ЛАБОРАТОРНАЯ РАБОТА №1 ИЗМЕНЕНИЕ ДАВЛЕНИЯ В ЭЛЕМЕНТАРНЫХ ГИДРОСХЕМАХ.

1.1 Цель работы:

- изучить основные элементы гидросистем;
- изучить принцип работы элементарных гидросхем;
- изучить изменения давления в элементарных гидросхемах;

Любая гидросистема, независимо от ее ложности, состоит из основных элементов:

- гидронасос, аппарат преобразующий механическую энергию в гидравлическую энергию потока жидкости;
- клапан предохранительный, гидравлический аппарат предохраняющий гидросистему от перерезки;
- гидроблок с различными гидрораспределителями и клапанами, гидроаппарат предназначенный для направления потока жидкости;
- гидроцилиндр и (или) гидромотор, гидроаппарат преобразовывающий энергию потока жидкости в механическую энергию поступательного движения штока или вращательного движения вала.

Элементарная гидросхема состоит из минимального количества элементов и определяет основные принципы работы гидросистем.

Работу элементарных гидросхем и изменение в них давления изучим на универсальном стенде, внешний вид которого приведен на рис. 1.1, а гидросхема на рис. 1.2.

При выполнении лабораторной работы использовать конспект лекций №2 и №3.

1.2 Экспериментальная часть.

Из имеющихся модульных элементов стенда соберем элементарную схему №1, см. рис. 1.1.

Давление в элементарной гидросхеме \mathbb{N} будет зависеть от перепада давления на фильтре Φ , от местных сопротивлений и сопротивлений по длине в гидравлических линиях.

Изм.	Лист	№ докум.	Подп.	Дата	Лабораторная	г рабог	na №1	
Разра	•	Чирков А.В.	110011.	дата		/lum.	Лист	Листов
Пров.		Попов В.Б.			Изменение давления в		1	6
					элементарных гидросистемах			
Н. кон	тр.						ГГТУ гр.	C-41
Заф к	аф	Попов В.Б.						

Рис. 1.1 Элементарная гидросхема №1.

Из имеющихся модульных элементов стенда соберем элементарную схему N = 2.

Рис. 1.2 Элементарная гидросхема №2.

Давление в элементарной гидросхеме №2 будет зависеть от перепада давления на фильтре Φ , от настройки предохранительного клапана $K\Pi 2$, от местных сопротивлений и сопротивлений по длине в гидравлических линиях.

Определим давление на манометре MH1 при работе гидросистемы в течение не менее трех минут, периодичность определения давления 1 мин. Полученные данные запишем в сводную таблицу Neq 1.1.

Из имеющихся модульных элементов стенда соберем элементарную схему N = 3.

Давление в элементарной гидросхеме №3 будет зависеть от перепада давления на фильтре Φ , от местных сопротивлений и сопротивлений по длине в гидравлических линиях.

Определим давление на манометре MH1 при работе гидросистемы в течение не менее трех минут, периодичность определения давления 1 мин. Полученные данные запишем в сводную таблицу N1.1.

Рис. 1.3 Элементарная гидросхема №3.

Из имеющихся модульных элементов стенда соберем элементарную схему №4.

Рис. 1.4 Элементарная гидросхема №4.

Давление в элементарной гидросхеме \mathbb{N} 4 будет зависеть от перепада давления на фильтре Φ , от местных сопротивлений и сопротивлений по длине в гидравлических линиях и от величины настройки клапана $K\Pi 2$ или $K\Pi 3$ с меньшим давлением.

Определим давление на манометре MH1 при работе гидросистемы в течение не менее трех минут, периодичность определения давления 1 мин. Полученные данные запишем в сводную таблицу N 1.1.

Из имеющихся модульных элементов стенда самостоятельно собрать элементарные схемы №5 и №6, полученные результаты записать в сводную таблицу №1.1.

Таблица 1.1 Определение давления при работе гидросхемы

Элементарная	Давле	ние при измерении	, МПа
схема	60 c	120 c	180 c
№ 1			
№2			
№ 3			
№ 4			
№ 5			
№6			

1.3 Практическая часть.

Произвести расчет потерь давления для гидросхемы №1, представленной на рис. 1.1, и сравнить с полученными данными экспериментальным путем. для чего:

- при помощи измерительного инструмента определить длины всех гидравлических линий связи;
 - определить внутренние диаметры всех гидравлических линий связи;
 - определить количество и вид местных сопротивлений;
- определить расход рабочей жидкости, (объемная постоянная гидронасоса 16 см³, обороты вращения вала гидронасоса 1000 об/мин).

Графически, в масштабе, изобразить гидравлические линии, учитывая местные сопротивления и их длину от гидронасоса до бака масляного.

					o	
Изм.	Лист	№ докум.	Подпись	Дата		

Произвести суммарный расчет всех видов сопротивлений, местных и по длине, сопротивление на фильтре принять равным 0,15 МПа.

Потери давления на гидравлических сопротивлениях определяются по формуле:

$$\Delta P = \xi \cdot \frac{V^2}{2} \cdot \rho \quad , \quad (1.1)$$

где:

- V средняя скорость течения жидкости м/с;
- ρ плотность жидкости, кг/м³.
- ξ коэффициент местного сопротивления;

Коэффициент местного сопротивления где гидравлическое сопротивление представляет собой участок определенной длинны и диаметра определяется по формуле:

$$\xi = \lambda \cdot \frac{L}{D}, (1.2)$$

где:

- L длинна, м;
- D диаметр, м;
- λ коэффициент потерь на трение по длине;

Для турбулентного течения коэффициент потерь на трение по длине определяется по формуле:

$$\lambda = \frac{0.316}{\sqrt[4]{\text{Re}}}.$$
(1.3)

где:

- Re – число Рейнольдса.

Коэффициент местного сопротивления, где гидравлическое сопротивление представляет собой внезапное расширении трубы:

$$\xi = \left(1 - \frac{S_1}{S_2}\right)^2, (1.4)$$

Коэффициент местного сопротивления, где гидравлическое сопротивление представляет собой внезапное сужение трубы:

$$\xi = \frac{1 - S_2/S_1}{2}, \, _{(1.5)}$$

где S_1 и S_2 — площади поперечного сечения трубы, соответственно перед расширением и после него.

Потери давления по длине определяются по формуле:

					C			
					,			Лист
Изм.	Лист	№ докум.	Подпись	Дата				

$$\Delta P = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2} \cdot \rho_{, \, (1.6)}$$

Где

- L длинна, м;
- *D* диаметр, м;
- λ коэффициент потерь на трение по длине;
- *V* средняя скорость течения жидкости м/с;
- ρ плотность жидкости, кг/м³.

1.4 Содержание отчета по лабораторной работе №1:

Отчет по лабораторной работе должен содержать:

- титульный лист;
- изображение (от руки) двух элементарных гидросхем;
- результаты проведения опытов по определению давления в элементарных гидросхемах, сведённые в таблицу;
- результаты расчетов потерь давления в соответствие с гидросхемой №1.

Изм. Лист	докум. Подпись	Дата