The Semiology of Graphics

Pat Hanrahan
Stanford/Tableau

Representations

Given: The numbers 1 through 9

Goal: Pick three numbers that sum to 15

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

B takes 2

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

B takes 2

A takes 4

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

B takes 2

A takes 4

B takes 3

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

B takes 2

A takes 4

B takes 3

A takes 5

Given: The numbers 1 through 9

Goal: Pick numbers so that 3 numbers sum to 15

Example:

A takes 8

B takes 2

A takes 4

B takes 3

A takes 5

B takes?

Problem Isomorphs

A takes 8, 4, 5

takes 2, 3, ?

Brilliant Cognitive Creations

Algebraic relationship:

$$1+3+5+7+9=5^2$$

Pythagorean theorem:
Chinese proof by dissection

The Representation Effect

The appropriate representation makes solving problems easier

The best representation depends on the task

Note that this principle is very similar to the use of data structures in computer science

How to Create Good Visual Representations?

Common Representations

Long (deg) vs. Lat (Mercator). Color shows Power Dissipation Index. Size shows Pressure (mb). Details are shown for Storm #. The data is filtered on Basin and Year. The Basin filter keeps Atlantic. The Year filter keeps 2005. The marks are labeled by Storm Name.

Maps (Space)

Time

Currently

Drawing programs (for professional designers)
Illustrator and photoshop, ...

Graphics libraries (for professional programmers)
OpenGL, Flash, ...

"I was taught assembler, in the second year of school, It's like construction work, with a toothpick as a tool"

Song about Lisp by Julia Eckler

The Semiology of Graphics

Jacques Bertin

The properties of the information

The properties of the image

The rules mapping information to images

The analytical tasks

Language Perspective

Sender and receiver use a language with symbols

- Establish code and conventions
- Sender encodes information in these symbols
- Receiver decodes information from these symbols

Semiology – the study of symbol systems

Information in Position

- A, B, C are distinguishable
 Nominal
- 2. B is between A and C Ordinal
- 3. BC is twice as long as AB Quantitative

"Resemblance, order and proportional are the three signfields in graphics. These signfields are transcribed by visual variables having the same signifying properties" - Bertin

8 Visual Variables

[x,y]

Position

[z]

- Size
- Value
- Color
- **■** Texture (frequency)
- Orientation
- Shape (pattern)

Bertins' "Levels of Organization"

Position

N O Q

Ν

Size

| 0 | Q

Value

N O Q

Texture

Color

Orientation

Shape

N Nominal

O Ordered

Q Quantitative

Note: $Q \subset O \subset N$

Graphical Schemas or Languages

STANDARD SCHEMAS

Design Space

Jock Mackinlay's Thesis

Automatic Presentation Tool

- Rigorous formulation of Bertin's approach
- Designed a simple set of visual languages
 - Not meant to be complete
- Implemented languages in logic programming language
 - Not necessarily the most practical approach
- Given a relation, enumerated the sentences in the language that encode that relation
- Choose the best one using expressibility and effectiveness criterion (Cleveland)

Chris Stolte's Thesis [S, Tang, H]

System for Visual Analysis

- Designed a visual language that allowed for many common visual representations
 - Tables, chart, timelines, maps, ...
- Designed and implemented the language using relational algebra
- Built an easy-to-use interactive system to query, analyze and visualize a relational database

Demonstration

Visual Query Language (VizQL)

Visual Query Language (VizQL)

Bread-and-Butter of Analysis

Selection

Filtering

Sorting

Calculation

Grouping and Aggregation

Basically what SQL and Excel do ...

Litmus test for an analysis system

Visual Queries

Two insights

- Query-By-Example (QBE)
 - Adopted by Microsoft Access, Paradox
- Dimension/Measure model from BI
 - Dimensions are independent, x
 - **Measures are dependent, y = f(x)**
 - Adds grouping and aggregation to QBE

Query-By-Example [Zloof, 1975]

Department Relation

Supplier Relation

SALES	DEPARTMENT	ITEM	SUPPLY	ITEM	SUPPLIER
	STATIONARY	DISH		PEN	PARKER
	HOUSEHOLD	PEN		PENCIL	BIC
	STATIONARY	PENCIL		INK	PARKER
	COSMETICS	LIPSTICK		PERFUME	REVLON
	TOY	PEN		INK	BIC
	TOY ·	PENCIL		DISH	DUPONT
	TOY	INK		LIPSTICK	REVLON
	COSMETICS	PERFUME		DISH	BIC
	STATIONARY	INK		PEN	REVLON
	HOUSHOLD	DISH		PENCIL	PARKER
	STATIONARY	PEN			
	HARDWARD	INK			

Query-By-Example [Zloof, 1975]

Q2. Find the department(s) that sells an item(s) supplied by the supplier Parker.

Here the user fills in both the SALES and the SUPPLY Tables as follows.

SALES	DEPT	ITEM	
	P.TOY	PEN	

SUPPLY	ITEM	SUPPLIER
	PEN	PARKER

ANS:

DEPT
HOUSEHOLD
TOY
STATIONARY
HARDWARE

Equivalent to the Domain Relational Calculus [Zloof, Ullman]
N.B. the question and answer style of query languages

Generality!

By following the lead of QBE, I can PROVE it is possible for VizQL to generate ANY SQL query

Thus, analyze and query by creating a picture that you want to see

Now make it fluid ...

Sensemaking Loop [Card, ...]

Visual Statistics?

A simple idea

- Model formula are widely used to specify linear and non linear models (R/S, SAS, ...)
- Two examples are linear regression and factor analysis
- Visual specification related to "model formula" in statistics
- Creating a picture can also specify a formula ...

Demonstration

Automatic Graphic Design?

- 1. Automatic marks
 - Choose a visual mark based on the type of the fields on axes
 - Choose other default visual attributes based on the properties of the field
- Incrementally adding a field to a shelf
 - Encode using Bertin-like rules
- 3. Creating a visualization from scratch
 - Read our InfoVis2007 paper

Demonstration

Formalism Enables

Formally construct queries using a visual interface

- Map shelves into queries ala QBE
- Enables drag-and-drop visual analysis

Formally construct linear models using visualization

- Model languages are like visual languages
- But not all models have a visualization

Automatic design of visualizations

- Captures low-level graphic design "rules"
- Picks reasonable defaults

Software Engineering

Declarative (what), not imperative (not how)

Like database query languages

More efficient software

- Generative versus monolithic components
- Optimized interpreter / scalable

Simplifies useful features

- Undo/redo/bookmarks: save specifications
- Collaborative visualization: share specifications
- History of analysis: log specifications

Future Work

Visualization transformation

- Program transformations create new visualizations from existing visualizations
- Rules for rearranging fields

Learn good visualizations

Use machine learning to find design rules using examples of good design

Limitations

Currently, rather simple representations

Bertin did consider networks (node-link)

Bertin did not consider 3D, animation, ...

Semantically richer designs such as diagrams

Take 3??

Data model is weak

Unstructured data??

Limitations

Perceptual foundations are shaky

What are the right visual attributes?

How can they be combined?

Cognitive models are too simple

Important additional factors include context, engagement, style, aesthetics, ...

No easy way to get at task ...

Summary

A journey ...

- Some insights from cognitive science
 How to choose and create the right representation for a task?
- Combine Bertin's ideas about the semiology of graphics with relational algebra and databases
- Platform to explore query and analysis, hypothesis testing, and design

The power of inventing new ways to create visualizations

Thank you