

PowerFactory 2021

Technical Reference

Distance Mho

RelDismho, TypDismho

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

January 26, 2021 PowerFactory 2021 Revision 2

Contents

1	Gen	eral De	escription	1
2	Feat	tures &	User interface	2
	2.1	Distan	ce Mho (RelDismho)	2
		2.1.1	Basic data	2
		2.1.2	Arc compensation	3
		2.1.3	Description	3
	2.2	Distan	ce Mho Type (TypDismho)	3
		2.2.1	Mho Settings	3
			Reference block	4
			Mho types	4
			Impedance & Impedance (Digital)	5
			Impedance Offset	6
			Mho	6
			Mho Offset MTA	8
			Mho Offset X	9
			Mho Offset Generic	9
			Mho Offset 2X	10
			Asea RAKZB Mho Offset	11
		2.2.2	Arc Compensation	11
		2.2.3	Advanced Settings	12
3	Inte	gration	in the relay scheme	13
4	Log	ic		15
	4.1	Single	phase	15
		4.1.1	Impedance	15
		4.1.2	Mho	16
		4.1.3	Directional logic	16
	4.2	3 phas	se	17
		4.2.1	Impedance	17

		4.2.2	Impedance (digital)	18
		4.2.3	3 phase Mho	19
		4.2.4	6 phase Mho	20
		4.2.5	Blocking logic	21
		4.2.6	Directional logic	21
	4.3	Imped	ance (digital) calculation logic	22
		4.3.1	Impedance	22
		4.3.2	Impedance (digital)	22
	4.4	Mho c	alculation logic	23
		4.4.1	With polarization	23
		4.4.2	Without polarization	23
Α	Para	meter	Definitions	24
	A.1		ce Mho Type (TypDismho)	24
	A.2		ce Mho Element (RelDismho)	25
			•	
В	Sign	al Defi	nitions	26
	B.1	Single	phase	26
		B.1.1	Impedance	26
		B.1.2	Mho	26
	B.2	3 phas	se	26
		B.2.1	Impedance	26
		B.2.2	Impedance (digital)	27
		B.2.3	Mho	28
	B.3	6 phas	se	28
		B.3.1	Mho	28
Lis	st of I	Figures	s ·	30
List of Tables				

1 General Description

The *Distance Mho* "RelDismho" block implements the typical distance protection circular impedance and Mho characteristic. The type of the distance characteristic can be one of the following:

- Circular Impedance (centered in the axis origin).
- Digital circular Impedance (centered in the axis origin and using the impedance values).
- · Circular Impedance with an offset.
- · Mho.
- · Mho with an offset.
- · Asea RAKZB Mho (custom type for the Asea RAKZB relay).

The *Impedance* types create in the R-X diagram a distance zone with a shape similar to the shape represented here below in Figure 1.1:

Figure 1.1: The DIgSILENT Impedance distance shape.

The *Mho* types create in the R-X diagram a distance zone with a shape similar to the shape represented here below in Figure 1.2:

Figure 1.2: The *DIgSILENT Mho* distance shape.

The *Distance Mho* "RelDisMho" block is operational during short circuit, load flow and RMS/EMT simulations.

2 Features & User interface

2.1 Distance Mho (RelDismho)

The user can change the block settings using the "Distance mho" dialogue ("RelDismho" class). The dialogue consists of 3 tab pages: *Basic Data*, *Arc compensation*, and *Description*. The main settings are located in the *Basic Data* tab page.

2.1.1 Basic data

The "Distance mho" *Basic data* tab page provides a *presentation* area where the red text shows some info regarding:

- The international symbols used to represent the block protective function.
- The protection zone number implemented by the block.
- · Which currents are measured by the block.
- The type of mho characteristic (i.e. "Impedance Offset")

The block can be disabled using the "Out of service" check box. A directional feature can be set using the "Tripping direction" combo box. The following settings are available:

- · Forwared, Reverse
- Forwared
- Reverse
- · Reverse, External
- None
- · None, Forward
- None, Forward, Reverse

Note: Direction settings that include 'None' are only supported for impedance type models without Arc compensation.

The directional logic relies on a separate block (Distance Directional "RelDisdir" class). The controls are combo boxes for ranges of discrete values or otherwise edit boxes. The settings representing impedances can be entered in terms of primary impedance or in terms of secondary impedance. The selected type of mho characteristic (see 2.2.1) defines which settings are available.

When available, the "Character Angle" control ("alpha" variable) defines the shape of the Mho characteristic: values greater than 90 creates a "lens" shape, values smaller than 90 draw a "tomato".

The radius of the impedance or of the mho circle is

radius = Zm * Zres/100

Where *Zm* is the "Replica impedance" setting and *ZRes* is the "Reach Multiplier" or the "Restraint" setting in the user interface.

The replica impedance can be alternatively entered as resistance, reactance values and can be configured with the "Impedance Input" parameter.

Note: Not supported for type "Mho Offset 2X".

2.1.2 Arc compensation

The *Arc compensation* page simulates in detail the relevant feature of the AEG, Alstom and Areva distance relays ("PD5xx" and "Micom" relays).

The Arc compensation settings are visible only when an Impedance type (Impedance, Impedance (Digital), Impedance Offset) has been selected and the feature has been activated in the Arc compensation tab page of the Distance mho Type("TypDismho" class) dialogue (see 2.2.2). If the Configuration ("iarcconf" setting) in the Distance mho Type("TypDismho" class) dialogue is User configurable, the Enable ("arcen" setting) checkbox must be set to enable the Arc compensation.

Depending up on the ranges and the steps defined in the *Distance mho Type("TypDismho" class)* dialogue, the *Alpha* ("arcalpha" setting, arc compensation limit angle) and the *k* ("arck" setting, arc stretching factor) can be visible and user configurable.

2.1.3 Description

The *Description* tab page can be used to insert some information to identify the *Distance Mho* protective element (both with a generic string and with an unique textual string similar to the *Foreign Key* approach used in the relational databases) and to identify the source of the data used to create it.

2.2 Distance Mho Type (TypDismho)

The *Distance mho* block main characteristics must be configured in the "Distance Mho Type" dialogue (*TypDismho* class). The dialogue contains three tab pages: *Mho Settings*, *Arc Compensation*, and *Advanced settings*.

2.2.1 Mho Settings

The *Mho Settings* tab page contains most of the controls used to configure the *Distance Mho* block. The followings settings can be set:

- The Mho type ("achatp" setting).
- The unit type (*Phase-Phase*, *Earth*, *3-Phase*, *Multifunctional*. "aunit" setting)
- The calculation method type ("imethod" setting).
- The number of phases ("iphases" setting).
- The number of the protective zone protected by the Mho characteristic ("izone" setting).
- Which directional features can be set (*Forward*, *Reverse*, *None*, "idirpos" setting).

• The range and the step of the variables used to represent the characteristic (*Replica Impedance* "rZm", *Reach multiplier/Restraint factor* "rZres", *Relay Angle* "rphi", *Character. Angle* "ralpha", *Offset Impedance* "rZoff", *Offset Angle* "roffang").

Please note that the "Calculation method" setting has been added to support the special phase comparison algorithm used by some Asea Razfe and the Enertec devices. "Calculation method = Standard" guarantees that the normal phase comparison (angle difference between the operation current and the polarizing voltage greater than *Character. Angle* "alpha" to be inside the Mho) is applied.

The "Sq wave threshold" setting is available only for the *Mho* types. It represents the voltage threshold used to generate from the polarizing and operating signal the square waves used in the static protective devices to figure out the time difference (and so the angular difference) between the polarizing and the operating signal. Please note that if the DFT calculation has been enabled in the relay measurement block the "Sq wave threshold" won't be used and the angular difference will be simply calculated using the polarizing and the operating vector.

Reference block :

The *Distance mho* ("RelDismho") element has been conceived to work together with other relay distance elements: the distance settings can be set to depend upon the settings of a master distance block specified in the *Reference block* ("prefblock" setting) control. When the master distance block has been set, the *kZ*("kZ" setting) and the *dZ* ("dZ" setting) are displayed instead of *Replica Impedance* "rZm", *Reach multiplier/Restraint factor* "rZres", *Relay Angle* "rphi", *Character. Angle* "ralpha", *Offset Impedance* "rZoff", and *Offset Angle* "roffang".

The block uses the master block *Relay Angle* "rphi", *Character. Angle* "ralpha", and *Offset Angle* "roffang" setting values. The impedance reach (equal to "Zm" · "Zres") is equal to

$$Zm \cdot Zres = Zm_{master} \cdot Zres_{master} \cdot kZ + dZ$$

Mho types :

The block can be configured using the "Type" setting as:

- Impedance
- · Impedance (digital)
- · Impedance Offset
- Mho
- · Mho Offset MTA
- Mho Offset X
- · Mho Offset Generic
- · Mho Offset 2X
- Asea RAKZB Mho Offset

The following paragraphs shows the shape associated to each *Type*. The relationships between the block settings and the graphical representation of the shape are displayed in the pictures.

Impedance & Impedance (Digital) :

It represents an impedance circle with the centre in the axis origin.

Figure 2.1: The DIgSILENT "Impedance" and the "Impedance (Digital)" type characteristic

The difference between the "Impedance" and the "Impedance (Digital)" type is in the way the impedance is calculated: the "Impedance" type is comparing the module of the polarizing and of the operating vector (to detect a trip the operating voltage must be smaller than the "Replica impedance" • the operating current); the "Impedance (Digital)" type is getting directly the fault reactance and the resistance values and the module of such impedance vector must be smaller than the "Replica Impedance" value.

With the "Impedance Input" parameter the replica impedance can be alternatively entered as reactance, resistance value.

Impedance Offset :

It represents an impedance circle with the centre shifted from the axis origin by the offset quantity defined by the "Impedance" distance ("Zoff" variable) and the "Angle" ("offang" variable).

Figure 2.2: The *DIgSILENT* "Impedance offset" type characteristic

Mho:

It represents an impedance circle passing through the axis origin. This is the typical Mho characteristic.

Figure 2.3: The DIgSILENT "Mho" type characteristic

where:

- $\bullet \ Zreach = Zm \cdot Zres$
- ullet Zm is the replica impedance
- ullet Zres is the reach multiplier
- phi is the relay angle

Mho Offset MTA:

It represents an impedance circle passing at the distance from the axis origin defined by the "Impedance" distance ("Zoff" variable).

Figure 2.4: The DIgSILENT "Mho Offset MTA" type characteristic

where:

- $Zreach = Zm \cdot Zres$
- Zm is the replica impedance
- Zres is the reach multiplier
- phi is the relay angle
- Zoff is the offset impedance, in line with Zreach

Mho Offset X:

It represents an impedance circle defined in the way that the diameter passing through the line max reach point Zreach is intersecting the reactance axis at the point defined by the "Impedance" distance ("Zoff" variable).

Figure 2.5: The DIgSILENT "Mho Offset X" type characteristic

Mho Offset Generic :

It represents an impedance circle defined in the way that the 2nd point of the diameter passing through the line max reach point Zreach is shifted from the axis origin by the offset quantity defined by the "Impedance" distance ("Zoff" variable) and the "Angle" ("offang" variable).

Figure 2.6: The DIgSILENT "Mho Offset Generic" type characteristic

Mho Offset 2X :

It represents an impedance circle defined in the way that the diameter passing through the axis origin and the line defined by the "Relay Angle" ("phi" variable) is intersecting the impedance circle itself at the points having reactance defined by the "+Reactance" distance ("xpos" variable) and by the "-Reactance" distance ("xneg" variable)

Figure 2.7: The DIgSILENT "Mho Offset 2X" type characteristic

Asea RAKZB Mho Offset :

It represents an impedance circle defined in the way that the 2nd point of the diameter passing through the line max reach point Zreach is shifted from the axis origin by the offset quantity defined by the "Impedance" distance ("Zoff" variable). The formula to calculate the offset is:

$$offset = (Zm - Zoff)/2$$
.

Figure 2.8: The *DIgSILENT* "Asea RAKZB Mho Offset" type characteristic

2.2.2 Arc Compensation

The "Arc Compensation" tab page has been introduced to support the special features present in some AEG, Alstom and Areva distance relays ("PD5xx" and "Micom" relays). The relevant settings are visible only when a *Impedance* type has been selected. The *Arc Compensation* can be

- · Always enabled
- · Always disabled
- · User configurable

The settings define step and ranges of the limit angle ("rarcalpha" setting) of the arc compensation characteristic and of the stretch factor applied to the arc compensation characteristic ("rarck" setting).

Figure 2.9: The DIgSILENT "Impedance" type characteristic with the Arc compensation enabled

2.2.3 Advanced Settings

The Advanced Settings tab page contains the settings which define the trip Pickup Time, the trip Reset Time and the Reset Ratio. The Reset Ratio setting ("kr"variable) is a multiplier which is used to define an impedance reset zone larger than the impedance trip zone. It is defined to avoid any toggle effect for impedance values close to the trip zone boundary.

3 Integration in the relay scheme

The Distance Mho"RelDismho" type class name is TypDismho. The Distance Mho dialogue class name is RelDismho. As already shown, there are two main versions of the block: a single phase and a three phase version. The number and the name of the input signals depends only upon which of these versions is used. The typical connection of a 3 phase Distance Mho ("RelDismho" class) block is showed in Figure 3.1.

Figure 3.1: The DIgSILENT PowerFactory typical connection scheme of a 3 phase Distance mho "RelDismho" block.

In the picture above the typical connection scheme of two 3phase Mho blocks is showed. "Ph-Ph 1" represents the first trip zone so no delay is present, Ph-Ph 2 is the 2nd zone and the delay is implemented using the "Z2PD" timer which is creating a loop with the Mho block :the vout output of the Mho block is connected with the wstart input of the timer and the timer Tdelay output is connected to the tdelay input of the Mho block; in this way the Mho block is aware of the delay introduced by the timer and during the short circuit calculation the block is able to decide if to use or not the polarising voltage pre-fault value.

Both the mho blocks represented in Figure 3.1 are getting the input signals from the Polarizing block and from the fault detector blocks ("50PP1" and "50PP2"): The Operating Currents (lopr and lopi) and Voltages (Uopr and Uopi) and the Polarizing voltage (Upolr and Upoli) are coming from the Polarizing block. The supervising signals (wsup) are provided by the fault detector ("Starting" block) Usually, as displayed in Figure 3.1, the trip zone delay is implemented connecting an additional timer to the *yout* output of the Mho block; as option the trip of the Mho block can be further delayed connecting the wtimer input of the Mho block to the output of a timer block.

To control a Distance mho "RelDismho" block with a reclosing element ("RelRecl" object) the

"iblock" input signal must be connected with an output signal of the reclosing element (yblock_Tocx with 1 <= x <= 5 or *yblock_Logick* with 1 <= k <= 16). Please read the "RelRecl" documentation for more details about the way to program a reclosing sequence.

If a reclosing element is not present the *iblock* signal (in the 3 phase version also *iblock_A*, iblock_B and iblock_C to act on each phase) can be used by any other element to block the starting of the Distance mho ("RelDismho" class) element.

4 Logic

4.1 Single phase

4.1.1 Impedance

Figure 4.1: The *DIgSILENT Single phase Mho* logic

4.1.2 Mho

Figure 4.2: The *DIgSILENT Single phase Mho* logic

4.1.3 Directional logic

Figure 4.3: The DIgSILENT Single phase Mho directional logic

4.2 3 phase

4.2.1 Impedance

Figure 4.4: The DIgSILENT 3 phase Mho logic

4.2.2 Impedance (digital)

Figure 4.5: The DIgSILENT 3 phase Mho logic

4.2.3 3 phase Mho

Figure 4.6: The *DIgSILENT 3 phase Mho* logic

4.2.4 6 phase Mho

Figure 4.7: The *DIgSILENT 6 phase Mho* logic

4.2.5 Blocking logic

Figure 4.8: The *DIgSILENT 3 phase Mho* blocking logic

4.2.6 Directional logic

Figure 4.9: The DIgSILENT Distance Mho (RelDismho) directional logic

4.3 Impedance (digital) calculation logic

4.3.1 Impedance

Figure 4.10: The DIgSILENT Impedance calculation logic

4.3.2 Impedance (digital)

Figure 4.11: The DIgSILENT Impedance (digital) calculation logic

4.4 Mho calculation logic

4.4.1 With polarization

Figure 4.12: The DIgSILENT Mho calculation logic with polarization

4.4.2 Without polarization

Figure 4.13: The DIgSILENT Mho calculation logic without polarization

A Parameter Definitions

A.1 Distance Mho Type (TypDismho)

Table A.1: Input parameters of Distance Mho type (*TypDismho*)

Parameter	Description	Unit
loc_name	The name assigned by the user to the Mho type object	Text
sfiec	The IEC Symbol associated to the element (documentation purpose only,	Text
	it is displayed in the RelDismho dialogue)	
sfansi	The ANSI Symbol associated to the element (documentation purpose only,	Text
	it is displayed in the RelDismho dialogue)	
iphases	The number of phases	Integer
aunit	The type of trip block(it can be "Earth", "Phase-Phase", "3-Phase", "Multi-	Text
	functional")	
izone	The number of the zone associated to the Mho characteristic	Integer
iusage	The usage of the Mho characteristic (it can be 0 = "Starting zone" or 1 =	Integer
J	"Zone")	
achatp	The type of Mho block ("Impedance", "Impedance (digital)", "Impedance	Text
	Offset", "Mho", "Mho Offset Mta", "Mho Offset X", "Mho Offset Generic"),	
	"Mho Offset 2 X", "Asea RAKZB Mho Offset"	
imethod	Calculation method (standard, ASEA, Enertec)	Integer
rZm	Replica Impedance range	Text
rZres	Restraint range	Text
rphi	Relay angle range	Text
rphi	Relay angle range	Text
implnput	Impedance Input (0 = Impedance,Angle and 1 = Reactance,Resistance)	Integer
rXm	Replica Reactance range	Text
rRm	Replica Resistance range	Text
ralpha	Range of the characteristic angle (its used to create a circle or a lens or a	Text
ταιριτά	tomato)	TOXE
rZoff	Offset Impedance range	Text
iZoff	Offset Impedance unit (sec.Ohm or Zoff/Zmax)	Integer
rkoff	Range of Zoff/Zmax	Text
roffang	Offset Angle range	Text
rxpos	Range of + Reactance	Text
rxneg	Range of - Reactance	Text
rsqwvthresh	Square wave threshold range	Text
sawvthreshun	Square wave threshold (p.u. or sec.V)	Integer
iarcconf	1 /	
larccom	Flag to enable always, disable always or make user configurable the <i>Arc</i>	Integer
	Configuration feature (available options "Enabled", "Disabled", "User con-	
ta materia.	figurable")	T
iarctyp	Type of Arc Compensation feature	Text
rarcalpha	Range of the arc limit angle	Text
rarck	Range of the arc stretch factor	Text
Ts	Pickup Time	S
Tr	Reset Time	S
Kr	Reset Ratio	Real number

A.2 Distance Mho Element (RelDismho)

Table A.2: Input parameters of Distance Mho element (RelDismho))

Parameter	Description	Unit	
loc_name	The name assigned by the user to the Mho object	Text	
typ₋id	Pointer to the relevant TypDismho object	Pointer	
idir	Tripping Direction(it can be "Forward"= 0 or "Reverse"= 1)	Integer	
Zm	Replica Impedance	sec.Ohm	
cpZm	Replica Impedance	pri.Ohm	
Xm	Replica Reactance	sec.Ohm	
cpXm	Replica Reactance	pri.Ohm	
Rm	Replica Resistance	sec.Ohm	
cpRm	Replica Resistance	pri.Ohm	
Zres	Restraint	%	
phi	Relay angle	deg	
alpha	Characteristic angle (its used to create a circle or a lens or a tomato)	deg	
Zoff	Impedance (Offset Impedance)	sec.Ohm	or
		Zoff/Zmax	
cpZoff	Impedance (Offset Impedance)	pri.Ohm	
koff	Zoff/Zmax ratio	Real number	
offang	Angle (Offset Angle)	deg	
xpos	+ Reactance	sec.Ohm	
xpos	+ Reactance	pri.Ohm	
xneg	- Reactance	sec.Ohm	
xneg	- Reactance	pri.Ohm	
sqwvthresh	Square wave threshold	sec.V	
arcen	Flag to enable the Arc compensation feature	Integer	
arcalpha	Arc limit angle	deg	
arck	Arc stretch factor	Text	

Signal Definitions В

Single phase **B.1**

B.1.1 Impedance

Table B.1: Input/output signals of the single phase Distance Impedance element (CalDiszimp1p

Name	Description	Unit	Type	Model
lopr	Operating current real part	sec.A	IN	Any
lopi	Operating current imaginary part	sec.A	IN	Any
Uopr	Operating voltage real part	sec.V	IN	Any
Uopi	Operating voltage imaginary part	sec.V	IN	Any
wfwd	Directional forward signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev	Directional reverse signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup	Supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsupadd	Supervising additional signal (free signal)	s (or 1/0 RMS/EMT simulation)	IN	Any
wtimer	Timer Signal(used to add an additional	s (or 1/0 RMS/EMT simulation)	IN	Any
	delay to the trip time)			
iblock	Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

B.1.2 Mho

Table B.2: Input/output signals of the single phase Distance Mho element (CalDismho1p)

Name	Description	Unit	Туре	Model
lopr	Operating current real part	sec.A	IN	Any
lopi	Operating current imaginary part	sec.A	IN	Any
Uopr	Operating voltage real part	sec.V	IN	Any
Uopi	Operating voltage imaginary part	sec.V	IN	Any
Upolr	Polarising voltage real part	sec.V	IN	Any
Upoli	Polarising voltage imaginary part	sec.V	IN	Any
wfwd	Directional forward signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev	Directional reverse signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup	Supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsupadd	Supervising additional signal (free signal)	s (or 1/0 RMS/EMT simulation)	IN	Any
wtimer	Timer Signal(used to add an additional	s (or 1/0 RMS/EMT simulation)	IN	Any
	delay to the trip time)			
iblock	Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

B.2 3 phase

B.2.1 Impedance

Table B.3: Input/output signals of 3 phase Distance Impedance element (CalDiszimp)

Name	Description	Unit	Type	Model
lopr_A	Operating current phase A real part	sec.A	IN	Any
lopi_A	Operating current phase A imaginary part	sec.A	IN	Any
lopr₋B	Operating current phase B real part	sec.A	IN	Any
lopi_B	Operating current phase B imaginary part	sec.A	IN	Any
lopr_C	Operating current phase C real part	sec.A	IN	Any
lopi_C	Operating current phase C imaginary part	sec.A	IN	Any
Uopr_A	Operating voltage phase A real part	sec.V	IN	Any
Uopi_A	Operating voltage phase A imaginary part	sec.V	IN	Any
Uopr_B	Operating voltage phase B real part	sec.V	IN	Any

Table B.3: Input/output signals of 3 phase Distance Impedance element (CalDiszimp)

Name	Description	Unit	Type	Model
Uopi₋B	Operating voltage phase B imaginary part	sec.V	IN	Any
Uopr_C	Operating voltage phase C real part	sec.V	IN	Any
Uopi_C	Operating voltage phase C imaginary part	sec.V	IN	Any
wsup_A	Phase A supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_B	Phase B supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_C	Phase C supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsupadd	Supervising additional signal (free signal)	s(or 1/0 RMS/EMT simulation)	IN	Any
wfwd_A	Phase A forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wfwd_B	Phase B forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wfwd_C	Phase C forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_A	Phase A reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_B	Phase B reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_C	Phase C reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
iblock	Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	Any
yallout	3 ph tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_A	Phase A tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

B.2.2 Impedance (digital)

Table B.4: Input/output signals of 3 phase Distance Impedance Digital element (CalDiszimpdig)

Name	Description	Unit	Type	Model
R_A	Resistance loop AE	sec.Ohm	IN	Any
R₋B	Resistance loop BE	sec.Ohm	IN	Any
R ₋ C	Resistance loop CE	sec.Ohm	IN	Any
X_A	Reactance loop AE	sec.Ohm	IN	Any
X₋B	Reactance loop BE	sec.Ohm	IN	Any
X_C	Reactance loop CE	sec.Ohm	IN	Any
RI_A	Resistance loop AB	sec.Ohm	IN	Any
RI₋B	Resistance loop BC	sec.Ohm	IN	Any
RI₋C	Resistance loop CA	sec.Ohm	IN	Any
XI₋A	Reactance loop AB	sec.Ohm	IN	Any
XI₋B	Reactance loop BC	sec.Ohm	IN	Any
XI_C	Reactance loop CA	sec.Ohm	IN	Any
fwdgnd	Directional ground forward signal	s (or 1/0 RMS/EMT simulation)	IN	Any
revgnd	Directional ground reverse signal	s (or 1/0 RMS/EMT simulation)	IN	Any
fwdphph	Directional phase forward signal	s (or 1/0 RMS/EMT simulation)	IN	Any
revphph	Directional phase reverse signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup₋A	Phase A super visioning signal (must be on to	s (or 1/0 RMS/EMT simulation)	IN	Any
	allow the trip)			
wsup_B	Phase B super visioning signal (must be on to	s (or 1/0 RMS/EMT simulation)	IN	Any
	allow the trip)			
wsup_C	Phase C super visioning signal (must be on to	s (or 1/0 RMS/EMT simulation)	IN	Any
	allow the trip)			
wsupadd	Supervising additional signal (free signal)	s (or 1/0 RMS/EMT simulation)	IN	Any
wloop	Id containing the code of the faulted loop	Integer	IN	Any
wtimer	Timer Signal (used to add an additional delay to	s (or 1/0 RMS/EMT simulation)	IN	Any
	the trip time)			
wldblock	Block signal coming from the Load encroach-	s (or 1/0 RMS/EMT simulation)	IN	Any
	ment element			
iblock	Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	Any
yallout	3 ph tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_A	Phase A tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_AB	Loop AB tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_BC	Loop BC tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_CA	Loop CA tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

B.2.3 Mho

Table B.5: Input/output signals of 3 phase Distance Mho element (CalDismho)

Name	Description	Unit	Type	Model
lopr_A	Operating current phase A real part	sec.A	IN	Any
Iopi_A	Operating current phase A imaginary part	sec.A	IN	Any
lopr_B	Operating current phase B real part	sec.A	IN	Any
lopi_B	Operating current phase B imaginary part	sec.A	IN	Any
lopr_C	Operating current phase C real part	sec.A	IN	Any
lopi₋C	Operating current phase C imaginary part	sec.A	IN	Any
Uopr_A	Operating voltage phase A real part	sec.V	IN	Any
Uopi_A	Operating voltage phase A imaginary part	sec.V	IN	Any
Uopr_B	Operating voltage phase B real part	sec.V	IN	Any
Uopi₋B	Operating voltage phase B imaginary part	sec.V	IN	Any
Uopr_C	Operating voltage phase C real part	sec.V	IN	Any
Uopi_C	Operating voltage phase C imaginary part	sec.V	IN	Any
Upolr_A	Polarising voltage phase A real part	sec.V	IN	Any
Upoli_A	Polarising voltage phase A imaginary part	sec.V	IN	Any
Upolr_B	Polarising voltage phase B real part	sec.V	IN	Any
Upoli_B	Polarising voltage phase B imaginary part	sec.V	IN	Any
Upolr_C	Polarising voltage phase C real part	sec.V	IN	Any
Upoli_C	Polarising voltage phase C imaginary part	sec.V	IN	Any
Umpolr_A	Mutual polarising voltage phase A real	sec.V	IN	Any
11	part	V	INI	A
Umpoli_A	Mutual polarising voltage phase A imagi-	sec.V	IN	Any
Linna da D	nary part	V	INI	A
Umpolr_B	Mutual polarising voltage phase B real	sec.V	IN	Any
Linea eli D	part	V	INI	A
Umpoli_B	Mutual polarising voltage phase B imagi-	sec.V	IN	Any
11	nary part	V	18.1	A
Umpolr ₋ C	Mutual polarising voltage phase C real	sec.V	IN	Any
Umpoli_C	part Mutual polarising voltage phase C imagi-	sec.V	IN	Λον
Ompon_C	nary part	Sec. v	IIN	Any
wsup_A	Phase A supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_A wsup_B	Phase B supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_C	Phase C supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsupadd	Supervising additional signal (free signal)	s (or 1/0 RMS/EMT simulation)	IN	Any
wfwd_A	Phase A forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wfwd_B	Phase B forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wfwd_C	Phase C forward current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_A	Phase A reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_B	Phase B reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wrev_C	Phase C reverse current signal	s (or 1/0 RMS/EMT simulation)	IN	Any
Tmemory	Memory time (signal coming from the po-	S	IN	Any
' '	larising block and providing the length of			,
	the buffer for polarising voltage values)			
wtimer	Timer Signal (used to add an additional	s (or 1/0 RMS/EMT simulation)	IN	Any
	delay to the trip time)	, , , , , , , , , , , , , , , , , , , ,		,
wldblock	Block signal coming from the Load en-	s (or 1/0 RMS/EMT simulation)	IN	Any
	croachment element	,		
wpsblock	Block signal coming from the Power	s (or 1/0 RMS/EMT simulation)	IN	Any
'	Swing element	, ·		
iblock	Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	Any
yallout	3 ph tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_A	Phase A tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

B.3 6 phase

B.3.1 Mho

Table B.6: Input/output signals of 6 phase Distance Mho element (CalDismho6p)

Name	Description	Unit	Туре	Model
lopr_A	Ph-ph operating current phase A real part	sec.A	IN	Any
lopi_A	Ph-ph operating current phase A imaginary part	sec.A	IN	Any
lopr_B	Ph-ph operating current phase B real part	sec.A	IN	Any
Iopi₋B	Ph-ph operating current phase B imaginary part	sec.A	IN	Any
lopr_C	Ph-ph operating current phase C real part	sec.A	IN	Any
lopi_C	Ph-ph operating current phase C imaginary	sec.A	IN	Any
	part			
lgopr_A	Phase-grnd operating current phase A real part	sec.A	IN	Any
lgopi_A	Phase-grnd operating current phase A imaginary part	sec.A	IN	Any
Igopr_B	Phase-grnd operating current phase B real part	sec.A	IN	Any
Igopi_B	Phase-grnd operating current phase B imaginary part	sec.A	IN	Any
Igopr₋C	Phase-grnd operating current phase C real part	sec.A	IN	Any
lgopi_C	Phase-grnd operating current phase C imaginary part	sec.A	IN	Any
Upolr_A	Ph-ph polarising voltage phase A real part	sec.V	IN	Any
Upoli_A	Ph-ph polarising voltage phase A imaginary part	sec.V	IN	Any
Upolr_B	Ph-ph polarising voltage phase B real part	sec.V	IN	Any
Upoli_B	Ph-ph polarising voltage phase B imaginary part	sec.V	IN	Any
Upolr_C	Ph-ph polarising voltage phase C real part	sec.V	IN	Any
Upoli_C	Ph-ph polarising voltage phase C imaginary	sec.V	IN	Any
Ugpolr_A	part Phase-grnd polarising voltage phase A real part	sec.V	IN	Any
Ugpoli_A	Phase-grnd polarising voltage phase A imaginary part	sec.V	IN	Any
Ugpolr ₋ B	Phase-grnd polarising voltage phase B real part	sec.V	IN	Any
Ugpoli₋B	Phase-grnd polarising voltage phase B imaginary part	sec.V	IN	Any
Ugpolr_C	Phase-grnd polarising voltage phase C real part	sec.V	IN	Any
Ugpoli₋C	Phase-grnd polarising voltage phase C imaginary part	sec.V	IN	Any
wsup_A	Phase A supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_B	Phase B supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsup_C	Phase C supervising Signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wsupadd	Supervising additional signal (free signal)	s (or 1/0 RMS/EMT simulation)	IN	Any
fwdphph	Phase phase loop forward directional signal	s (or 1/0 RMS/EMT simulation)	IN	Any
revphph	Phase phase loop reverse directional signal	s (or 1/0 RMS/EMT simulation)	IN	Any
fwdgrnd	Ground phase loop forward directional signal	s (or 1/0 RMS/EMT simulation)	IN	Any
fwdrev	Ground phase loop reverse directional signal	s (or 1/0 RMS/EMT simulation)	IN	Any
wloop	Faulted loop id	Integer	IN	Any
wtimer	Timer Signal (used to add an additional delay	s (or 1/0 RMS/EMT simulation)	IN	Any
wildblock	to the trip time) Block signal coming from the <i>Load encroach</i> -	s (or 1/0 RMS/EMT simulation)	IN	Any
iblock	ment element Blocking signal	s (or 1/0 RMS/EMT simulation)	IN	-
		,	1	Any
yallout	3 ph tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
yout	Tripping signal/time	s (or 1/0 RMS/EMT simulation)		Any
y_A	Phase A tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C tripping signal/time	s (or 1/0 RMS/EMT simulation)	OUT	Any

List of Figures

1.1	The DIgSILENT Impedance distance shape	1
1.2	The DIgSILENT Mho distance shape	1
2.1	The <i>DIgSILENT</i> "Impedance" and the "Impedance (Digital)" type characteristic .	5
2.2	The DIgSILENT "Impedance offset" type characteristic	6
2.3	The DIgSILENT "Mho" type characteristic	6
2.4	The DIgSILENT "Mho Offset MTA" type characteristic	8
2.5	The DIgSILENT "Mho Offset X" type characteristic	9
2.6	The <i>DlgSILENT</i> "Mho Offset Generic" type characteristic	9
2.7	The DIgSILENT "Mho Offset 2X" type characteristic	10
2.8	The <i>DlgSILENT</i> "Asea RAKZB Mho Offset" type characteristic	11
2.9	The DIgSILENT "Impedance" type characteristic with the Arc compensation enabled	12
3.1	The <i>DIgSILENT PowerFactory</i> typical connection scheme of a 3 phase <i>Distance mho</i> "RelDismho" block	13
4.1	The DIgSILENT Single phase Mho logic	15
4.2	The DIgSILENT Single phase Mho logic	16
4.3	The DIgSILENT Single phase Mho directional logic	16
4.4	The DIgSILENT 3 phase Mho logic	17
4.5	The DIgSILENT 3 phase Mho logic	18
4.6	The DIgSILENT 3 phase Mho logic	19
4.7	The DIgSILENT 6 phase Mho logic	20
4.8	The DIgSILENT 3 phase Mho blocking logic	21
4.9	The DIgSILENT Distance Mho (RelDismho) directional logic	21
4.10	The DIgSILENT Impedance calculation logic	22
4.11	The DIgSILENT Impedance (digital) calculation logic	22
4.12	The DIgSILENT Mho calculation logic with polarization	23
4.13	The DIgSILENT Mho calculation logic without polarization	23

List of Tables

A.1	Input parameters of Distance Mho type (<i>TypDismho</i>)	24
A.2	Input parameters of Distance Mho element (RelDismho))	25
B.1	Input/output signals of the single phase Distance Impedance element (<i>CalDisz-imp1p</i>)	26
B.2	Input/output signals of the single phase Distance Mho element (CalDismho1p) .	26
B.3	Input/output signals of 3 phase Distance Impedance element (CalDiszimp)	26
B.3	Input/output signals of 3 phase Distance Impedance element (CalDiszimp)	27
B.4	Input/output signals of 3 phase Distance Impedance Digital element (<i>CalDiszim-pdig</i>)	27
B.5	Input/output signals of 3 phase Distance Mho element (CalDismho)	28
B.6	Input/output signals of 6 phase Distance Mho element (CalDismho6p)	29