Lab 3 – Introduction to Field-Effect Devices

ECE 331

Electronic Devices

Marco Iskander, MASc, EIT Lab Instructor\Hardware Specialist

Outline

- Intended Learning Outcomes
- Introduction

- Lab Procedure

Lab 3: Introduction to Field-Effect Devices

Intended Learning Outcomes:

- Experiment the behaviour of a MOSFET (*Metal-Oxide-* Semiconductor Field Effect Transistor) as an electronic device.
 - Gate-to-source as well as drain-to-source voltages are varied to understand their impact on the overall behaviour of the device.
 - A semiconductor parameter analyzer is used to get accurate device characteristic graphs.

True or False

- (T or F) MOSFET has an isolated Gate $I_G \approx 0$ (
- (T or F) MOSFET has 3 or 4 terminals (
- Body Voltage influences the threshold voltage of MOSFET

$$V_T \approx V_{To} + \gamma \left(\sqrt{\varphi - V_{BS}} - \sqrt{\varphi} \right)$$

 V_{T0} is the threshold voltage at $V_{BS} = 0$ γ and ϕ are model parameters

Introduction - N-MOSFET

WATERLOO | ENGINEERING

Introduction

How NMOS works

(c) Above threshold $V_{GS} > V_{th}$ and saturation, $V_{DS} = V_{DS(\text{sat})}$

(d) Above threshold $V_{GS} > V_{th}$ and saturation region, $V_{DS} > V_{DS({\rm sat})}$

How NMOS works

[Principles of Electronic Materials and Devices

By: Kasap]

MOSFET Vs BJT

- MOSFET as
 - Voltage Controlled Current Source

- BJT as
 - Current Controlled Current Source

InLAB Devices:

- You will be using a commercial MOSFET device (IC CD4007UBE).
- The Q1, Q3, and Q5 transistors are the P-MOSFETs, and the Q2, Q4, and Q6 transistors are the N-MOSFETs.

Pin	Function
1	Q3 drain
2	Q3 source
3	Q3 gate & Q4 gate
4 5	Q4 source
5	Q4 drain
6	Q1 gate & Q2 gate
7	Q2 source & N substrates (Vss)
8	Q2 drain
9	Q6 source
10	Q5 gate & Q6 gate
11	Q5 source
12	Q5 drain & Q6 drain
13	Q1 drain
14	Q1 source & P substrate (Vdd)

InLAB Devices:

• During this lab, we will use only Q4 (NMOS transistor).

4.1 MOSFET Threshold Voltage

Keep VDs at 6V.

- Change VGS to get current IDS of 1,2,3,4, and 5 mA
- Repeat for VSB =0, -2, -6, and -10

Figure 6. Circuit to study the effect of body bias on MOSFET threshold voltage.

4.2 Semiconductor Parameter Analyzer

 Using Q4 (on the MOSFET chassis) and the Agilent parameter analyzer obtain a trace for the MOSFET characteristics of the

End of the lab session

- Do not forget to submit your Data3 to the Learn
- Any question ask
- Have Fun !!!!

