http://math.feld.cvut.cz/demlova/teaching/lgr/predn_lgr.html

1.8.15 Příklad. Pomocí rezoluční metody rozhodněte, zda množina klauzulí

$$S = \{x \lor y \lor \neg z, \neg x, x \lor y \lor z, x \lor \neg y, z \lor t \lor v, \neg t \lor w\}$$

je splnitelná. Je-li splnitelná, najděte pravdivostní ohodnocení, ve kterém je S pravdivá.

 $\check{\mathbf{R}}$ ešení. Postup si znázorníme v následující tabulce 1.1. Tabulka má jeden sloupec pro každou klauzuli množiny S.

	$x \vee y \vee \neg z$	$\neg x$	$x \lor y \lor z$	$x \vee \neg y$	$z \vee t \vee v$	$\neg t \lor w$					
y:	1		1	0			$x \lor \neg z$	$x \lor z$			
x:		0					1	1	$\neg z$	z	
z:					1				0	1	F

Tabulka 1.1: Tabulka pro rezoluční metodu

Nejprve odstraníme logickou proměnnou y: První řádek tabulky je označen y. Nyní v tomto řádku napíšeme do sloupce 1, jestliže daná klauzule obsahuje literál y, a napíšeme 0, jestliže odpovídající klauzule obsahuje literál $\neg y$. Jestliže daná klauzule neobsahuje proměnnou y, do sloupce nepíšeme nic. K tabulce přidáme za každou resolventu podle proměnné y, která není tautologie, další sloupce odpovídající této resolventě. Jsou to sloupce odpovídající klauzulím:

$$x \vee \neg z = res_y(x \vee y \vee \neg z, x \vee \neg y)$$
 a $x \vee z = res_y(x \vee y \vee z, x \vee \neg y)$.

Množina S_1 se skládá ze všech klauzulí, jejichž sloupce nejsou označeny, tj. neobsahují ani 1, ani 0. Máme

$$S_1 = \{ \neg x, z \lor t \lor v, \neg t \lor w, x \lor \neg z, x \lor z \}.$$

V dalším kroku vybereme další logickou proměnnou, např. x, a postupuje obdobně jako v kroku 1. Dostaneme množinu klauzulí S_2 (která již neobsahuje ani logickou proměnnou y, ani x):

$$S_2 = \{z \lor t \lor v, \neg t \lor w, \neg z, z\}.$$

Uvědomte si, že platí: množina S je splnitelná právě tehdy, když je splnitelná množina S_2 .

Dále vybereme logickou proměnnou z. Protože devátý sloupec odpovídá klauzuli z a desátý klauzuli $\neg z$, je jejich resolventa prázdná klauzule \mathbf{F} . Tím jsme ukázali, že množina S_2 je nesplnitelná a proto jsou nesplnitelné i množiny klauzulí S_1 a S. Tedy odpověď je: S je nesplnitelná.

$$S = \{a \lor \neg d, \neg b \lor \neg c, b \lor d, \neg b \lor \neg e, a \lor c \lor d, \neg a \lor \neg d\}$$

Jestliže je splnitelná, najděte pravdivostní ohodnocení, ve kterém je S pravdivá.

Řešení: Postupujeme obdobně jako v minulém příkladě. Dostaneme následující tabulku 1.2. (Uvědomte si, že tvar tabulky je určen pořadím výběru jednotlivých logických proměnných.)

	$a \lor \neg d$	$\neg b \lor \neg c$	$b \lor d$	$\neg b \lor \neg e$	$a \lor c \lor d$	$\neg a \lor \neg d$			
e:				0					
c:		0			1		$a \lor \neg b \lor d$		
b:			1				0	$a \lor d$	
d:	0					0		1	a
a:									1

Tabulka 1.2: Příklad tabulky pro splnitelnou množinu

Všimněte si, že v předposledním řádku jsme nepřidali sloupec pro jednu resolventu; je to proto, že $res_d(\neg a \lor \neg d, a \lor d)$ je tautologie $a \lor \neg a$.

Z tabulky je patrné, že množina S je splnitelná, protože nakonec jsme získali prázdnou množinu klauzulí — nezbyl žádný neoznačený sloupec — a prázdná množina je pravdivá ve všech ohodnoceních, tudíž je splnitelná.

Nyní z tabulky $\boxed{1.2}$ odvodíme pravdivostní ohodnocení, ve kterém je množina S pravdivá. Postup je znázorněn v tabulce $\boxed{1.3}$.

	$a \vee \neg d$	$\neg b \lor \neg c$	$b \lor d$	$\neg b \lor \neg e$	$a \lor c \lor d$	$\neg a \lor \neg d$			
e:				0					
<i>c</i> :		0			1		$a \lor \neg b \lor d$		
b :			1				0	$a \lor d$	
d:	0					0		1	a
a:									1
	1	14	13	† 5	1 1	12	† 1	† 1	† 1

Tabulka 1.3: Konstrukce pravdivostního ohodnocení

Poslední řádek tabulky byl ohodnocen proměnnou a. Protože v tomto řádku máme 1, prohlásíme literál a za pravdivý, tj. položíme u(a) = 1. Označíme si v tabulce všechny klauzule, které se touto volbou u(a) = 1 stanou pravdivé (označeny jsou šipkou s číslem 1).

Nyní přistoupíme k předposlednímu řádku tabulky. Sloupce, které nejsou označené šipkou 1, obsahují v tomto řádku už jen 0. Rozšíříme proto pravdivostní ohodnocení u tak, aby literál $\neg d$ by pravdivý, tj. položíme u(d)=0. Označíme šipkou s indexem 2 ty klauzule, které se touto volbou stanou pravdivé (a nestaly se pravdivé již v předchozím kroku).

Obdobným způsobem postupujeme v tabulce nahoru až zajistíme, že všechny klauzule obsažené v tabulce budou pravdivé: dostaneme u(b) = 1, u(c) = 0 a u(e) = 0.

Je snadné se přesvědčit, že v takto definovaném pravdivostním ohodnocení je původní množina klauzulí S pravdivá.

1.8.17 Poznámka. V předchozím příkladě jsme definovali pravdivostní ohodnocení pro všechny logické proměnné, které se v množině S nacházely. To se nemusí stát vždy. V případě, že zajistíme pravdivost všech klauzulí nezávisle na některé logické proměnné, znamená to, že tuto proměnnou můžeme definovat libovolně.