Debug Bridge v3.0

LogiCORE IP Product Guide

Vivado Design Suite

PG245 December 5, 2018

Table of Contents

IP Facts

Chapter 1: Overview	
Tandem with Field Updates and Partial Reconfiguration Solution	6
Xilinx Virtual Cable	7
Licensing and Ordering	11
Chapter 2: Product Specification	
Performance	13
Resource Utilization	13
Port Descriptions	13
Register Space	15
Chapter 3: Designing with the Core	
Clocking	16
Resets	16
Chapter 4: Design Flow Steps	
Customizing and Generating the Core	17
Constraining the Core	37
Simulation	38
Synthesis and Implementation	38
Chapter 5: Test Bench	
Appendix A: Verification, Compliance, and Interoperability	
Appendix B: Upgrading	
Upgrading in the Vivado Design Suite	41
Appendix C: Debugging	
Finding Help on Xilinx.com	42
Debug Tools	43

Appendix D: Additional Resources and Legal Notices

Xilinx Resources	45
Documentation Navigator and Design Hubs	45
References	46
Revision History	46
Please Read: Important Legal Notices	48

Introduction

The Xilinx® LogiCORE™ IP Debug Bridge core is a controller which provides a mechanism to establish a communication channel for debug cores with runtime software. The Debug Bridge usage can be classified into two categories: Tandem with Field Updates and Xilinx Virtual Cable (XVC). These two categories provide the means for communicating with the debug IP (including Memory IP) that is in the design.

The Tandem with Field Updates flow allows you to download new functionality into a device over the PCIe® link after the device is initially configured through the Tandem PROM/PCIe. The XVC flow allows you to use debug cores and debug the design over non-JTAG interface (for example, Ethernet/PCIe).

Note: The current version is for the Tandem with Field Updates solution, Partial Reconfiguration design debugging, and XVC based designs.

Features

There are two broad classification of Debug Bridge IP functionality, which are supported using six different modes.

Tandem with Field Updates and Partial Reconfiguration Solution – User selectable mode From BSCAN to Debug is used to add a Debug Bridge instance in each Reconfigurable Module which would connect to debug cores like ILA, VIO, Memory IP, and JTAG2AXI

- **XVC Solution** Five modes are supported:
 - User selectable mode From AXI to BSCAN is used to add a Debug Bridge instance in the design with an Ethernet/PCIe master. This mode is a slave to Ethernet/PCIe master while connecting to debug cores like ILA, VIO, Memory IP, and JTAG2AXI in the same chip.
 - User selectable mode From AXI to JTAG is used to add a Debug Bridge instance in the design with an Ethernet/PCIe master. This mode is a slave to Ethernet/PCIe master while bringing out the JTAG pins out of the FPGA through I/O pins. This mode is mainly used to debug design on another board over XVC.
 - User selectable mode From_JTAG_to_BSCAN is used to add a Debug Bridge instance to debug the designs over soft Test Access Port (TAP) controller.
 - The following modes are only available for UltraScale+™ and UltraScale™ device architectures:
 - User selectable mode From_PCIE_to_BSCAN is used to add a Debug Bridge instance in the design with a PCIe master. This mode is a slave connected on the Extended Config interface to a PCIe master while connecting to debug cores like ILA, VIO, Memory IP, and JTAG2AXI in the same chip.

- User selectable mode
 From_PCIE_to_JTAG is used to add
 a Debug Bridge instance in the
 design with a PCIe master. This
 mode is a slave connected on the
 Extended Config interface to a PCIe
 master while bringing out the JTAG
 pins out of the FPGA through I/O
 pins. This mode is mainly used to
 debug design on another board over
 XVC.
- XVC in Partial Reconfiguration Solution –
 Option to add Debug Bridge in any XVC
 modes in the Partial Reconfiguration
 region. The XVC solution is used with a PCIe
 master or any AXI master. If the master is in
 a hang situation, there are no method to
 debug those scenarios. To provide a
 fallback debug path for XVC based design,
 a new mode is introduced:

BSCAN_Primitive. In this mode, a BSCAN primitive can be instantiated in static region and BSCAN interface can be connected to the Debug Bridge in Partial Reconfiguration region providing a parallel path for debugging.

LogiCORE™ IP Facts Table		
	Core Specifics	
Supported Device Family ⁽¹⁾	UltraScale+™, UltraScale™, 7 Series	
Supported User Interfaces	IEEE Standard 1149.1 – JTAG	
Resources	Performance and Resource Utilization web page	
	Provided with Core	
Design Files	Register Transfer Level (RTL)	
Example Design	Verilog	
Test Bench	Not Provided	
Constraints File	Xilinx Design Constraints (XDC)	
Simulation Model	Not Provided	
Supported S/W Driver	Not Provided	
	Tested Design Flows ⁽²⁾	
Design Entry	Vivado [®] Design Suite, Verilog, VHDL	
Simulation	Not Provided	
Synthesis	Synthesis Vivado Synthesis	
Support		
Provided by Xilinx at the Xilinx Support web page		

Notes:

- 1. For a complete list of supported devices, see the Vivado IP
- 2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Overview

The Xilinx[®] Debug Bridge IP core establishes the communication channel between the host machine and debug cores inside a Reconfigurable Module (RM) region through a Static region. The debug bridge needs to be instantiated in the RM with a BSCAN interface defined at the Partial Reconfiguration (PR) boundary.

The Xilinx Debug Bridge IP core establishes the communication channel between the host machine and debug cores in both Tandem with Field Updates, Partial Reconfiguration based and Xilinx Virtual Cable (XVC) based designs. The following six modes describe the usage of the Debug Bridge for various designs.

Tandem with Field Updates and Partial Reconfiguration Solution

The **From_BSCAN_to_DebugHub** mode is used to create a Debug Bridge instance that must be placed in each Reconfigurable Module. This IP connects to debug cores like ILA, VIO, Memory IP, and JTAG2AXI. As of Vivado[®] Design Suite 2017.1, this connectivity between debug components in static and reconfigurable parts of the design is done automatically. Direct instantiation of this core should only be done as a backup methodology in the case that the Debug Hub inference methodology cannot be used.

For further information on use of the Debug Bridge Partial Reconfiguration designs, see the *Vivado Design Suite User Guide: Partial Reconfiguration* (UG909) [Ref 2].

Figure 1-1 and Figure 1-2 show the mode used to add a Debug Bridge instance in each Reconfigurable Module.

Figure 1-1: From_BSCAN_to_DebugHub Mode Port Diagram

Figure 1-2: Debug Bridge Configured with From_BSCAN_to_DebugHub Mode

Xilinx Virtual Cable

The From_AXI_to_BSCAN mode is used to add a Debug Bridge instance in the design with an Ethernet/PCIe® master. This mode of Debug Bridge is a slave to Ethernet/PCIe master while connecting to debug cores like ILA, VIO, Memory IP, and JTAG2AXI in the same chip.

Figure 1-3 and Figure 1-4 show the **From_AXI_to_BSCAN** mode in the XVC use case.

Figure 1-3: From_AXI_to_BSCAN Mode Port Diagram

X17932-083117

Figure 1-4: Debug Bridge Configured From_AXI_to_BSCAN Mode

The **From_AXI_to_JTAG** mode is used to add a Debug Bridge instance in the design with an Ethernet/PCIe master. This mode of Debug Bridge is a slave to Ethernet/PCIe master while bringing out the JTAG pins out of the FPGA through I/O pins. This mode is mainly used to debug design on another board over XVC.

Figure 1-5 and Figure 1-6 show the **From_AXI_to_JTAG** mode in the XVC use case.

Figure 1-5: From_AXI_to_JTAG Mode Port Diagram

Figure 1-6: Debug Bridge Configured From_AXI_to_JTAG Mode

The **From_JTAG_to_BSCAN** mode is used to add a Debug Bridge instance to debug the designs over soft Test Access Port (TAP) controller.

Figure 1-7 and Figure 1-8 show the **From_JTAG_to_BSCAN** mode in the XVC use case.

Figure 1-7: From_JTAG_to_BSCAN Mode Port Diagram

Figure 1-8: Debug Bridge Configured From_JTAG_to_BSCAN Mode

The **From_PCIE_to_BSCAN** mode is used to add a Debug Bridge instance in the design with a PCIe master. This Debug Bridge mode is a slave connected on the Extended Config interface to a PCIe master to debug cores like ILA, VIO, Memory IP, and JTAG2AXI in the same chip.

Figure 1-9 and Figure 1-10 show the **From_PCIE_to_BSCAN** mode in the XVC use case.

Figure 1-9: From_PCIE_to_BSCAN Mode Port Diagram

Figure 1-10: Debug Bridge Configured From_PCIE_to_BSCAN Mode

The **From_PCIE_to_JTAG** mode is used to add a Debug Bridge instance in the design with a PCIe master. This mode is a slave connected on the Extended Config interface to a PCIe master while bringing out the JTAG pins out of the FPGA through I/O pins. This mode is mainly used to debug design on another board over XVC.

Figure 1-11 and Figure 1-12 show the **From_PCIE_to_JTAG** mode in the XVC use case.

Figure 1-11: From_PCIE_to_JTAG Mode Port Diagram

Figure 1-12: Debug Bridge Configured From_PCIE_to_JTAG Mode

The **BSCAN_Primitive** mode is used to add a BSCAN Primitive in static region. This provides a BSCAN interface coming out from the BSCAN primitive and can be connected to 16 different BSCAN slaves.

Figure 1-13: Debug Bridge Configured BSCAN_Primitive Mode

Licensing and Ordering

This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado Design Suite under the terms of the Xilinx End User License.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

License Checkers

If the IP requires a license key, the key must be verified. The Vivado [®] design tools have several license checkpoints for gating licensed IP through the flow. If the license check succeeds, the IP can continue generation. Otherwise, generation halts with error. License checkpoints are enforced by the following tools:

- Vivado synthesis
- Vivado implementation
- write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does not check IP license level.

Product Specification

Performance

The Debug Bridge core can be configured in two modes which caters the needs for debugging the designs for Tandem with Field Updates.

For full details about performance and resource utilization, visit the Performance and Resource Utilization web page.

Resource Utilization

For full details about performance and resource utilization, visit the Performance and Resource Utilization web page.

Port Descriptions

Table 2-1 and Table 2-7 show the signals for the different bridge type modes.

Table 2-1: From BSCAN to DebugHub Mode

Signal	1/0	Description	
clk	Input clock to drive DebugHub logic	This port needs to connect to a free running clock available in the design.	
S_BSCAN	BSCAN slave interface (with BSCANID_EN)	This slave interface needs to connect to the BSCAN interface of a BSCAN master. (When C_BSCANID_VEC = 0).	
S_BSCAN_VEC	BSCAN slave interface (with BSCANID as 32-bit)	This slave interface needs to connect to the BSCAN interface of a BSCAN master. (When C_BSCANID_VEC = 1).	
m <x>_bscan</x>	BSCAN master interface ** x - integer value ranges from 0 to 15	This master interface needs to connect to BSCAN interface of a BSCAN master. For example, MDM and Debug_Bridge (with C_DEBUG_MODE = 1).	

Table 2-2: From AXI4 to BSCAN Mode

Signal	1/0	Description		
S_AXI	AXI4-Lite slave interface	This interface needs to connect to an AXI4.		
s_axi_aclk	I	This port needs to connect to an AXI4 clock pin.		
s_axi_aresetn	I	This port needs to connect to an AXI4 reset pin.		
m <x>_bscan</x>	BSCAN master interface ** x - integer value ranges from 0 to 15	This master interface needs to connect to BSCAN interface of a BSCAN master. For example, MDM and Debug_Bridge (with C_DEBUG_MODE = 1).		

Table 2-3: From AXI4 to JTAG Mode

Signal	1/0	Description	
S_AXI	AXI4-Lite slave interface	This interface needs to connect to an AXI4.	
s_axi_aclk	I	This port needs to connect to the AXI4 clk pin.	
s_axi_aresetn	I	This port needs to connect to the AXI4 reset pin.	
tap_tdo	I	This port needs to connect to TDO pin of JTAG slave.	
tap_tdi	0	This port needs to connect to TDI pin of JTAG slave.	
tap_tck	0	This port needs to connect to TCK pin of JTAG slave.	
tap_tms	0	This port needs to connect to TMS pin of JTAG slave.	

Table 2-4: From JTAG to BSCAN Mode

Signal	1/0	Description	
jtag_tdo	0	This port needs to connect to TDO pin of JTAG master.	
jtag_tdi	I	This port needs to connect to TDI pin of JTAG master.	
jtag_tck	I	This port needs to connect to TCK pin of JTAG master.	
jtag_tms	I	This port needs to connect to TMS pin of JTAG master.	

Table 2-5: From PCIe to BSCAN Mode

Signal	1/0	Description	
clk	Input clock to drive DebugHub logic	This port needs to connect to a free running clock available in the design.	
pcie3_cfg_ext	PCIe [®] Extended Config slave interface	This slave interface needs to connect to PCIe extended config master interface.	
m <x>_bscan</x>	BSCAN master interface ** x - integer value ranges from 0 to 15	This master interface needs to connect to BSCAN interface of a BSCAN master. For example, MDM and Debug_Bridge (with C_DEBUG_MODE = 1).	

Table 2-6: From PCIe to JTAG Mode

Signal	1/0	Description	
clk	Input clock to drive DebugHub logic	This port needs to connect to a free running clock available in the design.	
pcie3_cfg_ext	PCIe Extended Config slave interface	This slave interface needs to connect to PCIe extended config master interface.	
tap_tdi	0	This port needs to connect to TDI pin of JTAG slave.	
tap_tdo	I	This port needs to connect to TDO pin of JTAG slave.	
tap_tck	0	This port needs to connect to TCK pin of JTAG slave.	
tap_tms	0	This port needs to connect to TMS pin of JTAG slave.	

Table 2-7: BSCAN Primitive Mode

Signal	1/0	Description
m <x>_bscan</x>	BSCAN master interface ** x - integer value ranges from 0 to 15	This master interface needs to connect to BSCAN interface of a BSCAN master. For example, MDM and Debug_Bridge (with C_DEBUG_MODE = 1).

Register Space

Table 2-8 shows the register set for AXI4-Lite to JTAG Controller.

Table 2-8: From BSCAN to DebugHub Mode

Address Offset	Name	Access Type	Default Value	Description	
0x00	LENGTH	R/W	0x00000000 Length of shift operation in bits		
0x04	TMS_VECTOR	R/W	0x00000000 Test Mode Select (TMS) Bit Vector		
0x08	TDI_VECTOR	R/W	0x00000000	Test Data In (TDI) Bit Vector	
0x0C	TDO_VECTOR	R/W	0x00000000 Test Data Out (TDO) Capture Vector		
0x10	CTRL	R/W	0x00000000 Bit 1: Control bit to loopback TDI to TDO inside Debug Bridge IP		

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the core.

Clocking

The clk input port in the **From_BSCAN_to_DebugHub** mode needs to be connected to a free running clock available in the design. This clock is used by Debug Hub.

Resets

There are no resets for this IP core.

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado [®] design flows and the IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 6]

Customizing and Generating the Core

This section includes information about using Xilinx tools to customize and generate the core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the *Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator* (UG994) [Ref 3] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value, run the validate bd design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

- Open a project by selecting File > Open Project or create a new project by selecting File > New Project in Vivado.
- Select the Debug Bridge IP from the Debug & Verification > Debug > Debug Bridge in Vivado IP catalog.
- 3. Double-click the selected IP or select the **Customize IP** command from the toolbar or right-click menu.

For details, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 4] and the *Vivado Design Suite User Guide: Getting Started* (UG910) [Ref 5].

Note: Figure in this chapter is an illustration of the Vivado Integrated Design Environment (IDE). The layout depicted here might vary from the current version.

General Options Panel

Figure 4-1 shows the Debug Bridge Vivado IDE main configuration screen.

Figure 4-1: Debug Bridge Customize IP – Debug Modes

- **Component Name** Use this text field to provide a unique module name for the Debug Bridge core.
- **Design Type** Use this option to choose which design environment the Debug Bridge is instantiated in.
- Debug Bridge Options This option switches between seven different modes:
 - From_BSCAN_to_DebugHub
 - From_AXI_to_BSCAN

- From_AXI_to_JTAG
- From_JTAG_to_BSCAN
- From_PCIE_to_BSCAN
- From_PCIE_to_JTAG
- BSCAN_Primitive

Figure 4-2 shows the Debug Bridge Vivado IDE configuration **BSCAN Options** tab for the **From_BSCAN_to_DebugHub** mode.

Figure 4-2: Debug Bridge Customize IP - BSCAN Options

- BSCAN Master Port Options
 - BSCAN Master Count This option specifies the number of BSCAN master interfaces enabled on the Debug Bridge instance. Minimum = 0 to Maximum = 16.

Figure 4-3 shows the Debug Bridge Vivado IDE configuration **DebugHub Options** tab for the **From_BSCAN_to_DebugHub** mode.

Figure 4-3: Debug Bridge Customize IP - DebugHub Options

- **Clock Divider Options** These options show the address width, data width, and clock ratio settings.
 - **Enable Clock Divider** Divides down the clock frequency on the clk port to 100 MHz. Enabling this option, **Clock Frequency** option is visible to enter the frequency value of the clock connect to clk port.

Figure 4-4 shows the Debug Bridge Vivado IDE configuration for the **From_AXI_to_BSCAN** mode.

Figure 4-4: Debug Bridge Customize IP - From AXI to BSCAN Mode

Figure 4-5 shows the Debug Bridge Vivado IDE configuration **BSCAN Options** tab for the **From_AXI_to_BSCAN** mode.

Figure 4-5: Debug Bridge Customize IP – From AXI to BSCAN Mode BSCAN Options

- JTAG Fallback Options
 - JTAG Fallback Mode This option enables the parallel JTAG path for enabling debug path when XVC channel is in a hang state. There are three different options:
 - **DISABLED** JTAG Fallback mode is disabled. There is no parallel JTAG path.
 - **Internal BSCAN Primitive** BSCAN primitive is instantiated inside the Debug Bridge instance itself. (This option is seen only when the **Design Type** is set to static region).
 - **External BSCAN Master** BSCAN master is external.
- BSCAN Master Port Options
 - BSCAN Master Count This option specifies the number of BSCAN master interfaces enabled on the Debug Bridge instance. Minimum = 0 to Maximum = 16.

Figure 4-6 shows the Debug Bridge Vivado IDE configuration for the **From_AXI_to_JTAG** mode.

Figure 4-6: Debug Bridge Customize IP - From AXI to JTAG Mode

Figure 4-7 shows the Debug Bridge Vivado IDE configuration for the **From_JTAG_to_BSCAN** mode.

Figure 4-7: Debug Bridge Customize IP - From JTAG to BSCAN Mode

Figure 4-8 shows the Debug Bridge Vivado IDE configuration **BSCAN Options** tab for the **From_JTAG_to_BSCAN** mode.

Figure 4-8: Debug Bridge Customize IP - From JTAG to BSCAN Mode BSCAN Options

- BSCAN Master Port Options
 - **BSCAN Master Count** This option specifies the number of BSCAN master interfaces enabled on the Debug Bridge instance. Minimum = 0 to Maximum = 16.

Figure 4-9 shows the Debug Bridge Vivado IDE configuration screen for the **From_PCIE_to_BSCAN** mode.

Figure 4-9: Debug Bridge Customize IP – From PCIE to BSCAN Mode

Figure 4-10 shows the Debug Bridge Vivado IDE configuration **BSCAN Options** tab for the **From_PCIE_to_BSCAN** mode.

Figure 4-10: Debug Bridge Customize IP – From PCIE to BSCAN Mode BSCAN Options

JTAG Fallback Options

- JTAG Fallback Mode This option enables the parallel JTAG path for enabling debug path when XVC channel is in a hang state. There are three different options:
 - **DISABLED** JTAG Fallback mode is disabled. There is no parallel JTAG path.
 - **Internal BSCAN Primitive** BSCAN primitive is instantiated inside the Debug Bridge instance itself. (This option is seen only when the **Design Type** is set to static region).
 - External BSCAN Master BSCAN master is external.

BSCAN Master Port Options

BSCAN Master Count – This option specifies the number of BSCAN master interfaces enabled on the Debug Bridge instance. Minimum = 0 to Maximum = 16.

Figure 4-11 shows the Debug Bridge Vivado IDE configuration **PCIE Options** tab for the **From_PCIE_to_BSCAN** mode.

Figure 4-11: Debug Bridge Customize IP - From PCIE to BSCAN Mode PCIE Options

- **PCIE Options** These options show the PCIe[®] VSEC parameters required to set PCIe master to communicate with the Debug Bridge over the Extended config space.
 - PCIe XVC VSEC Base Address PCIe Extended Config Base address for the XVC VSEC.

IMPORTANT: This should fall within the valid range for the PCIe Extended Config space. See the relevant PCIe product guide for additional details.

- PCIe XVC VSEC Length XVC VSEC length in bytes and this is a fixed length for XVC VSEC.
- **PCIe XVC VSEC Next Pointer** XVC VSEC next capability offset pointer. This is set to the address offset of the next PCIe extended capability or set to **0**x**0**00 to terminate the extended capability chain.

- PCIe XVC VSEC ID XVC VSEC ID identifies the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability. This value should not be modified when using the Xilinx Vendor ID of 0x10EE for the corresponding PCIe IP configuration.
- PCIe XVC VSEC Rev ID XVC VSEC Rev ID identifies the revision of the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability revision. This value should not be modified when using the Xilinx Vendor ID of 0x10EE for the corresponding PCIe IP configuration.

Figure 4-12 shows the Debug Bridge Vivado IDE configuration **XVC Options** tab for the **From_PCIE_to_BSCAN** mode.

IMPORTANT: Xilinx recommends that the XVC Options are not modified. The customization GUI sets the desired XVC Hardware ID and XVC Software ID values.

Figure 4-12: Debug Bridge Customize IP – From PCIE to BSCAN Mode XVC Options

- XVC Options These options are for the PCIe driver and runtime tool to identify the XVC versions.
 - XVC Hardware ID Hardware ID value.
 - XVC Software ID Software ID value.

Figure 4-13 shows the Debug Bridge Vivado IDE configuration screen for the **From_PCIE_to_JTAG** mode.

Figure 4-13: Debug Bridge Customize IP – From PCIE to JTAG Mode

Figure 4-14 shows the Debug Bridge Vivado IDE configuration **PCIE Options** tab for the **From_PCIE_to_JTAG** mode.

Figure 4-14: Debug Bridge Customize IP – From PCIE to JTAG Mode PCIE Options

- **PCIE Options** These options show the PCIe VSEC parameters required to set PCIe master to communicate with the Debug Bridge over the Extended config space.
 - PCIe XVC VSEC Base Address PCIe Extended Config Base address for the XVC VSEC.

IMPORTANT: This should fall within the valid range for the PCIe Extended Config space. See the relevant PCIe product guide for additional details.

- PCIe XVC VSEC Length XVC VSEC length in bytes and this is a fixed length for XVC VSEC.
- **PCIe XVC VSEC Next Pointer** XVC VSEC next capability offset pointer. This is set to the address offset of the next PCIe extended capability or set to **0**x**0**00 to terminate the extended capability chain.

- PCIe XVC VSEC ID XVC VSEC ID identifies the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability. This value should not be modified when using the Xilinx Vendor ID of 0x10EE for the corresponding PCIe IP configuration.
- **PCIe XVC VSEC Rev ID** XVC VSEC Rev ID identifies the revision of the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability revision. This value should not be modified when using the Xilinx Vendor ID of **0x10EE** for the corresponding PCIe IP configuration.

Figure 4-15 shows the Debug Bridge Vivado IDE configuration **XVC Options** tab for the **From_PCIE_to_JTAG** mode.

IMPORTANT: Xilinx recommends that the XVC Options are not modified. The customization GUI sets the desired XVC Hardware ID and XVC Software ID values.

Figure 4-15: Debug Bridge Customize IP - From PCIE to JTAG Mode XVC Options

- XVC Options These options are for the PCIe driver and runtime tool to identify the XVC versions.
 - XVC Hardware ID Hardware ID value.
 - XVC Software ID Software ID value.

Figure 4-16 shows the Debug Bridge Vivado IDE configuration for the **BSCAN_Primitive** mode.

Figure 4-16: Debug Bridge Customize IP - BSCAN Primitive Mode

User Parameters

Table 4-1 shows the relationship between the fields in the Vivado IDE and the User Parameters (which can be viewed in the Tcl Console).

Table 4-1: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter/Value ⁽¹⁾	User Parameter/Value ⁽¹⁾	Default Value
Bridge Type	C_DEBUG_MODE	From_BSCAN_to_DebugHub
Enable Clock Divider	C_ENABLE_CLK_DIVIDER	FALSE
Clock Frequency (In Hertz)	C_CLK_INPUT_FREQ_HZ	30000000
AXI Addr Width	C_S_AXI_ADDR_WIDTH	5
AXI Data Width	C_S_AXI_DATA_WIDTH	32
Tck Clock Ratio	C_TCK_CLOCK_RATIO	8
User Scan Chain	C_USER_SCAN_CHAIN	1
Enable BSCANID Vector	C_EN_BSCANID_VEC	FALSE
PCIe XVC VSEC Base Address	C_PCIE_EXT_CFG_BASE_ADDR	0x400
PCIe XVC VSEC Length	C_PCIE_EXT_CFG_VSEC_LENGTH	0x020
PCIe XVC VSEC Next Pointer	C_PCIE_EXT_CFG_NEXT_PTR	0x000
PCIe XVC VSEC ID	C_PCIE_EXT_CFG_VSEC_ID	0x0008
PCIe XVC VSEC Rev ID	C_PCIE_EXT_CFG_VSEC_REV_ID	0x0
XVC Hardware ID	C_XVC_HW_ID	0x0001
XVC Software ID	C_XVC_SW_ID	0x0001
Design Type	C_DESIGN_TYPE	Static Region
BSCAN Master Count	C_NUM_BS_MASTER	0
JTAG Fallback Mode	C_BSCAN_MUX	DISABLED

Notes:

- 1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such values are shown in this table as indented below the associated parameter.
- Bridge Type This parameter configures debug_bridge in seven different modes: From_BSCAN_to_DebugHub, From_AXI_to_BSCAN, From_AXI_to_JTAG, From_JTAG_to_BSCAN, From_PCIE_to_BSCAN, From_PCIE_to_JTAG, and BSCAN_Primitive.
 - **From_BSCAN_to_DebugHub** This mode is only used while instantiating the debug_bridge IP in the PR region. While adding this block to the PR region design part, the following pins need to be added as part of the PR boundary and also need to be connected to the debug_bridge instance:

Signal	1/0
S_BSCAN	Slave BSCAN Interface
S_BSCAN_VEC	Slave BSCAN Interface
clk	1

In this mode, there is another clk port on debug_bridge which needs to be connected to a stable free running clock or one of the clock connected to a debug core in the PR region. There are two sub-parameters in this mode which qualify the clk port.

- From_AXI_to_BSCAN This mode is only used while debugging a design on the same FPGA over the Xilinx Virtual Cable (XVC). This block is connected as an AXI4 slave to an AXI4 master.
- **From_AXI_to_JTAG** This mode is only used while debugging a design on a different FPGA over the XVC. This block is connected as an AXI4 slave to an AXI4 master. The following four JTAG ports are connected to I/Os so that they can be connected to JTAG pins of another board.

Signal	1/0
tap_tdo	I
tap_tdi	0
tap_tck	0
tap_tms	0

From_JTAG_to_BSCAN – This mode is only used while debugging over soft BSCAN where the JTAG connection is through regular I/Os. The following pins are connected to regular I/Os to connect to JTAG connector.

Signal	1/0
jtag_tdo	0
jtag_tdi	_
jtag_tck	I
jtag_tms	I

• **From_PCIE_to_BSCAN** – This mode is used to add a Debug Bridge instance in the design with a PCIe master. This mode is a slave connected on the Extended Config interface on the PCIe master to debug cores like ILA, VIO, Memory IP, and JTAG2AXI in the same chip.

For more information on how to use the PCIe with the XVC, see the *UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide* (PG156) [Ref 2].

From_PCIE_to_JTAG – This mode is used to add a Debug Bridge instance in the design with a PCIe master. This mode is a slave connected on the Extended Config interface on the PCIe master while bringing out the JTAG pins out of the FPGA through I/O pins. This mode is mainly used to debug design on another board over XVC.

Signal	1/0
tap_tdo	I
tap_tdi	0
tap_tck	0
tap_tms	0

PCIe XVC VSEC Base Address – PCIe Extended Config Base address for the XVC VSEC.

IMPORTANT: This should fall within the valid range for the PCIe Extended Config space. See the relevant PCIe product quide for additional details.

- PCIe XVC VSEC Length XVC VSEC length in bytes, this is a fixed length for XVC VSEC.
- **PCIe XVC VSEC Next Pointer** XVC VSEC next capability offset pointer. This is set to the address offset of the next PCIe extended capability or set to **0**x**0**00 to terminate the extended capability chain.
- **PCIe XVC VSEC ID** XVC VSEC ID identifies the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability. This value should not be modified when using the Xilinx Vendor ID of **0x10EE** for the corresponding PCIe IP configuration.
- **PCIe XVC VSEC Rev ID** XVC VSEC Rev ID identifies the revision of the XVC extended capability. This value should be validated by the Host software to identify the XVC extended capability revision. This value should not be modified when using the Xilinx Vendor ID of **0x10EE** for the corresponding PCIe IP configuration.
- XVC HardWare ID Hardware ID value.
- XVC SoftWare ID Software ID value.
- **Enable BSCANID Vector** This parameter uses the BSCANID 32-bit signal for backwards compatibility with the previous versions.
- Enable Clock Divider This parameter is checked only when the clock frequency of the signal connected to the clk port is >100 MHz. This option divides down the clock frequency of clock at the clk port of debug bridge to 100 MHz.
- Clock Frequency (in Hz) This parameter is visible only when Enable Clock Divider options is enabled. The value of this parameter should be the frequency of the clock signal connected to the clk port of Debug Bridge instance in Hz.

- **Design Type** This parameter specifies the type of user design in which the Debug Bridge is going to be instantiated. There are two types: Static region or RP region.
- **BSCAN Master Count** This parameter sets the number of BSCAN master interfaces that should be coming out of Debug Bridge instance to connect to BSCAN slaves.
- JTAG Fallback Mode This parameter enables the parallel JTAG path in the case of XVC designs.

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections

This IP supports Tandem with Field Updates and Xilinx Virtual Cable in UltraScale+™, UltraScale™, and 7 series devices and packages. Currently, only PCIe is supported in UltraScale+ and UltraScale devices.

Clock Frequencies

This section is not applicable for this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Simulation

This IP core does not support simulation.

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 4].

Test Bench

There is no test bench for this IP core release.

Verification, Compliance, and Interoperability

This appendix provides details about how this IP core was tested for compliance with the protocol to which it was designed.

Xilinx[®] has verified the Debug Bridge core in a proprietary test environment, using an internally developed bus functional model.

Upgrading

This appendix contains information about upgrading to a more recent version of the IP core.

Upgrading in the Vivado Design Suite

This section provides information about any changes to the user logic or port designations between core versions.

Changes from v2.0 to v3.0

Added BSCAN_Primitive mode and XVC in Partial Reconfiguration Solution.

Changes from v1.1 to v2.0

Added **From_PCIE_to_BSCAN** and **From_PCIE_to_JTAG** modes with new PCIE Options and XVC Options.

Changes from v1.0 to v1.1

While upgrading the designs with **debug_bridge_v1_0** to **debug_bridge_v1_1**, the following steps need to happen:

- 1. The Debug Bridge instance in **BSCAN_Primitive** mode in the static region of Tandem Field Updates design needs to be selected.
- 2. The Debug Bridge instance in **From_BSCAN_to_DebugHub** mode needs to be regenerated and the BSCAN pins crossing the PR boundary has to be expanded per latest version. These BSCAN pins on the Debug Bridge boundary of RM blocks need to ground for inputs and left unconnected for outputs.

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in Chapter 1 for more details.

Finding Help on Xilinx.com

To help in the design and debug process when using the Debug Bridge, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the Debug Bridge. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as:

- · Product name
- Tool message(s)
- · Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Debug Bridge

AR: 54606

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

There are many tools available to address Debug Bridge design issues. It is important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 7].

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado[®] IDE, select Help > Documentation and Tutorials.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this product guide:

- 1. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)
- 2. UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)
- 3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
- 4. Vivado Design Suite User Guide: Designing with IP (UG896)
- 5. Vivado Design Suite User Guide: Getting Started (UG910)
- 6. Vivado Design Suite User Guide: Logic Simulation (UG900)
- 7. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 8. Vivado Design Suite User Guide: Implementation (UG904)

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
12/05/2018	3.0	Added Register Space section.
		Fixed AR in Answer Records section.
10/04/2017	3.0	Added XVC in Partial Reconfiguration Solution IP Facts section.
		Added BSCAN_Primitive description in Overview chapter.
		Added BSCAN to tables in Product Specification chapter.
		Updated Design Flow Steps chapter.
04/28/2017	2.0	Updated Resources in IP Facts section.
		Updated Resource Utilization section.
04/05/2017	2.0	Updated IP Facts section.
		Updated Overview chapter.
		Updated Device Utilization table.
		Updated Port Descriptions section.
		Updated description and figures in General Options Panel section.
		Updated User Parameter section.

Date	Version	Revision
10/05/2016	1.1	 Updated IP Facts section. Updated Overview chapter. Updated Device Utilization table. Updated Port Descriptions section. Updated description and figures in General Options Panel section. Updated User Parameter section. Updated Upgrading appendix.
04/06/2016	1.0	Initial Xilinx release.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2016–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.