МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Математика» для студентов факультета электронно-информационных систем

Введение в математический анализ. Дифференциальное исчисление

I семестр

УДК 517.1/.2

Настоящее методическое пособие содержит задачи и упражнения по разделам «Введение в математический анализ», «Дифференциальное исчисление». Представлены краткие теоретические сведения по темам и наборы заданий для аудиторных и индивидуальных работ. Пособие составлено в соответствии с действующей программой для студентов первого курса факультета электронно-информационных систем.

Составители: Каримова Т.И., доцент, к.ф.-м.н. Лебедь С.Ф., доцент, к.ф.-м.н. Журавель М.Г., ассистент Гладкий И.И., доцент Жук А.И., ассистент

Рецензент: Мирская Е.И., доцент кафедры алгебры, геометрии и математического моделирования учреждения образования «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент.

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

1. Полярная система координат. Построение графиков в полярной системе координат

Положение некоторой точки M на плоскости в прямоугольной декартовой системе координат xOy определяется числами x и y, т.е. M(x;y). Эту точку можно задать и другим способом, например, с помощью расстояния $r = |\overrightarrow{OM}|$ и угла φ , отсчитываемого против хода часовой стрелки от оси Ox до радиус-вектора \overrightarrow{OM} . $M(r;\varphi)$ — полярные координаты точки

M. Расстояние r называется полярным радиусом точки M, φ – полярным углом точки M, точка O – полюсом, а ось Ox – полярной осью. Для полюса считают r=0. Полярный угол имеет бесконечное множество значений, главным значением его называют значение, удовлетворяющее условию $0 \le \varphi < 2\pi \ (-\pi \le \varphi < \pi)$.

Связь между декартовыми координатами точки (x, y) и полярными (r, φ) координатами при указанном расположении осей Ox и Oy, вектора \overrightarrow{OM} и угла φ выражается формулами:

$$\begin{cases} x = r \cos \varphi; \\ y = r \sin \varphi; \end{cases}, r \ge 0, 0 \le \varphi \le 2\pi.$$

Если эти формулы разрешить относительно r и φ , то получим соотношения:

$$r = \sqrt{x^2 + y^2}$$
; $\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}$; $\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}$,

которые позволяют перейти от полярных координат точки *М* к ее декартовым координатам. Вышеприведённые формулы дают также возможность переходить от уравнений линий, заданных в декартовых координатах, к их уравнениям в полярных координатах, и наоборот.

Пример 1. Записать уравнение линии $r = \frac{5}{6+3\cos\varphi}$ в декартовых координатах и определить ее вид.

Решение. Заменим r и $\cos \varphi$ их выражениями из соответствующих формул.

$$\sqrt{x^2 + y^2} = \frac{5}{6 + 3x/\sqrt{x^2 + y^2}} \implies 6\sqrt{x^2 + y^2} = 5 - 3x.$$

Преобразуя полученное выражение, получим уравнение эллипса

$$\frac{\left(x+5/9\right)^2}{100/81} + \frac{y^2}{25/27} = 1.$$

Ответ:
$$\frac{(x+5/9)^2}{100/81} + \frac{y^2}{25/27} = 1$$
.

Пример 2. Построить кардиоиду $r = 4(1 - \sin \varphi)$, заданную уравнением в полярных координатах.

Решение. В таблицу внесем значения полярного угла φ_i , $i = \overline{1,16}$ и соответствующие им значения полярного радиуса r_i .

φ_i	r _i						
0	4	$\pi/2$	0	π	4	$3\pi/2$	8
$\pi/6$	2	$2\pi/3$	≈ 0,5	$7\pi/6$	6	$5\pi/3$	≈ 7,5
$\pi/4$	≈ 1,2	$3\pi/4$	≈ 1,2	$5\pi/4$	≈ 6,8	$7\pi/4$	≈ 6,8
$\pi/3$	≈ 0,5	$5\pi/6$	2	$4\pi/3$	≈ 7,5	$11\pi/6$	6

Построив найденные точки $M_i(r_i; \varphi_i)$ в полярной системе координат и соединив их плавной линией, получим достаточно точное представление о кардиоиде.

Задания для аудиторной работы

1. Построить точки, заданные полярными координатами:

$$M_1\left(2;\frac{\pi}{6}\right),\ M_2\left(1;\frac{3\pi}{4}\right),\ M_3\left(3;\frac{5\pi}{4}\right),\ M_4\left(2;\frac{5\pi}{6}\right),\ M_5\left(3;\frac{\pi}{2}\right),$$

$$M_6(4;0)$$
; $M_7(3;\frac{7\pi}{4})$. Найти их декартовы координаты.

2. Построить линии, заданные уравнениями в полярных координатах. Записать их в декартовых координатах:

1)
$$r = 5$$
;

2)
$$\varphi = \frac{\pi}{3}$$
;

3)
$$r=a\varphi$$
 (спираль Архимеда);

4)
$$r = 6\cos\varphi$$
;

5)
$$r\cos\varphi=2$$
.

3. Построить линии, записав их уравнения в полярных координатах:

1)
$$x^2 + y^2 = 5(\sqrt{x^2 + y^2} - x);$$

2)
$$x^4 - y^4 = (x^2 + y^2)^3$$
.

Задания для индивидуальной работы

- 4. Построить линии, заданные уравнениями в полярных координатах. Записать их в декартовых координатах:
 - 1) $r = 10\sin \varphi$;

2) $r \sin \varphi = 1$:

3) $r = \frac{4}{1 - \cos \omega}$ (парабола);

- 4) $r = 2\sin \varphi$;
- 5) $r = a(1 \cos \varphi)$ (καρδυουδα);
- 6) $r = 3(1 + \cos \varphi)$:
- 7) $r = 3/\varphi$ (гиперболическая спираль);
- 8) $r = 2^{\varphi}, \ r = \left(\frac{1}{2}\right)^{\varphi}$ (логарифмические спирали);
- 9) $r = a \sin 3\varphi$ (трёхлепестковая роза);
- 10) $r = a \sin 4\varphi$ (четырёхлепестковая роза):
- 11) $r^2 = a^2 \cos 2\varphi$ (лемниската Бернулли).
- 5. Построить линии, записав их уравнения в полярных координатах:

1)
$$(x^2 + y^2)^3 = 4x^2y^2$$
;

2)
$$(x^2 + y^2)^2 = y^2$$
;

1)
$$(x^2 + y^2)^3 = 4x^2y^2$$
; 2) $(x^2 + y^2)^2 = y^2$; 3) $3x^2 - y^2 = (x^2 + y^2)^{\frac{3}{2}}$.

- 6. Составить в полярных координатах уравнения следующих линий:
- а) прямой, перпендикулярной к полярной оси и отсекающей на ней отрезок, равный 3;
- б) прямых, параллельных полярной оси и отстоящих от неё на расстоянии *5*;
- в) окружности радиуса R = 4 с центром на полярной оси, проходящей через полюс;
 - г) окружности радиуса R = 3, касающейся полярной оси в полюсе.

Ответы: **6.** a) $r\cos\varphi = 3$; б) $r\sin\varphi = \pm 5$; в) $r = 8\cos\varphi$; г) $r = \pm 6\sin\varphi$.

2. Функция. Предел числовой последовательности. Предел функции в точке

Пусть даны два числовых множества D и E. Если каждому элементу xиз множества D по определенному правилу ставится в соответствие единственный элемент y из множества E, то говорят, что на множестве Dзадана функция y = f(x). Область D называется областью определения, E- областью значений, элемент $x \in D$ называется аргументом. Если каждой паре чисел (x; y), где y = f(x), поставить в соответствие точку на координатной плоскости, то множество всех таких точек называется графиком функции y = f(x).

Основными элементарными функциями называются степенная, показательная, логарифмическая, тригонометрические, обратные тригонометрические функции.

Функция, областью определения которой является множество натуральных чисел \mathbb{N} , называется последовательностью и обозначается $x_n = f(n)$.

Число a называется npedenom последовательности (x_n) , $n \in \mathbb{N}$, если для любого сколько угодно малого положительного числа $\varepsilon > 0$ существует номер $n_0 \in \mathbb{N}$, такой, что для любого $n > n_0$ выполняется $|x_n - a| < \varepsilon$. В этом случае пишут $\lim_{n \to \infty} x_n = a$.

Последовательность, имеющая конечный предел, называется *сходя- щейся*, в противном случае – *расходящейся*.

Число A называется *пределом функции* y = f(x) при $x \to a$, если для любого сколь угодно малого положительного числа ε найдется положительное число δ , зависящее от ε , такое, что если $0 < |x-a| < \delta$, то $|f(x) - A| < \varepsilon$. То есть:

$$\lim_{x\to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \quad \forall x : |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon.$$

Функция f(x) называется бесконечно малой при $x \to a$, если $\lim_{x \to a} f(x) = 0$. Функция f(x) называется бесконечно большой при $x \to a$, если $\lim_{x \to a} f(x) = \infty$.

Сумма и произведение конечного числа бесконечно малых функций при $x \to a$, а также произведение бесконечно малой функции при $x \to a$ на ограниченную функцию являются бесконечно малыми функциями при $x \to a$.

Пусть для функций u = u(x) и v = v(x) существуют конечные пределы $\lim_{x \to a} u(x) = A$ и $\lim_{x \to a} v(x) = B$, тогда справедливы теоремы:

- 1) $\lim_{x\to a} (c \cdot u(x)) = c \lim_{x\to a} u(x) = c \cdot A$, где c-const.
- 2) $\lim_{x\to a} (u(x) \pm v(x)) = \lim_{x\to a} u(x) \pm \lim_{x\to a} v(x) = A \pm B.$
- 3) $\lim_{x\to a} (u(x)\cdot v(x)) = \lim_{x\to a} u(x)\cdot \lim_{x\to a} v(x) = A\cdot B.$

4)
$$\lim_{x\to a} \frac{u(x)}{v(x)} = \frac{\lim_{x\to a} u(x)}{\lim_{x\to a} v(x)} = \frac{A}{B}, \quad \lim_{x\to a} v(x) \neq 0.$$

5)
$$\lim_{x\to a} u(x)^{v(x)} = \left(\lim_{x\to a} u(x)\right)^{\lim_{x\to a} v(x)} = A^B.$$

6) Предел элементарной функции в точке x = a, принадлежащей ее области определения, равен значению функции в рассматриваемой точке.

Если условия этих теорем не выполняются, то возникают так называемые неопределенные выражения (неопределенности) вида $\left(\frac{\infty}{\infty}\right)$, $\left(\frac{0}{0}\right)$, $\left(\infty-\infty\right)$, $\left(0\cdot\infty\right)$, $\left(1^{\infty}\right)$, $\left(0^{\infty}\right)$, $\left(\infty^{0}\right)$. Для раскрытия неопределенностей требуются дополнительные алгебраические преобразования.

Пример 3. Вычислить предел
$$\lim_{x\to\infty} \frac{4x^2-3x+5}{3x^2+6x-2}$$
.

Решение. Предел частного равен частному пределов, если эти пределы существуют, конечны и знаменатель не равен нулю. В нашем примере в числителе и в знаменателе, при подстановке вместо x бесконечности, получим бесконечности. Имеем неопределенность вида $\left(\frac{\infty}{\infty}\right)$ (бесконечность делить на бесконечность). Для раскрытия неопределенности в числителе и в знаменателе вынесем за скобки x^2 . Получим:

$$\lim_{x \to \infty} \frac{5x^2 - 3x + 5}{7x^2 + 6x - 2} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{x^2 \left(\frac{5x^2}{x^2} - \frac{3x}{x^2} + \frac{5}{x^2}\right)}{x^2 \left(\frac{7x^2}{x^2} + \frac{6x}{x^2} - \frac{2}{x^2}\right)} = \lim_{x \to \infty} \frac{5 - \frac{3}{x} + \frac{5}{x^2}}{7 + \frac{6}{x} - \frac{2}{x^2}} = \frac{5}{7}.$$

Ответ: 5/7.

Пример 4. Вычислить предел
$$\lim_{x\to 1} \frac{x^2 - 6x + 5}{x^2 - 5x + 4}$$
.

Решение. При подстановке x = 1, в числителе и знаменателе дроби получаем нули. Имеет место неопределенность вида $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (нуль делить на нуль). Разложим числитель и знаменатель дроби на множители:

$$x^{2}-6x+5=0;$$
 $x^{2}-5x+4=0;$
 $D=36-4\cdot 1\cdot 5=16>0;$ $D=25-4\cdot 1\cdot 4=9>0;$
 $x=\frac{6\pm\sqrt{16}}{2};$ $x_{1}=5;$ $x_{2}=1;$ $x=\frac{5\pm\sqrt{9}}{2};$ $x_{1}=4;$ $x_{2}=1;$
 $x^{2}-6x+5=(x-1)(x-5).$ $x^{2}-5x+4=(x-1)(x-4).$

Подставляя соответствующие выражения и сокращая общий множитель (x-1), стремящийся к нулю, но не равный ему, получим:

$$\lim_{x \to 1} \frac{x^2 - 6x + 5}{x^2 - 5x + 4} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{(x - 1)(x - 5)}{(x - 1)(x - 4)} = \lim_{x \to 1} \frac{x - 5}{x - 4} = \frac{\lim_{x \to 1} (x - 5)}{\lim_{x \to 1} (x - 4)} = \frac{1 - 5}{1 - 4} = \frac{4}{3}.$$
OTBET: 4/3.

Задания для аудиторной работы

7. Найти
$$f(0)$$
, $f\left(-\frac{3}{4}\right)$, $f\left(-x\right)$, $f\left(\frac{1}{x}\right)$, $\frac{1}{f(x)}$, если $f\left(x\right) = \sqrt{1+x^2}$.

8. Известно, что f(x) – линейная функция. Зная, что f(-1) = 2; f(2) = -3, записать уравнения этой функции.

9. Найти область определения функции:

1)
$$y = \sqrt{-x} + \frac{1}{\sqrt{2+x}}$$
; 2) $y = \lg \frac{2+x}{2-x}$;

2)
$$y = \lg \frac{2+x}{2-x}$$
;

3)
$$y = \arccos \frac{2x}{1+x}$$
.

10. Исследовать функции на четность:

1)
$$f(x) = \frac{1}{2}(a^x + a^{-x});$$

1)
$$f(x) = \frac{1}{2}(a^x + a^{-x});$$
 2) $f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}.$

11. Найти $\varphi(\psi(x))$ и $\psi(\varphi(x))$, если $\varphi(x) = x^2$, $\psi(x) = 2^x$.

12. Определить нули функции, ее области положительности и отрицательности:

1)
$$y = 1 + x$$
;

2)
$$y = 2 + x - x^2$$
;

3)
$$y = 1 - x + x^2$$
.

1)
$$\lim_{n\to\infty} \frac{n}{n+1} = 1;$$

1)
$$\lim_{n\to\infty} \frac{n}{n+1} = 1;$$
 2) $\lim_{n\to\infty} \left(4 - \frac{1}{3^n}\right) = 4.$

14. Найти пределы:

1)
$$\lim_{x\to 2} (4x^2 - 6x + 3)$$
;

2)
$$\lim_{x\to 1} \frac{3x^2 - 4x + 7}{2x^2 - 5x + 6}$$
; 3) $\lim_{x\to 2} \frac{x+1}{x-2}$;

3)
$$\lim_{x\to 2} \frac{x+1}{x-2}$$
;

4)
$$\lim_{x \to \infty} \frac{1}{x+4}$$
;

5)
$$\lim_{x\to -1}\frac{x^3+1}{x^2+1}$$
;

6)
$$\lim_{x\to 1} \frac{x^2-5x+10}{x^2-25}$$
.

15. Найти пределы:

1)
$$\lim_{n\to\infty} \frac{3n^2+3n-5}{1-n^2}$$
;

2)
$$\lim_{x\to\infty} \frac{7x^3+x-2}{3x^2-3}$$
; 3) $\lim_{x\to\infty} \frac{x^2+4}{x^3+x-3}$;

3)
$$\lim_{x\to\infty}\frac{x^2+4}{x^3+x-3}$$
;

4)
$$\lim_{x\to\infty} \frac{5x^3+x^2+4}{7x^3+4x^2-x-3}$$
;

5)
$$\lim_{n\to\infty}\frac{(n+1)^3-(n-1)^3}{(n+2)^2+(n-1)^2}$$
;

6)
$$\lim_{x\to\infty} \frac{2x^2-3x+4}{\sqrt{x^4+1}}$$
;

7)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}};$$

8)
$$\lim_{x\to\pm\infty}\frac{3x^3+4x^2+2}{x^3-7x-10}$$
;

8)
$$\lim_{x \to \pm \infty} \frac{3x^3 + 4x^2 + 2}{x^3 - 7x - 10}$$
; 9) $\lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} \right)$.

16. Найти пределы:

1)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20}$$
;

2)
$$\lim_{x\to 1} \frac{3x^2-x-2}{4x^2-5x+1}$$
; $\frac{5}{3}$ 3) $\lim_{x\to 2} \frac{x^2-7x+10}{8-x^3}$;

3)
$$\lim_{x\to 2} \frac{x^2-7x+10}{8-x^3}$$
;

4)
$$\lim_{x\to 5} \frac{x^2-25}{\sqrt{x-1}-2}$$
;

5)
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{\sqrt{x+2}-2}$$

5)
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{\sqrt{x+2}-2}$$
; 6) $\lim_{x\to 3} \frac{\sqrt{x+13}-4}{x^2-9}$.

17. Найти пределы:

1)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$

1)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right);$$
 2) $\lim_{x\to 2} \left(\frac{4}{x^2 - 4} - \frac{1}{x-2}\right);$

3)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

3)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right);$$
 4) $\lim_{x\to \infty} \left(\sqrt{x^2 + 6x + 5} - x \right);$

5)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right)$$
; 6) $\lim_{x \to \infty} \left(x \left(\sqrt{x^2 + 4} - x \right) \right)$.

6)
$$\lim_{x\to\infty}\bigg(x\bigg(\sqrt{x^2+4}-x\bigg)\bigg).$$

Задания для индивидуальной работы

- 18. Решить неравенства:
- 1) |x-1| < 3; 2) |x-1| < |x+1|.
- **19.** Найти целую рациональную функцию второй степени, если f(0) = 1, f(1) = 0, f(3) = 5.
- 20. Найти область определения функции:
- 1) $y = \sqrt{2 + x x^2}$; 2) $y = \lg \frac{x^2 3x + 2}{y + 1}$; 3) $y = \arcsin \left(\lg \frac{x}{10} \right)$.
- 21. Исследовать функции на четность:
 - 1) $f(x) = \sqrt[3]{(1+x)^2} + \sqrt[3]{(x-1)^2}$; 2) $f(x) = \lg \frac{1+x}{1+x}$; 3) $y = \lg (x+\sqrt{1+x^2})$.
- **22.** Найти f(f(x)), если $f(x) = \frac{1}{1-x}$.
- **23.** Найти f(x+1), если $f(x-1) = x^2$.
- 24. Определить нули функции, ее области положительности и отрицательности:
 - 1) $v = x^3 3x$:

2) $y = \lg \frac{2x}{1 + x}$.

- **25.** Доказать, что:
 - 1) $\lim_{n\to\infty}\frac{2n+1}{n+1}=2$;

2) $\lim_{n\to\infty} \left(2-\frac{1}{4^n}\right) = 2$.

- 26. Найти пределы:
 - 1) $\lim_{n\to\infty} \frac{9n^2+4n-6}{2n^2+2}$;
 - 3) $\lim_{x\to\infty} \frac{\sqrt[3]{x^4+3}-\sqrt[5]{x^3+4}}{\sqrt[3]{x^7+1}}$;
 - 5) $\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + 1}}{x + 1}$;
 - 7) $\lim_{x\to\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}$;
 - 9) $\lim_{n\to\infty} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} \right);$

- 2) $\lim_{n \to \infty} \frac{(n+1)(n+2)(n+3)}{n^3}$;
- 4) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^4 + x} + x}$;
- 6) $\lim_{x \to \infty} \frac{2x+3}{x+3\sqrt{x}}$;
- 8) $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right);$
- 10) $\lim_{x \to +\infty} \frac{7x^2 + 10x + 20}{x^3 + 10x^2}$.

- **27.** Найти пределы:
 - 1) $\lim_{x \to -1} \frac{5x^2 + 4x 1}{3x^2 + x 2}$; 2) $\lim_{x \to 2} \frac{x^3 8}{2x^2 + x 6}$; 3) $\lim_{x \to 1} \frac{x^3 3x^2 + 2}{x^2 7x + 6}$;

- 4) $\lim_{x \to -3} \frac{2x^2 + 11x + 15}{3x^2 + 5x 12}$; 5) $\lim_{x \to 1} \frac{x^3 x^2 + x 1}{x^2 4x + 3}$; 6) $\lim_{x \to \frac{1}{2}} \frac{8x^3 1}{6x^2 5x + 1}$;

7)
$$\lim_{x\to 1} \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1}$$

7)
$$\lim_{x \to 1} \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1}$$
; 8) $\lim_{x \to 0} \frac{\sqrt{x^2+1}-1}{x}$;

9)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos 2x}.$$

28. Найти пределы:

1)
$$\lim_{x\to 3} \left(\frac{1}{x-3} - \frac{6}{x^2-9} \right)$$
;

2)
$$\lim_{x\to -4} \left(\frac{1}{x+4} - \frac{8}{16-x^2} \right)$$
;

3)
$$\lim_{x\to\infty} \left(x \left(\sqrt{x^2 + 5} - \sqrt{x^2 + 1} \right) \right);$$

4)
$$\lim_{x\to 0} \left(\frac{1}{4\sin^2 x} - \frac{1}{\sin^2 2x} \right)$$
.

29. Найти пределы указанных функций:

1)
$$\lim_{x\to 3} (2x^2 - 7x + 6);$$

2)
$$\lim_{x\to 1} (3x^4 - 5x^3 + 6x^2 - 4x + 7);$$

3)
$$\lim_{x\to 2} \frac{4x^2-5x+2}{3x^2-6x+4}$$
;

4)
$$\lim_{x\to 4} \frac{x^2-5x+4}{x^2-7x+6}$$
;

5)
$$\lim_{x\to 5} \frac{x^2-7x+12}{x^2-6x+5}$$
;

6)
$$\lim_{x\to 6} \frac{x^2-8x+12}{x^2-7x+6}$$
;

7)
$$\lim_{x\to 2} \frac{3x^2 - 7x + 2}{4x^2 - 5x - 6}$$
;

8)
$$\lim_{x\to 1} \frac{x^3-3x+2}{x^4-4x+3}$$
;

9)
$$\lim_{x\to\infty}\frac{10x^3-6x^2+7x+5}{8-4x+3x^2-2x^3}$$
;

10)
$$\lim_{x\to\infty} \frac{2x^4 - 5x^3 + 7x^2 + 8x - 9}{3x^5 - 6x^3 + 4x^2 - 2x + 11}$$
;

11)
$$\lim_{x\to\infty} \frac{(5+x)^2 - (1+2x^2)^2}{x(x^2-2x^3)}$$
;

12)
$$\lim_{x\to 5} \frac{x^2-6x+5}{\sqrt{x-1}-2}$$
;

13)
$$\lim_{x\to\infty} \frac{6x-5}{1+\sqrt{x^2+3}}$$
;

14)
$$\lim_{x \to \pi} \frac{\sqrt{1 - tg x} - \sqrt{1 + tg x}}{\sin 2x}$$
;

15)
$$\lim_{x\to 9} \frac{\sqrt{2x+7}-5}{\sqrt{x}-3}$$
;

16)
$$\lim_{x\to 3} \frac{x^2+x-12}{\sqrt{x-2}-\sqrt{4-x}}$$
;

17)
$$\lim_{x\to 4} \frac{2-\sqrt{x}}{\sqrt{6x+1}-5}$$
;

18)
$$\lim_{x\to 6} \left(\frac{3}{x(3x-18)} - \frac{1}{x^2-5x-6} \right);$$

19)
$$\lim_{x\to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$
;

20)
$$\lim_{x\to\infty} \left(\sqrt{x^2 + 5x + 4} - \sqrt{x^2 + x} \right);$$

21)
$$\lim_{n\to\infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+1} - \frac{2n+1}{2} \right].$$

Ответы: **15.** 5) 3; 7) 1; 9) 1. **16.** 1) 1/2; 3) 1/4; 4) 40; 5) 2/3. **17.** 2) -0,25; 3) -1; 4) 3; 5) 0; 6) 2. **26** 7) 1; 8) 0,5; 9)1. **27** 5) -1; 6) 6; 7) 0,5; 8) 0; 9) $\sqrt{2}/2$. **28** 1) 1/6; 3) 2; 4) -0,25. **29.** 19) $\sqrt{2}/8$; 20) 2; 21) ∞ .

3. Первый и второй замечательные пределы

При вычислении пределов широко используются следующие два *заме-чательных предела*:

1) $\lim_{x\to 0} \frac{\sin x}{x} = 1 - первый замечательный предел;$

2)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$
 или $\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e - второй замечательный предел.$

В более общем виде первый и второй замечательные пределы имеют соответственно вид:

$$\lim_{f(x)\to 0} \frac{\sin f(x)}{f(x)} = 1, \qquad \qquad \lim_{f(x)\to \infty} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e.$$

Пример 5. Вычислить пределы:

1)
$$\lim_{x \to \pi} \frac{\sin x}{x - \pi}$$
; 2) $\lim_{x \to \infty} \frac{\sin x}{x}$; 3) $\lim_{x \to 0} \frac{2x}{\arcsin x}$.

Решение.

1) Для раскрытия неопределенности вида $\left(\frac{0}{0}\right)$ воспользуемся формулами приведения:

$$\lim_{x\to\pi} \frac{\sin x}{x-\pi} = \left(\frac{0}{0}\right) = \lim_{x\to\pi} \frac{\sin\left(\pi-x\right)}{x-\pi} = -\lim_{x\to\pi} \frac{\sin\left(x-\pi\right)}{x-\pi} = -1.$$

- 2) Выражение $\frac{\sin x}{x}$ представляет собой произведение ограниченной функции $y = \sin x$ и бесконечно малой $y = \frac{1}{x}$ при $x \to \infty$. Тогда $\frac{\sin x}{x}$ бесконечно малая функция при $x \to \infty$. Значит $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.
- 3) Подставив x=0 в функцию, получим неопределенность вида $\left(\frac{0}{0}\right)$. Введем замену: $\arcsin x = t \implies x = \sin t$, если $x \to 0$ то и $t \to 0$. Тогда:

$$\lim_{x\to 0} \frac{2x}{\arcsin x} = \left(\frac{0}{0}\right) = \lim_{t\to 0} \frac{2\sin t}{t} = 2.$$

Ответ: 1) -1; 2) 0; 3) 2.

Пример 6. Вычислить пределы: 1)
$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x$$
; 2) $\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 3} \right)^{1 - 2x}$.

Решение. 1) Дробь в скобках стремится к единице при $x \to \infty$. Имеем неопределенность вида (1^{∞}) , которую раскроем с помощью второго замечательного предела.

$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x = \left(1^{\infty} \right) = \lim_{x \to \infty} \left(1 + \frac{-2}{x} \right)^{\frac{x}{-2} \cdot (-2)} = \lim_{x \to \infty} \left[\left(1 + \frac{-2}{x} \right)^{\frac{x}{-2}} \right]^{-2} = e^{-2}.$$

2) Дробь в скобках стремится к единице при $x \to \infty$. Имеем неопределенность вида (1^{∞}) . Применим второй замечательный предел:

$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 3} \right)^{1 - 2x} = \left(1^{\infty} \right) = \lim_{x \to \infty} \left(1 + \frac{3x - 1}{3x + 3} - 1 \right)^{1 - 2x} =$$

$$= \lim_{x \to \infty} \left(1 + \frac{3x - 1 - 3x - 3}{3x + 3} \right)^{1 - 2x} = \lim_{x \to \infty} \left(1 + \frac{-4}{3x + 3} \right)^{1 - 2x} = \lim_{x \to \infty} \left(1 + \frac{1}{\frac{3x + 3}{-4}} \right)^{1 - 2x}.$$

Знаменатель стремится к бесконечности: $\lim_{x\to\infty}\frac{3x+3}{-4}=\infty$. Умножим и разделим показатель степени на знаменатель. Преобразуя выражение под знаком предела далее, получим:

$$\lim_{x \to \infty} \left(1 + \frac{1}{\frac{3x+3}{-4}} \right)^{1-2x} = \lim_{x \to \infty} \left(1 + \frac{1}{\frac{3x+3}{-4}} \right)^{\frac{3x+3}{-4} \cdot \frac{-4}{3x+3} \cdot (1-2x)} = \lim_{x \to \infty} \left(\left(1 + \frac{1}{\frac{3x+3}{-4}} \right)^{\frac{-4(1-2x)}{3x+3}} \right)^{\frac{-4(1-2x)}{3x+3}} = e^{\frac{8}{3}}.$$

При вычислении этого предела использованы обобщенная форма второго замечательного предела $\lim_{f(x)\to\infty} \left(1+\frac{1}{f(x)}\right)^{f(x)} = e$, где $f(x) = \frac{3x+3}{-4}$ и теорема о пределе показательно-степенной функции.

Ответ: 1)
$$e^{-2}$$
; 2) $e^{8/3}$.

При нахождении пределов полезно знать следующие равенства:

$$\lim_{x\to 0} \frac{\log_a \left(1+x\right)}{x} = \log_a e, \ a>0, \ a\neq 1, \ \text{в частности } \lim_{x\to 0} \frac{\ln \left(1+x\right)}{x} = 1;$$

$$\lim_{x\to 0} \frac{a^x-1}{x} = \ln a, \ a>0, \ \text{в частности } \lim_{x\to 0} \frac{e^x-1}{x} = 1.$$

Задания для аудиторной работы

30. Найти пределы указанных функций:

1)
$$\lim_{x\to 0}\frac{tgx}{x}$$
;

2)
$$\lim_{x\to 0} \frac{5x}{\sin 3x}$$
;

3)
$$\lim_{x\to 0} \frac{\sin 7x}{\sin 3x}$$
;

4)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

5)
$$\lim_{x\to 0} \frac{1-\cos 6x}{x\sin 3x}$$
;

6)
$$\lim_{x\to\pi} \frac{\sin 5x}{\sin 6x}$$
;

7)
$$\lim_{x\to 1} \frac{\sin(2(x-1))}{x^2-7x+6}$$
;

8)
$$\lim_{x\to 0} \frac{2\arcsin x}{3x};$$

9)
$$\lim_{x\to 0}\frac{\sin 3x-\sin x}{5x}.$$

31. Найти пределы указанных функций:

1)
$$\lim_{x \to \infty} \left(\frac{3x+2}{3x-1} \right)^{4x-1}$$
; 2) $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^{x}$;

2)
$$\lim_{x\to\infty} \left(\frac{x}{1+x}\right)^x$$
;

3)
$$\lim_{x \to \pm \infty} \left(\frac{2x-1}{x+3} \right)^{-x}$$
;

4)
$$\lim_{x\to\infty}\left(1+\frac{3}{x}\right)^{2x}$$
;

5)
$$\lim_{x\to\infty} \left(\frac{2x+1}{2x-1}\right)^{3x+1}$$
;

6)
$$\lim_{x \to -\infty} \left(\frac{2x+1}{4x-3} \right)^{-2x}$$
.

32. Найти пределы указанных функций:

1)
$$\lim_{x\to 0} \frac{\arcsin 5x}{\sin x}$$
;

2)
$$\lim_{x\to 0} \frac{\ln(1+4x)}{5x}$$
;

3)
$$\lim_{x\to 0} \frac{3^x-1}{x}$$
;

4)
$$\lim_{x\to 0} \frac{e^{-x}-1}{3x}$$
;

5)
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$
;

6)
$$\lim_{x\to 3} \frac{\log_4(x-2)}{2^x-8}$$
.

33. Найти односторонние пределы указанных функций:

1)
$$\lim_{x\to\pm\infty}\frac{x}{\sqrt{x^2+1}}$$
;

2)
$$\lim_{x\to\pm\infty} thx$$
;

3)
$$\lim_{x\to\pm 0}\frac{1}{1+e^{1/x}}$$
.

Задания для индивидуальной работы

З4. Найти пределы указанных функций:

1)
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$
;

2)
$$\lim_{x\to 0} \frac{\sin^2 \frac{x}{3}}{x^2}$$
;

3)
$$\lim_{x\to 0} \frac{\cos x - \cos 5x}{2x^2}$$
;

4)
$$\lim_{x\to 0} x \cdot ctg\frac{x}{3}$$
;

5)
$$\lim_{x\to -1} \frac{\sin(3x+3)}{x^2-4x-5}$$
;

6)
$$\lim_{x\to 0} \frac{\sin 4x}{\sqrt{x+1}-1}$$
;

7)
$$\lim_{x\to 0} \frac{1-\cos 8x}{3x^2}$$
;

8)
$$\lim_{x\to 0} \frac{\sin^2 3x - \sin^2 x}{x^2}$$
;

9)
$$\lim_{x\to\infty} x \left(arctgx - \frac{\pi}{2} \right)$$
.

З5. Найти пределы указанных функций:

1)
$$\lim_{x\to\infty} \left(\frac{2x-1}{3x+4}\right)^{x^2}$$
;

2)
$$\lim_{x\to\infty} \left(\frac{3x-1}{2x+5}\right)^{3x}$$
;

3)
$$\lim_{x\to\pm\infty}\left(1-\frac{4}{5x}\right)^{3x}$$
;

4)
$$\lim_{x\to\infty} \left(\frac{3x-4}{3x+2}\right)^{\frac{x+1}{3}}$$
;

5)
$$\lim_{x\to 0} (1+tgx)^{ctgx}$$
;

6)
$$\lim_{x\to\infty} \left(\frac{x^2 - 2x + 1}{x^2 - 4x + 4} \right)^x$$
.

13

З6. Найти пределы указанных функций:

1)
$$\lim_{x \to 0} \frac{\sin x}{\sqrt{x+9} - 3};$$
 2)
$$\lim_{x \to \infty} \left(\frac{x+2}{x-3}\right)^x;$$

2)
$$\lim_{x\to\infty} \left(\frac{x+2}{x-3}\right)^x$$
;

3)
$$\lim_{x\to 0} \frac{1-\cos x - tg^2 x}{x \sin x}$$
;

4)
$$\lim_{x\to 2} (2-x) tg \frac{\pi x}{4}$$
;

4)
$$\lim_{x\to 2} (2-x) tg \frac{\pi x}{4}$$
; 5) $\lim_{x\to 0} \frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{x}$;

6)
$$\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^x;$$

7)
$$\lim_{x\to\pi}\frac{\sin x}{\pi^2-x^2};$$

8)
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}};$$

9)
$$\lim_{x\to 0} \left(\frac{\sin 3x}{x}\right)^{x+2}$$
;

10)
$$\lim_{x\to 0} (1-3x)^{\frac{1}{x}}$$
;

11)
$$\lim_{x\to\infty} \left(\frac{x+1}{x-3}\right)^x$$
;

12)
$$\lim_{x\to\infty} (2x+1) \Big[\ln(3x+1) - \ln(3x+2) \Big];$$

13)
$$\lim_{x\to\infty} \left(x \cdot \sin\frac{1}{x}\right)$$
;

14)
$$\lim_{x\to 0} \frac{1+x^2-\cos x}{\sin^2 x}$$
; 15) $\lim_{x\to \infty} \left(\frac{4-2x}{1-2x}\right)^{x+1}$;

15)
$$\lim_{x\to\infty} \left(\frac{4-2x}{1-2x}\right)^{x+1}$$
;

16)
$$\lim_{x\to 0}\frac{\sin 3x}{tg4x};$$

17)
$$\lim_{x\to 0} \left(1+tg^2x\right)^{2ctg^2x}$$
; 18) $\lim_{x\to 0} \left(\sqrt{1+x}-x\right)^{1/x}$;

18)
$$\lim_{x \to 0} \left(\sqrt{1+x} - x \right)^{1/x}$$
;

19)
$$\lim_{x\to 0} (\cos x)^{1/x}$$
;

20)
$$\lim_{x\to 0} \frac{1-\cos x - tg^2 x}{x \sin x}$$
;

20)
$$\lim_{x\to 0} \frac{1-\cos x - tg^2 x}{x \sin x}$$
; 21) $\lim_{x\to 0} \left(\frac{\sin \frac{x}{2}}{x}\right)^{x+3}$;

22)
$$\lim_{x\to\infty}\left(\frac{2x+1}{4x-3}\right)^x;$$

23)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$

23)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}};$$
 24) $\lim_{x\to \frac{\pi}{2}} (\sin x)^{tg^2x};$

$$25) \lim_{x\to\pi/4} (tgx)^{tg2x};$$

26)
$$\lim_{x \to 2} (5-2x)^{\frac{1}{4-x^2}}$$

$$27) \lim_{x \to \infty} (\cos 2x)^{ctg^2 2x};$$

26)
$$\lim_{x\to 2} (5-2x)^{\frac{1}{4-x^2}};$$
 27) $\lim_{x\to 0} (\cos 2x)^{ctg^2 2x};$ 28) $\lim_{x\to \pi} \frac{\sin^2 x}{1+\cos^3 x};$

29)
$$\lim_{x \to 0} (1 + tg^2 \sqrt{x})^{\frac{1}{2x}}$$
;

29)
$$\lim_{x\to 0} \left(1 + tg^2 \sqrt{x}\right)^{\frac{1}{2x}};$$
 30) $\lim_{x\to \pi} \frac{\sqrt{1 - tgx} - \sqrt{1 + tgx}}{\sin 2x}.$

Найти односторонние пределы указанных функций:

1)
$$\lim_{x \to \pm \infty} \frac{\ln(1 + e^x)}{x}$$
; 2) $\lim_{x \to \pm 0} \frac{|\sin x|}{x}$;

2)
$$\lim_{x\to\pm0}\frac{\left|\sin x\right|}{x}$$
;

3)
$$\lim_{x\to 1\pm 0} \frac{x-1}{|x-1|}$$
.

Ответы: **30.** 5) 6; 7) $-\frac{2}{5}$. **31.** 1) e^4 ; 5) e^3 . **32.** 4) $-\frac{1}{3}$. **33.** 1) 1; -1; 2) 1;

-1; 3) 0; 1. **34.** 2)
$$\frac{1}{9}$$
; 4) 3; 5) $-\frac{1}{2}$; 9) -1. **36.** 1) 6; 3) $-\frac{1}{2}$; 4) $\frac{4}{\pi}$; 5) 1; 7) $\frac{1}{2\pi}$;

12) 2; 14)
$$\frac{3}{2}$$
; 17) e^2 ; 18) $e^{-\frac{1}{2}}$; 19) 1; 23) $e^{-\frac{1}{2}}$; 27) $e^{-\frac{1}{2}}$. **37.** 1) 1; 0; 2) 1; -1; 3) 1; -1.

4. Сравнение бесконечно малых функций. Непрерывность функции

Пусть $\alpha(x)$ и $\beta(x)$ бесконечно малые функции при $x \to x_0$ и $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = A$.

- 1) Если $A \neq \infty$ и $A \neq 0$, то $\alpha(x)$ и $\beta(x)$ называют бесконечно малыми функциями одного порядка.
- 2) Если A=1, то $\alpha(x)$ и $\beta(x)$ называют эквивалентными бесконечно малыми функциями: $\alpha(x)\sim\beta(x)$ при $x\to x_0$.
- 3) Если A=0, то $\alpha(x)$ называют бесконечно малой функцией более высокого порядка малости, чем $\beta(x)$: $\alpha(x)=o(\beta(x))$ при $x\to x_0$.
- 4) Если $A=\infty$, то $\alpha(x)$ называют бесконечно малой функцией более низкого порядка малости, чем $\beta(x)$, или $\beta(x)$ более высокого порядка малости, чем $\alpha(x)$: $\beta(x)=o(\alpha(x))$ при $x\to x_0$.
- 5) Если предел $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}$ не существует, то $\alpha(x)$ и $\beta(x)$ называют несравнимыми бесконечно малыми функциями.

Если $\lim_{x \to x_0} \frac{\alpha(x)}{(\beta(x))^k} = A$, $0 < |A| < \infty$, то $\alpha(x)$ называют бесконечно малой

функцией порядка k по сравнению с $\beta(x)$ при $x \to x_0$.

Теорема. Предел отношения бесконечно малых функций не изменится, если любую из них заменить ей эквивалентной.

Примеры эквивалентных бесконечно малых функций:

sin
$$ax \stackrel{x \to 0}{\sim} ax$$
; $tg \ ax \stackrel{x \to 0}{\sim} ax$; $(1 - \cos x) \stackrel{x \to 0}{\sim} \frac{x^2}{2}$; arcsin $ax \stackrel{x \to 0}{\sim} ax$; $arctg \ ax \stackrel{x \to 0}{\sim} ax$; $(a^x - 1) \stackrel{x \to 0}{\sim} x \ln a$;
$$(e^{ax} - 1) \stackrel{x \to 0}{\sim} ax$$
;
$$\log_a (1 + x) \stackrel{x \to 0}{\sim} \frac{x}{\ln a}$$
;
$$\ln(1 + ax) \stackrel{x \to 0}{\sim} ax$$
;
$$x^a - 1 \stackrel{x \to 0}{\sim} a(x - 1)$$
;
$$(1 + x)^k - 1 \stackrel{x \to 0}{\sim} k \cdot x$$
.

Пример 7. Вычислить пределы 1) $\lim_{x\to 0} \frac{2x\sin 3x}{1-\cos x}$; 2) $\lim_{x\to 0} \frac{\ln\cos x}{x^2}$.

Решение. Воспользуемся теоремой о замене эквивалентных бесконечно малых функций.

1)
$$\lim_{x \to 0} \frac{2x \sin 3x}{1 - \cos x} = \left(\frac{0}{0}\right) = \begin{bmatrix} 1 - \cos x & \frac{x \to 0}{2} \\ \frac{x \to 0}{\sin 3x} & \frac{x^2}{2} \end{bmatrix} = \lim_{x \to 0} \frac{2x \cdot 3x}{\frac{x^2}{2}} = 12.$$

2)
$$\lim_{x \to 0} \frac{\ln \cos x}{x^2} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{\ln \left(1 + (\cos x - 1)\right)}{x^2} = \begin{bmatrix} \ln(1 + t) & \cos x \\ \lim_{x \to 0} (\cos x - 1) & = 0 \\ t & = \cos x - 1 \end{bmatrix} =$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{x^2} = \left[1 - \cos x \overset{t \to 0}{\sim} \frac{x^2}{2} \right] = \lim_{x \to 0} \frac{-x^2/2}{x^2} = -\frac{1}{2}.$$

Ответ: 1) 12; 2) -0,5.

Функция y = f(x) называется непрерывной в точке x_0 , если:

- 1) она определена в точке x_0 и некоторой ее окрестности;
- 2) существует предел функции y = f(x) в точке x_0 ;
- 3) этот предел равен значению функции в точке x_0 : $\lim_{x \to x_0} f(x) = f(x_0)$.

Если $x \to x_0$ так, что $x > x_0$, то $\lim_{\substack{x \to x_0 \\ x > x_0}} f\left(x\right)$ называют *правосторонним*

пределом и обозначают $\lim_{x \to x_0 + 0} f(x)$. Если $x \to x_0$ так, что $x < x_0$, то

 $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ называют *певосторонним пределом* и обозначают $\lim_{\substack{x \to x_0 - 0}} f(x)$.

Левосторонний и правосторонний пределы называют *односторонними* пределами. Для того, чтобы $\lim_{x \to x_0} f(x) = A$, необходимо и достаточно, что-

бы
$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = A$$
.

Тогда значение функции в точке непрерывности

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0 \to 0} f(x) = \lim_{x \to x_0 \to 0} f(x).$$

Все основные элементарные функции непрерывны в своей области определения.

Если в точке x_0 нарушается непрерывность функции, то точку x_0 называют точкой разрыва функции.

Пусть x_0 – точка разрыва функции. Если при этом односторонние пределы существуют и конечны, то точку x_0 называют точкой разрыва I рода.

Пусть x_0 – точка разрыва первого рода и $\lim_{x\to x_0-0} f(x) = \lim_{x\to x_0-0} f(x) \neq f(x_0)$, то точку x_0 называют *точкой устранимого разрыва*.

Пусть x_0 — точка разрыва первого рода. Если $\lim_{x \to x_0 = 0} f(x) \neq \lim_{x \to x_0 + 0} f(x)$, то точку x_0 называют *точкой разрыва первого рода со скачком*. Скачок функции определяют по формуле $\omega = \left| \lim_{x \to x_0 = 0} f(x) - \lim_{x \to x_0 + 0} f(x) \right|$.

Если $f(x_0)$ не существует, хотя бы один из односторонних пределов равен ∞ при $x \to x_0$ или не существует, то точку \mathbf{x}_0 называют mочкой разрыва второго рода.

Пример 8. Исследовать функцию на непрерывность.

$$f(x) = \begin{cases} x + 2, & \text{если } x < -2; \\ \frac{x^2 - 4}{2}, & \text{если } -2 \le x < 0; \\ \sin x, & \text{если } x \ge 0. \end{cases}$$

Решение. Функция определена на всей числовой оси и непрерывна на интервалах $(-\infty; -2), (-2; 0), (0; +\infty)$, т.к. представлена на них элементарными функциями. Исследуем функцию в точках x = -2 и x = 0, при переходе через которые меняется аналитическое задание функции.

Если x = -2, то $f(-2) = \frac{\left(-2\right)^2 - 4}{2} = 0$. Найдем односторонние пределы.

$$\lim_{x \to -2-0} (x+2) = 0; \lim_{x \to -2+0} \frac{x^2 - 4}{2} = 0.$$

 $\lim_{x\to -2-0} \left(x+2\right) = 0\,; \ \lim_{x\to -2+0} \frac{x^2-4}{2} = 0\,.$ Итак, $\lim_{x\to -2-0} f\left(x\right) = \lim_{x\to -2+0} f\left(x\right) = f\left(-2\right) = 0\,, \ \text{а значит,} \ x=-2\ - \text{точка не-}$ прерывности функциі

Если x = 0, то $f(0) = \sin 0 = 0$. Найдем односторонние пределы.

$$\lim_{x\to 0-0}\frac{x^2-4}{2}=-2\,;\,\,\lim_{x\to 0+0}\sin x=0\,.$$

Итак, $\lim_{x\to 0-0} f(x) \neq \lim_{x\to 0+0} f(x) = f(0)$, а значит, точка x=0 — точка разрыва

первого рода со скачком, равным $\omega = \left| \lim_{x \to x_0 = 0} f(x) - \lim_{x \to x_0 = 0} f(x) \right| = \left| -2 - 0 \right| = 2$.

Т.к. $\lim_{x\to 0+0} f(x) = f(0)$, то говорят, что функция f(x) непрерывна справа в точке x = 0.

Ответ: f(x) непрерывна на $\mathbb{R}/\{0\}$, x=0 — точка разрыва первого рода.

Задания для аудиторной работы

- **38.** Определить при $x \to 0$ порядки малости функций y = 3x, $y = x^2$, $y = \sqrt{x}$, $y = x^3$, y = x/2 относительно функции y = x.
- 39. Найти пределы, используя таблицу эквивалентных бесконечно малых функций.

1)
$$\lim_{x\to 2} \frac{\sin(3(x-2))}{x^2 - 3x + 2}$$
; 2) $\lim_{x\to 0} \frac{x\sin 6x}{(arctg^2x)^2}$; 3) $\lim_{x\to 0} \frac{\sin 3x - \sin 5x}{2x}$;

4)
$$\lim_{x\to 0} \frac{e^{5x}-1}{\sin 10x}$$
;

5)
$$\lim_{x\to 0} \frac{e^{\sin 7x} - 1}{x^2 + 3x}$$
; 6) $\lim_{x\to 0} \frac{\ln(1+7x)}{\sin 7x}$;

6)
$$\lim_{x\to 0} \frac{\ln(1+7x)}{\sin 7x}$$

7)
$$\lim_{x\to e} \frac{\ln x^3 - 3}{x - e}$$
;

8)
$$\lim_{x\to 3} \frac{\ln(x^2-5x+7)}{x-3}$$
; 9) $\lim_{x\to 0} (\cos x)^{1/\sin^2 x}$.

9)
$$\lim_{x\to 0} (\cos x)^{1/\sin^2 x}$$

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{если } x \neq 3; \\ A, & \text{если } x = 3. \end{cases}$$

При каких значениях параметра A функция f(x) будет непрерывной в точке x = 3? Построить график функции.

- **41.** Установить область непрерывности функции $y = \frac{3x+3}{2x+4}$ и найти её точки разрыва.
- 42. Исследовать функции на непрерывность и построить их графики:

1)
$$f(x) = \begin{cases} -x, & x \le 0; \\ x^3, & 0 < x \le 2; \\ x + 4, & x > 2. \end{cases}$$
 2) $f(x) = \begin{cases} 2/x, & x < 0; \\ x^2 + 1, & 0 \le x < 3; \\ 2x + 4, & x \ge 3. \end{cases}$ 3) $f(x) = \frac{x^3 + x}{|x|}$.

2)
$$f(x) = \begin{cases} 2/x, & x < 0, \\ x^2 + 1, & 0 \le x < 3, \\ 2x + 4, & x > 3, \end{cases}$$

$$3) f(x) = \frac{x^3 + x}{|x|}$$

- **43.** Исследовать на непрерывность функцию $y = 3^{1/(x+1)} + 1$ в точках $x_1 = 1$, $X_2 = -1$.
- 44. Найти односторонние пределы:

1)
$$\lim_{x\to\pm\infty}\frac{x}{\sqrt{x^2+1}}$$
;

2)
$$\lim_{x\to\pm\infty} thx$$
;

3)
$$\lim_{x\to\pm 0}\frac{1}{1+e^{1/x}}$$
.

Задания для индивидуальной работы

45. Определить при $x \to 0$ порядки малости данных функций относительно функции y = x.

1)
$$y = \frac{2x}{1+x}$$
;

2)
$$y = \sqrt{x + \sqrt{x}}$$
;

2)
$$y = \sqrt{x + \sqrt{x}}$$
; 3) $y = \sqrt[3]{x^2} - \sqrt{x^3}$;

4)
$$y = 1 - \cos x$$
;

5)
$$y = tgx - \sin x$$
;

5)
$$y = tgx - \sin x$$
; 6) $y = \frac{7x^8}{x^4 + 1}$.

46. Сравнить бесконечно малые функции.

1)
$$\alpha(x) = \frac{3x^4 - 4}{x + 1}$$
, $\beta(x) = x^3$, $x \to 0$;

2) 1)
$$\alpha(x) = \frac{1-x}{1+x}$$
, $\beta(x) = 1-\sqrt[3]{x}$, $x \to 1$;

3)
$$\alpha(x) = \sqrt[3]{x^4 + 2x^3}$$
, $\beta(x) = \ln(1+x)$, $x \to 0$;

4)
$$\alpha(x) = 1 - \cos^3 x$$
, $\beta(x) = \sin^2 x$, $x \to 0$;

5)
$$\alpha(x) = \frac{x+1}{x^2+1}$$
, $\beta(x) = \frac{1}{x}$, $x \to \infty$;

6)
$$\alpha(x) = \frac{arctgx}{x^2 + 1}$$
, $\beta(x) = \frac{1}{x^2}$, $x \to \infty$;

7)
$$\alpha(x) = 1 + \sin^3 x$$
, $\beta(x) = \cos^2 x$, $x \to \pi/2$.

47. Доказать, что данные функции являются бесконечно малыми одного порядка малости.

1)
$$f(x) = tgx$$
 и $\varphi(x) = \arcsin x$ при $x \to 0$;

2)
$$f(x) = 1 - \cos x \text{ и } \varphi(x) = 3x^2 \text{ при } x \to 0.$$

48. Найти пределы указанных функций:

1)
$$\lim_{x\to 0} \frac{\arcsin 8x}{\ln(1+4x)};$$

2)
$$\lim_{x\to 0}\frac{tg3x}{tg8x};$$

3)
$$\lim_{x\to 0} \frac{tg^3 4x}{\sin^3 10x}$$
;

4)
$$\lim_{x\to 0} \frac{\sqrt[5]{1+x}-1}{x}$$

4)
$$\lim_{x\to 0} \frac{\sqrt[5]{1+x}-1}{x}$$
; 5) $\lim_{x\to 0} \frac{\frac{1}{\sqrt[3]{1+x}}-1}{x}$; 6) $\lim_{x\to 0} \frac{\ln(1+5x)}{x}$;

6)
$$\lim_{x\to 0} \frac{\ln(1+5x)}{x}$$
;

7)
$$\lim_{x\to 2} \frac{\ln(3x^2 + 5x - 21)}{x^2 - 6x + 8}$$
; 8) $\lim_{x\to -1} \frac{\sin 3(x+1)}{x^2 + 4x - 5}$; 9) $\lim_{x\to 2} \frac{tg(x^2 - 3x + 2)}{x^2 - 4}$;

8)
$$\lim_{x \to -1} \frac{\sin 3(x+1)}{x^2 + 4x - 5}$$
;

9)
$$\lim_{x\to 2} \frac{tg(x^2-3x+2)}{x^2-4}$$

10)
$$\lim_{x\to 0} \frac{\ln(1-2x)}{\sin \pi(x+4)}$$
;

10)
$$\lim_{x\to 0} \frac{\ln(1-2x)}{\sin \pi(x+4)}$$
; 11) $\lim_{x\to 2\pi} \frac{(x-2\pi)^2}{tg(\cos x-1)}$; 12) $\lim_{x\to 0} \frac{2^{3x}-3^{2x}}{x+\arcsin x^3}$;

12)
$$\lim_{x\to 0} \frac{2^{3x}-3^{2x}}{x+\arcsin x^3}$$
;

13)
$$\lim_{x\to 1}\frac{e^x-e}{\ln x};$$

14)
$$\lim_{x\to 0} \frac{1-x^2}{\sin \pi x}$$

14)
$$\lim_{x \to 0} \frac{1 - x^2}{\sin \pi x};$$
 15)
$$\lim_{x \to \frac{\pi}{4}} \frac{\ln tgx}{\cos 2x};$$

16)
$$\lim_{x \to 1} \frac{\operatorname{arctg}(x^2 - 2x)}{\sin \pi x}$$
; 17) $\lim_{x \to 0} \frac{\ln(1 + \sqrt{x^3})}{e^{x^2} - 1}$; 18) $\lim_{x \to 0} \frac{2(e^{\pi x} - 1)}{3(\sqrt[3]{1 + x} - 1)}$;

17)
$$\lim_{x \to 0} \frac{\ln\left(1 + \sqrt{x^3}\right)}{e^{x^2} - 1}$$

18)
$$\lim_{x\to 0} \frac{2(e^{\pi x}-1)}{3(\sqrt[3]{1+x}-1)}$$

19)
$$\lim_{x\to 1} \frac{\cos\frac{\pi x}{2}}{1-\sqrt{x}};$$

19)
$$\lim_{x \to 1} \frac{\cos \frac{\pi x}{2}}{1 - \sqrt{x}}$$
; 20) $\lim_{x \to \pi} \frac{tg(3^{\pi/x} - 3)}{3^{\cos \frac{3x}{2}} - 1}$; 21) $\lim_{x \to 0} \frac{2^{3x} - 3^{2x}}{x + \arcsin x^3}$;

21)
$$\lim_{x\to 0} \frac{2^{3x}-3^{2x}}{x+\arcsin x^3}$$

22)
$$\lim_{x\to 0} \frac{3^{x+1}-3}{\ln(1+x\sqrt{1+xe^x})}$$
; 23) $\lim_{x\to 0} \left(\frac{1+x^22^x}{1+x^25^x}\right)^{1/\sin^3 x}$;

24)
$$\lim_{x \to \frac{\pi}{2}} \frac{2 + \cos x \cdot \frac{2}{2x - \pi}}{3 + 2x \sin x}$$
; 25) $\lim_{x \to \pi} \left(ctg \frac{x}{4} \right)^{1/\cos \frac{x}{2}}$.

49. Исследовать функцию на непрерывность
$$f(x) = \begin{cases} 2^{-1/x^2}, \ ecnu \ x \neq 0; \\ 2, \ ecnu \ x = 0. \end{cases}$$

50. Исследовать функции на непрерывность и построить их графики:

1)
$$f(x) = \begin{cases} x^2 + 1, & x < 0; \\ \sin x, & 0 \le x < \pi/2; \\ x - \pi/2 + 1, & x \ge \pi/2. \end{cases}$$

2)
$$f(x) = \begin{cases} x+4, & x<-1; \\ x^2+2, & -1 \le x<1; \\ 2x, & x \ge 1. \end{cases}$$

3)
$$f(x) = \begin{cases} -x^2, & x \le 0; \\ tgx, & 0 < x \le \pi/4; \\ 4x - 3, & x > \pi/4. \end{cases}$$
 4) $f(x) = \begin{cases} -2x, & x \le 0; \\ \sqrt{x}, & 0 < x < 4; \\ e^{x/4}, & x \ge 4. \end{cases}$

4)
$$f(x) = \begin{cases} -2x, & x \le 0; \\ \sqrt{x}, & 0 < x < 4; \\ e^{x/4}, & x \ge 4. \end{cases}$$

- **51.** Исследовать на непрерывность функцию $y = 3^{1/(x-1)} + 1$ в $x_1 = 3$, $x_2 = 4$.
- **52.** Исследовать на непрерывность функцию $f(x) = \frac{2x+4}{3x+9}$ в точках $x_1 = -1$ и $x_2 = -3$. Сделать схематический чертёж.
- **53.** Исследовать на непрерывность функцию $f(x) = \frac{3x-2}{x+2}$ в точках $x_1 = 0$ и $x_2 = -2$. Сделать схематический чертёж.
- 54. Найти односторонние пределы:

1)
$$\lim_{x \to \pm \infty} \frac{\ln(1 + e^x)}{x}$$
; 2) $\lim_{x \to \pm 0} \frac{|\sin x|}{x}$;

2)
$$\lim_{x\to\pm0}\frac{\left|\sin x\right|}{x}$$
;

3)
$$\lim_{x \to 1 \pm 0} \frac{x-1}{|x-1|}$$
.

55. Найти односторонние пределы указанных функций при $x \to 0$:

1)
$$y = ctg x$$
;

2)
$$y = arcctg \frac{1}{x}$$
;

3)
$$y = e^{1/x}$$
.

Ответы: **39.** 1) 3; 4) $\frac{1}{2}$; 6) 1; 7) $\frac{3}{6}$; 9) $-\frac{1}{2}$. **44.** 1) 1; -1; 2) 1; -1; 3) 0; 1.

48. 18)
$$2\pi$$
; 19) π ; 20) $-\frac{2}{\pi}$; 21) $\ln \frac{8}{9}$; 22) $3\ln 3$; 23) $\frac{2}{5}$; 24) $\frac{1}{3+\pi}$; 25) e. **54.** 1) 1; 0; 2) 1; -1; 3) 1; -1.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

5. Производная. Основные правила дифференцирования. Таблица производных

Пусть функция y = f(x) определена на промежутке X, значения x_1 и x_2 принадлежат этому промежутку, $y_1 = f(x_1)$ и $y_2 = f(x_2)$ — соответствующие значения функции. Тогда разность $\Delta x = x_2 - x_1$ называется приращением аргумента, а разность $\Delta y = f(x_2) - f(x_1)$ – приращением функции на отрезке $[x_1; x_2]$.

Производной функции y = f(x) по аргументу x называется предел отношения приращения функции к приращению аргумента, когда последнее произвольным образом стремится к нулю:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'$$
 или $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

Геометрически производная представляет собой угловой коэффициент касательной к графику функции y = f(x) в точке M(x; f(x)):

$$y'(x) = k = tg\alpha$$
,

где α – угол наклона касательной к положительному направлению оси Ox в точке M(x; f(x)).

Производная есть *скорость изменения функции* y = f(x) в точке x.

Процесс отыскания производной функции называется дифференцированием.

Основные правила дифференцирования

Пусть u = u(x) и v = v(x) — функции, имеющие производные, C = const, тогда:

1)
$$C' = 0$$
;

2)
$$\left(Cu(x)\right)' = C \cdot u'(x); \left(\frac{u(x)}{C}\right)' = \left(\frac{1}{C} \cdot u(x)\right)' = \frac{u'(x)}{C};$$

3)
$$(u(x) \pm v(x))' = u'(x) \pm v'(x);$$

4)
$$(u(x) \cdot v(x))' = u'(x)v(x) + u(x)v'(x)$$
;

5)
$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}.$$

Правило дифференцирования сложной функции: если y = f(u(x)), т.е. y = f(u), u = u(x), то $y'(x) = f'(u) \cdot u'(x)$, где x — основной аргумент, u — промежуточный аргумент.

Таблица производных основных элементарных функций

1)
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \ \alpha \in R; \ 2) (x)' = 1;$$
 3) $(\sqrt{x})' = \frac{1}{2\sqrt{x}};$

4)
$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$
; 5) $\left(a^x\right)' = a^x \cdot \ln a$; 6) $\left(e^x\right)' = e^x$;

7)
$$(\log_a x)' = \frac{1}{x \ln a};$$
 8) $(\ln x)' = \frac{1}{x};$ 9) $(\sin x)' = \cos x;$

10)
$$(\cos x)' = -\sin x$$
; 11) $(tgx)' = \frac{1}{\cos^2 x}$; 12) $(ctgx)' = -\frac{1}{\sin^2 x}$;

13)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
; 14) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$; 15) $(\arctan x)' = \frac{1}{1+x^2}$;

16)
$$\left(arcctgx\right)' = -\frac{1}{1+x^2};$$
 17) $\left(shx\right)' = chx;$ 18) $\left(chx\right)' = shx;$

19)
$$(thx)' = \frac{1}{ch^2x}$$
; 20) $(cthx)' = -\frac{1}{sh^2x}$

Рассмотрим дифференцирование сложной функции.

Запишем таблицу дифференцирования сложных элементарных функций. Пусть функция u = u(x) имеет производную.

1)
$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} \cdot u'(x), \alpha \in R$$
; 2) $\left(\sqrt{u}\right)' = \frac{u'(x)}{2\sqrt{u}}$; 3) $\left(\frac{1}{u}\right)' = -\frac{u'(x)}{u^2}$;

4)
$$(a^u)' = a^u \cdot \ln a \cdot u'(x);$$
 5) $(e^u)' = e^u \cdot u'(x);$ 6) $(\log_a u)' = \frac{u'(x)}{u \ln a};$

7)
$$(\ln u)' = \frac{1}{u} \cdot u'(x);$$
 8) $(\sin u)' = \cos u \cdot u'(x);$ 9) $(\cos u)' = -\sin u \cdot u'(x);$

10)
$$(tgu)' = \frac{1}{\cos^2 u} \cdot u'(x)$$
; 11) $(ctgu)' = -\frac{u'(x)}{\sin^2 u}$; 12) $(arcsin u)' = \frac{u'(x)}{\sqrt{1-u^2}}$;

13)
$$\left(\operatorname{arccos} u\right)' = -\frac{u'(x)}{\sqrt{1-u^2}}; 14) \left(\operatorname{arctg} u\right)' = \frac{u'(x)}{1+u^2}; 15) \left(\operatorname{arcctg} u\right)' = -\frac{u'(x)}{1+u^2};$$

16)
$$(shu)' = chu \cdot u'(x);$$
 17) $(chu)' = shu \cdot u'(x);$ 18) $(thu)' = \frac{1}{ch^2u} \cdot u'(x);$

$$19) \left(cthu\right)' = -\frac{1}{sh^2u} \cdot u'(x).$$

Если в заданной сложной функции выделить последовательность основных элементарных функций, ее составляющих, то нетрудно найти производную любой сложной функции, причем промежуточных аргументов может быть несколько.

Пример 9. Найти производные следующих функций:

1)
$$y = 10^{3x-5}$$
; 2) $y = \cos^3(8-5x^2)$; 3) $y = e^{3x} \cdot \sqrt{7x^2+3}$; 4) $y = \frac{x + \ln(3x)}{tg^2x}$.

Решение. 1) Представим данную функцию в виде $y = 10^u$, u = 3x - 5. Тогда производная функции по аргументу x будет равна:

$$y' = (10^u)'_u \cdot u' = (10^u)'_u \cdot (3x - 5)'_x = 10^u \ln 10 \cdot 3 = 10^{3x - 5} \ln 10 \cdot 3 = 3 \ln 10 \cdot 10^{3x - 5}.$$

2) Представим функцию в виде: $y = u^3$, $u = \cos v$, $v = 8 - 5x^2$. Тогда по правилу дифференцирования сложной функции и таблице производных получим:

$$y' = \left(\cos^3(8 - 5x^2)\right)' = \left(u^3\right)'_u \cdot \left(\cos v\right)'_v \cdot \left(8 - 5x^2\right)'_x = 3u^2 \cdot (-\sin v) \cdot (-10x) = 3\cos^2(8 - 5x^2) \cdot \left(-\sin(8 - 5x^2)\right) \cdot \left(-10x\right) = 30x \cdot \cos^2(8 - 5x^2) \cdot \sin(8 - 5x^2).$$

3) Воспользуемся правилами нахождения производной произведения и производной сложной функции, а так же таблицей производных:

$$y' = (e^{3x})' \cdot \sqrt{7x^2 + 3} + e^{3x} \cdot (\sqrt{7x^2 + 3})' =$$

$$= e^{3x} \cdot (3x)' \cdot \sqrt{7x^2 + 3} + e^{3x} \cdot \frac{1}{2\sqrt{7x^2 + 3}} \cdot (7x^2 + 3)' =$$

$$= e^{3x} \cdot 3 \cdot \sqrt{7x^2 + 3} + e^{3x} \cdot \frac{1}{2\sqrt{7x^2 + 3}} \cdot 14x = e^{3x} \left(3 \cdot \sqrt{7x^2 + 3} + \frac{7x}{\sqrt{7x^2 + 3}}\right).$$

4) Воспользуемся правилами нахождения производной частного и производной сложной функции, а так же таблицей производных:

$$y' = \frac{\left(x + \ln(3x)\right)' \cdot tg2x - \left(x + \ln(3x)\right) \cdot \left(tg2x\right)'}{\left(tg2x\right)^{2}} = \frac{\left(1 + \frac{1}{3x} \cdot (3x)'\right) \cdot tg2x - \left(x + \ln(3x)\right) \cdot \frac{1}{\cos^{2}(2x)} \cdot (2x)'}{tg^{2}x} = \frac{\left(1 + \frac{1}{3x} \cdot 3\right) \cdot tg2x - \left(x + \ln(3x)\right) \cdot \frac{1}{\cos^{2}(2x)} \cdot 2}{tg^{2}x} = \frac{\left(1 + \frac{1}{x}\right) \cdot tg2x - \frac{2(x + \ln(3x))}{\cos^{2}(2x)}}{tg^{2}x}.$$

Упростим полученное выражение:

$$\frac{\left(1+\frac{1}{x}\right)\cdot tg2x-\frac{2(x+\ln(3x))}{\cos^2(2x)}}{tg^22x}=\frac{(x+1)\cdot\cos^22x\cdot tg2x-2x(x+\ln(3x))}{x\cdot\cos^22x\cdot tg^22x}=\\ =\frac{\frac{(x+1)\cdot\cos^22x\cdot\frac{\sin2x}{\cos2x}-2x(x+\ln(3x))}{x\cdot\cos^22x\cdot\frac{\sin^22x}{\cos^22x}}=\\ =\frac{(x+1)\cdot\cos2x\cdot\sin2x-2x(x+\ln(3x))}{x\cdot\sin^22x}=\frac{(x+1)\cdot\sin4x-4x(x+\ln(3x))}{2x\cdot\sin^22x}.$$
Ответы: 1) $y'=3\ln 10\cdot 10^{3x-5}$; 2) $y'=30x\cdot\cos^2(8-5x^2)\cdot\sin(8-5x^2)$; 3) $y'=e^{3x}\left(3\cdot\sqrt{7x^2+3}+\frac{7x}{\sqrt{7x^2+3}}\right)$; 4) $y'=\frac{(x+1)\cdot\sin4x-4x(x+\ln(3x))}{2x\cdot\sin^22x}.$

Задания для аудиторной работы

56. Пользуясь определением, найти производную функции $y = \frac{2x}{3x+1}$ в точке x = 1.

57. Найти производные указанных функций:

1)
$$y = 5x^4 - 3\sqrt[7]{x^3} + \frac{7}{x^5} + 4$$
;

3)
$$y = x^2 + \frac{1}{x^2} - 2^x + 2x$$
;

5)
$$y = x^3 \sin x$$
;

7)
$$y = \frac{2x^2 - 4x + 5}{3x}$$
;

9)
$$y = x \cdot chx + \frac{1}{x}$$
;

11)
$$y = \log_3 x + \ln x - \frac{e^x}{arctgx}$$
;

13)
$$y = \frac{x \cdot ctgx}{\arccos x}$$
;

2)
$$y = 2x^5 - \frac{4}{x^3} + \frac{1}{x} + 3\sqrt{x}$$
;

4)
$$y = 5 \cdot 2^{x} - 4tgx$$
;

6)
$$y = \frac{x^4 + 1}{x^4 - 1}$$
;

8)
$$y = \frac{1 - \cos x}{x^2}$$
;

10)
$$y = \sqrt{x} + \frac{1}{\sqrt{x}} - tg\sqrt{2}$$
;

12)
$$y = (\sqrt{x} + 1) \cdot \arcsin x$$
;

14)
$$y = \log_3 x \cdot 3^x + \frac{1}{x^3} - \sin 3$$
.

58. Найти производную данной функции в точке x_0 :

1)
$$y = x \cdot arctgx$$
, $x_0 = 0$

1)
$$y = x \cdot arctgx$$
, $x_0 = 0$; 2) $y = x^4 + x^3 - 17^5$, $x_0 = 1$; 3) $y = \frac{lnx}{r}$, $x_0 = e$.

3)
$$y = \frac{\ln x}{x}$$
, $x_0 = e$.

59. Найти производные указанных функций:

1)
$$y = \cos 5x$$
;

2)
$$y = 7^{3x-1}$$
;

3)
$$v = sh^3x$$
:

4)
$$y = (x+1)^{100}$$
;

5)
$$y = \sqrt{tgx}$$
;

6)
$$y = \arcsin \sqrt{x}$$
;

7)
$$y = \frac{1}{\ln x}$$
;

8)
$$y = \ln \cos x$$
;

9)
$$y = e^{ctgx}$$
.

60. Найти производные указанных функций:

1)
$$y = \sin 3x + th^3x$$
;

3)
$$y = \frac{e^{x}}{cta^{4}x}$$
;

5)
$$v = x \cdot cth^2 7x$$
:

7)
$$y = (x^5 + 3x - 1)^4$$
;

9)
$$y = \cos^2(2x + 2^x)$$
;

11)
$$y = \left(\frac{x^2 - 5x + 1}{x^2 - 4x + 10}\right)^3$$
;

13)
$$y = \frac{x + e^{3x}}{x - e^{3x}}$$
;

15)
$$y = \sqrt[3]{\left(\frac{x^3+1}{x^3-1}\right)^2}$$
;

2)
$$y = x^3 \sin 3x$$
;

4)
$$v = 2^{-\cos^4 5x}$$
:

6)
$$y = 2^{-\cos^4 5x} + e^{arctg\sqrt{x}}$$
;

8)
$$y = \sqrt[3]{x^4 + \sin^4 x}$$
;

10)
$$y = x^4 \cdot \arcsin^5 x \cdot \sqrt[3]{x+9}$$
;

12)
$$y = \frac{e^{arctg\sqrt{x}}}{x^2 + 1};$$

14)
$$y = \sqrt[3]{3x^4 + 2x - 5} + \frac{4}{(x-2)^5}$$
;

16)
$$y = \left(2^{x^4} - tg^4 x\right)^3$$
;

17)
$$y = \ln^5(x-2^{-x});$$

19)
$$y = \sin^2 x \cdot 2^{x^2}$$
;

21)
$$y = arctg\sqrt{1 + x^2}$$
;

23)
$$y = (2^{tg 3x} + tg 3x)^2$$
;

25)
$$y = \sin^3 2x \cdot \cos 8x^5$$
;

27)
$$y = tg^4 3x \cdot \arcsin 2x^3$$
;

$$29) \ \ y = \frac{e^{\arccos^3 x}}{\sqrt{x+5}};$$

31)
$$y = \frac{\operatorname{arcctg}^4 5x}{\operatorname{sh} \sqrt{x}}$$
;

33)
$$y = \sqrt{\frac{2x+1}{2x-1}} \cdot \log_2(x-3x^2);$$

35)
$$y = \frac{\ln(x^3 - 1)}{\ln(2x - 3)}$$
;

18)
$$y = \sin(tg\sqrt{x})$$
;

20)
$$y = 2^{\frac{x}{\ln x}}$$
;

22)
$$y = e^{-\sqrt{x^2 + 2x + 2}}$$
;

24)
$$y = 3^{tg^3 5x}$$
;

26)
$$y = arcctg^2 5x \cdot \ln(x-4)$$
;

28)
$$y = (x-3)^4 \cdot \arccos 5x^3$$
;

30)
$$y = sh^3x^2$$
;

32)
$$y = \frac{\log_5(3x-7)}{cth 7x^3}$$
;

34)
$$y = ctg^4(x^2 - 1) \cdot \log_2(2x)$$
;

36)
$$y = 1 + \sqrt{x + \sqrt{x + \sqrt{x}}}$$
.

Задания для индивидуальной работы

61. Пользуясь определением, найти производные данных функций в точ- ке x = -1:

1)
$$y = x^3$$
;

2)
$$y = \frac{1}{x}$$
.

62. Найти производные следующих функций:

1)
$$y = \frac{3}{x} + \sqrt[5]{x^2} - 4x^3 + \frac{2}{x^4} + 5$$
;

3)
$$y = \sqrt[3]{(x-3)^4} - \frac{3}{2x^3 - 3x + 1}$$
;

5)
$$y = \cos^5 3x \cdot tg(4x+1)^3$$
;

7)
$$y = arctg^3 2x \cdot \ln(x+5)$$
;

9)
$$y = 2^{-x^3} \cdot arctg \, 7x^4$$
;

11)
$$y = \frac{(x-4)^2}{2^{arcctg} x}$$
;

13)
$$y = \frac{\ln(5x-3)}{4tg \ 3x^4}$$
;

2)
$$y = (2x+4)^3 \cdot e^x \cdot tg \ 4x$$
;

4)
$$y = \sqrt{(x-4)^5} + \frac{5}{(2x^2 + 4x - 1)^2}$$
;

6)
$$y = tg^4 x \cdot \arcsin 4x^5$$
;

8)
$$y = \arccos^4 x \cdot \ln(x^2 + x - 1)$$
;

10)
$$y = sh^3 4x \cdot \arccos \sqrt{x}$$
:

12)
$$y = \frac{e^{-x^3}}{\sqrt{x^2 + 5x - 1}}$$
;

14)
$$y = \frac{\ln(7x+2)}{5\cos 42x}$$
;

15)
$$y = \frac{arctg^3 2x}{ch\left(\frac{1}{x}\right)}$$
;

17)
$$y = \frac{8arctg(2x+3)}{(x+1)^3}$$
;

19)
$$y = \sqrt{\frac{3x-1}{3x+1}} \cdot \log_5(7x^2-4);$$

21)
$$y = \sin \sqrt[5]{x^3} + \cos \frac{3}{x^2}$$
;

23)
$$y = arctg^3(4 - x^4)$$
;

25)
$$y = \frac{x}{2}\sqrt{4-x^2} + 2\arcsin\frac{x}{2}$$
;

27)
$$y = e^{\arccos \frac{1}{x}}$$
;

$$29) \ \ y = \frac{tgx}{\sqrt{1 + tg^2x}};$$

31)
$$y = \frac{10^{\sqrt{x}}}{\arcsin 2x}$$
;

33)
$$y = (tg^3 \frac{1}{x}) \cdot 5^{-arctgx}$$
;

35)
$$y = \ln \frac{\sqrt{4tgx + 1} - 2\sqrt{tgx}}{\sqrt{4tgx + 1} + 2\sqrt{tgx}};$$

37)
$$y = \left(\cos^4 \frac{1}{x}\right) \cdot 6^{-\sqrt{x}};$$

$$39) \ \ y = arctg \sqrt{\frac{1-x}{1+x}};$$

$$16) y = \frac{\arccos 3x^4}{th^2x};$$

18)
$$y = \frac{7\arccos(4x-1)}{(x+2)^4}$$
;

20)
$$y = \sqrt[3]{\frac{2x-5}{2x+3}} \cdot \lg(4x+7);$$

22)
$$y = \frac{\sqrt{\cos 3x^2}}{x^3 + 4x + 1}$$
;

24)
$$\ln^5(ctg6x + \sin^3 x)$$
;

26)
$$y = arctg\sqrt{2 + x^3} - \ln\frac{4}{x}$$
;

28)
$$y = \ln^2(x + \sqrt[4]{x-3});$$

30)
$$y = \frac{x \arcsin x}{\sqrt{1-x^2}} + \ln \sqrt{1-x^2}$$
;

32)
$$y = (1 - x - x^2)e^{\frac{x-1}{2}}$$
;

34)
$$y = e^{2x} + e^{-x^2}$$
;

$$36) \ \ y = ctg\sqrt{\frac{x}{1+x^3}};$$

38)
$$y = \ln \frac{\sqrt[3]{x^2 - 1}}{x^4}$$
;

40)
$$y = \ln \cos arctg \frac{e^{x} - e^{-x}}{2}$$
.

63. Найти угловой коэффициент касательной к линии y = f(x) в точке $x = x_0$.

1)
$$f(x) = \sqrt{3x^3 - x^2 - 5}$$
, $x_0 = 2$;

2)
$$f(x) = \sqrt[5]{(2x^2 - 4x^3)^4}$$
, $x_0 = 1$;

3)
$$f(x) = \frac{\sqrt{5-x^2}}{5+x}$$
, $x_0 = 1$;

4)
$$f(x) = 1 - e^{\sin^2 3x} \cdot \cos^2 3x$$
, $x_0 = \frac{\pi}{12}$.

64. Найти угол между двумя кривыми $y = f_1(x)$ и $y = f_2(x)$ в точке их пересечения.

1)
$$f_1(x) = \frac{1}{x}$$
, $f_2(x) = x^2$;

2)
$$f_1(x) = \frac{1}{x}$$
, $f_2(x) = x^3$;

3)
$$f_1(x) = 3x^2$$
, $f_2(x) = 1 - x^2$;

4)
$$f_1(x) = \frac{2}{x}$$
, $f_2(x) = 1 + x^2$.

6. Логарифмическое дифференцирование.

Производные функций, заданных параметрическими уравнениями. Производная неявных функций

Логарифмической производной функции y = f(x) называется производная логарифма этой функции, т.е. $\left(\ln f(x)\right)' = \frac{f'(x)}{f(x)}$.

Предварительное логарифмирование упрощает дифференцирование функций, содержащих операции умножения, деления, возведения в степень, извлечения корня.

Пример 10. Найти производную функции $y = (tgx)^{\cos x}$.

Решение. Логарифмируя функцию, получим:

$$\ln y = \ln(tgx)^{\cos x}$$
 или $\ln y = \cos x \cdot \ln tgx$.

Дифференцируем обе части равенства по переменной x:

$$\frac{y'}{y} = (\cos x)' \cdot \ln t g x + \cos x \cdot (\ln t g x)' = (-\sin x) \cdot \ln t g x + \cos x \cdot \frac{1}{t g x} \cdot \frac{1}{\cos^2 x}.$$
 Тогда,

$$y' = y(-\sin x \cdot \ln tgx + \frac{1}{\sin x}) = (tgx)^{\cos x}(-\sin x \cdot \ln tgx + \frac{1}{\sin x}).$$

OTBET:
$$y' = (tgx)^{\cos x}(-\sin x \cdot \ln tgx + \frac{1}{\sin x}).$$

Производную функции, заданной параметрическими уравнениями $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ находят по формуле $y_x' = \frac{y'(t)}{x'(t)} = \frac{dy}{dx}.$

Пример 11. Найти производную
$$\frac{dy}{dx}$$
, если $\begin{cases} x = \frac{3t}{t+1}; \\ y = t^2 + 2t. \end{cases}$

Решение. Находим

$$x'(t) = \left(\frac{3t}{t+1}\right)' = \frac{\left(3t\right)' \cdot (t+1) - 3t \cdot (t+1)'}{\left(t+1\right)^2} = \frac{3(t+1) - 3t}{(t+1)^2} = \frac{3}{(t+1)^2};$$
$$y'(t) = \left(t^2 + 2t\right)' = 2t + 2 = 2(t+1).$$

Тогда
$$\frac{dy}{dx} = \frac{y'(t)}{y'(t)} = \frac{2(t+1)\cdot(t+1)^2}{3} = \frac{2}{3}(t+1)^3$$
.

OTBET:
$$\frac{dy}{dx} = \frac{2}{3}(t+1)^3$$
.

Пусть уравнение F(x,y) = 0 определяет одну или несколько так называемых неявных функций y = y(x). Будем считать, что эти функции дифференцируемы. Чтобы найти производную функции, заданной неяв-

но, будем дифференцировать обе части уравнения F(x,y) = 0 по переменной x. Получим уравнение первой степени относительно y', из него выразим производную y'(x).

Пример 12. Найти y'_x из уравнения $x^3 + \ln y - x^2 \cdot e^y = 0$.

Решение. Берем производную по переменной x от обеих частей уравнения, получим:

$$3x^2 + \frac{1}{v} \cdot y' - (2x \cdot e^y + x^2 e^y \cdot y') = 0.$$

Слагаемые, содержащие y', оставим в левой части уравнения, остальные перенесем вправо.

$$y'\left(\frac{1}{y}-x^2e^y\right)=2xe^y-3x^2.$$

Отсюда следует, что производная равна $y' = \frac{(2xe^y - 3x^2) \cdot y}{1 - x^2ye^y}$.

OTBET:
$$y' = \frac{(2xe^y - 3x^2) \cdot y}{1 - x^2ye^y}$$
.

Задания для аудиторной работы

65. Найти производные указанных функций, применив правило логариф-мического дифференцирования.

1)
$$y = \frac{(x-3)^2(2x-1)}{(x+1)^3}$$
; 2) $y = (\cos x - 1)^{x^2}$; 3) $y = \left(\frac{x}{x+1}\right)^x$;
4) $y = (\sin 3x)^{\cos 5x}$; 5) $y = \frac{\sqrt{x+7}(x-3)^4}{(x+2)^5}$; 6) $y = \sqrt{x \sin x \sqrt{1-e^x}}$.

66. Определить $y' = \frac{dy}{dx}$ для функций, заданных параметрически:

1)
$$\begin{cases} x = t^{3} - t; \\ y = t^{2} + t; \end{cases}$$
2)
$$\begin{cases} x = \sqrt{1 - t^{2}}; \\ y = t^{-2}; \end{cases}$$
3)
$$\begin{cases} x = 3\cos^{2} t; \\ y = 4\sin^{2} t; \end{cases}$$
4)
$$\begin{cases} x = \frac{\ln t}{t}; \\ y = t^{2} \ln t; \end{cases}$$
5)
$$\begin{cases} x = \arccos t; \\ y = \sqrt{1 - t^{2}}; \end{cases}$$
6)
$$\begin{cases} x = \frac{1}{t + 1}; \\ y = \frac{t}{t + 1}. \end{cases}$$

67. Найти производную $y' = \frac{dy}{dx}$ от неявных функций:

1)
$$y^2 = x + \ln(y/x)$$
; 2) $xy^2 - y^3 = 4x - 5$; 3) $x^2y^2 + x = 5y$;

4)
$$x \sin y + y \sin x = 4$$
; 5) $e^y = e - xy$, в точке (0; 1).

68. Найти производную x'_{y} функции $y = 3x + x^{2}$.

Задания для индивидуальной работы

69. Найти производные указанных функций:

1)
$$y = (x^3 + 1)^{tg2x}$$
;

3)
$$y = \frac{(x-3)^5(x+2)^3}{\sqrt{(x-1)^3}}$$
;

5)
$$y = (th 5x)^{\arcsin(x+1)}$$
;

7)
$$y = (sh 3x)^{arctg(x+2)}$$
;

9)
$$y = (\sin(7x+4))^{arcctg x}$$
;

11)
$$y = (c h5x)^{arctg\sqrt{x}}$$
;

13)
$$y = \frac{(2x-7)^{10}\sqrt{3x-1}}{(x^2+2x+3)^5}$$
;

15)
$$y = (\sin x)^{x^3}$$
;

2)
$$y = (\cos(x+2))^{\ln x}$$
;

4)
$$y = \frac{(3x-2)^3 \sqrt{(7x+1)^5}}{(6x-4)^2}$$
;

6)
$$y = (\log_2(x+4))^{ctg \, 7x}$$
;

8)
$$y = (\cos(2x-5))^{arctg \, 5x}$$
;

10)
$$y = (tq 3x)^{x^4}$$
;

12)
$$y = \frac{(x-3)^2 \sqrt{x+4}}{(x+2)^7}$$
;

14)
$$y = \frac{(x+1)^3 \sqrt[4]{x-2}}{\sqrt[5]{(x-3)^2}}$$
;

16)
$$y = (ctgx)^{\sqrt{1-x}}$$
.

70. Найти производные функций, заданных параметрически:

1)
$$\begin{cases} x = t^3 + 3t + 1; \\ y = 3t^5 + 5t^3 + 1; \end{cases}$$
 2)
$$\begin{cases} x = e^t \cos t; \\ y = e^t \sin t; \end{cases}$$
 3)
$$\begin{cases} x = 2(t - \sin t); \\ y = 2(1 - \cos t); \end{cases}$$

2)
$$\begin{cases} x = e^t \cos t; \\ y = e^t \sin t; \end{cases}$$

3)
$$\begin{cases} x = 2(t - \sin t); \\ y = 2(1 - \cos t) \end{cases}$$

4)
$$\begin{cases} x = 5\sin^3 t; \\ y = 3\cos^3 t; \end{cases}$$
 5)
$$\begin{cases} x = e^{-3t}; \\ y = e^{8t}; \end{cases}$$
 6)
$$\begin{cases} x = t - \sin t; \\ y = 1 - \cos t. \end{cases}$$

$$\begin{cases} x = e^{-3t}; \\ y = e^{8t}; \end{cases}$$

$$\begin{cases} x = t - \sin t; \\ y = 1 - \cos t \end{cases}$$

71. Найти производную $y' = \frac{dy}{dx}$ от неявных функций *у*:

1)
$$x^3 + y^3 = 5x$$
;

2)
$$\sqrt{x} + \sqrt{y} = \sqrt{7}$$
; 3) $y^2 = \frac{x - y}{x + y}$;

3)
$$y^2 = \frac{x-y}{x+y}$$
;

4)
$$\sin^2(3x + v^2) = 5$$

5)
$$cta^2(x+v)=5x$$
:

4)
$$\sin^2(3x+y^2)=5$$
; 5) $ctg^2(x+y)=5x$; 6) $y^2+x^2-\sin(x^2y^2)=5$;

7)
$$2^x + 2^y = 2^{x+y}$$
;

7)
$$2^{x} + 2^{y} = 2^{x+y}$$
; 8) $e^{x^{2}y^{2}} - x^{4} + y^{4} = 5$; 9) $y \cos \frac{y}{x} = e^{xy}$;

9)
$$y\cos\frac{y}{x} = e^{xy}$$

10)
$$\ln y + \frac{x}{v} = x + y;$$

10)
$$\ln y + \frac{x}{v} = x + y;$$
 11) $x^2 + y^2 = 4$, в точке (1; $\sqrt{3}$);

12)
$$(x+y)^3 = 27(x-y)$$
, в точке $M(2; 1)$.

72. Найти производную x'_{v} , если:

1)
$$y = x - \frac{1}{2}\sin x$$
;

2)
$$y = 0.1x + e^{\frac{x}{2}}$$
.

73. Найти уравнения касательной и нормали к данной кривой в данной

1)
$$y = e^x$$
, $x_0 = 0$;

2)
$$y^2 = 4x$$
, $M_0(1; 2)$;

1)
$$y = e^x$$
, $x_0 = 0$; 2) $y^2 = 4x$, $M_0(1; 2)$; 3) $\begin{cases} x = t^2; \\ y = t^3, \end{cases}$

- **74.** Найти точки, в которых касательная к графику гиперболы y = 1/x параллельна прямой y = -x/4 + 3.
- **75.** В какой точке касательная к параболе $y = -x^2 + 4x 6$ наклонена к оси абсцисс под углом a) 0° ; б) 45° ?
- 76. Найти угол, под которым пересекаются кривые:

1)
$$y = \frac{8}{x}$$
 u $x^2 - y^2 = 12$;

2)
$$y^2 = 2x \text{ in } x^2 + y^2 = 8$$
;

3)
$$y = x^3 + 3x^2 + 2x$$
 u $y = -5x - 5$; 4) $y = \sin x$ u $y = \cos x$, $0 \le x \le \pi$.

Ответы: **74.** $x = \pm 2$. **75.** a) $x_0 = 2$; б) $x_0 = 1,5$. **76.** 1) $\pi/2$; 2) arctg 3; 3) $arctg\frac{2}{3}$; 4) $arctg2\sqrt{2}$.

7. Дифференциал функции, его свойства и геометрический смысл.

Приближенные вычисления с помощью дифференциала

Дифференциалом функции y = f(x) называется главная часть ее приращения, линейная относительно приращения аргумента. Дифференциалом аргумента называется приращение этого аргумента: $dx = \Delta x$.

Дифференциал функции равен произведению ее производной на дифференциал аргумента: dy = f'(x)dx = y'dx.

Геометрически дифференциал функции представляет собой приращение ординаты касательной к графику функции в точке M(x, y).

Основные свойства дифференциала.

1)
$$dC = 0$$
, $C = const$;

2)
$$d(Cu(x)) = Cdu(x)$$
;

3)
$$d(u(x) \pm v(x)) = du(x) \pm dv(x)$$
;

3)
$$d(u(x) \pm v(x)) = du(x) \pm dv(x)$$
; 4) $d(u(x) \cdot v(x)) = v(x)du(x) + u(x)dv(x)$;

5)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$
, $v = v(x) \neq 0$; 6) $d(f(u)) = f'(u)du$, где $u = u(x)$.

Справедливо приближенное равенство: $\Delta y \approx f'(x) \cdot \Delta x$, или, используя определение дифференциала: $\Delta y \approx dy$.

 $\Delta y = y (x + \Delta x) - y (x)$, тогда $y (x + \Delta x) - y (x) pprox f'(x) \cdot \Delta x$. Запишем полученное приближенное равенство для некоторой точки x_0 :

$$y(x_0 + \Delta x) \approx y(x_0) + y'(x_0) \Delta x$$
.

Эта формула широко применяется в приближенных вычислениях.

Пример 13. Сравнить приращение и дифференциал функции $y = 2x^3 + 5x^2 - 3x + 1$ в точке $M_0(1,5)$.

Решение. Составляем приращение функции

$$\Delta y = f(x + \Delta x) - f(x) =$$

$$=2(x+\Delta x)^3+5(x+\Delta x)^2-3(x+\Delta x)+1-(2x^3+5x^2-3x+1).$$

По условию x = 1, тогда:

$$\Delta y(1) = f(1 + \Delta x) - f(1) = 2(1 + \Delta x)^3 + 5(1 + \Delta x)^2 - 3(1 + \Delta x) + 1 - (2 + 5 - 3 + 1) =$$

$$= 2(1 + 3\Delta x + 3\Delta x^2 + \Delta x^3) + 5(1 + 2\Delta x + \Delta x^2) - 3 - 3\Delta x - 4 =$$

$$= (2+5-3-4) + \Delta x(6+10-3) + \Delta x^2(6+5) + 2\Delta x^3 = 13\Delta x + 11\Delta x^2 + 2\Delta x^3.$$

Найдем дифференциал функции:

$$dy(1) = y'(1)dx$$
; $y' = 6x^2 + 10x - 3$; $y'(1) = 6 + 10 - 3 = 13$; $dy(1) = 13\Delta x$.

Итак,
$$\Delta y(1) = 13\Delta x + 11\Delta x^2 + 2\Delta x^3$$
, $dy(1) = 13\Delta x$.

Если
$$\Delta x = 1$$
, то $\Delta y = 13 + 11 + 2 = 26$, а $dy = 13$.

Если
$$\Delta x = 0.1$$
, то $\Delta y = 1.3 + 0.11 + 0.002 = 1.412$, а $dy = 1.3$.

При малых $\Delta x \ \Delta y \approx dy$.

Пример 14. Найти дифференциал функции $y = \frac{x}{2}\sqrt{49 - x^2} + \frac{49}{2} \arcsin \frac{x}{7}$ при произвольных значениях аргумента и его приращения.

Решение. Найдем производную заданной функции.

$$y' = \frac{1}{2}\sqrt{49 - x^2} + \frac{x}{2} \cdot \frac{-2x}{2\sqrt{49 - x^2}} + \frac{49}{2} \cdot \frac{1}{7\sqrt{1 - \frac{x^2}{49}}} = \sqrt{49 - x^2}.$$

Tогда $dy = \sqrt{49 - x^2} dx$.

Ответ:
$$dy = \sqrt{49 - x^2} dx$$
.

Пример 15. Вычислить приближенное значение arcsin 0,51.

Решение. Воспользуемся формулой $y(x_0 + \Delta x) \approx y(x_0) + y'(x_0) \Delta x$. В качестве x_0 возьмем $x_0 = 0.5$ и $\Delta x = 0.01$.

$$y' = (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}.$$

Тогда $\arcsin(x_0 + \Delta x) \approx \arcsin x_0 + (\arcsin x)'_{x_0} \cdot \Delta x$.

Получим

$$arcsin 0,51 \approx arcsin 0,5 + \frac{1}{\sqrt{1-0,25}} \cdot 0,01 = \frac{\pi}{6} + \frac{0,01}{0,5\sqrt{3}} = \frac{\pi}{6} + \frac{0,02}{\sqrt{3}} = 0,524 + 0,012 = 0,536.$$

Ответ: 0.536.

Пример 16. Вычислить приближенное значение площади круга, радиус которого равен 3,03 м.

Решение. Известно, что площадь круга $S = \pi R^2$. Пусть R = 3, $\Delta R = 0.03$.

Тогда $\Delta S \approx dS = 2\pi\,R\cdot\Delta R = 2\pi\cdot3\cdot0,03 = 0,18\pi$. Следовательно, площадь круга радиуса 3,03 м равна

$$S = \pi \cdot 3.03^2 \approx \pi \cdot 3^2 + 0.18\pi = 9.18\pi \approx 28.84(M^2).$$

Ответ: $28,84 \, \text{M}^2$.

Задания для аудиторной работы

77. Найти приращение Δy и дифференциал dy функции $y = 5x + x^2$ при $x = 2 \text{ и } \Delta x = 0.001.$

78. Найти дифференциалы функций:

1)
$$y = x^4 + 4x^3 + 6x^2 + 4x$$
; 2) $y = \frac{x^2 - 1}{x^2}$; 3) $y = \sqrt{x^3 + 6x^2}$;

2)
$$y = \frac{x^2 - 1}{x^2}$$
;

3)
$$y = \sqrt{x^3 + 6x^2}$$
;

4)
$$y = x tg^3 x$$
;

5)
$$y = \sqrt{arctg x} + (arcsin x)^2$$
;

6)
$$y = \ln(x + \sqrt{4 + x^2})$$
; 7) $y = \frac{x}{1 - x}$.

7)
$$y = \frac{x}{1-x}$$
.

79. Найти дифференциалы функций, заданных неявно:

1)
$$(x+y)^2 \cdot (2x+y)^3 = 1$$
; 2) $y = e^{-\frac{x}{y}}$.

2)
$$y = e^{-\frac{x}{y}}$$

80. Найти приближённое значение функции $y = x^3 - 4x^2 + 5x + 3$ при x = 1,03 с точностью до двух знаков после запятой.

81. Насколько, приблизительно, увеличится объём шара, если его радиус R = 15 см удлинится на 2 мм?

82. Найти приближённое значение ⁴√17 с точностью до двух знаков после запятой.

Задания для индивидуальной работы

83. Найти приращение Δy и дифференциал dy функции $y = 1 - x^3$ при $X = 1 \text{ M } \Delta X = -\frac{1}{2}.$

84. Даны функция $y = x^3 - 2x^2 + 2$ и точка $x_0 = 1$. Для любого приращения независимой переменной Δx выделить главную часть приращения функции. Оценить абсолютную величину разности между приращением функции и её дифференциалом в данной точке, если: a) $\Delta x = 0,1;$ б) $\Delta x = 0.01$. Сравнить эту разность с абсолютной величиной дифференциала функции.

85. Найти дифференциал функций:

1)
$$y = xarctgx - \ln \sqrt{1 + x^2}$$
;

2)
$$y = \cos^3 \frac{x+1}{x^2}$$
;

3)
$$y = ctg(3x^2 + \ln 6x)$$
;

4)
$$y = 10^{tg\sqrt{x}}$$
;

5)
$$y = \frac{1}{\sqrt{8}} \ln \frac{4 + \sqrt{8} th \frac{x}{2}}{4 - \sqrt{8} th \frac{x}{2}};$$

6)
$$y = sh^3 4x \cdot \arccos \sqrt{x}$$
;

7)
$$y = th^2 \sqrt{x} \cdot arcctg3x^2$$
;

8)
$$y = cth^4 2x \cdot \arcsin 7x^2$$
.

86. Найти дифференциалы следующих функций, заданных неявно:

a)
$$x^2 + 2xy - y^2 = a^2$$
;

$$δ) ln \sqrt{x^2 + y^2} = arctg \frac{y}{x}.$$

- **87.** С помощью дифференциала приближённо (с точностью до двух знаков после запятой) вычислить данные величины:
 - 1) 4^{1,2};

2) $\sqrt[3]{26,19}$;

3) arcsin 0,6;

4) $\sqrt[4]{16,64}$;

5) $e^{0.2}$;

6) lg11;

- 7) $ln(e^2 + 0,2)$;
- 8) $\frac{2.9}{\sqrt{2.9^2+16}}$;
- 9) In *tg* 47°15′.
- **88.** Найти приближённое значение функции $y = \sqrt[3]{\frac{1-x}{1+x}}$ при x = 0,1 с точностью до двух знаков после запятой.
- **89.** Вычислить приближённое значение функции $y = \sqrt{x^2 7x + 10}$ при x = 0.98 с точностью до двух знаков после запятой.

Ответы: **80.** 5,00. **82.** 2,03. **84.** a) $\varepsilon = |\Delta y - dy| = 0,011$, $\frac{\varepsilon \cdot 100\%}{|dy|} = 11\%$,

δ)
$$\varepsilon = 0.000101$$
, $\frac{\varepsilon \cdot 100\%}{|dy|} = 1.01\%$.

8. Производные и дифференциалы высших порядков

Производной второго порядка (второй производной) функции y = f(x) называется производная ее производной, т.е. y'' = (f'(x))' = f''(x).

Производные высших порядков (третья, четвертая и т.д.) находятся последовательным дифференцированием функции:

$$y''' = (f''(x))', y^{(4)} = (f'''(x))', \cdots, y^{(n)} = (f^{(n-1)}(x))'.$$

Если функция y = y(x) задана параметрически системой уравнений

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases}$$

то производные y'_{x} , y''_{xx} , y'''_{xxx} , \cdots находятся по формулам:

$$y'_{x} = \frac{y'(t)}{x'(t)}, \quad y''_{xx} = \frac{(y'_{x})'_{t}}{x'(t)}, \quad y'''_{xxx} = \frac{(y''_{xx})'_{t}}{x'(t)}, \quad \cdots$$

Дифференциал второго порядка определяется как дифференциал от дифференциала первого порядка, т.е. $d^2y = d(dy)$. Аналогично определяются дифференциалы высших порядков: $d^3y = d(d^2y), \dots, d^ny = d(d^{n-1}y)$.

Если y = f(x), где x — независимая переменная, то дифференциалы высших порядков вычисляются по формулам:

$$d^2y = y''(dx)^2;$$
 $d^3y = y'''(dx)^3;$...; $d^ny = y^{(n-1)}(dx)^n.$

Пример 17. Найти производные всех порядков функции

$$y = x^5 - 4x^3 + 7x^2 - 8$$
.

Решение.

$$y' = 5x^4 - 12x^2 + 14x$$
, $y'' = 20x^3 - 24x + 14$, $y''' = 60x^2 - 24$, $y^{(4)} = 120x$, $y^{(5)} = 120$, $y^{(6)} = y^{(7)} = \dots = 0$.

Пример 18. Найти $y^{(n)}(x)$ функции $y = \ln x$.

Решение. Находим последовательно производные данной функции.

$$y' = \frac{1}{x} = x^{-1}, \quad y'' = (-1)x^{-2}, \quad y''' = (-1)(-2)x^{-3}, \quad y^{(-4)} = (-1)(-2)(-3)x^{-4}, \quad \cdots,$$

$$y^{(n)} = (-1)(-2)(-3)\cdots(-n+1)x^{-n} = (-1)^{n-1}(n-1)! \quad x^{-n} = \frac{(-1)^{n-1}(n-1)!}{x^n}.$$
Other:
$$y^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}.$$

Пример 19. Найти первую и вторую производные функции, заданной параметрически $x = \ln t$, y = 1/t.

Решение. Первая производная находится по формуле $y'_{x} = \frac{y'(t)}{x'(t)}$.

$$y'(t) = -\frac{1}{t^2}, \quad x'(t) = \frac{1}{t}, \quad y'_x = \frac{dy}{dx} = -\frac{1}{t^2} : \frac{1}{t} = -\frac{1}{t}.$$

Вторая производная: $y''_{xx} = \frac{d^2y}{dx^2} = \frac{(y'_x)'_t}{x'_t} = \frac{1}{t^2} : \frac{1}{t} = \frac{1}{t}$.

Ответ:
$$y'_x = -1/t$$
; $y''_{xx} = 1/t$.

Пример 20. Показать, что функция $y = e^x + 3e^{2x}$ удовлетворяет уравнению y''' - 6y'' + 11y' - 6y = 0.

Решение. Находим первую, вторую и третью производные данной функции и подставляем их в уравнение.

$$y' = e^{x} + 6e^{2x}$$
, $y'' = e^{x} + 12e^{2x}$, $y''' = e^{x} + 24e^{2x}$,
 $(e^{x} + 24e^{2x}) - 6(e^{x} + 12e^{2x}) + 11(e^{x} + 6e^{2x}) - 6(e^{x} + 3e^{2x}) =$
 $= e^{x}(1 - 6 + 11 - 6) + e^{2x}(24 - 72 + 66 - 18) = 0$.

Итак, функция $y = e^x + 3e^{2x}$ удовлетворяет уравнению y''' - 6y'' + 11y' - 6y = 0.

Пример 21. При прямолинейном движении материальной точки зависимость пути от времени определяется уравнением $s = \sqrt{t}$. Найти ускорение движущейся точки в конце четвертой секунды.

Решение. Первая производная пути по времени определяет скорость движения, а вторая производная – ускорение.

$$s(t) = \sqrt{t}, \ v(t) = s'(t) = \frac{1}{2\sqrt{t}}, \ a(t) = v'(t) = \frac{1}{2} \cdot (-\frac{1}{2}) \cdot \frac{1}{\sqrt{t^3}},$$

$$a(4) = -\frac{1}{4 \cdot \sqrt{4^3}} = -\frac{1}{32} (\textit{M} \, / \, \textit{c}^2).$$
 Other: $-\frac{1}{32} \, \textit{M} \, / \, \textit{c}^2$.

Задания для аудиторной работы

90. Найти вторую производную функции $y = (1 + 4x^2) \cdot arctg \ 2x$.

91. Для данных функций вычислить $y'''(x_0)$:

1)
$$y = \sin^2 x$$
, $x_0 = \frac{\pi}{2}$;

2)
$$y = \ln(2 + x^2)$$
, $x_0 = 0$;

3)
$$y = arctg x$$
, $x_0 = 1$;

4)
$$y = e^x \cos x$$
, $x_0 = 0$.

92. Записать формулы для производных *n*-го порядка указанных функций:

1)
$$y = \ln x$$
;

2)
$$y = 1/x$$
;

3)
$$y = 2^x$$
;

4)
$$y = \cos x$$
;

5)
$$y = \frac{1}{2x+5}$$
;

6)
$$y = e^{-2x}$$
;

7)
$$y = x^n \cdot \sqrt{x}$$
;

8)
$$y = xe^{3x}$$
;

9)
$$y = \ln(3 + x)$$
.

93. Найти у' и у":

1)
$$\begin{cases} x = (2t+3); \\ y = 3t^3; \end{cases}$$

2)
$$\begin{cases} x = 2\cos^2 t; \\ y = 3\sin^2 t; \end{cases}$$

3)
$$\begin{cases} x = \ln(1 + t^2), \\ y = t - arctg t; \end{cases}$$

4)
$$\begin{cases} x = 2t - t^2, \\ y = 4t - t^4; \end{cases}$$

5)
$$\begin{cases} x = \cos(t^2 + 1), \\ y = \sin^2 t. \end{cases}$$

6)
$$\begin{cases} x = \arccos \sqrt{t}, \\ y = \sqrt{t - t^2}. \end{cases}$$

94. Найти y'(1;1), y''(1;1) функции, заданной неявно уравнением

$$x^2 + 2y^2 - xy + x + y = 4$$
.

95. Найти у' и у":

1)
$$y^2 = 8x$$
;

2)
$$\frac{x^2}{5} + \frac{y^2}{7} = 1$$
;

3)
$$y = x + arctg y$$
.

96. Найти дифференциалы второго порядка функций:

1)
$$y = e^{-x^3}$$
;

2)
$$y = \cos 5x$$
;

3)
$$y = \arccos x$$
.

97. Найти дифференциалы третьего порядка функций:

1)
$$y = \sin^2 2x$$
;

$$2) y = \frac{\ln x}{x};$$

3)
$$y = x^2 e^{-x}$$
.

Задания для индивидуальной работы

98. Для данных функций вычислить $y'''(x_0)$:

1)
$$y = e^x \sin 2x$$
, $x_0 = 0$;

2)
$$y = e^{-x} \cos x$$
, $x_0 = 0$;

3)
$$y = \sin 2x$$
, $x_0 = \pi$;

4)
$$y = (2x+1)^5$$
, $x_0 = 1$;

5)
$$y = \ln(1+x), x_0 = 2$$
;

6)
$$y = \frac{1}{2}x^2e^x$$
, $x_0 = 0$;

7)
$$y = \arcsin x$$
, $x_0 = 0$;

8)
$$y = (5x-4)^5$$
, $x_0 = 2$;

9)
$$y = x \sin x$$
, $x_0 = \frac{\pi}{2}$;

10)
$$y = x^2 \ln x$$
, $x_0 = \frac{1}{3}$;

11)
$$y = x \sin 2x$$
, $x_0 = -\frac{\pi}{4}$;

12)
$$y = x^4 \ln x$$
, $x_0 = 1$;

13)
$$y = x + arctg x$$
, $x_0 = 1$;

14)
$$y = \cos^2 x$$
, $x_0 = \frac{\pi}{4}$.

99. Записать формулы для производных *n*-го порядка указанных функций:

1)
$$y = \ln(5 + x^2)$$
;

2)
$$y = e^{4x}$$
;

3)
$$y = \frac{1}{x-7}$$
;

4)
$$y = 5^x$$
:

5)
$$y = e^{-5x}$$
;

6)
$$y = \ln(4 + x)$$
;

7)
$$y = \frac{1}{x-6}$$
;

8)
$$y = 10^x$$
;

9)
$$y = \cos 3x$$
.

100. Найти у' и у":

1)
$$\begin{cases} x = e^{-2t}; \\ y = e^{4t}; \end{cases}$$

$$2) \begin{cases} x = \sqrt{t}; \\ y = \sqrt[5]{t}; \end{cases}$$

3)
$$\begin{cases} x = \frac{2t}{1+t^3}; \\ y = \frac{t^2}{1+t^2}; \end{cases}$$

4)
$$\begin{cases} x = \sqrt{t^2 - 1}; \\ y = \frac{t + 1}{\sqrt{t^2 - 1}}; \end{cases}$$

5)
$$\begin{cases} x = 4t + 2t^2; \\ y = 5t^3 - 3t^2; \end{cases}$$

6)
$$\begin{cases} x = \frac{\ln t}{t}; \\ y = t \ln t; \end{cases}$$

7)
$$\begin{cases} x = e^t \cos t; \\ y = e^t \sin t; \end{cases}$$

8)
$$\begin{cases} x = t^4; \\ y = \ln t; \end{cases}$$

9)
$$\begin{cases} x = 5\cos t; \\ y = 4\sin t; \end{cases}$$

10)
$$\begin{cases} x = 5\cos^2 t; \\ y = 3\sin^2 t; \end{cases}$$

11)
$$\begin{cases} x = \arcsin t; \\ y = \sqrt{1 - t^2}; \end{cases}$$

12)
$$\begin{cases} x = arctg t; \\ y = \ln(1 + t^2); \end{cases}$$

13)
$$\begin{cases} x = 3(t - \sin t); \\ y = 3(1 - \cos t); \end{cases}$$

$$14) \begin{cases} x = \sin 2t; \\ y = \cos^2 t; \end{cases}$$

15)
$$\begin{cases} x = 5(t - \sin t), \\ y = 5(1 - \cos t). \end{cases}$$

101. Показать, что функция $y = e^{2x} \sin 5x$ удовлетворяет уравнению y'' - 4y' + 29y = 0.

102. Найти *v'* и *v"*:

1)
$$y^2 = 5x - 4$$
;

2)
$$arctg y = 4x + 5y$$
; 3) $y^2 - x = \cos y$;

3)
$$y^2 - x = \cos y$$
;

4)
$$3x + \sin y = 5y$$
;

5)
$$tg y = 3x + 5y$$
;

6)
$$xy = ctg y$$
;

7)
$$y = e^y + 4x$$
;

8)
$$\ln y - \frac{y}{x} = 7$$
;

9)
$$y^2 + x^2 = \sin y$$
;

10)
$$3y = 7 + xy^3$$
;

11)
$$4\sin^2(x+y) = x$$
; 12) $\sin y = 7x + 3y$;

12)
$$\sin v = 7x + 3v$$
:

13)
$$tq y = 4y - 5x$$
:

14)
$$y = 7x - ctg y$$
;

15)
$$xy - 6 = \cos y$$
.

103. Вычислить значение второй производной функции в точке M_1 :

1)
$$e^y + y - x = 0$$
, $M_1(1;0)$;

2)
$$x^3 + y^3 - xy = 1$$
, $M_1(1;1)$;

3)
$$x^2 + 2y^2 - xy + x + y = 4$$
, $M_1(1,1)$.

104. Найти $\frac{d^3y}{dx^3}$ функций, заданных неявно:

1)
$$y = \ln(x + y)$$
;

2)
$$xy = e^{x+y}$$
;

3)
$$y = \cos(x + y).$$

105. Найти дифференциалы первого и второго порядков функций:

1)
$$y = \sin x \cdot \ln x$$
;

2)
$$y = ctgx + \sin^{-1} x$$
;

3)
$$x = y - arctgy$$
;

4)
$$y = (2x-3)^3$$
;

5)
$$y = 3\sin(2x + 5)$$
; 6) $y = x\arccos x$.

6)
$$y = x \arccos x$$
.

106. Найти дифференциалы 1-го, 2-го и 3-го порядков функции $y = x^3 \ln x$.

107. Найти дифференциалы первого и второго порядков функции $y = (x^2 + 1) \operatorname{arctg} x$.

108. Найти дифференциалы второго и третьего порядков функции $y = e^{-3x} \cdot \cos 2x$.

9. Правило Лопиталя

Пусть функции f(x) и $\varphi(x)$ дифференцируемы в окрестности точки x_0 и $\varphi'(x) \neq 0$. Если $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \varphi(x) = 0$ $(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \varphi(x) = \infty)$, т.е. част-

ное $\frac{f(x)}{o(x)}$ в точке x_0 представляет собой неопределенность вида

 $\left(\left(\begin{array}{c}\infty\\\infty\end{array}\right)\right)$, то $\lim_{x\to x_0}\frac{f(x)}{\varphi(x)}=\lim_{x\to x_0}\frac{f'(x)}{\varphi'(x)}$ при условии, что существует предел отношения производных.

Если частное $\frac{f'(x)}{\omega'(x)}$ в точке $x = x_0$ также имеет неопределенность вида

 $\left(rac{0}{0}
ight)$ или $\left(rac{\infty}{\infty}
ight)$ и существует $\lim_{x o x_0}rac{f''(x)}{arphi'(x)}$, то справедлива формула

$$\lim_{x\to x_0}\frac{f'(x)}{\varphi'(x)}=\lim_{x\to x_0}\frac{f''(x)}{\varphi''(x)}.$$

В случае неопределенностей вида $(0\cdot\infty)$ или $(\infty-\infty)$ выражение под знаком предела следует преобразовать алгебраически так, чтобы получить неопределенность вида $\left(\frac{0}{0}\right)$ или $\left(\frac{\infty}{\infty}\right)$, и далее воспользоваться правилом Лопиталя.

В случае неопределенности вида $\left(0^{0}\right),\;\left(\infty^{0}\right),\;\left(1^{\infty}\right)$ следует воспользоваться тождеством $a^b = e^{\ln a^b} = e^{\ln a}$ и свойством $\lim_{x \to x_0} e^{f(x)} = e^{\lim_{x \to x_0} f(x)}$.

Пример 22. Вычислить пределы:

1)
$$\lim_{x\to 1} \frac{x^2 - 1 + \ln x}{e^x - e}$$
; 2) $\lim_{x\to \infty} \frac{xe^{2x}}{x + e^{4x}}$;

2)
$$\lim_{x\to\infty}\frac{xe^{2x}}{x+e^{4x}};$$

3)
$$\lim_{x\to 0} x^2 \cdot \ln x$$
;

4)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right);$$
 5) $\lim_{x\to \infty} (1+x)^{\frac{1}{\ln x}}.$

5)
$$\lim_{x\to\infty} (1+x)^{\frac{1}{\ln x}}$$

Решение. 1) Подставив x = 1 в функцию, получим неопределенность вида $\left(\frac{0}{0}\right)$. Применим правило Лопиталя.

$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{(x^2 - 1 + \ln x)'}{(e^x - e)'} = \lim_{x \to 1} \frac{2x + \frac{1}{x}}{e^x} = \frac{3}{e}.$$

2) При $x \to \infty$ получим неопределенность вида $\left(\frac{\infty}{\infty}\right)$. Правило Лопиталя будем применять трижды.

$$\lim_{x \to \infty} \frac{xe^{2x}}{x + e^{4x}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{e^{2x} + 2xe^{2x}}{1 + 4e^{4x}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{2e^{2x} + 2e^{2x} + 4xe^{2x}}{16e^{4x}} = \lim_{x \to \infty} \frac{1 + x}{4e^{2x}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{1}{2e^{2x}} = 0.$$

3) Подставив x = 0 в функцию, получим неопределенность вида $(0 \cdot \infty)$. Преобразуем выражение под знаком предела и применим правило Лопиталя.

$$\lim_{x \to 0} x^2 \cdot \ln x = (0 \cdot \infty) = \lim_{x \to 0} \frac{\ln x}{x^{-2}} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to 0} \frac{1}{x} \cdot \frac{x^3}{-2} = \lim_{x \to 0} \frac{x^2}{-2} = 0.$$

4) Подставив x=0 в функцию, получим неопределенность вида $(\infty - \infty)$. Приведем выражение под знаком предела к общему знаменателю.

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \left(\infty - \infty \right) = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \left(\frac{0}{0} \right).$$

Правило Лопиталя будем применять дважды

$$\lim_{x\to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{e^x}{2e^x + xe^x} = \lim_{x\to 0} \frac{1}{2 + x} = \frac{1}{2}.$$

5) При $x \to \infty$ получим неопределенность вида (∞^0) . Воспользуемся

тождеством $a^b = e^{\ln a^b} = e^{b\ln a}$ и свойством $\lim_{x \to x_0} e^{f(x)} = e^{\lim_{x \to x_0} f(x)}$:

$$\lim_{x\to\infty} (1+x)^{\frac{1}{\ln x}} = \left(\infty^0\right) = \lim_{x\to\infty} e^{\frac{1}{\ln x}\ln(1+x)} = \lim_{x\to\infty} e^{\frac{\ln(1+x)}{\ln x}} = e^{\lim_{x\to\infty} \frac{\ln(1+x)}{\ln x}}.$$

Рассмотрим предел в показателе. При $x \to \infty$ получим неопределенность вида $\left(\frac{\infty}{\infty}\right)$. Применим правило Лопиталя:

$$\lim_{x\to\infty}\frac{\ln(1+x)}{\ln x}=\left(\frac{\infty}{\infty}\right)=\lim_{x\to\infty}\frac{1/(x+1)}{1/x}=\lim_{x\to\infty}\frac{x}{1+x}=1;$$

тогда: $\lim_{x \to \infty} (1+x)^{\frac{1}{\ln x}} = e^{\lim_{x \to \infty} \frac{\ln(1+x)}{\ln x}} = e^1 = e$.

Ответы: 1) 3/e; 2) 0; 3) 0; 4) 0,5; 5) е.

Задания для аудиторной работы

109. Найти пределы, применяя правило Лопиталя.

1)
$$\lim_{x \to 1} \frac{x^3 - 7x^2 + 4x + 2}{x^3 - 5x + 4}$$
; 2) $\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$; 3) $\lim_{x \to \infty} \frac{\pi - 2arctgx}{e^{3/x} - 1}$;

2)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$$
;

3)
$$\lim_{x\to\infty}\frac{\pi-2arctgx}{e^{3/x}-1}$$

4)
$$\lim_{x\to 4} \frac{\ln(x-4)}{\ln(e^x-e^4)}$$
;

5)
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(\pi - 2x)^2};$$

4)
$$\lim_{x \to 4} \frac{\ln(x-4)}{\ln(e^x - e^4)}$$
; 5) $\lim_{x \to \frac{\pi}{2}} \frac{\ln\sin x}{(\pi - 2x)^2}$; 6) $\lim_{x \to 0} \left(\frac{1}{x} - ctgx\right)$;

7)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$

8)
$$\lim_{x\to 0} x \cdot ctg\pi x$$
;

7)
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{\ln x} \right);$$
 8)
$$\lim_{x \to 0} x \cdot ctg\pi x;$$
 9)
$$\lim_{x \to \frac{1}{2}} \sin(2x - 1) \cdot tg\pi x;$$

10)
$$\lim_{x\to 1} x^{\frac{1}{1-x}}$$
;

11)
$$\lim_{x\to 0} x^{\frac{3}{4+\ln x}}$$
;

11)
$$\lim_{x\to 0} x^{\frac{3}{4+\ln x}}$$
; 12) $\lim_{x\to \infty} (x+2^x)^{\frac{1}{x}}$;

13)
$$\lim_{x \to 0} \frac{e^{x^3} - 1 - x^3}{\sin^6 2x}$$

13)
$$\lim_{x\to 0} \frac{e^{x^3} - 1 - x^3}{\sin^6 2x}$$
; 14) $\lim_{x\to 0} \left(\frac{1}{x^2} - ctg^2x\right)$.

Задания для индивидуальной работы

110. Найти пределы указанных функций:

1)
$$\lim_{x\to 1} \frac{x^3-2x^2-x+2}{x^3-7x+6}$$
;

3)
$$\lim_{x \to -3} \frac{x^3 + 2x^2 - 15x - 36}{3x^3 + 17x^2 + 21x - 9}$$
;

5)
$$\lim_{x\to 3} \frac{x^3 - 8x^2 + 21x - 18}{2x^3 - 13x^2 + 24x - 9}$$
;

7)
$$\lim_{x\to 5} \left(\frac{1}{x-5} - \frac{5}{x^2 - x - 20} \right);$$

9)
$$\lim_{x\to 0} \frac{e^{7x}-1}{tq3x}$$
;

11)
$$\lim_{x\to 1} \frac{1-4\sin^2\left(\frac{\pi x}{6}\right)}{1-x^2};$$

2)
$$\lim_{x\to 2} \frac{2x^3 - 7x^2 + 4x + 4}{4x^3 - 11x^2 - 4x + 20}$$
;

4)
$$\lim_{x\to 4} \frac{x^3 - 12x - 16}{x^3 - 10x^2 + 33x - 36}$$
;

6)
$$\lim_{x\to 3} \left(\frac{1}{x-3} - \frac{5}{x^2 - x - 6} \right)$$
;

8)
$$\lim_{x\to 1} \left(\frac{2}{1-x^2} - \frac{3}{1-x^3} \right)$$
;

10)
$$\lim_{x\to 0} \frac{tg \, x - x}{x - \sin x};$$

12)
$$\lim_{x\to 0} \frac{1-\cos x^2}{x^2-\sin x^2}$$
;

14)
$$\lim_{x \to \frac{\pi}{2}} \frac{tg x}{tg 5 x};$$

16)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}};$$

18)
$$\lim_{x\to +\infty} \frac{\ln(x+7)}{\sqrt[7]{x-3}};$$

20)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{x}{e^x - 1} \right)$$
;

22)
$$\lim_{x\to 0} \left(\frac{1}{x \sin x} - \frac{1}{x^2} \right);$$

24)
$$\lim_{x\to 0}\frac{x\cos x-\sin x}{x^3};$$

26)
$$\lim_{x\to 1} \ln x \cdot \ln(x-1)$$
;

$$28) \lim_{x\to\infty} x^4 e^{-x};$$

30)
$$\lim_{x\to 0} \frac{tg \, x - \sin x}{4x - \sin x};$$

32)
$$\lim_{x\to\infty} \frac{\ln(x+5)}{\sqrt[4]{x+3}}$$
;

34)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$$

36)
$$\lim_{x\to 0} (1 - e^{2x}) \cdot ctg x$$
;

38)
$$\lim_{x\to 0} (\arcsin x \cdot ctg x);$$

40)
$$\lim_{x\to\infty} x \sin\frac{3}{x}$$
;

42)
$$\lim_{x\to\infty} \frac{\ln e^x}{1-xe^x}$$
;

44)
$$\lim_{x\to 0} \frac{2-(e^x+e^{-x})\cos x}{x^4}$$
;

46)
$$\lim_{x\to\infty}\frac{\pi-2arctgx}{\ln\left(1+\frac{1}{x}\right)};$$

15)
$$\lim_{x\to\infty}\frac{e^x}{x^5};$$

17)
$$\lim_{x\to 0}\frac{\pi/x}{ctg(\pi x/2)};$$

$$19) \lim_{x\to 0} \frac{1-\cos 7x}{x\sin 7x}$$

21)
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{x}{ctg \, x} - \frac{\pi}{2\cos x} \right);$$

23)
$$\lim_{x\to\infty} x \sin\frac{3}{x}$$
;

25)
$$\lim_{x\to 0} (1-\cos x) \cdot ctg x$$
;

27)
$$\lim_{x\to 0} (x \cdot \ln x);$$

29)
$$\lim_{x\to 0}\frac{tg\,x-x}{2\sin x+x};$$

31)
$$\lim_{x \to \frac{\pi}{2}} \frac{tg3x}{tg5x};$$

33)
$$\lim_{x\to 0} \frac{\frac{\pi}{x}}{ctg\frac{\pi x}{2}};$$

35)
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$
;

37)
$$\lim_{x\to 0} (x^2 \ln x)$$
;

39)
$$\lim_{x\to 1} \left(\frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})} \right);$$

41)
$$\lim_{x\to 0}\frac{e^{tgx}-e^x}{tgx-x};$$

43)
$$\lim_{x \to \infty} \frac{e^{\frac{1}{x^2}} - 1}{2arctgx^2 - \pi};$$

45)
$$\lim_{x\to\infty} (\pi - 2arctgx) \cdot \ln x$$
;

47)
$$\lim_{x\to 2} \frac{ctg\left(\frac{\pi x}{4}\right)}{x-2}.$$

111. Найти пределы указанных функций:

1)
$$\lim_{x\to 1} (1-x)^{\ln x}$$
;

2)
$$\lim_{x\to\infty} (\ln x)^{\frac{1}{x}};$$

3)
$$\lim_{x\to 1} (x-1)^{x-1}$$
;

4)
$$\lim_{x\to 0} \left(\ln \frac{1}{x} \right)^x$$
;

5)
$$\lim_{x\to 0} (\sin x)^{tg\,x};$$

6)
$$\lim_{x\to\infty} \left(\frac{x-4}{x+3}\right)^{3x}$$
;

7)
$$\lim_{x\to 0} \left(\frac{tg\,x}{x}\right)^{\frac{1}{x^2}}$$
;

8)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$
;

9)
$$\lim_{x\to 0} x^{\sin x}$$
;

10)
$$\lim_{x\to 0} \left(\frac{1}{x}\right)^{\sin x}$$
;

11)
$$\lim_{x\to 2} \left(2-\frac{x}{2}\right)^{tg\frac{\pi x}{4}};$$
 12) $\lim_{x\to 0} x^{\frac{1}{\ln(e^x-1)}};$

12)
$$\lim_{x\to 0} x^{\frac{1}{\ln(e^x-1)}}$$

13)
$$\lim_{x\to 0} (ctgx)^{\frac{1}{\ln x}}$$
;

14)
$$\lim_{x\to 0} (\cos 2x)^{\frac{3}{x^2}}$$
;

13)
$$\lim_{x \to 0} (ctgx)^{\frac{1}{\ln x}};$$
 14) $\lim_{x \to 0} (\cos 2x)^{\frac{3}{x^2}};$ 15) $\lim_{x \to 4} (2 - \frac{x}{4})^{tg\frac{\pi x}{8}}.$

Ответы: **109.** 1) 7/2; 2) 1/2; 3) 2/3; 4) 1; 5) -1/8; 6) 0; 7) -1/2; 8) $1/\pi$;

9)
$$-2/\pi$$
; 10) 1/e; 11) e^3 ; 12) 2; 13) 1/128; 14) 2/3. **110.** 2) 5/13; 3) 0,7;

46)
$$-0.5$$
; 47) 2. **111.** 11) e^{π} ; 12) e; 13) e^{-1} ; 14) e^{-6} ; 15) $e^{2/\pi}$.

10. Формула Тейлора и ее приложения

Если функция y = f(x) имеет производные до (n+1) – го порядка включительно в некотором интервале, содержащем точку x = a, то она может быть представлена в виде суммы многочлена *п-*й степени и остаточного члена $R_n(x)$:

$$f(x)=f(a)+rac{f'(a)}{1!}(x-a)+rac{f''(a)}{2!}(x-a)^2+\cdots+rac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)\,,$$
 где $R_n(x)=rac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1},\quad \xi\in(a;\,x).$

Эта формула называется формулой Тейлора с остаточным членом в форме Лагранжа.

Если в этой формуле положить a=0, то получим формулу Маклорена.

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}, \quad \xi \in (0; x).$$

Приведем разложения некоторых функций по формуле Маклорена:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\xi}}{(n+1)!} x^{n+1}, \quad \xi \in (0; x).$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!} + \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cos \xi, \ \xi \in (0; x).$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + \frac{(-1)^{n+1} x^{2n+2}}{(2n+2)!} \cos \xi, \quad \xi \in (0; x).$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + \frac{(-1)^{n-1} x^{n}}{n} + \frac{(-1)^{n}}{n+1} \cdot \left(\frac{x}{1+\xi x}\right)^{n+1}, \quad \xi \in (0; x).$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!} x^{2} + \dots + \frac{n(n-1)(n-2) \dots (n-m+1)}{m!} x^{m} + \frac{n(n-1)(n-2) \dots (n-m)(1+\xi)^{n-m-1}}{(m+1)!} x^{m+1}, \quad \xi \in (0; x).$$

С помощью формул Тейлора или Маклорена функцию f(x), имеющую достаточное число производных в точке x = a или x = 0, можно представить приближенно многочленом некоторой степени:

$$e^{x} \approx 1 + x;$$
 $e^{x} \approx 1 + x + \frac{x^{2}}{2};$ $\sin x \approx x;$ $\sin x \approx x - \frac{x^{3}}{6};$ $\cos x \approx 1 - \frac{x^{2}}{2};$ $\cos x \approx 1 - \frac{x^{2}}{2};$ $\cos x \approx 1 - \frac{x^{2}}{2};$ $\sin x \approx x - \frac{x^{3}}{6};$ $\cos x \approx 1 - \frac{x^{2}}{2};$ $\sin x \approx x -$

Эти формулы используют, например, для приближенного вычисления значений функции, для нахождения пределов.

Пример 23. Найти предел
$$\lim_{x\to 0} \left(\frac{1}{x^2} - ctg^2 x \right)$$
.

Решение.

$$\lim_{x \to 0} \left(\frac{1}{x^2} - ctg^2 x \right) = \lim_{x \to 0} \left(\frac{1}{x} - ctgx \right) \left(\frac{1}{x} + ctgx \right) = \lim_{x \to 0} \left(\frac{1}{x} - \frac{\cos x}{\sin x} \right) \left(\frac{1}{x} + \frac{\cos x}{\sin x} \right) =$$

$$= \lim_{x \to 0} \frac{\sin x - x \cos x}{x \sin x} \cdot \frac{\sin x + x \cos x}{x \sin x} =$$

$$= \lim_{x \to 0} \frac{1}{x^4} \left(\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - R_5 \right) - x \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} - R_4 \right) \right) \times$$

$$\times \left(\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - R_5 \right) + x \left(1 - \frac{x^2}{2} + \frac{x^4}{4!} - R_4 \right) \right) =$$

$$= \lim_{x \to 0} \frac{1}{x^3} \left(x^2 \left(\frac{1}{2} - \frac{1}{6} \right) + x^4 \left(\frac{1}{5!} - \frac{1}{4!} \right) + R_5 \right) \times$$

$$\times \left(2x - x^3 \left(\frac{1}{3!} + \frac{1}{2!} \right) + x^5 \left(\frac{1}{5!} + \frac{1}{4!} \right) - R_5 \right) =$$

$$= \lim_{x \to 0} \left(\frac{2}{6} - x^2 \frac{4}{120} + R_2 \right) \left(2 - \frac{4}{6} x^2 + R_2 \right) = \frac{1}{3} \cdot 2 = \frac{2}{3}.$$

Ответ: 2/3.

Задания для аудиторной работы

- **112.** Разложить многочлен $f(x) = 2x^3 3x^2 + 5x + 1$ по степеням бинома x+1, используя формулу Тейлора.
- **113.** Разложить функцию $f(x) = \frac{1}{x}$ в точке $x_0 = 1$.
- **114.** Записать формулы бинома Ньютона для функций $(1+x)^4$, $(1+x)^5$.
- **115.** Разложить функцию $f(x) = \frac{x^2 \ln x}{2}$ в точке $x_0 = 1$.
- **116.** Найти предел $\lim_{x\to 0} \frac{\sin x x}{e^x 1 x 0.5x^2}$.

Задания для индивидуальной работы

- **117.** Дан многочлен $f(x) = x^4 + 4x^2 x + 3$. Записать формулу Тейлора второго порядка, если a = 1. Выписать остаточный член $R_2(x)$ в форме Лагранжа. Найти промежуточное значение c, соответствующее значениям x = 0, x = -1, x = 2. Вычислить f(1,3) и оценить погрешность.
- **118.** Разложить многочлен $P(x) = x^4 x^3 + 5x^2 4x + 1$ по степеням x 1, используя формулу Тейлора.
- **119.** Разложить многочлен P(x) по степеням $x x_0$, используя формулу Тейлора, если:
 - 1) $P(x) = x^3 + 4x^2 6x 8$, $x_0 = -1$;
 - 2) $P(x) = x^5 3x^4 + 7x + 2$, $x_0 = 2$;
 - 3) $P(x) = x^3 4x^2 + 7x 11$, $x_0 = 2$;
 - 4) $P(x) = 3x^4 2x^3 + x^2 11x + 4$, $x_0 = -1$;
 - 5) $f(x) = 5x^4 2x^3 3x^2 + 6x 9$, $x_0 = 1$;
 - 6) $P(x) = 7x^3 4x^2 + 6x + 5$, $x_0 = -1$.
- **120.** Функцию $f(x) = \sqrt{1+x}$ разложить по степеням x до члена с x^2 .
- **121.** Функцию $y = xe^x$ разложить по степеням x до члена с x^{n-1} .
- **122.** Функцию $f(x) = (x^2 3x + 1)^3$ разложить по степеням x.
- **123.** Функцию y = tg x разложить по степеням x до члена с x^2 .
- **124.** Функцию $y = \arcsin x$ разложить по степеням x до члена с x^3 .
- **125.** Записать формулу Тейлора 3-го порядка для функции f(x) при x=a.
 - 1) $f(x) = \frac{1}{x}$, a = -1;
- 2) $f(x) = \frac{x}{x+1}$, a = 2;

3) f(x) = tgx, a = 0;

- 4) $f(x) = \arcsin x$, a = 0.
- **126.** Найти первые три члена разложения заданной функции по степеням x-2. Найти приближенные значения функции в заданных точках.

1)
$$f(x) = x^5 - 5x^3 + x$$
, $f(2,1)$; $f(1,98)$;

2)
$$f(x) = x^6 - 5x^5 + 3x^3 + x^2$$
, $f(2,2)$; $f(1,99)$;

3)
$$f(x) = 2x^5 - 4x^3 + 3x^2 + x$$
, $f(2,1)$; $f(1,96)$;

4)
$$f(x) = 3x^6 - 4x^3 + x^2 + 1$$
, $f(2,2)$; $f(1,97)$.

127. Найти предел с помощью формулы Маклорена.

1)
$$\lim_{x\to 0} \frac{\ln(1+x)-x+0.5x^2}{x(1-\cos 2x)}$$
;

2)
$$\lim_{x\to 0} \frac{e^x - 1 - x - 0.5x^2}{\ln(x+1) - x + 0.5x^2}$$
;

3)
$$\lim_{x\to 0} \frac{(\cos x - 1 + 0.5x^2)x^2}{e^{x^2} - 1 - x^2 - 0.5x^4}$$
;

4)
$$\lim_{x\to 0} \frac{x(\ln(1+x)-x)}{\sin 2x-2x}$$
.

Ответы: **113.** $\frac{1}{x} = 1 - (x-1) + (x-1)^2 - (x-1)^3 + ... + o((x-1)^n)$ при $x \to 1$.

115.
$$\frac{1}{2}(x-1) - \frac{3(x-1)^2}{2 \cdot 2!} + \frac{(x-1)^3}{1 \cdot 2 \cdot 3} - \frac{(x-1)^4}{2 \cdot 3 \cdot 4} + \frac{(x-1)^5}{3 \cdot 4 \cdot 5} + \dots + \frac{(-1)^{n-1}(x-1)^n}{(n-2)(n-1)n} + o((x-1)^n),$$
 при $x \to 1$. **118.** $P(x) = 2 + 7(x-1) + 8(x-1)^2 + 3(x-1)^3 + (x-1)^4$.

11. Полное исследование функции. Построение графика функции

1. Возрастание и убывание функции

Функция y = f(x) называется монотонно возрастающей (монотонно убывающей) на множестве D, если для любых $x_1 < x_2$, $x_1, x_2 \in D$ выполняется неравенство $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$). Если для любых $x_1 < x_2$, $x_1, x_2 \in D$ выполняется неравенство $f(x_1) \le f(x_2)$ ($f(x_1) \ge f(x_2)$), то функция называется неубывающей (невозрастающей) на множестве D.

Постоянная функция является одновременно и неубывающей и невозрастающей.

Теорема. Если функция y = f(x) дифференцируема на интервале (a; b) и f'(x) > 0 (f'(x) < 0) для всех $x \in (a; b)$, то эта функция возрастает (убывает) на интервале (a; b).

2. Экстремумы функции

Точка $x=x_0$ называется точкой локального *максимума* (*минимума*), если существует такая окрестность точки x_0 , что для всех x из этой окрестности выполняется неравенство $f(x) < f(x_0)$ ($f(x) > f(x_0)$).

Необходимое условие экстремума. Если функция y = f(x) в точке x_0 имеет экстремум, то ее производная $f'(x_0)$ или равна 0, или не существует. Точку x_0 называют критической точкой.

Экстремум может достигаться только в критических точках, но не всякая критическая точка функции является точкой экстремума.

Достаточные условия экстремума.

Теорема (первый достаточный признак локального экстремума). Пусть функция y = f(x) непрерывна в некотором интервале, содержащем критическую точку $x = x_0$, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки x_0). Если при переходе (слева направо) через критическую точку x_0 производная f'(x) меняет знак с «плюса» на «минус», то в точке x_0 функция y = f(x) имеет максимум; если же с «минуса» на «плюс», то минимум; если знак не меняет, то экстремума нет.

Теорема (второй достаточный признак локального экстремума). Пусть функция y = f(x) дважды дифференцируема и $f'(x_0) = 0$, $f''(x_0) \neq 0$, тогда функция в точке x_0 имеет экстремум: максимум, если $f''(x_0) < 0$, и минимум, если $f''(x_0) > 0$.

Пример 24. Найти интервалы возрастания и убывания, точки экстремума и экстремальные значения функции $y = x^3 - 3x^2$.

Решение. $D(y) = \mathbb{R}$. Найдем производную функции:

$$y' = 3x^2 - 6x = 3x(x-2)$$
.

Производная положительна, если выполнено неравенство y'>0, т.е. $x(x-2)>0 \implies x\in (-\infty;0)\cup (2;+\infty)$.

Производная отрицательна, если выполнено неравенство y' < 0, т.е. $x(x-2) < 0 \implies x \in (0; 2)$.

Значит, при $x \in (-\infty; 0) \cup (2; +\infty)$ функция возрастает, а при $x \in (0, 2)$ – убывает. Следовательно, x = 0 – точка максимума, x = 2 – точка минимума.

Находим максимальное и минимальное значения функции:

$$y_{\text{max}}(0) = 0$$
; $y_{\text{min}}(2) = 2^3 - 3 \cdot 2^2 = 8 - 12 = -4$.

Ответ. Интервал возрастания: $(-\infty; 0) \cup (2; +\infty)$; интервал убывания: $(0; 2); \ y_{\text{max}} = y(0) = 0; \ y_{\text{min}} = y(2) = -4$.

3. Выпуклость, вогнутость. Точки перегиба.

График функции y = f(x) называется выпуклым (вогнутым) на интервале (a; b), если он расположен ниже (выше) касательной, проведенной к кривой в любой точке этого интервала.

Теорема (достаточное условие выпуклости (вогнутости) графика функции). Если f''(x) < 0, $x \in (a; b)$, то график функции выпуклый на этом интервале; если же f''(x) > 0, $x \in (a; b)$, то график функции вогнутый.

Точка $M_0(x_0; f(x_0))$ графика функции, отделяющая выпуклую часть графика от вогнутой, называется *точкой перегиба*. Если x_0 — абсцисса точки перегиба графика функции y = f(x), то вторая производная функции в этой точке или равна нулю, или не существует.

Теорема (достаточный признак точки перегиба). Если в точке $x = x_0$ f''(x) = 0 или f''(x) не существует и при переходе через эту точку производная f''(x) меняет знак, то точка с абсциссой $x = x_0$ кривой y = f(x) точка перегиба.

Пример 25. Найти интервалы выпуклости и вогнутости, точки перегиба кривой $y = x^4 - 2x^3 - 12x^2 - 6x + 5$.

Решение. $D(y) = \mathbb{R}$. Найдем первую и вторую производные данной функции:

$$y' = 4x^3 - 6x^2 - 24x - 6$$
;

$$y'' = 12x^2 - 12x - 24 = 12(x^2 - x - 2) = 12(x - 2)(x + 1)$$
.

Кривая выпукла, если выполнено неравенство y'' < 0, т.е.

$$(x+1)(x-2) < 0 \implies x \in (-1,2)$$
.

Кривая вогнута, если выполнено неравенство y'' > 0, т.е.

$$(x+1)(x-2) > 0 \implies x \in (-\infty; -1) \cup (2; +\infty).$$

Найдем значения функции в точках x = -1 и x = 2:

$$y(-1) = 1 + 2 - 12 + 6 + 5 = 2$$
; $y(2) = 16 - 16 - 48 - 12 + 5 = -55$.

Значит, точки с координатами (-1; 2) и (2; -55) являются точками перегиба графика данной функции.

Ответ. Интервал вогнутости: $(-\infty; -1) \cup (2; +\infty)$; интервал выпуклости: (-1;2); точки перегиба: (-1;2), (2;-55).

4. Асимптоты кривой.

Прямая называется асимптотой кривой y = f(x), если расстояние от точки M(x,y) кривой до прямой стремится к нулю при неограниченном удалении точки M(x,y) по кривой, т.е. при стремлении хотя бы одной из координат к бесконечности.

Прямая x=a является вертикальной асимптотой кривой y=f(x), если $\lim_{x\to a} f(x)=\pm\infty$.

Прямая y = b является горизонтальной асимптотой кривой y = f(x), если $\lim_{x \to +\infty} f(x) = b$.

Прямая $y = k \cdot x + b$ является наклонной асимптотой, если существуют пределы: $k = \lim_{x \to \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \infty} \left(f(x) - kx \right).$

Пример 26. Найти асимптоты кривой $y = \frac{3x^2 - x + 4}{x + 2}$.

Решение. $D(y) = (-\infty; -2) \cup (-2; +\infty)$. Если $x \to -2$, то $y \to \infty$, значит, прямая x = -2 — вертикальная асимптота.

Найдем наклонную асимптоту y = kx + b:

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{3x^2 - x + 4}{x(x+2)} = 3;$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{3x^2 - x + 4}{x+2} - 3x \right) =$$

$$= \lim_{x \to \infty} \left(\frac{3x^2 - x + 4 - 3x^2 - 6x}{x+2} \right) = \lim_{x \to \infty} \left(\frac{-7x + 4}{x+2} \right) = -7.$$

y = 3x - 7 — наклонная асимптота.

Ответ: x = -2 — вертикальная асимптота; y = 3x - 7 — наклонная асимптота.

Примерная схема исследования:

- 1) указать область определения функции;
- 2) найти точки разрыва функции, точки пересечения ее графика с осями координат и вертикальные асимптоты;
- 3) установить наличие или отсутствие четности, нечетности, периодичности функции;
 - 4) исследовать функцию на монотонность и экстремум;
 - 5) определить интервалы выпуклости, вогнутости и точки перегиба;
 - 6) найти асимптоты графика функции;
 - 7) произвести необходимые дополнительные вычисления;
 - 8) построить график функции.

Задания для аудиторной работы

128. Найти интервалы монотонности и экстремумы функции:

1)
$$y = 2x^3 - 6x^2 - 18x + 7$$
; 2) $y = (x-2)^5 (2x+1)^4$; 3) $y = \frac{x^2 - 2x + 2}{x-1}$;

4)
$$y = xe^{-x}$$
; 5) $y = x \ln x$; 6) $y = x - e^{x}$.

129. Найти наибольшее и наименьшее значения функции на отрезке:

1)
$$y = 5 - 12x + 3x^2 + 2x^3$$
, [-3; 2];
2) $y = \frac{x - 1}{x + 1}$, [0; 4];
3) $y = x - x\sqrt{-x}$, [-4; 0];
4) $y = \sqrt{100 - x^2}$, [-6; 8].

130. Найти интервалы выпуклости, вогнутости и точки перегиба графика функции:

1)
$$y = x^4 + 2x^3 - 12x^2 - 5x + 2$$
; 2) $y = \ln(x^2 + 2x + 5)$; 3) $y = \frac{x^4}{x^3 - 1}$.

2)
$$y = \ln(x^2 + 2x + 5)$$
;

3)
$$y = \frac{x^4}{x^3 - 1}$$
.

131. Найти асимптоты кривой:

1)
$$y = \frac{x^2}{x-1}$$
;

2)
$$y = 2x + arctg x$$
; 3) $y = x^2 e^x$.

3)
$$y = x^2 e^x$$

132. Провести полное исследование функции и построить ее график:

1)
$$y = \frac{x^2 - 6x + 10}{x - 3}$$
; 2) $y = \frac{(x - 1)^2}{x}$;

2)
$$y = \frac{(x-1)^2}{x}$$
;

3)
$$y = \frac{\ln x}{\sqrt{x}}$$
.

Задания для индивидуальной работы

133. Найти экстремумы и промежутки монотонности функции:

1)
$$y = x^4 + 4x^3 - 2x^2 - 12x + 5$$
; 2) $y = (2 - x)(x + 1)^2$; 3) $y = \frac{2x + 3}{2x - 5}$;

2)
$$y = (2 - x)(x + 1)^2$$

3)
$$y = \frac{2x+3}{3x-5}$$

4)
$$y = \sqrt[3]{(x^2 - 6x + 5)^2}$$
; 5) $y = \sqrt{3x - 7}$;

5)
$$v = \sqrt{3x-7}$$
:

6)
$$y = x \ln^2 x$$
;

7)
$$y = e^{3-6x-x^2}$$
;

8)
$$y = x^{\frac{2}{3}} - x$$
;

9)
$$y = e^{2x}$$
;

10)
$$y = \frac{1}{\ln x}$$
;

11)
$$y = xe^{-\frac{x^2}{2}}$$
;

12)
$$y = x^2(1 - x\sqrt{x})$$
;

13)
$$y = x - arctgx$$
;

14)
$$y = x \cdot \ln^2 x$$
;

15)
$$y = e^{-x^2}$$
.

134. Найти наибольшее и наименьшее значения функции на отрезке:

1)
$$y = 2x^3 + 3x^2 - 12x + 1$$
, $[-1,5]$; 2) $y = x + 3\sqrt[3]{x}$, $[-1,1]$;

2)
$$y = x + 3\sqrt[3]{x}$$
, [-1;1];

3)
$$y = 2x - \sqrt{x}$$
, [0;4];

4)
$$y = tg x - x$$
, $[-\pi/4; \pi/4]$;

5)
$$y = x^4 - 8x^2 + 3$$
, [-2;2];

6)
$$y = \frac{1 - x + x^2}{1 + x^2}$$
, [0;1];

7)
$$y = arctg \frac{1-x}{1+x}, [0;1];$$

8)
$$y = 3\sqrt[3]{x^2} - 6\sqrt[3]{x} + 4x - 8$$
, $[-1;8]$.

135. Найти интер. выпуклости, вогнутости и точки перегиба графика функц.:

1)
$$y = e^{-x^2}$$
;

2)
$$\begin{cases} y = 3t + t^3; \\ x = t^2; \end{cases} t \in \mathbb{R}; \quad 3) \ y = x - \ln x.$$

3)
$$y = x - \ln x$$

136. Найти асимптоты кривой:

1)
$$y = \sqrt{1+x^2}$$
;

2)
$$y = \frac{x^3}{(x-3)^2}$$
;

3)
$$y = \frac{2 \ln x}{x}$$
;

4)
$$y = x \cdot \ln\left(e + \frac{1}{x}\right)$$
;

$$5) y = x - \ln x;$$

6)
$$y = \sqrt[3]{x^3 - 6x^2}$$
;

7)
$$y = \frac{3x}{x+2}$$
;

8)
$$y = e^{-\frac{1}{x}}$$
;

9)
$$y = \frac{x^2 + 3}{x^2 - 9}$$
.

137. Провести полное исследование функции и построить ее график:

1)
$$y = 2x^2 + \frac{1}{x}$$
;

2)
$$y = e^{\frac{1}{x+2}}$$
;

3)
$$y = \frac{3x-2}{5x^2}$$
;

4)
$$y = \sqrt[3]{(x+3)x^2}$$
; 5) $y = \frac{x^3}{3-x^2}$;

5)
$$y = \frac{x^3}{3 - x^2}$$

6)
$$y = x \cdot e^{-x}$$
:

7)
$$y = \sqrt[3]{6x^2 - x^3}$$
;

7)
$$y = \sqrt[3]{6x^2 - x^3}$$
; 8) $y = \frac{x^3}{2(x+1)^2}$;

9)
$$y = x^2 \cdot e^{-x}$$
;

10)
$$y = \sqrt[3]{6x^2 - x^3}$$
;

10)
$$y = \sqrt[3]{6x^2 - x^3}$$
; 11) $y = \frac{x^3 + 2x^2 + 7x - 3}{2x^2}$; 12) $y = x \cdot e^{-x^2/2}$;

12)
$$y = x \cdot e^{-x^2/2}$$
;

13)
$$y = \sqrt[3]{4x^3 - 12x}$$
;

13)
$$y = \sqrt[3]{4x^3 - 12x}$$
; 14) $y = \frac{8x}{(x-2)^2}$;

15)
$$y = \ln(x^2 + 2x + 2)$$
.

12. Решение практических задач с применением теории экстремумов

Пример 27. Из квадратного листа жести, сторона которого равна 2а, требуется сделать открытый сверху ящик наибольшего объема, вырезая равные квадраты по углам (рис. 1), удаляя их и затем загибая жесть, чтобы образовались бока ящика. Какова должна быть длина стороны у вырезаемых квадратов?

Решение. Пусть сторона вырезаемого квадрата равна х. Обозначим объем ящика V = V(x).

$$V(x) = (2a-2x)^2 \cdot x = 4x(a-x)^2;$$

$$V'(x) = 4(a-x)^2 - 8x(a-x) = 4(a-x)(a-x-2x).$$

Решим уравнение V'(x) = 0.

Рисунок 1

 $4(a-x)(a-3x)=0 \implies x\neq a, \ x=\frac{a}{2}.$

Найдем вторую производную в точке $x = \frac{a}{3}$.

$$V'(x) = 4(a^2 - 4ax + 3x^2).$$

$$V''(x) = 4(-4a+6x); \ V''\left(\frac{a}{3}\right) = 4(-4a+2a) = -8a < 0;$$

$$V\left(\frac{a}{3}\right) = \frac{16}{27}a^3$$
 — максимальный объем ящика.

Ответ: а/3.

Пример 28. Известно, что прочность бруса с прямоугольным поперечным сечением пропорциональна его ширине b и квадрату высоты h. Найти размеры бруса наибольшей прочности, который можно вырезать из бревна радиусом $R = 2\sqrt{3}$ дм.

Решение. Прочность бруса определяется формулой $N = kh^2b$, где k – коэффициент пропорциональности, k > 0.

Из рис. 2 видно, что $h^2+b^2=4R^2$, $h^2=4R^2-b^2$. Тогда получим:

$$N = N(b) = k(4R^2 - b^2)b;$$

 $N'(b) = k(4R^2 - 3b^2).$

Решим уравнение N'(b) = 0, т.е. $k(4R^2 - 3b^2) = 0$.

Следовательно, $b = \frac{2R}{\sqrt{3}} = 4$ дм, при этом $h = 4\sqrt{2}$ дм.

Рисунок 2

Т.к. N''(b) = -6kb < 0, то при найденных значениях высоты и ширины бруса его прочность будет максимальной.

Ответ: b = 4 дм, $h = 4\sqrt{2}$ дм.

Задания для аудиторной работы

- **138.** Число *36* разложить на два таких множителя, чтобы сумма их квадратов была наименьшей.
- **139.** Окно в загородном доме имеет форму прямоугольника, завершённого полукругом. Периметр окна равен *p*. При каком радиусе полукруга площадь окна будет наибольшей?
- **140.** Из листа жести требуется сделать ведро цилиндрической формы с крышкой. Площадь полной поверхности цилиндра, который можно выкроить из этого листа, составляет *S.* Каковы должны быть размеры ведра наибольшего объёма?
- **141.** Картина высотой 1,4 м повешена на стену так, что её нижний край на 1,8 м выше глаз наблюдателя. На каком расстоянии от стены должен стать наблюдатель, чтобы его положение было наиболее благоприятным для осмотра картины (т.е. чтобы угол зрения был наибольшим)?
- **142.** Какое положительное число, будучи сложено с обратным ему числом, даёт наименьшую сумму?
- **143.** Из всех прямоугольников данной площади S определить тот, периметр которого наименьший.
- **144.** Требуется изготовить закрытый цилиндрический бак вместимостью $V = 16\pi \, m^3$. Каковы должны быть размеры бака (радиус и высота), чтобы на его изготовление пошло наименьшее количество материала?
- **145.** Мотком проволоки длиной 20*м* требуется огородить клумбу, имеющую форму кругового сектора. При каком радиусе круга площадь клумбы будет наибольшей?

Задания для индивидуальной работы

146. Найти стороны прямоугольника наибольшей площади, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- **147.** Найти высоту конуса наибольшего объема, который можно вписать в шар радиусом *R*.
- **148.** Требуется изготовить коническую воронку с образующей, равной 20 см. Какой должна быть высота воронки, чтобы ее объем был наибольшим?
- **149.** Измерения, проведенные в различных местах реки, покрытой льдом, показали, что скорость воды для разной глубины x меняется по закону $v = b \cdot m \cdot \ln x + a + k \cdot m \cdot \ln(t x)$, где b, m, k, t, a некоторые параметры. На какой глубине реки скорость течения наибольшая?
- **150.** Найти соотношение между радиусом R и высотой H цилиндра, имеющего при данном объеме V наименьшую полную поверхность.
- **151.** Полоса жести шириной a, имеющая прямоугольную форму, должна быть согнута в виде открытого цилиндрического желоба так, чтобы его сечение имело форму кругового сегмента. Каким должен быть центральный угол φ , опирающийся на дугу этого сегмента, чтобы вместимость желоба была наибольшей?
- **152.** Из круглого бревна диаметром *d* надо вырезать балку прямоугольного сечения. Каковы должны быть ширина *b* и высота *h*этого сечения, чтобы балка, будучи горизонтально расположенной и равномерно нагруженной, имела наименьший прогиб? (Величина прогиба обратно пропорциональна произведению ширины *b* поперечного сечения и куба высоты *h*.)
- **153.** Из всех цилиндров, вписанных в данный конус, найти тот, у которого боковая поверхность наибольшая. Высота конуса *H*, радиус основания *R*.
- **154.** С корабля, который стоит на якоре в 9 км от берега, нужно послать гонца в лагерь, расположенный в 15 км от ближайшей к кораблю точки берега. Скорость посыльного при движении пешком 5 км/ ч, а на лодке 4 км/ч. В каком месте он должен пристать к берегу, чтобы попасть в лагерь в кратчайшее время?
- **155.** На странице книги печатный текст занимает площадь S квадратных сантиметров. Ширина верхнего и нижнего полей равна *a* см, а правого и левого *b* см. Если принимать во внимание только экономию бумаги, то какими должны быть наиболее выгодные размеры страницы?
- **156.** Из фигуры, ограниченной линиями $y = 3\sqrt{x}$, x = 4, y = 0, вырезать прямоугольник наибольшей площади.

Ответы: **138.** 6 и 6. **141.** 2,4 м. **142.** 1. **146.** $a\sqrt{2}$ и $b\sqrt{2}$. **147.** 4R/3.

148. $20\sqrt{3}/3$ см. **150.** H = 2R. **151.** Сечение желоба имеет форму полукруга. **154.** В 3 км от лагеря. **155.** $2b + \sqrt{Sb/a}$ и $2a + \sqrt{Sa/b}$.

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

13. Область определения функции нескольких переменных. Частные производные, производная по направлению, градиент функции нескольких переменных

Если каждой точке M из некоторой области D соответствует некоторое число z из множества $E \subset \mathbb{R}$, то говорят, что z есть функция от M. Если точка M имеет две координаты M(x;y), то z=f(x;y) — функция двух переменных. Функцию трех переменных обычно обозначают u=f(x;y;z). D(f) — область определения (существования) функции, E(f) — область значений функции.

Частным приращением функции z = f(x, y) по переменной x (по переменной y) называется разность вида

$$\Delta_{x}z = f(x + \Delta x, y) - f(x, y),$$

$$(\Delta_{y}z = f(x, y + \Delta y) - f(x, y)).$$

Частными производными функции z = f(x, y) по переменной x и по переменной y соответственно называются пределы отношений вида

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \frac{\partial z}{\partial x} = z'_x = f'_x(x, y), \qquad \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \frac{\partial z}{\partial y} = z'_y = f'_y(x, y).$$

При нахождении частной производной по одной переменной другие переменные считаются постоянными, поэтому все правила и формулы дифференцирования функций одной переменной применимы для нахождения частных производных функций любого числа переменных.

Полным приращением функции z = f(x, y) называется разность $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$.

Полным дифференциалом функции z = f(x, y) называется главная линейная часть полного приращения функции. Дифференциал ФНП обозначают dz.

Если функция z = f(x, y) имеет непрерывные частные производные по обеим независимым переменным, то полный дифференциал равен

$$dz = z'_x dx + z'_y dy = f'_x(x, y) dx + f'_y(x, y) dy.$$

Полный дифференциал функции трех независимых переменных u = f(x, y, z) равен

$$du = f'_x(x, y, z)dx + f'_v(x, y, z)dy + f'_z(x, y, z)dz,$$

При малых приращениях Δx u Δy справедливо приближенное равенство $\Delta f(x_0,y_0) \approx df(x_0,y_0)$ или

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y$$
.

Эта формула используется для приближенных вычислений значений функции двух переменных.

Производной функции u = f(x,y,z) в точке $M_0(x_0,y_0,z_0)$ в направлении вектора $\vec{a} = (I,m,n)$ называется предел $\lim_{M \to M_0} \frac{\Delta u(M_0)}{|M_0 M|} = \frac{\partial u(M_0)}{\partial \vec{a}}, \ \vec{a} = \overline{M_0 M}$.

Эта производная находится по формуле

$$\frac{\partial u(M_0)}{\partial a} = u'_x(M_0) \cdot \cos \alpha + u'_y(M_0) \cdot \cos \beta + u'_z(M_0) \cdot \cos \gamma,$$

где
$$\cos \alpha = \frac{I}{\sqrt{I^2 + m^2 + n^2}}$$
, $\cos \beta = \frac{m}{\sqrt{I^2 + m^2 + n^2}}$, $\cos \gamma = \frac{n}{\sqrt{I^2 + m^2 + n^2}}$.

Производная по направлению показывает скорость изменения функции в данной точке в данном направлении.

Градиентом функции u = u(x, y, z) называется вектор $grad\ u = (u_x', u_y', u_z')$.

Производная функции в направлении ее градиента принимает максимальное значение.

Вектор-градиент функции u = u(x; y; z) в точке M_0 направлен перпендикулярно поверхности уровня u(x; y; z) = C, проходящей через точку M_0 .

Пример 29. Дана функция $u = x + y^2 - z^3$ и точка $M_0(1; 2; -1)$.

Найти производную функции в точке M_0 в направлении вектора $\overrightarrow{M_0M_1}$, где $M_1(3;-4;2)$.

Решение. Находим частные производные функции в точке M_0 .

$$u'_{x} = 1,$$
 $u'_{y} = 2y,$ $u'_{z} = -3z^{2},$ $u'_{x}(1, 2, -1) = 1;$ $u'_{y}(1, 2, -1) = 4;$ $u'_{z}(1, 2, -1) = -3.$

Координаты вектора $\overrightarrow{M_0M_1} = (3-1; -4-2; 2+1) = (2; -6; 3)$. Найдем его направляющие косинусы:

$$\left| \overrightarrow{M_0 M_1} \right| = \sqrt{4 + 36 + 9} = 7$$
, $\cos \alpha = \frac{2}{7}$, $\cos \beta = -\frac{6}{7}$, $\cos \gamma = \frac{3}{7}$.

Тогда искомая производная будет равна:

$$\frac{\partial u(M_0)}{\partial a} = 1 \cdot \frac{2}{7} + 4 \cdot \left(-\frac{6}{7} \right) - 3 \cdot \frac{3}{7} = \frac{2 - 24 - 9}{7} = -\frac{31}{7}.$$

Так как производная отрицательна, то функция в данной точке в данном направлении убывает.

Ответ: -31/7.

Задания для аудиторной работы

157. Найти и изобразить области определения следующих функций:

1)
$$z = \sqrt{1 - x^2} + \sqrt{y^2 - 1}$$
; 2) $z = \arccos \frac{x}{x + y}$; 3) $z = \arcsin(2x - y)$.

158. Найти частные производные функций:

1)
$$z = 2x^3 - 6x^2y + y^3$$
; 2) $z = x^3y - y^3x$; 3) $z = \ln(x^2 + y^2)$;

4)
$$z = arctg(y/x)$$
; 5) $z = x^y$; 6) $z = e^{\sin(4x^2 - 3y)}$.

159. Найти полный дифференциал функций:

1)
$$z = x^3 y + \cos x - 3 t g x \cdot \ln y + 5$$
; 2) $z = \ln t g \frac{y}{6x}$; 3) $u = \frac{z}{\sqrt{x^2 + y^2}}$.

- **160.** Найти полный дифференциал функции $z = \ln(x^2 + y^2)$ в точке M_0 (1; 2).
- **161.** Найти производную функции $z = x^3 2x^2y + xy^2 + 1$ в точке M_0 (1; 2) в направлении вектора $\vec{a} = (3; -4)$.
- **162.** Найти производную функции $u = x^2 3yz + 7$ в точке M(1; 2; -1) в направлении, составляющем одинаковые углы со всеми координатными осями.
- **163.** Найти угол между градиентами функции $z = \ln(y/x)$ в точках A(1/2; 1/4) и B(1; 1).

Задания для индивидуальной работы

164. Найти и изобразить области определения следующих функций:

1)
$$z = \sqrt{y^2 - 2x + 4}$$
; 2) $z = \ln x + \ln \cos y$; 3) $z = \sqrt{x^2 - 4} + \sqrt{4 - y^2}$;

4)
$$z = \sqrt{y \cdot \sin x}$$
; 5) $z = \arcsin \frac{y}{x}$; 6) $z = \arccos(x + y)$.

165. Найти частные производные и полный дифференциал функций:

1)
$$u = (xy^2)^z$$
; 2) $z = arcctg(xy^2)$; 3) $z = cos \frac{x - y}{x^2 + y^2}$;

4)
$$z = tg \frac{2x - y^2}{x}$$
; 5) $z = \ln(3x^2 - y^4)$; 6) $u = (x - y)(y - z)(z - x)$.

166. Найти производную функции в точке M_0 в направлении вектора $\overrightarrow{M_0M_1}$ и градиент функции в точке M_0 :

1)
$$u = \ln\left(x + \frac{y}{2z}\right)$$
, $M_0(1,2,1)$, $M_1(-2,3,5)$;

2)
$$u = \frac{y}{x} + \frac{z}{v} - \frac{x}{z}$$
, $M_0(1; 1; 2)$, $M_1(8; -1; -4)$;

3)
$$u = \frac{\sin(x-y)}{z}$$
, $M_0\left(\frac{\pi}{2}; \frac{\pi}{3}; \sqrt{3}\right)$, $M_1\left(\pi; \frac{\pi}{6}; 2\sqrt{3}\right)$;

4)
$$u = 8 \cdot \sqrt[5]{x^3 + y^2 + z}$$
, $M_0(3; 2; 1)$, $M_1(5; 8; 4)$.

14. Дифференцирование сложных функций. Дифференцирование неявных функций

Функция вида z = f(u,v), где $u = \varphi(x,y)$, $v = \psi(x,y)$, называется сложной функцией переменных x и y. Считаем, что функции f(u,v), $\varphi(x,y)$, $\psi(x,y)$ имеют непрерывные частные производные по своим аргументам. Частные производные сложной функции по переменным x u y находятся по формулам:

$$Z_{x}' = Z_{u}' \cdot u_{x}' + Z_{v}' \cdot v_{x}', \qquad \qquad Z_{y}' = Z_{u}' \cdot u_{y}' + Z_{v}' \cdot v_{y}'.$$
 Если $z = f(u, v), \quad u = \varphi(x), \quad v = \psi(x), \quad \text{то} \quad \frac{dz}{dx} = \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}.$

Если z = f(x,u), $u = \varphi(x)$, то полную производную функции z по переменной x находят по формуле

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{du}{dx}.$$

Если уравнение F(x,y)=0 задает одну или несколько так называемых неявных функций y(x) и $F_y'(x,y)\neq 0$, то $\frac{dy}{dx}=-\frac{F_x'(x,y)}{F_v'(x,y)}$.

Если уравнение F(x,y,z)=0 определяет одну или несколько неявных функций z(x,y) и $F_z'(x,y,z)\neq 0$, то справедливы формулы:

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y, z)}{F_z'(x, y, z)}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y'(x, y, z)}{F_z'(x, y, z)}.$$

Если поверхность задана уравнением z = f(x; y), то *уравнение каса- тельной плоскости* к поверхности в точке $M_0(x_0; y_0; z_0)$ имеет вид

$$z-z_0=f_x'(x_0,y_0)\cdot(x-x_0)+f_y'(x_0,y_0)\cdot(y-y_0).$$

Канонические уравнения нормали к данной поверхности, проведенной через точку $M_0\left(x_0;y_0;z_0\right)$: $\frac{x-x_0}{f_{_{_{\!\!\!\!V}}}'(x_0,y_0)}=\frac{y-y_0}{f_{_{_{\!\!\!V}}}'(x_0,y_0)}=\frac{z-z_0}{-1}.$

Если уравнение поверхности задано в неявном виде F(x,y,z)=0 и $F(x_0,y_0,z_0)=0$, то *уравнение касательной плоскости к поверхности* в точке M_0 (x_0,y_0,z_0) имеет вид

$$F'_{x}(x_{0}, y_{0}, z_{0}) \cdot (x - x_{0}) + F'_{y}(x_{0}, y_{0}, z_{0}) \cdot (y - y_{0}) + F'_{z}(x_{0}, y_{0}, z_{0}) \cdot (z - z_{0}) = 0,$$

а уравнение нормали $\frac{x-x_0}{F_x'(M_0)} = \frac{y-y_0}{F_y'(M_0)} = \frac{z-z_0}{F_z'(M_0)}$.

Задания для аудиторной работы

167. Найти производную $\frac{dz}{dt}$ функций:

1)
$$z = e^{x^2 + y^2}$$
, $x = a\cos t$, $y = a\sin t$; 2) $z = e^{xy}\ln(x + y)$, $x = t^3$, $y = 1 - t^3$.

168. Найти производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ функций:

1)
$$z = 3^{x^2} arctgy$$
, $x = \frac{u}{v}$, $y = uv$; 2) $z = \sqrt{x^2 + y^2}$, $x = u \sin v$, $y = v \sin u$.

169. Проверить, удовлетворяет ли функция z = f(x; y) данному уравнению:

1)
$$z = \frac{xy}{x+y}$$
, $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$; 2) $z = x \ln \frac{x}{y}$, $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$.

170. Найти полную производную функции $z = tg^2(x^2 + 4y)$, $y = \sin \sqrt{x}$.

171. Найти
$$\frac{\partial z}{\partial x}$$
 и $\frac{dz}{dx}$, если $z = arctg \frac{y}{x}$, $y = x \cos^2 x$.

172. Найти производную функции F(x; y) = 0, заданной неявно уравнением:

1)
$$2x^2 - 3y^2 + 5xy - y^3x + x^5 - 37 = 0$$
;

2)
$$\sin(xy) - x^2 - y^2 - 5 = 0$$
.

173. Найти уравнения касательной плоскости и нормали к поверхности S:

1) S:
$$xyz^2 + 2y^2 + 3yz + 4 = 0$$
 в точке $M_0(0; 2; -2)$;

2) S:
$$z = x^2 + 2y^2 + 3xy - 5y - 10$$
 в точке $M_0(-7; 1; 8)$.

Задания для индивидуальной работы

174. Найти производную $\frac{dz}{dt}$ функций:

1)
$$z = x^5 + 2xy - y^3$$
, $x = \cos 2t$, $y = arctg t$;

2)
$$z = \cos(2t + 4x^2 - y)$$
, $x = \frac{1}{t}$, $y = \frac{\sqrt{t}}{\ln t}$.

175. Найти производную $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ функций:

1)
$$z = \frac{x^2}{y}$$
, $x = u - 2v$, $y = 2u + v$; 2) $z = \sqrt{x^2 - y^2}$, $x = u^v$, $y = u \ln v$.

176. Найти z'_{x} и z'_{y} функции z = f(u, v), если

1)
$$z = \arccos \frac{u}{v}$$
, $u = x + \ln y$, $v = -2e^{-x^2}$;

2)
$$z = e^{u^2 - 3\sin v}$$
, $u = x\cos y$, $v = x/y$;

3)
$$u = \ln(x^2 - y^2)$$
, $v = xy^2$;

4)
$$u = x^2 - 4\sqrt{y}$$
, $v = xe^y$.

177. Проверить, удовлетворяет ли функция z = f(x; y) данному уравнению:

1)
$$z = \frac{xy}{x + y}$$
, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$;

1)
$$z = \frac{xy}{x+y}$$
, $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$; 2) $z = \frac{2x+3y}{x^2+y^2}$, $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} + z = 0$;

3)
$$z = x \ln \frac{y}{x}$$
, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$;

3)
$$z = x \ln \frac{y}{x}$$
, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$; 4) $z = \frac{y}{\left(x^2 + y^2\right)^5}$, $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}$.

178. Показать, что функция $z = y \cdot \varphi(x^2 - y^2)$ удовлетворяет уравнению

$$\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}.$$

179. Вычислить значения частных производных неявной функции z(x; y), заданной уравнением $x^3 + y^3 + z^3 - xyz = 2$, в точке M_0 (1; 1; 1).

180. Найти уравнения касательной плоскости и нормали к поверхности S:

1) S:
$$x^2 - y^2 + z^2 - 4x + 2y = 14$$
 в точке $M_0(3; 1; 4)$;

2) S:
$$z = x^2 + y^2 - 4xy + 3x - 15$$
 в точке $M_0(-1; 3; 4)$;

3) S:
$$z = x^2 + 2y^2 + 4xy - 5y - 10$$
 в точке $M_1(-7; 1; 8)$;

4) S:
$$4y^2 - z^2 + 4xy - xz + 3z = 9$$
 в точке $M_1(1, -2, 1)$;

5)
$$z = \frac{1}{2}(x^2 - y^2)$$
 в точке $M_0(3; 1; 4)$.

Ответы: **180.** 5)
$$3x - y - z - 4 = 0$$
, $\frac{x-3}{3} = \frac{y-1}{-1} = \frac{z-4}{-1}$.

15. Частные производные и дифференциалы высших порядков

Частными производными второго порядка называются частные производные, взятые от частных производных первого порядка:

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = (z'_x)'_x = z''_{xx}, \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = (z'_x)'_y = z''_{xy},$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x} = (z'_y)'_x = z''_{yx}, \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = (z'_y)'_y = z''_{yy}.$$

 z''_{xy} , z''_{yx} называются смешанными частными производными второго порядка. Они равны, если смешанные производные являются непрерывными функциями.

Аналогично определяются частные производные третьего и более высоких порядков.

Полный дифференциал второго порядка d^2z функции $z=f\left(x;y\right)$ вы-

ражается формулой:
$$d^2z = \frac{\partial^2 z}{\partial x^2} \cdot dx^2 + 2\frac{\partial^2 z}{\partial x \partial y} \cdot dxdy + \frac{\partial^2 z}{\partial y^2} \cdot dy^2$$
.

Задания для аудиторной работы

181. Найти частные производные второго порядка данных функций:

1)
$$z = arctg(x-3y)$$
; 2) $z = ln(5x^2-3y^4)$; 3) $z = ctg\frac{y}{x^3}$.

182. Найти полные дифференциалы первого и второго порядков $dz(M_0)$, $d^2z(M_0)$:

1)
$$z = x^2 + xy + y^2 - 4 \ln x - 10 \ln y$$
, $M_0(1; 2)$;

2)
$$z = 2x^2 + xy - 3y^2 + 3x + 1$$
, $M_0(1; -1)$.

183. Проверить, удовлетворяет ли функция z = f(x; y) данному уравнению:

1)
$$z = \ln(x + e^{-y}), \frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2} = 0;$$

2)
$$z = f(y/x), x^2 \cdot z''_{xx} + 2xy \cdot z''_{xy} + y^2 \cdot z''_{yy} = 0.$$

184. Найти полный дифференциал второго порядка d^2z , если:

1)
$$z = f(t), t = x^2 + y^2$$
;

2)
$$z = x^2 + 2y^2 + 3z^2 - 2xy + 4x + 2yz$$
 в точке $M_0(0; 0; 0)$.

Задания для индивидуальной работы

185. Найти частные производные второго порядка данных функций:

1)
$$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$$
; 2) $z = arctg\frac{x + y}{1 - xy}$; 3) $z = e^x(\sin y + \cos x)$.

186. Найти полные дифференциалы первого и второго порядков $dz(M_0)$, $d^2z(M_0)$:

1)
$$z = x^2 + y^2 - 3xy - 4x + 6y - 7$$
, $M_0(2; 1)$;

2)
$$z = x^3 + y^2 - 6xy - 39x + 18y + 20$$
, $M_0(1, -6)$.

187. Проверить, удовлетворяет ли функция z = f(x; y) данному уравнению:

1)
$$u = e^{-(x+3y)} \sin(x+3y)$$
, $9 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$;

2)
$$u = \sin^2(x - 2y)$$
, $4\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$;

3)
$$x^2 \cdot \frac{\partial^2 u}{\partial x^2} + 2xy \cdot \frac{\partial^2 u}{\partial x \partial y} + y^2 \cdot \frac{\partial^2 u}{\partial y^2} = 0$$
, $u = \frac{y}{x}$.

188. Найти полный дифференциал второго порядка d^2z , если:

1)
$$z = e^{xy}$$
; 2) $z = x \ln \frac{y}{x}$.

189. Найти полные дифференциалы первого и второго порядков $dz(M_0)$, $d^2z(M_0)$ заданных функций:

1)
$$z = 2x^2 - 3y^2 + xy + 3x + 1$$
, $M_0(1, -1)$;

2)
$$z = x^2 + y^2 - 3x - 4x + 6y - 7$$
, $M_0(2,1)$;

3)
$$z = x^3 + 8y^3 - 6xy + 5$$
, $M_0(1;0,5)$;

4)
$$z = x^3 + y^2 - 6xy - 39x + 18y + 20$$
, $M_0(1, -6)$.

Ответы: **182.** 1) dz(1; 2) = 0; $d^2z(1; 2) = 6dx^2 + 2dzdy + 4,5dy^2$.

16. Экстремум функции двух и трех переменных

Функция u = f(M) имеет локальный максимум (минимум) в точке M_0 , если существует окрестность $U(M_0)$ точки M_0 такая, что для любой точки $M \in U(M_0)$ выполняется неравенство $f(M) < f(M_0)$ $(f(M) > f(M_0))$.

Точка M_0 называется *точкой экстремума функции*, а значение функции в ней – экстремальным значением.

Теорема (необходимые условия существования локального экстремума). Если дифференцируемая функция u = f(M) в точке M_0 имеет локальный экстремум, то все ее частные производные первого порядка в этой точке равны нулю, т.е. полный дифференциал первого порядка функции в точке M_0 равен нулю.

Для функции двух переменных: u = f(x, y): $u'_x(M_0) = 0$, $u'_v(M_0) = 0$.

Для функции трех переменных: u=f(x,y,z): $u_x'(M_0)=0$; $u_y'(M_0)=0$; $u_z'(M_0)=0$.

Точки, в которых полный дифференциал первого порядка некоторой функции равен нулю, называются *стационарными* точками этой функции.

Теорема (достаточные условия локального экстремума). Если полный дифференциал второго порядка дважды непрерывно дифференцируемой функции в стационарной точке M_0 положительный, то M_0 — точка локального минимума; если $d^2f(M_0)<0$, то M_0 — точка локального максимума.

Пусть точка M_0 – стационарная точка функции u=f(M), где M(x;y;z).

Найдем все частные производные второго порядка функции u = f(M) в точке M_0 и составим так называемую матрицу Гессе:

$$H(M_0) = \begin{pmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) & u''_{xz}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) & u''_{yz}(M_0) \\ u''_{zx}(M_0) & u''_{zy}(M_0) & u''_{zz}(M_0) \end{pmatrix}$$

Выписываем главные миноры этой матрицы:

$$\Delta_1 = u''_{xx}(M_0), \qquad \Delta_2 = \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) \end{vmatrix}, \qquad \Delta_3 = \det H(M_0).$$

Теорема (достаточные условия локального экстремума функции трех переменных)

Если $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$, то $u(M_0) = local \max$.

Если $\Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$, то $u(M_0) = local$ min.

Теорема (достаточные условия локального экстремума функции двух переменных). Пусть точка $M_0(x_0,y_0)$ — стационарная точка дважды непрерывно дифференцируемой функции u=f(x,y).

Если
$$u_{xx}''(x_0,y_0)>0$$
 и $\Delta_2=\begin{vmatrix} u_{xx}''(x_0,y_0) & u_{xy}''(x_0,y_0) \\ u_{yx}''(x_0,y_0) & u_{yy}''(x_0,y_0) \end{vmatrix}>0$, то

 $u(M_0) = local min.$

Если
$$u_{xx}''(x_0,y_0)<0$$
 и $\Delta_2=\begin{vmatrix} u_{xx}''(x_0,y_0) & u_{xy}''(x_0,y_0) \\ u_{yx}''(x_0,y_0) & u_{yy}''(x_0,y_0) \end{vmatrix}>0$, то

 $u(M_0) = local \max$.

Если $\Delta_2 < 0$, то экстремума нет.

Если $\Delta_2 = 0$, то требуется дополнительное исследование.

Пример 30. Найти точки экстремума и экстремальные значения функции $z = x^3 + y^2 - 6xy - 39x + 18y + 20$.

Решение. Данная функция непрерывна и имеет непрерывные частные производные до третьего порядка включительно для любых *х* и *у*. Для нахождения стационарных точек составим систему уравнений и решим ее:

$$\begin{cases} z'_{x} = 3x^{2} - 6y - 39 = 0, \\ z'_{y} = 2y - 6x + 18 = 0. \end{cases} \Leftrightarrow \begin{cases} x^{2} - 2y = 13, \\ y = 3x - 9. \end{cases} \Leftrightarrow \begin{cases} y = 3x - 9, \\ x^{2} - 6x + 5 = 0. \end{cases} \Leftrightarrow \begin{bmatrix} x_{1} = 1, \ y_{1} = -6. \\ x_{2} = 5, \ y_{2} = 6. \end{cases}$$

Получили две стационарные точки: $M_1(1; -6), M_2(5; 6)$.

Находим частные производные второго порядка:

$$z''_{xx} = 6x$$
, $z''_{xy} = -6$, $z''_{yy} = 2$.

Составляем матрицу Гессе: $H(M) = \begin{pmatrix} 6x & -6 \\ -6 & 2 \end{pmatrix}$.

В точке
$$M_1(1,-6)$$
: $\mathbf{Z}''_{xx}(M_1) = 6 > 0$, $\Delta_2 = \begin{vmatrix} 6 & -6 \\ -6 & 2 \end{vmatrix} = 12 - 36 = -24 < 0$.

Следовательно, функция в этой точке экстремума не имеет.

В точке
$$M_2(5;6)$$
: $\mathbf{z}''_{xx}(M_2) = 30$, $\Delta_2 = \begin{vmatrix} 30 & -6 \\ -6 & 2 \end{vmatrix} = 60 - 36 = 24 > 0$.

Значит, в точке $M_2(5; 6)$ функция принимает минимальное значение. $Z_{\min}(M_2) = 125 + 36 - 180 - 195 + 108 + 20 = -86$.

Ответ:
$$z_{min}(5; 6) = -86$$
.

Экстремум функции z = f(x; y), найденный при условии $\varphi(x, y) = 0$, называется условным экстремумом.

Если уравнение связи $\varphi(x,y) = 0$ разрешимо относительно x или y, то задача отыскания условного экстремума сводится к нахождению экстремума функции одной переменной.

Если уравнение связи неразрешимо относительно своих переменных, то составляют так называемую *функцию Лагранжа*, которую исследуют на экстремум.

Пример 31. Найти экстремум функции z = 16 - 10x - 24y при условии $x^2 + y^2 = 169$.

Решение. Составляем функцию Лагранжа:

$$F(x, y, \lambda) = 16 - 10x - 24y + \lambda(x^2 + y^2 - 169).$$

Необходимое условие экстремума этой функции – равенство нулю всех ее частных производных первого порядка. Выпишем систему уравнений и решим ее.

$$\begin{cases} F'_{x}(x,y,\lambda) = 0, \\ F'_{y}(x,y,\lambda) = 0, \Leftrightarrow \begin{cases} -10 + 2x\lambda = 0, \\ -24 + 2y\lambda = 0, \end{cases} \Leftrightarrow \begin{cases} x = 5/\lambda, \\ y = 12/\lambda, \\ \frac{25}{\lambda^{2}} + \frac{144}{\lambda^{2}} = 169. \end{cases} \Leftrightarrow \begin{cases} \lambda^{2} = 1, \\ x = 5/\lambda, \Leftrightarrow \begin{cases} \lambda = -1, x_{1} = -5, y_{1} = -12. \\ y = 12/\lambda. \end{cases} \end{cases} \Leftrightarrow \begin{cases} \lambda_{1} = -1, x_{2} = 5, y_{2} = 12. \end{cases}$$

Находим дифференциал второго порядка:

$$d^{2}F(x,y) = F''_{xx}(x,y,\lambda)dx^{2} + 2F''_{xy}(x,y,\lambda)dxdy + F''_{yy}(x,y,\lambda)dy^{2}.$$

$$F''_{xx} = 2\lambda, \quad F''_{xy} = 0, \quad F''_{yy} = 2\lambda \quad \Rightarrow \quad d^{2}F(x,y) = 2\lambda(dx^{2} + dy^{2}).$$

Определяем знак второго дифференциала в стационарных точках $M_1(-5;-12)$ и $M_2(5;12)$. В данном случае знак дифференциала совпадает со знаком параметра λ .

$$d^2F(M_1) = -2(dx^2 + dy^2) < 0 \implies z_{\text{max}} = z(M_1) = 354.$$
 $d^2F(M_2) = 2(dx^2 + dy^2) > 0 \implies z_{\text{min}} = z(M_2) = -322.$
Otbet: $z_{\text{max}} = z(-5; -12) = 354; \ z_{\text{min}} = z(5; 12) = -322.$

Если требуется найти наибольшее и наименьшее значения дифференцируемой функции в некоторой ограниченной замкнутой области (глобальные экстремумы), то находят все критические точки функции, лежащие внутри области и на ее границе. Вычисляют значения функции в найденных точках, а также в точках пересечения границ. Из полученных значений выбирают наибольшее и наименьшее.

Задания для аудиторной работы

190. Найти точки экстремума и экстремальные значения функций:

1)
$$z = x^3 + y^2 - 6xy - 39x + 18y + 20$$
; 2) $z = x^3 + 3xy^2 - 15x - 12y + 3$;

3)
$$u = x^2 + y^2 + z^2 - 4x + 6y - 2z$$
.

- **191.** Найти экстремум функции $2x^2 + 2y^2 + z^2 + 8yz z + 8 = 0$, заданной неявно.
- 192. Найти условный экстремум функции:

1)
$$z = 2x^3 + y^2 \cdot (1-x)$$
 при условии $x + y = 2$;

2)
$$z = 16 - 10x - 24y$$
 при условии $x^2 + y^2 = 169$.

193. Найти наименьшее и наибольшее значения функции z = f(x; y) в области \overline{D} , ограниченной заданными линиями:

1)
$$z = x^2 - 2y^2 + 4xy - 6x + 5$$
; $\overline{D}: x = 0, y = 0, x + y = 3$;

2)
$$z = 4(x-y) - x^2 - y^2$$
; $\overline{D}: x + 2y = 4, x - 2y = 4, x = 0$.

Задания для индивидуальной работы

194. Найти точки экстремума и экстремальные значения функций:

1)
$$z = 3x^3 + 3y^3 - 9xy + 6$$
; 2) $z = x^3 + 8y^3 - 6xy + 5$;

3)
$$z = y\sqrt{x} - 2y^2 - x + 14y - 2$$
; 4) $z = x\sqrt{y} - x^2 - y + 6x - 3$;

5)
$$x^2 + y^2 + z^2 - 4x - 2y - 4z - 7 = 0$$
.

195. Найти условный экстремум функции:

1)
$$z = \frac{1}{x} + \frac{1}{y}$$
 при условии $x + y = 2$;

2)
$$z = x^2 + xy + y^2 - 5x - 4y + 10$$
 при условии $x + y = 4$;

3)
$$z = \frac{1}{x} - \frac{1}{y}$$
 при условии $4x - y = 1$; 4) $z = x^2 + y^2$ при условии $\frac{x}{2} + \frac{y}{3} = 1$;

5)
$$z = x + 2y$$
 при условии $x^2 + y^2 = 5$.

196. Найти наименьшее и наибольшее значения функции z = f(x; y) в области \overline{D} , ограниченной заданными линиями:

1)
$$z = x^2 - y^2 + 2xy - 4x$$
; $\overline{D}: x - y + 1 = 0$, $y = 0$, $x = 3$;

2)
$$z = x^2 + 2xy - 4x + 8y$$
; $\overline{D}: x = 0, y = 0, x = 1, y = 2$;

3)
$$z = x^2 + 2xy - y^2 - 4x + 2$$
; $\overline{D}: y = x + 1$, $x = 3$, $y = 0$.

Ответ: **191.**
$$z_{min}(0;-2) = 1$$
; $z_{max}(0;16/7) = -8/7$.

Литература

- 1. Беклемешев, Д.В. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1980.
- 2. Бугров, Я.С. Элементы линейной алгебры и аналитической геометрии / Я.С. Бугров, С.М. Никольский. М.: НАУКА, 1980.
- 3. Бугров, Я.С. Дифференциальное и интегральное исчисления / Я.С. Бугров, С.М. Никольский. М.: Наука, 1980.
- 4. Гурский, Е.И. Основы линейной алгебры и аналитической геометрии. Мн.: Выш. шк., 1982.
- 5. Жевняк, Р.М. Высшая математика: в 5-ти частях / Р.М. Жевняк, А.А. Карпук. Мн.: Выш. шк., 1992. Ч.1.
- 6. Мантуров, О.В. Курс высшей математики: Линейная алгебра. Аналитическая геометрия. Дифференциальное исчисление функции одной переменной / О.В. Мантуров, Н.М. Матвеев. М.: Высш. шк., 1986.
- 7. Пискунов, Н.С. Дифференциальное и интегральное исчисления. М.: Наука, 1985. Т.1.
- 8. Русак, В.М. Курс вышэйшай матэматыкі. Алгебра І геаметрыя. Аналіз функцый адной зменнай / В.М. Русак, Л.І. Шлома [і інш.]. Мн.: Выш. шк., 1994.
- 9. Тузік, А.І. Лінейная алгебра і аналітычная геаметрыя / А.І. Тузік, Т.А. Тузік. Брэст: БрПІ, 1994.
- 10. Тузік, А.І. Уводзіны у матэматычны аналіз. Дыферэнцыяльнае злічэнне функцый адной пераменнай / А.І Тузік., Т.А. Тузік. Брэст: БрПІ, 1996.
- 11. Тузик, Т.А. Дифференциальное исчисление функции одной переменной: методические указания для студентов технических специальностей. Брест: БИСИ, 1988.
- 12. Гусак, А.А. Задачи и упражнения по высшей математике. Мн.: Выш. шк., 1988. Ч.1.
- 13. Гурский, Е.И. Руководство к решению задач по высшей математике / Е.И. Гурский [и др.]. Мн.: Выш. шк., 1989. Ч.1.
- 14. Данко, П.Е. Высшая математика / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М.: Высш. шк., 1997. Ч.1.
- 15. Индивидуальные задания по высшей математике: в 3-х частях / Под редакцией А.П. Рябушко. Мн.: Выш. шк., 2000. Ч.1.
- 16. Индивидуальные задания по высшей математике: в 3-х частях / Под редакцией А.П. Рябушко. Мн.: Выш. шк., 2000. Ч.2.
- 17. Сухая, Т.А. Задачи по высшей математике: в 2-х частях / Т.А. Сухая, В.Ф. Бубнов. Мн.: Выш. шк., 1993. Ч.1.
- 18. Гусак, А.А. Справочник по высшей математике / А.А. Гусак, Г.М. Гусак, Е.А. Бричикова. Мн.: Тетра Системс, 1999-2000.
- 19. Корн, Г. Справочник по высшей математике для научных работников и инженеров / Г. Корн, Т. Корн. М.: Наука, 1968.

Оглавление

H	3
1. Полярная система координат. Построение графиков в полярной	
системе координат	3
2. Функция. Предел числовой последовательности. Предел	
функции в точке	
3. Первый и второй замечательные пределы	11
4. Сравнение бесконечно малых функций. Непрерывность	
функции	15
Дифференциальное исчисление функции одной переменной	20
5. Производная. Основные правила дифференцирования.	20
Таблица производных	20
заданных параметрическими уравнениями. Производная неявных функций	27
7. Дифференциал функции, его свойства и геометрический смысл.	21
Приближенные вычисления с помощью дифференциала	30
8. Производные и дифференциалы высших порядков	
9. Правило Лопиталя	
10. Формула Тейлора и ее приложения	
11. Полное исследование функции. Построение графика функции	
12. Решение практических задач с применением теории	77
экстремумов	49
	_
Функции нескольких переменных	52
13. Область определения функции нескольких переменных.	
Частные производные, производная по направлению, градиент	
функции нескольких переменных	52
14. Дифференцирование сложных функций. Дифференцирование	
неявных функций	54
15. Частные производные и дифференциалы высших порядков	
16. Экстремум функции двух и трех переменных	
Литература	62

Учебное издание

Составители:
Каримова Татьяна Ивановна
Лебедь Светлана Федоровна
Журавель Мария Григорьевна
Гладкий Иван Иванович
Жук Анастасия Игоревна

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу *«Математика»*

для студентов факультета электронно-информационных систем

Введение в математический анализ. Дифференциальное исчисление

I семестр

Ответственный за выпуск: Каримова Т.И. Редактор: Боровикова Е.А. Компьютерная верстка: Кармаш Е.Л. Корректор: Никитчик Е.В.
