Appendix A

ALLERGEN SOURCE	SYSTEMATIC AND ORIGINAL NAMES	MW	SEQ	ACCESSION NO.
		KDA		OR REFERENCES
WEED POLLENS				
Asterales				
Ambrosia artemisiifolia	Amb a 1; antigen E Amb a 2; antigen K	38 38 11	000	8,20 8,21 22
(short ragweed)	Amb a 3; Ra3 Amb a 5; Ra5 Amb a 6; Ra6	5 10	CC	11,23 24,25
	Amb a 7; Ra7 Amb a ?	12 11	P C	26 27
Ambrosia trifida (giant ragweed)	Amb t 5; Ra5G	4.4	С	9,10,28
Artemisia vulgaris (mugwort)	Art v 1 Art v 2	27-29 35	C P	28A 29
Helianthus annuus (sunflower)	Hel a 1 Hel a 2; profilin	34 15.7	c	29a Y15210
Mercurialis annua	Mer a 1; profilin	14-15	С	Y13271
GRASS POLLENS				
Poales				
Cynodon dactylon (Bermuda grass)	Cyn d 1 Cyn d 7 Cyn d 12; profilin	32	CCC	30,S83343 31,X91256 31a,Y08390
Dactylis glomerata (orchard grass)	Dac g 1; AgDg1 Dac g 2 Dac g 3 Dac g 5	32 11 31	P C C	32 33,S45354 33a,U25343 34
Holcus lanatus (velvet grass)	Hol 1 1		С	Z27084,Z68893
Lolium perenne (rye grass)	Lol p 1; group I Lol p 2; group II Lol p 3; group III Lol p 5; Lol p IX, Lol p Ib	27 11 11 31/35	CCC	35,36 37,37a,X73363 38 34,39
	Lol p 11; trypsin inh. Related	16		
Phalaris aquatica (canary grass)	Pha a 1		C	40,\$80654
Phleum pratense (timothy grass)	Phl p 1 Phl p 2 Phl p 4 Phl p 5; Ag25	32	C C P C	X78813 41,X75925 41A 42
	Phl p 6 Phl p 12; profilin		C	43,Z27082 44,X77583

D 1			
Poa p 1; group I Poa p 5	33 31/34	P C	46 34,47
Sor h 1		С	48
Aln g 1	17 .	С	S50892
Bet v 1	17	Ω C	see list of isoallergens M65179 X79267
Bet v 3	8	C	X79207 X87153/S54819 AF135127
Bet v 5; isoflavone reductase homologue	33.5	C	
Bet v 7; cyclophilin	18	С	P P81531
Car b 1	17	С	51
Cas s 1; Bet v 1 homologue Cas s5; chitinase	22	P	52
Cor a 1	17	С	53
Que a 1	. 17	P	54
Cry j 1 Cry j 2	41-45	C C	55,56 57,D29772
Jun a 1 Jun a 3	43 30	P P	P81294 P81295
Jun o 2; calmodulin-like	29	С	AF031471
Jun s 1	50	P	58
Jun v 1	43	P	P81825
Fra e 1	20	P	58A
Lig v 1	20	P	58A
Ole e 1; Ole e 2; profilin Ole e 3;	16 15-18 9.2	C C	59,60 60A 60B P80741
	Poa p 5 Sor h 1 Aln g 1 Bet v 2; profilin Bet v 3 Bet v 4 Bet v 5; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1 Cas s 1; Bet v 1 homologue Cas s5; chitinase Cor a 1 Que a 1 Cry j 1 Cry j 2 Jun a 1 Jun a 3 Jun o 2; calmodulin-like Jun s 1 Fra e 1 Lig v 1 Ole e 1; Ole e 2; profilin	Poa p 5 31/34	Poa p 5 31/34 C Sor h 1 C Aln g 1 17 C Bet v 2; profilin 15 C Bet v 3 8 C Bet v 5; isoflavone reductase 33.5 C homologue Bet v 7; cyclophilin 18 C Car b 1 17 C Cas s 1; Bet v 1 homologue 22 P Cas s 5; chitinase C Que a 1 17 C Que a 1 17 C Que a 1 17 P Cry j 1 41-45 C Cry j 2 C Jun a 1 43 P Jun a 3 30 P Jun v 1 43 P Fra e 1 20 P Lig v 1 20 P Cole e 1; Ole e 2; profilin 15-18 C Ole e 3; 9.2 C Can b 1 C Cole e 2; profilin C Ole e 3; C Can b 1 C Can b 1

	Ole e 5; superoxide dismutase	16	P	P80740
	Ole e 6;	10	С	U86342
Syringa vulgaris (lilac)	Syr v 1	20	P	58A
MITES		•		
Acarus siro (mite)	Aca s 13; fatty acid-bind.prot.	14*	С	AJ006774
Blomia tropicalis	Blo t 5;		C	U59102
(mite)	Blo t 12; Bt11a Blo t 13; Bt6 fatty acid-binding prot		СС	U27479 U58106
Dermatophagoides	Der p 1; antigen P1	25	С	61
pteronyssinus	Der p 2;	14	C	62
(mite)	Der p 3; trypsin	28/30	C	63
	Der p 4; amylase	60	C	64
	Der p 5;	14 25	P C	65 66
	Der p 6; chymotrypsin	22-28	C	67
	Der p 7; Der p 8; glutathione transferase	22-20	P	67A
	Der p 9; collagenolytic serine prot.		Ċ	67B
	Der p 10; tropomyosin	36		Y14906
	Der p 14; apolipophorin like p		С	Epton p.c.
Dermatophagoides microceras (mite)	Der m 1;	25	P	68
Dermatophagoides	Der f 1;	25	С	69
farinae (mite)	Der f 2;	14	С	70,71
` '	Der f 3;	30	С	63
	Der f 10; tropomyosin		С	72
	Der f 11; paramyosin	98	С	72a
	Der f 14; Mag3, apolipophorin		C	D17686
Euroglyphus maynei (mite)	Eur m 14; apolipophorin	177	С	AF149827
Lepidoglyphus	Lep d 2.0101;	15	С	73,74,75
destructor	Lep d 2.0102;	15	С	75
(storage mite)		<u>.l</u>		
ANIMALS		T		
Bos domesticus	Bos d 2; Ag3,lipocalin	20	C	76,L42867
(domestic cattle)	Bos d 4; alpha-lactalbumin	14.2	C	M18780
(see also foods)	Bos d 5; beta-lactoglobulin	18.3	C	X14712 M73993
	Bos d 6; serum albumin	67 160		77
	Bos d 7; immunoglobulin Bos d 8; caseins	20-30		77
Canis familiaris	Can f 1;	25	С	78,79
(Canis domesticus	Can f 2;	27	С	78,79
(dog)	Can f?; albumin	1.	С	S72946
Equus caballus	Equ c 1; lipocalin	25	С	U70823
(domestic horse)	Equ c 2; lipocali	18.5	P	79A,79B
Felis domesticus	Fel d 1; cat-1	38	С	15

(cat saliva)		Ţ.		
Mus musculus (mouse urine)	Mus m 1; MUP	19	С	80,81
Rattus norvegius (rat urine)	Rat n 1	17	C .	82,83
FUNGI				
Ascomycota				
Dothidiales				
Alternaria alternata	Alt a 1; Alt a 2; Alt a 3; heat shock protein Alt a 6; ribosomal protein Alt a 7; YCP4 protein	28 25 70 11 22	C C C C	U82633 U87807,U87808 X78222, U87806 X78225
	Alt a 10; aldehyde dehydrogenase Alt a 11; enolase Alt a 12;acid.ribosomal prot P1	53 45 11	C C	X78227, P42041 U82437 X84216
Cladosporium herbarum	Cla h 1; Cla h 2; Cla h 3; aldehyde dehydrogenase Cla h 4; ribosomal protein Cla h 5; YCP4 protein Cla h 6; enolase Cla h 12;acid.ribosomal prot P1	13 23 53 11 22 46 11	C C C C	83a,83b 83a,83b X78228 X78223 X78224 X78226 X85180
Eurotiales				
	Asp fl 13; alkaline serine proteinase	34		84
Aspergillus Furnigatus	Asp f 1; Asp f 2; Asp f 3; peroxisomal protein Asp f 4; Asp f 5; metalloprotease Asp f 6; Mn superoxide dismutase Asp f 7; Asp f 8; ribosomal protein P2 Asp f 9; Asp f 10; aspartic protease Asp f 11; peptidyl-prolyl isom Asp f 12; heat shock prot. P70 Asp f 13; alkaline serine proteinase Asp f 15; Asp f 16; Asp f 17; Asp f 18; vacuolar serine Asp f ?; Asp f ?;	18 37 19 30 42 26.5 12 11 34 34 24 65 34 16 43 34 90 55	C C C C C C C P P	83781,S39330 U56938 U20722 AJ001732 Z30424 U53561 AJ223315 AJ224333 AJ223327 X85092 84a U92465 84b AJ002026 g3643813 AJ224865 84c 85 86
Aspergillus niger	Asp n 14; beta-xylosidase Asp n 18; vacuolar serine	105 34	C C	AF108944 84b

	proteinase				
	Asp n ?;		85	C	Z84377
Aspergillus oryzae	Asp o 2; TAKA-amylase A Asp o 13; alkaline serine proteinase		53 34	CC	D00434,M33218 X17561
Penicillium brevicompactum	Pen b 13; alkaline serine Proteinas	se	33		86a
Penicillium citrinum	Pen c 1; heat shock protein P70 Pen c 3; peroxisomal membrane		70	С	U64207 86b
	protein Pen c 13; alkaline serine proteinas	ie	33		86a
Penicillium notatum	Pen n 1; N-acetyl glucosaminidase		68		87
	Pen n 13; alkaline serine proteinas Pen n 18; vacuolar serine proteina		34 32	:	89 89
Penicillium oxalicum	Pen o 18; vacuolar serine proteina	se	34		89
Onygenales					
Trichophyton rubrum	Tri r 2; Tri r 4; serine protease			CC	90 90
Trichophyton	Tri t 1;		30	P	91
tonsurans	Tri t 4; serine protease		83	С	90
Saccharomycetales					
Candida albicans	Cand a 1		40	C	88
Candida boidinii	Cand b 2		20	С	J04984,J04985
Basidiomycota					
Basidiolelastomycetes					
Malassezia furfur	Mal f 1;				91a
	Mal f 2; MF1 peroxisomal	21		С	AB011804
ı	membrane protein Mal f 3; MF2 peroxisomal membrane protein	20		С	AB011805
	Mal f 4,	35		С	Takesako, p.c.
	Malf5;	18	k	C	AJ011955
	Mal f 6; cyclophilin homologue	17'	k	С	AJ011956
Basidiomycetes				1	
Psilocybe cubensis	Psi c 1; Psi c 2; cyclophilin	16			91b
Coprinus comatus (shaggy cap)	Cop c 1; Cop c 2;	11	_	С	AJ132235
•	Cop c 3;				Brander, p.c.
	Cop c 5;]			Brander, p.c.
	Cop c 7;				Brander, p.c.
INSECTS					
Aedes aegyptii (mosquito)	Aed a 1; apyrase Aed a 2;	68 37		C	L12389 M33157

Apis mellifera	Api m 1; phospholipase A2	16	C	92
(honey bee)	Api m 2; hyaluronidase	44	l c l	93
(Holley See)	Api m 4; melittin	3	c	94
			-	
	Api m 6;	7-8	P	Kettner,p.c.
Bombus	Bom p 1; phospholipase	16	P	95
pennsylvanicus	Bom p 4; protease		P	95
(bumble bee)				
				06
Blattella germanica	Bla g 1; Bd90k		C	96
(German cockroach)	Bla g 2; aspartic protease	36	C	
	Bla g 4; calycin	21	C	97
	Bla g 5; glutathione transf.	22	C	98
	Bla g 6; troponin C	27	l c l	98
		1	C	98A
Periplaneta americana	Per a 1; Cr-PII	72-78		90A
(American cockroach)	Per a 3; Cr-PI		C	******
	Per a 7; tropomyosin	37	С	Y14854
Chironomus thummi	Chi t 1-9; hemoglobin	16	С	99
thummi (midges)	Chi t 1.01; component III	16	C	P02229
diamin (inages)	Chi t 1.02; component IV	16	C	P02230
	Chi t 2.0101; component I	16	C	P02221
		16	C	P02221
	Chi t 2.0102; component IA	1		1
	Chi t 3; component II-beta	16	C	P02222
	Chi t 4; component IIIA	16	00000	P02231
	Chi t 5; component VI	16	C	P02224
	Chi t 6.01; component VIIA	16	C	P02226
	Chi t 6.02; component IX	16	C	P02223
	Chi t 7; component VIIB	16	C	P02225
	Chi t 8; component VIII	16	C	P02227
	Chi t 9; component X	16	C	P02228
		<u> </u>	<u> </u>	
Dolichovespula	Dol m 1; phospholipase A1	35	C	100
maculata	Dol m 2; hyaluronidase	44	С	101
(white face hornet)	Dol m 5; antigen 5	23	C	102,103
Dolichovespula	Dol a 5; antigen 5	23	C	104
_	Doi a 5, antigen 5	23		101
arenaria				
(yellow hornet)			<u> </u>	
Polistes annularies	Pol a 1; phospholipase A1	35	P	105
(wasp)	Pol a 2; hyaluronidase	44	P	105
` ''	Pol a 5; antigen 5	23	C	104
D 11 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	32-34	C	DR Hoffman
Polistes dominulus	Pold 1;	32-34	-	DR Hoffman
(Mediterranean paper	Pol d 4; serine protease			
wasp)	Pol d 5;		<u> </u>	P81656
Polistes exclamans	Pol e 1; phospholipase A1	34	P	107
(wasp)	Pol e 5; antigen 5	23	C	104
* **		23	C	106
Polistes fuscatus	Pol f 5; antigen 5	23	-	100
(wasp)				
Polistes metricus	Pol m 5; antigen 5	23	P	106
(wasp)	, ,		1	
	Ven et alember	24	P	107
Vespa crabo	Vesp c 1; phospholipase	34	C	
(European hornet)	Vesp c 5.0101; antigen 5	23	\perp	106

	Vesp c 5.0102; antigen 5	23	С	106
Vespa mandarina (giant asian hornet)	Vesp m 1.01; Vesp m 1.02; Vesp m 5;			DR Hoffman DR Hoffman P81657
Vespula flavopilosa (yellowjacket)	Ves f 5; antigen 5	23	С	106
Vespula germanica (yellowjacket)	Ves g 5; antigen 5	23	С	106
Vespula maculifrons (yellowjacket)	Ves m 1; phospholipase A1 Ves m 2; hyaluronidase Ves m 5; antigen 5	33.5 44 23	C P 23	108 109 104
Vespula pennsylvanica (yellowjacket)	Ves p 5; antigen 5	. 23	С	106
Vespula squamosa (yellowjacket)	Ves s 5; antigen 5	23	С	106
Vespula vidua (wasp)	Ves vi 5;	23	С	106
Vespula vulgaris (yellowjacket)	Ves v 1; phopholipase A1 Ves v 2; hyaluronidase Ves v 5; antigen 5	35 44 23	C P C	105A 105A 104
Myrmecia pilosula (Australian jumper ant)	Myr p 1, Myr p 2;		C C	X70256 S81785
Solenopsis geminata (tropical fire ant)	Sol g 2; Sol g 4			DR Hoffman DR Hoffman
Solenopsis invicta (fire ant)	Sol i 2; Sol i 3; Soli 4;	13 24 13	CCC	110,111 110 110
Solenopsis saevissima (brazilian fire ant)	Sols 2;			DR Hoffman
FOODS				
Gadus callarias (cod)	Gad c 1; allergen M	12	С	112,113
Salmo salar (Atlantic salmon)	Sals 1; parvalbumin	12	С	X97824,X97825
Bos domesticus (domestic cattle)	Bos d 4; alpha-lactalbumin Bos d 5; beta-lactoglobulin Bos d 6; serum albumin Bos d 7; immunoglobulin Bos d 8; caseins	14.2 18.3 67 160 20-30	C C C	M18780 X14712 M73993 77 77
Gallus domesticus (chicken)	Gal d 1; ovomucoid Gald 2; ovalbumin Gald 3; conalbumin (Ag22) Gald 4; lysozyme Gal d 5; serum albumin	28 44 78 14 69	00000	114,115 114,115 114,115 114,115 X60688

Metapenaeus ensis (shrimp)	Met e 1; tropomyosin		С	U08008
Penaeus aztecus (shrimp)	Pen a 1; tropomyosin	36	P	116
Penaeus indicus (shrimp)	Pen i 1; tropomyosin	34	С	117
Todarodes pacificus (squid)	Tod p 1; tropomyosin	38	P	117A
Haliotis Midae (abalone)	Hal m 1	49		117B
Apium graveolens (celery)	Api g 1; Bet v 1 homologue Api g 4; profilin Api g 5;	16* 55/58	C P	Z48967 AF129423 P81943
Brassica juncea (oriental mustard)	Bra j 1; 2S albumin	14	C	118
Brassica rapa (turnip)	Bra r 2; prohevein-like protein	25	?	P81729
Hordeum vulgare (barley)	Hor v 1; BMAI-1	15	С	119
Zea mays (maize, corn)	Zea m 14; lipid transfer prot.	9	P	P19656
Corylus avellana (hazelnut)	Cor a 1.0401; Bet v 1 homologue	. 17	С	AF136945
Malus domestica (apple)	Mal d 1; Bet v 1 homologue Mal d 3; lipid transfer protein	9	CC	X83672 Pastorello
Pyrus communis (pear)	Pyr c 1; Bet v 1 homologue Pyr c 4; profilin Pyr c 5; isoflavone reductase	18 14	CCC	AF05730 AF129424 AF071477
Oryza sativa (rice)	homologue - Ory s 1;	33.5	C	U31771
Persea americana (avocado)	Pers a 1; endochitinase	32	С	Z78202
Prunus armeniaca (apricot)	Pru ar 1; Bet v 1 homologue Pru ar 3; lipid transfer protein	9	C P	U93165
Prunus avium (sweet cherry)	Pru av 1; Bet v 1 homologue Pru av 2; thaumatin homologue Pru av 4; profilin	15	CCC	U66076 U32440 AF129425
Prunus persica (peach)	Pru p 3;lipid transfer protein	10	P	P81402
Sinapis alba (yellow mustard)	Sin a 1; 2S albumin	14	С	120
Glycine max (soybean)	Gly m 1.0101; HPS Gly m 1.0102; HPS Gly m 2 Gly m 3; profilin	7.5 7 8 14	P P P C	121 121 A57106 AJ223982

Arachis hypogaea	Ara h 1; vicilin	63.5	C	L34402
(peanut)	Ara h 2; conglutin	17	С	L77197
(peanur)	Ara h 3; glycinin	14	Č	AF093541
		37	č	AF086821
	Ara h 4; glycinin			AF059616
	Ara h 5; profilin	15	C	
	Ara h 6; conglutin homolog	15	С	AF092846
	Ara h 7; conglutin homolog	15	С	AF091737
Actinidia chinensis	Act c 1; cysteine protease	30	P	P00785
(kiwi)	recording to the second			
L.`				D: 545.6
Solanum tuberosum	Sol t 1; patatin	43	P	P15476
(potato)				
Bertholletia excelsa	Ber e 1; 2S albumin	9	С	P04403,M17146
	Der e 1, 25 aroumm			
(Brazil nut)				
Juglans regia	Jug r 1; 2S albumin	44	С	U66866 ·
(English walnut)	Jug r 2; vicilin		C	AF066055
				D01000
Ricinus communis	Ric c 1; 2S albumin		С	P01089
(Castor bean)				
OTHERS		<u> </u>		
Anisakis simplex	Ani s 1	24	P	A59069
-		97	C	AF173004
(nematode)	Ani s 2; paramyosin		P	
Ascaris suum	Asc s 1;	10	Р	122
(worm)				
Aedes aegyptii	Aed a 1; apyrase	68	С	L12389
(mosquito)	,	37	С	M33157
(mosquito)	Aed a 2;			
Hevea brasiliensis	Hev b 1; elongation factor	58	P	123,124
(rubber)	Hev b 2; (1,3-glucanase	58	P	123,124
	Hev b 2; (1,3-glucanase	34/36	С	125
	Hev b 3	24	P	126,127
	Hev b 4; component of	100/110/115	P	128
	microhelix protein complex	100,110,115	-	
	Hev b 5	16	С	U42640
			č	M36986/p02877
	Hev b 6.01 hevein precursor	20		M36986/p02877
	Hev b 6.02 hevein	5	C	M36986/p02877
1.	Hev b 6.03 C-terminal	14	С	U80598
	fragment		1	
	Hev b 7; patatin homologue	46	C	Y15042
	Hev b 8; profilin	14	C	AJ132580/AJ1
	Hev b 9; enolase	51	l c	32581
				i i
		200	1	AJ249148
	Hev b 10; Mn-superoxide	26	C	
	dismut		[
			1	
Ctenocenhalidas falis	Cte f 1;		-	
Ctenocephalides felis		27	c	AF231352
felis	Cte f 2; M1b	21	١٦	M1/231332
(cat flea)		72*	-	V14214
Homo sapiens	Hom s 1;	73*	C	Y14314
(human	Hom s 2;	10.3*	C	X80909
autoallergens)	Hom s 3;	20.1*	С	X89985

Hom s.A.	36*		V17711
Hom s 4;	30.	-	11//11
l Home s. S.	12 6*		P02538
Hom s 5;	42.6*		P02336

- 1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, Baltimore, MD, Edition 1.0.
- 2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-Mills. 1986. Allergen nomenclature. Bull WHO 64:767-770.
- 3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.
- 4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.

- 5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum. Allergy 35:206-207.
- 6. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.
- Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B. Mach, S. G. E. Marsh, W. R. Mayr, P. Parham, T. Sasuki, G. M. Th. Schreuder, J. L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991. Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.
 - 8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96:296-304.
- Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D. G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.
 - 10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and L. Mueller. 1992. Solution structures of ragweed allergen Amb t V. Biochemistry 31:5117-5127.
 - 11. Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller. 1992. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy. Biochemistry 31:8697-8705.
 - 12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King. 1979. Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.
 - 13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass pollens. Mol. Immunol. 19:1527-1534.
- 25 14. Ansari, A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J. Allergy Clin. Immunol. 80:229-235.
 - 15. Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D. Chapman, and M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 88:9690-9694.
- 16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 113:263-268.
 - 17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem. Physiol. 83B:321-324.
 - 18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42:464-470.
- 35 19. Stanworth, D. R., K. J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner. 1990. Nomenclature for synthetic peptides representative of immunoglobulin chain sequences. Bulletin WHO 68:109-111.
 - 20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.G. Klapper. 1991. Cloning of Amb a I (Antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem. 266: 1229-1236.
- 21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A.W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991.

 Complete sequence of the allergen Amb a II: recombinant expression and reactivity with T cells from ragweed allergic patients. J. Immunol. 147:2547-2552.
 - 22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence of ragweed allergen Ra3. Biochemistry 19:5729-5734.
 - 23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.
- 45 24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131:706-711.
 - 25. Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.
- 26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.
 - 27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, complete sequence, and recombinant expression of a novel allergen from short ragweed pollen (abst). J. Allergy Clin. Immunol. 91:339.
 - 28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J. DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-906.
- Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-9 28A. Breitenbach M, pers. comm.
 - 29. Nilsen, B. M., K. Sletten, M. O'Neill, B. Smestead Paulsen, and H. van Halbeek. 1991. Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia vulgaris). J. Biol. Chem. 266:2660-2668.
 - 29A Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, Palacios R 1994. Sensitization to sunflower pollen: only an occupational allergy? Int Arch Allergy Immunol 105:297-307.
- 60 30. Smith, P.M., Suphioglu, C., Griffith, I.J., Theriault, K., Knox, R.B. and Singh, M.B. 1996.
 - Cloning and expression in yeast Pichia pastoris of a biologically active form of Cyn d 1, the major allergen of Bermuda grass pollen. J. Allergy Clin. Immunol. 98:331-343.

- 31. Suphioglu, C., Ferreira, F. and Knox, R.B. 1997. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 402:167-172.
- 31a. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, and Palacios R. 1997. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cyn d 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy 27:1307-1313.
- 32. Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch. Allergy Appl. Immunol. 78:283-289.
- 33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993. Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/Orchard grass (Dactylis glomerata), Dac g II. Allergy 48:615-623.
- 33a. Guerin-Marchand, C., Senechal, H., Bouin, A.P., Leduc-Brodard, V., Taudou, G., Weyer, A., Peltre, G. and David, B. 1996. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol. Immunol. 33:797-806.
 - 34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group V allergens in grass pollen IV. Similarities in amino acid compositions and amino terminal sequences of the group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.
- 15 35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210-16215.
 - 36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox. 1991. Cloning and sequencing of Lol p I, the major allergenic protein of rye-grass pollen. FEBS Letters 279:210-215.
- 37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J. Biol. Chem. 264:11181-11185.
 - 37a. Sidoli,A., Tamborini,E., Giuntini,I., Levi,S., Volonte,G., Paini,C., De Lalla,C., Siccardi,A.G., Baralle,F.E., Galliani,S. and Arosio,P. 1993. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J. Biol. Chem. 268:21819-21825.
 - 38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28:8665-8670.
- 39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M. Smith, P. Taylor, R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B. Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad. Sci. 88:1384-1388.
 - 39a. van Ree R, Hoffman DR, van Dijk W, Brodard V, Mahieu K, Koeleman CA, Grande M, van Leeuwen WA, Aalberse RC. 1995. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol 95:970-978.
- 30 40. Suphioglu, C. and Singh, M.B. 1995. Cloning, sequencing and expression in Escherichia coli of Pha a 1 and four isoforms of Pha a 5, the major allergens of canary grass pollen. Clin. Exp. Allergy 25:853-865.
 - 41. Dolecek, C., Vrtala, S., Laffer, S., Steinberger, P., Kraft, D., Scheiner, O. and Valenta, R. 1993. Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Lett. 335:299-304.
- 41A. Fischer S, Grote M, Fahlbusch B, Muller WD, Kraft D, Valenta R. 1996. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189-198.
 - 42. Matthiesen, F., and H. Lowenstein. 1991. Group V allergens in grass pollens. I. Purification and characterization of the group V allergen from Phleum pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.
 - 43. Petersen, A., Bufe, A., Schramm, G., Schlaak, M. and Becker, W.M. 1995. Characterization of the allergen group VI in timothy grass pollen (Phl p 6). II. cDNA cloning of Phl p 6 and structural comparison to grass group V. Int. Arch. Allergy Immunol. 108:55-59.
- 40 44. Valenta,R., Ball,T., Vrtala,S., Duchene,M., Kraft,D. and Scheiner,O. 1994. cDNA cloning and expression of timothy grass (Phleum pratense) pollen profilin in Escherichia coli: comparison with birch pollen profilin. Biochem. Biophys. Res. Commun. 199:106-118.
 - 46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26:557-561.
- 47. Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S. Mohapatra. 1991. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.
 - 48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass Lol p I (abst). J. Allergy Clin. Immunol. 91:340.
 - 51. Larsen, J.N., P. Stroman, and H. Ipsen. 1992. PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol. Immunol. 29:703-711.
- 50 52. Kos T, Hoffmann-Sommergruber K, Ferreira F, Hirschwehr R, Ahorn H, Horak F, Jager S, Sperr W, Kraft D, Scheiner O. 1993. Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen--Cas s 1. Biochem Biophys Res Commun 196:1086-92.
 - 53. Breiteneder, H., F. Ferreira, K. Hoffman-Sommergruber, C. Ebner, M. Breitenbach, H. Rumpold, D. Kraft, and O. Scheiner. 1993. Four recombinant isoforms of Cor a I, the major allergen of hazel pollen. Europ. J. Biochem. 212:355-362.
- 55. Ipsen, H., and B.C. Hansen. 1991. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens. Mol. Immunol. 28:1279-1288.
 - 55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and T. Matuhasi. 1988. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j I). FEBS Lett. 239:329-332.
- 60 56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock. 1993. The cDNA cloning of Cry j I, the major allergen of Cryptomeria japonica (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.
 - 57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M. Usui, and T. Matuhasi. 1990. Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309-312.
- 58 Gross GN, Zimburean JM, Capra JD 1978. Isolation and partial characterization of the allergen in mountain cedar pollen. Scand J Immunol 8:437-41

- 58A Obispo TM, Melero JA, Carpizo JA, Carreira J, Lombardero M 1993. The main allergen of Olea europaea (Ole e I) is also present in other species of the oleaceae family. Clin Exp Allergy 23:311-316.
- Cardaba, B., D. Hernandez, E. Martin, B. de Andres, V. del Pozo, S. Gallardo, J.C. Fernandez, R. Rodriguez, M. Villalba, P. Palomino, A. Basomba, and C. Lahoz. 1993. Antibody response to olive pollen antigens: association between HLA class II genes and IgE response to Ole e I (abst). J. Allergy Clin. Immunol. 91:338.
 - 60. Villalba, M., E. Batanero, C. Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M.A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence of Ole e I, the major allergen from olive tree pollen (Olea europaea). Europ.J. Biochem. 216:863-869.
 - 60A. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, Palacios R 1997. Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J Allergy Clin Immunol 100:365-372.
- 10 60B. Batanero E, Villalba M, Ledesma A Puente XS, Rodriguez R. 1996. Ole e 3, an olive-tree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241: 772-778.
 - 61. Chua, K. Y., G. A. Stewart, and W. R. Thornas. 1988. Sequence analysis of cDNA encoding for a major house dust mite allergen, Der p I. J. Exp. Med. 167:175-182.
 - 62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int. Arch. Allergy Appl. Immunol. 91:118-123.
 - 63. Smith WA, Thomas WR. 1996. Comparative analysis of the genes encoding group 3 allergens from Dermatophagoides pteronyssinus and Dermatophagoides farinae. Int Arch Allergy Immunol 109: 133-40.
 - 64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart. 1991. House dust mite-derived amylase: Allergenicity and physicochemical characterisation. J. Allergy Clin. Immunol. 87:1035-1042.
- 65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo. 1989. Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J. Exp. Med. 170:1457-1462.
 - 66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991. Allergenic and proteolytic properties of fourth allergens from Dermatophagoides mites. In: "Dust Mite Allergens and Asthma. Report of the 2nd international workshop" A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.
 - 67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993. Molecular cloning of a house dust mite allergen with common antibody binding specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.
 - 67A. O'Neil GM, Donovan GR, Baldo BA. 1994. Cloning and characterisation of a major allergen of the house dust mite Dermatophagoides pteronyssinus, homologous with glutathione S-transferase. Biochim Biophys Acta, 1219:521-528.
- 67B. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. 1996. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite

 Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739-47.
 - 68. Lind P, Hansen OC, Horn N. 1988. The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I of D. pteronyssinus. J. Immunol. 140:4256-4262.
- 69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis of cDNA coding for a mojor house dust allergn Der f I. Clin. Exp. Allergy 21:25-32.
 - 70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993. Determination of three disulfide bonds in a major house dust mite allergen, Der f II. Int. Arch. Allergy Immunol. 101:159-166.
- 71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the major dust mite allergen Der f II. Clin. Exp. Allergy 21:33-38.

 72. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. 1995. Immunochemical characteristion of recombinant and native tropomyosins as a new allergen from the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 96:74-83.
 - 73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall, B. Harfast, and S.G.O. Johansson. 1993. N-terminal amino acid sequence of major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin. Immunol. 91:353.
- 74. Varela J, Ventas P, Carreira J, Barbas JA, Gimenez-Gallego G, Polo F. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen. Eur J Biochem 225:93-98, 1994.
 - 75. Schmidt M, van der Ploeg I, Olsson S, van Hage Hamsten M. The complete cDNA encoding the Lepidoglyphus destructor major allergen Lep d 1. FEBS Lett 370:11-14, 1995.
 - 76. Rautiainen J, Rytkonen M, Pelkonen J, Pentikainen J, Perola O, Virtanen T, Zeiler T, Mantyjarvi R. BDA20, a major bovine dander allergen characterized at the sequence level is Bos d 2. Submitted.
- 50 77. Gjesing B, Lowenstein H. Immunochemistry of food antigens. Ann Allergy 53:602, 1984.
 - 78. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991. Affinity purification of a major and a minor allergen from dog extract: Serologic activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin. Immunol. 87:1056-1065.

 79. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.
- 79A. Bulone, V. 1998. Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem 253:202-211.
 79B. Swiss-Prot acc. P81216, P81217.
 - 80. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988. A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.
- 81. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984. Structure of mouse urinary protein genes: differential splicing configurations in the 3'-non-coding region. EMBO J 3:1045-1052.
 - 82. Longbottom, J. L. 1983. Chracterization of allergens from the urines of experimental animals. McMillan Press, London, pp. 525-529.
 - 83. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue-specific control of alpha 2u globulin gene expression: constitutive synthesis in submaxillary gland. Cell 32:453-460.
- 83A. Aukrust L, Borch SM. 1979. Partial purification and characterization of two Cladosporium herbarum allergens. Int Arch Allergy Appl Immunol 60:68-79.

- 83B. Sward-Nordmo M, Paulsen BS, Wold JK. 1988. The glycoprotein allergen Ag-54 (Cla h II) from Cladosporium herbarum. Structural studies of the carbohydrate moiety. Int Arch Allergy Appl Immunol 85:288-294.
- 84. Shen, et al. J. Allergy Clin. Immunol. 103:S157, 1999.
- 84A. Crameri R. Epidemiology and molecular basis of the involvement of Aspergillus fumigatus in allergic diseases. Contrib. Microbiol. Vol. 2, Karger, Basel (in press).
 - 84B. Shen, et al. (manuscript submitted), 1999

- 84C. Shen HD, Ling WL, Tan MF, Wang SR, Chou H, Han SIH. Vacuolar serine proteinase: A major allergen of Aspergillus fumigatus. 10th International Congress of Immunology, Abstract, 1998.
- 85. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation and characterization of a recombinant heat shock protein of Aspergillus furnigatus. J. Allergy Clin. Immunol. 91:1024-1030.
 - 86. Teshima, R., H. Ikebuchi, J. Sawada, S. Miyachi, S. Kitani, M. Iwama, M. Irie, M. Ichinoe, and T. Terao. 1993. Isolation and characterization of a major allergenic component (gp55) of Aspergillus fumigatus. J. Allergy Clin. Immunol. 92:698-706.
 - 86A. Shen HD, Lin WL, Tsai JJ, Liaw SF, Han SH. 1996. Allergenic components in three different species of Penicillium: crossreactivity among major allergens. Clin Exp Allergy 26:444-451.
- 86B. Shen, et al. Abstract; The XVIII Congress of the European Academy of Allergology and Clinical Immunology, Brussels, Belgium, 3-7 July 1999.
 - 87. Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH. 1995. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350-356.
- 88. Shen, H.D., K.B. Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 21:675-681.
 - 89. Shen, et al. Clin. Exp. Allergy (in press), 1999.
 - 90. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA.1998. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 273:29489-96.
 - 91. Deuell, B., L.K. Arruda, M.L. Hayden, M.D. Chapman and T.A.E. Platts-Mills. 1991. Trichophyton tonsurans Allergen I. J. Immunol.
- 147:96-101.
 91A. Schmidt M, Zargari A, Holt P, Lindbom L, Hellman U, Whitley P, van der Ploeg I, Harfast B, Scheynius A. 1997. The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185.
 - 91B. Horner WE, Reese G, Lehrer SB. 1995. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int Arch Allergy Immunol 107:298-300.
- 92. Kuchler, K., M. Gmachl, M. J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honey bee venom glands: The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184:249-254.
 - 93. Grnachl, M., and G. Kreil. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 90:3569-3573.
- 94. Habermann, E. 1972. Bee and wasp venoms. Science 177:314-322.
- 35 95. Jacobson, R.S., and D.R. Hoffman. 1993. Characterization of bumblebee venom allergens (abst). J. Allergy Clin. Immunol. 91:187.
 - 96. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Hayden ML, Chapman MD. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 270:19563-19568, 1995.
 - 97. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270:31196-31201, 1995.
- 40 98. Arruda LK, Vailes LD, Benjamin DC, Chapman MD. Molecular cloning of German Cockroach (Blattella germanica) allergens. Int Arch Allergy Immunol 107:295-297, 1995.
 - 98A. Wu CH, Lee MF, Liao SC. 1995. Isolation and preliminary characterization of cDNA encoding American cockroach allergens. J Allergy Clin Immunol 96: 352-9.
- 99. Mazur, G., X. Baur, and V. Liebers. 1990. Hypersensitivity to hemoglobins of the Diptera family Chironomidae: Structural and functional studies of their immunogenic/allergenic sites. Monog. Allergy 28:121-137.
 - 100. Soldatova, L., L. Kochoumian, and T.P. King. 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Letters 320:145-149.
 - 101. Lu, G., L. Kochoumian and T.P. King. Whiteface homet venom allergen hyaluronidase: cloning and its sequence similarity with other proteins (abst.). 1994. J. Allergy Clin. Immunol. 93:224.
- 50 102. Fang, K. S. F., M. Vitale, P. Fehlner, and T. P. King. 1988. cDNA cloning and primary structure of a white-faced homet venom allergen, antigen 5. Proc. Natl. Acad. Sci., USA 85:895-899.
 - 103. King, T. P., D. C. Moran, D. F. Wang, L. Kochoumian, and B.T. Chait. 1990. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Prot. Seq. Data Anal. 3:263-266.
- 104. Lu, G., M. Villalba, M.R. Coscia, D.R. Hoffman, and T.P. King. 1993. Sequence analysis and antigen cross reactivity of a venom allergen antigen 5 from hornets, wasps and yellowjackets. J. Immunol. 150: 2823-2830.
 - 105. King, T. P. and Lu, G. 1997. Unpublished data.
 - 105A. King TP, Lu G, Gonzalez M, Qian N and Soldatova L. 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98:588-600.
- 60 106. Hoffman, D.R. 1993. Allergens in hymenoptera venom XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92:707-716.
 - 107. Hoffman, D.R. 1992. Unpublished data.
 - 108. Hoffman, D. R. 1993. The complete amino acid sequence of a yellowjacket venom phospholipase (abst). J. Allergy Clin. Immunol. 91:187.
- 65 log. Jacobson, R.S., D.R. Hoffman, and D.M. Kerneny. 1992. The cross-reactivity between bee and vespid hyaluronidases has a structural basis (abst). J. Allergy Clin. Immunol. 89:292.

- 110. Hoffman, D.R. 1993. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 91:71-78.
- 111. Schmidt, M., R.B. Walker, D.R. Hoffman, and T.J. McConnell. 1993. Nucleotide sequence of cDNA encoding the fire ant venom protein Sol i II. FEBS Letters 319:138-140.
- 112. Elsayed S, Bennich H. The primary structure of Allergen M from cod. Scand J Immunol 3:683-686, 1974.
 - 113. Elsayed S, Aas K, Sletten K, Johansson SGO. Tryptic cleavage of a homogeneous cod fish allergen and isolation of two active polypeptide fragments. Immunochemistry 9:647-661, 1972.
 - 114. Hoffman, D. R. 1983. Immunochemical identification of the allergens in egg white. J. Allergy Clin. Immunol. 71:481-486.
- 115. Langeland, T. 1983. A clinical and immunological study of allergy to hen's egg white. IV. specific IgE antibodies to individual allergens in hen's egg white related to clinical and immunological parameters in egg-allergic patients. Allergy 38:493-500.
 - 116. Daul, C.B., M. Slattery, J.E. Morgan, and S.B. Lehrer. 1993. Common crustacea allergens: identification of B cell epitopes with the shrimp specific monoclonal antibodies. In: "Molecular Biology and Immunology of Allergens" (D. Kraft and A. Sehon, eds.). CRC Press, Boca Raton. pp. 291-293.
- 117. K.N. Shanti, B.M. Martin, S. Nagpal, D.D. Metcalfe, P.V. Subba Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 151:5354-5363.
 - 117A. M. Miyazawa, H. Fukamachi, Y. Inagaki, G. Reese, C.B. Daul, S.B. Lehrer, S. Inouye, M. Sakaguchi. 1996. Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin. Immunol. 98:948-953.
 - 117B A. Lopata et al. 1997. Characteristics of hypersensitivity reactions and identification of a uniques 49 kDa IgE binding protein (Hal-m-1) in Abalone (Haliotis midae). J.Allergy Clin. Immunol. Submitted
- 20 118. Monsalve, R.I., M.A. Gonzalez de la Pena, L. Menendez-Arias, C. Lopez-Otin, M. Villalba, and R. Rodriguez. 1993. Characterization of a new mustard allergen, Bra j IE. Detection of an allergenic epitope. Biochem. J. 293:625-632.
 - 119. Mena, M., R. Sanchez-Monge, L. Gomez, G. Salcedo, and P. Carbonero. 1992. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. Plant Molec. Biol. 20:451-458.
- Menendez-Arias, L., I. Moneo, J. Dominguez, and R. Rodriguez. 1988. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J. Biochem. 177:159-166.
 - 121. Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48-49, 1995.
 - 122. Christie, J. F., B. Dunbar, I. Davidson, and M. W. Kennedy. 1990. N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum and MHC-restricted IgE responses to it. Immunology 69:596-602.
- 30 123. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, Baur X. The rubber elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J Allergy Clin Immunol 92:690-697, 1993.
 - 124. Attanayaka DPSTG, Kekwick RGO, Franklin FCH. 1991. Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from hevea brasiliensis. Plant Mol Biol 16:1079-1081.
 - 125. Chye ML, Cheung KY. 1995. (1,3-glucanase is highly expressed in Laticifers of Hevea brasiliensis. Plant Mol Biol 26:397-402.
- 126. Alenius H, Palosuo T, Kelly K, Kurup V, Reunala T, Makinen-Kiljunen S, Turjanmaa K Fink J. 1993. IgE reactivity to 14-kD and 27-kD natural rubber proteins in Latex-allergic children with Spina bifida and other congenital anomalies. Int Arch Allergy Immunol 102:61-66.
 - 127. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, Hamilton RG, Cardosa MJ. 1996. The 14.6 kD (REF, Hev b 1) and 24 kD (Hev b 3) rubber particle proteins are recognized by IgE from Spina Bifida patients with Latex allergy. J Allerg Clin Immunol in press.
- 128. Sunderasan E, Hamzah S, Hamid S, Ward MA, Yeang HY, Cardosa MJ. 1995. Latex B-serum (-1,3-glucanase (Hev b 2) and a component of the microhelix (Hev b 4) are major Latex allergens. J nat Rubb Res 10:82-99.

Exchange.3196648.1