

Digital Geometry Tools and Algorithms

http://libdgtal.org

A software library for the Digital Geometry community

Objectives

- Make digital geometry easier for neophyte (student, researcher from another field, ...)
- **Test new ideas**, with objective **comparisons** w.r.t. existing works
- Make the implementation of demonstrators easier
- Spread our research results to other domains
- Pursue a **federative project**

Main features

- Digital objects in arbitrary dimension
- Algorithms for topological and geometrical analysis
- Image analysis with data structures
- I/O mechanisms and visualization tools

Philosophy

- Genericity and efficiency
- \blacksquare C++ library, concepts, generic programming with templates
- Open-source, LGPL
- Both user and developer oriented documentation

DGtalTools

Simple and useful tools exploiting the structures and algorithms defined in **DGtal**

- Converters: pgm2freeman, raw2vol, etc
- Estimators: 2D and 3D local tangent/curvature estimators, length estimators, etc
- Shape generator: multigrid shapes and contours
- Visualisation: 3D vol and mesh viewers, curvature viewer, etc
- Volumetric: marching cubes, ultimate skeleton, subsampling, etc

A collaborative effort

Kernel package

■ Digital spaces, points, vectors, digital domains, digital sets

Base package

■ Integer types, iterators, utilities, etc

I/O package

- \blacksquare Boards: export to illustrate 2D/3D objects/algorithms (eps,pdf,svg,png, ...)
- Viewers: interactive simple 3D viewer (Qt/QGLViewer)
- Readers/writers for various image formats

Examples

Arithmetic package

■ Continued and irreducible fractions, Stern-Brocot tree, DSS patterns

Graph package

■ Graph related structures and algorithms (visitors, graph concepts, ...)

Image package

- Image by STL vector (linearized nD image), STL map
- HashTree image container (generalized octree with hashing functions)
- Image adapters

Mathematical package

Multivariate polynomials

Lots of features

Examples

int main(int argc, char** argv) // define digital space, domain and points typedef DGtal::SpaceND<3, DGtal::int32_t> MySpace; typedef MySpace::Point MyPoint;
typedef HyperRectDomainMySpace> MyDomain; MyPoint p1(0, 0, 0); MyPoint p2(5, 5, 5); MyPoint p3(2, 3, 4); MyDomain domain(p1, p2); // 3D visualisation QApplication application(argc,argv); DGtalQGLViewer viewer; viewer.show(); viewer << domain;</pre> viewer << p1 << p2 << p3;
viewer << DGtalQGLViewer::updateDisplay;</pre> return application.exec();

Shape package

Implicit/parametric shape generator for multigrid analysis

Topology package

- Digital Topology: connectedness, border, simple points
- Cartesian Cellular Topology: cells, surfaces and contours, tracking algorithms

Geometry package

- Primitives: DSS, DCA, digital plane, etc
- Contour analysis: decomposition, convexity, estimators
- Volumetric analysis: area/volume, distance transforms, reverse distance transforms, fast-marching methods.

Examples

```
typedef DepthFirstVisitor<Graph, std::set<Vertex> > DFSVisitor;
typedef GraphVisitorRange<DFSVisitor> VisitorRange;
VisitorRange range( new DFSVisitor( g, Point( -2, -1 ) ) );
for ( VisitorRange::ConstIterator it = range.begin(), itEnd = range.end();
      it != itEnd; ++it, ++n )
   { // Vertex are colored according to their order (depth first order here).
    board << CustomStyle( specificStyle,</pre>
                          new CustomColors( Color::Black,
                                            cmap_hue( n ) ) )
          << vtx;
board.saveEPS("graphTraversal-dfs-range.eps");
```


