may we serve you further

FILLING OUT THIS CARD WILL HELP BECAUSE... By knowing the type of project

you are working on and the types of circuits that are of particular interest, we may be able to supply you with special applications information as well as literature

supply you with special applications information as well as literature on appropriate state-of-the-art devices about which you may not be aware. In addition, this information will enable us to put you on a list to receive mailings of specific interest to you.

0.14	State	Zip		
Address	Phone	Ext.		
Division	Dept./ Mail Z	Dept./ Mail Zone		
Company				
	ntative Phone Me Visit			
3. Other comments				
2. This is a Present Appli	ication Future Application	(within the next year).		
	circuits			
	nd production equipment for w	hich there are special re-		

FIRST CLASS
Permit No. 2565
PHOENIX
ARIZONA

BUSINESS REPLY MAIL

No Postage stamp necessary if mailed in The United States

POSTAGE WILL BE PAID BY

MOTOROLA

Semiconductor Products Inc.

P.O. Box 955 • Phoenix, Arizona 85001

Attn: Technical Information Department

IMPORTANT

for prompt, personal follow-up service on Motorola Semiconductors, see reverse side

MC652F MC652G

VTL GATED R-S FLIP-FLOP INTEGRATED CIRCUIT

MONOLITHIC
SILICON EPITAXIAL PASSIVATED

AUGUST 1965 - DS 9052

12-PIN TO-5 14-PIN FLAT PACKAGE 0 325 MAX 0 180 0 250 0 0066 0 070 0 0.066 0 070 0 0.066 0 070 0 0.066 0 070 0 0.066 0 070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.070 0 0.060 0 0.0000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0

VARIABLE THRESHOLD HIGH-NOISE-IMMUNITY R-S FLIP-FLOP

- Greater Noise Immunity than Standard Logic Circuits
- Noise Immunity Selectable from 2 volts to 5 volts
- Noise Immunity Essentially Constant over the Entire Operating Temperature Range
- Power Supply Selectable from 4 volts to 10 volts
- Two set and two reset inputs are available as individual gating circuits to allow logic operations to be performed while generating the set and reset functions.
- A shift register stage may be made by using two MC652 units.

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Power Supply Voltage	$v_{\rm CC}$ $v_{\rm EE}$	12 -12	Vdc
Input Voltage	V _{in}	12	Vdc
Current (all pins)	_	30	mAdc
Operating Temperature Range	T_{A}	0 to +75	°C
Storage Temperature Range	$ extsf{T}_{ ext{stg}}$	-65 to +175	°C

NOTE: To assure correct biasing apply negative voltage to $\boldsymbol{V}_{\mathrm{E},\mathrm{E}}$ pin ONLY.

CIRCUIT SCHEMATIC

MOTOROLA Semiconductor Products Inc.

SUBSIDIARY OF MOTOROLA INC.

 $\textbf{ELECTRICAL CHARACTERISTICS: } \ \ V_{CC} = 10 \ \ Vdc, \ \ V_{EE} = -10 \ \ Vdc, \ T_A = 0 \ \ to \ +75 \ \ ^{\circ}C \ \ unless \ \ otherwise \ \ noted$

Characteristic	Symbol	Min	Тур	Max	Unit
Output ''LOW'' Voltage $ \begin{array}{l} I_Q = 12 \text{ mA, } R_1 \text{ and } R_2 = V_{CC} \\ I_{\overline{Q}} = 12 \text{ mA, } S_1 \text{ and } S_2 = V_{CC} \end{array} $	Q Q	=	_	0.725 0.725	Vdc Vdc
Output "HIGH" Voltage $I_Q = -25 \mu A$, S_1 and $S_2 = V_{CC}$ $I_{\overline{Q}} = -25 \mu A$, R_1 and $R_2 = V_{CC}$	Q Q	9.65 9.65	_	=	Vde Vde
Input Leakage Current (V _{in} = +10 Vdc)	$I_{ m R}$	_	_	5.0	μ Adc
Input "DOWN" Current Inputs individually to ground	$I_{\mathbf{F}}$	_	_	3.0	m Adc
Ground DC Noise Immunity Voltage (Fan-Out = 4)	v _{NG}	amountes	3.7	_	Vdc
Switching Times, Figure 2 and 3 (Fan-Out = 1) Set-Reset Mode	t _{d1}	_	40 75	_	nsec nsec
DC Set-Reset Mode	t _{d1} t _{d2}	=	40 70	=	nsec nsec
Supply Current (All Inputs Open)	I _{CC} I _{EE}	_	_	23.0 7.5	mAdc mAdc
Input Capacitance (f = 100 kc, Input Bias = O, unused pins grounded)	Cin	_	3	_	pf
Output Capacitance (f = 100 kc, Input pins grounded)	C _{out}	_	14	_	pf
Fan-Out	n		_	4	_

FIGURE 1 — AVERAGE POWER DISSIPATION VERSUS POWER SUPPLY VOLTAGE

180

140

20

4

5

60

7

8

9

10

V_{CC} = |V_{EE}| (VOLTS)

FIGURE 2 — PROPAGATION DELAY versus TEMPERATURE

FIGURE 3 — TEST CIRCUIT PROPAGATION DELAY

DC SET-RESET MODE

FIGURE 5—"SET" PULSE AMPLITUDE versus PULSE WIDTH TEST CIRCUITS

OROLA Semiconductor Products Inc.

BOX 955 • PHOENIX, ARIZONA 85001 • A SUBSIDIARY OF MOTOROLA INC.

VARIABLE THRESHOLD HIGH-NOISE-IMMUNITY LOGIC GATES

- Greater Noise Immunity than Standard Logic Circuits
- Noise Immunity Selectable from 2 Volts to 5 Volts
- Noise Immunity Essentially Constant over the Entire Temperature Range (0 to +75°C)
- Logic Swing Selectable from +4 Volts to +10 Volts
- Typical Propagation Delay 50 nsec at +25°C

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit	
Power Supply Voltage	v _{CC}	+12	Vdc	
Power Supply Voltage	$v_{ m EE}$	-12	Vdc	
Input Voltage	V _{in}	+12	Vdc	
Current (All Pins)		30	mAdc	
Operating Temperature Range	$^{\mathrm{T}}{}_{\mathrm{A}}$	0 to +75	°C	
Storage Temperature Range	Tstg	-65 to +175	°C	

MC650G

DUAL 3-INPUT

MC651F

DUAL 4-INPUT

VTL NAND/NOR GATE INTEGRATED CIRCUITS

MONOLITHIC SILICON EPITAXIAL PASSIVATED

AUGUST 1965 - DS 9050

12-PIN TO-5 MC650G 14-PIN FLAT PACKAGE MC651F

LEAD/IDENTIFIED BY IMPRESSION ON UNDERSIDE OF CASE ALL PINS ELECTRICALLY ISOLATED EROM PACKAGE

CIRCUIT SCHEMATIC AND LOGIC DIAGRAMS

MOTOROLA Semiconductor Products Inc.

A SUBSIDIARY OF MOTOROLA INC

MC650G, MC651F

ELECTRICAL CHARACTERISTICS ($Vcc = 10 \, Vdc$, $VEE = -10 \, Vdc$, $TA = 0 \, to +75 \, ^{\circ}$ unless otherwise noted)

Characteristic	Figure No.	Symbol	Min	Тур	Max	Unit
Output Saturation Voltage ($I_{out} = 15 \text{ mA}$, All Inputs to V_{CC})		V _{max} ''0''	_	_	0.725	Vdc
Output High Voltage (I $_{\rm out}$ = -25 μ A, All Inputs to ground)		V _{min} ''1''	9.65	_	_	Vdc
Input Leakage Current (V _{in} = +10 V)		$^{\mathrm{I}}\mathrm{_{R}}$		_	5.0	μAdc
Input Down Current (Inputs individually to ground)		$^{\mathrm{I}}\mathrm{_{F}}$	_	_	3.0	mAdc
TRANSFER CHARACTERISTICS Output Voltage $(V_{IL(min)} = 4.3 \text{ V}, I_{out} = -25 \mu\text{A})$ $(V_{IH(max)} = 6.5 \text{ V}, I_{out} = 15 \text{ mA})$	1	v _{out}	9.55	_	— 0.750	Vdc
Ground DC Noise Immunity (Fan-Out = 5)	9	v _{NG}	_	3. 7	_	Vdc
SWITCHING TIME Propagation Delay (Fan-Out = 5)	16	t _{d2}		45		nsec
Propagation Delay (Fan-Out = 1)		t _{d1}	_	55	_	nsec
Output Capacitance (f = 100 kc, input pins grounded)		Cout	_	11	_	pf
Input Capacitance (f = 100 kc, input bias = 0 V, unused pins grounded)		C _{in}	_	4	_	pf
Supply Current - Both Gates						
Inputs Open		ICC	_		19	mAdc
Inputs Ground		I _{EE}		_	7.5 10.0 7.5	mAdc mAdc mAdc
Fan-Out		I _{EE}		_	5	made

FIGURE 1 — TRANSFER CHARACTERISTIC DEFINITIONS

FIGURE 2 — INPUT/OUTPUT TRANSFER CHARACTERISTIC

TYPICAL CHARACTERISTIC CURVES

FIGURE 3 — INPUT DC NOISE MARGIN versus POWER SUPPLY RATIO

FIGURE 4 — INPUT DC NOISE MARGIN versus TEMPERATURE

FIGURE 6 — POWER DISSIPATION versus POWER SUPPLY RATIO

FIGURE 7 — GROUND NOISE IMMUNITY versus TEMPERATURE

TEST CIRCUITS

PULSE NOISE TESTS

For a given pulse width, the pulse amplitude is increased until the output goes "high". This is defined as the "Failure Point".

FIGURE 10 — SIGNAL-LINE NEGATIVE PULSE AMPLITUDE VERSUS PULSE WIDTH

*Adjust for point A equal to V_{CC}

FIGURE 11 — SIGNAL-LINE POSITIVE PULSE AMPLITUDE VERSUS PULSE WIDTH

FIGURE 12 — GROUND-LINE POSITIVE PULSE AMPLITUDE versus PULSE WIDTH

FIGURE 13 — t_{d2} Propagation Delay versus Temperature

FIGURE 14 — t d1 PROPAGATION DELAY versus TEMPERATURE

FIGURE 15 — AVERAGE PROPAGATION DELAY VERSUS POWER SUPPLY RATIO

FIGURE 16 — SWITCHING TIME TEST CIRCUIT

FIGURE 17 — RISE TIME versus TEMPERATURE

FIGURE 18 — FALL TIME versus TEMPERATURE

MOTOROLA Semiconductor Products Inc.

BOX 955 • PHOENIX, ARIZONA 85001 • A SUBSIDIARY OF MOTOROLA INC.

DS 9050