Modules over monads and operational semantics

André Hirschowitz¹ Tom Hirschowitz² Ambroise Lafont³

¹Université Côte d'Azur, CNRS, Nice, France

²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France

³University of New South Wales, Australia

FSCD 2020

Summary

What is a programming language (syntax and semantics), mathematically?

This contribution:

- a notion of programming language: transition monads;
- a discipline for automatically generating them;
- generalises the reduction monads of Ahrens et al. (POPL 20)
 - new applications:

```
\overline{\lambda}\mu-calculus \pi-calculus differential \lambda-calculus GSOS specifications
```

simply-typed syntax (and semantics)

Related work

- Reduction monads of Ahrens et al. (POPL 2020)
 - × untyped
 - \times cby λ -calculus out of reach
 - this contribution = a generalisation of reduction monads
- Mathematical Operational Semantics (Turi-Plotkin '97)
 - Deeply developed
 - \times Higher-order languages (such as λ -calculus) only starting to be investigated (Peressoti '17)
- Rewriting with variable binding (categorical approach)
 - e.g. Hamana 2003, T. Hirschowitz 2013, Ahrens 2016
 - \times only congruent transitions \Rightarrow weak reduction out of reach

Outline

Definition of transition monads

Quantities of the property of the property

3 Examples

Basic components of a transition monad

Example: (small-step) cbv λ -calculus.

A term t, u, \ldots reduces to a value v, w, \ldots

Monad of values

- Variables ⊂ Values
- $v[\vec{w}/\vec{x}] \in Values$ (value substitution)

Modules of terms and transitions

value substitution in terms:

$$t[\vec{w}/\vec{x}] \in Terms$$

value substitution in transitions:

$$\frac{t \to v}{t[\vec{w}/\vec{x}] \to v[\vec{w}/\vec{x}]}$$

Generalising cbv λ -calculus, and reduction monads

	Syntax	Semantics	
cbv λ -calculus	Values (monad)	Transitions Source Forms Values	
transition monads	a monad T	T -module morphisms $M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2$	
reduction monads (Ahrens et al. '20)	a monad T	$T \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} T$	

- Untyped case: base category = Set
- Simply-typed case: base category = Set^{Types}

Quick definition of T-modules

(given a monad T)

Components of a T-module M

- a functor M
- a natural transformation $MT \xrightarrow{m} M$
 - ⇒ **substitution** (see below)
- (+ some substitution laws)

Substitution for modules

- $m \in M(X) = "m$ takes free variables in X"
- $m[x \mapsto t_x] =$ "simultaneous substitution in m of every $x \in X$ with $t_x \in T(Y)$ "

$$X \xrightarrow{t_{-}} T(Y) \qquad M(X) \xrightarrow{Mt_{-}} M(T(Y)) \xrightarrow{m_{Y}} M(Y) \\ m \longmapsto m[x \mapsto t_{X}]$$

Constructing transition monads

We have a definition of programming languages as transition monads.

Can we construct them from simple specifications?

We provide:

- a notion of simple specification = signature for transition monads
- a theorem ensuring the existence (unique up to iso) of a transition monad matching a spec

Three-level specification

Transition monad =
$$(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$$

Three spec steps:

Step	Component	Nature	Specification
1	T	monad (syntax)	Operations + Equations
2	M_1, M_2	<i>T</i> -modules	Operations + Equations
3	Trans, source, target	"transition structure"	Transition rules as $\underbrace{t_1 \rightarrow u_1 \dots t_n \rightarrow u_n}_{t \rightarrow u}$

- ⇒ Three notions of signatures in the paper (one for each step), building upon
 - reduction monads, Ahrens et al. POPL '20
 - (steps 1-2) previous work by Fiore-Hur (equational systems) and Ahrens et al. (signatures for monads).

Examples

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Upcoming examples

1.	cbn λ-calculus	full signature (sketched)
2.	cbn λ-calculus	signature for <i>T</i>
3.	cbn λ-calculus	left congruence rule for application
1	cbn λ-calculus	congruence rule for abstraction
4.	CDII A-Calculus	(involves a binding variable)
5.	cbv λ-calculus	signature for M_i
6.	differential λ -calculus	signature for M_i
7.	differential λ -calculus	signature for <i>T</i>

Example 1/7: small-step cbn λ -calculus

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Signature for cbn λ -calculus

Step	Component	Nature	Specification
1	T	monad	Operations = app, abs
2	M_1, M_2	T-modules	$M_1 = M_2 = T$
3	Trans, source, target	"transition structure"	eta-rule + congruences

Example 2/7: Specify the monad of λ -terms

cbn λ -calculus: (Values, $T \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} T$)

Syntax "generated" by

application	$T \times T \to T$	
λ -abstraction	$T' \rightarrow T$	T' = module of terms depending
$\lambda x.t$		on an extra variable
(variables)	$Var \rightarrow T$	

Signature for T

2 operations (application/abstraction)

- Monads always have variables: no need to specify them
- "operation" = module morphism: compatible with substitution:

$$(t_1 t_2)[y \mapsto u_y] = t_1[y \mapsto u_y] t_2[y \mapsto u_y]$$

References "Second-order equational logic" (Fiore-Hur '10), "Modular specification of monads" (Ahrens et al. '19)

Example 3/7: Left congruence for application

cbn
$$\lambda$$
-calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Left congruence rule for application

$$\frac{t_1 \to t_2}{app(t_1, u) \to app(t_2, u)}$$

• Easy interpretation of transition rules:

Components of the rule	Interpreted as
3 "metavariables":	a "metavariable" <i>T</i> -module
t_1, t_2, u	$V = T \times T \times T$
1 "premise":	$V \rightarrow M_1 \times M_2$ (<i>T</i> -module
$t_1 \rightarrow t_2$	$(t_1, t_2, u) \mapsto (t_1, t_2)$ morphism)
"conclusion":	$V \rightarrow M_1 \times M_2$
$app(t_1, u) \rightarrow app(t_2, u)$	$(t_1, t_2, u) \mapsto (app(t_1, u), app(t_2, u))$

¹introduced by Ahrens et al. in the case of reduction monads.

Example 4/7: Binding variables in rules

$$\mathsf{cbn}\ \lambda\mathsf{-calculus}\colon (T, T \xleftarrow{\mathsf{source}} \mathsf{Trans} \xrightarrow{\mathsf{target}} T)$$

Congruence rule for abstraction

$$\frac{t_1 \to t_2}{\lambda x. t_1 \to \lambda x. t_2}$$

- "metavariables" t_1 and t_2 : terms that may depend on x.
- T' = T-module of terms depending on an additional variable

(in fact, abstraction is an operation $T' \xrightarrow{abs} T$)

Components of the rule	Interpreted as
2 "metavariables": t_1, t_2	a "metavariable" T -module $V = T' \times T'$
•••	

Example 5/7: Specify M_i for cbv

Transition monad =
$$(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$$

cbv λ -calculus = $(Vals, Tms \xleftarrow{source} Trans \xrightarrow{target} Vals)$

Syntax of values and terms

$$Vals: v, w ::= x | \lambda x.t$$
 $Tms: t, u ::= x | \lambda x.t | t u$
 $::= v | t u$
 $\Rightarrow terms = binary trees of values$
 $Tms = BinTree \circ Vals$

In fact, by definition of a transition monad,

• M_i is always of the shape $S_i \circ T$. Here,

$$T = Vals$$
 $M_1 = BinTree \circ T$ $M_2 = Id \circ T (= T)$

• Signature for M_i = Signature for S_i

Signature for BinTree

1 binary operation (accounts for tu in Tms), no equation

Example 6/7: Specifying M_i for DLC

Transition monad = $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

Differential λ -calculus (DLC)

Syntax monad T of terms (a variant of λ -calculus) Semantics a term t reduces to a multiterm $t_1 + \cdots + t_n$

$$M_1 = Id \circ T (=T)$$
 $M_2 = Formal Sum \circ T$

Signature for FormalSum

Operations	a constant 0, a binary operation +
Equations	commutativity, associativity, unitality

Example 7/7: the monad of DLC

differential λ -calculus: $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

• Syntax of DLC = variant of λ -calculus

Application of DLC

$$app:(t,U)\mapsto tU$$

input of app = a term t and a multi-term $U = u_1 + \cdots + u_n$ = a term and a formal sum of terms

input module of $app = T \times (FormalSum \circ T)$

Signature for T

3 operations (no equation):

application t U	$T \times (FormalSum \circ T) \rightarrow T$
differential application $Dt \cdot u$	$T \times T \to T$
λ-abstraction	(as before)

Future work: strengthen the recursion principle

Initial semantics (general framework)

- specified object by a signature $\Sigma = initial \ object$ in the category of models of Σ
- *initiality* ⇒ recursion principle

Future work alternative notion of signatures with more general models (as in Ahrens et al. '20)

⇒ stronger recursion principle

A difficulty with general models à la Ahrens et al. '20: DLC

 $(T, M_1 \leftarrow Trans \rightarrow M_2)$ specified by a 3-step signature

component	Σ_1	Σ_2	Σ_3
specifies	T	M_1, M_2	\leftarrow Trans \rightarrow

Models of $(\Sigma_1, \Sigma_2, \Sigma_3)$

transition monads $(T, M_1 \leftarrow Trans \rightarrow M_2)$ + extra structure, s.t.

$$\emph{\textit{T}}=$$
 'the' initial model of Σ_1

(in Ahrens et al. '20,
$$T = any$$
 model of Σ_1)

 (M_1, M_2) = 'the' initial model of Σ_2

Specifying the transition rules of DLC

transitions involve intermediary syntactic constructions

$T =$ 'the' initial model of Σ_1	$T=$ any model of Σ_1	
define them by recursion	recursion not available!	

Conclusion

A mild generalisation of Ahrens et al.'s reduction monads '20
 ⇒ new notion of programming language:

	Syntax	Semantics
		T-module morphisms
transition monads	a monad T	$Trans$ $S_1 \circ T$ $S_2 \circ T$

- Associated notion of specification
 - with easy interpretation of transition rules
- Numerous new examples:

 $\overline{\lambda}\mu$ -calculus π -calculus GSOS specifications cby λ -calculus differential λ -calculus