2016 System ID for 1st Order systems Step Impulse response response Given: experimental signal Find: System parameters : T= time coust. $TF: G(3) = \frac{1}{T_{3+1}}$ 1 parameter to find Option 1: Curve fitting (optimization) $x(t,T) = 1 - e^{-t/T}$ where $x(t,T) = 1 - e^{-t/T}$ where $x(t,T) = 1 - e^{-t/T}$ $x(t,T) = 1 - e^{$ $\chi(t,T)=1-e^{-t/T}$ Option 2 Graphical methods (quick estimates) · taugent in origin $x/t = 1 - e^{-t/T}$ $x/t = \frac{dx}{dt} = (-\frac{1}{T})(-e^{-t/T}) = \frac{1}{T}e^{-t/T}$ $z_0 = \frac{dx}{dt}\Big|_{t=0} = \frac{1}{t}$; taugent in origin $y(t) = \dot{x}_0 t = \frac{1}{t}$ y(t) intersects xs=1 at +tx=1 T=tA 151/523

To step 1 Ao impulse

| Step | 1 Ao impulse | 1/2 | 1/2 | 1/4 | 1

 $x(t_{|z}) = \frac{1}{T}e^{-t|z|T} = \frac{1}{2}$ $T = \frac{t_{|z|}}{luz} \approx 1.4 t_{|z|}$ May use consecutive points A, , Az

May use consecutive points A, , Az

if Ao not easy to determine, I supportent

if Ao not easy to determine, I supportent

is that signal halves between A, and Az

 $z = \frac{1}{T}e^{-t/T}$

4.4 ESTIMATE SYSTEM PARAMETERS FROM MEASURED PERFORMANCE INDICATORS

4.4.1 Estimation of time period T.

Two methods can be used to estimate the time period:

 $\underline{\text{Method 1}}\text{: estimate time period using } \ t_d \text{, i.e.,}$

$$t_d = -T \ln 0.5$$
 and hence $T = -\frac{t_d}{\ln 0.5}$

This method gives $T_1 = 2.513$ sec with an error $\Delta T_1^{\text{exp}} = -0.53\%$

 $\underline{\text{Method 2}}$: estimate time period using t_s

$$t_s^{2\%} = -T \ln 0.02$$
 and hence $T = -\frac{t_s^{2\%}}{\ln 0.02}$

This method gives $T_2 = 2.4985$ sec with an error $\Delta T_2^{\text{exp}} = -0.06\%$

3.8 1025 System 1D for 2nd order systems

Step

Signal

2nd order systems

impulse

the signal Find: System parameters TF: G(s) = \frac{\omega_n}{3^2 + 25\omega_n 1 + \omega_n^2} 2 parameters: 5 - damping ratio to be found 5 Solution Option 1: Curve fitting (optimization) $\chi(t;\omega_n,\xi)=1-\frac{1}{\sqrt{1-\xi^2}}e^{-\xi\omega_nt}(\omega_dt+\varphi)$ $\omega_d=\omega_n\sqrt{1-\xi^2},\quad \varphi=8\pi i\sqrt{1-\xi^2}$ $\chi_{exp} = \chi_{1}, \chi_{2}, \chi_{3}, \dots$ $t_{exp} = t_{1}, t_{2}, t_{3}, \dots$ · Use curve fitting roftware.

2 conknowns to be determined: will 5 154/523 poblo option 2 Graphical methods (quick estimates) Impulse response analysis for 5 << 1

$$x(t) = x_0 e^{-\frac{1}{2}\omega_n t}$$

$$x(t) = x_0 e^{-\frac{1}{2}\omega_n t}$$

$$x = x_0 e^{-\frac{1}{2}\frac{\pi}{2}}$$

$$x = x_0 e^{-\frac{1}{2}\frac{\pi}{2}}$$

$$x = x_0 e^{-\frac{1}{2}\frac{\pi}{2}}$$

$$\omega_{d} t_{1} = \overline{z} \qquad x_{1} = x_{0} e^{-\frac{z}{2}}$$

$$\omega_{d} t_{1} = \overline{z} \qquad x_{2} = x_{0}(t_{1}) = x_{0} e^{-\frac{z}{2}}$$

$$\omega_{d} t_{1} = \frac{\pi}{2}$$

$$\chi_{1} = \chi_{1} = \chi_{2} = \chi_{3} = \chi_{4} = \chi_{5} = \chi_{5$$

$$\frac{x_{1}}{x_{n}} = \frac{x_{0} = x_{0}}{x_{0}} = \frac{x_{0}}{x_{0}} = \frac{$$

arithmic lu
$$\frac{\chi_1}{\chi_n} = (n-1)2\pi 5$$

lecrement $S = \frac{1}{2\pi(n-1)} \ln \frac{\chi_1}{\chi_n}$ damping ratio

Average half period:

$$\frac{\sigma}{2} = avg[(t_2-t_1), (t_3-t_2), \cdots]$$

· zero croming detection

$$\frac{6}{2} = avg[(t_3-t_1),(t_3-t_2),\cdots]$$

$$f_n = \frac{fd}{\sqrt{1-\xi^2}}$$

$$\omega_n = 2\pi f_n$$

20161025 response analysi's (5001) Recall performance indicators: w_= w_1 /- 52 $-\frac{5}{\sqrt{1-5^2}} = \frac{x_p - x_{gg}}{x_g}$ There are only 2 unknowns: Wn, 5 There is more information than minimally reglined: tz, tp, Mp, ta, ...

$$t_{p} = \frac{\pi}{\omega_{d}} \implies \omega_{d} = \frac{\pi}{t_{p}} /$$

$$t_{r} = \frac{\pi - \varphi}{\omega_{d}} \implies \varphi = \pi - t_{r} \omega_{d}$$

$$= \pi - t_{r} - t_{r} \omega_{d}$$

(1)

 $= \pi - \frac{t_n}{t_p} \pi$ $\varphi = \pi \left(1 - \frac{t_n}{t_p} \right)$

Recall
$$\varphi = 8\pi \sqrt{1-j^2}$$

$$1-j^2 = 8\pi \sqrt{2} \varphi$$

$$y^2 = \sin^2 \varphi$$

$$5 = \sqrt{1 - \sin^2 \varphi}$$

$$\omega_n = \frac{\omega_d}{\sqrt{1-y^2}}$$
 (4)

$$t_{p} = \frac{\pi}{\omega_{d}} \qquad \text{from } t_{p}, t_{s}$$

$$t_{p} = \frac{\pi}{\omega_{d}} \qquad \omega_{d} = \frac{\pi}{t_{p}}$$

$$\omega_{n} = \frac{\omega_{d}}{\sqrt{1-y^{2}}} = \frac{\pi}{t_{p}\sqrt{1-y^{2}}}$$

$$t_{s} = \frac{4}{s\omega_{n}} = \frac{4t_{p}\sqrt{1-y^{2}}}{s^{2}\pi^{2}t_{s}^{2}} = 16t_{p}^{2}(1-t_{s}^{2}).$$

$$(16t_{p}^{2} - \pi^{2}t_{s}^{2}) s^{2} = 16t_{p}^{2}$$

160/523

(1)

Use Mp to get
$$S = \frac{|lu Mp|}{\sqrt{\pi^2 + (lu Mp)^2}}$$

Calculate $\varphi = \sin^2 \sqrt{1 - y^2}$ (2)

Recall $t_2 = \frac{\pi - \varphi}{\omega_d} = \frac{\pi - \varphi}{\omega_n \sqrt{1 - \gamma^2}}$ (3) Solve (3): $\omega_n = \frac{\pi - \varphi}{t_2 \sqrt{1 - \gamma^2}}$ (4) where φ is given by ξ_g , (2).

4.4 USE TRACE TO MEASURE PERFORMANCE INDICATORS

Release the 'Zoom' button and press the 'Cursor Measurements' button to activate the cursors. In the 'Cursor Measurements' Settings' check 'Snap to data' box.

4.4.1 Measurement of t_r, t_p, x_p, M_p

Zoom closer to the origin in the region t < 0.15.

Use the first cursor to find the first crossing of $x_{\rm ss}=1$. Read the time as $t_r=0.051~{\rm sec}$ Place the second cursor at peak value. Read the peak time $t_p=0.100~{\rm sec}$ and peak amplitude $x_p=1.893$. Calculate $M_p=89.3\%$.

4.5 ESTIMATE SYSTEM PARAMETERS FROM MEASURED PERFORMANCE INDICATORS AND OTHER MEASUREMENTS

4.5.1 Estimation of Damping Ratio ζ

Two methods can be used to estimate the damping ratio:

Method 1: estimate damping ratio using t_r , t_p , i.e.,

$$\varphi = \pi \left(1 - t_r / t_p \right)$$
 and $\zeta = \sqrt{1 - \sin \varphi^2}$

This method gives $\zeta_1^{\text{exp}} = 3.1\%$ with an error $\Delta \zeta_1^{\text{exp}} = 10.3\%$

Method 2: estimate damping ratio using M_p

$$\zeta = \frac{\left|\ln M_p\right|}{\sqrt{\pi^2 + (\ln M_p)^2}}$$

This method gives $\zeta_2^{\text{exp}} = 3.6\%$ with an error $\Delta \zeta_2^{\text{exp}} = -2.9\%$

4.5.2 Natural frequency estimation

Place the first cursor at the second rising crossing of $x_{\rm ss}=1$; place the second cursor at next rising crossing of $x_{\rm ss}$. Try to get as close as possible to the value $x_{\rm ss}=1$. The 'Cursor Measurements' shows $\Delta T=200.100\,{\rm ms}$ with a corresponding frequency $f_d^{\rm exp}=4.998\,{\rm Hz}$, which is close to the theoretical damped frequency $f_d=4.9969\,{\rm Hz}$.

The frequency estimation error is $\Delta f = -0.02\%$

