IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Lecture 36: Security I

Agenda

- Security I
 - Basic Concepts
 - Information Leakage Channels
 - Cryptography
 - Authentication

- Classic Goals & Threats
 - Confidentiality
 - Having secrete data remain secret
 - Integrity
 - Unauthorized users should not be able to modify data
 - Availability
 - Nobody can disturb the system to make it unusable

Goal	Threat
Confidentiality	Exposure of data
Integrity	Tampering with data
Availability	Denial of service

- Trusted Computing Base (TCB)
 - the set of hardware and software necessary for enforcing all security rules
 - E.g., most hardware, part of OS kernel, user-level program with superuser privilege
 - should be minimal
 - E.g., MINIX 3 has about 10,000 lines of code in the kenrel, orders of magnitude less than Linux
 - Easier to be correct
 - Potentially offer higher security

- Protection Domains
 - A computer system contains resources ("objects") that need to be protected
 - E.g., hardware (CPU, memory, HDD, ...) or software (processes, files, ...)
 - Each object has a unique name and a finite set of operations
 - E.g., read()/write() a file named /foo/bar
 - Domain: a set of [object, rights] pairs
 - a right means permission to perform one of the operations
 - a domain may correspond to different entities
 - E.g., a user or a group of users

- Protection Domains (cont')
 - Protection matrix
 - Keep track of domains and the associated objects/rights in a matrix

	Object							
Damaia	File1	File2	File3	File4	File5	File6	Printer1	Plotter2
Domain 1	Read	Read Write						
2			Read	Read Write Execute	Read Write		Write	
3						Read Write Execute	Write	Write

- problem: many cells are empty in a large matrix
 - waste storage space

- Access Control List (ACL)
 - slice up the matrix by columns
 - associate with each object an (ordered) list containing all the domains that may access the object, and how
 - E.g., three processes from three different users A/B/C (subjects) and three files (objects)

- Access Control List (ACL) (cont')
 - groups of users have group names and can be included in ACLs
 - groups are also called "roles"
 - e.g., system administrators, super users
 - E.g., two ACLs with groups

File	Access control list		
Password	tana, sysadm: RW		
Pigeon_data	bill, pigfan: RW; tana, pigfan: RW;		

- Access Control List (ACL) (cont')
 - E.g., Linux file ACL
 - set file permission: chmod()

```
% 1s -1R
. .
total 2
drwxr-x--x 2 mike adm
                           1024 Dec 17 13:34 A
drwxr---- 2 mike adm
                           1024 Dec 17 13:34 B
. /A:
total 1
-rw-rw-rw- 1 mike adm 593 Dec 17 13:34 x
./B:
total 2
-r--rw-rw- 1 mike
                    adm 446 Dec 17 13:34 x
-rw---rw- 1 bob
                    adm
                            446 Dec 17 13:45 y
```

- Capability List (C-list)
 - slice up the matrix by rows
 - associated with each user/process a list of objects that may be accessed
 - individual items on a C-list are called capabilities
 - Each capability grants the owner certain rights on a certain object

Agenda

- Security I
 - Basic Concepts
 - Information Leakage Channels
 - Cryptography
 - Authentication

Information Leakage Channels

- Covert Channels
 - An insider process leaks information to an outsider process not normally allowed to access that information by using mechanisms that are not intended for communications
 - E.g., the encapsulated server can leak to the collaborator via covert channels

Information Leakage Channels

- Covert Channels (cont')
 - E.g., a covert channel using file locking

Information Leakage Channels

- Steganography
 - Hiding the existence of information
 - E.g., (a) Three zebras and a tree. (b) Three zebras, a tree, and the complete text of five plays by William Shakespeare.

Agenda

- Security I
 - Basic Concepts
 - Information Leakage Channels
 - Cryptography
 - Authentication

- Purpose
 - Take a message (or file), called the plaintext, and encrypt it into ciphertext in such a way that only authorized people know how to convert it back to plaintext
 - for unauthorized people, the ciphertext is just an incomprehensible sequence of bits
- The encryption & decryption algorithms are public
 - The secrecy depends on parameters to the algorithms called keys

Relationship between the plaintext and the ciphertext

- Secret-Key Cryptography
 - Sender and receiver must both be in possession of the shared secret key
 - Also called "symmetric-key cryptography"
 - Efficient because the computation required to encrypt or decrypt a message is relatively manageable

- Secret-Key Cryptography
 - E.g., monoalphabetic substitution
 - An encryption algorithm in which each letter is replaced by a different letter.

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

ciphertext: QWERTYUIOPASDFGHJKLZXCVBNM

"ATTACK" ← → "QZZQEA"

- Public-Key Cryptography
 - Everyone picks a (public key, private key) pair and publishes the public key
 - Public key: encryption key
 - Private key: decryption key
 - Keys are generated automatically using an algorithm
 - E.g., RSA algorithm
 - Usually have some randomness or password fed into the algorithm as a seed
 - User X sends a secret message to User Y
 - X encrypts the message using Y's public key
 - Y decrypts the message using Y's secret key

- Digital Signature
 - Sender signs digital documents in such a way that they cannot be repudiated by the sender later
 - run the document through a one-way cryptographic hashing algorithm (e.g., SHA-1) that is very hard to invert
 - sender applies her private key to the hash to get D(hash), i.e., signature block
 - Signature block is appended to the doc and send to the receiver

- Digital Signature
 - Receiver:
 - computes the hash of the document (e.g., using SHA-1)
 - applies the sender's public key to the signature block to get E(D(hash))
 - Canceling out the effect of D(hash) to get the hash back
 - If the computed hash does not match the hash from the signature block, then the document, the signature block, or both have been tampered

Agenda

- Security I
 - Basic Concepts
 - Information Leakage Channels
 - Cryptography
 - Authentication

Authentication

- Prove the identity of a user
- Based on three general principles:
 - Something the user knows.
 - Something the user has.
 - Something the user is
- Common methods
 - Password
 - Hardware token
 - E.g., RSA SecurID
 - Software token
 - E.g., private key in a public-key cryptosystem

Authentication

- Common Methods
 - Biometrics
 - E.g., fingerprint

- Multi-factor authentication
 - Combine multiple sources to verify identity
 - E.g., password + hardware token, password + security questions

Agenda

Security I

Questions?

- Basic Concepts
- Information Leakage Channels

- Cryptography
- Authentication

^{*}acknowledgement: slides include content from "Modern Operating Systems" by A. Tanenbaum, "Operating Systems Concepts" by A. Silberschatz etc., "Operating Systems: Three Easy Pieces" by R. Arpaci-Dusseau etc., and anonymous pictures from internet.