```
//code
module even_pri_enc(input [3:0] i,output reg [1:0] out);
always @* begin
 case(i)
  4'b0000: out = 2'b00;
  4'b0010: out = 2'b01;
  4'b0011: out = 2'b01;
  4'b0100: out = 2'b10;
  4'b0101: out = 2'b10;
  4'b0110: out = 2'b10;
  4'b0111: out = 2'b10;
  4'b1000: out = 2'b11;
  default: out = 2'b11;
 endcase
end
endmodule
//Test Bench
// Code your testbench here
// or browse Examples
module tb;
reg [3:0] i;
```

```
wire [1:0] out;

even_pri_enc uut (.i(i),.out(out));

initial begin

$monitor("Time=%0t in_data=%b out=%b", $time, i, out);

i = 4'b0000; #10;

i = 4'b0100; #10;

i = 4'b1100; #10;

i = 4'b1111; #10;

$finish;
end
```

## endmodule



```
//CODE
module edge_counter(
input wire clk,
output reg [7:0] pos,
output reg [7:0] neg
);
reg ss;
initial
  begin
  pos<=0;
 neg<=0;
end
always @(posedge clk) begin
 if(ss==0)
   pos <= pos + 1;
  ss=1;
 end
always @(negedge clk) begin
  if(ss==1)
   neg <= neg + 1;
  ss=0;
end
```

```
endmodule
/// TEST BENCH
module edge_counter_tb;
reg clk;
wire [7:0] pos;
wire [7:0] neg;
edge_counter uut (
  .clk(clk),
  .pos(pos),
 .neg(neg)
);
initial begin
  clk=0;
  $monitor("clk=%b pos_count=%d neg_count=%d", clk, pos, neg);
  repeat (100) #5 clk = ~clk;
  $finish();
 end
```

endmodule





always @(st or a) begin

st <= n\_st;

end

end

```
case(st)
   4'h1: begin
    if (a == 0) n_st = 4'h2;
    else n_st = 4'h1;
   end
   4'h2: begin
    if (a== 1) n_st = 4'h3;
    else n_st = 4'h2;
   end
   4'h3: begin
    if (a == 1) n_st = 4'h4;
    else n_st = 4'h2;
   end
   4'h4: begin
    if (a == 0) n_st = 4'h1;
    else n_st = 4'h1;
   end
   default: n_st = 4'h1;
  endcase
 end
 assign out = (st == 4'h4) && (a == 0) ? 1 : 0;
endmodule
//TEST BENCH
```

```
module tb();
reg clk, reset, a;
 wire out;
seq0110 d(clk, reset, a, out);
 initial clk = 0;
 always #2 clk = ~clk;
 initial begin
  a = 0;
  #1 reset = 0;
  #2 reset = 1;
  #4 a = 0;
  #4 a = 1;
  #4 a = 1;
  #4 a = 0;
  #4 a = 1;
  #4 a = 1;
  #4 a = 1;
  #4 a = 0;
   #4 a = 1;
```

```
#4 a = 1;
#4 a = 0;
#4 a = 0;

$finish;
end

initial begin

$dumpfile("dump.vcd");
$dumpvars(0);
end
endmodule
```



```
///////Counter
// Code your design here
module counter(
input clk,
input clr,
output reg [3:0] y1, y2,
output reg enable
);
reg o1, o2;
always @(negedge clk)
 if (clr)
  begin
  y1 <= 4'b0000;
   y2 <= 4'b1111;
  end
 else
  begin
  y1[0] <= ~y1[0];
   if (y1[0]) begin
   y1[1] <= ~y1[1];
   if (y1[1]) begin
    y1[2] <= ~y1[2];
```

```
if (y1[2]) begin
       y1[3] <= ~y1[3];
      end
     end
    end
   end
 assign o1 = ^{\sim}(y1[0] | y1[1]);
 assign o2 = y1[2] & y1[3];
 assign enable = o1 & o2;
 always @(posedge enable)
  begin
   y2[0] <= ~y2[0];
   if (~y2[0]) begin
    y2[1] <= ~y2[1];
    if (~y2[1]) begin
     y2[2] <= ~y2[2];
     if (~y2[2]) begin
      y2[3] <= ~y2[3];
     end
    end
   end
  end
endmodule
```

```
///////TEST BENCH
// Code your testbench here
// or browse Examples
module tb();
reg clk;
reg clear;
wire [3:0]a,b;
wire b_en;
counter UUT(clk,clear,a,b,b_en);
initial
 begin
  clk=0;
  forever #2 clk=~clk;
 end
initial
 begin
  $monitor("Time=%0t, a=%b,b=%b,b_en=%b", $time,a,b,b_en);
  clear=1;
  #4 clear=0;
  #200 $finish;
 end
endmodule
////////
```



## 

```
module Multiplier3bit(
input wire [2:0] a1,
input wire [2:0] b1,
output reg [5:0] y1
);
reg [5:0] y1_pro;
initial begin
y1_pro=0;
```

```
y1=0;
end
always @(a1 or b1) begin
 for (int i = 0; i < 3; i = i + 1) begin
  y1_pro = y1_pro + (a1[i]*(b1<<i));
  end
 y1 = y1_pro;
end
endmodule
TESET BENCH
module testbench;
reg [2:0] a1, b1;
wire [5:0] y1;
Multiplier3bit uut(
  .a1(a1),
  .b1(b1),
 .y1(y1)
);
```

initial begin

```
$dumpfile("dump.vcd"); $dumpvars(1);
a1 = 3'b101;
b1 = 3'b011;
$display("a1=%b b1=%b y1=%b", a1, b1, y1);
a1 = 3'b110;
b1 = 3'b010;
$display("a1=%b b1=%b y1=%b", a1, b1, y1);
#100 $finish();
end
```

## endmodule



