PROBLEMAS DEL TEMA 2. Unidades Funcionales de un Computador. EJEMPLOS

1. Suponga que un procesador dispusiese de una instrucción *cargar*, LD r7, que almacena en el registro r7 el contenido de la posición de memoria indicada en el registro rD. La instrucción tiene de código (en hexadecimal) 0700. Suponiendo que esta instrucción se encuentra en la posición 0039 de la memoria, que en rD se encuentra el valor 54C2 y que en M(54C2) se encuentra el dato D7A2, realice una tabla donde se indiquen las distintas microoperaciones que deben generarse durante la ejecución de la instrucción así como los valores que tienen en cada momento los registros PC, AR, DR, IR y r7.

Fase	Microphorosión	C	Contenidos de los registros				
	Microoperación	PC	IR	AR	DR	r7	
Valores iniciales		0039	XXXX	XXXX	XXXX	XXXX	
Captación de instrucción	AR ← PC	0039	XXXX	0039	XXXX	XXXX	
	$DR \leftarrow M(AR)$	0039	XXXX	0039	0700	XXXX	
	$IR \leftarrow DR$	0039	0700	0039	0700	XXXX	
	PC ←PC+1	003A	0700	0039	0700	XXXX	
Ejecución de instrucción	AR ← rD	003A	0700	54C2	0700	XXXX	
	DR ← M(AR)	003A	0700	54C2	D7A2	XXXX	
	r7 ← DR	003A	0700	54C2	D7A2	D7A2	

2. Suponga que un procesador dispusiese de una instrucción *memorizar*, ST r1, que almacena en la posición de memoria indicada por el registro rD el contenido del registro r1. La instrucción tiene de código (en hexadecimal) 1100. Suponiendo que esta instrucción se encuentra en la posición A777 de la memoria, que en rD se encuentra el valor 5ACD y que r1 contiene FFFF, realice una tabla donde se indiquen las distintas microoperaciones que deben generarse durante la ejecución de la instrucción, así como los valores que tienen en cada momento los registros PC, AR, DR, IR, r1 y rD.

Fase	Microphorosión	Contenidos de los registros						
	Microoperación	PC	IR	AR	DR	r1	rD	
Valores iniciales		A777	XXXX	XXXX	XXXX	FFFF	5ACD	
Captación de instrucción	AR ← PC	A777	XXXX	A777	XXXX	FFFF	5ACD	
	$DR \leftarrow M(AR)$	A777	XXXX	A777	1100	FFFF	5ACD	
	$IR \leftarrow DR$	A777	1100	A777	1100	FFFF	5ACD	
	PC ←PC+1	A778	1100	A777	1100	FFFF	5ACD	
Ejecución de instrucción	AR ← rD	A778	1100	5ACD	1100	FFFF	5ACD	
	DR ← r1	A778	1100	5ACD	FFFF	FFFF	5ACD	
	M(AR)← DR	A778	1100	5ACD	FFFF	FFFF	5ACD	

3. Suponga que un procesador dispusiese de una instrucción saltar, JMP rD, que salta a la posición de memoria indicada por el registro rD, ejecutándose entonces la instrucción almacenada en dicha posición de memoria (M(rD)). La instrucción tiene de código (en hexadecimal) 1200. Suponiendo que esta instrucción se encuentra en la posición 7777 de la memoria y que en rD se encuentra el valor 7ACD, realice una tabla donde se indiquen las distintas microoperaciones que deben generarse durante la ejecución de la instrucción, así como los valores que tienen en cada momento los registros PC, AR, DR, IR, y rD.

Fase	Micropporación	Contenidos de los registros					
	Microoperación	PC	IR	AR	DR	rD	
Valores iniciales		7777	XXXX	XXXX	XXXX	7ACD	
Captación de instrucción	AR ← PC	7777	XXXX	7777	XXXX	7ACD	
	$DR \leftarrow M(AR)$	7777	XXXX	7777	1200	7ACD	
	$IR \leftarrow DR$	7777	1200	7777	1200	7ACD	
	PC ←PC+1	7778	1200	7777	1200	7ACD	
Ejecución de instrucción	AR ← rD	7778	1200	7ACD	1200	7ACD	
	PC ← AR	7ACD	1200	7ACD	1200	7ACD	

¿Qué ocurriría en el procesador si el contenido de rD fuese 7777 que es la dirección de memoria donde se encuentra ubicada la propia instrucción que se está ejecutando?.

La secuencia de microoperaciones en ese caso sería:

Fase	D.A.i.ou.o.o.o.o.o.i.ó.o.	C	Contenidos de los registros				
	Microoperación	PC	IR	AR	DR	rD	
Valores iniciales		7777	XXXX	XXXX	XXXX	7777	
Captación de instrucción	AR ← PC	7777	XXXX	7777	XXXX	7777	
	$DR \leftarrow M(AR)$	7777	XXXX	7777	1200	7777	
	IR ← DR	7777	1200	7777	1200	7777	
	PC ←PC+1	7778	1200	7777	1200	7777	
Ejecución de instrucción	AR ← rD	7778	1200	7ACD	1200	7777	
	PC ← AR	7777	1200	7ACD	1200	7777	

El contador de programa (PC) quedaría con el mismo valor que tenía al principio de la ejecución de la instrucción y, por tanto, el procesador volvería a ejecutar la misma instrucción indefinidamente en el tiempo, quedando "atrapado" en dicha instrucción.