Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- (1) S es Σ -enumerable
- (2) Hay un programa $\mathcal{P} \in Pro^{\Sigma}$ tal que:
- (a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado $\parallel x \parallel$ y llega a un estado de la forma $((x_1,\ldots,x_n,y_1,\ldots),(\alpha_1,\ldots,\alpha_m,\beta_1\ldots))$ tal que $(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)\in S$
- (b) Para todo $(x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado ||x||| y llega a un estado de la forma $((x_1, \ldots, x_n, y_1, \ldots), (\alpha_1, \ldots, \alpha_m, \beta_1, \ldots))$

(Solo hacer el caso para n=2, m=1)

$$(1) \implies (2)$$

Dado que S no es vacío, tenemos por definicion tenemos que existe una función $F: \omega \to \omega^2 \times \Sigma^{*1}$ tal que $I_F = S$ y $F_{(i)}$ es Σ -computable para cada $i \in \{1, 2, 3\}$.

Luego, por la Proposición 3tenemos que existen las siguientes macros:

$$\begin{aligned} [V2 \leftarrow F_{(1)}(V1)] \\ [V2 \leftarrow F_{(2)}(V1)] \\ [W2 \leftarrow F_{(3)}(V1)] \end{aligned}$$

Y sea \mathcal{P} el siguiente programa

$$[P3 \leftarrow F_{(3)}(N1)] \\ [N2 \leftarrow F_{(2)}(N1)] \\ [N1 \leftarrow F_{(1)}(N1)]$$

Donde suponemos que las expansiones de las macros son hechas usando variables auxiliares no pertenecientes a la lista N1, N2, P1, y tambien se supone que los labels auxiliares en dichas expansiones son todos distintos, es decir que no se usa el mismo label auxiliar en dos expansiones distintas.

- (2a) Claramente tenemos que el programa termina para todo estado inicial $\|x\|$ $x \in \omega$ ya que el dominio de cada $F_{(i)}$ es ω , y que al terminar, su estado es de la forma $((x_1, x_2, y_1, \dots), (\alpha_1, \beta_1, \dots))$ tal que $(x_1, x_2, \alpha_1) \in S$, debido a que $I_F = S$.
- (2b) Dado que $I_F = S$ y $D_F = \omega$ para todo $(x_1, x_2, \alpha_1) \in S$ existe $x \in \omega$ tal que $F(x) = (x_1, x_2, \alpha_1)$ y por lo tanto es facil ver que para el programa el estado inicial ||x|| va a terminar en el estado $((x_1, x_2, y_1, \ldots), (\alpha_1, \beta_1, \ldots))$.

$$(2) \implies (1)$$

Supongamos $P \in Pro^{\Sigma}$ cumple con (a) y (b) de (2). Sean:

$$\mathcal{P}_1 = \mathcal{P}N1 \leftarrow N1$$

$$\mathcal{P}_2 = \mathcal{P}N1 \leftarrow N2$$

$$\mathcal{P}_3 = \mathcal{P}N1 \leftarrow P1$$

 ${\bf Definimos}$

$$F_1 = \Psi_{\mathcal{P}_1}^{1,0,\#}$$

$$F_2 = \Psi_2^{1,0,\#}$$

$$F_1 = \Psi_{\mathcal{P}_1}^{1,0,\#}$$

$$F_2 = \Psi_{\mathcal{P}_2}^{1,0,\#}$$

$$F_3 = \Psi_{\mathcal{P}_3}^{1,0,*}$$

Notar que cada F_i es Σ -computable y tiene dominio igual a ω .

Sea $F = [F_1, F_2, F_3]$. Tenemos por definición que $D_F = \omega$ y ya que $F_{(i)} = F_i$, para cada i=1,2,3tenemos que cada $F_{(i)}$ es $\Sigma\text{-computable}.$

Luego, por (b) de (2) y como las F_i se definen en base a \mathcal{P} que computa a S. Tenemos que para todo $(y,z,\alpha)\in I_F$ existe un $x\in\omega$ tal que $(y,z,\alpha)=$ $[F_1, F_2, F_3](x) \in S$ y claramente $I_F = S$.