Twisted K-Theory and Fredholm Operators

Maksym Sokhatskyi

May 10, 2025

Abstract

This article explores the mathematical foundations of topological quantum programming, focusing on the role of twisted complex K-theory ($\mathrm{KU}_G^{\tau}(X)$) and the space of self-adjoint, odd-graded Fredholm operators (Fred_C^0) as presented in the framework of Twisted Equivariant Differential K-theory (TED-K). We provide a detailed explanation of the type-theoretic definition of $\mathrm{KU}_G^{\tau}(X)$ in cohesive homotopy type theory, its categorical interpretation, and its significance in encoding anyonic quantum states. Additionally, we analyze the properties of Fred_C^0 , its connection to L^2 spaces, and its role in K-theory via index theory and integration. The article is motivated by the TED-K framework for hardware-aware quantum programming, as developed by Sati and Schreiber.

Contents

1	Twi	isted K-Theory and Fredholm Operators	1
	1.1	Definition in Cohesive HoTT	1
	1.2	Components of the Definition	2
	1.3	PU: Projective Unitary Group	2
	1.4	BPU: Classifying Space of PU	3
	1.5	Categorical Interpretation	3
	1.6	Physical Significance	4
	1.7	Fredholm Operators: Fred_C^0	4
		1.7.1 Definition of Fredholm Operators	4
		1.7.2 Properties of Fred_C^0	4
		1.7.3 Connection to L^2 Spaces	4
		1.7.4 Integration and Index Theory	5
		1.7.5 Physical Role	5
	1.8	Conclusion	5

1 Twisted K-Theory and Fredholm Operators

Topological quantum computations (TQC) leverages topological properties of quantum materials to achieve fault-tolerant quantum computing, primarily through the braiding of anyons in topologically ordered states [1]. The TED-K framework, introduced by Sati and Schreiber [2], proposes a novel approach to topological quantum programming that is hardware-aware, reflecting the physics of anyonic ground states via twisted equivariant differential K-theory (TED-K). Central to this

framework are the twisted K-theory group $\mathrm{KU}_G^{\tau}(X)$ and the space of Fredholm operators Fred_C^0 , which encode quantum states and their braiding operations.

This article synthesizes detailed explanations of $KU_G^{\tau}(X)$ and $Fred_C^0$, drawing from the TED-K framework. We elucidate their definitions in cohesive homotopy type theory (HoTT), their categorical interpretations in ∞ -topoi, and their physical significance in TQC. The exposition is aimed at readers with a background in algebraic topology, functional analysis, or quantum computing, seeking to understand the mathematical underpinnings of topological quantum programming.

1.1 Definition in Cohesive HoTT

In the TED-K framework, the twisted complex K-theory group $\mathrm{KU}_G^{\tau}(X)$ is defined in cohesive homotopy type theory as a dependent type:

$$X : \text{Type}, \tau : X \to \text{BPU} \vdash \text{KU}_G^{\tau}(X) \equiv \left| \int_{\text{BPU}} \left(X \to \text{Fred}_C^0 \beta \text{PU} \right) \right|_0 : \text{Type}$$
 (1)

Here, X is a type representing a topological space or orbifold (e.g., the configuration space of anyonic defects), τ is a twist map to the classifying space BPU, Fred⁰_C is the space of self-adjoint, odd-graded Fredholm operators, β PU denotes the homotopy fiber adjusting for the twist, \int_{BPU} is the shape modality over BPU, and $|\cdot|_0$ is the 0-truncation modality.

1.2 Components of the Definition

- PU: The projective unitary group, defined as $PU = U(\mathcal{H})/U(1)$, where $U(\mathcal{H})$ is the unitary group of a separable complex Hilbert space \mathcal{H} . It acts on $Fred_C^0$ by conjugation and has $\pi_3(PU) \cong \mathbb{Z}$, making it suitable for classifying twists.
- BPU: The classifying space of PU, with $\pi_4(BPU) \cong \mathbb{Z}$. A map $\tau : X \to BPU$ classifies a gerbe or projective bundle, encoding topological obstructions in twisted K-theory.
- \mathbf{Fred}_C^0 : The space of self-adjoint, odd-graded Fredholm operators with index 0, discussed in detail in Section 1.7.
- $\mathbf{Fred}_C^0 \beta \mathrm{PU}$: The homotopy fiber of the PU-action map $\mathrm{Fred}_C^0 \to \mathrm{BPU}$, ensuring compatibility with the twist τ .
- $X \to \mathbf{Fred}_C^0 \beta PU$: The type of sections of the twisted bundle of Fredholm operators over X.
- \int_{BPU} : The shape modality, extracting the homotopy type, combined with the dependent product over BPU, computing all sections compatible with τ .
- $|\cdot|_0$: The 0-truncation, yielding a set (the K-theory group $\mathrm{KU}^0(X,\tau)$).

1.3 PU: Projective Unitary Group

The projective unitary group PU is defined as the quotient:

$$PU = U(\mathcal{H})/U(1) \tag{2}$$

where $\mathrm{U}(\mathscr{H})$ is the group of unitary operators on a separable complex Hilbert space \mathscr{H} (e.g., $L^2(\mathbb{R}^n;\mathbb{C})$), equipped with the strong operator topology, and $\mathrm{U}(1)\cong S^1$ is the circle group acting by scalar multiplication. An element $u\in\mathrm{U}(\mathscr{H})$ is unitary if $u^*u=uu^*=I$, preserving the inner product, and PU identifies unitaries differing by a phase $e^{i\theta}\in\mathrm{U}(1)$.

The topological structure of PU is significant for K-theory, as it has non-trivial homotopy groups, notably:

$$\pi_3(PU) \cong \mathbb{Z}$$
 (3)

This makes PU suitable for classifying twists in twisted K-theory, as twists are often associated with elements in the third cohomology group $H^3(X;\mathbb{Z})$. In the TED-K framework, PU acts on Fred⁰_C by conjugation:

$$T \mapsto uTu^{-1}, \quad u \in PU, T \in Fred_C^0$$
 (4)

This action preserves the self-adjointness, odd-graded property, and Fredholm nature of the operators, enabling the encoding of the twist τ . Physically, the PU-action reflects symmetries in the quantum system, such as those arising from gauge fields or anyonic statistics in topological quantum materials.

In the categorical setting of the cohesive ∞ -topos of smooth ∞ -groupoids, PU is a group object (a 0-type with a group structure). Its role is to mediate the twisting of K-theory classes, ensuring that the quantum states encoded by Fred⁰_C respect the topological phase specified by τ .

1.4 BPU: Classifying Space of PU

The classifying space BPU is the delooping of PU, a 1-type in the ∞ -topos characterized by:

$$\pi_1(BPU) \cong PU, \quad \pi_i(BPU) = 0 \text{ for } i \neq 1$$
(5)

However, since PU itself has higher homotopy groups, BPU inherits non-trivial homotopy in higher degrees:

$$\pi_4(BPU) \cong \pi_3(PU) \cong \mathbb{Z}$$
 (6)

Maps $\tau: X \to BPU$ classify principal PU-bundles or gerbes over X, corresponding to elements in $H^1(X; PU)$, which are related to $H^3(X; \mathbb{Z})$ via the long exact sequence of the fibration:

$$U(1) \to U(\mathcal{H}) \to PU$$
 (7)

In the TED-K framework, $\tau: X \to \text{BPU}$ encodes a topological obstruction, such as a gauge field or a gerbe, that affects the braiding statistics of anyons. The classifying space BPU serves as the base for the twist, and the homotopy fiber $\text{Fred}_C^0\beta\text{PU}$ ensures that the Fredholm operators are compatible with the PU-bundle defined by τ .

Categorically, BPU is a pointed 1-type in the cohesive ∞ -topos, and the map τ is a morphism in \mathcal{H} . The dependent product \iint_{BPU} in the definition of $\mathrm{KU}^{\tau}(X)$ integrates over all possible twists, ensuring that the K-theory classes reflect the topological structure imposed by τ . Physically, BPU mediates the connection between the topological phase of the quantum material and the quantum states encoded in Fred_C^0 .

1.5 Categorical Interpretation

The definition is interpreted in the ∞ -topos of smooth ∞ -groupoids, a cohesive ∞ -topos \mathcal{H} equipped with modalities like the shape functor $\int: \mathcal{H} \to \text{HoTop.}$ The type $\mathrm{KU}_G^{\tau}(X)$ corresponds to the homotopy classes of sections of a twisted bundle in the slice ∞ -topos $\mathcal{H}_{/\mathrm{BPU}}$. Categorically:

- The mapping space $X \to \operatorname{Fred}_C^0 \beta \operatorname{PU}$ is the object $\operatorname{Map}(X, \operatorname{Fred}_C^0 \beta \operatorname{PU})$ in \mathcal{H} .
- The dependent product \int_{BPU} is the right adjoint to the base change along τ , and \int extracts the homotopy type.
- The 0-truncation $|\cdot|_0$ maps to the set of connected components, yielding the abelian group $\mathrm{KU}_G^{\tau}(X)$.

1.6 Physical Significance

In TQC, $\mathrm{KU}_G^{\tau}(X)$ encodes the **ground states of su(2)-anyons** (e.g., Majorana or Fibonacci anyons) in topological quantum materials [3]. The configuration space X represents defect positions, and the twist τ accounts for gauge fields or gerbes affecting anyonic statistics. The **braid group**, arising from the cohesive shape $\int X$, acts on $\mathrm{KU}_G^{\tau}(X)$ via transport in HoTT, implementing quantum gates through adiabatic braiding. This makes $\mathrm{KU}_G^{\tau}(X)$ a hardware-aware construct, enabling formal verification and classical simulation of quantum computations [2].

1.7 Fredholm Operators: $Fred_C^0$

1.7.1 Definition of Fredholm Operators

A **Fredholm operator** $T: \mathcal{H} \to \mathcal{H}$ on a complex Hilbert space \mathcal{H} is a bounded linear operator with:

- 1. Finite-dimensional kernel: $\dim(\ker T) < \infty$.
- 2. Finite-dimensional cokernel: $\dim(\operatorname{coker} T) = \dim(\mathcal{H}/\operatorname{im} T) < \infty$.
- 3. Closed image: im T is closed in \mathcal{H} .

The index is:

$$index(T) = dim(ker T) - dim(coker T)$$
(8)

In Fred_C^0 , operators are **self-adjoint**, **odd-graded**, and typically have **index 0**.

1.7.2 Properties of $Fred_C^0$

- Self-Adjointness: $T = T^*$, where T^* is the adjoint satisfying $\langle Tx, y \rangle = \langle x, T^*y \rangle$. This ensures a real spectrum and is common in spectral K-theory.
- Odd-Graded: $\mathscr{H} = \mathscr{H}^0 \oplus \mathscr{H}^1$ is $\mathbb{Z}/2$ -graded, with a grading operator $\gamma : \mathscr{H} \to \mathscr{H}, \, \gamma^2 = I$, and T satisfies $\gamma T = -T\gamma$. Thus, $T = \begin{pmatrix} 0 & T_1 \\ T_2 & 0 \end{pmatrix}$.

- Index 0: $\dim(\ker T) = \dim(\operatorname{coker} T)$, corresponding to the degree-0 component of K-theory.
- PU-Action: The projective unitary group PU acts by conjugation, $T \mapsto uTu^{-1}$, preserving the Fredholm properties and enabling twisted K-theory.

1.7.3 Connection to L^2 Spaces

The Hilbert space \mathscr{H} is often an L^2 space, such as $L^2(\mathbb{R}^n;\mathbb{C})$, the space of square-integrable functions:

$$L^{2}(\mathbb{R}^{n};\mathbb{C}) = \left\{ f : \mathbb{R}^{n} \to \mathbb{C} \mid \int_{\mathbb{R}^{n}} |f(x)|^{2} dx < \infty \right\}$$

Fredholm operators on L^2 spaces include elliptic differential operators, e.g., $T=-\Delta+V$, where Δ is the Laplacian and V is a potential. For grading, consider $\mathscr{H}=L^2(\mathbb{R}^n;\mathbb{C})\oplus L^2(\mathbb{R}^n;\mathbb{C})$, with $\gamma=\begin{pmatrix} I&0\\0&-I \end{pmatrix}$. Operators in Fred_C^0 act on this graded space, encoding anyonic wavefunctions in TQC.

1.7.4 Integration and Index Theory

The analytical properties of Fred_C^0 involve integration, particularly in **index theory**. The index of a Fredholm operator can be computed via the Atiyah-Singer index theorem:

$$index(T) = \int_{M} ch(E) \wedge Td(TM)$$
(9)

where ch(E) is the Chern character and Td(TM) is the Todd class. In differential K-theory, the Chern character of a K-theory class involves integrals of curvature forms:

$$\operatorname{ch}([T]) = \int_{Y} \operatorname{tr}(e^{F/2\pi i}) \tag{10}$$

In cohesive HoTT, the shape modality \int acts as a homotopical integration, mapping $\mathrm{KU}_G^{\tau}(X)$ to topological invariants, crucial for computing braiding statistics in TQC.

1.7.5 Physical Role

 Fred_C^0 operators act on the Hilbert space of anyonic wavefunctions, with self-adjointness and grading reflecting their symmetries and statistics. The PU-action enables twisting, and the index 0 condition aligns with the degree-0 K-theory group, classifying stable quantum states. Integration via the Chern character connects these operators to physical observables, facilitating simulation and verification in the TED-K framework.

1.8 Conclusion

The twisted K-theory group $\mathrm{KU}_G^{\tau}(X)$ and the space of Fredholm operators Fred_C^0 are foundational to the TED-K framework for topological quantum programming. $\mathrm{KU}_G^{\tau}(X)$, defined in cohesive HoTT, encodes anyonic ground states and supports braid quantum gates via the braid group's action. Fred_C^0 , consisting of self-adjoint, odd-graded Fredholm operators on L^2 spaces, provides the

analytical backbone, with integration playing a key role in index theory and differential K-theory. Together, these constructs enable a hardware-aware, formally verifiable approach to TQC, bridging topology, functional analysis, and quantum computing. For further details, see [4].

References

- [1] C. Nayak et al., Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008), 1083–1159.
- [2] H. Sati and U. Schreiber, Topological Quantum Programming in TED-K, ncat-lab.org/schreiber/show/TQCinTEDK, 2022.
- [3] H. Sati and U. Schreiber, Anyonic topological order in TED-K-theory, arXiv:2206.13563, 2022.
- [4] H. Sati and U. Schreiber, Supplementary material for TQC in TED-K, ncat-lab.org/schreiber/show/TCinTEDKAGMConAbs, 2022.