대중교통 이용자 수를 통한 상습 정체구간 예측

목 차

01 프로젝트 소개

- 1-1. 배경 및 사전조사
- 1-2. 문제 정의

02 데이터 수집 및 분석

- 2-1. 데이터 전처리
- 2-2. K-means clustering
- 2-3. 데이터 분석

03 결론

- 3-1. 활용 방안
- 3-2. 한계 및 애로사항

프로젝트 소개 **배경 및 사전조사**

- 교통 혼잡 비용
- 교통체증이 없는 상황에서 정상속도를 냈을 경우, 줄일 수 있었던 불필요한 차량 운행비와 시간 손실 등을 환산한 액수를 말한다.
- 차량 운행 비용 + 시간 가치 비용
- 2017년 기준 약 38.7조원
 - → 국내 총생산 (GDP)의 3.4%

교통 혼잡 비용 변화 추이

* 출처 : 통계청

이 비용의 증가 원인은 늘어나고 있는 차량 보유 대수와 유가 인상, 교통체증 심화 등이다.

프로젝트 소개 **배경 및 사전조사**

기존 연구

- 1. 가용한 기존의 데이터 분석방법을 활용
- 2. 상시로 수집되는 서울시 공공데이터 활용

프로젝트 소개 **배경 및 사전조사**

연구 방향 설정

교통수요 예측 4단계 모형

통행 발생
통행 분포
교통수단 선택
통행 배정

본 프로젝트 4단계 모형

통행 발생 데이터 수집

도로명에 따른 데이터 로통합

예측 데이터 설정

데이터 예측 수행

<Raw Data>

- 지하철 승/하차 데이터(일별/ 2014.01~2020.03)

➤ Column 수 : 26개

➤ Class 수(단위: 년): 200805개

- 지하철 역 주소 데이터

- 버스 승/하차 데이터(월별 / 2014.01~2020.03)

➤ Column 수: 55개

➤ Class 수(단위:월): 39080개

- 버스 정류장 주소 데이터

➤ Column 수: 11개

➤ Class 수(단위:월): 520651개

- 공공자전거 대여소 주소 데이터

- 도로명별 차량속도 데이터(일별/ 2014.01~2020.03)

➤ Column 수: 36개

➤ Class 수(단위:월): 149076개

<1차 가공 - 도로명별 통합>

- 지하철 승/하차 데이터

-> 지하철 역 주소 데이터를 이용하여 역명에 따른 도로명 부여

- 버스 승/하차 데이터 & 공공자전거 이용 데이터

-> 버스 정류장과 공공자전거 대여소 데이터는 위도 경도만 나와있어 주소 좌표 변환 툴인, GeoCoder-Xr을 사용하여 도로명 부여

刊工	경도
37.51425	127.0611
37.5233	127.0385
37.52512	127.0525
37.51864	127.0354
37.51764	127.0225
37.5293	127.0356

37.50155 127.0386

OI I

도로명주소				
서울특별시	강남구	봉은사로		
서울특별시	강남구	도산대로		
서울특별시	강남구	도산대로		
서울특별시	강남구	언주로		
서울특별시	강남구	도산대로		
서울특별시	강남구	압구정로		
서울특별시	강남구	테헤란로		

데이터 수집: 서울 열린 데이터 광장 & 서울시 교통정보시스템 활용

<2차 가공 – 월별 통합>

- 지하철 승/하차 데이터 & 공공자전거 이용 데이터
 - : 일별 -> 월별
- 도로명별 차량속도 데이터
 - : 일별 -> 월별
- ※ 주말을 제외한 일별 데이터를 더하여 계산

ROADNAMI	YYMM
강남대로	1707
강변역로	1707
강서로	1707
경인로	1707
고덕로	1707
공항대로	1707
과천대로	1707
광평로	1707
금호로	1707
남부순환로	1707
녹사평대로	1707

- 모든 데이터가 존재하는 2017.07 ~ 2019.11까지 데이터 사용.

<3차 가공 – 데이터 컬럼 추가 >

- 버스 승/하차 데이터
- : 평일과 주말의 비율을 따져 MODBus_aa 컬럼 추가 (aa = 시간)

사용일자	승차총승객수	하차총승객수
20190101	26	5
20190101	4	0
20190101	0	3
20190101	25	10
20190101	0	32
20190101	30	0
20190101	2	91
20190101	101	3
20190101	0	27
20190101	34	0
20190101	24	18
20190101	50	7
20190101	15	11

<일자별 버스 승/하차 데이터>

상습 정체 구간 설정

SPD_07	SPD_08	SPD_09	SPD_17	SPD_18	SPD_19	IsJAM
34.772	30.1683	25.4168	22.8437	22.4455	20.9403	C
23.1459	22.8353	20.2642	19.7973	20.1834	20.2486	C
27.6199	25.5341	22.0218	20.7565	20.0964	19.7146	C
31.1919	25.8264	21.728	23.3681	21.3067	20.4009	(
29.686	26.8102	24.8669	25.6361	25.2954	24.886	(
28.9541	25.7288	23.0892	23.2019	22.2689	20.896	(
41.5817	28.4957	24.5733	25.1752	23.8781	24.14	(
31.7183	26.5859	23.9696	24.8189	24.6982	24.0327	(
24.1604	21.133	18.7933	17.8384	17.612	17.644	1
35.5289	30.498	26.8483	27.3675	26.1979	24.8325	(
43.6826	38.9406	35.314	32.15	31.5961	29.2553	(
25.6552	22.7042	19.0846	17.9481	17.3981	17.2022	1
22.3946	20.8201	18.8036	15.5074	15.3422	15.0201	1
25.5353	24.2546	20.988	19.1415	18.8138	17.6519	

SPD_07, SPD_08, SPD_09 : 출근 시간대의 도로 속도 SPD_17, SPD_18, SPD_19 : 퇴근 시간대의 도로 속도

<lsJAM>
속도가 20km/h 이하인 시간대가 3개 이상이면
상습 정체 구간으로 설정

* 참고 : 경기도 교통 DB 센터 – 교통혼잡구간 정체관리 전략 (2017)

데이터 정규화

SubIN_07	SubIN_08	SubIN_09	SubIN_17	SubIN_18	SubIN_19	SubOUT_07	SubOUT_08
2047	3194	2699	9703	16692	11878	9331	17079
4477	6266	4165	2721	3134	2444	1392	2254
4599	4803	2038	1075	1122	746	656	925
957	1073	406	302	432	211	358	618
2475	1868	793	800	784	343	513	695
1383	1261	573	952	1007	572	470	1011
356	558	242	200	333	141	183	259
1685	1856	1201	1362	2099	1036	1291	2264
880	1068	500	466	452	300	391	541
3298	4342	2411	1895	2953	1807	1388	2967
251	426	254	584	770	496	546	867
1146	1641	892	756	880	573	454	1122
603	847	507	492	767	492	349	950
1696	1813	1042	1386	3010	1402	1254	3857
4451	5854	3187	1313	1848	1253	845	1644

- 버스 승/하차 MAX값 : 938431명

- 버스 승/하차 MIN값: 80명

- 공공자전거 MAX값 : 5739명 - 공공자전거 MIN 값 : 0명

- 버스 승/하차 데이터와 공공자전거(따름이) 이용객 데이터의 편차가 크기 때문에 정규화 실시

최종 데이터

-0.32677

-0.1903

지하철 승/하차 승객수 버스 승/하차 승객수 공공자전거 이용객수 상습 정체구간 Byc 17 Byc 18 Byc 19 **IsJAM** BusOUT_19 MODBusIN_07 SubIN_07 SubIN_08 -0.21161 0.197438 0.257427 2.854708726 1 998596231 0 0.367879 0.877273 -0.58556 -0.58282 -0.50297 -0 677739229 0 -0.75083976 2.241339 2.989043 -0.57457 -0.6102 -0.44961 0.407792137 0 0.526946189 2.335397 1.98334 -0.09612 0.149528 0.808829 0 1.322420698 1.141173272 -0.47248-0.58076 -0.62956 -0.63757 -0.62748 0.223036929 0 -0.149033129 -0.23911 -0.01816 -0.06274 0 0.697855 -0.03425 -0.518164293 -0.481610108 NA NA NA 0 0.394254244 0.445978241 -0.14405 -0.45152 NA 0 NA NA -0.610283414 -0.605990424 -0.93478 -0.93583 -0.62956 -0.61704 -0.59636 1 -0.388574688 -0.364972355 0.088788 -0.0425 0.316325 0.385658 1.000041 0 -0.568573374 -0.473008782 -0.53184 -0.584190 3.366553532 -0.47008 -0.5178 -0.46295 3.568719263 1.332364 1.666437 0.5198 0.522545 0.977807 1 -0.425172846 -0.448906167 1 -1.01678-1.02552-0.16212 -0.17558 0.048428 -0.019963205 -0.321682168 1

-0.406498168

- 총 Column 수 : 지하철(12개) + 버스(24개) + 공공자전거(6개) = 42개

-0.395062829

- 총 Class 수 : 2785개

0.27233 0.519123 0.875531

K-means clustering

비지도 학습 – 클러스터링(K-means분석)

K-means clustering

비지도 학습 – 클러스터링(K-means분석)

클러 스터	K=3	K=4	K=5
1	1/4	1/4	19/54
2	33/77	6/11	12/15
3	9/15	24/60	1/4
4		12/21	6/11
5			5/12

클러 스터	K=3	K=4	K=5
1	0.25	0.25	0.35
2	0.43	0.55	0.8
3	0.6	0.4	0.25
4		0.57	0.55
5			0.42

상습 정체 도로 예측 적중률

- ·분석 1. K 값이 5일 때 가장 큰 적중률을 가진 클러스터가 생성됨
- ㆍ분석 2. 사용한 변수들은 도로들의 특징을 분석하는데 도움을 줄 수 있음을 확인

K-means clustering

비지도 학습 – 클러스터링(K-means분석)

클러스터	K=3	K=4	K=5	
1	0.25	0.25	0.35	
2	0.43	0.55	이태원로, 세종대로, 대학로 서초대로,서초중앙로, — 신반포로, 신촌로,압구정로, 여의나루로, 율곡로,을지로, 테헤란로, 퇴계로,학동로	
3	신촌로, 왕산로, 왕십리로, 종로, 한강대로 등	0.4	0.25	
4		서초중앙로, 신반포로, 압구정로, 테헤란로 등	0.55	
5	서울의 중심부에	서울의 강남 부분이	ળ.42	
	위치한 도로명 위주	위치한 도로명 위격		

지하철 승/하차, 버스 승/하차, 서울시 공공자전거 이용객 수는 상습 정체구간 예측에 영향을 주는 변수임을 시사

모델 선택 – 지도 학습

모델	정확도
Decision Tree	85.70%
Random Forest	93.50%
Logistic Regression	88.46%
SVM	84.69%

샘플링 10회 진행 후, 분석 -> 가장 정확도가 높은 Random Forest 선정

Random Forest

<과적합 방지>

- ntree 개수: 383개

- mtry: 6개

주요 변수

- SubOUT 19
- SubIN_07
- SubIN 19
- BusIN_09
- SubOUT 08
- SubIN_18

데이터 수집 및 분석 데이터 분석

Random Forest

<Test1>

예측 실제	0	1
0	50	3
1	2	41

정확도 : 94.79%

강남대로, 보문로, 세종대로

<Test4>

예측 실제	0	1
0	50	3
1	3	40

정확도: 93.75%

과천대로, 백범로, <mark>보문로 보문로</mark>, 사직로

<Test6>

예측 실제	0	1
0	51	2
1	2	41

정확도: 95.83%

실제는 상습정체구간이 아니지만 Random Forest 예측결과 "보문로"가 상습정체구간으로 나옴

결론 **활용 방안**

교통 혼잡 개선 가능성

결론 **활용 방안**

실제 변화에 빠르게 대응할 수 있는 교통 정책 수립 가능

투자 비용 대비 효과 높은 교통 수요 예측 방법 (이미 존재하는 데이터 활용)

기존의 교통 수요 추정 방법론 보완, 관련 연구 범위 확장 (학술적 기대효과)

결론 **한계 및 애로사항**

데이터 통합 기준의 회색 지대

도로명 추출 방식의 차이 (위도, 경도 이용 / 도로명 주소 이용) 지하철의 공간적 특성 (여러 도로가 모인 지점에 위치한 지하철 역)

이용 불가 데이터

택시 데이터, 카쉐어링 데이터 접근 불가능 범위 확장 제한 (대중 교통 -> 교통 수단)

최신 데이터 활용 불가능

따릉이 이용객 수 데이터 범위의 한계 (2017 ~ 2019.11)

감사합니다