ANALYSIS QUALIFYING EXAMINATION January 1999

Instructions:

- (1) Please write your solutions on only one side of your paper.
- (2) Start each problem on a separate page.
- (3) There are 8 problems on this exam; each problem is worth 10 points.
- [1] Let (X, ρ) and (Y, σ) be metric spaces and $f: X \to Y$ be a uniformly continuous function. Show that if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (X, ρ) , then $\{f(x_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in (Y, σ) .
- [2] Let (X, Σ, μ) be a finite complete measure space and L_0 be the collection of all μ -measurable functions from X into \mathbb{R} .
- [2a] Prove Egoroff's Theorem, namely: Let $\{f_n\}$ be a sequence of functions from L_0 that converge almost everywhere to $f_0 \in L_0$. Show that $f_n \to f_0$ almost uniformly.
- [2b] Does the statement of [2a] remain true if (X, Σ, μ) is an arbitrary (i.e., not necessarily finite) complete measure space? Prove or give a counterexample.
 - [3] Let (X, Σ, μ) be a complete measure space and L_1 be the collection of all μ -integrable functions from X into \mathbb{R} .
- [3a] Let $f \in L_1$. Show that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $E \in \Sigma$ and $\mu(E) < \delta$, then

$$\int_{E} |f| \ d\mu \ < \ \varepsilon \ .$$

[3b] Recall that a subset K of L_1 is uniformly integrable if: for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $E \in \Sigma$ and $\mu(E) < \delta$ then for each $f \in K$

$$\int_{E} |f| d\mu < \varepsilon.$$

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in L_1 that convergences in the L_1 -norm. Show that the set $\{f_n : n \in \mathbb{N}\}$ is uniformly integrable.

- [4] Let $(\mathbb{R}, \Sigma, \mu)$ be the Lebesgue measure space on \mathbb{R} .
- [4a] Let $A \in \Sigma$ satisfy $0 < \delta < \mu(A)$. Show that if there exists K > 0 such that

$$A \subset [-K, K] \tag{*}$$

then there exists $B \in \Sigma$ that satisfies $B \subset A$ and $\mu(B) = \delta$.

HINT: Consider $f: [-K, K] \to \mathbb{R}$ defined by $f(t) = \mu(A \cap [-K, t])$.

- [4b] Does the statement of [4a] remain true if the condition (*) is removed? Prove or give a counterexample.
 - [5] Let $([0,1], \Sigma, \mu)$ be the Lebesgue measure space on [0,1]. Let $f,g \in L_1$ be two positive functions satisfying f(x) $g(x) \ge 1$ for almost all $x \in [0,1]$. Show that

$$1 \;\leqslant\; \left(\int f \,d\mu\right) \;\cdot\; \left(\int g \,d\mu\right) \;.$$

[6] Let $([0,1], \Sigma, \mu)$ be the Lebesgue measure space on [0,1]. Let $f:[0,1] \to \mathbb{R}$ be a nondecreasing function. Recall the definition of the following Dini Derivate D^+ of f:

$$D^+f(x) = \overline{\lim}_{h\to 0^+} \frac{f(x+h) - f(x)}{h} .$$

Let $\delta > 0$ and $A \subset [0,1]$ be such that $D^+f(x) \ge \delta$ for each $x \in A$. Show that $\mu^*(f(A)) \ge \delta \mu^*(A)$.

HINT: Consider an appropriate Vitali cover of the set $\{x \in A : f \text{ is continuous at } x\}$.

- [7] Onto Complex!
- [7a] Finish this statement of Cauchy's Integral Formula: If f(z) is analytic inside and on a simple closed curve C and a is any point inside C, then

$$f(a) =$$

and for n = 1, 2, 3, ...

$$f^{(n)}(a) =$$

where C is traversed in the positive (counterclockwise) sense.

[7b] Prove Liouville's Theorem:

A bounded entire function (on the complex plane) must be constant.

[8] The Fundamental Theorem of Algebra says that if $p: \mathbb{C} \to \mathbb{C}$ is a polynominal of degree $n \in \mathbb{N}$, say $p(z) = \sum_{k=0}^{n} a_k z^k$ where $a_k \in \mathbb{C}$ and $a_n \neq 0$, then w = p(z) has exactly n complex roots, counting multiplicity. Prove the Fundamental Theorem of Algebra using Liouville's Theorem.