

OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction

Fuyuan Lyu^{1,2*}, Xing Tang^{2*}, Hong Zhu², Huifeng Guo², Yingxue Zhang³, Ruiming Tang², Xue Liu¹

¹School of Computer Science, McGill University&MILA, Montreal, Canada ²Huawei Noah's Ark Lab, Shenzhen, China ³Huawei Noah's Ark Lab, Montreal, Canada

Presenter: Fuyuan Lyu

Background

One-hot, sparse

Real-value, dense

Background

Is this optimal in terms of performance and efficiency?

Embedding Table

A 2d tensor $E \in R^{|f| \times D}$ Feature size $|f| \approx 10^7$ Embed Dim $D \approx 64$

The Definition of "Optimal"

Embedding Table

A 2d tensor $E \in R^{|f| \times D}$ Feature size $|f| \approx 10^7$ Embed Dim $D \approx 64$

1. No Redundant Features in |f|.

Redundant feature both consumes additional memory and is detrimental to model performance [1].

2. Embedding Dimension Flexible in *D*.

Feature with small cardinality may induce overfitting, while feature with large cardinality may induce underfitting [2,3].

3. Hardware Friendly

Sparse embedding table requires extra storage and decoding time, which is not suitable in practice [4,5].

^[1] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.

^[2] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. [3] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.

^[4] Deng, Wei, et al. "DeepLight: Deep lightweight feature interactions for accelerating CTR predictions in ad serving." Proceedings of the 14th ACM international conference on Web search and data mining. 2021.

Comparison with Other Methods

Table 1: Comparison of embedding learning approaches.

Approach	R1: N.R.F.	R2: E.D.F.	R3: H.F.
MDE [9]	×	✓	✓
DNIS [5]	X	√	√
AutoDim [43]	X	✓	✓
AutoField [35]	✓	X	✓
QR [32]	√	X	√
PEP [23]	✓	✓	X
OptEmbed	✓	✓	√

N.R.F, *E.D.F.* and *H.F.* are abbreviations for No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.

No previous work satisfies all three requirements!

CTR Prediction Formulation

For n field one-hot encoded raw input:

$$x = [x_{(1)}, x_{(2)}, ..., x_{(n)}]$$

Transform into dense vector:

$$e_{(i)} = E \times x_{(i)}$$

Concatenate all embeddings:

$$e = [e_{(1)}, e_{(2)}, ..., e_{(n)}] = E \times x$$

Fed into feature interaction and classification layer:

$$\hat{y} = \mathcal{F}(\mathbf{E} \times x | \mathbf{W})$$

Adopt the cross-entropy loss:

$$CE(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}).$$

illustration figure for common CTR model

Formulate the CTR prediction problem: Goal A

$$\min_{\mathbf{E},\mathbf{W}} \ \mathcal{L}_{\mathrm{CE}}(\mathcal{D}|\{\mathbf{E},\mathbf{W}\}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y) \in \mathcal{D}} \mathrm{CE}(y,\mathcal{F}(\mathbf{E} \times \mathbf{x}|\mathbf{W}))$$

Decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}$$

For **R1**: No Redundant Features:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2: Embedding **D**imension **F**lexible:

Choose different $D_{(i)}$

R3: Hardware Friendly is naturally satisfied.

Re-formulate the CTR prediction problem:

Goal B

$$\min_{\mathbf{E}^*,\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \; \mathbf{E}^* = [\mathbf{E}_{(1)},\mathbf{E}_{(2)},\cdots,\mathbf{E}_{(n)}],$$

s.t.
$$E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \sum_{i=1}^{n} |f_{(i)}| \le |f|, D_{(i)} \le D, \forall i \le n.$$

Decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}$$

For **R1**: No Redundant Features:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2: Embedding **D**imension **F**lexible:

Choose different $D_{(i)}$

R3: Hardware Friendly are naturally satisfied.

Re-formulate the CTR prediction problem: Goal B

$$\min_{\mathbf{E}^*,\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \; \mathbf{E}^* = [\mathbf{E}_{(1)},\mathbf{E}_{(2)},\cdots,\mathbf{E}_{(n)}],$$

Hard to directly optimize
$$|f_{(i)}| \le |f|$$
, $D_{(i)} \le D$, $\forall i \le n$.

If optimize $|f_{(i)}| \& D_{(i)}$ alternately

 $|f_{(i)}|$ is influenced by $D_{(i)}$

Sub-optimal result

If optimize $|f_{(i)}| \& D_{(i)}$ alternately

 $|f_{(i)}|$ is influenced by $D_{(i)}$

Sub-optimal result

If optimize $|f_{(i)}| \& D_{(i)}$ uniformly

Sparse embedding

Hardware Unfriendly

Hard to directly optimize!

$$\min_{\mathbf{E}^*,\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \ \mathbf{E}^* = [\mathbf{E}_{(1)},\mathbf{E}_{(2)},\cdots,\mathbf{E}_{(n)}],$$

s.t.
$$\mathbf{E}_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \sum_{i=1}^{n} |f_{(i)}| \le |f|, D_{(i)} \le D, \forall i \le n.$$

. . .

$$\min_{\mathbf{E}^*,\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \ \mathbf{E}^* = [\mathbf{E}_{(1)},\mathbf{E}_{(2)},\cdots,\mathbf{E}_{(n)}],$$

$$\sum_{E^*,W} \mathbb{E}(E(D|\{E^i,W^i\}), E^i = \{E_{(1)},E_{(2)}, \cdots, E_{(n)}\},$$

$$s.t. E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \sum_{i=1}^n |f_{(i)}| \le |f|, D_{(i)} \le D, \forall i \le n.$$

$$\mathbf{Goal} \mathbf{B}$$

$$\min_{\mathbf{E},\mathbf{W}} \mathcal{L}_{\mathrm{CE}}(\mathcal{D}|\{\mathbf{E},\mathbf{W}\}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y) \in \mathcal{D}} \mathrm{CE}(y,\mathcal{F}(\mathbf{E} \times \mathbf{x}|\mathbf{W}))$$

OptEmbed

OptEmbed

$$\min_{\mathbf{E}^*,\mathbf{W}} \mathcal{L}_{\text{CE}}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \; \mathbf{E}^* = [\mathbf{E}_{(1)},\mathbf{E}_{(2)},\cdots,\mathbf{E}_{(n)}],$$

$$\sum_{E^*,W} \mathbb{E}(E(\mathcal{D} | (E^i, W)), E^i = \{E(1), E(2), \dots, E(n)\},$$

$$s.t. E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \sum_{i=1}^n |f_{(i)}| \le |f|, D_{(i)} \le D, \forall i \le n.$$

$$\mathbf{Goal} \mathbf{B}$$

 $\min_{\mathbf{m}_e,\mathbf{m}_d,\mathbf{E},\mathbf{W}} \mathcal{L}_{\text{CE}}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \; \mathbf{E}^* = \mathbf{E} \odot \mathbf{m}_e \odot \mathbf{m}_d.$

OptEmbed

In practice, we introduce two masks:

$$\min_{\mathbf{m}_e, \mathbf{m}_d, \mathbf{E}, \mathbf{W}} \mathcal{L}_{\text{CE}}(\mathcal{D} | \{\mathbf{E}^*, \mathbf{W}\}), \; \mathbf{E}^* = \mathbf{E} \odot \mathbf{m}_e \odot \mathbf{m}_d.$$

Goal C

Field-wise dimension mask:

$$m_d \in \{0,1\}^{D \times n}$$

Embedding mask:

$$m_e \in \{0,1\}^{|f|}$$

Three phases:

- 1. Redundant Embedding Pruning
- 2. Embedding Dimension Search
- 3. Parameter Re-training

Experiment

Backbone Models:

DeepFM[1], DCN[2], FNN[3], IPNN[4]

Dataset	#samples	#field	#values	pos ratio
Criteo	4.6×10^{7}	39	6.8×10^{6}	0.23
Avazu	4.0×10^{7}	24	4.4×10^{6}	0.17
KDD12	1.5×10^{8}	11	6.0×10^{6}	0.06

Baseline Methods:

AutoDim[5], AutoField[6], QR[7], PEP[8]

Evaluation Metrics: AUC, Logloss and Sparsity

Sparsity =
$$1 - \frac{\text{\#Remaining Params}}{|f| \times D}$$

^[1] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.

^[2] Wang, Ruoxi, et al. "Deep & cross network for ad click predictions." Proceedings of the ADKDD'17. 2017. 1-7.

^[3] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.

^[4] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.

^[5] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.

^[6] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.

^[7] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.* 2020. [8] Liu, Sivi, et al. "Learnable Embedding sizes for Recommender Systems." *International Conference on Learning Representations.* 2020.

Result

Table 2: Overall Performance Comparison.

	Detect		DeepFM			DCN			FNN		IPNN		
	Dataset	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity
	Original	0.8104	0.4409	-	0.8106	0.4408	-	0.8110	0.4404	-	0.8113	0.4401	-
_	AutoDim	0.8093	0.4420	0.8642	0.8096	0.4418	0.7917	0.8104	0.4410	0.7187	0.8103	0.4411	0.7179
Criteo	AutoField	0.8101	0.4412	0.0009	0.8108	0.4405	0.4108	0.8108	0.4406	0.6221	0.8111	0.4403	0.3941
Cri	QR	0.8084	0.4444	0.5000	0.8103	0.4411	0.5000	0.8105	0.4408	0.5000	0.8102	0.4411	0.5000
	PEP	0.7980	0.4541	0.5010	0.8110	0.4404	0.5802	0.8108	0.4406	0.5802	0.8111	0.4402	0.5607
	OptEmbed	0.8105	0.4409	0.9684	0.8113	0.4402	0.8534	0.8114	0.4400	0.6710	0.8114	0.4401	0.7122
	Original	0.7884	0.3751	-	0.7894	0.3748	-	0.7896	0.3748	-	0.7898	0.3745	-
_	AutoDim	0.7843	0.3779	0.6936	0.7893	0.3744	0.5013	0.7894	0.3743	0.5017	0.7894	0.3743	0.3892
Avazu	AutoField	0.7866	0.3762	0.0020	0.7887	0.3748	0.0001	0.7892	0.3748	0.0001	0.7897	0.3744	0.0001
Av	QR	0.7762	0.3821	0.5000	0.7868	0.3766	0.5000	0.7857	0.3769	0.5000	0.7849	0.3781	0.5000
	PEP	0.7877	0.3754	0.4126	0.7896	0.3743	0.3016	0.7894	0.3744	0.3016	0.7897	0.3742	0.3016
	OptEmbed	0.7888^{*}	0.3750^{*}	0.3927	0.7901^*	0.3740	0.6840	0.7902^*	0.3744	0.5563	0.7902	0.3740^{*}	0.4693
	Original	0.7962	0.1532	-	0.8010	0.1522	-	0.8008	0.1522	-	0.8007	0.1522	-
2	AutoDim	0.7886	0.1550	0.0029	0.8016	0.1520	0.1904	0.8012	0.1522	0.1669	0.8013	0.1521	0.2286
KDD1	AutoField	0.7953	0.1534	0.0038	0.8011	0.1525	0.0000	0.8006	0.1522	0.0000	0.8006	0.1522	0.0038
\bigcirc	QR	0.7913	0.1544	0.5000	0.7925	0.1541	0.5000	0.7938	0.1538	0.5000	0.7928	0.1540	0.5000
	PEP	0.7957	0.1533	0.1001	0.7992	0.1525	0.1003	0.7984	0.1527	0.1003	0.7957	0.1535	0.1003
	OptEmbed	0.7971*	0.1530*	0.6183	0.8021*	0.1519	0.4715	0.8027*	0.1522	0.5105	0.8028^{*}	0.1521	0.4154

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline.

On Criteo and Avazu, OptEmbed tends to save model parameters while keeping the performance. $_{18}$

Result

Table 2: Overall Performance Comparison.

	Detect		DeepFM		DCN		FNN			IPNN			
	Dataset	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity
	Original	0.8104	0.4409	-	0.8106	0.4408	-	0.8110	0.4404	-	0.8113	0.4401	-
0	AutoDim	0.8093	0.4420	0.8642	0.8096	0.4418	0.7917	0.8104	0.4410	0.7187	0.8103	0.4411	0.7179
Criteo	AutoField	0.8101	0.4412	0.0009	0.8108	0.4405	0.4108	0.8108	0.4406	0.6221	0.8111	0.4403	0.3941
Cri	QR	0.8084	0.4444	0.5000	0.8103	0.4411	0.5000	0.8105	0.4408	0.5000	0.8102	0.4411	0.5000
	PEP	0.7980	0.4541	0.5010	0.8110	0.4404	0.5802	0.8108	0.4406	0.5802	0.8111	0.4402	0.5607
	OptEmbed	0.8105	0.4409	0.9684	0.8113	0.4402	0.8534	0.8114	0.4400	0.6710	0.8114	0.4401	0.7122
	Original	0.7884	0.3751	-	0.7894	0.3748	-	0.7896	0.3748	-	0.7898	0.3745	-
-	AutoDim	0.7843	0.3779	0.6936	0.7893	0.3744	0.5013	0.7894	0.3743	0.5017	0.7894	0.3743	0.3892
Avazu	AutoField	0.7866	0.3762	0.0020	0.7887	0.3748	0.0001	0.7892	0.3748	0.0001	0.7897	0.3744	0.0001
Av	QR	0.7762	0.3821	0.5000	0.7868	0.3766	0.5000	0.7857	0.3769	0.5000	0.7849	0.3781	0.5000
	PEP	0.7877	0.3754	0.4126	0.7896	0.3743	0.3016	0.7894	0.3744	0.3016	0.7897	0.3742	0.3016
	OptEmbed	0.7888^*	0.3750^{*}	0.3927	0.7901^*	0.3740	0.6840	0.7902^*	0.3744	0.5563	0.7902	0.3740^{*}	0.4693
	Original	0.7962	0.1532	-	0.8010	0.1522	-	0.8008	0.1522	-	0.8007	0.1522	-
2	AutoDim	0.7886	0.1550	0.0029	0.8016	0.1520	0.1904	0.8012	0.1522	0.1669	0.8013	0.1521	0.2286
D1	AutoField	0.7953	0.1534	0.0038	0.8011	0.1525	0.0000	0.8006	0.1522	0.0000	0.8006	0.1522	0.0038
KDD1	QR	0.7913	0.1544	0.5000	0.7925	0.1541	0.5000	0.7938	0.1538	0.5000	0.7928	0.1540	0.5000
	PEP	0.7957	0.1533	0.1001	0.7992	0.1525	0.1003	0.7984	0.1527	0.1003	0.7957	0.1535	0.1003
	OptEmbed	0.7971^*	0.1530^{*}	0.6183	0.8021^{*}	0.1519	0.4715	0.8027*	0.1522	0.5105	0.8028^{*}	0.1521	0.4154

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline.

Ablation

Table 3: Performance Comparison for Component Analysis.

	Basic	Metrics		Metrics	
	Model	Wietrics	AUC	Logloss	Sparsity
		Original	0.8104	0.4409	-
	DoonEM	OptEmbed-E	0.8104	0.4410	0.6267
	DeepFM	OptEmbed-D	0.8103	0.4410	0.5547
Criteo		OptEmbed	0.8105	0.4409	0.9684
Cri		Original	0.8106	0.4408	-
	DCN	OptEmbed-E	0.8110	0.4404	0.6111
		OptEmbed-D	0.8110	0.4403	0.7192
		OptEmbed	0.8113	0.4402	0.8534
		Original	0.7884	0.3751	-
	DeepFM	OptEmbed-E	0.7884	0.3752	0.0000
_		OptEmbed-D	0.7888	0.3750	0.3927
Avazu		OptEmbed	0.7888	0.3750	0.3927
Av		Original	0.7894	0.3748	-
	DCN	OptEmbed-E	0.7895	0.3746	0.0024
	DCN	OptEmbed-D	0.7900	0.3740	0.5044
		OptEmbed	0.7900	0.3743	0.6840

Table 4: Ablation About Re-training Stage.

Dataset	Cri	teo	Av	azu	KDD12		
Retrain	W.	w.o.	W.	w.o.	W.	w.o.	
AUC	0.8113	0.8110	0.7900	0.7895	0.8021	0.8005	
Logloss	0.4402	0.4404	0.3743	0.3749	0.1523	0.1526	

w. stands for with re-training. w.o. stands for without re-training.

Retraining is necessary.

- On Criteo, both components reduce the embedding parameters.
- On Avazu, OptEmbed-E makes no significant difference compared to original model.

OptEmbed-E: only using embedding mask OptEmbed-D: only using field-wise dimension mask

Efficiency Analysis

(a) Training Time (h)

(b) Inference Time (ms)

- OptEmbed tends to perform best in terms of Param-AUC tradeoff.
- OptEmbed ranks medium-level for training time and performs best for **inference time**.

Model

OptEmbed

AutoField

AutoDim

400

PFP

300

100

200

(b) Avazu

Param(M)

Case Study

- Perform on Avazu dataset with DeepFM model.
- Filter out unnecessary fields completely introduced by the common best practice.

Conclusion

- We first propose three requirements for an optimal embedding table: No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.
- 2. Based on these requirements, a novel, model-agnostic framework OptEmbed is proposed, which optimizes the embedding table in a unifying way.
- 3. Extensive experiments demonstrate the superiority of OptEmbed in model performance, runtime efficiency and model size reduction.

Thanks for Listening!

- We first propose three requirements for an optimal embedding table: No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.
- 2. Based on these requirements, a novel, model-agnostic framework OptEmbed is proposed, which optimizes the embedding table in a unifying way.
- 3. Extensive experiments demonstrate the superiority of OptEmbed in model performance, runtime efficiency and model size reduction.

For code implementation, kindly check: https://github.com/fuyuanlyu/OptEmbed

Formulation

For n field one-hot encoded raw input:

$$x = [x_{(1)}, x_{(2)}, ..., x_{(n)}]$$

Transform into dense vector:

$$e_{(i)} = E \times x_{(i)}$$

 $e = [e_{(1)}, e_{(2)}, ..., e_{(n)}]$

Fed into feature interaction and classification layer: $\hat{y} = \mathcal{F}(E \times x|W)$

Adopt the cross-entropy loss:

$$CE(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}).$$

Formulate the CTR prediction problem:

$$\min_{\mathbf{E},\mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E},\mathbf{W}\}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y)\in\mathcal{D}} CE(y,\mathcal{F}(\mathbf{E}\times\mathbf{x}|\mathbf{W}))$$

Fulfill the three requirements, we decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_i| \times D_i}$$

For **R1**: No Redundant Features in |f|

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2 and R3 are naturally satisfied.

Re-formulate the CTR prediction problem:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f$$

Fulfill the three requirements, we decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}$$

For **R1**: **No R**edundant **F**eatures:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2: Embedding Dimension Flexible and R3: Hardware Friendly are naturally satisfied.

Re-formulate the CTR prediction problem:

$$\min_{\mathbf{E}^* \mathbf{W}} \mathcal{L}_{CE}(\mathcal{D}|\{\mathbf{E}^*, \mathbf{W}\}), \ \mathbf{E}^* = [\mathbf{E}_{(1)}, \mathbf{E}_{(2)}, \cdots, \mathbf{E}_{(n)}],$$

$$s.t. \ \mathbf{E}_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \ \sum_{i=1}^n |f_{(i)}| \leq |f|, \ D_{(i)} \leq D, \ \forall i \leq n.$$

Redundant Embedding Pruning

Inspired by **network pruning** [1,2], we re-parameterize embedding mask:

$$m_e = S(L_{\beta}(E) - t) \in \{0,1\}^{|f|}$$

 $t \in R^{|n|}$ is the field-wise threshold vector, L_{β} indicates the L_{β} norm of each feature embedding, S() is the unit step function with long-tail estimator [1].

$$S(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases} \qquad \frac{d}{dx} S(x) \approx H(x) = \begin{cases} 2 - 4|x|, |x| \le 0.4 \\ 0.4, 0.4 < |x| \le 1 \\ 0, |x| > 1 \end{cases}$$

Redundant Embedding Pruning

Inspired by **network pruning** [1,2], we re-parameterize embedding mask:

$$m_e = S(L_{\beta}(E) - t) \in \{0,1\}^{|f|}$$

 $t \in R^{|n|}$ is the field-wise threshold vector, L_{β} indicates the L_{β} norm of each feature embedding, S() is the unit step function with long-tail estimator [1].

$$S(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases} \qquad \frac{d}{dx} S(x) \approx H(x) = \begin{cases} 2 - 4|x|, |x| \le 0.4 \\ 0.4, 0.4 < |x| \le 1 \\ 0, |x| > 1 \end{cases}$$

Sparse regularization Term: $L_s = \sum \exp(-t_i)$

The final objective in this stage:

$$\min_{\mathbf{m}_e, \mathbf{E}, \mathbf{W}} \mathcal{L}_{\text{CE}}(\mathcal{D} | \{\hat{\mathbf{E}}, \mathbf{W}\}) + \alpha \mathcal{L}_s, \ \hat{\mathbf{E}} = \mathbf{E} \odot \mathbf{m}_e.$$

Embedding Dimension Search

Formulated into a **one-shot neural architecture search** problem [1,2]:

$$\begin{split} \mathbf{m}_{d}^{*} &= \arg\min_{\boldsymbol{\mathcal{L}} \in \mathcal{S}_{e}} \mathcal{L}_{\mathrm{CE}}(\mathcal{D}_{val} | \{\hat{\mathbf{E}_{s}} \odot \mathbf{m}_{d}, \hat{\mathbf{W}_{s}}\}), \\ &\mathbf{m}_{d} \in \mathcal{S}_{e} \end{split} \qquad \text{supernet } \{E_{s}^{\hat{}}, W_{s}^{\hat{}}\} \\ s.t. \; \{\hat{\mathbf{E}_{s}}, \hat{\mathbf{W}_{s}}\} &= \underset{\{\mathbf{E}_{s}, \mathbf{W}_{s}\} \in \Omega}{\min} \; \mathbb{E}_{\mathbf{m}_{d} \sim \Gamma(\mathcal{S}_{e})} \mathcal{L}_{\mathrm{CE}}(\mathcal{D} | \{\mathbf{E}_{s} \odot \mathbf{m}_{d}, \mathbf{W}_{s}\}), \\ &\{\mathbf{E}_{s}, \mathbf{W}_{s}\} \in \Omega \end{split}$$

where $S_e = \{1, 2, ..., D\}$ denotes the search space, $\Gamma(S_e)$ is the prior distribution of the search space (uniform distribution in this case).

Embedding Dimension Search

Formulated into a **one-shot neural architecture search** problem [1,2]:

$$\begin{split} \mathbf{m}_{d}^{*} &= \arg\min \mathcal{L}_{\text{CE}}(\mathcal{D}_{val} | \{\hat{\mathbf{E}_{s}} \odot \mathbf{m}_{d}, \hat{\mathbf{W}_{s}}\}), \\ \mathbf{m}_{d} \in \mathcal{S}_{e} & \text{supernet } \{E_{s}^{^{\wedge}}, W_{s}^{^{\wedge}}\} \\ s.t. \; \{\hat{\mathbf{E}_{s}}, \hat{\mathbf{W}_{s}}\} &= \underset{\{\mathbf{E}_{s}, \mathbf{W}_{s}\} \in \Omega}{\min} \; \mathbb{E}_{\mathbf{m}_{d} \sim \Gamma(\mathcal{S}_{e})} \mathcal{L}_{\text{CE}}(\mathcal{D} | \{\mathbf{E}_{s} \odot \mathbf{m}_{d}, \mathbf{W}_{s}\}), \\ \{\mathbf{E}_{s}, \mathbf{W}_{s}\} \in \Omega & \end{split}$$

where $S_e = \{1, 2, ..., D\}$ denotes the search space, $\Gamma(S_e)$ is the prior distribution of the search space (uniform distribution in this case).

The supernet training is aligned with the previous redundant embedding pruning:

$$\min_{\mathbf{m}_e, \mathbf{E}, \mathbf{W}} \mathbb{E}_{\mathbf{m}_d \sim \text{Uniform}(\mathcal{S}_e)} \mathcal{L}_{\text{CE}}(\mathcal{D} | {\{\hat{\mathbf{E}}, \mathbf{W}\}}) + \alpha \mathcal{L}_s,$$
$$\hat{\mathbf{E}} = \mathbf{E}_s \odot \mathbf{m}_d = \mathbf{E} \odot \mathbf{m}_e \odot \mathbf{m}_d.$$

After obtaining the supernet $\{E_s^{\wedge}, W_s^{\wedge}\}$, we adopt evolutional search to find dimension mask m_d^* .

Re-training

Re-train the embedding *E* and the model weights *W* given:

- the embedding mask m_e^st
- field-wise dimension mask m_d^* .

```
\mathrm{argmin}_{\mathrm{E},\mathrm{W}}\mathcal{L}_{\mathrm{CE}}(\mathcal{D}|\{\mathrm{E}\odot\mathrm{m}_{e}^{*}\odot\mathrm{m}_{d}^{*},\mathrm{W}\}).
```

```
Algorithm 1 The OptEmbed Algorithm
Require: training dataset \mathcal{D}, validation dataset \mathcal{D}_{val}
Ensure: optimal embedding table E* and model parameters W*
  1: ## Supernet Training and Embedding Pruning ##
  2: while not converge do
          Sample a mini-batch from the training dataset
          \{\hat{\mathbf{E}}_{s}, \hat{\mathbf{W}}_{s}\}, \mathbf{m}_{e} = \text{SupernetTrain}(\mathcal{D})
                                                                                 ▶ Eq. 16
  5: end while
  6: \mathbf{m}_e^* = \text{GetBestPerform}(\{\mathbf{m}_e\})
  7: ## Dimension Mask Searching ##
  8: \tau = 0; P_{\tau} = \text{Initialize\_population}(n_m + n_c); Topk = \emptyset;
  9: while \tau < T do
         AUC_{\tau} = Inference(\hat{\mathbf{E}}_{s}, \hat{\mathbf{W}}_{s}, \mathcal{D}_{val}, P_{\tau});
         Topk = Update_Topk(Topk, P_{\tau}, AUC<sub>\tau</sub>);
         P_{\tau}^{c} = \text{Crossover}(\text{Topk}, n_{c});
 13: P_{\tau}^{m} = \text{Mutation}(\text{Topk}, n_{m}, prob);
 14: P_{\tau+1} = P_{\tau}^m \cup P_{\tau}^c;
         \tau = \tau + 1;
 16: end while
 17: \mathbf{m}_{d}^{*} = \text{GetBestCand}(P_{\tau})
                                                                                 ▶ Eq. 15
 18: ## Re-training##
 19: Retrain \{E^*, W^*\} given \mathbf{m}_e^* and \mathbf{m}_d^*
                                                                                 ▶ Eq. 17
```