Lab_3_report

Axel Holmberg (axeho681), Wilhelm Hansson (wilha431)

Mu

As one can see above the values from the Gibbs model varies as it simulates μ for the joint posterior.

As one can see above the values from the Gibbs model varies as it simulates σ^2 for the joint posterior.

b)

The plots above shows iteration 1, 3, 5 and 1000 of the Gibbs sampling data augmentation algorithm. As one can see it starts at the same place, but as it iterates it splits into two normal distributions, each describing a

Index

Figure 1: Iterations

part of the data well. The combined value of this can be seen in the dashed red line showing the Mixture normal model.

Figure 2: Final Fitted

The plot above shows the final fitted version of the mixture model as well as a normal distribution based on the mean and variance of the original data.

c)

The plot above shows the final fitted version of the mixture model as well as a normal distribution created from values from the Gibbs sampler from 1 a).

One can also see that the normal distribution based on the mean and variance of the original data is almost the exact same as the normal distribution created from values from the Gibbs sampler from 1 a).

```
\mathbf{2}
a)
##
## Call: glm(formula = nBids ~ . - Const, family = poisson, data = data)
##
  Coefficients:
##
##
   (Intercept)
                 PowerSeller
                                   VerifyID
                                                   Sealed
                                                                 Minblem
                                                                               MajBlem
##
       1.07244
                     -0.02054
                                   -0.39452
                                                  0.44384
                                                                -0.05220
                                                                              -0.22087
```


Figure 3: Comparison

```
## LargNeg LogBook MinBidShare
## 0.07067 -0.12068 -1.89410
##
## Degrees of Freedom: 999 Total (i.e. Null); 991 Residual
## Null Deviance: 2151
## Residual Deviance: 867.5 AIC: 3610
```

The interesting part to note in the model above are the coefficients for each variable as these will be compared to in b) and c). The ones that are most significant are MinBidShare, Sealed and VerifyID.

```
to in b) and c). The ones that are most significant are MinBidShare, Sealed and VerifyID.
b)
J_{u}^{-1}(\tilde{\beta}) is:
##
                  [,1]
                                 [,2]
                                               [,3]
                                                              [,4]
                                                                            [,5]
##
    [1,] 0.0009454637 -7.138975e-04 -2.741522e-04 -2.709019e-04 -4.454555e-04
##
    [2,] -0.0007138975 1.353076e-03 4.025159e-05 -2.948981e-04
                                                                  1.142965e-04
    [3,] -0.0002741522 4.025159e-05 8.515389e-03 -7.824884e-04 -1.013608e-04
##
    [4,] -0.0002709019 -2.948981e-04 -7.824884e-04 2.557755e-03 3.577152e-04
    [5,] -0.0004454555 1.142965e-04 -1.013608e-04
                                                     3.577152e-04
##
                                                                   3.624656e-03
    [6,] -0.0002772239 -2.082672e-04 2.282520e-04
##
                                                     4.532315e-04
                                                                   3.492348e-04
    [7,] -0.0005128360
                        2.801775e-04 3.313565e-04 3.376477e-04
                                                                   5.843965e-05
    [8,] 0.0000643685
                        1.181858e-04 -3.191843e-04 -1.311039e-04
##
                                                                   5.854069e-05
##
    [9,] 0.0011099386 -5.685709e-04 -4.292772e-04 -5.759436e-05 -6.437103e-05
                  [,6]
                                 [,7]
                                               [,8]
##
                                                              [,9]
##
   [1,] -2.772239e-04 -5.128360e-04
                                      6.436850e-05 1.109939e-03
##
    [2,] -2.082672e-04
                       2.801775e-04 1.181858e-04 -5.685709e-04
##
    [3,] 2.282520e-04
                        3.313565e-04 -3.191843e-04 -4.292772e-04
##
    [4,]
         4.532315e-04
                        3.376477e-04 -1.311039e-04 -5.759436e-05
                        5.843965e-05 5.854069e-05 -6.437103e-05
##
   [5,] 3.492348e-04
##
    [6,] 8.365167e-03
                        4.048650e-04 -8.975867e-05 2.622259e-04
##
   [7,] 4.048650e-04 3.175041e-03 -2.541761e-04 -1.063185e-04
   [8,] -8.975867e-05 -2.541761e-04 8.384722e-04 1.037431e-03
##
   [9,] 2.622259e-04 -1.063185e-04 1.037431e-03 5.054768e-03
\tilde{\beta} is:
        1.06984022 -0.02051279 -0.39301376 0.44356933 -0.05248257 -0.22125193
## [7]
       0.07070676 -0.12022017 -1.89199115
```


posterior beta num 7

steps[, i]
posterior beta num 9

posterior beta num 8

Appendix for code

```
data <-read.delim("rainfall.dat", header=FALSE, sep="\n")[,1]</pre>
## 1
### a)
#Prior values
mu_0 <- mean(data)</pre>
sigma_0 <- sd(data)
tau_0 <- 5
v_0 <- 10
n <- length(data)</pre>
iterations <- 10000
#Prepping thetas for gibbs sampling
thetas_col <- c(rep(0,iterations))</pre>
thetas <- cbind(thetas_col,thetas_col)</pre>
thetas[1,] = c(mu_0, sigma_0^2)
#Function for draws for mu from the conditional posterior
mu_draw_cond_post <- function(sigma_2) {</pre>
    tau_n_2 \leftarrow 1/(n/sigma_2 + 1/tau_0^2)
    raw <- (n/sigma_2) / (n/sigma_2 + 1/tau_0^2)#!
    mu_n <- raw*mu_0 + (1-raw) * mu_0</pre>
    return(rnorm(1,mu_n,sqrt(tau_n_2)))
}
#Fucntion for random inverse chi squared
randominvchisq <- function(vn,sigman,ndraw) {</pre>
    return(vn*sigman/rchisq(ndraw,vn))
}
#Function for draws for sigma from the conditional posterior
sigma_draw_cond_post <- function(mu) {</pre>
    v_n <- n + v_0 #!
    sigma_n \leftarrow (v_0*sigma_0^2 + sum((data-mu)^2))/v_n #!
    return(randominvchisq(v_n,sigma_n,1))
}
\#Function\ for\ draws\ from\ the\ h
gibbs_draw <- function(theta_n) {
    mu <- mu_draw_cond_post(theta_n[2])</pre>
    sigma_2 <- sigma_draw_cond_post(mu)</pre>
    return(c(mu,sigma_2))
}
#Draws for the set number of observations. First is already set above, hence we start at 2
for (i in 2:iterations) {
    thetas[i,] <- gibbs_draw(thetas[i-1,])</pre>
}
```

```
plot(thetas[,1], type="l", main="Mu")
plot(thetas[,2], type="1", main="Sigma squared")
hist(thetas[,1], main="Mu")
hist(thetas[,2], main="Sigma squared")
### b)
#########
              BEGIN USER INPUT ################
# Data options
x <- as.matrix(read.delim("rainfall.dat", header=FALSE, sep="\n"))
# Model options
nComp <- 2 # Number of mixture components
# Prior options
alpha <- 10*rep(1,nComp) # Dirichlet(alpha)</pre>
muPrior <- rep(mu_0,nComp) # Prior mean of mu</pre>
tau2Prior <- rep(tau_0^2,nComp) # Prior std of mu
sigma2_0 <- rep(var(x),nComp) # s20 (best guess of sigma2)</pre>
nu0 <- rep(v_0,nComp) # degrees of freedom for prior on sigma2
# MCMC options
nIter <- 1000 # Number of Gibbs sampling draws
# Plotting options
plotFit <- TRUE
lineColors <- c("blue", "green", "magenta", 'yellow')</pre>
sleepTime <- 0.05 # Adding sleep time between iterations for plotting
##############
                  END USER INPUT #############
###### Defining a function that simulates from the
rScaledInvChi2 <- function(n, df, scale){</pre>
    return((df*scale)/rchisq(n,df=df))
}
###### Defining a function that simulates from a Dirichlet distribution
rDirichlet <- function(param){</pre>
    nCat <- length(param)</pre>
    piDraws <- matrix(NA,nCat,1)</pre>
    for (j in 1:nCat){
        piDraws[j] <- rgamma(1,param[j],1)</pre>
    piDraws = piDraws/sum(piDraws) # Diving every column of piDraws by the sum of the elements in that
    return(piDraws)
# Simple function that converts between two different representations of the mixture allocation
S2alloc <- function(S){</pre>
    n <- dim(S)[1]
    alloc \leftarrow rep(0,n)
```

```
for (i in 1:n){
                   alloc[i] <- which(S[i,] == 1)</pre>
         return(alloc)
}
# Initial value for the MCMC
nObs <- length(x)
S \leftarrow t(rmultinom(nObs, size = 1, prob = rep(1/nComp,nComp))) # nObs-by-nComp matrix with component all
mu <- quantile(x, probs = seq(0,1,length = nComp))</pre>
sigma2 <- rep(var(x),nComp)</pre>
probObsInComp <- rep(NA, nComp)</pre>
# Setting up the plot
xGrid \leftarrow seq(min(x)-1*apply(x,2,sd),max(x)+1*apply(x,2,sd),length = 100)
xGridMin <- min(xGrid)
xGridMax <- max(xGrid)
mixDensMean <- rep(0,length(xGrid))</pre>
effIterCount <- 0
ylim \leftarrow c(0,2*max(hist(x)$density))
for (k in 1:nIter){
         message(paste('Iteration number:',k))
         alloc <- S2alloc(S) # Just a function that converts between different representations of the group
         nAlloc <- colSums(S)
         #print(nAlloc)
         # Update components probabilities
         pi <- rDirichlet(alpha + nAlloc)</pre>
         # Update mu's
         for (j in 1:nComp){
                  precPrior <- 1/tau2Prior[j]</pre>
                  precData <- nAlloc[j]/sigma2[j]</pre>
                  precPost <- precPrior + precData</pre>
                   wPrior <- precPrior/precPost</pre>
                   muPost <- wPrior*muPrior + (1-wPrior)*mean(x[alloc == j])</pre>
                  tau2Post <- 1/precPost
                   mu[j] <- rnorm(1, mean = muPost, sd = sqrt(tau2Post))</pre>
         }
         # Update sigma2's
         for (j in 1:nComp){
                   sigma2[j] \leftarrow rScaledInvChi2(1, df = nu0[j] + nAlloc[j], scale = (nu0[j]*sigma2_0[j] + sum((x[allocation = nu0[j] + nalloc[j], scale = (nu0[j] + sigma2_0[j] + sigma2_0[j]
         }
         # Update allocation
         for (i in 1:n0bs){
                   for (j in 1:nComp){
                             prob0bsInComp[j] <- pi[j]*dnorm(x[i], mean = mu[j], sd = sqrt(sigma2[j]))</pre>
                  S[i,] <- t(rmultinom(1, size = 1 , prob = probObsInComp/sum(probObsInComp)))
         }
```

```
# Printing the fitted density against data histogram
    if (plotFit && (k\\1 ==0)){
        effIterCount <- effIterCount + 1
        hist(x, breaks = 20, freq = FALSE, xlim = c(xGridMin,xGridMax), main = paste("Iteration number"
        mixDens <- rep(0,length(xGrid))</pre>
        components <- c()
        for (j in 1:nComp){
            compDens <- dnorm(xGrid,mu[j],sd = sqrt(sigma2[j]))</pre>
            mixDens <- mixDens + pi[j]*compDens</pre>
            lines(xGrid, compDens, type = "1", lwd = 2, col = lineColors[j])
            components[j] <- paste("Component ",j)</pre>
        mixDensMean <- ((effIterCount-1)*mixDensMean + mixDens)/effIterCount
        lines(xGrid, mixDens, type = "1", lty = 2, lwd = 3, col = 'red')
        legend("topright", box.lty = 1, legend = c("Data histogram", components, 'Mixture'),
                     col = c("black",lineColors[1:nComp], 'red'), lwd = 2)
        Sys.sleep(sleepTime)
}
hist(x, breaks = 20, freq = FALSE, xlim = c(xGridMin,xGridMax), main = "Final fitted density")
lines(xGrid, mixDensMean, type = "1", lwd = 2, lty = 4, col = "red")
lines(xGrid, dnorm(xGrid, mean = mean(x), sd = apply(x,2,sd)), type = "1", lwd = 2, col = "blue")
legend("topright", box.lty = 1, legend = c("Data histogram", "Mixture density", "Normal density"), col=c(
#c)
par(mfrow = c(1, 1))
hist(x, breaks = 20, freq = FALSE, xlim = c(xGridMin,xGridMax), main = "Comparison")
lines(xGrid, mixDensMean, type = "1", lwd = 2, lty = 4, col = "red")
lines(xGrid,dnorm(xGrid, mean(thetas[,1]), sd=mean(sqrt(thetas[,2]))), type = "1", lwd = 2, col = "orange"
legend("topright", box.lty = 1, legend = c("Data histogram", "Mixture density", "Normal density from 1a)"
```