TD 8 (Révisions)

Exercice 1.

Donner une expression rationnelle pour le langage reconnu par l'automate ci-dessous (utiliser l'algorithme vu en cours) :

Exercice 2. Distançons

On définit la distance de Hamming d'un mot w à v de même taille comme le nombre de positions pour lesquelles ils diffèrent. La distance entre un mot w et un langage L est la distance minimale de w aux mots de L (infinie si non définie).

- **1.** Soit $k \in \mathbb{N}$ et L rationnel. L' est l'ensemble des mots w à distance au plus k de L. Montrez que L' est rationnel.
- **2.** Soit $k \in \mathbb{N}$ et L algébrique. L' est l'ensemble des mots w à distance au plus k de L. Montrez que L' est algébrique.
- 3. Soit L un langage rationnel, et L' l'ensemble des mots w à distance au plus $\frac{|w|}{2}$ de L. Montrez que L' est algébrique.

Exercice 3.

Montrer que les langages suivants ne sont pas algébriques.

- 1. $L = \{0^n 1^n 0^n 1^n | n \ge 0\}$.
- **2.** $L = \{0^n \# 0^{2n} \# 0^{3n} | n \ge 0\}$.
- 3. $L = \{w \# s | w \text{ est un sous-mot de } s, s \in \{a, b\}^*\}$.

Exercice 4.

Soit $i \in \mathbb{N}^*$ et $\Sigma = \{0,1\}$. On définit le langage L sur Σ comme le langage des mots ayant un 1 en i^{e} position ayant la fin. Par exemple si i = 2 alors $0010 \in L$ mais $1100 \notin L$.

- **1.** Donner un automate non déterministe avec i + 1 états reconnaissant L.
- **2.** Soit w un mot de Σ avec i-1 lettres. Calculer le langage résiduel $w^{-1}L=\{v\in\Sigma^*|wv\in L\}$.

3. En déduire une borne sur le nombre d'états de n'importe quel automate déterministe reconnaissant *L*. La comparer avec le nombre d'états dans la question 1.

Exercice 5.

Si \mathcal{A} est un automate non-déterministe, appelons

- M(A) l'automate mirroir de A: les états finaux deviennent initiaux, les états initiaux finaux et les transitions changent de sens.
- D(A) l'automate déterministe associé à A, restreint à ses états accessibles
 - **1.** Soit A l'automate suivant. Minimiser A, puis calculer D(M(D(M(A)))).

2. Montrer que A, D(M(D(M(A)))) est minimal pour tout A.

Exercice 6. Préfixons

Pour un langage L, on définit min(L) comme l'ensemble des mots de L qui n'ont pas de préfixe stricts dans L:

$$min(L) = \{ w \in L \mid \forall v \text{ pr\'efixe strict de } w, v \notin L \}$$

- **1.** Soit L algébrique et déterministe. Prouvez que min(L) est algébrique et déterministe.
- **2.** Soit $L = \{a^i b^j c^k \mid k \ge i \text{ ou } k \ge j\}$. Montrez que min(L) n'est pas algébrique.
- 3. On définit max(L) comme l'ensemble des mots de L qui ne sont pas le préfixe strict de mots de L. Trouvez un langage algébrique L tel que max(L) ne soit pas algébrique.

Correction sans détails de l'exercice sur les mélanges :

Exercice 7.

Mélange

Soit Σ un alphabet fini. Soient u et v deux mots sur Σ^* . On appelle mélange des mots u et v, et l'on note Mel(u,v) l'ensemble des mots de Σ^* défini par :

```
 - si u = ε, Mel(u, v) = {v} 

- si v = ε, Mel(u, v) = {u} 

- si u = xu' et v = yv' avec x, y ∈ Σ, Mel(u, v) = x. Mel(u', v) ∪ y. Mel(u, v'). 

Si L et L' sont deux langages, on définit Mel(L, L') = <math>\bigcup_{u \in L, v \in L'} Mel(u, v).
```

- 1. On considère les langages $L=(aa)^*$ et $L'=(bbb)^*$. Montrer que Mel(L,L') est rationnel. Le mélange est l'ensemble des mots ayant un nombre pair de a et un nombre de b multiple de a. Chacun de ces deux langages sur $\{a,b\}$ est rationnel, donc l'intersection aussi.
- 2. Le mélange de deux langages rationnels est-il toujours rationnel? \square Oui. Soient $(Q_1,q_{01},F_1,'d_1)$ et $(Q_2,q_{02},F_2,'d_2)$ des automates déterministes reconnaissant chacun des deux langages. On construit l'automate non déterministe suivant (qui ressemble à l'automate produit) pour reconnaître le mélange : $(Q_1 \times Q_2, (q_{01},q_{02}), F_1 \times F_2,'d)$ où 'd consiste à choisir de façon non déterministe à faire la transition sur l'automate 1 ou sur l'automate 2 : ' $d((q_1,q_2),'a) := \{(q_1,'d_2(q_2,'a)); ('d_1(q_1,'a),q_2)\}$. Si un mot appartient au mélange alors en faisant les bons choix on arrive dans un état final. Réciproquement, s'il existe un chemin acceptant pour le mot w alors il existe u et v (déterminé par les choix de l'automate), reconnus respectivement par l'automate 1 et l'automate 2, tels que w = Mel(u,v).
- 3. On considère $L = \{a^nb^n \mid n \ge 0\}$ et $L' = c^*$. Montrer que Mel(L, L') est algébrique. On construit l'automate à pile reconnaissant $\{a^nb^n \mid n \ge 0\}$ et on lui ajoute une transition : quand il lit un c, il l'ignore (ni changement d'état ni modification de la pile).
- **4.** Montrer que le mélange d'un langage rationnel et d'un langage algébrique est algébrique.

 Même construction que pour le mélange d'un algébrique et d'un rationnel.
- 5. (Bonus) Qu'en est-il du mélange de deux langages algébriques? \mathbb{R}^n Non. $\{a^nb^n \mid n \in \mathbb{N}\}$ est algébrique, $\{c^md^m \mid m \in \mathbb{N}\}$ aussi, mais si le mélange des deux l'était, son intersection avec $a^*(bc)^*d^*$, qui est $\{a^n(bc)^nd^n \mid n \in \mathbb{N}\}$ le serait aussi. Or ce dernier langage n'est pas algébrique, il suffit d'utiliser le lemme d'Ogden