A Picture is Worth a Thousand Words: Measuring Investor Sentiment by Combining Machine Learning and Photos from News*

Khaled Obaid Kuntara Pukthuanthong†

汤潮 2021-03-18

content

- Introduction
- Data
- results
- Conclusion

Background

- Numerous studies document how investor sentiment helps us understand and predict the market risk premium over time and stock returns cross-sectionally.
- Machine learning has seen wide use among academics in finance, recent developments in machine learning introduce techniques that make the task of analyzing large amounts of photos possible.

Research contents

- How PhotoPes is related to the value- and equal-weighted CRSP index returns.
- Whether PhotoPes and investor pessimism embedded in text (TextPes) are significantly correlated?
- Which type of information is more effectively or only transmitted by photos in the context of news and financial markets.
- we further validate PhotoPes as a proxy for investor sentiment by showing it has larger effect on stocks whose valuations are difficult to arbitrage.
- we provide additional insights to help us better understand the channel through which PhotoPes relates to market returns.
- we perform a battery of robustness tests.

Contributions

- we demonstrate the importance of visual content in helping explain and predict the market risk premium and investors' behavior.
- we demonstrate how to overcome key hurdles of studying the importance of visual content in financial markets by employing machine learning techniques for photo classification
- we show that pessimism embedded in news photos complements and, in some cases, subsumes pessimism embedded in news text.

Related researches

- researchers have used news (Tetlock, 2007), Google Search data (Da, Engelberg, and Gao, 2015), Twitter data (Chen, De, Hu, and Hwang, 2014), company financial reports (Loughran and McDonald, 2011; Jiang Lee, Martin, and Zhou, 2019), weather (Hirshleifer and Shumway, 2003), and sporting events (Edmans et al., 2007) to proxy for investor sentiment.
- Several studies document how a mere photo is able to predict important outcomes such as political elections, personal loan decisions, firm market value, and CEO compensation (Todorov, Mandisodza, Goren, and Hall, 2005; Duarte, Siegel, and Young, 2012; Halford and Hsu, 2014; Graham, Harvey, and Puri, 2016).

FRAMEWORK

The impact of PhotoPes on market how we get and filter the data and construct the variables returns What affect the impact of PhotoPes on Applications of PhotoPes market return Mechanisms of PhotoPes Robustness Conclusion

2.Data

Data source: photos from the Getty Images' Editorial News Section between January 1926 and June 2018.

Training set source: DeepSent dataset

Clean labels: photos where all five MTurk survey participants agree on the sentiment label.

Noisy labels: at least four out of five MTurk survey participants agree on the label.

2.Data

- Photo classification: Convolutional Neural Networks (CNNs), a popular machine learning technique for classifying photos, to construct an investor sentiment index from a large sample of photos in the press.
- Model: learning rate of 0.01 and 5,000 learning steps, train batch size 100. reserve 10% of the training photos for the validation sample, and 10% for the test sample.

Figure 1:Model Accuracy with clean labels

Figure 1:Model Accuracy with noisy labels

We achieve 81.7% test accuracy for the noisy label model, and 87.1% accuracy for the clean label model.

Select 100 photos using stratified sampling from our Getty Images sample and classify each photo in MTurk by five individuals. pass these photos through the model

		Ac	tual
		Positive	Negative
rediction	Positive	60	6
Predio	Negative	17	17

This table shows that our model trained with the DeepSent training set performs well at classifying photo from Getty Images.

2.Data

Photo filter

- Each day, we sort photos by popularity, and download the 20 most popular photos, and collect information on the popularity ranking of the photo, date the photo is taken, photo identification number, and description of the photo and associated event.
- A given day has at least 15 total photos available,
- The photo description contains at least one negative or positive word according to the Loughran and McDonald (2011) dictionaries

	# of photos	after each scre	ening process
	Top 10	Top 15	Top 20
Original number of photos	310,433	453,869	586,832
Photos on trading day	214,276	314,242	406,837
At least 15 photos in a day	194,570	291,775	384,370
At least one word from LM dictionary	74,044	169,886	220,136

2.Data

$$PhotoPes_{t} = \frac{\sum_{i(Neg_{it} \times \frac{1}{Popularity Rank_{it}})}}{\sum_{i \frac{1}{Popularity Rank_{it}}}},$$

$$TextPes_{t} = \frac{\sum_{i} (\frac{N_{it} - P_{it}}{n_{it}} \times \frac{1}{Popularity Rank_{it}})}{\sum_{i \in Popularity Rank_{it}}},$$

Variable	N	Mean	Median	P25	P75	Std dev
NYTPes	17,000	0.009	0.009	0.003	0.015	0.009
PhotoPes	19,243	0.115	0.057	0.000	0.171	0.146
PhotoPes'	19,243	0.309	0.250	0.000	0.500	0.300
TextPes	19,243	0.011	0.009	0.001	0.020	0.017
TextPes'	19,243	0.028	0.031	0.008	0.050	0.034

	PhotoPes	TextPes	NYTPes
TextPes	0.199***		
1 extres	(<0.001)		
NYTPes	0.033	0.155***	
INI IPES	(0.305)	(<0.001)	
MCSI	-0.088*	0.114**	0.222***
MCSI	(0.053)	(0.012)	(<0.001)

3. Results: The impact of *PhotoPes* on market returns

N	Mean	P50	P25	P75	Std Dev	
23230	0.036	0.071	-0.394	0.502	1.063	
	Panel B: Tin	ne-Series Regression	n for value-weighte	ed CRSP index returns	3	
	γ	t-stat		β	t-stat	
1-1	0.043**	2.558	Tue	0.001***	5.830	
1-2	-0.012	-0.717	Wed	0.002***	8.037	
1-3	0.013	0.885	Thu	0.001***	5.832	
14	-0.010	-0.691	Fri	0.002***	6.943	
1-5	-0.004	-0.276	Sat	0.009***	36.112	
	Panel C:	Sample Statistics fo	r equal-weighted (CRSP index returns		
N	Mean	P50	P25	P75	Std Dev	
23230	0.071	0.123	-0.298	0.492	1.044	
	Panel D: T	ime-Series Regressi	on equal-weighted	CRSP index returns		
	γ	t-stat		β	t-stat	
1-1	0.151***	6.889	Tue	0.002***	6.979	
1-2	0.030	1.603	Wed	0.003***	11.744	
1-3	0.041**	2.497	Thu	0.002***	10.492	
			Fri 0.003***		13.402	
₹	0.016	1.041	Fri	0.003***	13.402	

$$R_t = \gamma L_s(R_t) + \beta X_t + \varepsilon_t,$$

Both the VWRETD and EWRETD show significant autocorrelation in the returns

3. Results: The impact of *PhotoPes* on market returns

$$R_t = \beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$$

	Top 10					Top 15				Top 20			
	(1)	(1)			(3)	(3)		(4))	(6)		
	VWRETD _t		$EWRETD_t$		VWRETD _t		EWRI	EWRETD _t		$\mathrm{ETD}_{\mathrm{t}}$	$EWRETD_t$		
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
$PhotoPes_t$	-0.019**	-2.163	-0.019**	-2.248	-0.019**	-2.249	-0.020**	-2.333	-0.016*	-1.890	-0.017**	-2.023	
PhotoPes _{t-1}	0.010	1.185	0.017*	1.956	0.014*	1.693	0.017**	2.110	0.016**	1.971	0.021**	2.468	
PhotoPes _{t-2}	-0.002	-0.214	-0.002	-0.259	-0.005	-0.563	-0.002	-0.286	-0.006	-0.701	-0.004	-0.444	
PhotoPes _{t-3}	0.017**	2.067	0.015*	1.826	0.008	1.057	0.007	0.874	0.006	0.790	0.004	0.559	
PhotoPes _{t-4}	-0.012	-1.393	-0.013	-1.514	-0.008	-0.934	-0.008	-1.007	-0.008	-0.910	-0.008	-0.986	
PhotoPes _{t-5}	-0.010	-1.188	-0.002	-0.219	-0.011	-1.339	-0.003	-0.359	-0.011	-1.387	-0.004	-0.448	
$\beta_1+\beta_2$	-0.0	16	-0.0	04	-0.0	21	-0.0	09	-0.0	19	-0.0	008	
$\chi^2(1)[\beta_1+\beta_2=0]$	0.81	12	0.08	37	1.49	99	0.32	23	1.233		0.192		
<i>p</i> -value	0.36	58	0.76	0.769		21	0.57	70	0.267		0.661		
Adj R-sq	0.01	15	0.05	0.050		12	0.04	48	0.0	11	0.047		
N	16,4	30	16,4	30	18,5	13	18,513		19,213		19,213		

We cannot reject the hypothesis that the reversal in lags 1 through 5 exactly offsets the initial decline in returns, our main results are consistent with a behavioral story and do not support the new information or the stale information story.

3. Results: PhotoPes and sentiment embedded in text

 $R_t = \beta_1 PhotoPes_t + \beta_2 Text_t + \beta_3 L_s (PhotoPes_t) + \beta_4 L_s (Text_t) + \beta_5 L_s (R_t) + \beta_5 L_s (R_t^2) + \beta_6 X_t + \varepsilon_t,$

	(1)	(2))	(3)		(4)		(5)		(6)	
	VWR	ETD_{t}	EWRI	$\mathrm{ETD}_{\mathrm{t}}$	VWRE	TD_{t}	EWRE	TD_{t}	VWRE	TD_{t}	EWRE	TD_{t}
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat
$PhotoPes_{t}$	-0.017*	-1.876	-0.018**	-2.021	-0.017*	-1.869	-0.018*	-1.858	-0.017*	-1.874	-0.018*	-1.866
$TextPes_t$	-0.012	-1.496	-0.009	-1.233								
$NYTPes_t$					-0.045***	-4.350	-0.053***	-4.986	-0.046***	-4.466	-0.054***	-5.080
Interaction									-0.025**	-2.393	-0.027***	-2.660
$PhotoPes_{t-1}$	0.011	1.253	0.017*	1.922	0.018*	1.942	0.026***	2.679	0.018*	1.913	0.025***	2.649
$PhotoPes_{t-2}$	0.000	0.026	0.000	-0.017	-0.006	-0.605	-0.006	-0.641	-0.006	-0.619	-0.006	-0.657
$PhotoPes_{t-3}$	0.018**	2.115	0.016*	1.918	0.025***	2.792	0.022**	2.479	0.025***	2.819	0.022**	2.511
$PhotoPes_{t-4}$	-0.010	-1.128	-0.011	-1.297	-0.014	-1.556	-0.014	-1.473	-0.014	-1.551	-0.014	-1.467
$PhotoPes_{t-5}$	-0.010	-1.186	-0.002	-0.210	-0.008	-0.887	0.000	0.021	-0.008	-0.917	0.000	-0.012
$TextPes_{t-1}$	-0.004	-0.445	0.000	0.057								
$TextPes_{t-2}$	-0.012	-1.405	-0.011	-1.485								
$TextPes_{t-3}$	-0.001	-0.188	-0.004	-0.538								
$TextPes_{t-4}$	-0.014*	-1.717	-0.011	-1.436								
TextPes _{t-5}	0.000	-0.023	0.000	-0.043								
NYTPes _{t-1}					0.011	1.065	0.018*	1.836	0.011	1.086	0.018*	1.845
$NYTPes_{t-2}$					0.009	0.943	0.005	0.454	0.009	0.892	0.004	0.399
$NYTPes_{t-3}$					0.008	0.844	0.008	0.871	0.009	0.857	0.008	0.887
$NYTPes_{t-4}$					-0.010	-1.025	-0.003	-0.381	-0.010	-1.035	-0.004	-0.390
NYTPes _{t-5}					-0.005	-0.512	-0.006	-0.665	-0.005	-0.525	-0.006	-0.679
$\chi^2(1)[\beta_1 + \beta_2 = 0]$	0.1		0.42		3.930		6.452		4.409		7.11	
p-value	0.7		0.51		0.04		0.01		0.03		0.00	
$\chi^{2}(1)[\beta_{3}+\beta_{4}=0]$	2.6 0.1		3.66 0.05		0.00 0.98		0.07 0.78		0.00 0.98		0.07 0.78	
p-value Adj R-sq	0.0		0.05		0.02		0.78		0.98		0.78	
Nuj R-sq N	16,4		16,4		13,84		13,84		13,84		13,84	
	10,		10,1		13,0	•	10,0		13,0		13,0	

	(7))	(8))	(9))	(10)	
	VWRI	ETDt	EWRI	ETD _t	VWRE	ETD _t	EWRE	TD_{t}	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _t	-0.019**	-2.169	-0.019**	-2.251	-0.019**	-2.153	-0.019**	-2.271	
$TextPesH_t$	-0.011	-1.271	-0.015	-1.605					
$TextPesML_t$					-0.006	-0.775	0.001	0.069	
$PhotoPes_{t-1}$	0.010	1.175	0.017*	1.940	0.010	1.149	0.017*	1.931	
PhotoPes _{t-2}	-0.002	-0.233	-0.002	-0.275	-0.002	-0.211	-0.002	-0.286	
PhotoPes _{t-3}	0.017**	2.076	0.015*	1.849	0.017**	2.060	0.015*	1.813	
$PhotoPes_{t-4}$	-0.012	-1.401	-0.013	-1.521	-0.012	-1.408	-0.014	-1.538	
PhotoPes _{t-5}	-0.010	-1.190	-0.002	-0.227	-0.010	-1.186	-0.002	-0.234	
$TextPesH_{t-1}$	0.001	0.090	0.006	0.651					
$TextPesH_{t-2}$	-0.006	-0.789	0.001	0.123					
$TextPesH_{t-3}$	0.000	-0.021	-0.001	-0.116					
$TextPesH_{t-4}$	-0.008	-0.997	-0.007	-0.820					
$TextPesH_{t-5}$	0.004	0.518	0.000	0.004					
$TextPesML_{t-1}$					0.002	0.306	0.000	0.002	
$TextPesML_{4-2}$					-0.003	-0.423	0.005	0.730	
$TextPesML_{t-3}$					0.010	1.221	0.009	1.147	
$TextPesML_{1-4}$					0.008	1.019	0.006	0.880	
$TextPesML_{4-5}$					-0.005	-0.575	-0.004	-0.528	
$\chi^2(1)[\beta_1 + \beta_2 = 0]$	6.452	2**	0.10	51	1.12	28	2.97	9*	
p-value	0.01	11	0.68	38	0.28	38	0.08	34	
$\chi^2(1)[\beta_3+\beta_4=0]$	0.07	72	0.30	55	0.17	77	0.01	1	
p-value	0.	788	0.	546	0.0	574	0.9	016	
Adj R-sq	0.	014	0.	050	0.0)14	0.050		
N	16	,430	16	,430	16,	430	16,	430	

3. Results: Which information is more effectively transmitted by photos

$$\begin{split} R_t &= (T_t)[\beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 NYTPes_t + \beta_4 L_s(NYTPes_t) + \\ \beta_5 Interaction_t &+ \beta_6 L_s(R_t) + \beta_7 L_s(R_t^2)] + (1 - T_t)[\gamma_1 PhotoPes_t + \gamma_2 L_s(PhotoPes_t) + \\ \gamma_3 NYTPes_t &+ \gamma_4 L_s(NYTPes_t) + \gamma_5 Interaction_t + \gamma_6 L_s(R_t) + \gamma_7 L_s(R_t^2)] + \beta_8 X_t + \varepsilon_t, \end{split}$$

		VW	/RETD _t			EW	/RETD _t		
			(1)		(2)				
	T _t = Traumatic period					T _t = Trat	ımatic period		
Variables	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	
$PhotoPes_t$	-0.255**	-2.398	-0.017*	-1.823	-0.153**	-2.123	-0.017*	-1.833	
$NYTPes_t$	-0.083	-0.716	-0.045***	-4.370	-0.076	-0.897	-0.054***	-5.008	
Interaction	0.109	0.819	-0.026**	-2.404	0.013	0.197	-0.028***	-2.663	
$PhotoPes_{t-1}$	-0.244**	-2.135	0.018**	1.988	-0.101	-1.171	0.026***	2.698	
PhotoPes _{t-2}	0.085	0.542	-0.006	-0.637	-0.057	-0.432	-0.006	-0.639	
PhotoPes ₁₋₃	-0.107	-0.591	0.025***	2.771	0.005	0.057	0.022**	2.455	
$PhotoPes_{t-4}$	-0.146	-1.185	-0.014	-1.552	-0.060	-0.619	-0.014	-1.468	
PhotoPes _{t-5}	-0.079	-0.640	-0.009	-0.939	0.036	0.359	0.000	-0.036	
NYTPes _{t-1}	-0.006	-0.042	0.011	1.065	0.056	0.615	0.018*	1.830	
NYTPes _{t-2}	0.186	1.063	0.008	0.841	0.050	0.350	0.004	0.361	
NYTPes _{t-3}	0.061	0.586	0.009	0.852	0.034	0.373	0.008	0.901	
NYTPes _{t-4}	-0.038	-0.316	-0.010	-1.054	-0.017	-0.192	-0.004	-0.405	
NYTPes _{t-5}	-0.143	-1.026	-0.004	-0.488	-0.097	-1.018	-0.006	-0.657	

3. Results: Which information is more effectively transmitted by photos

$\beta_1+\beta_2+\beta_3+\beta_4$ or $\gamma_1+\gamma_2+\gamma_3+\gamma_4$	-0.660	-0.060	-0.367	-0.091
$\chi^{2}(1)[\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4} \text{ or } \gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}=0]$	5.284	1.484	1.527	0.720
p-value	0.022	0.223	0.217	0.396
$\beta_1+\beta_2+\beta_3+\beta_4+\gamma_1+\gamma_2+\gamma_3+\gamma_4$	-0.7	720	-0.4	58
$\chi^{2}(1)[\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}=0]$	5.7	27	1.71	0
p-value	0.0	17	0.19	91
Adj R-sq	0.0	26	0.07	71
N	13,8	347	13,84	47

3. Results: photos in the top 5% in the popularity rank distribution in a given

month $R_i = \beta_1 PhotoPes_t + \beta_2 NYTPes_t + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$

			,	Top 5% Most Po	pular Photos Datas	et			
	VW	RETD _t	VWRE	$TD_{\{\iota+1,\iota+18\}}$	VWRE	$\Gamma D_{\{i+19,i+20\}}$	VWRE	$TD_{\{i,i+20\}}$	
		(1)		(2)		(3)		(4)	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPest	-0.027***	-2.625	-0.055	-1.065	0.027*	1.741	-0.029	-0.534	
Adj R-sq	0	.006	0	0.013	(0.002	0.	013	
N	10),577	1	0,577	1	0,558	10	,577	
	EW	RETD _t	EWRE	$TD_{\{t+1,t+18\}}$	EWRE	$\Gamma D_{\{t+19,t+20\}}$	EWRE	$\Gamma D_{\{t,t+20\}}$	
		(5)		(6)		(7)	(8)		
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _t	-0.020**	-2.086	0.038	0.582	0.041**	2.427	0.079	1.149	
Adj R-sq	0	.050	0	0.040	(0.007	0.	035	
N	10),577		0,577		0,558	10	,577	
	VW	RETD _t	VWRE	$TD_{\{t+1,t+18\}}$	VWRE	$\Gamma D_{\{t+19,t+20\}}$	VWRE	$TD_{\{t,t+20\}}$	
		(9)		(10)		(11)	(12)		
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _t	-0.034***	-3.218	-0.073	-1.324	0.031*	1.911	-0.043	-0.745	
$NYTPes_t$	-0.023*	-1.863	0.056	1.001	0.028	1.466	0.084	1.434	
Interaction	-0.002	-0.214	0.000	-0.007	0.000	-0.017	-0.001	-0.013	
Adj R-sq	0	.012		0.007		0.002		0.006	
N	7	,472		7,472		7,472		7,472	
	EW	RETD _t	EWRE	$\text{ETD}_{\{t+1,t+18\}}$	EWRI	$ETD_{\{t+19,t+20\}}$	EWR	$ETD_{\{t,t+20\}}$	
		(13)		(14)		(15)		(16)	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _t	-0.025***	-2.584	0.020	0.283	0.046**	2.564	0.065	0.891	
$NYTPes_t$	-0.018	-1.618	0.141**	2.023	0.047***	2.651	0.187**	2.541	
Interaction	-0.002	-0.178	0.054	0.755	0.008	0.331	0.062	0.816	
Adj R-sq	0.	.100		0.061		0.020		0.053	
N	7.	,472		7,472		7,472		7,472	

where i = t, (t+1,t+18), (t+19,t+20), and (t,t+20).

3. Results: Applications

Three real-world trading strategies: we use residuals from regressing PhotoPes or TextPes on lagged returns and day-of-the-week dummies, denoted PhotoPes⊥ or TextPes⊥.

- The first strategy is based on news pessimism embedded in photos— following days in which PhotoPes⊥ is above its 251-day rolling historical mean, we invest in the DOW at market close of day t and sell on market close one day later (t+1).
- The second strategy is based on pessimism embedded in text— following days in which TextPes⊥ is above its 251-day rolling historical mean, we invest in the DOW at market close of day t and sell on market close one day later (t+1).
- The second strategy is based on pessimism embedded in text— following days in which TextPes⊥ is above its 251-day rolling historical mean, we invest in the DOW at market close of day t and sell on market close one day later (t+1), at market close of day t and sell on market close one day later (t+1).

If the above conditions are not met, we buy T-bills and sell one day later, We incorporate into our strategy returns calculations a 1 basis point per day for trading costs

3. Results: Applications

3.Results: how limits to arbitrage affect the relation between *PhotoPes* and market returns

$$R_t = \beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$$

	$Sigma_t$											
	(1)		(2)	(2)		(3)		(4))	(6)	
	High	n	4		3		2	2	Lo	W	H-L	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat
PhotoPes _t	-0.033***	-2.902	-0.024**	-2.241	-0.019*	-1.937	-0.014*	-1.776	-0.009*	-1.682	-0.024***	-3.103
$PhotoPes_{t-1}$	0.026**	2.293	0.019*	1.794	0.016*	1.665	0.012	1.617	0.009*	1.906	0.018**	2.190
PhotoPes _{t-2}	-0.005	-0.398	-0.002	-0.222	-0.001	-0.128	-0.001	-0.157	-0.001	-0.194	-0.003	-0.325
PhotoPes _{t-3}	0.015	1.404	0.015	1.484	0.018**	2.002	0.015**	2.039	0.010**	2.164	0.007	0.829
PhotoPes _{t-4}	-0.014	-1.239	-0.017	-1.500	-0.015	-1.532	-0.012	-1.450	-0.009*	-1.888	-0.004	-0.448
PhotoPes _{t-5}	0.005	0.457	-0.003	-0.301	-0.005	-0.502	-0.005	-0.631	-0.003	-0.654	0.010	1.188
$\beta_1+\beta_2$	-0.00	06	-0.0	12	-0.0	06	-0.0	005	-0.0	003	0.00	4
$\chi^2(1)[\beta_1+\beta_2=0]$	0.07	1	0.30	03	0.0	73	0.0	67	0.0	93	0.03	7
<i>p</i> -value	0.790		0.58	82	0.7	88	0.7	95	0.760		0.848	
Adj R-sq	0.085		0.044		0.0	0.032		0.031		54	0.100	
N	16,42	29	16,4	29	16,4	16,429		129	16,429		16,42	29

3.Results: how the relation between pessimism embedded in photos varies depending on uncertainty

$$R_t = (N_t)[\beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2)] + (1 - N_t)[\gamma_1 PhotoPes_t + \gamma_2 L_s(PhotoPes_t) + \gamma_3 L_s(R_t) + \gamma_4 L_s(R_t^2)] + \beta_5 X_t + \varepsilon_t,$$

- NVIX is a news implied volatility index constructed from textual analysis
 of front-page news articles in the Wall Street Journal. It is developed by
 Maneala and Moreira (2017) to capture aggregate uncertainty.
- Nt is a dummy variable that takes a value of one if date t is in a month that has above median NVIX value

		VWRI	$\mathrm{ETD}_{\mathrm{t}}$		$EWRETD_t$				
	(1)				(2)				
	High NVIX		Low NVIX		High NVIX		Low NVIX		
Variables	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	
PhotoPes _t	-0.035**	-2.290	0.001	0.088	-0.033**	-2.096	-0.003	-0.468	
PhotoPes _{t-1}	0.020	1.301	0.000	-0.057	0.028*	1.778	0.007	1.034	
PhotoPes _{t-2}	0.006	0.401	-0.009	-1.015	0.006	0.401	-0.009	-1.270	
PhotoPes _{t-3}	0.027*	1.819	0.013	1.529	0.023	1.517	0.011	1.481	
$PhotoPes_{t-4}$	-0.019	-1.166	-0.004	-0.522	-0.024	-1.441	-0.001	-0.087	
PhotoPes _{t-5}	-0.015	-1.004	-0.007	-0.853	0.001	0.089	-0.007	-0.908	
$\beta_1 + \beta_2 \text{ or } \gamma_1 + \gamma_2$	-0.0	016	-0.006		0.0	0.001		.002	
$\chi^2(1)[\beta_1+\beta_2 \text{ or } \gamma_1+\gamma_2=0]$	0.2	82	0.141		0.004		0.017		
<i>p</i> -value	0.5	95	0.	707	0.9	51	0.	897	
$\beta_1+\beta_2+\gamma_1+\gamma_2$		-0.0	22			-0.0	01		
$\chi^{2}(1)[\beta_{1}+\beta_{2}+\gamma_{1}+\gamma_{2}=0]$		0.42	22			0.0	00		
<i>p</i> -value		0.5	16		0.993				
Adj R-sq		0.0	18		0.056				
N		15,9	23			15,9	23		

3.Results: which type of news is behind the underlying predictability power of PhotoPes

Data:4,939 photos from "Business" section, "Business this week", and "Finance and economics" section of *The Economist*

$$R_i = \beta_1 PhotoPes_t + \beta_2 PhotoPes_{t-5} + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$$

where Ri denotes daily log-returns on VWRETD or EWRETD on day i (i = t, t+1, and (t,t+1))

3.Results: which type of news is behind the underlying predictability power of PhotoPes

			The Econor	mist Data			
		(1)	((2)	(3)		
Variables	VW	$RETD_t$	VWR	ETD _{t+1}	$VWRETD_{\{t,t+1\}}$		
	β	t-stat	β	t-stat	β	t-stat	
$PhotoPes_t$	-0.127**	-2.178	0.106**	2.552	-0.013	-0.184	
PhotoPes _{t-5}	0.113*	1.800	0.025	0.559	0.140*	1.839	
Adj R-sq	0.010		0.	.048	0.011		
N		586	5	586	586		
		(4)	((5)	(6)		
Variables	EW	RETD _t	EWR	ETD _{t+1}	$\text{EWRETD}_{\{t,t+1\}}$		
	β	t-stat	β	t-stat	β	t-stat	
$PhotoPes_t$	-0.111**	-2.203	0.115***	3.043	0.003	0.048	
PhotoPes _{t-5}	0.080*	1.686	0.016	0.420	0.103	1.641	
Adj R-sq	0	0.051	0.	0.066		0.055	
N		586	586		586		

3.Results: weather positive sentiment has a bigger effect on market returns compared to negative sentiment

 $R_{t} = \beta_{1} PhotoPes_{rank5_{t}} + \beta_{2} PhotoPes_{rank4_{t}} + \beta_{3} PhotoPes_{rank3_{t}} + \beta_{4} PhotoPes_{rank2_{t}} + \beta_{5} PhotoPes_{rank1_{t}} + \beta_{6} L_{s}(R_{t}) + \beta_{7} L_{s}(R_{t}^{2}) + \beta_{8} X_{t} + \varepsilon_{t},$

	VW	$VWRETD_t$			
		(2)			
Variables	β	t-stat	β	t-stat	
PhotoPes _{rank5}	0.006	0.399	-0.002	-0.105	
PhotoPes _{rank4}	0.107	1.316	0.062	0.766	
PhotoPes _{rank3}	-0.143**	-2.137	-0.109*	-1.660	
PhotoPes _{rank2}	-0.113*	-1.695	-0.089	-1.372	
PhotoPes _{rank1}	-0.087***	-2.963	-0.067**	-2.371	
$\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5$	=0.230		=	=0.205	
$\chi^{2}(1)[\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5}=0]$	3.	784*	3.088*		
<i>p</i> -value	0.052		0.079		
Adj R-sq	0.014		0.050		
N	16,430		16,430		

3. Results: The impact of PhotoPes on trading volume

- whether PhotoPes is a proxy for trading costs or investors' beliefs
- if PhotoPes is viewed as a proxy for trading costs (i.e., liquidity shock), then one would expect a spike in PhotoPes should lead to a decrease in trading volume

$$V_t = \beta L_s(V_t) + \gamma X_t + \varepsilon_t,$$

- Vt denotes the log of aggregate daily NYSE trading volume
- εt , normalize it to have unit variance and mean of zero, and use it as the key dependent variable in the regressions $b(\bar{V}_t)$)w

$$\begin{split} \bar{V}_t &= \beta_1 PhotoPes_t^{high} + \beta_2 PhotoPes_t^{low} + \beta_3 L_s \big(PhotoPes_t^{high} \big) + \beta_4 L_s \big(PhotoPes_t^{low} \big) + \\ \beta_5 L_s (R_t) + \beta_6 L_s (R_t^2) + \varepsilon_t, \end{split}$$

3. Results: The impact of PhotoPes on trading volume

	NYSE '	Volume
Variables	β	t-stat
PhotoPest high	0.018	1.186
PhotoPest low	0.001	0.024
PhotoPes _{t-1} high	0.032**	2.055
$PhotoPes_{t-1}low$	0.032**	2.055
PhotoPes _{t-2} high	0.014	0.933
PhotoPest-2low	0.000	0.007
PhotoPes _{t-3} high	0.004	0.305
PhotoPest-3low	0.008	0.305
PhotoPes _{t-4} high	0.037**	2.058
$PhotoPes_{t-4}^{low}$	-0.008	-0.260
PhotoPes _{t-5} high	0.028*	1.830
PhotoPes _{t-5} low	-0.032	-1.104
	X ² (1)	p-value
$\beta_1 = \beta_2$	0.188	0.6642
$\beta_3 = \beta_4$	4.558**	0.0328
Adj R-sq	0.0	003
N	14,4	488

3. Results: Does PhotoPes proxy for investor sentiment or directly affects it

$$Media_t = \beta_1 L_s(R_t) + \beta_2 L_s(Media_t) + \beta_3 L_s(R_t^2) + \beta_4 X_t + \varepsilon_t,$$

Mediat is PhotoPes, TextPes, NYTPes, Influential, or Economist.

	(1) PhotoPes _t		(2) TextPes _t		(3) NYTPes _t		(4) Influential _t		(5) Economist _t	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat
R_{t-1}	-0.001	-0.166	-0.002	-0.277	-0.354***	-30.736	-0.015	-1.425	0.008	0.144
R_{t-2}	-0.002	-0.295	-0.005	-0.617	-0.050***	-5.564	0.010	1.095	-0.054	-0.946
R_{t-j}	-0.003	-0.346	0.001	0.158	0.008	0.948	-0.006	-0.643	-0.061	-1.218
R_{t-4}	-0.013*	-1.713	-0.006	-0.820	-0.001	-0.059	-0.012	-1.087	-0.003	-0.076
R_{t-5}	0.003	0.325	0.007	0.978	0.020**	2.389	0.002	0.169	0.051	0.990
Adj R-sq	0.0)20	0.020		0.215		0.000		-0.003	
N	16,	430	16,	,430	16,9	85	10,577		395	

3. Results: Robustness

 $R_t = \beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$

Variable construction

	Cutoff =	{0.55, 0.45}	Cutoff =	{0.60, 0.40}	Cutoff =	{0.65, 0.35}	
		(1)		(2)		(3)	
	EW	RETD _t	EW	RETD _t	EWRETD _t		
Variables	β	t-stat	β	t-stat	β	t-stat	
$PhotoPes_t$	-0.019**	-2.176	-0.015*	-1.774	-0.014*	-1.662	
PhotoPes _{t-1}	0.020**	2.395	0.021**	2.513	0.017*	1.946	
PhotoPes _{t-2}	-0.006	-0.715	-0.007	-0.833	-0.008	-0.914	
PhotoPes _{t-3}	0.006	0.774	0.004	0.551	0.006	0.747	
PhotoPes _{t-4}	-0.008	-1.007	-0.011	-1.313	-0.011	-1.295	
PhotoPes _{t-5}	-0.002	-0.290	-0.003	-0.348	-0.001	-0.174	
$\beta_1 + \beta_2$	-0	.009	-(0.011	-0	.011	
$\chi^2(1)[\beta_1+\beta_2=0]$	0	0.320		.402	0.502		
p-value	0	0.571		0.526		0.479	
Adj R-sq	0	.047	0	.047	0	0.047	
N	18	3,384	18	8,208	18	3,016	
	No Wir	sorization	No W	Veighting	Predicted	d likelihood	
		(4)		(5)	(6)		
	EW	RETD _t	EW	RETD _t	EW	RETD _t	
Variables	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _t	-0.021**	-2.293	-0.016**	-2.025	-0.019**	-2.178	
PhotoPes _{t-1}	0.018**	2.056	0.006	0.765	0.020**	2.286	
PhotoPes _{t-2}	-0.002	-0.244	0.002	0.232	-0.007	-0.831	
PhotoPes _{t-3}	0.015*	1.881	0.021**	2.507	0.015*	1.834	
$PhotoPes_{t-4}$	-0.014	-1.558	-0.013	-1.534	-0.013	-1.458	
PhotoPest-5	-0.002	-0.186	-0.001	-0.158	-0.002	-0.220	
$\beta_1 + \beta_2$	-0	.021	-().022	-0	.021	
$\chi^2(1)[\beta_1 + \beta_2 = 0]$	0	.089	0	.004	0.096		
<i>p</i> -value	0	.765	0	.951	0.757		
Adj R-sq	0	.050	0	.050	0	.050	
N	16	5,430	10	5,430	16	5,430	

3. Results: Robustness

$$R_t = \beta_1 PhotoPes_t + \beta_2 L_s(PhotoPes_t) + \beta_3 L_s(R_t) + \beta_4 L_s(R_t^2) + \beta_5 X_t + \varepsilon_t,$$

Sample period and machine learning

	Noisy I	Labels	Start in 1945		Open-Close Returns (3)		Orthogona	lized PhotoPes
	(1) EWRETD _t		(2))			(4)	
			$EWRETD_t$		DOW_t		EWRETD _t	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat
$PhotoPes_t$	-0.020**	-2.363	-0.015**	-2.052	-0.015*	-1.819	-0.018**	-2.008
PhotoPes _{t-1}	0.019**	2.181	0.006	0.880	0.005	0.661	0.014	1.575
PhotoPes _{t-2}	0.001	0.160	-0.001	-0.158	0.002	0.186	0.000	-0.041
PhotoPes _{t-3}	0.008	0.988	0.014*	1.864	0.017**	2.185	0.013	1.431
PhotoPes _{t-4}	-0.012	-1.415	-0.009	-1.209	-0.011	-1.293	-0.012	-1.256
PhotoPes _{t-5}	-0.008	-0.909	-0.009	-1.133	-0.012	-1.505	-0.001	-0.126
$\beta_1+\beta_2$	-0.0	12	-0.014		-0.014		-0.004	
$\chi^2(1)[\beta_1+\beta_2=0]$	0.4	79	0.841		0.683		0.059	
<i>p</i> -value	0.489		0.359		0.409		0.808	
Adj R-sq	0.050		0.064		0.009		0.047	
N	16,4	30	14,201		16,358		14,159	

4. Conclusion

contributions to the literature.

- Pessimism embedded in news photos contains useful information consistent with an investor sentiment proxy.
- Pessimism embedded in news photos complements and, in some cases, subsumes pessimism embedded in news text.
- The benefit of using cutting-edge photo classification techniques to study how the information in a large sample of news photos is relevant in context of financial markets

Future researchers

 Advance the machine learning technique for photos classification to help bridge the gap with text classification models to better capture sentiment and other important content embedded in news photos.