Name: Afreen S

University: Vellore Institute of Technology (VIT)

WiFi Training Program

Assignment - Module 4

1. What is the significance of MAC layer and in which position it is placed in the OSI model.

The **MAC** (Media Access Control) layer is a sub-layer of the Data Link Layer in the OSI model. Its key roles are:

- **Controls access to the shared medium** (e.g., deciding who can transmit and when in wireless networks).
- Handles frame delivery between devices on the same network.
- Manages addressing using MAC addresses.
- **Avoids collisions** using protocols like CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance).

Position in OSI Model:

The MAC layer is part of Layer 2: Data Link Layer.

OSI Layers (Top to Bottom):

- 1. Application
- 2. Presentation
- 3. Session
- 4. Transport
- 5. Network
- 6. Data Link
 - o MAC sub-layer
 - o LLC (Logical Link Control) sub-layer
- 7. Physical

2. Describe the frame format of the 802.11 MAC header and explain the purpose of each field.

The **802.11 MAC header** is part of every Wi-Fi frame and contains control information for managing wireless communication.

802.11 MAC Header Format:

Field	Size (bytes)	Purpose
Frame Control	2	Indicates type of frame (Data, Control, Management), version, flags like To/From DS, Retry, etc.
Duration/ID	2	Used for network allocation vector (NAV) – helps avoid collisions by reserving the channel.
Address 1 (Receiver Address)	6	MAC address of the receiver.
Address 2 (Transmitter Address)	6	MAC address of the sender.
Address 3 (BSSID or destination)	6	Depends on type – often used as BSSID in infrastructure mode.
Sequence Control	2	Frame number + fragment number for ordering and reliability.
Address 4 (only in WDS)	6	Used in special cases like mesh or bridge mode.
Frame Body	Variable	Contains actual data (payload).
FCS (Frame Check Sequence)	4	CRC for error checking.

Purpose of the MAC Header:

- Identifies who is sending and receiving the frame.
- Helps manage delivery in complex wireless environments.
- Supports fragmentation, retransmission, QoS, and collision avoidance.

- 3. List all the MAC layer functionalities in all Management, Control, and Data plane.
- Management Plane Functions (for setup, maintenance, and teardown of communication)
- **Authentication** Verifies identity of stations (STA).
- **Association/Disassociation** Manages joining/leaving an AP (Access Point).
- **Beacon Transmission** Periodic broadcast for network discovery.
- **Probe Request/Response** Used by STAs to find APs and initiate connection.
- **Reassociation** Moves STA from one AP to another.
- **Timing Synchronization** Keeps devices synced using timestamps in beacons.
- Control Plane Functions (for coordination of access to the medium)
- RTS/CTS (Request to Send / Clear to Send) Avoids hidden node collision.
- **ACK (Acknowledgement)** Confirms successful frame delivery.
- **Contention Window Management** Controls backoff timing in CSMA/CA.
- **NAV (Network Allocation Vector)** Virtual carrier sensing to avoid overlapping transmission.
- **TXOP (Transmission Opportunity)** Grants time slot to transmit without interruption (used in QoS).
- Data Plane Functions (for actual data transmission)
- Frame Construction and Parsing Encodes/decodes data in MAC frames.
- Addressing Uses MAC addresses for delivery.
- **Sequence Control** Maintains correct frame order.
- Fragmentation and Reassembly Splits/rejoins large data packets.
- **Error Detection** Uses FCS (Frame Check Sequence) to detect errors.
- Multicast and Broadcast Handling Delivers to multiple or all stations.

4. Explain the scanning process and its types in detail.

The **scanning process** is how a wireless device (STA – Station) searches for available **Access Points (APs)** before connecting to a network. It's part of the **MAC Management functionalities**.

Types of Scanning:

Passive Scanning

• How it works:

- o The STA **listens** for **beacon frames** broadcasted by APs.
- o Each AP sends beacons periodically (usually every 100 ms).
- The STA gathers info like SSID, BSSID, channel, and capabilities.

• Pros:

- Energy efficient
- Stealth mode (STA doesn't reveal itself)

• Cons:

o **Slower** (must wait for beacons on each channel)

Active Scanning

• How it works:

- o The STA **sends Probe Request** frames on each channel.
- o APs respond with **Probe Response** frames.
- o STA collects info and selects AP to associate with.

• Pros:

- Faster discovery
- Finds hidden SSIDs

• Cons:

- o Consumes more power
- Reveals STA identity

Feature	Passive Scanning	Active Scanning
Initiated By	AP (beacons)	STA (probe requests)
Speed	Slower	Faster
Power Usage	Low	Higher
Hidden SSID support	No	Yes
Privacy	Better (silent)	Less (reveals MAC)

5. Brief about the client association process.

The **client association process** refers to how a wireless station **(STA)** connects to an **Access Point (AP)** to become part of the wireless network.

Process:

1. Scanning

• The STA discovers nearby APs using **passive** (beacon listening) or **active** (probe requests) scanning.

2. Authentication

- STA sends an authentication request to AP.
- AP responds with an **authentication response**.
- In open system, this step is simple; in secured networks, involves credentials (e.g., WPA2).

3. Association Request

- After successful authentication, STA sends an association request to AP.
- This includes capabilities, supported rates, SSID, etc.

4. Association Response

- AP replies with association response, assigning an Association ID (AID) to the STA.
- STA is now officially connected to the AP and can send/receive data.

6. Explain each steps involved in EAPOL 4-way handshake and the purpose of each keys derived from the process.

The **EAPOL** (Extensible Authentication Protocol over LAN) 4-way handshake is a process used in WPA2/WPA3 Wi-Fi security to establish encryption keys between a client (STA) and an Access Point (AP) after authentication.

Purpose:

- To generate and exchange **encryption keys** securely.
- To confirm both parties have the same Pairwise Master Key (PMK).
- To derive the **Pairwise Transient Key (PTK)** for data encryption.

Steps of the 4-Way Handshake:

Step 1: $AP \rightarrow STA$

- AP sends an ANonce (Authenticator Nonce) to the STA.
- Used to begin the PTK generation process.

Step 2: STA \rightarrow AP

- STA generates PTK using:
 - o PMK (from previous authentication)
 - o ANonce (from AP)
 - o SNonce (STA's own random value)
 - o MAC addresses (AP & STA)
- Sends **SNonce** and **Message Integrity Code (MIC)** to AP.

Step 3: $AP \rightarrow STA$

- AP generates the same PTK using PMK, ANonce, SNonce, and MACs.
- AP sends **Group Temporal Key (GTK)** encrypted with PTK.
- STA installs both **PTK and GTK**.

Step 4: STA \rightarrow AP

- STA sends a final **ACK** to confirm installation of keys.
- Data encryption begins.

Keys Derived in the Process:

Key	Purpose
PMK (Pairwise Master Key)	Derived from passphrase or 802.1X. Used as the base key for all derivations.
PTK (Pairwise Transient Key)	Generated per session; used to encrypt unicast traffic between STA and AP.
GTK (Group Temporal Key)	Used for broadcast/multicast traffic encryption.
MIC (Message Integrity Code)	Ensures message has not been tampered with.

7. Describe the power saving scheme in MAC layer and explore on the types of power saving mechanisms.

The **MAC** layer power saving scheme in IEEE 802.11 helps wireless devices conserve battery by minimizing radio usage when not actively transmitting or receiving data.

Working:

- Devices (STAs) enter sleep mode to save power.
- AP buffers data for sleeping STAs.
- STAs wake up periodically (based on beacon intervals) to check if there's data for them.

Mechanisms in Power Saving:

- Power Save Mode (PS Mode):
- STA notifies AP of entering **sleep mode**.
- AP stores (buffers) the frames destined for that STA.
- STA wakes at **beacon intervals** and checks **Traffic Indication Map (TIM)** in the beacon.
- If data is pending, STA sends **PS-Poll frame** to retrieve it.
- U-APSD (Unscheduled Automatic Power Save Delivery):
- Used in Wi-Fi Multimedia (WMM).
- STA doesn't have to send PS-Poll.
- Data is delivered automatically after the STA sends a trigger (e.g., VoIP packet).
- Reduces delay → Good for voice/video apps.
- TWT (Target Wake Time) (Introduced in 802.11ax Wi-Fi 6):
- Devices negotiate **specific wake times** with AP.
- Greatly improves efficiency in **IoT** and **dense networks**.
- Allows STAs to sleep for long durations without missing critical transmissions.

8. Describe the Medium Access Control methodologies.

The **MAC layer** manages how devices access the **shared wireless medium** without collision. In IEEE 802.11 (Wi-Fi), several methods are used to efficiently share the channel.

Key MAC Methodologies:

- Distributed Coordination Function (DCF) Mandatory
- Based on **CSMA/CA** (Carrier Sense Multiple Access with Collision Avoidance).
- Devices listen to the channel:
 - \circ If idle \rightarrow transmit.

- \circ If busy \rightarrow wait and back off randomly.
- Uses **ACK**, **RTS/CTS**, and **NAV** to avoid collisions.
- Default method in all 802.11 networks.
- Point Coordination Function (PCF) Optional
- Uses a central coordinator (usually the AP).
- Works in a **contention-free** period.
- AP polls each STA to give it permission to send.
- Not widely used due to complexity and inefficiency in real-world Wi-Fi.
- ◆ Hybrid Coordination Function (HCF) 802.11e
- Combines both **DCF** + **PCF**.
- Introduces HCCA (HCF Controlled Channel Access) for time-sensitive traffic.
- Enables **QoS** (**Quality of Service**) support.
- ◆ EDCA (Enhanced Distributed Channel Access) 802.11e
- Prioritizes traffic into 4 Access Categories (AC): Voice, Video, Best Effort, Background.
- High-priority traffic gets shorter contention windows.
- Supports applications like **VoIP and streaming**.

9. Brief about the Block ACK mechanism and its advantages.

The **Block ACK** mechanism is an enhancement in IEEE 802.11 to improve the **efficiency** of data transmission, especially for high-throughput networks.

Block ACK:

- Instead of sending an **ACK for each frame**, the receiver sends a **single acknowledgment** for a **block of frames**.
- This reduces overhead and improves throughput, especially for **large data bursts** like video or file transfers.

Working:

- 1. **Block ACK Request** is sent by the transmitter after sending a group of frames.
- 2. **Block ACK Response** is sent by the receiver indicating which frames were received successfully.
- 3. Lost frames can be **retransmitted selectively**.

Advantages:

Benefit	Description
Efficiency	Fewer ACKs = reduced overhead. Boosts speed.
High Throughput	Ideal for multimedia, VoIP, large file transfers.
Selective Retransmission	Only lost frames are retransmitted — saves time.
Better Channel Utilization	Minimizes control traffic, uses bandwidth effectively.

10. Explain about A-MSDU, A-MPDU, and A-MSDU in A-MPDU.

These are **frame aggregation techniques** used in Wi-Fi (starting from **802.11n onwards**) to increase efficiency and **reduce overhead**.

1. A-MSDU (Aggregated MAC Service Data Unit)

- Combines multiple MSDUs (upper-layer data units) into one MAC frame.
- Shared single MAC header.
- All subframes must have the **same TID (traffic ID)** and **destination**.

Advantages:

- Reduces MAC header overhead.
- More efficient for small payloads.

Drawbacks:

- If the A-MSDU is corrupted, entire frame is retransmitted.
- 2. A-MPDU (Aggregated MAC Protocol Data Unit)
- Aggregates multiple MPDUs (complete MAC frames with headers).
- Each MPDU can have its own **retransmission**.
- Sent as one PHY frame with **Block ACK support**.

Advantages:

- Supports selective retransmission.
- More **robust** and flexible.

Drawbacks:

• Slightly more **PHY-layer overhead** compared to A-MSDU.

3. A-MSDU in A-MPDU (Two-Level Aggregation)

- Combines **multiple A-MSDUs**, and then aggregates them inside multiple MPDUs in an **A-MPDU**.
- Best of both:
 - o Reduces overhead (via A-MSDU)
 - Supports retransmission (via A-MPDU)

Most efficient, used in Wi-Fi 6 and later for maximum throughput.