Deep Learning(Ian Goodfellow, Yoshua Bengio, Aaron Courville) 学 习笔记

李奥林

mrliaolin@outlook.com

目录

第一章	数值计算		1.3	基于梯度的优化方法		1
1.1	上溢和下溢	1		1.3.1	梯度之上:雅克比和	
1.2	病态条件数	1			海森矩阵	1

第一章 数值计算

- 1.1 上溢和下溢
- 1.2 病态条件数
- 1.3 基干梯度的优化方法
- 1.3.1 梯度之上: 雅克比和海森矩阵

二阶推导的前提是要最小化的函数能用二次函数很好地近似,此时海森的特征值决定 了学习速率的量级。

函数在特定方向 \mathbf{d} 上的二阶导数可以写成 $\mathbf{d}^T\mathbf{H}\mathbf{d}$ 。当海森矩阵是正定的(所有特征值都是正的),则对于任意方向,二阶导数均为正值,则临界点为局部最小点。当所有非零特征值是同号的且至少有一个特征值是 $\mathbf{0}$ 时,这个检测就是不确定的,这是因为单变量的二阶导数为 $\mathbf{0}$ 的点的二阶导数测试是不确定的。