DISTRIBUIÇÃO EXPONENCIAL

- Teórica
 - Definição da v.a.
 - Notação
 - Parâmetros
 - Função de probabilidade
 - Média
 - Variância
 - Função de distribuição acumulada
- Resultados sem Python
- Código Python
 - Biblioteca
 - Calcular X = x
 - Calcular X <= x
 - Calcular X > x
 - Calcular z < X <= x
- Exercícios

Teórica

Definição da v.a.

X v.a. representa o intervalo de tempo entre dois eventos independentes.

Notação

 $X \sim \mathsf{Exp}(eta)$

 $\frac{1}{\beta}$ -> representa o numero médio de eventos que ocorrem por unidade de tempo ou região espacial.

$$\beta = \frac{1}{\lambda}$$

Parâmetros

 $\beta > 0$

Função de probabilidade

$$f(x) = egin{cases} 0, & x < 0 \ rac{1}{eta} e^{-rac{x}{eta}}, x \geq 0 \end{cases}$$

Média

$$E(X) = \mu_X = \beta$$

Variância

$$VAR(X) = \sigma_X^2 = \beta^2$$

Função de distribuição acumulada

$$f(x) = egin{cases} 0, & x < 0 \ 1 - e^{-rac{x}{eta}}, x \geq 0 \end{cases}$$

Resultados sem Python

Código Python

Biblioteca

from scipy import stats

Calcular X = x

stats.expon.pmf(x, loc=0, scale=beta)

Calcular X <= x

stats.expon.cdf(x, loc=0, scale=beta)

Calcular X > x

1 - stats.expon.cdf(x, loc=0, scale=beta)

Calcular z < X <= x

stats.expon.cdf(x, loc=0, scale=beta) - stats.expon.cdf(z, loc=0, scale=beta)

Exercícios