Floating Point Introduction

Topics

- Chapter 2.4
- **IEEE Floating Point Standard**

Standard Decimal Scientific Notation

- Real numbers expressed as x*10^y
 - e.g. 4.782*10²⁷, and -1.396*10⁻¹⁷, or 7.088e-6, or 3.14E10
- Expansion:
 - $4.782*10^{27} = 4*10^{27} + 7*10^{26} + 8*10^{25} + 2*10^{24}$ $\begin{aligned}
 \text{decimal} &= d_m d_{m-1} \dots d_1 d_0 . d_{-1} d_{-2} \dots d_{-n} \\
 &= \sum_i d_i * 10^i
 \end{aligned}$
- Not all numbers can be expressed exactly in base 10
 - e.g. 1/3 = 0.33333..., so it must be approximated
- Our goal is to represent real numbers using binary
- We follow the approach of decimal scientific notation except using base 2

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

Fractional Binary Number Examples

Value

Representation

5 3/4	
2 7/8	
63/64	

$$101.11_{2} = 2^{2} + 2^{0} + 2^{-1} + 2^{-2}$$

$$10.111_{2} = 2^{1} + 2^{-1} + 2^{-2} + 2^{-3}$$

$$0.111111_{2} = 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6}$$

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - ●Use notation 1.0 ε

Representable Numbers

Limitation

- This style of binary point notation is not very good at representing larger numbers
- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation
1/3	$0.01010101[01]_{\cdots 2}$
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2

Floating Point Representation

Numerical Form

- Real number = $(-1^s)^* M^* 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes *E*
- frac field encodes M

Floating Point Precisions

s exp frac

Encoding

- MSB is sign bit
- exp field encodes *E*

Real number = $(-1^s)^* M^* 2^E$

frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total. Can represent from 2¹²⁷ (1.7e38) down to 2⁻¹²⁶
- Double precision: 11 exp bits, 52 frac bits
 - 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits 1 bit wasted
- Quad Precision (IEEE 754r revised) 15 exp, 112 frac
 - 128 bits total
- Half Precision (IEEE 754r) 5 exp, 10 frac
 - 16 bits total