

Principiul inducției pe formule

Propoziția 1.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- V ⊂ Γ:
- Γ este închisă la ¬, adică φ ∈ Γ implică (¬φ) ∈ Γ;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

 $\textbf{Dem.:} \ \ \mathsf{Definim} \ \ \mathsf{urm\ \ area} \ \ \mathsf{proprietate} \ \ \textbf{\textit{P}} \colon \ \mathsf{pentru} \ \ \mathsf{orice} \ \ \mathsf{formul\ \ } \varphi,$

$$\varphi$$
 are proprietatea ${\bf \it P}$ ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 1.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, Γ = Form.

Subformule

Definitia 1.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează $SubForm(\varphi)$.

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

$$SubForm(\varphi) = \{v_1, v_2, (v_1 \rightarrow v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedența mai mare decât ceilalți conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Principiul recursiei pe formule

Propoziția 1.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0:V\to A,\quad G_\neg:A\to A,\quad G_\to:A\times A\to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ ,

 $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v

$$c(\neg \varphi) = c(\varphi) + 1$$
 pentru orice formulă φ

$$c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$$
 pentru orice formule φ, ψ .

În acest caz,
$$A = \mathbb{N}$$
, $G_0 : V \to A$, $G_0(v) = 0$,

$$G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$$

$$G_{\rightarrow}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\rightarrow}(m, n) = m + n + 1.$$

Principiul recursiei pe formule

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită şi recursiv.

Dem.: Exercițiu.

18

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$abla : \{0,1\} \to \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \Longleftrightarrow p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, Λ : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

р	q	$p \lor q$	р	q	$p \wedge q$	р	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	0	0	1	0	0
1	1	p V q 0 1 1 1	1	0 1 0 1	1	0 0 1 1	1	1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ si $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Evaluări

Definiția 1.10

O evaluare (sau interpretare) este o funcție e : $V \rightarrow \{0,1\}$.

Teorema 1.11

Pentru orice evaluare $e: V \rightarrow \{0,1\}$ există o unică funcție

$$e^+: \textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v)=e(v)$ pentru orice orice $v\in V$.
- $ightharpoonup e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Dem.: Aplicăm Principiul Recursiei pe formule (Propoziția 1.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ și } G_{\rightarrow} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Evaluare (Interpretare)

Propoziția 1.12

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ, ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Evaluare (Interpretare)

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

$$\varphi$$
 are proprietatea P ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \ \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

- 2

Evaluare (Interpretare)

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*) $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $oldsymbol{arphi}=(
egthinderightarrow\psi)$ și ψ satisface $oldsymbol{P}.$ Fie $e_1,e_2:V o \{0,1\}$ a.î. $e_1(v)=e_2(v)$ pentru orice $v\in Var(\varphi).$ Deoarece $Var(\varphi)=Var(\psi),$ rezultă că $e_1(v)=e_2(v)$ pentru orice $v\in Var(\psi).$ Așadar, aplicând $oldsymbol{P}$ pentru $\psi,$ obținem că $e_1^+(\psi)=e_2^+(\psi).$ Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

25

Modele. Satisfiabilitate. Tautologii

Fie φ o formulă.

Definiția 1.14

- O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $ightharpoonup \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- $ightharpoonup \varphi$ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 1.15

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Evaluare (Interpretare)

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*) $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $\begin{array}{l} \blacktriangleright \ \, \varphi = (\psi \to \chi) \ \, \text{$;$} \ \, \psi, \chi \ \, \text{satisfac} \ \, \textbf{\textit{P}}. \ \, \text{Fie} \ \, e_1, e_2 : V \to \{0,1\} \ \, \text{a.î.} \\ e_1(v) = e_2(v) \ \, \text{pentru orice} \ \, v \in Var(\varphi). \ \, \text{Deoarece} \\ Var(\psi) \subseteq Var(\varphi) \ \, \text{$;$} \ \, Var(\chi) \subseteq Var(\varphi), \ \, \text{rezultă că} \\ e_1(v) = e_2(v) \ \, \text{pentru orice} \ \, v \in Var(\psi) \ \, \text{$;$$} \ \, \text{pentru orice} \\ v \in Var(\chi). \ \, \text{Aṣadar, aplicând} \ \, \textbf{\textit{P}} \ \, \text{pentru} \ \, \psi \ \, \text{$;$} \ \, \chi, \ \, \text{obţinem că} \\ e_1^+(\psi) = e_2^+(\psi) \ \, \text{$;$} \ \, e_1^+(\chi) = e_2^+(\chi). \ \, \text{Rezultă că} \\ \end{array}$

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .