Banque PT - Corrigé Epreuve C 2015

Fabien Evrard fabien.evrard@prepas.org

18 mai 2015

Résumé

Ce sujet traite de divers aspects de l'intégrale de Gauss $I=\int_0^{+\infty}e^{-x^2}\mathrm{d}x$: la première partie présente une étude de la convergence, la seconde une méthode de calcul via les intégrales à paramètres et une équation différentielle. La troisième partie, largement indépendante, se penche sur l'intégrale entre 0 et 1 de e^{-x^2} , c'est un prétexte pour parler de séries entières et d'un semblant d'approximation. Ce sujet, de facture très classique, sera de nature à récompenser les élèves studieux.

Chapitres abordés : études de fonction, intégrales généralisées, séries, série entières, intégrales à paramètres, équations différentielles.

PartieI

 $\boxed{\mathbf{Q.I.1} : \text{Notons } \varphi: u \in \mathbb{R} \mapsto e^u - u - 1 \text{ et } \psi_n: x \in \mathbb{R} \mapsto \frac{x^2}{n}. \ \psi_n \text{ est clairement paire et on constate que}} \\ f_n = \varphi \circ \psi_n \text{ et } g_n = \varphi \circ (-\psi_n). \boxed{f_n \text{ et } g_n \text{ sont donc paires, on peut réduire le domaine d'étude à } \mathbb{R}_+.}$

Q.I.2.(a) : Pour
$$x \in \mathbb{R}$$
, $f_1(x) - g_1(x) = 2(\operatorname{sh}(x^2) - x^2)$

Q.I.2.(b) : D'après le développement en série entière usuel de la fonction sh , on a pour tout réel $t: \operatorname{sh}(t) - t = \sum_{n=1}^{+\infty} \frac{t^{2n+1}}{(2n+1)!}$. Ainsi pour t réel positif cette quantité est la somme d'une série à termes positifs convergente, donc elle est positive. On a donc $\forall t \geq 0, \operatorname{sh}(t) \geq t$ En appliquant ceci avec $t = x^2 \geq 0$ pour $x \geq 0$, on a bien $\forall x \geq 0, f_1(x) \geq g_1(x)$

Autre méthode : Posons $u(t) = \operatorname{sh}(t) - t$. Alors $u'(t) = \operatorname{ch}(t) - 1 \ge 0$ pour tout $t \in \mathbb{R}$. Donc u est une fonction croissante sur \mathbb{R}^+ (et même sur \mathbb{R}). Comme u(0) = 0, on en déduit que $\forall t \ge 0$, $u(t) \ge 0$ et donc que $\forall x \in \mathbb{R}$, $\operatorname{sh}^2(x) - x^2 \ge 0$, d'où le résultat.

Q.I.2.(c) :

Avant de proposer un tracé, terminons l'étude de ces fonctions. Les fonctions f_1 et g_1 sont clairement dérivables (et même \mathcal{C}^{∞}) sur \mathbb{R}_+ , et pour tout réel positif x on a :

$$f_1'(x) = 2x(e^{x^2} - 1)$$
 et $g_1'(x) = -2x(e^{-x^2} - 1)$.

On sait que la fonction exponentielle est strictement croissante sur $\mathbb R$ et $e^0=1$, ainsi pour $x\in\mathbb R_+^*$, $e^{x^2}>1$

et f_1' est donc strictement positive sur \mathbb{R}_+^* . De même, pour $x \in \mathbb{R}_+^*$, $e^{-x^2} - 1 < 0$, en multipliant par -2x qui est strictement négatif aussi, on obtient que g_1' est aussi strictement positive sur \mathbb{R}_+^* .

Donc f_1 et g_1 sont strictement croissantes sur \mathbb{R}_+ .

Comme $f_1(0) = f_1'(0) = g_1(0) = g_1'(0) = 0$ les deux courbes représentatives présentent une tangente horizontale à l'origine du repère.

Enfin,
$$f_1(1) = e - 2 \simeq 0.7$$
 et $f_1'(1) = 2(e - 1) \simeq 3.4$, $g_1(1) = e^{-1} \simeq 0.4$ et $g_1'(1) = 2(1 - e^{-1}) \simeq 1.2$.

Q.I.3.(a) :
$$\forall x \in \mathbb{R}, \begin{cases} f'_n(x) = \frac{2x}{n} \left(e^{\frac{x^2}{n}} - 1 \right) \\ g'_n(x) = \frac{2x}{n} \left(1 - e^{-\frac{x^2}{n}} \right) \end{cases}$$

Q.I.3.(b) :

La même argumentation qu'en Q.I.2.(c) permet d'affirmer que les fonctions f'_n et g'_n sont positives sur \mathbb{R}_+ , elles ne sont nulles qu'en 0. Donc les fonctions f_n et g_n sont strictement croissantes sur \mathbb{R}_+

Q.I.3.(c) : $f_n(0) = g_n(0) = 0$, et les fonctions sont croissantes.

Donc, les fonctions f_n et g_n sont positives sur \mathbb{R}_+

Q.I.3.(d) :

Pour *x* réel positif,

$$f_n(x) \geq 0 \quad \Rightarrow \quad 0 < 1 + \frac{x^2}{n} \leq e^{\frac{x^2}{n}} \qquad \qquad \Longleftrightarrow \qquad \text{en élevant à la puissance } n$$

$$\Rightarrow \quad 0 < \left(1 + \frac{x^2}{n}\right)^n \leq e^{x^2} \qquad \Longleftrightarrow \qquad \text{en considérant les inverses}$$

$$\Rightarrow \quad 0 < e^{-x^2} \leq \left(1 + \frac{x^2}{n}\right)^{-n}$$

Et pour $x \in [0, \sqrt{n}]$: on alors $1 - \frac{x^2}{n} \ge 0$, donc on peut écrire

$$g_n(x) \ge 0 \quad \Rightarrow \quad 0 \le 1 - \frac{x^2}{n} \le e^{-\frac{x^2}{n}}$$

 $\operatorname{donc} \left| \lim_{n \to +\infty} \left(1 + \frac{x^2}{n} \right)^{-n} = e^{-x^2} \right|$

 $\,\longleftrightarrow\,$ en élevant à la puissance n

$$\Rightarrow 0 \le \left(1 - \frac{x^2}{n}\right)^n \le e^{-x^2}$$

d'où:

$$\forall x \in [0, \sqrt{n}], 0 \le \left(1 - \frac{x^2}{n}\right)^n \le e^{-x^2} \le \left(1 + \frac{x^2}{n}\right)^{-n}$$

L'inégalité de droite a été prouvée pour x dans \mathbb{R}_+

 $\begin{array}{l} \boxed{\textbf{Q.I.3.(e)} \ :} \ \text{Pour } x \text{ fixé, et pour } n \text{ assez grand, on a } x \in [0, \sqrt{n}[\text{, d'où } \left(1 - \frac{x^2}{n}\right) > 0, \text{ ce qui permet} \\ \text{d'écrire } \left(1 - \frac{x^2}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{x^2}{n}\right)\right). \text{ Puis :} \\ \left(1 - \frac{x^2}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{x^2}{n}\right)\right) \\ = \exp\left(n\left(-\frac{x^2}{n} + o\left(\frac{1}{n}\right)\right)\right) \\ = \exp(-x^2 + o(1)) \\ \text{donc } \lim_{n \to +\infty} \left(1 - \frac{x^2}{n}\right)^n = e^{-x^2} \\ \text{Par ailleurs, } \left(1 + \frac{x^2}{n}\right) > 0 \text{ pour tout } x \text{ et pour tout } n, \text{ d'où } : \\ \left(1 + \frac{x^2}{n}\right)^{-n} = \exp\left(-n\ln\left(1 + \frac{x^2}{n}\right)\right) \\ = \exp\left(-n\left(\frac{x^2}{n} + o\left(\frac{1}{n}\right)\right)\right) \\ = \exp\left(-x^2 + o(1)\right) \end{array}$

Q.I.4.(a):

Pour x réel et n entier naturel non-nul la formule du binôme de Newton donne :

$$\left(1 + \frac{x^2}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{x^2}{n}\right)^k$$
$$= 1 + n \times \frac{x^2}{n} + \sum_{k=2}^n \binom{n}{k} \left(\frac{x^2}{n}\right)^k$$

$$x^2$$
 étant positif, $\sum_{k=2}^n \binom{n}{k} \left(\frac{x^2}{n}\right)^k \geq 0$

Et il vient :
$$\left(1 + \frac{x^2}{n}\right)^n \ge 1 + x^2 > 0$$

En inversant on obtient bien le résultat souhaité. D'où :

$$\forall x \in \mathbb{R}_+, \left(1 + \frac{x^2}{n}\right)^{-n} \le \frac{1}{1 + x^2}$$

Q.I.4.(b) :

La fonction $x \mapsto \frac{1}{1+x^2}$ est définie et continue sur \mathbb{R} et admet comme primitive la fonction arctangente.

 $\text{Ainsi, pour } X \text{ r\'eel positif, } \int_0^X \frac{1}{1+x^2} \mathrm{d}x = \arctan(X) - \arctan(0) = \arctan(X), \text{ il s'agit de l'int\'egrale d'une l'int\'egrale d'une l'intégrale d'u$

fonction continue sur un segment. De plus $\lim_{X\to+\infty}\int_0^X \frac{1}{1+x^2}\mathrm{d}x = \frac{\pi}{2}$

Finalement : l'intégrale $\int_0^{+\infty} \frac{1}{1+x^2} \mathrm{d}x$ est convergente et vaut $\frac{\pi}{2}$

Q.I.4.(c):

En combinant les résultats de Q.I.3.(d) et Q.I.4.(a) on obtient l'inégalité $0 < e^{-x^2} \le \frac{1}{1+x^2}$ valable pour tout réel x positif. Ceci permet d'appliquer le théorème de comparaison d'intégrales de fonctions positives. L'intégrale $\int_0^{+\infty} \frac{1}{1+x^2} \mathrm{d}x$ étant convergente, $\int_0^{+\infty} e^{-x^2} \mathrm{d}x$ est aussi convergente et l'on a :

$$\int_0^{+\infty} e^{-x^2} \mathrm{d}x \le \int_0^{+\infty} \frac{1}{1+x^2} \mathrm{d}x.$$

D'où le résultat : $\int_0^{+\infty} e^{-x^2} dx \text{ est convergente et } \int_0^{+\infty} e^{-x^2} dx \leq \frac{\pi}{2}$

PartieII

Il s'agit d'appliquer le théorème de continuité sous l'intégrale.

Notons $\alpha: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}$ $(t,x) \longmapsto \frac{e^{-tx^2}}{1+x^2}$ l'intégrande.

$$(t,x) \longmapsto \frac{e^{-tx^2}}{1+x^2}$$

Le numérateur est la composée de la fonction exponentielle réelle et d'une fonction polynômiale, c'est donc une fonction continue des deux variables (t,x); le dénominateur est polynomial et ne s'annule pas. Donc α est une fonction continue des deux variables. Ses applications partielles seront donc continues aussi.

On peut donc affirmer que :

- (i) pour tout t dans \mathbb{R}_+ , $x \mapsto \alpha(t,x)$ est continue sur \mathbb{R}_+
- (ii) pour tout x dans \mathbb{R}_+ , $t\mapsto \alpha(t,x)$ est continue sur \mathbb{R}_+

Par ailleurs :
$$\forall (t,x) \in \mathbb{R}_+ \times \mathbb{R}_+, |\alpha(t,x)| \leq \frac{1}{1+x^2}$$

D'après Q.I.4.(b), la fonction $x \mapsto \frac{1}{1+x^2}$ est intégrable sur \mathbb{R}_+

Donc:

(iii) il existe une fonction $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ intégrable telle que : $\forall (t,x) \in \mathbb{R}_+ \times \mathbb{R}_+, |\alpha(t,x)| \leq \phi(x)$

Nous avons donc rassemblé les hypothèses du théorème de continuité sous l'intégrale. On en conclut bien que :

h est continue sur \mathbb{R}_+

Q.II.2 :
$$h(0) = \int_0^{+\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2}$$
 d'après Q.I.4.(b)

Q.II.3.(a) : Il faut cette fois-ci utiliser le théorème de dérivation sous l'intégrale.

De même que pour la continuité en Q.II.1 on peut justifier que α est de classe \mathcal{C}^1 des deux variables (t,x) (car une composée de fonctions de classe \mathcal{C}^1 est elle-même de classe \mathcal{C}^1).

On applique le théorème sur $[a, +\infty[\times\mathbb{R}^+]$, où a est un réel strictement positif fixé. Ainsi on peut affirmer que :

- (i) pour tout t dans $[a,+\infty[$, $x\mapsto \alpha(t,x)$ est continue et intégrable sur \mathbb{R}^+ (intégrabilité prouvée par la domination établie en Q.II.1)
- (ii) pour tout x dans \mathbb{R}_+ , $t\mapsto \alpha(t,x)$ est de classe \mathcal{C}^1 sur $[a,+\infty[$
- (iii) pour tout t dans $[a, +\infty[$, $x \mapsto \frac{\partial \alpha}{\partial t}(t, x)$ est continue sur \mathbb{R}_+ car α est de classe \mathcal{C}^1 .

De plus, pour
$$(t,x)\in [a,+\infty[\times\mathbb{R}_+:\frac{\partial\alpha}{\partial t}(t,x)=\frac{-x^2}{1+x^2}e^{-tx^2}]$$

Donc pour
$$(t,x) \in [a,+\infty[\times \mathbb{R}_+ : \left| \frac{\partial \alpha}{\partial t}(t,x) \right| \leq e^{-ax^2}$$

L'intégrale $\int_0^{+\infty} e^{-ax^2} dx$ est impropre seulement en $+\infty$, l'intégrande étant continu sur \mathbb{R}_+ .

Or $\forall x \geq 1, e^{-ax^2} \leq e^{-ax}$ et $\int_1^{+\infty} e^{-ax} \mathrm{d}x$ est une intégrale de référence convergente. Donc $\int_1^{+\infty} e^{-ax^2} \mathrm{d}x$ est convergente par comparaison d'intégrales de fonctions positives. Et par relation de Chasles, l'intégrale $\int_0^{+\infty} e^{-ax^2} \mathrm{d}x$ est convergente.

L'intégrande étant positif, on peut affirmer que $x\mapsto e^{-ax^2}$ est intégrable sur \mathbb{R}_+ On vient d'établir l'hypothèse de domination :

(iv) il existe une fonction ϕ_1 intégrable sur \mathbb{R}_+ telle que $\forall (t,x) \in [a,+\infty[\times\mathbb{R}_+,\left|\frac{\partial\alpha}{\partial t}(t,x)\right| \leq \phi_1(x)$

Ainsi d'après le théorème de dérivation sous l'intégrale, la fonction h est \mathcal{C}^1 sur $[a,+\infty[$] et de plus :

$$\forall t \in [a, +\infty[, h'(t)] = \int_0^{+\infty} \frac{-x^2}{1+x^2} e^{-tx^2} dx$$

Q.II.3.(b) : h est dérivable sur $[a, +\infty[$ pour n'importe quel a strictement positif.

Soit $x \in \mathbb{R}^{+*}$. Alors en prenant $a = \frac{x}{2} < x$, on peut dire que h est dérivable sur $\left] \frac{x}{2}, +\infty \right[$ donc en particulier en x.

Donc h est dérivable sur $]0,+\infty[$

Q.II.4: L'expression obtenue en Q.II.3.(a) pour h' est toujours strictement négative : intégrale convergente d'une fonction continue négative et non-identiquement nulle. h est strictement décroissante sur \mathbb{R}_+ . De plus l'expression de h est une intégrale d'une fonction continue positive et non-identiquement nulle : h est strictement positive. D'où : $\forall t \geq 0, h(0) \geq h(t) > 0$

C'est-à-dire : $\forall t \in \mathbb{R}_+, 0 \leq h(t) \leq \frac{\pi}{2}$

 $\mathbf{Q.II.5}$: D'après l'expression trouvée en Q.II.3.(a) et par linéarité de l'intégrale, pour t>0 on a :

$$\begin{array}{rcl}
h't) - h(t) & = & \int_0^{+\infty} \left(\frac{-x^2}{1+x^2} e^{-tx^2} - \frac{1}{1+x^2} e^{-tx^2} \right) dx \\
& = & -\int_0^{+\infty} e^{-tx^2} dx
\end{array}$$

Posons alors $u: x \mapsto \sqrt{t}x$, c'est une bijection strictement croissante de \mathbb{R}_+ sur \mathbb{R}_+ , de classe \mathcal{C}^1 , et $u': x \mapsto \sqrt{t}$.

Le théorème de changement de variable pour les intégrales impropres permet d'affirmer que $\int_0^{+\infty} e^{-tx^2} dx$ et $\int_0^{+\infty} e^{-u^2} \frac{du}{\sqrt{t}}$ sont de même nature et égales en cas de convergence. Comme elles sont convergente on aura :

$$\forall t > 0, h'(t) - h(t) = -\int_0^{+\infty} e^{-u^2} \frac{\mathrm{d}u}{\sqrt{t}}$$

<u>d'où :</u>

$$\forall t > 0, h'(t) - h(t) = -\frac{I}{\sqrt{t}}$$

Q.II.6.(a) : D'après le cours de première année la solution générale de cette équation différentielle est de la forme $t \mapsto Ke^t$ où K est une constante réelle.

Q.II.6.(b) : Il s'agit de
$$u \mapsto \int_{t_0}^t \frac{e^{-u}}{\sqrt{u}} du$$

Q.II.6.(c) : Notons $\lambda: t \mapsto e^{-t}h(t)$. Cette fonction est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et on a :

Ainsi en intégrant entre t_0 et $t: \forall t > 0, \ \lambda(t) - \lambda(t_0) = -I \int_{t_0}^t \frac{e^{-u}}{\sqrt{u}} du$

Il vient bien :

$$\forall t > 0, h(t) = \left(k - I \int_{t_0}^t \frac{e^{-u}}{\sqrt{u}} du\right) e^t$$
 avec k constante réelle. $(k = \lambda(t_0))$

Q.II.7.(a) : L'intégrande $u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est continu sur]0,t], l'intégrale est impropre en zéro.

Or au voisinage de 0, $\frac{e^{-u}}{\sqrt{u}} \sim \frac{1}{\sqrt{u}}$ et $\int_0^{\tau} \frac{du}{\sqrt{u}}$ est une intégrale de référence convergente (intégrale de Riemann

avec " $\alpha = \frac{1}{2} < 1$ "), donc par comparaison d'intégrales de fonctions positives, $\int_0^t \frac{e^{-u}}{\sqrt{u}} du$ est convergente

Appliquons le changement de variables $v = \sqrt{u}$:

Posons $\beta:]0,t] \longrightarrow [0,\sqrt{t}]$, c'est une fonction \mathcal{C}^1 et bijective $u \longmapsto \sqrt{u}$

(sa bijection réciproque est $\gamma:\]0,\sqrt{t}] \longrightarrow \]0,t]$) $x \longmapsto x^2$

Et posons $\ell:]0, \sqrt{t}] \longrightarrow \mathbb{R}$, qui est continue.

Le théorème de changement de variables généralisé nous permet d'affirmer que les intégrales $\int_{a}^{b} \ell(\beta(u))\beta'(u)du$ et $\int_{-\infty}^{\infty} \ell(x) dx$ sont de même nature, et égales en cas de convergence.

Or: $\forall u \in]0, t], \ l(\beta(u))\beta'(u) = 2e^{-(\sqrt{u})^2} \times \frac{1}{2\sqrt{u}}$ $=\frac{e^{-u}}{\sqrt{u}}$

Comme $\int_0^t \frac{e^{-u}}{\sqrt{u}} du$ est convergente, on en déduit que $\int_0^{\sqrt{t}} 2e^{-x^2} dx$ l'est aussi et que :

$$\int_0^t \frac{e^{-u}}{\sqrt{u}} du = 2 \int_0^{\sqrt{t}} e^{-x^2} dx$$

 $\overline{\mathbf{Q.II.7.(b)}}$: En faisant tendre t vers 0 par valeurs positives dans (\star) comme suggéré on obtient :

$$\lim_{t \to 0} h(t) = k + I \int_0^{t_0} \frac{e^{-u}}{\sqrt{u}} du.$$

Par ailleurs, on a vu que la fonction h est continue sur \mathbb{R}^+ et donc en particulier en 0, donc $\lim_{t\to 0} h(t) = h(0)$ d'où

$$h(0) = k + I \int_0^{t_0} \frac{e^{-u}}{\sqrt{u}} du.$$

Donc $k = \frac{\pi}{2} - I \int_0^{t_0} \frac{e^{-u}}{\sqrt{u}} du$

En injectant à nouveau dans (\star) et en utilisant la relation de Chasles, on trouve :

$$\forall t \ge 0, h(t) = \left(\frac{\pi}{2} - I \int_0^t \frac{e^{-u}}{\sqrt{u}} du\right) e^t$$

et en combinant avec le résultat de Q.II.7.(a) :

$$\forall t \ge 0, h(t) = \left(\frac{\pi}{2} - 2I \int_0^{\sqrt{t}} e^{-x^2} dx\right) e^t$$

Q.II.8 : En remplaçant h(t) par l'expression précédente dans le résultat de Q.II.4 on obtient :

$$0 \le \left(\frac{\pi}{2} - 2I \int_0^{\sqrt{t}} e^{-x^2} \mathrm{d}x\right) e^t \le \frac{\pi}{2}$$

et en multipliant par e^{-t} qui est positif :

$$0 \le \frac{\pi}{2} - 2I \int_0^{\sqrt{t}} e^{-x^2} dx \le \frac{\pi}{2} e^{-t}$$

Q.II.9 :

En faisant tendre t vers $+\infty$ dans l'inégalité précédente, $\int_0^{\sqrt{t}} e^{-x^2} dx$ tend vers I et $\frac{\pi}{2}e^{-t}$ tend vers zéro. Le théorème de la limite par encadrement donne : $\frac{\pi}{2} - 2I^2 = 0$. Par ailleurs $I \ge 0$, car c'est l'intégrale sur \mathbb{R}^+ d'une fonction positive. D'où : $I = \frac{\sqrt{\pi}}{2}$.

PartieIII

Q.III.1 :

Précisons le Développement en série entière usuel de l'exponentielle : $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ de rayon de convergence infini.

Pour $n \in \mathbb{N}$, $\left| \frac{(-1)^n}{n!(2n+1)} \right| \leq \frac{1}{n!}$, or la série $\sum_{n \geq 0} \frac{1}{n!}$ est une série convergente (série entière exponentielle pour x = 1). Donc par comparaison de séries positives on peut affirmer que la série $\sum_{n \geq 0} \left| \frac{(-1)^n}{n!(2n+1)} \right|$ est convergente, et donc la série $\sum_{n \geq 0} \frac{(-1)^n}{n!(2n+1)}$ est absolument convergente, donc convergente

Q.III.2. :

D'après le DSE de l'exponentielle en prenant $x=-t^2$ on aura pour tout t réel : $e^{-t^2}=\sum_{n=0}^{+\infty}(-1)^n\frac{t^{2n}}{n!}$ Le rayon de convergence sera donc infini, et $\mathcal{D}=\mathbb{R}$

Q.III.3.: Comme le segment d'intégration est à l'intérieur du disque ouvert de convergence de la série entière, on peut intégrer terme à terme et donc : $\int_0^1 e^{-t^2} dt = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{n!} \int_0^1 t^{2n} dt$

Or pour
$$n \in \mathbb{N}$$
, $\int_0^1 t^{2n} dt = \left[\frac{t^{2n+1}}{2n+1} \right]_0^1 = \frac{1}{2n+1} d$ 'où : $\int_0^1 e^{-t^2} dt = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{n!(2n+1)}$

Q.III.4.(a) : On a :
$$\int_0^1 e^{-t^2} dt = \sum_{k=0}^n (-1)^k \frac{1}{k!(2k+1)} + R_n$$
Ainsi
$$\left| \int_0^1 e^{-t^2} dt - \sum_{k=0}^n (-1)^k \frac{1}{k!(2k+1)} \right| \le |R_n| \le \frac{1}{(n+1)!(2n+3)}$$

La somme partielle $\sum_{k=0}^{n} (-1)^k \frac{1}{k!(2k+1)}$ est donc une approximation de $\int_0^1 e^{-t^2} dt$ lorsque n est assez grand pour que $\frac{1}{(n+1)!(2n+3)} \le \varepsilon$...

Cette question est très vague... Ce qui précède est-il suffisant? Faut-il donner un algorithme pour expliquer le calcul de la somme partielle? Faut-il exprimer n en fonction de ε ?

Q.III.4.(b) :

Pour n = 3, (n + 1)! = 24 et 2n + 3 = 9, donc $(n + 1)!(2n + 3) \le 1000$ et on ne peut pas assurer $|R_n| \le 10^{-3}...$

Pour n = 4, (n+1)! = 120 et 2n+3 = 11, donc $(n+1)!(2n+3) \ge 1000$ et on a alors $|R_n| \le 10^{-3}$, on peut donc considérer que $r = \sum_{k=0}^{4} (-1)^k \frac{1}{k!(2k+1)}$ est donc une approximation de $\int_0^1 e^{-t^2} dt$ à 10^{-3} .

Détaillons un peu le calcul de r :

$$r = \sum_{k=0}^{4} (-1)^k \frac{1}{k!(2k+1)}$$

$$= 1 - \frac{1}{3} + \frac{1}{2 \times 5} - \frac{1}{6 \times 7} + \frac{1}{24 \times 9}$$

$$= 1 - \frac{1}{3} + \frac{1}{2 \times 5} - \frac{1}{2 \times 3 \times 7} + \frac{1}{2^3 \times 3^3}$$

L'énoncé laisse penser que cette expression suffit. On peut néanmoins aller pllus loin :

$$r = \frac{2^{3} \times 3^{3} \times 5 \times 7 - 2^{3} \times 3^{2} \times 5 \times 7 + 2^{2} \times 3^{3} \times 7 - 2^{2} \times 3^{2} \times 5 + 5 \times 7}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{2^{2} \times 3^{2} (6 \times 35 - 2 \times 35 + 3 \times 7 - 5) + 5 \times 7}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{2^{2} \times 3^{2} (4 \times 35 + 21 - 5) + 5 \times 7}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{2^{2} \times 3^{2} (4 \times 35 + 21 - 5) + 5 \times 7}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{36 \times (156) + 35}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{36 \times (156) + 35}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{36 \times (156) + 35}{2^{3} \times 3^{3} \times 5 \times 7} = \frac{5651}{7560}$$

Cette dernière fraction obtenue à la calculatrice est irréductible...

