PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-140114

(43) Date of publication of application: 02.06.1995

(51)Int_Cl.

G01N 27/49 GO1N 27/28

GO1N 33/38

(21)Application number: 05-307532

(71)Applicant: YAMADA AKIFUMI

FURONTETSUKUSU:KK

YOSHIKAWA SANGYO KK

(22) Date of filing:

12.11.1993

(72)Inventor: YAMADA AKIFUMI

HODOUCHI KAZUNORI MATSUBARA HIROSHI **KUNO TAKEHIKO**

(54) ELECTRODE BODY FOR MEASURING SALINITY CONCENTRATION

(57)Abstract:

PURPOSE: To provide a disposable electrode body being employed in the measurement of chloring ion concentration by applying chronoamperometry using a micro silver electrode.

CONSTITUTION: A Pd layer and a PbSO4 layer, a reference electrode 5 laminating a dry layer of an SO. ion generating material, a working electrode 4 comprising a plating film of Ag exposing only a predetermined area, and a pair electrode 6 are arranged on a substrate 1. At the time of measurement, SO4 ions are generated from an aqueous solution to obtain a predetermined potential reference. This structure provides a dry maintenance free electrode body and since oxidation/reduction of silver/silver chloride takes place over a previously designed area, an accurate measurement is realized.

LEGAL STATUS

[Date of request for examination]

26.10.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3223019

[Date of registration]

17.08.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

17.08.2004

(19)日本国特許庁 (JP)

612.455.3801

(12) 公開特許公報(A)

(11)特許出顧公閱番号

特開平7-140114

(43)公開日 平成7年(1995)6月2日

(51) Int.C.L.* 機別配号 庁内整理番号 P I 技権表示値所 G O 1 N 27/49 27/28 3 3 1 Z 33/38 7055-2 J

審査請求 未請求 請求項の数3 FD (全 5 頁)

(21) 出職番号	特觀平5-307532	(71)出職人	591000908
			山田 明文
(22)出顧日	平成5年(1993)11月12日		新國県長岡市緑町1丁目38番地313
		(71)出票人	593051434
		l	株式会社フロンテックス
			新國原新國市島見町字山美寶3399番地4
		(71) 出顧人	591243147
			吉川産業株式会社
			新潟県新潟市下山3丁目613番地
		(72) 発明者	山田 明文
			新潟県長河市緑町1丁目38番地313
		(74)代理人	弁理士 近藤 彰
			最終百に統令

(54) 【発明の名称】 塩分濃度計製用電量体

(57)【要約】

【目的】微小銀電極を用いたクロノアンペロメトリーの 適用による塩素イオン濃度の測定方法に使用する使い捨 て電極体を提供する。

【構成】基板1に、Pb層とPbSO。層と、SO。イオン生成材を乾燥状態層を積層した参照電極5と、所定面積だけ露出したAgメッキ膜からなる作用電極4と、対極8とを配し、計測使用時の水溶液によるSO。イオンを発生させ、所定の基準電位を得ることで、乾式でメンテナンスフリーの電極体となり、銀/塩化銀の酸化還元反応は予め設計した面積での反応となり、正確な計測が可能である。

(2)

特開平7-140114

【特許請求の範囲】

612,455,3801

【請求項1】 適宜な基板に少なくとも3個以上のシー ト状電極部を形成し、少なくともシート状電極部の一つ をPb層の表面にPbSO4層を形成し、更にその上面 にSO. イオン放出材を乾燥状態で配して参照電極 とし、少なくとも一つのシート状電極部はAR膜層から なると共に、所定の面積だけ露出せしめた作用電極と し、他のシート状電極部を対極としたことを特徴とする 塩分濃度計測用電極体。

1

【請求項2】 請求項第1項記載の塩分濃度計測用電極 10 に於いて、参照電極部を、PbSO。層の上面を粉末状 のNax SO、を混在させたペーパーフィルターで被覆 して形成したことを特徴とする塩分濃度計測用電極体。

【請求項3】 請求項第1項記載の塩分濃度計測用電極 に於いて、参照電極部を、PbSO。 層上面にNaz S O、溶液を糊材に練り込んだものを塗布乾燥せしめて形 成したことを特徴とする塩分濃度計測用電極体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は主として生コンクリート 20 の塩分濃度を計測するのに使用する計測用電極体に関す るものである。

[0002]

【従来の技術】コンクリート用骨材としての河川砂が不 足するようになった近年にあって、何川砂の代用として 海砂を用いている。然し海砂中の含有塩分はコンクリー トの強度や寿命に大きな影響を与えている。このため生 コンクリートの塩分計測が必要となってくる。

【0003】そこで本件発明者は、先般微小銀篦極を用 いたクロノアンペロメトリーの適用による塩素イオン濃 30 度の測定方法を提案した(特公平4-73102号、同 4-77867号)。また前記測定方法に使用する電極 部材も提案した(特公平5-27820号)。

【0004】また特別平3-277955号公報には、 基板上一端に測定用電極を形成し、他端に外部接続端子 を形成し、電極部のみが露出するように適宜な板状の本 体に装着し、且つ露出電極の空間と外部との連通(溶液 供給)する小孔にフイルタを配置した電板構造(使い捨 てセンサ)が開示されている。

[0005]

【発明が解決しようとする課題】前記した先の計測用電 極は、再使用タイプであり、一回毎に洗浄等が必要であ る。そこで使い捨てできる安価で且つ構造が簡便な電極 部材が必要となつてくるものである。

【0006】尚前記の特開昭3-277955号公報に 開示されたセンサ体は、電極全体の構造のみが開示さ れ、計測に必要な電極部分の具体的構成は全く開示され ていない。本発明は、使い捨て用途に対応できる電極部 分の構造を提案したものである。

[0007]

【課題を解決するための手段】本発明に係る塩分濃度計 測用電極体は、適宜な基板に少なくとも3個以上のシー ト状電極部を形成し、少なくともシート状電極部の一つ をPb層の表面にPbSO・層を形成し、その上面にS イオン放出材を乾燥状態で配して参照電極と し、少なくとも一つのシート状電極部はAg膜層からな ると共に、所定の面積だけ露出せしめた作用電極とし、 他のシート状電極部を対極としたことを特徴とするもの である。

【0008】また特に参照電極部を、PbSO。層の上 面を粉末状のNazSO, を混在させたペーパーフィル ターで被覆して形成したり、Nax SO、溶液を糊材に 練り込み、前記ペースト上面に塗布乾燥せしめて形成し たことを特徴とするものである。

[0009]

【作用】電極を測定対象液に浸漬すると、参照電極部に 於いて溶液の侵入でSO。^{*} イオンが生じ、所定の基 準電位が得られ、当該基準電位に基づいて作用電極と対 極の間に所定の電位を印加し、作用電極におけるAgの 酸化又は還元反応の限界拡散電流を計測し、測定対象液 の塩化物イオン濃度を計測する。

[0010]

【実施例】次に本発明の実施例について説明する。実施 例に示した計測用電極体は、電極等を形成する基板1 と、基板1のカバー体2と、計測装置(図示せず)と接 続するリード線3から構成されている。

【0011】基板1は電気絶縁体からなり、その表面に シート状電極である作用電極部4、参照電極部5、対極 部6、リード部7が形成されるもので、金属蒸着、無電 解メッキ或は金属箔貼付又は印刷等の適宜な手段で、作 用電極部4のベース41、参照電極部5のベース51、 対極6の電極面、並びにリード部7が形成される。特に 各電極部4、5、6は細長い基板1の一方の端部に適宜 配設し、リード部7は各ベース等から他端のリード線3 の接続部分まで配設したものである。

【0012】作用電極部4は、ペース41の上面にメッ キその他の手段でAg膜層42を形成すると共に、前記 Ag膜層 (3~30 μm厚) 42部分が、所定の面積 (0.01~3cm') だけ露出するように絶縁被膜1 1を施してなる。

【0013】また参照電極部5は、ベース51の表面に メッキその他の手段でPb層52を形成し、このPb層 52の表面にPbSO。層53を形成し、更にその上面 にSO、イオン放出材を乾燥状態で配してなるもので、 具体的にはPbSO. のペーストをPb層52の表面に 塗布乾燥したり、または化学的にPb層52の表面にP bSO. を析出させたりして形成する。

【0014】更にPbSO。層53の上面には、SO。 イオン放出材を配置するもので、例えばPbSOィ

50 層53の上面を、粉末状のNa: SO: を混在させたべ

(3)

特開平7-140114

ーパーフィルター54で被覆したり、又はNa: SO。 溶液を糊材に練り込み、PbSO。層53の上面に適布 乾燥せしめて形成するものである。

3

【0015】前記の各電極等を形成した基板1は、電極反応に必要な箇所を除き絶縁被膜11で被覆し、電極対応部分を透孔21とし、且つ不離布からなるフイルター22で透孔21を築いでなる。尚前記フィルター22には、計割対象であるコンクリート彼のpH調整を行うために、緩衝被(酢酸塩溶液)を含浸乾燥させたものを使用しても良い。

【0016】またリード線3は、リード部7と接続してなり、先端部は計測装置との接続端子31を付設してなる。

【0017】而して前記電極体を使用しての動作確認実験は、第一に参照電極部5の作用確認で、前記電極体を 適宜な水溶液(単なる水道水)に浸漬し、そのときの基準電極電位を測定したら図5の通りで、最初の1~2分* * は安定しないが、それ以後20分経過までは570mV 対SCE(飽和甘コウ電極の電位に対する相対的電位) に安定する。従って前記実施例の参照電極部は、水溶液 に浸漬することで、SO。 イオンが生じ充分実用上 支障がないことが確認できた。

【0018】次に前記電極体を使用して、塩素イオン濃度の測定実験を行った。測定方法は、図6に例示した通り、作用電極部4に、その電極界面(Agメッキ膜厚3μm、界面面積0.1cm²)に塩化銀が還元状態の初期電位Ei(-0.5 V対SCE)から、0.78 V増加させた酸化電位Esを印加し、印加時T・から50ms経過後のT、時の作用電極電流を測定した。塩素イオン濃度20mMと80mMの試料について各15回の繰り返し測定の結果は表1の通りである。

【0019】

虚影43港在/mM	20	80 -		
回数	电流	電 sÆ / mA		
1	0.150	0.780		
2 3	0.146	0.750		
3	0.148	0.750		
4 5	0.146	0.740		
5	0.148	0.750		
6	0.146	0.750		
7	0.146	0.760		
8	0.148	0.760		
9	0.146	0.760		
10	0.148	0.770		
11	0.146	0.770		
12	0.148	0.770		
13	0.146	0.770		
14	0.142	0.780		
15	0.146	0.770		
平均	0.146	0.760		
相对標準係差 / %	1.19	1.53		

【0020】15回の繰り返し実験における相対標準偏差は1.19%(20mM)、1.53%(80mM)で、現在コンクリートの塩分濃度測定機器の法定許容誤差10%に比較して格段の精度で計測できた。同様にして420mMの濃度までの実験し、その検量線は図7の通りである。

【0021】従って本発明の電極体は、小型で而も薄板状にして簡便な電極構成としたもので、使い捨て用途に充分対応できるものである。

【0022】尚本発明は電極体であり、電極体を組み込 塵芥等の む基板やカパー体並びにリード線の付設等の具体的構造 等、計韻 は任意に定められるものであり、また塩分濃度計測手段 50 である。

も、必ずしも前記実施例に示したように電極に所定の電 圧矩形波を印加した一定時後の電極電流を測定するもの でなく、例えば電圧値をゆっくりと変位させ、所定方向 変位の時の所定電位印加時の電極電流を測定する手段で も良い。

【0023】勿論本発明の電極体は、コンクリートの塩分測定以外の食品その他どのような塩分測定にも使用できることは言うまでもなく、例えば食品の塩分濃度の測定に際しては、フィルターにイオン交換膜を採用して、塵芥等の除去の他に、蛋白質の影響を受けないようする等、計測対象に応じて適宜な構成を採用しても良いものである。

(4)

特開平7-140114

612.455.3801

[0024]

【発明の効果】以上によう本発明は、特に参照電極をP b層とPbSO。層とSO。 イオン放出材の乾燥状 態層を積層して形成し、作用電板を所定面積のみを露出 せしめたAgメッキ膜で形成した塩分濃度測定用電極体 で、小型で構造が簡単で安価に製造でき、使い捨て用途 に充分対応でき、而も乾式タイプであり、何等のメンテ ナンスも要することなく使用時まで初期状態が維持され るので、使い捨て用途として更に利便となったものであ る。

【図面の簡単な説明】

【図1】本発明の実施例の全体の分解斜視図。

【図2】同全体斜視図。

【図3】同作用電極の説明図。

【図4】同参照電極の説明図で(イ)は外観図、(ロ) は断面図。

【図5】参照電極部の試験結果のグラフ。

* 【図6】塩分測定時の電極印加電位の説明グラフ。 【図7】検量線のグラフ。

【符号の説明】

基板 1

11 絶縁被膜

2 カバー体

21 透孔

22 フィルタ

3 リード線

4 作用電極部

4] ペース

42 Agメッキ膜

参照電極部

51 ベース

52 Pb層

53 PbSO 層

54 ペーパーフィルタ

【図1】

【図2】

【图4】

(5)

特開平7-140114

612.455.3801

フロントページの続き

(72) 発明者 程内 和範 新潟県長岡市上条町180番地11

(72)発明者 松原 浩

新潟県長岡市深沢町1769番地1 技大宿舎

1-408

(72)発明者 久野 剛彦

新潟県長岡市下山4丁目27番2号 白栄荘

5号

特開平7-140114

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第1区分 【発行日】平成12年12月15日(2000.12.15)

【公開番号】特開平7-140114 【公開日】平成7年6月2日(1995.6.2) 【年通号数】公開特許公報7-1402 【出顧番号】特曆平5-307532 【国際特許分類第7版】

GO1N 27/49

27/28 331

33/38

[FI]

G01N 27/46 306 27/28 331 Z

33/38

【手統補正書】

【提出日】平成11年10月26日 (1999. 10. 26)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0006

【補正方法】変更

【補正内容】

【0006】尚前記の特開平3-277955号公報に 開示されたセンサ体は、電極全体の構造のみが開示され、計測に必要な電極部分の具体的構成は全く開示されていない。本発明は、使い捨て用途に対応できる電極部分の構造を提案したものである。

【手続補正2】

【補正対象書類名】明細書 【補正対象項目名】0011 【補正方法】変更 【補正内容】

【0011】基板1は電気絶縁体からなり、その表面にシート状電極である作用電極部4、参照電極部5、対極部6、リード部7が形成されるもので、金属蒸着、無電解メッキ或は金属箔貼付又は印刷等の適宜な手段で、作用電極部4のベース41、参照電極部5のベース51、対極部6の電極面、並びにリード部7が形成される。特に各電極部4、5、6は細長い基板1の一方の端部に適宜配設し、リード部7は各ベース等から他端のリード線3の接続部分まで配設したものである。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.