Master ACSI Architectures pour le Traitement Numérique

Cours Habib MEHREZ

Laboratoire d'Informatique de Paris 6, Université Pierre et Marie Curie 4, place Jussieu, 75252 Paris cedex 5

ADDITION

- Opérateurs arithmétiques
- Algorithmes et architectures pour l'addition
- Additif: optimisation des chemins de données arithmétiques par l'utilisation de l'arithmétique redondante

ADDITION

Opérateurs arithmétiques

Codage des nombres

a _n	a _{n-1}	a _{n-2}			a_0	a ₋₁	a ₋₂			a _{-m}
Bit de Signe	n bits: Partie entière			m bits: Partie fractionnaire						

Signe et grandeur

$$A = (-1)^{a_n} \sum_{i=-m}^{i=n-1} a_i 2^i$$

Complément à 1

$$A = -a_n \sum_{i=-m}^{i=n-1} (1 - a_i) 2^i + (1 - a_n) \sum_{i=-m}^{i=n-1} a_i 2^i$$

Complément à 2
$$A = -a_n 2^n + \sum_{i=-m}^{i=n-1} a_i 2^i$$

Codage des nombres (ex sur n=3 bits)

Signe et grandeur	Complément à 1	Complément à 2	
+3=011	+3=011	+3=011	
+2=010	+2=010	+2=010	
+1=001	+1=001	+1=001	
+0=000	+0=000	+0=000	
-0=100	-0=111	-1=111	
-1=101	-1=110	-2=110	
-2=110	-2=101	-3=101	
-3=111	-3=100	-4=100	
-2 ⁿ⁻¹ +1<=A<=2 ⁿ⁻¹ -1	-2 ⁿ⁻¹ +1<=A<=2 ⁿ⁻¹ -1	-2 ⁿ⁻¹ <=A<=2 ⁿ⁻¹ -1	

Codage des nombres

Passage d'une représentation à une autre

Signe et grandeur

$$A = 0 a_{n-1} a_{n-2} \cdots a_1 a_0 a_{-1} a_{-2} \cdots a_{-m}$$

 $-A = 1 a_{n-1} a_{n-2} \cdots a_1 a_0 a_{-1} a_{-2} \cdots a_{-m}$

Complément à 1

$$A_1 = 0 a_{n-1} \cdots a_0 \cdots a_{-m}$$

 $-A_1 = 1 (1-a_{n-1}) \cdots (1-a_0) \cdots (1-a_{-m})$

Complément à 2

$$A_2 = 0 a_{n-1} \cdots a_0 \cdots a_{-m}$$

 $-A_2 = 1 (1-a_{n-1}) \cdots (1-a_0) \cdots (1-a_{-m}) + 2^{-m}$

$$-A_2 = -A_1 + 2^{-m}$$

Opérateur simple

Complémenteur à 1 avec commande

Premier algorithme

Deuxième algorithme

En commençant par les LSB, on garde tous les bits jusqu'au premier « 1 » rencontré inclus, puis on complémente tous les bits suivants.

Complémenteur à 2 Série

- M est initialisé à « 0 »
- Tous les a_i=0 passent, le premier « 1 » = 1
- Le premier « 1 » sera piègé => complémenter tous les a_i suivants

$$M_{i+1} \leftarrow M_i OR a_i$$

Si Mi ←1 alors M_{i+1}←1 qlq a_i

Complémenteur à 2 Parallèle à propagation

Complémenteur à 2 Rapide (anticipation des commandes)

Complémentaire à 2 sur N bits

Complémentaire à 2 version plus rapide

Opérateurs arithmétiques

Additionneur en complément à 2

Les 2 opérandes doivent être codés sur le même nombre de bits, sinon, on fait une extension de signe.

Extension de signe

Exemple:

$$A = 0011 -> 3$$

$$B = 1100 -> -4$$

$$A = 00011 -> 5bits$$

$$B = 1100 -> 4bits$$

Résultat Faux !!

Résultat Bon !!

Opérateurs arithmétiques

Problème de dépassement de capacité (overflow)

$$OV = S_A S_B S'_R + S'_A S'_B S_R = R_{n-1} \oplus R_n$$

Opérateurs d'addition

Additionneur complet

$$a_{i} + b_{i} + r_{i-1} = s_{i} + 2r_{i}$$
 $s_{i} = (a_{i} + b_{i}) + r_{i-1}$
 $r_{i} = (a_{i} + b_{i})r_{i-1} + a_{i}b_{i}$
 $r_{i} = a_{i} \cdot r_{i-1} + b_{i} \cdot r_{i-1} + a_{i} \cdot b_{i}$

Additionneur série à retenue sauvegardée (CSA)

Opérateurs d'addition

Subtracteur série

Additionneur/Subtracteur série

ADDITION

Algorithmes et architectures

Addition à propagation de retenue

Additionneur parallèle à retenues propagées « Ripple carry »

Temps	O(N)
Surface	O(N)

Additionneur/Subtracteur parallèle

Addition à reports anticipes

$$S_i = (A_i \oplus B_i) \oplus R_{i-1}$$
 $R_i = (A_i \oplus B_i)R_{i-1} + A_iB_i$

On pose:
$$P_i = A_i \oplus B_i$$
 $G_i = A_i \cdot B_i$

D'où:
$$S_i = P_i \oplus R_{i-1}$$
 $R_i = G_i + P_i R_{i-1}$

On va exprimer les R_i en fonction des P_i et_i G_i

$$S_{i+1} = P_i \oplus R_i$$

 $R_{i+1} = G_{i+1} + P_{i+1}R_i = G_{i+1} + P_{i+1}(G_i + P_iR_{i-1}) = G_{i+1} + P_{i+1}G_i + P_{i+1}P_iR_{i-1}$

$$S_{i+2} = P_{i+1} \bigoplus R_{i+1}$$

$$R_{i+2} = G_{i+2} + P_{i+2}R_{i+1} = G_{i+2} + P_{i+2}(G_{i+1} + P_{i+1}R_i) = G_{i+2} + P_{i+2}G_{i+1} + P_{i+2}P_{i+1}G_{i+} + P_{i+2}P_{i+1}R_i R_{i-1}$$

$$S_{i+3} = P_{i+2} \oplus R_{i+2}$$

$$R_{i+2} = G_{i+3} + P_{i+3}R_{i+2} = G_{i+3} + P_{i+3}G_{i+2} + P_{i+3}P_{i+2}RG_{i+1} + P_{i+3}P_{i+2}P_{i+1}G_i + P_{i+3}P_{i+2}P_{i+1}P_iR_{i-1}$$

Addition à reports anticipes

Addition à reports anticipes sur N bits séries

Addition à reports anticipes

$$\begin{split} S_{i+3} &= P_{i+2} \bigoplus R_{i+2} \\ R_{i+3} &= G_{i+3} + P_{i+3} R_{i+2} = G_{i+3} + P_{i+3} G_{i+2} + P_{i+3} P_{i+2} G_{i+1} + P_{i+3} P_{i+2} P_{i+1} G_i + P_{i+3} P_{i+2} P_{i+1} P_i R_{i-1} \\ R_3 &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 R_{-1} \\ R_7 &= G_7 + P_7 G_6 + P_7 P_6 G_5 + P_7 P_6 P_5 G_4 + P_7 P_6 P_5 P_4 R_3 \\ R_{11} &= G_{11} + P_{11} G_{10} + P_{11} P_{10} G_9 + P_{11} P_{10} P_9 G_8 + P_{11} P_{10} P_9 P_8 R_7 \\ R_{15} &= G_{15} + P_{15} G_{14} + P_{15} P_{14} G_{13} + P_{15} P_{14} P_{13} G_{12} + P_{15} P_{14} P_{13} P_{12} R_{11} \\ R_3 &= G_{3,0} + P_{3,0} R_{-1} \\ R_7 &= G_{7,4} + P_{7,4} R_3 \\ R_{11} &= G_{11,8} + P_{11,8} R_7 \\ R_{15} &= G_{15,12} + P_{15,12} R_{11} \\ \\ R_3 &= G_{3,0} + P_{3,0} R_{-1} \\ R_7 &= G_{7,4} + P_{7,4} (G_{3,0} + P_{3,0} R_{-1}) \\ R_{11} &= G_{11,8} + P_{11,8} (G_{7,4} + P_{7,4} (G_{3,0} + P_{3,0} R_{-1})) \\ R_{15} &= G_{15,12} + P_{15,12} (G_{11,8} + P_{11,8} (G_{7,4} + P_{7,4} (G_{3,0} + P_{3,0} R_{-1}))) \\ R_{15} &= G_{15,12} + P_{15,12} (G_{11,8} + P_{11,8} (G_{7,4} + P_{7,4} (G_{3,0} + P_{3,0} R_{-1}))) \\ \end{split}$$

Addition à reports anticipes sur N bits parallèles

Accéleration de la retenue

Absorption

Generation

$$\begin{array}{c|ccccc}
1 & \longleftarrow & \text{Cin} \\
P=0 & \longleftarrow & 1 & \longleftarrow & \text{Ai} \\
G=1 & \longleftarrow & 1 & \longleftarrow & \text{Bi}
\end{array}$$

Propagation

Accéleration de la retenue

Calcul de P&G en fonction de deux bits de même poids

Ai
$$\longrightarrow$$
 Pi = Ai \oplus Bi

Bi \longrightarrow Gi = Ai $\&$ Bi

Calcul de la somme et de la retenue à partir de PiGi

Ri-1
$$\longrightarrow$$
 Si = Pi \oplus Ri-1 \longrightarrow Gi \longrightarrow Ri = Gi + Pi $\&$ Bi-1

Calcul de P&G en fonction de Pi & Gi

Pi-1
$$\longrightarrow$$
 P = Pi-1 & Pi
Pi \longrightarrow R \longrightarrow G = Gi + Pi & Gi-1

Recurrence SOLVER (Sklansky)

Additionneur à saut de retenue

Principe de l'additionneur à saut de retenue

A1 B1 A0 B0 A2 B2 A3 B3 A4 B4 Ci 888888888888888 †Ph $C_{i+1} = C_iP_h + C_hP_h$ Р P Ci FA FA FA FA Ch

Ph: Propagation du bloc d'additionneur

Additionneur à saut de retenue

Temps	O(√n)
Surface	O(n)

Additionneur à saut de retenue

On considère p blocs sur k bits, soit N= p*k

 $Tp=k.tp_{FA} + (p-2)tp_{Mux} + k tp_{FA} = 2.k.tp_{FA} + (p-2)tp_{Mux}$ Or p=N/k

 \Rightarrow Tp= 2.k.tpFA + (N/k -2)tpMux \Rightarrow Tp'(k)= 2.tpFA - N/k². tpMux

Tp'(k)= $0 \Rightarrow k0 = sqrt(N..tpMux / 2.tpFA)$

→ Tpmin= 2.k0.tpFA + (N/k0 -2)tpMux

Addition à retenue conditionnelle (Carry select adder)

Principe

Addition à retenue conditionnelle (Carry select adder)

Additionneur 32 bits

Addition à selection de retenue

Temps	O(√n)
Surface	O(N)

Addition à selection de retenue

Propagation de type MANCHESTER

$$\overline{R_i} = R_i + P_i \overline{R_{i-1}}$$

$$\overline{\overline{S_i}} = P_i \oplus \overline{R_{i-1}}$$

Propagation de type MANCHESTER

Exemple sur 4 bits

Conclusions

Additionneur	Temps	Surface
Additionneur à propagation de retenue	O(n)	O(n)
Additionneur à sélection de retenue	O(√n)	O(n)
Additionneur à saut de retenue	O(√n)	O(n)
Additionneur recurrence SOLVER (Sklansky)	O(log(n))	O(n*log(n))
Additionneur à report anticipe série	O(n)	O(n)
Additionneur à report anticipe parallèle	O(log(n))	O(n)

ADDITIF

Optimisation des chemins de données arithmétiques par l'utilsation de l'archimétique redondante

Arithmétique mixte : Systèmes classiques de numération (NR)

Numération simple de position

- → Nombre non signé uniquement
- number of the end of t
- un nombre A sur N chiffres est tel que :

$$A = \sum_{i=0}^{i=N-1} x_i * 2^i$$

$$A \in \{0,...,2^N - 1\} \text{ et } x_i \in \{0,1\}$$

Complément à la base

- → Nombre signé
- ⇒ en base 2 : un chiffre => un bit
- un nombre A sur N chiffres est tel que :

$$A = -x_{N-1} * 2^{N-1} + \sum_{i=0}^{i=N-2} x_i * 2^i$$

$$A \in \{-2^{N-1}, ..., 2^{N-1} - 1\} et \ x_i \in \{0,1\}$$

- **⇒** Systèmes autonomes
- **○** A chaque nombre correspond un code unique et compact
- Opérateurs, fonctions élémentaires et primitives de contrôle déjà existants

Arithmétique mixte : Systèmes redondants de numération (R)

Notation Carry Save (CS)

Systèmes de numération en base 2 non signé ou signé

- \bigcirc un chiffre $\in \{0,1,2\} => \text{deux bits}$
- un nombre CS sur N chiffres est tel que :

$$CS = \sum_{i=0}^{i=N-1} cs_i^0 * 2^i + \sum_{i=0}^{i=N-1} cs_i^1 * 2^i \quad avec \quad cs_i^0 + cs_i^1 = cs_i \in \{0,1,2\}$$

en non signée :
$$CS \in \{0,...,2^{N+1}-2\}$$

en signée : $CS \in \{-2^N,...,2^N-2\}$

- Systèmes non autonomes, plusieurs codages pour un même nombre
- **⇒** Notation équivalente à une addition non encore effectuée en arithmétique classique
- Opérateur : addition en temps constant

Arithmétique mixte : Systèmes redondants de numération (R)

Notation Borrow Save (BS)

Systèmes de numération en base 2 non signé ou signé

- \Box un chiffre $\in \{-1,0,1\} =$ deux bits
- un nombre BS sur N chiffres est tel que :

$$BS = \sum_{i=0}^{i=N-1} b s_i^+ * 2^i - \sum_{i=0}^{i=N-1} b s_i^- * 2^i \quad avec \quad b s_i^+ - b s_i^- = b s_i \in \{-1,0,1\}$$

en non signé et en signé : $BS \in \{2^N + 1,...,2^N - 1\}$

- Systèmes non autonomes, plusieurs codages pour un même nombre
- **⇒** Notation équivalente à une soustraction non encore effectuée
- Opérateurs : addition en temps constant

De quoi s'agit il?

Notation Classique (NR)

en complément à 2

N bits

Ex: +5=0101

 $O(Log_2(N))$

Notation redondante

2N bits

O(1)

Implications

Notation Classique (NR)

Notation Redondante CS

Gains importants en vitesse, surface et consommation

Architectures des additionneurs classiques

Additionneur « carry ripple adder »

- 1 Couche de Full-Adders, avec propagation de retenues
 - Surface en O(N)
 - Délai en O(N)

Additionneurs « carry lookahead adder »

- Surface en O(N.log(N))
- ⇒ Délai en O(log(N))

Architectures des additionneurs mixtes et redondants

Additionneurs mixtes

- 1 Couche de Full-Adders sans propagation de retenue
 - Surface en O(N)
 - Délai en O(1)

Additionneurs redondants

- 2 Couches de Full-Adders sans propagation de retenue
 - ⇒ Surface en O(N)
 - Délai en O(1)

Additionneurs : comparatif en délai

Référence : carry lookahead adder

Additionneurs mixtes:

- temps constant
- ⇒ réduction de 47% à 73%

Additionneurs redondants:

- temps constant
- ⇒ réduction de 10% à 56%

- ⇒Additionneurs mixtes et redondants systématiquement plus performants en délai
- ⇒Le gain croit avec la dynamique

Additionneurs : comparatif en surface

Référence : carry lookahead adder

Additionneurs mixtes:

- ⇒ réduction de 40% à 69%
- identique au carry ripple adder

Additionneurs redondants:

- ⇒ réduction de 1% à 22%
- ⇒ 2 fois le carry ripple adder

- Surfaces des additionneurs mixtes et redondants inférieures à la référence
- ⇒Le gain croit avec la dynamique

Additionneurs : comparatif en consommation

Référence : carry lookahead adder

Additionneurs mixtes:

- ⇒ réduction de 43% à 49%
- inférieure au carry ripple adder

Additionneurs redondants:

- ⇒ augmentation de 2% à 4%
- ⇒ < 2 fois carry ripple adder
 </p>

- Consommation des additionneurs mixtes et redondants de «très inférieures à égales»
- ⇒rapport de consommation quasi constant pour une même architecture

