Étude d'un Système Numérique et d'Information Option A (IR) - Session 2017 Correction tv (version 0.9)

Supervision d'une production d'énergie photovoltaïque

Partie B.

Q1.

Propositions	VRAI	FAUX
Cette représentation est la description du modèle vu par les acteurs du système	X (toujours)	
Le technicien SNCF, qui est un utilisateur autorisé, a un contrôle sur la production d'énergie	X (par héritage)	X (seulement lire)
D'un point de vue UML l'utilisateur est une spécialisation de l'utilisateur autorisé		X (généralisation)
Le technicien SNCF, qui est un utilisateur autorisé, peut modifier les informations concernant la production d'énergie à destination des passagers		X (seulement lire)

Q2. Justifier:

• la relation d'inclusion (« include ») : le cas d'utilisation « Acquérir les mesures ... » nécessite **obligatoirement** la réalisation du cas d'utilisation « Sauvegarder les échantillons ... » (comme c'est précisé dans l'analyse du contexte

Q3. Justifier:

• la relation d'extension (« extend ») : le cas d'utilisation « Lire les informations ... » **peut** être complété (**optionnellement**) par la réalisation du cas d'utilisation « Générer un PDF »

Q4.

Partie C.

Q5. Rôle:

- SOF (*Start Of Frame*) : délimite le début de trame (permet au(x) récepteur(s) de se synchroniser)
- EOF (*End of Frame*) : délimite la fin de la trame (permet de libérer le bus)
- CRC (*Cyclic Redundancy Code*) : permet de détecter une erreur de transmission

Q6. Trame de requête (RTR = 1) ne contient pas de données :

SOF	Identifier	RTR	Res	DLC	DATA	CRC	ACK	EOF
0	11100010001	1	00	0111			11	1111111
1 bit	11 bits	1 bit	2 bits	4 bits	0 bit	16 bits	2 bits	7 bits

Q7.

	Min.	Тур.	Max.
$U_{ m IN}$		24 V	
I_{IN}			150 A
U _{OUT}		24 V	
T _{AMBIANTE}	-30 °C		70 °C

Q8.

	Q	Valeurs hexa	Valeurs décimales
$U_{ m IN}$	28 / 1023 = 0,027370 V	$11\ 0110\ 1101 = \mathbf{0x36D}$	877 x Q = 24 V
$I_{\rm IN}$	150 / 1023 = 0,1466 A	$00\ 1000\ 1111 = \mathbf{0x08F}$	143 x Q = 20,967 A
U _{OUT}	28 / 1023 = 0,027370 V	$11\ 0110\ 1101 = \mathbf{0x36D}$	877 x Q = 24 V
T _{AMBIANTE}	1 °C	$0001\ 1001 = \mathbf{0x19}$	25 °C

Partie D.

Q9. Relation:

- C'est une relation d'**héritage** : MCP_CAN hérite de CAN.
- CAN est une classe **générale** de gestion du bus CAN. MCP_CAN est une classe **spécialisée** pour la carte MCP2515 (qui est un contrôleur CAN d'où l'héritage) du système de supervision.

Q10.

Oui une instance de MCP_CAN peut accéder à l'attribut « data » de la classe CAN car « data » est un attribut protégé (**protected**) : il est donc accessible à la classe CAN <u>et</u>, par héritage, à tous ses enfants ici la classe MCP_CAN.

Q11. Compléter les <u>associations</u> (en fait ce sont des **compositions** qui sont implémentées dans le document !), les noms des rôles et les cardinalités :

Q12.

	Classe	Méthode
Envoyer une requête au MPTT	MCP_CAN	transmitCANRequest()

Q13.

	Classe	Méthode
Enregistrer un échantillon	InterfaceBDD	<pre>enregistrerEchantillon()</pre>

Q14.

	Classe	Méthode
Extraire les mesures	Echantillon	extraireMesures()

```
Poller::Poller
    // ...
    while(true)
        bool retReceive = false;
        bool retTransmit = false;
        unsigned char *pData = NULL;
        while(retReceive == false)
            while(retTransmit == false)
            {
                retTransmit = mppt.transmitCANRequest(0x711);
            }
            retReceive = mppt.receiveCANResponse();
        }
        pData = mppt.getData();
        mesures.extraireMesures(pData);
        accesBase.enregistrerEchantillon(mesures);
        attendre30Minutes();
    }
}
Q16.
class MCP_CAN : public CAN
{
    private:
        SPI liaisonSPI;
    public:
        bool receiveCANResponse();
        bool transmitCANRequest(unsigned int adr);
        MCP_CAN(unsigned int idCAN, unsigned int modeSPI, unsigned int
                vitesseSPI, unsigned int bitsParMotSPI);
};
Q17.
void Echantillon::calculerCumulEnergie()
{
    energie += (uPan * iPan) * 0.5; // U x I toutes les 30 minutes
}
```

Q15. Constructeur de la classe **Poller** :

```
Q18.
void Echantillon::extraireMesure(unsigned char *pMesures)
    unsigned short uInMSB = pMesures[0] & 0x03;
    unsigned short uInLSB = pMesures[1];
    unsigned short uIn = uInMSB << 8 | uInLSB;
    uPan = ((double)uIn / 1023) * 28;
    uInMSB = pMesures[2] \& 0x03;
    uInLSB = pMesures[3];
    uIn = uInMSB << 8 | uInLSB;
    iPan = ((double)uIn / 1023) * 150;
    calculerCumulEnergie();
    uInMSB = pMesures[4] \& 0x03;
    uInLSB = pMesures[5];
    uIn = uInMSB << 8 | uInLSB;
    uBat = ((double)uIn / 1023) * 28;
    temperature = (double)pMesures[6];
}
Q19. Clé primaire : unicité d'un enregistrement (tuple) dans la table mesures
Q20.
INSERT INTO mesures VALUES(", ", 24.0, 18.8, 321.2, 23.8, 34.0)
Q21.
CREATE TABLE 'MPPT' (
 'idMPPT' int NOT NULL,
 `CAN_ID` int NOT NULL,
`nom` varchar NOT NULL,
PRIMARY KEY ('idMPPT')
);
Q22. Le champ idMPPT
Q23.
```


Q24. Clé étrangère

Q25.

SELECT energie FROM mesures,MPPT WHERE mesures.idMPPT = MPPT.idMPPT AND MPPT.CAN_ID = 3

Partie E. Réseau

Q26.

HTTP			HTTP
ТСР			ТСР
IP	Point c	l'Accès	IP
WiFi	WiFi	Ethernet	Ethernet

Q27.

VLAN10	VLAN10
192.168.10.1/24	192.168.10.2/24
VLAN11	VLAN10
192.168.11.1/24	192.168.10.3/24
VLAN2	VLAN10
192.168.2.1/24	192.168.10.4/24
VLAN2	VLAN11
192.168.2.2/24	192.168.11.2/24
VLAN2	VLAN11
192.168.2.3/24	192.168.11.3/24

Q28. réseau local virtuel VLAN (*Virtual LAN*) par un commutateur (*switch*)

Q29.

- VLAN de niveau 2 : par les adresses MAC
- VLAN de niveau 3 : par les adresses IP

Q30.

Champ	Valeur
Adresse MAC destination	00:1b:54:93:62:20
Adresse MAC source	00:1b:54:b3:97:64
Numéro de VLAN	0x000A(00000000001010) = 10
Protocole de transport	0x11 = UDP
Adresse IP source	C0 A8 0A 02 = 192.168.10.2
Adresse IP destination	C0 A8 0A 01 = 192.168.10.1

Q31.

192.168.10.2		192.168.10.1
AccessPoint LAP1	→	WLC 2504

Q32. **Oui** les 2 équipements font partie du **VLAN 10** qui transporte les informations entre les LAP et le contrôleur WLC (réseau 192.168.10.0/24).

Q33.

- Le service **DHCP** (*Dynamic Host Configuration Protocol*) qui permet de configurer automatiquement l'adressage IP d'un hôte en lui affectant au moins une adresse IP et un masque de sous-réseau.
- Le service **DNS** (*Domain Name System*) qui permet de traduire un nom de domaine en adresses IP notamment.