

Xiaotong Liu, Meraj Khan The Ohio State University

Visual Exploration of Multifaceted Halo Data Sets

Introduction

- Halos in cosmological simulations often have many properties
- Exploration of halos in high dimensional data space is non-trivial
- We present a visualization framework that assists users to explore halos of interest

Task Characterization

- Visualize multi-faceted halo properties
- Facilitate exploration of halos of interest
- Enable easy query specification
- Support responsive and flexible interactions

System Design

PCP View

Visualize multiple facets

Property View

Display specific values

Halo View

Visualize particles of a halo

System Overview

PCP View

- Parallel Coordinates Plot
 - dimension axes: property facets
 - a halo in multiple-dimensional space as a polyline

Interactions and Rendering

- Brushing and linking
- Axis reordering
- Progressive rendering

Brushing and Linking

Axis Reordering

Progressive Rendering

- Put all the polylines in a queue
- Render a subset of polylines per frame
- Build up the final image progressively

Property View

- Dynamic table
 - showing specific property values of halos
 - columns: properties
 - rows: halos

	Showing all 2127 rows															
# Group	Mass	# particl	max-den	md-x	md-y	md-z	com-x	com-y	com-z	vx	vy	VZ	max_r	rms_v	id	
0	2857285	20623	879233	40219.4	5179.18	28372.6	40217.4	5200.37	28387.9	1314298	1001027	1778097	3033.60	1098205	0	
1	2590025	18694	587596	-38651	16844.8	23627.6	-38630	16866.1	23645.2	-856965	-134355	-620622	2563.00	1012508	1	
2	1884951	13605	861529	14814.2	19571.6	-8680.7	14792.7	19561.7	-8677.9	1389347	-149380	3618711	2135.66	9158501	2	
3	1237376	8931	508996	-40298	37818.0	31260.9	-40302	37804.2	31263.5	1742524	-652179	1285648	1474.46	8157353	3	
4	1212160	8749	273025.34	-42459	1195.92	-27798	-42778	1112.97	-28026	-240101	3244577	2496228	1737.84	6599807	4	
5	1207172	8713	330800	31086.7	3493.45	44005.9	31102.3	3441.29	43780.177	1784966	5289230	-286845	1782.27	7527081	5	
6	1102984	7961	451266	-36373	22134.9	-20850	-36346	22151.9	-20766	-202025	-236347	5028946	1767.15	7599227	6	
7	1046872	7556	210255	-22584	-30649	-4624.2	-22590	-30695	-4584.9	-328663	-544035	1654615	1765.53	7767823	7	
8	1044794	7541	402449	26434.6	8362.46	2844.52	26430.1	8354.84	2923.90	1466079	-152911	-198873	1941.20	7459208	8	
9	9328468	6733	377586	-3860.8	-6627.8	32224.6	-3786.4	-6553.3	32274.5	-100494	1956127	-769226	1642.49	7407423	9	
10	7754557	5597	277907	-8812.7	129.790	-26008	-8800.7	78.0176	-26012	-444926	7251615	5532960	1312.29	7146164	10	

Dynamic Table

- Dimension-oriented sorting
- Linking with the PCP view
 - Highlight a specific halo in the PCP view
 - Zoom into a subset of halos for exploration
- Linking with the Halo view

Highlighting a Specific Halo

Subset Exploration

Halo View

Particle rendering of the selected halo

Visual Encodings

Live Demo

Results and Discussion

- Most halos have relatively few particles
- The mass of a halo is positively correlated to the number of particles
- The maximum density particle more or less represents the center of mass for the halo

Implementation

- Yt.py is used to read and process the raw particle data in SDF format
- D3.js is used to create the interactive PCP view and the Property view
- WebGL is used to render the particles in the halo view

Future Work

- To provide more interactions such as zooming and panning in the Halo view
- To further compare the particles that compose different halos
- To combine with other groups for VIS'15 contest submission

Question?

