Zusammenfassung Algorithmische Mathematik II

24. Februar 2013

0.1 Unabhängigkeit von Ereignissen

Definition. Zwei Ereignisse heissen unabhängig, falls

$$P[A \cap B] = P[A] \cdot P[B]$$

gilt.

Eine beliebige (nicht notwendig endlich oder abzählbar!) Kollektion von Ereignissen A_i ($i \in I$) heisst unabhängig, falls

 $P[A_{i_1} \cap ... \cap A_{i_n}] = \prod_{k=1}^n P[A_{i_k}]$ für alle $n \in \mathbb{N}$ und alle paarweise verschiedenen $i_1, ..., i_n \in I$ gilt.

Satz. Sind die Ereignisse $A_1, ..., A_n \in A$ unabhängig und $B_j = A_j$ oder $B_j = A_j^C$ für alle $j \in \{1, ..., n\}$, so sind auch die Ereignisse $B_1, ..., B_n$ unabhängig.

Seien $A_1, A_2, ...$ unabhängige Ereignisse mit jeweils Wahrscheinlichkeit p. Wir definieren die Wartezeit auf das erste Eintreten eines Ereignisses durch

$$T(\omega) = \min\{n \in \mathbb{N} : \omega \in A_n\}$$

Es gilt $P[T = n] = p \cdot (1 - p)^{n-1}$.

Definition. Die Wahrscheinlichkeitsverteilung auf \mathbb{N} mit Massenfunktion

$$p(n) = p \cdot (1 - p)^{n-1}$$

heisst geometrische Verteilung zum Parameter p.

Die Wahrscheinlichkeit, dass unter n Ereignissen k eintreten ist gleich der Binomialverteilung. Sei S_n gleich der Anzahl der eingetretenen Ereignisse innerhalb der ersten n Ereignisse.

Satz. (Bernstein-Ungleichung)

$$\forall \epsilon > 0 \forall n \in \mathbb{N}P\left[\frac{S_n}{n} \ge p + \epsilon\right] \le e^{-2\epsilon^2 n}$$

 $(analog f \ddot{u}r \ge p - \epsilon)$