

Universidade Federal de Pernambuco Centro de Informática

Cálculo Numérico (IF215)

Profa. Maíra Santana

1. Avalie as seguintes afirmações:

- i. Sob o ponto de vista numérico, codificar (A–B)(A–B) é equivalente a codificar A(A–B)–B(A–B);
- ii. Na transformação de um número inteiro na base decimal para a base binária, pode ocorrer perda de informação.

São verdadeiras as afirmações:

- a) Apenas i
- b) Apenas ii
- c) Ambas
- d) Nenhuma

Exercício 1 (gabarito)

- 1. Avalie as seguintes afirmações:
 - i. Sob o ponto de vista numérico, codificar (A–B)(A–B)
 é equivalente a codificar A(A–B)–B(A–B);
 - ii. Na transformação de um número inteiro na base decimal para a base binária, pode ocorrer perda de informação. F

São verdadeiras as afirmações:

- a) Apenas i
- b) Apenas ii
- c) Ambas
- d) Nenhuma
- i. No exercício proposto na nossa primeira aula vimos que, do ponto de vista numérico, a ordem das operações pode afetar o resultado obtido;
- i. Na conversão de um número decimal inteiro não há como perder informação visto que os dígitos binários são computados a partir do resto da divisão inteira por 2.

- 2. A função F(x) = exp(-x) sen(3x) possui uma raiz no intervalo I=[a; b]=[o.5; 1.8]. Execute os métodos das Bisseções e das Secantes por DUAS iterações. Calcule a distância entre a raiz aproximada encontrada por cada método ao final do processo, ou seja, D=|X(Bss)-X(Sec)|. Considere dez casas decimais de precisão da sua calculadora para todas as operações. Considere ainda que a inicialização para o método das Secantes é X(o)=a e X(1) = b. Neste caso, tem-se que:
- a) o,o3 < D < o,o7
- b) 0,19 < D < 0,23
- c) 0,11 < D < 0,15
- d) 0,07 < D < 0,11
- e) 0,15 < D < 0,19
- f) 0,23 < D < 0,27

Exercício 2 (gabarito)

- 2. A função F(x) = exp(-x) sen(3x) possui uma raiz no intervalo l=[a; b]=[0.5; 1.8]. Execute os métodos das Bisseções e das Secantes por DUAS iterações. Calcule a distância entre a raiz aproximada encontrada por cada método ao final do processo, ou seja, D=|X(Bss)-X(Sec)|. Considere dez casas decimais de precisão da sua calculadora para todas as operações. Considere ainda que a inicialização para o método das Secantes é X(o)=a e X(1) = b. Neste caso, tem-se que:
- a) o,o3 < D < o,o7
- b) 0,19 < D < 0,23
- c) 0,11 < D < 0,15
- d) 0.07 < D < 0.11
- e) 0,15 < D < 0,19
- f) 0,23 < D < 0,27

3. A conversão do número decimal x=0.2 para binário resulta na dízima periódica x'=0.001100110011.... Seja x" a conversão de binário para decimal, considerando sete casas decimais depois da vírgula. Encontre x" e calcule os erros absoluto, relativo e percentual de x" em relação a x.

Exercício 3 (gabarito)

3. A conversão do número decimal x=0.2 para binário resulta na dízima periódica x'=0.001100110011.... Seja x" a conversão de binário para decimal, considerando sete casas decimais depois da vírgula. Encontre x" e calcule os erros absoluto, relativo e percentual de x" em relação a x.

Resposta:

Erro absoluto: 0,0046875

Erro relativo: 0,0234375

Erro percentual: 2,3437500%

4. Avalie as seguintes afirmações:

- Uma das principais diferenças entre o método das BISSEÇÕES e o das FALSAS CORDAS é que no primeiro caso o intervalo de separação é "quebrado" em comprimentos assimétricos, e o das FALSAS CORDAS o mesmo intervalo é "quebrado" de forma simétrica;
- ii. Ao simular um método para encontrar a raiz aproximada, se utilizarmos como critério de parada unicamente o número máximo de iterações, não saberemos mensurar a qualidade (em termos de precisão) do resultado obtido pelo algoritmo. Por isso, em geral, o número de iterações é combinado com outro critério de parada, um que consiga mensurar a precisão da resposta obtida.

São falsas as afirmações:

- a) Apenas i
- b) Apenas ii
- c) Ambas
- d) Nenhuma

Exercício 4 (gabarito)

- 4. Avalie as seguintes afirmações:
 - i. Uma das principais diferenças entre o método das BISSEÇÕES e o das FALSAS CORDAS é que no primeiro caso o intervalo de separação é "quebrado" em comprimentos assimétricos, e o das FALSAS CORDAS o mesmo intervalo é "quebrado" de forma simétrica;
 - ii. Ao simular um método para encontrar a raiz aproximada, se utilizarmos como critério de parada unicamente o número máximo de iterações, não saberemos mensurar a qualidade (em termos de precisão) do resultado obtido pelo algoritmo. Por isso, em geral, o número de iterações é combinado com outro critério de parada, um que consiga mensurar a precisão da resposta obtida. V

São falsas as afirmações:

- a) Apenas
- b) Apenas ii
- c) Ambas
- d) Nenhuma
- i. É o contrário. Bisseção divide em subintervalos SIMÉTRICOS (ponto médio);
- ii. O número máximo de iterações, de fato, não leva em consideração a qualidade da aproximação porque só está preocupado em quantas iterações foram executadas e não se o valor de xi está se aproximando da raiz desejada ou se f(x) está se aproximando de zero.

5. Dada a função $f(x) = x^2 - x - 1$, determine, pelos métodos de Newton e MIL, o valor aproximado da menor raiz real positiva da função. Considere $x_0 = 1.5$. Como critérios de parada, assuma $|x_{i+1} - x_i| \le \zeta$ com $\zeta = 10^{-4}$ (erro absoluto). Calcule a distância entre a raiz aproximada encontrada por cada método ao final do processo, ou seja, D=|X(New)-X(MIL)|. Considere sete casas decimais de precisão da sua calculadora para todas as operações.

Exercício 5 (gabarito)

5. Dada a função $f(x) = x^2 - x - 1$, determine, pelos métodos de Newton e MIL, o valor aproximado da menor raiz real positiva da função. Considere $x_0 = 1.5$. Como critérios de parada, assuma $|x_{i+1} - x_i| \le \zeta$ com $\zeta = 10^{-4}$ (erro absoluto). Calcule a distância entre a raiz aproximada encontrada por cada método ao final do processo, ou seja, D=|X(New)-X(MIL)|. Considere sete casas decimais de precisão da sua calculadora para todas as operações.

Resposta:

6. Escrevi uma frase específica no computador. Sei que a representação dos caracteres dessa frase em decimais é:

66	79	65	32	80	82	79	86	65
	7 9					1 3		

Sabendo que o código ASCII funciona como uma codificação em decimais entre o(zero) e 127 para representar os diferentes caracteres da nossa língua (alfabeto, espaços, símbolos e etc.), utilize a tabela de conversão de binário para caractere apresentada no próximo slide para saber qual é a frase que escrevi.

Código binário	Caractere
01000001	А
01000010	В
01000011	С
01000100	D
01000101	Е
01000110	F
01000111	G
01001000	Н
01001001	1
01001010	J
01001011	K
01001100	L
01001101	М

Código binário	Caractere
01001110	N
01001111	0
01010000	Р
01010001	Q
01010010	R
01010011	S
01010100	Т
01010101	U
01010110	V
01010111	W
01011000	X
01011001	Υ
01011010	Z

Código binário	Caractere
00100000	Espaço em branco

Exercícios (resolução)

6. Para cada decimal dos caracteres da frase calculo qual é o binário associado:

n	n // 2	n % 2
32	16	0
16	8	0
8	4	0
4	2	0
2	1	0
1	0	1

n	n // 2	n % 2
65	32	1
32	16	0
16	8	0
8	4	0
4	2	0
2	1	0
1	0	1

66 33 0 33 16 1 16 8 0 8 4 0 4 2 0 2 1 0	n	n // 2	n % 2
16 8 o 8 4 o 4 2 o	66	33	0
8 4 o 4	33	16	1
4 2 0	16	8	0
	8	4	0
2 1 0	4	2	0
	2	1	0
1 0 1	1	0	1

Decimal	Binário
32	100000
65	1000001
66	1000010
79	1001111
80	
82	
86	

n	n // 2	n % 2	
79	39	1	
39	19	1	1
19	9	1	
9	4	1	
4	2	0	
2	1	0	
1	0	1	

6. Para cada decimal dos caracteres da frase calculo qual é o binário associado:

Decimal	Binário
32	100000
65	1000001
66	1000010
79	1001111
80	1010000
82	1010010
86	1010110

Exercícios (resolução)

n	n // 2	n % 2	
80	40	0	
40	20	0	4
20	10	0	
10	5	0	
5	2	1	
2	1	0	
1	0	1	

n	n // 2	n % 2	
82	41	0	
41	20	1	4
20	10	0	
10	5	0	
5	2	1	
2	1	0	
1	0	1	

n	n // 2	n % 2
86	43	0
43	21	1
21	10	1
10	5	0
5	2	1
2	1	0
1	0	1

Exercícios (resolução)

6. Para cada decimal dos caracteres da frase calculo qual é o binário associado:

Decimal	Binário	Caractere
32	00 100000	Espaço em branco
65	0 1000001	А
66	0 1000010	В
79	0 1001111	0
80	0 1010000	Р
82	0 1010010	R
86	0 1010110	V

Feita a conversão, a partir da identificação desses binários na tabela apresentada anteriormente, verifica-se que a frase é:

66	79	65	32	80	82	79	86	65

Exercícios (gabarito)

6. Para cada decimal dos caracteres da frase calculo qual é o binário associado:

Decimal	Binário	Caractere
32	00 100000	Espaço em branco
65	0 1000001	А
66	0 1000010	В
79	0 1001111	0
80	0 1010000	Р
82	0 1010010	R
86	0 1010110	V

Feita a conversão, a partir da identificação desses binários na tabela apresentada anteriormente, verifica-se que a frase é:

В	0	Α	[espaço]	Р	R	0	V	Α
66	79	65	32	80	82	79	86	65

Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulos 1 e 2);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulos 1 e 2).