S2208 MATH8050 Data Analysis - Section 001: Homework 4 Due on 09/28/22

Adithya Ravi, C09059838

2022-09-28

Solutions

Question1

1a

$$\begin{split} N(x|\theta,l^{-1}) &= \sqrt{\frac{l}{2\pi}} exp(-\frac{1}{2})l(x-\theta)^2 \\ &\propto exp(-\frac{1}{2}l(x^2-2x\theta+\theta^2)) \\ &\propto exp(lx\theta-\frac{1}{2}l\theta^2) \end{split}$$

Due to symmetry of the normal p.d.f.,

$$N(\theta|\mu_0, \lambda_0^{-1}) = N(\mu_0|\theta, \lambda_0^{-1}) \propto exp(\lambda_0 \mu_0 \theta - \frac{1}{2}\lambda_0 \theta^2)$$

by $exp(lx\theta - \frac{1}{2}l\theta^2)$ with $x = \mu_0$ and $l = \lambda_0$. Therefore, defining L and M as above,

$$p(\theta|x_{1:n}) \propto 1p(x_{1:n}|\theta)$$

$$\prod_{i=1}^{n} N(x_i|\theta, \lambda^{-1})$$

$$\propto exp(\lambda)(\sum (x_i)\theta - \frac{1}{2}n\lambda\theta^2)$$

1b

$$N(x|\theta, l^{-1}) = \sqrt{\frac{l}{2\pi}} exp(-\frac{1}{2})l(x-\theta)^2$$
$$\propto exp(-\frac{1}{2}l(x^2 - 2x\theta + \theta^2))$$

$$\propto exp(lx\theta - \frac{1}{2}l\theta^2)$$

Due to symmetry of the normal p.d.f.,

$$N(\theta|\mu_0, \lambda_0^{-1}) = N(\mu_0|\theta, \lambda_0^{-1}) \propto exp(\lambda_0 \mu_0 \theta - \frac{1}{2}\lambda_0 \theta^2)$$

by $exp(lx\theta - \frac{1}{2}l\theta^2)$ with $x = \mu_0$ and $l = \lambda_0$. Therefore, defining L and M as above,

$$p(\theta|x_{1:n}) \propto p(\theta)p(x_{1:n}|\theta)$$

$$= N(\theta|\mu_0, \lambda_0^{-1}) \prod_{i=1}^n N(x_i|\theta, \lambda^{-1})$$

$$\propto exp(\lambda_0\mu_0\theta - \frac{1}{2}\lambda_0\theta^2)exp(\lambda)(\sum (x_i)\theta - \frac{1}{2}n\lambda\theta^2)$$

$$= exp((\lambda_0\mu_0 + \lambda \sum x_i)\theta - \frac{1}{2}(\lambda_0 + n\lambda)\theta^2)$$

$$= exp(LM\theta) - \frac{1}{2}L\theta^2$$

$$\propto N(M|\theta, L^{-1}) = N(\theta|M, L^{-1})$$

$$L = \lambda_0 + n\lambda$$

$$M = \frac{\lambda_0\mu_0 + \lambda \sum_{i=1}^n x_i}{\lambda_0 + n\lambda}$$

where

and

1c

MLE for μ :

$$\frac{\partial}{\partial \mu} log like lihood = -\frac{1}{2} \lambda \sum_{i=1}^{n} 2(x_i - \mu)(-1)$$

$$= \lambda \sum_{i=1}^{n} (x_i) - \mu = 0$$

$$= \sum_{i=1}^{n} (x_i - \mu) = 0$$

$$= \sum_{i=1}^{n} x_i - n\mu = 0$$

$$= > \mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

MLE for λ :

$$\frac{\partial}{\partial \lambda} \left(\frac{n}{2\pi} \ln(\frac{\lambda}{2\pi}) - \frac{1}{2} \lambda (x_i - \mu)^2 \right) = 0$$

$$\frac{n}{2} \frac{\frac{1}{2\pi}}{\frac{\lambda}{2\pi}} = \frac{1}{2} \sum (x_i - \mu)^2$$

$$\lambda = \frac{n}{\sum (x_i - \mu)^2}$$

$$\lambda = \frac{1}{\sum (x_i - \mu)^2}$$

```
set.seed(123)
rnd <- rnorm(100, mean=0, sd=3)
lambda_max <- 1/var(rnd)
meanvalue_max <- mean(rnd)

lambda_max</pre>
```

[1] 0.1333494

meanvalue_max

[1] 0.2712177

```
my_function<-function(mean_value,lambda) {
final <- 0
for (v in rnd) {
    c<-(v-mean_value)**2
    final<-final+c
}

log.likli.hood<-(50)*log(lambda/(2*3.14))-((1/2)*(lambda)*final)

return(log.likli.hood)
}

lambda<-seq(0,0.5,length=100)
mean_value<-seq(0,1,length=100)

z<-my_function(mean_value,lambda)
total<-data.frame(lambda = lambda,mean_value = mean_value, z = z)
total</pre>
```

```
##
           lambda mean_value
## 1
      0.00000000 0.00000000
                                  -Inf
## 2 0.005050505 0.01010101 -358.1738
## 3
      0.010101010 0.02020202 -325.4059
## 4
      0.015151515 0.03030303 -307.0195
## 5
      0.020202020 0.04040404 -294.5200
    0.025252525 0.05050505 -285.2453
## 7 0.030303030 0.06060606 -278.0097
## 8
      0.035353535 0.07070707 -272.1808
## 9 0.040404040 0.08080808 -267.3812
## 10 0.045454545 0.09090909 -263.3675
## 11 0.050505051 0.10101010 -259.9735
```

```
## 12 0.055555556 0.11111111 -257.0808
## 13
      0.060606061 0.12121212 -254.6020
       0.065656566 0.13131313 -252.4707
## 15
      0.070707071 0.14141414 -250.6354
## 16
       0.075757576 0.15151515 -249.0552
## 17
       0.080808081 0.16161616 -247.6973
       0.085858586 0.17171717 -246.5348
## 19
       0.090909091 0.18181818 -245.5455
## 20
       0.095959596 0.19191919 -244.7108
## 21
       0.101010101 0.20202020 -244.0149
      0.106060606 0.21212121 -243.4445
## 23
       0.111111111 0.2222222 -242.9881
##
       0.116161616 0.23232323 -242.6357
  24
## 25
       0.121212121 0.24242424 -242.3788
## 26
       0.126262626 0.25252525 -242.2096
## 27
       0.131313131 0.26262626 -242.1216
## 28
       0.136363636 0.27272727 -242.1089
## 29
       0.141414141 0.28282828 -242.1662
## 30
      0.146464646 0.29292929 -242.2890
##
       0.151515152 0.30303030 -242.4729
##
  32
      0.156565657 0.31313131 -242.7142
       0.161616162 0.32323232 -243.0097
       0.166666667 0.33333333 -243.3562
## 34
##
  35
       0.171717172 0.34343434 -243.7509
## 36
      0.176767677 0.35353535 -244.1914
  37
       0.181818182 0.36363636 -244.6754
## 38
       0.186868687 0.37373737 -245.2008
##
  39
       0.191919192 0.38383838 -245.7657
      0.196969697 0.39393939 -246.3683
## 40
## 41
       0.202020202 0.40404040 -247.0070
## 42
       0.207070707 0.41414141 -247.6805
## 43
       0.212121212 0.42424242 -248.3872
## 44
       0.217171717 0.43434343 -249.1261
       0.22222222 0.4444444 -249.8958
## 45
       0.227272727 0.45454545 -250.6955
## 46
       0.232323232 0.46464646 -251.5240
## 47
       0.237373737 0.47474747 -252.3805
## 49
       0.242424242 0.48484848 -253.2641
       0.247474747 0.49494949 -254.1741
## 50
## 51
      0.252525253 0.50505051 -255.1098
## 52
      0.257575758 0.51515152 -256.0704
       0.262626263 0.52525253 -257.0553
## 53
##
  54
       0.267676768 0.53535354 -258.0640
##
      0.272727273 0.54545455 -259.0960
  55
## 56
       0.277777778 0.55555556 -260.1506
       0.282828283 0.56565657 -261.2276
## 57
## 58
       0.287878788 0.57575758 -262.3264
## 59
       0.292929293 0.58585859 -263.4466
## 60
       0.297979798 0.59595960 -264.5878
## 61
       0.303030303 0.60606061 -265.7498
       0.308080808 0.61616162 -266.9322
## 62
## 63
      0.313131313 0.62626263 -268.1347
## 64 0.318181818 0.63636364 -269.3571
## 65 0.323232323 0.64646465 -270.5989
```

```
0.328282828 0.65656566 -271.8602
       0.333333333 0.66666667 -273.1405
  67
##
      0.338383838 0.67676768 -274.4398
##
  69
      0.343434343 0.68686869 -275.7578
##
  70
       0.348484848 0.69696970 -277.0943
      0.353535354 0.70707071 -278.4493
##
  71
       0.358585859 0.71717172 -279.8225
## 73
       0.363636364 0.72727273 -281.2138
##
  74
       0.368686869 0.73737374 -282.6232
##
  75
      0.373737374 0.74747475 -284.0504
       0.378787879 0.75757576 -285.4955
  77
       0.383838384 0.76767677 -286.9583
##
##
  78
       0.388888889 0.77777778 -288.4387
      0.393939394 0.78787879 -289.9367
##
  79
## 80
      0.398989899 0.79797980 -291.4521
## 81
       0.404040404 0.80808081 -292.9851
##
      0.409090909 0.81818182 -294.5355
  82
      0.414141414 0.82828283 -296.1032
## 84
      0.419191919 0.83838384 -297.6883
## 85
       0.424242424 0.84848485 -299.2907
##
  86
       0.429292929 0.85858586 -300.9104
       0.434343434 0.86868687 -302.5474
      0.439393939 0.87878788 -304.2017
## 88
       0.44444444 0.88888889 -305.8733
  89
## 90
      0.449494949 0.89898990 -307.5622
      0.454545455 0.90909091 -309.2683
## 92
       0.459595960 0.91919192 -310.9918
       0.464646465 0.92929293 -312.7327
  93
##
  94
      0.469696970 0.93939394 -314.4909
  95
      0.474747475 0.94949495 -316.2665
## 96
       0.479797980 0.95959596 -318.0595
  97
       0.484848485 0.96969697 -319.8700
      0.489898990 0.97979798 -321.6979
## 99 0.494949495 0.98989899 -323.5435
## 100 0.500000000 1.00000000 -325.4066
ggplot(total,aes(mean_value,lambda,z=z)) +
 geom_density_2d() +
  geom_vline(xintercept = meanvalue_max) +
 geom_hline(yintercept = lambda_max) +
  geom_text(label = "(0.2712177,0.1333494)", x=0.2712177, y=0.1333494)
```


Warning in is.na(x): is.na() applied to non-(list or vector) of type
'expression'

1d

```
p_uni <- function(mean_value,lambda){</pre>
p_uniform <- exp (lambda*sum(rnd)*mean_value-length(rnd)*</pre>
                              ((mean_value)**2))
return(p_uniform)
}
p_normal <- function(mean_value,lambda,lambda_0){</pre>
  mean_0=0
  L <- lambda_0+length(rnd)*lambda</pre>
  M <- (lambda_0*mean_0+lambda*sum(rnd))/(L)</pre>
  p_normal <- exp(L*M*mean_value - 0.5*L*(mean_value**2))</pre>
}
my_function2<-function(mean_value,lambda){</pre>
  final <- 0
  for (variable in rnd) {
    c <- (variable-mean_value)**2</pre>
    final <- final+c</pre>
  }
  likelihood <- ((sqrt(lambda/2*3.14))**length(rnd))*exp(0.5*lambda)*final</pre>
  return(likelihood)
```


Question2

2a

Hypotheses: Null Hypothesis,

$$H_0: \mu = 0.12$$

Alternate Hypothesis,

$$H_1: \mu > 0.12$$

2b

Reject H_0 if $z >= z_{\alpha}$ Since $\alpha = 0.01$, from the z table we can get $z_{0.01} = 2.33$ Therefore rejection region is: Reject H_0 if z >= 2.33

2c

Hypothesis testing:

Hypotheses: Null Hypothesis, $H_0: \mu = 0.12$ Alternate Hypothesis, $H_1: \mu > 0.12$

Test Statistic:

$$z_{obs} = \frac{\overline{y} - \mu_0}{s / \sqrt{n}}$$

In the problem, we have

$$\overline{y} = 0.135$$

$$s = 0.03$$

$$\mu_0 = 0.12$$

$$n = 30$$

Substituting this on the above formule we get the test statistic

$$z_{obs} = \frac{0.135 - 0.12}{0.03/\sqrt{30}} = 2.74$$

Rejection Region:

$$z_{obs} = 2.74 > z_{\alpha=0.01} = 2.33$$

Therefore we reject H_0.

This means that there is sufficient evidence to conclude the alternate hypothesis that mean ozone levels in air currents over New England exceeds the federal ozone standard of 0.12 ppm.

2d

p-value =
$$p(z >= z_{obs}) = p(z >= 2.74) = 1 - p(z < 2.74) = 1 - 0.9969 = 0.0031$$

Because p-value $p = 0.0031 < \alpha = 0.01$ we reject the null hypothesis H_0 . This is consistent with our result in part c.

2e

Assumptions concerning the distribution of the random variable X, ozone level in the air:

- 1. The data is continuous and not discrete
- 2. The data is a simple random sample
- 3. The data in the population is normally distributed
- 4. The population standard deviation is known

Question3

3a

```
data("BostonHousing")
df_2 = BostonHousing
bh = lm(crim \sim ., data = df_2)
lm.betas <- bh$coefficients</pre>
summary(bh)
##
## Call:
## lm(formula = crim ~ ., data = df_2)
##
## Residuals:
     \mathtt{Min}
              1Q Median
                             3Q
                                   Max
## -9.924 -2.120 -0.353 1.019 75.051
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.033228
                             7.234903
                                        2.354 0.018949 *
                 0.044855
                             0.018734
                                        2.394 0.017025 *
## indus
                -0.063855
                            0.083407 -0.766 0.444294
## chas1
                -0.749134
                            1.180147 -0.635 0.525867
               -10.313535
                             5.275536 -1.955 0.051152 .
## nox
                 0.430131
## rm
                             0.612830
                                        0.702 0.483089
                 0.001452
                             0.017925
                                        0.081 0.935488
## age
                -0.987176
                            0.281817 -3.503 0.000502 ***
## dis
                 0.588209
                             0.088049
                                        6.680 6.46e-11 ***
## rad
## tax
                -0.003780
                            0.005156 -0.733 0.463793
                -0.271081
## ptratio
                            0.186450 -1.454 0.146611
## b
                -0.007538
                            0.003673 -2.052 0.040702 *
## 1stat
                 0.126211
                             0.075725
                                        1.667 0.096208 .
## medv
                -0.198887
                             0.060516 -3.287 0.001087 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 6.439 on 492 degrees of freedom
## Multiple R-squared: 0.454, Adjusted R-squared: 0.4396
## F-statistic: 31.47 on 13 and 492 DF, p-value: < 2.2e-16
We can see from the t-value that the model is significant. These are predictors can be rejected for H_0: \beta_j = 0
at \alpha = 0.05
(ii)zn
(iii)dis
(iv)rad
(v)b
(vi)medv
```

Null hypothesis can be rejected for features whose Pr(>|t|) < 0.05. So from the above table we can reject null hypothesis for zn, dis, rad, b, medv

```
y \leftarrow df_2 crim
X \leftarrow as.matrix(df_2[-1])
int <- rep(1, length(y))</pre>
X <- cbind(int, X)</pre>
X <- matrix(as.numeric(X),ncol = ncol(X))</pre>
my.lm <- function(y,X){</pre>
betas <- solve(t(X) %*% X) %*% t(X) %*% y
return (betas)
my.lm(y,X)
##
                  [,1]
##
  [1,] 17.033227523
##
   [2,]
         0.044855215
## [3,] -0.063854824
## [4,] -0.749133611
  [5,] -10.313534912
##
## [6,] 0.430130506
## [7,] 0.001451643
## [8,] -0.987175726
## [9,] 0.588208591
## [10,] -0.003780016
## [11,] -0.271080558
## [12,] -0.007537505
         0.126211376
## [13,]
## [14,] -0.198886821
#Comparision
results <- data.frame(our.results=my.lm(y,X), lm.results=lm.betas)
print(results)
##
                 our.results
                                lm.results
## (Intercept) 17.033227523 17.033227523
## zn
                0.044855215
                              0.044855215
## indus
               -0.063854824 -0.063854824
## chas1
              -0.749133611 -0.749133611
## nox
               -10.313534912 -10.313534912
## rm
                0.430130506 0.430130506
                0.001451643 0.001451643
## age
                -0.987175726 -0.987175726
## dis
## rad
                0.588208591
                               0.588208591
## tax
                -0.003780016 -0.003780016
## ptratio
              -0.271080558 -0.271080558
## b
                -0.007537505 -0.007537505
## lstat
               0.126211376
                               0.126211376
## medv
                -0.198886821 -0.198886821
#MSE
beta = my.lm(y,X)
```

```
int <- rep(1, length(y))</pre>
\#Z = cbind(int, X)
\#Z \leftarrow matrix(as.numeric(Z),ncol = ncol(Z))
pred = X %*% beta
MSE_own = mean((y - pred)^2)
MSE_lm = mean(bh$residuals^2)
results_mse <- data.frame(our.result=MSE_own, lm.result=MSE_lm)</pre>
print(results mse)
   our.result lm.result
##
## 1 40.31607 40.31607
3c
train = tail(df_2,-10)
test = head(df_2, 10)
ytrain = train$crim
ytest = test$crim
Xtest = as.matrix(test[-1])
int2 = rep(1, length(ytest))
Xtest = cbind(int2, Xtest)
Xtest <- matrix(as.numeric(Xtest),ncol = ncol(Xtest))</pre>
xtest = head(Xtest, 1)
Xtrain = as.matrix(train[-1])
int2 = rep(1, length(ytrain))
Xtrain = cbind(int2,Xtrain)
Xtrain = matrix(as.numeric(Xtrain), ncol = ncol(Xtrain))
my.predict <- function(Xtrain, ytrain, Xtest){</pre>
 n = length(ytrain)
 \#lm.model \leftarrow lm(y \sim x)
 p = ncol(Xtest)
 \# y.fitted \leftarrow lm.model\$fitted.values \# Extract the fitted values of y
 beta = my.lm(ytrain, Xtrain)
 y.fitted = Xtrain %*% beta
\#pred.y <- b1 * pred.x + b0
 pred.y = Xtest%*%beta
 return(pred.y)
predTest = my.predict(Xtrain, ytrain, Xtest)
RMSE = sqrt((1/10)*sum((predTest - ytest)^2))
```

[1] 2.896944

print(RMSE)

summary(bh)

```
##
## Call:
## lm(formula = crim ~ ., data = df_2)
## Residuals:
##
     Min
             1Q Median
                            30
## -9.924 -2.120 -0.353 1.019 75.051
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.033228
                          7.234903
                                     2.354 0.018949 *
## zn
                0.044855
                           0.018734
                                      2.394 0.017025 *
## indus
                -0.063855
                           0.083407 -0.766 0.444294
## chas1
               -0.749134
                           1.180147 -0.635 0.525867
## nox
              -10.313535
                            5.275536 -1.955 0.051152 .
## rm
                0.430131
                            0.612830
                                      0.702 0.483089
                0.001452
                           0.017925
                                      0.081 0.935488
## age
                           0.281817 -3.503 0.000502 ***
## dis
               -0.987176
                0.588209
                           0.088049
## rad
                                     6.680 6.46e-11 ***
## tax
               -0.003780
                            0.005156 -0.733 0.463793
## ptratio
               -0.271081
                            0.186450 -1.454 0.146611
## b
               -0.007538
                            0.003673 -2.052 0.040702 *
                0.126211
                                      1.667 0.096208 .
## 1stat
                            0.075725
## medv
               -0.198887
                            0.060516 -3.287 0.001087 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 6.439 on 492 degrees of freedom
## Multiple R-squared: 0.454, Adjusted R-squared: 0.4396
## F-statistic: 31.47 on 13 and 492 DF, p-value: < 2.2e-16
```

Pvalue is therefore lower than significance value (0.05). Thus, the null hypothesis that a model with no independent variables would adequately describe the data can be discarded. We can make the conclusion that independent variables help models fit better.

3e

```
bh2 = lm(crim ~ zn+dis+rad+b+medv,data = df_2)
summary(bh2)

##
## Call:
## lm(formula = crim ~ zn + dis + rad + b + medv, data = df_2)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -10.553 -1.869 -0.358 0.839 75.744
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.919933
                          1.778986
                                   4.452 1.05e-05 ***
## zn
               0.051799
                          0.017329
                                   2.989 0.002935 **
## dis
              -0.672189
                          0.202939 -3.312 0.000992 ***
                          0.042102 11.218 < 2e-16 ***
## rad
               0.472306
## b
              -0.008211
                          0.003615 -2.271 0.023562 *
              -0.174219
                          0.036295 -4.800 2.10e-06 ***
## medv
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 6.473 on 500 degrees of freedom
## Multiple R-squared: 0.4393, Adjusted R-squared: 0.4337
## F-statistic: 78.34 on 5 and 500 DF, p-value: < 2.2e-16
anova(bh,bh2)
## Analysis of Variance Table
##
## Model 1: crim ~ zn + indus + chas + nox + rm + age + dis + rad + tax +
##
      ptratio + b + lstat + medv
## Model 2: crim ~ zn + dis + rad + b + medv
    Res.Df
##
             RSS Df Sum of Sq
                                   F Pr(>F)
## 1
       492 20400
       500 20951 -8
## 2
                      -550.61 1.6599 0.1057
```

The F statistic is 1.6599 and the pvalue is 0.1507. pvalue is greater that significance level (0.05) so we need to accept the Null hypothesis for the partial F test that coefficients of the features of reduced model are 0.