

CARACTERIZANDO OS RECURSOS NATURAIS DO IFC - CAMPUS CAMBORIÚ

Fernanda Grecillo Manzini¹; Elisa Mariana Wunderlich Pscheidt²; Michela Cancillier³; Leandro Mondini⁴; Renata Ogusucu⁵

RESUMO

Muitos trabalhos de ensino e pesquisa são desenvolvidos analisando parâmetros físicos e químicos da água coletada no território do IFC - Campus Camboriú e os resultados obtidos poderiam estar relacionados a algumas características do ecossistema, como, a localização espacial, à composição do solo, ao índice pluviométrico, além das atividades desenvolvidas no entorno do local amostral. Visto que esses fatores não são explorados nos trabalhos desenvolvidos, o presente projeto visa mapear e selecionar alguns pontos amostrais bem como descrever a composição do local no que se refere ao tipo de solo e às atividades desenvolvidas no entorno e quais os impactos e influências dessas atividades no meio.

Palavras-chave: Recursos hídricos. Química. Biologia. Solo.

INTRODUÇÃO

Os recursos da Terra são imprescindíveis para a sobrevivência e desenvolvimento humano, e a demanda por esses recursos está relacionada não somente ao aumento da população, mas também aos hábitos da sociedade, isto é, quanto maior for o uso desses recursos de forma inconsciente, maior o desequilíbrio do ecossistema, o que ocasiona a perda da qualidade ambiental e da qualidade de vida da população (ASSIS; BARROS, 2014; CECCONELLO, 2009).

A responsabilidade de manter o meio ambiente equilibrado utilizando os recursos de forma sustentável é dever do Estado e da população, como preconiza a Constituição Federal/88 em seu artigo 225: "todos têm direito ao meio ambiente ecologicamente equilibrado onde impõe ao Poder Público e à coletividade o dever de preservá-lo às presentes e futuras gerações" e descreve algumas ações, como no § 1°, inciso VI: "promover a educação ambiental em todos os níveis de ensino e a conscientização pública para a preservação do meio ambiente". Seguindo esse princípio, a lei n° 6.938/1981 que dispõe sobre a Política Nacional do Meio Ambiente, institui em seu artigo 2°, incisos VII e X: "acompanhamento do estado da

¹ Discente do Curso Técnico em Controle Ambiental, IFC-Camboriú – fernandagrecillomanzini@gmail.com.

² Discente do Curso Técnico em Controle Ambienta, IFC – Camboriú – elisamariana@hotmail.com.

³ TAE – Mestre, IFC-Camboriú – michela.cancillier@ifc.edu.br

⁴ Docente – Especialista, IFC-Camboriú – leandro.mondini@ifc.edu.br

⁵ Docente, Doutora, IFC-Camboriú – renata.ogusucu@ifc.edu.br

qualidade ambiental e educação ambiental a todos os níveis do ensino, inclusive da comunidade capacitando-a para a defesa do meio ambiente" (BRASIL, 1988).

As mudanças no meio ambiente ocorrem ora pelos fenômenos naturais ora pelas atividades antrópicas. Essa está relacionada ao desenvolvimento, alterando direta ou indiretamente o meio físico, químico e biológico, podendo comprometer a disponibilidade e qualidade dos recursos naturais (GOULART, 2003).

Considerando a importância de manter o meio ambiente equilibrado, sendo de responsabilidade tanto do Estado quanto da população, cabendo criar instrumentos para tal finalidade, o presente projeto tem como objetivo realizar o levantamento de informações através das variáveis física, química e biológica, além do meio antrópico (uso e ocupação do solo) e tratamento cartográfico do Instituto Federal Catarinense – IFC, *Campus* Camboriú.

PROCEDIMENTOS METODOLÓGICOS

- 1. O estudo preparatório deverá descrever sobre os fatores abióticos (englobando clima, regime de chuvas, temperatura, geologia, pedologia, hidrologia) e bióticos (analisando integralmente a microbiologia do solo) e suas interferências com relação à qualidade da água (pH, alcalinidade, cloretos, condutividade) seguindo orientações do Manual de Métodos de Análise de Solo (Embrapa, 1997) e do Manual Prático de Análise de Água (Brasil, 2013) a fim de produzir um formulário padrão;
- 2. A localização dos pontos amostrais será realizada a partir da pesquisa dos trabalhos já desenvolvidos no campus, projetos de ensino e pesquisa, o mapeamento será elaborado utilizando as ferramentas GIS utilizando-se de ortofotos produzidas pelo governo do estado de Santa Catarina pela SDS (Secretaria de Desenvolvimento Sustentável) ou imagem mais recente, pontos localizados por GPS e também será realizado o levantamento fotográfico, quando necessário;
- 3. A identificação do tipo de solo será realizada seguindo orientações do Sistema Brasileiro de Classificação de Solos utilizando-se o Manual de Descrição e Coleta de Solo no Campo (Sociedade Brasileira de Ciência do Solo) sendo este trabalho inicialmente de campo, levando a laboratório quando necessário para análises físicas.

- 4. Serão investigadas as atividades realizadas em torno dos pontos amostrais delimitando a área, que será estabelecida conforme os pontos amostrais, descrevendo sobre o histórico de ocupação, demografia, uso e ocupação do solo.
- 5. As atividades realizadas em torno dos pontos amostrais podem afetar a microbiota local, impactando na ciclagem de nutrientes. Para estimar a atividade destes microrganismos, será determinada a taxa de respiração em amostras de solo, seguindo o protocolo descrito por Dionísio e colaboradores (2016). A microbiota local também pode ser alterada por resíduos e efluentes liberados nas proximidades dos locais de amostragem, por conseguinte, a determinação da concentração de coliformes termotolerantes será realizada nestes pontos de acordo com a norma técnica da CETESB (Companhia Ambiental do Estado de São Paulo, 2007).

RESULTADOS ESPERADOS OU PARCIAIS

Inicialmente, foram definidos 2 pontos de coleta tendo como critério de escolha suas características e localização. É apresentado na tabela 1 informações referentes aos pontos e nas figuras 1 e 2 as imagens da localização dos pontos.

Tabela 1. Informações dos pontos amostrais.

Pontos Amostrais	Localização Geográfica (utm) (Datun WGS 84)	Cobertura vegetal sobre o perfil	Descrição do local
#1 - Cunicultura	LA 7010281.03 m S LO 732043.68 m E	Vegetação Nativa	Não há atividade antrópica
#2 - Abatedouro	LA 7009917.00 m S LO 731938.00 m E	Gramíneas	Há atividade antrópica constante

Fonte: os autores, 2019.

Figura 1. Ponto #1 cunicultura.

Figura 2. Ponto #2 abatedouro.

Para a determinação da morfologia do solo foi utilizada a Figura 54 - Ficha para descrição morfológica de solos no campo (IBGE, 2015). E foram avaliados

dados sobre a plasticidade, pedregosidade, rochosidade, erosão, textura, estrutura, consistência e demais características morfológicas do solo foram analisados no local de coleta e confirmados no laboratório com auxílio de um profissional da área. Os dados serão tratados para posteriormente identificação e caracterização do solo.

Durante a coleta já foi possível observar a divergência aparente na morfologia dos dois pontos analisados, comparando as diferentes características presentes nos horizontes do solo de cada ponto como por exemplo: cor e aspecto físico.

Foi realizada uma coleta em cada ponto, contudo apenas a amostra do Ponto 1 foi analisada no laboratório quanto aos aspectos físicos das amostras de acordo com o Manual de Métodos de Análise de Solo (EMBRAPA, 1997) e obtivemos os dados apresentados na Tabela 1:

Tabela 1: Dados físicos do ponto amostral # 1 - Cunicultura.

Horizontes	рН	Umidade Residual	Umidade atual (Kg)	Matéria orgânica (Kg)	Densidade de partículas (g)	Densidade do solo
НА	5,5	0,003	0,016 kg	16,92 kg	40,019	0,472
HB	5,5	0,009	0,021	166,35	40,157	0,810
HB2	4,5	0,008	0,010	13,92	40,052	0,719

Fonte: os autores, 2019.

Em seguida foram realizadas análises microbiológicas. Foram testadas duas abordagens experimentais para determinar a concentração de bactérias presentes nas camadas HA, HB e HB2 do solo. A primeira foi a contagem de unidades formadoras de colônias (UFC) em meio ágar nutriente após diluições seriais (10⁻¹, 10⁻², 10⁻³, 10⁻⁴ e 10⁻⁵). Em todas as diluições foi observado grande número de colônias, impossibilitando a contagem e a estimativa do número de UFC.

A segunda abordagem foi semi quantitativa. Consistiu na diluição serial (idênticas a do primeiro procedimento) e na aplicação de 10 uL de cada diluição sobre o ágar nutriente, formando uma gota. Após as incubações a 25°C, foi possível observar em quais diluições e quais camadas de solo apresentaram maior densidade de bactérias (figura 3).

Figura 3. Avaliação do crescimento bacteriano em diferentes camadas do solo.

Em A, experimentos com amostras da camada HA do solo. Em B, com a camada HB e em C, camada HB2. Em cada experimento, foram realizadas diluições seriais (10⁻¹, 10⁻², 10⁻³, 10⁻⁴ e 10⁻⁵). Uma gota de 10 uL de cada diluição foi aplicada nas placas (nos quadrantes correspondentes).

Os resultados desse experimento indicou maior densidade de bactérias na camada HB2 do solo, que é a mais profunda. Nas amostras da camada mais superficial praticamente não foi observado crescimento. O mesmo procedimento foi realizado 30 dias depois, porém os resultados não foram reproduzidos. Nesta repetição em todas as camadas detectou-se grande crescimento microbiano, por toda a placa de Petri, inviabilizando a observação dos spots referentes a cada diluição (figura 4).

Figura 4. Avaliação do crescimento bacteriano em diferentes camadas do solo.

Em A, experimentos com amostras da camada HA do solo. Em B, com a camada HB e em C, camada HB2. Experimentos realizados da maneira descrita na legenda da figura 1

A estimativa da densidade de micro-organismos nos mesmos pontos amostrais será realizada através da determinação da taxa de respiração (DIONÍSIO et al., 2016). A vantagem deste método é que por não depender de cultivo, as diferentes taxas de divisão celular apresentadas pelas diferentes populações de micro-organismos não inviabilizariam a visualização dos resultados.

CONSIDERAÇÕES FINAIS.

Após a pesquisa que será realizada pelo projeto Caracterizando os Recursos Naturais do IFC- Campus Camboriú, ocorrerá um monitoramento dos recursos naturais disponíveis nas áreas analisadas, considerando as transformações do meio e avaliando as características do solo e o equilíbrio ecológico do ecossistema em um âmbito geral, auxiliando também o fomento para futuras

pesquisas. Assim, possibilita-se a visualização dos impactos antrópicos, bem como a antevisão da necessidade de ações de recuperação e restauração ambiental.

Foi possível perceber em todos os aspectos analisados uma diferença consideravelmente grande entre os solos da área preservada e da área com atividades antrópicas constantes.

REFERÊNCIAS

ASSIS, W. de; BARROS, F. P. O meio biofísico, o desenvolvimento e o bem estar. PRODEMA. Fortaleza. v. 8, n. 2, 50-63, 2014.

CECCONELLO, V. M. O estudo de impacto ambiental. Direito & Justiça. v. 35, n. 2. 137-147, 2009.

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. L5.406: Coliformes Termotolerantes Determinação Em Amostras Ambientais Pela Técnica De Tubos Múltiplos Com Meio A-1. São Paulo: Cetesb, 2007. 16 p.

BRASIL. Constituição (1988). Constituição da República Federativa do Brasil. Brasília, DF: Senado Federal: Centro Gráfico, 1988.

BRASIL. Fundação Nacional de Saúde. Manual prático de análise de água / Fundação Nacional de Saúde 4. ed. Brasília: Funasa, 2013.

DIONÍSIO, J. A; PIMENTEL, I. C.; SIGNOR, D.; PAULA, A. M.; MACEDO, A.; MATTANA, A.L... Respiração microbiana. In: DIONÍSIO, Jair Alves et al. Guia Prático de Microbiologia do Solo. Curitiba: SBCS/NEPAR,, 2016. Cap. 12. p. 75-77.

EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Manual de métodos de análise de solo / Centro Nacional de Pesquisa de Solos. 2. ed. rev. atual. Rio de Janeiro, 1997.

GOULART, M. D. C.; CALLISTO, M. Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. FAPAM, ano 2, 2003.

IBGE. Manual técnico de pedologia: guia de campo, coordenação de Recursos Naturais e Estudos Ambientais. Rio de janeiro: IBGE, 2015.134 p.