Mixed Precision

Christoph Höppke, Daniel Tomaschewski

TU Dortmund

Version:18. Mai 2016

Content

- Mixedprecision Definition and Goals
 - Definition
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- 2 History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- 3 Example Calculation
 - Testresults

Content

- 1 Mixedprecision Definition and Goals
 - Definition
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPL
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- Example Calculation
 - Testresults

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same** accuracy by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- $lue{1}$ 1 double addition pprox 2 float additions pprox 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- $lue{1}$ 1 double addition pprox 2 float additions pprox 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computation bound algorithms

- 1 double addition \approx 2 float additions \approx 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

Definition:

An Algorithm that uses different precisions in its computation

Goal:

Obtain the **same accuracy** by using high precision but **better performance** by utilizing low precision computations

Performance Gains for bandwidth bound algorithms

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth and variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Performance Gains for computaion bound algorithms

- 1 double addition \approx 2 float additions \approx 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- → up to 16 times better computational efficiency

A brief history overview

Trends:

- Memoryclock speeds are increasing
 - GTX 980 Ti Memoryclock speed: 2x 1753 MHz
 - GTX 1080 Memoryclock speeds: 4x 2500 MHz (+185%)
- Alternative computing arcetectures
 - APU's
 - SOC's
 - → Sharing memory between CPU and GPU is becoming easyer and more common
- NVIDIA pushing the use of half precision.
 - half and half2 were announced as important new features in the CUDA Toolkit version 7.5

A brief history overview

Past achievements:

Fig. 3 Scalability tests and performance comparisons on Tesla C2050 in single precision (—▲—), double precision (—●—), mixed precision (—●—), and CPU (single thread) code (—▼—). Sixth order spatial discretization employed. The iterative defect correction method has been left-preconditioned with a Gauss-Seidel V-cycle multigrid strategy on each architecture.

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

additive roundoff
$$a = 1 + 0.00000004 = 1.00000004 = f_l \ 1$$
 multiplicative roundoff
$$b = 1.0002 \cdot 0.9998 = 0.99999996 = f_l \ 1$$
 cancellation
$$c \in \{a,b\} \qquad \pm 4 = (c-1) \cdot 10^8 = f_l \ 0$$
 oder of operations
$$1 + 0.00000004 - 1 = f_l \ 0$$

$$1 - 1 + 0.000000004 = f_l \ 0.00000004$$

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

additive roundoff
$$a = 1 + 0.00000004 = 1.00000004 = f_l \ 1$$
 multiplicative roundoff
$$b = 1.0002 \cdot 0.9998 = 0.999999996 = f_l \ 1$$
 cancellation
$$c \in \{a,b\} \qquad \pm 4 = (c-1) \cdot 10^8 = f_l \ 0$$
 oder of operations
$$1 + 0.00000004 - 1 = f_l \ 0$$

$$1 - 1 + 0.000000004 = f_l \ 0.00000004$$

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

$$\begin{array}{lll} \text{additive roundoff} & a = 1 + 0.00000004 = 1.00000004 & =_{fl} \ 1 \\ \text{multiplicative roundoff} & b = 1.0002 \cdot 0.9998 = 0.999999996 & =_{fl} \ 1 \\ \text{cancellation} & c \in \{a,b\} & \pm \ 4 = (c-1) \cdot 10^8 & =_{fl} \ 0 \\ \text{oder of operations} & 1 + 0.000000004 - 1 =_{fl} \ 0 \\ & 1 - 1 + 0.000000004 =_{fl} \ 0.00000004 \end{array}$$

Computational Precision vs Accuracy of Result

Instructive Example [S.M. Rump, 1988]

$$f(x,y) = (333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + 0.5x/y$$

 $x_0 = 77617, y_0 = 33096$

float s23e8
$$1.1726$$
 double s52e11 1.17260394005318

The correct result is

-0.82739605994682136814116509547981629

Computational Precision vs Accuracy of Result

Instructive Example [S.M. Rump, 1988]

$$f(x,y) = (333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + 0.5x/y$$

 $x_0 = 77617, y_0 = 33096$

float s23e8
$$1.1726$$
 double s52e11 1.17260394005318

The correct result is:

-0.82739605994682136814116509547981629

DataError and Truncation

- Data error occurs when the exact value has to be truncated for storage in the binary format
 - π , $\sqrt{2}$, sin(2), e^2 , 1/3
 - every rational number with a denominator that has a prime factor other than 2
- How can float be better than double?
 - There is no data error in the operands
 - The errors can cancel out themselves favorably

Floating Point Operations. A deeper analysis

Number representation→ almost all numbers have to be truncated

half s10e5 a	$oxed{1}$ bit sign s_a	\mid 10 bit mantissa m_a	5 bit exp. e_a
float s23e8 b	1 bit sign s_b	23 bit mantissa m_b	8 bit exp. e_b
double s52e11 c	1 bit sign s_c	52 bit mantissa m_c	11 bit exp. e_c

Multiplication		
Precision	Exactformat	main error:
half(a) · half(b)	s20e6	truncate mantissa from 20 to 10 bit
float(a) · float(b)	s46e9	truncate mantissa from 46 to 23 bit
double(a) · double(b)	s104e12	truncate mantissa from 104 to 52 bit
Addition		
Precision	Exactformat	main error:
half(a) · half(b)	s41e5	truncate mantissa from 41 to 10 bit
float(a) · float(b)	s278e8	truncate mantissa from 278 to 23 bit
double(a) · double(b)	s2099e11	truncate mantissa from 2099 to 52 bit
		'

Content

- Mixedprecision Definition and Goals
 - Definition
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- Example Calculation
 - Testresults

History of GPGPU

1999: NVIDIA GeForce 256

- Term GPU was coined during the launch
- GPGPU calculations were only achievable by "Hacking the GPU"(verry cumbersome and error-prone)

2003-2007 First wave of GPU computing

- Floating point support
- Performance improvements
- Geforce 8800GT Release (29.October 2007)
 first CUDA enabled Consumer GPU
- Double precision was not available on the GPU
- Mixed Precision was the ONLY way to utilize GPU horesepower without precision compromises
- Mixed Precision lead to a speedup of factor 3-5 in FEM applications

Why Mixed Precision is difficult

- Data has to be transferred to the GPU over the relativly slow PCIe interface
- A lot of time is wasted while waiting for data

Unconventional computation Hardware

NVIDIA Jetson TK1 Bord

- CPU and GPU share the same memory and use the same memory interface
- Copying data from CPU to GPU and vice versa is much faster

Content

- Mixedprecision Definition and Goals
 - Definition
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- 3 Example Calculation
 - Testresults

Example Calculation

Problem

Solve the Poission problem $-\Delta u=1,\ x\in\Omega$ with dirichlet boundry conditions $u\equiv0,\ x\in\partial\Omega$ using conforming quadrilateral elements for the finite-element discretization of the unit square $\Omega=(-1,1)^2$

- Method 1: Using a CG solver
- Method 2 : Using a more sophisticated MG solver

Testresults pending

Imagine a nice Plot