Welcome To My Presentation

My Presentation Topic is

Longest Common Subsequence

Presented By

Tushar Sarkar

Student ID: 18CSE35

Second Year Second Semester

Department of CSE, BSMRSTU.

Common Subsequence

- ▶ A subsequence of a string is the string with zero or more chars left out.
- ► A common subsequence of two strings:
 - A subsequence of both strings
 - Example :

Here,

```
x = \{A B C B D A B \}

y = \{B D C A B A\}
```

{B C} and {A A} are both common subsequences of x and y.

Longest Common Subsequence

Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

functional notation, but not a function

Brute-force LCS algorithm

 \clubsuit Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1...n].

Analysis

- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential!

Towards a better algorithm: a DP strategy

- Key: optimal substructure and overlapping sub-problems
- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.

Optimal Substructure

- Notice that the LCS problem has *optimal substructure*: parts of the final solution are solutions of subproblems.
 - If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

▶ Subproblems: "find LCS of pairs of *prefixes* of x and y"

Recursive Thinking

- ▶ Case 1: x[m] = y[n]. There is **an** optimal LCS that matches x[m] with y[n].
 - \longrightarrow Find out LCS (x[1..m-1], y[1..n-1])
- ► Case 2: $x[m] \neq y[n]$. At most one of them is in LCS.
 - Case 2.1: x[m] not in LCS \longrightarrow Find out LCS (x[1..m-1], y[1..n])
 - Case 2.2: y[n] not in LCS \longrightarrow Find out LCS (x[1..m], y[1..n-1])

Recursive Thinking

ightharpoonup Case 1: x[m] = y[n]

- Reduce both sequences by 1 char
- LCS(x, y) = LCS(x[1..m-1], y[1..n-1]) // x[m]
- ightharpoonup Case 2: $x[m] \neq y[n]$

concatenate

- LCS(x, y) = LCS(x[1..m-1], y[1..n]) or
- LCS(x[1..m], y[1..n-1]), whichever is longer

Finding Length of LCS

- Let c[i, j] be the length of LCS(x[1..i], y[1..j])=> c[m, n] is the length of LCS(x, y)
- ► If x[m] = y[n]c[m, n] = c[m-1, n-1] + 1
- ► If x[m] != y[n] $c[m, n] = max \{ c[m-1, n], c[m, n-1] \}$

Generalize: Recursive Formulation

if x[i] = y[j],

otherwise.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 \\ \max\{c[i-1,j], c[i,j-1]\} \end{cases}$$

Recursive algorithm for LCS

```
LCS (x, y, i, j)

if x[i] = y[j]

then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow \max\{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}
```

Worst-Case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion Tree

Height = $m + n \Rightarrow$ work potentially exponential. but we're solving subproblems already solved!

DP Algorithm

- ► Key: find out the correct order to solve the sub-problems
- ▶ Total number of sub-problems: m * n

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j] \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

m

if x[i] = y[j],

DP Algorithm

```
LCS-Length(X, Y){
                                // get the # of symbols in X
   m = length(X)
                                // get the # of symbols in Y
   n = length(Y)
   for i = 1 to m c[i,0] = 0
                               // special case: Y[0]
   for j = 1 to c[0,j] = 0 // special case: X[0]
   for i = 1 to m {
                               // for all X[i]
      for j = 1 to n { // for all Y[j]
         if (X[i] == Y[j])
                c[i,j] = c[i-1,j-1] + 1
         else
                c[i,j] = max(c[i-1,j], c[i,j-1])
   return c
```

LCS Example

* We'll see how LCS algorithm works on the following example:

$$X = ABCB$$

$$Y = BDCAB$$

What is the LCS of X and Y?

$$LCS(X, Y) = BCB$$

$$X = A B C B$$

$$Y = B D C A B$$

Computing the Length of the LCS

$$C[i, j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i-1, j], c[i, j-1]) & \text{if } x_i \neq y_j \end{cases}$$

		O	ni lak	2	3		n
		Y[j]	1	2	3		Y_n
0	X[i]	0	0	0	0	0	0
1	1	0		TWEET S			
2	2	0	-				
3	3	0					
		0					
m	X_m	0					→

LCS Example (0)

		j	0	1	2	3	4	5
	i		Y[j]	В	D	C	A	В
X=ABCB	0	X[i]						
Y=BDCAB	1	A						
	2	В						
	3	C						
	4	В						

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5][6]

LCS Example (1)

		\mathbf{J}	U	1	2	3	4	2
	i		Y[j]	В	D	C	A	В
X=ABCB	0	X[i]	0	0	0	0	0	0
Y=BDCAB	1	A	0					W/E
	2	В	0					
	3	C	0					
	4	В	0					

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

LCS Example (2)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

```
3
                                                               5
                                 0
                                Y[j]
                                      B
                                            D
                                                              B
                           X[i]
X = BCB
                                      0
                                 0
                                            0
                                                  0
                                                        0
                                                              0
Y=BDCAB
                           A
                                      0
                                                  0
                                 0
                                            0
                           B
                                 0
                           C
                   3
                                 0
                           B
                                 0
```

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (9)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (10)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

		j	0	1	2	3	4	5
	i		Y[j]	В	D	C	A	B
X=ABCB	0	X[i]	0	0	0	0	0	0
Y=BDCAB	1	A	0	0	0	0	1	1
	2	В	0	1	1	1	1	2
	3	C	0	1	1	2	2	2
		\bigcirc B	0	1	1	2	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14)

		j	0	1	2	3	4	
	i		Y[j]	В	D	C	A	B
X=ABCB	0	X[i]	0	0	0	0	0	0
Y=BDCAB	1	A	0	0	0	0	1	1
	2	В	0	1	1	1	1	2
	3	C	0	1	1	2	2 🔨	2
		B	0	1	1	2	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Algorithm Running Time

- ▶ LCS algorithm calculates the values of each entry of the array c[m,n]
- ► So what is the running time?

O(m*n)

 Since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to Find Actual LCS

- ▶ The algorithm just found the *length* of LCS, but not LCS itself.
- ▶ How to find the actual LCS?
- ► For each c[i,j] we know how it was acquired:

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- ▶ A match happens only when the first equation is taken
- So we can start from c[m,n] and go backwards, remember x[i] whenever c[i,j] = c[i-1, j-1]+1.

2 2 For example, here
$$c[i,j] = c[i-1,j-1] + 1 = 2+1=3$$

Finding LCS

Time for trace back: O(m+n).

Finding LCS (2)

LCS (reversed order): B C B

LCS (straight order): B C B

(this string turned out to be a palindrome)

Dynamic Programming Solution

```
1 LCS-Length(X, Y)
      m = X.length()
3
      n = Y.length()
      for i = 1 to m do \rightarrow c[i,0] = 0
      for j = 0 to n do \rightarrow c[0,j] = 0
                                                                    O(nm)
5
      for i = 1 to m do
                                // row
            for j = 1 to \frac{n}{2} do \frac{1}{2} cloumn
8
                  if x_i = y_i then
                          c[i,j] = c[i-1,j-1] + 1
9
                          b[i,j] =" "
10
                  else if c[i-1, j] \ge c[i,j-1] then
11
12
                          c[i,j] = c[i-1,j]
13
                          b[i,j] = "^"
14
                   else
15
                         c[i,j] = c[i,j-1]
16
                         b[i,j] = "<"
```

Thank You