

Random Variables A first look

MATH/STAT 394: Probability I

Summer 2021 A Term

Introduction to Probability

D. Anderson, T.Seppäläinen, B. Valkó

§ 1.5

Aaron Osgood-Zimmerman

Department of Statistics

Logistics

- Office Hours:
 - Tuesday 8:30-9:30am PST
 - Thursday 4-5pm PST

Practice solution

Practice

Randomly pair 4 keys {a, b, c, d} with 3 locks {a, b, c}.

What is $\mathbb{P}(\text{at least one match})$?

Solution Let A denote the event that lock a and key a matches. Similarly, B, C.

•
$$\mathbb{P}(A) = \frac{3 \times 2}{4 \times 3 \times 2}$$

•
$$\mathbb{P}(A \cap B) = \frac{2}{4 \times 3 \times 2}$$

•
$$\mathbb{P}(A \cap B \cap C) = \frac{1}{4 \times 3 \times 2}$$

•
$$\mathbb{P}(\text{at least one match}) = \mathbb{P}(A \cup B \cup C) =$$

$$\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

$$= \frac{6}{24} \times 3 - \frac{2}{24} \times 3 + \frac{1}{24} = \frac{13}{24}.$$

Outline

Random Variables

Definition

Given a sample space Ω , a random variable (r.v.) X on Ω^1 is a function from Ω to \mathbb{R} .

Key concepts to get comfortable with:

- A random variable is not a variable but a function
- r.v. are denoted with capital letters (unlike functions in, eg, calc)
- The value of a r.v. at a sample point ω is $X(\omega)$

Example

Flip a coin n times, define X as the number of heads you got

$$X : \Omega \to \{0, ..., n\} \text{ with } \Omega = \{(a_1, ..., a_n) : a_i \in \{H, T\}\}$$

¹See the ASV §1.6 for a rigorous complete definition

Example Flip three coins. Denote

- X_h the outcome of the h^{th} coin,
- S the sum

Let's express them as functions of the sample space

Solution

- The sample space is made of outcomes ω = (i, j, k) with i the first flip, j the second flip, and k the third.
- We have $X_1(\omega) = X_1(i,j,k) = i$, $X_2(\omega) = j$, $X_3(\omega) = k$ for $\omega = (i,j,k)$
- We have $S(\omega) = X_1(\omega) + X_2(\omega) + X_3(\omega)$.

Notations

• Recalling that events are subsets of Ω , we will denote

$$\{X = x\} = \{\omega \in \Omega : X(\omega) = x\}$$

• In the prior example, the probability than the sum is 2 is written

$$\mathbb{P}(S=2) = \mathbb{P}(\omega \in \Omega : X(\omega) = 2)$$

= $\mathbb{P}((i,j,k) \in \Omega : i,j,k \in \{H,T\}, X(i,j,k) = 2)$

- ullet Note: inside events a comma is short for "and" which represents \cap
- In probability, we usually only bother with the essential features:

only writing the event
$$\{S=2\}$$
, or the probability $\mathbb{P}(S=2)$

Notations

• Similarly we denote

$${a \le X \le b} = {\omega \in \Omega : a \le X(\omega) \le b}$$

So for example the prob. that sum is larger than or equal to 2 is written

$$\mathbb{P}(S \geq 2)$$

• Idea: we can measure probabilities in Ω by expressing them as the set of elements such that the r.v. satisfies some equality/inequality (namely the reciprocal image)

Example

A fair die is rolled

- If the roll is 1,2 or 3 the player loses 1\$
- if the roll is 4 the player wins 1\$
- if the rol is 5 or 6 the player wins 3\$

Express the gain of the player as a r.v., give its probability of gain

Solution

• Denote W the gain of the player, we have

$$W(1) = W(2) = W(3) = -1, \quad W(4) = 1, \quad W(5,6) = 3$$

• The probabilities are then

$$\mathbb{P}(W = -1) = \mathbb{P}(\{1, 2, 3\}) = 1/2, \quad \mathbb{P}(W = 1) = 1/6, \quad \mathbb{P}(W = 3) = 1/3$$

Exercise

Pick a point uniformly at random on [0,1]. Let Y be twice the point.

- 1. What is the prob. that Y is less than some $a \in [0, 2]$?
- 2. Same for a < 0 and a > 2

Solution

1.

Hence
$$\mathbb{P}(Y \leq a) = a/2$$

2. For a < 0, $\{Y \le a\} = \emptyset$ so $\mathbb{P}(Y \le a) = 0$, and for a > 2, $\{Y \le a\} = \Omega$ so $\mathbb{P}(Y \le a) = 1$.

Definition

A r.v. is degenerate if there exists some value b such that $\mathbb{P}(X=b)=1$

Example

- A constant function $X(\omega) = b$ is degenerate
- Not all degenerate r.v. are constant functions

Probability distribution

Notations

Generally for $A \subseteq \mathbb{R}$, and X a r.v. on Ω , the *reciprocal image* of A by X is

$${X \in A} := X^{-1}(A) := {\omega \in \Omega : X(\omega) \in A}$$

This defines the events of interest

Definition

The **probability distribution**² of a r.v. X on Ω is the function

$$\mathbb{P}_X: B \to \mathbb{P}(X \in B)$$

for B a subset in \mathbb{R}

²See ASV§1.6 for a more rigorous treatment

Discrete random Variables

Definition

A r.v. X is a **discrete r.v.** if there exists a finite or countable set $K = \{k_1, k_2, ...\}$ of real numbers such that

$$\sum_{i\in K}\mathbb{P}(X=k_i)=1$$

Example

- If the range of X (i.e. the set of values that X can take) is finite or countable, then X is a discrete r.v.
- Example the roll of a die, the tosses of a coin, ...
- Counter example: picking a point uniformly at random on [0,1], then as we've seen $\mathbb{P}(X=a)=0$ for all $a\in[0,1]$ so it is not discrete.

Probability mass function

Definition

The probability mass function (p.m.f) of a discrete r.v. is the function

$$p_X(k) = \mathbb{P}(X = k)$$

for all possible values k of X.

Probability mass function

ExampleFor a fair die,

k	1	2	3	4	5	6
pX	1/6	1/6	1/6	1/6	1/6	1/6

For the sum of two dice

S	2	3	4	5	6	7	8	9	10	11	12
ps	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Bernoulli Random variable

Definition

A r.v. X has a Bernoulli dist. with param. $p \in [0,1]$ if it takes its values in $\{0,1\}$ and

$$\mathbb{P}(X = 1) = p \quad \mathbb{P}(X = 0) = 1 - p$$

We denote it $X \sim \text{Ber}(p)$

Example

This is typically the toss of a coin where you say 1 corresponds to tail and the prob. to have a tail is p.

Bernoulli Random variable

Example

Define the **indicator function** of a subset $A \subset \Omega$ as

$$1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

The indicator function of A is a Bernoulli random variable such that

$$\mathbb{P}(1_A=1)=\mathbb{P}(A)$$
 $\mathbb{P}(1_A=0)=1-\mathbb{P}(A)$

The Bernoulli r.v. is one of the primary building blocks for other discrete r.v. we will cover

Exercise

Two fair dice are rolled. We are interested in counting how many of the rolls were 2 or less. Write down the PMF for this r.v.

Solution

- \bullet We can consider each roll to be binary with prob of 1/3 of being 2 or less
- The possible outcomes are {SS, SF, FS, FF}
- Which map to 2, 1, 1, 0
- We can then calculate the probabilities to be:

k	0	1	2		
pX	$(4/6)^2$	2 * (2/6 * 4/6)	$(2/6)^2$		

Practice for next lecture

Practice

Flip a fair coin 5 times. For each heads you pay me 1\$ and for each tails I pay you 1\$. Denote by X my net wining.

- What are the possible values for X?
- What is $\mathbb{P}(X=3)$?