Project-3 CarTracking 报告(书面部分)

陈笑字 21340246003 林子开 21307110161

2023年12月16日

目录

1	问题 1: 贝叶斯网络基础	1
	1.1 计算后验概率 $\mathbb{P}(C_2 = 1 D_2 = 0)$	1
	1.2 计算后验概率 $\mathbb{P}(C_2 = 1 D_2 = 0, D_3 = 1)$	2
	1.3 带入 $\epsilon=0.1,\;\eta=0.2$ 计算并讨论	2
2	问题 2: 发射概率	3
3	问题 3: 转移概率	3
4	问题 4: 粒子滤波	3

1 问题 1: 贝叶斯网络基础

1.1 计算后验概率 $\mathbb{P}(C_2 = 1 | D_2 = 0)$

注意到 $\mathbb{P}(C_2=1|D_2=0) \propto \mathbb{P}(C_2=1,D_2=0)$, $\mathbb{P}(C_2=0|D_2=0) \propto \mathbb{P}(C_2=0,D_2=0)$,因此需要先计算联合分布。

其中:

$$\begin{split} \mathbb{P}(C_2 = 1, D_2 = 0) &= \mathbb{P}(C_2 = 1) \times \mathbb{P}(D_2 = 0 | C_2 = 1) \\ &= \left[\mathbb{P}(C_1 = 0) \times \mathbb{P}(C_2 = 1 | C_1 = 0) + \mathbb{P}(C_1 = 1) \times \mathbb{P}(C_2 = 1 | C_1 = 1) \right] \times \mathbb{P}(D_2 = 0 | C_2 = 1) \\ &= \left[0.5 \times (1 - \epsilon) + 0.5 \times \epsilon \right] \times \eta \\ &= 0.5 \eta \\ \mathbb{P}(C_2 = 0, D_2 = 0) &= \mathbb{P}(C_2 = 0) \times \mathbb{P}(D_2 = 0 | C_2 = 0) \\ &= \left[\mathbb{P}(C_1 = 0) \times \mathbb{P}(C_2 = 0 | C_1 = 0) + \mathbb{P}(C_1 = 1) \times \mathbb{P}(C_2 = 0 | C_1 = 1) \right] \times \mathbb{P}(D_2 = 0 | C_2 = 0) \\ &= \left[0.5 \times \epsilon + 0.5 \times (1 - \epsilon) \right] \times (1 - \eta) \\ &= 0.5(1 - \eta) \end{split}$$

最后进行归一化:

$$\mathbb{P}(C_2 = 1 | D_2 = 0) = \frac{\mathbb{P}(C_2 = 1, D_2 = 0)}{\mathbb{P}(C_2 = 1, D_2 = 0) + \mathbb{P}(C_2 = 0, D_2 = 0)}$$
$$= \frac{0.5\eta}{0.5\eta + 0.5(1 - \eta)}$$

1.2 计算后验概率 $\mathbb{P}(C_2 = 1 | D_2 = 0, D_3 = 1)$

使用连接和消元的思想, 可以得到

$$\mathbb{P}(C_2|C_2 = 0, D_3 = 1) \propto \sum_{C_1, D_1, C_3} \mathbb{P}(C_1) \mathbb{P}(D_1|C_1) \mathbb{P}(C_2|C_1) \mathbb{P}(D_2 = 0|C_2) \mathbb{P}(C_3|C_2) \mathbb{P}(D_3 = 1|C_3)$$

$$\propto \mathbb{P}(D_2 = 0|C_2) \left[\sum_{C_1} \mathbb{P}(C_1) \mathbb{P}(C_2|C_1) \right] \left[\sum_{C_3} \mathbb{P}(C_3|C_2) \mathbb{P}(D_3 = 1|C_3) \right]$$

因此有

$$\mathbb{P}(C_2 = 1 | C_2 = 0, D_3 = 1) \propto \mathbb{P}(D_2 = 0 | C_2 = 1) \left[\sum_{C_1} \mathbb{P}(C_1) \mathbb{P}(C_2 = 1 | C_1) \right] \left[\sum_{C_3} \mathbb{P}(C_3 | C_2 = 1) \mathbb{P}(D_3 = 1 | C_3) \right]$$

$$\propto \eta[0.5 \times \epsilon + 0.5 \times (1 - \epsilon)] [\epsilon \times \eta + (1 - \epsilon)(1 - \eta)]$$

$$\propto 0.5 \eta[\epsilon \eta + (1 - \epsilon)(1 - \eta)]$$

$$\mathbb{P}(C_2 = 0 | C_2 = 0, D_3 = 1) \propto \mathbb{P}(D_2 = 0 | C_2 = 0) \left[\sum_{C_1} \mathbb{P}(C_1) \mathbb{P}(C_2 = 0 | C_1) \right] \left[\sum_{C_3} \mathbb{P}(C_3 | C_2 = 0) \mathbb{P}(D_3 = 1 | C_3) \right]$$

$$\propto (1 - \eta)[0.5 \times (1 - \epsilon) + 0.5 \times \epsilon] [(1 - \epsilon) \times \eta + \epsilon \times (1 - \eta)]$$

$$\propto 0.5(1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]$$

最后进行归一化:

$$\begin{split} \mathbb{P}(C_2 = 1 | D_2 = 0, D_3 = 1) &= \frac{\mathbb{P}(C_2 = 1 | C_2 = 0, D_3 = 1)}{\mathbb{P}(C_2 = 1 | C_2 = 0, D_3 = 1) + \mathbb{P}(C_2 = 0 | C_2 = 0, D_3 = 1)} \\ &= \frac{0.5 \eta [\epsilon \eta + (1 - \epsilon)(1 - \eta)]}{0.5 \eta [\epsilon \eta + (1 - \epsilon)(1 - \eta)] + 0.5(1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]} \\ &= \frac{\eta [\epsilon \eta + (1 - \epsilon)(1 - \eta)]}{\eta [\epsilon \eta + (1 - \epsilon)(1 - \eta)] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]} \end{split}$$

1.3 带入 $\epsilon = 0.1$, $\eta = 0.2$ 计算并讨论

当
$$\epsilon = 0.1$$
, $\eta = 0.2$ 时

$$\mathbb{P}(C_2 = 1 | D_2 = 0) = \eta$$
$$= 0.2000$$

以及

$$\mathbb{P}(C_2 = 1 | D_2 = 0, D_3 = 1) = \frac{\eta[\epsilon \eta + (1 - \epsilon)(1 - \eta)]}{\eta[\epsilon \eta + (1 - \epsilon)(1 - \eta)] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]}$$
$$= 0.4157$$

加入 $D_3=1$ 这个证据变量,增加了 $C_2=1$ 的概率。注意到传感器满足 $\mathbb{P}(D_3=1|C_\eta 3=1))=1-\eta=0.8$,可以认为 D_3 于 C_3 是高度相关的。当观测到 $D_3=1$ 时, $C_3=1$ 的概率也会较大。又注意到汽车移动的规律满足 $\mathbb{P}(C_3=1|C_2=1)=1-\epsilon=0.9$,当 $C_3=1$ 时, $C_2=1$ 的概率也会较大。因此,增加 $D_3=1$ 这个条件,能够增加 $C_2=1$ 的概率。

现在保持 $\eta = 0.2$,求解以下方程:

$$\mathbb{P}(C_2 = 1|D_2 = 0) = \mathbb{P}(C_2 = 1|D_2 = 0, D_3 = 1) \tag{1}$$

即

$$\eta = \frac{\eta[\epsilon \eta + (1 - \epsilon)(1 - \eta)]}{\eta[\epsilon \eta + (1 - \epsilon)(1 - \eta)] + (1 - \eta)[(1 - \epsilon)\eta + \epsilon(1 - \eta)]}$$

也即

$$0.2 = \frac{0.2[\epsilon \times 0.2 + (1 - \epsilon)(1 - 0.2)]}{0.2[\epsilon \times 0.2 + (1 - \epsilon)(1 - 0.2)] + (1 - 0.2)[(1 - \epsilon)0.2 + \epsilon(1 - 0.2)]}$$

求解得到 $\epsilon=0.5$ 。注意到等式(1)意味着观测到 $D_3=1$ 对于判断 C_3 的取值没有任何帮助。由于 D_3 的分布只依赖于 C_3 的取值,当 $\epsilon=0.5$ 时,汽车从状态 C_{i-1} 转移到状态 C_i 的随机性达到最大,在这种情况下, D_3 分布的随机性也达到最大,无法为 C_3 的分布提供更多的信息。

2 问题 2: 发射概率

请参见 submission.py 文件。

3 问题 3: 转移概率

请参见 submission.py 文件。

4 问题 4: 粒子滤波

请参见 submission.py 文件。