MATH 189 HW5

Zijian Su Zelong Zhou Xiangyi Lin

Last Updated: February 17, 2023

Concrete contributions

All problems were done by Zijian Su, Zelong Zhou, Xiangyi Lin. All contributing equally to this assignment. Everyone put in enough effort.

Overview

The baseball dataset collected the statistics of 263 players in Major League Baseball in the season 1986-1987. This dataset (baseball_5.csv) contains 5 variables selected from the original baseball dataset. The variable names and descriptions are listed in the table below.

Variable	Description
Salary	1987 annual salary on opening day in thousands of dollars
Hits	Number of hits in 1986
Walks	Number of walks in 1986
PutOuts	Number of put outs in 1986
CHits	Number of hits during his career

Packages

```
#install.packages("rmarkdown")
#install.packages("scatterplot3d")
```

Question 1

Draw a scatter plot between Hits and Salary. Consider a simple linear regression using Hits as predictor. Estimate the regression coefficients and their standard errors. Add a line to the scatter plot according to the predicted linear curve. Do you think this line fits the data well? Calculate Residual Sum of Squares (RSS) and R^2

Answer:

```
baseball <- read.csv("baseball_5.csv")
plot(baseball$Hits, baseball$Salary, xlab = 'Hits', ylab = 'Salary', main = 'scatter plot between Hits
model1 <- lm(Salary ~ Hits, data = baseball)
abline(model1, col = 'blue')</pre>
```

scatter plot between Hits and Salary


```
model1
```

```
##
## Call:
## lm(formula = Salary ~ Hits, data = baseball)
##
## Coefficients:
```

```
## (Intercept)
                        Hits
##
        63.049
                       4.385
summary(model1)
##
## Call:
## lm(formula = Salary ~ Hits, data = baseball)
##
##
  Residuals:
##
                1Q
       Min
                    Median
                                 3Q
                                        Max
   -893.99 -245.63
                    -59.08
                             181.12 2059.90
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 63.0488
                            64.9822
                                      0.970
                                                0.333
                 4.3854
## Hits
                             0.5561
                                      7.886 8.53e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 406.2 on 261 degrees of freedom
## Multiple R-squared: 0.1924, Adjusted R-squared: 0.1893
## F-statistic: 62.19 on 1 and 261 DF, p-value: 8.531e-14
The regression coefficients B0 is 63.049, B1 is 4.385. The standard errors for B0 is 64.98, for B1 is 0.5561.
RSS_1 <- sum(model1$residuals^2)</pre>
TSS_1 <- sum((baseball$Salary - mean(baseball$Salary))^2)
```

```
RSS_1 <- sum(model1$residuals^2)
TSS_1 <- sum((baseball$Salary - mean(baseball$Salary))^2)
R2_1 <- 1 - RSS_1/TSS_1
cat("RSS: ", RSS_1, "\n")</pre>
```

```
## RSS: 43058621

cat("R^2: ", R2_1)
```

R^2: 0.1924355

Residual Sum of Squares (RSS) is about 43058621 and the \mathbf{R}^2 is about 0.1924355.

Through the value of R^2, we can know whether the regression line fits the data. When R^2 is closer to 1, it fits better. The closer to 0, the less the match. We get an R^2 of only about 0.19, which indicates that only about 19% of the points are on this line. Therefore, we don't think this line fits the data very well.

Question 2

Consider a multivariate linear model using Hits, Walks, PutOuts and CHits as predictors. Report the estimated regression coefficients and their standard errors. Calculate Residual Sum of Squares (RSS) and R^2 . Test the marginal effects of each coefficient.

Answer:

```
model2 <- lm(Salary ~ Hits+Walks+PutOuts+CHits, data = baseball)</pre>
model2
##
## Call:
## lm(formula = Salary ~ Hits + Walks + PutOuts + CHits, data = baseball)
##
## Coefficients:
## (Intercept)
                                                 PutOuts
                        Hits
                                     Walks
                                                                 CHits
     -109.8348
                      1.8460
                                    3.4611
                                                  0.2709
                                                                0.3125
```

The regression coefficients B0 is -109.8348, B1 is 1.8460, B2 is 3.4611, B3 is 0.2709, B4 is 0.3125. The standard errors for B0 is 56.44049, for B1 is 00.58106, for B2 is 1.21166., for B3 is 0.07861, for B4 is 0.03350.

```
summary(model2)
```

```
##
## lm(formula = Salary ~ Hits + Walks + PutOuts + CHits, data = baseball)
##
## Residuals:
##
                1Q Median
                                3Q
       Min
                                       Max
## -811.49 -169.57 -40.38 108.18 2211.38
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -109.83481
                            56.44049 -1.946 0.052737 .
                             0.58106
                                       3.177 0.001669 **
## Hits
                  1.84601
## Walks
                  3.46111
                             1.21166
                                       2.857 0.004632 **
## PutOuts
                  0.27091
                             0.07861
                                       3.446 0.000664 ***
## CHits
                  0.31246
                             0.03350
                                       9.328 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 336.6 on 258 degrees of freedom
## Multiple R-squared: 0.4519, Adjusted R-squared: 0.4434
## F-statistic: 53.18 on 4 and 258 DF, p-value: < 2.2e-16
RSS_2 <- sum(model2$residuals^2)</pre>
TSS_2 <- sum((baseball$Salary - mean(baseball$Salary))^2)
R2_2 <- 1 - RSS_2/TSS_2
cat("RSS: ", RSS_2, "\n")
```

```
## RSS: 29223384

cat("R^2: ", R2_2)

## R^2: 0.4519154
```

Residual Sum of Squares (RSS) is about 29223384 and the \mathbf{R}^2 is about 0.4519154.

Test the marginal effects of each coefficient:

Consider null and alternative hypotheses: H_0 Bj = 0 versus H_1 Bj != 0, for some j = 1, ...,p. (a= 0.05),

```
rse <- summary(model2)$sigma</pre>
b1 <- summary(model2)$coefficients[2]</pre>
b2 <- summary(model2)$coefficients[3]</pre>
b3 <- summary(model2)$coefficients[4]
b4 <- summary(model2)$coefficients[5]</pre>
b <- c(summary(model2)$coefficients[2:5])</pre>
## get the matrix
v1 <- model.matrix(Salary ~ Hits + Walks + PutOuts + CHits, data = baseball)
v1_t <- t(v1)
v1_t_v1_in <- solve((v1_t %*% v1))
d1 <- diag(v1_t_v1_in)</pre>
## find p1
t1 <- b1 / (sqrt(d1[2])* rse)
p1 <- 2*pt(t1, 258, lower.tail = FALSE)
#p1
## find p2
t2 <- b2 / (sqrt(d1[3])* rse)
p2 <- 2*pt(t2, 258, lower.tail = FALSE)
#p2
## find p3
t3 <- b3 / (sqrt(d1[4])* rse)
p3 <- 2*pt(t3, 258, lower.tail = FALSE)
#p3
#find p4
t4 <- b4 / (sqrt(d1[5])* rse)
p4 \leftarrow 2*pt(t4, 258, lower.tail = FALSE)
#p4
```

```
cat("t-statistic for all coefficient:\n")
```

t-statistic for all coefficient:

```
t1
##
      Hits
## 3.17696
t2
##
       Walks
## 2.856501
t3
   PutOuts
## 3.446172
t4
##
       CHits
## 9.328047
cat("p-value for all coefficient:\n")
## p-value for all coefficient:
p1
##
           Hits
## 0.001669445
p2
##
        Walks
## 0.0046322
рЗ
##
         PutOuts
## 0.0006636175
p4
##
           \mathtt{CHits}
## 5.108227e-18
We do some test above.
Hit: P -value < 0.05, I reject H_0 and support H_1.
Walks: P -value < 0.05, I reject H_0 and support H_1.
Put
Outs: P -value < 0.05, I reject H_0 and support
 H_1.
CHits: P -value < 0.05, I reject H_0 and support H_1.
Therefore, we can believe Bj != 0, for some j = 1, ..., p. (a= 0.05)
```

Question 3

Compare the model fitted in 2 and 1 by their RSS and R^2 . Test the model adequacy by letting the simple linear model as the null model and the multivariate linear model in 2 as the alternative model. What can you conclude?

Answer:

lets say the null hypothesis(H0) is the model from Q1, and the alternative hypothesis(H1) is the model from Q2.

```
test <- anova(model1, model2)
test
## Analysis of Variance Table
##
## Model 1: Salary ~ Hits
## Model 2: Salary ~ Hits + Walks + PutOuts + CHits
                RSS Df Sum of Sq
##
    Res.Df
                                      F
                                           Pr(>F)
## 1
       261 43058621
                       13835237 40.715 < 2.2e-16 ***
## 2
        258 29223384
                     3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(anova(model1, model2))
```

```
\mathsf{Df}
##
        Res.Df
                           RSS
                                                          Sum of Sq
##
    Min.
            :258.0
                     Min.
                             :29223384
                                          Min.
                                                  :3
                                                       Min.
                                                               :13835237
    1st Qu.:258.8
                     1st Qu.:32682193
                                                        1st Qu.:13835237
##
                                          1st Qu.:3
    Median :259.5
                     Median :36141003
##
                                          Median:3
                                                       Median: 13835237
##
   Mean
            :259.5
                             :36141003
                     Mean
                                          Mean
                                                  :3
                                                       Mean
                                                               :13835237
##
    3rd Qu.:260.2
                     3rd Qu.:39599812
                                          3rd Qu.:3
                                                        3rd Qu.:13835237
##
    Max.
            :261.0
                     Max.
                             :43058621
                                          Max.
                                                  :3
                                                       Max.
                                                               :13835237
##
                                          NA's
                                                  :1
                                                       NA's
                                                               :1
##
          F
                          Pr(>F)
##
    Min.
            :40.72
                     Min.
                             :0
##
    1st Qu.:40.72
                     1st Qu.:0
##
    Median :40.72
                     Median :0
##
    Mean
            :40.72
                     Mean
                             :0
    3rd Qu.:40.72
##
                     3rd Qu.:0
##
    Max.
            :40.72
                             :0
                     Max.
##
    NA's
            :1
                     NA's
                             :1
```

We can know that the F-statistic value is 40.715. And at the significance level a = 0.05, the p-value is 2.2e-16 < 0.0001. So, we reject the null hypothesis(H0).

Therefore, the multivariate linear model is better in this data.