We can also implement a function f using MUXES right from the Boolean Equation. e.g., Implement & using only 2-input MUXES frakc + ab + (bc) (bcla+a) = a (b+ bc)+a (bc+ bc) $= \bar{a} \left(\bar{c} \left(\bar{b} + b \right) + cb \right) + a \left(\bar{c} \left(\bar{b} \right) + c(b) \right)$ doesn't go all the way goes all the 0r) 5=b (2) +b(a+a0)

build a 4-to-16 decoder. Using 2-to-4 decoders.

Make frabetabtbe using a decoder.

\leftarrow	
abc	}
0000	0
010	1
)
100	1
10)	0
1 10	D
111	

Encoder * apposite to decoder

* has 2" input lines and noutpouts

EN

* output is the binary value of the input line which is I.

$$i_3$$
 i_2 i_1 i_0 $O1$ $O\phi$ valid $O\phi = i_1 + i_3$
 $O 0$ $O 0$

Problems

* What is multiple inputs are 1?

= Dk... make it a priority encoder

(highest #ed input is the ene that natural

(denive equation for single exam)

* What is all zeroes?

make another output to check for error.

13 12 11 10 | valid