

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Physiology</u> <u>Hormones</u> <u>The Endocrine System</u>

The Endocrine System

Part A Endocrine glands
The endocrine system is composed of endocrine glands (glands that release directly into the). These glands are found all over the body.
Head/brain: the, the pituitary gland, and the pineal gland
Neck: the thryoid gland
Chest: the thymus
Abdomen: the, the adrenal glands, and the gonads (in males, in
females).
Items: hormones pancreas hypothalamus bloodstream gastrointestinal tract ovaries testes enzymes

Part B Hormones Which of the following statements about hormones are true? Select all that apply. hormones are proteins that catalyse biological reactions hormones are substances that are released by one part of the organism and act on another part of the organism hormones are substances that are released by one neuron into the space between it and another neuron all hormones are proteins all hormones are steroids some hormones are steroids and some hormones are proteins Part C Endocrine vs nervous system Both the endocrine system and the nervous system help an organism respond to external changes. In many contexts, the two systems work together and are sometimes collectively referred to as the neuroendocrine system. However, there are some differences between the two systems. Fill in the table below to identify these differences. **Endocrine system Nervous system** signal type(s) signal carried by... speed of response duration of response Items: electrical impulses hormones neurons long duration slower (seconds to days) blood and neurotransmitters very fast (milliseconds) short duration

Home Gameboard Biology Physiology Hormones Hormones

Hormones

Part A Types of hormones

In animals, the two most common types of hormones are steroid hormones and peptide/protein hormones. The table below gives some examples of animal hormones.

Identify which type each hormone is.

Hormone	Туре
insulin	
glucagon	
testosterone	
oestrogen	
follicle-stimulating hormone (FSH)	
luteinizing hormone (LH)	
cortisol	
antidiuretic hormone (ADH)	

ı	ŧΛ	n	\sim	٠
ı	15		15	

steroid

peptide/protein

Part B	Steroid precursor
What is	the precursor molecule that most steroid hormones are synthesised from?
Part C	Hormone action
Which o	f the following statements are correct? Select all that apply.
	steroid hormones pass through the membrane of target cells and bind to receptor molecules inside the cell
	the binding of a hormone to a receptor on the outside of the target cell membrane can trigger a series of chemical reactions inside the cell
	steroid hormones cannot pass through the membrane of target cells and so they bind to receptor molecules on the outside of the cell membrane
	peptide/protein hormones cannot pass through the membrane of target cells and so they bind to receptor molecules on the outside of the cell membrane
	the binding of a hormone to a receptor inside the target cell forms a complex that can acts as a transcription factor, causing specific genes to be expressed
	peptide/protein hormones pass through the membrane of target cells and bind to receptor molecules inside the cell

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 39

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones Homeostasis

Homeostasis

Part A	Defining homeostasis
Which o	of the following is the definition of homeostasis?
	the maintenance of body temperature within restricted limits
	the maintenance of blood water potential within restricted limits
	when the response produced by the control system leads to a decrease in the stimulus detected by the receptor and turns the system off
	when a response produced by the control system leads to an increase in the stimulus detected by the receptor
	the maintenance of an internal environment within restricted limits

Part B Negative feedback
Negative feedback is an important mechanism in homeostasis.
Drag the steps below into the correct order on the right to show how negative feedback helps ensure homeostasis.
Available items
the change from the normal state is detected by sensory cells
the sensory cells stop responding
the state returns to the normal state
the response of the endocrine system/nervous system stops
the endocrine system/nervous system produces a signal in response
a change from the normal state occurs
Part C Examples of negative feedback
Which of the following things are regulated by negative feedback in mammals? Select all that apply.
blood pH
blood pressure

Created for isaacphysics.org by Lewis Thomson

blood clotting

blood water potential

internal body temperature

blood glucose levels

uterine contractions during childbirth

Gameboard:

STEM SMART Biology Week 39

Home Gameboard Biology Physiology Hormones The Hypothalamus and the Pituitary Gland

The Hypothalamus and the Pituitary Gland

The hypothalamus is sometimes called the "control centre" of the brain. It receives signals from other parts of the nervous system and sends signals to other endocrine glands via the pituitary gland. The pituitary gland is sometimes called the "master gland" because it secretes hormones that regulate almost all of the other endocrine glands.

There are various subsystems within the endocrine system called "axes" that all involve the hypothalamus and the pituitary gland. These include:

- HPA axis (hypothalamic-pituitary-adrenal axis)
- HPG axis (hypothalamic-pituitary-gonadal axis)
- HPT axis (hypothalamic-pituitary-thyroid axis)

The hypothalamus connects to the pituitary gland in two different ways. It connects to the anterior pituitary gland via blood vessels, and it connects to the posterior pituitary gland via neurons.

Part A HPA axis

The HPA axis (hypothalamic-pituitary-adrenal axis) is responsible for releasing cortisol, one of the main "stress hormones" which is involved in increasing blood glucose levels and increasing blood pressure.

When a stressful stimulus is detected, corticotropin-releasing hormone (CRH) is released, which stimulates the release of adrenocorticotropic hormone (ACTH), which stimulates the release of cortisol.

Match the hormone to the endocrine gland in the table below.

Hormone	Endocrine gland			
adrenocorticotropic hormone (ACTH)				
corticotropin-releasing hormone (CRH)				
cortisol				
Items: adrenal glands hypothalamus ovaries pancreas pituitary glands	land testes thymus thyroid gland			

Part B HPG axis

The HPG axis (hypothalamic-pituitary-gonadal axis) is responsible for releasing oestrogen and testosterone, two major "sex hormones" which are involved in the development of the reproductive systems during puberty, among other things.

In males, the release of gonadotropin-releasing hormone (GnRH) stimulates the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which stimulate the release of testosterone and the production of sperm cells.

Match the hormone to the endocrine gland in the table below for males.

Hormone	Endocrine gland
follicle-stimulating hormone (FSH)	
gonadotropin-releasing hormone (GnRH)	
luteinizing hormone (LH)	
testosterone	
Items: adrenal glands hypothalamus ovaries pancreas pituitary glan	nd testes thymus thyroid gland

Part C HPT axis

The HPT axis (hypothalamic-pituitary-thyroid axis) is responsible for releasing thyroid hormones (T3 and T4) which are involved in regulating the body's metabolism.

The release of thyrotropin-releasing hormone (TRH) stimulates the release of thyroid-stimulating hormone (TSH), which stimulates the release of thyroid hormones (T3 and T4).

Match the hormone to the endocrine gland in the table below.

Hormone	Endocrine gland
thyroid hormones (T3 and T4)	
thyroid-stimulating hormone (TSH)	
thyrotropin-releasing hormone (TRH)	

Items:

adren	nal glands	hypothalamus	ovari	es	pancreas	pituitary gland	testes	thymus	thyroid gland	d L

Part D Regulation

In the examples given above, the hormones released by the adrenal glands/gonads/thyroid gland inhibit the release of the hormones released by the hypothalamus.

What is the name given to this mechanism which ensures that hormone levels will not keep increasing?

Part E Pituitary parts

In the examples given above, the hormones released by the hypothalamus travel to the pituitary gland via the bloodstream.

Which part of the pituitary gland will release hormones in response to this?

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 39

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones Adrenaline

Adrenaline

Adrenaline is one of the hormones involved in an animal's "fight or flight" response. When an animal detects a threat, the hypothalamus sends a signal through the sympathetic nervous system to trigger the release of adrenaline into the bloodstream.

Part A Source
Name the endocrine gland in humans that releases adrenaline into the bloodstream.
Part B Responses
Which of the following physiological responses are triggered by the binding of adrenaline to target cells? Select all that apply. decreased heart rate glycogenolysis in the liver smooth muscle relaxation in the lungs glycogenesis in the liver smooth muscle contraction in the lungs increased heart rate

Part C	Functions
How do	the physiological responses triggered by adrenaline help the organism respond to a threat? Select apply.
	the digestive system works faster
	aerobic respiration rates can increase
	oxygen uptake is increased
	skeletal muscles can contract more frequently, allowing the organism to move quickly for a longer period of time
	blood glucose levels are increased
	more water is reabsorbed into the blood

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 39

<u>Home</u> <u>Gameboard</u> <u>Biology</u> Physiology Hormones The Menstrual Cycle

The Menstrual Cycle

The menstrual cycle is the series of changes that occur in the ovaries and uterus of female humans and a few other mammal species. These changes include menstruation, and are controlled by changes in hormone levels during the cycle.

Figure 1: Menstrual cycle hormone levels in female humans. Day 0 corresponds to the beginning of menstruation, when the endometrium (uterine lining) is shed. Day 14 corresponds to ovulation, when the egg is released from the ovary.

Part A Hormones

Match the hormone to the graph line in Figure 1.

Figure label	Hormone
Α	
В	
С	
D	

Items:

luteinizing hormone (LF	d) oestrogen	follicle-stimulating hormone (FSH)	progesterone

Part B Locations and functions

Complete the table below.

Hormone	Released from	Function
		causes the pituitary gland to release hormones
		causes the endometrium to thicken before ovulation
		causes the ovarian follicle to release the egg, stimulates the production of progesterone and oestrogen
		helps maintain the thickness of the endometrium after ovulation and inhibits FSH and LH production
		causes maturation of the follicle, which increases oestrogen levels

Items:

ovaries		Follicle-stimulating hormone (FSH)		pituitary gland		Luteinizing hormone (LH)	progesterone	
hypothal	am	ius	oestrogen	Gonadotropin-re	eleasing hormone	(0	GnRH)	

Part C	Fertilisation & implantation
	tion and implantation occur, the embryo produces a hormone called human chorionic gonadotropin his hormone is structurally very similar to luteinizing hormone (LH) and so it carries out some of the actions.
	the following things would you expect as a result of fertilisation & implantation that are different events shown in Figure 1 ? Select all that apply.
F	SH levels would increase after ovulation
t	he endometrium would be maintained instead of being shed
t	he endometrium would be shed instead of being maintained
	H levels would increase after ovulation
	pestrogen levels would remain high/increase instead of decreasing after the second peak
p	progesterone levels would remain high/increase instead of decreasing after the peak
Part D	Types of hormones

Gonadotropin releasing hormone (GnRH), Luteinizing hormone (LH) and Follicle-stimulating hormone (FSH) bind to receptors on the membranes of their target cells. Oestrogen and progesterone pass through the membranes of their target cells and bind to receptors inside those cells.

What type of hormones are oestrogen and progesterone?

Adapted with permission from OCR A Level January 2003, Biology Growth, Development and Reproduction, Question 3