Sunshot via excel spreadsheet:

At Fugro I took part in a gyro verification by using the sun. The azimuth was calculated using an excel spreadsheet with an internal astronomical library. The uncertainty of the Octans gyro is established at $\pm 0.03^{\circ}$.

Methodology:

- The total-station is placed on the ship's center line facing the bow;the sun is observed clockwise relative to the ship's center line.
- The Azimuth is calculated using the UTC fixtime with an astronomy library.

Calc. Vessel Heading: 360° – Observed sun + Calc. Sun Azimuth

C – O Gyro compass: Calc. Vessel Heading – Obs. Gyro (T)

TUGRO |

GYRO CALIBRATION FROM SUN OBSERVATIONS

Intership report L Blauw										
	ртеропеда	iaaii								
	Project no:			MIWB				Gyro name:	Octans	
	Vessel:		Pione					Date :	31-dec-19	
	• 0550	. ag. c		.				54101	01 400 10	
	Position :	52° 5	7' 26.9)"				Location :	Den Helder	
			6'37.5					Datum :	ED50	
								Projection:	UTM31	
			Obs. vessel north					CM :	3° E	
				Sec				Hemisphere:	North	
		0	0	0				,		
Fix	UTC	Ol	oserve	d Sun	Calc :	Sun Az	imuth	Obs. Gyro	Calc. Vessel	C-O
No.	hh:mm:ss	Deg	Min	Sec	Deg	Min	Sec	deg true	deg true	deg
1	08:41:44	343	41	24	138	52	24	155.063	155.18	0.12
2	08:43:16	344	6	0	139	11	33	154.985	155.09	0.11
3	08:44:12	344	16	44	139	23	14	155.055	155.11	0.05
4	08:44:52	344	22	5	139	31	34	155.058	155.16	0.10
5	08:46:01	344	35	30	139	45	59	155.076	155.17	0.10
6	08:46:42	344	45	20	139	54	33	155.043	155.15	0.11
7	08:47:21	344	60	38	140	2	43	154.94	155.03	0.09
8	08:48:12	345	27	4	140	13	24	154.667	154.77	0.11
9	08:48:58	345	41	55	140	23	2	154.588	154.69	0.10
10	09:07:08	349	18	14	144	13	48	154.765	154.93	0.16
11	09:07:24	349	23	44	144	17	14	154.764	154.89	0.13
12	09:07:45	349	27	35	144	21	43	154.762	154.90	0.14
13	09:08:03	349	33	42	144	25	34	154.783	154.86	0.08
14	09:08:19	349	34	26	144	28	60	154.783	154.91	0.13
15	09:08:34	349	38	59	144	32	12	154.779	154.89	0.11
16	09:08:50	349	42	35	144	35	38	154.768	154.88	0.12
17	09:09:13	349	51	28	144	40	34	154.733	154.82	0.09
18	09:09:33	350	3	0	144	44	51	154.597	154.70	0.10
19	09:09:57	350	16	46	144	49	60	154.509	154.55	0.04
20	09:10:20	350	18	0	144	54	56	154.505	154.62	0.11
									Average:	0.10
									St. dev.	0.03

Sun-shot Azimuth via python with Skyfield:

The Python library Skyfield is used in this jupyter notebook; (https://github.com/BlueReson/sunshot/blob/main/sunshot.ipynb)

Input: Fixtime in UTC, Observed Sun & Obs. Gyro

output:

output.					
fix_nr	datetime_UTC	obs_sun_decimal	azimuth	obs_gyro_true	\
	2010 12 21 00.41.44	343.690000	120 072	155 063	
1	2019-12-31 08:41:44			155.063	
3	2019-12-31 08:43:16 2019-12-31 08:44:12				
4	2019-12-31 08:44:52				
5	2019-12-31 08:46:01				
6	2019-12-31 08:46:42				
7	2019-12-31 08:47:21			154.940	
8	2019-12-31 08:48:12				
9	2019-12-31 08:48:58				
10	2019-12-31 09:07:08				
11	2019-12-31 09:07:24				
12	2019-12-31 09:07:45			154.762	
13	2019-12-31 09:08:03				
14	2019-12-31 09:08:19				
15	2019-12-31 09:08:34				
16	2019-12-31 09:08:50				
17	2019-12-31 09:09:13				
18	2019-12-31 09:09:33		144.747		
19	2019-12-31 09:09:57		144.833	154.509	
20	2019-12-31 09:10:20	350.300000	144.915	154.505	
	1				
C*	calc_gyro_true	C-0			
fix_nr	155 103000 0 1	20000			
1		20000			
2		07000			
3		53111			
4		99944			
5		98333			
6		10444			
7		94444			
8		04889			
9		96389			
10		61111			
11		27444			
12	154.901278 0.1				
13		81333			
14	154.909111 0.1	26111			
15	154.886278 0.1	07278			
16	154.883278 0.1	15278			
17	154.818222 0.0	85222			
18	154.697000 0.1	00000			
19	154.553556 0.0	44556			
20	154.615000 0.1	10000			
mean	c-o: 0.10				
stdef	c-o: 0.03				

Single Azimuth angle with Skyfield in Python:

```
# location Port of Den Helder, Nieuwe diep:
    lat = 52+(57/60)+(26.9/3600)
    lon = 4+(46/60)+(37.5/3600)
    height_m = 6
    # fix1 @ 2019-12-31 08:41:44 UTC >>> 2019,12,31,08,41,44
    # src:
    https://rhodesmill.org/skyfield/positions.html#azimuth-and-altitude-from-a
    -geographic-position
    # Sunshot Azimuth - hour angle method
    from skyfield.api import N,S,E,W, wgs84
    from skyfield.api import load
    import pandas as pd
    ts = load.timescale()
    t = ts.utc(2019, 12, 31)
    planets = load('de421.bsp')
    earth, sun = planets['earth'], planets['sun']
    # Altitude and azimuth in the sky for a specific geographic location
    earth = planets['earth']
    Nieuwe_diep = earth + wgs84.latlon(lat * N, lon * E, elevation_m=height_m)
    astro = Nieuwe_diep.at(ts.utc(2019, 12, 31, 8, 41, 44)).observe(sun)
    app = astro.apparent()
    alt, az, distance = app.altaz()
    #print('alt: ' + alt.dstr())
    print('az: ' + az.dstr())
    #print(distance)
    #print('lat, lon: ' + str(lat), str(lon))
    #dt_utc = df2['datetime_UTC']
    print('az: {:.3f}'.format(az.degrees)) # desired output for azimuth in
    decimal degrees
    print('az: '+ az.dstr(format=u'{0}{1}°{2:02}'{3:02}.{4:0{5}}"'))
output:
    az: 138deg 52' 22.3"
   az: 138.873
   az: 138°52′22.3″
```