2023

ELECTRONIC SCIENCE

Paper: ELCGE 31

(Electronics)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

Answer any five questions.

- 1. (a) Define effective mass and minority carrier lifetime.
 - (b) Where does the Fermi level lie for intrinsic silicon? Justify your answer.
 - (c) What do you mean by direct and indirect band gap semiconductors? Which one of them favours light emission and why?
 - (d) What is a degenerate semiconductor?

2+3+3+2

- 2. (a) Sketch typical charge distribution, electric-field distribution and potential distribution in a p-n junction diode with abrupt doping profile.
 - (b) Which diode, made of Si or Ge, will show higher reverse saturation current and why?
 - (c) What do you mean by diffusion capacitance and diffusion length?
 - (d) What will happen to the reverse saturation current if the temperature of the junction is increased?
 - (e) What is Zener breakdown?

2+2+2+2+2

- 3. (a) Define the (i) emitter injection ratio or emitter efficiency, and (ii) base transportation factor of a transistor.
 - (b) What is Early effect of a transistor? How can it account for the input characteristics of a transistor in CB mode?
 - (c) What are I_{CBO} and I_{CEO} ? Give the relationship between them. How does I_{CBO} vary with temperature?
 - (d) Draw and design a CE collector-feedback bias circuit of an *npn* transistor to establish a quiescent operating point at $I_{CQ} = 1$ mA and $V_{CEQ} = 8$ V. Given that, $\beta = 100$, $V_{cc} = 12$ V and $V_{BE} = 0.3$ V. 2+2+3+3
- 4. (a) Explain why biasing and bias stabilization are needed in a transistor circuit? What is meant by 'thermal runaway' of a transistor? How can 'thermal runaway' be avoided in a transistor circuit?

Please Turn Over

- (b) Draw the r_e -model of a transistor operating in CE mode. Show that, $r_e = \frac{26mV}{I_E}$.
- (c) In the small-signal transistor amplifier in fig. 1, $h_{ie} = 2 \Omega$, $h_{fe} = 50$; h_{re} and h_{oe} are negligible. Draw the h-parameter equivalent circuit for the amplifier and determine : (i) Z_i , (ii) Z_0 , and (iii) A_v .

- 5. (a) Draw a metal-oxide-semiconductor (MOS) structure and explain how inversion occurs in such a system.
 - (b) Draw the high frequency and low frequency capacitance-voltage characteristics of such a MOS device and explain why the capacitance values differ.
- 6. (a) Draw a neat diagram for the metal-oxide-semiconductor field effect transistor (MOSFET) and label its different areas.
 - (b) Draw the transfer and output characteristics of a MOSFET and explain the nature of such characteristics.
 - (c) Explain the purpose of scaling down of geometric dimensions in a MOSFET. What are the rules for constant field scaling?
- 7. (a) What is the value of R_f in case of a non-inverting op-amp circuit if the gain is 5.5 and R_i is 10 kΩ? The symbols have their usual meaning.
 (b) Findsin have an amp is used as:
 - (b) Explain how op-amp is used as:
 - (i) a phase shifter
 - (ii) a scale changer.
 - (c) Explain how negative feedback reduces frequency distortion in feedback amplifiers.

3+(2+2)+3

- 8. (a) Calculate the octal equivalent of the decimal number 417.
 - (b) Minimize the following Boolean function: $F(A, B, C, D) = \Sigma m (0, 1, 3, 5, 7, 8, 9, 11, 13, 15).$
 - (c) Draw the circuit diagram of a D-Latch using NAND gates. Give its excitation table and K-Map representation.
 - (d) Explain the working of a Ripple counter and give its timing diagram.

2+2+3+3