| Table Contents                                  | Date:24/7/2021 |
|-------------------------------------------------|----------------|
| USCSP301: USCS303-Operating System(OS)          |                |
| SJF ( with no pre-emption scheduling Algorithm) | 1              |
| Aim                                             | 2              |
| Algorithm                                       | 3              |
| Example of SJF                                  | 4              |
| Gnatt Chart                                     | 5              |
| Implementation                                  | 6              |
| Input                                           | 7              |
| Output                                          | 8              |
| Sample Output                                   | 9              |

Practical aim: Non-Preemtive CPU Schedualing algorithm where each process with the smallest burst time is executed time.

#### Algorithm:

CPU scheduling algorithm are used for scheduling different process present in the ready queue with available resource in an optimal way so that each and every process get execute by CPU

Scheduling algorithm are broadly classified into two main type namely preemptive and non-preemptive .

FIRST COME FIRST OUT(FCFS) is also know as FIRST IN FIRST OUT (FIFO) SCHEDUAL algorithm is the and simplest  $\mathsf{CPU}$  .

A process scheduling different process to be assigned to the CPU based on particular scheduling algorithm .there are six popular process scheduling algorithm which we are going to discuss in this chapter FIRST COME FIRST OUT(FCFS) scheduling.

**Example 1:** Consider the following example contain five processes .

| Process Id | Burst Time |
|------------|------------|
|            |            |
| PO         | 6          |
|            |            |
| P1         | 3          |
|            |            |
| P2         | 8          |
|            |            |
| Р3         | 3          |
|            |            |
| P4         | 4          |
|            |            |

**Step 1:** Processes get execute according to their lowest burst time first .

| Process Id | Burst Time |
|------------|------------|
|            |            |
| PO         | 6          |
|            |            |
| P1         | 3          |
|            |            |
| P2         | 8          |
|            |            |
| Р3         | 3          |
|            |            |
| P4         | 4          |
|            |            |

**Step 2:** Following shows the scheduling and execution of processes

**Step 2.1:** At start P1 shortest execution time which is 0-3 second.

| System time                      | 0     |
|----------------------------------|-------|
| Processes scheduling finish time | P1    |
| Finish time                      | 0+3=3 |
| Wating time                      | 3-3=0 |
| Turn Around time                 | 3-0=3 |

**Step 2.2:** next shortest execution time is for process P3 for duration 3-6 second.

| System time                      | 6     |
|----------------------------------|-------|
| Processes scheduling finish time | P1,p3 |
| Finish time                      | 3+3=6 |
| Wating time                      | 6-3=3 |
| Turn Around time                 | 6-0=6 |

| System time                                                                             | 10                   |                      |
|-----------------------------------------------------------------------------------------|----------------------|----------------------|
| Processes scheduling finish time                                                        | P1,p3'p4             |                      |
| Finish time                                                                             | 6+4=10               |                      |
| Wating time                                                                             | 10-4=6               |                      |
| Turn Around time                                                                        | 10-0=10              |                      |
|                                                                                         |                      |                      |
| System time                                                                             | 10                   | ation of 10-16 secor |
| Step 2.4: Next job with shortest executed System time  Processes scheduling finish time |                      | ntion of 10-16 secon |
| System time                                                                             | 10                   | ation of 10-16 secon |
| System time  Processes scheduling finish time                                           | 10<br>P1,p3,p3,p4,p0 | ation of 10-16 secon |

| Step 2.5: Similarly next job with shortest execution time is P2 for duration of 16-24 |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| System time                      | 16                |
|----------------------------------|-------------------|
| Processes scheduling finish time | P1,p3,p3,p4,p0,p2 |

| Finish time      | 16+8=24 |
|------------------|---------|
|                  |         |
| Wating time      | 24-8=16 |
|                  |         |
| Turn Around time | 24-0=24 |
|                  |         |



#### **Gnatt Chart**

**Step 4:** After scheduling of all provided processes.

| 3 | 0 |            |                           | 1                                                                |
|---|---|------------|---------------------------|------------------------------------------------------------------|
|   |   | 0+3=3      | 3-0=3                     | 3-3=0                                                            |
| 3 | 0 | 3+3=6      | 6-0=6                     | 6-3=3                                                            |
| 4 | 0 | 6+4=10     | 10-0=10                   | 10-4=6                                                           |
| 6 | 0 | 10+6=16    | 16-0=16                   | 16-6=10                                                          |
| 8 | 0 | 16+8=24    | 24-0=24                   | 24-8=16                                                          |
|   |   |            | 11.8000000                | 7.000000                                                         |
|   | 6 | 4 0<br>6 0 | 4 0 6+4=10<br>6 0 10+6=16 | 4 0 6+4=10 10-0=10<br>6 0 10+6=16 16-0=16<br>8 0 16+8=24 24-0=24 |

| P1 | P3 | P4 | PO | P2   |
|----|----|----|----|------|
|    |    |    |    |      |
| 0  | 3  | 6  | 10 | 16 2 |

| Processes ID |            |             | <b>Burst Time</b> |                     |             |  |
|--------------|------------|-------------|-------------------|---------------------|-------------|--|
| PO           |            |             | 2                 |                     |             |  |
| P1           |            |             | 1                 |                     |             |  |
| P2           |            | 6           |                   | 6                   |             |  |
| inatt Chart  |            |             |                   |                     |             |  |
| Process id   | Burst time | Arrival tin | ne Finish time    | Turn Around<br>time | Wating time |  |
| P1           | 1          | 0           | 1                 | 1                   | 1           |  |
| PO           | 2          | 0           | 3                 | 3                   | 3           |  |
| P2           | 6          | 0           | 9                 | 9                   | 9           |  |
| Average      |            |             |                   | 4.33333             | 1.33333     |  |
|              |            |             |                   |                     |             |  |
| P1           |            | Р0          |                   | P2                  |             |  |
|              |            | 1           |                   | 3                   |             |  |

**Example 3:** Consider the following example contain five processes arrive at same time .

| Process ID | Burst time |
|------------|------------|
|            |            |
| PO         | 25         |
|            |            |
| P1         | 15         |
|            |            |
| P2         | 10         |
|            |            |
| Р3         | 25         |
|            |            |
| P4         | 10         |
|            |            |
| P5         | 25         |
|            |            |

| Process id | Burst time | Arrival time | Finish time | Turn Around<br>time | Wating time |
|------------|------------|--------------|-------------|---------------------|-------------|
| P2         | 10         | 0            | 10          | 10                  | 0           |
| P4         | 10         | 0            | 20          | 20                  | 10          |
| P1         | 15         | 0            | 35          | 35                  | 20          |
| P0         | 25         | 0            | 60          | 60                  | 35          |

| P3 | 25 | 0 | 85  | 85  | 60 |  |
|----|----|---|-----|-----|----|--|
|    |    |   |     |     |    |  |
|    |    |   |     |     |    |  |
|    | 25 | 0 | 110 | 110 | 85 |  |
| P5 |    |   |     |     |    |  |

| Average | 53.3333 | 35.000000 |
|---------|---------|-----------|
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |
|         |         |           |

| Gnatt chart: |            |                |             |                     |                   |
|--------------|------------|----------------|-------------|---------------------|-------------------|
| Process id   | Burst time | Arrival time   | Finish time | Turn<br>Around time | Wating time       |
| P2           | 10         | 0              | 10          | 10                  | 0                 |
| P4           | 10         | 0              | 20          | 20                  | 10                |
| P1           | 15         | 0              | 35          | 35                  | 20                |
| P0           | 25         | 0              | 60          | 60                  | 35                |
| P3           | 25         | 0              | 85          | 85                  | 60                |
| P5           | 25         | 0              | 110         | 110                 | 85                |
| Average      |            |                |             | 53.3333             | 35.000000         |
|              |            |                |             |                     |                   |
| P2           | P4         | P1             | PO          | P3                  | P5                |
| 0            | 10         | <u> </u><br>20 | 35          | 60 8.               | <u> </u><br>5 110 |
|              |            |                |             |                     |                   |

**Example 4:** Consider the following example contain five processes arrive at same time .

| Process Id | Burst Time |
|------------|------------|
|            |            |
| PO         | 7          |
|            |            |
| P1         | 3          |
|            |            |
| P2         | 2          |
|            |            |
| P3         | 10         |
|            |            |
| P4         | 8          |
|            |            |

**Step 4:** After scheduling of all provided processes.

| Process id | Burst time | Arrival time | Finish time | Turn Around<br>time | Wating time |
|------------|------------|--------------|-------------|---------------------|-------------|
| P2         | 2          | 0            | 2           | 2                   | 0           |
| P1         | 3          | 0            | 5           | 5                   | 2           |
| PO         | 7          | 0            | 12          | 12                  | 5           |
| P4         | 8          | 0            | 20          | 20                  | 12          |
| P3         | 10         | 0            | 30          | 30                  | 20          |

| Average |  | 13.80000 | 7.800000 |
|---------|--|----------|----------|
|         |  |          |          |
|         |  |          |          |
|         |  |          |          |

| 2  | 0            | 2                  | 2                                                                                | _                                                                                             |
|----|--------------|--------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|    |              |                    |                                                                                  |                                                                                               |
| 3  | 0            | 5                  | 5                                                                                | _                                                                                             |
| 7  | 0            | 12                 | 12                                                                               | Wating time                                                                                   |
| 8  | 0            | 20                 | 20                                                                               | 0                                                                                             |
| 10 | 0            | 30                 | 30                                                                               | 2                                                                                             |
|    |              |                    | 13.80000                                                                         | 5                                                                                             |
| P1 | PO           | P4                 | ŀ                                                                                | 12<br>P3                                                                                      |
| 5  | 12           | 20                 | 0                                                                                | 20                                                                                            |
|    |              |                    |                                                                                  | 7.800000                                                                                      |
|    | 7<br>8<br>10 | 7 0 8 0 10 0 P1 P0 | 7     0     12       8     0     20       10     0     30       P1     P0     P4 | 7     0     12     12       8     0     20     20       10     0     30     30       13.80000 |

```
Implementation:
//Name: Navjit
//Batch: B2
//PRN:2020016400786916
//Date: 24/7/2021
//Prac-02: SJF(with no preemption)Algorithm
import java.util.Scanner;
public class P2_SJF_PD
{
int burstTime[]; int
arrivalTime[]={0};
String[] processId;
int numberOfProcess;
void getProcessData(Scanner input){
System.out.println("enter the number of process for
Scheduling:"); int inputNumberOfProcess=input.nextInt();
numberOfProcess=inputNumberOfProcess; burstTime=new
int[numberOfProcess]; arrivalTime=new int[numberOfProcess];
processId=new String[numberOfProcess]; String st="p"; for(int
i=0;i < numberOfProcess;i++){
processId[i]=st.concat(Integer.toString(i));
System.out.print("enter the burst time for process-"+(i)+":");
burstTime[i]=input.nextInt();
}
}
```

```
void sortAccordingBurstTime(int[] at,int[] bt,String[] pid){
boolean swapped;
int temp; String stemp; for (int
i=0;i<numberOfProcess;i++){
swapped=false; for (int j =
0;j<numberOfProcess-i-1;j++){
if(bt[j]>bt[j+1]){
temp=bt[j];
bt[j]=bt[j+1];
bt[j+1]=temp;
temp=at[j];
at[j]=at[j+1];
at[j+1]=temp;
stemp=pid[j];
pid[j]=pid[j+1];
pid[j+1]=stemp;
swapped=true;
}
if(swapped==false){
break;
}
}
}
void shortestJobFirstNPAlgorithm(){ int
finishTime[]=new int[numberOfProcess];
int bt[]=burstTime.clone();
```

```
int at[]=arrivalTime.clone(); String
pid[]=processId.clone(); int waitingTime[]=new
int[numberOfProcess]; int
turnAroundTime[]=new int[numberOfProcess];
sortAccordingBurstTime(at,bt,pid);
finishTime[0]=at[0]+bt[0];
turnAroundTime[0]=finishTime[0]-at[0];
waitingTime[0]=turnAroundTime[0]-bt[0]; for(int
i=1;i<numberOfProcess;i++){
finishTime[i]=bt[i]+finishTime[i-1];
turnAroundTime[i]=finishTime[i]-at[i];
waitingTime[i]=turnAroundTime[i]-bt[i];
}
float sum=0; for(int
n:waitingTime){
sum+=n;
}
float
averageWaitingTime=sum/numberOfProcess;
sum=0; for(int n:turnAroundTime){ sum+=n;
}
float averageTurnAroundTime=sum/numberOfProcess;
System.out.println("SJF (with no preemption) Scheduling Algorithm:");
```

System.out.format("%20s%20s%20s%20s%20s\n","ProcessId","BurstTime","ArrivalTime","FinishTime","TurnAroundTime","WatingTime"); for(int i=0;i<numberOfProcess;i++){
System.out.format("%20s%20d%20d%20d%20d\n",pid[i],bt[i],at[i],finishTime[i],turnAroundTime[i],waitingTime[i]);

```
}
System.out.format("%80s%20f%20f\n", "Average",averageTurnAroundTime,averageWaitingTime);
}
public static void main(String[] args){
Scanner input=new Scanner(System.in); P2_SJF_PD
obj=new P2_SJF_PD(); obj.getProcessData(input);
obj.shortestJobFirstNPAlgorithm();
}
}
```

# Input 1: :\Users\SD CONSULTANTS\OneDrive\Desktop>java P2\_SJF\_PD.javaenter the number of process for Scheduling: enter the burst time for process-0:6 enter the burst time for process-1:3 enter the burst time for process-2:8 enter the burst time for process-3:3 enter the burst time for process-4:4 Output: Scheduling Algorithm BurstTime no preempt: ProcessId ArrivalTime FinishTime TurnAroundTime WatingTime p3 p4 p0 p2 10 10 11.800000 7.000000 Sample output 01: O 📑 📙 Desktop 💿 🚾 USCSP3. 🕡 USCS9R. 🥒 PZ-SIF-P. 🥼 PL-FCFS. 🏧 CNWind... 🕜 🚵 28°C 🛆 🛎 🛎 🖟 4° ENG 23-07-2021

### Input 2:

```
enter the burst time for process-0:2
enter the burst time for process-1:1
enter the burst time for process-2:6
SJF (with no preemption) Scheduling Algorithm :

ProcessId BurstTime ApplyalTime EinishTime TurpAroundTime WatingTime
```

#### Input 3:

| (with no preemption) Someone ProcessId | BurstTime | ArrivalTime | FinishTime | TurnAroundTime | WatingTime |  |
|----------------------------------------|-----------|-------------|------------|----------------|------------|--|
| p1                                     | 1         | 0           | 1          | 1              | Ø          |  |
| р0                                     | 2         | 0           |            |                | 1          |  |
| p2                                     |           | 0           |            |                |            |  |
|                                        |           |             | Average    | 4.333333       | 1.333333   |  |

#### Sample output 2:



# Input 3: enter the burst time for process-0:7 enter the burst time for process-1:3 enter the burst time for process-2:2 enter the burst time for process-3:10 enter the burst time for process-4:8 SJF (with no preemption) Scheduling Algorithm : **Output:** SJF (with no preemption) Scheduling Algorithm : ProcessId BurstTime WatingTime 12 20 20 30 13.800000 7.800000 C:\Users\SD CONSULTANTS\OneDrive\Desktop>\_ Sample output 3: ers\SD CONSULTANTS\OneDrive\Desktop>\_ O # Desk. (5) (1) W. 🚾 USCS. (2) USCS. (3) Servi. N. 2021. (4) F2.51. 🔼 C.W.. (2) 🔈 28°C ^ 🛥 🖎 (6) ENG 23-07-2021 Type here to search

### Input:

```
enter the burst time for process-0:25
enter the burst time for process-1:15
enter the burst time for process-2:10
enter the burst time for process-3:25
enter the burst time for process-4:10
enter the burst time for process-5:25
SJF (with no preemption) Scheduling Algorithm :
```

#### Output:

| ProcessId | Scheduling Algorithm<br>BurstTime | ArrivalTime | FinishTime | TurnAroundTime | WatingTime |  |
|-----------|-----------------------------------|-------------|------------|----------------|------------|--|
| p2        | 10                                | 0           | 10         | 10             | 0          |  |
| p4        | 10                                | 0           | 20         | 20             | 10         |  |
| p1        | 15                                | 0           | 35         | 35             | 20         |  |
| р0        | 25                                | Ø           | 60         | 60             | 35         |  |
| р3        | 25                                | 0           | 85         | 85             | 60         |  |
| p5        | 25                                | 0           | 110        | 110            | 85         |  |
|           |                                   |             | Average    | 53.333332      | 35.000000  |  |

### Sample output 4:

