

Laboratório 6: (resolução)

Exercício 19: Aritmética – Soma

Pretende-se projetar um circuito que realize a soma de 2 números X e Y de dois bits cada.

PARTE I – RESOLUÇÃO "CLÁSSICA"

Identifique o número de saídas necessárias e construa a tabela de verdade para cada saída.

Com números de 2 bits o valor máximo de cada um é 3 (11), assim sendo o resultado máximo é 3+3=6. Para representar o número 6 em binário, são necessários 3 bits (110).

X_1	X_0	Y_1	Y_0	S_2	S_1	S_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Facultativo: Determine as respetivas expressões algébricas simplificadas por mapas de Karnaugh.

$X_1 X_1 X_1 Y_0$	(₀ 0	0 1	1	1
0 0	0	0	0	8 0
0 1	0	0	1	9 0
1 1	0	['] [1	15 1	" 1
1 0	0	6 0	1	1

$$S_2(X_1, X_0, Y_1, Y_0) = X_1, Y_1 + X_1, X_0, Y_0 + X_0, Y_1, Y_0$$

X ₁ X ₀	0	0 1	1	1
0 0	0	0	12 1	1
0 1	0	5 1	0	9 1
1 1	1	0	15 1	0
1 0	1	⁶ 1	0	0

$$S_{1}(X_{1}, X_{0}, Y_{1}, Y_{0}) = X_{1}.\overline{Y_{1}}.\overline{Y_{0}} + X_{1}.\overline{X_{0}}.\overline{Y_{1}} + \overline{X_{1}}.Y_{1}.\overline{Y_{0}} + \overline{X_{1}}.\overline{X_{0}}.Y_{1} + \overline{X_{1}}.X_{0}.\overline{Y_{1}}.Y_{0} + X_{1}.X_{0}.Y_{1}.Y_{0}$$

$$= \overline{Y_{0}}.\left(\overline{X_{1}}.Y_{1} + X_{1}.\overline{Y_{1}}\right) + \overline{X_{0}}.\left(\overline{X_{1}}.Y_{1} + X_{1}.\overline{Y_{1}}\right) + X_{0}.Y_{0}.\left(\overline{X_{1}}.\overline{Y_{1}} + X_{1}.Y_{1}\right)$$

$$= \overline{Y_{0}}.\left(X_{1} \oplus Y_{1}\right) + \overline{X_{0}}.\left(X_{1} \oplus Y_{1}\right) + X_{0}.Y_{0}.\left(\overline{X_{1}} \oplus Y_{1}\right)$$

$$= \left(X_{1} \oplus Y_{1}\right).\left(\overline{X_{0}} + \overline{Y_{0}}\right) + X_{0}.Y_{0}.\left(\overline{X_{1}} \oplus Y_{1}\right)$$

$$= \left(\overline{X_{0}}.Y_{0}\right).\left(X_{1} \oplus Y_{1}\right) + X_{0}.Y_{0}.\left(\overline{X_{1}} \oplus Y_{1}\right)$$

$$= \left(X_{0}.Y_{0}\right) \oplus \left(X_{1} \oplus Y_{1}\right)$$

X_1 X_1 X_1 Y_1 Y_0	, 0 0 0	0	1	1
0 0 0	0	1	1	8 0
0 1	1	0	0	9 1
1 1	1	0	0	1 1
1 0	2 0	1	1	0

$$S_0(X_1, X_0, Y_1, Y_0) = \overline{X_0} \cdot Y_0 + X_0 \cdot \overline{Y_0} = X_0 \oplus Y_0$$

PARTE II – COMPOSIÇÃO MODULAR

 a) <u>Projete</u> o circuito somador, utilizando somente blocos do tipo somador-completo de 1bit.

 Substitua o bloco somador-completo de 1bit por blocos do tipo semi-somador de 1bit e alguma lógica adicional que lhe pareça conveniente. Demonstre que a solução encontrada é equivalente ao bloco somador-completo.

Para implementar a função F (caixa no esquemático), consideramos apenas as hipóteses em que o S_2 deve ser 1. Partindo da seguinte tabela de verdade, em que S' e C_0 ' são o resultado e "carry out" da soma dos bits mais significativos, respetivamente, o C_0 o "carry out" da soma dos bits menos significativos, e o C_0 " é o "carry out" do terceiro semi-somador.

X_1	X_0	Y_1	Y_0	S'	C_0	S_2	$C_0{'}$	$C_0^{"}$	
0	1	1	1	1	1	1	0	1	
1	0	1	0	0	0	1	1	0	
1	0	1	1	0	0	1	1	0	
1	1	0	1	1	1	1	0	1	
1	1	1	0	0	0	1	1	0	
1	1	1	1	0	1	1	1	0	

$$S_2 = F = Co' + Co''$$

c) <u>Projete</u> o circuito somador que realize a soma de 2 números X e Y de quatro bits cada $(X_3X_2X_1X_0+Y_3Y_2Y_1Y_0)$ utilizando blocos do tipo somador-completo de 1bit.

Exercício 20: Somador/subtrator em complemento para 1 e para 2

O objetivo geral do exercício é o de fazer um somador/subtrator de dois números A e B de 3 bits cada (isto é representando os números decimais entre 0 e 7). A operação pretendida deve ser indicada através de uma entrada SOMAsubtrai. Quando SOMAsubtrai=0 o resultado deve ser A+B, e quando SOMAsubtrai=1 o resultado deverá ser A-B. Considere o módulo somador paralelo de 4 bits disponível na biblioteca de componentes do ISE WebPack.

PARTE I – Com base no referido módulo, projete um somador/subtrator que produza o resultado utilizando representação em complemento para 1 (admitindo que não é de interesse representar resultados superiores a 7).

Para inverter o valor do B, quando o sinal de entrada "SomaSubtrai" está ativo, temos de implementar a função F (caixa no esquemático). Sendo B_i cada um dos bits do B:

SomaSubtrai	B_i	Fi	$E_i - D \cap ComaCuhtmai$	
0	0	0	$Fi = B_i \oplus SomaSubtrai$	
0	1	1	Para representar o B em complemento para 1 precisamos de	
1	0	1	mais um bit, o bit de sinal. Assim sendo utilizamos o sinal SomaSubtrai, pois está a 0 quando o B se quer positivo e a 1 caso	
1	1	0	contrário.	
	0	0 0	0 0 0	

Considerando que $A=(101)_B$, $B=(010)_B$ e SomaSubtrai = 1, esperamos que à saída do somador subtrator seja visível o $5-2=3 \rightarrow (011)_B$.

Como demonstrado no exemplo abaixo tem de se somar o ultimo carry ao resultado, isto significa ligar o "carry out" ao "carry in".

PARTE II — Partindo da solução anterior, projete um somador/subtrator que produza o resultado utilizando representação em complemento para 2 (admitindo que não é de interesse representar resultados superiores a 7).

Partindo das expressões teóricas para os complementos:

Complemento para 2: $(N)^2 = 2^M - N$

Complemento para 1: $(N)^1 = 2^M - 1 - N$

Por observação, os complementos diferem apenas pela soma de uma unidade. Assim, pretendendo obter o complemento para 2 apenas queremos somar 1 à representação para complemento para 1, quando subtraímos (A-B), utilizamos o sinal de entrada "SomaSubtrai" como "carry in" do somador.

