#4 Symmetric Cryptography

SEGURANÇA NAS ORGANIZAÇÕES E INFORMÁTICA

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

2024/2025

About Cryptography

What is it (in simple terms)?

Securing communication and information so that it is unintelligible to unwanted entities

Information is subjected to several (reversible) operations that should only be known to those who know the keys or process.

About Cryptography

The two flavors

Symmetric

One key for everything

All participants know the same information.

Asymmetric

A key pair for diferente operations

Different participants have different material

About Symmetric Encryption

What is it (in simple terms)?

It is the process of using the same shared secret to cipher and decipher data

https://en.wikipedia.org/wiki/Symmetric-key_algorithm

Block Cipher Modes of Operation - ECB - Encryption

Electronic Codebook (ECB) mode encryption

Block Cipher Modes of Operation - ECB - Decryption

Electronic Codebook (ECB) mode decryption

Block Cipher Modes of Operation - CBC - Encryption

Cipher Block Chaining (CBC) mode encryption

Block Cipher Modes of Operation - CBC - Decryption

Cipher Block Chaining (CBC) mode decryption

Why it is needed?

- Blocks need to have a well-known size to be ciphered
- All blocks must be complete
- AES has a 128 bit blocks

But what if the message is not a multiple of 128 bits?

Simple Example

My message ends with a block of 12 bytes

Simple Example

But keep in mind, padding needs to be identifiable!

PKCS-7

The padding is *n* bytes whose value is *n*