Štruktúra činností výrobnej logistiky

Alokačné úlohy

I. Alokácia (výrobných procesov) do jedného miesta:

- 1. Ak nie sú k dispozícii presné údaje možno použiť Pomerovo-indexovú metódu
- 2. Ak sú k dispozícii presné údaje ide o úlohu Optimálneho umiestnenia distribučného centra, pričom možno použiť rôzne typy vzdialenosti, napr.:
 - a) Euklidovská vzdialenosť
 - b) Kvadrát euklidovskej vzdialenosti
 - c) Rektilineárna (Mannhatanská) vzdialenosť
 - d) Minimalizácia vzdialenosti najvzdialenejšieho odberateľa

II. Alokácia (výrobných procesov) do viacerých miest

- 1. Priradzovací problém (n objektov do n miest základná verzia)
- 2. Priradzovací problém (väzby len medzi novými a existujúcimi objektmi)
- 3. Kvadratický priradzovací problém (väzby medzi novými objektmi navzájom)
- 4. Zovšeobecnený distribučný problém (vyberáme podmnožinu m miest pre distribučné centrá a optimalizujeme dodávky n zákazníkom)

I. Alokácia do jedného miesta

1. Ak nie sú k dispozícii presné údaje

Predpoklady (popis úlohy):

- ak sú známe lokality a treba vybrať najvhodnejšiu
- ak je ťažké vyčísliť presné náklady
- ak nie sú presne známi dodávatelia ani odberatelia
- ak existuje veľa faktorov (kritérií), ktoré je ťažko ohodnotiť,
- ale je možné vyjadriť závažnosť každého faktoru (kritéria) voči ostatným faktorom (kritériám)
- a porovnať hodnoty faktorov (kritérií) pre jednotlivé lokality
- Riešenie: pomerovo-indexová metóda

(anglicky SAW Simple Additive Weighting), na UHI preberané za účelom hodnotovej analýzy

Pomerovo-indexová metóda (1)

- 1. Pre vybrané lokality (L = 1 ... n) a daný výrobný proces najprv stanovíme rozhodujúce **faktory** F_i (i = 1 ... m), resp. **kritériá výberu**
- 2. Každému faktoru F_i prisúdime **váhu** w_i najlepšie tak, aby suma váh všetkých faktorov bola 1, t.j. $\sum_{i=1}^{m} w_i = 1$
- 3. Pre hodnotenie jednotlivých faktorov F_i zvolíme interval hodnôt $\langle KD_i, KH_i \rangle$ tj. definičný obor hodnôt HF_i a spôsob ohodnocovania tohto faktoru
 - KD_i je tzv. dolná hranica intervalu hodnôt HF_i
 - $-KH_i$ je tzv. horná hranica intervalu hodnôt HF_i

Pomerovo-indexová metóda (2)

- 4. Experti stanovia **hodnotenie** HF_i^L pre všetky lokality L a pre všetky a faktory F_i (t.j. pre všetky L = 1 ... n, i = 1 ... m)
- 5. Výsledné hodnotenie danej lokality L je dané váženým súčtom: $C^L = \sum_{i=1}^{m} w_i \cdot HF_i^L$
- 6. Ako najlepšia bude vybraná tá lokalita, pre ktorú je hodnota *C*^L **maximálna**, t.j.

 $L \approx \max C^L$

Príklad (1)

- Úlohou je vybrať najvhodnejšiu lokalitu pre umiestnenie výroby drevených hračiek z troch vytipovaných lokalít:
 - Spišská Nová Ves SNV (Lokalita L = 1)
 - Rožňava RV (Lokalita L = 2)
 - Svidník SK (Lokalita L = 3)

Príklad (2)

- 1. Výber faktorov F_i (i = 8)
- 2. Priradenie váh w_i jednotlivým faktorom
- 3. $KD_i = 0$, $KH_i = 10$ pre všetky faktory F_i (i = 1 až 8)

Faktor <i>F_i</i>	Váha <i>w_i</i>
Suroviny (<i>F</i> ₁)	0,13
Doprava (F ₂)	0,09
Energia (<i>F</i> ₃)	0,09
Voda (<i>F₄</i>)	0,06
Financie (<i>F</i> ₅)	0,18
Odbyt (F_6)	0,20
Spoje (F ₇)	0,11
Pracovné sily (<i>F</i> ₈)	0,14

$$\sum_{i=1}^{3} w_i = 1$$

Príklad (3)

4. Expertmi stanovené hodnoty HF_i^L pre všetky L (1 až 3)

Faktor F _i	HF _i ¹	HF _i ²	HF _i ³
Suroviny (F ₁)	8	6	7
Doprava (F ₂)	8	4	6
Energia (F ₃)	4	4	2
Voda (F₄)	8	5	9
Financie (F ₅)	7	2	6
Odbyt (F ₆)	5	2	4
Spoje (F ₇)	7	7	3
Pracovné sily (F ₈)	5	5	5

Príklad (4)

5. Výpočet hodnôt (w_i, HF_i^L) pre všetky faktory F_i a všetky lokality L

Faktor F _i	W_i . HF_i^1	W _i . HF _i ²	W_i . HF_i^3
Suroviny (F ₁)	1,04	0,78	0,91
Doprava (F ₂)	0,72	0,36	0,54
Energia (F ₃)	0,36	0,36	0,18
Voda (F ₄)	0,48	0,3	0,54
Financie (F ₅)	1,26	0,36	1,08
Odbyt (F ₆)	1	0,4	0,8
Spoje (F ₇)	0,77	0,77	0,33
Pracovné sily (F ₈)	0,7	0,7	0,7
$C^L =$	6,33	4,03	5,08

6. Porovnanie súhrnných hodnotení C^L : $C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1 \ n = 1}}^{n} C^L$: Spišská Nová Ves

2. Sú k dispozícii presné údaje => Optimálne umiestnenie (jedného) distribučného centra

Predpoklady (popis úlohy):

- V rovine existuje n objektov (odberateľov) ($P_1 ... P_n$) so súradnicami (a_1, b_1), ... (a_n, b_n).
- Treba nájsť súradnice pre umiestnenie nového objektu (distribučného centra) \bar{x} = (x, y) tak, aby celkové náklady na realizáciu väzieb medzi existujúcimi objektmi a novým objektom \bar{x} boli minimálne.
- Intenzitu väzby medzi objektmi P_i a novým objektom (distribučným centrom) vyjadrujú koeficienty w_i (i = 1..n).
- Riešenie: závisí od spôsobu merania vzdialenosti
 - Používajú sa 4 rôzne typy vzdialeností

Matematický model (4 rôzne varianty úlohy)

 $f(\overline{x}) = \sum_{i=1}^{\infty} w_i \cdot d(\overline{x}, P_i)$

 W_3

12

P1

 W_1

- Matematický model je vyjadrený kriteriálnou funkciou, ktorej základ je stále rovnaký:
- Pričom sa mení spôsob výpočtu vzdialenosti $d(\overline{x}, P_i)$

- c) Rektilineárna (Manhattanská): $d(\overline{x}, P_i) = |x a_i| + |y b_i|$
- d) Minimálna (euklidovská) vzdialenosť najvzdialenejšieho objektu: $f(\overline{x}) = \max_{i=1..n} \sqrt{(x-a_i)^2 + (y-b_i)^2}$

Pre každý typ vzdialenosti je iný postup výpočtu optimálneho umiestnenia nového objektu (distribučného centra).

1. Euklidovská vzdialenosť (1)

- Model: minimalizovať $f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot \sqrt{(x-a_i)^2 + (y-b_i)^2}$
- Riešenie: numerický iteračný postup (hyperbolická aproximácia)
- Hľadáme extrém funkcie dvoch premenných (súradnica x a súradnica y pre umiestnenie distribučného centra),
- preto derivujeme funkciu nákladov parciálne

$$f(\overline{x}) = \sum_{i=1}^{n} w_i \sqrt{(x - a_i)^2 + (y - b_i)^2}$$

a jednotlivé parciálne derivácie položíme rovné nule,

t.j. pre súradnicu
$$x$$
:
$$\frac{\partial f(\overline{x})}{\partial x} = \frac{1}{2} \sum_{i=1}^{n} \frac{2w_i(x - a_i)}{\sqrt{(x - a_i)^2 + (y - b_i)^2}} \stackrel{!}{=} 0$$

$$\sum_{i=1}^{n} \frac{xw_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{n} \frac{w_i a_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

1. Euklidovská vzdialenosť (2)

Po úprave:
$$x \cdot \sum_{i=1}^{n} \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{n} \frac{w_i \cdot a_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

a zavedení substitúcie:
$$g_i(x,y) = \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2 + \xi}}$$

dostávame:
$$x \cdot \sum_{i=1}^{n} g_i(x, y) = \sum_{i=1}^{n} a_i \cdot g_i(x, y) \Rightarrow x = \frac{\sum_{i=1}^{n} a_i \cdot g_i(x, y)}{\sum_{i=1}^{n} g_i(x, y)}$$

čo iteratívne znamená:

$$x^{(k)} = \frac{\sum_{i=1}^{n} a_i \cdot g_i(x^{(k-1)}, y^{(k-1)})}{\sum_{i=1}^{n} g_i(x^{(k-1)}, y^{(k-1)})}$$
 (ťažisko):

počiatočná hodnota (ťažisko):

$$x^{(0)} = \frac{\sum_{i=1}^{n} a_i \cdot w_i}{\sum_{i=1}^{n} w_i}$$

1. Euklidovská vzdialenosť (3)

- Dostávame iteratívne vzorce pre výpočet súradníc optimálneho umiestnenia distribučného centra $x^{(k)}$ a $y^{(k)}$.
- 1. Na začiatku stanovíme hodnoty pre ťažisko $(x^{(0)})$ a $y^{(0)}$
- 2. Postupne v každej ďalšej iterácii (k) počítame $x^{(k)}$ a $y^{(k)}$ a následne $f(x^{(k)}, y^{(k)})$, pričom sa aktuálne riešenie ($x^{(k)}, y^{(k)}$) stále priblíži k optimu, t.j. klesne $f(x^{(k)}, y^{(k)})$.
- 3. Po dosiahnutí požadovanej presnosti (napríklad ak sa hodnota kriteriálnej funkcie na druhom ráde za desatinnou čiarkou už nemení) výpočet ukončíme a aktuálne hodnoty $x^{(k)}$ a $y^{(k)}$ určujú odporúčané umiestnenie distribučného centra.

1. Euklidovská vzdialenosť (4)

 Analogicky pre súradnicu y derivujeme funkciu nákladov parciálne podľa y, t.j.

$$f(\overline{x}) = \sum_{i=1}^{n} w_i \sqrt{(x - a_i)^2 + (y - b_i)^2}$$

a položíme rovnú nule, t.j.

$$\frac{\partial f(\overline{x})}{\partial y} = \frac{1}{2} \sum_{i=1}^{n} \frac{2 \cdot w_i \cdot (y - b_i)}{\sqrt{(x - a_i)^2 + (y - b_i)^2}} \stackrel{!}{=} 0$$

$$\sum_{i=1}^{n} \frac{y \cdot w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{n} \frac{w_i \cdot b_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

1. Euklidovská vzdialenosť (5)

• Po úprave a zavedení substitúcie $g_i(x,y) = \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2 + \xi}}$

dostávame:
$$y \sum_{i=1}^{n} \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{n} \frac{w_i \cdot b_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

$$y \sum_{i=1}^{n} g_i(x, y) = \sum_{i=1}^{n} b_i \cdot g_i(x, y) \Rightarrow y = \frac{\sum_{i=1}^{n} b_i \cdot g_i(x, y)}{\sum_{i=1}^{n} g_i(x, y)}$$

$$y^{(k)} = \frac{\sum_{i=1}^{n} b_i \cdot g_i(x^{(k-1)}, y^{(k-1)})}{\sum_{i=1}^{n} g_i(x^{(k-1)}, y^{(k-1)})} \qquad y^{(0)} = \frac{\sum_{i=1}^{n} b_i \cdot w_i}{\sum_{i=1}^{n} w_i}$$

Príklad (1)

 Nájdite optimálne umiestnenie trafostanice pre 4 stanice s danými súradnicami: A[2,6], B[6,7], C[7,4], D[5,2], káblom s mernými ročnými nákladmi 3 PJ/km. Nová stanica bude napájaná káblom s ročnými nákladmi 5 PJ/km z existujúcej trafostanice E[1,1].

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

Príklad (2)

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

• Vyjdeme z počiatočných hodnôt súradníc $x^{(0)}$ a $y^{(0)}$ pre ťažisko a vypočítame zodpovedajúcu hodnotu kriteriálnej funkcie $f(x^{(0)}, y^{(0)})$.

$$\chi^{(0)} = \frac{\sum_{i=1}^{5} a_i \cdot w_i}{\sum_{i=1}^{5} w_i} \qquad \chi^{(0)} = \frac{2 * 3 + 6 * 3 + 7 * 3 + 5 * 3 + 1 * 5}{3 + 3 + 3 + 3 + 5} = \frac{65}{17} = 3,82$$

$$y^{(0)} = \frac{\sum_{i=1}^{5} b_i \cdot w_i}{\sum_{i=1}^{5} w_i} \qquad y^{(0)} = \frac{6 * 3 + 7 * 3 + 4 * 3 + 2 * 3 + 5 * 1}{3 + 3 + 3 + 3 + 5} = \frac{62}{17} = 3,65$$
$$f(x^{(0)}, y^{(0)}) = \sum_{i=1}^{5} w_i \sqrt{(x^{(0)} - a_i)^2 + (y^{(0)} - b_i)^2}$$

$$f(x^{(0)}, y^{(0)}) = 3.\sqrt{(3.82 - 2)^2 + (3.65 - 6)^2} + ... + 5.\sqrt{(3.82 - 1)^2 + (3.65 - 1)^2} = 55.93$$

Príklad (3)

• Potom vypočítame substitučné koeficienty $g_i(x^{(0)}, y^{(0)})$ a dosadíme ich do iteračných vzorcov pre výpočet $x^{(1)}$, $y^{(1)}$

$$x^{(0)} = 3,82; \quad y^{(0)} = 3.65$$

$$g_i(x^{(0)}, y^{(0)}) = \frac{w_i}{\sqrt{(x^{(0)} - a_i)^2 + (y^{(0)} - b_i)^2 + \xi}}$$

$$g_1(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 2)^2 + (3.65 - 6)^2 + 0.001}} = 1,009$$

$$g_2(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 6)^2 + (3.65 - 7)^2 + 0.001}} = 0.751$$

$$g_3(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 7)^2 + (3.65 - 4)^2 + 0.001}} = 0.938$$

$$g_4(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82-5)^2 + (3.65-2)^2 + 0.001}} = 1,479$$

$$g_5(x^{(0)}, y^{(0)}) = \frac{5}{\sqrt{(3.82-1)^2 + (3.65-1)^2 + 0.001}} = 1,292$$

i	Miesto	a_i	\boldsymbol{b}_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

Príklad (4)

• A dosadíme ich do iteračných vzorcov pre výpočet $x^{(1)}$, $y^{(1)}$

$$x^{(1)} = \frac{\sum_{i=1}^{5} a_i \cdot g_i(x^{(0)}, y^{(0)})}{\sum_{i=1}^{5} g_i(x^{(0)}, y^{(0)})} \qquad y^{(1)} = \frac{\sum_{i=1}^{5} b_i \cdot g_i(x^{(0)}, y^{(0)})}{\sum_{i=1}^{5} g_i(x^{(0)}, y^{(0)})}$$

$$x^{(1)} = \frac{2 \cdot 1,009 + 6 \cdot 0,751 + 7 \cdot 0,938 + 5 \cdot 1,478 + 1 \cdot 1,292}{1,009 + 0,759 + 0,938 + 1,478 + 1,292} = 3,98$$

$$y^{(1)} = \frac{6 \cdot 1,009 + 7 \cdot 0,751 + 4 \cdot 0,938 + 2 \cdot 1,479 + 1 \cdot 1,292}{1,009 + 0,751 + 0,938 + 1,479 + 1,292} = 3,53$$

• Opäť vypočítame hodnotu kriteriálnej funkcie pre nové umiestnenie distribučného centra $f(x^{(1)}, y^{(1)})$

$$f(x^{(1)}, y^{(1)}) = 3.\sqrt{(3.98 - 2)^2 + (3.53 - 6)^2} + ... + 5.\sqrt{(3.98 - 1)^2 + (3.53 - 1)^2} = 55.77$$

Príklad (5)

 A celý postup iteratívne opakujeme až do chvíle, kým zmena hodnoty kriteriálnej funkcie v dvoch po sebe nasledujúcich iteráciách klesne pod jednu stotinu PJ.

(k)	X ^(k)	y ^(k)	$f(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$
0	3,82	3,65	55,935
1	3,98	3,53	55,772
2	4,06	3,47	55,730
3	4,10	3,44	55,719
4	4,12	3,42	55,716

2. Kvadrát euklidovskej vzdialenosti

- Model: minimalizovať $f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot [(x a_i)^2 + (y b_i)^2)]$
- Riešenie: dá sa dokázať, že optimálne umiestnenie distribučného centra je v ťažisku, t.j. presne v tom bode, z ktorého vychádza iteratívny výpočet v prípade euklidovskej vzdialenosti, t.j.:

$$x^{(0)} = \frac{\sum_{i=1}^{n} a_i \cdot w_i}{\sum_{i=1}^{n} w_i} \qquad y^{(0)} = \frac{\sum_{i=1}^{n} b_i \cdot w_i}{\sum_{i=1}^{n} w_i}$$

3. Rektilineárna vzdialenosť

• Model: minimalizovať
$$f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot (|x - a_i| + |y - b_i|)$$

- Riešenie: v prípade rektilineárnej vzdialenosti sa používa na výpočet optimálneho umiestnenia distribučného centra tzv. mediánové umiestenie.
- Dá sa totiž dokázať, že optimálne hodnoty pre súradnicu x aj y totiž musia ležať v x-ovej, resp. y-ovej súradnici niektorého zo vstupných objektov (pre každú súradnicu to samozrejme môže byť iný objekt).
- Použijeme nasledovný postup:

3. Rektilineárna vzdialenosť – postup riešenia

- 1. V tomto prípade je potrebné najprv jednotlivé objekty usporiadať vzostupne podľa ich súradnice x a tiež podľa y $a_{(1)} \le a_{(2)} \le \cdots \le a_{(n)}$ $b_{(1)} \le b_{(2)} \le \cdots \le b_{(n)}$
- 2. Potom vypočítať jednotlivé čiastkové súčty váh w_i prislúchajúcich týmto objektom: $s_{(k)} = \sum_{i=1}^{k} w_i$
- 3. a polovicu celkového súčtu váh: $s_{(m)} = \frac{1}{2} \sum_{i=1}^{n} w_i$
- 4. Vypočítané čiastkové súčty váh w_i pre x-ovú a y-ovú súradnicu tvoria usporiadanú postupnosť, pričom optimálne umiestnenie distribučného centra pre danú súradnicu zodpovedá súradnici odberateľa k, pre ktorého platí: $s_{(k-1)} \leq s_m \leq s_{(k)}$

Príklad (1)

- Použijeme tie isté vstupné údaje ako v príklade pre prípad Euklidovskej vzdialenosti vyššie.
- Pre x-ovú súradnicu:

$$a_5(1) \le a_1(2) \le a_4(5) \le a_2(6) \le a_3(7)$$

$$s_5 = 5$$

 $s_1 = 5 + 3 = 8$
 $s_4 = 5 + 3 + 3 = 11$
 $s_2 = 5 + 3 + 3 + 3 = 14$
 $s_3 = 5 + 3 + 3 + 3 + 3 = 17$

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	E	1	1	5

 s_m = 8,5 => (s_4) , čo zodpovedá x-ovej súradnici v poradí 4.zákazníka $\Rightarrow x = a_4 = 5$

Príklad (2)

• Pre y-ovú súradnicu:

$$b_5(1) \le b_4(2) \le b_3(4) \le b_1(6) \le b_2(7)$$

$$s_5 = 5$$

 $s_4 = 5 + 3 = 8$
 $s_3 = 5 + 3 + 3 = 11$
 $s_1 = 5 + 3 + 3 + 3 = 14$
 $s_2 = 5 + 3 + 3 + 3 + 3 = 17$

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	E	1	1	5

$$s_m$$
 = 8,5 => (s_3) , čo zodpovedá y-ovej súradnici v poradí 3.zákazníka \Rightarrow y = b_3 = 4

 Takže optimálne umiestnenie distribučného centra v prípade použitia rektilineárnej vzdialenosti by bolo (5, 4)

4. Minimalizácia vzdialenosti najvzdialenejšieho bodu

Matematický model: minimalizovať

$$f(\overline{x}) = \max_{i=1..n} \sqrt{(x - a_i)^2 + (y - b_i)^2}$$

- To je ekvivalentné úlohe $\min \{z: \sqrt{(x-a_i)^2 + (y-b_i)^2} \le z; i = 1,2,...,n \}$
- Riešenie: v prípade minimalizácie vzdialenosti najvzdialenejšieho objektu je optimálnym umiestnením distribučného centra stred kružnice s minimálnym polomerom (z) opísanej tak, že v nej ležia všetci odberatelia.

Alokácia do viacerých miest

1. Priradovací problém (základná verzia)

Predpoklady (popis úlohy):

- 1. Majme n-objektov, ktoré je potrebné umiestniť do n-miest s minimálnymi nákladmi.
- 2. Poznáme náklady c_{ij} (i = 1 ... n, j = 1 ... n) pre umiestnenie i-teho objektu do j-teho miesta.
- Potom je možné zostaviť jednoduchý bivalentný model (dvojhodnotové premenné)
- Riešenie: celočíselné (bivalentné) programovanie

1. Priraďovací problém (základná verzia)

1. Premenné:
$$x_{ij} \in \{0,1\}$$
 $\forall i = 1..n, \forall j = 1..n$

$$\forall i = 1..n, \forall j = 1..n$$

2. Kriteriálna funkcia:
$$f(\bar{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} = MIN$$

3. Ohraničenia:

• Pre každý objekt $i: \sum_{i=1}^{n} x_{ij} = 1$ $\forall i = 1..n$

• Pre každé miesto
$$j$$
: $\sum_{i=1}^{n} x_{ij} = 1$ $\forall j = 1..n$

Príklad

Máme 3 objekty A, B, C a 3 miesta na ich umiestnenie K, L, M. Zadaná je matica nákladov \bar{C} (c_{ij} , i =1..3, j =1..3) Úlohou je nájsť priradenie objektov do miest s minimálnymi nákladmi.

$$\bar{C} = \frac{A}{B} \begin{bmatrix} 2 & 4 & 3 \\ 5 & 3 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Premerine:
$$X_{AK_1}X_{AL_1}X_{AH_1}X_{BL_1}X_{BK_1}X_{BH_1}X_{CK_1}X_{CL_1}X_{CH_1} \in \{0,1\}$$

 K_{Vi} : $\{1, 2\}_{AK_1}X_{AK_1}X_{AK_1}X_{AK_1}X_{AK_1}X_{AK_2}X_{AK_1}X_{AK_2}X_{AK_3}X_{AK_4}X_{AK_4}X_{AK_4}X_{AK_5}X_{AK_$

2. Priraďovací problém (väzby len medzi existujúcimi a novými objektmi)

Predpoklady:

- Máme p existujúcich objektov, n nových objektov a n miest a sú väzby medzi novými a existujúcimi objektmi zadané nasledovne.
- 2. Je známa matica prepravných sadzieb $\overline{W} = [w_{ik}]_p^n$ ktorá vyjadruje intenzitu väzby medzi novými (i=1..n) a existujúcimi objektmi (k=1..p)
- 3. a matica vzdialeností $\overline{D} = [d_{kj}]_n^p$ medzi existujúcimi objektmi (k=1..p) a novými miestami (j=1..n)
- Riešenie: celočíselné programovanie

2. Priraďovací problém (väzby len medzi starými a novými objektmi)

- **1.** Premenné: $x_{ij} \in \{0,1\}$ $\forall i = 1..n, \forall j = 1..n$
- 2. Kriteriálna funkcia: $f(\bar{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} = MIN$
- 3. Ohraničenia:

Pre každý objekt $i: \sum_{j=1}^{n} x_{ij} = 1$ $\forall i = 1...n$

Pre každé miesto j: $\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j = 1..n$

• Matica nákladov: $\overline{C} = \overline{W} \cdot \overline{D} = [w_{ik}]_p^n \cdot [d_{kj}]_n^p = [c_{ij}]_n^n$

Príklad – zadanie

- V tabuľke dole sú uvedené:
 - denné počty prepravovaných paliet medzi existujúcimi strojmi P, O, R a novými strojmi A, B, C (horná časť tabuľky),
 - vzdialenosti v metroch medzi existujúcimi strojmi P, O, R a jednotlivými miestami pre nové stroje E, F, G, H (dolná časť tabuľky).
- Z priestorových dôvodov nemožno premiestniť stroj B do miesta H.
- Nájdite optimálne rozmiestnenie nových strojov A, B, C do miest E, F, G, H

	Existujuce stroje $[ks]$	Р	0	R
	A	5	4	2
Nove	В	0	4	3
stroje	C	4	3	2
[ks]				
	Е	1	3	4
Mozne	F	4	4	3
miesta	\mathbf{G}	5	3	5
[m]	Н	6	4	2

Príklad – riešenie

- Matematický model: $x_{ij} \in \{0,1\}$ $\forall i = 1..4, j = 1..4$
 - Kriteriálna funkcia: $f(\bar{x}) = \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij} \cdot x_{ij} \stackrel{!}{=} MIN$
 - Ohraničenia pre každý objekt: $\sum_{j=1}^{7} x_{ij} = 1$ $\forall i = 1..4$
 - Ohraničenia pre každé miesto: $\sum_{i=1}^{j=1} x_{ij} = 1$ $\forall j = 1..4$

Matica nákladov:

$$\overline{C} = \overline{W} \cdot \overline{D} = \begin{bmatrix} \mathbf{P} & \mathbf{O} & \mathbf{R} \\ 5 & 4 & 2 \\ \mathbf{C} & 0 & 4 & 3 \\ 4 & 3 & 2 \\ \mathbf{D} & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{E} & \mathbf{F} & \mathbf{G} & \mathbf{H} \\ 1 & 4 & 5 & 6 \\ 3 & 2 & 3 & 4 \\ 4 & 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{F} & \mathbf{G} & \mathbf{H} \\ 25 & 34 & 47 & 50 \\ 24 & 17 & 27 & 1000 \\ 21 & 28 & 39 & 40 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3. Kvadratický priraďovací problém

Predpoklady:

- Majme n objektov, ktoré je potrebné umiestniť do n miest s minimálnymi nákladmi (neuvažujeme žiadne existujúce objekty).
- 2. Medzi novými objektmi existujú vzájomné väzby. Je známa matica vzdialeností medzi miestami pre umiestnenie objektov $\overline{D} = \begin{bmatrix} d_{ij} \end{bmatrix}_n^n$
- 3. a matica prepravných sadzieb medzi objektami $\overline{W} = \left[w_{ij}
 ight]_n^n$
- 4. w_{ij} je intenzita väzby medzi i-tym a j-tym novým objektom.

Riešenie:

- Metóda CRAFT je heuristická a nezaručí nájdenie najlepšieho riešenia
- Metóda vetvenia a medzí zaručuje nájdenie optimálneho riešenia, ale v nepolynomiálnom čase v závislosti od veľkosti vstupu n.

3. Kvadratický priraďovací problém

- Každé prípustné riešenie možno vyjadriť ako permutáciu: $\overline{P} = (p(1), p(2), ..., p(n))$
- kde p(i) = k znamená, že i-ty objekt bude umiestnený do miesta k
- Náklady pre akúkoľvek permutáciu sú:

$$f(\overline{P}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \cdot d_{p(i)p(j)}$$

• kde $d_{p(i)p(j)}$ je vzdialenosť medzi miestami p(i) a p(j)

Metóda CRAFT

- 1. Z východiskovej (náhodnej) permutácie \bar{p} sa vytvorí: $\binom{n}{2}$ nových permutácií výmenami všetkých dvojíc objektov vo východiskovej permutácii \bar{p}
- 2. Pre každú permutáciu sa vypočíta hodnota kriteriálnej funkcie $f(\overline{P})$
- Vyberie sa to najlepšie riešenie a stane sa východiskovou permutáciou pre nasledujúcu iteráciu algoritmu.
- 4. Celý postup sa opakuje dovtedy, kým sa zlepšuje kriteriálna funkcia z jednej iterácie na druhú.

Príklad (1)

Štyri nové stroje (1,2,3,4) môžu byť umiestené do miest A, B, C, D. Vzdialenosti medzi novými miestami sú uvedené v matici D, denné počty prepravovaných paliet medzi dvojicami nových strojov sú v matici W. Jednotkové prepravné náklady sú rovnaké.

$$\overline{W} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 4 & 1 & 3 \\ 4 & 0 & 2 & 0 \\ 1 & 2 & 0 & 7 \\ 4 & 3 & 0 & 7 & 0 \end{bmatrix} \qquad \overline{D} = \begin{bmatrix} A & B & C & D \\ A & 0 & 4 & 5 & 6 \\ 4 & 0 & 3 & 6 \\ 5 & 3 & 0 & 3 \\ D & 6 & 6 & 3 & 0 \end{bmatrix}$$

$$\overline{D} = \begin{array}{c} A & B & C & D \\ A & 0 & 3 & 6 \\ C & 3 & 0 & 3 \\ D & 6 & 6 & 3 & 0 \end{array}$$

Príklad (2)

- Vyjdeme z náhodného rozmiestnenia objektov reprezentovaného napr. permutáciou: $\bar{P} = (3,1,4,2)$
- Pre rozmiestnenie objektov zodpovedajúce uvedenej
 permutácii, t.j. (C, A, D, B) je hodnota kriteriálnej
 funkcio: f(B) m, d, km, d,

funkcie:
$$f(\overline{P}) = w_{12}d_{CA} + w_{13}d_{CD} + w_{14}d_{CB} + w_{23}d_{AD} + w_{24}d_{AB} + w_{34}d_{DB} = 4.5 + 1.3 + 3.3 + 2.6 + 0.4 + 7.6 = 86$$

 Všetkými možnými výmenami dvojíc objektov vytvoríme nové (susedné permutácie) a pre každú z nich vypočítame hodnotu kriteriálnej funkcie:

Stroj	Stroj	$f(\overline{p})$
1 2 3 4	1 2 3 4	
CADB	ACDB	86
	DACB	76
	BADC	64
	CDAB	66
	CBDA	84
	CABD	82

Príklad (3)

- Najlepšia hodnota kriteriálnej funkcie v 1. iterácii zodpovedá permutácii $\bar{P} = (2,1,4,3)$, t.j. (B, A, D, C) s hodnotou kriteriálnej funkcie 64. $\boxed{\text{Stroj}}$
 - Preto táto permutácia sa stane východiskovou pre nasledujúcu iteráciu:

Stroj	Stroj	$f(\overline{p})$
1234	$1\ 2\ 3\ 4$	
ВАРС	АВDС	70
	DABC	68
	CADB	86
	BDAC	84
	BCDA	78
	BACD	68

- Najlepšia hodnota kriteriálnej funkcie je po druhej iterácii 68, čo nie je lepšie, ako hodnota predchádzajúcej permutácie, takže výpočet končí.
- Výpočet je možné opakovať podľa potreby niekoľkokrát pre ľubovoľné východzie permutácie.

4. Zovšeobecnený distribučný problém

Predpoklady:

- 1. Výrobca dodáva tovar n odberateľom a má k dispozícii konečný počet m miest pre postavenie distribučných centier.
- 2. Pre každé miesto sú určené fixné náklady f_i spojené so zriadením distribučného centra.
- 3. Okrem toho sú stanovené všetky prepravné náklady c_{ij} od i-teho distribučného centra k j-temu odberateľovi.
- 4. Úlohou je vybrať miesta pre zriadenie distribučných centier tak, aby celkové náklady (fixné aj prepravné) boli minimálne.

Riešenie:

- A. Celočíselné programovanie
- B. Heuristika (klasický procedurálny programovací prístup)
- C. Logické programovanie ohraničení (deklaratívny programovací prístup)

A. Celočíselné programovanie (1)

- 1. Premenné: Potrebujeme jednu binárnu premennú pre každú potenciálnu lokalitu y_i (i = 1, 2 ... m)
 - y_i = 1 ak dané miesto bude vybrané pre zriadenie distribučného centra, ináč y_i = 0
- Podobne potrebujeme binárnu premennú pre každé možné priradenie odberateľa (j = 1, 2, ..., n) potenciálnemu distribučnému centru (i = 1, 2, ..., m)
 - $x_{ij} = 1$ ak i-te distribučné centrum bude dodávať j-temu odberateľovi, ináč $x_{ij} = 0$
- 2. Kriteriálna funkcia: Celkové náklady (fixné plus prepravné) majú byť mininálne:

$$f(x, y) = \sum_{i=1}^{m} f_i \cdot y_i + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

A. Celočíselné programovanie (2)

3. Ohraničenia:

 týkajúce sa priradenia každého odberateľa práve jednému distribučnému centru, t.j.

$$\forall j = 1..n: \sum_{i=1}^{m} x_{ij} = 1$$

 Ohraničenia ktoré zabezpečia, že ak niektoré miesto pre distribučné centrum nebude vybrané, potom mu nie je možné priradiť žiadneho odberateľa

$$\forall i = 1..m, \forall j = 1..n: \quad x_{ij} \leq y_i$$

A. Celočíselné programovanie (3)

Výhody:

- Jednoduché a priamočiare riešenie
- Deklaratívny prístup, stačí sformulovať celočíselný program

Nevýhody:

– Počet možností je $2^m \cdot 2^{n \cdot m} = 2^{m \cdot (1+n)}$. Pre úlohu reálneho rozmeru (napr. m = 20, n = 80) nezvládnuteľný rozmer

Záver:

 Ak nie sú dané špeciálne ohraničenia a rozmer úlohy nie je veľký, potom tento prístup je rozhodne najlepší

B. Heuristika (procedurálne programovanie) (1)

- Pre každý možný výber distribučných centier
 - t.j. každú ich možnú podmnožinu, ktorých je spolu 2^m
- Priradenie odberateľov je triviálne každého odberateľa priradíme najbližšiemu distribučnému centru.
 - Výpočet hodnoty nákladov pre takéto riešenie
- Výber riešenia s najnižšou hodnotou kriteriálnej funkcie (celkových nákladov)

B. Heuristika (procedurálne programovanie) (2)

Výhody:

 Výrazné zmenšenie priestoru prehľadávania, a teda omnoho rýchlejší výpočet

Nevýhody:

- Vývoj takéhoto programu (pre úlohu m = 20, n = 80) trval cca. 2 mesiace.
- Pomerne malá zmena zadania, napr. ak obmedzíme kapacity distribučných centier, alebo ak pripustíme, že odberateľ môže odoberať tovar z viacerých distribučných centier znamená, že je nutné program úplne zmeniť.

Záver:

 Ak je rozmer úlohy veľký a zadanie úlohy sa určite neskôr už nebude meniť, potom je tento prístup vhodný

C. Logické programovanie ohraničení (deklaratívne programovanie)

Výhody:

- Naprogramovanie tej istej úlohy trvalo podstatne kratšie (cca. 2 týždne) a zdrojový kód je takisto rádovo kratší než v prípade procedurálneho programovania (alternatíva B).
- Program je omnoho flexibilnejší, t.j. napr. zmena zadania si vyžiada jednoduchú zmenu programu.

Nevýhody:

Pomalší výpočet ako v prípade alternatívy B.

Záver:

Výborný prototypovací nástroj.

A. Príklad riešenia vo VisualXpress (1. verzia)

LET

d=3 !miesta pre distribučné centra

o=5 !odberatelia

TABLES

vzdialenosti(d,o)

fixne_naklady(d)

dodavky(o)

DATA

vzdialenosti(1,1) = 5,3,8,4,2

vzdialenosti(2,1) = 9,6,1,3,5

vzdialenosti(3,1) = 2,4,6,8,3

fixne_naklady(1) = 300, 200, 400 dodavky(1) = 50, 70, 30, 80, 60

A. Príklad riešenia vo VisualXpress (1. verzia)

VARIABLES

- y(d) !zriadit', alebo nezriadit' distribučné centrum
- x(d,o) !bude dané DC dodávať danému odberateľovi (áno/nie)

CONSTRAINTS

```
odberatelia(j=1:o): SUM(i=1:d) x(i,j) = 1 !odberateľ odoberá len od 1 DC dodavatelia(i=1:d, j=1:o): x(i,j) < y(i) naklady: SUM(i=1:d) fixne_naklady(i)*y(i) + SUM(i=1:d, j=1:o) dodavky(j) * vzdialenosti(i,j) * x(i,j)$
```

BOUNDS

```
y(i=1:d) .BV.
x(i=1:d, j=1:o) .BV.
```

B. Príklad riešenia vo VisualXpress(2. verzia)

Pridajme ohraničenie na obmedzené kapacity distribučných centier:

```
LET
d=3
      !miesta pre distribučné centra
0 = 5
      !odberatelia
TABLES
vzdialenosti (d,o)
fixne naklady(d)
dodavky (o)
kapacity(d)
DATA
vzdialenosti(1,1) = ...
fixne naklady(1) = 300, 200, 400
dodavky(1) = 50, 70, 30, 80, 60
kapacity(1) = 150, 130, 170
```

B. Príklad riešenia vo VisualXpress(2. verzia)

```
VARIABLES
    !zriadit', alebo nezriadit' distribučné centrum
x (d, o)!bude dané DC dodávať danému odberateľovi (áno/nie)
CONSTRAINTS
odberatelia(j=1:o): SUM(i=1:d) x(i,j)=1
  !odberateľ odoberá len od jedného DC
dodavatelia(i=1:d, j=1:o): x(i,j) < y(i)
kapacita(i=1:d): SUM(j=1:o) x(i,j)* dodavky(j) <
  kapacity(i)
naklady: SUM(i=1:d) fixne naklady(i)*y(i) +
  SUM(i=1:d, j=1:o) dodavky(j) * vzdialenosti(i,j) *
  x(i,j)$
BOUNDS
y(i=1:d) .BV.
x(i=1:d, j=1:o) .BV.
```

B. Príklad riešenia vo VisualXpress(3. verzia)

Okrem obmedzených kapacít distribučných centier uvažujme teraz prípad že jeden odberateľ môže odoberať tovar od viacerých distribučných centier.

```
d=3
      !miesta pre distribučné centra
      !odberatelia
0 = 5
TABLES
vzdialenosti (d,o)
fixne naklady(d)
kapacity(d)
dodavky (o)
DATA
vzdialenosti(1,1) = ...
fixne naklady(1) = 300, 200, 400
kapacity(1) = 150, 130, 170
dodavky(1) = 50, 70, 30, 80, 60
```

LET

B. Príklad riešenia vo VisualXpress(3. verzia)

VARIABLES

```
y (d) !zriadit', alebo nezriadit' distribučné centrum (binárne)
x (d, o) !koľko bude dané DC dodávať danému odberateľovi (reálne čísla)
```

CONSTRAINTS

```
odberatelia(j=1:o): SUM(i=1:d) x(i,j) = dodavky(j)
kapacita(i=1:d): SUM(j=1:o) x(i,j) <
    kapacity(i)*y(i)
naklady: SUM(i=1:d) fixne_naklady(i) * y(i) +
    SUM(i=1:d, j=1:o) vzdialenosti(i,j) * x(i,j)$</pre>
```

BOUNDS

```
y(i=1:d) .BV.
```