SCS3101 –Electronics Lectures

Measuring Equipments in Electronics

Multimeter

Basics for measuring voltage, current, resistance and continuity......

Digital Multimeter

Analog Multimeter

Common Digital Multimeter Symbols

~	AC Voltage	\pm	Ground
	DC Voltage	4(–	Capacitor
Hz	Hertz	μF	MicroFarad
+	Positive	μ	Micro
	Negative	m	Milli
Ω	Ohms	M	Mega
+	Diode	K	Kilo
•)))	Audible Continuity	OL	Overload

Parts of Multimeter

Ports of Multimeter

- COM- negative or ground
- •Voltage Point or mAV Ω -usually connect the red lead
- •10A-special port
- Use best quality test leads such as Si leads

Measure Voltage using the Multimeter

- Multimeter act as a pressure gage
- Two types of voltages AC and DC
- select the appropriate range then LCD display will show the selection
- better to start with the larger reading first
- Overload or out-of-range in non auto range multimeters
- In auto range multimeters, fluctuations of the measurement are shown by the bar graph
- Sometimes measurement will indicate as a negative since DC voltage has the polarity

Measure Voltage using the Multimeter cont...

- To measure the voltage, connect the multimeter parallel with the item.
- Al the current of the circuit does not goes through the circuit since the parallel connection
- Beware of AC and use AC tester

Measure Current using the Multimeter

- Current is the flow rate of the electricity
- Measuring current is tricky since it will blow the fuse
- All the current of the circuit goes through multimeter
- Overloading the current can result in a blown fuse

Measure Current using the Multimeter cont...

- Usually black lead goes to the common plug and red lead goes to the Amp plug.
- In some multimeters there are two separate plugs: A and mA. So it is safe to connect the lead to A plug first and get the readings and base on the reading can change the plug.

Measure the Resistance

- Resistance is measured in Ohm's
- Disconnect power source before testing the resistance
- Remove item from system before testing
- Turn the meter to the resistor sign
- If reads **0.00** or nearly zero, then lower the mode to $2k\Omega$ or 200Ω

Measure the Continuity

- Continuity-act of testing the resistance between two points
- Check if there is a continuous path from one end to another
- power should be disconnected
- Have to change the meter to continuity symbol
- toching leads emit beep sound if the circuit is connected

Function Generator

- Generate different types of electrical waveforms over a wide range of frequencies
- Function generators are used in the development, test and repair of electronic equipment
- Straightforward signal generators mostly focus on producing a good sine waves
- addition to producing sine waves, square, triangular and sawtooth shape waves can be generated
- These waveforms can be either repetitive or single-shot (which requires an internal or external trigger source)

Wave forms produce by Function Generator

•Sine wave: This is the standard waveform that oscillates between two levels with a standard sinusoidal shape.

Square wave: A square wave is consists of a signal moving directly between high and low levels.

Triangular wave: This forms linearly moves between a high and low point.

Sawtooth wave: same as triangular waveform, but with the rise edge of the waveform faster or slower than the fall.

Controls of the Function Generator

- Frequency
- Waveform type
- DC offset: alters the average voltage of a signal relative to 0V or ground
- Duty cycle: changes the ratio of high voltage to low voltage time in a square wave signal

Oscilloscope

measure electrical signals over time...

Introduction to oscilloscope

- scopes produce a two-dimensional graph with time on the x-axis and voltage on the y-axis.
- Time machine
- Can measure frequency, amplitude, and other waveform characteristics
- Oscilloscope can measure both time-based and voltage-based characteristics

Oscilloscope Display

- voltage on the vertical or Y-axis, and time on the horizontal or X-axis
- Manually select time scale or the oscilloscope do it to suit for the signal
 - On X axis 5ms will be displayed in 10 divisions where each division will represent 500 microseconds
 - Y axis represent the signal level, most of the times it is voltage
 - On Y axis 10 V will be displayed in 10 divisions where each division will represent 1V
- Controls of the oscilloscope allow to change the vertical or horizontal scales of the V/t graph

- Middle line going across the oscilloscope represent the reference line for signals
- Signal can be moved up or down with respect to that frame of reference
- This base line is important to understand the amplitude and the polarity of the signal
- reference line is not always necessary since the measurements can be taken by counting the no of squares in y axis
- Two channels called channel 1 and channel 2
- Two signals can be inputted once via two channels or can input only one signal

Common Characteristics measure using Oscilloscope

Timing characteristics:

- Frequency repeated numer of waveforms per second
- Period reciprocal of frequency
- Duty cycle The percentage of a period that a wave is either positive or negative
- Rise and fall time The duration of a wave going from a low point to a high.

Voltage characteristics:

- Amplitude Amplitude is a measure of the magnitude of a signal.
- Maximum and minimum voltages high and low end of the signal voltage
- Mean and average voltages

Basic adjustments of the oscilloscope

1. Vertical position(each channel)

Can change the vertical position of each channel.

Voltage scale/volts per division(each channels)

- Adjust volts per division
- Can change the voltage scale and by zoom in and zoom out

Basic adjustments of the oscilloscope cont...

3. Horizontal position (all channels)

- Can move all the signals along the time axis,
- If the signal is not symmetrically viewing we can adjust it
- 4. Time base/seconds per division(all channels)
- Can change the time per division
- control the time scale to adjust number of waveforms that can be seen on the screen

Basic adjustments of the oscilloscope cont...

Trigger position/level-volts(all channels)

- Adjust the view to more stable and focus
- It is hard to measure the characteristics of a signal iff the signal is sweaping across the display
- Trigger can be adjusted to keep the display static and unflinching

Probes

- Probes use to direct a signal from circuit to the oscilloscope.
- They have a sharp tip which consists of hooks, tweezers or clips to make latching onto a circuit. Every probe also includes a ground clip, to a common ground point on the circuit under test.

Connect the Probes and function Generator

- select a probe: the simple passive probe will work better.
- before connecting set the attenuation on the selected probe.
 10X the most common attenuation factor
- Connect your probe to the first channel (channel 1) on oscilloscope, and turn it on.
- Turn channel 1 on and channel 2 off.
- Set channel 1 to DC coupling.
- Set the trigger source to channel
- Set the trigger type to rising edge, and the trigger mode to auto
- Make sure the scope probe attenuation on your scope matches the setting on your probe (e.g.10X).

Connect the Probes and function Generator cont..

Connect the Probes and function Generator cont..

- Connect that channel to a signal coming from frequency.
- The frequency generator output has two separate conductors – one for the signal and one for ground.
 Connect probe's ground clip to the ground, and the probe tip to the signal output.
- Make the necessary changes using horizontal and vertical system and if required by trigger position knob.

Construct Electronic Circuits Using Breadboard

Introduction to breadboard

Temporary circuit board for testing and prototyping circuits

- Solder less electronic circuit building
- House both the simplest circuit as well as very complex circuits

Layout of strips

- Inside the board metal trips are plated and rust proof
- breadboards have numbers and letters marked on various rows and columns
- bread board layout consists of two types of region also called strips
- Bus strips(vertical) provide power supply and ground to the circuit
 - label with a '+' and a '-' and red and blue or black stripe, to indicate the positive and negative side
 - right and left power rails are isolated
- Socket strips(horizontal) -hold most of the components in a circuit
 - Every column is electrically connected from inside
 - there are only five clips on this strip and only five components can be connected
- Gutter/ravine
 - IC chip on board it should hurdle the center divider