Práctica 5. Cálculo de la Entropía de la Fuente de Markov

7 de noviembre del 2022

Marcos Hidalgo Baños

a) Cálculo del vector probabilidades de estado estacionario.

Esta función es empleada en el siguiente apartado para obtener el vector de probabilidades estacionarias mediante la resolución de un sistema de ecuaciones.

```
28 v p_inf <- function(p_i) {
      # Calcula el vector de probabilidades estacionario
      # @param p_i, matriz de probabilidades de transicion
      t_pi = t(p_i)
      # Calculamos la matriz transpuesta pi
      t_pi_i = t_pi - diag(x=1, nrow=nrow(t_pi))
      # Calculamos la matriz transpuesta pi menos I
      sistema = rbind(t_pi_i, c(1))
     # Creamos la matriz del sistema de ecuaciones para resolver
38
      y = c() # Vector de las soluciones del sistema
     for(i in 1:nrow(sistema)) {
       # Para cada ecuacion del sistema...
       y = c(y,0)
       # ..añadimos tantos ceros como ecuaciones hay
      y = replace(y, length(y), 1)
      # Cambiamos el ultimo elemento por un uno...
      p_inf = qr.solve(sistema, y)
      # y resolvemos el sistema formado por la 'sistema' e 'y'
      return(p_inf)
```

b) Cálculo de la Entropía de una Fuente de Markov.

```
1 v calcEntropiaMarkov <- function(p_i, p_inf) {</pre>
     # @param p_i, matriz de probabilidades de transicion
     # @param p_inf, vector estacionario
     suma = 0 # inicializacion de la variable acumulativa suma
     h = 0 # inicializacion de la variable de la entropia
     for (i in 1:length(p_inf)) {
      # Recorremos el vector estacionario...
      if (p_inf[i] < 0) {
         # y si vemos que alguna componente es menor de 0, devolvemos error.
        return("No se puede obtener la entropia con los datos proporcionados.")
     for (j in 1:nrow(p_i)) {
       # Recorremos la matriz...
       suma = sum(p_i[j,] * log2(1/p_i[j,]))
      # ... para calcular H(X/E_i) y usarla a continuacion
       h = h + suma * p_inf[j]
       # Calculamos la entropia para esta iteracion
     return(h)
```

Pruebas con el ejercicio de las transparencias.

```
56  #Prueba ejercicio transparencias

57  p_i = matrix(c(c(1/4, 1/2), c(3/4, 1/2)), ncol=2)

58  p_inf(p_i)  # 0.4 , 0.6

59  calcEntropiaMarkov(p_i, p_inf(p_i))  # 0.92
```

```
> #Prueba ejercicio transparencias
> p_i = matrix(c(c(1/4, 1/2), c(3/4, 1/2)), ncol=2)
> p_inf(p_i) # 0.4 , 0.6
[1] 0.4 0.6
> calcEntropiaMarkov(p_i, p_inf(p_i)) # 0.92
[1] 0.9245112
```

Funciones auxiliares.

 \rightarrow rbind (x,y)

Combina el contenido de la matriz x con el valor y.

En nuestro ejercicio, nos permite colocar el valor después del igual en la ecuación en la última posición del vector.

 \rightarrow replace (x, I, v)

Cambia el valor 'x' con índice 'l' por el dado en 'v'

→ log2(x)

Operación matemática para el cálculo del logaritmo en base 2 de x.

 \rightarrow solve (x, y)

Resuelve el sistema x = y. Si x es un vector, y debe ser otro vector de igual longitud tal que x1 = y1; x2 = y2; etc.

- Marcos Hidalgo Baños -