Лабораторная работа № 4.8А "Резонанс токов"

Кирилл Шевцов Б03-402

16.10.2025

Лабораторная установка

Рис. 1: Лабораторная установка

Задание предполагает снятие зависимости значений тока на учасках с амперметрами от индуктивности катушки. Согласно установке : амперметр A_1 показывает общий ток в цепи, A_2 - ток на участке с катушкой, A_3 - ток на конденсаторе заданной заданной емкости C=120 мк Φ .

Напряжение подается от сети постоянным $U=220~{\rm B},$ частота генератора также постоянна и равна $\nu=50~{\rm \Gamma \mu}.$

Картину резонанса можно увидеть либо по минимальному току на амперметре A_1 , либо на осциллорафе: резонансу соответсвует нулевой сдвиг фазы, то есть вырождение эллипса в наклонную прямую. Резонанс токов полагается исследовать на параллельном колебательном контуре, поскольку напряжение на участках цепи, параллельных включенному вольтметру, совпадают.

Измерения и результаты

1. Будем медленно вдвигать сердечник в катушку индуктивности. Зафиксировав расстояние, на которое вдвинут сердечник, снимем показания амперметров A_1 , A_2 , A_3 . Ток на учатках с катушкой, кондесатором и общий ток обозначим соответсвенно I_L , I_C , I.

α	с, см	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5
1	f_L, A	0.417	0.387	0.354	0.325	0.301	0.277	0.255	0.233	0.213	0.186
I	C, A	0.401	0.395	0.392	0.393	0.386	0.398	0.395	0.395	0.398	0.391
4	I, A	0.05	0.045	0.056	0.078	0.100	0.125	0.144	0.164	0.186	0.207

Обозначим четкий диапазон перемещения дросселя $\Delta=1.5\div 6.9$ см. Напряжение на ЛАТР поддерживаем постоянным и равным $U_0=10.0\pm 0.1$ В. Частота лабораторного трансформатора $\omega=50\pm 1$ Гц. Емкость конденсатора $C=120\pm 10$ мк Φ .

2. Построим графики зависимостей сил тока на рассмотренных участках от положения x сердечника.

Зависимости сил тока от положения сердечника в катушке

Рис. 2: зависимость силы тока от положения сердечника в катушке

Из результатов измерений видно, что сила тока на учатке с катушкой постоянно увеличивается, общий ток в цепи уменьшается. Сила тока на участке с конденсатором остается постоянной, поскольку она зависит только от частоты и напряжения генератора.

$$I_C = U_0 \omega C = 2\pi \nu C U_0 \tag{1}$$

На самом деле, ток меняется, как видно из графика и таблицы. Это может быть связано с тепловыми потерями и неидеальностью элементов.

3. Найдем положение резонанса с помощью осциллографа, запишем резонансные значения тока на рассматриваемых участках цепи.

I_L^{res} , A	I_C^{res} , A	I^{res} , A	ΔI_L^{res} , A	ΔI_C^{res} , A	ΔI^{res} , A
0.428	0.428 0.419				

Таблица 1: резонансные токи на катушке, конденсаторе и в цепи

4. Рассчитаем добротность колебательного контура - через токи, и резонансное сопротивление - через полный ток и напряжение.

$$Q = \frac{I_C^{res}}{I^{res}} = \frac{0.428}{0.049} = 8.55 \pm 0.19, \quad \Delta Q = Q \left(\frac{\Delta I_C^{res}}{I_C^{res}} + \frac{\Delta I^{res}}{I^{res}} \right) = 0.19$$
 (2)

$$R_{\Sigma} = \frac{U_0}{I^{res}} = \frac{10.00}{0.049} = 204.08 \pm 4.37 \text{ Om}, \quad \Delta R_{\Sigma} = R_{\Sigma} \left(\frac{\Delta U_0}{U_0} + \frac{\Delta I^{res}}{I^{res}} \right) = 4.37 \text{ Om}$$
 (3)

5. Рассчитаем индуктивность катушки L_{res} через емкость и частоту, а затем через добротность и емкость сделаем рассчет активного сопротивления катушки.

$$L_{res} = \frac{1}{\omega^2 C} = \frac{1}{(2\pi)^2 50^2 \cdot 120 \cdot 10^{-6}} [\Gamma_{\rm H}] = 0.084 \pm 0.010 \ \Gamma_{\rm H} \tag{4}$$

$$\Delta L_{res} = L_{res} \left(\frac{2\Delta\omega}{\omega} + \frac{\Delta C}{C} \right) = 0.01 \text{ }\Gamma_{\text{H}}$$
 (5)

$$r_L = \frac{\omega_0 L_{res}}{Q} = \frac{1}{Q} \sqrt{\frac{L_{res}}{C}} = 3.09 \text{ OM}, \quad \Delta r_L =$$
 (6)