

FIG. 1

FIG. 3

FIG. 4

FIG. 5

FIG. 7

,					
1	CCCCAAAACC	CCAAAACCCC	AAAACCCCTA	TAAAAAAAGA	AAAAATTGAG
51	GTAGTTTAGA	AATAAAATAT	TATTCCCGCA	CAAATGGAGA	TGGATATTGA
101	TTTGGATGAT	ATAGAAAATT	TACTTCCTAA	TACATTCAAC	AAGTATAGCA
151	GCTCTTGTAG	TGACAAGAAA	GGATGCAAAA	CATTGAAATC	TGGCTCGAAA
201	TCGCCTTCAT	TGACTATTCC	AAAGTTGCAA	AAACAATTAG	AGTTCTACTT
251	CTCGGATGCA	AATCTTTATA	ACGATTCTTT	CTTGAGAAAA	TTAGTTTTAA
301	AAAGCGGAGA	GCAAAGAGTA	GAAATTGAAA	CATTACTAAT	GTTTAAATAA
351	AATCAGGTAA	TGAGGATTAT	TCTATTTTTT	AGATCACTTC	TTAAGGAGCA
401	TTATGGAGAA	AATTACTTAA	TACTAAAAGG	TAAACAGTTT	GGATTATTTC
451	CCTAGCCAAC	AATGATGAGT	ATATTAAATT	CATATGAGAA	TGAGTCAAAG
501	GATCTCGATA	CATCAGACTT	ACCAAAGACA	AACTCGCTAT	AAAACGCAAG
551	AAAAAGTTTG	ATAATCGAAC	AGCAGAAGAA	CTTATTGCAT	TTACTATTCG
601	TATGGGTTTT	ATTACAATTG	TTTTAGGTAT	CGACGGTGAA	CTCCCGAGTC
651	TTGAGACAAT	TGAAAAAGCT	GTTTACAACT	GAAGGAATCG	CAGTTCTGAA
701	AGTTCTGATG	TGTATGCCAT	TATTTTGTGA	ATTAATCTCA	AATATCTTAT
751	CTCAATTTAA	TGGATAGCTA	TAGAAACAAA	CCAAATAAAC	CATGCAAGTT
801	TAATGGAATA	TACGTTAAAT	CCTTTGGGAC	AAATGCACAC	TGAATTTATA
851	TTGGATTCTT	AAAGCATAGA	TACACAGAAT	GCTTTAGAGA	CTGATTTAGC
901	TTACAACAGA	TTACCTGTTT	TGATTACTCT	TGCTCATCTC	TTATATCTTT
951	AAAAGAAGCA	GGCGAAATGA	AAAGAAGACT	AAAGAAAGAG	ATTTCAAAAT
1001	TTGTTGATTC	TTCTGTAACC	GGAATTAACA	ACAAGAATAT	TAGCAACGAA
1051	AAAGAAGAAG	AGCTATCACA	ATCCTGATTC	TTAAAGATTT	CAAAAATTCC
1101	AGGTAAGAGA	GATACATTCA	TTAAAATTCA	TATATTATAG	TTTTTCATTT
1151	CACAGCTGTT	ATTTTCTTTT	ATCTTAACAA	TATTTTTGA	TTAGCTGGAA
1201	GTAAAAAGTA	TCAAATAAGA	GAAGCGCTAG	ACTGAGGTAA	CTTAGCTTAT
1251	TCACATTCAT	AGATCGACCT	TCATATATCC	AATACGATGA	TAAGGAAACA
1301	GCAGTCATCC	GTTTTAAAAA	TAGTGCTATG	AGGACTAAAT	TTTTAGAGTC
1351	AAGAAATGGA	GCCGAAATCT	TAATCAAAAA	GAATTGCGTC	GATATTGCAA
1401	AAGAATCGAA	CTCTAAATCT	TTCGTTAATA	AGTATTACCA	ATCTTGATTG
1451	ATTGAAGAGA	TTGACGAGGC	AACTGCACAG	AAGATCATTA	AAGAAATAAA
1501	GTAACTTTTA	TTAATTAGAG	AATAAACTAA	ATTACTAATA	TAGAGATCAG
1551	CGATCTTCAA	TTGACGAAAT	AAAAGCTGAA	CTAAAGTTAG	ACAATAAAAA
1601	ATACAAACCT	TGGTCAAAAT	ATTGAGGAAG	GAAAAGAAGA	CCAGTTAGCA
1651	AAAGAAAAA	TAAGGCAATA	AATAAAATGA	GTACAGAAGT	GAAGAAATAA
1701	AAGATTTATT	TTTTTCAATA	ATTTATTGAA	AAGAGGGGTT	TTGGGGTTTT
1751	GGGGTTTTGG	GG			

FIG. 11

FIG. 8

1	AAAACCCCAA	AACCCCAAAA	CCCCTTTTAG	AGCCCTGCAG	TTGGAAATAT
51	AACCTCAGTA	TTAATAAGCT	CAGATTTTAA	ATATTAATTA	CAAAACCTAA
101	ATGGAGGTTG	ATGTTGATAA	TCAAGCTGAT	AATCATGGCA	
151	TCTTAAGACT	TGTGAAGAAA	TTAAAGAAGC	TAAAACGTTG	TACTCTTGGA
201	TCCAGAAAGT	TATTAGATGA	AGAAATCAAT	CTCAAAGTCA	TTATAAAGAT
251	TTAGAAGATA	TTAAAATATT	TGCGCAGACA	AATATTGTTG	CTACTCCACG
301	AGACTATAAT	GAAGAAGATT	TTAAAGTTAT	TGCAAGAAAA	GAAGTATTTT
351	CAACTGGACT	AATGATCGAA	CTTATTGACA	AATGCTTAGT	TGAACTTCTT
401	TCATCAAGCG	ATGTTTCAGA	TAGACAAAAA	CTTCAATGAT	TTGGATTTCA
451	ACTTAAGGGA	AATCAATTAG	CAAAGACCCA	TTTATTAACA	GCTCTTTCAA
501	CTCAAAAGCA	GTATTTCTTT	CAAGACGAAT	GGAACCAAGT	TAGAGCAATG
551	ATTGGAAATG	AGCTCTTCCG	ACATCTCTAC	ACTAAATATT	TAATATTCCA
601	GCGAACTTCT	GAAGGAACTC	TTGTTCAATT	TTGCGGGAAT	AACGTTTTTG
651	ATCATTTGAA	AGTCAACGAT	AAGTTTGACA	AAAAGCAAAA	AGGTGGAGCA
701	GCAGACATGA	ATGAACCTCG	ATGTTGATCA	ACCTGCAAAT	ACAATGTCAA
751	GAATGAGAAA	GATCACTTTC	TCAACAACAT	CAACGTGCCG	AATTGGAATA
801	ATATGAAATC	AAGAACCAGA	ATATTTTATT	GCACTCATTT	TAATAGAAAT
851	AACCAATTCT	TCAAAAAGCA	TGAGTTTGTG	AGTAACAAAA	ACAATATTTC
901	AGCGATGGAC	AGAGCTCAGA	CGATATTCAC	GAATATATTC	AGATTTAATA
951	GAATTAGAAA	GAAGCTAAAA	GATAAGGTTA	TCGAAAAAAT	TGCCTACATG
1001	CTTGAGAAAG	TCAAAGATTT	TAACTTCAAC	TACTATTTAA	
1051	TCCTCTTCCA	GAAAATTGGC	GGGAACGGAA	ACAAAAAATC	GAAAACTTGA
1101	TAAATAAAAC	TAGAGAAGAA	AAGTCGAAGT	ACTATGAAGA	
1151		ATAATAAATG		TTTATTAATG	
1201	CAATATACTC	CCCAAAGACT			
1251	AAAAGAAAGT	TAAGAAATAT		ACAAGCATGA	
1301	AAAAACTTAT		GATCAATACA		CATGGATGCA
1351	GGTTGAGACC	TCTGCAAAGC	ATTTTTATTA	TTTTGATCAC	GAAAACATCT
1401	ACGTCTTATG		CGATGGATAT	TCGAGGATCT	CGTCGTCTCG
1451	CTGATTAGAT			CAACAGAAAA	
1501	AACCTATTAC			CGTCATTATG	
1551		AAAGAAGGAA			
1601			TGGATTTGCA	CCTGGAAAAC	TCAGACTAAT
1651	ACCGAAGAAA	ACTACTTTCC		GACTTTCAAT	
1701			ACAAAATTAA	CTACAAATAC	
1751	AACTCTCACT	TAATGCTTAA		AATAGAATGT	TTAAAGATCC
1801		GCTGTTTTTA			AAGTATGAGG
1851		CAAATGGAAG		AACCAAAACT	CTTCTTTGCA
1901	ACTATGGATA				AAAAACTATC
1951	AACATTCCTA	AAAACTACTA		TTCAGATTTC	TGGATTATGA
2001	CTGCACAAAT	TCTAAAGAGA	AAGAATAACA	TAGTTATCGA	TTCGAAAAAC
2051	TTTAGAAAGA	AAGAAATGAA		AGACAGAAAT	
2101	TGCACTTGAA			ATTCAGTGTT	CTTGAAAATG
2151	AACAAAATGA	CTTAAATGCA			AGCAAAGCAA
2201	AGAAATTATT	TTAAGAAAGA		CAACCAGTCA	TTAATATTTG
2251	CCAATATAAT	TACATTAACT	TTAATGGGAA	GTTTTATAAA	
2301		AGGTCTTTGA			ATTTTATTAT
2351	GCAACATTAG	AGGAAAGCTC	CTTAGGATTC	CTTAGAGATG	AATCAATGAA

FIG. 9

2401	CCCTGAAAAT	CCAAATGTTA	ATCTTCTAAT	GAGACTTACA	GATGACTATC
2451	TTTTGATTAC	AACTCAAGAG	AATAATGCAG	TATTGTTTAT	TGAGAAACTT
2501	ATAAACGTAA	GTCGTGAAAA	TGGATTTAAA	TTCAATATGA	AGAAACTACA
2551	GACTAGTTTT	CCATTAAGTC	CAAGCAAATT	TGCAAAATAC	GGAATGGATA
2601	GTGTTGAGGA	GCAAAATATT	GTTCAAGATT	ACTGCGATTG	GATTGGCATC
2651	TCAATTGATA	TGAAAACTCT	TGCTTTAATG	CCAAATATTA	ACTTGAGAAT
2701	AGAAGGAATT	CTGTGTACAC	TCAATCTAAA	CATGCAAACA	AAGAAAGCAT
2751	CAATGTGGCT	CAAGAAGAAA	CTAAAGTCGT	TTTTAATGAA	TAACATTACC
2801	CATTATTTTA	GAAAGACGAT	TACAACCGAA	GACTTTGCGA	ATAAAACTCT
2851	CAACAAGTTA	TTTATATCAG	GCGGTTACAA	ATACATGCAA	TGAGCCAAAG
2901	AATACAAGGA	CCACTTTAAG	AAGAACTTAG	CTATGAGCAG	TATGATCGAC
2951	TTAGAGGTAT	CTAAAATTAT	ATACTCTGTA	ACCAGAGCAT	TCTTTAAATA
3001	CCTTGTGTGC	AATATTAAGG	ATACAATTTT	TGGAGAGGAG	CATTATCCAG
3051	ACTTTTTCCT	TAGCACACTG	AAGCACTTTA	TTGAAATATT	CAGCACAAAA
3101	AAGTACATTT	TCAACAGAGT	TTGCATGATC	CTCAAGGCAA	AAGAAGCAAA
3151	GCTAAAAAGT	GACCAATGTC	AATCTCTAAT	TCAATATGAT	GCATAGTCGA
3201	CTATTCTAAC	TTATTTTGGA	AAGTTAATTT	TCAATTTTTG	TCTTATATAC
3251	TGGGGTTTTG	GGGTTTTGGG	GTTTTGGGG		

FIG. 9 (CONTINUED)

	1	MEVDVDNQAD	NHGIHSALKT	CEEIKEAKTL	YSWIQKVIRC	RNQSQSHYKD
	51	LEDIKIFAQT	NIVATPRDYN	EEDFKVIARK	EVFSTGLMIE	LIDKCLVELL
	101	SSSDVSDRQK	LQCFGFQLKG	NQLAKTHLLT	ALSTQKQYFF	QDEWNQVRAM
	151	IGNELFRHLY	TKYLIFQRTS	EGTLVQFCGN	NVFDHLKVND	KFDKKQKGGA
	201	ADMNEPRCCS	TCKYNVKNEK	DHFLNNINVP	NWNNMKSRTR	IFYCTHFNRN
	251	NQFFKKHEFV	SNKNNISAMD	RAQTIFTNIF	RFNRIRKKLK	DKVIEKIAYM
	301	LEKVKDFNFN	YYLTKSCPLP	ENWRERKQKI	ENLINKTREE	KSKYYEELFS
	351	YTTDNKCVTQ	FINEFFYNIL	PKDFLTGRNR	KNFQKKVKKY	VELNKHELIH
	401	KNLLLEKINT	REISWMQVET	SAKHFYYFDH	ENIYVLWKLL	RWIFEDLVVS
	451	LIRCFFYVTE	QQKSYSKTYY	YRKNIWDVIM	KMSIADLKKE	TLAEVQEKEV
	501	EEWKKSLGFA	PGKLRLIPKK	TTFRPIMTFN	KKIVNSDRKT	TKLTTNTKLL
	551	NSHLMLKTLK	NRMFKDPFGF	AVFNYDDVMK	KYEEFVCKWK	QVGQPKLFFA
	601	TMDIEKCYDS	VNREKLSTFL	KTTKLLSSDF	WIMTAQILKR	KNNIVIDSKN
	651	FRKKEMKDYF	RQKFQKIALE	GGQYPTLFSV	LENEQNDLNA	KKTLIVEAKQ
	701	RNYFKKDNLL	QPVINICQYN	YINFNGKFYK	QTKGIPQGLC	VSSILSSFYY
	751	ATLEESSLGF	LRDESMNPEN	PNVNLLMRLT	DDYLLITTQE	NNAVLFIEKL
	801	INVSRENGFK	FNMKKLQTSF	PLSPSKFAKY	GMDSVEEQNI	VQDYCDWIGI
	851	SIDMKTLALM	PNINLRIEGI	LCTLNLNMQT	KKASMWLKKK	LKSFLMNNIT
	901	HYFRKTITTE	DFANKTLNKL	FISGGYKYMQ	CAKEYKDHFK	KNLAMSSMID
	951	LEVSKIIYSV	TRAFFKYLVC	NIKDTIFGEE	HYPDFFLSTL	KHFIEIFSTK
1	001	KYIFNRVCMI	LKAKEAKLKS	DOCOSLIOYD	A	

FIG. 10

FIG. 12

+

(

TACTAAAAGGTAAACAGTTTGGATTATTTCCCTAGCCAACAATGATGAGTATATTAAATT 421	80
a Y * K V N S L D Y F P S Q Q * * V Y * I - b T K R * T V W I I S L A N N D E Y I K F - c L K G K Q F G L F P * P T M M S I L N S -	
CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAGACAAACTCGCTAT 481	40
a H M R M S Q R I S I H Q T Y Q R Q T R Y - b I * E * V K G S R Y I R L T K D K L A I - c Y E N E S K D L D T S D L P K T N S L * -	
AAAACGCAAGAAAAGTTTGATAATCGAACAGCAGAAGAACTTATTGCATTTACTATTCG 541	00
a K T Q E K V * * S N S R R T Y C I Y Y S - b K R K K F D N R T A E E L I A F T I R - c N A R K S L I I E Q Q K N L L H L L F V -	
TATGGGTTTTATTACAATTGTTTTAGGTATCGACGGTGAACTCCCGAGTCTTGAGACAAT 601	60
a Y G F Y Y N C F R Y R R * T P E S * D N - b M G F I T I V L G I D G E L P S L E T I - c W V L L Q L F * V S T V N S R V L R Q L -	
TGAAAAAGCTGTTTACAACTGAAGGAATCGCAGTTCTGAAAGTTCTGATGTGTATGCCAT 661	'20
661	720
ACTITITCGACAAATGTTGACTTCCTTAGCGTCAAGACTTCAAGACTACACATACGGTA a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I -	
ACTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTCAAGACTACACATACGGTA a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L - TATTTTGTGAATTAATCTCAAATATCTTAATCTCAATTTAATGGATAGCTATAGAAACAAA 721	
ACTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTCAAGACTACACATACGGTA a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L - TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA 721 ATAAAACACTTAATTAGAGTTTATAGAATAGAGTTAAATTACCTATCGATATCTTTTTT a Y F V N * S Q I S Y L N L M D S Y R N K - b I L * I N L K Y L I S I * W I A I E T N -	780
ACTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTCAAGACTACACATACGGTA a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L - TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA 721	780
ACTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTCAAGACTACACATACGGTA a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L - TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA 721	780 340

FIG. 12 (CONTINUED)

TTACAACAGATTACCTGTTTTGATTACTCTTGCTCATCTCTTATATCTTTAAAAGAAGCA 901
a LQQITCFDYSCSSLISLKEA-b YNRLPVLITLAHLLYL*KKQ-c TTDYLF*LLLISYIFKRSR-
GGCGAAATGAAAAGAAGAAGAAGAAGAAGATTTCAAAATTTGTTGATTCTTGTAACC 961
a G E M K R R L K K E I S K F V D S S V T - b A K * K E D * R K R F Q N L L I L L * P - c R N E K K T K E R D F K I C * F F C N R -
GGAATTAACAACAAGAATATTAGCAACGAAAAAGAAGAAGAGCTATCACAATCCTGATTC 1021+ 1080 CCTTAATTGTTGTTCTTATAATCGTTGCTTTTTTCTTCTCTCGATAGTGTTAGGACTAAG
a GINNKNISNEKEEELSQS*F-bELTTRILATKKKKSYHNPDS-cN*QQEY*QRKRRRAITILIL-
TTAAAGATTTCAAAAATTCCAGGTAAGAGAGATACATTCATT
a L K I S K I P G K R D T F I K I H I L * - b * R F Q K F Q V R E I H S L K F I Y Y S - c K D F K N S R * E R Y I H * N S Y I I V -
TTTTTCATTTCACAGCTGTTATTTTCTTTATCTTAACAATATTTTTTGATTAGCTGGAA 1141
a F F I S Q L L F S F I L T I F F D * L E - b F S F H S C Y F L L S * Q Y F L I S W K - c F H F T A V I F F Y L N N I F * L A G S -
GTAAAAAGTATCAAATAAGAGAGCGCTAGACTGAGGTAACTTAGCTTATTCACATTCAT 1201+ 1260 CATTTTCATAGTTTATTCTCTTCGCGATCTGACTCCATTGAATCGAATAAGTGTAAGTA
a V K S I K * E K R * T E V T * L I H I H - b * K V S N K R S A R L R * L S L F T F I - c K K Y Q I R E A L D * G N L A Y S H S * -
AGATCGACCTTCATATATCCAATACGATGATAAGGAAACAGCAGTCATCCGTTTTAAAAA 1261
a R S T F I Y P I R * * G N S S H P F * K - b D R P S Y I Q Y D D K E T A V I R F K N - c I D L H I S N T M I R K Q Q S S V L K I -
TAGTGCTATGAGGACTAAATTTTTAGAGTCAAGAAATGGAGCCGAAATCTTAATCAAAAA 1321
a * C Y E D * I F R V K K W S R N L N Q K - b S A M R T K F L E S R N G A E I L I K K - c V L * G L N F * S Q E M E P K S * S K R -

FIG. 12 (CONTINUED)

FIG. 12 (CONTINUED)

14/78

2	EVDVQNQADNHGIHSALKTCEEIKEAKTLYSWIQKVIRCRNQSQSHYKDL	51
19	::: :.:: : : .:: :: . ELELEMQENQNDIQVRVKIDDPKQYLVNVTAACLLQEGSYYQDK	62
52	EDIKIFAQTNIVATPRDYNEEDFKVIARKEVF.STGLMIELIDKCLVELL	100
63	:: : :: : .:: : . . : .:: :: .: DERRYIITKALLEVAESDPEFICQLAVYIRNELYIRTTTNYIVAF.	107
101	SSSDVSDRQKLQCFGFQLKGNQLAKTHLLTALSTQKQYFFQDEWNQVRAM:: : : : : : : : : : : : : :	150
108		144
151	IGNELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDHLKVNDKFDKKQKGGA	200
145	:: : ::::: :: :: :: :: ::	181
201	ADMNEPRCCSTCKYNVKNEKDHFLNNINVPNWNNMKSRTRIFYCTHF	247
182	.:: .:: : . :: :. .: SEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK	220
248	NRNNQFFKKHEFVSNKNNISAMDRAQTIFTNIFRFNRIRKKLKDKVIEKI	297
221	.: :: :: .: : : :: . :. .	264
298	AYMLEKVKDFNFNYYLTKSCPLPENWRERKQKIENLINKTREEKSKYYEE	347
265	:	294
348	LFSYTTDNKCVTQFINEFFYNILPKDFLTGRNRKNFQKKVKKYVELNKHE	397
295	: : :: . LIKFCHISEPKERVYKILGKKYPKTEEEYKAAFGDSASAPFN.PE	338
398	LIHKNLLLEKINTREISWMQVETSAKHFYYFDHENIYVLWKLLRWIFEDL .	447
339	LAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSN	386
448	VVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKKETLAEVQE	497
387	iLkagvsb	394
498	KEVEEWKKSLGFAPGKLRLIPKKTTFRPIMTFNKKIVNSDRKTTKLTTNT : .	547
395		398
548	KLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL : . . : . : . : . : .	597
399	: . : : IVINK	415
598	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKNNIVID	
416	:: :: .: :.: : :: FPLQFFSAIEAVN.EAVTKGFKAKKRENMNLKGQIEAVKEVVE	457
648	SKNFRKKEMKDYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVE	697
458	.:: :	496
698	AKQRNYFKKDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSS:::	747
497	IAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGL	546
748	FYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFI	797
547	: . . : :: ::: : MVKQRCEKSSFYIFSSPSSQCNKCYLEVDL	576

FIG. 13

15/78

798	EKLINVSRENGFKFNMKK.LQTSFPLSPSKFAKYGMDSVEEQNIVQDYCD	846
577	.::::: ::: ::::	617
847	WIGISIDMKTLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLM	
618	. : : : . .	653
897	NNITHYFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKD.HFKKNLAM	945
654	. : . : . : : : : : : : : : : : PNIKIFAVDLEGYG	687
946	SSMIDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHFIE	
688	. : :::. ::: SDSILKFISAKQGGANMVE	706
996	IFSTKKYIFNRVC 1008 :: .: :.::	
707		
	FIG. 13 (CONTINUED)	
132	LSTOKOYFFODEWNQVRAMIGNEL.FRHLYTKYLIFQRTSEGTLVQFC	178
1	: : : :	43
179	GNNVFDHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLNNIN	228
44	:::: ::: : KEEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVN	84
229	VPNWNNMKSRTRIFYCTHFNRNNQFFKKHEFVSNKNNISAMDRAQTIFTN	278
85	QIKQQVQLIKKVGSKVEKDLNLNEDENKKN	114
279	<pre>ifrfnrirkkLkdkviekiaymLekvkdfnfnyyLtkscplpenwrerkQ ::: . : :::: :: .</pre>	328
115	GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRRETDY	164
329	KIENLINKTREEKSKYYEELFSYTTDNKCVTQFINE.FFYNILPKDFLTG	377
165	.::: .::: .: .: : ::. DTEKWFEISHDQKNYVSIYANQKTSYCWWLKDYFNK	200
378	RNRKNFQKKVKKYVELNKHELIHKNLLLEKINTREISWMQVETSAKHFYY	427
201	. .:::.: :. : :. . : : : NNYDHLNVSINRLETEAEFYAFDDFSQTIKLTNNSYQTVNID	242
428	FDHENIYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNI .: : :: : : : : .	475
243	VNFDNNLCILALLRFLLSLERFNILNIRSSYTRNQYNFEKIGELLETI	290
476	WDVIMKMSIADLKKETLAEVQEKEVEEWKKSLGFAPGKLRLIPKKTTFRP :. :: .	525
291	: . : :: : .:: .:. . FAVVFSHR	330
526	<pre>IMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNY : : . : . : . : : .</pre>	575
331	: : . : . : . : : . VYSFSTDLKLVDTNKVQDYFKFLQEFPRLTHVSQQAIPVSATNAVENL	378

FIG. 14

576	DDVMKKYEEFVCKWKQVGQPKLF FATMDIEKCYDSVNREK	615
379	: .: :. . :. ::: :.:: NVLLKKVKH ANLNLVSIPTQFNFDFYFVNLQHLKLEFGLEPNILTKQK	426
516	LSTFLKTTKLLSSDFWIMTAQILKRKNNIVIDSKNFRKKEMK	657
427	. : :. . : :: LENLLLSIKQSKNLKFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQ	476
558	DYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVEAKQRNYFK	705
477	: : : :: . EETPETKDETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIY	520
706	KDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSSFYYATLEE	755
521	:. : : DSLHKLLIRSTNLKKFKLSYKYEMEKSKMDTFIDLKNIYETLNN	564
756	SSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFIEKLINVSR	305
565	: . : .::: LKRCSVNISNPHGNISYELTNKDSTFYKFKLTLNQE	500
		055
806	ENGFKFNMKKLQTSFPLSPSKFAKYGMDSVEEQNIVQDYCDWIGISIDMK	855
601	LQHAKYTFKQNEFQFNNVKSAKIESSSLESLEDIDSLCKSTASCKNLQ	648
856	TLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLMNNITH .:.: :: :. : .	901
649	NVNIIASLLYPNNIQKNPFNKPNLLFFKQFEQLKNLENVSINC	691
902	YFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKDHFKKNLAMSSM	948
692	.: : .: : : :: ILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPEL	741
949	IDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHY	982
742	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	791
983	PDFFLS TLKHFIEIFSTKKY IFNRVCMILKAKEAKLKSDQCQSLIQ	1028
792	.: : . : . : DQNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQELLK	840

FIG. 14 (CONTINUED)

47	DIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPSLTIPK	4
666	NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPNNIQKNP	617
86	LQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLLM	48
716	: : : ::: : . .: : :::	667

FIG. 15

17/78

1	MEMDIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPS	42
491	: : : : IELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLEC	540
43	.LTIPKLQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLL	85
541	.: : : :: : .:: .:: : ALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL.EVDLPGDELRPSMQKLL	589

FIG. 16

telomerase p43 LQKOLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLLM human La ICHQUEYYFGDFNLPRDKFLKEQI.KLDEGWVPLEIMIK Xenopus LaA ICEQIEYYFGDHNLPRDKFLKQQI.LLDDGWVPLETMIK Drosophila La ILROVEYYFGDANLNRDKFLREQIGKNEDGWVPLSVLVT S. c. Lhplp CLKQVEFYFSEFNFPYDRFLRTTAEK.NDGWVPISTIAT

FIG. 18

1 aactcattta attactaatt taatcaacaa gattgataaa aagcagtaaa taaaacccaa 61 tagatttaat ttagaaagta tcaattgaaa aatggaaatt gaaaacaact aagcacaata 121 gccaaaagcc gaaaaattgt ggtgggaact tgaattagag atgcaagaaa accaaaatga 181 tatataagtt agggttaaga ttgacgatcc taagcaatat ctcgtgaacg tcactgcagc 241 atgtttgttg taggaaggta gttactacta agataaagat gaaagaagat atatcatcac 301 taaagcacti cttgaggtgg ctgagtctga tcctgagttc atctgctagt tggcagtcta 361 catcogtaat gaactttaca toagaactac cactaactac attgtagcat titgtgttgt 421 ccacaagaat actcaaccat tcatcgaaaa gtacttcaac aaagcagtac ttttgcctaa 481 tgacttactg gaagtctgtg aatttgcata ggttctctat atttttgatg caactgaatt 541 caaaaatttg tatcttgata ggatacttc ataagatatt cgtaaggaac tcactttccg 601 taagtgttta caaagatgcg tcagaagcaa gttttctgaa ttcaacgaat actaacttgg 661 taagtattgc actgaatcct aacgtaagaa aacaatgttc cgttacctct cagttaccaa 721 caagtaaaag tgggattaaa ctaagaagaa gagaaaagag aatctcttaa ccaaacttta 781 ggcaataaag gaatctgaag ataagtccaa gagagaaact ggagacataa tgaacgttga 841 agatgcaatc aaggctttaa aaccagcagt tatgaagaaa atagccaaga gatagaatgc 901 catgaagaaa cacatgaagg cacctaaaat toctaactct accttggaat caaagtactt 961 gaccttcaag gatctcatta agttctgcca tatttctgag cctaaagaaa gagtctataa 1021 gatccttggt aaaaaatacc ctaagaccga agaggaatac aaagcagcct ttggtgattc 1081 tgcatctgca cccttcaatc ctgaattggc tggaaagcgt atgaagattg aaatctctaa 1141 aacatgggaa aatgaactca gtgcaaaagg caacactgct gaggtttggg ataatttaat 1201 ttcaagcaat taactcccat atatggccat gttacgtaac ttgtctaaca tcttaaaagc 1261 cggtgtttca gatactacac actctattgt gatcaacaag atttgtgagc ccaaggccgt 1321 tgagaactcc aagatgttcc ctcttcaatt ctttagtgcc attgaagctg ttaatgaagc 1381 agttactaag ggattcaagg ccaagaagag agaaaatatg aatcttaaag gtcaaatcga 1441 agcagtaaag gaagttgttg aaaaaaccga tgaagagaag aaagatatgg agttggagta 1501 aaccgaagaa ggagaatttg ttaaagtcaa cgaaggaatt ggcaagcaat acattaactc 1561 cattgaactt gcaatcaaga tagcagttaa caagaattta gatgaaatca aaggacacac 1621 tgcaatcttc tctgatgttt ctggttctat gagtacctca atgtcaggtg gagccaagaa 1681 gtatggttcc gttcgtactt gtctcgagtg tgcattagtc cttggtttga tggtaaaata 1741 acgttgtgaa aagtcctcat tctacatctt cagttcacct agttctcaat gcaataagtg 1801 ttacttagaa gttgatctcc ctggagacga actccgtcct tctatgtaaa aacttttgca 1861 agagaaagga aaacttggtg gtggtactga tttcccctat gagtgcattg atgaatggac 1921 aaagaataaa actcacgtag acaatatcgt tattttgtct gatatgatga ttgcagaagg 1981 atattcagat atcaatgtta gaggcagttc cattgttaac agcatcaaaa agtacaagga 2041 tgaagtaaat cctaacatta aaatctttgc agttgactta gaaggttacg gaaagtgcct 2101 taatctaggt gatgagttca atgaaaacaa ctacatcaag atattcggta tgagcgattc 2161 aatottaaag ttoatttoag coaagoaagg aggagoaaat atggtogaag ttatoaaaaa 2221 ctttgccctt caaaaaatag gacaaaagtg agtttcttga gattcttcta taacaaaaat 2281 ctcaccccac ttttttgttt tattgcatag ccattatgaa atttaaatta ttatctattt 2341 atttaagtta cttacatagt ttatgtatcg cagtctatta gcctattcaa atgattctgc 2401 aaagaacaaa aaagattaaa a

FIG. 19

Motif E

Motif D

+

Motif A

Motif B

FGGSNWFREVDLKKCFDTISHDLIIKELKRYISD- 26-HVPVGPRVCVQGAPTSPALCNAVLLRLDRRLAGLA LKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIP- 7-GIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRKQN LKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIP- 7-GIRYQYNVLPQGWKGSPAIFQSSMTKILEPFRKQN VLPELYFMKFDVKSCYDSIPRMECMRILKDALKN- 68-KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK GQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLL-100-KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL KNRNLHCTYDDYKKAFDSIPHSWLIQVLEIYKIN- 28-RQIAIKKGIYQGDSLSPLWFCLALNPLSHQLHNDR h---**+-0**G---SP h--hDh---h--h al S.c. (groupII) HIV-RT telomerase p123 Dong (LINE) Consensus L8543.12

Motif C

-55-YVRYADDILIGYLGSKN-2-KIIKRDLNNFLNS.LGLTINEEKTLI- 4-ETPARFLGYNI - 4-IYQYMDDLYYGSHLEIG-1-HRTKIEELRQHLLRWGLTTPDKKHQK- 0-EPPFLWMGYEL - 8-ILKLADDFLIISTDQQQ......VINIKKLAMGGFQKYNAKANR-41-IRSKSSKGIFR h-hLGh-h -16-HLIYMDDIKLYAKNDKE-0-MKKLIDTTTIFSNDISMQFGLDKCKT-25-KCLYKYLGFQQ -14-LMRLTDDYLLITTQENN-0-AVLFIEKLINVSRENGFKFNMKKLQT-23-QDYCDWIGISI Gh-h---K h--YhDDhhh Dong (LINE) al S.c. (groupII) telomerase p123 Consensus

FIG. 17

L8543.12 HIV-RT

19/78

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL VNVTAACLLOEGSYYODKDERRYIITKALLEVAESDPEFICQLA VYIRNELYIRTTTNYIVAFCVVHKNTQPFIEKYFNKAVLLPNDL LEVCEFAQVLYIFDATEFKNLYLDRILSQDIRKELTFRKCLQRC VRSKFSEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK RKENLLTKLQAIKESEDKSKRETGDIMNVEDAIKALKPAVMKKI AKRONAMKKHMKAPKIPNSTLESKYLTFKDLIKFCHISEPKERV YKILGKKYPKTEEEYKAAFGDSASAPFNPELAGKRMKIEISKTW ENELSAKGNTAEVWDNLISSNOLPYMAMLRNLSNILKAGVSDTT HSIVINKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKAKKR ENMNLKGQIEAVKEVVEKTDEEKKDMELEQTEEGEFVKVNEGIG KQYINSIELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGA ${\tt KKYGSVRTCLECALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL}$ EVDLPGDELRPSMOKLLOEKGKLGGGTDFPYECIDEWTKNKTHV DNIVILSDMMIAEGYSDINVRGSSIVNSIKKYKDEVNPNIKIFA VDLEGYGKCLNLGDEFNENNYIKIFGMSDSILKFISAKOGGANM VEVIKNFALQKIGQK

FIG. 20

MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK EEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVNQIKQ QVQLIKKVGSKVEKDLNLNEDENKKNGLSEQQVKEEQLRTITEE OVKYONLVFNMDYOLDLNESGGHRRHRRETDYDTEKWFEISHDO KNYVSIYANQKTSYCWWLKDYFNKNNYDHLNVSINRLETEAEFY AFDDFSQTIKLTNNSYQTVNIDVNFDNNLCILALLRFLLSLERF NILNIRSSYTRNOYNFEKIGELLETIFAVVFSHRHLQGIHLQVP CEAFQYLVNSSSQISVKDSQLQVYSFSTDLKLVDTNKVQDYFKF LQEFPRLTHVSQQAIPVSATNAVENLNVLLKKVKHANLNLVSIP TOFNFDFYFVNLQHLKLEFGLEPNILTKQKLENLLLSIKQSKNL KFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQEETPETKD ETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIYDSLHKLLI RSTNLKKFKLSYKYEMEKSKMDTFIDLKNIYETLNNLKRCSVNI SNPHGNISYELTNKDSTFYKFKLTLNQELQHAKYTFKQNEFQFN NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPN NIQKNPFNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEF LEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPELNQVYINQ QLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDFD QNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQ ELLKACDEKGVLVKAYYKFPLCLPTGTYYDYNSDRW

FIG. 22

MKILFEFIQDKLDIDLQTNSTYKENLKCGHFNGLDEILTTCFAL PNSRKIALPCLPGDLSHKAVIDHCIIYLLTGELYNNVLTFGYKI ARNEDVNNSLFCHSANVNVTLLKGAAWKMFHSLVGTYAFVDLLI NYTVIQFNGQFFTQIVGNRCNEPHLPPKWVQRSSSSSATAAQIK QLTEPVTNKQFLHKLNINSSSFFPYSKILPSSSSIKKLTDLREA IFPTNLVKIPQRLKVRINLTLQKLLKRHKRLNYVSILNSICPPL EGTVLDLSHLSRQSPKERVLKFIIVILQKLLPQEMFGSKKNKGK IIKNLNLLLSLPLNGYLPFDSLLKKLRLKDFRWLFISDIWFTKH NFENLNOLAICFISWLFRQLIPKIIQTFFYCTEISSTVTIVYFR HDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRI I PKKSNNEFRIIAI PCRGADEEEFTIYKENHKNAIQPTQKILEY LRNKRPTSFTKIYSPTQIADRIKEFKQRLLKKFNNVLPELYFMK FDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFNTNTGVL KLFNVVNASRVPKPYELYIDNVRTVHLSNQDVINVVEMEIFKTA LWVEDKCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS QDTLILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDK ILAVSSQSDDDTVIQFCAMHIFVKELEVWKHSSTMNNFHIRSKS SKGIFRSLIALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISE CYKSAFKDLSINVTQNMQFHSFLQRIIEMTVSGCPITKCDPLIE YEVRFTILNGFLESLSSNTSKFKDNIILLRKEIQHLQAYIYIYI

FIG. 23

1 tcaatactat taattaataa ataaaaaaaa gcaaactaca aagaaaatgt caaggcgtaa 61 ctaaaaaaag ccataggctc ctataggcaa tgaaacaaat cttgattttg tattacaaaa 121 tctagaagtt tacaaaagcc agattgagca ttataagacc tagtagtaat agatcaaaga 181 qqaqqatctc aagcttttaa agttcaaaaa ttaagattag gatggaaact ctggcaacga 241 tgatgatgat gaagaaaaca actcaaataa ataataagaa ttattaagga gagtcaatta 301 gattaagtag caagtttaat tgataaaaaa agttggttct aaggtagaga aagatttgaa 361 tttgaacgaa gatgaaaaca aaaagaatgg actttctgaa tagcaagtga aagaagagta 421 attaagaacg attactgaag aataggttaa gtattaaaat ttagtatta acatggacta 481 ccagttagat ttaaatgaga gtggtggcca tagaagacac agaagagaaa cagattatga 541 tactgaaaaa tggtttgaaa tatctcatga ccaaaaaaat tatgtatcaa tttacgccaa 601 ctaaaagaca tcatattgtt ggtggcttaa agattatttt aataaaaaca attatgatca 661 tottaatgta agcattaaca gactagaaac tgaagccgaa ttotatgcot ttgatgattt 721 ttcacaaaca atcaaactta ctaataatto ttactagact gttaacatag acgttaattt 781 tgataataat ototgtatac togcattgct tagattttta ttatcactag aaagattcaa 841 tattttgaat ataagatett ettatacaag aaattaatat aattttgaga aaattggtga 901 gctactigaa actatcttcg cagttgtctt ttctcatcgc cacttacaag gcattcattt 961 acaagtteet tgegaagegt tetaatattt agttaaetee teateataaa ttagegttaa 1021 agatagetaa ttataggtat aetetttete tacagaetta aaattagttg acaetaacaa 1081 agtocaagat tattttaagt tottataaga attocctogt ttgactoatg taagotagta 1141 qqctatccca qttagtqcta ctaacqctqt agagaacctc aatqttttac ttaaaaagqt 1201 caagcatgct aatcttaatt tagtttctat ccctacctaa ttcaattttg atttctactt 1261 tgttaattta taacatttga aattagagtt tggattagaa ccaaatattt tgacaaaaca 1321 aaagettgaa aatetaettt tgagtataaa ataateaaaa aatettaaat ttttaagatt 1381 aaacttttac acctacgttg cttaagaaac ctccagaaaa cagatattaa aacaagctac 1441 aacaatcaaa aatctcaaaa acaataaaaa tcaagaagaa actcctgaaa ctaaagatga 1501 aactccaagc gaaagcacaa gtggtatgaa attttttgat catctttctg aattaaccga 1561 gcttgaagat ttcagcgtta acttgtaagc tacccaagaa atttatgata gcttgcacaa 1621 acttttgatt agatcaacaa atttaaagaa gttcaaatta agttacaaat atgaaatgga 1681 aaagagtaaa atggatacat tcatagatct taagaatatt tatgaaacct taaacaatct 1741 taaaagatgc tetgttaata tatcaaatcc teatggaaac atttettatg aactgacaaa 1801 taaagattot actitttata aatttaagot gaccitaaac taagaattat aacacgotaa 1861 gtatactttt aagtagaacg aattttaatt taataacgtt aaaagtgcaa aaattgaatc 1921 ttcctcatta gaaagcttag aagatattga tagtctttgc aaatctattg cttcttgtaa 1981 aaatttacaa aatgttaata ttatcgccag tttgctctat cccaacaata tttagaaaaa 2041 teettteaat aageeeaate ttetatttt caageaattt gaataattga aaaatttgga 2101 aaatgtatet ateaaetgta ttettgatea geatataett aattetattt cagaattett 2161 agaaaagaat aaaaaaataa aagcattcat tttgaaaaga tattatttat tacaatatta 2221 tettgattat actaaattat ttaaaacaet teaatagtta eetgaattaa attaagttta 2281 cattaattag caattagaag aattgactgt gagtgaagta cataagtaag tatgggaaaa 2341 ccacaagcaa aaagctttct atgaaccatt atgtgagttt atcaaagaat catcctaaac 2401 cctttagcta atagattttg accaaaacac tgtaagtgat gactctatta aaaagatttt 2461 agaatetata tetgagteta agtateatea tiattigaga itgaaceeta gitaatetag 2521 caqtttaatt aaatctgaaa acgaagaaat ttaagaactt ctcaaagctt gcgacgaaaa 2701 tgaatattto tttgottatt attigaataa tacatacaat agtoattttt agtgttttga 2761 atatatttta gttatttaat tcattatttt aagtaaataa ttatttttca atcattttt 2821 aaaaaatcg

FIG. 21

21/78

Oxytricha Euplotes

+

LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT LCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIG. 24

ATTTATACTCATGAAAATCTTATTCGAGTTCATTCAAGACAAGCTTGACATTGATCTACA GACCAACAGTACTTACAAAGAAAATTTAAAATGTGGTCACTTCAATGGCCTCGATGAAAT TCTAACTACGTGTTTCGCACTACCAAATTCAAGAAAAATAGCATTACCATGCCTTCCTGG TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATTTACCTGTTGACGGCCGAATT ATACAACAACGTACTAACATTTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG TCTTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCGCTGCTTGGAAAAT GTTCCACAGTTTGGTCGGTACATACGCATTCGTTGATTATTGATCAATTATACAGTAAT TCAATTTAATGGGCAGTTTTTCACTCAAATCGTGGGTAACAGATGTAACGAACCTCATCT GCCGCCAAATGGGTCCAACGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA ACTTACAGAACCAGTGACAAATAAACAATTCTTACACAAGCTCAATATAAATTCCTCTTC TTTTTTTCCTTATAGCAAGATCCTTCCTTCATCATCATCAACAAAAGCTAACTGACTT GAGAGAAGCTATTTTTCCCACAAATTTGGTTAAAATTCCTCAGAGACTAAAGGTACGAAT TAATTTGACGCTGCAAAAGCTATTAAAGAGACATAAGCGTTTGAATTACGTTTCTATTTT GAATAGTATTTGCCCACCATTGGAAGGGACCGTATTGGACTTGTCGCATTTGAGTAGGCA ATCACCAAAGGAACGAGTCTTGAAATTTATCATTGTTATTTTACAGAAGTTATTACCCCA AGAAATGTTTGGCTCAAAGAAAAATAAAGGAAAAATTATCAAGAATCTAAATCTTTTATT AAGTTTACCCTTAAATGGCTATTTACCATTTGATAGTTTGTTGAAAAAAGTTAAGATTAAA GGATTTTCGGTGGTTGTTCATTTCTGATATTTGGTTCACCAAGCACAATTTTGAAAACTT GAATCAATTGGCGATTTGTTTCATTTCCTGGCTATTTAGACAACTAATTCCCAAAATTAT ACAGACTTTTTTTTACTGCACCGAAATATCTTCTACAGTGACAATTGTTTACTTTAGACA TGATACTTGGAATAAACTTATCACCCCTTTTATCGTAGAATATTTTAAGACGTACTTAGT CGAAAACAACGTATGTAGAAACCATAATAGTTACACGTTGTCCAATTTCAATCATAGCAA AATGAGGATTATACCAAAAAAAGTAATAATGAGTTCAGGATTATTGCCATCCCATGCAG AGGGGCAGACGAAGAATTCACAATTTATAAGGAGAATCACAAAAATGCTATCCAGCC CACTCAAAAAATTTTAGAATACCTAAGAAACAAAAGGCCGACTAGTTTTACTAAAATATA TTCTCCAACGCAAATAGCTGACCGTATCAAAGAATTTAAGCAGAGACTTTTAAAGAAATT TAATAATGTCTTACCAGAGCTTTATTTCATGAAATTTGATGTCAAATCTTGCTATGATTC CATACCAAGGATGGAATGTATGAGGATACTCAAGGATGCGCTAAAAAATGAAAATGGGTT TTTCGTTAGATCTCAATATTTCTTCAATACCAATACAGGTGTATTGAAGTTATTTAATGT TGTTAACGCTAGCAGAGTACCAAAACCTTATGAGCTATACATAGATAATGTGAGGACGGT TCATTTATCAAATCAGGATGTTATAAACGTTGTAGAGATGGAAATATTTAAAACAGCTTT GTGGGTTGAAGATAAGTGCTACATTAGAGAAGATGGTCTTTTTCAGGGCTCTAGTTTATC TGCTCCGATCGTTGATTTGGTGTATGACGATCTTCTGGAGTTTTATAGCGAGTTTAAAGC CAGTCCTAGCCAGGACACATTAATTTTAAAACTGGCTGACGATTTCCTTATAATATCAAC AGACCAACAGCAAGTGATCAATATCAAAAAGCTTGCCATGGGCGGATTTCAAAAATATAA TGCGAAAGCCAATAGAGACAAAATTTTAGCCGTAAGCTCCCAATCAGATGATGATACGGT TATTCAATTTTGTGCAATGCACATATTTGTTAAAGAATTGGAAGTTTGGAAACATTCAAG CACAATGAATAATTTCCATATCCGTTCGAAATCTAGTAAAGGGATATTTCGAAGTTTAAT AGCGCTGTTTAACACTAGAATCTCTTATAAAACAATTGACAAATTTAAATTCAACAAA CACCGTTCTCATGCAAATTGATCATGTTGTAAAGAACATTTCGGAATGTTATAAATCTGC TTTTAAGGATCTATCAATTAATGTTACGCAAAATATGCAATTTCATTCGTTCTTACAACG CATCATTGAAATGACAGTCAGCGGTTGTCCAATTACGAAATGTGATCCTTTAATCGAGTA TGAGGTACGATTCACCATATTGAATGGATTTTTTGGAAAGCCTATCTTCAAACACATCAAA ATTTAAAGATAATATCATTCTTTTGAGAAAGGAAATTCAACACTTGCAAGC

FIG. 26

human tez1 EST2 p123 human tez1 EST2 p123 human tez1 EST2	MOC1I O AKFLHWLMSVYVVELLRSFFYTTETPOKNR LKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYTTESSDLRNR LKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYTTESSDLRNR TREISWMQVET-SAKHFYYFDHEN-IYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSK * LFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGL TVYFRKDIWKLLCRPFI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLPFKKNTF IVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIPKKSNNEF TYYYRKNIWDVINKMSI-ADLKKETLAEVQEKEVEEWKKS-LGFAPGKLRLIPKKTTF * MOC1
tezl	KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPEFVIRKYATIHATS
EST2	KOKLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKO-ALKNENGFFVRSQYFFNTN
pres	EEFVCAWAQVGQFALFFAIMDIEACIDSVNAEALSIFLATIALLSSDFWIMIAQILARKA

FIG. 25

AKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKR VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREK RAERLTSRVKALFSVLNYERA

FIG. 27

GCCAAGTTCCTGCACTGGCTGATGAGTGTCTCACGTCGTCGAGCTGCTCAGGTC
TTTCTTTTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAG
AGGGTGCAGCTGCGGGACGTGTCGGAAGCAGAGGTCAGGCAGCATCGGGAAGC
CAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGG
TGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGA
GAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTGCT
CAACTACGAGCGGGCGCG

FIG. 28

MTEHHTPKSRILRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRSDVQTSFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVKQMFDESFERRRNLLMKGFSMNHEDFRAMHVNGVQNDLVSTF
PNYLISILESKNWQLLLEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPLFKNNVFEETVSKKRKR
TIETSITQNKSARKEVSWNSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAFQVKQLHKVIPLVSQSTVVPKRLLKVYPLIEQTAKRLHRISLSKVYNHYCPYIDTHDDEKILS
YSLKPNQVFAFLRSILVRVFPKLIWGNQRIFEIILKDLETFLKLSRYESFSLHYLMSNIKISEIEWL
VLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCR
PFITSMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGSNKKMLVSTN
QTLRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMFGRKKYFVRIDIKSCYDRIKQDLM
FRIVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVVQLLSMKTSDTLFVDFVDY
WTKSSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACPKIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVFIDITHNSKFNSCCN
IYRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKKLAEILGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFKYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLFLHRRIAD

FIG. 29

agctottggagtagotcacagaaatcottacaaatotttotgatgagaotatattagattoattacagtcogtgcatatto ccaaatatgtatcatctcgtattaggctttttccgttttactcctggaatcgtacctttttcactattcccctaatga TCCTTTTCTATTTTCTTCATTCGACTGTAGTCGGCTTCGACAGTAAGCCAGATGAAGGTGTTCAATTTTCTTCTCCAAA ${\tt ATGCTCACAGTCAGAGG} {\tt tatatatttttgttttgattttttttttttttttctattcgggatagctaatatatgggcagCTAATAGC$ attctaattgtgaaatatttacctgcaattactgtttcaaagagattgtatttaaccgataaagAATCATGAGAAGATTTTC GAGCCATGCATGTAAACGGAGTACAAAATGATCTCGTTTCTACTTTTCCTAATTACCTTATATCTATACTTGAGTCAAAA $\mathtt{AATTGGCAACTTTTGTTAGAAAATgtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatagTATCGG}$ CAGTGATGCCATGCATTACTTATTATCCAAAGGAAGTATTTTTGAGGCTCTTCCAAATGACAATTACCTTCAGATTTCTG GTGATCGGAACACAGTACACATGTGGCTTCAATGGATTTTTTCCAAGGCAATTTTGGACTTATAAACGCATTTCAAGTGAAG acaacagcaaagcgactccatcgtatttctctatcaaagtttacaaccattattgcccatatatttgacacccacg ATGAAAAATCCTTAGTTATTCCTTAAAGCCGAACCAGGTGTTTGCGTTTCTTCGATCCATTCTTGTTCGAGTGTTTCCT AAATTAATCTGGGGTAACCAAAGGATATTTGAGATAATATTAAAAGGtattgtataaaatttattaccactaacgatttt accagACCTCGAAACTTTCTTGAAATTATCGAGATACGAGTCTTTTAGTTTACATTATTTTAATGAGTAACATAAAGGtaa <u>AAAATGTGCTTAAGTGATTTTGAGAAACGCAAGCAAATATTTGCGGAATTCATCTACTGGCTATACAATTCGTTTATAAT</u> tttgcaaaaagctaattttcagAACAATGTTAGGATGGATACTCAGAAAACTACTTTGCCTCCAGCAGTATATTCGTC caatgtactttacttctaatctattagcagATGGGTTCAAACAAAAAAATGTTAGTCAGTACGAACCAAACTTTACG acctgtggcatcgatactgaaacatttaatcaatgaagaaagtagtggtattccatttaacttggaggtttacatgaagc actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctattttatcggtcgtta ggttcgcttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggatat gttgataattatttgcaaaatcatgtccttagtggtggtgaatccgcgaaagttttttgatgcttgcacacgtctagcatg attgagatattcaaaaaatttctatccactacaactcctttaacgcgggttttattttttctattttctattctcatgttgtt ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa ATGTACAACTTGTTTTGAGAGGGTCGCCGGCAAGCTCGTATAGCAATATATGCGAACGCTTGAGAAGCGATGTACAAACG CAAAATAAAAGCGCCCGCAAAGAAGTTTCCTGGAATAGCATTTCAATTAGTAGGTTTAGCATTTTACAGGTCATCCTA TAAGAAGTTTAAGCAAGgtaactaatactgttatccttcataactaatttagATCTATATTTTAACTTACACTTATTT CAATTGCACAAAGTGATTCCACTGGTATCACAGAGTACAGTTGTGCCCAAACGTCTCCTAAAGGTATACCCTTTAATTGA tatgccaaatttttttaccattaattaacaatcagATTTCAGAAATTGAATGGCTAGTCCTTGGAAAAAGGTCAAATGCG IATTACCTAAGAAGAATACCTTTCGTCTCATTACGAATTTAAGAAAAAGATTCTTAATAAAGAGtattaatttttggtcat GAATGTTGTAAAACAGATGTTCGATGAAAGTTTTTGAGCGTCGAAGGAATCTACTGATGAAAGGGTTTTCCATGGtaaggt

F1G. 3

AGCTGACGAAACATATGGGGGAAATCTTTTTTTACAAATTCTAAGgtatactgtataatgaataatagctgacaaata cggtctcgagacttcagcaatattgacacatcagGCTTTTTTGTCTTGGAATGAGAGATGGGTTTGAAACCCTČTTTČAÄA ACAGGTGTTATTTTACATAGAAGAATAGCTGATTAAtgtcattttcaatttattatacatcctttattactggtgtc agtttgaatactaatagctcatttaatgtcttatataaaggttttgtttttcctgacttcaattttgcatgggtgaaaag aaatagtgttaagccattattggattccgaaatagccaaatttcttggttcctcaaagcggaagtctaaagaacttattg ${ t tgagttgctgtcattcctaagttctaaccgttgaagGATTTGAGAAACACACAATTTTCTACGAGCCTGGAGAAAACAGTA}$ CTCTGTGAAACATGAGGTCTCTTGATACATTGTTAGCATGTCCTAAAATTGATGAAGCCTTATTTAACTCTACATCTGTAG atcadATCGAGCCTTGCATCCTTTGCACAAGTATTTATTGACATTACCCACAATTCAAATTCAATTGTTGCTGCAATAT ${ t IGTTCATAACGGgtgagtacttatttaactagaaaagtcattaattaaccttagATCTTTTGAATGTTATTGGAAGAAA}$ aatttiggaaaaagittggcccgaaatatttaggatàtacgagtaggcgtttcttgtcctctgcagaagtcaaatggtacgtgt TATCATCCATGCTTCGAACAGCTAATATACCAATTTCAGTCATTGACTGATCTTATCAAGCCGCTAAGACCAGTTTTGCG ${\it cccattaaacgggagtggttaaacattaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggttt}$ totataatgaataatgcccgcactaatgcaaaaagacgaagattatottotaaacaagggggattaagcatatccgaagg aaaagagagtaatatacccagtgttgttgaagaaagcaaggataatttggaacaagcttctgcagatgacaggctaaatt aagcttatgaggcttcaaaaaactcctcctgatttaaaggaggaatcttccaccgatgaggaaatggatagcttatcagct gctgaggagaagcctaattttttgcaaaaagaaaatatcattgggagacatctcttgatgaatcagatgcggagagtat ctccagcggatccttgatgtcaataacttctatttctgaaatgtatggtcctactgtcgcttcgacttctcgtagctcta GTTAAAAAGAACTCAAGGATCCCGAATTTGTAATTCGAAAGTATGCAACCATACATGCAACAAGTGACCGAGCTACAAA **AAACTTTGTTAGTGAGGCGTTTTCCTATTgtaagtttatttttcattggaatttttaatttttaacaaattctttttagTTGAT** <u> ATGGTGCCTTTTTGAAAAAGTCGTGCAGTTÄCTTTCTATGAAAACATCAGATACTTTGTTTGTTGATTTTGTGGATTATTG</u> GACCAAAAGTTCTTCTGAAATTTTTAAAATGCTCAAGGAACATCTCTCTGGACACATTGTTAAGGtataccaattgttga attgtaataacactaatgaaactagATAGGAAATTCTCAATACCTTCAAAAAGTTGGTATCCCTCAGGGCTCAATTCTGT TTACGAGTAGTCGACGATTTCCTCTTTATAACAGTTAATAAAAAGGATGCAAAAAATTTTTGAATTTTATCTTTAAGAGG ataaactttgaaaatagtaatgggataataaacaatactttttttaatgaaagcaaagaaaagaatgccattcttcggttt TTCTTACTTTTAAGAAGGATCTTCTTAAGCACCGAATGTTTGGgtaattatataatgcgcgattcctcattaatttt gcaqGCGTAAGAAGTATTTTGTACGGATAGATATAAAATCCTGTTATGATCGAATAAAGCAAGATTTGATGTTTCGGATT cgcagttaagtgaccaaaggtacc

FIG. 30 (CONTINUED)

44 44	20	79 78 92	100	129 120 130	150	,	157	158	186
YFK-TYLVEN ETLAEVQE NKQMKNNFYQ		FRLIDA I PCRG FRDIMTFNKK FRPIMTFLRK	FRPIMTF.RK	PTQIADRIKE -DPFGFAVFN -QKIGYSVFD	IGVF.				
FFYCTEISST VTIVYFRHDT WNKLIT PFIVE YFK-TYLVEN FFYVTEQQKS YSKTYYYRKN IWDVI-MKMS IADLKK ETLAEVQE KHKE GSQIFYYRKP IWKLVSKLTI VKVRIQFSEK NKQMKNNFYQ	FFY.TEKSYYYRK. IWKLFKV	RLIPKKSNNE FRIITAIPCRG RLIPKKTT FRPIMTFNKK RIIPKKGS FRPIMTFLRK	FGKL RILPKK	ADEEEFTIYK ENHKNAIQPT QKILEYLRNK RPTSFTKIYS PTQIADRIKE IVNSDRKTTK LTTNTKLLNS HLMLKTLKNRMFK -DPFGFAVFN DKQKNIK LNLNQILMDS QLVFRNLKDML-G -QKIGYSVFD	KK LN.NLS QL.LLKNIGVF.		VKSCYD		CYD
WNKLIT IWDVI-MKMS IWKLVSKLTI	IWKL	NVCRNHNSY TLSNFNHSKM KEVEEWKKSL	FG	ENHKNAIQPT QKILEYIRNK LTTNTKLINS HLMLKTIKN- LNINQILMDS QLVFRNIKD-	QL.LLKN-	6		RPCLYYVTL-	KKKF. F.KWK.G PLYF.T.DCYD
VTIVYFRHDT YSKTYYYRKN GSQIFYYRKP	.SYYYRK.		КЕ	ENHKNAIQPT LTTNTKLLNS LNLNQILMDS	LN.NLS	ļ	NVL EFVCKWKQVH	QFIEKWKNKG	.FKWKG
FFYCTEISST FFYVTEQQKS KHKE	FFY.TEK.	NVCRNHNSY- KEVEEWKKSL KIQLEEENLE	КЕ	ADEEEFTIYK IVNSDRKTTK DKQKNIK	KK		YD-DVMKKYE	NK-QISEKFA	. K KKF.
EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus		EST2 pep Euplotes pep	Trans of tetrahymen	Consensus

FIG. 31

S-1: FFY VTE TTF QKN RLF FYR KSV WSK S-2: RQH LKR VQL RDV SEA EVR QHR EA S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIG. 32

Poly 4

t t c

ta a g c c t c g

5'- cag acc aaa gga att cca taa gg -3'
Q T K G I P Q G

4(B')

5(c')

D D Y L L I T
3'- ctg ctg atg gag gag tag tgg -5'
a a a a a a a a a
t t t t
c c
Poly 1

FIG. 34

FIG. 33A

FIG. 33B

SILSSFLCHFYMEDLIDEYLSFTKKK------GSVLLRVV DGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS-----QDTLILKLADDFLIIS KGIPQGLCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLIT LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT Ot Ea_p123 Sp_M2 Sc_p103

Q K V G I P Q G caa aaa gtt ggt atc cct cag gg......

Poly 4
t t c
t a a g c c t c g
cag acc aaa gga att cca taa gg

ag acc aaa gga att cca tca ggC TCA ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG tc tgg ttt cct taa ggt agt ccG AGT TAA GAC AGT AGA AAA AAC ACA GTA AAG ATA TAC

Σ

H

υ

Ľ

ഗ

ß

Ц

S

Ö

ഗ

Д

ტ

×

F1G. 36

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA CTT CTA AAC TAA CTA CTA ATG GAT AGC AAA TGC TTT TTC TTT CCT AGT CAC AAC GCT

œ ы ы > വ ტ × × × Е ഥ വ ᆸ × 臼 ы Д Œ

GTA GTC gac gac tac ctc atc acc CAT CAG ctg ctg atg gag gag tag tgg

Д

Ω

> > <---- ctg ctg atg gag gag tag tgg
a a a a a a a
t t t t
c c</pre>

<---Actual Genomic Sequencegac gat ttc ctc ttt ata aca...... D D F L F I T

(CONTINUED) FIG. 36


```
. (173)
                                                                                                                                                                                                                                                                                                                           . (205)
                                                                                                                                                                                                                                                                                                                                                   . (209)
            ... (35) ...
                                                                                                                                                                                                                                                                                                                         VLLRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENS
                                                                                                                                                                                                                                                                                                                                       LILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDKILAVSSQS
                                                                                                                                                                                                                                                                                                                                                   LLMRLTDDYLLITTQENNAVLFIEKLINVSRENGFKFNMKKLQTSFPLS
                                                                                                                                                                                                                                                                                                                ၎
                                                                                                                                                                                                                                             ...(6)...
                                                                                                                                                                                                                                                                      ... (14) ...
                                                                                                                                                                                                                                                                                                Motif 6(D)
                                                                                                                                                                                                                                                                                                                있
저
            (429). WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIW
                        (366). WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTW
                                    . WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIW
                                                                                                                                                                                            KLFFATMDIEKCYDSVNREKLSTFLK ... (107) ...
                                                                                                                                                                                                                                                                                                              Gh h
                                                                                                                                                                                ... (75) ...
                                                                                                                                                                                                                                  hPQG pP hh h
YLQKVGIPQGSILSSFLCHFYMEDLIDEYLSF
YIREDGLFQGSSLSAPIVDLVYDDLLEFYSEF
                                                                                                                                                                                                                                                                       YKQTKGIPQGLCVSSILSSFYYATLEESSLGF
Motif O
                                                                                                                                                                  KKYFVRIDIKSCYDRIKQBLMFRIVK
ELYFMKFDVKSCYDSIPRMECMRILK
                                                             Motif 1 Motif 2 K p hh h K hR h R AVIRLLPKK--NTFRLITN-LRKRF
                                                                                                     SKMRIIPKKSNNEFRIIAIPCRGAD
                                                                                                                 GKLRLIPKK--TTFRPIMTFNKKIV
                                                                                                                                                      hDh GY h
                                                                                                                              * **
                                                                                                                                                                                                                                                                                                Y Motif 5(C)
                                                                                                                                          Motif 3(A) AF
                                                                                                                                                                                                                     Motif 4(B')
                                                                                                                                                                                                                                                                                                               F DDhhh
                                                                                                                              **
                                     (441)
                                                                                                                                                                                                                                                                                                               ч
           Tez1p
Est2p
                                                                                        Tez1p
Est2p
                                                                                                                                                                                                                                               Tezlp
Est2p
p123
                                                                                                                                                                    Tez1p
Est2p
                                                                                                                                                                                                                                                                                                                                      Est2p
                                                                                                                                                                                                                                                                                                                           Tez1p
                                   p123
                                                                                                                                                                                                                                                                                                                                                  p123
                                                                                                                 p123
                                                                                                                                                                                           p123
                                                                                                                                                                                                                                                                                                                           လ လ ဗ
ဝ ဂ ဝ မ
.
                                                                                        S S E
В С С
В С С С
                                                                                                                                                                    S S.
В S. D.
                                                                                                                                                                                                                                               S S E
```

F/G. 4

Ä

+

FIG. 4.

Ä

+

FIG. 42 (CONTINUED)

WNSISISRFSIFYRSSYKKFKQDLYFNLHSICD 251	RNTVHMWLQWIFPRQFGLINAFQVKQLHKVIPL 284	VS QSTVVPKRLLKVYPLIJEQTAKRLHRIS 313	LSKVYNHYCPYID - THDDEKILSYSLKPNQ 342	VFAFLRSILVRVEPKLI 359	WGNQRIFEIILKDLETFLKLSRYESFSLHYLMS 392	NIK I SEIEWLVLGKR SNAKMCL SDFEKRKQIFA 425
N KQFLHKLNINSSSFFP 200	YSKILPSSSSIKKLTDLREAIFP 223	TN LVKIIPQRLKVRINLTLQKLLKRHKRLN 252	YVSILNSICPPLEGTVLDLSHLSRQSPKER 282	VLKFII VILQKLLPQEM 299	FGSKKNKGKIIKNLNLLLSLPLNGYLPFDSLLK	KLRLKDFRWLF I S D I WFTKHNFENLNQLA I 362
NEK DHFLNNINVPNWNNMKSRTRIFYCTHEN 248	RNNQFEKKHEFVSNKNNISAMDRAQTI 275	FTN I FRFNRLIRKKLKDKVIEKIAYMLEKVKD FN 308	FNYYLTKSCPLPENWRERKQKIENLINKTREEK 341	SKYYEELFSYTTDNKCVTQFINEFFYNILPKDF 374	LTG-RNRKNFQKKVKKYVELNKHELIHKNLLLE 406	K IN TRE I SWMQVETS - AKHFYYFDHEN - I YVLW 437
219	252	285	314	343	360	393
184	201	224	253	283	300	333
218	249	276	309	342	375	407
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

	EFIYWLYNSEIIPILQSFFYITESSDLRNRTVY 458	FRKD I WKLLCRPFITSMKMEAFEKINENNVRMD 491	TQKTTLPPAVIRLLPKK NTFRLITNLRKRFL 522	IKMGSNKKMLVSTNQTLRPVASILKHLINE 552	ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584	YFVRIDIKSCYDRIKQDLMFRIVKKKLKDPE-F 616	VIRKYATIHATSDRATKN 634
	CFISWLFRQLIPKIIQTFFYCTEISSTVT-IVY 394	FRHDTWNKLITPFIVEYEKTYLVENNVCRNHNS 427	YTLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD 460	EEE FTIYKENHKNAIQPTQKILEYLRNKRPT 491	SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524	YFMKFDVKSCYDSIPRMECMRILKDALKNENGF 557	FVRSQYFFNTNTG 570
	KLLRWIEEDLVVSLIRCFFYVTEQQKSYSKTYY 470	YRKNIWDVIMKMSIADLKKETLAEVQEKEVEEW 503	KKSLGEAPGKLRLIPKK TTFRPIMTFNKKIV 534	NSD RKTTKLTTNTKLLNSHLMLKTLKNR - MF 564	KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDF 630	WIMTAQILKRKNNIVIDSKNFRKKEMKDYFRQK 663
	426	459	492	523	553	585	617
	363	395	428	461	492	525	558
	438	471	504	535	565	598	631
ď	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

Ä

+

665	698	731	756	786	816	849
591	624	657	684	713	739	772
696	729	762	795	828	861	894
EVSEAFSYFDMVPFEKVVQLLSMKTSDTLFV	DFVDYWTKSSSEIFKMLKEHLSGHIVKIGNSQY	LQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTK	KKG SVLLRVVDDFLFITVNKKDAKK	FLNLSLRGFEKHNFSTSLEKTVINFENSNG	I I NN T F FNE SKKRMP FFGFSVNMR SLD T L L	ACPKIDEALFNSTSVELTKHMGKSFFYKILRSS
VLKLFNVVNASRVPKPYELYI	DNVRTVHLSNQDVINVVEMEIFKTALWVEDKCY	IREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKA	SPSQD TLILKLADDFLISTDQQVIN	IKKLAMGGFQKYNAKANRDKILAVSSQSD	DD T V IQFCA MH I FVKE L EVWKHSSTM	NNFHIRSKSSKGIFRSLIALFNTRISYKTIDTN
FQKIALEGGQYPTLFSVLENEQNDLNAKKTLIV	EAKQRNYFKKDNLLQPVINICQYNYINFNGKFY	KQTKGIPQGLCVSSILSSFYYATLEESSLGFLR	DESMNPENPNVNLLMRLTDDYLLITQENNAVL	FIEKLINVSRENGFKFNMKKLQTSFPLSPSKFA	KYGMDSVEEQNIVQDYCDWIGISIDMKTLALMP	NINLRIEGILCTLNLNMQTKKASMWLKKKLKSF
635	666	699	732	757	787	817
571	592	625	658	685	714	740
664	697	730	763	796	829	862
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

Sp_Tip1p	850	LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR 882
Sc_Est2p	773	LNSTNTVLMQIDHVVKNISEC 793
Ea_p123	895	LMNNITHYFRKTITTEDFANKTLNKLFISGGYK 927
Sp_Tip1p	883	AQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKK 915
Sc_Est2p	794	YKSAFKDLSINVTQNMQFHSFLQRIIEM 821
Ea_p123	928	YMQCAKEYKDHEKKNLAMSSMIDLEVSKIIYSV 960
Sp_Tip1p	916	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS 948
Sc_Est2p	822	TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN 854
Ea_p123	961	TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF 993
Sp_Tip1p	949	T D L I K P L R P V L R Q V L F
Sc_Est2p	855	I I L L R K E I Q H L Q A Y I Y
Ea_p123	994	C M I L K A K E A K L K S D Q C
Sp_Tip1p Sc_Est2p Ea_p123	982 878 1024	

Ä

FIG. 42 (CONTINUED)

.

+

MTEHHTPKSRILRFLENQYVYLCT 24	LNDYVQLVLRGSPASSYSNICERLRSDVQTSFS 57	I FLHSTVVGFDSKPDEGVQFSSPKCSQSELIAN 90	VVKQMFDESFERRR-NLLMKGFSMNHEDFRAMH 122	VNGVQNDLVSTFPNYLISILESKNWQLLLEIIG 155	SDAMHYLLSKGSIFEALPNDNYLQISGIPLFKN 188	NVFEETVSKKRKRTIETSITQNKSARKEVS 218
MKILFEF 7	QDKLDIDLQTN STYK ENLKCGHFNGLD 35	E I L T T C F A L PN SR - K I A L PC L PGD L SHKA V I DH 67	CIIYLLTGELYNNVLTFGYKIARNED 93	VNNSLFCHSANVNVTLLKGAAWKMFHSLVG 123	TYAFVDLLINYTVIQFN - GQFFTQIVGNRCNEP 155	HLPPKWVQRSSSSATAAQIKQLTEPVT 183
MEVDVDNQADNHGIHSALKTCEEIKEAKTLYSW 33	QKVIRCRNQSQ SHYK DLEDIKIFAQTN 61	I VAT PRD YN EED FKV I ARKEVFSTGLM I EL I DK 94	CLVELLSSSDVSDRQKLQCFGFQLKGNQ 122	LAKTHLLTALSTQKQYFFQDEWNQVRAMIG 152	NELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDH 185	LKVNDKFDK-KQKGGAADMNEPRCCSTCKYNVK 217
	25	58	91	123	156	189
	8	36	68	94	124	156
	34	62	95	123	153	186
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

ю

+

	-
The Appendix	*

WNSISISRFSIFYRSSYKKFKQDLYFNLHSICD 251	RNTVHMWLQWIFPRQFGLINAFQVKQLHKVIPL 284	VS QSTVVPKRLLKVYPLIEQTAKRLHRIS 313	LSKVYNHYCPYID - THDDEKILSYSLKPNQ 342		WGNQRIFEIILKDLETFLKLSRYESFSLHYLMS 392	NIKISEIEWLVLGKRSNAKMCLSDFEKRKQIFA 425
N KQFLHKLNINSSSFFP 200	YSKILPSSSSIKKLTDLREAIFP 223	TN LVKIPQRLKVRINLTLQKLLKRHKRLN 252	YVSILNSICPPLEGTVLDLSHLSRQSPKER 282		FGSKKNKGKIIKNLNLLSLPLNGYLPFDSLLK 332	KLRLKDFRWLFISDIWFTKHNFENLNQLAI 362
N EK DHFLNNINVPNWNNMKSRTRIFYCTHFN 248	RNNQFFKKHEFVSNKNNISAMDRAQTI 275	FTNIFRFNRIRKKLKDKVIEKIAYMLEKVKDFN 308	FNYYLTKSCPLPENWRERKQKIENLINKTREEK 341		LTG-RNRKNFQKKVKKYVELNKHELIHKNLLLE 406	KINTREISWMQVETS-AKHFYYFDHEN-IYVLW 437
219	252	285	314	343	360	393
184	201	224	253	283	300	333
218	249	276	309	342	375	407
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

٠,	=
:"	-
18	
	er:F
13	==
12	
	n
:=	9 9
ī	Z
::	m
17	L
:	u
	#ij
1	٥
12	n
15	
:3	
i	_
	===
:6	
٠.	٠.
14	÷
0	
1	ď,
-	
Ľ	j
П	Ų
•	

œ.

+

EFIYWLYNSFIIPILQSFFYITESSDLRNRTVY 458	FRKD IWKLLCRPFITSMKMEAFEKINENNVRMD 491	TQKTTLPPAVIRLLPKK NTFRLITNLRKRFL 522	IKMGSNKKMLVSTNQTLRPVASILKHLINE 552	ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584	YFVRIDIKSCYDRIKQDLMFRIVKKLKDPE-F 616	VIRKYATIHATSDRATKN 634
CFISWLFRQLIPKIIQTFFYCTEISSTVT-1VY 394	FRHD TWNKLITPFIVEYFKTYLVENNVCRNHNS 427	YTLSNFNHSKMRIIPKKSNNEFRIIA I PCRGAD 460	EEE FTI YKENHKNAIQPTQKILEYLRNKRPT 491	SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524	YFMK FDVK SCYDSIPRMECMRILKDALKNENGF 557	FVRSQYFFNTNTG 570
KLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYY 470	YRKN IWDVIMKMSIADLKKETLAEVQEKEVEEW 503	KKSLGFAPGKLRLIPKK TTFRPIMTFNKKIV 534	NSD RKTTKLTTNTKLLNSHLMLKTLKNR - MF 564	KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDF 630	WIMTAQILKRKNNIVIDSKNFRKKEMKDYFRQK 663
426	459	492	523	553	585	617
363	395	428	461	492	525	558
438	471	504	535	565	598	631
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

œ

+

	SQ Y 698	FTK 731	AKK 756	786	TLL 816	R S S 849
	KC Y 624	FKA 657	VIN 684	713	STM 739	D T N 772
	KFY 729	FLR 762	AVL 795	K F A 828	LMP 861	K S F 894
	SGH I VK I GN FKTALWVED QYNY I NFNG	AEDLIDEYLS ODLLEFYSE ATLEESSLG	L F I T V N K K D I L I I S T D Q Q Q	V - N F E N S N G L A V S S Q S D - Q T S F P L S P S	GFSVNMRSLD VKELEVWKHS GISIDMKTLA	MGKSFFYKIL FNTRISYKTI KASMWLKKKL
A L EGGQYPT L F SVIL EN E	YWTKSSSEIFKMLKEHL	VGIPQGSILSSFLCHFYM	SVLLRVVDDF	SLRGFEKHNFSTSLEKT	INNTFFNESKKRMPFFG	I D E A L F N S T S V E L T K H N
	TVHLSNQDVINVVEMEI	DGLFQGSSLSAPIVDLVY	D TLILKLADDF	AMGGFQKYNAKANRDKI	DDTVIQFCA MHIFN	I R S K S S K G I F R S L I A L F
	RNYFKKDNLLQPVINIC	KGIPQGLCVSSILSSFYY	N P EN P N V N L L MR L T DD Y	LINVSRENGFKFNMKKL	DSVEEQNIVQDYCDWIG	R I E G I L C T L N L N M Q T K F
ר 3 ק	D F V D D N V R E A K Q	L Q R C L C C C C C C C C C C C C C C C C C	KKG SPSG-	F L N L F K K L F E E K	 K Y G M	AC P N N F F K
664	666 592 697	699 625 730	732 658 763	757 685 796		817 740 862
Ea_p123	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

	882	915	948	981	988
	793	821	854	877	884
	927	960	993	1023	1031
	LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR LNSTNTVLMQIDHVVKNISEC LMNNITHYFRKTITTEDFANKTLNKLFISGGYK	AQAYLKRMKDIFIPQRMFITDLLNVIGRKIIWKK YKSAFKDLSINVTQNMQFHSFLQRIIEM YMQCAKEYKDHFKKNLAMSSMIDLEVSKIIIYSV	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF	FKYHPCFEQ TS TEIFS T	LHRRIAD - IYIHIVN - QSLIQYDA
	850	883	916	949	982
	773	794	822	855	878
	895	928	961	994	1024
œi	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

+ .

FIG. 43

FIG. 45

80 160 240	320	200	720	800 880 958	1018 20	1078 40	1138 60	1198 80	1272 86	1332 106	1405 113	1469 128
ygraccyartractricciricaraagciaariyoincercyaagge 80 actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctatttatt				ataatctaaattagtttcgcttataattgatagtagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa 800 gatactttgcaaaaacatttattagctatcattataaaaaaaa	ATG ACC GAA CAC CAT ACC CCC AAA AGC AGG ATT CTT CGC TTT CTA GAG AAT CAA TAT GTA 1018 M T E H H T P K S R I L R F L E N Q Y V 20	TAC CTA TGT ACC TTA AAT GAT TAT GTA CAA CTT GTT TTG AGA GGG TCG CCG GCA AGC TCG 1078 Y L C T L N D Y V Q L V L R G S P A S S 40	TAT AGC AAT ATA TGC GAA CGC TTG AGA AGC GAT GTA CAA ACG TCC TTT TCTT TTT CTT 1138 Y S N I C E R L R S D V Q T S F S I F L 60	CAT TCG ACT GTA GGC TTC GAC AGT AAG CCA GAT GAA GGT GTT CAA TTT TCT TCT CCA 1198 H S T V V G F D S K P D E G V Q F S S P 80	AAA TGC TCA CAG TCA GAG gtatatatttttttttgtttttgattttttttctattcgggatagctaatatgggcag 1272 K C S Q S E	CTA ATA GCG AAT GTT GAA AGG TTC GAT GAA AGT TTT GAG CGT CGA AGG AAT CTA 1332 L I A N V V K Q M F D E S F E R R N L 106	CTG ATG AAA GGG TTT TCC ATG gtaaggtattctaattgtgaaatatttacctgcaattactgtttcaaagaga 1405 L M K G F S M	ttgtatttaaccgataaag AAT CAT GAA GAT TTT CGA GCC ATG CAT GTA AAC GGA GTA CAA AAT 1469 N H E D F R A M H V N G V Q N 128
1 99 81 ac 161 cc	• • • •	•		721 at 801 ga 881 ac	959 AT 1 M	1019 TA 21 Y	1079 TA 41 Y	1139 CA 61 H	1199 AA 81 K	1273 CT 87 L	1333 CT 107 L	1406 tt 114

FIG. 4

1529 148	1601 155	1661 175	1721 195	1781 215	1841 235	1907 245	1967 265	2027 285	2087 305	2147 325	2207 345	2267 365	
15 14		16	17	17 21	18 23	19 24	19	20		21 32	34	36	
CAA	2 GGC	GAC D	GTG V	AAA K	TAT Y	AAC N	AGG R	GTA V	ACA T	ATT I	GCG A	ATA I	
TGG W	T ATC I	AAT N	ACT	CGC R	TCC	TTT A	CCA	$_{\rm L}^{\rm CTG}$	CAA	TAT Y	TTT F	AGG R	
AAT N		CCA P	GAA E	GCC	TCA S	TAT TY Y	TTT F	CCA P	GAA E	CCA P	GTG V	CAA	
AAA K	agtal	CTT	GAG E	AAA AGC K S	AGG R	CTA T	ATT I	ATT I	TTA ATT L I	TAT TGC Y C	CAG Q	GGT AAC G N	
TCA	gaca	GCT A	TTT F	AAA K	TTT TAC AGG F Y R	AT C	TGG W	GTG	TTA L	TAT Y	AAC N	GGT	
GAG	gtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatag	GAG E	GTG V	AAT N	TTT F	tag	CAA Q	AAA K	CCT	CAT H	CCG P	TGG W	
CTT	acaai	TTT F	AAT N	CAA	AGC ATT S I	G gtaactaatactgttatccttcataactaattttag D	CIT	CAC H	TAC Y	AAC N	AAG K	TTA ATC L I	
ATA I	ttga	ATT I	AAT N	ACT T	AGC S	acta	TGG ¥	TTG L	GTA V	TAC Y	TTA L	TTA L	<u>~</u>
TCT	cact	AGT S	AAA K	ATT I	TTT F	cata	ATG M	CAA	CTA AAG L K	GTT V	TCC	CCT AAA P K	46 IUED
ATA I	tgag	GGA	TTT F	TCC	AGG R	cctt	GTA CAC ATG V H M	GTG AAG V K	CTA L	AAA K	TAT Y	CCT	FIG. 46 (CONTINUED
CTT L	atgt	AAA K	CTT	ACA T	AGT	ttat	GTA V	GTG V	CTC	TCA	AGT S	TTT F	(CO
TAC Y	taag	TCC	CCA	GAA E	TCA ATT S I	actg	ACA T	CAA	CGT R	CTA L	$_{\rm L}^{\rm CTT}$	GTG V	
AAT N	cggt	TTA L	ATA I	ATT I	TCA S	taat	AAC	TTT F	AAA K	TCT	ATC I	CGA R	
CCT P	atac	TTA L	3 9 9	ACC	ATT	taac	CGG	GCA A	CCC	ATT I	AAA K	GTT V	
TTT F	gtaa	TAC Y	TCT	CGA R	AGC S		GAT D	AAC N	GTG V	CGT R	GAA E	$_{\rm L}^{\rm CTT}$	
ACT T	AT	CAT H	ATT I	AAG K	AAT N	CAA	TGT	ATA I	GTT V	CAT H	GAT D	ATT I	
TCT	GAA E	ATG M	CAG Q	AGA R	TGG W	AAG K	ATT I	CIT	ACA T	CTC L	GAT D	TCC	
GTT V	TTA L	gcc A	CTT L	AAA K	TCC	TTT F	TCT	GGA G	AGT S	CGA R	CAC H	CGA R	
CTC	$_{\rm L}^{\rm TTG}$	GAT D	TAC Y	AAA K	GTT V	AAG K	CAC H	TTT F	CAG Q	AAG K	ACC	CTT L	
GAT D	$_{\rm L}^{\rm CTT}$	AGT S	AAT N	TCA S	GAA E	AAG K	TTA L	CAA	TCA	GCA A	GAC D	TTT F	
1470 129	1530 149	1602 156	1662 176	1722 196	1782 216	1842 236	1908 246	1968 266	2028 286	2088 306	2148 326	2208 346	

2585 445 2645 465 2705 485 2775 495 2835 515 2525 425 2906 524 2967 542 3088 581 3027 562 gtaat 2706 gtattttaaaagtatttttgcaaaaagctaattttcag AAC AAT GTT AGG ATG GAT ACT CAG AAA ACT 486 TTC TTA ATA AAG gtattaatttttggtcatcaatgtactttacttctaatctatta ${ t F}$ L I K CTC GAA ACT L E T GAG E 2776 ACT TTG CCT CCA GCA GTT ATT CGT CTA TTA CCT AAG AAG AAT ACC TTT CGT CTC ATT ACG 496 T L P A V I R L L P K K N T F R L I T T AAT GCG AAA ATG TGA GAT TTT GAG AAA CGC AAG CAA ATA TTT GCG N A K M C L S D F E K R K Q I F A $_{\rm Y}^{\rm TAT}$ AAA K GTG V 2968 GCA TCG ATA CTG AAA CAT TTA ATC AAT GAA AGT AGT GGT ATT CCA TTT AAC TTG GAG 543 A S I L K H L I N E E S S G I P F N L E TTT 2586 ATC ACT GAA TCA AGT GAT TTA CGA ACT GTT TAT TTT AGA AAA GAT ATT TGG 446 I T E S S D L R N R T V Y F R K D I W CTT L TTT GAA AAA ATA AAC F E K I N CCT P ຽ ບ TTT ' GTC V CGA R AAC N TTT AAG AAG GAT CTT CTT AAG CAC CGA ATG TTT F K K D L L K H R M F AAA G gtattgtataaaatttattaccactaacgattttaccag AC $\,$ K $\,$ D TTC ATC TAC TAC AAT TCG TTT ATA ATA CCT ATT TTA CAA TCT F I Y W L Y N S F I I P I L Q S TTA L AGT S GAA TGG CTA E W L AAC CAA ACT N ATG M TTA L TAT Y ATT 2646 CTC TTG TGC CGA CCC TTT ATT ACA TCA ATG AAA ATG GAA GCG 466 L L C R P F I T S M K M E A GAA CAT H ACG TTA L 2397 gtaatatgccaaatttttttaccattaattaacaatcag ATT TCA 396 ATG TTA GTC AGT M L V S AGT S TAC GAG TCT TTT Y E S F AAA AAC AAA N K GTT TAC ATG AAG CTT CTT ACT V Y M K L L T AAA TTA TCG AGA K L S R R K R GAG ATA ATA TTA E I I L TCA S 2907 ttagcag ATG GGT 525 M G 2466 AAA AGG TCA 406 K R S TTA TTG L 2836 AAT ' 516 N 2526 GAA 426 E TTT F TTC F

+

FIG. 46

FIG. 46

3275 631 3405 659 3465 679 3840 778 3900 798 3343 643 3532 692 3593 708 3653 728 3713 748 3777 764 3466 AAA ATG CTC AAG GAA CAT CTC TCT GGA CAC ATT GTT AAG gtataccaattgttgaattgtaataaca 680 K M L K E H L S G H I V K AAT AAA AAG GAT GCA AAA ATT TTG AAT TTA TCT TTA AGA G gtgagttgctgtcattcc N K K D A K K F L N L S L R G 3276 ACA AAA AAC TTT GTT AGT GAG GCG TTT TCC TAT T gtaagtttatttttcattggaattttttaacaa 632 T K N F V S E A F S Y F GCT A 3344 attetttttag TT GAT ATG GTG CCT TTT GAA AAA GTC GTG CAG TTA CTT TCT ATG AAA ACA 644 D M V P F E K V V Q L L S M K T 3406 TCA GAT ACT TTG TTT GTT GAT TTT GTG GAT TAT TGG ACC AAA AGT TCT GAA ATT TTT 660 S D T L F V D F V D Y W T K S S S E I F 3594 ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG GAA GAT TTG ATT GAT GAA TAC CTA TCG 709 I L S S F L C H F Y M E D L I D E Y L S TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA GTA GTC GAC GAT TTC CTC TTT ATA ACA F T K K K G S V L L R V V D D D F L F I T 3841 ATA AAC TTT GAA AAT AGT AAT GGG ATA ATA AAC AAT ACT TTT TTT AAT GAA AGC AAG AAA 779 I N F E N S N G I I N N T F F N E S K K K GTT AAA AAG AAA CTC V K K K L 3089 tatataatgcgcgattcctcattattaattttgcag G CGT AAG AAG TAT TTT GTA CGG ATA GAT ATA 8 K K Y F V R I D I 3778 taagttctaaccgttgaag GA TTT GAG AAA CAC AAT TTT TCT ACG AGC CTG GAG AAA ACA GTA 765 3533 ctaatgaaactag ATA GGA AAT TCT CAA TAC CTT CAA AAA GTT GGT ATC CCT CAG GGC TCA 693 I G N S Q Y L Q K V G I P Q G S 3216 AAG GAT CCC GAA TTT GTA ATT CGA AAG TAT GCA ACC ATA CAT GCA ACA AGT GAC CGA 612 K D P E F V I R K Y A T I H A T S D R TGT TAT GAT CGA ATA AAG CAA GAT TTG ATG TTT CGG ATT C Y D R I K Q D L M F R I TCC S AAA K

4089 848 4149 868 4209 888 4339 4468 946 4528 966 4588 986 4274 903 4401 935 4340 GAA ATA TTA GGA TAT ACG AGT AGG CGT TTC TTG TCC TCT GCA GAA GTC AAA TG gtacgtgtc 918 E I L G Y T S R R F L S S A E V K W 1275 aaagtcattaattaaccttag AT CTT TTG AAT GTT ATT GGA AGA AAA ATT TGG AAA AAG TTG GCC 904 GAT TAA tgtcattttcaatttattatatacatcctttattact $ggtgtcttaaaacaatattattactaagtata D <math>\,\,$ * AAG GAT ATA TTT ATT CCC CAA AGA ATG TTC ATA ACG G gtgagtacttattttaactaga K D I F I P Q R M F I T D AAA K GAT CTT ATC AAG CCG CTA AGA CCA GTT TTG CGA CAG GTG TTA TTT TTA CAT AGA ATA D L I K P L R P V L R Q V L F L H R R I TAC TCT ATG TGT ATG AGA GCA CAA GCA TAC TTA AAA Y S M C M R A Q A Y L K CAG TCA TTG ACT Q S L T TTT TTT TAC AAA ATT CTA AG gtatactgtgtaactgaataatagctgacaaataatcag A F F Y K I L R GCA A CAT ATG H M TTC AAT F N ATG AGA GAT GGT TTG M R D G L TTA (AAA K $_{
m L}$ CAA GTA TTT ATT GAC ATT ACC CAC AAT TCA AAA Q V F I D I T H N S K ACA TTT ACG T GAG CTG TAC CAA Y Q GAT GGA G CTT TTC GAA CAG CTA ATA F E Q L I TCT S TCT AGG R 1402 ggtctcgagacttcagcaatattgacacatcag G CTT TTT TGT 936 ATG ACA T TCT AAC N AAC N TGC C TGC TGC AAT ATA TAT AGG CTA GGA TTT F TCT S CCA P GCA CAT H GCC A GGT GAA E CTT GCA TCC TTT L A S F TTC AAA TAT F K Y TTC F GAT D ATT I TCT ATG TCT AAA K 3901 AGA 7 4589 GCT (AAA K AGG R CCC AGC S CCT P 4090 849 4210 889 1469 947 3961 819 4021 839

FIG. 46 (CONTINUED)

FIG. 46 (CONTINUED)

+

4905 4985 5065 5145 5225 5305 5385 5465 4825 atgcaaaaagacgaagattatcttctaaacaagggggattaagcatatccgaaggaaaagagagtaatatacccagtgtt ttatccttatacattttaagaaagattgacagtggttgctgactactgcccacatgcccattaaacgggagtggttaaaca ttaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggttttctataatgaataatgcccgcacta gttgaagaaagcaaggataatttggaacaagcttctgcagatgacaggctaaattttggtgaccgaatttttggtaaaagc cccaggttatccatggtggccggccttgctactgagacgaaaagaaactaaggatagtttgaatactaatagctcattta atgictiatataaaggittigittitticcigacticaatittigcatgggigaaaagaaatagigitaagccattattggat tocgaaatagocaaatttottggttootoaaagoggaagtotaaaagaaottattgaagottatgaagotttatgagoctttaaaagocotaaatttttgo tootgatttaaaaggaggaatottooacogatgaggaaatggatagottatoagotgotgaggagagagootaattttttgo aaaaaagaaaatatcattgggagacatctcttgatgaatcagatgcggagagagtatctccagcgggatccttgatgtcaata acttctatttctgaaatgtatggtcctactgtcgcttcgacttctcgtagctctacgcagttaagtgaccaaaggtacc

met ser val tyr val val glu leu leu ATG AGT GTG TAC GTC GTC GAG CTG CTC GCCAAGTTCCTGCACTGGCTG arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT 40 50 gly ile arg gln his leu lys arg val gln leu arg glu leu ser GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG glu ala glu val arg gln his arg glu ala arg pro ala leu leu GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG ile val asn met asp tyr val val gly ala arg thr phe arg arg ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA glu lys ala glu arg leu thr ser arg val lys ala leu phe GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC 120 ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG GGC 140 ala ser val leu gly leu asp asp ile his arg ala trp arg thr GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC 150 phe val leu arg val arg ala gln asp pro pro pro glu leu tyr TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCG CCT GAG CTG TAC phe val lys val asp val thr gly ala tyr asp thr ile pro gln TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG 180 asp arg leu thr glu val ile ala ser ile ile lys pro gln asn GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC 190 thr tyr cys val arg arg tyr ala val val gln lys ala ala met ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC ATG

FIG. 47

210 gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC 240 leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG 260 arg asp gly leu leu leu arg leu val asp asp phe leu leu val CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG GTG thr pro his leu thr his ala lys thr phe leu arg thr leu val ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC arg gly val pro glu tyr gly cys val val asn leu arg lys thr CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG AAG ACA 300 val val asn phe pro val glu asp glu ala leu gly gly thr ala GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT 320 phe val gln met pro ala his gly leu phe pro trp cys gly leu TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG 330 leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC TCC AGC tyr ala arg thr ser ile arg ala ser leu thr phe asn arg gly TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC CGC GGC 360 phe lys ala gly arg asn met arg arg lys leu phe gly val leu TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG arg leu lys cys his ser leu phe leu asp leu gln val asn ser CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC 390 leu gln thr val cys thr asn ile tyr lys ile leu leu gln CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG 410 ala tyr arg phe his ala cys val leu gln leu pro phe his gln GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

FIG. 47 (CONTINUED)

58/78

420

gln val trp lys asn pro his phe ser cys ala ser ser leu thr CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA arg leu pro leu leu leu his pro glu ser gln glu arg arg asp CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT val ala gly gly gln gly arg arg pro ser ala leu arg gly GTC GCT GGG GGC CAA GGG CGC CGC CGG CCC TCT GCC CTC CGA GGC arg ala val ala val pro pro ser ile pro ala gln ala asp ser CGT GCA GTG GCT GCA CCA AGC ATT CCT GCT CAA GCT GAC TCG 480 thr pro cys his leu arg ala thr pro gly val thr gln asp ser ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC 490 500 pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC 510 pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC 530 his pro gly leu met ala thr arg pro gln pro gly arg glu gln CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly ACA CCA GCA GCC CTG TCA CGC CGG GCT TÂT ACG TCC CAG GGÂ GGG 560 arg gly gly pro his pro gly leu his arg trp glu ser glu ala AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC . 564 OP TGA GTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC CTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACACCTGCGTTTTCACTTCCCCAC AGGCTGGCGTTCGGTCCACCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACT CCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCTTCGCCCTGCCTTCC TTTGCCTTCCACCCCACCATTCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTTTGGG AATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGG GTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATATGAGTT

FIG. 47 (CONTINUED)

59/78

```
Motif -1
               ...LVVSLIRCFFYVTEQQKSYSKT...
Ep p123
Sp Tezl
               ...FIIPILQSFFYITESSDLRNRT...
               ...LIPKIIQTFFYCTEISSTVTIV...
Sc Est2
Hs TCP1
               ...YVVELLRSFFYVTETTFQKNRL...
consensus
                          FFY TE
                                                   K
                          p hhh K
Motif 0
                                       hR h
                                                   R
               ... KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
Ep p123
               ...QKTTLPPAVIRLLPKKN--TFRLITNLRKRFL...
Sp Tezl
Sc Est2
               ...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...
Hs TCP1
               ... ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
                             R PK
consensus
                               AF
Motif A
                      h hDh GY h
               ... PKLFFATMDIEKCYDSVNREKLSTFLK...
Ep p123
               ... RKKYFVRIDIKSCYDRIKQDLMFRIVK...
Sp Tez1
               ... PELYFMKFDVKSCYDSIPRMECMRILK...
Sc Est2
               ... PELYFVKVDVTGAYDTIPQDRLTEVIA...//...
Hs TCP1
consensus
                      F
                          D
                                YD
Motif B
                             hPQG
                                    pS hh
               ... NGKFYKQTKGIPQGLCVSSILSSFYYA...
Ep p123
Sp Tez1
Sc Est2
               ... GNSQYLQKVGIPQGSILSSFLCHFYME...
               ... EDKCYIREDGLFQGSSLSAPIVDLVYD...
Hs TCP1
               ... RATSYVQCQGIPQGSILSTLLCSLCYG...
consensus
                            G
                              QG
                       h F DD hhh
Motif C
Ep p123
               ... PNVNLLMRLTDDYLLITTQENN...
Sp Tez1
               ...KKGSVLLRVVDDFLFITVNKKD...
               ...SQDTLILKLADDFLIISTDQQQ...
Sc Est2
Hs TCP1
               . . . RRDGLLLRLVDDFLLVTPHLTH. . .
                            DD L
consensus
Motif D
                        Gh h cK
Ep p123
Sp Tez1
               ...NVSRENGFKFNMKKL...
               ...LNLSLRGFEKHNFST...
Sc Est2
               ...KKLAMGGFQKYNAKA...
Hs TCP1
               ...LRTLVRGVPEYGCVV...
consensus
                        G
```

FIG. 48

FIG. 50

FIG. 50 (CONTINUED)

. +

		GCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGGCCACCCCCGCGATGCC	60
a b		CGTCGCGACGCAGGACGCGTGCACCCTTCGGGACCGGGGCCGGTGGGGGCGCTACGG A A L R P A A H V G S P G P G H P R D A Q R C V L L R T W E A L A P A T P A M P	-
C	61	S A A S C C A R G K P W P R P P P R C R GCGCGCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCTGCGCAGCCACTACCGCGAGGTGCT CGCGCGAGGGGCGACGCACGCGAGGGACGACGCGTCGGTGATGGCGCTCCACGA	-
a b c		A R S P L P S R A L P A A Q P L P R G A R A P R C R A V R S L L R S H Y R E V L A L P A A E P C A P C C A A T T A R C C	- - -
	121	GCCGCTGGCCACGTTCGTGCGGCGCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAGCGCGG + CGGCGACCGGTGCAAGCACGCCGCGGACCCCGGGGTCCCGACCGCCGCCCC	180
a b c		A A G H V R A A P G A P G L A A G A A R P L A T F V R R L G P Q G W R L V Q R G R W P R S C G A W G P R A G G W C S A G	-
	181	GGACCCGGCGGCTTTCCGCGCGNTGGTGGCCCANTGCNTGGTGTGCGTGCCCTGGGANGN+ CCTGGGCCGCCGAAAGGCGCGCNACCACCGGGTNACGNACCACACGCACGGGACCCTNCN	240
a b c		G P G G F P R ? G G P ? ? G V R A L G ? D P A A F R A ? V A ? C ? V C V P W ? ? T R R L S A R W W P ? A W C A C P G ? ?	- - -
	241	ANGGCNGCCCCCGCCGCCCCTCCTTCCGCCAGGTGTCCTGCCTGAANGANCTGGTGGC	300
a b c		? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P S A R C P A * ? ? W W P	- - -
	301	CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGCTTCGC	360
a b c		P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R	- - -
	361	GCTGCTGGACGGGGCCCCGGGGGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA+ CGACGACCTGCCCCGGGCGCCCCCCGGGGGGGCTCCGGAAGTGGTGGTCGCACGCGTCGAT	420
a b c		A A G R G P R G P P R G L H H Q R A Q L L L D G A R G G P P E A F T T S V R S Y C W T G P A G A P P R P S P P A C A A T	
	421	CCTGCCCAACACGGTGACCGACGCACTGCGGGGGGGGGG	480
a b		PAQHGDRRTAGERGVGAAAA LPNTVTDALRGSGAWGLLLR	-

FIG. 51

64/78

b c		R V G D D V L V H L L A R C A ? F V L V A W A T T C W F T C W H A A R ? L C W W	- 1
	541	GGNTCCCAGCTGCGCCTACCANGTGTGCGGGCCGCCGCTGTACCAGCTCGGCGCTGCNAC	600
a b c		G S Q L R L P ? V R A A A V P A R R C ? ? P S C A Y ? V C G P P L Y Q L G A A T ? P A A P T ? C A G R R C T S S A L ? L	- -
	601	TCAGGCCCGGCCCCCCCACACGCTANTGGACCCGAANGCGTCTGGGATCCAACGGGCCT	660
a b c		S G P A P A T R ? W T R ? R L G S N G P Q A R P P P H A ? G P E ? V W D P T G L R P G P R H T L ? D P ? A S G I Q R A W	- -
	661	GGAACCATAGCGTCAGGGAGGCCGGGGTCCCCCTGGGCTGCCAGCCCCGGGTGCGAGGAG	720
a b c		G T I A S G R P G S P W A A S P G C E E E P * R Q G G R G P P G L P A P G A R R N H S V R E A G V P L G C Q P R V R G G	-
	721	GCGCGGGGGCAGTGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGC	780
a b c		ARGQCQPKSAVAQEAQAWRC RGGSASRSLPLPKRPRGAA AGAVPAEVCRCPRGPGVALP	- - -
	781	CCCTGAGCCGGAGCGCCCGTTGGGCAGGGGTCCTGGGCCCACCCGGGCAGGACGCC	840
a b c		P * A G A D A R W A G V L G P P G Q D A P E P E R T P V G Q G S W A H P G R T P L S R S G R P L G R G P G P T R A G R L	-
	841	TGGACCGAGTGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCGCCGAAGAAGCCAC+ ACCTGGCTCACTGGCACCAAAGACACACCACAGTGGACGGTCTGGGCGGCTTCTTCGGTG	900
a b c		W T E * P W F L C G V T C Q T R R R S H G P S D R G F C V V S P A R P A E E A T D R V T V V S V W C H L P D P P K K P P	-
	901	CTCTTTGGAGGGTGCGCTCTCTGGCACGCGCCACCCATCCGTGGGCCGCCAGCA	960
2		GAGAAACCTCCCACGCGAGAGACCGTGCGCGGTGAGGGTGGGT	_
a b c		S L E G A L S G T R H S H P S V G R Q H L W R V R S L A R A T P T H P W A A S T	
	961	CCACGCGGGCCCCCATCCACATCGCGGCCACCACGTCCTGGGACACGCCTTGTCCCCCG	

FIG. 51 (CONTINUED)

FIG. 51 (CONTINUED)

+

Sain

FIG. 51 (CONTINUED)

FIG. 51 (CONTINUED)

FIG. 51 (CONTINUED)

+

..4.

69/78

b c		R L L Q L C P D L H Q S Q S H L Q P R L D Y S S Y A R T S I R A S L T F N R G F	
	2941	TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACA	3000
a b c		S R L G G T C V A N S L G S C G * S V T Q G W E E H A S Q T L W G L A A E V S Q K A G R N M R R K L F G V L R L K C H S	- - -
	3001	GCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGA + CGGACAAAGACCTAAACGTCCACTTGTCGGAGGTCTGCCACACGTGGTTGTAGATGTTCT	3060
a b c		A C F W I C R * T A S R R C A P T S T R P V S G F A G E Q P P D G V H Q H L Q D L F L D L Q V N S L Q T V C T N I Y K I	
	3061	TCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCATCAGC+ AGGAGGACGACGTCCGCATGTCCAAAGTGCGTACACACGACGTCGAGGGTAAAGTAGTCG	3120
a b c		S S C C R R T G F T H V C C S S H F I S P P A A G V Q V S R M C A A A P I S S A L L L Q A Y R F H A C V L Q L P F H Q Q	
	3121	AAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCCTC	3180
a b c		K F G R T P H F S C A S S L T R P P S A S L E E P H I F P A R H L * H G L P L L V W K N P T F F L R V I S D T A S L C Y	- - -
	3181	ACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCAAGGGCCCCCGGCCCGCCGCCGCCGGTAGGGACTTTCGGTTCTTGCGTCCCTACAGCGACCCCCGGTTCCCGCGGCGGCCGG	3240
a b c		T P S * K P R T Q G C R W G P R A P P A L H P E S Q E R R D V A G G Q G R R R P S I L K A K N A G M S L G A K G A A G P	
	3241	CTCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCAAGCATTCCTGCTCAAGCTGACTC	3300
a b c		L C P P R P C S G C A T K H S C S S * L S A L R G R A V A V P P S I P A Q A D S L P S E A V Q W L C H Q A F L L K L T R	-
	3301	GACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGA CTGTGGCACAGTGGATGCACGGTGAGGACCCCAGTGAGTCCTGTCGGGTCTGCGTCGACT	3360
a b c		D T V S P T C H S W G H S G Q P R R S * T P C H L R A T P G V T Q D S P D A A E H R V T Y V P L L G S L R T A Q T Q L S	-
	3361	GTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGC+	3420

FIG. 51 (CONTINUED)

70/78

a b c		V G S S R G R R * L P W R P Q P T R H C - S E A P G D D A D C P G G R S Q P G T A - R K L P G T T L T A L E A A A N P A L P -
	3421	CCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA
a b c		PQTSRPSWTDGHPPTARPRA - LRLQDHPGLMATRPQPGREQ - SDFKTILD*WPPAHSQAESR-
	3481	GACACCAGCAGCCCTGTCACGCCGGGCTCTACGTCCCAGGGAGGG
a b c		D T S S P V T P G S T S Q G G R G G P H - T P A A L S R R A L R P R E G G A A H T - H Q Q P C H A G L Y V P G R E G R P T P -
	3541	CCAGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGATTTTGGCCGAGGCCTGCATGT
a b c		P G P H R W E S E A * V S V W P R P A C - Q A R T A G S L R P E * V F G R G L H V - R P A P L G V * G L S E C L A E A C M S -
	3601	CCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTG
a b c		P A E G * V S G * G L S E C P A K G * V - R L K A E C P A E A * A S V Q P R A E C - G * R L S V R L R P E R V S S Q G L S V -
	3661	TCCAGCACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCCAGGGCC
a b c		S S T P A V F T S P Q A G A R L H P R A - P A H L P S S L P H R L A L G S T P G P - Q H T C R L H F P T G W R S A P P Q G Q -
	3721	AGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGA
a b c		S F S S P G A R L P L P T * E * S I P R - A F P H Q E P G F H S P H R N S P S P D - L F L T R S P A S T P H I G I V H P Q I -
	3781	TTCGCCATTGTTCACCCCTCGCCCTGCCCTCCTTTGCCTTCCACCCCCACCATCCAGGTG
a b c		FAIVHPSPCPPLPSTPTIQV- SPLFTPRPALLCLPPPPSRW- RHCSPLALPSFAFHPHHPGG-
	3841	GAGACCCTGAGAAGGACCCTGGGAACTTTGGAGTGACCAAAGGTGTGCCCTG+

FIG. 51 (CONTINUED)

+

1

b С ${\tt TACACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGGGGAGGT}$ ATGTGTCCGCTCCTGGGACGTGGACCTACCCCCAGGGACACCCAGTTTAACCCCCCTCCA Y T G E D P A P G W G S L W V K L G G G T Q A R T L H L D G G P C G S N W G E V H R R G P C T W M G V P V G Q I G G R C b С A V G V K Y * I Y E F F S F E K K K K K - L W E * N T E Y M S F S V L K K K K K K - C G S K I L N I * V F Q F * K K K K K K b C AAAAAAAA 4021 ----- 4029 TTTTTTTT K K K K K K K b С

FIG. 51 (CONTINUED)

GCA	GCGCT	rgcg:	rccto	GCTG	CGCA	CGTGC	GAAC	GCC:	rggco	CCCGC	GCCAC	cccc	CGCG	met ATG
		212			aa	2 2 2	212	10	224	aor	lou	1011	220	cor
CCG	CGC	GCT	pro CCC	CGC	TGC	CGA	GCC	GTG	CGC	TCC	CTG	CTG	CGC	AGC
hic	tur	ara	20 glu	wa l	1 611	nro	1 611	al a	thr	nhe	val	ara	30 arg	len
			GAG											
alv	pro	aln	alv	trp	arq	leu	val	40 aln	arg	alv	asp	pro	ala	ala
GGG	CCC	CAG	gly GGC	TGG	CGG	CTG	GTG	CAG	CGC	ĞĞĞ	GAC	CCG	GCG	GCT
phe	arq	ala	50 leu	val	ala	aln	cvs	leu	val	cvs	val	pro	60 trp	asp
TTC	CGC	GCG	CTG	GTG	GCC	CAG	TGC	CTG	GTG	TGC	GTG	CCC	TGG	GAC
ala	arq	pro	pro	pro	ala	ala	pro	70 ser	phe	arq	gln	val	ser	CYS
GCA	CGG	CCG	CCC	CCC	GCC	GCC	CCC	TCC	TTC	CGC	CAG	GTG	TCC	тĠС
leu	lvs	alu	80 leu	val	ala	arg	val	leu	aln	arq	leu	cvs	90 alu	arq
CTG	AAG	GAG	leu CTG	GTG	GCC	CGA	GTG	CTG	CAG	AGĞ	CTG	TGC	GAG	CGC
alv	ala	lvs	asn	val	leu	ala	phe	100 glv	phe	ala	leu	leu	asp	alv
ĞĞĊ	GCG	AĀG	asn AAC	GTG	CTG	GCC	TTC	ĞĞĊ	TTC	GCG	CTG	CTG	GAC	ĞĞĞ
ala	arg	alv	110 gly	pro	pro	alu	ala	phe	thr	thr	ser	val	120 arg	ser
GCC	CGC	ĞĞĞ	ĞĞĊ	CCC	CCC	GAG	GCC	TTC	ACC	ACC	AGC	GTG	CGC	AGC
tvr	leu	pro	asn	thr	val	thr	asp	130 ala	leu	arq	alv	ser	qly	ala
TAC	CTG	CCC	AAC	ACG	GTG	ACC	GAC	GCA	CTG	CGĞ	ĞĞĞ	AGC	ĞĞĞ	GCG
trp	alv	leu	140 leu	leu	arq	arq	val	qly	asp	asp	val	leu	150 val	his
TGĞ	ĞĞĞ	CTG	leu CTG	CTG	CGČ	CGC	GTG	ĞĞĊ	GAC	GAC	GTG	CTG	GTT	CAC
leu	leu	ala	arg	cvs	ala	leu	phe	160 val	leu	val	ala	pro	ser	CVS
CTG	CTG	GCA	CGC	TGC	GCG	CTC	TTT	GTG	CTG	GTG	GCT	CCC	AGC	TĠC
ala	tvr	aln	170 val	cvs	alv	pro	pro	leu	tvr	aln	leu	alv	180 ala	ala
GCC	TAC	CAG	val GTG	TGC	ĞĞĞ	CCG	CCG	CTG	TÁC	CAG	CTC	ĞĞĆ	GCT	GCC
thr	aln	ala	arg	pro	pro	pro	his	190 ala	ser	alv	pro	arq	arq	arq
			CGG											

FIG. 53

╁

	3.00														
[leu CTG	gly GGA	cys	200 glu GAA	arg CGG	ala GCC	trp TGG	asn AAC	his CAT	ser AGC	val GTC	arg AGG	glu	210 ala GCC	gly GGG
`	/al GTC	pro CCC	leu CTG	gly GGC	leu CTG	pro CCA	ala GCC	pro CCG	220 gly GGT	ala GCG	arg AGG	arg AGG	arg CGC	gly GGG	gly GGC
2	ser AGT	ala GCC	ser AGC	230 arg CGA	ser AGT	leu CTG	pro CCG	leu TTG	pro CCC	lys AAG	arg AGG	pro CCC	arg AGG	240 arg CGT	gly GGC
														ser TCC	
ā	ala GCC	his CAC	pro CCG	260 gly GGC	arg AGG	thr ACG	arg CGT	gly GGA	pro CCG	ser AGT	asp GAC	arg CGT	gly GGT	270 phe TTC	cys TGT
Š	/al GTG	val GTG	ser TCA	CCT	ala GCC	arg AGA	pro CCC	ala GCC	280 glu GAA	glu GAA	ala GCC	thr ACC	ser TCT	leu TTG	glu GAG
Ç	gly GGT	ala GCG	leu CTC	290 ser TCT	gly GGC	thr ACG	arg CGC	his CAC	ser TCC	his CAC	pro CCA	ser TCC	val GTG	300 gly GGC	arg CGC
ç	gln CAG	his CAC	his CAC	ala GCG	gly GGC	pro CCC	pro CCA	ser TCC	310 thr ACA	ser TCG	arg CGG	pro CCA	pro CCA	arg CGT	pro CCC
t	rp GG	asp GAC	thr ACG	320 pro CCT	cys TGT	pro CCC	pro CCG	val GTG	tyr TAC	ala GCC	glu GAG	thr ACC	lys AAG	330 his CAC	phe TTC
]	leu CTC	tyr TAC	ser TCC	ser TCA	gly GGC	asp GAC	lys AAG	glu GAG	340 gln CAG	leu CTG	arg CGG	pro CCC	ser TCC	phe TTC	leu CTA
3	leu CTC	ser AGC	ser TCT	350 leu CTG	arg AGG	pro CCC	ser AGC	leu CTG	thr ACT	gly GGC	ala GCT	arg CGG	arg AGG	360 leu CTC	val GTG
ç	glu BAG	thr ACC	ile ATC	phe TTT	leu CTG	gly GGT	ser TCC	arg AGG	370 pro CCC	trp TGG	met ATG	pro CCA	gly GGG	thr ACT	pro CCC
ā	arg CGC	arg AGG	leu TTG	380 pro CCC	arg CGC	leu CTG	pro CCC	gln CAG	arg CGC	tyr TAC	trp TGG	gln CAA	met ATG	390 arg CGG	pro CCC
]	Leu CTG	phe TTT	leu CTG	glu GAG	leu CTG	leu CTT	gly GGG	asn AAC	400 his	ala GCG	gln CAG	cys TGC	pro CCC	tyr TAC	gly GGG
,	/al	leu	leu	410 lys	thr	his	cys	pro	leu	arg	ala	ala	val	420 thr ACC	pro
							F	FIG.							
							,		,	•					

75/78

430 ala ala gly val cys ala arg glu lys pro gln gly ser val ala GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG 440 ala pro glu glu glu asp thr asp pro arg arg leu val gln leu GCC CCC GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG 460 leu arg gln his ser ser pro trp gln val tyr gly phe val arg CTC CGC CAG CAC AGC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG ala cys leu arg arg leu val pro pro gly leu trp gly ser arg GCC TGC CTG CGC CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG his asn glu arg arg phe leu arg asn thr lys lys phe ile ser CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC 500 leu gly lys his ala lys leu ser leu gln glu leu thr trp lys CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG 520 met ser val arg asp cys ala trp leu arg arg ser pro gly val ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT gly cys val pro ala ala glu his arg leu arg glu glu ile leu GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG 550 ala lys phe leu his trp leu met ser val tyr val val glu leu GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC 580 arg leu phe phe tyr arg lys ser val trp ser lys leu gln ser AGG CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC 590 ile gly ile arg gln his leu lys arg val gln leu arg glu leu ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG 610 ser glu ala glu val arg gln his arg glu ala arg pro ala leu TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG 640 pro ile val asn met asp tyr val val gly ala arg thr phe arg CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC FIG. 53 (CONTINUED)

+ 76/78

. /0//0 650									•			•		
arg AGA	glu GAA	lys	arg	ala GCC	glu GAG	arg CGT	leu CTC	thr ACC	ser TCG	arg AGG	val GTG	lys	660 ala GCA	leu ·
phe TTC	ser AGC	val GTG	leu CTC	asn AAC	tyr TAC	glu GAG	arg CGG	670 ala GCG	arg CGG	arg CGC	pro CCC	gly GGC	leu CTC	leu CTG
gly GGC	ala GCC	ser TCT	680 val GTG	leu CTG	gly GGC	leu CTG	asp GAC	asp GAT	ile ATC	his CAC	arg AGG	ala GCC	690 trp TGG	arg CGC
thr ACC	phe TTC	val GTG	leu CTG	arg CGT	val GTG	arg CGG	ala GCC	700 gln CAG	asp GAC	pro CCG	pro CCG	pro CCT	glu GAG	leu CTG
tyr TAC	phe TTT	val GTC	710 lys AAG	val GTG	asp GAT	val GTG	thr ACG	gly GGC	ala GCG	tyr TAC	asp GAC	thr ACC	720 ile ATC	pro CCC
													pro CCC	
asn AAC	thr ACG	tyr TAC	740 cys TGC	val GTG	arg CGT	arg CGG	tyr TAT	ala GCC	val GTG	val GTC	gln CAG	lys AAG	750 ala GCC	ala GCC
his CAT	gly GGG	his CAC	val GTC	arg CGC	lys AAG	ala GCC	phe TTC	760 lys AAG	ser AGC	his CAC	val GTC	ser TCT	thr ACC	leu TTG
thr ACA	asp GAC	leu CTC	770 gln CAG	pro CCG	tyr TAC	met ATG	arg CGA	gln CAG	phe TTC	val GTG	ala GCT	his CAC	780 leu CTG	gln CAG
glu GAG	thr ACC	ser AGC	pro CCG	leu CTG	arg AGG	asp GAT	ala GCC	790 val GTC	val GTC	ile ATC	glu GAG	gln CAG	ser AGC	ser TCC
ser TCC	leu CTG	asn AAT	800 glu GAG	ala GCC	ser AGC	ser AGT	gly GGC	leu CTC	phe TTC	asp GAC	val GTC	phe TTC	810 leu CTA	arg CGC
phe	met	cys	his	his	ala	val	arg	820 ile	arg	gly	lys	ser	tyr TAC	val
gln	cvs	qln	830 glv	ile	pro	aln	glv	ser	ile	leu	ser	thr	840 leu CTG	leu
cys	ser	leu	cys	tyr	gly	asp	met	850 glu	asn	lys	leu	phe	ala GCG	gly
ile	arq	arq	860 asp	gly	leu	leu	leu	arq	leu	val	asp	asp	870 phe TTC	leu
			J. 10		010					-10	~+	Ų		

FIG. 53 (CONTINUED)

880 leu val thr pro his leu thr his ala lys thr phe leu arg thr TTG GTG ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC 890 leu val arg gly val pro glu tyr gly cys val val asn leu arg CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG 910 lys thr val val asn phe pro val glu asp glu ala leu gly gly AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC 920 thr ala phe val gln met pro ala his gly leu phe pro trp cys ACG GCT TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC 940 gly leu leu leu asp thr arg thr leu glu val gln ser asp tyr GGC CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC 950 ser ser tyr ala arg thr ser ile arg ala ser leu thr phe asn TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC 970 arg gly phe lys ala gly arg asn met arg arg lys leu phe gly CGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG val leu arg leu lys cys his ser leu phe leu asp leu gln val GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG 1000 asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu AAC AGC CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG 1010 leu gln ala tyr arg phe his ala cys val leu gln leu pro phe CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT 1030 his gln gln val trp lys asn pro thr phe phe leu arg val ile CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC 1040 ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC 1060 ala gly met ser leu gly ala lys gly ala ala gly pro leu pro GCA GGG ATG TCG CTG GGG GCC AAG GGC GCC GGC CCT CTG CCC 1070 ser glu ala val gln trp leu cys his gln ala phe leu leu lys TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG 1090 leu thr arg his arg val thr tyr val pro leu leu gly ser leu CTG ACT CGA CAC CGT GTC ACC TAC GTG CCA CTC CTG GGG TCA CTC FIG. 53 (CONTINUED)

AAAAAAAA

\$1100\$ arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr AGG ACA GCC CAG ACG CAG CTG AGT CGG AAG CTC CCG GGG ACG ACG

1120

leu thr ala leu glu ala ala ala asn pro ala leu pro ser asp CTG ACT GCC CTG GAG GCC GCA GCC AAC CCG GCA CTG CCC TCA GAC

FIG. 53 (CONTINUED)

FIG. 54