Math 1530: Abstract Algebra

Milan Capoor

Fall 2023

Groups

Lecture 1: Sept 7

Richard Schwartz

• richard.evan.schwartz@gmail.com

The Cube

Let G be the set of symmetries of the cube. Given $a, b \in G$, $a \star b$ is the concatenation of a and b

Notice:

- $(a \star b) \star c = a \star (b \star c)$ (associative)
- $\exists e \text{ such that } e \star a = a \star e = a \ \forall a \in G \text{ (identity)}$
- $\forall a \in G \; \exists \, b \; \text{such that} \; a \star b = e \; \text{(inverse)}$

A group is anything that satisfies these axioms

Examples of groups:

- Permutations of the Rubik's Cube
- the integers
- $\mathbb{Z}//n := \{0, ..., n-1\}$ ("Z mod n" where $\mathbb{Z}//12$ would work like a clock)

Structures heuristically:

- A group is a set with addition/concatenation
- A ring is a group plus multiplication

• A field is a ring plus division and commutativity

Lecture 2: Sept 12

Groups

Group: a group is a set G with an operation $\star : G \times G \to G$ such that

- 1. \star is always defined
- 2. $a \star (b \star c) = (a \star b) \star c \quad \forall a, b, c \in G \text{ (Associativity)}$
- 3. $\exists e \in G$, such that $e \star a = a \star e = a \quad \forall a \in G$ (Identity)
- 4. $\forall a \in G, \exists b \in G, \text{ such that } a \star b = b \star a = e \text{ (Inverses)}$

Lemma 1: In a group, e is unique.

Proof:

- 1. Suppose e and e' are both identity elements of the group G.
- 2. Consider $e \star e'$
- 3. Since e is an identity, $e \star e' = e'$
- 4. But since e' is an identity, $e \star e' = e$
- 5. Therefore, e' = e

Lemma 2: Suppose $a \star c_1 = a \star c_2$. Then, $c_1 = c_2$.

Proof:

- 1. Let b be an inverse of a
- 2. Since $a \star c_1 = a \star c_2$,

$$b \star (a \star c_1) = b \star (a \star c_2)$$

3. Then by associativity,

$$(b \star a) \star c_1 = (b \star a) \star c_2$$

4. By the definition of inverses, $(b \star a) = e$ so

$$e \star c_1 = e \star c_2$$

5. And by identity,

$$c_1 = c_2 \quad \blacksquare$$

Lemma 3: Inverses are unique $(\forall a \in G \quad \exists! b \in G \text{ such that } a \star b = b \star a = e)$

Proof:

- 1. Suppose b_1 and b_2 are both inverses of a
- 2. Then,

$$a \star b_1 = e = a \star b_2$$

3. By lemma 2, $b_1 = b_2$

Examples of Groups

Permutation groups: The set of all bijective maps from $S \to S$ (the maps that hit every element in the codomain exactly once)

Surjective: onto; each element of the codomain is mapped to by at least one element of the domain.

Injective: one-to-one; each element of the codomain is mapped to by at most one element of the domain

Permutation groups can be represented by arrow diagrams, tables, pairs, and cycles. For example,

S	g(S)
1	5 8
2	8
3	3
4	6
5	1
6	9
7	7
7 8 9	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
9	2

is the same as

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 3 & 6 & 1 & 9 & 7 & 4 & 2 \end{pmatrix}$$

which is also equivalent to

which can be notated

(3)(7)(15)(28469)

Homomorphisms

Homomorphism: a map between groups G_1 and G_2 , $\phi:G_1\to G_2$ such that $\phi(a\star_1 b)=\phi(a)\star_2\phi(b)$

Example: G_1 is rotations of a pentagon and $G_2 = \mathbb{Z}/5$

Isomorphism: a bijective homomorphism

Lecture 3: Sept 14

Recall: a homomorphism is a map $\phi: G_1 \to G_2$:

$$\phi(a \star_1 b) = \phi(a) \star_2 \phi(b)$$

Lemma: Let ϕ be a homomorphism from $G_1 \to G_2$. Then $\phi(g^{-1}) = (\phi(g))^{-1} \quad \forall g \in G_1$

Proof:

$$\phi(e) = e$$

$$g \cdot g^{-1} = e$$

$$e = \phi(g \cdot g^{-1}) = \phi(g) \cdot \phi(g^{-1}) \quad \text{by homomorphism}$$

$$e = \phi(g) \cdot (\phi(g))^{-1} \quad \text{by definition of inverse}$$

$$\phi(g^{-1}) = (\phi(g))^{-1} \quad \text{by cancellation} \quad \blacksquare$$

Subgroups

Kernel: Let $\phi: G_1 \to G_2$ be a homomorphism. Then

$$\ker(\phi) := \phi^{-1}(e) = \{ a \in G_1 | \phi(a) = e \}$$

Lemma: $\ker(\phi)$ is a subgroup of G_1

Proof:

1. Suppose $a, b \in \ker(\phi)$

$$\phi(ab) = \phi(a)\phi(b) = ee = e$$
 \checkmark

2. Suppose $a^{-1} \in \ker(\phi)$

$$\phi(a^{-1}) = [\phi(a)]^{-1} = e^{-1} = e \quad \checkmark$$

Therefore $\ker(\phi)$ is closed under multiplication and inverses, so it is a subgroup.

Theorem: ϕ is one-to-one (injective) if and only if $\ker(\phi) = \{e\}$

Proof:

$$\phi(e) = e \text{ so } \phi(g) \neq e \text{ if } g \neq e.$$
 Therefore, $\ker(\phi)$ must be $\{e\}$

Now for the other direction, suppose $\phi(x) = z$ and $\phi(y) = z$. We then know $\phi(y^{-1}) = z^{-1}$, so

$$\phi(y^{-1})\phi(x) = z^{-1}\phi(x) = z^{-1}z = e$$

Because ϕ is a homomorphism,

$$\phi(y^{-1})\phi(x) = \phi(y^{-1}x)$$

SO

$$y^{-1}x \in \ker(\phi) \implies y^{-1}x = e \implies x = y$$

More generally

Let $\phi: G_1 \to G_2$ be a homomorphism and H_2 a subgroup of G_2 ,

$$\phi^{-1}(H_2) = \{ a \in G_1 | \phi(a) \in H_2 \}$$

Lemma: $\phi^{-1}(H_2)$ is a subgroup of G_1

Proof:

- 1. Identity: $\phi(e) = e \quad e \in \phi^{-1}(H_2)$
- 2. Multiplication closure: $a, b \in \phi^{-1}(H_2)$,

$$\phi(ab) = \phi(a)\phi(b) \in H_2$$
 H_2 is closed under products

so
$$ab \in \phi^{-1}(H_2)$$

3. Inverse closure: $a \in \phi^{-1}(H_2)$

$$\phi(a^{-1}) = [\phi(a)]^{-1} \in H_2$$
 H_2 is closed under inverses

so
$$a^{-1} \in \phi^{-1}(H_2)$$

Interlude: Cube notation

Let

$$a =$$

This means that we turn the left face down.

Notice that after four turns, we have returned to the beginning, so

$$aaaa = a^4 = e$$

which creates a (cyclic) subgroup of the cube,

$$H = \{e, a, a^2, a^3\}$$

Notation: Given G and $a \in G$,

$$\langle a \rangle = \{ a^k, \ k \in \mathbb{Z} \}$$

,

Why are the symmetries of the cube not a cyclic group?

There is no generator of order 24.

OR cyclic groups are abelian.

$$a^m a^n = a^{m+n} = a^{n+m} = a^n a^m$$

Lecture 4: Sept 19

Review

Recall: A homomorphism is a map $\phi: G_1 \to G_2$ such that

$$\phi(ab) = \phi(a)\phi(b)$$
$$\phi(e_1) = e_2$$
$$\phi(g^{-1}) = (\phi(g))^{-1}$$

To confirm H is a subgroup: check that it is closed under multiplication and inverses. You do not need to show associativity because that is always true.

Generators: Let $G = \{a, a^2, a^3, \dots\}$ If $a^m = a^n \quad m < n$ then

$$a^{n-m} = e$$

$$a^{k} = e$$

$$(k = n - m)$$

$$(a^{k-1})a = e$$

$$a^{k-1} = a^{-1}$$

Are Abelian Groups always cyclic? Answer: No. Counterexample:

$$\mathbb{Z}/2 \times \mathbb{Z}/2 = \{(a,b)|\ a,b \in \mathbb{Z}/2\} = \{(0,0),(0,1),(1,0),(1,1)\}$$

has no generator.

(Left) Cosets

Definition: Given a group G and a subgroup $H \subset G$, a *left coset* is a set of the form

$$aH = \{ah \mid h \in H\}$$

where $a \in G$

If $a \in H$, then aH = H. (Notice that for all $s \in H$, $a(a^{-1}s) = s$ and $a^{-1}s \in H$)

This all leads to the observation that every set of cosets contains the subgroup.

Lemma: H and aH are the same size (there is a bijection from H to aH)

Proof: Define $\psi(h) = ah$. By definition, $aH = \psi(H)$ so ψ is onto. Now suppose $\psi(h_1) = \psi(h_2)$. Then $ah_1 = ah_2$ which by cancellation shows $h_1 = h_2$. Thus, ψ is one-to-one. Therefore, $\psi: H \to aH$ is a bijection.

Lemma: If $aH \cap bH \neq \emptyset$, then aH = bH.

Proof: Pick an element in common: $ah_1 = bh_2$. Then

$$a = bh_2h_1^{-1}$$

so for any $h \in H$,

$$ah = b(h_2h_1^{-1}h) \in bH$$

Since this is true for all $h \in H$, we know that $aH \subset bH$.

Interchanging a and b shows that aH = bH.

Lagrange's Theorem

Theorem: If G is a finite group and $H \subset G$ is a subgroup, then o(H)|o(G) (The order of H divides the order of H.)

Proof: Look at all the cosets and denote the number of cosets n. We know

- 1. For any $g \in G$, $g = ge \in gH$ (every element is in a coset)
- 2. All cosets have o(H) elements (from the bijection)
- 3. The cosets are mutually exclusive

So $o(G) = n \cdot o(H)$

Corollary: If $g \in G$ and G is a finite group, then o(g)|o(G)

Proof: Let $H = \langle g \rangle$. Then o(H) = o(g). Since o(H)| o(G) (by Lagrange's), o(g)| o(G).

Lecture 5: Sept 21

Recall

Lagrange's Theorem: $H \subset G \implies o(H) | o(G)$

Corollary of Lagrange's Theorem: if $g \in G$, o(g)|o(G)

Equivalence Relations

Relation: a relation on a set S is a subset $R \in S \times S$

$$x R y \implies (x, y) \in R$$

Equivalence Relation: a relation $x \sim y$ such that $(x, y) \in R$ and

1. $x \sim x \quad \forall x \in S$

2. $x \sim y \implies y \sim x \quad \forall x, y \in S$

3. $x \sim y, \ y \sim z \implies x \sim z \quad \forall x, y, z \in S$

Example: $H \subset G$ with $a \sim b$ if $a^{-1}b \in H$

$$a \sim a \implies a^{-1}a \in H \implies e \in H\checkmark$$
 (1)

$$a \sim b \implies a^{-1}b \in H \implies (a^{-1}b)^{-1} = (b^{-1}a)^{-1} \implies b \sim a\checkmark$$
 (2)

$$a \sim b, \ b \sim c \implies a^{-1}b, b^{-1}c \in H \implies a^{-1}x \in H \implies a \sim c\checkmark$$
 (3)

Remark: if two equivalence classes overlap, they are the same *Proof*: an equivalence class is a coset

Example:

$$a^{-1}b \in H$$
$$a^{-1}b = h \in H$$
$$b = ab \in aH$$

The group $(\mathbb{Z}/n)^*$

Relatively Prime: $a, b \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1

Lemma: if a, b are relatively prime then $\exists s, t$ such that

$$as + bt = 1$$

Proof:

 \iff suppose as + bt = 1 and d divides a, b. Clearly, d|as and d|bt for $s, t \in \mathbb{Z}$. By distribution,

$$d|as + bt = 1 \implies d|1 \implies d = 1$$

 \implies Let a, b be the smallest pair with a < b. Consider a, b - a. If a and b - a are relatively prime, then

$$s'a + t'(b - a) = 1 = (\underbrace{s' - t'}_{s})a + \underbrace{t'}_{t}b = 1$$

To show that a and b-a are relatively prime, we suppose d|a and d|b-a so d|a+(b-a) so d|b. Using the first part of the proof, we know have as+bt=1 for the smallest pair we did not know we could write that way. Thus it is true for all numbers.

Definition: $(\mathbb{Z}/n)^*$ is the subset of $\{1,\ldots,N\}$ which is relatively prime to N together with group law multiplication and reduction.

$$(\mathbb{Z}/15)^* = \{1, 2, 4, 7, 8, 11, 13, 13, 14\}$$

Example: $7 \cdot 8 = 56 - (15 * 3) = 11 \in (\mathbb{Z}/15)^*$

We now consider $a, b \in (\mathbb{Z}/15)^*$

$$\begin{cases} 1 = s_1 a + t_1 N \\ 1 = s_1 b + t_2 N \\ 1 = s_1 s_a v + \dots N \end{cases} \implies ab \in (\mathbb{Z}/15)^*$$

(so identity)

Inverses in $(\mathbb{Z}/N)^*$:

$$a \in (\mathbb{Z}/15)^*$$

$$as + tN = 1$$

$$s = a^{-1}$$

$$aa^{-1} + tN = 1$$

(so inverses mod multiples are in the group)

Order of $(\mathbb{Z}/15)^*$:

$$\phi(n) := o(\mathbb{Z}/15)^*$$

We have $\phi(15) = 8$, $\phi(17) = 16$, etc.

In general, if p is prime then $\phi(p) = p-1$ and if p,q are prime then $\phi(pq) = (p-1)(q-1)$

$$\boxed{\frac{\phi(N)}{N} = \prod_{p|n} 1 - \frac{1}{p}}$$

Example: N = 12, $(\mathbb{Z}/12)^* = \{1, 5, 7, 11\}$

$$\frac{\phi(12)}{12} = (1 - \frac{1}{2})(1 - \frac{1}{3}) = \frac{1}{3} \implies \phi(12) = 4$$

RSA Cryptography

Corollary of Lagrange's Theorem: If a is relatively prime to N then

$$a^{\phi(N)} \equiv 1 \mod n$$

The Algorithm:

- 1. Pick two very large primes p, q (choose very big numbers and check if they are prime)
- 2. publish the value of N = pq
- 3. Keep secret the number $\phi(N) = (p-1)(q-1)$
- 4. Choose a public E relatively prime to $\phi(N)$ $(DE + k\phi(N) = 1)$ where D is your private "decoder"

Rings

Lecture 6: Sept 26

Ring: a set R with two operations (usually +, \cdot) such that:

- 1. (R, +) is an abelian group
- 2. (R, \cdot) is a "group" which may or may not have inverses (the operation is always defined, it is associative, and there is an identity)

3.

$$\forall a, b, c \in R: \begin{cases} a \cdot (b+c) = a \cdot b + a \cdot c \\ (b+c) \cdot a = b \cdot a + c \cdot a \end{cases}$$

We usually call 1 the multiplicative identity (the identity for the operation \cdot) and 0 the additive identity (the identity for +)

Lemma: $0 \cdot a = a \cdot 0 = 0 \quad \forall a \in R$

Proof:

$$0 + 0 = 0 \implies (0 + 0) \cdot a = 0a + 0a = 0 \cdot a$$

By the additive inverse,

$$-0a + 0a + 0a = -0a + -0a \implies 0a = 0$$

Lemma: $(-a) \cdot b = -(a \cdot b)$

Proof:

$$0 \cdot b = 0$$

$$(-a+a) \cdot b = 0$$

$$-a \cdot b + a \cdot b = 0$$

$$-a \cdot b + a \cdot b - (a \cdot b) = -(a \cdot b)$$

$$-a \cdot b = -(a \cdot b) \blacksquare$$

Examples of Rings

- The integers $(\mathbb{Z}, +, \cdot)$
- $\bullet \ \mathbb{Z}/n$
- Z[x] (the set of integer polynomials $a_0 + a_x + \cdots + a_n x^n$)
- $\mathbb{Z}/6[x]$ (polynomials with coefficients in $\mathbb{Z}/6$)
- (R[x])[y] (the ring of polynomials in y whose coefficients are elements in R[x])
- $R[x,y] = \{\sum a_{ij}x^iy^k | a_{ij} \in R\}$ (this is isomorphic to the example above)
- $M_n(R)$ is the $n \times n$ matrix ring with coefficients in R
- $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}, i^2 = -1\}$ (the Gaussian integers)
- $\mathbb{Z}[\omega] = \{a + b\omega \mid \omega = e^{2\pi i/3}\}$ (Eisenstein integers)

Ring Homomorphisms

Definition: $\phi: R_1 \to R_2$ is a ring homomorphism iff

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- $2. \ \phi(ab) = \phi(a)\phi(b)$
- 3. $\phi(1) = 1$

Examples of homomorphisms:

- $\phi: \mathbb{Z} \to \mathbb{Z}/n \longrightarrow \phi(k) = k \mod n$
- $\phi: \mathbb{Z}/mn \to \mathbb{Z}/n$

$\mathbb{Z}/6$	$\mathbb{Z}/3$
0	0
1	1
2	2
3	0
4	1
5	2

Lecture 7: Sept 28

Review

Ring: a set with two operations $(R, +, \cdot)$ where (R, +) is an abelian group, (R, \cdot) follows all the group axioms except (potentially) inverses, and

$$a(b+c) = ab + ac$$

Ring Homomorphism: $\phi: R_1 \to R_2$ where

$$\phi(a+b) = \phi(a) + \phi(b)$$
$$\phi(ab) = \phi(a)\phi(b)$$
$$\phi(1) = 1$$

More examples:

- $\phi: \mathbb{Z} \to R_2$ is a unique homomorphism $(\phi(1) = 1, \phi(2) = \phi(1+1) = \phi(1) + \phi(1) = 2, \dots)$
- Similarly, (if it exists) $\mathbb{Z}/n \to \mathbb{R}$ will be unique
- $\phi: \mathbb{C} \to \mathbb{C}$. One homomorphism is $\phi(x+iy) = x+iy$. But $\phi(x+iy) = x-iy$ is also a homomorphism

Lemma: $\phi(ab) = \phi(a)\phi(b)$

Proof:

$$(a+bi)(c+di) = ac - bd + i(ad+bc)$$
$$(a-bi)(c-di) = ac - bd - i(ad+bc)$$

• $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in |Z\}, \ \phi(a + b\sqrt{2}) = a - b\sqrt{2}$

Unit group

Unit: an element of a commutative ring with an inverse. i.e.,

$$a, b \in R : ab = 1$$

Lemma: (R^*, \cdot) is a group (where R^* is the set of units of R) *Proof:*

1. The units are closed under composition

$$1 = aa' = bb' \implies 1 = aa'bb' = (ab)(a'b')$$

- 2. $R^* \subset R$ is a ring so associativity holds
- 3. We have an identity because $1 \in R^*$
- 4. We have inverses because $ab = 1 \implies ba = 1$

Example: $(\mathbb{Z}/N)^*$ = set of elements relatively prime to N

Because $(\mathbb{Z}/N)^*$ is a group, all its elements have inverses so

$$(\mathbb{Z}/N)^* \subset (\mathbb{Z}/N)^{\sharp}$$

(where $(\mathbb{Z}/N)^{\sharp}$ is the unit group)

Now let

$$ab = 1 \in \mathbb{Z}/N$$
 (4)

$$b = kN + 1 \quad \in \mathbb{Z} \tag{5}$$

$$ab - KN = 1 \implies ab$$
 is relatively prime to N (6)

So a is relatively prime to N so

$$(\mathbb{Z}/N)^{\sharp} \subset (\mathbb{Z}/N)^{\star} \implies (\mathbb{Z}/N)^{\sharp} = (\mathbb{Z}/N)^{\star}$$

Products of Rings

Definition:

$$R_1 \times R_2 = \{(a_1, a_2) \mid a_1 \in R_1, \ a_2 \in R_2\}$$

with

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$(7)$$

$$(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2) \tag{8}$$

Lemma: $(R_1 \times R_2^{\star}) = R_1^{\star} \times R_2^{\star}$

If we have units in R_1, R_2 , then

$$(a_1, a_2) \cdot (b_1, b_2) = (1, 1)$$

Lecture 8: Oct 3

Special Cases of Rings

Field: $(R - \{0\}, \cdot) = R^*$ is an abelian group (every non-zero element has an inverse)

Integral Domain: A commutative ring where $ab = 0 \implies a = 0$ or b = 0

Ideals

Definition: An *ideal* $I \subset R$ is a subgroup under addition of R and has the "absorption property" such that

$$\forall a \in I, r \in R : ar \in I$$

Not an Ideal:

- $I = \mathbb{R}, R = \mathbb{R}[x]$
- $I = \{(n, n) | n \in \mathbb{Z}\}, R = \mathbb{Z} \times \mathbb{Z}$

Ideals:

- $I = 2\mathbb{Z}$, $R = \mathbb{Z}$
- $I = \{(n,0) | n \in \mathbb{Z}\}, \quad R = \mathbb{Z} \times \mathbb{Z}$

Principal Ideals: Given $a \in R$,

$$aR = \{ar \mid r \in R\}$$

Proof this is an ideal:

• Distribution: $ab_1 + ab_2 = a(b_1 + b_2)$

• Absorption: $s \in R$, s(ar) = a(sr)

• Inverse: -ab = a(-b)

• Additive identity: a0 = 0

An ideal that is not a principal ideal:

• (General case) All finite sums $\sum_i a_i r_i$ with $a_1, \ldots, a_n, r_i \in R$ Observe

$$r\left(\sum_{i} a_{i} r_{i}\right) = \sum_{i} a_{i}(r r_{i})$$

Quotients

Quotient ring: a ring \mathbb{R}/I from commutative ring R and ideal $I \in R$

The elements of R/I are the cosets of I,

$$a+I, \quad a \in R$$

We have new group laws:

$$(a+I) + (b+I) := (a+b) + I$$

 $(a+I)(b+I) := (ab) + I$

Problem: what if a and b are redundant sets? When $R = \mathbb{Z}$, $I = 2\mathbb{Z}$ we have $1 + 2\mathbb{Z} = 13 + \mathbb{Z}$ (the odd integers) but $1 \neq 13$

Lemma: If a' + I = a + I and b' + I = b + I then

$$(a+b) + I = (a'+b') + I$$

Proof:

$$a' = a + i \qquad i \in I$$

$$b' = b + j \qquad j \in I$$

$$a' + b' \in (a' + b' + I)$$

$$a' + b' = a + b + (i + j) \in (a + b) + I$$

$$(a + b + I) \cap (a' + b') + I \neq \emptyset$$

$$\therefore (a + b) + I = (a' + b') + I$$

Lemma: If a' + I = a + I and b' + I = b + I then

$$a'b' + I = ab + I$$

Proof:

$$a' = a + i$$

$$b' = b + i$$

$$a'b' = (a + i)(b + j)$$

$$= ab + ib + aj + ij$$

But by absorption, $ib + aj + ij \in ab + I$. so the rest follows from the same proof as above.

Showing Associativity:

$$(a+I+b+I) + c + I = a + I + (b+I+c+I)$$
$$((a+b)+c) + I = a + (b+c) + I$$

Identity: (a + I) + (0 + I) = a + I

Inverse: (a+I) + (-a+I) = (a-a) + I = 0 + I

Lecture 9: Oct 5

Review

Ideal:

In a commutative ring, $I \subset R$ is an *ideal* if I is a subgroup under addition and I has the absorber property

$$ar \in I$$
. $\forall a \in I, r \in R$

Quotient:

We can then construct R/I which is the set of cosets of I (as an abelian group)

$$R/I = \{a + I, a \in R\}$$

However, this construction can obscure the fact that a single coset can be constructed in many ways (for example with $I = 2\mathbb{Z}$, both 0 + I and -30 + I are the evens).

Thus we confirm that the operations

$$(a+I) + (b+I) := (a+b) + I$$

 $(a+I) \cdot (b+I) := ab + I$

on R/I are well-defined (because two cosets that overlap are the same) Examples:

• $R/I = \mathbb{Z}/5\mathbb{Z}$ has five distinct cosets:

$$0 + 5\mathbb{Z}, 1 + 5\mathbb{Z}, 2 + 5\mathbb{Z}, 3 + 5\mathbb{Z}, 4 + 5\mathbb{Z}$$

so it is isomorphic to $\mathbb{Z}/5 = \{0, 1, 2, 3, 4\}$

 $R = \mathbb{R}[x] = \left\{ \sum_{i=0}^{n} a_i x^i : a_i \in \mathbb{R}, n \in \{0, 1, 2, \dots\} \right\}$

with

$$I = R(x^2 + 1) = \{p(x)(x^2 + 1), \ p(x) \in R\}$$

gives the quotient ring R/I with elements like

$$\begin{cases} n+I & \forall n \in \mathbb{N} \\ -x^2+I = -x^2+(x^2+1)+I = 1+I \\ (x^3-5)+I = (x^2+I)(x+I)+(-5+I) = (-1+I)(x+I)+(-5+I) \\ \vdots \end{cases}$$

More operations lead to the very strong conclusion: every ideal can be written in the form

$$(a+I) + (bx+I) \quad a, b \in \mathbb{R}$$

If we continue with this example, we can see

$$(x+I)(x+I) = x^2 + I = -1 + I$$

so in a sense $(x+I) = \sqrt{-1}$ and in fact this does define a ring isomorphism to the complex numbers!

• $R = \mathbb{Q}[x]$ and $I = R(x^2 - 2)$ allows us to define " $\sqrt{2}$ " via

$$(x+I)(x+I) = x^2 + I = x^2 - (x^2 - 2) + I = 2 + I$$

This particular ring also happens to be a field.

Principal Ideal: the set of all multiples of an element in the ring

Homomorphisms and Ideals

Ring homomorphism: a map $\phi: R_1 \to R_2$ which respects both rings' operations:

$$\phi(a+b) = \phi(a) + \phi(b)$$
$$\phi(ab) = \phi(a) \cdot \phi(b)$$
$$\phi(1) = 1$$

Kernel:

$$\ker(\phi) = \{ a \in R_1 \mid \phi(a) = 0 \}$$

Lemma: $ker(\phi)$ is an ideal

Proof: $\ker(\phi)$ is an abelian group since ϕ is also group homomorphism. Let $a \in I, r \in R$. Observe

$$\phi(ar) = \phi(a)\phi(r)$$
 ring homomorphism
= $0 \cdot \phi(r)$ $a \in \ker \phi$
= 0

So $ar \in I$. Thus ker ϕ is an abelian group with absorption so it is a group.

Example:

Given R and I ideal, we construct

$$\pi: R \to R/I \implies \phi(a) = a + I$$

Therefore, $\ker \pi = I$

This can also be represented:

with $I = \ker \phi$.

Does α exist? Observe:

$$\alpha(a+I) = \phi(a)$$

$$\alpha(a'+I) = \phi(a')$$

$$a' = a+i \quad i \in I = \ker \phi$$

$$\phi(a') = \phi(a+i) = \phi(a) + \phi(i) = \phi(a) + 0\phi(a)$$

So the map α exists.

In fact,

$$\alpha(a+I) = 0 = \phi(a) \implies a \in \ker \phi = I$$

Thus

$$\ker \phi = \{I\} = 0$$

so ϕ is injective.

Theorem: If $\phi: R_1 \to R_2$ is onto (surjective) $\alpha: R_1/I \to R_2$ is an R_2

Example: $R_1 = \mathbb{R}[x]$, $R_2 = \mathbb{C}$, and $\phi: R_1 \to R_2$.

$$\phi\left(\sum_{k=0}^{n} a_k x^k\right) = \sum_{k=0}^{n} a_k i^k = x + iy$$

So

$$\ker \phi = \{0, x^2 + 1, p(x)(x^2 + 1)\} = R_1(x^2 + 1)$$

(0 obviously, $x^2 + 1 = i^2 + 1 = 0$, and any multiple of 0)

Thus,

$$\mathbb{R}[x]/(\mathbb{R}[x](x^2+1)) \cong \mathbb{C}$$

Corollary: In general, $\alpha: R_1/I \to \operatorname{Im}(\phi)$ (where $\operatorname{Im}(\phi) = \phi(R_1)$) is an isomorphism.

Lecture 10: Oct 10

2 special kinds of Rings	2 special kinds of Ideals
Integral domains	Prime ideals
Fields	Maximal Ideals

Unsurprisingly, they are related! We will take them one-by-one and then connect them.

Integral Domain: R is an integral domain if

$$\forall a, b \in R: ab = 0 \implies a = 0 \text{ or } b = 0$$

Not every ring is an integral domain. Consider $\mathbb{Z}/6$: $2 \cdot 3 = 0$

Prime Ideal: $I \subset R$ is a prime ideal if

$$\forall a, b \in R : ab \in I \implies a \in I \text{ or } b \in I$$

Examples:

- $R = \mathbb{Z}, I = 2\mathbb{Z}$ is a prime ideal (product of an even and odd or even and even is even)
- $R = \mathbb{Z}, I = 10\mathbb{Z}$ is NOT a prime ideal $(2 \not\in I, 5 \not\in I, 10 \in I)$
- $R = \mathbb{Z}[i], I = 5R$ is NOT an ideal (despite 5 being prime) because $1 \pm 2i \notin I, (1+2i)(1-2i) = 5 \in I$

Generally, $n\mathbb{Z}$ is a prime ideal precisely when n is prime.

Theorem: R/I is an integral domain if and only if I is a prime ideal.

Proof:

We want to show that both directions are true. First consider the lemma that I is prime if R/I is an integral domain.

Suppose $ab \in I$ (so ab + I = 0 + I). We seek to show that a = 0 or b = 0. Consider the cosets a + I and b + I:

$$(a+I)(b+I) = ab + I = I$$

So

$$(a+I)(b+I) = 0+I$$

Since R/I is an ID, a+I=0+I or b+I=0+I in R/I. So either $a \in I$ or $b \in I$. Hence, I is prime.

To see the other direction, first suppose I is prime. Then $a \in I$ or $b \in I$. So

$$(a+I)(b+I) = 0 \implies ab+I = 0+I$$

Thus, $ab \in I$. Since I is prime, $a \in I$ or $b \in I$. This is equivalent to

$$(a + I = 0 + I) \lor (b + I = 0 + I)$$

So a = 0 or b = 0 and R/I is an integral domain.

Field: R is a field if $R^* = R - \{0\}$ (i.e. all non-zero elements have inverses)

Lemma: R is a field if the only ideals in R are R, $\{0\}$

Proof: Suppose R is a field and $I \neq \{0\}$ is an ideal. We want to show that I = R. Consider, $a \in I$, $a \neq 0$. Because R is a field, $b = a^{-1}$ exists. Further,

$$1 = ba \in I$$
 (by absorption)

for any $r \in R$,

$$r = r1 \in I$$

Therefore, I = R.

Going the other direction, suppose R is a ring whose only ideals in R are R and $\{0\}$. We pick any $a \in R$, $a \neq 0$ and consider I = aR. Since

$$a1 = a \in I \quad I \neq \{0\}$$

But if $I \neq \{0\}$, then I = R so $1 \in I$. Then for any $r \in R$, $r1 = r \in I$ so $r = a^{-1}$ exists for any a. Thus, R is a field.

Maximal Ideal: $I \subset R$ is a maximal ideal if there are no ideals J with $I \subset J \subset R$ (with these being proper subsets)

Examples:

• $6\mathbb{Z} \subset \mathbb{Z}$ is not a maximal ideal because $6\mathbb{Z} \subset 2\mathbb{Z} \subset \mathbb{Z}$

Theorem: R/I is a field if and only if I is maximal.

Proof: There is a bijection between the set of ideals of R that contain I(A) and the set of ideals of R/I(B). (See Lecture 11). Then

R/I field
$$\iff \#B = 2 \iff \#A = 2 \iff$$
 I maximal

Alternative Proof Structure:

Suppose I is maximal. We pick an ideal \overline{J} of R/I. We want to show that $\overline{J} = \{[0]\}$ or $\overline{J} = R/I$. Consider $\pi : R \to R/I$ whose kernel is just I. Let $J = \pi^{-1}(\overline{J})$. J is an ideal because it has the absorber property. Further, $I \subset J$ because $I = \ker(\pi)$. Therefore, $I \subset J \subset R$. Since I is maximal, J = I or J = R. If J = I, then $\overline{J} = \{[0]\}$. Similarly, if J = R, then $\overline{J} = \pi(R)$. So the only ideals in R/I are $\{0\}$ and R.

To see the other direction, assume the only ideals in R/I are $\{0\}$ and R. Try to find a subset $I \subset J \subset R$ with $J \neq I$ and $J \neq R$ but as the ...

Corollary: $\mathbb{Z}/p\mathbb{Z}$ is a field for p prime.

Proof: Show $p\mathbb{Z}$ is a maximal ideal.

$$p\mathbb{Z} \subseteq J \subset \mathbb{Z}$$

Since $J \neq p\mathbb{Z}$ there must be an element $n \in J$ relatively prime to p. Then,

$$1 = ap + bn$$

 $ap \in J$ because $ap \in p\mathbb{Z} \subset J$ and $bn \in J$ by absorber. Thus $1 \in J$ so $J = (1) = \mathbb{Z}$.

Lecture 11: Oct 17

Setup: R is a commutative ring and I is an ideal of R. We have a quotient ring $R/I = \{a+I \mid a \in R\}$ and a map $\pi : R \to R/I$ defined by $\pi(a) = a+I = \{a+b \mid b-I\}$

Meadow: a ring whose only ideals are (0) and R; synonymous with field

Lemma: there is an isomorphism between

$$\{ \text{Ideals of } R \text{ which contain } I \} \iff \{ \text{Ideals of } R/I \}$$

Proof: To show there is an isomorphism between A and B it suffices to show that there are maps $f:A\to B$ and $g:B\to A$ where $f^{-1}=g$.

Take an element $K \in A$. Then $\pi(K)$ is a member of B and we just need to check that $\pi(K)$ is an ideal of R/I. Conversely, if $J \in B$, we need to check $\pi^{-1}(J)$ is an ideal of R.

Finally, we just need to check that the functions π and π^{-1} are in fact inverses:

$$\begin{cases} \pi(\pi^{-1}(J)) = J \\ \pi^{-1}(\pi(K)) = K \end{cases}$$

1. Show $\pi(K)$ is an ideal:

$$\pi(0) = 0 \implies 0 \in \pi(K)$$

$$\pi(a) + \pi(b) = \pi(a+b) \in \pi(K)$$

$$-\pi(a) = \pi(-a) \in \pi(K)$$

$$(\pi(a), \pi(b) \in \pi(K) \forall a, b \in K)$$

$$(\pi \text{ is homomorphism and } -a \in K)$$

$$r\pi(a) = \pi(c)\pi(a) = \pi(ca) \in \pi(K)$$

$$(r \in R/I \implies r = \pi(c) \mid c \in R)$$

- 2. Show $\pi^{-1}(J)$ is an ideal: (Basically same proof)
- 3. Show $\pi(\pi^{-1}(J)) = J$:

By definition of π^{-1} , $\pi(\pi^{-1}(J)) \subset J$. Then we want show that $J \subset \pi(\pi^{-1}(J))$. Pick $a \in J$. Since π is onto, $a = \pi(r)$, $r \in R$. Because $\pi(r) \in J$, $r \in \pi^{-1}(J)$. So $a = \pi(r) \in \pi(\pi^{-1}(J))$

4. Show $\pi^{-1}(\pi(K)) = K$:

First we show $K \subset \pi^{-1}(\pi(K))$. Pick $a \in K$. Then $\pi(a) \in \pi(K) \implies a \in \pi^{-1}(\pi(k))$ because a has the property that it is mapped into $\pi(K)$ by π .

To show $\pi^{-1}(\pi(K)) \subset K$, choose $a \in \pi^{-1}(\pi(K))$. We know $\pi(a) \in \pi(K)$ so $\pi(a) = \pi(b) \mid b \in K$ so $\pi(a) - \pi(b) = \pi(a - b) = 0 \implies a - b \in I \implies a - b \in K$ (because $I \subset K$). So $a = (a - b) + b \in K$.

Fields

Lecture 12: Oct 19

Review

There is a bijective map between the set of ideals of R that contain I and the ideals of R/I given a homomorphism $\pi:R\to R/I$

Theorems:

- R/I is an integral domain if and only if I is a prime ideal
- R/I is a field if and only if I is maximal

Defining Fields

A field is:

- A ring where every non-zero element has an inverse
- A ring whose only ideals are R and $\{0\}$
- The quotient R/I if and only if I is maximal
- A ring with division and commutativity

Example of Fields:

- ullet $\mathbb Q$ the rational numbers
- $\bullet~\mathbb{R}$ the real numbers

- \mathbb{C} complex numbers $(x+yi \mid x,y \in \mathbb{R} \text{ i.e.})$, the set of linear combinations of x and i)
- $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\ (Proof:\ (a + b\sqrt{2})(a b\sqrt{2}) = a 2b^2)$
- $\mathbb{Q}[\sqrt{D}]$ (if D is not a perfect square)
- $\mathbb{Z}/p\mathbb{Z}$ if P is prime (because $p\mathbb{Z}$ is maximal)
- $F = \{a + b \diamond \mid a, b \in \mathbb{Z}/3\} = \mathbb{Z}/3[x]/(x^2 2)\mathbb{Z}/3[x]$ where $\diamond^2 = 2$ in $\mathbb{Z}/3$ (this set has 9 elements because a and b each have three values)

Interlude: Constructing the rational numbers

$$\mathbb{Q} = a \star b, b \neq 0, a_1 \star b_1 \sim a_2 \star b_2 \iff a_1 b_2 = a_2 b_1$$

with multiplication defined on the equivalence class of quotients

$$[a_1 \star b_1][a_2 \star b_2] = [a_1 a_2 \star b_1 b_2]$$

and addition defined

$$[a_1 \star b_1] + [a_2 \star b_2] = [a_1b_2 + a_2b_1 \star b_1b_2]$$

Note that \star is an operation that functions exactly like division but is meant to emphasize that it carries no other intrinsic properties except these operations on equivalence classes.

Vector spaces

Definition: a set V is a *vector space* over a field \mathbb{F} if

- 1. V is an abelian group (under addition)
- $2. \ (a+b)\vec{v} = a\vec{v} + b\vec{v} \quad \forall a,b \in \mathbb{F}, \vec{v} \in V$
- 3. $(ab)\vec{v} = a(b\vec{v}) \quad \forall a, b \in \mathbb{F}, \vec{v} \in V$
- 4. $a(\vec{w} + \vec{w}) = a\vec{v} + a\vec{w} \quad \forall a \in \mathbb{F}, \vec{v}, \vec{w} \in V$

Examples:

- $\bullet \mathbb{R}^n$
- \bullet \mathbb{C}^n

- $\bullet \mathbb{Q}^n$
- (Extension Field) Given fields $\mathbb{F} \subset K$, K (the extension field) is a vector space over \mathbb{F} (the subfield)
- \mathbb{C} is a vector space over \mathbb{R}
- \mathbb{R} is a vector space over \mathbb{Q}
- $\mathbb{Q}[\sqrt{2}]$ is a vector space over \mathbb{Q}
- $\mathbb{Z}/\mathbb{Z}[\diamond]$ is a vector space over $\mathbb{Z}/3\mathbb{Z}$

Linear combinations of $v_1, v_2, \ldots, v_n \in V$:

$$sum_{i=1}^{n}a_{i}v_{i} \quad a_{i} \in \mathbb{F}$$

Spanning set: $\{v_i\}$ is a spanning set if every $v \in V$ is a linear combo of $\{v_i\}$

Independent set: $\{v_i\}$ is an independent set if

$$\sum_{i=1}^{n} a_i v_i = 0 \implies a_1, \dots, a_n = 0$$

Basis: $\{v_i\}$ is a basis if it is an independent spanning set

Theorem: If V has a finite basis, then all bases have the same number of elements (which we call $\dim(V)$)

Axiom of Choice: postulate that every vector space has a basis

Lecture 13: Oct 24

Notation: F[x] is ring set of polynomials with coefficients in F

Long division of polynomials

Theorem: (Division Algorithm)

Suppose you have two polynomials

$$p(x) = a_m x^m + \dots + a_1, \quad a_i \in F, a_m \neq 0$$
$$q(x) = b_n x^n + \dots + b_1, \quad b_i \in F, b_n \neq 0$$

(We say deg(p) = m and deg(q) = n)

Then q(x) = a(x)p(x) + r(x) where $\deg(r) < \deg(p)$

Proof: Induction on n-m

Base case: n - m < 0 so q = 0p + r

Generally,

$$q_* = q - \frac{b_n}{a_m} x^{n-m} p(x)$$
 $\deg(q_*) = n_* < n$

By induction,

$$q_* = a_*p + r$$
 $\deg(r) < \deg(p)$

SO

$$q - \frac{b_n}{a_m} x^{n-m} p(x) = a_* p + r \implies q = (\underbrace{a_* + \frac{b_n}{a_m} x^{n-m}}) p + r \quad \blacksquare$$

Theorems of Polynomial Rings

Theorem: All ideals in F[x] are principal

Proof: Let I be an ideal. Consider $p(x) \in I$, the smallest degree non-zero polynomial in I. Let $q \neq 0 \in I$. By the division algorithm,

$$q = ap + r \quad \deg r < \deg p$$

Since r = q - ap, and I is ideal, $r \in I$. Therefore, $\deg r = 0$ (or else it would be smaller than p). Thus, q = ap which is a contradiction.

Definition: $p(x) \in F[x]$ is irreducible if $p(x) = a(x)b(x) \implies \deg(a) = 0 \lor \deg(b) = 0$

Theorem: if $p(x) \in F[x]$ is irreducible, then I = p(x)F[x] is maximal

Proof: Let J=b(x)F[x] be an ideal such that $I\subseteq J\subseteq F[x]$. We know $p\in J$ because $p\in I$. So

$$p(x) = a(x)b(x)$$

Case 1: deg(a) = 0 so p = b up to constants and I = J

Case 2: deg(b) = 0 so $1 \in J \implies J = F[x]$ (because inverse of $b \in F[x]$)

Theorem: F[x]/p(x)F[x] is a field.

Proof: Given $c \in F$, consider the coset [c] = c + p(x)q(x). We define a ring homomorphism $\phi: F \to F/p(x)F[x], c \mapsto [c]$.

Suppose $c \in \ker \phi$. Then

$$[c] = [0] \implies c \in p(x)F[x] \implies c = a(x)p(x) \implies a(x) = c \implies c = 0$$

So ker $\phi = 0$. Then by the isomorphism theorem, F is isomorphic to $\phi(F)$ which means that $\phi(F)$ is a field.

Theorem: F[x]/p(x)F[x] contains a root of p(x)

Proof: Consider [x] = x + p(x)F[x]. Since $\phi(F)$ contains a copy of F (mapped to its cosets), we can write

$$p([x]) = [p(x)] = [0]$$

by using the formula for coset composition.

Lecture 14: Oct 26

Review

Polynomial division: we can write any polynomial q = ap + r where deg $r < \deg p$ Theorems:

- if F is a field, all ideals in F[x] are principal
- If $p \in F[x]$ is irreducible, then I = p(x)F[x] is maximal
- F[x]/p(x)F[x] is a field (look at the map $\phi: F \to F[x]/p(x)F[x], \quad a \mapsto [a] = a + p(x)F[x]$)
- F[x]/p(x)F[x] contains a root of p(x)

Proof:

$$p(x) = a_0 + \dots + a_n x^n \in F[x]$$

$$p(x) = [a_0] + \dots + [a_n] x^2 \in K[x]$$

$$p([x]) = [a_0] + \dots + [a_n][x]^2 = [a_0 + a_1 x + \dots a_n x^b] = [p(x)] = [0] \in K$$

An Example: $F = \mathbb{R}$, $p(x) = x^2 + 1$, $K = R[x]/(x^2 + 1)R[x]$ We know $x^2 + 1$ is irreducible because $\sqrt{-1} \notin \mathbb{R}$. We then consider the map $r \to [r]$ so

$$[x]^2 + [1] = 0 (9)$$

$$[x]^2 = [-1] \tag{10}$$

We define i := [x] so $i^2 = -1$. Further,

$$[x] + i[y] \in K$$

for amy element in k because

$$[x^n] = [x^2][x^{n-2}] = [-x^{n-2}]$$

so we can factor down any polynomial to lowest degree.

Bases

Basis: a linearly independent spanning set

Example: $\{1, i\}$ is a basis of \mathbb{C} over \mathbb{R}

Example: Is $S = \{[1], [x], \dots, [x^{n-1}]\}$ a basis? *Proof:* It is a spanning set

because

$$[x^n] = -\frac{[a_{n-1}][x^{n-1}]}{[a_n]} \cdot -\frac{[a_0]}{[a_n]}$$

Suppose it is not linearly independent. then $\exists [b_0], \ldots, [b_{n-1}]$ such that

$$[b_0][x] + \dots + [b_{n-1}][x^{n-1}] = [0]$$

Using the formula,

$$[b_0 + \dots + b_{n-1}x^{n-1}] = [0] = [p(x)]$$

Since the polynomial is in the ideal, it is a multiple of p(x). But p has degree n and $deg([b_0 + \cdots + b_{n-1}x^{n-1}]) = n-1$. But since n-1 < n, it cannot be a multiple of p so contradiction.

Dimensionality

Let $\subset K$. Then we denote

 $[K:F] = \dim_F K = \text{the dimension of K as a vector space over F}$

Example: $[\mathbb{C} : \mathbb{R}] = 2$ (because the basis is $\{1, i\}$)

Example: $[F[x]/p(x)F[x] : F] = \deg(p)$

A Homework Problem: $F = \mathbb{Q}, p(x) = x^3 - 2$

$$[F[x]/F[x](x^3-2):\mathbb{Q}]=3$$

(Here $[x] = \sqrt[3]{2}$) and the basis is

$$\{[1], [x], [x^2]\} = \{1, \sqrt[3]{2}, \sqrt[3]{4}\}$$

Theorem: $F \subset K \subset L$,

$$[L:F] = [L:K][K:F]$$

Proof: Let m = [K : F], n = [L : K]. Let v_1, \ldots, v_m be an F-basis for K. Let w_1, \ldots, w_n be a K-basis for L. We consider the set $\{v_i w_j\}$ and seek to prove that it is a spanning set and linearly independent.

Lemma: $\{v_i w_i\}$ is a spanning set.

Proof: Pick an element $l \in L$. It can be written in the form

$$l = \sum_{i} \sum_{j} k_{ij} v_i w_j$$

Lemma: $\{v_i w_j\}$ is independent

Proof: Suppose $\sum_{i,j} f_{ij} v_i w_j = 0$.

$$\left(\sum_{i} f_{i1}v_{i}\right)w_{1} + \dots + \left(\sum_{i} f_{in}v_{i}\right)w_{n} = 0$$

But the v_i are a basis for K so

$$\sum_{i,j} f_{ij} v_i = 0 \implies f_{ij} = 0 \quad \blacksquare$$