Logic Gates

- A logic gate is a small transistor circuit, basically a type of amplifier, which is implemented in different forms within an integrated circuit. Each type of gate has one or more (most often two) inputs and one output.
- The principle of operation is that the circuit operates on just two voltage levels, called logic 0 and logic 1. When either of these voltage levels is applied to the inputs, the output of the gate responds by assuming a 1 or a 0 level, depending on the particular logic of the gate. The logic rules for each type of gate can be described in different ways, by a written description of the action, by a truth table, or by a Boolean algebra statement.
- ➤ Boolean statements use letters from the beginning of the alphabet, such as A, B, C etc. to indicate inputs, and letters from the second half of the alphabet, very commonly X or Y and sometimes Q or P to label an output. The letters have no meaning in themselves, other than just to label the various points in the circuit. The letters are then linked by a symbol indicating the logical action of the gate.

Transistors as Switches

 V_{BB} voltage controls whether the transistor conducts in a common base configuration.

Logic circuits can be built using transistors

Boolean Algebra

AND

In order for current to flow, both switches

must be closed

 α Logic notation A•B = C (Sometimes AB = C)

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

OR

Current flows if either switch is closed

 α Logic notation A + B = C

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

Properties of AND and OR

Commutation

$$\circ A + B = B + A$$

$$\circ A \bullet B = B \bullet A$$

Commutation Circuit

A + B

B · A

B + A

Properties of AND and OR

> Associative Property

$$A + (B + C) = (A + B) + C$$

Properties of AND and OR

Distributive Property

$$A + B \cdot C = (A + B) \cdot (A + C)$$

 $A + B \cdot C$

Α	В	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Distributive Property

$$(A + B) \cdot (A + C)$$

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Binary Addition

Α	В	S	C(arry)
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Notice that the carry results are the same as AND

$$C = A \cdot B$$

Inversion (NOT)

Logic: $Q = \overline{A}$

	Ą	C	
	4		
	0	1	
	1	C	
2539	SARCE.		1000

Exclusive OR (XOR)

Either A or B, but not both

This is sometimes called the inequality detector, because the result will be 0 when the inputs are the same and 1 when they are different.

The truth table is the same as for S on Binary Addition. $S = A \ B$

Α	В	S
0	0	0
1	0	1
0	1	1
1	1	0

Getting the XOR

Two ways of getting S = 1

 $A \cdot \overline{B}$ or $\overline{A} \cdot B$

Α	В	S
0	0	0
1	0	1
0	1	1
1	1	0

Circuit for XOR

$$A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

Accumulating our results: Binary addition is the result of XOR plus AND

Counting in Binary

1	1	11	1011	21	10101
2	10	12	1100	22	10110
3	11	13	1101	23	10111
4	100	14	1110	24	11000
5	101	15	1111	25	11001
6	110	16	10000	26	11010
7	111	17	10001	27	11011
8	1000	18	10010	28	11100
9	1001	19	10011	29	11101
10	1010	20	10100	30	11110

NAND (NOT AND)

$$Q = \overline{A \cdot B}$$

A	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR (NOT OR)

$$Q = \overline{A + B}$$

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem

A NAND gate is equivalent to an inversion followed by an OR

A NOR gate is equivalent to an inversion followed by and AND

DeMorgan Truth Table

Α	В	\overline{AB}	$\overline{A} + \overline{B}$	$\overline{A+B}$	$\overline{A}\overline{B}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0

NAND NOR

Exclusive NOR

$$Q = \overline{A \oplus B}$$

Equality Detector

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Summary

Summary for all 2-input gates							
Inp	uts	Output of each gate					
А	В	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

ANSI Symbol	IEC Symbol	Description	Воо
Ť	А — & — X	The AND gate output is at logic 1 when, and only when all its inputs are at logic 1, otherwise the output is at logic 0.	X =
×	A — ≥1 — X	The OR gate output is at logic 1 when one or more of its inputs are at logic 1. If all the inputs are at logic 0, the output is at logic 0.	χ=
×———×	A — & — X	The NAND Gate output is at logic 0 when, and only when all its inputs are at logic 1, otherwise the output is at logic 1.	χ=
A	A — ≥1X	The NOR gate output is at logic 0 when one or more of its inputs are at logic 1. If all the inputs are at logic 0, the output is at logic 1.	X =
A — X	A — =1 — X	The XOR gate output is at logic 1 when one and ONLY ONE of its inputs is at logic 1. Otherwise the output is logic 0.	X=
A—————————————————————————————————————	A =1 x	The XNOR gate output is at logic 0 when one and ONLY ONE of its inputs is at logic 1. Otherwise the output is logic 1. (It is similar to the XOR gate, but its output is inverted).	X = A
A — X	A — 1 — X	The NOT gate output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0. For this reason it is often called an INVERTER.	χ=

Multi-input Gates

3 Input AND gate				
Α	В	C	A.B.C	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Three input OR

Α	В	C	X = A+B+C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
-35-	. 1	1	1

Logic Gate ICs

Quad 2-input gates

- 7400 quad 2-input NAND
- 7403 quad 2-input NAND with open collector outputs
- 7408 quad 2-input AND
- 7409 quad 2-input AND with open collector outputs
- 7432 quad 2-input OR
- 7486 quad 2-input EX-OR
- 74132 quad 2-input NAND with Schmitt trigger inputs

The 74132 has <u>Schmitt trigger</u> inputs to provide good noise immunity. They are ideal for slowly changing or noisy signals.

 7402 quad 2-input NOR Note the unusual gate layout.

Example 7400

IC 7400 Quad NAND Gate

