Marine Schimel

mschimel@stanford.edu +1 650 248 1175

March 2024 -

Selected work experience

Postdoctoral Researcher | Stanford University

related data Advised by Prof. Surve Conculi and Prof. David Sussilla	1
 Advised by Prof. Surya Ganguli and Prof. David Sussillo Research Scientist Intern, Meta-Reality Labs 	August 2023-January 2024
Quantitative Research Intern, G-Research	Summer 2022
Education	0 mmm01 2 022
PhD Computational Neuroscience University of Cambridge • Research interests: Motor control, neural dynamics, optimal control, probabilisti • Supervised by Dr Guillaume Hennequin and funded by an EPSRC DTP students	
MSci in Physics University of Cambridge 1st class BSc in Natural Sciences University of Cambridge 1st class every year • Focus on Physics and Neurobiology	2018-2019 2015-2018
CPGE PCSI Lycée Louis-le-Grand Paris	2014-2015
Publications	
Dynamic consensus-building between neocortical areas via long-range conn bioRxiv	nections 2024
Learning interpretable control inputs and dynamics underlying animal locol <i>ICLR</i> 2024	motion 2024
When and why does motor preparation arise in RNN models of motor control <i>eLife</i>	ol? 2023
iLQR-VAE: control-based learning of input-driven dynamics with application ICLR 2022 (Oral presentation, top 5% accepted papers)	ons to neural data 2022
Selected presentations	
Data-driven modelling revelas consensus building dynamics across brain ar ICTP Workshop on Theoretical Neuroscience (invited speaker)	reas June 2024
Learning input-driven dynamical systems from data Cosyne Dynamical Systems Workshop (invited speaker)	March 2024
Tutorial on iLQR Janelia NeuroTheory workshop	November 2022
iLQR-VAE model presentation Neural Latents Benchmark workshop (invited talk)	February 2022
Probabilistic input-driven RNNs for identifying latent dynamics in neural d Champalimaud Research Symposium (selected talk)	lata October 2021
Selected awards	
EPSRC Access to HPC grant (estimated value of 30000£)	2022-2023 and 2023-2024
 Microsoft Research Award Awarded for the best computational research project in the Cambridge Physics N 	2019 MSci.
Silver Medal at the International Physics Olympiad	2015
Skills	

• Design of algorithms to probe neural circuits using optogenetic perturbations, and theoretical tools to interpret

Languages: French (Native), English (Fluent), German (C1), Spanish (A2) **Programming**: Python (Numpy, Jax, Pytorch), Ocaml, Matlab