

# Ein graphtheoretischer Ansatz für das multiple sequence Alignment-Problem

"Effiziente Algorithmen" in einer Bachelorarbeit



- 1. Motivation
- 2. Das DIALIGN-Verfahren mit einem Min-Cut-Ansatz für das Konsistenzproblem
- 3. Umsetzung in der Bachelorarbeit



#### 1. Motivation

- 2. Das DIALIGN-Verfahren mit einem Min-Cut-Ansatz für das Konsistenzproblem
- 3. Umsetzung in der Bachelorarbeit



- Gegeben ist eine Menge von Zeichenketten.
- Beispiel:
  - 1. TCGTCTGCACGCGCTCTGCGAT
  - 2. AGTCGTCTGCACGGGATCTGCGA
  - 3. AATAGTCATGGACGCGTGCTCTA
  - 4. ATAGTCATGGACGCGTGCGCGAT
- ► Frage: Wie kann man einzelne Symbole oder ganze Abschnitte dieser Sequenzen einander zuordnen, sodass diejenigen Bereiche übereinander stehen, die sich möglichst ähnlich sind?

## Das multiple sequence Alignment-Problem

- Gegeben ist eine Menge von Zeichenketten.
- Beispiel:
  - 1. TCGTCTGCACGCGCTCTGCGAT
  - 2. AGTCGTCTGCACGGGATCTGCGA
  - 3. AATAGTCATGGACGCGTGCTCTA
  - 4. ATAGTCATGGACGCGTGCGCGAT
- ► Frage: Wie kann man einzelne Symbole oder ganze Abschnitte dieser Sequenzen einander zuordnen, sodass diejenigen Bereiche übereinander stehen, die sich möglichst ähnlich sind?
- In unserem Beispiel könnte das beispielsweise so aussehen:
  - 1. --TCGTC-TGCACGC--GCTCTGCGAT
  - 2. AGTCGTC-TGCACG-G-GATCTGCGA-
  - 3. AATAGTCATGGACGCGTGCTC---TA-
  - 4. -ATAGTCATGGACGCGTGCGC---GAT

# Wofür wird MSA benötigt?

PAI ÄNANTHROPOLOGIE

#### Per DNA-Verlust zum Menschen?

Das große Gehirn, der aufrechte Gang und unser Paarungsverhalten: Dies alles hätten wir vermutlich nicht ohne die Einbuße einiger DNA-Abschnitte, die für andere Primaten wichtig sind.

Philip L. Reno



- Multiples Sequenzalignment wird hauptsächlich in der Bioinformatik benutzt.
- Verglichen werden üblicherweise DNAoder Proteinsequenzen.
- Wird zum Beispiel benutzt, wenn man einen gemeinsamen evolutionären Ursprung zwischen mehreren Sequenzen vermutet, oder allgemein, um mögliche Resultate von Mutationen zu finden.
- Gefunden werden können beispielsweise Punktmutationen (Änderungen einzelner Basen oder Aminosäuren), sowie eingefügte oder gelöschte Abschnitte.

#### Komplexität I

- ▶ Problem: Unter allen auch nur halbwegs realistischen Annahmen ist das multiple sequence Alignment-Problem NP-schwer mit Laufzeit O(length<sup>n</sup>), wobei n die Anzahl der alignierten Sequenzen ist.
- ▶ Beweisskizze mit Hilfe des Algorithmus von Needleman-Wunsch:
- ▶ Kosten für alignieren von Zeichen a mit Zeichen b kostet  $\alpha_{a,b}$ , wobei typischerweise  $\alpha_{a,a} = 0$  gilt.
- ▶ Gap Penalty  $\delta$ , wenn wir die beiden Zeichen nicht miteinander alignieren und stattdessen in eine der Sequenzen eine Lücke einfügen.
- Gesamtkosten lassen sich mit dynamischer Programmierung und dieser Rekursionsgleichung lösen:

$$O[i, j] := min\{\alpha(X[i], Y[j]) + O[i-1, j-1], \delta + O[i-1, j], \delta + O[i, j-1]\}$$





- Alignment mit minimalen Kosten entspricht Pfad mit geringsten Kosten durch diesen Pfad, der in O(n \* m) berechnbar ist.
- Vorgehen lässt sich auch mit n-vielen Sequenzen durchführen → Pfad durch n-dimensionale Matrix



- 1. Motivation
- 2. Das DIALIGN-Verfahren mit einem Min-Cut-Ansatz für das Konsistenzproblem
- 3. Umsetzung in der Bachelorarbeit



#### **Grundidee hinter DIALIGN**



# Beispielsequenzen und Gewichtsfunktionen



Joschka Strüber (j.st@wwu.de)

## 1. paarweises Alignment



# 2. paarweises Alignment



# 3. paarweises Alignment



#### Konsistenz und Zwischenstand



# Gieriges multiples Alignment



#### Flussnetzwerke



# Inzidenzgraph



# Minimaler Schnitt auf Zusammenhangskomponenten



# Beispiele nichtkonsistenter Zuweisungen



### Unser Graph mit gelöschten Kanten



# Sukzessionsgraph

Joschka Strüber (j.st@wwu.de)



# Zyklen im Sukzessionsgraph und wie wir diese entfernen





Joschka Strüber (j.st@wwu.de)

#### **Erschummelter DAG**



# Folge der längsten Kette



# Das resultierende multiple Alignment



# Vereinfachungen, die ich vorgenommen habe



- 1. Motivation
- 2. Das DIALIGN-Verfahren mit einem Min-Cut-Ansatz für das Konsistenzproblem
- 3. Umsetzung in der Bachelorarbeit



#### Gierige Algorithmen und Dynamische Programmierung

- Gierige Algorithmen:
  - Treffe lokal die bestmögliche Entscheidung und verwerfe diese danach nicht wieder
  - Gute Laufzeit, aber liefern oft nicht das optimale Ergebnis (→ gut geeignet für Heuristiken)
  - Wird in DIALIGN beim Zusammensetzen des multiplen Alignments benutzt
  - ▶ Beispiele: Algorithmus von Prim, Fractional Knapsack-Problem



## Gierige Algorithmen und Dynamische Programmierung

- Gierige Algorithmen:
  - Treffe lokal die bestmögliche Entscheidung und verwerfe diese danach nicht wieder
  - Gute Laufzeit, aber liefern oft nicht das optimale Ergebnis (→ gut geeignet für Heuristiken)
  - Wird in DIALIGN beim Zusammensetzen des multiplen Alignments benutzt
  - ▶ Beispiele: Algorithmus von Prim, Fractional Knapsack-Problem
- Dynamische Programmierung:
  - Berechnung der optimalen Lösung durch Kombination von optimalen Lösungen sich überlappender Teilprobleme, wobei diese gespeichert werden und bei Bedarf abgerufen werden können
  - Beispiele: Algorithmus von Needleman-Wunsch, Knapsack-Problem



#### Flussnetze und der Push-Relabel-Algorithmus

#### Flussnetze:

- gerichteter, gewichteter Graph mit ausgewiesener Quelle und Senke; Gewichte der Kante entsprechen maximaler Kapazität an Fluss, die über diese fließen können
- Ziel: Maximierung des Gesamtflusses eines Flussnetzwerkes von der Quelle zur Senke
- Min-Cut-Max-Flow-Satz: der Wert eines maximalen Flusses entspricht dem Wert des minimalen Schnitts → benötigen wir zum Auflösen von Inkosistenzen im Inzidenzgraphen

#### Flussnetze und der Push-Relabel-Algorithmus

#### Flussnetze:

- gerichteter, gewichteter Graph mit ausgewiesener Quelle und Senke; Gewichte der Kante entsprechen maximaler Kapazität an Fluss, die über diese fließen können
- Ziel: Maximierung des Gesamtflusses eines Flussnetzwerkes von der Quelle zur Senke
- Min-Cut-Max-Flow-Satz: der Wert eines maximalen Flusses entspricht dem Wert des minimalen Schnitts → benötigen wir zum Auflösen von Inkosistenzen im Inzidenzgraphen
- Push-Relabel-Algorithmus:
  - Vorgehen:
  - besitzt eine bessere Laufzeit, als der in der Veröffentlichung benutzte Edmonds-Karps-Algorithmus



### Algorithmus im Detail

- Gewichtsfunktionen für DNA- und Proteinsequenzen (BLOSUM62)
- Berechnung von paarweisen Alignments mit Hilfe von dynamischer Programmierung
- Aufbau des Inzidenzgraphen und Min-Cut auf den Zusammenhangskomponenten
- Aufbau des Sukzessionsgraphen und Löschen von Sites, um Konsistenz herzustellen
- Verwendung der so gefundenen alignierten Spalten als Ankerpunkte, um zwischen diesen das klassische DIALIGN laufen zu lassen
- ► Wenn mir am Ende noch langweilig ist: Blick auf DIALIGN TX, um dieses gegebenfalls zwischen den Ankerpunkten zu verwenden



#### **Programmierung**

- Programmiersprache C++
- Boost Graph Library, die bereits ausgeklügelte Graphen, Flussnetzwerke und Algorithmen zur Berechnung des maximalen Flusses bereitstellt
- variabelster Teil der Bachelorarbeit:
  - bei wenig Zeit am Ende: Ein- und Ausgabe über simple Textdateien
  - bei viel Zeit: Umsetzung mit Formaten wie Clustal und FASTA, sowie Visualisierung über externe Visualisierungssoftware



#### Beurteilung der Güte der Ergebnisse

- Bewertung des Algorithmus ist schwierig, weil er definitiv nicht das perfekte Alignment berechnet, ich aber nicht das Expertenwissen besitze, um die Güte eines Alignments wirklich beurteilen zu können
- ► Test auf BAliBase für global und (D)IRMBASE für lokal verwandte Sequenzen → bereits ausgewertete Sequenzen für die ein richtiges Alignment bekannt ist
- Erfordert noch Einarbeitung