Gradient-Free Optimal Postprocessing of MCMC Output

Artem Glebov

King's College London

2024

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- 4 Conclusions
- Further Research
- 6 Bibliography

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) are a popular class of algorithms for sampling from complex probability distributions.

Given a target distribution P defined on a state space \mathcal{X} , an MCMC algorithm proceeds by constructing a chain of random variables $(X_i)_{i=0}^{\infty}$ which satisfy the Markov property:

$$\mathbb{P}(X_{i+1} \in A | X_0, \dots, X_i) = \mathbb{P}(X_{i+1} \in A | X_i)$$
 for any measurable $A \in \mathcal{X}$.

Viewed as a function, the right-hand side above is called the Markov transition kernel and is denoted

$$R(A|x) := \mathbb{P}(X_{i+1} \in A|X_i = x). \tag{1}$$

The transition kernel R is selected so that it is easy to sample from and to ensure asymptotic convergence to the target distribution P:

$$P_i \xrightarrow{d} P$$
 as $i \to \infty$.

A sample of size n is a realisation $(x_i)_{i=0}^n$ of the first n variables in the chain, which is constructed sequentially.

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- 4 Conclusions
- 5 Further Research
- 6 Bibliography

Algorithm 1: Gradient-free Stein thinning.

Data:

```
sample (x_i)_{i=1}^n from MCMC, target log-densities (\log p(x_i))_{i=1}^n auxiliary log-densities (\log q(x_i))_{i=1}^n auxiliary gradients (\nabla \log q(x_i))_{i=1}^n desired cardinality m \in \mathbb{N}
```

Result: Indices π of a sequence $(x_{\pi(j)})_{j=1}^m$ where $\pi(j) \in \{1, \dots, n\}$.

for
$$j=1,\ldots,m$$
 do

$$\pi(j) \in \operatorname*{arg\,min}_{i=1,...,n} \frac{k_{P,Q}(x_i,x_i)}{2} + \sum_{j'=1}^{j-1} k_{P,Q}(x_{\pi(j')},x_i)$$

end

Algorithm 2: Optimised gradient-free Stein thinning.

Data:

end

```
sample (x_i)_{i=1}^n from MCMC,
target log-densities (\log p(x_i))_{i=1}^n
auxiliary log-densities (\log q(x_i))_{i=1}^n
auxiliary gradients (\nabla \log q(x_i))_{i=1}^n
desired cardinality m \in \mathbb{N}.
```

Result: Indices π of a sequence $(x_{\pi(j)})_{j=1}^m$ where $\pi(j) \in \{1, \ldots, n\}$. Initialise an array A[i] of size n Set $A[i] = k_{P,Q}(x_i, x_i)$ for $i = 1, \ldots, n$ Set $\pi(1) = \arg\min_i A[i]$ for $j = 2, \ldots, m$ do Update $A[i] = A[i] + 2k_{P,Q}(x_{\pi(j-1)}, x_i)$ for $i = 1, \ldots, n$ Set $\pi(j) = \arg\min_i A[i]$

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- 4 Conclusions
- 5 Further Research
- 6 Bibliography

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- Conclusions
- Further Research
- 6 Bibliography

Contribution

The project makes three contributions:

- implementation of the gradient-free Stein thinning algorithm in the Python library stein-thinning,
- evaluation of the performance of the proposed algorithm,
- improvement of the computational efficiency of the existing Stein thinning algorithm from $O(nm^2)$ to O(nm), where n is the input sample size and m is the desired thinned sample size.

Conclusions

- The gradient-free approach is feasible and performs similarly to the Stein thinning algorithm of Riabiz et al. (2022) for small thinned sample sizes,
- The performance of the algorithm depends crucially on the choice of the auxiliary distribution. For example, even in the highly favourable setting of i.i.d. samples from a Gaussian mixture, choosing the auxiliary distribution based on the Laplace approximation fails to produce a thinned sample.
- The simple multivariate Gaussian distribution using the sample mean and covariance offered a good starting point in our experiments, however bespoke treatment might be required for more complex problems.
- In deciding whether to use the new algorithm as opposed to the gradient-based approach, the effort involved in selecting a good auxiliary distribution must be weighed against the computational cost of obtaining gradients.

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- 4 Conclusions
- 5 Further Research
- 6 Bibliography

Further Research

- Evaluate the choices of KDE kernels other than Gaussian for constructing the auxiliary distribution.
- Parallelise the computation of KDE.
- Perform thinning in a lower-dimensional space.
- Investigate the behaviour of Stein thinning for large thinned sample sizes.
- Compare the performance of the approaches in terms of estimating the true parameters of the Lotka-Volterra model.
- Run an experiment with randomised starting points.

Further Research (continued)

- Repeat the experiments with more advanced MCMC algorithms.
- Check how running a gradient-free MCMC sampling algorithm (such the random-walk Metropolis-Hastings) followed by Stein thinning of the sample compares to running a gradient-based sampling algorithm (e.g. HMC).
- Provide theoretical justification for gradient-free Stein thinning.
- Explore other gradient-free alternatives.

- Background
 - Markov Chain Monte Carlo (MCMC)
 - Challenges of running MCMC
 - Stein thinning
 - Gradient-free kernel Stein discrepancy
- 2 Methodology
 - Algorithm
 - Evaluation
- Results
 - Bivariate Gaussian mixture
 - Lotka-Volterra inverse problem
- 4 Conclusions
- Further Research
- 6 Bibliography

Bibliography

M. Riabiz, W. Y. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey, and C. J. Oates. Optimal Thinning of MCMC Output. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1059–1081, September 2022.