James McAllister - CV

PhD Researcher – Mathematical Neuroscience Website: https://jajmcallister.github.io/ Intelligent Systems Research Centre, Magee College Dynamic and Spectral Graph Theory meets Synaptic Plasticity

EDUCATION

Magee College, Ulster University, Intelligent Systems Research Centre
 PhD, Mathematical Neuroscience
 Queen's University, Belfast
 MRes (Masters of Research) – Distinction
 Queen's University, Belfast
 PGCE (Mathematics) – GTCNI Star Award and E. Fulton Prize for Mathematics
 Trinity College Dublin
 MA (Dubl) Mathematics – First Class Honours with Gold Medal

EXPERIENCE

University of Bristol, Applied Mathematics, Intelligent Systems Lab
 Visiting Researcher: Mathematics and Neuroscience
 Magee College, Ulster University
 Postgraduate Teaching Assistant in mathematics and algorithms modules
 Wellington College Belfast
 Teacher of Mathematics, Further Mathematics, and Physics

RESEARCH PROJECTS, PUBLICATIONS, AND PRESENTATIONS

Iteseaton i Rosects, i oblications, and i resentations	
• Graph-theory perspectives on recurrent neural network structure in reservoir computing Ongoing research collaboration with University of Bristol	g 2024
• Heterosynaptic plasticity rules induce small-world network topologies Poster due at International Conference of Mathematical Neuroscience	2024
• The capacity and accuracy of a triple well Hopfield model Research Project: Intelligent Systems Research Centre	2023
• A discrete attractor model of decision making Research Project: Using dynamical systems to model decision-making processes	2023
• The topology of autistic heterogeneity Research Project	2022/23
• The impact of formative assessment on student attitudes to mathematics $\it A\ synthesis\ of\ the\ literature$	2022/23
• Insights from a multilevel analysis of high-stakes examination results in mathematics Cantley, I., & McAllister, J. https://doi.org/10.1007/s11199-021-01234-5	2021
• Trigonometric Series and the Emergence of Transfinite Set Theory Final Year Research Dissertation. First class (distinction). Academic poster display	2017/18
• Complex Numbers in Mathematics Education Mathematics Education Research Project. First class (distinction)	2017/18

SKILLS AND INTERESTS

Languages: English, German, French, British Sign Language

Programming Languages: Python, Julia, MATLAB, SPSS

Other Developer Tools: LaTeX, Microsoft, Google Suite

Areas of Interest: Graph & network theory, mathematical modelling of synaptic plasticity, applications of topology & topological data analysis, functional analysis, assessment theory

ACHIEVEMENTS

• GTCNI Star Award

2018
2014-2018
2014
2014-2018
2015, 2016, 2017
2019

Courses, Training, and Talks

Computational Neuroscience Autumn School (1 week): 10/23, Intelligent Systems Research Centre, Ulster University

2019

Computational Neuroscience Neuromatch Academy Summer School (3 weeks): 07/2023

INCF (International Neuroinformatics Coordinating Facility): Computational Modelling of Neuronal Plasticity - Python-based modelling course

Faculty of Education, Cambridge University. Title: The gender similarities hypothesis: Insights from a multilevel analysis of high-stakes examination results in mathematics, 03/2020, research article and presentation.

REFEREES

References available on request.