5

10

15

20

CLAIMS:

- 1. Linking unit (100) for generating linking information L indicating components of two consecutive extended segments sp and sc which partially overlap and which may be linked together in order to form a sinusoidal track, the segments sp and sc approximating consecutive segments of a sinusoidal audio or speech signal s, the linking unit comprising:
- a calculating unit (120) for generating a similarity matrix S(m,n) in response to received sinusoidal code data including information about the amplitudes and the frequencies of M components x_m with m=1...M of the extended previous segment sp and of N components y_n with n=1...N of the extended current segment sc, wherein the values of said similarity matrix represent the similarity between the m'th component x_m of said extended previous segment sp and the n'th component y_n of said extended current segment sc for m=1...M and n=1...N; and
- an evaluating unit (140) for receiving and evaluating said similarity matrix S(m,n) in order to generate said linking information L by selecting those pairs of components (m,n) the similarity of which is maximal at least within the an overlapping region; characterised in that
- the sinusoidal code data (Dp, Dc) is enlarged by further comprising information about the phase of at least some of the M components x_m and at least some of the N components y_n ;
- the calculating unit (120) is adapted to calculate the similarity matrix S(m,n) by additionally evaluating the phase consistency between the m'th component x_m of the extended previous segment sp and the n'th component y_n of the extended current segment sc.
 - 2. The linking unit according to claim 1, characterised in that the calculating unit comprises:
- 25 a first pattern generating unit (122) for generating said M components $x_m(t)$ with m=1...M of the extended previous segment sp in response to the previous segment's enlarged sinusoidal code data (Dp);

- a second pattern generating unit (124) for generating said N components $y_n(t)$ with n=1...N of the extended current segment sc in response to the current segment's enlarged sinusoidal code data (Dc); and
- a calculation module (126) for calculating the similarity matrix S(m,n) on the basis of said received M components xm(t) and of said received N components y_n(t) according to a predefined similarity measure.
 - 3. The linking unit according to claim 2, characterised in that the calculating module (126) is adapted to calculate the overall similarity matrix S(m,n) according to:

 $S(m,n)=S_1(m,n)S_2(m,n)$ wherein the first similarity matrix $S_1(m,n)$ represents the similarity in shape and the second similarity matrix $S_2(m,n)$ represents the similarity in amplitude or energy between the components m and n.

4. The linking unit according to claim 3, characterised in that the similarity $S_1(m,n)$ is defined according to:

$$S_{1}(m,n) = \begin{cases} 1 - \left| \rho_{m,n} - 1 \right| / D_{1}, & \text{if } \left| \rho_{m,n} - 1 \right| < D_{1}, \\ 0, & \text{elsewhere} \end{cases}$$

with 0 < D1 < 1

and with

20
$$\rho_{m,n} = \frac{\sum_{t} w(t) x_{m}(t) y_{n}^{*}(t)}{\sqrt{E_{xm} E_{yn}}}$$

wherein:

 $ho_{m,n}$: is the similarity measure being a cross-correlation coefficient

representing the similarity in shape between components $x_m(t)$

and $y_n(t)$;

25 w(t) : is a window function;

 $y_m^*(t)$: is the complex-conjugate component $y_m(t)$;

 E_{xm} : is the energy in the signal x_m with: $E_{xm} = \sum_t w(t) x_m(t) x_m^*(t)$;

E_{yn} : is the energy in the signal y_n with: $E_{yn} = \sum_{t} w(t) y_{n}(t) y_{n}^{*}(t)$.

10

15

20

5. The linking unit according to claim 4, characterised in that the second similarity $S_2(m,n)$ is defined according to:

$$S_{2}(m,n) = \begin{cases} 1 - (1 - R_{m,n})/D_{2}, & \text{if } (1 - R_{m,n}) < D_{2}, \\ 0, & \text{elsewhere} \end{cases}$$

with 0 < D2 < 1

and wherein

$$R_{m,n} = \min \left\{ \frac{E_{xm}}{E_{yn}}, \frac{E_{yn}}{E_{xm}} \right\}$$

6. The linking unit according to claim 3, characterised in that the calculating module (126) is adapted to calculate the first similarity matrix $S_1(m,n)$ according to:

$$S_{1}(m.n) = \begin{cases} 1 - \left| \frac{x_{m}(t_{0})}{y_{m}(t_{0})} - 1 \right| / D_{3}, & \text{if } \left| \frac{x_{m}(t_{0})}{y_{n}(t_{0})} - 1 \right| < D_{3} \\ 0, & \text{elsewhere} \end{cases}$$

with 0 < D3 < 1.

7. The linking unit according to claim 6, characterised in that the calculating module (126) is adapted to calculate the second similarity matrix $S_2(m,n)$ according to:

$$S_{2}(m,n) = \begin{cases} 1 - \left| \frac{x_{m}(t_{0}+1)}{x_{m}(t_{0})} \frac{y_{n}(t_{0})}{y_{n}(t_{0}+1)} - 1 \right| / D_{4}, & \text{if } \left| \frac{x_{m}(t_{0}+1)}{x_{m}(t_{0})} \frac{y_{n}(t_{0})}{y_{n}(t_{0}+1)} - 1 \right| < D_{4} \\ 0, & \text{elsewhere} \end{cases}$$

with 0 < D4 < 1.

15

20

25

30

- 8. Parametric encoder (400) for encoding an audio- and/or speech signal s into a datastream including sinusoidal code data and linking information L, the encoder comprising:
- a segmentation unit (410) for segmenting said signal s into at least a previous segment sp' and a consecutive partially overlapping current segment sc';
- a sinusoidal estimating unit (420) for generating said sinusoidal code data in the form of frequency and amplitude data of M components x_m with m=1...M of an extended previous segment sp approximating said segment sp' and of N components y_n with n=1...N of an extended current segment sc approximating said segment sc';
 - a calculating unit (120) for generating a similarity matrix S(m,n) in response to said received sinusoidal code data wherein the values of said similarity matrix represent the similarity between the m'th component x_m of said extended previous segment sp and the n'th component y_n of said consecutive extended current segment sc for m=1...M and n=1...N;
 - an evaluating unit (140) for receiving and evaluating said similarity matrix S(m,n) in order to generate said linking information L indicating those pairs of components m,n the similarity of which is maximal;
 - an arranging unit (430) for generating the datastream representing the original audio- or speech signal by appropriately arranging said amplitude, frequency and linking information;

characterised in that

- the sinusoidal code data estimating unit (420) is adapted to futher generate information about the phase of at least some of the M components x_m and of at least some of the N components y_n ; and
- the calculation unit (120) is adapted to calculate the similarity matrix S(m,n) by additionally considering the phase consistency between the m'th component x_m of the extended previous segment sp and the n'th component y_n of the extended current segment sc.
- 9. Method for generating linking information L indicating components of consecutive partially overlapping extended segments sp and sc which may be linked together in order to form a sinusoidal track, the segments sp and sc approximating consecutive segments of a sinusoidal audio-/or speech signal s, the method comprising the steps of:
- providing sinusoidal code data including information about the amplitudes and the frequencies of M components x_m with m=1...M of the extended previous segment sp and of N components y_n with n=1...N of the extended current segment sc;

- calculating the similarity matrix S(m,n) according to a predetermined similarity measure wherein the similarity matrix represents the similarity between the m'th component x_m of said extended previous segment sp and the n'th component y_n of said extended current segment sc for m=1...M and n=1...N; and
- 5 evaluating said similarity matrix S(m,n) in order to generate said linking information L by selecting those pairs of components m and n the similarity of which is maximal;

characterised in that

- the step of providing the sinusoidal code data further includes the provision of information about the phase of at least some of the M components x_m and of at least some of the N components y_n ; and
- the similarity matrix S(m,n) is calculated by additionally considering the phase consistency between the n'th component y_n of the extended previous segment sp and the m'th component x_m of the extended current segment sc.