Interpretable Machine Learning

Feature Importance Conditional Feature Importance (CFI)

Figure: Bike Sharing Dataset

Learning goals

- Extrapolation and Conditional Sampling
- Conditional Feature Importance (CFI)
- Interpretation of CFI and difference to PFI

• **PFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve marginal distr. $\mathbb{P}(X_S)$ so that $\tilde{X}_S \perp \!\!\! \perp Y$ (indep.), e.g., by random permutations

- **PFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve marginal distr. $\mathbb{P}(X_S)$ so that $\tilde{X}_S \perp \!\!\! \perp Y$ (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between X_S and Y (what we want) but also between X_S , $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$ (extrapolation)

- **PFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve marginal distr. $\mathbb{P}(X_S)$ so that $\tilde{X}_S \perp \!\!\!\perp Y$ (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between X_S and Y (what we want) but also between X_S , $X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$ (extrapolation)
- **CFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve joint distr. so that $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$ (no extrapolation) while still $\tilde{X}_S \perp \!\!\! \perp Y$

- **PFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve marginal distr. $\mathbb{P}(X_S)$ so that $\tilde{X}_S \perp \!\!\! \perp Y$ (indep.), e.g., by random permutations
- **Problem:** Breaks not only association between X_S and Y (what we want) but also between $X_S, X_{-S} \Rightarrow \mathbb{P}(X_S, X_{-S}) \neq \mathbb{P}(\tilde{X}_S, X_{-S})$ (extrapolation)
- **CFI Idea:** Replace feature(s) X_S with perturbed \tilde{X}_S to preserve joint distr. so that $\mathbb{P}(X_S, X_{-S}) = \mathbb{P}(\tilde{X}_S, X_{-S})$ (no extrapolation) while still $\tilde{X}_S \perp \!\!\! \perp Y$

Example: Conditional permutation scheme

Black dots: $X_2 \sim \mathcal{U}(0,1)$ and $X_1 \sim \mathcal{N}(0,1)$ (if $X_2 < 0.5$) or $\mathcal{N}(4,4)$ (if $X_2 > 0.5$)

Left: For $X_2 < 0.5$, permuting X_1 (crosses) preserves marginal (but not joint) distrib.

 \rightsquigarrow Bottom: Marginal density of X_1

Right: Permuting X_1 within subgroups $X_2 < 0.5 \& X_2 > 0.5$ reduces extrapolation Bottom: X_1 -density cond. on groups

▶ "Molnar et al" 2020

RECALL: EXTRAPOLATION IN PFI

Recall: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

Hexbin plot of (x_1, x_2) before (left) and after (center) permuting x_1 ; PFI scores (right).

- $\Rightarrow x_1, x_2$ cancel in \hat{f} and should be irrelevant
- ⇒ But PFI evaluates model on unrealistic inputs (caused by permutation)
 - $\rightsquigarrow PFI > 0$ for x_1, x_2 due to extrapolation
 - \rightarrow x_1, x_2 are misleadingly considered relevant

▶ "Strobl et al." 2008

CFI for X_S using test data \mathcal{D} :

- Measure the error with unperturbed features x_s .
- Measure the error with perturbed feature values $\tilde{x}_S \sim \mathbb{P}(X_S|X_{-S})$
- Repeat perturbing X_S (e.g., m times) and avg. difference of both errors:

$$\widehat{\mathit{CFI}}_{\mathcal{S}} = \frac{1}{m} \sum_{k=1}^{m} \mathcal{R}_{\mathsf{emp}}(\hat{t}, \tilde{\mathcal{D}}_{(k)}^{\mathcal{S}|-\mathcal{S}}) - \mathcal{R}_{\mathsf{emp}}(\hat{t}, \mathcal{D})$$

Here, $\mathcal{\tilde{D}}^{S|-S}$ denotes data, where x_S values are conditionally resampled given X_{-S} .

Illustrative example: Conditional permutation when X_{-S} is categorical:

Original Data		
ID	X_{-S}	Xs
1	Α	3.1
2	Α	2.7
3	Α	3.4
4	В	6.0
5	В	5.4
6	В	6.2

Outsing Date

Here, X_S is permuted within each group of X_{-S} to preserve $\mathbb{P}(X_S, X_{-S})$.

IMPLICATIONS OF CFI • "König et al." 2020

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

IMPLICATIONS OF CFI • "König et al." 2020

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

Entanglement with data:

- If feat x_S does not contrib. unique information about y, i.e., $x_S \perp \!\!\! \perp y | x_{-S}$ \Rightarrow CFI = 0
- Why? Under the conditional indep. $\mathbb{P}(\tilde{X}_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$ \rightsquigarrow no prediction-relevant information is destroyed by permutation of x_S conditional on x_{-S}

IMPLICATIONS OF CFI • "König et al." 2020

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

Entanglement with data:

- If feat x_S does not contrib. unique information about y, i.e., $x_S \perp \!\!\! \perp y | x_{-S}$ \Rightarrow CFI = 0
- Why? Under the conditional indep. $\mathbb{P}(\tilde{X}_S, X_{-S}, Y) = \mathbb{P}(X_S, X_{-S}, Y)$ \rightarrow no prediction-relevant information is destroyed by permutation of x_s conditional on x_{-S}

Entanglement with model:

- If the model does not use a feature \Rightarrow CFI = 0
- Why? Then the prediction is not affected by any perturbation of the feat → model performance does not change after conditional permutation

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_j is causal for the prediction?
 - $CFI_j \neq 0 \Rightarrow$ model relies on x_j (converse does not hold, see next slide)

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_j is causal for the prediction?
 - $CFI_j \neq 0 \Rightarrow$ model relies on x_j (converse does not hold, see next slide)

- If $x_j \not\perp \!\!\! \perp y$ but $x_j \perp \!\!\! \perp y | x_{-j}$ (e.g., x_j and x_{-j} share information) $\Rightarrow CFI_i = 0$
- x_j is not exploited by model (regardless of its usefulness for y) $\Rightarrow CFI_i = 0$

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_j is causal for the prediction?
 - $CFI_j \neq 0 \Rightarrow$ model relies on x_j (converse does not hold, see next slide)
- \bullet the variable x_j contains prediction-relevant information?
 - If $x_j \not\perp \!\!\! \perp y$ but $x_j \perp \!\!\! \perp y | x_{-j}$ (e.g., x_j and x_{-j} share information) $\Rightarrow CFI_i = 0$
 - x_j is not exploited by model (regardless of its usefulness for y)
 ⇒ CFI_i = 0
- **1** Does the model need access to x_j to achieve its prediction performance?
 - $CFI_j \neq 0 \Rightarrow x_j$ contributes unique information (meaning $x_j \not\perp \!\!\! \perp y|x_{-j}$)
 - Only uncovers the relationships that were exploited by the model

EXTRAPOLATION: COMPARE PFI AND CFI

Recall: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- ullet Fitting a linear model yields $\hat{f}(\mathbf{x}) pprox 0.3x_1 0.3x_2 + x_3$

Figure: Density plot for x_1, x_2 before permuting x_1 (left). PFI and CFI (right).

- x_1 and x_2 cancel in $\hat{f}(\mathbf{x})$ and should be irrelevant for the prediction
- ◆ CFI evaluates model on realistic obs. (due to conditional sampling)
 → x₁, x₂ appear irrelevant (CFI = 0)

