Scilab Textbook Companion for Introduction To Nuclear And Particle Physics by V. K. Mittal, R. C. Verma And S. C. Gupta¹

Created by
Arjun Singh
M.Sc.
Physics
Shri Mata Vaishno Devi Univeristy
College Teacher
Mr. Pankaj Biswas
Cross-Checked by
Dr. Jitendra Sharma

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction To Nuclear And Particle Physics

Author: V. K. Mittal, R. C. Verma And S. C. Gupta

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 2

Year: 2011

ISBN: 978-81-203-4311-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	4	
1	The Nucleus	8
2	Nuclear Models	23
3	Radioactivity	32
4	Nuclear Reactions	50
5	Interaction of Radiations with Matter	72
6	Particle Accelerators	81
7	Radiation Detectors	92
8	Particle Physics	101

List of Scilab Codes

Exa	1.3.1	de Broglie relation	8
Exa	1.3.2	Isotopes Isotones and Isobars	8
Exa	1.4.1	Rest mass energy of electron	11
Exa	1.4.2	Nuclear radius	12
Exa	1.4.3	Nuclear density	12
Exa	1.4.4	Density of uranium 235	13
Exa	1.4.5	Variation of nuclear density with radius	13
Exa	1.4.6	Distance of closest approach	14
Exa	1.4.7	Radius of Pb 208	15
Exa	1.5.1	Binding energy of alpha particle	15
Exa	1.5.2	Dissociation energy of C12	16
Exa	1.5.3	Dissociation energy of helium nucleus	16
Exa	1.5.4	Binding energy of Fe 56	17
Exa	1.5.5	Mass defect and packing fraction	18
Exa	1.5.6	Average binding energy	18
Exa	1.6.1	Orbital angular momentum of coupled nucleons	19
Exa	1.6.2	Total angular momentum of proton	19
Exa	1.11.1	Ion accelerated in a mass spectrograph	20
Exa	1.11.2	Distance between isotopic Ar ions	21
Exa	2.2.1	Binding energy and percentage discrepancy	23
Exa	2.2.2	Coulomb energies and nucelon masses of mirror nuclei	24
Exa	2.2.3	Neutron binding energy for isotopes of krypton	25
Exa	2.2.4	Isotopic stability	27
Exa	2.2.5	Stable isotopes for different mass numbers	27
Exa	2.2.6	Coulomb energy coefficient of mirror nuclei	28
Exa	2.2.7	Coulomb and surface energies of uranium	29
Exa	2.3.1	Mass of decayed radioactive material	30
Eva	$2\ 3\ 4$	Magnetic moment of nuclei	30

Exa	3.2.1	Curie becquerel relation
Exa	3.2.2	Activity of thorium
Exa	3.2.3	Mass of radiactive sample
Exa	3.2.4	Activity of 1 kg of uranium
Exa	3.2.6	Half life of radioactive material
Exa	3.2.7	Mass of Ra 226
Exa	3.2.8	Activity and weight of radiactive material 38
Exa	3.2.9	Activity of K 40
Exa	3.2.10	Power in radioactive decay
Exa	3.3.1	Emitted particles during nuclear disintegration 36
Exa	3.3.2	Energy of Pb decay
Exa	3.4.1	Atomic and mass numbers of daughter nuclei 40
Exa	3.4.2	Number of half lives of Rn 222
Exa	3.4.3	Decay constant for alpha and beta decays 42
Exa	3.4.4	Half life of uranium 234
Exa	3.4.5	Decayed amount of radioactive matter
Exa	3.5.2	Kinetic energy of alpha particle 44
Exa	3.5.3	Height of barrier faced by alpha particle 44
Exa	3.5.4	Height of coulomb barrier 48
Exa	3.5.5	KE of a proton to penetrate the barrier 48
Exa	3.6.1	Mass of daughter nucleus 46
Exa	3.6.3	Number of proton decayed per year from water 46
Exa	3.7.1	Energy of gamma photons from excited Ni 60 47
Exa	3.7.2	Conversion energies for K and L shell electrons 47
Exa	3.9.1	Age of uranium mineral
Exa	3.9.2	Age of boat from its half life
Exa	3.9.4	radioactive disintegration of Pu 239
Exa	4.3.1	Cross section of lithium
Exa	4.3.2	Neutron absorption ratio
Exa	4.4.1	Nuclear reactions
Exa	4.5.1	Q value for reaction
Exa	4.5.2	Energy emitted in nuclear reaction
Exa	4.5.3	Threshold energy and Q value for nuclear reaction 58
Exa	4.5.4	Mass of neutron from nuclear reaction
Exa	4.5.5	Q value sign for nuclear reaction
Exa	4.5.6	Spontaneity of Q value for nulclear reaciton 60
Exa	4.5.7	Nuclear reaction Q value 6
Exa	4.5.8	Threshold energy for given reaction

Exa	4.5.9	Q value of nuclear reaction
Exa	4.5.10	Energy of gamma rays
Exa	4.7.1	Energy and power released during fission of U 235
Exa	4.7.2	Fission rate induced in the uranium foil by neutron
Exa	4.7.3	Power in fission process
Exa	4.7.4	Power released in fission
Exa	4.7.5	Fission counts and mass reduction of fissile material .
Exa	4.8.1	Energy liberated in fusion reaction
Exa	4.8.2	Energy produced by helium carbon fusion
Exa	4.8.3	Energy released and temperature required for fusion of
		gases
Exa	4.8.4	Life time of sun
Exa	4.8.5	Particle identification in the nuclear reaction
Exa	4.8.6	Mass defect and q value for fusion reaction
Exa	5.2.1	Energy lost during collision
Exa	5.5.1	Half value thickness of aluminium
Exa	5.5.2	Thickness of lead
Exa	5.5.3	Percentage loss of intensity of gamma rays
Exa	5.6.1	Velocity of ejected photoelectron
Exa	5.6.2	Rate of photoelectron emission
Exa	5.6.3	Kinetic energy of photoelectron
Exa	5.7.1	Compton shift
Exa	5.7.2	Wavelength of the scattered gamma rays
Exa	5.7.3	Wavelength of the incident beam of X rays
Exa	5.7.4	Frequency of the scattered photon
Exa	5.7.5	Energy of scattered photon and recoil electron
Exa	5.7.6	Scattering angle of X rays
Exa	5.8.1	Kinetic energy of electron and positron
Exa	6.2.1	Kinetic energy of protons
Exa	6.3.1	Protons in Van de Graff accelerator
Exa	6.3.2	Reactions at different particle energies
Exa	6.4.1	Protons passing through the carbon stripper foil
Exa	6.5.1	Electron at relativistic energy
Exa	6.5.2	Protons accelerating through drift tubes
	6.5.3	Electron speed at relativistic energies
Exa	6.7.1	Proton accelerating in a cyclotron
	6.7.2	Frequency of deutron accelerated in a cyclotron
	6.7.3	Relation between magnetic field and cyclotron frequency

Exa	6.7.4	Frequency of alternating field				88
Exa	6.8.1	Energy gained by an electron in the magnetic field				88
Exa	6.9.1	Ratio of highest to the lowest frequency of acceleration	ati	in	g	
		proton				89
Exa	6.9.2	W B ration of completely stripped nitrogen				89
Exa	6.10.1	Magnetic field of the electron				90
Exa	6.10.2	Radius of proton orbit in synchrotron				90
Exa	7.2.1	Energy of alpha particle				92
Exa	7.3.1	Pulse height of ionising particle				92
Exa	7.3.2	Charge deposited on detector plate				93
Exa	7.4.1	Height of voltage pulses				93
Exa	7.4.2	Electric field at the surface of wire				94
Exa	7.5.1	Electric filed in G M counter				95
Exa	7.5.2	Life of G M counter				95
Exa	7.5.3	Amplitude of voltage pulses in G M counter				96
Exa	7.5.4	Estimating true count rate of G M counter				96
Exa	7.6.1	Energy resolution of gamma rays				97
Exa	7.6.2	Amplitude of output voltage pulse				97
Exa	7.6.3	Resolution of scintillation detector				98
Exa	7.7.1	Silicon pulse detector				98
Exa	7.7.2	Detector characteristics				99
Exa	8.5.1	Average kinetic energy of pion				101
Exa	8.5.2	Inherent uncertainity in mass of the particle				101
Exa	873	Sub nuclear reactions				102

Chapter 1

The Nucleus

Scilab code Exa 1.3.1 de Broglie relation

```
1 // Scilab code Exal.3.1 Momentum determination for a
      neutron using de-Broglie relation : Page 31
     (2011)
2 h = 6.626e - 034;
                  // Planck's constant, Js
                     // Charge on an electron, C
3 e = 1.602e-019;
4 red_h = h/(2*%pi*e*1e+06); // Reduced Planck's
     constant, MeV
  lambda = 5.0e-015; // de_Broglie wavelength of
     neutron, m
6 p = red_h/lambda; // Momentum of the neutron, MeV
7 printf("\nThe momentum of the neutron from de-
     Broglie relation: %5.3e MeV-s/m", p);
9 // Result
10 // The momentum of the neutron from de-Broglie
     relation : 1.317e-007 MeV-s/m
```

Scilab code Exa 1.3.2 Isotopes Isotones and Isobars

```
1 // Scilab code Exal.3.2 : Grouping the nuclides as
     isotopes, isotones and isobars: Page 32 (2011)
2 E = cell(3,3);
                   // Declare a cell array of empty
     matrices for nuclides information
3 E(1,1).entries = 'C';
                            // Assign element 'C' to
     (1,1) cell
4 E(2,1).entries = 'N';
                            // Assign element 'N' to
     (2,1) cell
5 E(3,1).entries = 'O';
                            // Assign element 'o' to
     (3,1) cell
6 E(1,2).entries = 6;
                          // Assign atomic No. 6 to
     (1,2) cell
7 E(2,2).entries = 7;
                         // Assign atomic No. 7 to
     (2,2) cell
8 E(3,2).entries = 8; // Assign atomic No. 8 to
     (3,2) cell
9 E(1,3).entries = [12,13,14,16];
                                      // Assign mass
     numbers for 'C' to (1,3) cell
10 E(2,3) entries = [14,15,16,17];
                                      // Assign mass
     numbers for 'N' to (2,3) cell
11 E(3,3) entries = [14,15,16,17];
                                      // Assign mass
     numbers for 'O' to (3,3) cell
12 // Isotopes
13 printf("\nIsotopes:");
14 printf("\n===");
15 for i = 1:1:3
                   // Search for the three elements
     one-by-one
       printf("\n(Z = \%d)\n", E(i,2).entries);
16
       for j = 1:1:4
17
          printf ("\t\%s(\%d)", E(i,1).entries, E(i,3).
18
             entries(j));
19
       end
20 end
21 // Isotones
22 printf("\n \n Isotones:");
23 printf("\n===");
24 for N = 6:1:9 // Search for the neutron numbers
     from 6 to 9
```

```
printf("\n(N = \%d)\n",N);
25
26
       for i = 1:1:3
27
             for j = 1:1:4
                     E(i,3).entries(j)-E(i,2).entries
28
                     == N then // N = A-Z
                       printf("\t\%s(\%d)", E(i,1).entries, E
29
                          (i,3).entries(j));
30
                  end
31
             end
32
       end
33 end
34 // Isobars
35 printf("\n\nIsobars:");
36 printf("\n===");
37 \quad for \quad A = 14:1:17
                       // Search for the mass numbers
      from 14 to 17
       printf ("\n(A = \%d)\n", A);
38
39
       for i = 1:1:3
40
             for j = 1:1:4
41
                     E(i,3).entries(j) == A then
                       printf("\t\%s(\%d)",E(i,1).entries,E
42
                          (i,3).entries(j));
43
                  end
44
             end
45
       end
46 \text{ end}
47 //
  // Result
48
49
50 // Isotopes:
51 //
52 // (Z = 6)
                            C(14)
53 //
        C(12)
                  C(13)
                                      C(16)
54 // (Z = 7)
55 //
                            N(16)
        N(14)
                  N(15)
                                      N(17)
56 // (Z = 8)
                 O(15)
                           O(16)
                                     O(17)
57 //
      O(14)
58 //
```

```
59 // Isotones:
60 // =
  // (N = 6)
62 //
      C(12)
                 O(14)
63
  // (N = 7)
64
      C(13)
                 N(14)
                          O(15)
  // (N = 8)
65
                          O(16)
66
      C(14)
                 N(15)
  // (N = 9)
67
      N(16)
                 O(17)
68 //
69 //
70 // Isobars:
71 //
72 // (A = 14)
                  N(14)
                           O(14)
73
     C(14)
74 // (A = 15)
75
      N(15)
  //
                 O(15)
  // (A = 16)
76
77
      C(16)
                 N(16)
                            O(16)
78 // (A = 17)
79 // N(17)
                 O(17)
```

Scilab code Exa 1.4.1 Rest mass energy of electron

```
1 // Scilab code Exa1.4.1: To calculate the energy of
        electron at rest : Page 33 (2011)
2 m = 9.1e-031; // Mass of the electron, Kg
3 C = 3e+08; // Velocity of the light,m/s
4 E = m*C^2/1.6e-013; // Energy of the electron at
        rest, MeV
5 printf("\nEnergy of the electron at rest : %5.3 f MeV
        ", E)
6
7 // Result
8 // Energy of the electron at rest : 0.512 MeV
```

Scilab code Exa 1.4.2 Nuclear radius

```
1 // Scilab code Exal.4.2 : Estimation of the Nucleus
     type from its radius: Page 33 (2011)
2 r = 3.46e-015; // Radius of the nucleus, m
3 r0 = 1.2e-015; // Distance of closest approach of
     the nucleus, m
4 A = round((r/r0)^3); // Mass number of the nucleus
5 if A == 23 then
      element = "Na";
7 elseif A == 24 then
      element = "Mg";
9 elseif
         A == 27 then
      element = "Al";
10
11 elseif A == 28 then
      element = "Si";
12
13 end
14 printf ("The mass number of the nucleus is %d and the
      nucleus is of %s", A, element);
15
16 // Result
17 // The mass number of the nucleus is 24 and the
     nucleus is of Mg
```

Scilab code Exa 1.4.3 Nuclear density

```
1 // Scilab code Exa1.4.3 : Estimate the density of
    nuclear matter : Page 34 (2011)
2 m = 40*(1.66e-027); // Mass of the nucleus, kg
3 r0 = 1.2e-015; // Distance of the closest approach,
```

```
4 A = 40; // Atomic mass of the nucleus
5 r = r0*A^(1/3); // Radius of the nucleus, m
6 V = 4/3*(%pi*r^3); // Volume of the nucleus, m^3
7 density = m/V; // Density of the nucleus, kg/m^3
8 printf("\nRadius of the nucleus: %3.1e m\nVolume of the nucleus: %5.3e m^3\nDensity of the nucleus: %3.1e kg/m^3",r,V,density);
9
10 // Result
11 // Radius of the nucleus: 4.1e-015 m
12 // Volume of the nucleus: 2.895e-043 m^3
13 // Density of the nucleus: 2.3e+017 kg/m^3
```

Scilab code Exa 1.4.4 Density of uranium 235

```
1 // Scilab code Exal.4.4 : To determine the density
     of U-235 nucleus : Page 34 (2011)
2 m = 1.66e - 027;
                 // Mass of a nucleon, kg
3 A = 235; // Atomic mass of U-235 nucleus
4 M = A*m; //Mass of the U-235 nucleus, kg
5 r0 = 1.2e-015; // Distance of closest approach, m
6 r = r0*(A)^(1/3); // Radius of the U-235 nucleus
  V = 4/3*(\%pi*r^3); // Volume of the U-235 nucleus, m
8 d = M/V; // Density of the U-235 nucleus, kg/m^3
9 printf("\nThe density of U-235 nucleus: \%4.2e kg
     per metre cube",d)
10
11 // Result
12 // The density of U-235 nucleus : 2.29e+017 kg per
     metre cube
```

Scilab code Exa 1.4.5 Variation of nuclear density with radius

```
1 // Scilab code Exal.4.5 : To calculate densities of
     O and Pb whose radii are given: Page 35 (2011)
2 \text{ m\_O} = 2.7\text{e-}026; // Mass of O nucleus, kg
3 \text{ r}_0 = 3\text{e}_015; // Radius of O nucleus, m
4 \ V_0 = 4/3*(\%pi*(r0)^3); // Volume of O nucleus,
      metre cube
5 d_0 = m_0/V_0; // Density of O nucleus, kg/metre
      cube
6 \text{ m\_Pb} = 3.4e-025; // Mass of Pb nucleus, kg
7 \text{ r}_Pb = 7.0e-015; // \text{ Radius of Pb nucleus, m}
8 V_Pb = 4/3*(pi*(r_Pb)^3); // Volume of Pb nucleus,
      metre cube
9 d_Pb = m_Pb/V_Pb; //Density of Pb nucleus, kg/metre
      cube
10 printf("\nThe density of oxygen nucleus: %4.2e in
      kg/metre cube",d_0);
11 printf("\nThe density of Pb nucleus: %4.2e in kg/
      metre cube",d_Pb);
12
13 // Result
14 // The density of oxygen nucleus : 3.73e+018 in kg/
      metre cube
15 // The density of Pb nucleus : 2.37e+017 in kg/metre
       cube
```

Scilab code Exa 1.4.6 Distance of closest approach

```
1 // Scilab code Exa1.4.6 : Determination of distance
    of closest approach for alpha-particle : Page 35
        (2011)
2 E = 5.48*1.6e-013; // Energy of alpha particle , J
3 e = 1.6e-019; // Charge of an electron , C
4 Z = 79; // Mas number of Au nucleus ,
5 epsilon_0 = 8.85e-012; // Permittivity of free space
```

Scilab code Exa 1.4.7 Radius of Pb 208

Scilab code Exa 1.5.1 Binding energy of alpha particle

```
1 // Scilab code Exa1.5.1 : Calculation of binding
        energy of alpha particle and express in MeV and
        joule : Page 36 (2011)
2 amu = 931.49; // Atomic mass unit , MeV
3 M_p = 1.00758; // Mass of proton , amu
4 M_n = 1.00897; // Mass of neutron , amu
5 M_He = 4.0028; // Mass of He nucleus , amu
6 Z = 2; // Atomic number
7 N = 2; // Number of neutron
8 M_defect = Z*M_p+N*M_n-M_He; // Mass defect , amu
```

Scilab code Exa 1.5.2 Dissociation energy of C12

```
// Scilab code Exal.5.2 : Calculation of energy
    required to break C-12 into 3-alpha particle :
    Page 37 (2011)

amu = 1.49239e-010; // Atomic mass unit, J

M_C = 12; // Mass of C-12, amu

M_a = 4.0026; // Mass of alpha particle, amu

M_3a = 3*M_a; // Mass of 3 alpha particle, amu

D = M_C-M_3a; // Difference in two masses, amu

E = D*amu; // Required energy, J

printf("\nThe energy required to break 3 alpha
    particles : %4.2e J",E)

// Result
// The energy required to break 3 alpha particles :
    -1.16e-012 J
```

Scilab code Exa 1.5.3 Dissociation energy of helium nucleus

```
1 // Scilab code Exal.5.3 : Calculation of energy
     required to knock out nucleon from He nucleus :
     Page 37 (2011)
2 M_p = 1.007895; // Mass of proton, amu
3 M_n = 1.008665; // Mass of neutron, amu
4 M_He = 4.0026; // Mass of He-nucleus, amu
5 Z = 2; // Number of proton
6 N = 2; // Number of neutron
7 D_m = [(Z*M_p)+(N*M_n)-M_He]; // Mass defect, amu
8 amu = 931.49; // Atomic mass unit, MeV
9 E = D_m*amu; // Required energy, MeV
10 printf("\nThe energy required to knock out nucleons
     from the He nucleus = \%5.2 \,\mathrm{f} MeV", E);
11
12 // Result
13 // The energy required to knock out nucleons from
     the He nucleus = 28.43 MeV
```

Scilab code Exa 1.5.4 Binding energy of Fe 56

Scilab code Exa 1.5.5 Mass defect and packing fraction

```
1 // Scilab code Exal.5.5 : Calculation of mass defect
      and packing fraction from given data Page: 38
     (2011)
2 amu = 931.49; // Atomic mass unit, MeV
3 \text{ M_p} = 1.007825; // Mass of proton, amu
4 M_n = 1.008663; // Mass of neutron, amu
5 A = 2; // Mass number of deutron, amu
6 \text{ M_D} = 2.014103; // Mass of deuteron nucleus, amu
7 M_Defect = (M_p+M_n-M_D)*amu; // Mass defect of
     the nucleus, MeV
8 P_fraction = (M_D - A)/A; // Packing fraction of
      nucleus
9 printf("\n Mass defect %4.2 f MeV\n Packing
     fraction \%7.5 \, f", M_Defect, P_fraction);
10
11 // Result
12 //
       Mass defect
                         2.22 MeV
13 //
       Packing fraction 0.00705
```

Scilab code Exa 1.5.6 Average binding energy

```
1 // Scilab code Exa1.5.6 : To calculate binding
        energy per nucleon of He-4 nucleus : Page 38
        (2011)
2 m_p = 1.007825; // Mass of proton, amu
3 m_n = 1.008665; // Mass of neutron, amu
4 m_He = 4.002634; // Mass of He-4 nucleus, amu
5 amu = 931.47; // Atomic mass unit, MeV
6 A = 4, // Mass number of He-4 nucleus
```

```
7 BE = [2*m_p+2*m_n-m_He]*amu; // Binding energy of He
       -4 nucleus, MeV
8 Av_BE = BE/A; // Average binding energy or binding
       energy per nucleon, MeV
9 printf("\nThe binding energy per nucleon : %4.2 f MeV
       ", Av_BE);
10
11 // Result
12 // The binding energy per nucleon of He-4 is
13 // The binding energy per nucleon : 7.07 MeV
```

Scilab code Exa 1.6.1 Orbital angular momentum of coupled nucleons

```
1 // Scilab code Exal.6.1 : Orbital angular momentum
     of coupled nucleons: Page 39 (2011)
2 11 = 1; // Orbital qunatum number for p-state
     nucleon
3 12 = 2;
              // Orbital qunatum number for d-state
     nucleon
4 // Display the value of L within the for loop
5 disp("The possible L values will be");
6 for i = abs(11-12):1:abs(11+12)
                                          // Coupling
     of l-orbitals
      printf("\t %1d",i);
8 end
10 // Result
11 // The possible L values will be
12 // 1
            2
                  3
```

Scilab code Exa 1.6.2 Total angular momentum of proton

```
1 // Scilab code Exal.6.2 : Total angular momentum of
     proton : Page 40 (2011)
2 // Get the l value from the user
3 1 = 3; // Orbital qunatum number for f-state
     proton
4 s = 1/2; // Magnitude of spin quantum number
5 // Display the value of j within the for loop
6 disp("The j values will be between");
                              // l-s Coupling
7 for i = abs(1-s):1:abs(1+s)
      printf("\t %3.1 f",i);
9 end
10
11 // Result
12 // The j values will be between
13 // 2.5
              3.5
```

Scilab code Exa 1.11.1 Ion accelerated in a mass spectrograph

```
1 // Scilab code Exal.11.1 : To find the speed, mass
      and mass number of the ion which is accelerated
      in a mass spectrograph: Page 40 (2011)
2 V = 1000; // Potential difference, volts
3 R = 0.122; // Radius of the circular path, m
4 B = 1500e-04; // Magnetic field, tesla
5 e = 1.602e-019; // Charge of the electron, C
6 \text{ amu} = 1.673 \text{e} - 027; // Atomic mass unit, kg
7 v = (2*V)/(R*B); // Speed of the ion, m/s
8 M = 2*e*V/v^2; // Mass of the ion, kg
9 A = M/amu; // Mass number
10 printf("\n Speed > \%5.3 \,\mathrm{e}\,\mathrm{m/s}\,\mathrm{n} Mass
       \%5.3 \,\mathrm{e} kg \n Mass number > \%5.2 \,\mathrm{f} ",v, M, A
      );
11
12 // Result
13 //
```

Scilab code Exa 1.11.2 Distance between isotopic Ar ions

```
1 // Scilab code Exa 1.11.2 : To determine distances
     between the isotopic Ar ions in Bainbridge mass
      spectrograph: Page 41 (2011)
2 amu = 1.673e-027; // Atomic mass unit, kg
3 E = 5e+04; // Electric field, V/m
4 B1 = 0.4; // Magnetic field, tesla
5 v = E/B1; // Velocity of ions, m/s
6 B = 0.8; // Magnetic field, tesla
7 e = 1.602e-019; //charge of electron, C
8 m_Ar = zeros(1,3); // Array of masses of three Ar
      ions, amu
9 \text{ m\_Ar}(1,1) = 36, \text{m\_Ar}(1,2) = 38, \text{m\_Ar}(1,3) = 40; //
      Masses of three isoptopes of Ar, amu
10 r_Ar = zeros(1,3); // Array of radii of three Ar
     ions, mm
11 \quad for \quad i = 1:1:3
12
       r_Ar(1,i) = (m_Ar(1,i)*amu*v)/(B*e)*1e+03; //
          Radius of Ar ion orbit, mm
       disp(r_Ar(1,i));
13
14 end
15 d1 = 2*(r_Ar(1,2)-r_Ar(1,1));
                                  // Distance b/w
      first and second line, mm
16 d2 = 2*(r_Ar(1,3)-r_Ar(1,2));
                                   // Distance b/w
      second and third line, mm
17 printf("\nThe distance between successive lines due
     to three different isotopes: %3.1 f mm and %3.1 f
     mm", d1,d2);
18
19 // Result
```

// The distance between successive lines due to three different isotopes : $6.5~\mathrm{mm}$ and $6.5~\mathrm{mm}$

Chapter 2

Nuclear Models

Scilab code Exa 2.2.1 Binding energy and percentage discrepancy

```
1 // Scilab code Exa2.2.1 To calculate the binding
      energy of Ca(20,40) and %-age discrepancy: Page
      66 (2011)
2 // \text{ For } Ca(20,40), actual binding energy is .....
3 \text{ m_p} = 1.007825; // Mass of proton, amu
4 \text{ m_n} = 1.008665; // Mass of neutron, amu
5 Z = 20; // Number of protons
6 N = 20; // Number of neutrons
7 \text{ M_n} = 39.962591; // \text{ Mass of the nucleus, amu}
8 B_actual = (M_n-Z*m_p-N*m_n)*931.49; // Actual
      binding energy, MeV
9 // For Ca(20,40), Binding energ as per semiemperical
      mas formula.....
10 Z = 20; // Number of protons
11 a_v = 15.5; // Volume constant, MeV
12 a_s = 16.8; // Surface constant, MeV
13 a_a = 23.0; // Asymmetric constant, MeV
14 a_c = 0.7; // Coulomb constant, MeV
15 a_p = 34.0; // Paring constant, MeV
16 A = 40; // Mass number
17 B_semi = [a_v*A-(a_s*A^(2/3))-(a_c*Z*(Z-1)/A^(1/3))
```

```
-(a_a*(A-2*Z)^2/A) - (a_p*A^(-3/4)); // Binding
      energy as per semiemperical mass formula
18 // Percentage discrepancy between actual and
     semiemperical mass formula values are ......
19 Per_des = -(B_semi+B_actual)/B_actual*100; //
      Percentage discrepancy
20 printf("\nActual binding energy = \%6.2 f MeV\nBinding
       energy as per semiemperical mass formula = \%6.2 f
      MeV \setminus nPercentage discrepancy = \%3.1 f percent,
     B_actual, B_semi, Per_des);
21
22 // Result
23 // Actual binding energy = -342.05 MeV
24 // Binding energy as per semiemperical mass formula
     = 343.59 \text{ MeV}
25 // Percentage discrepancy = 0.4 percent
```

Scilab code Exa 2.2.2 Coulomb energies and nucelon masses of mirror nuclei

```
// Scilab code Exa2.2.2 To calculate the difference
in coulomb energy and nucleons' mass difference
for mirror nuclei and show in agreement with
actual mass difference Page 67 (2011)
// Calculation of coulomb energy for mirror nuclei
: N-7 and O-8
// For N-7 nucleus
a_c = 0.7; // Coulomb energy constant, MeV
Z_N = 7; // Atpmic no.
A = 15; // Atomic mass
E_C_N = a_c*Z_N*(Z_N-1)/(A^(1/3)); // Coulomb energy
for N-7, MeV
// For O-8 nucleus
a_c = 0.7; // Coulomb energy constant, MeV
// Sz_D = 8; // Atpmic no.
```

```
11 A = 15; // Atomic mass
12 E_C_0 = a_c*Z_0*(Z_0-1)/(A^(1/3)); // Coulomb energy
       for O-8, MeV
13 C_E_d = E_C_0 - E_C_N; // Coulomb energy difference,
     MeV
14 \text{ m_p} = 1.007276*931.49; // Mass of proton, MeV
15 m_n = 1.008665*931.49; // Mass of neutron, MeV
16 M_d = m_n-m_p; // Mass difference of nucleons, MeV
17 D_C_M = round(C_E_d-M_d); // Difference in coulomb
      energy and nucleon mass difference, MeV
18 \text{ M}_{0} = 15.003070*931.49; // Mass of O-8, MeV
19 M_N = 15.000108*931.49; // Mass of N-7, MeV
20 D_A = round(M_O-M_N); // Actual mass difference, MeV
21 printf("\nDifference in Coulomb energy = \%5.3 \,\mathrm{f} MeV\
      nNucleon mass difference = \%6.4 f MeV\nDifference
       in Coulomb energy and nucleon mass difference =
      \%5.3 \text{ f MeV} \land \text{nActual mass difference} = \%5.3 \text{ f MeV},
      C_E_d, M_d, D_C_M, D_A);
22 if D_A == D_C_M then printf("\nResult is verified")
23 end
24 // Result
25 // Difference in Coulomb energy = 3.974 MeV
26 // Nucleon mass difference = 1.2938 MeV
27 // Difference in Coulomb energy and nucleon mass
      difference = 3.000 \text{ MeV}
28 // Actual mass difference = 3.000 MeV
29 // Result is verified
```

Scilab code Exa 2.2.3 Neutron binding energy for isotopes of krypton

```
1 // Scilab code Exa2.2.3 To calculate the energy
    required to remove a neutron from Kr-81, Kr-82,
    Kr-83 : Page 68 (2011)
2 // For Kr-80,
3 m_p = 1.007825; // Mass of proton, amu
```

```
4 \text{ m_n} = 1.008665; // Mass of neutron, amu
5 Z = 36; // Number of protons
6 N_80 = 44; // Number of neutrons
7 M_n_80 = 79.91628; // Mass of Kr nucleus
8 BE_Kr_80 = (Z*m_p+N_80*m_n-M_n_80)*931.49; //
      Binding energy for Kr-80, MeV
  // \text{ For Kr} - 81,
10 N_81 = 45; // Number of neutrons
11 M_n_{81} = 80.91661; // Mass of Kr_{81} nucleus
12 BE_Kr_81 = (Z*m_p+N_81*m_n-M_n_81)*931.49; //
      Binding energy for Kr-81 nucleus
13 // \text{ For } Kr - 82
14 N_82 = 46; // Number of neutrons
15 M_n_82 = 81.913482; // Mass of Kr nucleus
16 BE_Kr_82 = (Z*m_p+N_82*m_n-M_n_82)*931.49;
      Binding energy for Kr-82, MeV
17 // \text{ For Kr} - 83
18 N_83 = 47; // Number of protons
19 M_n_83 = 82.914134; // Mass of Kr-83 nucleus
20 \quad BE_Kr_83 = (Z*m_p+N_83*m_n-M_n_83)*931.49; //
      Binding energy for Kr-83, MeV
21 E_{sep_81} = BE_{Kr_81} - BE_{Kr_80}; // E_{nergy} seperation
      of neutron for Kr-81, MeV
22 \text{ E\_sep\_82} = \text{BE\_Kr\_82-BE\_Kr\_81}; // Energy separation
      of neutron for Kr-82, MeV
23 E_{sep_83} = BE_{Kr_83} - BE_{Kr_82}; // Energy separation
      of neutron for Kr-83, MeV
24
25 printf("\nEnergy separation of neutron for Kr-81 =
      %4.2 f MeV\nEnergy seperation of neutron for Kr−82
       = \%4.2 \, \text{f MeV} \setminus \text{nEnergy separation of neutron for}
      Kr-83 = \%5.2 f MeV, E_sep_81, E_sep_82, E_sep_83)
26
27 // Result
28 // Energy separation of neutron for Kr-81 = 7.76 MeV
29 // Energy separation of neutron for Kr-82 = 10.99
      MeV
```

```
30 // Energy separation of neutron for Kr-83 = 7.46 MeV
```

Scilab code Exa 2.2.4 Isotopic stability

```
1 // Scilab code Exa2.2.4 To determine the most stable
      isotope of A = 75: Page 68 (2011)
2 a_v = 15.5; // Volume energy coefficient, MeV
3 a_s = 16.8; // Surface energy coefficient MeV
4 a_c = 0.7; // Coulomb energy coefficient, MeV
5 a_a = 23.0; // Asymmetric energy coefficient, MeV
6 a_p = 34.0; // Pairing energy coefficient, MeV
7 A = 75; // Given atomic mass
8 z = poly(0, 'z'); // z declares a polynomial
9 B = -a_c*z*(z-1)/A^(1/3)-a_a*(A-2*z)^2/A; //
     Binding energy as per liquid drop model
10 dB = derivat(B); // Differentiate B w.r.t. z
11 z = roots(dB); // Isotope of A = 75
12 z_i = round(z); // Most stable isotope of A = 75
13 printf("\nMost stable isotope of A = 75 corresponds
     to Z = \%d ", z_i)
14
15 //
       Result
16 //
      Most stable isotope of A = 75 corresponds to Z =
      33
```

Scilab code Exa 2.2.5 Stable isotopes for different mass numbers

```
1 // Scilab code Exa2.2.5 To determine the most stable
    isotopes for A = 27, A = 118, A = 238 : Page 69
    (2011)
2 a_v = 15.5; // Volume energy, MeV
3 a_s = 16.8; // Surface energy, MeV
```

```
4 a_c = 0.7; // Coulomb energy, MeV
5 a_a = 23.0; // Asymmetric energy, MeV
6 \text{ a_p = 34.0; } // \text{ Pairing energy, MeV}
7 z = poly(0, z')
8 // \text{ For A} = 27;
9 B_27 = -a_c*z*(z-1)/27^(1/3)-a_a*(27-2*z)^2/27; //
      Binding energy as per liquid drop model
10 dB_27 = derivat(B_27) // Differentiate B w.r.t. z
11 z_27 = roots(dB_27) // Isotope of A = 27
12 z_i_27 = round(z_27) // Most stable isotope of A =
      27
13 // \text{ For A} = 118
14 B_{118} = -a_c*z*(z-1)/118^{(1/3)} - a_a*(118-2*z)^2/118 ;
       // Binding energy as per liquid drop model
15 	ext{ dB}_{118} = \frac{\text{derivat}}{\text{derivat}} (B_{118})
                              // Differentiate B w.r.t. z
                              // Isotope of A = 118
16 z_{118} = roots(dB_{118})
17 z_{i_1}118 = round(z_{i_1}118)
                               // Most stable isotope of A
       = 118
18 // For A = 238
19 \quad B_{238} = -a_c*z*(z-1)/238^(1/3)-a_a*(238-2*z)^2/238 ;
       // Binding energy as per liquid drop model
20 dB_238 = derivat(B_238); // Differentiate B w.r.t. z
21 z<sub>238</sub> = roots(dB<sub>238</sub>); // Isotope of A = 238
z_{i_238} = round(z_{238}); // Most stable isotope of A
      = 238
23 printf("\nMost stable isotopes for A = 27, A = 118,
      A = 238 corresponds to z = \%d, %d and %d
      respectively", z_i_27, z_i_118, z_i_238);
24
25 // Result
26 // Most stable isotopes for A = 27, A = 118, A = 238
       corresponds to z = 13, 50 and 92 respectively
```

Scilab code Exa 2.2.6 Coulomb energy coefficient of mirror nuclei

```
1 // Scilab code Exa2.2.6 : To calculate the coulomb
       coefficient and estimate nuclear radius for
      mirror nuclei: Page no. 69 (2011)
2 // Mirror nuclei : Na-11 and Mg-12
3 \text{ m_p} = 1.007276; // Mass of proton, amu
4 m_n = 1.008665; // Mass of neutron, amu
5 \text{ M}_{\text{Mg}} = 22.994124; // Atomic mass of Mg-12, amu
6 \text{ M_Na} = 22.989768; // Atomic mass of Na-11, amu
7 A = 23; // Mass number
8 Z_Mg = 12; // Atomic number of Mg-12
9 e = 1.6e-019; // Charge of the electron, C
10 K = 8.98e+09; // Coulomb force constant
11 a_c = A^(1/3)/(2*Z_Mg-1)*[(M_Mg-M_Na)+(m_n-m_p)]
      ]*931.47; // Coulomb coefficient, MeV
12 \text{ r}_0 = 3/5*K*e^2/(a_c*1.6e-013); // Nuclear radius, m
13 printf("\nCoulomb coefficient = %4.2 f MeV\nNuclear
      radius = \%3.1e m, a_c, r_0)
14 //
        Result
15 //
        Coulomb coefficient = 0.66 \text{ MeV}
16 //
       Nuclear radius = 1.3e-0.15 m
```

Scilab code Exa 2.2.7 Coulomb and surface energies of uranium

```
\nSurface energy for U(92,236) = \%5.1 \, f MeV ", E_c, E_s)

11 // Result

12 // Coulomb energy for U(92,236) = -973.3 MeV

13 // Surface energy for U(92,236) = -641.6 MeVS
```

Scilab code Exa 2.3.1 Mass of decayed radioactive material

```
1 // Scilab code Exa2.3.1 To calculate the mass of
     decayed radioactive material: Page 126 (2011)
2 t_prime = 1600; // Half life of radioactive
     material, years
3 t = 2000; // Total time, years
4 lambda = 0.6931/t_prime; // Decay constant, years
5 m0 = 1; // The mass of radioactive substance at t0,
6 m = m0* %e^(-(lambda*t)); // Ratio of total number
     of atoms and number of atoms disintegrat, mg
  a = 1-m; // The amount of radioactive substance
     decayed, mg
  printf("\nThe amount of radioactive substance
     decayed : \%6.4 f mg, a)
9
10 // Result
11 // The amount of radioactive substance decayed :
     0.5795 \text{ mg}
```

Scilab code Exa 2.3.4 Magnetic moment of nuclei

```
1 // Scilab code Exa2.3.4 : To calculate the magnetic
    moment of given nuclei : Page no. 74 : (2011)
2 // For Ne(10.19) nucleus
```

```
3 \text{ j_Ne_9} = 5/2; // Total angular momentum for Ne-19
      nucleus
4 u_Ne_9 = j_Ne_9+2.29; // Magnetic moment of Ne-19
      nucleus, nuclear magneton
5 // For Ne(10,20) nucleus
6 \text{ j_Ne_10} = 0; // \text{ Total angular momentum for Ne-20}
      nucleus
7 u_Ne_{10} = j_Ne_{10+2.29}; // Magnetic moment of Ne-20
      nucleus, nuclear magneton
8 // For Ne(10,21) nucleus
9 j_Ne_{11} = 5/2; // Total angular momentum for Ne-21
      nucleus
10 u_Ne_11 = j_Ne_11+2.29; // Magnetic moment of Ne-21
      nucleus, nuclear magneton
11 printf("\nMagnetic moment of Ne-19 nucleus = \%4.2 \,\mathrm{f}
      nuclear magneton\nMagnetic moment of Ne-20
      nucleus = \%4.2 f nuclear magneton\nMagnetic moment
       of Ne-21 nucleus = \%4.2 f nuclear magneton",
      u_Ne_9, u_Ne_10, u_Ne_11);
12 // Result
13 // Magnetic moment of Ne-19 nucleus = 4.79 nuclear
      magneton
14 // Magnetic moment of Ne-20 nucleus = 2.29 nuclear
      magneton
15 // Magnetic moment of Ne-21 nucleus = 4.79 nuclear
      magneton
```

Chapter 3

Radioactivity

Scilab code Exa 3.2.1 Curie becquerel relation

Scilab code Exa 3.2.2 Activity of thorium

```
\frac{6}{7} // Result \frac{7}{7} // The activty of 10g of Th-232 : 4.102\,\mathrm{e} + 004 dps
```

Scilab code Exa 3.2.3 Mass of radiactive sample

```
// Scilab code Exa3.2.3: Calculation of mass of 1 Ci
    sample of radioactive sample : Page 125 (2011)
2 A = 3.7e+010; // Activity of 1Ci sample, dps
3 t = 1608; // Half life of radioactive substance, s
4 N = 6.023e+023/214; // Number of atoms in 1g of
    substance having atomic mass 214
5 lambda = 0.6931/t; // Decay constant, s^-1
6 m = A/(lambda*N); // The mass of radioactive
    substance, g
7 printf("\nThe mass of radioactive substance : %4.2e
    g", m)
8 // Result
9 // The mass of radioactive substance : 3.05e-008
    g
```

Scilab code Exa 3.2.4 Activity of 1 kg of uranium

```
1 // Scilab code Exa3.2.4: To calculate the activity
    of 1kg of U-238: Page 125 (2011)
2 t = 1.419e+017; // Half life of U-238, s
3 N = 6.023e+023/238; // Number of atoms in 1g of U
        -238
4 lambda = 0.6931/t; // Decay constant, s^-1
5 A = (lambda*N)*1000/(3.7e+010); // The activity of 1
        kg of U-238, Ci
6 printf("\nThe activity of 1kg of U-238 : %4.2e Ci",
        A)
7 // Result
```

Scilab code Exa 3.2.6 Half life of radioactive material

```
// Scilab code Exa3.2.6 Determination of half life
    of radioactive material Page 127 (2011)

t = 10; // Total period of radioactive material,
    days

lambda = log(6.6667)/10; //Decay constant, day^-1

t_h = 0.6931/(lambda); // Half life of radioactive
    substance, days

printf("\nThe half life of radioactive substance :
    %4.2 f days", t_h)

// Result

// The half life of radioactive substance :
    3.65 days
```

Scilab code Exa 3.2.7 Mass of Ra 226

```
1 // Scilab code Exa3.2.7 : To calculate the mass of
     Ra-226 : Page no. 127 (2011)
2 t_h = 1620*31536000; // Half life of Ra-226, S
3 D = 0.6931/t_h; // Decay constant, S^-1
4 A_Ci = 3.7e+010; // Activity, Ci
5 N_Ci = A_Ci/D; // Number of atoms decayed
6 m = 0.226; // Mass of 6.023e+023 atoms, kg
7 M_Ci = m*N_Ci/6.023e+023; // Mass of 1-Ci sample of
     Ra-226, kg
8 A_rf = 10^6; // Activity, Rf
9 N_rf = A_rf/D; // Number of atoms decayed
10 M_rf = m*N_rf/6.023e+023; // Mass of 1-Rf sample of
     Ra-226, kg
```

```
11 printf("\n Mass of 1-Ci sample of Ra-226 = %5.3e
         kg and \n Mass of 1-Rf sample of Ra-226 = %4.2e
         kg ",M_Ci, M_rf)

12 // Result
13 // Mass of 1-Ci sample of Ra-226 = 1.023e-003 kg
         and
14 // Mass of 1-Rf sample of Ra-226 = 2.77e-008 kg
```

Scilab code Exa 3.2.8 Activity and weight of radiactive material

```
1 // Scilab code Exa3.2.8 To calculate the activity
     and weight of radioactive material: Page 128
     (2011)
2 N_o = 7.721e+018; // Number of atoms in 3 mg of U
3 t_h = 2.5e+05; // Half life of U-234, years
4 T = 150000; // Total time, years
5 lambda = 0.6931/t_h; // Decay constant, year -1
6 N = N_o*(\%e^-(lambda*T)); // Number of atoms left
      after T years
7 m = 234000; // Mass of 6.023e+023 atoms of U-234, mg
8 M = m*N/(6.023e+023); // Weight of sample left after
       t years,
9 L = 8.8e-014; // Given decay constant, S^-1
10 A = N*L*10^6/(3.7e+010); // Activity, micro Ci
11 printf("\nThe weight of sample = \%5.3 \,\mathrm{f} mg \n
               = %5.2 f micro Ci ", M, A)
      Activity
12 //
        Result
13 //
          The weight of sample = 1.979 \text{ mg}
14 //
           Activity = 12.12 \text{ micro Ci}
```

Scilab code Exa 3.2.9 Activity of K 40

```
1 // Scilab code Exa3.2.9 : To calculate the activity
      of K-40 : Page no. 129 (2011)
2 N = 6.324e+020; // Number of atoms in 4.2e-05 kg of
      K-40
3 t_h = 1.31e+09*31536000; // Half life of K-40, s
4 D = 0.693/t_h; // Decay constant, s^-1
5 A = N*D/(3.7e+010)*10^6; // Activity of K-40,
      microCi
6 printf("\nThe activity of K-40 : %5.3f micro Ci", A
      )
7 // Result
8 // The activity of K-40 : 0.287 micro Ci
```

Scilab code Exa 3.2.10 Power in radioactive decay

```
1 // Scilab code Exa3.2.10 : To calculate the power
     produced by 10 mg of Po-210 : Page no. 130
     (2011)
2 N = 2.87e+019; // Number of atoms in 10e-10kg of Po
     -210
3 t_h = 138*24*3600; // Half life of Po-210, s
4 D = 0.693/t_h; // Decay constant, s^-1
5 A = N*D; // Activity of K-40, dps
6 E = 5.3*1.6e-013; // Power produce by one dps, MeV
7 P = A*E; // Power produced by 1.667e+012 dps, W
8 printf("\nThe Power produced by 1.667e+012 dps : \%3
     .1 f W", P)
9 //
       Result
10 //
       The Power produced by 1.667e+012 dps: 1.4 W
```

Scilab code Exa 3.3.1 Emitted particles during nuclear disintegration

```
1 // Scilab code Exa 3.3.1 : Finding particles in the
       given reactions: page no. 131 (2011)
2 // Declare three cells (for three reactions)
3 R1 = cell(4,3);
4 R2 = cell(4,3);
5 R3 = cell(3,3);
7 // Enter data for first cell (Reaction)
8 R1(1,1).entries = "Pb";
9 R1(1,2).entries = 82;
10 R1(1,3).entries = 211;
11 R1(2,1).entries = 'Bi';
12 R1(2,2).entries = 83;
13 R1(2,3).entries = 211;
14 R1(3,1).entries = 'Tl';
15 R1(3,2).entries = 81;
16 \text{ R1}(3,3).\text{entries} = 207;
17 R1(4,1).entries = 'Pb';
18 R1(4,2).entries = 82;
19 R1(4,3).entries = 207;
20
21 // Enter data for second cell (Reaction)
22 R2(1,1).entries = "U";
23 R2(1,2).entries = 92;
24 R2(1,3).entries = 238;
25 R2(2,1).entries = 'Th';
26 R2(2,2).entries = 90;
27 R2(2,3).entries = 234;
28 R2(3,1).entries = 'Pa';
29 R2(3,2).entries = 91;
30 \text{ R2}(3,3).\text{entries} = 234;
31 R2(4,1).entries = 'U';
32 R2(4,2).entries = 92;
33 R2(4,3).entries = 234;
34
35 // Enter data for third cell (Reaction)
36 \text{ R3}(1,1).\text{entries} = "Bi";
37 \text{ R3}(1,2).\text{entries} = 83;
```

```
38 \text{ R3}(1,3) \cdot \text{entries} = 211;
39 \text{ R3(2,1).entries} = 'Pa';
40 \text{ R3}(2,2).\text{entries} = 84;
41 R3(2,3).entries = 211;
42 R3(3,1).entries = 'Pb';
43 \text{ R3}(3,2).\text{entries} = 82;
44 \text{ R3}(3,3) \cdot \text{entries} = 207;
45
  // Declare a function returning the type of particle
46
       emitted
   function particle = identify_particle(d_Z, d_A)
47
          if d_Z == 2 & d_A == 4 then
48
49
           particle = "Alpha";
50
      elseif d_Z == -1 \& d_A == 0 then
           particle = "Beta minus";
51
       elseif d_Z == 1 & d_A == 0 then
52
           particle = "Beta plus";
53
54
          end
55 endfunction
56
57 // Display emitted particles for first reaction
58 printf("\n\n nReaction-I:");
59 \text{ for } i = 1:1:3
60
            dZ = R1(i,2).entries-R1(i+1,2).entries;
            dA = R1(i,3).entries-R1(i+1,3).entries;
61
62
            p = identify_particle(dZ,dA);
63
            printf("\n\%s(\%d) - (%s) --> \%s(\%d)", R1(i,1)
                .entries, R1(i,2).entries, p, R1(i+1,1).
               entries, R1(i+1,2).entries);
64 end
65
66 // Display emitted particles for second reaction
67 printf("\n\n nReaction-II:");
68 \text{ for } i = 1:1:3
69
            dZ = R2(i,2).entries-R2(i+1,2).entries;
            dA = R2(i,3).entries-R2(i+1,3).entries;
70
            p = identify_particle(dZ,dA);
71
            printf("\n\%s(\%d) - (%s) --> \%s(\%d)", R2(i,1)
72
```

```
.entries, R2(i,2).entries, p, R2(i+1,1).
                entries, R2(i+1,2).entries);
73 end
74
75
   // Display emitted particles for third reaction
76 printf("\n\n\nReaction-III:");
77 \text{ for } i = 1:1:2
78
             dZ = R3(i,2).entries-R3(i+1,2).entries;
79
             dA = R3(i,3).entries-R3(i+1,3).entries;
             p = identify_particle(dZ,dA);
80
             printf("\n\%s(\%d) - (\%s) \longrightarrow \%s(\%d)", R3(i,1)
81
                .entries, R3(i,2).entries, p, R3(i+1,1).
                entries, R3(i+1,2).entries);
82 end
83
84 // Result
85 //
86 // Reaction-I:
87 // Pb(82) - (Beta minus) \longrightarrow Bi(83)
   // Bi(83) - (Alpha) \longrightarrow Tl(81)
89 // Tl(81) - (Beta minus) --> Pb(82)
90
91
92 // Reaction-II:
93 // U(92) - (Alpha) \longrightarrow Th(90)
94 // Th(90) - (Beta minus) \longrightarrow Pa(91)
95 // Pa(91) - (Beta minus) --> U(92)
96
97
98 // Reaction-III:
99 // Bi(83) - (Beta minus) --> Pa(84)
100 // Pa(84) - (Alpha) \longrightarrow Pb(82)
```

Scilab code Exa 3.3.2 Energy of Pb decay

```
1 // Scilab code Exa 3.3.2 To calculate mass number of
      Pb isotope and energy emitted: Page no: 132
      (2011)
2 \text{ M_U} = 238.050786; // Atomic mass of U-238, amu
3 M_Pb = 205.9744550; // Atomic mass of Pb-205, amu
4 M_He = 4.002603; // Atomic mass of He-4, amu
5 \text{ M_e} = 5.486 \text{e-}04; // Atomic mass of electron, amu
6 M = M_Pb + (8*M_He) + (6*M_e); // Total mass of products
     , amu
7 D = M_U - M; // Decrease in mass, amu
8 E = D*931.47; // Energy evolved, MeV
9 printf("\nTotal mass of products = \%1.7 f amu \n
      Decrease in mass = \%9.7 \, \text{f} amu and \n Energy
               = %4.1 f MeV", M, D,
      evolved
10 // Result
11 //
          Total mass of products = 237.9985706 amu
12 //  Decrease in mass = 0.0522154 amu and
13 // Energy evolved = 48.6 MeV
```

Scilab code Exa 3.4.1 Atomic and mass numbers of daughter nuclei

```
1 // Finding atomic No. and mass No. of daughter
    nuclei in the given reactions : Page No.
    133(2011)
2 // Declare cell (for given reaction)
3 R1 = cell(5,4);
4 // Enter data for cell (Reaction-I)
5 R1(1,1).entries = "A";
6 R1(1,2).entries = 90;
7 R1(1,3).entries = 238;
8 R1(1,4).entries = "Alpha";
9 R1(2,1).entries = "Beta minus";
10 R1(2,4).entries = "Beta minus";
11 R1(3,1).entries = "C';
12 R1(3,4).entries = "Alpha";
```

```
13 R1(4,1).entries = 'D';
14 R1(4,4).entries = "Beta minus";
15 R1(5,1).entries = 'E';
16
17 // Declare a function returning the type of particle
       emitted
   function [Z, A] = daughter_nucleus(particle_emitted)
18
         if particle_emitted == "Alpha" then
19
              Z = 2, A = 4;
20
      elseif particle_emitted == "Beta minus" then
21
              Z = -1, A = 0;
22
      elseif particle_emitted == "Beta plus" then
23
24
              Z = 1, A = 0;
25
         end
26 endfunction
27
28 // Display emitted particles for first reaction
29 printf("\n\n nReaction-I:");
30 \text{ for } i = 1:1:4
31
            [Z, A] = daughter_nucleus(R1(i,4).entries);
            R1(i+1,2).entries = R1(i,2).entries-Z;
32
            R1(i+1,3).entries = R1(i,3).entries-A;
33
            printf("\n\%s(\%d,\%d) - (%s) --> %s(%d,%d)",
34
               R1(i,1).entries, R1(i,2).entries, R1(i,3)
               .entries, R1(i,4).entries, R1(i+1,1).
               entries, R1(i+1,2) entries, R1(i+1,3).
               entries)
35
36 end
37 // Result
38 //
39 // Reaction-I:
40 // A(90,238) - (Alpha) \longrightarrow B(88,234)
41 // B(88,234) - (Beta minus) --> C(89,234)
42 // (89,234) - (Alpha) \longrightarrow D(87,230)
43 // D(87,230) - (Beta minus) \longrightarrow E(88,230)
```

Scilab code Exa 3.4.2 Number of half lives of Rn 222

```
1 // Scilab code Exa 3.4.2 : To determine the number
    of Rn-222 half lives elapsed when it reaches 99%
    of its equilibrium concentration : Page no. 133 :
        (2011)
2    D = log(2); // Decay constant, s^-1
3    t = log(100); // Half life, s
4    n = t/D; // Number of half-lives
5    printf("\n Number of half-lives : %4.2 f ", n)
6    // Result
7    // Number of half-lives : 6.64
```

Scilab code Exa 3.4.3 Decay constant for alpha and beta decays

```
1 // Scilab code Exa 3.4.3 : To calculate the decay
     constant for alpha and beta decays: Page no. 133
      : (2011)
   H_t = 60.5*60; // Total half life period, s
   T_d = 0.693/H_t; // Total decay constant, s^-1
   A_d = 34/100*T_d; // Decay constant for alpha
      decays, s^-1
   B_d = 66/100*T_d; // Decay constant for beta decay,
       s^-1
6 printf("\n Alpha decay = \%4.2 \,\mathrm{e \ s^-}1
                                                \n Beta
     decay = \%4.2 e s^-1, A_d, B_d)
7 // Result
            Alpha decay
                           = 6.49 \,\mathrm{e} - 005 \,\mathrm{s} - 1
8 //
9 //
            Beta decay
                           = 1.26 e - 004 s^{-1}
```

Scilab code Exa 3.4.4 Half life of uranium 234

Scilab code Exa 3.4.5 Decayed amount of radioactive matter

```
1 // Scilab code Exa3.2.5 To calculate the mass of
     decayed radioactive material: Page 126 (2011)
2 t_h = 1600; // Half life of radioactive material,
     years
3 t = 2000; // Totaltime, years
4 lambda = 0.6931/t_h; // Decay constant, years -1
5 m0 = 1; // The mass of radioactive substance at t0,
     mg
6 m = m0* %e^(-(lambda*t)); // Ratio of total number
     of atoms and number of atoms disintegrat, mg
7 A = 1-m; // The amount of radioactive substance
     decayed, mg
8 printf("\nThe amount of radioactive substance
     decayed: %6.4 f mg", A)
9 //
       Result
10 //
          The amount of radioactive substance decayed:
      0.5795 \text{ mg}
```

Scilab code Exa 3.5.2 Kinetic energy of alpha particle

```
1 // Scilab code Exa 3.5.2 : To calculate the K.E. of
      alpha particle in following decay Pu-239 to U
      -235 + \text{He} - 4
2 \text{ M}_239 = 239.052158; // Atomic mass of Pu-239, amu
3 \text{ M}_235 = 235.043925; // Atomic mass of U-235, amu
4 \text{ M}_4 = 4.002603; // Atomic mass of He-4, amu
5 Q = (M_239 - M_235 - M_4) * 931.47; // Difference in
      masses, MeV
6 A = 241; // Mass number
7 K_{alpha} = Q*(A-4)/A; // Kinetic energy of alpha
      particle, MeV
8 printf("\nKinetic energy of alpha particle %5.2f MeV
     ", K_alpha)
9 // Result
             Kinetic energy of alpha particle 5.16 MeV
10 //
```

Scilab code Exa 3.5.3 Height of barrier faced by alpha particle

```
10 // The barrier height faced by alpha particle : 31.2 MeV
```

Scilab code Exa 3.5.4 Height of coulomb barrier

```
1 // Scilab code Exa 3.5.4 : To calculate the height
     of coulomb barrier faced by alpha particle
     Page no.: 136 (2011)
2 Z_1 = 2; //Atomic number of He-4,
3 \quad Z_2 = 7; // Atomic number of N-14,
4 A_1 = 4; // Atomis mass of He-4 nucleus
5 A<sub>2</sub> = 14; // Atomic mass of N-14 nucleus
6 R_0 = 1.5e-015; // Distance of closest approach, m
7 E_0 = 8.854e-012; // Permittivity of free space, C
      ^2/Nm^2
8 e = 1.6e-019; // Charge of an electron, C
9 B = Z_1/(1.6e-013)*Z_2*e^2/(4*\%pi*E_0*R_0*(A_1^(1/3))
     +A_2^(1/3)); // The coulomb barrier faced by
     alpha particle, MeV
10 printf("\nThe coulomb barrier faced by alpha
      particle: %4.2 f MeV", B)
11 // Result
12 //
        The coulomb barrier faced by alpha particle:
      3.36 MeV
```

Scilab code Exa 3.5.5 KE of a proton to penetrate the barrier

```
1 // Scilab code Exa 3.5.5 : To calculate the K.E. of
    a proton to penetrate the barrier of H nucleus :
    Page no. : 137 (2011)
2 R_0 = 1.2; // Distance of closest approach, m
3 E_b = 197/(R_0*137); // The K.E. of proton to
    penetrate the berrier of H nucleus, Mev
```

Scilab code Exa 3.6.1 Mass of daughter nucleus

```
// Scilab code Exa 3.6.1 : To determine the mass of
daughter nucleus for given reaction : Page no.
138 : (2011)

M_C = 14.007685; // Mass of C-14 nucleus, amu

E_e = 0.156/931.47; // Kinetic energy of emitted
electron, amu

M_N = M_C-E_e; // Mass of N-14 nucleus, amu

printf("\n Mass of N-14 nucleus : %9.6 f amu", M_N)
// Result
// Mass of N-14 nucleus : 14.007518 amu
```

Scilab code Exa 3.6.3 Number of proton decayed per year from water

```
1 // Scilab code Exa. 3.6.3 : To determine the number
    of proton decayed per year from H2O in a
    reservior : Page no. 139 : (2011)
2 N_p = 6.70e+033; // Number of protons
3 T_p = 10^32; // Mean life of proton, years
4 D_p = N_p/T_p*0.5; // Number of proton decays per
    year, decays/year
5 printf("\n Number of proton decays per year,: %4.1f
    decays/year", D_p)
6 // Result
7 // Number of proton decayed per year: 33.5
    decays/year
```

Scilab code Exa 3.7.1 Energy of gamma photons from excited Ni 60

```
1 // Scilab code Exa. 3.7.1 : To determine the
     energies of two gamma rays emitted
     excitation of Ni-60: Page no. 141 : (2011)
2 E_2 = 2505; // Second excited state of Ni-60, KeV
3 E<sub>1</sub> = 1332; // First excited state of Ni-60, KeV
4 E_0 = 0; // Ground state of Ni-60, KeV
5 E_G_2 = E_2-E_1; // Energy of gamma rays emitted
     when transition from 2 to 1, KeV
6 E_G_1 = E_1-E_0; // Energy of gamma rays emitted
     when transition from 1 to 0, KeV
 printf("\n Energies of two gamma rays emitted : %d
     KeV and %d KeV", E_G_2, E_G_1)
    Result
         Energy of two gamma rays emitted: 1173 KeV
9 //
     and 1332 KeV
```

Scilab code Exa 3.7.2 Conversion energies for K and L shell electrons

```
1 // Scilab code Exa. 3.7.2 : To determine the
        energies conversion for K and L-shell electrons
        for reaction Cs(55,137) = Ba(56,137)+e(-1,0):
        Page no. 141 : (2011)
2 E = 662; // Energy available with the nucleus, KeV
3 I_b_K = 37.4; // Binding energy for K-shell, KeV
4 I_b_L = 6.0; // Binding energy for L-shell, KeV
5 E_c_K = E-I_b_K; // Energy conversion for K-shell,
        KeV
6 E_c_L = E-I_b_L; // Energy conversion for L-shell,
        KeV
```

```
7 printf("\n Energies conversion for K and L-shell
        electrons : %5.1 f KeV and %d KeV", E_c_K, E_c_L)
8 // Result
9 // Energies conversion for K and L-shell
        electrons : 624.6 KeV and 656 KeV
```

Scilab code Exa 3.9.1 Age of uranium mineral

Scilab code Exa 3.9.2 Age of boat from its half life

```
1 // Scilab code Exa. 3.9.2 : To determine the age of
    boat whose half life is given : Page no. 145 :
        (2011)
2 t_h = 5760; // Half life of boat, years
3 D_c = 0.6931/t_h; // Decay constant of boat, years
        ^-1
4 N_1 = 16; // Number of atoms decay per min. per gram
        initially
```

Scilab code Exa 3.9.4 radioactive disintegration of Pu 239

```
1 // Scilab code Exa. 3.9.4 : To calculate the number
      of nuclei at t = 0, initial activity and age of
     Pu-239 which emit alpha particle: Page no. 145:
      (2011)
2 t_h = 24000*365*24*3600; // Half life of Pu-239, s
3 D_c = 0.6931/t_h; // Decay constant of Pu-239, s^-1
4 N = 6.023e + 023*10/239; // Number of nuclei at t = 0,
      nuclei
5 A_O = D_c*N; // Initial activity, disintegrations/
6 A = 0.1; // Activity after time t, disintegrations/
7 t = log(A_0/A)*1/D_c; // Age of the Pu-239, years
8 printf("\nThe number of nuclei at t = 0, = \%4.2e
      nuclei \ nInitial activity = \%4.2e
      disintegrations/s and \nAge of Pu-239 = \%4.2e
      years ", N, A_0, t)
9 // Result
10 //
        The number of nuclei at t = 0, = 2.52 e + 0.022
      nuclei
11 // Initial activity = 2.31e+010 disintegrations/s
     and
12 // \text{Age of Pu} - 239 = 2.86 \,\text{e} + 013 \,\text{years}
```

Chapter 4

Nuclear Reactions

Scilab code Exa 4.3.1 Cross section of lithium

Scilab code Exa 4.3.2 Neutron absorption ratio

```
1 // Scilab code Exa4.3.2: To calculate the fraction
```

```
of neutron absorbed by Cd sheet of given
      thickness: Page 180 (2011)
2 t = 0.2e-03; // Thickness of Cd sheet, m
3 d = 8.64e+03; // Density, Kg/m<sup>3</sup>
4 N = 6.023e+026; // Number of nuclei in 7-\text{Kg} of Li-7
5 M = 112; // Atomic mass of Cd-113, amu
6 \text{ C_s} = 20000\text{e-}028; // Cross section of neutron for
     Cd-113, m^2
7 n = 0.12*d*N/M; // Number of Cd atoms/volume, atoms/
8 F_inc_absorb = [1-\%e^(-n*C_s*t)]*100; // Fraction of
      neutron absorbed
9 printf("\n Fraction of neutron absorbed by Cd sheet
      : \%4.2 f percent", F_inc_absorb)
10 // Result
11 // Fraction of neutron absorbed by Cd sheet:
      89.25 percent
```

Scilab code Exa 4.4.1 Nuclear reactions

```
1 // Scilab code Exa test : Checking the possibility
     of occurence of reactions: page no. 181 (2011)
2 // Declare three cells (for three reactions)
3 R1 = cell(4,4);
4 R2 = cell(5,4);
5 R3 = cell(4,4);
6 // Enter data for first cell (Reaction)
7 R1(1,1).entries = 'Al'; // Element
                          // Atomic number
8 R1(1,2).entries = 13;
                           // Mass number
9 R1(1,3).entries = 27;
10 R1(1,4).entries = 0;
                           // Lepton number
11 R1(2,1).entries = 'He';
12 R1(2,2).entries = 2;
13 R1(2,3).entries = 4;
14 R1(2,4).entries = 0;
```

```
15 R1(3,1).entries = 'Si';
16 \text{ R1}(3,2).\text{entries} = 14;
17 R1(3,3).entries = 30;
18 R1(2,4).entries = 0;
19 R1(4,1).entries = 'n';
20 R1(4,2).entries = 0;
21 R1(4,3).entries = 1;
22 R1(2,4).entries = 0;
23 // Enter data for second cell (Reaction)
24 R2(1,1).entries = "U";
25 R2(1,2).entries = 92;
26 \text{ R2}(1,3).\text{entries} = 235;
27 R2(1,4).entries = 0;
28 R2(2,1).entries = 'n';
29 R2(2,2).entries = 0;
30 R2(2,3).entries = 1;
31 R2(2,4).entries = 0;
32 R2(3,1).entries = 'Ba';
33 R2(3,2).entries = 56;
34 \text{ R2}(3,3).\text{entries} = 143;
35 \text{ R2}(3,4) \cdot \text{entries} = 0;
36 \text{ R2}(4,1) \cdot \text{entries} = 'Kr';
37 R2(4,2).entries = 36;
38 R2(4,3).entries = 90;
39 R2(4,4).entries = 0;
40 R2(5,1).entries = '2n';
41 R2(5,2) entries = 0;
42 R2(5,3).entries = 1;
43 \text{ R1}(5,4).\text{entries} = 0;
44 // Enter data for third cell (Reaction)
45 \text{ R3}(1,1) \cdot \text{entries} = 'P';
46 \text{ R3}(1,2).\text{entries} = 15;
47 \text{ R3}(1,3).\text{entries} = 32;
48 \text{ R3}(1,4) \cdot \text{entries} = 0;
49 R3(2,1).entries = 'S';
50 \text{ R3}(2,2).\text{entries} = 16;
51 R3(2,3).entries = 32;
52 \text{ R3}(2,4).\text{entries} = 0;
```

```
53 R3(3,1).entries = 'e';
54 \text{ R3}(3,2) \cdot \text{entries} = -1;
55 \text{ R3}(3,3).\text{entries} = 0;
56 \text{ R3}(3,4) \cdot \text{entries} = 0;
57 R3(4,1).entries = 'v_e';
58 R3(4,2).entries = 0;
59 \text{ R3}(4,3).\text{entries} = 0;
60 \text{ R3}(4,4).\text{entries} = 0;
61 // Declare a function returning equality status of
      nucleon number
62 function f = check_nucleon(nr_sum,np_sum)
            if nr_sum == np_sum then
63
64
                 f = 1;
65
            else
66
                 f = 0;
67
68 endfunction
69
70 // Declare a function returning equality status of
      proton number
71 function f = check_proton(pr_sum,pp_sum)
            if pr_sum == pp_sum then
72
                 f = 1;
73
74
             else
75
                 f = 0;
76
            end
77 endfunction
78
79 // Declare a function returning equality status of
      lepton number
80 function f = check_lepton(lr_sum,lp_sum)
81
            if lr_sum == lp_sum then
82
                 f = 1;
83
            else
                 f = 0;
84
85
            end
86 endfunction
87
```

```
// Reaction-I
   printf("\n\n\nReaction-I:\n\n");
            pr_sum = R1(1,2).entries+R1(2,2).entries;
90
            pp_sum = R1(3,2).entries+R1(4,2).entries;
91
            nr_sum = R1(1,3).entries+R1(2,3).entries;
92
            np_sum = R1(3,3).entries+R1(4,3).entries;
93
94
            lr_sum = R1(1,4).entries+R1(2,4).entries;
95
            lp_sum = R1(3,4).entries+R1(4,4).entries;
            if (check_nucleon(nr_sum,np_sum)&
96
               check_proton(pr_sum,pp_sum)&check_lepton(
               lr_sum,lp_sum) == 1) then
                printf("The Reaction\n")
97
98
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
                   %d) \setminus nis possible, R1(1,1).entries,
                   R1(1,3) entries, R1(2,1) entries, R1
                   (2,3) entries, R1(3,1) entries, R1
                   (3,3) entries, R1(4,1) entries, R1
                   (4,3).entries);
            elseif (check_proton(pr_sum,pp_sum) == 0)
99
               then
                printf("The Reaction\n")
100
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
101
                   %d) \setminus nis impossible, R1(1,1).entries,
                    R1(1,3) entries, R1(2,1) entries, R1
                   (2,3) entries, R1(3,1) entries, R1
                   (3,3) entries, R1(4,1) entries, R1
                   (4,3) entries);
                R1(4,1) entries = 'H'; R1(4,3) entries =
102
103
                printf("\nThe correct reaction is:\n")
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
104
                   \%d) \ n", R1(1,1).entries, R1(1,3).
                   entries, R1(2,1) entries, R1(2,3).
                   entries, R1(3,1) entries, R1(3,3).
                   entries, R1(4,1) entries, R1(4,3).
                   entries);
105
            end
        Display for reaction-II
106 //
```

```
printf ("\n\n Reaction -II:\n\n");
107
            pr_sum = R2(1,2).entries+R2(2,2).entries;
108
            pp_sum = R2(3,2).entries+R2(4,2).entries+R2
109
               (5,2) entries;
            nr_sum = R2(1,3).entries+R2(2,3).entries;
110
            np_sum = R2(3,3).entries+R2(4,3).entries+R2
111
               (5,3) entries;
            lr_sum = R2(1,4).entries+R2(2,4).entries;
112
            lp_sum = R2(3,4).entries+R2(4,4).entries+R2
113
               (5,4) entries;
            if (check_nucleon(nr_sum,np_sum)&
114
               check_proton(pr_sum,pp_sum)&check_lepton(
               lr_sum, lp_sum) == 1) then
                printf("The Reaction\n")
115
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
116
                   \%d)+\%s(\%d)\nis possible", R2(1,1).
                   entries, R2(1,3) entries, R2(2,1).
                   entries, R2(2,3) entries, R2(3,1).
                   entries, R2(3,3) entries, R2(4,1).
                   entries, R2(4,3) entries, R2(5,1).
                   entries, R2(5,3).entries);
            elseif (check_nucleon(nr_sum,np_sum) == 0)
117
               then
                printf("The Reaction\n")
118
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
119
                   \%d)+\%s(\%d)\nis impossible", R2(1,1).
                   entries, R2(1,3) entries, R2(2,1).
                   entries, R2(2,3) entries, R2(3,1).
                   entries, R2(3,3) entries, R2(4,1).
                   entries, R2(4,3) entries, R2(5,1).
                   entries, R2(5,3).entries);
120
                 R2(5,1) .entries = '3n';
                printf("\nThe correct reaction is:\n")
121
                printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
122
                   \%d)+\%s(\%d) \setminus n", R2(1,1).entries, R2
                   (1,3) entries, R2(2,1) entries, R2
                   (2,3) entries, R2(3,1) entries, R2
                   (3,3) entries, R2(4,1) entries, R2
```

```
(4,3) entries, R2(5,1) entries, R2
                    (5,3).entries);
123
            end
           Reaction-III
124
                 printf ("\n\n nReaction-III:\n\n");
125
            pr_sum = R3(1,2).entries+R3(2,2).entries;
126
127
            pp_sum = R3(3,2).entries+R3(4,2).entries;
            nr_sum = R3(1,3).entries+R3(2,3).entries;
128
129
            np_sum = R3(3,3).entries+R3(4,3).entries;
130
            lr_sum = R3(1,4).entries+R3(2,4).entries;
            lp_sum = R3(3,4).entries+R3(4,4).entries;
131
            if (check_nucleon(nr_sum,np_sum)&
132
               check_proton(pr_sum,pp_sum)&check_lepton(
               lr_sum, lp_sum) == 1) then
                 printf("The Reaction\n")
133
                 printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
134
                   %d) \setminus nis possible, R3(1,1).entries,
                    R3(1,3) entries, R3(2,1) entries, R3
                    (2,3) entries, R3(3,1) entries, R3
                    (3,3) entries, R3(4,1) entries, R2
                    (4,3).entries);
            elseif (check_lepton(nr_sum,np_sum) == 0)
135
               then
                 printf("The Reaction\n")
136
                 printf ("\t%s(%d) + %s(%d) --> %s(%d)+%s(
137
                   \%d) \setminus nis\ impossible" , R3(1,1).entries,
                     R3(1,3) entries, R3(2,1) entries, R3
                    (2,3) entries, R3(3,1) entries, R3
                    (3,3) entries, R3(4,1) entries, R3
                    (4,3).entries);
                  R3(4,1).entries = 'v_e_a'
138
139
                 printf("\nThe correct reaction is:\n")
                 printf("\t\%s(\%d) + \%s(\%d) \longrightarrow \%s(\%d)+\%s(
140
                   \%d) \ n", R3(1,1).entries, R3(1,3).
                    entries, R3(2,1) entries, R3(2,3).
                    entries, R3(3,1) entries, R3(3,3).
                    entries, R3(4,1) entries, R3(4,3).
                    entries);
```

```
141
              end
142
    // Reaction-I:
143
144
145
    // The Reaction
146
         Al(27) + He(4) \longrightarrow Si(30) + n(1)
   // is impossible
147
148 // The correct reaction is:
       A1(27) + He(4) \longrightarrow Si(30) + H(1)
149
150
151
152
153
    // Reaction-II:
154
    // The Reaction
155
156
         U(235) + n(1) \longrightarrow Ba(143) + Kr(90) + 2n(1)
157
   // is impossible
    // The correct reaction is:
    // U(235) + n(1) \longrightarrow Ba(143) + Kr(90) + 3n(1)
159
160
161
162
    // Reaction-III:
163
164
165 // The Reaction
166 //
        P(32) + S(32) \longrightarrow e(0) + v_e(0)
167 // is impossible
    // The correct reaction is:
168
    // P(32) + S(32) \longrightarrow e(0) + v_e_a(0)
169
```

Scilab code Exa 4.5.1 Q value for reaction

Scilab code Exa 4.5.2 Energy emitted in nuclear reaction

```
// Scilab code Exa4.5.2: To calculate Q-value for
the reaction : Page 183 (2011)

M_Cf = 252.081621; // Mass of califronium, amu
M_Cm = 248.072343; // Mass of curium, amu

M_He = 4.002603; // Mass of alpha particle, amu
Q = [M_Cf-M_Cm-M_He]*931.49; // Q-value, MeV
printf("\nThe Q-value for the reaction : %4.2 f MeV",
Q)

// Result
// The Q-value for the reaction : 6.22 MeV
```

Scilab code Exa 4.5.3 Threshold energy and Q value for nuclear reaction

Scilab code Exa 4.5.4 Mass of neutron from nuclear reaction

```
1 // Scilab code Exa4.5.4: To calculate the mass of
    neutron for given reaction : P.No. 184 (2011)
2 // H(1,1)+n(0,1) = H(1,2)+G is the reaction
3 M_H_2 = 2.014735; // Mass of H-2, amu
4 M_H_1 = 1.008142 ; // Mass of H-1, amu
5 E_g = 2.230; // Energy of gamma rays, MeV
6 M_n_1 = [(M_H_2*931.47+E_g)-(M_H_1*931.47)]/931.47;
    // Mass of neutron, amu
7 printf("\nThe mass of the neutron : %8.6 f MeV ",
    M_n_1)
8 // Result
9 // The mass of the neutron : 1.008987 MeV
```

Scilab code Exa 4.5.5 Q value sign for nuclear reaction

```
6 M_H = 3.0160294; // Atomic mass of H, amu
7 r_sum = M_Li+M_n; // Sum of reactant, amu
8 p_sum = M_He+M_H; // Sum of product, amu
9 // Declare a function returning equality status of
      nucleon number
10 function Q = check_Qvalue(r_sum,p_sum)
           if r_sum >= p_sum then
11
12
               Q = 1;
13
           else
14
               Q = 0;
15
           end
16
  endfunction
17
18 // Reaction
19
           if (check_Qvalue(r_sum,p_sum) == 1) then
                printf("\n Reaction : \n\t Li(6)+n(1)
20
                  ---> \text{He}(4) + \text{H}(3)")
               21
                   exoergic")
22
           elseif (check_Qvalue(r_sum,p_sum) == 0) then
23
                printf("\n Reaction : \n \t Li(6)+n(1)
                  ---> \operatorname{He}(4) + \operatorname{H}(3)")
                printf("\n\t \t \t This reaction is
24
                   endoergic")
25
26
  // Reaction :
27
       Li(6)+n(1) ----> He(4)+H(3)
28 //
29
           This reaction is exoergic
30
```

Scilab code Exa 4.5.6 Spontaneity of Q value for nulclear reaciton

```
1 // Scilab code Exa 4.5.5 : Checking whether the reaction is spontaneous or exoergic : page no.
```

```
185 (2011)
\frac{2}{2} // Cf -252
                  > Zr-98 + Ce-145 + 9*n-1 is the given
      reaction
3 M_Cf = 252.081621; // Atomic mass of Cf, amu
4 M_Zr = 97.912735; // Atomic mass of Zr, amu
5 M_Ce = 144.917230; // Atomic mass of Ce, amu
6 M_n = 3.0160294; // Atomic mass of neutron, amu
7 \text{ r_sum} = M_Cf + M_Zr; //
                              Sum of reactant, amu
8 p_sum = M_ce+M_n; // Sum of product, amu
9 // Declare the function which check the Q-value
10 function Q = check_Qvalue(r_sum,p_sum)
            if r_sum >= p_sum then
11
12
                 Q = 1;
13
             else
14
                 Q = 0;
15
16
  endfunction
17
18
  // Reaction
             if (check_Qvalue(r_sum,p_sum) == 1) then
19
                 printf("\n Reaction : \n\t Cf(256)
20
                    ---> \operatorname{Zr}(98) + \operatorname{Ce}(145) + 9 * \operatorname{n}(1)"
                 printf("\n\t\t\tThis reaction is
21
                    spontaneous")
             elseif (check_Qvalue(r_sum,p_sum) == 0) then
22
                 printf("\n Reaction : \n\t Cf(256)
23
                    ---> \operatorname{Zr}(98) + \operatorname{Ce}(145) + 9 * \operatorname{n}(1)"
                 printf("\n\t \t \t This reaction is not
24
                     spontaneous")
25
                end
    // Reaction :
26
           Cf(256) \longrightarrow Zr(98) + Ce(145) + 9*n(1)
27
28
29
             This reaction is spontaneous
```

Scilab code Exa 4.5.7 Nuclear reaction Q value

Scilab code Exa 4.5.8 Threshold energy for given reaction

Scilab code Exa 4.5.9 Q value of nuclear reaction

Scilab code Exa 4.5.10 Energy of gamma rays

```
1 // Scilab code Exa4.5.10: To determine the energy of
       gamma ray for reaction :: P.no. 186 (2011)
         H(1,2)+G = H(1,1)+ n(0,1) is the given
      reaction
3 \text{ M}_H_2 = 2.014735; // Mass of H_2, amu
4 \text{ M_H_1} = 1.008142 ; // \text{ Mass of H-1}, amu
5 \text{ M}_n_1 = 1.008987; // Mass of M_n_1, amu
6 Q = -5.4; // Q-value, MeV
7 E_g = (M_H_1 * 931.47 + M_n_1 * 931.47) - (M_H_2 * 931.47); //
      Energy of the gama rays, MeV
  printf("\nThe energy of the gama rays : %6.4 f MeV
      ", E_g)
9 // Result
10 //
        The
              energy of the gama rays : 2.2299 MeV
```

Scilab code Exa 4.7.1 Energy and power released during fission of U 235

```
// Scilab code Exa4.7.1: To calculate the energy
and power released during fission of U-235 : Page
189 (2011)

m = 0.001; // Mass of U-235 lost during fission , Kg

c = 3e+08; // Velocity of light , m/s

E = m*c^2; // Energy released during fission , J

E_t = E/(4e+09*1000); // Energy requires TNT, Kt

printf("\n Energy released during fission = %1.0e
        J \n Destructive power of bomb = %4.1 f Kt
        of TNT", E, E_t)

// Result

// Energy released during fission = 9e+013
        J

// Destructive power of bomb = 22.5 Kt of TNT
```

Scilab code Exa 4.7.2 Fission rate induced in the uranium foil by neutron

```
1 // Scilab code Exa4.7.2: To determine the fission
     rate induced in the foil by neutron : Page 190
     (2011)
2 t = 0.15; // Thickness of the foil, Kg
3 N = 6.023e+026; // Number of nuclei in 1Kg of U-235,
      nuclei
4 N<sub>1</sub> = N/235*t; // Number of nuclei in 0.15 \text{Kg} of U
     -235, nuclei
5 A = 2e-026; // Area present in each nucleus, m^2
6 I = 10^6; // Intensity , s^{-1}
7 F_r = N_1*A; // Rate of fissions induced in the foil
      by the neutrons, s^-1
8 printf("\n Rate of fissions induced in the foil by
     the neutrons: %5.3e per sec", F_r)
9 // Result
10 //
           Rate of fissions induced in the foil by the
     neutrons: 7.689e-003 per sec
```

Scilab code Exa 4.7.3 Power in fission process

```
1 // Scilab code Exa4.7.3: To determine the fission
     power produced by one microgram of Fm-256 : Page
      190 (2011)
2 N = 6.023e + 023/256 * 10^-6; // Number of nuclei in lug
      of Fm-256
3 t_h = 158*60; // Half life of Fm-256, s
4 D_c = log(2)/t_h; // Decay constant, s^-1
5 F_r = N*D_c; // Fission rate, fissions/s
6 E = 220*1.6e-013; // Energy released during fission
     of one nucleus, J
7 P = E*F_r; // Power released in fission of 1
     microgram of Fm-256, W
8 printf("\n Power released in fission of 1 microgram
     of Fm-256 = \%d W', P)
9 // Result
10 //
               Power released in fission of 1 microgram
      of Fm-256 = 6 W
```

Scilab code Exa 4.7.4 Power released in fission

Scilab code Exa 4.7.5 Fission counts and mass reduction of fissile material

```
1 // Scilab code Exa4.7.5: To determine the number of
     nuclear fission and decrease in mass during
     explosion at hiroshima: Page 191 (2011)
2 E = 200*1.6e-013; // Energy released during fission
     of one nucleus, J
3 E_t = 20000*4.18e+09; // Energy released in
     detonation of 20000 tons of TNT, J
4 N_f = E_t/E; // Number of fission occurred during
      eplosion, fissions
5 c = 3e+08; // Velocity of light, m/s
6 m = E_t/(c)^2*10^6; // Decrease in mass during
      explosion, mg
7 \text{ m_r} = \text{round}(\text{m})
8 printf("\n Number of fissions occured during
                   = %4.2e fissions \n Decrease in mass
      explosion
       during explosion = \%d mg ", N_f, m_r)
9 // Result
10 //
              Number of fissions occured during
                   = 2.61 e + 024 fissions
     explosion
11 //
                Decrease in mass during explosion
     929 mg
```

Scilab code Exa 4.8.1 Energy liberated in fusion reaction

```
1 // Scilab code Exa4.8.1: To calculate the energy
liberated during fusion reaction: Page 194 (2011)
2 // 5*H(1,2)= He(2,3)+He(2,4)+H(1,2)+2*n(0,1)+25MeV
is the given reaction
3 N = 6.023e+026/2*10; // Number of atoms in 10Kg of H
-2, atoms
4 E = 25/5*1.6e-013; // Energy liberate during fusion
of 1 atom of H-2, J
5 E_1 = E*N; // Energy liberate during fusion of 10 Kg
of H-2, J
6 printf("\n Energy liberated during fusion of 10 Kg
of H-2 = %4.2e J", E_1)
7 // Result
8 // Energy liberated during fusion of 10 Kg of H-2
= 2.41e+015 J
```

Scilab code Exa 4.8.2 Energy produced by helium carbon fusion

```
// Scilab code Exa4.8.2: To calculate the energy
    produced by the fusion reaction He(2,4)+C(6,12)=
    O(8,16): Page 194 (2011)

M_r = 16.002603; // Mass of the reactant, amu
M_p = 15.994915; // Mass of reactant, amu
M_d = 7.688e-03; // Difference in masses, amu
E_p = M_d*931.49; // Energy produced, MeV
printf("\n Energy produced by the fusion reaction:
    %4.2 f MeV", E_p)
// Result
// Energy produced by the fusion reaction: 7.16 MeV
```

Scilab code Exa 4.8.3 Energy released and temperature required for fusion of gases

```
1 // Scilab code Exa4.8.3: To calculate the energy
      released and temperature required for fusion of
      given gases: Page 194 (2011)
2 // Firstly calculate for B-10
3 \text{ Z}_B = 5; // Atomic number of B-10
4 \text{ r_B} = 5.17; // Separation of two nuclei, fm
5 K = 1.38e-023; // Boltzmann's constant
6 F = 1/137; // Fine structure constant
7 E = 197.5*1.6e-013; // Energy, J
8 V_cB = F*Z_B^2*E/r_B; // Coulomb barrier for B-10,
      J
9 T_B = 2/3*V_c_B/K; // Temperature required to
      overcome the barrier for B-10, K
10 // Now calculate for Mg-24
11 Z_Mg = 12; // Atomic number of Mg-24
12 r_Mg = 6.92; // Separation of two nuclei, fm
13 K = 1.38e-023; // Boltzmann's constant
14 F = 1/137; // Fine structure constant
15 E = 197.5*1.6e-013; // Energy, J
16 V_c_Mg = F*Z_Mg^2*E/r_Mg; // Coulomb barrier for Mg
      -24, J
17 T_Mg = 2/3*V_c_Mg/K; // Temperature required to
      overcome the barrier for Mg-24, K
18 printf("\nFor B-10 \n Energy released = \%4.2e J\n
      Temperature required = \%4.1 \,\mathrm{e}\ \mathrm{K} \nFor Mg-24
      \n Energy released = \%4.2e J \n Temperature
      required = \%4.2 \,\mathrm{e} \,\mathrm{K}", V_c_B, T_B, V_c_Mg, T_Mg)
19 // Result
20
   //
            For B-10
   // Energy released
21
                        = 1.12 e - 012 J
   // Temperature required = 5.4e+010 \text{ K}
23 // \text{ For Mg}-24
24 // Energy released = 4.80e-0.12 J
25 // Temperature required = 2.32e+011 \text{ K}
```

Scilab code Exa 4.8.4 Life time of sun

```
1 // Scilab code Exa4.8.4: To calculate the life time
      of sun for given reaction: Page 196 (2011)
2 // 4*H(1,1) = He(2,4) + 2*e(1,0) + 2*v+G is the reaction
3 E_r = 3.9e+026; // Energy released in 1s, J
4 N = 1.2e + 057; // Number of hydrogen atoms in the sun
     , atoms
5 \text{ M_d} = 0.027599; // \text{ Mass difference}, \text{ amu}
6 E = M_d*931.47; // In terms of energy, MeV
7 E_t = N/4*E*1.6e-013; // Total energy available in
      the sun, J
8 t = E_t/(E_r*365*24*3600*10^9); // Life time of the
     sun, billion years
9 printf("\n Life time of the sun : %5.1f billion
      years", t)
10 // Result
11 //
             Life time of the sun: 100.3 billion years
```

Scilab code Exa 4.8.5 Particle identification in the nuclear reaction

```
// Scilab code Exa 4.8.5 : Identifying the nucleus
and energy released in the given reaction : page
no. 197 (2011)

// Declare three cells (for three reactions)

R = cell(4,3);

// Enter data for first cell (Reaction)

R(1,1).entries = 'H'; // Element

R(1,2).entries = 1; // Atomic number

R(1,3).entries = 2; // Mass number

R(2,1).entries = 'H';

R(2,2).entries = 1;
```

```
10 R(2,3) entries = 3;
11 R(3,1).entries = 'n'
12 R(3,2).entries = 0;
13 R(3,3).entries = 1;
14 R(4,1) entries = 'He'
15 R(4,2) entries = 2;
16 \text{ R}(4,3).\text{entries} = 3;
17 // Declare a function returning equality status of
      nucleon number
18
19
            p_{sum} = R(1,2).entries + R(2,2).entries;
20
                     if (p_sum == 2) then
21
22
                printf("\n The particle is : %s(%d,%d)"
                    R(4,1) entries R(4,2) entries R(4,3)
                    .entries )
23
                  end
24 // Calculate the energy released
25 \text{ m_n} = 1.008665; // Mass of neutron, amu
26 \text{ m\_d} = 2.014102; // \text{ Mass of deutron}, \text{ amu}
27 \text{ m}_{He} = 3.0160293; // Mass of He-3, amu
28 E = [2*m_d-(m_n+m_He)]*931.47; // Energy released in
       this reaction, MeV
  printf("\n The energy released in this reaction: %4
      .2 \text{ f MeV}", E)
30 // Result
31 //
               The particle is : He(2,3)
  //
32
             The energy released in this reaction: 3.27
        MeV
```

Scilab code Exa 4.8.6 Mass defect and q value for fusion reaction

```
1 // Scilab code Exa4.8.6: To calculate the mass defect and Q-value for the fusion reactions : Page 197 (2011)
```

```
2 // \text{Reaction} -1 = H(1,2) + H(1,2) = He(2,3) + n(0,1)
3 \text{ m_p} = 1.007825; // Mass of proton, amu
4 m_n = 1.008665; // Mass of neutron, amu
5 \text{ m_H} = 2.014102; // Mass of H(1,2), amu
6 m_He = 3.016029; // Mass of He(2,3), amu
7 \text{ m\_d\_1} = 2*\text{m\_H-m\_He-m\_n}; // \text{Mass defect for reaction}
      first, amu
8 Q_1 = m_d_1*931.47; // Q-value for reaction first,
      MeV
9 // Reaction -2 = H(1,2) + H(1,2) = H(1,3) + p(1,1)
10 m_p = 1.007825; // Mass of proton, amu
11 m_n = 1.008665; // Mass of neutron, amu
12 \text{ m_H} = 2.014102; // Mass of H(1,2), amu
13 m_H_3 = 3.016049; // Mass of H(1,3), amu
14 \text{ m\_d\_2} = 2*\text{m\_H-m\_H\_3-m\_p}; // \text{Mass defect for reaction}
       second, amu
15 Q_2 = m_d_2*931.47; // Q_value for reaction second,
      MeV
16 printf("\nFor first reaction \n Mass defect
      .5 f amu \setminus n Q-value = \%7.5 f amu
      second reaction \n Mass defect = \%7.5 f MeV \n
                = \%4.2 \text{ f MeV} ", m_d_1,Q_1, m_d_2,
      Q-value
17 // Result
       For first reaction
18 //
19 //
      Mass defect
                        = 0.00351 amu
20 //
      Q-value
                        3.26946 amu
                   =
21 // For second reaction
22 //
      Mass defect = 0.00433 MeV
23 // Q-value
                 = 4.03 \text{ MeV}
```

Chapter 5

Interaction of Radiations with Matter

Scilab code Exa 5.2.1 Energy lost during collision

```
1 // Scilab code Exa5.2.1: To calculate the energy and
      no. of collision required to stop collision: P.
     no. 223 (2011)
2 m = 511; // Mass of electron, KeV
3 M = 938*10^3; // Mass of incident charged particle,
     KeV
4 E = 10*10^3; // Energy of proton, KeV
5 E_1 = 4*m*E/M; // Energy lost during collison, KeV
6 n = E/E_1; // Number of collisions,
7 N = round(n)
8 printf("\n The energy lost during collision = \%5.2 \,\mathrm{f}
      KeV \n Number of collision required
     collisions", E_1, N)
9 // Result
10 //
          The energy lost during collision = 21.79 KeV
11 // Number of collision required = 459 collisions
```

Scilab code Exa 5.5.1 Half value thickness of aluminium

Scilab code Exa 5.5.2 Thickness of lead

```
// Scilab code Exa5.5.2: To calculate the thickness
    of Pb: P.no. 226 (2011)
u = 0.75; // Absorption coefficient , cm^-1
I_r = 1/100; // Intensity ratios ,
x = log(1/I_r)*u; // Thckness of Pb, cm
printf("\n Thickness of Pb : %5.3 f cm",x)
// Result
// Thickness of Pb : 6.140 m
```

Scilab code Exa 5.5.3 Percentage loss of intensity of gamma rays

```
1 // Scilab code Exa5.5.3: To calculate the percentage
    loss of intensity of gamma rays : P.no. 226
        (2011)
2 x_h = 5; // Half thickness of an absorber, mm
3 u = log(2)/x_h; // Absorption coefficient, mm^-1
4 x = 20; // Thickness of an absorber, mm
```

Scilab code Exa 5.6.1 Velocity of ejected photoelectron

```
1 // Scilab code Exa5.6.1: To calculate the velocity
     of ejected photoelectron: P.no. 230 (2011)
   C = 3e+08; // Speed of light, m/s
   h = 6.626e-034; // Planck's constant, Js
   lambda = 2500e-010; // wavelength of light, m
5 e = 1.602e-019; // Charge of electron, C
  w = 1.9; // Work function, J
7 m = 9.1e-031; // Mass of the electron, kg
8 E_c = h*C/(lambda*e); // Calculated energy, J
9 E_e = E_c-w; // Energy of photoelectron, J
10 v = sqrt((2*E_e*e)/m); // Velocity of photoelectron,
      m/s
11 printf("\nThe velocity of photoelectron : %4.2e m/s
     ", v )
12 // Result
13 //
          The velocity of photoelectron: 1.04e+006 m/
```

Scilab code Exa 5.6.2 Rate of photoelectron emission

```
1 // Scilab code Exa5.6.2: To calculate the kinetic
     energy of photoelectron and rate at which
      photoelectron emitted: P.no. 231 (2011)
   C = 3e+08; // Speed of light, m/s
   h = 6.626e-034; // Planck's constant, Js
    lambda = 250e-09; // Wavelength of light, m
    w = 2.30; // Work function, eV
6 A = 2e-04; // Area of the surface, m^2
7 I = 2; // Intensity of light, W/m^2
8 e = 1.6e-019; // Charge of the electron, C
9 E_p = h*C/(lambda*e); // Energy of photoelectron, eV
10 E_max = E_p-w; // Maximum kinetic energy of
      photoelectron, eV
11 n_p = I*A/(E_p*e); // Number of photons reaching the
       surface per second, photons/s
12 R_p = 0.2/100*n_p; // Rate at which photoelectrons
      are emitted, photoelectrons/s
13 printf("\n The maximum kinetic energy = \%4.2 \,\mathrm{f} eV
      \n The rate at which photoelectrons are emitted
         = \%4.2e \text{ photoelectrons/s}", E_max, R_p)
14 // Result
             The maximum kinetic energy = 2.67 \text{ eV}
16 // The rate at which photoelectrons are emitted
      = 1.01 \,\mathrm{e} + 012 \,\mathrm{photoelectrons/s}
```

Scilab code Exa 5.6.3 Kinetic energy of photoelectron

```
1 // Scilab code Exa5.6.3: To calculate the wavelength
    of light whose kinetic energy is given : P. No.
    232 (2011)
2 C = 3e+08; // Speed of light, m/s
3 h = 6.626e-034; // Planck's constant, Js
4 T_lambda = 190e-09; // Threhold wavelength of light
    , m
5 e = 1.6e-019; // Charge of the electron, C
```

Scilab code Exa 5.7.1 Compton shift

Scilab code Exa 5.7.2 Wavelength of the scattered gamma rays

```
5 A = 135; // Angle between scattered radiation and
        incident radiation, degree
6 W_i = 1.87; // Wavelength of incident radiation, pm
7 W_s = W_i + [h*(1-cosd(A))]/(m_e*c); // Wavelength
        of scattered radiation, pm
8 printf("\nWavelength of scattered radiation : %4.2
        f pm", W_s)
9 // Result
10 // Wavelength of scattered radiation : 6.01
        pm
```

Scilab code Exa 5.7.3 Wavelength of the incident beam of X rays

```
1 // Scilab code Exa5.7.3: To calculate the
      wavelength of the incident beam of X-rays: P.no.
       234 (2011)
2 h = 6.626e-034; // Value of Planck's constant, J
3 \text{ m_e} = 9.11\text{e}-031; // Mass of the electron, Kg
4 c = 3e-04; // Velocity of light, pm/s
5 A = 90; // Angle between scattered radiation and
     incident radiation, degree
6 W_s = 3.8; // Wavelength of scattered radiation, pm
7 W_i = [W_s - h/(m_e*c)*(1-cosd(A))]; // Wavelength
      of incident beam of Xrays, pm
  printf("\nWavelength of incident beam of X-rays : %4
      .2 f pm", W_i )
9 // Result
10 //
            Wavelength of incident beam of X-rays:
      1.38 \, \mathrm{pm}
```

Scilab code Exa 5.7.4 Frequency of the scattered photon

```
1 // Scilab code Exa 5.7.4 : To calculate the
     frequency of the scattered photon Page.no. 234
      (2011)
2 h = 6.626e-034; // Value of Planck's constant, J
3 m_e = 9.11e-031; // Mass of the electron, Kg
4 c = 3e+08; // Velocity of light, pm/s
5 A = 60; // Angle between scattered radiation and
      incident radiation, degree
6 \text{ v}_0 = 3.2\text{e}+019; // Frequency of the incident photon,
      Hz
7 V = 1/v_0 + h/(m_e*c^2)*(1-cosd(A));
8 v = (1/V); // Frequency of the scattered photon, Hz
9 printf("\n Frequency of the scattered photon: %4.2e
     \mathrm{Hz}", \mathrm{v})
10 // Result
11 //
            Frequency of the scattered photon: 2.83e
     +019 \text{ Hz}
```

Scilab code Exa 5.7.5 Energy of scattered photon and recoil electron

```
// Scilab code Exa 5.7.5 : To calculate the energy
   of the scattered photon and the energy of recoil
    electron : P.no. 235 (2011)

h = 6.626e-034; // Value of Planck's constant, J

m_e = 9.11e-031; // Mass of the electron, Kg

c = 3e+08; // Velocity of light, pm/s

A = 180; // Angle between scattered radiation and incident radiation, degree

E_i = 1836; // Energy of the incident electron, KeV

E = 1/E_i + 1/511*(1-cosd(A));

E_s = round(1/E); // Energy of the sscattered photon, KeV

E_r = E_i-E_s; // Energy of the recoil electron, KeV

printf("\n Energy of the scattered photon = %d
   KeV \n Energy of the recoil electron = %d KeV
```

```
", E_s, E_r)

11 // Result

12 // Energy of the scattered photon = 224

KeV

13 // Energy of the recoil electron = 1612

KeV
```

Scilab code Exa 5.7.6 Scattering angle of X rays

```
// Scilab code Exa 5.7.6 : To calculate the
    scattering angle of X-rays Page.no. 235 (2011)
E_s = 180; // Energy of the scattered X-rays, KeV
E_i = 200; // Energy of the incident X-rays, KeV
a = acosd(1-[{1/E_s-1/E_i}*511]); //
A = round(a); // Scattering angle of X-rays, degree
printf("\n Scattering angle of X-rays: %d degree", A
    )
// Result
// Scattering angle of X-rays: 44 degree
```

Scilab code Exa 5.8.1 Kinetic energy of electron and positron

```
// Scilab code Exa5.8.1: To calculate the kinetic
energy of electron and positron :P.no. 236 (2011)
M_e = 0.511; // Rest mass of electron, MeV
M_p = 0.511; // Rest mass of positron, MeV
E_c = M_e+M_p; // Energy consumed, Mev
E_g = 5.0; // Given energy, MeV
E_l = E_g-E_c; // Energy left, Mev
E_k = E_l/2; // Kinetic energy of electron and positron, MeV
printf("\n The kinetic energy of electron and positron : %5.3 f Mev", E_k)
```

```
9 // Result
10 // The kinetic energy of electron and
positron : 1.989 Mev
```

Chapter 6

Particle Accelerators

Scilab code Exa 6.2.1 Kinetic energy of protons

```
// Scilab code Exa6.2.1 : To calculate the kinetic
    energy of protons : Page 264 (2011)

q = 1; // Number of proton,
V = 800; // Voltage applied to the dome, kV
E = q*V; // The kinetic energy of proton, keV
printf("\nThe kinetic energy of proton : %d keV", E);
// Result
// The kinetic energy of proton : 800 keV
```

Scilab code Exa 6.3.1 Protons in Van de Graff accelerator

```
1 // Scilab code Exa6.3.1 : To calculate the kinetic
     energy of protons in Van de Graff accelerator:
     Page 265 (2011)
2 q = 1; // Number of proton,
3 V = 7; // Voltage applied to the dome, MV
4 E = q*V; // The kinetic energy of proton, MeV
```

```
5 printf("\nThe kinetic energy of proton : %d MeV", E)
;
6 // Result
7 // The kinetic energy of proton : 7 MeV
```

Scilab code Exa 6.3.2 Reactions at different particle energies

```
1 // Scilab code Exa6.3.2 : To calculate the kinetic
     energy of protons and no. of possibile reactions
     : Page 265 (2011)
2 V = 5; // Voltage of accelerator, MV
3 // Declare three cells (for three reactions): Page
     no.: 133(2011)
  R1 = cell(3,2)
  R2 = cell(10,2)
6 // Enter data for first cell (Reaction)
7 R1(1,1).entries = "p";
8 R1(1,2).entries = 1;
9 R1(2,1).entries = 'd';
10 R1(2,2).entries = 1;
11 R1(3,1).entries = 'He';
12 R1(3,2).entries = 2;
13 E_p = (R1(1,2).entries)*V
14 E_d = (R1(2,2).entries)*V
15 E_He = (R1(3,2).entries)*V
   // Enter data for second cell (Reaction)
16
    R2(1,1) entries = "p"
17
18
   R2(1,2) .entries = 1
19
   R2(2,1) .entries = "N"
   R2(2,2) .entries = 14
20
   R2(3,1) .entries = "O"
21
22
    R2(3,2) .entries = 15
   R2(4,1) .entries = "y"
23
24
    R2(4,2) .entries = 0
25
    R2(5,1) . entries = "d"
```

```
26
    R2(5,2) entries = 1
    R2(6,1).entries = "n"
27
    R2(6,2) entries = 0
28
    R2(7,1) .entries = "He"
29
    R2(7,2) entries = 3
30
    R2(8,1) entries = "C"
31
32
    R2(8,2).entries = 13
    R2(9,1).entries = "He"
33
    R2(9,2) entries = 4
34
    R2(10,1) entries = "C"
35
    R2(10,2).entries = 12
36
    printf("\nProtons energy = -\%d MeV \n Deuterons
37
       energy = -\%d MeV \n Double charged He-3
      \%\mathrm{d}~\mathrm{MeV}" , E_p , E_d , E_He)
    printf("\n Possible reaction at these energies are"
38
    printf("\n \%s + \%s(\%d) \longrightarrow
                                     %s(%d) + %s, R2(1,1).
39
       entries, R2(2,1) . entries, R2(2,2) . entries, R2(3,1) .
       entries, R2(3,2). entries, R2(4,1). entries)
                                   %s(%d) + %s ", R2(5,1)
40 printf("\n %s + %s(%d) --->
      .entries, R2(2,1).entries, R2(2,2).entries, R2(3,1).
      entries, R2(3,2) entries, R2(6,1) entries)
41 printf("\n %s(%d) +\%s(%d) ---> %s(%d)+ %s", R2
      (7,1) entries, R2(7,2) entries, R2(8,1) entries, R2
      (8,2) entries, R2(3,1) entries, R2(3,2) entries, R2
      (6,1) entries)
    printf("\n %s(%d) + %s(%d) ---> %s(%d) +%s", R2
42
       (9,1) . entries, R2(9,2) . entries, R2(10,1) . entries,
       R2(10,2) . entries, R2(3,1) . entries, R2(3,2) . entries
       ,R2(6,1).entries)
43
44 // Result
45 // Protons energy = -5 MeV
46 // \text{ Deuterons energy} = -5 \text{ MeV}
47 // Double charged He-3 = -10 \text{ MeV}
48 // Possible reaction at these energies are
49 // p + N(14) ---> O(15)+ y
50 // d + N(14) ---> O(15) + n
```

```
51 // He(3) +C(13) ---> O(15)+ n
52 // He(4) + C(12) ---> O(15)+n
```

Scilab code Exa 6.4.1 Protons passing through the carbon stripper foil

```
// Scilab code Exa6.4.1 : To calculate the kinetic
    energy of protons passing through the carbon
    stripper foil : Page 266 (2011)

q = 2; // Number of proton,
V = 15; // Voltage applied to the dome, MV
E = q*V; // The kinetic energy of proton, MeV
printf("\nThe kinetic energy of proton : %d MeV", E)
;
// Result
// The kinetic energy of proton : 30 MeV
```

Scilab code Exa 6.5.1 Electron at relativistic energy

```
1 // Scilab code Exa6.5.1 : To calculate the
    difference between the electron's speed and speed
    of light. Page 265 (2011)
2 v = 2.9999999997e+08; // Velocity of the electron,
    m/s
3 c = 3e+08; // Velocity of light,m/s
4 D = c-v; // difference between electron's speed and
    speed of light,m/s
5 printf("\nThe difference between electron speed and
    speed of light: %3.1f m/s", D);
6 // Result
7 // The difference between electron speed and speed
    of light: 0.3 m/s
```

Scilab code Exa 6.5.2 Protons accelerating through drift tubes

```
1 // Scilab code Exa6.5.2 : To calculate the length of
      the first and last drift tubes which accelerate
      the protons whose frequency and energies are
      given. Page 268 (2011)
2 f = 200e+06; // Frequency of applied the voltage,
     Hz
3 V_0 = 750e+03; // Applied potential difference, V
4 q = 1.6e-019; // Charge of proton, C
5 m = 1.67e-027; // Mass of proton, Kg
6 \text{ n_1} = 1; // For first tube
7 L_1 = sqrt(2*n_1*q*V_0/m)/(2*f); // Length of the
      first tube, m
8 n_n = 128; // For last tube
9 L_n = 1/(2*f)*sqrt(2*n_n*q*V_0/m); // Length of the
     last tube, m
10 printf("\n Length of the first tube = \%4.2 \,\mathrm{f} m\n
     Length of the last tube = \%4.2 \,\mathrm{f} m ", L_1,L_n);
11 // Result
12 //
         Length of the first tube = 0.03 \text{ m}
        Length of the last tube = 0.34 m
13 //
```

Scilab code Exa 6.5.3 Electron speed at relativistic energies

```
1 // Scilab code Exa6.5.3 : To calculate the velocity
    of the electrons using relativistic
    considerations . Page 269 (2011)
2 K_E = 1.17; // Kinetic energy of the electron , MeV
3 E_r = 0.511; // Rest mass energy of the electron ,
    MeV
```

Scilab code Exa 6.7.1 Proton accelerating in a cyclotron

```
1 // Scilab code Exa6.7.1 : To calculate the maximum
     energy, oscillator frequency and number of
     revolutions of proton accelerated in a cyclotron.
      Page 270(2011)
2 V = 20e+03; // Potential difference across the dees,
3 r = 0.28; // Radius of the dees, m
4 B = 1.1; // Magnetic field, tesla
5 q = 1.6e-019; // Charge of the proton, C
6 \text{ m} = 1.67 \text{e} - 027; // Mass of the proton, Kg
7 E_max = B^2*q^2*r^2/(2*m*1.6e-013); // Maximnum
     energy acquired by protons, MeV
8 f = B*q/(2*\%pi*m*10^06); // Frequecy of the
      oscillator, MHz
9 N = E_{max}*1.6e-013/(q*V); // Number of revolutions,
10 disp(N)
11 printf("\n Maximum energy acquired by proton = \%4
     .2 f MeV \n Frequency of the oscillator = \%4.2 f
     MHz \setminus n Number of revolutions = %d revolutions
      ", E_max,f,N)
12 // Result
13 // Maximum energy acquired by proton = 4.54
     MeV
14 // Frequency of the oscillator = 16.77 \text{ MHz}
15 // Number of revolutions = 227 revolutions
```

Scilab code Exa 6.7.2 Frequency of deutron accelerated in a cyclotron

```
// Scilab code Exa6.7.2 : To calculate the frequency
    of deutron accelerated in a cyclotron. Page
    271(2011)

B = 2.475; // Magnetic field , tesla

q = 1.6e-019; // Charge of the deutron , C

m = 2*1.67e-027; // Mass of the deutron , Kg

f = B*q/(2*%pi*m*10^06); // Frequency of the deutron
    ,MHz

printf("\nFrequency of the deutron: %4.2 f MHz", f)

// Result

// Frequency of the deutron: 18.87 MHz
```

Scilab code Exa 6.7.3 Relation between magnetic field and cyclotron frequency

```
1 // Scilab code Exa6.7.3 : To calculate the magnetic
    field applied to cyclotron whose frequency is
        given. Page 271(2011)
2 q = 1.6e-019; // Charge of the proton, C
3 r = 0.60; // radius of the dees, m
4 m = 1.67e-027; // Mass of the proton, Kg
5 f = 10^6; // Frequecy of the proton, Hz
6 B = 2*%pi*m*f/q; // Magnetic field applied to
        cyclotron, tesla
7 printf("\nMagnetic field applied to cyclotron : %6
        .4f tesla", B)
8 // Result
9 // Magnetic field applied to cyclotron : 0.0656
        tesla
```

Scilab code Exa 6.7.4 Frequency of alternating field

```
// Scilab code Exa6.7.4 : To calculate the frequency
    of alternating field applied to dees. Page
    272(2011)

q = 1.6e-019; // Charge of the proton, C

m = 1.67e-027; // Mass of the proton, Kg

B = 1.4; // Magnetic field , tesla

f = B*q/(2*%pi*m*10^06); // Frequency of the applied
    field , tesla

printf("\n Frequency of the applied field : %4.2 f
    MHz", f)

// Result

// Frequency of the applied field : 21.35 MHz
```

Scilab code Exa 6.8.1 Energy gained by an electron in the magnetic field

```
1 // Scilab code Exa6.8.1. : To calculate the energy
     gained per turn of an electron present in given
     magnetic field. Page 273(2011)
2 = 1.6e-019; // Charge of an electron, C
3 f = 60; // Frequency of variation magnetic field, Hz
4 B_0 = 1; // Magnetic field , tesla
5 \text{ r}_0 = 1; // Radius of doughnut, m
6 E = 4*e*2*\%pi*f*r_0^2/(1.6e-019); // Energy gained
     by electron per turn, eV
7 E_g = round(E)
8 printf("\n Energy gained by electron per turn:
                                                    \%d
     \mathrm{eV}", E_g)
9 // Result
10 //
          Energy gained by electron per turn: 1508 eV
```

Scilab code Exa 6.9.1 Ratio of highest to the lowest frequency of accelerating proton

```
1 // Scilab code Exa6.9.1 : To determine the ratio of
    highest to the lowest frequency of cyclotron
    accelerating protons whose energy is given. Page
    273(2011)
2 K = 500; // Kinetic energy of the proton, MeV
3 E_r = 938; // Rest mass energy of the proton, MeV
4 R_f = E_r/(K+E_r); // The ratio of highest to the
    lowest frequency,
5 printf("\nThe ratio of highest to the lowest
    frequency : %4.2f", R_f)
6 // Result
7 // The ratio of highest to the lowest frequency :
    0.65
```

Scilab code Exa 6.9.2 W B ration of completely stripped nitrogen

```
// Scilab code Exa6.9.2 : To calculate the w/B ratio
    for a completely stripped nitrogen to move in a
    stable orbit : Page 274(2011)

E_k = 1200; // Kinetic energy of the proton, MeV

q = 7; // Number of proton in nitrogen

E_r = 13040 // Rest mass energy of the electron,
    MeV

E = (E_k+E_r)*1.6e-013; // Total energy, j

c = 3e+08; // Velocity of light, m/s

R_w_B = q*1.6e-019*c^2/E; // Ratio of w/B, m^2/W

printf("\nThe ratio of w/B : %4.2e m^2/W", R_w_B)

// Result

// The ratio of w/B : 4.42e+007 m^2/W
```

Scilab code Exa 6.10.1 Magnetic field of the electron

```
// Scilab code Exa6.10.1 : To calculate the value of
    magnetic field of the electron whose energy is
    given Page 274(2011)

q = 1.602e-019; // Charge of an electron, C

r = 0.28; // Radius of stable orbit,m

E = 70*1.6e-013; // Energy of the electron, j

c = 3e+08; // Velocity of light, m/s

B = E/(e*r*c); // Magnetic field, T

printf("\nThe magnetic field of the electron : %4.2
    f T", B)

// Result
// The magnetic field of the electron : 0.83 T
```

Scilab code Exa 6.10.2 Radius of proton orbit in synchrotron

```
// Scilab code Exa6.10.2 : To calculate the radius
    of proton orbit in synchrotron of given energy
    Page 275(2011)

c = 3e+08; // Speed of light in vacuum, m/s

q = 1.602e-019; // Charge on proton, coulomb

amu = 931; // Energy equivalent of 1 amu, MeV

m = 938; // Rest mass of a proton, MeV

KE = 12e+03; // Kinetic energy of proton, MeV

B = 1.9; // Magnetic field, T

E = m + KE; // Total energy of proton, MeV

// As E = m*amu, solving for m, the mass of proton

m = E/amu*1.672e-027; // Proton mass in motion,
    kg

v = 0.9973*c; // Velocity of the proton, m/s
```

```
12 r = m*v/(B*q); // Radius of the proton, m
13 printf("\nRadius of the proton orbit : %4.2 f m", r)
14 // Result
15 // Radius of the proton orbit: 22.84 m
```

Chapter 7

Radiation Detectors

Scilab code Exa 7.2.1 Energy of alpha particle

Scilab code Exa 7.3.1 Pulse height of ionising particle

```
1 // Scilab code Exa7.3.1: To calculate the pulse
    height of ionising particle :P.no. 308 (2011)
2    E = 5.48e+06; // Energy of alpha particle, eV
3    C = 50e-012; // Capacitance of the chamber, F
4    R = 10^6; // Resistance, ohm
5    E_p = 35; // Energy required to produced an ion
    pair, eV
```

```
n = E/E_p; // Number of ion pair produced
e = 1.6e-019; // Charge of an electron, C

V = (n*e)/C; // Pulse height, V

I = V/R; // current produced, A

printf("\n The pulse height = %4.3e V \n Current produced = %5.3e A", V,I)

// Result
// The pulse height = 5.010e-004 V
// Current produced = 5.010e-010 A
```

Scilab code Exa 7.3.2 Charge deposited on detector plate

```
1 // Scilab code Exa7.3.2: To calculate the kinetic
     energy and amount of charge collected on plate :P
     . no. 309 (2011)
    E_p = 35; // Energy required to produced an ion
      pair, eV
    n = 10<sup>5</sup>; // Number of ion pair produced
3
       e = 1.6e-019; // Charge of an electron, C
    E_k = E_p*n/10^6; // Kinetic energy of the proton,
      MeV
6
     A = n * e; // The amount of charge collected on each
         plate, C
    printf("\n The kinetic energy of the proton
       .1f MeV \n The amount of charge collected on
       each plate = \%3.1e \ C", E_k, A)
8 // Result
9 //
         The kinetic energy of the proton = 3.5 \text{ MeV}
10 //
         The amount of charge collected on each plate
     = 1.6e - 014 C
```

Scilab code Exa 7.4.1 Height of voltage pulses

```
1 // Scilab code Exa7.4.1: To calculate the charge
      flow in a counter and height of voltage pulses :P
      .no. 310 (2011)
    E_p = 30; // Energy required to produced an ion
2
       pair, eV
3
    M = 1000; // Multiplication factor
       e = 1.6e-019; // Charge of an electron, C
4
5
       t = 10^-3; // Time, s
       R = 10<sup>5</sup>; // Resistance, ohm
6
    E_k = 20*10^6; // Kinetic energy of the proton, eV
    n = E_k/E_p; // Number of ion pairs produced
8
    n_a = n*M; // Number of ion-pair after
       multiplication
10
    Q = n_a*e; // Charge carried by these ion, C
11
     I = Q/t; // The current through 100-ohm
        resistance, A
12
     A = I*R; // The amplitude of voltage pulse, V
    printf("\n The current through 100-ohm resistance
13
          = \%6.4 \,\mathrm{e} A \n The amplitude of voltage pulse
         = \%6.4 \,\mathrm{e} \,\mathrm{V} ", I, A)
14 // Result
15 // The current through 100-ohm resistance
      1.0667e - 007 A
16 // The amplitude of voltage pulse = 1.0667e-002 \text{ V}
```

Scilab code Exa 7.4.2 Electric field at the surface of wire

```
1 // Scilab code Exa7.4.2: To calculate the electric
     field at the surface of wire :P.no. 310 (2011)
2 V = 1500; // Potential difference, V
3 a = 0.0001; // Radius of the wire, m
4 b = 0.02; // Radius of the cylinderical tube, m
5 r = 0.0001; // Distance of electric field from the
     surface, m
6 E_r = V/(r*log(b/a)); // the electric field at the
```

```
surface, V/m
printf("\n The electric field at the surface : %4.2
        e V/m", E_r)

// Result
// The electric field at the surface : 2.83e+006
        V/m
```

Scilab code Exa 7.5.1 Electric filed in G M counter

```
// Scilab code Exa7.5.1: To calculate the electric
field at the surface of wire of G.M. counter :P.
no. 311 (2011)

V = 2000; // Potential difference, V

a = 0.01; // Radius of the wire, cm

b = 2; // Radius of the cylinderical tube, cm

r = 0.01; // Radius of the wire, m

E_r = V/(r*log(b/a)); // the electric field at the surface, V/m

printf("\n The electric field at the surface : %d V /cm", E_r)

// Result
// The electric field at the surface : 37747 V/cm
```

Scilab code Exa 7.5.2 Life of G M counter

```
// Scilab code Exa7.5.2: To calculate the life of G.
     M. counter :P.no. 312 (2011)
     n_t = 10^9; // Total number of counts
     n_d = 2000*3*60; // Count recorded per day
     n_y = n_d*365; // Counts recorded in 365-days
     t = n_t/n_y; // The life of G.M. counter, year
     printf("\nThe life of G.M. counter : %4.2f year", t)
     // Result
```

```
8\ //\  The life of G.M. counter : 7.61 year 9\ //\
```

Scilab code Exa 7.5.3 Amplitude of voltage pulses in G M counter

```
1 // Scilab code Exa7.5.3: To calculate the voltage
     pulse of G.M. counter: P.no. 312 (2011)
   E_p = 30; // Energy required for one electron pair,
       eV
   E = 10e+06; // Energy lost by alpha particle, eV
   n = E/E_p; // Number of ion-pairs produced
   M = 5000; // Multiplication factor
   C = 50e-012; // Capacitance, F
   n_M = n*M; // Number of ion-pairs after
      multiplication
   e = 1.6e-019; // Charge of an electron, C
   Q = n_M * e; // Charge present in each ion
10
   A = Q/C; // Amplitude of voltage pulse, V
11
    printf("\n Amplitude of voltage pulse : \%3.1 f V", A
      )
  // Result
12
           Amplitude of voltage pulse : 5.3 V
13
```

Scilab code Exa 7.5.4 Estimating true count rate of G M counter

```
1 // Scilab code Exa7.5.4: To estimate the true count
    rate of G.M. counter :P.no. 312 (2011)
2    n = 30000; // Count per minute
3    n_o = n/60; // Observed count rate, count/s
4    t = 2e-04; // Dead time, s
5    n_t = round(n_o/(1-n_o*t)); // The true count rate,
        count/s
6    printf("\n The true count rate : %d counts/s", n_t)
```

```
7 // Result
8 // The true count rate : 556 counts/s
```

Scilab code Exa 7.6.1 Energy resolution of gamma rays

```
1 // Scilab code Exa7.6.1: To calculate the energy
     resolution of gamma rays emitted by Na-22 for
     channel first and second :P.no. 313 (2011)
2 // For 511 KeV gamma rays (for channel first)
3 F_W_H_M_1 = 97; // Frequency width at half maximum
     for channel first
4 P_pos_1 = 1202; // Peak position for channel first
5 Res_KeV_1 = F_W_H_M_1/P_pos_1*511; // Resolution in
     KeV for channel first
6 // For 1275 KeV gamma rays (for channel second)
7 F_W_H_M_2 = 82; // Frequency width at half maximum
     for channel second
8 P_pos_2 = 1202; // Peak position for channel second
9 Res_KeV_2 = round(F_W_H_M_2/P_pos_2*1275); //
     Resolution in KeV for channel second
    printf("\n Resolution for channel first = %d KeV
10
         \n Resolution for channel second = %d KeV "
       ,Res_KeV_1, Res_KeV_2)
    // Result
11
      Resolution for channel first = 41 KeV
13 //
       Resolution for channel second = 87 KeV
```

Scilab code Exa 7.6.2 Amplitude of output voltage pulse

```
1 // Scilab code Exa7.6.2 : To calculate the amplitude
    of output voltage pulse for NaI(Tl) :P.no. 314
        (2011)
2 e = 1.6e-019; // Charge of an electron, C
```

Scilab code Exa 7.6.3 Resolution of scintillation detector

```
1 // Scilab code Exa7.6.3 : To calculate the %-
     resolution and resolution in KeV for
     scintillation detector for Cs-137: P.no. 315
     (2011)
2 F_W_H_M = 0.72; // Full width at half maximum, V
3 P_p = 6.0; // Peak position, V
4 E = 662; // Energy of photopeak, KeV
5 %_resolution = F_W_H_M/P_p*100; // Percentage
     resolution in percent
6 Res_KeV = %_resolution/100*E; // Resolution in KeV
     for Cs-137
7 printf("\n The percentage resolution = %d percent
        \n Resolution in KeV = \%4.1 \, \text{f KeV} ",
     %_resolution, Res_KeV)
8 // Result
9 //
         The percentage resolution = 12 percent
10 //
            Resolution in KeV = 79.4 KeV
```

Scilab code Exa 7.7.1 Silicon pulse detector

```
1 // Scilab code Exa7.7.1 : To calculate the thickness
      of depletion layer of silicon detector and
     amplitude of voltage pulse :P.no. 316 (2011)
2 E_r = 12; // Relative permittivity
3 E_o = 8.85e-012; // Permittivity of free space
4 E = E_r*E_o; // Absolute dielectric constant
5 C = 100e-012; // Capacitance of the dielectric, F
6 A = 1.6e-04; // Area of the detector, m^2
7 e = 1.602e-019; // Charge of an electrin, C
8 E_p = 3.2; // Energy required to create an ion pair,
      eV
9 E_s = 12e+06; // Energy required to stopped ion pair
10 n = E_s/E_p; // Number of ion-pair produced
11 Q = n*e; // Charge of these ion pair, C
12 d = A*E/(C*10^-6); // The thickness of the depletion
      layer, micron
13 A = Q/C*1000; // The amplitude of voltage pulse, mV
14 printf("\n The thickness of the depletion layer
      %d micron \n The amplitude of voltage pulse:
        = \%6.4 \text{ f mV} ", d, A)
15 // Result
           The thickness of the depletion layer
16 //
     169 micron
17 //
           The amplitude of voltage pulse: = 6.0075
     mV
```

Scilab code Exa 7.7.2 Detector characteristics

```
5 A = 2e-04; // Area of the detector, m^2
6 = 1.602e-019; // Charge of an electron, C
7 d = 100e-06; // The thickness of the depletion layer
8 C = E*A/d; // The capacitance of the dielectric, F
9 E_p = 3.0; // Energy required to create an ion pair,
      eV
10 E_s = 5.48e + 06; // Energy required to stopped ion
     pair, eV
11 n = E_s/E_p; // Number of ion-pair produced
12 Q = n*e; // Charge of these ion pair, C
13 A = Q/C*1000; // The amplitude of voltage pulse, mV
14 printf("\n The capacitance of dielectric = \%5.3e F
       \n The amplitude of voltage pulse = \%5.3 \,\text{f mV}
      ", C, A)
15 // Result
        The capacitance of dielectric = 2.124e-010 \text{ F}
16 //
17 // The amplitude of voltage pulse = 1.378 \text{ mV}
```

Chapter 8

Particle Physics

Scilab code Exa 8.5.1 Average kinetic energy of pion

```
// Scilab code Exa8.5.1: To calculate the average
    kinetic energy of each pion:P.No.360 (2011)
// Proton and antiproton annihilate to produced
    three pions

E_p = 938; // Energy of proton, MeV

E_pi = 139.5; // Energy of pions, MeV

E_pi_0 = 134.9; // Energy of pi_0_ion, MeV

E_KE = [2*E_p-(2*E_pi+E_pi_0)]/3; // The average
    kinetic energy of each pions, MeV

printf("\n The average kinetic energy of each pions
    : %5.1 f MeV", E_KE)

// Result
// The average kinetic energy of each pions : 487.4
MeV
```

Scilab code Exa 8.5.2 Inherent uncertainty in mass of the particle

```
1 // Scilab code Exa8.5.2: To calculate the inherent
```

```
uncertainity in mass of the given particle: P.no
     . 360 (2011)
   // Here r_1 and r_2 are two decay rates are given
3
   // Declare the cell
   R1 = cell(1,2)
   R1(1,1).entries = 'r_1'
   R1(1,2) .entries = 'r<sub>2</sub>'
6
7
      printf("\n The inherent uncertainity in mass of
         particle = h(\%s + \%s) ", R1(1,1).entries, R1
         (1,2) .entries)
8 // Result
       The inherent uncertainity in mass of particle =
      h(r_1 + r_2)
```

Scilab code Exa 8.7.3 Sub nuclear reactions

```
1 // Scilab code Exa8.7.3: Determine the possibility
      of the given reaction: P. no. 362 (2011)
2 // Declare cell for the given reaction
3 R1 = cell(7,5)
4 // Enter data for the cell
5 R1(1,1).entries = 'p'
6 \text{ R1}(1,2) \cdot \text{entries} = 1
7 \text{ R1}(1,3) \cdot \text{entries} = 1
8 R1(1,4).entries = 0
9 R1(1,5).entries = 1/2
10 R1(2,1).entries = {}^{'}K_{-}+{}^{'}
11 R1(2,2) entries = 1
12 R1(2,3).entries = 0
13 R1(2,4).entries = 1
14 R1(2,5).entries = 1/2
15 R1(3,1).entries = S_{-}+
16 \text{ R1}(3,2).\text{entries} = 1
17 R1(3,3).entries = 1
18 R1(3,4).entries = -1
```

```
19 R1(3,5).entries = 1
20 R1(4,1).entries = 'pi_--'
21 R1(4,2).entries = -1
22 R1(4,3).entries = 0
23 R1(4,4).entries = 0
24 \text{ R1}(4,5).\text{entries} = 1
25 \text{ R1}(5,1) \cdot \text{entries} = 'S_{-0}'
26 \text{ R1}(5,2).\text{entries} = 0
27 R1(5,3).entries = 1
28 R1(5,4).entries = -1
29 R1(5,5).entries = 0
30 R1(6,1).entries = p_-
31 R1(6,2).entries = -1
32 \text{ R1(6,3).entries} = -1
33 \text{ R1}(6,4) \cdot \text{entries} = 0
34 \text{ R1}(6,5).\text{entries} = 1/2
35 \text{ R1}(7,1).\text{entries} = \text{'}n_{-}0'
36 \text{ R1}(7,2).\text{entries} = 0
37 \text{ R1}(7,3) \cdot \text{entries} = 0
38 \text{ R1}(7,4) \cdot \text{entries} = 0
39 \text{ R1}(7,5).\text{entries} = 0
40
41 function f = check_Isotopic_no(Ir_sum,Ip_sum)
              if Ir_sum == Ip_sum then
42
43
                   f = 1;
44
              else
45
                   f = 0;
46
              end
47 endfunction
48 1
49 // Declare a function returning equality status of
       proton number
50 function f = check_strangeness(sr_sum,sp_sum)
51
              if sr_sum == sp_sum then
52
                   f = 1;
53
              else
54
                   f = 0;
55
              end
```

```
56 endfunction
57 function f = check_charge(cr_sum,cp_sum)
           if cr_sum == cp_sum then
58
                f = 1;
59
60
           else
                f = 0:
61
62
           end
63 endfunction
  // Declare a function returning equality status of
      lepton number
65
          Reaction-I
66
67 printf("\n\n nReaction-I:\n\n");
68
           Ir_sum = R1(1,5).entries+R1(1,5).entries;
           Ip_sum = R1(2,5).entries+R1(3,5).entries;
69
          if (check_Isotopic_no(Ir_sum, Ip_sum) == 0)
70
             then
                printf("The Reaction\n")
71
                printf ("\t%s + \%s --> \%s + \%s \ nis
72
                   possible", R1(1,1).entries, R1(1,1).
                   entries, R1(2,1) entries, R1(3,1).
                   entries)
          Reaction-II
73
   //
                printf("\n\n\nReaction-II")
74
           sr_sum = R1(1,4).entries+R1(4,4).entries;
75
76
           sp_sum = R1(5,4).entries+R1(7,4).entries;
77
             if (check_strangeness(sr_sum,sp_sum)== 0)
                then
                printf("\n\nThe Reaction\n")
78
                printf("\t%s + \%s --> \%s + \%s \nis not
79
                   possible", R1(1,1) entries, R1(4,1).
                   entries, R1(5,1) entries, R1(7,1).
                   entries)
          Reaction-III
80 //
81
                printf("\n\n\nReaction-III:\n\n");
           cr_sum = R1(1,2).entries+R1(1,2).entries;
82
           cp_sum = R1(1,2).entries+R1(1,2).entries+R1
83
              (1,2).entries+R1(6,2).entries;
```

```
84
                      if (check_charge(cr_sum,cp_sum) == 1)
                          then
                  printf("The Reaction \n")
85
                  printf("\t\%s + \%s --> \%s + \%s + \%s \setminus nis
86
                     possible", R1(1,1).entries, R1(1,1).
                     entries, R1(1,1) entries, R1(1,1).
                     entries, R1(6,1).entries)
87
            end
             // Reaction-I:
88
89
90 // The Reaction
91 // p + p \longrightarrow K<sub>-</sub>+ + S<sub>-</sub>+
92 // is not possible
93
94
95 // Reaction-II
96
97 // The Reaction
98 // p + pi_- - S_0 + n_0
   // is not possible
100
101
102 // Reaction-III:
103
104 // The Reaction
105 // p + p \longrightarrow p + p + p_{-}
106 // is possible
```