WHAT IS CLAIMED IS:

1	1. An electrode composition comprising:		
2	a current conducting material; and		
3	a heteroaryl-metal complex in contact with said current conducting material,		
4	wherein said heteroaryl-metal complex is of the formula:		
5	$[M-(L)_a]_mY_n$		
6	wherein		
7	a is an integer from 1 to 6;		
8	m and n are absolute value of oxidation state of Y or [M-(L)a], respectively; o		
9	if [M-(L) _a] is not charged Y is not present and said heteroaryl-metal		
10	complex is of the formula M-(L) _a ;		
11	M is a metal;		
12	Y is a counterion; and		
13	each L is independently a heteroaryl moiety containing one or more		
14	coordinating heteroatoms.		
1	2. The electrode composition of Claim 1 having work function of about		
2	3.5 eV or less.		
1	3. The electrode composition of Claim 1, wherein said heteroaryl-metal		
2	complex is of the formula M-(L) _a .		
1	4. The electrode composition of Claim 3, wherein a is an integer of 2 or		
2	3.		
1	5. The electrode composition of Claim 4, wherein M is a transition metal.		
1	6. The electrode composition of Claim 5, wherein M is selected from the		
2	group consisting of Ru, Cr, Fe, Zn, Co, Mn, Cu, Os, Rh, and Ni.		
1	7. The electrode composition of Claim 6, wherein M is selected from the		
2	group consisting of Ru and Cr.		
1	8. The electrode composition of Claim 5, wherein L is a polypyridyl or		
2	phenanthroline moiety.		

1	1 9. The electrode con	nposition of Claim 8, wherein L is selected from the		
2	group consisting of optionally substituted 2,2'-bipyridyl, optionally substituted 1,10-			
3	phenanthroline, optionally substituted 2,2',6',2"-terpyridyl and a derivative thereof.			
	10 The electrode com	analities of Claim 9 and a viv I in 1991		
1		nposition of Claim 8, wherein L is a polypyridyl		
2	2 moiety.			
1	1 11. The electrode con	position of Claim 10, wherein L is selected from the		
2	group consisting of 4,4',5,5'-tetramethyl-2,2'-bipyridyl; 2,2'-bipyridyl; and 2,2',6',2''-			
3	3 terpyridyl.			
1		nposition of Claim 1, wherein said current conducting		
2	material is a metal or a metal alloy.			
1	1 13. The electrode con	position of Claim 12, wherein said current		
2				
	5			
1	1 14. A light emitting d	evice comprising		
2	an anode;	an anode;		
3	a cathode comprising a current conducting material in contact with a			
4	heteroaryl-metal coordination complex; and			
5	an organic light emissive material located inbetween said anode and said			
5	heteroaryl-metal coordination complex.	heteroaryl-metal coordination complex.		
		1		
	•	device of Claim 14, wherein the work function of		
2	2 said heteroaryl-metal coordination comp	lex is 3.5 eV or less.		
l	l 16. The light emitting	device of Claim 15 further comprising an organic		
2	2 hole transport material located inbetween	said light emissive material and said anode.		
	·			
	•	device of Claim 16, wherein said heteroaryl-metal		
2	coordination complex is thermally evapor	rated to form a conducting thin film.		
	18. An electronic devi	ce comprising an electrode of Claim 1.		
	15. In electionic devi	oo comprising an electrone of Claim 1.		

1	19. A composition comprising a metal or a metal alloy in contact with a		
2	heteroaryl-metal coordination complex, wherein said heteroaryl-metal coordination complex		
3	is of the formula:		
4	M -(L) $_a$		
5	wherein		
6	a is an integer from 1 to 6;		
7	M is a metal;		
8	Y is a counterion; and		
9	each L is independently a heteroaryl moiety containing one or more		
10	coordinating heteroatoms.		
1.	20. A method for producing a light emitting device, said method		
2	comprising:		
3	forming a thin film of heteroaryl-metal coordination complex on a first		
4	•		
5	electrode; and attaching a second electrode to the heteroaryl-metal coordination complex		
6	film, wherein one of the first or the second electrodes comprises a thin film of light emissive		
U	material and one of the first or the second electrode is an anode and the other is a cathode.		
1	21. The method of Claim 20, wherein the heteroaryl-metal coordination		
2	complex is vacuum vapor deposited onto the first electrode.		
1	22. The method of Claim 21, wherein the first electrode comprises a meta		
2	a meta		
۷	oxide coated with a thin film of a conducting polymer.		
1	23. The method of Claim 20, wherein the second electrode is vacuum		
2	vapor deposited onto the heteroaryl-metal coordination complex.		
1			
1	24. The method of Claim 20, wherein the first electrode comprises a		
2	patterned substrate.		