

Informations- und Codierungstheorie 4. Blockcodes und zyklische Codes

Computer Networks and

Mobile Communication

Prof. Dr.-Ing. Andreas Rinkel

andreas.rinkel@hsr.ch

Sprechstunde: Jeden Montag16:00 bis 17:00, Raum: 6.110

Tel.: +41 (0) 55 2224928

Mobil: +41 (0) 79 3320562 http://rinkel.ita.hsr.ch

Struktur

FHO Fachhochschule Ostschweiz

Blockcodes

- Coderaum
- Hamming Blockcode
- Zyklische Hamingcode
- Abramson Code
- Weitere Codes

Selbststudium: Die Modulo-Funktion bei Polynomen aus: Mathematische Grundlagen ohne Balast

Kanalcodierung wann können Fehler erkannt werden?

Der n-Dimensionale Coderaum

Coderaum: Definitionen

FHO Fachhochschule Ostschweiz

h =minimaler Abstand Falls ungerade muss gerechnet werden

Anzahl der sicher erkennbaren Fehler

$$e^* = h - 1$$

Anzahl der sicher korrigierbaren Fehler

≻h <mark>gerade</mark>:

$$h = 2e + 2 \Longrightarrow$$

$$e = \frac{h-2}{2}$$

➤h ungerade:

$$h = 2e + 1 \Longrightarrow$$

$$e = \frac{h-1}{2}$$

Coderaum: *Dichtgepackt* oder nicht, das ist hier die Frage.

FHO Fachhochschule Ostschweiz

Der Coderaum ist *Dichtgepackt*, wenn sich alle Codewörter (gültige und ungültige) in einer Korrigierkugel befinden.

Sei:

- n die Dimension des Code (Anzahl aller $CW = 2^n$),
- m die Dimension der Nachrichten (Anzahl aller gültigen $CW = 2^{m}$)
- k die Dimension der Kontrollstellen mit n= m+k
- ⇒ So folgt die Codeabschätzung:

 $e = anz. \ korrigierbarer \ Fehler$ $wenn \ h \ gerade, \ nie \ Dichtgepackt$ $2^m \sum_{w=0}^e \binom{n}{w} \leq 2^n$ Anzahl \ der CW \ bzw. KorrigierkugelnAnzahl \ der CW \ pro Korrigierkugel

Gilt:

$$2^m \cdot \sum_{w=0}^e \binom{n}{w} = 2^m$$

So ist der Code dichtgepackt!

FHO Fachhochschule Ostschweiz

Beispiel: Quersummencode

 m=2	k=1	_

X ₁	X_2	X ₃
0	0 X ₂	0 x ₃
0	1	1
1	0	1
1	1	0
0	0	1
0	1	0
1	0	0
1	1	1

Gültige Codeworte, sie erfüllen den Algorithmus

Ungültige Codeworte, sie erfüllen den Algorithmus nicht, d.h. sie liefern ein *Fehlermuster* Algorithmus zur Berechnung der Kontrollstellen

$$x_3 = (x_1 + x_2) \mod 2$$

FHO Fachhochschule Ostschweiz

- 1. Prüfgleichung
- 2. Prüfgleichung
- 3. Prüfgleichung

$$x_5 = (x_1 + x_2 + x_3) \mod 2$$

$$x_6 = (x_2 + x_3 + x_4) \mod 2$$

$$x_7 = (x_1 + x_2 + x_4) \mod 2$$

Alle Vektoren paarweise verschieden und ungleich 0!

Interpretation: wird eine Stelle des CW verletzt, so werden jeweils andere Kombinationen von Prüfgleichungen verletzt, d.h. es müsste ein Fehlersyndrom geben, dass es erlaubt, den Fehlerort zu lokalisieren.

Frage: wie viele Fehler können nicht mehr erkannt werden? >2

Blockcodes: Hamming-Code II

FHO Fachhoch schule Ost schweiz

$$x_5 = (x_1 + x_2 + x_3) \mod 2$$

 $x_6 = (x_2 + x_3 + x_4) \mod 2$

 $x_7 = (x_1 + x_2 + x_4) \mod 2$

Generatormatrix

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}$$

$$\overrightarrow{P}_{1} \overrightarrow{P}_{2} \overrightarrow{P}_{3} \overrightarrow{P}_{4} \overrightarrow{P}_{5} \overrightarrow{P}_{6} \overrightarrow{P}_{7}$$

Einheitsmatrix markiert die Anzahl der Kontrollstellen k

Hieraus folgt die Codebedingung:

$$\sum_{i} x_{i} \cdot \overrightarrow{P}_{i} \equiv \overrightarrow{0} \mod 2$$

Blockcodes: Hamming-Code III

FHO Fachhochschule Ostschweiz

Tabelle der gültigen Codeworte (Prüfung!!)						
x1	x2	х3	x4	x5	x6	x7
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	1	0	1	1	0
0	0	1	1	1	0	1
0	1	0	0	1	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	0	1	1	1	0
1	0	1	0	0	1	1
1	0	1	1	0	0	0
1	1	0	0	0	1	0
1	1	0	1	0	0	1
1	1	1	0	1	0	0
1	1	1	1	1	1	1

Hammingdistanz anhand der Matrix

Die Codebedingung:

$$\sum_{i} x_{i} \cdot \overrightarrow{P}_{i} \equiv \overrightarrow{0} \mod 2$$

Wird für alle gültigen Codeworte (Tabelle) erfüllt.

Was ergibt die Berechnung der Codebedingung bei einem Bitfehler?

$$x_5 = (x_1 + x_2 + x_3) \mod 2$$

$$x_6 = (x_2 + x_3 + x_4) \mod 2$$

$$x_7 = (x_1 + x_2 + x_4) \mod 2$$

Blockcodes: Hamming-Code IV

Hamming-Code: Das Fehlersyndrom

FHO Fachhochschule Ostschweiz

Gesendetes $X = [x_1, x_2, x_3, ..., x_n]$ Codewort

Überlagert durch $F = [f_1, f_2, f_3, ..., f_n]$ das Fehlermuster

Empfangenes Wort

$$X' = X + F$$

$$= [x_1 + f_1, x_2 + f_2, x_3 + f_3, ..., x_n + f_n] \mod 2$$

$$= [x'_1, x'_2, x'_3, ..., x'_n]$$

Aus der Codebedingung folgt das Syndrom

$$\vec{Z} = \sum_{i} x_{i}' \cdot \vec{P}_{i} = \sum_{i} (x_{i} + f_{i}) \cdot \vec{P}_{i}$$

$$= \sum_{i} x_{i} \cdot \vec{P}_{i} + \sum_{i} f_{i} \cdot \vec{P}_{i}$$

Codebedingung = 0

$$\Rightarrow \vec{Z} = \sum_{i} f_{i} \cdot \vec{P}_{i}$$

Das heisst, bei genau einem Fehler markiert die Prüfspalte den Fehlerort.

Zyklische Codes: Mathemaitische Beschreibung

FHO Fachhochschule Ostschweiz

Idee: Generatormatrix kann durch Generatorpolynom beschrieben werden!

Ziel: Vereinfachte Berechung der Kontrollstellen durch rückgekoppelte Schieberegister.

Generatorpolynom G(u)

$$G(u) = \sum_{i=0}^{k} g_i \cdot u^i$$

Codewortpolynom X(u)

$$X(u) = \sum_{i=0}^{n} g_i \cdot u^i$$

$$g_i = \{0,1\} \text{ mit } g_0 = g_k = 1$$

Codebedingung —

Das Codewortpolynom ist ohne Rest durch das Generatorpolynom teilbar (in mod-2-Rechnung)

$$X(u) \div G(u) \equiv Q(u) \mod 2$$

$$X(u) \equiv Q(u) \cdot G(u) \mod 2$$

Grad k entspricht der Anzahl der Prüfstellen. Grad n entspricht der Anzahl der Codewortstellen. Die Zahl der Nachrichtenstellen ist m ⇒ n = m +k

Zyklische Codes: Ermittlung der Kontrollstellen durch Polynomdivision

FHO Fachhoch schule Ost schweiz

Sei: m = 4, k = 3, n = 7

Nachricht: $(x_1, x_2, x_3, x_4) = (1 \ 0 \ 0)$

Generator: $G(u) = u^3 + u + 1 \Rightarrow (g_3 g_2 g_1 g_0) = (1 \ 0 \ 1 \ 1)$

Zyklische Codes: Ermittlung der Kontrollstellen durch Mehrfachaddition

Zyklische Codes: Prüfen der Codebedingung

FHO Fachhoch schule Ost schweiz

Code- Bedingung erfüllt!

Idee:

Durch die Codebedingung muss die fortgesetzte Addition (mod 2) des Generators zum empfangenen CW Das Nullwort ergeben.

$$X(u) \div G(u) \equiv Q(u) \mod 2$$

$$X(u) \equiv Q(u) \cdot G(u) \mod 2$$

Codewort: 1 0 0 1

Code- Bedingung nicht erfüllt!

Fehlersyndrom -

Zyklischer Hamming- Code und Generatormatrix ?

FHO Fachhochschule Ostschweiz

Gültiges Codewort: 1 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 1 0 1

```
1 1 0 0 1 0 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
```



```
    1
    1
    1
    0
    1
    0
    0

    0
    1
    1
    1
    0
    1
    0
    0

    1
    1
    0
    1
    0
    0
    1
```

Zyklische Codes: Ermittlung der Kontrollstellen durch rückgekoppeltes Schieberegister

FHO Fachhoch schule Ost schweiz

Ermittelten Kontrollstellen

+ Modulo 2 Addierer (XOR)

Zyklische Codes

FHO Fachhochschule Ostschweiz

Zyklische Hamming-Codes:

Hammingdistanz h=3

Diese werden gebildet durch sogenannte primitive Polynome p(x) = g(x):

$$p(x) = 1+x+x^{3}$$

$$p(x) = 1+x+x^{4}$$

$$p(x) = 1+x^{2}+x^{5}$$

$$p(x) = 1+x^{3}+x^{7}$$

$$p(x) = 1+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}$$

$$p(x) = 1+x^{2}+x^{3}+x^{4}+x^{5}+x^{8}$$

$$p(x) = 1+x^{2}+x^{3}+x^{4}+x^{5}+x^{8}$$

$$p(x) = 1+x^{4}+x^{9}$$

$$p(x) = 1+x^{3}+x^{10}$$

$$p(x) = 1+x^{2}+x^{11}$$

$$p(x) = 1+x+x^{4}+x^{6}+x^{12}$$

$$p(x) = 1+x+x^{3}+x^{4}+x^{13}$$

$$p(x) = 1+x^{2}+x^{6}+x^{10}+x^{14}$$

$$p(x) = 1+x^{5}+x^{23}$$

$$p(x) = 1+x^{5}+x^{23}$$

$$p(x) = 1+x^{2}+x^{4}+x^{5}+x^{7}+x^{8}+x^{10}+x^{11}+x^{12}+x^{16}+x^{22}+x^{23}+x^{26}+x^{32}$$

Zyklische Abramson-Codes bzw. CRC-Codes:

Hammingdistanz h=4 Diese werden gebildet durch die Multiplikation eines primitven Polynoms mit dem Term (1+x)

Abramson-Code: g(x) = p(x) (1+x)

Bsp.: $g(x) = (1+x+x^3)(1+x)$ $g(x) = 1+x^2+x^3+x^4$

Aus: Martin Werner, Information und Codierung, vieweg 2002