

(KEMNA0302) Alkalmazott lineáris algebra

Dr. Facskó Gábor, PhD tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu.

2025. április 10.

Komplex és véges test feletti terek I

- Komplex vektorok és terek, komplex vektorok skaláris szorzata
- <u>Definíció:</u> (Komplex mátrix adjungáltja). Az A komplex mátrix adjungáltján (vagy Hermite-féle transzponáltján) elemenkénti konjugáltjának transzponáltját értjük. Az A adjungáltját A*, vagy Hermite neve után A^H jelöli, tehát A^H = A^T.
- Definíció: (Komplex vektorok skaláris szorzata). A \mathbb{C}^n -beli $\mathbf{z} = (z_1, z_2, \dots, z_n)$ és $\mathbf{w} = (w_1, w_2, \dots, w_n)$ vektorok skaláris szorzatán a

$$\mathbf{z} \cdot \mathbf{w} = \overline{z_1} w_1 + \overline{z_2} w_2 + \dots + \overline{z_n} w_n$$

komplex skalárt értjük. Ennek mátrixszorzatos alakja $\mathbf{z} \cdot \mathbf{w} = \mathbf{z}^H \mathbf{w}$.

Komplex és véges test feletti terek II

- <u>Tétel:</u> (Az adjungált tulajdonságai). Legyenek A és B komplex mátrixok, c komplex szám. Ekkor
 - $1. \ \left(\mathbf{A}^H\right)^H = \mathbf{A},$
 - 2. $(A + B)^H = A^H + B^H$,
 - 3. $(c\mathbf{A})^H = c\mathbf{A}^H$,
 - 4. $(\mathbf{A}\mathbf{B})^H = \mathbf{B}^H \mathbf{A}^H$.
- Az adjungált tulajdonságaiból azonnal következik:
- ▶ <u>Tétel:</u> (A komplex skaláris szorzás tulajdonságai). Legyen $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$, és legyen $\mathbf{c} \in \mathbb{C}$. Ekkor
 - 1. $\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$,
 - 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$,
 - 3. $(c\mathbf{u}) \cdot \mathbf{v} = \overline{c}(\mathbf{u} \cdot \mathbf{v})$ és $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$,
 - 4. $\mathbf{u} \cdot \mathbf{u} > 0$, ha $\mathbf{u} \neq \mathbf{0}$, és $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$, ha $\mathbf{u} = \mathbf{0}$.

Bizonyítás: Wettl-jegyzet.

Komplex és véges test feletti terek III

- Komplex mátrixok kitüntetett alterei: Wettl-jegyzet
- Önadjungált mátrixok: Ahogy a transzponált fogalmának a komplex skaláris szorzatot figyelembe vevő kiterjesztése az adjungált, ugyanúgy a szimmetrikus mátrix fogalmának kiterjesztése az önadjungált mátrix. Szimmetrikus mátrix az, amelyik megegyezik saját transzponáltjával, önadjungált az, amelyik megegyezik saját adjungáltjával.
- ightharpoonup Az **A** komplex mátrix önadjungált, ha $\mathbf{A}^H = \mathbf{A}$.
- Az önadjungált mátrixokat Hermite-féle mátrixnak is nevezik.
- Önadjungált mátrix főátlójában csak valósok állhatnak, mert csak azok egyeznek meg saját konjugáltjukkal.
- Minden valós szimmetrikus mátrix önadjungált, hisz a valós számok megegyeznek saját konjugáltjukkal.

Komplex és véges test feletti terek IV

- Mivel a nem valós komplex számok nem egyeznek meg saját konjugáltjukkal, ezért a komplex szimmetrikus mátrixok pontosan akkor önadjungáltak, ha minden elemük valós.
- ► Távolság és a merőleges vetítés komplex terekben: A komplex skaláris szorzás segítségével definiálható a komplex vektorok távolsága és merőlegessége.
- A komplex $\mathbf{u} \in \mathbb{C}^n$ vektor hossza, vagy abszolút értéke $|\mathbf{u}| = \mathbf{u} \cdot \mathbf{u}$, két vektor távolsága megegyezik különbségük hosszával, azaz $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ vektorok esetén $d(\mathbf{u}, \mathbf{v}) = |\mathbf{u} \mathbf{v}|$. Két vektort merőlegesnek tekintünk, ha skaláris szorzatuk 0.
- ▶ <u>Tétel:</u> (Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség) Tetszőleges $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ vektorokra

$$|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| \, |\mathbf{v}| \, .$$

Egyenlőség pontosan akkor áll fenn, ha ${\bf u}$ és ${\bf v}$ lineárisan összefüggők, azaz ha egyik vektor a másik skalárszorosa.

Komplex és véges test feletti terek V

- Az ortogonális mátrixok komplex analógjai az unitér mátrixok.
- **Definíció:** (Unitér mátrix). Egy komplex négyzetes **U** mátrix unitér, ha $\mathbf{U}^H\mathbf{U} = \mathbf{E}$.
- Az ortogonális mátrixokhoz hasonlóan bizonyítható, hogy egy $\mathbf{U} \in \mathbb{C}^{n \times n}$ mátrix pontosan akkor unitér, ha az alábbiak bármelyike teljesül:
 - 1. $UU^H = E$,
 - 2. $U^{-1} = U^H$
 - 3. U oszlopvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve,
 - 4. **U** sorvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve,
 - 5. $|\mathbf{U}\mathbf{x}| = |\mathbf{x}|$ minden $\mathbf{x} \in \mathbb{C}^n$ vektorra,
 - 6. $\mathbf{U}\mathbf{x} \cdot \mathbf{U}\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$.

Gyakorlás

► A komplex számok gyönyörűek:

► LU-felbontás gyakorlása

Vége

Köszönöm a figyelmüket!