

Exercício 3 01 – Colunas calculadas¹

O objetivo deste exercício, utilizando o ficheiro "exercicio_3_01.xlsx", consiste em criar uma coluna calculada, na tabela "construções", para mostrar a altura média de cada piso em cada uma das construções (dividir a coluna "metros" pela coluna "pisos"). Efetuado o cálculo pode verificar-se que existe uma divisão por zero, com impacto nos resultados. Para resolver esta dificuldade, vamos utilizar a função DIVIDE da linguagem DAX (esta função efetua a divisão e devolve BLANK() quando se divide por 0). Terminado o exercício, grave-o com a designação "exercício_3_01_R.pbix".

Solução

Altura Média por Piso = 'Construções'[Metros]/'Construções'[Pisos]

Altura Média por PisoA = divide('Construções'[Metros],'Construções'[Pisos])

¹ Adaptado de: https://www.wiseowl.co.uk/power-bi/exercises/power-bi-desktop/

Exercício 3 02 – Medidas básicas²

Neste exercício, vamos utilizar o ficheiro "exercicio_3_02.xlsx" que apresenta três folhas: "Filmes", "NivelEtario" e "Genero", com o objetivo de criar as medidas indicadas de seguida e que devem ser guardadas numa tabela criada para o efeito designada "MedidasBasicas":

- criar uma medida designada "**ReceitaMedia**" para mostrar a receita média de bilheteira (dividir por 1.000.000 para tornar os números apresentados com maior legibilidade);
- criar uma outra medida designada "LucroMedio" para mostrar a diferença média entre a receita de bilheteira e as despesas associadas a cada filme;
- criar ainda uma outra medida designada "NumeroFilmes" para contar o número de filmes para um determinado contexto (use a função COUNTROWS).

Para poder visualizar estas medidas, crie uma tabela no painel "**report**" que mostre: "Genero"; "NivelEtario"; "ReceitaMedia"; "LucroMedio" e "NumeroFilmes", ordenada pelo "LucroMedio" de forma descendente. Resolvido o exercício grave-o com a designação "**exercício 3 02 R.pbix**".

Solução

ReceitaMedia = average(Filmes[Receita])/1000000

LucroMedio = averagex(Filmes,Filmes[Receita]-Filmes[Orcamento])/1000000

NumeroFilmes = COUNTROWS(Filmes)

Genero	NivelEtario	ReceitaMedia	LucroMedio ▼	NumeroFilmes
Romance	12	1.346,24	1.235,24	2
Fantasy	12A	931,85	744,31	11
Awful	12A	737,53	650,53	4
Adventure	12A	800,86	608,08	11
Science Fiction	12A	714,26	552,58	25
Science Fiction	U	562,54	523,94	7
Fantasy	PG	596,16	475,95	12
Action	12A	625,00	451,88	41
Animation	U	526,32	439,34	48
Animation	PG	568,59	429,89	15
Mystery	12A	511,68	421,28	5
Crime	12	450,72	365,72	1
Action	12	479,36	364,36	4
Mystery	15	485,90	335,90	1
Thriller	12A	438,88	321,88	15

² Adaptado de: https://www.wiseowl.co.uk/power-bi/exercises/power-bi-desktop/

Exercício 3 03 – Calendários e datas³

O ficheiro "exercicio_3_03A.csv" contém o registo de diversos avistamentos de determinados animais marinhos entre 2015 e 2016 e o ficheiro "exercicio_3_03B.xlsx" contém datas. Neste exercício, pretende-se que seja feita uma análise detalhada destes avistamentos, por exemplo, avistamentos no mês anterior ou numa outra data, utilizando algumas funções específicas da linguagem DAX:

- com a função **PREVIOUSMONTH** vamos criar uma medida chamada "**MesAnterior**" para dar indicação dos avistamentos que ocorreram no último mês;
- usar a função **DATEADD** para criar uma medida chamada "**DoisMesesAnteriores**" que dê indicação dos avistamentos que ocorreram nos dois últimos meses.

De forma semelhante ao que fez no exercício anterior, crie também aqui uma tabela designada "Medidas Criadas" para guardar estas medidas. Para poder visualizar estas medidas, utilize no painel "report" o elemento visual "matriz", em que possa selecionar a espécie e uma tabela que mostre por ano e mês o número de avistamentos no mês anterior e nos dois meses anteriores. Resolvido o exercício grave-o com a designação "exercício 3 03 R.pbix".

Solução

MesAnterior =

CALCULATE(SUM('exercício 3 03'[NumeroAvistamentos]),PREVIOUSMONTH('Calendar'[DataChave]))

DoisMesesAnteriores =

CALCULATE(sum('exercício 3 03'[NumeroAvistamentos]),DATEADD('Calendar'[DataChave],-2,MONTH))

Nu	meroAno	NumeroAvistamentos	MesAnterior	DoisMesesAnteriores
	2015			
	December	3		
	2016			
	January	122	3	
	February	123	122	3
	March	173	123	122
	April	173	173	123
	May	1113	173	173
	June	1036	1113	173
	July	1233	1036	1113
	August	1695	1233	1036
	September	1031	1695	1233
	October	826	1031	1695
	November	140	826	1031
	December		140	826

³ Adaptado de: https://www.wiseowl.co.uk/power-bi/exercises/power-bi-desktop/

Exercício 3 04 – Variáveis⁴

Importe os dados armazenados no ficheiro "exercicio_3_04.xlsx" para o Power BI. O objetivo deste exercício consiste em mostrar o rácio dos filmes vencedores do Óscar em função de determinado contexto. Este rácio é calculado, dividindo o número total de Óscares ganhos pelo número total de nomeações.

Para dar resposta ao solicitado, crie uma medida chamada "RacioVitorias" em que sejam consideradas duas variáveis: "nomeações", variável associada ao total de nomeações e "vitorias", variável associada ao número de vitórias.

A medida a criar deve devolver o resultado da segunda variável dividida pela primeira variável (isto também pode ser feito sem recurso a variáveis, mas perde em clareza). Deve ter cuidado para evitar divisões por zero (situação que pode acontecer quando o nível etário é "desconhecido", para os quais não há nomeações).

Para visualizar estas medidas, no painel "**report**" crie uma tabela em que possa visualizar o número de filmes, o rácio de vitórias e o respetivo contexto. Repare que precisa de criar uma medida para o número de filmes. Resolvido o exercício guarde-o com a designação "**exercício_3_04_R.pbix**".

Solução

RacioVitorias = VAR Nominations = SUM(Filmes[NomeacaoOscar]) VAR Wins = SUM(Filmes[VencedorOscar]) RETURN DIVIDE(Wins,Nominations)

Alternativa sem variáveis: RacioVitorias2 = divide(sum(Filmes[VencedorOscar]),sum(Filmes[NomeacaoOscar]))

NumeroFilmes = COUNTROWS(Filmes)

Para que os valores na tabela apareçam em percentagem deve selecionar a medida e no menu escolher o formato

NumeroFilmes	RacioVitorias	NivelEtario
60	33,00%	12
139	29,63%	12A
284	28,57%	15
157	28,95%	18
231	34,67%	
118	31,98%	U
11		Unknown
1000	31,28%	

⁴ Adaptado de: https://www.wiseowl.co.uk/power-bi/exercises/power-bi-desktop/

Exercício 3 05 – Colunas calculadas⁵

Neste exercício, vamos usar os dados armazenados no ficheiro "exercicio_3_05.xlsx" e dados recolhidos no website http://www.currency-converter.org.uk/currency-exchange-rates.html. Com estes dados e com recurso à linguagem DAX, vamos criar colunas calculadas que convertem o valor do orçamento, em dólares, em cada uma das seguintes quatro moedas: AUD, CAD, GBP e NZD.

Com já reparamos, na resolução dos exercícios anteriores, a melhor maneira de criar colunas calculadas é fazêlo no modo "dados" (à esquerda, clique no botão dados e, no painel de campos, selecione a tabela "travel").

Comecemos por calcular o valor do orçamento da viagem em dólares australianos (AUD). Basta para isso multiplicar a coluna "budget USD" pela coluna "AUD" na tabela relacionada "Foreign Currency Exchange Rates Today (2nd Dec 2020)". Repetir o processo para as restantes três moedas. Resolvido o exercício, guarde-o com a designação "exercício 3 05 R.pbix".

Solução

Budget AUD = Travel[Budget USD]*RELATED('Foreign Currency Exchange Rates Today (2nd Dec 2020)'[AUD])

Nota 1: Não esquecer que deve existir um relacionamento entre as tabelas (precisa acrescentar uma nova coluna à tabela "**travel**" com o tipo de moeda "USD").

Nota 2: Não esquecer de definir todos os campos de conversão de moeda do tipo decimal, fazendo a correção de possíveis erros e a substituição necessária de valores.

⁵ Gamble, G. (2018). Power BI Step-by-Step Part 2: Connecting to Data Sources