第 03 周作业解答

练习 1. (共振问题) 假设弹簧系统的固有频率是 ω , 并且受到频率为 Ω 的外力 $F = F_0 \cos(\Omega t)$ 作用 (ω , Ω 均为常数, F_0 是常数, $F_0 \neq 0$)。所以物体运动的方程为

$$x'' + \omega^2 x = F_0 \cos(\Omega t).$$

- 1. 设 $\omega \neq \Omega$, 求出物体运动的通解 x = x(t), 并回答: 当 Ω 越接近 ω 时, 物体的振幅有什么变化?
- 2. 设 $\omega = \Omega$, 求出物体运动的通解 x = x(t), 并回答: 随时间 t 的变化, 物体的振幅有什么变化?

解

1. 假设 $\omega \neq \Omega$ 。特征方程为 $r^2 + \omega^2 = 0$,特征值 $r_{1,2} = \pm \omega i$,齐次部分 $x'' + \omega^2 x = 0$ 的通解是 $C_1 \cos(\omega t) + C_2 \sin(\omega t).$

非齐次项为 $f(t) = F_0 \cos(\Omega t)$ 。因为 Ωi 不是特征值,所以设特解 $x^* = a \cos(\Omega t) + b \sin(\Omega t)$ (其中 a, b 为待定系数)。代入原方程得

$$x^{*\prime\prime} + \omega^2 x^* = a(\omega^2 - \Omega^2)\cos(\Omega t) + b(\omega^2 - \Omega^2)\sin(\Omega t) = F_0\cos(\Omega t).$$

所以

$$\begin{cases} a(\omega^2 - \Omega^2) = F_0 \\ b(\omega^2 - \Omega^2) = 0 \end{cases} \Rightarrow \begin{cases} a = \frac{F_0}{\omega^2 - \Omega^2} \\ b = 0 \end{cases} \Rightarrow x^* = \frac{F_0}{\omega^2 - \Omega^2} \sin(\Omega t).$$

所以通解是

$$x = \frac{F_0}{\omega^2 - \Omega^2} \sin(\Omega t) + C_1 \cos(\omega t) + C_2 \sin(\omega t).$$

可见当 $\omega \to \Omega$ 时, x 振幅 (主要由 $\frac{F_0}{\omega^2 - \Omega^2}$ 贡献) 趋于无穷大。

2. 假设 $\omega=\Omega$ 。特征方程为 $r^2+\omega^2=0$,特征值 $r_{1,\,2}=\pm\omega i$,齐次部分 $x''+\omega^2 x=0$ 的通解是

$$C_1 \cos(\omega t) + C_2 \sin(\omega t)$$
.

非齐次项为 $f(t) = F_0 \cos(\Omega t) = F_0 \cos(\omega t)$ 。因为 ωi 不是特征值,所以设特解 $x^* = t [a \cos(\omega t) + b \sin(\omega t)]$ (其中 a, b 为待定系数)。代入原方程得

$$x^{*''} + \omega^2 x^* = 2b\omega \cos(\omega t) - 2a\omega \sin(\omega t) = F_0 \cos(\omega t).$$

所以

$$\begin{cases} a = 0 \\ b = \frac{F_0}{2\omega} \end{cases} \Rightarrow x^* = \frac{F_0}{2\omega} t \cos(\omega t).$$

所以通解是

$$x = \frac{F_0}{2\omega}t\cos(\omega t) + C_1\cos(\omega t) + C_2\sin(\omega t).$$

可见当 $t \to +\infty$ 时, x 振幅 (主要由 $\frac{F_0}{2}t$ 贡献) 趋于无穷大。

练习 2. P13, ex. 1 类似 设 $\overrightarrow{u} = \overrightarrow{a} - \overrightarrow{b} + 2\overrightarrow{c}$, $\overrightarrow{v} = -\overrightarrow{a} + 3\overrightarrow{b} + \overrightarrow{c}$ 。 试用 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 表示 $2\overrightarrow{u} - 3\overrightarrow{v}$

解

$$2\vec{u} - 3\vec{v} = 2(\vec{a} - \vec{b} + 2\vec{c}) - 3(-\vec{a} + 3\vec{b} + \vec{c}) = 5\vec{a} - 11\vec{b} + \vec{c}$$

练习 3. 把 $\triangle ABC$ 的 BC 边四等分,设等分点依次为 $D_1,\,D_2,\,D_3$ 。 试以 $\overrightarrow{AB}=\overrightarrow{c},\,\overrightarrow{BC}=\overrightarrow{a}$ 表示向量 $\overrightarrow{D_1A},\,\overrightarrow{D_2A}$ 和 $\overrightarrow{D_3A}$ 。

解

$$\overrightarrow{D_1 A} = \overrightarrow{D_1 B} + \overrightarrow{B A} = -\overrightarrow{BD_1} - \overrightarrow{AB} = -\frac{1}{4} \overrightarrow{BC} - \overrightarrow{AB} = -\frac{1}{4} \vec{a} - \vec{c},$$

$$\overrightarrow{D_2 A} = \overrightarrow{D_2 B} + \overrightarrow{BA} = -\overrightarrow{BD_2} - \overrightarrow{AB} = -\frac{2}{4} \overrightarrow{BC} - \overrightarrow{AB} = -\frac{1}{2} \vec{a} - \vec{c},$$

$$\overrightarrow{D_3 A} = \overrightarrow{D_3 B} + \overrightarrow{BA} = -\overrightarrow{BD_3} - \overrightarrow{AB} = -\frac{3}{4} \overrightarrow{BC} - \overrightarrow{AB} = -\frac{3}{4} \vec{a} - \vec{c}.$$

练习 4. 已知两点 A(1,-3,7) 和 B(-2,5,1)。求 \overrightarrow{AB} 坐标,求模长 $|\overrightarrow{AB}|$,求 \overrightarrow{AB} 的方向余弦,求出 \overrightarrow{AB} 与 x,y,z 轴的夹角 α,β,γ (精确到小数点后一位)。(需要用到计算器,一些在线科学计算器,如 http://web2.0calc.com/,可能会帮到你)

解 1.

$$\overrightarrow{AB} = (-3, 8, -6)$$

$$|\overrightarrow{AB}| = \sqrt{(-3)^2 + 8^2 + (-6)^2} = \sqrt{109}$$

$$(\cos \alpha, \cos \beta, \cos \gamma) = \frac{1}{|\overrightarrow{AB}|} \overrightarrow{AB} = \left(\frac{-3}{\sqrt{109}}, \frac{8}{\sqrt{109}}, \frac{-6}{\sqrt{109}}\right)$$

$$\alpha = \cos^{-1}(\frac{-3}{\sqrt{109}}) \approx 106.7^{\circ}$$

$$\beta = \cos^{-1}(\frac{8}{\sqrt{109}}) \approx 40.0^{\circ}$$

$$\gamma = \cos^{-1}(\frac{-6}{\sqrt{109}}) \approx 125.1^{\circ}$$

练习 5. 求点 (x, y, z) 关于 (1) 各坐标面; (2) 各坐标轴; (3) 坐标原点的对称点的坐标。

解		关于 xoy 面	关于 yoz 面	关于 zox 面	关于 x 轴	关于 y 轴	关于 z 轴	关于坐标原点
	(x, y, z)	(x, y, -z)	(-x, y, z)	(x, -y, z)	(x, -y, -z)	(-x, y, -z)	(-x, -y, z)	(-x, -y, -z)

练习 6. 求出在 y 轴上的点 M, 其到点 A(1, -3, 7) 和到点 B(5, 7, -5) 的距离相等。

解设点 M 坐标为 (0, y, 0), 则 $\overrightarrow{MA} = (1, -3 - y, 7)$, $\overrightarrow{MB} = (5, 7 - y, -5)$ 。所以

$$|\overrightarrow{MA}| = |\overrightarrow{MB}|$$
 \Rightarrow $1 + (3+y)^2 + 7^2 = 5^2 + (7-y)^2 + 5^2$
 \Rightarrow $y = 2$

所以点 M 坐标为 (0, 2, 0)。

练习 7. 设向量 \overrightarrow{AB} 在 x, y, z 轴上的投影分别是 4, -4, 7。假设点 B 为 (2, -1, 7),求出 A 点坐标。

解设点 A 坐标为 (x, y, z), 则

$$\overrightarrow{AB} = (2 - x, -1 - y, 7 - z) = (4, -4, 7),$$

所以

$$x = -2, y = 3, z = 0$$

练习 8. 设 $\vec{c} = 2\vec{a} + \vec{b}$, $\vec{d} = k\vec{a} + \vec{b}$ 。 假设 $|\vec{a}| = 1$, $|\vec{b}| = 2$, 且 \vec{a} 和 \vec{b} 夹角 $\theta = \frac{1}{3}\pi$ 。试问:

- 1. k 为何值时, $\vec{c} \perp \vec{d}$?
- 2. k 为何值时, 以 \vec{c} , \vec{d} 为邻边的三角形面积为 6?
- **解** 1. $\vec{c} \perp \vec{d}$ 当且仅当 $\vec{c} \cdot \vec{d} = 0$,而

$$\vec{c} \cdot \vec{d} = (2\vec{a} + \vec{b}) \cdot (k\vec{a} + \vec{b}) = 2k\vec{a} \cdot \vec{a} + (2+k)\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 2k|\vec{a}|^2 + (2+k)|\vec{a}| \cdot |\vec{b}|\cos\theta + |\vec{b}|^2 = 2k + (2+k) + 4 = 3k + 6$$

所以 3k+6=0, k=-2。

2. 三角形面积 = $\frac{1}{2} |\vec{c} \times \vec{d}| = 6$,所以 $|\vec{c} \times \vec{d}| = 12$ 。而

$$\vec{c} \times \vec{d} = (2\vec{a} + \vec{b}) \times (k\vec{a} + \vec{b}) = 2k\vec{a} \times \vec{a} + 2\vec{a} \times \vec{b} + k\vec{b} \times \vec{a} + \vec{b} \times \vec{b} = (2 - k)\vec{a} \times \vec{b},$$
$$|\vec{c} \times \vec{d}| = |(2 - k)\vec{a} \times \vec{b}| = |2 - k| \cdot |\vec{a} \times \vec{b}| = |2 - k| \cdot |\vec{a}| \cdot |\vec{b}| \cos \theta = |2 - k| \cdot \sqrt{3}.$$

所以 $|2-k| \cdot \sqrt{3} = 12$, $k = 2 \pm 4\sqrt{3}$ 。

练习 9. 设有三个向量 $\vec{a} = (2, -3, 1), \ \vec{b} = (1, -2, 3)$ 和 $\vec{c} = (2, 1, 2)$ 。

- 1. 求向量 $\vec{a} \times \vec{b}$ 。
- 2. 假设向量 \vec{r} 与 \vec{a} 、 \vec{b} 都垂直,且 $Prj_{\vec{c}}\vec{r} = 14$ 。求 \vec{r} 。

解 1.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 1 \\ 1 & -2 & 3 \end{vmatrix} = \begin{vmatrix} -3 & 1 \\ -2 & 3 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & -3 \\ 1 & -2 \end{vmatrix} \vec{k} = -7\vec{i} - 5\vec{j} - \vec{k} = (-7, -5, -1)$$

2. \vec{r} 平行于 $\vec{a} \times \vec{b}$, 可以设 $\vec{r} = (-7k, -5k, -k)$ 。

$$14 = \operatorname{Prj}_{\vec{c}} \vec{r} = \frac{\vec{c} \cdot \vec{r}}{|\vec{c}|} = \frac{-14k - 5k - 2k}{\sqrt{2^2 + 1^2 + 2^2}} = -7k$$

所以 k = -2, $\vec{r} = (14, 10, 2)$ 。