Chương 3. Không gian véctơ §1. KHÁI NIỆM KHÔNG GIAN VÉCTO

- **1.1.** Định nghĩa. Một tập $V \neq \emptyset$ được gọi là *không gian vécto* (*không gian tuyến tính*) trên \mathbb{R} (hay \mathbb{R} _không gian vécto) nếu:
- Có 2 phép toán:
- Phép cộng 2 vécto:

$$V \times V \rightarrow V$$
 (Phép cộng khép kín)
 $(x,y) \mapsto x + y$

• Phép nhân 1 số với véctơ (phép nhân vô hướng):

$$\mathbb{R} \times V \to V$$
 (Phép nhân vô hướng khép kín) $(\alpha, x) \mapsto \alpha x$

- Hai phép toán trên thỏa mãn 8 tiên đề sau: $\forall x, y, z \in V; \forall \alpha, \beta \in \mathbb{R}$
 - 1) Cộng kết hợp: (x + y) + z = x + (y + z)
 - 2) Cộng giao hoán: x + y = y + x
 - 3) Tồn tại phần tử $\theta \in V$ sao cho: $\theta + x = x$.

Phần tử θ được gọi là phần tử trung hòa.

4) Với $\forall x \in V, \exists (-x) \in V \text{ sao cho: } x + (-x) = \theta.$

Phần tử - x được gọi là phần tử đối của x.

- 5) $\alpha(x + y) = \alpha x + \alpha y$
- 6) $(\alpha + \beta)x = \alpha x + \beta x$
- 7) $(\alpha\beta)x = \alpha(\beta x)$
- 8) Tiên đề Unita: 1.x = x

Mỗi phần tử của V được gọi là một véctơ. Mỗi phần tử trong $\mathbb R$ được gọi là vô hướng.

VD1.

Tập gồm tất cả các bộ n số thực: $\mathbb{R}^n = \left\{ (x_1, x_2, ..., x_n) \middle| x_i \in \mathbb{R}; i = \overline{1,n} \right\}$ là không gian véctơ trên \mathbb{R} với

- Phép cộng 2 véctơ: $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ với $x = (x_1, x_2, ..., x_n)$; $y = (y_1, y_2, ..., y_n)$
- Phép nhân vô hướng: $\alpha x = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$

$$\Rightarrow \theta = (0,0,...,0); -x = (-x_1,-x_2,...,-x_n)$$

VD2. Ký hiệu: R_2 là tập hợp tất cả các véctơ tự do trong mặt phẳng với phép cộng véctơ và phép nhân 1 số thực với véctơ được định nghĩa như ở phổ thông. Khi đó R_2 là không gian véctơ trên \mathbb{R}

$$\Rightarrow \theta = \vec{0}$$
; véctơ đối của \vec{x} là $-\vec{x}$

Tương tự: R_3 là tất cả các véctơ tự do trong không gian với phép cộng và nhân vô hướng như trên cũng là không gian véctơ trên $\mathbb R$

VD3. Ký hiệu: $P_n[x]$ là tập tất cả các đa thức với hệ số thực có bậc không quá n ($n \in \mathbb{N}^*$), tức:

$$P_{n}\left[x\right] = \left\{a_{o} + a_{1}x + a_{2}x^{2} + ... + a_{n}x^{n} \left| a_{i} \in \mathbb{R} \right. ; i = \overline{0,n}\right\}$$

với phép cộng 2 đa thức và phép nhân 1 số với đa thức thông thường. Khi đó $P_n[x]$ là không gian véctơ trên $\mathbb R$

$$\Rightarrow \theta = 0 + 0.x + 0.x^{2} + ... + 0.x^{n}$$

$$- p(x) = -a_{o} - a_{1}x - a_{2}x^{2} - ... - a_{n}x^{n}$$

 $\underline{\mathbf{VD4.}}$ Ký hiệu: $\mathbf{M}_{\mathrm{m} imes \mathrm{n}} \left(\mathbb{R} \right)$ là tập tất cả các ma trận cỡ m \times n trên \mathbb{R} với phép toán cộng 2 ma trận và nhân 1 số với ma trận. Khi đó $\mathbf{M}_{\mathrm{m} imes \mathrm{n}} \left(\mathbb{R} \right)$ là không gian véctơ trên \mathbb{R}

1.2. Các tính chất.

Định lý. Trong không gian véctơ V ta có:

- Vécto θ là duy nhất
- lacktriangle Vécto đối của vécto $x \in V$ là duy nhất
- $\forall x \in V \text{ ta } colline{0}.x = \theta$
- $\forall x \in V \text{ ta có } (-1).x = -x$
- $\forall k \in \mathbb{R} \text{ ta } c\acute{o} k.\theta = \theta$
- Với $x \in V, k \in \mathbb{R}$ ta có $kx = \theta \Leftrightarrow \begin{bmatrix} k = 0 \\ x = \theta \end{bmatrix}$

Định nghĩa.

$$\forall x, y \in V : x - y = x + (-y)$$

§2. SỰ ĐỘC LẬP TUYẾN TÍNH VÀ PHỤ THUỘC TUYẾN TÍNH

- **2.1.** Định nghĩa. Cho không gian véctơ V và hệ véctơ $a_1, a_2, ..., a_n \in V$
- Một tổ hợp tuyến tính (thtt) của hệ véctơ đã cho là 1 tổng có dạng:

$$x=\sum_{i=1}^n \lambda_i a_i=\lambda_1 a_1+\lambda_2 a_2+...+\lambda_n a_n \in V, \text{ trong $d\acute{o}$: $\lambda_1,\lambda_2,...,\lambda_n$} \in \mathbb{R}$$

Khi đó ta nói x biểu thị tuyến tính qua các véctơ a_i , i=1,nNhư vậy, véctơ θ là thtt của mọi hệ véctơ.

- Hệ véctơ $\{a_1,a_2,...,a_n\}$ được gọi là phụ thuộc tuyến tính (pttt) nếu tồn tại các số $\lambda_1,\lambda_2,...,\lambda_n \in \mathbb{R}$ không đồng thời bằng 0 sao cho thtt của hệ bằng θ (tức $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = \theta$).
- Hệ véctơ $\left\{a_1,a_2,...,a_n\right\}$ được gọi là độc lập tuyến tính (đltt) nếu nó không pttt, tức là từ $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = \theta$ suy ra $\lambda_i = 0; \ \forall i = \overline{1,n}$

VD 1.

- 1) Trong \mathbb{R}^3 : x = (1,2,3); y = (4,5,6)Ta có: z = -2x + 3y = (-2, -4, -6) + (12,15,18) = (10,11,12)Khi đó z = (10,11,12) là thtt của các véctơ x và y
- 2) Véctor $z = (7, -3, 0) \in \mathbb{R}^3$ có phải là thtt của hệ hai véctor x = (1, 1, 0); y = (1, -1, 0) không?

<u>VD 2.</u>

Trong \mathbb{R}^2 : x = (1,-1); y = (2,3). Hê $\{x,y\}$ đltt vì:

$$X\acute{e}t \ \lambda_{_{\! 1}} x + \lambda_{_{\! 2}} y = \theta \Leftrightarrow \left(\lambda_{_{\! 1}}, -\lambda_{_{\! 1}}\right) + \left(2\lambda_{_{\! 2}}, 3\lambda_{_{\! 2}}\right) = (0, 0) \Leftrightarrow \begin{cases} \lambda_{_{\! 1}} + 2\lambda_{_{\! 2}} = 0 \\ -\lambda_{_{\! 1}} + 3\lambda_{_{\! 2}} = 0 \end{cases}$$

Gi ải hệ suy ra $\lambda_1 = \lambda_2 = 0$ (hoặc vì hệ phương trình tuyến tính thuần

nhất có
$$\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 5 \neq 0$$
 nên hệ chỉ có nghiệm tầm thường).

<u>VD 3.</u> Trong \mathbb{R}^3 : x = (-1,3,2); y = (2,0,1); z = (0,6,5).

Hệ
$$\{x,y,z\}$$
 pttt vì: Xét $\lambda_1 x + \lambda_2 y + \lambda_3 z = \theta$; (*) \Leftrightarrow
$$\begin{cases} -\lambda_1 + 2\lambda_2 = 0 \\ 3\lambda_1 + 6\lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 + 5\lambda_3 = 0 \end{cases}$$

Đây là hệ phương trình tuyến tính thuần nhất có $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 0 & 6 \\ 2 & 1 & 5 \end{vmatrix} = 0$ nên hệ có nghiêm không tầm 41 $\stackrel{1}{\sim}$

nên hệ có nghiệm không tầm thường, tức tồn tại các số $\lambda_1, \lambda_2, \lambda_3$ không đồng thời bằng 0 để (*) đúng. Vậy hệ pttt.

2.2. Định lý. Hệ véctơ a_1 , a_2 ,..., a_n trong không gian véctơ V là pttt khi và chỉ khi có một trong các véctơ của hệ là thtt của các véctơ còn lại.

- 2.3. Hệ quả. Mọi hệ chứa véctơ không đều pttt
 - Nếu có một hệ con của hệ pttt thì hệ đã cho cũng pttt
- Như vậy, nếu hệ đltt thì mọi hệ con của hệ cũng đltt

VD. Xét VD.1) ở trên thì hệ $\{x,y,z\}$ pttt vì z = -2x + 3y.

Nhưng hệ $\{x,y\}$ đltt vì:

$$X\acute{e}t \ \lambda_{1}x+\lambda_{2}y=\theta \Leftrightarrow \begin{cases} \lambda_{1}+4\lambda_{2}=0\\ 2\lambda_{1}+5\lambda_{2}=0\\ 3\lambda_{1}+6\lambda_{2}=0 \end{cases} \Rightarrow \lambda_{1}=\lambda_{2}=0$$

§3. CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN VÉCTƠ

3.1. Định nghĩa.

Cho không gian véctơ V. Hệ véctơ $E = \{e_1, e_2,...,e_n\}$ được gọi là $c\sigma$ sở của V nếu

- Hệ E đltt.
- Hệ E là hệ sinh (hay tập sinh) của V, tức với \forall $x \in V$ thì x là thtt của hệ E, nghĩa là tồn tại các số $x_i \in \mathbb{R}$, $i = \overline{1, n}$ sao cho $x = x_1 e_1 + ... + x_n e_n$

Khi đó ta cũng nói E sinh ra V.

Bộ số $(x_1,x_2,...,x_n) \in \mathbb{R}^n$ được gọi là *tọa độ* của véctơ x đối với cơ sở E và ký hiệu là $x_E = (x_1,x_2,...,x_n)$

<u>Bổ đề.</u> Với mỗi véctơ $x \in V$ thì tọa độ đối với một cơ sở E là duy nhất **<u>Đinh lý.</u>** Nếu $x_E = (x_1,...,x_n)$ và $y_E = (y_1,...,y_n)$ thì

- $(x + y)_E = (x_1 + y_1, ..., x_n + y_n)$
- $(\lambda x)_{E} = (\lambda x_{1}, ..., \lambda x_{n}); \ \lambda \in \mathbb{R}$

<u>VD.</u>

- 1) Trong \mathbb{R}^2 : Xét $e_1 = (1,0)$; $e_2 = (0,1)$. Hệ $E = \{e_1,e_2\}$ là một cơ sở của \mathbb{R}^2 và được gọi là cơ sở chính tắc của \mathbb{R}^2 . Thật vậy:
- E đltt vì: Xét $\lambda_1 e_1 + \lambda_2 e_2 = \theta \Leftrightarrow (\lambda_1, 0) + (0, \lambda_2) = (0, 0)$ $\Leftrightarrow (\lambda_1, \lambda_2) = (0, 0) \Rightarrow \lambda_1 = \lambda_2 = 0.$
- E là hệ sinh vì: $\forall x \in \mathbb{R}^2$ ta có $x = (x_1; x_2) = x_1(1,0) + x_2(0,1) = x_1e_1 + x_2e_2. \text{ Vậy x là một thtt của E.}$

- 2) Trong \mathbb{R}^2 : Xét hệ $F = \{e_1 = (1, -1); e_2 = (0, 1).$ Ta có
- Hệ F đltt vì: Xét $\lambda_1 e_1 + \lambda_2 e_2 = \theta \Leftrightarrow (\lambda_1, -\lambda_1) + (0, \lambda_2) = (0, 0)$

$$\Leftrightarrow \begin{cases} \lambda_1 = 0 \\ -\lambda_1 + \lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = 0.$$

• Hệ F là hệ sinh vì: Lấy bất kỳ $x = (x_1; x_2) \in \mathbb{R}^2$, tìm a, b sao cho

$$x = ae_1 + be_2 \Leftrightarrow (x_1; x_2) = a(1, -1) + b(0, 1) = (a, b - a)$$

$$\Leftrightarrow \begin{cases} a = x_1 \\ b - a = x_2 \end{cases} \Rightarrow \begin{cases} a = x_1 \\ b = x_1 + x_2 \end{cases} \Rightarrow x = x_1 e_1 + (x_1 + x_2) e_2$$

 \Rightarrow x là một thtt của F.

Vậy F là một cơ sở của \mathbb{R}^2 .

3) Hoàn toàn tương tự, trong \mathbb{R}^n : Xét hệ véctor $\mathbf{e}_1 = (1,0,...,0)$

$$e_2 = (0,1,...,0)$$

•••••

$$e_n = (0,0,...,1)$$

 \Rightarrow Hệ $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của \mathbb{R}^n và được gọi là cơ sở chính tắc của \mathbb{R}^n .

Nhân xét. Một không gian véctơ có thể có nhiều cơ sở.

3.2. Hạng của hệ véctơ

Trong không gian véctơ V cho hệ véctơ $S = \{a_1, a_2, ..., a_m\}$. Giả sử không gian véctơ V có cơ sở $E = \{e_1, e_2, ..., e_n\}$. Biểu diễn mỗi véctơ của hệ S theo cơ sở E ta có

$$a_{1} = a_{11}e_{1} + a_{12}e_{2} + \dots + a_{1n}e_{n}$$

$$a_{2} = a_{21}e_{1} + a_{22}e_{2} + \dots + a_{2n}e_{n}$$

$$\dots$$

$$a_{m} = a_{m1}e_{1} + a_{m2}e_{2} + \dots + a_{mn}e_{n}$$

$$\left(a_{11} \quad a_{12} \quad \dots \quad a_{1n}\right)$$

$$\text{Ma trận A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ dược gọi là } \begin{array}{l} \text{ma trận tọa độ} \\ \text{của hệ vécto'} \text{S đối với cơ sở E} \end{array}$$

Đinh nghĩa. Hạng của hệ véctơ S (ký hiệu: r(S)) là số r sao cho:

- Có r vécto của S đltt.
- Mọi véctơ của hệ S đều là thtt của r véctơ đó.

Nhân xét.

- Hạng của hệ véctơ S là số r khi và chỉ khi tồn tại r véctơ của hệ S đltt
 và mọi hệ gồm (r + 1) véctơ của S đều pttt.
- Hạng của hệ véctơ S là số tối đa các véctơ đltt của hệ.
- Có thể xét sự đltt hay pttt của hệ S gồm m véctơ thông qua xét hạng
 của hệ, nếu r(S) = m thì hệ S đltt, nếu r(S) < m thì hệ S pttt

Đinh lý 1. Nếu V là không gian véctơ có một cơ sở hữu hạn thì hạng của một hệ véctơ trong V bằng hạng của ma trận tọa độ của hệ đó đối với một cơ sở bất kỳ của V.

Nhân xét. Xét hệ S có m véctơ. Khi đó:

- Nếu r(A) = m thì hệ S đltt.
- Nếu r(A) < m thì hệ S pttt

VD. Tìm hạng của hệ véctơ $S = \{a_1, a_2, a_3, a_4\} \subset \mathbb{R}^3$ với $a_1 = (1,3,0)$, $a_2 = (0,2,4)$, $a_3 = (1,5,4)$, $a_4 = (1,1,-4)$.

Đinh lý 2. Nếu trong không gian véctơ V có một cơ sở gồm n véctơ thì mọi hệ gồm (n+1) véctơ trong V đều pttt.

Hệ quả. Nếu không gian véctơ V có một cơ sở gồm n véctơ thì số véctơ của một cơ sở bất kỳ của V cũng bằng n.

3.3. Định nghĩa. Một không gian véctơ V được gọi là *không gian véctơ hữu hạn chiều* nếu tồn tại một cơ sở trong V gồm một số hữu hạn véctơ. Số véctơ trong cơ sở của V gọi là *số chiều của V* và ký hiệu là: dimV

- **VD.** 1) \mathbb{R}^n là không gian véctơ hữu hạn chiều, dim \mathbb{R}^n = n
- 2) Trong $P_n[x]$: Hệ véctơ $\{1, x, x^2, ..., x^n\}$ là cơ sở chính tắc của $P_n[x]$, do đó $P_n[x]$ là không gian véctơ hữu hạn chiều, dim $P_n[x] = n + 1$.
- 3) Trong không gian vécto $M_{m\times n}(\mathbb{R})$:

Xét hệ véctơ $\{e_{ij}\}$ mà e_{ij} , $1 \le i \le m$, $1 \le j \le n$ là ma trận cỡ m×n mà phần tử ở vị trí (i,j) bằng 1 và các phần tử ở vị trí khác bằng 0, tức

$$\mathbf{e}_{11} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}; \ \mathbf{e}_{12} = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}; \dots; \ \mathbf{e}_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Hệ $E=\{e_{11},e_{12},...,e_{mn}\}$ là cơ sở chính tắc của $M_{m\times n}(\mathbb{R})$. Vậy $M_{m\times n}(\mathbb{R})$ là không gian véctơ hữu hạn chiều, $\dim M_{m\times n}(\mathbb{R})=m.n$

Đinh lý. Nếu V là không gian véctơ n chiều thì mọi hệ gồm n véctơ đltt trong V đều là cơ sở của V.

VD. Hệ

$$S = \{a_1 = (1,1,2), a_2 = (1,-1,0), a_3 = (2,0,1)\}$$

có là cơ sở của \mathbb{R}^3 không?

3.4. Không gian vécto con

3.4.1. Dinh nghĩa.

Cho không gian véctơ V. Tập con $\varnothing \neq A \subset V$ được gọi là *không gian vécto con* (hay *không gian con*) của V nếu A cũng là không gian vécto với hai phép toán trên V.

3.4.2. Định lý. (Tiêu chuẩn không gian con)

Cho không gian véctơ V. Tập con $\emptyset \neq A \subset V$ là không gian véctơ con

của V khi và chỉ khi: $\begin{cases} \bullet \ \forall a,b \in A \ thì \ a+b \in A \\ \bullet \ \forall \alpha \in \mathbb{R}, \forall a \in A \ thì \ \alpha a \in A \end{cases}$

VD1.

Cho V là một không gian véctơ. Khi đó

- V là không gian con của V.
- Tập $\{\theta_{V}\}$ là không gian con của V.

Hai không gian $con\{\theta_V\}$ và V là hai không gian con tầm thường của V

<u>VD2.</u>

Cho tập hợp
$$A = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 \, \big| \, 2x_1 + x_2 + x_3 = 0 \}.$$

Chứng minh rằng A là không gian véctơ con của \mathbb{R}^3

<u>VD3.</u>

Chứng minh rằng tập hợp
$$A = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} | a, b \in \mathbb{R}$$
 là không

gian con của không gian vécto $\mathbf{M}_2(\mathbb{R})$

3.4.3. Không gian con sinh bởi hệ véctơ.

Định nghĩa 1. Cho không gian véctơ V và $S = \{a_1, a_2, ..., a_n\}$ là một hệ véctơ của V. Ta gọi tập tất cả các thtt của hệ S là *bao tuyến tính* của S, ký hiệu là spanS. Như vậy

$$SpanS = \left\{ \lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n \middle| \lambda_i \in \mathbb{R}; a_i \in V \right\}$$

Định lý 1. SpanS là một không gian con của V

Định nghĩa 2. SpanS được gọi là không gian véctơ con sinh bởi hệ véctơ S và ký hiệu là $\langle S \rangle = \langle a_1, a_2, ..., a_n \rangle = SpanS$ **VD1.** Xét A là không gian con của \mathbb{R}^3 như trong VD2 trong mục 4.2.

Ta có:
$$\forall x = (x_1, x_2, x_3) \in A \Leftrightarrow 2x_1 + x_2 + x_3 = 0 \Leftrightarrow x_3 = -2x_1 - x_2$$

Do đó:
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, -2\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{x}_1 (1, 0, -2) + \mathbf{x}_2 (0, 1, -1)$$

Suy ra $A = \langle S \rangle$ với $S = \{(1,0,-2); (0,1,-1)\}$. Vậy S là hệ sinh của A.

Kiểm tra thấy S đltt. Do đó S là cơ sở của A. Vậy $\dim A = 2$

Định lý 2. Nếu S là không gian véctơ con của không gian véctơ hữu hạn chiều V thì S là không gian véctơ hữu hạn chiều và dim $S \le \dim V$. Dấu "=" xảy ra khi và chỉ khi S = V.

Mệnh đề. Nếu $\{e_1, ..., e_k\}$ là cơ sở của không gian véctơ con S của không gian véctơ n chiều V thì tồn tại các véctơ $e_{k+1}, ..., e_n$ thuộc V sao cho $\{e_1, ..., e_k, e_{k+1}, ..., e_n\}$ là cơ sở của V.

Định lý 3.

- 1) < S > là không gian con nhỏ nhất chứa S.
- 2) $\dim < S > = r(S)$.

Nhân xét. Nếu dim< S>= k thì mọi hệ gồm k véctơ đltt của S đều là cơ sở của < S>

VD2. Xét hệ véctơ S trong VD mục 3.2. Tìm dim< S > và một cơ sở của < S >

3.5. Không gian nghiệm của hệ phương trình tuyến tính thuần nhất

Xét hệ phương trình tuyến tính thuần nhất m phương trình, n ẩn:

$$AX = O \qquad (1)$$

Ký hiệu: *Tập hợp nghiệm* của hệ (1) là N

Định lý 1. N là một không gian con của \mathbb{R}^n , nó được gọi là *không gian* nghiệm của hệ phương trình tuyến tính thuần nhất (1) và dimN = n — r; với r = r(A)

Định nghĩa. Mỗi cơ sở của không gian nghiệm của hệ phương trình tuyến tính thuần nhất (1) được gọi là một *hệ nghiệm cơ bản* của hệ phương trình đó.

Nếu $\left\{\beta_1,\beta_2,...,\beta_{n-r}\right\}$ là một hệ nghiệm cơ bản của hệ (1) thì $c_1\beta_1+c_2\beta_2+...+c_{n-r}\beta_{n-r};$ với $c_i\in\mathbb{R};$ $i=\overline{1,n-r}$ được gọi là một *nghiệm tổng quát* của (1). Do đó

$$N = \left\{ c_1 \beta_1 + c_2 \beta_2 + ... + c_{n-r} \beta_{n-r}; \text{ v\'oi } c_i \in \mathbb{R}; \text{ } i = \overline{1, n-r} \right\}$$

Nhân xét. Nếu (1) là hệ phương tình Cramer thì hệ chỉ có duy nhất nghiệm tầm thường. Tức $N = \{(0,0,...,0)\}$, do đó dimN = 0

VD1. Tìm một hệ nghiệm cơ bản của hệ phương trình sau và giải hệ phương trình đó

$$\begin{cases} x_1 + 7x_2 - 8x_3 + 9x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 5x_1 + x_2 - 2x_3 + 5x_4 = 0 \\ 3x_1 - 13x_2 + 14x_3 - 13x_4 = 0 \end{cases}$$

Dựa vào mối liên hệ giữa nghiệm của hệ phương trình tuyến tính tổng quát và nghiệm của hệ phương trình tuyến tính thuần nhất tương ứng ta suy ra: Nếu biết một nghiệm λ nào đó của hệ phương trình tuyến tính tổng quát và tập hợp N các nghiệm của hệ phương trình tuyến tính thuần nhất tương ứng thì ta suy ra tập tất cả các nghiêm của hệ phương trình tuyến tính tổng quát là:

$$\lambda + \mathbf{N} = \left\{ \lambda + \mathbf{u} \middle| \mathbf{u} \in \mathbf{N} \right\}$$

3.6. Đổi cơ sở và phép biến đổi tọa độ.

Cho V là không gian véctơ n chiều có các cơ sở là

$$E = \{e_1, e_2, ..., e_n\}; E' = \{e'_1, e'_2, ..., e'_n\}$$

Giả sử biểu diễn các phần tử của cơ sở E' qua cơ sở E ta được:

$$e'_{1} = a_{11}e_{1} + a_{21}e_{2} + ... + a_{n1}e_{n}$$

 $e'_{2} = a_{12}e_{1} + a_{22}e_{2} + ... + a_{n2}e_{n}$

• • • • • • • • • • • • • • • •

$$e'_{n} = a_{1n}e_{1} + a_{2n}e_{2} + ... + a_{nn}e_{n}$$

Ma trận

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n1} & \mathbf{a}_{n2} & \dots & \mathbf{a}_{nn} \end{pmatrix} \quad \text{dược gọi là } \textit{ma trận chuyển cơ sở từ cơ} \\ \text{sở E sang cơ sở E' và ký hiệu là } \mathbf{A}_{E \rightarrow E'}$$

Khi đó A⁻¹ được gọi là ma trận chuyển từ cơ sở E' sang cơ sở E.

Cho $\mathbf{x} \in \mathbf{V}$. Giả sử $\mathbf{x}_{\mathbf{E}} = \left(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\right)$ và $\mathbf{x}_{\mathbf{E}'} = \left(\mathbf{x}_1', \mathbf{x}_2', ..., \mathbf{x}_n'\right)$ Khi đó ta có công thức chuyển từ tọa độ $\left(\mathbf{x}_1', \mathbf{x}_2', ..., \mathbf{x}_n'\right)$ sang tọa độ $\left(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\right)$ là $\left[\mathbf{x}\right]_{\mathbf{E}} = \mathbf{A} \left[\mathbf{x}\right]_{\mathbf{E}'}$

Trong đó: $[x]_E$ và $[x]_{E'}$ là các ma trận cột tọa độ

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbf{E}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix}^{\mathsf{T}}; \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbf{E}'} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' & \mathbf{x}_2' & \dots & \mathbf{x}_n' \end{bmatrix}^{\mathsf{T}}$$

Vì ma trận chuyển từ cơ sở E' sang cơ sở E là A^{-1} nên công thức chuyển từ tọa độ $\left(x_1, x_2, ..., x_n\right)$ sang tọa độ $\left(x_1', x_2', ..., x_n'\right)$ là $\left[x\right]_{E'} = A^{-1} \left[x\right]_{E}$

Nhân xét. Cho $E=\left\{e_i^{}\right\}, E^{\prime\prime}=\left\{e_i^{\prime}\right\}, E^{\prime\prime}=\left\{e_i^{\prime\prime}\right\}$ là các cơ sở của không gian véctơ n chiều V

Nếu A là ma trận chuyển từ cơ sở E sang cơ sở E'

B là ma trận chuyển từ cơ sở E' sang cơ sở E'

thì AB là ma trận chuyển từ cơ sở E sang cơ sở E"

VD1. Trong
$$\mathbb{R}^2$$
 , cho các cơ sở $E=\left\{e_1=(1,0);e_2=(0,1)\right\}$
$$E'=\left\{e_1'=(1,1);e_2'=(2,1)\right\}$$

- a) Tìm ma trận chuyển cơ sở $A_{E \to E'}$
- b) Tìm $[x]_{E'}$ nếu $x_E = (7,2)$

VD2. Trong
$$\mathbb{R}^2$$
, cho các cơ sở $E = \left\{ e_1 = (1,0); e_2 = (0,-1) \right\}$
$$E' = \left\{ e_1' = (2,-1); e_2' = (1,1) \right\}$$

$$\operatorname{Tim}\left[x\right]_{\!E}\operatorname{bi\acute{e}t}\,x_{E'}=(1,2)$$

§4. KHÔNG GIAN EUCLIDE

4.1. Định nghĩa. Cho không gian véctơ V trên \mathbb{R} , lấy bất kỳ x, y \in V.

Tích vô hướng của x và y là một số thực, ký hiệu là <x,y> thỏa mãn

các tính chất sau: 1)
$$\langle x, x \rangle \ge 0$$
 và $\langle x, x \rangle = 0 \Leftrightarrow x = \theta$

$$2) \langle x, y \rangle = \langle y, x \rangle$$

3)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle; \forall z \in V$$

4)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle; \forall \lambda \in \mathbb{R}$$

- Không gian véctơ V hữu hạn chiều trên \mathbb{R} cùng với một tích vô hướng đã cho trên V đợc gọi là một *không gian Euclide*.
- $\overline{\mathbf{VD}}$. Không gian véctơ \mathbb{R}^n là không gian Euclide với tích vô hướng thông thường (tích vô hướng Euclide) tương tự như trong \mathbb{R}^2 và \mathbb{R}^3

$$\langle x, y \rangle = \langle (x_1, ..., x_n), (y_1, ..., y_n) \rangle = x_1 y_1 + ... + x_n y_n$$

4.2. Độ dài của véctơ

Định nghĩa. Cho không gian Euclide V và $x \in V$. Độ dài (hay *chuẩn*) của véctơ x, ký hiệu ||x|| là số thực được xác định bởi $||x|| = \sqrt{\langle x, x \rangle}$

- Nếu $\|\mathbf{x}\| = 1$ thì x được gọi là *véctơ đơn vị*.
- d(x,y) = ||x-y|| được gọi là *khoảng cách* giữa x và y.
- Việc chia một véctơ khác θ cho độ dài của nó được gọi là *chuẩn* hóa véctơ đó. Khi đó ta sẽ được véctơ đơn vị. Tức $\frac{x}{\|x\|} = y \Rightarrow \|y\| = 1$

VD. Trong không gian Euclide \mathbb{R}^n , cho $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_n)$ ta có $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\mathbf{x}_1^2 + ... + \mathbf{x}_n^2}$ gọi là độ dài Euclide của $\mathbf{x} \in \mathbb{R}^n$

Tính chất.

- $\|\mathbf{x}\| \ge 0$ và $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \theta$
- $\|\lambda x\| = |\lambda| \|x\|; \forall \lambda \in \mathbb{R}$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$; (bất đẳng thức tam giác)
- Bất đẳng thức Cauchy-Schwartz: $|\langle x, y \rangle| \le ||x|| ||y||$

<u>VD.</u>

Trong không gian Euclide \mathbb{R}^n với tích vô hướng thông thường, bất đẳng thức C-S là:

$$\left| \sum_{i=1}^{n} x_{i} y_{i} \right| \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}$$

4.3. Vécto trực giao

Định nghĩa. Trong một không gian Euclide V, hai véctơ x, y $\neq \theta$ được gọi là *trực giao* (hay *vuông góc*) nếu $\langle x,y \rangle = 0$ và ký hiệu x \perp y

VD. Trong \mathbb{R}^2 với tích vô hướng Euclide cho

$$x = (2,-1), y = (2,4)$$

Khi đó: $\langle x,y \rangle = 2.2 + (-1).4 = 0$

Vậy x, y là hai vécto trực giao

Nhân xét. Vécto θ được coi là trực giao với mọi vécto của V

4.4. Hệ véctơ trực giao, trực chuẩn

Định nghĩa 1.

- Một hệ véctơ trong không gian Euclide được gọi là *hệ trực giao* nếu các véctơ của hệ trực giao từng đôi một.
- Một hệ véctơ trong không gian Euclide được gọi là *hệ trực chuẩn* nếu hệ này trực giao và mọi véctơ của hệ đều có chuẩn bằng 1.

VD1. Trong \mathbb{R}^3 với tích vô hướng thông thường

• $\{(1,1,0);(-1,1,2);(1,-1,1)\}$: hệ véctơ trực giao

•
$$\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right); \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right); \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right\}$$
: hệ véctơ trực chuẩn

Định lý. Trong không gian Euclide nếu $u_1, u_2, ..., u_k$ là một hệ véctơ trực giao và các véctơ $u_i \neq \theta, i = \overline{1,k}$ thì hệ véctơ này đltt.

Nhân xét. Trong một không gian Euclide n chiều, mọi hệ gồm n véctơ khác θ trực giao đều là một cơ sở của không gian đó.

Định nghĩa 2. Cơ sở trong Nhận xét trên được gọi là *cơ sở trực giao* của không gian Euclide. Nếu độ dài của mỗi véctơ trong cơ sở trực giao bằng 1 thì ta gọi nó là một *cơ sở trực chuẩn* của không gian Euclide.

 $\overline{ extbf{VD2.}}$ Hệ các véctơ trong VD1 cho ta một cơ sở trực giao và một cơ sở trực chuẩn trong \mathbb{R}^3

4.5. Quá trình trực giao hóa Gram - Schmidt

Dùng để xây dựng cơ sở trực giao và cơ sở trực chuẩn của không gian Euclide từ một cơ sở cho trước.

Thuật toán.

B1. Chọn $\{e_1, ..., e_n\}$ là một cơ sở bất kỳ của không gian Euclide n chiều V.

B2. Xây dựng cơ sở trực giao $\{u_1, ..., u_n\}$ của V như sau:

Đặt $u_1 = e_1$

$$\mathbf{u}_{2} = \mathbf{e}_{2} - \frac{\langle \mathbf{e}_{2}, \mathbf{u}_{1} \rangle}{\|\mathbf{u}_{1}\|^{2}} \mathbf{u}_{1}$$

$$u_{3} = e_{3} - \frac{\langle e_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle e_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

$$u_{n} = e_{n} - \sum_{i=1}^{n-1} \frac{\langle e_{n}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

<u>B3.</u> Xây dựng cơ sở trực chuẩn $\{v_1, ..., v_n\}$ của V bằng việc chuẩn hóa các véctơ ở B2. Tức: $v_1 = \frac{u_1}{\|u_1\|}, v_2 = \frac{u_2}{\|u_2\|}, ..., v_n = \frac{u_n}{\|u_n\|} \Rightarrow \|v_i\| = 1; \forall i = \overline{1, n}$

VD1. Trong không gian Euclide \mathbb{R}^3 , hãy trực chuẩn hóa cơ sở $E = \{e_1 = (1,-1,0); e_2 = (0,1,-1); e_3 = (1,1,-1)\}$

VD2. Hãy tìm một cơ sở trực chuẩn của không gian con của \mathbb{R}^3 sau

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = x_2 + 2x_3 \}$$

Định lý 1. Mọi không gian Euclide n chiều đều tồn tại cơ sở trực chuẩn

Định lý 2. Nếu $E = \{e_1, ..., e_n\}$ là cơ sở trực chuẩn của không gian Euclide n chiều V thì mọi $x \in V$, x có thể biểu diễn duy nhất dưới dạng

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

VD 3. Xét cơ sở trực chuẩn $\{v_1, v_2, v_3\}$ của \mathbb{R}^3 ở VD1. Hãy biểu diễn x = (1,2,3) thành một thtt của các véctơ của cơ sở trực chuẩn đó