Homework Assignment 6

COGS 118A: Supervised Machine Learning Algorithms

Due: Dec 6th, 2020, 11:59pm (Pacific Time).

Instructions: Combine your answer to the questions below with your notebook to create a PDF file; submit your file via Gradescope.

1 (8 points) Conceptual Questions

- 1. Which one below best describes what support vectors are:
 - A. The decision boundary.
 - B. The positive and the negative planes.
 - C. The training samples that determine the positive and the negative planes.
 - D. The test samples that determine the positive and the negative planes.
- 2. When tuning the hyper-parameters of a model, we find the hyper-parameters
 - A. minimize error on the test set
 - B. minimize error on the test set
 - C. maximize the margin of the classifier
 - D. minimize error on the validation set
- 3. Select all that apply. k-fold cross validation is
 - A. Not necessary when you have huge amounts of labelled data
 - B. A way to do model selection while minimizing over-fitting

- C. The only way to do hyper-parameter tuning
- D. Subject to the bias-variance trade-off
- 4. When you increase the k in cross-validation while keeping the dataset the same, you
 - A. Get a decrease in both the generalization error and the validation error
 - B. Get an increase both the generalization error and the validation error
 - C. Get a decrease in the variability of the validation error across folds
 - D. Get an increase in the variability of the validation error across folds

2 (10 points) Cross-Validation

Given a training dataset $S_{\text{training}} = \{(x_i, y_i)\}, i = 1, ..., 6\}$ where $x_i \in \mathbb{R}$ is the feature scalar and $y_i \in \{-1, +1\}$ is the corresponding label. The data points in the dataset S_{training} are given below:

$$(x_1, y_1) = (2, -1), \quad (x_2, y_2) = (7, -1), \quad (x_3, y_3) = (4, +1),$$

$$(x_4, y_4) = (1, -1), \quad (x_5, y_5) = (3, +1), \quad (x_6, y_6) = (6, +1).$$

Suppose you are training a linear classifier f(x; a, b) = sign(ax + b) with 2-fold cross-validation where sign(z) is defined as:

$$\operatorname{sign}(z) = \begin{cases} 1, & z \ge 0\\ -1, & z < 0. \end{cases}$$

• You have split the dataset S_{training} into:

$$S_1 = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}\$$

$$S_2 = \{(x_4, y_4), (x_5, y_5), (x_6, y_6)\}\$$

- After training the classifier f(x; a, b) on S_1 , you have obtained the parameters $a_1 = -1, b_1 = 5$ and then try to validate the classifier on S_2 .
- After training the classifier f(x; a, b) on S_2 , you have obtained the parameters $a_2 = 2, b_2 = -3$ and then try to validate the classifier on S_1 .

Please finish the tasks below:

1. Calculate the average training error in the 2-fold cross-validation.

Note: The definition of average training error is the mean of the error of classifier $f(x; a_1, b_1)$ on S_1 and the error of classifier $f(x; a_2, b_2)$ on S_2 .

2. Calculate the **average validation error** (i.e. the cross-validation error) in the 2-fold cross-validation.

3 (12 points) Shattering

In this problem, consider a classifier $f(\mathbf{x}; a, b) = \text{sign}(a\mathbf{x}^{\top}\mathbf{x} - b)$ where the feature vector $\mathbf{x} = [x_1, x_2]^{\top} \in \mathbb{R}^2$ and its prediction $f(\mathbf{x}; a, b) \in \{-1, +1\}$. Besides, $a, b \in \mathbb{R}$ are the model parameters and sign(z) is defined as:

$$\operatorname{sign}(z) = \begin{cases} 1, & z \ge 0\\ -1, & z < 0. \end{cases}$$

The classifier $f(\mathbf{x}; a, b)$ performs a binary classification on an input feature vector \mathbf{x} under model parameters $a, b \in \mathbb{R}$ that can be learned.

In this question, please attempt to show that if the classifier $f(\mathbf{x}; a, b)$ can shatter two points, $\mathbf{x}_1 = [1, 1]^{\top}$ and $\mathbf{x}_2 = [-2, -3]^{\top}$.

- If you think $f(\mathbf{x}; a, b)$ can shatter \mathbf{x}_1 and \mathbf{x}_2 , you need to show that for each possible label configuration $(y_1, y_2) \in \{(+1, +1), (-1, -1), (+1, -1), (-1, +1)\}$ of \mathbf{x}_1 and \mathbf{x}_2 , there exists a classifier $f(\mathbf{x}; a, b)$ that classifies the \mathbf{x}_1 and \mathbf{x}_2 correctly, and you should illustrate each classifier by the following steps:
 - Draw the decision boundary of the classifier.
 - Shade the area where the classifier makes the positive prediction.

You can use the figures of the coordinate system in the next page to show your drawings.

• If you think classifier $f(\mathbf{x}; a, b)$ cannot shatter \mathbf{x}_1 and \mathbf{x}_2 , please explain the reason.

4 (10 points) SVM: Gradient

Given a training dataset $S_{\text{training}} = \{(\mathbf{x}_i, y_i)\}, i = 1, ..., n\}$, we wish to optimize the loss $\mathcal{L}(\mathbf{w}, b)$ of a linear SVM classifier:

$$\mathcal{L}(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^n \left(1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) \right)_+$$
 (1)

where $(z)_{+} = \max(0, z)$ is called the rectifier function and C is a scalar constant.

The optimal weight vector \mathbf{w}^* and the bias b^* used to build the SVM classifier are defined as follows:

$$\mathbf{w}^*, b^* = \arg\min_{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b)$$
 (2)

In this problem, we attempt to obtain the optimal parameters \mathbf{w}^* and b^* by using a standard gradient descent algorithm.

Hint: To derive the derivative of $\mathcal{L}(\mathbf{w}, b)$, please consider two cases:

(a)
$$1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 0$$
, (b) $1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) < 0$

1. Derive the derivative:
$$\frac{\partial \mathcal{L}(\mathbf{w}, b)}{\partial \mathbf{w}}$$
.

2. Derive the derivative: $\frac{\partial \mathcal{L}(\mathbf{w}, b)}{\partial b}$.

5 (10 points) SVM: Margin

As shawn in the Figure 3, we have the decision boundary (marked as a black line) defined as Eq. 3 given \mathbf{w}, b :

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{3}$$

In parallel to the decision boundary, we have the positive plane (marked as a red line) defined as Eq. 4 and the negative plane (marked as a blue line) defined as Eq. 5:

$$\mathbf{w}^T \mathbf{x} + b = +1 \tag{4}$$

$$\mathbf{w}^T \mathbf{x} + b = -1 \tag{5}$$

We pick an arbitrary point \mathbf{x}^- on the negative plane, and draw a purple line that passes \mathbf{x}^- and is perpendicular to the negative plane. The intersection between this purple line and the positive plane can be denoted as \mathbf{x}^+ . Thus, we have the following Eq. 6 that indicates the relation between \mathbf{x}^+ and \mathbf{x}^- :

$$\mathbf{x}^+ = \mathbf{x}^- + \lambda \mathbf{w} \tag{6}$$

where $\lambda \in \mathbb{R}$ is an undetermined scalar. The margin M is defined as the distance between the positive and the negative planes, which can be calculated from Eq. 7:

$$M = ||\mathbf{x}^{+} - \mathbf{x}^{-}||_{2} = \sqrt{\langle \lambda \mathbf{w}, \lambda \mathbf{w} \rangle}$$
 (7)

Figure 3: The decision boundary, the positive plane and the negative plane.

Please derive the following according to Eq. 7:

$$M = \frac{2}{\sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}}$$

Hint: You can firstly represent λ in the form of **w** by using Eq. 4, 5, 6.

6 (10 points) K Nearest Neighbors

Consider a training dataset $S_{\text{training}} = \{(\mathbf{x}_i, y_i), i = 1, 2, ..., 8\}$ where each data point (\mathbf{x}, y) has a feature vector $\mathbf{x} = [x_1, x_2]^{\top}$ and the corresponding label $y \in \{-1, +1\}$. The points with the corresponding labels in the dataset are shown in the figure below.

In the figure above, the index i for each training example \mathbf{x}_i is given in **bold** near the point. You are asked to predict the label of a point $\mathbf{x}_{pred} = [1,0]^{\top}$ shown in the figure as a triangle \blacktriangle using k nearest neighbors (k-NN) method under **Euclidean distance**.

1. List the indices of all the data points in S_{training} and their corresponding labels.

- 2. Determine the predicted label for \mathbf{x}_{pred} using the k-NN with different k.
 - (a) k = 1.
 - (b) k = 3.
 - (c) k = 5.

7 (20 points) Coding: K Nearest Neighbors

In this problem, you need to implement the k nearest neighbors (k-NN) algorithm and apply it to the binary classification. Here we use the modified Iris dataset $S = \{(\mathbf{x}_i, y_i)\}$ where each feature vector $\mathbf{x} \in \mathbb{R}^2$ and label $y \in \{-1, +1\}$. You are **not** allowed to use sklearn.neighbors.KNeighborsClassifier() in your code, but you can use it to validate your implementation.

- Load the modified Iris dataset. The dataset S is split to three subsets: The training set S_{training} , the validation set $S_{\text{validation}}$ and the test set S_{test} . In the code, we use X_{train} , Y_{train} for the feature vectors and labels of the training set respectively. Similar notations are also used for the validation and the test sets.
- Implement k-NN algorithm in 3 steps.
 - 1. For each feature vector \mathbf{x} you are predicting a label, you need to calculate the distances between this feature vector \mathbf{x} and all the feature vectors in the training set S_{training} .
 - 2. Then sort all distances in ascending order and pick the labels for the k minimum distances.
 - 3. Count the number of negative labels $N_{y=-1}$, and the number of the positive labels $N_{y=+1}$ from k labels picked in step 2. Use the following decision rule to predict label \hat{y} for each feature vector \mathbf{x} :

$$\hat{y} = \begin{cases} +1, & N_{y=-1} < N_{y=+1}, \\ -1, & N_{y=-1} \ge N_{y=+1}. \end{cases}$$

Here we assume **Euclidean distance** as the distance metric. For more details, please refer to the code and the corresponding part in the slides.

• Use the validation set to obtain optimal k^* . In k-NN, there is a hyper-parameter k which adjusts the number of nearest neighbors. You would need to perform a grid search on the following list of k:

$$k \in \{1, 2, 3\}$$

For each k, you need to form a k-NN classifier with the training set S_{training} . Then, use the classifier to make predictions on the validation set $S_{\text{validation}}$ and calculate the error $e_{\text{validation}}$. We aim to obtain the best hyper-parameter k^* corresponding to the **minimum validation error** $e_{\text{validation}}^*$ among all ks.

• Use the obtained classifier corresponding to the best hyper-parameter k^* to calculate the test error e_{test} on test set S_{test} .

Please download the notebook knn.ipynb from the course website and fill in the missing blanks. Follow the instructions in the skeleton code and report:

- 1. Your code.
- 2. Plot of validation set along with decision boundary (implicitly shown in the background) corresponding to each k.
- 3. Validation error corresponding to each k.
- 4. The best hyper-parameter k^* corresponding to minimum validation error $e_{\text{validation}}^*$.
- 5. Test error e_{test} corresponding to the best hyper-parameter k^* .

8 (20 points) Coding: Decision Tree

In this problem, you need to implement the decision tree algorithm and apply it to the binary classification. Here we use the Ionosphere dataset $S = \{(\mathbf{x}_i, y_i)\}$ where each feature vector $\mathbf{x} \in \mathbb{R}^{34}$ and label $y \in \{-1, +1\}$. You are allowed to use the functions from scikit-learn in this question.

- Load the Ionosphere dataset. The dataset S is split to two subsets: The training set S_{training} and the test set S_{test} . In the code, we use X_{train} , Y_{train} for the feature vectors and labels of the training set respectively. Similar notations are also used for the test set.
- Train the decision tree classifier with the **entropy criterion**. In the decision tree, there is a hyper-parameter D which controls the maximum depth. You would need to perform a grid search on the following list of D:

$$D \in \{1, 2, 3, 4, 5\}$$

For each D, you need to form a decision tree classifier with the training set S_{training} . Specifically, you need to conduct a **10-fold** cross-validation on S_{training} and calculate the cross-validation error \bar{e} (i.e. average validation error over the splits in cross-validation). We aim to obtain the best hyper-parameter D^* corresponding to the **minimum cross-validation error** \bar{e}^* among all D_S .

• Use the obtained classifier corresponding to the best hyper-parameter D^* to calculate the test error e_{test} on test set S_{test} .

Please download the notebook decision-tree.ipynb and the data file ionosphere.npy from the course website and fill in the missing blanks. Follow the instructions in the skeleton code and report:

- 1. Your code.
- 2. A heatmap of cross-validation errors corresponding to all Ds.
- 3. The best hyper-parameter D^* corresponding to the minimum cross-validation error \bar{e}^* .
- 4. Test error e_{test} corresponding to the best hyper-parameter D^* .