 - Reply with a corporate IP to VPN client

VPN Key Concept - Tunneling

- VPN consists of a set of point-to-point connections tunneled over the Internet.
- VPN Packet:
 - Payload:
 - Original packets are encapsulated as payload of VPN tunnel packets.
 - Header:

Tunneling vs. Encapsulation

- Tunneling encapsulates and transport PDU from one protocol within another protocol.
 - Unlike encapsulation, tunneling can carry a lower-layer protocol or a same-layer protocol PDU.
- IP-in-IP Tunnel

Ethernet	Outer IP	Inner IP	Inner IP
Header	Header	Header	Payload

Generic Route Encapsulation (GRE) Tunnel [RFC 2890]

Ethernet	Outer IP	GRE	Inner IP	Inner IP
Header	Header	Header	Header	Payload

Virtual Extensible LAN (VXLAN) Tunnel

Ethernet	Outer IP	UDP	VXLAN	Ethernet	Inner IP	Inner IP
Header	Header	Header	Header	Header	Header	Payload

Tunneling – Use Case 1

Provides a network service that the underlying network does not support or provide

directly

 E.g., IPv6 Tunnel for IPv4 Networking A IPV4 B C IPV6 D E IPV4 F
IPV4 IPV4 Ether IPV6 I IPV6 Ether IPV4 IPV4

Protocol Value (Next Header)

in IPv6 header:

■ IPv4: 0x04

• TCP: 0x06

■ IPv6: 0x41

Src: B
Dst: E

Src: A
Dst: F
Data

Src: B
Dst: E

IPv6:
IPv4:
Data

IPv4 in IPv6

iPv6 Tunnel Dst: E
Src: A
Dst: F

Data Da**ța**v4

Ether

Src: A

Dst: F

Src:B

IPv4 carried as payload in IPv6 datagram among IPv6 routers

IPv4

Logical view: B ↔ E

- Physically: B \leftrightarrow C \leftrightarrow D \leftrightarrow E

Tunneling – Use Case 2

 When providing services that are impractical or unsafe using only the underlying network services,

- E.g., Remote access to corporate network services
 - Remote user uses a network address is not part of corporate network.
 - ➤ Use GRE to establish a virtual point-to-point connection between two NWs.
- Generic Routing Encapsulation (GRE): RFC 2784 and updated by RFC 2890
 - A GRE header between the inner and outer IP headers

Ethernet	Outer IP	GRE	Inner IP	Inner IP
Header	Header	Header	Header	Payload

- IP as a transport protocol
- Virtual Tunnel: Tunnel IP Header + GRE Packet Header
- Encapsulation, not encryption

Main Components of Tunneling

- Three Main Components of Tunneling:
 - Passenger protocolProtocol that the tunnel encapsulates
 - e.g., IPv4, Ethernet,
 - Carrier protocol

Protocol the tunnel uses to encapsulates passenger protocol

- GRE, IP-in-IP, Multiprotocol Label Switching (MPLS).
- Transport protocol

Protocol that carries the encapsulated protocol

IP is the main transport protocol

• E.g., GRE Tunnel

Ethernet Outer IP GRE Inner IP Inner IP Header Header Payload

Transport Protocol

Passenger Protocol

Carrier Protocol

VPN Requirements

- User Authentication
- Address Management
- Key Management
- Security
 - Confidentiality
 Preventing anyone from reading or copying data as it travels across the Internet.
 - Data Integrity
 Ensuring that no one tampers with data as it travels across the Internet.

Common Implementations

- Based on Point-to-Point Protocol (PPP)
 - Point-to-Point Tunneling Protocol (PPTP) (PPP + encryption + GRE) [2637]
 - Layer Two Tunneling Protocol (L2TP) (Origin from (Cisco L2F + MS PPTP))
- Based on TCP/IP
 - L2TP/IPsec
 - IPsec Tunnel Mode [RFC 4301]
 - BGP/MPLS IP VPN [RFC 4364]
- Based on Secure Sockets Layer (SSL)/ Transport Layer Security (TLS)
 - Secure Socket Tunneling Protocol (SSTP) (PPTP + SSL)
 - SSL VPN
 - OpenVPN
- ✓ **Note: TLS**, and its deprecated **SSL**, are <u>cryptographic protocols</u>

Point-to-Point Protocol (PPP) [RFC 1661]

- PPP is a Data link layer (layer 2) protocol
 - A standard method for transporting multi-protocol datagrams over point-to-point (direct) links.
- Three components
 - Encapsulation (for transporting purpose)
 - Link Control Protocol (for data-link connectivity)
 - Network Control Protocols (NCP) family (for L3 management support)
- Extra Options
 - Authentication: PAP, CHAP, EAP, MS-CHAP, MS-CHAPv2, etc.
 - Link Quality and error detection
 - Compression
 - Encryption: MPPC + MPPE, etc.
 - Multilink (MP, PPP Multilink Protocol)

Point-to-Point Tunneling Protocol (PPTP)

- PPTP [RFC 2637]
 - Use PPP to carries user data packets
 - Use an **enhanced GRE** mechanism to encapsulate PPP packets
 - Use TCP control channel to provide a flow and congestion control.

Generic Routing Encapsulation (GRE) [RFC 2890]

Header

Ethernet

Outer IP

Enhanced GRE Header (for PPTP): defined in RFC 2637

Header Header Header Payload

Header Header Header Header Payload

Ethernet Onter Ib GRE Inner Ib Inner Ib

Ethernet

GRE

Inner IP

Inner IP

- A new Acknowledgment Number field,
 - Indicating GRE packets have arrived at the remote end.
 - to determine transmission rate

0 8 16 24 31

C R K S s Recur A Flags Ver Protocol						
Checksum	Reserved					
Key Payload Length	Key Call ID					
Sequence Number (Optional)						
Acknowledgement Number (Optional)						

- **Protocol: Ethertype** of encapsulated protocol (IP: 0x0800, PPP: 0x880B, ...)
- (Optional) Checksum, Key, Sequence Number

National Chiao Tung University

Security of PPTP

- PPTP has been the subject of many security analyses
- Serious security vulnerabilities have been found
 - MS-CHAP is fundamentally insecure.
 - MS-CHAPv2 is vulnerable to dictionary attack on the captured challenge response packets.
- PPP payload can be encrypted by using Microsoft Point to Point Encryption (MPPE)
 when using MS-CHAPv1/v2
- Extensible Authentication Protocol TLS (<u>EAP-TLS</u>) is a superior authentication choice for PPTP.

L2TP – Layer Two Tunneling Protocol

- L2TP [RFC 2661]: PPTP + L2F (Layer Two Forwarding)
- High level protocols (e.g., PPP) establish L2TP session ("call") within the L2TP tunnel, and traffic for each session is isolated.
- A tunnel can contains multiple connections at once.
- L2TP over IP internetworks uses UDP and a series of L2TP messages for tunnel maintenance.
- <u>L2TPv3</u> provides additional security features, improved encapsulation, and the ability to carry data links other than simply PPP over an IP network. (Wikipedia)

L2TP/IPsec

- L2TP does not provide confidentiality or strong authentication.
- Commonly use IPsec ESP to encrypt L2TP packets.
 - IPsec: Internet Protocol Security,
 - ESP: Encapsulating Security Payload
 - Data encryption begins before PPP connection process by negotiating an IPsec security association.
 - Require computer-level authentication using computer certificates.

	IP	UDP	L2TP	PPP	PPP payload		
	Header	Header	Header	Header	(IP/IPX datagram, MetBEUI frame)		
		,				,	
IP	IPSec	UDP	L2TP	PPP	PPP payload	IPSec	IPSec
Header	ESP	Header	Header	Header	(IP/IPX datagram, MetBEUI frame)	ESP	Auth
Headel	Header	ricadei	ricadei	ricadei	(II / II / Gatagrain, Wetbeor Hame)	Trailer	Trailer

IPsec VPN – Layer 3 VPN

- IPSec [RFC 4301] is a suite of protocols designed to provide
 - authentication, confidentiality, and integrity for a VPN.
- Overview of IPSec
 - Uses Internet Key Exchange (IKE) to manage the connection to a peer,
 - Defines Security Associations used to secure and validate data exchanges, and
 - Defines two Security Protocols used to carry IP traffic over the VPN.
- ✓ **Security Protocols** determine how data plane traffic is sent through the VPN tunnel.
- Two Distinct Protocols
 - Authentication Header (AH): Authentication, Data integrity, and Anti-replay
 - Encapsulating Security Payload (ESP): Both Authentication and Confidentiality
- Two modes of operations:
 - Transport: IPsec header between IP and TCP header, modify original IP header.
 - Tunnel: Encapsulate original packet and prepend new IP and IPsec header.

AH and ESP

IP UDP/TCP Payload Payload

- Authentication Header: authenticates entire IP packet (IP headers and payloads)
 - Transport Mode

*: Modified

IP	АН	UDP/TCP	Dayload
Header*	Header	Header	Payload

• Tunnel Mode:

Outer IP	АН	Inner IP	UDP/TCP	Pavload
Header	Header	Header	Header	Payloau

- Encapsulating Security Payload (ESP): authenticates only IP datagram portion
 - Transport Mode

*: Modified

IP	ESP	UDP/TCP	Payload	ESP	ESP
Header*	Header	Header	rayidad	Trailer	Auth

• Tunnel Mode:

Outer IP	ESP	Inner IP	UDP/TCP	Payload	ESP	ESP
Header	Header	Header	Header	Payloau	Trailer	Auth

SSL VPN – Layer 4 VPN

 Uses Secure Sockets Layer (SSL) protocol or Transport Layer Security (TLS) protocol to provide secure, remote-access VPN capability

IP	UDP/TCP	SSL/TLS	Payload
Header	Header	Header	
1104401		ricauci	

- Two primary types:
- 1. SSL Portal VPN:
 - a webpage that acts as a portal to other services
- 2. SSL Tunnel VPN

A circuit established between remote user and VPN server;

- enables users to securely access multiple network services via
 - standard web browsers, or
 - other protocols and applications that are not web-based.

Comparison of VPNs

- PPTP at Layer 2
 - Has a pre-installed client on Windows, but suffer security vulnerabilities
 - Payload can be encrypted by using Microsoft Point to Point Encryption (MPPE)
- IPsec VPN at Layer 3
 - Requires IPsec client software on a client machine
 - Different vendors may have different implementations and configurations.
- SSL VPNs at Layer 4
 - More precise access control (fine-grain control)
 - "Clientless VPN" or "Web VPN": not necessary to install a VPN client
 - SSL/TLS function exists ubiquitously in modern web browsers.
 - Firewall and NAT-friendly (SSL is carried over TCP)
 - Ease of configuration

lational Chiao Tung University

✓ E.g., OpenVPN (https://openvpn.net/faq/why-ssl-vpn/)