Positive and monotone fragments of FO and LTL

Simon IOSTI, Denis KUPERBERG and **Quentin MOREAU**July 8, 2025

Context

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of **unary predicates**.
- Syntax of FO:

$$\phi, \psi ::= \mathbf{a}(\mathbf{x}) \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} < \mathbf{y} \mid \bot \mid \top \mid$$
$$\phi \lor \psi \mid \phi \land \psi \mid \exists \mathbf{x}, \phi(\mathbf{x}) \mid \forall \mathbf{x}, \phi(\mathbf{x}) \mid \neg \phi.$$

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of **unary predicates**.
- Syntax of FO: a is satisfied at position x $\phi, \psi ::= a(x) \mid x = y \mid x < y \mid \bot \mid \top \mid$

 $\phi \lor \psi \mid \phi \land \psi \mid \exists x, \phi(x) \mid \forall x, \phi(x) \mid \neg \phi.$

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of **unary predicates**.
- Syntax of FO: position x is to the left of position y $\phi, \psi ::= a(x) \mid x = y \mid x < y \mid \bot \mid \top \mid$

$$\varphi, \psi := a(x) \mid x = y \mid x < y \mid \bot \mid \bot \mid$$
$$\varphi \lor \psi \mid \varphi \land \psi \mid \exists x, \phi(x) \mid \forall x, \phi(x) \mid \neg \phi.$$

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of **unary predicates**.
- Syntax of FO:

$$\phi, \psi ::= a(x) \mid x = y \mid x < y \mid \bot \mid \top \mid$$
$$\phi \lor \psi \mid \phi \land \psi \mid \exists x, \phi(x) \mid \forall x, \phi(x) \mid \neg \phi.$$

• Models: **finite words** over $A := \mathcal{P}(\Sigma)$.

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of unary predicates.
- Syntax of FO:

$$\phi, \psi ::= \mathbf{a}(\mathbf{x}) \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} < \mathbf{y} \mid \bot \mid \top \mid$$
$$\phi \lor \psi \mid \phi \land \psi \mid \exists \mathbf{x}, \phi(\mathbf{x}) \mid \forall \mathbf{x}, \phi(\mathbf{x}) \mid \neg \phi.$$

- Models: **finite words** over $A := \mathcal{P}(\Sigma)$.
- Example:

$$\exists x, (a(x) \land \forall y > x, b(y) \lor c(y))$$

First-Order Logic over finite words (FO):

- Signature: $(<, \Sigma)$ where $\Sigma = \{a, b, c, ...\}$ is a set of unary predicates.
- Syntax of FO:

$$\phi, \psi ::= a(x) \mid x = y \mid x < y \mid \bot \mid \top \mid$$
$$\phi \lor \psi \mid \phi \land \psi \mid \exists x, \phi(x) \mid \forall x, \phi(x) \mid \neg \phi.$$

- Models: **finite words** over $A := \mathcal{P}(\Sigma)$.
- Example:

$$bcc\binom{b}{d}\binom{b}{c}\binom{a}{b}cc\binom{b}{d}bb \models \exists x, (a(x) \land \forall y > x, b(y) \lor c(y))$$

• \subset extended to A^* : $abc \leq_{A^*} a\binom{b}{c}\binom{a}{c}$.

- \subset extended to A^* : $abc \leq_{A^*} a\binom{b}{c}\binom{a}{c}$.
- *L* is **monotone** if: $u \in L$ and $u \leq_{A^*} v \implies v \in L$.

- \subset extended to A^* : $abc \leq_{A^*} a\binom{b}{c}\binom{a}{c}$.
- *L* is **monotone** if: $u \in L$ and $u \leq_{A^*} v \implies v \in L$.
- FO⁺: **positive** formulas i.e. without ¬.
- In FO⁺: $\exists x, a(x)$ Not in FO⁺: $\forall x, a(x) \implies b(x)$

- \subset extended to A^* : $abc \leq_{A^*} a\binom{b}{c}\binom{a}{c}$.
- *L* is **monotone** if: $u \in L$ and $u \leq_{A^*} v \implies v \in L$.
- FO⁺: **positive** formulas i.e. without ¬.
- In FO⁺: $\exists x, a(x)$ Not in FO⁺: $\forall x, a(x) \implies b(x)$
- $\phi \in FO^+ \implies \llbracket \phi \rrbracket$ monotone.

• $FO^+ = FO$ -monotone?

- $FO^+ = FO$ -monotone?
- Yes on arbitrary structures: Lyndon 1959

- $FO^+ = FO$ -monotone?
- Yes on arbitrary structures: Lyndon 1959
- No on finite structures: Ajtai and Gurevich 1987/Stolboushkin 1995/Kuperberg 2023

- $FO^+ = FO$ -monotone?
- Yes on arbitrary structures: Lyndon 1959
- No on finite structures: Ajtai and Gurevich 1987/Stolboushkin 1995/Kuperberg 2023

on finite words

The day FO^+ became evil

• How much no: $|\Sigma| = 1$ enough (this work).

The day FO⁺ became evil

- How much no: $|\Sigma| = 1$ enough (this work).
- Worse: $L \in FO^+$ undecidable (Kuperberg 2023).

The day FO⁺ became evil

- How much no: $|\Sigma| = 1$ enough (this work).
- Worse: $L \in FO^+$ undecidable (Kuperberg 2023).
- Our goals:
 - 1. Positivity VS monotonicity on fragments.
 - 2. Preservation of robustness properties.

Equivalences between positive fragments of ${\rm FO}$ and ${\rm LTL}$

FO^3 and FO^2

- FO³: only 3 variables.
- Example:

$$\exists x < y < z, b(x) \land c(y) \land b(z) \land (\forall y, x < y < z \implies a(y))$$

$$\circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ$$

$$x \qquad \qquad \downarrow \qquad \qquad \downarrow$$

FO^3 and FO^2

- FO³: only 3 variables.
- Example:

$$\exists x < y < z, b(x) \land c(y) \land b(z) \land (\forall y, x < y < z \implies a(y))$$

$$\circ \quad \circ \quad \circ$$

$$\circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ$$

- FO²: only 2 variables.
- Example: $\exists x, y, x < y \land a(x) \land b(y) \land (\exists x, x < y \land c(y))$

FO^3 and FO^2

- FO³: only 3 variables.
- Example:

$$\exists x < y < z, b(x) \land c(y) \land b(z) \land (\forall y, x < y < z \implies a(y))$$

- FO²: only 2 variables.
- Example: $\exists x, y, x < y \land a(x) \land b(y) \land (\exists x, x < y \land c(y))$

• Note: The signature of FO^2 can be enriched with y = x + 1.

FO^3 and FO^2

- FO³: only 3 variables.
- Example:

$$\exists x < y < z, b(x) \land c(y) \land b(z) \land (\forall y, x < y < z \implies a(y))$$

- FO²: only 2 variables.
- Example: $\exists x, y, x < y \land a(x) \land b(y) \land (\exists x, x < y \land c(y))$

- Note: The signature of FO^2 can be enriched with y = x + 1.
- $FO^3 \equiv FO$ (Kamp 1968).

FO^3 and FO^2

- FO³: only 3 variables.
- Example:

$$\exists x < y < z, b(x) \land c(y) \land b(z) \land (\forall y, x < y < z \implies a(y))$$

- FO²: only 2 variables.
- Example: $\exists x, y, x < y \land a(x) \land b(y) \land (\exists x, x < y \land c(y))$

- Note: The signature of FO^2 can be enriched with y = x + 1.
- $FO^3 \equiv FO$ (Kamp 1968).
- $FO^2 \subseteq FO^3$.

$FO^+ \equiv FO^{3+} \equiv LTL^+$

Linear Temporal Logic over finite words (LTL):

• Syntax of LTL:

$$\phi, \psi := a \mid \bot \mid \top \mid \phi \lor \psi \mid \phi \land \psi \mid X\phi \mid \phi U\psi \mid \neg \phi$$

$$\phi \qquad \phi \qquad \phi \qquad \psi$$

$$\circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ$$

$$t_0 \qquad t_1 \qquad t_2 \qquad t_3 \qquad t_4 \qquad t_5 \qquad t_6 \qquad t_7 \qquad \models \phi U\psi$$

- Example: $\binom{a}{c}b\binom{b}{c}bb\binom{a}{b}cc \models X(bUa)$
- $FO \equiv FO^3 \equiv LTL$ (Kamp 1968).

$FO^+ \equiv FO^{3+} \equiv LTL^+$

Linear Temporal Logic over finite words (LTL):

• Syntax of LTL:

$$\phi, \psi := a \mid \bot \mid \top \mid \phi \lor \psi \mid \phi \land \psi \mid X\phi \mid \phi U\psi \mid \neg \phi$$

$$\phi \qquad \phi \qquad \phi \qquad \psi$$

$$\circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ \qquad \circ$$

$$t_0 \qquad t_1 \qquad t_2 \qquad t_3 \qquad t_4 \qquad t_5 \qquad t_6 \qquad t_7 \qquad \models \phi U\psi$$

- Example: $\binom{a}{c}b\binom{b}{c}bb\binom{a}{b}cc \models X(bUa)$
- $FO \equiv FO^3 \equiv LTL$ (Kamp 1968).
- $FO^+ \equiv FO^{3+} \equiv LTL^+$ (this work).

${\rm FO}^{2+} \equiv {\rm UTL}^+$

				$X\phi$	ϕ				
$\overset{\circ}{t_0}$	$\overset{\circ}{t_1}$	$\overset{\circ}{t_2}$	$\overset{\circ}{t_3}$	t_4	$\overset{\circ}{t_5}$	$\overset{\circ}{t_6}$	∘ t ₇	$\overset{\circ}{t_8}$	0 t 9

$FO^{2+} \equiv UTL^{+}$

${\rm FO}^{2+} \equiv {\rm UTL}^+$

				$\mathbf{F}\phi$			ϕ			
$\overset{\circ}{t_0}$	$\overset{\circ}{t_1}$	$\overset{\circ}{t_2}$	$\overset{\circ}{t_3}$	t_4	$\overset{\circ}{t_5}$	$\overset{\circ}{t_6}$	$\overset{\circ}{t_7}$	$\overset{\circ}{t_8}$	0 t 9	

$\mathrm{FO}^{2+} \equiv \mathrm{UTL}^+$

	ϕ			$\mathrm{P}\phi$					
$\overset{\circ}{t_0}$	$\overset{\circ}{t_1}$	$\overset{\circ}{t_2}$	$\overset{\circ}{t_3}$	$\overset{ullet}{t_4}$	$\overset{\circ}{t_5}$	$\overset{\circ}{t_6}$	$\overset{\circ}{t_7}$	$\overset{\circ}{t_8}$	$\overset{\circ}{t_9}$

${\rm FO}^{2+} \equiv {\rm UTL}^+$

				$\mathrm{G}\phi$	$oldsymbol{\phi}$	$oldsymbol{\phi}$	$oldsymbol{\phi}$	$oldsymbol{\phi}$	ϕ
0 to	0 † 1	0 to	0 t2	t_4	0 t c	0 tc	0 1 -7	0 to	0 to
ι0	ĽΙ	12	ι3	L 4	L	<i>L</i> 0	4	78	ιg

${\rm FO}^{2+} \equiv {\rm UTL}^+$

ϕ	ϕ	ϕ	ϕ	${ m H}\phi$					
0 to	0 t 1	$\overset{\circ}{t_2}$	0 t2	t_4	0 t e	0 te	0 t 7	0 t o	0 to
<i>L</i> 0	υL	2	دع	L 4	دع	-0	-/	60	Lg

$\mathrm{FO}^{2+} \equiv \mathrm{UTL}^{+}$

Unary Temporal Logic over finite words (UTL):

• $FO^2[<, +1] \equiv UTL$ and $FO^2[<] \equiv UTL[P, F, H, G]$ (Etessami, Vardi, and Wilke 1997).

$FO^{2+} \equiv UTL^{+}$

- $FO^2[<, +1] \equiv UTL$ and $FO^2[<] \equiv UTL[P, F, H, G]$ (Etessami, Vardi, and Wilke 1997).
- $FO^{2+}[<, +1] \equiv UTL^+$ and $FO^{2+}[<] \equiv UTL^+[P, F, H, G]$ (this work).

Open problem

$\overline{\mathrm{FO}^{2+}} = \overline{\mathrm{FO}^2}$ -monotone?

Open Problem

Can any FO^2 -definable monotone language be defined by an FO^{2+} formula? Is definability by FO^{2+} decidable?

Elements of answer

■ FO^{2+} [between] $\neq FO^{2}$ [between]-monotone (between: Krebs et al. 2016).

$$\circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \models a(x,y)$$

Elements of answer

■ FO^{2+} [between] $\neq FO^{2}$ [between]-monotone (between: Krebs et al. 2016).

$$\circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \models a(x,y)$$

• FO^{2+} (no alternation) $\neq FO^{2}$ (no alternation)-monotone.

Elements of answer

■ FO^{2+} [between] $\neq FO^{2}$ [between]-monotone (between: Krebs et al. 2016).

$$\circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \models a(x,y)$$

- FO^{2+} (no alternation) $\neq FO^{2}$ (no alternation)-monotone.
- $FO^{2+} \stackrel{?}{\subseteq} FO^2$ -monotone = $\Sigma_2^+ \cap \Pi_2^+ \subset FO^+$.

Thank you for your attention!

- Lyndon (1959). "Properties preserved under homomorphism.". In: Pacific J. Math.
- Ajtai and Gurevich (1987). "Monotone versus Positive". In: J. ACM.
- Stolboushkin (1995). "Finitely Monotone Properties". In: *LICS*. IEEE Computer Society.
- Kuperberg (2023). "Positive First-order Logic on Words and Graphs". In: Logical Methods in Computer Science.
- Kamp (1968). "Tense Logic and the Theory of Linear Order". PhD thesis. University of California Los Angeles.
- Etessami, Vardi, and Wilke (1997). "First-Order Logic with Two Variables and Unary Temporal Logic". In: BRICS Report Series.
- Krebs et al. (2016). "Two-variable Logic with a Between Relation". In: LICS. ACM.