

TWO-COLUMN
PROOFS
FULL UNIT:
PRINTABLES

Terms of Use

Thanks so much for downloading this file!

This resource is for personal use in your own classroom only. The copyright is owned by Math Giraffe and all rights are reserved. Permission is granted to copy pages for your own students.

Placing any part of this file anywhere online is a violation of the Digital Millennium Copyright Act.

You may:

- Print this file and distribute it to your students
 - Use it in your own classroom

You may not:

- Upload it on the internet to another site in any form
- Sell it, sell any part of it, or sell anything based upon it
 - Share it without permission

I hope that you and your students enjoy this!

© Copyright Math Giraffe

Visit <u>mathgiraffe.com</u> for more creative math ideas and free resources!

GRAPHIC ORGANIZER: PROPERTIES OF EQUALITY AND CONGRUENCE

Name: ______ Class: _____

Addition Property of Equality

If a = b, then a + x = b + x

Subtraction Property of Equality

If a = b, then a - x = b - x

Multiplication Property of Equality

If a = b, then ax = bx

Division Property of Equality

If a = b, then $\frac{a}{x} = \frac{b}{x}$

Basic properties of Equality

(For all nonzero real numbers)

Reflexive Property

a= a

Symmetric Property

If a = b, Then b = a

If <A $\cong <$ B, then <B $\cong <$ A Or If $\overline{AB} \cong \overline{CD}$, Then $\overline{CD} \cong \overline{AB}$

Transitive Property

If a =b and b = c, Then a = c

If ${}^{\prime}A \cong {}^{\prime}B$ and ${}^{\prime}B \cong {}^{\prime}C$, then ${}^{\prime}A \cong {}^{\prime}C$ Or ${}^{\prime}D$ If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$

Substitution Property

If a = b, then a can replace b in an equation.

If <A \cong <B, then <A can replace <B in a congruency statement.

Or

If $\overline{AB} \cong \overline{CD}$, then \overline{AB} can replace \overline{CD} in a congruency statement.

PROPERTIES OF EQUALITY AND CONGRUENCE

PROPERTIES OF EQUALITY **AND CONGRUENCE**

Name:	
Date:	Class:

Complete the diagrams. The boxes should be filled in with equations and congruency statements. The arrows should be filled in with the properties needed to get from one step to another.

$$m<2 = m<3,$$

$$m<3 = m<4 + m<5 = m<4 + m<5$$

$$Subtraction Property of Equality$$

In diagram 3, which property could get from the first step to the last more quickly?

PROPERTIES OF EQUALITY	
AND CONGRUENCE	

Answer Key

Name:	
Date:	_ Class:

Complete the diagrams. The boxes should be filled in with equations and congruency statements. The arrows should be filled in with the properties needed to get from one step to another.

$$m<2 = m<3,
m<3 = m<4$$
Addition Property of Equality
$$m<3 + m<5 = m<4 + m<5$$
Subtraction Property of Equality
$$m<2 + m<5 = m<4 + m<5$$
Subtraction Property of Equality
$$m<2 = m<4$$

In diagram 3, which property could get from the first step to the last more quickly?

__Transitive Property of Equality__

PROPERTIES OF EQUALITY AND CONGRUENCE WARM-UP / EXIT TICKET A

Name:	
Date: _	Class:

Identify the property.

- 1. Given that m < BCA = m < DBC and m < BCA = m < ADB, we can conclude that m < DBC = m < ADB.
- 2. Given that $\overline{PQ} \cong \overline{TU}$, we can conclude that $\overline{TU} \cong \overline{PQ}$.
- 3. $\triangle ABC \cong \triangle ABC$
- 4. Given that x = 3y, we can conclude that x 13 = 3y 13.
- 5. Given that m<2 = m<6, we can conclude that m<2 + m<4 = m<6 + m<4.
- 6. Given that $\langle MND \cong \langle LPR \rangle$, we can rewrite the statement $\langle MND \cong \langle DEF \rangle$ as $\langle LPR \cong \langle DEF \rangle$.
- 7. Given that c = a, we can conclude that 7c = 7a
- 8. Given that $\overline{GH} \cong \overline{VW}$ and $\overline{TU} \cong \overline{GH}$, we can conclude that $\overline{VW} \cong \overline{TU}$.
- 9. Given that XY = MN and XY + YZ = XZ, we can state that MN + YZ = XZ.
- 10. If 4k = 18 then 18 = 4k.

© Copyright 2014 Math Giraffe

PROPERTIES OF EQUALITY AND CONGRUENCE WARM-UP / EXIT TICKET B

Name:	
Date: _	Class:

Explain the difference between using Substitution and the Transitive Property. Give one example in which either method can be used to reach the same conclusion and one example in which the Substitution cannot be accomplished using the Transitive Property.

PROPERTIES OF EQUALITY AND CONGRUENCE WARM-UP / EXIT TICKET A

Name:	
Date: _	Class:

Answer Key

Identify the property.

- Given that m<BCA = m<DBC and m<BCA = m<ADB, we can conclude that m<DBC = m<ADB.
- 2. Given that $\overline{PQ} \cong \overline{TU}$, we can conclude that $\overline{TU} \cong \overline{PQ}$.
- 3. $\triangle ABC \cong \triangle ABC$
- 4. Given that x = 3y, we can conclude that x 13 = 3y 13.
- 5. Given that m<2 = m<6, we can conclude that m<2 + m<4 = m<6 + m<4.
- 6. Given that $\langle MND \cong \langle LPR \rangle$ we can rewrite the statement $\langle MND \cong \langle DEF \rangle$ as $\langle LPR \cong \langle DEF \rangle$
- 7. Given that c = a, we can conclude that 7c = 7a
- 8. Given that $\overline{GH}\cong \overline{VW}$ and $\overline{TU}\cong \overline{GH}$, we can conclude that $\overline{VW}\cong \overline{TU}$.
- 9. Given that XY = MN and XY + YZ = XZ, we can state that MN + YZ = XZ.
- 10. If 4k = 18 then 18 = 4k.

___Transitive Property of Equality____Symmetric Property of Congruence____Reflexive Property of Congruence____Subtraction Property of Equality_____Substitution Property of Equality_____Multiplication Property of Equality_____Transitive Property of Equality_____Substitution Property of Equality_____Substitution Property of Equality_____Symmetric Property of Equality_____Symmetric Property of Equality_____

© Copyright 2014 Math Giraffe

PROPERTIES OF EQUALITY
AND CONGRUENCE
WARM-UP / EXIT TICKET B

Name:	
Date:	Class:

Explain the difference between using Substitution and the Transitive Property. Give one example in which either method can be used to reach the same conclusion and one example in which the Substitution cannot be accomplished using the Transitive Property.

SEGMENT ADDITION POSTULATE AND ANGLE ADDITION POSTULATE

Name:	
Date: _	Class:

- Given that the distance from the ground to the lowest branch is 39
 meters and the distance from the ground to the branch with the bird is 46
 meters, find the distance between the lowest branch and the branch with
 the bird.
- 2. Given that the distance from the branch with the bird to the top of the tree is 15 meters, find the height of the tree.
- 3. Given that the measure of angle 1 is 28 degrees and the measure of angle 2 is 55 degrees, find the measure of angle ABC.
- 4. Given that the measure of angle DEF is 62 degrees and angle 6 is congruent to angle 7, find the measure of angle 6.
- 5. Given that the measure of angle 3 is 23 degrees, the measure of angle 5 is 134 degrees, and the measure of the large angle made up of all three angles 3, 4, and 5 is 221 degrees, Find the measure of angle 4.

6. Write an equation that can be used to find the requested measure and identify which postulate you used.

а	M N N	Find m <mop.< th=""><th>Equation:</th><th>Postulate:</th></mop.<>	Equation:	Postulate:
Ь	W X Y Z	Find XZ.	Equation:	Postulate:
С	E D C	Find m <aed.< th=""><th>Equation:</th><th>Postulate:</th></aed.<>	Equation:	Postulate:
d	S T U V W	Find SW.	Equation:	Postulate:

SEGMENT ADDITION POSTULATE AND ANGLE ADDITION POSTULATE

Name:	
Date:	Class:

Answer Key

Given that the distance from the ground to the lowest branch is 39
meters and the distance from the ground to the branch with the bird is 46
meters, find the distance between the lowest branch and the branch with
the bird.

7 meters

2. Given that the distance from the branch with the bird to the top of the tree is 15 meters, find the height of the tree.

61 meters

3. Given that the measure of angle 1 is 28° and the measure of angle 2 is 55°, find the measure of angle ABC.

83°

4. Given that the measure of angle DEF is 62 degrees and angle 6 is congruent to angle 7, find the measure of angle 6.

31°

5. Given that the measure of angle 3 is 23 degrees, the measure of angle 5 is 134 degrees, and the measure of the large angle made up of all three angles 3, 4, and 5 is 221 degrees, Find the measure of angle 4.

64°

6. Write an equation that can be used to find the requested measure and identify which postulate you used.

а	M N	Find m <mop.< th=""><th>Equation: m<mon +="" m<nop="m<MOP</th"><th>Postulate: Angle Addition Postulate</th></mon></th></mop.<>	Equation: m <mon +="" m<nop="m<MOP</th"><th>Postulate: Angle Addition Postulate</th></mon>	Postulate: Angle Addition Postulate
Ь	W X Y Z	Find XZ.	Equation: XY + YZ = XZ	Postulate: Segment Addition Postulate
С	E D C	Find m <aed.< td=""><td>Equation: m<aeb +="" m<bec="" m<ced="<br">m<aed< td=""><td>Postulate: Angle Addition Postulate</td></aed<></aeb></td></aed.<>	Equation: m <aeb +="" m<bec="" m<ced="<br">m<aed< td=""><td>Postulate: Angle Addition Postulate</td></aed<></aeb>	Postulate: Angle Addition Postulate
d	S T U W	Find SW.	Equation: ST + TU + UV + VW = SW	Postulate: Segment Addition Postulate

Name: _____ Class: _____

Fill in the missing justifications in each proof.

1. Given:
$$a = 2b + 6$$

$$a = 9b - 8$$

Prove:
$$b = 2$$

2. Given:
$$\frac{x}{2} = y + 5$$

$$y = 3x$$

Prove:
$$x = -3$$

	STATEMENT	Justification		STATEMENT	JUSTIFICATION
1	a = 2b + 6		1	$\frac{x}{2} = y + 5$	
2	a = 9b - 8		2	y = 3x	
3	2b + 6 = 9b - 8		3	$\frac{x}{2} = 3x + 5$	
4	6 = 7b - 8		4	x = 6x + 10	
5	14 = 7b		5	-5× = 10	
6	2 = b		6	× = -2	
7	b = 2		7		
8			8		

3. Given:
$$3w = t$$

$$t = 2r$$

Prove:
$$3w = s$$

4. Given:
$$3b + d = f$$

$$d = 2b$$

$$f = g$$

Prove:
$$g = 5b$$

	STATEMENT	Justification		STATEMENT	JUSTIFICATION
1	3w = t		1	3b + d = f	
2	2r = s		2	d = 2b	
3	t = 2r		3	f = g	
4	3w = 2r		4	3b + 2b = f	
5	3w = s		5	5b = f	(simplified step 5)
6			6	5b = g	
7			7	g = 5b	
8			8		MATERIAL CO.

Name:	
Date:	Class:

Complete each proof.

5. Given:
$$5c + 1 = 2c - 8$$

Prove: c = -3

6.	Given:	m	=	h	+	5
		_				

2m = n

Prove: m = -5

	STATEMENT	Justification
1		
2		
3		
4		
5		
Ю		
7		
8		

	STATEMENT	JUSTIFICATION					
1							
2							
S							
4							
5							
6							
7							
8							

7.	Given:	g = 2h
-----------	--------	--------

g + h = k

Prove: m = 3h

8.	Given:	ab =	8a

b+d=20

Prove: d = 12

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

Name:	
Date:	Class:

Answer Key

Fill in the missing justifications in each proof.

a = 9b - 8

b = 2

1. Given:
$$a = 2b + 6$$

Prove:

2. Given:
$$\frac{x}{2} = y + 5$$

 $y = 3x$

Prove: x = -2

	STATEMENT	Justification		STATEMENT	JUSTIFICATION
1	a = 2b + 6	Given	1	$\frac{x}{2} = y + 5$	Given
2	a = 9b - 8	Given	2	y = 3×	Given
3	2b + 6 = 9b - 8	Transitive Prop. (1, 2)	3	$\frac{x}{2} = 3x + 5$	Substitution (1, 2)
4	6 = 7b - 8	Subtraction Prop. of Eq.	4	x = 6x + 10	Multiplication Prop. of Eq.
5	14 = 7b	Addition Prop. of Eq.	5	-5× = 10	Subtraction Prop. Of Eq.
6	2 = b	Division Prop. Of Eq.	6	x = -2	Division Prop. Of Eq.
7	b = 2	Symmetric Prop.	7		
8			8		

3. Given:
$$3w = t$$

2r = s

t = 2r

Prove: 3w = s

4. Given:
$$3b + d = f$$

d = 2b

f = g

Prove: g = 5b

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1	3w = t	Given	1	3b + d = f	Given
2	2r = s	Given	2	d = 2b	Given
3	t = 2r	Given	3	f = g	Given
4	3w = 2r	Transitive Prop. (1, 3)	4	3b + 2b = f	Substitution (1, 2)
5	3w = s	Transitive Prop. (2, 4)	5	5b = f	(simplified step 5)
6			6	5b = g	Transitive Prop. (3, 5)
7			7	g = 5b	Symmetric Prop.
8			8		

Name: ______ Class: ______

Answer Key

Complete each proof.

5. Given:
$$5c + 1 = 2c - 8$$

Prove: c = -3

6.	Given:	m = n + 5
		2m = n

Prove: m = -5

	STATEMENT	JUSTIFICATION
1	5c+1=2c-8	Given
2	3c + 1 = -8	Subtraction Prop. of Eq.
3	3c = -9	Subtraction Prop. of Eq.
4	c = -3	Division Prop. of. Eq.
5		
6		
7		
8		

	STATEMENT	JUSTIFICATION
1	m = n + 5	Given
2	2 _m = n	Given
3	m = 2m + 5	Substitution (1, 2)
4	-m = 5	Subtraction Prop. of Eq.
5	m = -5	Division Prop. of Eq.
6		
7		
8		

7. Given:
$$g = 2h$$

 $g + h = k$

k = m

Prove: m = 3h

8.	Given:	ab = 8a
		1 . 1 - 54

Prove: d = 12

	STATEMENT	JUSTIFICATION
1	g = 2h	Given
2	g + h = k	Given
3	k = m	given
4	2h + h = k	Substitution (1, 2)
5	3h = k	(Simplified line 4)
6	3h = m	Transitive Prop. (3, 5)
7	m = 3h	Symmetric Prop.
8		

	STATEMENT	JUSTIFICATION
1	ab = 8a	Given
2	b+d=20	Given
3	b = 8	Division Prop. of Eq.
4	8 + d = 20	Substitution (2, 3)
5	d = 12	Subtraction Prop. of Eq.
6		
7		
8		MATH GIO

ALGEBRA PROOFS WARM-UP / EXIT TICKET A

Name:	
Date:	Class:

Given:	w	+	4	=	7w	_	2
dia ann	***	•	•	_			

v = w

Prove: v = 1

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

ALGEBRA PROOFS WARM-UP / EXIT TICKET B

Name: ______ Class: _____

Given: c + d = f f = kc = d

Prove: k = 2c

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

ALGEBRA PROOFS WARM-UP / EXIT TICKET A

Name:	
Date: _	Class:

Given:	G	iven:
--------	---	-------

w + 4 = 7w - 2

Prove:

v = 1

Name:	
Date: _	Class:

Answer Key

	STATEMENT	JUSTIFICATION
1	w + 4 = 7w - 2	Given
2	v = w	Given
3	4 = 6w - 2	Subtraction Prop. of Eq.
4	6 = 6w	Addition Prop. of Eq.
5	1 = w	Division Prop. of Eq.
6	1 = v	Substitution (2, 5)
7	v = 1	Symmetric Prop. of Eq.
8		

ALGEBRA PROOFS WARM-UP / EXIT TICKET B

Given: c + d = f

c = d

Prove: k = 2c

Name:	
Date: _	Class:

Answer Key

	STATEMENT	JUSTIFICATION
1	c + d = f	Given
2	f = k	Given
3	c = d	Given
4	c + c = f	Substitution (1, 3)
5	2c = f	(simplified line 4)
6	2c = k	Transitive Prop. (2, 5)
7	k = 2c	Symmetric Prop. Of Eq.
8		

Name:	
Date:	Class:

1 Given: m<KOL = m<MON

Prove: m < KOM = m < LON

	1	
	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

2 Given: \overrightarrow{SU} bisects <TSW

Prove: m < U > V + m < V > W = m < T > U

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		MATT

Name:	
Date:	Class:

3

Given:

 $\begin{array}{ccc} \overline{CD} & \cong & \overline{EF} \\ \overline{DE} & \cong & \overline{FG} \end{array}$

Prove:

 $\overline{CE} \cong \overline{EG}$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

1

Given: \overrightarrow{XB} bisects < AXL

 \overrightarrow{XD} bisects < LXE

Prove: $m < D \times E + m < A \times B = m < B \times D$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		мати

Name:		
Date:	Class:	

1 Given: m<KOL = m<MON

Prove: m < KOM = m < LON

	STATEMENT	JUSTIFICATION
1	m <kol =="" m<mon<="" td=""><td>Given</td></kol>	Given
2	m < KOL + m < LOM = m < KOM	Angle Addition Postulate
3	m < MON + m < LOM = m < LON	Angle Addition Postulate
4	m < KOL + m < LOM = m < LON	Substitution (1, 3)
5	m <kom =="" m<lon<="" td=""><td>Transitive Prop. (2, 4)</td></kom>	Transitive Prop. (2, 4)
6		
7		
8		
9		
10		

2 Given: \overrightarrow{SU} bisects <TSW

Prove: m < USV + m < VSW = m < TSU

	STATEMENT	JUSTIFICATION
1	\overrightarrow{SU} bisects <tsw< td=""><td>Given</td></tsw<>	Given
2	m <t\$u =="" m<u\$w<="" td=""><td>Defn. bisector</td></t\$u>	Defn. bisector
3	m <u\$v +="" m<v\$w="m<U\$W</td"><td>Angle Addition Postulate</td></u\$v>	Angle Addition Postulate
4	m <usv +="" m<vsw="m<TSU</td"><td>Substitution (2, 3)</td></usv>	Substitution (2, 3)
5		
6		
7		
8		
9		
10		

Name: _____ Class: _____

3

Given:

 $\begin{array}{ccc} \overline{CD} & \cong & \overline{EF} \\ \overline{DE} & \cong & \overline{FG} \end{array}$

Prove:

 $\overline{CE} \cong \overline{EG}$

	STATEMENT	JUSTIFICATION	
1	$\overline{CD} \cong \overline{EF}$	Given	
2	$\overline{DE} \cong \overline{FG}$	Given	
3	CD = EF	Defn. Congruent	
4	DE = FG	Defn. congruent	
5	CD + DE = CE	Segment Addition Postulate	
6	EF + FG = EG	Segment Addition Postulate	
7	CD + FG = EG	Substitution (3, 6)	
8	CD + DE = EG	Substitution (4, 7)	
9	CE = EG	Transitive Prop. (5, 8)	
10	$\overline{CE} \cong \overline{EG}$	Defn. congruent	

1

Given: \overrightarrow{XB} bisects < AXC

 \overrightarrow{XD} bisects < LXE

Prove: $m < D \times E + m < A \times B = m < B \times D$

	STATEMENT	JUSTIFICATION
1	\overrightarrow{XB} bisects < AXC	Given
2	\overrightarrow{XD} bisects < CXE	Given
3	$m < A \times B = m < B \times C$	Defn. bisector
4	m < (XD = m < DXE	Defn. bisector
5	m < (XD + m < BXC = m < BXD	Angle Addition Postulate
6	$m < D \times E + m < B \times C = m < B \times D$	Substitution (4, 5)
7	$m < D \times E + m < A \times B = m < B \times D$	Substitution (3, 6)
8		
9		
10		MAN

KN
_

Prove: $\overline{JK} \cong \overline{MN}$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

GEOMETRY PROOFS USING DEFINITIONS AND POSTULATES WARM-UP / EXIT TICKET B

Name: ______ Class: ______

Given: $\langle PAQ \cong \langle RAS, \langle RAS \cong \langle SAT \rangle$	Given:	$<$ Paq \cong $<$ Ras,	$<$ RAS \cong $<$ SAT
---	--------	--------------------------	-------------------------

Prove: $\langle PAS \cong \langle QAT \rangle$

		• •
	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		MATE

GEOMETRY PROOFS USING DEFINITIONS AND POSTULATES WARM-UP / EXIT TICKET A

Name:	
Date: _	Class:

Answer Key

Given: $\overline{JM} \cong \overline{KN}$

Prove: $\overline{JK} \cong \overline{MN}$

	STATEMENT	JUSTIFICATION	
1	$\overline{JM} \cong \overline{KN}$	Given	
2	ìw = ku	Defn. congruent	
3	JK + KL + LM = JM	Segment Addition Postulate	
4	$R\Gamma + \Gamma W + W H = K H$	Segment Addition Postulate	
5	Kr + rw + wu = lw	Substitution (2, 4)	
6	JK + KL + LM = KL + LM + MN	Transitive Prop. (3, 5)	
7	îk = wu	Subtraction Property of Eq.	
8	$\overline{JK} \cong \overline{MN}$	Defn. congruent	
9			
10			

GEOMETRY PROOFS USING DEFINITIONS AND POSTULATES WARM-UP / EXIT TICKET B

Name: _____ Class: _____

Given: $\langle PAQ \cong \langle RAS, \langle RAS \cong \langle SAT \rangle$

Prove: $\langle PAS \cong \langle QAT \rangle$

	STATEMENT	JUSTIFICATION	
1	<paq <ras<="" td="" ≅=""><td>Given</td></paq>	Given	
2	<ras <sat<="" td="" ≅=""><td>Given</td></ras>	Given	
3	m <paq =="" m<ras<="" td=""><td>Defn. congruent</td></paq>	Defn. congruent	
4	m <ras =="" m<sat<="" td=""><td>Defn. congruent</td></ras>	Defn. congruent	
5	m <paq =="" m<sat<="" td=""><td colspan="2">Transitive Prop. (3, 4)</td></paq>	Transitive Prop. (3, 4)	
6	m < PAQ + m < QAR + m < RAS = m < PAS	Angle Addition Postulate	
7	m < QAR + m < RAS + m < SAT = m < QAT	Angle Addition Postulate	
8	m < QAR + m < RAS + m < PAQ = m < QAT	Substitution (5, 7)	
9	m <pas =="" m<qat<="" td=""><td colspan="2">Transitive Prop. (6, 8)</td></pas>	Transitive Prop. (6, 8)	
10	<pas <oat<="" td="" ≅=""><td>Defn. congruent</td></pas>	Defn. congruent	

Name:

PROOF PUZZLE: CUT OUT STATEMENTS AND JUSTIFICATIONS AND SEE IF YOU CAN ARRANGE THEM TO DEVELOP A TWO COLUMN PROOF. YOU MIGHT NOT USE ALL OF THE PIECES.
THERE MAY BE MORE THAN ONE CORRECT FINISHED PROOF.

Given:

m<AHB = m<FHG, m<CHD = m<DHE, m<BHD = m<DHF

Prove:

m < CHF = m < BHE

<u> </u>	STATEMENT	JUSTIFICATION		<u>i</u> ON
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				MATERIAL

STATEMENTS AND JUSTIFICATIONS TO CUT OUT FOR PROOF PUZZLE

Transitive Property (,) Given m<DHE + m<EHF = m<DHF m < BHC + m < CHD = m < BHDGiven Substitution (Angle Addition Postulate m < CHF = m < BHEm < AHB = m < FHGm < CHD + m < EHF = m < BHDm<CHD + m<DHE + m<EHF = m<CHF Transitive Property (Angle Addition Postulate Angle Addition Postulate Transitive Property (m < EHF + m < CHD + m < DHE = m < BHEm < BHC + m < CHD = m < CHD + m < EHFm < CHD = m < DHESubstitution (m < BHC = m < EHFm < BHD = m < DHFSubstitution (Substitution (Given Subtraction Property of Equality Angle Addition Postulate m < AHB = m < EHFm < BHC + m < CHD + m < DHE = m < BHESubstitution (Given m < CHD + m < EHF = m < DHFAddition Property of Equality

Name:

PROOF PUZZLE: CUT OUT STATEMENTS AND JUSTIFICATIONS AND SEE IF YOU CAN ARRANGE THEM TO DEVELOP A TWO COLUMN PROOF. YOU MIGHT NOT USE ALL OF THE PIECES.
THERE MAY BE MORE THAN ONE CORRECT FINISHED PROOF.

Given: m < AHB = m < FHG, m < CHD = m < DHE, m < BHD = m < DHF

Prove: m < CHF = m < BHE

	STATEMENT	JUSTIFICATION
1	m <ahb =="" m<fhg<="" td=""><td>Given</td></ahb>	Given
2	m <chd =="" m<dhe<="" td=""><td>Given</td></chd>	Given
3	m <bhd =="" m<dhf<="" td=""><td>Given</td></bhd>	Given
4	m <bhc +="" m<chd="m<BHD</td"><td>Angle Addition Postulate</td></bhc>	Angle Addition Postulate
5	m <dhe +="" m<ehf="m<DHF</td"><td>Angle Addition Postulate</td></dhe>	Angle Addition Postulate
6	m <chd +="" m<ehf="m<DHF</td"><td>Substitution (2, 5)</td></chd>	Substitution (2, 5)
7	m <chd +="" m<ehf="m<BHD</td"><td>Substitution (3, 6)</td></chd>	Substitution (3, 6)
8	m <bhc +="" m<chd="m<CHD" m<ehf<="" td=""><td>Transitive Property (4, 7)</td></bhc>	Transitive Property (4, 7)
9	m <bhc =="" m<ehf<="" td=""><td>Subtraction Property of Equality</td></bhc>	Subtraction Property of Equality
10	m <chd +="" m<dhe="" m<ehf="m<CHF</td"><td>Angle Addition Postulate</td></chd>	Angle Addition Postulate
11	m <bhc +="" m<chd="" m<dhe="m<BHE</td"><td>Angle Addition Postulate</td></bhc>	Angle Addition Postulate
12	m <ehf +="" m<chd="" m<dhe="m<BHE</td"><td>Substitution (9, 11)</td></ehf>	Substitution (9, 11)
13	m <chf =="" m<bhe<="" td=""><td>Transitive Property (10, 12)</td></chf>	Transitive Property (10, 12)

QUIZ: WRITING TWO-COLUMN PROOFS

Name: ______ Class: _____

Complete each proof.

1.	Given:	a + c = 3f
		c = d
		a = 2d

Prove: d = f

Prove: t = z

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
6			6		
7			7		
8			8		

3. Given: \overrightarrow{MD} bisects < CME, < AMB \cong < BMC

Prove: m<BMD = m<AMB + m<DME

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

4. Given: QT = SU

Prove: QS = TU

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

5. Given: X is the midpoint of \overline{VZ} and of \overline{WY}

W is the midpoint of \overline{VX} Y is the midpoint of \overline{XZ}

Prove: VY = WZ

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		MAT

QUIZ: WRITING TWO-COLUMN PROOFS

Name: _ Class: Date:

Complete each proof.

Answer Key

Given: a + c = 3f c = d

a = 2d

d = fProve:

Given: $\chi = y$

z = y

w = xw = t

				Prove:	t = z		
	STATEMENT	JUSTIFICATION		STat	EMENT	إبل	STIFICATION
1	a + c = 3f	Given	1	x = y		Given	
2	c = d	Given		z = y		Given	
3	a = 2d	Given	3	w = x		Given	
4	2d + c = 3f	Substitution (1, 3)	4	w = t		Given	
5	2d + d = 3f	Substitution (2, 4)	5	t = x		Transitive	Prop. (3, 4)
6	3d = 3f	Simplified line 5	6	t = y		Transitive	Prop. (1, 5)
7	d = f	Division Prop. of Eq.	7	t = z		Transitive	Prop. (2, 6)
8			8				

 \overrightarrow{MD} bisects < CME, < AMB \cong < BMC 3. Given:

m < BMD = m < AMB + m < DMEProve:

	STATEMENT	JUSTIFICATION
1	MD bisects <cme< td=""><td>Given</td></cme<>	Given
2	<amb≅ <bmc<="" td=""><td>Given</td></amb≅>	Given
3	m <cmd =="" m<dme<="" td=""><td>Defn. bisector</td></cmd>	Defn. bisector
4	m <amb =="" m<bmc<="" td=""><td>Defn. congruent</td></amb>	Defn. congruent
5	m <bmc +="" m<cmd="m<BMD</td"><td>Angle Addition Postulate</td></bmc>	Angle Addition Postulate
6	m <amb +="" m<cmd="m<BMD</td"><td>Substitution (4, 5)</td></amb>	Substitution (4, 5)
7	m <amb +="" m<dme="m<BMD</td"><td>Substitution (3, 6)</td></amb>	Substitution (3, 6)
8	m <bmd +="" =="" m<amb="" m<dme<="" td=""><td>Symmetric Prop. of Eq.</td></bmd>	Symmetric Prop. of Eq.
9		
10		

4. Given: QT = SU

Prove: QS = TU

	STATEMENT	JUSTIFICATION		
1	UZ = TD	Given		
2	TD = T2 + ZD	Segment Addition Postulate		
3	UZ = UT + TZ	Segment Addition Postulate		
4	TD = UT + TZ	Substitution (1, 3)		
5	UT + TZ = TZ + ZD	Transitive Prop. (2, 4)		
6	UT = ZQ	Subtraction Prop. of Eq.		
7				
8				
9				
10				

5. Given: X is the midpoint of \overline{VZ} and of \overline{WY}

W is the midpoint of \overline{VX} Y is the midpoint of \overline{XZ}

Prove: VY = WZ

	STATEMENT	JUSTIFICATION
1	X is the midpoint of \overline{VZ} and of \overline{WY}	Given
2	W is the midpoint of \overline{VX}	Given
3	Y is the midpoint of \overline{XZ}	Given
4	VX = XZ	Defn. midpoint
5	WX = XY	Defn. midpoint
6	VW = WX	Defn. midpoint
7	XY = YZ	Defn. midpoint
8	VW + WX + XY= VY	Segment Addition Postulate
9	WX + XY + YZ = WZ	Segment Addition Postulate
10	VW = XY	Transitive Prop. (5, 6)
11	VW = YZ	Transitive Prop (7, 10)
12	WX + XY + VW = WZ	Substitution (9, 11)
13	VY = WZ	Transitive Prop. (8, 12)

PROOFS USING SPECIAL ANGLE PAIRS

Name: __ Class: Date:

<4 is a right angle, Given:

<1 ≅ <2

Prove: <2 and <6 are complementary.

2. Given: <2 is a right angle,

 $m < 4 = 60^{\circ}$

m<XYZ = 150°

Z Z

	STATEMENT	Justification		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
			6		
6			7		
7			8		
8			9		

3. Given: <3 and <4 are supplements.

> **<2** ≅ **<**4 Prove:

<1 ≅ <2 4. Given:

<5 ≅ **<**4

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
6			6		
7			7		
8			8		

PROOFS USING SPECIAL ANGLE PAIRS

Name: ______ Class: _____

Answer Key

1. Given: <4 is a right angle, $<1 \approx <2$

<1 ≅ <2

Prove: <2 and <6 are complementary.

2. Given:

<2 is a right angle,

m<4 = 60°

Prove: m<**XYZ** = 150°

	STATEMENT	JUSTIFICATION
1	<4 is a right angle	Given
2	<1 ≅ <2	Given
3	m<4 = 90	Defn. right angle
4	m<1 = m<2	Defn. congruent
5	m<1 + m<6 = m<4	Vertical Angles Theorem
6	m<1 + m<6 = 90	Substitution (3, 5)
7	m<2 + m<6 = 90	Substitution (4, 6)
8	<2 and <6 are complementary	Defn. complementary
8	<2 and <6 are complementary	Defn. complementary

			<i>V</i>
		STATEMENT	JUSTIFICATION
	1	<2 is a right angle	Given
	2	m<4 = 60	Given
1	3	m<2 = 90	Defn. right angle
1	4	m<2 + m<3 = m <xyz< td=""><td>Angle Addition Post.</td></xyz<>	Angle Addition Post.
\dashv	5	m<3 = m<4	Vertical Angles Theorem
4	6	m<2 + m<4 = m <xyz< td=""><td>Substitution (4, 5)</td></xyz<>	Substitution (4, 5)
4	7	90 + 60 = m <xyz< td=""><td>Substitution (2, 3, 6)</td></xyz<>	Substitution (2, 3, 6)
	8	150 = m <xyz< td=""><td>Simplified line 7</td></xyz<>	Simplified line 7
	9	m <xyz 150<="" =="" th=""><th>Symmetric Prop. Of Eq.</th></xyz>	Symmetric Prop. Of Eq.

3. Given: <3 and <4 are supplements.

Prove: <2 ≅ <4

4. Given:

<1 ≅ **<2**

Prove: <5 ≅

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1	<3 and <4 are suppl.	Given	1	<1 ≅ <2	Given
2	m<3 + m<4 = 180	Defn. suppl.	2	<2 ≅ <5	Vertical Angles Theorem
3	m<2 + m<3 = 180	Linear Pair Theorem	3	< ≅ <4	Vertical Angles Theorem
4	m<2 + m<3 = m<3 + m<4	Transitive Prop. (2, 3)	4	<1 ≅ <5	Transitive Prop. (1, 2)
5	m<2 = m<4	Subtraction Prop. Of Eq.	5	<5 ≅ <4	Transitive Prop. (3, 4)
6	<2 ≅ <4	Defn. congruent	6		
7			7		
8			8		MANUAL COMPANY

GEOMETRY PROOFS USING SPECIAL ANGLE PAIRS WARM-UP / EXIT TICKET A

Name:	
Date: _	Class:

Given:	<4 ≅ <8

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

GEOMETRY PROOFS USING SPECIAL ANGLE PAIRS WARM-UP / EXIT TICKET B

Name: ______ Class: ______

Given:	<2 is a right angle,	<4 ≅ <6
Prove:	<5 and <6 are comp	olementary.

		•
	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		МАТИ

GEOMETRY PROOFS USING SPECIAL ANGLE Pairs Warm-UP / EXIT TICKET A

Name:	
Date: _	Class:

Given:	<4 ≅ <8
Given:	<4 = <8

	STATEMENT	JUSTIFICATION
1	<4 ≅ <8	Given
2	<5 ≅ <8	Vertical Angles Theorem
3	<4 ≅ <5	Transitive Prop. (1, 2)
4		
5		
6		
7		
8		
9		
10		

GEOMETRY PROOFS USING SPECIAL ANGLE PAIRS WARM-UP / EXIT TICKET B

Name: Class: Date: ___

Given: <2 is a right angle, **<4** ≅ **<6** Prove: <5 and <6 are complementary.

	STATEMENT	JUSTIFICATION
1	<2 is a right angle	Given
2	<4 ≅ <6	Given
3	m<2 = 90	Defn. right angle
4	m<4 = m<6	Defn. congruent
5	m<4 + m<5 = m<2	Vertical Angles Theorem
6	m<4 + m<5 = 90	Substitution (4, 5))
7	m<6 + m<5 = 90	Substitution (4, 6)
8	<5 and <6 are complementary	Defn. complementary
9		
10		

PROOFS WITH SPECIAL ANGLES ALONG TRANSVERSALS

Name: ______ Class: ______

1. Given: $\langle 2 \cong \langle 7 \rangle$

Prove: <14 ≅ <16

2. Given: $V \parallel W$, $\langle 7 \cong \langle 11 \rangle$

Prove: m<16 = 90°

	STATEMENT	Justification		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
			6		
6			7		
7			8		
8			9		

3. Given: UII m, VII w

Prove: <1 ≅ <16

4. Given: $<13 \cong <4$, UII m

© Copyright 2014 Math Giraffe

Prove: VII W

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
6			6		
7			7		
8			8		MATH GRAA

PROOFS WITH SPECIAL ANGLES ALONG TRANSVERSALS

Name: _____ Class: _____

1. Given: $\langle 2 \cong \langle 7 \rangle$

Prove: <14 ≅ <16

Prove: m<16 = 90°

	STATEMENT	Justification		STATEMENT	JUSTIFICATION	
1	<2 ≅ <7	Given	1	v II w	Given	
2	III m	Converse of Alt. Int. Angles Thm.	2	<7 ≅ <∥	Given	
3	<14 ≅ <16	Corresp. Angles Post.	3	m<7 = m<11	Defn. congruent	
4			4	m<7 + m<11 = 180	Same-Side Int. Angles Thm.	
			5	m<11 + m<11 = 180	Substitution (3, 4)	
5			6	2(m<11) = 180	Simplified line 5	
6			7	m<11 = 90	Division Prop. Of Eq.	
7			8	m<11 = m<16	Vertical Angles Thm.	
8			9	m<16 = 90	Substitution (7, 8)	

3. Given: UII m, vII w

Prove: $\langle 1 \cong \langle 16 \rangle$

4.	Given:	<13 ≅ <4,	l II m
	Prove:	vII w	

	STATEMENT	JuSTIFICATION		STATEMENT	JUSTIFICATION
1	III m	Given	1	<13 ≅ <4	Given
2	v II w	Given	2	III m	Given
3	<1 ≅ <3	Corresp. Angles Post.	3	<13 ≅ <15	Corresp. Angles Post.
4	<3 ≅ <16	Alt. Ext. Angles Thm.	4	<4 ≅ <15	Transitive Prop. (1, 3)
5	<1 ≅ <16	Transitive Prop. (3, 4)	5	v II w	Converse of Alt. Ext. Angles Thm.
6			6		
7			7		
8			8		MATH GIRAF

UMETR BRM-UF	P / EXIT TICKET A	Name: Class: Date: Class:
Given:	<11 and <1 are supplementary.	1/3 8 40/
Prove:	<3 ≅ <10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Given:	2 / EXIT TICKET B <12 ≅ <4, <12 ≅ <5	Date:Class:
Prove:	m<3 + m<5 = 180°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
5		
I		
7		
7 8 9		

GEOMETRY PROOFS USING TRANSVERSALS Warm-up / EXIT TICKET A

Answer Key

Name:	
Date: _	Class:

Given: < 11 and < 1 are supplementary.

<3 ≅ **<10** Prove:

	STATEMENT	JUSTIFICATION
1	41 and <1 are supplementary	Given
2	fllh	Converse of Same-Side Exterior Angles Theorem
3	<3 ≅ <10	Alternate Interior Angles Theorem
4		
5		
6		
7		
8		
9		
10		

GEOMETRY PROOFS USING TRANSVERSALS WARM-UP / EXIT TICKET B

Answer Key

Name: Class: _ Date: __

Given: $<12 \cong <4$, $<12 \cong <5$

Prove: $m < 3 + m < 5 = 180^{\circ}$

	STATEMENT	JUSTIFICATION
1	<12 ≅ <4	Given
2	<12 ≅ <5	Given
3	<4 ≅ <5	Transitive Property (1, 2)
4	fllg	Converse of Alternate Interior Angles Theorem
5	m<3 + m<5 = 180	Same-Side Interior Angles Theorem
6		
7		
8		
9		
10		

PROOFS WITH TRIANGLES

Name: _____ Class: _____

1. Given: $<1 \approx <4$

Prove: $\overline{AB} \cong \overline{BC}$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		

2. Given: $m<1 + m<2 = 140^{\circ}$

Prove: $m<4=40^{\circ}$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		

3. Given: AC = AB

Prove: m < 2 = m < 4

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		

4. Given: $<1 \cong <3$, $<1 \cong <2$

Prove: $\overline{PQ} \cong \overline{PR}$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		MATH GIRAN

X 5 2 Y 3 Z W

Name: ______ Class: _____

5. Given: $\langle 1 \cong \langle 2, XW = WY \rangle$

Prove: WY = XY

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

6. Given: WY = XW

Prove: m < 4 + m < 5 = m < 2

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

PROOFS WITH TRIANGLES

1. Given: $<1 \approx <4$

Prove: $\overline{AB} \cong \overline{BC}$

	STATEMENT	JUSTIFICATION
1	<1 ≅ <4	Given
2	<3 ≅ <4	Vertical Angles Theorem
3	∢≅<3	Transitive Prop. (1, 2)
4	$\overline{AB} \cong \overline{BC}$	Converse of Base Angles of Isos. Triangle Thm.
5		
6		

Prove: m<4 = 40°

	STATEMENT	Justification
1	m<1 + m<2 = 140	Given
2	m<1 + m<2 + m<3 = 180	Triangle Sum Theorem
3	140 + m<3 = 180	Substitution (1, 2)
4	m<3 = 40	Subtraction Prop. of Eq.
5	m<3 = m<4	Vertical Angles Theorem
6	m<4 = 40	Substitution (4, 5)

Name:	
Date: _	Class:

Answer Key

3. Given:
$$AC = AB$$

Prove: m < 2 = m < 4

	STATEMENT	JUSTIFICATION
1	AC = AB	Given
2	m<2 = m<3	Base Angles of Isos. Triangle Thm.
3	m<3 = m<4	Vertical Angles Theorem
4	m<2 = m<4	Transitive Prop. (2, 3)
5		
6		

4. Given:
$$<1 \cong <3$$
, $<1 \cong <2$

Prove: $\overline{PQ} \cong \overline{PR}$

		<u>'</u>
	STATEMENT	JUSTIFICATION
1	<1 ≅ <3	Given
2	<1 ≅ <2	Given
3	<2 ≅ <3	Transitive Prop. (1, 2)
4	$\overline{PQ} \cong \overline{PR}$	Converse of Base Angles of Isos. Triangle Thm.
5		
6		MATH GIRAFI

© Copyright 2014 Math Giraffe

X 5 2 Y 3 Z W

Name: ______ Class: _____

5. Given: $\langle 1 \cong \langle 2, XW = WY \rangle$

Prove: WY = XY

	STATEMENT	JUSTIFICATION
1	d ≅ <2	Given
2	XW = WY	Given
3	XW = XY	Converse of Base Angles of Isos. Triangle Thm.
4	WY = XY	Transitive Prop. (2, 3)
5		
6		
7		
8		

6. Given: WY = XW

Prove: m < 4 + m < 5 = m < 2

	STATEMENT	JUSTIFICATION
1	WY = XW	given
2	m < WXY = m < 2	Base Angles of Isos. Triangle Thm.
3	m<4 + m<5 = m <wxy< td=""><td>Angle Addition Post.</td></wxy<>	Angle Addition Post.
4	m<4 + m<5 = m<2	Substitution (2, 3)
5		
6		
7		
8		

quiz: PROOFS USING SPECIAL ANGLE PAIRS AND TRIANGLES

Complete each proof.

Name:	
Date:	Class:

K	1	7			
N.	M 2	4			
N			L	5	\rightarrow

1. (Given:	<1 ≅ <5
------	--------	---------

Prove: $\overline{MN} \cong \overline{NL}$

	STATEMENT	Justification
1		
2		
3		
4		
5		
6		
7		
8		

2. Given: \overline{MN}	$\cong \overline{ML}$
---------------------------	-----------------------

Prove: <3 ≅ <5

3. Given: $m<2=90^{\circ}$, $m<4=6$	0°
---	----

Prove: m<3 = 30°

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		MATH GIT

4. Given: $f \parallel g$, $<3 \cong <7$

Prove: s || t

5. Given: $\langle 8 \cong \langle 6, s \parallel t \rangle$

Prove: m<2 = 90°

	STATEMENT	JUSTIFICATION		
1			1	
2			2	
3			3	
4			4	
5			5	
6			6	
7			7	
8			8	
9			9	

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		

QUIZ: PROOFS USING SPECIAL ANGLE PAIRS AND TRIANGLES

Complete each proof.

Name:	
Date:	Class:

Answer Key

1. Given: $\langle 1 \cong \langle 5 \rangle$

Prove: $\overline{MN} \cong \overline{NL}$

	STATEMENT	JUSTIFICATION
1	∢≅<5	Given
2	<1 ≅ <2	Vertical Angles Theorem
3	<4 ≅ <5	Vertical Angles Theorem
4	<2 ≅ <5	Transitive Prop. (1, 2)
5	<2 ≅ <4	Transitive Prop. (3, 4)
6	$\overline{MN} \cong \overline{NL}$	Converse of Base Angles of Isos. Triangle Thm.
7		
8		

2. Given: $\overline{MN} \cong \overline{ML}$

Prove: $<3 \cong <5$

3. Given: m<2 = 90°, m<4 = 60

Prove: m<3 = 30°

	STATEMENT	JUSTIFICATION
1	$\overline{MN} \cong \overline{ML}$	Given
2	<3 ≅ <4	Base Angles of Isos. Triangle. Thm.
3	<4 ≅ <5	Vertical Angles Theorem
4	<3 ≅ <5	Transitive Prop. (2, 3)
5		
6		
7		
8		

	STATEMENT	JUSTIFICATION
1	m<2 = 90	Given
2	m<4 = 60	Given
3	m<2 + m<4 + m<3 = 180	Triangle Sum Theorem
4	90 + 60 + m<3 = 180	Substitution (1, 2, 3)
5	150 + m<3 = 180	Simplified line 4
6	m<3 = 30	Subtraction Prop. of Eq.
7		
8		41771

4. Given: $f \parallel g$, $<3 \cong <7$

Prove: s || t

5. Given: $\langle 8 \cong \langle 6, s \parallel t \rangle$

Prove: m<2 = 90°

	STATEMENT	JUSTIFICATION
1	f II g	Given
2	<3 ≅ <7	Given
3	<3 ≅ <1	Corresp. Angles Post.
4	<1 ≅ <7	Transitive Prop. (2, 3)
5	s II t	Converse of Corresp. Angles Post.
6		
7		
8		
9		

	STATEMENT	JUSTIFICATION
1	<8 ≅ <6	Given
2	s II t	Given
3	m<8 = m<6	Defn. congruent
4	m<8 + m<6 = 180	Same-Side Interior Angles Thm.
5	m<8 + m<8 = 180	Substitution (3, 4)
6	2 (m<8) = 180	Simplified line 5
7	m<8 = 90	Division Prop. of Eq.
8	m<2 = m<8	Corresp. Angles Post.
9	m<2 = 90	Substitution (7, 8)

TWO- COLUMN PROOF TEMPLATE

Name: ______ Class: ______

1.	Given:			2.	Given:	
	Prove:				Prove:	
	STATEMENT	JUST	iFiCaTiON		STATEMENT	JUSTIFICATION
1				1		
2				2		
3				3		
4				4		
5				5		
6				6		
7				7		
8				8		

3.	Given:		
	Prove:		

4. Given:

Prove:

	STATEMENT	JUSTIFICATION		STATEMENT	JUSTIFICATION
1			1		
2			2		
3			3		
4			4		
5			5		
6			6		
7			7		
8			8		

TWO-COLUMN PROOF TEMPLATE

Name:	
Date: _	Class:

Given:		
Prove:		

	STATEMENT	JUSTIFICATION
<u> </u>		31,124,11
<u> </u>		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Given:		
Prove:		

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		MATI