Licu Mihai George Grupa 162 Saptamana 01

Notite lab01

Semnal logic (buffer) Normal open apasat 1 on (Repetor) Normal close apasat 1 off (Inversor)

NOT gate = 1 normal close; A'

AND gate = 2 normal open; A.B = A AND B

OR gate = 2 normal open; A+B = A OR B

Tabel de adevar lab01

Tabelul 1. Functie 3 variabile Y=(A+B).C'

Α	В	С	A+B	C'	(A+B).C'	Υ
0	0	0	0	1	0	0
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	0	0

Tabel 2. Functie cu 4 variabile: Y=(A+B).(C+D')

A	В	С	D	A+B	D'	C+D'	(A+B).(C+D')	Υ
0	0	0	0	0	1	1	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	0	0
0	1	0	0	1	1	1	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	1	1	1	1	1
0	1	1	1	1	0	1	1	1
1	0	0	0	1	1	1	1	1
1	0	0	1	1	0	0	0	0
1	0	1	0	1	1	1	1	1
1	0	1	1	1	0	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	0	0	0	0
1	1	1	0	1	1	1	1	1
1	1	1	1	1	0	1	1	1

Circuite Wronex lab01

Proiectare Logica Saptamana 02

Tema 1. Numere Intregi. Copletati tabelul de mai jos

Nr. initial	Baza initiala	Baza finala	Nr. final
236	10	2	11101100
		4	3230
		8	354
		16	ec
4507	8	2	100101000111
		4	211013
		10	2375
		16	947
1fda	16	2	0001111111011010
		4	01333122
		8	17732
		10	8154
111001010110	2	4	321112
		8	7126
		10	3670
		16	e56

Numar (Cat anterior)	Impartitor (baza)	Rest
236	2	0
118	2	0
59	2	1
29	2	1
14	2	0
7	2	1
3	2	1
12	2	1

4507₈ = 100 101 000 111

4507₈ => 7 * 8^0 + 0 + 5 * 8^2 + 4* 8^3

1fda₁₆ = 0001 1111 1101 1010

1fda₁₆ => 10* 16^0 + 13* 16 ^1 + 15* 16^2 + 1* 16^3

 $111001010110_2 => 2^1 + 2^2 + 2^4 + 2^6 + 2^9 + 2^{10} + 2^{11}$

Tema 2. Numere subunitare. Copletati tabelul de mai jos

Baza initiala	Baza finala	Numar initial	Numar final	Nr cifre dupa virgula
10	2	0.723	0.1011100	7
10	3	0.903	0.2201010	7
10	8	0.811	0.63716	5
10	16	0.523	0.85e35	5
10	7	0.604	0.41411	5
10	5	0.0452	0.01031	5
2	10	0.01011	0.34375	4
3	16	0.201	0.b42	3
5	8	0.3402	0.60660	5
7	14	0.5604	0.ba47d	5
8	10	0.4027	0.50561	5

 $^{0.01011}_2 => 1 * 1/4 + 1 * 1/16 + 1 * 1/32 = 0.34375_{10}$

 $^{0.4027}_8 \Rightarrow 4*1/8 + 2*1/512 + 7*1/4096 = 0.505615234375_{10}$

Numar (Cat anterior)	Partea intreaga
0.723*2	1
0.446*2	0
0.892*2	1
0.784*2	1
0.568*2	1

 $^{0.201}_3 \Rightarrow 2*1/3 + 1*1/27 = 0.703703703..._{10}$

 $^{0.3402}_5 \Rightarrow 3*1/5 + 4*1/25 + 2*1/625 = 0.7632_{10}$

 $^{0.5604}_7 \Rightarrow 5*1/7 + 6*1/49 + 4*1/2401 = 0.8384006663890045814244..._{10}$

0.136*2	0
0.272	0

Numar (Cat anterior)	Partea intreaga
0.903*3	2
0.709*3	2
0.127*3	0
0.381*3	1
0.143*3	0
0.429*3	1
0.287*3	0

Numar (Cat anterior)	Partea intreaga
0.811*8	6
0.488*8	3
0.904*8	7
0.232*8	1
0.856*8	6

Numar (Cat anterior)	Partea intreaga
0.523*16	8
0.368*16	5
0.888*16	е
0.208*16	3
0.328*16	5

Numar (Cat anterior)	Partea intreaga
0.604*7	4
0.228*7	1
0.596*7	4
0.172*7	1
0.204*7	1

Numar (Cat anterior)	Partea intreaga
0.0452*5	0
0.226*5	1
0.13*5	0
0.65*5	3
0.25*5	1

Numar (Cat anterior)	Partea intreaga
0.703703703*16	b
0.259259248*16	4
0.148147968*16	2

Numar (Cat anterior)	Partea intreaga
0.7632*8	6
0.1056*8	0
0.8448*8	6
0.7584*8	6
0.0672*8	0

Numar (Cat anterior)	Partea intreaga
0.8384006663890045 814244*14	b
0.7376093294460641 399416*14	a
0.3265306122448979 591824*14	4
0.5714285714285714 285536*14	7
0.99999999999999 997504*14	d

Tema 3. Complementi. Completati tabelul urmator.

Numar <i>X</i>	Baza b	Dim reg	$[X]_{b-1}$	$[X]_{b}$
312	10	3	687	688
10101	2	6	101010	101011
721	8	4	7056	7057
dca	16	4	f235	f236
123	4	4	3210	3211
485	10	4	9514	9515
361	8	5	77416	77417
1011	2	6	110100	110101
1ac2	16	5	fe53d	fe53e
220	4	5	33113	33120

Tema 4. Demonstrati identitatile folosind metoda tabelului de adevar:

•
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

•
$$A + A \cdot B = A$$
 si duala sa $A \cdot (A + B) = A$

•
$$A + A \cdot B' = A$$
 si duala sa $A \cdot (A + B') = A$

•
$$A \cdot C + B \cdot C \equiv A \cdot C + B \cdot C + A \cdot B$$

•
$$C + ABC' + AB = C + ABC'$$

•
$$C + ABC' = C + AB$$

Tabelele trebuie sa le construiti singuri.

Metoda tabelului de adevar folosit pentru demonstrarea identitatilor logice

Tema. Demonstrati identitatea: $A + (B \cdot C) = (A + B) \cdot (A + C)$

Expresia din stanga egalitatii este: $A + (B \cdot C)$

Expresia din dreapta egalitatii este: $(A + B) \cdot (A + C)$

A	В	С	B.C	Expr. stang a	Expr. dreapt a	A+B	A+C
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

•
$$A + A \cdot B = A$$

Α	В	A.B	Expr. stanga	Expr. dreapta
0	0	0	0	0
0	1	0	0	0
1	0	0	1	1
1	1	1	1	1

• si duala sa $A \cdot (A + B) = A$

$$A \cdot (A + B) = A$$

Α	В	A+B	Expr. stanga	Expr. dreapta
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	1	1

• $A + A \cdot B' = A$

Α	В	B'	A.B'	Expr. stanga	Expr. dreapta
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	1	1	1
1	1	0	0	1	1

• si duala sa $A \cdot (A + B') = A$

Α	В	B'	A+B' Expr. stanga		Expr. dreapta
0	0	1	1	0	0
0	1	0	0	0	0
1	0	1	1	1	1
1	1	0	1	1	1

•
$$A \cdot C + B \cdot C \equiv A \cdot C + B \cdot C + A \cdot B$$

A	В	С	C,	B.C'	A.C	Expr. stang a	Expr. dreapt a	A.B
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	1	1	0	1	1	0
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	1	1	1	0
1	1	0	1	1	0	1	1	1
1	1	1	0	0	1	1	1	1

• C + ABC' + AB = C + ABC'

A	В	С	C'	A.B.C'	A.B	Expr. stang a	Expr. dreapt a
0	0	0	1	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	1	0	0	0	0
0	1	1	0	0	0	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1
1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	1

•
$$C + ABC' = C + AB$$

A	В	С	C'	A.B.C'	A.B	Expr. stang a	Expr. dreapt a
0	0	0	1	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	1	0	0	0	0
0	1	1	0	0	0	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1
1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	1

Tema pentru acasa Lab 02:

Convertiti numerele:

- 133_{10} in baza 2 = 10000101_2
- $3d7_{16}$ in baza 8 = 0011 1101 0111₂ = 1727
- $3d7_{14}$ in baza $10 = 7 * 14^{0} + 13*14^{1} + 3*14^{2} = 777$
- un_{32} in baza 14 = 30* 32^0 + 23* 32^1 = 766₁₀ = 3ca₁₄
- $3d3_{16}$ in baza $6 = 3 * 16^{0} + 13* 16^{1} + 3*16^{2} = 979_{10} = 4311_{6}$
- $7a1_{11}$ in baza $4 = 1 + 10 * 11^1 + 7*11^2 = 958_{10} = 32332_4$
- auu_{32} in baza 15 = 30* 32^0 + 30*32^1 + 10*32^2 = 11230_{10} = 34da_{15}

Numar (Cat anterior)	Impartitor (baza)	Rest
133	2	1
66	2	0
33	2	1
16	2	0
8	2	0
4	2	0
2	2	0
1	2	1

Numar (Cat anterior)	Impartitor (baza)	Rest
766	14	а
54	14	С
3	14	3

Numar (Cat anterior)	Impartitor (baza)	Rest
979	6	1
163	6	1
27	6	3
4	6	4

Numar (Cat anterior)	Impartitor (baza)	Rest
958	4	2
239	4	3
59	4	3
14	4	2
3	4	3

Numar (Cat anterior)	Impartitor (baza)	Rest
11230	15	а
748	15	d
49	15	4
3	15	3

Baza initiala	Baza finala	Numar initial	Numar final	Nr cifre dupa virgula
10	2	0.723	0.1011100	7
10	3	0.1903	0.0120102	7

10	8	0.98	0.76560	5
10	16	0.2523	0.4096b	5
10	7	0.763	0.52246	5
10	5	0.545	0.23303	5

Numar (Cat anterior)	Partea intreaga
0.1903*3	0
0.5709*3	1
0.7127*3	2
0.1381*3	0
0.4143*3	1
0.2429*3	0
0.7287*3	2

Numar (Cat anterior)	Partea intreaga
0.98*8	7
0.84*8	6
0.72*8	5
0.76*8	6
0.08*8	0

Numar	Partea
(Cat anterior)	intreaga
0.2523*16	4

0.0368*16	0
0.5888*16	9
0.4208*16	6
0.7328*16	b

Numar (Cat anterior)	Partea intreaga
0.763*7	5
0.341*7	2
0.387*7	2
0.709*7	4
0.963*7	6

Numar (Cat anterior)	Partea intreaga
0.545*5	2
0.725*5	3
0.625*5	3
0.125*5	0
0.625*5	3

Tema curs 1.1 - 1.12 pdf

1.1 a)
$$10101101_2 = 2^0 + 2^2 + 2^3 + 2^5 + 2^7 = 173$$

b)
$$110110.1_2 = 1/2 + 2^1 + 2^2 + 2^4 + 2^5 = 54.5$$

c)
$$1.00101_2 = 2^0 + 1/8 + 1/32 = 1.15625$$

c)
$$16.432_8 = 6*8^0 + 8^1 + 4*1/8 + 3*1/64 + 2*1/512 = 14.55078125$$

1.3 a)
$$145_{16} = 5 + 4 * 16^1 + 16^2 = 325$$

1.4 a)122 = 1111010

$$0.9 *2 = 1$$

$$0.8 *2 = 1$$

$$0.6 *2 = 1$$

$$0.2 *2 = 0$$

$1.5 \text{ a})522 = 1012_8$

Numar (Cat anterior)	Impartitor (baza)	Rest
522	8	2
65	8	1
8	8	0
1	8	1

b)1119 = 2137₈

Numar	Impartitor	Rest
	· ·	

(Cat anterior)	(baza)	
1119	8	7
139	8	3
17	8	1
2	8	2

c) 129.25 = 201.2₈

Numar (Cat anterior)	Impartitor (baza)	Rest
129	8	1
16	8	0
2	8	2

Numar	Partea	
(Cat anterior)	intreaga	
0.25*8	2	

1.6 a) 1145 = 479₁₆

Numar (Cat anterior)	Impartitor (baza)	Rest
1145	16	9
71	16	7
4	16	4

b) 2421 = 975₁₆

Numar (Cat anterior)	Impartitor (baza)	Rest
2421	16	5
151	16	7

0	16	0
9	10	9

c)192.86 = $c0.dc28..._8$

Numar (Cat anterior)	Impartitor (baza)	Rest
192	16	0
12	16	С

Numar (Cat anterior)	Partea intreaga
0.86*16	d
0.76*16	С
0.16*16	2
0.56*16	8

$$(5b^1 + 1b^0)/(3*b^0) = 1*b^1 + 3*b^0$$

$$5b+1 = 3b + 9$$

$$2b + 3 + 4b + 4 + b + 4 + 3b + 2 = 2b^2 + 2b + 3$$

$$-2b^2 + 8b + 10 = 0 = -1$$
; nu coresp

$$b2 = 5$$
; coresp

d)
$$sqrt(51) = 6$$

$$sqrt(5b + 1) = 6$$
; $b>0 => 5b+1 > 1$

$$5b+1 = 36$$

1.8 a)
$$361_{10} = 551_b$$

Licu Mihai George Grupa 162 Saptamana 03

Tabele de adevar cu XOR

$$1.(A+B)(A+C) = A+B.C$$

6.
$$(A \oplus B)' = (A' + B)(A + B')$$

$$1.(A+B)(A+C) = A+B.C$$

Α	В	С	A+B	A+C	Stanga	Dreapta	B.C
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

2. A⊕B = A'B + AB'

Α	В	A⊕B	Stanga	Dreapta	A'B	AB'
0	0	0	0	0	0	0
0	1	1	1	1	1	0
1	0	1	1	1	0	1

1	1	0	0	0	0	0

3. (A⊕B)' = AB + A'B'

Α	В	A⊕B	(A ⊕ B)′	Stanga	Dreapta	AB	A'B'
0	0	0	1	1	1	0	1
0	1	1	0	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	1	1	1	1	0

4. A⊕B⊕AB = A+B

Α	В	AB	A⊕B	Stanga	Dreapta
0	0	0	0	0	0
0	1	0	1	1	1
1	0	0	1	1	1
1	1	1	0	1	1

5. A(B⊕C) = AB⊕AC

Α	В	С	B⊕C	Stanga	Dreapta	АВ	AC
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	1	0	1
1	1	0	0	0	1	1	0
1	1	1	0	0	0	1	1

Α	В	A⊕B	Stanga	Dreapta	A'+B	A+B'
0	0	0	1	1	1	1
0	1	1	0	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	1

Wronex XOR

2.(A⊕B) = AB+A'B'

3. A⊕B⊕AB = A+B

FCC si **FCD**

f=01001110

i	А	В	С	f	mintermeni (m _i)	Maxtermeni (M _i)
0	0	0	0	0	A'B'C'	A+B+C
1	0	0	1	1	A'B'C	A+B+C'
2	0	1	0	0	A'BC'	A+B'+C
3	0	1	1	0	A'BC	A+B'+C'
4	1	0	0	1	AB'C'	A'+B+C
5	1	0	1	1	AB'C	A'+B+C'
6	1	1	0	1	ABC'	A'+B'+C
7	1	1	1	0	ABC	A'+B'+C'

 $FCD = \sum m(1,4,5,6) = A'B'C + AB'C' + AB'C + ABC'$

 $\mathsf{FCC} = \mathsf{\Pi}\mathsf{M}(0,2,3,7) = (\mathsf{A} + \mathsf{B} + \mathsf{C})(\mathsf{A} + \mathsf{B}' + \mathsf{C})(\mathsf{A} + \mathsf{B}' + \mathsf{C}')(\mathsf{A}' + \mathsf{B}' + \mathsf{C}')$

f=01110111

$$FCD = \sum m(1,2,3,5,6,7) = A'B'C + A'BC' + A'BC + AB'C + ABC' + ABC'$$

$$FCC = \prod M(0,4) = (A+B+C)(A'+B+C)$$

f= 01011010

$$FCD = \sum m(1,3,4,6) = A'B'C + A'BC + AB'C' + ABC'$$

FCC =
$$\prod M(0,2,5,7) = (A+B+C)(A+B'+C)(A'+B+C')(A'+B'+C')$$

f=01101101

$$FCD = \sum m(1,2,4,5,7) = A'B'C + A'BC' + AB'C' + AB'C + ABC$$

FCC =
$$\prod M(0,3,6) = (A+B+C)(A+B'+C')(A'+B'+C)$$

f=10010101

$$FCD = \sum m(0,3,5,7) = A'B'C' + A'B'C + AB'C + ABC$$

FCC =
$$\prod M(1,2,4,6) = (A+B+C')(A+B'+C)(A'+B+C)(A'+B'+C)$$

f=11111011

$$FCD = \sum m(0,1,2,3,4,6,7) = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + ABC' + ABC'$$

FCC =
$$\Pi$$
M(5)= A'+B+C'

Tema curs 2.1 - 2.14 pdf

$$2.1 f1(A, B, C, D) = B + BCD + B'CD + AB + A'B + B'C => B + B'CD + AB + A'B + B'C =$$

$$B + CD + AB + A'B + B'C = B + C + CD + AB + A'B = B + C + AB + A'B = B + C + B(A+A') =$$

B + C

$$f2(A,B,C,D,E) = (AB + C + D)(C'+D)(C'+D)(C' + D + E') = (AB + C + D)(C'+D)(C' + D + E')$$

=(AB + C +D)(C'+D)= ABC' + CC' +DC' +ABD + CD + DD = ABC' + DC + ABD + CD + D = ABC' + D + ABD = ABC' + D

 $f3(A,B,C) = BC'(C+AC') + (A'+C')(A'B+A'C) = B(C'C) + BAC' + A'B + A'C+A'BC' \\ +A'(CC') = BAC' + A'(B+C+BC') = BAC' + A'(B+(C+B)(C+C')) = BAC' + A'(B+C) = BAC' + A'B + A'C' \\ +A'C$

Licu Mihai George Grupa 162 Saptamana 04

Conversii binary64

```
x=-54.375 \Rightarrow semn = 1

er = [log(|x|)/log2] = 5

exp = er + 1023 = 1028 = 10000000100

man = |x|/2^er - 1 = 0.69921875

x in binary64 = 11000000010010110010...
```

Numar (Cat anterior)	Partea intr eag a
0.69921875* 2	1
0.3984375*2	0
0.796875*2	1
0.59375*2	1
0.1875*2	0
0.375*2	0
0.75*2	1
0.5*2	0

```
x=-5.875 => semn = 1

er = [log(|x|)/log2] = 2

exp = er + 1023 = 1025 = 10000000001

man = |x|/2^er - 1 = 0.46875

x = -5.875 => semn = 1

exp = -5.875 => se
```

Numar (Cat anterior)	Partea intr eag a
0.46875*2	0
0.9375*2	1
0.875*2	1
0.75*2	1

0.5*2	0
0.5*2	0

x=-23.75 => semn = 1 er = [log(|x|)/log2] = 4 exp = er + 1023 = 1027 = 10000000011 $man = |x|/2^er - 1 = 0.484375$ x = -23.75 = 0.484375x = -23.75 = 0.484375

Numar (Cat anterior)	Partea intr eag a
0.484375*2	0
0.96875*2	1
0.9375*2	1
0.875*2	1
0.75*2	1
0.5*2	1

 $x=-11.6875 \Rightarrow semn = 1$ er = [log(|x|)/log2] = 3 exp = er + 1023 = 1026 = 10000000010 $man = |x|/2^er - 1 = 0.4609375$ x in binary64 = 1100000000100111011

Numar (Cat anterior)	Partea intr eag a
0.4609375*2	0
0.921875*2	1
0.84375*2	1
0.6875*2	1
0.375*2	0
0.75*2	1
0.5*2	1

x=1.7578125 => semn = 0er = [log(|x|)/log2] =0

Numar (Cat anterior)	Partea intr eag a
0.7578125*2	1
0.515625*2	1
0.03125*2	0
0.0625*2	0
0.125*2	0
0.25*2	0
0.5*2	1

 $x=2.421875 \Rightarrow semn = 0$ er = [log(|x|)/log2] = 1 exp = er + 1023 = 1024 = 10000000000 $man = |x|/2^er - 1 = 0.2109375$ x in binary64 = 01000000000000110110

Numar (Cat anterior)	Partea intr eag a
0.2109375*2	0
0.421875*2	0
0.84375*2	1
0.6875*2	1
0.375*2	0
0.75*2	1
0.5*2	1
0	0

x = -20.4375 => semn = 1 er = [log(|x|)/log2] = 4 exp = er + 1023 = 1027 = 10000000011 $man = |x|/2^er - 1 = 0.27734375$ x in binary64 = 11000000001101000111

Numar (Cat anterior)	Partea intr eag a
0.27734375* 2	0
0.5546875*2	1
0.1093755*2 5	0
0.218751*2	0
0.437502*2	0
0.875004*2	1
0.750008*2	1
0.500016*2	1

x=-17.4375 => semn = 1 er = [log(|x|)/log2] = 4 exp = er + 1023 = 1027 = 10000000011 $man = |x|/2^er - 1 = 0.08984375$ x in binary64 = 11000000001100010111

Numar (Cat anterior)	Partea intr eag a
0.08984375* 2	0
0.1796875*2	0
0.359375*2	0

0.71875*2	1
0.4375*2	0
0.875*2	1
0.75*2	1
0.5*2	1

x = -28.375 = x = 1 er = [log(|x|)/log2] = 4 exp = er + 1023 = 1027 = 10000000011 $man = |x|/2^er - 1 = 0.7734375$ x = x = x = x = x = 10000000011110011

Numar (Cat anterior)	Partea intr eag a
0.7734375*2	1
0.546875*2	1
0.1875*2	0
0.375*2	0
0.75*2	1
0.5*2	1

x=-52.75 => semn = 1 er = [log(|x|)/log2] = 5 exp = er + 1023 = 1028 = 10000000100 $man = |x|/2^er - 1 = 0.6484375$ x in binary64 = 1100000001001010011

Numar (Cat anterior)	Partea intr eag a
0.6484375*2	1
0.296875*2	0
0.59375*2	1
0.1875*2	0
0.375*2	0
0.75*2	1

0.5*2	1
-------	---

 $x=-6.4375 \Rightarrow semn = 1$ er = [log(|x|)/log2] = 2 exp = er + 1023 = 1025 = 10000000001 $man = |x|/2^er - 1 = 100000000001100111$

Numar (Cat anterior)	Partea intr eag a
0.609375*2	1
0.21875*2	0
0.4375*2	0
0.875*2	1
0.75*2	1
0.5*2	1

x = -21.375 = semn = 1 er = [log(|x|)/log2] = 4 exp = er + 1023 = 1027 = 10000000011 $man = |x|/2^er - 1 = 0.3359375$ x in binary64 = 1100000000110101011

Numar (Cat anterior)	Partea intr eag a
0.3359375*2	0
0.671875*2	1
0.34375*2	-0
0.6875*2	1
0.375*2	0
0.75*2	1
0.5*2	1

x=47.9375 => semn =0er = [log(|x|)/log2] = 5 exp = er + 1023 = 1028 =10000000100

man = $|x|/2^er - 1 = 0.498046875$ x in binary64 = 01000000010001111111

Numar (Cat anterior)	Partea intr eag a
0.498046875 *2	0
0.99609375* 2	1
.9921875*2	1
.984375*2	1
.96875*2	1
.875*2	1
0.75*2	1
0.5*2	1

 $x=7.6875 \Rightarrow semn = 0$ er = [log(|x|)/log2] = 2 exp = er + 1023 = 1025 = 10000000001 $man = |x|/2^er - 1 = 0.921875$ x = 10000000000001111011

Numar (Cat anterior)	Partea intr eag a
0.921875*2	1
0.84375*2	1
0.6875*2	1
0.375*2	0
0.75*2	1
0.5*2	1

```
x = -54.375 => semn = 1

x = -1 * (2^5 + 2^4 + 2^2 + 2^1 + 2^{-1} + 2^{-2})

x = -1 * 2^5(2^0 + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-6} + 2^{-7})

x = -1 * 2^{(1028-1023)}(2^0 + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-6} + 2^{-7})
```

1100000001001011011

```
x = -5.875
x = -1 * (2^2 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3})
x = -1 * 2^2(2^0 + 2^{2} + 2^{3} + 2^{4} + 2^{5})
x = -1 * 2^{(1025-1023)}(2^0 + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5})
11000000000101111
x = -23.75
x = -1 * (2^4+2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2})
x = -1 * 2^{(1027-1023)}(+2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6})
110000000011011111
x = -11.6875
x = -1 * (2^3 + 2^1 + 2^0 + 2^{-1} + 2^{-3} + 2^{-4})
x = -1 * 2^{(1026-1023)}(2^0 + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-6} + 2^{-7})
1100000000100111011
x = 1.7578125
x = 1 * (2^0 + 2^{-1} + 2^{-2} + 2^{-7})
x = 1 * 2^{(1023-1023)}(2^0 + 2^{-1} + 2^{-2} + 2^{-7})
0011111111111110001
x = 2.421875
x = 1 * (2^1 + 2^2 + 2^3 + 2^5 + 2^6)
x = 1*2^{(1024-1023)}(2^0 + 2^{-3} + 2^{-4} + 2^{-6} + 2^{-7})
x= 010000000000011011
x = -20.4375
x = -1*(2^4 + 2^2 + 2^{-2} + 2^{-3} + 2^{-4})
x = -1* 2^{(1-27-1023)}(2^0 + 2^{-2} + 2^{-6} + 2^{-7} + 2^{-8})
11000000001101000111
x = -17.4375
x = -1*(2^4 + 2^1 + 2^2 + 2^3 + 2^4)
x = -1* 2^{(1027-1023)}(2^0 + 2^{-2} + 2^{-6} + 2^{-7} + 2^{-8})
11000000001100010111
x = -28.375
x = -1 * (2^2 + 2^3 + 2^4 + 2^{-2} + 2^{-3})
```

$x = -1 * 2^{1027-1023}(2^{2} + 2^{1} + 2^{0} + 2^{6} + 2^{7})1100000000111100011$

Tabela de adevar

Α	В	С	F(ABC)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Tabele de adevar

minterm = A'B'C + A'BC' + AB'C+ABC'maxterm = (A+B+C)(A+B'+C')(A'+B+C)(A'+B'+C')

Tabela de adevar

minterm = A'B'C' + A'BC + AB'C' + ABCmaxterm = (A+B+C')(A+B'+C)(A'+B+C')(A'+B'+C)

Tabela de adevar

minterm = ABC+A'BC'+A'BC'+A'B'C maxterm= (AB'C')(A'B'C')

Tabela de adevar				
Α	В	С	D	F (ABCD)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Tabela de adevar					
Α	В	С	D	F (ABCD)	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	1	
1	1	1	0	0	
1	1	1	1	1	

Tabela de adevar					
A	В	С	D	F (ABCD)	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	1	
1	1	1	1	0	

Tabela de adevar						
A	В	С	D	F (ABCD)		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	1		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	0		
0	1	1	1	0		
1	0	0	0	1		
1	0	0	1	1		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	0		
1	1	1	0	0		
1	1	1	1	0		

1. minterm = A'B'C'D+A'B'CD'+A'B'CD+A'BCD+AB'C'D+AB'CD'+AB'CD+ABCD'

maxterm = (A+B+C+D) (A+B'+C+D) (A+B'+C'+D') (A'+B+C+D) (A'+B'+C+D) (A'+B'+C+D')

2. minterm =

A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D+A'BCD+AB'C'D'+AB'C'D+AB'CD'+ABCD+ABC'D+ABCD

maxterm = (A+B'+C+D)(A+B'+C'+D)(A'+B'+C+D)(A'+B'+C'+D)

3. minterm =

A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+A'BCD+AB'C'D'+AB'CD'+ABC'D'+ABCD'

maxterm = (A+B+C+D')(A+B+C'+D')(A'+B+C+D')(A'+B'+C+D')(A'+B'+C'+D')4. minterm =

A'B'C'D'+A'B'CD'+A'BC'D'+A'BC'D+AB'C'D'+AB'CD'+AB'CD maxterm =

(A+B+C+D')(A+B+C'+D')(A+B'+C'+D)(A+B'+C'+D')(A'+B'+C+D)(A'+B'+C+D')(A'+B'+C'+D')

Diagrame Veitch - Karnaugh

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	0	0	0	0
C'D	01	1	0	0	1
CD	11	1	0	0	1
CD'	10	1	1	1	1

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	0	0	1
C'D	01	1	1	1	1
CD	11	1	1	1	1
CD'	10	1	0	0	1

A	В	С	D	F (ABCD)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

A	В	С	D	F (ABCD)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	1	1	1
C'D	01	0	1	0	0
CD	11	0	1	0	0
CD'	10	1	1	1	1

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	1	0	1
C'D	01	0	1	0	1
CD	11	0	0	0	1
CD'	10	1	0	0	1

Α	В	С	D	F (ABCD)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Α	В	С	D	F (ABCD)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Tabela de adevar

A	В	С	F(ABC)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Tabela de adevar

A B C F (ABC)							
Α	В	C	F (ABC)				
0	0	0	1				
0	0	1	0				
0	1	0	0				
0	1	1	1				
1	0	0	1				
1	0	1	0				
1	1	0	0				
1	1	1	1				

Tabela de adevar

Α	В	С	F (ABC)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

	AB	A'B'	A'B	AB	AB'
С		00	01	11	10
C'	0	0	1	1	0
С	1	1	0	0	1

	АВ	A'B'	A'B	AB	AB'
С		00	01	11	10
C'	0	1	0	0	1
C	1	0	1	1	0

	AB	A'B'	A'B	AB	AB'
С		00	01	11	10
C'	0	1	1	1	1
С	1	1	0	0	1

Implementari Wronex

Sumator 4 biti

Semiscazator

Scazator complet

Scazator 4 biti

Tabela de adevar

Α	В	С	F (ABC)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

	AB	A'B'	A'B	AB	AB'
С		00	01	11	10
C'	0	0	0	1	0
С	1	0	1	1	1

- 1.Se cere optimizarea FCD
- 2.Schema folosind simbolurile clasice
- 3.Transformarea schemei in schema NUMAI cu NANDuri

4 to 2 priority encoder

D3	D2	D1	D0	01	02	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	0	1	1	0	1	1
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	1
0	1	1	1	1	0	1
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

O1(D3,D2,D1,D0) = D3+D2 O0(D3,D2,D1,D0) = D3 + D2'.D1 V(D3,D2,D1,D0) = D3+D2+D1+D0

2 to 1 priority encoder

D1	D0	01	V
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	1

V(D1,D2) = D1 + D2 01 = D1

8 to 3 priority encoder

D7	D6	D5	D4	D3	D2	D1	D0	01	02	O ₃	V
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	Х	0	0	1	1
0	0	0	0	0	1	Х	Х	0	1	0	1
0	0	0	0	1	Х	Х	Х	0	1	1	1
0	0	0	1	Х	Х	Х	Х	1	0	0	1
0	0	1	Х	Х	Х	Х	Х	1	0	1	1
0	1	Х	Х	Х	Х	Х	Х	1	1	0	1
1	Х	Х	Х	Х	Х	Х	Х	1	1	1	1

16 to 4 priority encoder

Subjecte partial

Digi	Α	В	С	D	F(A,B,C,D
t)
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

				C + A	\'Β' + I	BD ; nr op = 6
	CD	C'D'	C'D	CD	CD'	
AB		00	01	11	10	
A'B'	00	1	1	1	1	
A'B	01	0	1	1	1	
AB	11	0	1	1	1	
AB'	10	0	0	1	1	

F = C + A'B' + BD

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	0	0	0
C'D	01	1	1	1	0
CD	11	1	1	1	1
CD'	10	1	1	1	1

$$F' = AB'C' + C'D'B$$

$$(F')' = F = (A'+B+C)(C+D+B')$$
 nr op = 7

M=(9,2,15,3,13,8,10,11,14,4,0,12)

Digi	Α	В	С	D	F(A,B,C,D		
t)		
0	0	0	0	0	0		
1	0	0	0	1	1		
3	0	0	1	0	0		
3	0	0	1	1	0		
4	0	1	0	0	0		
5	0	1	0	1	1		
6	0	1	1	0	1		
7	0	1	1	1	1		
8	1	0	0	0	0		
9	1	0	0	1	0		
10	1	0	1	0	0		
11	1	0	1	1	0		
12	1	1	0	0	0		
13	1	1	0	1	0		
14	1	1	1	0	0		
15	1	1	1	1	0		

	CD	C'D'	C'D	CD	CD'
AB		00	01	11	10
A'B'	00	0	1	0	0
A'B	01	0	1	1	1
AB	11	0	0	0	0
AB'	10	0	0	0	0

C'DA' + A'BC nr op = 2not 1or 4and = 7

F' = A + C'D' + B'C = 3not + 2or + 2and = 7

	CD	C'D'	C'D	CD	CD'
AB		00	01	11	10
A'B'	00	1	0	1	1
A'B	01	1	0	0	0
AB	11	1	1	1	1
AB'	10	1	1	1	1

(F')' = A'.(C+D).(B+C') = 2not 2or 2and = 6 m=(12,3,0,10,15,14,8,4,7,2,9,11)

Digi	Α	В	С	D	F(A,B,C,D
t)
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1

15 1 1 1 1 1 1

F = AB' + C'D' + CD + AC + B'C = 3not + 5and + 4or = 12op

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	1	1	1
C'D	01	0	0	0	1
CD	11	1	1	1	1
CD'	10	1	0	1	1

F' = A'C'D + BC'D + A'BCD' = 3not + 7and + 2or = 12op

F' = (C'D)(A'+B) + A'BCD' = 3not + 2or + 5and = 10op

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	0	0	0	0
C'D	01	1	1	1	0
CD	11	0	0	0	0
CD'	10	0	1	0	0

(F')' = (A+C+D').(B'+C+D').(A+B'+C'+D) = 3not + 2and + 7or = 12op

M = (12,5,1,13,9,10,14,3,15,7,2,6)

١.	12/0/1/10/2/10/11/0/10//					
	Digit	Α	В	С	D	F(A,B,C,D)
	0	0	0	0	0	1
	1	0	0	0	1	0
	2	0	0	1	0	0
	3	0	0	1	1	0
	4	0	1	0	0	1
	5	0	1	0	1	0
	6	0	1	1	0	0
	7	0	1	1	1	0
	8	1	0	0	0	1
	9	1	0	0	1	0
	10	1	0	1	0	0
	11	1	0	1	1	1
	12	1	0	0	0	0
	13	1	1	0	1	0
	14	1	1	1	0	0
	15	1	1	1	1	0

	AB	A'B'	A'B	AB	AB'
CD		00	01	11	10
C'D'	00	1	1	0	1
C'D	01	0	0	0	0
CD	11	0	0	0	1
CD'	10	0	0	0	0

C'D'A' + C'D'B' + AB'CD

2x mux 4

Inversor

Licu Mihai George Grupa 162 Saptamana 10

	В	B'	В
Α			
,	۹'	1	0
,	Δ	0	1

 $F_{10} = A'B' + AB = A \times B' = (A \times B)'$

	В	B'	В
Α			
<i>,</i>	۹'	1	0
	Д	1	1

 $F_{11} = A'B' + A$

	В	B'	В
Α			
<i>,</i>	۹'	0	0
,	Д	1	1

 $F_{01} = A$

	В	B'	В
Α			
,	۹'	0	0
	Д	0	1

 $F_{00} = AB$

A	В	С	F (ABC)
0	0	0	0
0	0	1	X
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Х
1	1	0	Х
1	1	1	0

$$F(ABC)_{000} = A'B$$

 $F(ABC)_{001} = A'B + ABC'$

$$F(ABC)_{010} = A'B + AB'C$$

 $F(ABC)_{011} = A'B + ABC' + AB'C$

 $F(ABC)_{100} = A'B + A'C$

 $F(ABC)_{101} = A'B + ABC' + A'B'C$

 $F(ABC)_{110} = A'B + B'C$

 $F(ABC)_{111} = A'B + BC' + B'C$

	AB	00	01	11	10
С					
0		0	1	Х	0
1	1 x		1	0	Х

A	В	С	F (ABC)
0	0	0	0
0	0	1	Х
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Х
1	1	0	X
1	1	1	1

$$F(ABC)_{000} = A'B + BC$$

$$F(ABC)_{001} = B$$

$$F(ABC)_{010} = A'B + AC$$

$$F(ABC)_{011} = B + AB'C$$

$$F(ABC)_{100} = A'B + BC + A'C$$

$$F(ABC)_{101} = A'C + B$$

$$F(ABC)_{110} = A'B + C$$

$$F(ABC)_{111} = B + C$$

	AB	00	01	11	10		
С							
()	0	1	Х	0		
1	1		1 x		1	1	х

Licu Mihai George Grupa 162 Saptamana 11

Z	Q2	Q1	Q0	D2	D1	D0	Z*
0	0	0	0	0	0	1	1
1	0	0	1	0	1	1	3
2	0	1	0	0	0	1	1
3	0	1	1	1	0	1	5
4	1	0	0	0	1	1	3
5	1	0	1	1	1	1	7
6	1	1	0	1	0	1	5
7	1	1	1	0	0	1	1

D2 = Q2`Q1Q0 + Q2Q1Q0` + Q2Q1'Q

D1 = Q1'Q0 + Q2Q1'

D0 = 1

Z	Q2	Q1	Q0	Q2*	Q1*	Q0*	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	1	0	X	0	X	1	Х
1	0	0	1	0	1	1	0	X	1	X	X	0
2	0	1	0	0	0	1	0	X	Χ	1	1	Х
3	0	1	1	1	0	1	1	X	Х	1	Х	0
4	1	0	0	0	1	1	Х	1	1	Х	1	Х
5	1	0	1	1	1	1	Х	0	1	Х	Х	0
6	1	1	0	1	0	1	Х	0	Х	1	1	Х
7	1	1	1	0	0	1	Х	1	Х	1	Х	0

J2= Q1Q0

K2=Q1 xnor Q0

J1= Q2+Q0

K1=1

J0=1

K0=0

0-7-2-0; 6-4-9-7; 15-13-9

N in	Q3	Q2	Q1	Q0	I3 !Q2	I2 Q0	I1 Q3	I0 !Q1	N out
6	0	1	1	0	0	0	0	0	0
13	1	1	0	1	0	1	1	1	7
14	1	1	1	0	0	0	1	0	2
6;	0	1	1	0	0	0	0	0	0;
15	1	1	1	1	0	1	1	0	6
7	0	1	1	1	0	1	0	0	4
0	0	0	0	0	1	0	0	1	9
13;	1	1	0	1	0	1	1	1	7
9	1	0	0	1	1	1	1	1	15
1	0	0	0	1	1	1	0	1	13
0;	0	0	0	0	1	0	0	1	9

bb de tip T 0-1-2-3-0; 4-5-1; 6-7-3;

0-1-2-3-0; 4-5-1; 6-7-3;

Nr in	Q2	Q1	Q0	Nr out	Q2	Q1	Q0	T2	T1	T0
0	0	0	0	1	0	0	1	0	0	1
1	0	0	1	2	0	1	0	0	1	1
2	0	1	0	3	0	1	1	0	0	1
3	0	1	1	0	0	0	0	0	1	1
4	1	0	0	5	1	0	1	0	0	1
5	1	0	1	1	0	0	1	1	0	0
6	1	1	0	7	1	1	1	0	0	1
7	1	1	1	3	0	1	1	1	0	0

T2 = Q2.Q0 T1 = Q2'.Q0

T0 = Q2' + Q0'

Tabela de excitare pentru BB de tip T

Q	Q*	Т
0	0	0
0	1	1
1	0	1
1	1	0

XY = 00 3-3; 0-3; 1-2-2;

XY = 01 1-1; 3-0-2-2;

XY = 10 3-0-2-1-3

XY = 11 1-2-3-0-1

	V	Stare p	rezenta	Stare v	iitoare	14	1/4		1
Х	Y	Q1	Q0	Q1*	Q0*	J1	K1	D0	In
0	0	0	0	1	1	1	Х	1	0
0	0	0	1	1	0	1	X	0	1
0	0	1	0	1	0	Х	0	0	2
0	0	1	1	1	1	Х	0	1	3
0	1	0	0	1	0	1	Х	0	4
0	1	0	1	0	1	0	Х	1	5
0	1	1	0	1	0	Х	0	0	6
0	1	1	1	0	0	Х	1	0	7
1	0	0	0	1	0	1	Х	0	8
1	0	0	1	1	1	1	Х	1	9
1	0	1	0	0	1	Х	1	1	10
1	0	1	1	0	0	Х	1	0	11
1	1	0	0	0	1	0	Х	1	12
1	1	0	1	1	0	1	X	0	13
1	1	1	0	1	1	X	0	1	14
1	1	1	1	0	0	Х	1	0	15

JK Excitation table

Q	Q _{next}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	XY	X'Y'	X'Y	XY	XY'
Q1Q0		00	01	11	10
Q1'Q0'	00	1	1	0	1
Q1'Q0	01	1	0	1	1
Q1Q0	11	Х	Х	Х	Х
Q1Q0'	10	Х	Х	X	X

J1 = Y' + XQ0 + X' Q0'

	XY	X'Y'	X'Y	XY	XY'
Q1Q0		00	01	11	10
Q1'Q0'	00	X	X	X	X
Q1'Q0	01	X	X	Х	Х
Q1Q0	11	0	1	1	1
Q1Q0'	10	0	0	0	1

$$\overline{K1} = YQ0 + XY'$$

	XY	X'Y'	X'Y	XY	XY'
Q1Q0		00	01	11	10
Q1'Q0'	00	1	0	1	0
Q1'Q0	01	0	1	0	1
Q1Q0	11	1	0	0	0
Q1Q0'	10	0	0	1	1

D0 = XQ1Q0' + XYQ0' + X'Y'Q1'Q0' + X'Y'Q0Q1 + X'YQ1'Q0 + XY'Q1'Q0 = XQ1Q0' + XYQ0' + X'Y'(Q1'Q0' + Q0Q1) + Q1'Q0(X'Y + XY')

Fie un BB de tip JK sensibil la tranzitia "-" a semnalului de ceas C. Starea initiala a BB este Q=1. Semnalul S=0. Semnalele de intrare evolueaza in ordinea: RJKC=47324523C26C. Care este secventa de stari pentru iesirea Q a acestui BB? (3p)

N	R	J	К	С	Q	(Obs.							
							-							
4	0	1	0	0	1				Bist	abilu	ıl JK			
							s	R	J	K	СК	Q	Q*	
						Ī	1	0	х	х	х	х	1	Set
							0	1	х	х	х	х	0	Reset
							0	0	0	0	Ť	Q	Q	М
						Ī	0	0	0	1	Ť	х	0	R
							0	0	1	0	Ť	х	1	S
						Ī	0	0	1	1	Ť	Q	!Q	T

7	0	1	1	1	1	M
3	0	0	1	1	1	M
2	0	0	0	1	0	R
4	0	1	0	0	0	M
5	0	1	0	1	0	M
2	0	0	0	1	1	S
3	0	0	1	1	1	M
С	1	1	0	0	0	Reset R
2	0	0	0	1	0	M
6	0	1	1	0	0	M
С	1	1	0	0	0	Reset

1110000110000

	Bistabilul JK								
s	R	J	K	СК	Q	Q*			
1	0	х	х	х	х	1			
0	1	х	х	х	х	0			
0	0	0	0	Ť	Q	Q			
0	0	0	1	Ť	x	0			
0	0	1	0	Ť	х	1			
0	0	1	1	Ť	Q	!Q			

Set Reset M R S T

Fie un BB de tip D sensibil la tranzitia "+" a semnalului de ceas C. Starea initiala a BB este Q=1. Semnalele de intrare evolueaza in ordinea: SRDC=017028312031. Care este secventa de stari pentru iesirea Q a acestui BB? (3p)

N	S	R	D	С	Q	Obs.
0	0	0	0	0	1	-
1	0	0	0	1	0	R
7	0	1	1	1	0	Reset
0	0	0	0	0	0	Mem
2	0	0	1	0	0	Mem
8	1	0	0	0	1	Set
3	0	0	1	1	0	R
1	0	0	0	1	0	Mem
2	0	0	1	0	0	Mem
0	0	0	0	0	0	Mem
3	0	0	1	1	0	R
1	0	0	0	1	0	Mem

	Bistabilul D									
s	R	D	СК	ď	Q*					
1	0	X	X	X	1					
0	1	X	X	X	0					
0	0	0	1	X	0					
0	0	1	1	X	1					

Set Reset R S

10000100000	C
-------------	---

Bistabilul D							
S R D CK Q Q*							
1	0	X	X	X	1		
0	1	Х	х	х	0		

Fie un BB de tip T sensibil la tranzitia "-" a semnalului de ceas C. Starea initiala a BB este Q=0. Semnalele de intrare evolueaza in ordinea: SRTC=126912302030. Care este secventa de stari pentru iesirea Q a acestui BB? (3p)

N	S	R	Т	С	Q	Obs.
1	0	0	0	1	0	-
2	0	0	1	0	0	М
6	0	1	1	0	0	R
9	1	0	0	1	1	S
1	0	0	0	1	1	Mem
2	0	0	1	0	1	М
3	0	0	1	1	1	Mem
0	0	0	0	0	0	Т
2	0	0	1	0	0	Mem
0	0	0	0	0	0	Mem
3	0	0	1	1	0	Mem
0	0	0	0	0	1	Т

	В	istal	oilul	T		
s	R	Т	СК	Q	Q*	
1	0	X	X	х	1	Set
0	1	Х	X	х	0	Reset
0	0	0	1	Q	Q	М
0	0	1	1	Q	!Q	T

000111100001

	杉	В	Bistal	ilul	Т		
۱	s	R	т	СК	Q	Q*	
	1	0	X	X	x	1	Set
	0	1	x	X	х	0	Reset
	0	0	0	1	Q	Q	М
	0	0	1	1	Q	!Q	T

Fie un BB de tip JK sensibil la tranzitia "-" a semnalului de ceas C. Starea initiala a BB este Q=0. Semnalul R=0. Semnalele de intrare evolueaza in ordinea: SJKC=15270E6E5201. Care este secventa de stari pentru iesirea Q a acestui BB? (3p)

N	S	J	K	С	Q	Obs.
1	0	0	0	1	0	1
5	0	1	0	1	0	Mem
2	0	0	1	0	1	S
7	0	1	1	1	1	Mem

		Bist	abilu	ıl JK			
S	R	J	K	СК	Q	Q*	
1	0	х	х	х	х	1	Set
0	1	х	х	X	х	0	Reset
0	0	0	0	1	Q	Q	M
0	0	0	1	1	х	0	R
0	0	1	0	1	х	1	R S
0	0	1	1	Ť	ď	!Q	Т

0	0	0	0	0	0	Т
Е	1	1	1	0	1	Set
6	0	1	1	0	1	Mem
Е	1	1	1	0	1	Set
5	0	1	0	1	1	Mem
2	0	0	1	0	1	S
0	0	0	0	0	1	Mem
1	0	0	0	1	1	Mem

			ıl JK	abilu	Bist	Bistabilul JK							
	Q*	Q	СК	K	J	R	s						
Set	1	х	х	х	х	0	1						
Reset	0	x	х	x	x	1	0						
M	Q	Q	1	0	0	0	0						
R	0	x	1	1	0	0	0						
S	1	х	1	0	1	0	0						
Т	!Q	Q	1	1	1	0	0						

Clock = 1010101010101010 Q2 Q1 Q0= 0275462754627546

Licu Mihai George Grupa 162 Saptamana 14

DS6

e7d08194 e7d08194

Pn DS6 (slide 7)

Pn DS6 J0=Q1; K0=Q0; J1=1; K1=Q2; J2=!Q0 si K2=Q1.

90a7d4e3b2a 7d4e3b2a

Pn DS6 mixta (slide 8)

5f7a2c4d

Pn DS6 (slide 9)

0e691c4 e6

