Dominik Wawszczak Student ID Number: 440014

Group Number: 2

Problem 1

Let G be a simple planar graph with v vertices, e edges, and f faces. Suppose G has t triangular faces and that every vertex has degree at least 5. Since the minimum degree is 5, we have $2e \ge 5v$. By Euler's formula:

$$v - e + f = 2 \implies f - 2 = e - v \geqslant \frac{3}{5}e.$$

Let f_i denote the number of faces of size i. Then:

$$2e = \sum_{i \ge 3} i f_i = 3t + \sum_{i \ge 4} i f_i \ge 3t + 4 \cdot \sum_{i \ge 4} f_i = 3t + 4(f - t) = 4f - t.$$

Thus:

$$t \geqslant 4f - 2e \geqslant 4f - \frac{10}{3} \cdot (f - 2) = \frac{2f + 20}{3} \geqslant \frac{2t + 20}{3},$$

which implies:

$$3t \geqslant 2t + 20 \implies t \geqslant 20.$$

Hence, $k \ge 19$. Since the icosahedral graph is a 5-regular simple planar graph with exactly 20 triangular faces, k = 19.

Problem 2

For any $i \in \{1, 2, ..., k\}$ and any u in the same connected component as v_i , we have

$$\left| p_t(v_i, u) - \frac{1}{n} \right| \leqslant (1 - \alpha)^t,$$

where $p_t(a, b)$ is the probability that a random walk of length t starting at a ends at b. By setting $t = \frac{\ln(2n)}{-\ln(1-\alpha)} = \mathcal{O}(\log n)$, we obtain

$$\left| p_t(v_i, u) - \frac{1}{n} \right| \leqslant \frac{1}{2n}$$
, and therefore $p_t(v_i, u) \in \left[\frac{1}{2n}, \frac{3}{2n} \right]$.

If we perform m such walks, the probability that at least one ends at u is at least

$$1 - \left(1 - \frac{1}{2n}\right)^m.$$

We want this probability to be at least $\frac{1}{\sqrt{n}}$. Since

$$\left(1 - \frac{1}{2n}\right)^m \leqslant e^{-\frac{m}{2n}},$$

it suffices that m satisfies

$$e^{-\frac{m}{2n}} \leqslant 1 - \frac{1}{\sqrt{n}} = e^{\ln\left(1 - \frac{1}{\sqrt{n}}\right)} \Longrightarrow -\frac{m}{2n} \leqslant \ln\left(1 - \frac{1}{\sqrt{n}}\right),$$

hence

$$\begin{split} m &\geqslant -2n \ln \left(1 - \frac{1}{\sqrt{n}} \right) \ = \ 2n \cdot \sum_{i=1}^{\infty} \frac{\left(\frac{1}{\sqrt{n}} \right)^i}{i} \ = \ 2\sqrt{n} + 1 + \sum_{i=3}^{\infty} \frac{\left(\frac{1}{\sqrt{n}} \right)^{i-2}}{i} \ \geqslant \\ &\geqslant \ 2\sqrt{n} + 1 + \sum_{i=3}^{\infty} \left(\frac{1}{\sqrt{n}} \right)^{i-2} \ = \ 2\sqrt{n} + 1 + \frac{1}{\sqrt{n}} \cdot \sum_{i=0}^{\infty} \left(\frac{1}{\sqrt{n}} \right)^i \ = \\ &= \ 2\sqrt{n} + 1 + \frac{1}{\sqrt{n}} \cdot \frac{1}{1 - \frac{1}{\sqrt{n}}} \ = \ 2\sqrt{n} + 1 + \frac{1}{\sqrt{n} - 1}, \end{split}$$

so
$$m = \mathcal{O}(\sqrt{n})$$
.

At initialization, for each $i \in \{1, 2, ..., k\}$, we perform m random walks of length t from v_i , and construct a set R_i containing all reached vertices. This ensures that if u is in the same component as v_i , then $u \in R_i$ with probability at least $\frac{1}{\sqrt{n}}$. The total time complexity of initialization is $\mathcal{O}(k\sqrt{n}\log n)$.

To answer a query, we perform m random walks of length t from x, and create a set Q of all reached vertices. We then search for $i \in \{1, 2, ..., k\}$ such that $Q \cap R_i \neq \emptyset$. The time complexity of a single query is $\mathcal{O}(k\sqrt{n}\log n)$, as it can be checked whether $Q \cap R_i \neq \emptyset$ in time $\mathcal{O}((|Q| + |R_i|)\log(|Q| + |R_i|)) = \mathcal{O}(\sqrt{n}\log n)$.

It remains to estimate the probability that $Q \cap R_i \neq \emptyset$, where *i* is such that *x* and v_i lie in the same connected component. Since for any *u* in this component, the probabilities that $u \in R_i$ and $u \in Q$ are both at least $\frac{1}{\sqrt{n}}$, the probability that *u* belongs to both these sets is at least $\frac{1}{n}$. Thus, the probability that no such *u* exists is at most

$$\left(1 - \frac{1}{n}\right)^n \leqslant e^{-1},$$

and so the probability that $Q \cap R_i \neq \emptyset$ is at least $1 - e^{-1} \geqslant \frac{1}{2}$.