Computational Systems Biology

LATEX by Chengxin Gong

Lectured by Lei Zhang

2022年6月17日

目录

1	Michaelis-Menten Kinetics 3						
	1.1	Law of Mass Action	3				
	1.2	MM Kinetics	3				
2	Equilibrium Binding and Cooperativity						
	2.1	Identical and Independent Binding Sites	4				
	2.2	Identical and Interacting Binding Sites	4				
	2.3	Non-Identical and Interacting Binding Sites	4				
3	Transcription Networks						
	3.1	Basic Models	4				
	3.2	Ultrasensitivity	5				
	3.3	Autoregulation	5				
4	Pos	sitive Feedback and Multistability	6				
5	Sta	bility and Oscillation	8				
	5.1	Stability Analysis	8				
	5.2	Biological Oscillations	8				
	5.3	Ruling out Closed Orbits	9				
	5.4	Synthetic Genetic Oscillators	9				
6	Fee	ed Forward Loop Network Motif	11				
	6.1	C1-FFL	12				
	6.2	I1-FFL	12				
	6.3	Other FFLs	13				
7	Adaptation 13						
	7.1	Spiro's model	13				
	7.2	Barkai's Model	14				
	7.3	Ma's Model	14				

目录

8	Sto	chastic Chemical Kinetics	15
	8.1	Probabilistic Formulation of Reaction Kinetics	15
	8.2	Fluctuation-Dissipation Thm	16
	8.3	Steady State of Master Equation	17
	8.4	Fokker-Planck Equation	17
	8.5	Waiting Time Between Reactions	18
	8.6	Stochastic Simulation Algorithm	18
	8.7	Chemical Langevin Equation	19
	8.8	au-Leaping Algorithm	19
9	Diff	fusion	20
	9.1	Simple Random Walk	20
	9.2	Fick's Law	20
	9.3	Reaction Diffusion Equation	21
	9.4	Chemotaxis	21
	9.5	Biological Waves	21
10	Tur	ing Pattern	22

Michaelis-Menten Kinetics 1

1.1 Law of Mass Action

Basic chemical reaction: $A \stackrel{k}{\longrightarrow} B$.

Law of Mass Action: $\frac{d[A]}{dt} = -k[A], \frac{d[B]}{dt} = k[A].$ k: rate constant. With back reaction: $A \xrightarrow[k_{-}]{k_{-}} B.$ k_{+} : forward rate constant, k_{-} : backward rate constant.

If $k_{+} >> k_{-}$, ignore k_{-} .

At steady state, $0 = \frac{d[A]}{dt} = -k_{+}[A] + k_{-}[B] = -\frac{d[B]}{dt} \Rightarrow \frac{k_{-}}{k_{+}} = \frac{[A]}{[B]}$.

If no other reaction involving A&B, then $[A]_{eq} = A_0 \frac{k_-}{k_+ + k_-}, [B]_{eq} = A_0 \frac{k_+}{k_+ + k_-}.$

Biomolecular Chemical Reaction: $A+B \xrightarrow[k_{-}]{k_{-}} C$. $\frac{d[A]}{dt} = k_{-}[C] - k_{+}[A][B] = -\frac{d[C]}{dt}$

At steady state, $k_{eq} = \frac{k_-}{k_+} = \frac{[A]_{eq}[B]_{eq}}{[C]_{eq}}$. Assume $[A] + [C] = A_0, [A]_{eq} = A_0 \frac{k_{eq}}{k_{eq} + [B]_{eq}}, [C]_{eq} = A_0$ $A_0 \frac{[B]_{eq}}{k_{eq} + [B]_{eq}}$

When $[B]_{eq} = k_{eq}$, half of A is in the bound state at steady state.

 $A + A \stackrel{k_+}{\overline{\searrow}} C$. Q: Which one is conseverd? A: [A] + 2[C].

$$\frac{d[A]}{dt} = 2k_{-}[C] - 2k_{+}[A]^{2}, \frac{d[C]}{dt} = k_{+}[A]^{2} - k_{-}[C] \Rightarrow \frac{d[A] + 2[C]}{dt} = 0.$$

Remark: Law of mass action is only valid for elementary reaction.

1.2 MM Kinetics

S: substrate, 底物. E: enzyme, 酶. $E + S \xrightarrow{k_+} ES, k_+ = k_1[E][S], k_- = k_{-1}[ES]$

Dissociation constant: $k_d = \frac{k_{-1}}{k_1}$. Q: unit of k_d ? A: concentration.

Fraction E-bond $f_B = \frac{[ES]}{[E]+[ES]}$.

 $[S]_T \to 0 \Rightarrow f_B \to 0; [S]_T \to \infty \Rightarrow f_B \to 1; [E]_T \to \infty \Rightarrow f_B \to 0; [E]_T \to 0 \Rightarrow 0 < f_B < 1.$ $\left[\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] = 0 \Rightarrow \frac{k_{-1}}{k_1} = \frac{[E][S]}{[ES]} \Rightarrow f_B = \frac{[S]}{k_d + [S]} \in (0, 1)\right].$

 $E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$. Transition State Theory.

 $\frac{d[S]}{dt} \ = \ -k_1[E][S] \ + \ k_{-1}[ES], \\ \frac{d[E]}{dt} \ = \ -k_1[E][S] \ + \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S] \ - \ (k_{-1} \ + \ k_2)[ES], \\ \frac{d[ES]}{dt} \ = \ k_1[E][S], \\ \frac{d[ES]}{dt} \ = \ k_$ $k_2)[ES], \frac{d[P]}{dt} = k_2[ES] \equiv v$ (turnover rate).

Initial Condition: $[S]|_{t=0} = S_0, [E]|_{t=0} = E_0, [ES]|_{t=0} = 0, [P]|_{t=0} = 0.$

Q: v v.s. [S]? A: Nonlinear. But $\frac{1}{v}$ v.s. $\frac{1}{[S]}$ may be linear for some time.

 $[E] + [ES] = E_0$, so $\frac{d[E]}{dt}$ can be neglected.

Pseudo-steady state (quasi-equilibrium assumption): substrate-enzyme binding >> turnover into product $\Rightarrow \frac{d[ES]}{dt} = 0 \Rightarrow [ES] = \frac{k_1[S]E_0}{k_1[S]+k_{-1}+k_2} \Rightarrow v = \frac{d[P]}{dt} = \frac{k_2[S]E_0}{\frac{k_{-1}+k_2}{k_1}+[S]} = \frac{v_{\max}[S]}{k_m+[S]}$ where $k_m = 0$ $\frac{k_{-1}+k_2}{k_1}$ (Michaelis Constant).

Q: Relation between $S_0\&E_0$ for pseudo-steady state? A: $S_0 >> E_0$.

$$\frac{d[S]}{dt} = -k_1 E_0[S] + (k_1[S] + k_{-1})[ES], \frac{d[ES]}{dt} = k_1 E_0[S] - (k_1[S] + k_{-1} + k_2)[ES], \frac{d[P]}{dt} = k_2 [ES].$$

 $\frac{d[S]}{dt} = -k_1 E_0[S] + (k_1[S] + k_{-1})[ES], \frac{d[ES]}{dt} = k_1 E_0[S] - (k_1[S] + k_{-1} + k_2)[ES], \frac{d[P]}{dt} = k_2[ES].$ 时间尺度分离: Let $\tau = k_1 E_0 t$, $\overline{ES} = \frac{[ES]}{E_0}$, $\overline{S} = \frac{[S]}{S_0}$, $\frac{d[S]}{dt} \Rightarrow \frac{d\overline{S}}{d\tau} = -\overline{S} + (\overline{S} + k - \lambda)\overline{ES}$ where $k = \frac{k_{-1} + k_2}{k_1 S_0}$, $\lambda = \frac{k_2}{k_1 S_0}$. $\epsilon \frac{d\overline{ES}}{d\tau} = \overline{S} - (\overline{S} + k)\overline{ES} = 0$ where $\epsilon = \frac{E_0}{S_0}$.

Equilibrium Binding and Cooperativity

Consider that a protein has n binding stes. $S + P_{j-1} = \frac{k_{+j}}{k_{-j}} P_j, j = 1, 2, \dots, n$.

$$\frac{d[P_0]}{dt} = -k_{+1}[P_0][S] + k_{-1}[P_1]. \text{ Def associate constant } k_a = k_{+1}/k_{-1}, k_d = k_{-1}/k_{+1} = 1/k_a.$$

At steady state,
$$k_1 = \frac{[P_1]}{[P_0][S]}, k_j = \frac{[P_j]}{[P_{j-1}][S]}, j = 1, 2, \dots, n.$$

Average # r of substrates bound to proteins, $r = \frac{[P_1] + 2[P_2] + \dots + n[P_n]}{[P_0] + [P_1] + \dots + [P_n]} = \frac{k_1[P_0][S] + 2k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S]^2 + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots} = \frac{k_1[P_0][S] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots}{[P_0] + k_1k_2[P_0][S] + k_1k_2[P_0][S] + \dots}$ $\frac{k_1[S]+2k_1k_2[S]^2+\cdots+nk_1k_2\cdots k_n[S]^n}{1+k_1[S]+k_1k_2[S]^2+\cdots+k_1k_2\cdots k_n[S]^n}\in (0,n). \text{ Saturation function: } Y=r/n\in (0,1).$

2.1 Identical and Independent Binding Sites

$$P_0 + S \xrightarrow[k_-]{k_+} P_1 \Rightarrow -nk_+[P_0][S] + k_-[P_1] = 0.$$

$$P_1 + S \rightleftharpoons P_2 \Rightarrow -(n-1)k_+[P_1][S] + 2k_-[P_2] = 0.$$

Intrinsic association constant $k=k_+/k_-, \Rightarrow k_j=\frac{(n-j+1)k}{j}, j=1,2,\cdots,n \Rightarrow r=\frac{nk[S]}{1+k[S]}$

2.2 Identical and Interacting Binding Sites

$$P_0 \xrightarrow[k_-]{k_+} P_1 \xrightarrow[k_-^*]{k_+^*} P_2, \Rightarrow k_1 = 2k, k_2 = \frac{1}{2}k^*.r = \frac{2k[S] + 2kk^*[S]^2}{1 + 2k[S] + kk^*[S]^2}, Y = \frac{r}{2} = \frac{k[S] + kk^*[S]^2}{1 + 2k[S] + kk^*[S]^2}.$$

$$k=k^* \text{ (independent case)}, Y^*=\frac{k[S]}{1+k[S]}.k \neq k^*, Y-Y^*=\frac{(k^*-k)k[S]^2}{(1+k[S])(1+2k[S]+kk^*[S]^2)}.$$
 Positive cooperativity: $Y-Y^*>0 \Rightarrow k^*>k$. Negative cooperativity: $Y-Y^*<0 \Rightarrow k^*< k$.

Another definition for cooperativity is sigmoidality. $\beta = k^*/k, x = k[S] \Rightarrow Y = \frac{x(1+\beta x)}{1+2x+\beta x^2}, \frac{dY}{dx} = \frac{1+2x\beta+\beta x^2}{(1+2x+\beta x^2)^2}, \frac{d^2Y}{dx^2} = 2\frac{\beta-2-\beta x(3+3x\beta+\beta x^2)}{(1+2x+\beta x^2)^3}.$ $\beta > 2$ (second derivative can change sign).

Consider the limit $(P_1 \text{ can be neglected})$. $P_0 + 2S \stackrel{k_+}{\rightleftharpoons} P_2, k = k_+/k_-$. $k_+[P_0][S]^2 = K_-[P_2] \Rightarrow$

$$k = k_+/k_- = [P_2]/[P_0][S]^2 \Rightarrow Y = \frac{[P_2]}{[P_0]+[P_2]} = \frac{k[S]^2}{1+k[S]^2} \text{ (Hill function)} \Rightarrow \frac{\ln \frac{Y}{1-Y}}{\ln[S]} = 2.$$

Assumption: no intermediate states! With inter states, $Y = \frac{x(1+\beta x)}{1+2x+\beta x^2}, n_H = \frac{d\ln\frac{Y}{1-Y}}{d\ln|S|} = 1 + \frac{d\ln\frac{Y}{1-Y}}{d\ln|S|}$ $\frac{(\beta-1)x}{(1+x)(1+\beta x)}$. Q: when $n_H \to 2$? A: $x \to 0, \beta \to \infty$.

Non-Identical and Interacting Binding Sites

$$P_0 \xrightarrow[k_{1-}]{k_{1+}} P_1, P_0 \xrightarrow[k_{2-}]{k_{2+}} P_1', P_1 \xrightarrow[k_{3-}]{k_{3+}} P_2, P_1' \xrightarrow[k_{4-}]{k_{4+}} P_2. \ k_j = k_{j+}/k_{j-}.$$

Principal of detailed balance: $k_1 = \frac{[P_1]}{[P_0][S]}, k_2 = \frac{[P_1']}{[P_0][S]}, k_3 = \frac{[P_2]}{[P_1][S]}, k_4 = \frac{[P_2]}{[P_1'][S]} \Rightarrow k_1 k_3 = k_2 k_4.$

不同配体别构合作效应: if $k_3 > k_2 \Rightarrow k_4 > k_1$. (Kim, et al. Probing Allostery through DNA)

Science 2013).
$$Y = \frac{1}{2} \frac{[P_1'] + [P_1] + 2[P_2]}{[P_0] + [P_1'] + [P_1] + [P_2]} = \frac{k_1[S] + k_2[S] + 2k_1k_2[S]^2}{1 + k_1[S] + k_2[S] + k_1k_2[S]^2}. \quad J = \frac{1}{2}(k_1 + k_2), J^* = \frac{2k_1k_3}{(k_1 + k_2)}, x' = J[S], \beta' = \frac{J^*}{J} \Rightarrow Y = \frac{x'(1 + x'\beta')}{1 + 2x' + \beta'x'^2}.$$

3 Transcription Networks

3.1 Basic Models

Signal \rightarrow protein $X \rightarrow$ Gene, Environment \rightarrow Transcription Factors \rightarrow Genes \rightarrow Environment.

TRANSCRIPTION NETWORKS

 $X \xrightarrow{S_X} X^* \to \text{bound activator/regressor} \to Y/\text{ No Transcription}.$

Timescales: Transcription & Translation of target genes: activation of T.F.(faster), binding(fast), Trans & Trans(slow), Protein synthesis(slower). For Ecoli: $\sim 1 \text{msec}$, $\sim 1 \text{sec}$, $\sim 5 \text{min}$, $\sim 1 \text{h}$.

Q: Can a T.F. be an activator for some genes and regressor for others? A: Yes.

Input function: rate of product of $Y = f(X^*)$ – monotonic. For example,

Hill function: for activator, $f(X^*) = \beta X^{*n}/(K^n + X^{*n}) + \beta_0$; for regressor, $f(X^*) = \frac{\beta}{1 + (\frac{X^*}{K})^n}$.

Logic input function: for activator, $f(X^*) = \beta I(X^* > K)$; for regressor, $f(X^*) = \beta I(X^* < K)$.

Dynamics: response time: $T_{\frac{1}{2}}$: the time to reach halfway between the initial and final levels.

 $\frac{dY}{dt} = f(X^*) - \alpha Y$. Decay rate: $\alpha = \alpha_{\text{degradation}} + \alpha_{\text{dilution}}$.

Q: response time for activation compares to for decay? Increase β , response time for activation? A: same, =.

Activation: $\frac{dY}{dt} = \beta - \alpha Y = 0 \Rightarrow Y_{st} = \beta/\alpha$. $T = 0, Y(0) = 0 \Rightarrow Y(t) = Y_{st}(1 - e^{-\alpha t})$. $T_{\frac{1}{3}} = \ln 2/\alpha$.

Decay: $\frac{dY}{dt} = -\alpha Y \Rightarrow Y(t) = Y_{st}e^{-\alpha t}$. $T_{\frac{1}{2}}$: $Y(t) = \frac{Y_{st}}{2} \Rightarrow T_{\frac{1}{2}} = \ln 2/\alpha$. large $\alpha \to \text{rapid change}$ in concentration. $\beta \to \text{only affects steady state level}$.

At early time, when $\alpha t \ll 1$, $Y(t) = \frac{\beta}{\alpha}(1 - e^{-\alpha t}) \sim \beta t$.

Response time for stable protein: $\alpha_{\rm deg}=0, \alpha=\alpha_{\rm dil}\Rightarrow T_{\frac{1}{2}}=\ln 2/\alpha_{\rm dil}:=\tau$ – one cell generation time.

3.2 Ultrasensitivity

Titration: $T+I \xrightarrow{k_+} TI$. T: transcription factor, I: inhibitor. $[T][I] = k[TI], [T] + [TI] = T_t, [I]$

$$\begin{split} +[TI] &= I_t, \, k \text{: dissociation constant. } [T]^2 - [T](T_t - I_t - k) - kT_t = 0 \Rightarrow [T] = \frac{T_t - I_t - K + \sqrt{(T_t - I_t - k)^2 + 4kT_t}}{2} \\ \text{Let } T &= \frac{[T]}{k}, T_t = \frac{T_t}{k}, I_t = \frac{I_t}{k} \Rightarrow T = \frac{T_t - I_t - 1 + \sqrt{(T_t - I_t - 1)^2 + 4T_t}}{2}. \end{split}$$

Take limit: 1. $T_t \ll I_t + 1 \Rightarrow T = \frac{T_t}{I_t + 1}$, buffering agent.

- 2. $T_t >> I_t + 1 \Rightarrow T = T_t (I_t + 1)$, saturated region.
- 3. $T_t \sim I_t + 1$, transition region.

3.3 Autoregulation

Network motif: a way to detect building block patterns.

Ecoli: N = 420 Nodes, E = 520 edges.

Randomized network: $E_{\text{max}} = \frac{1}{2}N(N-1) \cdot 2 + N = N^2, P = E/N^2$. $\langle N_{\text{self}} \rangle_{\text{rand}} = N \times P = E/N \approx 1.2$, but in Ecoli, $N_{\text{self}} = 40$ with 34 negative and 6 positive \Rightarrow Negatively autoregulated genes are a network motif.

Q: Does it have useful functions?

1. Response time.

Single regulated genes: $T_{\frac{1}{2}} = \frac{\ln 2}{\alpha}$.

Q: NAR response time? A: \downarrow .

Q: NAR off response time? A := .

POSITIVE FEEDBACK AND MULTISTABILITY

 $\frac{dx}{dt} = f(x) - \alpha x$ where $f(x) = \frac{\beta}{1 + (\frac{x}{k})^n}$ (decreasing Hill function). When n is large enough, $x_{st} = k$, and simplify f(x) by logic approximation $f(x) = \beta I(x < k)$. $\frac{dx}{dt} = \beta - \alpha x$ while x < k. At eartly times, $x(t) \sim \beta t$. NAR: strong promotion β can give rapid product.

2. Robustness

 X_{eq}^{NAR} robust to small changes on α and β , i.e. fluctuation in prod rate and deg rate.

4 Positive Feedback and Multistability

PAR: $\frac{dx}{dt} = \beta_1 \frac{x^n}{k^n + x^n} - \alpha x + \beta_0$. At early time, prod rate of $x = \beta_0$.

- 1. slow response time: development process, relatively long time process; prolonged delay.
- 2. bistability: $\frac{dx}{dt} = 0$ has 1 3 solutions for x.

Consider the following reactions:

Def $X: \lambda, X_2: \lambda\lambda, D:$ DNA promotor site, P: RNA polymerase.

OR3

OR2

 $2X \xleftarrow{k_1} X_2, D + X_2 \xleftarrow{k_2} DX_2, D + X_2 \xleftarrow{k_3} DX_2^*, DX_2 + DX_2 \xleftarrow{k_4} DX_2X_2^*, DX_2 + P \xleftarrow{k_t} DX_2 + P + nX, X \xrightarrow{k_d} \emptyset.$

Q: which are fast processes? A: reaction 1,2,3,4 \sim sec, reaction 5,6 \sim min – hour. $k_3 = \sigma_1 k_2, k_4 = \sigma_2 k_2$, define $y = [X_2], d = [D], u = [DX_2], v = [DX_2^*], z = [DX_2X_2^*].$ $y = k_1[X]^2, u = k_2 dy = k_1 k_2 d[X]^2, v = \sigma_1 k_2 dy = \sigma_1 k_1 k_2 d[X]^2, z = \sigma_2 k_2 uy = \sigma_2 (k_1 k_2)^2 d[X]^4.$

POSITIVE FEEDBACK AND MULTISTABILITY

$$\begin{split} \frac{d[X]}{dt} &= nk_t P_0 u - k_d[X] + r \; (r : \text{basal rate}). \; d_T = d + u + v + z \Rightarrow d_T = d[1 + (1 + \sigma_1)k_1k_2[X]^2 + \\ \sigma_2 k_1^2 k_2^2[X]^4] &\Rightarrow \frac{d[X]}{dt} = \frac{nk_t P_0 k_1 k_2 d_T[X]^2}{1 + (1 + \sigma_1)k_1 k_2[X]^2 + \sigma_2 k_1^2 k_2^2[X]^4}. \\ \text{Def } \overline{X} &= \sqrt{k_1 k_2}[X], \overline{t} = t(r\sqrt{k_1 k_2}), \; \frac{d\overline{X}}{d\overline{t}} = \frac{\sqrt{nk_t P_0 d_T \overline{X}^2}/r}{1 + (1 + \sigma_1)\overline{X}^2 + \sigma_2 \overline{X}^2} - \frac{k_d/r}{\sqrt{k_1 k_2}} \overline{X} = \frac{\alpha \overline{X}^2}{1 + (1 + \sigma_1)\overline{X}^2 + (1 + \sigma_2)\overline{X}^4} - \gamma \overline{X}. \\ \text{Consider the following reactions:} \end{split}$$

Denote TMG as X, Lacl as R and LacY as Y, and consider $X \dashv R \dashv Y \to X$. Model: $\frac{R}{R_T} = \frac{1}{1+(x/x_0)^n}, n \approx 2, \tau_y \frac{dy}{dt} = \alpha \frac{1}{1+R/R_0} - y, \tau_x \frac{dx}{dt} = \beta y - x \Rightarrow y_{st} = \frac{\alpha}{1+R/R_0}, x_{st} = \beta y_{st} \Rightarrow y_{st} = \alpha \frac{1+(\beta y)^2}{\rho+(\beta y)^2} (\rho = 1 + R_T/R_0) \Rightarrow y^3 - \alpha y^2 + \frac{\rho}{\beta^2} y - \frac{\alpha}{\beta^2} = 0$. Let it $= (y-a)(y-a)(y-\theta a) = 0$ (bistable), we get $\rho = (1+2\theta)(1+2/\theta), \alpha\beta = (2+\theta)^{\frac{3}{2}}/\theta^{\frac{1}{2}}$.

STABILITY AND OSCILLATION

Toggle switch: $A \dashv B, B \dashv A$. Boolean approximation: 0 for low and 1 for high.

Q: possible steady state? A: A1B0 or A0B1.

Q: to switch off GFP? A: S_2 .

Toggele model (Dimensionless Equations): $\frac{du}{dt} = \frac{\alpha_1}{1+v^{\beta}} - u, \frac{dv}{dt} = \frac{\alpha_2}{1+u^{\gamma}} - v.$

Good: Essential math; Bad: Lose connection to experiment

Q: effective liefetime of u vs v? A: $\tau_u = \tau_v$.

Q: If degration rates go up, what parameters change? A: α_1 and α_2 , \downarrow .

Equilibrium reactions: $P_1 + R_2^{\beta} \xleftarrow{k_1} P_1 R_2^{\beta}, P_2 + R_1^{\gamma} \xleftarrow{k_2} P_2 R_1^{\gamma}, \gamma R_1 \xleftarrow{k_3} R_1^{\gamma}, \beta R_2 \xleftarrow{k_4} R_2^{\beta}$ $[P^T] = [P_1^T] = [P_1] + [P_1R_2^\beta] = [P_2^T] = [P_2] + [P_2R_1^\gamma].$ $\begin{aligned} &|=[F_1^-] = [F_1] + [F_1R_2] - [F_2] - [F_2] + [F_2R_1]. \\ &R_{\mathrm{gen1}} = a_1[P_1] = a_1[P^T] \frac{[P_1]}{[P_1] + [P_1R_2^\beta]} = a_1[P^T] \frac{1}{1 + k_1[R_2^\beta]} = \frac{a_1[P^T]}{1 + k_1k_4[R_2]^\beta}. \\ &R_{\mathrm{gen2}} = a_2[P_2] = a_2[P^T] \frac{[P_2]}{[P_2] + [P_2R_1^\gamma]} = a_2[P^T] \frac{1}{1 + k_2[R_1^\gamma]} = \frac{a_2[P^T]}{1 + k_2k_3[R_1]^\gamma}. \\ &\frac{d[R_1]}{dt} = \frac{a_1[P^T]}{1 + k_1k_4[R_2]^\beta} - \delta[R_1], \frac{d[R_2]}{dt} = \frac{a_2[P^T]}{1 + k_2k_3[R_1]^\gamma} - \delta[R_2](\delta: \text{decay rate}). \\ &\text{Def } \tilde{t} = t\delta, u = [R_1](k_2k_3)^{1/\gamma}, v = [R_2](k_1k_4)^{1/\beta}, \text{ then} \\ &\frac{du}{d\tilde{t}} = \frac{a_1[P^T](k_2k_3)^{1/\gamma}}{\delta} \frac{1}{1 + v^\beta} - u = \frac{\alpha_1}{1 + v^\beta}, \frac{dv}{d\tilde{t}} = \frac{a_2[P^T](k_1k_4)^{1/\beta}}{\delta} \frac{1}{1 + u^\gamma} - v = \frac{\alpha_2}{1 + u^\gamma}. \ u_{st} = \frac{\alpha_1}{1 + v^\beta}, v_{st} = \frac{\alpha_2}{1 + u^\gamma}. \end{aligned}$

Stability and Oscillation

5.1 Stability Analysis

1D case: $\dot{x} = ax \Rightarrow x^* = 0$ stable iff a < 0.

2D case: $\dot{x} = f(x, y), \dot{y} = g(x, y) \Rightarrow f(x_0, y_0) = 0, g(x_0, y_0) = 0.$ Let $\Delta x = x - x_0, \Delta y = y - y_0 \Rightarrow$ $\dot{x} \approx f(x_0,y_0) + \delta x \frac{\partial f}{\partial x}|_{(x_0,y_0)} + \delta \frac{\partial f}{\partial y}|_{(x_0,y_0)}, \\ \dot{y} \approx g(x_0,y_0) + \delta x \frac{\partial g}{\partial x}|_{(x_0,y_0)} + \delta \frac{\partial g}{\partial y}|_{(x_0,y_0)} \Rightarrow \\ \dot{x} = a\Delta x + b\Delta y, \\ \dot{y} = a\Delta x$ $c\Delta x + d\Delta y$ or $\overrightarrow{X} = A\overrightarrow{X}$. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\operatorname{tr}(A) = a + d$, $\det(A) = ad - bc$. (x_0, y_0) stable iff $\operatorname{tr}(A) < 0$, $\det(A) > 0.$

Example: Toggle Switch: $\dot{u} = f(u, v) = \frac{\alpha_1}{1 + v^{\beta}} - u, \dot{v} = g(u, v) = \frac{\alpha_2}{1 + u^{\gamma}} - v \Rightarrow u = \frac{\alpha_1}{1 + v^{\beta}}, v = \frac{\alpha_2}{1 + u^{\gamma}}.$ $A = \begin{pmatrix} -1 & \frac{-\alpha_1 \beta v^{\beta - 1}}{(1 + v^{\beta})^2} \\ \frac{-\alpha_2 \gamma u^{\gamma - 1}}{(1 + u^{\gamma})^2} & -1 \end{pmatrix}. \text{ tr}(A) = -2, \det(A) = 1 - \frac{\alpha_1 \beta v^{\beta - 1} \alpha_2 \gamma u^{\gamma - 1}}{(1 + v^{\beta})^2 (1 + u^{\gamma})^2} > 0 \Leftrightarrow \beta \gamma v^{\beta + 1} u^{\gamma + 1} > 0$

Assumption: 1. large α_1, α_2 ; 2. ratio between on or off is large (either u/v >> 1 or v/u >> 1). In the case when u >> v, $u \approx \alpha_1, v \approx \frac{\alpha_2}{\alpha_1^{\gamma}} \Leftrightarrow \log(\alpha_1) \approx \frac{1}{\gamma} \log(\alpha_2)$. When v << u, $\log(\alpha_2) =$ $\frac{1}{\beta}\log(\alpha_1)$. When $\frac{1}{\gamma}<\frac{\log(\alpha_1)}{\log(\alpha_2)}<\beta$, bistability occurs.

5.2Biological Oscillations

1D case: $\dot{x} = f(x) = \frac{\alpha}{1+x^n} - x$. Q: possible oscillation? A: No, becase $\dot{x}(t)$ should be the same for the same x.

2D case: $\dot{m} = \frac{\alpha}{1+p^n} - m, \dot{p} = -\beta(p-m)$ where m: mRNA, p: protein, β : lifetime of mRNA. $\beta \ll 1$. Q: possible oscillation? A: No. $A = \begin{pmatrix} -1 & -\frac{\alpha n p^{n-1}}{(1+p^n)^2} \\ \beta & -\beta \end{pmatrix} \Rightarrow \operatorname{tr}(A) \ll 0, \det(A) > 0 \Rightarrow \lambda_{1,2} \ll 0$ $0 \Rightarrow \text{stable}.$

STABILITY AND OSCILLATION

$$\dot{x} = -x + ay + x^2y, \\ \dot{y} = b - ay - x^2y. \text{ Nullclines: } y = \frac{x}{a+x^2}, \\ y = \frac{b}{a+x^2} \Rightarrow x^* = a, \\ y^* = \frac{b}{a+b^2}. \\ A = \begin{pmatrix} -1 + 2x^*y^* & a + x^{*2} \\ -2x^*y^* & -a - x^{*2} \end{pmatrix}. \text{ tr}(A) = -\frac{b^4 + (2a-1)b^2 + (a+a^2)}{a+b^2}, \text{ det}(A) = a + b^2 > 0. \text{ When } (A) < 0, \text{ stable fixed point; when } \text{tr}(A) > 0, \text{ unstable } \Rightarrow \text{ stable limit cycle.}$$

5.3 Ruling out Closed Orbits

1. Gradient system: $\dot{x} = -\nabla V(x)$.

Thm: Closed orbits are impossible in gradient systems.

Proof: Suppose there were a closed orbit. ΔV : change of V after one circuit. So $0 = \Delta V = \int_0^T \frac{dV}{dt} dt = \int_0^T \nabla V \cdot \dot{x} dt = -\int_0^T ||\nabla V||^2 dt < 0$, which is contradictory.

2. Lyapunov functions.

 $\dot{x}=f(x)$ with a fixed point at x^* . Suppose we can find a Lyapunov function i.e. a continuous differentiable, real-valued function V(x) with (1) V(x)>0 for all $x\neq x^*$ and $V(x^*)=0$; (2) $\dot{V}(x)<0$ for all $x\neq x^*$ (all trajectories follow "downhill" to x^*). Then x^* is globally asymptotically stable, no closed orbit.

- 3. Poincare-Bendixson thm.
- (1) R is a closed bounded subset of the plane;
- (2) $\dot{x} = f(x)$ is a continuous, differentiable vector field on an open set containing R;
- (3) R does not contain any fixed point;
- (4) There exists a trajectory C that is confined in R.

Theen either C is a closed orbit or it spirals toward a closed orbit as $t \to \infty$.

5.4 Synthetic Genetic Oscillators

Example 1:
$$\begin{cases} \frac{dm_i}{dt} = -m_i + \frac{\alpha}{1+p_j^n} + \alpha_0 \\ \frac{dp_i}{dt} = -\beta(p_i - m_i) \end{cases}$$
 where $i = [\text{lacl, tetR, cl}], j = [\text{cl, lacl, tetR}].$

Let us assume that we can ignore the intermediate step of mRNA synthesis. $\frac{dp_1}{dt} = -p_1 + \frac{\alpha}{1+p_3^n} + \alpha_0$, $\frac{dp_2}{dt} = \frac{\alpha}{1+p_1^n} - p_2 + \alpha_0$, $\frac{dp_3}{dt} = \frac{\alpha}{1+p_2^n} - p_3 + \alpha_0 \Rightarrow p_1 = p_2 = p_3 = p$, steady when $p = \frac{\alpha}{1+p^n} + \alpha_0$.

9

STABILITY AND OSCILLATION

$$A = \begin{pmatrix} -1 & 0 & X \\ X & -1 & 0 \\ 0 & X & -1 \end{pmatrix} \text{ where } X = -\frac{\alpha n p^{n-1}}{(1+p^n)^2}. \text{ Eigenvalue } \lambda_1 = X - 1, \lambda_2 = -1 - \frac{1}{2}X + i\frac{\sqrt{3}}{2}X, \lambda_3 = 0$$

 $-1 - \frac{1}{2}X - i\frac{\sqrt{3}}{2}X$, stable fixed point $\Leftrightarrow \operatorname{Re}(\lambda_i)$ negative $\Leftrightarrow -2 < X < 1 \Rightarrow \frac{\alpha np^{n-1}}{(1+p^n)^2} < 2$.

For large α , $\alpha \approx p(1+p^n) \Rightarrow n \lesssim 2 \Rightarrow n \gtrsim 2$ gives oscillation.

Example 2: the translation of mRNA: $\frac{dX_2}{dt} = k_p X_1 - \beta_2 X_2$ where k_p is the translation rate constant and β_2 is the decay rate constant of the protein X_2 . $X_2^s = \frac{k_p}{\beta_2} X_1^s$.

When X_2 and X_1 are normalized to their steady state values, $\frac{dx_2}{dt} = \beta_2(x_1 - x_2)$.

Thus $\frac{dx_1}{dt} = \beta_1(f_1 - x_1), \frac{dx_2}{dt} = \beta_2(x_1 - x_2), \frac{dx_3}{dt} = \beta_3(f_3 - x_3), \frac{dx_4}{dt} = \beta_4(x_3 - x_4), \frac{dx_5}{dt} = \beta_5(f_5 - x_5), \frac{dx_6}{dt} = \beta_6(x_5 - x_6).$

The functions f_1, f_3 and f_5 describe the transcriptional regulation and are defined by triphasic

functions.
$$f_1 = \begin{cases} B: x_2^{g_{12}} x_4^{g_{14}} < B \\ x_2^{g_{12}} x_4^{g_{14}} : B < x_2^{g_{12}} x_4^{g_{14}} < M \\ M: x_2^{g_{12}} x_4^{g_{14}} > M \end{cases}, f_3 = \begin{cases} B: x_2^{g_{32}} < B \\ x_2^{g_{32}} : B < x_2^{g_{32}} < M \\ M: x_2^{g_{32}} > M \end{cases}$$
. In the case of only

one fixed point, $x_1 = x_2 = x_3 = x_4 = 1$.

FEED FORWARD LOOP NETWORK MOTIF

$$A = \begin{pmatrix} -\beta_1 & \beta_1 g_{12} & 0 & \beta_1 g_{14} \\ \beta_2 & -\beta_2 & 0 & 0 \\ 0 & \beta_3 g_{32} & -\beta_3 & 0 \\ 0 & 0 & \beta_4 & -\beta_4 \end{pmatrix}. \quad |\lambda I - A| = 0 \Rightarrow a_0 \lambda^4 + a_1 \lambda^3 + a_2 \lambda^2 + a_3 \lambda + a_4 = 0 \text{ where}$$

$$a_0 = 1, a_1 = \beta_1 + \beta_2 + \beta_3 + \beta_4, a_2 = \beta_1 \beta_2 (1 - g_{12}) + \beta_1 \beta_3 + \beta_1 \beta_4 + \beta_2 \beta_3 + \beta_2 \beta_4 + \beta_3 \beta_4, a_3 = 0$$

 $\beta_1\beta_2\beta_3(1-g_{12}) + \beta_1\beta_2\beta_4(1-g_{12}) + \beta_2\beta_3\beta_4 + \beta_1\beta_3\beta_4, a_4 = \beta_1\beta_2\beta_3\beta_4(1-g_{14}g_{32}-g_{12}).$

Routh-Hurwitz criterion: a system is stable if (1) all coefficients are possible; (2) all elements in the first column of R-H matrix are positive. This matrix is constructed as follows:

The matrix has n+1 (in our case 5) rows:

where $b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}$, $b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1}$, $b_3 = \frac{a_1 a_6 - a_0 a_7}{a_1}$, $c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1}$, $c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1}$, $c_3 = \frac{b_1 a_7 - a_1 b_4}{b_1}$, $d_1 = \frac{c_1 b_2 - b_1 c_2}{c_1}$, $d_2 = \frac{c_1 b_3 - b_1 c_3}{c_1}$, \cdots .

Feed Forward Loop Network Motif

Q: How many possible *n*-node patterns? A: n = 3, 13; n = 4, 199; n = 5, 9364.

Two traditional patterns in 3-node system("→" just means a kind of relation, which can be either positive or negative).

In Ecoli, $N \sim 400$ genes, $E \sim 500$ interactions, $P = \frac{E}{N^2} \sim 0.003 << 1$, average number of subgraph G in the network $\langle N_G \rangle = \frac{1}{a} N^n P^g$, where n: nodes in G, g: edges in G, a: combinational factors for structure (how many times the subgraph G can repeat but keep the same structure).

Define mean connectivity $\lambda = E/N$, then $P = E/N^2 = \lambda/N \Rightarrow \langle N_G \rangle = \frac{1}{a} \lambda^g N^{n-g}$. Scaling relation: $\langle N_G \rangle \sim N^{n-g}$.

In random network, $\lambda \sim 500/400 = 1.25, \langle N_{\rm FFL} \rangle_{\rm rand} = 1.25^3 \approx 2, \langle N_{\rm Loop} \rangle_{\rm rand} = 1.25^3/3 \approx 0.6.$ In Ecoli, # of FFL = 42, # of feedback loop = $0 \Rightarrow$ FFL is a network motif. In fact, FFL is the only

FEED FORWARD LOOP NETWORK MOTIF

significant motif of the 13 possible 3-node network.

Structure of FFL: total # of FFL = $2^3 = 8$ (remind that " \rightarrow " can represent either positive or negative relations).

Coherent FFL and Incoherent FFL:

6.1 C1-FFL

Input functions of Z: (AND/OR means Z can be produced only when X and/or Y are available, ON/OFF means signals of X (S_x) are suddenly on/off, \checkmark means the changes of concentration of Z are delayed when giving the corresponding conditions)

$\begin{array}{ c c c }\hline \text{delay} & S_x\\ \hline \text{gate} & & \\ \hline\end{array}$	ON	OFF
AND	\checkmark	×
OR	×	✓

Consider AND gate first. Product rate of $y = \beta_y I(x^* > k_{xy}), z = \beta_z I(x^* k_{xz}) I(y^* > k_{yz}) \Rightarrow \frac{dy}{dt} = \beta_y I(x^* > k_{xy}) - \alpha_y Y, \frac{dz}{dt} = \beta_z I(x^* > k_{xz}) I(y^* > k_{yz}) - \alpha_z Z.$ Assume S_x is present, $Y^*(t) = Y_{st}(1 - e^{-\alpha_y t})$ where $Y_{st} = \beta_y / \alpha_y$. For Z, the delay T_{on} satisfies $Y^*(T_{on}) = Y_{st}(1 - e^{-\alpha_y T_{on}}) = k_{yz} \Rightarrow T_{on} = \frac{1}{\alpha_y} \log(\frac{1}{1 - k_{yz}/Y_{st}})$.

Advantage: robust to input fluctuations.

For OR gate, it is a sign-sensitive delay for off step, $Y^*(t) = Y_{st}e^{-\alpha_y t} \Rightarrow Y^*(T_{off}) = k_{yz} \Rightarrow T_{off} = \frac{1}{\alpha_y} \log(Y_{st}/k_{yz}).$

6.2 I1-FFL

 β_z : prod rate of Z when only X is available (strong). β_z' : prod rate of Z when both X and Y are available (weak). repression factor $F = \beta_z/\beta_z'$.

When
$$Y^* < k_{yz}$$
, $\frac{dY}{dt} = \beta_y - \alpha_y Y \Rightarrow Y(t) = Y_{st} (1 - e^{-\alpha_y t})$ where $Y_{st} = \beta_y / \alpha_y$. $\frac{dZ}{dt} = \beta_z - \alpha_z Z \Rightarrow Z(t) = Z_m (1 - e^{-\alpha_z t})$ where $Z_m = \beta_z / \alpha_z$.

ADAPTATION

When $Y^* \geq k_{yz}$, product rate of $Z: \beta_z \to \beta_z'$. $Y(T_{rep}) = Y_{st}(1 - e^{-\alpha_y T_{rep}}) = k_{yz} \Rightarrow T_{rep} = \frac{1}{\alpha_y} \log(\frac{1}{1 - k_{yz}/Y_{st}})$. After T_{rep} , Z decays exponentially to a new low steady point $Z_{st} = \beta_z'/\alpha_z \Rightarrow Z(t) = Z_{st} + (Z_0 - Z_{st})e^{-\alpha_z(t - T_{rep})}$ where $Z_0 = Z_m(1 - e^{-\alpha_z T_{rep}})$.

Function: I1-FFL is a pulse generator and speeds up response time.

 $Z_{\frac{1}{2}} = \frac{Z_{st}}{2} = Z_m (1 - e^{-\alpha_z T_{\frac{1}{2}}}) \Rightarrow T_{\frac{1}{2}} = \frac{1}{\alpha_z} \log(\frac{2F}{2F-1})$ where $F = \frac{Z_m}{Z_{st}}$. $F >> 1, T_{\frac{1}{2}} \to 0$. Thus, I1-FFL is a sign-sensitive response accelerator for ON step.

6.3 Other FFLs

Q1: Can X be both activator & regressor? A: Yes.

Q2: Dynamics: Is I4-FFL a sign-sensitive accelerator? A: Yes.

Q3: What's the difference between I1 & I4? A: steady state logic.

S_x	S_y	z in I1	z in I4
0	0	0	0
0	1	0	0
1	0	1, High	0, Low
1	1	0, Low	0, Low

Therefore, I4-FFL is rare in E-coli because the steady concentration of z won't change when regulating S_x and S_y .

7 Adaptation

7.1 Spiro's model

Fraction of receptors that are bound to a ligand: $f_b = \frac{[LT_2]}{[T_2] + [LT_2]} = \frac{K_b L}{1 + K_b L}$ where $K_b = \frac{k_5}{k_{-5}} = \frac{k_6}{k_{-6}} = \frac{k_7}{k_{-7}} \sim 10^{-6}$.

Effective rates: $k_{\text{eff1}}(L) = k_8(1 - f_b) + k_{11}f_b = \frac{k_8 + k_{11}K_bL}{1 + K_bL}, k_{\text{eff2}}(L) = k_9(1 - f_b) + k_{12}f_b = \frac{k_9 + k_{11}K_bL}{1 + K_bL}, k_{\text{eff3}}(L) = k_{-1}(1 - f_b) + k_{-3}f_b = \frac{k_{-1} + k_{-3}K_bL}{1 + K_bL}.$

 $\text{Methylation rates: } r = \frac{V_{\max{1}}(1-f_b)[2]}{k_R + (1-f_b)[2]} + \frac{V_{\max{3}}f_b[2]}{k_R + f_b[2]}, r_p = \frac{V_{\max{1}}(1-f_b)[2_p]}{k_R + (1-f_b)[2_p]} + \frac{V_{\max{3}}f_b[2_p]}{k_R + f_b[2_p]} \text{ where } [2] \text{ and } [2_p]$ are the total concentrations of non-phosphorylated and phosphorylated receptors with two methylation sites.

Q: What is needed for perfect adaptation?

$$\frac{[2_p]}{2} = \frac{k_{\text{eff1}}(L)}{k_{pt}}, \frac{[3_p]}{[3]} = \frac{k_{\text{eff2}}(L)}{k_{pt}}, \frac{[3]}{[2]} = \frac{[3_p]}{[2_p]} = \frac{k_{\text{eff4}}(L)}{k_{\text{eff3}}(L)}, [2_p] + [2] + [3_p] + [3] = Const.$$
Problem: 4 unknowns, 5 equations \rightarrow introduce an additional variable.

Perfect adaptation: in steady state, # of phosphorylated receptors is independent of $L \Rightarrow$ effective phosphorylation rate is independent of L.

$$k_{\rm phos} = (1 - \alpha)k_{\rm eff1}(L) + \alpha k_{\rm eff2}(L) \Rightarrow \alpha(L) = \frac{k_{\rm phos}(L) - k_{\rm eff1}(L)}{k_{\rm eff2}(L) - k_{\rm eff1}(L)} = \frac{k_{\rm phos}(1 + K_B L) - k_8 - k_{11} K_B L}{(k_9 - k_8) + (k_{12} - k_{11}) K_B L}$$

7.2Barkai's Model

Assumption: 1. CheB only demethylates phosphorylated receptors; 2. methylation rates operate at saturation; 3. demethylation is independent of ligand binding.

$$\frac{d[3_p]}{dt} = r_{\rm in} - k_{\rm eff4}[3_p] - k_{pt}[3_p] + k_{\rm eff2}[3], \\ \frac{d[3]}{dt} = r_{\rm in} + k_{\rm pt}[3_p] - k_{\rm eff2}[3] \Rightarrow \frac{d[3_T]}{dt} = \frac{d[3]}{dt} + \frac{d[3_p]}{dt} = 2r_{\rm in} - k_{\rm eff4}[3_p] = 0 \Rightarrow [3_p] = \frac{2r_{\rm in}}{k_{\rm eff4}} \text{ independent of } L.$$

Ma's Model 7.3

Define newtwork topologies that can achieve Biochemical Adaptation.

Here, A is the input node, B is a buffering node and C is the output node. The definitions of sensitivity and precision are shown in the right figure.

8 Stochastic Chemical Kinetics

Michaelis-Menten kinetics: $E + S \xrightarrow{k_1} ES \xrightarrow{k_3} E + P$.

Assumption: (1) well mixed ⇒ 均匀分布, 各向同性;

- (2) 分子间大量无规则的频繁碰撞 ⇒ 分子速率处于某一稳定分布;
- (3) T is constant.

Reaction Rate Equation (deterministic):
$$\begin{cases} \frac{d[S]}{dt} = k_2[ES] - k_1[E][S] \\ \frac{d[ES]}{dt} = -(k_2 + k_3)[ES] + k_1[E][S] \\ \frac{d[P]}{dt} = k_3[ES] := v \end{cases}$$

Good for micro-scale system, # of molecules $>> 1 \Rightarrow$ neglect fluctuations in systems, which can be very important in biology.

Consider N molecules $\{S_1, \dots, S_N\}$ and M reactions $\{R_1, \dots, R_M\}$, $X_i = \#$ of S_i , $X = \{X_1, \dots, X_N\}$. When a reaction happens, status of X will change.

 $k_1[E][S], a_2 = k_2[ES], a_3 = k_3[ES].$

When X(t) = x in (t, t + dt), 系统中每个反应独立于其他反应以 $P = a_j(x)dt$ 发生. 一旦反应 R_j 发生, 系统状态改变到 $x + v_j \Rightarrow$ Markov jump process.

8.1 Probabilistic Formulation of Reaction Kinetics

(A) Single molecule: $P_n(t)$: # of these systems having n molecules of time t. Reactions for $P_n(t)$:

 $+1 \Rightarrow$ a X is created in some systems having n-1 molecules.

 $-1 \Rightarrow a X \text{ is destroyed } \cdots n + 1 \cdots$

$$\begin{array}{c|c}
\hline
p_{n-1} & \xrightarrow{f_{n-1}} & \xrightarrow{f_n} & \xrightarrow{g_{n+1}} & \\
\hline
\end{array}$$

Master Equation: $\frac{dP_n}{dt} = -(f_n + g_n)P_n + f_{n-1}P_{n-1} + g_{n+1}P_{n+1}$ —(1). This is an infinite set of equations.

 $\frac{P_n}{\sum_{n=1}^{\infty} P_n} := P_n(t)$ prob of any given systems in state n. To solve (1) is very difficult. But it is possible to obtain all the monents of $P_n(t)$ without explicitly solving master equation.

For example, mean # of molecules: $\langle n \rangle = \sum_n n P_n, \frac{dn}{dt} = k - \gamma n := f_n - g_n, \frac{d\langle n \rangle}{dt} = -k \sum_n n P_n - \frac{dn}{dt}$ $\gamma \sum_{n} n^2 P_n + k \sum_{n} n P_{n-1} + \gamma \sum_{n} n(n+1) P_{n+1} = k - \gamma \langle n \rangle.$

(B) Multiple molecules: Assume $X(t_0) = x_0, \langle x \rangle = \sum x P(x, t | x_0, t_0)$.

Master equation: $P(x, t + dt | x_0, t_0) - P(x, t | x_0, t_0) = J_{in}(t, t + dt) - J_{out}(t, t + dt) \Rightarrow J_{in}(t, t + dt)$ $dt) = \sum_{j=1}^{M} p(x - v_j, t | x_0, t_0) a_j(x - v_j) dt, J_{\text{out}}(t, t + dt) = P(x, t | x_0, t_0) \sum_{j=1}^{M} a_j(x) dt \Rightarrow P(x, t + dt) - P(x, t) = \sum_{j=1}^{M} p(x - v_j, t) a_j(x - v_j) - P(x, t) \sum_{j=1}^{M} a_j(x) dt \Rightarrow \frac{\partial P(x, t)}{\partial t} = \sum_{j=1}^{M} [a_j(x - v_j) P(x - v_j, t) - P(x, t)] = \sum_{j=1}^{M} p(x - v_j, t) a_j(x - v_j) - P(x, t) \sum_{j=1}^{M} a_j(x) dt \Rightarrow \frac{\partial P(x, t)}{\partial t} = \sum_{j=1}^{M} [a_j(x - v_j) P(x - v_j, t) - P(x, t)] = \sum_{j=1}^{M} a_j(x) dt$ $a_j(x)P(x,t)$]—(2). Define $P_x(t) = P(x,t) \Rightarrow \frac{dP_x(t)}{dt} = \sum_{j=1}^{M} [a_j(x-v_j)P_{x-v_j}(t) - a_j(x)P_x(t)]$ Define A coeff matrix, $A_{x,x-v_j} = a_j(x-v_j)$, $A_{x,x} = -\sum_{j=1}^M a_j(x) \Rightarrow \frac{dP_x(t)}{dt} = AP_x(t)$.

 $P_x(t) \ge 0, \sum_x P_x(t) = 1.$

If X is a finite set, $P_x(t) = e^{A(t-t_0)} P_x(t_0)$.

A: 非对角线元素都非负, 对角线元素都非正 ⇒ Metzler Matrix ⇒ 没有正实部特征值 ⇒ 可收敛 到系统的平稳分布.

$$\frac{\partial}{\partial t} \sum_{x} x P(x,t) = \sum_{x} \sum_{j=1}^{M} [x a_j(x - v_j) P(x - v_j, t) - x a_j(x) P(x,t)](x - v_j = x) = \sum_{j=1}^{M} \sum_{x} (x + v_j) a_j(x) P(x,t) - \sum_{j=1}^{M} \sum_{x} x a_j(x) P(x,t) = \sum_{j=1}^{M} v_j \sum_{x} a_j(x) P(x,t) \Rightarrow \frac{d\langle X_i \rangle}{dt} = \sum_{j=1}^{M} v_{ji} \langle a_j(X) \rangle$$
where $\langle a_j(X) \rangle = \sum_{x} a_j(x) P(x,t) = a_j(\langle X \rangle)$ (we assume $a_j(x)$ is linear) $\Rightarrow \frac{d\langle X_i \rangle}{dt} = \sum_{j=1}^{M} v_{ji} a_j(\langle X \rangle)$.

Fluctuation-Dissipation Thm 8.2

Consider the covariance matrix of the multiple-molecule system and its derivative w.r.t. t.

$$\sigma_{ik} = \sum_{x} (x_i - \langle X_i \rangle)(x_k - \langle X_k \rangle)P(x, t)$$

$$\Rightarrow \frac{d\sigma_{ik}}{dt} = \sum_{x} (-\frac{d\langle X_i \rangle}{dt})(x_k - \langle X_k \rangle)P(x, t) + \sum_{x} (-\frac{d\langle X_k \rangle}{dt})(x_i - \langle X_i \rangle)P(x, t) + \sum_{x} (x_i - \langle X_i \rangle)(x_k - \langle X_k \rangle)\frac{\partial P(x, t)}{\partial t}$$

前面两项为 0, 最后一项使用 Master Equation

$$\Rightarrow \frac{d\sigma_{ik}}{dt} = \sum_{x} (x_i - \langle X_i \rangle)(x_k - \langle X_k \rangle) \sum_{j=1}^{M} [a_j(x - v_j)P(x - v_j, t) - a_j(x)P(x, t)]$$

$$= \sum_{j=1}^{M} \sum_{x} (x_i - \langle X_i \rangle)(x_k - \langle X_k \rangle)a_j(x - v_j)P(x - v_j, t) - \sum_{j=1}^{M} \sum_{x} (x_i - \langle X_i \rangle)(x_K - \langle X_k \rangle)a_j(x)P(x, t)$$

$$= \sum_{j=1}^{M} \sum_{x} (x_i + v_{ji} - \langle X_i \rangle)(x_k + v_{jk} - \langle X_k \rangle)a_j(x)P(x, t)$$

$$= \sum_{x} \sum_{j=1}^{M} [v_{ji}a_j(x)(x_k - \langle X_k \rangle) + v_{jk}a_j(x)(x_i - \langle X_i \rangle)]P(x, t) + \sum_{x} \sum_{j=1}^{M} v_{ji}v_{jk}a_j(x)P(x, t)$$

$$:= \sum_{x} [A_i(x)(x_k - \langle X_k \rangle) + A_k(x)(x_i - \langle X_i \rangle)]P(x, t) + \sum_{x} B_{ik}(x)P(x, t)$$

$$\Rightarrow \frac{d\sigma_{ik}}{dt} = \langle A_i(X)(X_k - \langle X_k \rangle) \rangle + \langle A_k(X)(X_i - \langle X_i \rangle) + \langle B_{ik}(X) \rangle$$

仅考虑一阶反应 $\Rightarrow a_j(x)$ 都是线性函数, $\frac{d\langle X_i \rangle}{dt} = \sum_{j=1}^M v_{ji} a_j (\langle X_i \rangle)$.

弱随机条件下, 当 $x_i - \langle X_i \rangle$ 很小时, 在 $x = \langle X \rangle$ 附近做 Taylor Expansion.

$$\Rightarrow A_i(x) = A_i(\langle X \rangle) + \sum_{l=1}^N \frac{\partial A_i(\langle X \rangle)}{\partial x_l} (x_l - \langle X_l \rangle), B_{ik}(x) = B_{ik}(\langle X \rangle) + \sum_{l=1}^N \frac{\partial B_{ik}(\langle X \rangle)}{\partial x_l} (x_l - \langle X_l \rangle)$$

$$\Rightarrow \frac{d\sigma_{ik}}{dt} = \sum_{l=1}^N \left[\frac{\partial A_i(\langle X \rangle)}{\partial x_l} \sigma_{ik} + \frac{\partial A_k(\langle X \rangle)}{\partial x_l} \sigma_{il} \right] + B_{ik}(\langle X \rangle)$$

$$\Rightarrow \frac{d\sigma}{dt} = (A\sigma + \sigma A^T) + B \text{ (近平衡态时系统协方差的近似演化方程)}$$

Q: A, B physical meaning? A: dissipation, B: fluctuation.

A: linear coefficient matrix, $Re(\lambda(A)) < 0$ for steady equilium \Rightarrow dissipation.

$$\frac{d\sigma}{dt} = 0 \Rightarrow B = -A\sigma - \sigma A^T, \ \sigma \neq 0 \Rightarrow B_{ii}(x) = \sum_{j=1}^{M} v_{ji}^2 a_j(x) \ge 0.$$

8.3 Steady State of Master Equation

For single molecule, $\frac{dP_n}{dt} = -(k+\gamma n)P_n + kP_{n-1} + \gamma(n+1)P_{n+1} = 0 \Rightarrow P_n = \frac{\bar{n}}{n}P_{n-1} = \cdots = \frac{\bar{n}^n}{n!}P_0$ where $\bar{n} = k/\gamma \Rightarrow \sum_n P_n = \sum_n \frac{\bar{n}^n}{n!}P_0 = 1 \Rightarrow P_0 = e^{-\bar{n}} \Rightarrow P_n = \frac{\bar{n}^n}{n!}e^{-\bar{n}}$.

Limit of large numbers: mean & variance: $\langle n \rangle = \langle \delta n^2 \rangle = \bar{n} = k/\gamma$. Coefficient of variation (relative standard deviation) = $\frac{\sqrt{\langle \delta n^2 \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle}}$.

8.4 Fokker-Planck Equation

From discrete to constant variable. Tool: Taylor expansion.

Master Equation:
$$\frac{dP_x(t)}{dt} = \sum_{j=1}^{M} [a_j(x-v_j)P_{x-v_j}(t) - a_j(x)P_x(t)]. \text{ Assume } x >> v_j, \frac{\partial P(x,t)}{\partial t} = \sum_{j=1}^{M} [a_j(x)P(x,t) - \sum_{i=1}^{M} \frac{\partial}{\partial x_i} a_j(x)P(x,t)v_{ji} + \frac{1}{2}\sum_{i,k=1}^{n} \frac{\partial^2}{\partial x_i\partial x_k} a_j(x)P(x,t)v_{ji}v_{jk} - a_j(x)P(x,t)].$$
Define $A_i(x) = \sum_{j=1}^{M} v_{ji}a_j(x), B_{ik}(x) = \sum_{j=1}^{M} v_{ji}v_{jk}a_j(x).$

$$\frac{\partial P(x,t)}{\partial t} = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} A_i(x)P(x,t) + \frac{1}{2}\sum_{1\leq i,k\leq N} \frac{\partial^2}{\partial x_i\partial x_k} B_{ik}(x)P(x,t). \text{ (Fokker-Planck Equation)}$$
Assume $A_i(x) = 0, B_{ik}(x) = D\delta_{ik}, \Rightarrow \frac{\partial P(x,t)}{\partial t} = \frac{D}{2}\sum_{i=1}^{N} \frac{\partial^2 P(x,t)}{\partial x_i^2}. \text{ (Diffusion Equation)}$
Example: 1-D case:
$$\frac{dP_n}{dt} = -(f_n + g_n)P_n + f_{n-1}P_{n-1} + g_{n+1}P_{n+1}.$$

$$\begin{cases} f(n-1)P(n-1) = f(n)P(n) - \frac{\partial}{\partial n}f(n)P(n) + \frac{1}{2}\frac{\partial^2}{\partial n^2}f(n)P(n) \\ g(n+1)P(n+1) = g(n)P(n) + \frac{\partial}{\partial n}g(n)P(n) + \frac{1}{2}\frac{\partial^2}{\partial n^2}g(n)P(n) \end{cases}$$

$$\Rightarrow \frac{\partial P(u,t)}{\partial t} = -\frac{\partial}{\partial n}[(f-g)P - \frac{1}{2}\frac{\partial}{\partial n}(f+g)P] := -\frac{\partial}{\partial n}J$$

where J: prob flux. At steady state, J = Const. = 0 (flux at $n = 0 = 0 \Rightarrow J = 0$ everywhere).

Then $(f-g)P = \frac{1}{2}\frac{\partial}{\partial n}(f+g)P$. Define $q = (f+g)P, \frac{f-g}{f+g}q = \frac{1}{2}\frac{\partial q}{\partial n} \Rightarrow q = A\exp(2\int \frac{f-g}{f+g}dn') \Rightarrow P(n) = \frac{A}{f+g}e^{-\phi(n)}$ where $\phi(n) = -2\int \frac{f-g}{f+g}dn'$ (potential).

Example: stochastic bistable system: $\frac{dx}{dt} = \frac{v_0 + v_1 x^2}{k + x^2} - \gamma x$.

8.5 Waiting Time Between Reactions

Suppose chem reaction occurs at rate r. The prob that the reaction occurs in dt is rdt.

The prob that it occurs only after some time τ is $P(\tau) = P(\text{next occurence is in } (\tau, \tau + d\tau)) = P(\text{does not occur for } t < \tau)P(\text{occurs in } \tau \text{ to } \tau + d\tau)$. Define $Q(\tau)$ = the former.

$$Q(\tau) = Q(\tau - d\tau)(1 - rd\tau) \Rightarrow \log Q(\tau) - \log Q(\tau - d\tau) = \log(1 - rd\tau) \approx -rd\tau \Rightarrow \frac{d \log Q(\tau)}{d\tau} = -r \Rightarrow Q = e^{-r\tau} \text{ where } Q(0) = 1 \Rightarrow P(\tau) = e^{-r\tau} rd\tau.$$

8.6 Stochastic Simulation Algorithm

Numerically simulate the time evolution of a well-mixed chemically reacting system, is exact in the sense that it is rigorously based on chemical Master Equation.

Consider $N \geq 1$ molecular species $\{S_1, \dots, S_N\}$, $M \geq 1$ reactions $\{R_1, \dots, R_M\}$, $x(t) = (x_1(t), \dots, x_N(t))$ where $x_i(t) = \#$ of S_i at time t.

 $t: x(t) \to t + \tau$ 下一个反应 R_{μ} , $(t, t + \tau)$, $x \to x + v_{\mu} \Rightarrow x(t) = x$ 计算下一个反应发生的时间 $t + \tau$ 和反应 R_{μ} .

Q: Key factors for SSA? A: $\tau \to$ when will reaction occur? $\mu \to$ which reaction?

下一次反应在 $(t+\tau,t+\tau+d\tau)$ 内且发生第 μ 个反应的 $P(\tau,\mu;x)d\tau=$ the prob given x(t)=x that one R_j will occur in the next infinitesimal time interval.

 $P(\tau,\mu;x)d\tau = P_0(\tau,x)a_\mu(x)d\tau$. $P_0(\tau,x)$: $(t,t+\tau)$ 不发生反应的概率, $a_\mu(x)d\tau$: $(t+\tau,t+\tau+d\tau)$ 发生反应 μ 的概率.

 $P_0(0,x) = 1$. 在 $(t,t+\tau')$ 没发生反应的概率 $P_0(\tau'+d\tau',x) = P_0(\tau',x)(1-\sum_{v=1}^M a_v(x)d\tau') \Rightarrow \frac{\partial P_0(\tau',x)}{\partial \tau'} = -\sum_{v=1}^M a_v(x)P_0(\tau',x)$ with $P_0(0,x) = 1 \Rightarrow P_0(\tau,x) = \exp(-\sum_{v=1}^M a_v(x)\tau) \Rightarrow P(\tau,\mu;x) = a_\mu(x) \exp(-a_0(x)\tau)$ where $a_0(x) = \sum_{v=1}^M a_v(x)$.

SSA 算法 (Gillespie): (1) $x(0) = x_0, t = 0$; (2) 计算 $a_v = a_v(x), v = 1, \dots, M, a_0 = \sum_{v=1}^{M} a_v(x)$; (3) 生成服从参数为 a_0 的指数分布 τ , 作为下一个反应的等待时间; (4) 生成 [0,1] 上均匀分布随机变量 r, 找到满足 $\sum_{v=1}^{\mu-1} a_v < ra_0 \leq \sum_{v=1}^{\mu} a_v$; (5) $t = t + \tau, R_{\mu}, x_i \rightarrow x_i + R_{\mu}$; (6) goto (2).

Remark: (1) SSA: $t \to t + \tau$, 模拟长时间行为, 为了模拟每一步反应, 步长 τ 很小; (2) 原始 SSA 中随即搜索反应 μ 的运算, 跟系统中反应 #M 成线性关系, 有加速设计.

8.7 Chemical Langevin Equation

Chemical Master Equation: 最根本,不方便分析、计算.

Reaction Rate Equation: 确定性, 方便分析、计算, 不能描述随机性.

x(t)=x, 令 $k_j(x,\tau)$: 反应 R_j 在 $[t,t+\tau)$ 内发生的次数, 每次反应分子 S_i 的个数增加 v_{ji} . 则 $x_i(t+\tau)=x_i+\sum_{j=1}^Mk_j(x,\tau)v_{ji}, i=1,\cdots,N$. 希望对这个方程有一个很好的近似.

Condition 1: $[t, t+\tau)$, 系统状态的改变量相对于状态本身只有微小的改变 $\Rightarrow a_j(x(t')) \approx a_j(x(t))$, $t' \in [t, t+\tau)$, $j=1, \cdots, M$.

反应 R_j 在 $[t,t+\tau)$ 内任意无穷小时间段 $d\tau$ 内发生的概率可认为是相互独立, $P=a_j(x)d\tau \Rightarrow k_j(x,\tau)$ 满足独立的泊松分布, 记为 $P_i(a_j(x),\tau)$.

当分子数 >> 1, 只要 τ 充分小, condition 1 容易满足.

求解 $P(a,\tau) = n$ 的概率 $Q(n; a, \tau)$. 数学归纳: $n = 0, Q(0; a, \tau) = e^{-a\tau}$.

 $\forall n \geq 1$, 时间 τ 内发生 n 次反应分成 3 部分: (1) $Q(n-1;a,\tau')$, 在 $\tau' < \tau$ 发生 n-1 次反应; (2) $[\tau',\tau'+d\tau')$ 发生一次反应 P 为 $ad\tau'$; (3) $[\tau'+d\tau',\tau)$ 不发生反应, $Q(0;a,\tau-\tau')$.

 $Q(n; a, \tau) = \int_0^{\tau} Q(n-1; a, \tau') a d\tau' Q(0; a, \tau - \tau')$. 数学归纳验证 $Q(n; a, \tau) = \frac{e^{-a\tau}(a\tau)^n}{n!}$. $x_i(t+\tau) = x_i(t) + \sum_{j=1}^M v_{ji} P_j(a_j(x), \tau)$.

Condition 2: 时间区间 τ 充分大使得在 $[t,t+\tau)$ 内发生反应次数 >> 1, 即 $a_j(x)\tau$ >> 1, $\forall 1 \leq j \leq M$.

⇒ C1 和 C2 有矛盾 ⇒ $a_j(x)$ 为大数, 选取合适的 τ 满足 C1 和 C2.

 $Q(n; a, \tau) \xrightarrow{\text{Stirling } \triangle \exists} \log \frac{e^{-a\tau}(a\tau)^n}{n!} = -a\tau + n\log(a\tau) - \log n! \approx -a\tau + n\log(a\tau) - n\log n + n + o(n) \xrightarrow{n \sim a\tau > 1} \approx n - a\tau - n\log(1 + \frac{n - a\tau}{a\tau}) \approx n - a\tau - n(\frac{n - a\tau}{a\tau} - \frac{1}{2}(\frac{n - a\tau}{a\tau})^2) = -\frac{(n - a\tau)^2}{2a\tau} \xrightarrow{2a\tau - n} \approx -\frac{(n - a\tau)^2}{2a\tau} \Rightarrow Q(n; a, \tau) \approx C \exp(-\frac{(n - a\tau)^2}{2a\tau}).$ 由 $a\tau >> 1, Q(n; a, \tau) \rightarrow$ 均值和方差为 $a\tau$ 的正态分布 $\rightarrow P(a, \tau) \approx \mathcal{N}(a\tau, a\tau) \stackrel{\text{def}}{=} a\tau >> 1.$

当 C1 和 C2 同时满足, $x_i(t+\tau) = x_i(t) + \sum_{j=1}^M v_{ji} \mathcal{N}(a_j(x)\tau, a_j(x)\tau), i = 1, \dots, N \Rightarrow x_i(t+\tau) = x_i(t) + \sum_{j=1}^M v_{ji} a_j(x)\tau + \sum_{j=1}^M v_{ji} [a_j(x)]^{\frac{1}{2}} \mathcal{N}_j(0,1).$

White noise: $\xi_j(t)$: t 时刻满足 $\mathcal{N}_j(0,1)$ 的随机变量, $\langle \xi(t) \rangle = 0$, $\langle \xi_i(t), \xi_j(t') \rangle = \delta_{ij}(t-t') \Rightarrow x_i(t+dt) = x_i(t) + \sum_{j=1}^M v_{ji} a_j(x(t)) dt + \sum_{j=1}^M v_{ji} a_j^{\frac{1}{2}}(x) \xi_j(t) (dt)^{\frac{1}{2}}$.

号|人 Wiener process $W_j: dW_j = W_j(t+dt) - W_j(t) = \xi_j(t)(dt)^{\frac{1}{2}} \Rightarrow dx_i = \sum_{j=1}^M v_{ji}a_j(x)dt + \sum_{j=1}^M v_{ji}a_j^{\frac{1}{2}}(x)dW_j, i=1,\cdots,N$ (Chemical Langevin Equation).

8.8 τ -Leaping Algorithm

一次近似步长 τ 内每个反应发生的数目.

 τ -Leaping 条件: $[t, t+\tau)$ 改变小, a(x) 几乎不变: (1) 反应物的分子数比较大, $N_C=10$ 或 20 为临界值, 分子数 $<20 \rightarrow SSA$; (2) τ 的选取不能过大.

对于适当选取的 τ , $x_i(t+\tau) = x_i(t) + \sum_{j=1}^M v_{ji} P(a_j(x), \tau)$, 算法: (1) 按泊松分布 $P(a_j(x), \tau)$ 产生随机数 k_j ; (2) 系统的增量: $\lambda = \sum_{j=1}^M k_j v_j$; (3) $\to t + \tau, x + \lambda$.

Key: 如何选取合适的 τ ?

DIFFUSION

- (1) 对于给定的 τ , 检验 $|a_j(x+\lambda)-a_j(x)|, j=1,\cdots,M$, 若对每一个 j 都是小量,则 τ ✓; 对 τ 从小到大进行检验, 直到找到符合条件的最大的 τ , 作为算法的跳跃时间. 缺点: 计算量太大.
- (2) 预跳跃方法: $\langle P(a_j(x),\tau)\rangle = a_j(x)\tau$, 在 $[t,t+\tau)$ 增量的平均值 $\bar{\lambda} = \sum_{j=1}^M a_j(x)\tau v_j = \tau \xi(x)$.

 $|a_j(x+\bar{\lambda})-a_j(x)| \leq \epsilon a_0(x)$ where $a_0(x)=\sum_{j=1}^M a_j(x)$, 则认为跳跃条件是满足的. $a_j(x+\bar{\lambda})-a_j(x) \approx \bar{\lambda}\cdot\nabla a_j(x)=\sum_{i=1}^N \tau\xi_i(x)\frac{\partial a_j(x)}{\partial x_i}\Rightarrow \tau|\sum_{i=1}^N \xi_i(x)b_{ji}|\leq \epsilon a_0(x) \text{ where } b_{ji}=\frac{\partial a_j(x)}{\partial x_i}\Rightarrow \tau\leq \epsilon a_0/|\sum_{i=1}^N \xi_i(x)b_{ji}|.$ 取 $\tau=\min_{j\in[1,M]}\{\epsilon a_0/|\sum_{i=1}^N \xi_i(x)b_{ji}|\}.$ Remark: (1) SSA 中每步反应时间间隔 $\tau\sim\frac{1}{a_0(x)}$, 若 $\tau>>\frac{1}{a_0(x)}$ 可达到加速效果, 否则用 SSA;

(2) $a_j(x)$ 在 [t,t+ au) 内基本不变, 取为中间时刻的函数值估计. 算法: 给定 $\bar{\lambda}= au\sum_j a_j(x)v_j$, 令 $x' = x + \frac{\bar{\lambda}}{2} \to P(a_j(x'), \tau)$ 的随机数 k_j , 计算 $\lambda = \sum_j k_j v_j$, 令 $t + \tau$ 为新的时间, $x + \lambda$.

Diffusion 9

9.1Simple Random Walk

1-D case: Starting from x = 0, after time $N\Delta t$, $[-N\Delta x, N\Delta x]$.

Prob $p(m,n), x = m\Delta x$ after n time-steps, a steps to right, b steps to left $\Rightarrow a = \frac{n+m}{2}, b = m\Delta x$ $\frac{n-m}{2} \Rightarrow p(m,n) = C_n^a/2^n = \frac{1}{2^n} \frac{n!}{a!(n-a)!}, \sum_{m=-n}^n p(m,n) = 1.$

If n is large, and $n \pm m$ are large, $n! \sim (2\pi n)^{\frac{1}{2}} e^{-n} n^n, n >> 1 \Rightarrow p(m,n) \sim (\frac{2}{\pi n})^{\frac{1}{2}} e^{-m^2/2n}$ (Gaussian prob. dist.).

Set $x = m\Delta x, t = n\Delta t$ are constant space & time variables.

Def $u = \frac{p(x/\Delta x, t/\Delta t)}{2\Delta x} \sim \left(\frac{\Delta t}{2\pi t(\Delta x)^2}\right)^{1/2} \exp\left(-\frac{x^2}{2t}\frac{\Delta t^2}{(\Delta x)^2}\right)$. If assume $\lim_{\Delta x \to 0, \Delta t \to 0} \frac{(\Delta x)^2}{2\Delta t} = D \neq 0$, D = 0is diffusion coefficient $\Rightarrow u(x,t)=(\frac{1}{4\pi Dt})^{1/2}e^{-\frac{x^2}{4Dt}}.$

Fick's Law 9.2

Fick's First Law:

Q1: How many particels will cros the area A to the right? A: $-\frac{1}{2}(N(x+\Delta x)-N(x))$. Flux of molecules: $J=\frac{-\frac{1}{2}(N(x+\Delta x)-N(x))}{A\Delta t}$. Concentration: $C(x):=\frac{N(x)}{A\Delta x}$ $\Rightarrow J=-\frac{\Delta x^2}{2\Delta t}\frac{C(x+\Delta x)-C(x)}{\Delta x}=-D\frac{\partial C(x)}{\partial x}$. J is proportional to concentration gradient.

Fick's Second Law:
$$\frac{C(t+\Delta t)-C(t)}{\Delta t} = \frac{1}{\Delta t} \frac{(J(x)-J(x+\Delta x))A\Delta t}{A\Delta x} = -\frac{J(x+\Delta x)-J(x)}{\Delta x} \Rightarrow \frac{\partial C(x,t)}{\partial t} = \frac{\partial J(x)}{\partial x} \Rightarrow \frac{\partial C(x,t)}{\partial t} = \frac{\partial J(x)}{\partial t} \Rightarrow \frac{\partial C(x,t)}{\partial t} = D\frac{\partial^2 C(x,t)}{\partial x^2}. \text{ If } C(x,0) = Q\delta(x), C(x,t) = \frac{Q}{2(\pi Dt)^{1/2}}e^{-\frac{x^2}{4Dt}}.$$
 Random walks: $x(0) = 0, \langle x(n) \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i(n) = \frac{1}{N} \sum_{i=1}^{N} (x_i(n-1)\pm \Delta x) = \frac{1}{N} \sum_{i=1}^{N} x_i(n-1) = 0$

Random walks:
$$x(0) = 0, \langle x(n) \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i(n) = \frac{1}{N} \sum_{i=1}^{N} (x_i(n-1) \pm \Delta x) = \frac{1}{N} \sum_{i=1}^{N} x_i(n-1) = \cdots = \frac{1}{N} \sum_{i=1}^{N} x_i(0) = 0.$$

Q2: For chemical conc c(x,t), time to convey into conc over a distance L is ? A: L^2/D .

$$\begin{aligned} \operatorname{Var}(x(n)) &= \langle x^2(n) \rangle - \langle x(n) \rangle^2 = \tfrac{1}{N} \sum_{i=1}^N x_i^2(n) = \tfrac{1}{N} \sum_{i=1}^N (x_i(n-1) \pm \Delta x)^2 = \langle x^2(n-1) \rangle + \Delta x^2 = \operatorname{Var}(x(n-1)) + \Delta x^2 \Rightarrow \langle x^2(n) \rangle = n \Delta x^2 = t \tfrac{\Delta x^2}{\Delta t} = 2Dt. \end{aligned}$$

9.3 Reaction Diffusion Equation

Simple diffusion \rightarrow reaction kinetics + diffusion \rightarrow traveling wave.

$$\frac{d}{dt} \int_V C(x,t) dx = -\int_S J ds + \int_V f dx \text{ (flux + source)} \Rightarrow \int_V \left[\frac{\partial C}{\partial t} + \nabla \cdot J - f(C,x,t) \right] dx = 0 \text{ (V is arbitrary)} \Rightarrow \frac{\partial C}{\partial t} + \nabla \cdot J = f(C,x,t).$$

Fick's first law: $J = -D\nabla C \Rightarrow \frac{\partial C}{\partial t} = D\triangle C + f(C, x, t)$ (reaction-diffusion equation).

Example 1: Model for animal dispersal. There is an increase in diffusion due to population pressure: $\frac{dD}{dn} > 0$. $I = -D(n)\nabla n$, typical form $D(n) = D_0(\frac{n}{n_0})^m$, m > 0. Dispersal Equation without any growth: $\frac{\partial n}{\partial t} = D_0 \nabla \cdot [(\frac{n}{n_0})^m \nabla n].$

1-D case:
$$\frac{\partial n}{\partial t} = D_0 \frac{\partial}{\partial x} \left[\left(\frac{n}{n_0} \right)^m \frac{\partial n}{\partial x} \right]$$
 (porous medium equation).
Solution: $n(x,t) = \begin{cases} \frac{n_0}{\lambda(t)} \left[1 - \left(\frac{x}{n_0 \lambda(t)} \right)^2 \right]^{1/m} |x| \le r_0 \lambda(t) \\ 0, x > r_0 \lambda(t) \end{cases}$, $\lambda(t) = \left(\frac{t}{t_0} \right)^{1/(2+m)}, r_0 = \frac{D_0 \Gamma(\frac{1}{m} + \frac{3}{2})}{\pi^{1/2} n_0 \Gamma(\frac{1}{m} + 1)} \right)$.

9.4 Chemotaxis

A larger number of bacterium rely on an accurate sense of smell for conveying information between members of species. Chemicals: pheromones. Model this chemically directed movement are called chemotaxis.

Unlike the diffusion, directs the motion up a concentration gradient.

Suppose a gradient in attractant a(x,t), the flux of cells will increase with # of cells n(x,t). Chemotaxis flux: $J = n\chi(a)\nabla a$ where $\chi(a)$ is a function of attractant concentration.

In the conservation equation for n(x,t), $\frac{\partial n}{\partial t} + \nabla \cdot J = f(n)$. Here $J = J_{\text{diffusion}} + J_{\text{chemotaxis}} \Rightarrow$ $\frac{\partial n}{\partial t} = f(n) - \nabla \cdot n \chi(a) \nabla a + \nabla \cdot (D \nabla n)$ (Reaction-Diffusion-Chemotaxis Eqn).

$$\frac{\partial a}{\partial t} = g(a, n) + \nabla \cdot (D_a \nabla a)$$
 and $D_a > D$.

In the seminal model of Keller & Segel (1971), $g(a,n) = h_n - k_a, h, k > 0$. Simple case: f(n) =

$$0 \Rightarrow 1\text{-D case (Keller-Segel):} \begin{cases} \frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2} - x_0 \frac{\partial}{\partial x} (n \frac{\partial a}{\partial x}) \\ \frac{\partial a}{\partial t} = h_n - k_a + D_a \frac{\partial^2 a}{\partial x^2} \end{cases}$$

1-D diffusion system: $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$. Q: the time to convey information over a distance L? A: $O(L^2/D)$. If L=1mm, Diff ccoeff $D\sim 1\mu {\rm m}^2/{\rm sec} \Rightarrow {\rm time} \sim 10^6 {\rm sec}$ – slow process.

Biological Waves

In contrast to simple diffusion, reaction kinetics + diffusion \rightarrow travelling waves - much faster than diffusion.

1-D case:
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u)$$
.

Define travelling wave: u(x,t) = u(x-ct) = u(z) – travelling wave is taken to be a wave which travels without change of shape. Wave moves along x-direction, dependent variable z is the wave variable. $\frac{\partial u}{\partial t} = -c\frac{du}{dz}, \frac{\partial u}{\partial x} = \frac{du}{dz}$. u(z) has to be bounded for all z and nonnegative.

 $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} \Rightarrow c \frac{du}{dz} + D \frac{d^2 u}{dz^2} = 0 \Rightarrow \text{linear parabolic equation} \Rightarrow u(z) = A + Be^{-cz/D}. \quad z \to -\infty, u(z) \to \infty \text{ unbounded} \Rightarrow B = 0 \Rightarrow u(z) = A \text{ not a wave solu. Simple diffusion can't lead to}$ travelling wave. It depends on the form of reaction term f(u).

(1) Fisher-Kolmogoroff equation: nonlinear reaction diffusion equation: $\frac{\partial u}{\partial t} = ku(1-u) + D\frac{\partial^2 u}{\partial x^2}$. Let $t^* = kt, x^* = x(k/D)^{1/2} \Rightarrow \frac{\partial u}{\partial t} = u(1-u) + \frac{\partial^2 u}{\partial x^2} \Rightarrow 2$ homogeneous solus: u(x) = 0, u(x) = 1. Q: stability? A: u = 0 unstable, u = 1 stable. Thus suggests we should look for travelling wave solus

for
$$0 \le u \le 1$$
. $u''(z) + cu' + u(1 - u) = 0 \Rightarrow \begin{cases} u' = v \\ v' = -cv - u(1 - u) \end{cases} \Rightarrow \frac{dv}{du} = \frac{-cv - u(1 - u)}{v}$. It has

2 singular points (u, v) = (0, 0), (1, 0). Linear stability analysis: $(0, 0) : \lambda_{\pm} = \frac{1}{2}[-c \pm (c^2 - 4)^{1/2}] \Rightarrow$ $\begin{cases} \text{stable node if } c^2 > 4 \\ \text{stable spirals if } c^2 < 4 \end{cases}, (1, 0) : \lambda_{\pm} = \frac{1}{2}[-c \pm (c^2 + 4)^{1/2}] \Rightarrow \text{ saddle point } \Rightarrow \text{ unstable. } c^2 < 4 \Rightarrow 0 \end{cases}$

stable spiral \rightarrow oscillate near (0,0), not physical. $c \geq c_{\min} = 2 \rightarrow \text{stable node } (0,0)$. There is a trajectory from (1,0) to (0,0). $u \ge 0, u' \le 0$ with $0 \le u \le 1$ for $c \ge c_{\min} = 2(KD)^{1/2}$.

Q: What kind of initial condition u(x,0) will evolve to a travelling wave solu? If such a solu exists, what is its wave speed c? Kolmogoroff (1937) proved that if u(x,0) has compact support, that is, $u(x,0) = u_0(x) > 0$, $u_0(x) = \begin{cases} 1, & \text{if } x \le x_1 \\ 0, & \text{if } x \ge x_2, u_0(x) \end{cases}$ is continuous in $[x_1, x_2]$, then the solu u(x,t)

evolves to a travelling wavefront solu u'(z) with z = x - 2t.

Fisher-Kolmogoroff Eqn is invariant under a change of sign of x: $x \to -x$, u(x,t) = u(x+ct), c > 0 $0, u(-\infty) = 0, u(+\infty) = 1.$

10 Turing Pattern

Diffusion-driven instability: $\begin{cases} \frac{\partial u}{\partial t} = D_u \triangle u(-d_u u) + F(u,v) \\ \frac{\partial v}{\partial t} = D_v \triangle v(-d_v v) + G(u,v) \end{cases}$. The terms in brackets might be omitted. An example: $\begin{cases} \frac{\partial u}{\partial t} = \gamma(a - u - \frac{\rho u v}{1 + u + K u^2}) + \nabla^2 u \\ \frac{\partial v}{\partial t} = \gamma(\alpha(b - v) - \frac{\rho u v}{1 + u + K u^2}) + d\nabla^2 v \end{cases}$ Values of parameters: d = 10 and d = 10 and

Values of parameters: $d = 10, a = 92, b = 64, \alpha = 1.5, \rho = 18.5, K = 0.1$. When γ is small, the diffusion process mainly leads the changes of density of u,v with time going by so that Turing Pattern can't be formed. When γ is large, we can obtain Turing Pattern with complex structure.

22

