Саморепродукция

Гончаров Марк

11 мая 2021 г.

1 Теория

Каждая плоская волна приобретает при распространение от транспоранта до плоскости наблюдения z=const набег фазы $\varphi_n=z\cdot\sqrt{k^2-u_n^2}$. Для парксиальных волн

$$\varphi_n \approx kz - \frac{u_n^2}{2k}z. \tag{1}$$

Таким образом, набег фазы

$$\Delta \varphi_{n,m} = (m^2 - n^2) \frac{\pi \lambda}{d^2} z. \tag{2}$$

Эффект саморепродукции - получение изображения, тождественного исходному периодическому объекту в результате интерференции. Если $z=2\frac{d^2}{\lambda}$, то из (2) видно, что для любых двух гармоник разность фаз 2π , то есть и осуществляется эффект саморепродукции. Итого:

$$\forall n \in \mathbb{N} : z_n = \frac{2d^2}{z\lambda}n. \tag{3}$$

Рис. 1: Схема экспериментальной установки

На схеме ОКГ - гелий-неоновый лазер, О - двумерная решётка. Л - короткофокусная линза, P_N - плоскости, где наблюдается репродуцированное изображение, Э - экран для наблюдения изображения объекта.

2 Выполнение

Сначала без линзы проанализируем излучение лазера. Посчитаем период максимумом на дфиракционной картине. По их результатам посчитаем период решётки:

$$d = \frac{L\lambda}{x}.$$

Теперь закрепим короткофокусную линзу на небольшом расстоянии от решётки. По размеру клеток на экране определим период 3, 4 и 5 решёток по формуле

$$d = \frac{xa}{b}$$
,

где a и b - расстояния от линзы до решётки и от линзы до экрана соответственно.

Длина <u>Ļ</u> , см	1350	Волна, нм	532		
Решётка	1	2	3	4	5
Х, см	25,7	24,2	26,8	27	11
Полосы	8	10	22	44	24
x = X / N	3,213	2,420	1,218	0,614	0,458
ох, см	0,006	0,005	0,002	0,001	0,002
$D = L\lambda/x$	22,35	29,7	59,0	117,0	156,7
σD. мкм	0.06	0.1	0.2	0.3	0.8

а, см	5,3	b , см	118
Решётка	3	4	5
Х, см	1,2	6,8	11
Полосы	5	14	16
x = X / N	0,24	0,486	0,688
ох, см	0,01	0,004	0,003
D = xa/b	61	123	174
σD, мкм	3	2	2

а, см	5,3	b , см	118
Решётка	3	4	5
z1, мм	0,12	0,32	0,55
z2, MM	0,24	0,83	1,27
z3, мм	0,35	1,15	1,85
z4, mm	0,48	1,65	2,56
σz, mm	0,01	0,01	0,01
D = xa/b	56	107	133
σД, мкм	3	4	6

Теперь измерим период решётки при перемещении линзы. По нониусной шкале будем измерять расстояния от линзы до экрана, подсчитывая плоскости саморепродукции.

Так как из теории, $z_n = \frac{2d^2}{\lambda}n$, то

$$d = \sqrt{\frac{\lambda}{2} \cdot \frac{z_N}{N}}.$$

Поэтому я построил графики $z=z_n(n)$, по углу наклона (МНК) определяем отношение $z_n:n$, подставляем в формулу выше. Погрешность такого измерения есть $\sigma=\sqrt{\sigma_{sys}^2+\sigma_{rand}^2}$.

Анализируя результаты, конечно, считаем эталоном наш первый эксперимент - максимально простой и точный. Эксперименты с линзой хуже, так как мы вообще не смогли провести опыты с (1) и (2) решётками, погрешность измерений при этом были выше. Также нам приходиось ручками примерно настраивать фокус линзы по проволке. Так как у нас кривые руки, то это тоже повлияло на конечные результаты. Хотя, как мы видим, качественно мы получили неплохие результаты, которые сравнимы (увы, не в пределах погрешности) с первым экспериментом.

Теперь сделаем опыты с решёткой миры.

Считаем двумя аналогичными способами, через формулы

$$d = \frac{L}{N} \cdot \frac{a}{b} = \sqrt{\frac{\lambda}{2} \cdot \frac{z_N}{N}}.$$

Решётка	25	20	
а, мм	58	58	
ь, мм	1180	1180	
Ŋ	24	20	
X, MM	40	40	
d, мкм	82	98	

а, мм	58	b , мм	1180
Решётка	25	20	
z1, mm	0,21	0,72	
z2, mm	0,55	1,2	
z3, mm	0,88	1,67	
z4, mm	1,22	2,27	
z5, mm	1,5	2,72	
σz, mm	0,01	0,01	
Д, мкм	93	116	
дД, мкм	2	5	

Как видим, результаты не очень сходятся при рассмотрении разными методами. Тут явно помешала спешка и кривость рук. Также это связано с разбалансировкой прибора - мы измеряли не в посл-те указанной в лаб/прак. Вследствие этого мы должны были перестраивать положение миры, из-за чего она съезжала...

3 Вывод

- 1. Мы научились оценивать период дифракционной решётки разными способами.
- 2. Познакомились с явлением саморепродукции.
- 3. Поработали с решёткой миры, определяя период её участков.