Random Variables (rv)

Mean and Variance of Poisson [Ross S4.7]

Intuition: Say $X \sim \mathsf{Binomial}(n,p)$ with $\lambda = np, n$ large, and p small

Then:

$$E[X] = np = \lambda$$

$$Var[X] = np(1-p)$$

$$= \lambda(1-p)$$

$$\approx \lambda$$

Exact: Let $X\sim \mathsf{Poisson}(\lambda)$. Then $E[X] = \sum_{k=0}^\infty k \frac{\lambda^k}{k!} e^{-\lambda}$

$$= \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}$$

$$= \lambda \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!} e^{-\lambda}$$

$$= \lambda$$

$$E[X^2] = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \frac{k\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \sum_{\ell=0}^{\infty} \frac{(\ell+1)\lambda^{\ell+1}}{\ell!} e^{-\lambda}$$

$$= \lambda \left(\sum_{\ell=0}^{\infty} \frac{\ell \lambda^{\ell}}{\ell!} e^{-\lambda} + \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!} e^{-\lambda} \right)$$

$$= \lambda (1+\lambda)$$
So $Var[X] = E[X^2] - (E[X])^2$

$$= \lambda (1+\lambda) - (\lambda)^2$$

 $=\lambda$

Let X be trial # of first outcome that is a 1. X is called **geometric** with parameter p, denoted $X \sim \mathsf{Geometric}(p)$

D) The geometric random variable [Ross 4.8.1]

 $p_X(k) = P[(k-1) ext{ zeros followed by a one}]$ for k = 1, 2, ...

Consider an infinite sequence of independent Bernoulli(p) trials.

 $p_X(k) = P[(k-1) \text{ zeros followed by a one}]$ $= \begin{cases} (1-p)^{k-1}p & k \geq 1 \\ 0 & \text{else} \end{cases}$

before the next draw.

a) What is the probability that exactly n draws are needed? b) What is the probability that at least k draws are needed? Solution:

Example 13.2: A bag contains 2 white balls and 3 black balls. Balls are randomly drawn until a black ball is drawn. The selected ball is replaced

$=\frac{1}{p}$

Mean and Variance

If $X \sim \mathsf{Geometric}(p)$, then:

 $E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$

 $E[X^2] = \sum_{k=1}^{\infty} k^2 (1-p)^{k-1} p$

$$\overline{k=1}$$
= ... [see Ross example 4.8c]
$$= \frac{2-p}{p^2}$$

 $Var[X] = E[X^2] - (E[X])^2$

 $=\frac{1-p}{p^2}$

 $=\frac{2-p}{p^2}-\left(\frac{1}{p}\right)^2$

[see Ross example 4.8b]