

Calcolo Differenziale

Eugenio Montefusco

09. Limiti di funzioni

Definizione di limite

Definizione.

Sia $F:A\longrightarrow \mathbb{R}$ una funzione con $A\subseteq \mathbb{R}$ un intervallo. Dato $\rho\in A$ diremo che f ha limite l per x che tende a ρ se

Definizione di limite

Definizione.

Sia $F:A\longrightarrow \mathbb{R}$ una funzione con $A\subseteq \mathbb{R}$ un intervallo. Dato $\rho\in A$ diremo che f ha limite l per x che tende a ρ se

per ogni J_l intorno di l esiste I_ρ intorno di ρ tale che

Definizione di limite

Definizione.

Sia $F:A\longrightarrow \mathbb{R}$ una funzione con $A\subseteq \mathbb{R}$ un intervallo. Dato $\rho\in A$ diremo che f ha limite l per x che tende a ρ se

per ogni J_l intorno di l esiste I_ρ intorno di ρ tale che $f(x) \in J_l \quad \forall x \in (I_\rho \setminus \{\rho\}) \cap A$

Definizione.

Sia $F:A\longrightarrow \mathbb{R}$ una funzione con $A\subseteq \mathbb{R}$ un intervallo. Dato $\rho\in A$ diremo che f ha limite l per x che tende a ρ se

per ogni
$$J_l$$
 intorno di l esiste I_ρ intorno di ρ tale che $f(x) \in J_l \quad \forall x \in (I_\rho \setminus \{\rho\}) \cap A$

In tal caso scriveremo

$$\lim_{x\to \rho} f(x) = l$$
 oppure $f(x) \longrightarrow l$

Definizioni "alternative"

Formulazione 1.

Oppure diremo che
$$\lim_{x\to\rho}f(x)=l$$
 se

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\rho, \varepsilon) > 0 \text{ tale che}$$

 $\left| f(x) - l \right| < \varepsilon \quad \forall x : 0 < |x - \rho| < \delta$

Definizioni "alternative"

Formulazione 2.

Oppure diremo che
$$\lim_{x\to +\infty} f(x) = l$$
 se

$$\forall \varepsilon > 0 \quad \exists M = M(\varepsilon) \in \mathbb{R} \text{ tale che}$$

 $|f(x) - l| < \varepsilon \quad \forall x : x > M$

Formulazione 2.

Oppure diremo che
$$\lim_{x\to +\infty} f(x) = l$$
 se

$$\forall \varepsilon > 0 \quad \exists M = M(\varepsilon) \in \mathbb{R} \text{ tale che}$$

 $|f(x) - l| < \varepsilon \quad \forall x : x > M$

Formulazione 3.

Oppure diremo che
$$\lim_{x\to -\infty} f(x) = l$$
 se

$$\forall \varepsilon > 0 \quad \exists M = M(\varepsilon) \in \mathbb{R} \text{ tale che}$$

 $|f(x) - l| < \varepsilon \quad \forall x : x < M$

Definizioni "alternative"

Formulazione 4.

Oppure diremo che
$$\lim_{x\to \rho} f(x) = +\infty$$
 se

$$\forall k \in \mathbb{R}$$
 $\exists \delta = \delta(\rho, k) > 0$ tale che $f(x) > k$ $\forall x : 0 < |x - \rho| < \delta$

Formulazione 4.

Oppure diremo che
$$\lim_{x\to\rho}f(x)=+\infty$$
 se

$$\forall k \in \mathbb{R}$$
 $\exists \delta = \delta(\rho, k) > 0$ tale che $f(x) > k$ $\forall x : 0 < |x - \rho| < \delta$

Formulazione 5.

Oppure diremo che
$$\lim_{x\to \rho} f(x) = -\infty$$
 se

$$\forall k \in \mathbb{R}$$
 $\exists \delta = \delta(\rho, k) > 0$ tale che $f(x) < k \quad \forall x : 0 < |x - \rho| < \delta$

Sia $f: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Sia $f: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Teorema. Il limite $\lim_{x\to\rho} f(x)$, se esiste, è unico.

Sia $f: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Teorema. Il limite $\lim_{x\to\rho} f(x)$, se esiste, è unico.

Teorema. Le seguenti affermazioni sono equivalenti

i.
$$\lim_{x\to\rho} f(x) = l$$

ii. per ogni $\{\rho_n\}\subseteq A$ tale che $\rho_n\longrightarrow \rho$ vale $f(\rho_n)\longrightarrow l$

Sia $f: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Sia $f: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Teorema della permanenza del segno. Se

$$\lim_{x\to\rho}f(x)=l>0$$

allora esiste un intorno $I_{\!
ho}$ del punto ho tale che

$$f(x) > 0$$
 $\forall x \in (I_{\rho} \setminus \{\rho\}) \cap A$

Altre proprietà del limite

Date $f, g : A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Altre proprietà del limite

Date $f, g: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Teorema. Se f(x) < g(x), per ogni $x \in A$, allora

$$\lim_{x\to\rho}f(x)\leq\lim_{x\to\rho}g(x)$$

sempre che i due limiti esistano.

Altre proprietà del limite

Date $f, g: A \longrightarrow \mathbb{R}$, con A intervallo e $\rho \in A$, allora

Teorema. Se f(x) < g(x), per ogni $x \in A$, allora

$$\lim_{x\to\rho}f(x)\leq\lim_{x\to\rho}g(x)$$

sempre che i due limiti esistano.

Teorema. Se $\lim_{x\to\rho}f(x)<\lim_{x\to\rho}g(x)$, allora esiste un intorno I_{ρ} tale che

$$f(x) < g(x)$$
 $\forall x \in (I_{\rho} \setminus \{\rho\}) \cap A$

i.
$$kf(x) \longrightarrow kl_f$$

- i. $kf(x) \longrightarrow kl_f$
- ii. $f(x) + g(x) \longrightarrow l_f + l_g$

- i. $kf(x) \longrightarrow kl_f$
- ii. $f(x) + g(x) \longrightarrow l_f + l_g$
- iii. $f(x)g(x) \longrightarrow l_f l_g$

i.
$$kf(x) \longrightarrow kl_f$$

ii.
$$f(x) + g(x) \longrightarrow l_f + l_g$$

iii.
$$f(x)g(x) \longrightarrow l_f l_g$$

iv.
$$f(x)/g(x) \longrightarrow l_f/l_g$$
,

- i. $kf(x) \longrightarrow kl_f$
- ii. $f(x) + g(x) \longrightarrow l_f + l_g$
- iii. $f(x)g(x) \longrightarrow l_f l_g$
- iv. $f(x)/g(x) \longrightarrow l_f/l_g$, se $l_g \neq 0$

Teoremi di confronto

Teorema dei due carabinieri (Banach & Caccioppoli).

Siano $f, g, h : A \longrightarrow \mathbb{R}$ tre funzioni, tali che

$$f(x) \le g(x) \le h(x)$$
 $\forall x \in A \cap (I_{\rho} \setminus \{\rho\})$

Teorema dei due carabinieri (Banach & Caccioppoli).

Siano $f, g, h : A \longrightarrow \mathbb{R}$ tre funzioni, tali che

$$f(x) \le g(x) \le h(x)$$
 $\forall x \in A \cap (I_{\rho} \setminus \{\rho\})$

allora se

$$\lim_{x \to \rho} f(x) = \lim_{x \to \rho} h(x) = l$$

Teorema dei due carabinieri (Banach & Caccioppoli).

Siano $f, g, h : A \longrightarrow \mathbb{R}$ tre funzioni, tali che

$$f(x) \le g(x) \le h(x)$$
 $\forall x \in A \cap (I_{\rho} \setminus \{\rho\})$

allora se

$$\lim_{x \to \rho} f(x) = \lim_{x \to \rho} h(x) = l \quad \text{segue} \quad \lim_{x \to \rho} g(x) = l$$

Limite destro e sinistro

Definizione.

Diremo che
$$\lim_{x\to \rho+} f(x) = l$$
 se

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\rho, \varepsilon) > 0 \text{ tale che}$$

 $\left| f(x) - l \right| < \varepsilon \quad \forall x : 0 < (x - \rho) < \delta$

Definizione.

Diremo che
$$\lim_{x\to\rho^+}f(x)=l$$
 se

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\rho, \varepsilon) > 0 \text{ tale che}$$

 $|f(x) - l| < \varepsilon \quad \forall x : 0 < (x - \rho) < \delta$

Diremo che
$$\lim_{x\to\rho^-} f(x) = l$$
 se

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\rho, \varepsilon) > 0 \text{ tale che}$$

 $|f(x) - l| < \varepsilon \quad \forall x : -\delta < (x - \rho) < 0$

Limite destro e sinistro

Teorema.

$$\lim_{x\to\rho}f(x)=l$$

Limite destro e sinistro

Teorema.

$$\lim_{x\to\rho}f(x)=l$$
 se e solo se $\lim_{x\to\rho+}f(x)=\lim_{x\to\rho-}f(x)=l$

Protagonisti

Augustin Louis Cauchy

1789 - 1857