Семинар №4

Методы нахождения оценок.

Метод моментов.

Пусть параметр $\theta=(\theta_1,\dots,\theta_k)\in\mathbb{R}^k,$ а $g_1(x),\dots,g_k(x)$ — борелевские функции. Пусть X_1,\dots,X_n — выборка из неизвестного распределения P_{θ} , $\theta \in \Theta$.

Рассмотрим функции $m_i(\theta) = E_{\theta}g_i(X_1), i = 1...k.$

Составим систему уравнений относительно θ : $\left\{ \begin{array}{l} m_1(\theta^*) = \overline{g_1(X)} \\ \dots \\ m_k(\theta^*) = \overline{g_k(X)} \end{array} \right.$ Определение Решение така

Определение. Решение такой системы (относительно θ^*) $\theta^*(X)$ называется оценкой по методу моментов с пробными функциями g_1, \ldots, g_k .

<u>Замечание.</u> Естественно, что нужно подбирать такие пробные функции, чтобы весь вектор θ однозначно выражался из введённой нами системы. Функции $q_i(x) = x^i$, $i = 1 \dots k$, называются стандартными пробными функциями. **Задача.** Найти оценки по методу моментов со стандартными пробными функциями для $N(a, \sigma^2)$.

Решение.

Здесь $\theta = (a, \sigma^2)$. Выберем стандартные пробные функции $g_1(x) = x$ и $g_2(x) = x^2$. Тогда $E_{\theta}g_1(X_1) = E_{\theta}X_1 = a$, $E_{\theta}g_2(X_1) = E_{\theta}X_1^2 = D_{\theta}X_1 + (E_{\theta}X_1)^2 = \sigma^2 + a^2$. Тем самым, получаем систему: $(a^*)^2 + (\sigma^2)^* = \overline{X^2}$,

решая которую, получаем ответ: оценкой для вектора $\theta=(a,\sigma^2)$ служит (\overline{X},s^2) .

Оценка методом моментов не обязательно является несмещённой. Однако верно следующее утверждение.

Лемма 1. Если $\overrightarrow{m}(\theta) = (m_1(\theta), \dots, m_k(\theta))$ биективна на Θ , $(\overrightarrow{m})^{-1}$ является непрерывным отображением u, кроме того, $E_{\theta}|g_i(X_1)| < \infty$, то оценка методом моментов сильно состоятельна.

При выполнении некоторых более узких условий на вектор-функцию \overrightarrow{m} оценка методом моментов является асимптотически нормальной.

Метод максимального правдоподобия.

Пусть $\{P_{\theta}, \theta \in \Theta\}$ – параметрическое семейство распределений. Если все P_{θ} – абсолютно непрерывные распределения, то положим $p_{\theta}(x)$ равной плотности P_{θ} . Если же все $\{P_{\theta}, \theta \in \Theta\}$ – дискретные распределения, то положим $p_{\theta}(x) = P_{\theta}(X = x).$

Определение. Функцией правдоподобия выборки X_1, \ldots, X_n из распределения $P_{\theta}, \ \theta \in \Theta$, называется случайная величина $f_{\theta}(X_1,\ldots,X_n)=p_{\theta}(X_1)p_{\theta}(X_2)\ldots p_{\theta}(X_n)$. Величина $L_{\theta}(X_1,\ldots,X_n)=\ln f_{\theta}(X_1,\ldots,X_n)$ называется логарифмической функцией правдоподобия.

Определение. Оценкой максимального правдоподобия (ОМП) параметра θ называется

$$\widehat{\theta}(X_1, \dots, X_n) = \arg \max_{\theta \in \Theta} f_{\theta}(X_1, \dots, X_n),$$

т.е. то значение $\theta \in \Theta$, при котором достигается максимум функции правдоподобия при фиксированных X_1,\ldots,X_n .

Задача. Найти оценку максимального правдоподобия для $X_i \sim Bern(\theta)$.

Поскольку бернуллиевское распределение дискретно, то $p_{\theta}(x) = P_{\theta}(X = x)$, где $x \in \{0,1\}$. В свою очередь,

$$P_{\theta}(X=x) = \begin{cases} \theta, \text{ если } x = 1, \\ 1 - \theta, \text{ если } x = 0. \end{cases} = \theta^{I\{x=1\}} (1 - \theta)^{I\{x=0\}} = \theta^x (1 - \theta)^{1-x} I\{x \in \{0, 1\}\}.$$

Получаем, что функция правдоподобия равна $f_{\theta}(X_1,\ldots,X_n)=\theta^{\sum X_i}(1-\theta)^{n-\sum X_i}$, а логарифмическая функция правдоподобия (которую, как правило, легче дифференцировать, чтобы найти точку максимума) – $L_{\theta}(X_1,\ldots,X_n)=\sum X_i \ln \theta + (n-\sum X_i) \ln (1-\theta)$. Продифференцируем $L_{\theta}(X_1,\ldots,X_n)$ по θ : $\frac{\sum X_i}{\theta} - \frac{n-\sum X_i}{1-\theta} = 0$, откуда видим, что $\theta^* = \overline{X}$. \square

Замечание. Если у уравнения правдоподобия $L'_{\theta}(X_1,\ldots,X_n)=0$ только одно решение, то оно максимизирует функцию правдоподобия и, тем самым, является ОМП и состоятельной оценкой искомого параметра. Когда решений несколько, то даже то решение, которое максимизирует функцию правдоподобия, не обязательно является состоятельной оценкой искомого параметра.

Метод выборочных квантилей.

<u>Определение.</u> Пусть F(x) – функция распределения на \mathbb{R} . Пусть $p \in (0,1)$, тогда p-квантилью функции распределения F(x) называют величину $z_p = \inf\{x : F(x) \ge p\}$.

Определение. Пусть X_1,\ldots,X_n – выборка из неизвестного распределения P. Статистику

$$z_{n,p} = \left\{ \begin{array}{ll} X_{([np]+1)}, & \text{если } np \notin \mathbb{Z}; \\ X_{(np)}, & \text{если } np \in \mathbb{Z} \end{array} \right.$$

называют выборочной p- квантилью.

Теорема. (Об асимптотической нормальности выборочной квантили) Пусть $X_1, \ldots X_n$ – выборка из распределения P с плотностью f(x). Пусть z_p – p-квантиль распределения P, причём f(x) непрерывно дифференцируема в окрестности z_p и $f(z_p) > 0$. Тогда

$$\sqrt{n}(z_{n,p}-z_p) \xrightarrow{d} N\left(0, \frac{1}{4f^2(z_p)}\right).$$

Определение. Медианой распределения P называют его $\frac{1}{2}$ -квантиль.

Определение. Выборочной медианой выборки $X_1, \dots X_n$ называют статистику $\widehat{\mu} = \left\{ \begin{array}{ll} X_{(k+1)}, & \text{если } n = 2k+1; \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & \text{если } n = 2k. \end{array} \right.$

Асимптотическое поведение $\widehat{\mu}$ схоже с поведением $z_{n,0,5}$: в условиях теоремы о выборочной квантили $\sqrt{n}(\widehat{\mu}-z_{0.5}) \stackrel{d}{\to} N\left(0,\frac{1}{4f^2(z_{0.5})}\right)$ (этот факт носит название теоремы о выборочной медиане).