PROBLEM SET 4

Due: Tue, March 3, 6.00 PM

Topics: linear second order ODE, basics on metric spaces

1. Practice the variation of parameters by finding the general solution to the second order linear ordinary differential equation $y'' + y' - 2y = x - 2x^3$.

Definition: A metric space (M,d) is a set M together with a function $d: M \times M \to [0; \infty)$ s.t. that for all $x, y, z \in M$ we have that

- 1) $d(x,y) \ge 0$ and $d(x,y) = 0 \leftrightarrow x = y$,
- 2) d(x,y) = d(y,x),
- 3) $d(x,y) \le d(x,z) + d(z,y)$.
- 2. Prove that \mathbb{R}^n equipped with each of the following functions defines a metric space:
 - a) $d_1: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$, defined through $d_1(x, y) = \sum_{i=1}^n |x_i y_i|$.
 - b) $d_2: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$, defined through $d_2(x, y) = \left(\sum_{i=1}^n |x_i y_i|^2\right)^{1/2}$.
 - c) $d_{\infty}: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$, defined through $d_{\infty}(x, y) = \max_{i \in \{1, \dots, n\}} |x_i y_i|$.

Definition: Let (M,d) be a metric space. We say that a sequence $(x_j)_{j\in\mathbb{N}}$ in M (that is, $x_j \in M$ for all $j \in \mathbb{N}$) converges to a point $y \in M$ if and only if for all $\varepsilon > 0$ there exists some $N = N_{\varepsilon} \in \mathbb{N}$ such that $d(x_j, y) \leq \varepsilon$ whenever $j \geq N$.

- 3. Consider the metric spaces $(\mathbb{R}^n, d_1), (\mathbb{R}^n, d_2)$ and (\mathbb{R}^n, d_∞) from problem 2. Prove that in each case a sequence $(\mathbf{x}_j)_{j\in\mathbb{N}}$ in \mathbb{R}^n converges to a point $\mathbf{y} \in \mathbb{R}^n$ if and only, for each $i \in \{1, \ldots, n\}$, the sequence $(\mathbf{x}_j^{(i)})_{j\in\mathbb{N}}$ of real numbers converges to the real number $\mathbf{y}^{(i)}$. Here, $\mathbf{x}_j^{(i)}$ and $\mathbf{y}^{(i)}$ denote the *i*-th components of the vectors $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)}, \ldots, \mathbf{x}_j^{(n)}) \in \mathbb{R}^n$ and $\mathbf{y} = (\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \ldots, \mathbf{y}^{(n)}) \in \mathbb{R}^n$, respectively.
- **4.** Let C([a;b]) denote the set of all continuous functions $f:[a;b] \to \mathbb{R}$. Show that C([a;b]) is a real vector space. Define $d_{\infty}:C([a;b])\times C([a;b])\to [0;\infty)$ through

$$d_{\infty}(f,g) = \sup_{x \in [a;b]} |f(x) - g(x)|.$$

Prove that $(C([a;b]), d_{\infty})$ is a metric space.