IN THE CLAIMS

riease cancel claims to and 15 without prejudice.	
Please amend the following claims.	
1.	A method of forming a dielectric layer of/a device, said method
comprising:	
	forming a dielectric layer on a substrate;
	generating ionized atoms in a first chamber;
	flowing said ionized atoms through a conduit coupling said first
chamber to a	second chamber, wherein said ionized atoms become electrically
neutral activ	e atomic species before reaching said second chamber;
	exposing said dielectric layer to said active atomic species in said
second chamber; and	
	forming an electrode above said active atomic species exposed
dielectric layer.	
/	
2.	The method of claim 1 wherein said active atomic species comprises
reactive oxygen atoms.	
,	
<i>3</i> .	The method of claim 1 wherein said active atomic species comprises
reactive nitrogen atoms.	
4.	The method of claim 1 wherein said dielectric layer comprises a metal-
oxide.	
5.	The method of claim 1 wherein said dielectric layer comprises a
transition metal dielectric.	
Serial No.: 09/0	/ -2- 196,858 Attorney Docket: 04887P069

- 6. The method of claim 5 wherein said dielectric layer comprises tantalum pentaoxide (Ta_2O_5).
- 7. The method of claim 1 wherein said dielectric layer is exposed to said active atomic species while being heated to a temperature of less than 400°C.

(Amended) A method of forming a dielectric layer comprising:

generating a plasma comprising ionized atoms in a first chamber;

flowing said ionized atoms through a conduit coupling said first

chamber to a second chamber, wherein said ionized atoms become electrically

neutral active atomic species before reaching said second chamber; and

depositing a metal oxide dielectric layer onto a substrate by chemical

vapor deposition in said second chamber and while depositing said metal oxide

dielectric layer, providing said active atomic species into said second chamber.

- 9. The method of claim 8 wherein said active atomic species comprises reactive oxygen atoms.
 - CANCELLÉD
 - 11. The method of claim 8 wherein said dielectric layer comprises a transition metal dielectric.
 - 12. The method of claim 11 wherein said dielectric layer comprises tantalum pentaexide (Ta_2O_5).

6/,

13. CANCELLED

14. A method of annealing a deposited oxide of a device, said method comprising:

locating a substrate in a first chamber, said substrate having a deposited oxide formed thereon;

generating a plasma comprising ionized oxygen atoms in a second chamber;

flowing said ionized oxygen atoms from said second chamber into said first chamber through a conduit wherein said ionized oxygen atoms become electrically neutral reactive oxygen atoms while flowing from said second chamber to said first chamber;

exposing said deposited oxide to said reactive oxygen atoms; and forming an electrode above said active atomic species exposed deposited oxide layer.

- 15. The method of claim 14 wherein said deposited oxide is exposed to said reactive oxygen atoms while heating said substrate to at a temperature of less than 400°C.
- The method of claim 14 wherein said second chamber is a microwave applicator cavity of a remote plasma generator.
 - 17. The method of claim 14 wherein said reactive oxygen atoms are formed by generating a plasma from O₂ molecules.

_4.

Serial No.: 09/096,\$58

- 18. The method of claim 14 wherein said reactive oxygen atoms are formed by generating a plasma from N2O molecules.
- 19. The method of claim 14 wherein said reactive oxygen atoms are formed by generating a plasma from O₂ molecules utilizing microwaves.
- 20. The method of claim 14 wherein said deposited oxide is a silicon-oxide.
 - 121. The method of claim 14 wherein said deposited oxide is a metal-oxide.
- 22. The method of claim 21 wherein said deposited metal oxide is a transition metal oxide.
- 23. The method of claim 22 wherein said transition metal-oxide is tantalum pentaoxide ($T_{a_2}O_s$).
 - 24. A method of forming a capacitor, said method comprising: forming a bottom electrode;

depositing a transition metal dielectric on said bottom electrode in a deposition chamber;

generating a plasma comprising ionized oxygen atoms by forming said plasma from an oxygen containing gas in a microwave applicator cavity of a remote plasma generator;

flowing said ionized oxygen atoms through a conduit coupling said microwave applicator cavity and said deposition chamber, wherein said ionized

oxygen atoms become electrically neutral reactive oxygen atoms before reaching said deposition chamber;

annealing said transition metal dielectric in said deposition chamber by exposing said transition metal dielectric to said reactive oxygen atoms; and forming a top electrode above said reactive oxygen atom exposed transition metal dielectric.

- 25. The method of claim 24 wherein said transition metal dielectric is tantalum pentaoxide (Ta_2O_5) deposited by chemical vapor deposition utilizing a source gas comprising TAETO.
- 26. The method of claim 24 wherein said transition metal dielectric is tantalum pentaoxide (Ta_2O_5) formed by chemical vapor deposition utilizing a source gas comprising TAT-DMAE.
- 27. The method of claim 25 wherein said tantalum pentaoxide dielectric layer is formed utilizing a source gas comprising O₂.
- 28. The method of claim 24 wherein said transition metal dielectric layer is deposited at a temperature between 300-500°C.
- The method of claim 24 wherein said transition metal dielectric is formed with a source gas comprising N_2O .
- 31. (Unchanged) The method of claim 24 wherein said transition metal dielectric film is annealed at a temperature less than 400°C.