Задача 5

 ${
m T.}$ к в задаче нет особо подробностей, то предполагаю, что ответ – для любых натуральных n. Решаем методом мат.индукции и постараемся найти ответ.

• База:

n = 1 : очевидно, что можно

n=2: у нас квадрат из 16 клеток, поделим его на 4 квадрата 2×2 , в одном из этих квадратов будет вырезанная клетка, его закрашиваем как в примере для n=1, а три оставшиеся квадрата закрашиваем, как на лекции

• Шаг:

Возьмем квадрат $2^{n+1} \times 2^{n+1}$. Поделим его на 4 квадрата $2^n \times 2^n$. В одном из них будет вырезанная клетка. Угол, который состоит из трех больших квадратов, можно закрасить аналогично лекции. У нас остается квадрат $2^n \times 2^n$, сведем за n-1 шаг к квадрату 4×4 , что мы уже закрашивали выше.

Ч.Т.Д

Ответ: для любых натуральных n