(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/36473 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/US00/31581

(22) International Filing Date:

16 November 2000 (16.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

I I tolkey Dutat		
60/165,838	16 November 1999 (16.11.1999)	US
60/166.071	17 November 1999 (17.11.1999)	US
60/166,678	19 November 1999 (19.11.1999)	US
60/173,396	28 December 1999 (28.12.1999)	US
60/184,129	22 February 2000 (22.02.2000)	US
60/185.421	28 February 2000 (28.02.2000)	US
60/185,554	28 February 2000 (28.02.2000)	US
60/186,530	2 March 2000 (02.03.2000)	US
60/186,811	3 March 2000 (03.03.2000)	US
60/188,114	9 March 2000 (09.03.2000)	US
60/190,310	17 March 2000 (17.03.2000)	US
60/190,800	21 March 2000 (21.03.2000)	US
60/198,568	20 April 2000 (20.04.2000)	US
60/201,190	2 May 2000 (02.05.2000)	US
60/203,111	8 May 2000 (08.05.2000)	US
60/207,094	25 May 2000 (25.05.2000)	US
	•	

(71) Applicant (for all designated States except US): PHAR-MACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and

01/36473 A2

Inventors/Applicants (for US only): VOGELI, Gabriel [US/US]; 3005 First Avenue, Seattle, WA 98121 (US). WOOD, Linda, S. [US/US]; 10193 Fox Hollow, Portage, MI 49024 (US). PARODI, Luis, A. [SE/SE]; Grevgafan-24, S-115 43 Stockholm (SE). HIEBSCH,

Ronald, R. [US/US]; 917 Lane Boulevard, Kalamazoo, MI 49001 (US). LIND, Peter [SE/SE]; Borjegatan 31C, S-751 29 Uppsala (SE). SLIGHTOM, Jerry [US/US]; 3305 Lorraine Avenue, Kalamazoo, MI 49008 (US). SCHELLIN, Kathleen, A. [US/US]; 361 Jason Court, Portage, MI 49024 (US). KAYTES, Paul, S. [US/US]; 3506-D Shadow Bend Drive, Kalamazoo, MI 49004 (US). BANNIGAN, Christopher, M. [US/US]; 2411 Kopka Court, Bay City, MI 48708 (US). RUFF, Valerie [US/US]; 7301 Sandpiper Street, Portage, MI 49024 (US). SEJLITZ, Torsten [SE/SE]; Sankt Eriksgatan 59, S-112 34 Stockholm (SE). HUFF, Rita, M. [US/US]; 3627 B Avenue, West, Plainwell, MI 49080 (US).

(74) Agents: DELUCA, Mark et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, One Liberty Place, 46th Floor, Philadelphia, PA 19103 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, ÄU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTORS

(57) Abstract: The present invention provides a gene encoding a G protein-coupled receptor termed nGPCR-x; constructs and recombinant host cells incorporating the genes; the nGPCR-x polypeptides encoded by the gene; antibodies to the nGPCR-x polypeptides; and methods of making and using all of the foregoing.

•

NOVEL G PROTEIN-COUPLED RECEPTORS

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority of Application Serial No. 60/165,838, filed 1999 November 16; Serial No. 60/166,071, filed 1999 November 17; Serial No. 60/166,678 filed 1999 November 19; Serial No. 60/173,396, filed 1999 December 28; Serial No. 60/184,129, filed 2000 February 22; Serial No. 60/188,114, filed 2000 March 9; Serial No. 60/185,421, filed 2000 February 28; Serial No. 60/186,811, filed 2000 March 3; Serial No. 60/186,530, filed 2000 March 2; Serial No. 60/207,094, filed 2000 May 25; Serial No. 60/203,111, filed 2000 May 8; Serial No. 60/190,310, filed 2000 March 17; Serial No. 60/201,190, filed 2000 May 2; Serial No. 60/185,554, filed 2000 February 28; Serial No. 60/198,568, filed 2000 April 20; and Serial No. 60/190,800, filed 2000 March 21, each of which is hereby incorporated by reference in its entirety.

15

20

25

30

10

5

FIELD OF THE INVENTION

Q

The present invention relates generally to the fields of genetics and cellular and molecular biology. More particularly, the invention relates to novel G protein coupled receptors, to polynucleotides that encode such novel receptors, to reagents such as antibodies, probes, primers and kits comprising such antibodies, probes, primers related to the same, and to methods which use the novel G protein coupled receptors, polynucleotides or reagents.

BACKGROUND OF THE INVENTION

The G protein-coupled receptors (GPCRs) form a vast superfamily of cell surface receptors which are characterized by an amino-terminal extracellular domain, a carboxyl-terminal intracellular domain, and a serpentine structure that passes through the cell membrane seven times. Hence, such receptors are sometimes also referred to as seven transmembrane (7TM) receptors. These seven transmembrane domains define three extracellular loops and three intracellular loops, in addition to the amino- and carboxy- terminal domains. The extracellular portions of the receptor have a role in recognizing and binding one or more extracellular binding partners

(e.g., ligands), whereas the intracellular portions have a role in recognizing and communicating with downstream molecules in the signal transduction cascade.

5

10

15

20

25

30

The G protein-coupled receptors bind a variety of ligands including calcium ions, hormones, chemokines, neuropeptides, neurotransmitters, nucleotides, lipids, odorants, and even photons, and are important in the normal (and sometimes the aberrant) function of many cell types. [See generally Strosberg, Eur. J. Biochem. 196:1-10 (1991) and Bohm et al., Biochem J. 322:1-18 (1997).] When a specific ligand binds to its corresponding receptor, the ligand typically stimulates the receptor to activate a specific heterotrimeric guanine-nucleotide-binding regulatory protein (G-protein) that is coupled to the intracellular portion of the receptor. The G protein in turn transmits a signal to an effector molecule within the cell, by either stimulating or inhibiting the activity of that effector molecule. These effector molecules include adenylate cyclase, phospholipases and ion channels. Adenylate cyclase and phospholipases are enzymes that are involved in the production of the second messenger molecules cAMP, inositol triphosphate and diacyglycerol. It is through this sequence of events that an extracellular ligand stimuli exerts intracellular changes through a G protein-coupled receptor. Each such receptor has its own characteristic primary structure, expression pattern, ligand-binding profile, and intracellular effector system.

Because of the vital role of G protein-coupled receptors in the communication between cells and their environment, such receptors are attractive targets for therapeutic intervention, for example by activating or antagonizing such receptors. For receptors having a known ligand, the identification of agonists or antagonists may be sought specifically to enhance or inhibit the action of the ligand. Some G protein-coupled receptors have roles in disease pathogenesis (e.g., certain chemokine receptors that act as HIV co-receptors may have a role in AIDS pathogenesis), and are attractive targets for therapeutic intervention even in the absence of knowledge of the natural ligand of the receptor. Other receptors are attractive targets for therapeutic intervention by virtue of their expression pattern in tissues or cell types that are themselves attractive targets for therapeutic intervention. Examples of this latter category of receptors include receptors expressed in immune cells, which can be targeted to either inhibit autoimmune responses or to enhance immune responses to fight pathogens or cancer; and receptors expressed in the brain or other neural organs and tissues, which are likely targets in the treatment of schizophrenia, depression,

bipolar disease, or other neurological disorders. This latter category of receptor is also useful as a marker for identifying and/or purifying (e.g., via fluorescence-activated cell sorting) cellular subtypes that express the receptor. Unfortunately, only a limited number of G protein receptors from the central nervous system (CNS) are known. Thus, a need exists for G protein-coupled receptors that have been identified and show promise as targets for therapeutic intervention in a variety of animals, including humans.

SUMMARY OF THE INVENTION

10

15

20

25

30

The present invention relates to an isolated nucleic acid molecule that comprises a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a fragment thereof. The nucleic acid molecule encodes at least a portion of nGPCR-x. In some embodiments, the nucleic acid molecule comprises a sequence that encodes a polypeptide comprising even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a fragment thereof. In some embodiments, the nucleic acid molecule comprises a sequence homologous to odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a fragment thereof. In some embodiments, the nucleic acid molecule comprises a sequence selected from the group consisting of odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 185, and fragments thereof.

According to some embodiments, the present invention provides vectors which comprise the nucleic acid molecule of the invention. In some embodiments, the vector is an expression vector.

According to some embodiments, the present invention provides host cells which comprise the vectors of the invention. In some embodiments, the host cells comprise expression vectors.

The present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence complementary to at least a portion of a sequence from an odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, said portion comprising at least 10 nucleotides.

The present invention provides a method of producing a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2

to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof. The method comprising the steps of introducing a recombinant expression vector that includes a nucleotide sequence that encodes the polypeptide into a compatible host cell, growing the host cell under conditions for expression of the polypeptide and recovering the polypeptide.

5

10

15

20

25

30

The present invention provides an isolated antibody which binds to an epitope on a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof.

The present invention provides an method of inducing an immune response in a mammal against a polypeptide comprising a sequence from an even numbered sequence ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, or a homolog or fragment thereof. The method comprises administering to a mammal an amount of the polypeptide sufficient to induce said immune response.

The present invention provides a method for identifying a compound which binds nGPCR-x. The method comprises the steps of: contacting nGPCR-x with a compound and determining whether the compound binds nGPCR-x.

The present invention provides a method for identifying a compound which binds a nucleic acid molecule encoding nGPCR-x. The method comprises the steps of contacting said nucleic acid molecule encoding nGPCR-x with a compound and determining whether said compound binds said nucleic acid molecule.

The present invention provides a method for identifying a compound which modulates the activity of nGPCR-x. The method comprises the steps of contacting nGPCR-x with a compound and determining whether nGPCR-x activity has been modulated.

The present invention provides a method of identifying an animal homolog of nGPCR-x. The method comprises the steps screening a nucleic acid database of the animal with an odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof and determining whether a portion of said library or database is homologous to said odd numbered sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or portion thereof.

The present invention provides a method of identifying an animal homolog of nGPCR-x. The methods comprises the steps screening a nucleic acid library of the animal with a nucleic acid molecule having an odd numbered nucleotide sequence

ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof; and determining whether a portion of said library or database is homologous to said odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or a portion thereof.

5

10

15

20

25

30

Another aspect of the present invention relates to methods of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor. The methods comprise the steps of assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering an amino acid sequence, expression, or biological activity of at least one nGPCR that is expressed in the brain. The nGPCR comprise an amino acid sequence selected from the group consisting of: SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof. A diagnosis of the disorder or predisposition is made from the presence or absence of the mutation. The presence of a mutation altering the amino acid sequence, expression, or biological activity of the nGPCR in the nucleic acid correlates with an increased risk of developing the disorder.

The present invention further relates to methods of screening for an nGPCR-40 or nGPCR-54 hereditary schizophrenia genotype in a human patient. The methods comprise the steps of providing a biological sample comprising nucleic acid from the patient, in which the nucleic acid includes sequences corresponding to allelles of nGPCR-40 or nGPCR-54. The presence of one or more mutations in the nGPCR-40 allelle or the nGPCR-54 allelle is detected indicative of a hereditary schizophrenia genotype.

The present invention provides kits for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor. The kits include an oligonucleotide useful as a probe for identifying polymorphisms in a human nGPCR-40 gene or a human nGPCR-54 gene. The oligonucleotide comprises 6-50 nucleotides in a sequence that is identical or complementary to a sequence of a wild type human nGPCR-40 or nGPCR-54 gene sequence or nGPCR-40 or nGPCR-54 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution. The kit also includes a media packaged with the oligonucleotide. The media contains information for identifying polymorphisms that correlate with schizophrenia or a

genetic predisposition therefor, the polymophisms being identifiable using the oligonucleotide as a probe.

5

10

15

20

25

30

The present invention further relates to methods of identifying nGPCR allelic variants that correlates with mental disorders. The methods comprise the steps of providing biological samples that comprise nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny, and detecting in the nucleic acid the presence of one or more mutations in an nGPCR that is expressed in the brain. The nGPCR comprises an amino acid sequence selected from the group consisting of SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof. The nucleic acid includes sequences corresponding to the gene or genes encoding nGPCR. The one or more mutations detected indicate an allelic variant that correlates with a mental disorder.

The present invention further relates to purified polynucleotides comprising nucleotide sequences encoding allelles of nGPCR-40 or nGPCR-54 from a human with schizophrenia. The polynucleotide hybridizes to the complement of SEQ ID NO:83 or of SEQ ID NO:85 under the following hybridization conditions: (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS. The polynucleotide that encodes nGPCR-40 or nGPCR-54 amino acid sequence of the human differs from SEQ ID NO:84 or SEQ ID NO:86 by at least one residue.

The present invention also provides methods for identifying a modulator of biological activity of nGPCR-40 or nGPCR-54 comprising the steps of contacting a cell that expresses nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound and measuring nGPCR-40 or nGPCR-54 biological activity in the cell. The decreased or increased nGPCR-40 or nGPCR-54 biological activity in the presence versus absence of the putative modulator is indicative of a modulator of biological activity.

The present invention further provides methods to identify compounds useful for the treatment of schizophrenia. The methods comprise the steps of contacting a composition comprising nGPCR-40 with a compound suspected of binding nGPCR-40 or contacting a composition comprising nGPCR-54 with a compound suspected of

binding nGPCR-54. The binding between nGPCR-40 and the compound suspected of binding nGPCR-40 or between nGPCR-54 and the compound suspected of binding nGPCR-54 is detected. Compounds identified as binding nGPCR-40 or nGPCR-54 are candidate compounds useful for the treatment of schizophrenia.

5

10

15

20

25

30

The present invention further provides methods for identifying a compound useful as a modulator of binding between nGPCR-40 and a binding partner of nGPCR-40 or between nGPCR-54 and a binding partner of nGPCR-54. The methods comprise the steps of contacting the binding partner and a composition comprising nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound and detecting binding between the binding partner and nGPCR-40 or nGPCR-54. Decreased or increased binding between the binding partner and nGPCR-40 or nGPCR-54 in the presence of the putative modulator, as compared to binding in the absence of the putative modulator is indicative a modulator compound useful for the treatment of schizophrenia.

Another aspect of the present invention relates to methods of purifying a G protein from a sample containing a G protein. The methods comprise the steps of contacting the sample with an nGPCR for a time sufficient to allow the G protein to form a complex with the nGPCR; isolating the complex from remaining components of the sample; maintaining the complex under conditions which result in dissociation of the G protein from the nGPCR; and isolating said G protein from the nGPCR.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Definitions

Various definitions are made throughout this document. Most words have the meaning that would be attributed to those words by one skilled in the art. Words specifically defined either below or elsewhere in this document have the meaning provided in the context of the present invention as a whole and as are typically understood by those skilled in the art.

"Synthesized" as used herein and understood in the art, refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means.

By the term "region" is meant a physically contiguous portion of the primary structure of a biomolecule. In the case of proteins, a region is defined by a contiguous portion of the amino acid sequence of that protein.

The term "domain" is herein defined as referring to a structural part of a biomolecule that contributes to a known or suspected function of the biomolecule. Domains may be co-extensive with regions or portions thereof; domains may also incorporate a portion of a biomolecule that is distinct from a particular region, in addition to all or part of that region. Examples of GPCR protein domains include, but are not limited to, the extracellular (i.e., N-terminal), transmembrane and cytoplasmic (i.e., C-terminal) domains, which are co-extensive with like-named regions of GPCRs; each of the seven transmembrane segments of a GPCR; and each of the loop segments (both extracellular and intracellular loops) connecting adjacent transmembrane segments.

5

10

15

20

25

30

As used herein, the term "activity" refers to a variety of measurable indicia suggesting or revealing binding, either direct or indirect; affecting a response, i.e. having a measurable affect in response to some exposure or stimulus, including, for example, the affinity of a compound for directly binding a polypeptide or polynucleotide of the invention, or, for example, measurement of amounts of upstream or downstream proteins or other similar functions after some stimulus or event.

Unless indicated otherwise, as used herein, the abbreviation in lower case (gpcr) refers to a gene, cDNA, RNA or nucleic acid sequence, while the upper case version (GPCR) refers to a protein, polypeptide, peptide, oligopeptide, or amino acid sequence. The term "nGPCR-x" refers to any of the nGPCRs taught herein, while specific reference to a nGPCR (for example nGPCR-5) refers only to that specific nGPCR.

As used herein, the term "antibody" is meant to refer to complete, intact antibodies, and Fab, Fab', F(ab)2, and other fragments thereof. Complete, intact antibodies include monoclonal antibodies such as murine monoclonal antibodies, chimeric antibodies and humanized antibodies.

As used herein, the term "binding" means the physical or chemical interaction between two proteins or compounds or associated proteins or compounds or combinations thereof. Binding includes ionic, non-ionic, Hydrogen bonds, Van der Waals, hydrophobic interactions, etc. The physical interaction, the binding, can be

either direct or indirect, indirect being through or due to the effects of another protein or compound. Direct binding refers to interactions that do not take place through or due to the effect of another protein or compound but instead are without other substantial chemical intermediates. Binding may be detected in many different manners. As a non-limiting example, the physical binding interaction between a nGPCR-x of the invention and a compound can be detected using a labeled compound. Alternatively, functional evidence of binding can be detected using, for example, a cell transfected with and expressing a nGPCR-x of the invention. Binding of the transfected cell to a ligand of the nGPCR that was transfected into the cell provides functional evidence of binding. Other methods of detecting binding are well-known to those of skill in the art.

5

10

15

20

25

30

As used herein, the term "compound" means any identifiable chemical or molecule, including, but not limited to, small molecule, peptide, protein, sugar, nucleotide, or nucleic acid, and such compound can be natural or synthetic.

As used herein, the term "complementary" refers to Watson-Crick basepairing between nucleotide units of a nucleic acid molecule.

As used herein, the term "contacting" means bringing together, either directly or indirectly, a compound into physical proximity to a polypeptide or polynucleotide of the invention. The polypeptide or polynucleotide can be in any number of buffers, salts, solutions etc. Contacting includes, for example, placing the compound into a beaker, microtiter plate, cell culture flask, or a microarray, such as a gene chip, or the like, which contains the nucleic acid molecule, or polypeptide encoding the nGPCR or fragment thereof.

As used herein, the phrase "homologous nucleotide sequence," or "homologous amino acid sequence," or variations thereof, refers to sequences characterized by a homology, at the nucleotide level or amino acid level, of at least the specified percentage. Homologous nucleotide sequences include those sequences coding for isoforms of proteins. Such isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA.

Alternatively, isoforms can be encoded by different genes. Homologous nucleotide sequences include nucleotide sequences encoding for a protein of a species other than humans, including, but not limited to, mammals. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does

not, however, include the nucleotide sequence encoding other known GPCRs. Homologous amino acid sequences include those amino acid sequences which contain conservative amino acid substitutions and which polypeptides have the same binding and/or activity. A homologous amino acid sequence does not, however, include the amino acid sequence encoding other known GPCRs. Percent homology can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison WI), using the default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489, which is incorporated herein by reference in its entirety).

5

10

15

20

25

30

As used herein, the term "isolated" nucleic acid molecule refers to a nucleic acid molecule (DNA or RNA) that has been removed from its native environment. Examples of isolated nucleic acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA or RNA molecules.

As used herein, the terms "modulates" or "modifies" means an increase or decrease in the amount, quality, or effect of a particular activity or protein.

As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues which has a sufficient number of bases to be used in a polymerase chain reaction (PCR). This short sequence is based on (or designed from) a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise portions of a DNA sequence having at least about 10 nucleotides and as many as about 50 nucleotides, preferably about 15 to 30 nucleotides. They are chemically synthesized and may be used as probes.

As used herein, the term "probe" refers to nucleic acid sequences of variable length, preferably between at least about 10 and as many as about 6,000 nucleotides, depending on use. They are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligomers. They may be single- or double-stranded and carefully designed to have specificity in PCR, hybridization membrane-based, or ELISA-like technologies.

The term "preventing" refers to decreasing the probability that an organism contracts or develops an abnormal condition.

The term "treating" refers to having a therapeutic effect and at least partially alleviating or abrogating an abnormal condition in the organism.

5

10

15

20

25

30

The term "therapeutic effect" refers to the inhibition or activation factors causing or contributing to the abnormal condition. A therapeutic effect relieves to some extent one or more of the symptoms of the abnormal condition. In reference to the treatment of abnormal conditions, a therapeutic effect can refer to one or more of the following: (a) an increase in the proliferation, growth, and/or differentiation of cells; (b) inhibition (i.e., slowing or stopping) of cell death; (c) inhibition of degeneration; (d) relieving to some extent one or more of the symptoms associated with the abnormal condition; and (e) enhancing the function of the affected population of cells. Compounds demonstrating efficacy against abnormal conditions can be identified as described herein.

The term "abnormal condition" refers to a function in the cells or tissues of an organism that deviates from their normal functions in that organism. An abnormal condition can relate to cell proliferation, cell differentiation, cell signaling, or cell survival. An abnormal condition may also include obesity, diabetic complications such as retinal degeneration, and irregularities in glucose uptake and metabolism, and fatty acid uptake and metabolism.

Abnormal cell proliferative conditions include cancers such as fibrotic and mesangial disorders, abnormal angiogenesis and vasculogenesis, wound healing, psoriasis, diabetes mellitus, and inflammation.

Abnormal differentiation conditions include, but are not limited to, neurodegenerative disorders, slow wound healing rates, and slow tissue grafting healing rates. Abnormal cell signaling conditions include, but are not limited to, psychiatric disorders involving excess neurotransmitter activity.

Abnormal cell survival conditions may also relate to conditions in which programmed cell death (apoptosis) pathways are activated or abrogated. A number of protein kinases are associated with the apoptosis pathways. Aberrations in the function of any one of the protein kinases could lead to cell immortality or premature cell death.

The term "administering" relates to a method of incorporating a compound into cells or tissues of an organism. The abnormal condition can be prevented or

treated when the cells or tissues of the organism exist within the organism or outside of the organism. Cells existing outside the organism can be maintained or grown in cell culture dishes. For cells harbored within the organism, many techniques exist in the art to administer compounds, including (but not limited to) oral, parenteral, dermal, injection, and aerosol applications. For cells outside of the organism, multiple techniques exist in the art to administer the compounds, including (but not limited to) cell microinjection techniques, transformation techniques and carrier techniques.

5

10

15

20

25

30

The abnormal condition can also be prevented or treated by administering a compound to a group of cells having an aberration in a signal transduction pathway to an organism. The effect of administering a compound on organism function can then be monitored. The organism is preferably a mouse, rat, rabbit, guinea pig or goat, more preferably a monkey or ape, and most preferably a human.

By "amplification" it is meant increased numbers of DNA or RNA in a cell compared with normal cells. "Amplification" as it refers to RNA can be the detectable presence of RNA in cells, since in some normal cells there is no basal expression of RNA. In other normal cells, a basal level of expression exists, therefore in these cases amplification is the detection of at least 1 to 2-fold, and preferably more, compared to the basal level.

As used herein, the phrase "stringent hybridization conditions" or "stringent conditions" refers to conditions under which a probe, primer, or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present in excess, at T_m, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes, primers or oligonucleotides (e.g. 10 to 50 nucleotides) and at least about 60°C for longer probes, primers or oligonucleotides.

Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.

The amino acid sequences are presented in the amino to carboxy direction, from left to right. The amino and carboxy groups are not presented in the sequence. The nucleotide sequences are presented by single strand only, in the 5' to 3' direction, from left to right. Nucleotides and amino acids are represented in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission or (for amino acids) by three letters code.

Polynucleotides

5

10

15

20

25

30

The present invention provides purified and isolated polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary antisense strands, both single- and double-stranded, including splice variants thereof) that encode unknown G protein-coupled receptors heretofore termed novel GPCRs, or nGPCRs. These genes are described herein and designated herein collectively as nGPCR-x (where x is 1, 3, 4, 5, 9, 11, 12, 14, 15, 18, 16, 17, 20, 21, 22, 24, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 53, 54, 55, 56, 57, 58, 59, or 60). That is, these genes are described herein and designated herein as nGPCR-1 (also referred to as beGPCR-1), nGPCR-3 (also referred to as beGPCR-3), nGPCR-4 (also referred to as beGPCR-4), nGPCR-5 (also referred to as beGPCR-5 and TL-GPCR-5), nGPCR-9 (also referred to as beGPCR-9), nGPCR-11 (also referred to as beGPCR-11), nGPCR-12 (also referred to as beGPCR-12), nGPCR-14 (also referred to as beGPCR-14), nGPCR-15 (also referred to as beGPCR-15), nGPCR-18 (also referred to as beGPCR-18), nGPCR-16 (also referred to as beGPCR-16), nGPCR-17 (also referred to as beGPCR-17), nGPCR-20 (also referred to as beGPCR-20), nGPCR-21 (also referred to as beGPCR-21), nGPCR-22 (also referred to as beGPCR-22), nGPCR-24 (also referred to as beGPCR-24), nGPCR-27 (also referred to as beGPCR-27), nGPCR-28 (also referred to as beGPCR-28), nGPCR-31 (also referred to as beGPCR-31), nGPCR-32 (also referred to as beGPCR-32), nGPCR-33 (also referred to as beGPCR-33), nGPCR-34 (also referred to as beGPCR-34), nGPCR-35 (also referred to as beGPCR-35), nGPCR-36 (also referred to as beGPCR-36), nGPCR-37 (also referred to as beGPCR-37), nGPCR-38 (also referred to as beGPCR-38), nGPCR-40 (also referred to as beGPCR-40), nGPCR-41 (also referred to as beGPCR-41), nGPCR-53, nGPCR-54, nGPCR-55, nGPCR-56, nGPCR-57, nGPCR-58, nGPCR-59, and

nGPCR-60. Table 1 below identifies the novel gene sequence nGPCR-x designation, the SEQ ID NO: of the gene sequence, the SEQ ID NO: of the polypeptide encoded thereby, and the U.S. Provisional Application in which the gene sequence has been disclosed.

5 Table 1

20

nGPCR	Nucleotide Sequence (SEQ ID NO:)	Amino acid Sequence (SEQ ID NO:)	Originally filed in:	nGPCR	Nucleotide Sequence (SEQ ID NO:)	Amino acid Sequence (SEQ ID NO:)	Originally filed in:
1	1	2	Α	32	39	40	B
1	73	74	Е	33	41	42	C
3	3	4	Α	34	43	44	С
3	185	186	P	35	45	46	C
4	5	6	Α	36	47	48	C
5	7	8	Α	37	49	50	C
5	75	76	F	38	51	52	C
9	9	10	Α	- 40	53	54	C
9	77	78	G	40	83	84	J
11	11	12	Α	41	55	56	С
11	79	80	Н	53	57	58	D
12	13	14	A	54	59	60	D
14	15	16	A	54	85	86	K
15	17	18	A	55	61	62	D
18	19	20	A	56	63	64	D
16	21	22	В	56	87	88	L
16	81	82	I	56	89	90	M
17	23	24	В	57	65	66	D
20	25	26	В	58	67	68	D
21	27	28	В	58	91	92	N
22	29	30	В	58	93	94	0
24	31	32	В	59	69	70	D
27	33	34	В	60	71	72	D_
28	35	36	В				
31	37	38	В			<u> </u>	

	Lege	nd
10	A= Ser. No. 60/165,838 B= Ser. No. 60/166,071 C= Ser. No. 60/166,678 D= Ser. No. 60/173,396 E= Ser. No. 60/184,129 F= Ser. No. 60/188,114 G= Ser. No. 60/185,421 H= Ser. No. 60/186,811	I= Ser. No. 60/186,530 J= Ser. No. 60/207,094 K= Ser. No. 60/203,111 L= Ser. No. 60/190,310 M= Ser. No. 60/201,190 N= Ser. No. 60/185554 O= Ser. No. 60/190,800 P= Ser. No. 60/198,568

When a specific nGPCR is identified (for example nGPCR-5), it is understood that only that specific nGPCR is being referred to.

As described in Example 4 below, the genes encoding nGPCR-1 (nucleic acid sequence SEQ ID NO: 1, SEQ ID NO: 73, amino acid sequence SEQ ID NO: 2, SEQ ID NO:74), nGPCR-9 (nucleic acid sequence SEQ ID NO:9, SEQ ID NO:77, amino acid sequence SEQ ID NO:10, SEQ ID NO:78), nGPCR-11 (nucleic acid sequence

SEQ ID NO:11, SEQ ID NO:79, amino acid sequence SEQ ID NO:12, SEQ ID NO:80), nGPCR-16 (nucleic acid sequence SEQ ID NO: 21, SEQ ID NO:81, amino acid sequence SEQ ID NO: 22, SEQ ID NO:82), nGPCR-40 (nucleic acid sequence SEQ ID NO:53, SEQ ID NO:83, amino acid sequence SEQ ID NO:54, SEQ ID NO:84), nGPCR-54 (nucleic acid sequence SEQ ID NO:59, SEQ ID NO:85, amino acid sequence SEQ ID NO:60, SEQ ID NO: 86), nGPCR-56 (nucleic acid sequence SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, amino acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, amino acid sequence SEQ ID NO:68, SEQ ID NO: 92, SEQ ID NO:94) and nGPCR-3 (nucleic acid sequence SEQ ID NO:3, SEQ ID NO:185, amino acid sequence SEQ ID NO:4, SEQ ID NO: 186) have been detected in brain tissue indicating that these n-GPCR-x proteins are neuroreceptors.

10

15

20

25

30

The invention provides purified and isolated polynucleotides (e.g., cDNA, genomic DNA, synthetic DNA, RNA, or combinations thereof, whether single- or double-stranded) that comprise a nucleotide sequence encoding the amino acid sequence of the polypeptides of the invention. Such polynucleotides are useful for recombinantly expressing the receptor and also for detecting expression of the receptor in cells (e.g., using Northern hybridization and in situ hybridization assays). Such polynucleotides also are useful in the design of antisense and other molecules for the suppression of the expression of nGPCR-x in a cultured cell, a tissue, or an animal; for therapeutic purposes; or to provide a model for diseases or conditions characterized by aberrant nGPCR-x expression. Specifically excluded from the definition of polynucleotides of the invention are entire isolated, non-recombinant native chromosomes of host cells. A preferred polynucleotide has the sequence of the sequence set forth in odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, which correspond to naturally occurring nGPCR-x sequences. It will be appreciated that numerous other polynucleotide sequences exist that also encode nGPCR-x having the sequence set forth in even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, due to the well-known degeneracy of the universal genetic code.

The invention also provides a purified and isolated polynucleotide comprising a nucleotide sequence that encodes a mammalian polypeptide, wherein the polynucleotide hybridizes to a polynucleotide having the sequence set forth in odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID

NO: 185 or the non-coding strand complementary thereto, under the following hybridization conditions:

5

10

15

20

25

30

- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaCl, 10% dextran sulfate; and
- (b) washing 2 times for 30 minutes each at 60°C in a wash solution comprising 0.1% SSC, 1% SDS. Polynucleotides that encode a human allelic variant are highly preferred.

The present invention relates to molecules which comprise the gene sequences that encode the nGPCRs; constructs and recombinant host cells incorporating the gene sequences; the novel GPCR polypeptides encoded by the gene sequences; antibodies to the polypeptides and homologs; kits employing the polynucleotides and polypeptides, and methods of making and using all of the foregoing. In addition, the present invention relates to homologs of the gene sequences and of the polypeptides and methods of making and using the same.

Genomic DNA of the invention comprises the protein-coding region for a polypeptide of the invention and is also intended to include allelic variants thereof. It is widely understood that, for many genes, genomic DNA is transcribed into RNA transcripts that undergo one or more splicing events wherein intron (*i.e.*, non-coding regions) of the transcripts are removed, or "spliced out." RNA transcripts that can be spliced by alternative mechanisms, and therefore be subject to removal of different RNA sequences but still encode a nGPCR-x polypeptide, are referred to in the art as splice variants which are embraced by the invention. Splice variants comprehended by the invention therefore are encoded by the same original genomic DNA sequences but arise from distinct mRNA transcripts. Allelic variants are modified forms of a wild-type gene sequence, the modification resulting from recombination during chromosomal segregation or exposure to conditions which give rise to genetic mutation. Allelic variants, like wild type genes, are naturally occurring sequences (as opposed to non-naturally occurring variants that arise from *in vitro* manipulation).

The invention also comprehends cDNA that is obtained through reverse transcription of an RNA polynucleotide encoding nGPCR-x (conventionally followed by second strand synthesis of a complementary strand to provide a double-stranded DNA).

Preferred DNA sequences encoding human nGPCR-x polypeptides are set out in odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185. A preferred DNA of the invention comprises a double stranded molecule along with the complementary molecule (the "non-coding strand" or "complement") having a sequence unambiguously deducible from the coding strand according to Watson-Crick base-pairing rules for DNA. Also preferred are other polynucleotides encoding the nGPCR-x polypeptide of even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, which differ in sequence from the polynucleotides of odd numbered sequences ranging from SEQ ID NO: 93 and SEQ ID NO: 185, by virtue of the well-known degeneracy of the universal nuclear genetic code.

The invention further embraces other species, preferably mammalian, homologs of the human nGPCR-x DNA. Species homologs, sometimes referred to as "orthologs," in general, share at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% homology with human DNA of the invention. Generally, percent sequence "homology" with respect to polynucleotides of the invention may be calculated as the percentage of nucleotide bases in the candidate sequence that are identical to nucleotides in the nGPCR-x sequence set forth in odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity.

Polynucleotides of the invention permit identification and isolation of polynucleotides encoding related nGPCR-x polypeptides, such as human allelic variants and species homologs, by well-known techniques including Southern and/or Northern hybridization, and polymerase chain reaction (PCR). Examples of related polynucleotides include human and non-human genomic sequences, including allelic variants, as well as polynucleotides encoding polypeptides homologous to nGPCR-x and structurally related polypeptides sharing one or more biological, immunological, and/or physical properties of nGPCR-x. Non-human species genes encoding proteins homologous to nGPCR-x can also be identified by Southern and/or PCR analysis and are useful in animal models for nGPCR-x disorders. Knowledge of the sequence of a human nGPCR-x DNA also makes possible through use of Southern hybridization or polymerase chain reaction (PCR) the identification of genomic DNA sequences

encoding nGPCR-x expression control regulatory sequences such as promoters, operators, enhancers, repressors, and the like. Polynucleotides of the invention are also useful in hybridization assays to detect the capacity of cells to express nGPCR-x. Polynucleotides of the invention may also provide a basis for diagnostic methods useful for identifying a genetic alteration(s) in a nGPCR-x locus that underlies a disease state or states, which information is useful both for diagnosis and for selection of therapeutic strategies.

5

10

15

20

25

30

According to the present invention, the nGPCR-x nucleotide sequences disclosed herein may be used to identify homologs of the nGPCR-x, in other animals, including but not limited to humans and other mammals, and invertebrates. Any of the nucleotide sequences disclosed herein, or any portion thereof, can be used, for example, as probes to screen databases or nucleic acid libraries, such as, for example, genomic or cDNA libraries, to identify homologs, using screening procedures well known to those skilled in the art. Accordingly, homologs having at least 50%, more preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, more preferably at least 95%, and most preferably at least 100% homology with nGPCR-x sequences can be identified.

The disclosure herein of full-length polynucleotides encoding nGPCR-x polypeptides makes readily available to the worker of ordinary skill in the art every possible fragment of the full-length polynucleotide.

One preferred embodiment of the present invention provides an isolated nucleic acid molecule comprising a sequence homologous to odd numbered sequences selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:93, SEQ ID NO: 185, and fragments thereof. Another preferred embodiment provides an isolated nucleic acid molecule comprising a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO: 93, SEQ ID NO: 185 and fragments thereof.

As used in the present invention, fragments of nGPCR-x-encoding polynucleotides comprise at least 10, and preferably at least 12, 14, 16, 18, 20, 25, 50, or 75 consecutive nucleotides of a polynucleotide encoding nGPCR-x. Preferably, fragment polynucleotides of the invention comprise sequences unique to the nGPCR-x-encoding polynucleotide sequence, and therefore hybridize under highly stringent or moderately stringent conditions only (i.e., "specifically") to polynucleotides encoding nGPCR-x (or fragments thereof). Polynucleotide fragments of genomic sequences of

the invention comprise not only sequences unique to the coding region, but also include fragments of the full-length sequence derived from introns, regulatory regions, and/or other non-translated sequences. Sequences unique to polynucleotides of the invention are recognizable through sequence comparison to other known polynucleotides, and can be identified through use of alignment programs routinely utilized in the art, e.g., those made available in public sequence databases. Such sequences also are recognizable from Southern hybridization analyses to determine the number of fragments of genomic DNA to which a polynucleotide will hybridize. Polynucleotides of the invention can be labeled in a manner that permits their detection, including radioactive, fluorescent, and enzymatic labeling.

5

10

15

20

25

30

Fragment polynucleotides are particularly useful as probes for detection of full-length or fragments of nGPCR-x polynucleotides. One or more polynucleotides can be included in kits that are used to detect the presence of a polynucleotide encoding nGPCR-x, or used to detect variations in a polynucleotide sequence encoding nGPCR-x.

The invention also embraces DNAs encoding nGPCR-x polypeptides that hybridize under moderately stringent or high stringency conditions to the non-coding strand, or complement, of the polynucleotides set forth in odd numbered sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185.

Exemplary highly stringent hybridization conditions are as follows: hybridization at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaCl, 10% Dextran sulfate, and washing twice for 30 minutes at 60°C in a wash solution comprising 0.1 X SSC and 1% SDS. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described Ausubel et al. (Eds.), Protocols in Molecular Biology, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook, et al., (Eds.), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

With the knowledge of the nucleotide sequence information disclosed in the present invention, one skilled in the art can identify and obtain nucleotide sequences

which encode nGPCR-x from different sources (i.e., different tissues or different organisms) through a variety of means well known to the skilled artisan and as disclosed by, for example, Sambrook et al., "Molecular cloning: a laboratory manual", Second Edition, Cold Spring Harbor Press, Cold Spring Harbor, NY (1989), which is incorporated herein by reference in its entirety.

5

10

15

20

25

30

For example, DNA that encodes nGPCR-x may be obtained by screening of mRNA, cDNA, or genomic DNA with oligonucleotide probes generated from the nGPCR-x gene sequence information provided herein. Probes may be labeled with a detectable group, such as a fluorescent group, a radioactive atom or a chemiluminescent group in accordance with procedures known to the skilled artisan and used in conventional hybridization assays, as described by, for example, Sambrook *et al*.

A nucleic acid molecule comprising any of the nGPCR-x nucleotide sequences described above can alternatively be synthesized by use of the polymerase chain reaction (PCR) procedure, with the PCR oligonucleotide primers produced from the nucleotide sequences provided herein. See U.S. Patent Numbers 4,683,195 to Mullis et al. and 4,683,202 to Mullis. The PCR reaction provides a method for selectively increasing the concentration of a particular nucleic acid sequence even when that sequence has not been previously purified and is present only in a single copy in a particular sample. The method can be used to amplify either single- or double-stranded DNA. The essence of the method involves the use of two oligonucleotide probes to serve as primers for the template-dependent, polymerase mediated replication of a desired nucleic acid molecule.

A wide variety of alternative cloning and *in vitro* amplification methodologies are well known to those skilled in the art. Examples of these techniques are found in, for example, Berger *et al.*, *Guide to Molecular Cloning Techniques*, Methods in Enzymology 152, Academic Press, Inc., San Diego, CA (Berger), which is incorporated herein by reference in its entirety.

Automated sequencing methods can be used to obtain or verify the nucleotide sequence of nGPCR-x. The nGPCR-x nucleotide sequences of the present invention are believed to be 100% accurate. However, as is known in the art, nucleotide sequence obtained by automated methods may contain some errors. Nucleotide sequences determined by automation are typically at least about 90%, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence

of a given nucleic acid molecule. The actual sequence may be more precisely determined using manual sequencing methods, which are well known in the art. An error in a sequence which results in an insertion or deletion of one or more nucleotides may result in a frame shift in translation such that the predicted amino acid sequence will differ from that which would be predicted from the actual nucleotide sequence of the nucleic acid molecule, starting at the point of the mutation.

The nucleic acid molecules of the present invention, and fragments derived therefrom, are useful for screening for restriction fragment length polymorphism (RFLP) associated with certain disorders, as well as for genetic mapping.

The polynucleotide sequence information provided by the invention makes possible large-scale expression of the encoded polypeptide by techniques well known and routinely practiced in the art.

Vectors

5

10

15

20

25

30

Another aspect of the present invention is directed to vectors, or recombinant expression vectors, comprising any of the nucleic acid molecules described above. Vectors are used herein either to amplify DNA or RNA encoding nGPCR-x and/or to express DNA which encodes nGPCR-x. Preferred vectors include, but are not limited to, plasmids, phages, cosmids, episomes, viral particles or viruses, and integratable DNA fragments (*i.e.*, fragments integratable into the host genome by homologous recombination). Preferred viral particles include, but are not limited to, adenoviruses, baculoviruses, parvoviruses, herpesviruses, poxviruses, adeno-associated viruses, Semliki Forest viruses, vaccinia viruses, and retroviruses. Preferred expression vectors include, but are not limited to, pcDNA3 (Invitrogen) and pSVL (Pharmacia Biotech). Other expression vectors include, but are not limited to, pSPORTTM vectors, pGEMTM vectors (Promega), pPROEXvectorsTM (LTI, Bethesda, MD), BluescriptTM vectors (Stratagene), pQETM vectors (Qiagen), pSE420TM (Invitrogen), and pYES2TM(Invitrogen).

Expression constructs preferably comprise GPCR-x-encoding polynucleotides operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator. Expression control DNA sequences include promoters, enhancers, operators, and regulatory element binding sites generally, and are typically selected based on the expression systems in which the expression construct is to be utilized. Preferred promoter and enhancer sequences are generally selected for the ability to increase gene expression, while operator sequences are generally selected

for the ability to regulate gene expression. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate, and preferably promote, homologous recombination in a host cell. Preferred constructs of the invention also include sequences necessary for replication in a host cell.

5

10

15

20

25

30

Expression constructs are preferably utilized for production of an encoded protein, but may also be utilized simply to amplify a nGPCR-x-encoding polynucleotide sequence. In preferred embodiments, the vector is an expression vector wherein the polynucleotide of the invention is operatively linked to a polynucleotide comprising an expression control sequence. Autonomously replicating recombinant expression constructs such as plasmid and viral DNA vectors incorporating polynucleotides of the invention are also provided. Preferred expression vectors are replicable DNA constructs in which a DNA sequence encoding nGPCR-x is operably linked or connected to suitable control sequences capable of effecting the expression of the nGPCR-x in a suitable host. DNA regions are operably linked or connected when they are functionally related to each other. For example, a promoter is operably linked or connected to a coding sequence if it controls the transcription of the sequence. Amplification vectors do not require expression control domains, but rather need only the ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. The need for control sequences in the expression vector will vary depending upon the host selected and the transformation method chosen. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding and sequences which control the termination of transcription and translation.

Preferred vectors preferably contain a promoter that is recognized by the host organism. The promoter sequences of the present invention may be prokaryotic, eukaryotic or viral. Examples of suitable prokaryotic sequences include the P_R and P_L promoters of bacteriophage lambda (The bacteriophage Lambda, Hershey, A. D., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1973), which is incorporated herein by reference in its entirety; Lambda II, Hendrix, R. W., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1980), which is incorporated herein by reference in its entirety); the trp, recA, heat shock, and lacZ promoters of E. coli and

the SV40 early promoter (Benoist et al. Nature, 1981, 290, 304-310, which is incorporated herein by reference in its entirety). Additional promoters include, but are not limited to, mouse mammary tumor virus, long terminal repeat of human immunodeficiency virus, maloney virus, cytomegalovirus immediate early promoter, Epstein Barr virus, Rous sarcoma virus, human actin, human myosin, human hemoglobin, human muscle creatine, and human metalothionein.

5

10

15

20

25

30

Additional regulatory sequences can also be included in preferred vectors.

Preferred examples of suitable regulatory sequences are represented by the Shine-Dalgarno of the replicase gene of the phage MS-2 and of the gene cII of bacteriophage lambda. The Shine-Dalgarno sequence may be directly followed by DNA encoding nGPCR-x and result in the expression of the mature nGPCR-x protein.

Moreover, suitable expression vectors can include an appropriate marker that allows the screening of the transformed host cells. The transformation of the selected host is carried out using any one of the various techniques well known to the expert in the art and described in Sambrook *et al.*, *supra*.

An origin of replication can also be provided either by construction of the vector to include an exogenous origin or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter may be sufficient. Alternatively, rather than using vectors which contain viral origins of replication, one skilled in the art can transform mammalian cells by the method of co-transformation with a selectable marker and nGPCR-x DNA. An example of a suitable marker is dihydrofolate reductase (DHFR) or thymidine kinase (see, U.S. Patent No. 4,399,216).

Nucleotide sequences encoding GPCR-x may be recombined with vector DNA in accordance with conventional techniques, including blunt-ended or staggered-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesiderable joining, and ligation with appropriate ligases. Techniques for such manipulation are disclosed by Sambrook et al., supra and are well known in the art. Methods for construction of mammalian expression vectors are disclosed in, for example, Okayama et al., Mol. Cell. Biol., 1983, 3, 280, Cosman et al., Mol. Immunol., 1986, 23, 935, Cosman et al., Nature, 1984, 312, 768, EP-A-0367566, and WO 91/18982, each of which is incorporated herein by reference in its entirety.

Host cells

5

10

15

20

25

30

According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, comprising a polynucleotide of the invention (or vector of the invention) in a manner that permits expression of the encoded nGPCR-x polypeptide. Polynucleotides of the invention may be introduced into the host cell as part of a circular plasmid, or as linear DNA comprising an isolated protein coding region or a viral vector. Methods for introducing DNA into the host cell that are well known and routinely practiced in the art include transformation, transfection, electroporation, nuclear injection, or fusion with carriers such as liposomes, micelles, ghost cells, and protoplasts. Expression systems of the invention include bacterial, yeast, fungal, plant, insect, invertebrate, vertebrate, and mammalian cells systems.

The invention provides host cells that are transformed or transfected (stably or transiently) with polynucleotides of the invention or vectors of the invention. As stated above, such host cells are useful for amplifying the polynucleotides and also for expressing the nGPCR-x polypeptide or fragment thereof encoded by the polynucleotide.

In still another related embodiment, the invention provides a method for producing a nGPCR-x polypeptide (or fragment thereof) comprising the steps of growing a host cell of the invention in a nutrient medium and isolating the polypeptide or variant thereof from the cell or the medium. Because nGPCR-x is a seven transmembrane receptor, it will be appreciated that, for some applications, such as certain activity assays, the preferable isolation may involve isolation of cell membranes containing the polypeptide embedded therein, whereas for other applications a more complete isolation may be preferable.

According to some aspects of the present invention, transformed host cells having an expression vector comprising any of the nucleic acid molecules described above are provided. Expression of the nucleotide sequence occurs when the expression vector is introduced into an appropriate host cell. Suitable host cells for expression of the polypeptides of the invention include, but are not limited to, prokaryotes, yeast, and eukaryotes. If a prokaryotic expression vector is employed, then the appropriate host cell would be any prokaryotic cell capable of expressing the cloned sequences. Suitable prokaryotic cells include, but are not limited to, bacteria

of the genera Escherichia, Bacillus, Salmonella, Pseudomonas, Streptomyces, and Staphylococcus.

5

10

15

20

25

30

If an eukaryotic expression vector is employed, then the appropriate host cell would be any eukaryotic cell capable of expressing the cloned sequence. Preferably, eukaryotic cells are cells of higher eukaryotes. Suitable eukaryotic cells include, but are not limited to, non-human mammalian tissue culture cells and human tissue culture cells. Preferred host cells include, but are not limited to, insect cells, HeLa cells, Chinese hamster ovary cells (CHO cells), African green monkey kidney cells (COS cells), human 293 cells, and murine 3T3 fibroblasts. Propagation of such cells in cell culture has become a routine procedure (see, Tissue Culture, Academic Press, Kruse and Patterson, eds. (1973), which is incorporated herein by reference in its entirety).

In addition, a yeast host may be employed as a host cell. Preferred yeast cells include, but are not limited to, the genera Saccharomyces, Pichia, and Kluveromyces. Preferred yeast hosts are S. cerevisiae and P. pastoris. Preferred yeast vectors can contain an origin of replication sequence from a 2T yeast plasmid, an autonomously replication sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Shuttle vectors for replication in both yeast and E. coli are also included herein.

Alternatively, insect cells may be used as host cells. In a preferred embodiment, the polypeptides of the invention are expressed using a baculovirus expression system (see, Luckow et al., Bio/Technology, 1988, 6, 47, Baculovirus Expression Vectors: A Laboratory Manual, O'Rielly et al. (Eds.), W.H. Freeman and Company, New York, 1992, and U.S. Patent No. 4,879,236, each of which is incorporated herein by reference in its entirety). In addition, the MAXBACTM complete baculovirus expression system (Invitrogen) can, for example, be used for production in insect cells.

Host cells of the invention are a valuable source of immunogen for development of antibodies specifically immunoreactive with nGPCR-x. Host cells of the invention are also useful in methods for the large-scale production of nGPCR-x polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells, or from the medium in which the cells are grown, by purification methods known in the art, e.g., conventional chromatographic methods including immunoaffinity chromatography, receptor

affinity chromatography, hydrophobic interaction chromatography, lectin affinity chromatography, size exclusion filtration, cation or anion exchange chromatography, high pressure liquid chromatography (HPLC), reverse phase HPLC, and the like. Still other methods of purification include those methods wherein the desired protein is expressed and purified as a fusion protein having a specific tag, label, or chelating moiety that is recognized by a specific binding partner or agent. The purified protein can be cleaved to yield the desired protein, or can be left as an intact fusion protein. Cleavage of the fusion component may produce a form of the desired protein having additional amino acid residues as a result of the cleavage process.

Knowledge of nGPCR-x DNA sequences allows for modification of cells to permit, or increase, expression of endogenous nGPCR-x. Cells can be modified (e.g., by homologous recombination) to provide increased expression by replacing, in whole or in part, the naturally occurring nGPCR-x promoter with all or part of a heterologous promoter so that the cells express nGPCR-x at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to endogenous nGPCR-x encoding sequences. (See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No.WO 92/20808, and PCT International Publication No. WO 91/09955.) It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamoyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the nGPCR-x coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the nGPCR-x coding sequences in the cells.

Knock-outs

5

10

15

20

25

30

The DNA sequence information provided by the present invention also makes possible the development (e.g., by homologous recombination or "knock-out" strategies; see Capecchi, Science 244:1288-1292 (1989), which is incorporated herein by reference) of animals that fail to express functional nGPCR-x or that express a variant of nGPCR-x. Such animals (especially small laboratory animals such as rats, rabbits, and mice) are useful as models for studying the in vivo activities of nGPCR-x and modulators of nGPCR-x.

Antisense

5

10

15

20

25

30

Also made available by the invention are anti-sense polynucleotides that recognize and hybridize to polynucleotides encoding nGPCR-x. Full-length and fragment anti-sense polynucleotides are provided. Fragment antisense molecules of the invention include (i) those that specifically recognize and hybridize to nGPCR-x RNA (as determined by sequence comparison of DNA encoding nGPCR-x to DNA encoding other known molecules). Identification of sequences unique to nGPCR-x encoding polynucleotides can be deduced through use of any publicly available sequence database, and/or through use of commercially available sequence comparison programs. After identification of the desired sequences, isolation through restriction digestion or amplification using any of the various polymerase chain reaction techniques well known in the art can be performed. Anti-sense polynucleotides are particularly relevant to regulating expression of nGPCR-x by those cells expressing nGPCR-x mRNA.

Antisense nucleic acids (preferably 10 to 30 base-pair oligonucleotides) capable of specifically binding to nGPCR-x expression control sequences or nGPCR-x RNA are introduced into cells (e.g., by a viral vector or colloidal dispersion system such as a liposome). The antisense nucleic acid binds to the nGPCR-x target nucleotide sequence in the cell and prevents transcription and/or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. The antisense oligonucleotides may be further modified by adding poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5' end. Suppression of nGPCR-x expression at either the transcriptional or translational level is useful to generate cellular or animal models for diseases/conditions characterized by aberrant nGPCR-x expression.

Antisense oligonucleotides, or fragments of odd numbered nucleotide sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185 or sequences complementary or homologous thereto, derived from the nucleotide sequences of the present invention encoding nGPCR-x are useful as diagnostic tools for probing gene expression in various tissues. For example, tissue can be probed in situ with oligonucleotide probes carrying detectable groups by conventional autoradiography techniques to investigate native expression of this enzyme or pathological conditions relating thereto. Antisense oligonucleotides are preferably

directed to regulatory regions of odd numbered nucleotide sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185, or mRNA corresponding thereto, including, but not limited to, the initiation codon, TATA box, enhancer sequences, and the like.

Transcription factors

5

10

15

20

25

30

The nGPCR-x sequences taught in the present invention facilitate the design of novel transcription factors for modulating nGPCR-x expression in native cells and animals, and cells transformed or transfected with nGPCR-x polynucleotides. For example, the Cys2-His2 zinc finger proteins, which bind DNA via their zinc finger domains, have been shown to be amenable to structural changes that lead to the recognition of different target sequences. These artificial zinc finger proteins recognize specific target sites with high affinity and low dissociation constants, and are able to act as gene switches to modulate gene expression. Knowledge of the particular nGPCR-x target sequence of the present invention facilitates the engineering of zinc finger proteins specific for the target sequence using known methods such as a combination of structure-based modeling and screening of phage display libraries (Segal et al., Proc. Natl. Acad. Sci. (USA) 96:2758-2763 (1999); Liu et al., Proc. Natl. Acad. Sci. (USA) 94:5525-5530 (1997); Greisman et al., Science 275:657-661 (1997); Choo et al., J. Mol. Biol. 273:525-532 (1997)). Each zinc finger domain usually recognizes three or more base pairs. Since a recognition sequence of 18 base pairs is generally sufficient in length to render it unique in any known genome, a zinc finger protein consisting of 6 tandem repeats of zinc fingers would be expected to ensure specificity for a particular sequence (Segal et al.) The artificial zinc finger repeats, designed based on nGPCR-x sequences, are fused to activation or repression domains to promote or suppress nGPCR-x expression (Liu et al.) Alternatively, the zinc finger domains can be fused to the TATA box-binding factor (TBP) with varying lengths of linker region between the zinc finger peptide and the TBP to create either transcriptional activators or repressors (Kim et al., Proc. Natl. Acad. Sci. (USA) 94:3616-3620 (1997). Such proteins and polynucleotides that encode them, have utility for modulating nGPCR-x expression in vivo in both native cells, animals and humans; and/or cells transfected with nGPCR-x-encoding sequences. The novel transcription factor can be delivered to the target cells by transfecting constructs that express the transcription factor (gene therapy), or by introducing the protein. Engineered zinc finger proteins can also be designed to bind

RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods (McColl et al., Proc. Natl. Acad. Sci. (USA) 96:9521-9526 (1997); Wu et al., Proc. Natl. Acad. Sci. (USA) 92:344-348 (1995)). The present invention contemplates methods of designing such transcription factors based on the gene sequence of the invention, as well as customized zinc finger proteins, that are useful to modulate nGPCR-x expression in cells (native or transformed) whose genetic complement includes these sequences.

Polypeptides

5

10

15

20

25

30

The invention also provides purified and isolated mammalian nGPCR-x polypeptides encoded by a polynucleotide of the invention. Presently preferred is a human nGPCR-x polypeptide comprising the amino acid sequence set out in even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186 or fragments thereof comprising an epitope specific to the polypeptide. By "epitope specific to" is meant a portion of the nGPCR receptor that is recognizable by an antibody that is specific for the nGPCR, as defined in detail below.

Although the sequences provided are particular human sequences, the invention is intended to include within its scope other human allelic variants; non-human mammalian forms of nGPCR-x, and other vertebrate forms of nGPCR-x.

It will be appreciated that extracellular epitopes are particularly useful for generating and screening for antibodies and other binding compounds that bind to receptors such as nGPCR-x. Thus, in another preferred embodiment, the invention provides a purified and isolated polypeptide comprising at least one extracellular domain (e.g., the N-terminal extracellular domain or one of the three extracellular loops) of nGPCR-x. Purified and isolated polypeptides comprising the N-terminal extracellular domain of nGPCR-x are highly preferred. Also preferred is a purified and isolated polypeptide comprising a nGPCR-x fragment selected from the group consisting of the N-terminal extracellular domain of nGPCR-x, transmembrane domains of nGPCR-x, an extracellular loop connecting transmembrane domains of nGPCR-x, an intracellular loop connecting transmembrane domains of nGPCR-x, the C-terminal cytoplasmic region of nGPCR-x, and fusions thereof. Such fragments may be continuous portions of the native receptor. However, it will also be appreciated that knowledge of the nGPCR-x gene and protein sequences as provided herein permits recombining of various domains that are not contiguous in the native protein. Using a FORTRAN computer program called "tmtrest.all" [Parodi et al.,

Comput. Appl. Biosci. 5:527-535 (1994)], nGPCR-x was shown to contain transmembrane-spanning domains.

5

10

15

20

25

30

The invention also embraces polypeptides that have at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to the preferred polypeptide of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the nGPCR-x sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the nGPCR-x sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity.

In one aspect, percent homology is calculated as the percentage of amino acid residues in the smaller of two sequences which align with identical amino acid residue in the sequence being compared, when four gaps in a length of 100 amino acids may be introduced to maximize alignment [Dayhoff, in Atlas of Protein Sequence and Structure, Vol. 5, p. 124, National Biochemical Research Foundation, Washington, D.C. (1972), incorporated herein by reference].

Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. Glycosylated and non-glycosylated forms of nGPCR-x polypeptides are embraced by the invention.

The invention also embraces variant (or analog) nGPCR-x polypeptides. In one example, insertion variants are provided wherein one or more amino acid residues supplement a nGPCR-x amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the nGPCR-x amino acid sequence. Insertional variants with additional residues at either

or both termini can include, for example, fusion proteins and proteins including amino acid tags or labels.

Insertion variants include nGPCR-x polypeptides wherein one or more amino acid residues are added to a nGPCR-x acid sequence or to a biologically active fragment thereof.

5

10

15

20

25

30

Variant products of the invention also include mature nGPCR-x products, *i.e.*, nGPCR-x products wherein leader or signal sequences are removed, with additional amino terminal residues. The additional amino terminal residues may be derived from another protein, or may include one or more residues that are not identifiable as being derived from specific proteins. nGPCR-x products with an additional methionine residue at position -1 (Met⁻¹-nGPCR-x) are contemplated, as are variants with additional methionine and lysine residues at positions -2 and -1 (Met⁻²-Lys⁻¹-nGPCR-x). Variants of nGPCR-x with additional Met, Met-Lys, Lys residues (or one or more basic residues in general) are particularly useful for enhanced recombinant protein production in bacterial host cells.

The invention also embraces nGPCR-x variants having additional amino acid residues that result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of a glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position -1 after cleavage of the GST component from the desired polypeptide. Variants that result from expression in other vector systems are also contemplated.

Insertional variants also include fusion proteins wherein the amino terminus and/or the carboxy terminus of nGPCR-x is/are fused to another polypeptide.

In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a nGPCR-x polypeptide are removed. Deletions can be effected at one or both termini of the nGPCR-x polypeptide, or with removal of one or more non-terminal amino acid residues of nGPCR-x. Deletion variants, therefore, include all fragments of a nGPCR-x polypeptide.

The invention also embraces polypeptide fragments of the even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, wherein the fragments maintain biological (e.g., ligand binding and/or intracellular signaling) immunological properties of a nGPCR-x polypeptide.

In one preferred embodiment of the invention, an isolated nucleic acid molecule comprises a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences selected from the group consisting of: SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO: 186, and fragments thereof, wherein the nucleic acid molecule encoding at least a portion of nGPCR-x. In a more preferred embodiment, the isolated nucleic acid molecule comprises a sequence that encodes a polypeptide comprising even numbered sequences selected from the group consisting of SEQ ID NO:2 to SEQ ID NO: 94, SEQ ID NO: 186, and fragments thereof.

5

10

15

20

25

30

As used in the present invention, polypeptide fragments comprise at least 5, 10, 15, 20, 25, 30, 35, or 40 consecutive amino acids of the even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186. Preferred polypeptide fragments display antigenic properties unique to, or specific for, human nGPCR-x and its allelic and species homologs. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.

In still another aspect, the invention provides substitution variants of nGPCR-x polypeptides. Substitution variants include those polypeptides wherein one or more amino acid residues of a nGPCR-x polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature; however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables 2, 3, or 4 below.

Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table 2 (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96), immediately below.

Table 2
Conservative Substitutions I

SIDE CHAIN CHARACTERISTIC Aliphatic	AMINO ACID
Non-polar	GAP
rion point	ILV
Polar - uncharged	CSTM
10m moning	NO
Polar - charged	DÈ
1 Old Ollinger	KR
Aromatic	HFWY
Other	NQDE

Alternatively, conservative amino acids can be grouped as described in

Lehninger, [Biochemistry, Second Edition; Worth Publishers, Inc. NY, NY (1975),

pp.71-77] as set out in Table 3, below.

Table 3
Conservative Substitutions II

10	SIDE CHAIN CHARACTERISTIC	AMINO ACID
	Non-polar (hydrophobic) A. Aliphatic: B. Aromatic: C. Sulfur-containing: D. Borderline:	ALIVP FW M G
	Uncharged-polar A. Hydroxyl:	STY
	B. Amides: C. Sulfhydryl:	N Q C
·	D. Borderline: Positively Charged (Basic): Negatively Charged (Acidic):	G KRH DE

As still another alternative, exemplary conservative substitutions are set out in Table 4, below.

Table 4
Conservative Substitutions III

Original Residue	Exemplary Substitution
Ala (A)	Val, Leu, Ile
Arg (R)	Lys, Gln, Asn
Asn (N)	Gln, His, Lys, Arg
Asp (D)	Glu
Cys (C)	Ser
Gln (Q)	Asn
Glu (E)	Asp
His (H)	Asn, Gln, Lys, Arg
Ile (I)	Leu Val Met Ala Phe.

15

Leu (L)	Ile, Val, Met, Ala, Phe
Lys (K)	Arg, Gln, Asn
Met (M)	Leu, Phe, Ile
Phe (F)	Leu, Val, Ile, Ala
Pro (P)	Gly
Ser (S)	Thr
Thr (T)	Ser
Trp (W)	Тут
Tyr (Y)	Trp, Phe, Thr, Ser
Val (V)	Ile, Leu, Met, Phe, Ala

It should be understood that the definition of polypeptides of the invention is intended to include polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. By way of example, the modifications may be covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Such derivatives may be prepared to increase circulating half-life of a polypeptide, or may be designed to improve the targeting capacity of the polypeptide for desired cells, tissues, or organs. Similarly, the invention further embraces nGPCR-x polypeptides that have been covalently modified to include one or more water-soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol. Variants that display ligand binding properties of native nGPCR-x and are expressed at higher levels, as well as variants that provide for constitutively active receptors, are particularly useful in assays of the invention; the variants are also useful in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant nGPCR-x activity.

5

10

15

20

25

In a related embodiment, the present invention provides compositions comprising purified polypeptides of the invention. Preferred compositions comprise, in addition to the polypeptide of the invention, a pharmaceutically acceptable (i.e., sterile and non-toxic) liquid, semisolid, or solid diluent that serves as a pharmaceutical vehicle, excipient, or medium. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, water, saline solutions, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, glycerol, calcium phosphate, mineral oil, and cocoa butter.

Variants that display ligand binding properties of native nGPCR-x and are expressed at higher levels, as well as variants that provide for constitutively active

receptors, are particularly useful in assays of the invention; the variants are also useful in assays of the invention and in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant nGPCR-x activity.

The G protein-coupled receptor functions through a specific heterotrimeric guanine-nucleotide-binding regulatory protein (G-protein) coupled to the intracellular portion of the G protein-coupled receptor molecule. Accordingly, the G protein-coupled receptor has a specific affinity to G protein. G proteins specifically bind to guanine nucleotides. Isolation of G proteins provides a means to isolate guanine nucleotides. G Proteins may be isolated using commercially available anti-G protein antibodies or isolated G protein-coupled receptors. Similarly, G proteins may be detected in a sample isolated using commercially available detectable anti-G protein antibodies or isolated G protein-coupled receptors.

According to the present invention, the isolated n-GPCR-x proteins of the present invention are useful to isolate and purify G proteins from samples such as cell lysates. Example 15 below sets forth an example of isolation of G proteins using isolated n-GPCR-x proteins. Such methodolgy may be used in place of the use of commercially available anti-G protein antibodies which are used to isolate G proteins. Moreover, G proteins may be detected using n-GPCR-x proteins in place of commercially available detectable anti-G protein antibodies. Since n-GPCR-x proteins specifically bind to G proteins, they can be employed in any specific use where G protein specific affinity is required such as those uses where commercially available anti-G protein antibodies are employed.

Antibodies

5

10

15

20

25

30

Also comprehended by the present invention are antibodies (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) specific for nGPCR-x or fragments thereof. Preferred antibodies of the invention are human antibodies that are produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', F(ab')₂, and F_v, are also provided by the invention. The term "specific for," when used to describe antibodies of the invention, indicates that the variable regions of the antibodies of the

invention recognize and bind nGPCR-x polypeptides exclusively (i.e., are able to distinguish nGPCR-x polypeptides from other known GPCR polypeptides by virtue of measurable differences in binding affinity, despite the possible existence of localized sequence identity, homology, or similarity between nGPCR-x and such polypeptides). It will be understood that specific antibodies may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and, in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds.), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the nGPCR-x polypeptides of the invention are also contemplated, provided that the antibodies are specific for nGPCR-x polypeptides. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.

5

10

15

20

25

30

The invention provides an antibody that is specific for the nGPCR-x of the invention. Antibody specificity is described in greater detail below. However, it should be emphasized that antibodies that can be generated from polypeptides that have previously been described in the literature and that are capable of fortuitously cross-reacting with nGPCR-x (e.g., due to the fortuitous existence of a similar epitope in both polypeptides) are considered "cross-reactive" antibodies. Such cross-reactive antibodies are not antibodies that are "specific" for nGPCR-x. The determination of whether an antibody is specific for nGPCR-x or is cross-reactive with another known receptor is made using any of several assays, such as Western blotting assays, that are well known in the art. For identifying cells that express nGPCR-x and also for modulating nGPCR-x-ligand binding activity, antibodies that specifically bind to an extracellular epitope of the nGPCR-x are preferred.

In one preferred variation, the invention provides monoclonal antibodies. Hybridomas that produce such antibodies also are intended as aspects of the invention. In yet another variation, the invention provides a humanized antibody. Humanized antibodies are useful for *in vivo* therapeutic indications.

In another variation, the invention provides a cell-free composition comprising polyclonal antibodies, wherein at least one of the antibodies is an antibody of the invention specific for nGPCR-x. Antisera isolated from an animal is an exemplary

composition, as is a composition comprising an antibody fraction of an antisera that has been resuspended in water or in another diluent, excipient, or carrier.

In still another related embodiment, the invention provides an anti-idiotypic antibody specific for an antibody that is specific for nGPCR-x.

5

10

15

20

25

30

It is well known that antibodies contain relatively small antigen binding domains that can be isolated chemically or by recombinant techniques. Such domains are useful nGPCR-x binding molecules themselves, and also may be reintroduced into human antibodies, or fused to toxins or other polypeptides. Thus, in still another embodiment, the invention provides a polypeptide comprising a fragment of a nGPCR-x-specific antibody, wherein the fragment and the polypeptide bind to the nGPCR-x. By way of non-limiting example, the invention provides polypeptides that are single chain antibodies and CDR-grafted antibodies.

Non-human antibodies may be humanized by any of the methods known in the art. In one method, the non-human CDRs are inserted into a human antibody or consensus antibody framework sequence. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.

Antibodies of the invention are useful for, e.g., therapeutic purposes (by modulating activity of nGPCR-x), diagnostic purposes to detect or quantitate nGPCR-x, and purification of nGPCR-x. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of the invention also includes a control antigen for which the antibody is immunospecific. Compositions

Mutations in the nGPCR-x gene that result in loss of normal function of the nGPCR-x gene product underlie nGPCR-x-related human disease states. The invention comprehends gene therapy to restore nGPCR-x activity to treat those disease states. Delivery of a functional nGPCR-x gene to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Alternatively, it is contemplated that in other human disease states, preventing the expression of, or inhibiting the activity of, nGPCR-x will be useful in treating disease

states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of nGPCR-x.

5

10

15

20

25

30

Another aspect of the present invention is directed to compositions, including pharmaceutical compositions, comprising any of the nucleic acid molecules or recombinant expression vectors described above and an acceptable carrier or diluent. Preferably, the carrier or diluent is pharmaceutically acceptable. Suitable carriers are described in the most recent edition of *Remington's Pharmaceutical Sciences*, A. Osol, a standard reference text in this field, which is incorporated herein by reference in its entirety. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Liposomes and nonaqueous vehicles such as fixed oils may also be used. The formulations are sterilized by commonly used techniques.

Also within the scope of the invention are compositions comprising polypeptides, polynucleotides, or antibodies of the invention that have been formulated with, e.g., a pharmaceutically acceptable carrier.

The invention also provides methods of using antibodies of the invention. For example, the invention provides a method for modulating ligand binding of a nGPCR-x comprising the step of contacting the nGPCR-x with an antibody specific for the nGPCR-x, under conditions wherein the antibody binds the receptor.

GPCRs that may be expressed in the brain, such as nGPCR-x, provide an indication that aberrant nGPCR-x signaling activity may correlate with one or more neurological or psychological disorders. The invention also provides a method for treating a neurological or psychiatric disorder comprising the step of administering to a mammal in need of such treatment an amount of an antibody-like polypeptide of the invention that is sufficient to modulate ligand binding to a nGPCR-x in neurons of the mammal. nGPCR-x may also be expressed in other tissues, including but not limited to, peripheral blood lymphocytes, pancreas, ovary, uterus, testis, salivary gland, thyroid gland, kidney, adrenal gland, liver, bone marrow, prostate, fetal liver, colon, muscle, and fetal brain, and may be found in many other tissues. Within the brain, nGPCR-x mRNA transcripts may be found in many tissues, including, but not limited to, frontal lobe, hypothalamus, pons, cerebellum, caudate nucleus, and medulla. Tissues and brain regions where specific nGPCRs of the present invention are expressed are identified in the Examples below.

Kits

5

10

15

20

25

30

The present invention is also directed to kits, including pharmaceutical kits. The kits can comprise any of the nucleic acid molecules described above, any of the polypeptides described above, or any antibody which binds to a polypeptide of the invention as described above, as well as a negative control. The kit preferably comprises additional components, such as, for example, instructions, solid support, reagents helpful for quantification, and the like.

In another aspect, the invention features methods for detection of a polypeptide in a sample as a diagnostic tool for diseases or disorders, wherein the method comprises the steps of: (a) contacting the sample with a nucleic acid probe which hybridizes under hybridization assay conditions to a nucleic acid target region of a polypeptide having the sequence of even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, said probe comprising the nucleic acid sequence encoding the polypeptide, fragments thereof, and the complements of the sequences and fragments; and (b) detecting the presence or amount of the probe:target region hybrid as an indication of the disease.

In preferred embodiments of the invention, the disease is selected from the group consisting of thyroid disorders (e.g. thyreotoxicosis, myxoedema); renal failure; inflammatory conditions (e.g., Crohn's disease); diseases related to cell differentiation and homeostasis; rheumatoid arthritis; autoimmune disorders; movement disorders; CNS disorders (e.g., pain including migraine; stroke; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, anxiety, generalized anxiety disorder, post-traumatic-stress disorder, depression, bipolar disorder, delirium, dementia, severe mental retardation; dyskinesias, such as Huntington's disease or Tourette's Syndrome; attention disorders including ADD and ADHD, and degenerative disorders such as Parkinson's, Alzheimer's; movement disorders, including ataxias, supranuclear palsy, etc.); infections, such as viral infections caused by HIV-1 or HIV-2; metabolic and cardiovascular diseases and disorders (e.g., type 2 diabetes, obesity, anorexia, hypotension, hypertension, thrombosis, myocardial infarction, cardiomyopathies, atherosclerosis, etc.); proliferative diseases and cancers (e.g., different cancers such as breast, colon, lung, etc., and hyperproliferative disorders such as psoriasis, prostate hyperplasia, etc.); hormonal disorders (e.g., male/female hormonal replacement, polycystic ovarian syndrome, alopecia, etc.); and sexual dysfunction, among others.

5

10

15

20

25

30

As described above and in Example 4 below, the genes encoding nGPCR-1 (nucleic acid sequence SEQ ID NO: 1, SEQ ID NO: 73, amino acid sequence SEQ ID NO: 2, SEQ ID NO:74), nGPCR-9 (nucleic acid sequence SEQ ID NO:9, SEQ ID NO:77, amino acid sequence SEQ ID NO:10, SEQ ID NO:78), nGPCR-11 (nucleic acid sequence SEQ ID NO:11, SEQ ID NO:79, amino acid sequence SEQ ID NO:12, SEQ ID NO:80), nGPCR-16 (nucleic acid sequence SEQ ID NO: 21, SEQ ID NO:81, amino acid sequence SEQ ID NO: 22, SEQ ID NO:82), nGPCR-40 (nucleic acid sequence SEQ ID NO:53, SEQ ID NO:83, amino acid sequence SEQ ID NO:54, SEQ ID NO:84), nGPCR-54 (nucleic acid sequence SEQ ID NO:59, SEQ ID NO:85, amino acid sequence SEQ ID NO:60, SEQ ID NO: 86), nGPCR-56 (nucleic acid sequence SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, amino acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, amino acid sequence SEQ ID NO:68, SEQ ID NO: 92, SEQ ID NO:94) and nGPCR-3 (nucleic acid sequence SEQ ID NO:3, SEQ ID NO:185, amino acid sequence SEQ ID NO:4, SEQ ID NO: 186) have been detected in brain tissue indicating that these n-GPCR-x proteins are neuroreceptors. Kits may be designed to detect either expression of polynucleotides encoding these proteins or the proteins themselves in order to identify tissue as being neurological. For example, oligonucleotide hybridization kits can be provided which include a container having an oligonucleotide probe specific for the n-GPCR-xspecific DNA and optionally, containers with positive and negative controls and/or instructions. Similarly, PCR kits can be provided which include a container having primers specific for the n-GPCR-x-specific sequences, DNA and optionally, containers with size markers, positive and negative controls and/or instructions.

Hybridization conditions should be such that hybridization occurs only with the genes in the presence of other nucleic acid molecules. Under stringent hybridization conditions only highly complementary nucleic acid sequences hybridize. Preferably, such conditions prevent hybridization of nucleic acids having 1 or 2 mismatches out of 20 contiguous nucleotides. Such conditions are defined supra.

The diseases for which detection of genes in a sample could be diagnostic include diseases in which nucleic acid (DNA and/or RNA) is amplified in comparison to normal cells. By "amplification" is meant increased numbers of DNA or RNA in a cell compared with normal cells.

The diseases that could be diagnosed by detection of nucleic acid in a sample preferably include central nervous system and metabolic diseases. The test samples suitable for nucleic acid probing methods of the present invention include, for example, cells or nucleic acid extracts of cells, or biological fluids. The samples used in the above-described methods will vary based on the assay format, the detection method and the nature of the tissues, cells or extracts to be assayed. Methods for preparing nucleic acid extracts of cells are well known in the art and can be readily adapted in order to obtain a sample that is compatible with the method utilized.

Alternatively, immunoassay kits can be provided which have containers container having antibodies specific for the n-GPCR-x-protein and optionally, containers with positive and negative controls and/or instructions.

Kits may also be provided useful in the identification of GPCR binding partners such as natural ligands or modulators (agonists or antagonists). Substances useful for treatment of disorders or diseases preferably show positive results in one or more *in vitro* assays for an activity corresponding to treatment of the disease or disorder in question. Substances that modulate the activity of the polypeptides preferably include, but are not limited to, antisense oligonucleotides, agonists and antagonists, and inhibitors of protein kinases.

Methods of inducing immune response

5

10

15

20

25

30

Another aspect of the present invention is directed to methods of inducing an immune response in a mammal against a polypeptide of the invention by administering to the mammal an amount of the polypeptide sufficient to induce an immune response. The amount will be dependent on the animal species, size of the animal, and the like but can be determined by those skilled in the art.

Methods of identifying ligands

The invention also provides assays to identify compounds that bind nGPCR-x. One such assay comprises the steps of: (a) contacting a composition comprising a nGPCR-x with a compound suspected of binding nGPCR-x; and (b) measuring binding between the compound and nGPCR-x. In one variation, the composition comprises a cell expressing nGPCR-x on its surface. In another variation, isolated nGPCR-x or cell membranes comprising nGPCR-x are employed. The binding may be measured directly, e.g., by using a labeled compound, or may be measured indirectly by several techniques, including measuring intracellular signaling of

nGPCR-x induced by the compound (or measuring changes in the level of nGPCR-x signaling).

Specific binding molecules, including natural ligands and synthetic compounds, can be identified or developed using isolated or recombinant nGPCR-x products, nGPCR-x variants, or preferably, cells expressing such products. Binding partners are useful for purifying nGPCR-x products and detection or quantification of nGPCR-x products in fluid and tissue samples using known immunological procedures. Binding molecules are also manifestly useful in modulating (i.e., blocking, inhibiting or stimulating) biological activities of nGPCR-x, especially those activities involved in signal transduction.

...5

10

15

20

25

30

The DNA and amino acid sequence information provided by the present invention also makes possible identification of binding partner compounds with which a nGPCR-x polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, *in vitro* assays wherein nGPCR-x polypeptides are immobilized, and cell-based assays. Identification of binding partner compounds of nGPCR-x polypeptides provides candidates for therapeutic or prophylactic intervention in pathologies associated with nGPCR-x normal and aberrant biological activity.

The invention includes several assay systems for identifying nGPCR-x binding partners. In solution assays, methods of the invention comprise the steps of (a) contacting a nGPCR-x polypeptide with one or more candidate binding partner compounds and (b) identifying the compounds that bind to the nGPCR-x polypeptide. Identification of the compounds that bind the nGPCR-x polypeptide can be achieved by isolating the nGPCR-x polypeptide/binding partner complex, and separating the binding partner compound from the nGPCR-x polypeptide. An additional step of characterizing the physical, biological, and/or biochemical properties of the binding partner compound is also comprehended in another embodiment of the invention. In one aspect, the nGPCR-x polypeptide/binding partner complex is isolated using an antibody immunospecific for either the nGPCR-x polypeptide or the candidate binding partner compound.

In still other embodiments, either the nGPCR-x polypeptide or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods of the invention to identify binding partner compounds include a step of isolating the nGPCR-x polypeptide/binding partner complex through interaction with

the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled using nickel chelation. Other labels and tags, such as the FLAG® tag (Eastman Kodak, Rochester, NY), well known and routinely used in the art, are embraced by the invention.

5

10

15

20

25

30

In one variation of an *in vitro* assay, the invention provides a method comprising the steps of (a) contacting an immobilized nGPCR-x polypeptide with a candidate binding partner compound and (b) detecting binding of the candidate compound to the nGPCR-x polypeptide. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of nGPCR-x is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interactions such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using of a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

The invention also provides cell-based assays to identify binding partner compounds of a nGPCR-x polypeptide. In one embodiment, the invention provides a method comprising the steps of contacting a nGPCR-x polypeptide expressed on the surface of a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the nGPCR-x polypeptide. In a preferred embodiment, the detection comprises detecting a calcium flux or other physiological event in the cell caused by the binding of the molecule.

Another aspect of the present invention is directed to methods of identifying compounds that bind to either nGPCR-x or nucleic acid molecules encoding nGPCR-x, comprising contacting nGPCR-x, or a nucleic acid molecule encoding the same, with a compound, and determining whether the compound binds nGPCR-x or a nucleic acid molecule encoding the same. Binding can be determined by binding assays which are well known to the skilled artisan, including, but not limited to, gelshift assays, Western blots, radiolabeled competition assay, phage-based expression

cloning, co-fractionation by chromatography, co-precipitation, cross linking, interaction trap/two-hybrid analysis, southwestern analysis, ELISA, and the like, which are described in, for example, Current Protocols in Molecular Biology, 1999, John Wiley & Sons, NY, which is incorporated herein by reference in its entirety. The compounds to be screened include (which may include compounds which are suspected to bind nGPCR-x, or a nucleic acid molecule encoding the same), but are not limited to, extracellular, intracellular, biologic or chemical origin. The methods of the invention also embrace ligands, especially neuropeptides, that are attached to a label, such as a radiolabel (e.g., 125I, 35S, 32P, 33P, 3H), a fluorescence label, a chemiluminescent label, an enzymic label and an immunogenic label. Modulators falling within the scope of the invention include, but are not limited to, non-peptide molecules such as non-peptide mimetics, non-peptide allosteric effectors, and peptides. The nGPCR-x polypeptide or polynucleotide employed in such a test may either be free in solution, attached to a solid support, borne on a cell surface or located intracellularly or associated with a portion of a cell. One skilled in the art can, for example, measure the formation of complexes between nGPCR-x and the compound being tested. Alternatively, one skilled in the art can examine the diminution in complex formation between nGPCR-x and its substrate caused by the compound being tested.

In another embodiment of the invention, high throughput screening for compounds having suitable binding affinity to nGPCR-x is employed. Briefly, large numbers of different small peptide test compounds are synthesized on a solid substrate. The peptide test compounds are contacted with nGPCR-x and washed. Bound nGPCR-x is then detected by methods well known in the art. Purified polypeptides of the invention can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the protein and immobilize it on the solid support.

Generally, an expressed nGPCR-x can be used for HTS binding assays in conjunction with its defined ligand, in this case the corresponding neuropeptide that activates it. The identified peptide is labeled with a suitable radioisotope, including, but not limited to, ¹²⁵I, ³H, ³⁵S or ³²P, by methods that are well known to those skilled in the art. Alternatively, the peptides may be labeled by well-known methods with a suitable fluorescent derivative (Baindur *et al.*, *Drug Dev. Res.*, 1994, 33, 373-398; Rogers, *Drug Discovery Today*, 1997, 2, 156-160). Radioactive ligand specifically

5

10

15

20

25

30

bound to the receptor in membrane preparations made from the cell line expressing the recombinant protein can be detected in HTS assays in one of several standard ways, including filtration of the receptor-ligand complex to separate bound ligand from unbound ligand (Williams, Med. Res. Rev., 1991, 11, 147-184; Sweetnam et al., J. Natural Products, 1993, 56, 441-455). Alternative methods include a scintillation proximity assay (SPA) or a FlashPlate format in which such separation is unnecessary (Nakayama, Cur. Opinion Drug Disc. Dev., 1998, 1, 85-91 Bossé et al., J. Biomolecular Screening, 1998, 3, 285-292.). Binding of fluorescent ligands can be detected in various ways, including fluorescence energy transfer (FRET), direct spectrophotofluorometric analysis of bound ligand, or fluorescence polarization (Rogers, Drug Discovery Today, 1997, 2, 156-160; Hill, Cur. Opinion Drug Disc. Dev., 1998, 1, 92-97).

5

10

15

20

25

30

Other assays may be used to identify specific ligands of a nGPCR-x receptor, including assays that identify ligands of the target protein through measuring direct binding of test ligands to the target protein, as well as assays that identify ligands of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using the yeast two-hybrid system described in Fields et al., Nature, 340:245-246 (1989), and Fields et al., Trends in Genetics, 10:286-292 (1994), both of which are incorporated herein by reference. The twohybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA binding proteins, to identify peptides that bind to a protein, and to screen for drugs. The twohybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast. The assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein. The DNA-binding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene. The second hybrid protein, which contains the activation domain,

cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene. For example, when the first protein is a GPCR gene product, or fragment thereof, that is known to interact with another protein or nucleic acid, this assay can be used to detect agents that interfere with the binding interaction. Expression of the reporter gene is monitored as different test agents are added to the system. The presence of an inhibitory agent results in lack of a reporter signal.

The function of nGPCR-x gene products is unclear and no ligands have yet been found which bind the gene product. The yeast two-hybrid assay can also be used to identify proteins that bind to the gene product. In an assay to identify proteins that bind to a nGPCR-x receptor, or fragment thereof, a fusion polynucleotide encoding both a nGPCR-x receptor (or fragment) and a UAS binding domain (*i.e.*, a first protein) may be used. In addition, a large number of hybrid genes each encoding a different second protein fused to an activation domain are produced and screened in the assay. Typically, the second protein is encoded by one or more members of a total cDNA or genomic DNA fusion library, with each second protein-coding region being fused to the activation domain. This system is applicable to a wide variety of proteins, and it is not even necessary to know the identity or function of the second binding protein. The system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.

Other assays may be used to search for agents that bind to the target protein. One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state. Thus, the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined by any method that distinguishes between the folded and unfolded states of the target protein. The function of the

target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.

5

10

15

20

25

30

Another method for identifying ligands of a target protein is described in Wieboldt et al., Anal. Chem., 69:1683-1691 (1997), incorporated herein by reference. This technique screens combinatorial libraries of 20-30 agents at a time in solution phase for binding to the target protein. Agents that bind to the target protein are separated from other library components by simple membrane washing. The specifically selected molecules that are retained on the filter are subsequently liberated from the target protein and analyzed by HPLC and pneumatically assisted electrospray (ion spray) ionization mass spectroscopy. This procedure selects library components with the greatest affinity for the target protein, and is particularly useful for small molecule libraries.

Other embodiments of the invention comprise using competitive screening assays in which neutralizing antibodies capable of binding a polypeptide of the invention specifically compete with a test compound for binding to the polypeptide. In this manner, the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants with nGPCR-x. Radiolabeled competitive binding studies are described in A.H. Lin et al. Antimicrobial Agents and Chemotherapy, 1997, vol. 41, no. 10. pp. 2127-2131, the disclosure of which is incorporated herein by reference in its entirety.

As described above and in Example 4 below, the genes encoding nGPCR-1 (nucleic acid sequence SEQ ID NO: 1, SEQ ID NO: 73, amino acid sequence SEQ ID NO: 2, SEQ ID NO:74), nGPCR-9 (nucleic acid sequence SEQ ID NO:9, SEQ ID NO:77, amino acid sequence SEQ ID NO:10, SEQ ID NO:78), nGPCR-11 (nucleic acid sequence SEQ ID NO:11, SEQ ID NO:79, amino acid sequence SEQ ID NO:12, SEQ ID NO:80), nGPCR-16 (nucleic acid sequence SEQ ID NO: 21, SEQ ID NO:81, amino acid sequence SEQ ID NO: 22, SEQ ID NO:82), nGPCR-40 (nucleic acid sequence SEQ ID NO:53, SEQ ID NO:83, amino acid sequence SEQ ID NO:54, SEQ ID NO:84), nGPCR-54 (nucleic acid sequence SEQ ID NO:59, SEQ ID NO:85, amino acid sequence SEQ ID NO:60, SEQ ID NO:86), nGPCR-56 (nucleic acid sequence SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, amino acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ

ID NO:67, SEQ ID NO:91, SEQ ID NO:93, amino acid sequence SEQ ID NO:68, SEQ ID NO: 92, SEQ ID NO:94), and nGPCR-3 (nucleic acid sequence SEQ ID NO:3, SEQ ID NO:185, amino acid sequence SEQ ID NO:4, SEQ ID NO: 186) have been detected in brain tissue indicating that these n-GPCR-x proteins are neuroreceptors. Accordingly, natural binding partners of these molecules include neurotransmitters.

Identification of modulating agents

5

10

15

20

25

30

OOD AND 012647242 L

The invention also provides methods for identifying a modulator of binding between a nGPCR-x and a nGPCR-x binding partner, comprising the steps of: (a) contacting a nGPCR-x binding partner and a composition comprising a nGPCR-x in the presence and in the absence of a putative modulator compound; (b) detecting binding between the binding partner and the nGPCR-x; and (c) identifying a putative modulator compound or a modulator compound in view of decreased or increased binding between the binding partner and the nGPCR-x in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.

nGPCR-x binding partners that stimulate nGPCR-x activity are useful as agonists in disease states or conditions characterized by insufficient nGPCR-x signaling (e.g., as a result of insufficient activity of a nGPCR-x ligand). nGPCR-x binding partners that block ligand-mediated nGPCR-x signaling are useful as nGPCR-x antagonists to treat disease states or conditions characterized by excessive nGPCR-x signaling. In addition nGPCR-x modulators in general, as well as nGPCR-x polynucleotides and polypeptides, are useful in diagnostic assays for such diseases or conditions.

In another aspect, the invention provides methods for treating a disease or abnormal condition by administering to a patient in need of such treatment a substance that modulates the activity or expression of a polypeptide having the sequence of even numbered sequences ranging from SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186.

Agents that modulate (i.e., increase, decrease, or block) nGPCR-x activity or expression may be identified by incubating a putative modulator with a cell containing a nGPCR-x polypeptide or polynucleotide and determining the effect of the putative modulator on nGPCR-x activity or expression. The selectivity of a compound that modulates the activity of nGPCR-x can be evaluated by comparing its effects on nGPCR-x to its effect on other GPCR compounds. Selective modulators

may include, for example, antibodies and other proteins, peptides, or organic molecules that specifically bind to a nGPCR-x polypeptide or a nGPCR-x-encoding nucleic acid. Modulators of nGPCR-x activity will be therapeutically useful in treatment of diseases and physiological conditions in which normal or aberrant nGPCR-x activity is involved. nGPCR-x polynucleotides, polypeptides, and modulators may be used in the treatment of such diseases and conditions as infections, such as viral infections caused by HIV-1 or HIV-2; pain; cancers; Parkinson's disease; hypotension; hypertension; and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Tourette's Syndrome, among others. nGPCR-x polynucleotides and polypeptides, as well as nGPCR-x modulators, may also be used in diagnostic assays for such diseases or conditions.

5

10

15

20

25

30

DESCRIPTION AND MISSIFFE 1 -

Methods of the invention to identify modulators include variations on any of the methods described above to identify binding partner compounds, the variations including techniques wherein a binding partner compound has been identified and the binding assay is carried out in the presence and absence of a candidate modulator. A modulator is identified in those instances where binding between the nGPCR-x polypeptide and the binding partner compound changes in the presence of the candidate modulator compared to binding in the absence of the candidate modulator compound. A modulator that increases binding between the nGPCR-x polypeptide and the binding partner compound is described as an enhancer or activator, and a modulator that decreases binding between the nGPCR-x polypeptide and the binding partner compound is described as an inhibitor.

The invention also comprehends high-throughput screening (HTS) assays to identify compounds that interact with or inhibit biological activity (*i.e.*, affect enzymatic activity, binding activity, *etc.*) of a nGPCR-x polypeptide. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated to investigate nGPCR-x receptor-ligand interaction. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property. Chemical modification of the "hit" or "lead compound" is often based on an identifiable structure/activity relationship between the "hit" and the nGPCR-x polypeptide.

Another aspect of the present invention is directed to methods of identifying compounds which modulate (i.e., increase or decrease) activity of nGPCR-x comprising contacting nGPCR-x with a compound, and determining whether the compound modifies activity of nGPCR-x. The activity in the presence of the test compared is measured to the activity in the absence of the test compound. Where the activity of the sample containing the test compound is higher than the activity in the sample lacking the test compound, the compound will have increased activity. Similarly, where the activity of the sample containing the test compound is lower than the activity in the sample lacking the test compound, the compound will have inhibited activity.

The present invention is particularly useful for screening compounds by using nGPCR-x in any of a variety of drug screening techniques. The compounds to be screened include (which may include compounds which are suspected to modulate nGPCR-x activity), but are not limited to, extracellular, intracellular, biologic or chemical origin. The nGPCR-x polypeptide employed in such a test may be in any form, preferably, free in solution, attached to a solid support, borne on a cell surface or located intracellularly. One skilled in the art can, for example, measure the formation of complexes between nGPCR-x and the compound being tested.

Alternatively, one skilled in the art can examine the diminution in complex formation between nGPCR-x and its substrate caused by the compound being tested.

The activity of nGPCR-x polypeptides of the invention can be determined by, for example, examining the ability to bind or be activated by chemically synthesized peptide ligands. Alternatively, the activity of nGPCR-x polypeptides can be assayed by examining their ability to bind calcium ions, hormones, chemokines, neuropeptides, neurotransmitters, nucleotides, lipids, odorants, and photons.

Alternatively, the activity of the nGPCR-x polypeptides can be determined by examining the activity of effector molecules including, but not limited to, adenylate cyclase, phospholipases and ion channels. Thus, modulators of nGPCR-x polypeptide activity may alter a GPCR receptor function, such as a binding property of a receptor or an activity such as G protein-mediated signal transduction or membrane localization. In various embodiments of the method, the assay may take the form of an ion flux assay, a yeast growth assay, a non-hydrolyzable GTP assay such as a [35S]-GTP S assay, a cAMP assay, an inositol triphosphate assay, a diacylglycerol assay, an Aequorin assay, a Luciferase assay, a FLIPR assay for intracellular Ca²⁺

concentration, a mitogenesis assay, a MAP Kinase activity assay, an arachidonic acid release assay (e.g., using [³H]-arachidonic acid), and an assay for extracellular acidification rates, as well as other binding or function-based assays of nGPCR-x activity that are generally known in the art. In several of these embodiments, the invention comprehends the inclusion of any of the G proteins known in the art, such as G 16, G 15, or chimeric Gqd5, Gqs5, Gqo5, Gq25, and the like. nGPCR-x activity can be determined by methodologies that are used to assay for FaRP activity, which is well known to those skilled in the art. Biological activities of nGPCR-x receptors according to the invention include, but are not limited to, the binding of a natural or an unnatural ligand, as well as any one of the functional activities of GPCRs known in the art. Non-limiting examples of GPCR activities include transmembrane signaling of various forms, which may involve G protein association and/or the exertion of an influence over G protein binding of various guanidylate nucleotides; another exemplary activity of GPCRs is the binding of accessory proteins or polypeptides that differ from known G proteins.

5

10

15

20

25

30

The modulators of the invention exhibit a variety of chemical structures, which can be generally grouped into non-peptide mimetics of natural GPCR receptor ligands, peptide and non-peptide allosteric effectors of GPCR receptors, and peptides that may function as activators or inhibitors (competitive, uncompetitive and non-competitive) (e.g., antibody products) of GPCR receptors. The invention does not restrict the sources for suitable modulators, which may be obtained from natural sources such as plant, animal or mineral extracts, or non-natural sources such as small molecule libraries, including the products of combinatorial chemical approaches to library construction, and peptide libraries. Examples of peptide modulators of GPCR receptors exhibit the following primary structures: GLGPRPLRFamide, GNSFLRFamide, GGPQGPLRFamide, GPSGPLRFamide, PDVDHVFLRFamide, and pyro-EDVDHVFLRFamide.

Other assays can be used to examine enzymatic activity including, but not limited to, photometric, radiometric, HPLC, electrochemical, and the like, which are described in, for example, *Enzyme Assays: A Practical Approach*, eds. R. Eisenthal and M. J. Danson, 1992, Oxford University Press, which is incorporated herein by reference in its entirety.

The use of cDNAs encoding GPCRs in drug discovery programs is well-known; assays capable of testing thousands of unknown compounds per day in high-

throughput screens (HTSs) are thoroughly documented. The literature is replete with examples of the use of radiolabelled ligands in HTS binding assays for drug discovery (see Williams, Medicinal Research Reviews, 1991, 11, 147-184.; Sweetnam, et al., J. Natural Products, 1993, 56, 441-455 for review). Recombinant receptors are preferred for binding assay HTS because they allow for better specificity (higher relative purity), provide the ability to generate large amounts of receptor material, and can be used in a broad variety of formats (see Hodgson, Bio/Technology, 1992, 10, 973-980; each of which is incorporated herein by reference in its entirety).

5

10

15

20

25

30

A variety of heterologous systems is available for functional expression of recombinant receptors that are well known to those skilled in the art. Such systems include bacteria (Strosberg, et al., Trends in Pharmacological Sciences, 1992, 13, 95-98), yeast (Pausch, Trends in Biotechnology, 1997, 15, 487-494), several kinds of insect cells (Vanden Broeck, Int. Rev. Cytology, 1996, 164, 189-268), amphibian cells (Jayawickreme et al., Current Opinion in Biotechnology, 1997, 8, 629-634) and several mammalian cell lines (CHO, HEK293, COS, etc.; see Gerhardt, et al., Eur. J. Pharmacology, 1997, 334, 1-23). These examples do not preclude the use of other possible cell expression systems, including cell lines obtained from nematodes (PCT application WO 98/37177).

In preferred embodiments of the invention, methods of screening for compounds that modulate nGPCR-x activity comprise contacting test compounds with nGPCR-x and assaying for the presence of a complex between the compound and nGPCR-x. In such assays, the ligand is typically labeled. After suitable incubation, free ligand is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular compound to bind to nGPCR-x.

It is well known that activation of heterologous receptors expressed in recombinant systems results in a variety of biological responses, which are mediated by G proteins expressed in the host cells. Occupation of a GPCR by an agonist results in exchange of bound GDP for GTP at a binding site on the G_{α} subunit; one can use a radioactive, non-hydrolyzable derivative of GTP, GTP χ^{35} S], to measure binding of an agonist to the receptor (Sim *et al.*, Neuroreport, 1996, 7, 729-733). One can also use this binding to measure the ability of antagonists to bind to the receptor by decreasing binding of GTP χ^{35} S] in the presence of a known agonist. One could

therefore construct a HTS based on GTP χ ³⁵S] binding, though this is not the preferred method.

5

10

15

20

25

30

The G proteins required for functional expression of heterologous GPCRs can be native constituents of the host cell or can be introduced through well-known recombinant technology. The G proteins can be intact or chimeric. Often, a nearly universally competent G protein (e.g., $G_{\alpha 16}$) is used to couple any given receptor to a detectable response pathway. G protein activation results in the stimulation or inhibition of other native proteins, events that can be linked to a measurable response.

Examples of such biological responses include, but are not limited to, the following: the ability to survive in the absence of a limiting nutrient in specifically engineered yeast cells (Pausch, *Trends in Biotechnology*, 1997, 15, 487-494); changes in intracellular Ca²⁺ concentration as measured by fluorescent dyes (Murphy, et al., Cur. Opinion Drug Disc. Dev., 1998, 1, 192-199). Fluorescence changes can also be used to monitor ligand-induced changes in membrane potential or intracellular pH; an automated system suitable for HTS has been described for these purposes (Schroeder, et al., J. Biomolecular Screening, 1996, 1, 75-80). Melanophores prepared from Xenopus laevis show a ligand-dependent change in pigment organization in response to heterologous GPCR activation; this response is adaptable to HTS formats (Jayawickreme et al., Cur. Opinion Biotechnology, 1997, 8, 629-634). Assays are also available for the measurement of common second messengers, including cAMP, phosphoinositides and arachidonic acid, but these are not generally preferred for HTS.

Preferred methods of HTS employing these receptors include permanently transfected CHO cells, in which agonists and antagonists can be identified by the ability to specifically alter the binding of GTPγ[35S] in membranes prepared from these cells. In another embodiment of the invention, permanently transfected CHO cells could be used for the preparation of membranes which contain significant amounts of the recombinant receptor proteins; these membrane preparations would then be used in receptor binding assays, employing the radiolabelled ligand specific for the particular receptor. Alternatively, a functional assay, such as fluorescent monitoring of ligand-induced changes in internal Ca²⁺ concentration or membrane potential in permanently transfected CHO cells containing each of these receptors individually or in combination would be preferred for HTS. Equally preferred would be an alternative type of mammalian cell, such as HEK293 or COS cells, in similar

formats. More preferred would be permanently transfected insect cell lines, such as *Drosophila* S2 cells. Even more preferred would be recombinant yeast cells expressing the *Drosophila melanogaster* receptors in HTS formats well known to those skilled in the art (e.g., Pausch, *Trends in Biotechnology*, 1997, 15, 487-494).

5

10

15

20

25

30

The invention contemplates a multitude of assays to screen and identify inhibitors of ligand binding to nGPCR-x receptors. In one example, the nGPCR-x receptor is immobilized and interaction with a binding partner is assessed in the presence and absence of a candidate modulator such as an inhibitor compound. In another example, interaction between the nGPCR-x receptor and its binding partner is assessed in a solution assay, both in the presence and absence of a candidate inhibitor compound. In either assay, an inhibitor is identified as a compound that decreases binding between the nGPCR-x receptor and its binding partner. Another contemplated assay involves a variation of the dihybrid assay wherein an inhibitor of protein/protein interactions is identified by detection of a positive signal in a transformed or transfected host cell, as described in PCT publication number WO 95/20652, published August 3, 1995.

Candidate modulators contemplated by the invention include compounds selected from libraries of either potential activators or potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules. Chemical libraries consist of random chemical structures, some of which are analogs of known compounds or analogs of compounds that have been identified as "hits" or "leads" in other drug discovery screens, some of which are derived from natural products, and some of which arise from non-directed synthetic organic chemistry. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, nonribosomal peptides, and variants (non-naturally occurring) thereof. For a review, see Science 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. These libraries are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are non-peptide combinatorial

libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to modulate activity.

5

10

15

20

25

30

Still other candidate inhibitors contemplated by the invention can be designed and include soluble forms of binding partners, as well as such binding partners as chimeric, or fusion, proteins. A "binding partner" as used herein broadly encompasses non-peptide modulators, as well as such peptide modulators as neuropeptides other than natural ligands, antibodies, antibody fragments, and modified compounds comprising antibody domains that are immunospecific for the expression product of the identified nGPCR-x gene.

The polypeptides of the invention are employed as a research tool for identification, characterization and purification of interacting, regulatory proteins. Appropriate labels are incorporated into the polypeptides of the invention by various methods known in the art and the polypeptides are used to capture interacting molecules. For example, molecules are incubated with the labeled polypeptides, washed to remove unbound polypeptides, and the polypeptide complex is quantified. Data obtained using different concentrations of polypeptide are used to calculate values for the number, affinity, and association of polypeptide with the protein complex.

Labeled polypeptides are also useful as reagents for the purification of molecules with which the polypeptide interacts including, but not limited to, inhibitors. In one embodiment of affinity purification, a polypeptide is covalently coupled to a chromatography column. Cells and their membranes are extracted, and various cellular subcomponents are passed over the column. Molecules bind to the column by virtue of their affinity to the polypeptide. The polypeptide-complex is recovered from the column, dissociated and the recovered molecule is subjected to protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotides for cloning the corresponding gene from an appropriate cDNA library.

Alternatively, compounds may be identified which exhibit similar properties to the ligand for the nGPCR-x of the invention, but which are smaller and exhibit a

longer half time than the endogenous ligand in a human or animal body. When an organic compound is designed, a molecule according to the invention is used as a "lead" compound. The design of mimetics to known pharmaceutically active compounds is a well-known approach in the development of pharmaceuticals based on such "lead" compounds. Mimetic design, synthesis and testing are generally used to avoid randomly screening a large number of molecules for a target property. Furthermore, structural data deriving from the analysis of the deduced amino acid sequences encoded by the DNAs of the present invention are useful to design new drugs, more specific and therefore with a higher pharmacological potency.

5

10

15

20

25

30

Comparison of the protein sequence of the present invention with the sequences present in all the available databases showed a significant homology with the transmembrane portion of G protein coupled receptors. Accordingly, computer modeling can be used to develop a putative tertiary structure of the proteins of the invention based on the available information of the transmembrane domain of other proteins. Thus, novel ligands based on the predicted structure of nGPCR-x can be designed.

In a particular embodiment, the novel molecules identified by the screening methods according to the invention are low molecular weight organic molecules, in which case a composition or pharmaceutical composition can be prepared thereof for oral intake, such as in tablets. The compositions, or pharmaceutical compositions, comprising the nucleic acid molecules, vectors, polypeptides, antibodies and compounds identified by the screening methods described herein, can be prepared for any route of administration including, but not limited to, oral, intravenous, cutaneous, subcutaneous, nasal, intramuscular or intraperitoneal. The nature of the carrier or other ingredients will depend on the specific route of administration and particular embodiment of the invention to be administered. Examples of techniques and protocols that are useful in this context are, *inter alia*, found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A (ed.), 1980, which is incorporated herein by reference in its entirety.

The dosage of these low molecular weight compounds will depend on the disease state or condition to be treated and other clinical factors such as weight and condition of the human or animal and the route of administration of the compound. For treating human or animals, between approximately 0.5 mg/kg of body weight to 500 mg/kg of body weight of the compound can be administered. Therapy is

typically administered at lower dosages and is continued until the desired therapeutic outcome is observed.

The present compounds and methods, including nucleic acid molecules, polypeptides, antibodies, compounds identified by the screening methods described herein, have a variety of pharmaceutical applications and may be used, for example, to treat or prevent unregulated cellular growth, such as cancer cell and tumor growth. In a particular embodiment, the present molecules are used in gene therapy. For a review of gene therapy procedures, see e.g. Anderson, Science, 1992, 256, 808-813, which is incorporated herein by reference in its entirety.

5

10

15

20

25

30

The present invention also encompasses a method of agonizing (stimulating) or antagonizing a nGPCR-x natural binding partner associated activity in a mammal comprising administering to said mammal an agonist or antagonist to one of the above disclosed polypeptides in an amount sufficient to effect said agonism or antagonism. One embodiment of the present invention, then, is a method of treating diseases in a mammal with an agonist or antagonist of the protein of the present invention comprises administering the agonist or antagonist to a mammal in an amount sufficient to agonize or antagonize nGPCR-x-associated functions.

In an effort to discover novel treatments for diseases, biomedical researchers and chemists have designed, synthesized, and tested molecules that inhibit the function of protein polypeptides. Some small organic molecules form a class of compounds that modulate the function of protein polypeptides. Examples of molecules that have been reported to inhibit the function of protein kinases include, but are not limited to, bis monocyclic, bicyclic or heterocyclic aryl compounds (PCT WO 92/20642, published November 26, 1992 by Maguire et al.), vinylene-azaindole derivatives (PCT WO 94/14808, published July 7, 1994 by Ballinari et al.), 1cyclopropyl-4-pyridyl-quinolones (U.S. Patent No. 5,330,992), styryl compounds (U.S. Patent No. 5,217,999), styryl-substituted pyridyl compounds (U.S. Patent No. 5,302,606), certain quinazoline derivatives (EP Application No. 0 566 266 A1), seleoindoles and selenides (PCT WO 94/03427, published February 17, 1994 by Denny et al.), tricyclic polyhydroxylic compounds (PCT WO 92/21660, published December 10, 1992 by Dow), and benzylphosphonic acid compounds (PCT WO 91/15495, published October 17, 1991 by Dow et al), all of which are incorporated by reference herein, including any drawings.

Exemplary diseases and conditions amenable to treatment based on the present invention include, but are not limited to, thyroid disorders (e.g. thyreotoxicosis, myxoedema); renal failure; inflammatory conditions (e.g., Chron's disease); diseases related to cell differentiation and homeostasis; rheumatoid arthritis; autoimmune disorders; movement disorders; CNS disorders (e.g., pain including migraine; stroke; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, anxiety, generalized anxiety disorder, post-traumatic-stress disorder, depression, bipolar disorder, delirium, dementia, severe mental retardation; dyskinesias, such as Huntington's disease or Tourette's Syndrome; attention disorders including ADD and ADHD, and degenerative disorders such as Parkinson's, Alzheimer's; movement disorders, including ataxias, supranuclear palsy, etc.); infections, such as viral infections caused by HIV-1 or HIV-2; metabolic and cardiovascular diseases and disorders (e.g., type 2 diabetes, obesity, anorexia, hypotension, hypertension, thrombosis, myocardial infarction, cardiomyopathies, atherosclerosis, etc.); proliferative diseases and cancers (e.g., different cancers such as breast, colon, lung, etc., and hyperproliferative disorders such as psoriasis, prostate hyperplasia, etc.); hormonal disorders (e.g., male/female hormonal replacement, polycystic ovarian syndrome, alopecia, etc.); sexual dysfunction, among others.

5

10

15

20

25

30

Compounds that can traverse cell membranes and are resistant to acid hydrolysis are potentially advantageous as therapeutics as they can become highly bioavailable after being administered orally to patients. However, many of these protein inhibitors only weakly inhibit function. In addition, many inhibit a variety of protein kinases and will therefore cause multiple side effects as therapeutics for diseases.

Some indolinone compounds, however, form classes of acid resistant and membrane permeable organic molecules. WO 96/22976 (published August 1, 1996 by Ballinari *et al.*) describes hydrosoluble indolinone compounds that harbor tetralin, naphthalene, quinoline, and indole substituents fused to the oxindole ring. These bicyclic substituents are in turn substituted with polar groups including hydroxylated alkyl, phosphate, and ether substituents. U.S. Patent Application Serial Nos. 08/702,232, filed August 23, 1996, entitled "Indolinone Combinatorial Libraries and Related Products and Methods for the Treatment of Disease" by Tang *et al.* (Lyon & Lyon Docket No. 221/187) and 08/485,323, filed June 7, 1995, entitled "Benzylidene-Z-Indoline Compounds for the Treatment of Disease" by Tang *et al.* (Lyon & Lyon

Docket No. 223/298) and International Patent Publication WO 96/22976, published August 1, 1996 by Ballinari et al., all of which are incorporated herein by reference in their entirety, including any drawings, describe indolinone chemical libraries of indolinone compounds harboring other bicyclic moieties as well as monocyclic moieties fused to the oxindole ring. Applications 08/702,232, filed August 23, 1996, entitled "Indolinone Combinatorial Libraries and Related Products and Methods for the Treatment of Disease" by Tang et al. (Lyon & Lyon Docket No. 221/187), 08/485,323, filed June 7, 1995, entitled "Benzylidene-Z-Indoline Compounds for the Treatment of Disease" by Tang et al. (Lyon & Lyon Docket No. 223/298), and WO 96/22976, published August 1, 1996 by Ballinari et al. teach methods of indolinone synthesis, methods of testing the biological activity of indolinone compounds in cells, and inhibition patterns of indolinone derivatives, both of which are incorporated by reference herein, including any drawings.

5

10

Other examples of substances capable of modulating kinase activity include, but are not limited to, tyrphostins, quinazolines, quinoxolines, and quinolines. The 15 quinazolines, tyrphostins, quinolines, and quinoxolines referred to above include wellknown compounds such as those described in the literature. For example, representative publications describing quinazolines include Barker et al., EPO Publication No. 0 520 722 A1; Jones et al., U.S. Patent No. 4,447,608; Kabbe et al., U.S. Patent No. 4,757,072; Kaul and Vougioukas, U.S. Patent No. 5, 316,553; 20 Kreighbaum and Comer, U.S. Patent No. 4,343,940; Pegg and Wardleworth, EPO Publication No. 0 562 734 A1; Barker et al., Proc. of Am. Assoc. for Cancer Research 32:327 (1991); Bertino, J.R., Cancer Research 3:293-304 (1979); Bertino, J.R., Cancer Research 9(2 part 1):293-304 (1979); Curtin et al., Br. J. Cancer 53:361-368 (1986); Fernandes et al., Cancer Research 43:1117-1123 (1983); Ferris et al. J. Org. 25 Chem. 44(2):173-178; Fry et al., Science 265:1093-1095 (1994); Jackman et al., Cancer Research 51:5579-5586 (1981); Jones et al. J. Med. Chem. 29(6):1114-1118; Lee and Skibo, Biochemistry 26(23):7355-7362 (1987); Lemus et al., J. Org. Chem. 54:3511-3518 (1989); Ley and Seng, Synthesis 1975:415-522 (1975); Maxwell et al., Magnetic Resonance in Medicine 17:189-196 (1991); Mini et al., Cancer Research 30 45:325-330 (1985); Phillips and Castle, J. Heterocyclic Chem. 17(19):1489-1596 (1980); Reece et al., Cancer Research 47(11):2996-2999 (1977); Sculier et al., Cancer Immunol. and Immunother. 23:A65 (1986); Sikora et al., Cancer Letters 23:289-295

(1984); and Sikora et al., Analytical Biochem. 172:344-355 (1988), all of which are incorporated herein by reference in their entirety, including any drawings.

Quinoxaline is described in Kaul and Vougioukas, U.S. Patent No. 5,316,553, incorporated herein by reference in its entirety, including any drawings.

Quinolines are described in Dolle et al., J. Med. Chem. 37:2627-2629 (1994); MaGuire, J. Med. Chem. 37:2129-2131 (1994); Burke et al., J. Med. Chem. 36:425-432 (1993); and Burke et al. BioOrganic Med. Chem. Letters 2:1771-1774 (1992), all of which are incorporated by reference in their entirety, including any drawings.

5

10

15

20

25

30

Tyrphostins are described in Allen et al., Clin. Exp. Immunol. 91:141-156 (1993); Anafi et al., Blood 82:12:3524-3529 (1993); Baker et al., J. Cell Sci. 102:543-555 (1992); Bilder et al., Amer. Physiol. Soc. pp. 6363-6143:C721-C730 (1991); Brunton et al., Proceedings of Amer. Assoc. Cancer Rsch. 33:558 (1992); Bryckaert et al., Experimental Cell Research 199:255-261 (1992); Dong et al., J. Leukocyte Biology 53:53-60 (1993); Dong et al., J. Immunol. 151(5):2717-2724 (1993); Gazit et al., J. Med. Chem. 32:2344-2352 (1989); Gazit et al., J. Med. Chem. 36:3556-3564 (1993); Kaur et al., Anti-Cancer Drugs 5:213-222 (1994); King et al., Biochem. J. 275:413-418 (1991); Kuo et al., Cancer Letters 74:197-202 (1993); Levitzki, A., The FASEB J. 6:3275-3282 (1992); Lyall et al., J. Biol. Chem. 264:14503-14509 (1989); Peterson et al., The Prostate 22:335-345 (1993); Pillemer et al., Int. J. Cancer 50:80-85 (1992); Posner et al., Molecular Pharmacology 45:673-683 (1993); Rendu et al., Biol. Pharmacology 44(5):881-888 (1992); Sauro and Thomas, Life Sciences 53:371-376 (1993); Sauro and Thomas, J. Pharm. and Experimental Therapeutics 267(3):119-1125 (1993); Wolbring et al., J. Biol. Chem. 269(36):22470-22472 (1994); and Yoneda et al., Cancer Research 51:4430-4435 (1991); all of which are incorporated herein by reference in their entirety, including any drawings.

Other compounds that could be used as modulators include oxindolinones such as those described in U.S. patent application Serial No. 08/702,232 filed August 23, 1996, incorporated herein by reference in its entirety, including any drawings.

Methods of determining the dosages of compounds to be administered to a patient and modes of administering compounds to an organism are disclosed in U.S. Application Serial No. 08/702,282, filed August 23, 1996 and International patent publication number WO 96/22976, published August 1 1996, both of which are incorporated herein by reference in their entirety, including any drawings, figures or

tables. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.

The proper dosage depends on various factors such as the type of disease being treated, the particular composition being used and the size and physiological condition of the patient. Therapeutically effective doses for the compounds described herein can be estimated initially from cell culture and animal models. For example, a dose can be formulated in animal models to achieve a circulating concentration range that initially takes into account the IC₅₀ as determined in cell culture assays. The animal model data can be used to more accurately determine useful doses in humans.

5

10

15

20

25

30

Plasma half-life and biodistribution of the drug and metabolites in the plasma, tumors and major organs can also be determined to facilitate the selection of drugs most appropriate to inhibit a disorder. Such measurements can be carried out. For example, HPLC analysis can be performed on the plasma of animals treated with the drug and the location of radiolabeled compounds can be determined using detection methods such as X-ray, CAT scan and MRI. Compounds that show potent inhibitory activity in the screening assays, but have poor pharm-acokinetic characteristics, can be optimized by altering the chemical structure and retesting. In this regard, compounds displaying good pharmacokinetic characteristics can be used as a model.

Toxicity studies can also be carried out by measuring the blood cell composition. For example, toxicity studies can be carried out in a suitable animal model as follows: 1) the compound is administered to mice (an untreated control mouse should also be used); 2) blood samples are periodically obtained via the tail vein from one mouse in each treatment group; and 3) the samples are analyzed for red and white blood cell counts, blood cell composition and the percent of lymphocytes versus polymorphonuclear cells. A comparison of results for each dosing regime with the controls indicates if toxicity is present.

At the termination of each toxicity study, further studies can be carried out by sacrificing the animals (preferably, in accordance with the American Veterinary Medical Association guidelines Report of the American Veterinary Medical Assoc. Panel on Euthanasia, Journal of American Veterinary Medical Assoc., 202:229-249, 1993). Representative animals from each treatment group can then be examined by gross necropsy for immediate evidence of metastasis, unusual illness or toxicity. Gross abnormalities in tissue are noted and tissues are examined histologically. Compounds causing a reduction in body weight or blood components are less

preferred, as are compounds having an adverse effect on major organs. In general, the greater the adverse effect the less preferred the compound.

For the treatment of cancers the expected daily dose of a hydrophobic pharmaceutical agent is between 1 to 500 mg/day, preferably 1 to 250 mg/day, and most preferably 1 to 50 mg/day. Drugs can be delivered less frequently provided plasma levels of the active moiety are sufficient to maintain therapeutic effectiveness. Plasma levels should reflect the potency of the drug. Generally, the more potent the compound the lower the plasma levels necessary to achieve efficacy.

5

10

15

20

25

30

nGPCR-x mRNA transcripts may found in many tissues, including, but not limited to, brain, peripheral blood lymphocytes, pancreas, ovary, uterus, testis, salivary gland, kidney, adrenal gland, liver, bone marrow, prostate, fetal liver, colon, muscle, and fetal brain, and may be found in many other tissues. Within the brain, nGPCR-x mRNA transcripts may be found in many tissues, including, but not limited to, frontal lobe, hypothalamus, pons, cerebellum, caudate nucleus, and medulla. Tissues and brain regions where specific nGPCR mRNA transcripts are expressed are identified in the Examples, below.

Odd numbered nucleotide sequences ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185 will, as detailed above, enable screening the endogenous neurotransmitters/hormones/ligands which activate, agonize, or antagonize nGPCR-x and for compounds with potential utility in treating disorders including, but not limited to, thyroid disorders (e.g. thyreotoxicosis, myxoedema); renal failure; inflammatory conditions (e.g., Chron's disease); diseases related to cell differentiation and homeostasis; rheumatoid arthritis; autoimmune disorders; movement disorders; CNS disorders (e.g., pain including migraine; stroke; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, anxiety, generalized anxiety disorder, post-traumatic-stress disorder, depression, bipolar disorder, delirium, dementia, severe mental retardation; dyskinesias, such as Huntington's disease or Tourette's Syndrome; attention disorders including ADD and ADHD, and degenerative disorders such as Parkinson's, Alzheimer's; movement disorders, including ataxias, supranuclear palsy, etc.); infections, such as viral infections caused by HIV-1 or HIV-2; metabolic and cardiovascular diseases and disorders (e.g., type 2 diabetes, obesity, anorexia, hypotension, hypertension, thrombosis, myocardial infarction, cardiomyopathies, atherosclerosis, etc.); proliferative diseases and cancers (e.g., different cancers such as breast, colon, lung,

etc., and hyperproliferative disorders such as psoriasis, prostate hyperplasia, etc.); hormonal disorders (e.g., male/female hormonal replacement, polycystic ovarian syndrome, alopecia, etc.); sexual dysfunction, among others.

5

10

15

20

25

30

For example, nGPCR-x may be useful in the treatment of respiratory ailments such as asthma, where T cells are implicated by the disease. Contraction of airway smooth muscle is stimulated by thrombin. Cicala *et al* (1999) Br J Pharmacol 126:478-484. Additionally, in bronchiolitis obliterans, it has been noted that activation of thrombin receptors may be deleterious. Hauck *et al.*(1999) Am J Physiol 277:L22-L29. Furthermore, mast cells have also been shown to have thrombin receptors. Cirino *et al* (1996) J Exp Med 183:821-827. nGPCR-x may also be useful in remodeling of airway structure s in chronic pulmonary inflammation via stimulation of fibroblast procollagen synthesis. See, e.g., Chambers *et al.* (1998) Biochem J 333:121-127; Trejo *et al.* (1996) J Biol Chem 271:21536-21541.

In another example, increased release of sCD40L and expression of CD40L by T cells after activation of thrombin receptors suggests that nGPCR-x may be useful in the treatment of unstable angina due to the role of T cells and inflammation. See Aukrust *et al.* (1999) Circulation 100:614-620.

A further example is the treatment of inflammatory diseases, such as psoriasis, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and thyroiditis. Due to the tissue expression profile of nGPCR-x, inhibition of thrombin receptors may be beneficial for these diseases. See, e.g., Morris et al. (1996) Ann Rheum Dis 55:841-843. In addition to T cells, NK cells and monocytes are also critical cell types which contribute to the pathogenesis of these diseases. See, e.g., Naldini & Carney (1996) Cell Immunol 172:35-42; Hoffman & Cooper (1995) Blood Cells Mol Dis 21:156-167; Colotta et al. (1994) Am J Pathol 144:975-985.

Expression of nGPCR-x in bone marrow and spleen may suggest that it may play a role in the proliferation of hematopoietic progenitor cells. See DiCuccio *et al.* (1996) Exp Hematol 24:914-918.

As another example, nGPCR-x may be useful in the treatment of acute and/or traumatic brain injury. Astrocytes have been demonstrated to express thrombin receptors. Activation of thrombin receptors may be involved in astrogliosis following brain injury. Therefore, inhibition of receptor activity may be beneficial for limiting neuroinflammation. Scar formation mediated by astrocytes may also be limited by inhibiting thrombin receptors. See, e.g, Pindon et al. (1998) Eur J Biochem 255:766-

774; Ubl & Reiser. (1997) Glia 21:361-369; Grabham & Cunningham (1995) J Neurochem 64:583-591.

nGPCR-x receptor activation may mediate neuronal and astrocyte apoptosis and prevention of neurite outgrowth. Inhibition would be beneficial in both chronic and acute brain injury. See, e.g., Donovan et al. (1997) J Neurosci 17:5316-5326; Turgeon et al (1998) J Neurosci 18:6882-6891; Smith-Swintosky et al. (1997) J Neurochem 69:1890-1896; Gill et al. (1998) Brain Res 797:321-327; Suidan et al. (1996) Semin Thromb Hemost 22:125-133.

5

10

15

20

25

30

The attached Sequence Listing contains the sequences of the polynucleotides and polypeptides of the invention and is incorporated herein by reference in its entirety.

As described above and in Example 4 below, the genes encoding nGPCR-1 (nucleic acid sequence SEQ ID NO: 1, SEQ ID NO: 73, amino acid sequence SEQ ID NO: 2, SEQ ID NO:74), nGPCR-9 (nucleic acid sequence SEQ ID NO:9, SEQ ID NO:77, amino acid sequence SEQ ID NO:10, SEQ ID NO:78), nGPCR-11 (nucleic acid sequence SEQ ID NO:11, SEQ ID NO:79, amino acid sequence SEQ ID NO:12, SEQ ID NO:80), nGPCR-16 (nucleic acid sequence SEQ ID NO: 21, SEQ ID NO:81, amino acid sequence SEQ ID NO: 22, SEQ ID NO:82), nGPCR-40 (nucleic acid sequence SEQ ID NO:53, SEQ ID NO:83, amino acid sequence SEQ ID NO:54, SEQ ID NO:84), nGPCR-54 (nucleic acid sequence SEQ ID NO:59, SEQ ID NO:85, amino acid sequence SEQ ID NO:60, SEQ ID NO: 86), nGPCR-56 (nucleic acid sequence SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, amino acid sequence SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90), nGPCR-58 (nucleic acid sequence SEQ ID NO:3, SEQ ID NO:185, amino acid sequence SEQ ID NO:4, SEQ ID NO: 186) have been detected in brain tissue indicating that these n-GPCR-x proteins are neuroreceptors. The identification of modulators such as agonists and antagonists is therefore useful for the identification of compounds useful to treat neurological diseases and disorders. Such neurological diseases and disorders, including but are not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia as well as depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like.

Methods of Screening Human Subjects

5

10

15

20

25

30

Thus in yet another embodiment, the invention processes genetic screening procedures that entail analyzing a person's genome -- in particular their alleles for GPCRs of the invention -- to determine whether the individual possesses a genetic characteristic found in other individuals that are considered to be afflicted with, or at risk for, developing a mental disorder or disease of the brain that is suspected of having a hereditary component. For example, in one embodiment, the invention provides a method for determining a potential for developing a disorder affecting the brain in a human subject comprising the steps of analyzing the coding sequence of one or more GPCR genes from the human subject; and determining development potential for the disorder in said human subject from the analyzing step.

More particularly, the invention provides a method of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor, comprising the steps of: (a) assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering the amino acid sequence, expression, or biological activity of at least one seven transmembrane receptor that is expressed in the brain, wherein the seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOS: 74, 186, 78, 80, 82, 84, 86, 90, and 94, or an allelic variant thereof, and wherein the nucleic acid corresponds to the gene encoding the seven transmembrane receptor; and (b) diagnosing the disorder or predisposition from the presence or absence of said mutation, wherein the presence of a mutation altering the amino acid sequence, expression, or biological activity of allele in the nucleic acid correlates with an increased risk of developing the disorder. In preferred variations, the seven transmembrane receptor is nGPCR-40 or nGPCR-54 comprising amino acid sequences set forth in SEQ ID NO: 84 for nGPCR-40 and SEQ ID NO: 86 for nGPCR-54, or an allelic variant thereof, and the disease is schizophrenia.

By "human subject" is meant any human being, human embryo, or human fetus. It will be apparent that methods of the present invention will be of particular interest to individuals that have themselves been diagnosed with a disorder affecting the brain or have relatives that have been diagnosed with a disorder affecting the brain.

By "screening for an increased risk" is meant determination of whether a genetic variation exists in the human subject that correlates with a greater likelihood

of developing a disorder affecting the brain than exists for the human population as a whole, or for a relevant racial or ethnic human sub-population to which the individual belongs. Both positive and negative determinations (i.e., determinations that a genetic predisposition marker is present or is absent) are intended to fall within the scope of screening methods of the invention. In preferred embodiments, the presence of a mutation altering the sequence or expression of at least one nGPCR-40 or nGPCR-54 seven transmembrane receptor allele in the nucleic acid is correlated with an increased risk of developing schizophrenia, whereas the absence of such a mutation is reported as a negative determination.

5

10

15

20

25

30

The "assaying" step of the invention may involve any techniques available for analyzing nucleic acid to determine its characteristics, including but not limited to well-known techniques such as single-strand conformation polymorphism analysis (SSCP) [Orita et al., Proc Natl. Acad. Sci. USA, 86: 2766-2770 (1989)]; heteroduplex analysis [White et al., Genomics, 12: 301-306 (1992)]; denaturing gradient gel electrophoresis analysis [Fischer et al., Proc. Natl. Acad. Sci. USA, 80: 1579-1583 (1983); and Riesner et al., Electrophoresis, 10: 377-389 (1989)]; DNA sequencing; RNase cleavage [Myers et al., Science, 230: 1242-1246 (1985)]; chemical cleavage of mismatch techniques [Rowley et al., Genomics, 30: 574-582 (1995); and Roberts et al., Nucl. Acids Res., 25: 3377-3378 (1997)]; restriction fragment length polymorphism analysis; single nucleotide primer extension analysis [Shumaker et al., Hum. Mutat., 7: 346-354 (1996); and Pastinen et al., Genome Res., 7: 606-614 (1997)]; 5' nuclease assays [Pease et al., Proc. Natl. Acad. Sci. USA, 91:5022-5026 (1994)]; DNA Microchip analysis [Ramsay, G., Nature Biotechnology, 16: 40-48 (1999); and Chee et al., U.S. Patent No. 5,837,832]; and ligase chain reaction [Whiteley et al., U.S. Patent No. 5,521,065]. [See generally, Schafer and Hawkins, Nature Biotechnology, 16: 33-39 (1998).] All of the foregoing documents are hereby incorporated by reference in their entirety.

Thus, in one preferred embodiment involving screening nGPCR-40 or nGPCR-54 sequences, for example, the assaying step comprises at least one procedure selected from the group consisting of: (a) determining a nucleotide sequence of at least one codon of at least one nGPCR-40 or nGPCR-54 allele of the human subject; (b) performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; (c) performing a polynucleotide migration assay to

determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; and (d) performing a restriction endonuclease digestion to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences.

5

10

15

20

25

30

In a highly preferred embodiment, the assaying involves sequencing of nucleic acid to determine nucleotide sequence thereof, using any available sequencing technique. [See, e.g., Sanger et al., Proc. Natl. Acad. Sci. (USA), 74: 5463-5467 (1977) (dideoxy chain termination method); Mirzabekov, TIBTECH, 12: 27-32 (1994) (sequencing by hybridization); Drmanac et al., Nature Biotechnology, 16: 54-58 (1998); U.S. Patent No. 5,202,231; and Science, 260: 1649-1652 (1993) (sequencing by hybridization); Kieleczawa et al., Science, 258: 1787-1791 (1992) (sequencing by primer walking); (Douglas et al., Biotechniques, 14: 824-828 (1993) (Direct sequencing of PCR products); and Akane et al., Biotechniques 16: 238-241 (1994); Maxam and Gilbert, Meth. Enzymol., 65: 499-560 (1977) (chemical termination sequencing), all incorporated herein by reference.] The analysis may entail sequencing of the entire nGPCR gene genomic DNA sequence, or portions thereof; or sequencing of the entire seven transmembrane receptor coding sequence or portions thereof. In some circumstances, the analysis may involve a determination of whether an individual possesses a particular allelic variant, in which case sequencing of only a small portion of nucleic acid -- enough to determine the sequence of a particular codon characterizing the allelic variant -- is sufficient. This approach is appropriate, for example, when assaying to determine whether one family member inherited the same allelic variant that has been previously characterized for another family member, or, more generally, whether a person's genome contains an allelic variant that has been previously characterized and correlated with a mental disorder having a heritable component.

In another highly preferred embodiment, the assaying step comprises performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences. In a preferred embodiment, the hybridization involves a determination of whether nucleic acid derived from the human subject will hybridize with one or more oligonucleotides, wherein the oligonucleotides have nucleotide sequences that correspond identically to a portion of the GPCR gene sequence taught herein, such as

the nGPCR-40 or nGPCR-54 coding sequence set forth in SEQ ID NOS: 83 for nGPCR-40 or 85 for nGPCR-54, or that correspond identically except for one mismatch. The hybridization conditions are selected to differentiate between perfect sequence complementarity and imperfect matches differing by one or more bases. Such hybridization experiments thereby can provide single nucleotide polymorphism sequence information about the nucleic acid from the human subject, by virtue of knowing the sequences of the oligonucleotides used in the experiments.

Several of the techniques outlined above involve an analysis wherein one performs a polynucleotide migration assay, e.g., on a polyacrylamide electrophoresis gel (or in a capillary electrophoresis system), under denaturing or non-denaturing conditions. Nucleic acid derived from the human subject is subjected to gel electrophoresis, usually adjacent to (or co-loaded with) one or more reference nucleic acids, such as reference GPCR-encoding sequences having a coding sequence identical to all or a portion of SEQ ID NOS: 83 or 85 (or identical except for one known polymorphism). The nucleic acid from the human subject and the reference sequence(s) are subjected to similar chemical or enzymatic treatments and then electrophoresed under conditions whereby the polynucleotides will show a differential migration pattern, unless they contain identical sequences. [See generally Ausubel et al. (eds.), Current Protocols in Molecular Biology, New York: John Wiley & Sons, Inc. (1987-1999); and Sambrook et al., (eds.), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press (1989), both incorporated herein by reference in their entirety.]

In the context of assaying, the term "nucleic acid of a human subject" is intended to include nucleic acid obtained directly from the human subject (e.g., DNA or RNA obtained from a biological sample such as a blood, tissue, or other cell or fluid sample); and also nucleic acid derived from nucleic acid obtained directly from the human subject. By way of non-limiting examples, well known procedures exist for creating cDNA that is complementary to RNA derived from a biological sample from a human subject, and for amplifying (e.g., via polymerase chain reaction (PCR)) DNA or RNA derived from a biological sample obtained from a human subject. Any such derived polynucleotide which retains relevant nucleotide sequence information of the human subject's own DNA/RNA is intended to fall within the definition of "nucleic acid of a human subject" for the purposes of the present invention.

In the context of assaying, the term "mutation" includes addition, deletion, and/or substitution of one or more nucleotides in the GPCR gene sequence (e.g., as compared to the seven transmembrane receptor-encoding sequences set forth of SEQ ID NOS: 74, 186, 78, 80, 82, 84, 86, 90, and 94) and other polymorphisms that occur in introns (where introns exist) and that are identifiable via sequencing, restriction fragment length polymorphism, or other techniques. The various activity examples provided herein permit determination of whether a mutation modulates activity of the relevant receptor in the presence or absence of various test substances.

5

10

15

20

25

30

In a related embodiment, the invention provides methods of screening a person's genotype with respect to GPCR's of the invention, and correlating such genotypes with diagnoses for disease or with predisposition for disease (for genetic counseling). For example, the invention provides a method of screening for an nGPCR-40 or nGPCR-54 hereditary schizophrenia genotype in a human patient, comprising the steps of: (a) providing a biological sample comprising nucleic acid from the patient, the nucleic acid including sequences corresponding to said patient's nGPCR-40 or nGPCR-54 alleles; (b) analyzing the nucleic acid for the presence of a mutation or mutations; (c) determining an nGPCR-40 or nGPCR-54 genotype from the analyzing step; and (d) correlating the presence of a mutation in an nGPCR-40 or nGPCR-54 allele with a hereditary schizophrenia genotype. In a preferred embodiment, the biological sample is a cell sample containing human cells that contain genomic DNA of the human subject. The analyzing can be performed analogously to the assaying described in preceding paragraphs. For example, the analyzing comprises sequencing a portion of the nucleic acid (e.g., DNA or RNA), the portion comprising at least one codon of the nGPCR-40 or nGPCR-54 alleles.

Although more time consuming and expensive than methods involving nucleic acid analysis, the invention also may be practiced by assaying protein of a human subject to determine the presence or absence of an amino acid sequence variation in GPCR protein from the human subject. Such protein analyses may be performed, e.g., by fragmenting GPCR protein via chemical or enzymatic methods and sequencing the resultant peptides; or by Western analyses using an antibody having specificity for a particular allelic variant of the GPCR.

The invention also provides materials that are useful for performing methods of the invention. For example, the present invention provides oligonucleotides useful as probes in the many analyzing techniques described above. In general, such

oligonucleotide probes comprise 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides that have a sequence that is identical, or exactly complementary, to a portion of a human GPCR gene sequence taught herein (or allelic variant thereof), or that is identical or exactly complementary except for one nucleotide substitution. In a preferred embodiment, the oligonucleotides have a sequence that corresponds in the foregoing manner to a human GPCR coding sequence taught herein, and in particular, the coding sequences set forth in SEQ ID NO: 83 and 85. In one variation, an oligonucleotide probe of the invention is purified and isolated. In another variation, the oligonucleotide probe is labeled, e.g., with a radioisotope, chromophore, or fluorophore. In yet another variation, the probe is covalently attached to a solid support. [See generally Ausubel et al. And Sambrook et al., supra.]

5

10

15

20

25

30

In a related embodiment, the invention provides kits comprising reagents that are useful for practicing methods of the invention. For example, the invention provides a kit for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor, comprising, in association: (a) an oligonucleotide useful as a probe for identifying polymorphisms in a human nGPCR-40 or nGPCR-54 seven transmembrane receptor gene, the oligonucleotide comprising 6-50 nucleotides that have a sequence that is identical or exactly complementary to a portion of a human nGPCR-40 or nGPCR-54 gene sequence or nGPCR-40 or nGPCR-54 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution; and (b) a media packaged with the oligonucleotide containing information identifying polymorphisms identifyable with the probe that correlate with schizophrenia or a genetic predisposition therefor. Exemplary information-containing media include printed paper package inserts or packaging labels; and magnetic and optical storage media that are readable by computers or machines used by practitioners who perform genetic screening and counseling services. The practitioner uses the information provided in the media to correlate the results of the analysis with the oligonucleotide with a diagnosis. In a preferred variation, the oligonucleotide is labeled.

In still another embodiment, the invention provides methods of identifying those allelic variants of GPCRs of the invention that correlate with mental disorders. For example, the invention provides a method of identifying a seven transmembrane

allelic variant that correlates with a mental disorder, comprising steps of: (a) providing a biological sample comprising nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny; (b) analyzing the nucleic acid for the presence of a mutation or mutations in at least one seven transmembrane receptor that is expressed in the brain, wherein the at least one seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOS: 74, 186, 78, 80, 82, 84, 86, 90, and 94 or an allelic variant thereof, and wherein the nucleic acid includes sequence corresponding to the gene or genes encoding the at least one seven transmembrane receptor; (c) determining a genotype for the patient for the at least one seven transmembrane receptor from said analyzing step; and (d) identifying an allelic variant that correlates with the mental disorder from the determining step. To expedite this process, it may be desirable to perform linkage studies in the patients (and possibly their families) to correlate chromosomal markers with disease states. The chromosomal localization data provided herein facilitates identifying an involved GPCR with a chromosomal marker.

5

10

15

20

25

30

The foregoing method can be performed to correlate GPCR's of the invention to a number of disorders having hereditary components that are causative or that predispose persons to the disorder. For example, in one preferred variation, the disorder is schizophrenia, and the at least one seven transmembrane receptor comprises nGPCR-40 having an amino acid sequence set forth in SEQ ID NO: 84 or an allelic variant thereof.

Also contemplated as part of the invention are polynucleotides that comprise the allelic variant sequences identified by such methods, and polypeptides encoded by the allelic variant sequences, and oligonucleotide and oligopeptide fragments therof that embody the mutations that have been identified. Such materials are useful in *in vitro* cell-free and cell-based assays for identifying lead compounds and therapeutics for treatment of the disorders. For example, the variants are used in activity assays, binding assays, and assays to screen for activity modulators described herein. In one preferred embodiment, the invention provides a purified and isolated polynucleotide comprising a nucleotide sequence encoding a nGPCR-40 or nGPCR-54 receptor allelic variant identified according to the methods described above; and an oligonucleotide that comprises the sequences that differentiate the allelic variant from the nGPCR-40 or nGPCR-54 sequences set forth in SEQ ID NOS: 83 and 88. The

invention also provides a vector comprising the polynucleotide (preferably an expression vector); and a host cell transformed or transfected with the polynucleotide or vector. The invention also provides an isolated cell line that is expressing the allelic variant GPCR polypeptide; purified cell membranes from such cells; purified polypeptide; and synthetic peptides that embody the allelic variation amino acid sequence. In one particular embodiment, the invention provides a purified polynucleotide comprising a nucleotide sequence encoding a nGPCR-40 seven transmembrane receptor protein of a human that is affected with schizophrenia; wherein said polynucleotide hybridizes to the complement of SEQ ID NO: 83 under the following hybridization conditions: (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS; and wherein the polynucleotide encodes a nGPCR-40 amino acid sequence that differs from SEQ ID NO: 84 by at least one residue.

An examplary assay for using the allelic variants is a method for identifying a modulator of nGPCR-x biological activity, comprising the steps of: (a) contacting a cell expressing the allelic variant in the presence and in the absence of a putative modulator compound; (b) measuring nGPCR-x biological activity in the cell; and (c) identifying a putative modulator compound in view of decreased or increased nGPCR-x biological activity in the presence versus absence of the putative modulator.

Additional features of the invention will be apparent from the following Examples. Examples 1, 2, 4, 11, 12, and 13 are actual, while the remaining Examples are prophetic. Additional features and variations of the invention will be apparent to those skilled in the art from the entirety of this application, including the detailed description, and all such features are intended as aspects of the invention. Likewise, features of the invention described herein can be re-combined into additional embodiments that also are intended as aspects of the invention, irrespective of whether the combination of features is specifically mentioned above as an aspect or embodiment of the invention. Also, only such limitations which are described herein as critical to the invention should be viewed as such; variations of the invention lacking limitations which have not been described herein as critical are intended as aspects of the invention.

EXAMPLES

5

10

15

20

25

30

EXAMPLE 1: IDENTIFICATION OF nGPCR-X

A. Database search

The Celera database was searched using known GPCR receptors as query sequences to find patterns suggestive of novel G protein-coupled receptors. Positive hits were further analyzed with the GCG program BLAST to determine which ones were the most likely candidates to encode G protein-coupled receptors, using the standard (default) alignment produced by BLAST as a guide.

Briefly, the BLAST algorithm, which stands for Basic Local Alignment Search Tool is suitable for determining sequence similarity (Altschul et al., J. Molec. Biol., 1990, 215, 403-410, which is incorporated herein by reference in its entirety). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension for the word hits in each direction are halted when: 1) the cumulative alignment score falls off by the quantity X from its maximum achieved value; 2) the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or 3) the end of either sequence is reached. The Blast algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The Blast program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 10915-10919, which is incorporated herein by reference in its entirety) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm (Karlin et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 5873-5787, which is incorporated herein by reference in its entirety) and Gapped BLAST perform a statistical analysis of the similarity between two sequences. One measure of similarity provided by the BLAST algorithm is the smallest sum

probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a GPCR gene or cDNA if the smallest sum probability in comparison of the test nucleic acid to a GPCR nucleic acid is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

5

10

15

20

25

30

Homology searches were performed with the program BLAST version 2.08. A collection of 340 query amino acid sequences derived from GPCR's was used to search the genomic DNA sequence using TBLASTN and alignments with an E-value lower than 0.01 were collected from each BLAST search. The amino acid sequences have been edited to remove regions in the sequence that produce non-significant alignments with proteins that are not related to GPCR's.

Multiple query sequences may have a significant alignment to the same genomic region, although each alignment may not cover exactly the same DNA region. A procedure is used to determine the region of maximum common overlap between the alignments from several query sequences. This region is called the consensus DNA region. The procedure for determining this consensus involves the automatic parsing of the BLAST output files using the program MSPcrunch to produce a tabular report. From this tabular report the start and end of each alignment in the genomic DNA is extracted. This information was used by a PERL script to derive the maximum common overlap. These regions were reported in the form of a unique sequence identifier, a start and the end position in the sequence. The sequences defined by these regions were extracted from the original genomic sequence file using the program fetchdb.

The consensus regions were assembled into a non-redundant set by using the program phrap. After assembly with phrap a set of contigs and singletons was defined as candidate DNA regions coding for nGPCR-x. These sequences were then submitted for further sequence analysis.

Further sequence analysis involved the removal of sequences previously isolated and removal of sequences related to olfactory GPCRs. The transmembrane regions for the sequences that remained were determined using a FORTRAN computer program called "tmtrest.all" [Parodi et al., Comput.Appl.Biosci. 5:527-535(1994)]. Only sequences that contained transmembrane regions in a pattern found in GPCRs were retained.

cDNAs were sequenced directly using an ABI377 fluorescence-based sequencer (Perkin-Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase. Each ABI cycle sequencing reaction contained about 0.5 μg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 minute, followed by 50 cycles using the following parameters: 98°C for 30 seconds, annealing at 50°C for 30 seconds, and extension at 60°C for 4 minutes. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using CentriflexTM gel filtration cartridges (Advanced Genetic Technologies Corp., Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which is then centrifuged in a swinging bucket centrifuge (Sorvall model RT6000B tabletop centrifuge) at 1500 x g for 4 minutes at room temperature. Column-purified samples were dried under vacuum for about 40 minutes and then dissolved in 5 μ l of a DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for three minutes and loaded into the gel sample wells for sequence analysis using the ABI377 sequencer. Sequence analysis was performed by importing ABI377 files into the Sequencer program (Gene Codes, Ann Arbor, MI). Generally, sequence reads of

5

10

15

20

25

The following Table 5 contains the sequences of the polynucleotides and polypeptides of the invention. Start and stop codons within the polynucleotide sequence are identified by boldface type. The transmembrane domains within the polypeptide sequence are identified by underlining.

700 bp were obtained. Potential sequencing errors were minimized by obtaining

sequence information from both DNA strands and by re-sequencing difficult areas

using primers annealing at different locations until all sequencing ambiguities were

Table 5

The following DNA sequence beGPCR-seq1 <SEQ ID NO. 1> was identified in H. sapiens:

GTCTGGGGGTGGGGGATGCTGGGACAGGGGTCAATTGCCTGAAGCAAGTGCTCTCATCCCCCTAGCTCCTGC TGATCTAGTTGGGGCTCCAGAGTGGGGAGGAGAAAGGCACTTTGAAACTTCTCTGCCCTTACCGTCTTAGCC ATCAAACTCTGAGCTGGAGATAGTGACGATGTGACAGGAACTTTCCCTGGGCCTCTCTGGGCCACAATTCCT GGCCGAGAGAAGAGGGGGATGAGGTGAGCACCTTCTTCACTCCTAGGGCCATGTGGTAGAGCTGCAGTCG CACCTCCTTCTGCCAATAGGCATAGATGAGTGGGTTGAGCAGGGAGTTGCCCACGCCGAGCAGCCACAGGTA CCAGGATAGAGCAAAGCTCCCAATGAGAACAGACACAGTACGGAGAGCTTTGAAGTCGCTGGGAGTCCGTGG TTGAGCATGTCGCAGTAGAAGAAGACAAAGAGGGGCCATGGCTGGGAAGAAGCCAACGCAGGAGAGGGTCAGC ACGAAGTGAGGGTGAAATACAGCAAAGAAGCTGCACTGCCCTTTGTAGGCAGTCTGCTGGAACATGGGGATT ${\tt CCGAGTGGGAGGAAGCCAATGAGGTAAGACACTAACCACAGCCCGGCAATGCAGGCCCCGGCCACGAACCCA}$ CTCATGATCTTCAAGTAGCGGAAGGGCTGCTTGATGGCAAGGTACCTGTCAAAGGTGATCAGCATGACCGTG AGGACAGAGGCAGCTGCGGAGGAAGTGACAAATGCCATCCGCAGGCTGCACAGGGTCTTCTGTGTGGGCCGA GAAGGGCTGGAGAGCTGGTCTGTGAGTAGGCCAGAGATGGCCACACCAATCAAGGTGTCAGCCACAGCCAGA TTCAAGGTGAAGCAGACTGACACCATCATTCTTGTGGATCAACAGCAGCACAGCCACAGCCACTAGTGTG TTAGTAGCAATGATGAGGGAGGCCAGGACAGCAAGGATCACTCCAAATGAGAAAGATGATTCCATGTCTCGA AGTGGCAGGACTTCACTTACCAGGGCATG

The following amino acid sequence <SEQ ID NO. 2> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 1:

MESSFSFGVILAVLASLIIATNTLVAVAVLLLIHKNDGVSLCFTLNLAVADTLIGVAISGLLTDQLSSPSRPT QKTLCSLRMAFVTSSAAASVLTVMLITFDRYLAIKQPFRYLKIMSGFVAGACIAGLWLVSYLIGFLPLGIPMF QQTAYKGQCSFFAVFHPHFVLTLSCVGFFPAMLLFVFFYCDMLKIASMHSQQIRKMEHAGAMAGGYRSPRTPS DFKALRTVSVLIGSFALSWTPFLITGIVQVACQECHLYLVLERYLWLLGVGNSLLNPLIYAYWQKEVRLQLYH MALGVKKVLTSFLLFLSARNCGPERPRESSCHIVTISSSEFDG

The following DNA sequence beGPCR-seq3<SEQ ID NO. 3> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 4> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 3:

SAMGPGEALLAGLLVMVLAVALLSNALVLLCCAYSAELRTRASGVLLVNLSLGHLLLAALDMPFTLLGVMRGR TPSAPGACQVIGFLDTFLASNAALSVAALSADQWLAVGFPLRYAGRLRPRYAGLLLGCAWGQSLAFSGAALGC SWLGYSSAFASCSLRLPPEPERPRFAAFTATLHAVGFVLPLAVLCLTSLQVHRVARRHCQRMDTVTMKALA

The following DNA sequence beGPCR-seq4 <SEQ ID NO. 5> was identified in H. sapiens:

TGTGCAGGTGTGATCTCCATTCCTTTGTACATCCCTCACACGCTGTTCGATGGGATTTTGGAAAGGAAATCT GTGTATTTTGGCTCACTACTGACTATCTGTTATGTACAGCATCTGTATATAACATTGTCCTCATCAGCTATG ATCGATACCTGTCAGTCTCAAATGCTGTAAGTCGAACACATTAATTTATCCCCCTTAGAAGATTATGTAAAT GTATA

The following amino acid sequence <SEQ ID NO. 6> is the predicted amino

acid sequence derived from the DNA sequence of SEQ ID NO. 5:

CAGVISIPLYIPHTLFEWDFGKEICVFWLTTDYLLCTASVYNIVLISYDRYLSVSNAVSRTHFIPLR RLCKCI

The following DNA sequence beGPCR-seq5 <SEQ ID NO. 7> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 8> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 7:

DNATLQMLRNPAIAVALPVVYSLVAAVSIPGNLFSLWVLCRRMGPRSPSVIFMINLSVTDLMLASVLPFQIYY HCNRHHWVFGVLCNLVVTVAFYANMYSSILTMTCISVERFLGILYPLSSKRWRRRRYAVAACAGTWLLLLTAL SPLARTDLTYPVHALGIITCFDV

The following DNA sequence beGPCR-seq9<SEQ ID NO. 9> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 10> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 9:

PMFLLLGSLTLSDLLAGAAYAANILLSGPLTLKLSPALWFAREGGVFVALTASVLSLLGIALERSLTMARRGP APVSSRGRTLAMAAAAW

The following DNA sequence beGPCR-seq11 <SEQ ID NO. 11> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 12> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 11:

LLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTDYYLRRRHWAFGDIPCRVGLF TLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILGTVYLLLENHLCVQETAVSCE SFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKATRFIMVVAIVFITCYLPSVSA

RLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKLKICSLKPKQPGHSKTQRPEE MPIS

The following DNA sequence beGPCR-seq12<SEQ ID NO. 13> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 14> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 13:

WSCATTYLVNLMVADLLYVLLPFLIITYSLDDRWPFGELLCKLVHFLFYINLYGSILLLTCISVHQFLGVCHP LCSLPYRTRRHAWLGTSTTWALVVLQLLPTLAFSHTDYINGQMIWYDMTSQENFDRLFAYGIVLTLSGFLSLL GHFGVLFTDGQEPDQARGEPHEDR

The following DNA sequence beGPCR-seq14<SEQ ID NO. 15> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 16> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 15:

RVRLVFLGVILVVAVAGNTTVLCRLXXXXXXXXXXXXKRRKMDFLLVQLALADLYACGGTALSQLAWELLGEPRA ATGDLACRFLQLLQASGRGASAHLVVLIALERRRAVRLPHGRPLPARALAALGWLLALLLARGSGFVVRYXXX XXXXXXXTSLQPGAPLSARAWPGMRRCHWIFALLQRWHVQVYAFYEAVAGFVAPVKIMGVACGHLLSVWWRH RLKAPAGAAAWSASPGGARAPSAMPRAKVQSLKMSQLLGLLFVGCELPFADRLEAAWSSGPAGEWEGEALSAC CAWW

The following DNA sequence beGPCR-seq15<SEQ ID NO. 17> was identified in H. sapiens:

ACTCCTCGGTGCTGTTCAGGTGTTTCTGGAATGGATCTTCTAGTTTCTGCTGGTAGATCCAGGAAGCATTCTGAAGTTTTTCCATCCCTGA

The following amino acid sequence <SEQ ID NO. 18> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 17:

SGMEKLQNASWIYQQKLEDPFQKHLNSTEEYLAFLCGPRRSHFFLPVSVVYVPIFVVGVIGNVLVCLVILQHQ AMKTPNTYYLFSLAVSDLLVLLLGMPLEVYEMWRNYPFLFGPVGCYFKTALFETVCFASILSITTVSVERYVA ILHPFRAKLQSTRRRALRILGIVWGFSVLFSLPNTSIHGIKFHYFPNGSLVPGSATCTVIKPMWIYNFIIQVT SFLFYLLPMTVISVLYYLMALRVSIAGVAG

The following DNA sequence beGPCR-seq18 <SEQ ID NO. 19> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 20> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 19:

IKMIFAIVQIIGFSNSICNPIVYAFMNENFKKNVLSAVCYCIVNKTFSPAQRHGNSGITMMRKKAKFSLRENP

The following DNA sequence beGPCR-seq16 <SEQ ID NO. 21> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 22> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 21:

VSYSGAFSPPGDFPSMPGHNTSRNSSCDPIVTPHLISLYFIVLIGGLVGVISILFLLVKMNTRSVTTMAVINL VVVHSVFLLTVPFRLTYLIKKTWMFGLPFCKFVSAMLHIHMYLTVPILCGDPGHQIPHLLQVQRQSGILQKTA CCG

The following DNA sequence beGPCR-seq17<SEQ ID NO. 23> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 24> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 23:

 $\begin{array}{l} \texttt{CEYLFESWGI} \underline{\textbf{RLAVWAIVLLSVLCNGLVLLTVFAG}} \\ \textbf{GPAPLPPVKFVVGAIAGANTLT} \\ \textbf{GISCGLLASVDALTLV} \\ \textbf{S} \end{array}$

The following DNA sequence beGPCR-seq20 <SEQ ID NO. 25> was identified in H. sapiens:

GCCGCTGCCTGCCCCGGGCCTTGATGGGAGCTTCAGCGGCTCGGAGCGCTCATCGCCCCAGCGCGACGGG CTGGACACCAGCGGCTCCACAGGCAGCCCCGGT

The following amino acid sequence <SEQ ID NO. 26> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 25:

NPIIYTLTNRDLRHALLRLVCCGRHSCGRDPSGSQQSASAAEASGGLRRCLPPGLDGSFSGSERSSPQRDGLD TSGSTGSPG

The following DNA sequence beGPCR-seq21 <SEQ ID NO. 27> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 28> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 27:

FRCIVHPFREKLTLRKALVTIAVIWALALLIMCPSAVTLTVTREEHHFMVDARNRSYPLYSCWEAWPEKGM RRVYTTVLFSHIYLAPLALIVVMYARIARKLCXXXXXXXXXXXAEAADPRASRRRARVVHMLVMVALFFT

The following DNA sequence beGPCR-seq22<SEQ ID NO. 29> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 30> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 29:

 $\frac{\texttt{GPMPPTLLGI}}{\texttt{RQNGHAASRRLLGMDEVKGEKQLGRMFYAITLLFLLWSPYIVACYWRVFVKACAVPHRYLAT}}{\texttt{AVWMSFAQAAVNPIVCFLLNKDLKKCLRTHAPC}}$

The following DNA sequence beGPCR-seq24 <SEQ ID NO. 31> was identified in H. sapiens:

TATTCTGTAATGAAGAATGTCATTCACACTGCCATTGGCACATCCAGTGGCCTCACCTAGCATTGTGAAAG
CCCTTCGGTTGGTGTATTGCCACTTCATTTTAAAAGGATGCACAAGTCCCTGGTGCCTTTCCACAGCAATG
CAGGTCATAGTGAGGATTTCTGTCACAACAGCGGTAGACTGGACAAATGGCACCATCTTGCAAATGAAAGC
ACCTGCAGTAAGGAAATAGGATAAATCATACATCAAAACAAAAAGAATAAAGGTTTCATCTGTGTCTTTGT
AATTATCACTATCAGTCCATTCTGAGCCTCTGCCAAAAAGTTTGATAATTGTAATTACTCTGTAGACACA

The following amino acid sequence <SEQ ID NO. 32> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 31:

 $\label{thm:convergence} \textbf{VYRVITIIKLFGRGSEWTDSDNYKDTDETFILFVLMYDLSYFLTAGAFICKMVPFVQSTAVVTEILTMTCIAV\\ \textbf{ERHQGLVHPFKMKWQYTNRRAFTMLGEATGCANGSVNDILHYRI}$

The following DNA sequence beGPCR-seq27 <SEQ ID NO. 33> was identified in H. sapiens:

GAGCAACATGATCTTTTTGAAGTACTTGACGGTGTCGTTCTTGACGGTCACGAAGCACAGAGTGTTGATCA TGCTGTTGCTCATGGCGATGCACTCGACGATGTAGAAGGCAGTGAGGTAGTGCTTCTCCTTCACAAACACG GTGGGGAAGAAGTCGCGCACGATGGTGAAGCCGTAGAAGGGCGCCCAGCATAGCACGTAGGCGGTGAGGAT

The following amino acid sequence <SEQ ID NO. 34> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 33:

GCLHLCSCPRYLAIVHPLRPRMKCQTATGLIALVWTVSILIAIPSAYFTTETVLVIVKSQEKIFCGQIWPVDQ QLYYKSYFLFIFGIEFVGPVVTMTLCYARISRELWFKAVPGFQTEQIRKRLRCRRKTVLVLMCILTAYVLCWA PFYGFTIVRDFFPTVFVKEKHYLTAFYIVECIAMSNSMINTLCFVTVKNDTVKYFKKIMLL

The following DNA sequence beGPCR-seq28 <SEQ ID NO. 35> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 36> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 35:

LIPVFLILFIALVGLVGNGFVLWLLGFRMRRNAFSVYVLSLAGADFLFLCFQIINCLVYLSNFFCSISINFPS FFTSVMTFAYLVGLSMLSAISTECCLSVLRPIWYCCCCPRNLSTVMCALPWALSLLLNTLEGKFCGFLVSNGD YGWCWTFDFITAVWL

The following DNA sequence beGPCR-seq31<SEQ ID NO. 37> was identified in H. sapiens:

GAGAGTCTGATTCTGACTTACATCACATATGTAGGCCTGGGCATTTCTATTTGCAGCCTGATCCTTTGCTTGT
CCGTTGAGGTCCTAGTCTGGAGCCAAGTGACAAAGACAGAGATCACCTATTTACGCCATGTGTGCATTGTTAA
CATTGCAGCCACTTTGCTGATGGCAGATGTGTGGTTCATTGTGGCTTCCTTTCTTAGTGGCCCAATAACACAC
CACAAGGGATGTGTGGCAGCCACATTTTTTTGGTCATTTCTTTTACCTTTCTGTATTTTTCTGGATGCTTGCCA
AGGCACTCCTTATCCTCTATGGAATCATGATTGTTTTC

The following amino acid sequence <SEQ ID NO. 38> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 37:

ESLILTYITYVGLGISICSLILCLSVEVLVWSQVTKTEITYLRHVCIVNIAATLLMADVWFIVASFLSGPITH HKGCVAATFFGHFFYLSVFFWMLAKALLILYGIMIVF

The following DNA sequence beGPCR-seq32 <SEQ ID NO. 39> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 40> is the predicted amino

acid sequence derived from the DNA sequence of SEQ ID NO. 39:

LCGSREMSGFRVNKNWISNWIGPPPLVSDLLSASLCFSLLMRTVNPIRQGGGENQRYSWSHLVCVPRGTRLGF LSMDPTVPVFGTKLTPINGREETPCYNQTLSFTVLTCIISLVGLTGNAVVLWLLGYRMRRNAVSIYILNLAAA DFLFLSFQIIRSPLRLINISHLIRKILVSVMTFPYFTGLSMLSAISTERCLSVLWPIWY

The following DNA sequence beGPCR-seq33 <SEQ ID NO. 41> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 42> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 41:

TESKATRTLGIVMGVFVLCWLPFFVLTITDPFINFTTLEDLYNVFLWLGYFNSAFNPILYGMLYPWFRKALRMIVTGMIFHPDSSTLSLFSAHAAVFIIQDSF

The following DNA sequence beGPCR-seq34<SEQ ID NO. 43> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 44> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 43:

LHQRGMVAKRQEMLAAFLVSWLPYLVDAVIDAYMNFITPPYVYEILVWCVYYNSAMNPLIYAFFYQWFGKAIK LIVSGKVLRTDSSTTNLFSEEVETDKHYCRDLKTNLKLRSTAKINTWTRGKHDHMPSCRTIHSTVVLKHLLSS

The following DNA sequence beGPCR-seq35 <SEQ ID NO. 45> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 46> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 45:

LERGPRSILYAVLGFGAVLAAFGNLLVMIAILHFQLHTPTNFLIASLACADFLVGVTVMPFSTVRSVESCWYF GDSYCKFHTCFDTSFCFASLFHLCCISVDRYIAVTDPLTYPTKFTVSVSGICIVLSWFFSVTYSFSIFYTGAN EEGIEELVVALTCVGGCQAPLNQNWVLLCFLLFFIPNVAMVFIYSKIFLVAKHQARKIESTASQAQSFSESYK ERVAKRERKAAKTLGIAMAAFL The following DNA sequence beGPCR-seq36 <SEQ ID NO. 47> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 48> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 47:

NQVALLLRPLALSMAFINSCLNPVLYVFIGHDFWEHLLHSLLAALERALSEEPDSAIPAPRQMSPLHDPISYS IFPPLNPLPKQLYHNPTSNRIENKPQLLSELYVLGHVLEYNLKCLEDGGKKQTRSHSLEEDSSPRLKQKKRLS CDKTSHKIGSGPAAMTLCNPEHQETAILLNQSQVWTYMSGKTQRATLILKLQGIAQCHQDPFDDL

The following DNA sequence beGPCR-seq37<SEQ ID NO. 49> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 50> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 49:

LFTATILKLLRTEEAHGREQRRRAVGLAAVVLLAFVTCFAPNNFVLLAHIVSRLFYGKSYYHVYKLTLCLSCL NNCLDPFVYYFASREFQLRLREYLGCRRVPRDTLDTRRESLFSARTTSVRSEAGAHPEGMEGATRPGLQRQES VFVPGAQAAPPGLR

The following DNA sequence beGPCR-seq38 <SEQ ID NO. 51> was identified in H. sapiens:

TTACTTATTCTGCCCTTTATCCAACTTTTAATTCCCTTTGCTATTCTCCTGCCTCATTTTCTGGCCTCATTTT
CCCTATTATCCTGCCTCACATTGATCAAGGGATGAGGCTGGCAGGATCCGGAACCCACAGGGCCCCGTGGGCC
ATGAGAGGCTCCTGGACTTGAACCTCAGGACACTCCCACTCTGGCTGCCGGCAGGGATGGAAGCTGGATGAGC
AGGCAGGAGCTGGCAGTGGGGGTGGAGAGCCATAGGCTATTGGGGTGGACAGGCTTGGGTGCCTCATGGGAGC
TCCCCATGGGAGCTGTGGCCCTTGGGGCCTCTTATTTCTCACCCCAGGCTTTCCCGGGAGAGGTTCAAGTCA
GAAGATGCCCCAAAGATCCACGTGGCCCTGGGTGGCAGCCTGTTCCTCTGAATCTGGCCTTCTTGGTCAATG
TGGGGAGTGGCTCAAAGGGGTCTGATGCTGCCTGCTGGGCCCGGGGGGCTGTCTTCCACTACTTCCTG
TGCCTTCACCTGGATGGGCCTTGAAGCCTTCCACCTCTCCTGCTCTGCTCTC
GGGCACTACTTCCTGAAGC

The following amino acid sequence <SEQ ID NO. 52> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 51:

ETYSALYPTFNSLCYSPASFSGLIFPIILPHIDQGMRLAGSGTHRAPWAMRGSWTTSGHSHSGCRQGWKLDEQ AGAGSGGGEPAIGVDRLGCLMGAPHGSCGPLGPLISHPRLSRERPKSEDAPKIHVALGGSLFLLNLAFLVNVG SGSKGSDAACWARGAVFHYFLLCAFTWMGLEAFHLYLLAVRVFNTYFGHYFL

The following DNA sequence beGPCR-seq40 <SEQ ID NO. 53> was identified in

H. sapiens:

The following amino acid sequence <SEQ ID NO. 54> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 53:

 ${\tt DHFLWHPGEYVFFSAGAMKIRNNPVFFVIINKDKISPYVNTSVMSSNSSLLVAVQLCYANVNGSCVKIPFSPGSRVILYIVFGFGAVLAVFGNLLVMISILHFKQLHSPTN}$

The following DNA sequence beGPCR-seq41 <SEQ ID NO. 55> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 56> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 55:

LTDFLSFFIPTFIMIILYGNIFLVARRQAKKIENTGSKTESSSESYKARVARRERKAAKTLGVTVVAFMISWL PYSIDSLIDAFMGFITPACIYEICCWCAYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNLFSEHI AVGTKFRIPLKLPSEMSFKSSKTMNEQINCSSNKQINVFQSCDV

The following DNA sequence nGPCR-seq53 <SEQ ID NO. 57> was identified in H. sapiens:

TTTGTGGCAAGGAGACCCTGATCCCGGTCTTCCTGATCCTTTTCATTGCCCTGGTCGGGCTGGTAGGAAACGG
GTTTGTGCTCTGGCTCCTGGGCTTCCGCATGCGCAGGAACGCCTTCTCTGTCTACGTCCTCAGCCTGGCCGG
GCCGACTTCCTCTTCCTCTGCTTCCAGATTATAAATTGCCTGGTGTACCTCAGTAACTTCTTCTGTTCCATCT
CCATCAATTTCCCTAGCTTCTTCACCACTGTGATGACCTGTGCCTACCTTGCAGGCCTGAGCATGCTGAGCAC
CGTCAGCACCGAGCGCTGCCTGTCCGTCCTGTGGCCCATCTGGTATCGCTGCCGCCCCCCAGACACCTGTCA
GCGGTCGTGTGTCCTGCTCTGGGCCCTGTCCCTACTGCTGAGCATCTTGGAAGGGAAGTTCTGTGGCTTCT
TATTTAGTGATGGTGACTCTGGTTGGTCAGACATTTGATTTCATCACTGCAGCGTGGCTGATTTTTTTATT
CATGGTTCTCTGTGGGTCCAGTCTGGCCCTGCTGGTCAGGATCCTCTGTGGCTCCAGGGGTCTGCCACTGACC
AGGCTGTACCTGACCATCCTGCTCACAGTGCTGGTCCTCCTCTCTGCGGCCTGCCCTTTTGCATTCAGTGGT
TCCTAATATTATGGATCTGGAAGGATTCTGATGTCTTATTTTTTTCATCATCCAGTTTCAGTTGTCCTGTC
ATCTCTTAACAGCAGTGCCAACCCCATCATTTACTTCTTCGTGGGCTCTTTTAGGAAGCAGTGGCGGSTGCAG
CACCCGATCCTCAAGCTGGCTCTCCAGAGGGCTCTTGCAGGACCACTTTCAGTTGAAAGAAGCATTCCTGCAGGACCCCTCTTCCATCATCATATATA
TCGTGCTTTGAGAGGCAACCTCTTCAAAGAAGCATTCTGGTGTAGGGATGGACCCCTCTACTTCCATCATATATA
TGTGGCTTTGAGAGGCAACTTTCCCCC

The following amino acid sequence <SEQ ID NO. 58> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 57:

CGKETLIPVFLILFIALVGLVGNGFVLWLLGFRMRRNAFSVYVLSLAGADFLFLCFQIINCLVYLSNFFCSIS INFPSFFTTVMTCAYLAGLSMLSTVSTERCLSVLWPIWYRCRRPRHLSAVVCVLLWALSLLLSILEGKFCGFL FSDGDSGWCQTFDFITAAWLIFLFMVLCGSSLALLVRILCGSRGLPLTRLYLTILLTVLVSLLCGLPFGIQWF LILWIWKDSDVLFCHIHPVSVVLSSLNSSANPIIYFFVGSFRKQWRXQHPILKLALQRALQDIAEVDHSEGCF RQGTRRFKEAFWCRDGPLYFHHIYVALRGNFA

The following DNA sequence nGPCR-seq54<SEQ ID NO. 59> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 60> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 59:

FRYCVIIHPMSCFSIHKTRCAVVACAVVWIISLVAVIPMTFLITSTNRTNRSACLDLTSSDELNTIKWYNLIL TASTFCLPLVIVTLCYTTIIHTLTHGLQTDSCLKQKARRLTILLLLAFYVCFLPFHILRVIQDRISACFQSVV PLRIRSMKLTSFLDHYAALNTFGNLLLYVVVSDNFQQAVCSTVRCK

The following DNA sequence nGPCR-seq55 <SEQ ID NO. 61> was identified in H. sapiens, where the underlined ATG identifies a probable start codon:

The following amino acid sequence <SEQ ID NO. 62> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 61:

MANTTGEPEEVSGALSPPSASAYVKLVLLGLIMCVSLAGNAILSLLVLKERALHKAPYYFLLDLCLADGIRSA VCFPFVLASVRHGSSWTFSALSCKIVAFMAVLFCFHAAFMLFCISVTRYMAIAHHRFYAKRMTLWTCAAE

The following DNA sequence nGPCR-seq56 <SEQ ID NO. 63> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 64> is the predicted amino

acid sequence derived from the DNA sequence of SEQ ID NO. 63:

REKTDQPSGMMPFCHNIINISCVKNNWSNDVRASLYSLMVLIILTTLVGNLIVIVSISHPKQLHTPTNWLIHS MATVDFLLGCLVMPYSMVRSAEHCWYFGEVFCKIHTSTDIMLSSASIFHLSFISIDRYYAVCDPLRYKAKMNI LVICVMIFISWSVPAVFAFGMIFLELNFKGAEEIYYKHVHCRGGCSVFFSKISGVLTFMTSFYIPGSIMLCVY YRIYLIAKEQARLISDANQ

The following DNA sequence nGPCR-seq57<SEQ ID NO. 65> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 66> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 65:

YIKECFLKVPVEEALYLTSKYRLSICNLKIQNLKCSKIWNFLSINMMPQVENSTPEAFAVWFNVCKLCFMPKI INIVQNYFQTMCIRCININKFCVTWEPFPRYIIMNVIFRNPKSKTFLVSNILGKGYSTCTTVILLLTFTPEML KVCFSPTGVNLLAFLIIVFSYITMFCSIQKTALQTTEVRNCFGREVAVANRFFFIVFSDAICWIPVFVVKILS LFRVEIPGQSLLSFPSIIHRAFLRPSFDKARVDTIIHKNQYKVISLPCFIISIIKKLSSGAIQPGIIKSRSYR ETKSEYLASIARHWFFTRSMHKTIKIYMPRFHPGL

The following DNA sequence nGPCR-seq58 <SEQ ID NO. 67> was identified in H. sapiens:

ACTACCATGGAAGCTGACCTGGGTGCCACTGGCCACAGGCCCCGCACAGAGCTTGATGATGAGGACTCCTACC GTGGCTGGCCGGCTCCCAGGCCCGGCATGGAGCTGGCACGCGTCTGGCGCTGCTCCTGCTCAGCCTGGCCCTC TCTGACTTCTTGTTCCTGGCAGCAGCGGCCTTCCAGATCCTAGAGATCCGGCATGGGGGGACACTGGCCGCTGG GGACAGCTGCCTGCCGCTTCTACTTCCTATGGGGCGTGTCCTACTCCTCCGGCCTCTTCCTGCTGGCCGC CCTCAGCCTCGACCGCTGCCTGCCGCGCTGTGCCCACACTGGTACCCTGGGCACCGCCCAGTCCGCCTGCCC CCGTCTGGTGGTACGACCTGGTCATCTGCCTGGACTTCTGGGACAGCGAGGAGCTGTCGCTGAGGATGCTGGA GGTCCTGGGGGGCTTCCTGCCTTTCCTCCTGCTGCTCGTCTGCCACGTGCTCACCCAGGCCACAGCCTGTCGC ACCTGCCACCGCCAACAGCAGCCCGCAGCCTGCCGGGGCTTCGCCCGTGTGGCCAGGACCATTCTGTCAGCCT ATGTGGTCCTGAGGCTGCCCTACCAGCTGGCCCAGCTGCTCTACCTGGCCTTCCTGTGGGACGTCTACTCTGG CTACCTGCTCTGGGAGGCCCTGGTCTACTCCGACTACCTGATCCTACTCAACAGCTGCCTCAGCCCCTTCCTC AGGAGCGGCCGGCAGCTTCACGCCCACTGAGCCACAGACCCAGCTAGATTCTGAGGGTCCAACTCTGCCAGA GCCGATGGCAGAGGCCCAGTCACAGATGGATCCTGTGGCCCAGCCTCAGGTGAACCCCACACTCCAGCCACGA TCGGATCCCACAGCTCAGCCACAGCTGAACCCTACGGCCCAGCCACAGTCGGATCCCACAGCCCACAGC TGAACCTCATGGCCCAGCCACAGTCAGATTCTGTGGCCCAGCCACAGGCAGACACTAACGTCCAGACCCCTGC ACCTGCTGCC

The following amino acid sequence <SEQ ID NO. 68> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 67:

TTMEADLGATGHRPRTELDDEDSYPQGGWDTVFLVALLLLGLPANGLMAWLAGSQARHGAGTRLALLL LSLALSDFLFLAAAAFQILEIRHGGHWPLGTAACRFYYFLWGVSYSSGLFLLAALSLDRCLLALCPHW

YPGHRPVRLPLWVCAGVWVLATLFSVPWLVFPEAAVWWYDLVICLDFWDSEELSLRMLEVLGGFLPFL LLLVCHVLTQATACRTCHRQQQPAACRGFARVARTILSAYVVLRLPYQLAQLLYLAFLWDVYSGYLLW EALVYSDYLILLNSCLSPFLCLMASADLRTLLRSVLSSFAAALCEERPGSFTPTEPQTQLDSEGPTLP EPMAEAQSQMDPVAQPQVNPTLQPRSDPTAQPQLNPTAQPQSDPTAQPQLNLMAQPQSDSVAQPQADT NVQTPAPAA

The following DNA sequence nGPCR-seq59 <SEQ ID NO. 69> was identified in H. sapiens:

TACAGGCCTGAGCATGCTGGGCTCCATCAGCACCAAGCACTGCCTGTCCATCCTGTGGCCCATCTAGTACCGC
TGCCACCACCCCACACACCTGTCAGCAGTCGTGTGTCCTGTGTCTCTGGGCCCTGTCCCTGCTGCAGAGCATCCTG
GAATGGATGTTCTGTGGCTTCCTGTCTAGTGGTGCTGATTCTGTTTGGTGTGAAACATCAGATTTCATCACAG
TCACATGGCTGATTTTTTTATGTGTGGGTTCTCTGCGGGTCCAGCCCGGTTCTGCTGGTCAGGATCCTTTTTGG
ATCCCGGAAGATGCCCTTGACCAGGCTGTACATGACCATCCTGCTCAGAGTGCTGGTCTTCCTCCTCTGTGAC
CTGCCCTTTGGCATTCAGTGATTCCTATTTTTCTGGATCCACGTGGATTTGTCACGTTCGTCTAGTTTCCATT
TTCCTGTCCACTCTTAACAGCAGTGCCAACCCCATTATTTACTTCTTCATGGGCTCCTTTAGGCAGCTTCAAA
ACAGGAAGACTCTCTAGCTGGTTCTCCAGAGGGCTCTGCAGGACACGCCTGAGGTGGAAGAAGGCAGATGGCG
GCTTTCTGAGGAAACCCTGGAGCTGTCATGAAGCAGATTGGGGCCATGAGGAAGAAGCCTCTCCAGTC

The following amino acid sequence <SEQ ID NO. 70> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 69:

YRPEHAGLHQHQALPVHPVAHLVPLPPPHTPVSSRVSCSGPCPCCRASWNGCSVASCLVVLILFGVKHQISSQ SHGFFYVWFSAGPARFCWSGSFVDPGRCPPGCTPSCSECWSSSSVTCPLAFSDSYFSGSTWICHVRLVSIFLS TLNSSANPIIYFFMGSFRQLQNRKTLLVLQRALQDTPEVEEGRWRLSEETLELSSRLGPGRASALSV

The following DNA sequence nGPCR-seq60 <SEQ ID NO. 71> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 72> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 71:

LSSNVYRNPFAIYLLDVACADLIFLGCHMVAIVPDLLQGRLDFPGFVQTSLATLRFFCYIVGLSLLA AVSVEQCLAALFPAWYSCRRPRHLTTCVCALTWALCLLHLTTCVCALTWALCLLHLLLSGACTLL LSGACTQFFGEPSRHLCRTLWLVAAVLLALLCCTMCGASLMLLLRVERGPQRPPPRGFPGLILLTVL LFSSAACLRH

The following DNA sequence nGPCR-1 <SEQ ID NO. 73> was identified in H. sapiens:

CGTGGGCAACTCCCTGCTCAACCCACTCATCTATGCCTATTGGCAGAAGGAGGTGCGACTGCAGCTCTACCAC ATGGCCCTAGGAGTGAAGAAGGTGCTCACCTCATTCCTCCTCTTTCTCTCGGCCAGGAATTGTGGCCCAGAGA GGCCCAGGGAAAGTTCCTGTCACATCGTCACTATCTCCAGCTCAGAGTTTGATGGCTAA

The following amino acid sequence <SEQ ID NO. 74> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 73:

MESSFSPGVILAVLASLIIATNTLVAVAVLLLIHKNDGVSLCFTLNLAVADTLIGVAISGLLTDQLSSPSRPT QKTLCSLRMAFVTSSAAASVLTVMLITFDRYLAIKQPFRYLKIMSGFVAGACIAGLWLVSYLIGFLPLGIPMF QQTAYKGQCSFFAVFHPHFVLTLSCVGFFPAMLLFVFFYCDMLKIASMHSQQIRKMEHAGAMAGGYRSPRTPS DFKALRTVSVLIGSFALSWTPFLITGIVQVACQECHLYLVLERYLWLLGVGNSLLNPLIYAYWQKEVRLQLY HMALGVKKVLTSFLLFLSARNCGPERPRESSCHIVTISSSEFDG

The following DNA sequence TL-GPCR-seq5 <SEQ ID NO. 75> was identified in H. sapiens.

GTGGCTGGCCCCCGAGTCCCGGGCTCTGAGGCACGGCCGTCGACTTAAGCGTTGCATCCTGTTACCTGGAGA $\tt CCCTCTGAGCTCTCACCTGCTACTTCTGCCGCTGCTTCTGCACAGAGCCCGGGGGAGGACCCCTCCAGGATGC$ AGGTCCCGAACAGCACCGGCCCGGACACGCGACGCTGCAGATGCTGCGGAACCCGGCGATCGCGGTGGCCCT GCCCGTGGTGTACTCGCTGGTGGCGGCGGTCAGCATCCCGGGCAACCTCTTCTCTCTGTGGGTGCTGTGCCGG CGCATGGGGCCCAGATCCCCGTCGGTCATCTTCATGATCAACCTGAGCGTCACGGACCTGATGCTGGCCAGCG TGTTGCCTTTCCAAATCTACTACCATTGCAACCGCCACCACTGGGTATTCGGGGTGCTGCTTTGCAACGTGGT GACCGTGGCCTTTTACGCAAACATGTATTCCAGCATCCTCACCATGACCTGTATCAGCGTGGAGCGCTTCCTG GGGGTCCTGTACCCGCTCAGCTCCAAGCGCTGGCGCCGCCGTCGTTACGCGGTGGCCGCGTGTGCAGGGACCT GGCTGCTGCTCCTGACCGCCCTGTCCCCGCTGGCGCGCACCGATCTCACCTACCCGGTGCACGCCCTGGGCAT CATCACCTGCTTCGACGTCCTCAAGTGGACGATGCTCCCCAGCGTGGCCATGTGGGCCGTGTTCCTCTTCACC ATCTTCATCCTGCTGTTCCTCATCCCGTTCGTGATCACCGTGGCTTGTTACACGGCCACCATCCTCAAGCTGT TGCGCACGGAGGAGGCGCACGGCCGGGAGCAGCGGGGCGCGCGGTGGCCGGGGGCGTGGTCTTGCTGGC CTTTGTCACCTGCTTCGCCCCAACAACTTCGTGCTCCTGGCGCACATCGTGAGCCGCCTGTTCTACGGCAAG ACTITGCGTCCCGGGAATTCCAGCTGCGCCTGCGGGAATATTTGGGCTGCCGCGGGTGCCCAGAGACACCCT GGACACGCGCGCGAGAGCCTCTTCTCCGCCAGGACCACGTCCGTGCGCTCCGAGGCCGGTGCGCACCCTGAA GGGATGGAGGGAGCCACCAGGCCCGGCCTCCAGAGGCAGAGAGTGTGTTCTGAGTCCCGGGGGCGCAGCTTG GAGAGCCGGGGGCGCAGCTTGGAGGATCCAGGGGGCGCATGGAGAGGCCACGGTGCCAGAGGTTCAGGGAGAAC AGCTGCGTTGCTCCCAGGCACTGCAGAGGCCCGGTGGGGAAGGGTCTCCAGGCTTTATTCCTCCCAGGCACTG CAGAGGCACCGGTGAGGAAGGGTCTCCAGGCTTCACTCAGGGTAGAGAAACAAGCCAAAGCCCAGCAGCGCACA GGGTGCTTGTTATCCTGCAGAGGGTGCCTCTGCCTCTGTGTCAGGGGACAGCTTGTGTCACCACGCCCGGC TAATTTTTGTATTTTTTTTTAGTAGAGCTGGGCTGTCACCCCCGAGCTCCTTAGACACTCCTCACACCTGTCCA TACCCGAGGATGGATATTCAACCAGCCCCACCGCCTACCCGACTCGGTTTCTGGATATCCTCTGTGGGCGAAC TGCGAGCCCCATTCCCAGCTCTTCTCCCTGCTGACATCGTCCCTTAGCACACCTGTCCATACCCGAGGATGGA TATTCAACCAGCCCCACCGCCTACCCGACTCGGTTTCTGGATATCCTCTGTGGGCGAACTGCGAGCCCCATTC CCAGCTCTTCTCCCTGCTGACATCGTCCCTTAGTTGTGGTTCTGGCCTTCTCCATTCTCCTCCAGGGGTTCTG GTCTCCGTAGCCCGGTGCACGCCGAAATTTCTGTTTATTTCACTCAGGGGCACTGTGGTTGCTGTGGTTGGAA ACCCCCTCGTGCCGAATTC

The following amino acid sequence <SEQ ID NO. 76> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 75.

MQVPNSTGPDNATLQMLRNPAIAVALPVVYSLVAAVSIPGNLFSLWVLCRRMGPRSPSVIFMINLSVTDLMLA SVLPFQIYYHCNRHHWVFGVLLCNVVTVAFYANMYSSILTMTCISVERFLGVLYPLSSKRWRRRRYAVAACAG TWLLLLTALSPLARTDLTYPVHALGIITCFDVLKWTMLPSVAMWAVFLFTIFILLFLIPFVITVACYTATILK LLRTEEAHGREQRRRAVGLAAVVLLAFVTCFAPNNFVLLAHIVSRLFYGKSYYHVYKLTLCLSCLNNCLDPFV YYFASREFQLRLREYLGCRRVPRDTLDTRRESLFSARTTSVRSEAGAHPEGMEGATRPGLQRQESVF

The following DNA sequence nGPCR-9 <SEQ ID NO. 77> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 78> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 77:

MESGLLRPAPVSEVIVLHYNYTGKLRGARYQPGAGLRADAVVCLAVCAFIVLENLAVLLVLGRHPRFHAPMFL LLGSLTLSDLLAGAAYAANILLSGPLTLKLSPALWFAREGGVFVALTASVLSLLALALERSLTMARRGPAPVS SRGRTLAMAAAAWGVSLLLGLLPALGWNCLGRLDACSTVLPLYAKAYVLFCVLAFVGILAAICALYARIYCQV RANARRLPARPGTAGTTSTRARRKPRSLALLRTLSVVLLAFVACWGPLFLLLLLDVACPARTCPVLLQADPFL GLAMANSLLNPIIYTLTNRDLRHALLRLVCCGRHSCGRDPSGSQQSASAAEASGGLRRCLPPGLDGSFSGSER SSPQRDGLDTSGSTGSPGAPTAARTLVSEPAAD

The following DNA sequence nGPCR-11 <SEQ ID NO. 79> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 80> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 79:

MYNGSCCRIEGDTISQVMPPLLIVAFVLGALGNGVALCGFCFHMKTWKPSTVYLFNLAVADFLLMICLPFRTD
YYLRRHWAFGDIPCRVGLFTLAMNRAGSIVFLTVVAADRYFKVVHPHHAVNTISTRVAAGIVCTLWALVILG
TVYLLLENHLCVQETAVSCESFIMESANGWHDIMFQLEFFMPLGIILFCSFKIVWSLRRRQQLARQARMKKAT
RFIMVVAIVFITCYLPSVSARLYFLWTVPSSACDPSVHGALHITLSFTYMNSMLDPLVYYFSSPSFPKFYNKL
KICSLKPKQPGHSKTQRPEEMPISNLGRRSCISVANSFQSQSDGQWDPHIVEWH

The following DNA sequence nGPCR-16 <SEQ ID NO. 81> was identified in H. sapiens:

ATGACAGGTGACTTCCCAAGTATGCCTGGCCACAATACCTCCAGGAATTCCTCTTGCGATCCTATAGACACCCCCACTTAATCAGCCTCTACTTCATAGTGCTTATTGGCGGCTGGTGGTGTCATTTCCATTCTTTTCCTCCTGGTGAAAATGAACACCCGGTCAGTGACCACCATGGCGGTCATTAACTTGGTGGTGCTCCACAGCGTTTTTCTGCTGACAGTGCCATTTGCCTTTGCCATTGGCCATTTGGCCTTCTGCAAATTTGTG

AGTGCCATGCTGCACATCCACATGTACCTCACGTTCCTATTCTATGTGGTGATCCTGGTCACCAGATACCTCA TCTTCTTCAAGTGCAAAGACAAAGTGGAATTCTACAGAAAACTGCATGCTGTGGCTGCCAGTGCTGGCATGTG GACGCTGGTGATTGTCATTGTGGTACCCCTGGTTGTCTCCCGGTATGGAATCCATGAGGAATACAATGAGGAG CACTGTTTTAAATTTCACAAAGAGCTTGCTTACACATATGTGAAAATCATCAACTATATGATAGTCATTTTTG TCATAGCCGTTGCTGTGATTCTGTTGGTCTTCCAGGTCTTCATCATTATGTTGATGGTGCAGAAGCTACGCCA TTCCTTCCCTACCAGTTCTTTAGGATCTATTACTTGAATGTTGTGACGCATTCCAATGCCTGTAACAGCAAGG TTGCATTTTATAACGAAATCTTCTTGAGTGTAACAGCAATTAGCTGCTATGATTTGCTTCTCTTTTGTCTTTTGG GGGAAGCCATTGGTTTAAGCAAAAGATAATTGGCTTATGGAATTGTGTTTTTGTGCCGTTAGCCACAAACTACA GTATTCATATTTGCTTCCTTTATATTGGGAATAAAAATGGGTATAGGGGAGGTAAGAATGGTATTTCATTACT TGATCAAAACCATGCCTTGATGTACCCAAAACAAAAGGACTATAAAATGCAAGAGCCCTCATTGTAGTCCTTA TGGGATCCCTCCCATCTCTGAGTGATGGCCGTACAAAGACCAGTGTTGTTGAATCCACCTGGAGTTGCAATAT TACATTATTTTCCAGTACAGAATGTCTGTGTGGCCCATGAAAGCAACATAGGTTTTAAGAGTTTTAGAGTTTC ATTAGCTCATTCTAAGTTCCTCTGTTTGAAGCATGGTCTCTTAGGTTTTGGACTGAACTCAGACCTTTAGTTC TTTTCATCCCACTTCACCTTAGGTAAGTAAATTCTGGCCACCACCCAGCTCCAAAGACACAAACTCTCCTTCG CTAACCAGGTTAGATGTCCCATTCATCTCATGCCCTGATAAAAACTGATAAGGGGAGAGAATAGTTAAAAAATT GTTATAACAAGGGTTTCTAGATTTGTCCTGTGAAAGGTCGTTTAAGGACTTGGGGATCAACTTCCTCAATTAT CACCAATTGCACTGTTGCTCCAAAAATCATTTAAAAGCTTACTGGACATATCTACATAATGGTGAAACTGTAA TTTAGAGACTATCCCTGACTAATGTGCTGGTAGGCATTAAAATGAGTTCCCCAAGGGAAGTGATTAAAATTTTT AGTTCTGGGGTACATGTGCAGAATGTGCAGGTTTGTTACATAGGTATACACGTGCCATGGTGGTTTGCGGCAC CATTGTGTGATGTTCCCCTCCCTGTGTCCATGTGTTTTCATTGTTCAACTCCCACTTCTAAGTGAGAACATGC ${\tt GGTGTTTGGTTTCTGTTCCTGTGTTAGTTTGCTGAGAATGATGGTTTCCAGGTTAAAATTATATTTTTAA}$ ATAAATGAAAACTGTGTTTTTAAAAGAGGACTTTTGAGAAGTATATAGAAAAACCATTAATTTAGACTCTGTG ATCATAATCCTTTAAAATATAGGAAAAATAACTAATGGGAACTAGGCTTAATACTCGGGATGAAATAATCTGT ACAACAAACTCCCATGACACATGTTTACCTATGTAACAAACCTGCACATGTACCCCTGAACTTAAAATAAAAT TTAAAGTATAATAATAAAATAATATGGATTTTCTTT

The following amino acid sequence <SEQ ID NO. 82> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 81:

MTGDFPSMPGHNTSRNSSCDPIVTPHLISLYFIVLIGGLVGVISILFLLVKMNTRSVTTMAVINLVVVHSVFL LTVPFRLTYLIKKTWMFGLPFCKFVSAMLHIHMYLTFLFYVVILVTRYLIFFKCKDKVEFYRKLHAVAASAGM WTLVIVIVVPLVVSRYGIHEEYNEEHCFKFHKELAYTYVKIINYMIVIFVIAVAVILLVFQVFIIMLMVQKLR HSLLSHQEFWAQLKNLFFIGVILVCFLPYQFFRIYYLNVVTHSNACNSKVAFYNEIFLSVTAISCYDLLLFVF GGSHWFKQKIIGLWNCVLCR

The following DNA sequence nGPCR-40 <SEQ ID NO. 83> was identified in H. sapiens:

GCAGGAGCACTGAAAATCAGGAACAATCCTGTATTTTTTGTGATAATCAACAAGGACAAAACTTCTCCATATG TAAATAACAGCGTTATGAGCAGCAATTCATCCCTGCTGGTGGCTGTGCAGCTGTGCTACGCGAACGTGAATGG GTCCTGTGTGAAAATCCCCTTCTCGCCGGGATCCCGGGTGATTCTGTACATAGTGTTTGGCTTTGGGGCTGTG CTGGCTGTGTTTGGAAACCTCCTGGTGATGATTTCAATCCTCCATTTCAAGCAGCTGCACTCTCCGACCAATT GGTGGAGAGCTGCTGGTATTTTGGGAGGAGTTTTTGTACTTTCCACACCTGCTGATGTGGCATTTTGTTAC TCTTCTCTCTTTCACTTGTGCTTCATCTCCATCGACAGGTACATTGCGGTTACTGACCCCCTGGTCTATCCTA CCAAGTTCACCGTATCTGTGTCAGGAATTTGCATCAGCGTGTCCTGGATCCTGCCCCTCATGTACAGCGGTGC TGTGTTCTACACAGGTGTCTATGACGATGGGCTGGAGGAATTATCTGATGCCCTAAACTGTATAGGAGGTTGT TTCTGTATGGTAACATATTTCTTGTGGCTAGACGACAGGCGAAAAAGATAGAAAATACTGGTAGCAAGACAGA GTGGTAGCATTTATGATTTCATGGTTACCATATAGCATTGATTCATTAATTGATGCCTTTATGGGCTTTATAA CCCCTGCCTGTATTTATGAGATTTGCTGTTGGTGTGCTTATTATAACTCAGCCATGAATCCTTTGATTTATGC TTTATTTTACCCATGGTTTAGGAAAGCAATAAAAGTTATTGTAACTGGTCAGGTTTTAAAGAACAGTTCAGCA **ACCATGAATTTGTTTTCTGAACATATATAA**

The following amino acid sequence <SEQ ID NO. 84> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 83:

MSSNSSLLVAVQLCYANVNGSCVKIPFSPGSRVILYIVFGFGAVLAVFGNLLVMISILHFKQLHSPTNFLVAS
LACADFLVGVTVMPFSMVRTVESCWYFGRSFCTFHTCCDVAFCYSSLFHLCFISIDRYIAVTDPLVYPTKFTV
SVSGICISVSWILPLMYSGAVFYTGVYDDGLEELSDALNCIGGCQTVVNQNWVLTDFLSFFIPTFIMIILYGN
IFLVARRQAKKIENTGSKTESSSESYKARVARRERKAAKTLGVTVVAFMISWLPYSIDSLIDAFMGFITPACI
YEICCWCAYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNLFSEHI

The following DNA sequence nGPCR-54 <SEQ ID NO. 85> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 86> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 85:

MNEPLDYLANASDFPDYAAAFGNCTDENIPLKMHYLPVIYGIIFLVGFPGNAVVISTYIFKMRPWKSSTIIML NLACTDLLYLTSLPFLIHYYASGENWIFGDFMCKFIRFSFHFNLYSSILFLTCFSIFRYCVIIHPMSCFSIHK TRCAVVACAVVWIISLVAVIPMTFLITSTNRTNRSACLDLTSSDELNTIKWYNLILTASTFCLPLVIVTLCYT TIIHTLTHGLQTDSCLKQKARRLTILLLLAFYVCFLPFHILRVIQDRISACFQSVVPLRIRSMKLTSFLDHYA ALNTFGNLLLYVVVSDNFQQAVCSTVRCKVSGNLEQAKKISYSN

The following DNA sequence nGPCR-56 <SEQ ID NO. 87> was identified in H. sapiens:

AAAAATTGCTGTACTGAACTATTGAATGGAACTTGGAAATAAAGTCCCTTCCAAAATAACTATTCTTCAACAG AGAGTAATAGGTAAATGTTTTAGAAGTGAGAGGACTCAAATTGCCAATGATTTACTCTTTTATTTTTCCTCCT AGGTTTCTGGGATAAGTATGTGCAAATAAAAAATAAACATGAGAAGGAACTGTAACCTGATTATGGATTTGGG AAAAGATAAATCAACACAAAAGGGAAAAGTAAACTGATTGACAGCCCTCAGGAATGATGCCCTTTTGCCAC AATATAATTAATATTTCCTGTGTGAAAAACAACTGGTCAAATGATGTCCGTGCTTCCCTGTACAGTTTAATGG TGCTCATAATTCTGACCACACTCGTTGGCAATCTGATAGTTATTGTTTCTATATCACACTTCAAACAACTTCA TACCCCAACAAATTGGCTCATTCATTCCATGGCCACTGTGGACTTTCTTCTGGGGTGTCTGGTCATGCCTTAC AGTATGGTGAGATCTGCTGAGCACTGTTGGTATTTTGGAGAAGTCTTCTGTAAAATTCACACAAGCACCGACA ACTGAGATATAAAGCCAAGATGAATATCTTGGTTATTTGTGTGATGATCTTCATTAGTTGGAGTGTCCCTGCT GTTTTTGCATTTGGAATGATCTTTCTGGAGCTAAACTTCAAAGGCGCTGAAGAGATATATTACAAACATGTTC ACTGCAGAGGAGGTTGCTCTGTCTTTTAGCAAAATATCTGGGGTACTGACCTTTATGACTTCTTTTTATAT CCCTTTTCTTCACTACATTATTCCACCTACTTTGAATGATGTA

The following amino acid sequence <SEQ ID NO. 88> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 87:

 ${\tt MMPFCHNIINISCVKNNWSNDVRASLYSLMVLIILTTLVGNLIVIVSISHFKQLHTPTNWLIHSMATVDFLLG} \\ {\tt CLVMPYSMVRSAEHCWYFGEVFCKIHTSTDIMLSSASIFHLSFISIDRYYAVCDPLRYKAKMNILVICVMIFI} \\$

SWSVPAVFAFGMIFLELNFKGAEEIYYKHVHCRGGCSVFFSKISGVLTFMTSFYIPGSIMLCVYYRIYLIAKE QARLISDANQKLQIGLEMKNGISQSKERKAVKTLGIVMGVFLICWCPFFICTVMDPFLHYIIPPTLNDARGSR ANSA

The following DNA sequence nGPCR-56 <SEQ ID NO. 89> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 90> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 89:

MMPFCHNIINISCVKNNWSNDVRASLYSLMVLIILTTLVGNLIVIVSISHFKQLHTPTNWLIHSMATVDFLLG CLVMPYSMVRSAEHCWYFGEVFCKIHTSTDIMLSSASIFHLSFISIDRYYAVCDPLRYKAKMNILVICVMIFI SWSVPAVFAFGMIFLELNFKGAEEIYYKHVHCRGGCSVFFSKISGVLTFMTSFYIPGSIMLCVYYRIYLIAKE QARLISDANQKLQIGLEMKNGISQSKERKAVKTLGIVMGVFLICWCPFFICTVMDPFLHYIIPPTLNDVLIWF GYLNSTFNPMVYAFFYPWFRKALKMMLFGKIFQKDSSRCKLFLELSS

The following DNA sequence nGPCR-58 <SEQ ID NO. 91> was identified in H. sapiens:

CTGTAAAGTAGATTGTATGAGGACTCCATGAGGTCATCCACTTCAAGTCCTTGGCATAGGATAATTACTCAAA AGGTGATGACAATGGCGCAGGGAGGGATGGTGACTTGCCTGGAGATGCACAGCACCGTCTCTCCCATACTCGG TCATTCACACCATCATTGATTCACCAGGCACCACTCCGTGTCCAGCAGGACTCTGGGGACCCCAAATGGACAC GGCTGGCCGGCTCCCAGGCCCGGCATGGAGCTGGCACGCGTCTGGCGCTCTCCTCCTCAGCCTGGCCCTCTC TGACTTCTTGTTCCTGGCAGCAGCGGCCTTCCAGATCCTAGAGATCCGGCATGGGGGACACTGGCCGCTGGGG ACAGCTGCCTGCCGCTTCTACTACTTCCTATGGGGCGTGTCCTACTCCTCCGGCCTCTTCCTGCTGGCCGCCC TCAGCCTCGACCGCTGCCTGCCGCCTGTGCCCACACTGGTACCCTGGGCACCGCCCAGTCCGCCTGCCCCT GTCTGGTGGTACGACCTGGTCATCTGCCTGGACTTCTGGGACAGCGAGGAGCTGTCGCTGAGGATGCTGGAGG TCCTGGGGGGCTTCCTGCCTTCCTCCTGCTGCTCGTCTGCCACGTGCTCACCCAGGCCACAGCCTGTCGCAC CTGCCACCGCCAACAGCAGCCCGCAGCCTGCCGGGGCTTCGCCCGTGTGGCCAGGACCATTCTGTCAGCCTAT GTGGTCCTGAGGCTGCCCTACCAGCTGGCCCAGCTGCTCTACCTGGCCTTCCTGTGGGACGTCTACTCTGGCT ACCTGCTCTGGGAGGCCCTGGTCTACTCCGACTACCTGATCCTACTCAACAGCTGCCTCAGCCCCTTCCTCTG CCTCATGGCCAGTGCCGACCTCCGGACCCTGCTGCGCTCCGTGCTCTCGCGGCAGCTCTCTGCGAG GAGCGGCCGGCAGCTTCACGCCCACTGAGCCACAGACCCAGCTAGATTCTGAGGGTCCAACTCTGCCAGAGC CGATGGCAGAGGCCCAGTCACAGATGGATCCTGTGGCCCAGCCTCAGGTGAACCCCACACTCCAGCCACGATC GGATCCCACAGCTCAGCCACAGCTGAACCCTACGGCCCAGCCACAGTCGGATCCCACAGCCCAGCCACAGCTG AACCTCATGGCCCAGCCACAGTCAGATTCTGTGGCCCAGCCACAGGCAGACACTAACGTCCAGACCCCTGCAC CTGCTGCCAGTTCTGTGCCCAGTCCCTGTGATGAAGCTTCCCCAACCCCATCCTCGCATCCTACCCCAGGGGC CCTTGAGGACCCAGCCACCCTCCTGCCTCTGAAGGAGAAAGCCCCAGCAGCACCCCGCCAGAGGCGCCCCG **GGAACCAGCCAGTCAGA**

The following amino acid sequence <SEQ ID NO. 92> is the predicted amino

acid sequence derived from the DNA sequence of SEQ ID NO. 91:

LAWRCTAPSLPYSVIHTIIDSPGTTPCPAGLWGPQMDTTMEADLGATGHRPRTELDDEDSYPQGGWDTVFLVA
LLLLGLPANGLMAWLAGSQARHGAGTRLALLLLSLALSDFLFLAAAAFQILEIRHGGHWPLGTAACRFYYFLW
GVSYSSGLFLLAALSLDRCLLALCPHWYPGHRPVRLPLWVCAGVWVLATLFSVPWLVFPEAAVWWYDLVICLD
FWDSEELSLRMLEVLGGFLPFLLLLVCHVLTQATACRTCHRQQQPAACRGFARVARTILSAYVVLRLPYQLAQ
LLYLAFLWDVYSGYLLWEALVYSDYLILLNSCLSPFLCLMASADLRTLLRSVLSSFAAALCEERPGSFTPTEP
QTQLDSEGPTLPEPMAEAQSQMDPVAQPQVNPTLQPRSDPTAQPQLNPTAQPQSDPTAQPQLNLMAQPQSDSV
AQPQADTNVQTPAPAASSVPSPCDEASPTPSSHPTPGALEDPATPPASEGESPSSTPPEAAPGAGPT

The following DNA sequence nGPCR-58 <SEQ ID NO. 93> was identified in H. sapiens:

ATGGACACTACCATGGAAGCTGACCTGGGTGCCACTGGCCACAGGCCCCGCACAGAGCTTGATGATGAGGACT ATGGGTTGATGGCGTGGCTGGCCGGCTCCCAGGCCCGGCATGGAGCTGGCACGCGTCTGGCGCTCCTGCT CAGCCTGGCCCTCTCTGACTTCTTGTTCCTGGCAGCAGCGGCCTTCCAGATCCTAGAGATCCGGCATGGGGGA CACTGGCCGCTGGGGACAGCTGCCTGCCGCTTCTACTACTTCCTATGGGGCGTGTCCTACTCCTCCGGCCTCT TTCCCCGAGGCTGCCGTCTGGTGGTACGACCTGGTCATCTGCCTGGACTTCTGGGACAGCGAGGAGCTGTCGC TGAGGATGCTGGAGGTCCTGGGGGGGCTTCCTGCCTTTCCTCCTGCTGCTCGTCTGCCACGTGCTCACCCAGGC CACAGCCTGTCGCACCTGCCACCGCCAACAGCAGCCCGCAGCCTGCCGGGGCTTCGCCCGTGTGGCCAGGACC ATTCTGTCAGCCTATGTGGTCCTGAGGCTGCCCTACCAGCTGGCCCAGCTGCTCTACCTGGCCTTCCTGTGGG ACGTCTACTCTGGCTACCTGGGGGGGCCCTGGTCTACTCCGACTACCTGATCCTACTCAACAGCTGCCT CAGCCCTTCCTCTGCCTCATGGCCAGTGCCGACCTCCGGACCCTGCTGCGCTCCGTGCTCCTCCGTCCTTCGCG GCAGCTCTCTGCGAGGAGCGCCGGCCAGCTTCACGCCCACTGAGCCACAGACCCAGCTAGATTCTGAGGGTC CAACTCTGCCAGAGCCGATGGCAGAGGCCCAGTCACAGATGGATCCTGTGGCCCAGCCTCAGGTGAACCCCAC ACTCCAGCCACGATCGGATCCCACAGCTCAGCCACAGCTGAACCCTACGGCCCAGCCACAGTCGGATCCCACA GCCCAGCCACAGCTGAACCTCATGGCCCAGCCACAGTCAGACTCTGTGGCCCAGCCACAGGCAGACACTAACG TCCAGACCCTGCACCTGCTGCCAGTTCTGTGCCCAGTCCCTGTGATGAAGCTTCCCCAACCCCATCCTCGCA TCCTACCCCAGGGGCCCTTGAGGACCCAGCCACCTCCTGCCTCTGAAGGAGAAAGCCCCAGCAGCACCCCG CCAGAGGCGCCCCGGGCGCAGGCCCCACGTGA

The following amino acid sequence <SEQ ID NO. 94> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 93:

MDTTMEADLGATGHRPRTELDDEDSYPQGGWDTVFLVALLLLGLPANGLMAWLAGSQARHGAGTRLALLLLSL ALSDFLFLAAAAFQILEIRHGGHWPLGTAACRFYYFLWGVSYSSGLFLLAALSLDRCLLALCPHWYPGHRPVR LPLWVCAGVWVLATLFSVPWLVFPEAAVWWYDLVICLDFWDSEELSLRMLEVLGGFLPFLLLLVCHVLTQATA CRTCHRQQQPAACRGFARVARTILSAYVVLRLPYQLAQLLYLAFLWDVYSGYLLWEALVYSDYLILLNSCLSP FLCLMASADLRTLLRSVLSSFAAALCEERPGSFTPTEPQTQLDSEGPTLPEPMAEAQSQMDPVAQPQVNPTLQ PRSDPTAQPQLNPTAQPQSDPTAQPQLNLMAQPQSDSVAQPQADTNVQTPAPAA

The following DNA sequence nGPCR-3 <SEQ ID NO. 185> was identified in H. sapiens:

The following amino acid sequence <SEQ ID NO. 186> is the predicted amino acid sequence derived from the DNA sequence of SEQ ID NO. 185:

MGPGEALLAGLLVMVLAVALLSNALVLLCCAYSAELRTRASGVLLVNLSLGHLLLAALDMPFTLLGVMRGRTP SAPGACQVIGFLDTFLASNAALSVAALSADQWLAVGFPLRYAGRLRPRYAGLLLGCAWGQSLAFSGAALGCSW LGYSSAFASCSLRLPPEPERPRFAAFTATLHAVGFVLPLAVLCLTSLQVHRVARRHCQRMDTVTMKALALLAD LHPSVRQRCLIQQKRRRHRATRKIGIAIATFLICFAPYVMTRLAELVPFVTVNAQWGILSKCLTYSKAVADPF TYSLLRRPFRQVLAGMVHRLLKRTPRPASTHDSSLDVAGMVHQLLKRTPRPASTHNGSVDTENDSCLQQTH

EXAMPLE 2: CLONING OF nGPCR-X

5

10

15

20

25

To isolate a cDNA clone encoding full length nGPCR-x, a DNA fragment corresponding to a nucleotide sequence set forth in odd numbered nucleotide sequences ranging from SEQ ID NO: 1-93, or a portion thereof, can be used as a probe for hybridization screening of a phage cDNA library. The DNA fragment is amplified by the polymerase chain reaction (PCR) method. The PCR reaction mixture of 50 µl contains polymerase mixture (0.2 mM dNTPs, 1x PCR Buffer and 0.75 µl Expand High Fidelity Polymerase (Roche Biochemicals)), 1 µg of plasmid, and 50 pmoles of forward primer and 50 pmoles of reverse primer. The primers are preferably 10 to 25 nucleotides in length and are determined by procedures well known to those skilled in the art. Amplification is performed in an Applied Biosystems PE2400 thermocycler, using the following program: 95°C for 15 seconds, 52°C for 30 seconds and 72°C for 90 seconds; repeated for 25 cycles. The amplified product is separated from the plasmid by agarose gel electrophoresis, and purified by Qiaquick™ gel extraction kit (Qiagen).

A lambda phage library containing cDNAs cloned into lambda ZAPII phage-vector is plated with *E. coli* XL-1 blue host, on 15 cm LB-agar plates at a density of 50,000 pfu per plate, and grown overnight at 37°C; (plated as described by Sambrook *et al.*, supra). Phage plaques are transferred to nylon membranes (Amersham Hybond NJ), denatured for 2 minutes in denaturation solution (0.5 M NaOH, 1.5 M NaCl), renatured for 5 minutes in renaturation solution (1 M Tris pH 7.5, 1.5 M NaCl), and washed briefly in 2xSSC (20x SSC: 3 M NaCl, 0.3 M Na-citrate). Filter membranes are dried and incubated at 80°C for 120 minutes to cross-link the phage DNA to the membranes.

The membranes are hybridized with a DNA probe prepared as described above. A DNA fragment (25 ng) is labeled with α -³²P-dCTP (NEN) using

RediprimeTM random priming (Amersham Pharmacia Biotech), according to manufacturers instructions. Labeled DNA is separated from unincorporated nucleotides by S200 spin columns (Amersham Pharmacia Biotech), denatured at 95°C for 5 minutes and kept on ice. The DNA-containing membranes (above) are prehybridized in 50 ml ExpressHybTM (Clontech) solution at 68°C for 90 minutes. Subsequently, the labeled DNA probe is added to the hybridization solution, and the probe is left to hybridize to the membranes at 68°C for 70 minutes. The membranes are washed five times in 2x SSC, 0.1% SDS at 42°C for 5 minutes each, and finally washed 30 minutes in 0.1x SSC, 0.2% SDS. Filters are exposed to Kodak XARTM film (Eastman Kodak Company, Rochester, N.Y., USA) with an intensifying screen at -80°C for 16 hours. One positive colony is isolated from the plates, and replated with about 1000 pfu on a 15 cm LB plate. Plating, plaque lift to filters and hybridization are performed as described above. About four positive phage plaques are isolated form this secondary screening.

cDNA containing plasmids (pBluescript SK-) are rescued from the isolated phages by in vivo excision by culturing XL-1 blue cells co-infected with the isolated phages and with the Excision helper phage, as described by manufacturer (Stratagene). XL-blue cells containing the plasmids are plated on LB plates and grown at 37°C for 16 hours. Colonies (18) from each plate are replated on LB plates and grown. One colony from each plate is stricken onto a nylon filter in an ordered array, and the filter is placed on a LB plate to raise the colonies. The filter is then hybridized with a labeled probe as described above. About three positive colonies are selected and grown up in LB medium. Plasmid DNA is isolated from the three clones by Qiagen Midi KitTM (Qiagen) according to the manufacturer's instructions. The size of the insert is determined by digesting the plasmid with the restriction enzymes *NotI* and *SalI*, which establishes an insert size. The sequence of the entire insert is determined by automated sequencing on both strands of the plasmids.

nGPCR-1: PCR AND SUBCLONING

5

10

15

20

25

30

cDNAs were sequenced directly using an AB1377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI PRISM Ready Dye-Deoxy Terminator kit with Taq FS polymerase. Each ABI cycle sequencing reaction contained about 0.5µg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 min, followed

by 50 cycles: 98°C for 30 sec, annealing at 50°C for 30 sec, and extension at 60°C for 4 min. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using AGTC® gel filtration block (Edge BiosSystems, Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which was then centrifuged in a swinging bucket centrifuge (Sorvall model RT6000B table top centrifuge) at 1500 x g for 4 min at room temperature. Column-purified samples were dried under vacuum for about 40 min and then dissolved in 5µl of a DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for three min and loaded into the gel sample wells for sequence analysis by the ABI377 sequencer. Sequence analysis was performed by importing ABI373A files into the Sequencher program (Gene Codes, Ann Arbor, MI).

10

30

The PCR reaction was performed in 50µL samples containing 41.9µL H₂O, 5µL 10x Buffer containing 15 mM MgCl₂ (Boehringer Mannheim Expand High Fidelity PCR System), 0.5 µL 10mM dNTP mix, 1.5 µL human genomic DNA 15 (Clontech #6550-1, $0.1\mu g/\mu L$), $0.3\mu L$ primer VR1A ($1\mu g/\mu L$), $0.3\mu L$ primer VR1B $(1\mu g/\mu L)$, and 0.5 μL High Fidelity Taq polymerase (Boehringer Mannheim, 3.5 $U/\mu l$). The primer sequences for and, respectively were: 5'TCAAAGCTTATGGAATCATCTTTCTCATTTGGAGTGATCCTTGCTGTC, (VR1A)(SEQ ID NO: 95) corresponding to the 5' end of the coding region and 20 containing a *HindIII* restriction site, and: 5' TTCACTCGAGTTAGCCATCAAACTCTGAGCTGGAGATAGTGACGATGTG (VR1B)(SEO ID NO: 96) corresponding to the 3' end of the coding region and containing an XhoI restriction site (Genosys). The PCR reaction was carried out using a GeneAmp PCR9700 thermocycler (Perkin Elmer Applied Biosystems) and started 25 with 1 cycle of 94°C for 2 min followed by 5 cycles at 94°C for 30 sec, 60°C for 2 min, 72°C for 1.5 min, followed by 20 cycles at 94°C for 30 sec, 60°C for 30 sec, 72°C for 1.5 min.

The PCR reaction was loaded onto a 0.75% agarose gel. The DNA band was excised from the gel and the DNA eluted from the agarose using a QIAquick gel extraction kit (Qiagen). The eluted DNA was ethanol-precipitated and resuspended in 4μ L H₂O for ligation. The ligation reaction consisted of 4μ L of fresh ethanol-precipitated PCR product and 1μ L of pCRII-TOPO vector (Invitrogen). The reaction was gently mixed and allowed to incubate for 5 min. at room temperature followed by

the addition of 1μ L of 6x TOPO cloning stop solution and mixing for 10 sec. at room temperature. The sample was then placed on ice and 2μ L was transformed in 50μ L of One Shot cells (Invitrogen) and plated onto ampicillin plates. Four white colonies were chosen and the presence of an insert was verified by PCR in the following manner. Each colony was resuspended in 2 ml LB broth for 2 hrs. A 500μ L aliquot was spun down in the microfuge, the supernatant discarded, and the pellet resuspended in 25μ L of H_2O . A 16μ L aliquot was removed and boiled for 5 min and the sample was placed on ice. The sample was microfuged briefly to pellet any bacterial debris and PCR was carried out with 15μ L sample using primers VR1A and VR1B, described above.

Colonies from positive clones identified by PCR were used to inoculate a 4ml culture of LB medium containing 100 µg/ml ampicillin. Plasmid DNA was purified using the Wizard Plus Minipreps DNA purification system (Promega). Since the primers used to amplify the fragment of nGPCR-1 from genomic DNA were engineered to have *HindIII* and *XhoI* sites, the cDNA obtained from the minipreps was digested with these restriction enzymes. One clone was verified by gel electrophoresis to give a DNA band of the correct size. cDNA from this clone was then sequenced, yielding the sequence of SEQ ID NO: 73.

nGPCR-3: PCR AND SUBCLONING

5

10

15

20

25

30

First-strand cDNA synthesis was performed following the directions for 3'-RACE ready cDNA from the SMARTTM RACE cDNA Amplification Kit (Clontech). First 3 μ l of H₂O, 1 μ l human whole brain poly A⁺ RNA (1 μ g/ μ l) (Clontech, 6516-1) and 1 μ l 3'-CDS primer were mixed together, incubated at 70°C for 2 minutes, then placed on ice for 2 minutes. Added to the tube was 2 μ l 5X First-Strand buffer, 1 μ l 20 mM DTT, 1 μ l dNTP mix (10 mM) and 1 μ l Superscript II RT (200 units/ μ l) (GIBCO/BRL). The tube was incubated at 42°C for 1.5 hours then the reaction was diluted with 250 μ l of Tricine-EDTA buffer.

PCR was performed in a 50 μl reaction using components that come with the Advantage®-GC cDNA PCR Kit. The PCR reaction contained 22.4 μl H₂O, 10 μl 5X GC cDNA PCR Reaction buffer, 10 μl 5M GC Melt, 1μl 50X dNTP mix (10 mM each), 5 μl human brain cDNA, 0.3 μl of LW1649 (SEQ ID NO: 187)(1 μg/μl), 0.3 μl of LW1650 (SEQ ID NO: 188)(1 μg/μl), 1 μl 50X Advantage-GC cDNA polymerase mix. The PCR reaction was performed in a Perkin-Elmer 9600 GeneAmp PCR

System starting with 1 cycle of 94°C for 2 min then 8 cycles at 94°C for 15 sec, 72°C for 2 min (decreasing 1°C with each cycle), 72°C for 3 min, followed by 30 cycles of 94°C for 15 sec, 68°C for 3 min. The PCR reaction was loaded onto a 1.2 % agarose gel. The DNA band was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed in a microcentrifuge. The eluted DNA was EtOH precipitated and resuspended in 4 H₂O for ligation. The PCR primer sequence for LW1649 was:

GCATAAGCTTGCCATGGGCCCCGGCGAGG (SEQ ID NO: 187) and for LW1650 was:

5

10

15

20

25

30

GCATTCTAGACCTCAGTGTGTCTGCTGC (SEQ ID NO: 188). The underlined portion of the primers matches the 5' and 3' areas, respectively, of the coding region.

The ligation reaction used solutions from the TOPO TA Cloning Kit (Invitrogen) which consisted of 4µl PCR product DNA, 1 µl Salt Solution and 1 µl pCRII-TOPO vector that was incubated for 5 minutes at room temperature and then placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 µl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium. Plasmid DNA was purified using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and then sequenced.

The DNA subcloned into pCRII-TOPO was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 μl of H₂0, 8 μl of BigDye Terminator mix, 5 μl mini-prep DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 sec, 50°C for 10 sec, and 60°C for 4 min. The product was purified using a CentriflexTM gel filtration cartridge, dried under vacuum, then dissolved in 16 μl of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 95.

nGPCR-9: PCR AND SUBCLONING

5

10

15

20

25

30

The PCR reaction was performed in 50 μ l containing 34.5 μ l H₂O, 5 μ l Buffer II (PE Applied Biosystems AmpliTaq Gold system), 6 μ l 25 mM MgCl₂, 2 μ l 10 mM dNTP mix, 1.5 μ l human genomic DNA (Clontech #6550-1, 0.1 μ g/ μ l), 0.3 μ l primer VR9A (1 μ g/ μ l), 0.3 μ l primer VR9B (1 μ g/ μ l), and 0.4 μ l AmpliTaq GoldTM DNA Polymerase. The primer sequences for VR9A and VR9B were as follows:

VR9A 5'TTCAAAGCTTATGGAGTCGGGGCTGCTG 3' (SEQ ID NO: 101), corresponding to the 5' end of the coding region and containing a *HindIII* restriction site, and the reverse primer was:

VR9B 5' TTCACTCGAGTCAGTCTGCAGCCGGTTCTG'3', (SEQ ID NO: 102), corresponding to the 3' end of the coding region and containing an XhoI restriction site (Genosys). The PCR reaction was carried out using a GeneAmp PCR 9700 thermocycler (Perkin Elmer Applied Biosystems) and started with 1 cycle of 95°C for 10 min, then 10 cycles at 95°C for 30 sec, 72°C for 2 min decreasing 1°C each cycle, 72°C for 1 min, followed by 30 cycles at 95°C for 30 sec, 60°C for 30 sec, 72°C for 1 min. The PCR reaction was loaded on a 0.75% gel. The DNA band was excised from the gel and the DNA was eluted from the agarose using a QIAquick gel extraction kit (Oiagen). The eluted DNA was ethanol-precipitated and resuspended in 4 μl H₂O for ligation. The ligation reaction consisted of 4 μl of fresh ethanolprecipitated PCR product and 1 µl of pCRII-TOPO vector (Invitrogen). The reaction was gently mixed and allowed to incubate for 5 min at room temperature followed by the addition of 1 µl of 6x TOPO cloning stop solution and mixing for 10 sec at room temperature. The sample was then placed on ice and 2 µl was transformed in 50 µl of One Shot cells (Invitrogen) and plated onto ampicillin plates. Five white colonies were chosen and were used to inoculate a 4 ml culture of LB medium containing 100 ug/ml ampicillin. Plasmid DNA was purified using the Wizard Plus Minipreps DNA purification system (Promega). Since the primers used to PCR SEO-9 from genomic DNA were engineered to have HindIII and XhoI sites, the cDNA obtained from the minipreps was digested with these restriction enzymes. One clone was verified by gel electrophoresis to give a DNA band of the correct size. cDNA from this clone was then submitted for sequencing. One mutation was found (bp 621 T→G) and repaired as described as below.

The mutation in the identified clone was repaired using the QuikChange Site-Directed Mutagenesis Kit (Stratagene). The PCR reaction contained 39.3 μl H₂O, 5 μl 10x reaction buffer, 50 ng mini-prep cDNA, 1.25 μl primer VR9E (100 ng/μl), 1.25 μl primer VR9F (100 ng/μl), 1 μl 20 mM dNTP mix, 1 μl Pfu DNA polymerase. The cycle conditions were 95°C for 30 sec, then 12 cycles at 95°C for 30 sec, 55°C for 1 min, 68°C for 10 min. One μl of DpnI was added and the tube incubated at 37°C for 1 hr. One μl of the DpnI-treated DNA was transformed into 50 μl Epicurian coli XL1-Blue supercompetent cells and the entire insert was re-sequenced. The primer sequences used were:

5.

10

15

20

25

30

VR9E: 5' GCATCCTGGCCGCTATCTGTGCACTCTACG 3' (SEQ ID NO: 103) and

VR9F: 5' CGTAGAGTGCACAGATAGCGGCCAGGATGC 3' (SEQ ID NO: 104) where the base underlined was the base being corrected.

The clone described above was sequenced directly using an ABI377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI BigDyeTM Terminator Cycle Sequencing Ready Reaction kit with Taq FSTM polymerase. Each ABI cycle sequencing reaction contained 0.5 µg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 min, followed by 50 cycles: 96°C for 30 sec, annealing at 50°C for 30 sec, and extension at 60°C for 4 min. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using AGTC (R) gel filtration block (Edge BiosSystems, Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which was then centrifuged in a swinging bucket centrifuge (Sorvall model RT6000B tabletop centrifuge) at 1500 x g for 4 min at room temperature. Column-purified samples were dried under vacuum for about 40 min and then dissolved in 3 µl of a DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for 3.5 min and loaded into the gel sample wells for sequence analysis by the ABI377 sequencer. Sequence analysis was performed by importing ABI377 files into the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 77.

nGPCR-11: PCR AND SUBCLONING

5

10

15

20

25

30

PCR was performed in a 50 μl reaction containing 32 μl H₂O, 5 μl 10X TT buffer (140 mM Ammonium Sulfate, 0.1 % gelatin, 0.6 M Tris-tricine pH 8.4), 5 μl 15 mM MgSO₄, 2 μl 10 mM dNTP, 5 μl human genomic DNA (0.3μg/μl)(Clontech), 0.3 μl of LW1564 (1 μg/μl), 0.3 μl of LW1565 (1 μg/μl), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was performed in a GeneAmp 9600 PCR thermocycler (PE Applied Biosystems) starting with 1 cycle of 94°C for 2 min followed by 17 cycles at 94°C for 30 sec, 72°C for 2 min decreasing 1°C each cycle, 68°C for 2 min, then 25 cycles of 94°C for 30 sec, 55°C for 30 sec, 68°C for 2 min. The PCR reaction was loaded onto a 1.2 % agarose gel. The DNA band was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed in a microcentrifuge. The eluted DNA was EtOH precipitated and resuspended in 4μl H₂O for ligation. The forward PCR primer sequence was:

LW1564: GCATAAGCTTCCATGTACAACGGGTCGTGCTGC (SEQ ID NO: 107), and the reverse PCR primer was:

LW1565: GCATTCTAGATCAGTGCCACTCAACAATGTGGG (SEQ ID NO: 108).

The ligation reaction used solutions from the TOPO TA Cloning Kit (Invitrogen) which consisted of 4 µl PCR product DNA and 1 µl pCRII-TOPO vector that was incubated for 5 minutes at room temperature. To the ligation reaction one microliter of 6X TOPO Cloning Stop Solution was added then the reaction was placed on ice. Two microliters of the ligation reaction was transformed in One Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 Tl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium. Plasmid DNA was purified using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and then sequenced.

The DNA subcloned into pCRII was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 µl of

 H_20 , 8 μ l of BigDye Terminator mix, 5 μ l mini-prep DNA (0.1 μ g/ μ l), and 1 μ l primer (25 ng/ μ l) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 sec, 50°C for 10 sec, and 60°C for 4 min. The product was purified using a Centriflex TM gel filtration cartridge, dried under vacuum, then dissolved in 16 μ l of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 79.

nGPCR-16: PCR AND SUBCLONING

5

10

15

20

25

30

PCR was performed in a 50 μl reaction containing 32 μl H₂O, 5 μl 10X TT buffer (140 mM Ammonium Sulfate, 0.1 % gelatin, 0.6 M Tris-tricine pH 8.4), 5 μl 15 mM MgS0₄, 2 μl 10 mM dNTP, 5 μl 2445704H1 DNA (0.17 Tg/Tl), 0.3 μl of LW1587 (1 μg/μl), 0.3 μl of LW1588 (1 μg/μl), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was performed on a Robocycler thermocycler (Stratagene) starting with 1 cycle of 94°C for 2 min followed by 15 cycles of 94°C for 30 sec, 55°C for 1.3 min, 68°C for 2 min. The PCR reaction was loaded onto a 1.2 % agarose gel. The DNA band was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed in a microcentrifuge. The eluted DNA was EtOH precipitated and resuspended in 12μl H₂O for ligation. The PCR primer sequence for the forward primer was:

LW1587: GATCAAGCTTATGACAGGTGACTTCCCAAGTATGC (SEQ ID NO: 111), and the sequence for the reverse primer was:

LW1588: GATCCTCGAGGCTAACGGCACAAAACACAATTCC (SEQ ID NO: 112).

The ligation reaction used solutions from the TOPO TA Cloning Kit (Invitrogen) which consisted of 4µl PCR product DNA and 1 µl pCRII-TOPO vector that was incubated for 5 minutes at room temperature. To the ligation reaction one microliter of 6X TOPO Cloning Stop Solution was added then the reaction was placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 µl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium.

Plasmid DNA was purified using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and then sequenced.

The DNA subcloned into pCRII was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 μl of H₂0, 8 μl of BigDye Terminator mix, 5 μl mini-prep DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 sec, 50°C for 10 sec, and 60°C for 4 min. The product was purified using a CentriflexTM gel filtration cartridge, dried under vacuum, then dissolved in 16 μl of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 81.

nGPCR-40: PCR AND SUBCLONING

10

15

20

25

30

PCR was performed in a 50 μl reaction containing utilizing Herculase DNA Polymerase blend (Stratagene), using the buffer recommendations provided by the manufacturer, 200 ng each of primers PSK 18 and 19 (SEQ ID NOS: 115 and 116), 150 ng of human genomic DNA (Clontech), and 2% DMSO. The PCR reaction was performed on a Robocycler thermocycler (Stratagene) starting with 1 cycle of 94°C for 2 min followed by 35 cycles of 94°C for 30 sec, 65°C for 30 sec, 72°C for 2 min. The PCR reaction was purified using the QiaQuick PCR Purification Kit (Qiagen), and then eluted in TE. The PCR primer sequences were:

PSK 18 GATC GAATTCGCAGGAGCAATG AAAATCAGGAAC (SEQ ID NO: 115), and:

PSK19: GATCGAATTC<u>TTATATATGTTCAGAAAACAAATTCATGG</u> (SEQ ID NO: 116)). The underlined portion of the primer matches the 5' and 3' areas, respectively, of a portion of the 5' untranslated region and coding region. Initiation and termination codons are shown above in bold.

The PCR product was ligated into the pCR-BluntII-TOPO vector (Invitrogen) using the Zero Blunt Topo PCR TA cloning kit as follow: 3µl PCR product DNA, 1 µl pCRII-TOPO vector, and 1 µl TOPOII salt solution (1.2M NaCl, 0.06M MgCl₂). The mixture was incubated for 5 minutes at room temperature. To the ligation reaction one microliter of 6X TOPO Cloning Stop Solution was added, and then the

reaction was placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 μ l of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates supplemented with Xgal and IPTG. Single colonies were screened by PCR for the presence of the insert, and a plasmid DNA from colony 58 was purified using a Qiagen Endo-Free plasmid purification kit.

5

10

15

20

25

30

nGPCR-40 was sequenced directly using an ABI377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI BigDyeTM Terminator Cycle Sequencing Ready Reaction kit with Taq FSTM polymerase. Each ABI cycle sequencing reaction contained about 0.5 μg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 min, followed by 50 cycles: 96°C for 30 sec, annealing at 50°C for 30 sec, and extension at 60°C for 4 min. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using AGTC® gel filtration block (Edge BiosSystems, Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which was then centrifuged in a swinging bucket centrifuge (Sorvall model RT6000B tabletop centrifuge) at 1500 x g for 4 min at room temperature. Column-purified samples were dried under vacuum for about 40 min and then dissolved in 3 µl of DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for 3.5 min and loaded into the gel sample wells for sequence analysis by the ABI377 sequencer. Sequence analysis was performed by importing ABI377 files into the Sequencher program (Gene Codes, Ann Arbor, MI), which yielded a sequence identical to SEQ ID NO:83 with the exception that the nucleotide at position 10 was identified as an "A" which incorrectly indicated the presence of an initiation codon at that position. Subsequent analysis of genomic DNA samples indicated that this position was incorrectly assigned and that the correct nucleotide at that position was a "C". The sequence reported at SEQ ID NO. 83 correctly identifies the nucleotide at position 10 and indicates that the first initiation codon occurs at position 88-90.

nGPCR-54: PCR AND SUBCLONING

5

10

15

20

25

30

Two microliters of a human genomic library (~10⁸ PFU/ml) (Clontech) was added to 6 ml of an overnight culture of K802 cells (Clontech), then distributed as 250 µl aliquots into each of 24 tubes. The tubes were incubated at 37°C for 15 min. Seven milliliters of 0.8% agarose was added to each tube, mixed, then poured onto LB agar + 10 mM MgSO₄ plates and incubated overnight at 37°C. To each plate 5 ml of SM (0.1M NaCl, 8.1 mM MgSO₄-7H₂O, 50mM Tris-Cl (pH 7.5), 0.0001% gelatin) phage buffer was added and the top agarose was removed with a microscope slide and placed in a 50 ml centrifuge tube. A drop of chloroform was added and the tube was place in a 37 °C shaker for 15 min, then centrifuged for 20 min at 4000 RPM (Sorvall RT6000 table top centrifuge) and the supernatant stored at 4°C as a stock solution.

Two μ l of phage from each tube was heated to 99°C for 4 min then cooled to 10°C. Added to the phage was a PCR mix containing 8.8 μl H₂O, 4 μl 5X Rapid-Load Buffer (Origene), 2 µl 10xPCR buffer II (Perkin-Elmer), 2 µl 25 mM MgCl₂, 0.8 μl 10 mM dNTP, 0.12 μl LW1634 (1 μg/μl)(SEQ ID NO: 119), 0.12 μl LW1635 (1 µg/µl)(SEO ID NO: 120), 0.2 µl AmpliTaq Gold polymerase (Perkin Elmer). The PCR reaction involved 1 cycle at 95°C for 10 min followed by 35 cycles at 95°C for 45 sec, 53.5°C for 2 min, 72°C for 45 sec. The reaction was loaded onto a 2 % agarose gel. From the tube that gave a PCR product of the correct size, 10 µl was used to set up five 1:10 dilutions that were plated onto LB agar + 10 mM MgSO₄ plates and incubated overnight. A BA85 nitrocellulose filter (Schleicher & Schuell) was placed on top of each plate for 1 hour. The filter was removed, placed phage side up in a petri dish, and covered with 4 ml of SM for 15 min to elute the phage. One milliliter of SM was removed from each plate and used to set up a PCR reaction as above. The plate of the lowest dilution to give a PCR product was subdivided, filterlifted and the PCR reaction was repeated. The series of dilutions and subdividing of the plate was continued until a single plaque was isolated that gave a positive PCR band. Once a single plaque was isolated, 10 µl phage supernatant was added to 100 μl SM and 200 μl of K802 cells per plate with a total of 8 plates set up. The plates were incubated overnight at 37°C. The top agarose was removed by adding 8 ml of SM then scrapping off the agarose with a microscope slide and collected in a centrifuge tube. To the tube, 3 drops of chloroform was added, vortexed, incubated at 37°C for 15 min then centrifuged for 20 min at 4000 RPM (Sorvall RT6000 table top

centrifuge) to recover the phage, which was used to isolate genomic phage DNA using the Qiagen Lambda Midi Kit. The sequence for primer LW1634 was:

CTGAAAGTTGTCGCTGACC (SEQ ID NO: 119), and for primer LW1635 was:

CGATTATCCACACTTTGACCC (SEQ ID NO: 120).

5

10

15

20

25

30

The PCR reaction for the coding region was performed in a 50 μl reaction containing 33 μl H₂O, 5 μl 10X TT buffer (140 mM Ammonium Sulfate, 0.1 % gelatin, 0.6 M Tris-tricine pH 8.4), 5 μl 15 mM MgSO₄, 2 μl 10 mM dNTP, 4 μl genomic phage DNA (0.25 μg/μl), 0.3 μl LW1698 (1 μg/μl)(SEQ ID NO: 121), 0.3 μl LW1699 (1 μg/μl)(SEQ ID NO: 122), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 min followed by 30 cycles at 94°C for 30 sec, 55°C for 30 sec., 68°C for 2 min. The PCR reaction was loaded onto a 2 % agarose gel. The DNA band was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed. The eluted DNA was EtOH precipitated and resuspended in 8μl H₂O. The PCR primer sequence for primer LW1698 was:

GCATACCATGAATGAGCCACTAGAC (SEQ ID NO: 121), and for primer LW1699 was:

GCATCTCGAG<u>TCAAGGGTTGTTTGAGTAAC</u> (SEQ ID NO: 122). The underlined portion of the primer matches the 5' and 3' areas, respectively, of the coding region of nGPCR-54.

The ligation reaction used solutions from the TOPO TA Cloning Kit (Invitrogen) which consisted of 4µl PCR product DNA, 1 µl of salt solution and 1 µl pCRII-TOPO vector that was incubated for 5 minutes at room temperature then the reaction was placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 µl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium. Plasmid DNA was purified using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and then sequenced.

nGPCR-54 genomic phage DNA was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary

electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. The cycle-sequencing reaction contained 14 μl of H₂0, 16 μl of BigDye Terminator mix, 7 μl genomic phage DNA (0.1 μg/μl), and 3 μl primer (25 ng/μl). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 95°C for 5 min, followed by 99 cycles of 95°C for 30 sec, 55°C for 20 sec, and 60°C for 4 min. The product was purified using a CentriflexTM gel filtration cartridges, dried under vacuum, then dissolved in 16 μl of Template Suppression Reagent. The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer.

The DNA subcloned into pCRII was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 μl of H₂0, 8 μl of BigDye Terminator mix, 5 μl mini-prep DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 sec, 50°C for 10 sec, and 60°C for 4 min. The product was purified using a CentriflexTM gel filtration cartridge, dried under vacuum, then dissolved in 16 μl of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 85.

nGPCR-56: PCR AND SUBCLONING

5

10

15

20

25

30

The PCR reaction for the coding region of nGPCR-56 used components that come with PLATINUM® Pfx DNA Polymerase (GibcoBRL) containing 35.5 μl H₂O, 5 μl 10X Pfx Amplification buffer, 1.5 μl 50mM MgSO₄, 2 μl 10 mM dNTP, 5 μl human genomic DNA (0.3μg/μl)(Clontech), 0.3 μl of LW1603 (1 μg/μl)(SEQ ID NO: 152), 0.3 μl of LW1604 (1 μg/μl)(SEQ ID NO: 153), 0.4 μl PLATINUM® Pfx DNA Polymerase (2.5 U/Tl). The PCR reaction was performed in a Robocycler Gradient 96 (Stratagene) starting with 1 cycle of 94°C for 5 min followed by 30 cycles at 94°C for 40 sec, 55°C for 2 min, 68°C for 3 min. Following the final cycle, 0.5 μl of AmpliTaq DNA Polymerase (5 U/μl) was added and the tube was incubated at 72°C for 5 min. The sequence of LW1603 is:

GATCAAGCTTGGAATGATGCCCTTTTGCCAC (SEQ ID NO: 152), and for LW1604 is:

GATCCTCGAGCA<u>TCATTCAAAGTAGGTGG</u>. (SEQ ID NO: 153). The underlined portion of the primer matches the 5' and 3' areas, respectively, of a portion of the coding region of nGPCR-56.

5

10

15

20

25

30

The PCR reaction for the coding region was performed in a 50 μl reaction containing 32 μl H₂O, 5 μl 10X TT buffer (140 mM Ammonium Sulfate, 0.1 % gelatin, 0.6 M Tris-tricine pH 8.4), 5 μl 15 mM MgSO₄, 2 μl 10 mM dNTP, 5 μl human genomic DNA (0.3μg/μl)(Clontech), 0.3 μl LW1603 (1 μg/μl)(SEQ ID NO: 152), 0.3 μl LW1696 (1 μg/μl)(SEQ ID NO: 154), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 min followed by 25 cycles at 94°C for 40 sec, 55°C for 60 sec., 68°C for 2 min. The PCR reaction was loaded onto a 2 % agarose gel. The DNA band was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed. The eluted DNA was EtOH precipitated and resuspended in 12μl H₂O for ligation. The PCR primer sequence for LW1603 is:

GATCAAGCTTGGA<u>ATGATGCCCTTTTGCCAC</u> (SEQ ID NO: 152), and LW1696:

GATCCTCGAGCTATGAACTCAATTCCAAAAATAATTTACACC (SEQ ID NO: 154). The underlined portion of the primer matches the 5' and 3' areas, respectively, of a portion of the coding region.

The ligation reaction used solutions from the TOPO TA Cloning Kit (Invitrogen) which consisted of 4µl PCR product DNA, 1 µl of salt solution and 1 µl pCRII-TOPO vector that was incubated for 5 minutes at room temperature then the reaction was placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 µl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium. Plasmid DNA was purified using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and then sequenced.

The mutation in nGPCR-56 was repaired using the QuikChange Site-Directed Mutagenesis Kit (Stratagene). The PCR reaction contained 40 μ l H2O, 5 μ l 10x

Reaction buffer, 1 µl mini-prep DNA, 1 µl LW1700 (125 ng/µl) (SEQ ID NO: 155), 1µl LW1701 (125 ng/µl) (SEQ ID NO: 156), 1µl 10 mM dNTP, 1 µl Pfu DNA polymerase. The cycle conditions were 95°C for 30 sec then 14 cycles at 95°C for 30 sec, 55°C for 1 min, 68°C for 12 min. The tube was placed on ice for 2 min, then 1 µl of *DpnI* was added and the tube incubated at 37°C for one hour. One microliter of the *DpnI*-treated DNA was transformed into Epicurian coli XL1-Blue supercompetent cells and the entire insert was re-sequenced. The primer sequences are: GCTACTTGAACTCTACATTTAATCCAATGGTTTATGCATTTTTCTATCC (LW1700)(SEQ ID NO: 155), and:

GGATAGAAAATGCATAAACCATTGGATTAAATGTAGAGTTCAAGTAGC (LW1701)(SEQ ID NO: 156).

The DNA subcloned into pCRII was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 μl of H₂0, 8 μl of BigDye Terminator mix, 5 μl mini-prep DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 sec, 50°C for 10 sec, and 60°C for 4 min. The product was purified using a CentriflexTM gel filtration cartridge, dried under vacuum, then dissolved in 16 μl of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 min then placed in the 310 Genetic Analyzer, yielding the sequence of SEQ ID NO: 89.

nGPCR-58: PCR AND SUBCLONING

5

10

15

20

25

30

Isolation of a clone for nGPCR-58 from genomic DNA was performed by PCR in a 50 µl reaction containing Herculase DNA Polymerse blend (Stratagene), with buffer recommendations as supplied by the manufacturer, 200 ng each primers PSK14 (SEQ ID NO: 157) and PSK15 (SEQ ID NO: 158), 150 ng of human genomic DNA (Clontech) and 6% DMSO. The PCR reaction was performed on a Robocycler thermocycler (Stratagene) starting with 1 cycle of 94°C for 2 min followed by 35 cycles of 94°C for 30 sec, 65°C for 30 sec, 72°C for 2 min. The PCR reaction was purified by the QiaQuick PCR Purification Kit (Qiagen) and eluted in TE. The PCR primer sequences were:

PSK14: 5'GATCGAATTCATGGACACTACCATGGAAGCTGACC (SEQ ID NO: 157), and:

PSK15: 5'GATCCTCGAG<u>TCACGTGGGGCCTGCGCCCGG</u> (SEQ ID NO: 158).

The underlined portion of the primers match the 5' and 3' areas, respectively, of a portion of the 5' untranslated region and coding region. Translation initiation and termination codons are shown above in bold.

5

10

15

20

25

30

The blunt ended PCR product was prepared for cloning by the addition of a single base "A" residue by AmpliTaq Gold (Perkin Elmer) in a reaction with 1X PCR Buffer II, 1 mM MgCl₂, 200uM each dATP, dGTP, dCTP, and dTTP. The reaction was incubated at 94°C for 10 minutes followed by 72°C for 10 minutes. The products were cloned into the pCRII-TOPO vector (Invitrogen) using the TOPO TA cloning kit as follows: 3 µl PCR product DNA, 1 µl pCRII-TOPO vector, and 1 µl TOPOII salt solution (1.2M NaCl, 0.06M MgCl₂) was incubated for 5 minutes at room temperature. To the ligation reaction one microliter of 6X TOPO Cloning Stop Solution was added then the reaction was placed on ice. Two microliters of the ligation reaction was transformed in One-Shot TOP10 cells (Invitrogen), and placed on ice for 30 minutes. The cells were heat-shocked for 30 seconds at 42°C, placed on ice for two minutes, 250 µl of SOC was added, then incubated at 37°C with shaking for one hour and then plated onto ampicillin plates supplemented with X-gal and IPTG. Single colonies were screened by PCR for the presence of the insert, and a plasmid DNA from colony 58-6 was purified using a Qiagen Endo-Free plasmid purification kit and deposited as nGPCR-58.

nGPCR-58 was sequenced directly using an ABI377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI BigDyeTM Terminator Cycle Sequencing Ready Reaction kit with Taq FSTM polymerase. Each ABI cycle sequencing reaction contained about 0.5 μg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 min, followed by 50 cycles: 96°C for 30 sec, annealing at 50°C for 30 sec, and extension at 60°C for 4 min. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using AGTC (R) gel filtration block (Edge BiosSystems, Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which was then centrifuged in a swinging

bucket centrifuge (Sorvall model RT6000B tabletop centrifuge) at 1500 x g for 4 min at room temperature. Column-purified samples were dried under vacuum for about 40 min and then dissolved in 3 µl of a DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for 3.5 min and loaded into the gel sample wells for sequence analysis by the ABI377 sequencer. Sequence analysis was performed by importing ABI377 files into the Sequencer program (Gene Codes, Ann Arbor, MI), yielding the sequence of SEQ ID NO: 93.

5

10

15

20

25

30

EXAMPLE 3: HYBRIDIZATION ANALYSIS TO DEMONSTRATE nGPCR-X EXPRESSION IN BRAIN

The expression of nGPCR-x in mammals, such as the rat, may be investigated by *in situ* hybridization histochemistry. To investigate expression in the brain, for example, coronal and sagittal rat brain cryosections (20 µm thick) are prepared using a Reichert-Jung cryostat. Individual sections are thaw-mounted onto silanized, nuclease-free slides (CEL Associates, Inc., Houston, TX), and stored at -80°C. Sections are processed starting with post-fixation in cold 4% paraformaldehyde, rinsed in cold phosphate-buffered saline (PBS), acetylated using acetic anhydride in triethanolamine buffer, and dehydrated through a series of alcohol washes in 70%, 95%, and 100% alcohol at room temperature. Subsequently, sections are delipidated in chloroform, followed by rehydration through successive exposure to 100% and 95% alcohol at room temperature. Microscope slides containing processed cryosections are allowed to air dry prior to hybridization. Other tissues may be assayed in a similar fashion.

A nGPCR-x-specific probe is generated using PCR. Following PCR amplification, the fragment is digested with restriction enzymes and cloned into pBluescript II cleaved with the same enzymes. For production of a probe specific for the sense strand of nGPCR-x, the nGPCR-x clone in pBluescript II is linearized with a suitable restriction enzyme, which provides a substrate for labeled run-off transcripts (i.e., cRNA riboprobes) using the vector-borne T7 promoter and commercially available T7 RNA polymerase. A probe specific for the antisense strand of nGPCR-x is also readily prepared using the nGPCR-x clone in pBluescript II by cleaving the recombinant plasmid with a suitable restriction enzyme to generate a linearized substrate for the production of labeled run-off cRNA transcripts using the T3

promoter and cognate polymerase. The riboprobes are labeled with [35 S]-UTP to yield a specific activity of about 0.40×10^6 cpm/pmol for antisense riboprobes and about 0.65×10^6 cpm/pmol for sense-strand riboprobes. Each riboprobe is subsequently denatured and added (2 pmol/ml) to hybridization buffer which contained 50% formamide, 10% dextran, 0.3 M NaCl, 10 mM Tris (pH 8.0), 1 mM EDTA, 1X Denhardt's Solution, and 10 mM dithiothreitol. Microscope slides containing sequential brain cryosections are independently exposed to $45 \mu l$ of hybridization solution per slide and silanized cover slips are placed over the sections being exposed to hybridization solution. Sections are incubated overnight (15-18 hours) at 52°C to allow hybridization to occur. Equivalent series of cryosections are exposed to sense or antisense nGPCR-40-specific cRNA riboprobes.

5

10

15

20

25

30

Following the hybridization period, coverslips are washed off the slides in 1X SSC, followed by RNase A treatment involving the exposure of slides to 20 μ g/ml RNase A in a buffer containing 10 mM Tris-HCl (pH 7.4), 0.5 M EDTA, and 0.5 M NaCl for 45 minutes at 37°C. The cryosections are then subjected to three highstringency washes in 0.1 X SSC at 52°C for 20 minutes each. Following the series of washes, cryosections are dehydrated by consecutive exposure to 70%, 95%, and 100% ammonium acetate in alcohol, followed by air drying and exposure to Kodak BioMax™ MR-1 film. After 13 days of exposure, the film is developed. Based on these results, slides containing tissue that hybridized, as shown by film autoradiograms, are coated with Kodak NTB-2 nuclear track emulsion and the slides are stored in the dark for 32 days. The slides are then developed and counterstained with hematoxylin. Emulsion-coated sections are analyzed microscopically to determine the specificity of labeling. The signal is determined to be specific if autoradiographic grains (generated by antisense probe hybridization) are clearly associated with cresyl violate-stained cell bodies. Autoradiographic grains found between cell bodies indicates non-specific binding of the probe.

Expression of nGPCR-x in the brain provides an indication that modulators of nGPCR-x activity have utility for treating neurological disorders, including but not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of nGPCR-x may have utility include depression,

anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of nGPCR-x modulators, including nGPCR-x ligands and anti-nGPCR-x antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

5

10

15

20

25

30

EXAMPLE 4: TISSUE EXPRESSION PROFILING

Tissue specific expression of the cDNAs encoding nGPCR-1, nGPCR-3, nGPCR-9, nGPCR-11, nGPCR-16, nGPCR-40, nGPCR-54, nGPCR-56, and nGPCR-58 was detected using a PCR-based system. Tissue specific expression of cDNAs encoding nGPCR-x may be accomplished using similar methods.

Primers were synthesized by Genosys Corp., The Woodlands, TX. PCR reactions were assembled using the components of the Expand Hi-Fi PCR SystemTM (Roche Molecular Biochemicals, Indianapolis, IN).

nGPCR-1

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues in the array may include: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid, adrenal gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. Human brain regions in the array may include: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of the nGPCR-1 in the various tissues was detected by using PCR primers designed based on the available sequence of the receptor that will prime the synthesis of a 212bp fragment in the presence of the appropriate cDNA. The forward primer was:

GCTCAACCCACTCATCTATGCC (SEQ ID NO: 97), and the reverse primer was:

AAACTTCTCTGCCCTTACCGTC (SEQ ID NO: 98)

The PCR reaction mixture was added to each well of the PCR plate. The plate was placed in a GeneAmp PCR9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The plate was then exposed to the following cycling parameters: Presoak 94°C for 3 min; denaturation at 94°C for 30 seconds; annealing at primer T_m for

45 seconds; extension 72°C for 2 minutes; for 35 cycles. PCR products were then separated and analyzed by electrophoresis on a 1.5-% agarose gel.

The 4-log dilution range of cDNA deposited on the plate ensured that the amplification reaction is within the linear range and, hence, facilitated the semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

Expression of nGPCR-1 was found to be highest in the testis, adrenal gland and heart. Significant levels of expression were also found in the brain, kidney, spleen ovary, prostate, muscle, PBL, stomach and bone marrow. Within the brain, expression levels were highest in the cerebellum, amygdala, thalamus and spinal cord, with significant levels of expression in the frontal lobe, hippocampus, substantia nigra, hypothalamus and pons.

Expression of nGPCR-1 in the brain provided an indication that modulators of nGPCR-1 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of nGPCR-1 may have utility include depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of nGPCR-1 modulators, including nGPCR-1 ligands and anti-nGPCR-1 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-3

5

10

15

20

25

30

Tissue specific expression of the cDNA encoding nGPCR-3 was detected using a PCR-based method. Multiple ChoiceTM first strand cDNAs (OriGene Technologies, Rockville, MD) from 6 human tissues were serially diluted over a 3-log range and arrayed into a multi-well PCR plate. This array was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues arrayed included: brain, heart, kidney, peripheral blood leukocytes, lung and testis. PCR primers were designed based on the available sequence of the putative GPCR. The sequence of the forward primer used was:

5'TGCTGCTTTGTTGCGCCTAC3' (SEQ ID NO: 189), corresponding to base pairs 77 through 96 of the predicted coding sequence of nGPCR-3. The sequence of the reverse primer used was:

5'TTGGACGCCAGGAAGGTG3' (SEQ ID NO: 190), corresponding to base pairs 258 through 285 of the predicted coding sequence of nGPCR-3. This primer set primes the synthesis of a 298 base pair fragment in the presence of the appropriate cDNA. For detection of expression within brain regions, the same primer set was used with the Human Brain Rapid ScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 3 log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord. Primers were synthesized by Genosys Corp., The Woodlands, TX. PCR reactions were assembled using the components of the Expand Hi-Fi PCR SystemTM (Roche Molecular Biochemicals, Indianapolis, IN). Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94°C for 3min.) followed by 35 cycles of [(94°C for 45 sec.), (53°C for 2 min.), and (72°C for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel stained with ethidium bromide.

The results indicated that nGPCR-3 was expressed in the brain, heart, kidney, peripheral blood lymphocytes, lung, and testis. In the brain, nGPCR-3 was expressed in frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla, as well as in the spinal cord.

nGPCR-9

5

10

15

20

25

30

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues arrayed include: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid, adrenal gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver.

The forward primer used was to detect expression of nGPCR-9 was:

5' AACCCCATCATCTACACGC 3'(SEQ ID NO: 105), and, the reverse primer was:

5' TGCCTGTGGAGCCGCTGG 3'(SEQ ID NO: 106). This primer set will prime the synthesis of a 238 base pair fragment in the presence of the appropriate cDNA.

For detection of expression within brain regions, the same primer set was used with the Human Brain Rapid ScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 2-log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Twenty-five microliters of the PCR reaction mixture was added to each well of the PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94°Cfor 3 min.) followed by 35 cycles of [(94°Cfor 45 sec.) (52°C for 2 min.) (72°Cfor 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel and stained with ethidium bromide.

nGPCR-9 was expressed in the brain, peripheral blood leukocytes, heart, kidney, adrenal gland, spleen, pancreas, liver, lung, skin, bone marrow, testis, placenta, salivary gland, uterus, small intestine, muscle, stomach, and fetal liver. Within the brain, nGPCR-9 was expressed in all areas examined including the frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of nGPCR-9 in the brain provided an indication that modulators of nGPCR-9 activity have utility for treating disorders, including but not limited to, schizophrenia, affective disorders, movement disorders, metabolic disorders, inflammatory disorders, cancers, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Use of nGPCR-9 modulators, including nGPCR-9 ligands and anti-nGPCR-9 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-11

5

10

15

20

25

30

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues in the array included, *inter alia*: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid, adrenal

gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. Human brain regions in the array included, *inter alia*: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

5

10

15

20

25

30

Expression of nGPCR-11 in the various tissues was detected by using PCR primers designed based on the available sequence of the receptor that will prime the synthesis of a 206bp fragment in the presence of the appropriate cDNA. The forward primer used to detect expression of nGPCR-11 was:

5'-GAAGCCCAGCACTGTTTACC-3' (SEQ ID NO: 109), and the reverse primer was:

5'-TGAAATACCTGTCCGCAGCC-3 (SEQ ID NO: 110).

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (PE Applied Biosystems). The following cycling program was executed: Pre-soak 94°C for 3 min; denaturation at 94°C for 30 seconds; annealing at primer T_m for 45 seconds; extension at 72°C for 2 minutes; for 35 cycles. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel stained with ethidium bromide.

The 4-log dilution range of cDNA deposited on the plate ensured that the amplification reaction was within the linear range and, facilitated semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

nGPCR-11 was expressed in the thyroid gland, brain, heart, kidney, adrenal gland, spleen, liver, ovary, muscle, testis, salivary gland, colon, prostate, small intestine, skin stomach, bone marrow, fetal brain and placenta. Within the brain, nGPCR-11 was expressed in the temporal lobe, amygdala, substantia nigra, pons, spinal cord, frontal lobe, and cerebellum.

Expression of the nGPCR-11 in the brain provided an indication that modulators of nGPCR-11 activity have utility for treating disorders, including but not limited to, schizophrenia, affective disorders, metabolic disorders, inflammatory disorders, cancers, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of nGPCR-11 may have utility include depression, anxiety, bipolar

disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of nGPCR-11 modulators, including nGPCR-11 ligands and anti-nGPCR-11 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

Expression of nGPCR-11 in the thyroid gland, indicates that agonists or antagonists could be of use in the treatment of thyroid dysfunction such as thyreotoxicosis and myxoedema. They could also be of use in the stimulation of thyroid hormone release leading to overall increase in metabolic rate and weight reduction. The expression of nGPCR-11 in liver and muscle indicate a use for agonists or antagonists in regulation of glucose metabolism applicable in diabetes type II.

nGCPR-16

5

10

15

20

25

30

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues in the array included, *inter alia*: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid, adrenal gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. Human brain regions in the array included, *inter alia*: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of nGPCR-16 in the various tissues was detected by using PCR primers designed based on the available sequence of the receptor that will prime the synthesis of a 205bp fragment in the presence of the appropriate cDNA. The forward primer used to detect expression of nGPCR-16 was:

5' CAGCCCAAACATCCAAGTC 3'. (SEQ ID NO: 113). The reverse primer used to detect expression of nGPCR-16 was:

5' ACCCCACTTAATCAGCCTC 3'(SEQ ID NO: 114).

For detection of expression within brain regions, the same primer set was used with the Human Brain Rapid ScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 2 log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94° for 3min.) followed by 35 cycles of [(94°C for 45 sec.) (53°C for 2 min.) (72°C for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel, and stained with ethidium bromide.

The 4-log dilution range of cDNA deposited on the plate ensured that the amplification reaction was within the linear range and, facilitated semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

nGPCR-16 was expressed in the ovary, lung, prostate, bone marrow, salivary gland, heart, adrenal gland, spleen, liver, small intestine, skin, muscle, peripheral blood leukocytes, testis, placenta, fetal liver, brain, thyroid gland, kidney, pancreas, colon, uterus, and stomach.. Within the brain, nGPCR-16 was expressed in all areas examined including the frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of nGPCR-16 in the brain provides an indication that modulators of nGPCR-16 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of nGPCR-16 may have utility include depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of nGPCR-16 modulators, including nGPCR-16 ligands and anti-nGPCR-16 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-40

10

15

20

25

30

The RapidScanTM Gene Expression Panel (OriGene Technologies, Rockville, MD) was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues arrayed include: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid,

adrenal gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. The forward primer used was:

5'ACAGCCCCAAAGCCAAACAC3', (SEQ ID NO: 117), and the reverse primer was:

5

10

15

20

25

30

5'CCGCAGGAGCAATGAAAATCAG3', (SEQ ID NO: 118). This primer set primed the synthesis of a 220 base pair fragment in the presence of the appropriate cDNA. For detection of expression within brain regions, the same primer set was used with the Human Brain RapidScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 2 log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94°C for 3min.) followed by 35 cycles of [(94° for 45 sec.) (54°C for 2 min.) (72° for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel stained with ethidium bromide.

The dilution range of cDNA deposited on the plates ensured that the amplification reaction was within the linear range and, hence, facilitated semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

nGPCR-40 was expressed in the brain, peripheral blood lymphocytes, pancreas, ovary, uterus, testis, salivary gland, kidney, adrenal gland, liver, bone marrow, prostate, fetal liver, colon, muscle, and fetal brain, may be found in many other tissues, including, but not limited to, lung, small intestine, fetal brain cord, and bone. Within the brain, nGPCR-40 was expressed in the frontal lobe, hypothalamus, pons, cerebellum, caudate nucleus, and medulla.

Expression of nGPCR-40 in the brain provides an indication that modulators of nGPCR-40 activity have utility for treating neurological disorders, including but not limited to, movement disorders, affective disorders, metabolic disorders, inflammatory disorders and cancers. Use of nGPCR-40 modulators, including nGPCR-40 ligands and anti-nGPCR-40 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-54

5

10

15

20

25

30

Multiple ChoiceTM first strand cDNAs (OriGene Technologies, Rockville, MD) from 12 human tissues were serially diluted over a 3-log range and arrayed into a multi-well PCR plate. Human tissues arrayed include: brain, heart, kidney, peripheral blood leukocytes, liver, lung, muscle, ovary, prostate, small intestine, spleen and testis. PCR primers were designed based on the sequence of nGPCR-54 provided herein. The forward primer used was:

5'CTGTCTCTGTCCTCTTCC3',(SEQ ID NO: 123). The reverse primer used was:

5'GCACCGATCTTCATTGAATTTC3', (SEQ ID NO: 124). This primer set primes the synthesis of a 145 base pair fragment in the presence of the appropriate cDNA. For detection of expression within brain regions, the same primer set was used with the Human Brain Rapid ScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 3 log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94°C for 3min.) followed by 35 cycles of [(94°C for 45 sec.) (52.5°C for 2 min.) (72°C for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel stained with ethidium bromide.

nGPCR-54 was expressed in the brain, kidney, lung, muscle, testis, heart, liver, ovary, prostate, small intestine, spleen, and peripheral blood leukocytes. Within the brain, nGPCR-54 was expressed in the cerebellum, hippocampus, substantia nigra, thalamus, hypothalamus, pons, frontal lobe, temporal lobe, caudate nucleus, medulla, spinal cord, and amygdala.

Expression of the nGPCR-54 in the brain provides an indication that modulators of nGPCR-54 activity have utility for treating neurological disorders, including but not limited to, movement disorders, affective disorders, metabolic disorders, inflammatory disorders and cancers. Use of nGPCR-54 modulators,

including nGPCR-54 ligands and anti-nGPCR-54 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-56

5

10

15

20

25

30

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues arrayed include: brain, heart, kidney, spleen, liver, colon, lung, small intestine, muscle, stomach, testis, placenta, salivary gland, thyroid, adrenal gland, pancreas, ovary, uterus, prostate, skin, PBL, bone marrow, fetal brain, fetal liver. The forward primer used was:

5' ACTTCAAACAACTTCATACCCC 3' (SEQ ID NO: 125), and the reverse primer used was:

5'ACACACAGCATAGTAGCG 3' (SEQ ID NO: 126). This primer set will prime the synthesis of a 231 base pair fragment in the presence of the appropriate cDNA. For detection of expression within brain regions, the same primer set was used with the Human Brain Rapid ScanTM Panel (OriGene Technologies, Rockville, MD). This panel represents serial dilutions over a 2 log range of first strand cDNA from the following brain regions arrayed in a 96 well format: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Twenty-five microliters of the PCR reaction mixture was added to each well of the RapidScan PCR plate. The plate was placed in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94°C for 3min.) followed by 35 cycles of [(94°C for 45 sec.) (53°C for 2 min.) (72°C for 45 sec.)]. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel stained with ethidium bromide.

nGPCR-56 was expressed in peripheral blood lymphocytes, testis, salivary gland, kidney, spleen, skin, stomach, placenta, ovary, bone marrow, fetal liver, small intestine, and fetal brain.

Expression of nGPCR-56 in the brain provides an indication that modulators of nGPCR-56 activity have utility for treating neurological disorders, including but not limited to, movement disorders, affective disorders, metabolic disorders, inflammatory disorders and cancers. Use of nGPCR-56 modulators, including

nGPCR-56 ligands and anti-nGPCR-56 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

nGPCR-58

5

10

15

20

25

30

The RapidScanTM Gene Expression Panel was used to generate a comprehensive expression profile of the putative GPCR in human tissues. Human tissues in the array included: brain, heart, kidney, spleen, liver, lung, small intestine, muscle, testis, ovary, prostate, and PBL. Human brain regions in the array included: frontal lobe, temporal lobe, cerebellum, hippocampus, substantia nigra, caudate nucleus, amygdala, thalamus, hypothalamus, pons, medulla and spinal cord.

Expression of the nGPCR-58 in the various tissues was detected by using PCR primers designed based on the available sequence of the receptor that will prime the synthesis of a 282bp fragment in the presence of the appropriate cDNA. The forward primer was:

CAGAGCTTGATGATGAGGAC (SEQ ID NO: 127), and the reverse primer was:

CCCATAGGAAGTAGTAGAAG (SEQ ID NO: 128).

The PCR reaction mixture was added to each well of the PCR plate. The plate was placed in a GeneAmp PCR9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The plate was then exposed to the following cycling parameters: Presoak 94° for 3 min; denaturation at 94° for 30 seconds; annealing at primer T_m for 45 seconds; extension at 72° for 2 minutes; for 35 cycles. PCR productions were then separated and analyzed by electrophoresis on a 1.5-% agarose gel.

The 4-log dilution range of cDNA deposited on the plate ensured that the amplification reaction was within the linear range and, hence, facilitated semi-quantitative determination of relative mRNA accumulation in the various tissues or brain regions examined.

nGPCR-58 was expressed in all tissues included on the array, including brain, muscle, prostate, kidney, peripheral blood lymphocytes, liver, lung, small intestine, spleen, testis, heart, and ovary. Within the brain, nGPCR-58 was expressed in many regions including, but not limited to cerebellum, substantia nigra, thalamus, pons, spinal cord, frontal lobe, temporal lobe, hippocampus, caudate nucleus, amygdala, hypothalamus, and medulla.

Expression of the nGPCR-58 in the brain provided an indication that modulators of nGPCR-58 activity have utility for treating disorders, including but not

limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, senile dementia, depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, metabolic disorders, inflammatory disorders, cancers and the like. Use of nGPCR-58 modulators, including nGPCR-58 ligands and anti-nGPCR-58 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

EXAMPLE 5: NORTHERN BLOT ANALYSIS

5

10

15

20

25

30

Northern blots are performed to examine the expression of nGPCR-x mRNA. The sense orientation oligonucleotide and the antisense-orientation oligonucleotide, described above, are used as primers to amplify a portion of the GPCR-x cDNA sequence of an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185.

Multiple human tissue northern blots from Clontech (Human II # 7767-1) are hybridized with the probe. Pre-hybridization is carried out at 42 C for 4 hours in 5xSSC, 1X Denhardt's reagent, 0.1% SDS, 50% formamide, 250 mg/ml salmon sperm DNA. Hybridization is performed overnight at 42°C in the same mixture with the addition of about $1.5x10^6$ cpm/ml of labeled probe.

The probe is labeled with α-³²P-dCTP by RediprimeTM DNA labeling system (Amersham Pharmacia), purified on Nick ColumnTM (Amersham Pharmacia) and added to the hybridization solution. The filters are washed several times at 42 C in 0.2x SSC, 0.1% SDS. Filters are exposed to Kodak XAR film (Eastman Kodak Company, Rochester, N.Y., USA) with intensifying screen at -80°C.

EXAMPLE 6: RECOMBINANT EXPRESSION OF nGPCR-X IN EUKARYOTIC HOST CELLS

A. Expression of nGPCR-x in Mammalian Cells

To produce nGPCR-x protein, a nGPCR-x-encoding polynucleotide is expressed in a suitable host cell using a suitable expression vector and standard genetic engineering techniques. For example, the nGPCR-x-encoding sequence described in Example 1 is subcloned into the commercial expression vector pzeoSV2 (Invitrogen, San Diego, CA) and transfected into Chinese Hamster Ovary (CHO) cells

using the transfection reagent FuGENE6TM (Boehringer-Mannheim) and the transfection protocol provided in the product insert. Other eukaryotic cell lines, including human embryonic kidney (HEK 293) and COS cells, are suitable as well. Cells stably expressing nGPCR-x are selected by growth in the presence of 100 μg/ml zeocin (Stratagene, LaJolla, CA). Optionally, nGPCR-x may be purified from the cells using standard chromatographic techniques. To facilitate purification, antisera is raised against one or more synthetic peptide sequences that correspond to portions of the nGPCR-x amino acid sequence, and the antisera is used to affinity purify nGPCR-x. The nGPCR-x also may be expressed in-frame with a tag sequence (e.g., polyhistidine, hemagluttinin, FLAG) to facilitate purification. Moreover, it will be appreciated that many of the uses for nGPCR-x polypeptides, such as assays described below, do not require purification of nGPCR-x from the host cell.

B. Expression of nGPCR-x in 293 cells

5

10

15

20

25

30

For expression of nGPCR-x in mammalian cells 293 (transformed human, primary embryonic kidney cells), a plasmid bearing the relevant nGPCR-x coding sequence is prepared, using vector pSecTag2A (Invitrogen). Vector pSecTag2A contains the murine IgK chain leader sequence for secretion, the c-myc epitope for detection of the recombinant protein with the anti-myc antibody, a C-terminal polyhistidine for purification with nickel chelate chromatography, and a Zeocin resistant gene for selection of stable transfectants. The forward primer for amplification of this GPCR cDNA is determined by routine procedures and preferably contains a 5' extension of nucleotides to introduce the *HindIII* cloning site and nucleotides matching the GPCR sequence. The reverse primer is also determined by routine procedures and preferably contains a 5' extension of nucleotides to introduce an *XhoI* restriction site for cloning and nucleotides corresponding to the reverse complement of the nGPCR-x sequence. The PCR conditions are 55°C as the annealing temperature. The PCR product is gel purified and cloned into the *HindIII-XhoI* sites of the vector.

The DNA is purified using Qiagen chromatography columns and transfected into 293 cells using DOTAPTM transfection media (Boehringer Mannheim, Indianapolis, IN). Transiently transfected cells are tested for expression after 24 hours of transfection, using western blots probed with anti-His and anti-nGPCR-x

peptide antibodies. Permanently transfected cells are selected with Zeocin and propagated. Production of the recombinant protein is detected from both cells and media by western blots probed with anti-His, anti-Myc or anti-GPCR peptide antibodies.

5

10

15

20

25

30

C. Expression of nGPCR-x in COS cells

For expression of the nGPCR-x in COS7 cells, a polynucleotide molecule having an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185 can be cloned into vector p3-CI. This vector is a pUC18-derived plasmid that contains the HCMV (human cytomegalovirus) promoter-intron located upstream from the bGH (bovine growth hormone) polyadenylation sequence and a multiple cloning site. In addition, the plasmid contains the dhrf (dihydrofolate reductase) gene which provides selection in the presence of the drug methotrexane (MTX) for selection of stable transformants.

The forward primer is determined by routine procedures and preferably contains a 5' extension which introduces an XbaI restriction site for cloning, followed by nucleotides which correspond to an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185. The reverse primer is also determined by routine procedures and preferably contains 5'- extension of nucleotides which introduces a Sall cloning site followed by nucleotides which correspond to the reverse complement of an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185. The PCR consists of an initial denaturation step of 5 min at 95°C 30 cycles of 30 sec denaturation at 95°C, 30 sec annealing at 58°C and 30 sec extension at 72°C, followed by 5 min extension at 72°C. The PCR product is gel purified and ligated into the XbaI and SalI sites of vector p3-CI. This construct is transformed into E. coli cells for amplification and DNA purification. The DNA is purified with Qiagen chromatography columns and transfected into COS 7 cells using Lipofectamine™ reagent from BRL, following the manufacturer's protocols. Forty-eight and 72 hours after transfection, the media and the cells are tested for recombinant protein expression.

nGPCR-x expressed from a COS cell culture can be purified by concentrating the cell-growth media to about 10 mg of protein/ml, and purifying the protein by, for

example, chromatography. Purified nGPCR-x is concentrated to 0.5 mg/ml in an Amicon concentrator fitted with a YM-10 membrane and stored at -80°C.

D. Expression of nGPCR-x in Insect Cells

5

10

15

20

25

30

For expression of nGPCR-x in a baculovirus system, a polynucleotide molecule having an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185 can be amplified by PCR. The forward primer is determined by routine procedures and preferably contains a 5' extension which adds the *NdeI* cloning site, followed by nucleotides which correspond to an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185. The reverse primer is also determined by routine procedures and preferably contains a 5' extension which introduces the *KpnI* cloning site, followed by nucleotides which correspond to the reverse complement of an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185.

The PCR product is gel purified, digested with *Ndel* and *KpnI*, and cloned into the corresponding sites of vector pACHTL-A (Pharmingen, San Diego, CA). The pAcHTL expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV), and a 6XHis tag upstream from the multiple cloning site. A protein kinase site for phosphorylation and a thrombin site for excision of the recombinant protein precede the multiple cloning site is also present. Of course, many other baculovirus vectors could be used in place of pAcHTL-A, such as pAc373, pVL941 and pAcIM1. Other suitable vectors for the expression of GPCR polypeptides can be used, provided that the vector construct includes appropriately located signals for transcription, translation, and trafficking, such as an in-frame AUG and a signal peptide, as required. Such vectors are described in Luckow *et al.*, Virology 170:31-39, among others.

The virus is grown and isolated using standard baculovirus expression methods, such as those described in Summers *et al.* (A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experimental Station Bulletin No. 1555 (1987)).

In a preferred embodiment, pAcHLT-A containing nGPCR-x gene is introduced into baculovirus using the "BaculoGoldTM" transfection kit (Pharmingen,

San Diego, CA) using methods established by the manufacturer. Individual virus isolates are analyzed for protein production by radiolabeling infected cells with ³⁵S-methionine at 24 hours post infection. Infected cells are harvested at 48 hours post infection, and the labeled proteins are visualized by SDS-PAGE. Viruses exhibiting high expression levels can be isolated and used for scaled up expression.

5

10

15

20

25

30

For expression of a nGPCR-x polypeptide in a Sf9 cells, a polynucleotide molecule having the sequence of an odd numbered nucleotide sequence ranging from SEQ ID NO: 1 to SEQ ID NO: 93 and SEQ ID NO: 185 can be amplified by PCR using the primers and methods described above for baculovirus expression. The nGPCR-x cDNA is cloned into vector pAcHLT-A (Pharmingen) for expression in Sf9 insect. The insert is cloned into the *NdeI* and *KpnI* sites, after elimination of an internal *NdeI* site (using the same primers described above for expression in baculovirus). DNA is purified with Qiagen chromatography columns and expressed in Sf9 cells. Preliminary Western blot experiments from non-purified plaques are tested for the presence of the recombinant protein of the expected size which reacted with the GPCR-specific antibody. These results are confirmed after further purification and expression optimization in HiG5 cells.

EXAMPLE 7: INTERACTION TRAP/TWO-HYBRID SYSTEM

In order to assay for nGPCR-x-interacting proteins, the interaction trap/two-hybrid library screening method can be used. This assay was first described in Fields et al., Nature, 1989, 340, 245, which is incorporated herein by reference in its entirety. A protocol is published in Current Protocols in Molecular Biology 1999, John Wiley & Sons, NY, and Ausubel, F. M. et al. 1992, Short protocols in molecular biology, Fourth edition, Greene and Wiley-interscience, NY, each of which is incorporated herein by reference in its entirety. Kits are available from Clontech, Palo Alto, CA (Matchmaker Two-Hybrid System 3).

A fusion of the nucleotide sequences encoding all or partial nGPCR-x and the yeast transcription factor GAL4 DNA-binding domain (DNA-BD) is constructed in an appropriate plasmid (i.e., pGBKT7) using standard subcloning techniques. Similarly, a GAL4 active domain (AD) fusion library is constructed in a second plasmid (i.e., pGADT7) from cDNA of potential GPCR-binding proteins (for protocols on forming cDNA libraries, see Sambrook et al. 1989, Molecular cloning: a laboratory manual,

5

10

15

20

25

30

second edition, Cold Spring Harbor Press, Cold Spring Harbor, NY), which is incorporated herein by reference in its entirety. The DNA-BD/nGPCR-x fusion construct is verified by sequencing, and tested for autonomous reporter gene activation and cell toxicity, both of which would prevent a successful two-hybrid analysis. Similar controls are performed with the AD/library fusion construct to ensure expression in host cells and lack of transcriptional activity. Yeast cells are transformed (ca. 105 transformants/mg DNA) with both the nGPCR-x and library fusion plasmids according to standard procedures (Ausubel et al., 1992, Short protocols in molecular biology, fourth edition, Greene and Wiley-interscience, NY, which is incorporated herein by reference in its entirety). In vivo binding of DNA-BD/nGPCR-x with AD/library proteins results in transcription of specific yeast plasmid reporter genes (i.e., lacZ, HIS3, ADE2, LEU2). Yeast cells are plated on nutrient-deficient media to screen for expression of reporter genes. Colonies are dually assayed for β-galactosidase activity upon growth in Xgal (5-bromo-4-chloro-3indolyl-β-D-galactoside) supplemented media (filter assay for β-galactosidase activity is described in Breeden et al., Cold Spring Harb. Symp. Quant. Biol., 1985, 50, 643, which is incorporated herein by reference in its entirety). Positive AD-library plasmids are rescued from transformants and reintroduced into the original yeast strain as well as other strains containing unrelated DNA-BD fusion proteins to confirm specific nGPCR-x/library protein interactions. Insert DNA is sequenced to verify the presence of an open reading frame fused to GAL4 AD and to determine the identity of the nGPCR-x-binding protein.

EXAMPLE 8: MOBILITY SHIFT DNA-BINDING ASSAY USING GEL ELECTROPHORESIS

A gel electrophoresis mobility shift assay can rapidly detect specific protein-DNA interactions. Protocols are widely available in such manuals as Sambrook et al. 1989, Molecular cloning: a laboratory manual, second edition, Cold Spring Harbor Press, Cold Spring Harbor, NY and Ausubel, F. M. et al., 1992, Short Protocols in Molecular Biology, fourth edition, Greene and Wiley-interscience, NY, each of which is incorporated herein by reference in its entirety.

Probe DNA(<300 bp) is obtained from synthetic oligonucleotides, restriction endonuclease fragments, or PCR fragments and end-labeled with ³²P. An aliquot of

purified nGPCR-x (ca. 15 μg) or crude nGPCR-x extract (ca. 15 ng) is incubated at constant temperature (in the range 22-37 C) for at least 30 minutes in 10-15 μl of buffer (i.e. TAE or TBE, pH 8.0-8.5) containing radiolabeled probe DNA, nonspecific carrier DNA (ca. 1 μg), BSA (300 μg/ml), and 10% (v/v) glycerol. The reaction mixture is then loaded onto a polyacrylamide gel and run at 30-35 mA until good separation of free probe DNA from protein-DNA complexes occurs. The gel is then dried and bands corresponding to free DNA and protein-DNA complexes are detected by autoradiography.

EXAMPLE 9: ANTIBODIES TO nGPCR-X

5

10

15

20

25

30

Standard techniques are employed to generate polyclonal or monoclonal antibodies to the nGPCR-x receptor, and to generate useful antigen-binding fragments thereof or variants thereof, including "humanized" variants. Such protocols can be found, for example, in Sambrook et al. (1989) and Harlow et al. (Eds.), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988). In one embodiment, recombinant nGPCR-x polypeptides (or cells or cell membranes containing such polypeptides) are used as antigen to generate the antibodies. In another embodiment, one or more peptides having amino acid sequences corresponding to an immunogenic portion of nGPCR-x (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more amino acids) are used as antigen. Peptides corresponding to extracellular portions of nGPCR-x, especially hydrophilic extracellular portions, are preferred. The antigen may be mixed with an adjuvant or linked to a hapten to increase antibody production.

A. Polyclonal or Monoclonal antibodies

As one exemplary protocol, recombinant nGPCR-x or a synthetic fragment thereof is used to immunize a mouse for generation of monoclonal antibodies (or larger mammal, such as a rabbit, for polyclonal antibodies). To increase antigenicity, peptides are conjugated to Keyhole Lympet Hemocyanin (Pierce), according to the manufacturer's recommendations. For an initial injection, the antigen is emulsified with Freund's Complete Adjuvant and injected subcutaneously. At intervals of two to three weeks, additional aliquots of nGPCR-x antigen are emulsified with Freund's Incomplete Adjuvant and injected subcutaneously. Prior to the final booster injection, a serum sample is taken from the immunized mice and assayed by western blot to

confirm the presence of antibodies that immunoreact with nGPCR-x. Serum from the immunized animals may be used as polyclonal antisera or used to isolate polyclonal antibodies that recognize nGPCR-x. Alternatively, the mice are sacrificed and their spleen removed for generation of monoclonal antibodies.

5

10

15

20

25

30

To generate monoclonal antibodies, the spleens are placed in 10 ml serum-free RPMI 1640, and single cell suspensions are formed by grinding the spleens in serum-free RPMI 1640, supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, and 100 μ g/ml streptomycin (RPMI) (Gibco, Canada). The cell suspensions are filtered and washed by centrifugation and resuspended in serum-free RPMI. Thymocytes taken from three naive Balb/c mice are prepared in a similar manner and used as a Feeder Layer. NS-1 myeloma cells, kept in log phase in RPMI with 10% fetal bovine serum (FBS) (Hyclone Laboratories, Inc., Logan, Utah) for three days prior to fusion, are centrifuged and washed as well.

To produce hybridoma fusions, spleen cells from the immunized mice are combined with NS-1 cells and centrifuged, and the supernatant is aspirated. The cell pellet is dislodged by tapping the tube, and 2 ml of 37°C PEG 1500 (50% in 75 mM HEPES, pH 8.0) (Boehringer-Mannheim) is stirred into the pellet, followed by the addition of serum-free RPMI. Thereafter, the cells are centrifuged, resuspended in RPMI containing 15% FBS, 100 μ M sodium hypoxanthine, 0.4 μ M aminopterin, 16 μ M thymidine (HAT) (Gibco), 25 units/ml IL-6 (Boehringer-Mannheim) and 1.5 x 10⁶ thymocytes/ml, and plated into 10 Corning flat-bottom 96-well tissue culture plates (Corning, Corning New York).

On days 2, 4, and 6 after the fusion, $100 \mu l$ of medium is removed from the wells of the fusion plates and replaced with fresh medium. On day 8, the fusions are screened by ELISA, testing for the presence of mouse IgG that binds to nGPCR-x. Selected fusion wells are further cloned by dilution until monoclonal cultures producing anti-nGPCR-x antibodies are obtained.

B. <u>Humanization of anti-nGPCR-x monoclonal antibodies</u>

The expression pattern of nGPCR-x as reported herein and the proven track record of GPCRs as targets for therapeutic intervention suggest therapeutic indications for nGPCR-x inhibitors (antagonists). nGPCR-x-neutralizing antibodies comprise one class of therapeutics useful as nGPCR-x antagonists. Following are

protocols to improve the utility of anti-nGPCR-x monoclonal antibodies as therapeutics in humans by "humanizing" the monoclonal antibodies to improve their serum half-life and render them less immunogenic in human hosts (i.e., to prevent human antibody response to non-human anti-nGPCR-x antibodies).

The principles of humanization have been described in the literature and are facilitated by the modular arrangement of antibody proteins. To minimize the possibility of binding complement, a humanized antibody of the IgG4 isotype is preferred.

5

10

15

20

25

30

For example, a level of humanization is achieved by generating chimeric antibodies comprising the variable domains of non-human antibody proteins of interest with the constant domains of human antibody molecules. (See, e.g., Morrison et al., Adv. Immunol., 44:65-92 (1989)). The variable domains of nGPCR-x-neutralizing anti-nGPCR-x antibodies are cloned from the genomic DNA of a B-cell hybridoma or from cDNA generated from mRNA isolated from the hybridoma of interest. The V region gene fragments are linked to exons encoding human antibody constant domains, and the resultant construct is expressed in suitable mammalian host cells (e.g., myeloma or CHO cells).

To achieve an even greater level of humanization, only those portions of the variable region gene fragments that encode antigen-binding complementarity determining regions ("CDR") of the non-human monoclonal antibody genes are cloned into human antibody sequences. (See, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-36 (1988); and Tempest et al., Bio/Technology 9: 266-71 (1991)). If necessary, the β -sheet framework of the human antibody surrounding the CDR3 regions also is modified to more closely mirror the three dimensional structure of the antigen-binding domain of the original monoclonal antibody. (See Kettleborough et al., Protein Engin., 4:773-783 (1991); and Foote et al., J. Mol. Biol., 224:487-499 (1992)).

In an alternative approach, the surface of a non-human monoclonal antibody of interest is humanized by altering selected surface residues of the non-human antibody, e.g., by site-directed mutagenesis, while retaining all of the interior and contacting residues of the non-human antibody. See Padlan, Molecular Immunol., 28(4/5):489-98 (1991).

The foregoing approaches are employed using nGPCR-x-neutralizing anti-nGPCR-x monoclonal antibodies and the hybridomas that produce them to generate humanized nGPCR-x-neutralizing antibodies useful as therapeutics to treat or palliate conditions wherein nGPCR-x expression or ligand-mediated nGPCR-x signaling is detrimental.

5

10

15

20

25

C. <u>Human nGPCR-x-Neutralizing Antibodies from Phage Display</u>

Human nGPCR-x-neutralizing antibodies are generated by phage display techniques such as those described in Aujame et al., Human Antibodies 8(4):155-168 (1997); Hoogenboom, TIBTECH 15:62-70 (1997); and Rader et al., Curr. Opin. Biotechnol. 8:503-508 (1997), all of which are incorporated by reference. For example, antibody variable regions in the form of Fab fragments or linked single chain Fv fragments are fused to the amino terminus of filamentous phage minor coat protein pIII. Expression of the fusion protein and incorporation thereof into the mature phage coat results in phage particles that present an antibody on their surface and contain the genetic material encoding the antibody. A phage library comprising such constructs is expressed in bacteria, and the library is screened for nGPCR-x-specific phage-antibodies using labeled or immobilized nGPCR-x as antigen-probe.

D. Human nGPCR-x-neutralizing antibodies from transgenic mice

Human nGPCR-x-neutralizing antibodies are generated in transgenic mice essentially as described in Bruggemann et al., Immunol. Today 17(8):391-97 (1996) and Bruggemann et al., Curr. Opin. Biotechnol. 8:455-58 (1997). Transgenic mice carrying human V-gene segments in germline configuration and that express these transgenes in their lymphoid tissue are immunized with a nGPCR-x composition using conventional immunization protocols. Hybridomas are generated using B cells from the immunized mice using conventional protocols and screened to identify hybridomas secreting anti-nGPCR-x human antibodies (e.g., as described above).

30 EXAMPLE 10: ASSAYS TO IDENTIFY MODULATORS OF nGPCR-X ACTIVITY

Set forth below are several nonlimiting assays for identifying modulators (agonists and antagonists) of nGPCR-x activity. Among the modulators that can be

identified by these assays are natural ligand compounds of the receptor; synthetic analogs and derivatives of natural ligands; antibodies, antibody fragments, and/or antibody-like compounds derived from natural antibodies or from antibody-like combinatorial libraries; and/or synthetic compounds identified by high-throughput screening of libraries; and the like. All modulators that bind nGPCR-x are useful for identifying nGPCR-x in tissue samples (e.g., for diagnostic purposes, pathological purposes, and the like). Agonist and antagonist modulators are useful for upregulating and down-regulating nGPCR-x activity, respectively, to treat disease states characterized by abnormal levels of nGPCR-x activity. The assays may be performed using single putative modulators, and/or may be performed using a known agonist in combination with candidate antagonists (or visa versa).

A. cAMP Assays

5

10

15

20

25

30

In one type of assay, levels of cyclic adenosine monophosphate (cAMP) are measured in nGPCR-x-transfected cells that have been exposed to candidate modulator compounds. Protocols for cAMP assays have been described in the literature. (See, e.g., Sutherland et al., Circulation 37: 279 (1968); Frandsen et al., Life Sciences 18: 529-541 (1976); Dooley et al., Journal of Pharmacology and Experimental Therapeutics 283 (2): 735-41 (1997); and George et al., Journal of Biomolecular Screening 2 (4): 235-40 (1997)). An exemplary protocol for such an assay, using an Adenylyl Cyclase Activation FlashPlate® Assay from NEN™ Life Science Products, is set forth below.

Briefly, the nGPCR-x coding sequence (e.g., a cDNA or intronless genomic DNA) is subcloned into a commercial expression vector, such as pzeoSV2 (Invitrogen), and transiently transfected into Chinese Hamster Ovary (CHO) cells using known methods, such as the transfection protocol provided by Boehringer-Mannheim when supplying the FuGENE 6 transfection reagent. Transfected CHO cells are seeded into 96-well microplates from the FlashPlate® assay kit, which are coated with solid scintillant to which antisera to cAMP has been bound. For a control, some wells are seeded with wild type (untransfected) CHO cells. Other wells in the plate receive various amounts of a cAMP standard solution for use in creating a standard curve.

One or more test compounds (i.e., candidate modulators) are added to the cells in each well, with water and/or compound-free medium/diluent serving as a control or

controls. After treatment, cAMP is allowed to accumulate in the cells for exactly 15 minutes at room temperature. The assay is terminated by the addition of lysis buffer containing [125]-labeled cAMP, and the plate is counted using a Packard Topcount™ 96-well microplate scintillation counter. Unlabeled cAMP from the lysed cells (or from standards) and fixed amounts of [125]-cAMP compete for antibody bound to the plate. A standard curve is constructed, and cAMP values for the unknowns are obtained by interpolation. Changes in intracellular cAMP levels of cells in response to exposure to a test compound are indicative of nGPCR-x modulating activity. Modulators that act as agonists of receptors which couple to the G₃ subtype of G proteins will stimulate production of cAMP, leading to a measurable 3-10 fold increase in cAMP levels. Agonists of receptors which couple to the G₁₀ subtype of G proteins will inhibit forskolin-stimulated cAMP production, leading to a measurable decrease in cAMP levels of 50-100%. Modulators that act as inverse agonists will reverse these effects at receptors that are either constitutively active or activated by known agonists.

B. Aequorin Assays

5

10

15

20

25

30

In another assay, cells (e.g., CHO cells) are transiently co-transfected with both a nGPCR-x expression construct and a construct that encodes the photoprotein apoaquorin. In the presence of the cofactor coelenterazine, apoaquorin will emit a measurable luminescence that is proportional to the amount of intracellular (cytoplasmic) free calcium. (See generally, Cobbold, et al. "Aequorin measurements of cytoplasmic free calcium," In: McCormack J.G. and Cobbold P.H., eds., Cellular Calcium: A Practical Approach. Oxford:IRL Press (1991); Stables et al., Analytical Biochemistry 252: 115-26 (1997); and Haugland, Handbook of Fluorescent Probes and Research Chemicals. Sixth edition. Eugene OR: Molecular Probes (1996).)

In one exemplary assay, nGPCR-x is subcloned into the commercial expression vector pzeoSV2 (Invitrogen) and transiently co-transfected along with a construct that encodes the photoprotein apoaquorin (Molecular Probes, Eugene, OR) into CHO cells using the transfection reagent FuGENE 6 (Boehringer-Mannheim) and the transfection protocol provided in the product insert.

The cells are cultured for 24 hours at 37°C in MEM (Gibco/BRL, Gaithersburg, MD) supplemented with 10% fetal bovine serum, 2 mM glutamine, 10 U/ml penicillin and 10 μ g/ml streptomycin, at which time the medium is changed to

serum-free MEM containing 5 μ M coelenterazine (Molecular Probes, Eugene, OR). Culturing is then continued for two additional hours at 37°C. Subsequently, cells are detached from the plate using VERSEN (Gibco/BRL), washed, and resuspended at 200,000 cells/ml in serum-free MEM.

Dilutions of candidate nGPCR-x modulator compounds are prepared in serum-free MEM and dispensed into wells of an opaque 96-well assay plate at 50 μ l/well. Plates are then loaded onto an MLX microtiter plate luminometer (Dynex Technologies, Inc., Chantilly, VA). The instrument is programmed to dispense 50 μ l cell suspensions into each well, one well at a time, and immediately read luminescence for 15 seconds. Dose-response curves for the candidate modulators are constructed using the area under the curve for each light signal peak. Data are analyzed with SlideWrite, using the equation for a one-site ligand, and EC50 values are obtained. Changes in luminescence caused by the compounds are considered indicative of modulatory activity. Modulators that act as agonists at receptors which couple to the G_q subtype of G proteins give an increase in luminescence of up to 100 fold. Modulators that act as inverse agonists will reverse this effect at receptors that are either constitutively active or activated by known agonists.

C. <u>Luciferase Reporter Gene Assay</u>

5

10

15

20

25

30

The photoprotein luciferase provides another useful tool for assaying for modulators of nGPCR-x activity. Cells (e.g., CHO cells or COS 7 cells) are transiently co-transfected with both a nGPCR-x expression construct (e.g., nGPCR-x in pzeoSV2) and a reporter construct which includes a gene for the luciferase protein downstream from a transcription factor binding site, such as the cAMP-response element (CRE), AP-1, or NF-kappa B. Agonist binding to receptors coupled to the Gs subtype of G proteins leads to increases in cAMP, thereby activating the CRE transcription factor and resulting in expression of the luciferase gene. Agonist binding to receptors coupled to the Gq subtype of G protein leads to production of diacylglycerol that activates protein kinase C, which activates the AP-1 or NF-kappa B transcription factors, in turn resulting in expression of the luciferase gene. Expression levels of luciferase reflect the activation status of the signaling events. (See generally, George et al., Journal of Biomolecular Screening 2(4): 235-240 (1997); and Stratowa et al., Current Opinion in Biotechnology 6: 574-581 (1995)).

Luciferase activity may be quantitatively measured using, e.g., luciferase assay reagents that are commercially available from Promega (Madison, WI).

5

10

15

20

25

30

In one exemplary assay, CHO cells are plated in 24-well culture dishes at a density of 100,000 cells/well one day prior to transfection and cultured at 37°C in MEM (Gibco/BRL) supplemented with 10% fetal bovine serum, 2 mM glutamine, 10 U/ml penicillin and 10 µg/ml streptomycin. Cells are transiently co-transfected with both a nGPCR-x expression construct and a reporter construct containing the luciferase gene. The reporter plasmids CRE-luciferase, AP-1-luciferase and NFkappaB-luciferase may be purchased from Stratagene (LaJolla, CA). Transfections are performed using the FuGENE 6 transfection reagent (Boehringer-Mannheim) according to the supplier's instructions. Cells transfected with the reporter construct alone are used as a control. Twenty-four hours after transfection, cells are washed once with PBS pre-warmed to 37°C. Serum-free MEM is then added to the cells either alone (control) or with one or more candidate modulators and the cells are incubated at 37°C for five hours. Thereafter, cells are washed once with ice-cold PBS and lysed by the addition of 100 μ l of lysis buffer per well from the luciferase assay kit supplied by Promega. After incubation for 15 minutes at room temperature, 15 μ l of the lysate is mixed with 50 μ l of substrate solution (Promega) in an opaque-white, 96-well plate, and the luminescence is read immediately on a Wallace model 1450 MicroBeta scintillation and luminescence counter (Wallace Instruments, Gaithersburg, MD).

Differences in luminescence in the presence versus the absence of a candidate modulator compound are indicative of modulatory activity. Receptors that are either constitutively active or activated by agonists typically give a 3 to 20-fold stimulation of luminescence compared to cells transfected with the reporter gene alone. Modulators that act as inverse agonists will reverse this effect.

D. Intracellular calcium measurement using FLIPR

Changes in intracellular calcium levels are another recognized indicator of G protein-coupled receptor activity, and such assays can be employed to screen for modulators of nGPCR-x activity. For example, CHO cells stably transfected with a nGPCR-x expression vector are plated at a density of 4 x 10⁴ cells/well in Packard black-walled, 96-well plates specially designed to discriminate fluorescence signals emanating from the various wells on the plate. The cells are incubated for 60 minutes

at 37°C in modified Dulbecco's PBS (D-PBS) containing 36 mg/L pyruvate and 1 g/L glucose with the addition of 1% fetal bovine serum and one of four calcium indicator dyes (Fluo-3TM AM, Fluo-4TM AM, Calcium GreenTM-1 AM, or Oregon GreenTM 488 BAPTA-1 AM), each at a concentration of 4 μ M. Plates are washed once with modified D-PBS without 1% fetal bovine serum and incubated for 10 minutes at 37°C to remove residual dye from the cellular membrane. In addition, a series of washes with modified D-PBS without 1% fetal bovine serum is performed immediately prior to activation of the calcium response.

A calcium response is initiated by the addition of one or more candidate receptor agonist compounds, calcium ionophore A23187 (10 μ M; positive control), or ATP (4 μ M; positive control). Fluorescence is measured by Molecular Device's FLIPR with an argon laser (excitation at 488 nm). (See, e.g., Kuntzweiler et al., Drug Development Research, 44(1):14-20 (1998)). The F-stop for the detector camera was set at 2.5 and the length of exposure was 0.4 milliseconds. Basal fluorescence of cells was measured for 20 seconds prior to addition of candidate agonist, ATP, or A23187, and the basal fluorescence level was subtracted from the response signal. The calcium signal is measured for approximately 200 seconds, taking readings every two seconds. Calcium ionophore A23187 and ATP increase the calcium signal 200% above baseline levels. In general, activated GPCRs increase the calcium signal approximately 10-15% above baseline signal.

E. <u>Mitogenesis Assay</u>

5

10

15

20

25

30

In a mitogenesis assay, the ability of candidate modulators to induce or inhibit nGPCR-x-mediated cell division is determined. (See, e.g., Lajiness et al., Journal of Pharmacology and Experimental Therapeutics 267(3): 1573-1581 (1993)). For example, CHO cells stably expressing nGPCR-x are seeded into 96-well plates at a density of 5000 cells/well and grown at 37°C in MEM with 10% fetal calf serum for 48 hours, at which time the cells are rinsed twice with serum-free MEM. After rinsing, 80 μ l of fresh MEM, or MEM containing a known mitogen, is added along with 20 μ l MEM containing varying concentrations of one or more candidate modulators or test compounds diluted in serum-free medium. As controls, some wells on each plate receive serum-free medium alone, and some receive medium containing 10% fetal bovine serum. Untransfected cells or cells transfected with vector alone also may serve as controls.

After culture for 16-18 hours, 1 μ Ci of [3 H]-thymidine (2 Ci/mmol) is added to the wells and cells are incubated for an additional 2 hours at 37°C. The cells are trypsinized and collected on filter mats with a cell harvester (Tomtec); the filters are then counted in a Betaplate counter. The incorporation of [3 H]-thymidine in serum-free test wells is compared to the results achieved in cells stimulated with serum (positive control). Use of multiple concentrations of test compounds permits creation and analysis of dose-response curves using the non-linear, least squares fit equation: $A = B \times [C/(D+C)] + G$ where A is the percent of serum stimulation; B is the maximal effect minus baseline; C is the EC₅₀; D is the concentration of the compound; and G is the maximal effect. Parameters B, C and G are determined by Simplex optimization.

Agonists that bind to the receptor are expected to increase [³H]-thymidine incorporation into cells, showing up to 80% of the response to serum. Antagonists that bind to the receptor will inhibit the stimulation seen with a known agonist by up to 100%.

F. [35S]GTPYS Binding Assay

5

10

15

20

25

30

Because G protein-coupled receptors signal through intracellular G proteins whose activity involves GTP binding and hydrolysis to yield bound GDP, measurement of binding of the non-hydrolyzable GTP analog [35S]GTPγS in the presence and absence of candidate modulators provides another assay for modulator activity. (See, e.g., Kowal et al., Neuropharmacology 37:179-187 (1998).)

In one exemplary assay, cells stably transfected with a nGPCR-x expression vector are grown in 10 cm tissue culture dishes to subconfluence, rinsed once with 5 ml of ice-cold Ca^{2+}/Mg^{2+} -free phosphate-buffered saline, and scraped into 5 ml of the same buffer. Cells are pelleted by centrifugation (500 x g, 5 minutes), resuspended in TEE buffer (25 mM Tris, pH 7.5, 5 mM EDTA, 5 mM EGTA), and frozen in liquid nitrogen. After thawing, the cells are homogenized using a Dounce homogenizer (one ml TEE per plate of cells), and centrifuged at 1,000 x g for 5 minutes to remove nuclei and unbroken cells.

The homogenate supernatant is centrifuged at 20,000 x g for 20 minutes to isolate the membrane fraction, and the membrane pellet is washed once with TEE and resuspended in binding buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM

MgCl₂, 1 mM EDTA). The resuspended membranes can be frozen in liquid nitrogen and stored at -70°C until use.

Aliquots of cell membranes prepared as described above and stored at -70°C are thawed, homogenized, and diluted into buffer containing 20 mM HEPES, 10 mM MgCl₂, 1 mM EDTA, 120 mM NaCl, 10 μ M GDP, and 0.2 mM ascorbate, at a concentration of 10-50 μ g/ml. In a final volume of 90 μ l, homogenates are incubated with varying concentrations of candidate modulator compounds or 100 μ M GTP for 30 minutes at 30°C and then placed on ice. To each sample, 10 μ l guanosine 5'-O-(3[35 S]thio) triphosphate (NEN, 1200 Ci/mmol; [35 S]-GTP γ S), was added to a final concentration of 100-200 pM. Samples are incubated at 30°C for an additional 30 minutes, 1 ml of 10 mM HEPES, pH 7.4, 10 mM MgCl₂, at 4°C is added and the reaction is stopped by filtration.

Samples are filtered over Whatman GF/B filters and the filters are washed with 20 ml ice-cold 10 mM HEPES, pH 7.4, 10 mM MgCl₂. Filters are counted by liquid scintillation spectroscopy. Nonspecific binding of [35 S]-GTP γ S is measured in the presence of 100 μ M GTP and subtracted from the total. Compounds are selected that modulate the amount of [35 S]-GTP γ S binding in the cells, compared to untransfected control cells. Activation of receptors by agonists gives up to a five-fold increase in [35 S]GTP γ S binding. This response is blocked by antagonists.

G. MAP Kinase Activity Assay

10

15

20

25

30

Evaluation of MAP kinase activity in cells expressing a GPCR provides another assay to identify modulators of GPCR activity. (See, e.g., Lajiness et al., Journal of Pharmacology and Experimental Therapeutics 267(3):1573-1581 (1993) and Boulton et al., Cell 65:663-675 (1991).)

In one embodiment, CHO cells stably transfected with nGPCR-x are seeded into 6-well plates at a density of 70,000 cells/well 48 hours prior to the assay. During this 48-hour period, the cells are cultured at 37°C in MEM medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 10 U/ml penicillin and 10 μ g/ml streptomycin. The cells are serum-starved for 1-2 hours prior to the addition of stimulants.

For the assay, the cells are treated with medium alone or medium containing either a candidate agonist or 200 nM Phorbol ester- myristoyl acetate (i.e., PMA, a positive control), and the cells are incubated at 37°C for varying times. To stop the

reaction, the plates are placed on ice, the medium is aspirated, and the cells are rinsed with 1 ml of ice-cold PBS containing 1 mM EDTA. Thereafter, 200 μ l of cell lysis buffer (12.5 mM MOPS, pH 7.3, 12.5 mM glycerophosphate, 7.5 mM MgCl₂, 0.5 mM EGTA, 0.5 mM sodium vanadate, 1 mM benzamidine, 1 mM dithiothreitol, 10 μ g/ml leupeptin, 10 μ g/ml aprotinin, 2 μ g/ml pepstatin A, and 1 μ M okadaic acid) is added to the cells. The cells are scraped from the plates and homogenized by 10 passages through a 23 3/4 G needle, and the cytosol fraction is prepared by centrifugation at 20,000 x g for 15 minutes.

Aliquots (5-10 μ l containing 1-5 μ g protein) of cytosol are mixed with 1 mM MAPK Substrate Peptide (APRTPGGRR (SEQ ID NO: 129), Upstate Biotechnology, Inc., N.Y.) and 50 μ M [γ^{-32} P]ATP (NEN, 3000 Ci/mmol), diluted to a final specific activity of ~2000 cpm/pmol, in a total volume of 25 μ l. The samples are incubated for 5 minutes at 30°C, and reactions are stopped by spotting 20 μ l on 2 cm² squares of Whatman P81 phosphocellulose paper. The filter squares are washed in 4 changes of 1% H₃PO₄, and the squares are subjected to liquid scintillation spectroscopy to quantitate bound label. Equivalent cytosolic extracts are incubated without MAPK substrate peptide, and the bound label from these samples are subtracted from the matched samples with the substrate peptide. The cytosolic extract from each well is used as a separate point. Protein concentrations are determined by a dye binding protein assay (Bio-Rad Laboratories). Agonist activation of the receptor is expected to result in up to a five-fold increase in MAPK enzyme activity. This increase is blocked by antagonists.

H. [3H]Arachidonic Acid Release

10

15

20

25

30

The activation of GPCRs also has been observed to potentiate arachidonic acid release in cells, providing yet another useful assay for modulators of GPCR activity. (See, e.g., Kanterman et al., Molecular Pharmacology 39:364-369 (1991).) For example, CHO cells that are stably transfected with a nGPCR-x expression vector are plated in 24-well plates at a density of 15,000 cells/well and grown in MEM medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 10 U/ml penicillin and $10 \mu g/ml$ streptomycin for 48 hours at 37°C before use. Cells of each well are labeled by incubation with [3 H]-arachidonic acid (Amersham Corp., 210 Ci/mmol) at 0.5 μ Ci/ml in 1 ml MEM supplemented with 10 mM HEPES, pH 7.5, and 0.5% fatty-

acid-free bovine serum albumin for 2 hours at 37°C. The cells are then washed twice with 1 ml of the same buffer.

Candidate modulator compounds are added in 1 ml of the same buffer, either alone or with 10 μ M ATP and the cells are incubated at 37°C for 30 minutes. Buffer alone and mock-transfected cells are used as controls. Samples (0.5 ml) from each well are counted by liquid scintillation spectroscopy. Agonists which activate the receptor will lead to potentiation of the ATP-stimulated release of [3 H]-arachidonic acid. This potentiation is blocked by antagonists.

I. Extracellular Acidification Rate

5

10

15

20

25

30

In yet another assay, the effects of candidate modulators of nGPCR-x activity are assayed by monitoring extracellular changes in pH induced by the test compounds. (See, e.g., Dunlop et al., Journal of Pharmacological and Toxicological Methods 40(1):47-55 (1998).) In one embodiment, CHO cells transfected with a nGPCR-x expression vector are seeded into 12 mm capsule cups (Molecular Devices Corp.) at 4×10^5 cells/cup in MEM supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 10 U/ml penicillin, and 10 μ g/ml streptomycin. The cells are incubated in this medium at 37°C in 5% CO₂ for 24 hours.

Extracellular acidification rates are measured using a Cytosensor microphysiometer (Molecular Devices Corp.). The capsule cups are loaded into the sensor chambers of the microphysiometer and the chambers are perfused with running buffer (bicarbonate-free MEM supplemented with 4 mM L-glutamine, 10 units/ml penicillin, 10 μ g/ml streptomycin, 26 mM NaCl) at a flow rate of 100 μ l/minute. Candidate agonists or other agents are diluted into the running buffer and perfused through a second fluid path. During each 60-second pump cycle, the pump is run for 38 seconds and is off for the remaining 22 seconds. The pH of the running buffer in the sensor chamber is recorded during the cycle from 43-58 seconds, and the pump is re-started at 60 seconds to start the next cycle. The rate of acidification of the running buffer during the recording time is calculated by the Cytosoft program. Changes in the rate of acidification are calculated by subtracting the baseline value (the average of 4 rate measurements immediately before addition of a modulator candidate) from the highest rate measurement obtained after addition of a modulator candidate. The selected instrument detects 61 mV/pH unit. Modulators that act as agonists of the receptor result in an increase in the rate of extracellular acidification compared to the

rate in the absence of agonist. This response is blocked by modulators which act as antagonists of the receptor.

EXAMPLE 11: IN SITU HYBRIDIZATION

5

10

15

20

25

30

DNA Probe Preparation For nGPCR-11, -16, -40, -54, and -56

DNA probes for *in situ* hybridization were prepared as follows. Two sets of primer pairs were prepared. The first set has the sequence for T7 polymerase promoter on the 5' primer to make the sense RNA, and the second set has the T7 polymerase promoter sequence on the 3' primer to make the antisense RNA. PCR was performed in a 50 µl reaction containing 36.5 µl H₂O, 5µl 10xTT buffer (140 mM Ammonium Sulfate, 0.1 % gelatine, 0.6 M Tris-tricine pH 8.4), 5 µl 25mM MgCl₂, 2 µl 10 mM dNTP, 0.4 µl Incyte clone 1722192 DNA, 0.5 µl AmpliTaq (PE Applied Biosystems), and 0.3 µl oligo1 (1 mg/ml) and 0.3 µl oligo2 (1mg/ml)[to make the sense RNA], or 0.3 µl oligo3 (1 mg/ml) and 0.3 µl oligo4 (1mg/ml)[to make the antisense RNA]. The PCR reaction involved one cycle at 94°C for 2 min followed by 35 cycles at 94°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec. The two PCR reactions were loaded onto a 1.2 % agarose gel. The DNA band was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 min at maximum speed. The eluted DNA was EtOH precipitated and resuspended in transcription buffer. The primer sequences for each nGPCR tested are listed below.

For nGPCR-11, the sense primers were:

GCGTAATACGACTCACTATAGGGAGACCGCGTGTCTGCTAGACTCTATTTC C 3'(LW1658) (SEQ ID NO: 159), and:

5' TGCCACACTGATGCAACTCC 3' (LW1661) (SEQ ID NO: 160). The antisense primers were:

GCGTAATACGACTCACTATAGGGAGACCTGCCACACTGATGCAACTCC (LW1659) SEQ ID NO: 161) and:

5'GCGTGTCTGCTAGACTCTATTTCC 3' (LW1660) (SEQ ID NO: 162). The primer pairs yielded a product of 275bp.

For nGPCR-16, the sense primers were: 5'GCGTAATACGACTCACTATAGGGAGACCGCACGCCACTCTTTACTATCC C (LW1645) (SEQ ID NO: 163), and:

5' GCACAAAACACAATTCCATAAGCC 3' (LW1648) (SEQ ID NO: 164). The antisense primers were:

- 5'GCGTAATACGACTCACTATAGGGAGACCGCACAAAACACAATTCCATAA GCC 3' (LW1646) (SEQ ID NO: 165), and:
- 5 5' GCTACGCCACTCTTTACTATCCC 3'(LW1647) (SEQ ID NO: 166). The primer pairs yielded a product of 283 bp.

For nGPCR-40, the sense primers were:

- 5'GCGTAATACGACTCACTATAGGGAGACCTTATGAGCAGCAATTCATCCC 3'(LW1704) (SEQ ID NO: 167), and:
- 5'CACACCCACCAAGAAATCAG 3'(LW1707)(SEQ ID NO: 168). The antisense primers were:
 - 5'GCGTAATACGACTCACTATAGGGAGACCCACACCCACACCAAGAAATCAG 3'(LW1705) (SEQ ID NO: 169), and:
- 5' TTATGAGCAGCAATTCATCCC 3' (LW1706) (SEQ ID NO: 170). The primer pairs yielded a product of 251bp.

For nGPCR-54, the sense primers were:

- 5'GCGTAATACGACTCACTATAGGGAGACCCGATTATCCACACTTTGACCC
 3' (LW1803) (SEQ ID NO: 171), and:
- 5' CTGAAAGTTGTCGCTGACC 3' (LW1634) (SEQ ID NO: 172). The anti-sense
- GCGTAATACGACTCACTATAGGGAGACCCTGCTGAAAGTTGTCGCTGACC 3' (LW1804)(SEQ ID NO: 173), and:
- 5' CGATTATCCACACTTTGACCC 3' (LW1635) (SEQ ID NO: 174). The primer pairs yielded a product of 286 bp.
- For nGPCR-56, the sense primers were:

primers were:

20

- GCGTAATACGACTCACTATAGGGAGACCCTGTAAAATTCACACAAGCACC 3' (LW1763) (SEQ ID NO: 175), and:
- 5'AGAAGACAGAGCAACCTCC 3' (LW1766) (SEQ ID NO: 176). The anti-sense primers were:
- 30 GCGTAATACGACTCACTATAGGGAGACCAGAAGACAGACCACCTCC (LW1764) (SEQ ID NO: 177) and:
 - CTGTAAAATTCACACAAGCACC (LW1765) (SEQ ID NO: 178). The primer pairs yielded a product of 272 bp.

DNA Probe Preparation For nGPCR-1

Probes for nGPCR-1 were prepared as above with the following modifications. Using a sense primer:

GCATGGATCCTCTTTGCTGTATTTCACCCTC) (LW1595) (SEQ ID NO: 179)

and an antisense primer:

5

10

15

20

25

30

5'GCATGAATTCACAATGCCAGTGATAAGGAAG 3' (LW1596) (SEQ ID NO: 180), a 271 bp fragment was generated by PCR. The fragment was digested with BamHI and EcoRI and ligated into a BluescriptII vector that had been cut with BamHI and EcoRI. The orientation of the insert was such that T7 polymerase generates the anti-sense strand and T3 polymerase generates the sense strand.

Histochemistry

Coronal and sagittal oriented rat brain sections were cryosectioned (20 μm thick) using a Reichert-Jung cryostat. The individual sections were thaw-mounted onto silanated, nuclease-free slides (CEL Associates, Inc., Houston, TX), and stored at -80°C. The sections were processed starting with post-fixation in cold 4% paraformaldehyde, rinsed in cold PBS, acetylated using acetic anhydride in triethanolamine buffer and dehydrated through 70%, 95%, and 100% alcohols at room temperature (RT). This was followed with delipidation in chloroform then rehydration in 100% and 95% alcohol at room temperature. Sections were air-dried prior to hybridization. Two PCR fragments (~250 bp) were generated, one that contained T7 polymerase on the 5' end (sense) and the other with T7 polymerase on the 3' end (antisense). The PCR fragments were labeled with 35S-UTP to yield a specific activity of 0.655 x 106 cpm/pmol for antisense and 0.675 x 106 cpm/pmol for sense probe. Both riboprobes were denatured and added to hybridization buffer containing 50% formamide, 10% dextran, 0.3M NaCl, 10 mM Tris, 1 mM EDTA, 1X Denhardts, and 10 mM DTT. Sequential brain cryosections were hybridized with 45 µl/slide of the sense and antisense riboprobe hybridization mixture, then covered with silanized glass coverslips. The sections were hybridized overnight (15-18 hrs) at 42°C in an incubator.

Coverslips were washed off the slides in 1X SSC, followed by RNase A treatment, and high temperature stringency washes (3X, 20 mins at 41°C) in 0.1X SSC. Slides were dehydrated with 70%, 95% NH₄OAc, and 100% NH₄OAc alcohols, air-dried and exposed to Kodak BioMax MR-1 film. After 9 days of exposure, the

film was developed. This was followed with coating selected tissue slides with Kodak NTB-2 nuclear track emulsion and storing the slides in the dark for 23 days. The slides were then developed and counterstained with hematoxylin. Emulsion-coated sections were analyzed microscopically to determine the specificity of labeling. Presence of autoradiographic grains (generated by antisense probe hybridization) over cell bodies (versus between cell bodies) was used as an index of specific hybridization.

Results

5

10

15

In situ hybridization results indicated localization in the following brain areas:

nGPCR-1 was localized to the dentate gyrus of hippocampus, piriform cortex, and red nucleus.

nGPCR-11 was localized to the piriform cortex, hippocampus, red nucleus, subthalamic nuclei, dorsal raphe, interpeduncular nucleus, and habenula. nGPCR-16 was localized to the cortex, piriform cortex, hippocampus, thalamus, subthalamic nuclei, hypothalamus, bed nucleus stria terminalis and posterior striatum. nGPCR-40 was localized to the cortex, piriform cortex, hippocampus, substantia nigra compacta, hypothalamus, laterial septus, bed nucleus stria terminalis, thalamus, ventral tegmental area, interpeduncular nucleus, dorsal raphe, medical geniculate, islands of Calleja, subthamalmic nuclei, choroid plexus. nGPCR-54 was localized to the piriform cortex and hippocampus, including the dentate gyrus, CA1 and CA3. nGPCR-56 was localized to the piriform cortex, cortex, interpeduncular nuceus, red nucleus, hippocampus, habenula, substantia nigra pars compacta, mamillary body stria terminalis,hypothalamus, subthamalmic nuclei, corsal raphe, and ventral tegmental area.

25

30

20

EXAMPLE 12: CHROMOSOMAL LOCALIZATION

Methods

Chromosomal location of the genes encoding nGPCRs was determined using the Stanford G3 Radiation Hybrid Panel (Research Genetics, Inc., Huntsville, AL). This panel contains 83 radiation hybrid clones of the entire human genome created by the Stanford Human Genome Center. PCR reactions were assembled containing 25ng of DNA from each clone and the components of the Expand Hi-Fi PCR System (Roche Molecular Biochemicals, Indianapolis, IN) in a final reaction volume of 15 µl. PCR primers were synthesized by Genosys Corp., The Woodlands, TX. PCR

reactions were incubated in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems). The following cycling program was executed: Pre-soak at (94° for 3min.)(94° for 30 sec.)(52°C for 60 sec.)(72° for 2 min.)] for 35 cycles. PCR reaction products were then separated and analyzed by electrophoresis on a 2.0% agarose gel, and stained with ethidium bromide. Lanes were scored for the presence or absence of the expected PCR product and the results submitted to the Stanford Human Genome Center via e-mail for analysis (http://www-shgc.stanford.edu./RH/rhserverformnew.html).

nGPCR-40

5

10

15

20

25

30

PCR primers were designed based on the available sequence of the Celera sequence HUM IDS|Contig|11000258115466. The forward primer used was:

5'ACAGCCCAAAGCCAAACAC3' (SEQ ID NO: 181). The reverse primer was:

5'CCGCAGGAGCAATG-AAAATCAG3' (SEQ ID NO: 182). This primer set will prime the synthesis of a 220 base pair fragment in the presence of the appropriate genomic DNA.

G3 Radiation Hybrid Panel Analysis places nGPCR-40 on chromosome 6, most nearly linked to Stanford marker SHGC-1836 with a LOD score of 11.84. This marker lies at position 6q21. In a genome scanning data set, Cao et al. (Genomics 1997 Jul 1: 43(1): 1-8) found excess allele sharing for markers on 6q13-q26. Greatest allele sharing was at interval 6q21-q22.3 with a maximum multipoint MLS value of 3.06 close to marker D6S278. Replication data from a second data set found maximum multipoint MLS at the interval D6S424-D6S275. These results provide suggestive evidence for a susceptibility locus for schizophrenia in chromosome 6q from two independent data sets.

nGPCR-54

PCR primers were designed based on the available sequence of the Celera sequence GA 11824020. The forward primer used was:

5'CTGTCTCTGTCCTCTTCC3', (SEQ ID NO: 183). The reverse primer used was:

5'GCACCGATCTTCATTGAATTTC3', (SEQ ID NO: 184). This primer set will prime the synthesis of a 145 base pair fragment in the presence of the appropriate genomic DNA.

G3 Radiation Hybrid Panel Analysis places nGPCR-54 on chromosome 13, most nearly linked to Stanford marker SHGC-68276 with a LOD score of 6.31. This marker lies at position 13q32. Numerous investigations have found significant suggestion of linkage of schizophrenia to this region of chromosome 13q32. See, for example, Brzustowicz et al., Am J Hum Genet 1999 Oct; 65(4): 1096-1103; Blouin et al., Nat Genet 1998 Sep; 20(1): 70-3; Shaw et al., Am J Med Genet. 1998 Sep 7; 81(5): 364-76; Lin et al., Hum Genet 1997 Mar; 99(3): 417-20; Pulver et al., Cold Spring Harb Symp Quant Biol 1996; 61:797-814.

Genes localized to chromosomal regions in linkage with schizophrenia are candidate genes for disease susceptibility. Genes in these regions with the potential to play a biochemical/functional role in the disease process (like G protein coupled receptors) have a high probability of being a disease-modifying locus. nGPCR-40 and -54, because of their chromosomal location, are attractive targets therefore for screening ligands useful in modulating cellular processes involved in schizophrenia.

EXAMPLE 13: CLONE DEPOSIT INFORMATION

5

10

15

20

In accordance with the Budapest Treaty, clones of the present invention have been deposited at the Agricultural Research Culture Collection (NRRL) International Depository Authority, 1815 N. University Street, Peoria, Illinois 61604, U.S.A. Accession numbers and deposit dates are provided below in Table 6.

Table 6: DEPOSIT INFORMATION

5

10

15

20

Clone	Accession Number NRRL	Budapest Treaty Deposit Date
nGPCR-1 (SEQ ID NO:73)	B-30243	2000 Jan 18
nGPCR -5 (SEQ ID NO: 75)	B-30244	2000 Jan 18
nGPCR -16 (SEQ ID NO: 81)	B-30245	2000 Jan 18
nGPCR -11 (SEQ ID NO: 79)	B-30258	2000 Feb 02
nGPCR -17 (SEQ ID NO: 23)	B-30259	2000 Feb 03
nGPCR -9 (SEQ ID NO: 77)	B-30262	2000 Feb 22
nGPCR -58 (SEQ ID NO: 91)	B-30274	2000 March 23
nGPCR -56 (SEQ ID NO: 89)	B-30288	2000 May 5
nGPCR -3 (SEQ ID NO:185)	B-30290	2000 May 5
nGPCR -54 (SEQ ID NO: 85)	B-30291	2000 May 5
nGPCR -40 (SEQ ID NO: 83*)	B-30299N	2000 June 02

^{*} The clone deposited with NRLL Accession Number B30299N comprises a sequence identical to SEQ ID NO:83 but with the substitution of an "A" at nucleotide position 10.

Example 14 - Using nGPCR-x proteins to isolate neurotransmitters

The isolated nGPCR-x proteins, particularly nGPCR-1, nGPCR-3, nGPCR-9, nGPCR-11, nGPCR-16, nGPCR-40, nGPCR-54, nGPCR-56, and nGPCR-58, (SEQ ID NOS: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94, respectively) can be used to isolate novel or known neurotransmitters (Saito *et al.*, Nature 400: 265-269, 1999). The cDNAs that encode the isolated nGPCR-x can be cloned into mammalian expression vectors and used to stably or transiently transfect mammalian cells including CHO, Cos or HEK293 cells. Receptor expression can be determined by Northern blot analysis of transfected cells and identification of an appropriately sized mRNA band (predicted size from the cDNA). Brain regions shown by mRNA analysis to express each of the nGPCR-x proteins could be processed for peptide extraction using any of several protocols

((Reinsheidk R.K. et al., Science 270: 243-247, 1996; Sakurai, T., et al., Cell 92; 573-585, 1998; Hinuma, S., et al., Nature 393: 272-276, 1998). Chromotographic fractions of brain extracts could be tested for ability to activate nGPCR-x proteins by measuring second messenger production such as changes in cAMP production in the presence or absence of forskolin, changes in inositol 3-phosphate levels, changes in intracellular calcium levels or by indirect measures of receptor activation including receptor stimulated mitogenesis, receptor mediated changes in extracellular acidification or receptor mediated changes in reporter gene activation in response to cAMP or calcium (these methods should all be referenced in other sections of the patent). Receptor activation could also be monitored by co-transfecting cells with a chimeric GI_{a/i3} to force receptor coupling to a calcium stimulating pathway (Conklin et al., Nature 363; 274-276, 1993). Neurotransmitter mediated activation of receptors could also be monitored by measuring changes in [35 S]-GTPKS binding in membrane fractions prepared from transfected mammalian cells. This assay could also be performed using baculoviruses containing nGPCR-x proteins infected into SF9 insect cells.

5

10

15

20

25

30

35

The neurotransmitter which activates nGPCR-x proteins can be purified to homogeneity through successive rounds of purification using nGPCR-x proteins activation as a measurement of neurotransmitter activity. The composition of the neurotransmitter can be determined by mass spectrometry and Edman degradation if peptidergic. Neurotransmitters isolated in this manner will be bioactive materials which will alter neurotransmission in the central nervous system and will produce behavioral and biochemical changes.

Example 15 - Using nGPCR-x proteins to isolate and purify G proteins

cDNAs encoding nGPCR-x proteins are epitope-tagged at the amino terminuus end of the cDNA with the cleavable influenza-hemagglutinin signal sequence followed by the FLAG epitope (IBI, New Haven, CT). Additionally, these sequences are tagged at the carboxyl terminus with DNA encoding six histidine residues. (Amino and Carboxyl Terminal Modifications to Facilitate the Production and Purification of a G Protein-Coupled Receptor, B.K. Kobilka, *Analytical Biochemistry*, Vol. 231, No. 1, Oct 1995, pp. 269-271). The resulting sequences are cloned into a baculovirus expression vector such as pVL1392 (Invitrogen). The baculovirus expression vectors are used to infect SF-9 insect cells as described (Guan,

X. M., Kobilka, T. S., and Kobilka, B. K. (1992) J. Biol. Chem. 267, 21995-21998). Infected SF-9 cells could be grown in 1000-ml cultures in SF900 II medium (Life Technologies, Inc.) containing 5% fetal calf serum (Gemini, Calabasas, CA) and 0.1 mg/ml gentamicin (Life Technologies, Inc.) for 48 hours at which time the cells could be harvested. Cell membrane preparations could be separated from soluble proteins following cell lysis. nGPCR-x protein purification is carried out as described for purification of the 92 receptor (Kobilka, Anal. Biochem., 231 (1): 269-271, 1995) including solubilization of the membranes in 0.8-1.0 % n-dodecyl -D-maltoside (DM) (CalBiochem, La Jolla, CA) in buffer containing protease inhibitors followed by Nicolumn chromatography using chelating SepharoseTM (Pharmacia, Uppsala, Sweden). The eluate from the Ni-column is further purified on an M1 anti-FLAG antibody column (IBI). Receptor containing fractions are monitored by using receptor specific antibodies following western blot analysis or by SDS-PAGE analysis to look for an appropriate sized protein band (appropriate size would be the predicted molecular weight of the protein).

5

10

15

20

25

This method of purifying G protein is particularly useful to isolate G proteins that bind to the nGPCR-x proteins in the absence of an activating ligand.

Some of the preferred embodiments of the invention described above are outlined below and include, but are not limited to, the following embodiments. As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

The entire disclosure of each publication cited herein is hereby incorporated by reference.

What is claimed is:

5

25

30

35

1. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to even numbered sequences selected from the group consisting of: SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO:186, and fragments thereof; said nucleic acid molecule encoding at least a portion of nGPCR-x.

- 2. The isolated nucleic acid molecule of claim 1 comprising a sequence that encodes a polypeptide comprising even numbered sequences selected from the group consisting of SEQ ID NO:2 to SEQ ID NO:94, SEQ ID NO:186, and fragments thereof.
- The isolated nucleic acid molecule of claim 1 comprising a sequence homologous to odd numbered sequences selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:93, SEQ ID NO:185 and fragments thereof.
- 4. The isolated nucleic acid molecule of claim 1 comprising a sequence selected 20 from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO: 93, SEQ ID NO:185 and fragments thereof.
 - 5. The isolated nucleic acid molecule of claim 4 comprising a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.
 - 6. The isolated nucleic acid molecule of claim 4 wherein said nucleotide sequence is selected from the group consisting of: SEQ ID NO:1, SEQ ID NO:73, SEQ ID NO:9, SEQ ID NO:77, SEQ ID NO:11, SEQ ID NO:79, SEQ ID NO:21, SEQ ID NO:81 SEQ ID NO:53, SEQ ID NO:83, SEQ ID NO:59, SEQ ID NO:85, SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO:3, and SEQ ID NO:185.
 - 7. The isolated nucleic acid molecule of claim 4 wherein said nucleotide sequence is selected from the group consisting of: SEQ ID NO:73, SEQ ID NO:77,

SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO:185.

- 8. The isolated nucleic acid molecule of claim 1 wherein said nucleic acid molecule is DNA.
 - 9. The isolated nucleic acid molecule of claim 1 wherein said nucleic acid molecule is RNA.
- 10. An expression vector comprising a nucleic acid molecule of any one of claims
 1 to 5.
- The expression vector of claim 10 wherein said nucleic acid molecule
 comprises a sequence selected from the group of odd numbered sequences consisting
 of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.
 - 12. The expression vector of claim 10 wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: SEQ ID NO:1, SEQ ID NO:73, SEQ ID NO:9, SEQ ID NO:77, SEQ ID NO:11, SEQ ID NO:79, SEQ ID NO: 21, SEQ ID NO:81 SEQ ID NO:53, SEQ ID NO:83, SEQ ID NO:59, SEQ ID NO:85, SEQ ID NO:63, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:67, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO: 3, and SEQ ID NO: 185.

20

- The expression vector of claim 10 wherein said nucleotide sequence is
 selected from the group consisting of: SEQ ID NO: 73, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO: 185.
 - 14. The expression vector of claim 10 wherein said vector is a plasmid.
 - 15. The expression vector of claim 10 wherein said vector is a viral particle.
 - 16. The expression vector of claim 15 wherein said vector is selected from the group consisting of adenoviruses, baculoviruses, parvoviruses, herpesviruses,

poxviruses, adeno-associated viruses, Semliki Forest viruses, vaccinia viruses, and retroviruses.

17. The expression vector of claim 10 wherein said nucleic acid molecule is operably connected to a promoter selected from the group consisting of simian virus 40, mouse mammary tumor virus, long terminal repeat of human immunodeficiency virus, maloney virus, cytomegalovirus immediate early promoter, Epstein Barr virus, rous sarcoma virus, human actin, human myosin, human hemoglobin, human muscle creatine, and human metalothionein.

10

5

- 18. A host cell transformed with an expression vector of claim 10.
- 19. The transformed host cell of claim 18 wherein said cell is a bacterial cell.
- 15 20. The transformed host cell of claim 19 wherein said bacterial cell is E. coli.
 - 21. The transformed host cell of claim 18 wherein said cell is yeast.
 - 22. The transformed host cell of claim 21 wherein said yeast is S. cerevisiae.

20

- 23. The transformed host cell of claim 18 wherein said cell is an insect cell.
- 24. The transformed host cell of claim 23 wherein said insect cell is S. frugiperda.
- 25. The transformed host cell of claim 18 wherein said cell is a mammalian cell.
 - 26. The transformed host cell of claim 25 wherein mammalian cell is selected from the group consisting of chinese hamster ovary cells, HeLa cells, African green monkey kidney cells, human 293 cells, and murine 3T3 fibroblasts.

30

27. An isolated nucleic acid molecule comprising a nucleotide sequence complementary to at least a portion of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185, said portion comprising at least 10 nucleotides.

28. The nucleic acid molecule of claim 27 wherein said molecule is an antisense oligonucleotide directed to a region of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.

5

10

15

25

- 29. The nucleic acid molecule of claim 28 wherein said oligonucleotide is directed to a regulatory region of a sequence selected from the group of odd numbered sequences consisting of SEQ ID NO:1 to SEQ ID NO:93 and SEQ ID NO:185.
- 30. The nucleic acid molecule of claim 27 wherein said molecule is an antisense oligonucleotide directed to a region of nucleotide sequence selected from the group consisting of: SEQ ID NO: 73, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81 SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:89, SEQ ID NO:93 and SEQ ID NO: 185.
 - 31. A composition comprising a nucleic acid molecule of any one of claims 1 to 5 or 27 and an acceptable carrier or diluent.
- 32. A composition comprising a recombinant expression vector of claim 10 and an acceptable carrier or diluent.
 - 33. A method of producing a polypeptide that comprises a sequence selected from the group of even numbered sequences consisting SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186, and homologs and fragments thereof, said method comprising the steps of:
 - a) introducing a recombinant expression vector of claim 10 into a compatible host cell;
 - b) growing said host cell under conditions for expression of said polypeptide; and
 - c) recovering said polypeptide.
 - 34. The method of claim 33 wherein said host cell is lysed and said polypeptide is recovered from the lysate of said host cell.

35. The method of claim 33 wherein said polypeptide is recovered by purifying the culture medium without lysing said host cell.

36. An isolated polypeptide encoded by a nucleic acid molecule of claim 1.

5

- 37. The polypeptide of claim 36 wherein said polypeptide comprises a sequence selected from the group of even numbered sequences consisting SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 10 38. The polypeptide of claim 36 wherein said polypeptide comprises an amino acid sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 39. The polypeptide of claim 36 wherein said sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186 comprises at least one conservative amino acid substitution compared to the even numbered sequences in the group of even numbered sequences consisting of SEQ ID NO: 2 to SEQ ID NO: 94 and SEQ ID NO: 186.
- 20 40. The polypeptide of claim 36 wherein said polypeptide comprises a fragment of a polypeptide with a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 41. The polypeptide of claim 36 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
 - 42. The polypeptide of claim 36 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO:86; SEQ ID NO:90; and SEQ ID NO:94.

43. A composition comprising a polypeptide of claim 36 and an acceptable carrier or diluent.

- 5 44. An isolated antibody which binds to an epitope on a polypeptide of claim 36.
 - 45. The antibody of claim 44 wherein said antibody is a monoclonal antibody.
- 46. A composition comprising an antibody of claim 44 and an acceptable carrier or diluent.
 - 47. A method of inducing an immune response in a mammal against a polypeptide of claim 36 comprising administering to said mammal an amount of said polypeptide sufficient to induce said immune response.
 - 48. A method for identifying a compound which binds nGPCR-x comprising the steps of:
 - a) contacting nGPCR-x with a compound; and

15

20

25

- b) determining whether said compound binds nGPCR-x.
- 49. The method of claim 48 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
- 50. The method of claim 48 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.
- 51. The method of claim 48 wherein binding of said compound to nGPCR-x is determined by a protein binding assay.

52. The method of claim 48 wherein said protein binding assay is selected from the group consisting of a gel-shift assay, Western blot, radiolabeled competition assay, phage-based expression cloning, co-fractionation by chromatography, co-precipitation, cross linking, interaction trap/two-hybrid analysis, southwestern analysis, and ELISA.

53. A compound identified by the method of claim 48.

5

20

25

- 10 54. A method for identifying a compound which binds a nucleic acid molecule encoding nGPCR-x comprising the steps of:
 - a) contacting said nucleic acid molecule encoding nGPCR-x with a compound; and
- b) determining whether said compound binds said nucleic acid
 15 molecule.
 - 55. The method of claim 54 wherein binding is determined by a gel-shift assay.
 - 56. A compound identified by the method of claim 54.
- 57. A method for identifying a compound which modulates the activity of nGPCR-x comprising the steps of:
 - a) contacting nGPCR-x with a compound; and
 - b) determining whether nGPCR-x activity has been modulated.
 - 58. The method of claim 57 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.
 - 59. The method of claim 57 wherein the nGPCR-x comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186;

SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.

- 60. The method of claim 57 wherein said activity is neuropeptide binding.
- 61. The method of claim 57 wherein said activity is neuropeptide signaling.
- 62. A compound identified by the method of claim 57.

5

15

20

25

- 10 63. A method of identifying an animal homolog of nGPCR-x comprising the steps:
 - a) comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides; and
 - b) identifying nucleic acid sequences of the animal that are homologous to said sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof.
 - 64. The method of claim 63 wherein comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides is performed by DNA hybridization.
 - 65. The method of claim 63 wherein comparing the nucleic acid sequences of the animal with a sequence selected from the group of odd numbered sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 93, SEQ ID NO: 185, and portions thereof, said portions being at least 10 nucleotides is performed by computer homology search.
 - 66. A method of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor, comprising the steps of:
 - (a) assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering an amino acid sequence, expression, or biological

activity of at least one nGPCR that is expressed in the brain, wherein the nGPCR comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof, and wherein the nucleic acid corresponds to a gene encoding the nGPCR; and

5

10

20

25

30

(b) diagnosing the disorder or predisposition from the presence or absence of said mutation, wherein the presence of a mutation altering the amino acid sequence, expression, or biological activity of the nGPCR in the nucleic acid correlates with an increased risk of developing the disorder.

67. A method according to claim 66, wherein the nGPCR is nGPCR-40 comprising an amino acid sequence set forth in SEQ ID NO:84 or an allelic variant thereof.

- 15 68. A method according to claim 66, wherein the nGPCR is nGPCR-54 comprising an amino acid sequence set forth in SEQ ID NO:86 or an allelic variant thereof.
 - 69. A method according to claim 66, wherein the disease is schizophrenia.
 - 70. A method according to claim 66, wherein the assaying step comprises at least one procedure selected from the group consisting of:
 - a) comparing nucleotide sequences from the human subject and reference sequences and determining a difference of either

at least a nucleotide of at least one codon between the nucleotide sequences from the human subject that encodes an nGPCR-40 allele and an nGPCR-40 reference sequence, or

at least a nucleotide of at least one codon between the nucleotide sequences from the human subject that encodes an nGPCR-54 allele and an nGPCR-54 reference sequence;

(b) performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences;

(c) performing a polynucleotide migration assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; and

- (d) performing a restriction endonuclease digestion to determine
 whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences.
 - 71. A method according to claim 70 wherein the assaying step comprises: performing a polymerase chain reaction assay to amplify nucleic acid comprising nGPCR-40 or nGPCR-54 coding sequence, and determining nucleotide sequence of the amplified nucleic acid.
 - 72. A method of screening for an nGPCR-40 or nGPCR-54 hereditary schizophrenia genotype in a human patient, comprising the steps of:

10

15

20

- (a) providing a biological sample comprising nucleic acid from said patient, said nucleic acid including sequences corresponding to allelles of nGPCR-40 or nGPCR-54; and
- (b) detecting the presence of one or more mutations in the nGPCR-40 allelle or the nGPCR-54 allelle;
- wherein the presence of a mutation in an nGPCR-40 allelle or nGPCR-54 allele is indicative of a hereditary schizophrenia genotype.
- 73. The method according to claim 72 wherein said biological sample is a cell sample.
- 74. The method according to claim 72 wherein said detecting the presence of a mutation comprises sequencing at least a portion of said nucleic acid, said portion comprising at least one codon of said nGPCR-40 or nGPCR-54 alleles.
- 30 75. The method according to claim 72 wherein said nucleic acid is DNA.
 - 76. The method according to claim 72 wherein said nucleic acid is RNA.

77. A kit for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor, comprising, in association:

(a) an oligonucleotide useful as a probe for identifying polymorphisms in a human nGPCR-40 gene or a human nGPCR-54 gene, the oligonucleotide comprising 6-50 nucleotides in a sequence that is identical or complementary to a sequence of a wild type human nGPCR-40 or nGPCR-54 gene sequence or nGPCR-40 or nGPCR-54 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution; and

5

10

15

20

25

- (b) a media packaged with the oligonucleotide, said media containing information for identifying polymorphisms that correlate with schizophrenia or a genetic predisposition therefor, the polymorphisms being identifiable using the oligonucleotide as a probe.
- 78. A method of identifying a nGPCR allelic variant that correlates with a mental disorder, comprising steps of:
 - (a) providing a biological sample comprising nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny;
 - (b) detecting in the nucleic acid the presence of one or more mutations in an nGPCR that is expressed in the brain, wherein the nGPCR comprises an amino acid sequence selected from the group consisting of SEQ ID NO:74, SEQ ID NO:186, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, and SEQ ID NO:94, and allelic variants thereof, and wherein the nucleic acid includes sequence corresponding to the gene or genes encoding nGPCR;

wherein the one or more mutations detected indicates an allelic variant that correlates with a mental disorder.

30 79. A method according to claim 78, wherein the disorder is schizophrenia, and wherein the at least one nGPCR is nGPCR-40, nGPCR-54, or an allelic variant thereof.

80. A purified and isolated polynucleotide comprising a nucleotide sequence encoding an nGPCR-40 or nGPCR-54 allelic variant identified according to claim 79.

81. A host cell transformed or transfected with a polynucleotide according to claim 80 or with a vector comprising the polynucleotide.

5

15

20

82. A purified polynucleotide comprising a nucleotide sequence encoding nGPCR-40 or nGPCR-54 of a human with schizophrenia;

wherein said polynucleotide hybridizes to the complement of SEQ ID NO:83 or of SEQ ID NO:85 under the following hybridization conditions:

- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and
- (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS; and

wherein the polynucleotide that encodes nGPCR-40 or nGPCR-54 amino acid sequence of the human differs from SEQ ID NO:84 or SEQ ID NO:86 by at least one residue.

- 83. A vector comprising a polynucleotide according to claim 82.
- 84. A host cell that has been transformed or transfected with a polynucleotide according to claim 82 and that expresses the nGPCR-40 or nGPCR-54 protein encoded by the polynucleotide.
- 25 85. A host cell according to claim 84 that has been co-transfected with a polynucleotide encoding the nGPCR-40 or nGPCR-54 amino acid sequence set forth in SEQ ID NO:84 or SEQ ID NO:86 and that expresses the nGPCR-40 or nGPCR-54 protein having the amino acid sequence set forth in SEQ ID NO:84 or SEQ ID NO:86.
- 30 86. A method for identifying a modulator of biological activity of nGPCR-40 or nGPCR-54 comprising the steps of:
 - a) contacting a cell according to claim 84 in the presence and in the absence of a putative modulator compound;

b) measuring nGPCR-40 or nGPCR-54 biological activity in the cell;

wherein decreased or increased nGPCR-40 or nGPCR-54 biological activity in the presence versus absence of the putative modulator is indicative of a modulator of biological activity.

87. A method to identify compounds useful for the treatment of schizophrenia, said method comprising steps of:

5

10

15

20

25

30

- (a) contacting a composition comprising nGPCR-40 with a compound suspected of binding nGPCR-40 or contacting a composition comprising nGPCR-54 with a compound suspected of binding nGPCR-54;
- (b) detecting binding between nGPCR-40 and the compound suspected of binding nGPCR-40 or between nGPCR-54 and the compound suspected of binding nGPCR-54;

wherein compounds identified as binding nGPCR-40 or nGPCR-54 are candidate compounds useful for the treatment of schizophrenia.

- 88. A method for identifying a compound useful as a modulator of binding between nGPCR-40 and a binding partner of nGPCR-40 or between nGPCR-54 and a binding partner of nGPCR-54 comprising the steps of:
- (a) contacting the binding partner and a composition comprising nGPCR-40 or nGPCR-54 in the presence and in the absence of a putative modulator compound;
- (b) detecting binding between the binding partner and nGPCR-40 or nGPCR-54;

wherein decreased or increased binding between the binding partner and nGPCR-40 or nGPCR-54 in the presence of the putative modulator, as compared to binding in the absence of the putative modulator is indicative a modulator compound useful for the treatment of schizophrenia.

89. A method according to claim 87 or 88 wherein the composition comprises a cell expressing nGPCR-40 or nGPCR-54 on its surface.

90. An method according to claim 89 wherein the composition comprises a cell transformed or transfected with a polynucleotide that encodes nGPCR-40 or nGPCR-54.

- 5 91. A method of purifying a G protein from a sample containing said G protein comprising the steps of:
 - a) contacting said sample with a polypeptide of claim 1 for a time sufficient to allow said G protein to form a complex with said polypeptide;
- b) isolating said complex from remaining components of said sample;
 - c) maintaining said complex under conditions which result in dissociation of said G protein from said polypeptide; and
 - d) isolating said G protein from said polypeptide.
- 15 92. The method of claim 91 wherein said sample comprises an amino acid sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
- 93. The method of claim 91 wherein said polypeptide comprises an amino acid sequence homologous to a sequence selected from the group of even numbered sequences consisting of SEQ ID NO:2 to SEQ ID NO:94 and SEQ ID NO:186.
 - 94. The method of claim 91 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 74; SEQ ID NO: 4, SEQ ID NO: 186; SEQ ID NO:10, SEQ ID NO:78; SEQ ID NO:12, SEQ ID NO:80; SEQ ID NO: 22, SEQ ID NO:82; SEQ ID NO:54, SEQ ID NO:84; SEQ ID NO:60, SEQ ID NO: 86; SEQ ID NO:64, SEQ ID NO: 88, SEQ ID NO:90; SEQ ID NO:68, SEQ ID NO: 92, and SEQ ID NO:94.

25

30 95. The method of claim 91 wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 74; SEQ ID NO: 186; SEQ ID NO:78; SEQ ID NO:80; SEQ ID NO:82; SEQ ID NO:84; SEQ ID NO: 86; SEQ ID NO:90; and SEQ ID NO:94.

96. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence homologous to SEQ ID NO:76, and fragments thereof; said nucleic acid molecule encoding at least a portion of nGPCR-5.

5

97. An isolated polypeptide encoded by a nucleic acid molecule of claim 96.

SEQUENCE LISTING

<110> Pharmacia & Upjohn Company Vogeli, Gabriel Huff, Rita Sejlitz, Torsten Lind, Peter Slightom, Jerry Schellin, Kathleen Bannigan, Chris Ruff, Valerie Kaytes, Paul Wood, Linda Parodi, Luis Hiebsch, Ronald <120> Novel G Protein Coupled Receptors <130> 043P1PHRM296 60/165,838 <150> <151> 1999-11-16 60/198,568 <150>

- 2000-04-20 <151>
- 60/166,071 <150> 1999-11-17 <151>
- 60/166,678 <150>
- <151> 1999-11-19
- 60/173,396 <150> <151> 1999-12-28
- <150> 60/184,129
- 2000-02-22 <151>
- <150> 60/185,421 2000-02-28 <151>
- <150> 60/185,554 2000-02-28 <151>
- <150> 60/186,530
- 2000-03-02 <151>
- 60/186,811 <150> <151> 2000-03-03
- 60/188,114 <150>
- 2000-03-09 <151>
- 60/190,310 <150> 2000-03-17 <151>
- 60/190,800 <150>
- <151> 2000-03-21

<150> <151>	60/201,190 2000-05-02					
<150> <151>	60/203,111 2000-05-08				•	
<150> <151>	60/207,094 2000-05-25					
<160>	190					
<170>	PatentIn version	on 3.0				
<210> <211> <212> <213>	1 1182 DNA H.Sapiens					
<400> gtctggg	1 gggt gggggatgct	gggacagggg	tcaattgcct	gaagcaagtg	ctctcatccc	60
cctagct	cct gctgatctag	ttggggctcc	agagtgggga	ggagaaaggc	actttgaaac	120
ttctctg	gccc ttaccgtctt	agccatcaaa	ctctgagctg	gagatagtga	cgatgtgaca	180
ggaactt	tcc ctgggcctct	ctgggccaca	attcctggcc	gagagaaaga	ggaggaatga	240
ggtgagc	acc ttcttcactc	ctagggccat	gtggtagagc	tgcagtcgca	cctccttctg	300
ccaatag	gca tagatgagtg	ggttgagcag	ggagttgccc	acgccgagca	gccacaggta	360
ccgttcc	agc actaggtaga	ggtgacactc	ctggcaggcc	acctgcacaa	tgccagtgat	420
aaggaag	gggg gtccaggata	gagcaaagct	cccaatgaga	acagacacag	tacggagagc	480
tttgaag	tcg ctgggagtcc	gtggggatcg	ataacctcca	gccatggctc	ctgcatgttc	540
catcttt	cga atctgctggc	tgtgcatgga	ggcaatcttg	agcatgtcgc	agtagaagaa	600
gacaaag	gagg agcatggctg	ggaagaagcc	aacgcaggag	agggtcagca	cgaagtgagg	660
gtgaaat	aca gcaaagaagc	tgcactgccc	tttgtaggca	gtctgctgga	acatggggat	720
tccgagt	.ggg aggaagccaa	tgaggtaaga	cactaaccac	agcccggcaa	tgcaggcccc	780
ggccacg	gaac ccactcatga	tcttcaagta	gcggaagggc	tgcttgatgg	caaggtacct	840
gtcaaag	gtg atcagcatga	ccgtgaggac	agaggcagct	gcggaggaag	tgacaaatgc	900
catccgc	agg ctgcacaggg	tcttctgtgt	gggccgagaa	gggctggaga	gctggtctgt	960
gagtagg	cca gagatggcca	caccaatcaa	ggtgtcagcc	acagccagat	tcaaggtgaa	1020
gcagaga	ctg acaccatcat	tcttgtggat	caacagcagc	acagccacag	ccactagtgt	1080
gttagta	igca atgatgaggg	aggccaggac	agcaaggatc	actccaaatg	agaaagatga	1140
ttccatg	tct cgaagtggca	ggacttcact	taccagggca	tg		1182

<210 <211 <212 <213	>	2 33! PR! H.:	T	iens												4
<400		2												_	. .	0
Met 1	Glu	S	er	Ser	Phe 5	Ser	Phe	Gly	Val	Ile 10	Leu	Ala	Val	Leu	15	Ser
Leu	Ile	I	le	Ala 20	Thr	Asn	Thr	Leu	Val 25	Ala	Val	Ala	Val	Leu 30	Leu	Leu
Ile	His		ys 5	Asn	Asp	Gly	Val	Ser 40	Leu	Cys	Phe	Thr	Leu 45	Asn	Leu	Ala
Val	Ala 50	A	sp	Thr	Leu	Ile	Gly 55	Val	Ala	Ile	Ser	Gly 60	Leu	Leu	Thr	Asp
Gln 65	Lev	ı S	Ser	Ser	Pro	Ser 70	Arg	Pro	Thr	Gln	Lys 75	Thr	Leu	Cys	Ser	Leu 80
Arg	Met	: P	Ala	Phe	Val 85	Thr	Ser	Ser	Ala	Ala 90	Ala	Ser	Val	Leu	Thr 95	Val
Met	Le	3 נ	(le	Thr 100	Phe	Asp	Arg	Tyr	Leu 105	Ala	Ile	Lys	Gln	Pro 110	Phe	Arg
Tyr	Le		Lys 115	Ile	Met	Ser	Gly	Phe 120	Val	Ala	Gly	Ala	Cys 125	Ile	Ala	Gly
Leu	Tr ₁		Leu	Val	Ser	Tyr	Leu 135	Ile	Gly	Phe	Leu	Pro 140	Ĺeu	Gly	Ile	Pro
Met 145		е (Gln	Gln	Thr	Ala 150	Tyr	Lys	Gly	Gln	Cys 155	Ser	Phe	Phe	Ala	Val 160
Phe	Hi.	s	Pro	His	Phe		Leu	Thr	Leu	Ser 170	Cys	Val	G1y	Phe	Phe 175	Pro
Ala	Me	t	Leu	Leu 180	Phe	e Val	Phe	Phe	Tyr 185	Cys	: Asp	Met	Leu	190	; Ile	Ala
Sei	. Me		His 195		Glr	n Gln	Ile	200	Lys	Met	: Glu	n His	205	a Gly	/ Ala	Met
Ala	a G1 21		Gly	туг	Arg	g Ser	Pro 215	Arg	J Thi	r Pro	Sei	220	Phe	e Lys	s Ala	Leu
Ar 22		ır	Va]	Ser	va:	1 Lev 230	ı Ile	e Gly	y Sei	r Phe	23	a Leu 5	ı Se:	r Tr	o Thi	240
Ph	e Le	eu	Ile	∋ Thi	c Gl	y Ile 5	e Vai	l Gli	n Val	1 Ala 25	а Су: О	s Glı	n Gl	и Су	s His 25	s Leu 5
ту	r Le	eu	Va:	Lei	u Gl	u Ar	g Ty	r Le	u Trj 26	p Le	u Le	u Gl	y Va	1 G1 27	y Ası 0	n Sei

Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu Val Arg Leu 275 280 285

Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val Leu Thr Ser Phe 290 295 300

Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro Glu Arg Pro Arg Glu 305 310 315 320

Ser Ser Cys His Ile Val Thr Ile Ser Ser Ser Glu Phe Asp Gly 325 330 335

<210> 3

<211> 657

<212> DNA <213> H.Sapiens

<400> 3

cagcgcgagc gccttcatgg tgacggtgtc catgcgctgg cagtgtctgc gtgccacccg 60 gtgcacctgg agcgaggtga ggcagagcac cgccagcggc agcacgaagc ccacggcatg 120 gagegtggeg gtgaaggetg egaagegegg aegeteagge tegggeggea ggegeagega 180 acaggacgcg aaggcgctgc tgtagccaag ccacgagcag ccaagtgcag cgcctgagaa 240 ggccagcgac tgtccccagg cacagcccag cagcaggccg gcatagcgcg gtcqcaggcq 300 teeggegtag egeagtggga ageceaetge eagecaetgg tetgegetea gegeegeeae 360 gctcagcgcc gcgttggacg ccaggaaggt gtccaggaag ccaatgactt ggcatgcgcc 420 gggcgccgac ggtgtccgcc cgcgcatcac accgagcagc gtgaagggca tgtccagcgc 480 cgccagcagc aggtggccca gagacagatt caccaggagg acgcctgagg ctcgagtgcg 540 gageteageg etgtaggege aacaaageag caccagtgeg ttggatagea gegeeaegge 600 657 cagtaccatc accaggagac ccgccagcag cgcctcgccg gggcccatgg cgctagc

<210> 4

<211> 217

<212> PRT

<213> H.Sapiens

<400> 4

Ser Ala Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met 1 5 10 15

Val Leu Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Cys Cys 20 25 30

Ala Tyr Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val

Asn Leu Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe 50 55 60

65					70					13	Ser				•	
Cys	Gln	Val	Ile	Gly 85	Phe	Leu	Asp	Thr	Phe 90	Leu	Ala	Ser	Asn	Ala 95	Ala	
Leu	Ser	Val	Ala 100	Ala	Leu	Ser	Ala	Asp 105	Gln	Trp	Leu	Ala	Val 110	Gly	Phe	
Pro	Leu	Arg 115		Ala	Gly	Arg	Leu 120	Arg	Pro	Arg	Tyr	Ala 125	Gly	Leu	Leu	
Leu	Gly 130	Cys	Ala	Trp	Gly	Gln 135	Ser	Leu	Ala	Phe	Ser 140	Gly	Ala	Ala	Leu	
Gly 145		Ser	Trp	Leu	Gly 150	Tyr	Ser	Ser	Ala	Phe 155	Ala	Ser	Cys	Ser	Leu 160	
Arg	Leu	Pro	Pro	Glu 165	Pro	Glu	Arg	Pro	Arg 170	Phe	Ala	Ala	Phe	Thr 175	Ala	
Thr	Leu	His	Ala 180	Val	Gly	, Phe	Val	Leu 185	Pro	Leu	Ala	Val	Leu 190	Cys	Leu	
Thr	Ser	Lev 195		. Val	His	a Arg	Val 200	Ala	Arg	Arg	His	205	Gln	Arç	, Met	
Asp	Thr 210		L Thi	: Met	Ly:	s Ala 215	Lev i	a Ala	1							
<21 <21	L0> L1> L2> L3>	5 222 DNA H.S	apie	ns									•			
<40	00> Egca	5 aata	tga	tctc	cat	tcct	ttgta	ac a	tccc	tcaca	a cg	ctgt	tcga	atg	ggatttt	60
															atctgta	120
															aagtcga	180
ac	acat	taat	tta	tecc	cct	taga	agat	ta t	gtaa	atgt	a ta					222
<2 <2	10> 11> 12> 13>	6 73 PRT H.S	: Sapie	ens												
	00>	6														
1				5					1,	,				_		
G1	u Ti	p As	sp Pl	ne Gi	Ly L	ys Gl	lu II	Le Cy 25	ys Va 5	al Ph	ne Ti	cp Le	eu Th 30	nr Th	nr Asp	

Tyr Leu Leu Cys Thr Ala Ser Val Tyr Asn Ile Val Leu Ile Ser Tyr

Asp Arg Tyr Leu Ser Val Ser Asn Ala Val Ser Arg Thr His Phe Ile '

Pro Leu Arg Arg Leu Cys Lys Cys Ile

<210> 7

<211> 507

<212> DNA

<213> H.Sapiens

<400> 7

gacgtcgaag	caggtgatga	tgcccagggc	gtgcaccggg	taggtgagat	cggtgcgcgc	60
cagcggggac	agggcggtca	ggagcagcag	ccaggtccct	gcacacgcgg	ccaccgcgta	120
acgacggcgg	cgccagcgct	tggagctgag	cgggtacagg	atccccagga	agcgctccac	180
gctgatacag	gtcatggtga	ggatgctgga	atacatgttt	gcgtaaaagg	ccacggtcac	240
cacgttgcaa	agcagcaccc	cgaataccca	gtggtggcgg	ttgcaatggt	agtagatttg	300
gaaaggcaac	acgctggcca	gcatcaggtc	cgtgacgctc	aggttgatca	tgaagatgac	360
cgacggggat	ctgggcccca	tgcgccggca	cagcacccac	agagagaaga	ggttgcccgg	420
gatgctgacc	gccgccacca	gcgagtacac	cacgggcagg	gccaccgcga	tcgccgggtt	480
ccgcagcatc	tacaacatca	cattatc				507

<210> 8

<211> 169 <212> PRT

<213> H.Sapiens

<400> 8

Asp Asn Ala Thr Leu Gln Met Leu Arg Asn Pro Ala Ile Ala Val Ala

Leu Pro Val Val Tyr Ser Leu Val Ala Ala Val Ser Ile Pro Gly Asn

Leu Phe Ser Leu Trp Val Leu Cys Arg Arg Met Gly Pro Arg Ser Pro

Ser Val Ile Phe Met Ile Asn Leu Ser Val Thr Asp Leu Met Leu Ala

Ser Val Leu Pro Phe Gln Ile Tyr Tyr His Cys Asn Arg His His Trp 65 70 75 80

Val Phe Gly Val Leu Cys Asn Leu Val Val Thr Val Ala Phe Tyr Ala

Asn	Met	Tyr	Ser 100	Ser	Ile	Leu	Thr	Met 105	Thr	Cys	Ile	Ser	Val 110	Glu	Arg
Phe	Leu	Gly 115	Ile	Leu	Tyr	Pro	Leu 120	Ser	Ser	Lys	Arg	Trp 125	Arg	Arg	Argʻ
Arg	Tyr 130	Ala	Val	Ala	Ala	Cys 135	Ala	Gly	Thr	Trp	Leu 140	Leu	Leu	Leu	Thr
Ala 145	Leu	Ser	Pro	Leu	Ala 150	Arg	Thr	Asp	Leu	Thr 155	Tyr	Pro	Val	His	Ala 160
Leu	Gly	Ile	Ile	Thr 165	Cys	Phe	Asp	Val							
<210 <210 <210 <210	1> 2>	9 270 DNA H.Saj	piens	5											
<40 ccc	0> atgt	9 tcc	tgcto	cctg	gg c	agcc	tcac	g tt	gtcg	gatc	tgc	tggc	agg	cgcc	gcctac
gcc	gcca	aca	tccta	actg	tc g	gggc	cgct	c ac	gctg	aaac	tgt	ccc	cgc	gctc	tggttc
gca	cggg	agg	gagg	cgtc	tt c	gtgg	cact	c ac	tgcg	tccg	tgc	tgag	cct	cctg	ggcatc
gcg	ctgg	agc	gcag	cctc	ac c	atgg	cgcg	c ag	gggg	cccg	cgc	ccgt	ctc	cagt	cggggg
cgc	acgo	tgg	cgat	ggca	gc c	gcgg	cctg	g					•		
<21 <21 <21 <21	.1>	10 90 PRT H.Sa	pien	s											
<40	00>	10													
Pro	Met	: Phe	. Leu	Leu 5	Lev	Gly	Ser	Let	Thr 10	Leu	Ser	Asp	Let	Leu 15	Ala
Gly	/ Ala	a Ala	Tyr 20	Ala	Ala	Asr	Ile	Let 25	ג Leu	ı Ser	Gly	Pro	30	Thr	Leu
Ly	s Le	u Sei 35	Pro	Ala	Leu	ı Trp	Phe 40	e Ala	a Aro	g Glu	Gly	45	y Va	l Phe	e Val
Ala	a Le 50	u Thi	c Ala	a Sei	· Val	L Let 55	ı Ser	c Le	u Lei	ı Gly	60	e Ala	a Le	u Gli	ı Arg
Se:	r Le	u Th	r Met	Alá	70	g Ar	g Gly	y Pr	o Ala	a Pro	Val	L Se:	r Se	r Ar	g Gly 80
Ar	g Th	r Le	u Ala	85	t Al	a Ala	a Ala	a Al	a Tr	p					
	10> 11>	11 888													

PCT/US00/31581

<212> DNA <213> H.S	apiens										•
<400> 11 ctgctcattg	tggccttt	gt gctg	ggcgca	cta	ggca	atg	gggt	cgcc	ct ç	ıtgtg	gtttc
tgcttccaca	tgaagacc	tg gaag	cccago	act	gttt	acc	tttt	caat	tt ç	gccg	tggct
gatttcctcc	ttatgatc	tg cctg	cctttt	. cgg	acag	act	atta	cctc	ag a	cgta	gacac
tgggcttttg	gggacatt	cc ctgc	cgagto	ggg	ctct	tca	cgtt	ggcc	at ç	gaaca	.gggcc
gggagcatcg	tgttcctt	ac ggtg	gtggct	gcg	gaca	ggt	attt	caaa	ıgt ç	gtcc	acccc
caccacgcgg	tgaacact	at ctcc	acccgg	gtg	gcgg	ctg	gcat	cgto	tg o	cacco	tgtgg
gccctggtca	tcctggga	ac agtg	tatctt	ttg	ctgg	aga	acca	tctc	tg d	gtgc	aagag
acggccgtct	cctgtgag	ag cttc	atcato	gag	tcgg	cca	atgg	ıctgg	rca t	gaca	tcatg
ttccagctgg	agttcttt	at gccc	ctcggd	ato	atct	tat	tttg	ctcc	ett d	caaga	ttgtt
tggagcctga	ggcggagg	ca gcag	ctggc	aga	cagg	ctc	ggat	gaag	jaa q	ggcga	cccgg
ttcatcatgg	tggtggca	at tgtg	ttcato	aca	tgct	acc	tgcc	cago	gt q	gtctg	ıctaga
ctctatttcc	tctggacg	gt gccc	tcgagt	gcc	tgcg	atc	cctc	tgto	ca t	gggg	ccctg
cacataacco	tcagcttc	ac ctac	atgaad	ago	atgo	tgg	atco	ccto	ggt o	gtatt	atttt
tcaagcccct	cctttccc	aa atto	tacaad	aag	ıctca	aaa	tctç	gcagt	ct	gaaac	ccaag
cagccaggac	actcaaaa	ac acaa	aggcc	g gaa	igaga	tgc	caat	ttc	J		
<210> 12 <211> 296 <212> PRT <213> H.S					,				·		
<400> 12											
Leu Leu Il 1	e Val Ala 5	Phe Va	l Leu	Gly	Ala 10	Leu	Gly	Asn	Gly	Val 15	Ala
Leu Cys Gl	y Phe Cys	Phe Hi	s Met	Lys 25	Thr	Trp	Lys	Pro	Ser 30	Thr	Val
Tyr Leu Ph		Ala Va	l Ala 40	Asp	Phe	Leu	Leu	Met 45	Ile	Cys	Leu
Pro Phe Ar 50	g Thr Asp	Tyr Ty 55		Arg	Arg	Arg	His 60	Trp	Ala	Phe	Gly
Asp Ile Pr	o Cys Arg	Val G	y Leu	Phe	Thr	Leu 75	Ala	Met	Asn	Arg	Ala 80
Gly Ser Il	e Val Phe. 85	e Leu Ti	r Val	Val	Ala 90	Ala	Asp	Arg	Tyr	Phe 95	Lys

Page 8

PCT/US00/31581

Val	Val	His	Pro 100	His	His	Ala	Val	Asn 105	Thr	Ile	Ser	Thr	Arg 110	Val	Ala	
Ala	Gly	Ile 115	Val	Cys	Thr	Leu	Trp 120	Ala	Leu	Val	Ile	Leu 125	Gly	Thr	Val	
Tyr	Leu 130	Leu	Leu	Glu	Asn	His 135	Leu	Cys	Val	Gln	Glu 140	Thr	Ala	Val	Ser	
Cys 145	Glu	Ser	Phe	Ile	Met 150	Glu	Ser	Ala	Asn	Gly 155	Trp	His	Asp	Ile	Met 160	
Phe	Gln	Leu	Glu	Phe 165	Phe	Met	Pro	Leu	Gly 170	Ile	Ile	Leu	Phe	Cys 175	Ser	
Phe	Lys	Ile	Val 180	Trp	Ser	Leu	Arg	Arg 185	Arg	Gln	Gln	Leu	Ala 190	Arg	Gln	
Ala	Arg	Met 195	Lys	Lys	Ala	Thr	Arg 200	Phe	Ile	Met	Val	Val 205	Ala	Ile	Val	
Phe	Ile 210	Thr	Cys	Tyr	Leu	Pro 215	Ser	Val	Ser	Ala	Arg 220	Leu	Tyr	Phe	Leu	
Trp 225	Thr	Val	Pro	Ser	Ser 230	Ala	Cys	Asp	Pro	Ser 235	Val	His	Gly	Ala	Leu 240	
His	Ile	Thr	Leu	Ser 245	Phe	Thr	Tyr	Met	Asn 250	Ser	Met	Leu	Asp	Pro 255	Leu	
Val	Tyr	Tyr	Phe 260	Ser	Ser	Pro	Ser	Phe 265	Pro	Lys	Phe	Tyr	Asn 270	Lys	Leu	
Lys	Ile	Cys 275		Leu	Lys	Pro	Lys 280		Pro	Gly	His	Ser 285	Lys	Thr	Gln	
Arg	Pro 290	Glu	Glu	Met	Pro	Ile 295										
<21: <21: <21: <21:	1> 2>	13 510 DNA H.Sa	pien	s											-	
	0> agct		ccac	cacc	ta t	ctgg	tgaa	c ct	gatg	gtġg	ccg	acct	gct	ttat	gtgcta	60
ttg	ccct	tcc	tcat	cato	ac c	tact	cact	a ga	tgac	aggt	ggc	cctt	cgg	ggag	ctgctc	120
tgc	aagc	tgg	tgca	cttc	ct g	ttct	atat	c aa	cctt	tacg	gca	gcat	cct	gctg	ctgacc	180
tgc	atct	ctg	tgca	ccag	tt c	ctag	gtgt	g tg	ccac	ccac	tgt	gttc	gct	gccc	taccgg	240
acc	cgca	ggc	atgo	ctgg	ct g	ggca	ccag	c ac	cacc	tggg	ccc	tggt	ggt	cctc	cagctg	300
ctg	ccca	cac	tggc	cttc	tc c	caca	cgga	c ta	cato	aatg	gcc	agat	gat	ctgg	tatgac	: 360
atg	acca	gcc	aaga	gaat	tt t	gato	ggct	t tt	tgcc	tacg Page		tagt	tct	gaca	ttgtct	420

ggctttcttt ccctccttgg tcattttggt gtgctattca ctgatggtca ggagcctgat 480													480			
caaç	gccag	gag g	jagaa	ccto	a to	agga	cago	Ī							1	510
<210> 14 <211> 170 <212> PRT <213> H.Sapiens																
<400)> :	14														
Trp 1	Ser	Cys	Ala	Thr 5	Thr	Tyr	Leu	Val	Asn 10	Leu	Met	Val	Ala	Asp 15	Leu	
Leu	Tyr	Val	Leu 20	Leu	Pro	Phe	Leu	Ile 25	Ile	Thr	Tyr	Ser	Leu 30	Asp	Asp	
Arg	Trp	Pro 35	Phe	Gly	Glu	Leu	Leu 40	Cys	Lys	Leu	Val	His 45	Phe	Leu	Phe	
Tyr	Ile 50	Asn	Leu	Tyr	Gly	Ser 55	Ile	Leu	Leu	Leu	Thr 60	Cys	Ile	Ser	Val	
His 65	Gln	Phe	Leu	Gly	Val 70	Cys	His	Pro	Leu	Cys 75	Ser	Leu	Pro	Tyr	Arg 80	
Thr	Arg	Arg	His	Ala 85	Trp	Ļeu	Gly	Thr	Ser 90	Thr	Thr	Trp	Ala	Leu 95	Val	
Val	Leu	Gln	Leu 100	Leu	Pro	Thr	Leu	Ala 105	Phe	Ser	His	Thr	Asp 110	Tyr	Ile	
Asn	Gly	Gln 115	Met	Ile	Trp	Tyr	Asp 120	Met	Thr	Ser	Gln	Glu 125	Asn	Phe	Asp	
Arg	Leu 130		Ala	Tyr	Gly	Ile 135	Val	Leu	Thr	Leu	Ser 140	Gly	Phe	Leu	Ser	
Leu 145	Leu	Gly	His	Phe	Gly 150	Val	Leu	Phe	Thr	Asp 155	Gly	Gln	Glu	Pro	Asp 160	
Gln	Ala	Arg	Gly	Glu 165	Pro	His	Glu	Asp	Arg 170							
<pre> <210> 15 <211> 894 <212> DNA <213> H.Sapiens</pre>																
<220> <221> misc_feature <222> (431)(461) <223> n is any nucleotide																
<40 cca	0> ccac	15 gcg	cagc	acgc	cg a	cạgg	gcct	c tc		ccat		cccg	cag	gccc	ggacga	60

PCT/US00/31581

WO 01/36473

ccacgctgcc	tccagccggt	cggcaaacta	gggcagctcg	cagcccacga	acagcagccc	120
cagcagctgg	ctcatcttca	ggctctgcac	cttggcgcgg	ggcatcgcgc	tgggcgcacg	180
ggctccacct	gggctcgccg	accaggccgc	tgcacccgct	ggggccttca	gccggtgccg	240
ccaccagacg	gagagtaggt	ggccacaagc	gacacccatg	atcttaacag	gcgcgacgaa	300
gcccgcgacg	gcctcataga	acgcgtacac	ctgcacgtgc	cagcgctgca	ggagcgcgaa	360
gatccagtgg	cagcgacgca	tccccggcca	ggctcgggcg	gagagtggcg	cgcctggctg	420
cagagacgtt	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nagtactagc	gcaccacaaa	480
ccccgacccc	cgcgccagca	gcagtgccag	cagccagccc	agggcggcga	gggcacgcgc	540
gggcagcggc	cggccgtgcg	gaagacgcac	cgcgcgccgg	cgctcgaggg	cgatgagcac	600
cacgaggtgg	gccgaggcgc	cccgcccgga	tgcctgcagc	agctgcagga	agcggcacgc	660
caggtccccc	gtggccgcgc	ggggctcgcc	cagcagttcc	caggccagct	gtgacagcgc	720
cgtgcccccg	cacgcgtaca	ggtccgccag	ggccagctgc	accagcagga	agtccatctt	780
gcgacgcttn	nnnnnnnn	nnnnnnnnn	nnnnnnnac	aggcggcaca	gcactgtggt	840
gttgcctgcc	accgccacca	ccaggatgac	ccccaggaac	accaggcgga	cgcg	894

```
<210> 16
```

<400> 16

Arg Val Arg Leu Val Phe Leu Gly Val Ile Leu Val Val Ala Val Ala

Gly Asn Thr Thr Val Leu Cys Arg Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa

Xaa Xaa Xaa Lys Arg Arg Lys Met Asp Phe Leu Leu Val Gln Leu Ala

Leu Ala Asp Leu Tyr Ala Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala Page 11

<211> 296

<212> PRT

<213> H.Sapiens

<220>

UNSURE <221>

<222> (26)..(35)

<223> Xaa is unknown

<220>

<221> UNSURE

<222> (144)..(154) <223> Xaa is Unknown

	50					55					60					
Trp 65	Glu	Leu	Leu	Gly	Glu 70	Pro	Arg	Ala	Ala	Thr 75	Gly	Asp	Leu	Ala	Cys , 80	•
Arg	Phe	Leu	Gln	Leu 85	Leu	Gln	Ala	Ser	Gly 90	Arg	Gly	Ala	Ser	Ala 95	His	
Leu	Val	Val	Leu 100	Ile	Ala	Leu	Glu	Arg 105	Arg	Arg	Ala	Val	Arg 110	Leu	Pro	
His	Gly	Arg 115	Pro	Leu	Pro	Ala	Arg 120	Ala	Leu	Ala	Ala	Leu 125	Gly	Trp	Leu	
Leu	Ala 130	Leu	Leu	Leu	Ala	Arg 135	Gly	Ser	Gly	Phe	Val 140	Val	Arg	Tyr	Xaa	
Xaa 145	Xaa	Xaa	Xaa	Xaa	Xaa 150	Xaa	Xaa	Xaa	Xaa	Thr 155	Ser	Leu	Gln	Pro	Gly 160	
Ala	Pro	Leu	Ser	Ala 165	Arg	Ala	Trp	Pro	Gly 170	Met	Arg	Arg	Суз	His 175	Trp	•
Ile	Phe	Ala	Leu 180	Leu	Gln	Arg	Trp	His 185	Val	Gln	Val	Tyr	Ala 190	Phe	Tyr	
Glu	Ala	Val 195	Ala	Gly	Phe	Val	Ala 200	Pro	Val	Lys	Ile	Met 205	Gly	Val	Ala	
Суѕ	Gly 210		Leu	Leu	Ser	Val 215	Trp	Trp	Arg	His	Arg 220	Leu	Lys	Ala	Pro	
Ala 225		Ala	Ala	Ala	Trp 230		Ala	Ser	Pro	Gly 235	Gly	Ala	Arg	Ala	Pro 240	
Ser	Ala	Met	Pro	Arg 245	Ala	Lys	Val	Gln	Ser 250	Leu	Lys	Met	Ser	Gln 255	Leu	
Leu	Gly	Leu	Leu 260		Val	Gly	Cys	Glu 265	Leu	Pro	Phe	Ala	Asp 270	Arg	Leu	
Glu	Ala	Ala 275		Ser	Ser	Gly	Pro 280		Gly	Glu	Trp	Glu 285	Gly	Glu	Ala	
Leu	Ser 290	Ala	Cys	Cys	Ala	Trp 295	Trp									
<21 <21 <21 <21	1> 2>	17 801 DNA H.Sa	pien	ıs												
<40 tct	0> :aaσt	17 ttt	tctc	tgaa:	ct t	tgag	cctg	rt ga	ıaaaa	agaa	ggg	atgo	tgc	ctca	ggccac	60
															agtcat	120
															ıcatggg	180

cttgatgacc	gtacaggtgg	ccgaacctgg	gaccagggac	ccattgggga	agtagtggaa	240
cttgatgcca	tggatgctgg	tgttgggcag	ggagaagagc	acggagaagc	cccagacgat	300
gccgaggatc	ctgagggccc	ggcgccgggt	gctctgcagt	ttggcgcgga	acgggtgtag	360
gatggccacg	tagcgctcca	cgctgacggt	ggtgatgctg	aggatggagg	cgaagcacac	420
ggtctcaaag	agggccgtct	tgaagtagca	gcccacgggc	ccgaacaaga	aagggtagtt	480
gcgccacatc	tcatagacct	ccaggggcat	tccaaggagc	aggaccagga	ggtcagagac	540
cgccaggctg	aagaggtagt	agttggtggg	cgtcttcata	gcctggtgct	gcagaatcac	600
caggcacacc	aggacattgc	caatgacccc	caccacaaaa	attggcacat	acaccacaga	660
cacggggagg	aagaagtggc	tgcgccgagg	tccgcagagg	aaggccagat	actcctcggt	720
gctgttcagg	tgtttctgga	atggatcttc	tagtttctgc	tggtagatcc	aggaagcatt	780
ctgaagtttt	tccatccctg	a		•		801

<210> 18 <211> 249 <212> PRT <213> H.Sapiens

<400> 18

Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln Lys 1 5 10 15

Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr Leu 20 25 30

Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val Ser 35 40 45

Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val Leu 50 55 60

Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Asn Thr 65 70 75 80

Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu Leu 85 90 95

Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe Leu 100 105 110

Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr Val 115 120 125

Cys Phe Ala Ser Ile Leu Ser Ile Thr Thr Val Ser Val Glu Arg Tyr 130 135 140

Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg Arg 145 150 155 160

Arg	Ala	Leu	Arg	Ile 165	Leu	Gly	Ile	Val	Trp 170	Gly	Phe	Ser	Val	Leu 175	Phe	
Ser	Leu	Pro	Asn 180	Thr	Ser	Ile	His	Gly 185	Ile	Lys	Phe	His	Tyr 190	Phe	Pro	
Asn	Gly	Ser 195	Leu	Val	Pro	Gly	Ser 200	Ala	Thr	Cys	Thr	Val 205	Ile	Lys	Pro	
Met	Trp 210		Tyr	Asn	Phe	Ile 215	Ile	Gln	Val	Thr	Ser 220	Phe	Leu	Phe	Tyr	
Leu 225	Leu	Pro	Met	Thr	Val 230	Ile	Ser	Val	Leu	Tyr 235	Tyr	Leu	Met	Ala	Leu 240	
Arg	Val	Ser	Ile	Ala 245	Gly	Val	Ala	Gly								
<21 <21 <21 <21	1> 2>	19 222 DNA H.Sa	piens	s				•								
<40	0>	19		L L		~+ ~ ~	t	+ a+:	t aaa		cca	acto	cat	ctat.	aatccc	60
																120
															tgttat	
_												attc	agg	aatt	acaatg	180
atg	cgga	aga	aagc	aaag	tt t	tccc	tcag	a ga	gaat	ccag	tg					222
<21 <21 <21 <21	1> 2>	20 73 PRT H.Sa	pien	s												
<40	0>	20														
Ile 1	. Lys	Met	Ile	Phe 5	Ala	Ile	Val	Gln	Ile 10	Ile	Gly	Phe	Ser	Asn 15	Ser	
Ile	Cys	s Asn	Pro 20	Ile	· Val	Tyr	Ala	Phe 25	Met	Asn	Glu	Asn	Phe 30	Lys	: Lys	
Asr	val	L Leu 35	ser	Ala	Val	Cys	Tyr 40	Cys	Ile	· Val	Asn	Lys 45	Thi	Phe	e Ser	
Pro	50	a Glr	n Arg	, His	Gly	Asn 55	Ser	Gly	, Ile	Thr	Met 60	Met	Arg	g Lys	Lys	
Ala 65	a Ly:	s Phe	e Ser	Leu	Arg 70	g Glu	a Asr	n Pro)							
<2	10> 11> 12>	21 447 DNA					٠									

<213> H.Sapiens

<400> 21 gccacagcat	gcagttttct	gtagaattcc	actttgtctt	tgcacttgaa	gaagatgaģg	60
tatctggtga	ccaggatcac	cacatagaat	aggaaccgtg	aggtacatgt	ggatgtgcag	120
catggcactc	acaaatttgc	agaagggcag	cccaaacatc	caagtcttct	tgatgaggta	180
ggtcaagcga	aatggcactg	tcagcagaaa	aacgctgtgg	accaccacca	agttaatgac	240
cgccatggtg	gtcactgacc	gggtgttcat	tttcaccagg	aggaaaagaa	tggaaatgac	300
acccaccagc	ccgccaataa	gcactatgaa	gtagaggctg	attaagtggg	gtgtcactat	360
aggatcgcaa	gaggaattcc	tggaggtatt	gtggccaggc	atacttggga	agtcacctgg	420
aggagaaaaa	gcaccagagt	aactgac				447

<210> 22

<211> 149

<212> PRT

<213> H.Sapiens

<400> 22

Val Ser Tyr Ser Gly Ala Phe Ser Pro Pro Gly Asp Phe Pro Ser Met
1 5 10 15

Pro Gly His Asn Thr Ser Arg Asn Ser Ser Cys Asp Pro Ile Val Thr 20 25 30

Pro His Leu Ile Ser Leu Tyr Phe Ile Val Leu Ile Gly Gly Leu Val 35 40 45

Gly Val Ile Ser Ile Leu Phe Leu Leu Val Lys Met Asn Thr Arg Ser 50 60

Val Thr Thr Met Ala Val Ile Asn Leu Val Val Val His Ser Val Phe 65 70 75 80

Leu Leu Thr Val Pro Phe Arg Leu Thr Tyr Leu Ile Lys Lys Thr Trp 85 90 95

Met Phe Gly Leu Pro Phe Cys Lys Phe Val Ser Ala Met Leu His Ile 100 105 110

His Met Tyr Leu Thr Val Pro Ile Leu Cys Gly Asp Pro Gly His Gln 115 120 125

Ile Pro His Leu Leu Gln Val Gln Arg Gln Ser Gly Ile Leu Gln Lys 130 135 140

Thr Ala Cys Cys Gly 145

<210> 23 <211> 222

<212> DNA <213> H.Sapiens	
<400> 23 actgaccaag gtcagggcat cgactgaggc tagaaggcca caggaaatgc cagtcaaggt	60
gttggcgcct gcaatcgcac ctaccacaaa cttgaccggg ggcagggggg caggcccgcc	120
agcgaacacg gtcagcagca ccagtccatt gcagagcacg gagagcaaca cgatggccca	180
cacggccagg cggatgcccc agctttcaaa gaggtactca ca	222
<210> 24 <211> 74 <212> PRT <213> H.Sapiens	
<400> 24	
Cys Glu Tyr Leu Phe Glu Ser Trp Gly Ile Arg Leu Ala Val Trp Ala 1 5 10 15	
Ile Val Leu Ser Val Leu Cys Asn Gly Leu Val Leu Eu Thr Val 20 25 30	
Phe Ala Gly Gly Pro Ala Pro Leu Pro Pro Val Lys Phe Val Val Gly 35	
Ala Ile Ala Gly Ala Asn Thr Leu Thr Gly Ile Ser Cys Gly Leu Leu 50 60	
Ala Ser Val Asp Ala Leu Thr Leu Val Ser 65 70	
<210> 25 <211> 246 <212> DNA <213> H.Sapiens	
<400> 25 aaccccatca tetacaeget caccaaeege gaeetgegee aegegeteet gegeetggte	60
tgctgcggac gccactcctg cggcagagac ccgagtggct cccagcagtc ggcgagcgcg	120
gctgaggctt ccgggggcct gcgccgctgc ctgcccccgg gccttgatgg gagcttcagc	180
ggctcggagc gctcatcgcc ccagcgcgac gggctggaca ccagcggctc cacaggcagc	240
cccggt	246
<210> 26 <211> 82 <212> PRT <213> H.Sapiens	
<400> 26	

PCT/US00/31581

WO 01/36473

Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg His Ala Leu 1 5 10 15 Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg Asp Pro Ser

Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly Gly Leu Arg
35 40 45

Arg Cys Leu Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly Ser Glu Arg

Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser Thr Gly Ser 65 70 75 80

Pro Gly

<210> 27 <211> 420 <212> DNA

<213> H.Sapiens

<220>

<221> misc_feature

<222> (81)...(106)

<223> n is any nucleic acid

<400> 27
cgtgaagaac agcgccaca tgaccagcat gtgcaccacg cgcgctctgc gccgcgatgc 60
tcgcgggtcc gcagcctcct nnnnnnnnn nnnnnnnnn nnnnnntgc agagcttgcg 120
cgcgatgcgg gcgtacatga ccacgatgag cgccagcggc gccaggtaga tgtgcgagaa 180
gagcacagtg gtgtagaccc tgcgcatgcc cttctcgggc caggcctccc agcaggagta 240
gagagggtag gagcggttgc gggcgtccac catgaagtgg tgctcctcac gggtgacggt 300
cagcgtgacg gccgagggac acatgatgag cagcgccagg gcccagatga cggcgatggt 360
gacgaggcgcc ttccgcaggg tcagcttctc gcggaaaggg tgcacgatgc agcggaacct 420

<210> 28

<211> 139

<212> PRT

<213> H.Sapiens

<220>

<221> UNSURE

<222> (104)..(113)

<223> Xaa is Unknown

<400> 28

Phe Arg Cys Ile Val His Pro Phe Arg Glu Lys Leu Thr Leu Arg Lys Page 17

1				5					10					15		
Ala	Leu	Val	Thr 20	Ile	Ala	Val	Ile	Trp 25	Ala	Leu	Ala	Leu	Leu 30	Ile	Met	
Cys	Pro	Ser 35	Ala	Val	Thr	Leu	Thr 40	Val	Thr	Arg	Glu	Glu 45	His	His	Phe	
Met	Val 50	Asp	Ala	Arg	Asn	Arg 55	Ser	Tyr	Pro	Leu	Tyr 60	Ser	Суѕ	Trp	Glu	
Ala 65	Trp	Pro	Glu	Lys	Gly 70	Met	Arg	Arg	Val	Tyr 75	Thr	Thr	Val	Leu	Phe 80	
Ser	His	Ile	Tyr	Leu 85	Ala	Pro	Leu	Ala	Leu 90	Ile	Val	Val	Met	Tyr 95	Ala	
Arg	Ile	Ala	Arg 100	Lys	Leu	Cys	Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa	
Xaa	Glu	Ala 115	Ala	Asp	Pro	Arg	Ala 120	Ser	Arg	Arg	Arg	Ala 125	Arg	Val	Val	
His	Mét 130	Leu	Val	Met	Val	Ala 135	Leu	Phe	Phe	Thr						
<21 <21 <21 <21	1> 2>	29 318 DNA H.Sa	pien	s												
<40 gca	gggg 0>	29 gcg	tgag	tcct	ca g	gcac	ttct	t ga	ggtc	cttg	ttg	agca	gga	agca	gacaat	60
tgg	gttg	acg	gcag	cctg	gg c	gaag	ctca	t cc	aaac	agca	gtg	gcca	ggt	agcg	gtgggg	120
cac	agca	cag	gctt	tcac	aa a	cact	cgcc	a gt	agca	ggcc	acg	atgt	agg	gtga	ccagag	180
gag	caga	aag	agca	gtgt	ga t	cgcg	taga	a ca	tgcg	gccc	agc	tgct	ttt	cacc	cttgac	240
ctc	gtcc	atg	ccca	gtag	cc g	ccgg	ctgg	c tg	catg	ccca	ttc	tgcc	gga	tacc	cagcag	300
ggt	tggt	ggc	atgg	gccc												318
<21 <21 <21 <21	1> 2>	30 106 PRT H.Sa	pien	ıs												
<40	0>	30														
Gly 1	Pro	Met	Pro	Pro 5	Thr	Leu	Leu	Gly	Ile 10	Arg	Gln	Asn	Gly	His 15	: Ala	
Ala	Ser	Arc	g Arg 20	, Leu	Leu	Gly	Met	Asp 25	Glu	Val	. Lys	Gly	7 Glu 30	Lys	Gln	
Leı	ı Gly	/ Arc	g Met	: Phe	. Tyr	Ala	Ile	Thr		Leu Page		e Leu	ı Lev	ı Lev	Trp	

PCT/US00/31581

60

120 180

240300354

												_			
		35					40					45			
Ser	Pro 50	Tyr	Ile	Val	Ala	Cys 55	Tyr	Trp	Arg	Val	Phe 60	Val	Lys	Ala	Cys
Ala 65	Val	Pro	His	Arg	Tyr 70	Leu	Ala	Thr	Ala	Val 75	Trp	Met	Ser	Phe	Ala 80
Gln	Ala	Ala	Val	Asn 85	Pro	Ile	Val	Cys	Phe 90	Leu	Leu	Asn	Lys	Asp 95	Leu
Lys	Lys	Суѕ	Leu 100	Arg	Thr	His	Ala	Pro 105	Cys						
<210 <211 <211 <211	1> 2>	31 354 DNA H.Saj	pien	5											
<40 tat	0> tctg	31 taa	tgaa	gaat	gt ca	attca	acact	gc.	catt	ggca	cat	ccagt	tgg (cctca	acctag
cat	tgtg	aaa	gccc	ttcg	gt t	ggtgi	tatto	g cc	actt	catt	tta	aaag	gat	gcaca	aagtcc
ctg	gtgc	ctt	tcca	cago	aa t	gcag	gtcat	ag	tgag	gatt	tct	gtca	caa	cagc	ggtaga
ctg	gaca	aat	ggca	ccat	ct to	gcaa	atgaa	a ag	cacc	tgca	gta	agga	aat	agga [.]	taaatc
ata	cato	aaa	acaa	aaag	aa ta	aaag	gttt	c at	ctgt	gtct	ttg	taat	tat	cact	atcagt
сса	ttct	gag	cctc	tgcc	aa a	aagt	ttga	t aa	ttgt	aatt	act	ctgt	aga	caca	
<21 <21 <21 <21	1> 2>	32 117 PRT H.Sa	pien	s											
<40	0>	32													
Val 1	Туг	: Arg	Val	Ile 5	Thr	Ile	Ile	Lys	Leu 10	Phe	Gly	Arg	Gly	Ser 15	Glu
Trp	Thi	Asp	Ser 20	Asp	Asn	Tyr	Lys	Asp 25	Thr	Asp	Glu	Thr	Phe 30	lle	Leu
Phe	val	Leu 35	Met	Tyr	Asp	Leu	Ser 40	Туг	Phe	Leu	Thr	Ala 45	Gly	Ala	Phe
Ile	Cys 50	s Lys	Met	: Val	Pro	Phe 55	. Val	Glr	ser	Thr	Ala 60	Val	. Val	Thr	Glu
Ile 65	e Lei	Thi	. Met	Thr	Cys	Ile	Ala	Va]	Glu	a Arg 75	His	Gln	Gly	/ Lev	Val 80

His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg Arg Ala Phe Thr 85 90 95

Met Leu Gly Glu Ala Thr Gly Cys Ala Asn Gly Ser Val Asn Asp Ile

100

105

110

Leu His Tyr Arg Ile 115

<210> 33 <211> 621 <212> DNA <213> H.Sapiens

<400> gagcaacatg atctttttga agtacttgac ggtgtcgttc ttgacggtca cgaagcacag 60 agtgttgatc atgctgttgc tcatggcgat gcactcgacg atgtagaagg cagtgaggta 120 gtgcttctcc ttcacaaaca cggtggggaa gaagtcgcgc acgatggtga agccgtagaa 180 gggcgcccag catagcacgt aggcggtgag gatgcacatg agcaccagga ccgtcttcct 240 gcggcagcgc agcctcttgc ggatctgctc tgtctggaat ccagggaccg ccttgaacca 300 gagetecegg gagatectgg catageaeag ggteatggtg accaegggge ecaegaatte 360 tatgccaaag ataaagagga agtaggactt gtagtagagc tgctggtcca caggccagat 420 ctggccgcag aagatctttt cctggctctt gacaatgacg aggaccgtct cggtggtgaa 480 gtaggcggaa gggatggcga tcaggatgga caccgtccac accaaggcaa tcaggccagt 540 ggctgtttgg cacttcattc gtggtctcag cggatggaca atagccagat acctagggca 600 621 agaacacaag tggaggcagc c

<210> 34 <211> 207

<212> PRT

<213> H.Sapiens

<400> 34

Gly Cys Leu His Leu Cys Ser Cys Pro Arg Tyr Leu Ala Ile Val His

Pro Leu Arg Pro Arg Met Lys Cys Gln Thr Ala Thr Gly Leu Ile Ala 20 25 30

Leu Val Trp Thr Val Ser Ile Leu Ile Ala Ile Pro Ser Ala Tyr Phe 35 40 45

Thr Thr Glu Thr Val Leu Val Ile Val Lys Ser Gln Glu Lys Ile Phe 50 55 60

Cys Gly Gln Ile Trp Pro Val Asp Gln Gln Leu Tyr Tyr Lys Ser Tyr 65 70 75 80

Phe Leu Phe Ile Phe Gly Ile Glu Phe Val Gly Pro Val Val Thr Met 85 90 95

Thr Leu Cys Tyr Ala Arg Ile Ser Arg Glu Leu Trp Phe Lys Ala Val 100 105 110	
Pro Gly Phe Gln Thr Glu Gln Ile Arg Lys Arg Leu Arg Cys Arg Arg ' 115 120 125	
Lys Thr Val Leu Val Leu Met Cys Ile Leu Thr Ala Tyr Val Leu Cys 130 135 140	
Trp Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp Phe Phe Pro Thr 145 150 155 160	
Val Phe Val Lys Glu Lys His Tyr Leu Thr Ala Phe Tyr Ile Val Glu 165 170 175	
Cys Ile Ala Met Ser Asn Ser Met Ile Asn Thr Leu Cys Phe Val Thr 180 185 190	
Val Lys Asn Asp Thr Val Lys Tyr Phe Lys Lys Ile Met Leu Leu 195 200 205	
<210> 35 <211> 483 <212> DNA <213> H.Sapiens	
<400> 35 cagccacact gcagtgatga aatcaaatgt ccaacaccaa ccatagtcac cattactaac	60
taaqaaqcca caaaacttcc cttccagggt gttcagcagc agggacaggg cccagggcag	120
ggcacacatg acagttgaca ggtttcttgg gcagcagcag cagtaccaga taggccgcag	180
gacagacagg cagcactcag tactgatggc actcagcatg ctcaggccta caaggtaggc	240
aaaggtcatc acgctggtga agaagctagg gaaattgatg gagatggaac agaagaagtt	300
	360
actgaggtac accaggcaat ttataatctg gaagcagagg aagaggaagt cggccccggc	
caggctgagg acgtagacag agaaggcgtt cctgcgcatg cggaagccca ggagccagag	420
cacaaacccg tttcctacca gcccgaccag ggcaatgaaa aggatcagga agaccgggat	480
cag	483
<210> 36 <211> 161 <212> PRT <213> H.Sapiens	
<400> 36	
Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala Leu Val Gly Leu Val 1 5 10 15	
Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe Arg Met Arg Arg Asn 20 25 30	

Ala	Phe	Ser 35	Val	Tyr	Val	Leu	Ser 40	Leu	Ala	Gly	Ala	Asp 45	Phe	Leu	Phe	
Leu	Cys 50	Phe	Gln	Ile	Ile	Asn 55	Cys	Leu	Val	Tyr	Leu 60	Ser	Asn	Phe	Phe '	
Cys 65	Ser	Ile	Ser	Ile	Asn 70	Phe	Pro	Ser	Phe	Phe 75	Thr	Ser	Val	Met	Thr 80	
Phe	Ala	Tyr	Leu	Val 85	Gly	Leu	Ser	Met	Leu 90	Ser	Ala	Ile	Ser	Thr 95	Glu	
Суз	Cys	Leu	Ser 100	Val	Leu	Arg	Pro	Ile 105	Trp	Tyr	Cys	Cys	Cys 110	Суѕ	Pro	
Arg	Asn	Leu 115	Ser	Thr	Val	Met	Cys 120	Ala	Leu	Pro	Trp	Ala 125	Leu	Ser	Leu	
Leu	Leu 130	Asn	Thr	Leu	Glu	Gly 135	Lys	Phe	Cys	Gly	Phe 140	Leu	Val	Ser	Asn	
Gly 145	Asp	Туr	Gly	Trp	Cys 150	Trp	Thr	Phe	Asp	Phe 155	Ile	Thr	Ala	Val	Trp 160	
Leu																
<21 <21 <21 <21	1> 2>	37 330 DNA H.Sa	pien	s												
<40 gag	0> agtc	37 tga	ttct	gact	ta c	atca	cata	t gt	aggc	ctgg	gca	tttc	tat	ttgc	agcctg	60
atc	cttt	gct	tgtc	cgtt	ga g	gtcc	tagt	c tg	gagc	caag	tga	caaa	gac	agag	atcacc	120
tat	ttac	gcc	atgt	gtgc	at t	gtta	acat	t gc	agco	actt	tgc	tgat	ggc	agat	gtgtgg	180
															gcagcc	
															gcactc	
	atco										•		_			330
CLL	accc	ccc	acgg	jaacc	ac y	uccy		. •								
<21 <21 <21 <21	1> 2>	38 110 PRT H.Sa	apier	ns												
<40	0>	38														
Glu 1	ı Sei	: Leu	ı Ile	E Let	ı Thı	туг	: Ile	e Thr	Ту: 10	· Val	L Gly	, Let	ı Gly	7 Ile 15	e Ser	
Ile	e Cys	s Sei	r Let 20	ı Ile	e Leu	ı Cys	. Le	25	val	l Glu	Val	L Let	ı Val 30	l Trp	Ser	

Gln Val Thr Lys Thr Glu Ile Thr Tyr Leu Arg His Val Cys Ile Val Asn Ile Ala Ala Thr Leu Leu Met Ala Asp Val Trp Phe Ile Val Ala Ser Phe Leu Ser Gly Pro Ile Thr His His Lys Gly Cys Val Ala Ala Thr Phe Phe Gly His Phe Phe Tyr Leu Ser Val Phe Phe Trp Met Leu Ala Lys Ala Leu Leu Ile Leu Tyr Gly Ile Met Ile Val Phe <210> 39 <211> 628 <212> DNA <213> H.Sapiens <400> ttgtgtggca gtagagagat gtcaggcttc agagtcaaca agaactggat ttcaaactgg 60 atttgaggac ccccaccttt ggtaagtgac ttattatctg cgagcctctg tttctctctt 120 180 ctttaaatqa qqacagtaaa tcccatacgg cagggtggtg gggagaatca gagatgatac agctqqtqat cacatctqqt ttqtqttccc aggggcacca gactagggtt tctgagcatg 240 300 gatccaaccg tcccagtctt cggtacaaaa ctgacaccaa tcaacggacg tgaggagact ccttqctaca atcaqaccct gagcttcacg gtgctgacgt gcatcatttc ccttgtcgga 360 ctgacaggaa acgcggtagt gctctggctc ctgggctacc gcatgcgcag gaacgctgtc 420 tccatctaca tcctcaacct ggccgcagca gacttcctct tcctcagctt ccagattata 480 cgttcgccat tacgcctcat caatatcagc catctcatcc gcaaaatcct cgtttctgtg 540 atgacettte ectaetttae aggeetgagt atgetgageg ceateageae egagegetge 600 628 ctgtctgttc tgtggcccat ctggtacc 40 <210> <211> 205 <212> PRT <213> H.Sapiens <400> 40 Leu Cys Gly Ser Arg Glu Met Ser Gly Phe Arg Val Asn Lys Asn Trp Ile Ser Asn Trp Ile Gly Pro Pro Pro Leu Val Ser Asp Leu Leu Ser Ala Ser Leu Cys Phe Ser Leu Leu Met Arg Thr Val Asn Pro Ile Arg

Gln	Gly 50	Gly	Gly	Glu	Asn	Gln 55	Arg	Tyr	Ser	Trp	Ser 60	His	Leu	vai	Cys ,		
Val 65	Pro	Arg	Gly	Thr	Arg 70	Leu	Gly	Phe	Leu	Ser 75	Met	Asp	Pro	Thr	Val 80		
Pro	Val	Phe	Gly	Thr 85	Lys	Leu	Thr	Pro	Ile 90	Asn	Gly	Arg	Glu	Glu 95	Thr		
Pro	Cys	Tyr	Asn 100	Gln	Thr	Leu	Ser	Phe 105	Thr	Val	Leu	Thr	Cys 110	Ile	Ile		
Ser	Leu	Val 115	Gly	Leu	Thr	Gly	Asn 120	Ala	Val	Val	Leu	Trp 125	Leu	Leu	Gly		
Tyr	Arg 130	Met	Arg	Arg	Asn	Ala 135	Val	Ser	Ile	Tyr	Ile 140	Leu	Asn	Leu	Ala		
Ala 145	Ala	Asp	Phe	Leu	Phe 150	Leu	Ser	Phe	Gln	Ile 155	Ile	Arg	Ser	Pro	Leu 160		
Arg	Leu	Ile	Asn	Ile 165	Ser	His	Leu	Ile	Arg 170	Lys	Ile	Leu	Val	Ser 175	Val		
Met	Thr	Phe	Pro 180	Tyr	Phe	Thr	Gly	Leu 185	Ser	Met	Leu	Ser	Ala 190	Ile	Ser		
Thr	Glu	Arg 195	Cys	Leu	Ser	Val	Leu 200	Trp	Pro	Ile	Trp	Tyr 205	ů.				
<210 <210 <210 <210	1> : 2> :	41 319 DNA H.Saj	pien	5													
<40	0> gaaa	41 gca a	aggc	cacc	ag g	acct	tagg	c at	agtc	atgg	gag	tgtt:	tgt	gttg	tgctgg	r (60
ctg	ccct	tct 1	ttgt	cttg	ac g	atca	caga	t cc	tttc	atta	att	ttac	aac	cctt	gaagat	: 12	20
ctg	taca	atg '	tctt	cctc	tg g	ctag	gcta	t tt	caac	tctg	ctt	tcaa	tcc	catt	ttatat	: 18	80
ggc	atgc	ttt a	atcc	ttgg	tt t	cgca	aggc	a tt	gagg	atga	ttg	tcac	agg	catg	atcttc	2	40
cac	cctg	act	cttc	cacc	ct a	agcc	tgtt	t tc	tgcc	catg	ctt	aggc	tgt	gttc	atcatt	: 30	00
caa	tagg	act ·	cttt	tctg	g					•						3	19
<21 <21 <21 <21	1> 2>	42 103 PRT H.Sa	pien	s													
<40	0>	42															
Thr	Glu	Ser	Lys	Ala 5	Thr	Arg	Thr	Leu	Gly 10	Ile	Val	Met	Gly	Val 15	Phe		

Val	Leu	Cys	Trp 20	Leu	Pro	Phe	Phe	Val 25	Leu	Thr	Ile	Thr	Asp 30	Pro	Phe '	
Ile	Asn	Phe 35	Thr	Thr	Leu	Glu	Asp 40	Leu	Tyr	Asn	Val	Phe 45	Leu	Trp	Leu	
Gly	Tyr 50	Phe	Asn	Ser	Ala	Phe 55	Asn	Pro	Ile	Leu	Tyr 60	Gly	Met	Leu	Tyr	
Pro 65	Trp	Phe	Arg	Lys	Ala 70	Leu	Arg	Met	Ile	Val 75	Thr	Gly	Met	Ile	Phe 80	
His	Pro	Asp	Ser	Ser 85	Thr	Leu	Ser	Leu	Phe 90	Ser	Ala	His	Ala	Ala 95	Val	
Phe	Ile	Ile	Gln 100	Asp	Ser	Phe										
<21 <21 <21 <21	1> 2>	43 515 DNA H.Sa	pien	s												
<40	0> .	43					~~~	~ ~~	2222	ccat	222	2022	tat	aaat	ппаааа	. 60
_	_														ggaaaa	
_															gaagac	
															tcatgo	
ttg	cctc	tct	atgt	ccaa	gt g	ttta	tttt	t gc	agtt	gacc	tta	attt	caa	gtta	gttttg	240
agg	tctc	tac	agta	atgt	tt t	taat	ctgt	c to	tact	tctt	cag	aaaa	taa	atta	gttgtt	300
gac	gaat	cag	tcct	taag	ac c	ttgc	cgct	t ac	aata	agtt	tta	ttgc	ctt	ccca	aaccat	360
tgg	taaa	aga	aagc	ataa	at c	aagg	ggtt	c at	agct	gaat	tat	aata	aac	acac	caaact	420
aaa	atct	cat	aaac	ataa	gg a	ggag	ttat	a aa	atto	atat	aag	cato	aat	cact	gcatca	480
				ccaa												515
<21 <21 <21 <21	1> 2>	44 148 PRT H.Sa	pien	ıs												
<40	0>	44														
Leu 1	His	Glr	a Arg	Gly 5	Met	. Val	. Ala	Lys	Arc 10	g Gln	Glu	ı Met	. Le	1 Ala 15	a Ala	
Phe	e Lev	ı Val	Ser 20	Trp	Leu	ı Pro	туг	Let 25	ı Val	l Asp	Ala	a Val	1 11e 30	e Asp	Ala	
Тул	: Met	35	n Phe	e Ile	Thi	Pro	Pro 40	Ту				1 Ile 45	e Le	ı Val	l Trp	
										Page	25					

C	Cys	Val 50	Tyr	Tyr	Asn	Ser	Ala 55	Met	Asn	Pro	Leu	11e 60	Tyr	Ala	Pne	Pne ,		
	Tyr 55	Gln	Trp	Phe	Gly	Lys 70	Ala	Ile	Lys	Leu	Ile 75	Val	Ser	Gly	Lys	Val 80		
Ι	Leu	Arg	Thr	Asp	Ser 85	Ser	Thr	Thr	Asn	Leu 90	Phe	Ser	Glu	Glu	Val 95	Glu		
1	Thr	Asp	Lys	His 100	Tyr	Суз	Arg	Asp	Leu 105	Lys	Thr	Asn	Leu	Lys 110	Leu	Arg		
2	Ser	Thr	Ala 115	Lys	Ile	Asn	Thr	Trp 120	Thr	Arg	Gly	Lys	His 125	Asp	His	Met		
E	?ro	Ser 130	Cys	Arg	Thr	Ile	His 135	Ser	Thr	Val	Val	Leu 140	Lys	His	Leu	Leu		
	Ser 145	Ser	Суѕ	Ile														
<	<210 <211 <212 <213	L> ' 2> !	45 726 DNA H.Sa	pien	s													
	<400 ctg		45 gag	gtcc	tcga	tc t	atcc	tcta	c gc	cgtc	cttg	gtt	ttgg	ggc	tgtg	ctggca	a 60)
ç	gcgt	tttg	gaa	actt	actg	gt c	atga	ttgc	t at	cctt	cact	tct	aaca	act	gcac	acacct	120)
ā	acaa	aacti	ttc	tgat	tgcg	tc g	ctgg	cctg	t gc	tgac	ttct	tgg	tggg.	agt	cact	gtgato	j 180	כ
(ccct	ttca	gca	cagt	gagg	tc t	gtgg	agag	c tg	ttgg	tact	ttg	ggga	cag	ttac	tgtaaa	a 240)
1	ttc	cata	cat	gttt	tgac	ac a	tctt	tctg	t tt	tgct	tctt	tat	ttca	ttt	atgc	tgtato	300	C
1	tct	gttg	ata	gata	catt	gc t	gtta	ctga	t cc	tctg	acct	atc	caac	caa	gttt	actgt	g 360	С
1	tca	gttt	cag	ggat	atgc	at t	gttc	tttc	c tg	gttc	tttt	ctg	tcac	ata	cagc	ttttc	g 420	С
ě	atc	tttt	aca	cggg	agcc	aa c	gaag	aagg	a at	tgag	gaat	tag	tagt	tgc	tcta	acctgi	480	С
•	gta	ggag	gct	gcca	ggct	cc a	ctga	atca	a aa	ctgg	gtcc	tac	tttg	ttt	tctt	ctatte	540	C
1	ttt	atac	cca	atgt	cgcc	at g	gtgt	ttat	a ta	cagt	aaga	tat	tttt	ggt	ggcc	aagcat	£ 60¢	C
																tacaa		(
																gcagc		(
	ttt																72	•

<210> 46 <211> 241 <212> PRT <213> H.Sapiens

<400> 46

Leu Glu Arg Gly Pro Arg Ser Ile Leu Tyr Ala Val Leu Gly Phe Gly

Ala Val Leu Ala Ala Phe Gly Asn Leu Leu Val Met Ile Ala Ile Leu

His Phe Gln Leu His Thr Pro Thr Asn Phe Leu Ile Ala Ser Leu Ala

Cys Ala Asp Phe Leu Val Gly Val Thr Val Met Pro Phe Ser Thr Val

Arg Ser Val Glu Ser Cys Trp Tyr Phe Gly Asp Ser Tyr Cys Lys Phe

His Thr Cys Phe Asp Thr Ser Phe Cys Phe Ala Ser Leu Phe His Leu

Cys Cys Ile Ser Val Asp Arg Tyr Ile Ala Val Thr Asp Pro Leu Thr

Tyr Pro Thr Lys Phe Thr Val Ser Val Ser Gly Ile Cys Ile Val Leu

Ser Trp Phe Phe Ser Val Thr Tyr Ser Phe Ser Ile Phe Tyr Thr Gly

Ala Asn Glu Glu Gly Ile Glu Glu Leu Val Val Ala Leu Thr Cys Val

Gly Gly Cys Gln Ala Pro Leu Asn Gln Asn Trp Val Leu Leu Cys Phe

Leu Leu Phe Phe Ile Pro Asn Val Ala Met Val Phe Ile Tyr Ser Lys

Ile Phe Leu Val Ala Lys His Gln Ala Arg Lys Ile Glu Ser Thr Ala

Ser Gln Ala Gln Ser Phe Ser Glu Ser Tyr Lys Glu Arg Val Ala Lys 215

Arg Glu Arg Lys Ala Ala Lys Thr Leu Gly Ile Ala Met Ala Ala Phe 230

Leu

<210> 47

<211> 660

<212> DNA

<213> H.Sapiens

<400> 47

aaccaggtgg ccttactcct aagacccctg gccttgtcta tggcctttat caacagctgt

60

ctcaatccag ttct	ctatgt cttcattggg	catgacttct	gggagcactt	gctccactcc	120
ctgctagctg cctt	agaacg ggcacttago	gaggagccag	atagtgcctg	aatcccagct	180
cccaggcaga tgag	stccttt ataacatgad	ccaatttcct	actccatttt	cccaccactc	240
aatcctcttc ccaa	acaget etaccataat	ccaacatcca	acagaattta	agagaataaa	300
ccacaacttt taag	gtgaget etatgtgeta	ggtcatgttt	tagaatacaa	ccttaagtgc	360
ctggaagatg gagg	gcaagaa acaaacaagg	; tctcattctt	tagaggaaga	cagttcacca	420
agactcaaac agaa	aaaaaag atagttatct	tgtgacaaaa	caagtcataa	aattgggtca	480
ggacctgcag caat	tgacttt atgctagaat	ccagagcact	agcaggaaac	tgcttaaatt	540
ttacttaatc aaag	gtcaagt ttggacatad	atgtcaggta	aaacctagca	gagatgagct	600
accttgattt taaa	aacttca agggatagc	t caatgtcatc	aagatccttt	tgatgacttg	660

<210> 48

<211> 211

<212> PRT

<213> H.Sapiens

<400> 48

Asn Gln Val Ala Leu Leu Leu Arg Pro Leu Ala Leu Ser Met Ala Phe 1 5 10 15

Ile Asn Ser Cys Leu Asn Pro Val Leu Tyr Val Phe Ile Gly His Asp 20 25 30

Phe Trp Glu His Leu Leu His Ser Leu Leu Ala Ala Leu Glu Arg Ala 35 40 45

Leu Ser Glu Glu Pro Asp Ser Ala Ile Pro Ala Pro Arg Gln Met Ser 50 55 60

Pro Leu His Asp Pro Ile Ser Tyr Ser Ile Phe Pro Pro Leu Asn Pro 65 70 75 80

Leu Pro Lys Gln Leu Tyr His Asn Pro Thr Ser Asn Arg Ile Glu Asn 85 90 95

Lys Pro Gln Leu Leu Ser Glu Leu Tyr Val Leu Gly His Val Leu Glu 100 105 110

Tyr Asn Leu Lys Cys Leu Glu Asp Gly Gly Lys Lys Gln Thr Arg Ser 115 120 125

His Ser Leu Glu Glu Asp Ser Ser Pro Arg Leu Lys Gln Lys Lys Arg

Leu Ser Cys Asp Lys Thr Ser His Lys Ile Gly Ser Gly Pro Ala Ala 145 150 155 160

Met Thr Leu Cys Asn Pro Glu His Gln Glu Thr Ala Ile Leu Leu Asn Page 28

	165	170	•	175
Gln Ser Gln Val 180		Met Ser Gly 185	Lys Thr Gln Arg 190	Ala Thr
Leu Ile Leu Lys 195		Ile Ala Gln 200	Cys His Gln Asp 205	Pro Phe
Asp Asp Leu 210				
<210> 49 <211> 465 <212> DNA <213> H.Sapien	s			
<400> 49 gcttgttcac ggcc	accatc ctcaag	ctgt tgcgcac	gga ggaggcgcac	ggccgggagc 60
ageggaggeg egeg	gtgggc ctggcc	gegg tggtett:	get ggeetttgte	acctgcttcg 120
ccccaacaa cttc	gtgctc ctggcg	caca tegtgaç	geeg cetgttetae	ggcaagagct 180
actaccacgt gtac	aagctc acgctg	stgtc tcagcto	geet caacaactgt	ctggacccgt 240
ttgtttatta cttt	gegtee egggaa	ittcc agctgcg	geet gegggaatat	ttgggctgcc 300
geegggtgee caga	gacacc ctggac	acge geegega	agag cctcttctcc	gccaggacca 360
			gat ggagggagcc	
gcctccagag gcag				465
		-		
<210> 50 <211> 160 <212> PRT <213> H.Sapien	ns			
<400> 50				
	Thr Ile Leu	Lys Leu Leu 10	Arg Thr Glu Glu	Ala His
Gly Arg Glu Glr 20	Arg Arg Arg	Ala Val Gly 25	Leu Ala Ala Val	Val Leu
Leu Ala Phe Val	Thr Cys Phe	Ala Pro Asn 40	Asn Phe Val Leu 45	Leu Ala
His Ile Val Ser 50	Arg Leu Phe 55	Tyr Gly Lys	Ser Tyr Tyr His	Val Tyr
Lys Leu Thr Leu 65	Cys Leu Ser 70	Cys Leu Asn	Asn Cys Leu Asp 75	Pro Phe 80
Val Tyr Tyr Phe	e Ala Ser Arg 85	Glu Phe Gln 90	Leu Arg Leu Arg	Glu Tyr 95

Leu	Gly	Cys	Arg 100	Arg	Val	Pro	Arg	Asp 105	Thr	Leu	Asp	Thr	Arg 110	Arg	Glu	
Ser	Leu	Phe 115	Ser	Ala	Arg	Thr	Thr 120	Ser	Val	Arg	Ser	Glu 125	Ala	Gly	Ala'	
His	Pro 130	Glu	Gly	Met	Glu	Gly 135	Ala	Thr	Arg	Pro	Gly 140	Leu	Gln	Arg	Gln	
Glu 145	Ser	Val	Phe	Val	Pro 150	Gly	Ala	Gln	Ala	Ala 155	Pro	Pro	Gly	Leu	Arg 160	
<210 <211 <212 <213	!> (!	51 603 O NA H.Sap	piens	5												
<400 ttac)> !	51 ttc 1	tgcc	cttta	at co	caact	ttta	a att	ccct	ttg	ctat	tct	cct (gcct	catttt	60
ctg	gcct	cat 1	tttc	cctat	tt af	tect	geet	c aca	attga	tca	agg	gatg	agg (ctgg	caggat	120
ccg	gaac	cca (cagg	gccc	eg to	gggco	catga	a gaq	ggcto	ctg	gact	ttga	acc ·	tcag	gacact	180
ccca	actc	tgg (ctgc	cggc	ag ge	gatg	gaago	c tg	gatga	igca	ggc	agga	gct	ggca	gtgggg	240
gtg	gaga	gcc i	atag	gcta	tt g	gggt	ggaca	a ggo	ettg	ggtg	cct	catg	gga'	gctc	cccatg	300
gga	gctg	tgg (cccc.	ttgg	gg c	ctcti	tatt	t ct	cacco	ccag	gct	ttcc	cgg	gaga	ggttca	360
agt	caga	aga :	tgcc	ccaa	ag a	tcca	cgtg	g cc	ctgg	gtgg	cag	cctg	ttc	ctcc	tgaatc	420
tgg	cctt	ctt	ggtc	aatg	tg g	ggag	tggc	t ca	aagg	ggtc	tga	tgct	gcc	tgct	gggccc	480
ggg	gggc	tgt	cttc	cact	ac t	tcct	gctc	t gt	gccti	cac	ctg	gatg	ggc	cttg	aagcct	540
tcc	acct	cta	cctg	ctcg	ct g	tcag	ggtc	t tc	aaca	ccta	ctt	cggg	cac	tact	tcctga	600
agc																603
<21 <21 <21 <21	1> 2> 3>		pien	s												
<40		52		. 71-	T ou	T	Pro	Thr.	Pho	Δεη	Ser	Lev	Cvs	Tyr	Ser	
GIu 1	Thr	Tyr	ser	Ala 5	ьeu	ıyı	PLO	1111	10	MOII	Jei	Вес	. Cys	15	Der	
Pro	Ala	Ser	Phe 20	Ser	Gly	Leu	Ile	Phe 25	Pro	Ile	Ile	Lev	Pro 30	His	Ile	
Asp	Gln	Gly 35	Met	Arg	Leu	Ala	Gly 40	Ser	Gly	Thr	His	Arg 45	, Ala	Pro	Trp	
Ala	Met 50	Arg	i GJ?	/ Ser	Trp	Thr 55	Thr	Ser			60	His	s Ser	Gly	Cys	
]	Page	30					

Arg 65	Gln	Gly	Trp	Lys	Leu 70	Asp	Glu	Gln	Ala	Gly 75	Ala	GIA	Ser	GIÀ	80 GIA	
Gly	Glu	Pro	Ala	Ile 85	Gly	Val	Asp	Arg	Leu 90	Gly	Cys	Leu	Met	Gly 95	Ala	
Pro	His	Gly	Ser 100	Суѕ	Gly	Pro	Leu	Gly 105	Pro	Leu	Ile	Ser	His 110	Pro	Arg	
Leu	Ser	Arg 115	Glu	Arg	Phe	Lys	Ser 120	Glu	Asp	Ala	Pro	Lys 125	Ile	His	Val	
Ala	Leu 130	Gly	Gly	Ser	Leu	Phe 135	Leu	Leu	Asn	Leu	Ala 140	Phe	Leu	Val	Asn	
Val 145	Gly	Ser	Gly	Ser	Lys 150	Gly	Ser	Asp	Ala	Ala 155	Суѕ	Trp	Ala	Arg	Gly 160	
Ala	Val	Phe	His	Tyr 165	Phe	Leu	Leu	Cys	Ala 170	Phe	Thr	Trp	Met	Gly 175	Leu	
Glu	Ala	Phe	His 180	Leu	Tyr	Leu	Leu	Ala 185	Val	Arg	Val	Phe	Asn 190	Thr	Tyr	
Phe	Gly	His 195	Tyr	Phe	Leu											
<21 <21 <21 <21	1> 2>	53 335 DNA H.Sa	pien	s												
<40 aat	0> tggt	53 cgg	agag	tgca	gc t	gctt	gaaa	t gg	agga	ttga	aat	catc	acc	agga	ggtttc	60
caa	acac	agc	cago	acag	cc c	caaa	gcca	a ac	acta	tgta	cag	aatc	acc	cggg	atcccg	120
gcg	agaa	ggg	gatt	ttca	ca c	agga	.ccca	t to	acgt	tcgc	gta	gcac	agc	tgca	cagcca	180
сса	gcag	gga	tgaa	ttgc	tg c	tcat	aacg	c tg	gtat	ttac	ata	tgga	gaa	attt	tgtcct	240
tgt	tgat	tat	caca	aaaa	at a	cagg	attg	t to	ctga	tttt	cat	tgct	cct	gcgg	gaaaaaa	300
aca	.cata	ttc	acca	ıggat	gc c	agag	gaaa	it ga	tca							335
<21 <21 <21 <21	.1> .2>	54 111 PRT H.Sa	apier	ns								-				
<40	00>	54														
1				5					10					12	a Gly	
Ala	a Met	t Ly:	s Ile 20	e Arq	g Ası	n AİŞI	n Pro	Val 25	L Phe	e Phe	e Vai	l Ile	30	e Ası	n Lys	
										Page	31					

Asp Lys Ile Ser Pro Tyr Val Asn Thr Ser Val Met Ser Ser Asn Ser 35 40 45	
Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala Asn Val Asn Gly Ser 50 55 60	
Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg Val Ile Leu Tyr Ile 65 70 75 80	
Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe Gly Asn Leu Leu Val 85 90 95	
Met Ile Ser Ile Leu His Phe Lys Gln Leu His Ser Pro Thr Asn . 100 105 110	
<210> 55 <211> 586 <212> DNA <213> H.Sapiens	
<400> 55 cacatettaa caagaetgaa aaacattgat ttgtttttaa tttgaagage aatttatttg	60
ctattcattc atagtcttac ttgattttta aaaactcatt tcgcttggta attttaaagg	120
tatoctgaac ttogtotato caactgotta tatatgttoa gaaaacaaat toatggttgo	180
tgaactgttc tttaaaacct gaccagttac aataactttt attgctttcc taaaccatgg	240
gtaaaataaa gcataaatca aaggattcat ggctgagtta taataagcac accaacagca	300
tcataaatac aggcaggggt tataaagccc ataaaggcat caattaatga atcaatgcta	360
tatggtaacc atgaaatcat aaatgctacc actgtgaccc ccagggtttt agctgctttt	420
ctctctctcc tggccactct ggctttgtaa ctctctgagg atgattctgt cttgctacca	480
gtattttcta tctttttcgc ctgtcgtcta gccacaagaa atatgttacc atacagaatt	540
atcataataa aggtaggtat aaagaaggat agaaaatctg tcaaca	586
<210> 56 <211> 190 <212> PRT <213> H.Sapiens	
<400> 56	
Leu Thr Asp Phe Leu Ser Phe Phe Ile Pro Thr Phe Ile Met Ile Ile 1 5 10 15	
Leu Tyr Gly Asn Ile Phe Leu Val Ala Arg Arg Gln Ala Lys Lys Ile 20 25 30	
Glu Asn Thr Gly Ser Lys Thr Glu Ser Ser Ser Glu Ser Tyr Lys Ala 35 40 45	

Arg	Val 50	Ala	Arg	Arg	Glu	Arg 55	Lys	Ala	Ala	Lys	Thr 60	Leu	Gly	Val	Thr	
Val 65	Val	Ala	Phe	Met	Ile 70	Ser	Trp	Leu	Pro	Tyr 75	Ser	Ile	Asp	Ser	Leu' 80	
Ile	Asp	Ala	Phe	Met 85	Gly	Phe	Ile	Thr	Pro 90	Ala	Cys	Ile	Tyr	Glu 95	Ile	
Cys	Cys	Trp	Cys 100	Ala	Tyr	Tyr	Asn	Ser 105	Ala	Met	Asn	Pro	Leu 110	Ile	Tyr	
Ala	Leu	Phe 115	Tyr	Pro	Trp	Phe	Arg 120	Lys	Ala	Ile	Lys	V al 125	Ile	Val	Thr	
Gly	Gln 130	Val	Leu	Lys	Asn	Ser 135	Ser	Ala	Thr	Met	Asn 140	Leu	Phe	Ser	Glu	
His 145	Ile	Ala	Val	Gly	Thr 150	Lys	Phe	Arg	Ile	Pro 155	Leu	Lys	Leu	Pro	Ser 160	
Glu	Met	Ser	Phe	Lys 165	Ser	Ser	Lys	Thr	Met 170	Asn	Glu	Gln	Ile	Asn 175	Cys	
Ser	Ser	Asn	Lys 180	Gln	Ile	Asn	Val	Phe 185		Ser	Cys	Asp	Val 190			
<21 <21 <21 <21	1> 2>	57 976 DNA H.Sa	pien	s												
<40	0>	57			L	+	~~+~	+ +0	ctaa	teet	+++	catt	acc	ctaa	teggge	60
																120
															ccttct	180
_															ttataa gcttct	240
	_														tcagca	
		_	_												gacacc	
_																
															tggaag	
															ttgatt	
															tggccc	
															tgacca	
•															ggttcc	
taa	atati	atg	gato	ctgga	aag q	gatto	tgat	g to	cttat	tttt	g tca	itati	cat	ccaç	gtttcag	720

780

ttgtcctgtc atctcttaac agcagtgcca accccatcat ttacttcttc gtgggctctt

ttaggaagca gtggcggstg cagcacccga tcctcaagct ggctctccag agggctctgc
aggacattgc tgaggtggat cacagtgaag gatgcttccg tcagggcacc cggagattca
aagaagcatt ctggtgtagg gatggacccc tctacttcca tcatatatat gtggctttga
gaggcaactt tgcccc
gaggeaactt tgeece
<210> 58 <211> 324 <212> PRT <213> H.Sapiens
<220> <221> UNSURE <222> (266)(266) <223> Xaa is Unknown
<400> 58
Cys Gly Lys Glu Thr Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala 1 5 10 15
Leu Val Gly Leu Val Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe 20 25 30
Arg Met Arg Arg Asn Ala Phe Ser Val Tyr Val Leu Ser Leu Ala Gly 35 40 45
Ala Asp Phe Leu Phe Leu Cys Phe Gln Ile Ile Asn Cys Leu Val Tyr 50 55 60
Leu Ser Asn Phe Phe Cys Ser Ile Ser Ile Asn Phe Pro Ser Phe Phe 65 70 75 80
Thr Thr Val Met Thr Cys Ala Tyr Leu Ala Gly Leu Ser Met Leu Ser 85 90 95
Thr Val Ser Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile Trp Tŷr 100 105 110
Arg Cys Arg Arg Pro Arg His Leu Ser Ala Val Val Cys Val Leu Leu 115 120 125
Trp Ala Leu Ser Leu Leu Ser Ile Leu Glu Gly Lys Phe Cys Gly 130 135 140
Phe Leu Phe Ser Asp Gly Asp Ser Gly Trp Cys Gln Thr Phe Asp Phe 145 150 155 160
Ile Thr Ala Ala Trp Leu Ile Phe Leu Phe Met Val Leu Cys Gly Ser 165 170 175
Ser Leu Ala Leu Leu Val Arg Ile Leu Cys Gly Ser Arg Gly Leu Pro 180 185 190
Leu Thr Arg Leu Tyr Leu Thr Ile Leu Leu Thr Val Leu Val Ser Leu Page 34

<400> 60

		195					200					205					
	Cys 210	Gly	Leu	Pro	Phe	Gly 215	Ile	Gln	Trp	Phe	Leu 220	Ile	Leu	Trp	Ile		
Trp 225	Lys	Asp	Ser	Asp	Val 230	Leu	Phe	Cys	His	Ile 235	His	Pro	Val	Ser	Val 240		
Val	Leu	Ser	Ser	Leu 245	Asn	Ser	Ser	Ala	Asn 250	Pro	Ile	Ile	Tyr	Phe 255	Phe		
Val	Gly	Ser	Phe 260	Arg	Lys	Gln	Trp	Arg 265	Xaa	Gln	His	Pro	Ile 270	Leu	Lys		
Leu	Ala	Leu 275	Gln	Arg	Ala	Leu	Gln 280	Asp	Ile	Ala	Glu	Val 285	Asp	His	Ser		
Glu	Gly 290	Cys	Phe	Arg	Gln	Gly 295	Thr	Arg	Arg	Phe	Lys 300	Glu	Ala	Phe	Trp		
Cys 305	Arg	Asp	Gly	Pro	Leu 310	Tyr	Phe	His	His	Ile 315	Tyr	Val	Ala	Leu	Arg 320		
Gly	Asn	Phe	Ala														
<21 <21 <21 <21	1> 2>	59 578 DNA H.Sa	pien	s													
<40 ctt	0> tgca	59 tct	cact	gttg	ag c	agac	agcc	t gc	tgaa	agtt	gtc	gctg	acc	acca	catata	a	60
gta	acag	gtt	acca	aagg	tg t	tcag	agca	g ca	taat	ggtc	tag	aaac	gat	gtaa	gcttc	a	120
tgg	atct	gat	tctc	aatg	ga a	caac	tgat	t ga	aagc	aggo	tga	gatt	cga	tcct	gaatg	a	180
ccc	tcaa	gat	atgg	aagg	gt a	aaaa	acat	a cg	taaa	atgo	aag	gagt	agc	agaa	tggtt	a	240
gcc	ttcg	tgc	tttc	tgct	ta a	ggca	gctg	rt ca	gttt	gcag	tcc	atgg	gtc	aaag	ıtgtgg	a	300
taa	tcgt	ggt	atag	ıcaaa	ıgt ç	tcac	tato	a co	aagg	ggag	g gca	gaaa	igta	cttg	cagtc	a	360
															igacag		420
															gctacc		480
															atggaa		540
						atcac											578
	1> 2>	60 192 PRT H.Sa	apier	ns													

Phe 1	Arg	Tyr	Cys	Val 5	Ile	Ile	His	Pro	Met 10	Ser	Cys	Phe	Ser	Ile 15	His	
Lys	Thr	Arg	Cys 20	Ala	Val	Val	Ala	Cys 25	Ala	Val	Val	Trp	Ile 30	Ile	Ser	
Leu	Val	Ala 35	Val	Ile	Pro	Met	Thr 40	Phe	Leu	Ile	Thr	Ser 45	Thr	Asn	Arg	
Thr	Asn 50	Arg	Ser	Ala	Cys	Leu 55	Asp	Leu	Thr	Ser	Ser 60	Asp	Glu	Leu	Asn	
Thr 65	Ile	Lys	Trp	Tyr	Asn 70	Leu	Ile	Leu	Thr	Ala 75	Ser	Thr	Phe	Cys	Leu 80	
Pro	Leu	Val	Ile	Val 85	Thr	Leu	Cys	Tyr	Thr 90	Thr	Ile	Ile	His	Thr 95	Leu	
Thr	His	Gly	Leu 100	Gln	Thr	Asp	Ser	Cys 105	Leu	Lys	Gln	Lys	Ala 110	Arg	Arg	
Leu	Thr	Ile 115	Leu	Leu	Leu	Leu	Ala 120	Phe	Tyr	Val	Суѕ	Phe 125	Leu	Pro	Phe	
His	Ile 130	Leu	Arg	Val	Ile	Gln 135	Asp	Arg	Ile	Ser	Ala 140	Cys	Phe	Gln	Ser	
Val 145	Val	Pro	Leu	Arg	Ile 150	Arg	Ser	Met	Lys	Leu 155	Thr	Ser	Phe	Leu	Asp 160	
His	Tyr	Ala	Ala	Leu 165	Asn	Thr	Phe	Gly	Asn 170	Leu	Leu	Leu	Tyr	Val 175	Val	
Val	Ser	Asp	Asn 180	Phe	Gln	Gln	Ala	Val 185	Cys	Ser	Thr	Val	Arg 190	Cys	Lys	
<21 <21 <21 <21	1> 2>	61 872 DNA H.Sa	pien	s												
<40 ggg	0> aggg	61 ctc	gtag	acac	ac t	aacc	ctac	c ct	ttct	gttt	ctt	cctc	atc	tttc	ctttcc	60
atc	tgtt	tct	catg	gtct	cc t	gtct	gtct	c to	tctc	tctc	ccc	tctt	tct	ctct	cctcgc	120
tct	ttct	cat	cccc	tcca	tt t	ctgt	gtca	a to	tcaa	tcca	ttt	atat	cgg	tggc	cacttt	180
tct	atct	ctt	tgtt	ctat	ct c	tctc	tctc	t ct	cttt	ccca	ctt	tgtc	tct	gcac	gcctgt	240
tgt	gttt	ttc	tgcc	tgtc	tc t	ctct	tgcc	c to	atct	ctct	gto	tctc	tct	tgcc	ctcatc	300
tct	ctgt	ctc	tctg	tgtc	tg t	gtct	cccc	c go	tcat	tccc	att	tgca	iggt	gcaa	tgtagc	360
agg	acaa	ctc	atgg	gagee	cc c	ccgg	gccc	a to	gagt	accg	gac	tggc	tga	cccc	ctaggg	420
tto	acac	ıtaσ	cccc	tgac	cc t	cagt	atgg	jc ca	acac	taco	gga	gago	ctg	agga	ıggtgag	480

cggcgctctg	tccccaccgt	ccgcatcagc	ttatgtgaag	ctggtactgc	tgggactgat	540
tatgtgcgtg	agcctggcgg	gtaacgccat	cttgtccctg	ctggtgctca	aggagcgggc	600
cctgcacaag	gctccttact	acttcctgct	ggacctgtgc	ctggccgatg	gcatacgctc	660
tgccgtctgc	ttcccctttg	tgctggcttc	tgtgcgccac	ggctcttcat	ggaccttcag	720
tgcactcagc	tgcaagattg	tggcctttat	ggccgtgctc	ttttgcttcc	atgcggcctt	780
catgctgttc	tgcatcagcg	tcacccgcta	catggccatc	gcccaccacc	gcttctacgc	840
caagcgcatg	acactctgga	catgcgcggc	tg			872

<210> 62

<211> 143

<212> PRT

<213> H.Sapiens

<400> 62

Met Ala Asn Thr Thr Gly Glu Pro Glu Glu Val Ser Gly Ala Leu Ser 1 5 10 15

Pro Pro Ser Ala Ser Ala Tyr Val Lys Leu Val Leu Leu Gly Leu Ile 20 25 30

Met Cys Val Ser Leu Ala Gly Asn Ala Ile Leu Ser Leu Leu Val Leu 35 40 45

Lys Glu Arg Ala Leu His Lys Ala Pro Tyr Tyr Phe Leu Leu Asp Leu 50 55 60

Cys Leu Ala Asp Gly Ile Arg Ser Ala Val Cys Phe Pro Phe Val Leu 65 70 75 80

Ala Ser Val Arg His Gly Ser Ser Trp Thr Phe Ser Ala Leu Ser Cys 85 90 95

Lys Ile Val Ala Phe Met Ala Val Leu Phe Cys Phe His Ala Ala Phe 100 105 110

Met Leu Phe Cys Ile Ser Val Thr Arg Tyr Met Ala Ile Ala His His 115 120 125

Arg Phe Tyr Ala Lys Arg Met Thr Leu Trp Thr Cys Ala Ala Glu 130 135 140

<210> 63

<211> 962

<212> DNA

<213> H.Sapiens

<400> 63
aaaaattgct gtactgaact attgaatgga acttggaaat aaagtccctt ccaaaataac 60
tattcttcaa cagagagtaa taggtaaatg ttttagaagt gagaggactc aaattgccaa 120

aaacatgaga aggaactgta acctgattat ggatttggga aaaagataaa tcaacacaca 2400 aagggaaaag taaactgatt gacagcecte aggaatgatg cccttttgce acaatataat 3000 taatatttcc tgtgtgaaaa acaactggtc aaatgatgtc cgtgcttccc tgtacagttt 3600 aatggtgctc ataattctga ccacactcgt tggcaatctg atagttattg tttctatatc 4200 acacttcaaa caacttcata ccccaacaaa ttggctcatt cattccatgg ccactgtgga 4800 ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agatctgctg agcactgttg 5400 gtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc 6000 ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact gagatataaa gccaagatga atatcttggt tatttgtgg atgatctca ttaggtggag 7200 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 8400 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 8400 atctggggta ctgaccttta tgaccttta tgacttctt ttatatacct ggatctatta tgttatgtgt	0
taatattcc tgtgtgaaaa acaactggtc aaatgatgtc cgtgcttccc tgtacagttt 360 aatggtgctc ataattctga ccacactcgt tggcaatctg atagttattg tttctatatc 420 acacttcaaa caacttcata ccccaacaaa ttggctcatt cattccatgg ccactgtgga 480 ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agatctgctg agcactgttg 540 gtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc 600 ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtg gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgg atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat	0
aatggtgctc ataattctga ccacactcgt tggcaatctg atagttattg tttctatatc 420 acacttcaaa caacttcata ccccaacaaa ttggctcatt cattccatgg ccactgtgga 480 ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agaatctgctg agcactgttg 540 gtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc 600 ctccatttc catttgtctt tcatctccat tgaccgctac tatgctgtg gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgt atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
acacttcaaa caacttcata ccccaacaaa ttggctcatt cattccatgg ccactgtgga 480 ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agatctgct agcactgttg 540 gtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc 600 ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agatctgctg agcactgttg 540 gtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc 600 ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
gtatttgga gaagtettet gtaaaattea cacaageace gacattatge tgageteage 600 ctccatttte catttgtett teateteeat tgaeegetae tatgetgtgt gtgateeact 660 gagatataaa gecaagatga atatettggt tatttgtgtg atgatettea ttagttggag 720 tgteeetget gtttttgeat ttggaatgat etttetggag etaaaettea aaggegetga 780 agagatatat tacaaacatg tteaetgeag aggaggttge tetgtettet ttageaaaat 840	0
ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
gagatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggegctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840	0
	0
atctggggta ctgaccttta tgacttcttt ttatatacct ggatctatta tgttatgtgt 900	0
	0
ctattacaga atatatetta tegetaaaga acaggeaaga ttaattagtg atgeeaatea 960	0
ga 962	i 2

<210> 64 <211> 238 <212> PRT <213> H.Sapiens

<400> 64

Arg Glu Lys Thr Asp Gln Pro Ser Gly Met Met Pro Phe Cys His Asn $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Ile Asn Ile Ser Cys Val Lys Asn Asn Trp Ser Asn Asp Val Arg 20 25 30

Ala Ser Leu Tyr Ser Leu Met Val Leu Ile Ile Leu Thr Thr Leu Val 35 40 45

Gly Asn Leu Ile Val Ile Val Ser Ile Ser His Phe Lys Gln Leu His 50 55 60

Thr Pro Thr Asn Trp Leu Ile His Ser Met Ala Thr Val Asp Phe Leu 65 70 75 80

Leu Gly Cys Leu Val Met Pro Tyr Ser Met Val Arg Ser Ala Glu His

Cys Trp Tyr Phe Gly Glu Val Phe Cys Lys Ile His Thr Ser Thr Asp 100 105 110

Ile Met Leu Ser Ser Ala Ser Ile Phe His Leu Ser Phe Ile Ser Ile Asp Arg Tyr Tyr Ala Val Cys Asp Pro Leu Arg Tyr Lys Ala Lys Met' Asn Ile Leu Val Ile Cys Val Met Ile Phe Ile Ser Trp Ser Val Pro Ala Val Phe Ala Phe Gly Met Ile Phe Leu Glu Leu Asn Phe Lys Gly Ala Glu Glu Ile Tyr Tyr Lys His Val His Cys Arg Gly Gly Cys Ser Val Phe Phe Ser Lys Ile Ser Gly Val Leu Thr Phe Met Thr Ser Phe Tyr Ile Pro Gly Ser Ile Met Leu Cys Val Tyr Tyr Arg Ile Tyr Leu Ile Ala Lys Glu Gln Ala Arg Leu Ile Ser Asp Ala Asn Gln <210> 65 1018 <211> <212> DNA <213> H.Sapiens <400> aacagtcccg ggtggaacct gggcatgtat attttgattg ttttatgcat actcctagtg 60 aagaaccaat gtcttgctca gatagaagca agatactcag acttagtttc tctgtagctc 120 ctgcttttta ttattcctgg ttggattgca ccactactca gtttctattt tataatactg 180 attataaaac atgggaggga aataactttg tattggtttt tatggataat ttattatgtg 240 tectagaete tggeettgte aaaagaagga egtaagaagg caegatgtat tataettggg 300 aatgatagaa gagactgacc tggtatttcc acccggaaga gggaaaggat tttaactaca 360 aatacaggaa tocagcagat ggcatcagag aacactataa aaaagaaacg atttgcaaca 420 gccacctctc ttccaaaaca attccttact tctgtggtct gcaaggcggt tttttgaatg 480 gaacagaaca tagtaatata ggaaaacaca atgatgagaa aagccagcaa gttcacacct 540 gttggggaaa agcacacttt taacatctca ggcgtaaaag tcaacagtaa aattactgtg 600 gtacaggttg agtatccctt acccaaaatg tttgaaacca gaaatgtttt ggatttcgga 660 tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca 720 caaaatttat ttatgtttca tatacacctt atacacatag tctgaaagta attttgtaca 780 atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca 840

aaagetteag gtgtggaatt tteeacttgt ggeateatgt tgatgeteaa aaagtteeat

Page 39

900

attttagage atttcaaatt ttggatttte aaattacaaa tgettaacet gtaettagat 960 gttaaataca gtgeetette eaegggeact tteaggaage attetttat ataageee 1018

<210> 66

<211> 327

<212> PRT

<213> H.Sapiens

<400> 66

Tyr Ile Lys Glu Cys Phe Leu Lys Val Pro Val Glu Glu Ala Leu Tyr 1 5 10 15

Leu Thr Ser Lys Tyr Arg Leu Ser Ile Cys Asn Leu Lys Ile Gln Asn 20 25 30

Leu Lys Cys Ser Lys Ile Trp Asn Phe Leu Ser Ile Asn Met Met Pro 35 40 45

Gln Val Glu Asn Ser Thr Pro Glu Ala Phe Ala Val Trp Phe Asn Val 50 55 60

Cys Lys Leu Cys Phe Met Pro Lys Ile Ile Asn Ile Val Gln Asn Tyr 65 70 75 80

Phe Gln Thr Met Cys Ile Arg Cys Ile Asn Ile Asn Lys Phe Cys Val 85 90 95

Thr Trp Glu Pro Phe Pro Arg Tyr Ile Ile Met Asn Val Ile Phe Arg 100 105 110

Asn Pro Lys Ser Lys Thr Phe Leu Val Ser Asn Ile Leu Gly Lys Gly

Tyr Ser Thr Cys Thr Thr Val Ile Leu Leu Leu Thr Phe Thr Pro Glu 130 135 140

Met Leu Lys Val Cys Phe Ser Pro Thr Gly Val Asn Leu Leu Ala Phe 145 150 155 160

Leu Ile Ile Val Phe Ser Tyr Ile Thr Met Phe Cys Ser Ile Gln Lys 165 170 175

Thr Ala Leu Gln Thr Thr Glu Val Arg Asn Cys Phe Gly Arg Glu Val 180 185 190

Ala Val Ala Asn Arg Phe Phe Phe Ile Val Phe Ser Asp Ala Ile Cys 195 200 205

Trp Ile Pro Val Phe Val Val Lys Ile Leu Ser Leu Phe Arg Val Glu 210 215 220

Ile Pro Gly Gln Ser Leu Leu Ser Phe Pro Ser Ile Ile His Arg Ala 225 230 235 240

Phe Leu Arg Pro Ser Phe Asp Lys Ala Arg Val Asp Thr Ile Ile His Page 40 245 250 255

Lys Asn Gln Tyr Lys Val Ile Ser Leu Pro Cys Phe Ile Ile Ser Ile 260 265 270

Ile Lys Lys Leu Ser Ser Gly Ala Ile Gln Pro Gly Ile Ile Lys Ser 275 280 285

Arg Ser Tyr Arg Glu Thr Lys Ser Glu Tyr Leu Ala Ser Ile Ala Arg 290 295 300

His Trp Phe Phe Thr Arg Ser Met His Lys Thr Ile Lys Ile Tyr Met 305 310 315 320

Pro Arg Phe His Pro Gly Leu 325

<210> 67

<211> 1251

<212> DNA

<213> H.Sapiens

<400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat 60 gaggactect acceccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt 120 gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct 180 ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca 240 300 gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct geetgeeget tetactaett eetatgggge gtgteetaet eeteeggeet etteetgetg 360 gccgccctca gcctcgaccg ctgcctgctg gcgctgtgcc cacactggta ccctgggcac 420 egeceagtee geetgeeest etgggtetge geeggtgtet gggtgetgge cacactette 480 540 agcgtgccct ggctggtctt ccccgaggct gccgtctggt ggtacgacct ggtcatctgc 600 ctqqacttct qqqacaqcqa qqaqctqtcq ctqaqqatqc tqqaqqtcct qqqqqqcttc ctgcctttcc tcctgctgct cgtctgccac gtgctcaccc aggccacage ctgtcgcacc 660 tgccaccgcc aacagcagcc cgcagcctgc cggggcttcg cccgtgtggc caggaccatt 720 ctgtcagcct atgtggtcct gaggctgccc taccagctgg cccagctgct ctacctggcc 780 840 ttcctgtggg acgtctactc tggctacctg ctctgggagg ccctggtcta ctccgactac ctgatcctac tcaacagctg cctcagcccc ttcctctgcc tcatggccag tgccgacctc 900 cggaccctgc tgcgctccgt gctctcgtcc ttcgcggcag ctctctgcga ggagcggccg 960 1020 ggcagettea egeceaetga gecaeagaee eagetagatt etgagggtee aactetgeea gageegatgg cagaggeeca gteacagatg gateetgtgg eccageetea ggtgaaceee 1080

acactecage caegategga teccaeaget cagecaeage tgaaccetae ggeecageea	1140
cagtoggato coacagooca gocacagotg aacotoatgg cocagooaca gtoagattot	1200
gtggcccagc cacaggcaga cactaacgtc cagacccctg cacctgctgc c	1251
<210> 68	

<211> 66 <211> 417 <212> PRT <213> H.Sapiens

<400> 68

Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro Arg Thr 1 5 10 15

Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp Thr Val 20 25 30

Phe Leu Val Ala Leu Leu Leu Leu Gly Leu Pro Ala Asn Gly Leu Met 35 40 45

Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr Arg Leu 50 60

Ala Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe Leu Ala 65 70 75 80

Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His Trp Pro 85 90 95

Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly Val Ser 100 105 110

Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp Arg Cys 115 120 125

Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro Val Arg 130 135 140

Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr Leu Phe 145 150 155 160

Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp Tyr Asp 165 170 175

Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser Leu Arg 180 185 190

Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu Val 195 200 205

Cys His Val Leu Thr Gln Ala Thr Ala Cys Arg Thr Cys His Arg Gln 210 215 220

Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg Thr Ile 225 230 235 240

Leu	Ser	Ala	Tyr	Val 245	Val	Leu	Arg	Leu	Pro 250	Tyr	Gln	Leu	Ala	Gln 255	Leu	
Leu	Tyr	Leu	Ala 260	Phe	Leu	Trp	Asp	Val 265	Tyr	Ser	Gly	Tyr	Leu 270	Leu	Trp'	
Glu	Ala	Leu 275	Val	Tyr	Ser	Asp	Tyr 280	Leu	Ile	Leu	Leu	Asn 285	Ser	Cys	Leu	
Ser	Pro 290	Phe	Leu	Cys	Leu	Met 295	Ala	Ser	Ala	Asp	Leu 300	Arg	Thr	Leu	Leu	
Arg 305	Ser	Val	Leu	Ser	Ser 310	Phe	Ala	Ala	Ala	Leu 315	Cys	Glu	Glu	Arg	Pro 320	
Gly	Ser	Phe	Thr	Pro 325	Thr	Glu	Pro	Gln	Thr 330	Gln	Leu	Asp	Ser	Glu 335	Gly	
Pro	Thr	Leu	Pro 340	Glu	Pro	Met	Ala	Glu 345	Ala	Gln	Ser	Gln	Met 350	Asp	Pro	
Val	Ala	Gln 355	Pro	Gln	Val	Asn	Pro 360	Thr	Leu	Gln	Pro	Arg 365	Ser	Asp	Pro	
Thr	Ala 370		Pro	Gln	Leu	Asn 375	Pro	Thr	Ala	Gln	Pro 380	Gln	Ser	Asp	Pro	
Thr 385	Ala	Gln	Pro	Gln	Leu 390	Asn	Leu	Met	Ala	Gln 395	Pro	Gln	Ser	Asp	Ser 400	
Val	Ala	Gln	Pro	Gln 405	Ala	Asp	Thr	Asn	Val 410	Gln	Thr	Pro	Ala	Pro 415	Ala	
Ala																
<21 <21 <21 <21	1> 2>	69 659 DNA H.Sa	pien	s												
<40 tac		69 ctg	agca	tgct	gg g	ctcc	atca	g ca	ccaa	gcac	tgc	ctgt	сса	tcct	gtggcc	60
cat	ctag	tac	cgct	gcca	cc a	cccc	acac	a cc	tgtc	agca	gtc	gtgt	gtc	ctgc	tctggg	120
ccc	tgtc	cct	gctg	caga	gc a	tcct	ggaa	t gg	atgt	tctg	tgg	cttc	ctg	tcta	gtggtg	180
ctg	attc	tgt	ttgg	tgtg	aa a	catc	agat	t tc	atca	cagt	cac	atgg	ctg	attt	ttttat	240
gtg	tggt	tct	ctigo	gggt	cc a	gccc	ggtt	c tg	ctgg	tcag	gat	cctt	tgt	ggat	cccgga	300
aga	tgcc	ctt	gacc	aggc	tg t	acat	gacc	a tc	ctgc	tcag	agt	gctg	gtc	ttcc	tcctct	360
gtg	acct	gcc	cttt	ggca	tt c	agtg	atto	c ta	tttt	tctg	gat	ccac	gtg	gatt	tgtcac	: 420
gtt	cgtc	tag	tttc	catt	tt c	ctgt	ccac	t ct	taac	agca	gtg	ccaa	ccc	catt	atttac	: 480
ttc	ttca	tgg	gctc	cttt	ag g	cago	ttca	a aa		aaga Page		tcta	gct	ggtt	ctccag	540

600

659

ctggagctgt catgaagcag attggggcca tgaggaagag cctctgccct gtcagtcag 70 <210> 213 <211> <212> PRT <213> H.Sapiens <400> 70 Tyr Arg Pro Glu His Ala Gly Leu His Gln His Gln Ala Leu Pro Val His Pro Val Ala His Leu Val Pro Leu Pro Pro Pro His Thr Pro Val Ser Ser Arg Val Ser Cys Ser Gly Pro Cys Pro Cys Cys Arg Ala Ser Trp Asn Gly Cys Ser Val Ala Ser Cys Leu Val Val Leu Ile Leu Phe Gly Val Lys His Gln Ile Ser Ser Gln Ser His Gly Phe Phe Tyr Val Trp Phe Ser Ala Gly Pro Ala Arg Phe Cys Trp Ser Gly Ser Phe Val Asp Pro Gly Arg Cys Pro Pro Gly Cys Thr Pro Ser Cys Ser Glu Cys Trp Ser Ser Ser Val Thr Cys Pro Leu Ala Phe Ser Asp Ser Tyr Phe Ser Gly Ser Thr Trp Ile Cys His Val Arg Leu Val Ser Ile Phe 135 Leu Ser Thr Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe Met Gly Ser Phe Arg Gln Leu Gln Asn Arg Lys Thr Leu Leu Val Leu Gln Arg Ala Leu Gln Asp Thr Pro Glu Val Glu Glu Gly Arg Trp Arg Leu 185 180 Ser Glu Glu Thr Leu Glu Leu Ser Ser Arg Leu Gly Pro Gly Arg Ala 200 195 Ser Ala Leu Ser Val 210 <210> 71 <211> 559 <212> DNA <213> H.Sapiens

agggctctgc aggacacgcc tgaggtggaa gaaggcagat ggcggctttc tgaggaaacc

<400 atgc	> 7 cgaa	1 gg c	aggc	cgca	g aa	gaga	agag	gag	gacg	gtg	agga	ggat	ga g	ccca	gggaa
gccc	cggg	gt g	gggg	ccgc	t gg	gggc	ctcg	ctc	cacc	cgc	agca	gcag	ca t	aagg	ctggc
ccca	caca	tg g	tgca	acac	a gc	agag	ccag	cag	cacc	gct	gcca	ccag	cc a	cago	gtccg
gcac	aagt	g g c	ggct	gggc	t cc	ccga	agaa	ctg	ggtg	cag	gcgc	cgct	ga g	cago	aggtg
cagc	agca	gg c	agag	ggcc	c ag	gtga	gggc	gca	caca	cag	gtgg	tcag	gt g	gcgt	gggcg
															gccgc
															tgcac
															tggca
gcca	agga	ag a	tgag	atcc	g cg	cagg	ccac	gtc	cagg	agg	taga	tggc	ga a	aggg	tttct
gtag	acat	tg g	agct	gagc											
<210 <211 <212 <213	> 2 > E	2 111 PRT 1.Sap	iens												
<400)> 7	2													
Leu 1	Ser	Ser	Asn	Val 5	Tyr	Arg	Asn	Pro	Phe 10	Ala	Ile	Tyr	Leu	Leu 15	Asp
Val	Ala	Cys	Ala 20	Asp	Leu	Ile	Phe	Leu 25	Gly	Cys	His	Met	Val 30	Ala	Ile
Val	Pro	Asp 35	Leu	Leu	Gln	Gly	Arg 40	Leu	Asp	Phe	Pro	Gly 45	Phe	Val	Gln
Thr	Ser 50	Leu	Ala	Thr	Leu	Arg 55	Phe	Phe	Суѕ	Tyr	Ile 60	Val	Gly	Leu	Ser
Leu 65	Leu	Ala	Ala	Val	Ser 70	Val	Glu	Gln	Cys	Leu 75	Ala	Ala	Leu	Phe	Pro 80
Ala	Trp	Tyr	Ser	Cys 85	Arg	Arg	Pro	Arg	His 90	Leu	Thr	Thr	Cys	Val 95	Cys
Ala	Leu	Thr	Trp 100	Ala	Leu	Cys	Leu	Leu 105	Leu	His	Leu	Thr	Thr 110	Cys	Val
Cys	Ala	Leu 115	Thr	Trp	Ala	Leu	Cys 120	Leu	Leu	Leu	His	Leu 125	Leu	Leu	Ser
Gly	Ala 130	Cys	Thr	Leu	Leu	Leu 135	Ser	Gly	Ala	Суѕ	Thr 140	Gln	Phe	Phe	Gly
Glu 145	Pro	Ser	Arg	His	Leu 150	Cys	Arg	Thr	Leu	Trp 155	Leu	Val	Ala	Ala	Val 160

Leu Leu Ala Leu Leu Cys Cys Thr Met Cys Gly Ala Ser Leu Met Leu 165 Leu Leu Arg Val Glu Arg Gly Pro Gln Arg Pro Pro Pro Arg Gly Phe Pro Gly Leu Ile Leu Leu Thr Val Leu Leu Phe Ser Ser Ala Ala Cys 200 195 Leu Arg His 210 <210> 73 <211> 1008 <212> DNA H.Sapiens <213> <400> atggaatcat ctttctcatt tggagtgatc cttgctgtcc tggcctccct catcattgct 60 actaacacac tagtggctgt ggctgtgctg ctgttgatcc acaagaatga tggtgtcagt 120 ctctgcttca ccttgaatct ggctgtggct gacaccttga ttggtgtggc catctctggc 180 ctactcacag accagetete cagecettet eggeceacae agaagaceet gtgeageetg 240 eggatggcat ttgtcacttc ctccgcagct gcctctgtcc tcacggtcat gctgatcacc 300 tttgacaggt accttgccat caagcagccc ttccgctact tgaagatdat gagtgggttc 360 gtggccgggg cctgcattgc cgggctgtgg ttagtgtctt acctcattgg cttcctccca 420 ctcggaatcc ccatgttcca gcagactgcc tacaaagggc agtgcagctt ctttgctgta 480 tttcaccctc acttcgtgct gaccctctcc tgcgttggct tcttcccagc catgctcctc 540 tttgtcttct tctactgcga catgctcaag attgcctcca tgcacagcca gcagattcga 600 aagatggaac atgcaggagc catggctgga ggttatcgat ccccacggac tcccagcgac 660 ttcaaagctc tccgtactgt gtctgttctc attgggagct ttgctctatc ctggaccccc 720 ttccttatca ctggcattgt gcaggtggcc tgccaggagt gtcacctcta cctagtgctg 780 gaacggtacc tgtggctgct cggcgtgggc aactccctgc tcaacccact catctatgcc 840 tattggcaga aggaggtgcg actgcagctc taccacatgg ccctaggagt gaagaaggtg 900 ctcacctcat tcctcctctt tctctcggcc aggaattgtg gcccagagag gcccagggaa 960

agttectgte acategteae tatetecage teagagtttg atggetaa

1008

<210> 74 <211> 335 <212> PRT

<213> H.Sapiens

<400> 74

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly Leu Trp Leu Val Ser Tyr Leu Ile Gly Phe Leu Pro Leu Gly Ile Pro Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met Ala Gly Gly Tyr Arg Ser Pro Arg Thr Pro Ser Asp Phe Lys Ala Leu Arg Thr Val Ser Val Leu Ile Gly Ser Phe Ala Leu Ser Trp Thr Pro Phe Leu Ile Thr Gly Ile Val Gln Val Ala Cys Gln Glu Cys His Leu Tyr Leu Val Leu Glu Arg Tyr Leu Trp Leu Leu Gly Val Gly Asn Ser Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu Val Arg Leu Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val Leu Thr Ser Phe

Page 47

Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro Glu Arg Pro Arg Glu 305 310 315 320

Ser Ser Cys His Ile Val Thr Ile Ser Ser Ser Glu Phe Asp Gly 325 330 335

<210> 75 <211> 2137 <212> DNA

<213> H.Sapiens

<400> 75 aactggaagg gcagccgtct gccgcccacg aacaccttct caagcacttt gagtgaccac 60 ggcttgcaag ctggtggctg gcccccgag tcccgggctc tgaggcacgg ccgtcgactt 120 aagcgttgca tcctgttacc tggagaccct ctgagctctc acctgctact tctgccgctg 180 cttctgcaca gagcccgggc gaggacccct ccaggatgca ggtcccgaac agcaccggcc 240 cggacaacgc gacgctgcag atgctgcgga acccggcgat cgcggtggcc ctgcccgtgg 300 tgtactcgct ggtggcggcg gtcagcatcc cgggcaacct cttctctctg tgggtgctgt 360 gccggcgcat ggggcccaga tccccgtcgg tcatcttcat gatcaacctg agcgtcacgg 420 acctgatgct ggccagcgtg ttgcctttcc aaatctacta ccattgcaac cgccaccact 480 gggtattcgg ggtgctgctt tgcaacgtgg tgaccgtggc cttttacgca aacatgtatt 540 ccagcatcct caccatgacc tgtatcagcg tggagcgctt cctgggggtc ctgtacccgc 600 teagetecaa gegetggege egeegtegtt aegeggtgge egegtgtgea gggaeetgge 660 tgctgctcct gaccgccctg tccccgctgg cgcgcaccga tctcacctac ccggtgcacg 720 ccetgggcat catcacctgc ttcgacgtcc tcaagtggac gatgetcccc agcgtggcca 780 tgtgggccgt gttcctcttc accatcttca tcctgctgtt cctcatcccg ttcgtgatca 840 ccgtggcttg ttacacggcc accatcctca agctgttgcg cacggaggag gcgcacggcc 900 gggagcagcg gaggcgcgcg gtgggcctgg ccgcggtggt cttgctggcc tttgtcacct 960 gettegecce caacaactte gtgeteetgg egeacategt gageegeetg ttetaeggea 1020 agagetacta ecaegtgtae aageteaege tgtgteteag etgeeteaae aaetgtetgg 1080 accepttigt trattactit gegreecggg aattecaget gegeetgegg gaatattigg 1140 gctgccgccg ggtgcccaga gacaccctgg acacgcgccg cgagagcctc ttctccgcca 1200 ggaccacgtc cgtgcgctcc gaggccggtg cgcaccctga agggatggag ggagccacca 1260 ggcccggcct ccagaggcag gagagtgtgt tctgagtccc gggggcgcag cttggagagc 1320 cgggggcgca gcttggagga tccaggggcg catggagagg ccacggtgcc agaggttcag 1380 ggagaacagc tgcgttgctc ccaggcactg cagaggcccg gtggggaagg gtctccaggc 1440 Page 48

tttattcctc	ccaggcactg	cagaggcacc	ggtgaggaag	ggtctccagg	cttcactcag	1500
ggtagagaaa	caagcaaagc	ccagcagcgc	acagggtgct	tgttatcctg	cagagggtģc	1560
ctctgcctct	ctgtgtcagg	ggacagcttg	tgtcaccacg	cccggctaat	ttttgtattt	1620
tttttagtag	agctgggctg	tcacccccga	gctccttaga	cactcctcac	acctgtccat	1680
acccgaggat	ggatattcaa	ccagccccac	cgcctacccg	actcggtttc	tggatatcct	1740
ctgtgggcga	actgcgagcc	ccattcccag	ctcttctccc	tgctgacatc	gtcccttagc	1800
acacctgtcc	atacccgagg	atggatattc	aaccagcccc	accgcctacc	cgactcggtt	1860
tctggatatc	ctctgtgggc	gaactgcgag	ccccattccc	agctcttctc	cctgctgaca	1920
tcgtccctta	gttgtggttc	tggccttctc	cattctcctc	caggggttct	ggtctccgta	1980
gcccggtgca	cgccgaaatt	tctgtttatt	tcactcaggg	gcactgtggt	tgctgtggtt	2040
ggaattcttc	tttcagagga	gcgcctgggg	ctcctgcaag	tcagctactc	tccgtgccca	2100
cttcccctca	cacacacacc	ccctcgtgc	cgaattc			2137

<210> 76

<211> 359

<212> PRT

<213> H.Sapiens

<400> 76

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met
1 5 10 15

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu 35 40 45

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 50 55 60

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile 65 70 75 80

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys 85 90 95

Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu 100 105 110

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro 115 120 125

Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys 130 135 140

Ala 145	Gly	Thr	Trp	Leu	Leu 150	Leu	Leu	Thr	Ala	Leu 155	Ser	Pro	Leu	Ala	Arg 160	
Thr	Asp	Leu	Thr	Tyr 165	Pro	Val	His	Ala	Leu 170	Gly	Ile	Ile	Thr	Cys 175	Phe	
Asp	Val	Leu	Lys 180	Trp	Thr	Met	Leu	Pro 185	Ser	Val	Ala	Met	Trp 190	Ala	Val	
Phe	Leu	Phe 195	Thr	Ile	Phe	Ile	Leu 200	Leu	Phe	Leu	Ile	Pro 205	Phe	Val	Ile	
Thr	Val 210	Ala	Cys	Tyr	Thr	Ala 215	Thr	Ile	Leu	Lys	Leu 220	Leu	Arg	Thr	Glu	
Glu 225	Ala	His	Gly	Arg	Glu 230	Gln	Arg	Arg	Arg	Ala 235	Val	Gly	Leu	Ala	Ala 240	
Val	Val	Leu	Leu	Ala 245	Phe	Val	Thr	Суѕ	Phe 250	Ala	Pro	Asn	Asn	Phe 255	Val	
Leu	Leu	Ala	His 260	Ile	Val	Ser	Arg	Leu 265	Phe	Tyr	Gly	Lys	Ser 270	Tyr	Tyr	
His	Val	Tyr 275		Leu	Thr	Leu	Cys 280	Leu	Ser	Cys	Leu	Asn 285	Asn	Суѕ	Leu	
Asp	Pro 290		Val	Tyr	Tyr	Phe 295	Ala	Ser	Arg	Glu	Phe 300	Gln	Leu	Arg	Leu	
Arg 305		Tyr	Leu	Gly	Cys 310	Arg	Arg	Val	Pro	Arg 315	Asp	Thr	Leu	Asp	Thr 320	
Arg	Arg	Glu	Ser	Leu 325	Phe	Ser	Ala	Arg	Thr 330	Thr	Ser	Val	Arg	Ser 335	Glu	
Ala	Gly	Ala	His 340		Glu	Gly	Met	Glu 345	Gly	Ala	Thr	Arg	350	Gly	Leu	
Gln	Arg	Gln 355		Ser	Val	Phe	:									
<21 <21 <21 <21	.1> .2>	77 1197 DNA H.Sa	npier	ıs												
<40 ato)0> jgagt	77 :cgg	ggct	gcto	gog g	gccgq	geged	g gt	gago	gagg	j tca	atcgi	cct	gcat	tacaac	60
															cgacgcc	120
															gttggtg	180
															cacgttg	240
															gctcacg	

ctgaaactgt	ccccgcgct	ctggttcgca	cgggagggag	gcgtcttcgt	ggcactcact	360
gcgtccgtgc	tgagcctcct	ggccatcgcg	ctggagcgca	gcctcaccat	ggcgcgcagg	420
gggcccgcgc	ccgtctccag	tcgggggcgc	acgctggcga	tggcagccgc	ggcctggggc	480
gtgtcgctgc	tcctcgggct	cctgccagcg	ctgggctgga	attgcctggg	tcgcctggac	540
gcttgctcca	ctgtcttgcc	gctctacgcc	aaggcctacg	tgctcttctg	cgtgctcgcc	600
ttcgtgggca	tcctggccgc	tatctgtgca	ctctacgcgc	gcatctactg	ccaggtacgc	660
gccaacgcgc	ggcgcctgcc	ggcacggccc	gggactgcgg	ggaccacctc	gacccgggcg	720
cgtcgcaagc	cgcgctcgct	ggccttgctg	cgcacgctca	gcgtggtgct	cctggccttt	780
gtggcatgtt	ggggccccct	cttcctgctg	ctgttgctcg	acgtggcgtg	cccggcgcgc	840
acctgtcctg	tactcctgca	ggccgatccc	ttcctgggac	tggccatggc	caactcactt	900
ctgaacccca	tcatctacac	gctcaccaac	cgcgacctgc	gccacgcgct	cctgcgcctg	960
gtctgctgcg	gacgccactc	ctgcggcaga	gacccgagtg	gctcccagca	gtcggcgagc	1020
gcggctgagg	cttccggggg	cctgcgccgc	tgcctgcccc	cgggccttga	tgggagcttc	1080
agcggctcgg	agcgctcatc	gccccagcgc	gacgggctgg	acaccagcgg	ctccacaggc	1140
agccccggtg	cacccacagc	cgcccggact	ctggtatcag	aaccggctgc	agactga	1197

<210> 78

<211> 398

<212> PRT

<213> H.Sapiens

<400> 78

Met Glu Ser Gly Leu Leu Arg Pro Ala Pro Val Ser Glu Val Ile Val 1 5 10 15

Leu His Tyr Asn Tyr Thr Gly Lys Leu Arg Gly Ala Arg Tyr Gln Pro 20 25 30

Gly Ala Gly Leu Arg Ala Asp Ala Val Val Cys Leu Ala Val Cys Ala 35 40 45

Phe Ile Val Leu Glu Asn Leu Ala Val Leu Leu Val Leu Gly Arg His 50 55 60

Pro Arg Phe His Ala Pro Met Phe Leu Leu Cly Ser Leu Thr Leu 65 70 75 80

Ser Asp Leu Leu Ala Gly Ala Ala Tyr Ala Ala Asn Ile Leu Leu Ser 85 90 95

Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala Leu Trp Phe Ala Arg Glu 100 105 110

Gly	Gly	Val 115	Phe	Val	Ala	Leu	Thr 120	Ala	Ser	Val	Leu	Ser 125	Leu	Leu	Ala
Ile	Ala 130	Leu	Glu	Arg	Ser	Leu 135	Thr	Met	Ala	Arg	Arg 140	Gly	Pro	Ala	Pro
Val 145	Ser	Ser	Arg	Gly	Arg 150	Thr	Leu	Ala	Met	Ala 155	Ala	Ala	Ala	Trp	Gly 160
Val	Ser	Leu	Leu	Leu 165	Gly	Leu	Leu	Pro	Ala 170	Leu	Gly	Trp	Asn	Cys 175	Leu
Gly	Arg	Leu	Asp 180	Ala	Суѕ	Ser	Thr	Val 185	Leu	Pro	Leu	Tyr	Ala 190	Lys	Ala
Tyr	Val	Leu 195	Phe	Cys	Val	Leu	Ala 200	Phe	Val	Gly	Ile	Leu 205	Ala	Ala	Ile
Cys	Ala 210	Leu	Tyr	Ala	Arg	Ile 215	Tyr	Cys	Gln	Val	Arg 220	Ala	Asn	Ala	Arg
Arg 225	Leu	Pro	Ala	Arg	Pro 230	Gly	Thr	Ala	Gly	Thr 235	Thr	Ser	Thr	Arg	Ala 240
Arg	Arg	Lys	Pro	Arg 245	Ser	Leu	Ala	Leu	Leu 250	Arg	Thr	Leu	Ser	Val 255	Val
Leu	Leu	Ala	Phe 260	Val	Ala	Cys	Trp	Gly 265	Pro	Leu	Phe	Leu	Leu 270	Leu	Leu
Leu	Asp	Val 275		Cys	Pro	Ala	Arg 280	Thr	Cys	Pro	Val	Leu 285	Leu	Gln	Ala
Asp	Pro 290		Leu	Gly	Leu	Ala 295	Met	Ala	Asn	Ser	Leu 300	Leu	Asn	Pro	Ile
11e 305		Thr	Leu	Thr	Asn 310	Arg	Asp	Leu	Arg	His 315	Ala	Leu	Leu	Arg	Leu 320
Val	Cys	Cys	Gly	Arg 325		Ser	Cys	Gly	Arg 330	Asp	Pro	Ser	Gly	Ser 335	Gln
Gln	Ser	Ala	Ser 340		Ala	Glu	Ala	Ser 345	Gly	Gly	Leu	Arg	Arg 350	Cys	Leu
Pro	Pro	Gly 355		Asp	Gly	Ser	Phe 360	ser	Gly	Ser	Glu	Arg 365	Ser	Ser	Pro
Gln	Arg 370		Gly	, Lev	a Asp	Thr 375	Ser	Gly	, Ser	Thr	Gly 380	Ser	Pro	Gly	Ala
Pro 385		Ala	a Ala	Arc	390	Leu	ı Val	. Sei	Glu	395	Ala S	Ala	a Asp	•	
<21 <21 <21 <21	.1> .2>	79 1043 DNA H.Sa	l apie:	ns				•							

60	gatgccgccg	tctcccaggt	ggggacacca	ccgcatcgag	ggtcgtgctg	79 caacg	<400> atgtac
120	gtgtggtttc	gggtcgccct	ctaggcaatg	gctgggcgca	tggcctttgt	cattg	ctgctc
180	ggccgtggct	ttttcaattt	actgtttacc	gaagcccagc	tgaagacctg	ccaca	tgcttc
240	acgtagacac	attacctcag	cggacagact	cctgcctttt	ttatgatctg	cctcc	gattto
300	gaacagggcc	cgttggccat	gggctcttca	ctgccgagtg	gggacattcc	ttttg	tgggct
360	ggtccacccc	atttcaaagt	gcggacaggt	ggtggtggct	tgttccttac	catcg	gggago
420	caccctgtgg	gcatcgtctg	gtggcggctg	ctccacccgg	tgaacactat	cgcgg	caccac
480	cgtgcaagag	accatctctg	ttgctggaga	agtgtatctt	tcctgggaac	ggtca	gccctg
540	tgacatcatg	atggctggca	gagtcggcca	cttcatcatg	cctgtgagag	cgtct	acggc
600	caagattgtt	tttgctcctt	atcatcttat	gcccctcggc	agttctttat	gctgg	ttccaç
660	ggcgacccgg	ggatgaagaa	agacaggctc	gcagctggcc	ggcggaggca	cctga	tggago
720	gtctgctaga	tgcccagcgt	acatgctacc	tgtgttcatc	tggtggcaat	catgg	ttcato
780	tggggccctg	cctctgtcca	gcctgcgatc	gccctcgagt	tctggacggt	tttcc	ctctat
840	gtattatttt	atcccctggt	agcatgctgg	ctacatgaac	tcagcttcac	aaccc	cacata
900	gaaacccaag	tctgcagtct	aagctcaaaa	attctacaac	cctttcccaa	cccct	tcaage
960	cctcggtcgc	caatttcgaa	gaagagatgc	acaaaggccg	actcaaaaac	aggac	cagcc
1020	atgggatccc	ctgatgggca	caaagccagt	aaatagtttc	tcagtgtggc	ttgca	aggag
1041				a	g agtggcactg	tgttg	cacat

<210> 80 <211> 346

<212> PRT

<213> H.Sapiens

<400> 80

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln 1 5 10 15

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly 20 25 30

Asn Gly Val Ala Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys 35 40 45

Pro Ser Thr Val Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu 50 55 60

Met Ile Cys Leu Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg Arg His 65 70 75 80

Trp	Ala	Phe	Gly	Asp 85	Ile	Pro	Cys	Arg	Val 90	Gly	Leu	Phe	Thr	Leu 95	Ala
Met	Asn	Arg	Ala 100	Gly	Ser	Ile	Val	Phe 105	Leu	Thr	Val	Val	Ala 110	Ala	Asp
Arg	Tyr	Phe 115	Lys	Val	Val	His	Pro 120	His	His	Ala	Val	Asn 125	Thr	Ile	Ser
Thr	Arg 130	Val	Ala	Ala	Gly	Ile 135	Val	Cys	Thr	Leu	Trp 140	Ala	Leu	Val	Ile
Leu 145	Gly	Thr	Val	Tyr	Leu 150	Leu	Leu	Glu	Asn	His 155	Leu	Cys	Val	Gln	Glu 160
Thr	Ala	Val	Ser	Cys 165	Glu	Ser	Phe	Ile	Met 170	Glu	Ser	Ala	Asn	Gly 175	Trp
His	Asp	Ile	Met 180	Phe	Gln	Leu	Glu	Phe 185	Phe	Met	Pro	Leu	Gly 190	Ile	Ile
Leu	Phe	Cys 195	Ser	Phe	Lys	Ile	Val 200	Trp	Ser	Leu	Arg	Arg 205	Arg	Gln	Gln
Leu	Ala 210	Arg	Gln	Ala	Arg	Met 215	Lys	Lys	Ala	Thr	Arg 220	Phe	Ile	Met	Val
Val 225		Ile	Val	Phe	Ile 230	Thr	Cys	Tyr	Leu	Pro 235	Ser	Val	Ser	Ala	Arg 240
Leu	Tyr	Phe	Leu	Trp 245	Thr	Val	Pro	Ser	Ser 250	Ala	Cys	Asp	Pro	Ser 255	Val
His	Gly	Ala	Leu 260		Ile	Thr	Leu	Ser 265	Phe	Thr	Tyr	Met	Asn 270	Ser	Met
Leu	Asp	Pro 275		Val	Tyr	Tyr	Phe 280	Ser	Ser	Pro	Ser	Phe 285	Pro	Lys	Phe
Tyr	Asn 290		Leu	Lys	Ile	Cys 295	Ser	Leu	Lys	Pro	Lys 300	Gln	Pro	Gly	His
Ser 305		Thr	Gln	Arg	Pro 310	Glu	Glu	Met	Pro	Ile 315	Ser	Asn	Leu	Gly	Arg 320
Arg	Ser	Суз	Ile	Ser 325		Ala	Asn	Ser	Phe 330	Gln	Ser	Gln	Ser	Asp 335	Gly
Gln	Trp	Asp	9 Pro		Ile	Val	Glu	Trp 345	His	I					
<21 <21 <21 <21	1> 2>	81 2525 DNA H.Sa	s apier	ıs											

<400> 81
caagaatgac aggtgacttc ccaagtatgc ctggccacaa tacctccagg aattcctctt
Page 54

60

gcgatcctat	agtgacaccc	cacttaatca	gcctctactt	catagtgctt	attggcgggc	120
tggtgggtgt	catttccatt	cttttcctcc	tggtgaaaat	gaacacccgg	tcagtgacċa	180
ccatggcggt	cattaacttg	gtggtggtcc	acagcgtttt	tctgctgaca	gtgccatttc	240
gcttgaccta	cctcatcaag	aagacttgga	tgtttgggct	gcccttctgc	aaatttgtga	300
gtgccatgct	gcacatccac	atgtacctca	cgttcctatt	ctatgtggtg	atcctggtca	360
ccagatacct	catcttcttc	aagtgcaaag	acaaagtgga	attctacaga	aaactgcatg	420
ctgtggctgc	cagtgctggc	atgtggacgc	tggtgattgt	cattgtggta	cccctggttg	480
tctcccggta	tggaatccat	gaggaataca	atgaggagca	ctgttttaaa	tttcacaaag	540
agcttgctta	cacatatgtg	aaaatcatca	actatatgat	agtcattttt	gtcatagccg	600
ttgctgtgat	tetgttggtc	ttccaggtct	tcatcattat	gttgatggtg	cagaagctac	660
gccactcttt	actatcccac	caggagttct	gggctcagct	gaaaaaccta	tttttatag	720
gggtcatcct	tgtttgtttc	cttccctacc	agttctttag	gatctattac	ttgaatgttg	780
tgacgcattc	caatgcctgt	aacagcaagg	ttgcatttta	taacgaaatc	ttcttgagtg	840
taacagcaat	tagctgctat	gatttgcttc	tctttgtctt	tgggggaagc	cattggttta	900
agcaaaagat	aattggctta	tggaattgtg	ttttgtgccg	ttagccacaa	actacagtat	960
tcatatttgc	ttcctttata	ttgggaataa	aaatgggtat	aggggaggta	agaatggtat	1020
ttcattactt	gatcaaaacc	atgccttgat	gtacccaaaa	caaaaggact	ataaaatgca	1080
agagccctca	ttgtagtcct	tatgggatcc	ctcccatctc	tgagtgatgg	ccgtacaaag	1140
accagtgttg	ttgaatccac	ctggagttgc	aatattacat	tattttccag	tacagaatgt	1200
ctgtgtggcc	catgaaagca	acataggttt	taagagtttt	agagtttcat	tagctcattc	1260
taagttcctc	tgtttgaago	atggtctctt	aggttttgga	ctgaactcag	acctttagtt	1320
cttttcatcc	cacttcacct	taggtaagta	aattctggcc	accacccago	tccaaagaca	1380
caaactctcc	ttcgctaacc	aggttagatg	tcccattcat	ctcatgccct	gataaaaact	1440
gataagggga	gagaatagtt	aaaaattttt	ctagggtato	ataactctgg	taggaagtca	1500
tctgtctaga	aatcaagaga	aaaagaacgt	gtggcctcct	gttataacaa	gggtttctag	1560
atttgtcctg	tgaaaggtc	g tttaaggact	tggggatcaa	cttcctcaat	tatcaccaat	1620
tgcactgttg	ctccaaaaat	catttaaaag	cttactggad	atatctacat	: aatggtgaaa	1680
ctġtaattta	gagactatco	ctgactaatg	tgctggtagg	g cattaaaato	g agttcccaag	1740
ggaagtgatt	: aaaattttt	tctcttctgt	tttttgagag	g aatttctaga	tgtcctgggc	1800

cacagttaat	taagatttt	aggggggaca	gaaagttata	ctgaaatctt	tagagctccc	1860
ttccgccgtt	aaaattatat	atatatatat	ttaaattata	ccttaagttc	tggggtacat	1920
gtgcagaatg	tgcaggtttg	ttacataggt	atacacgtgc	catggtggtt	tgcggcacct	1980
gtcaacccat	ctacattagg	tatttctcct	aatgctctcc	ctcccctagc	ccccacccc	2040
tggacaggcc	ccattgtgtg	atgttcccct	ccctgtgtcc	atgtgttttc	attgttcaac	2100
tcccacttct	aagtgagaac	atgcggtgtt	tggttttctg	ttcctgtgtt	agtttgctga	2160
gaatgatggt	ttccaggtta	aaattatata	tttttaaata	aatgaaaact	gtgtttttaa	2220
aagaggactt	ttgagaagta	tatagaaaaa	ccattaattt	agactctgtg	agattaggtt	2280
gcatgaagaa	ggttttctga	atatttgaag	agtggataaa	taaatgtccc	ccaaagcaat	2340
aaaatcataa	tcctttaaaa	tataggaaaa	ataactaatg	ggaactaggc	ttaatactcg	2400
ggatgaaata	atctgtacaa	caaactccca	tgacacatgt	ttacctatgt	aacaaacctg	2460
cacatgtacc	cctgaactta	aaataaaatt	taaagtataa	taataaaata	atatggattt	2520
tcttt						2525

<210> 82

<211> 312

<212> PRT

<213> H.Sapiens

<400> 82

Met Thr Gly Asp Phe Pro Ser Met Pro Gly His Asn Thr Ser Arg Asn 1 10 15

Ser Ser Cys Asp Pro Ile Val Thr Pro His Leu Ile Ser Leu Tyr Phe 20 25 30

Ile Val Leu Ile Gly Gly Leu Val Gly Val Ile Ser Ile Leu Phe Leu 35 40 45

Leu Val Lys Met Asn Thr Arg Ser Val Thr Thr Met Ala Val Ile Asn 50 55 60

Leu Val Val His Ser Val Phe Leu Leu Thr Val Pro Phe Arg Leu 65 70 75 80

Thr Tyr Leu Ile Lys Lys Thr Trp Met Phe Gly Leu Pro Phe Cys Lys 85 90 95

Phe Val Ser Ala Met Leu His Ile His Met Tyr Leu Thr Phe Leu Phe 100 105 110

Tyr Val Val Ile Leu Val Thr Arg Tyr Leu Ile Phe Phe Lys Cys Lys 115 120 125

Asp Lys Val Glu Phe Tyr Arg Lys Leu His Ala Val Ala Ala Ser Ala Page 56

	130					135					140						
Gly 145	Met	Trp	Thr	Leu	Val 150	Ile	Val	Ile	Val	Val 155	Pro	Leu	Val	Val	Ser 160'		
Arg	Tyr	Gly	Ile	His 165	Glu	Glu	Tyr	Asn	Glu 170	Glu	His	Cys	Phe	Lys 175	Phe		
His	Lys	Glu	Leu 180	Ala	Tyr	Thr	Tyr	Val 185	Lys	Ile	Ile	Asn	Tyr 190	Met	Ile		
Val	Ile	Phe 195	Val	Ile	Ala	Val	Ala 200	Val	Ile	Leu	Leu	Val 205	Phe	Gln	Val		
Phe	Ile 210	Ile	Met	Leu	Met	Val 215	Gln	Lys	Leu	Arg	His 220	Ser	Leu	Leu	Ser		
His 225	Gln	Glu	Phe	Trp	Ala 230	Gln	Leu	Lys	Asn	Leu 235	Phe	Phe	Ile	Gly	Val 240		
Ile	Leu	Val	Cys	Phe 245	Leu	Pro	Tyr	Gln	Phe 250	Phe	Arg	Ile	Tyr	Tyr 255	Leu		
Asn	Val	Val	Thr 260	His	Ser	Asn	Ala	Cys 265	Asn	Ser	Lys	Val	Ala 270	Phe	Tyr		
Asn	Glu	Ile 275		Leu	Ser	Val	Thr 280	Ala	Ile	Ser	Суѕ	Tyr 285	Asp	Leu	Leu		
Leu	Phe 290	Val	Phe	Gly	Gly	Ser 295	His	Trp	Phe	Lys	Gln 300	Lys	Ile	Ile	Gly		
Leu 305		Asn	Cys	Val	Leu 310	Cys	Arg								•		
<210 <210 <210 <210	1> 2>	83 1125 DNA H.Sa	pien	s													
<40 gca	0> ggag	83 cac	tgaa	aatc	ag g	aaca	atcc	t gt	attt	tttg	tga	taat	caa	caag	gacaaa	6	0
act	tctc	cat	atgt	aaat	aa c	agcg	ttat	g ag	cago	aatt	cat	ccct	gct	ggtg	gctgtg	12	0
cag	ctgt	gct	acgo	gaac	gt g	aatg	ggto	c tg	tgtg	aaaa	tco	cctt	ctc	gccg	ggatcc	18	0
cgg	gtga	ttc	tgta	cata	gt g	tttg	gctt	t gg	ggct	gtgc	tgg	ctgt	gtt	tgga	aacctc	24	0
ctg	gtga	tga	tttc	aato	ct c	catt	tcaa	ıg ca	gctg	cact	ctc	cgac	caa	tttt	ctcgtt	30	0
gcc	tctc	tgg	cctg	cgct	ga t	ttct	tggt	g gg	ıtgtg	actg	tga	tgcc	ctt	cago	atggtc	36	0
agg	acgg	ıtgg	agaç	ıctgo	tg g	tatt	ttgg	ıg aç	gagt	tttt	gta	cttt	cca	cacc	tgctgt	42	O
gat	gtgg	gcat	tttg	gttac	tc t	tctc	tctt	t ca	cttg	tgct	tca	tctc	cat	cgac	aggtac	48	C
att	gegg	gtta	ctga	acccc	ct c	gtct	atco	ct ac	ccaac	gttca	ccg	gtato	tgt	gtca	ıggaatt	54	C

tgcatcagcg	tgtcctggat	cctgcccctc	atgtacagcg	gtgctgtgtt	ctacacaggt	600
gtctatgacg	atgggctgga	ggaattatct	gatgccctaa	actgtatagg	aggttgtcaʻʻg	660
accgttgtaa	atcaaaactg	ggtgttgaca	gattttctat	ccttctttat	acctaccttt	720
attatgataa	ttctgtatgg	taacatattt	cttgtggcta	gacgacaggc	gaaaaagata	. 780
gaaaatactg	gtagcaagac	agaatcatcc	tcagagagtt	acaaagccag	agtggccagg	840
agagagagaa	aagcagctaa	aaccctgggg	gtcacagtgg	tagcatttat	gatttcatgg	900
ttaccatata	gcattgattc	attaattgat	gcctttatgg	gctttataac	ccctgcctgt	960
atttatgaga	tttgctgttg	gtgtgcttat	tataactcag	ccatgaatcc	tttgatttat	1020
gctttatttt	acccatggtt	taggaaagca	ataaaagtta	ttgtaactgg	tcaggtttta	1080
aagaacagtt	cagcaaccat	gaatttgttt	tctgaacata	tataa		1125

<210> 84

<211> 345

<212> PRT

<213> H.Sapiens

<400> 84

Met Ser Ser Asn Ser Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala 1 5 10 15

Asn Val Asn Gly Ser Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg 20 25 30

Val Ile Leu Tyr Ile Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe 35 40 45

Gly Asn Leu Val Met Ile Ser Ile Leu His Phe Lys Gln Leu His 50 55 60

Ser Pro Thr Asn Phe Leu Val Ala Ser Leu Ala Cys Ala Asp Phe Leu 65 70 75 80

Val Gly Val Thr Val Met Pro Phe Ser Met Val Arg Thr Val Glu Ser 85 90 95

Cys Trp Tyr Phe Gly Arg Ser Phe Cys Thr Phe His Thr Cys Cys Asp 100 105 110

Val Ala Phe Cys Tyr Ser Ser Leu Phe His Leu Cys Phe Ile Ser Ile 115 120 125

Asp Arg Tyr Ile Ala Val Thr Asp Pro Leu Val Tyr Pro Thr Lys Phe 130 135 140

Thr Val Ser Val Ser Gly Ile Cys Ile Ser Val Ser Trp Ile Leu Pro 145 150 155 160

Leu Met Tyr Ser Gly Ala Val Phe Tyr Thr Gly Val Tyr Asp Asp Gly Page 58

60

120 180

240300

360

420

480

540

				165					170					175		
Leu	Glu	Glu	Leu 180	Ser	Asp	Ala	Leu	Asn 185	Cys	Ile	Gly	Gly	Cys 190	Gln	Thr	
Val	Val	Asn 195	Gln	Asn	Trp	Val	Leu 200	Thr	Asp	Phe	Leu	Ser 205	Phe	Phe	Ile	
Pro	Thr 210	Phe	Ile	Met	Ile	Ile 215	Leu	Tyr	Gly	Asn	11e 220	Phe	Leu	Val	Ala	
Arg 225	Arg	Gln	Ala	Lys	Lys 230	Ile	Glu	Asn	Thr	Gly 235	Ser	Lys	Thr	Glu	Ser 240	
Ser	Ser	Glu	Ser	Tyr 245	Lys	Ala	Arg	Val	Ala 250	Arg	Arg	Glu	Arg	Lys 255	Ala	
Ala	Lys	Thr	Leu 260	Gly	Val	Thr	Val	Val 265	Ala	Phe	Met	Ile	Ser 270	Trp	Leu	
Pro	Tyr	Ser 275	Ile	Asp	Ser	Leu	Ile 280	Asp	Ala	Phe	Met	Gly 285	Phe	Ile	Thr	
Pro	Ala 290		Ile	Tyr	Glu	Ile 295	Cys	Cys	Trp	Cys	Ala 300	Tyr	Tyr	Asn	Ser	
Ala 305	Met	Asn	Pro	Leu	Ile 310	Tyr	Ala	Leu	Phe	Tyr 315	Pro	Trp	Phe	Arg	Lys 320	
Ala	Ile	Lys	Val	11e 325	Val	Thr	Gly	Gln	Val 330	Leu	Lys	Asn	Ser	Ser 335	Ala	
Thr	Met	Asn	Leu 340	Phe	Ser	Glu	His	11e 345	:							
<21 <21 <21 <21	1> 2>	85 1020 DNA H.Sa	pien	ıs												
<40 acc	0> atga	85 atq	agco	acta	ıga o	ctatt	tago	a aa	tgct	tctg	att	tccc	cga	ttat	gcagct	:
															gttatt	
															tacatt	
ttc	aaaa	atga	gaco	ettge	jaa q	gagca	agcad	cc at	catt	atgo	t tga	acct	ggc	ctg	cacagat	:
ctg	ctgt	atc	tgad	ccago	ct o	ccct	tcct	g at	tcad	ctact	ato	gccag	gtgg	cgaa	aactg	J
ato	tttç	ggag	attt	tcato	gtg 1	taagt	ttta	to o	gctto	cagct	tc	cattt	caa	cct	gtatago	3

agcatcctct tcctcacctg tttcagcatc ttccgctact gtgtgatcat tcacccaatg

agctgctttt ccattcacaa aactcgatgt gcagttgtag cctgtgctgt ggtgtggatc

atttcactgg tagctgtcat tccgatgacc ttcttgatca catcaaccaa caggaccaac

PCT/US00/31581 WO 01/36473

agatcagcct	gtctcgacct	caccagttcg	gatgaactca	atactattaa	gtggtacaac	600
ctgattttga	ctgcaagtac	tttctgcctc	cccttggtga	tagtgacact	ttgctataçc	660
acgattatcc	acactttgac	ccatggactg	caaactgaca	gctgccttaa	gcagaaagca	720
					cttccatatc	780
	ttcaggatcg					840
	agcttacatc					900
	atgtggtggt					960
	gcgggaacct					1020

<210> 86 <211> 336 <212> PRT

H.Sapiens <213>

<400> 86

Met Asn Glu Pro Leu Asp Tyr Leu Ala Asn Ala Ser Asp Phe Pro Asp

Tyr Ala Ala Ala Phe Gly Asn Cys Thr Asp Glu Asn Ile Pro Leu Lys

Met His Tyr Leu Pro Val Ile Tyr Gly Ile Ile Phe Leu Val Gly Phe

Pro Gly Asn Ala Val Val Ile Ser Thr Tyr Ile Phe Lys Met Arg Pro

Trp Lys Ser Ser Thr Ile Ile Met Leu Asn Leu Ala Cys Thr Asp Leu

Leu Tyr Leu Thr Ser Leu Pro Phe Leu Ile His Tyr Tyr Ala Ser Gly

Glu Asn Trp Ile Phe Gly Asp Phe Met Cys Lys Phe Ile Arg Phe Ser 105

Phe His Phe Asn Leu Tyr Ser Ser Ile Leu Phe Leu Thr Cys Phe Ser

Ile Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile 140

His Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile

Ser Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn 170

Arg Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu 185

Asn Thr I	le Lys 95	Trp Ty	r Asn	Leu 200	Ile	Leu	Thr	Ala	Ser 205	Thr	Phe	Cys	
Leu Pro Lo	eu Val	Ile Va	1 Thr 215	Leu	Cys	Tyr	Thr	Thr 220	Ile	Ile	His	Thr	
Leu Thr H	is Gly	Leu Gl 23		Asp	Ser	Cys	Leu 235	Lys	Gln	Lys	Ala	Arg 240	
Arg Leu T	hr Ile	Leu Le 245	u Leu	Leu	Ala	Phe 250	Tyr	Val	Cys	Phe	Leu 255	Pro	
Phe His I	le Leu 260	Arg Va	l Ile	Gln	Asp 265	Arg	Ile	Ser	Ala	Cys 270	Phe	Gln	
Ser Val V	al Pro 75	Leu Ar	g Ile	Arg 280	Ser	Met	Lys	Leu	Thr 285	Ser	Phe	Leu	
Asp His T	yr Ala	Ala Le	u Asn 295	Thr	Phe	Gly	Asn	Leu 300	Leu	Leu	Tyr	Val	
Val Val So	er Asp	Asn Ph	-	Gln	Ala	Val	Cys 315	Ser	Thr	Val	Arg	Cys 320	
Lys Val S	er Gly	Asn Le 325	u Glu	Gln	Ala	Lys 330	Lys	Ile	Ser	Tyr	Ser 335	Asn	
<210> 87 <211> 11 <212> DN <213> H.	38	5								•			
<400> 87 aaaaattgc		tgaact	attga	atgga	a act	ttgga	aat	aaaq	gtee	et t	ccaaa	aataac	60
tattcttca	a cagaç	gagtaa	taggt	aaatq	g tti	ttaga	agt	gaga	aggad	ctc .	aaatt	gccaa	120
tgatttact	c tttta	attttt	cctcc	taggt	tte	ctggg	gata	agta	atgte	gca :	aataa	aaaat	180
aaacatgag	a aggaa	actgta	acctg	attat	gga	atttç	ggga	aaaa	agata	aaa	tcaad	cacaca	240
aagggaaaa	g taaa	ctgatt	gacag	ccct	c age	gaato	gatg	ccct	ttt	gcc .	acaat	ataat	300
taatatttc	c tgtg	tgaaaa	acaac	tggto	c aaa	atgat	gtc	cgt	gctto	ccc	tgtad	cagttt	360
aatggtgct	c ataa	ttctga	ccaca	ctcgt	t tg	gcaat	ctg	atag	gttai	tg	tttc1	atatc	420
acacttcaa	a caact	ttcata	cccca	acaaa	a tte	ggcto	catt	catt	ccat	gg	ccact	gtgga	480
ctttcttct	g gggt	gtctgg	tcatg	cctta	a ca	gtate	ggtg	agat	ctg	ctg .	agca	ctgttg	540
gtattt t gg	a gaagt	tcttct	gtaaa	attca	a ca	caago	cacc	gaca	attai	gc	tgago	ctcage	600
ctccatttt	c catt	tgtctt	tcatc	tccat	t tg	accgo	ctac	tato	gctgi	:gt	gtgai	tccact	660
gagatataa	a gcca	agatga	atatc	ttggi	t ta	tttgt	cgtg	atga	atcti	ca	ttag	tggag	720
tgtccctgc	t gttt	ttgcat	ttgga	atgat	t ct		ggag age		aacti	tca	aagg	cgctga	780

agagatatat	tacaaacatg	ttcactgcag	aggaggttgc	tctgtcttct	ttagcaaaat	840
atctggggta	ctgaccttta	tgacttcttt	ttatatacct	ggatctatta	tgttatgtgt	900
ctattacaga	atatatctta	tcgctaaaga	acaggcaaga	ttaattagtg	atgccaatca	960
gaagctccaa	attggattgg	aaatgaaaaa	tggaatttca	caaagcaaag	aaaggaaagc	1020
tgtgaagaca	ttggggattg	tgatgggagt	tttcctaata	tgctggtgcc	ctttctttat	1080
ctgtacagtc	atggaccctt	ttcttcacta	cattattcca	cctactttga	atgatgta	1138

<210> 88

<211> 296

<212> PRT

<213> H.Sapiens

<400> 88

Met Met Pro Phe Cys His Asn Ile Ile Asn Ile Ser Cys Val Lys Asn 1 5 10 15

Asn Trp Ser Asn Asp Val Arg Ala Ser Leu Tyr Ser Leu Met Val Leu 20 25 30

Ile Ile Leu Thr Thr Leu Val Gly Asn Leu Ile Val Ile Val Ser Ile 35 40 45

Ser His Phe Lys Gln Leu His Thr Pro Thr Asn Trp Leu Ile His Ser 50 55 60

Met Ala Thr Val Asp Phe Leu Leu Gly Cys Leu Val Met Pro Tyr Ser 65 70 75 80

Met Val Arg Ser Ala Glu His Cys Trp Tyr Phe Gly Glu Val Phe Cys 85 90 95

Lys Ile His Thr Ser Thr Asp Ile Met Leu Ser Ser Ala Ser Ile Phe 100 105 110

His Leu Ser Phe Ile Ser Ile Asp Arg Tyr Tyr Ala Val Cys Asp Pro 115 120 125

Leu Arg Tyr Lys Ala Lys Met Asn Ile Leu Val Ile Cys Val Met Ile 130 135 140

Phe Ile Ser Trp Ser Val Pro Ala Val Phe Ala Phe Gly Met Ile Phe 145 150 155 160

Leu Glu Leu Asn Phe Lys Gly Ala Glu Glu Ile Tyr Tyr Lys His Val

His Cys Arg Gly Gly Cys Ser Val Phe Phe Ser Lys Ile Ser Gly Val

Leu Thr Phe Met Thr Ser Phe Tyr Ile Pro Gly Ser Ile Met Leu Cys 195 200 205

Val Tyr Tyr Arg Ile Tyr Leu Ile Ala Lys Glu Gln Ala Arg Leu Ile Ser Asp Ala Asn Gln Lys 230 Leu Gln Ile Gly Leu Glu Met Lys Asn Gly 240

Ile Ser Gln Ser Lys Glu Arg Lys Ala Val Lys Thr Leu Gly Ile Val 255

Met Gly Val Phe Leu Ile Cys Trp Cys Pro Phe Phe Ile Cys Thr Val 270

Met Asp Pro Phe Leu His Tyr Ile Ile Pro Pro Thr Leu Asn Asp Ala Ser 290

Ser Arg Ala Asn Ser Ala 295

<210> 89

<211> 1023

<212> DNA

<213> H.Sapiens

<400> 89 ggaatgatgc ccttttgcca caatataatt aatatttcct gtgtgaaaaa caactggtca 60 120 aatgatgtcc gtgcttccct gtacagttta atggtgctca taattctgac cacactcgtt ggcaatctga tagttattgt ttctatatca cacttcaaac aacttcatac cccaacaaat 180 tggctcattc attccatggc cactgtggac tttcttctgg ggtgtctggt catgccttac 240 agtatggtga gatctgctga gcactgttgg tattttggag aagtcttctg taaaattcac 300 acaaqcaccq acattatgct gagctcagcc tccattttcc atttgtcttt catctccatt 360 420 qaccqctact atgctgtgtg tgatccactg agatataaag ccaagatgaa tatcttggtt atttgtgtga tgatcttcat tagttggagt gtccctgctg tttttgcatt tggaatgatc 480 tttctggagc taaacttcaa aggcgctgaa gagatatatt acaaacatgt tcactgcaga 540 qqaqqttqct ctqtcttctt tagcaaaata tctggggtac tgacctttat gacttctttt 600 tatatacctg gatctattat gttatgtgtc tattacagaa tatatcttat cgctaaagaa 660 720 ggaatttcac aaagcaaaga aaggaaagct gtgaagacat tgggggattgt gatgggagtt 780 ttectaatat getggtgeee tttetttate tgtacagtea tggaccettt tetteactae 840 900 attattccac ctactttgaa tgatgtattg atttggtttg gctacttgaa ctctacattt 960 aatccaatqq tttatqcatt tttctatcct tggtttagaa aagcactgaa gatgatgctg tttggtaaaa ttttccaaaa agattcatcc aggtgtaaat tatttttgga attgagttca 1020 1023

<210 <211 <212 <213	> 3 > F	90 839 PRT H.Sap	oiens	•											•
<400	<400> 90														
Met 1	Met	Pro	Phe	Cys 5	His	Asn	Ile	Ile	Asn 10	Ile	Ser	Cys	Val	Lys 15	Asn
Asn	Trp	Ser	Asn 20	Asp	Val	Arg	Ala	Ser 25	Leu	Tyr	Ser	Leu	Met 30	Val	Leu
Ile	Ile	Leu 35	Thr	Thr	Leu	Val	Gly 40	Asn	Leu	Ile	Val	Ile 45	Val	Ser	Ile
Ser	His 50	Phe	Lys	Gln	Leu	His 55	Thr	Pro	Thr	Asn	Trp 60	Leu	Ile	His	Ser
Met 65	Ala	Thr	Val	Asp	Phe 70	Leu	Leu	Gly	Cys	Leu 75	Val	Met	Pro	Tyr	Ser 80
Met	Val	Arg	Ser	Ala 85	Glu	His	Cys	Trp	Tyr 90	Phe	Gly	Glu	Val	Phe 95	Cys
Lys	Ile	His	Thr 100	Ser	Thr	Asp	Ile	Met 105	Leu	Ser	Ser	Ala	Ser 110	Ile	Phe
His	Leu	Ser 115	Phe	Ile	Ser	Ile	Asp 120	Arg	Tyr	Tyr	Ala	Val 125	Cys	Asp	Pro
Leu	Arg 130		Lys	Ala	Lys	Met 135	Asn	Ile	Leu	Val	Ile 140	Cys	Val	Met	Ile
Phe 145		Ser	Trp	Ser	Val 150	Pro	Ala	Val	Phe	Ala 155	Phe	Gly	Met	Ile	Phe 160
Leu	Glu	Leu	Asn	Phe 165	Lys	Gly	Ala	Glu	Glu 170	Ile	Tyr	Tyr	Lys	His 175	Val
His	Cys	Arg	Gly 180	Gly	Cys	Ser	Val	Phe 185	Phe	Ser	Lys	Ile	Ser 190	Gly	Val
Leu	Thr	Phe 195	Met	Thr	Ser	Phe	Tyr 200	Ile	Pro	Gly	Ser	11e 205	Met	Leu	Cys
Val	Tyr 210		Arg	Ile	Tyr	Leu 215		Ala	Lys	Glu	Gln 220	Ala	Arg	Leu	Ile
Ser 225		Ala	Asn	Gln	Lys 230	Leu	Gln	Ile	Gly	Leu 235	Glu	Met	Lys	Asn	Gly 240
Ile	Ser	Gln	Ser	Lys 245	Glu	Arg	Lys	Ala	Val 250	Lys	Thr	Leu	Gly	11e 255	Val
Met	Gly	y Val	Phe	Leu	ılle	Cys	Trp	Cys		Phe Page		Ile	Cys	Thr	Val

260 265 270

Met Asp Pro Phe Leu His Tyr Ile Ile Pro Pro Thr Leu Asn Asp Val

Leu Ile Trp Phe Gly Tyr Leu Asn Ser Thr Phe Asn Pro Met Val Tyr 290 295 300

Ala Phe Phe Tyr Pro Trp Phe Arg Lys Ala Leu Lys Met Met Leu Phe 305 310 315 320

Gly Lys Ile Phe Gln Lys Asp Ser Ser Arg Cys Lys Leu Phe Leu Glu 325 330 335

Leu Ser Ser

<210> 91

<211> 1696

<212> DNA

<213> H.Sapiens

<400> ctgtaaagta gattgtatga ggactccatg aggtcatcca cttcaagtcc ttggcatagg 60 ataattactc aaaaggtgat gacaatggcg cagggaggga tggtgacttg cctggagatg 120 cacagcaccg teteteccat acteggteat teacaccate attgatteae caggeaccae 180 240 teegtgteea geaggaetet ggggaeecea aatggaeact accatggaag etgaeetggg tgccactggc cacaggcccc gcacagagct tgatgatgag gactcctacc cccaaggtgg 300 360 ctgggacacg gtcttcctgg tggccctgct gctccttggg ctgccagcca atgggttgat ggcgtggctg gccggctccc aggcccggca tggagctggc acgcgtctgg cgctgctcct 420 getcagectg gecetetetg acttettgtt eetggeagea geggeettee agateetaga 480 gatccggcat gggggacact ggccgctggg gacagctgcc tgccgcttct actacttcct 540 atggggcgtg tectactect eeggeetett eetgetggee geeeteagee tegaeegetg 600 cctgctggcg ctgtgcccac actggtaccc tgggcaccgc ccagtccgcc tgcccctctg 660 ggtctgcgcc ggtgtctggg tgctggccac actettcage gtgccctggc tggtcttccc 720 cgaggctgcc gtctggtggt acgacctggt catctgcctg gacttctggg acagcgagga 780 getgtegetg aggatgetgg aggteetggg gggetteetg cettteetee tgetgetegt 840 900 ctgccacgtg ctcacccagg ccacagcctg tcgcacctgc caccgccaac agcagcccgc agcctgccgg ggcttcgccc gtgtggccag gaccattctg tcagcctatg tggtcctgag 960 getgeeetae eagetggeee agetgeteta eetggeette etgtgggaeg tetaetetgg 1020 ctacctgctc tgggaggccc tggtctactc cgactacctg atcctactca acagetgcct 1080

cagccccttc	ctctgcctca	tggccagtgc	cgacctccgg	accctgctgc	gctccgtgct	1140
ctcgtccttc	geggeagete	tctgcgagga	gcggccgggc	agcttcacgc	ccactgagçc	1200
acagacccag	ctagattctg	agggtccaac	tctgccagag	ccgatggcag	aggcccagtc	1260
acagatggat	cctgtggccc	agcctcaggt	gaaccccaca	ctccagccac	gatcggatcc	1320
cacagctcag	ccacagctga	accctacggc	ccagccacag	tcggatccca	cagcccagcc	1380
acagctgaac	ctcatggccc	agccacagtc	agattctgtg	gcccagccac	aggcagacac	1440
taacgtccag	acccctgcac	ctgctgccag	ttctgtgccc	agtccctgtg	atgaagcttc	1500
cccaacccca	tcctcgcatc	ctaccccagg	ggcccttgag	gacccagcca	cacctcctgc	1560
ctctgaagga	gaaagcccca	gcagcacccc	gccagaggcg	gccccgggcg	caggccccac	1620
gtgagggtcc	aggaacacgc	aggcccacca	gagcagtgaa	agagcccagg	gcagacagag	1680
gaaccagcca	gtcaga					1696

<210> 92 <211> 505

<212> PRT <213> H.Sapiens

<400> 92

Leu Ala Trp Arg Cys Thr Ala Pro Ser Leu Pro Tyr Ser Val Ile His 1 5 10 15

Thr Ile Ile Asp Ser Pro Gly Thr Thr Pro Cys Pro Ala Gly Leu Trp 20 25 30

Gly Pro Gln Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly 35 40 45

His Arg Pro Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly 50 55 60

Gly Trp Asp Thr Val Phe Leu Val Ala Leu Leu Leu Leu Gly Leu Pro 70 75 80

Ala Asn Gly Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly 85 90 95

Ala Gly Thr Arg Leu Ala Leu Leu Leu Leu Ser Leu Ala Leu Ser Asp 100 105 110

Phe Leu Phe Leu Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His 115 120 125

Gly Gly His Trp Pro Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe 130 135 140

Leu Trp Gly Val Ser Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu 145 150 155 160

Ser	Leu	Asp	Arg	Cys 165	Leu	Leu	Ala	Leu	170	Pro	HIS	тър	ıyı	175	GIÀ
His	Arg	Pro	Val 180	Arg	Leu	Pro	Leu	Trp 185	Val	Cys	Ala	Gly	Val 190	Trp	Val
Leu	Ala	Thr 195	Leu	Phe	Ser	Val	Pro 200	Trp	Leu	Val	Phe	Pro 205	Glu	Ala	Ala
Val	Trp 210	Trp	Tyr	Asp	Leu	Val 215	Ile	Cys	Leu	Asp	Phe 220	Trp	Asp	Ser	Glu
Glu 225	Leu	Ser	Leu	Arg	Met 230	Leu	Glu	Val	Leu	Gly 235	Gly	Phe	Leu	Pro	Phe 240
Leu	Leu	Leu	Leu	Val 245	Cys	His	Val	Leu	Thr 250	Gln	Ala	Thr	Ala	Cys 255	Arg
Thr	Суз	His	Arg 260	Gln	Gln	Gln	Pro	Ala 265	Ala	Cys	Arg	Gly	Phe 270	Ala	Arg
Val	Ala	Arg 275	Thr	Ile	Leu	Ser	Ala 280	Tyr	Val	Val	Leu	Arg 285	Leu	Pro	Tyr
Gln	Leu 290	Ala	Gln	Leu	Leu	Tyr 295	Leu	Ala	Phe	Leu	Trp 300	Asp	Val	Tyr	Ser
Gly 305	Tyr	Leu	Leu	Trp	Glu 310	Ala	Leu	Val	Tyr	Ser 315	Asp	Tyr	Leu	Ile	Leu 320
Leu	Asn	Ser	Cys	Leu 325		Pro	Phe	Leu	Cys 330	Leu	Met	Ala	Ser	Ala 335	Asp
Leu	Arg	Thr	Leu 340		Arg	Ser	Val	Leu 345	Ser	Ser	Phe	Ala	Ala 350	Ala	Leu
Cys	Glu	Glu 355		Pro	Gly	Ser	Phe 360	Thr	Pro	Thr	Glu	Pro 365	Gln	Thr	Gln
Leu	Asp 370		Glu	Gly	Pro	Thr 375	Leu	Pro	Glu	Pro	Met 380	Ala	Glu	Ala	Glr
Ser 385		Met	Asp	Pro	Val 390	Ala	Gln	Pro	Gln	Val 395	Asn	Pro	Thr	Leu	Glr 400
Pro	Arg	Ser	: Asp	Pro 405		Ala	Gln	Pro	410	Leu)	Asn	Pro	Thr	Ala 415	Glr
Pro	Gln	Ser	420		Thr	Ala	Glr	425	Glr	. Lev	Asn	Lev	Met 430	Ala	Glr
Pro	Glr	Ser 435		Ser	· Val	Ala	44(Glr	n Ala	a Asp	Thr 445	Asn	Va]	Glı
Thr	Pro 450		a Pro	Ala	a Ala	Ser 455		val	l Pro	Sei	460	Cys	s Asp	Glu	ı Ala
Sei	r Pro	Thi	r Pro	Sei	s Sei	His	s Pro	Th:		o Gly Page		a Leu	a Glu	ı Asp	Pr

PCT/US00/31581

465 470 475 480

Ala Thr Pro Pro Ala Ser Glu Gly Glu Ser Pro Ser Ser Thr Pro Pro 485 490 495

Glu Ala Ala Pro Gly Ala Gly Pro Thr 500 505

<210> 93

<211> 1413

<212> DNA

<213> H.Sapiens

93 <400> atggacacta ccatggaage tgacetgggt gecaetggce acaggeeceg cacagagett 60 gatgatgagg actectacce ccaaggtgge tgggacacgg tetteetggt ggeeetgetg 120 ctccttgggc tgccagccaa tgggttgatg gcgtggctgg ccggctccca ggcccggcat 180 ggagetggca egegtetgge getgeteetg etcageetgg ecetetetga ettettgtte 240 ctggcagcag cggccttcca gatcctagag atccggcatg ggggacactg gccgctgggg 300 acagetgeet geegetteta etaetteeta tggggegtgt eetaeteete eggeetette 360 ctgctggccg ccctcagcct cgaccgctgc ctgctggcgc tgtgcccaca ctggtaccct 420 gggcaccgcc cagtccgcct gcccctctgg gtctgcgccg gtgtctgggt gctggccaca 480 ctcttcagcg tgccctggct ggtcttcccc gaggctgccg tctggtggta cgacctggtc 540 atctgcctgg acttctggga cagcgaggag ctgtcgctga ggatgctgga ggtcctgggg 600 ggcttcctgc ctttcctcct gctgctcgtc tgccacgtgc tcacccaggc cacagcctgt 660 cgcacctgcc accgccaaca gcagcccgca gcctgccggg gcttcgcccg tgtggccagg 720 accattctgt cagcctatgt ggtcctgagg ctgccctacc agctggccca gctgctctac 780 ctggccttcc tgtgggacgt ctactctggc tacctgctct gggaggccct ggtctactcc 840 gactacetga tectacteaa cagetgeete ageceettee tetgeeteat ggeeagtgee 900 gacctccgga ccctgctgcg ctccgtgctc tcgtccttcg cggcagctct ctgcgaggag 960 cggccgggca gcttcacgcc cactgagcca cagacccagc tagattctga gggtccaact 1020 ctgccagagc cgatggcaga ggcccagtca cagatggatc ctgtggccca gcctcaggtg 1080 aaccccacac tccagccacg atcggatccc acagctcagc cacagctgaa ccctacggcc 1140 cagccacagt cggatcccac agcccagcca cagctgaacc tcatggccca gccacagtca 1200 gactetgtgg cccagecaca ggcagacact aacgtecaga cccctgcace tgetgccagt 1260 tetgtgecca gtccctgtga tgaagettee ccaaceccat cetegcatee taeeccaggg 1320 gecettgagg acceagecae accteetgee tetgaaggag aaageeecag eageaceeeg 1380 Page 68

ccagaggcgg ccccgggcgc aggccccacg tga

1413

<210> 94

<211> 419

<212> PRT

<213> H.Sapiens

<400> 94

Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro 1 5 10 15

Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp 20 25 30

Thr Val Phe Leu Val Ala Leu Leu Leu Leu Gly Leu Pro Ala Asn Gly 35 40

Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr 50 55 60

Arg Leu Ala Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe 65 70 75 80

Leu Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His
85 90 95

Trp Pro Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly
100 105 110

Val Ser Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp 115 120 125

Arg Cys Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro 130 135 140

Val Arg Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr 145 150 155 160

Leu Phe Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp
165 170 175

Tyr Asp Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser 180 185 190

Leu Arg Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu 195 200 205

Leu Val Cys His Val Leu Thr Gln Ala Thr Ala Cys Arg Thr Cys His 210 215 220

Arg Gln Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg 225 230 235 240

Thr Ile Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala 245 250 255

Gln	Leu	Leu	Tyr 260	Leu	Ala	Phe	Leu	Trp 265	Asp	Val	Tyr	Ser	Gly 270	Tyr	Leu			
Leu	Trp	Glu 275	Ala	Leu	Val	Tyr	Ser 280	Asp	Tyr	Leu	Ile	Leu 285	Leu	Asn	Ser	•		
Суѕ	Leu 290	Ser	Pro	Phe	Leu	Cys 295	Leu	Met	Ala	Ser	Ala 300	Asp	Leu	Arg	Thr			
305				Val	310					312					320			
				Phe 325					330					333				
			340	Leu				345					330					
		355		Gln			360					303						
	370			Gln		375					380							
385				Gln	390					395					400			
Asp	Ser	Val	Ala	Gln 405		Gln	Ala	Asp	Thr 410	Asn	Val	Gln	Thr	Pro 415	Ala			
Pro	Ala	Ala																
<21 <21 <21 <21	1> 2>	95 49 DNA Arti	fici	al S	eque	nce												
<22 <22 <22	1>			ture														
<40 ttc	0> aaag	95 jett	atgg	aatc	at c	tttc	tcat	t tg	ıgagt	gato	ctt	gctg	ıtc				4	49
<21 <21 <21 <21	1>	96 49 DNA Arti	lfici	al S	Seque	ence												
	20> 21> 23>			ature equer								٠.						
<40 tto	00> cact	96 cgag	tta	gccat	tca a	aacto	ctga	gc to		atagi Page		cgate	gtg					49

<210> <211> <212> <213>	97 22 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gctcaa	97 ccca ctcatctatg cc	22
<210> <211> <212> <213>	98 22 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> aaactt	98 ctct gecettaceg te	22
<210> <211> <212> <213>	99 20 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> aaagca	99 gcac cccgaatacc	20
<210> <211> <212> <213>	100 21 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> catgat	100 caac ctgagcgtca c	21
<210>	101	

<211> <212> <213>	28 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> ttcaaaq	101 gett atggagtegg ggetgetg	28
<210> <211> <212> <213>	102 30 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> ttcact	102 cgag tcagtctgca gccggttctg	30
<210> <211> <212> <213>	103 30 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> gcatco	103 tggc cgctatctgt gcactctacg	30
<210> <211> <212> <213>	104 30 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> cgtaga	104 ngtgc acagatagcg gccaggatgc	3.0
<210><211><211><212><213>	19 DNA	

<220>		
<221>	misc_feature .	
<223>	Novel Sequence	
<400>	105	
<400>	105	19
aacccca	atca tctacacgc	13
<210>	106	
<211>	18	
<212>	DNA	
<213>		
1210	The state of the s	
<220>		
	· Cartains	
	misc_feature	
<223>	Novel Sequence	
<400>	106	
tacctat	tgga geegetgg	18
-9		
<210×	107	
<210>	·	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc feature	
<223>		
\2237	MOVET Sequence	
	100	
<400>	107	22
gcataa	gctt ccatgtacaa cgggtcgtgc tgc	33
<210>	108	
<211>	33	
<212>		
<213>	Artificial Sequence	
/213/	Attiticial bequence	
<220>		
<221>		
<223>	Novel Sequence	
<400>	108	
	taga tcagtgccac tcaacaatgt ggg	33
gcacco		_
	100	
<210>	109	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
~22UZ	mice feature	

w	O 01/36473	PCT/US00/31581
<223>	Novel Sequence	
<400> gaagcco	109 cage actgtttace	20
<211> <212>		
<220> <221> <223>	misc_feature Novel Sequence	
	110 acct gtccgcagcc	20
<210> <211> <212> <213>	35	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gatcaa	111 gctt atgacaggtg acttcccaag tatgc	35
<210> <211> <212> <213>		
<220> <221> <223>	misc_feature Novel Sequence	
<400> gatcct	112 cgag gctaacggca caaaacacaa ttcc	34
<210> <211> <212> <213>	DNA	

<220> <221> misc_feature <223> Novel Sequence

w	O 01/36473	PCT/US0	0/31581
	113 maac atccaagtc	4	19
<210> <211> <212> <213>	19		
	misc_feature Novel Sequence		
	114 etta atcageete		19
<210> <211> <212> <213>	34		
	misc_feature Novel Sequence		
	115 attc gcaggagcaa tgaaaatcag gaac		34
<210><211><211><212><213>	39		
<220> <221> <223>	misc_feature Novel Sequence		
<400> gatcga	116 attc ttatatatgt tcagaaaaca aattcatgg		39
<210> <211> <212> <213>	DNA		•
<400> acagco	117 ccaa agccaaacac		20
<210> <211> <212> <213>			

VO 01/36473	PCT/US00/31581

<400> ccgcago	118 gagc aatgaaaatc ag	22
<210> <211> <212> <213>	119 19 DNA Artificial Sequence	
<400> ctgaaaq	119 gttg tegetgace	19
<210> <211> <212> <213>	120 21 DNA Artificial Sequence	
<220> <221> <223>		
<400> cgatta	120 tcca cactttgacc c	21
<210> <211> <212> <213>	DNA	
<400> gcatac	121 catg aatgagccac tagac	25
<210> <211> <212> <213>	DNA	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcatct	122 cegag teaagggttg tttgagtaae	30
<210> <211> <212> <213>	DNA	
<220> <221>	misc_feature	

WO	Λ_1	126	473
wi		/.Mb	4/.7

PCT/US00/31581

<400> ctgtcto	123 etct gtoctettec	•	20
<210> <211> <212> <213>	22		
	misc_feature Novel Sequence		
	124 atct tcattgaatt tc		22
<210> <211> <212> <213>	DNA		
	misc_feature Novel Sequence		
<400> acttca	125 aaca acttcatacc cc		22
<210> <211> <212> <213>	18		
<220> <221> <223>	misc_feature Novel Sequence		
<400> acacac	126 agca tagtagcg		18
<210> <211> <212> <213>	127 20 DNA Artificial Sequence		
<220> <221> <223>	misc_feature Novel Sequence		
<400>	127		

cagagct	tga tgatgaggac	20
<210> <211> <212> <213>	128 20 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> cccata	128 ggaa gtagtagaag	20
<210> <211> <212> <213>	129 9 PRT Synthetic substrate peptide	
<220> <221> <223>	misc_feature Novel Sequence	
<400> Ala Pr	129 o Arg Thr Pro Gly Gly Arg Arg 5	
<210> <211> <212> <213>	130 52 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	130 stacg actcactata gggagaccgc gtgtctgcta gactctattt cc	52
<210> <211> <212> <213>		
<220> <221> <223>		
<400>	131	20

tgccacactg atgcaactcc

PCT/US00/31581

<210> <211> <212> <213>	132 48 DNA Artificial Sequence	
<400> gcgtaat	132 acg actcactata gggagacetg ccacactgat gcaactcc	48
<210> <211> <212> <213>	24	
	misc_feature Novel Sequence	
<400> gcgtgt(133 ctgc tagactctat ttcc	24
<210> <211> <212> <213>		
<400> gcgtaa	134 tacg actcactata gggagaccgc acgccactct ttactatccc	50
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> gcacaa	135 aaca caattccata agcc	24
<210><211><211><212><213>	DNA	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	1'36 stacg actcactata gggagaccgc acaaaacaca attccataag cc	52

<211> <212>		
	misc_feature Novel Sequence	
	137 ccac tctttactat ccc	23
<211> <212>		
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	138 tacg actcactata gggagacett atgagcagca attcatece	49
<210> <211> <212> <213>	20	
	misc_feature Novel Sequence	
<400> cacaco	139 ccacc aagaaatcag	20
<210> <211> <212> <213>		
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	140 atacg actcactata gggagaccca cacccaccaa gaaatcag	48
<210>	141	

1	WO 01/36473	PCT/US00/31581
		·
<211> <212>	21 DNA	

<211> <212> <213>		
	misc_feature Novel Sequence	
<400> ttatgaç	141 gcag caattcatcc c	21
<210><211><211><212><212><213>		
	misc_feature Novel Sequence	
<400> gcgtaa	142 tacg actcactata gggagacceg attatecaca etttgacce	49
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> ctgaaa	143 gttg tegetgace	19
<210> <211> <212> <213>		
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	144 tacg actcactata gggagaccct gctgaaagtt gtcgctgacc	50
<210> <211> <212> <213>	21	

	misc_feature	
<223>	Novel Sequence	
<400>	145	
cgattat	cca cactttgacc c	21
2010 >	146	
<210> <211>	146 50	
<212>		
	Artificial Sequence	
	-	
<220>		
	misc_feature	
<223>	Novel Sequence	
<400>	146	
	tacg actcactata gggagaccct gtaaaattca cacaagcacc	50
gcgcaa	tacy accountable grant g	
<210>	147	
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220>	ming forture	
	misc_feature Novel Sequence	
\2237	MOVEL BEQUENCE	
<400>	147	10
agaaga	caga gcaacctcc	19
<210>	148	
	48	
<212>		
<213>		
	•	
<220>		
<221>		
<223>	Novel Sequence	
<400>	148	
dacata	atac gactcactat agggagacca gaagacagag caacctcc	48
agogta	acac gastessee egggegette je je je je	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc feature	

PC	T/	IIS	00/	31	58

<223>	Novel Sequence	
<400> ctgtaaa	149 Matt cacacaagca cc	22
<210> <211> <212> <213>	31	
	misc_feature Novel Sequence	
<400> gcat g ga	150 atcc tctttgctgt atttcaccct c	31
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> gcatga	151 attc acaatgccag tgataaggaa g	31
<210> <211> <212> <213>	152 31 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gatcaa	152 gctt ggaatgatge eettttgeea e	31
<210> <211> <212> <213>	153 29 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	

	153 cgag catcattcaa agtaggtgg	29
<210> <211> <212> <213>	42	
	misc_feature Novel Sequence	
<400> gatcct	154 cgag ctatgaactc aattccaaaa ataatttaca cc	42
<211> <212>		
	misc_feature Novel Sequence	
<400> gctact	155 tgaa ctctacattt aatccaatgg tttatgcatt tttctatcc	49
<210> <211> <212> <213>	49	
	misc_feature Novel Sequence	
<400> ggatag	156 aaaa atgcataaac cattggatta aatgtagagt tcaagtagc	49
<210> <211> <212> <213>	35 DNA	
<220> <221> <223>		
<400> gatcga	157 aatto atggacacta ccatggaago tgaco	35

PCT/US00/31581

	158 31 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> gatcct	158 egag teaegtgggg eetgegeeeg g	31
<210> <211> <212> <213>	159 52 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtaa	159 tacg actcactata gggagaccgc gtgtctgcta gactctattt cc	52
<210> <211> <212> <213>	160 20 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> tgccac	160 actg atgcaactcc	20
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> gcgtaa	161 tacg actcactata gggagacctg ccacactgat gcaactcc	48
<210>	162	

VO 01/36473	PCT/US00/31581

<212> <213>	DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> gcgtgt	162 ctgc tagactctat ttcc	24
<210> <211> <212> <213>		
	misc_feature Novel Sequence	
<400> gcgtaa	163 tacg actcactata gggagaccgc acgccactct ttactatccc	50
<210> <211> <212> <213>	24	
	misc_feature Novel Sequence	
<400> gcacaa	164 maaca caattccata agcc	24
<210> <211> <212> <213>	52	
	misc_feature Novel Sequence	
<400> gcgtaa	165 atacg actcactata gggagaccgc acaaaacaca attccataag cc	52
<210> <211> <212> <213>	23	

WO 01/36473	PCT/US00/31581

<220>		
<221>	misc feature	
	Novel Semence	
	nover begaence	
<400>	166	
		23
gctacg	ccac tctttactat ccc	23
<210>	167	
<211>	49	
<212>	DNA	
<213>	Artificial Sequence	
	· · · · · · · · · · · · · · · · · · ·	
<220>		
	misc feature	
<223>	nover seducince	
<400>	167	
gcgtaat	tacg actcactata gggagacett atgagcagca attcatece	49
<210>	168	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>	Novel Sequence	
<400>	168	
	cacc aagaaatcag	20
Cacaco	cace aaguateag	
	\cdot	
<21 0×	160	
<210>	169	
<211>	48	
<212>		
<213>	Artificial Sequence	
<220>		
<221>	misc feature	
<223>	Novel Sequence	
<400>	169	
	tacg actcactata gggagaccca cacccaccaa gaaatcag	48
gegtaa	tacg acteactata gggagaceca caeccaccaa gaaattag	40
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
	misc feature	
	Novel Seguence	
×// >>	MOVEL SECUENCE	

<400> ttatgag	170 gcag caattcatcc c	21
<210> <211> <212> <213>	171 49 DNA Artificial Sequence	
	misc_feature Novel Sequence	
<400> gcgtaat	171 tacg actcactata gggagacccg attatccaca ctttgaccc	49
<210> <211> <212> <213>	172 19 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Novel Sequence	
<400> ctgaaa	172 gttg tegetgaee	19
<210> <211> <212> <213>	173 50 DNA Artificial Sequence	
<220> <221> <223>		
<400> gcgtaa	173 tacg actcactata gggagaccct gctgaaagtt gtcgctgacc	50
<210> <211> <212> <213>	174 21 DNA Artificial Sequence	
<220> <221> <223>		
<400>	174	

casttat	cca cactttgacc c	21
cyactat	cca caccergado o	
	•	
<210>	175	
<211>	50	
<212>	DNA	
<213>	Artificial Sequence	
<220>	· Carbana	
	misc_feature	
<223>	Novel Sequence	
<400>	175	
gcgtaat	acg actcactata gggagaccct gtaaaattca cacaagcacc	50
-		
<21A>	176	
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc feature	
	Novel Sequence	
<400>	176	19
agaaga	caga gcaacctcc	19
<210>	177	
<211>		
	DNA	
	Artificial Sequence	
1210		
<220>		
<221>	misc_feature	
<223>	Novel Sequence	
<400>	177	
<002	tacg actcactata gggagaccag aagacagagc aacctcc	47
gcgcaa	cacy accounted gygususus anymony is	
<210>	178	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
.0.5.5		
<220>		
<221>	misc_feature	
<223>	Nove Sequence	
<400>	178	
	aatt cacacaagca cc	22
	-	

PCT/US00/31581

<210>	179	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>	Nove Sequence	
		•
<400>	170	
<400>	179 atcc tctttgctgt atttcaccct c	
gcacgg	acce tectigory: arricaceer e	31
<210>	180	
<211>	31	
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>	Novel Sequence	
<400>	180	
	attc acaatgccag tgataaggaa g	31
J J - ·	and analogoous openings and g	31
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
<223>		
1000	mover bequence	
<400>	181	
acagcco	ccaa agccaaacac	20
.010-		
<210> <211>	182	
<211>	22 DNA	
<213>	Artificial Sequence	
\213/	Altilitial Sequence	
<220>		
<221>	misc feature	
<223>	Novel Sequence	
<400>	182	
ccgcago	gage aatgaaaate ag	22
<210>	183	
<211>	20	
<212>	DNA	

PCT/US00/31581

WO 01/36473

WO 01/36473 Artificial Sequence <213> <220> <221> misc feature Novel Sequence <223> <400> 183 20 ctgtctctct gtcctcttcc <210> 184 22 <211> DNA <212> Artificial Sequence <213> <220> misc_feature <221> Novel Sequence <223> <400> 184 22 gcaccgatct tcattgaatt tc 185 <210> 1188 <211> DNA <212> <213> H.Sapiens <400> 185 aggetegege eegaageaga geeatgagaa eeceagggtg eetggegage egetagegee 60 atgggccccg gcgaggcgct gctggcgggt ctcctggtga tggtactggc cgtggcgctg 120 ctatccaacg cactggtgct gctttgttgc gcctacagcg ctgagctccg cactcgagcc 180 teaggegtee teetggtgaa tetgtetetg ggccaeetge tgetggegge getggaeatg 240 cccttcacgc tgctcggtgt gatgcgcggg cggacaccgt cggcgcccgg cgcatgccaa 300 gtcattggct tcctggacac cttcctggcg tccaacgcgg cgctgagcgt ggcggcgctg 360 agegeagace agtggetgge agtgggette ceaetgeget aegeeggaeg eetgegaeeg 420 cgctatgccg gcctgctgct gggctgtgcc tggggacagt cgctggcctt ctcaggcgct 480 gcacttggct gctcgtggct tggctacagc agcgccttcg cgtcctgttc gctgcgcctg 540 ccgcccgagc ctgagcgtcc gcgcttcgca gccttcaccg ccacgctcca tgccgtgggc 600 ttcgtgctgc cgctggcggt gctctgcctc acctcgctcc aggtgcaccg ggtggcacgc 660 agacactgcc agcgcatgga caccgtcacc atgaaggcgc tcgcgctgct cgccgacctg 720 caccccagtg tgcggcagcg ctgcctcatc cagcagaagc ggcgccgcca ccgcgccacc 780

PCT/US00/31581

840

aggaagattg gcattgctat tgcgaccttc ctcatctgct ttgccccgta tgtcatgacc

aggctggcgg agctcgtg	c cttcgtcacc	gtgaacgccc	agtggggcat	cctcagcaag	900
tgcctgacct acagcaago	c ggtggccgac	ccgttcacgt	actctctgct	ccgccggccg	960
ttccgccaag tcctggccg	g catggtgcac	cggctgctga	agagaacccc	gcgcccagca	1020
tccacccatg acagetete	t ggatgtggcc	ggcatggtgc	accagctgct	gaagagaacc	1080
ccgcgcccag cgtccaccc	a caacggctct	gtggacacag	agaatgattc	ctgcctgcag	1140
cagacacact gagggcctg	g cagggctcat	cgccccacc	ttctaaga		1188

<210> 186

<211> 363

<212> PRT

<213> H.Sapiens

<400> 186

Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu

10 15

Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Cys Cys Ala Tyr 20 25 30

Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val Asn Leu 35 40 45

Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Thr Leu 50 55 60

Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Cys Gln 65 70 75 80

Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser 85 90 95

Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu 100 105 110

Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu Gly 115 120 125

Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys 130 135 140

Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu 145 150 155 160

Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu 165 170 175

His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser-180 185 190

Leu Gln Val His Arg Val Ala Arg Arg His Cys Gln Arg Met Asp Thr 195 200 205

Val	Thr 210	Met	Lys	Ala	Leu	Ala 215	Leu	Leu	Ala	Asp	Leu 220	His	Pro	Ser	vai		
225					11e 230					200							
				245	Ala				230								
			260		Leu			203								٠	
		275			Leu		280										
	290				Tyr	295											
305					310					320					Ala 320		
				325)				330	,					Leu		
Leu	Lys	s Arg	Thr 340	Pro	Arg	Pro	Ala	345	Thr	His	s Asr	n Gly	350	Val	Asp		
Thi	Gl:	a Asr 35!		Sei	c Cys	s Lev	360	n Gli	n Thi	c His	5						
<2: <2:	10> 11> 12> 13>	187 29 DNA Art		ial :	Sequ	ence											
<2	20> 21> 23>		c_fe el S												-		
<4 gc	00> ataa	187 igctt		atgg	gcc	ccgg	cgag	ıg									29
<2 <2	10> 11> 212> 213>	188 28 DNA Art	A	cial	Sequ	ience	•										
<2	220> 221> 223>		sc_fe vel :	eatui Seque	re ence												
g g	400> catt	18: ctag	a cc	tcag	tgtg	tct	gctg	С									28
<	210>	18	9														

<211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 189 tgctgctttg ttgcgcctac 20 <210> 190 <211> 18 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 190 ttggacgcca ggaaggtg 18

PCT/US00/31581

WO 01/36473

			•
		b	i A
,			•
	4		
	- ·		
•			
·			