Homework I

MATH 6643

Fall 2016

Prof. Wing Suet Li

Due: September 8, 2016

[TB]: Numerical Linear Algebra, L. Trefethen and D. Bau, III, published by SIAM.

- 1. [TB] Exercise 2.6. (p. 16).
- 2. [TB], Exercise 3.1. (p. 24).
- 3. [TB], Exercise 3.5. (p. 24).
- 4. Let A and B be $n \times n$ matrices. Show that

 - (1) $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$. (2) Show that $||AB||_2 \le ||A||_2 ||B||_2$.
- 5. Let $\|\cdot\|$ be a norm on \mathbb{R}^n and also the corresponding induced matrix norm. Let X be an $n \times n$ invertible matrix.
 - (1) Show that |||x||| := ||Xx|| is a norm on \mathbb{R}^n .
 - (2) For the induced matrix norm $|||\cdot|||$, show that $|||A||| = ||XAX^{-1}||$ for every $n \times n$ matrix A.
 - (3) Let $J(\lambda)$ be the $k \times k$ Jordan cell

$$J(\lambda) = \begin{bmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \cdots & \lambda & 1 \\ 0 & \cdots & \cdots & \lambda \end{bmatrix}.$$

Calculate $||J(\lambda)||_1$, the matrix norm induced by the 1-norm

(4) Let
$$\eta > 0$$
 and X be the $k \times k$ diagonal matrix $X = \begin{bmatrix} \eta & 0 & \cdots & 0 \\ 0 & \eta^2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \eta^k \end{bmatrix}$

Calculate $||XJ(\lambda)X^{-1}||_1$. Conclude that for every $\epsilon > 0$, there exists a matrix norm so that the norm of $J(\lambda)$ is less than $\lambda + \epsilon$. 6. (You can use Matlab or any other programming language of your choice.)

Let $f(x) = \frac{log(x+1)}{x}$. The goal of the exercise is to plot the function near 0. This function can be calculated in (at least) two different ways:

(1)
$$g(x) = \frac{\log(x+1)}{x}$$
 (2)
$$h(x) = \frac{\log(x+1)}{(x+1)-1}$$

Mathematically they are equivalent. Plot both functions around x=0 (use nine points on each side of 0) with step sizes 10^{-16} , 10^{-15} , 10^{-13} (and other values if necessary). Discuss what you observed and explain why.