Série 12 (Corrigé)

L'exercise 1 sera discuté pendant le cours le lundi 12 decembre. L'exercice 6 (*) peut être rendu le jeudi 15 decembre aux assistants jusqu'à 15h.

Exercice 1 - QCM	
Déterminer si les énoncés proposés sont vrais ou faux.	

Déterminer si les énoncés proposés sont vrais ou faux.	
• Soit $n \geq 2$ un entier positif. Si $A \in M_{n \times n}(\mathbb{C})$ est une matrice inversible $A^{-1} = A^*$, alors $\det(A) \in \mathbb{R}$.	telle que
O vrai) faux
• Soit $n \geq 2$ un entier positif. Si $A \in M_{n \times n}(\mathbb{R})$ est une matrice inversible $A^{-1} = A^T$, alors $\det(A) = \pm 1$.	telle que
O vrai	O faux
• Soit $n \geq 2$ un entier positif, K un corps et $A \in M_{n \times n}(K)$ telle que $A^T = -\det(A) = 0$.	A. Alors
O vrai) faux
• Soit $n \ge 2$ un entier positif, R un anneau commutatif avec $1_R \ne 0_R$, et $A \in M$ Si $\det(A^2) = 0$, alors A n'est pas inversible.	$I_{n\times n}(R).$
○ vrai	O faux
• Deux matrices carrées semblables ont le même déterminant.	
○ vrai	O faux
• Deux matrices carrées équivalentes ont le même déterminant.	
O vrai) faux
Sol.:	
• Soit $n \geq 2$ un entier positif. Si $A \in M_{n \times n}(\mathbb{C})$ est une matrice inversible $A^{-1} = A^*$, alors $\det(A) \in \mathbb{R}$.	telle que
$\bigcirc \ vrai$	• faux
• Soit $n \geq 2$ un entier positif. Si $A \in M_{n \times n}(\mathbb{R})$ est une matrice inversible $A^{-1} = A^T$, alors $\det(A) = \pm 1$.	telle que
lacktriangledown $vrai$	\bigcirc faux
• Soit $n \ge 2$ un entier positif, K un corps et $A \in M_{n \times n}(K)$ telle que $A^T = -\det(A) = 0$.	A. Alors
\bigcirc $vrai$	• faux

- Soit $n \ge 2$ un entier positif, R un anneau commutatif avec $1_R \ne 0_R$, et $A \in M_{n \times n}(R)$. Si $\det(A^2) = 0$, donc A n'est pas inversible.
- Deux matrices carrées semblables ont le même déterminant.
- vrai \bigcirc faux
- Deux matrices carrées équivalentes ont le même déterminant.
- vrai faux

Exercice 2

Sachant que
$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 10$$
, calculer $\det \begin{pmatrix} 4a & 4b & 4c \\ g & h & i \\ 3d + g & 3e + h & 3f + i \end{pmatrix}$.

Sol.:

En utilisant la multilinéarité du déterminant, on trouve

$$\det \begin{pmatrix} 4a & 4b & 4c \\ g & h & i \\ 3d + g & 3e + h & 3f + i \end{pmatrix} = 4 \det \begin{pmatrix} a & b & c \\ g & h & i \\ 3d + g & 3e + h & 3f + i \end{pmatrix} = 4 \det \begin{pmatrix} a & b & c \\ g & h & i \\ 3d & 3e & 3f \end{pmatrix}$$

$$= 12 \det \begin{pmatrix} a & b & c \\ g & h & i \\ d & e & f \end{pmatrix} = -12 \det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = -12 \cdot 10 = -120.$$

Exercice 3

Calculer le déterminant des matrices réelles suivantes :

$$A = \begin{pmatrix} 1 & 0 & 1-a & 1 \\ -1 & 1 & a & b \\ a & 1 & a & c \\ 1 & 1 & -a & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 & \lambda \\ 1 & 1 & \lambda & 1 \\ 1 & \lambda & 1 & 1 \\ \lambda & 1 & 1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -5 & 4 & 3 \\ 0 & -2 & 0 & 0 \\ -3 & 1 & -1 & 0 \\ 2 & 7 & 5 & 2 \end{pmatrix}.$$

Sol.: Rappelons que les opérations élémentaires ont l'effet suivant sur le déterminant.

Type I : Si on échange deux lignes, le déterminant change de signe.

Type II : Si on multiplie une ligne par un scalaire $\lambda \neq 0$, le déterminant est multiplié par λ . On peut éviter le type II pour le calcul des déterminants.

Type III : Si on ajoute à une ligne un multiple scalaire d'une autre, le déterminant ne change pas.

Pour la matrice A, on obtient

$$\det\begin{pmatrix} 1 & 0 & 1-a & 1 \\ -1 & 1 & a & b \\ a & 1 & a & c \\ 1 & 1 & -a & 0 \end{pmatrix} = \det\begin{pmatrix} 1 & 0 & 1-a & 1 \\ 0 & 1 & 1 & b+1 \\ 0 & 1 & a^2 & c-a \\ 0 & 1 & -1 & -1 \end{pmatrix} \quad via \quad G_{21}(1), G_{31}(-a), G_{41}(-1)$$

$$= \det\begin{pmatrix} 1 & 0 & 1-a & 1 \\ 0 & 1 & 1 & b+1 \\ 0 & 0 & a^2-1 & c-a-b-1 \\ 0 & 0 & -2 & -2-b \end{pmatrix} \quad via \quad G_{32}(-1), G_{42}(-1)$$

$$= -\det\begin{pmatrix} 1 & 0 & 1-a & 1 \\ 0 & 1 & 1 & b+1 \\ 0 & 0 & -2 & -2-b \\ 0 & 0 & a^2-1 & c-a-b-1 \end{pmatrix} \quad via \quad P_{34}$$

$$= -\det\begin{pmatrix} 1 & 0 & 1-a & 1 \\ 0 & 1 & 1 & b+1 \\ 0 & 0 & -2 & -2-b \\ 0 & 0 & a^2-1 & c-a-b-1 \end{pmatrix} \quad via \quad G_{43}(\frac{a^2-1}{2})$$

$$= -1 \cdot 1 \cdot (-2) \cdot \left(c-a-b-1 - \frac{(2+b)(a^2-1)}{2}\right)$$

$$= 2c-2a-2b-2+(2+b)-(2+b)a^2 = 2c-2a-b-(2+b)a^2$$

Pour la matrice B, on obtient

$$\det\begin{pmatrix} 1 & 1 & 1 & \lambda \\ 1 & 1 & \lambda & 1 \\ 1 & \lambda & 1 & 1 \\ \lambda & 1 & 1 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & 1 & 1 & \lambda \\ 0 & 0 & \lambda - 1 & 1 - \lambda \\ 0 & \lambda - 1 & 0 & 1 - \lambda \\ 0 & 1 - \lambda & 1 - \lambda & 1 - \lambda^2 \end{pmatrix} \quad via \quad G_{21}(-1), G_{31}(-1), G_{41}(-\lambda)$$

$$= -\det\begin{pmatrix} 1 & 1 & 1 & \lambda \\ 0 & \lambda - 1 & 0 & 1 - \lambda \\ 0 & 0 & \lambda - 1 & 1 - \lambda \\ 0 & 1 - \lambda & 1 - \lambda & 1 - \lambda^2 \end{pmatrix} \quad via \quad P_{23}$$

$$= -\det\begin{pmatrix} 1 & 1 & 1 & \lambda \\ 0 & \lambda - 1 & 0 & 1 - \lambda \\ 0 & 0 & \lambda - 1 & 1 - \lambda \\ 0 & 0 & 1 - \lambda & 2 - \lambda - \lambda^2 \end{pmatrix} \quad via \quad G_{42}(1)$$

$$= -\det\begin{pmatrix} 1 & 1 & 1 & \lambda \\ 0 & \lambda - 1 & 0 & 1 - \lambda \\ 0 & 0 & \lambda - 1 & 1 - \lambda \\ 0 & 0 & \lambda - 1 & 1 - \lambda \\ 0 & 0 & 0 & 3 - 2\lambda - \lambda^2 \end{pmatrix} \quad via \quad G_{43}(1)$$

$$= (\lambda - 1)^3(\lambda + 3)$$

Pour la matrice C, on utilise la expansion de Laplace et obtient

$$\det(C) = (-1)^{2+2} \cdot (-2) \cdot \det \begin{pmatrix} 1 & 4 & 3 \\ -3 & -1 & 0 \\ 2 & 5 & 2 \end{pmatrix} = 34.$$

Exercice 4

Calculer le déterminant des matrices suivantes sur les anneaux spécifiés. Déterminer en plus si la matrice est inversible.

1.
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 5 \\ 3 & 2 & 6 \end{pmatrix} \in M_{3\times 3}(\mathbb{Z}),$$

2. $B = \begin{pmatrix} 1 & t & 0 \\ 2 & 2t - 1 & t^2 \\ 3 & 3t & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}[t]),$
3. $C = \begin{pmatrix} 2 & t & 1 \\ 2t & t^2 + 1 & t \\ 2t^2 & t^3 & t^2 + t \end{pmatrix} \in M_{3\times 3}(\mathbb{R}[t]).$

Sol.:

1. D'après la règle de Sarrus, le déterminant de A est det(A) = 12 + 8 - 12 - 10 = -2. Le déterminant n'est pas inversible dans l'anneau \mathbb{Z} , d'où A n'est pas inversible non plus dans $M_{3\times 3}(\mathbb{Z})$.

- 2. Avec des opérations sur les lignes, ou la règle de Sarrus, on calcule $\det(B) = -1$. Alors $\det(B)^{-1} = (-1)^{-1} = -1 \in \mathbb{R}[t]$ et donc B est inversible dans $M_{3\times 3}(\mathbb{R}[t])$.
- 3. On calcule avec des opérations sur les lignes

$$\det(C) = \det\begin{pmatrix} 2 & t & 1\\ 2t & t^2 + 1 & t\\ 2t^2 & t^3 & t^2 + t \end{pmatrix} = \det\begin{pmatrix} 2 & t & 1\\ 0 & 1 & 0\\ 0 & 0 & t \end{pmatrix} = 2t$$

Mais vu que det(C) = 2t n'est pas inversible dans $\mathbb{R}[t]$, la matrice C n'est pas inversible dans $M_{3\times 3}(\mathbb{R}[t])$.

Exercice 5

Soit K un corps et A une matrice-blocs donnée par

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \in M_{(n_1 + n_2) \times (n_1 + n_2)}(K),$$

où A_{11} est une matrice de taille $n_1 \times n_1$, A_{12} est une matrice de taille $n_1 \times n_2$, et A_{22} est une matrice de taille $n_2 \times n_2$, avec $n_1, n_2 \ge 1$ des entiers positifs.

i) Montrer que si A_{11} ou A_{22} n'est pas inversible, alors

$$\det(A) = 0.$$

ii) Montrer que

$$\det(A) = \det(A_{11}) \det(A_{22}).$$

iii) Supposons que les matrices A_{11} et A_{22} sont inversibles. Donner une formule pour :

$$\det\left(\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}^{-1}\right).$$

Sol.:

i) Tout d'abord, nous considérons le cas A_{11} ou A_{22} est pas inversible, i.e. $\det(A_{11}) = 0$ ou $\det(A_{22}) = 0$, et nous montrons que

$$\det(A) = \det\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} = 0.$$

Soit $C_{11} = B_{11}A_{11}$ et $C_{22} = B_{22}A_{22}$ les formes échelonnées de A_{11} et A_{22} , et de plus nous définissons

$$B := \begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix}.$$

Comme B_{11} et B_{22} sont inversibles, B est aussi inversible et donc $det(B) \neq 0$. Si nous montrons que det(BA) = det(B) det(A) = 0 est vrai, alors on a det(A) = 0. On a que

$$\det(BA) = \det\begin{pmatrix} \begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \end{pmatrix} =$$

$$= \det\begin{pmatrix} B_{11}A_{11} & B_{11}A_{12} \\ 0 & B_{22}A_{22} \end{pmatrix} = \det\begin{pmatrix} C_{11} & B_{11}A_{12} \\ 0 & C_{22} \end{pmatrix}.$$

Maintenant, si A_{22} n'est pas inversible, alors C_{22} a une ligne de zéros, et donc det(BA) = 0. Si A_{22} est inversible, alors nous pouvons annuler $B_{11}A_{12}$ en appliquant des opérations sur les lignes, pour obtenir

$$\det \begin{pmatrix} C_{11} & B_{11}A_{12} \\ 0 & C_{22} \end{pmatrix} = \det \begin{pmatrix} C_{11} & 0 \\ 0 & C_{22} \end{pmatrix}.$$

De même, si A_{11} n'est pas inversible, alors C_{11} a une ligne de zéros, et donc det(BA) = 0.

ii) D'abord on montre que $\det(A) = \det\begin{pmatrix} A_{11} & A_{12} \\ 0 & I_{n_2} \end{pmatrix} = \det(A_{11})$, où A_{11} est une matrice de taille n_1 , I la matrice identité de taille n_2 , et A_{12} une matrice de taille $n_1 \times n_2$. Ceci suit par le développement de A par rapport à les dernières n_2 lignes.

On note que l'assertion similaire $\det\begin{pmatrix} I_{n_1} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \det(A_{22})$ peut être démontrée de manière analogue, pour toute A_{22} de taille $n_2 \times n_2$ et la matrice identité I_{n_1} .

On continue avec la preuve. Si A_{11} n'est pas inversible, i.e. $\det(A_{11}) = 0$, donc les colonnes de A_{11} sont linéairement dépendantes. Comme le bloc inférieur gauche est nulle, il suit que les n_1 premières colonnes de A sont linéairement dépendantes $\Rightarrow \det(A) = 0$. Donc la formule est vraie si A_{11} n'est pas inversible.

On peut donc supposer que A_{11} est inversible. Dans ce cas, on a

$$\det \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \det \begin{pmatrix} \begin{pmatrix} A_{11} & 0 \\ 0 & I_{n_2} \end{pmatrix} \begin{pmatrix} I_{n_1} & A_{11}^{-1} A_{12} \\ 0 & A_{22} \end{pmatrix}$$

$$= \det \begin{pmatrix} A_{11} & 0 \\ 0 & I_{n_2} \end{pmatrix} \det \begin{pmatrix} I_{n_1} & A_{11}^{-1} A_{12} \\ 0 & A_{22} \end{pmatrix} = \det(A_{11}) \det(A_{22})$$

iii) Cela découle directement du Corollaire 6.12 et ii) :

$$\det\left(\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}^{-1}\right) = \det\left(\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}\right)^{-1} = \det(A_{11})^{-1} \det(A_{22})^{-1}.$$

Exercice 6 (\star)

Soit $n \geq 2$ un entier positif, R un anneau commutatif et $A, B \in M_{n \times n}(R)$. Démontrer les assertions suivantes.

- 1. $com(I_n) = I_n$, où I_n est la matrice d'identité.
- 2. com(AB) = com(A) com(B), si A, B sont inversibles.

- 3. $com(\lambda A) = \lambda^{n-1} com(A)$, où $\lambda \in R$.
- 4. $com(A^T) = com(A)^T$.
- 5. $\det(\operatorname{com}(A)) = (\det(A))^{n-1}$, si A est inversible.
- 6. $com(A^{-1}) = com(A)^{-1}$, si A est inversible.

Sol.:

- 1. Comme $[com(I_n)]_{ij} = (-1)^{i+j} \det(I_n(i,j))$, on voit que $[com(I_n)]_{ij} = 0$, si $i \neq j$, car $I_n(i,j)$ contient une ligne nulle. Si i = j, $I_n(i,j)$ est la matrice d'identité de taille n-1, donc $[com(I_n)]_{ii} = 1$. Alors $com(I_n) = I_n$.
- 2. Si A et B sont inversibles, on utilise que $com(A) = det(A)A^{-T}$ et $com(B) = det(B)B^{-T}$.

 Alors,

$$com(A) com(B) = det(A)A^{-T} det(B)B^{-T} = det((AB)^{T})(B^{T}A^{T})^{-1}$$

= $det(AB)(AB)^{-T}$
= $com(AB)$.

- 3. L'assertion suit de $det(\lambda A) = \lambda^n det(A)$.
- 4. L'assertion suit de $det(A^T) = det(A)$.
- 5. Comme $com(A)^T A = det(A)I_n$, on a que $det(com(A)^T) det(A) = det(A)^n$. Si A est inversible, on obtient que $det(com(A)) = det(A)^{n-1}$.
- 6. Supposons A est inversible. Comme $com(A) = det(A)A^{-T}$, on obtient : $com(A^{-1}) = det(A^{-1})A^T = 1/det(A)A^T = (com(A))^{-1}$.

Exercice 7

1. Soit $n \geq 2$ un entier positif et $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Démontrer l'identité

$$\det\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-2} & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Ce déterminant est apellé déterminant de Vandermonde.

Indication : utiliser récurrence sur n. Pour cela, des opérations sur les colonne et/ou la formule de développement de Laplace peuvent être utiles.

2. Calculer le déterminant de la matrice

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 2 & 4 & 8 \\ 1 & -2 & 4 & -8 \end{pmatrix} \in M_{4\times 4}(\mathbb{R}).$$

Sol.:

1. Nous prouvons l'identité par recurrence sur n. Pour n = 2, on a

$$\begin{array}{l} \underline{n=2} : \\ \det\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \end{pmatrix} = x_2 - x_1, \ comme \ souhait\acute{e}. \\ \underline{n-1 \rightarrow n} : \end{array}$$

Soustraire $(x_n \cdot avant\text{-}derni\`ere colonne)$ de la derni $\`ere colonne$, et de même soustraire $(x_n \cdot l\text{-}\`eme colonne)$ de la $l+1\text{-}\`eme colonne$ pour $l=n-2,\ldots,1$. On en obtient la matrice

$$\begin{pmatrix} 1 & x_1 - x_n & x_1^2 - x_1 x_n & \dots & x_1^{n-2} - x_1^{n-3} x_n & x_1^{n-1} - x_1^{n-2} x_n \\ 1 & x_2 - x_n & x_2^2 - x_2 x_n & \dots & x_2^{n-2} - x_2^{n-3} x_n & x_2^{n-1} - x_2^{n-2} x_n \\ \vdots & & & & & & & \\ 1 & x_{n-1} - x_n & x_{n-1}^2 - x_{n-1} x_n & \dots & x_{n-1}^{n-2} - x_{n-1}^{n-3} x_n & x_{n-1}^{n-1} - x_{n-1}^{n-2} x_n \\ 1 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

En définissant $\varepsilon_i := x_i - x_n$,

$$\begin{pmatrix} 1 & \varepsilon_{1} & \varepsilon_{1}x_{1} & \dots & \varepsilon_{1}x_{1}^{n-3} & \varepsilon_{1}x_{1}^{n-2} \\ 1 & \varepsilon_{2} & \varepsilon_{2}x_{2} & \dots & \varepsilon_{2}x_{2}^{n-3} & \varepsilon_{2}x_{2}^{n-2} \\ \vdots & & & & & \\ 1 & \varepsilon_{n-1} & \varepsilon_{n-1}x_{n-1} & \dots & \varepsilon_{n-1}x_{n-1}^{n-3} & \varepsilon_{n-1}x_{n-1}^{n-2} \\ 1 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Par la formule de développement de Laplace, le déterminant de cette matrice est

$$(-1)^{n+1} \cdot \det \begin{pmatrix} \varepsilon_{1} & \varepsilon_{1}x_{1} & \dots & \varepsilon_{1}x_{1}^{n-3} & \varepsilon_{1}x_{1}^{n-2} \\ \varepsilon_{2} & \varepsilon_{2}x_{2} & \dots & \varepsilon_{2}x_{2}^{n-3} & \varepsilon_{2}x_{2}^{n-2} \\ \vdots \\ \varepsilon_{n-1} & \varepsilon_{n-1}x_{n-1} & \dots & \varepsilon_{n-1}x_{n-1}^{n-3} & \varepsilon_{n-1}x_{n-1}^{n-2} \end{pmatrix}$$

$$= (-1)^{n+1} \cdot \varepsilon_{1} \cdots \varepsilon_{n-1} \det \begin{pmatrix} 1 & x_{1} & \dots & x_{1}^{n-3} & x_{1}^{n-2} \\ \vdots & & & \vdots \\ 1 & x_{n-1} & \dots & x_{n-1}^{n-3} & x_{n-1}^{n-2} \end{pmatrix}$$

$$= (-1)^{n+1} \varepsilon_{1} \cdots \varepsilon_{n-1} \cdot \prod_{1 \leq i < j < n} (x_{j} - x_{i})$$

$$= (-1)^{n+1} \prod_{1 \leq i < j = n} (x_{i} - x_{j}) \cdot \prod_{1 \leq i < j < n} (x_{j} - x_{i})$$

$$= (-1)^{n+1} (-1)^{n-1} \prod_{1 \leq i < j = n} (x_{j} - x_{i}) \cdot \prod_{1 \leq i < j < n} (x_{j} - x_{i})$$

$$= \prod_{1 \leq i < j \leq n} (x_{j} - x_{i}) \cdot \prod_{1 \leq i < j < n} (x_{j} - x_{i})$$

$$= \prod_{1 \leq i < j \leq n} (x_{j} - x_{i}).$$

Où l'on a utilisé l'hypothèse de rérurrence dans la troisième ligne.

2. B est précisement dans la forme d'un déterminant de Vandermonde, avec $(x_1, x_2, x_3, x_4) = (1, -1, 2, -2)$. Alors

$$\det B = ((-1) - 1) \cdot (2 - 1) \cdot ((-2) - 1) \cdot (2 - (-1)) \cdot ((-2) - (-1)) \cdot ((-2) - 2)$$
$$= (-2) \cdot 1 \cdot (-3) \cdot 3 \cdot (-1) \cdot (-4) = 72.$$

Exercice 8

[Formule de Cramer] Soit $n \geq 2$ un entier positif, K un corps, $A \in M_{n \times n}(K)$ et $b, x \in K^n$. On considère le système linéaire Ax = b.

- a) Montrer que ce système admet une solution unique si et seulement si $\det(A) \neq 0$. On suppose désormais que $\det(A) \neq 0$, auquel cas le système linéaire s'appelle une système de Cramer. Soit $s \in K^n$ l'unique solution du système et écrivons $s^{\top} = (s_1 \ s_2 \ \dots \ s_n)$.
 - b) A l'aide de s, exprimer le vecteur-colonne b comme combinaison linéaire des colonnes de A.
 - c) Pour $1 \le k \le n$, désignons par C_k la matrice obtenue à partir de A en remplaçant la k-ème colonne de A par la colonne b. Montrer la **formule de Cramer**

$$s_k = \frac{\det(C_k)}{\det(A)}$$
 $(k = 1, \dots, n).$

Notons que cette formule est intéressante du point de vue théorique, mais qu'elle est très peu efficace pour les calculs.

Sol.:

- a) Soit r le rang de la matrice A. Il y a une solution unique \iff le nombre d'inconnues libres vaut $0 \iff n-r=0 \iff r=n \iff$ le rang de A est maximum $\iff A$ est inversible \iff $\det(A) \neq 0$.
 - (Dans ce cas, en multipliant par A^{-1} l'équation du système, on voit que l'unique solution du système vaut $s=A^{-1}b$.)
- b) Comme s est la solution du système, As = b, donc $a_{i1}s_1 + a_{i2}s_2 + \ldots + a_{in}s_n = b_i$ pour chaque $i = 1, \ldots, n$ (où les a_{ij} désignent les coefficients de A). En désignant par A^j la j-ème colonne de A, cela donne $A^1s_1 + \ldots + A^ns_n = b$. Ainsi $b = \sum_{j=1}^n s_j A^j$.
- c) Comme A est inversible, on a que $A^{-1} = 1/\det(A)\cos(A)^T$ et $s = A^{-1}b$ est la solution du système Ax = b. En regardant les éléments de s, on obtient

$$s_k = \frac{1}{\det(A)} (\operatorname{com}(A)^T b)_k = \frac{1}{\det(A)} \sum_{j=1}^n (-1)^{k+j} \det(A(k,j)) b_j$$
$$= \frac{1}{\det(A)} \det\left(\underbrace{\begin{pmatrix} A^1 & \dots & A^{k-1} & b & A^k & \dots & A^n \end{pmatrix}}_{C_k}\right)$$
$$= \frac{\det(C_k)}{\det(A)}$$