Universidad Nacional Autónoma de México

Facultad de Ciencias

Lógica Computacional — 2025-2

Tarea 01

Docentes:

Noé Hernández Santiago Escamilla

Ricardo López

Autores:

Fernanda Ramírez Juárez Ianluck Rojo Peña

Fecha de entrega: Miércoles 12 de febrero de 2025

Notas sobre la resolución

Nota general: Los ejercicios fueron resueltos en base a las notas de clase (IcNota2.pdf) y a los comentarios dados en las sesiones del curso. Se tomaron en cuenta los siguientes puntos específicos:

- Ejercicios 1 y 2: Se basan en las notas del profesor y los comentarios del 30 de enero y 6 de febrero.
- Ejercicio 4: Resuelto con base en la sección '7. Conceptos semánticos básicos' en IcNota2.pdf y explicaciones del ayudante Santiago el 7 de febrero.
- Ejercicio 5: Derivado de un ejercicio resuelto en clase el 30 de enero.
- **Ejercicio 6:** Link a la página de apoyo para realizar el ejercicio: https://sites.google.com/ciencias.unam.mx/estr discretas-2024-2/clases/notas-de-clase?authuser=0
- Ejercicio 6 y 7: Se basan en las clases y notas del profesor además las clases del ayudante Santiago los días 6, 7, 10, 11 y 12 de febrero.

Resolución de Ejercicios

- 1. (1.5 pt.) Usando las siguientes claves:
 - p := María está contenta.
 - q := María pide una bicicleta por su cumpleaños.
 - r := María recibe una bicicleta por su cumpleaños.
 - s := María odia a Juan.
 - t := Juan va a la playa.
 - u := Juan está de vacaciones.
 - v := El sol brilla.

Exprese en español las siguientes fórmulas llenando el cuadro que está abajo.

- (a) Siempre que María está contenta y el sol brilla, deja de odiar a Juan.
- (b) Cuando brilla el sol, Juan va a la playa, si está de vacaciones.
- (c) María está contenta siempre que Juan está de vacaciones y se va a la playa.
- (d) Aunque María está contenta porque pidió una bicicleta para su cumpleaños y la ha recibido, odia a Juan.
- (e) María recibirá una bicicleta en su cumpleaños sólo si la pide.

	$(u \wedge t) \to p$	$\neg(r \land \neg q)$	$(p \land v) \to \neg s$	$(p \land (q \land r)) \land s$	$v \to u \to t$
1			✓		
2					√
3	✓				
4				✓	
5		✓			

2. (1 pt.) Desarrolle las siguientes sustituciones, además elimine los paréntesis que sean redundantes según el orden de precedencia de los operadores lógicos visto en clase:

$$\mathbf{a}) \ \left((\neg (p \land q) \leftrightarrow ((\neg q) \rightarrow (p \rightarrow s))) \quad [p := (q \rightarrow s)][s := (\neg p)] \right)$$

Sustituímos a la variable atómica p con la fórmula $(q \to s)$ en la proposición:

$$((\neg((q \to s) \land q)) \leftrightarrow ((\neg q) \to ((q \to s) \to s))) \quad [s := (\neg p)]$$

Ahora continuamos con la sustitución de s:

$$((\neg((q \to s) \land q)) \leftrightarrow ((\neg q) \to ((q \to (\neg p)) \to (\neg p))))$$

Por jerarquía de operadores eliminamos los paréntesis innecesarios:

$$((\neg((q \to s) \land q)) \leftrightarrow ((\neg q) \to ((q \to (\neg p)) \to (\neg p))))$$
$$= \neg((q \to s) \land q) \leftrightarrow \neg q \to (q \to \neg p) \to \neg p$$

Resultado final:

$$\neg((q \to s) \land q) \leftrightarrow \neg q \to (q \to \neg p) \to \neg p$$

b)
$$((p \lor q) \to ((\neg r) \leftrightarrow p))$$
 $[r, p, q := p, q, r]$

Dado que es una única sustitución, se reemplazan las variables una vez:

$$((q \lor r) \to ((\neg p) \leftrightarrow q))$$

Eliminamos los paréntesis:

$$((q \lor r) \to ((\neg p) \leftrightarrow q))$$

Resultado final:

$$q \lor r \to (\neg p \leftrightarrow q)$$

3. (1 pt.) Tomando en cuenta la sintaxis para las fórmulas de la lógica proposicional definida en la Nota 01, reinserte tantos paréntesis como sea posible a la fórmula: $(q \to p \to \neg r \land s) \lor \neg p$

$$(q \to p \to \neg r \land s) \lor \neg p = ((q \to (p \to (\neg r) \land s))) \lor (\neg p))$$

Resultado final:

$$((q \to (p \to ((\neg r) \land s))) \lor (\neg p))$$

- 4. (2 pts.) Sean Γ y Δ dos conjuntos de oraciones de la lógica proposicional, y sean φ y ψ fórmulas de la lógica proposicional. Determine para cada una de las siguientes afirmaciones si es verdadera, con una demostración, o si es falsa, con un contraejemplo.
 - Si $\Gamma \vdash \varphi \land \Delta \vdash \varphi$, entonces $\Gamma \cup \Delta \models \varphi$.

Demostración

P.D. $\Gamma \cup \Delta \vDash \varphi$ significa que para toda interpretación I que satisface a $\Gamma \cup \Delta$, $I(\Gamma \cup \Delta) = 1$, entonces también satisface a φ , $I(\varphi) = 1$. De este modo, consideramos los siguientes casos:

Caso 1: $\Gamma \cup \Delta$ es insatisfacible

Usaremos una de las propiedades de la Proposición 7.5 del archivo PDF *IC-Nota02.pdf* para demostrar este caso. Debemos probar lo siguiente:

Sea Γ' un conjunto de fórmulas y φ' una fórmula.

P.D. Si Γ' es insatisfacible, entonces $\Gamma' \vDash \varphi'$.

Recordemos que la relación de consecuencia lógica se entiende a través de una implicación del siguiente modo:

Para toda interpretación
$$I, I(\Gamma') = 1 \rightarrow I(\varphi') = 1$$
.

(Fragmento obtenido de las Notas 02)

Supongamos ahora que Γ' es insatisfacible, entonces $I(\Gamma)'=0$ para toda interpretación I.

En particular, si suponemos que se cumple $I(\Gamma') = 0 \to I(\varphi') = 1$.

Tenemos que, en la lógica proposicional, si el antecedente es falso, la implicación es verdadera sin importar la veracidad de la conclusión.

Así, si Γ' es insatisfacible, entonces $\Gamma' \vDash \varphi$.

 $Y :: Si \Gamma \vdash \varphi \wedge \Delta \text{ es insatisfacible, entonces } \Gamma \cup \Delta \models \varphi$

Caso 2: $\Gamma \cup \Delta$ es satisfacible

Subcaso 2.1: $\varphi \in \Gamma \circ \varphi \in \Delta$

Es trivial, ya que como φ pertenece a alguno de los dos conjuntos, éste sigue perteneciendo a la unión, es decir, $\varphi \in \Gamma \cup \Delta$.

Dado que $\Gamma \cup \Delta$ es satisfacible, significa que $I(\Gamma \cup \Delta) = 1$.

Por lo tanto, $\forall \psi \in \Gamma \cup \Delta, I(\psi) = 1$, lo que implica que φ es satisfacible.

Así, concluimos que $\Gamma \cup \Delta \vDash \varphi$.

Subcaso 2.2: $\varphi \notin \Gamma \ y \ \varphi \notin \Delta$

Es trivial, ya que nuestro supuesto es que $\Gamma \vDash \varphi$ y $\Delta \vDash \varphi$.

Y cómo $\Gamma \cup \Delta$ es satisfacible, la interpretación I que hace satisfacible a $\Gamma \cup \Delta$ también hace satisfacible a φ .

Por lo tanto, se concluye que: $\Gamma \cup \Delta \models \varphi$.

Conclusión: Si $\Gamma \vDash \varphi$ y $\Delta \vDash \varphi$, entonces $\Gamma \cup \Delta \vDash \varphi$.

• Si $\Gamma \vDash \varphi$ y $\Delta \nvDash \varphi$, entonces $\Gamma \cup \Delta \vDash \varphi$.

Demostración

Por nuestro supuesto, para toda interpretación I tal que $I(\Gamma) = 1$, se tiene que $I(\varphi) = 1$.

Además, existe I' tal que $I'(\Delta) = 1$, pero $I'(\varphi) = 0$.

Notemos que $\Gamma \cup \Delta$ es el conjunto con los elementos tanto de Γ como de Δ , por lo que cualquier interpretación I^* debe satisfacer las fórmulas de Γ como de Δ).

Pero por nuestro supuesto, existe $\psi \in \Gamma$ tal que $I^*(\psi) = 1$, y esta interpretación de la fórmula ψ es necesaria para que φ sea consecuencia lógica de Γ .

Sin embargo, existe al menos $\psi' \in \Delta$ tal que cualquier interpretación $I^*(\psi') = 0$ pues ψ' es la fórmula que, al aplicarle alguna interpretación en Δ , hace que φ no sea consecuencia lógica de Δ .

De este modo, no hay interpretaciones que hagan a $\Gamma \cup \Delta$ satisfacible, pues de lo contrario, se contradicen a nuestro supuesto.

Por lo tanto, $\Gamma \cup \Delta$ es insatisfacible, y por una propiedad usada en el ejercicio anterior: Si $\Gamma \cup \Delta$ es insatisfacible, entonces $\Gamma \cup \Delta \vDash \varphi$.

$$\therefore$$
 Si $\Gamma \vDash \varphi$ y $\Delta \nvDash \varphi$, entonces $\Gamma \cup \Delta \vDash \varphi$

• Si $\Gamma \nvDash \psi$, entonces $\Gamma \vDash \neg \varphi$.

Contraejemplo

Por el Lema 7.2 de las notas (ICNota 02.pdf), Ø es un conjunto vacío de fórmulas válidas.

Por lo que definimos a $\psi = p \to q$ y $\Gamma = \emptyset$.

Por definición, $p \to q$ no es tautología, entonces $\Gamma \nvDash \psi$, es decir: $\varnothing \nvDash p \to q$.

Pues recordemos que toda interpretación satisface a \varnothing , pero no toda interpretación satisface $p \to q$.

Así, $\Gamma \nvDash \neg \psi$, es decir: $\varnothing \nvDash \neg (p \to q)$ y ya que $\neg (p \to q)$ sigue sin ser tautología.

Por lo tanto, la afirmación es falsa.

5. (1.5 pts.) Mediante interpretaciones decida si los siguientes conjuntos de proposiciones son satisfacibles:

a)
$$\{p \to q, (s \lor p) \land \neg q, \neg s\}$$

Definimos el conjunto de fórmulas:

$$\Gamma = \{p \to q, (s \lor p) \land \neg q, \neg s\}$$

donde:

$$\varphi_1 = p \to q, \quad \varphi_2 = (s \lor p) \land \neg q, \quad \varphi_3 = \neg s$$

Tenemos que Γ es satisfacible si existe una interpretación I tal que $I(\varphi) = 1$ para todo $\varphi \in \Gamma$.

Así, evaluamos $I(\varphi_1) = 1$, es decir, $I(p \to q) = 1$, lo que implica que I(p) = 0 o I(q) = 1.

Si I(p) = 0, entonces I(q) puede tomar cualquier valor. Supongamos que I(q) = 0.

Ahora, evaluamos $I(\varphi_2) = 1$, es decir, $I((s \lor p) \land \neg q) = 1$.

Para que esto se cumpla, se debe cumplir que $I(s \lor p) = 1$ y $I(\neg q) = 1$.

Dado que $I(\neg q) = 1$, se tiene que I(q) = 0 como habíamos supuesto.

Por otro lado, $I(s \lor p) = 1$ implica que I(s) = 1 o I(p) = 1.

Como habíamos supuesto que I(p) = 0, entonces necesariamente I(s) = 1.

Sin embargo, evaluando $I(\varphi_3) = 1$, es decir, $I(\neg s) = 1$, se deduce que I(s) = 0, lo cual contradice la evaluación anterior de I(s) = 1.

Dado que llegamos a una contradicción, se concluye que no existe una interpretación que satisfaga todas las fórmulas de Γ .

 Γ es insatisfacible.

b)
$$\{p \to q, q \leftrightarrow s, \neg p, \neg s\}$$

Definimos el conjunto de fórmulas:

$$\Gamma = \{p \to q, q \leftrightarrow s, \neg p, \neg s\}$$

donde:

$$\varphi_1 = p \to q, \quad \varphi_2 = q \leftrightarrow s, \quad \varphi_3 = \neg p, \quad \varphi_4 = \neg s$$

Analizamos la satisfacibilidad del conjunto, evaluando si cada fórmula es satisfacible.

Si $I(\varphi_1) = 1$, es decir, $I(p \to q) = 1$, entonces debe cumplirse que I(p) = 0 o I(q) = 1.

Dado que $I(\varphi_3) = 1$, es decir, $I(\neg p) = 1$, se tiene que I(p) = 0.

Por lo tanto, $I(p \to q) = 1$ se cumple para cualquier valor de I(q).

Ahora evaluamos $I(\varphi_2)=1$, es decir, $I(q\leftrightarrow s)=1$, lo que implica que I(q)=I(s).

Si I(q) = 0, entonces I(s) = 0.

Por otro lado, $I(\varphi_4) = 1$, es decir, $I(\neg s) = 1$, lo que implica que I(s) = 0.

Esto es consistente con la evaluación anterior de I(s) = 0.

Sin embargo, si asumimos que I(q)=1, entonces I(s)=1 por la equivalencia $q\leftrightarrow s$.

Esto contradice la evaluación de $I(\neg s)=1$, lo que significa que nuestra suposición de I(q)=1 es incorrecta.

Así, tenemos que I(p) = I(q) = I(s) = 0, lo cual es consistente con todas las fórmulas.

De este modo, hemos encontrado una interpretación que satisface todas las fórmulas en Γ

 Γ es satisfacible.

6. (2 pts.) Usando deducción natural pruebe la validez de los siguientes:

$$\bullet \ p \to q, q \to r \vee s, \neg s, p \vdash r$$

$$\bullet \ \neg p \lor q \vdash p \to q$$

1	1p v q	fremasa
12	P	Supervado
3	70 49	Recordendo Premisa
4	٦٥	Superiordo
5	p ~ 1p	Contradicción (2.3)
6	9	E v (1,4,5)
7	P+ 9C	I + (2,6)

Mota: Para esta ejercicio se usaron las reglas vistas en clasa y ademas usamos maderial visto en la asignatura Colincidura Discretas.

Doignos link de le pagina: Prosontación "Lógica proposicional V"

7. (2 pts.) Considere el siguiente argumento lógico:

Si Sarah Connor destruye a Skynet en 1994, entonces no habrá Día del Juicio Final. Si no hay Día del Juicio Final, John Connor no enviará a su padre a 1984. Es condición necesaria que John Connor envíe a su padre a 1984, para que el mismo John nazca. Sarah Connor no destruye a Skynet en 1994, si John no nace. Por lo tanto, Sarah Connor no destruirá a Skynet en 1994.

Tradúzcalo a lógica proposicional y a través de tableaux semánticos determine si es correcto o no.

Tenamos:

P: Jarah Connor destrige a Jlhyrat en 1994.

q: Habre Día del Israio Final

r: John Conor envia a su padre a 1984.

s: John nace

Tradacción:

O > 19

radication: $p \rightarrow 1q$ $1q \rightarrow 1r$ $r \leftrightarrow 5$ $15 \rightarrow 1p$ $\vdots \rightarrow p$

regames la conclusion

.. El argumento es correcto