1

NCERT Discrete - 11.9.3.30

EE23BTECH11007 - Aneesh Kadiyala*

Question 11.9.3.30: The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour 4^{th} hour and n^{th} hour?

Solution:

TABLE 0 Input Parameters

Parameter	Value	Description
<i>x</i> (0)	30	Initial no. of bacteria
x(n)/x(n-1)	2	Ratio of no. of bacteria at end
		of hour to start of hour

1) **Finding** x(n)

Let number of bacteria initially be x(0) = 30Let number of bacteria at the end of n^{th} hour be x(n).

Since number of bacteria doubles every hour,

$$x(n) = 2x(n-1) \tag{1}$$

$$= 2(2x(n-2))$$
 (2)

. . .

$$x(n) = 2^n x(0) \tag{3}$$

$$\implies x(n) = 30(2^n) \tag{4}$$

Therefore, number of bacteria at the end of the 2^{nd} hour is 120, 4^{th} hour is 480, and n^{th} hour is $30(2^n)$.

2) **Z-transform of** x(n)

Let Z-transform of x(n) be X(z).

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n)z^{-n}$$
 (5)

$$X(z) = \sum_{n=0}^{\infty} (30)(2^n)(z^{-n})$$
 (6)

$$X(z) = 30 \lim_{n \to \infty} \sum_{i=0}^{n} (\frac{2}{z})^{i}$$
 (7)

a) If |z| > 2:

$$X(z) = \frac{30}{1 - \frac{2}{z}} \tag{8}$$

$$X(z) = \frac{30z}{z - 2} \tag{9}$$

b) If $|z| \le 2$:

$$X(z) \to \infty$$
 (10)

$$\implies X(z) = \frac{30z}{z - 2} \forall |z| > 2 \tag{11}$$