The pp-Chain vs CNO-Cycle

A Descent into Nuclear Reaction Turmoil

Konstantinos Kilmetis, Diederick Vroom

s3745597, s2277387

STARS, RIGHT?

Figure 1: A close-by star, credit: NASA, GSFC

STARS, RIGHT?

They're all around, they provide heat and occasionally, light.

Figure 1: A close-by star, credit: NASA, GSFC

STARS, RIGHT?

They're all around, they provide heat and occasionally, light.

How? Through nuclear fusion!

Figure 1: A close-by star, credit: NASA, GSFC

$$\mathsf{A} + \mathsf{B} \to \mathsf{C}$$

C generation =

$$A + B \rightarrow C$$

Abundance of A

C generation =

$$A + B \rightarrow C$$

Abundance of A

C generation = Abundance of B

$$A + B \rightarrow C$$

$$A + B \rightarrow C$$

HYDROGEN FUSION

Intro

$$^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H}$$

HYDROGEN FUSION

$$^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H}$$

$$\frac{dY_{^{1}H}}{dt} = -Y_{^{1}H}Y_{^{1}H}\lambda_{^{1}H\rightarrow ^{2}H}\rho$$

HYDROGEN FUSION

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H$$

$${}^{dY_{^{1}H}}_{dt} = -Y_{^{1}H}Y_{^{1}H}\lambda_{^{1}H\rightarrow ^{2}H}\rho$$

$${}^{dY_{^{2}H}}_{dt} = Y_{^{1}H}Y_{^{1}H}\lambda_{^{1}H\rightarrow ^{2}H}\rho$$

HYDROGEN FUSION + DEUTERIUM FUSION

$$^{1}H + ^{1}H \rightarrow ^{2}H$$
 $^{1}H + ^{2}H \rightarrow ^{3}He$

HYDROGEN FUSION + DEUTERIUM FUSION

$$^{1}H + ^{1}H \rightarrow ^{2}H$$
 $^{1}H + ^{2}H \rightarrow ^{3}He$

$$\frac{dY_{^{1}H}}{dt} = -Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho$$
$$\frac{dY_{^{2}H}}{dt} = Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho$$

$$^{1}H + ^{1}H \rightarrow ^{2}H$$
 $^{1}H + ^{2}H \rightarrow ^{3}He$

$$\frac{dY_{^{1}H}}{dt} = -Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho$$

$$\frac{dY_{^{2}H}}{dt} = Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho$$

$$\frac{dY_{^{3}He}}{dt} = Y_{^{1}H}Y_{^{2}H}\lambda_{2}\rho$$

$$^{1}H + ^{1}H \rightarrow ^{2}H$$
 $^{1}H + ^{2}H \rightarrow ^{3}He$

$$\frac{dY_{^{1}H}}{dt} = -Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho - Y_{^{1}H}Y_{^{2}H}\lambda_{2}\rho$$

$$\frac{dY_{^{2}H}}{dt} = Y_{^{1}H}Y_{^{1}H}\lambda_{1}\rho - Y_{^{1}H}Y_{^{2}H}\lambda_{2}\rho$$

$$\frac{dY_{^{3}He}}{dt} = Y_{^{1}H}Y_{^{2}H}\lambda_{2}\rho$$

PP-CHAIN VS CNO-CYCLE

$$^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H}$$
 $^{1}\text{H} + ^{2}\text{H} \rightarrow ^{3}\text{He}$
 $^{3}\text{He} + ^{1}\text{H} \rightarrow ^{4}\text{He}$

4 species \rightarrow 4 diff. equations

PP-CHAIN VS CNO-CYCLE

$$^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H}$$
 $^{1}\text{H} + ^{2}\text{H} \rightarrow ^{3}\text{He}$
 $^{3}\text{He} + ^{1}\text{H} \rightarrow ^{4}\text{He}$

4 species \rightarrow 4 diff. equations

$$^{12}\text{C} + ^{1}\text{H} \rightarrow ^{13}\text{N}$$

$$^{13}\text{N} \rightarrow ^{13}\text{C}$$

$$^{13}\text{C} + ^{1}\text{H} \rightarrow ^{14}\text{N}$$

$$^{14}\text{N} + ^{1}\text{H} \rightarrow ^{15}\text{O}$$

$$^{15}\text{O} \rightarrow ^{15}\text{N}$$

$$^{15}\text{N} + ^{1}\text{H} \rightarrow ^{12}\text{C} + ^{4}\text{He}$$

8 species \rightarrow 8 diff. equations

PP-CHAIN VS CNO-CYCLE

Figure 2: Source: Mike Guidry, University of Tennessee

WHICH ONE IS FASTER

Two things control the efficiency

 $\mbox{Core Temperature} \rightarrow \mbox{Reaction} \\ \mbox{Rate} \\$

 $Metallicity \rightarrow \textbf{Catalyst Abundances}$

WHICH ONE IS FASTER

Two things control the efficiency

Core Temperature → Reaction Rate

Metallicity → Catalyst Abundances

Which is the dominant fusion pathway, as a function of core temperature and metallicity?

Methods

THE STIFFNESS PROBLEM

¹H Fusion λ : 7.90 × 10⁻²⁰ $\frac{\text{cm}^3}{\text{mol s}}$

²H Fusion λ : 1.01 × 10⁻¹ $\frac{\text{cm}^3}{\text{mol s}}$

Figure 3: Explicit methods destroy solutions for stiff equactions
Source: W.R. Hix

$$\frac{Y_{n+1} - Y_n}{\Delta t} = \dot{Y}_{n+1}$$

$$\frac{Y_{n+1} - Y_n}{\Delta t} = \dot{Y}_{n+1}$$
$$\frac{Y_{n+1} - Y_n}{\Delta t} - \dot{Y}_{n+1} = 0$$

$$rac{Y_{n+1}-Y_n}{\Delta t}=\dot{Y}_{n+1}$$
 $rac{Y_{n+1}-Y_n}{\Delta t}-\dot{Y}_{n+1}=0$ $F(Y_{n+1})=0 o$ Solve!

$$\begin{split} \frac{Y_{n+1}-Y_n}{\Delta t} &= \dot{Y}_{n+1} \\ \frac{Y_{n+1}-Y_n}{\Delta t} &- \dot{Y}_{n+1} = 0 \\ F(Y_{n+1}) &= 0 \rightarrow \text{Solve!} \end{split}$$

Through Newton-Raphson!

$$Y_{n+1} = Y_n - [J_F(Y_n)]^{-1} F(Y_n), \quad (J_F)_{ij} = \frac{\partial \dot{Y}_i}{\partial Y_j} - \frac{\delta_{ij}}{\Delta t}$$

$$J_{\text{CNO}} = \begin{bmatrix} -4\lambda_1 Y_{\text{H}} - \lambda_2 Y_{\text{D}} - h & -\lambda_2 Y_{\text{H}} & 2\lambda_3 Y_{\text{SHe}} & 0 \\ 2\lambda_1 Y_{\text{H}} - \lambda_2 Y_{\text{D}} & -\lambda_2 Y_{\text{H}} - h & 0 & 0 \\ \lambda_2 Y_{\text{D}} & \lambda_2 Y_{\text{H}} & -4\lambda_3 Y_{\text{SHe}} - h & 0 \\ 0 & 0 & 2\lambda_3 Y_{\text{SHe}} - h \end{bmatrix}$$

$$J_{\text{CNO}} = \begin{bmatrix} -\lambda_1 Y_{\text{12C}} - \lambda_3 Y_{\text{12C}} - \lambda_4 Y_{\text{13N}} - \lambda_6 Y_{\text{15N}} - h & -\lambda_1 Y_{\text{H}} & 0 & \lambda_3 Y_{\text{H}} & -\lambda_1 Y_{\text{H}} & 0 & -\lambda_6 Y_{\text{H}} & 0 \\ -\lambda_1 Y_{\text{12C}} + \lambda_6 Y_{\text{15N}} & -\lambda_1 Y_{\text{H}} - h & 0 & 0 & 0 & 0 & \lambda_6 Y_{\text{H}} & 0 \\ \lambda_1 Y_{\text{12C}} & \lambda_1 Y_{\text{H}} - h & 0 & 0 & 0 & 0 & 0 & 0 \\ -\lambda_3 Y_{\text{13C}} & \lambda_1 Y_{\text{H}} & -\lambda_2 - h & 0 & 0 & 0 & 0 & 0 & 0 \\ -\lambda_3 Y_{\text{13C}} & 0 & \lambda_2 & -\lambda_3 Y_{\text{H}} - h & 0 & 0 & 0 & 0 & 0 \\ \lambda_3 Y_{\text{13C}} - \lambda_4 Y_{\text{14N}} & 0 & 0 & \lambda_3 Y_{\text{H}} & -\lambda_4 Y_{\text{H}} - h & 0 & 0 & 0 \\ \lambda_4 Y_{\text{14N}} & 0 & 0 & 0 & \lambda_3 Y_{\text{H}} & -\lambda_4 Y_{\text{H}} - h & 0 & 0 & 0 \\ -\lambda_6 Y_{\text{15N}} & 0 & 0 & 0 & 0 & \lambda_5 & -\lambda_6 Y_{\text{H}} - h & 0 \\ \lambda_6 Y_{\text{15N}} & 0 & 0 & 0 & 0 & 0 & \lambda_5 & -\lambda_6 Y_{\text{H}} - h & 0 \\ \lambda_6 Y_{\text{15N}} & 0 & 0 & 0 & 0 & 0 & \lambda_5 & -\lambda_6 Y_{\text{H}} - h & 0 \\ \end{pmatrix}$$

Figure 4: Jacobians, by hand. Yeah...

FLOW CHART

Figure 5: Flow chart of our NRN. Based on SkyNet Lippuner & Roberts '18

• $T_{\rm core}$, ρ are constant. No mixing. MESA simulations to get typical values.

- $T_{\rm core}$, ρ are constant. No mixing. MESA simulations to get typical values.
- $\rho = f(T_{\text{core}})$

- $T_{\rm core}$, ρ are constant. No mixing. MESA simulations to get typical values.
- $\rho = f(T_{\text{core}})$
- Constant λ.
 Thermonuclear from Angulo+'99, Beta decays Kondev+'21

- $T_{\rm core}$, ρ are constant. No mixing. MESA simulations to get typical values.
- $\rho = f(T_{\text{core}})$
- Constant λ.
 Thermonuclear from Angulo+'99, Beta decays Kondev+'21
- Initial Y from ISM, unless provided explicitly.
 Full citations in the README.

Results

THE PP-CHAIN

Figure 6: Nuclear fusion via the pp-chain for a M5, G5, and O9 star.

THE PP-CHAIN

Figure 6: Nuclear fusion via the pp-chain for a M5, G5, and O9 star.

• Higher $T \rightarrow$ more fusion \Rightarrow Hotter stars live shorter

THE PP-CHAIN

Figure 6: Nuclear fusion via the pp-chain for a M5, G5, and O9 star.

- Higher T → more fusion ⇒ Hotter stars live shorter
- · Abundances reach an equilibrium

THE PP-CHAIN

Figure 6: Nuclear fusion via the pp-chain for a M5, G5, and O9 star.

- Higher T → more fusion ⇒ Hotter stars live shorter
- Abundances reach an equilibrium
- ¹H-⁴He equality roughly correspond to star lifetime

Figure 7: Nuclear fusion via the CNO-cycle for a G5 and O9 star.

Figure 7: Nuclear fusion via the CNO-cycle for a G5 and O9 star.

Similarities to pp-chain

- Higher $T \to \text{more fusion} \Rightarrow \text{Hotter stars live shorter}$
- · Abundances reach an equilibrium

Figure 7: Nuclear fusion via the CNO-cycle for a G5 and O9 star.

Figure 7: Nuclear fusion via the CNO-cycle for a G5 and O9 star.

Once ¹H runs out, only decay reactions occur

Figure 7: Nuclear fusion via the CNO-cycle for a G5 and O9 star.

- Once ¹H runs out, only decay reactions occur
- · Catalysts become constant in the long run

PP-CHAIN VS CNO-CYCLE

pp-chain vs CNO-cycle
Which one dominates when?

PP-CHAIN VS CNO-CYCLE

What we expect:

Figure 8: Source: Mike Guidry, University of Tennessee

PP-CHAIN VS CNO-CYCLE

What we got:

Figure 8: ¹H-⁴He equality time for pp-chain and CNO-cycle across temperatures

TEMPERATURE AND METALLICITY

That was for ISM abundances

How does metallicity change the game?

TEMPERATURE AND METALLICITY

Figure 9: Which fusion pathway dominates at which (T_{core}, Z)

Summary

SUMMARY

- · Modelling nuclear fusion in a star
 - · pp-chain and CNO-cycle
- Temperature and metallicity dependence
 - · Which fusion pathway dominates?
- · Set of differential equations
 - · Implicit Euler & Newton-Raphson root finder
 - Assumptions: T_{core} , ρ , and λ constant (unrealistic)
- · Results align well with what we expect!
- For future: less idealised (changing $T_{\rm core}, \rho$) more reactions (pp-branches, cold/hot CNO-cycles)

LUIGI PICTURE

Thank you for your time!

As is tradition, you win a picture of Luigi.

Figure 10: Luigi is very happy you sat through that and thanks you for your attention

EXTRA SLIDES

maybe talk about deuterium

EXTRA SLIDES

Reaction Rates

