Convolutional Neural Networks

Dr. Chelsea Parlett-Pelleriti

Outline

- Spatial Data
- Image Filtering
- Convolution
- Pooling

Image Filtering

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

 $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$

Convolution

195		108	169	76	54		28	56	30
176	50	252	242	177	190	188	167	44	236
145	138		94	176	107	194	199	147	49
194	25	160	107	199	207	248	56	222	107
132	199	35	106	170	232	89	28	239	52
15	110	87	71	170	201	113	238	70	169
98	240	189	151	209	226	191	129	253	143
225	162	157		66	199	256	246	192	175
64	156	147	14	96	229	101	133	46	50
140	101	160	147		75		245	103	250

195	27	108	169	76	54		28	56	30		1/9	1/9	1/9		195	27	108
176	50	252	242	177	190	188	167	44	236	-	1/9	1/9	1/9	*	176	50	252
145	138	6	94	176	107	194	199	147	49		1/9	1/9	1/9		145	138	6
194	25	160	107	199	207	248	56	222	107								
132	199	35	106	170	232	89	28	239	52								
15	110	87	71	170	201	113	238	70	169								
98	240	189	151	209	226	191	129	253	143					400			
225	162	157	10	66	199	256	246	192	175					122			
64	156	147	14	96	229	101	133	46	50								
140	101	160	147	37	75		245	103	250								

195	27	108	169	76	54		28	56	30		1/9	1/9	1/9		27	108	169
176	50	252	242	177	190	188	167	44	236	-	1/9	1/9	1/9	*	50	252	242
145	138	6	94	176	107	194	199	147	49		1/9	1/9	1/9		138	6	94
194	25	160	107	199	207	248	56	222	107								
132	199	35	106	170	232	89	28	239	52								
15	110	87	71	170	201	113	238	70	169								
98	240	189	151	209	226	191	129	253	143					121			
225	162	157	10	66	199	256	246	192	175					121			
64	156	147	14	96	229	101	133	46	50								
140	101	160	147	37	75		245	103	250								

Weight Sharing

Convolutional Neural Networks

But choosing filters is a lot of work

What if we could learn filters through Gradient

Descent/Backprop?

Convolutional Neural Networks

Hierarchical Feature Detection

Figure 8.2 The visual world forms a spatial hierarchy of visual modules: elementary lines or textures combine into simple objects such as eyes or ears, which combine into high-level concepts such as "cat."

Hierarchical Feature Detection

Figure 8.2 The visual world forms a spatial hierarchy of visual modules: elementary lines or textures combine into simple objects such as eyes or ears, which combine into high-level concepts such as "cat."

Convolutional Neural Networks

Convolution (Math)

195	27	108	169	76	54		28	56	30
176		252	242	177	190	188	167	44	236
145	138	6	94	176	107	194	199	147	49
194	25	160	107	199	207	248	56	222	107
132	199		106	170	232	89	28	239	52
15	110	87	71	170	201	113	238	70	169
98	240	189	151	209	226	191	129	253	143
225	162	157		66	199	256	246	192	175
64	156	147	14	96	229	101	133	46	50
140	101	160	147	37	75		245	103	250

Convolution (Math)

Convolution

From Deep Learning by Goodfellow, Bengio and Courville

122			

122	121	144	143	129	125	114	106
127	119	157	167	187	173	163	136
115	97	117	155	180	151	158	122
106	100	123	163	181	157	145	131
123	132	132	171	178	161	150	147
143	131	123	145	181	200	188	179
160	136	115	133	175	190	172	152
146	117	93	97	118	165	147	160

95		108	169	76	54		28	56	30	195	27	108	169	76	54		28		30	195	27	108	169	76	54		28	56	30	195	27	108	169	76	54		28	56	30
76	50	252	242	177	190	188	167	44	236	176	50	252	242	177	190	188	167	44	236	176	50	252	242	177	190	188	167	44	236	176	50	252	242	177	190	188	167	44	236
15	138	6	94	176	107	194	199	147	49	145	138	6	94	176	107	194	199	147	49	145	138	6	94	176	107	194	199	147	49	145	138	6	94	176	107	194	199	147	49
4	25	160	107	199	207	248	56	222	107	194	25	160	107	199	207	248		222	107	194	25	160	107	199	207	248	56	222	107	194	25	160	107	199	207	248	56	222	10
2	199		106	170	232	89	28	239	52	132	199		106	170	232	89	28	239	52	132	199		106	170	232	89	28	239	52	132	199	35	106	170	232	89	28	239	52
5	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	16
8	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	14
5	162	157		66	199	256	246	192	175	225	162	157			199	256	246	192	175	225	162	157		66	199	256	246	192	175	225	162	157	10	66	199	256	246	192	17
4	156	147	14	96	229	101	133	46	50	64	156	147	14	96	229	101	133	46	50	64	156	147	14	96	229	101	133	46	50	64	156	147		96	229	101	133	46	50
0	101	160	147	37	75		245	103	250	140	101	160	147	37	75		245	103	250	140	101	160	147	37	75		245	103	250	140	101	160	147	37	75		245	103	25
15			169		54 190	188	28 167	56	30	195		108		76 177	54 190	188	28 167		30	195	27	108	169	_	54 190	188	28 167	56 44	30 236	195	27	108		76 177	54	188	28 167	56	23
6		252	242	177	190	188	167	44	236	176	50	252	242	177	190	188	167		236	176	50	252	242	177	190	188	167	44	236	176	50	252	242	177	190	188	167	44	23
5	138		94	176	107	194	199	147	49	145	138	6	94	176	107	194	199	147	49	145	138		94	176	107	194	199	147	49	145	138		94	176	107	194	199	147	49
4	25	160	107	199	207	248	56	222	107	194	25	160	107	199	207	248		222	107	194	25	160	107	199	207	248	56	222	107	194	25	160	107	199	207	248	56	222	10
2	199		106	170	232	89	28	239	52	132	199		106	170	232	89	28	239	52	132	199		106	170	232	89	28	239	52	132	199		106	170	232	89	28	239	52
5	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	169	15	110	87	71	170	201	113	238	70	16
8	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	143	98	240	189	151	209	226	191	129	253	14
25	162	157		66	199	256	246	192	175	225	162	157			199	256	246	192	175	225	162	157		66	199	256	246	192	175	225	162	157		66	199	256	246	192	17
4	156	147	14	96	229	101	133	46	50	64	156	147	14	96	229	101	133	46	50	64	156	147	14	96	229	101	133	46	50	64	156	147	14	96	229	101	133	46	50
	101	160	147				245	102	250	4.40	101	400	147		75		245	103	250	140	101	160	147				245	400	250	440	101	160	147				245	102	25

Padding

195	27	108	169	76	54			56		
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194		160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54			56		
176	50	252	242	177	190	188	167	44	236	
145	138	6	94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195	27	108	169	76	54			56		
176	50	252	242	177	190	188	167	44	236	
145	138	6	94	176	107	194	199	147	49	
194		160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195	27	108	169	76	54			56		
176	50	252	242	177	190	188	167	44	236	
145	138	6	94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199	35	106	170	232	89		239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54			56		
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194		160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54		28	56		
176	50	252	242	177	190	188	167	44	236	
145	138	6	94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199		106	170	232	89	28	239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54		28	56		
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194		160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54			56	30	
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199		106	170	232	89	28	239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54		28	56	30	
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199	35	106	170	232	89		239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

195		108	169	76	54		28	56		
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199		106	170	232	89		239	52	
	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157	10	66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147		75		245	103	250	

What size will the output be now?

195	27	108	169	76	54		28	56	30	
176	50	252	242	177	190	188	167	44	236	
145	138	6	94	176	107	194	199	147	49	
194	25	160	107	199	207	248	56	222	107	
132	199		106	170	232	89	28	239	52	
15	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46	50	
140	101	160	147	37	75		245	103	250	

What size will the output be now? (size is reduced by **n**-1 for an **n**x**n** filter)

195		108	169	76	54		28	56		
176	50	252	242	177	190	188	167	44	236	
145	138		94	176	107	194	199	147	49	
194	25	160	107	199	207	248		222	107	
132	199		106	170	232	89	28	239	52	
	110	87	71	170	201	113	238	70	169	
98	240	189	151	209	226	191	129	253	143	
225	162	157		66	199	256	246	192	175	
64	156	147		96	229	101	133	46		
140	101	160	147		75		245	103	250	

Valid

Same

Full

	195	27	108
	176	50	252
	145	138	6

Quick Detour: RGB Convolution

Image from: https://www.sketchpad.net/channels1.htm

Terminology

- Input
- Filters/Kernels
- Output/Featuremap

Strides

Strides

What will happen to the size of our input when we use stride > 1?

Pooling

Max Pooling

122	121	144	143	129	125	114	106	
127	119	157	167	107	173	163	136	
115	97	117	155	180	151	158	122	127
106	100	123	163	181	157	145	131	
123	132	132	171	178	161	150	147	
143	131	123	145	181	200	188	179	
160	136	115	133	175	190	172	152	
146	117	93	97	118	165	147	160	

122	121	144	143	129	125	114	106
127	119	157	167	187	110	163	136
115	97	117	155	180	151	158	122
106	100	123	163	181	157	145	131
123	132	132	171	178	161	150	147
143	131	123	145	181	200	188	179
160	136	115	133	175	190	172	152
146	117	93	97	118	165	147	160

12,

157

127 119 157 167 187 173 105 136 115 97 117 155 180 151 158 122 106 100 123 163 181 157 145 131	
106 100 123 163 181 157 145 131	
123 132 132 171 178 161 150 147	
143 131 123 145 181 200 188 179	
160 136 115 133 175 190 172 152	
146 117 93 97 118 165 147 160	

15.

Translational Invariance and Weight Sharing

Pooling

- Downsample feature maps
- Max pooling works best because when looking for a feature it is better to look at the maximal presence rather than the average presence
- It's best practice to do un-strided convolutions then downsample with maxpooling rather than using strides to downsample

Convolutional Neural Networks

Convolutional Neural Networks

