Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0624 — Laboratorio de Microcontroladores Prof. MSc. Marco Villalta Fallas

III Ciclo 2022

Laboratorio 1 Introducción a microcontroladores y manejo de GPIOS

Alexa Carmona Buzo B91643

1. Introducción

En este laboratorio se utiliza un microcontrolador PIC12f675 para simular el lanzamiento de un dado con un botón y un set de LEDs. Se hace énfasis en la configuración e inicialización del microcontrolador, el diseño de las seis caras del dado, la protección de los LEDs y el microcontrolador por medio de resistencias, y la prevención de bouncing provocado por el botón a la entrada. Se observó que a nivel de software el algoritmo de generación de números aleatorios no puede sobrepasar las capacidades de memoria del microcontrolador ni utilizar operaciones de multiplicación o división; además, se confirma por medio de mediciones que los valores de tensión y corriente en la entrada y salida están cerca de los valores estimados y permiten la correcta operación del dado. A partir de las mediciones y simulaciones se concluye que es viable crear un dado con cierto nivel de aleatoriedad por medio de un microcontrolador simple y de bajo costo con un rendimiento aceptable a nivel de fiabilidad y velocidad. Además se concluye que las resistencias de pull-down y los filtros RC son opciones de fácil diseño e implementación para mejorar el rendimiento de circuitos basados en microcontroladores.

Link al repositorio: https://github.com/alebuzo/microcontroladores-lab-1.git

2. Nota teórica

2.1. Características generales del microcontrolador

Para este laboratorio se utilizó un microcontrolador PIC12f675 de 8 bits de tipo CMOS con arquitectura RISC con un set de instrucciones de 35. Este microcontrolador está diseñado para ser utilizado en aplicaciones simples; por esta razón es usualmente utilizado en contextos de aprendizaje y experimentación. El dispositivo posee un rápido ciclo de reescritura de memoria flash, dicha memoria tiene un tamaño de 1.75 kB, 6 pines GPIO diseñados para manejar una corriente máxima de 25 mA [1]. Por otro lado, posee 4 canales para el convertidor analógico-digital de 10 bits, un canal comparador y 128 bytes de memoria de datos EEPROM, también posee un oscilador interno de 4 MHz calibrado al 1% y soporta osciladores externos como cristales y resonadores. Otras características consisten en su modo reposo para el ahorro de energía, Watchdog Timer con oscilador independiente, Brown-out Detect, pull-ups débiles programables, temporizadores de encendido (PWRT) y de inicio del oscilador (OST) [2].

2.2. Diagrama de bloques

La siguiente figura muestra el diagrama de bloques del microcontrolador.

Figura 1: Diagrama de bloques del microcontrolador PIC12f675 [2]

2.3. Diagrama de pines

El PIC12f675 posee 8 pines con múltiples funciones como se muestra en el siguiente diagrama.

Figura 2: Diagrama de pines del microcontrolador PIC12f675 [2]

La siguiente tabla muestra las funciones de cada pin [1].

Pin	Función	Descripción
1	V_DD	Fuente de energía
		GP5: I/O pin 5
	CDF /T1CIZI /OCC1	T1CKI: Imput del temporizador 1
2	GP5/T1CKI/OSC1	OSC1: Oscilador 1
		CLKI: Input del reloj externo
		GP4: I/O pin 4
		AN3: Input analógico 3
3	GP4/ AN3/ T1G/ OSC2/ CLKOUT	T1G: Compuerta del temporizador 1
		OSC2: Oscilador 2
		CLKO: Output de la fuente del reloj
		GP3: I/O pin 3
4	GP3/MCLR/VPP	MCLR: Reset pin
		VPP: Voltaje de programa
		GP2: I/O pin 2
	GP2/AN2/T0CLI/INT/COUT	AN2: Input analógico 2
5		T0CKI: Input del temporizador 0
		INT: Interruptor externo
		COUT: Output del comparador
		GP1: I/O pin 1
		AN1: Input analógico 1
6	GP1/AN1/CIN-/VREF/ICSPCLK	CIN-: Input del comparador
		VREF: Voltaje de referencia externo
		ICSPCLK: Reloj de programación en serie
		GP0: I/O pin 0
7	GP0/AN0/CIN+/ICSPDAT	AN0: Input analógico 0
'		CIN+: Inout del comparador
		ICSPDAT: Datos I/O del programador serial
8	V_SS	Tierra

2.4. Características eléctricas

La siguiente tabla muestra los valores de las especificaciones eléctricas del microcontrolador [2].

Característica	Valor Máximo
Tensión en V_DD con respecto a V_SS	-0.3 a +6.5 V
Tensión en MCLR con respecto a V_SS	-0.3 a +13.5V
Disipación total de potencia	800 mW
Máxima corriente fuera del pin V_SS	300 mA
Máxima corriente hacia el pin V_DD	250 mA
Corriente de entrada clamp I_IK	∖pm 20 mA
Corriente de salida clamp I_OK	\pm 20 mA
Corriente máxima de salida drenada por los pines I/O	25 mA
Corriente máxima de salida como fuente por los pines I/O	25 mA
Corriente máxima drenada por todos los GPIO	125 mA
Corriente máxima de fuente dada por todos los GPIO	125 mA

Las demás características eléctricas del microcontrolador pueden ser encontradas en la sección 12 de la hoja de datos adjunta en los apéndices.

2.5. Periféricos utilizados

2.5.1. GPIO

El registro GPIO es un puerto bi direccional, se utiliza para definir el status de los pines y escribir al latch de salida. Si el bit correspondiente al GP se mantiene en bajo (0) el pin estará en bajo, si el bit está en alto (1), su pin también estará en alto.

Figura 3: Registro GPIO[2]

2.5.2. TRISIO

El registro TRISIO se utiliza para indicar el modo de operación de cada pin, donde un bit en alto indica que el pin es una entrada (1) y un bit en bajo (0) indica que es una salida. La excepción es el GP3 ya que este solo tiene modo entrada y por lo tanto se lee en alto siempre.

Figura 4: Registro TRISIO [2]

2.5.3. **CONFIG**

El registro de configuración se encuentra fuera del espacio de memoria del programa y pertenece al espacio de configuración de memoria y se accede durante la programación. Por defecto sus valores están en alto y se utilizan para habilitar y deshabilitar ciertas funciones del microcontrolador.

REGISTER 9-1: CONFIG — CONFIGURATION WORD (ADDRESS: 2007h)													
			U-0										
BG1	BG0	_	_	_	CPD	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0
bit 13													bit 0

Figura 5: Registro CONFIG [2]

2.5.4. Configuraciones del proyecto

En este caso se necesita un pin de entrada y 5 pines de salida, lo cual se configura en el TRISIO como 0b00100000, se mantienen todos los pines en bajo mediante el GPIO con el valor 0x00. En el caso del registro CONFIG se modifica el Watchdog Timer, ya que este envía una señal de reset al MCU en caso de malfuncionamientos [3].

```
typedef unsigned int word;
word __at 0x2007 __CONFIG = (_WDTE_OFF);
```

Absolute Maximum Ratings: (Ta=25℃)

2.6. Componentes electrónicos complementarios

En este proyecto es necesario utilizar 7 LEDs de color amarillo, la figura 6 muestra sus principales características; además se utilizan 3 resistencias de 50Ω , una resistencia de 150Ω y una de 3200Ω . Finalmente se utiliza un capacitor de $1\mu F$. Las características eléctricas de estas resistencia y capacitores s se encuentran en sus hojas de datos en los apéndices, donde se verificó que son aptos para trabajar en las condiciones de corriente y tensión esperadas en este circuito.

ITEMS	Symbol	Test condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	I _F =20mA	1.8		2.2	٧
Wavelenength (nm) or TC(k)	Δλ	I _F =20mA	587		591	nm
*Luminous intensity	Iv	I==20mA	150		200	mcd
50% Viewing Angle	2 θ 1/2	I _F =20mA	40		60	deg

Figura 6: Especificaciones del LED amarillo

2.7. Diseño

Para este circuito se debe recrear un dado que posea un botón que simule el lanzamiento. Para simular las 6 caras de un dado se utiliza un conjunto de 7 LEDs, donde se iluminarán los LEDs correspondientes a la cara seleccionada luego del lanzamiento. De acuerdo con este patrón de 7 LEDs, a excepción de la cara 1, todas las demás caras poseen dos LEDs encendidos simultáneamente: las caras 2, 3, 4, 5 y 6 encienden el par A de LEDs, mientras que las caras 4, 5 y 6 encienden el par B de LEDs. Para las caras impares 1, 3 y 5 se enciende el LED del centro. Para la cara 6 se utiliza un tercer par C de LEDs. Por lo anterior, es posible conectar tres salidas del microcontrolador a dos LEDs y mantener una cuarta salida conectado a un solo LED como se muestra en la imagen.

Figura 7: Diseño del circuito

Para la protección de los LEDs se utilizan resistencias conectadas en serie. A partir de los datos del microcontrolador, se conoce que la tensión a la salida de los pines es de +5V aproximadamente y que la corriente máxima es de 25 mA; sin embargo, la corriente máxima a través del LED es de 20 mA por lo que se trabajará con este valor máximo. El valor de tensión V_F de los LED es de 2.0 V. Por lo tanto, el valor de la resistencia para las salidas con dos LED se calcula por medio de la Ley de Kirchhoff como se muestra a continuación:

$$R = \frac{V_{DD} - 2 * V_F}{I_{max}} = \frac{5 - 2 * 2.0}{20mA} = 50\Omega \tag{1}$$

Por disponibilidad se utiliza resistencias de 47Ω . De igual manera para la salida con una sola resistencia:

$$R = \frac{V_{DD} - V_F}{I_{max}} = \frac{5 - 2.0}{20mA} = 150\Omega \tag{2}$$

Según la hoja de datos del microcontrolador, la tensión máxima en los pines es de $V_{DD}+0.3V$ y la tensión V_{DD} debe estar entre -0.3 y +6.5 V con respecto a V_{SS} . Por lo tanto, con $V_{DD}=5V$ y $V_{SS}=0V$, la tensión en los pines debe ser menor a 5 V. En la entrada se conecta una fuente de tensión DC de 5 V y además se conecta una resistencia de pull-down, ya que no es recomendado conectar circuitos digitales directamente a la fuente de energía. Al tener una conexión directa, puede aumentar la corriente hacia el microcontrolador y dañar el circuito. Una resistencia de pull-down se encarga de controlar la corriente desde el pin hacia tierra y mantener el estado bajo (0 lógico) del pin [4]. La resistencia de pull-down se elige a partir de la tensión máxima aceptada como 0 lógico V_{Lmax} y la corriente de leakage del pin I_K .

$$R_{pull-down} = \frac{V_{Lmax} - 0}{I_K} = \frac{0.8 - 0}{250\mu A} = 3200\Omega \tag{3}$$

Por disponibilidad, se utiliza una resistencia de 3300 Ω .

Finalmente, se añade un filtro RC debido a los picos en la entrada provocados por el cambio abrupto de tensión del botón. Un filtro RC, formado por un capacitor y una resistencia conectado entre la entrada GPIO y tierra actúa como un filtro paso bajo de manera que hasta que la carga y tensión en el capacitor cambien, entonces el valor lógico en la entrada del GPIO también lo hará [5]. En este caso, la resistencia de pull-down es suficiente para cargar el capacitor del filtro, por lo tanto solo se debe dimensionar el capacitor; para esto se toma en cuenta el valor de la constante de tiempo. Suponiendo que el tiempo que dura los picos de tensión es de 3 ms entonces es necesario que el tiempo de carga del capacitor dure aproximadamente este tiempo.

$$\tau = RC = 3ms \tag{4}$$

$$C = \frac{\tau}{R} = \frac{3ms}{3300\Omega} = 9,09x10^{-7} \sim 1\mu F \tag{5}$$

La siguiente tabla resume la cantidad y precio de los componentes mencionados.

Cantidad	Componente	Precio total en colones
1	PIC12f675	1406
3	Resistencias de 47 Ω	75
1	Resistencia de 150 Ω	25
1	Resistencia de 3300 Ω	25
1	Capacitor de 1 μ F	320
7	LED amarillo	315
1	Botón de 12 V 50 mA normalmente abierto	170

3. Análisis de resultados

La siguiente imagen muestra 4 momentos independientes cuando se pulsó el botón en el mismo circuito, a partir de esta se observan las caras 3, 4, 5 y 6 del dado.

Figura 8: Resultados del dado

El circuito mantenía las luces LED apagadas en todo momento hasta que se presiona el botón, esto acciona las luces LED, las cuales se encienden según los patrones esperados; es decir, nunca se encendió más de 6 LEDs ni hubo un momento en el que no se encendiera ninguna. Luego de un tiempo, las luces se apagaban automáticamente; todos estas características eran comportamientos esperados del circuito.

El funcionamiento del circuito anterior se puede representar por el siguiente diagrama de flujo.

Figura 9: Diagrama de flujo del circuito

En la figura se observa que el circuito siempre está esperando que el valor del pin del input pase a alto, esto debido a que se encuentra en un loop. Una vez se presiona el botón se llama a una función que genera un número random, en este caso se utilizó un algoritmo llamado xoroshiro [6] el cual genera números pseudo random y que es apto para microcontroladores pequeños como el PIC12f675 en términos de memoria y velocidad. Otros algoritmos fueron probados; sin embargo, la mayoría provocó errores relacionados a falta de memoria y el uso de multiplicaciones y divisiones. Los microcontroladores PIC de 8 bits no poseen multiplicaciones por lo que se deben evitar algoritmos de este tipo. Debido a que cada número está mapeado a un set de LEDs y esto no varía, la iluminación de los LEDs se realizó con un case donde se elegía cuáles LEDs encender y apagar según el valor aleatorio generado y por medio de la escritura en el registro GPIO.

El funcionamiento electrónico fue verificado por medio de mediciones de tensión y corriente cuando los LEDs estaban encendidos y apagados. Cuando el botón no fue presionado, todas las ramas del circuito mostraban una corriente de 0 A. Una vez se presionó el botón, se mostraron valores que se encuentran dentro de los rangos esperados; en el caso de las ramas de LEDs se observan caídas de tensión de 2 V como se especificaba en la hoja de datos. La corriente de diseño fue de 20 mA, sin embargo este era un caso máximo y es ideal que esta corriente fuera menor a dicho valor, lo cual se da en las ramas de dos y un LED con mediciones de 11.34 y 15.74 mA. Al medir la corriente en la entrada, se observó que aunque el botón fuera presionado, había una lectura de 0 A en el cable entre la entrada del microcontrolador y el capacitor, por lo que efectivamente se está protegiendo el circuito de sobrecargas. En la resistencia de 3300Ω

se obtuvo lecturas de una corriente de 1.51 mA y en el capacitor se detectaron lecturas de corriente; sin embargo estas fueron muy rápidas y no se obtuvo un valor específico.

Además, se observó un cambio antes y después de agregar el filtro RC ya que no se observaron comportamientos extraños en los LEDs provocados por los picos de tensión en la entrada. Un segundo efecto fue la velocidad del circuito ya que al agregar el capacitor, el circuito reacciona más lento al pulsar el botón. Este efecto es esperado ya que la tensión a la entrada del microcontrolador depende del aumento de tensión en el capacitor, el cual no es inmediato.

Figura 10: Mediciones de tensión y corriente en el circuito

4. Conclusiones y recomendaciones

- El microcontrolador PIC12f675 es apto para construir una representación de un dado con cierto grado de pseudo aleatoriedad a partir de componentes electrónicos simples. A pesar de que el PIC12f675 es un microcontrolador pequeño con limitaciones de memoria y capacidad, el funcionamiento de aplicaciones simples como el dado no se ven afectados en términos de fiabilidad y velocidad de respuesta.
- Es necesario tomar medidas de protección para el microcontrolador ya que a pesar de que se esté utilizando corrientes y tensiones bajas, estas pueden afectar el circuito interno del

dispositivo. Las resistencias de pull-up y pull-down son una opción simple y barata de proteger el circuito.

- Las limitaciones del microcontrolador no son solo a nivel de límites electrónicos; a la hora de programar se debe considerar la memoria disponible y los bloques de su arquitectura; es decir, se debe programar eficientemente y buscar alternativas cuando no es posible utilizar ciertas librerías u operaciones, como en este caso la librería rand o las multiplicaciones y divisiones.
- Los filtros pasivos RC son una buena opción a nivel de hardware para evitar malfuncionamientos en el circuito provocados por rebotes de la tensión por la conexión del botón, con la desventaja de que ralentiza la respuesta del circuito; sin embargo también es posible aplicar soluciones a nivel de software como un delay en la lectura del pin hasta que se haya estabilizado la señal.
- Se recomienda dar lectura a la documentación de los microcontroladores, principalmente las secciones que se relacionen a configuración inicial, estados iniciales de los pines y condiciones máximas de corriente y tensión, para evitar el mal funcionamiento o la pérdida de los dispositivos.
- Se recomienda buscar patrones y similitudes en la lógica que permitan utilizar eficientemente los pines disponibles, ya que otras aplicaciones podrían utilizar los pines para reset o osciladores, lo cual dejaría una menor cantidad como pines de salida.

Referencias

- [1] Components 101. PIC12F675 8 bit Microcontroller. Tomado de https://components101.com/microcontrollers/pic12f675-pinout-datasheet. 2020. Disponible en línea, accesado el 13 de Enero de 2023.
- [2] Microchip. PIC12F675. Tomado de https://www.microchip.com/en-us/product/ PIC12F675#. 2023. Disponible en línea, accesado el 13 de Enero de 2023.
- [3] ABLIC. What is a watchdog timer (WDT)? Tomado de https://www.ablic.com/en/semicon/products/automotive/automotive-watchdog-timer/intro/. 2023. Disponible en línea, accesado el 13 de Enero de 2023.
- [4] S. Gupta. Pull Up and Pull Down Resistor. Tomado de https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor. 2018. Disponible en línea, accesado el 13 de Enero de 2023.
- [5] Quorten. Debounce a button using a capacitor, and RC filters explained. Tomado de https://quorten.github.io/quorten-blog1/blog/2020/03/13/debounce-btn-cap. 2020. Disponible en línea, accesado el 13 de Enero de 2023.
- [6] J. Medved. Randomness in 8-bit Microchip PIC. Tomado de https://www.medo64.com/2021/01/randomness-in-8-bit-microchip-pic/. 2021. Disponible en línea, accesado el 13 de Enero de 2023.

5. Apéndices

深圳市昱申科技有限公司 CHINA YOUNG SUN LED TECHNOLOGY CO., LTD.

TEL: (86) 755-28079401 28079402 28079403 28079404 28079405

Model No.: YSL-R531Y3D-D2

Applications:

Decorations

☐ Bill Insperctor

Absolute Maximum Ratings: $(Ta=25^{\circ}C)$.

ITEMS	Symbol	Absolute Maximum Rating	Unit
Forward Current	IF	20	mA
Peak Forward Current	${ m I}_{\sf FP}$	30	mA
Suggestion Using Current	${ m I}_{\sf su}$	16-18	mA
Reverse Voltage (V _R =5V)	${f I}_{\sf R}$	10	uA
Power Dissipation	Po	105	mW
Operation Temperature	Topr	.40 ~ 85	$^{\circ}$
Storage Temperature	Тѕтс	-40 ~ 100	°C
Lead Soldering Temperature	Tsol	Max. 260 $^{\circ}$ C for 3 Sec. Max. (3mm from the base	of the expoxy bulb)

Absolute Maximum Ratings: (Ta=25℃)

ITEMS	Symbol	Test condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	I _F =20mA	1.8		2.2	V
Wavelenength (nm) or TC(k)	Δλ	I _F =20mA	587		591	nm
*Luminous intensity	Iv	I _F =20mA	150		200	mcd
50% Viewing Angle	2 θ 1/2	I _F =20mA	40		60	deg

Address: 5/F, Building B, Anzhilong Indl., Qinghua East Road., Longhua Town, Shenzhen CHINA. 518109

1 Description

1.1 SMS/PMS Base module

Miniature push button switches with a low height of 4,55 - 4,95 mm for surface mounting (SMS) and PCB mounting (PMS).

The SMS has large flat surfaces on the top side as well as on the other sides, which are also parallel to each other. This makes the SMS a perfect switch for automatic mounting.

The SMS switch is suitable for the SMD soldering process "IR-Reflow".

The switch comes with the SMD-leads "Gullwing and J". With J-leads the switch can be lined up with a spacing of 1/2" in one coordinate direction, and with > 13,5 mm in the other coordinate direction. With Gullwing-leads, the switch can be arranged with a spacing of 1/2" in one coordinate direction, and in the other coordinate direction with > 17,5 mm.

A minimum spacing of 1/2" to 15 mm is necessary for the PCB version.

Basically, the SMS and PMS come in two basic versions concerning the degree of protection. Available are IP 40 and IP 67. According to the degree of protection the IP 40 version is not proof against fluxing and washing, whereas the IP 67 version is. Consequently, the IP 67 version can be exposed to the specified soldering and cleaning processes.

The miniature push button switches feature a very good tactile response with an actuation force of about 2N. SMS and PMS are also available with an elongated actuator. These variants serve as base modules for the SMS/PMS variable height version.

1.2 SMS/PMS Variable Height

The variable height SMS/PMS consists of the SMS/PMS base module with elongated actuator and a slip-on button with eight variable heights.

The PMS will be supplied with a mounted button. The button for the SMS has to be ordered separately. After soldering, the button must be put on the base module with elongated actuator.

Heights between 8,5 mm and 13,75 mm for the SMS and 8,35 mm and 13,60 mm for the PMS are available. Depending on the base module being used, degree of protection for the variable height SMS/PMS is IP 40 or IP 67.

Changes that contribute to technical improvement are subject to alternations

Page	Production date:	Produced by:	Modification date:	Modified by:	Modification No.	Data sheet No.	Index
2 of 9	07.07.2005	Lickert	15.06.2006	M.Fischer	9235	105.9513	-

Print date: 6/15/2007 2:39:00 PM

2 Data and dimensional drawings

2.1 Technical Data SMS/PMS Base module/Variable Height

Electrical data:	IP40	IP67
Contact material	Gold ; Gold/Silver (1)	Gold
Switching voltage max.	30V AC/ 42V DC	30V AC/ 42V DC
Switching current max.	50 mA	50 mA
Rated breaking capacity	12 V/10 mA	12 V/10 mA
Lifetime (at 12V/10mA)	>1 x 10 ⁶ cycles	>1x10 ⁶ cycles
Lifetime (at 24V/80mA)	- ; $>1x10^{5}$ (1)	-
Initial contact resistance new (IEC 512-2 mV-method)	<50 mOhm	<50 mOhm
Initial contact resistance after 1 x 10 ⁶ cycles	<150 mOhm	<150 mOhm
Insulation resistance (IEC 512-2)	> 1x 108 Ohm	> 1x 10 ⁸ Ohm
Contact bounce time	typ. 0,15 ms	typ. 0,15 ms

Mechanical data:	IP40	IP67
Actuating force	1,8±0,4 N	2,2±0,4 N
Actuating travel	0,35±0,1 mm	0,35±0,1 mm
Mechanical strength (force axial, load 1 min.)	max. 100 N	max. 100 N
Lifetime (IEC 512-5. Test 9a. Actuating force 5N)	>1x 10 ⁶ cycles	>1x 10 ⁶

Soldering data:	SMS IP40/IP67	PMS IP40/IP67	
Soldering method	IR Reflow	Wave soldering	
Soldering heat resistance	245 °C/5sec.	248,5 °C/1sec	

⁽¹⁾ PMS Typ 1241.1652

Changes that contribute to technical improvement are subject to alternations

Page	Production date:	Produced by:	Modification date:	Modified by:	Modification No.	Data sheet No.	Index	
3 of 9	07.07.2005	Lickert	15.06.2006	M.Fischer	9235	105.9513	-	
	D. I. I. I. A. I. I. A. I. I. A.							

Print date: 6/15/2007 2:39:00 PM

ALUMINUM ELECTROLYTIC CAPACITORS

Wide Temperature Range

- Anti-Solvent Feature (Through 100V only)
- One rank smaller case sizes than UVZ.
- Compliant to the RoHS directive (2011/65/EU).

Values marked with an ** in the dimension table are scheduled to be discontinued and are not recommended for new designs.

■ Specifications

Item					F	erform	ance	Characte	ristics					
Category Temperature Range	$-55 \text{ to } +105^{\circ}\text{C}$ (6.3)	3 to 100V), -	–40 to	+105°C	(160 t	o 400\	′), –2	25 to +10	5°C (450)	V)				
Rated Voltage Range	6.3 to 450V													
Rated Capacitance Range	0.47 to 68000μF													
Capacitance Tolerance	±20% at 120Hz, 2	0°C												
Leakage Current	Rated voltage (V)	Rated voltage (V) 6.3 to 100 160 to 450 After 1 minute's application of rated voltage at 20°C, leakage current is not more than 0.03CV or 4 (μA), whichever is greater. After 1 minute's application of rated voltage at 20°C, leakage current is not more than 0.01CV or 3 (μA), whichever is greater. After 1 minute's application of rated voltage at 20°C, leakage current is not more than 0.01CV or 3 (μA), whichever is greater. After 1 minute's application of rated voltage at 20°C, leakage current is not more than 0.01CV or 3 (μA), whichever is greater.												
Tangent of loss angle (tan δ)	For capacitance of m Rated voltage (V) tan δ (MAX.)	6.3 0.28	0μF, ad 10 0.2)	or every i 16 0.20	ncreas 25 0.1		000μF. 35 0.14	Measure 50 0.12	ement fred 63 0.1	3 -		20°C 160 to 250 0.20	350 to 450 0.25
										Me	easureme	nt freque	ency : 120I	Нz
Stability at Low Temperature	Rated vo	<u> </u>		6.3	10		16	25	35 to 50	63 to 100				450
Stability at Low Temperature	Impedance ratio ZT / Z20 (MAX.)	Z-25°C / Z+ Z-40°C / Z+		5 10	8	+	3 6	4	3	3	3 4	8	10	15
Endurance	The specifications listed at right shall be met when the capacitors are restored to 20°C after the rated voltage is applied for 1000 hours at 105°C. Capacitance change Within ±20% of the initial capacitors are restored to 20°C after the rated voltage is applied for 1000 hours at 105°C. Capacitance change Within ±20% of the initial capacitance change tan δ 200% or less than the initial specific production.								specified	value				
Shelf Life	After storing the ca clause 4.1 at 20°C,												ed on JIS	C 5101-4
Marking	Printed with white of	olor letter or	n black	sleeve										

■ Radial Lead Type

										(mm)
φD	5	6.3	8	10	12.5	16	18	20	22	25
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5	10.0	10.0	12.5
φd	0.5	0.5	0.6	0.6	0.6	0.8	0.8	1.0	1.0	1.0
β	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0

 $\alpha = \frac{(L < 20) \ 1.5}{(L \ge 20) \ 2.0}$

• Please refer to page 20 about the end seal configuration.

Type numbering system (Example: 10V 330μF)

* Configuration

φD	Pb-free leadwire Pb-free PET sleeve
5	DD
6.3	ED
8 · 10	PD
12.5 to 18	HD
20 to 25	RD

Please refer to page 20, 21, 22 about the formed or taped product spec. Please refer to page 4 for the minimum order quantity.

Dimensions

	V	6.3		10		16		25		35		50		63	
Cap.(µF)	Code	0J		1A		1C		1E		1V		1H		1J	
2.2	2R2											5×11	20		
3.3	3R3											5 × 11	25		į l
4.7	4R7											5 × 11	30		1
10	100											5×11	46		
22	220								i			5×11	68	5×11	71
33	330								! !			5 × 11	90	6.3 × 11	100
47	470									5 × 11	93	6.3 × 11	115	6.3 × 11	120
68	680								i i	6.3 × 11	110	6.3 × 11	150	8 × 11.5	155
100	101							5 × 11	¦ 125	6.3 × 11	150	8 × 11.5	190	8 × 11.5	200
220	221			5 × 11	155	6.3 × 11	190	6.3 × 11	200	8 × 11.5	250	10 × 12.5	300	10 × 16	335
330	331			6.3 × 11	210	6.3 × 11	225	8 × 11.5	275	10 × 12.5	350	10 × 16	410	10 × 20	510
470	471			6.3 × 11	250	8 × 11.5	315	10 × 12.5	¦ 380	10 × 16	460	10 × 20	540	12.5 × 20	¦ 640
1000	102	8 × 11.5	390	10 × 12.5	460	10 × 12.5	500	10 × 16	610	12.5 × 20	810	12.5 × 25	950	16 × 25	930
2200	222	10 × 16	635	10 × 16	705	10 × 20	710	12.5 × 25	1090	16 × 25	1260	16 × 31.5	1410	18 × 35.5	1650
3300	332	10 × 20	840	12.5 × 20	1000	12.5 × 25	1170	16 × 25	1400	16 × 31.5	1500	18 × 35.5	1770	20 × 40	¦ 1950
4700	472	12.5 × 20	1090	12.5 × 25	1260	16 × 25	1500	16 × 25	1570	16 × 35.5	1780	20 × 40	2100	22 × 50	2450
6800	682	12.5 × 25	1350	16 × 25	1570	16 × 25	1600	16 × 35.5	1850	18 × 40	2000	22 × 50	2500	25 × 50	2800
10000	103	16 × 25	1650	16 × 31.5	1820	16 × 35.5	1930	18 × 40	¦ 2000	22 × 50	2650	25 × 50	2850		
15000	153	16 × 31.5	1820	16 × 35.5	2050	18 × 40	2210	22 × 50	2750	25 × 50	3100				
22000	223	18 × 35.5	2280	18 × 40	2420	22 × 40	2710	25 × 50	3250						i
33000	333	20 × 40	2500	22 × 50	3210	25 × 50	3450		l 						
47000	473	* 22 × 50	2780	* 25 × 50	3570										Rated
68000	683	* 25 × 50	3070						i I					φD×L (mm)	ripple

	V	100		160		200		250		350		400		450	
Cap.(µF)	Code	2A		2C		2D		2E		2V		2G		2W	
0.47	R47					6.3 × 11	11					6.3 × 11	8.5		1
1	010		İ			6.3 × 11	16					6.3 × 11	14		Ī
2.2	2R2	5 × 11	¦ 21		 	6.3 × 11	25			6.3 × 11	21	8 × 11.5	27	8 × 11.5	20
3.3	3R3	5 × 11	29		!	6.3 × 11	30	6.3 × 11	28	8 × 11.5	30	8 × 11.5	34	10 × 12.5	28
4.7	4R7	5 × 11	32			6.3 × 11	35	6.3 × 11	35	8 × 11.5	39	10 × 12.5	42	10 × 12.5	32
10	100	5 × 11	¦ 50	8 × 11.5	41	8 × 11.5	57	10 × 12.5	71	10 × 12.5	64	10 × 16	64	10 × 20	¦ 56
22	220	6.3 × 11	93	10 × 12.5	92	10 × 16	105	10 × 20	105	12.5 × 20	105	12.5 × 25	140	12.5 × 25	100
33	330	8 × 11.5	130	10 × 16	125	10 × 20	140	10 × 20	140	12.5 × 25	170	16 × 25	170	16 × 25	125
47	470	8 × 11.5	¦ 140	10 × 20	150	12.5 × 20	195	12.5 × 20	190	16 × 25	210	16 × 25	200	16 × 31.5	155
68	680	10 × 12.5	190	12.5 × 20	250	12.5 × 25	250	16 × 25	270	16 × 25	285	16 × 31.5	240	18 × 35.5	185
100	101	10 × 16	240	12.5 × 25	310	16 × 25	320	16 × 25	310	18 × 35.5	370	18 × 35.5	310	18 × 40	200
220	221	12.5 × 20	¦ 390	16 × 31.5	410	16 × 35.5	500	18 × 35.5	485	22 × 50	540	22 × 50	460	25 × 50	250
330	331	12.5 × 25	540	18 × 35.5	570	18 × 40	675	20 × 40	710	25 × 50	710				
470	471	16 × 25	715	18 × 40	855	22 × 40	925	22 × 50	1000						
1000	102	18 × 35.5	960	25 × 50	1350		l I		l I				į.		İ
2200	222	22 × 50	1750												Rated
3300	332	25 × 50	2070											φD×L (mm)	ripple

Rated ripple current (mArms) at 105°C 120Hz

• Frequency coefficient of rated ripple current

V	Cap.(µF) Frequency	50Hz	120Hz	300Hz	1 kHz	10 kHz or more
	2.2 to 68	0.75	1.00	1.35	1.57	2.00
6.3 to 100	100 to 470	0.80	1.00	1.23	1.34	1.50
	1000 to 68000	0.85	1.00	1.10	1.13	1.15
100 +- 150	0.47 to 220	0.80	1.00	1.25	1.40	1.60
160 to 450	330 to 1000	0.90	1.00	1.10	1.13	1.15

PIC12F629/675

8-Pin FLASH-Based 8-Bit CMOS Microcontroller

High Performance RISC CPU:

- · Only 35 instructions to learn
 - All single cycle instructions except branches
- · Operating speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt capability
- · 8-level deep hardware stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- · Internal and external oscillator options
 - Precision Internal 4 MHz oscillator factory calibrated to ±1%
 - External Oscillator support for crystals and resonators
 - 5 μs wake-up from SLEEP, 3.0V, typical
- · Power saving SLEEP mode
- Wide operating voltage range 2.0V to 5.5V
- · Industrial and Extended temperature range
- · Low power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- · Brown-out Detect (BOD)
- Watchdog Timer (WDT) with independent oscillator for reliable operation
- Multiplexed MCLR/Input-pin
- · Interrupt-on-pin change
- · Individual programmable weak pull-ups
- · Programmable code protection
- High Endurance FLASH/EEPROM Cell
 - 100,000 write FLASH endurance
 - 1,000,000 write EEPROM endurance
 - FLASH/Data EEPROM Retention: > 40 years

Low Power Features:

- · Standby Current:
 - 1 nA @ 2.0V, typical
- · Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- · Watchdog Timer Current
 - 300 nA @ 2.0V, typical
- Timer1 oscillator current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- · 6 I/O pins with individual direction control
- · High current sink/source for direct LED drive
- · Analog comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC12F675):
 - 10-bit resolution
 - Programmable 4-channel input
 - Voltage reference input
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- · Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
- Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data N	lemory	I/O	10-bit A/D	Comparators	Timers
	FLASH (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit
PIC12F629	1024	64	128	6	_	1	1/1
PIC12F675	1024	64	128	6	4	1	1/1

^{* 8-}bit, 8-pin devices protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

PIC12F629/675

Pin Diagrams

1.0 DEVICE OVERVIEW

This document contains device specific information for the PIC12F629/675. Additional information may be found in the PICmicro™ Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data

Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC12F629 and PIC12F675 devices are covered by this Data Sheet. They are identical, except the PIC12F675 has a 10-bit A/D converter. They come in 8-pin PDIP, SOIC, and MLF-S packages. Figure 1-1 shows a block diagram of the PIC12F629/675 devices. Table 1-1 shows the Pinout Description.

FIGURE 1-1: PIC12F629/675 BLOCK DIAGRAM

PIC12F629/675

PIC12F629/675 PINOUT DESCRIPTION **TABLE 1-1:**

Name	Function	Input Type	Output Type	Description
GP0/AN0/CIN+/ICSPDAT	GP0	TTL	CMOS	Bi-directional I/O w/ programmable pull-up and interrupt-on-change
	AN0	AN		A/D Channel 0 input
	CIN+	AN		Comparator input
	ICSPDAT	TTL	CMOS	Serial programming I/O
GP1/AN1/CIN-/VREF/ ICSPCLK	GP1	TTL	CMOS	Bi-directional I/O w/ programmable pull-up and interrupt-on-change
	AN1	AN		A/D Channel 1 input
	CIN-	AN		Comparator input
	VREF	AN		External voltage reference
	ICSPCLK	ST		Serial programming clock
GP2/AN2/T0CKI/INT/COUT	GP2	ST	CMOS	Bi-directional I/O w/ programmable pull-up and interrupt-on-change
	AN2	AN		A/D Channel 2 input
	T0CKI	ST		TMR0 clock input
	INT	ST		External interrupt
	COUT		CMOS	Comparator output
GP3/MCLR/VPP	GP3	TTL		Input port w/ interrupt-on-change
	MCLR	ST		Master Clear
	VPP	HV		Programming voltage
GP4/AN3/T1G/OSC2/ CLKOUT	GP4	TTL	CMOS	Bi-directional I/O w/ programmable pull-up and interrupt-on-change
	AN3	AN		A/D Channel 3 input
	T1G	ST		TMR1 gate
	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
GP5/T1CKI/OSC1/CLKIN	GP5	TTL	CMOS	Bi-directional I/O w/ programmable pull-up and interrupt-on-change
	T1CKI	ST		TMR1 clock
	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/RC oscillator connection
Vss	Vss	Power		Ground reference
VDD	VDD	Power		Positive supply

Legend:

Shade = PIC12F675 only TTL = TTL input buffer, ST = Schmitt Trigger input buffer

3.0 GPIO PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note: Additional information on I/O ports may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023)

3.1 GPIO and the TRISIO Registers

GPIO is an 6-bit wide, bi-directional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRISIO bit will always read as '1'. Example 3-1 shows how to initialize GPIO.

Reading the GPIO register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch. GP3 reads '0' when MCLREN = 1.

The TRISIO register controls the direction of the GP pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO

register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note: The ANSEL (9Fh) and CMCON (19h) registers (9Fh) must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'. The ANSEL register is defined for the PIC12F675.

EXAMPLE 3-1: INITIALIZING GPIO

bcf	STATUS, RPO	;Bank 0
clrf	GPIO	;Init GPIO
movlw	07h	;Set GP<2:0> to
movwf	CMCON	;digital IO
bsf	STATUS, RP0	;Bank 1
clrf	ANSEL	;Digital I/O
movlw	0Ch	;Set GP<3:2> as inputs
movwf	TRISIO	;and set GP<5:4,1:0>
		as outputs;

3.2 Additional Pin Functions

Every GPIO pin on the PIC12F629/675 has an interrupt-on-change option and every GPIO pin, except GP3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the GPIO pins, except GP3, has an individually configurable weak internal pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit (OPTION<7>).

REGISTER 3-1: GPIO — GPIO REGISTER (ADDRESS: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
bit 7							bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **GPIO<5:0>**: General Purpose I/O pin.

1 = Port pin is >VIH 0 = Port pin is <VIL

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

n = Value at POR

'1' = Bit is set

'0' = Bit is cleared x = Bit is unknown

PIC12F629/675

REGISTER 3-2: TRISIO — GPIO TRISTATE REGISTER (ADDRESS: 85h)

U-0	U-0	R/W-x	R/W-x	R-1	R/W-x	R/W-x	R/W-x
_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0
bit 7		•	•	•			bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: TRISIO<5:0>: General Purpose I/O Tri-State Control bit

1 = GPIO pin configured as an input (tri-stated)

0 = GPIO pin configured as an output. TRISIO<3> always reads 1.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 3-3: WPU — WEAK PULL-UP REGISTER (ADDRESS: 95h)

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0
bit 7							bit 0

bit 0

bit 7-6 Unimplemented: Read as '0'

WPU<5:4>: Weak Pull-up Register bit bit 5-4

> 1 = Pull-up enabled 0 = Pull-up disabled

bit 3 Unimplemented: Read as '0'

WPU<2:0>: Weak Pull-up Register bit bit 2-0

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global GPPU must be enabled for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, lik (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all GPIO	125 mA
Maximum current sourced all GPIO	125 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

12.6 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended)

DC CHA	ARACT	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended						
Param No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
		Input Low Voltage							
	VIL	I/O ports							
D030		with TTL buffer	Vss	_	8.0	V	$4.5V \le VDD \le 5.5V$		
D030A			Vss	_	0.15 VDD	V	Otherwise		
D031		with Schmitt Trigger buffer	Vss	_	0.2 VDD	V	Entire range		
D032		MCLR, OSC1 (RC mode)	Vss	_	0.2 VDD	V			
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	(Note 1)		
D033A		OSC1 (HS mode)	Vss	_	0.3 VDD	V	(Note 1)		
		Input High Voltage							
	VIH	I/O ports		_					
D040		with TTL buffer	2.0	_	VDD	V	$4.5V \le VDD \le 5.5V$		
D040A			(0.25 VDD+0.8)	_	VDD	V	otherwise		
D041		with Schmitt Trigger buffer	0.8 VDD	_	VDD		entire range		
D042		MCLR	0.8 VDD	_	VDD	V			
D043		OSC1 (XT and LP modes)	1.6	_	VDD	V	(Note 1)		
D043A		OSC1 (HS mode)	0.7 Vdd	_	VDD	V	(Note 1)		
D043B		OSC1 (RC mode)	0.9 VDD	_	VDD	V			
D070	IPUR	GPIO Weak Pull-up Current	50*	250	400*	μΑ	VDD = 5.0V, VPIN = VSS		
		Input Leakage Current ⁽³⁾							
D060	lıL	I/O ports	_	± 0.1	± 1	μА	Vss ≤ Vpin ≤ Vdd, Pin at hi-impedance		
D060A		Analog inputs	_	± 0.1	± 1	μΑ	$Vss \le Vpin \le Vdd$		
D060B		VREF	_	± 0.1	± 1	μΑ	$Vss \le Vpin \le Vdd$		
D061		MCLR ⁽²⁾	_	± 0.1	± 5	μΑ	$Vss \le Vpin \le Vdd$		
D063		OSC1	_	± 0.1	± 5	μА	Vss ≤ Vpin ≤ Vdd, XT, HS and LP osc configuration		
		Output Low Voltage							
D080	Vol	I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)		
D083		OSC2/CLKOUT (RC mode)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind.) IOL = 1.2 mA, VDD = 4.5V (Ext.)		
		Output High Voltage							
D090	Vон	I/O ports	VDD - 0.7	_	-	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)		
D092		OSC2/CLKOUT (RC mode)	VDD - 0.7	_	_	V	IOH = -1.3 mA, VDD = 4.5V (Ind.) IOH = -1.0 mA, VDD = 4.5V (Ext.)		

^{*} These parameters are characterized but not tested.

[†] Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

^{2:} The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as current sourced by the pin.

General Type

Normal & Miniature Style [CFR Series]

INTRODUCTION

The CFR Series Carbon Film Resistors are manufactured by coating a homogeneous film of pure carbon on high grade ceramic rods. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps. The resistors are coated with layers of tan color lacquer:

FEATURES

Power Rating	1/6W, 1/4W, 1/2W, 1W, 2W, 3W
Resistance Tolerance	±2%, ±5%
T.C.R.	see Table 1

DERATING CURVE

For resistors operated in ambient temperatures above 70°C, power rating must be derated in accordance with the curve below.

Rated Load (%)

Ambient Temperature (°C)

TABLE I TEMPERATURE COEFFICIENT

STYLE	MAX. VALUE OF TEMP. COEFFICIENT PPM/°C					
	under 100K Ω	ΙΟΟΚ Ω - ΙΜ Ω	ΙΜ Ω - Ι0Μ Ω			
CFR100, CFR200, CFR2WS, CFR3WS	±350	-500	-1,500			
CFR-12, CFR-25, CFR-50, CFR25S, CFR50S, CFR1WS	+350 / -500	-700	-1,500			

DIMENSIONS

Unit: mm

STYLE		DIMENSION							
Normal	Miniature	L	øD	Н	ød				
CFR-12	CFR25S	3.4±0.3	1.9±0.2	28±2.0	0.45±0.05				
CFR-25	CFR50S	6.3±0.5	2.4±0.2	28±2.0	0.55±0.05				
CFR-50	CFRIWS	9.0±0.5	3.3±0.3	26±2.0	0.55±0.05				
CFR100	CFR2WS	11.5±1.0	4.5±0.5	35±2.0	0.8±0.05				
CFR200	CFR3WS	15.5±1.0	5.0±0.5	33±2.0	0.8±0.05				

	7		3
1	≶	٠.	١

Note:			

ELECTRICAL CHARACTERISTICS

STYLE	CFR-12	CFR25S	CFR-25	CFR50S	CFR-50	CFRIWS	CFRI00	CFR2WS CFR200	CFR3WS	
Power Rating at 70°C	1/6W	1/4W		1/2W		IW		2W	3W	
Maximum Working Voltage	150V	200V	250V	300V	350V	400V	500V			
Maximum Overload Voltage	300V	400V	500V	600V	700V	800V	I,000V			
Voltage Proof	300V	400V	500V			700V	1,000V			
Resistance Range	Ι Ω - ΙΟΜ	Ω & 0 Ω for	E24 series v	alue			-			
Operating Temp. Range	-55°C to +	-55°C to +155°C								
Temperature Coefficient	see Table 1									

Note: Special value is available on request

ENVIRONMENTAL CHARACTERISTICS

PERFORMANCE TEST	TEST METHOD	TEST METHOD							
Short Time Overload	IEC 60115-1 4.13	2.5 times RCWV for 5 Sec.	±0.75%+0.05 Ω						
Voltage Proof	IEC 60115-1 4.7	in V-block for 60 Sec., test voltage by type	By type						
Temperature Coefficient	IEC 60115-1 4.8	-55°C to +155°C	By type						
Insulation Resistance	IEC 60115-1 4.6	in V-block for 60 Sec.	>1,000M Ω						
Solderability	IEC 60115-1 4.17	235±5°C for 3±0.5 Sec.	95% Min. coverage						
Solvent Resistance of Marking	IEC 60115-1 4.30	IPA for 5±0.5 Min. with ultrasonic	No deterioration of coatings and markings						
Robustness of Terminations	IEC 60115-1 4.16	Direct load for 10 Sec. in the direction of the terminal leads	≥2.5kg (24.5N)						
Periodic-pulse Overload	IEC 60115-1 4.39	4 times RCWV 10,000 cycles (1 Sec. on, 25 Sec. off)	±1.0%+0.05 Ω						
Damp Heat Steady State	IEC 60115-1 4.24	40±2°C, 90-95% RH for 56 days, loaded with 0.1 times RCWV	±3.0%+0.05 Ω						
Endurance at 70°C	IEC 60115-1 4.25	70±2°C at RCWV for 1,000 Hr. (1.5 Hr. on, 0.5 Hr. off)	±3.0%+0.05 Ω						
Temperature Cycling	IEC 60115-1 4.19	-55°C ⇒ Room Temp. ⇒ +155°C ⇒ Room Temp. (5 cycles)	±1.0%+0.05 Ω						
Resistance to Soldering Heat	IEC 60115-1 4.18	260±3°C for 10±1 Sec., immersed to a point 3±0.5mm from the body	±1.0%+0.05 Ω						

Note: Rated Continuous Working Voltage (RCWV) = $\sqrt{\text{Power Rating} \times \text{Resistance Value}}$

Carbon Film Resistor

Resistive Product Solutions

Features:

- General purpose resistor ideal for commercial/industrial applications
- Flame retardant coatings standard
- Flameproof version available as CFF and CFFM
- Panasert available on selected sizes contact Stackpole
- Auto sequencing/insertion compatible
- CFM (mini) ideal choice when size constraints apply
- Cut and formed product is available on select sizes contact Stackpole
- Standard lead wire for CF and CFM is copper plated steel, with 100% tin over plate
- 100% tin plate on copper wire is available as type CFQ and CFQM
- 100% RoHS compliant and lead free without exemption
- Halogen free
- REACH compliant

	Electrical Specifications - CF													
Type/Code	Type/Code Size Power Ratin @ 70%			Maximum Overload	Dielectric Withstanding	TCR (ppm/ºC) per Ohmic Range	Ohmic Ran Toler	ge (Ω) and ance						
		@ 70°C	Voltage (V) (1)	Voltage (V)	Voltage (V)		2%	5%						
CF, CFQ	18	0.125	250	500	350	$< 10 \Omega = \pm 400 \text{ ppm/}^{\circ}\text{C}$	10 - 1M	1 - 22M						
CF, CFQ, PCF	14	0.25	350	600	350	10 Ω to 9.99K Ω = 0 ~ -400 ppm/ $^{\circ}$ C	1 - 1M	1 - 22M						
CF, CFQ	12	0.5	350	700	600	10 K Ω to 99K Ω = 0 ~ -500 ppm/°C	10 - 1M	1 - 22M						
CF, CFQ	1	1	500	1000	600	100 K Ω to 999K Ω = 0 ~ -850 ppm/°C	1 - 1M	1 - 10M						
CF, CFQ	2	2	500	1000	600	1M Ω and above = 0 ~ -1500 ppm/°C	1 - 1M	1 - 10M						

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

	Electrical Specifications - CFM													
Type/Code	Size	Power Rating (W) @ 70°C	Maximum Working	Maximum Overload	Dielectric Withstanding	TCR (ppm/ºC) per Ohmic Range		ge (Ω) and ance						
		@ 70°C	Voltage (V) (1)	Voltage (V)	Voltage (V)		2%	5%						
CFM, CFQM	14	0.25	250	500	350	< 10 Ω = ±400 ppm/°C 10 Ω to 9.99K Ω = 0 ~ -400 ppm/°C	1 - 1M	1 - 10M						
CFM, CFQM, PCFM	12	0.5	350	600	350	10 Ω to 9.99 Ω = 0 ~ -400 ppm/°C 10 Ω to 99 Ω = 0 ~ -500 ppm/°C 100 Ω to 999 Ω = 0 ~ -850 ppm/°C	1 - 1M	1 - 10M						
CFM, CFQM	1	1	600	1000	600	1M Ω and above = 0 ~ -1500 ppm/°C	1 - 1M	1 - 10M						

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

	Electrical Specifications – CFF/CFFM													
Type/Code	Size	Power Rating (W) @ 70°C	Maximum Working Voltage (V) (1)	Maximum Overload Voltage (V)	Dielectric Withstanding Voltage (V)	TCR (ppm/°C) per Ohmic Range	Ohmic Range (Ω) and Tolerance 2%, 5%							
	18	0.166	200	400	300	$< 10 \Omega = \pm 400 \text{ ppm/}^{\circ}\text{C}$	1 - 2.2M							
CFF	14	0.25	300	600	500	10 Ω to 9.99K Ω = 0 ~ -400 ppm/°C	1 - 5.1M							
	12	0.5	350	700	500	10 K Ω to 99K Ω = 0 ~ -500 ppm/°C	1 - 5. HVI							
CEEM	14 0.25 25		250	500	300	100 K Ω to 999K Ω = 0 ~ -850 ppm/ $^{\circ}$ C 1M Ω and above = 0 ~ -1500 ppm/ $^{\circ}$ C	1 - 2.2M							
CFFM	12	0.5	300	600	500	12 dila disers	1 - 2.2101							

1

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

Rev Date: 3/3/2022

Carbon Film Resistor

Type/Code	Size	A Body Length	B Body Diameter	C Lead Length (Bulk)	D - Lead Diameter	Unit
CF		0.400 - 0.040	0.007 . 0.040		0.016 ± 0.003	inches
	18	0.130 ± 0.012	0.067 ± 0.012		0.40 ± 0.08	mm
CFQ		3.30 ± 0.30	1.70 ± 0.30		0.018 ± 0.003 0.45 ± 0.08	inches mm
		0.126 ± 0.008	0.073 ± 0.008	-	0.43 ± 0.08 0.018 ± 0.002	inches
CFF	18	3.20 ± 0.008	1.85 ± 0.20		0.018 ± 0.002 0.45 ± 0.05	mm
		0.236 ± 0.012	0.091 ± 0.012	-	0.43 ± 0.03	inches
CF, CFF, CFQ, PCF		6.00 ± 0.30	2.30 ± 0.30		0.55 ± 0.08	mm
OFFIA		0.126 ± 0.008	0.073 ± 0.008	1.102 ± 0.118	0.018 ± 0.002	inches
CFFM	14	3.20 ± 0.20	1.85 ± 0.20	28.00 ± 3.00	0.45 ± 0.05	mm
CFM	14			1	0.016 ± 0.003	inches
CFIVI		0.130 ± 0.012	0.067 ± 0.012		0.40 ± 0.08	mm
CFQM		3.30 ± 0.30	1.70 ± 0.30		0.018 ± 0.003	inches
CI QIVI					0.45 ± 0.08	mm
CF					0.022 ± 0.003	inches
OI .		0.335 ± 0.039	0.106 ± 0.020		0.55 ± 0.08	mm
CFF, CFQ	12	8.50 ± 1.00	2.70 ± 0.50		0.028 ± 0.004	inches
011, 01 Q	12				0.70 ± 0.10	mm
CFM, CFQM, CFFM		0.236 ± 0.012	0.091 ± 0.012		0.022 ± 0.003	inches
Of W, Of QW, Of TW		6.00 ± 0.30	2.30 ± 0.30		0.55 ± 0.08	mm
CF, CFQ		0.433 ± 0.039	0.177 ± 0.020	1.181 ± 0.118	0.031 ± 0.004	inches
01,014	1	11.00 ± 1.00	4.50 ± 0.50	30.00 ± 3.00	0.80 ± 0.10	mm
CFM, CFQM		0.354 ± 0.020	0.138 ± 0.020	1.102 ± 0.118	0.028 ± 0.002	inches
51 W, 51 QW		9.00 ± 0.50	3.50 ± 0.50	28.00 ± 3.00	0.70 ± 0.05	mm
CF, CFQ	2	0.591 ± 0.039	0.197 ± 0.020	1.339 ± 0.157	0.031 ± 0.004	inches
J., 01 Q		15.00 ± 1.00	5.00 ± 0.50	34.00 ± 4.00	0.80 ± 0.10	mm

Performance Characteristics								
Test	Test Method		Typical Result		Test Limit			
Current Noise	MIL-STD 202,	1Ω ~ 91ΚΩ	100ΚΩ ~ 910ΚΩ	1ΜΩ ~ 22ΜΩ	1Ω ~ 91ΚΩ	100ΚΩ ~ 910ΚΩ	1ΜΩ ~ 22ΜΩ	
Our ent Noise	Method 308	0.15μ V/V	0.32μ V/V	0.54μ V/V	0.2μ V/V	0.4μ V/V	0.6μ V/V	
Short Time Overload	JIS C5201-1, <± 0.25% ≤± (0.75%		≤± (0.75% + 0.05	0)				
Short Time Overload	IEC60115-1, 4.13	< ± 0.25%			≥ ± (0.75% + 0.05Ω)			
Resistance to	JIS C5201-1,	< ± 0.3%			$\leq \pm (0.5\% + 0.05\Omega)$			
Soldering Heat	IEC60115-1, 4.18		< ± 0.5 /6		≥ ± (0.570 ± 0.03Ω)			
Rapid Change of	JIS C5201-1,	< ± 0.3%		≤ ± (1% + 0.05Ω)				
Temperature	IEC60115-1, 4.19			S ± (170 + 0.03(2)				
Endurance at 70°C	JIS C5201-1,	JIS C5201-1, $R < 100$ ΚΩ: $≤ ± (2% + 0.05Ω)$			0.05Ω)			
Litida ance at 70 C	IEC60115-1, 4.25.1	< ± 1%		$R \ge 100 K\Omega$: $\le \pm (3\% + 0.05\Omega)$				
Terminal Strength	MIL-STD 202,	0.00/),		
r erminar Strength	Method 211		< ± 0.2%		$\leq \pm (0.5\% + 0.05\Omega)$			
Damp Hoat (Stoady state)	JIS C5201-1,	 < ± 1.5% R < 100KΩ: ≤ ± (3% - R≥ 100KΩ: ≤ ± (5% + R≥ 100KΩ		100KΩ: ≤± (3% +	0.05Ω)			
Damp Heat (Steady state)	IEC60115-1, 4.24			$R \ge 100 K\Omega$: $\le \pm (5\% + 0.05\Omega)$				

2

Operating temperature range is -55°C to +155°C

Carbon Film Resistor

Power Derating Curve:

Recommended Solder Profiles

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles: 3.

Wave Soldering – 100% Matte Tin / RoHS Compliant Terminations						
Description	Maximum Recommended Minimum					
Preheat Time	80 seconds	70 seconds	60 seconds			
Temperature Diff.	140°C	120°C	100°C			
Solder Temp.	260°C	250°C	240°C			
Dwell Time at Max.	10 seconds	5 seconds	*			
Ramp DN (°C/sec)	N/A	N/A	N/A			

Temperature Diff. = Defference between final preheat stage and soldering stage.

Convection IR Reflow – 100% Matte Tin / RoHS Compliant Terminations						
Description	Maximum Recommended Minimum					
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*			
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds			
Solder Temp.	260°C	245°C	*			
Dwell Time at Max.	30 seconds	15 seconds	10 seconds			
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*			

3

Flame-Proof Type

Normal & Miniature Style [RSF Series]

FEATURES

Power Rating	1/4W, 1/2W, 1W, 2W, 3W, 5W
Resistance Tolerance	±2%, ±5%
T.C.R.	±300ppm/°C
Flameproof Multi-layer Coating Meets	UL-94V-0
Flameproof Feature Meets Overload Test	UL-1412

INTRODUCTION

The RSF Series Metal Oxide Film Flame-Proof Resistors offer excellent performance in applications where stability and uniformity of characteristics are desired. They provide lower cost alternatives to Carbon Composition Resistors and General Purpose Metal Films. Metal Oxides also can replace many low power General Purpose wirewound applications, saving both money and time, with shorter delivery cycles. The normal style & the miniature style of RSF series are coated with layers of gray and pink colors flame-proof lacquer respectively.

DERATING CURVE

For resistors operated in ambient temperatures above 70°C, power rating must be derated in accordance with the curve below.

Rated Load (%)

Ambient Temperature (°C)

DIMENSIONS

Unit: mm

STYLE		DIMENSION					
Normal	Miniature	L	øD	н	ød		
RSF-25	RSF50S	6.3±0.5	2.4±0.2	28±2.0	0.55±0.05		
RSF-50	RSFIWS	9.0±0.5	3.3±0.3	26±2.0	0.55±0.05		
RSF100	RSF2WS	11.5±1.0	4.5±0.5	35±2.0	0.8±0.05		
RSF200	RSF3WS	15.5±1.0	5.0±0.5	33±2.0	0.8±0.05		
RSF3WM	RSF5SS	17.5±1.0	6.5±1.0	32±2.0	0.8±0.05		
RSF300	RSF5WS	24.5±1.0	8.5±1.0	38±2.0	0.8±0.05		
RSF500		24.5±1.0	8.5±1.0	38±2.0	0.8±0.05		

Note: RSF1WS (for MBType) $\phi d = 0.8\pm0.05$ mm

ELECTRICAL CHARACTERISTICS

NORMAL STYLE

STYLE	RSF-25	RSF-50	RSF100	RSF200	RSF3WM	RSF300	RSF500	
Power Rating at 70°C	1/4W	1/2W	IW	2W	3W		5W	
Maximum Working Voltage	200V	250V	350V		450V	500V	750V	
Maximum Overload Voltage	300V	400V	600V		700V	800V	1,000V	
Voltage Proof	250V	350V	500V		600V	700V	750V	
Resistance Range	Π - ΙΜΩ 8	I Ω - IM Ω & 0 Ω for E24 series value						
Operating Temp. Range	-55°C to +23	-55°C to +235°C						
Temperature Coefficient	±300ppm/°C	±300ppm/°C						

MINIATURE STYLE

STYLE	RSF50S	RSFIWS	RSF2WS	RSF3WS	RSF5SS	RSF5WS			
Power Rating at 70°C	1/2W	IW	2W	3W	5W				
Maximum Working Voltage	250V	300V	350V		500V	700V			
Maximum Overload Voltage	400V	500V	600V		800V	900V			
Voltage Proof	350V	400V	500V		700V	700V			
Resistance Range	ΙΩ-ΙΜΩ&Ο	I Ω - IM Ω & 0 Ω for E24 series value							
Operating Temp. Range	-55°C to +235°	-55°C to +235°C							
Temperature Coefficient	±300ppm/°C	±300ppm/°C							

Note: Special value is available on request

ENVIRONMENTAL CHARACTERISTICS

PERFORMANCE TEST	TEST METHOD	TEST METHOD					
Short Time Overload	IEC 60115-1 4.13	2.5 times RCWV for 5 Sec.	$\pm 1.0\% + 0.05~\Omega$ for normal style $\pm 2.0\% + 0.05~\Omega$ for miniature style				
Voltage Proof	IEC 60115-1 4.7	in V-block for 60 Sec., test voltage by type	By type				
Temperature Coefficient	IEC 60115-1 4.8	-55°C to +155°C	By type				
Insulation Resistance	IEC 60115-1 4.6	in V-block for 60 Sec.	>1,000ΜΩ				
Solderability	IEC 60115-1 4.17	235±5°C for 3±0.5 Sec.	95% Min. coverage				
Solvent Resistance of Marking	IEC 60115-1 4.30	IPA for 5±0.5 Min, with ultrasonic	No deterioration of coatings and markings				
Robustness of Terminations	IEC 60115-1 4.16	Direct load for 10 Sec. in the direction of the terminal leads	≥2.5kg (24.5N)				
Periodic-pulse Overload	IEC 60115-1 4.39	4 times RCWV 10,000 cycles (1 Sec. on, 25 Sec. off)	±2.0%+0.05 Ω				
Damp Heat Steady State	IEC 60115-1 4.24	40±2°C, 90-95% RH for 56 days, loaded with 0.1 times RCWV	±5.0%+0.05 Ω				
Endurance at 70°C	IEC 60115-1 4.25	70±2°C at RCWV for 1,000 Hr. (1.5 Hr. on, 0.5 Hr. off)	±5.0%+0.05 Ω				
Temperature Cycling	IEC 60115-1 4.19	-55°C ⇒ Room Temp. ⇒ +155°C ⇒ Room Temp. (5 cycles)	±1.0%+0.05 Ω				
Resistance to Soldering Heat	IEC 60115-1 4.18	$260\pm3^{\circ}\text{C}$ for 10 ± 1 Sec., immersed to a point $3\pm0.5\text{mm}$ from the body	±1.0%+0.05 Ω				
Accidental Overload Test	IEC 60115-1 4.26	4 times RCWV for 1 Min.	No evidence of flaming or arcing				