DQM for SDHCAL detector - Status report

R. Été, A. Pingault, L. Mirabito

Université Claude Bernard Lyon 1 - Institut de Physique Nucléaire de Lyon / Ghent University

27 avril 2016

DQM4HEP: an online monitoring system for data quality

Key points

- Event and histogram distributed system : server/client paradigm
- Set of interfaces for data analysis, adapted to DQM purpose
- Visualization interface (Qt GUI)
- Large scale remote process management
- Generic IO support for any edm (opt. LCIO)
- Full size HEP experiment to single detector prototype design
- Interface to generic online event builder (levbdim)
- ELog interface

Set of interfaces inspired from CMS DQM system (monitor elements, collectors).

Application flow inspired from ALICE DQM system, AMORE (cycles).

DQM4HEP packages

One location: https://github.com/DQM4HEP

Webpage: dqm4hep.github.io

The main package : DQM4HEP

Installation package for sub-packages (CMake).

Sub-packages:

- dim: Distributed Information Management (Delphi). Manage client/server communications
- dimjc: DIM Job Control (L. Mirabito). Remote process management using dim.
- levbdim: DIM online event builder (L. Mirabito). Generic online multi-detector event builder
- isoncpp : Json I/O for dimjc ad levbdim
- log4cxx : logging library (use apt-get)
- DQMCore: Core part of the DQM system. Client/server interfaces, analysis, IO, run control interface, plugin management...
- DQMViz: Qt visualization interfaces. Job control gui client, monitoring gui client, run control server gui (standalone).
- xdrstream : Generic Xdr serializer
- xdrlcio: Lcio serialization using xdrstream (buffer -> socket)
- DQM4ILC : ILC specific implementation (marlin helper, Icio streamer, Icio file service, etc ...)

27 avril 2016

DQM4HEP workflow

WORKFLOW

Online builder interface

New package (optionnal) in DQM4HEP: levbdim
Use -DBUILD_EVB=ON cmake flag to compile levbdim support

Generic online event builder based on DIM

- Uses DIM sockets to collect raw data from different source and dump them in shared memory
- Groups all data packets into buffer list by reading them into shared memory
- Pass them to user callback functions

Developed by the SDHCAL team for future combined test beams with ECAL. Can managed many subdetectors (ECAL, HCAL, Cherenkov, TPC, ...)

Interface implemented in DQMCore to feed the DQM system with raw data.

Application provided and use plugin manager to get user raw data converters to event interface

Online builder interface

27 avril 2016

Module applications - analysis module

Purpos

- Receive online events from a collector server and process them
- Produce monitor elements (histograms, scalars, generic TObject)
- Follow the run control signals (SOR, EOR)
- Init : Initialize the application : load dlls, declare services, etc ... Wait for a SOR
- Start of run : start cycles loop, open archive
- Start of cycle : start a cycle of 'process event'
- Process event : Process incoming event, fill monitor elements, etc ...
- End of cycle: send subscribed monitor elements, update archive (opt).
- End of run: Wait for SOR, close archive (opt).
- End: Clean and exit module.

Helpers to evaluate data quality : DQMQualityTest (ie. Kolmogorov or χ^2 test) Quality test results sent together with the monitor elements to the collector

To implement online DQM analysis, user must implement the DQMAnalysisModule interface. A shared library must be build and loaded in the application using the plugin system (export DQM4HEP_PLUGIN_DLL=libMyModule.so).

Gui visualisation

Gui interfaces for DQM client developed :

- Run control, job control, online monitoring
- Written with Qt4 framework
- Easily configurable with json and xml.

Run Control GUI

- Parametrisation of run with run number, detector name, run description and parameters
- Send SOR and EOR signals
- Control run status (State, Started/Stopped time)
- Every action is logged for easy information overview

9/28

Run Control GUI

- Parametrisation of run with run number, detector name, run description and parameters
- Send SOR and EOR signals
- Control run status (State, Started/Stopped time)
- Every action is logged for easy information overview

Run Control GUI

- Parametrisation of run with run number, detector name, run description and parameters
- Send SOR and EOR signals
- Control run status (State, Started/Stopped time)
- Every action is logged for easy information overview

9/28

Run Control GUI

- Parametrisation of run with run number, detector name, run description and parameters
- Send SOR and EOR signals
- Control run status (State, Started/Stopped time)
- Every action is logged for easy information overview

9 / 28

Job Control GUI

• Load and display a list of applications (Collectors, Modules, etc.) available on different hosts

- Load and display a list of applications (Collectors, Modules, etc.) available on different hosts
- Displays informations(Name, Host, PID, Status, etc.) about applications

- Load and display a list of applications (Collectors, Modules, etc.) available on different hosts
- Displays informations(Name, Host, PID, Status, etc.) about applications
- Infos can be updated in "real time"

- Load and display a list of applications (Collectors, Modules, etc.) available on different hosts
- Displays informations(Name, Host, PID, Status, etc.) about applications
- Infos can be updated in "real time"
- Manage Applications (Start/Kill/Restart) with contextual menu

- Load and display a list of applications (Collectors, Modules, etc.) available on different hosts
- Displays informations(Name, Host, PID, Status, etc.) about applications
- Infos can be updated in "real time"
- Manage Applications (Start/Kill/Restart) with contextual menu
- Kill method can be adjusted

- Browser to build histograms selections to display
- Search Function to refine selection.

Monitoring Gui + Browser

List of histograms added from Browser

Monitoring Gui + Browser

Multiple canvas area available

Monitoring Gui + Browser

• Multiple canvas area available

- Multiple canvas area available
- Real ROOT histograms (Can be fitted, zoomed, etc.)

- Multiple canvas area available
- Real ROOT histograms (Can be fitted, zoomed, etc.)
- Histograms descriptions and Quality

- Multiple canvas area available
- Real ROOT histograms (Can be fitted, zoomed, etc.)
- Histograms descriptions and Quality

- Multiple canvas area available
- Real ROOT histograms (Can be fitted, zoomed, etc.)
- Auto Update

Implements online analysis for the SDHCAL m^3 prototype.

Development made in parallel with the DQM4HEP framework Use last DQM4HEP version (currently v04-03-00)

Additional software used :

- Trivent: standalone and generic time clustering.
- CaloSoftWare: various SDHCAL analysis tools from A. Steen:
 - Calo Hit clustering
 - Global and local (Hough) tracking
 - Interaction finder
 - Tools for efficiency/multiplicity estimate

The DQM for SDHCAL provides:

- Analysis tools for online data treatment
- Data conversions (raw buffer -> raw calo hit -> calo hit)
- Shm processors to SDHCAL DAQ
- Set of DOM modules

SDHCAL analysis tools

Online data feeding

Implementation of shm plugin (levbdim) with LCEvent data structure :

- Event info : fill LCEvent information
- SDHCAL RawCalorimeterHit collection creation: from DIFs raw buffer to hits
- Cherenkov RawCalorimeterHit collection creation: from BIF (generally DIF id=3) to cherenkov hits

Send LCEvent to event collector!

Missing: SiWECAL shm plugin. Which raw data structure?

Need conversion to RawCalorimeterHit format (cellID + energy + time stamp)

Online builder - SDHCAL implementation

SDHCAL analysis tools

Event classifier

Class EventClassifier from DQMSDHCAL package

Interface to particle ID for online analysis. User needs to implements <code>processEvent(LCEvent*)</code> and decide for one of the following tag:

Undefined, noise event, beam muon, cosmic muon, charged/neutral em shower, charged/neutral had shower

Various analysis in SDHCAL DQM modules uses this plugin to perform particle id dependent analysis. SDHCAL Event classifier implemented.

Missing: SiWECAL + SDHCAL event classifier. In particular, electrons will be stopped before entering the SDHCAL -> different identification

SDHCAL analysis tools

Electronics mapping

Class DQMElectronicsMapping from DQMCore package

Transparent conversion of (DIF id, Asic id, Channel ID) \leftrightarrow (I, J, layer) \leftrightarrow (x, y, z)

SDHCAL electronics mapping implemented (with Hardroc2).

Missing: SiWECAL electronics mapping

LCCollection converters

Class DQMDataConverter<LCCollection, LCCollection> from DQMCore package

Transparent conversion from one collection to another.

SDHCAL data convert implemented. Converts RawCalorimeterHit collection (DIF, Asic, Channel) to CalorimeterHit collection (x, v, z)

Missing: SiWECAL data conversion (same io types)

SDHCAL analysis tools

Trivent module

Class DQMAnalysisModule from DQMCore package and LCTriventListener from Trivent package

DQMTriventModule is a base class that runs Trivent on trigger event \rightarrow split the input event into time clustered event representing each a particle event.

Global idea :

- Fill Trivent with input collections
- Run Trivent
- For each clustered event: convert each LCCollection using data converter plugins and notify user that a
 physics event has been reconstructed

In DQMSDHCAL, most of the analysis modules inherits this module to analyze directly particle per particle events

Modules

Module

Some modules are already available, they were developed for the SDHCAL but some of them will be easily adaptable to other detectors

- Slow Control : HV, LV, P, T
- Beam Analysis Module : Spill length, particle and clusters Rates
- Asic Analysis Module : Efficiency/Multiplicity per Plane/Asic
- Raw Analysis Module : Plane/DIF/Asic/Channel
- Hit Analysis Module study : Number Of hits per threshold
- Particle Identification : Particle counters and summary
- Event Display: Display per particle type
- Tracking (Hough Transform): Track analysis

Modules - Slow Control

Purpose

Uses Dim to collect information about the SlowControl services registered Completely standalone module. Easy implementation for SiWECal

Monitor Elements

Currently implemented with:

- HV Info
 - Expects a list of HV module/channel
 - Can use wildcard to get a list of services
 - Each HVInfo expects 1 integer (chID) and 4 floats: Vset, Iset, Vout, lout
 - LV Info expects 3 floats : Vset, Vread, IRead
 - Temperature Info expects 1 float

Histograms can then be quickly configure via an xml file to display:

- Evolution of the variables in time as a TGraph
- Instantaneous values as a string

BeamAnalysisModules

Purpose

Inherits from DQMAnalysisModule, no time clusterisation

Can be adapted to SiWECal if providing electronics mapping and geometry conversion.

Monitor Elements

- Instant rate for the current spill for each particle (TScalar)
- Mean rate for the current run for each particle (TScalar)
- Mean number of clusters vs global rate (TProfile)
- Time between two spill (TH1, TScalar)
- Time between two ramfull (TH1, TScalar)
- Spill Length (TH1, TScalar)
- Number of ramfull per Spill (TH1, TScalar)
- Acquisition Time (TH1)

EventDisplayModule

Purpose

Inherits from DQMTriventModule and analyze particle per particle events.

Use CaloSoftWare to find and analyze muons (beam and cosmic ones) in detector.

Can be adapted to SiWECal by providing electronics mapping and geometry conversion.

Monitor Elements

List of Monitor Elements available for each particle type :

- Display last found particle over XY, ZX, ZY plans or in 3D
- Display all particles from the current cycle over XY, ZX, ZY plans or in 3D

Can also be parametrised through xml config file to set drawing option (color, marker etc.)

HitAnalysisModule

Purpose

Inherits from DQMTriventModule.

Use CaloSoftWare to find and analyze clusters in detector.

Not adaptable to SiWECal.

Monitor Flements

- Number of hits for each threshold (0,1,2) in whole detector (TH1)
- Number of hits for each threshold (0,1,2) for each layer (TH1)
- Hit Map for each threshold (0,1,2) for each layer (TH2)

HoughTransformModule

Purpose

Inherits from DQMTriventModule and analyze particle per particle events.

Use CaloSoftWare to find and analyze tracks in detector.

Could be adapted to SiWECal if combined analysis

Monitor Element

List of Monitor Elements already available for each particle type :

- Number of reconstructed track (TH1)
- Chi2 track distribution (TH1)
- Track length (in layers) (TH1)
- Mean cluster size per tracks (TH1)
- Track theta angle distribution (TH1)
- Track phi angle distribution (TH1)

RawAnalysisModule

Purpose

Inherits from DQMAnalysisModule, no time clusterisation.

Takes RawCalorimeterHits in input.

Can be adapted to SiWECal if providing electronics mapping and geometry conversion.

Monitor Element

- Occupancy of each channel (TH1)
- Occupancy of each DIF (TH1)
- Occupancy of each Chamber (TH1)
- Occupancy Map of Asic vs DIF (TH2)
- Per Layer :
 - HitMap for each threshold (TH2)
 - For each DIF in the layer :
 - Occupancy per Asic (TH1)
 - Number of hits per Asic for each threshold (TH1)

AsicAnalysisModule

Purpose

Inherits from DQMTriventModule and analyze particle per particle events.

Use CaloSoftWare to find and analyze muons (beam and cosmic ones) in detector.

Can be adapted to SiWECal by tunning some parameters in xml only

Monitor elements

- Layer efficiency (thr 1,2,3) (TH1)
- Layer multiplicity (TH1)
- Per laver :
 - Asic efficiency map (thr 1,2,3) (TH2)
 - Asic multiplicity map (TH2)
- Asic efficiency (thr 1,2,3) (TH1)
- Asic multiplicity (TH1)
- Asic stacked efficiency map (thr 1,2,3) (TH2)
- Asic stacked multiplicity (TH2)
- N track per asic (TH1)

TestBeam Deployment

Foreseen deployment

- Multiple event collectors (at least 2)
- Multiple monitor element collector (2 or 3)
- Analysis split among available PCUs
- How many PCUs? 1 DAQ + 2 DQM
- How many screens? (At least 2 or 3 would be great)

Conclusion and questions

Conclusion

- Online DQM for SDHCAL developed using DQM4HEP
- Finalizing monitoring depending on your remarks
- Need SiWECal implementation for upcoming beam test in June.

Needs from SiWECal team

- Electronics mapping. Geometry conversion of (DIF, Roc, Channel) \leftrightarrow (I, J, layer) \leftrightarrow (x,y,z)
- Data conversion :
 - from raw data from each DIF (ECAL format) to RawCalorimeterHit collection (DIF, Roc, Channel, time, energy)
 - from RawCalorimeterHit to CalorimeterHit using electronics mapping
- Shm processor using the raw data conversion
- Common analysis tools :
 - · Combined particle ID functions

If you want to see more things implemented in the DQM system for the ECal. let us know!

