Divide and Conquer Algorithms

CPSC 320 2024W1

Definitions

A divide and conquer algorithm proceeds by...

- Dividing the input into two or more smaller instances of the same problems – we call these subproblems
- Solving the subproblems recursively
- Combining the subproblem solutions to obtain a solution to the original problem
- We'll also consider prune and search algorithms, which look for element(s) with a specific property and only recurse on one subproblem

Examples

Some divide and conquer algorithms you are already familiar with:

- QuickSort, MergeSort ("classic" divide and conquer)
- Binary search (prune and search)

Recurrence relations

- The running time T(n) of a recursive function can be described using a recurrence relation:
 - T(n) is defined in terms of one or more terms of the form T(something smaller than n)
 - Example:

One recursive call on n/2 items.

Clicker Question

Bigary - Search (V), A(1...1)

If M > 1 = A(1/2)

if
$$V < V'$$
 then Bloory-Search (V , A(1...1/2))

elseif $V > V'$...

elseif $V > V'$...

Chase case $V > V'$...

Chase case $V > V'$

We define a recurrence by:

Which of the following functions best describes the worst-case runtime of **binary** search?

A.
$$T(n/2) + log n$$

C.
$$T(n/2) + T(\log n) + 1$$

Recursion Trees

- One way to solve a recurrence relation is to draw a recursion tree
 - Represent the recursion with a tree where each node represents a recursive subproblem
 - Inside each node, write the size of the subproblem this call to the function solves
 - Next to each node, write the amount of work done by the call to the function,
 not including any time spent in recursive calls
 - Compute the total amount of non-recursive work done on each row
 - Then add up the work done over all rows

$$T(n) = \begin{cases} T(\underline{n/2}) + 2T(\underline{n/4}) + n^2 & \text{if } n \ge 4\\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: drawing the tree

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: drawing the tree (continued)

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: drawing the tree (continued)

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done at each node

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4\\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done at each node (continued)

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done on each row

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done on each row

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

- Example: summing up the work on all the rows
 - The total work is $n^2 + (3/8)n^2 + (3/8)^2n^2 + ...$

$$= n^{2} \left(1 + (3/8) + (3/8)^{2} + \cdots \right)$$
 implying deepest leaf
$$= n^{2} \cdot \frac{1}{1 - 3/8} = n^{2} \cdot \frac{8}{5} = O(n^{2})$$
 has infinite depth depth

Lower bound is $\Omega(n^2)$, work at root.

Geometric Sums. Here are useful formulas, when summing up runtimes over levels of a recurrence tree. A geometric sum has the form $\sum_{i=0}^{n} x^{i}$, where x > 0. Note that when x = 1, $\sum_{i=0}^{n} x^{i} = n$. When $x \neq 1$ we have that:

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1} = \frac{1 - x^{n+1}}{1 - x},$$

$$\sum_{i=0}^{\infty} x^{i} = \frac{1}{1 - x}, \text{ if } 0 < x < 1.$$

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4\\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

- Example: summing up the work on all the rows
 - The total work is $n^2 + (3/8)n^2 + (3/8)^2n^2 + ...$
 - This is a geometric series, and 3/8 < 1.
 - So the sum converges to $\frac{1}{1-3/8}n^2$
 - Hence $T(n) \in \Theta(n^2)$

The Master Theorem

- Most divide and conquer algorithms split the input into equalsize subproblems
- Most recursion trees fall into one of three categories:
 - The work per level increases geometrically
 - The work per level is constant (e.g., MergeSort)
 - The work per level decreases geometrically (e.g., the previous example)

The Master Theorem Corollary

Theorem: Let $T: \mathbb{N} \to \mathbb{R}_{\geq 0}$ be defined by

$$T(n) = \begin{cases} aT(\underline{n/b}) + cn^k, & \text{for } n \ge n_0, \\ c, & \text{for } n < n_0, \end{cases}$$

where a > 0, b > 1, c > 0, and $k \ge 0$ are constants.

• If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b a})$.

$$2 \bullet \text{ If } a = b^k, \text{ then } T(n) = \Theta(n^k \log n).$$

$$\mathbf{3} \bullet \text{ If } a < b^k, \text{ then } T(n) = \Theta(n^k).$$

This version will be sufficient for assignment problems and exams in this course.

Example:
$$T(n) = 3T(N_2) + n$$

(runtime of integer multiplication, see text)
 $q=3$, $b=2$, $k=1$. $b^k=2$
Case 1. $T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.5...})$
Old-fashioned multiplication: $x \times y$
 $x = x_n x_{n-1} ... x_1$
 $x y = y_n y_{n-1} ... y_1$
 $x = x_n x_{n-1} ... x_n x_1$

algorithm

Recursion thee for
$$T(n) = 3T(\frac{1}{2}) + n$$
 $\frac{1}{2}$
 $\frac{3}{2}$
 $\frac{1}{2}$

what about
$$T(n) = 3T(\frac{n}{2}) + n^2$$
?

$$T(n) = \begin{cases} aT(\underline{n/b}) + cn^k, & \text{for } n \ge n_0, \\ c, & \text{for } n < n_0, \end{cases}$$

where a > 0, b > 1, c > 0, and $k \ge 0$ are constants.

• If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b a})$.

$$2 \bullet \text{ If } a = b^k, \text{ then } T(n) = \Theta(n^k \log n).$$

$$\mathbf{S} \bullet \text{ If } a < b^k, \text{ then } T(n) = \Theta(n^k).$$

$$a = 3$$
, $b = 2$, $k = 2$ $b^{k} = 4$
We've in case $3!$
So $T(n) = \Theta(n^{2})$

Appropriate parample of case 2: Binary Search:
$$T(n) = T(\frac{1}{2}) + 1$$

$$a=1, b=2, k=0.$$
 So
$$T(n) = \Theta(n) \log n$$

$$= \Theta(\log n)$$

The Master Theorem Corollary

Theorem: Let $T: \mathbb{N} \to \mathbb{R}_{\geq 0}$ be defined by

$$T(n) = \begin{cases} aT(n/b) + cn^k, & \text{for } n \ge n_0, \\ c, & \text{for } n < n_0, \end{cases}$$

where a > 0, b > 1, c > 0, and $k \ge 0$ are constants.

- If $a > b^k$, then $T(n) = \Theta(n^{\log_b a})$.
- If $a = b^k$, then $T(n) = \Theta(n^k \log n)$.
- If $a < b^k$, then $T(n) = \Theta(n^k)$.

This version will be sufficient for assignment problems and exams in this course.

Mergesoft:
$$T(n) = 2T(\frac{n}{2}) + c.n$$

 $a = 2, b = 2, k = 1. a = b^{k}.$
 $T(n) = \Theta(n \log n)$

The Master Theorem [Bentley, Haken, Saxe]

• Theorem: Let $a \ge 1$, b > 1 be real constants, let $f: \mathbb{N} \to \mathbb{R}^+$, and let T(n) be defined by:

m: Let
$$a \ge 1$$
, $b > 1$ be real constants, let $f: \mathbb{N} \to \mathbb{R}^+$, and be defined by:
$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n \ge n_0 \\ \Theta(1) & \text{if } n < n_0 \end{cases}$$
where $a \ge 1$, $b > 1$ be real constants, let $f: \mathbb{N} \to \mathbb{R}^+$, and $f: \mathbb{N} \to \mathbb{R}^+$,

where n/b might be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then

- 1. If $f(n) \in O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$ then $T(n) \in \Theta(n^{\log_b a})$.
- 2. If $f(n) \in \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$ then $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and $af(n/b) < \delta f(n)$ for some $0 < \delta < 1$ and all n large enough, then $T(n) \in \Theta(f(n))$.

First five worksheet recurrences: for which ones are we **not able** to use the Master Theorem? Select all that apply.

A.
$$T(n) = 5T(\sqrt{n}) + 60$$

B.
$$T(n) = T(n/2) + 1$$

regularity condition

$$\sqrt{c}$$
. $T(n) = T(n/4) + n$

$$a = 5$$
, $f(n) = n$ No constant b?
binary search:

$$a = 1, b = 4 f(n) = n$$

7D.
$$T(n) = 3T(n/9) + \sqrt{n}\log_2 n$$
 no constant a

E.
$$T(n) = \sqrt{nT(n/3)} + n^2$$

D.
$$T(n) = 3T(n/9) + \sqrt{n} \log_2 n$$
 no constant a

(E.) $T(n) = \sqrt{n}T(n/3) + n^2$

7. $T(n) = T(\frac{1}{4}) + T(\frac{3n}{4}) + cn$

Problems have different size.

The Master Theorem [Bentley, Haken, Saxe]

Theorem: Let a ≥ 1, b > 1 be real constants, let f: N → R⁺, and let T(n) be defined by:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n \ge n_0 \\ \Theta(1) & \text{if } n < n_0 \end{cases}$$

where n/b might be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then

- 1. If $f(n) \in O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$ then $T(n) \in \Theta(n^{\log_b a})$.
- 2. If $f(n) \in \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$ then $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and $af(n/b) < \delta f(n)$ for some $0 < \delta < 1$ and all n large enough, then $T(n) \in \Theta(f(n))$.

The Master Theorem [Bentley, Haken, and Saxe]

How to apply the theorem:

- Compute log_ba
- Compare it to the exponent of n in f(n)
 - If log_ba is larger: case 1.
 - If they are equal: maybe case 2.
 - If log_ba is smaller: check regularity condition, and if it holds then case 3.

First five worksheet recurrences: for which ones are we not able to use the Master Theorem? Select all that apply.

A.
$$T(n) = 5T(\sqrt{n}) + n$$

B.
$$T(n) = T(n/2) + 1$$

C. $T(n) = T(n/4) + n$

$$C. T(n) = T(n/4) + n$$

D.
$$T(n) = 3T(n/9) + \sqrt{n} \log_2 n$$

E. $T(n) = \sqrt{n}T(n/3) + n^2$

$$E. T(n) = \sqrt{n}T(n/3) + n^2$$