Langage du premier ordre : Syntaxe

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

•
$$\mathcal{C} \cap \mathcal{P} = \emptyset$$

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- \bullet $\mathcal C$ est l'ensemble des *constantes*
- ullet est l'ensemble des symboles de *prédicats*

$$\{P, Q, R, \ldots\}$$

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- ullet C est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- ullet C est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$
- \mathcal{V} est l'ensemble des *variables*

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- ullet C est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$
- \mathcal{V} est l'ensemble des *variables* $\{x, y, z \ldots\}$

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- ullet C est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$
- \mathcal{V} est l'ensemble des *variables* $\{x, y, z \ldots\}$
- $\mathcal{V} \ \cup \ \mathcal{C}$ est l'ensemble des termes du langage

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- \bullet $\mathcal C$ est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$

V est l'ensemble des *variables* $\{x, y, z \ldots\}$

 $\mathcal{V} \ \cup \ \mathcal{C}$ est l'ensemble des termes du langage

Un terme est une expression désignant un objet du domaine modélisé.

$$\mathcal{L} = \mathcal{C} \ \cup \ \mathcal{P}$$
 avec

- $\mathcal{C} \cap \mathcal{P} = \emptyset$
- ullet C est l'ensemble des *constantes*
- \mathcal{P} est l'ensemble des symboles de *prédicats* avec une arité associée $\{P_1, Q_2, R_2...\}$

 \mathcal{V} est l'ensemble des *variables* $\{x, y, z \ldots\}$

 $\mathcal{V} \; \cup \; \mathcal{C}$ est l'ensemble des termes du langage

Un terme est une expression désignant un objet du domaine modélisé.

- Les constantes désignent des objets précis du domaine
- Les variables désignent des objets indéfinis du domaine

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit

 $FBF(\mathcal{L})$,

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

ullet base : $FBF(\mathcal{L})$ contient

induction :

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit **par induction** $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

- ullet base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$

induction :

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit **par induction** $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
- induction :

Soit $\mathcal{L} = \mathcal{C} \cup P$ un langage, \mathcal{V} un ensemble infini de variables

On definit par induction $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\mathcal L$:

- base : FBF(L) contient
 - l'ensemble des atomes $\{ p(t_1,\ldots,t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1,\ldots,t_n \in \mathcal{T} \}$ sont *n* termes }
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - le cas spécial du symbole d'égalité =

induction :

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{ste} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction :

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit **par induction** $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{ste} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{T,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{ste} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:
 - $\neg A \in FBF(\mathcal{L})$

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

l'ensemble des formules bien formées, construites sur $\ensuremath{\mathcal{L}}$:

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{\mathsf{ste}} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:
 - $\neg A \in FBF(\mathcal{L})$
 - $(A \wedge B) \in FBF(\mathcal{L})$

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{\mathsf{ste}} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:
 - $\neg A \in FBF(\mathcal{L})$
 - $(A \land B) \in FBF(\mathcal{L})$ (idem avec $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$)

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

- base : $FBF(\mathcal{L})$ contient
 - ① I'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{ste} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:
 - $\neg A \in FBF(\mathcal{L})$
 - $(A \land B) \in FBF(\mathcal{L})$ (idem avec $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$)
 - $\forall x A \in FBF(\mathcal{L})$

Soit $\mathcal{L} = \mathcal{C} \ \cup \ P$ un langage, \mathcal{V} un ensemble infini de variables

On définit par induction $FBF(\mathcal{L})$,

- base : $FBF(\mathcal{L})$ contient
 - ① l'ensemble des atomes $\{ p(t_1, \ldots, t_n) \mid p \in \mathcal{P} \text{ est un prédicat n-aire et } t_1, \ldots, t_n \in \mathcal{T} \text{ sont } n \text{ termes } \}$
 - $\{\top,\bot\}$ dans la mesure où ces symboles sont admis.
 - 3 l'ensemble des formules $\{t_1 = t_2 \text{ avec } t_1 \text{ et } t_2 \in \mathcal{C}_{ste} \cup \mathcal{V}\}$ le cas spécial du symbole d'égalité =
- induction : soit A et $B \in FBF(\mathcal{L})$ et soit $x \in \mathcal{V}$:
 - $\neg A \in FBF(\mathcal{L})$
 - $(A \land B) \in FBF(\mathcal{L})$ (idem avec $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$)
 - $\forall xA \in FBF(\mathcal{L})$ (idem avec $\exists xA$)

