Contents

1	Revised order	3
2	Intro to Chemical Engineering	3
3	Introduction to Engineering Calculation 3.1 Objectives	4 4 4 5 5 6 6 7 7 7 8 8 9
4	Processes and process variables 4.1 Learning objectives 4.2 Mass, volume, density 4.3 Flow rate 4.4 Chemical composition 4.4.1 Moles and molecular weights 4.5 Mixtures 4.5.1 Mass and mole fractions 4.5.2 Average molecular weight 4.5.3 Concentrations 4.6 Pressure 4.6.1 Measures of pressure 4.6.2 Absolute vs. gauge 4.6.3 Pressure gauges 4.6.4 open-end manometer: 4.6.5 differential manometer 4.6.6 Closed manometer	11 11 12 12 12 13 13 14 15 15 17 17 18 19
5	4.7 Temperature 4.7.1 Scales 4.7.2 Measurement devices Material balances on non-reactive systems 5.1 Process types 5.2 General balance equation 5.3 Mass balance procedure 5.4 Multi-unit processes 5.5 Recycle and bypass	19 19 20 21 21 21 22 31 34

6	Mat	terial balances on reactive systems 36
	6.1	Revision idea
	6.2	Stoichiometry
	6.3	Reaction progress
	6.4	Multiple reactions
	6.5	Reactive balances
	6.6	Reactive balances on multi-unit processes
	6.7	Purge
	6.8	Combustion in air
7	Pro	perties of single-phase systems 49
	7.1	Liquid and solid densities
	7.2	Ideal gas
	7.3	Ideal gas mixture
	7.4	Real equations of state
	1.4	1
		7.4.2 van der Waals model
		7.4.3 Other cubic equations of state
		7.4.4 Virial expansion
		7.4.5 Law of corresponding states
	7.5	Real gas mixtures
8	Turc	o-phase systems 61
O	8.1	
	0.1	
		8.1.1 Clapeyron equation
		8.1.2 Antoine equation
	8.2	Gibbs phase rule
	8.3	Single-component VLE
		8.3.1 Raoult's Law
		8.3.2 Humidity
	8.4	Multi-component VLE
	0	8.4.1 Raoult's Law
		8.4.2 Henry's Law
		v
	0 -	
	8.5	Solid-liquid
		8.5.1 Solubility
		8.5.2 Colligative properties
	8.6	Liquid-liquid
	8.7	Solid-gas
9	Ene	ergy balances 78
9	9.1	What's energy?
	_	3.
	9.2	Closed system (little different from thermo definition)
	9.3	Open system, steady state
		9.3.1 Flow and shaft work
		9.3.2 Specific properties
		9.3.3 Kinetic energy
		9.3.4 Potential energy

	9.4	Thermodynamic data	. 81		
	9.5	Combined mass and energy balances	. 84		
	9.6	Mechanical balances	. 87		
10	Ene	rgy balances on non-reactive systems	92		
		State function	. 92		
		Isothermal pressure dependence			
	10.3	Isochoric temperature dependence	. 93		
		No data?			
	10.5	Phase change	. 95		
	10.6	Phase change $+$ mass balance \dots	. 98		
	10.7	Psychrometric charts	. 99		
		Non-ideal mixtures			
	10.9	Two-phase, non-ideal mixtures	. 106		
11	Ene	rgy balances on reactive systems	109		
	11.1	Heats of reaction	. 109		
	11.2	Formation and combustion reactions	. 110		
	11.3	Energy balances	. 111		
	11.4	Adiabatic reactors	. 113		
	11.5	Other applications	. 115		
12	Trai	nsient processes	116		
1	\mathbf{R}	evised order			
1	10	evised order			
	• va	riables			
	• ma	ass balances, single phase, mixtures,			
		- systems of linear equations			
	• en	ergy balances, single phase, mechanical,			
	• sir	ngle component, two-phase			
	• tw	ro-component, two-phase, ideal			
	• re	actions			
	• tw	ro-component, two-phase, non-ideal			
2	In	tro to Chemical Engineering			
	1. P(op quiz			
	(a) Which weighs more, the Earth or the moon?				
	(b) Mix together 100 mL $\mathrm{H_2O}$ and 50 mL alcohol. What's the final volume?				
	(c) Add 10 g Fe ball at 100 C to 10 g H2O at 20 C. What's the final temperature?			
		,			

- (d) My pool holds 20,000 gal of H_2O . Pump circulates at 10 gpm. How long does it take for all the H_2O to pass through the filter? (Depends on whether it recirculates!)
- 2. Instructor
- 3. Students
- 4. Syllabus
- 5. Assignment: Read Chapter 1

3 Introduction to Engineering Calculation

3.1 Objectives

- 1. unit conversions
- 2. SI, cgs, English systems
- 3. sig figs
- 4. Is my answer reasonable?
- 5. Basic stats
- 6. Data fitting

3.2 Units and dimensions

- Engineering always deal with quantifiable, computable things.
- Anything we can quantify has a **value** (number) and a **unit** (number of what? meters, bananas, bits, seconds)
- A dimension is a property of a quantity, like length, time, speed = length / time, density = mass / volume. Most physical quantities have a dimension (other than pesky dimensionless quantities!).
- Quantities of the **same dimension** can be added or subtracted. First they have to be put into the **same units**.

$$3 \text{ cm} + 43 \text{ mm} = 30 \text{ mm} + 43 \text{ mm} = 73 \text{ mm}$$

• Quantities of different dimension can be multiplied or divided and carry the combined dimension

$$44 \, \text{m}/11 \, \text{s} = 4 \, \text{m/s}$$

- Units not welcome inside transcendental functions, sin, cos, ln, ...
- Equations must be *dimensionally homogeneous*: all additive terms on either side of an equality must have the same units
- ALWAYS carry units in engineering computations

3.3 Systems of units

• Base units

Dimension	SI	cgs	English
Length	m	cm	in, ft, mi
Mass	kg	g	lb_{m}
Time	\mathbf{s}	\mathbf{S}	\mathbf{s}
Temperature	K	K	\mathbf{F}
Current	A	A	
Light intensity	cd	cd	

- Multiplicative factors: T, G, M, k, c, d, m, μ , n, f
- Important chemical eng. derived units

Volume	liter	L	1000 cm^3
Force	Newton	N	1 kg m/s^2
	dyne		$1 \mathrm{~g~cm/s^2}$
Energy/Work	Joule	J	$1 \text{ N m} = 1 \text{ kg m}^2/\text{s}^2$
	erg		$1 \text{ dyne cm} = 1 \text{ g cm}^2/\text{s}^2$
	calorie	cal	4.184 J
	Btu		1 Btu = 1055.05585 J
Power	Watt	W	$1 \mathrm{\ J/s}$
	Horsepower	$_{ m hp}$	1 hp = 745.7 W
Pressure	Pascal	Pa	$1 \text{ N/m}^2 = 1 \text{ J/m}^3$
	bar		10^{5} Pa
	atmosphere	atm	1 atm = 1.01325 bar
	torr	torr	$1/760 \mathrm{\ atm}$

- Inside book cover has many useful conversions
- Fun facts: 1 L of H₂O has a mass of 1 kg or about 2.2 lb_m. What about a liter of gasoline?
- Fun facts: 1 Btu is amount of heat released in burning 1 4 in wood match, or heat needed to raise the temperature of 1 lb_m water by PF. "Horsepower" used by Watt to compare the power output of a draft horse to his steam engine. Definitions abound!
- Pain in the neck to go between systems of units. Need conversion factors. E.g., $1 \text{ lb}_{\text{m}} = 453.5932 \text{ g}$. 1 in = 2.54 cm. Unless forced otherwise, use SI!

3.4 Unit conversions

• Conversion factors are ratios

$$\boxed{4\frac{\mathrm{m}}{\mathrm{s}} * 100\frac{\mathrm{cm}}{\mathrm{m}} = 400\frac{\mathrm{cm}}{\mathrm{s}}}$$

• Conversion factors can be ganged. Example: show that

$$1.00 \,\mathrm{cm} \,\mathrm{s}^{-2} = 9.95 \times 10^9 \,\mathrm{km/year}^2$$

3.5 Dimensional homogeneity

As you will learn in Thermodynamics, the internal energy U is related to other thermodynamic quantities by the relation

$$U = TS - PV + \mu N \tag{1}$$

What are units on the entropy, S? Chemical potential, μ ? What does this say about the dimensionality of pressure?

The Schrödinger equation is the fundamental equation of quantum mechanics:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} + V(x)\psi = E\psi \tag{2}$$

E has units of energy and m units of mass. What are the units on V(x)? \hbar ? $\psi(x)$?

3.6 Mass, force, weight

- mass of an object is an intrinsic property, resistance to an applied force
- Newton's 3rd Law

$$F = ma$$

• English force units messy

$$1 \, \mathrm{lb_f} = 32.174 \, \mathrm{lb_m ft/s^2}$$

• weight is force exerted by a gravitational field on a mass

$$w = mg$$

• g depends on the planet you are standing on, as well as where you are standing

$$g = 9.8066 \,\mathrm{m \, s}^{-2}$$

= $32.174 \,\mathrm{ft/s}^2$

Water has a density of $62.4 \, \rm lb_m/ft^3$. How much does 2 ft³ of water weigh on the earth? On the moon $(g=1.625\, 19\, \rm m\, s^{-2})$?

earth: 124.8000000000001 lbf moon: 20.682368201007485 lbf

3.7 Numerical calculations

3.7.1 Scientific notation, significant figures, precision

- Significant figures imply a precision
- Always report numbers with reasonable significant figures.
- Examples of adding and multiplying with sig figs.
- Round to even number: 1.35 to 1.45 all round to 1.4.

3.7.2 Validating results

- Does the result make physical sense?
- Do a ballpark estimate.
- Back-substitute

3.7.3 Sources of error

- Few, if anything, can be measured exactly. Processes have intrinsic variability
- CSTR example: flow rate may fluctuate, temperature fluctuate, slightly inhomogeneous. So do measurements (thermocouple). Best we can do is estimate the "truth."
 - random error
 - systematic error
 - Show random scatter, systematic drift, oscillation

```
import numpy as np
    import matplotlib.pyplot as plt
    x = np.arange(40.)
    sigma = 1.
    T = 25. + sigma*np.random.randn(40)
    T1 = 20. + .2 * x + sigma*np.random.randn(40)
    T2 = 25. + 4. * np.sin(x/4.) + sigma*np.random.randn(40)
    plt.subplot(311)
    plt.scatter(x,T)
10
   plt.ylim(15,35)
    plt.xlim(0,40)
12
13
    plt.ylabel('Temperature (C)')
14
    plt.subplot(312)
15
    plt.scatter(x,T1)
16
    plt.ylim(15,35)
17
    plt.xlim(0,40)
    plt.ylabel('Temperature (C)')
19
    plt.subplot(313)
21
    plt.scatter(x,T2)
    plt.ylim(15,35)
   plt.xlim(0,40)
24
    plt.xlabel('Sample (hour)')
    plt.ylabel('Temperature (C)')
    plt.savefig('./figs/random.png')
```


3.7.4 Sample mean

• sample mean to estimate truth

$$\bar{X} = \sum_{1}^{n} X_i$$

3.7.5 Measures of scatter

- \bullet Range
- Sample variance

$$s_X^2 = \frac{1}{N-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

• $Standard\ deviation$ has same units as X

$$s_x = \sqrt{s_X^2}$$

- If a random variable is Gaussian, about 2/3 of measurements are within s_x of the mean, 95% within $2s_x$, 99% within $3s_x$.
- Example 2.5.2

QA on pigment. Let Y be the number of batches that fail QA out of 500 in a week. If process is shutdown for maintenance if $Y > \bar{Y} + 3S_Y$, how many bad batches are required for a shutdown?

```
import numpy as np
 2
    import matplotlib.pyplot as plt
3
    Week = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
    Y = np.array([17, 27, 18, 18, 23, 19, 18, 21, 20, 19, 21, 18])
    plt.scatter(Week,Y)
    plt.ylim(0,30)
    plt.xlabel('Week')
    plt.ylabel('Fails out of 500')
    plt.savefig('./figs/QA.png')
10
11
12
    N = Y.size
    Sum = np.sum(Y)
13
14
    Average = Sum/N
15
    Variance = np.sum((Y - Average)**2)/(N-1)
16
^{17}
    StdDev = Variance**0.5
18
19
    print('N Sum
                    Average Variance Std. Dev')
    print("{0:3d} {1:4d} {2:5.2f} {3:5.2f} {4:5.2f}".format(N,Sum,Average,Variance,StdDev))
20
21
    Shutdown = Average + 3 * StdDev
22
    print('Shutdown if Y > {0:5.2f}'.format(Shutdown))
```

N Sum Average Variance Std. Dev 12 239 19.92 7.90 2.81 Shutdown if Y > 28.35

3.8 Process data modeling

- Often interested in the relationship between two correlated variables. E.g. a correlation curve between a thermocouple resistance and a temperature. An optical density and a concentration.
- Linear regression to fit linear data (Appendix A); minimizes residuals between data and a fit line

• r^2 measures fraction of variance in y "explained" by variance in x; 1 is best, 0 is worst

$$r^2 = 1. - \frac{\sum \text{res}_{\text{lg}}^2}{\sum \text{res}_{\text{null}}^2}$$

• Linearizing data (e.g. Arrhenius plot). (*Danger*: Error can be seewed by linearizing. Non-linear regression a good alternative.)

```
import numpy as np
    import matplotlib.pyplot as plt
    from scipy import stats
    EHxy = [ 144,144, 132, 132, 116, 116, 190, 190, 173, 173, 111, 111, 91, 91, 207, 207, 199, 199, 110, 110, 83, 83]
    RDxy = [152, 150, 141, 134, 117, 117, 204, 202, 184, 183, 123, 118, 94, 96, 225, 224, 213, 213, 114, 115, 89, 93]
    m, b, r, p, e = stats.linregress(EHxy,RDxy)
    print("Slope
                       Intercept
    print(m,b,r**2)
10
11
12
    nu = np.linspace(80,230)
    fit = m * nu + b
13
    plt.scatter(EHxy,RDxy)
15
    plt.plot(nu,fit)
16
    plt.xlim((50,250))
17
    plt.ylim((50,250))
18
    plt.xlabel('Effective harmonic frequencies (cm$^{{-1}}$)')
    plt.ylabel('Relaxed displacement frequencies (cm$^{{-1}}$)')
20
    plt.savefig('./figs/freq.png')
```

Slope Intercept r**2 1.08962211596 -4.08654658558 0.995318037198

4 Processes and process variables

4.1 Learning objectives

- density
- flow rates
- composition
- pressure

4.2 Mass, volume, density

- mass, volume are extensive quantities
- $density(\rho) = mass / volume$ is intensive, characteristic of a substance at some T and P
- tabulated in common handbooks, allows us to convert between m and V
- specific gravity is density relative to some reference, commonly H₂O at 4 °C

$$\rho_{\rm H_2O}(4\,^{\circ}{\rm C}) = 1.00\,{\rm g\,cm^{-3}} = 62.43\,{\rm lb_m/ft^3}$$
 (3)

- mass is independent of T, volume changes with T, therefore so does ρ
- can find tabulations of $\rho(T)$, V(T), or coefficient of thermal expansion

$$\alpha(T) = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P} \tag{4}$$

• Example 3.1.1

Specific gravity of Hg at 20 °C is 13.456. Density? Volume of 215 kg?

```
1     rho = 13.546 * 62.43
2     print('Density = ',rho,' lbm/ft^3')
3     print('Volume = mass/density')
4     volume = 215 * (1./0.454) / rho
5     print('Volume = ',volume,'ft3')
```

```
Density = 845.67678 lbm/ft<sup>3</sup>
Volume = mass/density
```

Volume = 0.5599873298381516 ft3

• Example 3.1.2

- (a) What is volume of 215 kg Hg at 100 °C?
- (b) What is change in height between 20 and 100 °C of a 0.25 in diameter Hg cylinder?

$$V_{Hg}(T) = V(0)[1 + 0.18182 \times 10^{-3}T + 0.0078 \times 10^{-6}T^{2}]$$

 $V(100) = V(20) * \frac{V(100)}{V(20)}$
 $h = V/A$

```
import numpy as np
1
2
3
    def V(T):
    # Volume relative to volume at 0 C
4
        a = 0.18182e-3
        b = 0.0078e-6
6
        return 1. + T * (a + b*T)
    def h(V):
        area = np.pi * (0.25/12./2.)**2
9
10
        return V/area
11
   V20 = 0.560
   h20 = h(V20)
13
    V100 = V20 * V(100.)/V(20.)
14
   h100 = h(V100)
15
                         Volume (ft3) Height (ft)')
    print('Temperature
16
                                       {2:6.2f}".format(20,V20,h20))
   print("{0:8.1f}
                         \{1:6.3f\}
    print("{0:8.1f}
                         {1:6.3f}
                                        {2:6.2f}".format(100,V100,h100))
18
19
    deltah = h100-h20
20
    print("Delta h = {0:6.2f} ft".format(deltah))
21
                        Volume (ft3)
                                            Height (ft)
    Temperature
         20.0
                         0.560
                                         1642.78
        100.0
                         0.568
                                         1666.72
    Delta h = 23.93 ft
```

4.3 Flow rate

- mass flow rate \dot{m} : mass passing an area in a time
- volume flow rate \dot{V} : volume passing an area in a time

$$\rho = \frac{m}{V} = \frac{\dot{m}}{\dot{V}}$$

- Gas flows down a tapered cone. How does mass flow rate compare at entrance and exit?
 - Same
- If density is constant, how does volumetric flow rate compare?
 - Same
- How does linear velocity compare
 - Goes up!
- Molar flow rate, \dot{F} ? Need to know MW!

4.4 Chemical composition

4.4.1 Moles and molecular weights

• atomic theory, we can count atoms and molecules. They are tiny, so need a big unit to count with!

- molecular "weight" (MW) is mass relative to $\{^{12}C\}$, defined to have a mass of 12
- Avogadro's number $N_A=6.022\times 10^{23}$ number of $\{^{12}\mathrm{C}\}$ to make 12 grams, called a mole or gram-mole (yech!)
- kmol makes 12 kg, lb-mole makes 12 lbm
- periodic table records masses of all elements relative to 12 C

- calculate molar flow rate from mass flow rate

EXAMPLE What is molar flow rate of O in a stream of 4400 kg/hr CO₂?

```
1 F = 4400 * (1./44.) * 2
2 print("{0:6.2f} kmol O/hr".format(F))
```

200.00 kmol/hr

4.5 Mixtures

- Always expressed as something/something
- Generally faced with two types of problems: turn one concentration measure into another (intensive \rightarrow intensive); or use in conversions of extensive \rightarrow extensive

4.5.1 Mass and mole fractions

- mass fraction A = mass A/total mass
- mole fraction A = mol A/total mol

• vol fraction A = vol A/total vol

EXAMPLE 35.0 %(w/w) H_2SO_4 has a specific gravity of 1.2563. What volume of solution is needed to obtain 500 g-mol H_2SO_4 ? (Extensive to extensive)

Volume=111.457 L

EXAMPLE What is mole fraction H_2SO_4 in 35.0%(w/w) solution? (intensive to intensive)

9.006%(mol/mol) H2SO4

- trace species in a gas often expressed as ppm or ppb rather than %
- EPA ozone standard is 70 ppb, 70 ozone molecules/billion molecules of air
- less frequently mass rather than mole basis

4.5.2 Average molecular weight

$$MW = \sum_{i} y_i MW_i$$

EXAMPLE What is average molecular weight of air, which is 76.7% N₂ and 23.3% O₂ by mass?

```
# 100 g basis
    MWN2 = 28.0
2
    MW02 = 32.0
    molN2 = 76.7 / MWN2
    mol02 = 23.3 / MW02
    moltot= molN2 + molO2
    fracN2 = molN2/moltot
   frac02 = mol02/moltot
    MWbar = fracN2*MWN2 + fracO2*MWO2
9
10
    print("100 g basis")
11
   print("
                        N2
                                02")
12
   print("MW:
                        \{0:4.2f\}
                                  {1:4.2f}".format(MWN2,MWO2))
   print("moles:
                                    {1:4.2f}".format(molN2,molO2))
                        {0:4,2f}
14
    print("mole frac: {0:4.2f}
                                    {1:4.2f}".format(fracN2,fracO2))
    print("\nMWbar = {0:6.2f} g/mol".format(MWbar))
```

4.5.3 Concentrations

- "concentration" sometimes reserved for amount/volume
- molarity = mol/volume; mass/volume less common

EXAMPLE 0.50 M H_2SO_4 flows into a process unit at $1.25 \,\mathrm{m}^3 \,\mathrm{min}^{-1}$. S.G. = 1.03. (a) Mass concentration? (b) mass flow rate of H_2SO_4 ? (c) mass fraction H_2SO_4 ?

```
Molarity = 0.50
                                    # mol/L
    MW = 2*1.0 + 32.0 + 4 * 16.0 # g/mol
    flow = 1.25
                                   # m3/min
    density = 1.03
                                    # kg/L
    mass_conc = Molarity * (MW) * (1/1000) * (1000/1) # kg H2SO4/m3
                                                          # kg H2SO4/s
    H2S04_mass_flow = mass_conc * flow * (1/60)
    total_mass_flow = flow * (1/60) * (1000/1) * density # kg/s
10
11
12
    mass_frac = H2SO4_mass_flow/total_mass_flow
13
    print("{0:5.2f} kg H2SO3/m3
                                  {1:5.2f} kg/s {2:5.4f} kg H2SO4/kg".format(mass_conc,H2SO4_mass_flow,mass_frac))
14
```

49.00 kg H2SO3/m3 1.02 kg/s 0.0476 kg H2SO4/kg

4.6 Pressure

4.6.1 Measures of pressure

- Pressure = Force/area required to resist motion of a frictional piston against a fluid
- Internal fluid pressure arises from molecular motions and is present in any confined fluid
- hydrostatic pressure arises from gravitational force

- air pressure is hydrostatic pressure of the atmosphere (1 atm)
- measured in standard pressure units (Pa, bar, atm)
- or measured in equivalent height of a fluid column in vacuum, most commonly mmHg, $\rho_{\rm Hg}=13.6\,{\rm g\,cm^{-3}}=13\,594\,{\rm kg\,m^{-3}}(0\,{\rm ^{\circ}C})$

$$h = P/\rho g$$

EXAMPLE Express 1 atm in mmHg and mmH2O.

```
pressure = 1.01325e5 # Pa
density = 13594. # kg/m3
g = 9.807 # m/s2
heightHg = pressure /(density * g) # m
heightH20 = 13.6 * heightHg
print('{0:6.1f} mmHg {1:8.2f} mH20'.format(heightHg*1000,heightH20))
```

760.0 mmHg 10.34 mH20

• open column of fluid (or solid) will have a total hydrostatic pressure at the base of atmospheric pressure plus column pressure

$$P = P_0 + \rho g h$$

EXAMPLE Hydrostatic pressure 30.0 m below the surface of a lake?

```
print('Easy way...40.3 m H20!')
    rho = 1000.
3
                  # kg/m3
    g = 9.807
               # m/s2
4
    h = 30.0
                # m
    PO = 1.01325e5 # Pa
    pressure = P0 + rho*g*h # Pa
    pressureatm = pressure *( 1/P0)
    pressurepsi = pressureatm * 14.696
   print('Hard way...')
11
    print('{0:5.2f} bar
                          \{1:5.2f\} atm
                                          {2:5.2f} psi'.format(pressure/1e5,pressureatm,pressurepsi))
```

```
Easy way...40.3 m H20!
Hard way...
3.96 bar 3.90 atm 57.37 psi
```

4.6.2 Absolute vs. gauge

- absolute pressure = pressure relative to a vacuum, always > 0
- gauge pressure difference from atmosphere, can be positive or negative

$$P_{gauge} = P_{abs} - P_{atm}$$

4.6.3 Pressure gauges

- electronic devices (e.g. piezoelectric)
- mechanical, based on a diaphragm or other deformable object
- manometers: two-armed device. Pressures at equivalent heights within fluid must be the same.

4.6.4 open-end manometer:

EXAMPLE Manometer fluid is Hg and $h_2 = -25 \,\mathrm{mm}$. What is gauge pressure? What is absolute pressure? In mmHg and in psi.

```
hatm = 760
    hgauge = -25
    habsolute = hgauge + hatm
    print('Gauge = {0:5.1f} Abs = {1:5.1f} mmHg'.format(hgauge,habsolute))
   rhoHg = 13600 # kg/m3
   pgauge = rhoHg * g * hgauge/1000.
   pabsolute = rhoHg * g * habsolute/1000.
                                             # Pa
9
   print('Gauge = {0:5.0f} Abs = {1:5.0f} Pa'.format(pgauge,pabsolute))
10
11
   pgauge = pgauge * (14.696/ 1.01325e5) # lbf/in2
12
   pabsolute = pabsolute * (14.696/ 1.01325e5) # lbf/in2
    print('Gauge = {0:5.3} Abs = {1:5.3f} psi'.format(pgauge,pabsolute))
```

```
Gauge = -25.0 Abs = 735.0 mmHg
Gauge = -3334 Abs = 98031 Pa
Gauge = -0.484 Abs = 14.218 psi
```

4.6.5 differential manometer

$$P_2 - P_1 = g(\rho_f - \rho_m)\Delta h$$

```
1    g = 980.7  # cm/s^2
2    Dh = 0.8  # cm
3    rhom = 1.05  # g/cm^3
4    rhof = 1.00  # g/cm^3
5
6    dP = g * Dh * (rhof - rhom) # dyne/cm2
7
8    print("\Delta P = {0:5.1f} dyne/cm2".format(dP))
```

$\Delta P = -39.2 \ dyne/cm2$

4.6.6 Closed manometer

4.7 Temperature

4.7.1 Scales

- Kelvin: absolute scale, $0 \to \infty$
- Celsius: $T(^{\circ}C) = T(K) 273.15$)
- Fahrenheit: $T({}^{\circ}F) = 1.8T({}^{\circ}C) + 32$)
- Rankine: absolute scale, $T({}^{\circ}R) = T({}^{\circ}F) + 459.67$
- Use care in using in unit conversion calculations. Ratios work for converting temperature differences, but not for converting absolute temperatures

4.7.2 Measurement devices

- volume-based (thermometer)
- radiation-based (pyrometer)
- voltage-based (thermocouple) change in potential between two dissimilar metals
- resistance-based (thermistor)

5 Material balances on non-reactive systems

5.1 Process types

- batch
- continuous
- semi-batch (filling a balloon)
- steady-state vs. transient

5.2 General balance equation

```
output = input + generation - consumption - accumulation
```

EXAMPLE Every year 50,000 Leute move into a city, 75,000 move out, 22,000 are born, and 19,000 die. Write a differential balance on the population, i.e., what is change in population with time?

```
input = 50000; output=75000; generation=22000; consumption=19000;
accumulation =input + generation - output - consumption
print('accumulation = {0} people/year'.format(accumulation))
```

accumulation = -22000 people/year

- example of differential balance, a change over time (or space)
- integral balance is sum of differential balance over some unit of time or space
- batch: input = output = 0
- continuous, steady-state, non-reactive: accumulation = generation = consumption = 0
- Can balance total mass: generation = consumption = 0
- Can balance mass or moles of an element or molecular species

EXAMPLE Differential balance on a continuous, steady-state process

 $1000\,\mathrm{kg}\,\mathrm{h}^{-1}$ mixture of $50\%(\mathrm{w/w})$ benzene and toluene is distilled into two streams, one containing $450\,\mathrm{kg}\,\mathrm{h}^{-1}$ benzene and other containing $475\,\mathrm{kg}\,\mathrm{h}^{-1}$ toluene. Solve for unknown flow rates.

5.3 Mass balance procedure

- Illustrates general procedure:
- 1. Create a flow chart
- 2. Label all known quantities along each stream

- (a) molar or mass flow rates
- (b) concentrations
- 3. Label all *unknown* quantities with symbols
- 4. Work in only mass or molar quantities
- A flow sheet is balanced if all material balances are closed
- A balanced flow sheet can be *scaled*; all flows multiplied by a constant value
- Allows one to choose arbitrarily a basis

EXAMPLE Air humidification example. Three inputs are fed into an evaporation chamber:

- Liquid H_2O , $20 min^{-1}$
- Air
- O_2 , at a rate 1/5 of the air

The output contains $1.5\%~\mathrm{H}_{20}$. What are the output compositions and other flow rates?

Shortaut: total mole balanco output = injut Neut = NH26 + NAIT + 02 NAIT 74.1 mol = 1.11 mol + 12 NAIT NAIN = 60.8 molfusia Non = 121 molfusia YNZ = 0.79 Nont = 0.65 Yoz = 6.34 Math is simple. Challenge is to set up correctly and to choose order of solution wich

• Number of equations = number of unknowns. Say degrees of freedom = 0.

EXAMPLE DOF analysis. Humid air passes through a condenser that removes 95% of $\rm H_2O$. Condensate removed at 225 L/min. Calculate flow rate and composition of gas stream leaving condenser.

EXAMPLE 45.0%(w/w) benzene and balance toluene are fed to a distillation column. The overhead product contains 95.0%(mol/mol) benzene and accounts for 92% of total fed benzene. The fed enters at 2000 L/h and has specific gravity 0.872. Determine mass flow rates of overhead and bottom streams and bottom composition.

[#] Convert stream 2 to mass basis

² MWb = 6 * 12.0 + 6 * 1.008

MWt = 7 * 12.0 + 8 * 1.008

```
4 \times 2B = 0.95
   x2T = 0.05
5
   basis = 100.
8 \quad m2B = basis * x2B * MWb
9 \quad m2T = basis * x2T * MWt
10 \quad m2tot = m2B + m2T
11
12 z2B = m2B/m2tot
13 z2T = m2T/m2tot
14 print('Z2Benzene = {0:5.3f} Z2Toluene = {1:5.3f} kg/kg'.format(z2B,z2T))
15
16 # total mass flow rate
17 \quad SG = 0.872
18 v1 = 2000 # l/h
19 m1 = v1 * SG
   # benzene flow rates
21
22 	 z1B = 0.45
23 \quad m3B = 0.08 * m1 * z1B
m2B = 0.92 * m1 * z1B
26 print('Mdot1 = {0:6.1f} Mdot2B = {1:6.1f} Mdot3B = {2:6.1f} kg/hr'.format(m1,m2B,m3B))
28 # mass balances
   m2 = m2B/z2B
29
   m3 = m1 - m2
30
31 print('Mdot2 = {0:6.1f} Mdot3 = {1:6.1f} kg/hr'.format(m2,m3))
33 # last gasp
   z3B = m3B/m3
34
   print('Z3Benzene = {0:5.3f} Z3Toluene = {1:5.3f} kg/kg'.format(z3B,1-z3B))
    Z2Benzene = 0.942 Z2Toluene = 0.058 kg/kg
    Mdot1 = 1744.0 \quad Mdot2B = 722.0
                                               Mdot3B =
                                                             62.8 kg/hr
    Mdot2 = 766.8 Mdot3 = 977.2 kg/hr
    Z3Benzene = 0.064 Z3Toluene = 0.936 kg/kg
```


EXAMPLE Integral balance on semi-batch, non-steady state process. Air is bubbled through a tank of liquid hexane at a rate of $0.100 \, \text{kmol/min}$. The gas stream leaving the tank contains 10.0% (mol/mol) hexane vapor. The air is essentially insoluble in hexane. Estimate the time required to vaporize $10 \, \text{m}^3$ of the liquid.

• Does life always balance? No!

5.4 Multi-unit processes

- Real processes will contain multiple sub-processes
- Can write a balance on any portion we can draw a box around

EXAMPLE The flow chart below is for a two step, steady-state process involving components A and B. Find the unknown flow rates.

EXAMPLE Multi-stage extraction-distillation.

2

An Extraction-Distillation Process

A mixture containing 50.0 wt% acetone (A) and 50.0 wt% water (W) is to be separated into two streams—one rich in acetone and the other in water. The separation process consists of extraction of the acetone from the water into methyl isobutyl ketone (MIBK or M), which has a much higher affinity for acetone than it does for water. The process is shown schematically below.

M (solvent) M (solvent) Raffinate 2 Raffinate I MIXER 50% A, 50% W Mostly W and A 93.1% W, some M and A SETTLER Extract 1 Mostly M and A Mostly M, some A and W A = acetone (solute) Product: 97% A, 2% M, 1% W W = water (diluent)
M = MIBK (solvent) DISTILLATION COLUMN Recovered solvent Mostly M, some A and W

⁷ For example, a solvent extraction process was a key development in the large-scale production of penicillin in the 1940s. (R. I. Mateles, Ed., *Penicillin: A Paradigm for Biotechnology*, Candida Corporation, Chicago, IL, 1998.)

- Balance extractor pair
 - Three unknowns
 - Total mass + A balance: $\dot{m}_1 = 145, \dot{m}_2 = 86.8$

- M balance: $x_{M1} = 0.675$
- Balance extractors individually
- Balance mixing point

$$-\dot{m}_{A4} = 86.8, \dot{m}_{M4} = 174, \dot{m}_{W4} = 9.9$$

• Balance column: 4 unknowns, 3 balances \rightarrow under-determined

5.5 Recycle and bypass

- Recycle and bypass are ways to control the composition in a process
- Recycle a way to recover and re-feed unused reactants
- Changes effective residence time in the process

FIGURE 4.5-1 Flowchart of a reactor with separation and recycle of unconsumed reactant.

EXAMPLE Fresh, humid air, 4% H₂O, is to be cooled and dehumidified to 1.7%. Some of the dehumidified air leaving the air conditioner is recycled into the inlet air. The blended stream is 2.30% H₂O. Water leaves as pure water. Find all flow rates.

- Mass or moles?
- Basis? 100 mol/s outlet.
- Overall balance

$$- \dot{n}_1 = 102.4, \quad \dot{n}_3 = 2.4$$

• Mixing point balance

$$- \dot{n}_2 = 392.5, \quad \dot{n}_5 = 290$$

• Split point balance

$$- \dot{n}_4 = 100 + \dot{n}_5 = 390$$

6 Material balances on reactive systems

6.1 Revision idea

- First introduce balance using single reaction and molecular balance
- Then introduce extent
- Then multiple reactions...

6.2 Stoichiometry

- Chemical reaction: a transformation between between chemical species
 - Conserves mass and atom numbers
 - Isomerization (e.g. cis- trans) A \Longrightarrow B,
 - Condensation (e.g. add H_2O to double bond) $A^+B \rightleftharpoons C$
 - Combustion (e.g. methane) $A + 2B \longrightarrow C + 2D$
- Each has a distinct stoichiometry that guarantees atom and mass conservation
- Tells us *ratio* consumption/generation

EXAMPLE Balance SCR reaction. Engine emits 0.02 mol NO/mile. How many grams NH₃ needed/mile?

$$4NH_3 + 4NO + O_2 \longrightarrow 4N_2 + 6H_2O$$

- Reaction short-hand: species $j \to A_j$
- Stoichiometric coefficient:

$$\nu_j = \begin{cases} < 0 & \text{reactant} \\ > 0 & \text{product} \end{cases}$$
$$\sum_j \nu_j A_j = 0$$

• Can scale by arbitrary constant c

6.3 Reaction progress

• Stoichiometry tells us how moles of reactants/products vary along course of reaction

EXAMPLE A \longrightarrow B. Total moles conserved:

$$n_{tot} = n_{A0} + n_{B0} = n_A + n_B$$

$$n_B = n_{tot} - n_A$$

Plot n_B vs. n_A .

• Illustrate "ICE" procedure for SCR reaction

• Reaction advancement/extent ξ :

$$n_j = n_{j0} + \nu_j \xi$$

• we define ξ to be extensive, units of "moles" or "moles/time"

EXAMPLE Stoichiometric SCR mixture. Plot moles of each species as a function of advancement.

```
import matplotlib.pyplot as plt
import numpy as np

nu = np.array([[-4, -6, -3, 5, 6]])
no = np.array([[4, 6, 3, 0, 0]])

xi = np.array([np.linspace(0,1)])

n = np.transpose(n0) + np.dot(np.transpose(nu),xi)

for i in range(5):
    plt.plot(xi[0],n[i])

plt.savefig('./figs/advancement1.png')
```


• Must have $n_j \ge 0$ for all j, or $\xi \le -\frac{n_{j0}}{\nu_j}$:

Forward:
$$\xi_{max} = \min_{\text{reactants}} \left(-\frac{n_{j0}}{\nu_j} \right)$$

Reverse: $\xi_{min} = \max_{\text{products}} \left(-\frac{n_{j0}}{\nu_j} \right)$

$$\xi_{min} \le \xi \le \xi_{max}$$

Air oxidation of NH₃.

$$4\mathrm{NH_3} + 5\mathrm{O_2} \longrightarrow 4\mathrm{NO} + 6\mathrm{H_2O}$$

 $0.1~{\rm g/s~NH_3}$ and $0.95~{\rm g/s}$ air flow into a reactor. What is limiting reagent? How much NH₃ at completion?

```
MWNH3 = 17; MWO2 = 32; MWN2 = 28;
    MWair = 0.79 * MWN2 + 0.21 * MWO2
    mNH30 = 0.1; mair0 = 0.95
    nNH30 = mNH30 / MWNH3
    n020 = (mair0 / MWair) * 0.21
    print('ndot NH3 = {0:6.4f} ndot 02= {1:6.4f} mol/s\n'.format(nNH30,n020))
    nuNH3 = -4.0; nuO2 = -5.0;
10
11
    xiNH3 = -nNH30/nuNH3; xiO2 = -nO20/nuO2
12
    14
15
    print('02 limiting\n')
16
17
    xilim = xi02
18
19
    nNH3 = nNH30 + nuNH3 * xilim; nO2 = nO20 + nuO2 *xilim
20
^{21}
    print('ndot NH3 = \{0:7.5f\} ndot02 = \{1:7.5f\} n'.format(nNH3,n02))
22
23
    fNH3 = 100*(nNH30 - nNH3)/nNH30
24
    print('Fraction NH3 consumed = {0:4.2f}%'.format(fNH3))
```

 $ndot NH3 = 0.0059 \quad ndot 02 = 0.0069 \quad mol/s$

ndot/nu NH3 = 0.00147 ndot/nu 02 = 0.00138

02 limiting

Fraction NH3 consumed = 94.08%

• conversion often used to measure consumption of a species:

$$X_j = \frac{n_{j0} - n_j}{n_{j0}} = -\frac{\nu_j \xi}{n_{j0}}$$

• conventional to define "the" conversion in terms of limiting reagent:

$$X = 1 - \frac{n_{\text{lim}}}{n_{\text{lim},0}} = -\frac{\nu_j \xi}{n_{j0}}$$
$$\xi = -X \frac{n_{\text{lim},0}}{\nu_{\text{lim}}}$$

- X is unitless and (for forward reaction) $0 \le X \le 1$
- all n_i can be written in terms of X:

$$n_j = n_{j0} - X n_{\text{lim},0} * \frac{\nu_j}{\nu_{\text{lim}}}$$

EXAMPLE NH_3 oxidation goes to 50% completion. What is composition of exit stream?

```
import numpy as np
2
    import matplotlib.pyplot as plt
3
    species = ('NH3', 'N2', '02', 'N0', 'H20')
    nu = np.array([[-4, 0, -6, 5, 6]])
    MWNH3 = 17; MWO2 = 32; MWN2 = 28;
    MWair = 0.79 * MWN2 + 0.21 * MWO2
    mNH30 = 0.1; mair0 = 0.95
10
    nNH30 = mNH30 / MWNH3
    n020 = (mair0 / MWair) * 0.21
12
    nN20 = (mair0 / MWair) * 0.79
13
14
    n0 = np.array([[nNH30, nN20, n020, 0, 0]])
15
16
    X = 0.5
17
18
    n = n0 - (nu/nu[0,2]) * n0[0,2] * X
19
20
^{21}
    print(species)
    print(n,' mol/s')
22
23
    X = np.array([np.linspace(0,1)])
24
25
    n = np.transpose(n0) - np.dot(n0[0,2]*np.transpose(nu/nu[0,2]),X)
^{26}
27
28
    ntot= 0
29
    for i in range(5):
30
31
        plt.plot(X[0],n[i],label=species[i])
        ntot =ntot + n[i]
32
33
    legend = plt.legend()
34
35
    plt.plot(X[0],ntot)
    plt.xlabel('Conversion')
36
    plt.ylabel('flow rate (mol/s)')
37
38
    plt.savefig('./figs/conversion1.png')
39
```

('NH3', 'N2', '02', 'N0', 'H20')
[[0.00357653 0.02602288 0.00345874 0.00288228 0.00345874]] mol/s

6.4 Multiple reactions

- NH_3 oxidation and SCR together, for example, are parallel reactions
- competition between the two
- each species has a stoichiometric coefficient in each parallel reaction

$$\begin{split} 4 \text{NO} + 4 \text{NH}_3 + \text{O}_2 &\longrightarrow 4 \text{N}_2 + 6 \text{H}_2 \text{O} \\ 4 \text{NH}_3 + 5 \text{O}_2 &\longrightarrow 4 \text{NO} + 6 \text{H}_2 \text{O} \end{split}$$

$$-4 \text{NO} - 4 \text{NH}_3 - 1 \text{O}_2 + 4 \text{N}_2 + 6 \text{H}_2 \text{O} = 0 \\ 4 \text{NO} - 4 \text{NH}_3 - 5 \text{O}_2 + 0 \text{N}_2 + 6 \text{H}_2 \text{O} = 0 \end{split}$$

• reaction expression:

$$\begin{pmatrix} -4 & -4 & -1 & 4 & 6 \\ 4 & -4 & -5 & 0 & 6 \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \end{pmatrix} = 0$$
 (5)

- In general $\sum_{j} \nu_{ij} A_j = 0$
- each parallel reaction has its own advancement ξ_i (i for reactions, j for species)

$$n_j = n_{j0} + \sum_i \nu_{ij} \xi_i$$

- yield defined as amount (molar) of desired product over maximum possible amount of desired product
- selectivity (often) defined as amount of desired product over amount of undesired. Be careful with this one.

Selectivity and yield Ethane cracking. Feed contains 85.0% (mol/mol) ethane, balance inerts. 50.1% of ethane is converted, and ethylene yield is 47.1%. Molar composition of gases and selectivity to ethylene?

$$C_2H_6 \longrightarrow C_2H_4 + H_2$$

$$C_2H_6 + H_2 \longrightarrow 2CH_4$$

Note =
$$\frac{1}{5}v_{j} = \frac{1}{5}v_{j0} = \frac{1}{5}v_{ij} = \frac{1}{5$$

- DOF analysis: 5 flow rates + 2 reactions 5 species 2 constraints = 0 DOFs
- Example of a balance on a reactive system

6.5 Reactive balances

• General balance expression:

$$output = input + generation - consumption - accumulation$$

• can write balances on molecular species:

$$\dot{n}_A = \dot{n}_{A0} - \dot{n}_e - \frac{1}{2}\dot{n}_m$$

- for more than one reaction, this gets messy
- extent of reaction
 - each *independent* extent becomes an additional unknown (linearly independent extents)
 - each species balance becomes an equation
 - species balances must include generation and consumption

$$\dot{n}_A = \dot{n}_{A0} + \sum_i \nu_{iA} \xi_i$$

- atomic species
 - one equation for each reactive atomic species

- No generation or consumption; input = output

C balance: $2\dot{n_{A0}} = 2\dot{n_{A}}2\dot{n_{e}} + \dot{n_{m}}$

H balance: $4\dot{n}_{A0}=6\dot{n}_A+4\dot{n}_e+4\dot{n}_m+2\dot{n}_H$

• one equation for each non-reactive species

Reactive balances Methane is burned in air to make CO and CO_2 :

$$\begin{aligned} \mathrm{CH_4} + \tfrac{3}{2}\mathrm{O}_2 &\longrightarrow \mathrm{CO} + 2\mathrm{H_2O} \\ \mathrm{CH_4} + 2\mathrm{O}_2 &\longrightarrow \mathrm{CO}_2 + 2\mathrm{H_2O} \end{aligned}$$

Feed contains 7.8% (mol/mol) CH₄ and balance air $(19.4\% \text{ O}_2, 72.8\% \text{ N}_2)$. Methane conversion is 90.0% and exit contains $8 \text{ mol CO}_2/\text{CO}$. Calculate composition of exit stream.

6.6 Reactive balances on multi-unit processes

• Can do extent or atomic balances on any part of a process

Dehydrogenation of Propane

Propane can be dehydrogenated to form propylene in a catalytic reactor:

$$C_3H_8 \rightarrow C_3H_6 + H_2$$

A process is to be designed for a 95% overall conversion of propane. The reaction products are separated into two streams: the first, which contains H_2 , C_3H_6 , and 0.555% of the propane that leaves the reactor, is taken off as product; the second stream, which contains the balance of the unreacted propane and propylene in an amount equal to 5% of that in the first stream, is recycled to the reactor. Calculate the composition of the product, the ratio (moles recycled)/(mole fresh feed), and the single-pass conversion.

Basis: 100 mol Fresh Feed

- Compare single-pass and overall conversion
- Separation and recycle allows reactor to run at lower conversion at cost of separation unit and larger flows through reactor

6.7 Purge

- Recycle example above works because system is continuously fed pure reactant
- If system fed unreactive species, unless it is removed at same rate it enters, it will build up and eventually kill the process
- Purge stream used to bleed off that species

Recycle and Purge in the Synthesis of Methanol

Methanol (also known as methyl alcohol and wood alcohol) is used as a raw material in the manufacture of formaldehyde, acetic acid, methyl tertiary-butyl ether (MTBE), and a number of other important chemicals. It also has many other uses, including as a solvent, a disinfectant, and a clean-burning fuel. One of the ways it can be synthesized is by reacting carbon dioxide and hydrogen:

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

The fresh feed to a methanol synthesis process contains hydrogen, carbon dioxide, and 0.400 mole% inerts (I). The reactor effluent passes to a condenser that removes essentially all of the methanol and water formed and none of the reactants or inerts. The latter substances are recycled to the reactor. To avoid buildup of the inerts in the system, a purge stream is withdrawn from the recycle.

The feed to the reactor (not the fresh feed to the process) contains 28.0 mole% CO2, 70.0 mole% H2, and 2.00 mole% inerts. The single-pass conversion of hydrogen is 60.0%. Calculate the molar flow rates and molar compositions of the fresh feed, the total feed to the reactor, the recycle stream, and the purge stream for a methanol production rate of 155 kmol CH₃OH/h.

- (a) Choose a basis of calculation of 100 mol of the feed to the reactor (a convenient basis since you know the composition of this stream), and draw and label a flowchart.
- (b) Perform a degree-of-freedom analysis for the system. As a suggested sequence, determine the difference between the number of equations and number of variables for each of the following: overall system, recycle-fresh feed mixing point, reactor, condenser, and recycle-purge splitting point. Verify that there are zero degrees of freedom for the entire process and identify an efficient procedure for carrying out the calculations (including scaling up the calculated process variables to the desired methanol production rate).
- (c) Write the system equations and use Excel's Solver to solve them for all of the variables.

(a) Basis: 100 mol Combined Feed to the Reactor

• Reactor balance, 4 DOFs - 3 balances - 1 conversion:

CO_2	H_2	$\mathrm{CH_{3}OH}$	$\rm H_2O$
14.0	28.0	14.0	14.0

• Condenser balance, simple split, BUT, inert concentration goes up!!!!

CO_2	H_2	Inert
$14.\overline{0}$	28.0^{-}	2

• mixing point, non-reactive, 4 DOFs - 3 balances - 1 total

$$\begin{array}{ccc}
 n_0 & n_r \\
 61.4 & 38.6
\end{array}$$

• purge split $n_5 = n_r + n_p$

$$n_p$$
 5.4

6.8 Combustion in air

7 Properties of single-phase systems

- Can't design a reactor around masses and moles; have to know sizes, volumes
- $\rho = \rho(T, P, x_i)$, example of what is called an equation of state
- Material balances often require we know the physical properties (e.g, densities, thermal expansion coefficient, ...) of pure substance and of mixtures
- Where to get this information?
 - Look it up (Perry's handbook, literature)
 - Measure it (laboratory)
 - Estimate from physical property models
 - Compute from molecular models

7.1 Liquid and solid densities

- Liquids and solids generally incompressible and small coefficients of thermal expansion
- Pure densities from measurement or estimate
- Mixture densities depend...
- Ideal solution (MeOH and H_2O) has additive molar volumes:

$$v (l/\text{mol}) = \sum_{i} x_i v_i$$

• or equivalently additive inverse densities (ω_i are mass fractions):

$$\frac{1}{\bar{\rho}} = \sum_{i}^{n} \frac{\omega_i}{\rho_i}$$

- Many solutions **not** ideal, e.g., ethanol/methyl formate positive deviation; methanol/methyl formate negative deviation
- Sometimes other empirical relations are observed

$$\bar{\rho} = \sum_{i}^{n} x_{i} \rho_{i}$$

• See Perry's Handbook for data

7.2 Ideal gas

es

- Gas volumes are much more sensitive to temperature and pressure
- Relationship captured in an "equation of state"
- Ideal gas equation of state very familiar

$$PV = nRT$$
 or $Pv = RT$ or $v = \frac{RT}{P}$

• R = gas constant is a fundamental physical constant of nature, closely related to concept of temperature

```
R 8.314472 J / (K mol) 0.082057 atm l / (K mol) 1.3806504e-23 J / K
```

• v replaced by \dot{v} in flow context

Ideal gas Flow Butane at $360\,^{\circ}$ C and 3.0 atm absolute pressure flows into a reactor at $1100\,\mathrm{kg}\,\mathrm{h}^{-1}$. Volumetric flow rate?

```
1  R = 0.082057 # l atm/mol K
2  MW = (4*12.00 + 10 * 1.008)/1000 # kg/mol
3
4  T = 360 + 273.15 # K
5  P = 3.00 # atm
6  mdot = 1100 # kg/hr
7
8  vdot = (mdot/MW) * (R * T / P)
9  print('{0:6.2f} l/hr'.format(vdot))
```

327994.88 1/hr

Ideal gas ratios 10 ft³ of air at 70 F and 1.00 atm is heated to 610 F and compressed to 2.50 atm. Final volume?

8.08 ft3

• v is only a function of T and P, suggests "standard" volume at "standard" conditions, typically 273 K and 1 atm for SI/cgs, 32 F and 1 atm for English.

```
v_s = 22.415 \text{ L/mol} = 0.022415 \text{ m}^3/\text{mol} = 359.05 \text{ ft}^3/\text{lb-mol}
```

Standard gas The flow rate of methane at 285 F and 1.30 atm absolute is reported to be 3.95×10^5 SCFH. Molar flow rate? Volumetric flow rate?

```
1     VSCFH = 3.95e5 # std ft3/hr
2     PS = 1.0 #
3     P = 1.30 #
4     TS = 459.67 + 32 # R
5     T = TS + 285.
6
7     Vs = 359.05 # std ft3/lb-mol
8
9     ndot = VSCFH /Vs # lb-mol/hr
10
11     V = VSCFH * ( PS/P) * (T/TS)
12
13     print('{0:6.2e} mol/hr {1:6.2e} ft^3/hr'.format(ndot,V))
```

1.10e+03 mol/hr 4.80e+05 ft^3/hr

7.3 Ideal gas mixture

• ideal mixture \rightarrow volumes are additive:

$$V(N,T,P) = V_1(N_1,T,P) + V_2(N_2,T,P)$$

- Called "Amagat's Law," applies \approx both ideal and non-ideal gases
- individual components ideal gas \rightarrow mixture is ideal gas:

$$V(N,T,P) = \frac{N_1RT}{P} + \frac{N_2RT}{P}$$
$$= \frac{(N_1 + N_2)RT}{P}$$
$$= \frac{NRT}{P}$$

• "Partial pressures" additive:

$$P = \frac{N_1 RT}{V} + \frac{N_2 RT}{V}$$
$$= P_1 + P_2$$

• Partial pressure proportional to mole fraction:

$$\frac{P_1}{P} = \frac{N_1 RT/V}{NRT/V} = y_1$$

• Volume fraction proportional to mole fraction:

$$\frac{V_1}{V} = \frac{N_1}{N} = y_1$$

• Use mole fraction and volume fraction and partial pressure interchangeably for ideal gas mixture

Partial Pressures Acetone and nitrogen mixed in an evaporator and flowed through a compressor. Liquid acetone enters system at a flow rate of $400 \, \mathrm{L} \, \mathrm{min}^{-1}$ and exits at a partial pressure (gauge) of 501 mm Hg at $325 \, ^{\circ}\mathrm{C}$. Total pressure of exit is 6.2 atm (gauge). What is flow rate and composition of exit? Atmospheric pressure is 763 mm Hg.

Material Balances on an Evaporator-Compressor

Liquid acetone (C_3H_6O) is fed at a rate of 400 L/min into a heated chamber, where it evaporates into a nitrogen stream. The gas leaving the heater is diluted by another nitrogen stream flowing at a measured rate of 419 m³(STP)/min. The combined gases are then compressed to a total pressure P = 6.3 atm (gauge) at a temperature of 325°C. The partial pressure of acetone in this stream is $p_A = 501$ mm Hg. Atmospheric pressure is 763 mm Hg.

- 1. What is the molar composition of the stream leaving the compressor?
- 2. What is the volumetric flow rate of the nitrogen entering the evaporator if the temperature and pressure of this stream are 27°C and 475 mm Hg gauge?

1 Basis: Given Feed Rates

Assume ideal-gas behavior. Let $\dot{n}_1, \dot{n}_2, \ldots$ (mol/min) be the molar flow rates of each stream.

You should be able to examine the flowchart and see exactly how the solution will proceed.

- 1. Perform a degree-of-freedom analysis for the system and verify that the problem can be solved.
- Calculate n

 2 (from the given volumetric flow rate and a tabulated density of liquid acetone), n

 3 (from the ideal-gas equation of state), and y

 4 (= ρ_A/P).
- 3. Calculate \dot{n}_4 (overall acetone balance), \dot{n}_1 (overall mass balance), and \dot{V}_1 (ideal-gas equation of state).

Degree-of-Freedom Analysis

6 unknowns (\dot{V}_1 , \dot{n}_1 , \dot{n}_2 , \dot{n}_3 , \dot{n}_4 , y_4)

-1 specific gravity relationship (\dot{n}_2)

-2 molecular balances (overall, C_3H_6)

-1 ideal-gas equation of state (\dot{V}_1)

-1 partial pressure relationship (y_4)

-1 ideal-gas equation of state (\dot{n}_3)

0 degrees of freedom

Calculate Molar Flow Rate of Acetone

from Table B.1 in Appendix B, the density of liquid acetone is 0.791 g/cm3 (791 g/L), so that

$$\dot{n}_2 = \frac{400 \text{ L}}{\text{min}} \frac{791 \text{ g}}{\text{L}} \frac{1 \text{ mol}}{58.08 \text{ g}} = 5450 \frac{\text{mol C}_3 \text{H}_6 \text{O}}{\text{min}}$$

```
print('acetone = {0:6.0f} mol/min'.format(ndot_acetone))
7
    P_atm = 763.
9
    P_exit = 6.2 * 760. + P_atm # mm Hg
10
   P_acetone = 501. + P_atm # mm Hg
P_N2 = P_exit - P_acetone
    y_N2 = P_N2/P_exit; y_acetone = P_acetone/P_exit
13
14
    print('acetone = {0:5.3f} N2 = {1:5.3f} mol/mol'.format(y_acetone,y_N2))
15
   n_exit = ndot_acetone * (1 + y_N2/y_acetone) # mol/min
17
18
    T_{\text{exit}} = 325 + 273.15 \# K
19
20
21
   R = 62.36 \# L mm Hg/mol K
22
23
    V_exit = n_exit * R * T_exit /P_exit
24
    print('exit {0:6.1f} mol/min {1:6.1f} l/min'.format(n_exit,V_exit))
25
                    5448 mol/min
    acetone =
    acetone = 0.231 N2 = 0.769 mol/mol
    exit 23596.5 mol/min 160760.4 l/min
```

7.4 Real equations of state

7.4.1 Ideal gas

• No condensation

```
import numpy as np
    import matplotlib.pyplot as plt
3
4
    import numpy as np
    import matplotlib.pyplot as plt
7 \qquad R = 0.0821 \# l \ atm/mol \ K
8
    v = np.logspace(-0.2,1)
9
    for T in np.arange(100.,1000,100):
10
11
        P = R * T * (1/v)
        plt.plot(v,P,label=T)
12
13
    legend = plt.legend()
14
15
   plt.xlabel('Volume (L/mol)')
    plt.ylabel('Pressure (atm)')
17
18
19
    plt.savefig('./figs/idealgas.png')
```


7.4.2 van der Waals model

- molecules have volume: $v \to v b$
- molecules attract: $P \to P a/v^2$

$$P_{\text{vdW}} = \frac{RT}{v - b} - \frac{a}{v^2}$$

• "cubic" equation of state:

$$v^3 - \left(b + \frac{RT}{P}\right)v^2 + \frac{a}{P}v - \frac{ab}{P}$$

- \bullet b has units of volume/mole
- a has units of pressure * (volume/mol)² = energy * volume/mol

	a ((L/mol)2 bar	b (L/mol)
H_{2}	0.2476	0.02661
N_2	1.370	0.0387
$\overline{\mathrm{CH}_{4}}$	2.283	0.04278
CO_2	3.640	0.04267

```
1
    import numpy as np
    import matplotlib.pyplot as plt
2
3
    R = 0.0821 \# l atm/mol K
4
    a = 3.640; b = 0.04267;
6
    vc = 3 * b; Tc = (8./9.)*a /(R * vc); Pc = (R * Tc)/(vc-b) - a/(vc*vc);
9
    vr = np.logspace(-0.5,1.)
10
11
12
    plt.figure(1)
    for Tr in np.arange(0.87,1.3,0.13):
13
        Pr = 8 * Tr/(3 * vr -1) - 3 * (1/vr) * (1/vr)
14
        plt.plot(vr*vc,Pr*Pc,label=Tr*Tc)
15
16
    plt.title('CO2 van der Waals isotherms')
    plt.ylim([.1*Pc,4*Pc])
18
    plt.xlim([.3*vc,6*vc])
19
    plt.xlabel('Volume (1/mol)')
20
    plt.ylabel('Pressure (atm)')
21
^{22}
    legend=plt.legend()
23
^{24}
    plt.savefig('./figs/vdWgas.png')
25
26
    plt.figure(2)
    for Tr in np.arange(0.87,1.3,0.13):
27
        Pr = 8 * Tr/(3 * vr -1) - 3 * (1/vr) * (1/vr)
28
29
        plt.loglog(vr*vc,Pr*Pc,label=Tr*Tc,basex=10)
30
31
    legend = plt.legend()
32
    plt.ylim([.1*Pc,100*Pc])
33
34
    plt.xlim([.3*vc,10*vc])
    plt.xlabel('Log volume (1/mol)')
35
    plt.ylabel('Log pressure (atm)')
    plt.title('CO2 van der Waals isotherms')
37
38
    plt.savefig('./figs/logvdWgas.png')
39
```


- At higher temperature, pressure and volume vary approximately inversely (gas)
- At lower temperature, follow isotherm, reach region where compressing causes P to go down, unphysical,
 - form two phases, dense (liquid) and dilute (vapor)
 - middle intersection point unphysical
 - One pressure and temperature at which two phases coexist (same chemical potential)
 - Called "saturation pressure," $P_{sat}(T)$
 - Given volumes, easy to solve for P_{sat} , other way not so easy $(\mu_v = \mu_l)$
- Transition point between the two regions, called the "critical point"
- $T > T_c$, $P > P_c$ called "supercritical"
- At critical point, density of liquid and vapor are the same
- As move below the critical point, the densities/volumes move apart
- Critical constants related to a and b:

$$b = v_c/3 \qquad a = \frac{9}{8}RT_cv_c$$

• common to refer to the "reduced" temperature, pressure, volume, unitless, scaled to the critical values. As we see below, many species behave the same in reduced variables

$$T_r = T/T_c$$
 $P_r = P/P_c$ $v_r = v/v_c$

7.4.3 Other cubic equations of state

- vdW model qualitatively and theoretically important, practically not so accurate
- more elaborate equations necessary to model real fluids more reliably
- all are approximations to reality
- Soave-Redlich-Kwong (SRK) one common example (Peng-Robinson another)

$$P_{\text{SRK}} = \frac{RT}{v - b} - \frac{\alpha(T)a}{v(v + b)}$$

• still cubic in v, so same qualitative form, but more parameters to fit

$$a = 0.42747 \frac{(RT_c)^2}{P_c}$$

$$b = 0.08664 \frac{RT_c}{P_c}$$

$$m = 0.48508 + 1.55171\omega - 0.1561\omega^2$$

$$\alpha = 1 + m(1 - \sqrt{T_r})$$

2

• ω is so-called Pitzer "acentric" factor, compiled along with critical constants

$$\omega = -\log\left(\frac{P_{sat}}{P_c}\right)\Big|_{T_r = 0.7} - 1$$

	Pitzer factor	Tc (K)	Pc (atm)
N_2	0.037	126.20	33.5
CH_4	0.011	190.7	45.8
CO_2	0.225	304.2	72.9

```
import numpy as np
    import matplotlib.pyplot as plt
    Tc =304.2; Pc = 72.9; omega = 0.225;
    R = 0.0821 \# l atm/mol K
    a = 0.42747 * (R * Tc)**2 / Pc
    b = 0.08664 * (R * Tc) /Pc
10
11
    m = 0.48508 + (1.55171 - 0.1561 * omega)* omega
12
    v = np.logspace(-1.5,0.)
13
14
    plt.figure(1)
15
    for T in np.arange(268,390,40):
        alpha = 1 + m * (1 - (T / Tc)**0.5)
17
         Psrk = R * T / (v-b) - alpha * a / (v* (v+b))
18
        Pig = R * T /v
19
        plt.plot(v,Psrk,label=T)
20
        plt.plot(v,Pig,label=T,ls='--')
22
    plt.title('CO2 SRK isotherms')
23
24
    plt.ylim([0,300])
    plt.xlim([0.02,0.8])
    plt.xlabel('Volume (1/mol)')
    plt.ylabel('Pressure (atm)')
27
28
    legend=plt.legend()
^{29}
    plt.savefig('./figs/SRKgas.png')
30
31
    # plt.figure(2)
32
33
    # for T in np.arange(268,390,40):
          alpha = 1 + m * (1 - (T / Tc) **0.5)
34
           Psrk = R * T / (v-b) - alpha * a / (v* (v+b))
35
          plt.loglog(v,Psrk,label=T,basex=10)
36
37
    # legend = plt.legend()
38
39
    # plt.ylim([1e1,1e4])
    # plt.xlim([0.01,1.1])
41
    # plt.xlabel('Log volume (l/mol)')
42
    # plt.ylabel('Log pressure (atm)')
    # plt.title('CO2 SRK vs. Ideal Gas isotherms')
44
    # plt.savefig('./figs/logSRKgas.png')
```


- errors largest at low v, low T
- given T and v, easy to find P
- given T and P, harder to find v; solve numerically

7.4.4 Virial expansion

$$P = \frac{RT}{v} \left(1 + \frac{B_2(T)}{v} + \frac{B_3(T)}{v^2} + \cdots \right)$$

7.4.5 Law of corresponding states

- Observed empirically that PvT properties of many fluids behave similarly when expressed in terms of reduced variables
- Reflects common competition between size/entropy and interaction/energy
- Define unitless compressibility:

$$Z = \frac{P(v, T)v}{RT}$$

- $Z_{ig} = 1$
- $Z_c = 0.27$ for many common fluids

- Plot of Z vs. P_r for various T_r
 - Negative deviations at low P, attractions reduce pressure relative to ideal gas
 - Positive deviations at high P, repulsive regime due to short-range repulsion
 - Deviations increase with decreasing T_r

- Algorithm: given two of PvT and corresponding critical constants, convert to reduced values, read unknown value off of compressibility chart, and back-convert to real value.
- Rather arcane, not-computer-friendly way of getting PvT information

7.5 Real gas mixtures

- Even messier problem
- Mixing rules to combine parameters from individual components

8 Two-phase systems

Very often interested in systems in which two distinct phases are present, e.g. l-/g/. Common in separations problems, including my favorite, extracting tasty coffee from coffee beans, and second favorite, CO_2 from flue gas.

8.1 One-component phase diagrams

- Pure substances can exist in multiple "phases." s, l, v familiar, but can have e.g. multiple solid phases, example C
- Stable phase at any given condition is a function of T and P
- Captured in a "phase diagram," which shows which phase is stable at a give condition
- Have already talked about properties of single phases
- Often interested in *phase transitions*, boundaries between two phases
- Give example from vdW isotherm; for given T, only one P at which both phases
- Mention heat flow
- In two-phase region, temperature sets one and only one saturation pressure
- Mention latent heat
- Change the temperature, change the saturation pressure
- CO_2 phase diagram representative:

- Key features:
 - boiling point
 - "normal" boiling point
 - critical point and supercritical region
 - melting/freezing point
 - sublimation point
 - "triple" point

 Will find tabulations of boiling/freezing points, critical points, triple points in Perry's Handbook, CRC, http://webbook.nist.gov

8.1.1 Clapeyron equation

• Thermodynamics gives us a relationship for the slope of a coexistence line:

$$\frac{dP^*}{dT} = \frac{\Delta H_{\text{latent}}}{T(v_b - v_a)}$$

 Applied to liquid → vapor transition, ignoring liquid volume, and treating vapor as ideal gives the Clausius-Clapeyron equation:

$$\frac{dP^*}{dT} = \frac{\Delta H_{\text{vap}}}{T(v_g - v_l)}$$

$$\approx \frac{\Delta H_{\text{vap}}}{Tv_g}$$

$$\approx \frac{P\Delta H_{\text{vap}}}{RT^2}$$

$$\frac{\ln P}{1/T} = -\frac{\Delta H_{\text{vap}}}{R}$$

• Assuming ΔH_{vap} is not a function of T, integrates to

$$\ln \frac{P_2^*}{P_1^*} = -\frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

• Plot of $\ln P$ vs. 1/T is approximately linear with slope related to latent enthalpy

Clausius-Clapeyron example Benzene normal boiling point is 353.2 K at 760 Torr. Heat of vaporization is 30.8 kJ mol⁻¹. What is saturation pressure at 373.2 K?

```
import numpy as np

R = 8.314

T1 = 353.2

T2 = 373.2

deltaH = 30800.

InP = -(deltaH/R)*(1/T2 - 1/T1) + np.log(760)

P = np.exp(lnP)

print('ln P = {0:6.2f} P = {1:6.0f} torr'.format(lnP,P))
print('Experiment = 1360 torr')
```

ln P = 7.20 P = 1333 torrExperiment = 1360 torr

8.1.2 Antoine equation

- Approximations underlying Clausius-Clapevron are too severe for engineering work
- Antoine equation is a modification empirically observed to fit saturation pressure/temperature data better:

$$\log_{10} P^* = A - \frac{B}{T + C}$$

- Values of A, B, and C are tabulated in standard references
- Pay attention to units!
- Because this is empirical, only apply within range of fit

8.2 Gibbs phase rule

- In single-phase region, can specify both T and P—2 DOFs
- At phase-boundary, only T or P is independent—1 DOF
- Reflects Gibbs phase rule:

$$DOF = c - \Pi - r + 2$$

- DOF are number of *intensive* variables that can be freely set and still satisfy the composition conditions
- Applies more generally to mixtures, including ones in which chemical reactions can occur

8.3 Single-component VLE

- Common situation to have a liquid A (e.g. H₂O) in equilibrium with a vapor mixture (e.g. moist air)
- Important in humidification, dehumidification, drying, evaporation, ...
- At equilibrium, vapor is said to be "saturated"
- DOF = 2 2 + 2 = 2; any two of T, P, y_1

8.3.1 Raoult's Law

• Pretty reliable relationship between variables is that partial pressure of volatile component is equal to saturation pressure:

$$P_i = y_i P = P_i^*(T)$$

Raoult's Law Example Saturation pressure of H_2O is 289 mmHg at 75 °C (See Appendix of book). What is equilibrium composition of air at this temperature? (This would correspond to 100% relative humidity. Wet!)

```
psat = 289.
psat = 289.
psat = 1. - yH20
psat = 1. - yH20
yN2 = 0.79*yair
y02 = 0.21*yair

print('H20 = {0:3.0f}% N2 = {1:3.0f}% 02 = {2:3.0f}%'.format(yH20*100,yN2*100,yO2*100))
```

$$H20 = 38\% N2 = 49\% O2 = 13\%$$

- Raoult's Law applies to equilibrium. Change any constraint, other variables must adjust to restore equilibrium
- Often two-phase systems are **not** at equilibrium
- Uncommon for vapor composition to be greater than equilibrium—vapor would just condense
- Opposite is possible, if there isn't enough liquid phase to saturate the vapor
- A "superheated" vapor is one that is below its saturation pressure

$$y_i P < P_i^*(T)$$

- Called superheated because vapor would have to be cooled at constant pressure and composition to reach equilibrium
- Or compressed at constant T; at least one of three variables has to change
- (Lower) temperature at which a superheated vapor would start to condense at constant P is called "dew point temperature"

$$y_i P = P_i^*(T_{\text{dewpt}})$$

• $T - T_{\text{dewpt}} = \text{degrees of superheat}$

Superheat example A stream of air is at $100\,^{\circ}\text{C}$, $5260\,\text{mmHg}$, and contains $10.0\%\,\text{H}_2\text{O}$. (1) Dewpoint? (2) Degrees of superheat? (3) Fraction of vapor that condenses and final gas phase composition if cooled to $80\,^{\circ}\text{C}$ at constant P? (4) Ditto if air is isothermally compressed to $8500\,\text{mmHg}$.

```
1 import scipy.optimize as opt
2
3 T0 = 100. # C
4 P0 = 5260. # mmHq
```

```
yH200 = 0.10
5
    Psat = 760.
                     # duh! Psat = Patm at 100 C! We all know that.
6
    PH20 = P0 * yH200
8
    print('Partial pressure of H20 = {0:4.0f} mmHg'.format(PH20))
10
11
    dewpoint = 90.0 # from table
12
    superheat = TO - dewpoint
13
                                       Superheat = {1:4.0f} degC'.format(dewpoint, superheat))
    print('Dew point = {0:4.0f} degC
15
    # Cool isobarically to 80 C
16
    Psat80 = 355.1 \# mmHg
17
    yH2080 = 355.1/5250
18
    # draw a condenser feed and do mass balance on both streams
20
    nOH20 = 0.1*100; nOair = 0.9*100;
21
22
    # air balance
23
   ndotv = 100 * 0.9 / (1 - yH2080)
^{24}
25
26
    # H2O balance
27
    ndotH20 = 100* 0.1 - ndotv * yH2080
28
29
    deltaH20 = (ndotH20)/n0H20
30
31
    print('80 C composition ={0:6.4f}'.format(yH2080))
32
33
34
    print('Fraction of water condensed ={0:3.0f}%\n'.format(deltaH20*100))
35
36
    # Compress isothermally to 8500 mmHg at 100 {\it C}
    Pcomp = 8500
37
    PH20 = yH200 * 8500
39
    print('Partial pressure of H20 = {0:4.0f} mmHg'.format(PH20))
40
41
    yH2Ocomp = Psat/Pcomp
42
43
    # air balance
44
    ndotv = 100 * 0.9 / (1 - yH20comp)
45
46
    # H2O balance
47
48
    ndotH20 = 100* 0.1 - ndotv * yH20comp
49
50
    deltaH20 = (ndotH20)/n0H20
51
52
53
    print('8500 mmHg composition ={0:6.4f}'.format(yH20comp))
54
55
    print('Fraction of water condensed ={0:3.0f}%\n'.format(deltaH20*100))
    Partial pressure of H2O = 526 mmHg
    Dew point =
                      90 degC
                                     Superheat =
                                                        10 degC
    80 C composition =0.0676
    Fraction of water condensed = 35%
    Partial pressure of H2O = 850 mmHg
    8500 mmHg composition =0.0894
    Fraction of water condensed = 12%
```

• If $P^* < P$, liquid evaporates from surface

• If $P^* \geq P$, liquid boils throughout

8.3.2 Humidity

- These concepts very often applied to H₂O, in which we refer to H₂O vapor as humidity
- Common to define relative humidity, fraction of maximum H_2O in air at given T

$$RH(T) = P_{\mathrm{H_2O}}/P_{\mathrm{H_2O}}^*(T)$$

Relative humidity example Humid air at 75 °C, 1.1 bar, and 30% RH is fed into a process unit at $1000 \,h^{-1}$. Determine molar flow rate of all components.

```
Psat75 = 289. \# mmHg
    RH = 0.30
2
    P = 1.1 * 760 / 1.01325 # torr
    PH20 = RH*Psat75
    print('PH20 = {0} torr'.format(PH20))
    yH20 = PH20/P
    yN2 = (1-yH20)*0.79
10
    y02 = (1-yH20)*0.21
11
12
    print('H20 = {0} N2 = {1} 02 = {2} mol/mol'.format(yH20,yN2,y02))
13
    \# MWavg = (18. * yH2O + 28 * yN2 + 32 * yO2)/1000. \# kg/mol
15
    R = 8.314
17
    T = 75 + 273
18
19
   P = 1.1e5
                      # Pa
    vdot = 1000.
                      # m3/hr
20
    ndot = P * vdot / (R * T)
^{21}
22
    print('H20 = {0} N2 = {1} 02 = {2} mol/hr'.format(yH20*ndot,yN2*ndot,y02*ndot))
```

```
PH20 = 86.7 torr

H20 = 0.10508226674641148 N2 = 0.7069850092703349 O2 = 0.18793272398325359 mol/mol

H20 = 3995.147826441919 N2 = 26879.03211994477 O2 = 7145.05917112456 mol/hr
```

8.4 Multi-component VLE

- \bullet Combine two liquids, both of which have finite (but different) Psat at given T, in a closed container
- Vapor composition will in general be different from liquid.
- Given a liquid composition (x), "bubble point" is P or T at which first bit of vapor appears
- Given a vapor composition (y), "dew point" is P or T at which first bit of condensate appears

8.4.1 Raoult's Law

- One model for VLE, most appropriate for majority material $\rightarrow 100\%$
- Partial pressure is saturation pressure scaled by fraction of molecules at surface:

$$x_A P_A^*(T) = P_A = y_A P$$

- Assumes ideal liquid mixture and ideal gas mixture
- If liquid only contains condensable components $(\sum_i x_i = 1)$

$$P_{\text{bubble}} = \sum x_i P_i^*$$

• Given x_i , P, can find y_i :

$$y_i = x_i P_i^* / P$$

• If we know the vapor composition y_i , can determine the dew point by substitution from

$$\sum_{i} x_{i} = 1 \to P_{\text{dew}} = \left(\sum_{i} \frac{y_{i}}{P_{i}^{*}}\right)^{-1}$$

```
import numpy as np
    import matplotlib.pyplot as plt
    xB = np.linspace(0,1)
    PAs = 10
PBs = 5
    PB = xB * PBs
    PA = (1-xB) * PAs
9
    P = PA + PB
10
11
    yB = PB/P
12
    plt.plot(xB,P,yB,P)
14
    # plt.plot(xB,PB,xB,PA,xB,P)
15
    plt.ylabel('Pressure')
16
    plt.xlabel('x_B, y_B')
17
    plt.title('Isothermal compression')
    plt.legend(['Bubble (x)', 'Dew (y)'])
19
    plt.savefig('./figs/PressureVLE.png')
```


- Go up in pressure starting from 50:50 mix, hit dew line, first drop of liquid forms
- Called dew pressure
- Has composition of bubble line
- Keep going up, vapor gradually condenses, composition follows dew line, liquid follows bubble line
- Finally at bubble pressure last bit of vapor disappears
- Call Px diagram

Bubble pressure example 15% benzene and 10% toluene in N_2 at 80 °C. At what pressure does vapor condense, and what is its composition? Answer: condenses when partial pressure matches dew point.

```
PBs = 756  # torr
pTs = 291  # torr

yB = 0.15
yT = 0.10

# eliminate xB
P = 1/((yB/PBs) + (yT/PTs))

xB = yB * P /PBs

print('Dew point pressure = {0:5.0f} Benzene fraction = {1:5.3f}'.format(P,xB))
```

Dew point pressure = 1845 Benzene fraction = 0.366

- Can similarly create Tx diagram at constant P
- Need model for how saturation pressure varies with T

```
import numpy as np
    import matplotlib.pyplot as plt
    from scipy.optimize import fsolve
    def PAs(T):
         A = 6.89272; B= 1203.531; C=219.888 # benzene Antoine
6
         logP = A - B/(T+C)
         return 10**logP
 8
          PAO = 10
    #
          H = 800
10
11
          return PAO * np.exp(-H/T)
12
    def PBs(T):
13
         A = 6.95805; B= 1346.773; C=219.693 # toluene Antoine
         logP = A - B/(T+C)
15
         return 10**logP
16
17
    Pressure = 760.0
18
19
    def PAsopt(T):
20
^{21}
         return PAs(T) - Pressure
22
23
    def PBsopt(T):
^{24}
         return PBs(T) - Pressure
25
26
    TA = fsolve(PAsopt, 100)
```

```
TB = fsolve(PBsopt,100)
27
28
    print(TA,TB)
29
30
    T = np.linspace(TA,TB)
31
32
    xB = (Pressure - PAs(T))/(PBs(T) - PAs(T))
33
34
    yB = xB * PBs(T)/Pressure
35
36
    plt.plot(xB,T,yB,T)
37
    plt.xlim(0,1)
38
    plt.ylabel('Temperature')
39
    plt.xlabel('x_B, y_B')
40
    plt.title('Isobaric heating')
    plt.legend(['Bubble (x)','Dew (y)'])
42
    plt.savefig('./figs/TemperatureVLE.png')
44
45
^{46}
47
    print(PAs(90)/760,PBs(90)/760)
```

[80.10179978] [110.62216089] 1.343213901504202 0.5351810463458321

8.4.2 Henry's Law

• Model appropriate for a dilute solute

$$x_A H_A(T) = P_A = y_A P$$

• Henry's constants are measured and tabulated

8.4.3 Tabulations

VLE example from tabulation In this example, partial pressures of H_2O and SO_2 over a solution of a given composition and temperature are read from a compilation.

Engineers Handbook (see Footnote 1), pp. 2-80 through 2-94, gives partial pressurover various liquid solutions. Example 6.4-1 illustrates the use of such data. Sulfur dioxide (SO₂) is produced when coal is burned in power plants. Prior to implementation of clean-air standards, SO₂ emissions referred to standards, SO₂ emissions were responsible for acid rain, but utilization of absorbers (sometimes referred to as acrubbers) to reprove SO₂. as acrubhers) to remove SO₂ from combustion products has significantly reduced the problem. In a simple implementation of that emission-control strategy, a gas mixture containing 45 mole% SO₂, the balance are (as SO₂) and the balance air (an SO₂ concentration much higher than values normally encountered in power-plant emissions) flowing at a rate of 100 lb-mole/h is contacted with liquid water in a continuous absorber. The liquid leaving the absorber is analyzed and found to contain 2.00 g of SO₂ per 100 g of H₂O. Assuming that the gas and liquid streams leaving the absorber are in equilibrium at 30°C and 1 atm, calculate the fraction of the entering SO2 absorbed in the water and the required water feed rate. Basis: Given Feed Rate of Gas Rostin stoleti Name of this story with 0.45 In-mail: SOlyth-mole Fig. (18-male H₂O(v)/lb-mole) Equilibrium at 30°C and two. (th-mole SO₂/th-mole) ABSORBER 0.55 lis-male an lib-male k atm n -(10, 10) A JOH H-OUNT 200 B SO/100 B H-OO exit Irquid: 2 lbn 502/100 lbn Hzw @ 30°C 29 Pso_= 176 months PHzo = 31.6 months Pair = 760-176-31.6 = 4502=0.232 440=0.0416 ya=0.727 Unknowns: NLI, NLZ, NGZ 3 balances air: out=in NGZ · Yar = 100 055 Z NGZ = 75.7 moller

8.5 Solid-liquid

8.5.1 Solubility

• Solids have limited solubility in liquids, called solubility limit. Strong function of T and of what exactly precipitates (anhydrous, hydrate, ...)

8.5.2 Colligative properties

- influence of solute on properties of solvent, depends on number but not type of solute
- vapor pressure lowering → boiling point elevation
- vapor pressure lowering \rightarrow melting point lowering
- combine Raoult's Law and Clausius-Clapeyron equation:

$$\Delta T_b = \frac{RT_b^2}{\Delta H_{vap}^*} x$$

$$\Delta T_m = \frac{RT_m^2}{\Delta H_m^*} x$$

• Can run in both directions, know composition, predict T change, know T change, compute x

EXAMPLE 5.000 g solute in 100.0 g $\rm H_2O$ at 1 atm boils at 100.421 °C. Molecular weight of solute?

```
1  R = 8.31441
2  Hb = 40656. # J/mol
3  Tb = 273.16 + 100. # K
4  dT = 100.421 - 100.
5
6  x = dT * Hb / (R * Tb * Tb ) # mol fraction solute
7
8  nH20 = 100.0 / 18.011 # mol
9
10  nSol = nH20 * x /(1-x)
11
12  MW = 5.000/nSol
13
14  print('Moles solute = {0:5.3f}  MW = {1:5.3f} g/mol'.format(nSol,MW))
```

Moles solute = 0.083 MW = 60.014 g/mol

8.6 Liquid-liquid

- Two liquids that can be mixed in any proportions (ethanol and H_2O) are called *miscible*
- Two that do not mix (hexane and H₂O) are called *immiscible*
- Two that mix in only some proportions are called *partially miscible*
- Often expressed in terms of a partition coefficient of a solute between two solvents
- Or on a ternary phase diagram
- Gibbs phase rule: dof = 3-2 + 2 = 3
 - T, P, one composition variable fixes all the others
- Basis of liquid-liquid extraction
 - $-A = H_2O, B = acetone, C = MIBK$

8.7 Solid-gas

 \bullet isotherms

9 Energy balances

9.1 What's energy?

• kinetic (E_K) , translational or rotational energy

$$E_K = \frac{1}{2}mv^2$$

• potential (E_V) , due to position with respect to an external field (gravitational, electric, magnetic)

$$E_{grav} = mgh$$

- internal energy (U), stored in bonds, in motion of molecules relative to one another, ...
 - thermal energy is one subset of internal
 - strong function of chemical composition, of phase, of T, usually weak function of P
- energy is additive, so $E_{tot} = E_K + E_V + U$
- energy is *conserved*, so for all processes, $\Delta E_{\text{universe}} = 0$
 - First Law of Thermodynamics!

9.2 Closed system (little different from thermo definition)

- distinguish system from surroundings
- no material crosses boundary
- energy can be transferred as heat (q) positive when added to a system
- energy can be transferred by doing work (w) positive when done on a system
- basic balance for a closed system:

$$\Delta E_{sus} + \Delta E_{sur} = 0$$

$$\Delta U + \Delta E_K + \Delta E_V - q - w = 0$$

- If system is not accelerating, $\Delta E_K = 0$
- If system is not rising or falling, $\Delta E_V = 0$
- adiabatic process has q = 0
- If no mechanical interactions with surroundings (shaft, piston, magnetic rotor) w=0

EXAMPLE Gas in a cylinder. (a) Add 2 kcal of heat and temperature rises from 25 to 100 °C while piston is fixed. (b) Piston is released, does 100 J of work, temperature of gas is constant.

- (a) $\Delta E_K = \Delta E_V = w = 0$. $q = 2 * 1000 * 4.184 = 8368 \text{ J. } \Delta U = 8368 \text{ J.}$
- (b) $\Delta E_K = \Delta E_V = 0$. $\Delta U = 0$ if gas is ideal. $w = -100 \text{ J} \rightarrow q = 100 \text{ J}$.

9.3 Open system, steady state

• In open system at steady-state, energy balance changes to a power balance:

$$\Delta \dot{U} + \Delta \dot{E}_K + \Delta \dot{E}_V - \dot{q} - \dot{w} = 0$$

• Each delta is a sum over all the output less all the input streams. Let's take these pieces apart.

9.3.1 Flow and shaft work

When material flows through a system, work is done on the system as material is pushed in and done by the system as material is pushed back out. Helpful to define some terms.

- shaft work (\dot{W}_s) is work done by a moving part on a system (like a turbine or rotor)
- flow work (\dot{W}_f) is difference between work done by fluid moving in and out of system

$$\dot{W}_f = P_{\rm in}\dot{V}_{\rm in} - P_{\rm out}\dot{V}_{\rm out}$$

- If fluid is incompressible and there are frictional losses, what must be true about \dot{V} ? What is true about $P_{in} P_{out}$?
- Conventional to define a new thermodynamic function, enthalpy, to include the flow work:

$$H = U + PV$$

• energy balance becomes

$$\Delta \dot{H} + \Delta \dot{E}_K + \Delta E_P = \dot{q} + \dot{W}_s$$

9.3.2 Specific properties

- specific property is (extensive) property per unit mass or per unit moles. Book uses both, so watch!
- specific volume $\hat{V} = 1/\rho \text{ l/g}$
- related to flow rate via mass flow rate

$$\dot{V} = \dot{m}\hat{V}$$

- U and H are properties of the chemical species but not time, tabulated on a per mole or per mass basis
- If on a per mole basis, related to molar flow rate

$$\dot{U} = \hat{U}\dot{n} \quad \dot{H} = \hat{H}\dot{n}$$

EXAMPLE Specific internal energy and volume of He at 300 K and 1 atm are 3800 J/mol and 24.63 L/mol, respectively. What are specific enthalpy and enthalpy rate when flowed at 250 kmol/h?

Hhat = 6294.2 J/mol Hdot = 1.574e+09 J/h

9.3.3 Kinetic energy

• related to mass flow rates, where u is linear velocity

$$\dot{E}_K = \frac{1}{2}\dot{m}u^2$$

9.3.4 Potential energy

• If we consider only gravitational PE, then related to height z relative to some reference

$$\dot{E}_V = \dot{m}gz$$

EXAMPLE 500 kg/hr steam drive a turbine. Steam enters at 44 atm, 450 °C, and $60 \,\mathrm{m \, s^{-1}}$, leaves at a point 5 m lower, at 1 atm and at $360 \,\mathrm{m \, s^{-1}}$. Shaft work delivered is 70 kW and heat loss is 10^4 kcal/hr. Change in enthalpy of steam?

9.4 Thermodynamic data

- Internal energy and enthalpy are *state functions*: they depend only on the intensive properties (T, P), composition, and state of a material
- Because they are *energies*, they have no absolute value. Rather, can only measure/know *changes* in these properties between two states

- Measured by contriving an experiment in which all energy changes other then ΔU or ΔH are known.
- Generally tabulated relative to some (stated or unstated) reference state, which is defined to have a value of zero
- Tabulated in *Perry's*, on line, see Table B.8
- Or NIST, http://webbook.nist.gov/chemistry/fluid/
- Because H₂O is so important to power generation and other chemical engineering processes, thermodynamic properties of water are tabulated in *steam tables*
- Table B.5: saturated steam (on phase equilibrium line), in increments of T
- Table B.6: saturated steam (on phase equilibrium line), in increments of P
- Table B.7: superheated steam (beyond phase equilibrium)

EXAMPLE Pressure, specific internal energy, and enthalpy of saturated steam at 133.5 °C? (Table B.6): 3.0 bar, 2543.0 kJ/kg, 2724.7 kJ/kg

EXAMPLE Specific volume, internal energy, and enthalpy of steam at 400 °C and 10 bar, relative to triple point.

At 10 bar, saturation temperature is $179.9\,^{\circ}\text{C}$ (dew point, Table B.6). Thus, this must be superheated steam.

(Table B.7): 0.307 m3/kg, 2958 kJ/kg, 3264 kJ/kg

• Note that energies are stronger function of T than P.

P(bar) (T _{sat.} °C)		Sat'd Water	Sat'd		ture (°C)→		150	200	250	700	
0.0	Ĥ	water	Steam	50	75	100	150	200	250	300	350
(-)	Û	-	=	2595 2446	2642 2481	2689 2517	2784 2589	2880 2662	2978 2736	3077 2812	3177 2890
0.1 (45.8)	$\hat{H}_{\hat{U}}$	191.8 191.8	2584.8 2438.0	2593 2444	2640 2480	2688 2516	2783 2588	2880 2661	2977 2736	3077 2812	3177 2890
	v	0.00101	14.7	14.8	16.0	17.2	19.5	21.8	24.2	26.5	28.7
0.5 (81.3)	Ĥ	340.6 340.6 0.00103	2646.0 2484.0 3.24	209.3 209.2 0.00101	313.9 313.9 0.00103	2683 2512 3.41	2780 2586 3.89	2878 2660 4.35	2979 2735 4.83	3076 2811 5.29	3177 2889
1.0 (99.6)	Ĥ	417.5 417.5 0.00104	2675.4 2506.1 1.69	209.3 209.2	314.0 313.9	2676 2507	2776 2583	2875 2658	2975 2734	3074 2811	5.75 3176 2889
5.0	Ĥ	640.1		0.00101	0.00103	1.69	1.94	2.17	2,40	2.64	2,87
(151.8)	O	639.6 0.00109	2747.5 2560.2 0.375	209.7 209.2 0.00101	314.3 313.8 0.00103	419.4 418.8 0.00104	632.2 631.6 0.00109	2855 2643 0.425	2961 2724 0.474	3065 2803 0.522	3168 2883 0.571
10	Ĥ	762.6	2776.2	210.1	314.7	419.7	632.5	2827	2943	3052	3159
(179,9)	Û	761.5 0.00113	2582 0.194	209.1 0.00101	313.7 0.00103	418.7 0.00104	631.4 0.00109	2621 0.206	2710 0.233	2794 0,258	2876 0.282
20 (212.4)	Û	908.6 906.2 0.00118	2797.2 2598.2 0.09950	211.0 209.0 0.00101	315.5 313.5 0.00102	420.5 418.4 0.00104	633.1 603.9 0.00109	852.6 850.2 0.00116	2902 2679 0.111	2774	3139 2862
40	Ĥ	1087.4	2800.3	212.7	317.1	422.0	634.3	853.4		0,525	0.139
(250.3)	Û V	1082.4 0.00125	2601.3 0.04975	208.6 0.00101	313.0 0.00102	417.8 0.00104	630.0 0.00109	848.8 0.00115	1085.8 1080.8 0.00125	2762 2727 0.0588	3095 2829 0.0665
60	Ĥ	1213.7	2785.0	214.4	318.7	423.5	635,6	854.2	1085.8	2885	3046
(275.6)	0	1205.8 0.00132	2590.4 0.0325	208.3 0.00101	312.6 0.00103	417.3 0.00104	629.1 0.00109	847.3 0.00115	1078.3 0.00125	2668 0,0361	2792 0.0422
80 (295.0)	Ĥ	1317.1 1306.0	2759.9 2571.7	216.1	320.3	425.0	636.8	855.1	1085.8	2787	2990
100	Ŷ Ĥ	0.00139	0.0235	208.1 0.00101	312.3 0.00102	416.7 0.00104	628.2 0.00109	845.9 0.00115	1075.8 0.00124	2593 0.0243	2750 0,0299
(311.0)	0	1393.5 0.00145	2547.3 0.0181	217.8 207.8 0.00101	322.9 311.7 0.00102	426.5 416.1 0.00104	638.1 627.3 0.00109	855.9 844.4 0.00115	1085.8	1343.4	2926 2702
150	Ĥ	1611.0	2615.0	222.1	326.0	430.3	641.3	858.1	0.00124	0.00140	0.0224
(342.1)	00	1586.1 0.00166	2459.9 0.0103	207.0 0.00101	310.7 0.00102	414.7 0.00104	625.0 0.00108	841.0 0.00114	1086.2 1067.7 0.00123	1338,2 1317.6 0.00138	2695 2523 0.0115
200 (365.7)	Ĥ	1826.5 1785.7	2418.4	226.4	330.0	434.0	644.5	860.4	1086.7	1334.3	1647.1
21.2(P _c)	P Ĥ	0.00204	2300.8 0.005875 2108	206.3 0.00100 228.2	309.7 0.00102	413.2 0.00103	622.9 0.00108	837.7 0.00114	1062.2 0.00122	1307.1 0.00136	1613.7 0.00167
74.15)(T _c)	Û	2037.8 0.00317	2037.8 0.00317	206.0 0.00100	331.7 309.2 0.00102	435.7 412.8 0.00103	645.8 622.0 0.00108	861.4 836.3	1087.0 1060.0	1332.8 1302.9	1635.5 1600.3
250	Ĥ	-	-	230.7	334.0	437.8	647.7	0.00114	0.00122	0.00135	0,00163
()	Û Û	=	=	205.7 0.00100	308.7 0.00101	412.1 0.00103	620.8 0.00108	862,8 834,4 0.00113	1087.5 1057.0 0.00122	1331.1 1297.5 0.00135	1625.0 1585.0 0.00160
300	Û	-	-	235.0 205.0	338.1	441.6	650.9	865.2	1088.4		1609.9
500	Ŷ Ĥ	=	-	0.0009990	307.7 0.00101	410.8 0.00103	618.7 0.00107	831.3 0.00113	1052.1 0.00121	1328.7 1288.7 0.00133	1563.3 0.00155
()	0	-	-	202.4	354.2 304.0	456.8 405.8	664.1	875.4	1093.6	1323.7	1576.3
1000	V H	_	_	0.0009911 293.9	0.00100	405.8 0.00102 495.1	611.0 0.00106	819.7 0.00111	1034,3 0.00119	1259.3 0.00129	1504.1 0.00144
(-)	Û	=	-	196.5 0.0009737	295,7 0.0009852	395.1 0.001000	698.0 594.4 0.00104	903.5 795.3 0.00108	1113.0 999.0 0.00114	1328.7 1207.1 0.00122	1550.5 1419.0 0.00131
dapted frater is a lie l/kg), $\hat{V} =$	om quid	R. W. Ha in the en-	nywood, The closed region me (m ³ /kg)	ermodynan on between	nic Tables in 50°C and 350 g × 0.4303 =	SI (Metric)	Units, Ca			Press, Lor	ndon, 1968

EXAMPLE Steam at 10 bar absolute and 190 °C superheat enters turbine at $\dot{m}=2000$ kg/hr. Turbine is adiabatic, and effluent is saturated steam at 1 bar. Work output of turbine? Found above that kinetic and potential energy changes are small, so neglect here.

$$\dot{W}_s = \Delta \dot{H} = \dot{m} \Delta \hat{H}$$

```
Pin = 10. # bar
    Tdew = 180. # celsius
    Tin = 190. + Tdew
    H350 = 3159. # kJ/kg
    H400= 3264. # kJ/kg
 6
    Hin = H350 + 20. * (H400 - H350)/(400. - 350.)
    print('Interpolated Hin = {0:5.1f} kJ/kg'.format(Hin))
10
11
12 Hout = 2675.
    mdot = 2000. \# kg/hr
13
14
                                       # kW
    Work = mdot * (Hout - Hin)/3600
15
16
    print('Shaft work = {0:5.1f} kW'.format(Work))
```

Interpolated Hin = 3201.0 kJ/kgShaft work = -292.2 kW

9.5 Combined mass and energy balances

• Example 7.6-1

Energy Balance on a One-Component Process

Two streams of water are mixed to form the feed to a boiler. Process data are as follows:

Feed stream 1 Feed stream 2

120 kg/min @ 30°C 175 kg/min @ 65°C

Boiler pressure

17 bar (absolute)

Steam emerges from the boiler through a 6-cm ID pipe. Calculate the required heat input to the boiler in kilojoules per minute if the emerging steam is saturated at the boiler pressure. Neglect the kinetic energies of the liquid inlet streams.

energy balance 10 AH + AEx + AEx = 2+Ws

mass balance ni, = 120 kg/min

m2 = 175 kg/miv

27 M3 = 295 Aglania

H₁: H₂0(e) 30°C ~125.7 kJ/kg (Table B5) H₂: H₂0(e) 65°C interpolate on Table B5 ~272 kJ/kg

Hz: 17bar sat > 204.3°C CA, = 2793.4 kJ/kg

$$\Delta H = \sum_{i=1}^{n} H - \sum_{i=1}^{n} H = 7.61 \times 10^{5} LJ_{min}$$

$$E_{k,sut} \text{ weed linear velocity}$$

$$M = 295 kg/min }
\hat{U} = 6.1166 m^{3}/kg \] - 34.40 m^{3}/min = U$$

$$U = \frac{U}{\text{Area}} \qquad d = 6 \text{ cm} - 9 A = 71 (3 \text{ cm})^{2} = 283 \text{ cm}^{2}$$

$$= 205 m/s$$

$$E_{k,sut} = \frac{1}{2} (295 kg/min) (208 m)^{2} = 6060 kJ/min$$

$$Q = \Delta H + \Delta E_{k}$$

$$= 7.61 \times 10^{5} + 0.061 \times 10^{5}$$

$$= 7.67 \times 10^{5} LD/min$$

• Example 7.6-3

9.6 Mechanical balances

- Examples to this point emphasize changes involving either change in T or chemical composition. Such processes are often dominated by ΔH ; work, kinetic, and potential terms are generally small
- Opposite extreme is isothermal, no chemical reaction, e.g. when pumping/moving fluids around

• General energy balance

$$\Delta \dot{U} + \Delta \dot{E}_K + \Delta \dot{E}_V - \dot{q} - \dot{W}_s - \dot{W}_f = 0$$

• If we have a single, incompressible fluid ($\rho = \dot{m}/\dot{V}$ is constant), can simplify energy balance:

$$\frac{1}{2}\dot{m}\Delta u^2 + \dot{m}g\Delta z + \left(\Delta\dot{U} - \dot{q}\right) - \dot{W}_s + \dot{V}\Delta P = 0$$

• Third term always has a positive friction component:

$$\frac{1}{2}\dot{m}\Delta u^2 + \dot{m}g\Delta z + \dot{m}\hat{F} - \dot{W}_s + \frac{\dot{m}}{\rho}\Delta P = 0$$

• Neglecting friction and shaft work gives Bernoulli equation:

$$\frac{1}{2}\Delta u^2 + g\Delta z + \frac{1}{\rho}\Delta P = 0$$

Example 7.7-1 Pressure required to push $20\,\mathrm{L\,min^{-1}}$ water 50 m uphill from a 0.5 cm pipe into a 1 cm pipe.

• Siphon

Example 7.7-2 Estimate time to siphon 5 gallons out of a gas tank through a 1/4 in i.d. plastic tube. Assume top tank is large, so its surface doesn't move, and hose end is 2.5 ft below upper fluid level.

• Water turbine

Water flows from an elevated reservoir through a conduit to a turbine at a lower level and out of the turbine through a similar conduit. At a point 100 m above the turbine the pressure is 207 kPa, and at a point 3 m below the turbine the pressure is 124 kPa. What must the water flow rate be if the turbine output is 1.00 MW?

$$\Delta P_p = \frac{124 - 207 \, \text{kPa}}{1 \, \text{g/cm}^3} = -83 \, \text{m}^2/\text{s}^2$$

10 Energy balances on non-reactive systems

10.1 State function

- Can use any path we want to compute the energy/enthalpy difference between any two well defined points
- $A(T_2, P_2) = A(T_1, P_1) + (A(T_1, P_2) A(T_1, P_1)) + (A(T_2, P_2) A(T_1, P_2))$
 - single component, single phase
 - single component, two phase
 - two component, two phase, only one condensible
 - two component, single phase
 - two component, two phase

10.2 Isothermal pressure dependence

- Ideal gas energy/enthalpy only a function of T
- Real gas has weak dependence, use tabulation or EOS
- The volumes of solids and liquids are roughly independent of P

$$- U(T, P_2) - U(T, P_1) \approx 0$$

- $H(T, P_2) - H(T, P_1) \approx \hat{V} \Delta P$

Is it safe to ignore pressure effect in C_2H_6 (g, 25C, 1 atm) \longrightarrow C_2H_6 (g, 25C, 30 atm)? Consider reduced /T/, /P/.

```
1 Tc = 305.4 # K

2 Pc = 48.2 # atm

3 

4 T = 25 + 273 # K

5 P = 30 # atm

6 

7 Tr = T/Tc

8 Pr = P/Pc

9 

10 print('Tr = {0:5.2f} Pr = {1:5.2f}'.format(Tr,Pr))
```

```
Tr = 0.98 Pr = 0.62
```

• Generalized compressibility chart

10.3 Isochoric temperature dependence

- Energy stronger function of temperature
- Dependence defined as heat capacity, heat flow is sensible heat
- Constant volume heat capacity often tabulated as a polynomial

$$C_v(T) = \left(\frac{\partial \hat{U}}{\partial T}\right)_v$$
$$\hat{U}(T_2) - \hat{U}(T_1) = \int_{T_1}^{T_2} C_v(T) dT$$

Heat capacity example. Heat necessary to warm 200 kg $\rm N_2O$ from 20 to 150 $^{\circ}\rm C$ in constant volume vessel?

$$C_v = a + bT, \quad a = 0.855 \text{kJ/kg C}, \quad b = 9.42 \times 10^{-4} \text{kJ/kg C}^2$$
 Integrate! $q = \Delta U = 24200 \text{ kJ}$

• Heat flow at constant *pressure* similarly related to enthalpy:

$$C_p(T) = \left(\frac{\partial \hat{H}}{\partial T}\right)_p$$

$$\hat{H}(T_2) - \hat{H}(T_1) = \int_{T_1}^{T_2} C_p(T) dT$$

- For liquids and solids, $C_p \approx C_v$
- For ideal gas, $C_p = C_v + R$
- For real gas, need an equation, tabulation, or computer program to evaluate

10.4 No data?

- Correlations, e.g. "Kopp's rule"
- For mixtures, assume additive

$$C_p(T) \approx \sum_i y_i C_{p,i}(T)$$

• Or if dilute, treat as pure

Meat
$$20-7300^{\circ}$$
C

Meat $20-7300^{\circ}$ C

Mass balance? $v_{in} = v_{out} = \frac{(1at_{in})(200)}{R(275K)} = 89.3 \text{ mol}$

energy bodiance?

$$\Delta \dot{H} = \dot{Q}$$

$$\Delta \dot{H} = \dot{u} \left(\hat{H}_{out} \left(\frac{300}{500} , \frac{1}{500} \right) - \hat{H}_{i,-}(20, \frac{1}{500}) \right)$$

1) Assume $\hat{H} \sim ind$ of P

2) Assume $\hat{H}_{mix} = Zy_{i}\hat{H}_{i}$

$$\Delta \dot{H} = \dot{u} = \frac{1}{2} y_{i} \left(\hat{H}_{i} \left(\frac{300}{500} - \hat{H}_{i} \left(\frac{20}{500} \right) \right) \right)$$

$$CA_{ij} = 4\hat{H} = \int_{20}^{300} (p_{i}T) dT = 12.07 hJ/vol$$

$$Q_{ij} = a+bT + ...$$

$$Air: interpolate on Table B8$$

$$\Delta \hat{H}_{air} = 8.37 kJ/mel$$

$$\Delta \dot{H} = \dot{q} = 12.9 kW$$

10.5 Phase change

- phase change involves change in enthalpy at constant T and P
- termed "latent" heat of transition
 - melting/fusion
 - vaporization/condensation

- tend to be large relative to heat capacity
- like heat capacity, strong function of T, weak function of P
 - recall steam tables

• Recall latent heats can be gotten rigorously from the Clapeyron equation and approximately from Clausius-Clapeyron

• Trouton's rule an example of a *correlation*. Note positive correlation between boiling point and enthalpy

$$\Delta H_v(\mathrm{kJ/mol}) \approx \left\{ egin{array}{ll} 0.088 T_b & \mathrm{(K)} & \mathrm{(non-polar liquids)} \\ 0.109 T_b & \mathrm{(K)} & \mathrm{(water and small alcohols)} \end{array} \right.$$

- many other correlations can be found
- how might you make such a correlation???

10.6 Phase change + mass balance


```
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve

def PBs(T):
    A = 6.89272; B= 1203.531; C=219.888 # benzene Antoine, C and mmHg
logP = A - B/(T+C)
```

```
return 10**logP
8
9
10
    def PTs(T):
         A = 6.95805; B = 1346.773; C = 219.693 # toluene Antoine, C and mmHg
11
         logP = A - B/(T+C)
         return 10**logP
13
14
    T = 50.
15
16
    xB = 0.4; xT=1-xB
17
18
    P = xB*PBs(T) + xT*PTs(T)
19
20
    yB = xB*PBs(T)/P; yT = xT*PTs(T)/P
^{21}
    print('Raoult's Law Pressure = {0:6.1f} mmHg'.format(P))
23
    print('Vapor yB,yT)
```

Pressure = 163.8 mmHg 0.6625107083992408 0.33748929160075913

$$B(v,50c) = \int_{16}^{80} C_{p,e} dT + \Delta H_{v} + \int_{80}^{50} C_{p,v} dT$$

$$= 37.53 \text{ kJ/mol}$$

$$ditto T = 42.94 \text{ kJ/vd}$$

$$Z_{p} \Delta H = \sum = 17.7 \text{ kJ/t}$$

10.7 Psychrometric charts

- Alternative way of representing VLE data
- Recall phase rule: an air-water vapor mixture has 2-1+2=3 DOFs, commonly T, P, y
- Hard to measure y, easier to measure "wet bulb temperature," T_{wb}
 - Temperature of a thermometer with its bulb swathed in wet gauze. T differences measures distance of air from saturation.
 - At dew point, $T_{wb} = T$
 - At less than saturation, $T_{wb} < T$
- Psychrometric chart summarizes these relationships and other properties of air-water vapor at fixed total P

- Choose T and T_{wb}
 - Find RH
 - Find density
 - Find mixture composition/absolute humidity (all the way to the right)
 - Find dew point (all the way to the left)
 - Find enthalpy of saturated air
 - Find enthalpy at point: follow enthalpy at saturation line; accurate calculations include a small deviation term that we won't worry about
- Paths left and right correspond to cooling and heating air at fixed composition

Example: air conditioning. Air at 25 °C, 80% RH, and 1 atm is isobarically cooled to 10 °C. Calculate the fraction of $\rm H_2O$ vapor that condenses and the heat removal rate to deliver $1~\rm m^3~min^{-1}$ of humid air.

10.8 Non-ideal mixtures

- Enthalpies additive in ideal mixture
- Real mixture, $\hat{H}_{soln} \neq \sum \hat{H}_i$
- Differential interactions, $\rm H_2SO_4 + H_2O,$ or $\rm NaOH + H_2O$
- Can be tabulated as integral heat of solution
 - enthalpy to dissolve 1 mole solute in r moles solvent (draw picture)

Table 1: integral heat of solution of HCl(g) in $H_2O(l)$

$H_2O \text{ (mol)}$	$\Delta \hat{H}(r)_{soln}(298 \text{ K})$
1	-26.22
10	-69.49
100	-73.85
1000	-74.68
10000	-74.99
100,000	-75.10
∞	-75.14

- Table reports \hat{H}_{soln} relative to pure components
- Alternative reference possible, e.g. $\hat{H} = \hat{H}(r) \hat{H}(\infty)$ references infinite dilution

EXAMPLE solution. Adsorb HCl (g) in H_2O (l). HCl(g) at 100 °C and H_2O at 25 °C fed to produce $1000\,\mathrm{kg}\,\mathrm{h}^{-1}$ $20.0\%(\mathrm{w/w})$ HCl at $40\,\mathrm{^{\circ}C}$.

• Enthalpy-concentration chart, normalized to total amount of solution rather than amount of solute

10.9 Two-phase, non-ideal mixtures

- Two two-component phases in equilibrium have 2-2+2=2 DOF, e.g. P and T or some x
 - Determines all other properties, e.g. enthalpies
 - Summarized in enthalpy chart like that above, but now lines for liquid and vapor, connected by "tie lines"

EXAMPLE: Two-phase $\rm H_2O/NH_3$ system at 160 F. What are compositions of two phases? Enthalpies? Total enthalpy if 95% of mass is liquid?

• Given total composition of system, "lever rule" tells us relative fractions of two phases (short segment \rightarrow lots of that fraction)

$$\frac{l}{v} = \frac{x_v - x_T}{x_T - x_l}$$

EXAMPLE: Flash Aqueous NH_3 stream "flashed" to lower pressure. Very simple unit op to lower T and enrich liquid/vapor phases.

11 Energy balances on reactive systems

11.1 Heats of reaction

- Rearrangements of bonds \rightarrow change in enthalpy
- "heat of reaction" defined for specific reaction stoichiometry and (generally) for pure species in specified states

$$\mathrm{CaC}_2(\mathrm{s}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_2(\mathrm{s}) + \mathrm{C}_2\mathrm{H}_2(\mathrm{g}) \quad \Delta H_r(25\,^\circ\mathrm{C}, 1) = -125.4\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

- \bullet Define endo and exothermic
- ΔH_r function of state and conditions
 - Weak function of P, strong function of T and state

$$\mathrm{CH_4(g)} + 2\mathrm{O_2(g)} \longrightarrow \mathrm{CO_2(g)} + 2\mathrm{H_2O(l)} \quad \Delta H_r = -890\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

$$\mathrm{CH_4(g)} + 2\mathrm{O_2(g)} \longrightarrow \mathrm{CO_2(g)} + 2\mathrm{H_2O(g)} \quad \Delta H_r = -802.3\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

- Standard heat of reaction defined as everything in their most stable states at 25 °C and 1 atm
- Enthalpy algebra

$$\sum_{j} \nu_j A_j = 0 \quad \Delta H_r(T_0, P_0)$$

$$n_i = n_{i0} + \nu_i \xi$$

• For specific amount of reaction

$$\Delta H = \Delta H_r \frac{n_j - n_{j0}}{\nu_j} = \Delta H_r \xi$$

• Flow context, same idea

$$\dot{n}_j = \dot{n}_{j0} + \nu_j \xi$$

$$\Delta \dot{H} = \Delta H_r \frac{\dot{n}_j - \dot{n}_{j0}}{\nu_j} = \Delta H_r \xi$$

EXAMPLE: Enthalpy of reaction. Butane combustion:

$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(l) \quad \Delta H_r = -2878 \text{ kJ mol}^{-1}$$

Cytho G) +
$$\frac{13}{2}O_2G$$
) - $\frac{7}{4}O_2G$) + $\frac{5}{12}O_2G$)

At $f = -2878$ $f = -2878$

• Example of *Hess's Law* - reaction enthalpies are additive

11.2 Formation and combustion reactions

- In the context of chemical energies, everyone has agreed on a reference state convention
- Define a "formation reaction" to be the (hypothetical) formation of a compound from the constituent elements at $25\,^{\circ}\mathrm{C}$ and 1 atm
- Enthalpy of this reaction defined to the "heat of formation," $\Delta \hat{H}_f$

$$\mathrm{N_2(g)} + 2\mathrm{H_2(g)} + \frac{3}{2}\mathrm{O_2(g)} \longrightarrow \mathrm{NH_4NO_3(s)} \quad \Delta \hat{H}_f^{\circ} = -365.14\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

- By this convention, the enthalpy of formation of the elements is zero
- Heats of formation measured indirectly, widely tabulated (Table B.1)

• Easy to show

$$\Delta H_r^{\circ} = \sum_{j} \nu_j \Delta \hat{H}_{f,j}^{\circ}$$

- Various methods exist to estimate ΔH_f
 - bond additivity, quantum mechanics
- Similar concept applies to combustion reaction, defined as enthalpy of complete combustion with all species at standard conditions

$$\mathrm{C_2H_5OH(l)} + 3\mathrm{O_2(g)} \longrightarrow 2\mathrm{CO_2(g)} + 3\,\mathrm{H_2O(l)} \quad \Delta \hat{H}_c^{\circ} = -1366.9\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

• Similarly tabulated, follows similar additive rule to find enthalpy of any reaction (note sign change):

$$\Delta H_r^{\circ} = -\sum_j \nu_j \Delta \hat{H}_{c,j}^{\circ}$$

11.3 Energy balances

- "Heat of reaction" method
 - Choose a convenient reference state for each reactant and product, typically ones for with the heat of reaction is known
 - Construct path reactant state \rightarrow standard reactants \rightarrow standard products \rightarrow product state
 - Easy for single reaction

$$\Delta \dot{H} = \xi \Delta \hat{H}_r^{\circ} + \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$

• Requires solving for multiple advancements for parallel reactions

$$\Delta \dot{H} = \sum_{i} \xi_{i} \Delta \hat{H}_{r}^{\circ} + \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$

- "Heat of formation" method
 - Choose elements in their standard states as reference

$$\Delta \dot{H} = \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$

	s), H ₂ (g) n in (mol/s) 100 600 2256	\hat{H}_{in} \hat{H}_{jn} \hat{H}_{1} \hat{H}_{2}	n _{out} (mol/s)	Hout (kJ/mol)
	600		-	
	600		1	-
			100	H ₄
02		\hat{H}_{5}	2256	Ĥs
	-	-	300	\hat{H}_{6}
0	-	_	400	Ĥ ₂
0+ (0+ (0+ (0+ (0+ (0+ (0+ (0+ (H (3000)	- 2 i	(25)) = (25)) = (25)) = (25)) = (25)	8.47 32.47 66 = -344
	0 + (0 + ($ \begin{array}{ll} 0 + (\hat{H})(3) \\ 0 + (\hat{H})(0) \\ \hat{H}_{2} = 8.12 \\ 0 + (\hat{H})(0) \\ 0 +$	$ \begin{array}{lll} 2 + (\hat{H}(500) - \hat{H}(500) - \hat{H}(500) - \hat{H}(500) - \hat{H}(500) - \hat{H}(500) + H$	$ \begin{aligned} &I_{f,C,H_{s}}^{2} = -103.8 L^{3}/25 \\ &2 + (\hat{H}(300) - \hat{H}(25)) = 0 \\ &2 + (\hat{H}(1000) - \hat{H}(25)) = 0 \end{aligned} $ $ \begin{aligned} &\hat{H}_{s} = 8.12 & \hat{H}_{s} = 30.3 \\ &2 + (\hat{H}(1000) - \hat{H}(25)) \\ &3 + (\hat{H}(1000) - \hat{H}(25)) \\ &5 + (48.60 - 0) \\ &8.8 \\ &= -204.1 L^{3}/25 \\ &= -204.1 L^{3}/25 \\ &= -1.26 \times 10^{5} L^{3}/25 \\ &= -1.26 \times 10^{5} L^{3}/25 \\ \end{aligned} $

• "Heat of formation" method nice for multiple reactions

11.4 Adiabatic reactors

- Sometimes faced with unknown final $\,T\,$

• Or combined mass and energy

unknowns 3 equations 2 muss balances 1 energy balances 1 2 n, +2n, = 150 (0.9) 2 + 150 (0.1) 2 = 300 md/s H: 6N, +4N2 + 2N3 = 150(09) 6 + 150(01) 4 = 870 mol/s EloH 6Hg + Sec Cp = -212.19 AHg + Sec Cp = -216.81 Act -147.07 Hz - $\Delta u = 2 \quad N_1(-2168) + N_2(-1509) + N_3(6595)$ -69(150)(-21219) - 61(150)(-14702)= 2440 kW 3 livean eg, 3 unknowns $\begin{pmatrix} 2 & 2 & 0 \\ 6 & 4 & 2 \\ -216.8 & -150.9 & 6.595 \end{pmatrix} \begin{pmatrix} A_1 \\ N_2 \\ N_3 \end{pmatrix} = \begin{pmatrix} 300 \\ 800 \\ -28412 \end{pmatrix}$ $N_1 = 92 \text{ mol}_3$ $N_2 = 58$ $N_3 = 43.0$ $N_{EHOH} = \frac{135-92}{135} = 6.3$

11.5 Other applications

- Heats of solution
- Combustion

12 Transient processes

• General balance around any system or element of a system

output = input + (generation - consumption) - accumulation

• In general can vary with time. Each term has units amount/time

$$\dot{F}_{out}(t) = \dot{F}_{in}(t) + r_F(t) - \frac{dF}{dt}$$

• For total mass, simplifies because mass cannot be created or destroyed

$$\dot{m}_{out}(t) = \dot{m}_{in}(t) - \frac{dm}{dt}$$

• Differential equation. Needs a boundary condition to be solvable.

Balance on a filling tank

• For chemical reaction, rate related to chemical reaction rate.