REPORT DOCUMENTATION PAGE

Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggessitions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)	
06-07-2014	Final Report		1-Apr-2012 - 31-Mar-2013	
4. TITLE AND SUBTITLE Role of Nanometer-Scale Mechanical Responses of Hybrid Ceramic-Based Materials on Toughening		5a. CONTRACT NUMBER W911NF-12-1-0153		
		5b. GRANT NUMBER		
		5c. PRO	OGRAM ELEMENT NUMBER	
6. AUTHORS Susan B. Sinnott		5d. PRC	DJECT NUMBER	
		5e. TAS	SK NUMBER	
		5f. WO	RK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME University of Florida - Gainesville 219 Grinter Hall PO Box 115500 Gainesville, FL 3261	ES AND ADDRESSES		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY (ES)	/ NAME(S) AND ADDRESS		10. SPONSOR/MONITOR'S ACRONYM(S) ARO	
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211		1	11. SPONSOR/MONITOR'S REPORT NUMBER(S) 52034-MS-DRP.1	
12. DISTRIBUTION AVAILIBILITY STATE	EMENT			

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

We used classical molecular dynamics simulations to identify the nanometer-scale mechanisms by which a ceramic-based hybrid composite of PMMA and Al2O3 responds to mechanical deformation. The influence of factors such as the arrangement of the phases in lamellar and brick-and-mortar structures, atomic-scale roughness of the Al2O3 phases, and attachment of molecular grafts to the Al2O3 were explored. We also used first-principles, density functional theory calculations to examine the way in doping of yttrium aluminum garnet (YAG) influenced its antical proportion. In particular, the identity of the density, their location within YAC unit call, and their

15 SUBJECT TEDMS

Hybrid ceramic-polymer materials, YAG, molecular dynamics simulations, density functional theory calculations, mechanical properties, optical properties

16. SECURI	TY CLASSIFICA	ATION OF:	17. Emiliaria		19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	Susan Sinnott
υυ	υυ	luu	UU		19b. TELEPHONE NUMBER
					352-846-3778

Report Title

Role of Nanometer-Scale Mechanical Responses of Hybrid Ceramic-Based Materials on Toughening

ABSTRACT

We used classical molecular dynamics simulations to identify the nanometer-scale mechanisms by which a ceramic-based hybrid composite of PMMA and Al2O3 responds to mechanical deformation. The influence of factors such as the arrangement of the phases in lamellar and brick-and-mortar structures, atomic-scale roughness of the Al2O3 phases, and attachment of molecular grafts to the Al2O3 were explored. We also used first-principles, density functional theory calculations to examine the way in doping of yttrium aluminum garnet (YAG) influenced its optical properties. In particular, the identity of the dopants, their location within YAG unit cell, and their concentrations were considered with guidance from experimental data from Lawrence Livermore National Laboratory.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received	<u>Paper</u>
TOTAL:	
Number of Papers	s published in peer-reviewed journals:
	(b) Papers published in non-peer-reviewed journals (N/A for none)
Received	<u>Paper</u>
TOTAL:	
Number of Papers	s published in non peer-reviewed journals:

(c) Presentations

[&]quot;Investigation of Al2O3 Nanostructure Surfaces Using Charge Optimized Many Body Potentials", D. Yilmaz, T. Liang, S. Phillpot, S. Sinnott, AVS 59th International Symposium and Exhibition in Tampa, Florida, October 29-November 2, 2012.

Number of Pre	Number of Presentations: 1.00				
	Non Peer-Reviewed Conference Proceeding publications (other than abstracts):				
Received	<u>Paper</u>				
TOTAL:					
1011121					
Number of Non	Peer-Reviewed Conference Proceeding publications (other than abstracts):				
	Peer-Reviewed Conference Proceeding publications (other than abstracts):				
Received	<u>Paper</u>				
TOTAL:					
Number of Pee	r-Reviewed Conference Proceeding publications (other than abstracts):				
	(d) Manuscripts				
Received	<u>Paper</u>				
	- 				
TOTAL					
TOTAL:					
Number of Ma	nuscrints:				
	Books				
Paccivod	Rook				
Received	<u>Book</u>				
TOTAL:					

NAME	PERCENT_SUPPORTED
Dundar Yilmaz	1.00
FTE Equivalent:	1.00
Total Number:	1

Names of Faculty Supported

NAME	PERCENT_SUPPORTED	National Academy Member
Susan Sinnott	0.14	
FTE Equivalent:	0.14	
Total Number:	1	

Names of Under Graduate students supported

<u>NAME</u>	PERCENT_SUPPORTED	
FTE Equivalent:		
Total Number:		

	and and of Staddades who demoved a 3.5 of	` '		
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for				
	Education, Research and Engineering: 0.00			
The number of undergraduates fundes	•			
The number of undergraduates funded	d by your agreement who graduated during thi			
		the Department of Defense 0.00		
The number of undergraduates fund	ded by your agreement who graduated during	this period and will receive		
scholarships or fellowships for	further studies in science, mathematics, engine	eering or technology fields: 0.00		
Na	ames of Personnel receiving masters deg	grees		
NAME				
Kai Yao				
Total Number:	1			
	Names of personnel receiving PHDs			
NAME				
Total Number:	Total Number:			
	Names of other research staff			
NAME	PERCENT_SUPPORTED			
FTE Equivalent:				
Total Number:				

Sub Contractors (DD882)

Inventions (DD882)

Student Metrics

This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period with a degree in

The number of undergraduates funded by your agreement who graduated during this period and will continue

The number of undergraduates funded by this agreement who graduated during this period: 0.00

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:..... 0.00 Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):..... 0.00

science, mathematics, engineering, or technology fields:..... 0.00

Scientific Progress

Summary of the most important results

In the case of the hybrid material project, the most important results include:

- Development of computational method to enable the building of hybrid polymer-ceramic structures without overlapping atoms.
- Optimization of charge optimized many-body potential for Al2O3 to enable reactive, atomic-scale modeling in simulations.
- Examined laminar and brick-and-mortar hybrid material structures subjected to compression and tension; documented atomic-scale responses and showed how the responses varied with the volume fraction of polymer.
- Introduced atomic-scale roughness and molecular grafts to the Al2O3 to see how these factors changed the mechanical responses. We have not yet been able to draw firm conclusions regarding their effects.

In the case of the doped YAG project, the most important results include:

- When Gd dopants are added, its f-electrons modify the optical properties of the YAG in the IR region. In contrast, Sc and Ga are not predicted to substantially modify the optical properties of YAG in the IR region.
- Doping with Gd, Sc, and Ga individually or in combination with one another is predicted to increases the opaque nature of the YAG in all cases, but less in the IR region than at higher wavelengths.

Technology Transfer

Final Progress Report

Role of Nanometer-Scale Mechanical Responses of Hybrid Ceramic-Based Materials on Toughening

Susan Sinnott

Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400

Statement of the problem studied

We used classical molecular dynamics simulations to identify the nanometer-scale mechanisms by which a ceramic-based hybrid composite of PMMA and Al_2O_3 responds to mechanical deformation. The influence of factors such as the arrangement of the phases in lamellar and brick-and-mortar structures, atomic-scale roughness of the Al_2O_3 phases, and attachment of molecular grafts to the Al_2O_3 were explored.

We also used first-principles, density functional theory calculations to examine the way in doping of yttrium aluminum garnet (YAG) influenced its optical properties. In particular, the identity of the dopants, their location within YAG unit cell, and their concentrations were considered with guidance from experimental data from Lawrence Livermore National Laboratory.

Summary of the most important results

In the case of the hybrid material project, the most important results include:

- Development of computational method to enable the building of hybrid polymer-ceramic structures without overlapping atoms.
- Optimization of charge optimized many-body potential for Al2O3 to enable reactive, atomic-scale modeling in simulations.
- Examined laminar and brick-and-mortar hybrid material structures subjected to compression and tension; documented atomic-scale responses and showed how the responses varied with the volume fraction of polymer.
- Introduced atomic-scale roughness and molecular grafts to the Al₂O₃ to see how these factors changed the mechanical responses. We have not yet been able to draw firm conclusions regarding their effects.

In the case of the doped YAG project, the most important results include:

- When Gd dopants are added, its f-electrons modify the optical properties of the YAG in the IR region. In contrast, Sc and Ga are not predicted to substantially modify the optical properties of YAG in the IR region.
- Doping with Gd, Sc, and Ga individually or in combination with one another is predicted to increases the opaque nature of the YAG in all cases, but less in the IR region than at higher wavelengths.

Role of Nanometer-Scale Mechanical Responses of Hybrid Ceramic-Based Materials on Toughening

Prof. Susan B. Sinnott University of Florida

Final Report July 6, 2014

Predicting Optical Properties of Doped YAG

Yttrium Aluminum Garnet

Y₃Al₂Al₃O₁₂ unit cell comprised of 160 atoms

- 24 Y—dodecahedral coordination
- 16 Al—octahedral coordination
- 24 Al—tetrahedral coordination
- 96 O

Structure with space group Ia3d

Garnet Systems

Non-doped: YAG

• Y₃Al₅O₁₂

Gd-doped: GdYAG

• (Gd_xY_{3-x})Al₅O₁₂

X	% Gd
0.120	4
0.375	12.5
0.750	25
0.999	33.3
1.500	50
2.250	75
3.000	100

Computational Methods

Density functional theory using Vienna Ab initio Simulation Package (VASP)

- PBE pseudopotentials
- Single k-point (gamma) calculations
- Cut-off energy = 400 eV
- Energy convergence = 10⁻⁶ eV
- Force convergence = 10⁻² eV/atom

Comparison with experiment

Fig. (a): $\varepsilon_1(0) \sim 3.40$ Fig. (b): $\varepsilon_1(0) \sim 3.54$

Above: $\varepsilon_1(0) \sim 3.72$

On left: Non-doped YAG, Xu, Y.N., Chen, Y., et al., Phys. Rev. B 65, 235105 (2002). On right: Results from this work.

Electronic structure of pure YAG

	Light Comparison ^[3]				
Name	Wavelength	Frequency (Hz)	Photon Energy (eV)		
Gamma ray	less than 0.01 nm	more than 10 EHZ	100 keV - 300+ GeV		
X-Ray	0.01 nm to 10 nm	30 EHz - 30 PHZ	120 eV to 120 keV		
Ultraviolet	10 nm - 390 nm	30 PHZ - 790 THz	3 eV to 124 eV		
Visible	390 nm - 750 nm	790 THz - 405 THz	1.7 eV - 3.3 eV		
Infrared	750 nm - 1 mm	405 THz - 300 GHz	1.24 meV - 1.7 eV		
Microwave	1 mm - 1 meter	300 GHz - 300 MHz	1.24 µeV - 1.24 meV		
Radio	1 mm - 100,000 km	300 GHz - 3 Hz	12.4 feV - 1.24 meV		

DOS for YAG showing absence of any state in the infrared region

Partial density of states (PDOS), band-structure of pure YAG

Introduction of Gd in YAG: Active in IR region

Gd₃Sc₂Al₃O₁₂: Gd-f electrons are contributing extra energy states in the infrared region of YAG, may be responsible for infrared activity.

DOS for $(Gd_{0.375}Y_{2.625})Al_5O_{12}$

Relation between heat of vaporization and energy gap of lanthanide based organic and inorganic compounds

- Energy gap of lanthanide doped YAG, lanthanide-TCNQ (= 7, 7, 8, 8-tetracyano-p-quinodimethane) [1] complexes and lanthanide oxides.
- HOMO-LUMO gaps for all the lanthanides
 TCNQ complexes were not available.
- Energy and HOMO-LUMO gaps follow specific patterns.

[1] Zhang et al., Systematic study on electrochemical properties of a series of TCNQ lanthanide complexes, Journal of Organometallic Chemistry 695 (2010) 1493–1498.

Relation between heat of vaporization and energy gap of lanthanide based organic and inorganic compounds

Predicting Mechanical Properties of Al₂O₃-PMMA Hybrid Materials

Objectives

- Use classical molecular dynamics simulations to elucidate the mechanical responses of PMMA-Al₂O₃ hybrid structures
- Determine how the laminar and brick-and-mortar structures compare to one another
- Understand the effects of degree of polymerization of the PMMA on the mechanical properties of the hybrid material.

Computational approach

Classical molecular dynamics simulations

Atomistic treatment

Forces on the atoms calculated with the third-generation charge optimized many-body potential

Focus on mechanical properties of Al₂O₃-PMMA hybrid materials as a function of hybrid structure, PMMA chain length, and system size

Currently running: influence of surface roughness

Stacking fault energy predicted for Al

Stacking fault map predicted for Al using (left) the embedded atom method (EAM) potential and (right) the charge optimized many-body (COMB) potential.

The symmetry in the contours represents the periodicity in the system.

Stacking fault and dislocation splitting behavior of Al

Stacking fault 3D-map using COMB that successfully predicts the $\langle 12\overline{1}\rangle$ direction would be preferred over $\langle 101\rangle$ for dislocation propagation.

Dislocation splitting of an edge dislocation within a (111) plane of bulk Al is illustrated.

Mechanical deformation of polycrystalline Al predicted in MD simulations with COMB potentials

Left: A 13.8% strained Al polycrystal following constant strain. Red atoms represent disordered atoms (non-12 coordinates), light blue atoms are in an hcp environment. Atoms in an fcc environment are not shown for clarity.

- (a) Extended dislocations within the (111) plane are indicated by the black arrows.
- (b) The yellow square highlights twinned region.

COMB predictions for Al₂O₃

Structure	(Exp.,DFT)	COMB3	ReaxFF	ES+	Vashisth et al
H _f , Al ₂ O ₃ -Alpha (eV)	-17.3400	-17.235	-23.54	-17.34	-17.29
H _f ,Al ₂ O ₃ -Bixb. (eV)	-16.3700	-15.33	-22.88		
H _f , Al ₂ O ₃ -Theta (eV)	-16.9600	-12.66	-23.35		
Hf, AlO-NaCl (eV)	-5.76	-5.65			
Hf, AlO ₂ -CaF ₂ (eV)	-9.89	-9.09			
Al-interstitial (eV)	16.8000	2.41			
O-inerstitial (eV)	8.8400	10.13			
Val (eV)	8.4400	1.32			
VO (eV)	6.0900	13.8			
0001 Surface (J/m ²)	1.59	1.5	1.0	2.67	
Bulk Mod.s (Gpa)	254, 290	283	248	250	253
Shear Mod. (Gpa)	156, 172	160			
C11	497	505	537		523
C12	164	168	180		147
C13	111	163	106		129
C14	-24	0.0	-30		7.5
C33	498	545	509		427
C44	147	152	130		135
C66	168	146	179		174

Predicted charge-spilling across the $Al_2O_3(0001)/Al(100)$ interface

Uniaxial compression and tension tests of pure PMMA

- Effect of chain length investigated
- Response to the compression depends on chain length
- Response to tension highly non-linear

In-situ brick-and-mortar building

Brick and mortar building starts with defining regions of alumina (bricks) and PMMA (mortar) in the simulation box.

First PMMA chains are built using three constraints:

- Angle between two segments of chain should be greater than 120°.
- Distance between any beads should be greater than approximate size of the monomer (~0.5 nm).
- Distance between any PMMA atom should be larger than 0.08 nm to prevent over-coordination

Random tacticity used. Torsion angle between monomer and chain is set to avoid overlaps between polymer atoms in different chains.

System configuration

Brick-and-mortar structures built in three different sizes along the direction of the deformation axis with brick dimensions 7.8 nm, 11.7 nm, 15.6 nm for small, medium and large structures, respectively. Other dimensions are same at 6.8 nm and 3.9 nm, respectively. There is a 1.2 nm gap between bricks in all three dimensions. Periodic boundary conditions are applied on three axis. Average PMMA chain length is 50 monomers per chain.

Illustration of loading accommodation in the brick-andmortar compression test

Illustration of the brick-and-mortar compression test

Laminar versus brick-and-mortar structures

System Dimensions:

	Brick-and-mortar	Laminar		
Small	18.4 x 8.0 x 10.4 (nm)	7.8 x 8.0 x 12.0 (nm)		
Medium	26.2 x 8.0 x 10.4 (nm)	11.7 x 8.0 x 12.0 (nm)		
Large	34.0 x 8.0 x 10.4 (nm)	15,6 x 8.0 x 12.0 (nm)		

1.2 nm gap between bricks, periodic boundary conditions The average PMMA chain length is 50 monomers per chain The simulations are performed using the third-generation Charge Optimized Many-Body (COMB3) potentials

Compression of laminar system

Uniaxial compression test predictions

Region 1: Linear region

Region 2: Bricks rotation

Region 3: Two bricks contact

Region 1: Linear region

Region 2: non-linear region

- Mechanisms for brick-and-mortar and laminar composites are quite different
- Brick-and-mortar Young's modulus > laminar Young's modulus
- Elastic properties are dependent on size, especially for brick-and-mortar

Uniaxial compression and tension tests

- Pressure along the compression and tension axis given
- Response to tension is more linear than response to compression
- Off-axis motion of bricks results in nonlinear response to the compression

Surface roughness

Surface roughness implemented by randomly deleting surface atoms of the ceramic layers (polymer atoms are not shown)

Large scale molecular dynamics simulations of hybrid materials with smaller fraction of polymer

- Large scale MD simulations of hybrid materials to understand the effect of surface roughness and functionalization to the mechanical properties.
- System size extends to 32.5 nm in x and y axis and 25.7 nm in z axis.
- Polymer/Ceramic ratio is 95%.
- Total number of atoms is $\sim 3,000,000$.

