

Cours MALG & MOVEX

MALG **Analyse des programmes**

Dominique Méry Telecom Nancy, Université de Lorraine (21 avril 2025 at 10:54 P.M.)

Année universitaire 2024-2025

Outline

1 Overview of the methodololy

2 Standard, Collecting and Abstract Semantics

Main concepts

- ▶ Syntax of programs ($P \in PL$) defines the class of programs for applying the analysis@
- ▶ **Semantics** ($\llbracket P \rrbracket$) for each program ($P \in PL$)

Standard, Collecting and Abstract Semantics

- Abstract interpretation of programs is an approximation of programs semantics
- Correctness proof of the abstract interpretation requires the existence of the standard semantics describing the possible behaviours of programs during their execution.
- The class of properties of program executions is defined by a collecting semantics or static semantics.
- The collecting semantics can be an instrumented version of the standard semantics to gather information about programs executions.
- or the standard semantics reduced to essentials in order to ignore irrelevant details about program execution.
- The collecting semantics provides a sound and relatively complete proof method for the considered class of properties.
- It can be used subsequently as a reference semantics for proving the correctness of all other approximate semantics for that class of properties.
- ▶ The abstract semantics usually considers effectively computable properties of programs.
- ▶ The soundness of this abstract semantics is proved with respect to the collecting semantics.

Collecting semantics

Examples

- ► Computation Traces of Program
- ► Transitive Closure of the program transition relation
- Set of states

The collecting semantics is the semantics which is interesting our analysis and we will consider as collecting semantics the set of states.

Summary of the technique

Collecting semantics

- Static analysis of a program states a property of program executions defined by a standard semantics.
- Defining a so-called collecting semantics defining the strongest static property of interest
- Collecting semantics defines the class of static analysis, which approximates it
- State properties are subsets of I×I×I×I and abstract interpretation executes programs on thse properties

Approximation

- Spaces of values should be restricted to computable entities
- Over-approximation of concrete properties

Small Programming Language

```
\begin{array}{cccc} Expr & ::= & v & & \\ & | & ? & & \\ & | & x & & \\ & | & Expr \ op \ Expr \end{array}
                                                                                         v \in \mathbb{Z}
                                                                                         x \in \mathbb{V}
                                                                                         op \in \{+, -, \times, /\}
                                                                                         relop \in \{<,\leq,>,\geq,=,\neq
   cond ::= Expr \ relop \ Expr
                 | not cond
| cond and cond
   stmt ::= \ell[x := Expr]
                                                                                          \ell \in \mathbb{C}
                \ell[skip] \ | \ \ell[small] if \ell[cond] then stmt else stmt end if
                       while \ell[cond] do stmt end do
                        stmt; stmt
```

Two examples of annotated programs

$$\begin{array}{l} \ell_0[X := 0]; \\ \ell_1[Y := Y + X]; \\ \ell_2[skip] \\ \ell_3[X := Y]; \end{array}$$

```
\begin{array}{l} \ell_0[Q:=0];\\ \ell_1[R:=X];\\ \textbf{IF}\ \ell_5[Y>0]\\  \qquad \qquad \textbf{WHILE}\ \ell_2[R\geq Y]\\ \ell_3[Q:=Q+1];\\ \ell_4[R:=R-Y]\\ \textbf{ENDWHILE}\\ \textbf{ELSE}\\ \ell_6[skip]\\ \textbf{ENDIF} \end{array}
```

Defining the semantics of the small programming language

► Semantic Domains

$$\begin{array}{ccc} \textit{Mem} & \stackrel{\textit{def}}{=} & \mathbb{V} \longrightarrow \mathbb{Z} \\ \textit{States} & \stackrel{\textit{def}}{=} & \mathbb{C} \times \textit{Mem} \end{array}$$

Semantics for Expressions

$$\begin{split} & \mathcal{E}\llbracket v \rrbracket(m) \in \mathcal{P}(\mathbb{Z}), \ e \in Expr, m \in Mem, \ x \in \mathbb{V}, \ op \in \{+, -, \times, /\} \\ & \mathcal{E}\llbracket v \rrbracket(m) & \stackrel{def}{=} \quad \{v\} \\ & \mathcal{E}\llbracket v \rrbracket(m) & \stackrel{def}{=} \quad \mathbb{Z} \\ & \mathcal{E}\llbracket x \rrbracket(m) & \stackrel{def}{=} \quad \{m(x)\} \\ & \mathcal{E}\llbracket e_1 \ op \ e_2 \rrbracket(m) & \stackrel{def}{=} \quad \{v | \exists ve_1, ve_2. \left(\begin{array}{c} ve_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ ve_2 \in \mathcal{E}\llbracket e_2 \rrbracket(m) \\ v = ve_1 \ o \ ve_2 \end{array} \right) \} \end{split}$$

Defining the semantics of the small programming language

Semantics for conditions $\mathcal{C}[[cond]](m) \in \mathcal{P}(\mathbb{B}), cond \in Cond, m \in Mem, x \in \mathbb{V},$ $op \in \{+, -, \times, /\}$ $\stackrel{def}{=} \exists v_1, v_2. \left(\begin{array}{c} v_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket e_2 \rrbracket(m) \\ v_1 \ relop \ v_2 \\ \end{array} \right)$ $\stackrel{def}{=} \exists v_1, v_2. \left(\begin{array}{c} v_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket e_2 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket e_2 \rrbracket(m) \\ \neg (v_1 \ relop \ v_2) \end{array} \right)$ $tt \in \mathcal{C}[e_1 \ relop \ e_2](m)$

$$be_1 \wedge be_2 \in \mathcal{C}\llbracket be_1 \text{ and } be_2 \rrbracket(m) \stackrel{def}{=} and \begin{pmatrix} be_1 \in \mathcal{C}\llbracket be_1 \rrbracket(m) \\ be_2 \in \mathcal{C}\llbracket be_2 \rrbracket(m) \end{pmatrix}$$

 $ff \in \mathcal{C}[e_1 \ relop \ e_2](m)$

Structural Operational Semantics : Small-step Semantics

- $\blacktriangleright (x:=e,m) \longrightarrow m[x\mapsto v], \text{ where } v\in \mathcal{E}[\![e]\!](m)$
- \triangleright $(skip, m) \longrightarrow m$
- ▶ If $(S_1, m) \longrightarrow m'$, then $(S_1; S_2, m) \longrightarrow (S_2, m')$.
- ▶ If $tt \in C[be]$, then (if be then S_1 else S_2 end if, m) \longrightarrow (S_1, m).
- ▶ If $ff \in \mathcal{C}\llbracket be \rrbracket$, then (if be then S_1 else S_2 end if, m) \longrightarrow (S_2, m) .
- ▶ If $tt \in C[be]$, then (while be do S end do, m) \longrightarrow (S; while be do S end do, m).
- ▶ If $ff \in C[[be]]$, then (while be do S end do, m) $\longrightarrow m$.

Generating Control Flowchart Graph from Program

- ▶ A control flow graph is generated from the program under consideration namely P.
- ▶ A control flow graph $\mathcal{CFG}[\![P]\!]$ is defined by nodes $(l \in \mathcal{C})$ which are program control points of P, $Control[\![P]\!]$ and by labelled edges with actions $(Actions[\![P]\!])$ defined by the following rules :

$$\begin{array}{cccc} actions & ::= & v := exp \\ & | & skip \\ & | & \textbf{assert} \ be \end{array}$$

- A control flow graph is effectively defined by :
 - $\ell_{init} \in \mathcal{C}ontrol[\![P]\!]$: the entry point
 - $\ell_{end} \in \mathcal{C}ontrol[\![P]\!]$: the exit point
 - $\mathcal{E}dges[\![P]\!] \subseteq \mathcal{C}ontrol[\![P]\!] \times \mathcal{A}ctions[\![P]\!] \times \mathcal{C}ontrol[\![P]\!]$
- $\triangleright \ \mathcal{CFG}[\![P]\!] = (\ell_{init}, \mathcal{E}dges[\![P]\!], \ell_{end})$

From program to flowchart

Small-step Semantics for Control Flowcharts

- $ightharpoonup Mem \stackrel{def}{=} \mathbb{V} \longrightarrow \mathbb{Z}$
- ▶ Semantics for $\mathcal{CFG}\llbracket P \rrbracket : \xrightarrow{P} \subseteq States \times States$
 - If $m \stackrel{a}{\longrightarrow} m'$ and $(\ell_1, a, \ell_2) \in \mathcal{E} dges \llbracket P \rrbracket$, then $(\ell_1, m) \stackrel{P}{\longrightarrow} (\ell_2, m')$
 - The set of initial states is $\{\ell_{init}\} \times Mem$
 - The set of reachable states for P is denoted REACHABLE(P) and defined by $[\![P]\!] = \{s | \exists s_0 \in \{\ell_{init} \times Mem : s_0 \xrightarrow{P} s\}.$

Collecting Semantics for Programs

lackbox Defining for each control point ℓ of P the set of reachables values :

$$[\![P]\!]^{coll}_\ell = \{s | s \in States \land s \in [\![P]\!] \land \exists m \in Mem : s = (\ell, m)\}$$

lackbox Characterizing $[\![P]\!]_\ell^{coll}$: it satisfies the system of equations

$$\forall \ell \in \mathcal{C}(P). X_{\ell} = X_{\ell}^{init} \cup \bigcup_{(\ell_1, a, \ell) \in \mathcal{E} dges[\![P]\!]} [\![a]\!] (X_{\ell_1}) \tag{1}$$

▶ Let $a \in Actions[P]$ and $x \subseteq Mem$.

$$\llbracket a \rrbracket(x) = \{ e | e \in States \land \exists f. f \in x \land f \xrightarrow{a} e \}$$

$$\forall \ell \in \mathcal{C}(P). \left(\begin{array}{c} \ell = \ell_{init} \Rightarrow X_{\ell}^{init} = Mem \\ \ell \neq \ell_{init} \Rightarrow X_{\ell}^{init} = \varnothing \end{array} \right)$$

Collecting Semantics for Programs

.....

- © Théorème Let F the function defined as follows :
 - ightharpoonup n is the cardinality of $\mathcal{C}(P)$.
 - $ightharpoonup F \in \mathcal{P}(States)^n \longrightarrow \mathcal{P}(States)^n$
 - ▶ If $X \in \mathcal{P}(States)^n$, then $F(X) = (\dots, F_{\ell}(X), \dots)$
 - $\blacktriangleright \ \forall \ell \in \mathcal{C}(P).F_{\ell}(X) = X_{\ell}^{init} \cup \bigcup_{(\ell_1, a, \ell) \in \mathcal{E}dges\llbracket P \rrbracket} \ \llbracket a \rrbracket(X_{\ell_1})$

The function F is monotonic over the complete lattice $(\mathcal{P}(States)^n, \subseteq)$ and has a least fixed-point μF defining the collecting semantics.

From flowchart to equational system

From flowchart to equational system

Defining equational systems for the collecting semantics :

From flowchart to equational system

Solving the equational system

- ► The collecting semantics is the least fixed-point of the system of equations, which exists by fixed-point theorems.
- Questions :
 - How to compute the solution?
 - Computing over finite structures, when it is possible....
 - Using an approximation of fixed-points?
 - What is an approximation?
 - What is an abstraction?
 - What is the best abstraction?

Next step

Defining a framework for computing Ifp solution of these equational systems in any case.

Example for computing reachable states

- ▶ System of equations over $(\mathcal{P}(\mathbb{Z},\subseteq)$
 - $X_1 = \mathbb{Z}$
 - $X_2 = \{1\} \cup \{v | v \in \mathbb{Z} \land v 1 \in X_3\}$
 - $X_3 = \{v | v \in X_2 \land v < 10 \}$
 - $X_4 = \{v | v \in X_2 \land v \ge 10 \}$
- Reachability
 - $X_1 = \mathbb{Z}$
 - $X_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - $X_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $X_4 = \{10\}$