Appendices to "Segmental Blocking in Dissimilation: An Argument for Co-Occurrence Constraints

Juliet Stanton, MIT

Appendix A: Additional segmental blocking cases

- Four additional patterns have been claimed to instantiate segmental blocking in dissimilation. If they do, it's not obvious how to account for them in co-occurrence-based or correspondence-based theories of dissimilation.
- In each case I believe there is an alternative interpretation/analysis available.

[labial] Dissimilation in Akkadian

- It has been claimed (by e.g. Hume 1992, Odden 1994), that the labials [u] and [w] block labial consonant dissimilation in Akkadian.
 - Labial consonant dissimilation: when attached to a form whose root contains a labial consonant, the prefix /m-/ (1a-c) is realized as /n-/ (1d-f).
 - (1) Labial dissimilation in Akkadian (von Soden 1969:64–66)
 - a. $/\mathbf{m}$ a+girt+um/ \rightarrow [\mathbf{m} a-girt-um] gloss
 - b. /ma+zūkt+um/ → [ma-zūkt-um] gloss
 - c. /ma+mkūr+um/ → [na-mkūr-um] gloss
 - d. /ma+ptēt+um/ → [na-ptēt-um] gloss
 - Blocking claim: intervening [u] or [w] blocks dissimilation.
 - (2) Labial dissimilation blocked in Akkadian (von Soden 1969:64–66)
 - a. $/\mathbf{m}\underline{\mathbf{u}} + \mathbf{s}h\overline{\mathbf{i}}\mathbf{m} + \mathbf{u}\mathbf{m}/ \rightarrow [\mathbf{m}\underline{\mathbf{u}} \mathbf{s}h\overline{\mathbf{i}}\mathbf{m} \mathbf{u}\mathbf{m}]$ gloss
 - b. /mu+ltābilt+u/ → [mu-ltābilt-u] gloss
- However, there is an alternative available: the prefix /ma-/ and its allomorph /me-/ undergo labial dissimilation, but the prefix /mu-/ does not.
 - This is the description provided by Akkadian grammars I have seen (Gelb 1961, von Soden 1969, Ugnad 1969, Huehnergard 1997, Caplice & Snell 2002).
 - In addition, it accounts for all data provided by von Soden (1969:64–66).
 - > Let us assume that dissimilation is expected to apply if the prefix is /ma-/ (or its allomorph [me-]) and the root contains a labial.

- > Let us further assume that dissimilation is *not* expected to apply if (i) the prefix is /mu-/, and/or (ii) the root does not contain a labial.
- \Rightarrow This analysis predicts the behavior of 74/76 (97% of the relevant) forms.
 - (3) Forms with /m-/ preformative in von Soden 1969:64–66

Triggered?	Applied?	
	Yes	No
Yes	9	1
No	1	65

- > The two exceptions: *māmītum* (dissimilation should apply, but doesn't¹), and *nubattum* (dissimilation applies, but shouldn't have).
- > What would differentiate the two analyses: does root-internal [u] block labial dissimilation? I have not found forms that would allow us to test this claim.
- **Question**: *why* would the /mu-/ prefix fail to undergo an alternation that the /ma-/ prefix (and its allomorph /me-/) undergo?
 - There are a couple of possible answers.
 - 1. /ma-/ has an allomorph [na-], but /mu-/ has no allomorph [nu-]. Why?
 - (a) One possibility: that's just the way Akkadian works.
 - (b) A second possibility: there are considerations of anti-homophony in play. There is an independent prefix /nu-/ that is used in various verbal conjugations (Ugnad 1969:81). Perhaps /mu-/ does not dissimilate so as to avoid confusion between a noun and a conjugated verb...
 - 2. The [m] in /mu-/ does not dissimilate due to a constraint on inalterability (e.g. Hayes 1986, Schein & Steriade 1986): [labial] is doubly linked.
 - Given the lack of available data, these seem equally plausible.
- Conclusion: the available data do not allow us to pick out one correct analysis for why the prefix /mu-/ fails to alternate. The analysis under which [u] directly blocks dissimilation is not any more likely than the analyses sketched above.

¹The form $m\bar{a}m\bar{\imath}tum$, with the root <wmii>, has been claimed to show that labial dissimilation is blocked by an intervening w (Odden 1994:321). I am skeptical, as the root w is likely not present on the surface in any sense (see e.g. Huehnergard 1997:2), and it seems more likely that the form is just one in which dissimilation sporadically fails to apply.

[-voice] Dissimilation in Bantu

- Suzuki (1998:107) has claimed that Dahl's Law ([-voice] dissimilation) is blocked by all consonants *except* [k], in a number of Bantu languages.
- Bennett (2015:+65–+66) interprets this remark as pertaining to Dahl's Law as instantiated in Embu and Kuria, both described by Davy & Nurse (1982).
 - Embu: /k.k.k.- $C_{[-voice]}$ / $\rightarrow [k.y.y.-C_{[-voice]}], [y.k.y.-C_{[-voice]}]$
 - *Kuria*: /k.k.k.-C_[-voice]/ → any combination of [k]s and [χ]s:
 - (4) Dahl's Law possibilities in Kuria
- Suzuki's (1998) apparent interpretation of these facts: a stem-initial [-voice] consonant can trigger voiceless dissimilation across a /k/, regardless of distance.
- Bennett (2015:+66) notes that there are alternative interpretations available.
 - The cases with multiple [γ]s (e.g. (4a–b)) can be attributed to [+voice] harmony among syllable-adjacent prefixal consonants (Lombardi, 1995).
 - The cases where dissimilation 'skips' over one or more [k]s (e.g. (4d,f,g)) can be explained if prefixal [k]s can also act as [-voice] dissimilation triggers.
- Both interpretations are capable of explaining the existing data.
- **Conclusion**: there is no reason to favor an interpretation of the data in which the many options in (4) are due to the fact that only [k] is transparent.

Nasal Cluster Effects in Gurindji

- McConvell (1988, 1993) describes a process of long-distance nasal cluster effects in Gurindji, whose application is dependent on the intervening material.
- If the material between the two nasal-stop clusters is composed of only [+continuant] segments, the second nasal loses its [+nasal] feature.
 - Nasal cluster effects (McConvell 1988:140,145)
 - a. $/kanku\underline{l}a+mpa/ \rightarrow [kanku\underline{l}a-mpa]$ 'on the high ground'
 - b. /ja**n-k**u-ji-**n-p**.../ → [ja**n-k**u-ji-**t-p**...] 'you two might come to me'
- If one or more non-continuants intervenes, the nasal-stop clusters are preserved.

- (6) Nasal cluster effects (McConvell 1988:141,145)
 - a. [ŋu-ŋa**nt**ipa-**ŋk**ulu na-na] 'they saw us'
 - b. [ŋa**nt**u-wu-ɟa-**n-k**u[a kari-ɲa] 'with whom did you stay?'
- There is reason to believe that nasal cluster effects in general (and particularly the pattern in Gurindji) should not be analyzed as dissimilation.
- See Stanton (2016b,2016a) for further discussion.

Backness Dissimilation in Quichean

- In many Quichean lgs. (incl. Tzutujil; Ohala 1993, Bennett 2015), [k^(')] palatalizes when followed by a [-round] vowel and another dorsal (Campbell 1977).
- Conditioning environment depends on the language (Campbell 1977: Ch. 1).
- > In some languages, palatalization applies only before [q]:

(7)
$$k^{(')} \rightarrow k^{y(')} / \underline{\hspace{1cm}} V_{[-round]} q^{(')}$$

 \Rightarrow In others, palatalization applies before [q] and [x]:

(8)
$$k^{(')} \rightarrow k^{y(')} / \underline{\hspace{1cm}} V_{[-round]} \{q^{(')}, x\}$$

> In still others, palatalization applies before [q]; optionally before all velars:

(9)
$$k^{(')} \rightarrow k^{y(')} / \underline{\hspace{1cm}} V_{[-round]} \{q^{(')}, (x), (y), (k^{(')})\}$$

- Note: [-round] picks out the same vowels as [-back] (i,e,a); either is sufficient.
- There are a couple of reasons why the conditioning environment could be limited to environments with a [-round] (or [-back]) vowel.
 - 1. Back vowels (o,u) block backness dissimilation.
- 2. Perhaps: enhancement of an insufficiently distinct contrast.
 - In the San Carlos Alzatate dialect of Pokomam (Campbell 1977:22), there is a process related to the velar palatalization processes of other languages.
 - > As in other systems, $[k^{(')}V_{[-round]}V]$ is banned.
 - > But in the San Carlos Alzatate dialect, $[k^{(')}]$ maps to $[q^{(')}]$.

(10)
$$k^{(')} \rightarrow q^{(')} / V_{\text{[-voice]}} q$$

- A unified way of viewing (10) and in (7–9): they are reactions to decreased perceptibility of the $k^{(')}$ – $q^{(')}$ contrast in $V_{[-back]}\{q,x\}$ environments.
 - > (10) involves neutralization of dorsal stop place contrasts, and
- > (7–9) involve *enhancement* of dorsal stop place contrasts.
- But why is the $k^{(')}$ - $q^{(')}$ contrast compromised in this context?

- > Ohala 199X:256: "Back velars cause a lowering of the F2 of adjacent vowels (Klatt & Stevens 1969, Ghazeli 1977). Back rounded vowels [...] have the lowest possible F2 of all vowels.
- > Total speculation: let's assume that a cue to the contrast between $kV_{[-back]}$ and $qV_{[-back]}$ sequences is the quality of the following vowel: velars and uvulars lower F2 to a different extent. (On the role of F1 in dorsal place contrasts, see Gallagher 2016).
- $> In \ kV_{[-back]}q \ sequences \ we might imagine that the uvular consonant lowers the F2 of the preceding vowel, to the extent that the cues between \ kV_{[-back]}q \ and \ qV_{[-back]}q \ are no longer maximally available.$
- > Because [+back,+round] vowels already have a very low F2, perhaps (i) the contrast between kV_[+back] and qV_[-back] is less dependent on vowel quality and/or (ii) [+back,+round] vowels are less susceptible to coarticulatory effects from neighboring dorsal consonants.
- Conclusion: I see no reason to a favor an analysis of this pattern that appeals to
 dissimilation over one that appeals to contrast neutralization/enhancement, though
 further details of the latter remain to be worked out.

Appendix B: Factorial Typology Results

Candidate set

Input	Candidates	Input	Candidates
1	$[l_x a - l_x a]$	1	$[kr_xal_ya-l_ya]$
	$[l_x a \cdot l_y a]$		$[kr_x al_y a - l_z a]$
/la+la/	$[l_x a - r_x a]$	/krala+la/	$[kr_x al_y a r_x a]$
	$[l_x a - r_y a]$		$[kr_x al_y a - r_z a]$
	$[l_x a - l_x]$		$[kl_xar_ya-l_xa]$
	$[l_x a - l_y]$		$[kl_xar_ya-l_za]$
/la+l/	$[l_x a - r_x]$	/klara+la/	$[kl_x ar_v a - r_v a]$
	$[l_x a - r_y]$		$[kl_x ar_y a - r_z a]$
	$[\mathbf{r}_{x}\mathbf{a}-\mathbf{r}_{x}\mathbf{a}]$		$[kr_xal_va-r_xa]$
/ma. t. ma. /	$[r_x a - r_y a]$	/11/	$[kr_xal_ya-r_za]$
/ra+ra/	$[\mathbf{r}_x \mathbf{a} - \mathbf{l}_x \mathbf{a}]$	/krala+ra/	$[kr_xal_ya-l_ya]$
	$[\mathbf{r}_x\mathbf{a}-\mathbf{l}_y\mathbf{a}]$		$[kr_x al_y a - l_z a]$
	$[\mathbf{r}_{x}\mathbf{a}-\mathbf{r}_{x}]$		[kl _x ar _y a-r _y a]
/ra+r/	$[\mathbf{r}_x \mathbf{a} - \mathbf{r}_y]$	/klara+ra/	$[kl_xar_ya-r_za]$
/1a+1/	$[\mathbf{r}_{x}\mathbf{a}-\mathbf{l}_{x}]$	/Kiara+ra/	$[kl_xar_ya-l_xa]$
	$[\mathbf{r}_{x}\mathbf{a}-\mathbf{l}_{y}]$		$[kl_xar_ya-l_za]$
	$[kl_x ar_y da - l_x a]$	/lara+la/	$[l_x a r_y a - l_x a]$
/klarda+la/	$[kl_xar_yda-l_za]$		$[l_x ar_y a - l_z a]$
/Kidi'da i id/	$[kl_x ar_y da - r_y a]$	/1414/14/	$[l_x a r_y a - r_y a]$
	$[kl_x ar_y da - r_z a]$		$[l_x a r_y a - l_z a]$
	$[kl_xar_yda-l_xa]$		$[l_x a r_y a - r_y a]$
/klarda+ra/	$[kl_xar_yda-l_za]$	/lara+ra/	$[l_x a r_y a - r_z a]$
, 11101 00 . 100	$[kl_xar_yda-r_ya]$	71414	$[l_x a r_y a - l_x a]$
	$[kl_x ar_y da - r_z a]$		$[l_x a r_y a - l_z a]$
	$[l_x ar_y - al_x]$		$[r_x al_y - al_y]$
/lar+al/	$[l_x ar_y - al_z]$	/ral+al/	$[r_x al_y - al_z]$
, 101 1 01/	$[l_x ar_y - ar_y]$,	$[\mathbf{r}_x \mathbf{al}_y - \mathbf{ar}_x]$
	$[l_x ar_y - ar_z]$		$[r_x al_y - ar_z]$
	$[l_x ar_y - ar_y]$		$[r_x al_y - ar_x]$
/lar+ar/	$[l_x ar_y - ar_z]$	/ral+ar/	$[r_x al_y - ar_z]$
	$[l_x ar_y - al_x]$		$[r_x al_y - al_y]$
	$[l_x ar_y - al_z]$		$[\mathbf{r}_x \mathbf{al}_y - \mathbf{al}_z]$

Co-occurrence-based theory: constraints

- *[r]...[r]: assign one violation mark for each pair of [r]s in a word.
- *[1]...[1]: assign one violation mark for each pair of [1]s in a word.
- IO-IDENT[\pm lateral]: assign one violation mark for each [α lateral] input consonant with a [$-\alpha$ lateral] output correspondent.

Co-occurrence-based theory: predictions

1. Pattern: Full identity

 $\textbf{Ranking} \hbox{: IO-IDENT} [\pm lateral] \gg *[r] ... [r], *[l] ... [l]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

2. **Pattern**: [r]-dissimilation

 $\textbf{Ranking} \hbox{: } *[r] . \, . \, [r] \gg IO\text{-}I\text{DENT}[\pm lateral] \gg *[l] . \, . \, [l]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

3. **Pattern**: [1]-dissimilation

Ranking: $*[l]...[l] \gg IO-IDENT[\pm lateral] \gg *[r]...[r]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

4. **Pattern**: [1]-dissimilation and [r]-dissimilation. If a word must have two [1]s or two [r]s, the form with two [1]s is selected.

Ranking: $*[r]...[r] \gg *[l]...[l] \gg IO-IDENT[\pm lateral]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

5. **Pattern**: [1]-dissimilation and [r]-dissimilation. If a word must have two [1]s or two [r]s, the form with two [r]s is selected.

Ranking: $*[1]...[1] \gg *[r]...[r] \gg IO-IDENT[\pm lateral]$

Surface pattern:

4

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-ra]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

Correspondence-Based theory: constraint set

- CORR[1]: assign one violation for each pair of non-corresponding [1]s.
- CORR[r]: assign one violation for each pair of non-corresponding [r]s.
- CC-SROLE: corresponding consonants must have the same syllabic role.
- CC-EDGE(σ): corresponding consonants must reside within the same syllable.
- IO-IDENT[\pm lateral]: assign one violation mark for each [α lateral] input consonant with a [$-\alpha$ lateral] output correspondent.

Correspondence-Based theory: predictions

1. **Pattern**: Identity

Rankings: (i) CORR[r], CORR[l], IO-ID[\pm lat] \gg CC-EDGE(σ), CC-SROLE

(ii) CORR[1], IO-ID[\pm lat] \gg CC-SROLE \gg CORR[r] \gg CC-EDGE(σ)

(iii) CORR[1], IO-ID[\pm lat] \gg CC-EDGE(σ) \gg CORR[r] \gg CC-SROLE

(iv) CORR[1], $IO-ID[\pm lat] \gg CC-EDGE(\sigma)$, $CC-SROLE \gg CORR[r]$

(v) CORR[r], $IO-ID[\pm lat] \gg CC-SROLE \gg CORR[1] \gg CC-EDGE(\sigma)$

(vi) IO-ID[\pm lat], CC-SROLE \gg CORR[r], CORR[l] \gg CC-EDGE(σ)

(vii) IO-ID[\pm lat], CC-SROLE \gg CORR[1] \gg CC-EDGE(σ) \gg CORR[r]

(viii) CORR[r], $IO-ID[\pm lat] \gg CC-EDGE(\sigma) \gg CORR[l] \gg CC-SROLE$

(ix) IO-ID[\pm lat], CC-EDGE(σ) \gg CORR[r], CORR[l] \gg CC-SROLE

(x) IO-ID[\pm lat], CC-EDGE(σ) \gg CORR[1] \gg CC-SROLE \gg CORR[r]

(xi) CORR[r], $IO-ID[\pm lat] \gg CC-EDGE(\sigma) \gg CORR[1]$

(xii) IO-ID[\pm lat], CC-SROLE \gg CORR[r] \gg CC-EDGE(σ) \gg CORR[l]

(xiii) IO-ID[\pm lat], CC-EDGE(σ) \gg CORR[r] \gg CC-SROLE \gg CORR[l]

(xiv) IO-ID[\pm lat], CC-EDGE(σ), CC-SROLE \gg CORR[r], CORR[l]

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

2. **Pattern**: [r]-dissimilation

Ranking: CORR[r], $CC-EDGE(\sigma)$, $CC-SROLE \gg IO-ID[\pm lat] \gg CORR[1]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

3. **Pattern**: [1]-dissimilation

Ranking: CORR[1], CC-EDGE(σ), CC-SROLE \gg IO-ID[\pm lat] \gg CORR[r]

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

4. **Pattern**: [1]-dissimilation and [r]-dissimilation. If a word must have two [1]s or two [r]s, the form with two [1]s is selected.

Ranking: CORR[r], CC-EDGE(σ), CC-SROLE \gg CORR[l] \gg IO-ID[\pm lat] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

5. **Pattern**: [1]-dissimilation and [r]-dissimilation. If a word must have two [1]s or two [r]s, the form with two [r]s is selected.

Ranking: CORR[I], $CC-EDGE(\sigma)$, $CC-SROLE \gg CORR[r] \gg IO-ID[\pm lat]$ **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-ra]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

6. **Pattern**: [r]-dissimilation if syllabic roles mismatch

 $\textbf{Ranking:} \ (i) \ CORR[r], CC-SROLE \gg IO-ID[\pm lat] \gg CORR[l] \gg CC-EDGE(\sigma)$

(ii) CORR[r], CC-SROLE \gg IO-ID[\pm lat] \gg CC-EDGE(σ) \gg CORR[l]

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

7. **Pattern**: [1]-dissimilation in syllabic roles mismatch **Ranking**: (i) CORR[1], CC-SROLE \gg IO-ID[\pm lat] \gg CORR[r] \gg CC-EDGE(σ) (ii) CORR[1], CC-SROLE \gg IO-ID[\pm lat] \gg CC-EDGE(σ) \gg CORR[r] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

8. **Pattern**: Complicated syllabic role pattern #1 **Ranking**: CORR[r], CORR[l] >> CC-SROLE >> IO-ID[±lat] >> CC-EDGE(σ) **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

9. **Pattern**: Complicated syllabic role pattern #2 **Ranking**: CORR[r], CC-SROLE \gg CORR[l] \gg IO-ID[±lat] \gg CC-EDGE(σ)

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

10. **Pattern**: Complicated syllabic role pattern #3 **Ranking**: CORR[l], CC-SROLE » CORR[r] » IO-ID[±lat] » CC-EDGE(σ) **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

11. **Pattern**: Transsyllabic [r]-dissimilation **Ranking**: (i) CORR[r], CC-EDGE(σ) ≫ IO-ID[±lat] ≫ CORR[l] ≫ CC-SROLE (ii) CORR[r], CC-EDGE(σ) ≫ IO-ID[±lat] ≫ CC-SROLE ≫ CORR[l] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-r]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

12. **Pattern**: Transsyllabic [1]-dissimilation

Ranking: (i) CORR[l], CC-EDGE(σ) \gg IO-ID[\pm lat] \gg CORR[r] \gg CC-SROLE (ii) CORR[l], CC-EDGE(σ) \gg IO-ID[\pm lat] \gg CC-SROLE \gg CORR[r]

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-l]	/klara+la/	[klara-ra]
/ra+ra/	[ra-ra]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

13. **Pattern**: Complicated transsyllabic pattern #1 **Ranking**: CORR[r], CORR[l] » CC-EDGE(σ) » IO-ID[±lat] » CC-SROLE **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

14. **Pattern**: Complicated transsyllabic pattern #2 **Ranking**: CORR[r], CC-EDGE(σ) ≫ CORR[l] ≫ IO-ID[±lat] ≫ CC-SROLE **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-l]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-r]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

15. **Pattern**: Complicated transsyllabic pattern #3 **Ranking**: CORR[1], CC-EDGE(σ) \gg CORR[r] \gg IO-ID[\pm lat] \gg CC-SROLE

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-la]	/krala+la/	[krala-ra]
/la+l/	[la-l]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-ra]
/ra+r/	[ra-r]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

16. **Pattern**: Complicated mixed pattern #1 **Ranking**: CORR[r], CORR[l] » CC-EDGE(σ), CC-SROLE » IO-ID[±lat] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

17. **Pattern**: Complicated mixed pattern #2 **Ranking**: CORR[r], CC-SROLE » CORR[l] » CC-EDGE(σ) » IO-ID[±lat] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-ra]
/lar+al/	[lar-al]	/ral+al/	[ral-al]
/lar+ar/	[lar-al]	/ral+ar/	[ral-al]

18. **Pattern**: Complicated mixed pattern #3

 $\textbf{Ranking: } CORR[r], CC-EDGE(\sigma) \gg CORR[l] \gg CC-SROLE \gg IO-ID[\pm lat]$

Surface pattern:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-la]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-la]
/klarda+la/	[klarda-la]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-la]	/lara+ra/	[lara-la]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

19. **Pattern**: Complicated mixed pattern #4

Ranking: CORR[1], CC-EDGE(σ) \gg CORR[r] \gg CC-SROLE \gg IO-ID[\pm lat] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-ra]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-ra]
/ra+r/	[ra-1]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-ra]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-al]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-al]

20. **Pattern**: Complicated mixed pattern #5

Ranking: CORR[1], CC-SROLE \gg CORR[r] \gg CC-EDGE(σ) \gg IO-ID[\pm lat] **Surface pattern**:

Input	Output	Input	Output
/la+la/	[la-ra]	/krala+la/	[krala-la]
/la+l/	[la-r]	/klara+la/	[klara-ra]
/ra+ra/	[ra-la]	/krala+ra/	[krala-la]
/ra+r/	[ra-l]	/klara+ra/	[klara-ra]
/klarda+la/	[klarda-ra]	/lara+la/	[lara-la]
/klarda+ra/	[klarda-ra]	/lara+ra/	[lara-ra]
/lar+al/	[lar-ar]	/ral+al/	[ral-ar]
/lar+ar/	[lar-ar]	/ral+ar/	[ral-ar]

References

- Campbell, Lyle (1977). *Quichean Linguistic Prehistory*. University of California Press, Berkeley, CA.
- Caplice, Richard & Daniel Snell (2002). *Introduction to Akkadian*. Editrice Pontifico Istituto Biblico, Rome.
- Davy, J. J. M. & Derek Nurse (1982). Synchronic versions of Dahl's Law: The multiple applications of a phonological dissimilation law. *Journal of African Languages and Linguistics* 4, 157–195.
- Gallagher, Gillian (2016). Vowel height allophony and dorsal place contrasts in Cochabamba Quechua. *Phonetica* 73, 101–119.
- Gelb, I. J. (1961). Old Akkadian Writing and Grammar. The University of Chicago Press, Chicago.
- Ghazeli, Salem (1977). Back Consonants and Backing Coarticulation in Arabic. Ph.D. thesis, University of Texas at Austin, Austin, TX.
- Huehnergard, John (1997). *The Akkadian Dialects of Carchemish and Ugarit*. Ph.D. thesis, Harvard University, Cambridge, MA.
- Hume, Elizabeth (1992). Front vowels, coronal consonants and ther interaction in nonlinear phonology. Ph.D. thesis, Cornell University, Ithaca, NY.
- Klatt, Dennis H. & Kenneth N. Stevens (1969). Pharyngeal consonants. *Quarterly Progress Report, Research Laboratory of Electronics, MIT* 93, 207–216.
- Lombardi, Linda (1995). Laryngeal features and syllable well-formedness. *Natural Language and LInguistic Theory* 13, 39–74.
- McConvell, Patrick (1988). Nasal cluster dissimilation and constraints on phonological variables in Gurundji and related languages. *Aboriginal linguistics* 1, 135–165.
- McConvell, Patrick (1993). [-nasal] spreading in Gurindji and related Australian languages. Casuarina: Northwest Territories University, Australia, ms.
- Odden, David (1994). Adjacency Parameters in Phonology. Language 70, 289-330.
- Ohala, John J. (1993). The phonetics of sound change. Jones, Charles (ed.), *Historical Linguistics: Problems and Perspectives*, Longman, London, 237–278.
- von Soden, Wolfram (1969). *Grundriss der Akkadischen Grammatik*. Pontificum Institutum Biblicum, Rome.
- Stanton, Juliet (2016a). Effects of allophonic nasalization on NC clusters: a contrast-based account. *To appear in NELS 46 Proceedings*.
- Stanton, Juliet (2016b). Trigger Deletion in Gurindji. Ms., MIT. Draft available online at http://web.mit.edu/juliets/www/gurindji.pdf.
- Ugnad, Arthur (1969). Akkadian Grammar. Scholars Press, Atlanta, GA.