CSET2200 Lecture 8
Review/Questions

Quick review of packet moving
CIDR
CLassless Inter-domain Routing

The problem ► Classful networks wasteful ► Aggregation was poor ► Route bloat ► Limited big networks Example - UT

How to solve it

- ► Allow segmenting network on any bit
- ► Allow grouping of networks (aggregation)
- ► Allocation of smaller networks

VLSM

- ▶ Variable length subnet mask
- ► Allows networks to be sized differently
- ► Core concept of CIDR

Available Networks
Aggregation
 Adjacent networks can be combined where distinction not needed
Allows more efficient routingLarge blocks allocated to providers which split them

Example - UT Again
Matching Networks
Done with Bitwise ANDNetwork to match AND subnet - network to match
Remember 1 is our care bit

Examples **▶** 64.254.140.4/27 **6**4.254.140.165/28 **7**2.240.0.0/15 **1**31.183.222.23/23 Questions

Next session - more VLSM practice