Matrix games

Peter Rowlett

Sheffield Hallam University p.rowlett@shu.ac.uk

Coin Poker

Game Theory

- ▶ We have mostly looked at *combinatorial game theory*, which is the study of simple, deterministic games.
- ► Today we will spend a little time looking at *classic game theory* or *economic games*.

Today

- ▶ The structure of today is to play and analyse some simple games.
- ► The conclusion of the analysis will probably not surprise you if you have played the game a bit.
- ▶ But the point is to see a method of analysis that can be applied to more complicated games.

Play in pairs. Play proceeds as follows

1. Both players put one token in the pot and each toss a coin,* but do not share the outcome.

^{*}Or somehow generate 50/50 outcomes, for example put "toss a coin" into a search engine.

Play in pairs. Play proceeds as follows

- 1. Both players put one token in the pot and each toss a coin,* but do not share the outcome.
- 2. Player 1 moves. They either:
 - ▶ fold, ending the game and giving the pot to player 2; or,
 - bet 2 more tokens.

^{*}Or somehow generate 50/50 outcomes, for example put "toss a coin" into a search engine.

Play in pairs. Play proceeds as follows

- 1. Both players put one token in the pot and each toss a coin,* but do not share the outcome.
- 2. Player 1 moves. They either:
 - ▶ fold, ending the game and giving the pot to player 2; or,
 - bet 2 more tokens.
- 3. Player 2 moves. They either:
 - ▶ fold, ending the game and giving the pot to player 1; or,
 - bet 2 more tokens.

^{*}Or somehow generate 50/50 outcomes, for example put "toss a coin" into a search engine.

Play in pairs. Play proceeds as follows

- 1. Both players put one token in the pot and each toss a coin,* but do not share the outcome.
- 2. Player 1 moves. They either:
 - ▶ fold, ending the game and giving the pot to player 2; or,
 - bet 2 more tokens.
- 3. Player 2 moves. They either:
 - ▶ fold, ending the game and giving the pot to player 1; or,
 - bet 2 more tokens.
- 4. Both coin tosses are revealed.
 - ▶ If both players have the same coin toss, the pot is split between them;
 - otherwise, the player who tossed heads wins the entire pot.

^{*}Or somehow generate 50/50 outcomes, for example put "toss a coin" into a search engine.

Classic game theory

History

- ► The origins of modern game theory are in a paper *On the Theory of Games of Strategy* by John von Neumann in 1928.
- ► Famous developments were made in analysis of two-person zero-sum games in economics by von Neumann and others in the 1940s and 1950s.
- ► Later applications were found starting in the 1970s in biology.

Some terminology

- ➤ Typically, we might consider *simultaneous* games (players play at the same time) without *perfect information* (players don't know everything about the game in play).
- ► Games might be:
 - ➤ Zero-sum: choices by players can neither increase nor decrease the available resources; one player's win is the other's loss. (Opposite: Non-zero-sum.)
 - ➤ *Symmetric*: payoffs depend on the competing strategies, not who is playing them. (Opposite: *Asymmetric*.)

More terminology

- ► A game typically specifies:
 - ► the *players* of the game;
 - ▶ the actions or strategies available to each player at each stage; and,
 - ▶ the *payoffs* for each outcome (positive or negative values), which are what a player gains or loses from this outcome.
- ▶ Often the payoffs for two players are represented as a pair (a, b), where a is the payoff for player 1 and b is the payoff for player 2.

Payoffs

Coin Poker

- ► Coin Poker:
 - ▶ involves two players, 1 and 2;
 - strategies are related to whether a player chooses to bet or fold.
- ► Coin Poker is:
 - not exactly simultaneous, but players do not have perfect information;
 - zero-sum (either Player 1 takes the pot, or Player 2 does, or the pot is split between them);
 - asymmetric (because Player 1 moves before Player 2).
- ► Let's think about payoffs.

Outcomes and payoffs

- ► We wish to think about strategies ways each player can approach playing the game.
- ► First, we need to think about the outcomes that occur when players make particular choices.

Coin Poker game tree – first move

Coin Poker game tree - HH

Coin Poker game tree - HH

Exercise:

Make the rest of the game tree for the TH, HT and TT situations.

Coin Poker game tree - TH

Coin Poker game tree – HT

Coin Poker game tree – TT

Expectation

Strategies

- ► Say the players choose their strategies ahead of the game.
- ► Assuming rational play, let's consider four strategies for each player:
 - always bet;
 - never bet;
 - only H: bet if and only if you've thrown heads;
 - only T: bet if and only if you've thrown tails.

Expected outcomes

- \triangleright Suppose a strategy leads to *i* possible outcomes x_i .
- ▶ Suppose outcome x_i occurs with probability p_i .
- ► Then the player's *expected outcome* is given by

$$\sum_{i} p_i x_i$$
.

Example

- ▶ You give me £1 and choose a card at random from a standard deck of playing cards.
- ▶ I give you £10 if and only if you draw the Queen of Hearts.

Example

- You give me £1 and choose a card at random from a standard deck of playing cards.
- ▶ I give you £10 if and only if you draw the Queen of Hearts.
- ► So you expect to be 'up' £9 in one time out of 52, and 'down' £1 the rest of the time.

Example

- You give me £1 and choose a card at random from a standard deck of playing cards.
- ▶ I give you £10 if and only if you draw the Queen of Hearts.
- ➤ So you expect to be 'up' £9 in one time out of 52, and 'down' £1 the rest of the time.
- ► Your expected outcome is therefore

$$9 \times \frac{1}{52} + -1 \times \frac{51}{52} \approx -0.81$$

i.e. on average you expect to lose 81p playing this game.

Back to Coin Poker

- ► Let's consider the outcome of the situation where the players play these strategies:
 - ► Player 1 'always bet';
 - ► Player 2 'only H'.
- ► The outcomes for each player of these strategies depends how the coin tosses turned out.
- ▶ We can examine the possible outcomes to calculate the expected outcome.

 \triangleright So if the players throw HH, the outcome will be (0,0).

▶ So if the players throw TH, the outcome will be (-3,3).

 \triangleright So if the players throw HT, the outcome will be (1,-1).

 \triangleright So if the players throw TT, the outcome will be (1,-1).

throw	probability	outcome
HH	1	
	4	(0,0)
TH	$\frac{1}{4}$	(-3,3)
HT	$\frac{1}{4}$	(1,-1)
TT	$\frac{1}{4}$	(1,-1)

▶ Putting this together, the expected outcomes from these strategies are:

Player 1:
$$\frac{1}{4} \times 0 + \frac{1}{4} \times -3 + \frac{1}{4} \times 1 + \frac{1}{4} \times 1 = -\frac{1}{4}$$
;

throw	probability	outcome
НН	$\frac{1}{4}$	(0,0)
TH	$\frac{1}{4}$	(-3,3)
HT	$\frac{1}{4}$	(1,-1)
TT	$\frac{1}{4}$	(1,-1)

▶ Putting this together, the expected outcomes from these strategies are:

Player 1:
$$\frac{1}{4} \times 0 + \frac{1}{4} \times -3 + \frac{1}{4} \times 1 + \frac{1}{4} \times 1 = -\frac{1}{4}$$
;
Player 2: $\frac{1}{4} \times 0 + \frac{1}{4} \times 3 + \frac{1}{4} \times -1 + \frac{1}{4} \times -1 = \frac{1}{4}$.

throw	probability	outcome
НН	$\frac{1}{4}$	(0,0)
TH	$\frac{1}{4}$	(-3,3)
HT	$\frac{1}{4}$	(1,-1)
TT	$\frac{1}{4}$	(1,-1)

▶ i.e., the expected outcome from this pair of strategies can be expressed as the payoff $\left(-\frac{1}{4}, \frac{1}{4}\right)$.

- ► Exercise[†]: Work out the payoffs for the following:
 - 1. Player 1 'always bet', Player 2 'always bet';
 - 2. Player 1 'always bet', Player 2 'never bet';
 - 3. Player 1 'always bet', Player 2 'only T';
 - 4. Player 1 'only H', Player 2 'only T'.

[†]If you finish: how many of the 16 can you work out?

Peter Rowlett SHU Matrix games 28 / 76

Answers

- 1. Player 1 'always bet', Player 2 'always bet': (0,0);
- 2. Player 1 'always bet', Player 2 'never bet': (1,-1);
- 3. Player 1 'always bet', Player 2 'only T': $(\frac{5}{4}, -\frac{5}{4})$;
- 4. Player 1 'only H', Player 2 'only T': $(\frac{1}{2}, -\frac{1}{2})$.

Payoff matrices

Payoff matrix

- ► A game can be represented in a *payoff matrix*.
- ▶ Here is a two-player game where each player has two strategies and
 - ▶ a, b, c and d are the payoffs for Player 1 in the four scenarios.
 - \triangleright w x, y and z are the payoffs for Player 2, similarly.

		Player 2		
		Strategy 1	Strategy 2	
Player 1	Strategy 1	(a, w)	(b,x)	
i layer I	Strategy 2	(c, y)	(d,z)	

Our Coin Poker strategies in a payoff matrix

Player 2

		Always bet	Never bet	Only H	Only T
Player 1	Always bet	(0,0)	(1, -1)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{5}{4}, -\frac{5}{4}\right)$
	Never bet	(-1, 1)	(-1, 1)	(-1, 1)	(-1, 1)
	Only H	$\left(\frac{1}{4}, -\frac{1}{4}\right)$	(0,0)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$
	Only T	$\left(-\frac{5}{4},\frac{5}{4}\right)$	(0,0)	(-1,1)	$\left(-\frac{1}{4},\frac{1}{4}\right)$

Peter Rowlett SHU Matrix games 32 / 76

Dominance

Dominance

- We say that player 1's strategy of row i dominates their strategy of row k if every entry in row i is greater than or equal to the corresponding entry in row k.
- ightharpoonup i.e. in any circumstances, they would be better playing strategy i than strategy k.
- ► And similarly for player 2 with columns.

Dominance: example

► For example, consider this game

- ► For every option in strategy C, Player 1 would be better off using strategy A.
- ► So we say Player 1's strategy A *dominates* strategy C.

Dominance: example

► Consequently, we can safely remove strategy C as it will never be used. This gives a simpler game to analyse.

- ► Looking at the columns, we see that Player 2 is always better off playing strategy E.
- ► So we say that strategy E *dominates* strategy D, and we remove strategy D.

Dominance: example

▶ We are now left with only one possible outcome for this game,

Player 2
$$E$$
Player 1 $A (1,-1)$

$$B (0,0)$$

Now, Player 1 will play strategy A and the outcome of this game will be (1, -1).

Dominance

► This process is called *iterative removal of dominated strategies* and can help clarify a game by removing outcomes that would not occur.

► Exercise: Apply iterative removal of dominated strategies to this game.

Dlavor 2

		Player 2			
		Always bet	Never bet	Only H	Only T
Player 1	Always bet	(0,0)	(1, -1)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{5}{4}, -\frac{5}{4}\right)$
	Never bet	(-1, 1)	(-1, 1)	(-1, 1)	(-1, 1)
	Only H	$\left(\frac{1}{4}, -\frac{1}{4}\right)$	(0,0)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$
	Only T	$\left(-\frac{5}{4},\frac{5}{4}\right)$	(0,0)	(-1, 1)	$\left(-\frac{1}{4},\frac{1}{4}\right)$

Player 2 Always bet Never bet Only H Only T $\left(-\frac{1}{4},\frac{1}{4}\right)$ Always bet (0,0)(1, -1)Never bet (-1,1)(-1,1)(-1,1)Player 1 $\left(\frac{1}{4}, -\frac{1}{4}\right)$ $\left(-\frac{1}{4},\frac{1}{4}\right) \mid \left(\frac{1}{2},-\frac{1}{2}\right)$ Only H (0,0) $\left(-\frac{5}{4},\frac{5}{4}\right)$ Only T (0,0) $(-1,1) \mid (-\frac{1}{4}, \frac{1}{4})$

► Notice that Player 1's strategy 'Only T' is dominated by their 'Always bet'.

► So we remove Player 1's strategy 'Only T'.

		Player 2			
		Always bet	Never bet	Only H	Only T
	Always bet	(0,0)	(1, -1)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{5}{4}, -\frac{5}{4}\right)$
Player 1	Never bet	(-1, 1)	(-1, 1)	(-1, 1)	(-1, 1)
	Only H	$\left(\frac{1}{4}, -\frac{1}{4}\right)$	(0,0)	$\left(-\frac{1}{4},\frac{1}{4}\right)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$

▶ In this reduced game, notice that Player 2's 'Only H' dominates all other strategies.

► So we remove all Player 2's strategies except 'Only H'.

▶ Since Player 1 prefers $-\frac{1}{4}$ to -1, their strategy 'Never bet' is dominated by the other two.

► We remove Player 1's 'Never bet' strategy.

We conclude that optimal play leads Player 1 to choose either 'Always bet' or 'Only H' and Player 2 to choose 'Only H', with the expected outcome $\left(-\frac{1}{4},\frac{1}{4}\right)$.

Coin Poker conclusions

- ▶ This is not a good game to be the first player!
- ▶ In fact, it isn't a particularly interesting game.
 - ▶ Player 2 bets only when they have a head (no choice).
 - ▶ Player 1 has a choice to either always bet or bet only when they throw a head, but the outcome doesn't change (the illusion of choice).
- ► Real poker has:
 - ▶ a much more complicated probability mechanic than a simple coin toss;
 - ▶ the ability to 'raise', allowing a more iterative betting dynamic crucially involving bluffing.

Odds and Evens

Odds and Evens

- ▶ Play in pairs.
- ▶ Both players at the same time show either one finger or two.
- ▶ If the total number of fingers shown is even, Player 2 gives that number of points to Player 1.
- ▶ If the total number of fingers shown is odd, Player 1 gives that number of points to Player 2.

Equilibria

Nash equilibrium

- ▶ A useful concept is the *Nash equilibrium*: a pair of strategies, each of which is the best response to the other.
- ► This is the state when no player can gain an advantage by changing their action while the others keep theirs.
- ► In some games we see *pure* Nash equilibria pairs of single (pure) strategies that form an equilibrium.

- ▶ Here is a payoff matrix for which side of the road to drive on.
- ► Two players are driving in opposite directions towards each other on the same road.

- One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;

Player 2

- ► One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;

Player 2

- One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;
 - ▶ for each column, highlight the row player's best response;

- One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;
 - ▶ for each column, highlight the row player's best response;

- One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;
 - ► for each column, highlight the row player's best response;
 - entries with both values highlighted represent equilibria.

- One way to find equilibria is:
 - ▶ for each row, highlight the column player's best response;
 - ▶ for each column, highlight the row player's best response;
 - entries with both values highlighted represent equilibria.

- ► So this game has two equilibria, equally good for either player.
- ► (In this game, which happens in practice requires coordination.)

Exercise: Volunteering game

- Two friends need to decide who should wash up.
- Each has two options:
 - ▶ volunteer (V) to wash up;
 - ▶ stay silent (S) and hope the other person does it.
- ▶ Both want the washing up done, so the outcome where neither person volunteers is bad.
- ▶ But both would rather the other person did it.
- ▶ If both volunteer, they flip a coin to decide who will do the washing up.

Exercise: Volunteering game

- ► Two friends need to decide who should wash up.
- ► Each has two options:
 - ▶ volunteer (*V*) to wash up;
 - ▶ stay silent (S) and hope the other person does it.
- ▶ Both want the washing up done, so the outcome where neither person volunteers is bad.
- ▶ But both would rather the other person did it.
- ► If both volunteer, they flip a coin to decide who will do the washing up. Player 2

Player 1
$$\begin{array}{c|ccccc} & & S & V \\ \hline V & (-10,-10) & (2,-2) \\ V & (-2,2) & (-1,-1) \\ \hline \end{array}$$

Peter Rowlett SHU Matrix games 55 / 76

Exercise: Volunteering game

► Look at the rows and columns and work out the equilibria options in this game.

Answer: Volunteering game

- So we have two equilibria.
- ▶ But neither player really wants to *always* volunteer.
- ► Which strategy should each player play?

Mixed strategies

Mixed strategies

- ▶ In a situation without a pure Nash equilibrium, it is possible to obtain a Nash equilibrium using *mixed strategies*, in which each player plays different strategies with some probability.
- ▶ We are looking for a combination of strategies for Player 1 so that Player 2 gets the same payoff no matter what they do, and vice versa.

Player 2
$$S$$
 V

Player 1 $S (-10, -10) (2, -2)$
 $V (-2, 2) (-1, -1)$

▶ We can obtain two matrices, one giving the payoffs for Player 1 (**R** for rows) and one for Player 2 (**C** for columns).

$$\mathbf{R} = \begin{bmatrix} -10 & 2 \\ -2 & -1 \end{bmatrix} \qquad \qquad \mathbf{C} = \begin{bmatrix} -10 & -2 \\ 2 & -1 \end{bmatrix}$$

- ► Say:
 - ▶ Player 1 plays S with probability p (and so plays V with probability 1 p);
 - ▶ Player 2 plays S with probability q (and so plays V with probability 1-q).

- ► Say:
 - ▶ Player 1 plays S with probability p (and so plays V with probability 1 p);
 - ▶ Player 2 plays S with probability q (and so plays V with probability 1-q).
- ► So let

$$\mathbf{p} = egin{bmatrix} p & 1-p \end{bmatrix}$$
 & $\mathbf{q} = egin{bmatrix} q \ 1-q \end{bmatrix}$

- ► Say:
 - ▶ Player 1 plays S with probability p (and so plays V with probability 1 p);
 - ▶ Player 2 plays S with probability q (and so plays V with probability 1-q).
- ► So let

$$\mathbf{p} = egin{bmatrix} p & 1-p \end{bmatrix}$$
 & $\mathbf{q} = egin{bmatrix} q \ 1-q \end{bmatrix}$

- ► Then
 - ▶ the expected outcome for Player 1 is **pRq**;
 - ▶ the expected outcome for Player 2 is **pCq**;

- ► For an equilibrium, we are looking for a situation where:
 - 1. Player 1 chooses values for **p** such that Player 2 gets the same payoff no matter what they choose for **q**.
 - 2. Player 2 chooses values for \mathbf{q} such that Player 1 gets the same payoff no matter what they choose for \mathbf{p} .

- ► For an equilibrium, we are looking for a situation where:
 - 1. Player 1 chooses values for \mathbf{p} such that Player 2 gets the same payoff no matter what they choose for \mathbf{q} .
 - 2. Player 2 chooses values for **q** such that Player 1 gets the same payoff no matter what they choose for **p**.
- ► For 1: the expected outcome for Player 2 is **pCq**, so we are looking for the values of the entries in **pC** to be the same.

- ► For an equilibrium, we are looking for a situation where:
 - 1. Player 1 chooses values for \mathbf{p} such that Player 2 gets the same payoff no matter what they choose for \mathbf{q} .
 - 2. Player 2 chooses values for \mathbf{q} such that Player 1 gets the same payoff no matter what they choose for \mathbf{p} .
- ► For 1: the expected outcome for Player 2 is **pCq**, so we are looking for the values of the entries in **pC** to be the same.
- ► For 2: similarly, for Player 1's choice of **p** to make no difference, we are looking for the values of the entries in **Rq** to be the same.

Considering Player 1's choices to restrict the options for Player 2:

$$\mathbf{pC} = \begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -10 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -12p+2 & -p-1 \end{bmatrix}$$

Peter Rowlett SHU Matrix games 67 / 76

► Considering Player 1's choices to restrict the options for Player 2:

$$\mathbf{pC} = \begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -10 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -12p+2 & -p-1 \end{bmatrix}$$

▶ Player 2 has the same expected outcome for either strategy if:

$$-12p + 2 = -p - 1 \implies p = \frac{3}{11}$$

Peter Rowlett SHU Matrix games 67 / 76

► Considering Player 1's choices to restrict the options for Player 2:

$$\mathbf{pC} = \begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -10 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -12p+2 & -p-1 \end{bmatrix}$$

▶ Player 2 has the same expected outcome for either strategy if:

$$-12p + 2 = -p - 1 \implies p = \frac{3}{11}$$

► This suggests Player 1 should stay silent $\frac{3}{11}$ of the time and volunteer $\frac{8}{11}$ of the time.

► Similarly for Player 2's choices:

$$\mathbf{Rq} = \begin{bmatrix} -10 & 2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} -12q+2 \\ -q-1 \end{bmatrix}$$

▶ Player 1 has the same expected outcome for either strategy if:

$$-12q + 2 = -q - 1 \implies q = \frac{3}{11}$$

► This suggests Player 2 should stay silent $\frac{3}{11}$ of the time and volunteer $\frac{8}{11}$ of the time.

► The expected outcome for Player 1 (**R**) in this equilibrium is:

$$\begin{bmatrix} \frac{3}{11} & \frac{8}{11} \end{bmatrix} \begin{bmatrix} -10 & 2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} \frac{3}{11} \\ \frac{8}{11} \end{bmatrix} = -\frac{14}{11}$$

▶ The expected outcome for Player 2 (**C**) in this equilibrium is:

$$\begin{bmatrix} \frac{3}{11} & \frac{8}{11} \end{bmatrix} \begin{bmatrix} -10 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} \frac{3}{11} \\ \frac{8}{11} \end{bmatrix} = -\frac{14}{11}$$

Back to Odds and Evens

- ▶ If the total number of fingers shown is even, Player 1 takes that number of points from Player 2.
- ▶ If the total number of fingers shown is odd, Player 2 takes that number of points from Player 1.

Back to Odds and Evens

- Say Player 1 shows one finger with probability p and two fingers with probability 1-p.
- Say Player 2 shows one finger with probability q and two fingers with probability 1-q.
- ▶ What values of *p* and *q* create a Nash equilibrium?
- ▶ What are the expected outcomes for each player?

Player 2
$$\begin{array}{c|cccc}
 & 1 & 2 \\
\hline
 & 1 & (2,-2) & (-3,3) \\
\hline
 & 2 & (-3,3) & (4,-4)
\end{array}$$

▶ Start by obtaining two matrices, one giving the payoffs for Player 1 (**R** for rows) and one for Player 2 (**C** for columns).

$$\mathbf{R} = \begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix}$$

▶ Start by obtaining two matrices, one giving the payoffs for Player 1 (**R** for rows) and one for Player 2 (**C** for columns).

$$\mathbf{R} = \begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix} \qquad \qquad \mathbf{C} = \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix}$$

► Then we require the entries of **pC** to be the same and the entries of **Rq** to be the same.

► Consider Player 1's choices:

$$\mathbf{pC} = \begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 3-5p & 7p-4 \end{bmatrix}$$

▶ Player 2 has the same expected outcome for either strategy if:

$$3 - 5p = 7p - 4 \implies p = \frac{7}{12}$$

▶ This suggests Player 1 should show one finger $\frac{7}{12}$ of the time and two fingers $\frac{5}{12}$ of the time.

Peter Rowlett SHU Matrix games 73 / 76

Consider Player 2's strategy $\begin{bmatrix} q \\ 1-q \end{bmatrix}$. $\begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} 5q-3 \\ 4-7q \end{bmatrix}$

▶ Player 1 has the same expected outcome for either strategy if:

$$5q - 3 = 4 - 7q \implies q = \frac{7}{12}$$

► This suggests Player 2 should show one finger $\frac{7}{12}$ of the time and two fingers $\frac{5}{12}$ of the time.

► Expected outcome for Player 1 (**R**) is:

$$\begin{bmatrix} \frac{7}{12} & \frac{5}{12} \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} \frac{7}{12} \\ \frac{5}{12} \end{bmatrix} = -\frac{1}{12}$$

► Expected outcome for Player 2 (**C**) is:

$$\begin{bmatrix} \frac{7}{12} & \frac{5}{12} \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} \frac{7}{12} \\ \frac{5}{12} \end{bmatrix} = \frac{1}{12}$$

- ► This analysis suggests both players should show one finger $\frac{7}{12}$ of the time and two fingers $\frac{5}{12}$ of the time.
- ▶ Even though this represents an equilibrium (the best response of each player), the game works in favour of Player 2 on average they take $\frac{1}{12}$ points from Player 1.