

DETEKSI CACAT PRODUK PADA INDUSTRI MANUFAKTUR MENGGUNAKAN PEMBELAJARAN MENDALAM (STUDI KASUS PADA MANUFAKTUR SEKRUP)

PROPOSAL KUALIFIKASI

Yoga Panji Perdana Nugraha 99223143

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA .IUNI 2024

DAFTAR ISI

COVE	Ri
DAFTA	ıR ISIii
DAFTA	AR TABELiv
DAFTA	AR GAMBARv
BAB I I	PENDAHULUAN1
1.1	Latar Belakang1
1.2	Rumusan Masalah7
1.3	Tujuan Penelitian
1.4	Batasan Penelitian
1.5	Kontribusi8
BAB II	TINJAUAN PUSTAKA9
2.1	Tinjauan 19
2.2	Tinjauan 29
2.3	Tinjauan 310
2.4	Tinjauan 410
2.5	Tinjauan 5
2.6	Tinjauan 611
2.7	Tinjauan 711
2.8	Tinjauan 812
2.9	Tinjauan 9
2.10	Tinjauan 10
2.11	Tinjauan 11
2.12	Tinjauan 12

2.13	Tinjauan 13	13
2.14	Tinjauan 14	14
2.15	Tinjauan 15	14
2.16	Perbandingan Tinjauan Pustaka	15
BAB II	I METODOLOGI	41
3.1	Motivasi	41
3.2	Alur Kerja Riset	41
3.3	Pendekatan	45
3.4	Rencana Jadwal Kegiatan	46
DAFTA	AR PUSTAKA	47

DAFTAR TABEL

Tabel 2.1 Perbandingan Tinjauan Pustaka	15
Tabel 3.1 Rencana Jadwal Kegiatan	46

DAFTAR GAMBAR

Gambar 3.1 Diagram Alir Penelitian42	,
Gambar 3.2 Rancangan Prototipe Alat43	j

BABI

PENDAHULUAN

1.1 Latar Belakang

Persaingan dalam dunia industri semakin ketat. Setiap perusahaan berlomba-lomba menciptakan produk berukualitas. Kualitas yang produk merupakan faktor kunci agar perusahaan dapat bertahan dan bersaing dalam dunia bisnis (Psarommatis, Sousa, Mendonça, & Kiritsis, 2022). Kualitas produk akan mempengaruhi kepercayaan pelanggan terhadap perusahaan. Kualitas produk yang tinggi tentunya merupakan keinginan perusahaan. Namun, kecacatan produk merupakan hal yang hampir pasti terjadi. Kecacatan ini disebabkan oleh beberapa faktor yaitu manusia (man), mesin (machine), metode (method), dan lingkungan (environment) (Suhartini, 2020). Salah satu kegiatan yang perlu dilakukan untuk menjaga kualitas produk adalah inspeksi. Kegiatan ini biasanya dilakukan oleh departemen pengendalian kualitas. Kecepatan dan akurasi inspeksi pada industri diperlukan untuk memastikan standar kualitas produk yang tinggi namun harga tetap terjangkau (Villalba-Diez et al., 2019). Hal ini merupakan tantangan bagi para pelaku industri.

Sebagian besar perusahaan tidak hanya memiliki sedikit produk dan model dalam satu kali produksi. Variasi produk dan model ini tentunya akan membuat kegiatan inspeksi menjadi satu hal yang penting untuk memastikan seluruh produk memiliki kualitas yang baik. Kegiatan inspeksi pada industri umumnya dilakukan secara manual dengan tenaga manusia sebagai operator. Dengan mengandalakan tenaga manusia yang memiliki keterbatasan. Peningkatan kinerja dari kegiatan inspeksi dibutuhkan (Asín, Ávila-de la Torre, Berges-Muro, & Sánchez-Valverde, 2017). Sehingga dibutuhkan sebuah model pengganti untuk meningkatkan kinerja dari kegiatan inspeksi (Reyes-Luna, Chang, Tuck, & Ashcroft, 2023). Otomatisasi pada proses inspeksi kualitas adalah salah satu cara untuk meningkatkan kinerja kegiatan inspeksi sehingga kepuasan pelanggan atas produk yang berkualitas baik dapat terjaga (Deshpande, Minai, & Kumar, 2020). Pada revolusi industri 4.0,

teknologi informasi tidak dapat dipisahkan dari kehidupan sehari-hari, teknologi memiliki peran yang penting dari waktu ke waktu (Essah, Anand, & Singh, 2022). Teknologi yang sedang berkembang dengan pesat dan dapat diimplementasikan untuk otomatisasi pada industri adalah Artificial Intelligence (AI) (Shi et al., 2021). Artificial Intelligence (AI) merupakan alternatif digital untuk meningkatkan kinerja kegiatan inspeksi (Jarkas et al., 2023). Teknologi ini megadopsi kemampuan manusia untuk mengenali berbagai macam objek yang terdapat pada citra yang dikenal dengan teknik deteksi objek (Baikova, Maia, Santos, Ferreira, & Oliveira, 2019), segmentasi dan pengenalan objek (Khurana, Sharma, Singh, & Singh, 2016). Deteksi objek merupakan hal yang penting dalam kegiatan inspeksi dalam industri (Yang et al., 2020). Pengaplikasian AI untuk mendeteksi objek dalam kegiatan inspeksi ini bertujuan untuk efisiensi dalam dunia industri terutama dalam kegiatan inspeksi. Hal ini karena teknologi tersebut dapat meminimalisir kemungkinan cacat yang luput dari penglihatan manusia.

Acosta and Oliveira Sant'Anna (2023) mengembangkan relevance mechine vector menggunakan teknik kernel sparse bayesian untuk meningkatkan support machine vector pada masalah regresi dan klasifikasi dengan menggunakan machine learning. Penelitian tersebut menghasilkan perbandingan kinerja relevance machine vector dengan support vector machine, artificial neural network dan beta regression model menghasilkan bahwa pemantauan proses berbasis relevance machine vector adalah alat pemantauan kualitas produk cacat dalam proses manufaktur yang baik dibandingkan dengan algoritma machine learing yang lain.

Altuğ (2023) meneliti untuk meminimalisir pemborosan biaya dan waktu pada perusahaan yang memproduksi baut dan mur dengan mengintegrasikan *deep learning* dan *six sigma*. *Six sigma* digunakan untuk mengurangi biaya dan waktu serta meningkatkan nilai tambah pada produk. Optimalisasi *six sigma* dilakukan dengan bantuan *deep learning*. Peforma model yang dibuat pada *deep learning* cukup mendekati performa sebenarnya. Pemanfaatan *six sigma* dengan bantuan *deep learing* yang dibuat dapat menghemat hingga \$21,780 serta penghematan waktu yang dapat menghindari kerugian mencapai \$30,000 setiap tahun. Efisiensi

pada *coating thickness* meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%.

Fan, Dong, and Guo (2023) mengusulkan metode klasifikasi permukaan cacat strip baja berdasarkan *mixed attention mechanism* untuk mencapai kinerja klasifikasi cacat yang cepat dan akurat. Penelitian ini menggunakan perbandingan skala *min-max*, *Transfer Learning* (*EfficientNet-B0*), *squeeze-excitation spatial mixed module*, dan *multilayer mixed attention mechanism* (MMAM) *module*. Pada lingkungan indsutri yang kompleks metode konvensional untuk mengklasifikasi cacat permukaan pada strip baja canai panas memiliki masalah pada akurasi dan efisiensi yang rendah. Dengan menggunakan metode *squeeze-excitation spatial mixed module* mendapatkan akurasi pengenalan 96,75% dan *multilayer mixed attention mechanism* (MMAM) *module* mendapatkan akurasi pengenalan 97,70%. Kemudian pada *transfer learning* yaitu *EfficientNet-B0* berbasis MMAM memperoleh hasil akurasi pengenalan 100%.

Fauzi, Madenda, Wibowo, and Masruriyah (2020) meneliti penggunaan kotak pembatas (*bounding box*) untuk meningkatkan pengenalan objek pada kamera pengintai (CCTV) pada sektor kesehatan. Hasil dari penelitian ini menunjukkan bahwa kotak pembatas meningkatkan pengenalan objek pada kamera pengintai. Kotak pembatas juga membantu dalam mengidentifikasi kegiatan yang mencurigakan dalam rekaman kamera pengawas. Klasifikasi objek yang segmentasi dalam pencitraan medis juga meningkat dengan bantuan kotak pembatas yang diterapkan.

Handayani et al. (2020) menggunakan algoritma support vector machine (SVM), linear discriminant analysis, dan pohon keputusan untuk mengidentifikasi daging berdasarkan *marbling*. Hasilnya SVMadalah algoritma kualitas akurasi tinggi menunjukkan paling diantara algoritma lainnya dalam mengidentifikasi kualitas daging sapi.

Hassan, Hamdan, Shahin, Abdelmaksoud, and Bitar (2023) mengimplementasikan *deep learing* dan *machine learning* untuk memberikan kontribusi yang signifikan dalam meningkatkan proses manufaktur yaitu memaksimalkan *production rates* untuk produk yang baik dan meminimalisir

scrap rates atau reworks. Penerapan smart process akan berkontribusi yang meningkatkan memaksimalkan signifikan dalam proses manufaktur yaitu production rates untuk produk yang baik dan meminimalisir scrap rates atau Kecerdasan reworks. buatan (machine learning) yang diimplementasikan bermanfaat untuk meningkatkan akurasi prediksi model regresi serta menyempurnakan kecerdasan yang dimiliki dengan mempelajari parameter proses mana yang dapat membuat produk cacat sehingga nantinya dapat menyesuaikan parameter proses dengan mengabaikan pengaturan manual.

Li, Liu, Yang, and Huang (2020) mendesain pendeteksi cacat pada kain secara otomatis berdasarkan *cascaded low-rank decomposition* dan menjaga pengendalian kualitas yang tinggi pada perusahaan tekstil. Metode yang diusulkan dievaluasi pada *database* gambar kain. Penelitian ini menggunakan algoritma deteksi cacat berdasarkan *cascaded low-rank decomposition*. Dengan membandingkan di lapangan, diperoleh tingkat deteksi rata-rata sebesar 98,26%.

Liu, Liu, Li, and Li (2022) Mengusulkan metode baru untuk memcahkan masalah dalam mendeteksi cacat pada cacat kain. Masalah tersebut yaitu model yang sulit dilatih karena keterbatasan dataset dan akurasi deteksi yang belum memadai pada bidang industri. Peneltian ini berbasis *deep learning* dan menghasilkan metode baru untuk mendeteksi cacat kain dimana hasil eksperimen mendapatkan tingkait akurasi dan presisi sebesar 93,9% dan 98,8% ketika diterapkan pada dataset publik (TILDA) dan dataset *real-shot* (ZYFD).

Liu, Wang, Li, Ding, and Li (2022) mendesain model *dual-branch balance* saliency berbasis *fully convolutional network* (FCN) untuk deteksi cacat pada kain secara otomatis, serta meningkatkan pengendalian kualitas pada bidang manufaktur tekstil.

Naam, Harlan, Madenda, and Wibowo (2016) meneliti dengan tujuan untuk membangun sebuah algoritma dari metode *multiple morphological gradient* (mMG) untuk mengidentifikasi karies gigi berbasis gigi panoramik digital gambar x-ray. Jenis algoritma yang digunakan adalah normal mMG, Enhancement mMG, dan Smooth mMG. Ketiga algoritma tersebut diperiksa oleh dua orang dokter

gigi. Hasil pemrosesan gambar ini sangat membantu untuk mengidentifikasi objek dalam gambar panorama terutama dalam mendeteksi gigi berlubang.

Nugraha and Wibowo (2024) mengembangkan model pendeteksi cacat pada sekrup berbasis citra menggunakan YOLOv5. Hasilnya menunjukkan bahwa waktu yang dibutuhkan untuk pelatihan sebesar 0.404 jam atau 24.24 menit, precision 0.842, recall 0.857, dan mean average precision 0.887. Uji coba yang dilakukan menghasilkan bahwa citra dapat terdeteksi dengan baik. Namun, terdapat beberapa citra yang kurang baik dan maksimal untuk dideteksi.

Purushothaman and Ahmad (2022) membangun sistem inspeksi otomatis menggunakan mekanisme berbasis image analysis yang disebut i-AIS. Menggunakan metode desain Six Sigma (DSS). Langkah-langkah Define, measure, analyze, design, dan verify (DMADV) diterapkan dan diintegrasikan dengan teknik analisis yang spesifik dari quality function deployment (QFD), design failure mode effect analysis (DFMEA) dan theory of inventive problem solving (TRIZ). Verifikasi prototipe i-AIS menunjukkan pengoperasian pada mode optimal yang memenuhi persyaratan internal. Hasil verifikasi juga menunjukkan bahwa tingkat sigma meningkat dari 3,87 menjadi 4,33. Sementara itu, tingkat pengurangan kerusakan meningkat menjadi 74,4% dan tingkat downtime juga mencatat peningkatan yang signifikan yaitu pengurangan sebesar 80,7%.

Wu, Guo, Liu, and Huang (2020) mengembangkan metode *deep learning* yang lebih fleksibel untuk deteksi cacat pada industri dengan menggunakan *Endto-end learning framework*. Penelitian ini dilakukan untuk mengatasi kesulitan deteksi cacat blade. Sehingga dikembangkan arsitektur baru yang mengintegrasikan *residue learning* untuk melakukan deteksi cacat yang efisien. Percobaan dilakukan pada kumpulan data yang dikumpulkan, dan hasil percobaan menunjukkan bahwa sistem yang diusulkan dapat mencapai kinerja yang memuaskan dibandingkan metode lain. Selain itu, operasi pemerataan data membantu hasil deteksi cacat yang lebih baik.

Yuhandri, Madenda, Wibowo, and Karmilasari (2017) meneliti untuk mngetahui ciri-ciri motif yang terdapat pada gambar songket agar objek tersebut dapat terdeteksi dan dibaca. Metode yang digunakan adalah segmentasi warna citra dan morfologi matematis dalam mendeteksi objek dan mengekstraksi motf dengan cara penerapan algoritma pelacakan kontur moore dan pengembangan algoritma kode rantai. Hasilnya menunjukkan bahwa pengembangan algoritma kode rantai dapat menghasilkan jumlah objek, panjang kode rantai, dan nilai kemungkinan laju kemunculan setiap kode rantai dalam suatu motif, meskipun terdapat beberapa objek dalam suatu motif.

H. Zhang et al. (2023) mengusulkan kerangka kerja deteksi cacat berdasarkan pembelajaran adversial tanpa pengawasan untuk rekonstruksi gambar guna memecahkan masalah deteksi berlebihan atau kesalahan deteksi karena tidak dapat beradaptasi dengan pola kompleks kain berpola warna. Kerangka kerja yang diusulkan dibandingkan dengan metode canggih pada kumpulan data publik YDFID-1 (Kumpulan Data Gambar Kain Berwarna Benang-versi1). Kerangka kerja yang diusulkan juga divalidasi pada beberapa kelas dalam dataset MvTec AD. Hasil eksperimen berbagai pola/kelas pada YDFID-1 dan MvTecAD menunjukkan efektivitas dan keunggulan metode ini dalam deteksi cacat kain.

R. Zhang et al. (2022) Mengusulkan metode diagnosis ultrasonik baru untuk cacat las baja tahan karat berbasis *multi-domain feature fusion* untuk memecahkan dua masalah dalam diagnosis ultrasonik cacat las baja tahan karat austenitik. Hasil eksperimen menunjukkan bahwa akurasi diagnostik model diagnosis ringan yang dibangun dapat mencapai 96,55% untuk lima jenis cacat las baja tahan karat, antara lain retak, porositas, inklusi, kurang fusi, dan penetrasi tidak lengkap. Ini dapat memenuhi kebutuhan aplikasi teknik praktis. Metode ini memberikan landasan teori dan referensi teknis untuk mengembangkan dan menerapkan teknologi diagnosis cacat ultrasonik yang cerdas, efisien dan akurat.

Revolusi industri 4.0 mendorong otomatisasi inspeksi produk untuk manufaktur yang tanpa cacat (*zero defect*) dan berkualitas tinggi dimana kemampuan fleksibilitas manusia berkolaborasi dengan kemampuan akurasi komputer dan mesin (Brito et al., 2020). Perkembangan *computer vision* dapat sangat membantu dalam dunia industri manufaktur untuk mencapai kualitas yang unggul (Schmidt, Gevers, Schwiep, Ordieres-Meré, & Villalba-Diez, 2020). Akurasi kemampuan penglihatan komputer (*computer vision*) dalam mendeteksi

objek sangat bergantung pada data pelatihan. Sehingga perlu didukung oleh data pelatihan yang masif. Hal ini tentunya menyebabkan kebutuhan akan perangkat lunak maupun perangkat keras dengan kemampuan dan spesifikasi cukup besar. Citra produk industri pada basis data sendiri dapat terdiri dari berbagai macam model dengan kecacatan yang bervariasi juga. Sehingga dikembangkan alat dan aplikasi pendeteksi objek untuk meningkatkan kinerja inspeksi produk. Pengembangan alat dan aplikasi dilakukan dengan mengaplikasikan kemampuan penglihatan komputer menggunakan artificial intelligence yaitu deep learning. Harapan dari penelitian ini nantinya dapat membantu perusahaan terutama departemen pengendalian kualitas untuk melakukan inspeksi produk pada lantai produksi. Sehingga efisiensi dan efektivitas kegiatan inspeksi produk dapat dicapai.

1.2 Rumusan Masalah

Rumusan masalah merupakan masalah yang muncul pada penelitian ini yang kemudian dirumuskan menjadi sebuah pertanyaan. Berikut ini merupakan rumusan masahal.

- 1. Bagaimana model pendeteksi cacat objek tunggal, objek ganda, dan objek ganda bertumpuk?
- 2. Bagaimana prototype alat pendeteksi cacat objek tunggal, objek ganda, dan objek ganda bertumpuk?
- 3. Bagaimana aplikasi deteksi objek yang dapat mengidentifikasi kecacatan produk untuk kegiatan inspeksi produk pada perusahaan?

1.3 Tujuan Penelitian

Tujuan penelitian merupakan jawaban dari rumusan masalah yang menjadi hasil akhir dari penelitian. Berikut ini adalah tujuan penelitian.

- 4. Mengembangkan model pendeteksi cacat objek tunggal, objek ganda, dan objek ganda bertumpuk
- 5. Menciptakan prototype alat pendeteksi cacat objek tunggal, objek ganda, dan objek ganda bertumpuk.

6. Menghasilkan aplikasi deteksi objek yang dapat mengidentifikasi kecacatan produk untuk kegiatan inspeksi produk pada perusahaan.

1.4 Batasan Penelitian

Batasan penelitian dimaksudkan agar penelitian tidak melebar ke topik lain selain pembahasan yang diinginkan. Berikut ini merupakan batasan penelitian.

- 1. Aplikasi dibuat dengan menggunakan deep learning.
- 2. Jenis identifikasi cacat pada objek terbagi menjadi 2 kelas yaitu Cacat dan OK.
- 3. Proses anotasi, *preprocessing*, augmentasi, dan *generate* dataset dilakukan dengan bantuan *roboflow*.
- 4. Model yang dikembangkan digunakan untuk mendeteksi cacat produk sekrup.

1.5 Kontribusi

Kontribusi pada bidang keilmuan pada penelitian ini adalah dengan menghasilkan model pendeteksi objek cacat pada manufaktur yang menggunakan teknologi *artificial intelligence* dengan metode *deep learning*. Hasil penelitian ini juga diharapkan bisa menjadi bahan baca serta referensi bagi pembaca untuk pembelajaran maupun penelitian selanjutnya.

Penelitian ini diharapkan dapat berkontribusi pada bidang teknologi informasi dengan menghasilkan prototipe aplikasi dan alat untuk mendeteksi cacat pada produk manufaktur.

Peneliti juga berharap penelitian ini dapat berkontribusi pada bidang industri dengan menghasilkan prototipe aplikasi dan alat untuk deteksi cacat pada produk manufaktur. Sehingga industri manufaktur dapat meningkatkan kinerja inspeksi produk untuk menjaga kualitas produk serta kegiatan tersebut dapat dilakukan dengan efisien.

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan 1

Penelitian dilakukan oleh Acosta and Oliveira Sant'Anna (2023) dengan judul "Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing". Peneliti mengembangkan relevance mechine vector menggunakan teknik kernel sparse bayesian untuk meningkatkan support machine vector pada masalah regresi dan klasifikasi dengan menggunakan machine learning. Penelitian tersebut menghasilkan perbandingan kinerja relevance machine vector dengan support vector machine, artificial neural network dan beta regression model menghasilkan bahwa pemantauan proses berbasis relevance machine vector adalah alat pemantauan kualitas produk cacat dalam proses manufaktur yang baik dibandingkan dengan algoritma machine learing yang lain.

2.2 Tinjauan 2

Penelitian yang dilakukan oleh Altuğ (2023) dengan judul "Application of six sigma through deep learning in the production of fasteners". Penelitian ini bertujuan untuk meminimalisir pemborosan biaya dan waktu pada perusahaan yang memproduksi baut dan mur dengan mengintegrasikan deep learning dan six sigma. Six sigma digunakan untuk mengurangi biaya dan waktu serta meningkatkan nilai tambah pada produk. Optimalisasi six sigma dilakukan dengan bantuan deep learning. Peforma model yang dibuat pada deep learning cukup mendekati performa sebenarnya. Pemanfaatan six sigma dengan bantuan deep learning yang dibuat dapat menghemat hingga \$21,780 serta penghematan waktu yang dapat menghindari kerugian mencapai \$30,000 setiap tahun. Efisiensi pada coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%.

2.3 Tinjauan 3

Penelitian dilakukan oleh Fan et al. (2023) dengan judul "Surface defect classification of hot-rolled steel strip based on mixed attention mechanism". Peneliti mengusulkan metode klasifikasi permukaan cacat strip baja berdasarkan mixed attention mechanism untuk mencapai kinerja klasifikasi cacat yang cepat dan akurat. Penelitian ini menggunakan perbandingan skala min-max, Transfer Learning (EfficientNet-B0), squeeze-excitation spatial mixed module, dan multilayer mixed attention mechanism (MMAM) module. Pada lingkungan indsutri yang kompleks metode konvensional untuk mengklasifikasi cacat permukaan pada strip baja canai panas memiliki masalah pada akurasi dan efisiensi yang rendah. Dengan menggunakan metode squeeze-excitation spatial mixed module mendapatkan akurasi pengenalan 96,75% dan multilayer mixed attention mechanism (MMAM) module mendapatkan akurasi pengenalan 97,70%. Kemudian pada transfer learning yaitu EfficientNet-B0 berbasis MMAM memperoleh hasil akurasi pengenalan 100%.

2.4 Tinjauan 4

Penelitian dilakukan oleh Fauzi et al. (2020) dengan judul "The importance of bounding box in motion detection". Peneliti ingin mengetahui penggunaan kotak pembatas (bounding box) dalam peningkatan pengenalan objek pada kamera pengintai. Penelitian ini menunjukkan bahwa kotak pembatas meningkatkan pengenalan objek pada kamera pengintai. Kotak pembatas juga membantu dalam mengidentifikasi kegiatan yang mencurigakan dalam rekaman kamera pengawas. Klasifikasi objek yang segmentasi dalam pencitraan medis juga meningkat dengan bantuan kotak pembatas yang diterapkan

2.5 Tinjauan 5

Penelitian dilakukan oleh Handayani et al. (2020) dengan judul "The Best Classification Algorithm for Identification Beef Quality Based on Marbling". Peneliti bertujuan untuk Mengidentifikasi kualitas daging berdasarkan Marbling dengan menggunakan metode Support vector machine (SVM), linear discriminant analysis,

dan pohon keputusan. Hasil dari penelitian ini menunjukkan bahwa SVM adalah algoritma dengan akurasi paling tinggi diantara algoritma lainnya dalam mengidentifikasi kualitas daging sapi.

2.6 Tinjauan 6

Penelitian dilakukan Hassan et al. (2023) dengan judul "An artificial intelligent manufacturing process for high-quality low-cost production". Peneliti mengimplementasikan deep learing dan machine learning untuk memberikan kontribusi yang signifikan dalam meningkatkan proses manufaktur memaksimalkan production rates untuk produk yang baik dan meminimalisir scrap rates atau reworks. Penerapan smart process akan berkontribusi yang signifikan dalam meningkatkan proses manufaktur yaitu memaksimalkan production rates untuk produk yang baik dan meminimalisir scrap rates atau reworks. Kecerdasan buatan (machine *learning*) yang diimplementasikan bermanfaat untuk meningkatakn akurasi prediksi model regresi serta menyempurnakan kecerdasan yang dimiliki dengan mempelajari parameter proses mana yang dapat membuat produk cacat sehingga nantinya dapat menyesuaikan parameter proses dengan mengabaikan pengaturan manual.

2.7 Tinjauan 7

Penelitian dilakukan oleh Li et al. (2020) dengan judul "Fabric defect detection method based on cascaded low-rank decomposition". Peneliti mendesain pendeteksi cacat pada kain secara otomatis berdasarkan cascaded low-rank decomposition dan menjaga pengendalian kualitas yang tinggi pada perusahaan tekstil. Metode yang diusulkan dievaluasi pada database gambar kain. Penelitian ini menggunakan Algoritma deteksi cacat berdasarkan cascaded low-rank decomposition. Dengan membandingkan di lapangan, diperoleh tingkat deteksi rata-rata sebesar 98,26%.

2.8 Tinjauan 8

Penelitian dilakukan oleh Liu, Wang, et al. (2022) dengan judul "A dual-branch balance saliency model based on discriminative feature for fabric defect detection". Peneliti mendesain model dual-branch balance saliency berbasis fully convolutional network (FCN) untuk deteksi cacat pada kain secara otomatis, serta meningkatkan pengendalian kualitas pada bidang manufaktur tekstil.

2.9 Tinjauan 9

Penelitian dilakuakn oleh Nugraha and Wibowo (2024) dengan judul "Deteksi Cacat pada Sekrup Berbasis Citra Menggunakan YOLOv5". Peneliti mengembangkan model yang digunakan untuk mendeteksi cacat sekrup. Hasil dari penelitian ini adalah waktu yang dibutuhkan untuk pelatihan sebesar 0.404 jam atau 24.24 menit, precision 0.842, recall 0.857, dan mean average precision 0.887. Uji coba yang dilakukan menghasilkan bahwa citra dapat terdeteksi dengan baik. Namun, terdapat beberapa citra yang kurang baik dan maksimal untuk dideteksi.

2.10 Tinjauan 10

Penelitian dilakukan oleh Naam et al. (2016) dengan judul "The algorithm of image edge detection on panoramic dental x-ray using multiple morphological gradient (mmg) method". Peneliti menggunakan metode multiple morphological gradient (mMG) dengan algoritma normal mMG, Enhancement mMG, dan Smooth mMG. Hasil dari penelitian ini adalah Ketiga algoritma tersebut diperiksa oleh dua orang dokter gigi. Hasil pemrosesan gambar ini sangat membantu untuk mengidentifikasi objek dalam gambar panorama terutama dalam mendeteksi gigi berlubang.

2.11 Tinjauan 11

Penelitian dilakukan oleh Purushothaman and Ahmad (2022) dengan judul "Integration of Six Sigma methodology of DMADV steps with QFD, DFMEA and TRIZ applications for image-based automated inspection system development: a

case study". Peneliti membangun sistem inspeksi otomatis menggunakan mekanisme berbasis image analysis yang disebut i-AIS. Menggunakan metode desain Six Sigma (DSS). Langkah-langkah Define, measure, analyze, design, dan verify (DMADV) diterapkan dan diintegrasikan dengan teknik analisis yang spesifik dari quality function deployment (QFD), design failure mode effect analysis (DFMEA) dan theory of inventive problem solving (TRIZ). Verifikasi prototipe i-AIS menunjukkan pengoperasian pada mode optimal yang memenuhi persyaratan internal. Hasil verifikasi juga menunjukkan bahwa tingkat sigma meningkat dari 3,87 menjadi 4,33. Sementara itu, tingkat pengurangan kerusakan meningkat menjadi 74,4% dan tingkat downtime juga mencatat peningkatan yang signifikan yaitu pengurangan sebesar 80,7%.

2.12 Tinjauan 12

Penelitian dilakukan oleh Wu et al. (2020) dengan judul "An end-to-end learning method for industrial defect detection". Peneliti mengembangkan metode deep learning yang lebih fleksibel untuk deteksi cacat pada industri dengan menggunakan End-to-end learning framework. Penelitian ini dilakukan untuk mengatasi kesulitan deteksi cacat blade. Sehingga dikembangkan arsitektur baru yang mengintegrasikan residue learning untuk melakukan deteksi cacat yang efisien. Percobaan dilakukan pada kumpulan data yang dikumpulkan, dan hasil percobaan menunjukkan bahwa sistem yang diusulkan dapat mencapai kinerja yang memuaskan dibandingkan metode lain. Selain itu, operasi pemerataan data membantu hasil deteksi cacat yang lebih baik.

2.13 Tinjauan 13

Penelitian dilakukan oleh Yuhandri et al. (2017) dengan judul "Object Feature Extraction of Songket Image Using Chain Code Algorithm". Peneliti bertujuan untuk mengetahui ciri-ciri motif yang terdapat pada gambar songket agar objek tersebut dapat terdeteksi dan dibaca. Metode yang digunakan adalah segmentasi warna citra dan morfologi matematis dalam mendeteksi objek dan kemudian mengekstraksi motf dengan cara penerapan algoritma pelacakan kontur moore dan

pengembangan algoritma kode rantai. Hasilnya menunjukkan bahwa pengembangan algoritma kode rantai dapat menghasilkan jumlah objek, panjang kode rantai, dan nilai kemungkinan laju kemunculan setiap kode rantai dalam suatu motif, meskipun terdapat beberapa objek dalam suatu motif.

2.14 Tinjauan 14

Penelitian dilakukan oleh H. Zhang et al. (2023) dengan judul "Defect detection of color-patterned fabric based on DenoisingGAN". Peneliti mengusulkan kerangka kerja deteksi cacat berdasarkan pembelajaran adversial tanpa pengawasan untuk rekonstruksi gambar guna memecahkan masalah deteksi berlebihan atau kesalahan deteksi karena tidak dapat beradaptasi dengan pola kompleks kain berpola warna. Kerangka kerja yang diusulkan dibandingkan dengan metode canggih pada kumpulan data publik YDFID-1 (Kumpulan Data Gambar Kain Berwarna Benang-versi1). Kerangka kerja yang diusulkan juga divalidasi pada beberapa kelas dalam dataset MvTec AD. Hasil eksperimen berbagai pola/kelas pada YDFID-1 dan MvTecAD menunjukkan efektivitas dan keunggulan metode ini dalam deteksi cacat kain.

2.15 Tinjauan 15

Penenlitian dilakukan oleh R. Zhang et al. (2022) dengan judul "Ultrasonic diagnosis method for stainless steel weld defects based on multidomain feature fusion". Peneliti mengusulkan metode diagnosis ultrasonik baru untuk cacat las baja tahan karat berbasis multi-domain feature fusion untuk memecahkan dua masalah dalam diagnosis ultrasonik cacat las baja tahan karat austenitik. Hasil eksperimen menunjukkan bahwa akurasi diagnostik model diagnosis ringan yang dibangun dapat mencapai 96,55% untuk lima jenis cacat las baja tahan karat, antara lain retak, porositas, inklusi, kurang fusi, dan penetrasi tidak lengkap. Ini dapat memenuhi kebutuhan aplikasi teknik praktis. Metode ini memberikan landasan teori dan referensi teknis untuk mengembangkan dan menerapkan teknologi diagnosis cacat ultrasonik yang cerdas, efisien dan akurat.

2.16 Perbandingan Tinjauan Pustaka

Perbandingan tinjauan pustaka berisi tentang penulis, judul, tujuan, jurnal dan DOI, metode yang digunakan, serta hasil akhir. Berikut ini merupakan perbandingan tinjauan pustaka yang dijabarkan pada tabel di bawah ini.

Tabel 2.1 Perbandingan Tinjauan Pustaka

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Acosta	Machine	Mengemban	International Journal of	Machine	Perbandin
&	learning-	gkan	Quality & Reliability	Learning	gan
Oliveira	based	relevance	Management, vol. 40		kinerja
Sant'Ann	control	mechine	no. 3		relevance
a, 2023)	charts	vector	https://doi.org/10.1108/I		machine
	for	menggunaka	<u>JQRM-07-2021-0210</u>		vector
	monitori	n teknik			dengan
	ng	kernel sparse			support
	fraction	bayesian			vector
	nonconf	untuk			machine,
	orming	meningkatka			artificial
	product	n <i>support</i>			neural
	in smart	machine			network
	manufac	vector pada			and beta
	turing	masalah			regression
		regresi dan			model
		klasifikasi.			menghasil
					kan bahwa
					pemantaua
					n proses
					berbasis
					relevance
					machine
					vector
					adalah alat
					pemantaua

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					n kualitas
					produk
					cacat
					dalam
					proses
					manufaktu
					r yang
					baik
					dibanding
					kan
					dengan
					algoritma
					machine
					learing
					yang lain.
(Altuğ,	Applicat	Meminimali	International Journal of	Deep	Six sigma
2023)	ion of	sir	Lean Six Sigma, vol. 4	learning	digunakan
	six	pemborosan	no. 7	dan six	untuk
	sigma	biaya dan	https://doi.org/10.1108/I	sigma	menguran
	through	waktu pada	JLSS-08-2022-0191		gi biaya
	deep	perusahaan			dan waktu
	learning	yang			serta
	in the	memproduks			meningkat
	producti	i baut dan			kan nilai
	on of	mur			tambah
	fasteners				pada
					produk.
					Optimalisa
					si six
					sigma
					dilakukan

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					dengan
					bantuan
					deep
					learning.
					Peforma
					model
					yang
					dibuat
					pada <i>deep</i>
					learning
					cukup
					mendekati
					performa
					sebenarny
					a.
					Pemanfaat
					an six
					sigma
					dengan
					bantuan
					deep
					learing
					yang
					dibuat
					dapat
					menghema
					t hingga
					\$21,780
					serta
					penghemat
					an waktu

Surface Mengusulka Robotic Intelligence and Perbandi target yaitu 95%-97%.	Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
Fan et Surface Mengusulka Robotic Intelligence and Perbandi target yaitu 95%-97%.	(Year)					
Fan et Surface Mengusulka Robotic Intelligence and Perbandi target yaitu 95%-97%.						
Kerugian						
(Fan et al., defect n metode al., defect n metode al., defect al., defect ation of permukaan https://doi.org/10.1108/ hot- cacat strip rolled baja steel berdasarkan strip mixed based on attention leaves tabun. Effisiensi pada coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. Robotic Intelligence and Automation, vol. 43 no. ngan lingkunga skala n indsutri min-max, yang metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						
(Fan et al., defect n metode al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect al., defect ation of permukaan https://doi.org/10.1108/ ntions.) (Fan et al., defect al., defect ations.) (Fan et al., defect al., defect al., defect ations.) (Fan et al., defect al., defect al., defect ations.) (Fan et al., defect al., de						kerugian
Fan et al., defect n metode al., defect n metode al., defect ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention Met-Bo), mal untuk squeeze- mengklasi						mencapai
(Fan et al., defect n metode al., defect n metode al., catasific ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention lefts in pada coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. Robotic Intelligence and Automation, vol. 43 no. skala n indsutri min-max, yang Transfer kompleks metode (Efficient konvensio netode (Efficient konvensio nal untuk squeeze- mengklasi						\$30,000
Efisiensi pada Coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. (Fan et al., defect n metode al., ation of permukaan hot- cacat strip rolled baja steel berdasarkan strip mixed based on attention Met-BO), mal untuk squeeze- mengklasi Metalica (Efficient konvensio mixed based on attention Met-BO), mal untuk squeeze- mengklasi						setiap
Fan et al., defect n metode Automation, vol. 43 no. ngan lingkunga skala n indsutri ation of permukaan hot- cacat strip rolled baja steel berdasarkan strip mixed based on attention attenti						tahun.
Coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. (Fan et al., defect n metode al., classific klasifikasi ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention attention with a squeeze- mengklasi meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. Robotic Intelligence and Perbandi Pada lingkunga lingkunga nindsutri min-max, yang metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						Efisiensi
thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. (Fan et Surface Mengusulka Robotic Intelligence and defect n metode Automation, vol. 43 no. 1 ngan lingkunga nindsutri ation of permukaan hot- cacat strip rolled baja steel berdasarkan strip mixed based on attention the strip mixed thickness meningkat dari 85% meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. Robotic Intelligence and perbandi ngan lingkunga nindsutri min-max, yang min-max, yang the strip mixed (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						pada
Fan et Surface Mengusulka Automation, vol. 43 no. 1 1 1 1 1 1 1 1 1						coating
dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%. (Fan et al., defect n metode Automation, vol. 43 no. 1 mgan lingkunga 1 min-max, yang hot-cacat strip ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention dari nengklasi squeeze- mengklasi						thickness
menjadi 95% yang mana mendekati target yaitu 95%-97%. (Fan et al., defect n metode Automation, vol. 43 no. 2023) classific klasifikasi 4 staion of permukaan hot- cacat strip hot- rolled baja steel berdasarkan strip mixed based on attention Robotic Intelligence and Automation, vol. 43 no. permukaan https://doi.org/10.1108/ nin-max, yang RIA-01-2023-0001 Transfer kompleks Learning metode (Efficient konvensio nal untuk menjadi 95% yang mana mendekati target yaitu 95%-97%. Pada lingkunga n indsutri min-max, yang Learning metode (Efficient konvensio Net-B0), nal untuk mengklasi						meningkat
Fan et al., defect n metode Automation, vol. 43 no. lingkunga ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention Robotic Intelligence and Automation, vol. 43 no. ngan lingkunga lingkunga skala n indsutri min-max, yang lingkunga lingkunga min-max, yang metode (Efficient konvensio nal untuk squeeze- mengklasi						dari 85%
mana mendekati target yaitu 95%-97%. (Fan et Surface Mengusulka Robotic Intelligence and al., defect n metode Automation, vol. 43 no. 100 ngan lingkunga n indsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot-cacat strip rolled baja RIA-01-2023-0001 Transfer kompleks rolled bare steel berdasarkan strip mixed based on attention mana mendekati target yaitu 95%-97%. Robotic Intelligence and ngan lingkunga n indsutri min-max, yang Transfer kompleks (Efficient konvensio nal untuk squeeze- mengklasi						menjadi
Mengusulka Automation, vol. 43 no. Perbandi Pada nindsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot-rolled baja steel berdasarkan strip mixed based on attention attention attention attention attention attention attention attention attention mendekati target yaitu yaitu 95%-97%.						95% yang
target yaitu 95%-97%. (Fan et Aufont defect n metode Automation, vol. 43 no. lingkunga n indsutri ation of permukaan https://doi.org/10.1108/ noled baja steel berdasarkan strip mixed based on attention lingkunga ltarget yaitu 95%-97%. Robotic Intelligence and ngan lingkunga ngan lingkunga nindsutri nindsutri nindsutri min-max, yang lingkunga nindsutri min-max, yang lingkunga nindsutri min-max, yang lingkunga nindsutri min-max, yang lingkunga nindsutri nindsutr						mana
(Fan et al., defect n metode Automation, vol. 43 no. lingkunga n indsutri ation of permukaan hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention Robotic Intelligence and Perbandi Pada Automation, vol. 43 no. ngan lingkunga n indsutri skala n indsutri min-max, yang min-max, yang metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						mendekati
(Fan et Surface Mengusulka Robotic Intelligence and al., defect n metode Automation, vol. 43 no. 1 ngan lingkunga 2023) classific klasifikasi 4 skala n indsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot-cacat strip rolled baja steel berdasarkan strip mixed based on attention Robotic Intelligence and Perbandi Pada Automation, vol. 43 no. ngan lingkunga skala n indsutri min-max, yang min-max, yang Learning metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						target
(Fan et Surface Mengusulka Robotic Intelligence and al., defect n metode Automation, vol. 43 no. ngan lingkunga classific klasifikasi 4 skala n indsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot-cacat strip RIA-01-2023-0001 Transfer kompleks rolled baja steel berdasarkan strip mixed based on attention Robotic Intelligence and Perbandi Pada Automation, vol. 43 no. ngan lingkunga skala n indsutri Transfer kompleks Learning metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi						yaitu
al., defect n metode Automation, vol. 43 no. ngan lingkunga 2023) classific klasifikasi 4 skala n indsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot- cacat strip RIA-01-2023-0001 Transfer kompleks rolled baja Learning metode steel berdasarkan strip mixed Net-B0), nal untuk based on attention squeeze- mengklasi						95%-97%.
classific klasifikasi 4 skala n indsutri ation of permukaan https://doi.org/10.1108/ min-max, yang hot-cacat strip rolled baja teel berdasarkan strip mixed based on attention strip attention strip attention skala n indsutri min-max, yang min-max, yang Transfer kompleks teel konvensio (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi	(Fan et	Surface	Mengusulka	Robotic Intelligence and	Perbandi	Pada
ation of permukaan https://doi.org/10.1108/ min-max, yang hot- cacat strip RIA-01-2023-0001 Transfer kompleks rolled baja Learning metode steel berdasarkan strip mixed Net-B0), nal untuk squeeze- mengklasi	al.,	defect	n metode	Automation, vol. 43 no.	ngan	lingkunga
hot- cacat strip RIA-01-2023-0001 rolled baja steel berdasarkan strip mixed based on attention RIA-01-2023-0001 Transfer kompleks Learning metode (Efficient konvensio Net-B0), nal untuk squeeze- mengklasi	2023)	classific	klasifikasi	4	skala	n indsutri
rolled baja		ation of	permukaan	https://doi.org/10.1108/	min-max,	yang
steel berdasarkan (Efficient konvensio strip mixed Net-B0), nal untuk based on attention squeeze- mengklasi		hot-	cacat strip	RIA-01-2023-0001	Transfer	kompleks
strip mixed Net-B0), nal untuk squeeze- mengklasi		rolled	baja		Learning	metode
based on attention squeeze- mengklasi		steel	berdasarkan		(Efficient	konvensio
		strip	mixed		Net-B0),	nal untuk
mixed mechanism excitation filesi		based on	attention		squeeze-	mengklasi
made meentumsm Caetation likasi		mixed	mechanism		excitation	fikasi

Author	TD*41	G K)	I LO DOI	N/ (1 1	D 1(()
(Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	attention	untuk		spatial	cacat
	mechani	mencapai		mixed	permukaa
	sm	kinerja		module,	n pada
		klasifikasi		dan	strip baja
		cacat yang		multilaye	canai
		cepat dan		r mixed	panas
		akurat.		attention	memiliki
				mechanis	masalah
				m	pada
				(MMAM	akurasi
) module.	dan
					efisiensi
					yang
					rendah.
					Dengan
					mengguna
					kan
					metode
					squeeze-
					excitation
					spatial
					mixed
					module
					mendapatk
					an akurasi
					pengenala
					n 96,75%
					dan
					multilayer
					mixed
					attention

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					mechanis m (MMAM) module mendapatk an akurasi pengenala n 97,70%. Kemudian pada transfer learning yaitu EfficientN et-B0 berbasis MMAM memperol eh hasil akurasi pengenala n 100%.
Fauzi et al. (2020)	The importan ce of boundin g box in motion detectio n	Mengetahui penggunaan kotak pembatas (bounding box) untuk meningkatk an	2020 Fifth International Conference on Informatics and Computing (ICIC) published by IEEE	Bounding	Hasil dari penelitian ini menunjuk kan bahwa kotak pembatas

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
		pengenalan			meningka
		objek pada			tkan
		kamera			pengenal
		pengintai			an objek
		(CCTV)			pada
		pada sektor			kamera
		kesehatan.			pengintai.
					Kotak
					pembatas
					juga
					membant
					u dalam
					mengiden
					tifikasi
					kegiatan
					yang
					mencurig
					akan
					dalam
					rekaman
					kamera
					pengawas
					Klasifika
					si objek
					yang
					segmenta
					si dalam
					pencitraa

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Guai(s)	Journal & DOI	Method	Kesuit(s)
					n medis
					juga
					meningka
					t dengan
					bantuan
					kotak
					pembatas
					yang
					diterapka
					n.
Handaya	The Best	Mengidentifi	2020 Fifth International	Support	Hasilnya
ni et al.	Classific	kasi kualitas	Conference on	vector	SVM
(2020)	ation	daging	Informatics and	machine	adalah
	Algorith	berdasarkan	Computing (ICIC)	(SVM),	algoritma
	m for	Marbling	published by IEEE	linear	menunjuk
	Identific			discrimi	kan
	ation Beef			nant	akurasi
	Quality			analysis,	paling
	Based			dan	tinggi
	on			pohon	diantara
	Marblin			keputusa	algoritma
	g			n	lainnya
					dalam
					mengiden
					tifikasi
					kualitas
					daging
					sapi.
Hassan	An	Mengimple	International Journal of	Deep	Penerapan

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Gual(s)	Journal & DOI	Memou	Kesuit(s)
et al.	artificial	mentasikan	Quality & Reliability	Learing	smart
(2023)	intellige	deep learing	Management, vol. 40	dan	process
	nt	dan machine	no. 7	Machine	akan
	manufac	learning	https://doi.org/10.1108/I	Learing	berkontrib
	turing	untuk	JQRM-07-2022-0204	untuk	usi yang
	process	memberikan		membang	signifikan
	for high-	kontribusi		un dan	dalam
	quality	yang		improve	meningkat
	low-cost	signifikan		model	kan proses
	producti	dalam		regresi	manufaktu
	on	meningkatka			r yaitu
		n proses			memaksim
		manufaktur			alkan
		yaitu			production
		memaksimal			rates
		kan			untuk
		production			produk
		rates untuk			yang baik
		produk yang			dan
		baik dan			meminima
		meminimalis			lisir scrap
		ir scrap			rates atau
		rates atau			reworks.
		reworks.			Kecerdasa
					n buatan
					(machine
					learning)
					yang
					diimpleme
					ntasikan
					bermanfaa

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(133)					t untuk
					meningkat
					akn
					akurasi
					prediksi
					model
					regresi
					serta
					menyemp
					urnakan
					kecerdasa
					n yang
					dimiliki
					dengan
					mempelaja
					ri
					parameter
					proses
					mana yang
					dapat
					membuat
					produk
					cacat
					sehingga
					nantinya
					dapat
					menyesuai
					kan
					parameter
					proses
					dengan

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Li et al., 2020)	Fabric defect detection method based on cascaded low-rank decomposition	Mendesain pendeteksi cacat pada kain secara otomatis berdasarkan cascaded low-rank decompositi on dan menjaga pengendalia n kualitas yang tinggi pada perusahaan tekstil.	International Journal of Clothing Science and Technology, vol. 32 no.4 https://doi.org/10.1108/I JCST-03-2019-0037	Algoritm a deteksi cacat berdasark an cascaded low-rank decompo sition	mengabaik an pengatura n manual. Metode yang diusulkan dievaluasi pada database gambar kain. Dengan membandi ngkan di lapangan, diperoleh tingkat deteksi rata-rata sebesar 98,26% dan lebih unggul dari yang canggih.
(Liu, Liu, et al., 2022)	Fabric defect detection based on	Mengusulka n metode baru untuk memcahkan masalah	International Journal of Clothing Science and Technology, vol. 34 no.2 https://doi.org/10.1108/I	Berbasis Deep learning. Metode deteksi	Terdapat metode baru untuk mendeteks i cacat

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Guai(s)	Journal & DOI	Memou	Kesuit(s)
	multi-	dalam	JCST-07-2020-0108	cacat	kain
	source	mendeteksi		kain baru	dimana
	feature	cacat pada		berdasark	hasil
	fusion	cacat kain.		an <i>multi-</i>	eksperime
		Masalah		source	n
		tersebut		feature	mendapatk
		yaitu: 1)		fusion.	an tingkait
		Model yang		Dalam	akurasi
		sulit dilatih		proses	dan presisi
		karena		pelatihan,	sebesar
		keterbatasan		fitur	93,9% dan
		dataset, dan		lapisan	98,8%
		2) Akurasi		dan	ketika
		deteksi yang		informasi	diterapkan
		belum		model	pada
		memadai		sumber	dataset
		pada bidang		digabung	publik
		industri		kan untuk	(TILDA)
				meningka	dan
				tkan	dataset
				ketahana	real-shot
				n dan	(ZYFD).
				akurasi.	Kinerjany
				Selain	a juga
				itu,	lebih baik
				model	5,9%
				pelatihan	dibanding
				baru yang	kan SSD
				disebut	yang
				multi-	disempurn
				source	akan.

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					
				feature	
				fusion	
				(MSFF)	
				diusulkan	
				untuk	
				mengatas	
				i sampel	
				dan	
				permintaa	
				n yang	
				terbatas	
				guna	
				mendapat	
				kan	
				armada	
				dan	
				kuantifik	
				asi yang	
				tepat	
				secara	
				otomatis	
(Liu,	A dual-	Mendesain	International Journal of	Fuly	Hasil
Wang, et	branch	model dual-	Clothing Science and	Convoluti	eksperime
al.,	balance	branch	Technology, vol. 34 no.	onal	n
2022)	saliency	balance	3	Network	menunjuk
	model	saliency	https://doi.org/10.1108/I	(FCN)	kan bahwa
	based on	berbasis	JCST-02-2021-0017		metode
	discrimi	fully			yang
	native	convolutiona			diusulkan
	feature	l network			mengungg
	for	(FCN) untuk			uli

Author	TEN A	G V	Y LO DOY	37.0	D 1(()
(Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	fabric	deteksi cacat			pendekata
	defect	pada kain			n canggih
	detectio	secara			pada tujuh
	n	otomatis,			metriks
		serta			evaluasi.
		meningkatka			Hasil
		n			analisis
		pengendalia			ablasi
		n kualitas			yang
		pada bidang			memadai
		manufaktur			juga
		tekstil			memberik
					an
					pemahama
					n yang
					lengkap
					tentang
					prinsip
					desain
					metode
					yang
					diusulkan
(Naam et	The	membangu	International Journal on	multiple	Ketiga
al.,	algorith	n sebuah	Advanced Science,	morphol	algoritma
2016)	m of	algoritma	Engineering Information	ogical	tersebut
	image	dari metode	Technology, vol. 6 No.	gradient	diperiks
	edge	multiple	6	(mMG)	oleh dua
	detectio	morphologi		dengan	orang
	n on	cal gradient		algoritm	dokter
	panoram	(mMG)		a normal	
	ic dental	(HILLYTO)		a noma	gigi.

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Gual(s)	Journal & DOI	Method	Kesuit(s)
	x-ray	untuk		mMG,	Hasil
	using	mengidentif		Enhance	pemroses
	multiple	ikasi karies		ment	an
	morphol	gigi		mMG,	gambar
	ogical	berbasis		dan	ini sangat
	gradient (mmg)	gigi		Smooth	membant
	method	panoramik		mMG	u untuk
	metrod	digital			mengiden
		gambar x-			tifikasi
		ray.			objek
					dalam
					gambar
					panorama
					terutama
					dalam
					mendetek
					si gigi
					berlubang
(Nugraha	Deteksi	Mengemba	Jurnal Ilmiah	YOLOv	Hasil
&	Cacat	ngkan	Komputasi,vol. 23 no.	5	penelitian
Wibowo,	pada	model	59-66		menunjuk
2024)	Sekrup	pendeteksi	https://doi.org/10.3240		kan
	Berbasi	cacat pada	9/jikstik.23.1.3516		pelatihan
	s Citra	objek			mendapat
	Menggu	sekrup			kan
	nakan				waktu
	YOLOv				pelatihan
	5				sebesar
					0.404 jam

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					atau
					24.24
					menit,
					precision
					0.842,
					recall
					0.857,
					dan mean
					average
					precision
					0.887. Uji
					coba
					yang
					dilakukan
					menghasi
					lkan
					bahwa
					citra
					dapat
					terdeteksi
					dengan
					baik.
					Namun,
					terdapat
					beberapa
					citra yang
					kurang
					baik dan
					maksimal

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					untuk
					dideteksi.
(Purusho	Integrati	Membangun	International Journal of	Menggun	Verifikasi
thaman	on of	sistem	Lean Six Sigma, vol. 13	akan	prototipe
&	Six	inspeksi	no. 6	metode	i-AIS
Ahmad,	Sigma	otomatis	https://doi.org/10.1108/I	desain	mengungk
2022)	methodo	menggunaka	JLSS-05-2021-0088	Six	apkan
	logy of	n mekanisme		Sigma	pengopera
	DMAD	berbasis		(DSS).	siannya
	V steps	image		Langkah-	pada mode
	with	analysis		langkah	optimal
	QFD,	yang disebut		Define,	yang
	DFMEA	i-AIS.		measure,	memenuhi
	and			analyze,	persyarata
	TRIZ			design,	n
	applicati			dan <i>verify</i>	pelanggan
	ons for			(DMAD	internal.
	image-			V)	Hasil
	based			diterapka	verifikasi
	automat			n dan	juga
	ed			diintegras	menunjuk
	inspectio			ikan	kan bahwa
	n system			dengan	tingkat
	develop			teknik	sigma
	ment: a			analisis	meningkat
	case			yang	dari 3,87
	study			spesifik	menjadi
				dari	4,33.
				quality	Sementara
				function	itu, tingkat
				deployme	pengurang

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
				nt (QFD),	an
				design	kerusakan
				failure	meningkat
				mode	menjadi
				effect	74,4% dan
				analysis	tingkat
				(DFMEA	downtime
) dan	juga
				theory of	mencatat
				inventive	peningkata
				problem	n yang
				solving	signifikan
				(TRIZ)	yaitu
					pengurang
					an sebesar
					80,7% .
(Wu et	An end-	Mengemban	Assembly Automation,	End-to-	Untuk
al.,	to-end	gkan metode	vol. 40 no. 1	end	mengatasi
2020)	learning	deep	https://doi.org/10.1108/	learing	kesulitan
	method	learning	<u>AA-08-2018-114</u>	framewor	deteksi
	for	yang lebih		k	cacat
	industria	fleksibel			blade
	1 defect	untuk			maka
	detectio	deteksi cacat			dikemban
	n	pada industri			gkan
					arsitektur
					baru yang
					menginteg
					rasikan
					residue
					learning

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					untuk
					melakukan
					deteksi
					cacat yang
					efisien.
					Platform
					pengumpu
					lan data
					ganda juga
					dibangun
					dan
					validasi
					eksperime
					ntal
					ekstensif
					juga
					dilakukan.
					Banyak
					percobaan
					dilakukan
					pada
					kumpulan
					data yang
					dikumpulk
					an, dan
					hasil
					percobaan
					menunjuk
					kan bahwa
					sistem
					yang

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(2002)					diusulkan
					dapat
					mencapai
					kinerja
					yang
					memuaska
					n
					dibanding
					kan
					metode
					lain.
					Selain itu,
					operasi
					pemerataa
					n data
					membantu
					hasil
					deteksi
					cacat yang lebih baik.
Yuhandri	Object	mengetahui	Int. J. Adv. Sci. Eng.	Metode	Hasilnya
et al.	Feature		Inf. Technol, vol. 7 no. 1		, and the second
(2017)	Extracti	ciri-ciri	ini. Teemoi, voi. 7 no. 1	yang	menunjuk
(2017)	on of	motif yang		digunaka	kan
	Songket	terdapat		n adalah	bahwa
	Image	pada		segment	pengemb
	Using	gambar		asi	angan
	Chain	songket		warna	algoritma
	Code	agar objek		citra dan	kode
	Algorith	tersebut		morfolo	rantai
	m	dapat		gi	dapat

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(2002)		terdeteksi		matemat	menghasi
		dan dibaca.		is dalam	lkan
				mendete	jumlah
				ksi objek	objek,
				dan	panjang
				kemudia	kode
				n	rantai,
				mengeks	dan nilai
				traksi	kemungki
				motf	nan laju
				dengan	kemuncul
				cara	an setiap
				penerapa	kode
				n	rantai
				algoritm	dalam
				a	suatu
				pelacaka	motif,
				n kontur	meskipun
				moore	terdapat
				dan	beberapa
				pengemb	objek
				angan	dalam
				algoritm	suatu
				a kode	motif.
				rantai.	
(H.	Defect	Mengusulka	International Journal of	Kerangka	Kerangka
Zhang et	detectio	n kerangka	Clothing Science and	kerja	kerja yang
al.,	n of	kerja deteksi	Technology, vol. 35 no.	yang	diusulkan
2023)	color-	cacat	6	diusulkan	dibanding

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	patterne	berdasarkan	https://doi.org/10.1108/I	terdiri	kan
	d fabric	pembelajara	JCST-03-2022-0032	dari tiga	dengan
	based on	n adversial		bagian:	metode
	Denoisin	tanpa		generator	canggih
	gGAN	pengawasan		,	pada
		untuk		diskrimin	kumpulan
		rekonstruksi		ator, dan	data
		gambar guna		modul	publik
		memecahkan		pascapem	YDFID-1
		masalah		rosesan	(Kumpula
		deteksi		gambar.	n Data
		berlebihan		Generator	Gambar
		atau		mampu	Kain
		kesalahan		mengekst	Berwarna
		deteksi		rak fitur-	Benang-
		karena tidak		fitur	versi1).
		dapat		gambar	Kerangka
		beradaptasi		dan	kerja yang
		dengan pola		kemudian	diusulkan
		kompleks		merekons	juga
		kain berpola		truksi	divalidasi
		warna.		gambar	pada
				tersebut.	beberapa
				Diskrimi	kelas
				nator	dalam
				dapat	dataset
				mengawa	MvTec
				si	AD. Hasil
				generator	eksperime
				untuk	n berbagai
				memperb	pola/kelas

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					
				aiki cacat	pada
				pada	YDFID-1
				sampel	dan
				guna	MvTecAD
				meningka	menunjuk
				tkan	kan
				kualitas	efektivitas
				rekonstru	dan
				ksi	keunggula
				gambar.	n metode
				Modul	ini dalam
				postproce	deteksi
				ssing	cacat kain.
				gambar	
				multidiffe	
				rence	
				digunaka	
				n untuk	
				mendapat	
				kan hasil	
				akhir	
				deteksi	
				cacat	
				kain	
				bermotif	
				warna.	
(R.	Ultrason	Mengusulka	Sensor Review, vol. 42	multi-	Hasil
Zhang et	ic	n metode	no. 2	domain	eksperime
al.,	diagnosi	diagnosis	https://doi.org/10.1108/	feature	n
2022)	s	ultrasonik	SR-08-2021-0272	fusion	menunjuk
	method	baru untuk		-	kan bahwa

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	for	cacat las			akurasi
	stainless	baja tahan			diagnostik
	steel	karat			model
	weld	berbasis			diagnosis
	defects	multi-			ringan
	based on	domain			yang
	multi-	feature			dibangun
	domain	fusion untuk			dapat
	feature	memecahkan			mencapai
	fusion	dua masalah			96,55%
		dalam			untuk lima
		diagnosis			jenis cacat
		ultrasonik			las baja
		cacat las			tahan
		baja tahan			karat,
		karat			antara lain
		austenitik.			retak,
					porositas,
					inklusi,
					kurang
					fusi, dan
					penetrasi
					tidak
					lengkap.
					Ini dapat
					memenuhi
					kebutuhan
					aplikasi
					teknik
					praktis.
					Metode ini

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					memberik
					an
					landasan
					teori dan
					referensi
					teknis
					untuk
					mengemba
					ngkan dan
					menerapka
					n
					teknologi
					diagnosis
					cacat
					ultrasonik
					yang
					cerdas,
					efisien dan
					akurat.

Kegiatan inspeksi pada industri umumnya dilakukan secara manual dengan tenaga manusia sebagai operator. Dengan mengandalakan tenaga manusia yang memiliki keterbatasan tentunya kegiatan ini memiliki kendala.

Revolusi industri 4.0 mendorong otomatisasi inspeksi produk untuk manufaktur yang tanpa cacat (*zero defect*) dan berkualitas tinggi dimana kemampuan fleksibilitas manusia berkolaborasi dengan kemampuan akurasi komputer dan mesin (Brito et al., 2020). Perkembangan *computer vision* dapat sangat membantu dalam dunia industri manufaktur untuk mencapai kualitas yang unggul (Schmidt et al., 2020).

Pengendalian kualitas adalah proses yang penting dalam kegiatan manufaktur untuk memastikan bahwa produk tidak memiliki kecacatan untuk memenuhi kebutuhan pelanggan. Terdapat kemungkinan manusia tidak mampu

mengidentifikasi cacat pada produk karena keterbatasan dari indera penglihatan manusia. Otomatisasi dibutuhkan untuk meminimalisir produk cacat lolos sampai ke tangan pelanggan yang akan berpengaruh terhadap kepuasan pelanggan. Otomatisasi pada kegiatan inspeksi produk sangat peting untuk menjaga kualitas secara berkelanjutan (Deshpande et al., 2020).

Berdasarkan perbandingan tinnjauan pustaka di atas yang kemudian disesuaikan dengan tujuan dari penelitian ini. Maka dapat disimpulkan.

- Kegiatan inspeksi yang dilakukan dengan manual memiliki berbagai macam kendala dan keterbatasan.
- 2. Kegiatan inspeksi yang dilakukan dengan manual membutuhkan tenaga (operator) ahli dengan jumlah yang banyak sehingga tidak efisien mengingat perbedaan persepsi antara operator serta *human error* sangat mungkin terjadi.
- 3. Otomatisasi kegiatan inspeksi produk menggunakan *artificial intelogence* namun terkendala pemilihan algoritma karena membutuhkan eskperimen secara intensif dan komprehensif.
- 4. Informasi yang disampaikan harus dapat menjelaskan kondisi produk dengan baik dan jelas sehingga tersampaikan dengan baik ke pihak terkait.

BAB III

METODOLOGI

3.1 Motivasi

Industri manufaktur memiliki berbagai macam produk yang ada di dalamnya. Dalam upaya pemenuhan kualitas yang tinggi serta menjaga kepuasan pelanggan dan reputasi perusahaan maka mendeteksi produk yang cacat sedini mungkin merupakan aspek yang penting. Sehingga motivasi dari disertasi ini adalah sebagai berikut.

- Pengembangan aplikasi pendeteksi cacat pada produk ini didasari keinginan peneliti untuk meningkatkan kinerja pengendalian kualitas pada industri manufaktur sehingga dapat membantu menjaga kualitas produk serta efisiensi dalam kegiatan pengendalian kualitas.
- Untuk meminimalisir pemborosan waktu, bahan baku, biaya dan sumber daya lainnya karena deteksi cacat pada produk dilakukan sedini dan secepat mungkin.
- 3. Meningkatkan efisiensi pada kegiatan inspeksi produk dengan menerapkan otomatisasi melalui aplikasi yang dikembangkan.
- 4. Mengintegrasikan teknologi yang sedang berkembang seperti *artificial intelligence* dengan industri manufaktur sehingga tercipta manufaktur cerdas yang akan berakibat pendapatan profit perusahaan yang optimal.
- Memberikan kontribusi pemahaman dan pengembangan teknologi baru dalam deteksi objek sehingga bisa menjadi referensi untuk pembaca serta penelitian selanjutnya.

3.2 Alur Kerja Riset

Alur kerja riset digambarkan melalui diagram alir. Tujuannya agar penelitian dapat terstruktur sehingga tidak ada tahapan penelitian yang terlewat. Secara umum berikut ini merupakan diagram alir penelitian ini.

Gambar 3.1 Diagram Alir Penelitian

Diagram alir penelitian di atas menggambarkan alur penelitian yang akan dilakukan. Berikut ini adalah penjelasan dari diagram alir penelitian di atas.

1. Tahap Awal

Kegiatan yang dilakukan pada tahap awal ini adalah merancang dan membuat prototype alat deteksi cacat dan pengumpulan data cacat objek. Prototype alat ini menggunakan ban berjalan dengan motor listrik sebagai penggeraknya dengan alat pencahayaan yang cukup. Alat ini juga dilengkapi kamera dan prosesor sebagai media untuk mendeteksi cacat pada sekrup. Alat ini nantinya digunakan untuk mendeteksi objek sekrup. Kamera yang digunakan adalah Intel RealSense Depth Camera D435i with IMU. Prosesor yang digunakan

adalah NVIDIA Jetson Orin Nano Official Developer Kit 8gb. Berikut ini adalah gambaran alat yang akan dikembangkan.

Gambar 3.2 Rancangan Prototipe Alat

Gambar 3.2 di atas menggambarkan rancangan alat yang akan dikembangkan. Objek berupa sekrup akan berjalan melalui ban berjalan (conveyor) yang nantinya akan ditangkap gambarnya oleh webcam atau kamera yang terhubung dengan komputer untuk dideteksi apakah terdapat kecacatan pada sekrup tersebut atau tidak. Pengumpulan data dilakukan untuk memperoleh dibutuhkan pada penelitian ini. Data yang dikumpulkan menggunakan teknik sintetik data. Data sintetik dilakukan dalam 2 tahap. Tahap pertama adalah membuat cacat pada sekrup menggunakan geget. Tahap kedua adalah memotret sendiri objek sekrup baik yang dalam keadaan OK maupun cacat untuk dikumpulkan menjadi kumpulan data. Data sekunder juga dikumpulkan melalui website kaggle maupun website atau jurnal lain yang sejenis. Data sekuder dimaksudkan untuk lebih memperkaya variasi data yang akan digunkana pada penelitian ini. Hasil dari akuisisi citra ini akan digunakan untuk pelatihan dan pengujian data. Data tersebut kemudian dikumpulkan menjadi sebuah dataset yang akan digunakan untuk melatih model. Data-data yang diambil kemudian dikelompokkan menjadi beberapa kelas sesuai dengan kondisi pada sekrup tersebut. Luaran pada tahap ini adalah dataset untuk pelatihan model serta pengajuan HKI untuk prototype alat pendeteksi cacat objek yang dirancang.

2. Tahap Pengembangan

Tahap ini terdapat beberapa kegiatan yang dilakukan. Pertama adalah melakukan uji coba prototype alat deteksi cacat objek yang digambarkan pada

gambar 3.2 di atas. Uji coba dilakukan dengan menyesuaikan tinggi kamera, tingkat pencahayaan, kecepatan ban berjalan serta pengaturan tempat ban berjalan untuk menjaga efektivitas dan efisiensi dalam mendeteksi objek. Kedua adalah merancang model untuk mendeteksi cacat objek dengan menggunakan deep learning. Sebelum melatih data dilakukan preprocessing terlebih dahulu. Kegiatan ini dilakukan dengan menggunakan website roboflow. **Preprocessing** dilakukan mengoptimalkan pelatihan dengan menganotasi citra untuk menandai bagian penting dari citra (region of interest), menyamakan orientasi citra, mengubah ukuran citra agar sama, memperbanyak variasi data dengan augmentasi, dan generalisir data sehingga menjadi satu kesatuan dataset yang lebih siap untuk dilatih.

Setelah preprocessing dilakukan maka diharapkan pelatihan data yang dilakukan lebih optimal. Pelatihan data dilakukan untuk melatih model mengenali citra yang akan dideteksi sehingga pada penerapannya mendapatkan hasil deteksi yang akurat dan optimal. Pelatihan data dilakukan dengan menggunakan salah satu algoritma dari teknologi kecerdasan artifisial yaitu deep learning dengan bahasa pemrograman yang digunakan adalah python. Pada pelatihan data ini juga akan mendapatkan nilai pengukuran evaluasi (measurment evaluation) berupa accuracy, recall and precision, dan mean average precision (MAP). Pelatihan harus memiliki jumlah data (dalam hal ini adalah citra) yang lebih banyak dibandingkan pengujian. Penelitian ini menggunakan perbandingan 8:2 untuk pelatihan dan pengujian dimana 80% data digunakan untuk pelatihan dan sisanya digunakan untuk pengujian.

3. Tahap Optimasi

Tahap pengembangan telah dilakukan kemudian masuk ke tahap optimasi. Tahap ini terdapat kegiatan yaitu evaluasi dan penyempurnaan model deteksi cacat objek. Evaluasi dan penyempurnaan dilakukan agar fitur yang ada pada aplikasi yang akan dikembangkan dapat ditampilkan dengan maksimal. Fitur yang akan ditambahkan pada model pendeteksi objek berupa kemampuan komputer untuk secara otomatis menyimpan hasil deteksi menjadi sebuah basis data. Sehingga nantinya data tersebut dapat menjadi acuan bagi

departemen terkait untuk inovasi ke depannya. Setelah pelatihan data dilakukan, maka selanjutnya adalah pengujian data. Pengujian data dilakukan untuk menguji model sejauh mana dapat mendeteksi cacat dari suatu produk. Pada pengujian data dilakukan dengan mengunggah data secara acak selain data yang digunakan pada pelatihan. Pada akhirnya akan menampilkan output model dalam mendeteksi cacat pada produk. Setelah itu maka dibangun aplikasi yang mampu mendeteksi cacat produk pada industri secara real time. Aplikasi ini nantinya akan menampilkan hasil deteksi dari produk yang bergerak. Informasi yang disampaikan antara lain kondisi dari produk cacat atau tidak serta bagian mana yang cacat akan ditandai oleh bounding box. Hal ini akan dengan cepat membantu operator mengetahui cacat jenis apa yang terjadi. Sehingga dapat ditindaklanjuti sesegera mungkin yang secara tidak langsung juga membantu dalam pengambilan keputusan. Target penelitian ini adalah mengembangkan model pendeteksi objek, membuat prototype alat pendeteksi objek, pengajuan HKI serta publikasi artikel/jurnal ilmiah internasional bereputasi (Q1; IEEE Access).

3.3 Pendekatan

Pendekatan yang dilakukan adalah dengan menggunakan teknologi artificial intelligence dalam mengadopsi kemampuan manusia dalam mendeteksi objek. Pendekatan ini menggabungkan antara pengolahan citra dan deep learning dengan memanfaatkan salah satu arsitektur yang dimilikinya. Selain itu diterapkan juga pengukuran evaluasi seperti precision, recall, dan mean average precision (MAP) untuk memastikan model yang dikembangkan dapat digunakan dengan optimal. Nantinya akan dikembangkan sebuah aplikasi yang kemungkinan berbasis web untuk mempermudah pengguna untuk mengambil gambar (bergerak maupun tak bergerak) yang kemudian mengirimnya ke sistem pendeteksi cacat dan menerima hasil deteksi secara real time. Hasil deteksi secara real time dikehendaki agar produk dapat diperiksa selama proses produksi berlangsung sehingga cacat dapat dideteksi secepat dan seakurat mungkin. Hal ini akan membantu operator untuk melakukan kegiatan inspeksi produk dengan efisien.

3.4 Rencana Jadwal Kegiatan

Rencana jadwal kegiatan dibuat bertujuan untuk menentukan rencana waktu suatu kegiatan yang menunjang penelitian ini dilakukan. Berikut ini merupakan tabel rencana jadwal kegiatan pada penelitian ini.

Tabel 3.1 Rencana Jadwal Kegiatan

	Tabel 3.1 Rencana Jadwal Kegiatan												
No	Nama Kegiatan					,	Tahu	n Ke	-1				
110	_	1	2	3	4	5	6	7	8	9	10	11	12
1	Studi literatur												
2	Pembuatan Proposal Disertasi												
						,	Tahu	n Ke	-2				
3	Perancangan dan pembuatan												
	prototype alat deteksi cacat												
4	Pengumpulan data cacat objek												
5	Ujian Kualifikasi												
	Perancangan model deteksi												
6	cacat objek menggunakan deep												
	learning												
7	Uji coba prototype alat deteksi												
	cacat objek												
8	Progress Report 1												
							Tahu	n Ke	-3				
9	Implementasi dan pelatihan												
	model deteksi cacat objek												
10	Publikasi artikel jurnal ilmiah												
10	internasional bereputasi ke-1												
11	Evaluasi dan penyempurnaan												
11	model deteksi cacat objek												
12	Pengujian model deteksi objek												
12	menggunakan deep learing												
13	Publikasi artikel jurnal ilmiah												
	internasional bereputasi ke-2												
14	Progres Report 2												
15	Pembuatan aplikasi pendeteksi												
13	objek cacat												
16	Rapat Komisi Pembimbing												
10	(RKP)												
	Publikasi artikel jurnal ilmiah												
17	internasional bereputasi ke-3												
	(Q1)												
18	Pengajuan HKI												
19	Sidang Tertutup												
20	Sidang Terbuka												

DAFTAR PUSTAKA

- Acosta, S. M., & Oliveira Sant'Anna, A. M. (2023). Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing. *International Journal of Quality & Reliability Management*, 40(3), 727-751. doi:10.1108/JJQRM-07-2021-0210
- Altuğ, M. (2023). Application of six sigma through deep learning in the production of fasteners. *International Journal of Lean Six Sigma*, 14(7), 1376-1402. doi:10.1108/IJLSS-08-2022-0191
- Asín, J., Ávila-de la Torre, M., Berges-Muro, L., & Sánchez-Valverde, B. (2017). Improvement of the Quality Control Plan in the reception of waste glass. Application in Verallia. *Procedia Manufacturing*, 13, 1135-1142.
- Baikova, D., Maia, R., Santos, P., Ferreira, J., & Oliveira, J. (2019). *Real time object detection and tracking*. Paper presented at the Ambient Intelligence–Software and Applications–, 9th International Symposium on Ambient Intelligence.
- Brito, T., Queiroz, J., Piardi, L., Fernandes, L. A., Lima, J., & Leitão, P. (2020). A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. *Procedia Manufacturing*, 51, 11-18.
- Deshpande, A. M., Minai, A. A., & Kumar, M. (2020). One-shot recognition of manufacturing defects in steel surfaces. *Procedia Manufacturing*, 48, 1064-1071.
- Essah, R., Anand, D., & Singh, S. (2022). An intelligent cocoa quality testing framework based on deep learning techniques. *Measurement: Sensors*, 24, 100466.
- Fan, H., Dong, Q., & Guo, N. (2023). Surface defect classification of hot-rolled steel strip based on mixed attention mechanism. *Robotic Intelligence and Automation*, 43(4), 455-467. doi:10.1108/RIA-01-2023-0001
- Fauzi, A., Madenda, S., Wibowo, E. P., & Masruriyah, A. F. N. (2020). *The importance of bounding box in motion detection*. Paper presented at the 2020 Fifth International Conference on Informatics and Computing (ICIC).
- Handayani, H. H., Madenda, S., Wibowo, E. P., Kusuma, T. M., Widiyanto, S., & Masruriyah, A. F. N. (2020). *The Best Classification Algorithm for Identification Beef Quality Based on Marbling*. Paper presented at the 2020 Fifth International Conference on Informatics and Computing (ICIC).
- Hassan, N. M., Hamdan, A., Shahin, F., Abdelmaksoud, R., & Bitar, T. (2023). An artificial intelligent manufacturing process for high-quality low-cost production. *International Journal of Quality & Reliability Management*, 40(7), 1777-1794. doi:10.1108/IJQRM-07-2022-0204
- Jarkas, O., Hall, J., Smith, S., Mahmud, R., Khojasteh, P., Scarsbrook, J., & Ko, R. K. (2023). ResNet and Yolov5-enabled non-invasive meat identification for high-accuracy box label verification. *Engineering Applications of Artificial Intelligence*, 125, 106679.

- Khurana, P., Sharma, A., Singh, S. N., & Singh, P. K. (2016). A survey on object recognition and segmentation techniques. Paper presented at the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).
- Li, C., Liu, C., Liu, Z., Yang, R., & Huang, Y. (2020). Fabric defect detection method based on cascaded low-rank decomposition. *International Journal of Clothing Science and Technology*, 32(4), 483-498. doi:10.1108/IJCST-03-2019-0037
- Liu, Z., Liu, S., Li, C., & Li, B. (2022). Fabric defect detection based on multi-source feature fusion. *International Journal of Clothing Science and Technology*, 34(2), 156-177. doi:10.1108/IJCST-07-2020-0108
- Liu, Z., Wang, M., Li, C., Ding, S., & Li, B. (2022). A dual-branch balance saliency model based on discriminative feature for fabric defect detection. *International Journal of Clothing Science and Technology*, 34(3), 451-466. doi:10.1108/IJCST-02-2021-0017
- Naam, J., Harlan, J., Madenda, S., & Wibowo, E. P. (2016). The algorithm of image edge detection on panoramic dental x-ray using multiple morphological gradient (mmg) method. *International Journal on Advanced Science, Engineering Information Technology*, 6(6), 1012-1018.
- Nugraha, Y. P. P., & Wibowo, E. P. (2024). Deteksi Cacat pada Sekrup Berbasis Citra Menggunakan YOLOv5. *Jurnal Ilmiah Komputasi*, 23(1), 59-66.
- Psarommatis, F., Sousa, J., Mendonça, J. P., & Kiritsis, D. J. I. J. o. P. R. (2022). Zero-defect manufacturing the approach for higher manufacturing sustainability in the era of industry 4.0: a position paper. 60(1), 73-91.
- Purushothaman, K., & Ahmad, R. (2022). Integration of Six Sigma methodology of DMADV steps with QFD, DFMEA and TRIZ applications for image-based automated inspection system development: a case study. *International Journal of Lean Six Sigma*, 13(6), 1239-1276. doi:10.1108/IJLSS-05-2021-0088
- Reyes-Luna, J. F., Chang, S., Tuck, C., & Ashcroft, I. (2023). A surrogate modelling strategy to improve the surface morphology quality of inkjet printing applications. *Journal of Manufacturing Processes*, 89, 458-471.
- Schmidt, D., Gevers, R., Schwiep, J., Ordieres-Meré, J., & Villalba-Diez, J. (2020). Deep learning enabling quality improvement in rotogravure manufacturing. *Procedia Manufacturing*, *51*, 330-336.
- Shi, Y., Wang, X., Borhan, M. S., Young, J., Newman, D., Berg, E., & Sun, X. (2021). A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies. *Food science of animal resources*, 41(4), 563.
- Suhartini, N. (2020). Penerapan Metode Statistical Proses Control (SPC) Dalam Mengidentifikasi Faktor Penyebab Utama Kecacatan Pada Proses Produksi Produk Abc. *Jurnal Ilmiah Teknologi Dan Rekayasa*, 25(1), 10-23.
- Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., & Wellbrock, W. (2019). Deep learning for industrial computer vision quality control in the printing industry 4.0. *Sensors*, 19(18), 3987.

- Wu, Y., Guo, D., Liu, H., & Huang, Y. (2020). An end-to-end learning method for industrial defect detection. *Assembly Automation*, 40(1), 31-39. doi:10.1108/AA-08-2018-114
- Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. *Materials*, 13(24), 5755.
- Yuhandri, Madenda, S., Wibowo, E. P., & Karmilasari. (2017). Object Feature Extraction of Songket Image Using Chain Code Algorithm. *Int. J. Adv. Sci. Eng. Inf. Technol*, 7(1), 235-241.
- Zhang, H., Wang, S., Mi, H., Lu, S., Yao, L., & Ge, Z. (2023). Defect detection of color-patterned fabric based on DenoisingGAN. *International Journal of Clothing Science and Technology*, *35*(6), 865-888. doi:10.1108/IJCST-03-2022-0032
- Zhang, R., Zhao, N., Fu, L., Pan, L., Bai, X., & Song, R. (2022). Ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion. *Sensor Review*, 42(2), 214-229. doi:10.1108/SR-08-2021-0272