

Principles of Statistical Inference

Curs d'Estadística Bàsica per a la Recerca Biomèdica

UEB - VHIR

Santiago Pérez-Hoyos i Alex Sánchez-Pla

santi.perezhoyos@vhir.org

alex.sanchez@vhir.org

The objective of statistical inference

Taking the observed (measured) values of one (or more) of samples...

... Determine ("infer") the properties of the entire population.

The objective of statistical inference

Estimation

- The aim of estimation is to infer properties (parameters) of the distribution of population data from sample data
- Some key concepts
 - Point estimate: Give a numerical value to the parameter of interest.
 - Estimator: Mathematical function to obtain the estimate
 - Interval Estimation: Give two values between which is the value of the population parameter with a preset confidence level (or probability)
 - Random error: Difference between estimation and real value if the sample is random

Point estimation (1)

- Data from qualitative variables
 - Parameter: Probability to observe a certain category
 - Estimate: Sample proportion: % of that category in the sample
 - Example: In the Osteoporosis dataset, what is the probability of observing a woman without ostheoporosis

Point estimation (II)

- Data from quantitative variables
 - Population parameters: μ , σ , etc.
 - Population parameters:
 - Estimate the mean, μ , with the sample mean, \overline{X}
 - Estimate, σ with the sample standard deviation, \hat{s}

Exercise

- In the osteoporosis dataset (osteo100) estimate the mean bone density (BUA)
 - for all the population indistinctly
 - depending on the CLASSIFIC variable

Biological variability. Sampling

<u> =1/8</u>

Sampling distribution

Population is 5 Children with age

$$x_1=6$$
, $x_2=8$, $x_3=10$, $x_4=12$, $x_5=14$

- Mean μ =10
- Variance $\sigma^2 = 8$
- Extract all possible samples with replacement and compute the mean in each sample

In this problem we can compute the population parameters because we know all the population values!!!

25 Samples n=2

	Second Data					
		6	8	10	12	14
Fist Data	6	6,6 (6)	6,8 (7)	6,10 (8)	6,12 (9)	6,14 (10)
	8	8,6 (7)	8,8 (8)	8,10 (9)	8,12 (10)	8,14 (11)
	10	10,6 (8)	10,8	10,10 (10)	10,12 (11)	10,14 (12)
	12	12,6 (9)	12,8 (10)	12,10 (11)	12,12 (12)	12,14 (13)
	14	14,6 (10)	14,8 (11)	14,10 (12)	14,12 (13)	14,14 (14)

Frequency table

media	frecuencia	frec relativa
6	1	1/25
7	2	2/25
8	3	3/25
9	4	4/25
10	5	5/25
11	4	4/25
12	3	3/25
13	2	2/25
14	1	1/25

Histograma

Summary

Mean of 25 sample means

$$\mu_{\text{med}} = (6 + 7 + ... + 14)/25 = 10$$

Variance of 25 sample means

$$\sigma_{\text{med}}^2 = \{(6-10)^2 + (7-10)^2 + ... + (14-10)^2\}/25 = 4$$

The mean of sample means is population mean

$$\sigma_{\text{med}}^2 = \sigma^2/2 = 8/2 = 4$$

 Variance of 25 sample means equals population variance divided by sample size

Standard error

- Standard deviation of the distribution of sample means
- Usually it is defined as population standard deviation divided by squared root of sample size

standard error =
$$\frac{\sigma}{\sqrt{n}}$$

DISTRIBUTION IN THE POPULATION

SAMPLING DISTRIBUTION OF THE MEAN, $ar{X}$

Row A. Uniform or rectangular

n = 30

Row C. Skewed

Row D. Similar to normal

Figure 6-3. Illustration of ramifications of central limit theorem.

Unbiased estimators

- An estimator is unbiased if the mean of the sample estimates is the parameter we are looking for.
 - Sample mean and proportion are unbiased estimators of population mean and probability (percentage)
 - Sample variance is a biased estimator of population variance, but not if we divided by n-1
 - That is why computers compute sample variance dividing by (n-1) instead of dividing by n.

- Population blood pressure in hipertensives is normally distributed with mean μ and standard deviation 12
- We extract a sample of n=186 and we observe a sample mean m=118,8)
- We can compute a confidence interval for the mean:

$$\overline{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 118 \pm 1,96 \times 12/\sqrt{186}$$

- This provides an interval such that we are highly confident that the true population may be between the upper and lower value of the interval.
 - In practice this means that if we repeated the process of sampling and building the interval we would expect that 95% of the times it would contain the true population value

$m \pm 1.96 \sigma / \sqrt{186}$

Population mean is outside de confidence interval

$m \pm 1.96 \sigma / \sqrt{186}$

Population mean is inside confidence interval

$m \pm 1.96 \sigma / \sqrt{186}$

Population mean is inside confidence interval

$m \pm 1.96 \, σ/\sqrt{186}$

Population mean its outside confidence interval

Confidence interval

Values in which we are confident that real population parameter is inside With a prefixed confidence level (Usually 95%)

One Sample t-test

```
data: bua
t = 137.89, df = 999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
72.2539 74.3401
sample estimates:
mean of x
73.297
```


Confidence interval in RCmdr

Proportion Test Normal Aproximation


```
Frequency counts (test is for first level): menop
NO SI
303 697
```

1-sample proportions test without continuity correction

```
data: rbind(.Table), null probability 0.5
X-squared = 155.24, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.2753154 0.3321923
sample estimates:
p
0.303
```


Frequency counts (test is for first level): menop
NO SI
303 697

Exact binomial test

data: rbind(.Table)
number of successes = 303, number of trials = 1000, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.274632 0.332533
sample estimates:

probability of success 0.303

Sample size =10, Mean=180, sd=20

20 muestras de tamaño 10 media 180 desv.tip. 20

20 muestras de tamaño 10 media 180 desv.tip. 20

Sample size =100, Mean=180, sd=20

20 muestras de tamaño 100 media 180 desv.tip. 20 muestras de tamaño 100 media 180 desv.tip. 20

Sample size =100, Mean=180, sd=20

20 muestras de tamaño 1000 media 180 desv.tip. 20

20 muestras de tamaño 1000 media 180 desv.tip. 20

Confidence interval calculator (Plugin EzR)

95 %CI 176.032-183.968

[1] Probability: 0.25

[1] 95% confidence interval : 0.202 - 0.303

Sample Size

Sample Size Calculation

- Some questions must be answered before we can compute "sample size"
 - Precision (interval range) of estimations
 - Level of confidence of estimations
 - Sometimes (for proportions) it will help to have an idea of the value of the parameter we want to estimate

Sample Size Calculation

 The question "what is the sample size" must be rephrased as:

What sample size is needed to estimate the mean, so that we have a high confidence (say 95%) that the estimation error will be less than a given threshold?

Sample SIZE for mean

Precision =
$$z_{1-\alpha/2}$$
 * $ee = 1.96 * \frac{\sigma}{\sqrt{n}}$

$$n = \frac{z_{1-\alpha/2}^2 \sigma^2}{precision^2}$$

If interval range is 10 (precision = 10/2=5), confidence levell is 95% and standard deviation is 20, sample size will be

$$n = 1.96^2 20^2 / 5^2 = 62$$

> SampleMeanCI(20, 10, 95)

	Assumptions
Standard deviation	20
Confidence interval	10
Confidence level	0.95

Required sample size Estimated 62

Sample size for proportion

Precision =
$$z_{1-\alpha/2} * ee = 1.96 * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$n = \frac{1.96^2 \, \hat{p}(1-\hat{p})}{precision^2} =$$

Assume precision is 5% (Interval = $p\pm.05$) and confidence level is 95%

If it is known that p is around 12.5%

$$n = 1.96^2 .125 (1 - .125) / .05^2 = 168$$

If p is unknown maximum sample size will be if p=.50

$$n=1.96^2.5(1-.5)/.05^2=384$$

