Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N1

«Методы сортировки»

Вариант $2 \ / \ 4 \ / \ 2 \ / \ 3$

Выполнил: студент 101 группы Александров М. С.

Преподаватель: Дудина И. А.

Содержание

Постановка задачи			
Результаты экспериментов	3		
Структура программы и спецификация функций	5		
Отладка программы, тестирование функций	7		
Анализ допущенных ошибок	8		
Список цитируемой литературы	9		

Постановка задачи

Требуется реализовать два метода сортировки массива чисел типа **long long int** и привести их экспериментальное сравнение с соответствующей теоретической оценкой. Числа упорядочиваются по невозрастанию модулей, т.е. при сравнении элементов не учитывается знак.

Методы сортировки:

- метод простого выбора
- метод Шелла

Результаты экспериментов

Теоретическая оценка

N - количество элементов в массиве

- 1. Метод простого выбора.
 - (a) Сравнения. На i-ом шаге происходит (i-1) сравнение, поэтому всего их $\sum_{i=1}^{N-1} i = \frac{N^2 N}{2}$.
 - (b) Обмены. На каждом шаге происходит ровно один обмен, всего проходов (N-1), поэтому всего будет совершено (N-1) обменов элементов массива.
- 2. Метод Шелла для этой сортировки существуют разные способы реализации, отличающиеся в последовательности длин промежутков d на которых будут находиться сортируемые элементы исходного массива на каждом шаге алгоритма. Была выбрана последовательность Томаса Хиббарда, k-ый член которой равен $2^k 1$. Тогда получим для нее оценку математического ожидания числа сравнений и обменов[1].
 - (а) Сравнения. $kN^{5/4}+0.15kN^{5/4}\log_2N, \ \text{где}\ k\approx 1.07.\ \text{(сумма выражений, одно из которых не пронумеровано и находится между (15) и (16)Б а второе (21)).}$
 - (b) Обмены. $\frac{kN^{5/4}+0.15kN^{5/4}\log_2N}{2}, \text{ где } k\approx 1.07 \text{ (в статье число перенумераций, а оно в два раза больше числа обменов).}$

Сравнение результатов

N	Поромотр	Номер массива				Среднее	Teop.
1 1	Параметр		2 (Ot-				
		1 (От- сорт. массив)	сорт. в	3 (Слу-	4 (Слу-	значение	
			обрат-	чайной	чайный		оценка
			ном	поря-	поря-		
			поряд-	док)	док)		
			ке)				
10	Сравнения	45	45	45	45	45	45
	Обмены	0	5	8	8	5.25	9
100	Сравнения	4950	4950	4950	4950	4950	4950
	Обмены	0	50	95	95	60	99
1000	Сравнения	499500	499500	499500	499500	499500	499500
	Обмены	0	500	995	996	622.75	999
10000	Сравнения	49995000	49995000	49995000	49995000	49995000	49995000
	Обмены	0	5000	9989	9986	6243.75	9999

Таблица 1: Результаты работы сортировки методом простого выбора

N	Параметр	Номер массива				Среднее	Teop.
IN	Параметр	1 (От- сорт. массив)	2 (От- сорт. в обрат- ном поряд- ке)	3 (Слу- чайной поря- док)	4 (Слу- чайный поря- док)	значение	оценка
10	Сравнения	19	25	29	26	24.75	28
	Обмены	0	11	13	9	8.25	14
100	Сравнения	480	614	752	775	655.25	675
	Обмены	0	192	325	351	217	337
1000	Сравнения	7987	10511	14594	14051	11785.75	15011
	Обмены	0	3424	7169	6613	4301.5	7505
10000	Сравнения	113631	144824	254659	242655	188942.25	320267
	Обмены	0	36778	146164	134225	79291.25	160133

Таблица 2: Результаты работы сортировки методом Шелла

Вывод, который можно сделать исходя из получившейся таблицы: сортировка методом Шелла проигрывает сортировке методом простого выбора по числа обменов, но выигрывает в несколько раз по числу сравнений. Из-за этого сортировка методом простого выбора не так эффективна на больших массивах, хоть и число обменов в ней не так велико.

Структура программы и спецификация функций

Описание основной структуры

Для удобного хранения данных была использована структура $test_sort$, которая содержит в себе поля:

- 1. int len длина массива.
- 2. int mode как отсортирован массив(1 невозрастание модулей, 2 неубывание модулей, 3, 4 заполнен случайно).
- 3. long long *arr_qsort массив, к которому будет применен qsort (встроенная функция).
- 4. long long *arr_shell_sort массив, к которому будет применен shell sort.
- 5. long long *arr_selection_sort массив, к которому будет применен selection_sort.
- 6. int swaps_shell_sort количество обменов при применении сортировки методом Шелла.
- 7. int swaps_selection_sort количество обменов при применении сортировки методом простого выбора.
- 8. int comparisons_shell_sort количество сравнений при применении сортировки методом Шелла.
- 9. int comparisons_selection_sort количество сравнений при применении сортировки методом простого выбора.
- 10. int ok_shell_sort корректность работы сортировки методом Шелла. 1 корректно, 0 некорректно.
- 11. int ok_selection_sort корректность работы сортировки методом простого выбора. 1 - корректно, 0 - некорректно.

Описание функций программы

- 1. long long rand_ll(void) возвращает случайное число типа long long.
- 2. void swap(long long *a, long long *b, int *swaps) принимает указатели на 2 переменные и указатель на счетчик обменов, выполняет обмен переменных и увеличивает счетчик.
- 3. int cmp(const long long *a, const long long *b, int *comparisons) принимает указатели на 2 переменные и указатель на счетчик сравнений, увеличивает счетчик и сравнивает 2 переменные: возвращает 1, если |a| > |b| или |a| = |b|, b > a, иначе 0.
- 4. int cmp_for_qsort1(const long long *a, const long long *b) то же, что и прошлая функция, но не увеличивает счетчик. используется для генерации отсортированного массива.

- 5. int cmp_for_qsort2(const long long *a, const long long *b) то же, что и прошлая функция, но возвращает 0 и 1 в других случаях, используется для генерации массива, отсортированного в обратном порядке.
- 6. void gen_arr(int n, int mode, long long *arr1, long long *arr2, long long *arr3) принимает размер массива, mode для типа генерации и указатели на 3 массива. В зависимости от полученного значения mode генерирует либо отсортированный массив, либо отсортированный в обратном порядке массив, либо массив со случайными значениями. Потом копирует из одного массива в два других и в результате получаем 3 одинаковых массива нужного типа.
- 7. void print_arr(long long *a, int n) принимает указатель на массив и его длину. После печатает его.
- 8. void selection_sort(long long *a, int n, int *comp, int *swaps) принимает указатель на массив, его размер и две переменные, куда записывает количество сравнений и обменов ,произошедших во время сортировки. Выполняет сортировку методом простого выбора.
- 9. void shell_sort(long long *a, int n, int *comp, int *swaps) принимает указатель на массив, его размер и две переменные, куда записывает количество сравнений и обменов ,произошедших во время сортировки. Выполняет сортировку методом Шелла.
- 10. int check(long long *a, long long *b, int n) принимает указатель на 2 массива, один из которых отсортирован qsort'ом и их размер. Проверяет, правильно ли прошла сортировка путем сравнения с массивом, отстортированным qsort'ом.
- 11. void test(test_sort *t) принимает указатель на структуру. Инициализирует ее переменные, генерирует массивы нужного типа, сортирует их разными способами, а потом заполняет переменные $ok_shell_sort, ok_selection_sort$ после проверки.
- 12. void check_test(test_sort *t, int n) принимает указатель на структуру и ее номер. Функция выводит информацию, содержащуюся в структуре: тип массива в начале, количество сравнений и обменов для каждого типа сортировки и правильно ли они прошли.
- 13. void free_test(test_sort *t) принимает указатель на структуру и освобождает связанную с ней динамическую память.

Отладка программы, тестирование функций

Когда создается массив, также создаются еще 2 его копии, чтобы после быть использованными в сортировке методом простого выбора, в сортировке методом Шелла и во встроенной сортировке qsort - $\mathit{эталон}$, с которым потом будут сравниваться 2 других массива.

Отладка функций происходила сравниванием отсортированного (методом простого выбора или методом Шелла) массива с основным массивом (отсортированным qsort). В результате было найдено несколько ошибок, описанных в следующем разделе. После, сортировки были протестированы на 1000 массивах длиной 1000 элементов (эти массивы были заполнены случайно), и ошибок выявлено не было.

```
int check(long long *a, long long *b, int n) {
  for (int i = 0; i < n; ++i)
      if (a[i] != b[i])
      return 0;
  return 1;
}</pre>
```

Рис. 1: Функция *check*, выполняющая проверку эквивалентности массивов.

Анализ допущенных ошибок

Функция, возвращающая модуль числа

В программе была использова функция long long llabs(long long), которая при подаче ей в качестве аргумента LLONG_MIN (минимальное число типа long long) возвращает LLONG_MIN, т.е. отрицательное значения (модуль этого числа не помещается в long long) И тогда число LLONG_MIN, которое должно лежать в начале отсортированного массива, попадает в его конец, так как его "модуль"меньше любого другого модуля. Этот случай отдельно отслеживался в компараторах.

Генератор случайных чисел типа long long

Ошибкой было то, что в программе перемножались 4 числа полученных с помощью функции rand() и не было учтено, что результат ограничен типом int, так как rand возвращает число типа int и без явного приведения типа к long long может возникнуть переполнение и мы не сможем получит все числа из множества чисел long long.

Список литературы

[1] А. А. Паперпов, Г. В. Стасевич. Об одном методе упорядочивания информации в запоминающих устройствах цифровых машин, *Пробл. передачи информ.*, 1965, том 1, выпуск 3, 81-98.