Tugas Besar 1 IF3270 Machine Learning Semester II tahun 2024/2025 Feedforward Neural Network

Oleh:

Jimly Nur Arif	(13522123)
Samy Muhammad Haikal	(13522151)

Muhammad Roihan (13522152)

PROGRAM STUDI TEKNIK INFORMATIKA
SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA
INSTITUT TEKNOLOGI BANDUNG
2024

DAFTAR ISI

DAFTAR ISI	2
DESKRIPSI PERSOALAN	3
PEMBAHASAN	5
1.1 Forward Propagation	5
1.2 Backward Propagation	6
1.3 Kelas dan Objek	7
Tabel 1.3.1	7
Tabel 1.3.2	8
Tabel 1.3.3	9
Tabel 1.3.4	10
HASIL PENGUJIAN	11
2.1 Pengaruh depth dan width	11
2.2 Pengaruh fungsi aktivasi	13
2.3 Pengaruh Learning rate	15
2.4 Pengaruh Inisialisasi bobot	17
2.5 Perbandingan dengan library sklearn	19
KESIMPULAN DAN SARAN	21
PEMBAGIAN TUGAS	23
REFERENSI	24
LAMPIRAN	25

DESKRIPSI PERSOALAN

Implementasikan suatu modul FFNN yang memenuhi ketentuan-ketentuan berikut:

- FFNN yang diimplementasikan dapat **menerima jumlah neuron dari tiap layer** (termasuk input layer dan output layer)
- FFNN yang diimplementasikan dapat **menerima fungsi aktivasi dari tiap layer**. Pilihan fungsi aktivasi yang harus diimplementasikan adalah sebagai berikut:
 - Linear
 - ReLU
 - o Sigmoid
 - Hyperbolic Tangent (tanh)
 - Softmax
- FFNN yang diimplementasikan dapat **menerima fungsi loss** dari model tersebut. Pilihan loss function yang harus diimplementasikan adalah sebagai berikut:
 - MSE
 - o Binary Cross-Entropy
 - o Categorical Cross-Entropy
- Terdapat mekanisme untuk **inisialisasi bobot** tiap neuron (termasuk bias). Pilihan metode inisialisasi bobot yang harus diimplementasikan adalah sebagai berikut:
 - Zero initialization
 - o Random dengan distribusi uniform.
 - Random dengan distribusi normal.
- Model memiliki implementasi forward propagation dengan ketentuan sebagai berikut:
 - Dapat menerima input berupa batch.
- Model memiliki implementasi backward propagation untuk menghitung perubahan gradien:
 - Dapat menangani perhitungan perubahan gradien untuk input data batch.
 - Gunakan konsep chain rule untuk menghitung gradien tiap bobot terhadap loss function.
- Model memiliki implementasi weight update dengan menggunakan gradient descent untuk memperbarui bobot berdasarkan gradien yang telah dihitung, berikut persamaannya:

$$W_{new} = W_{old} - \alpha \left(\frac{\partial \mathcal{L}}{\partial W_{old}} \right)$$

$$\alpha$$
 = Learning rate

- Implementasi untuk pelatihan model harus memenuhi ketentuan berikut:
 - Dapat menerima parameter berikut:

- Batch size
- Learning rate
- Jumlah epoch
- Verbose
 - Verbose 0 berarti tidak menampilkan apa-apa selama pelatihan
 - Verbose 1 berarti hanya menampilkan progress bar beserta dengan kondisi training loss dan validation loss saat itu
- Proses pelatihan mengembalikan histori dari proses pelatihan yang berisi training loss dan validation loss tiap epoch.
- Lakukan **pengujian** terhadap implementasi FFNN dengan ketentuan sebagai berikut:
 - Analisis pengaruh beberapa hyperparameter sebagai berikut:
 - Pengaruh depth (banyak layer) dan width (banyak neuron per layer)
 - Pengaruh fungsi aktivasi hidden layer
 - Pengaruh learning rate
 - Pengaruh inisialisasi bobot
 - Analisis perbandingan hasil prediksi dengan <u>library sklearn MLP</u>
 - Lakukan satu kali pelatihan dengan hyperparameter yang sama untuk kedua model
 - Hyperparameter yang digunakan dibebaskan
 - Bandingkan hasil akhir prediksinya saja

PEMBAHASAN

1.1 Forward Propagation

Forward propagation adalah tahap di mana input melewati seluruh lapisan dalam neural network untuk menghasilkan output akhir. Pada proses ini semua input , bobot dan bias akan digabung untuk menghasilkan nilai yang akan digunakan untuk input layer selanjutnya. Setiap neuron menerima input dari layer sebelumnya, dikalikan dengan bobot (W) dan ditambahkan bias (b). Secara matematis, proses ini dituliskan sebagai:

$$Z = \sum_{i \in input-n} Wi.Xi + b$$

Di mana W adalah bobot yang menentukan seberapa besar pengaruh setiap input terhadap keluaran neuron, sementara b adalah bias yang memungkinkan model lebih fleksibel dalam belajar pola data. Setelah nilai Z dihitung, hasil ini diteruskan ke fungsi aktivasi yang bersifat non-linear, seperti ReLU, tanh, sigmoid, atau softmax atau sigmoid. Fungsi aktivasi ini mengubah Z menjadi nilai A, yang akan digunakan sebagai input untuk layer berikutnya.

Keberadaan fungsi aktivasi non-linear sangat penting dalam neural network. Jika tidak digunakan dan jaringan hanya mengandalkan kombinasi linear dari bobot dan bias, maka seluruh jaringan akan setara dengan satu lapisan tunggal, tidak peduli berapa banyak lapisan yang digunakan. Hal ini mengurangi kemampuan jaringan untuk mempelajari pola yang lebih kompleks. Aktivasi non-linear memungkinkan model untuk menangkap hubungan yang lebih rumit dalam data, seperti pola non-linier dalam pengenalan gambar atau pemrosesan bahasa alami.

1.2 Backward Propagation

Backward propagation, atau backpropagation, adalah proses yang digunakan untuk memperbarui bobot (W) dan bias (b) dalam jaringan saraf berdasarkan kesalahan (error) yang dihasilkan selama forward propagation. Proses ini dilakukan dengan menghitung turunan (gradien) dari fungsi loss terhadap parameter-parameter jaringan menggunakan aturan rantai dalam kalkulus.

Backward propagation dimulai dari output layer dengan menghitung selisih antara prediksi jaringan (A) dan nilai target (Y). Fungsi-fungsi loss yang diimplementasikan adalah

Nama Fungsi Loss	Definisi Fungsi
<u>MSE</u>	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
Binary Cross-Entropy	$\mathcal{L}_{BCE} = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))$
	$y_i =$ Actual binary label (0 or 1)
	$\hat{y}_i = ext{Predicted value of } y_i$
	n=Batch size
Categorical Cross-Entropy	$\mathcal{L}_{CCE} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{C} (y_{ij} \log \hat{y}_{ij})$
	$y_{ij} = $ Actual value of instance i for class j
	$\hat{y}_{ij} = ext{Predicted value of } y_{ij}$
	C = Number of classes
	n=Batch size

Setelah mendapatkan dZ pada output layer, propagasi mundur berlanjut ke hidden layer. Perhitungan ini dilakukan secara berulang dari layer terakhir hingga layer pertama. Setelah semua gradien dihitung, bobot (W) dan bias (b) diperbarui menggunakan algoritma gradient descent dengan learning rate:

$$W = W - \alpha . dW$$
$$b = b - \alpha . db$$

Backpropagation memungkinkan jaringan belajar dengan menyesuaikan parameter agar loss berkurang secara bertahap. Jika tidak dilakukan backward propagation, jaringan tidak akan mampu memperbaiki kesalahan dan belajar dari data, sehingga tidak bisa melakukan tugasnya dengan baik.

Neural network menggunakan kombinasi forward dan backward propagation untuk mempelajari pola yang kompleks dalam data, seperti pengenalan objek dalam gambar atau pemrosesan bahasa alami.

1.3 Kelas dan Objek

Berikut adalah kelas-kelas yang diimplementasikan.

Tabel 1.3.1

CL	ASS	
	FFNN	Kelas utama untuk memodelkan feedforward neural network
AT	TRIBUTE	
	layer_sizes (list): Daftar ukur activations (list): Daftar fungs loss_function (str): Fungsi los weight_inits (list): Daftar kor	si aktivasi tiap layer ss yang digunakan
ME	THOD	
	forward	Method untuk melakukan forward pass
	backward	Method untuk melakukan backward pass
	_activation_derivative	Method helper untuk menghitung turunan aktivasi
	train	Method untuk melakukan training model

_compute_loss	Method untuk menghitung loss
plot_as_graph	Method untuk visualisasi graf
plot_weight_distribution	Method untuk memplot distribusi bobot di setiap layer
plot_gradient_distribution	Method untuk memplot distribusi gradien di setiap layer
save_model	Method untuk menyimpan model
load_model	Method untuk memuat model

Tabel 1.3.2

CLASS			
	Layer	Kelas untuk memodelkan layer	
AT	ATTRIBUTE		
	input_size (int): Jumlah neuron dari layer sebelumnya output_size (int): Jumlah neuron di layer ini activation (str): Fungsi aktivasi ('relu', 'sigmoid', 'softmax', dll) weight_init (dict): Konfigurasi inisialisasi bobot		
ME	THOD		
	forward	Method untuk melakukan forward pass	

	backward	Method untuk melakukan backward pass
	_initialize_weights	Method untuk inisialisasi nilai bobot

Tabel 1.3.3

CL	CLASS		
	Loss	Kelas yang berisi fungsi loss	
AT	TRIBUTE		
	-		
ME	тнор		
	mse	Implementasi fungsi Mean Squared Error (MSE)	
	mse_derivative	Implementasi turunan fungsi Mean Squared Error (MSE)	
	binary_cross_entropy	Implementasi fungsi binary cross entropy	
	binary_cross_entropy_deriv ative	Implementasi turunan fungsi binary cross entropy	
	categorical_cross_entropy	Implementasi fungsi categorical cross entropy	
	categorical_cross_entropy_ derivative	Implementasi turunan fungsi categorical cross entropy	

Tabel 1.3.4

CL	ASS	
	Activation	Kelas yang berisi fungsi aktivasi
AT	ГКІВИТЕ	
	-	
ME	ТНОД	
	linear	Implementasi fungsi aktivasi linear
	linear_derivative	Implementasi turunan fungsi aktivasi linear
	relu	Implementasi fungsi aktivasi Rectified Linear Unit(ReLU)
	relu_derivative	Implementasi turunan fungsi aktivasi Rectified Linear Unit(ReLU)
	sigmoid	Implementasi fungsi aktivasi sigmoid
	sigmoid_derivative	Implementasi turunan fungsi aktivasi sigmoid
	tanh	Implementasi fungsi aktivasi tangen hiperbolik (tanh)
	tanh_derivative	Implementasi turunan fungsi aktivasi tangen hiperbolik (tanh)

softmax	Implementasi fungsi aktivasi softmax
softmax_derivative	Implementasi turunan fungsi aktivasi softmax

HASIL PENGUJIAN

2.1 Pengaruh depth dan width

TC 1 Accuracy: 84.86% | Waktu: 6.78s TC 2 Accuracy: 85.22% | Waktu: 4.98s TC 3 Accuracy: 84.81% | Waktu: 3.20s

Width Loss graph 128 Neuron, 128 Neurons, 4 Hidden Layers 4 Hidden Train Loss 2.00 Val Loss Layer 1.75 1.50 1.25 Loss 1.00 0.75 0.50 0.0 12.5 2.5 10.0 15.0 Epoch

2.2 Pengaruh fungsi aktivasi

AKUVASI	Fungsi Aktivasi	Loss graph
---------	--------------------	------------

Perbandingan Akurasi

ReLU accuracy: 82.35% | Waktu: 7.19s

Sigmoid accuracy: 29.50% | Waktu: 5.54s

tanh accuracy: 75.48% | Waktu: 5.19s

Linear accuracy: 85.99% | Waktu: 5.00s

2.3 Pengaruh Learning rate

Learning	Loss graph
Rate	

2.4 Pengaruh Inisialisasi bobot

Initializatio n Method	Loss graph
---------------------------	------------

Perbandingan Akurasi

Zero Initialization Accuracy: 10.05% | Waktu: 6.70s

Uniform Initialization Accuracy: 74.70% | Waktu: 5.16s

Normal Initialization Accuracy: 82.35% | Waktu: 5.33s

2.5 Perbandingan dengan library sklearn

Model	Loss graph
-------	------------

2.6. Perbandingan regularisasi

KESIMPULAN DAN SARAN

T 1 1	1 '1	• •		1 .	1 1 1	
Berdasarkan	hasil	pengunan	vang	kamı	lakul	kan

Depth vs. Width:

Lebar jaringan (width) lebih kritis untuk akurasi daripada kedalaman (depth).

Trade-off: Lebih banyak neuron \rightarrow akurasi \uparrow tetapi waktu training \uparrow .

Fungsi Aktivasi:

Aktivasi ReLU direkomendasikan untuk hidden layer.

Hasil tinggi pada aktivasi Linear merupakan anomali

Learning Rate:

Learning rate 0.1 bekerja baik untuk kasus ini,

Inisialisasi:

Inisialisasi normal lebih baik daripada uniform/zero.

Untuk ReLU, gunakan He initialization untuk hasil optimal.

Scratch vs. Library:

Model library (MLP) lebih unggul karena optimisasi otomatis).

Non Reg, L1, L2:

L1 sedikit lebih unggul dalam akurasi, tetapi perbedaannya tidak signifikan

L2 memiliki waktu training paling cepat

Ketiga metode menghasilkan akurasi yang sangat mirip (~85.8%)

PEMBAGIAN TUGAS

NIM	Tugas
13522123	FFNN, docs
13522151	FFNN, docs
13522152	FFNN, docs

REFERENSI

- The spelled-out intro to neural networks and backpropagation: building micrograd
- https://www.jasonosajima.com/forwardprop
- https://www.jasonosajima.com/backprop
- https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.
 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.
- https://math.libretexts.org/Bookshelves/Calculus/Calculus (OpenStax)/14%3A Differentiation of Functions of Several Variables/14.05%3A The Chain Rule for Multivariable Functions

LAMPIRAN

Pranala GitHub: https://github.com/jimlynurarif/whitebox