SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2019-2020 SEMESTER 1

DIGITAL SIGNAL PROCESSING TUTORIAL 8

1. (a) Consider a length-N sequence x[n], $0 \le n \le N-1$, with an N-point DFT X[k], $0 \le k \le N-1$. Define a sequence y[n] of length LN, $0 \le n \le NL-1$, given by

$$y[n] = \begin{cases} x[n/L], n = 0, L, 2L, ..., (N-1)L, \\ 0, & \text{otherwise,} \end{cases}$$
 (8.1)

where L is a positive integer. Express the NL-point DFT Y[k] of y[n] in terms of X[k].

(b) The 5-point DFT X[k] of a length-5 sequence x[n] is shown in Figure 8.1. Sketch the 20-point DFT Y[k] of a length-20 sequence y[n] generated using (8.1).

Figure 8.1

- 2. Consider the sequence $\{x[n]\} = \{2, -5, 6, -3, 4, -4, 0, -7, 8\}, -5 \le n \le 3$.
- (a) Let $\{y[n]\}$ denote the sequence obtained by a left circular shift of $\{x[n]\}$ by 12 sample periods. Determine the value of the sample y[-3].
- (b) Let $\{z[n]\}$ denote the sequence obtained by a right circular shift of $\{x[n]\}$ by 15 sample periods. Determine the value of the sample z[2].
- 3. Let $\{x[n]\} = \{-3, 2, -1, 4\}$, and $\{h[n]\} = \{1, 3, 2, -2\}$ be two length-4 sequences defined for $0 \le n \le 3$. Determine $y[n] = x[n] \bigoplus h[n]$
- 4. (a) Let g[n] and h[n] be two sequences of length 6 each. If $y_L[n]$ and $y_C[n]$ denote the linear and 6-point circular convolutions of g[n] and h[n], respectively, develop a method to determine $y_C[n]$ in terms of $y_L[n]$.
- (b) Consider the two length-6 sequences, $\{g[n]\} = \{3, -5, 2, 6, -1, 4\}$, and $\{h[n]\} = \{-2, 4, 7, -5, 4, 3\}$. Determine the $y_L[n]$ obtained by a linear convolution of g[n] and h[n]. Using the method developed in Part (a), determine the sequence $y_C[n]$ given by the circular convolution of g[n] and h[n] from $y_L[n]$.
- 5. Denote X[k], $0 \le k \le N-1$, the N-point DFT of sequence x[n], with N even. Define two length- $\left(\frac{N}{2}\right)$ sequences given by: $g[n] = \frac{1}{2}(x[2n] + x[2n+1])$ and $h[n] = \frac{1}{2}(x[2n] x[2n+1])$, $0 \le n \le \frac{N}{2} 1$. If G[k] and H[k], $0 \le k \le N/2 1$ are the $\left(\frac{N}{2}\right)$ -point DFT of g[n] and h[n], respectively, determine X[k] in terms of G[k] and X[k].

- 6. Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$.
- (a) If x[n] is a symmetric sequence satisfying the condition $x[n] = x[\langle N-1-n\rangle_N]$, show that X[N/2] = 0 for N even.
- (b) If x[n] is an antisymmetric sequence satisfying the condition $x[n] = -x[\langle N-1-n\rangle_N]$, show that X[0] = 0.
- (c) If x[n] is a sequence satisfying the condition $x[n] = -x[\langle n+M \rangle_N]$ with N=2M, show that X[2l]=0 for l=0,1,...,M-1.
- 7. Let $x[n] = \{2, 1, 2\}, 0 \le n \le 2$ and $w[n] = \{-4, 0, -3, 2\}, 0 \le n \le 3$. If $w[n] = x[n] \bigotimes y[n]$, determine y[n] using a DFT-based method.