

As-Rigid-As-Possible Stereo under Second Order Smoothness Priors

Chi Zhang¹, Zhiwei Li², Rui Cai², Hongyang Chao¹, Yong Rui²

Microsoft® Research

1 Sun Yat-Sen University, Guangzhou, P.R. China

2 Microsoft Research, Beijing, P.R. China

Problem Definition

INPUT: A pair of stereo images

OUTPUT: Dense correspondences, or disparity map

Motivation: Combine Two Priors

Segment-wise As-Rigid-As-Possible Prior

- Pros: Long-Range Constraints
- Cons: Bad alignment on boundaries

Pixel-wise Second Order Smoothness Prior

- Pros: Flexible, has not alignment problem
- Cons: Too Local, sometimes over flexible

Algorithm

Algorithm 1 As-Rigid-As-Possible Stereo

compute Laplacian matrix L_i set θ to zero

repeat

repeat

minimize E_{DATA} w.r.t. Λ

by a derivative-free algorithm minimize $E_{\rm SMOOTH}$ w.r.t. **u**

by sparse Cholesky decomposition

until converged

increase θ

until converged

Formulation: Jointly Optimize Quadratic Surface Coefficients and Disparity Map

s.t. $\mathbf{u} = \mathbf{D}(\mathbf{\Lambda})$

L_i are four directional Laplacian operators:

Surface equation: $D_{\mathbf{s}}([x,y]^{\top}) = dx^2 + ey^2 + ax + by + c$

 $E_2(\mathbf{u}, \mathbf{\Lambda}) = \mathbf{u}^{\top} (\sum L_i^{\top} L_i) \mathbf{u} + \theta (\mathbf{u} - \mathbf{v})^{\top} G(\mathbf{u} - \mathbf{v}) + \lambda \sum \sum \rho(p, p - D_{\mathbf{s}}(p))$ \mathbf{s} $p \in \mathbf{s}$

Alternative Optimization

$$E_{\text{DATA}}(\mathbf{\Lambda}) = \lambda \sum_{\mathbf{s}} \sum_{p \in \mathbf{s}} \rho(p, p - D_{\mathbf{s}}(p)) + \theta(\mathbf{u} - \mathbf{D}(\mathbf{\Lambda}))^{\top} G(\mathbf{u} - \mathbf{D}(\mathbf{\Lambda}))$$

Find new surfaces by PatchMatch-like Nelder-Mead search

 $E_{\text{SMOOTH}}(\mathbf{u}) = \mathbf{u}^{\top} (\sum L_i^{\top} L_i) \mathbf{u} + \theta (\mathbf{u} - \mathbf{v})^{\top} G(\mathbf{u} - \mathbf{v})$ $(\sum L_i^{\top} L_i + \theta G) \mathbf{u} = \theta G \mathbf{v}$

E_{SMOOTH} has closed form solution. But we use gradient decent for speed

Optimization Process

SLIC Segmentation

2nd order smooth cost before optimization

2nd order smooth cost after optimization

Comparisons

Point Clouds of Ours

Conclusions

- Two priors complement each other
- Generate "seamless" accurate disparity maps
- Fast global method, 10s per pair