```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import warnings
warnings.filterwarnings('ignore')
sns.set()
plt.style.use('ggplot')
%matplotlib inline
from sklearn.model selection import train test split
from \ sklearn.metrics \ import \ accuracy\_score, \ confusion\_matrix, \ classification\_report
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
df=pd.read_csv("/content/liver patient.csv")
```

df.sample(5)

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_P
185	38	Male	1.5	0.4	298	60	103	
395	45	Male	0.8	0.2	140	24	20	
254	38	Female	0.7	0.1	152	90	21	
67	37	Male	1.8	0.8	215	53	58	
116	48	Male	0.7	0.1	1630	74	149	

df.describe()

	Age	Total Bilirubin	Direct Bilirubin	Alkaline Phosphotase	Alamine Aminotransferase	Aspartate_Aminotransferase	Total I
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	 58
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806	
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529	
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000	

```
# EDA
```

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):
                               Non-Null Count Dtype
# Column
--- -----
                               _____
0 Age
                               583 non-null
                                              int64
    Gender
                               583 non-null
1
                                              object
    Total_Bilirubin
                               583 non-null
                                              float64
2
 3
    Direct_Bilirubin
                               583 non-null
                                              float64
    Alkaline_Phosphotase
                               583 non-null
                                              int64
   Alamine_Aminotransferase
                               583 non-null
                                              int64
   Aspartate_Aminotransferase 583 non-null
                                              int64
 6
    Total_Protiens
                               583 non-null
                                              float64
8 Albumin
                               583 non-null
                                              float64
 9 Albumin_and_Globulin_Ratio 579 non-null
                                              float64
10 Dataset
                               583 non-null
                                              int64
dtypes: float64(5), int64(5), object(1)
memory usage: 50.2+ KB
```

df.dtypes[df.dtypes=='object']

Gender object dtype: object

Distribution of Numberical Features

```
df.hist(figsize=(15,15), xrot=-45,bins=10)
plt.show()
```


df.describe()

	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_I
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	58
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806	
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529	
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000	

```
def convertdataset(x):
    if x==2:
        return 0
    return 1
df['Dataset'] = df['Dataset'].map(convertdataset)
df.head()
```

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Pro
0	65	Female	0.7	0.1	187	16	18	
1	62	Male	10.9	5.5	699	64	100	
2	62	Male	7.3	4.1	490	60	68	
3	58	Male	1.0	0.4	182	14	20	
4	72	Male	3.9	2.0	195	27	59	

Next steps: Generate code with df View recommended plots

df.Dataset.value_counts()

1 416
0 167

df.describe(include=['object'])

Name: Dataset, dtype: int64

Bar plots for categorical features

```
plt.figure(figsize=(5,5))
sns.countplot(y='Gender', data=df)
```

<Axes: xlabel='count', ylabel='Gender'>

df[df['Gender'] == 'Male'][['Dataset','Gender']].head()

	Dataset	Gender	
1	1	Male	ılı
2	1	Male	
3	1	Male	
4	1	Male	
5	1	Male	

sns.catplot(x="Age", y="Gender", hue="Dataset", data=df)

<seaborn.axisgrid.FacetGrid at 0x7f399cab9e10>

df['Gender'].value_counts()

Male 441 Female 142

Name: Gender, dtype: int64

```
# Categorical Value Handling
def convertgender(x):
    if x== 'Male':
        return 0
    else:
        return 1
df['Gender'] = df['Gender'].map(convertgender)
```

df.head()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Pro
0	65	1	0.7	0.1	187	16	18	
1	62	0	10.9	5.5	699	64	100	
2	62	0	7.3	4.1	490	60	68	
3	58	0	1.0	0.4	182	14	20	
4	72	0	3.9	2.0	195	27	59	

Next steps:

Generate code with df

View recommended plots

df.corr()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspar
Age	1.000000	-0.056560	0.011763	0.007529	0.080425	-0.086883	
Gender	-0.056560	1.000000	-0.089291	-0.100436	0.027496	-0.082332	
Total_Bilirubin	0.011763	-0.089291	1.000000	0.874618	0.206669	0.214065	
Direct_Bilirubin	0.007529	-0.100436	0.874618	1.000000	0.234939	0.233894	
Alkaline_Phosphotase	0.080425	0.027496	0.206669	0.234939	1.000000	0.125680	
Alamine_Aminotransferase	-0.086883	-0.082332	0.214065	0.233894	0.125680	1.000000	
Aspartate_Aminotransferase	-0.019910	-0.080336	0.237831	0.257544	0.167196	0.791966	
Total_Protiens	-0.187461	0.089121	-0.008099	-0.000139	-0.028514	-0.042518	
Albumin	-0.265924	0.093799	-0.222250	-0.228531	-0.165453	-0.029742	
Albumin_and_Globulin_Ratio	-0.216408	0.003424	-0.206267	-0.200125	-0.234166	-0.002375	
Dataset	0.137351	-0.082416	0.220208	0.246046	0.184866	0.163416	

[#] Positive Correlation-> one feature increases other also increases

plt.figure(figsize=(10,10))
sns.heatmap(df.corr())

[#] Negative Correlation-> one feature increases other decreases

[#] closer to 0-> weak relationship

<Axes: >


```
mask = np.zeros_like(df.corr())
mask[np.triu_indices_from(mask)] = True
plt.figure(figsize=(10,10))
with sns.axes_style("white"):
    ax = sns.heatmap(df.corr()*100, mask=mask, fmt = ".0f", annot=True, lw=1, cmap=ListedColormap(['green','yellow','red','blue']))
```


sns.boxplot(df.Total_Bilirubin)

<Axes: ylabel='Total_Bilirubin'>

df.Aspartate_Aminotransferase.sort_values(ascending=False).head()

```
135 4929117 2946118 1600
```

118 1600 207 1500

1050

199

Name: Aspartate_Aminotransferase, dtype: int64

df = df[df.Aspartate_Aminotransferase<=3000]</pre>

df.shape

(569, 11)

df.Aspartate_Aminotransferase.sort_values(ascending=False).head()

117 2946 118 1600

207 1500

119 1050 199 1050

Name: Aspartate_Aminotransferase, dtype: int64

df = df[df.Aspartate_Aminotransferase<=2500]</pre>

```
2/26/24, 5:31 PM
```

```
df.shape
     (568, 11)
df.isnull().sum()
                                   0
     Age
     Gender
                                   0
     Total_Bilirubin
                                    0
     Direct_Bilirubin
                                   0
     Alkaline_Phosphotase
                                    0
     Alamine_Aminotransferase
                                    0
     Aspartate Aminotransferase
                                   0
     Total_Protiens
                                   0
     Albumin
                                    0
     Albumin_and_Globulin_Ratio
                                   4
     Dataset
                                   a
     dtype: int64
df = df.dropna(how='any')
df.head()
```

Age Gender Total_Bilirubin Direct_Bilirubin Alkaline_Phosphotase Alamine_Aminotransferase Aspartate_Aminotransferase Total_Pro 0 65 1 0.7 0.1 187 16 18 100 1 62 0 10.9 5.5 699 64 2 7.3 4.1 490 60 68 62 58 0 1.0 0.4 182 14 20 3.9 2.0 195 27 59

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotra
count	4.510000e+02	4.510000e+02	4.510000e+02	4.510000e+02	4.510000e+02	4.510000e+02	4.51
mean	1.043757e-16	3.938707e-17	-2.363224e-17	-3.150966e-17	-1.240693e-16	1.575483e-17	-3.93
std	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.00
min	-2.568370e+00	-5.468521e- 01	-4.545818e-01	-4.862972e-01	-9.633546e-01	-4.150881e-01	-4.88
25%	-7.747074e-01	-5.468521e- 01	-3.928717e-01	-4.516441e-01	-4.787490e-01	-3.330804e-01	-4.08
50%	2.934809e-02	-5.468521e- 01	-3.620167e-01	-4.169909e-01	-3.259454e-01	-2.573809e-01	-3.16
75%	8.952540e-01	-5.468521e- 01	-1.151762e-01	-7.045893e-02	5.169765e-02	-9.967374e-02	-7.97
max	2.441515e+00	1.824593e+00	1.105435e+01	6.305729e+00	7.973471e+00	1.011975e+01	8.58

X_test = (X_test - train_mean) / train_std

X_test.describe()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransfer
count	113.000000	113.000000	113.000000	113.000000	113.000000	113.000000	113.000
mean	-0.201633	0.166680	-0.029574	-0.022619	0.166349	-0.035753	-0.004
std	1.019796	1.092491	0.833443	0.911646	1.288436	0.912202	0.926
min	-2.382818	-0.546852	-0.423727	-0.486297	-0.627187	-0.408780	-0.493
25%	-0.836558	-0.546852	-0.392872	-0.451644	-0.443822	-0.326772	-0.402
50%	-0.094353	-0.546852	-0.362017	-0.382338	-0.339043	-0.257381	-0.316
75%	0.462301	1.824593	-0.084321	-0.105112	0.136831	-0.087057	-0.025
max	2.750767	1.824593	3.757133	3.914658	6.401777	7.407188	5.444

```
# Logistic Regression
lr = LogisticRegression()
lr.fit(X_train, y_train)
     ▼ LogisticRegression
     LogisticRegression()
y_pred = lr.predict(X_test)
print(accuracy_score(y_train, lr.predict(X_train)))
lr_acc = accuracy_score(y_test, lr.predict(X_test))
print(lr_acc)
print(confusion_matrix(y_test, lr.predict(X_test)))
print(classification_report(y_test, lr.predict(X_test)))
     0.7117516629711752
     0.7699115044247787
     [[11 21]
     [ 5 76]]
                   precision
                               recall f1-score
                                                  support
                0
                       0.69
                                 0.34
                                           0.46
                                                       32
                       0.78
                                 0.94
                                           0.85
                                           0.77
                                                      113
        accuracy
        macro avg
                        0.74
                                 0.64
                                           0.66
                                                      113
                                           0.74
     weighted avg
                       0.76
                                 0.77
                                                      113
```

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(X_train, y_train)
     ▼ KNeighborsClassifier
     KNeighborsClassifier()
knn.predict(X_test)
     1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
           0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,
           1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
           1, 0, 1])
print(accuracy_score(y_train, lr.predict(X_train)))
knn_acc = accuracy_score(y_test, knn.predict(X_test))
print(knn_acc)
print(confusion_matrix(y_test, knn.predict(X_test)))
print(classification_report(y_test, knn.predict(X_test)))
    0.7117516629711752
    0.6637168141592921
    [[16 16]
     [22 59]]
                 precision
                             recall f1-score
                                               support
               0
                      0.42
                               0.50
                                        0.46
                                                    32
               1
                      0.79
                               0.73
                                        0.76
                                                    81
                                        0.66
                                                   113
        accuracy
       macro avg
                      0.60
                               0.61
                                        0.61
                                                   113
     weighted avg
                      0.68
                               0.66
                                        0.67
                                                   113
svc= SVC(probability=True)
parameters = {
    gamma':[0.0001, 0.001, 0.01, 0.1],
    'C':[0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20, 30]
grid_search = GridSearchCV(svc, parameters)
grid\_search.fit(X\_train, y\_train)
      ▶ GridSearchCV
      ▶ estimator: SVC
           ► SVC
grid_search.best_params_
    {'C': 0.01, 'gamma': 0.0001}
grid_search.best_score_
    0.7117460317460318
svc= SVC(C=0.01, gamma=0.0001,probability=True)
svc.fit(X_train, y_train)
                        SVC
     SVC(C=0.01, gamma=0.0001, probability=True)
print(accuracy_score(y_train, svc.predict(X_train)))
svc_acc = accuracy_score(y_test, svc.predict(X_test))
print(svc acc)
print(confusion_matrix(y_test, svc.predict(X_test)))
print(classification_report(y_test, svc.predict(X_test)))
     0.7117516629711752
    0.7168141592920354
```

```
[[ 0 32]
      [ 0 81]]
                   precision
                                 recall f1-score
                                                     support
                 0
                         0.00
                                   0.00
                                              0.00
                                                          32
                1
                         0.72
                                   1.00
                                             0.84
                                                          81
                                             0.72
                                                         113
         accuracv
                                   0.50
                         0.36
        macro avg
                                             0.42
                                                         113
     weighted avg
                         0.51
                                   0.72
                                             0.60
                                                         113
dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
      ▼ DecisionTreeClassifier
      DecisionTreeClassifier()
print(accuracy_score(y_train, dtc.predict(X_train)))
dtc_acc = accuracy_score(y_test, dtc.predict(X_test))
print(dtc_acc)
print(confusion_matrix(y_test, dtc.predict(X_test)))
print(classification_report(y_test, dtc.predict(X_test)))
     0.6371681415929203
     [[17 15]
      [26 55]]
                   precision
                                 recall f1-score
                                                     support
                0
                         0.40
                                   0.53
                                             0.45
                                                          32
                1
                         0.79
                                   0.68
                                             0.73
                                                          81
         accuracy
                                              0.64
                                                         113
        macro avg
                         0.59
                                   0.61
                                             0.59
                                                         113
     weighted avg
                         0.68
                                   0.64
                                             0.65
                                                         113
grid_parameter = {
    'criterion':['gini','entropy'],
    'max_depth':[3,5,7,10,12,15],
    'splitter':['best','random'],
    'min_samples_leaf':[1,2,3,5,7],
    'min_samples_split':[1,2,3,5,7],
    'max_features':['auto','sqrt','log2']
grid_seach_dt = GridSearchCV(dtc, grid_parameter, cv=24, n_jobs=-1, verbose=1)
grid_seach_dt.fit(X_train, y_train)
     Fitting 24 folds for each of 1800 candidates, totalling 43200 fits
                   GridSearchCV
       ▶ estimator: DecisionTreeClassifier
            ▶ DecisionTreeClassifier
grid_seach_dt.best_params_
     {'criterion': 'gini',
      'max_depth': 3,
'max_features': 'log2',
      'min_samples_leaf': 5,
      'min_samples_split': 2,
'splitter': 'best'}
grid_seach_dt.best_score_
     0.7443957115009746
dtc = DecisionTreeClassifier(criterion='entropy', max_depth=5, max_features='sqrt', min_samples_leaf=7, min_samples_split=3, splitter='best'
dtc.fit(X_train, y_train)
```

```
DecisionTreeClassifier
     DecisionTreeClassifier(criterion='entropy', max_depth=5, max_features='sqrt',
                             min_samples_leaf=7, min_samples_split=3)
print(accuracy_score(y_train, dtc.predict(X_train)))
dtc_acc = accuracy_score(y_test, dtc.predict(X_test))
print(dtc acc)
print(confusion_matrix(y_test, dtc.predict(X_test)))
print(classification_report(y_test, dtc.predict(X_test)))
     0.7516629711751663
     0.6902654867256637
     [[ 7 25]
      [10 71]]
                   precision
                                recall f1-score
                                                   support
                0
                        0.41
                                  0.22
                                             0.29
                                                         32
                1
                        0.74
                                  0.88
                                            0.80
                                                         81
         accuracy
                                             0.69
                                                        113
                        0.58
                                  0.55
                                             0.54
                                                        113
        macro avg
     weighted avg
                        0.65
                                  0.69
                                             0.66
                                                        113
# Random Forest
rand_clf = RandomForestClassifier(criterion='entropy', max_depth=15, max_features=0.75, min_samples_leaf=7, min_samples_split=3, n_estimator
rand_clf.fit(X_train, y_train)
                                  RandomForestClassifier
     RandomForestClassifier(criterion='entropy', max_depth=15, max_features=0.75,
                             min_samples_leaf=7, min_samples_split=3,
                             n_estimators=130)
print(accuracy_score(y_train, rand_clf.predict(X_train)))
rand_clf_acc = accuracy_score(y_test, rand_clf.predict(X_test))
print(rand_clf_acc)
print(confusion_matrix(y_test, rand_clf.predict(X_test)))
print(classification_report(y_test, rand_clf.predict(X_test)))
     0.8980044345898004
     0.6902654867256637
     [[13 19]
      [16 65]]
                   precision
                                recall f1-score
                                                   support
                0
                        0.45
                                  0.41
                                             0.43
                                                         32
                        0.77
                                  0.80
                                            0.79
                                                         81
                1
                                                        113
         accuracy
                                             0.69
                        0.61
                                  0.60
                                             0.61
                                                        113
        macro avg
     weighted avg
                        0.68
                                  0.69
                                            0.69
                                                        113
# Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier()
parameters = {
    'loss': ['deviance', 'exponential'],
    'learning_rate': [0.001, 0.1, 1, 10],
    'n_estimators': [100, 150, 180, 200]
grid_search_gbc = GridSearchCV(gbc, parameters, cv = 20, n_jobs = -1, verbose = 1)
grid_search_gbc.fit(X_train, y_train)
```

```
Fitting 20 folds for each of 32 candidates, totalling 640 fits
                                         GridSearchCV
             estimator: GradientBoostingClassifier
                       ▶ GradientBoostingClassifier
grid_search_gbc.best_params_
          {'learning_rate': 0.001, 'loss': 'deviance', 'n_estimators': 100}
grid_search_gbc.best_score_
          0.7120553359683793
gbc = GradientBoostingClassifier(learning_rate=0.001, loss='exponential',n_estimators=100)
gbc.fit(X_train , y_train)
                                                     GradientBoostingClassifier
           GradientBoostingClassifier(learning_rate=0.001, loss='exponential')
print(accuracy_score(y_train, gbc.predict(X_train)))
gbc_acc = accuracy_score(y_test, gbc.predict(X_test))
print(gbc_acc)
print(confusion\_matrix(y\_test, \ gbc.predict(X\_test)))
print(classification_report(y_test, gbc.predict(X_test)))
          0.7117516629711752
          0.7168141592920354
          [[ 0 32]
            [ 0 81]]
                                     precision
                                                                recall f1-score
                                                                                                     support
                                0
                                                9.99
                                                                                       0.00
                                                                   9.99
                                                                                                               32
                                1
                                                0.72
                                                                   1.00
                                                                                       0.84
                                                                                                               81
                                                                                       0.72
                                                                                                             113
                  accuracy
                macro avg
                                                0.36
                                                                    0.50
                                                                                       0.42
                                                                                                             113
          weighted avg
                                                0.51
                                                                                       0.60
                                                                                                             113
# XGBoost
from xgboost import XGBClassifier
xgb = XGBClassifier(objective='binary:logistic', learning_rate = 0.001, max_depth = 100, n_estimators = 300)
xgb.fit(X_train, y_train)
                                                                             XGBClassifier
           XGBClassifier(base_score=None, booster=None, callbacks=None,
                                       colsample_bylevel=None, colsample_bynode=None,
                                       \verb|colsample_bytree=None|, | device=None|, | early_stopping_rounds=None|, | early_stopping_r
                                       enable_categorical=False, eval_metric=None, feature_types=None,
                                       gamma=None, grow_policy=None, importance_type=None,
                                       interaction_constraints=None, learning_rate=0.001, max_bin=None,
                                       max_cat_threshold=None, max_cat_to_onehot=None,
                                       max_delta_step=None, max_depth=100, max_leaves=None,
                                       min_child_weight=None, missing=nan, monotone_constraints=None,
                                       multi_strategy=None, n_estimators=300, n_jobs=None,
                                       num_parallel_tree=None, random_state=None, ...)
print(accuracy_score(y_train, xgb.predict(X_train)))
xgb_acc = accuracy_score(y_test, xgb.predict(X_test))
print(xgb_acc)
print(confusion_matrix(y_test, xgb.predict(X_test)))
print(classification_report(y_test, xgb.predict(X_test)))
          0.7117516629711752
          0.7168141592920354
          [[ 0 32]
            [ 0 81]]
                                     precision
                                                               recall f1-score support
```

```
0
                         0.00
                                    0.00
                                               0.00
                 1
                         0.72
                                    1.00
                                               0.84
                                                           81
                                               0.72
                                                          113
         accuracy
        macro avg
                         0.36
                                    0.50
                                               0.42
                                                          113
     weighted avg
                         0.51
                                    0.72
                                               0.60
                                                          113
# Model Comparison
models = pd.DataFrame({
    'Model':['Logistic Regreesion','KNN', 'SVC', 'Decision Tree Classifier', 'Random Forest Classifier', 'Gradient Boosting Classifer', 'XgB
    'Score':[100^{*}round(lr_acc, 4), 100^{*}round(knn_acc, 4), 100^{*}round(svc_acc, 4), 100^{*}round(dtc_acc, 4), 100^{*}round(rand_clf_acc, 4), 100^{*}rour
})
models.sort_values(by='Score', ascending=False)
                           Model Score
                                            \blacksquare
      0
                Logistic Regreesion
                                   76.99
      2
                             SVC
                                  71.68
         Gradient Boosting Classifer
                                  71.68
      6
                          XgBoost 71.68
      3
            Decision Tree Classifier
      4
           Random Forest Classifier
                                   69.03
      1
                             KNN
                                   66.37
import pickle
model = lr_acc
pickle.dump(model, open("liver.pkl","wb"))
# 85%
# ANN
from sklearn import metrics
plt.figure(figsize=(8,5))
models = [
{
    'label': 'LR',
    'model': lr,
},
{
    'label': 'DT',
    'model': dtc,
},
    'label': 'SVM',
    'model': svc,
},
    'label': 'KNN',
    'model': knn,
},
{
    'label': 'XGBoost',
    'model': xgb,
    'label': 'RF',
    'model': rand_clf,
},
    'label': 'GBDT',
    'model': gbc,
}
for m in models:
    model = m['model']
```

model.fit(X train, y train)

```
y_pred=model.predict(X_test)
    fpr1, tpr1, thresholds = metrics.roc_curve(y_test, model.predict_proba(X_test)[:,1])
    auc = metrics.roc_auc_score(y_test,model.predict(X_test))
    plt.plot(fpr1, tpr1, label='%s - ROC (area = %0.2f)' % (m['label'], auc))
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([-0.01, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('1 - Specificity (False Positive Rate)', fontsize=12)
plt.ylabel('Sensitivity (True Positive Rate)', fontsize=12)
plt.title('ROC - Liver Disease Prediction', fontsize=12)
plt.legend(loc="lower right", fontsize=12)
plt.savefig("roc_liver.jpeg", format='jpeg', dpi=400, bbox_inches='tight')
plt.show()
```

\square

ROC - Liver Disease Prediction


```
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
models = [
{
    'label': 'LR',
    'model': lr,
},
    'label': 'DT',
    'model': dtc,
}.
```