Interactive Multi-fidelity Learning for Cost-effective Adaptation

of Language Model with Sparse Human Supervision

Jiaxin Zhang¹, Zhuohang Li², Kamalika Das¹, Sricharan Kumar¹

¹Intuit AI Research ²Vanderbilt University

Introduction Misinformation? High-quality annotated Gigantic web-scale [·]Hallucination? specific data (private) dataset (open) Generic Supervised fine-tuning Domain-Pre-training base LLM specific LLM

- · Generic LLMs for domain-specific tasks immense scale at deployment, susceptibility to misinformation, e.g., healthcare and finance
- Fine-tuned small LMs for domain-specific tasks faster development cycles, lower operating costs but need high data annotation costs

Table 1: A qualitative comparison of human annotation, LLM annotation, and IMFL.

Overview

IMFL proposes the best acquisition strategy that balances between lowfidelity automatic LLM annotations and high-fidelity human annotations to maximize model performance given limited annotation budgets.

The high human annotation cost in domain-specific tasks can be greatly reduced by employing IMFL, which utilizes fewer human annotations combined with cheaper LLM (e.g., GPT-3.5-turbo) annotations to achieve competitive performance.

Interactive Multi-fidelity Learning

Problem Formulation

Given a total annotation budget \mathcal{B} and a computational cost \mathcal{C} , we aim to fine-tune a small LM $f(x; \theta^*): \mathcal{X} \to \mathcal{Y}$ on a downstream task by annotating samples from an unannotated data pool $\mathcal{U} = \{x_i\}_{i=1}^U$ to constitute the annotated sample set $\mathcal{A}(|\mathcal{A}| \leq \mathcal{B})$ and initially $A = \emptyset$) such that its performance is maximized.

Annotation set – a human-annotated subset A_H and an LLM-annotated subset A_G **Total annotation budget** – human annotation budget \mathcal{B}_H and LLM annotation budget \mathcal{B}_G

- Multi-fidelity Learning Framework

 - $\succ \textbf{Fine-tuning} \quad \mathcal{L}_{total} = \frac{1}{|\mathcal{A}_H^r|} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{A}_H^r} \mathcal{L}\left(f(\boldsymbol{x}_i; \boldsymbol{\theta}^{(r)}), y_i\right) + \frac{1}{|\mathcal{A}_G^r|} \sum_{(\boldsymbol{x}_j, y_j) \in \mathcal{A}_G^r} \mathcal{L}\left(f(\boldsymbol{x}_j; \boldsymbol{\theta}^{(r)}), y_j\right)$
 - ❖ Design 1: In-context learning with similarity-based prompt retrieval
 - Design 2: Variable batch-size query

Human annotation pool Human annotation LLM annotation Prompt retrieval 3rd round 1st round

Algorithm 1 IMFL framework

Require: unannotated data pool \mathcal{U} , target LM model f, query strategy S, annotation budget B**Initialization**: $\mathcal{A} = \emptyset$, $\theta = \theta^{(0)}$ on \mathcal{A}_H^0 for rounds r = 1, ..., R do

 $\mathcal{U}_s^r \leftarrow \text{Extract from } \mathcal{U} \text{ by random sub-sampling}$ $[\mathcal{Q}_H^r, \mathcal{Q}_G^r] \leftarrow \text{Acquire } [\mathcal{B}_H^r, \mathcal{B}_G^r] \text{ samples by query }$ function S on model f, data U_s^r $\mathcal{A}_H^r \leftarrow$ Annotate acquired samples \mathcal{Q}_H^r by human $\mathcal{A}_H = \mathcal{A}_H \cup \mathcal{A}_H^r$

Execute prompt retrieval from A_H $\mathcal{A}_G^r \leftarrow$ Annotate acquired samples \mathcal{Q}_G^r by LLMs $\mathcal{A}^r = \mathcal{A}^r_H \cup \mathcal{A}^r_G$

 $\mathcal{U} = \mathcal{U} \setminus \mathcal{A}^r$ $f(\boldsymbol{x}_i; \boldsymbol{\theta}^{(r)}) \leftarrow \text{Fine-tune } f(\boldsymbol{x}_i; \boldsymbol{\theta}^{(r)}) \text{ on } \mathcal{A}^r$ return $f(\boldsymbol{x}; \theta^{(r)}), \mathcal{A}$

> Termination two stopping criteria: (1) annotation budget and (2) computational cost

Exploration-Exploitation Query Strategy

EEQ harnesses human annotation for *exploitation* by maximizing informativeness through uncertainty sampling, and LLM annotation for exploration by enhancing representativeness through diversity sampling --- two-stage selection

Main Results

Comparisons between our multi-fidelity learning (200 human + 800 GPT-3.5 annotations) and various sizes of human annotations.

Comparisons between our IMFL and single low-fidelity (all GPT-3.5) annotation on four domain-specific tasks given 1000 annotation budget.

Analysis

Exploitation-Exploration Query vs Random Query Strategy

# <u></u>	Method	Budget		Query Strategy	Dataset			
8). Sa	Multi/Single	Human	GPT-3.5	EEQ/Random	FPB	Headline	PubMedQA	MedQA
H	uman + GPT-3.5	200	800	EEQ	47.88	81.09	73.76	67.98
H	uman + GPT-3.5	200	800	Random	41.94	74.32	66.03	63.77
	Only Human	1000	0	Random	43.81	75.46	68.87	70.17
	Only GPT-3.5	0	1000	Random	38.56	71.04	65.89	47.13

Effects of prompt retrieval, variable batch size, and batch orders

Method					Dataset				
Budget	Batch	Batch size	Retrieval	FPB	Headline	PubMedQA	MedQA		
1000	5 Mini-Batch	Variable	Similar	47.88	81.09	73.76	67.98		
1000	5 Mini-Batch	Equal	Similar	46.34	80.28	72.05	66.11		
1000	5 Mini-Batch	Variable	Random	42.09	73.98	67.44	63.56		
1000	5 Mini-Batch	Equal	Random	42.34	73.77	68.10	63.42		
1000	1 Full-Batch	ÑΑ	Similar	43.72	75.48	68.90	63.79		
1000	1 Full-Batch	NA	Random	39.80	72.11	65.94	57.23		

Effects of prompt retrieval, variable batch size, and batch orders

	GPT-3 Annotation			GPT-3.5 Annotation			GPT-4 Annotation		
	retrieval	5-shot	0-shot	retrieval	5-shot	0-shot	retrieval	5-shot	0-shot
Headline MedQA	75.59 51.42	72.51 44.89	70.25 42.03	79.40 59.45	76.15 53.57	73.31 50.82	80.13 82.67	78.34 81.38	77.20 78.87