

Machine Learning

Chapter 5: Nearest Neighbor

Fall 2022

Instructor: Xiaodong Gu

The family of classification

Review: Decision Trees

Review: Bayes

Modeling the generation of data using probabilities?

have clear patterns of probabilistic distributions and dependences

Do we really need a model?

What if we use the data directly?

Today

Let's learn a super easy (naïve) method for classification.

- K-Nearest Neighbor

A Simple Analogy... 物以类聚人以群分

• Tell me about your friends (who your neighbors are). Then I will tell you who you are.

K-Nearest Neighbors

Instance-based learning, also called lazy learning.

- simply storing training data instead of learning a model.
- whenever we have new data to classify, we find its K-nearest neighbors from the training data.

K-Nearest Neighbor (KNN) is a simple algorithm that stores all the available cases and classifies the new data or case based on a similarity measure.

K-NN Classification

- Classified by "MAJORITY VOTES" from neighbor classes.
- An object is classified to the most common class amongst its *k* nearest neighbors **measured by a "distance" function**

How to determine whether an object falls into the k-nearest neighbors?

Distance Measures

• Euclidean Distance (欧氏距离)

$$D(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ represent the n attribute values of two records.

doesn't work well in high dimensions and categorical variables because it ignores the similarity between attributes.

Distance Measures

• Manhattan Distance (a.k.a. city block distance)

$$D(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

 $|x_1 - x_2| + |y_1 - y_2|$

$$D\left(x,y
ight) = \left(\sum_{u=1}^{n}\left|x_{u}-y_{u}
ight|^{p}
ight)^{rac{1}{p}}$$

p=1 Manhattan distance P=2 Euclidean distance

Distances

Example

point	x_1	x_2
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Euclidean Distance Matrix

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Normalization (归一化)

• Standardize the range of attributes (features of data)

ID	Grade	Age	Score
1	3	22	92
2	4	23	87
3	2	21	82

ID	Grade	Age	Score
1	0.5	0.5	1
2	1	1	0.5
3	0	0	0

Z-score normalization: rescale the data so that the mean is 0 and the standard deviation is 1.

$$x_{norm} = \frac{x - \mu}{\sigma}$$

Min-max normalization: scale the data to a fixed range of [0, 1].

$$x_{morm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Similarity vs. Distance

- Similarity: numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0, 1].

Cosine Similarity

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \times ||\mathbf{b}||}$$

$$= \frac{(x_1, y_1) \bullet (x_2, y_2)}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$

$$= \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$

$$= \frac{(x_1, y_1) \bullet (x_2, y_2)}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}} \quad \cos(d_1, d_2) = \begin{cases} 1: \text{ exactly the same} \\ 0: \text{ orthogonal} \\ -1: \text{ exactly opposite} \end{cases}$$

Example

$$d_1 = [3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0]$$

$$d_2 = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2]$$

$$d_1 \cdot d_2 = 3 \times 1 + 2 \times 0 + 0 \times 0 + \dots + 0 \times 2 = 5$$

$$||d_1|| = (3^2 + 2^2 + \dots + 0^2)^{0.5} = 6.481$$

$$||d_2|| = (1^2 + 0^2 + \dots + 2^2)^{0.5} = 2.245$$

$$cos(d_1,d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2|| = 0.3150$$

The Algorithm

Algorithm

- 1. Determine parameter *K*
- 2. Choose a sample from the test data that needs to be classified and compute its distance to all the training examples.
- 3. Sort the distances obtained and take the *k*-nearest data samples.
- 4. Assign the test class to the class based on the majority vote of its k neighbors.

The Algorithm

KNN – Example

Training set

ID	width	height	Туре
1	5.2	8.0	lemons
2	6.7	9.8	lemons
3	7.2	7.5	orang
4	6.1	5.3	orang
5	4.1	6.5	lemons

Test instance

6	6.2	9.7	?

=lemon

Step1 - calculate distances

6
5.099
2.828
5.623
3.162
7.892

Step2 - rank the neighbors.

	6
2	2.828
4	3.162
1	5.099
3	5.623
5	7.892

sort

lemon orange lemon

Step4 - voting.

Step3 - select the nearest neighbors.

What is the best value of K to use?

Decision Boundary

Voronoi Tessellation (维诺图, 沃罗诺伊分割)

- Partition the space into areas that are nearest to any given point
- Boundary: points at the same distance from two different training examples.

Decision Boundary: boundaries that separates two different classes.

With large number of examples and possible noise in the labels, the decision boundary can become nasty!

Effect of K

- Larger *K* produces smoother boundary effect
- When K==N, always predict the majority class

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

<u>Discussion</u>: which model is better between K=1 and K=15? Why?

How to choose K?

- If K is too small, efficiency is increased but becomes susceptible to noise.
- Larger K works well. But too large K may include majority points from other classes, but risk of over-smoothing classification results

Try it yourself

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Pros and Cons

Advantages:

- Simple to understand, explain, and implement,
- No effort for training,
- New data can be added seamlessly without hampering the model accuracy

Pros and Cons

Disadvantages:

- Does not scale with large data sets (calculating distance is computationally expensive)
- Highly susceptible to the curse of dimensionality
- Large storage requirements
- Data normalization is required

Tutorial: KNN with Python

https://www.kaggle.com/code/lohitha17/knn-without-scikit-learn

What's Next?

Logistic Regression

Classification by a discriminative function.

- Linear functions
- Differentiable!

