

Figure 1

Figure 2

What is the adjacency matrix of the weighted graph G = (V,E) shown in Figure 1.

	А	В	С	D	E	F	G	Н	I
Α	0	1	1	1	0	0	0	0	0
В	1	0	1	0	0	1	0	1	0
С	1	1	0	1	1	1	0	0	0
D	1	0	1	0	1	0	0	0	1
E	0	0	1	1	0	1	1	0	0
F	0	1	1	0	1	0	1	1	0
G	0	0	0	0	1	1	0	1	1
Н	0	1	0	0	0	1	1	0	1
I	0	0	0	1	0	0	1	1	0

Find the shortest path from A to all other vertices using Dijkstra's algorithm (Slide 12). (Figure 1)
Start from A

Shortest distance from A to all vertices

```
\begin{split} B[A] &= \{\} \\ B[B] &= B[A] \cup \{ (A, B) \} = \{A, B \} \\ B[C] &= B[A] \cup \{ (A, C) \} = \{ (A, C) \} \\ B[D] &= B[A] \cup \{ (A, D) \} = \{ (A, D) \} \\ B[E] &= B[D] \cup \{ (D, E) \} = \{ (A, D), (D, E) \} \\ B[F] &= B[C] \cup \{ (C, F) \} = \{ (A, C), (C, F) \} \\ B[G] &= B[I] \cup \{ (I, G) \} = \{ (A, D), (D, I) (I, G) \} \\ B[H] &= B[B] \cup \{ (B, H) \} = \{ (A, B), (B, H) \} \\ B[I] &= B[D] \cup \{ (D, I) \} = \{ (A, D), (D, I) \} \\ A[A] &= 0 \\ A[B] &= A[A] + wt(B) = 0 + 22 = 22 \\ A[C] &= A[A] + wt(C) = 0 + 9 = 9 \\ A[D] &= A[A] + wt(D) = 0 + 12 = 12 \end{split}
```

$$A[B] = A[C] + wt(B) = 9 + 35 = 44$$

$$A[D] = A[C] + wt(D) = 9 + 4 = 13$$

$$A[F] = A[C] + wt(F) = 9 + 42 = 51$$

$$A[E] = A[C] + wt(E) = 9 + 65 = 74$$

$$A[E] = A[D] + wt(E) = 12 + 33 = 45$$

$$A[I] = A[D] + wt(I) = 12 + 30 = 42$$

$$A[H] = A[B] + wt(H) = 22 + 34 = 56$$

$$A[F] = A[B] + wt(F) = 22 + 36 = 58$$

$$A[G] = A[I] + wt(G) = 42 + 21 = 63$$

$$A[H] = A[I] + wt(H) = 42 + 19 = 61$$

$$A[G] = A[E] + wt(G) = 45 + 23 = 68$$

$$A[F] = A[E] + wt(F) = 45 + 18 = 63$$

$$A[G] = A[F] + wt(G) = 51 + 39 = 90$$

$$A[H] = A[F] + wt(H) = 51 + 24 = 75$$

$$A[G] = A[H] + wt(G) = 56 + 25 = 81$$

What is the time complexity? => O(m log n)

Question 4

Find a minimum spanning tree using Kruskal's Algorithm (Figure 1) Sorting edge by weight

Edge	Weight
C, D	4
A, C	9
A, D	12
E, F	18
Н, І	19

G, I										21										
A, B										22										
E, G										23										
F, H										24										
G, H										25										
D, I										30										
D, E										33										
B, H										34										
B, C										35										
B, F										36										
F, G										39										
C, F										42										
C, E										65										
ABCDE		 				_			 -		F					1			Τ.	
Α	В		С			D			Е		F			G			Н		I	
Α	В			C,	D		E			F			G			Н			ı	
			!															-		
A, C, D	В	<u> </u>			E			F	=		G				Н			1		
1,, 0, 5	_							<u> </u>							• •			<u> </u>		
		Ι_				Γ_				Τ_				Γ				Ι.		
A, C, D		В				E,	<u> </u>			G				Н				I		
		<u> </u>									1									
A, C, D		E	3				E	Ξ, Γ	F			G	; 				Н,			
A, C, D				В						E, F	•					G	, H, I			
<u></u>																				

Group members: Marwane Bidamou (4), Eduard Koshkelyan (8), Roshan Maharjan (11)

A, B, C, D	E, F	G, H, I
	1	

A, B, C, D	E, F, G, H, I

A, B, C, D, E, F, G, H, I

Question 5

What is the time complexity? => O(mlog n)

Question 6

What is the adjacency matrix of the weighted directed Acyclic graph G = (V,E) shown in Figure 2.

	Р	Q	R	S	Т	U
Р	0	1	0	1	1	0
Q	0	0	1	1	0	0
R	0	0	0	1	0	1
S	0	0	0	0	1	1
Т	0	0	0	0	0	1
U	0	0	0	0	0	0

Question 7

Find the shortest path from P to U. (Figure 2). (Use the algorithm starting at slide 33).

=>

Topological Sort:

One possible topological order: P, Q, S, T, R, U.

Initialize Distances:

P: 0

Q: ∞

S: ∞

T: ∞

R: ∞

U: ∞

Relaxation:

From P:

From Q:

From S:

From T:

$$T \rightarrow U: U = min(7, 7 + 2) = 7$$

From R:

$$R \rightarrow U: U = min(7, 2 + 1) = 3$$

Question 8

What is the time complexity? => O(n+m)

Question 9

Can you use Dijkstra's algorithm (Slide 12) to find the shortest path from P to U? (Figure 2).

=> Yes

If "Yes", find the shortest path from P to U using Dijkstra's algorithm (Slide 12) (Figure 2).

```
Start from P

B[P] = \{\}

B[Q] = B[P] \cup \{ (P, Q) \} = \{ (P, Q) \}

B[R] = B[Q] \cup \{ (Q, R) \} = \{ (P, Q), (Q, R) \}

B[U] = B[R] \cup \{ (R, U) \} = \{ (P, Q), (Q, R), (R, U) \}

A[P] = 0

A[Q] = A[P] + wt(Q) = 0 + 1 = 1

A[S] = A[P] + wt(S) = 0 + 6 = 6

A[T] = A[P] + wt(T) = 0 + 7 = 7

A[R] = A[Q] + wt(R) = 1 + 1 = 2

A[S] = A[R] + wt(S) = 2 + 2 = 4

A[U] = A[R] + wt(U) = 2 + 1 = 3
```

Therefore, the shortest path from P to U is $P \rightarrow Q \rightarrow R \rightarrow U$.