

Object Detectors overview

Alexander Kozlov

Internet of Things Group

Agenda

- Problem definition
- Classical approaches
- Deep Learning approaches

Problem Definition

- Find objects on the image
 - Coordinates of bounding boxes
 - Class probabilities
- Basically used in conjunction w/ other algorithms

Example: face detection (one class)

Images credit: P. Hu and D. Ramanan "Finding Tiny Faces". World's largest selfie

Example: object detection on the road (several classes)

Images credit: A. Kozlov et al. "Development of Real-time ADAS Object Detector for Deployment on CPU"

Example: object detection in 3D space

Metric

• Intersection over Union (IoU) of two bounding boxes can be computed as:

(a & b).area() / (a.area() + b.area() - (a & b).area()), **NOT** (a & b).area() / (a | b).area()

Average precision

TP = True positive

TN = True negative

FP = False positive

FN = False negative

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$AP = \frac{1}{11} \times \left(AP_r(0) + AP_r(0.1) + \dots + AP_r(1.0) \right)$$

Object detection

Localization

 Generate hypothesis about object location

Classification

Hypothesis verification

Connected problems

(a) Image Classification

(b) Object Detection

(c) Semantic Segmentation

(d) Instance Segmentation

Localization: sliding window

To find the coordinates of the object, a "sliding window" is used: the classifier is applied to every possible window arrangement

To detect objects of different sizes, a pyramid of images is used.

Binary classification: features

Training dataset: set of object-label pairs : (x_i, y_i) , i=1..N.

 x_i – feature-vector $\in R^n$, y_i – object class $\in \{0,1\}$.

16x16 pixels

$$x_i$$
 = (128, 128, 60, ..., 0, 0), features – values of pixels.

$$y_i = 1.$$

Feature-vector has the same size for any object

Binary classification: decision tree

Splits the feature space by one (multiple) coordinates.

Parameters of a split (sign and threshold) are selected to minimize the classification error:

$$\sum_{i=1}^{N} |label_{gt} - label_{predicted}|$$

Several "weak" classifiers are combined into one strong (AdaBoost).

Haar features (2004)

Feature-vector is formed from the values of the convolution with one of the pre-defined kernels. Kernels (black = -1, white = 1):

Images credit: https://www.youtube.com/watch?v=zLBAJ93-AEQ

Haar features (2004)

Feature-vector is formed from the values of the convolution with one of the pre-defined kernels calculated in each position on the image Kernels (black = -1, white = 1):

What is the difference between features?

Good features are invariant:

- To light conditions
- To scale
- To rotation

Popular features:

LBP: Local Binary Patterns (1994) - T. Ojala et al. "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions".

HOG: Histogram of Oriented Gradients (2005) - N. Dalal et al. "Histograms of Oriented Gradients for Human Detection".

ICF: Integral Channel Features (2009) - P. Dollár et al. "Integral Channel Features".

FCF: Filtered Channel Features (2015) - S. Zhang et al. "Filtered Channel Features for Pedestrian Detection".

Convolution

VGG CNN

Non-Maximum Suppression (NMS)

- Detector outputs multiple detections for the same object
- NMS discards all except one with best features, e.g. with highest score
- Can be learnable

R(egion based)-CNN (CVPR, 2014)

Motivaion:

- Deep learning-based classifiers are known to be powerful but quite slow
 - Operating in a sliding window fashion seems to be very slow
 - Good proposal generation stage can potentially resolve the issue

R(egion based)-CNN (CVPR, 2014)

- Region proposal algorithm (Selective Search) is used to get Rols
- Off-the-shelf image classification net (AlexNet) is used to extract features for every Rol
- SVM classifier is used to classify Rols as objects or background
- Linear regression is applied to localize bounding boxes inside Rols

Fast R-CNN (2015)

Drawbacks of R-CNN:

- Complicated multi-stage model is hard to train
- Despite the use of Selective Search is slow at test time

Solution – Fast R-CNN:

- Merge classifier and regressor to the convnet itself to train it end-to-end
- Apply convnet to the whole image and crop RoIs on high-level feature map to make detection faster

Fast R-CNN (2015)

Deep features compute once per image, not per proposal

Faster R-CNN

Drawbacks of Fast R-CNN:

• 25x faster then R-CNN, but still too slow. Mostly because of the Selective Search now (~2s per VGA image)

Solution – Faster R-CNN:

Merge region proposal stage into the net as well

Faster R-CNN (2015)

Faster R-CNN pipeline

Region Proposals Network

Faster R-CNN With Resnet 101 Example

R-FCN

Motivation:

- Made object detection network with 100% shared computations
- Allow translation variance to localize object position

Methodologies of region-based detectors using ResNet-101

	R-CNN [7]	Faster R-CNN [19, 9]	R-FCN [ours]
depth of shared convolutional subnetwork	0	91	101
depth of RoI-wise subnetwork	101	10	0

R-FCN

Position-sensitive score maps

Feature Pyramid Network (FPN)

Motivation:

 Leverage the pyramidal shape of a ConvNet's feature hierarchy

Provide strong semantics at all scales

method	backbone	competition	test-dev			
			AP	AP_s	AP_m	AP_l
ours, Faster R-CNN on FPN	ResNet-101	-	36.2	18.2	39.0	48.2
Competition-winning single-m	odel results follow:					
G-RMI [†]	Inception-ResNet	2016	34.7			-
Faster R-CNN +++	ResNet-101	2015	34.9	15.6	38.7	50.9

Single Shot Multibox Detector

Motivation:

- Region proposal net can be eliminated at all
- Make multi-scale detection efficient

Single Shot Multibox Detector

Default boxes

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

Detectors Speed-Accuracy trade-offs

Transfer Learning

Very few people train an entire Convolutional Network from scratch (with random initialization)

It is common to pre-train a ConvNet on a very large dataset (e.g. ImageNet), and then use the ConvNet for the task of interest, major scenarios:

- ConvNet as fixed feature extractor
 - Take a ConvNet pre-trained on ImageNet, remove the classification layer (which outputs the 1000 class scores), then treat the rest of the ConvNet as a fixed feature extractor for the new dataset
- Fine-tuning the ConvNet
 - Not only replace and retrain the classifier on top of the ConvNet on the new dataset, but to also fine-tune the weights of the pre-trained network
- Pre-trained models
 - Use one of the uploaded pre-trained models for own task

Recent state-of-the-art CNNs

- RetinaNet
- RefineDet
- Mask R-CNN (+instance segmentation)
- Cascade R-CNN
- Deformable Convolution Networks
- Ancor-free methods: CenterNet, CornerNet

Popular OD repositories

- Tensorflow Object Detection API: <u>https://github.com/tensorflow/models/tree/master/research/object_detection</u>
 <u>n</u>
- Detectron (Caffe2): https://github.com/facebookresearch/Detectron
- mmdetection (PyTorch): https://github.com/open-mmlab/mmdetection

OpenVINO OD models

- OpenVINO: https://github.com/openvinotoolkit/openvino
- Open Model Zoo: https://github.com/opencv/open_model_zoo
 - Face detection (2 variants)
 - Person detection (2 variants)
 - Vehicle detection (3 variants)
 - Public models: SSD, Faster-RCNN, R-FCN, etc.

Q&A