Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

«Определение длины световой волны по картине дифракции на круглом отверстии»

Проверил:		Выполнил:
Пшеничнов В.Е		Студент группы Р3255
« »	2019r.	Федюкович С. А.

Цель работы

Определение длины световой волны по картине дифракции на круглом отверстии в экране.

Теоретические основы

При прохождении пучка параллельных лучей света через круглое отверстие в экране свет заходит в область геометрической тени. За экраном наблюдается дифракционная картина в виде чередующихся светлых и тёмных колец.

Распределение интенсивности света в дифракционной картине можно рассчитать на основе принципа Гюйгенса-Френеля, через метод зон Френеля.

Пусть на экран с круглым отверстием радиусом OB падает плоская монохроматическая волна. В соответствии с принципом Гюйгенса-Френеля действие этой волны можно заменить действием когерентных точечных источников света. Определим действие этой волны в точке P, лежащей на прямой SS', проходящей через центр отверстия. Для этого разделим часть волновой поверхности на кольцевые зоны (зоны Френеля), чтобы расстояния от края следующей зоны до точки P отличались друг от друга на половину длины волны $\lambda/2$:

$$r_1 = r_0 + \frac{\lambda}{2}; r_2 = r_1 + \frac{\lambda}{2} = r_0 + 2\frac{\lambda}{2}; \dots; r_k = r_0 + k\frac{\lambda}{2}.$$
 (1)

При таком делении фазы колебаний, приходящих в точку P от соседних зон, отличаются на π , т.е. противоположны. Если амплитуды колебаний от $1,2,\ldots,k$ -ой зон обозначить a_1,a_2,\ldots,a_k , то амплитуда результирующего колебания в точке P:

$$A = a_1 - a_2 + a_3 + \dots + (-1)^{k+1} \cdot a_k \tag{2}$$

Амплитуда колебаний, приходящих от отдельной зоны, зависит от площади зоны ΔS , от расстояния r_k от зоны до точки P и от угла наклона α между r_k и нормалью к поверхности. При при таком способе деления площадь k-ой зоны:

$$S_k = \pi \rho_{k+1}^2 - \pi \rho_k^2, \tag{3}$$

где ρ_{k+1} и ρ_k — радиусы k-ой и k+1-ой зон. Радиусы зон Френеля определяются соотношениями:

$$\rho_k^2 = (r_0 + k\frac{\lambda}{2})^2 - r_0^2; \ \rho_{k+1}^2 = (r_0 + (k+1)\frac{\lambda}{2})^2 - r_0^2; \tag{4}$$

Учитывая, что $r_0 >> \lambda$, получим $\rho_{k+1}^2 - \rho_k^2 = r_0 \lambda$, а площадь к-й зоны $S_k = \pi r_0 \lambda$, т.е. площадь зоны Френеля не зависит от номера зоны k. Следовательно, амплитуды колебаний зависят лишь от расстояния r и от угла α .

Монотонное убывание амплитуд позволяет приближенно выразить амплитуду A суммарного колебания в точке P:

$$A = \frac{a_1}{2} + \left(\frac{a_1}{2} - a_2 + \frac{a_3}{2}\right) + \left(\frac{a_3}{2} - a_4 + \frac{a_5}{2}\right) + \left(\frac{a_1}{2} - \dots\right)$$
 (5)

Так как слагаемые, выделенные скобками, равны нулю, результирующая амплитуда при нечетном $k:A=\frac{a_1}{2}+\frac{a_k}{2}$, а при четном $k:A=\frac{a_1}{2}-\frac{a_k}{2}$. Объединяя, получаем $A=\frac{a_1}{2}\pm\frac{a_k}{2}$, где знак « + » относится к нечетному, а знак « - » — к четному числу зон Френеля.

При свободном распространении, когда не происходит ограничение фронта волны, $k \to \infty$ и $a_k \to \infty$. Тогда при открытом фронте амплитуда суммарного колебания в точке P определяется половиной амплитуды первой зоны.

Если отверстие открывает одну зону или их небольшое нечетное число, то в результате интерференции в точке P будет виден свет, причем более интенсивный, т.е. образуется дифракционный максимум. При небольшом четном числе открытых зон освещенность в точке P будет минимальной.

Пусть для точки наблюдения P открыто m зон. Тогда при соблюдении предложенного Френелем правила разбиения на зоны, в открытой отверстием части волнового фронта будет умещаться большее число зон.

$$R^2 = m\lambda d \tag{6}$$

Из выражений (6) расстояние от плоскости отверстия до точки наблюдения:

$$d = \frac{R^2}{m\lambda} \tag{7}$$

Это соотношение служит для вычисления длины волны. Для повышения точности определения длины волны расстояние d измеряется несколько раз при разном числе открытых зон m. Как видно из уравнения (7), зависимость от 1/m является линейной, а коэффициент наклона графика этой зависимости $k=R^2/\lambda$.

Построив график зависимости d от 1/m можно убедиться в том, что зависимость действительно линейна, а по коэффициенту наклона получившейся прямой и известному значению радиуса отверстия R определить длину волны.

Ход работы

- 1. Установить объектив M так, чтобы на экране была видна дифракционная картина от отверстия, соответствующая открытым двум зонам Френеля. Записать координату X по шкале.
- 2. Передвигая объектив по направлению к лазеру, наблюдать за сменой освещенности в центре дифракционной картины. Для каждого числа открытых зон записывать координату объектива. Также записать координату выходного окна X_{∞} Заполнить таблицу (1). Повторить 1-3 раза.
- 3. Определить для каждого m расстояния d с учетом того, что $d=l-b=X-X_{\infty}$. Результаты добавить в таблицу (1).

таолица 1. Экспериментальные данные									
m	1/m	$X_1, [cM]$	$d_1, [c_{\mathrm{M}}]$	$X_2, [c_{\mathrm{M}}]$	$d_2, [c_{\mathrm{M}}]$	X_3 , [cm]	$d_3, [cm]$		
2,000	0,500	64,000	19,400	64,700	18,700	64,500	18,900		
3,000	0,333	70,500	12,900	70,100	13,300	70,700	12,700		
4,000	0,250	73,600	9,800	73,400	10,000	73,500	9,900		
5,000	0,200	75,700	7,700	75,600	7,800	75,700	7,700		
6,000	0,167	77,000	6,400	77,000	6,400	77,100	6,300		
$X_{\infty} = 83,400 [\text{cm}]; r = 0,500 \pm 0,020 [\text{cm}]$									

Таблица 1: Экспериментальные данные

4. Построить график зависимости расстояния d от 1/m. По коэффициенту наклона k аппроксимирующей прямой и радиусу отверстия r определить длину волны источника:

Уравнение прямой:
$$d = 37,730 \cdot 1/m + 0,252$$

$$\lambda = \frac{r^2}{k} = \frac{(0,500)^2}{37,730} \cdot 10^5 = 662,596 [\text{HM}]$$

Рис. 1: График зависимости расстояния d от 1/m

5. Рассчитать погрешность наклона Δk и, исходя из нее и погрешности радиуса r найти погрешность $\Delta \lambda$:

$$\frac{k}{\Delta k} = \frac{1}{y_b - y_a} \sqrt{\frac{2}{N - 2} \cdot \sum_{i=1}^{N} (y_i - y_{cp})^2} =$$

$$= \frac{1}{0,039 - 0,230} \sqrt{\frac{2}{3} \cdot (0,780^2 + 0,770^2 + 0,290^2 + 0,460^2 + 0,860^2)} = 0,018$$

$$\Delta k = 0,018 \cdot 37,730 \cdot 10^{-2} = 0,006[]$$

$$\Delta \lambda = \sqrt{\left(\frac{\partial \lambda}{\partial k} \Delta k\right)^2 + \left(\frac{\partial \lambda}{\partial r} \Delta r\right)^2} = \sqrt{\left(-\frac{r^2}{k^2} \Delta k\right)^2 + \left(\frac{2r}{k} \Delta r\right)^2} =$$

$$= \sqrt{\left(-\frac{0,001}{0,377^2} \cdot 0,006\right)^2 + \left(\frac{2 \cdot 0,001}{0,377} \cdot 0,001\right)^2} = 53,3[\text{HM}]$$

Вывод

В ходе работы я определил длину световой волны по картине дифракции на круглом отверстии на основе принципа Гюйгенса-Френеля, с помощью метода зон Френеля.

Диапазон красного цвета спектра определяют длиной волны $620-740 [{\rm HM}]$, поэтому, значение $\lambda=662,596\pm53,3 [{\rm HM}]$ полученное в результате выполнения лабораторной работы попадает под заданные значения диапазона.

Погрешность составила около 8,5%, что является приемлемой погрешностью. Вызвана она в связи с неточностью измерений маленьких величин, а так же погрешностью при расчетах.