2 章

- 2.1
- [1] $(1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \times$
- 【2】各代数系に対して、すべて満たす。
- 【3】演算*は演算★に関して分配的ではない、 演算★は演算*に関して分配的である。 吸収律を満たさない。
- 【4】 <A,*>の左単位元:なし,右単位元:β とγ. <A,★>の左単位元:β,右単位 元:なし.
- 【5】 <*A*,*>の左零元: γ, 右零元: なし. <*A*, ★>の左零元: なし, 右零元: β.
- [6] (1) $\max\{x, y\} : 1$, $\min\{x, y\} : 10$, GCD(x, y) : 7\$\tau_t, LCM(x, y) : 1.
 - (2) $\max\{x, y\} : 10, \min\{x, y\} : 1,$ GCD(x, y) : 1, LCM(x, y) : 7 \(\text{\$\text{L}\$}.
- 【7】 $\max\{x,y\}$:1⁻¹=1, $\min\{x,y\}$:10⁻¹=10, LCD(x,y):1⁻¹=1. その他の要素:なし。
- [8] $2 \times (1 \triangle 1) = 2 \neq 0 = (2 \times 1) \triangle (2 \times 1)$, $2 \triangle (2 \times 2) = -2 \neq 0 = (2 \triangle 2) \times (2 \triangle 2)$.
 - 2.2
- * 0 1 2 3 0 0 0 0 0 1 0 1 2 3 2 0 2 0 2 3 0 3 2 1
 - (2) ①上記の演算表より、* はA 上の閉じた演算である。② $(x*y)*z=x*(y*z)=x\times y\times z\pmod{4}$,即ち、* はA 上の結合的な演算である。よって、<A、*>は半群である。

*	0	1	2	*	0	1	3
0	0	0 1 2	0	0	0 0 0	0	0
1	0	1	2	1	0	1	3
2	0	2	0	3	0	3	1

- [3] $(x \star y) \star z = (x*a*y) \star z = (x*a*y) * (x*a*y) * (x*a*z) = x*a*(y*a*z) = x*a*(y*z) = x*(y*z) = x*(y*z$
- 【4】 (1) a*b=a*(a*a)=(a*a)*a=b*a (2) ① a*b=a の時, b*b=(a*a)*b=a*(a*b)=a*a=b ② a*b=b の時, b*b=(a*a)*b=a*(a*b)=a*b=b ①と②より, b*b=b.
- [5] (1) (a*b)*c = a*(b*c) = a*(c*b) = (a*c)*b = (c*a)*b = c*(a*b).(2) (a*b)*(a*b) = (b*a)*(a*b) = b*(a*a)*b = b*a*b = a*b*b = a*b.
- 【6】(1) b=a*a とする. a*b=a*(a*a) =(a*a)*a=b*a, よって、a=b=a *a (2) c=a*b*a とする. (1) より、 a*c=a*(a*b*a)=(a*a)*b*a= a*b*a=c, c*a=(a*b*a)*a=a* b*(a*a)=a*b*a=c, よって、a=c =a*b*a. (3) d=a*b*c, e=a*c と する. (2) より、d*e=(a*b*c)*(a*c) =(a*(b*c)*a)*c=a*c=a*(c*(a*b*c)=(a*c)*
- [7] a b d a h cd h d h ccd a d d a h
- 【8】単位元をe とし、b とc が共にa の逆元 とすると、b = b * e = b * (a * c) = (b * a * c = e * c = c . 問の主張が成り立つ.

2.3

- 【1】数学的帰納法で、任意の正整数 k に対して、 $(a^k)^{-1}=a^{-k}$ が証明できる。よって、 $(a^i*b^j)*(b^{-j}*a^{-i})=a^i*(b^j*b^{-j})*a^{-i}$ = $a^i*e*a^{-i}=a^i*a^{-i}=e$. 同じように、 $(b^{-j}*a^{-i})*(a^i*b^j)=e$ が証明できる。 ゆえに、 $(a^i*b^j)^{-1}=b^{-j}*a^{-i}$.
- 【2】 $+_6$ は I_6 上の閉じた結合的な演算である。 0が $< I_6, +_6 >$ の単位元であり,6-iが $i \in I_6$ の逆元である。ゆえに, $< I_6, +_6 >$ は群である。
- **[3]** <{0},+₆>, <{0,3},+₆>, <{0,2,4},+₆>, < I₆,+₆>.
- 【4】s に関する数学的帰納法で証明できる.
- 【5】任意の $x,y \in H_a$ に対して, x*a=a*x, y*a=a*y. よって, (x*y)*a=x*(y*a)=x*(a*y)=(x*a)*y=(a*x)*y=a*(x*y), 即ち, * が H_a 上の閉じた演算である. ゆえに, < H_a ,*>は< G,*> の部分群である.
- 【6】* が結合的な演算なので、 $HKH = (HK)H = H(KH) \cdot HK = KH)$ より、 $HKH = K(HH) \cdot HK = KH)$ より、 $HKH = K(HH) \cdot HK = KH$ より、ので、*がH 上の閉じた演算であり、単位元 $e \in H$ である。よって、 $HH = H \cdot HK$ は、HKH = KH = HK は 任意の $a,b \in HK$ に対して、ある $b_1,b_2,b_2^{-1} \in H$ 、 $b_1,b_2^{-1} \in H$ 、 b_1,b_2^{-1}
- 【7】①任意の $a \in HK$ に対して, $a^{-1} \in HK$.

- よって、ある $h \in H, k \in K, a^{-1} = h*k$. ゆえに、 $a = (a^{-1})^{-1} = k^{-1}*h^{-1} \in KH$. 即ち、 $HK \subseteq KH$. ②同様に、 $HK \subseteq KH$ が証明できる. ①と②より、HK = KH.
- 【8】 $G = \{e, a_1, a_2, ..., a_{2k-1}\}$ とし、|G| が偶数である。群であるので、 $a_i^{-1} \in G, i \neq j$ の時、 $a_i \neq a_j, a_i^{-1} \neq a_j^{-1} (1 \leq i, j \leq 2k-1)$. $1 \leq i \leq 2k-1$ に対して、 $a_i \neq a_i^{-1}$ であれば、 $H = \{a_1, a_1^{-1}\} \cup \{a_2, a_2^{-1}\} \cup ... \cup \{a_{2k-1}, a_{2k-1}^{-1}\}$ とすると、|H| が偶数である。 $|G| \neq e| + |H|$ = 1 + |H| より、|H| が奇数である。矛盾、ゆえに、ある $1 \leq j \leq 2k-1$ 、 $a_j = a_j^{-1}$ 、即ち、 $a_j * a_j = e$.

2.4

- 【1】n に関する数学的帰納法で証明できる.
- 【2】任意の $a,b \in G$ に対して、 $a*b \in G$ であるので、(a*b)*(a*b) = e = a*a = a*(b*b)*a = (a*b)*(b*a).群の消去律により、a*b = b*a.即ち、< G, *> は可検群である.
- 【3】 $a^5*b^5 = (a*b)^5 = (a*b)*(a*b)^4 = a*b*a^4*b^4$. 消去律より、 $a^4*b = b*a^4$. $a^4*b^4 = (a*b)^4 = (a*b)*(a*b)^3 = a*b*a^3*b^3$. 消去律より、 $a^3*b = b*a^3$. よって、 $(a*b)*a^3 = a*(b*a^3) = a*(a^3*b) = a^4*b = b*a^4 = (b*a)*a^3$. 消去律より、 $a^3*b = b*a$. 則ち、 $a^3*b = a^4*b = b*a$.
- 【4】 $G=\{e,a,b\}$ とする. 群<G,*>の演算表

*	e	а	b
e	e	а	b
a	a	b	e
b	b	e	a

はこれだけである. 主対角線より対称的 なので、可換群である.

【5】 G={e,a,b,c} としeを群<G**>の単位元とする.群<G**>の演算表に対して、任意の行または任意の列は Gの置換であるので、①a*a=e ならば、a*b=c=b*a、a*c=b=c*a である.よって、(i) b*b=e の時、b*c=a=c*b である.(ii) b*b=a の時、b*c=e=c*b である.②a*a=b ならば、a*b=c=b*a、a*c=e=c*a である.よって、b*b=e、b*c=a=c*b、c*c=b である.③a*a=c ならば、a*b=e=b*a、a*c=b=c*a である.よって、b*b=c、b*c=a=c*b、c*c=b である.ずのまた。よって、b*b=c、b*c=a=c*b、c*c=e である.即ち、群<G**、の演算表は下記の4つの可能だけである。

	, _ , ,		90						
*	e	а	b	c	*	e	а	b	c
e	e	а	b	c	e	e	а	b	c
a	а	e	c	b	a	a	e	\mathcal{C}	b
b	b	C	e	а	b	b	C	а	e
c	c	b	а	e	c	c	b	e	а

*	e	а	b	c	*	e	а	b	c
e	e	а	b	c	e	e	а	b	С
a	а	b	c	e	а	а	C	e	b
b	b	c	e	a	b	b	e	\mathcal{C}	a
	С				c	c	b	a	e

すべての演算表は主対角線により対称的であるので、<*G*.*>は可換群である。

- 【**6**】 *G*={0,1,2,3,4} とし, *a*b=a+b* (mod 5) とする. *< G*,* > は巡回群であり, 1 は生 成元である.
- 【7】 $< G, \times_7 >$ に対して、 \times_7 はG 上の閉じた結合的な演算であり、単位元は1 であり、生成元は3 である。 $1^{-1} = 1, 2^{-1} = 4$ 、 $3^{-1} = 5.4^{-1} = 2.5^{-1} = 3.6^{-1} = 6$. よっ

て、 $< G, \times_7 >$ は巡回群である.

【8】 $G = \{a, a^2, ..., a^n = e\}$ とし, $H = \{a^{i_1}, a^{i_2}, ..., a^{i_k}\}$ とする.ここで, $1 \le i_1 < i_2 < ... < i_k = n$. $K = \{0, i_1, i_2, ..., i_{k-1}\}$ とし, $a, b \in K$ に対して, $a \oplus b = a + b$ (mod n)とすると,* はH 上の閉じた演算であるので, \oplus はK 上の閉じた演算である.背理法で, $K = \{0, i_1, 2i_1, ..., (k-1)i_1\}$ かつ $ki_1 = n$ が証明できる.ゆえに,< H, *> が生成元 a^{i_1} を持つ巡回群である.

2.5

- 【1】 ① $g \circ f$ は $A \rightarrow C$ の全単射関数である. ② $g \circ f(a*b) = g(f(a*b)) = g(f(a) \star f(b)) = g(f(a))$ \blacktriangle $g(f(b)) = g \circ f(a)$ \blacktriangle $g \circ f(b)$. よって、 $g \circ f$ は< A, *> から $< C, \blacktriangle > \sim 0$ 同型写像である.
- 【2】①任意の $y \in G$ に対して、ある $x = a^{-1} *$ y*a, f(x) = y, 即ち、f が全射関数である。② $x \neq y$ の時、 $f(x) = a*x*a^{-1} \neq$ $a*y*a^{-1} = f(y)$, 即ち、f が単射関数である。③ $f(x*y) = a*(x*y)*a^{-1} = (a*x*a^{-1})*(a*y*a^{-1}) = f(x)*f(y)$. よって、f は< G, *> 上の自己同型写像である。
- 【3】 f を<A,*>から<B,★>への同型写像とし、a を<A,*>の生成元とする.任意の $f(a^i)$ \in B に対して、i に関する数学的帰納法で、 $f(a^i)$ = $f^i(a)$ が証明できる.よって、<B,★>は生成元f(a) を持つ巡回群である.
- 【4】任意の群<{e,a},*>に対して,e は単位元 であり,e*a=a*e,a*a=e である. f(e)=0,f(a)=1 とすると,f は群

<(e,a),*>から群<{0,1},+2>の同型写像である.即ち,2個の要素からなる群はすべて群<{0,1},+2>と同型である.ゆえに、問の主張を満たす.

- 【5】任意の群 $<\{e,a,b\},*>$ に対して、e は単位元であり、a*a=b,b*b=a,a*b=b*a=eである。f(e)=0,f(a)=1,f(b)=2とすると、f は群 $<\{e,a,b\},*>$ から群 $<\{0,1,2\},+_3>$ の同型写像である。即ち、3個の要素からなる群はすべて群 $<\{0,1,2\},+_3>$ と同型である。ゆえに、問の主張を満たす。
- 【**6**】 同型写像 (例えば、 $f(a) = \gamma$, $f(b) = \alpha$, $f(c) = \beta$, $f(d) = \delta$) が存在するので、同型である.
- 【7】 (1) $(f(a) \star f(b)) \star f(c) = f(a*b) \star$ f(c) = f((a*b)*c) = f(a*(b*c)) = f(a) $\star f(b*c) = f(a) \star (f(b) \star f(c))$ (2) 任意の $f(a) \in B$ に対して、 $f(e) \star f(a)$ $= f(e*a) = f(a) = f(a*e) = f(a) \star f(e)$. よって、f(e) は < B, $\star > O$ 単位元である。 (3) $f(a) \star f(b) = f(a*b) = f(e) = f(b*a) = f(b) \star f(a)$. よって、f(b) が f(a) の逆元である。
- 【8】任意の $a,b \in C$ に対して、 $f(a*b^{-1}) = f(a) \star f(b^{-1}) = g(a) \star (f(b))^{-1} = g(a) \star (g(b))^{-1} = g(a) \star g(b^{-1}) = g(a*b^{-1}).$ よって、 $a*b^{-1} \in C$.定理 2.16 より、 < C > 0は< A > 0部分群である.
 - 2.6
- 【1】任意の $a,b,c \in A$ に対して、 $a*(b \star c) = a*b = (a*b) \star (a*c)$ である。同様に $(b \star c)*a = (b*a) \star (c*a)$ もいえる。 よって、 $* は \star$ に関して分配的である。

- [2] $a*(b \star c) = (a*b) \star (a*c) = (b*a) \star (c*a) = (b \star c)*a, \ a*(b*c) = (a*b)$ *c = (b*a)*c = b*(a*c) = b*(c*a) = (b*c)*a.
- [3] $(a \star b)*(a \star b) = ((a \star b)*a) \star ((a \star b)*b) = (a*a) \star (b*a) \star (a*b) \star (b$ *b)=(a*a) \times (a*b) \times (b*a) \times (b*b).
- 【4】(1) a^{-1} をa の加法★の逆元とする。 a^{-1} ★ $a = \theta = a^{-1} * \theta = a^{-1} * (a^{-1} * * * a)$ $= (a^{-1} * a^{-1}) * (a^{-1} * a) = a^{-1} * (a^{-1} * a)$.

 群の消去律より、 $a = a^{-1} * a$. よって、 $a * a = (a * a) * (a^{-1} * a) = (a * a^{-1})$ $*a = \theta * a = \theta$. (2) 間【3】より、a * b = (a * b) * (a * b) = (a * a) * (a * b) * (b * a) * (b * b) = (a * b) * (a * b) * (b * a). よって、(a * b) * (a * b) * (a * b) = (a * b) * (a * b) * (a * b) = (a * b) * (a * b) * (b * a). 即ち、 $\theta = (a * b) * (b * a)$. ① より、(a * b) * (a * b)
- [5] $< \{0,1,2\}, +_3, \times_3 >$, $\subset \subset \subset$, $a+_3b = a+b \pmod{3}$, $a\times_3 b = a\times b \pmod{3}$.
- 【6】① \oplus が I 上で閉じた結合的な演算であり、1 が < I, \oplus > の単位元である、2-a がa の逆元であり、 $a \oplus b = b \oplus a$ である。よって、< I, \oplus > がアーベル群である。② \otimes が I 上で閉じた結合的な演算であり、 $a \otimes b = b \otimes a$ であり、0 が< I, \otimes > の単位元である。即ち、< I, \otimes > が可換的なモノイドである。 さらに、 $c \neq 1$ かっ $c \otimes a = c \otimes b$ ならば、a = b になる。③ \otimes は \oplus に関して分配的できる。①②③より、< I, \oplus > は撃域である。

- **【7】** (1) (2) ×
- [8] $e_1 = e_1 * e_2 = e_1 * (e_1 \star e_2) = (e_1 * e_1)$ $\star (e_1 * e_2) = (e_1 * e_1) \star e_1 = (e_1 \star e_1) *$ $(e_1 \star e_1) = e_1 * e_1, \ e_2 = e_1 \star e_2 = (e_1 * e_2) *$ $e_2) \star e_2 = (e_1 \star e_2) * (e_2 \star e_2) = e_2 *$ $(e_2 \star e_2) = (e_2 * e_2) \star (e_2 \star e_2) = e_2 *$ $\star e_2 \cdot \bot \circ \top, \ x = x * e_2 = x * (e_2 \star e_2) *$ $e_2) = (x * e_2) \star (x * e_2) = x \star x, \ x = x \star e_1 = x \star (e_1 * e_1) = (x \star e_1) * (x \star e_1) = x * x.$
 - 2.7
- [1] $(1) \bigcirc (2) \times (3) \times$
- [2] $(a) \times (b) \cap (c) \cap (d) \times$
- [3]

 $A = \{a, b, c, d, e, f\}$

 $B = \{a, b, c, d, e\}$

- 【4】 "⇒": $a \land b = a$ より, $a \lor b = (a \land b) \lor b$. 吸収律より, $a \lor b = b$. "←": $a \lor b = b$ より, $a \land b = a \land (a \lor b)$. 吸収律より, $a \land b = a$.
- **【5】**任意の $x, y \in B$ に対して、 $a \le x \le b$ 、 $a \le y \le b$. よって、 $a \le x \lor y \le b$ 、 $a \le x \land y \le b$ 、即ち、 $x \lor y \in B$ 、 $x \land y \in B$. ゆえに、< B、 $\le x \lor y \in B$ 、 $\le x \lor y \in B$.
- [7] $\bigcirc a \land b \leqslant a$, $c \land d \leqslant c$, $\exists \land \neg \tau$, $(a \land b) \lor (c \land d) \leqslant a \lor c$. $\bigcirc a \land b \leqslant b$, $c \land d \leqslant d$, $\exists \neg \tau$, $(a \land b) \lor (c \land d) \leqslant b \lor d$. \bigcirc $\bigcirc \exists \exists b$, $(a \land b) \lor (c \land d) \leqslant (a \lor c) \land (b \lor d)$.
- [8] $\bigcirc a \wedge b \leq a, b \wedge c \leq b, c \wedge a \leq a, \bot \supset$ $\lnot \land (a \wedge b) \lor (b \wedge c) \lor (c \wedge a) \leq a \lor b$. ② $a \wedge b \leq b, b \wedge c \leq c, c \wedge a \leq c, \bot \supset$

- 2.8
- 【1】<{1,2,3,4,5,6},"以下">
- 【2】 < {1,2,3,4,5,60},"倍数">
- 【3】任意の $a,b \in I$ に対して、 $\max\{a,b\} \in I$ 、 $\min\{a,b\} \in I$ 、即ち、 $<I,\max,\min>$ が東である. ① $\max\{a,\min\{b,c\}\}$ に対して、(i) $a \le \min\{b,c\}$ の時、 $a \le b$ 、 $a \le c$. よって、 $\max\{a,\min\{b,c\}\} = \min\{b,c\} = \min\{b,c\} = \min\{b,c\}$ の時、 $\max\{a,b\}$ 、(ii) $a > \min\{b,c\}$ の時、 $\max\{a,min\{b,c\}\} = a = \min\{\max\{a,b\}$ 、 $\max\{a,min\{b,c\}\} = a = \min\{\max\{a,b\}$ 、 $\max\{a,c\}\}$. (i) (ii) より、 \max は minに関して分配的である. 定理 2.8.1 より、 \min は max に関して分配的である. ゆえに、間の主張を満たす.
- 【4】 $a \wedge c \leq a$ より、 $(a \wedge c) \vee (b \wedge c) \leq a \vee (b \wedge c)$.分配的なので、 $(a \vee b) \wedge c \leq a \vee (b \wedge c)$.
- 【5】任意の $x, y, z \in A$ に対して、① $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$ が成り立つ。② 条件より、 $y \land (x \lor z) = (x \lor z) \land y \le x \lor (y \land z)$. $a = x, b = y, c = x \lor z$ とすると、条件より、 $(x \lor y) \land (x \lor z) \le x \lor (y \land (x \lor z)) \le x \lor (x \lor (y \land z)) = x \lor (y \land z)$. ①②より、 $x \lor (y \land z) = (x \lor y) \land (x \lor z)$. 即ち、 $< A \le >$ は分配束である.
- 【7】b が a の補元であるので, $a \lor b = 1$,

- $a \wedge b = 0$. a = b であれば、 $1 = a \vee b = a = a \wedge b = 0$. 矛盾. ゆえに、 $a \neq b$.
- 【8】 n 個(n≥3)の要素からなる鎖<A,≤> に対して、最小元と最大元以外の要素は 補元がないので、相補束ではない。
 - 2.9
- [1] $x \le y \Leftrightarrow x \lor y = y \Leftrightarrow \overline{x} \land \overline{y} = \overline{y} \Leftrightarrow \overline{y} \leqslant \overline{x}$.
- [2] (1) $a \vee (a \wedge b) = (a \vee a) \wedge (a \vee b)$ = $a \vee b$. (2) $a \wedge (a \vee b) = (a \wedge a) \vee$ $(a \wedge b) = a \wedge b$.
- 【3】 \oplus が A 上の閉じた結合的な演算であり、 最小元 0 が単位元である. a は a の逆元であり、 $a \oplus b = b \oplus a$ である. ゆえに、A, \oplus > は可換群である.
- **[4]** $(a \wedge \overline{b}) \vee (\overline{a} \wedge b) = ((a \wedge \overline{b}) \vee \overline{a}) \wedge ((a \wedge \overline{b}) \vee \overline{b}) = (a \vee \overline{a}) \wedge (\overline{b} \vee \overline{a}) \wedge (\overline{a} \vee \overline{b}) \wedge (\overline{b} \vee \overline{b}) = (a \vee b) \wedge (\overline{a} \vee \overline{b}).$
- [5] " \Rightarrow ": $a \lor b = a \lor (a \lor b) = (a \lor a) \lor b = 1$. " \Leftarrow ": $a \lor b = (a \land (a \lor b)) \lor b = (a \land b) \lor b = b$.
- [6] " \Rightarrow ": $a \wedge \bar{b} = (a \wedge b) \wedge \bar{b} = a \wedge (b \wedge \bar{b}) = 0$. " \Leftarrow ": $a \wedge b = a \wedge (b \vee (a \wedge \bar{b})) = a \wedge (b \vee a)$ $\wedge (b \vee \bar{b}) = a$.
- 【7】 "⇒": $b \le (a_1 \lor a_2 \lor ... \lor a_k)$ より、 $(a_1 \lor a_2 \lor ... \lor a_k) \land b = b$,即ち、 $(a_1 \land b)$ $\lor (a_2 \land b) \lor ... \lor (a_k \land b) = b \cdot b \notin \{a_1 \land a_2,...,a_k\}$ であれば、 $1 \le i \le k$ に対して、 $a_i \land b = 0$ である。よって、b = 0 である。b が原子であることに矛盾。ゆえに、 $b \in \{a_1,a_2,...,a_k\}$ より、 $(a_1 \lor a_2 \lor ... \lor a_k) \land b = b$.即ち、 $b \le (a_1 \lor a_2 \lor ... \lor a_k)$ である。
- 【8】"⇒": 当然である. " \leftarrow ": すべての原子 $\{a_1, a_2, ..., a_k\}$ に対して, $(a_1 \lor a_2 \lor ...$

 $\lor a_k$)=1. $1 \le i \le k$ に対して、 $x \land a_i = 0$ より、 $(x \land a_1) \lor (x \land a_2) \lor ... \lor (x \land a_k)$ = 0. 即ち、 $0 = x \land (a_1 \lor a_2 \lor ... \lor a_k) = x \land 1 = x$.

2.10

- **[1]** (1) *a* (2) 0 (3) 1 (4) *a* (5) 1 (6) 1
- [2] $E(x,y) = (a \lor x) \land \overline{b \land y} = (a \lor x) \land (\overline{b} \lor y) = (a \lor x) \land (a \lor y) = a \lor (x \land y)$

=							
[3]	X	У	E	X	У	Z	F
	0	0	0	0	0	0	0
	0	1	1	0	0	1	0
	1	0	1	0	1	0	0
	1	1	0	0	1	1	1
		(1)		1	0	0	0
				1	0	1	1
				1	1	0	1
				1	1	1	1
					(2)	

- 【4】 f(0,a) = f(0,1) = 1,他のx, yに対して, f(x, y) = 0とする. 定理 2.47 より, fがブール関数であれば, $f(x, y) = x \land y$. よって, $f(0,a) = a \ne 1$. 矛盾. ゆえに, f がブール関数ではない.
- [5] $(\overline{x} \wedge \overline{y} \wedge \overline{z}) \vee (\overline{x} \wedge \overline{y} \wedge z) \vee (\overline{x} \wedge y \wedge z)$ $\vee (x \wedge \overline{y} \wedge \overline{z}) \vee (x \wedge \overline{y} \wedge z)$ $\vee (x \wedge y \wedge \overline{z}) \vee (x \wedge y \wedge z)$
- [6] $(x \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z})$
- [7] (a) E(x) = 1 (b) $F(x, y) = \overline{x \wedge y}$ (c) G(x, y, z) = z
- 【8】加法標準形: (x∧y∧z)∨(x∧y∧z) ∨(x∧y∧z)∨(x∧y∧z). 乗法 標準形: (x∨y∨z)∧(x∨y∨z) ∧(x∨y∨z)∧(x∨y∨z)