TD 5: Fonctions usuelles

Généralités sur les fonctions :

Exercice 1. (*)

- 1. Soit f une fonction dérivable sur \mathbb{R} à valeurs dans \mathbb{R} . Montrer que si f est paire, f' est impaire et si f est impaire, f' est paire.
- Soient n∈ N* et f une fonction n fois dérivable sur R à valeurs dans R. f⁽ⁿ⁾ désignant la dérivée n-ième de f, montrer que si f est paire, f⁽ⁿ⁾ est paire si n est pair et impaire si n est impair.
- 3. Soit f une fonction continue sur \mathbb{R} à valeurs dans \mathbb{R} . A-t-on des résultats analogues concernant les primitives de f?
- 4. Reprendre les questions précédentes en remplaçant la condition « f est paire (ou impaire) » par la condition « f est T-périodique ».

Exercice 2. (*)

- 1. Montrer que la fonction $x \mapsto x \frac{1}{x}$ est injective sur \mathbb{R}^{+*} . Et sur \mathbb{R}^{*} ?
- 2. (a) La fonction $x \mapsto xe^x$ est-elle injective sur \mathbb{R} ?
 - (b) Déterminer son image.
- 3. (a) La fonction $f: x \longmapsto \sqrt{x^2 + x + 1}$ est-elle injective sur \mathbb{R} ?
 - (b) Déterminer f(]-2,4]).

Exercice 3. (*)

Soit $a \in \mathbb{R}$. Définissons $f_a : \mathbb{R} \longrightarrow \mathbb{R}$ par

$$f_a(x): \left\{ \begin{array}{l} x+a & \text{si } x \ge 0 \\ x-a & \text{sinon.} \end{array} \right.$$

- 1. Déterminer les réels a pour lesquels f_a est surjective.
- 2. Déterminer les réels a pour lesquels f_a est injective.

Exercice 4. (**)

$$f: x \mapsto \begin{cases} x+1 & \text{si } x \in \mathbb{Q} \\ x & \text{sinon.} \end{cases}$$

La fonction est-elle surjective de \mathbb{R} dans \mathbb{R} ? injective? bijective?

Exercice 5. (***)

Pour une fonction $f: \mathbb{R} \to \mathbb{R}$, on définit les fonctions partie positive et partie négative de f par $f_+: x \mapsto \max(f(x), 0)$ et $f_-: x \mapsto \max(-f(x), 0)$

- 1. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est k-lipschitzienne, alors les fonctions f_+ et f_- sont aussi k-lipschitziennes.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f_+ et f_- sont k-lipschitziennes. Montrer que f est k-lipschitzienne.

Groupe IPESUP Année 2022-2023

Exponentielle, logarithmes, puissance et fonction valeur absolue :

Exercice 6. (*)

Résoudre dans $\mathbb R$ les équations ou inéquations suivantes :

- 1. $\exp(x) \ge 1 + x$.
- 2. $\ln|x+1| \ln|2x+1| \le \ln 2$.
- 3. $x^{\sqrt{x}} = \sqrt{x}^x$.

Exercice 7. (*)

- 1. Etudier brièvement la fontion $x \mapsto \frac{\ln x}{x}$ et tracer son graphe.
- 2. Trouver tous les couples (a,b) d'entiers naturels non nuls et distincts vérifiant $a^b = b^a$.

Exercice 8. (*)

Tracer le graphe de $x \mapsto 2|x-1| - |x+1|$.

Exercice 9. (*)

Résoudre dans \mathbb{R} :

- 1. 2|2x-1| = |x+2| + 3x
- 2. $3 |2 3x| \ge |3x + 4|x$

Exercice 10. (*)

Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Exercice 11. (**)

- 1. Montrer que, pour tout entier n, 4 divise n^2 ou $n^2 1$.
- 2. En déduire que, pour tout n, $\lfloor \sqrt{4n+1} \rfloor = \lfloor \sqrt{4n+3} \rfloor$.

Exercice 12. (**)

Montrer que pour tout $n \geq 2$:

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}$$

Exercice 13. (**)

Montrer pour tout $n \in \mathbb{N}$:

$$\forall x \in \mathbb{R}^+, \ \exp(x) \ge \sum_{k=0}^n \frac{x^k}{k!}.$$

Cette inégalité est-elle vraie sur \mathbb{R} ?

Fonctions hyperboliques:

Exercice 14. (*)

Simplifier l'expression $\frac{2 \text{ch}^2(x) - \text{sh}(2x)}{x - \ln(\text{ch}x) - \ln 2}$ et donner ses limites en $-\infty$ et $+\infty$.

Exercice 15. (**)

Soit x un réel fixé. Pour $n \in \mathbb{N}^*$, on pose

$$C_n = \sum_{k=1}^n \operatorname{ch}(kx)$$
 et $S_n = \sum_{k=1}^n \operatorname{sh}(kx)$.

Calculer C_n et S_n .

Exercice 16. (*)

Pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$ factoriser la somme $\sum_{k=0}^{n} \operatorname{ch}(2kx)$

Exercice 17. (**)

Soit a et b deux réels positifs tels que $a^2 - b^2 = 1$. Résoudre le système

$$\begin{cases} \operatorname{ch}(x) + \operatorname{ch}(y) = 2a \\ \operatorname{sh}(x) + \operatorname{sh}(y) = 2b \end{cases}$$

Exercice 18. (**)

Montrer que, pour tout $x \neq 0$,

$$\frac{1}{\operatorname{sh}(x)} = \frac{1}{\operatorname{th}(x)} - \frac{1}{\operatorname{th}\left(\frac{x}{2}\right)}$$

En déduire une expression simple de $\sum_{k=0}^{n} \frac{1}{\sinh(2^k x)}$ puis sa limite quand n tend vers $+\infty$.

Fonctions circulaires et réciproques :

Exercice 19. (*)

Déterminer les réels x tels que $(\cos x)^4 + (\sin x)^6 = 1$.

Exercice 20. (*)

Écrire sous forme d'expression algébrique

- 1. $\sin(\arccos x)$, $\cos(\arcsin x)$, $\cos(2\arcsin x)$.
- 2. $\sin(\arctan x)$, $\cos(\arctan x)$, $\sin(3\arctan x)$.

Exercice 21. (*)

Montrer que pour tout x > 0, on a

$$\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right).$$

En déduire une expression de $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$ et calculer $\lim_{n \to +\infty} S_n$.

Exercice 22. (*)

Résoudre les équations suivantes :

- 1. $\arccos x = 2\arccos \frac{3}{4}$.
- 2. $\arcsin x = \arcsin \frac{2}{5} + \arcsin \frac{3}{5}$.
- 3. $\arctan 2x + \arctan x = \frac{\pi}{4}$.

Exercice 23. (**)

Vérifier lorsque l'on peut définir les expressions ci-dessous que :

- 1. $\arcsin x + \arccos x = \frac{\pi}{2}$.
- 2. $\arctan x + \arctan \frac{1}{x} = \operatorname{sgn}(x) \frac{\pi}{2}$..

Exercice 24. (**)

 ${\rm Calculer} \ 3\arctan\frac{1}{3} + \arctan\frac{1}{7}.$