સરવાળાનાં સૂત્રો અને અવયવ સૂત્રો

Music is the pleasure the human mind experiences from counting without being aware that it is counting.

- Gottfried Leibnitz

4.1 પ્રાસ્તાવિક

આપણે ત્રિકોણમિતીય વિધેયોની મૂળભૂત સંકલ્પના અને ગુણધર્મીનો અભ્યાસ કર્યો. હવે, આપણે કોઈ પણ બે વાસ્તવિક સંખ્યાઓ lpha અને eta ના સરવાળાથી મળતી સંખ્યા lpha + eta અને બાદબાકીથી મળતી સંખ્યા lpha – eta માટે ત્રિકોણમિતીય વિધેયોનાં મૂલ્યોને lpha અને eta માટેના ત્રિકોણમિતીય વિધેયોનાં મૂલ્યોના ઉપયોગથી કેવી રીતે વ્યક્ત કરી શકાય તે જોઈશું. આ સૂત્રોને સરવાળાનાં સૂત્રો કહે છે. ત્યારબાદ આ સૂત્રોના ઉપયોગથી અવયવ સૂત્રો તરીકે ઓળખાતાં અન્ય સૂત્રો મેળવીશું અને તેમના ઉપયોગો જોઈશું.

જો
$$f(x)=ax, \ x\in \mathbb{R}$$
 સુરેખ વિષેય હોય તો તેને માટે,
$$f(x-y)=a(x-y)=ax-ay=f(x)-f(y)$$
 એટલે કે, $f(x-y)=f(x)-f(y)$ હવે, ત્રિકોણમિતીય વિષેય $f(x)=cosx$ માટે $\alpha=\frac{\pi}{3}$ અને $\beta=\frac{\pi}{6}$ લેતાં,
$$\alpha-\beta=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}$$
 અને $cos(\alpha-\beta)=cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$

પરંતુ
$$cos α - cos β = cos \frac{π}{3} - cos \frac{π}{6} = \frac{1}{2} - \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \neq \frac{\sqrt{3}}{2}$$

એટલે કે, $cos(\alpha - \beta) \neq cos\alpha - cos\beta$

આમ, સુરેખ વિધેય માટે સત્ય જણાતું પરિણામ ત્રિકોણમિતીય વિધેય માટે સત્ય નથી. આવાં બીજાં પણ પરિણામો છે. તો હવે આપણે $cos(\alpha - \beta)$ નું સૂત્ર $cos\alpha$, $cos\beta$, $sin\alpha$, $sin\beta$ પરથી મેળવીએ.

4.2 સરવાળાનાં સૂત્રો

આપણે પહેલા $cos(\alpha - \beta)$ અને $cos(\alpha + \beta)$ નાં સૂત્રો મેળવીશું. સૌ પ્રથમ $cos(\alpha - \beta)$ ની અભિવ્યક્તિ મેળવીએ.

ગણિત-2 **62**

પ્રમેય 1 : α, β ∈ R માટે,

(1)
$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

(2)
$$cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$$

સાબિતી : વિકલ્પ (1) : ધારો કે
$$\alpha$$
, $\beta \in [0, 2\pi)$.

અહીં lpha અને eta માટે ત્રિવિધ વિકલ્પના નિયમ પ્રમાણે ત્રણ શક્યતા છે :

(i)
$$\alpha > \beta$$
 (ii) $\alpha = \beta$ (iii) $\alpha < \beta$

(i) $\alpha > \beta$

ધારો કે વાસ્તવિક સંખ્યાઓ α , β અને $\alpha - \beta$ ને સંગત એકમ વર્તુળ પરનાં ત્રિકોણમિતીય બિંદુઓ અનુક્રમે P, Q અને R છે.

$$Q(\beta) = (\cos \beta, \sin \beta)$$
 અને

$$R(\alpha - \beta) = (\cos(\alpha - \beta), \sin(\alpha - \beta)).$$

આકૃતિમાં બતાવ્યા પ્રમાણે $l(\widehat{AP}) = \alpha$, $l(\widehat{AQ}) = \beta$ અને $l(\widehat{AR}) = \alpha - \beta$.

હવે
$$\beta < \alpha$$
 અને તેથી $Q \in \widehat{AP}$,

$$l(\widehat{PQ}) = l(\widehat{AP}) - l(\widehat{AQ})$$

$$\therefore l(\widehat{PQ}) = \alpha - \beta = l(\widehat{AR})$$

$$\therefore \widehat{PO} \cong \widehat{AR}$$

એક જ વર્તુળમાં એકરૂપ ચાપને સંગત જીવાઓ એકરૂપ હોય છે.

$$\therefore$$
 PQ = AR

$$\therefore PQ^2 = AR^2$$

અંતર સૂત્રનો ઉપયોગ કરતાં,

$$PQ^{2} = (\cos\alpha - \cos\beta)^{2} + (\sin\alpha - \sin\beta)^{2}$$

$$= cos^2\alpha - 2cos\alpha \cos\beta + cos^2\beta + sin^2\alpha - 2sin\alpha \sin\beta + sin^2\beta$$

$$= cos^2\alpha + sin^2\alpha + cos^2\beta + sin^2\beta - 2cos\alpha \cos\beta - 2sin\alpha \sin\beta$$

$$=2-2(\cos\alpha\,\cos\beta\,+\sin\alpha\,\sin\beta)$$

$$AR^2 = (1 - \cos(\alpha - \beta))^2 + (0 - \sin(\alpha - \beta))^2$$

$$=1-2cos(\alpha-\beta)+cos^2(\alpha-\beta)+sin^2(\alpha-\beta)$$

$$=2-2cos(\alpha-\beta)$$

પરંતુ
$$AR^2 = PQ^2$$

$$\therefore 2 - 2\cos(\alpha - \beta) = 2 - 2(\cos\alpha \cos\beta + \sin\alpha \sin\beta)$$

$$\therefore -2\cos(\alpha - \beta) = -2(\cos\alpha \cos\beta + \sin\alpha \sin\beta)$$

$$\therefore \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

(ii) ધારો કે α = β

si. Fi.
$$= cos(\alpha - \beta) = cos(\alpha - \alpha) = cos0 = 1$$

%. Fi. $= cos\alpha cos\beta + sin\alpha sin\beta$
 $= cos\alpha cos\alpha + sin\alpha sin\alpha$
 $= cos^2\alpha + sin^2\alpha = 1$

∴ ડા.બા. = જ.બા.

(iii) ધારો કે α < β

$$\alpha$$
, $\alpha - \beta = -(\beta - \alpha)$

$$cos(\alpha - \beta) = cos(-(\beta - \alpha))$$

$$= cos(\beta - \alpha)$$

$$= cos\beta \cos\alpha + \sin\beta \sin\alpha$$

 $\therefore \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$

$$\alpha$$
, $\beta \in \mathbb{R}$ હોવાથી α_1 અને β_1 એવા મળે કે જેથી α_1 , $\beta_1 \in [0, 2\pi)$
તથા $\alpha = 2m\pi + \alpha_1$ અને $\beta = 2n\pi + \beta_1$, $m, n \in \mathbb{Z}$

$$\therefore \quad \alpha - \beta = 2m\pi + \alpha_1 - (2n\pi + \beta_1)$$

$$= 2(m - n)\pi + \alpha_1 - \beta_1$$

$$= 2k\pi + \alpha_1 - \beta_1, \text{ wit } k = m - n \in \mathbb{Z}$$

વળી, sin અને cos વિધેયોનું મુખ્ય આવર્તમાન 2π હોવાથી,

$$\cos\alpha = \cos\alpha_1, \cos\beta = \cos\beta_1$$
 અને $\cos(\alpha - \beta) = \cos(\alpha_1 - \beta_1)$

તથા
$$cos(\alpha - \beta) = cos(\alpha_1 - \beta_1)$$

= $cos\alpha_1 cos\beta_1 + sin\alpha_1 sin\beta_1$

 $= \cos\alpha_1 \cos\beta_1 + \sin\alpha_1 \sin\beta_1$ $= \cos\alpha \cos\beta + \sin\alpha \sin\beta$ (Qseq (1))

$$\therefore \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

આમ, વિકલ્પ (1) તથા (2) પરથી સાબિત થાય છે કે, પ્રત્યેક α , $\beta \in R$ માટે

$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

(2)
$$\dot{sq}, \cos(\alpha + \beta) = \cos(\alpha - (-\beta))$$

$$= \cos\alpha \cos(-\beta) + \sin\alpha \sin(-\beta)$$

$$= \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$(\cos(-\beta) = \cos\beta, \sin(-\beta) = -\sin\beta)$$

(cosine યુગ્મ વિધેય છે)

 $(\beta > \alpha)$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

ઉપપ્રમેય 1 : (1)
$$cos(\frac{\pi}{2} - \theta) = sin\theta$$
 (2) $sin(\frac{\pi}{2} - \theta) = cos\theta$

સાબિતી : (1) આપણે જાણીએ છીએ કે, પ્રત્યેક lpha, $eta\in R$ માટે

$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

64

ઉપરનાં સૂત્રમાં
$$\alpha = \frac{\pi}{2}$$
 અને $\beta = \theta$ લેતાં,

$$\cos\left(\frac{\pi}{2} - \theta\right) = \cos\frac{\pi}{2}\cos\theta + \sin\frac{\pi}{2}\sin\theta$$
$$= 0 \cdot \cos\theta + 1 \cdot \sin\theta$$
$$= \sin\theta$$

$$\therefore cos(\frac{\pi}{2} - \theta) = sin\theta$$

(2) આ સૂત્રમાં θ ને બદલે $\frac{\pi}{2} - \theta$ લેતાં,

$$\cos\left[\frac{\pi}{2}-\left(\frac{\pi}{2}-\theta\right)\right] = \sin\left(\frac{\pi}{2}-\theta\right)$$

$$\therefore \cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$$

$$\therefore \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

પ્રમેય 2 : (1)
$$sin(\alpha - \beta) = sin\alpha \cos\beta - \cos\alpha \sin\beta$$

(2)
$$sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$$

$$\begin{aligned}
\frac{1}{2}\sin(\alpha - \beta) &= \cos\left[\frac{\pi}{2} - (\alpha - \beta)\right] & \left(\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)\right) \\
&= \cos\left[\left(\frac{\pi}{2} - \alpha\right) + \beta\right] \\
&= \cos\left(\frac{\pi}{2} - \alpha\right)\cos\beta - \sin\left(\frac{\pi}{2} - \alpha\right)\sin\beta \\
&= \sin\alpha \cos\beta - \cos\alpha \sin\beta
\end{aligned}$$

$$\therefore \sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

(2)
$$sin(\alpha + \beta) = sin [\alpha - (-\beta)]$$

= $sin\alpha \cdot cos(-\beta) - cos\alpha \cdot sin(-\beta)$
= $sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$

$$(\cos(-\theta) = \cos\theta$$
 અને $\sin(-\theta) = -\sin\theta$)

$$\therefore \sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

4.3 સંબંધિત સંખ્યાઓ માટેનાં સૂત્રો

પ્રત્યેક α , $\beta \in R$ માટે, આપણે પ્રમેય 1 અને 2 પરથી નીચેનાં સૂત્રો મેળવ્યા છે :

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \tag{ii}$$

$$sin(\alpha - \beta) = sin\alpha \cos\beta - \cos\alpha \sin\beta$$
 (iii)

$$sin(\alpha + \beta) = sin\alpha \cos\beta + \cos\alpha \sin\beta$$
 (iv)

આપણે જોયું કે પ્રત્યેક $\theta \in R$ માટે,

$$sin\left(\frac{\pi}{2}-\theta\right)=cos\theta$$
, $cos\left(\frac{\pi}{2}-\theta\right)=sin\theta$

$$\therefore tan\left(\frac{\pi}{2} - \theta\right) = \left(\frac{sin\left(\frac{\pi}{2} - \theta\right)}{cos\left(\frac{\pi}{2} - \theta\right)}\right) = \frac{cos\theta}{sin\theta} = cot\theta$$

હવે (iv) અને (ii) માં
$$\alpha = \frac{\pi}{2}$$
 અને $\beta = \theta$ મૂકતાં,

$$sin\left(\frac{\pi}{2}+\theta\right)=sin\frac{\pi}{2}\,cos\theta\,+\,cos\frac{\pi}{2}\,sin\theta=1\cdot cos\theta\,+\,0\cdot sin\theta=cos\theta$$

$$\therefore \sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$

$$cos\left(\frac{\pi}{2}+\theta\right)=cos\frac{\pi}{2}\;cos\theta\;-\;sin\frac{\pi}{2}\;sin\theta=0\cdot cos\theta\;-\;1\cdot sin\theta=-sin\theta$$

$$\therefore \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

અને તે પરથી
$$tan(\frac{\pi}{2} + \theta) = -cot\theta$$
.

તે જ રીતે સૂત્ર (iii) તથા (i) માં
$$\alpha=\frac{3\pi}{2}$$
 અને $\beta=\theta$ મૂકતાં નીચેનાં પરિણામ મળે,

$$sin\left(\frac{3\pi}{2}-\theta\right)=-cos\theta$$
, $cos\left(\frac{3\pi}{2}-\theta\right)=-sin\theta$

$$\therefore \tan\left(\frac{3\pi}{2} - \theta\right) = \cot\theta$$

તે જ રીત
$$sin\left(\frac{3\pi}{2} + \theta\right) = -cos\theta$$
, $cos\left(\frac{3\pi}{2} + \theta\right) = sin\theta$

$$\therefore \tan\left(\frac{3\pi}{2} + \theta\right) = -\cot\theta$$

હવે (i) થી (iv) માં $\alpha=\pi$, $\beta=\theta$ અને $\alpha=2\pi$, $\beta=\theta$ માં મૂકતાં નીચેનાં પરિણામ મળે છે :

$$sin(\pi - \theta) = sin\theta$$
, $cos(\pi - \theta) = -cos\theta$, $tan(\pi - \theta) = -tan\theta$

$$sin(\pi + \theta) = -sin\theta$$
, $cos(\pi + \theta) = -cos\theta$, $tan(\pi + \theta) = tan\theta$

$$sin(2\pi - \theta) = -sin\theta$$
, $cos(2\pi - \theta) = cos\theta$, $tan(2\pi - \theta) = -tan\theta$

$$sin(2\pi + \theta) = sin\theta$$
, $cos(2\pi + \theta) = cos\theta$, $tan(2\pi + \theta) = tan\theta$

આ સ્ત્રોનો આપણે દાખલાઓની ગણતરીમાં સતત ઉપયોગ કરીશું. તેને યાદ રાખવા માટે આપણે નીચે પ્રમાણે વિચારીએ.

સૌ પ્રથમ આપણે ત્રિકોણમિતીય વિધેયો $sinlpha,\ coslpha$ ની કિંમતો વિશે વિચારીશું, જ્યાં $0 \le lpha < 2\pi$, કારણ કે પ્રત્યેક $\theta \in R$ માટે $\theta = 2n\pi + \alpha$, $0 \le \alpha < 2\pi$ છે. ધારો કે $0 < \beta < \frac{\pi}{2}$ છે. તો $\frac{\pi}{2} - \beta$, $\frac{\pi}{2} + \beta$, $\frac{3\pi}{2}$ - β અને $\frac{3\pi}{2}$ + β અનુક્રમે પ્રથમ, બીજા, ત્રીજા તથા ચોથા ચરણના ત્રિકોણમિતીય બિંદુને સંગત વાસ્તિવિક સંખ્યાઓ છે.

$$\frac{\pi}{2} + \beta \qquad \frac{\pi}{2} - \beta$$

$$\frac{3\pi}{2} - \beta \qquad \frac{3\pi}{2} + \beta$$
with 4.2

 $\frac{\pi}{2} + \beta \qquad \frac{\pi}{2} - \beta \qquad \qquad \text{આકૃતિ 4.2 માં કોઈ પણ વાસ્તવિક સંખ્યા માટે, ત્રિકોણમિતીય વિધેયનું નીચે પ્રમાણ પરિવર્તન થાય છે : <math>sin \to cos$, $cos \to sin$, $tan \to cot$, $cot \to tan$, $sec \to cosec$, $cosec \to sec$. આકૃતિ 4.2 માં કોઈ પણ વાસ્તવિક સંખ્યા માટે, ત્રિકોણમિતીય વિધેયનું નીચે પ્રમાણે

 $P\left(\frac{\pi}{2} + \beta\right)$ બીજા ચરણમાં છે.

બીજા ચરણમાં $sin\left(\frac{\pi}{2}+\beta\right)>0$ થાય. આથી $sin\left(\frac{\pi}{2}+\beta\right)=cos\beta$.

નોંધ : ડાબીબાજુના વિધેયનું મૂલ્ય ધન છે કે ઋણ તે આધારે નિશાની + કે – લેવી.

 $P\left(\frac{3\pi}{2} - \beta\right)$ ત્રીજા ચરણમાં છે અને ત્રીજા ચરણમાં $cos\left(\frac{3\pi}{2} - \beta\right) < 0$ છે.

$$\therefore \cos\left(\frac{3\pi}{2}-\beta\right) = -\sin\beta.$$

હવે આકૃતિ 4.3 જુઓ.

 $\pi - \beta$ β $\pi + \beta \qquad 2\pi - \beta$ Fig. 4.3

આ પ્રકારના પરિવર્તનમાં કોઈ પણ સંખ્યા માટે ત્રિકોણમિતીય વિધેય તેનું તે જ રહે છે. એટલે કે sin o sin, cos o cos વગેરે.

હવે વિધેયનું મૂલ્ય ધન છે કે ઋશ છે તે આધારે + કે - ની પસંદગી થાય. હવે ત્રિકોશમિતીય બિંદુ $P(\pi+\beta)$ ત્રીજા ચરણમાં છે અને $sin(\pi+\beta)$ ત્રીજા ચરણમાં ઋશ છે.

તેથી,
$$sin(\pi + \beta) = -sin\beta$$
,

$$tan(\pi + \beta) = tan\beta$$

 $(tan(\pi + \beta)$ નું મૂલ્ય ત્રીજા ચરણમાં ધન છે)

હવે, $P(2\pi - \beta)$ ચોથા ચરણમાં છે.

તેથી, $sec(2\pi - \beta) = sec\beta$, $cosec(2\pi - \beta) = -cosec\beta$.

 $(P(2\pi-\beta)$ ચોથા ચરણમાં હોવાથી $sec(2\pi-\beta)>0$ અને $cosec(2\pi-\beta)<0)$

હવે, $sin\left(\frac{38\,\pi}{3}\right)$ અને $cos\left(\frac{61\,\pi}{4}\right)$ નાં મૂલ્યો આપણે આ નિયમોના આધારે શોધીએ.

$$sin\left(\frac{38\pi}{3}\right) = sin\left(\frac{36\pi + 2\pi}{3}\right)$$

$$= sin\left(12\pi + \frac{2\pi}{3}\right)$$

$$= sin\frac{2\pi}{3}$$

$$= sin\left(\frac{3\pi - \pi}{3}\right)$$

$$= sin\left(\pi - \frac{\pi}{3}\right)$$

$$= sin\frac{\pi}{3} = \frac{\sqrt{3}}{3}$$
(sine નું મૂલ્ય બીજા ચરણમાં ધન છે.)

$$cos\left(\frac{61\pi}{4}\right) = cos\left(\frac{60\pi + \pi}{4}\right)$$

$$= cos\left(15\pi + \frac{\pi}{4}\right)$$

$$= cos\left(14\pi + \pi + \frac{\pi}{4}\right)$$

$$= cos\left(\pi + \frac{\pi}{4}\right)$$

$$= -cos\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$$
(cosine નું મૂલ્ય ત્રીજા ચરણમાં ઋણ છે.)

tan विधेयनुं मुખ्य आवर्तमान

આપણે જાણીએ છીએ કે $sin(\pi+\theta)=-sin\theta$, $cos(\pi+\theta)=-cos\theta$. તેથી $tan(\pi+\theta)=tan\theta$. આમ, π એ tan નું એક આવર્તમાન છે. હવે આપણે સાબિત કરીશું કે π એ tan નું મુખ્ય આવર્તમાન છે.

ધારો કે tan નું મુખ્ય આવર્તમાન p છે.

હવે,
$$tan(\theta + p) = tan\theta$$
, $\forall \theta \in \mathbb{R} - \left\{ (2k+1) \frac{\pi}{2} | k \in \mathbb{Z} \right\}$,

$$\theta + p \in \mathbb{R} - \left\{ (2k+1) \frac{\pi}{2} | k \in \mathbb{Z} \right\}$$

વિશિષ્ટ કિંમત $\theta = 0$ લેતાં.

$$tanp = 0$$

$$p = k\pi$$

p નું ન્યૂનતમ ધન મૂલ્ય π છે.

∴ tan વિધેયનું મુખ્ય આવર્તમાન π છે.

ઉદાહરણ 1 : મૂલ્ય શોધો : (1)
$$cos120^{\circ}$$
 (2) $sin\left(\frac{-17\pi}{4}\right)$ (3) $tan\left(\frac{13\pi}{4}\right)$ (4) $3sec\left(\frac{-7\pi}{4}\right)$

634: (1)
$$cos120^{\circ} = cos(90^{\circ} + 30^{\circ}) = -sin30^{\circ} = \frac{-1}{2}$$
 $\left(cos(\frac{\pi}{2} + \theta) = -sin\theta\right)$

$$cos 120^{\circ} = \frac{-1}{2}$$

(2)
$$sin\left(\frac{-17\pi}{4}\right) = -sin\left(\frac{17\pi}{4}\right)$$
 $(sin(-\theta) = -sin\theta)$

$$= -sin\left(\frac{16\pi + \pi}{4}\right)$$

$$= -sin\left(4\pi + \frac{\pi}{4}\right)$$

$$= -sin\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$$
 (4 π એ sine નું આવર્તમાન છે.)

$$\therefore \quad \sin\left(\frac{-17\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

(3)
$$tan(\frac{13\pi}{4}) = tan(\frac{12\pi + \pi}{4}) = tan(3\pi + \frac{\pi}{4}) = tan\frac{\pi}{4} = 1$$
 (3 π એ tan નું આવર્તમાન છે.)

$$\therefore tan\left(\frac{13\pi}{4}\right) = 1$$

(4)
$$3sec\left(\frac{-7\pi}{4}\right) = 3sec\left(\frac{7\pi}{4}\right)$$
 $(sec(-\theta) = sec\theta)$

$$= 3sec\left(\frac{8\pi - \pi}{4}\right)$$

$$= 3sec\left(2\pi - \frac{\pi}{4}\right)$$

$$= 3sec\left(\frac{-\pi}{4}\right)$$

$$= 3sec\left(\frac{\pi}{4}\right)$$

$$= 3sec\frac{\pi}{4} = 3\sqrt{2}$$

$$\therefore 3sec(\frac{-7\pi}{4}) = 3\sqrt{2}$$

ઉદાહરણ 2 : મૂલ્ય શોધો : (1)
$$\frac{sin\left(\theta-\frac{\pi}{2}\right)}{cos(\theta-\pi)} + \frac{tan\left(\frac{\pi}{2}+\theta\right)}{cot\left(3\pi+\theta\right)} + \frac{cosec\left(2\pi+\theta\right)}{sec\left(\frac{3\pi}{2}-\theta\right)}$$

(2)
$$sin\frac{10\pi}{3} \cdot cos\frac{11\pi}{6} + cos\frac{2\pi}{3} \cdot sin\frac{5\pi}{6}$$

(3)
$$\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8}$$

Given: (1)
$$\frac{\sin\left(\theta - \frac{\pi}{2}\right)}{\cos(\theta - \pi)} + \frac{\tan\left(\frac{\pi}{2} + \theta\right)}{\cot(3\pi + \theta)} + \frac{\csc(2\pi + \theta)}{\sec\left(\frac{3\pi}{2} - \theta\right)}$$
$$= \frac{-\sin\left(\frac{\pi}{2} - \theta\right)}{\cos(\pi - \theta)} + \frac{-\cot\theta}{\cot\theta} + \frac{\csc\theta}{-\csc\theta}$$
$$= \frac{-\cos\theta}{-\cos\theta} + (-1) + (-1) = 1 - 1 - 1 = -1$$

(2)
$$sin \frac{10\pi}{3} \cdot cos \frac{11\pi}{6} + cos \frac{2\pi}{3} \cdot sin \frac{5\pi}{6}$$

$$= sin \left(\frac{9\pi + \pi}{3}\right) \cdot cos \left(\frac{12\pi - \pi}{6}\right) + cos \left(\frac{3\pi - \pi}{3}\right) \cdot sin \left(\frac{6\pi - \pi}{6}\right)$$

$$= sin \left(3\pi + \frac{\pi}{3}\right) \cdot cos \left(2\pi - \frac{\pi}{6}\right) + cos \left(\pi - \frac{\pi}{3}\right) \cdot sin \left(\pi - \frac{\pi}{6}\right)$$

$$= -sin \frac{\pi}{3} \cdot cos \frac{\pi}{6} + \left(-cos \frac{\pi}{3}\right) \cdot sin \frac{\pi}{6}$$

$$= \frac{-\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{-3}{4} - \frac{1}{4} = -1$$

(3)
$$\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$$

$$= \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \sin^2 \left(\frac{\pi}{2} - \frac{5\pi}{8}\right) + \sin^2 \left(\frac{\pi}{2} - \frac{7\pi}{8}\right)$$

$$= \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \sin^2 \left(\frac{-\pi}{8}\right) + \sin^2 \left(\frac{-3\pi}{8}\right)$$

$$= \left(\cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8}\right) + \left(\cos^2 \frac{3\pi}{8} + \sin^2 \frac{3\pi}{8}\right) = 1 + 1 = 2$$

ઉદાહરણ 3 : નીચેની વાસ્તવિક સંખ્યા ધન છે કે ઋણ તે નક્કી કરો :

(1)
$$sin110^{\circ} + cos110^{\circ}$$
 (2) $cosec\frac{17\pi}{12} - sec\frac{17\pi}{12}$

634: (1)
$$sin110^{\circ} + cos110^{\circ} = sin(180^{\circ} - 70^{\circ}) + cos(90^{\circ} + 20^{\circ})$$

= $sin70^{\circ} - sin20^{\circ}$

હવે, sine પ્રથમ ચરણમાં વધતું વિધેય છે.

:.
$$sin70^{\circ} - sin20^{\circ} > 0$$

$$(2) \quad cosec \frac{17\pi}{12} - sec \frac{17\pi}{12}$$

$$= \quad cosec \left(\frac{12\pi + 5\pi}{12}\right) - sec \left(\frac{18\pi - \pi}{12}\right)$$

$$= \quad cosec \left(\pi + \frac{5\pi}{12}\right) - sec \left(\frac{3\pi}{2} - \frac{\pi}{12}\right)$$

$$= \quad -cosec \frac{5\pi}{12} + cosec \frac{\pi}{12}$$

હવે, sine પ્રથમ ચરણમાં વધતું વિધેય છે. તેથી cosec ઘટતું વિધેય થશે.

$$\frac{\pi}{12} < \frac{5\pi}{12}$$

$$\therefore \quad cosec \frac{\pi}{12} > cosec \frac{5\pi}{12}$$

$$\therefore \left(cosec \frac{\pi}{12} - cosec \frac{5\pi}{12} \right) > 0$$

$$\therefore$$
 $cosec \frac{17\pi}{12} - sec \frac{17\pi}{12}$ ધન વાસ્તવિક સંખ્યા છે.

स्वाध्याय 4.1

1. મુલ્ય મેળવો :

(1)
$$cos 135^{\circ}$$
 (2) $tan(\frac{-23\pi}{6})$ (3) $cos(\frac{-50\pi}{3})$

(3)
$$cos(\frac{-50\pi}{3})$$

(5) cosec
$$\frac{15\pi}{4}$$

(4)
$$sec690^{\circ}$$
 (5) $cosec \frac{15\pi}{4}$ (6) $cot(\frac{-7\pi}{3})$

સાબિત કરો : (2 થી 11)

2.
$$cos(\frac{\pi}{2} + \theta) \cdot sec(-\theta) \cdot tan(\pi - \theta) + sec(2\pi + \theta) \cdot sin(\pi + \theta) \cdot cot(\frac{\pi}{2} - \theta) = 0$$

3.
$$\frac{\sin(\pi-\theta)}{\sin(\pi+\theta)} \cdot \frac{\cos(\pi+\theta)}{\cos(\pi+\theta)} \cdot \frac{\csc(2\pi+\theta)}{\sin(3\pi-\theta)} = -\csc^2\theta$$

4.
$$\frac{\sin(-\theta) \cdot \tan\left(\frac{\pi}{2} - \theta\right) \cdot \sin(\pi - \theta) \cdot \sec\left(\frac{3\pi}{2} + \theta\right)}{\sin(\pi + \theta) \cdot \cos\left(\frac{3\pi}{2} - \theta\right) \cdot \cos(\pi - \theta) \cdot \cot(2\pi - \theta)} = 1$$

5.
$$sin(n+1)A \cdot cos(n+2)A - cos(n+1)A \cdot sin(n+2)A = -sinA$$

6.
$$sin^2(40^\circ + \theta) + sin^2(50^\circ - \theta) = 1$$

7.
$$\frac{\cot 333^{\circ} - \cos 567^{\circ}}{\tan 297^{\circ} + \sin 477^{\circ}} = 1$$

8.
$$\frac{sec^2129^{\circ} - cosec^231^{\circ}}{cosec39^{\circ} - sec121^{\circ}} = cosec39^{\circ} - sec59^{\circ}.$$

9.
$$cos(A + B + C) = cosA cosB cosC - sinA \cdot sinB \cdot cosC - sinA cosB sinC - cosA sinB sinC$$

10.
$$sin\alpha \cdot sin(\beta - \gamma) + sin\beta \cdot sin(\gamma - \alpha) + sin\gamma \cdot sin(\alpha - \beta) = 0$$

11.
$$(\sin\alpha - \cos\alpha) \cdot (\sin\beta + \cos\beta) = \sin(\alpha - \beta) - \cos(\alpha + \beta)$$

12. △ABC માટે, સાબિત કરો :

(1)
$$sin(B + C) = sinA$$

(2)
$$cos(A + B) = -cosC$$

$$(3) \quad \sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$$

$$(4) \quad tan(A - B - C) = tan2A$$

(5)
$$\frac{\sin(B+C)\cdot\cos(B+C)\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}}{\sin(\frac{B+C}{2})\cdot\cos(\frac{B+C}{2})\cdot\sin(\pi+A)\cdot\cos(2\pi-A)}=1$$

(6) જો
$$cosA = cosB \ cosC$$
, તો સાબિત કરો કે $2cotB \ cotC = 1$.

13. બહિર્મુખ ચતુષ્કોણ ABCD માટે સાબિત કરો :

(1)
$$sin(A + B) + sin(C + D) = sin(B + C) + sin(A + D)$$

(2)
$$cot(A + B + C) + cotD = 0$$

- 14. ચક્રીય ચતુષ્કોણ ABCD માટે સાબિત કરો :
 - $(1) \quad \cos A + \cos B + \cos C + \cos D = 0$
 - (2) sinA + sinB = sinC + sinD
- 15. જો $\alpha \beta = \frac{\pi}{6}$, તો $2sin\alpha cos\beta = \sqrt{3}sin\beta$ સાબિત કરો.
- **16.** જો $\theta = \frac{19\pi}{4}$, તો $\cos^2\theta \sin^2\theta 2\tan\theta + \sec^2\theta 4\cot^2\theta = 0$ સાબિત કરો.
- 17. કિંમત શોધો : (1) $sin^2\frac{\pi}{12} + sin^2\frac{3\pi}{12} + sin^2\frac{5\pi}{12} + sin^2\frac{7\pi}{12} + sin^2\frac{9\pi}{12} + sin^2\frac{11\pi}{12}$
 - (2) $sinx + sin(\pi + x) + sin(2\pi + x) + ... + 2n$ 48
 - (3) $cosx + cos(\pi x) + cos(2\pi x) + cos(3\pi x) + ... + (2n + 1) પદ, જ્યાં <math>x = \frac{\pi}{3}$.
 - (4) $\cot \frac{\pi}{20} \cdot \cot \frac{3\pi}{20} \cdot \cot \frac{5\pi}{20} \cdot \cot \frac{7\pi}{20} \cdot \cot \frac{9\pi}{20}$
- 18. નીચેની સંખ્યાઓ ધન છે કે ઋણ તે નક્કી કરો :
 - (1) $sin155^{\circ} + cos155^{\circ}$
- (2) $tan\frac{6\pi}{7} + cot(\frac{-6\pi}{7})$.
- (3) $tan111^{\circ} cot111^{\circ}$
- (4) $cosec \frac{7\pi}{12} + sec \frac{7\pi}{12}$.
- 19. જો $tan\theta = \frac{-3}{4}$ અને $\frac{\pi}{2} < \theta < \pi$, તો $\frac{sin(\pi \theta) + tan(\pi + \theta) + tan(4\pi \theta)}{sin(\frac{3\pi}{2} + \theta) + cos(\frac{5\pi}{2} \theta)}$ નું મૂલ્ય શોધો.
- **20.** પ્રત્યેક $n \in \mathbb{N}$ માટે, સાબિત કરો કે $sin(n\pi + (-1)^n \theta) = sin\theta$.

*

4.4 કેટલાંક અગત્યનાં પરિણામો

(1) આપણે આગળ $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$ માટે ત્રિકોણમિતીય વિધેયોનાં મૂલ્યો મેળવ્યા. હવે આપણે $sin(\alpha-\beta)$ અને $cos(\alpha-\beta)$ ના ઉપયોગથી $sin\frac{\pi}{12}$ અને $cos\frac{\pi}{12}$ તથા અન્ય મૂલ્યો મેળવીશું.

$$\alpha = \frac{\pi}{3}, \ \beta = \frac{\pi}{4}$$
 અથવા $\alpha = \frac{\pi}{4}, \ \beta = \frac{\pi}{6}$ લેતાં, $\alpha - \beta = \frac{\pi}{12}$

$$\therefore \quad \sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

આ જ રીતે, $cos\frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}$ મેળવી શકાય.

$$\text{qoll, } \sin\frac{5\pi}{12} = \sin\left(\frac{\pi}{2} - \frac{\pi}{12}\right) = \cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4},$$
$$\cos\frac{5\pi}{12} = \cos\left(\frac{\pi}{2} - \frac{\pi}{12}\right) = \sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

(2) (i)
$$sin(\alpha + \beta) \cdot sin(\alpha - \beta) = sin^2\alpha - sin^2\beta = cos^2\beta - cos^2\alpha$$

(ii)
$$cos(\alpha + \beta) \cdot cos(\alpha - \beta) = cos^2\alpha - sin^2\beta = cos^2\beta - sin^2\alpha$$

(i)
$$sin(\alpha + \beta) \cdot sin(\alpha - \beta) = (sin\alpha \cos\beta + cos\alpha \sin\beta)(sin\alpha \cos\beta - cos\alpha \sin\beta)$$

 $= sin^2\alpha \cdot cos^2\beta - cos^2\alpha \cdot sin^2\beta$
 $= sin^2\alpha (1 - sin^2\beta) - (1 - sin^2\alpha) \cdot sin^2\beta$
 $= sin^2\alpha - sin^2\alpha \sin^2\beta - sin^2\beta + sin^2\alpha \sin^2\beta$
 $= sin^2\alpha - sin^2\beta$

$$\therefore \sin(\alpha + \beta) \cdot \sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta$$

હવે,
$$sin(\alpha + \beta) \cdot sin(\alpha - \beta) = sin^2\alpha - sin^2\beta$$

= $(1 - cos^2\alpha) - (1 - cos^2\beta)$
= $cos^2\beta - cos^2\alpha$

$$\therefore \sin(\alpha + \beta) \cdot \sin(\alpha - \beta) = \cos^2\beta - \cos^2\alpha$$

આ જ રીતે સાબિત કરી શકીએ કે,

$$cos(\alpha + \beta) \cdot cos(\alpha - \beta) = cos^2\alpha - sin^2\beta = cos^2\beta - sin^2\alpha$$

4.5 $f(\alpha) = a\cos\alpha + b\sin\alpha$, $\alpha \in \mathbb{R}$ નો વિસ્તાર ગણ, $a, b \in \mathbb{R}$ તથા $a^2 + b^2 \neq 0$

અહીં $a^2+b^2 \neq 0$ હોવાથી આપણે ત્રણ વિકલ્પો લઈશું :

(1)
$$a = 0, b \neq 0$$
 (2) $a \neq 0, b = 0$ (3) $a \neq 0$ dul $b \neq 0$

વિકલ્પ (1) :
$$a = 0, b \neq 0$$

અહીં, $f(\alpha) = b \sin \alpha$. વળી $\sin \alpha$ વિધેયનો વિસ્તાર [-1, 1] છે.

$$-1 \le \sin\alpha \le 1 \iff -b \le b\sin\alpha \le b \quad (b > 0)$$

$$b > 0$$
 માટે $b\sin\alpha$ નો વિસ્તાર $[-b, b] = [-|b|, |b|]$ છે. (| $b| = b$) હવે, $b < 0$ હોય, તો

 $-1 \le sin\alpha \le 1 \Leftrightarrow -b \ge bsin\alpha \ge b \Leftrightarrow b \le bsin\alpha \le -b$

$$b < 0$$
 માટે તેનો વિસ્તાર $[b, -b] = [-|b|, |b|]$ છે. $(|b| = -b)$

∴ $f(\alpha) = b \sin \alpha$ નો વિસ્તાર [-|b|, |b|] થાય.

વિકલ્પ (2) :
$$a \neq 0, b = 0$$

અહીં, $f(\alpha) = acos \alpha$ થાય અને તેનો વિસ્તાર આગળની જેમ [-|a|, |a|] થાય.

વિકલ્પ (3) :
$$a \neq 0, b \neq 0$$

આ વિકલ્પમાં આપણે $acos\alpha + bsin\alpha$ ને $rcos(\theta - \alpha)$ સ્વરૂપમાં પરિવર્તિત કરીશું.

 $r\cos(\theta-\alpha)=r\cos\theta\cos\alpha+r\sin\theta\sin\alpha$, હોવાથી આપણે r અને θ એવા શોધીશું કે જેથી, $a=r\cos\theta$, $b=r\sin\theta$. (r>0)

72

∴
$$a^2 + b^2 = r^2$$
 તથા $tan\theta = \frac{b}{a}$ થવા જોઈએ.

$$\therefore$$
 $r=\sqrt{a^2+b^2}$ તથા tan વિધેયનો વિસ્તાર R હોવાથી વાસ્તવિક સંખ્યા $\frac{b}{a}$ ને અનુરૂપ

$$\theta \in \mathbb{R} - \left\{ (2n-1)\frac{\pi}{2} \mid n \in \mathbb{Z} \right\}$$
 મળશે જ કે જેથી $tan\theta = \frac{b}{a}$ થાય.

તેથી આપેલી a અને b ની શૂન્યેતર વાસ્તવિક કિંમતો માટે આપણે $r=\sqrt{a^2+b^2}$ અને θ એવા લઈએ કે જેથી $\tan\theta=\frac{b}{a}$ થાય. આપણે θ પસંદ કરી શકીએ કે જેથી $rcos\theta=a$, $rsin\theta=b$.

હવે,
$$f(\alpha) = a\cos\alpha + b\sin\alpha$$

 $= r\cos\theta \cos\alpha + r\sin\theta \sin\alpha$
 $= r(\cos\theta \cos\alpha + \sin\theta \sin\alpha)$
 $= r\cos(\theta - \alpha)$

$$f(\alpha) = r\cos(\theta - \alpha)$$

-1 \le \cos(\theta - \alpha) \le 1 \le -r \le r\cos(\theta - \alpha) \le r

(r > 0)

$$\therefore f(\alpha)$$
 નો વિસ્તાર $[-r, r]$ છે.

તેથી
$$f(\alpha)$$
 નો વિસ્તાર $\left[-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}\right]$ છે.

આમ,
$$f(\alpha)$$
 નું મહત્તમ મૂલ્ય $\sqrt{a^2+b^2}$ અને ન્યૂનતમ મૂલ્ય $-\sqrt{a^2+b^2}$ થશે.

4.6 tan અને cot વિધેયનાં સરવાળા - સૂત્રો

(1)
$$\overrightarrow{\alpha}$$
 α, β $\overrightarrow{\alpha} + \beta \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}, \vec{\alpha}$

$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha \cdot tan\beta}$$

અને જો
$$\alpha$$
, β અને $\alpha - \beta \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$, તો

$$tan(\alpha - \beta) = \frac{tan\alpha - tan\beta}{1 + tan\alpha \cdot tan\beta}$$

$$\frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta} \quad \left(\alpha + \beta \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z} \right\} \right)$$

હવે,
$$\alpha$$
, $\beta \in \mathbb{R} - \{(2k-1)\frac{\pi}{2} \mid k \in \mathbb{Z}\}, \cos\alpha \neq 0, \cos\beta \neq 0$

તેથી અંશ અને છેદને $coslpha \cdot coseta$, વડે ભાગતાં,

$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha + tan\beta}$$

આ જ રીતે,
$$tan(\alpha-\beta)=rac{tan\alpha-tan\beta}{1+tan\alpha\cdot tan\beta}$$
 મેળવી શકાય.

(2) જો
$$\alpha$$
, β અને $\alpha + \beta \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\}$, તો

$$\cot (\alpha + \beta) = \frac{\cot \alpha \cdot \cot \beta - 1}{\cot \beta + \cot \alpha}$$

અને જો α , β અને $\alpha - \beta \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\}$, તો

$$\cot (\alpha - \beta) = \frac{\cot \alpha \cdot \cot \beta + 1}{\cot \beta - \cot \alpha}$$

$$\frac{\cos(\alpha+\beta)}{\sin(\alpha+\beta)} = \frac{\cos(\alpha+\beta)}{\sin(\alpha+\beta)} = \frac{\cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta}{\sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta} \quad (\alpha + \beta \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\})$$

હવે, α , $\beta \in \mathbb{R} - \{k\pi \mid k \in \mathbb{Z}\}$, $sin\alpha \neq 0$, $sin\beta \neq 0$

તેથી અંશ અને છેદને sinlpha - sineta વડે ભાગતાં,

$$cot(\alpha + \beta) = \frac{cot\alpha \cdot cot\beta - 1}{cot\beta + cot\alpha}$$

આ જ રીતે, $\cot(\alpha - \beta) = \frac{\cot \alpha \cdot \cot \beta + 1}{\cot \beta - \cot \alpha}$ મેળવી શકાય.

4.7 $tan \frac{\pi}{12}$ અને $cot \frac{\pi}{12}$ નાં મૂલ્યો

અહીં,
$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$
 અથવા $\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$

(1)
$$tan\frac{\pi}{12} = tan\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{tan\frac{\pi}{3} - tan\frac{\pi}{4}}{1 + tan\frac{\pi}{3}tan\frac{\pi}{4}}$$
$$= \frac{\sqrt{3} - 1}{1 + \sqrt{3}}$$
$$= \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$$
$$= \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{3} = 2 - \sqrt{3}$$

$$\therefore \tan \frac{\pi}{12} = 2 - \sqrt{3}$$

(2)
$$\cot \frac{\pi}{12} = \cot \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\cot \frac{\pi}{3} \cot \frac{\pi}{4} + 1}{\cot \frac{\pi}{4} - \cot \frac{\pi}{3}}$$

$$= \frac{\frac{1}{\sqrt{3}} \cdot 1 + 1}{1 - \frac{1}{\sqrt{3}}}$$

$$= \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

$$= \frac{1 + \sqrt{3}}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$= \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}$$

$$\cot\frac{\pi}{12}=2+\sqrt{3}$$

હવે,
$$tan\frac{5\pi}{12} = tan\left(\frac{\pi}{2} - \frac{\pi}{12}\right) = cot\frac{\pi}{12} = 2 + \sqrt{3}$$
 અને
$$cot\frac{5\pi}{12} = cot\left(\frac{\pi}{2} - \frac{\pi}{12}\right) = tan\frac{\pi}{12} = 2 - \sqrt{3}.$$

ઉદાહરણ 4 : જો $sin\alpha = \frac{4}{5}$, $\frac{\pi}{2} < \alpha < \pi$ અને $tan\beta = \frac{-12}{5}$, $-\frac{\pi}{2} < \beta < 0$, તો $P(\alpha + \beta)$ અને $P(\alpha - \beta)$ નું ચરણ નક્કી કરો.

ઉકેલ : અહીં, $\frac{\pi}{2}<\alpha<\pi$ અને $-\frac{\pi}{2}<\beta<0$ પરથી સરવાળો કરતાં $0<\alpha+\beta<\pi$ મળે.

 \therefore $P(\alpha + \beta)$ પ્રથમ ચરણમાં અથવા બીજા ચરણમાં છે. cosine વિધેયનું મૂલ્ય પ્રથમ ચરણમાં ધન અને બીજા ચરણમાં ઋણ છે અને sine વિધેયનું મૂલ્ય પ્રથમ અને બીજા ચરણમાં ધન છે. તેથી $P(\alpha + \beta)$ નું ચરણ નક્કી કરવા $cos(\alpha + \beta)$ નું મૂલ્ય શોધવું જોઈએ.

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\sqrt{1 - \frac{16}{25}} = \frac{-3}{5}
\tan \beta = \frac{-12}{5}, -\frac{\pi}{2} < \beta < 0
\therefore \sec \beta = \sqrt{1 + \tan^2 \beta} = \sqrt{1 + \frac{144}{25}} = \frac{13}{5}
\therefore \cos \beta = \frac{5}{13}, \sin \beta = \tan \beta \cdot \cos \beta = \frac{-12}{5} \times \frac{5}{13} = \frac{-12}{13}
\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta
= \left(\frac{-3}{5}\right) \left(\frac{5}{13}\right) - \left(\frac{4}{5}\right) \left(\frac{-12}{13}\right)
= \frac{-15}{65} + \frac{48}{65} = \frac{33}{65}$$

$$\therefore \cos(\alpha + \beta) > 0$$

$$\therefore$$
 $P(\alpha + \beta)$ પ્રથમ ચરણમાં છે.

ચરણ નક્કી કરવાની બીજી રીત:

 $P(\alpha + \beta)$ નું ચરણ નક્કી કરવાની બીજી રીત જોઈએ :

$$sin(\alpha + \beta) = sin\alpha \cos\beta + \cos\alpha \sin\beta$$
$$= \left(\frac{4}{5}\right)\left(\frac{5}{13}\right) + \left(\frac{-3}{5}\right)\left(\frac{-12}{13}\right)$$
$$= \frac{20 + 36}{65} = \frac{56}{65} > 0$$

$$cos(\alpha + \beta) = cos\alpha \cos\beta - sin\alpha \sin\beta = \frac{33}{65} > 0$$
 (પ્રથમ રીત)

હવે, $sin(\alpha + \beta) > 0$ અને $cos(\alpha + \beta) > 0$ હોવાથી $P(\alpha + \beta)$ પ્રથમ ચરણમાં છે.

હવે, P(
$$lpha-eta$$
) માટે, $rac{\pi}{2} અને $-rac{\pi}{2}$$

$$\therefore \quad \frac{\pi}{2} > -\beta > 0$$

 \therefore $P(\alpha - \beta)$ બીજા અથવા ત્રીજા ચરણમાં છે. sine વિધેયનું મૂલ્ય બીજા ચરણમાં ધન અને ત્રીજા ચરણમાં ઋણ છે અને cosine વિધેયનું મૂલ્ય બીજા અને ત્રીજા બંને ચરણમાં ઋણ છે. તેથી $P(\alpha - \beta)$ નું ચરણ નક્કી કરવા આપણે $\sin(\alpha - \beta)$ શોધવું પડશે.

$$sin(\alpha - \beta) = sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$= \left(\frac{4}{5}\right)\left(\frac{5}{13}\right) - \left(\frac{-3}{5}\right)\left(\frac{-12}{13}\right)$$

$$= \frac{20 - 36}{65} = \frac{-16}{65}$$

$$\therefore \sin(\alpha - \beta) < 0$$

∴ P(α − β) ત્રીજા ચરણમાં છે.

ઉદાહરણ $5: sin \theta + cos \left(\theta + \frac{\pi}{3}\right)$ નો વિસ્તાર મેળવો.

ઉકેલ: ધારો કે
$$f(\theta)=\sin\theta+\cos\left(\theta+\frac{\pi}{3}\right)$$
.
$$=\sin\theta+\cos\theta\,\cos\frac{\pi}{3}-\sin\theta\,\sin\frac{\pi}{3}$$

$$=\sin\theta+\frac{1}{2}\cos\theta-\frac{\sqrt{3}}{2}\sin\theta$$

$$f(\theta)=\frac{1}{2}\cos\theta+\left(1-\frac{\sqrt{3}}{2}\right)\sin\theta=a\cos\theta+b\sin\theta$$

 $f(\theta)$ ને $a\cos\theta + b\sin\theta$ સાથે સરખાવતાં,

$$a = \frac{1}{2}, b = 1 - \frac{\sqrt{3}}{2}$$

હવે,
$$r^2 = a^2 + b^2 = \frac{1}{4} + \left(1 - \frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + 1 - \sqrt{3} + \frac{3}{4}$$

$$r^2 = 2 - \sqrt{3}$$

$$\therefore r = \sqrt{2 - \sqrt{3}} = \sqrt{\frac{4 - 2\sqrt{3}}{2}} = \sqrt{\frac{3 - 2\sqrt{3} + 1}{2}} = \sqrt{\frac{(\sqrt{3} - 1)^2}{2}}$$

$$\therefore r = \frac{\sqrt{3}-1}{\sqrt{2}} = \sqrt{\frac{3}{2}} - \frac{1}{\sqrt{2}}$$

$$\therefore$$
 $f(\theta)$ નો વિસ્તાર $[-r, r] = \left[\frac{1}{\sqrt{2}} - \sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} - \frac{1}{\sqrt{2}}\right]$ છે.

ઉદાહરણ 6 : sin110° + cos110° ધન છે કે ઋણ તે નક્કી કરો.

ઉકેલ: ધારો કે
$$f(\theta) = sin110^{\circ} + cos110^{\circ}$$

$$= \sqrt{2} \left(\frac{1}{\sqrt{2}} sin110^{\circ} + \frac{1}{\sqrt{2}} cos110^{\circ} \right)$$

$$= \sqrt{2} \left(cos45^{\circ} sin110^{\circ} + sin45^{\circ} cos110^{\circ} \right)$$

$$= \sqrt{2} sin(110^{\circ} + 45^{\circ})$$

$$= \sqrt{2} sin155^{\circ} > 0$$

(90 < 155 < 180)

∴ sin110° + cos110° ધન સંખ્યા છે.

નોંધ : આપણે આ પ્રકરણમાં ગણેલ ઉદાહરણ 3 આ રીતે પણ કરી શકાય.

ઉદાહરણ $7:\sqrt{3}\sin\alpha-\cos\alpha$ ને $r\sin(\alpha-\theta)$ સ્વરૂપે દર્શાવી r અને θ શોધો.

જ્યાં r > 0, $0 \le \theta < 2\pi$.

6કેલ : ધારો કે $f(\alpha) = \sqrt{3} \sin \alpha - \cos \alpha$

 $\sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$ વડે ગુણતાં અને ભાગતાં,

 $f(\alpha) = 2\left(\frac{\sqrt{3}}{2}\sin\alpha - \frac{1}{2}\cos\alpha\right)$ $= 2\left(\sin\alpha\cos\frac{\pi}{6} - \cos\alpha\sin\frac{\pi}{6}\right)$ $= 2\sin\left(\alpha - \frac{\pi}{6}\right)$

હવે, $rsin(\alpha - \theta)$ સાથે સરખાવતાં,

 $r=2,\; \theta=rac{\pi}{6}$ મળે. અહીં $\theta=rac{\pi}{6}$ એ $0\leq heta < 2\pi$ નું સમાધાન કરે છે.

ઉદાહરણ 8: જો $\sqrt{3}\cos\alpha-\sin\alpha=r\cos(\alpha-\theta)$, તો r અને θ શોધો. જેથી (r>0)

(i) $\frac{-\pi}{2} < \theta < 0$ (ii) $0 < \theta < 2\pi$

ઉકેલ : ધારો કે $f(\alpha) = \sqrt{3}\cos\alpha - \sin\alpha$

 $r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$ વડે ગુણતાં અને ભાગતાં,

$$f(\alpha) = 2\left(\frac{\sqrt{3}}{2}cos\alpha - \frac{1}{2}sin\alpha\right)$$
$$= 2\left(cos\frac{\pi}{6}cos\alpha - sin\frac{\pi}{6}sin\alpha\right)$$
$$= 2cos\left(\alpha + \frac{\pi}{6}\right)$$
$$= 2cos\left(\alpha - \left(-\frac{\pi}{6}\right)\right)$$

હવે, $rcos(\alpha - \theta)$ સાથે સરખાવતાં,

 $\therefore \quad r=2 \text{ અને } \theta=\frac{-\pi}{6} \text{ મળે, } \text{ } \hat{\mathbf{v}} \frac{-\pi}{2}<\theta<0 \text{ } \vec{\mathbf{t}} \text{ સમાધાન કરે છે}.$

$$2cos\left(\alpha + \frac{\pi}{6}\right) = 2cos\left(\alpha + \frac{\pi}{6} - 2\pi\right) = 2cos\left(\alpha - \frac{11\pi}{6}\right)$$

 \therefore $\theta = \frac{11\pi}{6}$ લેતાં, θ એ $0 < \theta < 2\pi$ નું સમાધાન કરે છે.

ઉદાહરણ 9 : સાબિત કરો કે, $sin^2A = cos^2(A - B) + cos^2B - 2cos(A - B)cosA cosB$.

ઉકેલ : જ.બા. = $\cos^2(A - B) + \cos^2 B - 2\cos(A - B)\cos A \cos B$.

$$= cos^2B + cos^2(A - B) - 2cos(A - B) cosA cosB$$

=
$$cos^2B + cos(A - B) [cos(A - B) - 2cosA cosB]$$

=
$$cos^2B + cos(A - B) [cosA cosB + sinA sinB - 2cosA cosB]$$

$$= cos^2B + cos(A - B) (sinA sinB - cosA cosB)$$

$$= cos^2B - cos(A - B) cos(A + B)$$

$$= cos^2B - (cos^2A - sin^2B)$$

$$= cos^{2}B + sin^{2}B - cos^{2}A = 1 - cos^{2}A = sin^{2}A = si.$$
 (41.

स्वाध्याय 4.2

1. કિંમત શોધો :

$$(1) \ \sin^2 \! 37 \frac{1}{2}{}^{\rm o} - \sin^2 \! 7\frac{1}{2}{}^{\rm o} \quad (2) \ \sin^2 \! 52\frac{1}{2}{}^{\rm o} - \cos^2 \! 7\frac{1}{2}{}^{\rm o} \quad (3) \ \cos^2 \! 37\frac{1}{2}{}^{\rm o} - \sin^2 \! 37\frac{1}{2}{}^{\rm o}$$

- 2. સાબિત કરો : $sin^2A + sin^2B + cos^2(A + B) + 2sinA sinB cos(A + B) = 1$.
- 3. (1) $\Re \cos A = \frac{1}{7}$, $\cos B = \frac{13}{14}$ અને 0 < A, $B < \frac{\pi}{2}$, તો સાબિત કરો કે, $A B = \frac{\pi}{3}$
 - (2) $\Re \sin A = \frac{1}{\sqrt{5}}, \cos B = \frac{3}{\sqrt{10}}$ અને $0 < A, B < \frac{\pi}{2},$ તો સાબિત કરો કે, $A + B = \frac{\pi}{4}$
- **4.** (1) જો $\cos \alpha = \frac{4}{5}$, $\cos \beta = \frac{12}{13}$, $\frac{3\pi}{2} < \alpha$, $\beta < 2\pi$, તો $P(\alpha \beta)$ નું ચરણ નક્કી કરો.
 - (2) જો $cos\alpha=\frac{-5}{13}, \, \frac{\pi}{2}<\alpha<\pi$ અને $tan\beta=\frac{4}{3}, \, \pi<\beta<\frac{3\pi}{2}, \,$ તો $P(\alpha+\beta)$ નું ચરણ નક્કી કરો.
- 5. જો $\cot \alpha = \frac{1}{2}$, $\sec \beta = \frac{-5}{3}$, જ્યાં $\pi < \alpha < \frac{3\pi}{2}$ અને $\frac{\pi}{2} < \beta < \pi$ તો $\tan(\alpha + \beta)$ નું મૂલ્ય શોધો અને $P(\alpha + \beta)$ નું ચરણ નક્કી કરો.
- 6. નીચેનાનો વિસ્તાર મેળવો :
 - (1) $7\sin\theta + 24\cos\theta$ (2) $\cos\theta + \sin\left(\theta \frac{\pi}{6}\right) + 1$.
- 7. સાબિત કરો કે $5\cos\theta + 3\cos(\theta + \frac{\pi}{3}) + 7$ નું મૂલ્ય [0, 14] માં છે.
- **8.** $\sqrt{3}\sin\theta + \cos\theta$ ને $r\cos(\theta \alpha)$ સ્વરૂપે દર્શાવો. જયાં r > 0 અને $0 < \alpha < 2\pi$.
- 9. જો $\frac{-\pi}{2} < \theta < 0$ અને $\cos \alpha \sqrt{3} \sin \alpha = r \cos(\alpha \theta)$, તો r અને θ શોધો.
- 10. સાબિત કરો :

(1)
$$tan\left(\frac{\pi}{3} - \alpha\right) = \frac{\sqrt{3}\cos\alpha - \sin\alpha}{\cos\alpha + \sqrt{3}\sin\alpha}$$
 (2) $tan39^{\circ} = \frac{\sqrt{3}\cos21^{\circ} - \sin21^{\circ}}{\cos21^{\circ} + \sqrt{3}\sin21^{\circ}}$

- (3) $tan3A \cdot tan2A \cdot tanA = tan3A tan2A tanA$
- (4) $\cot A \cdot \cot 2A \cot 2A \cdot \cot 3A \cot 3A \cdot \cot A = 1$
- (5) $tan25^{\circ} \cdot tan15^{\circ} + tan15^{\circ} \cdot tan50^{\circ} + tan25^{\circ} \cdot tan50^{\circ} = 1$
- **11.** $\Re A + B = \frac{\pi}{4}$, તો, સાબિત કરો કે
 - (1) (1 + tanA)(1 + tanB) = 2
 - (2) (cotA 1)(cotB 1) = 2
- **12.** (1) સાબિત કરો કે A + B = $\frac{\pi}{2}$ \Rightarrow tanA = tanB + 2tan(A B)
 - (2) સાબિત કરો કે $tan65^{\circ} = tan25^{\circ} + 2tan40^{\circ}$
- - (1) tanA tanB + tanB tanC + tanC tanA = 1
 - (2) cotA + cotB + cotC = cotA cotB cotC

- **14.** જો $A + B + C = k\pi, k \in Z$, તો સાબિત કરો કે,
 - (1) tanA + tanB + tanC = tanA tanB tanC
 - (2) $cotB \cdot cotC + cotC \cdot cotA + cotA \cdot cotB = 1$
- **15.** જો tan A = 3, $tan B = \frac{1}{2}$, 0 < A, $B < \frac{\pi}{2}$, તો સાબિત કરો કે, $A B = \frac{\pi}{4}$.
- **16.** જો ΔABC માં, tanB = 2 અને tanC = 3, તો સાબિત કરો કે, tanA = 1.
- 17. જો $0 < A, B < \frac{\pi}{2}, tan A = \frac{a}{a+1}$ અને $tan B = \frac{1}{2a+1}$, તો સાબિત કરો કે, $A + B = \frac{\pi}{4}$.
- **18.** જો $\alpha + \beta = \theta$, $\alpha \beta = \phi$ અને $\frac{\tan \alpha}{\tan \beta} = \frac{x}{y}$, તો સાબિત કરો કે, $\frac{\sin \theta}{\sin \phi} = \frac{x+y}{x-y}$.
- 19. જો $\frac{\tan{(A-B)}}{\tan{A}} + \frac{\sin^2{C}}{\sin^2{A}} = 1$, તો સાબિત કરો કે, $\tanh{\cdot} \tanh{B} = \tan^2{C}$.
- **20.** જો tan(A + B) = 3 અને tan(A B) = 2, તો tan2A અને tan2B નાં મૂલ્ય શોધો.
- **21.** જો $tan\beta = \frac{n sin \alpha cos \alpha}{1 n sin^2 \alpha}$, તો સાબિત કરો કે $tan(\alpha \beta) = (1 n) tan\alpha$.

*

4.8 ગુણાકારનું સરવાળા અથવા તફાવતના સ્વરૂપમાં નિરૂપણ

આપણે α, β ∈ R માટે નીચેનાં સૂત્રો તારવ્યાં છે :

$$sin(\alpha + \beta) = sin\alpha \cos\beta + \cos\alpha \sin\beta$$
 (i)

$$sin(\alpha - \beta) = sin\alpha \cos\beta - \cos\alpha \sin\beta$$
 (ii)

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \tag{iii}$$

$$\cos(\alpha - \beta) = \cos\alpha \, \cos\beta + \sin\alpha \, \sin\beta \tag{iv}$$

સૂત્રો (i) અને (ii)નો સરવાળો અને બાદબાકી કરતાં,

$$sin(\alpha + \beta) + sin(\alpha - \beta) = 2sin\alpha \cos\beta$$

$$sin(\alpha + \beta) - sin(\alpha - \beta) = 2cos\alpha sin\beta$$

એટલે કે,

$$2\sin\alpha \cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta) \tag{v}$$

$$2\cos\alpha \sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$
 (vi)

તે જ પ્રમાણે, સૂત્રો (iii) અને (iv) નો સરવાળો અને બાદબાકી કરતાં,

$$cos(\alpha + \beta) + cos(\alpha - \beta) = 2cos\alpha \cos\beta$$

$$cos(\alpha + \beta) - cos(\alpha - \beta) = -2sin\alpha sin\beta$$

એટલે કે.

$$2\cos\alpha \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
 (vii)

$$2\sin\alpha \sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta) \tag{viii}$$

આ સૂત્રો (v), (vi), (vii) અને (viii) માં ડાબી બાજુનાં પરિણામો ત્રિકોણમિતીય વિધેયોનાં મૂલ્યોના ગુણાકાર સ્વરૂપમાં છે, જ્યારે જમણી બાજુનાં પદ બે સંખ્યાઓના સરવાળા અને તફાવત સ્વરૂપે ચલ $\alpha+\beta$ અથવા $\alpha-\beta$ હોય તેવાં ત્રિકોણમિતીય વિધેયોનાં મૂલ્ય છે. આથી બે ત્રિકોણમિતીય વિધેયોના ગુણાકારનું સરવાળા-બાદબાકીના સ્વરૂપમાં નિરૂપણ કરવું સરળ બનશે.

ઉદાહરણ તરીકે
$$2sin3\theta \cos 5\theta = sin(3\theta + 5\theta) + sin(3\theta - 5\theta)$$

$$= sin8\theta + sin(-2\theta)$$

$$= sin8\theta - sin2\theta \qquad (sin(-\theta) = -sin\theta)$$

હવે, આમાં જ જો મોટા માપની ખૂશો પહેલા લેવામાં આવે તો ગણતરી સરળ બનશે :

$$2\cos 3\theta \cdot \sin 5\theta = 2\sin 5\theta \cdot \cos 3\theta = \sin(5\theta + 3\theta) + \sin(5\theta - 3\theta)$$
$$= \sin 8\theta + \sin 2\theta$$

ઉદાહરણ 11 : નીચેનાને સરવાળા કે તફાવત સ્વરૂપમાં દર્શાવો :

(1) $2\sin 5\theta \cos \theta$ (2) $2\cos \frac{5\theta}{2} \sin \frac{3\theta}{2}$ (3) $2\sin 3\theta \sin 5\theta$ (4) $\sin^2 \theta$ (5) $2\cos 5\theta \cos \frac{\theta}{2}$

Geq: (1)
$$2\sin 5\theta \cos \theta = \sin(5\theta + \theta) + \sin(5\theta - \theta) = \sin 6\theta + \sin 4\theta$$

$$(2) \quad 2cos\frac{5\theta}{2} \quad sin\frac{3\theta}{2} = sin\left(\frac{5\theta}{2} + \frac{3\theta}{2}\right) - sin\left(\frac{5\theta}{2} - \frac{3\theta}{2}\right) = sin4\theta - sin\theta$$

(3)
$$2\sin 3\theta \sin 5\theta = 2\sin 5\theta \sin 3\theta = \cos(5\theta - 3\theta) - \cos(5\theta + 3\theta)$$

= $\cos 2\theta - \cos 8\theta$

(4)
$$sin^2\theta = sin\theta \ sin\theta = \frac{1}{2}[2sin\theta \ sin\theta] = \frac{1}{2}[cos(\theta - \theta) - cos(\theta + \theta)]$$

$$= \frac{1}{2}[cos\theta - cos2\theta] = \frac{1}{2}[1 - cos2\theta]$$

(5)
$$2\cos 5\theta \cos \frac{\theta}{2} = \cos \left(5\theta + \frac{\theta}{2}\right) + \cos \left(5\theta - \frac{\theta}{2}\right) = \cos \frac{11\theta}{2} + \cos \frac{9\theta}{2}$$

ઉદાહરણ 12 : સાબિત કરો કે,
$$sin20^{\circ} \cdot sin40^{\circ} \cdot sin60^{\circ} \cdot sin80^{\circ} = \frac{3}{16}$$

634: SLAU. =
$$sin20^{\circ} \cdot sin40^{\circ} \cdot sin60^{\circ} \cdot sin80^{\circ}$$

= $sin60^{\circ} \cdot (sin20^{\circ} \cdot sin40^{\circ}) \cdot sin80^{\circ}$
= $\frac{\sqrt{3}}{2} \times \frac{1}{2} (2sin40^{\circ} \cdot sin20^{\circ}) \cdot sin80^{\circ}$
= $\frac{\sqrt{3}}{4} [cos(40^{\circ} - 20^{\circ}) - cos(40^{\circ} + 20^{\circ})] sin80^{\circ}$
= $\frac{\sqrt{3}}{4} [cos(20^{\circ}) - cos60^{\circ}] sin80^{\circ}$
= $\frac{\sqrt{3}}{4} (cos20^{\circ} - \frac{1}{2}) sin80^{\circ}$
= $\frac{\sqrt{3}}{8} (2sin80^{\circ} cos20^{\circ} - sin80^{\circ})$
= $\frac{\sqrt{3}}{8} [sin(80^{\circ} + 20^{\circ}) + sin(80^{\circ} - 20^{\circ}) - sin80^{\circ}]$
= $\frac{\sqrt{3}}{8} [sin(180^{\circ} + sin60^{\circ} - sin80^{\circ}]$
= $\frac{\sqrt{3}}{8} [sin(180^{\circ} - 80^{\circ}) + \frac{\sqrt{3}}{2} - sin80^{\circ}]$
= $\frac{\sqrt{3}}{8} (sin80^{\circ} + \frac{\sqrt{3}}{2} - sin80^{\circ})$
= $\frac{3}{16} = \%.60$.

80

ઉદાહરણ 13 : જો $A + B = 90^\circ$, તો $sinA \cdot sinB$ નાં મહત્તમ અને ન્યૂનતમ મૂલ્યો શોધો.

ઉકેલ : ધારો કે
$$y = sinA \cdot sinB = sinA sin(90^{\circ} - A) = sinA cosA$$

eq.,
$$y = \frac{1}{2}(2\sin A \cdot \cos A) = \frac{1}{2}[\sin(A + A) - \sin(A - A)]$$
$$= \frac{1}{2}\sin 2A$$

હવે,
$$-1 \le sin2A \le 1 \iff \frac{-1}{2} \le \frac{1}{2}sin2A \le \frac{1}{2} \iff \frac{-1}{2} \le y \le \frac{1}{2}$$

આમ, sinA sinB ની મહત્તમ અને ન્યૂનતમ કિંમતો અનુક્રમે $\frac{1}{2}$ અને $\frac{-1}{2}$ છે.

સ્વાધ્યાય 4.3

- નીચેનાને સરવાળા કે તફાવત સ્વરૂપમાં દર્શાવો :
 - (1) $2sin7\theta \cdot cos3\theta$
- (2) $2\sin\frac{\theta}{2} \cdot \cos\frac{5\theta}{2}$
- (3) $2\cos 5\theta \cdot \sin 3\theta$
- (4) $2\cos\frac{5\theta}{2} \cdot \sin\frac{7\theta}{2}$ (5) $2\cos11\theta \cdot \cos3\theta$ (6) $2\cos\frac{5\theta}{2} \cdot \cos\frac{3\theta}{2}$

- (7) $sin 9\theta \cdot sin 11\theta$ (8) $2sin \frac{7\theta}{2} \cdot sin \frac{9\theta}{2}$ (9) $2sin \theta \cdot cos \theta$

- કિંમત શોધો ઃ
 - (1) $2\sin\frac{5\pi}{12} \cdot \sin\frac{\pi}{12}$ (2) $2\sin\frac{5\pi}{12} \cdot \cos\frac{7\pi}{12}$ (3) $2\cos\frac{\pi}{12} \cdot \sin\frac{5\pi}{12}$

- (4) $2\cos\frac{5\pi}{12} \cdot \cos\frac{7\pi}{12}$ (5) $8\cos 15^{\circ} \cdot \cos 45^{\circ} \cdot \cos 75^{\circ}$ (6) $8\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}$
- 3. સાબિત કરો :
 - (1) $sin(\frac{\pi}{4} + \theta) sin(\frac{\pi}{4} \theta) = \frac{1}{2}cos2\theta$
 - (2) $sin\theta \cdot sin(\frac{\pi}{3} \theta) \cdot sin(\frac{\pi}{3} + \theta) = \frac{1}{4}sin3\theta$
 - (3) $2\cos\frac{\pi}{13} \cdot \cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$
 - (4) $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$
 - (5) $4\cos 12^{\circ} \cdot \cos 48^{\circ} \cdot \cos 72^{\circ} = \cos 36^{\circ}$
- **4.** $4cos\theta \cdot cos(\frac{\pi}{3}-\theta) cos(\frac{\pi}{3}+\theta) = cos3\theta$ સાબિત કરો તથા તે પરથી $\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ} = \frac{1}{16}$ at al.
- 5. $\frac{1}{2\sin 10^{\circ}} 2\sin 70^{\circ}$ ની કિંમત શોધો.
- સાબિત કરો કે, $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = \frac{-1}{2}$.

(sin0 = 0)

4.9 સરવાળા અથવા તફાવતનું ગુણાકાર તરીકે નિરૂપણ

આપણે આગળ સુત્રો (v) થી (viii) જોયાં, જે નીચે પ્રમાણે છે :

$$2\sin\alpha \cdot \cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta) \tag{v}$$

$$2\cos\alpha \cdot \sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$
 (vi)

$$2\cos\alpha \cdot \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
 (vii)

$$2\sin\alpha \cdot \sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$
 (viii)

અહીં,
$$\alpha + \beta = C$$
 અને $\alpha - \beta = D$ લેતાં,

$$\alpha = \frac{C+D}{2} \text{ with } \beta = \frac{C-D}{2} \text{ with.}$$

$$sinC + sinD = 2sin\left(\frac{C+D}{2}\right) cos\left(\frac{C-D}{2}\right)$$

$$sinC - sinD = 2cos\left(\frac{C+D}{2}\right) sin\left(\frac{C-D}{2}\right)$$

$$cosC + cosD = 2cos\left(\frac{C+D}{2}\right) cos\left(\frac{C-D}{2}\right)$$

$$cosD - cosC = 2sin\left(\frac{C+D}{2}\right) sin\left(\frac{C-D}{2}\right)$$
 અથવા

$$cosC - cosD = -2sin\left(\frac{C+D}{2}\right) sin\left(\frac{C-D}{2}\right)$$

આ સૂત્રો ત્રિકોશમિતીય વિધેયોનાં મૂલ્યોના સરવાળા કે તફાવતનું ગુશાકાર તરીકે નિરૂપશ કરવામાં ઉપયોગી છે.

ઉદાહરણ 14 : નીચેનાને ગુણાકાર સ્વરૂપમાં ફેરવો :

(1)
$$sin6\theta + sin4\theta$$

(2)
$$sin6\theta - sin2\theta$$

(3)
$$cos5\theta + cos2\theta$$

(4)
$$cos6\theta - cos10\theta$$

(5)
$$sin\theta - 1$$

(6)
$$cos\theta + 1$$

634: (1)
$$sin6\theta + sin4\theta = 2sin\left(\frac{6\theta + 4\theta}{2}\right) cos\left(\frac{6\theta - 4\theta}{2}\right) = 2sin5\theta cos\theta$$

(2)
$$sin6\theta - sin2\theta = 2cos\left(\frac{6\theta + 2\theta}{2}\right) sin\left(\frac{6\theta - 2\theta}{2}\right) = 2cos4\theta sin2\theta$$

(3)
$$\cos 5\theta + \cos 2\theta = 2\cos\left(\frac{5\theta + 2\theta}{2}\right)\cos\left(\frac{5\theta - 2\theta}{2}\right) = 2\cos\frac{7\theta}{2}\cos\frac{3\theta}{2}$$

(4)
$$\cos 6\theta - \cos 10\theta = -2\sin\left(\frac{6\theta + 10\theta}{2}\right)\sin\left(\frac{6\theta - 10\theta}{2}\right)$$

$$= -2sin8\theta sin(-2\theta) = 2sin8\theta sin2\theta$$

(5)
$$\sin\theta - 1 = \sin\theta - \sin\frac{\pi}{2} = 2\cos\left(\frac{\theta + \frac{\pi}{2}}{2}\right) \sin\left(\frac{\theta - \frac{\pi}{2}}{2}\right)$$

$$= 2\cos\left(\frac{\theta}{2} + \frac{\pi}{4}\right) \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right)$$

(6)
$$\cos\theta + 1 = \cos\theta + \cos\theta = 2\cos\left(\frac{\theta + \theta}{2}\right)\cos\left(\frac{\theta - \theta}{2}\right)$$
$$= 2\cos\frac{\theta}{2}\cos\frac{\theta}{2} = 2\cos^2\frac{\theta}{2}$$

ઉદાહરણ 15 : સાબિત કરો :

(1)
$$\cos 20^{\circ} + \cos 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = \frac{1}{2}$$

$$(2) 1 + \cos 2A + \cos 4A + \cos 6A = 4\cos A \cdot \cos 2A \cdot \cos 3A$$

(3)
$$\sqrt{3}\sin 10^{\circ} + \sqrt{2}\sin 55^{\circ} = \cos 80^{\circ} + 2\cos 50^{\circ}$$

634: (1) SLOIL. =
$$cos20^{\circ} + cos60^{\circ} + cos100^{\circ} + cos140^{\circ}$$

= $cos20^{\circ} + \frac{1}{2} + 2cos\left(\frac{100^{\circ} + 140^{\circ}}{2}\right) cos\left(\frac{100^{\circ} - 140^{\circ}}{2}\right)$
= $cos20^{\circ} + \frac{1}{2} + 2cos120^{\circ} cos(20^{\circ})$ ($cos(-20^{\circ}) = cos20^{\circ}$)
= $cos20^{\circ} + \frac{1}{2} + 2cos(180^{\circ} - 60^{\circ}) cos20^{\circ}$
= $\frac{1}{2} + cos20^{\circ} - 2cos60^{\circ} cos20^{\circ}$
= $\frac{1}{2} + cos20^{\circ} - 2 \cdot \frac{1}{2} cos20^{\circ}$
= $\frac{1}{2} + cos20^{\circ} - cos20^{\circ} = \frac{1}{2} = \%.6$ U.

(2) SI.GI. =
$$1 + cos2A + cos4A + cos6A$$

= $(cos0 + cos2A) + (cos4A + cos6A)$
= $2cosA \cdot cosA + 2cos5A \cdot cosA$
= $2cosA(cosA + cos5A)$
= $2cosA(2cos3A \cdot cos2A)$
= $4cosA \cdot cos2A \cdot cos3A = \%$.GII.

(3) SI.GU. =
$$\sqrt{3}\sin 10^{\circ} + \sqrt{2}\sin 55^{\circ}$$

= $2 \cdot \frac{\sqrt{3}}{2}\sin 10^{\circ} + 2 \cdot \frac{1}{\sqrt{2}}\sin 55^{\circ}$
= $2\sin 60^{\circ} \sin 10^{\circ} + 2\sin 45^{\circ} \sin 55^{\circ}$
= $\cos 50^{\circ} - \cos 70^{\circ} + \cos 10^{\circ} - \cos 100^{\circ}$
= $\cos 50^{\circ} - \cos (180^{\circ} - 80^{\circ}) - (\cos 70^{\circ} - \cos 10^{\circ})$
= $\cos 50^{\circ} + \cos 80^{\circ} + 2\sin 40^{\circ} \sin 30^{\circ}$
= $\cos 50^{\circ} + \cos 80^{\circ} + 2\sin (90^{\circ} - 50^{\circ}) \cdot \frac{1}{2}$
= $\cos 50^{\circ} + \cos 80^{\circ} + \cos 80$

स्वाध्याय 4.4

ગુણાકાર સ્વરૂપમાં દર્શાવો :

(1)
$$sin7\theta + sin3\theta$$

$$(2) \sin\frac{\theta}{2} + \sin\frac{3\theta}{2}$$

(3)
$$sin3\theta - sin5\theta$$

(4)
$$sin\frac{7\theta}{2} - sin\frac{3\theta}{2}$$

(5)
$$cos11\theta + cos9\theta$$

(4)
$$sin\frac{7\theta}{2} - sin\frac{3\theta}{2}$$
 (5) $cos11\theta + cos9\theta$ (6) $cos\frac{5\theta}{2} + cos\frac{11\theta}{2}$

(7)
$$\cos 5\theta - \cos 11\theta$$

(7)
$$\cos 5\theta - \cos 11\theta$$
 (8) $\cos \frac{\theta}{2} - \cos \frac{3\theta}{2}$ (9) $\cos \theta - 1$

(9)
$$\cos\theta - 1$$

(10)
$$sin\theta + 1$$

$$(11) \cos\theta + \sin\theta \qquad (12) \sin\theta - \cos\theta$$

(12)
$$\sin\theta - \cos\theta$$

સાબિત કરો : (2 થી 7)

2. (1)
$$\cos 55^{\circ} + \cos 65^{\circ} + \cos 175^{\circ} = 0$$
 (2) $\cos \frac{5\pi}{12} - \cos \frac{\pi}{12} = \frac{-1}{\sqrt{2}}$

(2)
$$cos\frac{5\pi}{12} - cos\frac{\pi}{12} = \frac{-1}{\sqrt{2}}$$

(3)
$$\sin 65^{\circ} + \cos 65^{\circ} = \sqrt{2}\cos 20^{\circ}$$
 (4) $\frac{\sin \frac{5\pi}{12} - \cos \frac{5\pi}{12}}{\cos \frac{5\pi}{12} + \sin \frac{5\pi}{12}} = \frac{1}{\sqrt{3}}$

(4)
$$\frac{\sin\frac{5\pi}{12} - \cos\frac{5\pi}{12}}{\cos\frac{5\pi}{12} + \sin\frac{5\pi}{12}} = \frac{1}{\sqrt{3}}$$

$$(5) \frac{\cos 7A + \cos 5A}{\sin 7A - \sin 5A} = \cot A$$

(6)
$$\cos 2\theta \cos \frac{\theta}{2} - \cos 3\theta \cos \frac{9\theta}{2} = \sin 5\theta \sin \frac{5\theta}{2}$$

(7)
$$sin\theta + sin\left(\theta + \frac{2\pi}{3}\right) + sin\left(\theta + \frac{4\pi}{3}\right) = 0$$

3. (1)
$$(\cos\alpha + \cos\beta)^2 + (\sin\alpha + \sin\beta)^2 = 4\cos^2\left(\frac{\alpha - \beta}{2}\right)$$

(2)
$$(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2 = 4\sin^2\left(\frac{\alpha - \beta}{2}\right)$$
.

4. (1)
$$sinA + sinB + sinC - sin(A + B + C) = 4sin\frac{A+B}{2} sin\frac{B+C}{2} sin\frac{C+A}{2}$$

(2)
$$\cos A + \cos B + \cos C + \cos (A + B + C) = 4\cos \frac{A+B}{2} \cos \frac{B+C}{2} \cos \frac{C+A}{2}$$

5. (1)
$$\frac{\sin(A+B) - 2\sin A + \sin(A-B)}{\cos(A+B) - 2\cos A + \cos(A-B)} = \tan A$$

(2)
$$\frac{\cos 3A + 2\cos 5A + \cos 7A}{\cos A + 2\cos 3A + \cos 5A} = \cos 2A - \sin 2A \tan 3A$$

6. (1)
$$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$$
 (2) $\sqrt{2} \sin 10^{\circ} + \sqrt{3} \cos 35^{\circ} = \sin 55^{\circ} + 2\cos 65^{\circ}$

7. (1)
$$sin\theta = nsin(\theta + 2\alpha) \Leftrightarrow tan(\theta + \alpha) = \frac{1+n}{1-n}tan\alpha$$

(2)
$$sin(2A + 3B) = 5sinB \Rightarrow 2tan(A + 2B) = 3tan(A + B)$$
.

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 16 : સાબિત કરો $: 0 < lpha, \ eta < rac{\pi}{2} \implies sin(lpha + eta) < sinlpha + sineta$ અને તે પરથી તારવો કે $sin49^{o} + sin41^{o} > 1$.

634:
$$sin(\alpha + \beta) - sin\alpha - sin\beta$$

=
$$sin\alpha cos\beta + cos\alpha sin\beta - sin\alpha - sin\beta$$

$$= \sin\alpha (\cos\beta - 1) + \sin\beta (\cos\alpha - 1)$$
 (i)

હવે,
$$0<\alpha$$
, $\beta<\frac{\pi}{2}$. તેથી $0<\sin\alpha<1$, $0<\sin\beta<1$ અને

$$0 < \cos \alpha < 1, 0 < \cos \beta < 1$$

$$\therefore \cos \alpha - 1 < 0, \cos \beta - 1 < 0$$

$$\therefore \sin\alpha(\cos\beta - 1) < 0$$
 અને $\sin\beta(\cos\alpha - 1) < 0$

$$\therefore \sin\alpha(\cos\beta - 1) + \sin\beta(\cos\alpha - 1) < 0$$

$$\therefore \sin(\alpha + \beta) - \sin\alpha - \sin\beta < 0$$

$$\therefore$$
 $sin(\alpha + \beta) < sin\alpha + sin\beta$

હવે,
$$\alpha = 49^{\circ}$$
, $\beta = 41^{\circ}$ લેતાં,

આપણે જાણીએ છીએ કે,
$$0 < 49 < 90$$
 અને $0 < 41 < 90$

$$sin(49^{\circ} + 41^{\circ}) < sin49^{\circ} + sin41^{\circ}$$

$$\therefore$$
 sin90° < sin49° + sin41°

$$: sin49^{\circ} + sin41^{\circ} > 1$$

ઉદાહરણ 17 : જો
$$cos(\alpha+\beta)=\frac{4}{5}$$
, $sin(\alpha-\beta)=\frac{5}{13}$ અને $0<\alpha$, $\beta<\frac{\pi}{4}$, તો સાબિત કરો કે, $tan2\alpha=\frac{56}{33}$.

ઉકેલ : અહીં,
$$0 < \alpha < \frac{\pi}{4}$$
, $0 < \beta < \frac{\pi}{4}$ આપેલ છે.

$$\therefore$$
 $0 < \alpha + \beta < \frac{\pi}{2}$ અને $\frac{-\pi}{4} < \alpha - \beta < \frac{\pi}{4}$.

$$\therefore \cos(\alpha-\beta)$$
 અને $\sin(\alpha+\beta)$ ધન થાય.

હવે,
$$sin(\alpha + \beta) = \sqrt{1 - cos^2(\alpha + \beta)} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$
 (0 < \alpha + \beta < \frac{\pi}{2})

$$cos(\alpha - \beta) = \sqrt{1 - sin^2(\alpha - \beta)} = \sqrt{1 - \frac{25}{169}} = \frac{12}{13}$$
 $\left(-\frac{\pi}{2} < -\frac{\pi}{4} < \alpha - \beta < \frac{\pi}{4} < \frac{\pi}{2}\right)$

$$\therefore \sin(\alpha + \beta) = \frac{3}{5} \text{ eval} \cos(\alpha - \beta) = \frac{12}{13}$$

હવે,
$$tan(\alpha + \beta) = \frac{sin(\alpha + \beta)}{cos(\alpha + \beta)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

અને
$$tan(\alpha - \beta) = \frac{sin(\alpha - \beta)}{cos(\alpha - \beta)} = \frac{\frac{5}{13}}{\frac{12}{12}} = \frac{5}{12}$$

$$tan2\alpha = tan[(\alpha + \beta) + (\alpha - \beta)]$$

$$=\frac{tan(\alpha+\beta)+tan(\alpha-\beta)}{1-tan(\alpha+\beta)tan(\alpha-\beta)}=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\times\frac{5}{12}}=\frac{56}{33}$$

$$\therefore \tan 2\alpha = \frac{56}{33}$$

ઉદાહરણ 18 : જો α અને β એ સમીકરણ $a\cos\theta + b\sin\theta = c$ નાં બીજ હોય, તો સાબિત કરો કે,

(1)
$$cos(\alpha + \beta) = \frac{a^2 - b^2}{a^2 + b^2}$$
 (2) $cos(\alpha - \beta) = \frac{2c^2 - (a^2 + b^2)}{a^2 + b^2}$

ઉકેલ: અહીં,
$$a\cos\theta + b\sin\theta = c$$
 આપેલ છે.

 $\therefore a\cos\theta = c - b\sin\theta$

$$\therefore a^2 \cos^2 \theta = (c - b \sin \theta)^2$$

$$\therefore a^2(1-\sin^2\theta)=c^2-2bc\sin\theta+b^2\sin^2\theta$$

$$\therefore (a^2 + b^2) \sin^2 \theta - 2bc\sin \theta + (c^2 - a^2) = 0$$
 (ii)

અહીં, lpha અને eta સમીકરણ (i)નાં બીજ છે તેથી sinlpha અને sineta સમીકરણ (ii)નાં બીજ થશે.

$$\therefore \sin\alpha \sin\beta = \frac{c^2 - a^2}{a^2 + b^2}.$$
 (iii)

 $\$ \Im, \ a\cos\theta + b\sin\theta = c$

$$\therefore bsin\theta = c - acos\theta$$

$$\therefore b^2(1-\cos^2\theta) = c^2 - 2a\cos\theta + a^2\cos^2\theta$$

$$b^2 - b^2 \cos^2 \theta = a^2 \cos^2 \theta - 2a \cos \theta + c^2$$

$$\therefore (a^2 + b^2) \cos^2 \theta - 2ac \cos \theta + (c^2 - b^2) = 0$$
 (iv)

અહીં α અને β સમીકરણ (i)નાં બીજ છે તેથી $cos\alpha$, $cos\beta$ સમીકરણ (iv)નાં બીજ થશે.

$$\therefore \cos\alpha \cos\beta = \frac{c^2 - b^2}{a^2 + b^2}.$$

હવે, $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$

$$=\frac{c^2-b^2}{a^2+b^2}-\frac{c^2-a^2}{a^2+b^2}=\frac{a^2-b^2}{a^2+b^2}$$

$$\therefore cos(\alpha + \beta) = \frac{a^2 - b^2}{a^2 + b^2}$$

અને $cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$

$$=\frac{c^2-b^2}{a^2+b^2}+\frac{c^2-a^2}{a^2+b^2}=\frac{2c^2-(a^2+b^2)}{a^2+b^2} \tag{(iii) 3d-(v) 4xel}$$

ગણિત-2

$$\therefore cos(\alpha - \beta) = \frac{2c^2 - (a^2 + b^2)}{a^2 + b^2}$$

ઉદાહરણ 19 : જો $asin\theta = bsin\left(\theta + \frac{2\pi}{3}\right) = csin\left(\theta + \frac{4\pi}{3}\right)$, તો સાબિત કરો કે,

$$ab + bc + ca = 0.$$
 $(abc \neq 0)$

ઉદ્દેલ: ધારો કે
$$asin\theta = bsin(\theta + \frac{2\pi}{3}) = csin(\theta + \frac{4\pi}{3}) = k$$

સ્પષ્ટ છે કે
$$k \neq 0$$
. (કેમ ?)

86

$$\therefore \frac{k}{a} + \frac{k}{b} + \frac{k}{c} = \sin\theta + \sin\left(\theta + \frac{2\pi}{3}\right) + \sin\left(\theta + \frac{4\pi}{3}\right)$$

$$= \sin\theta + \sin\left(\theta + \frac{4\pi}{3}\right) + \sin\left(\theta + \frac{2\pi}{3}\right)$$

$$= 2\sin\left(\theta + \frac{2\pi}{3}\right) \cos\frac{2\pi}{3} + \sin\left(\theta + \frac{2\pi}{3}\right)$$

$$= 2\sin\left(\theta + \frac{2\pi}{3}\right) \times \left(-\frac{1}{2}\right) + \sin\left(\theta + \frac{2\pi}{3}\right)$$

$$= -\sin\left(\theta + \frac{2\pi}{3}\right) + \sin\left(\theta + \frac{2\pi}{3}\right) = 0$$

$$\therefore \quad \frac{k}{a} + \frac{k}{b} + \frac{k}{c} = 0$$

$$\therefore k\left(\frac{bc+ca+ab}{abc}\right)=0$$

$$\therefore ab + bc + ca = 0 \qquad (k \neq 0)$$

स्वाध्याय 4

1. સાબિત કરો :

$$(1) \frac{\cos^2 33^\circ - \cos^2 57^\circ}{\sin^2 \frac{21}{2}^\circ - \sin^2 \frac{69}{2}^\circ} = -\sqrt{2} \qquad (2) \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ} = 4$$

- 2. સાબિત કરો $0<\alpha$, $\beta<\frac{\pi}{4}\Rightarrow tan(\alpha+\beta)>tan\alpha+tan\beta$ અને તારવો કે, $tan35^\circ+tan25^\circ<\sqrt{3}$.
- 3. સાબિત કરો : $2tan\beta + cot\beta = tan\alpha \Rightarrow 2tan(\alpha \beta) = cot\beta$.
- 4. જો $\theta + \beta = \alpha$ અને $sin\theta = ksin\beta$, તો સાબિત કરો કે, $tan\theta = \frac{ksin\alpha}{1 + kcos\alpha}$ અને $tan\beta = \frac{sin\alpha}{k + cos\alpha}$.
- 5. $\triangle ABC$ માં જો sinA + cosB = 0, તો સાબિત કરો કે $\triangle ABC$ ગુરુકોણ ત્રિકોણ છે તથા $0 < sinA < \frac{1}{\sqrt{2}}$ છે.
- 6. જો $cos(\beta \gamma) + cos(\gamma \alpha) + cos(\alpha \beta) = \frac{-3}{2}$, તો સાબિત કરો કે, $sin\alpha + sin\beta + sin\gamma = 0 અને cos\alpha + cos\beta + cos\gamma = 0.$
- 7. જો $tan(\alpha + \theta) = ntan(\alpha \theta)$, તો સાબિત કરો કે, $(n + 1) sin2\theta = (n 1) sin2\alpha$.
- 8. જો α અને β એ સમીકરણ $atan\theta+bsec\theta=c$ નાં બીજ હોય તો સાબિત કરો કે, $tan(\alpha+\beta)=\frac{2ac}{a^2-c^2}$.
- 9. 3cos heta + 5 $sinig(heta-rac{\pi}{6}ig)$ નાં મહત્તમ અને ન્યૂનતમ મૂલ્યો મેળવો.
- **10.** સાબિત કરો : $sin10^{\circ} \cdot sin30^{\circ} \cdot sin50^{\circ} \cdot sin70^{\circ} = \frac{1}{16}$.
- 11. સાબિત કરો : $\cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11} = \frac{1}{2}$.

- 12. સાબિત કરો કે, $\frac{\cos 8\theta \cos 5\theta \cos 12\theta \cos 9\theta}{\sin 8\theta \cos 5\theta + \cos 12\theta \sin 9\theta} = \tan 4\theta.$
- **13.** સાબિત કરો કે, $mtan\left(\theta \frac{\pi}{6}\right) = ntan\left(\theta + \frac{2\pi}{3}\right) \implies cos 2\theta = \frac{m+n}{2(m-n)}$.
- 14. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને ____ માં લખો :

(1)
$$\frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}} = \frac{1}{3}$$
 Here $\dot{\Theta}$.

- (a) tan25° (b) tan35° (c) tan55°
- (2) cos245° + sin155° નું મૂલ્ય છે.

(d) tan80°

- (a) 0 (b) $\frac{\sqrt{2}+1}{\sqrt{2}}$ (c) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (d) $\frac{\sqrt{3}-1}{2\sqrt{2}}$
- (3) $\cos(270^{\circ} + \alpha) \cos(90^{\circ} \alpha) \sin(270^{\circ} \alpha) \cos\alpha + \frac{1}{2}$ Here Θ .
- (a) -1 (b) 0 (c) $\frac{1}{2}$ (d) 1
- (4) $2sin\left(\frac{\pi}{12}\right) sin\left(\frac{5\pi}{12}\right)$ નું મૂલ્ય છે.
- (a) $\frac{-1}{4}$ (b) 1 (c) $\frac{-\sqrt{3}}{2}$ (d) $\frac{1}{2}$ (5) $\Re A = 125 \ \text{eVe} \ x = sin A^o + cos A^o$, $\operatorname{cli} \dots$.
- (a) x < 0 (b) x = 0 (c) x > 0 (d) $x \ge 0$
- (6) જો $tan\alpha = \frac{n}{n+1}$ અને $tan\beta = \frac{1}{2n+1}$, $(0 < \alpha, \beta < \frac{\pi}{4})$, તો $\alpha + \beta = \dots$
- (a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
- (7) $\frac{\tan 50^{\circ} \tan 40^{\circ}}{\tan 10^{\circ}}$ નું મૂલ્ય છે.
- (a) 0 (b) 1 (c) 2 (d) 3 (8) $sin190^{\circ} + cos190^{\circ} \dots \hat{\vartheta}$.
- (a) ઋશ (b) શૂન્ય (c) ધન (d) અવાસ્તવિક
- (a) $\frac{m-1}{m^2+1}$ (b) $\frac{2m}{m^2+1}$ (c) $\frac{m^2-1}{m^2+1}$ (d) $\frac{m+1}{m^2+1}$
- (10) log tan1° + log tan2° +...+ log tan89° નું મૂલ્ય છે.
- (a) 0 (b) 1 (c) 2 (d) 3
- (11) $\frac{1-tan^215^{\circ}}{1+tan^215^{\circ}}$ નું મૂલ્ય છે.
 - (a) 1 (b) $\frac{\sqrt{3}}{2}$ (c) 2 (d) $\sqrt{3}$

(12) cos480° sin150° + sin600° cos390° નું મૂલ્ય છે.

(a) $\frac{-1}{2}$

(b) 0

(c) -1

(d) $\frac{1}{2}$

(13) $tan25^{\circ} + tan20^{\circ} + tan25^{\circ} tan20^{\circ} = \dots$

(a) 0

(b) 1

(c) $\frac{1}{2}$

(d) 2

(14) $\triangle ABC$ માં જો $tanA = \frac{1}{2}$, $tanB = \frac{1}{3}$, તો $\angle C$ નું રેડિયન માપ છે.

(b) $\frac{\pi}{3}$

(c) $\frac{3\pi}{4}$

(d) $\frac{2\pi}{3}$

(15) √3 cosec 20° − sec 20° − j + j e4 છે.

(b) 1

(c) 2

(d) 4

(16) $(\sqrt{3}\sin 75^{\circ} - \cos 75^{\circ})$ નું મૂલ્ય છે.

(a) $\frac{1}{\sqrt{2}}$

(b) 1

(c) $\sqrt{2}$

(d) $2\sqrt{2}$

(17) $\cos^2\frac{\pi}{12} + \cos^2\frac{3\pi}{12} + \cos^2\frac{5\pi}{12} = \dots$

(a) $\frac{-1}{2}$ (b) 0

(c) $\frac{1}{2}$

(d) $\frac{3}{2}$

(18) cos15° - sin15° નું મૂલ્ય છે.

(a) $\frac{-1}{\sqrt{2}}$ (b) 0

(c) $\frac{1}{2}$

(d) $\frac{1}{\sqrt{2}}$

(19) $\cos^2 7\frac{1}{2}^{\circ} - \cos^2 37\frac{1}{2}^{\circ} = \dots$

(a) $\frac{3}{4}$ (b) $\frac{2}{\sqrt{2}}$

(c) $\frac{1}{2}$

(d) $\frac{1}{2\sqrt{2}}$

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. $cos(\alpha \beta) = cos\alpha cos\beta + sin\alpha sin\beta$
- 2. $cos(\alpha + \beta) = cos\alpha cos\beta sin\alpha sin\beta$
- 3. $cos(\frac{\pi}{2}-\theta) = sin\theta$, $sin(\frac{\pi}{2}-\theta) = cos\theta$
- 4. $sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$
- 5. $sin(\alpha \beta) = sin\alpha cos\beta cos\alpha sin\beta$
- 6. $sin\frac{\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$, $cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$
- 7. $sin(\alpha + \beta) \cdot sin(\alpha \beta) = sin^2\alpha sin^2\beta$
 - $sin(\alpha + \beta) \cdot sin(\alpha \beta) = cos^2\beta cos^2\alpha$

8.
$$cos(\alpha + \beta) \cdot cos(\alpha - \beta) = cos^2\alpha - sin^2\beta$$

 $cos(\alpha + \beta) \cdot cos(\alpha - \beta) = cos^2\beta - sin^2\alpha$

9.
$$f(\alpha) = acos\alpha + bsin\alpha$$
, $\alpha \in \mathbb{R}$, $a, b, \in \mathbb{R}$ નો વિસ્તાર $\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]$ છે. (જ્યાં $a^2 + b^2 \neq 0$) યોગ્ય પ્રદેશમાં,

10.
$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha \cdot tan\beta}$$

11.
$$tan(\alpha - \beta) = \frac{tan\alpha - tan\beta}{1 + tan\alpha \cdot tan\beta}$$

12.
$$\cot(\alpha + \beta) = \frac{\cot\alpha \cdot \cot\beta - 1}{\cot\beta + \cot\alpha}$$

13.
$$\cot(\alpha - \beta) = \frac{\cot\alpha \cdot \cot\beta + 1}{\cot\beta - \cot\alpha}$$

14.
$$tan\frac{\pi}{12} = 2 - \sqrt{3}$$
, $cot\frac{\pi}{12} = 2 + \sqrt{3}$

15.
$$2\sin\alpha \cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

16.
$$2\cos\alpha \sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

17.
$$2\cos\alpha \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

18.
$$2\sin\alpha \sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

19.
$$sinC + sinD = 2sin\left(\frac{C+D}{2}\right) cos\left(\frac{C-D}{2}\right)$$

20.
$$sinC - sinD = 2cos\left(\frac{C+D}{2}\right) sin\left(\frac{C-D}{2}\right)$$

21.
$$cosC + cosD = 2cos\left(\frac{C+D}{2}\right) cos\left(\frac{C-D}{2}\right)$$

22.
$$cosC - cosD = -2sin\left(\frac{C+D}{2}\right) sin\left(\frac{C-D}{2}\right)$$
.

Aryabhata is also known as Aryabhata I to distinguish him from the later mathematician of the same name who lived about 400 years later.

The surviving text is Aryabhata's masterpiece the *Aryabhatiya* which is a small astronomical treatise written in 118 verses giving a summary of Hindu mathematics up to that time. Its mathematical section contains 33 verses giving 66 mathematical rules without proof.

The mathematical part of the *Aryabhatiya* covers arithmetic, algebra, plane trigonometry and spherical trigonometry. It also contains continued fractions, quadratic equations, sums of power series and a table of *sines*.

90