

Linear classifiers: Parameter learning

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

Learn a probabilistic classification model

Many classifiers provide a degree of certainty:

Output label Input sentence P(y|x) Extremely useful in practice

A (linear) classifier

 Will use training data to learn a weight or coefficient for each word

Word	Coefficient	Value
	$\hat{\mathbf{w}}_0$	-2.0
good	\hat{w}_{1}	1.0
great	\hat{W}_2	1.5
awesome	\hat{W}_3	2.7
bad	\hat{w}_4	-1.0
terrible	\hat{w}_{5}	-2.1
awful	ŵ ₆	-3.3
restaurant, the, we,	$\hat{\mathbf{W}}_{7,} \hat{\mathbf{W}}_{8,} \hat{\mathbf{W}}_{9,}$	0.0

Logistic regression model

Quality metric for logistic regression: Maximum likelihood estimation

Learning problem

Training data:
N observations (**x**_i,y_i)

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
1	1	+1
2	4	-1
0	3	-1
0	1	-1
2	1	+1

MOVE TO HEAD SHOT

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	✓ -1
3	3	✓ -1
4	1	+1 🥒
1	1	+1
2	4	√ -1
0	3	✓ -1
0	1	√ -1
2	1	+1

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1
2	4	-1
0	3	-1
0	1	-1

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1
1	1	+1
2	1	+1

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1

$$P(y=+1|x_i,w) = 0.0$$

$$P(y=+1|x_i,w) = 1.0$$

Pick w that makes

Quality metric = Likelihood function

Negative data points

Positive data points

$$P(y=+1|x_y) = 0.0$$

$$P(y=+1|x_i, w) = 1.0$$

No w achieves perfect predictions (usually)

Likelihood $\ell(\mathbf{w})$: Measures quality of fit for model with coefficients \mathbf{w}

Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2

Quality metric: probability of data

Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	P(y=+1 X1,w) = P(y=+1 XD]=2,XD]=1,w)
x ₂ ,y ₂	0	2	-1	P(g=-1 x2,w)
x ₃ ,y ₃	3	3	-1	P(g=-1 x3,w)
x ₄ ,y ₄	4	1	+1	P(9=+11×4,w)
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	

Must combine into single measure of quality ? Multiply Probabilitios
P(y=+11x1,1w) P(y=-11x2,w) P(y=-11x3,w)...

Learn logistic regression model with maximum likelihood estimation (MLE)

Data point	x [1]	x [2]	У	Choose w to maximize
x ₁ ,y ₁	2	1	y ::+1	$P(\underline{y=+1} \mathbf{x}[1]=2, \mathbf{x}[2]=1,\mathbf{w})$
x ₂ ,y ₂	0	2	-1	$P(y=-1 \mathbf{x}[1]=0, \mathbf{x}[2]=2,\mathbf{w})$
x ₃ ,y ₃	3	3	-1	$P(y=-1 \mathbf{x}[1]=3, \mathbf{x}[2]=3,\mathbf{w})$
x ₄ ,y ₄	4	1	+1	$P(y=+1 \mathbf{x}[1]=4, \mathbf{x}[2]=1,\mathbf{w})$

$$\ell(\mathbf{w}) = \frac{P(y_1|\mathbf{x}_1,\mathbf{w})}{P(y_2|\mathbf{x}_2,\mathbf{w})} \frac{P(y_3|\mathbf{x}_3,\mathbf{w})}{P(y_3|\mathbf{x}_3,\mathbf{w})} \frac{P(y_4|\mathbf{x}_4,\mathbf{w})}{P(y_4|\mathbf{x}_4,\mathbf{w})}$$

$$\lim_{i=1}^{N} P(y_i|\mathbf{x}_i,\mathbf{w}) \leftarrow \text{pick } \omega \text{ to make}$$

$$\lim_{i \to \infty} P(y_i|\mathbf{x}_i,\mathbf{w}) \leftarrow \text{pick } \omega \text{ to make}$$

$$\lim_{i \to \infty} P(y_i|\mathbf{x}_i,\mathbf{w}) \leftarrow \text{pick } \omega \text{ to make}$$

$$\lim_{i \to \infty} P(y_i|\mathbf{x}_i,\mathbf{w}) \leftarrow \text{pick } \omega \text{ to make}$$

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

MOVE TO FULL BODY SHOT

Finding best linear classifier with gradient ascent

MOVE TO HEAD SHOT

Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2

22

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Maximizing likelihood

Here w0 is not present, since it is very hard to visualize the 4 dimensions.

Maximize function over all possible W_0, W_1, W_2

$$\max_{\mathsf{W_0,W_1,W_2}} \prod_{i=1}^N P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

 $\ell(w_0, w_1, w_2)$ is a

function of 3 variables

No closed-form solution → use gradient ascent

MOVE TO FULL BODY SHOT

MOVE TO HEAD SHOT

Finding the max via hill climbing

Algorithm:

while not converged $w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw}\Big|_{w^{(t)}}$

Convergence criteria

For convex functions, optimum occurs when

$$\frac{dl}{dw} = 0$$

In practice, stop when

Theoretically This is the point where the derivative=0. But in practice we won't able to get to this point.

Algorithm:

while not converged
$$w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw} \bigg|_{w^{(t)}}$$

Moving to multiple dimensions: Gradients

Contour plots

30

Gradient ascent

MOVE TO FULL BODY SHOT

Learning algorithm for logistic regression

MOVE TO HEAD SHOT

Derivative of (log-)likelihood

Indicator function:

$$1[y_i = +1] = \begin{cases} 1 & \text{if } y_i = +1 \\ 0 & \text{if } y_i = -1 \end{cases}$$

35

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Computing derivative

$$\frac{\partial \ell(\mathbf{w}^{(t)})}{\partial \mathbf{w}_j} = \sum_{i=1}^N h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \Big)$$

w(e);

$\mathbf{W}_0^{(t)}$	0
$w_{1}^{(t)}$	1
(t) W ₂	-2

h, (4) = 4 aurson

x [1]	x [2]	у	P(y=+1 x _i ,w)	Contribution to derivative for w ₁
2	1	+1	0.5	2(1-0.5)=1
0	2	-1	0.02	0 (0-0.02) = 0
3	3	-1	0.05	3 (0 - 0.05)=-0.15
4	1	+1	0.88	4(1-0.89)=0.48

Total derivative:

$$\frac{\partial l(w\omega)}{\partial w_{i}} = 1 + 0 - 0.15 + 0.48 = 1.33$$

$$w_{i}^{(4+i)} = w_{i}^{(0)} + \eta \frac{\partial l(w\omega)}{\partial w_{i}} \qquad | \eta = 0.1$$

$$= 1 + (0.14x | 1.33) = 1.133 | \xi$$

Derivative of (log-)likelihood: Interpretation

Summary of gradient ascent for logistic regression

init
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$

while $\|\nabla \ell(\mathbf{w}^{(t)})\| > \epsilon$

for $j = 0,...,D$

$$partial[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)})\right)$$

$$\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ partial}[j]$$

$$\mathbf{t} \leftarrow \mathbf{t} + \mathbf{1}$$

Ske size

MOVE TO FULL BODY SHOT

MOVE TO HEAD SHOT

Learning curve: Plot quality (likelihood) over iterations

If step size is too small, can take a long time to converge

10^-6 is still going up and up to the top of the hill.

Compare converge with

Careful with step sizes that are too large

©2015-2016 Emily Fox & Carlos Guestrin

Very large step sizes can even cause divergence or wild oscillations

Simple rule of thumb for picking step size η

- Unfortunately, picking step size requires a lot of trial and error ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one η that is too small (smooth but moving too slowly)
 - find one η that is too large (oscillation or divergence)

• Advanced tip: can also try step size that decreases with iterations, e.g.,

earning Specialization

MOVE TO FULL BODY SHOT

VERY
OPTIONAL

MOVE TO HEAD SHOT

Log-likelihood function

Goal: choose coefficients w maximizing likelihood:

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Math simplified by using log-likelihood – taking (natural) log:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

The log trick, often used in ML...

- Products become sums:
- Doesn't change maximum!
 - If w maximizes f(w):

```
\hat{W} = \underset{w}{\operatorname{arg max}} f(w)
the w that makes f(w) largest

Then \hat{\mathbf{W}}_{ln} maximizes \ln(f(\mathbf{w})):
\hat{W}_{ln} = \underset{w}{\operatorname{arg max}} \ln(f(w))
\hat{W} = \hat{W}_{ln}
```


Insert next title slide before Slide 52, around 4:55 in PL7_DerivingtheGradient_1stEdit

Expressing the log-likelihood

Using log to turn products into sums $\lim_{h \to \infty} \int_{\mathbb{R}^n} f_h = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_h$

The log of the product of likelihoods becomes the sum of the logs:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Rewriting log-likelihood

For simpler math, we'll rewrite likelihood with indicators:

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} \left[\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) \right]$$

$$\downarrow \mathbf{y}_{i=1}$$

$$\downarrow \mathbf{y}_{i=1}$$

Insert next title slide before Slide 54, around 7:33 in PL7_DerivingtheGradient_1stEdit

Deriving probability that y=-1 given x

58

Logistic regression model: P(y=-1|x,w)

• Probability model predicts y=+1:

$$P(y=+1|x,w) = \frac{1}{1 + e^{-w^{T}h(x)}}$$

Probability model predicts y=-1:

$$P(y=-1|X,w) = 1 - P(y=+1|X,w) = 1 - \frac{1}{1+e^{-w\tau h(x)}}$$

$$= \frac{1+e^{-w\tau h(x)}}{1+e^{-w\tau h(x)}} = \frac{e^{-\omega\tau h(x)}}{1+e^{-\omega\tau h(x)}}$$

Insert next title slide before Slide 55, around 9:15 in PL7_DerivingtheGradient_1stEdit

Rewriting the log-likelihood

61

Plugging in logistic function for 1 data point

$$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}} \qquad P(y = -1 \mid \mathbf{x}, \mathbf{w}) = \frac{e^{-\mathbf{w}^{\top} h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$$

$$\ell\ell(\mathbf{w}) = \mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= \mathbb{1}[y_i = +1] \ln \frac{1}{1 + \ell^{-\sqrt{1}}h(x_i)} + \left(1 - \mathbb{1}[y_i = +1]\right) \ln \frac{e^{-\omega^{-1}h(x_i)}}{1 + \ell^{-\omega^{-1}h(x_i)}}$$

$$= -\mathbb{1}[y_i = +1] \ln (1 + e^{-\sqrt{1}h(x_i)}) + \left(1 - \mathbb{1}[y_i = +1]\right) \left[-\omega^{-1}h(x_i) - \ln (1 + e^{-\omega^{-1}h(x_i)})\right]$$

$$= \mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= - (1 - 1)(y_i = +1)) wth(x_i) - ln(1 + e^{-wth(x_i)})$$
Simpler form

Ine = a

$$I(y_{i=-1}) = 1 - A(y_{i=+1})$$

$$In \frac{1}{1+e^{-\omega \tau_{h}(x_{i})}} = -In(I+e^{-\omega \tau_{h}(x_{i})})$$

$$In \frac{e^{-\omega \tau_{h}(x_{i})}}{1+e^{-\omega \tau_{h}(x_{i})}} = In(I+e^{-\omega \tau_{h}(x_{i})})$$

$$In e^{-\omega \tau_{h}(x_{i})} - In(I+e^{-\omega \tau_{h}(x_{i})})$$

$$Loginal Thus, in the constant of the constant of$$

Insert next title slide before Slide 56, around 16:56 in PL7_DerivingtheGradient_1stEdit

Deriving gradient of log-likelihood

Gradient for 1 data point

$$\ell\ell(\mathbf{w}) = -(1 - \mathbb{1}[y_i = +1])\mathbf{w}^{\top}h(\mathbf{x}_i) - \ln\left(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}\right)$$

$$\frac{\partial \ell \ell}{\partial w_{j}} = -\left(1 - 1 \left[y_{i} = +1 \right] \right) \frac{\partial}{\partial w_{j}} w^{T} h(x_{i}) - \frac{\partial}{\partial w_{j}} \ln\left(1 + \ell^{-w^{T}} h(x_{i})\right)$$

$$= -\left(1 - 1 \left[y_{i} = +1 \right] \right) h_{j}(x_{i}) + h_{j}(x_{i}) P(y = -1 \mid x_{i}, w)$$

$$=h_{j}(x_{i})\left[1|[y_{i}=+i]-P(y_{i}=+i]|x_{i},w)\right]$$

$$\frac{\partial}{\partial u_{j}} w^{T}h(x_{i}) = h_{j}(y_{i})$$

$$\frac{\partial}{\partial u_{j}} \ln \left(1 + e^{-w^{T}h(x_{i})}\right)$$

$$= -h_{j}(y_{i})$$

$$\frac{e^{-w^{T}h(x_{i})}}{1 + e^{-w^{T}h(x_{i})}}$$

$$P(y_{i} = -1|x_{i}, w_{i})$$

Finally, gradient for all data points

Gradient for one data point:

$$h_j(\mathbf{x}_i)\Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w})\Big)$$

Adding over data points:

$$\frac{\partial \ell\ell}{\partial \omega_{j}} = \frac{N}{\sum_{i=1}^{N} h_{j}(x_{i}) \left(1 \sum_{i=1}^{N} -P(y=+1|X_{i},\omega) \right)}$$

MOVE TO FULL BODY SHOT

Summary of logistic regression classifier

MOVE TO HEAD SHOT

MOVE TO FULL BODY SHOT

What you can do now...

- Measure quality of a classifier using the likelihood function
- Interpret the likelihood function as the probability of the observed data
- Learn a logistic regression model with gradient descent
- (Optional) Derive the gradient descent update rule for logistic regression

Simplest link function: sign(z)

$$sign(z) = \begin{cases} +1 & \text{if } z \ge 0\\ -1 & \text{otherwise} \end{cases}$$

But, sign(z) only outputs -1 or +1, no probabilities in between

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1

$$0.0 \longleftarrow P(y=+1|x_i,\hat{\mathbf{w}}) \longrightarrow 1.0$$

Quality metric: probability of data

$$\hat{\mathbf{P}}(\mathbf{y} = +\mathbf{1} | \mathbf{x}, \hat{\mathbf{w}}) = \underbrace{1}_{\mathbf{1} + \mathbf{e}^{-\hat{\mathbf{w}}^T h(\mathbf{x})}}$$

75

Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	
x ₂ ,y ₂	0	2	-1	
x ₃ ,y ₃	3	3	-1	
x ₄ ,y ₄	4	1	+1	
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	

Must combine into single measure of quality

Learn logistic regression model with maximum likelihood estimation (MLE)

Choose coefficients w that maximize likelihood:

$$\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

No closed-form solution → use gradient ascent