CS5110 - Assignment 2

Subrahmanyam Kalyanasundaram

September 2024

- 1. Suppose $A \leq_L B$ using the reduction function f. Given w, an instance of A, what is an upper bound on |f(w)| in terms of |w|?
- 2. Show that A_{NFA} is NL-complete.

 $A_{NFA} = \{\langle N, w \rangle | N \text{ is an NFA that accepts the string } w \}$

- 3. Show that 2-SAT is NL-complete.
- 4. A ladder is a sequence of strings s_1, s_2, \ldots, s_k , wherein every string differs from the preceding one in exactly one character. For example, the following is a ladder of English words, starting with the word "head" and ending with the word "free".

head, hear, near, fear, bear, beer, deer, deed, feed, feet, free, free

Let $LADDER_{DFA} = \{\langle M, s, t \rangle | M \text{ is a DFA and } L(M) \text{ contains a ladder of strings, starting with } s \text{ and ending with } t \}$. Show that $LADDER_{DFA}$ is in PSPACE.

- 5. If $A \in P$, then show that $P^A = P$.
- 6. A directed graph is *strongly connected* if for every pair of vertices (u, v) there is a directed path from u to v in G. Show that the problem of deciding if a graph is strongly connected is NL-complete.
- 7. For a language $L \subseteq \{0,1\}^*$, and a function f(n) (assuming f(n) can be computed in time O(f(n)), let $L_f \subseteq \{0,1,\#\}^*$ denote the following language:

$$L_f := \{ x \#^{f(|x|)} | x \in L \}$$

- Suppose that that $L \in \text{DTIME}(f(n))$. Then show that $L_f \in \text{DTIME}(O(n))$.
- Show that if f(n) is a polynomial function, then $L \in P$ if and only if $L_f \in P$.

- Show that P ≠ DSPACE(O(n)).
 Hint: Assume an equality and arrive at a contradiction via suitable padding and the Space Hierarchy Theorem.
- $\bullet\,$ Define the class NEXP as

$$\text{NEXP} := \bigcup_k \text{NTIME}\left(2^{n^k}\right)$$

Prove that if P = NP then EXP = NEXP.

- 8. Show that if $\Sigma_k = \Pi_k$ for some k, then polynomial hierarchy collapses to Σ_k .
- 9. What is the count (number) of functions $f:\{0,1\}^n \to \{0,1\}$ that are both monotone and symmetric?