変分ベイズ推論 (1)

正田 備也 masada@rikkyo.ac.jp

Contents

変分ベイズ推論とは

変分ベイズ推論の実例

前回のEMアルゴリズムでの議論のパターン

- ▶ 潜在変数 $\mathcal{Z} = \{z_1, \dots, z_N\}$ を含むモデリングを行いたい
- ▶ 確率モデルを指定することで同時分布 $p(\mathcal{X},\mathcal{Z}) = p(\mathcal{Z})p(\mathcal{X}|\mathcal{Z}) = \prod_{i=1}^{N} p(z_i)p(x_i|z_i)$ が得られる
- ト 潜在変数 \mathcal{Z} の周辺化 $\sum_{\mathcal{Z}} p(\mathcal{X}, \mathcal{Z})$ により観測データの尤度 $p(\mathcal{X})$ は得られるのだが、大抵この尤度は計算できない
- ightharpoonup Jensen の不等式を使い、対数尤度 $\ln p(\mathcal{X})$ の下界を得る

$$\ln p(\mathcal{X}) \ge \sum_{i=1}^{N} \sum_{z_i=1}^{K} q_{i,z_i} \ln \frac{p(z_i)p(x_i|z_i)}{q_{i,z_i}}$$

▶ この下界を最大化することで、様々な未知量を推定する 3/20

ベイズ的なモデリング

- ▶ 観測データを表す確率変数を $\mathcal{X} \equiv \{x_1, \dots, x_N\}$ とする
- ▶ 確率モデルのパラメータを表す確率変数を Ø とする
- ightharpoonup ベイズ的なモデリングで知りたいのは、事後分布 $p(\Theta|\mathcal{X})$

$$p(\mathbf{\Theta}|\mathcal{X}) = \frac{p(\mathcal{X}|\mathbf{\Theta})p(\mathbf{\Theta})}{p(\mathcal{X})}$$
(1)

- ightharpoonup 変分ベイズ推論は $p(\mathbf{\Theta}|\mathcal{X})$ を近似する分布 $q(\mathbf{\Theta})$ を求める
 - ▶ $q(\Theta)$ を変分事後分布 (variational posterior distribution) と呼ぶ
 - ▶ $q(\Theta)$ には比較的扱いやすい分布を選ぶ

EMアルゴリズムでの議論のパターンを適用

- ▶ 潜在変数 @ を含むモデリングを行いたい
- ▶ 確率モデルを指定することで観測データと潜在変数の同時分 $\pi p(\mathcal{X}, \mathbf{\Theta}) = p(\mathbf{\Theta})p(\mathcal{X}|\mathbf{\Theta}) = p(\mathbf{\Theta})\prod_{i=1}^{N} p(x_i|\mathbf{\Theta})$ が得られる
- ト 潜在変数 Θ の周辺化 $\int p(\mathcal{X}, \Theta) d\Theta$ により観測データの周辺 尤度 $p(\mathcal{X})$ は得られるのだが、大抵この尤度は計算できない
- lackbox Jensen の不等式を使い、対数周辺尤度 $\ln p(\mathcal{X})$ の下界を得る

$$\ln p(\mathcal{X}) \ge \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta})p(\mathcal{X}|\mathbf{\Theta})}{q(\mathbf{\Theta})} d\mathbf{\Theta}$$

▶ この下界を最大化することで、様々な未知量を推定する

▶ この下界を ELBO(Evidence Lower BOund; 変分下限) と呼ぶ

変分ベイズ推論(variational inference)とは

▶ Jensen の不等式を適用することで、ELBO を次のように得た

$$\ln p(\mathcal{X}) \ge \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta})p(\mathcal{X}|\mathbf{\Theta})}{q(\mathbf{\Theta})} d\mathbf{\Theta}$$

- ト 実は、ELBO を大きくすればするほど、 Θ が従う確率分布である $q(\Theta)$ が、事後分布 $p(\Theta|\mathcal{X})$ に近くなっていく
- ightharpoonup つまり、この $q(\Theta)$ は、事後分布を近似する分布とみなせるような分布になっている
- $lackbox q(oldsymbol{\Theta})$ を、変分事後分布 (variational posterior) と呼ぶ

対数周辺尤度と ELBO の差

▶ Jensen の不等式の左辺から右辺を引いたものを求めてみる

$$\ln p(\mathcal{X}) - \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta}|\mathcal{X})p(\mathcal{X})}{q(\mathbf{\Theta})} d\mathbf{\Theta}$$

$$= \ln p(\mathcal{X}) - \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta}|\mathcal{X})}{q(\mathbf{\Theta})} d\mathbf{\Theta} - \int q(\mathbf{\Theta}) \ln p(\mathcal{X}) d\mathbf{\Theta}$$

$$= \ln p(\mathcal{X}) - \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta}|\mathcal{X})}{q(\mathbf{\Theta})} d\mathbf{\Theta} - \ln p(\mathcal{X}) \int q(\mathbf{\Theta}) d\mathbf{\Theta}$$

$$= \ln p(\mathcal{X}) - \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta}|\mathcal{X})}{q(\mathbf{\Theta})} d\mathbf{\Theta} - \ln p(\mathcal{X}) \int q(\mathbf{\Theta}) d\mathbf{\Theta}$$
$$= \int q(\mathbf{\Theta}) \ln \frac{q(\mathbf{\Theta})}{p(\mathbf{\Theta}|\mathcal{X})} d\mathbf{\Theta} = D_{\mathsf{KL}}(q(\mathbf{\Theta}) \parallel p(\mathbf{\Theta}|\mathcal{X})) \tag{2}$$

 $p(\mathbf{O}|\mathcal{X})$:: ELBO を $\ln p(\mathcal{X})$ に近づける $\Leftrightarrow q(\mathbf{\Theta})$ を $p(\mathbf{\Theta}|\mathcal{X})$ に近づける 7/20

「変分(variational)」の意味

- ▶ ELBO の最大化は、 $q(\Theta)$ を変化させることでおこなう
- ightharpoonup このとき、 $q(\Theta)$ の密度関数そのものを変化させる
- ▶ 逆に言うと、 $q(\Theta)$ の密度関数が特定のかたちを持つと仮定した上で、その関数のパラメータを動かすのではない
 - ▶ パラメータについて微分することで最大化問題を解くのではなく、いわば"関数について微分する"ことで最大化問題を解いている
- ▶ 関数のかたちを決めてそのパラメータを動かすのではなく、 関数のかたち自体を動かすことで問題を解く方法を、変分 法と呼ぶ(cf. 汎関数微分)

実際の変分推論

▶ 実際には、 $q(\Theta)$ の密度関数が特定のかたちを持つと仮定した上で、その関数のパラメータを動かすことによって、 ELBOを最大化することも多い

$$\ln p(\mathcal{X}) \ge \int q(\mathbf{\Theta}) \ln \frac{p(\mathbf{\Theta})p(\mathcal{X}|\mathbf{\Theta})}{q(\mathbf{\Theta})} d\mathbf{\Theta}$$

- ▶ 例えば、 $q(\Theta)$ が多変量正規分布だと仮定して、ELBO を最大化するような平均パラメータと共分散行列パラメータを求める、など
- ightharpoonup 変分オートエンコーダでは、 $q(\Theta)$ が多変量正規分布だと仮定し、 さらにその共分散行列が対角行列だと仮定する

Contents

変分ベイズ推論とは

変分ベイズ推論の実例

例:メッセージ受信数の変化点の検知

▶ この授業の最初に採り上げた例

Figure: メッセージの受信数

モデルを指定する

ト c_n が n 日目の受信数、 τ が受信数の変化点、 λ_1, λ_2 がそれぞれ $n < \tau, n \geq \tau$ の場合のポアソン分布のパラメータとする

$$au \sim ext{Uniform}(1,N)$$
 $\lambda_1 \sim ext{Gam}(a,b)$ $\lambda_2 \sim ext{Gam}(a,b)$ $c_n \sim ext{Poi}(\lambda_1) \quad ext{for } n < au$ $c_n \sim ext{Poi}(\lambda_2) \quad ext{for } n \geq au$

ELBOを求める

同時分布は、
$$\boldsymbol{c} = \{c_1, \dots, c_N\}$$
 として

$$p(\boldsymbol{c}, \lambda_1, \lambda_2, \tau) = p(\boldsymbol{c}|\lambda_1, \lambda_2, \tau)p(\lambda_1; a, b)p(\lambda_2; a, b)p(\tau)$$

$$= p(\lambda_1; a, b) p(\lambda_2; a, b) p(\tau) \prod_{n=0}^{N} p(c_n | \lambda_1)^{\delta(n < \tau)} p(c_n | \lambda_2)^{\delta(n \ge \tau)}$$

(3)

$$\ln p(oldsymbol{c}) = \ln \int \sum_{ au} p(oldsymbol{c}, \lambda_1, \lambda_2, au) d\lambda_1 d\lambda_2$$

$$egin{aligned} & \ln p(oldsymbol{c}) = \ln \int \sum_{ au} p(oldsymbol{c}, \lambda_1, \lambda_2, au) d\lambda_1 d\lambda_2 \ & \geq \int \sum_{ au} q(\lambda_1, \lambda_2, au) \ln rac{p(oldsymbol{c}, \lambda_1, \lambda_2, au)}{q(\lambda_1, \lambda_2, au)} d\lambda_1 d\lambda_2 \end{aligned}$$

平均場近似

▶ 変分事後分布 $q(\lambda_1, \lambda_2, \tau)$ について、 $q(\lambda_1, \lambda_2, \tau) = q(\lambda_1)q(\lambda_2)q(\tau)$ と分解できることを仮定する

> このような仮定を平均場近似 (mean field approximation) と呼ぶ

$$\ln p(\boldsymbol{c}) \ge \int \sum_{\tau} q(\lambda_1, \lambda_2, \tau) \ln \frac{p(\boldsymbol{c}, \lambda_1, \lambda_2, \tau)}{q(\lambda_1, \lambda_2, \tau)} d\lambda_1 d\lambda_2$$

$$= \int \sum_{\tau} q(\lambda_1) q(\lambda_2) q(\tau) \ln \frac{p(\boldsymbol{c}, \lambda_1, \lambda_2, \tau)}{q(\lambda_1) q(\lambda_2) q(\tau)} d\lambda_1 d\lambda_2$$

ELBO の最大化 $\Leftrightarrow D_{\mathsf{KL}}(q(\lambda_1)q(\lambda_2)q(\tau) \parallel p(\lambda_1,\lambda_2,\tau|\mathbf{c}))$ の最小化(cf. 式(2))

$q(\lambda_1)$ のかたちを求める

 $q(\lambda_2)$ と $q(\tau)$ を固定し、 $D_{\mathsf{KL}}(q(\lambda_1)q(\lambda_2)q(\tau) \parallel p(\lambda_1,\lambda_2,\tau|\mathbf{c}))$ を最小にする $q(\lambda_1)$ を求める。

$$D_{\mathsf{KL}}(q(\lambda_{1})q(\lambda_{2})q(\tau) \parallel p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}))$$

$$= \int \sum_{\tau} q(\lambda_{1})q(\lambda_{2})q(\tau) \ln \frac{q(\lambda_{1})q(\lambda_{2})q(\tau)}{p(\lambda_{1},\lambda_{2},\tau|\mathbf{c})} d\lambda_{1} d\lambda_{2}$$

$$= \int q(\lambda_{1}) \{ \ln q(\lambda_{1}) - \int \sum_{\tau} q(\lambda_{2})q(\tau) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{2} \} d\lambda_{1} + const.$$

$$= \int q(\lambda_{1}) \ln \frac{q(\lambda_{1})}{\exp \int \sum_{\tau} q(\lambda_{2})q(\tau) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{2}} d\lambda_{1} + const.$$

$$= D_{\mathsf{KL}}(q(\lambda_{1}) \parallel \frac{1}{Z} \exp \int q(\lambda_{2})q(\tau) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{2} d\tau) + const.$$
(6)

 $q(\lambda_1) = \frac{1}{Z} \exp \int \sum_{\tau} q(\lambda_2) q(\tau) \ln p(\lambda_1, \lambda_2, \tau | \mathbf{c}) d\lambda_2$ のとき、上の KL 情報量は最小。 つまり、 $\ln q(\lambda_1) = \int \sum_{\tau} q(\lambda_2) q(\tau) \ln p(\lambda_1, \lambda_2, \tau | \mathbf{c}) d\lambda_2 - \ln Z$ のとき、上の KL 情報量は最小。

$$= \left(a-1+\sum_{n=1}^{N}\left(\sum_{\tau}q(\tau)\delta(n<\tau)\right)c_{n}\right)\ln\lambda_{1} - \left(b+\sum_{n=1}^{N}\left(\sum_{\tau}q(\tau)\delta(n<\tau)\right)\right)\lambda_{1} + const.$$
 よって、 $q(\lambda_{1})$ は、shape パラメータが $a+\sum_{n=1}^{N}\left(\sum_{\tau}q(\tau)\delta(n<\tau)\right)c_{n}$ で、rate パラメータ が $b+\sum_{n=1}^{N}\left(\sum_{\tau}q(\tau)\delta(n<\tau)\right)$ のガンマ分布となる。 $q(\lambda_{2})$ についても同様に計算すると、やはりガンマ分布であることが分かる。

 $+\sum_{n=1}^{N}\sum_{\tau}q(\tau)\delta(n<\tau)\ln p(c_{n}|\lambda_{1})+\sum_{n=1}^{N}\int\sum_{\tau}q(\lambda_{2})q(\tau)\delta(n\geq\tau)\ln p(c_{n}|\lambda_{2})d\lambda_{2}-\ln Z$

 $\ln q(\lambda_1) = \int \sum_{\tau} q(\lambda_2) q(\tau) \ln \left\{ p(\lambda_1; a, b) p(\lambda_2; a, b) p(\tau) \prod_{\tau} p(c_n | \lambda_1)^{\delta(n < \tau)} p(c_n | \lambda_2)^{\delta(n \ge \tau)} \right\} d\lambda_2 - \ln 2 d\lambda_2$

 $= \ln p(\lambda_1; a, b) + \int q(\lambda_2) \ln p(\lambda_2; a, b) d\lambda_2 + \sum_{\tau} q(\tau) \ln p(\tau)$

 $= \ln \frac{b^a}{\Gamma(a)} \lambda_1^{a-1} e^{-b\lambda_1} + \sum_{n=1}^{N} \left(\sum_{i=1}^{n} q(\tau) \delta(n < \tau) \right) \ln \frac{\lambda_1^{c_n} e^{-\lambda_1}}{c_n!} + const.$

$q(\tau)$ のかたちを求める

 $q(\lambda_1)$ と $q(\lambda_2)$ を固定し、 $D_{\mathsf{KL}}(q(\lambda_1)q(\lambda_2)q(\tau) \parallel p(\lambda_1,\lambda_2,\tau|\mathbf{c}))$ を最小にする $q(\tau)$ を求める。

$$D_{\mathsf{KL}}(q(\lambda_{1})q(\lambda_{2})q(\tau) \parallel p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}))$$

$$= \int \sum_{\tau} q(\lambda_{1})q(\lambda_{2})q(\tau) \ln \frac{q(\lambda_{1})q(\lambda_{2})q(\tau)}{p(\lambda_{1},\lambda_{2},\tau|\mathbf{c})} d\lambda_{1} d\lambda_{2}$$

$$= \sum_{\tau} q(\tau) \left\{ \ln q(\tau) - \int q(\lambda_{1})q(\lambda_{2}) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{1} d\lambda_{2} \right\} + const.$$

$$= \sum_{\tau} q(\tau) \ln \frac{q(\tau)}{\exp \int q(\lambda_{1})q(\lambda_{2}) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{1} d\lambda_{2}} + const.$$

$$= D_{\mathsf{KL}}(q(\tau) \parallel \frac{1}{Z} \exp \int q(\lambda_{1})q(\lambda_{2}) \ln p(\lambda_{1},\lambda_{2},\tau|\mathbf{c}) d\lambda_{1} d\lambda_{2}) + const.$$

 $q(au) = rac{1}{Z} \exp \int q(\lambda_1) q(\lambda_2) \ln p(\lambda_1, \lambda_2, au | oldsymbol{c}) d\lambda_1 d\lambda_2$ のとき、上の KL 情報量は最小。 つまり、 $\ln q(au) = \int q(\lambda_1) q(\lambda_2) \ln p(\lambda_1, \lambda_2, au | oldsymbol{c}) d\lambda_1 d\lambda_2 - \ln Z$ のとき、上の KL 情報量は最小。

(7)

$$q(au) \propto \exp\left[\sum_{n=1}^N \delta(n < au) \int q(\lambda_1) \ln p(c_n|\lambda_1) d\lambda_1 + \sum_{n=1}^N \delta(n \geq au) \int q(\lambda_2) \ln p(c_n|\lambda_2) d\lambda_2
ight]$$
となる。ただし、 $\sum_{n=1}^T q(au) = 1$ を満たす。

 $+\sum_{n=1}^{N}\delta(n<\tau)\int q(\lambda_{1})\ln p(c_{n}|\lambda_{1})d\lambda_{1}+\sum_{n=1}^{N}\delta(n\geq\tau)\int q(\lambda_{2})\ln p(c_{n}|\lambda_{2})d\lambda_{2}+const.$

 $\ln q(\tau) = \int q(\lambda_1)q(\lambda_2) \ln \left\{ p(\lambda_1; a, b) p(\lambda_2; a, b) p(\tau) \prod_{n=1}^{N} p(c_n | \lambda_1)^{\delta(n < \tau)} p(c_n | \lambda_2)^{\delta(n \ge \tau)} \right\} d\lambda_1 d\lambda_2 - \ln 2 \pi d\lambda_1 d\lambda_2 - \ln$

 $= \int q(\lambda_1) \ln p(\lambda_1; a, b) d\lambda_1 + \int q(\lambda_2) \ln p(\lambda_2; a, b) d\lambda_2 + \ln p(\tau)$

よって、 $q(\tau)$ はカテゴリカル分布であり、

となる。ただし、 $\sum_{\sigma=1}^{T} q(\tau) = 1$ を満たす。 18 / 20

(8)

まとめ

- ▶ メッセージ受信数の変化点を検知するため、ベイズ的なモデルを立てた
- ▶ 事後分布を近似するために、変分ベイズ推論を行った
- ト その際、変分事後分布 $q(\lambda_1,\lambda_2,\tau)$ について、 $q(\lambda_1,\lambda_2,\tau)=q(\lambda_1)q(\lambda_2)q(\tau)$ と分解できることを仮定した
- ▶ このように仮定すると、 $q(\lambda_1)$ と $q(\lambda_2)$ はガンマ分布となり、 $q(\tau)$ はカテゴリカル分布となった

課題9

- ▶ メッセージ受信数の変化点検知の例を考える。
- λ_1 の値が従う変分事後分布 $q(\lambda_1)$ は、ガンマ分布であることが分かった。
- ト そこで、 $q(\lambda_1)$ の shape パラメータを α_1 とし、rate パラメータを β_1 とする。
- ▶ このとき、 $\int q(\lambda_1) \ln p(\lambda_1; a, b) d\lambda_1$ を計算せよ。
 - ▶ これは ELBO の算出に必要な計算。