Comparison of CALIPSO and AeroCom 2019 modelled aerosol extinction profiles over the Arctic

Presentation by

Goutam Choudhury

Group 2

Assistants: Jonas, Paul G and Ksenia

NEGI course 2019- Climate science at high latitudes: eScience for linking Arctic measurements and modeling

Contents

- 1. Motivation and objectives
- 2. Data and methods
- 3. Methods
- 4. Results
- 5. Conclusion

Motivation and objectives:

Motivation: vertical distribution of aerosols

Motivation:

- 1. The vertical distribution of aerosols highly impacts the transport of (shortwave and longwave) radiation through the atmosphere as well as the formation of clouds and precipitation patterns.
- 2. It also reflects aerosol life time, higher up aerosols indicating a longer life time of these particles in the atmosphere.
- 3. This will ultimately impact the assessment of climate relevant parameters such as the anthropogenic aerosol radiative forcing, which is among the highest uncertainties in climate models.

Objectives:

The objective of this project is to answer the following questions.

- 1. Which model simulates the best aerosol extinction profile and mean aerosol extinction height in the arctic over different time scales (annual and seasonal)?
- 2. Are there any seasonal variations in the aerosol extinction profile and mean extinction height?

Data

Data Used	Details	Temporal resolution	Spatial resolution (lon x lat x levels)
CALIPSO (satellite)	Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lev-3 gridded data	monthly (2010)	5° X 2° X 60m
GFDL (model)	Geophysical Fluid Dynamics Laboratory (GFDL)	monthly (2010)	1.25° x 1° x 33
MIROC- SPRINTARS (model)	Model for Interdisciplinary Research on Climate (MIROC) Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)	monthly (2010)	0.56° x 0.56° x 57

Methods

- All the data were initially cropped for latitudes > 70 N to approximate the Arctic region.
- The mean extinction height is calculated for heights up to 10 kms as per Koffi et al. (2012) using the formula

$$Z = \frac{\sum_{i}^{n} Bi \times Hi}{\sum_{i}^{n} Bi}$$

Where, Z is the mean aerosol extinction height (in km), Bi and Hi are the aerosol extinction coefficient (in km-1) and altitude at level i respectively.

Results

Annual mean profiles of extinction coefficient (Model vs Observation)

Figure 1: Absolute and normalized profiles of annual mean aerosol extinction coefficient (km-1) and mean aerosol extinction height (Z in km) for the year 2010 averaged over the Arctic

 The MIROC-SPLINTARS model performs better in simulating the annual mean aerosol extinction profile as compared to the GFDL model

Results

- The CALIOP extinction profile shows relatively higher values close to the surface in D-J-F and S-O-N (winter and autumn months).
- Such higher values close to the surface may occur because of accumulation of aerosols due to stable atmosphere (temperature inversion) or because of lesser frontal activities.
- The GFDL model performs better than MIROC-SPLINTARS model in simulating the lower level extinction profile in D-J-F and S-O-N months.
 Whereas MIROC-SPLINTARS performs better in rest of the months.

Seasonal mean profiles of extinction Coefficient (Model vs Observation)

Figure 2: Seasonal mean extinction coefficients in km-1 and mean aerosol extinction height (Z) in km) for model outputs and CALIOP data for the year 2010

Results

Figure 3: CALIOP and modelled mean extinction height (in km) for different seasons over the Arctic

- The mean extinction height is comparatively less in D-J-F and S-O-N months in both the models and observations.
- The models overestimate the mean extinction height in all the season.
- The models are capable of simulating the seasonal variation of mean extinction height.
- MIROC-SPLINTARS performs relatively better in simulating the seasonal mean extinction height .

Conclusion

- The MIROC-SPLINTARS model performs better in simulating the annual mean aerosol extinction profile as compared to the GFDL model.
- The CALIOP extinction profile shows relatively higher values close to the surface in D-J-F and S-O-N (winter and autumn months).
- The models overestimate the mean extinction height in all the season but are capable of simulating the seasonal variation of mean extinction height.
- MIROC-SPLINTARS performs relatively better in simulating the seasonal mean extinction height .