

Bauman Moscow State Technical Faculty of "Radioelectronics and Laser Technology" Department RL2 "Laser and Optoelectronic Systems"

«Development of a Surface Plasmon Resonance Sensor for Predicting Airborne Contaminants and Their Cumulative Impact on Human Health»

Bachelor's final qualification work 12.03.02 "Optical Engineering"

Author: Ivanchenko A.M.

Supervisor: Batshev V.I.

Surface Plasmon Resonance (SPR)

Fig. 1. Prismatic input method for excitation of SPR using attenuated total internal reflection in the Kretschmann configuration

Fig. 2. Reflectivity function
$$R(\theta)$$

$$R = \left| \frac{r_0^1 + r_1^2 exp(2idk_1)}{1 + r_0^1 r_1^2 exp(2idk_1)} \right|^2$$

$$\omega = \frac{2\pi c}{\lambda}$$

$$k_i = \sqrt{\varepsilon_i \cdot \frac{\omega^2}{c} - \frac{\omega \cdot n_0 \cdot \sin(\theta)^2}{c}}$$

$$r_i^{i+1} = \frac{\varepsilon_{i+1}w_i - \varepsilon_i w_{i+1}}{\varepsilon_{i+1}w_i + \varepsilon_i w_{i+1}}$$

$$2HCl($$
разб. $) + Ag_2O$
 $\rightarrow 2AgCl(\downarrow) + H_2O$ (1)

Fig. 3. Example of the appearance of a silver nanofilm on a glass prism before and after chlorine corrosion

Corrosion

Рис. 4. Resonance curves for different degrees of corrosion. $n_0=1.481,\ \lambda=683.5\ nm,\ d_1=50\ nm,\ \omega_p=72920,\ \gamma=171.4,\ \epsilon_2=1.995$

$$R = \left| \frac{r_0^1 + r_1^2 e^{2id_1 w_1} + r_2^3 e^{2i(d_1 w_1 + d_2 w_2)} + r_0^1 r_1^2 r_2^3 e^{2id_2 w_2}}{1 + r_0^1 r_1^2 e^{2id_1 w_1} + r_0^1 r_2^3 e^{2i(d_1 w_1 + d_2 w_2)} + r_1^2 r_2^3 e^{2id_2 w_2}} \right|^2$$
(2)

			1								
7-					Поз.	Наименование	Обозначение	λ, HM	f', MM	St, mm	S'f', MM
ерб. примен					2, 4	Телескопическая система		632,8	100	-	-
Лерв. 1					5	Фокусирующая линза		632,8	40	-32,4	35,1
					7, 8	Объектив		380-760	54,8	-	-
илиян Справ ЛР	-⊗		2 3		4 (j, i) (j, i) (j, i) (j, i) (j, i) (j, i)	5	7 /		uc mau u u u		
ия, насия все придо Подп. и дата							1. He-Ne 2. Длин. 3. Диам. 4. Мощн	а волны ман етр пучка в ность излуч	ксимума О.7 мм нения О.	излучен 8 мВт	ия 632.8
ия, тистя ветрики Подп. и дата	Поз.	Обозначение	Наименование	Кол-во	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощг Ухаракт 1. DMK 2	е лазер а волны ман етр пучка и ность излуч еристики п 236445 Моп	ксимума 0.7 мм нения 0.0 приемник посћготе	излучен 8 мВт Га излучы Сатеги	уия 632.8 ≘ния
у дата	Поз.	Обозначение	Наименование Лазерный модуль	Кол-во	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощ 7 Характ 1. DMK 2. Разрі	е лазер а волны ман етр пучка с ность излуч ееристики п 23G445 Моп ешение 1280	KCUMYMA O.7 MM HEHUЯ O. PPUEMHUK DOCHTOME OX960 (излучен 8 мВт Га излучи 12 мР)	уия 632.8 ≘ния
MAG Nº dyón Tlodn u dama	\vdash	Обозначение			Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощи 7 Характ 1. DMK 2. Разри 3. Чувси	е лазер а волны ман етр пучка и ность излуч еристики п 236445 Моп	KCUMYMA D.7 MM HEHUЯ O.S PDUEMHUK POCHTOME DX960 (S TMB O.01)	излучен 8 мВт га излуче е Сатего 1.2 МР) 5 Лк	ИЛЯ 632.8 РНИЯ П
эм. (шил дэру — Подн и дата	1	Обозначение	Лазерный модуль	1	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощи 9 Характ 1. DMK 2. Разри 3. Чувси 4. Разм.	е лазер а волны ман ность излуч еристики п 23G445 Мол ешение 1286 твительнос	ксимума 0.7 мм нения 0.0 приемник 0х960 (. сть 0.01. а: 3.75х.	излучен 8 мВт са излучи е Сатеги 1.2 МР) 15 Лк 3.75 мкм	ия 632.8 ения т
W ANGHUMBANTOON TOOD U DONG BSON UND W MID N' DOOT 1000 U DONG	1 2	Обозначение	Лазерный модуль Линза ТС	1	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощи 9 Характ 1. DMK 2. Разри 3. Чувси 4. Разм.	е лазер а волны мал ность излуч геристики п 236445 Mor ешение 128 твительнос ер злемент	ксимума 0.7 мм нения 0.0 приемник 0х960 (. сть 0.01. а: 3.75х.	излучен 8 мВт са излучи е Сатеги 1.2 МР) 15 Лк 3.75 мкм	ия 632.8 ения т
22.00 AUA-LURAN IDAMIKKAN, FACUSI KEPING B304 UAÜ Nº MAĞ Nº BLÖR Toğn u dama	1 2 3	Обозначение	Лазерный модуль Линэа ТС Поляризатор	1 1 1	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощи 9 Характ 1. DMK 2. Разри 3. Чувси 4. Разм.	е лазер а волны мал ность излуч геристики п 236445 Mor ешение 128 твительнос ер злемент	ксимума 0.7 мм нения 0.0 приемник 0х960 (. сть 0.01. а: 3.75х.	излучен 8 мВт са излучи е Сатеги 1.2 МР) 15 Лк 3.75 мкм	ия 632.8 ения т
22.00 AUA-UMBB IDBAILIONS, FACUS ACE IND B304 UAÜ Nº MAĞ Nº BLÖR Todit u dama	1 2 3 4	Обозначение	Лазерный модуль Линза ТС Поляризатор Линза ТС	1 1 1	Примечание		1. He-Ne 2. Длин 3. Диам 4. Мощи 7 2. Разри 3. Чувст 4. Разми 5. Разми	е лазер а волны мал ность излуч евристики п 236445 Мол ешение 1280 твительнос ер злемент ер фоточув	ксимума О.7 мм нения О. приемник постоты Ох960 (1 сть О.О.) а: 3.75х. тствите	излучен 8 мВт га излуче е Сатего 1.2 МР) 5 Лк 3.75 мкм льной за	иия 632.8 ения п
GGLS V CALL UN ANTHUMBEN TRANSMITTON, FICUS DE PLOTO The end of the AND	1 2 3 4 5	Обозначение	Лазерный модуль Линза ТС Поляризатор Линза ТС Фокусирующая линза	1 1 1 1	Примечание	Ham Assem Nº Bonsum	1. He-Ne 2. Длин 3. Диам 4. Мощи 7 2. Разри 3. Чувст 4. Разми 5. Разми	е лазер а волны ман етр пучка и ность излуч ееристики п 236445 Мог евение 1286 егр злемент егр фоточув	ксимума 0.7 мм нения 0.0 приемник приемнисмни приемнисмнисмни приемнисмни приемнисмнисмни приемнисмнисмнисмни приемнисмнисмни приемнисмнисмнисмни приемнисмнисмнисмнисмнисмнисмнисмнисмнисмнис	излучен 8 мВт га излуче е Сатего 1.2 МР) 5 Лк 3.75 мкм льной за	иия 632.8 ения п
Seas agus e zuz uu Ann-Lones, pasantonas Faus Berpan Toon u dama — Base ust Nº Mat Nº duts — Toon u dama	1 2 3 4 5 6	Обозначение	Лазерный модуль Линза ТС Поляризатор Линза ТС Фокусирующая линза Призма с напылениями	1 1 1 1 1	Примечание	Изм./шст № доким Разраб Иванченка Пров Батиев	1. Не-Ne 2. Длин 3. Диам 4. Мощ 4. Мощ 1. DMK 2. Разри 3. Чубс 4. Разм 5. Разм	е лазер а волны мал ность излуч евристики п 236445 Мол ешение 1280 твительнос ер злемент ер фоточув	ксимума 0.7 мм нения О. приемник постоте 0x960 (ть 0.01 а: 3.75х. пствите прите	U3/IY4EH 8 MBM ra U3/IY4E E Camero 1.2 MP) 15 /Ik 3.75 MKM JOBALOÙ 30	иня 632.8 ения п
GGLS V CALL UN ANTHUMBEN TRANSMITTON, FICUS DE PLOTO The end of the AND	1 2 3 4 5 6 7	Обозначение	Лазерный модуль Линза ТС Поляризатор Линза ТС Фокусирующая линза Призма с напылениями Линза объектива	1 1 1 1 1 1	Примечание	Изм Лист № дакци. Разрад Иданчека	1. Не-Ne 2. Длин 3. Диам 4. Мощ 4. Мощ 1. DMK 2. Разри 3. Чубс 4. Разм 5. Разм	е лазер а волны ман етр пучка и ность излуч 236445 Мог. ешение 1280 твительнос ер элемент на основе на основе	ксимума 0.7 мм нения О. приемник постоте 0x960 (ть 0.01 а: 3.75х. пствите прите	излучен 8 мВт са излуче 2 Сатеги 1.2 МР 5 Лк 3.75 мкм льной зи	иня 632.8 ения п пны 4.8х3.

Копировал

МГТУ им. Н.Э. Баумана группа РЛ2–82Б

Experiment

Fig. 5. Experimental setup

Fig. 6. Three-dimensional model of the experimental setup

1 – He-Ne laser with a wavelength of $\lambda = 632.8$ nm, 2 – polarizer, 3 – mirror system, 4 and 6 – telescopic system for expanding the laser beam, 5 – diaphragm, 7 – collecting lens, 8 – glass prism with silver nanofilm, fixed on the surface of a sealed case, 9 – lens, 10 – camera with a fan

Experiment

Fig. 7. Changes in SPR images over time

Input data:

Experiment duration t=13 hours Chlorine concentration C=0.005% Temperature T°=20°C Refractive index of the prism n=1.5147(K8 at the wavelength λ) Wavelength of the He-Ne laser λ =632.8 Resonant angle θ =50.438° Container volume V=1100 ml Bleach volume v=6 ml Coating thickness Ag d1=50 nm Dielectric permittivity of Ag $\varepsilon 1 = -18.281 + 0.48108i$ Corrosion layer thickness d2=34 nm Dielectric permittivity ε2=3

Fig. 8. Images before and after corrosion, t = 2 h

Fig. 9. Reconstruction of the resonance curve using the least squares method

Output Data:

$$\varepsilon_2 = 4$$
 (Dielectric permeability of the corrosion layer) $d_2 = 26.3$ нм (Thickness of the corrosion layer) $\delta(R) = 13.2$ % (Relative search error R) $\delta(\theta) = 3,1$ % (Relative search error θ)

Optimization. SNR Effect on Error

Fig. 10. SNR effect on different types of resonance curves. On the left – resonance curve constructed for n0 = 1.481, eps1 = -18.281 + 0.48108i, d1 = 53.6 nm, λ = 683.5 nm. On the right – n0 = 1.514, eps1 = -18.281 + 0.48108i, d1 = 40 nm, λ = 632.8

nm

Error in the reflection coefficient ΔR when noise appears in the system at SNR = 0.1:

$$\Delta R = R_{max} * 0.1 * r - R_{max} * 0.2 * r (3)$$

Deviation of the resonant angle value Δ when noise appears in the system:

$$\Delta 2 = |43.6054^{\circ} - 43.6673^{\circ}| = 0.0619^{\circ}$$

$$\Delta 1 = |44.6934^{\circ} - 44.6890^{\circ}| = 0.0044^{\circ}$$

Optimization. Monte Carlo Method

Optimization parameters:

d1 - thickness of Ag

ε1 - permittivity of Ag

n0 - refractive index of the prism

 λ – wavelength

 $\underline{\epsilon}2$ - permittivity of AgCl, determined by the Drude model with parameters ωp and γ

Optimization function: R

Optimization criterion: R < 10-2

Method: Monte Carlo

Optimization. Monte Carlo Method

- **Start:** The algorithm begins.
- **Initialization:** Set the initial parameters:

a: some constant or parameter value.

N: number of vectors or iterations.

Vmin, Vmax: minimum and maximum values or bounds.

- **Generate Matrix:** Generate a matrix of vectors with parameters within the given limits Vmin and Vmax.
- Calculate R: For each vector p from the set P, calculate R.
- Check Condition $R < a^2$:

If R is less than a², proceed to the next step.

If not, skip the vector.

- Add Vector to Matrix F: Add the vector p to the set F.
- Check Length of Matrix F:

If the length of matrix F is equal to N, proceed to the next step.

If not, return to the initial vector processing step.

- Output Final Matrix: Output the final minimum and maximum vectors, Fmin and Fmax.
- **End:** The process ends.

Optimization parameters:

d1 - thickness of Ag

ε1 - permittivity of Ag

n0 - refractive index of the prism

 λ – wavelength

 $\underline{\epsilon}2$ - permittivity of AgCl, determined by the Drude model with parameters ωp and γ

Optimization function: R

Optimization criterion: R < 10-2

Method: Monte Carlo

Optimization. Results

Table 2 – Model parameters before and after optimization with interval volume N = 20000, silver chloride thickness d2 = 1 nm and tolerance on R equal to $\alpha = 10$ -2 The resulting number of iterations is of the order of n = 10000

Parameter	Input interval	Output interval			
d _{1,} nm	[40, 60]	[53.52, 53.73]			
λ, nm	[635, 700]	[683, 684]			
n_2	[1.9004, 2.0668]	[1.9924, 1.9961]			
n_0	[1.4, 1.8]	[1.480, 1.482]			
ω_{p}	[69370, 77430]	[71970, 72160]			
γ	[145.2; 363.0]	[280.82, 288.61]			

Fig. 11. Configuration of the indicator for corrosion of silver coating by chlorine

Optimization. Effect of AgCl thickness

Fig. 12. Resonance curves for the non-optimized indicator. n0 = 1.514, d1 = 40 nm, $\lambda = 632.8$ nm, $\omega p = 69370$, $\gamma = 363$, n2 = 1.91

Fig. 13. Resonance curves for the optimized indicator. n0 = 1.481, d1 = 53.6 nm, $\lambda = 683.5$ nm, $\omega p = 72920$, $\gamma = 171.4$, n2 = 1.995

Conclusions

- 1. The possibility of using the SPR method for tracking the growth of a corrosion film and detecting low concentrations of harmful substances in the air was demonstrated;
- 2. 2. The method operation was simulated in Python;
- 3. An optical scheme of the indicator based on the SPR was developed;
- 4. An experimental setup was assembled and an experiment was conducted to track the degradation of a thin silver film in the presence of active chlorine in the air;
- 5. 5. The effect of the SNR on the error of the method was assessed;
- 6. Optimization of the indicator parameters was carried out using the Monte Carlo method.

In the future, the STC UP RAS plans to develop a working model of the indicator that takes into account a larger number of parameters affecting errors, as well as conduct an experiment using the data obtained as a result of optimization.

Publications

1. Khasanov I.Sh., Ivanchenko A.M., Development of an indicator of the accumulated effect of low concentrations of harmful substances in the air based on surface plasmon resonance // Methods and means of scientific research: Matem. Cand. Sci. 2: STC UP RAS, 2021. Pp. 8-12.

The results of the work were reported at scientific conferences:

- 1. XXX International scientific and technical conference of students and postgraduates "Radio electronics, electrical engineering and power engineering"
- 2. XXX All-Russian festival "Russian student spring"
- Final of the program "UMNIK"

Thank you!

Author: Student of group RL2-82B

Ivanchenko A.M.

ivanchenko.anna.m@gmail.com

Scientific supervisor: Batshev V.I.