Generalised Decomposition Priors on R2

DAGStat 2025

Javier Aguilar, Paul-Christian Bürkner 25.03.2025

TU Dortmund javier.aguilar@tu-dortmund.de

The prior is a fundamental part of Bayesian modeling.

Hard question: How to specify the prior?

The prior is a fundamental part of Bayesian modeling.

Hard question: How to specify the prior?

Fundamental question: How to make it easier for the user to specify

priors?

The prior is a fundamental part of Bayesian modeling.

Hard question: How to specify the prior?

Fundamental question: How to make it easier for the user to specify priors?

- Build upon **intuition** about the phenomenon.
- Propose semi automated and parsimonious priors.
- Propose priors on predictive quantities that are better understood by the user and move uncertainty.

Priors in Linear Regression

How to select the prior for *b*?

1. Scaled Gaussians

$$b \mid \sigma, \Sigma_b \sim \textit{N}(0, \sigma^2 \Sigma_b), \ \sigma \sim \textit{p}(\sigma), \ \Sigma_b \sim \textit{p}(\Sigma_b)$$

Priors in Linear Regression

How to select the prior for *b*?

1. Scaled Gaussians

$$b \mid \sigma, \Sigma_b \sim N(0, \sigma^2 \Sigma_b), \quad \sigma \sim p(\sigma), \quad \Sigma_b \sim p(\Sigma_b)$$

2. Shrinkage priors

$$b_i \mid \Psi_i \sim N(0, \Psi_i), \quad \Psi_i \sim G(\cdot)$$

 $p(b_i) = \int N(b_i \mid 0, \Psi_i) dG(\Psi_i)$

- Usual decomposition $\Psi_i = \phi_i \tau^2$
- Includes Spike and Slab, Horseshoe, Dirichlet Laplace, Beta Prime etc.

Question: What is the effect on R^2 ?

$$b_k \sim \mathcal{N}(0,1), \ \ \sigma \sim \mathsf{Exp}(1)$$

Figure 1: Implied prior distribution on R^2

The GDR2 prior

Basic Idea:

- Set a prior on R^2 to encode domain knowledge.
- Decompose total variance τ^2 among b_k
- Span and jointly regularize all coefficients!

$$R^2 = \frac{\operatorname{var}(x'b)}{\operatorname{var}(x'b) + \sigma^2}$$

4

- Assumptions:
 - Centered coefficients $\mathbb{E}(b_i) = \mathbb{E}(u_{igj}) = 0,$

• Scaled variances $var(b_i) = \sigma^2 \lambda_i^2$

- Assumptions:
 - Centered coefficients $\mathbb{E}(b_i) = \mathbb{E}(u_{igj}) = 0,$

- Scaled variances $var(b_i) = \sigma^2 \lambda_i^2$
- Variance decomposition of the linear predictor x'b

$$\operatorname{var}(x'b) = \sum_{i=1}^K \sigma^2 \lambda_i^2$$

- Assumptions:
 - Centered coefficients $\mathbb{E}(b_i) = \mathbb{E}(u_{igj}) = 0,$

- Scaled variances $var(b_i) = \sigma^2 \lambda_i^2$
- Variance decomposition of the linear predictor x'b

$$\operatorname{var}(x'b) = \sum_{i=1}^K \sigma^2 \lambda_i^2$$

• Total explained variance au^2

$$\tau^2 := \sum_{i=1}^K \lambda_i^2$$

- Assumptions:
 - Centered coefficients $\mathbb{E}(b_i) = \mathbb{E}(u_{igj}) = 0,$

- Scaled variances $var(b_i) = \sigma^2 \lambda_i^2$
- Variance decomposition of the linear predictor x'b

$$\operatorname{var}(x'b) = \sum_{i=1}^K \sigma^2 \lambda_i^2$$

• Total explained variance au^2

$$\tau^2 := \sum_{i=1}^K \lambda_i^2$$

• Rewrite R²

$$R^2 = \frac{\sigma^2 \tau^2}{\sigma^2 \tau^2 + \sigma^2} = \frac{\tau^2}{\tau^2 + 1}.$$

The GDR2 prior: R2 prior

1) Set

$$R^2 \sim \mathsf{Beta}(\mu_{R^2}, \varphi_{R^2}) \iff \tau^2 \sim \mathsf{BP}(\mu_{R^2}, \varphi_{R^2})$$

- $\mu_{R^2} \in (0,1)$ prior mean
- $\bullet \ \varphi_{R^2} > 0 \ {\rm prior \ precision}$

The GDR2 prior: R2 prior

1) Set

$$R^2 \sim \mathsf{Beta}(\mu_{R^2}, \varphi_{R^2}) \iff \tau^2 \sim \mathsf{BP}(\mu_{R^2}, \varphi_{R^2})$$

- $\mu_{R^2} \in (0,1)$ prior mean
- ullet $\varphi_{R^2} > 0$ prior precision

The GDR2 prior: Variance Partitioning

Let ϕ follow a distribution on the simplex \mathcal{S}^{K-1}

- How should we specify the distribution of ϕ ?
- Which behavior do we want to exhibit in ϕ ?

The GDR2 prior: Coefficients

Set $\lambda_i = \phi_i \tau^2$ and $b \mid \sigma, \lambda \sim N(0, \sigma \lambda_i^2)$

Distributions in the Simplex

Logistic-Normal I

Dirichlet $\phi \sim \text{Dir}(\alpha)$

- Tractable analytical properties
- α is easy to understand, but the mean determines covariance.

Logistic Normal

$$\eta \sim \mathcal{N}(\mu, \Sigma), \ \phi = \mathsf{softmax}(\eta)$$

- Higher flexibility
- \bullet Challenging to select μ, Σ

Hyperparameter specification

Prior for R^2

- User informed
- Since $\text{var}(b) = \mathbb{E}(\tau^2)\text{cov}(\phi)$, set values to imply a heavy tail for b. Set $(1 \mu_{R^2})\varphi_{R^2} \leq 1/2$

Hyperparameter specification

Prior for R^2

- User informed
- Since $var(b) = \mathbb{E}(\tau^2)cov(\phi)$, set values to imply a heavy tail for b. Set $(1 - \mu_{R^2})\varphi_{R^2} \le 1/2$

Priors for ϕ : Dirichlet distribution

- Set $\alpha = (a_{\pi}, ..., a_{\pi}), a_{\pi} > 0$
- ullet If $a_\pi \leq 1/2$ then we get unbounded marginals for b around the origin

Hyperparameter specification: LN and KL Matching

Priors for ϕ : Logistic Normal distribution

Idea: Minimize KL between $Dir(\alpha)$ and $LN(\mu, \Sigma)$.

- Closed form expression.
- Automated and cheap
- Exact matching is neither wished nor achievable as KL doesnt vanish.

Hyperparameter specification: LN

Priors for ϕ : Logistic Normal distribution

How to specify μ ?

- $\mu=0$ means all proportions are equally weighted and $\mathbb{E}[\phi_k]=1/K$.
- If $\mu_k = c_k, \Sigma = \sigma_\phi^2 I$ then

$$\mathbb{E}[\phi_k] = \mathbb{E}\left(\frac{\mathrm{e}^{\eta_k}}{\sum_j \mathrm{e}^{\eta_j}}\right) \approx \frac{\mathrm{e}^{\mathsf{c}_k}}{\sum_j \mathrm{e}^{\mathsf{c}_j}}$$

- ullet One can also form groups within μ
- Other cases are more involved

Hyperparameter specification: LN and KL Matching

Priors for ϕ : Logistic Normal distribution

Idea: How to specify Σ ? Study the implied prior on the size of the logits η (log ratios)

• If $\mu=0, \Sigma=\sigma_\phi^2 I$ and $\eta\sim N(0,\sigma_\phi^2 I)$ then $\|\eta\|$ concentrates around $\sqrt{K}\sigma_\phi$ since

$$\mathbb{P}\left(\left|\frac{\|\eta\|}{\sqrt{K}\sigma_{\phi}}-1\right|\geq t\right)\leq 2\exp\left(-\frac{K\sigma_{\phi}^{2}t^{2}}{2C}\right),\ C>0$$

- There σ_{ϕ} specifies a budget.
- ullet $\sigma_{\phi}
 ightarrow 0$, the logits concentrate near zero, resulting in $\phi_{m{k}}
 ightarrow 1/K$
- ullet σ_ϕ increases, the logits spread
- Example: If $\sigma_{\phi} = \sqrt{\gamma/K}, \gamma > 0$ then $\|\eta\|^2 \approx \gamma$ regardless of K
- Other cases are more involved

Simulation: Comparison with other priors

Parameter recovery

Simulation: Comparison with other priors

Out of sample predictive performance measured via ELPD

Future directions

- 1. How can the data inform us about the mean and covariance of ϕ ?
- 2. Theoretical properties of the prior
- 3. Even with KL matching we are getting promising results, hence proper hyperparameter selection should improve performance.

Takeaway Message

Key Takeaway:

- Opens the way to think about different relationships among variance components.
- Joint priors based on quantities of interest is a promising avenue for research.

Thank You for Your Attention!

Feel free to reach out for questions or collaborations.

Contact Information:

- javier.aguilar@tu-dortmund.de
- https://jear2412.github.io
- **(7)** jear2412

References

- [1] Javier Enrique Aguilar and Paul-Christian Bürkner. Intuitive joint priors for Bayesian linear multilevel models: The R2D2M2 prior. Electronic Journal of Statistics, 17(1):1711 – 1767, 2023. doi: 10.1214/23-EJS2136. URL https://doi.org/10.1214/23-EJS2136.
- [2] Javier Enrique Aguilar and Paul-Christian Bürkner. Generalized decomposition priors on r2, 2025. URL https://arxiv.org/abs/2401.10180.