Linear Regression

Data
Distribution
and the
function
learned.

Recap: Machine learning algorithms

	Supervised Learning	Unsupervised Learning
Discrete	Classification	Clustering
Continuous	Regression	Dimensionality reduction

-> Regression Based problem example.

House pricing prediction

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	III - 47
•••	•••	

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$

 $x^{(2)} = 1416$
 $y^{(1)} = 460$

Model representation

→ Univariate Lineau Regression La Only one feature.

Univariate linear regression

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	_
1416	232	
1534	315	m - 17
852	178	m = 47
•••		

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0 , θ_1 : parameters/weights

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function

• Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$J(\theta_0, \theta_1)$$
 Cost function θ_0, θ_1

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x - \frac{1}{2}$$

Hypothesis:

$$\rightarrow h_{\theta}(x) = \theta_1 x$$

Parameters:

$$\theta_0 = 0$$

• Parameters:

$$\theta_0, \theta_1 \longrightarrow \theta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal:

minimize
$$J(\theta_0, \theta_1)$$

 θ_0, θ_1

Goal:

minimize
$$J(\theta_1)$$
 θ_0, θ_1

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

 $h_{\theta}(x)$, function of x

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parameters: θ_0 , θ_1

• Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

•Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Cost function

How do we find good θ_0 , θ_1 that minimize $J(\theta_0, \theta_1)$?

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 0.2 0.1 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 θ_0 1000 0 1500 2000 Size (feet2)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 200 200 500 0.2 0.1 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 1000 2000 3000 4000 -500 θ_0 1000 1500 2000 0 Size (feet²)

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want \underset{\theta_0, \theta_1}{\operatorname{argmin}} J(\theta_0, \theta_1)
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1\text{)}$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \mathsf{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

$$temp0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \text{temp1}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Learning rate

Big learning rate

> very tigh rearming rate

- doer not reach

alobal optimum

- Very 1000 learning rate

Small learning rate

Very to reach global optimum

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Computing partial derivative

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$
• $j = 1$: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Update θ_0 and θ_1 simultaneously

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples
 Repeat until convergence{

m: Number of training examples

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Training dataset

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	
•••	•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (input variables)

Size in feet^2 (x_1)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				•••

Notation:

n = Number of features $x^{(i)}$ = Input features of i^{th} training example $x_j^{(i)}$ = Value of feature j in i^{th} training example

$$x_3^{(2)} = ?$$
 $x_3^{(4)} = ?$

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1 \text{ for all examples})$

$$\bullet \ \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$\bullet h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$= \boldsymbol{\theta}^{\top} \boldsymbol{x}$$

Gradient descent

• Previously (n=1)

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

• New algorithm $(n \ge 1)$

Repeat until convergence{

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \qquad \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Simultaneously update θ_j , for $j = 0, 1, \dots, n$

Gradient descent in practice: Feature scaling

- Idea: Make sure features are on a similar scale (e.g., $-1 \le x_i \le 1$)
- E.g. $x_1 = \text{size (0-2000 feat^2)}$ x_2 = number of bedrooms (1-5)

Question

Midterm Exam	(midterm exam) ²	Final Exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

What is the normalized feature x2(4)? Use 14in-max Scalar.

Gradient descent in practice: Learning rate

- Automatic convergence test
- α too small: slow convergence
- α too large: may not converge

• To choose α , try

0.001, ... 0.01, ..., 0.1, ..., 1

House prices prediction

• $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$

• Area

 $x = \text{frontage} \times \text{depth}$

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Polynomial regression

$$x_1$$
 = (size)
 x_2 = (size)^2
 x_3 = (size)^3

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

Regularization

Overfitting

Cost function

Regularized linear regression

Example: Linear regression

Overfitting

• If we have too many features (i.e. complex model), the learned hypothesis may fit the training set very well

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \approx 0$$

but fail to generalize to new examples (predict prices on new examples).

Example: Linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \cdots$

Underfitting

Just right

Overfitting

High bias

High variance

Addressing overfitting

- x_1 = size of house
- x_2 = no. of bedrooms
- $x_3 = \text{no. of floors}$
- x_4 = age of house
- x_5 = average income in neighborhood
- x_6 = kitchen size
- •
- x_{100}

Addressing overfitting

• 1. Reduce number of features.

- Manually select which features to keep.
- Model selection algorithm.

• 2. Regularization.

- Keep all the features, but reduce magnitude/values of parameters θ_i .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.

Regularization

Overfitting

Cost function

Regularized linear regression

Intuition

Price (\$)

• Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + 1000 \,\theta_{3}^{2} + 1000 \,\theta_{4}^{2}$$

Regularization.

- Small values for parameters θ_1 , θ_2 , \cdots , θ_n
 - "Simpler" hypothesis
 - Less prone to overfitting
- Housing:
 - Features: $x_1, x_2, \cdots, x_{100}$
 - Parameters: θ_0 , θ_1 , θ_2 , \cdots , θ_{100}

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\min_{\theta} J(\theta)$$

$$\uparrow$$
Size in feet^2

Question

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to an extremely large value (say $\lambda=10^{10}$)?

- 1. Algorithm works fine; setting to be very large can't hurt it
- 2. Algorithm fails to eliminate overfitting.
- 3. Algorithm results in underfitting. (Fails to fit even training data well).
 - 4. Gradient descent will fail to converge.

Question

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to an extremely large value (say $\lambda = 10^{10}$)?

$$h_{\theta}(x) = \theta_0 + \frac{\theta_1 x_1}{\theta_2 x_2} + \frac{\theta_2 x_2}{\theta_1 x_2} + \dots + \frac{\theta_n x_n}{\theta_n x_n} = \theta^{\mathsf{T}} x$$

Important points about λ:

- λ is the tuning parameter used in regularization that decides how much we want to penalize the flexibility of our model i.e, controls the impact on bias and variance.
- When λ = 0, the penalty term has no effect, the equation becomes the cost function of the linear regression model. Hence, for the minimum value of λ i.e, λ =0, the model will resemble the linear regression model. So, the estimates produced by ridge regression will be equal to least squares.
- However, as $\lambda \rightarrow \infty$ (tends to infinity), the impact of the shrinkage penalty increases, and the ridge regression coefficient estimates will approach zero.

Regularization

Overfitting

Cost function

Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

n: Number of features θ_0 is not panelized

Gradient descent (Previously)

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})$$
 $(j = 0)$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right] \quad (j = 1, 2, 3, \dots, n)$$

Gradient descent (Regularized)

Repeat { $\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$ $\theta_j := \theta_j - \alpha \frac{1}{m} \left| \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right|$ $\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$

Comparison

$$1 - \alpha \frac{\lambda}{m} < 1$$
: Weight decay

Regularized linear regression

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

Un-regularized linear regression

$$\theta_j \coloneqq \theta_j \qquad -\alpha \frac{1}{m} \left[\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression

Particularly, regularization is implemented to avoid overfitting of the data, especially when there is a large variance between train and test set performances. With regularization, the number of features used in training is kept constant, yet the magnitude of the coefficients (w) is reduced.

Here, Both the Regularization are med the issue of overfitting

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

=> The above graph, we are toping to find values of parameters such that 10ss is univinized and overfitting is removed. We have to find values of parameters where both the contours intersect each other. => Lasso > will find spourse salutions.

-> So, it can be med to freeform feature selection.

Considering the geometry of both the lasso (left) and ridge (right) models, the elliptical contours (red circles) are the cost functions for each.

However, both methods determine coefficients by finding the first point where the elliptical contours hit the region of constraints. Since lasso regression takes a diamond shape in the plot for the constrained region, each time the elliptical regions intersect with these corners, at least one of the coefficients becomes zero. This is impossible in the ridge regression model as it forms a circular shape and therefore values can be shrunk close to zero, but never equal to zero.

theta0

Tutersecting point of Regression 4 Loss
contours.

Here, the graph of lasso regression is pointy at axes. This tends to intersect at sparse solutions. One of the component as 0 and other non-zero.

Reference

- https://www.analyticsvidhya.com/blog/2021/05/complete-guide-to-regularization-techniques-in-machine-learning/
- Machine Learning by Andrew Ng
- https://filebox.ece.vt.edu/~jbhuang/teaching/ECE5424-CS5824/sp19
- https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
- https://towardsdatascience.com/feature-selection-in-machine-learning-using-lasso-regression-7809c7c2771a

References

- https://www.youtube.com/watch?v=76B5cMEZA4Y Sparsity in Lasso
- https://www.datacamp.com/tutorial/tutorial-lasso-ridge-regression
- https://medium.com/@mukulranjan/how-does-lasso-regression-l1-encouragezero-coefficients-but-not-the-l2-20e4893cba5d#:~:text=From%20both%20of% 20the%20above,a%20method%20of%20variable%20selection.
- https://www.youtube.com/watch?v=3xXInc1Bf0w&list=PLKnIA16_Rmvat8luH BnIE68KvqSuurAR4