MAD 2104 - HW02 - Romain Roux - PID: 6322237

Ex1. Explain why A \times B \times C and (A \times B) \times C are not the same.

A x B x C will generate the set of type (a,b,c) element. $(A \times B) \times C$ will generate the set of type ((a,b),c) element.

Ex3. Let A, B, and C be sets. Show that :

(a)
$$(A \cup B) \subseteq (A \cup B \cup C)$$

We have: $x \in A \cup B \Leftrightarrow (x \in A) \lor (x \in B) \Rightarrow (x \in A) \lor (x \in B) \lor (x \in C) \Leftrightarrow x \in (A \cup B \cup C)$ Thus, we have: $(A \cup B) \subseteq (A \cup B \cup C)$

(b) $(A \cap B \cap C) \subseteq (A \cap B)$

By definition, we have $x \in A \cap B \cap C \Leftrightarrow x \in A \wedge x \in B \wedge x \in C \Rightarrow x \in A \wedge x \in B \Leftrightarrow x \in (A \cap B)$ Thus, we have $A \cap B \cap C \subseteq A \cap B$.

(c)
$$(A - C) \cap (C - B) = \emptyset$$

For $x \in (A - C) \cap (C - B)$ we have: $x \in (A - C) \cap (C - B) \Leftrightarrow x \in (A - C) \cap (C - B) \Leftrightarrow x \in (A - C) \cap (C - B) \Leftrightarrow x \in A \wedge x \in C \wedge x \in B$ The latter means that the set $(A - C) \cap (C - B)$ is empty. Thus, $(A - C) \cap (C - B) = \emptyset$

Ex6. If f and f ∘ g are one-to-one, does it follow that g is one-to-one ?

Suppose g is not one to one, then there exist x != y in X such that g(x)=g(y), so as f is one to one, f o g(x)=f o g(y), with x != y, which contradicts f o g being one to one.

Hence g must be one to one.

Ex8. Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that :

(a)
$$f(S \cup T) = f(S) \cup f(T)$$

Let y be an arbitrary element of $f(S \cup T)$. Then there is an element x in $S \cup T$ such that y = f(x). If x is in S, then y is in f(S). Hence y is in $f(S) \cup f(T)$. Similarly y is in $f(S) \cup f(T)$ if x is in T.

Hence if $y \in f(S \cup T)$, then $y \in f(S) \cup f(T)$.

(b) $f(S \cap T) \subseteq f(S) \cap f(T)$.

Let y be an arbitrary element of $f(S \cap T)$.

Then there is an element x in S \cap T such that y = f(x), that is there is an element x which is in S and in T, and for which y = f(x) holds. Hence y \in f(S) and y \in f(T), that is y \in f(S) \cap f(T).

Ex14. Show that a subset of a countable set is also countable.

Let S be a countable set and let $T \subseteq S$.

By definition, there exists an injection f:S→N.

Let $i : T \rightarrow S$ be the inclusion mapping.

We have that i is an injection.

Because the composite of injections is an injection, it follows that f o i : T \rightarrow N is an injection.

Hence, T is countable.