Quinn Roemer

Engineering – 303

Lab 9

5/5/2017

Introduction/Description

The goal of this lab was to learn further how to build and implement state machines. This lab allowed me to further my understanding of the workings of a state machine. In this lab, I created two circuits one was called Freaky State Machine and the other Vendomatic. Please note, this lab was done for extra credit.

Design

Part 0 – Freaky State Machine

The first circuit that I had to create in this lab was called a freaky state machine. This state machine is different from the previous state machines that I have created because this thing has states where both a binary zero and one will lead to the same result. This gives this machine the ability to get stuck in loops.

Here is the State Diagram for the circuit.

Here is the Truth Table for the circuit.

	Inp	uts		Outputs						
	State				Next State			Moor	e Outs	
Α	В	С	^	DA	DB	DC	Z3	Z2	Z1	Z 0
0	0	0	0	0	0	1	1	0	1	0
0	0	0	1	0	1	1	1	0	1	0
0	0	1	0	0	1	0	1	0	1	1
0	0	1	1	0	1	0	1	0	1	1
0	1	0	0	0	0	0	1	1	0	0
0	1	0	1	0	0	0	1	1	0	0
0	1	1	0	0	0	0	1	1	0	1
0	1	1	1	1	0	0	1	1	0	1
1	0	0	0	1	0	1	1	1	1	0
1	0	0	1	1	0	1	1	1	1	0
1	0	1	0	0	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1	1
1	1	0	0	DC	DC	DC	DC	DC	DC	DC
1	1	0	1	DC	DC	DC	DC	DC	DC	DC
1	1	1	0	DC	DC	DC	DC	DC	DC	DC
1	1	1	1	DC	DC	DC	DC	DC	DC	DC

Here is the MinTerm chart for the circuit.

		MinTerms										
mDA	mDB	mDC	mZ3	mZ2	mZ1	mZ0						
		A'B'C'X'	A'B'C'X'		A'B'C'X'							
	A'B'C'X	A'B'C'X	A'B'C'X		A'B'C'X							
	A'B'CX'		A'B'CX'		A'B'CX'	A'B'CX'						
	A'B'CX		A'B'CX		A'B'CX	A'B'CX						
			A'BC'X'	A'BC'X'								
			A'BC'X	A'BC'X								
			A'BCX'	A'BCX'		A'BCX'						
A'BCX			A'BCX	A'BCX		A'BCX						
AB'C'X'		AB'C'X'	AB'C'X'	AB'C'X'	AB'C'X'							
AB'C'X		AB'C'X	AB'C'X	AB'C'X	AB'C'X							
	AB'CX'	AB'CX'	AB'CX'	AB'CX'	AB'CX'	AB'CX'						
	AB'CX	AB'CX	AB'CX	AB'CX	AB'CX	AB'CX						
			ABC'X'									
			ABC'X									
			ABCX'									

ABCX

Here are the Kmaps used to design the circuit.

Kmap DA	СХ	C'X	C'X'	CX'	Kmap DB	CX	C'X	C'X'	CX'	
AB	DC	DC	DC	DC	AB	DC	DC	DC	DC	
A'B	1				A'B					
A'B'					A'B'		1		1	
AB'		1	1)		AB'	1)			1	
	DA = BCX + AB'C'					DB = B'C + A'B'X				

Kmap DC	CX	C'X	C'X'	CX'	Kmap Z0	CX	C'X	C'X'	CX'	
AB	DC	DC	DC	DC	AB	DC	DC	DC	DC	
A'B					A'B	1			1	
A'B'		1	1		A'B'	1			1	
AB'		1	1_		AB'	1			1	
	DC = AB' + B'C'					Z0 = C				

Kmap Z1	СХ	C'X	C'X'	CX'	Kmap Z2	СХ	C'X	C'X'	CX'	
AB	DC	DC	DC	DC	AB	DC	DC	DC	DC	
A'B					A'B	\int	1	1		
A'B'	1	1	1	1	A'B'					
AB'	J	1	1	_1_	AB'	1	1	1	1	
	Z1 = B'					Z2 = B + A				

Kmap Z3	СХ	C,X	C'X'	CX'					
AB		DC	DC	Do					
A'B	1	1	1	1					
A'B'	1	1	1	1					
AB'		1	1						
	Z3 = Always High								

Part 1 - Vendomatic

This circuit was another unique state machine. Unlike any other state machine, I had made before this machine accepted two user defined inputs instead of one. This state machine was designed to mimic the operation of a vending machine. For instance, this machine waits until a certain amount has been entered it then will output one once it has reached that amount. However, if this machine goes over the amount it will reset itself.

Here is the State Diagram for the circuit.

Here is the Truth Table for the circuit.

			Inputs		Outputs			MinTerms		
	Sta	te	X1	X2	Next	State	Z	mDA	mDB	mZ
А		В	ΛI	ΛZ	DA	DB				
0		0	0	0	0	0	0			
0		0	0	1	0	1	0		A'B'X1'X2	
0		0	1	0	1	0	0	A'B'X1X2'		
0		0	1	1	1	1	0	A'B'X1X2	A'B'X1X2	
0		1	0	0	0	1	0		A'BX1'X2'	
0		1	0	1	1	0	0	A'BX1'X2		
0		1	1	0	1	1	0	A'BX1X2'	A'BX1X2'	
0)	1	1	1	0	0	0			
1		0	0	0	1	0	0	AB'X1'X2'		
1		0	0	1	1	1	0	AB'X1'X2	AB'X1'X2	
1		0	1	0	0	0	0			
1		0	1	1	0	0	0			
1		1	0	0	1	1	1	ABX1'X2'	ABX1'X2'	ABX1'X2'
1		1	0	1	0	0	1			ABX1'X2
1		1	1	0	0	0	1			ABX1X2'
1		1	1	1	0	0	1			ABX1X2

Here are the Kmaps used to design the circuit.

Kmap Z	x1x2	x1'x2	x1'x2'	x1x2'				
AB	1	1	1					
A'B								
A'B'								
AB'								
Z = AB								

Here is the Block-Diagram for the circuit.

Testing

When testing the Freaky State Machine I encountered no problems and it performed as expected for every single input combination.

When testing the Vendomatic I encountered no problems and it performed as expected for every single input combination.

Conclusion

In this lab, I learned that state machines have many uses in our lives. Be it simulating certain situations or making sure that a vending machine only gives you a soda once you have inserted enough cash. The state machines that I created in this lab proved to be enjoyable to make. I really like being able to create a circuit that completes a certain task that is completely of my own design.