Question 1: A die is rolled, find the probability that an even number is obtained.

Solution to Question 1:

• Let us first write the <u>sample space</u> S of the experiment.

$$S = \{1,2,3,4,5,6\}$$

• Let E be the event "an even number is obtained" and write it down.

$$E = \{2,4,6\}$$

• We now use the formula of the <u>classical</u> probability.

$$P(E) = n(E) / n(S) = 3 / 6 = 1 / 2$$

Question 2: Two coins are tossed, find the probability that two heads are obtained.

Note: Each coin has two possible outcomes H (heads) and T (Tails).

Solution to Question 2:

• The sample space S is given by.

$$S = \{(H,T),(H,H),(T,H),(T,T)\}$$

• Let E be the event "two heads are obtained".

$$E = \{(H,H)\}$$

• We use the formula of the classical probability.

$$P(E) = n(E) / n(S) = 1 / 4$$

Question 4: Two dice are rolled, find the probability that the sum is

- a) equal to 1
- b) equal to 4
- c) less than 13

Solution to Question 4:

• a) The sample space S of two dice is shown below.

$$S = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$$

$$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$$

$$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$$

$$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$$

$$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$$

$$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) \}$$

• Let E be the event "sum equal to 1". There are no outcomes which correspond to a sum equal to 1, hence

$$P(E) = n(E) / n(S) = 0 / 36 = 0$$

• b) Three possible outcomes give a sum equal to 4: $E = \{(1,3),(2,2),(3,1)\}$, hence.

$$P(E) = n(E) / n(S) = 3 / 36 = 1 / 12$$

• c) All possible outcomes, E = S, give a sum less than 13, hence.

$$P(E) = n(E) / n(S) = 36 / 36 = 1$$

Question 5: A die is rolled and a coin is tossed, find the probability that the die shows an odd number and the coin shows a head.

Solution to Question 5:

• The sample space S of the experiment described in question 5 is as follows

$$S = \{ (1,H),(2,H),(3,H),(4,H),(5,H),(6,H)$$
$$(1,T),(2,T),(3,T),(4,T),(5,T),(6,T) \}$$

• Let E be the event "the die shows an odd number and the coin shows a head". Event E may be described as follows

```
E=\{(1,H),(3,H),(5,H)\}
```

• The probability P(E) is given by

$$P(E) = n(E) / n(S) = 3 / 12 = 1 / 4$$

Question 6: A card is drawn at random from a deck of cards. Find the probability of getting the 3 of diamond.

Let E be the event "getting the 3 of diamond". An examination of the sample space shows that there is one "3 of diamond" so that n(E) = 1 and n(S) = 52. Hence the probability of event E occurring is given by

$$P(E) = 1 / 52$$

Question 7: A card is drawn at random from a deck of cards. Find the probability of getting a queen.

Solution to Question 7:

• Let E be the event "getting a Queen". An examination of the sample space shows that there are 4 "Queens" so that n(E) = 4 and n(S) = 52. Hence the probability of event E occurring is given by

$$P(E) = 4 / 52 = 1 / 13$$

Question 8: A jar contains 3 red marbles, 7 green marbles and 10 white marbles. If a marble is drawn from the jar at random, what is the probability that this marble is white?

Solution to Question 8:

We first construct a table of frequencies that gives the marbles color distributions as follows
 color frequency

• We now use the empirical formula of the probability

P(E)= Total frequencies in the above table
$$= 10 / 20 = 1 / 2$$

- a) A die is rolled, find the probability that the number obtained is greater than 4.
- b) Two coins are tossed, find the probability that one <u>head</u> only is obtained.
- c) Two dice are rolled, find the probability that the sum is equal to 5.
- d) A card is drawn at random from a deck of cards. Find the probability of getting the King of heart.

Answers to above exercises:

- a) 2/6 = 1/3
- b) 2/4 = 1/2
- c) 4/36 = 1/9
- d) 1/52
- **1.** A card is drawn from a well shuffled pack of 52 cards. Find the probability of:
- (i) '2' of spades
- (ii) a jack
- (iii) a king of red colour
- (iv) a card of diamond
- (v) a king or a queen
- (vi) a non-face card
- (vii) a black face card
- (viii) a black card
- (ix) a non-ace
- (x) non-face card of black colour
- (xi) neither a spade nor a jack
- (xii) neither a heart nor a red king

Solution:

In a playing card there are 52 cards.

Therefore the total number of possible outcomes = 52

(i) '2' of spades:

Number of favourable outcomes i.e. '2' of spades is 1 out of 52 cards.

Therefore, probability of getting '2' of spade

Number of favorable outcomes

P(A) = Total number of possible outcome

= 1/52

(ii) a jack

Number of favourable outcomes i.e. 'a jack' is 4 out of 52 cards.

Therefore, probability of getting 'a jack'

Number of favorable outcomes

P(B) = Total number of possible outcome

```
= 4/52
= 1/13
```

(iii) a king of red colour

Number of favourable outcomes i.e. 'a king of red colour' is 2 out of 52 cards.

Therefore, probability of getting 'a king of red colour'

Number of favorable outcomes

P(C) = Total number of possible outcome

= 2/52

= 1/26

(iv) a card of diamond

Number of favourable outcomes i.e. 'a card of diamond' is 13 out of 52 cards.

Therefore, probability of getting 'a card of diamond'

Number of favorable outcomes

P(D) = Total number of possible outcome

= 13/52

= 1/4

(v) a king or a queen

Total number of king is 4 out of 52 cards.

Total number of queen is 4 out of 52 cards

Number of favourable outcomes i.e. 'a king or a queen' is 4 + 4 = 8 out of 52 cards.

Therefore, probability of getting 'a king or a queen'

Number of favorable outcomes

P(E) = Total number of possible outcome

= 8/52

= 2/13

(vi) a non-face card

Total number of face card out of 52 cards = 3 times 4 = 12

Total number of non-face card out of 52 cards = 52 - 12 = 40

Therefore, probability of getting 'a non-face card'

Number of favorable outcomes

P(F) = Total number of possible outcome

```
(vii) a black face card:
Cards of Spades and Clubs are black cards.
Number of face card in spades (king, queen and jack or knaves) = 3
Number of face card in clubs (king, queen and jack or knaves) = 3
Therefore, total number of black face card out of 52 cards = 3 + 3 = 6
Therefore, probability of getting 'a black face card'
         Number of favorable outcomes
P(G) =
         Total number of possible outcome
   = 6/52
   = 3/26
(viii) a black card:
Cards of spades and clubs are black cards.
Number of spades = 13
Number of clubs = 13
Therefore, total number of black card out of 52 cards = 13 + 13 = 26
Therefore, probability of getting 'a black card'
Number of favorable outcomes
P(H) = Total number of possible outcome
= 26/52
= 1/2
(ix) a non-ace:
Number of ace cards in each of four suits namely spades, hearts, diamonds and clubs = 1
Therefore, total number of ace cards out of 52 cards = 4
Thus, total number of non-ace cards out of 52 cards = 52 - 4
= 48
Therefore, probability of getting 'a non-ace'
Number of favorable outcomes
P(I) = Total number of possible outcome
```

= 40/52= 10/13

```
= 48/52
```

= 12/13

(x) non-face card of black colour:

Cards of spades and clubs are black cards.

Number of spades = 13

Number of clubs = 13

Therefore, total number of black card out of 52 cards = 13 + 13 = 26

Number of face cards in each suits namely spades and clubs = 3 + 3 = 6

Therefore, total number of non-face card of black colour out of 52 cards = 26 - 6 = 20

Therefore, probability of getting 'non-face card of black colour'

Number of favorable outcomes

P(J) = Total number of possible outcome

= 20/52

= 5/13

(xi) neither a spade nor a jack

Number of spades = 13

Total number of non-spades out of 52 cards = 52 - 13 = 39

Number of jack out of 52 cards = 4

Number of jack in each of three suits namely hearts, diamonds and clubs = 3

[Since, 1 jack is already included in the 13 spades so, here we will take number of jacks is 3]

Neither a spade nor a jack = 39 - 3 = 36

Therefore, probability of getting 'neither a spade nor a jack'

Number of favorable outcomes

P(K) = Total number of possible outcome

= 36/52

= 9/13

(xii) neither a heart nor a red king

Number of hearts = 13

Total number of non-hearts out of 52 cards = 52 - 13 = 39

Therefore, spades, clubs and diamonds are the 39 cards.

Cards of hearts and diamonds are red cards.

Number of red kings in red cards = 2

Therefore, neither a heart nor a red king = 39 - 1 = 38

[Since, 1 red king is already included in the 13 hearts so, here we will take number of red kings is 1]

Therefore, probability of getting 'neither a heart nor a red king'

Number of favorable outcomes

P(L) = Total number of possible outcome

- = 38/52
- = 19/26

Two different coins are tossed randomly. Find the probability of:

- (i) getting two heads
- (ii) getting two tails
- (iii) getting one tail
- (iv) getting no head
- (v) getting no tail
- (vi) getting at least 1 head
- (vii) getting at least 1 tail
- (viii) getting atmost 1 tail
- (ix) getting 1 head and 1 tail

Solution:

When two different coins are tossed randomly, the sample space is given by

$$S = \{HH, HT, TH, TT\}$$

Therefore, n(S) = 4.

(i) getting two heads:

Let E_1 = event of getting 2 heads. Then,

$$E_1 = \{HH\}$$
 and, therefore, $n(E_1) = 1$.

Therefore, P(getting 2 heads) = $P(E_1) = n(E_1)/n(S) = 1/4$.

(ii) getting two tails:

Let E_2 = event of getting 2 tails. Then,

$$E_2 = \{TT\}$$
 and, therefore, $n(E_2) = 1$.

Therefore, P(getting 2 tails) = $P(E_2) = n(E_2)/n(S) = 1/4$.

(iii) getting one tail:

Let E_3 = event of getting 1 tail. Then,

 $E_3 = \{TH, HT\}$ and, therefore, $n(E_3) = 2$.

Therefore, P(getting 1 tail) = $P(E_3) = n(E_3)/n(S) = 2/4 = 1/2$

(iv) getting no head:

Let E_{Δ} = event of getting no head. Then,

 $E_4 = \{TT\}$ and, therefore, $n(E_4) = 1$.

Therefore, P(getting no head) = $P(E_4) = n(E_4)/n(S) = \frac{1}{4}$.

(v) getting no tail:

Let E_5 = event of getting no tail. Then,

 $E_5 = \{HH\}$ and, therefore, $n(E_5) = 1$.

Therefore, $P(\text{getting no tail}) = P(E_5) = n(E_5)/n(S) = \frac{1}{4}$.

(vi) getting at least 1 head:

Let E_6 = event of getting at least 1 head. Then,

 $E_6 = \{HT, TH, HH\}$ and, therefore, $n(E_6) = 3$.

Therefore, P(getting at least 1 head) = $P(E_6) = n(E_6)/n(S) = \frac{3}{4}$.

(vii) getting at least 1 tail:

Let E_7 = event of getting at least 1 tail. Then,

 $E_7 = \{TH, HT, TT\}$ and, therefore, $n(E_7) = 3$.

Therefore, P(getting at least 1 tail) = $P(E_2) = n(E_2)/n(S) = \frac{3}{4}$.

(viii) getting atmost 1 tail:

Let E_8 = event of getting atmost 1 tail. Then,

 $E_8 = \{TH, HT, HH\}$ and, therefore, $n(E_8) = 3$.

Therefore, P(getting atmost 1 tail) = $P(E_8) = n(E_8)/n(S) = \frac{3}{4}$.

(ix) getting 1 head and 1 tail:

Let E_9 = event of getting 1 head and 1 tail. Then,

 $E_9 = \{HT, TH \}$ and, therefore, $n(E_9) = 2$.

Therefore, P(getting 1 head and 1 tail) = $P(E_9) = n(E_9)/n(S) = 2/4 = 1/2$.