Representing knowledge in the semantic web

Given a domain of interest to us, and the concepts and knowledge associated with it

- ... how do we describe the domain of interest?
- ... how do we store and retrieve information about the domain of interest that is relevant?

What does it mean to describe something?

What does it mean to describe something?

- Provide details about it
 - What are those details?
- Entities/objects
- Relationships among those entities

Let's think about the domain of autobiographical knowledge

- what sort of information constitutes knowledge we have about ourselves and our past?
- why is knowing things about someone's past useful, say for various companies that do their business on the web?

We need to store knowledge in some sort of database

- The database has to be organized in some way
- What are ways in which we can organize the data in a database?

Relational databases

 Store information in tables in which columns are the fields and rows are the entries/ records for individual items, e.g. Excel spreadsheets, MySQL, etc.

stimulus_id	name	description	playlist	artist	album	genre	file_format	size	duration	year
1	Yeah!	iTunes Music Fragment	billboards	Usher featuring Lil' Jon & Ludacris	Confessions (Special Edition)	R&B/Soul	mp3	512606	00:00:31	2004
2	Burn	iTunes Music Fragment	billboards	Usher	Confessions (Special Edition)	R&B/Soul	mp3	512188	00:00:31	2004
3	If I Ain't Got You	iTunes Music Fragment	billboards	Alicia Keys	The Diary of Alicia Keys	R&B/Soul	mp3	512188	00:00:31	2004
4	This Love	iTunes Music Fragment	billboards	Maroon 5	Songs About Jane	Rock	mp3	512188	00:00:31	2004
5	The Way You Move	iTunes Music Fragment	billboards	OutKast & Sleepy Brown	Speakerboxxx/The Love Below	Hip- Hop/Rap	mp3	512188	00:00:31	2004
6	The Reason	iTunes Music Fragment	billboards	Hoobastank	The Reason	Alternative	mp3	511770	00:00:31	2003

Graph databases

Resource Description Framework (RDF) stores

- Don't contain tables
 - O They contain statements
- Each statement relates:
 - O A subject (s) to an object (o) via a predicate (p)
- Statements are commonly called triples
- RDF triple stores are the backbone of the Semantic Web

Music-evoked remembering

• What are the basic entities that we are dealing with if we are interested in musicevoked memories?

Person, Music (Song), Memory

Generate statements consisting of a subject (s), predicate (p), and object (o) that relate these three entities to each other

Example statements – in the realm of music-evoked memories

- person (s) heard (p) song (o)
- song (s) evoked (p) memory (o)
- person (s) remembered (p) memory (o)
- Note: We can turn these statements around by using predicates that are the inverse of the predicates we first used
- memory (s) evokedBy (p) song (o)
- memory (s) rememberedBy (p) person (o)
- song (s) heardBy (p) person (o)

Can we elaborate each of the previous subjects (classes) further?

person, song, memory

Exercise:

- For each of the entities listed above, generate a list of other entities that provides more detailed information about that entity, e.g. birthdate, title, location
- For each of the new entities, generate a predicate that links it to the original entity (subject)
- O Write out the new statements (s, p, o)

Ontologies

- Our growing collection of statements starts to describe an ontology of music-evoked autobiographical knowledge
- An ontology models a domain of knowledge

MEAMCentral Ontology Overview

Getting data into and out of the model ...

- The ontology we have discussed so far models our knowledge domain, but,
- (1) How do we get actual data into it,
 - i.e. instances of people hearing songs and experiencing memories?
- (2) How do we view the data we have in our database?

Semantic Web technologies

- RDF databases provide a means of specifying arbitrary models/ontologies
- Specifications exist that make it possible to store and query representations of knowledge within and across RDF databases (triple stores).
- Web Ontology Language (OWL)
 - has various extensions
- SPARQL Protocol and RDF Query Language (SPARQL)
 - a semantic web standard for querying RDF triple stores

Interfaces to Semantic Web technologies from programming, data analysis, and visualization tools

- Programming and Analysis
 - O Python
 - OR
- Natural Language Processing (NLP)
 - Onltk (Python)
 - otm (R) text mining
- Visualization
 - O d3

Models are inherently tied to views (Part 1)

- What are the things we need to do to get data into our music-evoked memory database?
 - put information about music we want to play into the database
 - o ask questions about a person
 - ask questions about a person's response for each piece of music we play them
- The questions we ask are views of the model because each answer we obtain is an instance of a class in our database. In other words, our model determines what questions we ask in order to populate our triple store with data.

Models are inherently tied to views (Part 2)

- What are the things we need to do to view the data stored in our music-evoked memory database?
- When we analyze and display data we commonly define further relationships/ transformations in the data in order to answer additional questions.
 - Reasoning