# The net yield of ATP from glucose oxidation depends on the shuttle

- From complete oxidation of glucose:
- Glycolysis in cytosol:

Pyruvate to acetyl co-A (mitochondrion)

# The net yield of ATP from glucose oxidation depends on the shuttle

• TCA cycle (mitochondrion)

Oxidative phosphorylation (mitochondrion)



### Gluconeogenesis and Glycogen Metabolism



#### Gluconeogenesis

- Human metabolism consumes
- Body fluids carry
- Glycogen stores provide
- →Only day's supply of glucose in the body
- New glucose produced from noncarbohydrate precursors:

**Glycolysis/fermentation** 

Contracting muscles
 Glucose
 Pyruvate and lactate

#### Gluconeogenesis

Which organs consume the most glucose?

**Brain and muscles** 

 Which organs are the major sites of glucose synthesis?

Liver (90%) and kidney (10%)

#### Gluconeogenesis and Glycolysis

#### Gluconeogenesis

- Glucose synthesised
- ATP consumed
- NADH oxidised to NAD+
- Endergonic?

#### **Glycolysis**

Glucose catabolised

- ATP produced
- NAD+ reduced to NADH

Regulation

Regulation

### 4 reactions are unique to gluconeogenesis

 7 of the 10 steps in glycolysis are reversed in gluconeogenesis:

Isomerisation of G-6P to F-6P (reaction 2) 6 reactions between F1,6 BP and PEP (reactions 4 → 9)

4 unique reactions

Pyruvate carboxylase

Fructose-1,6-bisphosphatase

PEP carboxykinase

Glucose-6-phosphatase





#### 1. Pyruvate carboxylase

**Enzyme is dependent on biotin (coenzyme)** 

CH<sub>9</sub>CH<sub>9</sub>CH<sub>9</sub>CH<sub>9</sub> - NH Lysine

CH<sub>9</sub>

CH<sub>9</sub>

**Biotin** 

Acetyl Co-A is an allosteric activator

### Reaction mechanism of pyruvate carboxylase



# Write down why acetyl co A would be an activator of pyruvate carboxylase





- NAD+

NADH

Gluconeogenesis

PEP carboxykinase in matrix and cytosol

#### 2. PEP carboxykinase



Pyruvate carboxylase is a priming reaction

#### 3. Fructose-1,6-bisphosphatase

#### Allosteric regulation



Hydrolysis of phosphoester bond therefore thermodynamically favourable

#### 4. Glucose-6-phosphatase

Final step: **ER** conversion membrane Glucose-6-phosphate of G-6P to G-6-P Glucose-6-phosphatase transporter glucose Cytosol Glucose-6-P Glucose + Pi ER lumen Glucose P<sub>i</sub> transporter ER membrane T2 T3 transporter Plasma membrane GLUT2 transporter

#### Net reaction for gluconeogenesis:

```
2 pyruvate + 4 ATP + 2 GTP + 2 NADH + 2 H<sup>+</sup> + 6 H<sub>2</sub>O \rightarrow glucose + 4 ADP + 2 GDP + 6 Pi + 2 NAD<sup>+</sup> \triangleG = -75.7 kJ/mol
```

Net reaction for reverse of glycolysis

```
2 pyruvate + 2 ATP + 2 NADH + 2 H<sup>+</sup> + 2 H<sub>2</sub>O \rightarrow glucose + 2 ADP + 2 Pi + 2 NAD<sup>+</sup>

\triangleG = 75.7 kJ/mol
```

Comment on the differences between these processes

#### Gluconeogenesis summary

#### Structure of glycogen

Branch points separated by 8-12 glucosyl units



#### Catabolism of starch and glycogen

α-Amylase

Digestion of starch

Endoglycosidase

Hydrolyses  $\alpha 1 \rightarrow 4$  glycosidic linkages at random positions

maltose n

maltotriose

• Branches?

**Limit dextrins** 



### Reaction catalysed by glycogen phosphorylase



#### Debranching

- Glycogen phosphorylase and α-amylase can only cleave 5 units away from a branch point
- Can only cleave  $\alpha(1\rightarrow 4)$  glycosidic links
- The end products of cleavage via these enzymes are limit dextrins



Further cleavage by  $\alpha$ -amylase

### Why break glycogen down for energy rather than fats?

- mobilise fat
- metabolised anaerobically
- maintain blood glucose levels

#### Fatty Acid Catabolism: β-oxidation

Chapter 23

#### Fatty acids

Obtained from diet



triacylglycerols