# Bài 1 : Dùng định nghĩa xét tính liên tục của hàm số f(x)=x3+2x-1 tại x0=3.

## Lời giải:

Ta có: 
$$f(x) = x^3 + 2x - 1$$
  $t$  $\notai$   $x_0 = 3$   
\*Khi đó:  $f(x_0) = f(3) = 3^3 + 2.3 - 1$   
\*Xét dãy số bất kì  $x_a$  với  $x_a \neq 3$   $v$  $\dot{a}$   $\lim_{a \to +\infty} x_n = 3$ .  
Khi đó  $\lim_{x \to 3} f(x) = \lim_{n \to \infty} (x_n^3 + 2x_n - 1) = 3^3 + 2.3 - 1 = f(3)$   
Vậy theo định nghĩa,  $f(x)$  liên tục tại  $x_0 = 3$ .

## Bài 2:

a. Xét tính liên tục của hàm số y = g(X) tại  $x_0 = 2$ . Biết:

$$g(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & (\text{n\'e}u \ x \neq 2) \\ 5 & (\text{n\'e}u = 2) \end{cases}$$

b. Trong biểu thức g(x) ở trên, cần thay số 5 bởi số nào đó để hàm số liên tục tại  $x_0=2$ .

## Lời giải:

a. 
$$v\'oi \ x \neq 2 => g(x) = \frac{x^3 - 8}{x - 2} = \frac{x^3 - 2^3}{x - 2}$$

$$= \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = x^2 + 2x + 4$$

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} (x^2 + 2x + 4) = 2^2 + 2 \cdot 2 + 4 = 12$$

$$V\'oi \ x = 2 => g(2) = 5 => \lim_{x \to 2} g(x) = 12 \neq g(2) = 5$$

Vậy hàm số đã cho không liên tục tại điểm x = 2.

b. Nếu hàm số g(x) xác định như sau:

$$g(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & (n\acute{e}u \ x \neq 2) \\ 12 & (n\acute{e}u = 2) \end{cases} \text{khi đó g(x) liên tục tại x = 2}$$

Vậy khi thay số 5 bởi số 12 thì hàm số liên tục tại  $x_0 = 2$ .

## Bài 3 (trang 141 SGK Đại số 11):

Cho hàm số 
$$f(x) = \begin{cases} 3x + 2 & (n\tilde{e}u < -1) \\ x^2 - 1 & (n\tilde{e}u & x \ge -1) \end{cases}$$

a. Vẽ đồ thị hàm số y= f(x). Từ đó nêu nhận xét vê tính liên tục của hàm sso trên tập xác định của nó.

b. Khẳng định nhận xét trên bằng 1 chứng minh.

### Lời giải:

a. Đồ thị hàm số (hình bên). Từ đồ thị ta thấy số gián đoạn tại x = -1.



b) Ta có: 
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (3x + 2) = 3. (-1) + 2 = 1$$
  

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} (x^{2} - 1) = 0$$

$$\Rightarrow \qquad \lim_{x \to -1^{-}} f(x) \neq \lim_{x \to -1^{+}} f(x)$$

Do đó không tồn tại  $\lim_{x\to -1} f(x)$ .

## Bài 4 (trang 141 SGK Đại số 11):

Cho các hàm số  $f(x) = \frac{x+1}{x^2+x-6}$  và g(x) = tanx + sinx.

Với mỗi hàm số hãy xác định các khoảng trên đó hàm liên tục. Lời giải:

\*Đặt 
$$f(x) = \frac{x+1}{x^2+x-6}$$

Hàm số xác định khi :  $x^2 + x - 6 \neq 0$ 

$$\Leftrightarrow$$
 x  $\neq$  -3 và x  $\neq$  -2

Vậy hàm số không xác định tại  $x = -3 v \dot{a} x = -2$ .

f(x) là hàm phân thức liên tục tại mọi điểm thuộc tập xác định.

 $\Rightarrow$  Hàm số liên tục trên các khoảng  $(-\infty; -3); (-3; 2) và (2; +\infty)$ 

\*Với 
$$g(x) = tanx + sinx = \frac{sinx}{cosx} + sinx$$

Điều kiện g(x) có nghĩa:  $cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k \pi$ 

vậy hàm số không liên tục tại điểm  $x = \frac{\pi}{2} + k\pi$  (k∈ Z)

vì g(x) là hàm số lượng giác liên tục tại mọi x và tại đó g(x) xác định.

Do đó g(x) liên tục trên các khoảng 
$$\left(-\frac{\pi}{2}+k\pi\right)$$
,  $\frac{\pi}{2}+k\pi$  với  $k\in Z$ .

## Bài 5 : Ý kiến sau đúng hay sai?

"Nếu hàm số y = f(x) liên tục tại điểm  $x_0$  và hàm số y = g(x) không liên tục tại  $x_0$ , thì y = f(x) + g(x) là một hàm số không liên tục tại  $x_0$ ".

### Lời giải:

Ý kiến trên đúng, vì y = h(x) = f(x) + g(x) liên tục tại  $x_0$  thì h(x) - f(x) = g(x) liên tục tại  $x_0$  (theo định lý 2 về hàm số liên tục) trái với giả thiết g(x) không liên tục tại  $x_0$ .

## Bài 6 : Chứng minh rằng phương trình:

a.  $2x^3 - 6x + 1 = 0$  có ít nhất hai nghiệm.

b.  $\cos x = x \operatorname{co} \operatorname{nghiệm}$ 

## Lời giải:

a. Đặt  $f(x) = 2x^3 - 6x + 1$ 

TXD: D = R

Ta có:  $f(-2) = 2 \cdot (-2)^3 - 6(-2) + 1 = -3 < 0$ 

f(-1) = -2 + 6 + 1 = 5 > 0

f(-2).f(-1) < 0

Mà f(x) là hàm đa thức xác định trên R nên liên tục trên tập R. Do đó f(x) liên tục trên (-2; -1).

Phương trình f(x) = 0 có ít nhất một nghiệm  $x_0 \in (-2; -1)$ .

Tương tự ta có:

$$f(-1) = 2(-1)^3 - 6(-1) + 1 = 5$$

$$f(1) = 2 - 6 + 1 = -3$$

f(-1).f(1) < 0 nên phương trình có ít nhất một nghiệm  $x_0 \in (-1;1)$ .

Vì các đoạn (-2; -1) và (-1; 1) rời nhau nên các nghiệm nói trên không thể trùng nhau. Vậy phương trình đã cho có ít nhất 2 nghiệm.

b.Xét hàm số  $g(x) = x - \cos x$  liên tục trên R, do đó liên tục trên đoạn [-  $\pi$ ;  $\pi$ ] ta có:

$$g(-\pi) = -\pi - \cos(-\pi) = -\pi + 1 < 0$$

$$g(\pi) = \pi - \cos \pi = \pi - (-1) = \pi + 1 > 0$$
  
 $g(-\pi). g(\pi) < 0$ 

Theo định lí 3, phương trình  $x-\cos x=0$  có nghiệm trong (-  $\pi$ ;  $\pi$ ) tức là  $\cos x=x$  có nghiệm.