Уравнения задача Римана

Система уравнений для данной задачи представляет собой систему уравнений Эйлера с добавлением химической реакции. Эта система описывает нестационарные одномерные течения с учётом реакций между двумя компонентами (А и В). Ниже приведены основные уравнения:

1. Уравнение сохранения массы

$$rac{\partial
ho}{\partial t} + rac{\partial (
ho u)}{\partial x} = 0$$

где ho — плотность, u — скорость потока.

2. Уравнение сохранения импульса

$$rac{\partial (
ho u)}{\partial t} + rac{\partial \left(
ho u^2 + p
ight)}{\partial x} = 0$$

где p — давление, связанное с плотностью и энергией через уравнение состояния для идеального газа.

3. Уравнение сохранения энергии

$$rac{\partial E}{\partial t} + rac{\partial \left((E+p)u
ight)}{\partial x} = -\omega Q_{
m reaction}$$

где E — полная энергия, ω — скорость химической реакции, и Q_{reaction} — теплота реакции.

4. Уравнения для массовых долей компонентов (А и В)

$$rac{\partial (
ho Y_A)}{\partial t} + rac{\partial (
ho Y_A u)}{\partial x} = -\omega$$

$$rac{\partial (
ho Y_B)}{\partial t} + rac{\partial (
ho Y_B u)}{\partial x} = \omega$$

где Y_A и Y_B — массовые доли видов A и B соответственно.

Химическая кинетика (источниковые члены)

Скорость реакции определяется уравнением Аррениуса:

$$\omega = A_{
m preexp} \exp \left(-rac{E_a}{R_{
m universal} T}
ight) rac{
ho Y_A}{
ho}$$

где:

- $A_{
 m preexp}$ предэкспоненциальный множитель,
- E_a энергия активации,
- *T* температура.

Полная система

С учетом вышеописанных уравнений и уравнения состояния для давления p, система уравнений может быть решена численно для вычисления динамики плотности, скорости, энергии и химических составляющих (A и B).