Iniciado em sábado, 17 jun. 2023, 16:47

Estado Finalizada

Concluída em sábado, 17 jun. 2023, 16:47

Tempo 31 segundos

empregado

Avaliar 0,00 de um máximo de 10,00(0%)

Questão 1

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=(y^2+z^2)\mathbf{i}+(x^2+y^2)\mathbf{j}+(x^2+y^2)\mathbf{k}$, onde C é o quadrado limitado pelas retas $x=\pm 1$ e $y=\pm 1$ no plano xy, no sentido anti-horário quando visto de cima.

a. 1

 \bigcirc b. -1

 \bigcirc c. 2

 \bigcirc d. 1.5

e. 0

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + z^2 & x^2 + y^2 & x^2 + y^2 \end{vmatrix} = (2y)\mathbf{i} + (2z - 2x)\mathbf{j} + (2x - 2y)\mathbf{k}$. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 2x - 2y$. Dessa forma, $d\sigma = dx\,dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{-1}^1 \int_{-1}^1 (2x - 2y) dx dy = \int_{-1}^1 -4y dy = 0$.

A resposta correta é:

Não respondido

Vale 1,00 ponto(s).

Seja S o cilindro $x^2+y^2=a^2$, $0\leq z\leq h$, juntamente com seu topo, $x^2+y^2\leq a^2$, z=h. Seja $\vec{\mathbf{F}}=-y\mathbf{i}+x\mathbf{j}+x^2\mathbf{k}$. Utilize o teorema de Stokes para encontrar o fluxo exterior de $\nabla\times\vec{\mathbf{F}}$ através de S.

- \odot a. $-3\pi a^2$
- \bigcirc b. $2\pi a^2$
- \odot c. πa^2
- \bigcirc d. $3\pi a^2$
- \odot e. $-\pi a^2$

Sua resposta está incorreta.

Solução: O fluxo de $\nabla \times \vec{\mathbf{F}} = \int \int_S \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \oint\limits_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, então $\vec{\mathbf{r}} = (a \, \cos \, t)\mathbf{i} + (a \, \sin \, t)\mathbf{j}$, $0 \leq t \leq 2\pi$,

 $\frac{d\mathbf{r}}{dt} = (-a\,\sin\,t)\mathbf{i} + (a\,\cos\,t)\mathbf{j}$. Portanto, $\vec{\mathbf{F}}\cdot\frac{d\mathbf{r}}{dt} = ay\,\sin\,t + ax\,\cos\,t = a^2\,\sin^2\,t + a^2\,\cos^2\,t = a^2$

O fluxo de $abla imes ec{\mathbf{F}}=\oint\limits_{C}ec{\mathbf{F}}\cdot dec{\mathbf{r}}=\int_{0}^{2\pi}a^{2}\,dt=2\pi a^{2}$

A resposta correta é:

 $2\pi a^2$

Questão 3

Não respondido

Vale 1,00 ponto(s)

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $ec{\mathbf{F}}=2y\mathbf{i}+3x\mathbf{j}-z^2\mathbf{k}$, onde C é a circunferência $x^2+y^2=9$ no plano xy, no sentido anti-horário quando vista de cima.

- \bigcirc a. 4π
- \odot b. 11π
- \odot c. 7π
- \odot d. 9π
- \odot e. 5π

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot}\vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y & 3x & -z^2 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + (3-2)\mathbf{k} = \mathbf{k}$. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\operatorname{rot}\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 1$. Dessa forma, $d\sigma = dx \, dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_R dx \, dy$ = Area do círculo $= 9\pi$.

A resposta correta é:

 9π

Não respondido

Vale 1,00 ponto(s).

Seja $\vec{\mathbf{n}}$ a normal unitária exterior da casca elíptica S: $4x^2+9y^2+36z^2=36$, $z\geq 0$, e seja $\vec{\mathbf{F}}=y\mathbf{i}+x^2\mathbf{j}+(x^2+y^4)^{\frac{3}{2}}\sin e^{\sqrt{xyz}}\mathbf{k}$. Encontre o valor de $\int\int_S \nabla \times \vec{\mathbf{F}}\cdot\vec{\mathbf{n}}\,d\sigma$.

- \odot a. -4π
- \odot b. 6π
- \circ c. 8π
- \odot d. -8π
- \circ e. -6π

Sua resposta está incorreta.

Solução: Temos $x=3\,\cos\,t\,\mathrm{e}\,y=2\,\sin\,t$

$$\vec{\mathbf{F}} = (2 \sin t)\mathbf{i} + (9 \cos^2 t)\mathbf{j} + (9 \cos^2 t + 16 \sin^4 t) \sin e^{\sqrt{(6 \sin t \cos t)(0)}} \mathbf{k}$$

 $r = (3 \cos t)\mathbf{i} + (2 \sin t)\mathbf{j}$, então $d\mathbf{r} = (-3 \sin t)\mathbf{i} + (2 \cos t)\mathbf{j}$

$$\vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} = -6 \sin^2 t + 18 \cos^3 t$$

$$\iint_{S} \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \int_{0}^{2\pi} (-6 \, \sin^{2} \, t + 18 \, \cos^{3} \, t) \, dt = \left[-3t + \frac{3}{2} \sin \, 2t + 6(\sin \, t)(\cos^{2} \, t + 2) \right]_{0}^{2\pi} = -6\pi.$$

A resposta correta é:

 -6π

Questão 5

Não respondido

Vale 1,00 ponto(s).

Seja $\vec{\mathbf{F}}$ um campo vetorial diferenciável definido em uma região contendo uma superfície orientada fechada e lisa S e seu interior. Seja $\vec{\mathbf{n}}$ o campo vetorial normal unitário em S. Suponha que S seja a união de duas superfícies S_1 e S_2 unidas ao longo de uma curva fechada simples e lisa C. Pode-se dizer algo sobre $\int \int_S \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma$?

- \odot a. 2π
- o b. 0
- \odot c. 5π
- \odot d. 4π
- \circ e. π

Sua resposta está incorreta.

Solução:

Dado que $\int \int_S \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \int \int_{S_1} \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma + \int \int_{S_2} \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma$, e como S_1 e S_2 estão unidos pela curva fechada simples C, cada uma das integrais acima será igual a uma integral de circulação em C. Mas para uma superfície a circulação será no sentido anti-horário, e para a outra superfície a circulação será no sentido horário. Como os integrandos são iguais, a soma será 0. Portanto $\int \int_S \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = 0$.

A resposta correta é:

Não respondido

Vale 1,00 ponto(s).

Encontre a divergência do campo de rotação da figura abaixo,

onde o campo é dado por $\; \mathbf{ar{F}} = rac{-y\mathbf{i} + x\mathbf{j}}{\sqrt{x^2 + y^2}}.$

- \bigcirc a. 0
- \bigcirc b. 1
- \bigcirc c. -2
- \bigcirc d. 2
- \bigcirc e. -1

Sua resposta está incorreta.

Solução: Temos a equação $\vec{F}=rac{-y\mathbf{i}+x\mathbf{j}}{\sqrt{x^2+y^2}}$, para calcularmos a divergência, calculamos a derivada parcial e obtemos:

$$div \, \vec{\mathbf{F}} = \frac{xy - xy}{(x^2 + y^2)^{\frac{3}{2}}} = 0$$

A resposta correta é:

Não respondido

Vale 1,00 ponto(s).

encontre a divergência do campo radial da figura abaixo,

onde o campo é dado por $\, {f {f F}} = x{f i} + y{f j} . \,$

- O a. 2
- $\bigcirc \ \text{b.} \ 1$
- O c. 3
- $\bigcirc \ \text{d.} \ 0$
- \bigcirc e. 4

Sua resposta está incorreta.

Solução: Temos a equação $ec{\mathbf{F}} = x\mathbf{i} + y\mathbf{j}$, calculamos a derivada parcial e temos:

$$div\, ec{\mathbf{F}} = 1 + 1 = 2$$

A resposta correta é:

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Cubo $\vec{\mathbf{F}}=(y-x)\mathbf{i}+(z-y)\mathbf{j}+(y-x)\mathbf{k}$, D: O cubo limitado pelos planos $x=\pm 1$, $y=\pm 1$ e $z=\pm 1$.

- \bigcirc a. -16
- o b. 11
- oc. 15
- \bigcirc d. -15
- o e. 16

Sua resposta está incorreta.

Solução: Primeiro calculamos as derivadas parciais

$$rac{\partial}{\partial x}(y-x)=-1, rac{\partial}{\partial y}(z-y)=-1,$$
 , $rac{\partial}{\partial z}(y-x)=0$

Obtemos $abla \cdot \vec{F} = -2$ como a divergência, então podemos calcular o fluxo

$$flux = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} -2 \, dx \, dy \, dz = -2(2^3) = -16$$

A resposta correta é:

-16

Questão 9

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Esfera $ec{\mathbf{F}}=x^2\mathbf{i}+xz\mathbf{j}+3z\mathbf{k}$, D: A esfera sólida $x^2+y^2+z^2\leq 4$.

- \odot a. 33π
- \odot b. 32π
- \odot c. 29π
- \odot d. 30π
- \odot e. 31π

Sua resposta está incorreta.

Solução: Primeiro fazemos a derivada parcial

A resposta correta é:

 32π

Não respondido

Vale 1,00 ponto(s).

Encontre a divergência do campo de velocidade da figura abaixo,

onde a equação do campo é dada por $\vec{\mathbf{v}}=(a^2-x^2-y^2)\mathbf{k}$, onde a base desses vetores encontra-se no plano xy e extremidades está no parabolóide $z=a^2-r^2$.

- a. 0
- \bigcirc b. 1
- oc. 4
- \bigcirc d. 3
- e. 2

Sua resposta está incorreta.

Solução: Temos $z=a^2-r^2$ em coordenadas cilíndricas, como $r^2=x^2+y^2$, substituímos e obtemos $z=a^2-(x^2+y^2)$

 $ec{\mathbf{v}} = (a^2 - x^2 - y^2)\mathbf{k}$, assim \(div\,{\bf\vec v}=0\0

A resposta correta é: