Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 5

Jendrik Stelzner

Letzte Änderung: 15. Dezember 2017

Aufgabe 4

(a)

Für alle $(a,s) \in R \times S$ gilt $(a,s) \sim (a,s)$, denn für $1 \in S$ gilt

$$1 \cdot (as - as = 0).$$

Also ist \sim reflexiv. Für alle $(a,s), (a',s') \in R \times S$ mit $(a,0s) \sim (a',s')$ gibt es ein $t \in S$ mit

$$t \cdot (as' - a's) = 0.$$

Dann gilt

$$t \cdot (a's - as') = t \cdot (-(as' - a's)) = -(t \cdot (as' - a's)) = -0 = 0,$$

und somit ebenfalls $(a', s') \sim (a, s)$. Das zeigt, dass \sim symmetrisch ist.

Für alle $(a,s),(a',s'),(a'',s'') \in R \times S$ mit $(a,s) \sim (a',s')$ und $(a',s') \sim (a'',s'')$ gibt es $t,u \in S$ mit

$$t \cdot (a's - as') = 0$$
 und $u \cdot (a''s' - a's'') = 0$,

also mit

$$t \cdot as' = t \cdot a's$$
 und $u \cdot a's'' = u \cdot a''s'$.

Diese Gleichungen sollte man so
 lesen, dass sich in Anwesenheit des Elements t die Ersetzung $as' \to a's$ durchführen lässt, und in Anwesenheit des Elements u die Ersetzung $a's'' \to a''s'$. In Anwesenheit des Elementes s'tu lässt sich dann auch die Ersetzung $as'' \to a''s$ durchführen, da

$$s'tu \cdot a''s = st \cdot u \cdot a''s' = st \cdot u \cdot a's'' = s''u \cdot t \cdot a's = s''u \cdot t \cdot as' = s'tu \cdot as''$$

gilt. Das zeigt die Transitivität von \sim .

Ingesamt zeigt dies, dass \sim eine Äquivalenz
relation ist. Anstelle von [a,s]schreiben wir im Folgenden

 $\frac{a}{s}$

oder a/s für die Äquivalenzklasse von $(a, s) \in R \times S$.

(b)

Es seien $(a,s),(a',s'),(b,t),(b',t') \in R \times S$ mit $(a,s) \sim (a',s')$ und $(b,t) \sim (b',t')$. Dann gibt es $u_1,u_2 \in S$ mit

$$u_1 \cdot (as' - a's) = 0$$
 und $u_2 \cdot (bt' - b't) = 0$,

also mit

$$u_1 \cdot as' = u_1 \cdot a's$$
 und $u_2 \cdot bt' = u_2 \cdot b't$.

Dann gilt

$$u_{1}u_{2} \cdot (at + bs)s't' = (u_{1}u_{2} \cdot ats't') + (u_{1}u_{2} \cdot bss't')$$

$$= (u_{2}tt' \cdot u_{1} \cdot as') + (u_{1}ss' \cdot u_{2} \cdot bt')$$

$$= (u_{2}tt' \cdot u_{1} \cdot a's) + (u_{1}ss' \cdot u_{2} \cdot b't)$$

$$= (u_{1}u_{2} \cdot a'stt') + (u_{1}u_{2} \cdot b'ss't) = u_{1}u_{2} \cdot (a't' + b's')st$$

und somit

$$u_1u_2 \cdot ((at + bs)s't' - (a't' + b's')) = 0$$
,

also

$$\frac{at+bs}{st} = \frac{a't'+b's'}{s't'} .$$

Das zeigt, dass die Addition

$$\frac{a}{s} + \frac{b}{t} \coloneqq \frac{at + bs}{st}$$

auf $S^{-1}R$ wohldefiniert ist.

Außerdem gilt

$$u_1u_2 \cdot abs't' = (u_1 \cdot as')(u_2 \cdot bt') = (u_1 \cdot a's)(u_2 \cdot b't) = u_1u_2 \cdot a'b'st$$

und somit

$$u_1u_2 \cdot (abs't' - a'b'st) = 0,$$

also

$$\frac{ab}{st} = \frac{a'b'}{s't'}.$$

Das zeigt, dass die Multiplikation

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$$

auf $S^{-1}R$ wohldefiniert ist.

Das folgende Lemma erweist sich zum Rechnen in $S^{-1}R$ als sehr nützlich:

Lemma 1 (Kürzen von Brüchen). Für alle $a/s \in S^{-1}R$ und $t \in S$ gilt

$$\frac{a}{s} = \frac{at}{st}$$
.

Beweis. Für $1 \in S$ gilt $1 \cdot (ast - ats) = 0$, also gilt $(a, s) \sim (at, st)$.

Hieraus ergibt sich insbesondere, dass 0/1 = 0/s für alle $s \in S$ gilt, da

$$\frac{0}{s} = \frac{0 \cdot s}{1 \cdot s} = \frac{0}{1}$$

gilt.

Die Assoziativität und Kommutativität der Addition und Multiplikation, sowie die Distributivität folgen durch direktes Nachrechnen. Das Einselement in $S^{-1}R$ ist 1/1, denn für alle $a/s \in S^{-1}R$ gilt

$$\frac{a}{s} \cdot \frac{1}{1} = \frac{a \cdot 1}{s \cdot 1} = \frac{a}{s} \,.$$

Das Nullelement ist 0/1, denn für alle $a/s \in S^{-1}R$ gilt

$$\frac{a}{s} + \frac{0}{1} = \frac{a \cdot 1 + 0 \cdot s}{s \cdot 1} = \frac{a}{s}.$$

Das additiv Inverse Element zu $a/s \in S^{-1}R$ ist (-a)/s, denn es gilt

$$\frac{a}{s} + \frac{-a}{s} = \frac{as - as}{s^2} = \frac{0}{s^2} = \frac{0}{1}$$
.

Ingesamt zeigt dies, dass $S^{-1}R$ mit der gegebenen Addition und Multiplikation einen kommutativen Ring ergibt.

Bemerkung 2. Ist R ein kommutativer Ring und $S \subseteq R$ eine multiplikative Teilmenge, so ist die Abbildung $f \colon R \to R_S$ ein Ringhomomorphismus. (Dies ergibt sich durch direktes Nachrechnen.)

Für jedes $s \in S$ ist das Element $f(s) = s/1 \in S^{-1}R$ eine Einheit, da

$$\frac{s}{1} \cdot \frac{1}{s} = \frac{s}{s} = \frac{1}{1} = 1_{S^{-1}R}$$

gilt. In dem Ring $S^{-1}R$ werden die Elemente aus S also Einheiten.

Der Ring $S^{-1}R$ (zusammen mit dem Homomorphismus f) ist universell mit dieser Eigenschaft: Ist T ein Ring und $g\colon R\to T$ ein Ringhomomorphismus, so dass g(s) für jedes $s\in S$ eine Einheit ist, so gibt es einen eindeutigen Ringhomomorphismus $\hat{\varphi}\colon S^{-1}R\to T$, der das folgende Diagramm zum Kommutieren bringt:

Der Homomorphismus \hat{q} ist gegeben durch

$$\hat{g}\left(\frac{a}{s}\right) = \frac{g(a)}{g(s)} = g(a)g(s)^{-1}$$
 für alle $\frac{a}{s} \in S^{-1}R$.

Man bezeichnet dies als die universelle Eigenschaft der Lokalisierung.

Bemerkung 3. Man beachte aber, dass der Ringhomomorphismus $f: R \to S^{-1}R$, $r \mapsto r/1$ im Allgemeinen nicht injektiv ist: Für alle $r \in R$ gilt

$$r \in \ker f \iff \frac{r}{1} = \frac{0}{1} \iff \exists s \in S : rs = 0.$$

Somit ist f genau dann injektiv, wenn für alle $s \in S$ und $r \in R$ mit rs = 0 bereits r = 0 folgt, d.h. wenn S keine Nullteiler enthält.

Ist inbesondere R ein Integritätsbereich, so ist im Fall $0 \notin S$ der Ringhomomorphismus $f \colon R \to S^{-1}R$ stets injektiv. Dann lässt sich R als ein Unterring von $S^{-1}R$ auffassen.

(c)

Da R ein Integritätsbereich ist, gilt $1 \neq 0$, und somit $1 \in S$. Für alle $s, t \in S$ gilt $s, t \neq 0$, wegen der Nullteilerfreiheit von R also $st \neq 0$ und somit $st \in S$. Das zeigt, dass S eine multiplikative Menge ist.

Bevor wir zeigen, dass $\operatorname{Quot}(R)$ ein Körper ist, wollen wir anmerken, dass sich die Gleichheitsregel für Brüche im Falle in der gegebenen Situation vereinfachen: Für zwei Brüche $a/s, b/t \in \operatorname{Quot}(R)$ gilt genau dann a/s = b/t, wenn es ein $u \in S$ mit

$$u \cdot (at - bs) = 0$$

gibt. Dabei gilt $u \neq 0$ (da $S = R \setminus \{0\}$), weshalb dies nach der Nullteilerfreiheit von R bereits äquivalent dazu ist, dass at - bs = 0 gilt. Es gilt also

$$\frac{a}{s} = \frac{b}{t} \iff at = bs. \tag{1}$$

Wir können Brüche in Quot(R) also auf die "naive" Art und Weise vergleichen.

Bemerkung 4. Ist allgemeiner R ein Integritätsbereich und $S \subseteq R$ eine multiplikative Teilmenge mit $0 \notin S$, so gilt für $a/s, b/t \in \operatorname{Quot}(R)$ genau dann a/s = b/t, wenn at = bs gilt. Dies ergibt sich unverändert aus der obigen Rechnung. Für nicht-triviale (also vom Nullring 0 verschiedene) Lokalisierungen von Integritätsbereichen gilt also die "naive" Gleichheitsregel für Brüche.

Da R ein Integritätsbereich ist, gilt $0_R \neq 1_R$. Deshalb gilt auch $0_{\text{Quot}(R)} \neq 1_{\text{Quot}(R)}$, denn es gilt

 $\frac{0}{1} = \frac{1}{1} \iff 0 \cdot 1 = 1 \cdot 1 \iff 0 = 1.$

Es sei nun $a/s \in S^{-1}R$ mit $a/s \neq 0$. Dann gilt $a \neq 0$, weshalb der Bruch $s/a \in \text{Quot}(R)$ wohldefiniert ist. Es gilt

$$\frac{a}{s}\cdot\frac{s}{a} = \frac{as}{sa} = \frac{1}{1} = 1_{S^{-1}R}\,,$$

was zeigt, dass a/s eine Einheit in Quot(R) ist.

Zusammen zeigt dies, dass der kommutative Ring Quot(R) bereits ein Körper ist.

Bemerkung 5. Nach Bemerkung 3 lässt sich R durch den Ringhomomorphismus $R \to \operatorname{Quot}(R)$, $r \mapsto r/1$ als einen Unterring von $\operatorname{Quot}(R)$ auffassen. Da jeder Unterring eines Körpers auch ein Integritätsbereich ist, erhalten wir damit eine Charakterisierung von Integritätsbereichen:

Integritätsbereiche sind genau die Unterringe von Körpern.

Dies liefert auch eine mögliche Erklärung, warum der Nullring kein Integritätsbereich ist: Es handelt sich nicht um den Unterring eines Körpers.

Bemerkung 6. Ist allgemeiner R ein kommutativer Ring und $P \subseteq R$ ein Primideal, so ist $S_P := R \setminus P$ eine multiplikative Teilmenge: Es gilt $1 \notin P$ da $P \neq R$, und somit $1 \in S_P$. Für alle $x, y \in S_P$ gilt $x, y \notin P$, somit auch $xy \notin P$ (da P prim ist), und deshalb $xy \in S_P$.

Man bezeichnet den Ring $R_P := S_P^{-1}R$ als die Lokalisierung von R an P. Bei R_P behandelt es sich um einen sogennanten lokalen Ring, d.h. R_P besitzt genau ein maximales Ideal (nämlich $S_P^{-1}P$). Diese Konstruktion spielt eine wichtige Rolle in der kommutativen Ringe und algebraischen Geometrie.

Ist dabei R ein Integritätsbereich, so ist $0 \le R$ ein Primideal, und es folgt, dass $S = S_0 = R \setminus \{0\}$ eine multiplikative Teilmenge ist. Zudem ist dann $S_0^{-1}0 = S^{-1}0 = 0$ das eindeutige maximale Ideal von $S^{-1}R$. Inbesondere ist das Nullideal in $S^{-1}R$ maximal, und $S^{-1}R$ somit ein Körper.

(d)

Die Abbildung $\tilde{\varphi} \colon \mathbb{Z} \to \mathbb{Q}, n \mapsto n/1$ ist injektiv. Für $S \coloneqq \mathbb{Z} \setminus \{0\}$ gilt deshalb

$$\tilde{\varphi}(S) = \tilde{\varphi}(\mathbb{Z} \setminus \{0\}) = \tilde{\varphi}(\mathbb{Z}) \setminus \{0\} \subseteq \mathbb{Q} \setminus \{0\} = \mathbb{Q}^{\times}.$$

Nach der universellen Eigenschaft der Lokalsierung (siehe Bemerkung 2) induziert $\tilde{\varphi}$ einen Ringhomomorphismus

$$\varphi \colon \operatorname{Quot}(\mathbb{Z}) = S^{-1}\mathbb{Z} \to \mathbb{Q}, \quad \frac{p}{q} \mapsto \tilde{\varphi}(p)\tilde{\varphi}(q)^{-1} = pq^{-1} = \frac{p}{q}.$$

Der Ringhomomorphismus φ ist surjektiv, und als Körperhomomorphismus auch injektiv. Die Injektivität lässt sich auch von Hand nachrechen, denn für alle $p/q \in \operatorname{Quot}(\mathbb{Z})$ gilt

$$\varphi\left(\frac{p}{q}\right) = 0 \implies \frac{p}{q} = 0 \text{ (in } \mathbb{Q}) \implies p = 0 \text{ (in } \mathbb{Z}) \implies \frac{p}{q} = 0 \text{ (in Quot}(\mathbb{Z})).$$

Also ist φ ein Isomorphismus.

Bemerkung 7. Sofern die universelle Eigenschaft der Lokalisierung noch nicht zur Verfügung steht, so muss von Hand begründet werden, warum φ ein wohldefinierter Ringhomomorphismus ist:

- 1. Für alle $p_1, p_2 \in \mathbb{Z}$ und $q_1, q_2 \in S$ mit $p_1/q_1 = p_2/q_2$ in Quot(\mathbb{Z}) gilt $p_1q_2 = p_2q_1$ (siehe (1)) und somit $p_1/q_1 = p_2/q_1$ in \mathbb{Q} . Somit ist φ wohldefiniert.
- 2. Dass φ ein Ringhomomorphismus ist, ergibt sich durch direktes Nachrechnen.

Bemerkung 8. Ist R ein beliebiger Integritätsbereich und K ein Körper, so erhalten wir analog zur obigen Rechnung, dass jeder injektive Ringhomomorphismus $j \colon R \to K$ einen eindeutigen Körperhomomorphismus $\bar{j} \colon \operatorname{Quot}(R) \to K$ induziert, der für die Inklusion $i \colon R \to \operatorname{Quot}(R), r \mapsto r/1$ das folgende Diagramm zum Kommutieren bringt:

Man bemerke, dass dabei \bar{j} injektiv ist (da $\mathrm{Quot}(R)$ ein Körper ist, und $K \neq 0$ gilt), also $\mathrm{Quot}(R)$ durch \bar{j} mit einem Unterkörper von K identifiziert wird. Anschaulich bedeutet dies:

Jeder Körper K, der R enthält, enthält auch schon Quot(R).

Im Falle von $R = \mathbb{Z}$ und $K = \mathbb{Q}$ wird K als Körper bereits von R erzeugt, weshalb $\operatorname{Quot}(R)$ bereits ganz \mathbb{Q} seien muss.

(e)

Wir gehen wie im vorherigen Aufgabenteil vor: Für die Inklusion $i: \mathbb{Z} \to \mathbb{Q}, a \mapsto a$ gilt

$$\varphi(S) = S \subseteq \mathbb{Q} \setminus \{0\} = \mathbb{Q}^{\times}.$$

Deshalb induziert i nach der universellen Eigenschaft der Lokalisierung einen Ringhomomorphismus

$$\bar{i} \colon S^{-1}\mathbb{Z} \to \mathbb{Q}, \quad \frac{a}{p^k} \mapsto \frac{i(n)}{i(p^k)} = \frac{a}{p^k}.$$

Insbesondere ist

$$\operatorname{im} \bar{i} = \left\{ \frac{a}{p^k} \,\middle|\, a, k \in \mathbb{Z}, k \ge 0 \right\}$$

ein Unterring von \mathbb{Q} . Die Injektivität von \bar{i} ergibt sich wie im vorherigen Aufgabenteil. Damit ergibt sich dann, dass \bar{i} eine Isomorphie $S^{-1}\mathbb{Z}\cong \operatorname{im}\bar{i}$ induziert.