Profinite Groups

Navid Rashidian

1 Category Theory

Definition 1.1. A category C consists of collections Obj(C) and Mor(C), respectively called the objects and morphisms of C such that

- there are functions $s: \operatorname{Mor}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{C})$ and $t: \operatorname{Mor}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{C})$ assigning to each morphism a source and a target;
- for each object $X \in \text{Obj}(\mathcal{C})$ there is a distinguished morphism $id_X \text{Obj}(\mathcal{C})$ such that $s(id_X) = t(id_X) = X$; and
- for each pair of morphisms f, g such that t(f) = s(f) there is a morphism $g \circ f$ with $s(g \circ f) = s(f)$ and $t(g \circ f) = t(g)$ called their composition;

satisfying the further conditions that $(f \circ g) \circ h = f \circ (g \circ h)$ and $\mathrm{id}_X \circ f = f$ and $f \circ \mathrm{id}_X = f$ wherever these expressions make sense.

Definition 1.2. Let \mathcal{C} be a category. If both $\mathrm{Obj}(\mathcal{C})$ and $\mathrm{Mor}(\mathcal{C})$ are sets, The category \mathcal{C} is called a *small category*. \mathcal{C} is called *locally small* if for every objects $X,Y\in\mathrm{Obj}(\mathcal{C})$ the collection of morphisms $f\in\mathrm{Mor}(\mathcal{C})$ with s(f)=X and t(f)=Y is a set. In a locally small category for objects $X,Y\in\mathrm{Obj}(\mathcal{C})$ we define the *hom-set of* X and Y as

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) = \{ f \in \operatorname{Mor}(\mathcal{C}) : s(f) = X \text{ and } t(f) = Y \}$$

Definition 1.3. Let \mathcal{C} and \mathcal{D} be categories. A (covariant) functor $F: \mathcal{C} \to \mathcal{D}$ consists of maps $\mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$ and $\mathrm{Mor}(\mathcal{C}) \to \mathrm{Mor}(\mathcal{D})$ such that

• for every $f \in \operatorname{Mor}(\mathcal{C})$ we have s(F(f)) = F(s(f)) and t(F(f)) = F(t(f));

- for every $X \in \text{Obj}(\mathcal{C})$ we have $F(\text{id}_X) = \text{id}_F(X)$; and
- for every pair of morphisms $f, g \in \text{Mor}(\mathcal{C})$ with a defined composition $F(g \circ f) = F(g) \circ F(f)$.

Definition 1.4. Suppose \mathcal{C} is a category. The *opposite category* denoted by \mathcal{C}^{op} is the category with the same objects and morphisms as \mathcal{C} such that $s_{\mathcal{C}^{\text{op}}}(f) = t_{\mathcal{C}}(f)$ and $t_{\mathcal{C}^{\text{op}}}(f) = s_{\mathcal{C}}(f)$ and $g \circ_{\mathcal{C}^{\text{op}}} f = f \circ_{\mathcal{C}} g$.

Definition 1.5. A contravariant function $F: \mathcal{C} \to \mathcal{D}$ is a covariant functor $F: \mathcal{C}^{op} \to \mathcal{D}$.

Example 1.6. A preorder is a small categoy \mathcal{P} such that for every objects $X, Y \in \text{Obj}(\mathcal{P})$ we have $\#\text{Hom}_{\mathcal{P}}(X, Y) \leq 1$.

Example 1.7. A partially ordered set (poset) is a small categoy \mathcal{P} such that for every objects $X, Y \in \text{Obj}(\mathcal{P})$ we have $\#(\text{Hom}_{\mathcal{P}}(X, Y) \cup \text{Hom}_{\mathcal{P}}(Y, X)) \leq 1$. For posets \mathcal{P}_1 and \mathcal{P}_2 an order-preserving (-reversing) function from \mathcal{P}_1 to \mathcal{P}_2 is exactly a covariant (contravariant) functor $F \colon \mathcal{P}_1 \to \mathcal{P}_2$.

Example 1.8. Sets and functions constitute a category denoted by **Set**. Groups and group homomorphisms constitute a category denoted by **Grp**. Topological spaces and continuous functions constitute a category denoted by **Top**.