Policy и value iteration

Постановка задачи

Хотим максимизировать награду G, получаемую агентом

$$G = R_1 + \gamma R_2 + \dots + \gamma^{T-1} R_T$$

Коэффициент дисконтирования: $0\leqslant\gamma<1$

А зачем дисконтирование?

Без дисконтирования обе траектории для робота одинаково хороши.

Марковский процесс принятия решений (MDP)

Следующее состояние и награда зависит только от текущего состояния и действия:

$$p(r_t, s_{t+1}|s_0, a_0, r_0, \dots, s_t, a_t) = p(r_t, s_{t+1}|s_t, a_t)$$

Примеры Марковского процесса

Не Марковский процесс

Без предыдущих состояний не знаем направление мяча

Марковский процесс

Можем узнать направление мяча по следу

Политика

Пример политики (policy)

S	$\pi(a_0 S)$	$\pi(a_1 S)$
s_0	0.5	0.5
s_1	0.9	0.1
s_2	0	1

Решением задачи будет политика, которая максимизирует награду

Классический пример MDP

Уравнения Беллмана

Награда за сессию с момента времени t:

$$G_t = R_t + \gamma R_{t+1} + \dots + \gamma^{T-t} R_T = R_t + \gamma G_{t+1}$$

Action-value – это математическое ожидание наград оставшейся сессии, если сделаем действие а из состояния s

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma G_{t+1}|S_t = s, A_t = a] = \sum_{r,s'} p(r, s'|s, a) \cdot [r + \gamma v_{\pi}(s')]$$

State-value – это математическое ожидание наград оставшейся сессии, если сейчас находимся в состоянии s

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_t + \gamma G_{t+1}|S_t = s] = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot \sum_{r,s'} p(r,s'|s,a)[r + \gamma v_{\pi}(s')]$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot \frac{\sigma(s,a)}{\sigma(s,a)}$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot \mathbf{q}_{\pi}(s, a)$$

Принцип оптимальности Беллмана

Можем выписать оценку сверху для state-value:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot q_{\pi}(s,a) \leqslant \max_{a \in \mathcal{A}(s)} q_{\pi}(s,a) \left[\sum_{a \in \mathcal{A}(s)} \pi(a|s) \right] = \max_{a \in \mathcal{A}(s)} q_{\pi}(s,a)$$

Оценка достигается на новой оптимальной политике:

Как найти оптимальную политику?

Backup Tree

Идея generalized value iteration для решения MDP

Policy iteration

- Вычисляем политику, пока сходимся с определенным допуском
- 2) Улучшаем политику

Value Iteration

- Вычисляем политику только на одном шаге
- 2) Улучшаем политику

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Идея generalized value iteration для решения MDP

Bellman optimality equation for v(s)

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization
 - $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \left[\sum_{s',r} p(s',r|s,\pi(s)) \left[r + \gamma V(s')\right]\right] \leftarrow \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

Уравнение Беллмана для value-state v(s)

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')] \leftarrow$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement policy-stable $\leftarrow true$

For each
$$s \in S$$
:

$$old\text{-}action \leftarrow \pi(s)$$

 $\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Уравнение Беллмана для value-state v(s)

Уравнение Беллмана для

action-value q(s, a)

Value iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

Repeat
$$\Delta \leftarrow 0$$

For each
$$s \in S$$
:

 $v \leftarrow V(s)$

 $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that

 $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

action-value q(s, a)

Нужно пересечь поле, попав в терминальные вершины

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Reward is -1 for all transition

actions

Gridworld

Делаем инициализацию value-state

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

Делаем инициализацию policy, с равновероятными действиями и делаем итерацию policy evaluation

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

$$\begin{split} v_1(6) &= \sum_{a \in \{u,d,l,r\}} \pi(a|6) \sum_{s',r} p(s',r|6,a) [r + \gamma v_0(s')] \\ &= \sum_{a \in \{u,d,l,r\}} \pi(a|6) \sum_{s'} p(s'|6,a) [r + \gamma v_0(s')] \\ &= -1 = 0 \,\forall s' \\ &= 0.25 * \{-p(2|6,u) - p(10|6,d) - p(5|6,l) - p(7|6,r)\} \\ &= 0.25 * \{-1 - 1 - 1 - 1\} \\ &= -1 \end{split}$$

После первой итерации policy evaluation получаем новые значения value-state

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

Ещё одна итерация policy evaluation коэффициент дисконтирования полагаем равным 1

$$v_{2}(6) = \sum_{a \in \{u,d,l,r\}} \pi(a|6) \sum_{s'} p(s'|6,a) \underbrace{[r + \gamma v_{1}(s')]}_{= -1} = \begin{cases} -1, s' \in S \\ 0, s' \in S + \backslash S \end{cases}$$

$$= 0.25 * \{p(2|6,u)[-1 - \gamma] + p(10|6,d)[-1 - \gamma] + p(5|6,l)[-1 - \gamma] + p(7|6,r)[-1 - \gamma]\}$$

$$= 0.25 * \{-2 - 2 - 2 - 2\}$$

$$= -2$$

$$v_{2}(2) = \sum_{a \in \{u,d,l,r\}} \pi(a|2) \sum_{s'} p(s'|2,a) \underbrace{[r + \gamma v_{1}(s')]}_{= -1} = \begin{cases} -1,s' \in S \\ 0,s' \in S^{+} \setminus S \end{cases}$$

$$= 0.25 * \{p(2|2,u)[-1-\gamma] + p(6|2,d)[-1-\gamma] + p(1|2,l)[-1-\gamma*0] + p(3|2,r)[-1-\gamma]\}$$

$$= 0.25 * \{-2-2-1-2\}$$

$$= -1.75$$

$$\Rightarrow v_{2}(2) = -1.75$$

$$\Rightarrow$$
 v_2 for the random policy:

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Повторяем итерацию вычисления к раз

k = 0

37 70	See See	1508	5.00
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

$\kappa - 1$				
0.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	-1.0	
-1.0	-1.0	-1.0	0.0	

k = 2

	. 88	. 7	2
0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0
	-1.7	-1.7 -2.0 -2.0 -2.0	-1.7 -2.0 -2.0 -2.0 -2.0 -2.0

k = 3

V V						
0.0	-2.4	-2.9	-3.0			
-2.4	-2.9	-3.0	-2.9			
-2.9	-3.0	-2.9	-2.4			
-3.0	-2.9	-2.4	0.0			

k = 10

κ – 10				
0.0	-6.1	-8.4	-9.0	
-6.1	-7.7	-8.4	-8.4	
-8.4	-8.4	-7.7	-6.1	
-9.0	-8.4	-6.1	0.0	

...

 $k = \infty$

0.0	-14.	-20.	-22.	
-14.	-18.	-20.	-20.	$\leftarrow v_{\pi}$
-20.	-20.	-18.	-14.	ν_{π}
-22.	-20.	-14.	0.0	

policy improvement

7	

value function	0.0	-14.	-20.	-22.
v_{π}	-14.	-18.	-20.	-20.
	-20.	-20.	-18.	-14.
	-22.	-20.	-14.	0.0

value function	0.0	-14.	-20.	-22.
v_{π}	-14.	-18.	-20.	-20.
	-20.	-20.	-18.	-14.
	-22.	-20.	-14.	0.0

4	value function	-
4	v_{π}	
	-	200

0.0	-14.)	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

	-	3 ←	
olicy improvement			

Получили финальное policy

$$\pi_0 \overset{E}{\rightarrow} v_{\pi_0} \overset{I}{\rightarrow} \pi_1 \overset{E}{\rightarrow} v_{\pi_1} \overset{I}{\rightarrow} \pi_2 \overset{E}{\rightarrow} \dots \overset{I}{\rightarrow} \pi_* \overset{E}{\rightarrow} v_*$$

 $k=\infty$

Могли получить тот же ответ, всего за 3 шага

$$\pi_0 \overset{E}{\to} v_{\pi_0} \overset{I}{\to} \pi_1 \overset{E}{\to} v_{\pi_1} \overset{I}{\to} \pi_2 \overset{E}{\to} \dots \overset{I}{\to} \pi_* \overset{E}{\to} v_*$$

Policy iteration (PI) vs. Value iteration (VI)

- РІ медленее, каждая итерация O(|A||S|² + |S|³)
- РІ требует мало итераций
- VI быстрее, каждая итерация O(|A||S|²)
- VI требует много итераций

В общем случае оптимальнее использовать generalized value iteration, экспериментируя с количеством шагов для policy evaluation

А как решать более сложные задачи?

Хотим научиться играть в 8 bit игру, с разрешением 200х100 пикселей.

Можем оценить количество состояний как $|S| = 8^{20000}$

Или, хотим научиться работать в среде, где действием агента является вещественное число

