Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Eléctrica Magister en Ciencias de la Ingeniería

Problema de Optimización

Tesis de Postgrado 15 de diciembre de 2017

Pablo Diaz - 12634581

1. Formulación MPC

1.1. Caldera

Variables Controladas Las variables controladas son presión de vapor, nivel de oxígeno y nivel de agua.

Variables Manipuladas Las variables manipuladas son combustible, flujo de aire y flujo de agua.

Perturbaciones medidas La perturbación medida es la demanda de vapor.

Perturbaciones no medidas A los 90 minutos de operación, se produce un cambio en las propiedades del combustible.

El control de la caldera es un problema con las siguientes dimensiones:

$$y \in [0, 100] \times [0, 100] \times [0, 100] \tag{1a}$$

$$u \in [0, 100] \times [0, 100] \times [0, 100]$$
 (1b)

$$p \in [0, 100] \tag{1c}$$

$$\dot{x}(t) = f(x, u), x(0) = x_0$$
 (1d)

Dependiendo del método de identificación de sistemas, se hará uso o no del modelo en espacio de estados (para N4SID se utiliza este modelo). El modelo es no lineal; sin embargo, para efectos de planta de prueba interesa solo un punto de operación, caracterizado por:

$$y_0 = [41, 41; 28, 75; 38, 60]$$
 (2a)

$$u_0 = [32,98;46,22;25,34]$$
 (2b)

$$d_0 = 35,78 (2c)$$

1.1.1. Formulación Restricciones

En el concurso, se establecen las siguientes restricciones:

$$|\Delta u_i(k)| \le 1 \text{ pps } \forall i \tag{3a}$$

$$0.95y_{2_0} \le y_2 \le 1.05y_{2_0} \tag{3b}$$

Estas restricciones representan un conjunto convexo y lineal de restricciones.

1.1.2. Formulación Modelo Entrada-Salida

En el caso del uso de *random forests*, no se utiliza la formulación en espacio de estados. Se utiliza en cambio un modelo entrada-salida **no lineal y no diferenciable**:

$$y(k+1) = f_{RF}(\{u(k-d_u), d_u = 0, \dots, n_u\}, \{y(k-d_y), d_u = 0, \dots, n_y\}, \{p(k-d_u), d_p = 0, \dots, n_p\})$$

En la notación anterior se intenta dejar de forma explícita el uso de valores pasados de las entradas y valores pasados de las salidas. Esto guarda estricta relación con las formulaciones ARMAX y (dependiendo de las propiedades del ruido) CARIMA del control MPC clásico.

La metodología para la obtención del modelo predictivo en base a random forests es la siguiente:

- 1. Generación de excitaciones sobre la planta de prueba de distinta forma (sinusoidales, cuadradas, escalones y diente de sierra). Estas señales se generan de forma apropiada para que no violen los rangos establecidos para la planta. El proceso se somete a estas excitaciones y combinaciones de ellas simultáneamente, registrándose las salidas.
- 2. Recopilación de datos entrada-salida.
- 3. Especificación del llamado "tiempo efectivo de reacción" τ_r . Este tiempo se puede entender análogamente a una constante de tiempo en sistemas lineales: pasado un tiempo efectivo de reacción se observa un cambio razonable en las variables. El tiempo efectivo de reacción se eligió como 5 veces el tiempo de muestreo del sistema (0.5 segundos).
- 4. Alimentación a algoritmo de random forests de las series de tiempo de las señales y combinaciones de estas retrasadas (múltiplos de τ_r). Las combinaciones son elegidas de forma representativa y arbitraria. Este algoritmo se hace con hiper-parámetros estandarizados de 100 árboles y tamaño mínimo de hoja de 10 muestras.
- 5. Cálculo de métricas relevantes de error: MSE, coeficiente de correlación y out of bag error.
- 6. Selección en base a mejor criterio de métrica escogida (MSE) de los mejores κ_y modelos para cada variable y.
- 7. Optimización bayesiana de los hiper-parámetros de los κ_y modelos escogidos.
- 8. Cálculo de mismas métricas de error y selección del mejor modelo f_y para cada variable y.

El modelo predictivo obtenido en base a random forests actualmente se encuentra en un estado sub-óptimo por los siguientes motivos:

- Horizonte de simulación quizás insuficiente.
- Falta de optimización bayesiana del primer conjunto de mejores modelos κ_n .

Una vez obtenido el modelo f_{RF} que es un predictor **a un paso**, se "eleva" su horizonte de predicción a N_y pasos realimentando las salidas predichas $\hat{y}(k+j)$, $j=1,\cdots,N_y$. Existe también un horizonte de control N_u . Se tienen las siguientes consideraciones:

• Cuando $j > N_u$, se asume que las variables manipuladas quedan constantes. En otras palabras,

$$\Delta u(k+j) = 0 \,\forall j > N_u$$

• Las N_y predicciones se pueden ver como N_y restricciones que relacionan las entradas con las salidas. Estas restricciones son del tipo no lineal (debido a la función f_{RF}) y por lo tanto hacen necesario otros métodos de optimización.

- Una primera aproximación podría ser basada en los principios de Bellman y programación dinámica: fijar u(k) y optimizar para esta variable en primera instancia. Una vez encontrado el óptimo para esta (y habiendo asumido que la entrada permanece igual en todo el horizonte N_y), optimizar para u(k+1) y así sucesivamente. Esta noción de metodología es búsqueda local de soluciones óptimas; sin embargo, existen métodos que lo transforman en búsqueda global.
- Otra alternativa (basada por ejemplo en algoritmos genéticos y pattern search) es la minimización de todo el vector u(k+j) simultáneamente. Esta será la alternativa preferida.

1.1.3. Función Objetivo

Se especificarán dos funciones objetivos distintas (dos controladores y experiencias distintas):

Función objetivo cuadrática La primera formulación será utilizando el MPC para garantizar estabilidad del sistema mediante una función objetivo cuadrática, de la forma:

$$min_u J(u, y) = \sum_{k=1}^{N_y} (y(t+k) - w(t+k))^2 + \lambda \sum_{k=0}^{N_u} (\Delta u(t+k))^2$$
(4a)

Función objetivo lineal Esta formulación es la final e ideal, pues corresponde a una arquitectura de control en dos niveles (nivel estabilizante regulatorio y nivel optimizante).