Cálculo Diferencial e Integral: Continuidad de Funciones

Compiladores: Reiman Acuña Ch., Jorge Chinchilla y Lourdes Quesada V.

> Escuela de Matemática Instituto Tecnológico de Costa Rica

> > Semana 4

Contenido

Idea intuitiva de Continuidad

De manera informal se dice que una función es continua si la podemos dibujar con un solo trazo (sin levantar el lápiz de la hoja).

Continuidad de una función en un punto

Definición

Sea f una función y $a \in D_f$, se dice que f es continua en x = a si

$$\lim_{x \to a} f(x) = f(a)$$

De esta definición se desprenden las siguientes tres condiciones:

- \bullet f(a) está definida.
- $2 \lim_{x \to a} f(x)$ existe.
- $\lim_{x \to a} f(x) = f(a).$

Considere la función f de criterio

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

Determine si la función es continua en x = 2.

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

$$f(2) = 4$$

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

- f(2) = 4
- 2 Se puede notar que $\lim_{x\to 2^-} x^2 = 4 \text{ y } \lim_{x\to 2^+} 4 = 4,$

$$\therefore \lim_{x \to 2} f(x) = 4$$

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

- f(2) = 4
- ② Se puede notar que $\lim_{x\to 2^-} x^2 = 4 \text{ y } \lim_{x\to 2^+} 4 = 4,$

$$\therefore \lim_{x \to 2} f(x) = 4$$

• Se dice entonces que la función f(x) es continua en x = 2

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

- f(2) = 4
- Se puede notar que $\lim_{x\to 2^{-}} x^{2} = 4 \text{ y } \lim_{x\to 2^{+}} 4 = 4,$

$$\therefore \lim_{x \to 2} f(x) = 4$$

• Se dice entonces que la función f(x) es continua en x = 2

$$f(x) = \begin{cases} x^2 & si \quad x < 2\\ 4 & si \quad x \ge 2 \end{cases}$$

- f(2) = 4
- Se puede notar que $\lim_{x\to 2^{-}} x^{2} = 4 \text{ y } \lim_{x\to 2^{+}} 4 = 4,$

$$\therefore \lim_{x \to 2} f(x) = 4$$

Se dice entonces que la función f(x) es continua en x = 2

Discontinuidad de una función

- Si una función no es continua en x = a se dice que es discontinua en x = a.
 Si una función as discontinua en x = a para el límita lím formales.
- Si una función es discontinua en x = a pero el límite $\lim_{x \to a} f(x)$ existe, se dice que la discontinuidad es **evitable**.
- Si por el contrario, el límite $\lim_{x\to a} f(x)$ no existe, se dice que la discontinuidad es **inevitable**.

Ejemplo Función discontinua

Considere la gráfica adjunta de alguna función f:

a) No es continua en x = -2, porque $\lim_{x \to -2^{-}} f(x) \neq \lim_{x \to -2^{+}} f(x)$ Discontinuidad inevitable

Ejemplo Función discontinua

- b) No es contínua en x = 0 por que $f(0) \neq \lim_{x \to 0} f(x)$ Discontinuidad evitable
- c) No es contínua en x = 1 pues f(1) no existe.

 Discontinuidad evitable

Considere la función:

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2 \\ 2 & si \quad x = 2 \end{cases}$$

¿Es continua en x = 2?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2 \\ 2 & si \quad x = 2 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2 \\ 2 & si \quad x = 2 \end{cases}$$

$$f(2) = 2$$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2\\ 2 & si \quad x = 2 \end{cases}$$

$$f(2) = 2$$

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = 3$$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2 \\ 2 & si \quad x = 2 \end{cases}$$

- f(2) = 2
- $\lim_{x \to 2} \frac{x^2 x 2}{x 2} = 3$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & si \quad x \neq 2\\ 2 & si \quad x = 2 \end{cases}$$

Veamos si se cumple las condiciones para ser continua. (Geogebra)

- f(2) = 2
- $\lim_{x \to 2} \frac{x^2 x 2}{x 2} = 3$

Como no se cumple la tercera condición, se tiene que f es discontinua en x = 2.

Definiciones

Definición (Continuidad en un intervalo abierto)

Se dice que una función f es continua en el intervalo]a,b[si y sólo si f es continua en $c, \forall c \in]a,b[$

Definición (continuidad lateral)

Sean a y b números reales y sea f una función tal que f(a) y f(b) existen, entonces se dice que f es continua,

- a la derecha de a si y sólo si $\lim_{x \to a^+} f(x) = f(a)$
- a la izquierda de b si y sólo si $\lim_{x \to b^{-}} f(x) = f(b)$

Definiciones

Definición (continuidad en un intervalo cerrado)

Sea f una función definida en el intervalo [a, b]. Se dice que f es continua en dicho intervalo si se cumple simultáneamente que:

- f es continua]a,b[
- f es continua a la derecha de a
- f es continua a la izquierda de b

Resultados sobre continuidad

Teorema (Funciones continuas)

Si f y g son funciones continuas en x = a y $c \in \mathbf{R}$ entonces:

- * f + g es continua en x = a.
- * f g es continua en x = a.
- * $c \cdot f$ es continua en x = a
- * $f \cdot g$ es continua en x = a
- * $f \div g$ es continua en x = a $g(a) \neq 0$

Funciones Continuas

Para algunas familias de funciones es posible conocer su continuidad basándose en los siguientes criterios generales:

- Las funciones polinómicas son continuas en todo el conjunto de los números reales.
- 2 Las funciones racionales obtenidas como cociente de dos polinomios son continuas en todos los puntos del conjunto \mathbb{R} , salvo en aquellos en los que se anula el denominador.
- 3 Las funciones potenciales, exponenciales y logarítmicas son continuas en todo su dominio de definición.
- Las funciones trigonométricas seno y coseno son continuas en todo el conjunto de los números reales (en cambio, la función tangente es discontinua en los valores múltiplos impares de $\pi/2$.

La función logarítmica $f(x) = \ln(2-x)$ tiene por dominio $]-\infty, 2[$ y la función radical $g(x) = \sqrt{x+3}$ tiene por dominio $[-3, +\infty[$.

Como f es una función logarítmica y g una función radical, entonces estas funciones son continuas en sus respectivos dominios, por lo que f es continua en $]-\infty,2[$ y g es continua en $[-3,+\infty[$.

Se tiene además que la función:

$$(f+g)(x) = f(x) + g(x) = \ln(2-x) + \sqrt{x+3}$$

tiene dominio] $-\infty$, $2[\cap[-3, +\infty[=[-3, 2[$. Como f+g) es una suma de funciones continuas, sera continua en todo su dominio, es decir, en [-3, 2[.

Importante!!!!!

No toda función es continua en todo su dominio; por ejemplo, considere la función

$$f(x) = \begin{cases} x^2 + 3 & si \quad x \le 0 \\ x + 2 & si \quad x > 0 \end{cases}$$

cuyo dominio es \mathbb{R} . Sin embargo,

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} x^2 + 3 = 3 \text{ y } \lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x + 2 = 2$$

Por lo tanto, $\lim_{x\to 0} f(x)$ no existe y así f no es continua en x=0.

Podemos inferir que f es contina en $\mathbb{R} - \{0\}$

Dada la función f definida por

$$f(x) = \begin{cases} x & si \quad x \le 1 \\ ax + b & si \quad 1 < x < 4 \\ -2x & si \quad x \ge 4 \end{cases}$$

Determine los valores que deben tomar a y b de manera que f sea continua en \mathbb{R} . (Geogebra)

Solución

- Para x = 1, ejercicio
- Para x = 4, f(4) = -8. Además

$$\lim_{x \to 4^{-}} f(x) = a \cdot 4 + b = 4a + b \text{ y } \lim_{x \to 4^{+}} f(x) = -8$$

Por lo tanto, para que f sea continua en x=4 debe darse que 4a+b=-8.

Si se resuelve el sistema de ecuaciones

$$\begin{cases} a+b &= 1 \\ 4a+b &= -8 \end{cases}$$

se obtiene que a = -3 y b = 4

Resuelva los siguientes ejercicios

1. Considere la función g definida por: (Geogebra)

$$g(x) = \begin{cases} \frac{x^2 + bx}{x - 1} & si & x < -1\\ 2bx - 4 & si & -1 \le x < 3\\ x + 17 & si & x \ge 3 \end{cases}$$

- ¿Es posible definir b de forma tal que g sea continua en x = 1?
- 2 ¿Qué valor debe tener b de forma tal que g sea continua en x=3?

2. Sea $a \in \mathbb{R}, a > 0$. Sabiendo que la función f, definida por

$$f(x) = \begin{cases} \frac{\sqrt{x} - \sqrt{a}}{x - a} & si \quad x \neq a \\ 2x - a & si \quad x = a \end{cases}$$

es continua en a. Determine el valor de a. (Geogebra)

3. Determine los números reales en que la función f es discontinua, donde (Geogebra)

$$f(x) = \begin{cases} 2x+1 & si & x \le -1 \\ 3x & si & -1 < x < 1 \\ 2x-1 & si & x \ge 1 \end{cases}$$

- 4. Realice un esquema gráfico para una función f que cumpla las siguientes condiciones. (Geogebra)
- f es discontinua solo en x = -2 y x = 3.
- $\lim_{x \to -2} f(x) = 3 \text{ y } \lim_{x \to 0} f(x) = 1$

5. Determine los valores de las constantes m y n de manera que la función $f, f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por:

$$f(x) = \begin{cases} \frac{mx^2 + 1}{x - 3} & si \quad x < 2 \\ n & si \quad x = 2 \\ 2mx - 3 & si \quad x > 2 \end{cases}$$

es continua en todo \mathbb{R} . (Geogebra)

Referencias

Hernández, E.(1984)

Límites y Continuidad de Funciones

Editorial Tecnológico de Costa Rica

Muchas Gracias