Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	Total
Marks:	3	3	4	5	5	20
Score:						

1. A binary operation * on a finite set S can be represented by a square grid where rows and columns are indexed by elements of S; and the entry in the row corresponding to a and the column corresponding to b is a*b. For example, $(\mathbb{Z}/5\mathbb{Z}, \times)$ can be represented by the following grid:

×	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
$\frac{\overline{1}}{\overline{2}}$ $\frac{\overline{3}}{\overline{4}}$	$\frac{\overline{1}}{\overline{2}}$ $\frac{\overline{3}}{\overline{4}}$		$\frac{\overline{1}}{4}$ $\overline{2}$	$ \begin{array}{c} \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \end{array} $
$\overline{4}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

If (G, *) is a group and G is a finite set, prove that every row and every column of its grid is a permutation of the elements of G.

Solution: We first show that no row has duplicate elements. For the sake of contradiction, suppose there is a row (say row indexed by a) with duplicate elements. Let the columns corresponding to these elements be indexed by b and c respectively where $b \neq c$. So, a * b = a * c. This implies $a^{-1} * a * b = a^{-1} * a * c$. So, b = c. This contradicts the fact that $b \neq c$. So, our assumption that there is a row with with duplicate elements is false.

The proof for columns is similar.

Since every row and every column contains n elements and there are no duplicates, every row and every column is a permutation of the elements of the group.

2. What is wrong with the following proof:

Theorem. All horses are of the same colour.

Proof. We prove the theorem by induction on the number of horses.

Base case: If there is only one horse, the theorem is trivial.

Inductive step: Suppose the theorem is true for n-1 horses i.e. every horse in a group of n-1 horses is of the same colour. Now consider a group of n horses. By induction hypothesis, horses $1, 2, \ldots, n-1$ are of the same colour. Similarly, by induction hypothesis, horses $2, 3, \ldots, n$ are of the same colour. Therefore horses 1 and n are also of the same colour. So horses $1, 2, \ldots, n$ are of the same colour. This completes the proof.

Solution: If n = 2, the sets $\{1, \ldots, n-1\}$ and $\{2, \ldots, n\}$ do not intersect; and so it cannot be inferred that horses 1 and n have the same colour. So, the *Inductive Step* fails for n = 2.

3

3. Suppose (G,*) is a group and H is a non-empty subset of G. Suppose for all a,b in H, $a*b^{-1}$ is also in H. Prove that (H,*) is a group.

Solution:

- *Identity element:* Since $H \neq \emptyset$, there exists an element in H. Let this element be called a. Since $a \in H$, $a * a^{-1} = e \in H$. Therefore H contains the identity element.
- Inverse: Let $a \in H$. We have to show that $a^{-1} \in H$. Since $e, a \in H$, so $e * a^{-1} = a^{-1} \in H$.
- Closure: Let $a, b \in H$. We have to show that $a * b \in H$. Since $b \in H$, $b^{-1} \in H$. Since $a, b^{-1} \in H$, $a * (b^{-1})^{-1} = a * b \in H$.
- Associativity: Since (a * b) * c = a * (b * c) for all $a, b, c \in G$, and since H is a subset of G, (a * b) * c = a * (b * c) for all $a, b, c \in H$.
- 4. Recall $\mathbb{R}[x]$ is the set of polynomials with Real coefficients and non-negative degree. We can define congruence relation on $\mathbb{R}[x]$. We say two polynomials f and g are congruent modulo a polynomial h if h divides f g. Given $h \in \mathbb{R}[x]$, we can define $\mathbb{R}[x]/h\mathbb{R}[x]$ analogous to $\mathbb{Z}/m\mathbb{Z}$.
 - (a) What are the elements of the set $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

Solution: Given $f \in \mathbb{R}[x]$, let $\overline{f} = \{g \in \mathbb{R}[x] \mid f \equiv g \pmod{x^2 + 1}\}$, Then $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x]$ is defined as follows: $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x] = \{\overline{f} \mid f \text{ is a polynomial of degree less than } 2\}$.

Notice that all zero degree polynomials (i.e. Real numbers) lie in different congruence classes. If $a \neq b$, polynomials x + a and x + b lie in different congruence classes. If a, α and β are Real numbers, then polynomials x + a and $\alpha(x^2 + 1) + \beta(x + a)$ lie in the same congruence class.

(b) How are operations + and \times defined on $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

Solution: $\overline{f} + \overline{g} \stackrel{def}{=} \overline{f+g}$ and $\overline{f} \times \overline{g} \stackrel{def}{=} \overline{f \times g}$

If we have to add two congruence classes \overline{f} and \overline{g} , we add polynomials f and g and return the corresponding congruence class $\overline{f+g}$. Since the degree of f+g is less than 2 if the degree of both f and g is less than 2, so $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is closed under +.

If we have to multiply two congruence classes \overline{f} and \overline{g} , we multiply polynomials f and g and return the corresponding congruence class $\overline{f \times g}$. If the degree of $f \times g$ is greater than or equal to 2, then there is another polynomial h of degree less than 2 such that $f \times g = h$. Therefore, $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is closed under \times .

(c) Is $\left(\left(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x] \right) - \{0\}, \times \right)$ a group? Why / Why not?

Solution: Yes, it is a group.

- Closure: Proved in the previous part.
- Associativity: Proof similar to $\mathbb{Z}/m\mathbb{Z}$.
- *Identity:* Identity element is $\overline{1}$.
- Inverse: Given $f \in \mathbb{R}[x]/h\mathbb{R}[x]$, it can be shown that equation $\overline{f} \times \overline{X} = \overline{1}$ has a solution in $\mathbb{R}[x]/h\mathbb{R}[x]$ if $\gcd(f,h)$ is a unit. Since $x^2 + 1$ is a irreducible, every polynomial f of degree less than $x^2 + 1$ satisfies $\gcd(f,x^2 + 1)$ is a unit. Therefore every element of $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x]$ has an inverse.

1

|4|

- 5. Let + denote the usual addition operation on integers. Let $a, b \in \mathbb{Z}$.
 - (a) Is there a proper subset S of \mathbb{Z} containing a and b such that (S, +) is a group. If yes, give the subset; otherwise prove that such a subset doesn't exist.

2

Solution: $S = \{ax + by \mid x, y \in \mathbb{Z}\}$ is the smallest subset of \mathbb{Z} containing a and b which is a group. This is a proper subset of \mathbb{Z} if $\gcd(a,b) \neq 1$.

3

(b) Given a group (G, +). An element $g \in G$ is called a generator of the group if $G = \{ig \mid i \in \mathbb{Z}\}$. [Note: Here na is a shorthand for $\underbrace{a + a + \cdots + a}_{n \text{ times}}$]. Does (S, +) (defined in the previous part of the

question) have a generator? If yes, give the generator; otherwise prove it doesn't exist.

Solution: If $gcd(a,b) \neq 1$, then (S,+) is a group and gcd(a,b) is a generator.