Reações multi-substrato

Reações multi-subsrato

- Exceção feita de algumas reações de isomerização, não existem praticamente reações enzimáticas monosubstrato.
- Reações com mais de um substrato podem ser aproximadas por um modelo monosubstrato tendo em conta os seguintes aspectos:
 - o substrato, ou substratos adicionais podem estar em grande excesso (por exemplo H₂O nas reações catalisadas por hidrólases)
 - quando a concentração dos restantes substratos é mantida constante, o comportamento cinético do enzima relativo um dado substrato segue um modelo monosubstrato
- As reações bisubstrato biproduto :

$$A + B \longrightarrow P + Q$$

constituem cerca de 60% de todas as reações enzimáticas conhecidas, incluindo as hidrolases, transferases e oxiredutases.

 As reações com três ou mais substratos também são frequentes, mas os métodos usados para o seu tratamento são essencialmente semelhantes aos usadas para as reações bisubstrato.

Reacções bi-substrato

EC1 (oxidoredutases), EC2 (transferases) e EC3 (hidrolases) são maioritariamente reacções bi-substrato.

Reação de transferência:

$$P - X + B \stackrel{E}{\Longrightarrow} P + B - X$$

Polypeptide

$$\begin{array}{c} \text{CH}_{3} - \text{C} - \text{OH} + \text{NAD}^{+} \xrightarrow{\text{dehydrogenase}} \text{CH}_{3} - \text{CH} + \text{NAD}^{+} \\ \text{H} \end{array} \qquad \begin{array}{c} \text{O} \\ \text{II} \\ \text{Oxidoredução} \end{array}$$

Mecanismos de reação

Os mecanismos de reacção multi-substrato podem ser classificados de acordo com a ordem de entrada e saída dos vários reagentes ou produtos;

- **Sequencial:** os substratos tendem a ligar-se todos antes de haver libertação de produtos. Situações possíveis:
 - Aleatório: a ordem de entrada dos substratos é variável.
 - Exemplo: algumas desidrogenases, cinases.
 - Ordenado: a ordem de entrada dos substratos é fixa.
 - Exemplo: NAD-desidrogenaes.
- Ping-pong: Ocorre libertação de produtos antes de todos os substratos se terem ligado.
 - Exemplo: protéases de serina, transaminases, flavoenzimas.

Nomenclatura de Cleland

- 1. Os substratos designam-se pelas letras A, B, C, D, ... segundo a ordem pela qual se ligam ao enzima.
- 2. Os produtos designam-se pelas letras P, Q, R, S, ... segundo a ordem pela qual se libertam do enzima.
- 3. As formas estáveis do enzima designam-se pelas letras E, F, G... sendo a forma E o enzima livre. Entendem-se por formas estáveis do enzima aquelas que, por si só, são incapazes de se converter numa outra forma estável do enzima.
- 4. O número de reagentes e produtos numa dada reacção é especificado por ordem, usando os termos *Uni* (um), *Bi* (dois), *Ter* (três) e *Quad* (quatro).

Exemplo: a reacção

$$A + B \longrightarrow P + Q$$

é uma reação **bi-bi**.

Bi-Bi sequential aleatório

Neste mecanismo qualquer dos substratos se pode ligar ao enzima, originando complexos binários EA e EB na via de formação do complexo ternário EAB.

Assumindo que o passo EAB – EPQ é um passo lento e determinante da reação, os complexos EA e EB podem considerar-se em estado de pré-equilíbrio:

Bi-Bi sequential aleatório

Nas condições de pré-equilíbrio de EA e EB, pode derivar-se a seguinte equação de velocidade:

$$v = \frac{V_{\text{max}}}{1 + \frac{K_m^a}{[A]} + \frac{K_m^b}{[B]} + \frac{K_s^a K_m^b}{[A][B]}}$$

Bi-Bi sequential aleatório

Mantendo [B] = cte, a equação de velocidade é Michaeliana em relação a [A]:

$$v = \frac{V_{\text{max}}^{app}[A]}{K_{\text{m}}^{app} + [A]}$$

$$V_{\max}^{app} = \frac{V_{\max}[B]}{K_m^b + [B]} \qquad K_{\min}^{app} = \frac{K_m^a[B] + K_s^a K_m^b}{K_m^b + [B]} \qquad \frac{V_{\max}^{app}}{K_{\min}^{app}} = \frac{\left(V_{\max}/K_m^a\right)[B]}{[B] + K_s^a K_m^b/K_m^a}$$

Bi-Bi sequential ordenado

Este mecanismo obriga a que A e B interajam com o enzima por uma ordem específica. Não há libertação de produtos sem que forme o complexo EAB, e estes são libertados também por uma ordem específica.

É possível deduzir a seguinte equação de velocidade em condições de estado estacionário:

$$v = \frac{V_{\text{max}}}{1 + \frac{K_m^a}{[A]} + \frac{K_m^b}{[B]} + \frac{K_s^a K_m^b}{[A][B]}}$$

formalmente idêntica à do mecanismo sequencial aleatório, mas em que:

$$K_m^a = \frac{k_3 k_4}{k_1 (k_3 + k_4)} \qquad K_m^b = \frac{(k_{-1} + k_3) k_4}{k_2 (k_3 + k_4)} \qquad k_{cat} = \frac{k_3 k_4}{k_3 + k_4}$$

Bi-Bi sequential ordenado

Se $k_{-1} >> k_{cat}$ ou $K_{sA} >> K_{mA}$, a equação de velocidade fica:

$$v = \frac{V_{\text{max}}}{1 + \frac{K_{m}^{b}}{[B]} + \frac{K_{s}^{a} K_{m}^{b}}{[A][B]}}$$

(mecanismo sequential ordenadode equilíbrio)

[A] fixa:

[B] fixa:

$$V_{\max}^{app} = V_{\max}$$
 $V_{\max}^{app} = V_{\max} \left(1 + K_m^b / [B] \right)$ $K_{\min}^{app} = K_m^b \left(1 + K_s^a / [A] \right)$ $K_{\min}^{app} = \frac{K_s^a K_m^b / [B]}{1 + K_m^b / [B]}$

Mecanismo de Theorell-Chance

Caso limite do mecanismo bi-bi sequencial ordenado em que a ligação do segundo substrato e a libertação no primeiro produto ocorrem num único passo. Neste caso, em vez de um *complexo ternário* tem-se um *estado de transição* ternário. Exemplo: álcool desidrogenase

Ping-pong Bi-Bi

No mecanismo de ping-pong, a ligação de A e B é mutuamente exclusiva, não se formando complexo ternário. O produto correspondente ao primeiro substrato liberta-se antes da ligação do segundo substrato.

$$v = \frac{V_{\text{max}}}{1 + \frac{K_m^a}{\lceil A \rceil} + \frac{K_m^b}{\lceil B \rceil}}$$

Ping-pong Bi-Bi

[A] fixo:

$$v = \frac{V_{\text{max}}[B](1 + K_m^a/[A])}{[B] + K_m^b/(1 + K_m^a/[A])}$$

$$V_{\text{max}}^{app} = \frac{V_{\text{max}}}{1 + K_m^a / [A]}$$

$$\frac{V_{\text{max}}^{app}}{K_{\text{m}}^{app}} = \frac{V_{\text{max}}}{K_{m}^{b}}$$

[B] fixo:

$$v = \frac{V_{\text{max}}[A](1 + K_m^b/[B])}{[A] + K_m^a/(1 + K_m^b/[B])}$$

$$V_{\text{max}}^{app} = \frac{V_{\text{max}}}{1 + K_m^b / [B]}$$

$$\frac{V_{\text{max}}^{app}}{K_{\text{m}}^{app}} = \frac{V_{\text{max}}}{K_{m}^{a}}$$

Exemplo de mecanismo ping-pong: a histidina cinase CheA

Tripsina

Significado das constantes nos modelos bi-bi

 $V_{
m max}$ - velocidade de reacção para valores saturantes de [A] e [B]

 K_m^a - [A] que produz $V_{max}/2$ para [B] saturante

 K_m^b - [B] que produz $V_{max}/2$ para [A] saturante]

 $K^a_{_{\mathrm{S}}}$ - Constante de dissociação do complexo EA

 $K_{\scriptscriptstyle
m c}^{\scriptscriptstyle b}$ - Constante de dissociação do complexo EB

Discriminação de mecanismos

A análise da dependência dos parâmetros cinéticos dos mecanismos bi-bi com a concentração dos diferentes substratos permite em alguns casos discriminar entre mecanismos.

Os padrõs de **inibição pelo produto** em reacções multi-substarto são outra forma de diagnosticar mecanismos.

Gráficos de 1/v em função de 1/[A] (ou 1/[B]) — discriminação entre bi-bi sequectial ordenado e bi-bi ping pong

Estudos de inibiação pelo produto — discriminação entre bi-bi sequencial ordeando e bi-bi sequencial aleatório.

Bi-Bi sequential ordenado

$$\frac{1}{v} = \frac{1}{V_{\text{max}}} + \frac{K_m^a}{V_{\text{max}}[A]} + \frac{K_m^b}{V_{\text{max}}[B]} + \frac{K_s^a K_m^b}{V_{\text{max}}[A][B]}$$

Gráficos de Linewaver-Burke para [A] ou [B] constante produzem que se intersectam num ponto no segundo ou terceiro quadrantes.

Ping-pong Bi-Bi

$$\frac{1}{v} = \frac{1}{V_{\text{max}}} + \frac{K_m^a}{V_{\text{max}}[A]} + \frac{K_m^b}{V_{\text{max}}[B]}$$

Gráficos de Linewaver-Burke para [A] ou [B] constante produzem retas paralelas.

Padrões de inibição pelo produto

O efeito inibitório de um ou outro dos produtos numa reacção bi-substrato pode servir de diagnóstico para o tipo de mecanismo presente.

Exemplo (mecanismo ping-pong):

$$v = \frac{V_{\text{max}}}{1 + \frac{K_m^A}{[A]} + \frac{K_m^B}{[B]} \left(1 + \frac{[P]}{K_i}\right) + \frac{K_s^A K_m^B [P]}{K_i [A][B]}}$$

Tomando [A] como o substrato variável:

$$v = \frac{V_{\text{max}}[A] / \{1 + K_m^B / [B] (1 + [P] / K_i)\}}{[A] + \frac{K_m^A + K_s^A K_m^B [P] / K_i [B]}{1 + K_m^B / [B] (1 + [P] / K_i)}}$$
 Inibição mista

Para [B] saturante fica:
$$v = \frac{V_{\text{max}}[A]}{[A] + K_m^A}$$
 Ausência de inibição

Tomando [B] como o substrato variável:

$$v = \frac{V_{\max}[B] / (1 + K_m^A / [A])}{[B] + \frac{K_m^B (1 + [P] / K_i) + K_s^A K_m^B [P] / K_i [A]}{1 + K_m^A / [A]}$$
 Inibição competitiva

Para [A] saturante fica:
$$v = \frac{V_{\text{max}}[B]}{[B] + K_m^B (1 + [P]/K_i)}$$
 A inbição mantém-se

Padrões de inibição pelo produto

			Inibição pelo produto	
Mecanismo	Substrato variável	Substrato fixo	Р	Q
Aleatório equilíbrio	A	В	competitiva	competitiva
	A	B saturante		
	В	A	competitiva	competitiva
	В	A saturante		
Ordenado	A	В	competitiva	mista
	A	B saturante	competitiva	anti-competitiva
	В	A	mista	mista
	В	A saturante		
Pingue-Pongue	A	В	mista	competitiva
	A	B saturante		competitiva
	В	A	competitiva	mista
	В	A saturante	competitiva	