Universität Hamburg

Fachbereich: Sozialwissenschaften Fachgebiet: Politikwissenschaft

Seminar: Musterseminar

Dozenten: Prof. Dr. Kai-Uwe Schnapp

PD Dr. Falk Daviter Wintersemester 2018/19

Forschungsarbeit

Geschlechterunterschiede im Deutschen Bundestag

Arbeitstitel

tba

Josef Holnburger

Matrikelnummer: XXX

XXX XXX

E-Mail: josef@holnburger.com

Inhaltsverzeichnis

1	Einl	eitung	1
2	Dat	enerhebung Teil 1	2
	2.1	XML-Knoten und Attribute	3
	2.2	Zwischenfazit	5
3	Dat	enerhebung Teil 2	9
Li	terat	ur- und Quellverzeichnis	10

1 Einleitung

Zusammen mit Gina-Gabriele Görner analysiere ich die Protokolle des Deutschen Bundestages auf mögliche Geschlechterunterschiede. Hierfür wollen wir die Anzahl aber auch Inhalte der Reden mehrer Wahlperioden des Bundestags untersuchen. Dieses Projekt wurde auch für die 4. International Conference on Computational Social Science eingereicht und wir dürfen es dort mit einem Plakat vorstellen.

Wir orientieren uns vor allem an der Forschung von Bäck et al. (2014), welche das schwedische Parlament auf mögliche Geschlechterunterschiede und Diskriminierung hin untersucht haben. In dieser Studie wurden Unterschiede sowohl in der Anzahl als auch bezüglich des Inhalts der Reden festgestellt. Auuch im schwedischen Parlament sind Männer deutlich häufiger zu hören – obwohl es mit einem Frauenanteil von 40 Prozent die höchste Quote europäischer Parlamente aufweist (Bäck et al. 2014: 505). Männer sprechen in ihren Reden häufiger über hard topics, bei soft topics ist der Redeanteil hingegen ausgeglichen (ebd: 513ff.). Die Konstruktion der hard und soft topics geht dabei auf Wangnerud (2000) zurück und ist nicht unkritisch – hier werden durchaus Geschlechterstereotype aufrechterhalten oder gar reproduziert, indem "typische" Frauen und Männerthemen identifiziert werden. Wangnerud hat ihn ihrer Untersuchung die Mitglieder des schwedischen Riksdag bezüglich ihrer Aktivitäten befragt. Das Ergebnis von Bäck et al. (2014) ist deshalb auch nicht besonders überraschend – bestätigt es doch nur, dass die Fachpolitiker_innen häufiger über ihre Themen auch im Plenum reden.

In dieser Arbeit soll anders vorgegangen werden. Die Inhalte der Reden im Bundestaug sollen ohne voherige Identifikation vermeintlicher Frauen- und Männerthemen untersucht werden. Hierbei nutzen wir die Möglichkeiten des *Topic Modelling* um zunächst generell Themen der Reden im Bundestags zu identifizieren und diese anschließend auf mögliche Geschlechterunterschiede untersuchen. Natürlich wollen auch wir die Unterschiedlichen Redeanteile untersuchen.

Da ich den Prinzipien der Open Science sehr viel abgewinnen kann, soll die Erhebung und Auswertung möglichst transparent und nachvollziehbar dargestellt werden.

2 Datenerhebung Teil 1

Die Reden im Deutschen Bundestag sind in den Protokollen dokumentiert und lassen sich online abrufen. Praktischerweise liegen die Daten seit der aktuellen Wahlerperiode auch im TEI-Format (Text Encoding Initiative) vor. Dies erleichtert die Analyse der Protkolle erheblich. Die Datenerhebung und Auswertung erfolgt mit der Programmiersprache R (R Core Team 2018) und der tidyverse Packetsammlung (Wickham 2017).

Die Datenerhebung soll zunächst an einem Beispielprotokoll gezeigt werden – wir nutzen hierfür das Protokoll der 61. Sitzung des 19. Bundestages. Das Protokoll liegt dabei sowohl als PDF, als TXT und auch als XML-Datei vor. Letzeres wird für diese Arbeit herangezogen.

Mit dem Packet xml2 (Wickham et al. 2018) kann das Protokoll ausgelesen und anschließend in ein passendes Format umgewandelt werden. Mit der Funktion read_html() wird das vollständige Protokoll in der Variable prot_file eingelesen. Die Umwandlung der einzelnen Knoten und Attribute des XML-Dokuments erfolgt mit dem rvest Packet (Wickham 2016).

Da für diese Auswertung nur die Reden im Deutschen Bundestag herangezogen werden (und angehängte Dokumente sowie Anwesenheitslisten irrelevant sind), soll nur ein Teil des Protkolls untersucht werden. Mittels der Funktion xml_find_all(//rede") können alle Einträge unter dem Knoten "rede" herausgefiltert werden.

```
library(tidyverse)
library(xml2)
library(rvest)

prot_file <- read_html("https://www.bundestag.de/blob/577958/b2d1fce9b7dec32a1403a2ed

prot_overview <- prot_file %>%
    xml_find_all("//rede")
```

Die Datei soll anschließend in einen *Dataframe* umgewandelt werden. Dies erleichtert die weitere Arbeit und im weiteren Verlauf können die Daten einfacher nach nach Geschlecht, Partei, Datum oder Wahlperiode gefiltert werden. Hierbei wird vor allem mit den Funktionen xml_node() und xml_attr() gearbeitet. Zum Verständnis bietet sich hier ein kleiner Diskurs an.

2.1 XML-Knoten und Attribute

Nachdem die Datei eingelesen wurde, lohnt sich ein Blick auf die Rohdaten:

In diesem Beispiel wird das XML-Fragment in die Variable xml_example geladen und ausgewertet. Die Knoten eines XML-Documents werden durch <> und </> eingefasst. Beispielsweise können die Knoten mit den Namen "Kommentar" folgendermaßen extrahiert werden:

```
xml_example %>% xml_nodes("kommentar")

## {xml_nodeset (1)}

## [1] <kommentar>(Beifall bei der SPD)</kommentar>
```

Bei der Ausgabe fällt jedoch auf, dass die Datei weiterhin eine XML-Datei bleibt und die Knoteninformationen ebenfalls extrahiert werden. Mittels der Funktion xml_text() kann das Ergebniss in einen in einen Character-String umwandelt werden.

```
xml_example %>% xml_nodes("kommentar") %>% xml_text()
## [1] "(Beifall bei der SPD)"
```

Die Ergebnisse werden in einer Liste zusammengefasst und können beispielsweise in einem

Datenframe umgewandelt werden.

Die Attribute eines Knotens finden sich in den Klammern nach dem Gleichheitszeichen: <knotenname attribut= "inhalt" > Die Werte eines Attributes (und auch den Attributnamen) können mit der Funktion xml_attr() extrahiert werden.

```
xml_example %>% xml_node("rede") %>% xml_attr("id")
```

```
## [1] "ID196105400"
```

<chr>

##

<chr>

<chr>

Mit dieser kurzen Exkursion können wir nun eine Funktion bauen, welche auf die für uns relevanten Daten aus dem XML-Dokument extrahiert und anschließend in einen Datenframe umwandelt.

```
get_overview_df <- function(x){
  rede_id <- x %>% xml_attr("id")
  redner_id <- x %>% xml_node("redner") %>% xml_attr("id")
  redner_vorname <- x %>% xml_node("redner") %>% xml_node("vorname") %>% xml_text()
  redner_nachname <- x %>% xml_node("redner") %>% xml_node("nachname") %>% xml_text()
  redner_fraktion <- x %>% xml_node("redner") %>% xml_node("fraktion") %>% xml_text()
  redner_rolle <- x %>% xml_node("rolle_kurz") %>% xml_text()

  data_frame(rede_id, redner_id, redner_vorname, redner_nachname, redner_fraktion, redner_fraktion, redner_fraktion, redner_nachname, redner_fraktion, r
```

Wir können mit dieser Funktion nun die vorher eingelesen XML-Datei in einen Datenframe umwandeln und auswerten.

```
overview_df <- get_overview_df(prot_overview)

overview_df

## # A tibble: 144 x 6

## rede_id redner_id redner_vorname redner_nachname redner_fraktion</pre>
```

<chr>

<chr>

```
##
    1 ID1961~ 11003196
                         Andrea
                                         Nahles
                                                         SPD
##
    2 ID1961~ 11004873
                         Ulrike
                                         Schielke-Ziesi~ AfD
##
    3 ID1961~ 11002666
                         Hermann
                                         Gröhe
                                                         CDU/CSU
    4 ID1961~ 11004179
##
                         Johannes
                                         Vogel
                                                         FDP
##
   5 ID1961~ 11004012
                         Matthias W.
                                         Birkwald
                                                         DIE LINKE
    6 ID1961~ 11003578
                                         Kurth
                                                         BÜNDNIS 90/DIE~
##
                         Markus
   7 ID1961~ 11003142
                         Hubertus
                                         Heil
                                                         <NA>
   8 ID1961~ 11004856
##
                                         Pohl
                                                         AfD
                         Jürgen
   9 ID1961~ 11002812
                                                         CDU/CSU
##
                         Max
                                         Straubinger
## 10 ID1961~ 11004941
                         Gyde
                                         Jensen
                                                         FDP
## # ... with 134 more rows, and 1 more variable: redner_rolle <chr>
```

2.2 Zwischenfazit

Wir konnten mit wenigen Zeilen Code das XML-Format in einen Datenframe umwandeln, welcher uns die weitere Arbeit erheblich erleichter. So könnten wir sehr schnell sagen, wie viele Reden es von den einzelnen Fraktionen zur 61. Sitzung des 19. Bundestags gab:

```
overview_df %>%
  group_by(redner_fraktion) %>%
  summarise(reden = n()) %>%
  arrange(-reden)
```

```
## # A tibble: 8 x 2
     redner_fraktion
##
                             reden
     <chr>>
                             <int>
## 1 CDU/CSU
                                41
## 2 SPD
                                27
## 3 AfD
                                20
## 4 BÜNDNIS 90/DIE GRÜNEN
                                16
## 5 FDP
                                16
```

```
## 6 DIE LINKE 15
## 7 <NA> 6
## 8 fraktionslos 3
```

Da *NA* Fraktionen sind dabei die Reden von Ministern und Gästen. Sie werden keiner Fraktion zugeordnet. Insgesamt gab es 144 Reden an diesem Tag.

Uns interessieren natürlich nun nicht nur die Anzahl der Reden, sondern auch deren Inhalt. Wir untersuchen hierfür alle Knoten eine Ebene unter den "rede"-Knoten.

```
prot_speeches <- prot_file %>%
    xml_find_all("//rede/*")
```

Wir bauen wieder eine Funktion, um alle Inhalte der Reden zu extrahieren. Diese Funktion ist ein wenig komplexer, da sie unter anderem die Funktion map() aus dem purrr Packet nutzt (ebenfalls tidyverse) – für weitere Informationen über die Funktion map() bietet sich dieses Tutorial an.

Außerdem müssen die Rohdaten etwas angepasst werden, da die Aussagen des Präsidiums sonst falsch zugeordnet werden.

```
get_speeches_df <- function(x){
  raw <- x
  rede <- x %>% xml_text()
  id <- x %>% xml_node("redner") %>% xml_attr("id")
  vorname <- x %>% xml_node("vorname") %>% xml_text()
  nachname <- x %>% xml_node("nachname") %>% xml_text()
  fraktion <- x %>% xml_node("fraktion") %>% xml_text()
  rolle <- x %>% xml_node("rolle_kurz") %>% xml_text()
  typ <- x %>% xml_name()
  status <- x %>% xml_attr("klasse")

data_frame(raw, rede, id, vorname, nachname, fraktion, rolle, typ, status) %>%
  mutate(rede_id = map(raw, ~xml_parent(.) %>% xml_attr("id")) %>% as.character())
```

```
select(-raw) %>%
    mutate(status = ifelse(typ == "kommentar", typ, status)) %>%
    mutate(status = ifelse(typ == "name", "präsidium", status)) %>%
    mutate(fraktion = case_when(
      typ == "name"
                          ~ "präsidium",
      !is.na(rolle)
                          ~ "andere",
      TRUE
                          ~ fraktion)) %>%
    fill(id, vorname, nachname, fraktion) %>%
   mutate(präsidium = ifelse(fraktion == "präsidium", TRUE, FALSE)) %>%
    mutate(fraktion = ifelse(fraktion == "präsidium", NA, fraktion)) %>%
    filter(!status %in% c("T_NaS", "T_Beratung", "T_fett", "redner")) %>%
    filter(!typ %in% c("a", "fussnote", "sup")) %>%
    select(rede_id, rede, id, vorname, nachname, fraktion, präsidium, typ, status)
}
speeches_df <- get_speeches_df(prot_speeches)</pre>
```

Mittels dieses Datenframes ist es nun möglich, nur die Aussagen von beispielsweise Andrea Nahles zu untersuchen – ohne Unterbrechungen und Fragen von anderen Abgeordneten "mitzuschneiden" oder Aussagen des Präsidiums mitzunehmen.

Hier ein Beispiel:

```
speeches_df %>%

filter(typ != "kommentar") %>%

filter(präsidium == FALSE) %>%

filter(id == "11003196") %>%

pull(rede) %>%

cat(fill = TRUE)
```

Herr Präsident! Meine lieben Kolleginnen und Kollegen! Auch in dieser Woche verabs
Mit der heutigen Rentenreform vollziehen wir einen grundsätzlichen Richtungswechse
Wir sichern damit ein Rentenniveau auf dem heutigen Level. Das ist wirklich eine s

wenn sie eben ergänzend gedacht ist, nicht ersetzend. Das ist der entscheidende Punkt ## Denn die gesetzliche Rentenversicherung ist und bleibt die zentrale Säule im deuts ## Die Rentenreform folgt einem einfachen Prinzip: Wer ein Leben lang arbeitet, der v ## Ich betone: Ich benutze den Begriff "verdient" bewusst. Denn die Rente ist kein Al ## Uns ist die Stärkung der umlagefinanzierten Rente ja auch deswegen so wichtig, wei ## Im Gegensatz zu den privaten steht die gesetzliche Rente blendend da. Würde man au ## Die umlagefinanzierte Rente ist deswegen der kapitalgedeckten überlegen. ## Ich spreche jetzt in diesem Hohen Haus auch etwas aus, was vielleicht nicht alle ## oder wir lassen zu, dass die Renten immer weiter sinken und entwertet werden. ## Wenn wir das aber zulassen, muss die junge Generation einem solchen System irgendu ## Deswegen ist aus meiner Sicht die Sicherung des Rentenniveaus in diesem System aus ## Jetzt sagen manche, das sei nicht finanzierbar. Das ist ein ziemlich scheinheilige ## Denn niemand wird ja wohl bestreiten, dass das Geld für eine auskömmliche Rente im ## Das, was wir heute beschließen, ist finanziert. Bis 2025 ist das Rentenniveau klar ## Wir steigen darüber hinaus in die Bildung einer Demografierücklage ein. ## Damit schaffen wir die Voraussetzung, um den Steueranteil zur Finanzierung der Ren ## Das wird wahrscheinlich auch der Weg der Zukunft sein. Darüber wird aber in der Re ## Wenn es aber etwas gibt, was wir klären müssen, dann ist das doch die Frage: Wolle ## Einen Weg zur Finanzierung werden wir in einem reichen Land wie Deutschland sicher ## Letzter Satz. Wenn es also einen Gradmesser für die soziale Sicherheit in Deutschl ## Vielen Dank.

Somit könnten wir für dieses Protokoll die einzelnen Reden (aber zum Beispiel auch Zwischenfragen) von Abgeordneten gezielt auf deren Inhalte untersuchen. Wir können noch nicht die Zwischenrufe und den Applaus nach Abgeordneten bzw. Fraktionen auswerten. Dies wäre mit sogenannten regular experesions aber möglich.

Wie wir alle aktuellen Protokolle auswerten, behandeln wir in Daten wir in Kapitel 3. Die beiden Funktionen speichern wir im Ordner "functions".

3 Datenerhebung Teil 2

Leider gibt es keine Möglichkeit, die XML-Protokolle des Deutschen Bundesatages gesammelt herunterzuladen. Zwar findet sich auf *Open Data*-Seite des Bundestags¹ ein Verweis auf die Protkolle im XML-Format, allerdings lassen sie sich von dieser Seite nur mit mehreren Klicks installieren.\$

```
source("functions/get_overview_df.R")
source("functions/get_speeches_df.R")
```

¹https://www.bundestag.de/service/opendata

Literatur- und Quellverzeichnis

Bäck, Hanna/Debus, Marc/Müller, Jochen (2014): Who Takes the Parliamentary Floor? The Role of Gender in Speech-Making in the Swedish "Riksdag". In: *Political Research Quarterly*, 67 (3), 504–518.

R Core Team (2018): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Text abrufbar unter: https://www.R-project.org/.

Wangnerud, Lena (2000): Testing the Politics of Presence: Women's Representation in the Swedish Riksdag. In: *Scandinavian Political Studies*, 23 (1), 67–91.

Wickham, Hadley (2016): Rvest: Easily Harvest (Scrape) Web Pages. Text abrufbar unter: https://CRAN.R-project.org/package=rvest.

Wickham, Hadley (2017): Tidyverse: Easily Install and Load the 'Tidyverse'. Text abrufbar unter: https://CRAN.R-project.org/package=tidyverse.

Wickham, Hadley/Hester, James/Ooms, Jeroen (2018): Xml2: Parse XML. Text abrufbar unter: https://CRAN.R-project.org/package=xml2.