Mini Lesson #1

Computer Number Systems & Recursive Functions

Binary & Decimal Number System

Have you heard of computer number systems before?

Systems that relate <u>unique symbols to specific values</u>, and this technique is used to <u>represent</u> and <u>manipulate numbers</u> in computer science.

A number system must have unique symbols for every value, be consistent, provide comparable values, and be easily reproducible. No repeats!

What number systems do computers use?

- Decimal (Base 10)
- Binary (Base 2)
- Octal (Base 8)
- Hexadecimal (Base 16)

Decimal (Base 10)*

In this system we use numbers from 0 to 9 and form other numbers with them. They are integers as we know them.

0123456789

*Base 10 means writing numbers using 10 different digits.

Binary (Base 2)

Computers use the system which consists of 0 and 1 to do their operations. 0 means closed (false), 1 means open (true), they make up many combinations with them to do their transactions.

How do we count in binary?

0
1 (the moment you get to 11, it
10 is like when you go from 9,
11 which zero 0's to 10, you need
100 to start again at 1, except this
101 time with another 0).

Can you guess what would come next?

This is *counting* in binary, do you know how to *convert* any decimal number into binary without counting from the beginning?

Decimal numbers are base **10**, binary numbers are base **2**.

$$2^{0} = 1$$
 $2^{2} = 4$ $2^{4} = 16$ $2^{6} = 64$ $2^{1} = 2$ $2^{3} = 8$ $2^{5} = 32$ $2^{7} = 128$

Converting from Decimal to Binary

If you wanted to know what 10 is in binary...

- 1) What is the number you can raise 2 to that gives you the greatest possible number less than or equal to 10?
 - a) Answer: 3 $2^3 = 8$ (8 is the greatest possible number less than 10 for base 2)
- 2) Subtract the number from 10.
 - a) Answer: 2 10 - 8 = 2
- 3) What is the next number you can raise 2 to that gives you the greatest possible number less than or equal to 2 now?
 - a) Answer: 1 $2^1 = 2$ (2 is less than or equal to 2)
- 4) Subtract that number from 2.
 - a) Answer: 02-2 = 0

It is good to visualize it this way:

$$2^3 \quad \frac{2^2}{2^2} \quad 2^1 \quad \frac{2^6}{2^6}$$

Whatever powers of 2 we don't use add a 0! Ignore the ones that are greater than 2³.

Answer: 1010

What number is this in decimal?

Answer: 202

Converting Letters to Binary

Every symbol and letter on a keyboard has a corresponding <u>ASCII value</u> (American Standard Code for Information Interchange)!

AS	SCII	Co	de:	Cha	rac	ter	to	Binary
0	0011	0000	o	0100	1111	m	0110	1101
1	0011	0001	P	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	0	0110	1111
3	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	s	0101	0011	q	0111	0001
5	0011	0101	T	0101	0100	r	0111	0010
6	0011	0110	σ	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	W	0101	0111	u	0111	0101
9	0011	1001	x	0101	1000	v	0111	0110
A	0100	0001	Y	0101	1001	w	0111	0111
В	0100	0010	z	0101	1010	ж	0111	1000
C	0100	0011	a	0110	0001	Y	0111	1001
D	0100	0100	b	0110	0010	z	0111	1010
E	0100	0101	c	0110	0011		0010	1110
F	0100	0110	đ	0110	0100	,	0010	0111
G	0100	0111	e	0110	0101		0011	1010
н	0100	1000	£	0110	0110	,	0011	1011
I	0100	1001	g	0110	0111	?	0011	1111
J	0100	1010	h	0110	1000	1	0010	0001
K	0100	1011	I	0110	1001	,	0010	1100
L	0100	1100	j	0110	1010		0010	0010
M	0100	1101	k	0110	1011	(0010	1000
N	0100	1110	1	0110	1100)	0010	1001
						space	0010	0000

What do you think "CS" would be in binary?

Clue: Check out the ASCII Table on GC if you haven't already!

Solution

- 1) Figure out what "CS" is in ASCII code.
- 2) Take those numbers and convert them to binary.

 $\begin{array}{ccc} 67 & 83 \\ 2^6...2^1 2^0 & 2^6...2^4...2^1 2^0 \\ \hline 1000011 & 1010011 \end{array}$

For example:

$$72-64=8-8=0$$

$$105-64=41-32=9-8=1-1=0$$

$$"Hi" => "H" "i" => 72 105 => 72 = 26, which is 64, + 23, which is 8; 105 = 26 + 25, which 32, +23 + 20 => 26 $\frac{2^5}{2^4}$ 2³ $\frac{2^2}{2^4}$ 2⁶ 2⁵ $\frac{2^4}{2^3}$ 2⁶ 2⁵ $\frac{2^4}{2^3}$ 2⁶ 2⁵ $\frac{2^4}{2^3}$ 2⁶ 2⁵ $\frac{2^4}{2^3}$ 2⁶ 2⁷ 2⁷ 2⁸ 2¹ 2⁰

$$1 0 0 1 0 0 0 1 1 0 0 0 1$$$$