

## Natural Language Processing

Angel Xuan Chang angelxuanchang.github.io/nlp-class adapted from lecture slides from Anoop Sarkar

Simon Fraser University

2020-01-23

## Natural Language Processing

Angel Xuan Chang angelxuanchang.github.io/nlp-class adapted from lecture slides from Anoop Sarkar

Simon Fraser University

January 23, 2020

Part 1: Classification tasks in NLP

### Classification tasks in NLP

Naive Bayes Classifier

Log linear models

### Sentiment classification: Movie reviews

- neg unbelievably disappointing
- pos Full of zany characters and richly applied satire, and some great plot twists
- pos this is the greatest screwball comedy ever filmed
- neg It was pathetic. The worst part about it was the boxing scenes.

### Intent Detection

- ADDR\_CHANGE I just moved and want to change my address.
- ► ADDR\_CHANGE Please help me update my address.
- ► FILE\_CLAIM I just got into a terrible accident and I want to file a claim.
- ► CLOSE\_ACCOUNT I'm moving and I want to disconnect my service.

## Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: / bought the shirt with my credit card
- noun attach: I washed the shirt with mud
- verb attach: I washed the shirt with soap
- Attachment depends on the meaning of the entire sentence needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

# Ambiguity Resolution: Prepositional Phrases in English

▶ Learning Prepositional Phrase Attachment: Annotated Data

| V         | $n_1$       | р    | $n_2$    | Attachment |
|-----------|-------------|------|----------|------------|
| join      | board       | as   | director | V          |
| is        | chairman    | of   | N.V.     | N          |
| using     | crocidolite | in   | filters  | V          |
| bring     | attention   | to   | problem  | V          |
| is        | asbestos    | in   | products | N          |
| making    | paper       | for  | filters  | N          |
| including | three       | with | cancer   | N          |
| ÷         | :           | :    | ÷        | :          |

# Prepositional Phrase Attachment

| Method                            | Accuracy |
|-----------------------------------|----------|
| Always noun attachment            | 59.0     |
| Most likely for each preposition  | 72.2     |
| Average Human (4 head words only) | 88.2     |
| Average Human (whole sentence)    | 93.2     |

# **Back-off Smoothing**

- Random variable a represents attachment.
- $ightharpoonup a = n_1$  or a = v (two-class classification)
- We want to compute probability of noun attachment:  $p(a = n_1 \mid v, n_1, p, n_2)$ .
- ▶ Probability of verb attachment is  $1 p(a = n_1 \mid v, n_1, p, n_2)$ .

## Back-off Smoothing

1. If  $f(v, n_1, p, n_2) > 0$  and  $\hat{p} \neq 0.5$ 

$$\hat{p}(a_{n_1} \mid v, n_1, p, n_2) = \frac{f(a_{n_1}, v, n_1, p, n_2)}{f(v, n_1, p, n_2)}$$

2. Else if  $f(v, n_1, p) + f(v, p, n_2) + f(n_1, p, n_2) > 0$  and  $\hat{p} \neq 0.5$ 

$$\hat{p}(a_{n_1} \mid v, n_1, p, n_2) = \frac{f(a_{n_1}, v, n_1, p) + f(a_{n_1}, v, p, n_2) + f(a_{n_1}, n_1, p, n_2)}{f(v, n_1, p) + f(v, p, n_2) + f(n_1, p, n_2)}$$

3. Else if  $f(v, p) + f(n_1, p) + f(p, n_2) > 0$ 

$$\hat{p}(a_{n_1} \mid v, n_1, p, n_2) = \frac{f(a_{n_1}, v, p) + f(a_{n_1}, n_1, p) + f(a_{n_1}, p, n_2)}{f(v, p) + f(n_1, p) + f(p, n_2)}$$

4. Else if f(p) > 0 (try choosing attachment based on preposition alone)

$$\hat{p}(a_{n_1} \mid v, n_1, p, n_2) = \frac{f(a_{n_1}, p)}{f(p)}$$

5. Else  $\hat{p}(a_{n_1} \mid v, n_1, p, n_2) = 1.0$ 

## Prepositional Phrase Attachment: Results

- ▶ Results (Collins and Brooks 1995): 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.
- ► Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- ► Merlo, Crocker and Berthouzoz, 1997: test on multiple PPs, generalize disambiguation of 1 PP to 2-3 PPs

1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

## Natural Language Processing

Angel Xuan Chang
angelxuanchang.github.io/nlp-class
adapted from lecture slides from
Anoop Sarkar, Dangi Chen and Karthik Narasimhan

Simon Fraser University

January 23, 2020

Part 2: Probabilistic Classifiers

### Classification Task

- ► Input:
  - ► A document d
  - ▶ a set of classes  $C = \{c_1, c_2, \dots, c_m\}$
- Output: Predicted class c for document d
- Example:
  - neg unbelievably disappointing
  - pos this is the greatest screwball comedy ever filmed

# Supervised learning: Let's use statistics!

- ► Inputs:
  - ightharpoonup Set of m classes  $C = \{c_1, c_2, \dots, c_m\}$
  - ► Set of *n labeled* documents:  $\{(d_1, c_1), (d_2, c_2), \dots, (d_n, c_n)\}$
- ▶ Output: Trained classifier  $F: d \rightarrow c$ 
  - ▶ What form should *F* take?
  - ► How to learn *F*?

# Types of supervised classifiers



Naive Bayes



6.75 6.75 6.10 6.10

Logistic regression



k-nearest neighbors

Classification tasks in NLF

Naive Bayes Classifier

Log linear models

## Naive Bayes Classifier

- ▶ **x** is the input that can be represented as d independent features  $f_i$ ,  $1 \le j \le d$
- y is the output classification
- $P(y \mid \mathbf{x}) = \frac{P(y) \cdot P(\mathbf{x}|y)}{P(\mathbf{x})}$  (Bayes Rule)
- $P(\mathbf{x} \mid y) = \prod_{j=1}^{d} P(f_j \mid y)$
- $P(y \mid \mathbf{x}) \propto P(y) \cdot \prod_{j=1}^{d} P(f_j \mid y)$
- We can ignore  $P(\mathbf{x})$  in the above equation because it is a constant scaling factor for each y.

## Naive Bayes Classifier for text classification

- For text classification: input  $\mathbf{x} = document\mathbf{d} = (w_1, \dots, w_k)$ ,
- ▶ Use as our features the words  $w_j$ ,  $1 \le j \le |V|$  where V is our vocabulary
- c is the output classification
- ► Assume that position of each word is irrelevant and that the words are conditionally independent given class *c*

$$P(w_1, w_2, ..., w_k | c) = P(w_1 | c) P(w_2 | c) ... P(w_k | c)$$

Maximum a posteriori estimate

$$c_{\mathsf{MAP}} = \underset{c}{\mathsf{arg max}} \, P(c) P(d|c) = \underset{c}{\mathsf{arg max}} \, \hat{P}(c) \prod_{i=1}^{k} \hat{P}(w_i|c)$$

## Bag of words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!



# Estimating probabilities

#### Maximum likelihood estimate

$$\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{n}$$

$$\hat{P}(w_i|c_j) = \frac{\mathsf{Count}(w_i, c_j)}{\sum_{w \in V} [\mathsf{Count}(w, c_j)]}$$

### **Smoothing**

$$\hat{P}(w_i|c) = \frac{\mathsf{Count}(w_i, c) + \alpha}{\sum_{w \in V} [\mathsf{Count}(w, c_j) + \alpha]}$$

## Overall process

Input: Set of labeled documents:  $\{(d_i, c_i)\}_{i=1}^n$ 

- Compute vocabulary V of all words
- Calculate

$$\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{n}$$

Calculate

$$\hat{P}(w_i|c_j) = \frac{\mathsf{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} [\mathsf{Count}(w, c_j) + \alpha]}$$

▶ Prediction: Given document  $d = (w_1, ..., w_k)$ 

$$c_{\mathsf{MAP}} = rg \max_{c} \hat{P}(c) \prod_{i=1}^{k} \hat{P}(w_i|c)$$

## Naive Bayes Example

|                       | $\hat{P}(c) = \frac{N_c}{N}$        |
|-----------------------|-------------------------------------|
| $\hat{P}(w \mid c) =$ | $\frac{count(w,c)+1}{count(c)+ V }$ |

|          | Doc | Words                       | Class |
|----------|-----|-----------------------------|-------|
| Training | 1   | Chinese Beijing Chinese     | С     |
|          | 2   | Chinese Chinese Shanghai    | С     |
|          | 3   | Chinese Macao               | С     |
|          | 4   | Tokyo Japan Chinese         | j     |
| Test     | 5   | Chinese Chinese Tokyo Japan | ?     |

#### **Priors:**

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

#### Conditional Probabilities:

λI

P(Chinese | c) = 
$$(5+1) / (8+6) = 6/14 = 3/7$$
  
P(Tokyo | c) =  $(0+1) / (8+6) = 1/14$   
P(Japan | c) =  $(0+1) / (8+6) = 1/14$   
P(Chinese | j) =  $(1+1) / (3+6) = 2/9$   
P(Tokyo | j) =  $(1+1) / (3+6) = 2/9$   
P(Japan | j) =  $(1+1) / (3+6) = 2/9$ 

#### Choosing a class:

$$P(c|d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14$$
  
  $\approx 0.0003$ 

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

### **Tokenization**

### Tokenization matters - it can affect your vocabulary



► Emails, URLs, phone numbers, dates, emoticons

### **Features**

- ▶ Remember: Naive Bayes can use any set of features
- ► Captitalization, subword features (end with -ing), etc
- Domain knowledge crucial for performance

### Top features for spam detection

| Rank | Category | Feature                                                            | Rank  | Category | Feature                                                 |
|------|----------|--------------------------------------------------------------------|-------|----------|---------------------------------------------------------|
| 1    | Subject  | Number of capitalized words                                        | 1     | Subject  | Min of the compression ratio<br>for the bz2 compressor  |
| 2    | Subject  | Sum of all the character lengths of words                          | 2     | Subject  | Min of the compression ratio<br>for the zlib compressor |
| 3    | Subject  | Number of words containing letters and numbers                     | 3     | Subject  | Min of character diversity of each word                 |
| 4    | Subject  | Max of ratio of digit characters<br>to all characters of each word | 4     | Subject  | Min of the compression ratio<br>for the lzw compressor  |
| 5    | Header   | Hour of day when email was sent                                    | 5     | Subject  | Max of the character lengths of words                   |
| (a)  |          |                                                                    |       |          | (b)                                                     |
|      |          | Spam URLs Feat                                                     | tures |          |                                                         |
| 1    | URL      | The number of all URLs in an email                                 | 1     | Header   | Day of week when email was sent                         |
| 2    | URL      | The number of unique URLs in an email                              | 2     | Payload  | Number of characters                                    |
| 3    | Payload  | Number of words containing letters and numbers                     | 3     | Payload  | Sum of all the character lengths of words               |
| 4    | Payload  | Min of the compression ratio for the bz2 compressor                | 4     | Header   | Minute of hour when email was sent                      |
| 5    | Payload  | Number of words containing only letters                            | 5     | Header   | Hour of day when email was sent                         |
|      |          | (c)                                                                |       |          | (d)                                                     |

[Alqatawna et al, IJCNSS 2015]

### **Evaluation**

► Table of prediction (binary classification)

#### Truth

|           |          | Positive | Negative |
|-----------|----------|----------|----------|
| Predicted | Positive | 100      | 5        |
|           | Negative | 45       | 100      |

► Ideally we want to get

|          | Positive | Negative |
|----------|----------|----------|
| Positive | 145      | 0        |
| Negative | 0        | 105      |

### **Evaluation Metrics**

| 7 | 7 | ι | ľ | tl | 'n |
|---|---|---|---|----|----|
|   |   |   |   |    |    |

Predicted

|          | Positive | Negative |
|----------|----------|----------|
| Positive | 100      | 5        |
| Negative | 45       | 100      |





$$\mathbf{Accuracy} = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

### **Evaluation Metrics**

Truth

Predicted

|          | Positive | Negative |
|----------|----------|----------|
| Positive | 100      | 5        |
| Negative | 45       | 100      |

|          | Positive | Negative |
|----------|----------|----------|
| Positive | 100      | 25       |
| Negative | 25       | 100      |



$$\mathbf{Accuracy} = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

### Precision and Recall

Precision: % of selected classes that are correct

$$\mathbf{Precision}(+) = \frac{TP}{TP + FP} \qquad \mathbf{Precision}(-) = \frac{TN}{TN + FN}$$

Recall: % of correct items selected

$$\mathbf{Recall}(+) = \frac{TP}{TP + FN} \qquad \qquad \mathbf{Recall}(-) = \frac{TN}{TN + FP}$$

### Precision and Recall



from Wikipedia

### F-Score

- Combined measure
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \mathsf{Precision} \cdot \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

Or more generally,

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \operatorname{Precision} \cdot \operatorname{Recall}}{\beta^2 \cdot \operatorname{Precision} + \operatorname{Recall}}$$

# **Choosing Beta**

Truth

Predicted

|          | Positive | Negative |
|----------|----------|----------|
| Positive | 200      | 100      |
| Negative | 50       | 100      |

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

• Which value of Beta maximizes  $F_{eta}$  for positive class?

A. 
$$\beta = 0.5$$

B. 
$$\beta = 1$$

C. 
$$\beta = 2$$

## Aggregating scores

- ▶ We have Precision, Recall, F1 for each class
- ▶ How to combine them for an overall score?
  - Macro-average: Compute for each class, then average
  - Micro-average: Collect predictions for all classes and jointly evaluate

# Macro vs Micro average

Class 1

| Truth: | Truth:    |
|--------|-----------|
| yes    | no        |
| 10     | 10        |
| 10     | 970       |
|        | yes<br>10 |

Class 2

|                 | Truth:<br>yes | Truth:<br>no |
|-----------------|---------------|--------------|
| Classifier: yes | 90            | 10           |
| Classifier: no  | 10            | 890          |

#### Micro Ave. Table

|                 | Truth:<br>yes | Truth: |
|-----------------|---------------|--------|
| Classifier: yes | 100           | 20     |
| Classifier: no  | 20            | 1860   |

- ► Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- ightharpoonup Microaveraged precision: 100/120 = .83
- ▶ Microaveraged score is dominated by score on common classes

### Validation



- ► Choose a metric: Precision/Recall/F1
- Optimize for metric on Validation (aka Development) set
- ► Finally evaluate on 'unseen' Test set
- Cross-validation
  - Repeatedly sample several train-val splits
  - Reduces bias due to sampling errors



## Advantanges of Naive Bayes

- ► Very fast, low storage requirements
- ► Robust to irrelevant features
- Very good in domains with many equally important features
- Optimal if the independence assumptions hold
- Good dependable baseline for text classification

## When to use Naive Bayes

- ➤ Small data sizes: Naive Bayes is great! . Rule-based classifiers can work well too
- Medium size datasets: More advanced classifiers might perform better (SVM, logistic regression)
- Large datasets: Naive Bayes becomes competive again (most learned classifiers will work well)

# Failings of Naive Bayes (1)

### Independence assumptions are too strong

► XOR problem: Naive Bayes cannot learn a decision boundary

| x1 | x2 | Class: x <sub>1</sub> XOR x <sub>2</sub> |
|----|----|------------------------------------------|
| 1  | 1  | 0                                        |
| 0  | 1  | 1                                        |
| 1  | 0  | 1                                        |
| 0  | 0  | 0                                        |

▶ Both variables are jointly required to predict class. Independence assumption broken!

# Failings of Naive Bayes (2)

#### Class Imbalance

- ▶ One or more classes have more instances than others
- Data skew causes NB to prefer one class over the other

# Failings of Naive Bayes (3)

### Weight magnitude errors

- Classes with larger weights are preferred
- ▶ 10 documents with class=MA and "Boston" occurring once each
- ▶ 10 documents with class=CA and "San Francisco" occurring once each
- ▶ New document d: "Boston Boston Boston San Francisco San Francisco"

$$P(class = CA|d) > P(class = MA|d)$$

## Naive Bayes Summary

- Domain knowledge is crucial to selecting good features
- ► Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities

$$P(c_{NB}) = rg \max_{c_j \in C} \log P(c_j) + \sum_i \log P(x_i|c_j)$$

Model is now just max of sum of weights

Classification tasks in NLF

Naive Bayes Classifie

Log linear models

## Log linear model

- ▶ The model classifies input into output labels  $y \in \mathcal{Y}$
- ▶ Let there be m features,  $f_k(\mathbf{x}, y)$  for k = 1, ..., m
- ▶ Define a parameter vector  $\mathbf{v} \in \mathbb{R}^m$
- ightharpoonup Each  $(\mathbf{x}, y)$  pair is mapped to score:

$$s(\mathbf{x},y) = \sum_{k} v_k \cdot f_k(\mathbf{x},y)$$

Using inner product notation:

$$\mathbf{v} \cdot \mathbf{f}(\mathbf{x}, y) = \sum_{k} v_{k} \cdot f_{k}(\mathbf{x}, y)$$
  
 $s(\mathbf{x}, y) = \mathbf{v} \cdot \mathbf{f}(\mathbf{x}, y)$ 

To get a probability from the score: Renormalize!

$$\Pr(y \mid \mathbf{x}; \mathbf{v}) = \frac{\exp(s(\mathbf{x}, y))}{\sum_{y' \in \mathcal{Y}} \exp(s(\mathbf{x}, y'))}$$

## Log linear model

▶ The name 'log-linear model' comes from:

$$\log \Pr(y \mid \mathbf{x}; \mathbf{v}) = \underbrace{\mathbf{v} \cdot \mathbf{f}(\mathbf{x}, y)}_{\text{linear term}} - \underbrace{\log \sum_{y'} exp\left(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}, y')\right)}_{\text{normalization term}}$$

- Once the weights v are learned, we can perform predictions using these features.
- ▶ The goal: to find  $\mathbf{v}$  that maximizes the log likelihood  $L(\mathbf{v})$  of the labeled training set containing  $(\mathbf{x}_i, y_i)$  for  $i = 1 \dots n$

$$L(\mathbf{v}) = \sum_{i} \log \Pr(y_i \mid \mathbf{x}_i; \mathbf{v})$$

$$= \sum_{i} \mathbf{v} \cdot \mathbf{f}(\mathbf{x}_i, y_i) - \sum_{i} \log \sum_{y'} \exp(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_i, y'))$$

## Log linear model

Maximize:

$$L(\mathbf{v}) = \sum_{i} \mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \log \sum_{\mathbf{v}'} exp\left(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y')\right)$$

► Calculate gradient:

$$\frac{dL(\mathbf{v})}{d\mathbf{v}}\Big|_{\mathbf{v}} = \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \frac{1}{\sum_{y''} \exp(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y''))} \\
= \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \cdot \exp(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y')) \\
= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \frac{\exp(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))}{\sum_{y''} \exp(\mathbf{v} \cdot \mathbf{f}(\mathbf{x}_{i}, y''))} \\
= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \Pr(y' \mid \mathbf{x}_{i}; \mathbf{v}) \\
\xrightarrow{\text{Observed counts}} \xrightarrow{\text{Expected counts}}$$

### Gradient ascent

- ▶ Init:  $\mathbf{v}^{(0)} = \mathbf{0}$
- $ightharpoonup t \leftarrow 0$
- ► Iterate until convergence:
  - $lackbox{ Calculate: } \Delta = \left. rac{d L(\mathbf{v})}{d \mathbf{v}} \right|_{\mathbf{v} = \mathbf{y}^{(t)}}$
  - Find  $\beta^* = \arg \max_{\beta} L(\mathbf{v}^{(t)} + \beta \Delta)$
  - Set  $\mathbf{v}^{(t+1)} \leftarrow \mathbf{v}^{(t)} + \beta^* \Delta$

# Learning the weights: v: Generalized Iterative Scaling

```
f^{\#} = max_{x,y} \sum_{i} f_{i}(x,y)
(the maximum possible feature value; needed for scaling)
Initialize \mathbf{v}^{(0)}
For each iteration t
      expected[j] \leftarrow 0 for j = 1 .. # of features
      For i = 1 to | training data |
           For each feature f_i
                 expected[j] += f_i(x_i, y_i) \cdot P(y_i \mid x_i; \mathbf{v}^{(t)})
      For each feature f_i(x, y)
           observed[j] = f_j(x, y) \cdot \frac{c(x, y)}{|\text{training data}|}
      For each feature f_i(x, y)
           v_i^{(t+1)} \leftarrow v_i^{(t)} \cdot \sqrt[f^{\#}]{\frac{\text{observed[j]}}{\text{expected[i]}}}
```

cf. Goodman, NIPS '01

### Acknowledgements

Many slides borrowed or inspired from lecture notes by Anoop Sarkar, Danqi Chen, Karthik Narasimhan, Dan Jurafsky, Michael Collins, Chris Dyer, Kevin Knight, Chris Manning, Philipp Koehn, Adam Lopez, Graham Neubig, Richard Socher and Luke Zettlemoyer from their NLP course materials.

All mistakes are my own.

A big thank you to all the students who read through these notes and helped me improve them.