

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) A silicon-containing polymer comprising the structure represented by formula 1 below as a main structural unit.

1

where R^1 represents a monovalent organic group, R^2 represents a direct bond or a divalent organic group, R^3 represents a monovalent organic group or an organosilyl group, any of which groups may be of different types, X represents hydrogen, a monovalent organic group or an organosilyl group, which groups may be of different types, k and l are positive integers, m and n are 0 or positive integers, and these subscripts satisfy the following relationship.

$$0 < \frac{1}{1 + m + n} \leq 0.8 \quad 0 \leq \frac{m}{1 + m} < 0.2$$

2. (Original) A silicon-containing polymer according to claim 1, wherein at least some of the X groups are triorganosilyl groups.

3. (Original) A silicon-containing polymer according to claim 2, wherein said triorganosilyl groups include photosensitive crosslinkable groups.

4. (Currently Amended) A silicon-containing polymer ~~according to claim 3~~ represented by formula 2 below, wherein said photosensitive crosslinkable group is chloromethylphenylethyl-

2

where R^1 represents a monovalent organic group, R^2 represents a direct bond or a divalent organic group, R^3 represents a monovalent organic group or an organosilyl group, any of which groups may be of different types, X represents hydrogen, a monovalent organic group or an organosilyl group, which groups may be of different types, R^4 , R^5 and R^6 each independently represent a monovalent organic group, at least one of which is a monovalent organic group including chloromethylphenylethyl, R^4 , R^5 and R^6 may be one or more different types of organic groups, k , l and o are positive integers, m and n are 0 or positive integers, and these subscripts satisfy the following relationships.

$$0 < \frac{o}{1+m+n+o} \leq 0.8$$

$$0 < \frac{1}{1+m+n} \leq 0.8 \quad 0 \leq \frac{m}{1+m} < 0.2$$

5. (Currently Amended) A silicon-containing polymer comprising the structure represented by formula 3 below as a main structural unit.

3

where R^1 represents a monovalent organic group, R^2 represents a direct bond or a divalent organic group, R^7 and R^8 each independently represent a monovalent organic group or an organosilyl group, any of which groups may be of different types, X represents hydrogen, a monovalent organic group or an organosilyl group, which groups may be of different types, k and q are positive integers, l , n , and p are 0 or positive integers, and these subscripts satisfy the following relationship.

$$0 \leq \frac{1}{1+n+p+q} < 0.5 \quad 0.1 < \frac{q}{1+n+p+q} \leq 0.8$$

6. (Original) A silicon-containing polymer according to claim 5, wherein at least some of the X groups are triorganosilyl groups.

7. (Original) A silicon containing polymer according to claim 5, wherein R⁸ is a functional group that is eliminated by an acid catalyst.

8. (Original) A copolymer according to any one of claims 1 to 7, where R² is -(Ch₂)_a- and a is an integer of 1-10.

9 - 17 (Cancelled)