Appendix 1 **Sequence Listing**

SEQUENCE LISTING

OIPE

480

PADEM University of North Texas Health Science Center at Fort Worth <110> Mathews, Porunellor A. 5 Boles, Kent <120> Immuno activation of CS1 receptor in natural killer cells to inhibit tumor cell growth 10 <130> 120746.00004 10/021,741 <140> <141> 2001-12-12 15 <160> 5 <170> PatentIn version 3.1 <210> 20 <211> 1083 <212> DNA <213> Homo Sapiens <300> 25 <301> Boles, K.S. and Mathew, P.A. Molecular cloning of CS1, a novel human natural killer cell <302> Immunogenetics <303> <304> 52 (3-4)<305> 30 <306> 302-307 <307> 2001 <308> AF291815 2000-08-01 <309> <313> (1)..(1083) 35 <300> <308> AF291815 <309> 2000-08-01 <313> (1)..(1083) 40 cagagagcaa tatggctggt tccccaacat gcctcaccct catctatatc ctttggcagc 45 tcacagggtc agcagcctct ggacccgtga aagagctggt cggttccgtt ggtggggccg tgactttccc cctgaagtcc aaagtaaagc aagttgactc tattgtctgg accttcaaca 180 50 caacccctct tgtcaccata cagccagaag ggggcactat catagtgacc caaaatcgta atagggagag agtagacttc ccagatggag gctactccct gaagctcagc aaactgaaga 55 300 aqaatqactc agggatctac tatgtgggga tatacagctc atcactccag cagccctcca 60 cccaggagta cgtgctgcat gtctacgagc acctgtcaaa gcctaaagtc accatgggtc 420 tgcagagcaa taagaatggc acctgtgtga ccaatctgac atgctgcatg gaacatgggg

```
aaqaqqatqt gatttatacc tggaaggccc tggggcaagc agccaatgag tcccataatg
       ggtccatcct ccccatctcc tggagatggg gagaaagtga tatgaccttc atctgcgttg
 5
        600
        ccaggaaccc tgtcagcaga aacttctcaa gccccatcct tgccaggaag ctctgtgaag
10
       gtgctgctga tgacccagat tcctccatgg tcctcctgtg tctcctgttg gtgcccctcc
        720
        tgctcagtct ctttgtactg gggctatttc tttggtttct gaagagagag agacaagaag
15
        agtacattga agagaagaag agagtggaca tttgtcggga aactcctaac atatgccccc
        840
        attctqqaqa qaacacaqaq tacgacacaa tccctcacac taatagaaca atcctaaagg
20
        aagatccagc aaatacggtt tactccactg tggaaatacc gaaaaagatg gaaaatcccc
25
        actcactgct cacgatgcca gacacaccaa ggctatttgc ctatgagaat gttatctaga
        1020
        30
        aca
        1083
35
        <210>
              335
        <211>
        <212> PRT
        <213> Homo Sapens
40
        <300>
              Boles, K.S. and Mathew, P.A.
        <301>
              Molecular cloning of CS1, a novel human natural killer cell
        <302>
        <303>
              Immunogenetics
45
        <304>
              52
        <305>
              (3-4)
        <306>
              302-307
        <307>
              2001
        <308>
             AAK11549
50
        <309>
             2001-08-01
        <313>
              (1)..(335)
        <300>
        <308>
             AAK11549
55
        <309>
              2001-08-01
              (1)..(335)
        <313>
        <400>
60
       Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Gln
                                          10
                                                              15
                       5
        1
```

Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val Gly Ser

20 25 30

	5	Val	Gly	Gly 35	Ala	Val	Thr	Phe	Pro 40	Leu	Lys	Ser	Lys	Val 45	Lys	Gln	Val
10	0	Asp	Ser 50	Ile	Val	Trp	Thr	Phe 55	Asn	Thr	Thr	Pro	Leu 60	Val	Thr	Ile	Gln
		Pro 65	Glu	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75	Arg	Asn	Arg	Glu	Arg 80
1:	5	Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90	Lys	Leu	Ser	Lys	Leu 95	Lys
20	0	Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105	Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu
. 2:	5	Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120	Val	Leu	His	Val	Tyr 125	Glu	His	Leu
3	0	Ser	Lys 130	Pro	Lys	Val	Thr	Met 135	Gly	Leu	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr
		Cys 145	Val	Thr	Asn	Leu	Thr 150	Cys	Cys	Met	Glu	His 155	Gly	Glu	Glu	Asp	Val 160
3:	5	Ile	Tyr	Thr	Trp	Lys 165	Ala	Leu	Gly	Gln	Ala 170	Ala	Asn	Glu	Ser	His 175	Asn
40	0	Gly	Ser	Ile	Leu 180	Pro	Ile	Ser	Trp	Arg 185	Trp	Gly	Glu	Ser	Asp 190	Met	Thr
4:	5	Phe	Ile	Cys 195	Val	Ala	Arg	Asn	Pro 200	Val	Ser	Arg	Asn	Phe 205	Ser	Ser	Pro
5	0	Ile	Leu 210	Ala	Arg	Lys	Leu	Cys 215	Glu	Gly	Ala	Ala	Asp 220	Asp	Pro	Asp	Ser
		Ser 225	Met	Val	Leu	Leu	Cys 230	Leu	Leu	Leu	Val	Pro 235	Leu	Leu	Leu	Ser	Leu 240
5:	5	Phe	Val	Leu	Gly	Leu 245	Phe	Leu	Trp	Phe	Leu 250	Lys	Arg	Glu	Arg	Gln 255	Glu
6	0	Glu	туr	Ile	Glu 260	Glu	Lys	Lys	Arg	Val 265	Asp	Ile	Сув	Arg	Glu 270	Thr	Pro
		Asn	Ile	Cys	Pro	His	Ser	Gly	Glu	Asn	Thr	Glu	Tyr	Asp	Thr	Ile	Pro

His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala Asn Thr Val Tyr 5 Ser Thr Val Glu Ile Pro Lys Lys Met Glu Asn Pro His Ser Leu Leu 315 10 Thr Met Pro Asp Thr Pro Arg Leu Phe Ala Tyr Glu Asn Val Ile 325 330 15 <210> 3 <211> 12 <212> PRT <213> artificial sequence 20 Peptide fragment of mAb for CS1 receptor. <400> 3 25 Cys Gln Asn Arg Asn Arg Glu Arg Val Asp Phe Pro 30 <210> 4 <211> 11 <212> PRT <213> artificial sequence 35 <220> <223> Peptide fragment of mAb for CS1 receptor. <400> 4 40 Cys Met Glu His Gly Glu Glu Asp Val Ile Tyr <210> 5 45 <211> 16 <212> PRT <213> artificial sequence 50 <223> Peptide fragment of mAb for CS1 receptor. <400> Cys Gln Glu Glu Tyr Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu 55