We snortin' fart bubbles

eeleexx

June 14, 2024

Lecture 25 (09.04.2024)

Theorem 1: Bolzano-Weierstrass Theorem for Sequences of Points in \mathbb{R}^2

Theorem 1. Every bounded sequence of points in \mathbb{R}^2 has at least one limit point.

Proof. Let $\{P_n = (x_n, y_n)\}$ be a bounded sequence of points. Then there is a constant M such that for any n

$$\sqrt{x_n^2 + y_n^2} < M.$$

So, $|x_n| < M$ and $|y_n| < M$ for any n, and by the Bolzano-Weierstrass theorem for sequences of real numbers, there exists a subsequence $\{x_{n_k}\}$ of sequence $\{x_n\}$ that is convergent to some number a. Subsequence $\{y_{n_k}\}$ is also bounded by M. So, applying the Bolzano-Weierstrass theorem again we can conclude that there is a subsequence $\{y_{n_k}\}$ of $\{y_{n_k}\}$ that is convergent to some number b. So, sequence of points $\{(x_{n_{k'}}, y_{n_{k'}})\}$ converges to (a, b). The point (a, b) is a limit point.

Theorem 2: Bolzano-Weierstrass Theorem for Sets in \mathbb{R}^2

Theorem 2. Every bounded infinite set of points in \mathbb{R}^2 has at least one limit point.

Proof. Let G be a bounded infinite set of points in \mathbb{R}^2 . Then there exists a sequence $P_n \in G$ such that $P_n \neq P_m$ for $m \neq n$. According to theorem 1, $\{P_n\}$ has a limit point Q that is a limit point of G.

Lecture 26 (16.04.2024)

Theorem 1

Theorem 3. If a function f(x,y) is differentiable at the point (x_0,y_0) then it is continuous at this point.

Proof. Indeed, by definition 2, at U function f(x,y) can be presented in the form

$$f(x,y) = f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + \varepsilon \cdot \rho.$$

As $f_x'(x_0, y_0)$ and $f_y'(x_0, y_0)$ are finite numbers and Δx , Δy , ε and ρ tend to 0 as $(x, y) \to (x_0, y_0)$,

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

So, theorem is proved.

Theorem 2

Theorem 4. Let f(x,y) be defined in an open set G and partial derivatives $f'_x(x,y)$ and $f'_y(x,y)$ exist and are continuous in G. Then function f(x,y) is differentiable at each point of G.

Proof. Let (x_0, y_0) be any point of G. We can rewrite Δf in the form

$$\Delta f = f(x, y) - f(x_0, y_0) = [f(x, y) - f(x, y_0)] + [f(x, y_0) - f(x_0, y_0)].$$

Considering expressions in square brackets as functions of one variables we can apply Lagrange formula

$$f(x,y) - f(x,y_0) = f'_y(x,b)\Delta y,$$

$$f(x, y_0) - f(x_0, y_0) = f'_x(a, y_0) \Delta x$$

for some b between y and y_0 and a between x and x_0 .

We get

$$\Delta f = f'_x(a, y_0) \Delta x + f'_y(x, b) \Delta y$$

= $(f'_x(x_0, y_0) + (f'_x(a, y_0) - f'_x(x_0, y_0))) \Delta x$
+ $(f'_y(x_0, y_0) + (f'_y(x, b) - f'_y(x_0, y_0))) \Delta y$.

The last two terms can be rewritten in the form

$$\alpha \Delta x + \beta \Delta y = \left(\alpha \frac{\Delta x}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} + \beta \frac{\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right) \rho.$$

Applying the continuity of partial derivatives we obtain that α , $\beta \to 0$ as $\Delta x, \Delta y \to 0$. So, $\varepsilon \to 0$ and f(x,y) is differentiable at (x_0, y_0) .

Theorem 3

Theorem 5. Let f(x,y) be differentiable at (x_0,y_0) , and x=x(t), y=y(t) are differentiable functions at $t=t_0$, then F(t)=f(x(t),y(t)) is differentiable at $t=t_0$ and

$$F'(t_0) = f'_x(x_0, y_0)x'(t_0) + f'_y(x_0, y_0)y'(t_0).$$

Proof. As f(x,y) is differential at (x_0,y_0)

$$f(x,y) - f(x_0, y_0) = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + \varepsilon \cdot \rho,$$

where $\varepsilon = \varepsilon(\Delta x, \Delta y) \to 0$ as $\Delta x, \Delta y \to 0$ and $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$. The last formula can be rewritten in the form

$$f(x(t), y(t)) - f(x(t_0), y(t_0)) = f'_x(x_0, y_0)(x(t) - x(t_0)) + f'_y(x_0, y_0)(y(t) - y(t_0)) + \varepsilon \cdot \rho,$$
(1)

$$F(t) - F(t_0) = f'_x(x_0, y_0)(x(t) - x(t_0)) + f'_y(x_0, y_0)(y(t) - y(t_0)) + \varepsilon \cdot \rho.$$

Dividing by $\Delta t = t - t_0$, we have

$$\frac{F(t) - F(t_0)}{\Delta t} = f_x'(x_0, y_0) \frac{x(t) - x(t_0)}{\Delta t} + f_y'(x_0, y_0) \frac{y(t) - y(t_0)}{\Delta t} + \varepsilon \cdot \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2}.$$
(2)

Taking the limit $\Delta t \to 0$, as $\Delta x, \Delta y \to 0$ while $\Delta t \to 0$, we get

$$F'(t_0) = f_x'(x_0, y_0)x'(t_0) + f_y'(x_0, y_0)y'(t_0).$$

Lecture 27 (23.04.2024)

Theorem 1

Theorem 6. Let f(x) be a function having continuous first derivatives in a neighborhood of a point a and $v \in \mathbb{R}^n$, |v| = 1. Then $\frac{\partial f}{\partial v}(a)$ exists and

$$\frac{\partial f}{\partial v}(a) = v_1 \frac{\partial f}{\partial x_1}(a) + v_2 \frac{\partial f}{\partial x_2}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a) = \sum_{i=1}^n v_i \frac{\partial f}{\partial x_i}(a).$$

Proof. Let us consider the function $F(t) = f(a + vt) = f(a_1 + v_1t, a_2 + v_2t, \dots, a_n + v_nt)$. By definition,

$$F'(0) = \lim_{t \to 0} \frac{F(t) - F(0)}{t} = \lim_{t \to 0} \frac{f(a + vt) - f(a)}{t} = \frac{\partial f}{\partial v}(a).$$

On the other hand, by derivative of the composition,

$$F'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (a + vt) \frac{dx_i}{dt} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (a + vt) v_i.$$

and

$$F'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) v_i.$$

Comparing these, we get the proof of the theorem.

Theorem 2

Theorem 7. The gradient vector ∇F at $P \subset S$ is perpendicular to the tangent vector to any curve γ on S that passes through P. In other words, the gradient vector ∇F at $P \subset S$ is orthogonal to the surface F(x, y, z) = 0 at point P.

Proof. Suppose that S is a surface with equation F(x,y,z)=0, that is, it is a level surface of a function F of three variables, and let $P \in S$ be a point on S. Let γ be any curve that lies on the surface S and passes through the point P. The curve γ is described by a continuous vector function r(t)=(x(t),y(t),z(t)). Let t be the fixed parameter value corresponding to P, that is, r(t)=P. Since $\gamma \subset S$, any point of r(t) must satisfy the equation of S, that is,

$$F(x(t), y(t), z(t)) = 0,$$

so that $\frac{d}{dt}F(x(t),y(t),z(t))=0$. On the other hand, from the derivative of a composition we have that

$$\frac{\partial F}{\partial x}x'(t) + \frac{\partial F}{\partial y}y'(t) + \frac{\partial F}{\partial z}z'(t) = 0.$$

We have that

$$(\nabla F(P), r'(t)) = 0.$$

Lecture 28 (27.04.2024)

Theorem 1

Theorem 8. If partial derivatives $f'_x(x,y)$, $f'_y(x,y)$, $f''_{xy}(x,y)$ and $f''_{yx}(x,y)$ are defined at a neighborhood of (x_0,y_0) and continuous at (x_0,y_0) then

$$f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0).$$

Proof. Let us consider a function

$$\Delta = [f(x,y) - f(x,y_0)] - [f(x_0,y) - f(x_0,y_0)]$$

and $\varphi(x) = f(x,y) - f(x,y_0)$. Then

$$\Delta = \varphi(x) - \varphi(x_0)$$

and, applying Lagrange theorem to $\varphi(x)$ we have that for some point ξ from the interval between points x and x_0

$$\Delta = \varphi'(\xi)\Delta x, \quad \Delta x = x - x_0.$$

So,

$$\Delta = [f_x'(\xi, y) - f_x'(\xi, y_0)]\Delta x.$$

Applying the Lagrange theorem to function of y (in square brackets), we get for some point η from the interval between point y and y_0 with $\Delta y = y - y_0$ the following presentation

$$\Delta = f_{xy}^{"}(\xi, \eta) \Delta x \Delta y. \quad (1)$$

Let us present now the function Δ in the form

$$\Delta = [f(x,y) - f(x_0,y)] - [f(x,y_0) - f(x_0,y_0)]$$

and introduce the function $\psi(y) = f(x,y) - f(x_0,y)$. So,

$$\Delta = \psi(y) - \psi(y_0).$$

Applying the Lagrange theorem to $\psi(y)$ we have that for some point β from the interval between points y and y_0

$$\Delta = \psi'(\beta)\Delta y, \quad \Delta y = y - y_0$$

and

$$\Delta = [f_n'(x,\beta) - f_n'(x_0,\beta)]\Delta y.$$

Applying the Lagrange theorem again to the function $f_y'(x,\beta)$ we obtain

$$\Delta = f_{ux}^{"}(\alpha, \beta) \Delta x \Delta y, \quad (2)$$

where α belongs to the interval between x and x_0 . Comparing (1) and (2), we obtain

$$f_{xy}''(\xi,\eta) = f_{yx}''(\alpha,\beta).$$

Theorem follows from the continuity of partial derivatives at (x_0, y_0) as (ξ, η) and (α, β) tend to (x_0, y_0) if $\Delta x, \Delta y \to 0$.

Lecture 29 (30.04.2024)

Theorem 1

Theorem 9. (Taylor formula for a function of two variables). If a point $M_1(x + \Delta x, y + \Delta y) \in B(x, y)$ then the increment $\Delta f = f(M_1) - f(M)$ can be presented

in the form

$$\Delta f = df(x,y) + \frac{d^2 f(x,y)}{2!} + \dots + \frac{d^n f(x,y)}{n!} + \frac{d^{n+1} f(x + \theta \Delta x, y + \theta \Delta y)}{(n+1)!}$$
$$= \sum_{k=1}^n \frac{d^k f(x,y)}{k!} + \frac{d^{n+1} f(x + \theta \Delta x, y + \theta \Delta y)}{(n+1)!}, \quad \theta \in [0,1].$$

Proof. Let us introduce the function $F(t) = f(x + t\Delta x, y + t\Delta y)$, $t \in [0, 1]$ and find its derivatives up to the (n + 1)-th order

$$F'(t) = f_x(x + t\Delta x, y + t\Delta y)\Delta x + f_y(x + t\Delta x, y + t\Delta y)\Delta y$$
$$= \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x + t\Delta x, y + t\Delta y).$$

In the same way

$$F''(t) = f_{xx}(x + t\Delta x, y + t\Delta y)(\Delta x)^{2} + 2f_{xy}(x + t\Delta x, y + t\Delta y)\Delta x\Delta y$$
$$+ f_{yy}(x + t\Delta x, y + t\Delta y)(\Delta y)^{2}$$
$$= \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^{2} f(x + t\Delta x, y + t\Delta y)$$

and so on. In particular,

$$F^{(k)}(t) = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^k f(x + t\Delta x, y + t\Delta y).$$

Considering the point t = 0 we have

$$F'(0) = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x, y) = df(x, y),$$

$$F''(0) = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^2 f(x, y) = d^2 f(x, y),$$

$$\vdots$$

$$F^{(k)}(0) = \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^k f(x, y) = d^k f(x, y).$$

On the other hand, we can use the Maclaurin formula for the function F(t) with $\Delta t = 1$

$$F(1) = F(0) + \frac{F'(0)}{1!} + \frac{F''(0)}{2!} + \dots + \frac{F^{(n)}(0)}{n!} + \frac{F^{(n+1)}(\theta)}{(n+1)!}.$$

So, as $F(1) = f(M_1)$, F(0) = f(M), substituting formulas for F'(0), F''(0), ..., $F^{(k)}(0)$ we have the formulation of the theorem.

Lecture 31 (25.05.2024)

Theorem 1

Theorem 10. Let f(x) have first derivatives in a domain $D \subset \mathbb{R}^n$. If f(x) has a local extremum at a point $a \in D$, then

$$\nabla f(a) = 0, \quad or \quad \frac{\partial f}{\partial x_i}(a) = 0, \quad i = 1, \dots, n.$$

Proof. Let $a = (a_1, a_2, \ldots, a_n)$. Then functions of one variable

$$\varphi_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n), \quad i = 1, \dots, n$$

have relative extremum at $t = a_i$. Hence $\varphi'_i(a_i) = 0$. That is,

$$\frac{\partial f}{\partial x_i}(a) = 0, \quad i = 1, \dots, n.$$

Theorem follows.

Theorem 3

Theorem 11. Let f(x) have continuous first and second derivatives in a domain $D \subset \mathbb{R}^n$. Then:

1. If a is a local minimum (maximum) of u = f(x), then the quadratic form $Q_f(a)[v]$ defined by

$$Q_f(x)[v] = (\nabla^2 f(x)v, v)$$

is nonnegative (nonpositive) definite.

- 2. (Sufficient condition) Let a be a critical point of f in D. Then:
 - (a) If $Q_f(a)[v]$ is positive definite, then f has a relative minimum at a.
 - (b) If $Q_f(a)[v]$ is negative definite, then f has a relative maximum at a.
 - (c) If $Q_f(a)[v]$ is indefinite, then f has neither relative minimum nor relative maximum at a.

Proof. 1. Let a be a point of a local minimum of f(x). Then, by definition, there exists a neighborhood $B_r(a)$, such that for any point $x \in B_r(a)$ we have that $f(x) \geq f(a)$. Also, for any $k \in \mathbb{R}$: $Q_f(x)[kv] = k^2Q_f(x)[v]$. So, it is enough to prove the theorem for all $v \in \mathbb{R}^n$ such that |v| < r.

Consider the function of one variable $\varphi(t) = f(a+tv)$ where $t \in [-1,1]$. By definition of local minimum, $\varphi(t) \geq \varphi(0) = f(a)$ for $t \in [-1,1]$ and t = 0 is a

point of a local minimum of φ at [-1,1]. So, $\varphi'(0) = 0$ and $\varphi''(0) \ge 0$. By the derivative of composition,

$$\varphi'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (a + tv) v_i,$$

$$\varphi''(t) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (a + tv) v_i v_j = Q_f(a + tv) [v],$$

so, for t = 0,

$$Q_f(a)[v] = \varphi''(0) \ge 0.$$

Part 1 of the theorem is proved.

2. Let a be a critical point of u = f(x) and $Q_f(a)[v]$ is positive definite. Then there exists a neighborhood $B_r(a)$ such that for any $x \in B_r(a)$ the quadratic form $Q_f(x)[v]$ is also positive definite. Let us fix $x \in B_r(a)$ and consider v = x - a. If $\varphi(t) = f(a + tv)$, then $\varphi(1) = f(x)$, $\varphi(0) = f(a)$ and

$$\varphi'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)v_i = 0,$$

as a is a critical point. We obtain

$$f(x) = f(a+v) = \varphi(1) = \varphi(0) + \varphi(1) - \varphi(0)$$

$$= f(a) + \int_0^1 \varphi'(t) dt = f(a) + \int_0^1 (\varphi'(t) - \varphi'(0)) dt$$

$$= f(a) + \int_0^1 \left(\int_0^t \varphi''(\tau) d\tau \right) dt \ge f(a).$$
(3)

Theorem follows.

Lecture 32 (01.06.2024)

Theorem 1

Theorem 12. Let $P(x_0, y_0, z_0)$ be a solution of the constrained optimization problem

$$f(x, y, z) \to \max(\min)$$
 subject to $g(x, y, z) = 0$,

where the functions f and g are continuously differentiable in a domain $D \subset \mathbb{R}^3$ and $\nabla g(P) \neq 0$. Then there exists a Lagrange multiplier λ such that P is a critical point of the Lagrange function

$$L(x, y, z, \lambda) = f(x, y, z) - \lambda g(x, y, z).$$

Proof. Suppose that the function f(x, y, z) has an extreme value at a point $P(x_0, y_0, z_0) \in S$, where S is defined by the constraint g(x, y, z) = 0. Let $C \subset S$ be a curve with the vector function r(t) = (x(t), y(t), z(t)) that lies on S and passes through P. Assume that t_0 is the parameter value corresponding to the point $r(t_0) = P$. The composite function F(t) = f(x(t), y(t), z(t)) represents the values that f takes on the curve C. Since f has an extremum value at P, the function F(t) has an extreme value at t_0 , so $F'(t_0) = 0$. If f is differentiable, then

$$F'(t_0) = \frac{\partial f}{\partial x}(P)x'(t_0) + \frac{\partial f}{\partial y}(P)y'(t_0) + \frac{\partial f}{\partial z}(P)z'(t_0) = 0,$$

so that

$$(\nabla f(P), r'(t_0)) = 0.$$

This shows that the gradient vector $\nabla f(P)$ is orthogonal to the tangent vector $r'(t_0)$ to every such curve C. We also know that the gradient vector $\nabla g(P)$ is also orthogonal to every such curve. This means that the gradient vectors $\nabla f(P)$ and $\nabla g(P)$ must be parallel. Therefore, if $\nabla g(P) \neq 0$, there is a number λ such that

$$\nabla f(P) = \lambda \nabla g(P).$$

Let us now remark that the condition $\nabla f(P) = \lambda \nabla g(P)$ can be rewritten as

$$\frac{\partial f}{\partial x}(P) = \lambda \frac{\partial g}{\partial x}(P), \quad \frac{\partial f}{\partial y}(P) = \lambda \frac{\partial g}{\partial y}(P), \quad \frac{\partial f}{\partial z}(P) = \lambda \frac{\partial g}{\partial z}(P),$$

or,

$$\frac{\partial}{\partial x}(f-\lambda g)(P)=0,\quad \frac{\partial}{\partial y}(f-\lambda g)(P)=0,\quad \frac{\partial}{\partial z}(f-\lambda g)(P)=0.$$

So, if we introduce the Lagrange function

$$L(x, y, z, \lambda) = f(x, y, z) - \lambda q(x, y, z),$$

where λ is called the Lagrange multiplier, the last set of relations can be written as a condition for P to be a critical point of L:

$$\frac{\partial L}{\partial x} = 0, \quad \frac{\partial L}{\partial y} = 0, \quad \frac{\partial L}{\partial z} = 0,$$

together with the constraint

$$\frac{\partial L}{\partial \lambda} = -g(x, y, z) = 0.$$

Thus, we have proved the theorem. Kill me please.