Conoscere l'Intelligenza Artificiale

Alberto Rota

Francesca Fati

Lezione 2 **Al Tasks, Overfitting and Applications**

Agenda

Lezione 1

- Introduzione a Al
- Neuroni e Perceptron
- Training
- Importanza dei Dati + Pulizia

→ Pratica: SPAZIO

Lezione 2

- Cosa fare con l'Al
- Applicazioni
- Loss Functions
- Iperparametri
- Overfitting e Generalizzazione

→ Pratica: MELE

Lezione 3

- ChatGPT
- Privacy / Al Act
- Explainability
- Competition!

→ TEMA: ?

Lezione 4

Recap

I Tre componenti principali dell'Intelligenza Artificale

Dataset

abc Cust City 🕶	abc Cust State ▼	abc Cust Zip Code ▼	abc Cust County *	abc Cust Region
Costa Mesa	California	92628	Orange County, California	West
Edinburg	Texas	78539	Hidalgo County, Texas	Southwest
Vancouver	Washington	98668	Clark County, Washington	West
El Paso	Texas	79910	El Paso County, Texas	Southwest
Columbus	Georgia	31908	Muscogee County, Georgia	South
Omaha	Nebraska	68108	Douglas County, Nebraska	Midwest
Mountain View	California	94035	Contra Costa County, Californ	West
Lincoln	Nebraska	68501	Lancaster County, Nebraska	Midwest
Tulsa	Oklahoma	74107	Osage County, Oklahoma	Southwest
Gastonia	North Carolina	28052	Gaston County, North Carolin	South
Newport News	Virginia	23501	Newport News City, Virginia	East
Dayton	Ohio	45401	Montgomery County, Ohio	Midwest
South Gate	California	90280	Los Angeles County, Californi	West
Birmingham	Alabama	35203	Jefferson County, Alabama	South
Sacramento	California	95813	Sacramento County, Californi	West
Dallas	Texas	75260	Dallas County, Texas	Southwest
Antioch	California	94509	Contra Costa County, Californ	West
Lubbock	Texas	79402	Lubbock County, Texas	Southwest
Bellflower	California	90706	Los Angeles County, Californi	West
St. Paul	Minnesota	55109	Ramsey County, Minnesota	Midwest
Mesquite	Texas	75149	Dallas County, Texas	Southwest
Rio Rancho	New Mexico	87124	Bernalillo County, New Mexic	Southwest
Edinburg	Texas	78539	Hidalgo County, Texas	Southwest
Camden	New Jersey	08101	Camden County, New Jersey	East
Sioux Falls	South Dakota	57104	Lincoln County, South Dakota	Midwest
Lexington-Fayette	Kentucky	40511	Fayette County, Kentucky	South
Louisville	Kentucky	40231	Jefferson County, Kentucky	South
Fall River	Massachusetts	02720	Bristol County, Massachusett	East
Palmdale	California	93550	Los Angeles County, Californi	West
Sacramento	California	95813	Sacramento County, Californi	West
Sioux Falls	South Dakota	57104	Lincoln County, South Dakota	Midwest
Austin	Texas	78710	Travis County, Texas	Southwest
Quincy	Massachusetts	02169	Norfolk County, Massachuset	East
Roswell	Georgia	30075	Fulton County, Georgia	South
Oakland	California	94612	Alameda County, California	West
Bellflower	California	90706	Los Angeles County, Californi	West
Phoeniv	Arizona	95026	Maricona County Arizona	Southweet

Modello

Ottimizzazione

Remarks

Gradient Descent Example

Gradient Descent Example

$$g_1(x_n|w) = g_1 \left(\sum_{j=0}^J w_{1j}^{(2)} \cdot h_j \left(\sum_{i=0}^I w_{ji}^{(1)} \cdot x_{i,n} \right) \right)$$

$$E(w) = \sum_{n=1}^{N} (t_n - g_1(x_n, w))^2$$

$$\frac{\partial E(w)}{\partial w_{3,5}^{(1)}} = \frac{\partial \sum_{n=1}^{N} (t_n - g_1(x_n, w))^2}{\partial w_{3,5}^{(1)}} = \sum_{n=1}^{N} \frac{\partial (t_n - g_1(x_n, w))^2}{\partial w_{3,5}^{(1)}} = -2 \sum_{n=1}^{N} (t_n - g_1(x_n, w)) \frac{\partial g_1(x_n, w)}{\partial w_{3,5}^{(1)}}$$

$$\frac{\partial g_1(x_n, w)}{\partial w_{3,5}^{(1)}} = \frac{\partial g_1\left(\sum_{j=0}^J w_{1j}^{(2)} \cdot h_j(.)\right)}{\partial w_{3,5}^{(1)}} = g_1'(x_n, w) \cdot \frac{\partial \sum_{j=0}^J w_{1j}^{(2)} \cdot h_j(.)}{\partial w_{3,5}^{(1)}} = g_1'(x_n, w) \cdot w_{1,3}^{(2)} \cdot \frac{\partial h_3\left(\sum_{i=0}^J w_{3i}^{(1)} \cdot x_{i,n}\right)}{\partial w_{3,5}^{(1)}}$$

$$\frac{\partial h_3\left(\sum_{i=0}^I w_{3i}^{(1)} \cdot x_{i,n}\right)}{\partial w_{3,5}^{(1)}} = h_3' \left(\sum_{i=0}^I w_{3,i}^{(1)} \cdot x_{i,n}\right) \frac{\partial \sum_{i=0}^I w_{3,i}^{(1)} \cdot x_{i,n}}{\partial w_{3,5}^{(1)}} = h_3' \left(\sum_{i=0}^I w_{3,i}^{(1)} \cdot x_{i,n}\right) x_{5,n}$$

$$\frac{\partial E(w)}{\partial w_{3,5}^{(1)}} = -2\sum_{n=0}^{N} \left(t_n - g_1(x_n, w)\right) g_1'(x_n, w) w_{1,3}^{(2)} h_3' \left(\sum_{i=0}^{I} w_{3,i}^{(1)} \cdot x_{i,n}\right) x_{5,n}$$

Applicazioni

Classification

A quale "gruppo" / "classe" appartiene il mio dato?

- Sano / Malato
- Good / Bad

You can't post, comment or use Messenger for 30 days

This is because you previously posted something that didn't follow our Community Standards.

This post goes against our standards on harassment and bullying, so only you can see it.

Top Fan

Rob Jarrett

Greg Morgan Lol you think these issues are only in liberal areas? What a small mind you have.

Errore / Loss

Single-Class Classification

$$E = y - \hat{y}$$

Multi-Class Classification

$$CE = -\sum_{i=1}^{i=N} y_i \cdot log(\widehat{y}_i)$$

Regression

Quale valore (continuo) è associato al mio dato?

Errore / Loss

$$MSE = \frac{1}{N} \sum_{i=1}^{i=N} (y_i - \widehat{y}_i)^2$$

$$MSE = \frac{1}{3} [(y_1 - \widehat{y}_1)^2 + (y_2 - \widehat{y}_2)^2 + (y_3 - \widehat{y}_3)^2]$$

Detection

Dove è quello che cerco? (approssimativamente)

Segmentation

Dove è quello che cerco? (precisamente)

Errore / Loss

Generation

"Pope Francis swagging in a white puffer jacket"

Discriminative Al

Generative Al

Big Input -> Small Output

Small Input → Big Output

HyperParameters

Parameters

- Internal to the model
- Estimated from the data
- Required by the model
- Not set manually by the practitioner

Example of model parameters:

The weights

HyperParameters

- External to the model
- Cannot be estimated from the data
- Tuned for model predictions
- Set manually by the practitioner.

Examples of model parameters:

- The learning rate
- The number of hidden layers
- The batch size

Activation Function

$$y = x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3 + x_4 \cdot w_4 + x_5 \cdot w_5$$

$$z = x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3 + x_4 \cdot w_4 + x_5 \cdot w_5$$

$$y = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-(x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3 + x_4 \cdot w_4 + x_5 \cdot w_5)}$$

Activation Functions

Overfitting e Ceneralizzazione

$$(1+3)^3 = ?$$

$$(1+3)^3 = 4^3 = 64$$

$$(A+B)^{3} =$$

$$= (A+B)(A+B)(A+B) =$$

$$= (A^{2} + AB + AB + B^{2})(A+B) =$$

$$= (A^{2} + 2AB + B^{2})(A+B) =$$

$$= A^{3} + A^{2}B + 2A^{2}B + 2AB^{2} + AB^{2} + B^{3} =$$

$$= A^{3} + 3A^{2}B + 3AB^{2} + B^{3}$$

$$= 64$$

Dataset Splitting

Imparo con: 70%

Controllo con:30%

abc Cust City 🕶	abc Cust State ▼	abc Cust Zip Code ▼	abc Cust County ▼	abc Cust Region
Costa Mesa	California	92628	Orange County, California	West
Edinburg	Texas	78539	Hidalgo County, Texas	Southwest
Vancouver	Washington	98668	Clark County, Washington	West
El Paso	Texas	79910	El Paso County, Texas	Southwest
Columbus	Georgia	31908	Muscogee County, Georgia	South
Omaha	Nebraska	68108	Douglas County, Nebraska	Midwest
Mountain View	California	94035	Contra Costa County, Californ	West
Lincoln	Nebraska	68501	Lancaster County, Nebraska	Midwest
Tulsa	Oklahoma	74107	Osage County, Oklahoma	Southwest
Gastonia	North Carolina	28052	Gaston County, North Carolin	South
Newport News	Virginia	23501	Newport News City, Virginia	East
Dayton	Ohio	45401	Montgomery County, Ohio	Midwest
South Gate	California	90280	Los Angeles County, Californi	West
Birmingham	Alabama	35203	Jefferson County, Alabama	South
Sacramento	California	95813	Sacramento County, Californi	West
Dallas	Texas	75260	Dallas County, Texas	Southwest
Antioch	California	94509	Contra Costa County, Californ	West
Lubbock	Texas	79402	Lubbock County, Texas	Southwest
Bellflower	California	90706	Los Angeles County, Californi	West
St. Paul	Minnesota	55109	Ramsey County, Minnesota	Midwest
Mesquite	Texas	75149	Dallas County, Texas	Southwest
Rio Rancho	New Mexico	87124	Bernalillo County, New Mexic	Southwest
Edinburg	Texas	78539	Hidalgo County, Texas	Southwest
Camden	New Jersey	08101	Camden County, New Jersey	East
Sioux Falls	South Dakota	57104	Lincoln County, South Dakota	Midwest
Lexington-Fayette	Kentucky	40511	Fayette County, Kentucky	South
Louisville	Kentucky	40231	Jefferson County, Kentucky	South
Fall River	Massachusetts	02720	Bristol County, Massachusett	East
Palmdale	California	93550	Los Angeles County, Californi	West
Sacramento	California	95813	Sacramento County, Californi	West
Sioux Falls	South Dakota	57104	Lincoln County, South Dakota	Midwest
Austin	Texas	78710	Travis County, Texas	Southwest
Quincy	Massachusetts	02169	Norfolk County, Massachuset	East
Roswell	Georgia	30075	Fulton County, Georgia	South
Oakland	California	94612	Alameda County, California	West
Bellflower	California	90706	Los Angeles County, Californi	West
Dhoeniv	Arizona	85026	Maricona County Arizona	Southweet

Quanti neuroni? Quanti layers? Quale Loss? Quale LR? Quale Batch Size? Quale attivazione?