- 1) (a) State the Binomial Theorem. (4 points)
- (b) Use the Binomial Theorem to determine the coefficient of  $x^7y^{12}$  in the expansion of  $(x+y)^{19}$ . (3 points)

2) Write the sum  $\binom{10}{3} + \binom{10}{4}$  as a single binomial coefficient. (3 points)

3) Find the coefficient of  $x_1^3 x_2^2 x_3$  in the expansion of  $(x_1 + x_2 + x_3)^6$ . (3 points)

**4)** Show that  $\sum_{r=0}^{n} 3^r \binom{n}{r} = 4^n$  for all integers  $n \ge 1$ . (4 points)

5) Write the sum  $\sum_{r=0}^{6} {12 \choose r} {10 \choose 6-r}$  as a single binomial coefficient. (4 points)

**6)** Write the sum  $\binom{4}{4} + \binom{5}{4} + \binom{6}{4} + \binom{7}{4}$  as a single binomial coefficient. (3 points)

7) Find the coefficient of  $x^7$  in the expansion of  $(1 + x + x^3)^{12}$ . (5 points)

8) State the Pigeonhole Principle as stated in class. (4 points)



11) Show that for any set of 5 points on the unit circle, there are at least two points in the set whose distance apart is at most  $\sqrt{2}$ . (3 points)

12) Determine the exact value of  $\sum_{r=0}^{10} {10 \choose r}$ . (3 points)

13) Show that  $\sum_{r=0}^{n} \frac{n+1}{r+1} \binom{n}{r} = 2^{n+1} - 1$  for all integers  $n \ge 1$ . (4 points)