- (a) Claim: The optimal vector **w** for the hard SVM problem will be a linear combination $a_1\mathbf{x}_1 + ... + a_N\mathbf{x}_N$ of the training data vectors $\mathbf{x}_1...\mathbf{x}_N$. (labels $y_1...y_N$).
- (b) Proof: Suppose otherwise; then $\mathbf{w} = \mathbf{x} + \mathbf{o}$, where \mathbf{x} is a linear combination of the training vectors and \mathbf{o} is orthogonal to all the training vectors $\mathbf{x}_1...\mathbf{x}_N$, with $\mathbf{o} \neq \mathbf{0}$ (otherwise \mathbf{w} would be a linear combination of the training vectors). This will lead to a contradiction.

The hard SVM solution \mathbf{w}, b must satisfy

$$\forall i, y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \tag{1}$$

Therefore, substituting $\mathbf{w} = \mathbf{x} + \mathbf{o}$ and using linearity,

$$\forall i, y_i(\mathbf{x}^T\mathbf{x}_i + \mathbf{o}^T\mathbf{x}_i + b) > 1$$

However, \mathbf{o} is orthogonal to all training vectors \mathbf{x}_i , so,

$$\forall i, y_i(\mathbf{x}^T\mathbf{x}_i + 0 + b) \ge 1$$

So, $\mathbf{w} = \mathbf{x}, b = b$ also satisfies (1).

The other requirement for the hard SVM solution is that, subject to (1), \mathbf{w} is the optimal solution to

$$min \ \frac{1}{2} \mathbf{w}^T \mathbf{w} \tag{2}$$

This is the contradiction; $\mathbf{w} = \mathbf{x} + \mathbf{o}$ does not satisfy (2) as $\mathbf{w} = \mathbf{x}$ is a better solution to (2) that still satisfies (1). I claim that

$$\frac{1}{2}\mathbf{x}^T\mathbf{x} < \frac{1}{2}(\mathbf{x} + \mathbf{o})^T(\mathbf{x} + \mathbf{o})$$

because 2

$$(\mathbf{x} + \mathbf{o})^T (\mathbf{x} + \mathbf{o}) = \mathbf{x}^T \mathbf{x} + 2\mathbf{x}^T \mathbf{o} + \mathbf{o}^T \mathbf{o}$$

 $2\mathbf{x}^T \mathbf{o} = 0$ for orthogonal \mathbf{o}
 $\mathbf{o}^T \mathbf{o} > 0$ for $\mathbf{o} \neq \mathbf{0}$

¹We can always find orthogonal \mathbf{o} . Find a basis A of the subspace spanned by the training vectors $\mathbf{x}_1...\mathbf{x}_N$ and a basis B of the subspace orthogonal to the training vectors, then express \mathbf{w} as a linear combination of the bases A, B. The linear combination of A will be \mathbf{x} ; the linear combination of B will be \mathbf{o} .

 $^{{}^{2}\}mathbf{x}^{T}\mathbf{o} = a_{1}\mathbf{x}_{1}^{T}\mathbf{o} + ... + a_{N}\mathbf{x}_{N}^{T}\mathbf{o} = 0 + ... + 0 = 0$

Therefore **w** must be a linear combination of the training vectors $\mathbf{x}_1...\mathbf{x}_N$. (Recall that **x** was defined as a linear combination of the training vectors).