perplexity

ML線性回歸跟boxz相同.py 技術需求整理

一、技術需求

1. 基本環境

- Python 3.x
- 常用數據處理與科學計算套件 (如 numpy、pandas)
- 視覺化套件 (如 matplotlib)
- 若有用到機器學習框架,則需安裝 scikit-learn 或 PyTorch 等^[1] [2] [3]。

2. 程式主要功能

- 實現線性回歸(Linear Regression)模型,並可選擇以最小二乘法或梯度下降法訓練參數^[1] [3] [4]
- 支援單變量或多變量特徵輸入^{[2] [3]}。
- 可進行模型訓練、預測與模型評估 (如均方根誤差 RMSE) [1] [3] [4]。

3. 資料需求

• 輸入資料需包含特徵(X)與標籤(y),格式可為 list、numpy array 或 pandas DataFrame [1] [2] [4]

二、模型說明

1. 線性回歸模型

- 形式:\$y = w \cdot x + b \$ (單變量) 或 \$y = w_1 x_1 + w_2 x_2 + ... + b \$ (多變量) [2] [3] [4]
- 目標:最小化預測值與真實值之間的均方誤差 (MSE) [3] [4]。

2. 參數與超參數

名稱	說明	預設值/範例
learning_rate	學習率,控制梯度下降時每步更新幅度	0.01、0.1等 ^[1] [3]
n_epochs	訓練迭代次數	100、1000 等 ^[1] [3]
batch_size	每批訓練樣本數(若採用 mini-batch SGD)	10、32 等 ^{[3] [5]}

名稱	說明	預設值/範例
w	權重參數,依特徵數決定數量	隨機初始化 ^[3] [4]
b	偏置參數	隨機初始化 ^[3] [4]
regularization	正則化方法(如 L2、L1),防止過擬合	可選 [4] [6]
random_seed	隨機種子,確保結果可重現	任意整數 [6]

三、主要流程

1. 資料前處理

。 讀取與整理資料,必要時進行標準化或編碼 [2] [3]。

2. 模型初始化

○ 權重 w、偏置 b 隨機初始化^{[3] [4]}。

3. 訓練方法

○ 最小二乘法:直接計算封閉解^{[3] [4]}。

・ 梯度下降法:反覆根據損失函數梯度更新參數(需設置 learning_rate, n_epochs) [1] [3] [4]。

4. 預測與評估

○ 使用訓練後的模型對新數據進行預測^{[1] [3]}。

○ 評估指標:均方根誤差 (RMSE) 、均方誤差 (MSE) 等^{[1] [3] [4]}。

四、範例程式片段

```
# 訓練参數
learning_rate = 0.1
n_epochs = 100

# 梯度下降訓練
for epoch in range(n_epochs):
# 計算預測值與損失
# 更新 w, b
pass
```

五、補充說明

- 若需支援多元特徵,需確保資料格式正確,並適當調整權重維度[2][3]。
- 可選用正則化以提升泛化能力,常見如 L2 (Ridge) 、L1 (Lasso) [4] [6]。
- 若有需求可加入交叉驗證、特徵選擇等進階功能[7][6]。

参考文獻皆已在文中以[#]標註。

- 1. https://blog.csdn.net/qq_37978800/article/details/115188018
- 2. https://ithelp.ithome.com.tw/articles/10347816
- 3. https://zh.d2l.ai/chapter_linear-networks/linear-regression-scratch.html
- 4. https://blog.csdn.net/qq_43045620/article/details/123079305
- 5. https://www.cnblogs.com/jaww/p/12297848.html
- 6. https://docs.azure.cn/zh-cn/machine-learning/component-reference/linear-regression?view=azureml-a
 pi-2
- 7. https://www.cnblogs.com/leezx/p/15719492.html