2011~2012 学年第一学期 《复变函数与积分变换》课程考试试卷(A卷)

院(系)_	专业班级			_学号	号				
考试日期: 2011 年 11 月 28 日				考试的	才间: 晚」	<u> </u>	:30		
题号	_	_	Ξ	四	五	六	七	八	总分
得分									
分 卷人 设 z=(-	1 -			•	3分,:			. #l)	·
$z = (-1)$ $\ln(\frac{1+i}{\sqrt{2}})$,							· / · · ·] / /	3,,,,,
函数 $f(z)$		•	•			可导?		,	,在
级数 $\sum_{n=1}^{\infty}$	<u>iⁿ</u> 是 [?]	否收敛	?	,级	数 $\sum_{n=1}^{\infty} \frac{2}{n}$	ⁿ i ⁿ 是 ⁱ n	否收敛	?	<u>_</u> .
函数 f($z) = \frac{1}{z(z)}$	$\frac{1}{(9-z^2)}$	- 在 <i>z</i> =	=1+i	点展成	泰勒级	数的增	女敛半	径为
z=0为	函数 <i>]</i>	$f(z) = -\frac{1}{z}$	$\frac{1}{-\sin z}$	的	阶极点	点.			
在映射 ƒ	f(z) = 1	$z^2 + z$	$\overline{\Gamma}$, z_0	$=-\frac{1}{2}$	+ 2i 久	上的旋轴	专角为		, <i>f</i> (z)在复
平面上除去 $z=$ 的点外处处保角.									
已知 $F(\omega)$	$=\pi[\delta]$	$(\omega + \omega_0)$	$(\delta) + \delta(a)$	$(\omega - \omega_0)$]为 <i>f</i> (i	的傅	氏变换	,则 <i>f</i>	$f(t) = \underline{\hspace{1cm}}$

1.

2.

3.

4.

5.

6.

7.

8.

得 分	
评卷人	

二、计算题 (每题 5 分, 共 20 分)

$$1. \oint_{|z|=2} \frac{z}{\cos z} \, \mathrm{d} z$$

$$2. \oint_{|z|=3} \frac{\sin \pi z}{z(z-1)^2} dz$$

$$3. \int_0^{\frac{\pi}{2}} \frac{1}{1+3\sin^2\theta} d\theta$$

4.
$$\int_0^{+\infty} \frac{x \sin bx}{x^2 + a^2} \, dx \, (a > 0, b > 0)$$

得 分	
评卷人	

三、(8 分) 验证 $v(x, y) = 4xy + y^2 - x^2$ 是调和函数,并求 满足条件 f(1) = 2 - i 的解析函数 f(z) = u + iv .

得 分	
评卷人	

四、(12 分)将函数 $f(z) = \frac{1}{z^2(z-1)(z-3)}$ 在 $z_0=0$ 点展开 为洛朗(Laurent)级数.

得 分	
评卷人	

五、 $(8 \, f)$ 求上半平面在映射 $w = \frac{2i}{z+i}$ 下的像.

得 分	
评卷人	

六、 $(10\, \mathcal{G})$ 求将半带形域 $D=\{z\colon 0<\operatorname{Im} z<\frac{\pi}{2},\ \operatorname{Re} z<0\}$ 映射 到单位圆内部的保形映射.

得 分	
评卷人	

七、(12分)利用 Laplace 变换求解微分方程组:

$$\begin{cases} x'(t) + x(t) - y(t) = -e^{2t}, & x(0) = 1 \\ y'(t) + 3x(t) - 2y(t) = 3e^{-t}, & y(0) = 1 \end{cases}$$

得分	
评卷人	

八、(6分)已知函数
$$f(\xi)$$
 在 $|\xi| \le R$ 上解析,设 $|z| < R$,证明:
$$\frac{1}{2\pi i} \oint_{|\xi|=R} \left(\frac{f^2(\xi)}{(\xi-z)^2} - \frac{\bar{z}f(\xi)}{R^2 - \xi \bar{z}} \right) d\xi = 2f(z)f'(z)$$