4. Hausaufgabe – Theoretische Grundlagen der Informatik 3

Abgabe: 22.11.2012 in der Vorlesung

Hausaufgabe 1 5 Punkte

Sei

$$\varphi := (A_0 \vee A_1) \wedge (B_0 \vee B_1) \wedge (C_0 \vee C_1) \wedge (\neg A_0 \vee \neg B_0) \wedge (\neg A_0 \vee \neg C_0) \wedge (\neg B_0 \vee \neg C_0) \wedge (\neg A_1 \vee \neg B_1) \wedge (\neg A_1 \vee \neg C_1) \wedge (\neg B_1 \vee \neg C_1).$$

- (i) Wir bilden φ' aus φ , indem wir eine beliebige Klausel weglassen. Zeigen Sie, dass φ' erfüllbar ist.
- (ii) Zeigen sie mit Hilfe einer Resolutionswiderlegung mit insgesamt maximal 15 Resolutionsschritten, dass φ unerfüllbar ist.

Hausaufgabe 2 5 Punkte

Eine Klausel heißt positiv, falls sie nur positive Variablen enthält.

Wir betrachten in dieser Aufgabe folgende Einschränkung des Resolutionskalküls, genannt P-Resolution: Eine Resolvente aus Klauseln C_1 und C_2 darf nur dann gebildet werden, wenn eine der beiden Klauseln positiv ist.

- (i) Zeigen Sie, dass jede Klauselmenge ohne positive Klauseln erfüllbar ist.
- (ii) Zeigen Sie per P-Resolution, dass die Klauselmenge

$$\mathcal{C} := \{ \{\neg Z, Y\}, \{V, X, Z\}, \{\neg X, V\}, \{\neg V, Y\}, \{\neg Y\} \}$$

unerfüllbar ist.

(iii) Zeigen Sie, dass die P-Resolution korrekt ist, d.h. wenn aus einer Klauselmenge \mathcal{C} die leeren Klauselhergeleitet werden kann, dann ist \mathcal{C} unerfüllbar.

Hausaufgabe 3 5 Punkte

Ein unendlicher Graph G:=(V,E) besteht aus einer unendlichen Knotenmenge V und einer Kantenmenge $E\subseteq\{\{u,v\}:u\neq v,u,v\in V\}$. Ein Graph G ist 4-kantenfärbbar, wenn es eine Funktion $c\colon E\to\{0,1,2,3\}$ gibt, so dass $c(\{u,v\})\neq c(\{u',v'\})$ für alle Kanten $\{u,v\}$, $\{u',v'\}\in E$ mit $\{u,v\}\neq \{u',v'\}$ und $\{u,v\}\cap \{u',v'\}\neq \emptyset$.

Zeigen Sie, dass ein unendlicher Graph genau dann 4-kantenfärbbar ist, wenn bereits jeder endliche Untergraph 4-kantenfärbbar ist.

16.11.2012, Definition einer 4-Kantenfärbung korrigiert

WS 2012/2013

Stand: 16.11.2012

Hausaufgabe 4 5 Punkte

In der Aussagenlogik AL sind große Konjunktionen und große Disjunktionen nur über endliche Mengen erlaubt. Wir definieren nun eine Logik AL_{ω} , die dies für abzählbar unendliche Mengen erlaubt.

Die Logik AL_{ω} ist induktiv definiert wie die Aussagenlogik AL. Wenn $\varphi_0, \varphi_1, \ldots$ eine Folge von Formeln in AL_{ω} ist, dann sind außerdem auch

$$\bigvee_{i=0}^{\infty} \varphi_i \quad \text{und} \quad \bigwedge_{i=0}^{\infty} \varphi_i$$

Formeln in AL_{ω} .

Eine Belegung β passt auf $\bigvee_{i=0}^{\infty} \varphi_i$ genau dann, wenn β auf alle Formeln φ_i passt. Eine passende Belegung β erfüllt $\bigvee_{i=0}^{\infty} \varphi_i$ genau dann, wenn β mindestens eine der Formeln φ_i erfüllt.

Eine Belegung β passt auf $\bigwedge_{i=0}^{\infty} \varphi_i$ genau dann, wenn β auf alle Formeln φ_i passt. Eine passende Belegung β erfüllt $\bigwedge_{i=0}^{\infty} \varphi_i$ genau dann, wenn β alle Formeln φ_i erfüllt.

Ein Beispiel für eine AL_{ω} -Formel ist

$$\bigvee_{i=0}^{\infty} (Z \to X_i).$$

Diese Formel ist wahr genau dann, wenn es ein i gibt, sodass $Z \to X_i$ wahr ist.

- (i) Für jedes Paar $i, j \in \mathbb{N}$ von Zahlen sei X_{ij} eine Variable. Für einen unendlichen Graphen G = (V, E) mit Knotenmenge $V = \mathbb{N}$ definieren wir eine Belegung β_G , indem $\beta_G(X_{ij}) = 1$ ist genau dann, wenn $\{i, j\} \in E$ oder i = j.
 - a) Geben Sie eine AL_{ω} -Formel φ an, sodass $\beta_G \models \varphi$ gilt genau dann, wenn G ein vollständiger Graph ist, d.h. wenn zwischen allen Paaren von Knoten eine Kante existiert.
 - b) Geben Sie eine AL_{ω} -Formel ψ an, sodass $\beta_G \models \varphi$ gilt genau dann, wenn G transitiv ist, d.h. für alle Kanten $\{i,j\}$, $\{j,k\} \in E$ gilt, dass $\{i,k\} \in E$.
- (ii) Zeigen Sie, dass der Kompaktheitssatz für AL_{ω} nicht gilt