Transiting Exoplanet Survey Satellite

Critical Design Review

Inbal, Evan, Michael, Abhi, Bobby

TESS

@ NASA

WHAT we're doing and WHY we're doing it

Antenna Positioning Mechanism:

Increase sky coverage without altering mission time

Piezoelectric ACS:

- Save space inside TESS
- Save mass → Save \$\$\$
- More precise attitude control (10x)

What TESS will look like after adding the mods

Major Analysis: Antenna Positioning Mechanism

NuSTAR

Shuttle Radar Topography Mission

Antenna Positioning Mechanism Assumptions

- Previous to modification, the spacecraft was of uniform density, and all objects added are of uniform density.
- Is a rigid body
- No magnetic forces influence the spacecraft.
- Solar Radiation Pressure is constant.
- Aerodynamic Drag is negligible.
- Observatory will always be antisolar.
- It is in its final orbit.

The Analysis Step By Step

- 1. Establish reference frame
- 2. Find ideal mast length
- 3. Simplify the satellite into smaller generalized shapes
- 4. Find the inertia of the spacecraft about its new center of mass
- 5. Formulate the forces at work on the spacecraft (gravity gradient, SRP, etc.)
- 6. Divide the spacecraft into three planes and set up an equilibrium problem.
- 7. Simulate the torques on the craft over the orbit on MATLAB.

Inertia and Force Equations

$$I_{zz} = \frac{1}{2}mr^2$$
; $I_{xx} = I_{yy} = \frac{1}{4}mr^2 + \frac{1}{12}ml^2$

Equation Moment of Inertia for a cylinder

$$I_{xx} = \frac{1}{12}m(h^2 + w^2)$$
; $I_{yy} = \frac{1}{12}m(l^2 + h^2)$; $I_{zz} = \frac{1}{12}m(l^2 + w^2)$

Equation Moment of Inertia for a rectangular prism

$$I_{xx} = \frac{2}{3}mr^2$$
; $I_{yy} = I_{zz} = \frac{5}{12}mr^2$

Equation Moment of Inertia for a hemispherical shell

$$I_O = I_i + m_i d_i^2$$

Equation Parallel Axis Theorem

$$F_{Gravity\ Gradient_i} = m_i \frac{(v^2(r+\overline{x}cos(\theta))-\mu)}{(r+\overline{x}cos(\theta))^2}$$

Equation The Gravity gradient force equation

Equilibrium Equations

Sum Moment about Z-Axis;

$$\sum M_{\rm Z} = 0; \ \tau_{\rm piezoelectricX} + \tau_{\rm GimbalX} + (F_{\rm Gravity~Gradient~Mass1Z} \overline{x}_{\rm Mass1Z} - F_{\rm Gravity~Gradient~Mass2Z} \overline{x}_{\rm Mass2Z}) = 0$$

Sum Moment about X-Axis;

$$\sum M_x = 0$$
; $\tau_{piezoelectricX} + \tau_{Solar\ Radiation\ Pressure} = 0$

Sum Moment about Y-Axis;

$$\sum M_{y} = 0; \ \tau_{\textit{piezoelectricY}} + \tau_{\textit{GimbalY}} + (F_{\textit{GGM1Y}} \overline{x}_{\textit{M1}} - F_{\textit{GGM2Y}} \overline{x}_{\textit{M2}}) + \tau_{\textit{SRP}} = 0$$

Counter-torque to be effected by the piezoelectric actuators to maintain equilibrium

Based on these simulation results for the "worst-case" scenario, magnitude of max torque that the piezoelectric ACS needs to be able to handle:

24.9635 Nm

Can it handle it?
We'll find out soon!

Major Analysis: Antenna Positioning Mechanism Test Plan

Tests:

- Random Vibration Test
- Sine Sweep Vibration Test
- Acoustic Test
- Structural Functionality Testing

Major Analysis: Antenna Positioning Mechanism Test Plan

Kennedy Space Center Vibration Lab

Kennedy Space Center Prototype Development Laboratory:

- -machine shop
- -3D digital scanning
- -LabVIEW
- -data acquisition

Goddard Space Flight Center Acoustic Test Facility

What it is.

How it works.

Why use it.

$$F = (V/t) (-d_{31})/[(r_o/t - 0.5) \ln(1 - t/r_o)] A\gamma^p$$

F = Piezoelectric Force

t = Thickness of Piezoelectric Shell

r_o = The Outer Radius of the Piezoelectric Shell

A = Area of the Piezoelectric Cross-Sectional Area

 γ^p = Young's Modulus (superscript p refers to the piezoelectric material)

V = Input Voltage

d31 = Constant

Requirements for 2 Piezoelectric Cylindrical Actuators and 1 Control Sphere

Max. Mass (kg)	Max. Volume (m^3)	Max. Voltage (V)	Max. Power per Piezo. Unit (W)	Max. System Power (W)	Min. Piezo. Force (N)	Min. Torque (N*m)
3.9 kg	3.5 x10 ⁻²	28	77.5	155.0	352	25

Trade Study: Piezoelectric Actuator Scaled to 6 cm Radius x 5 cm Height for a 6.5 cm Radius Control Sphere

Material	Туре	Mass (kg)	Vol. (m^3)	F GLT (N)	Voltage (V)	Unit P (W)
Pz26	Ceramic	0.70	5.65 x10 ⁻⁴	4040	28	72.3
PZT	Ceramic	0.69	5.65 x10 ⁻⁴	4040	28	72.3
PVDT	Polymer	0.16	5.65 x10 ⁻⁴	20.2	28	72.3

Trade Study: Control Sphere Scaled to 6.5 cm Radius for 6 cm Radius x 5 cm Height Piezoelectric Actuator

Material	Density (kg/m³)	Solid Mass (kg)	Shell Mass (kg)	I Sphere (kg*m^2)	I Shell (kg*m^2)	Volume (m ³)
Tungsten	19300	22.20	4.74	3.75 x10 ⁻²	1.33 x10 ⁻²	6.47 x10 ⁻⁴
Beryllium S 65 A	2000	2.30	0.49	3.89 x10 ⁻³	1.38 x10 ⁻³	6.47 x10 ⁻⁴
Magnesium A 31B	1700	1.96	0.42	3.30 x10 ⁻³	1.18 x10 ⁻³	6.47 x10 ⁻⁴

Trade Study Results:

Piezo. Material	Control Sphere Material	Control Sphere Type	Total Mass (kg)	Vol. (m^3)	Voltage (V)	System Power (W)	Piezo. Force (N)	Torque (N*m)
PZT	Beryllium S 65 A	Solid Sphere	3.68	1.78 x10 ⁻³	28	144.7	4040	262
N/A	N/A	Criteria:	< 3.9	< 3.5 x10 ⁻²	≤ 28	< 155.0	> 352	> 25

Minor Analysis 1: Piezoelectric ACS Test Plan

German Aerospace Center (DLR): Facility for Attitude Control Experiments (FACE)

	+ Power	- Power	Total
Antenna Modification	37 W		+37 W
Piezoelectric	144.7 W	192 W	-47.3 W
Total Change			-10.3 W

	+ Mass	- Mass	Total
Antenna Modification	12.5 kg		+12.5 kg
Piezoelectric	+3.7 kg	-10.4 kg	-6.7 kg
Total Change			+5.8 kg

NOTE: Costs \$20,200/kg to orbit $+5.8 \text{ kg} \rightarrow + \$117,160$

	+ Volume	- Volume	Total
Antenna Modification	7.81 x10 ⁻² m ³		+7.81 x10 ⁻² m ³
Piezoelectric	0	0	+0
Total Change			+7.81 x10 ⁻² m ³

Note: Only external volume is considered

Tests:

- Measurement of power consumption, mass, and volume
 - Compare to theoretical values
 - Test facilities

Verdict

	Met Requirements	Feasibility
Antenna Positioning Mechanism		HIGH
Piezoelectric ACS		LOW

Thank you

Questions?

References

- [1] Erickson, K. et al. 10 Steps to Confirm a Planet Around Another Star. NASA
- https://solarsystem.nasa.gov/news/542/10-steps-to-confirm-a-planet-around-another-star/.
- [3] Dunbar, B. et al. The Hubble Story. NASA. 18 September 2018. https://www.nasa.gov/content/the-hubble-story.
- [2] Dunbar, B. et al. About the Hubble Space Telescope. NASA. 18 December 2018. https://www.nasa.gov/mission_pages/hubble/story/index.html>.
- [4] Fast Facts. Jet Propulsion Laboratory. 23 February 2019 http://www.spitzer.caltech.edu/mission/277-Fast-Facts.
- [5] Dunbar, B. et al. Spacecraft and Instrument. 3 August 2017. https://www.nasa.gov/mission_pages/kepler/spacecraft/index.html>.
- [6] Dunbar, B. et al. Briefing Materials: NASA Retires the Kepler Space Telescope. https://www.nasa.gov/kepler/presskit>.
- [7] Tess Factsheet. Northrop Grumman Corporation. 2018. http://www.northropgrumman.com/Capabilities/ScienceEnvironmentSatellites/Documents/TESS Factsheet. Documents/TESS Factsh
- [8] Science Writer's Guide. April 2018. https://www.nasa.gov/sites/default/files/atoms/files/tesssciencewritersquidedraft23.pdf.
- [9] Dunbar, B., et al. Hubble Servicing Mission Overview. NASA. December 2018. https://www.nasa.gov/mission_pages/hubble/servicing/index.html>.
- [10] Hunter, R. Kepler Mission Management Update. July 24 2012. https://www.nasa.gov/mission_pages/kepler/news/keplerm-20122407.html>.
- [11] Bansevicius, R. et. al. SYNTHESIS OF TRAJECTORIES IN PIEZOELECTRIC ATTITUDE CONTROL DEVICES FOR NANOSATELLITES. 11th International Conference on Vibration Problems, Z. Dimitrovová et al. (eds.), Lisbon, Portugal, 9-12 September 2013.
- [12] Preumont, André. Chapter 4: Piezoelectric Beam, Plate and Truss. Vibration Control of Active Structures: An Introduction (2018). Springer International Publishing AG 2018. pp.67-70
- [13] Bakanauskas V. et al. Piezoelectric Devices for Attitude Control of Pico and Nano-Satellites. Space Economy in the MultiPolar World, 2013, Vilnius.
- [14] Honeywell. HR-04 Reaction Wheel System. 2018.
- [15] Spaceflight 101. TESS Spacecraft Platform. http://spaceflight101.com/tess/tess-spacecraft/.
- [16] Northrop Grumman. TESS

Discovering Exoplanets Orbiting

Nearby Stars. Northrop Grumman. 2018. http://www.northropgrumman.com/Capabilities/ScienceEnvironmentSatellites/Documents/TESS Factsheet.pdf>.

- [17] Bradford. Coarse Sun Sensor. Bradford. January 2017. http://bradford-space.com/assets/pdf/be-datasheet-css-2017jan.pdf>.
- [18] Spacecraft, NASA. https://solarsystem.nasa.gov/missions/dawn/technology/spacecraft/.
- [19] Engler, T. et al. Vibration Lab. NASA. February 2019. https://kscpartnerships.ksc.nasa.gov/Partnering-Opportunities/Capabilities-and-Testing-And-Labs/Materials-Science/Vibration%20Labs.
- [20] Engler, T. et al. Prototype Development Laboratory. NASA. February 2019. <a href="https://kscpartnerships.ksc.nasa.gov/Partnering-Opportunities/Capabilities-and-Testing/Testing-and-Labs/Materials-Science/Prototype-Development-Labs-Naterials-Science/Prototype-Development-Naterials-Scien
- [21] Vernier R. NASA GODDARD SPACE FLIGHT CENTER: THE ACOUSTIC TEST FACILITY. NASA. https://scap.hg.nasa.gov/docs/SCAP ACOUSTIC 112508 508.pdf>.
- [22] Ramirez R. Shuttle Radar Topography Mission The Mission to Map the World. NASA. March 2019. https://www2.ipl.nasa.gov/srtm/mast.html>.
- [23] Wassmer W. The Materials Used in Artificial Satellites and Space Structures. AZO Materials. May 2015.

https://www.azom.com/article.aspx?ArticleID=12034.

- [24] Elhajjar, R., La Saponara, V., Muliana, A. Chapter 4: Active Fiber Composites: Modeling, Fabrication, and Characterization. Smart Composites: Mechanics and Design. CRC Press. 2014. pp. 99-127.
- [25] MatWeb Material Property Data. Carpenter Invar 36 Alloy, Cold Drawn Bars. http://www.matweb.com/search/datasheettext.aspx?matquid=b6fb00b235f0442da4d31a0cd04671c9.
- [26] MatWeb Material Property Data. Steels, General Properties. http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">http://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx?matquid=10e1c14130cd4ed6ae64b85723be53af&n=1">https://www.matweb.com/search/datasheet.aspx.match/datasheet.aspx.match/datasheet.aspx.match/datasheet.aspx.match/datasheet.aspx.match/datasheet.aspx.match/data
- [27] Chromel Electrical Resistance. ConceptAlloys. https://conceptalloys.com/electrical-resistance-alloys/.
- [28] MatWeb Material Property Data. Tungsten. http://www.matweb.com/search/DataSheet.aspx?MatGUID=41e0851d2f3c417ba69ea0188fa570e3&ckck=1.
- [29] Center for Astrophysics. Harvard and Smithsonian. https://www.cfa.harvard.edu/facilities/Ground-Based-Telescopes>.
- [30] Dunbar B. James Webb Telescope Overview. September 2018.
- https://www.nasa.gov/mission_pages/webb/about/index.html.
- [31] Kruk J. W FIRST Wide Field Infrared Survey Telescope. NASA. https://wfirst.gsfc.nasa.gov/.
- [32] Canister Astromast. Northrop Grumman. http://www.northropgrumman.com/BusinessVentures/AstroAerospace/Products/Documents/pageDocs/DS-303-CannisterAstroMast.pdf.