PySpark RDD Interview Questions and Answers

General Questions

1. What is PySpark RDD?

A PySpark RDD (Resilient Distributed Dataset) is the fundamental data structure in Apache Spark's Python API. It represents an immutable, fault-tolerant, and distributed collection of objects that can be processed in parallel across a cluster. Essentially, it's a collection of elements partitioned across the nodes in a cluster that can be operated on in parallel.

2. Explain the key features of RDD in PySpark.

- * **Distributed:** Data is partitioned across multiple nodes in a cluster, allowing parallel processing.
- * **Immutable:** Once an RDD is created, its contents cannot be changed. Transformations create new RDDs.
- * **Resilient/Fault-Tolerant:** If a partition is lost due to a node failure, it can be automatically recomputed from its lineage.
- * **Lazy Evaluation:** Transformations are not executed immediately but are recorded as a DAG of operations. Execution only happens when an action is called.
- * **In-Memory Computing:** Spark tries to keep RDDs in memory for faster access.
- * **Partitioned:** RDDs are divided into logical partitions, processed in parallel.

3. What are the advantages of using RDDs in PySpark?

- * Fault Tolerance
- * In-Memory Performance
- * Flexibility (handles various data types)
- * Low-Level Control
- * Large-Scale Data Processing

4. Describe the RDD lineage.

RDD lineage is the DAG of transformations applied to a base RDD. Spark uses it to determine the execution plan and for fault recovery by recomputing lost partitions.

5. How does PySpark handle fault tolerance in RDDs?

Through RDD lineage. Lost partitions are recomputed by re-executing the transformations in the lineage.

6. What are the different types of operations that can be performed on RDDs?

- * Transformations (lazy, create new RDDs)
- * Actions (eager, trigger execution, return results)

7. What is the difference between a transformation and an action in PySpark RDDs?

* **Transformation:** Creates new RDD, lazy (e.g., `map()`, `filter()`).

* **Action:** Triggers execution, returns result, eager (e.g., `collect()`, `count()`).

8. Explain lazy evaluation in the context of RDDs.

Spark delays execution of transformations until an action is called, allowing for optimization of the execution plan.

9. How can you create an RDD in PySpark?

- * Loading an external dataset (e.g., `sc.textFile()`).
- * Parallelizing an existing collection (e.g., `sc.parallelize()`).

10. What are the different methods to create an RDD in PySpark?

- * `sc.parallelize(collection)`
- * `sc.textFile(path)`
- * `sc.sequenceFile(path)`
- * `sc.wholeTextFiles(path)`
- * `sc.hadoopFile(path, input_format_class, key_class, value_class)`

11. Explain the `map()` transformation with an example.

Applies a function to each element, returning a new RDD.

```python

rdd = sc.parallelize([1, 2, 3]).map(lambda x: x \* 2) # Output: [2, 4, 6]

- 12. What is the difference between map() and flatMap() transformations?
  - map(): One-to-one mapping.
  - flatMap(): One-to-many mapping, flattens the result.
- **13.** Describe the filter() transformation and its use case. Returns a new RDD with elements for which the function returns True. Use case: selecting data based on a condition.
- **14. What is the reduce() action and how does it work?** Aggregates all elements using an associative and commutative binary function.
- **15. Explain the collect() action.** Returns all elements of the RDD as a list to the driver program (use with caution on large RDDs).
- **16. What is the purpose of the take() action?** Returns the first n elements of the RDD as a list to the driver program.
- **17.** How does the saveAsTextFile() action work? Writes the elements of the RDD to a text file (or directory of files) on a distributed file system.
- **18. Describe the count() action.** Returns the number of elements in the RDD.

- **19. What is the union() transformation in PySpark?** Returns a new RDD containing all elements from both RDDs (does not remove duplicates).
- **20. Explain the intersection() transformation.** Returns a new RDD containing elements present in both RDDs (removes duplicates).
- **21. Describe the distinct() transformation.** Returns a new RDD containing only the unique elements.
- **22.** How does the groupByKey() transformation work? Groups values for each key into an iterable. Involves a shuffle.
- 23. What is the difference between groupByKey() and reduceByKey()?
  - groupByKey(): Groups all values, full shuffle, less efficient for simple aggregations.
  - reduceByKey(): Aggregates values per key, map-side aggregation, more efficient.
- **24.** Explain the join() transformation with an example. Combines two RDDs of (key, value) pairs based on matching keys (inner join by default).
- **25.** What is the cartesian() transformation and when would you use it? Returns all possible pairs of elements from two RDDs. Use with caution due to high cost.
- **26. Describe the coalesce() transformation.** Reduces the number of partitions, tries to avoid full shuffle.
- **27. What is the purpose of the repartition() transformation?** Redistributes data across a specified number of partitions (always involves a shuffle).
- **28.** Explain how to persist an RDD in memory. Use rdd.cache() or rdd.persist(StorageLevel.MEMORY\_ONLY).
- **29.** What are the different storage levels available in PySpark for persisting RDDs? MEMORY\_ONLY, MEMORY\_AND\_DISK, MEMORY\_ONLY\_SER, MEMORY\_AND\_DISK\_SER, DISK\_ONLY, OFF\_HEAP, with \_2 suffix for replication.
- **30. How can you unpersist an RDD?** Use rdd.unpersist().
- **31. What is the zip() transformation in PySpark?** Combines two RDDs element-wise into pairs (requires same number of partitions and elements).
- **32. Explain the sample() transformation.** Returns a sampled subset of the RDD (withReplacement, fraction, seed).

- **33.** Describe the aggregate() action and its use case. Aggregates elements using zeroValue, seqOp (per partition), and combOp (combine partitions). Useful for complex aggregations.
- **34. What is a broadcast variable and how is it used in PySpark?** Read-only shared variable cached on worker nodes, used for efficient sharing of large, read-only data.
- **35. Explain the concept of accumulators in PySpark.** Shared variables that are only "added" to, used for efficient global aggregations (e.g., counters).
- **36. What is the purpose of the foreach() action?** Applies a function to each element (for side effects).
- **37.** How can you debug a PySpark application? Spark UI, logging, print() (executor logs), collect(), take(), toDebugString(), local mode, explain().
- **38.** Explain the difference between cache() and persist(). cache() is persist(MEMORY\_ONLY). persist() allows specifying different storage levels.
- **39. What is the glom() transformation?** Returns an RDD of lists, where each list contains elements from one partition.
- **40. Describe the pipe() transformation and its use case.** Pipes each partition through an external shell command. Useful for integrating external scripts.
- **41.** How does the foreachPartition() action work? Applies a function to each partition (receives an iterator of elements). More efficient for per-partition setup.
- **42. What is the significance of partitioning in RDDs?** Enables parallelism, data locality, performance optimization, and fault tolerance.
- **43. Explain the keyBy() transformation.** Creates (key, value) pairs by applying a function to each element to generate the key.
- **44. What are shuffle operations and why are they expensive?** Data redistribution across partitions (wide transformations). Expensive due to network I/O, disk I/O, serialization.
- **45.** How can you optimize PySpark RDD performance? Minimize shuffles, optimize partitioning, use caching/persistence, broadcast variables, efficient transformations, etc.
- **46. What is the lookup() transformation?** Action on (key, value) RDDs to return a list of values for a given key.
- **47. Describe the reduceByKeyLocally() transformation.** Action that performs reduceByKey and returns a dictionary on the driver node (for small result sets).

- **48. What is the subtract() transformation and when is it used?** Returns elements in the first RDD but not the second (set difference).
- **49. Explain the aggregateByKey() transformation.** Aggregates values for each key independently using zeroValue, seqOp, and combOp.
- **50.** What are the best practices for writing PySpark RDD code? Prefer DataFrames/Datasets, minimize shuffles, optimize partitioning, use caching, broadcast variables, avoid collect() on large data, use built-in functions, handle errors, manage resources, review execution plan.

### **Scenario-Based Coding Questions**

1. Write a PySpark program to count the number of lines in a text file.

```
Python
lines_rdd = sc.textFile("data/sample.txt")
line_count = lines_rdd.count()
```

2. Given an RDD of numbers, write a PySpark program to compute the sum of all numbers.

```
Python
numbers_rdd = sc.parallelize([1, 2, 3, 4, 5])
sum_of_numbers = numbers_rdd.reduce(lambda a, b: a + b)
```

3. Create an RDD from a list of tuples and write a PySpark program to group the elements by key.

```
Python
data_tuples = [("apple", 1), ("banana", 2), ("apple", 3)]
rdd = sc.parallelize(data_tuples)
grouped_rdd = rdd.groupByKey().mapValues(list)
```

4. Write a PySpark program to find the maximum value in an RDD of integers.

```
Python
numbers rdd = sc.parallelize([10, 5, 20])
```

```
max value = numbers rdd.reduce(lambda a, b: max(a, b))
```

5. Given an RDD of words, write a PySpark program to count the occurrences of each word.

```
Python
words_rdd = sc.parallelize(["apple", "banana", "apple"])
word counts = words rdd.map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b)
```

6. Write a PySpark program to filter out even numbers from an RDD of integers.

```
```python
numbers_rdd = sc.parallelize([1, 2, 3, 4, 5, 6])
even numbers rdd = numbers rdd.filter(lambda x: x % 2 == 0)
```

7. Create an RDD from a list of strings and write a PySpark program to convert all strings to uppercase.

```
Python

strings_rdd = sc.parallelize(["hello", "world"])

uppercase strings rdd = strings rdd.map(lambda s: s.upper())
```

8. Write a PySpark program to join two RDDs based on a common key.

```
Python rdd1 = sc.parallelize([("id1", "A"), ("id2", "B")]) rdd2 = sc.parallelize([("id1", 1), ("id3", 2)]) joined\_rdd = rdd1.join(rdd2)
```

9. Given an RDD of (key, value) pairs, write a PySpark program to find the average value for each key.

```
Python data = [("K1", 10), ("K2", 20), ("K1", 30)] rdd = sc.parallelize(data) sum_count = rdd.aggregateByKey((0, 0), lambda acc, value: (acc[0] + value, acc[1] + 1), lambda acc1, acc2: (acc1[0] + acc2[0], acc1[1] + acc2[1])) average rdd = sum_count.mapValues(lambda x: x[0] / x[1] if x[1] != 0 else 0)
```

10. Write a PySpark program to find the distinct elements in an RDD.

```
Python
rdd = sc.parallelize([1, 2, 2, 3, 1])
distinct rdd = rdd.distinct()
```

11. Create an RDD from a text file and write a PySpark program to find the top 10 most frequent words.

```
Python
# Assuming 'file.txt' exists
words_rdd = sc.textFile("file.txt").flatMap(lambda line: line.lower().split()).map(lambda word:
```

(word, 1)).reduceByKey(lambda a, b: a + b) top 10 = words rdd.sortBy(lambda x: x[1], ascending=False).take(10)

12. Write a PySpark program to perform a Cartesian product of two RDDs.

```
Python
rdd1 = sc.parallelize([1, 2])
rdd2 = sc.parallelize(['a', 'b'])
cartesian_rdd = rdd1.cartesian(rdd2)
```

13. Given an RDD of (key, value) pairs, write a PySpark program to sort the RDD by key.

```
Python
data = [('c', 3), ('a', 1), ('b', 2)]
rdd = sc.parallelize(data)
sorted rdd = rdd.sortByKey()
```

14. Write a PySpark program to repartition an RDD into a specified number of partitions.

```
Python
```

```
rdd = sc.parallelize(range(10), numPartitions=2) repartitioned_rdd = rdd.repartition(4)
```

15. Given an RDD of (key, value) pairs, write a PySpark program to perform a reduceByKey operation.

```
Python
data = [('k1', 1), ('k2', 2), ('k1', 3)]
rdd = sc.parallelize(data)
reduced_rdd = rdd.reduceByKey(lambda a, b: a + b)
```

16. Write a PySpark program to compute the average of an RDD of numbers.

```
Python
numbers_rdd = sc.parallelize([1, 2, 3, 4, 5])
sum_val = numbers_rdd.sum()
count_val = numbers_rdd.count()
average = sum_val / count_val if count_val > 0 else 0
```

17. Given an RDD of (key, value) pairs, write a PySpark program to combine values with the same key using a provided function.

```
Python
data = [('k1', [1]), ('k2', [2]), ('k1', [3])]
rdd = sc.parallelize(data)
combined rdd = rdd.reduceByKey(lambda a, b: a + b)
```

18. Write a PySpark program to persist an RDD in memory and disk.

```
Python
rdd = sc.parallelize(range(100))
rdd.persist(StorageLevel.MEMORY_AND_DISK)
```

19. Given an RDD of (key, value) pairs, write a PySpark program to count the number of unique keys.

```
Python
data = [('a', 1), ('b', 2), ('a', 3)]
rdd = sc.parallelize(data)
unique keys count = rdd.keys().distinct().count()
```

20. Write a PySpark program to sample 10% of an RDD.

```
Python
rdd = sc.parallelize(range(100))
sampled_rdd = rdd.sample(False, 0.1)
```

21. Given an RDD of sentences, write a PySpark program to count the number of words in each sentence.

```
Python sentences = sc.parallelize(["hello world", "spark rdd"])
```

```
word counts = sentences.map(lambda s: (s, len(s.split())))
```

22. Write a PySpark program to compute the average length of words in an RDD.

```
Python
words = sc.parallelize(["hello", "world"])
total_length = words.map(len).sum()
total_words = words.count()
average length = total length / total words if total words > 0 else 0
```

23. Given an RDD of (key, value) pairs, write a PySpark program to filter out keys with values less than a specified threshold.

```
Python
data = [('a', 5), ('b', 10), ('c', 3)]
rdd = sc.parallelize(data)
threshold = 7
filtered rdd = rdd.filter(lambda kv: kv[1] >= threshold)
```

24. Write a PySpark program to merge two RDDs into one.

```
Python
rdd1 = sc.parallelize([1, 2])
rdd2 = sc.parallelize([3, 4])
merged rdd = rdd1.union(rdd2)
```

25. Given an RDD of integers, write a PySpark program to find the second largest number.

```
Python
numbers = sc.parallelize([1, 5, 2, 8])
second_largest = numbers.distinct().sortBy(lambda x: x, ascending=False).take(2)[1] if
numbers.distinct().count() >= 2 else None
```

26. Write a PySpark program to count the number of partitions in an RDD.

```
Python
rdd = sc.parallelize(range(10), numPartitions=3)
num_partitions = rdd.getNumPartitions()
```

27. Given an RDD of (key, value) pairs, write a PySpark program to compute the sum of values for each key.

```
Python
data = [('k1', 1), ('k2', 2), ('k1', 3)]
rdd = sc.parallelize(data)
sum by key = rdd.reduceByKey(lambda a, b: a + b)
```

28. Write a PySpark program to perform a union of two RDDs.

```
Python
rdd1 = sc.parallelize([1])
rdd2 = sc.parallelize([2])
union rdd = rdd1.union(rdd2)
```

29. Given an RDD of (key, value) pairs, write a PySpark program to find the key with the maximum value.

```
Python data = [('a', 10), ('b', 5)] rdd = sc.parallelize(data) max_key = rdd.reduce(lambda a, b: a if a[1] > b[1] else b)[0] if rdd.count() > 0 else None
```

30. Write a PySpark program to create an RDD from a list of numbers and compute their square root.

```
Python
import math
numbers = sc.parallelize([4, 9, 16])
sqrt_rdd = numbers.map(math.sqrt)
```

31. Given an RDD of strings, write a PySpark program to remove duplicate strings.

```
Python
strings = sc.parallelize(["a", "b", "a"])
unique_strings = strings.distinct()
```

32. Write a PySpark program to sort an RDD of numbers in descending order.

```
Python
numbers = sc.parallelize([3, 1, 4, 2])
```

```
sorted desc = numbers.sortBy(lambda x: x, ascending=False)
```

33. Given an RDD of (key, value) pairs, write a PySpark program to create a new RDD with the values incremented by 1 for each key.

```
Python
data = [('k1', 1), ('k2', 2)]
rdd = sc.parallelize(data)
incremented values = rdd.mapValues(lambda v: v + 1)
```

34. Write a PySpark program to coalesce an RDD into a specified number of partitions.

```
Python
rdd = sc.parallelize(range(10), numPartitions=4)
coalesced_rdd = rdd.coalesce(2)
```

35. Given an RDD of (key, value) pairs, write a PySpark program to find the average value per partition.

```
Python rdd = sc.parallelize([(1, 10), (1, 20), (2, 30)], numPartitions=2) avg_per_partition = rdd.mapPartitions(lambda it: [sum(v for k, v in it) / len(list(it)) if list(it) else 0])
```

36. Write a PySpark program to compute the sum of squares of an RDD of numbers.

```
Python
numbers = sc.parallelize([1, 2, 3])
sum_of_squares = numbers.map(lambda x: x**2).reduce(lambda a, b: a + b)
```

37. Given an RDD of (key, value) pairs, write a PySpark program to filter keys based on a specified prefix.

```
Python
data = [('apple', 1), ('apricot', 2), ('banana', 3)]
rdd = sc.parallelize(data)
filtered_keys = rdd.filter(lambda kv: kv[0].startswith('ap'))
```

38. Write a PySpark program to aggregate elements of an RDD using a provided associative function and a neutral zero value.

```
Python
numbers = sc.parallelize([1, 2, 3])
aggregated = numbers.aggregate(0, lambda acc, x: acc + x, lambda a, b: a + b)
```

39. Given an RDD of (key, value) pairs, write a PySpark program to find the minimum value for each key.

```
Python
data = [('k1', 5), ('k2', 10), ('k1', 2)]
rdd = sc.parallelize(data)
min by key = rdd.reduceByKey(lambda a, b: min(a, b))
```

40. Write a PySpark program to zip two RDDs together.

```
Python
rdd1 = sc.parallelize(['a', 'b'])
rdd2 = sc.parallelize([1, 2])
zipped_rdd = rdd1.zip(rdd2)
```

41. Given an RDD of sentences, write a PySpark program to create an RDD of words.

```
Python
sentences = sc.parallelize(["hello world"])
words rdd = sentences.flatMap(lambda s: s.split())
```

42. Write a PySpark program to count the occurrences of each character in a text file.

```
Python
# Assuming 'chars.txt' exists
char_counts = sc.textFile("chars.txt").flatMap(list).map(lambda char: (char,
1)).reduceByKey(lambda a, b: a + b)
```

43. Given an RDD of (key, value) pairs, write a PySpark program to filter out keys that have values in a specified range.

```
Python
data = [('a', 5), ('b', 15), ('c', 10)]
rdd = sc.parallelize(data)
filtered range = rdd.filter(lambda kv: 8 <= kv[1] <= 12)
```

44. Write a PySpark program to convert an RDD of strings to an RDD of (string, length) pairs.

```
Python

strings = sc.parallelize(["one", "two"])

length rdd = strings.map(lambda s: (s, len(s)))
```

45. Given an RDD of (key, value) pairs, write a PySpark program to group the keys and collect the values into a list.

```
Python
data = [('k1', 'v1'), ('k2', 'v2'), ('k1', 'v3')]
rdd = sc.parallelize(data)
grouped values = rdd.groupByKey().mapValues(list)
```

46. Write a PySpark program to find the median value of an RDD of numbers.

47. Given an RDD of (key, value) pairs, write a PySpark program to perform a left outer join with another RDD.

```
Python
rdd1 = sc.parallelize([('a', 1), ('b', 2)])
rdd2 = sc.parallelize([('a', 'x'), ('c', 'y')])
left_join = rdd1.leftOuterJoin(rdd2)
```

48. Write a PySpark program to compute the standard deviation of an RDD of numbers.

```
Python

numbers = sc.parallelize([1, 2, 3, 4, 5])

n = \text{numbers.count}()

mean = numbers.sum() / n if n > 0 else 0

std dev = math.sqrt(numbers.map(lambda x: (x - mean)**2).sum() / (n - 1)) if n > 1 else 0
```

49. Given an RDD of (key, value) pairs, write a PySpark program to count the number of keys that start with a specified letter.

```
Python
data = [('apple', 1), ('banana', 2), ('ant', 3)]
rdd = sc.parallelize(data)
count_starting_with_a = rdd.filter(lambda kv: kv[0].startswith('a')).keys().distinct().count()
```

50. Write a PySpark program to combine two RDDs of (key, value) pairs into a single RDD.

```
Python
rdd1 = sc.parallelize([('k1', 1)])
rdd2 = sc.parallelize([('k2', 2)])
combined_rdd = rdd1.union(rdd2)

Python
# Final cleanup
spark.stop()
```