昆明理工大学 2014 级 试卷 (A 卷)

考述相:高等数学A(2)考试日期:2015-6-25 命题师:命题1组

题号	_	=	Ξ	四	紛
评分					
阅卷人					

填空题 (每题 4 分, 共 40 分):

1.设
$$f(x, y) = x + (y - 1) \arcsin \sqrt{\frac{x}{y}}$$
, 则 $f_x(x, 1) =$ _____:

2.设
$$z = xy + \sin(x + y)$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____:

3. 曲线
$$\begin{cases} y^2 = 2mx, \\ z^2 = m - x \end{cases}$$
 在点 $(1, -2, 1)$ 处的切线方程为_____

4. 将二重积分 $I = \int_0^1 dx \int_x^1 f(x,y) dy$ 化为极坐标下的二次积分,

5. 设空间区域 Ω 为 $x^2 + v^2 + z^2 \le 1$.

- 6. L 为连接 (1,0) 到 (0,1) 两点的直线段,则 $\int_L (x+y)ds =$ ______:
- 7. L是起点为(0,0), 终点为(1,1)的任意光滑曲线,

8.设
$$\sum$$
为 $z=1$ 上的圆形区域($x^2+y^2 \le 1$),则 $\iint_{\Sigma} (1-xz^2) dS = ______$:

2014 级 点等数学 A(2)试卷 A 卷 第 1 页 共 4 页

9. 微分方程
$$y' = 2xy$$
, $y|_{x=0} = 1$ 的特解 $y = _____:$

CamScanner

Scanned by

11.设函数u = f(x, y, z)有连续偏导数,且z = z(x, y)由方程 $z^3 - 3xyz = a^3$ 所确 定, 求 du;

12.求函数 $f(x,y) = 4(x-y)-x^2-y^2$ 的极值:

13.求曲面 $z = x^2 + y^2 - 1$ 上平行于 4x + 2y - z = 1 的切平面方程.

15.求微分方程 $y'-2y=e^x$ 的通解;

16. 求微分方程 y"- y = 4xex 的通解.

四、综合应用题 (每题 6 分, 共 18 分):

17.求
$$\oint_L (x-5y^3+8)dy+(x^3-y-5)dx$$
, 其中 L 为圆周 $x^2+y^2=R^2$, 取逆时针方向:

18. 计算 $\bigoplus_{\Sigma} 2xzdydz + yzdzdx - z^2dydx$, 其中 Σ 是由曲面 $z = \sqrt{x^2 + y^2}$ 及 $z = \sqrt{2 - x^2 - y^2}$ 所围立体 $(\sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2})$ 表面的外侧:

Scanned by CamScanner

19. 求由坐标面及平面 x = 1, y = 1, 2x + 3y + z = 6 围成立体的体积.

昆明理工大学 2014 级高等数学 A(2)A 卷参考答案及评分细则

1.1; 2.
$$1-\sin(x+y)$$
; 3. $\frac{x-1}{-2} = \frac{y+2}{2} = \frac{z-1}{1}$;

4.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{1}{\sin\theta}} f(\rho \cos\theta, \rho \sin\theta) \rho d\rho ;$$

5.
$$-4\pi$$
: 6. $\sqrt{2}$: 7. 1: 8. π : 9. $y = e^{x^2}$: 10. $Y = C_1 e^{-x} + C_2 e^{3x}$.

$$= \int_{\mathcal{L}} du = \int_{\mathcal{L}} dx + \int_{\mathcal{L}} dy + \int_{\mathcal{L}} dz ;$$
 2 \(\frac{1}{2}\)

设 $F(x, y, z) = z^3 - 3xyz - a^3$,

$$F_x = -3yz, F_y = -3xz, F_z = 3z^2 - 3xy \neq 0$$
 5 \(\frac{1}{2}\)

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{z^2 - xy}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{xz}{z^2 - xy}.$$

$$dz = \frac{yz}{z^2 - xy} dx + \frac{xz}{z^2 - xy} dy ;$$

$$du = (f_x + f_z \frac{y^2}{z^2 - xy})dx + (f_y + f_z \frac{dy}{z^2 - xy})dy.$$
 7 \(\frac{1}{2} \)

12. 解方程组

$$\begin{cases} f_x = 4 - 2x = 0, \\ f_y = -4 - 2y = 0, \end{cases}$$

得驻点
$$(2,-2)$$
 $f_{xx} = -2, f_{xy} = 0, f_{yy} = -2.$

在点
$$(2,-2)$$
处, $A=-2,B=0,C=-2,AC-B^2>0$, $A<0$,故 $(2,-2)$ 是极大值

点.
$$f_{\text{KS}+}(2,-2)=8$$
 :

7分

13.设切点为 (x_0, y_0, z_0) , 抛物面上在切点的法相量 $\vec{n} = (2x_0, 2y_0, -1)$, 3 分

它与平面 4x + 2y - z = 1 的法相量 $n_1 = (4, 2, -1)$ 平行, 故有

$$\frac{2x_0}{4} = \frac{2y_0}{2} = \frac{-1}{-1}, \quad \text{if } x_0 = 2, y_0 = 1, z_0 = x_0^2 + y_0^2 - 1 = 4.$$

故所求平面方程为: 4(x-2)+2(y-1)-(z-4)=0,

$$4x + 2y - z = 6 \quad .$$

$$\equiv . 14. D: \begin{cases} -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \\ 0 \le \rho \le R \cos \theta. \end{cases}$$

 $\iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{R\cos\theta} \sqrt{R^{2} - \rho^{2}} \rho d\rho$ $= \frac{-1}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (R^{2} - \rho^{2})^{\frac{3}{2}} \bigg|_{0}^{R\cos\theta} d\theta = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} R^{3} (1 - \sin^{3}\theta) d\theta$

$$=\frac{R^3}{9}(3\pi-4).$$

15. $P(x) = -2, Q(x) = e^x$

通解为
$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$$
 4分

$$= e^{\int 2dx} \left(\int e^x e^{-\int 2dx} dx + C \right) = e^{2x} \left(\int e^{-x} dx + C \right)$$

$$= Ce^{2x} - e^x.$$
 7分

16 由.特征方程为 $r^2-1=0$,得 $r_1=-1,r_2=1$;故其对应的齐次方程的通解为

$$Y = C_1 e^{-x} + C_2 e^{x};$$
 4 37

因 $\lambda = r_2, m = 1, P_1 = 4x$;故设 $Q(x) = xQ_1(x) = Ax^2 + Bx, Q'(x) = 2Ax + B$,

$$Q''(x) = 2A$$
,将其代入 $Q'' + (2\lambda + P)Q' + (\lambda^2 + P\lambda + q)Q = 4x$ 得

$$2A + Ax + B = 4x$$
, $\mathbb{P}\left(AA = 4, 2A + B = 0, \text{ if } A = 1, B = -1, A = 1, B = 1, B = 1, A = 1, B = 1, A = 1, B = 1$

所以特解 $y^* = (3x^2 - 4x)e^x$,

通解
$$y = C_1 e^{-x} + C_2 e^x + (3x^2 - 4x)e^x$$
. 7 分

四.

17.
$$P(x) = x^3 - y - 5$$
, $Q(x) = x - 5y^3 + 8Q_x = 1$, $P_y = -1$, $2 \frac{1}{2}$

由格林公式得

$$\oint_{L} (x-5y^{3}+8)dy + (x^{3}-y-5)dx = \iint_{D} 2d\sigma = 2\iint_{D} d\sigma = 2\pi R^{2}$$
 6 \(\frac{1}{2}\)

18.
$$P = 2xz, Q = yz, R = -z^2, P_x = 2z, Q_y = z, R_z = -2z$$

由高斯公式得 $\iint_{\Sigma} 2xzdydz + yzdzdx - z^2dydx = \iint_{\Omega} zdv$

4分

 Ω 在 xoy 面上的投影 $D: x^2 + y^2 \le 1$,

一):在柱面坐标下 $\iint_{\Omega}zdv=\int_{0}^{2\pi}d\theta\int_{0}^{1}\rho d\rho\int_{\rho}^{\sqrt{2-\rho^{2}}}zdz=2\pi\int_{0}^{1}(\rho-\rho^{3})d\rho$ $=\frac{\pi}{2}.$ 6 分

二): 在球面坐标下 $\iint\limits_{\Omega} z dv = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} d\varphi \int_0^{\sqrt{2}} \rho^3 \cos\varphi \sin\varphi d\rho = \frac{\pi}{2}$.

19. 所谓立体 Ω 在 xoy 面上的投影 D: $\begin{cases} 0 \le x \le 1, \\ 0 \le y \le 1 \end{cases}$, 所求体积

 $V = \iiint_{\Omega} dv = \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{6-2x-3y} dz = \int_{0}^{1} dx \int_{0}^{1} (6-2x-3y) dy$ 4 \(\frac{1}{2}\)

 $= \int_0^1 (4\frac{1}{2} - 2x) dx = 3\frac{1}{2} .$ 6 \(\frac{1}{2}\)

3