Your Name and Student ID:

Your Lecture Class(e.g, L1) and your tutorial class (e.g, T01):

Instruction: (i) This is a closed-book and closed-notes exam; no calculators, no dictionaries and no cell phones; (ii) Show your work unless otherwise instructed—a correct answer without showing your work when required shall be given no credits; (iii) Write down ALL your work and your answers(including the answers for short questions) in the Answer Book.

- 1. (27 points) **Short Questions** (for these questions, NO need to show your work, just write down your answers in the Answer Book; NO partial credits for each question)
 - (i). Which of the following statements is false?
 - (a) Let f be a continuous function defined for all real numbers. If $a_1 = a$ and $a_{n+1} = f(a_n)$ (for all $n \ge 1$) define a convergent sequence $\{a_n\}$, then f has a fixed point (i.e. $f(x_0) = x_0$ for some x_0).
 - (b) If the sequence $\{a_1, a_3, a_5, \ldots\}$ converges to L_1 and $\{a_2, a_4, a_6, \ldots\}$ converges to L_2 with $L_1 \neq L_2$, then $\{a_n\}_{n\geq 1}$ cannot converge.
 - (c) If $\sum |a_n|$ diverges, then $\sum a_n$ cannot converge.
 - (ii). Which of the following statements is false?
 - (a) Given an alternating series, if it does not satisfy the conditions in the alternating series test, then it must diverge.
 - (b) Rearranging the terms (which means changing the order of the terms) in $\sum_{n=1}^{\infty} (-1)^n (1/n^{\pi})$ will never change the value of the series.
 - (c) If $\sum a_n$ is convergent but $\sum b_n$ is divergent, then $\sum (a_n + b_n)$ must be divergent.
 - (iii). Which of the following is the interval of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{6(5+\sin x)^n}$
 - (a) $\{x \mid x \text{ is not an integer multiple of } 2\pi\}$.
 - (b) $\{x \mid x \text{ is not an integer multiple of } \pi\}$.
 - (c) $-\infty < x < \infty$
 - (d) diverges for all x.
 - (iv). Which of the following is the Maclaurin series for $\cos 2x$?

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^{2n} 2^{2n} x^{2n}}{n!}$$
(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^{2n} 2^{2n} x^{2n}}{(2n)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n}}{n!}$$
 (d) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n}}{(2n)!}$.

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n}}{(2n)!}$$

(v). Which of the following is the Taylor series generated by $f(x) = \frac{1}{x^2}$ at x = 8?

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n(x-8)^n}{8^{n+2}}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n(x-8)^n}{8^{n+2}}$$
.
(b) $\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(x-8)^n}{8^{n+1}}$.

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(x-8)^n}{8^{n+1}} .$$
(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(x-8)^n}{8^{n+2}} .$$
(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n(x-8)^n}{8^{n+1}} .$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n(x-8)^n}{8^{n+1}}$$

(vi).
$$\frac{2}{3} - \frac{2^3}{3^3 \cdot 3!} + \frac{2^5}{3^5 \cdot 5!} - \frac{2^7}{3^7 \cdot 7!} + \ldots =$$

- (a) $\sin \frac{3}{2}$
- (b) $\cos \frac{2}{3}$
- (c) $\ln \frac{2}{3}$
- (d) $\sin \frac{2}{3}$

(vii). Let \vec{u} , \vec{v} and \vec{w} be nonzero vectors in space. Which of the following statements is false?

- (a) $\vec{u} \times \vec{v} = \vec{0}$ is equivalent to $\vec{u} = k\vec{v}$ for some scalar k.
- (b) The vector $\vec{u} \times (\vec{v} \times \vec{w})$ is parallel to the plane spanned by \vec{v} and \vec{w} .
- (c) $\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|$ if \vec{u} and \vec{v} are parallel.

(viii). Which of the following statements is false?

- (a) If we want to expand a function f(x) as a power series about x=0 in the interval (-1,1), then necessarily f has to be infinitely differentiable on the interval (i.e., derivative of all orders of f exist on the interval).
- (b) If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for $x \in (-1,1)$, then $f(x) = \sum_{n=0}^{2021} c_n x^n + O(x^{2022})$ as $x \to 0$.
- (c) If $f(0) = 0 = f^{(n)}(0)$ for all positive integers n, then f has to be identically equal to 0, at least in a small open interval containing 0.
- (ix). Write down the parametric equations of the line tangent to the curve $\vec{r}(t)$ = $\cos(e^t)\vec{i} + (3 - t^2)\vec{j} + t\vec{k}$ at t = 0:

2. (5 points) In the triangle ACB below, the angle at corner C is a right angle, and line segments CD, EF, GH, etc., are parallel, while AC, DE, FG, etc., are parallel. The drawing CDEFGHI... continues indefinitely. Is the length

$$|CD| + |DE| + |EF| + |FG| + |GH| + \dots$$

finite? If so, find it.

3. (24 points) For each of the following series, determine whether it is convergent absolutely, convergent conditionally, or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n + n \cos^2 n}.$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}.$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)}$$
.

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$
, where $0 .$

4. (8 points) Determine the interval of convergence for the series $\sum_{n=0}^{\infty} \frac{2^n x^n}{4^n + 1}$.

5. (8 points) Find

$$\lim_{x \to 0} \frac{\tan x - \sin x}{(1 + x^3)^{\pi} - 1}.$$

6. (10 points) Let f(x) be continuously differentiable on the finite interval [a, b] (i.e., f' exists and is continuous on [a, b]), and suppose f'' exists on the open interval (a, b). Prove the following special case of Taylor's Theorem: there exists $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(c)}{2!}(b-a)^{2}.$$

7. (24 points) Consider the cycloid parametrized by

$$x = t - \sin t$$
, $y = 1 - \cos t$, $t \in [0, 2\pi]$.

(a) Find its arclength.

- (b) Find the area of the surface generated by revolving the cycloid about the x-axis.
- (c) Find the curvature of the cycloid at $t = \pi$.
- (d) Let the y-axis **point downward** (and the x-axis be horizontal, pointing to the right). Consider a particle sliding frictionlessly on the cycloid under the influence of gravity, from the origin O = (0,0) to the bottom $B = (\pi,2)$ of the cycloid, with 0 initial speed. Find the time T it takes for the particle to reach B from O. Length is measured in meters, and time in seconds.

.

- 8. (15 points) Consider the polar curve $r = \sin(2\theta), \ \theta \in [0, \pi]$.
 - (a) Sketch the curve on the xy-plane.
 - (b) Compute the slope of the curve at $\theta = \pi/4$.
 - (c) Find the area of the region bounded by the polar curve for $0 \le \theta \le \pi/2$.

.

- 9. (16 points) Let P = (2, 4, 5), Q = (1, 5, 7) and R = (-1, 6, 8).
 - (a) Find the area of the triangle ΔPQR ;
 - (b) Find an equation of the plane containing the triangle mentioned above;
 - (c) Find parametric equations of the line which is perpendicular to the plane mentioned above, and passes through the origin (0,0,0).
 - (d) Find the distance from the origin to the plane mentioned above.

.

- 10. (16 points) Let $\vec{r}(t)$, $-\infty < t < \infty$, be the position vector function of a particle moving, with positive speed, along a smooth curve C in space. Suppose $\vec{r}(t)$ is twice differentiable (which means the second order derivative exists) for all t.
 - (a) Prove that the speed of the particle is constant if and only if the velocity vector $\vec{v}(t)$ is always orthogonal to the acceleration vector $\vec{a}(t)$.
 - (b) Prove that if the curvature of curve C is 0 everywhere, then the curve has to be a straight line.