Endimensionell analys HT-2015

 $Emil~Wihl ander \\ dat 15ewi@student.lu.se$

2015-09-23

Kapitel 1: Grundläggande begrepp och terminologi

Om jag skriver "alla tal" syftar jag på alla reella tal.

Talsystem

1.1 a) (s. 1)

De naturliga talen (N) innefattar alla heltal som är noll eller större. $\frac{6}{2}=3,~\frac{3}{0.1}=30,~\frac{0}{5}=0.$

Svar:

$$\frac{6}{2}$$
, 0, 3, $\frac{3}{0.1}$, $\frac{0}{5}$

De hela talen (\mathbb{Z}) inkluderar de naturliga talen (\mathbb{N}) samt alla negativa heltal. $-\frac{0.3}{0.02}=-15.$

Svar:

$$\frac{6}{2}$$
, 0, 3, -3, $\frac{3}{0.1}$, $-\frac{0.3}{0.02}$, $\frac{0}{5}$

Rationella tal (\mathbb{Q}) är tal som kan skrivas som bråk (inkluderar de hela talen (Z)). 3 = $\frac{3}{1}$ osv...

Svar:

$$\frac{6}{2}$$
, 0, 3, -3, $\frac{3}{0.1}$, $\frac{3}{5}$, $\frac{5}{3}$ - $\frac{0.3}{0.02}$, $\frac{0}{5}$

Reella tal (\mathbb{R}) är alla "vanliga" tal (inte de komplexa talen (\mathbb{C})).

Svar:

$$\frac{6}{2},\ 0,\ 3,\ -3,\ \frac{3}{0.1},\ \frac{3}{5},\ \frac{5}{3},\ \sqrt{2},\ -\frac{0.3}{0.02},\ \frac{0}{5},\ \pi$$

1.2 (saknar sida)

Alla tal med ändligt antal decimaler kan skrivas som rationella tal $(1.41421 = \frac{141421}{100000})$. Vi antar att ett irrationellt tal i plus ett rationellt tal r_1 blir det rationella talet r_2 . $i+r_1=r_2 \Rightarrow i=r_2-r_1$. Eftersom alla bråk går att skriva ihop som ett bråk stämmer inte antagandet. Svaret måste alltså bli irrationellt.

Svar: Nej, båda blir irrationella.

Mängder och intervall

1.3 (s. 4)

 $M_1 = \{-1, 1\}, \text{ eftersom } (-1)^2 = 1 \text{ och } 1^2 = 1.$

 M_2 är alla tal större än eller lika med 0.

 M_3 är alla tal större än eller lika med 1.

 $M_4 = \mathbb{R}$, eftersom alla reella tal upphöjt i 2 är positivt.

Eftersom M_4 är alla tal ingår M_1 , M_2 , M_3 i mängden. M_3 är även en delmängd av M_2 .

Svar:

$$M_1 \subseteq M_4, \ M_3 \subseteq M_2 \subseteq M_4$$

Implikationer och ekvivalens

Eftersom $x^2 < 16 = -4 < x < 4$ så betyder det att A och C är ekvivalenta och eftersom x alltid är större än -4 i C implicerar både A och C B

Svar:

$$A \Leftrightarrow C, \quad C \Rightarrow B, \quad A \Rightarrow B$$

1.5 a) (s. 5-6)

Om A är sant är B sant men om B är sant behöver inte A vara sant. Detta eftersom $a=1,\ b=-1$ är sant för B men inte för A. A implicerar alltså B. C går att förenkla till a=b genom att dela på b det medför dock att $b\neq 0$. Eftersom en lösning är att $b=0,\ a\in\mathbb{R}$ så är de inte ekvivalenta utan A implicerar C. C och B är skilda från varandra eftersom inget av de två ovan nämnda fallen passar in på båda utsagorna.

Svar:

$$A \Rightarrow B, \quad A \Rightarrow C$$

Eftersom specialfallen som nämns i a) båda kräver tal som är mindre än eller lika med 0 (och att det inte finns andra specialfall) är A, B och C ekvivalenta. Om man kvadrerar båda sidorna i D får man A vilket medför att även D är ekvivalent med alla andra utsagor.

Svar: Alla utsagor är ekvivalenta.

1.6 (s. 5-6)

A ger sant för alla tal större än noll. B ger sant för alla tal utom noll. C ger sant för alla tal utom noll. D ger sant för alla tal större än noll.

Aoch Där alltså ekvivalenta, lika så Boch C. $A\subseteq B$ medför då att Aoch Dimplicerar både Boch C.

Svar:

$$A \Rightarrow B, \quad A \Rightarrow C, \quad D \Rightarrow B, \quad D \Rightarrow C, \quad A \Leftrightarrow D, \quad B \Leftrightarrow C$$

1.7 (s. 5-6)

$$A: x^{2} - 3x + 2 = 0 \to x = \frac{3}{2} \pm \sqrt{\frac{1}{4}} \to x_{1} = 2, \ x_{2} = 1$$

$$B: |x - 2| = 1 \to x = \pm 1 + 2 \to x_{1} = 1, \ x_{2} = 3$$

$$C: x \ge 1$$

$$D: \ln x + \ln(x^{3}) = 0 \to x = 1$$

Dingår i alla andra vilket medför att Dimplicerar alla andra. Eftersom svaren i både A och B är större än eller lika med 1 implicerar A och B C.

Svar:

$$D \Rightarrow A$$
, $D \Rightarrow B$, $D \Rightarrow C$, $A \Rightarrow C$, $B \Rightarrow C$

1.8 (s. 5-6)

$$\begin{split} A: & \ x \geq 0 \\ B: & \ \ln x \geq 0 \Leftrightarrow x \geq 1 \\ C: & \ e^x \geq 0 \Leftrightarrow x \in \mathbb{R} \\ D: & \ |x-2| < 1 \Leftrightarrow x-2 < 1, \ x-2 > -1 \Leftrightarrow 1 < x < 3 \end{split}$$

Alla implicerar C eftersom C är alla tal. D är en delmängd av B som i sin tur är en delmängd av A. D implicerar alltså A och B och B implicerar A.

Svar:

$$A\Rightarrow C,\ D\Rightarrow A,\ B\Rightarrow A,\ D\Rightarrow B,\ D\Rightarrow C,\ B\Rightarrow C$$

1.9 (s. 5-6)

 $A: |x| > 0 \Leftrightarrow x \neq 0$ $B: e^{x} > 1 \Leftrightarrow x > 0$ $C: \cos x \leq 1 \Leftrightarrow x \in \mathbb{R}$ $D: \ln(1+x^{2}) > 0 \Leftrightarrow 1+x^{2}e^{0} \Leftrightarrow x^{2} > 1-1 \Leftrightarrow x \neq 0$

 $B\Rightarrow A$ är alltså sant $(x>0\subseteq x\neq 0),$ A och B är alltså inte samma mängd. C implicerar inte D eftersom C innehåller 0 vilket D inte gör. A och D är däremot ekvivalenta och implicerar C.

Svar:

$$B \Rightarrow A, \quad A \Rightarrow C, \quad A \Leftrightarrow D$$

1.10 (s. 5-6)

Låt xrepresentera antalet pojkar som finns i varje utsaga (0 $\leq~x \leq~10,~x \in \mathbb{N}).$

A: x = 5 $B: x \le 4$ $C: x \ge 3$ $D: x \ge 5$ $E: x \le 8$

Aär alltså en delmängd av $C,\,D$ och $E.\,B$ är en delmängd av E och Där en delmängd av C.

Svar:

$$A\Rightarrow C, \quad A\Rightarrow D, \quad A\Rightarrow E, \quad B\Rightarrow E, \quad D\Rightarrow C$$

1.11 (s. 5-6)

Eftersom en kvadrat är ett specifikt fall av romber, en romb är ett specifikt fall av parallellogram och en parallellogram är ett specifikt fall av parallelltrapetser $E\Rightarrow B,\ E\Rightarrow A,\ E\Rightarrow C,\ B\Rightarrow A,\ B\Rightarrow C,\ A\Rightarrow C.$

Eftersom en kvadrat är ett specifikt fall av rektanglar och en rektangel är ett specifikt fall av parallellogram osv. $E \Rightarrow D, D \Rightarrow A, D \Rightarrow C$. (Se def. för figurerna).

Svar:

$$A\Rightarrow C,\ B\Rightarrow A,\ B\Rightarrow C,\ D\Rightarrow A,\ D\Rightarrow C,\ E\Rightarrow A,\ E\Rightarrow C,\ E\Rightarrow B,\ E\Rightarrow D$$

Kapitel 2: Algebra

Räkneoperationer för reella tal

2.1 a) (s. 10-11)

Två alternativa lösningsmetoder:

$$(x+3)(x-3) - (x+3)^2 = \cancel{x}^2 - 9 - (\cancel{x}^2 + 6x + 9) = -6x - 18$$
 eller
$$(x+3)(x-3) - (x+3)^2 = (x+3)((\cancel{x}-3) - (\cancel{x}+3)) = -6(x+3) = -6x - 18$$

Svar: -6x - 18

b) (s. 10-11)

Två alternativa lösningsmetoder:

$$(x+3)(x-3) - (x-3)^2 = \cancel{x}^2 - 9 - (\cancel{x}^2 - 6x + 9) = 6x - 18$$
 eller
$$(x+3)(x-3) - (x-3)^2 = (x-3)((\cancel{x}+3) - (\cancel{x}-3)) = 6(x-3) = 6x - 18$$

Svar: 6x - 18

$$(3x+5)^2 - (3x-5)^2 = 9x^2 + 30x + 25 - (9x^2 - 30x + 25) = 60x$$

Svar: 60x

2.2 (saknar sida)

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Svar: Varannan term är positiv och varannan negativ och antalet av varje term följer Pascals triangel.

2.3 (s. 11)

Se konjugatregeln samt tipset till uppgiften.

$$(a+b)(a^{2}+b^{2})(a^{4}+b^{4})(a^{8}+b^{8})(a^{16}+b^{16}) = \frac{a^{32}-b^{32}}{a-b}$$

$$(a^{2}-b^{2})(a^{2}+b^{2})(a^{4}+b^{4})(a^{8}+b^{8})(a^{16}+b^{16}) = a^{32}-b^{32}$$

$$(a^{4}-b^{4})(a^{4}+b^{4})(a^{8}+b^{8})(a^{16}+b^{16}) = a^{32}-b^{32}$$

$$(a^{8}-b^{8})(a^{8}+b^{8})(a^{16}+b^{16}) = a^{32}-b^{32}$$

$$(a^{16}-b^{16})(a^{16}+b^{16}) = a^{32}-b^{32}$$

$$a^{32}-b^{32} = a^{32}-b^{32}$$

$$a^{32}-b^{32} = a^{32}-b^{32}$$

$$VSB.$$

2.4 (s. 12)

faktorisera och förenkla:

$$\frac{2}{7}$$

$$\frac{4}{9} = \frac{2 * 2}{3 * 3} = \frac{4}{9}$$

$$\frac{4}{14} = \frac{\cancel{2} * 2}{\cancel{2} * 7} = \frac{2}{7}$$

$$\frac{48}{168} = \frac{2 * 2 * 2 * 2 * 3}{2 * 2 * 2 * 3 * 7} = \frac{2}{7}$$

$$\frac{24}{84} = \frac{2 * 2 * 2 * 3}{2 * 2 * 3 * 7} = \frac{2}{7}$$

multipicera med 1000000 (flytta decimaltecknet 6 steg):

$$\frac{0.00002}{0.000007} = \frac{20}{7}$$

Svar:

$$\frac{2}{7}$$
, $\frac{4}{14}$, $\frac{48}{168}$, $\frac{24}{84}$

2.5 a) (s. 12-14)

$$\frac{1}{7} - \left(\frac{15}{14} + \frac{1}{2}\right) = \frac{2}{14} - \left(\frac{15}{14} + \frac{7}{14}\right) = \frac{2}{14} - \frac{22}{14} = -\frac{20}{14} = -\frac{10}{7}$$

Svar:

$$-\frac{10}{7}$$

b) (s. 12-14)

$$\frac{5}{6} - \left(\frac{3}{4} + \frac{1}{3}\right) = \frac{10}{12} - \left(\frac{9}{12} + \frac{4}{12}\right) = \frac{10}{12} - \frac{13}{12} = -\frac{3}{12} = -\frac{1}{4}$$

Svar:

$$-\frac{1}{4}$$

2.6 a) (s. 12-14)

Faktorisera, hitta minsta gemensamma nämnare och förläng.

$$\frac{1}{60} + \frac{1}{108} - \frac{1}{72} = \frac{1}{5 * 3 * 2 * 2} + \frac{1}{9 * 3 * 2 * 2} - \frac{1}{6 * 3 * 2 * 2} =$$

$$= \frac{1 * 9 * 6}{5 * 12 * 9 * 6} + \frac{1 * 5 * 6}{9 * 12 * 5 * 6} - \frac{1 * 9 * 5}{6 * 12 * 9 * 5}$$

$$= \frac{54}{3240} + \frac{30}{3240} - \frac{45}{3240} = \frac{39}{3240} = \frac{13}{1080}$$

Svar:

$$\frac{13}{1080}$$

Faktorisera, hitta minsta gemensamma nämnare och förläng.

$$\frac{3}{4} - \frac{5}{6} + \frac{1}{9} = \frac{27}{36} - \frac{30}{36} + \frac{4}{36} = \frac{1}{36}$$

Svar:

$$\frac{1}{36}$$

Faktorisera, hitta minsta gemensamma nämnare och förläng stegvis.

$$\frac{1}{35} - \frac{1}{25} + \frac{1}{63} - \frac{1}{245} = \frac{6}{245} - \frac{1}{25} + \frac{1}{63} = \frac{89}{2205} - \frac{1}{25} = \frac{445}{11025} - \frac{441}{11025} = \frac{4}{11025}$$

Svar:

$$\frac{4}{11025}$$

2.7 a) (s. 14)

utnyttja reglerna för division.

$$\frac{\frac{a}{2}}{\frac{a}{4}} = \frac{\cancel{a} * 4}{2 * \cancel{a}} = \frac{4}{2} = 2$$

Svar: 2

utnyttja reglerna för division.

$$\frac{\frac{a}{2}}{\frac{4}{a}} = \frac{a * a}{2 * 4} = \frac{a^2}{8}$$

Svar:

$$\frac{a^2}{8}$$

utnyttja reglerna för division och faktorisera.

$$\frac{\frac{14a}{a+2}}{\frac{7}{6a+12}} = \frac{\cancel{14a}(6a+12)}{\cancel{7}(a+2)} = \frac{2a^2+24a}{a+2} = \frac{12a(\cancel{a+2})}{\cancel{a+2}} = 12a$$

Svar: 12a

d) (s. 14)

utnyttja reglerna för division och faktorisera.

$$\frac{\frac{a}{a+3}}{a^2+3a} = \frac{a}{(a+3)(a^2+3a)} = \frac{a}{a(a+3)(a+3)} = \frac{1}{(a+3)^2} = (a+3)^{-2}$$

Svar:
$$(a+3)^{-2}$$
 eller $\frac{1}{(a+3)^2}$

2.8 a) (s. 12-14)

Skriv först ihop de övre och undre bråken. Utnyttja sedan reglerna för division och faktorisera.

$$\frac{\frac{3}{5x} - \frac{x}{15}}{\frac{1}{x} - \frac{1}{3}} = \frac{\frac{45 - 5x^2}{75x}}{\frac{3 - x}{3x}} = \frac{\cancel{3}\cancel{x}(45 - 5x^2)}{\cancel{x}\cancel{x}(3 - x)} = \frac{45 - 5x^2}{75 - 25x} = \frac{\cancel{5}(9 - x^2)}{\cancel{5}(15 - 5x)} = \frac{9 - x^2}{15 - 5x} = \frac{(3 + x)\cancel{(3 - x)}}{\cancel{5}(3 - x)} = \frac{3 + x}{5}$$

Svar: $\frac{3+x}{5}$

b) (s. 12-14)

Skriv först ihop $1 + \frac{1}{r^2}$. Utnyttja sedan reglerna för division.

$$\frac{x^2+1}{1+\frac{1}{x^2}} = \frac{x^2+1}{\frac{x^2+1}{x^2}} = \frac{(x^2+1)x^2}{(x^2+1)} = x^2$$

Svar: x^2

c) (s. 12-14)

Skriv först ihop de övre bråken. Utnyttja sedan reglerna för division och faktorisera ut -1.

$$\frac{\frac{1}{x} - \frac{1}{y}}{\frac{x^2 - y^2}{(xy)^2}} = \frac{\frac{y - x}{xy}}{\frac{x^2 - y^2}{(xy)^2}} = \frac{(y - x)(xy)^{\frac{1}{2}}}{\cancel{xy}(x^2 - y^2)} = \frac{(y - x)(xy)}{(x - y)(x + y)} = \frac{\cancel{(y - x)}(xy)}{-\cancel{(y - x)}(x + y)} = -\frac{xy}{x + y}$$

Svar: $-\frac{xy}{x+y}$

2.9 a) (s. 12-14)

Skriv först ihop de övre och undre bråken. Utnyttja sedan reglerna för division och den andra kvadreringsregeln bakvänt.

$$\frac{\frac{x}{y} - \frac{y}{x}}{\frac{x}{y} + \frac{y}{x} - 2} = \frac{\frac{x^2 - y^2}{yx}}{\frac{x^2 + y^2 - 2xy}{yx}} = \frac{yx(x+y)(x-y)}{yx(x-y)^{\frac{1}{2}}} = \frac{x+y}{x-y}$$

Svar: $\frac{x+y}{x-y}$

b) (s. 12-14)

Skriv först ihop de övre och undre bråken. Utnyttja sedan reglerna för division och konjugatregeln bakvänt två gånger.

$$\frac{\frac{16x^4}{81} - y^4}{\frac{2x}{3} + y} = \frac{\frac{16x^4 - 81y^4}{81}}{\frac{2x + 3y}{3}} = \frac{\cancel{3}(16x^4 - 81y^4)}{\cancel{3}(2x + 3y)} = \frac{(4x^2 + 9y^2)(4x^2 - 9y^2)}{27(2x + 3y)} = \frac{(4x^2 + 9y^2)(2x + 3y)}{27(2x + 3y)} = \frac{(4x^2 + 9y^2)(2x + 3y)}{27} = \frac{(4x^2 + 9y^2)(2x + 3y)}{27} = \frac{1}{27}(8x^3 - 12x^2y + 18xy^2 - 27y^3)$$

eller

$$\dots \frac{(4x^2 + 9y^2)(2x + 3y)(2x - 3y)}{27(2x + 3y)} = \frac{(4x^2 + 9y^2)(2x - 3y)}{9 * 3} =$$

$$= \frac{4x^2 + 9y^2}{9} * \frac{2x - 3y}{3} = (\frac{4x^2}{9} + y^2)(\frac{2x}{3} - y)$$

Svar:
$$\frac{1}{27}(8x^3 - 12x^2y + 18xy^2 - 27y^3)$$
 eller $(\frac{4x^2}{9} + y^2)(\frac{2x}{3} - y)$
c) (s. 12-14)

Skriv ihop de övre och undre bråken.

$$\frac{\frac{1}{x+1} + \frac{1}{x-1}}{\frac{1}{x-1} - \frac{1}{x+1}} = \frac{\frac{x-1+x+1}{(x+1)(x-1)}}{\frac{x+1-(x-1)}{(x+1)(x-1)}} = \frac{(x-1+x+1)(x+1)(x+1)(x-1)}{(x+1-(x-1))(x+1)(x-1)} = \frac{2x}{2} = x$$

Svar: x

2.10 a) (s. 13-14)

Sätt in i formeln och förläng till minsta gemensamma nämnare.

$$\frac{1}{R} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \Leftrightarrow \frac{1}{R} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} \Leftrightarrow \frac{1}{R} = \frac{13}{12} \Leftrightarrow R = \frac{12}{13}\Omega$$

Svar: $\frac{12}{13}\Omega$

Använd räkneregler för division.

$$\frac{1}{3} = \frac{1}{5} + \frac{1}{R} \Leftrightarrow \frac{1}{3} = \frac{R+5}{5R} \Leftrightarrow 5x = 3R+15 \Leftrightarrow 2R = 15 \Leftrightarrow R = \frac{15}{2}\Omega$$

Svar:
$$\frac{12}{13}\Omega$$

2.11 (s. 13-14)

Sätt in i formel och använd räkneregler för division.

$$\begin{split} \frac{1}{a} + \frac{1}{600} &= \frac{1}{100} \Leftrightarrow \frac{600 + a}{600a} = \frac{1}{100} \Leftrightarrow 60000 + 100a = 600a \Leftrightarrow \\ \Leftrightarrow 500a = 60000 \Leftrightarrow a &= \frac{60000}{500} = 120mm \end{split}$$

Svar: 120mm

2.12 (s.)

utnyttja att 1 = 2/2 = 3/3 osv. och använd räkneregler för division.

$$\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + 1}}}} = \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{1}{1 + \frac{1}{2 + \frac{1}{2}}} = \frac{1}{1 + \frac{2}{3}} = \frac{1}{\frac{5}{3}} = \frac{3}{5}$$

Svar: $\frac{3}{5}$

Kvadratrötter och potenser

Förläng med konjugatet för att bli av med roten i nämnaren.

$$\frac{3+\sqrt{5}}{2+\sqrt{5}} = \frac{(3+\sqrt{5})(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})} = \frac{6-3\sqrt{5}+2\sqrt{5}-5}{4-5} = -(6-\sqrt{5}-5) = \sqrt{5}-1$$

Svar: $\sqrt{5} - 1$

2.14 a) (s. 16-17)

Förläng med konjugatet.

$$\frac{1+2\sqrt{2}}{3-\sqrt{2}} = \frac{(1+2\sqrt{2})(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})} = \frac{3+\sqrt{2}+6\sqrt{2}+4}{9-2} = \frac{7+7\sqrt{2}}{7} = 1+\sqrt{2}$$

Svar: $1 + \sqrt{2}$

b) (s. 16-17)

Förläng med konjugatet.

$$\frac{1}{\sqrt{13}+\sqrt{11}} = \frac{\sqrt{13}-\sqrt{11}}{(\sqrt{13}+\sqrt{11})(\sqrt{13}-\sqrt{11})} = \frac{\sqrt{13}-\sqrt{11}}{13-11} = \frac{\sqrt{13}-\sqrt{11}}{2}$$

Svar: $\frac{\sqrt{13} - \sqrt{11}}{2}$

c) (s. 16-17)

Förläng med konjugatet.

$$\begin{split} &\frac{2}{\sqrt{x+1}+\sqrt{x-1}} = \frac{2(\sqrt{x+1}-\sqrt{x-1})}{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})} = \\ &= \frac{2(\sqrt{x+1}-\sqrt{x-1})}{\cancel{x}+1-(\cancel{x}-1)} = \frac{\cancel{2}(\sqrt{x+1}-\sqrt{x-1})}{\cancel{2}} = \sqrt{x+1}-\sqrt{x-1} \end{split}$$

Svar: $\sqrt{x+1} - \sqrt{x-1}$

2.15 a) (s. 17)

Faktorisera ena roten för att få samma rot i båda termerna.

$$\sqrt{12} - \sqrt{3} = 2\sqrt{3} - \sqrt{3} = \sqrt{3}(2-1) = \sqrt{3}$$

Svar: $\sqrt{3}$

b) (s. 17)

faktorisera täljaren.

$$\frac{\sqrt{42}}{\sqrt{6}} = \frac{\sqrt{6}\sqrt{7}}{\sqrt{6}} = \sqrt{7}$$

eller utnyttja reglerna för division med rötter.

$$\frac{\sqrt{42}}{\sqrt{6}} = \sqrt{\frac{42}{6}} = \sqrt{7}$$

Svar: $\sqrt{7}$

c) (s. 17)

Faktorisera.

$$\sqrt{3} * \sqrt{12} = \sqrt{3} * \sqrt{3} * \sqrt{4} = 3 * 2 = 6$$

eller utnyttja reglerna för multiplikation med rötter.

$$\sqrt{3} * \sqrt{12} = \sqrt{3 * 12} = \sqrt{36} = 6$$

Svar: 6

d) (s. 17)

Faktorisera termerna i täljaren och skriv ihop.

$$\frac{\sqrt{18} + \sqrt{8}}{5} = \frac{3\sqrt{2} + 2\sqrt{2}}{5} = \frac{5\sqrt{2}}{5} = \sqrt{2}$$

Svar: $\sqrt{2}$

Addera termerna i roten.

$$\sqrt{3^2+4^2}-4-3=\sqrt{25}-7=5-7=-2$$

Svar: -2

Addera termerna i roten.

$$\sqrt{5^2 + 12^2} = \sqrt{169} = 13$$

Svar: 13

2.16 a) (s. 17)

Faktorisera rötterna så alla termerna får $\sqrt{2}$ gemensamt.

$$\frac{\sqrt{168} + \sqrt{98}}{\sqrt{50} + \sqrt{2}} = \frac{9\sqrt{2} + 7\sqrt{2}}{5\sqrt{2} + \sqrt{2}} = \frac{\cancel{\cancel{2}}(9+7)}{\cancel{\cancel{2}}(5+1)} = \frac{9+7}{5+1} = \frac{16}{6} = \frac{8}{3}$$

Svar: $\frac{8}{3}$

Kvadrera under "roten ur"-tecknet först (minustecknet försvinner).

$$\frac{\sqrt{(-4)^2}}{\sqrt{4^2}} = \frac{4}{4} = 1$$

Svar: 1

Skriv först ihop termerna utnyttja sedan reglerna för multiplikation av rötter.

$$\left(\sqrt{12} - \frac{1}{\sqrt{3}}\right)^2 = \left(\frac{\sqrt{12}\sqrt{3} - 1}{\sqrt{3}}\right)^2 = \left(\frac{\sqrt{36} - 1}{\sqrt{3}}\right)^2 = \left(\frac{5}{\sqrt{3}}\right)^2 = \frac{25}{3}$$

Eller så används den andra kvadreringsregeln.

$$\left(\sqrt{12} - \frac{1}{\sqrt{3}}\right)^2 = 12 - 2*\frac{\sqrt{12}}{\sqrt{3}} + \frac{1}{3} = 12 - 2*\sqrt{\frac{12}{3}} + \frac{1}{3} = 12 - 4 + \frac{1}{3} = 8 + \frac{1}{3} = \frac{24 + 1}{3} = \frac{25}{3}$$

Svar: $\frac{25}{3}$

d) (s. 17)

Använd konjugatregeln och sen kvadreringsregeln.

$$((\sqrt{x} + \sqrt{y}) + \sqrt{x+y})((\sqrt{x} + \sqrt{y}) - \sqrt{x+y}) = (\sqrt{x} + \sqrt{y})^2 - (x+y) = x + 2\sqrt{xy} + y - x - y = 2\sqrt{xy} + y$$

Svar: $2\sqrt{xy}$

2.17 (s. 17)

$$\frac{\sqrt{216}}{3\sqrt{2}} = \frac{\sqrt{9 * 2 * 4 * 3}}{3\sqrt{2}} = \frac{3\sqrt{2} * 2\sqrt{3}}{3\sqrt{2}} = 2\sqrt{3}$$
$$\frac{\sqrt{108}}{3} = \frac{\sqrt{9 * 4 * 3}}{3} = \frac{\cancel{3} * 2\sqrt{3}}{\cancel{3}} = 2\sqrt{3}$$
$$\sqrt{12} = \sqrt{4 * 3} = 2\sqrt{3}$$

Svar: Möjligt att någon får poängavdrag på grund av att hen inte förenklat, alla är dock samma tal.

2.18 a) (s. 18)

Använd räkneregler för potenser.

$$3^4 * 3^2 = 3^{(4+2)} = 3^6$$

Svar: 3^6

Använd räkneregler för potenser.

$$2^7 * 2^{-3} = 2^{7-3} = 2^4$$

Svar: 2^4

Använd räkneregler för potenser.

$$4^2 * 4^{-5} * 4 = 4^{2-5+1} = 4^{-2}$$

Svar: 4^{-2}

Använd räkneregler för potenser.

$$\frac{3^7}{3^3} = 3^{7-3} = 3^4$$

Svar: 3^4

e) (s. 18)

Använd räkneregler för potenser.

$$\frac{4^5}{4^9} = 4^{5-9} = 4^{-4}$$

Svar: 4^{-4}

f) (s. 18)

Använd räkneregler för potenser.

$$\frac{2^{-7}}{2^5} = 2^{-7-5} = 2^{-12}$$

Svar: 2^{-12}

2.19 a) (s. 18)

Använd räkneregler för potenser på varje bas var för sig.

$$3^5 * 10^5 * 3^{-3} * 10^3 = 3^{5-3} * 10^{5+3} = 3^2 * 10^8 = 9 * 10^8$$

Svar: $9 * 10^8$

b) (s. 18)

Använd räkneregler för potenser på varje bas var för sig.

$$\frac{2^8 * 5^6}{2^6 * 5^5} = 2^{8-6} * 5^{6-5} = 2^2 * 5 = 4 * 5 = 20$$

Svar: 20

c) (s. 18-19)

Använd räkneregler för potenser på varje bas var för sig och utnyttja sedan att $a^{-n}=\frac{1}{a^n}.$

$$\frac{2^4 * 10^4}{2 * 10^5} = 2^{4-1} * 10^{4-5} = 2^3 * 10^{-1} = \frac{8}{10} = \frac{4}{5}$$

Svar: $\frac{4}{5}$

2.20 a) (s. 18)

Använd räkneregler för potenser.

$$b^{-0.2} * b^{1.7} * b^{-2.5} = b^{1.7-2.5-0.2} = b^{-1}$$

Svar: b^{-1}

b) (s. 18-19)

Använd räkneregler för potenser.

$$(a^3)^{-0.5} * (a^{-5})^{-0.3} = a^{3*(-0.5) + (-5)*(-0.3)} = a^{-1.5 + 1.5} = a^0 = 1$$

Svar: 1

c) (s. 18)

Använd räkneregler för potenser.

$$\frac{a}{a^{-3.7} * a^{0.5}} = a^{1 - (-3.7) - 0.5} = a^{4.2}$$

Svar: $a^{4.2}$

d) (s. 18)

Använd räkneregler för potenser.

$$\frac{x*x^{-1.6}*x^{0.2}}{x^{-1.4}} = \frac{x^{1-1.6+0.2}}{x^{-1.4}} = x^{1-1.6+0.2-(-1.4)} = x$$

Svar: x

2.21 a) (s. 18-20)

Faktorisera 6 och använd räkneregler för potenser.

$$\frac{3^2 * 2^4}{6^3} = \frac{3^2 * 2^4}{3^3 * 2^3} = 3^{2-3} * 2^{4-3} = \frac{2}{3}$$

Svar: $\frac{2}{3}$

b) (s. 20-21)

Använd räkneregler för potenser och att potensen 1/2 motsvarar "roten ur".

$$\left(\frac{1}{4}\right)^{-1/2} = \frac{1^{-1/2}}{4^{-1/2}} = 1 * \sqrt{4} = 2$$

Svar: 2

c) (s. 18-21)

Använd räkneregler för potenser och att tredje roten ur 8 är 2.

$$(\sqrt{64})^{2/3} = 8^{2/3} = (8^{1/3})^2 = 2^2 = 4$$

Svar: 4

d) (s. 19-20)

Använd räkneregler för potenser.

$$\left(\frac{1}{3}\right)^{-1} = \frac{1}{3^{-1}} = 3$$

Svar: 3

Tänk på parentesen.

$$2^{(2^3)} = 2^8 = 256$$

Svar: 256

Tänk på parentesen.

$$(2^2)^3 = 2^6 = 64$$

Svar: 64

2.22 a) (s. 21)

Använd räkneregler för potenser.

$$(\sqrt{5})^{-4} = (5^{1/2})^{-4} = 5^{-2} = \frac{1}{25}$$

Svar: $\frac{1}{25}$

Använd räkneregler för potenser.

$$\left(\frac{4}{9}\right)^{1/2} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$$

Svar: $\frac{2}{3}$

Använd räkneregler för potenser.

$$\left(\frac{1}{9}\right)^{3/2} = \frac{1}{(9^{1/2})^3} = \frac{1}{3^3} = \frac{1}{27}$$

Svar: $\frac{1}{27}$

d) (s. 21)

Använd räkneregler för potenser och att potensen 1/2 motsvarar "roten ur".

$$16^{1/4} = (16^{1/2})^{1/2} = 4^{1/2} = 2$$

Svar: 2

e) (s. 21)

Använd räkneregler för potenser.

$$(8^{1/2})^{2/3} = 8^{2/6} = 8^{1/3} = 2$$

Svar: 2

f) (s. 21)

Använd räkneregler för potenser.

$$\left(\frac{27}{8}\right)^{-4/3} = \left(\frac{27^{1/3}}{8^{1/3}}\right)^{-4} = \left(\frac{3}{2}\right)^{-4} = 3^{-4} * \frac{1}{2^{-4}} = \frac{2^4}{3^4} = \frac{16}{81}$$

Svar: $\frac{16}{81}$

2.23 a) (s. 21)

Använd räkneregler för potenser.

$$\frac{a^{3.3} * a^{-2.1}}{a^{0.8}} = a^{3.3 - 2.1 - 0.8} = a^{0.4}$$

Svar: $a^{0.4}$

b) (s. 21)

Använd räkneregler för potenser.

$$\frac{a\sqrt{a}}{\sqrt[3]{a^2}} = \frac{a * a^{1/2}}{a^{2/3}} = a^{1+1/2-2/3} = a^{5/6}$$

Svar: $a^{5/6}$

c) (s. 21)

Använd räkneregler för potenser.

$$\sqrt{\sqrt[3]{x}} * \sqrt[6]{x^{-1}} * (x^2)^{2/3} = x^{1/3*1/2} * x^{-1*1/6} * x^{2*2/3} = x^{1/6} * x^{-1/6} * x^{8/6} = x^{4/3}$$

Svar: $x^{4/3}$

d) (s. 21)

Använd räkneregler för potenser.

$$\frac{\sqrt[4]{a^3\sqrt{a}}}{\sqrt[8]{\frac{1}{a}}} = \frac{(a^3a^{1/2})^{1/4}}{(a^{-1})^{1/8}} = \frac{a^{7/8}}{a^{-1/8}} = a^{8/8} = a$$

Svar: a

e) (s. 21)

Använd räkneregler för potenser.

$$\frac{\sqrt[4]{x^2\sqrt{y^5}}}{\sqrt{xy}} = \frac{(x^2y^{5/2})^{1/4}}{x^{1/2}y^{1/2}} = \frac{x^{1/2}y^{5/8}}{x^{1/2}y^{1/2}} = y^{5/8-4/8} = y^{1/8}$$

Svar: $y^{1/8}$

f) (s. 21)

Använd räkneregler för potenser.

$$\left(ab\sqrt[4]{\frac{a^3}{\sqrt{b\sqrt{b}}}}\right)^2 = \left(ab\left(\frac{a^3}{(b^{3/2})^{1/2}}\right)^{1/4}\right)^2 = \left(ab\frac{a^{3/4}}{b^{3/16}}\right)^2 = a^2b^2\frac{a^{6/4}}{b^{6/16}} = a^{8/4 + 6/4}b^{32/16 - 6/16} = a^{7/2}b^{13/2}$$

Svar: $a^{7/2}b^{13/8}$

2.24 (s.)

Använd räkneregler för potenser.

$$(4^{x})^{5} = \frac{(2^{6} * 5^{5})^{3}}{(2^{4} * 5^{2})^{4}} * \frac{2^{18}}{5^{7}} = \frac{2^{18} * 5^{15}}{2^{16} * 5^{8}} * \frac{2^{18}}{5^{7}} = 2^{2} * \cancel{5}^{7} * \frac{2^{18}}{\cancel{5}^{7}} = 2^{20}$$
$$(4^{x})^{5} = 2^{20} \Leftrightarrow ((2^{2})^{x})^{5} = 2^{20} \Leftrightarrow 2^{10x} = 2^{20} \Leftrightarrow x = 2$$

Svar: x = 2

Polynom och rationella uttryck

2.25 a) (s. 11)

Konjugatregeln.

$$x^2 - 1 = (x+1)(x-1)$$

b) (s. 11)

Första kvadreringsregeln.

$$x^2 + 2x + 1 = (x+1)^2$$

c) (s. 11)

Konjugatregeln.

$$x^{3} - 4x = x(x^{2} - 4) = x(x + 2)(x - 2)$$

d) (s. 11)

Andra kvadreringsregeln.

$$x^2 - 2x + 1 = (x - 1)^2$$

e) (s. 11)

Faktorisera.

$$x^4 + x^2 = x^2(x^2 + 1)$$

f) (s. 11)

Andra kvadreringsregeln.

$$x^2 - 4x + 4 = (x - 2)^2$$

g) (s. 11)

Konjugatregeln.

$$a^{3} - ab^{2} = a(a^{2} - b^{2}) = a(a + b)(a - b)$$

h) (s. 11)

Första kvadreringsregeln.

$$a^{2}b + 2ab^{2} + b^{3} = b(a^{2} + 2ab + b^{2}) = b(a + b)^{2}$$

i) (s. 11)

Andra kvadreringsregeln.

$$a^{3}b - 2a^{2}b^{2} + ab^{3} = ab(a^{2} - 2ab + b^{2}) = ab(a - b)^{2}$$

2.26 a) (s. 11)

Faktorisera.

$$x(x+2) - 4(x+2) = (x-4)(x+2)$$

b) (s. 11)

Faktorisera och använd konjugatregeln.

$$x^{2}(x^{2}-9) + x^{2} - 9 = (x^{2}+1)(x^{2}-9) = (x^{2}+1)(x+3)(x-3)$$

c) (s. 11)

Använd konjugatregeln två gånger.

$$x^4 - 16 = (x^2 + 4)(x^2 - 4) = (x^2 + 4)(x + 2)(x - 2)$$

d) (s. 11)

Faktorisera.

$$(a+b)(a-b) + a^2 - ab = (a+b)(a-b) + a(a-b) = (a+b+a)(a-b) = (2a+b)(a-b)$$

e) (s. 11)

Skriv om 4 som 2^2 och använd konjugatregeln.

$$(a-b)^2 - 4 = (a-b)^2 - 2^2 = (a-b+2)(a-b-2)$$

f) (s. 11)

Använd andra kvadreringsregeln följt av konjugatregeln.

$$a^4 - 2a^2b^2 + b^4 = (a^2 - b^2)^2 = ((a+b)(a-b))^2 = (a+b)^2(a-b)^2$$

2.27 a) (s. 11)

Faktorisera två gånger på vartannat.

$$x^{2}-7x+xy-7y = (x^{2}+xy)-(7x+7y) = x(x+y)-7(x+y) = (x-7)(x+y)$$

Faktorisera två gånger på vartannat.

$$a^6 - a^4 + a^2 - 1 = a^4(a^2 - 1) + (a^2 - 1) = (a^4 + 1)(a^2 - 1) = (a^4 + 1)(a + 1)(a - 1)$$

Faktorisera två gånger på vartannat.

$$x^{2}y+2x^{2}-y-2 = x^{2}(y+2)-(y+2) = (x^{2}-1)(y+2) = (x+1)(x-1)(y+2)$$

Faktorisera, använd andra kvadreringsregeln och sist konjugatregeln.

$$7x^5 + 7xy^4 - 14x^3y^2 = 7x(x^4 + y^2 - 2x^2y^2) = 7x(x^2 - y^2)^2 = 7x(x + y)^2(x - y)^2$$
e) (s. 11)

Använd konjugatregeln.

$$a^{2} - (b+c)^{2} = (a+b+c)(a-b-c)$$

f) (s. 11)

Använd först konjugatregeln och sen båda kvadreringsreglerna.

$$(x^2+y^2)^2-(2xy)^2=(x^2+y^2+2xy)(x^2+y^2-2xy)=(x+y)^2(x-y)^2$$

g) (s. 11)

Använd konjugatregeln följt av båda kvadreringsreglerna och sen konjugatregeln igen.

$$(x^{2} + y^{2} - z^{2})^{2} - 4x^{2}y^{2} = (x^{2} + y^{2} - z^{2} + 2xy)(x^{2} + y^{2} - z^{2} - 2xy) =$$

$$= ((x + y)^{2} - z^{2})((x - y)^{2} - z^{2}) = (x + y + z)(x + y - z)(x - y + z)(x - y - z)$$

2.28 a) (s. 23)

Kvadratkomplettera.

$$x^{2} + 6x + 7 = (x+3)^{2} - 9 + 7 = (x+3)^{2} - 2$$

Kvadratkomplettera.

$$x^{2} - 7x + 13 = (x - \frac{7}{2})^{2} - \frac{49}{4} + 13 = (x - \frac{7}{2})^{2} + \frac{3}{4}$$

Perfekt kvadrat.

$$x^{2} + 18x + 81 = (x+9)^{2} - 81 + 81 = (x+9)^{2}$$

Kvadratkomplettera.

$$x^2 + 5x = (x + \frac{5}{2})^2 - \frac{25}{4}$$

e) (saknar sida)

Eftersom uttrycket saknar x-term går det inte att kvadratkomplettera.

2.29 (s. 23)

b följer av att det kommer vara 2 x-termer i högerledet och c av att de konstanta termerna ska ta ut varandra i högerledet.

$$x^{2} + ax = (x+b)^{2} + c$$

$$b = \frac{a}{2}$$

$$c = -\left(\frac{a}{2}\right)^{2} = -\frac{a^{2}}{4}$$

Svar:
$$b = \frac{a}{2}$$
, $c = -\frac{a^2}{4}$

2.30 a) (s. 24-25)

Faktorisera och använd konjugatregeln.

$$\frac{4x^2 - 4}{2x + 2} = \frac{\cancel{4}(x^2 - 1)}{\cancel{2}(x + 1)} = \frac{\cancel{2}(x + 1)(x - 1)}{\cancel{x + 1}} = 2x - 2$$

Svar: 2x-2

b) (s. 24-25)

Använd konjugatregeln och andra kvadreringsregeln.

$$\frac{x^2 - 1}{x^2 - 2x + 1} = \frac{(x+1)(x-1)}{(x-1)^{\frac{1}{2}}} = \frac{x+1}{x-1}$$

Svar: $\frac{x+1}{x-1}$

c) (s. 24-25)

Skriv ihop termerna på samma bråkstreck (förläng).

$$\frac{1}{x^2} - \frac{1}{y^2} + \frac{x^2 - y^2}{(xy)^2} = \frac{y^2 - x^2 + x^2 - y^2}{(xy)^2} = \frac{0}{(xy)^2} = 0$$

Svar: 0

2.31 a) (s. 24-25)

Använd konjugatregeln och skriv ihop termerna på samma bråkstreck (förläng).

$$\frac{2}{3x+9} + \frac{x}{x^2-9} - \frac{1}{2x-6} = \frac{2}{3(x+3)} + \frac{x}{(x+3)(x-3)} - \frac{1}{2(x-3)} =$$

$$= \frac{4(x-3) + 6x - 3(x+3)}{6(x+3)(x-3)} = \frac{4x - 12 + 6x - 3x - 9}{6(x+3)(x-3)} = \frac{7x - 21}{6(x+3)(x-3)} =$$

$$= \frac{7(x-3)}{6(x+3)(x-3)} = \frac{7}{6x+18}$$

Svar: $\frac{7}{6x+18}$

b) (s. 24-25)

Skriv ihop termerna på samma bråkstreck (förläng).

$$\frac{5}{x-1} + \frac{8}{x+1} - \frac{3x+7}{x^2-1} = \frac{5(x+1) + 8(x-1) - (3x+7)}{x^2-1} =$$

$$= \frac{5x+5+8x-8-3x-7}{x^2-1} = \frac{10x-10}{(x+1)(x-1)} = \frac{10(x-1)}{(x+1)(x-1)} =$$

$$= \frac{10}{x+1}$$

Svar: $\frac{10}{x+1}$

2.32 a) (s. 24-25)

Använd andra kvadreringsregeln och skriv ihop termerna på samma bråkstreck (förläng).

$$\frac{3x-y}{x^2-2xy+y^2} - \frac{2}{x-y} - \frac{2y}{(x-y)^2} = \frac{3x-y-2(x-y)-2y}{(x-y)^2} = \frac{3x-y-2(x-y)-2y}{(x-y)^2} = \frac{3x-y-2(x-y)-2y}{(x-y)^2} = \frac{1}{x-y}$$

Svar:
$$\frac{1}{x-y}$$

Använd första kvadreringsregeln och konjugatregeln. Skriv sedan ihop termerna på samma bråkstreck (förläng).

$$\begin{split} &\frac{a}{a^2 + 4ab + 4b^2} + \frac{2b}{a^2 - 4b^2} = \frac{a}{(a+2b)^2} + \frac{2b}{(a+2b)(a-2b)} = \\ &= \frac{a(a-2b) + 2b(a+2b)}{(a+2b)^2(a-2b)} = \frac{a^2 - 2ab + 2ab + 4b^2}{(a+2b)^2(a-2b)} = \frac{a^2 + 4b^2}{(a+2b)^2(a-2b)} \end{split}$$

Svar:
$$\frac{a^2 + 4b^2}{(a+2b)^2(a-2b)}$$

2.33 (s. 24-25)

Använd första kvadreringsregeln och konjugatregeln. Skriv sedan ihop termerna på samma bråkstreck (förläng).

$$\frac{a}{a^2 + 4ab + 4b^2} + \frac{2b}{a^2 - 4b^2} = \frac{a}{(a+2b)^2} + \frac{2b}{(a+2b)(a-2b)} =$$

$$= \frac{a(a-2b) + 2b(a+2b)}{(a+2b)^2(a-2b)} = \frac{a^2 - 2ab + 2ab + 4b^2}{(a+2b)^2(a-2b)} = \frac{a^2 + 4b^2}{(a+2b)^2(a-2b)}$$

Svar:
$$\frac{a^2 + 4b^2}{(a+2b)^2(a-2b)}$$

2.34 a) (s. 25-27)

Lös genom polynomdivision eller genom ansättning som visas nedan:

Ekvation:

$$(x^5 + 3x^4 - 2x^3 + 2x - 1) : (x^3 + x + 1)$$

Ansätter lösning:

$$(x^5 + 3x^4 - 2x^3 + 2x - 1) = (x^3 + x + 1)(x^2 + Ax + B) + Cx^2 + Dx + E = x^5 + Ax^4 + Bx^3 + x^3 + Ax^2 + Bx + x^2 + Ax + Cx^2 + Dx + E = x^5 + Ax^4 + (B+1)x^3 + (A+C+1)x^2 + (A+B+D)x + (B+E)$$

Identifierar variabler:

$$\begin{cases} A & = 3 \\ B+1 & = -2 \\ A+C+1 & = 0 \Leftrightarrow \\ A+B+D & = 2 \\ B+E & = -1 \end{cases} \Leftrightarrow \begin{cases} A=3 \\ B=-3 \\ C=-4 \\ D=2 \\ E=2 \end{cases}$$

Kvot: $x^2 + 3x - 3$ **Rest:** $-4x^2 + 2x + 2$

Lös genom polynomdivision eller genom ansättning som visas nedan:

Ekvation:

$$(x^6-1):(x-1)$$

Ansätter lösning:

$$(x^{6}-1) = (x-1)(x^{5} + Ax^{4} + Bx^{3} + Cx^{2} + Dx + E) + F =$$

$$= x^{6} + Ax^{5} + Bx^{4} + Cx^{3} + Dx^{2} + Ex - x^{5} - Ax^{4} - Bx^{3} - Cx^{2} - Dx - E + F =$$

$$= x^{6} + (A-1)x^{5} + (B-A)x^{4} + (C-B)x^{3} + (D-C)x^{2} + (E-D)x + (-E+F)$$

Identifierar variabler:

$$\begin{cases} A - 1 &= 0 \\ B - A &= 0 \\ C - B &= 0 \\ D - C &= 0 \\ E - D &= 0 \\ F - E &= -1 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = 1 \\ C = 1 \\ D = 1 \\ E = 1 \\ F = 0 \end{cases}$$

Kvot: $x^5 + x^4 + x^3 + x^2 + x + 1$

Rest: ingen

c) (s. 25-27)

Lös genom polynomdivision eller genom ansättning som visas nedan:

Ekvation:

$$(x^4 + 2x^3 + 25) : (x^2 + 4x + 5)$$

Ansätter lösning:

$$(x^4 + 2x^3 + 25) = (x^2 + 4x + 5)(x^2 + Ax + B) + Cx + D =$$

$$= x^4 + Ax^3 + Bx^2 + 4x^3 + 4Ax^2 + 4Bx + 5x^2 + 5Ax + 5B + Cx + D =$$

$$= x^4 + (A+4)x^3 + (B+4A+5)x^2 + (4B+5A+C)x + (5B+D)$$

Identifierar variabler:

$$\begin{cases} A+4 & = 2 \\ B-4A+5 & = 0 \\ 4B+5A+C & = 0 \\ 5B+D & = 25 \end{cases} \Leftrightarrow \begin{cases} A=-2 \\ B=3 \\ C=-2 \\ D=10 \end{cases}$$

Kvot: $x^2 + 3x - 3$

Rest: $-4x^2 + 2x + 2$

2.35 a) (s. 11)

Konjugatregeln bakvänt. (Går också att lösa med polynomdivision om g(x) ansätts som x + 2 eller x - 2).

$$x^2 - 4 = (x+2)(x-2)$$

Första kvadreringsregeln bakvänt. (Går också att lösa med polynomdivision om g(x) ansätts som x+1).

$$x^2 + 2x + 1 = (x+1)^2$$

Faktorisera och använd konjugatregeln bakvänt. (går att lösa med polynomdivision).

$$x^{3} - x = x(x^{2} - 1) = x(x + 1)(x - 1)$$

Hittar lösningen x=1 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision).

$$x^2 - 3x + 2 = (x - 1)(x + A) = x^2 + Ax - x - A$$

Identifierar variabeln:

$$A-1=-3 \Leftrightarrow A=-2$$

$$x^2 - 3x + 2 = (x - 1)(x - 2)$$

Svar: (x-1)(x-2)

e) (s. 25-29)

Hittar lösningen x=1 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision).

$$2-x-x^2 = (x-1)(-x+A) = -x^2 + Ax + x - A$$

Identifierar variabeln:

$$A+1=-1 \Leftrightarrow A=-2$$

$$2-x-x^2 = (x-1)(-x-2)$$

Svar:
$$(x-1)(-x-2)$$

Faktorisera och använd andra kvadreringsregeln.

$$x^4 - 2x^3 + x^2 = x^2(x^2 - 2x + 1) = x^2(x - 1)^2$$

2.36 a) (s. 11)

Konjugatregeln.

$$x^2 - 1 = (x+1)(x-1)$$

b) (saknar sida)

Finns inga reella faktorer.

Hittar lösningen x=1 och använder faktorsatsen. Ansätter sedan

en lösning (kan lösas med polynomdivision).
$$x^3-1=(x-1)(x^2+Ax+B)=x^3+Ax^2+Bx-x^2-Ax-B=x^3+(A-1)x^2+(B-A)x-B$$

Identifierar variabler:

$$\begin{cases} A - 1 = 0 \\ B - A = 0 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = 1 \end{cases}$$

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Svar:
$$(x-1)(x^2+x+1)$$

d) (s. 25-29)

Hittar lösningen x = -1 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision).

en foshing (kan fosas med polyholidivision).

$$x^3 + 1 = (x+1)(x^2 + Ax + B) = x^3 + Ax^2 + Bx + x^2 + Ax + B =$$

$$= x^3 + (A+1)x^2 + (B+A)x + B$$

Identifierar variabler:

$$\begin{cases} A+1=0 \\ B+A=0 \end{cases} \Leftrightarrow \begin{cases} A=-1 \\ B=1 \end{cases}$$

$$x^3 + 1 = (x+1)(x^2 - x + 1)$$

Svar: $(x+1)(x^2-x+1)$

e) (s. 25-29)

Hittar lösningen x = -1 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision).

$$x^{4} - 1 = (x - 1)(x^{3} + Ax^{2} + Bx + C) =$$

$$= x^{4} + Ax^{3} + Bx^{2} + Cx - x^{3} - Ax^{2} - Bx - C =$$

$$= x^{4} + (A - 1)x^{3} + (B - A)x^{2} + (C - B)x - C$$

Identifierar variabler:

$$\begin{cases} A - 1 = 0 \\ B - A = 0 \\ C - B = 0 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = 1 \\ C = 1 \end{cases}$$

$$x^{4} - 1 = (x - 1)(x^{3} + x^{2} + x + 1) = (x - 1)(x^{2}(x + 1) + x + 1) = (x - 1)(x^{2} + 1)(x + 1)$$

Svar: $(x-1)(x^2+1)(x+1)$

Hittar lösningen x = -3 och x = 0 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision).

$$x^{4} + 27x = x(x^{3} + 27) = x(x+3)(x^{2} + Ax + B) =$$

$$= x(x^{3} + Ax^{2} + Bx + 3x^{2} + 3Ax + 3B) =$$

$$= x(x^{3} + (A+3)x^{2} + (B+3A)x + 3B)$$

Identifierar variabler:

$$A + 3 = 0$$
, $B + 3A = 0$, $3B = 27 \Leftrightarrow A = -3$, $B = 9$

$$x^4 + 27x = x(x+3)(x^2 - 3x + 9)$$

Svar: $x(x+3)(x^2-3x+9)$

Skriv om x^6 till $(x^3)^2$ och använd konjugatregeln bakvänt. Faktorisera sedan faktorerna var för sig. $x^6-64=(x^3)^2-8^2=(x^3+8)(x^3-8)$

$$x^6 - 64 = (x^3)^2 - 8^2 = (x^3 + 8)(x^3 - 8)$$

Hittar lösningen x=-2 och använder faktorsatsen. Ansätter sedan lösning (kan lösas med polynomdivision).

$$x^{3} + 8 = (x+2)(x^{2} + Ax + B) = x^{3} + Ax^{2} + Bx + 2x^{2} + 2Ax + 2B = x^{3} + (A+2)x^{2} + (B+2A)x + 2B$$

Identifierar variabler:

$$\begin{cases} A+2=0\\ B+2A=0\\ -2B=-8 \end{cases} \Leftrightarrow \begin{cases} A=2\\ B=4 \end{cases}$$

$$x^3 + 8 = (x+2)(x^2 - 2x + 4)$$

Hittar lösningen x=2 och använder faktorsatsen. Ansätter sedan lösning (kan lösas med polynomdivision).

$$x^3 - 8 = (x - 2)(x^2 + Ax + B) = x^3 + Ax^2 + Bx - 2x^2 - 2Ax - 2B = x^3 + (A - 2)x^2 + (B - 2A)x - 2B$$

Identifierar variabler:

$$A-2=0, \quad B-2A=0, \quad -2B=-8 \rightarrow A=2, \quad B=4$$

$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

Slå samman:

$$x^{6} - 64 = (x+2)(x^{2} - 2x + 4)(x-2)(x^{2} + 2x + 4)$$

Svar:
$$(x+2)(x^2-2x+4)(x-2)(x^2+2x+4)$$

2.37 (s. 25-29)

Delar upp problemet i delproblem efter varje faktorisering. Ekvation: $p(x) = x^5 - 10x^2 + 15x - 6$

$$p(1) = 1^5 - 10 * 1^2 + 15 * 1 - 6 = 0$$

Hittar lösningen x = 1, använder faktorsatsen och ansätter lösning: $p(x) = (x-1)(x^4 + Ax^3 + Bx^2 + Cx + D) =$ = $x^5 + Ax^4 + Bx^3 + Cx^2 + Dx - x^4 - Ax^3 - Bx^2 - Cx - D =$ = $x^5 + (A-1)x^4 + (B-A)x^3 + (C-B)x^2 + (D-C)x - D$

$$= x^5 + Ax^4 + Bx^3 + Cx^2 + Dx - x^4 - Ax^3 - Bx^2 - Cx - D = x^5 + (A - 1)x^4 + (B - A)x^3 + (C - B)x^2 + (D - C)x - D$$

Identifierar variabler:

$$\begin{cases} A - 1 = 0 \\ B - A = 0 \\ C - B = -10 \\ D - C = 15 \\ -D = -6 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = 1 \\ C = -9 \\ D = 6 \end{cases}$$

$$p(x) = (x-1)(x^4 + x^3 + x^2 - 9x + 6)$$

Ekvation: $p_1(x) = x^4 + x^3 + x^2 - 9x + 6$

$$p_1(1) = 1^4 + 1^3 + 1^2 - 9 * 1 + 6 = 0$$

Hittar lösningen x = 1, använder faktorsatsen och ansätter lösning:

$$p_1(x) = (x-1)(x^3 + Ax^2 + Bx + C) =$$

$$= x^4 + Ax^3 + Bx^2 + Cx - x^3 - Ax^2 - Bx - C =$$

$$= x^4 + (A-1)x^3 + (B-A)x^2 + (C-B)x - C$$

Identifierar variabler:

$$\begin{cases} A-1=1\\ B-A=1\\ C-B=-9\\ D-C=6 \end{cases} \Leftrightarrow \begin{cases} A=2\\ B=3\\ C=-6 \end{cases}$$

$$p_1(x) = (x-1)(x^3 + 2x^2 + 3x - 6)$$

Ekvation: $p_2(x) = x^3 + 2x^2 + 3x - 6$

$$p_2(1) = 1^3 + 2 * 1^2 + 3 * 1 - 6 = 0$$

Hittar lösningen x = 1, använder faktorsatsen och ansätter lösning:

$$p_2(x) = (x-1)(x^2 + Ax + B) =$$

= $x^3 + Ax^2 + Bx - x^2 - Ax - B =$
= $x^3 + (A-1)x^2 + (B-A)x - B$

Identifierar variabler:

$$\begin{cases} A - 1 = 2 \\ B - A = 3 \\ -B = -6 \end{cases} \Leftrightarrow \begin{cases} A = 3 \\ B = 6 \end{cases}$$

Ekvation: $p_3(x) = x^2 + 3x + 6$

 $p_2(1) = 1^2 + 3 * 1 + 6 = 10$ (x = 1 är inte en lösning)

pq-formeln:

$$x = -\frac{3}{2} \pm \sqrt{\frac{9}{4} - 6} =$$

 $x=-\frac{3}{2}\pm\sqrt{-\frac{15}{4}}\Rightarrow$ Finns ingen reell lösning

$$p(x) = (x-1)(x-1)(x-1)(x^2+3x+6) = (x-1)^3(x^2+3x+6)$$

Svar: $(x-1)^3(x^2+3x+6)$, multipliciteten för x=1 är 3

2.38 (s. 25-29)

Ekvationen: $p(x) = x^3 - 2x - 4$

Hittar lösningen x=2 och använder faktorsatsen. Ansätter sedan en lösning (kan lösas med polynomdivision). $x^3-2x-4=(x-2)(x^2+Ax+B)=x^3+(A-2)x^2+(B-2A)x-2B$

$$x^{3}-2x-4=(x-2)(x^{2}+Ax+B)=x^{3}+(A-2)x^{2}+(B-2A)x-2B$$

Identifierar variabler:

$$\begin{cases} A - 2 = 0 \\ B - 2A = -2 \\ -2B = -4 \end{cases} \Leftrightarrow \begin{cases} A = 2 \\ B = 2 \end{cases}$$

$$p(x) = (x-2)(x^2 + 2x + 2)$$

$$p_1(x) = x^2 + 2x + 2$$

pq-formeln: $x = -1 \pm \sqrt{1-2} \Rightarrow$ Finns ingen reell lösning

Svar: $p(x-2)(x^2+2x+2)$

Kapitel 3: Ekvationer och olikheter

Ekvationer

3.1 a) (s. 33-34)

Utnyttja faktorsatsen (varje faktor är ett nollställe).

Svar: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$

b) (s. 33-34)

 $x(x^2-4)=0$. Faktorisera först x^2-4 med konjugatregeln.

$$x(x+2)(x-2) = 0$$

Utnyttja sedan faktorsatsen (varje faktor är ett nollställe).

Svar: $x_1 = 0$, $x_2 = -2$, $x_3 = 2$

c) (s. 33-34)

$$x^2 + 10x + 24 = 0$$

Alternativ 1:

Faktorisera genom att gissa a och b så $(x+a)(x+b) = x^2 + 10x + 24 = 0$. a=4 och b=6.

$$(x+4)(x+6) = 0$$

Utnyttja sedan faktorsatsen (varje faktor är ett nollställe).

Alternativ 2:

Använd pq-formeln:

$$x = -5 \pm \sqrt{5^2 - 24} = -5 \pm 1$$

Alternativ 3:

Använd kvadratkomplettering:

$$(x+5)^2 - 25 + 24 = 0 \Leftrightarrow (x+5)^2 = 1 \Leftrightarrow x+5 = \pm \sqrt{1} \Leftrightarrow x = -5 \pm 1$$

Svar: $x_1 = -4$ och $x_2 = -6$

d) (s. 33-34)

$$x^2 + 10x + 25 = 0$$

Alternativ 1:

Faktorisera genom att gissa a och b så $(x+a)(x+b) = x^2 + 10x + 25 = 0$. a = 5 och b = 5.

$$(x+5)^2 = 0$$

Utnyttja sedan faktorsatsen (varje faktor är ett nollställe).

Alternativ 2:

Använd pq-formeln:

$$x = -5 \pm \sqrt{5^2 - 25} = -5 \pm \sqrt{0} = -5$$

Alternativ 3:

Använd kvadratkomplettering:

$$(x+5)^2 - 25 + 25 = 0 \Leftrightarrow (x+5)^2 = 0 \Leftrightarrow x+5 = 0 \Leftrightarrow x = -5$$

Svar: $x_{1,2} = -5$

e) (s. 33-34)

$$x^3 + 10x^2 + 24x = 0$$

Faktorisera ut x ur vänsterledet.

$$x(x^2 + 10x + 24) = 0$$

Hitta nollställena till $x^2 + 10x + 24$ (se c). Nollproduktionsmetoden ger också lösningen x = 0.

Svar: $x_1 = -4$, $x_2 = -6$ och $x_3 = 0$

f) (s. 33-34)

$$x^4 + 10x^3 + 25x^2 = 0$$

Faktorisera ut x^2 ur vänsterledet.

$$x^2(x^2 + 10x + 25) = 0$$

Hitta nollställena till $x^2+10x+25$ (se d). Nollproduktionsmetoden ger också dubbelroten x=0.

Svar: $x_{1,2} = -5$ och $x_{3,4} = 0$

3.2 a) (s.)

$$x^2 + 4x + a = 0$$
, $x = 2$

Sätt in värdet för x i ekvationen och lös ut a.

$$2^{2} + 4 * 2 + a = 0 \Leftrightarrow 4 + 8 + a = 0 \Leftrightarrow a = -12$$

Svar: a = -12

b) (s.)

$$x^2 + bx + 12 = 0$$
, $x = 3$

Sätt in värdet för x i ekvationen och lös ut b.

$$3^{2} + 3b + 12 = 0 \Leftrightarrow 9 + 3b + 12 = 0 \Leftrightarrow 3b = -21 \Leftrightarrow b = -7$$

Svar: b = -7

3.3 a) (s.)

$$p(x) = x^{2} - x - \frac{3}{4}$$
$$x^{2} - x - \frac{3}{4} = 0$$

Använd pq-formeln (eller kvadratkomplettering).

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{3}{4}} = \frac{1}{2} \pm 1 \Rightarrow x_1 = \frac{3}{2}, \quad x_2 = -\frac{1}{2}$$

Faktorsatsen ger: $p(x) = (x - \frac{3}{2})(x + \frac{1}{2})$

Svar:
$$p(x) = \left(x - \frac{3}{2}\right) \left(x + \frac{1}{2}\right)$$

b) (s.)

$$p(x) = 2x^{2} - 3x - 2$$
$$2x^{2} - 3x - 2 = 0 \Leftrightarrow x^{2} - \frac{3}{2}x - 1 = 0$$

Använd pq-formeln (eller kvadratkomplettering).

$$x = \frac{3}{4} \pm \sqrt{\left(\frac{3}{4}\right)^2 + 1} = \frac{3}{4} \pm \sqrt{\frac{9}{16} + \frac{16}{16}} = \frac{3}{4} \pm \frac{5}{4} \Rightarrow x_1 = 2, \ x_2 = -\frac{1}{2}$$

Faktorsatsen ger: $p(x) = (x-2)(x+\frac{1}{2})$

Svar:
$$p(x) = (x-2)\left(x + \frac{1}{2}\right)$$

c) (s.)

$$p(x) = -x^{2} + x + 12$$
$$-x^{2} + x + 12 = 0 \Leftrightarrow x^{2} - x - 12 = 0$$

Använd pq-formeln (eller kvadratkomplettering).

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 12} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{48}{4}} = \frac{1}{2} \pm \frac{7}{2} \Rightarrow x_1 = 4, \quad x_2 = -3$$

Faktorsatsen ger: p(x) = (x-4)(x+3)

Svar: p(x) = (x-4)(x+3)

d) (s.)

$$p(x) = x^{3} - x^{2} + \frac{1}{4}x = x\left(x^{2} - x + \frac{1}{4}\right)$$
$$g(x) = x^{2} - x + \frac{1}{4}$$
$$x(x^{2} - x + \frac{1}{4}) = 0 \Leftrightarrow x * g(x) = 0$$

Använd pq-formeln (eller kvadratkomplettering) på g(x) = 0.

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{1}{4}} = \frac{1}{2} \pm 0 = \frac{1}{2} \Rightarrow x_{1,2} = \frac{1}{2}$$

Faktorsatsen ger: $g(x) = (x - \frac{1}{2})^2$

$$p(x) = x * g(x) = x(x - \frac{1}{2})^2$$

Svar:
$$p(x) = x \left(x - \frac{1}{2} \right)^2$$

e) (s.)

$$p(x) = 3x^3 - 6x^2 + 15x = 3x(x^2 - 2x + 5)$$
$$g(x) = x^2 - 2x + 5$$
$$x(x^2 - 2x + 5) = 0 \Leftrightarrow x * g(x) = 0$$

Använd pq-formeln (eller kvadratkomplettering) på g(x) = 0.

$$x = 1 \pm \sqrt{1-5} \Rightarrow \text{Saknar reell lösning}$$

Faktorsatsen ger då att g(x) inte kan faktoriseras.

Svar:
$$p(x) = 3x(x^2 - 2x + 5)$$

f) (s.)

$$p(x) = x^4 - 6x^2 + 8$$

Använd variabelsubstitution så pq-formeln kan användas.

$$x^4 - 6x^2 + 8 = 0$$
, $t = x^2 \Rightarrow t^2 - 6t + 8 = 0$

Använd pq-formeln (eller kvadratkomplettering).

$$t = 3 \pm \sqrt{9 - 8} \Leftrightarrow t = 3 \pm 1 \Rightarrow t_1 = 4, \quad t_2 = 2$$

$$x^2 = 4 \Leftrightarrow x_{1,2} = \pm 2$$

$$x^2 = 2 \Leftrightarrow x_{3,4} = \pm \sqrt{2}$$

Faktorsatsen ger då $p(x)=(x-2)(x+2)(x-\sqrt{2})(x+\sqrt{2})$

Svar:
$$p(x) = (x-2)(x+2)(x-\sqrt{2})(x+\sqrt{2})$$

(s.) 3.4

Satsen om likbent triangel ger att den båda rätvinkliga trianglarna är kongruenta vilket medför att basen för båda är 3cm. Pyth. sats ger att $h = \sqrt{5^2 - 3^2} = 4 \Rightarrow \text{arean}$: $6 * 4/2 = 12cm^2$ och omkretsen är 16cm.

Låt benen vara y och basen x

$$h = \sqrt{y^2 - (x/2)^2}$$
 area: $\frac{x * h}{2} = \frac{x\sqrt{y^2 - (x/2)^2}}{2} = 12cm \Leftrightarrow x\sqrt{y^2 - (x/2)^2} = 24cm$ omkrets: $2y + x = 16cm \Leftrightarrow x = 16 - 2y$

$$(16 - 2y)\sqrt{y^2 - (8 - y)^2} = 24 \Leftrightarrow 2(8 - y)4\sqrt{y - 4} = 24 \Leftrightarrow$$

$$\Leftrightarrow (8 - y)\sqrt{y - 4} = 3 \Rightarrow (y^2 - 16y + 64)(y - 4) = 9 \Leftrightarrow$$

$$\Leftrightarrow y^3 - 4y^2 - 16y^2 + 64y + 64y - 256 = 9 \Leftrightarrow y^3 - 20y^2 + 128y - 265 = 0$$

Ansätter lösning med x-5 som faktor från ursprungsfiguren (kan lösas med polynomdivision också):

$$y^3 - 20y^2 + 128y - 265 = (x - 5)(x^2 + Ax + B) = x^3 + (A - 5)y^2 + (B - 5A)y - 5B$$

Identifierar variablerna:

$$\begin{cases} A - 5 = -20 \\ B - 5A = 128 \end{cases} \Leftrightarrow \begin{cases} A = -15 \\ B = 53 \end{cases}$$
$$y^3 - 20y^2 + 128y - 265 = (y - 5)(y^2 - 15y + 53)$$

$$y^2 - 15y + 53 = 0$$

pq-formeln:

pq-formein:
$$y = \frac{15}{2} \pm \sqrt{\frac{15^2 - 212}{4}} = \frac{15 \pm \sqrt{13}}{2}$$

$$y_1 = \frac{15 + \sqrt{13}}{2} \Rightarrow x = 16 - 15 - \sqrt{13} \Rightarrow x < 0 \Rightarrow \text{ falsk rot}$$

$$y_2 = \frac{15 - \sqrt{13}}{2} \Rightarrow x = 16 - 15 + \sqrt{13} = 1 + \sqrt{13}$$

Svar:
$$x = 1 + \sqrt{13}$$
 och $y = \frac{15 - \sqrt{13}}{2}$

3.5 a) (s.)

$$\begin{split} &\frac{1}{x-1} + \frac{1}{x} + \frac{1}{x+1} = 0 \Leftrightarrow \frac{x(x+1) + x^2 - 1 + x(x-1)}{x(x^2-1)} = 0 \Leftrightarrow \\ &\Leftrightarrow \frac{3x^2 - 1}{x(x^2-1)} = 0 \Rightarrow 3x^2 - 1 = 0 \Leftrightarrow (\sqrt{3}x+1)(\sqrt{3}x-1) = 0 \Leftrightarrow (x+\frac{1}{\sqrt{3}})(x-\frac{1}{\sqrt{3}}) = 0 \end{split}$$

Faktorsatsen ger då: $x_1 = -\frac{1}{\sqrt{3}}$ och $x_2 = \frac{1}{\sqrt{3}}$

Svar: $x_{1,2} = \pm \frac{1}{\sqrt{3}}$

b) (s.)

$$\frac{1}{x-1} - \frac{1}{x-2} = \frac{1}{x-3} - \frac{1}{x-4} \Leftrightarrow \frac{\cancel{x} - 2 - \cancel{x} + 1}{(x-1)(x-2)} = \frac{\cancel{x} - 4 - \cancel{x} + 3}{(x-3)(x-4)} \Leftrightarrow \frac{1}{x^2 - 3x + 2} = \frac{1}{x^2 - 7x + 12} \Rightarrow \cancel{x} - 3x + 2 = \cancel{x} - 7x + 12 \Leftrightarrow \Leftrightarrow x = \frac{10}{4} = \frac{5}{2}$$

Svar: $x = \frac{5}{2}$

c) (s.)

$$\frac{1}{x^2 - 2x} + \frac{1}{x^2 + 3x} = 0 \Leftrightarrow \frac{\cancel{x}(x+3) + \cancel{x}(x-2)}{\cancel{x}\cancel{x}(x-2)(x+3)} = 0 \Rightarrow$$
$$\Rightarrow x + 3 + x - 2 = 0 \Leftrightarrow 2x + 1 = 0 \Leftrightarrow x = -\frac{1}{2}$$

Svar: $x = -\frac{1}{2}$

d) (s.)

$$\frac{1}{x+2} - \frac{x+2}{x-2} = \frac{x^2}{4-x^2} \Leftrightarrow \frac{x-2-(x+2)^2}{x^2-4} = \frac{x^2}{4-x^2} \Rightarrow (4-x^2)(-x^2-3x-6) = x^2(x^2-4) \Leftrightarrow \Leftrightarrow -4x^2 - 12x - 24 + x^4 + 3x^3 + 6x^2 = x^4 - 4x^2 \Leftrightarrow \Leftrightarrow x^3 + 2x^2 - 4x - 8 = 0$$

Gissar en lösning till ekvationen och hittar x=2. Ansätter lösning med x-2 som faktor (kan lösas med polynomdivision också):

$$x^{3}+2x^{2}-4x-8 = (x-2)(x^{2}+Ax+B) = x^{3}+(A-2)x^{2}+(B-2A)x-2B$$

Identifierar variabler:

$$\begin{cases} A-2=2\\ B-2A=-4 \end{cases} \Leftrightarrow \begin{cases} A=4\\ B=4 \end{cases}$$
$$(x-2)(x^2+4x+4)=0$$

Kvadreringsregeln:

$$(x-2)(x^2+4x+4) = 0 \Leftrightarrow (x-2)(x+2)^2 = 0$$

Faktorsatsen: $x_1 = 2$ och $x_{2,3} = -2$. Både 2 och -2 är dock falska rötter då de resulterar i nolldivision i ursprungsekvationen.

Svar: Ekvationen saknar lösning

3.6 (s.)

Formeln för hastighet, sträcka och tid är $s=v*t\Leftrightarrow t=\frac{s}{v}$. Låt x vara båtens hastighet i stillastående vatten. Den totala tiden för resan är tiden dit (t_1) plus tiden tillbaka (t_1) $(t_1+t_2=t)$. Hastigheten båten har dit (v_1) kan beskrivas som x-2.4 och hastigheten hem (v_2) som x+2.4. t=2 och s=6.4.

$$t_1 + t_2 = t \Leftrightarrow \frac{s}{v_1} + \frac{s}{v_2} = t$$

$$\frac{6.4}{x - 2.4} + \frac{6.4}{x + 2.4} = 2 \Leftrightarrow \frac{6.4(x + 2.4) + 6.4(x - 2.4)}{(x - 2.4)(x + 2.4)} = 2 \Leftrightarrow$$

$$6.4(2x + 2.4 - 2.4) = 2(x^2 - 2.4^2) \Leftrightarrow \cancel{2} * 6.4x = \cancel{2}(x^2 - 2.4^2) \Leftrightarrow$$

$$x^2 - 6.4x - 5.76 = 0$$

pq-formeln:

$$x = 3.2 \pm \sqrt{10.24 + 5.76} = 3.2 \pm \sqrt{16} = 3.2 \pm 4$$

 $x_1=7.2$ och $x_2=-0.8.$ Eftersom hastigheten i uppgiften inte kan vara negativ gäller endast x_1

Svar: 7.2 km/h

3.7 a) (s.)

$$\sqrt{x+2} = x \Rightarrow x+2 = x^2 \Leftrightarrow x^2 - x - 2 = 0$$

pq-formeln:

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}} \Leftrightarrow x = \frac{1}{2} \pm \frac{3}{2}$$

 $x_1 = 2$

 $x_2 = -1$ Falsk rot (sätt in i ursprungsekvationen).

Svar: x=2

b) (s.)

$$\sqrt{x+2} = -x \Rightarrow x+2 = x^2 \Leftrightarrow x^2 - x - 2 = 0$$

pq-formeln:

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}} \Leftrightarrow x = \frac{1}{2} \pm \frac{3}{2}$$

 $x_1=2$ Falsk rot (sätt in i ursprungsekvationen). $x_2=-1$

Svar: x = -1

c) (s.)

$$x - \sqrt{x - 2} = 4 \Leftrightarrow \sqrt{x - 2} = x - 4 \Rightarrow x - 2 = (x - 4)^2 \Leftrightarrow x - 2 = x^2 - 8x + 16 \Leftrightarrow x^2 - 9x + 18 = 0$$

pq-formeln:

$$x = \frac{9}{2} \pm \sqrt{\frac{81}{4} - \frac{72}{4}} \Leftrightarrow x = \frac{9}{2} \pm \frac{3}{2}$$

 $x_1 = 6$

 $x_2 = 3$ Falsk rot (sätt in i ursprungsekvationen).

Svar: x = 6

3.8 a) (s.)

$$\sqrt{x+2} = \sqrt{2x+1} \Rightarrow x+2 = 2x+1 \Leftrightarrow x=1$$

Svar: x = 1

$$\sqrt{3x+2} = \sqrt{2x+1} \Rightarrow 3x+2 = 2x+1 \Leftrightarrow x = -1$$
 Falsk rot.

Svar: Ekvationen saknar lösning

c) (s.)

$$\sqrt{x+2} = \sqrt{x} \Rightarrow x+2 = x \Leftrightarrow 2 = 0$$
 Ej ekvivalent.

Svar: Ekvationen saknar lösning

d) (s.)

$$\sqrt{x-2}\sqrt{x+3} = x \Rightarrow (x-2)(x+3) = x^2 \Leftrightarrow \cancel{x} + x - 6 = \cancel{x} \Leftrightarrow x = 6$$

Svar: x = 6

e) (s.)

$$(3 - \sqrt{x})(3 + \sqrt{x}) = 8\sqrt{x} \Leftrightarrow 9 - x = 8\sqrt{x} \Rightarrow$$
$$\Rightarrow x^2 - 18x + 81 = 64x \Leftrightarrow x^2 - 82x + 81 = 0$$

pq-formeln:

$$x = 41 \pm \sqrt{41^2 - 81} = 41 \pm 40$$

 $x_1 = 81$ falsk rot.

 $x_2 = 1$

Svar: x = 1

f) (s.)

Svar: Lösning saknas

Ekvationer

3.9 (s.)

 $2 < 3 \Leftarrow$ är "2 **mindre** än 3"? Ja

 $2 \leq 3 \Leftarrow \ddot{\rm ar}$ "2 **mindre** eller lika med 3"? Ja

 $2 \le 2 \Leftarrow \ddot{a}$ r "2 mindre eller **lika med** 2"? Ja

Svar: Alla tre

3.10 (s.)

Nedan visar jag min tankeprocess för att lösa uppgiften.

$$\frac{2}{0.02} = \frac{2}{2} * \frac{1}{10^{-2}} = 1 * 10^2 = 100$$

$$\frac{31}{0.2} = \frac{31}{2} * \frac{1}{10^{-1}} = 15.5 * 10 = 155$$

$$\frac{0.00009}{0.000006} = \frac{9}{6} * \frac{10^{-5}}{10^{-6}} = 1.5 * 10 = 15$$

Svar: $\frac{0.00009}{0.000006} < \frac{2}{0.02} < \frac{31}{0.2}$

3.11 a) (s.)

 $3x + 1 < 2 \Leftrightarrow 3x < 1 \Leftrightarrow x < \frac{1}{3}$

Svar: $x < \frac{1}{3}$

b) (s.)

 $-3x + 2 \le 1 \Leftrightarrow -3x \le -1 \Leftrightarrow x \ge \frac{1}{3}$

Svar: $x \ge \frac{1}{3}$

c) (s.)

 $3x + 1 > 4x + 5 \Leftrightarrow x < -4$

Svar: x < -4

d) (s.)

 $(x-3)(x+3) \le x^2 \Leftrightarrow x^2 - 9 \le x^2 \Leftrightarrow -9 \le 0 \Rightarrow x \in \mathbb{R}$

Svar: $x \in \mathbb{R}$

3.12 a) (s.)

Använd en teckentabell och hitta intervallet/n som ger positiva vär-

$$\frac{x+4}{x-1} > 0$$

x		-4		1	
x+4	_	0	+	+	+
x-1	_	_	_	0	+
$\frac{x+4}{x-1}$	+	0	_	}	+

Svar: x > 1 eller x < -4

b) (s.)

Utnyttja teckentabellen i förra uppgiften men ta intervallet som ger negativa värden.

$$\frac{x+4}{x-1} < 0$$

Svar: teckentabellen i a) ger: -4 < x < 1

c) (s.)

Använd en teckentabell och hitta intervallet/n som ger negativa värden.

$$\frac{x+1}{x(x-1)} < 0$$

x		-1		0		1	
x+1	_	0	+	+	+	+	+
x	_	_	-	0	+	+	+
x-1	_	_	_	_	_	0	+
$\frac{x+1}{x(x-1)}$	_	0	+	}	_	}	+

Svar: x < -1 eller 0 < x < 1

d) (s.)

Använd en teckentabell och hitta intervallet/n som ger positiva värden.

$$(x+2)(2x-1) > 0$$

x		-2		1/2		
x+2	_	0	+	+	+	
2x-1	_	_	_	0	+	
(x+2)(2x-1)	+	0	_	}	+	
Svar: $x < -2$ eller $x > 1/2$						

3.13 (s.)

Skriv om olikheten så att högerledet blir noll och allt i vänsterledet hamnar på samma bråkstreck. Använd sedan en teckentabell och hitta intervallet/n som ger negativa värden.

$$\frac{3x+1}{x+2} < 2 \Leftrightarrow \frac{3x+1-2(x+2)}{x+2} < 0 \Leftrightarrow \frac{x-3}{x+2} < 0$$

x		-2		3		
x-3	_	_	_	0	+	
x + 2	_	0	+	+	+	
$\frac{x-3}{x+2}$	+	?	_	0	+	
Svar: $-2 < x < 3$						

3.14 a) (s. 44-45)

Se sidorna 44-45 i läroboken för förklaring till varför det fungerar

$$\frac{x^2 + 1}{x} < x$$

om
$$x > 0$$
:
$$\frac{x^2 + 1}{x} < x \Leftrightarrow \qquad \cancel{x} + 1 < \cancel{x} \Leftrightarrow \qquad 1 < 0$$
om $x < 0$:
$$\frac{x^2 + 1}{x} < x \Leftrightarrow \qquad \cancel{x} + 1 > \cancel{x} \Leftrightarrow \qquad 1 > 0$$

1 < 0 är alltid sant vilket innebär att skillnaden gäller för alla xmindre än noll.

Svar: x < 0

Skriv om olikheten så att högerledet blir noll och allt i vänsterledet hamnar på samma bråkstreck. Använd sedan en teckentabell och hitta intervallet/n som ger negativa värden.

$$\frac{2x^2}{x+2} < x-2 \Leftrightarrow \frac{2x^2 - (x+2)(x-2)}{x+2} < 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{\cancel{2}x^2 - \cancel{x}^2 + 4}{x+2} < 0 \Leftrightarrow \frac{x^2 + 4}{x+2} < 0$$

c) (s.)

Eftersom x^2 aldrig kan bli negativt behövs inget motsvarade det i uppgift **a**) göras.

$$\frac{x^2+2}{x^2+1} > 1 \Leftrightarrow \cancel{x} + 2 > \cancel{x} + 1 \Leftrightarrow 2 > 1$$

Svar: Alla x

3.15 a) (s.)

Skriv om olikheten så att allt är i vänsterledet och använd konjugatregeln baklänges. Använd sedan en teckentabell och hitta intervallet/n som ger negativa värden.

$$x^{2} < 4 \Leftrightarrow x^{2} - 4 < 0 \Leftrightarrow (x+2)(x-2) < 0$$

x		-2		2	
x+2	_	0	+	+	+
x-2	_	_	_	0	+
(x+2)(x-2)	+	0	_	0	+

Svar: -2 < x < 2

b) (s.)

Utnyttja teckentabellen i förra uppgiften men ta intervallet som ger positiva värden.

Svar: teckentabellen i a) ger: x < -2 eller x > 2

c) (s.)

Använd kvadreringsregeln och lös olikheten.

$$(x+1)^2 > (x+5)^2 \Leftrightarrow \cancel{z} + 2x + 1 > \cancel{z} + 10x + 25 \Leftrightarrow$$
$$\Leftrightarrow -24 > 8x \Leftrightarrow x < -3$$

Svar: x < -3

3.16 (s.)

Förenkla vänsterledet, flytta över ettan och skriv allt på ett gemensamt bråkstreck. Använd sedan en teckentabell och hitta intervallet/n som ger negativa värden.

$$\frac{1-x^4}{1-(x^2+1)^2} < 1 \Leftrightarrow \frac{1-x^4}{1-x^4-2x^2-1} < 1 \Leftrightarrow \frac{1-x^4}{-x^4-2x^2} < 1 \Leftrightarrow \frac{1-x^4-(-x^4-2x^2)}{-x^2(x^2+2)} < 0 \Leftrightarrow \frac{2x^2+1}{-x^2(x^2+2)} < 0$$

$$\frac{x}{2x^2+1} + \frac{0}{-x^2} - \frac{0}{0} - \frac{x^2+2}{x^2+1} + \frac{1}{0} + \frac{1}{0$$

Svar: $x \neq 0$

3.17 a) (s.)

Lös ekvationen genom att multiplicera termerna med x. Faktorisera sedan täljaren. Notera att grundekvationen inte är definierad för x=0 därför implicerar endast den första ekvationen den andra.

$$x + \frac{4}{x} = 5 \Rightarrow x^2 + 4 = 5x \Leftrightarrow x^2 - 5x + 4 = 0 \Leftrightarrow (x - 4)(x - 1) = 0$$

Faktorsatsen ger: $x_1 = 4$, $x_2 = 1$

Svar: $x_1 = 4$, $x_2 = 1$

Skriv om olikheten så alla termer står på samma bråkstreck i vänsterledet. Använd sedan en teckentabell och hitta intervallet/n som ger positiva värden.

$$x + \frac{4}{x} > 5 \Leftrightarrow \frac{x^2 + 4}{x} > 5 \Leftrightarrow \frac{x^2 - 5x + 4}{x} > 0 \Leftrightarrow \frac{(x - 4)(x - 1)}{x} > 0$$

x		0		1		4	
x-4	_	_	_	_	_	0	+
x-1	-	_	_	0	+	+	+
x	_	0	+	+	+	+	+
$\frac{(x-4)(x-1)}{x}$	_	}	+	0	_	0	+
Svar: $0 < x < 1$ eller $x > 4$							

Kapitel 4: Summor och talföljder

Summatecken

4.1 a) (s.)

$$\sum_{n=1}^{5} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225$$

Svar: 225

b) (s.)

$$\sum_{k=0}^{4} (k^2 - 3k) = 0^2 - 3*0 + 1^2 - 3*1 + 2^2 - 3*2 + 3^2 - 3*3 + 4^2 - 3*4 = 1 - 3 + 4 - 6 + 9 - 9 + 16 - 12 = 0$$

Svar: 0

c) (s.)

$$\sum_{k=2}^{100} 3 = \underbrace{3+3+\ldots+3+3}_{99 \text{ st.}} = 3*99 = 297$$

Svar: 297

d) (s.)

Antalet element kommer alltid vara lika med övre gränsen minus undre gränsen plus ett.

$$\sum_{k=m}^{n} 3 = 3(n - m + 1)$$

Svar: 3(n - m + 1)

4.2 a) (s.)

$$\underbrace{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{10}}_{10 \text{ st. från 1 till 10}} = \sum_{k=1}^{10} \frac{1}{k}$$

Svar: $\sum_{k=1}^{10} \frac{1}{k}$

$$\underbrace{2*3+3*4+4*5+\ldots+n(n+1)}_{\text{från 2 till n}} = \sum_{k=2}^{n} k(k+1)$$

Svar:
$$\sum_{k=2}^{n} k(k+1)$$

c) (s.)

Hitta mönstret och skriv om så det kan skrivas med summatecken.

$$1 + 3 + 9 + 27 + 81 + 243 = \underbrace{3^0 + 3^1 + 3^2 + 3^3 + 3^4 + 3^5}_{6 \text{ st. från 0 till 5}} = \sum_{k=0}^{5} 3^k$$

Svar: $\sum_{k=0}^{5} 3^k$

Aritmetisk summa

4.3 (s.)

Se formeln för aritmetisk summa.

$$1 + 2 + \ldots + 100 = \sum_{k=1}^{100} k = \frac{100(100+1)}{2} = 5050$$

Svar: 5050

4.4 (s.)

Hitta mönstret och skriv om så det går att skrivas med summatecken.

$$3+6+\ldots+96+99=3*1+3*2+\ldots+3*32+3*33=$$

$$=3\underbrace{(1+2+\ldots+33+44)}_{33 \text{ st. från 1 till } 33}=3\sum_{k=1}^{33}k=3*\frac{33*34}{2}=1683$$

Svar: 1683

4.5 a) (s.)

$$1 + 2 + 3 + \ldots + 9 + 10 = \sum_{k=1}^{10} k = \frac{10 * 11}{2} = 55$$

bryt ut fyran och skriv om med summatecken.

$$4+8+12+\ldots+36+40 = 4(1+2+3+\ldots+9+10) = 4\sum_{k=1}^{10} k = 4*\frac{10*11}{2} = 220$$

Svar: 220

c) (s.)

Dela upp serien och inse att den kan delas upp i två separata summor och att fyran kan brytas ut.

$$3+7+11+\ldots+35+39 =$$

$$= (4*1-1)+(4*2-1)+(4*3-1)+\ldots+(4*9-1)+(4*10-1) =$$

$$= 4(1+2+3+\ldots+9+10)-\underbrace{(1+1+1\ldots+1+1)}_{10 \text{ st.}} =$$

$$= 4\sum_{k=1}^{10} k - \sum_{k=1}^{10} 1 = 4*\frac{10*11}{2} - 10*1 = 210$$

Svar: 210

d) (s.)

Dela upp serien och inse att den kan delas upp i två separata summor och att tian kan brytas ut.

$$-3+7+17+\ldots+87+97 =$$

$$= (10*0-3)+(10*1-3)+(10*2-3)+\ldots+(10*9-3)+(10*10-3) =$$

$$= 10(0+1+2+\ldots+9+10)-\underbrace{(3+3+3\ldots+3+3)}_{11 \text{ st.}} =$$

$$= 10\sum_{k=0}^{10} k - \sum_{k=0}^{10} 3 = 10(0+\sum_{k=1}^{10} k) - \sum_{k=0}^{10} 310*\frac{10*11}{2} - 11*3 = 517$$

Svar: 517

4.6 a) (s.)

Bryt ut trean och använd aritmetisk summa.

$$\sum_{k=1}^{15} 3k = 3 * 1 + 3 * 2 + \dots + 3 * 14 + 3 * 15 =$$

$$= 3(1 + 2 + \dots + 14 + 15) = 3\sum_{k=1}^{15} k = 3\frac{15 * 16}{2} = 360$$

Bryt ut trean och två och använd aritmetisk summa.

$$\sum_{k=1}^{15} (3k+2) = (3*1+2) + (3*2+2) + \dots + (3*14+2) + (3*15+2) =$$

$$= 3(1+2+\dots+14+15) + (\underbrace{2+2+\dots+2+2}_{15 \text{ st.}}) = 3\sum_{k=1}^{15} k + \sum_{k=1}^{15} 2 =$$

$$= 3\frac{15*16}{2} + 2*15 = 390$$

Svar: 390

c) (s.)

Bryt ut trean och två som i förra uppgiften och använd aritmetisk summa

$$\sum_{k=1}^{n} (3k+2) = 3(1+2+\ldots+(n-1)+n) + (\underbrace{2+2+\ldots+2+2}_{\text{n st.}}) =$$

$$= 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 2 = 3\frac{n(n+1)}{2} + 2n$$

Svar:
$$3\frac{n(n+1)}{2} + 2n$$

d) (s.)

Bryt ut a och d som i förra uppgiften och använd aritmetisk summa.

$$\sum_{k=1}^{n} (ak+d) = a(1+2+\ldots+(n-1)+n) + (\underbrace{d+d+\ldots+d+d}_{\text{n st.}}) = a\sum_{k=1}^{n} k + \sum_{k=1}^{n} d = a\frac{n(n+1)}{2} + dn$$

Svar:
$$a\frac{n(n+1)}{2} + dn$$

Geometrisk summa

4.7 a) (s.)

Skriv om termerna så att de kan skrivas som en geometrisk summa. Använd sedan formeln för geometrisk summa.

$$1 + 2 + 4 + 8 + 16 + 32 = 2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} = \sum_{k=0}^{5} 2^{k} = \frac{2^{5+1} - 1}{2 - 1} = 127$$

Skriv om termerna så att de kan skrivas som en geometrisk summa. Använd sedan formeln för geometrisk summa.

$$1 - 3 + 9 - 27 + 81 - 243 = (-3)^{0} + (-3)^{1} + (-3)^{2} + (-3)^{3} + (-3)^{4} + (-3)^{5} =$$

$$= \sum_{k=0}^{5} (-3)^{k} = \frac{(-3)^{5+1} - 1}{-3 - 1} = -182$$

Svar: -182

c) (s.)

Skriv om termerna så att de kan skrivas som en geometrisk summa. Eftersom start värdet inte är 0 finns det två olika sätt att lösa det på: antingen göra en summa av delmängden där $k \geq 0$ och addera resten efteråt eller genom att bryta ut den minsta exponenten.

$$2+1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{128}=2+\left(\frac{1}{2}\right)^0+\left(\frac{1}{2}\right)^1+\left(\frac{1}{2}\right)^2+\ldots+\left(\frac{1}{2}\right)^7=$$

$$=2+\sum_{k=0}^{7}\left(\frac{1}{2}\right)^k=2+\frac{\left(\frac{1}{2}\right)^8-1}{\frac{1}{2}-1}=\frac{511}{128}$$

eller

$$2+1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{128}=\left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\ldots+\left(\frac{1}{2}\right)^{7}=$$

$$=\left(\frac{1}{2}\right)^{-1}*\left(\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\ldots+\left(\frac{1}{2}\right)^{8}\right)=$$

$$=\left(\frac{1}{2}\right)^{-1}*\sum_{k=0}^{8}\left(\frac{1}{2}\right)^{k}=\left(\frac{1}{2}\right)^{-1}*\frac{\left(\frac{1}{2}\right)^{9}-1}{\frac{1}{2}-1}=\frac{511}{128}$$

Svar: $\frac{511}{128}$

d) (s.)

Två alternativa sätt att lösa det: Bryta ut e så att summan får startvärdet 0 eller använd subtraktion så att summan kan skrivas med 0 som startvärde.

$$e + e^2 + e^3 + \dots + e^{10} = e(e^0 + e^1 + e^2 + \dots + e^9) = e\sum_{k=0}^{9} e^k = e * \frac{e^{10} - 1}{e - 1}$$

eller

$$e + e^{2} + e^{3} + \dots + e^{10} = \sum_{k=1}^{10} e^{k} = \sum_{k=0}^{10} e^{k} - \sum_{k=0}^{0} e^{k} = \frac{e^{11} - 1}{e - 1} - \frac{e^{1} - 1}{e - 1} = \frac{e^{11} - \cancel{1} - (e - \cancel{1})}{e - 1} = e * \frac{e^{10} - 1}{e - 1}$$

Svar: $e * \frac{e^{10} - 1}{e - 1}$

e) (s.)

Skriv om termerna så att de kan skrivas som en geometrisk summa. Använd sedan formeln för geometrisk summa.

$$1 - x + x^{2} - x^{3} + \dots - x^{9} = (-x)^{0} + (-x)^{1} + (-x)^{2} + (-x)^{3} + \dots + + (-x)^{9} =$$

$$= \sum_{k=0}^{9} (-x)^{k} = \frac{(-x)^{10} - 1}{-x - 1} = -\frac{x^{10} - 1}{x + 1} = \frac{1 - x^{10}}{x + 1}$$

Svar: $\frac{1-x^{10}}{x+1}$

4.8 a) (s.)

Se 4.6 a) för resonemang kring varför faktorn 3 kan brytas ut.

$$\sum_{k=0}^{10} (3 * 2^k) = 3 * \sum_{k=0}^{10} 2^k = 3 * \frac{2^{11} - 1}{2 - 1} = 3(2^{11} - 1)$$

Svar: $3(2^{11}-1)$

Bryt ut en tvåa från summan eller subtrahera en kompletterande summa.

$$\sum_{k=1}^{10} (3 * 2^k) = 3 * \sum_{k=1}^{10} 2^k = 3 * 2(2^0 + 2^1 + \dots + 2^9) =$$

$$= 6 * \sum_{k=0}^{9} 2^k = 6 * \frac{2^{10} - 1}{2 - 1} = 6(2^{10} - 1)$$

eller

$$\begin{split} &\sum_{k=1}^{10} (3*2^k) = 3*\sum_{k=1}^{10} 2^k = 3 \left(\sum_{k=0}^{10} 2^k - \sum_{k=0}^{0} 2^k\right) = \\ &= 3 \left(\frac{2^{11} - \cancel{1}}{2 - 1} - \frac{2^1 - \cancel{1}}{2 - 1}\right) = 3(2^{11} - 2) = 6(2^{10} - 1) \end{split}$$

Svar: $6(2^{10}-1)$

c) (s.)

Bryt ut tre tvåor från summan eller subtrahera en kompletterande summa.

$$\sum_{k=3}^{10} (3 * 2^k) = 3 * \sum_{k=3}^{10} 2^k = 3 * 2^3 (2^0 + 2^1 + \dots + 2^7) =$$

$$= 24 * \sum_{k=0}^{7} 2^k = 24 * \frac{2^8 - 1}{2 - 1} = 24(2^8 - 1)$$

eller

$$\begin{split} &\sum_{k=3}^{10} (3*2^k) = 3*\sum_{k=3}^{10} 2^k = 3\left(\sum_{k=0}^{10} 2^k - \sum_{k=0}^2 2^k\right) = \\ &= 3\left(\frac{2^{11} - \cancel{1}}{2 - 1} - \frac{2^3 - \cancel{1}}{2 - 1}\right) = 3(2^{11} - 2^3) = 24(2^{10} - 1) \end{split}$$

Svar: $24(2^{10}-1)$

d) (s.)

Bryt ut m tvåor från summan eller subtrahera en kompletterande summa.

$$\sum_{k=m}^{n} (3 * 2^{k}) = 3 * \sum_{k=m}^{n} 2^{k} = 3 * 2^{m} (2^{0} + 2^{1} + \dots + 2^{n-m}) =$$

$$= 3 * 2^{m} * \sum_{k=0}^{n-m} 2^{k} = 3 * 2^{m} * \frac{2^{n-m+1} - 1}{2 - 1} = 3 * 2^{m} (2^{n-m+1} - 1)$$

eller

$$\begin{split} &\sum_{k=m}^{n} (3*2^k) = 3*\sum_{k=m}^{n} 2^k = 3\left(\sum_{k=0}^{n} 2^k - \sum_{k=0}^{m-1} 2^k\right) = \\ &= 3\left(\frac{2^{n+1} - \cancel{1}}{2 - 1} - \frac{2^m - \cancel{1}}{2 - 1}\right) = 3(2^{n+1} - 2^m) = 3*2^m(2^{n-m+1} - 1) \end{split}$$

Svar: $3 * 2^m (2^{n-m+1} - 1)$

4.9 a) (s.)

Skriv om den negativa exponenten som ett bråktal.

$$\sum_{k=0}^{n} (3 * 2^{-k}) = 3 * \sum_{k=0}^{n} (2^{-k}) = 3 * \sum_{k=0}^{n} \left(\frac{1}{2}\right)^{k} = 3 * \frac{\left(\frac{1}{2}\right)^{n+1} - 1}{\frac{1}{2} - 1} = 3 * \frac{\left(\frac{1}{2}\right)^{n+1} - 1}{-\frac{1}{2}} = -6\left(\frac{1}{2^{n+1}} - 1\right) = 6\left(1 - \frac{1}{2^{n+1}}\right)$$

Svar: $6\left(1 - \frac{1}{2^{n+1}}\right)$

b) (s.)

Skriv om den negativa exponenten som ett bråktal och fixa till så att startvärdet är noll (båda metoderna i 4.8 b)-c) går att använda).

$$\sum_{k=1}^{n} e^{-k} = \sum_{k=1}^{n} \left(\frac{1}{e}\right)^{k} = \frac{1}{e} \left(\left(\frac{1}{e}\right)^{0} + \left(\frac{1}{e}\right)^{1} + \dots + \left(\frac{1}{e}\right)^{n-1}\right) =$$

$$= \frac{1}{e} * \sum_{k=0}^{n-1} \left(\frac{1}{e}\right)^{k} = \frac{1}{e} * \frac{\left(\frac{1}{e}\right)^{n} - 1}{\frac{1}{e} - 1} = \frac{\left(\frac{1}{e}\right)^{n} - 1}{\frac{e}{e} - e} = \frac{\left(\frac{1}{e}\right)^{n} - 1}{1 - e} = \frac{1 - \left(\frac{1}{e}\right)^{n}}{e - 1}$$

Svar: $\frac{1 - \left(\frac{1}{e}\right)^n}{e - 1}$

c) (s.

Använd geometrisk summa.

$$\sum_{n=0}^{100} (1000 * (1.05)^n) = 1000 * \sum_{n=0}^{100} 1.05^n = 1000 * \frac{1.05^{n+1} - 1}{1.05 - 1} =$$

$$= 1000 * \frac{1.05^{n+1} - 1}{\frac{1}{20}} = 20 * 1000 * \frac{1.05^{n+1} - 1}{1} = 20000(1.05^n + 1 - 1)$$

Svar: $20000(1.05^n + 1 - 1)$

d) (s.)

Använd geometrisk summa.

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{1}{2^{2n}} = (-\frac{1}{2})^0 + (-\frac{1}{2})^1 + (-\frac{1}{2})^2 + (-\frac{1}{2})^3 + \dots + (-\frac{1}{2})^{2n} =$$

$$= \sum_{k=0}^{2n} (-\frac{1}{2})^k = \frac{(-\frac{1}{2})^{2n+1} - 1}{-\frac{1}{2} - 1} = -2\frac{-\frac{1}{2^{2n+1}} - 1}{3} = \frac{\frac{2}{2^{2n+1}} + 2}{3} = \frac{2^{-2n} + 2}{3}$$

Svar: $\frac{2^{-2n}+2}{3}$

e) (s.)

Det saknas en enkel metod för att lösa uppgiften så lösningen är att iterativt summera allt.

$$\begin{split} &\sum_{k=2}^{5} \frac{k(-1)^k}{2^k} = \frac{2*(-1)^2}{2^2} + \frac{3*(-1)^3}{2^3} + \frac{4*(-1)^4}{2^4} + \frac{5*(-1)^5}{2^5} = \\ &= \frac{1}{2} - \frac{3}{8} + \frac{4}{16} - \frac{5}{32} = \frac{16}{32} - \frac{12}{32} + \frac{8}{32} - \frac{5}{32} = \frac{7}{32} \end{split}$$

Svar: $\frac{7}{32}$

4.10 (s.)

Skriv om funktionen som en summa och applicera sedan funktionsvärdet 3.

$$p(x) = 2 + 2x + 2x^{2} + \dots + 2x^{7} = 2(1 + x + x^{2} + \dots + x^{7}) = 2(x^{0} + x^{1} + x^{2} + \dots + x^{7}) = 2 * \sum_{k=0}^{7} x^{k}$$

 \Downarrow

$$p(3) = 2 * \sum_{k=0}^{7} 3^k = 2 * \frac{3^8 - 1}{3 - 1} = 3^8 - 1 = 6560$$

4.11 (s.)

Mängden pengar på Lisas bankkonto kommer öka med $2000*1.02^k$ varje år där k är antalet år från start. Efter noll år (starten) är mängden pengar: $2000*1.02^0 = 2000$. Efter ett år har pengarna som sattes in förra året ökat med en faktor av 1.02 och 2000 till har sats in: $2000*1.02^1 + 2000$. Nästa år har de båda 2000 ökat med en faktor av 1.02 och ytterligare 2000 satts in: $2000*1.02^2 + 2000*1.02^1 + 2000$ osy

Detta kan alltså beskrivas som en geometrisk summa där 2022/2023 är 11 år efter start:

$$\begin{split} &\sum_{k=0}^{11} 2000*1.02^k = 2000*\sum_{k=0}^{11} = 2000*\frac{1.02^{12}-1}{1.02-1} = 2000*\frac{1.02^{12}-1}{\frac{1}{50}} = \\ &= 50*2000(1.02^{12}-1) = 10^5(1.02^{12}-1) \approx 26800 \text{ kr} \end{split}$$

Svar: 26800 kr

4.12 (s.)

Sträckan bollen kommer röra sig efter varje studs är $2*0.9^k$ där k är antalet studs sen start (tvåan är där eftersom det både är upp och ner). Undantaget är den metern bollen faller i början. Då sträckan som sökes är fram till studs tio kommer slutvärdet vara nio.

$$1 + \sum_{k=1}^{9} 2 * 0.9^{k} = 1 + 2(0.9^{1} + 0.9^{2} + \dots + 0.9^{9}) =$$

$$= 1 + 2 * 0.9(0.9^{0} + 0.9^{1} + \dots + 0.9^{8}) = 1 + 1.8 * \sum_{k=0}^{8} 0.9^{k} =$$

$$= 1 + 1.8 \frac{0.9^{9} - 1}{0.9 - 1} = 1 - 18(0.9^{9} - 1) = 1 + 18(1 - 0.9^{9}) \approx 12 \text{ m}$$

Svar: 12 m

Binomialsatsen

4.13 a) (s.)

$$7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040$$

Svar: 5040

b) (s.)

$$\binom{7}{3} = \frac{7!}{3! * 4!} = 35$$

c) (s.)

$$\binom{1001}{999} = \frac{1001!}{999! * 2!} = 500500$$

Svar: 500500

4.14 a) (s.)

Använd binomialsatsen.

$$(a+b)^{2} = a^{2} + {2 \choose 1}a^{1}b^{1} + b^{2} =$$

$$= a^{2} + \frac{2!}{1! * 1!}ab + b^{2} = a^{2} + 2ab + b^{2}$$

Svar: $a^2 + 2ab + b^2$

b) (s.)

Använd binomialsatsen.

$$(a+b)^3 = a^3 + {3 \choose 1}a^2b^1 + {3 \choose 2}a^1b^2 + b^3 =$$

$$= a^3 + \frac{3!}{1! * 2!}a^2b + \frac{3!}{2! * 1!}ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Svar: $a^3 + 3a^2b + 3ab^2 + b^3$

c) (s.)

Använd binomialsatsen.

$$(a+b)^4 = a^4 + \binom{4}{1}a^3b^1 + \binom{4}{2}a^2b^2 + \binom{4}{3}a^1b^3 + b^4 =$$

$$= a^4 + \frac{4!}{1!*3!}a^3b + \frac{4!}{2!*2!}a^2b^2 + \frac{4!}{3!*1!}ab^3 + b^4 =$$

$$= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^3$$

Svar: $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^3$

d) (s.)

Se sidorna 58-59 om du är osäker på vad Pascals triangel är.

4.15 a) (s.)

Använd binomialsatsen.

$$(1+x)^3 = 1^3 + {3 \choose 1} 1^2 x^1 + {3 \choose 2} 1^1 x^2 + x^3 =$$

$$= 1 + \frac{3!}{1! \cdot x \cdot 2!} x + \frac{3!}{2! \cdot x \cdot 1!} x^2 + x^3 = x^3 + 3x^2 + 3x + 1$$

Svar: $x^3 + 3x^2 + 3x + 1$

b) (s.)

Använd binomialsatsen.

$$(3-2x)^3 = (3+(-2x))^3 = 3^3 + {3 \choose 1} 3^2 (-2x)^1 + {3 \choose 2} 3^1 (-2x)^2 + (-2x)^3 = 27 - \frac{3!}{1! * 2!} 9 * 2 * x + \frac{3!}{2! * 1!} 3 * 4 * x^2 - 8x^3 = -8x^3 + 36x^2 - 54x + 27$$

Svar: $-8x^3 + 36x^2 - 54x + 27$

c) (s.)

Använd binomialsatsen.

$$(1+x)^4 = 1^4 + \binom{4}{1}1^3x^1 + \binom{4}{2}1^2x^2 + \binom{4}{3}1^1x^3 + x^4 = 1 + \frac{4!}{1!*3!}x + \frac{4!}{2!*2!}x^2 + \frac{4!}{3!*1!}x^3 + x^4 = 1 + \frac{4!}{1!*3!}x^3 + 6x^2 + 4x + 1$$

Svar: $x^4 + 4x^3 + 6x^2 + 4x + 1$

4.16 (s.)

Binomialsatsen ger:

$$\binom{15}{13}x^{13}1^2 = \frac{15!}{13! * 2!}x^{13} = 105x^{13}$$

Svar: 105

4.17 (s.)

Binomialsatsen ger:

$$\binom{8}{5}3^5(-x)^3 = -\frac{8!}{5! * 3!}243x^3 = -13608x^3$$

Svar: -13608

4.18 (s.)

x-termerna ska ta ut varandra för att termen ska bli konstant.

$$\binom{15}{k}(x^2)^{15-k}(\tfrac{1}{x^3})^k = \binom{15}{k}x^{2(15-k)}x^{-3k}$$

För att x-termerna ska ta ut varandra:

$$2(15-k) - 3k = 0 \Leftrightarrow k = 6$$

Sätt in 6 istället för k:

$$\binom{15}{6}x^{2(15-6)}x^{-3*6} = \frac{15!}{6!*9!}x^{18}x^{-18} = 5005$$

Svar: 5005

4.19 (s.)

Vi börjar med att testa högstagradstermerna i båda potenserna.

Första:
$$(x^3)^{16} = x^{48}$$

Andra: $(x^4)^{12} = x^{48}$

De båda kommer alltså ta ut varandra. Vi får då en nivå lägre.

Första:
$$\binom{16}{1}(x^3)^{15}(-2)^1 = -\frac{16!}{1!*15!}x^{45} * 2 = -32x^{45}$$

Andra: $\binom{12}{1}(x^4)^{11}3^1 = \frac{12!}{1!*11!}x^{44} * 3 = 36x^{44}$

Svar: $-32x^{45}$

4.20 (s.)

Använd binomialsatsen med a = b = 1.

$$2^{n} = (1+1)^{n} = \binom{n}{0} 1^{n} 1^{0} + \binom{n}{1} 1^{n-1} 1^{1} + \binom{n}{2} 1^{n-2} 1^{2} + \dots + \binom{n}{n} 1^{0} 1^{n} =$$

$$= \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} \text{ V.S.V.}$$

Detta innebär att summan av talen i den (n-1):a raden i Pascals triangel är 2^n , t.ex. är $1+3+3+1=2^3$.

4.21 (s.)

Använd binomialsatsen baklänges.

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} =$$

$$= \binom{n}{0} 1^n (-1)^0 + \binom{n}{1} 1^{n-1} (-1)^1 + \binom{n}{2} 1^{n-2} (-1)^2 + \dots + \binom{n}{n} 1^0 (-1)^n =$$

$$= (1-1)^n = 0 \text{ V.S.V}$$

4.22 (s.)

 x^8 termen ges av:

$$\binom{10}{8}a^2(2x)^8 = \frac{10!}{8!*2!}a^22^8x^8 = (45*256*a^2)x^8$$

$$45 * 256 * a^2 = 180 \Leftrightarrow a^2 = \frac{180}{45 * 256} \Leftrightarrow a = \pm \sqrt{\frac{1}{64}} \Leftrightarrow a = \pm \frac{1}{8}$$

Svar: $a = \pm \frac{1}{8}$

Talföljder och induktion

4.23 a) (s.)

$$a_0 = 1$$

$$a_1 = 2a_0 = 2 * 1 = 2$$

$$a_2 = 2a_1 = 2 * 2 = 4$$

$$a_3 = 2a_2 = 2 * 4 = 8$$

Svar:
$$a_1 = 2$$
, $a_2 = 4$, $a_3 = 8$

$$a_0 = 1$$

$$a_1 = a_0^2 - 1 = 1^2 - 1 = 0$$

$$a_2 = a_1^2 - 1 = 0^2 - 1 = -1$$

$$a_{1} = a_{0}^{2} - 1 = 1^{2} - 1 = 0$$

$$a_{2} = a_{1}^{2} - 1 = 0^{2} - 1 = -1$$

$$a_{3} = a_{2}^{2} - 1 = (-1)^{2} - 1 = 0$$

Svar: $a_1 = 0$, $a_2 = -1$, $a_3 = 0$

Kapitel 5: Analytisk Geometri

Räta linjen

5.1 a) (s.)

 $y=2x-1 \rightarrow \text{Lutning: 2, korsar y-axeln vid: } -1$

b) (s.)

 $y=2-x \Leftrightarrow y=-1x+2 \to \text{Lutning: } -1, \text{ korsar y-axeln vid: } 2$

c) (s.)

 $y=3\Leftrightarrow y=0x+3\to \text{Lutning: }0,$ korsar y-axeln vid: 3. Kan också ses som attyär konstant tre oberoende av vadxär.

x=-2 kan inte beskrivas med räta linjens ekvation eftersom ekvationen inte är en funktion (saknar värde på y för alla x utom -2 och har oändligt många lösningar på x=-2). Se det som att för oberoende av vad y är är x=-2.

5.2 a) (s.)

Uppgiften kan lösas på flera sätt, t.ex. med enpunktsformel
n eller genom att sätta in värdena i räta linjens ekvation och beräkn
am.

Enpunktsformeln:

$$y - 2 = -1(x - 0) \Leftrightarrow y = -x + 2$$

Räta linjens ekvation:

$$2 = -1 * 0 + m \Leftrightarrow m = 2 \Rightarrow y = -x + 2$$

Svar: y = -x + 2

Uppgiften kan lösas på flera sätt, t.ex. med enpunktsformeln eller genom att sätta in värdena i räta linjens ekvation och beräkna m.

Enpunktsformeln:

$$y-1=3(x-2) \Leftrightarrow y=3x-6+1 \Leftrightarrow y=3x-5$$

Räta linjens ekvation:

$$1 = 3 * 2 + m \Leftrightarrow m = -5 \Rightarrow y = 3x - 5$$

Svar: y = 3x - 5

c) (s.)

Uppgiften kan lösas på flera sätt, t.ex. med enpunktsformeln eller genom att sätta in värdena i räta linjens ekvation och beräkna m.

Enpunktsformeln:

$$y - b = k(x - a)$$

Räta linjens ekvation:

$$b = ka + m \Leftrightarrow m = b - ka$$

$$y = kx - ka + b \Leftrightarrow y = k(x - a) + b \Leftrightarrow y - b = k(x - a)$$

Svar: y - b = k(x - a)

d) (s.)

Använd tvåpunktsformeln.

$$(\overbrace{a}^{x_1}, \overbrace{b}^{y_1}) \quad (\overbrace{a+1}^{x_2}, \overbrace{b+1}^{y_2})$$

$$y-b=\frac{b+1-b}{d+1-d}(x-a) \Leftrightarrow y=1(x-a)+b \Leftrightarrow y=x+b-a$$

Svar: y = x + b - a

5.3 (s.)

Använd tvåpunktsformeln med (-2,5) och (0,-3) som punkter (m-värdet ger den andra punkten).

$$y - 5 = \frac{-3 - 5}{0 + 2}(x + 2) \Leftrightarrow y = -4(x + 2) + 5 \Leftrightarrow y = -4x - 3$$

Svar: a=-4

5.4 a) (s.)

Använd tvåpunktsformeln.

$$y-1 = \frac{-2-1}{1+2}(x+2) \Leftrightarrow y = \frac{-3}{3}(x+2) + 1 \Leftrightarrow y = -x-1$$

Svar: y = -x - 1

b) (s.)

Använd tvåpunktsformeln.

$$y - 2 = \frac{2 - 2}{2 + 1}(x + 1) \Leftrightarrow y = 0(x + 1) + 2 \Leftrightarrow y = 2$$

Svar: y=2

c) (s.)

Använd tvåpunktsformeln.

$$y - 0 = \underbrace{\frac{2 - 0}{1 - 1}}_{\text{ei def.}} (x - 1)$$

Att tvåpunktsformeln inte är definierad (nolldivision) innebär att lutningen på linjen är "oändlig" vilket i sin tur innebär att det är en vertikal linje. Eftersom båda punkterna ligger på x=1 måste det vara ekvationen.

Svar: x = 1

5.5 a) (s.)

Använd tvåpunktsformeln.

$$y-2=\frac{3-2}{2+1}(x+1) \Leftrightarrow y=\frac{1}{3}(x+1)+2 \Leftrightarrow y=\frac{1}{3}x+\frac{1}{3}+\frac{6}{3} \Leftrightarrow y=\frac{1}{3}x+\frac{7}{3}$$

Allmän form:

$$\frac{1}{3}x - y + \frac{7}{3} = 0 \Leftrightarrow x - 3y + 7 = 0$$

Svar: k-form: $y = \frac{1}{3}x + \frac{7}{3}$ och allmän form: x - 3y + 7 = 0

b) (s.)

Använd tvåpunktsformeln.

$$y-3 = \frac{3-3}{-7-2}(x-2) \Leftrightarrow y = 0(x-2) + 3 \Leftrightarrow y = 3$$

Allmän form:

$$y - 3 = 0$$

Svar: k-form: y = 3 och allmän form: y - 3 = 0

5.6 a) (s.)

Bestäm först ekvationen för en linje mellan två av punkterna och kolla sedan om den tredje ligger på linjen.

Använd tvåpunktsformeln på (-6,5) och (-2,2).

$$y-5=\frac{2-5}{-2+6}(x+6) \Leftrightarrow y=\frac{-3}{4}x-\frac{9}{2}+5 \Leftrightarrow y=-\frac{3}{4}x+\frac{1}{2} \Leftrightarrow \frac{3}{4}x+y-\frac{1}{2}=0 \Leftrightarrow 3x+4y-2=0$$

Testa sedan genom att sätta in värdena för den sista punkten.

$$3*10+4*(-8)-2=30-32-2=-4\neq 0$$

Punkten ligger alltså inte på linjen.

Svar: Nej.

Bestäm först ekvationen för en linje mellan två av punkterna och kolla sedan om den tredje ligger på linjen.

Använd tvåpunktsformeln på (-7, -5) och (3, 1).

$$y+5=\frac{1+5}{3+7}(x+7) \Leftrightarrow y=\frac{3}{5}(x+7)-5 \Leftrightarrow y=\frac{3}{5}x+\frac{21}{5}-\frac{25}{5} \Leftrightarrow \frac{3}{5}x-y-\frac{4}{5}=0 \Leftrightarrow 3x-5y-4=0$$

Testa sedan genom att sätta in värdena för den sista punkten.

$$3*8-5*4-4=24-20-4=0$$

Punkten ligger alltså på linjen.

Svar: Ja

5.7 a) (s.)

Lös ekvationssystemet.

$$\begin{cases} y = 2x + 1 \\ y = -3x + 11 \end{cases}$$

Substitutionsmetoden:

$$2x + 1 = -3x + 11 \Leftrightarrow 5x = 10 \Leftrightarrow x = 2 \Rightarrow y = 2 * 2 + 1 = 5$$

Svar: punkten (2,5)

Lös ekvationssystemet (y-värdet är redan gett i den andra ekvationen).

$$\begin{cases} y = 2x - 3 \\ y = 5 \end{cases}$$

Substitutionsmetoden:

$$5 = 2x - 3 \Leftrightarrow 2x = 8 \Leftrightarrow x = 4$$

Svar: punkten (4,5)

Lös ekvationssystemet (x-värdet är redan gett i den andra ekvationen).

$$\begin{cases} y = 3x - 2 \\ x = 4 \end{cases}$$

Substitutionsmetoden:

$$y = 3*4 - 2 \Leftrightarrow y = 12 - 2 \Leftrightarrow y = 10$$

Svar: punkten (4, 10)

d) (s.)

Lös ekvationssystemet.

$$\begin{cases} y = 5x - 4 \\ y = 5x + 6 \end{cases}$$

Substitutionsmetoden:

$$5x - 4 = 5x + 6 \Leftrightarrow -4 \neq 6 \Rightarrow \text{Saknar lösning}$$

Svar: Skärning saknas

Parabeln

5.8 a) (s.)

$$x^{2} - 3x + 2 = \left(x - \frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 2 = \left(x - \frac{3}{2}\right)^{2} - \frac{1}{4}$$

Svar: $\left(x - \frac{3}{2}\right)^2 - \frac{1}{4}$

Går igenom punkterna (3/2; -1/4) och (0, 2).

c) (s.)

yär som minst när $(x-\frac32)^2$ är så litet som möjligt och eftersom det kvadreras är minsta möjliga värdet 0. Minsta värdet på yär alltså

Svar: $-\frac{1}{4}$

d) (s.)

Använd pq-formeln.

$$x^{2} - 3x + 2 = 0 \Leftrightarrow x = \frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^{2} - 2} = \frac{3}{2} \pm \sqrt{\frac{9 - 8}{4}} = \frac{3}{2} \pm \frac{1}{2}$$
$$x_{1} = 2, \quad x_{2} = 1$$

Svar: $x_1 = 2$, $x_2 = 1$

e) (s.)

Faktorisera polynomet och använd sedan en teckentabell.

$$x^{2} - 3x + 2 \ge 0 \Leftrightarrow (x - 2)(x - 1) \ge 0$$

x		1		2			
x-2	_	_	_	0	+		
x-1	_	0	+	+	+		
(x-2)(x-1)	+	0	_	0	+		
När $x \le 0$ eller $x \ge 2$.							

Svar: $x \leq 0$ eller $x \geq 2$

5.9 a) (s.)

Kvadratkomplettera:

$$x^{2} + 2x + 2 = (x+1)^{2} - 1^{2} + 2 = (x+1)^{2} + 1$$

Visualisera:

Går igenom punkterna (1;1) och (0,2).

Minsta värdet:

Med samma resonemang som i 5.8 c) så är minsta möjliga värdet på y 1.

Lös ekvationen:

$$x^2+2x+2=0 \Leftrightarrow x=-1\pm\sqrt{1^2-2}=-1\pm\sqrt{-1} \Leftarrow \text{Saknar reell lösning}$$

Lös olikheten:

$$x^2 + 2x + 2 \ge 0$$

Ekvationen saknar nollställen vilket innebär att om någon punkt på linjen är positiv är alla positiva.

$$0^2 + 2 * 0 + 2 = 2$$

Olikheten är alltså sann för alla värden.

Kvadratkomplettera:

$$x^{2} - x = (x - \frac{1}{2})^{2} - (\frac{1}{2})^{2} = (x - \frac{1}{2})^{2} - \frac{1}{4}$$

Visualisera:

Går igenom punkterna $(\frac{1}{2}; -\frac{1}{4})$ och (0,0).

Minsta värdet:

Med samma resonemang som i ${\tt 5.8~c)}$ så är minsta möjliga värdet på y $-\frac{1}{4}.$

Lös ekvationen:

$$x^{2} - x = 0 \Leftrightarrow x = \frac{1}{2} \pm \sqrt{(\frac{1}{2})^{2}} = \frac{1}{2} \pm \frac{1}{2}$$

$$x_1 = 1, \quad x_2 = 0$$

Lös olikheten:

$$x^2 - x \ge 0 \Leftrightarrow x(x - 1) \ge 0$$

x		0		1	
x	_	0	+	+	+
x-1	_	_	_	0	+
x(x-1)	+	0	_	0	+

När $x \leq 0$ eller $x \geq 1$.

c) (s.)

Kvadratkomplettera:

$$1-2x-x^2 = -(x^2+2x)+1 = -((x+1)^2-1^2)+1 = -(x+1)^2+1+1 = 2-(x+1)^2$$

Visualisera

Går igenom punkterna (-1,2) och (0,1).

Minsta värdet:

Saknar mista värde eftersom när x ökar kommer y bli mindre (pga. negationen).

Lös ekvationen:

$$1 - 2x - x^2 = 0 \Leftrightarrow x^2 + 2x - 1 = 0 \Leftrightarrow x = -1 \pm \sqrt{1^2 + 1} = -1 \pm \sqrt{2}$$

 $x = -1 \pm \sqrt{2}$

Lös olikheten:

$$1-2x-x^2 \geq 0 \Leftrightarrow -(x^2+2x-1) \geq 0 \Leftrightarrow -(x+1-\sqrt{2})(x+1+\sqrt{2}) \geq 0$$

När
$$-1 - \sqrt{2} \le x \le -1 + \sqrt{2}$$
.

d) (s.)

Kvadratkomplettera:

$$2x^2 + x + 1 = 2(x^2 + \frac{1}{2}x) + 1 = 2((x + \frac{1}{4})^2 - (\frac{1}{4})^2) + 1 = 2(x + \frac{1}{4})^2 - \frac{1}{8} + 1 = 2(x + \frac{1}{4})^2 + \frac{7}{8} + \frac{1}{8} + \frac{1}$$

Visualisera

Går igenom punkterna $\left(-\frac{1}{4}, \frac{7}{8}\right)$ och (0, 1).

Minsta värdet:

Med samma resonemang som i 5.8 c) så är minsta möjliga värdet på $y \frac{7}{8}$.

Lös ekvationen:

$$2x^2 + x + 1 = 0 \Leftrightarrow x^2 + \frac{1}{2}x + \frac{1}{2} = 0 \Leftrightarrow x = -\frac{1}{4} \pm \sqrt{(\frac{1}{4})^2 - \frac{1}{2}} = -\frac{1}{4} \pm \sqrt{-\frac{7}{16}} \Leftarrow \text{Saknar reell lösning}$$

Lös olikheten:

$$2x^2 + x + 1 \ge 0$$

Ekvationen saknar nollställen vilket innebär att om någon punkt på linjen är positiv är alla positiva.

$$2*0^2+0+1=1$$

Olikheten är alltså sann för alla värden.

5.10 (s.)

Kvadratkomplettera:

$$y - x^2 - 4x = 0 \Leftrightarrow y = x^2 + 4x = (x+2)^2 - 2^2 = (x+2)^2 - 4$$

y är som minst när $(x+2)^2$ är så litet som möjligt och eftersom det kvadreras är minsta möjliga värdet 0. Minsta värdet på y är alltså -4.

5.11 (s.)

 $Uppgiften \ ger \ ek vations systemet:$

$$\begin{cases} 6 = (-1)^2 + a * (-1) + b \\ 3 = 2^2 + a * 2 + b \end{cases} \Leftrightarrow \begin{cases} 6 = 1 - a + b \\ 3 = 4 + 2a + b \end{cases} \Leftrightarrow \begin{cases} b = a + 5 \\ b = -2a - 1 \end{cases}$$

Substitutionsmetoden:

$$a+5=-2a-1 \Leftrightarrow 3a=-6 \Leftrightarrow a=-2 \quad \Rightarrow \quad b=-2+5=3$$

Svar: a = -2 och b = 3

Absolutbelopp

5.12 a) (s.)

$$|3| = 3$$

Svar: 3

b) (s.)

$$|-3| = 3$$

Svar: 3

c) (s.)

$$\sqrt{3^2} = \sqrt{9} = 3$$

Svar: 3

d) (s.)

$$\sqrt{(-3)^2} = \sqrt{9} = 3$$

Svar: 3

e) (s.)

$$\sqrt{x^2} = x$$

Svar: x

f) (s.)

$$\sqrt{(-x)^2} = x$$

Svar: x

5.13 a) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0$$
: $x = 4$
 $x < 0$: $-x = 4 \Leftrightarrow x = -4$

Svar: x = 4 eller x = -4

b) (s.)

Använd definitionen av absolutbelopp. Andra är en falsk lösning eftersom lösningen inte ligger inom intervallet som x får vara.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

 $x \ge 0: x = 0$

x < 0: $-x = 0 \Leftrightarrow x = 0 \nleq 0 \Rightarrow \text{falsk lösning}$

Svar: x = 0

c) (s.)

Använd definitionen av absolutbelopp. Båda är en falsk lösning eftersom lösningarna inte ligger inom intervallet som x får vara.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

 $x \ge 0$: $x = -1 \not\ge 0 \Rightarrow \text{falsk lösning}$

x < 0: $-x = -1 \Leftrightarrow x = 1 \nleq 0 \Rightarrow$ falsk lösning

Svar: ekvationen saknar lösning

d) (s.)

Använd definitionen av absolutbelopp.

$$|x-2| = \begin{cases} x-2 & \text{då } x-2 \ge 0 \text{ dvs. } x \ge 2\\ -(x-2) & \text{då } x-2 < 0 \text{ dvs. } x < 2 \end{cases}$$

$$\begin{split} x \geq 2: & \quad x-2=4 \Leftrightarrow x=6 \\ x < 2: & \quad -(x-2)=4 \Leftrightarrow x=-2 \end{split}$$

Svar: x = 6 eller x = -2

e) (s.)

Använd definitionen av absolutbelopp.

$$|x+4| = \begin{cases} x+4 & \text{då } x+4 \ge 0 \text{ dvs. } x \ge -4 \\ -(x+4) & \text{då } x+4 < 0 \text{ dvs. } x < -4 \end{cases}$$
$$x \ge -4: \quad x+4 = 3 \Leftrightarrow x = -1$$
$$x < -4: \quad -(x+4) = 3 \Leftrightarrow x = -7$$

Svar: x = -1 eller x = -7

f) (s.)

Använd definitionen av absolutbelopp.

$$|2x+1| = \begin{cases} 2x+1 & \text{då } 2x+1 \ge 0 \text{ dvs. } x \ge -\frac{1}{2} \\ -(2x+1) & \text{då } 2x+1 < 0 \text{ dvs. } x < -\frac{1}{2} \end{cases}$$
$$x \ge -\frac{1}{2}: 2x+1 = 1 \Leftrightarrow x = 0$$
$$x < -\frac{1}{2}: -(2x+1) = 1 \Leftrightarrow x = -1$$

Svar: x = 0 eller x = -1

g) (s.)

Använd definitionen av absolutbelopp.

$$|1-x| = \begin{cases} 1-x & \text{då } 1-x \ge 0 \text{ dvs. } x \le 1 \\ -(1-x) & \text{då } 1-x < 0 \text{ dvs. } x > 1 \end{cases}$$
$$x \le 1: \quad 1-x = 1 \Leftrightarrow x = 0$$
$$x > 1: \quad -(1-x) = 1 \Leftrightarrow x = 2$$

Svar: x = 0 eller x = 2

5.14 a) (s.)

Definitionen av kvadratroten:

Om
$$a^2 = b$$
 och $a \ge 0$ då är $a = \sqrt{b}$

Vilket innebär att $\sqrt{a^2} = a$ om $a \ge 0$.

Använd nu faktumet att |a| alltid är positivt och regeln $a^2 = |a|^2$.

$$\sqrt{x^2} = \sqrt{|x|^2} = |x| \text{ V.S.V}$$

b) (s.)

Använd definitionen av absolutbelopp och att $\sqrt{x^2} = |x|$.

$$\sqrt{(x-1)^2} = |x-1| = \begin{cases} x-1 & \text{då } x-1 \ge 0 \text{ dvs. } x \ge 1 \\ -(x-1) & \text{då } x-1 < 0 \text{ dvs. } x < 1 \end{cases}$$

$$x \le 1$$
: $x - 1 = 3 \Leftrightarrow x = 4$
 $x > 1$: $-(x - 1) = 3 \Leftrightarrow x = -2$

Svar: x = 4 eller x = -2

5.15 a) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0$$
: $x = 3$
 $x < 0$: $-x = 3 \Leftrightarrow x = -3$

Svar: x = 3 eller x = -3

b) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0$$
: $x < 3$
 $x < 0$: $-x < 3 \Leftrightarrow x > -3$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$-3 < x < 0$$
 eller $0 \le x < 3 \Leftrightarrow -3 < x < 3$

Svar: -3 < x < 3

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0: \quad x \ge 3$$

 $x < 0: \quad -x \ge 3 \Leftrightarrow x \le -3$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$x \ge 3$$
 eller $x \le -3$

Svar: $x \geq 3$ eller $x \leq -3$

d) (s.)

Använd definitionen av absolutbelopp.

$$|x-1| = \begin{cases} x-1 & \text{då } x-1 \ge 0 \text{ dvs. } x \ge 1 \\ -(x-1) & \text{då } x-1 < 0 \text{ dvs. } x < 1 \end{cases}$$

$$x \le 1$$
: $x - 1 = 3 \Leftrightarrow x = 4$
 $x > 1$: $-(x - 1) = 3 \Leftrightarrow x = -2$

Svar: x = 4 eller x = -2

e) (s.)

Använd definitionen av absolutbelopp.

$$|x-1| = \begin{cases} x-1 & \text{då } x-1 \ge 0 \text{ dvs. } x \ge 1 \\ -(x-1) & \text{då } x-1 < 0 \text{ dvs. } x < 1 \end{cases}$$

$$\begin{aligned} x &\geq 1: & x-1 < 3 \Leftrightarrow x < 4 \\ x &< 1: & -(x-1) < 3 \Leftrightarrow x > -2 \end{aligned}$$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$-2 < x < 1$$
 eller $1 \le x < 4 \Leftrightarrow -2 < x < 4$

Svar: -2 < x < 4

f) (s.)

Använd definitionen av absolutbelopp.

$$|x-1| = \begin{cases} x-1 & \text{då } x-1 \ge 0 \text{ dvs. } x \ge 1 \\ -(x-1) & \text{då } x-1 < 0 \text{ dvs. } x < 1 \end{cases}$$

$$x \ge 1$$
: $x - 1 \ge 3 \Leftrightarrow x \ge 4$
 $x < 1$: $-(x - 1) \ge 3 \Leftrightarrow x < -2$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$x \ge 4$$
 eller $x \le -2$

Svar: $x \ge 4$ eller $x \le -2$

5.16 a) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0: \quad x \le 1$$

 $x < 0: \quad -x \le 1 \Leftrightarrow x \ge -1$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$-1 \le x < 0$$
 eller $0 \le x \le 1 \Leftrightarrow -1 \le x \le 1$

$$-1 \le x \le 1$$

b) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0: \quad x \ge 2$$

 $x < 0: \quad -x \ge 2 \Leftrightarrow x \le -2$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$x \le -2$$
 eller $x \ge 2$

Använd definitionen av absolutbelopp.

$$|x-1| = \begin{cases} x-1 & \text{då } x-1 \ge 0 \text{ dvs. } x \ge 1 \\ -(x-1) & \text{då } x-1 < 0 \text{ dvs. } x < 1 \end{cases}$$

$$x \ge 1$$
: $x - 1 < 2 \Leftrightarrow x < 3$
 $x < 1$: $-(x - 1) < 2 \Leftrightarrow x > -1$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$-1 < x < 1$$
 eller $1 \le x < 3 \Leftrightarrow -1 < x < 3$

-1 < x < 3

d) (s.)

Använd definitionen av absolutbelopp.

$$|x+2| = \begin{cases} x+2 & \text{då } x+2 \ge 0 \text{ dvs. } x \ge -2 \\ -(x+2) & \text{då } x+2 < 0 \text{ dvs. } x < -2 \end{cases}$$

$$x \ge -2$$
: $x + 2 < 1 \Leftrightarrow x < -1$
 $x < -2$: $-(x + 2) < 1 \Leftrightarrow x > -3$

Kombinera sedan definitionsmängden för uttrycket och uttrycket.

$$-3 < x < -2$$
 eller $-2 \le x < -1 \Leftrightarrow -3 < x < -1$

$$-3 < x < -1$$

Svar:

5.17 a) (s.)

Använd definitionen av absolutbelopp.

$$|x-3| = \begin{cases} x-3 & \text{då } x-3 \ge 0 \text{ dvs. } x \ge 3 \\ -(x-3) & \text{då } x-3 < 0 \text{ dvs. } x < 3 \end{cases}$$

$$x \ge 3$$
: $x - 3 = 1 - 2x \Leftrightarrow x = \frac{4}{3} \not\ge 3 \Rightarrow \text{falsk lösning}$
 $x < 3$: $-(x - 3) = 1 - 2x \Leftrightarrow x = -2$

Svar: x = -2

b) (s.)

Använd definitionen av absolutbelopp.

$$|x-2| = \begin{cases} x-2 & \text{då } x-2 \ge 0 \text{ dvs. } x \ge 2 \\ -(x-2) & \text{då } x-2 < 0 \text{ dvs. } x < 2 \end{cases}$$

$$x \geq 2: \quad x-2=x+1 \Leftrightarrow -2 \neq 1 \Rightarrow \text{ingen l\"osning}$$

$$x < 2: \quad -(x-2)=x+1 \Leftrightarrow x=\frac{1}{2}$$

Svar: $x=\frac{1}{2}$

c) (s.)

Använd definitionen av absolutbelopp.

$$|2x+1| = \begin{cases} 2x+1 & \text{då } 2x+1 \geq 0 \text{ dvs. } x \geq -\frac{1}{2} \\ -(2x+1) & \text{då } 2x+1 < 0 \text{ dvs. } x < -\frac{1}{2} \end{cases}$$

$$\begin{split} x & \geq -\frac{1}{2}: & 2x+1 = x-1 \Leftrightarrow x = -2 \not\geq -\frac{1}{2} \Rightarrow \text{falsk l\"osning} \\ x & < -\frac{1}{2}: & -(2x+1) = x-1 \Leftrightarrow x = 0 \not< -\frac{1}{2} \Rightarrow \text{falsk l\"osning} \end{split}$$

Svar: Saknar lösning

5.18 a) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0$$
: $x - x = 2 \Leftrightarrow 0 \ne 2 \Rightarrow$ ingen lösning $x < 0$: $-x - x = 2 \Leftrightarrow x = -1$

Svar: x = -1

b) (s.)

Använd definitionen av absolutbelopp.

$$|x| = \begin{cases} x & \text{då } x \ge 0 \\ -x & \text{då } x < 0 \end{cases}$$

$$x \ge 0$$
: $x^2 + 2x - 3 = 0 \Leftrightarrow \begin{cases} x_1 = -3 \ge 0 \Rightarrow \text{falsk l\"osning} \\ x_2 = 1 \end{cases}$

$$x < 0$$
: $x^2 + 2(-x) - 3 = 0 \Leftrightarrow \begin{cases} x_1 = 3 \neq 0 \Rightarrow \text{falsk lösning} \\ x_2 = -1 \end{cases}$

Svar: x = -1 eller x = 1

Använd definitionen av absolutbelopp.

$$|x+1| = \begin{cases} x+1 & \text{då } x+1 \ge 0 \text{ dvs. } x \ge -1 \\ -(x+1) & \text{då } x+1 < 0 \text{ dvs. } x < -1 \end{cases}$$

$$x \ge -1: \quad x^2 + 2(x+1) - 1 = 0 \Leftrightarrow x^2 + 2x + 1 = 0 \Leftrightarrow x = -1$$

$$x < -1: \quad x^2 + 2(-x-1) - 1 = 0 \Leftrightarrow x^2 - 2x - 3 = 0 \Leftrightarrow \begin{cases} x_1 = 3 \not< -1 \Rightarrow \text{falsk l\"osning} \\ x_2 = -1 \end{cases}$$

Svar: x = -1

5.19 a) (s.)

b) (s.)

Förskjuten ett steg till höger.

c) (s.)

Förskjuten två steg till vänster.

5.20 a) (s.)

När x är större än 2 är det y=x-2-2x=-x-2 som gäller och när x är mindre än 2 är det y=-(x-2)-2x=-3x+2.

b) (s.)

När x är större än 0 så är det y=x+x=2x som gäller och när x är mindre än 0 är det y=-x+x=0.

c) (s.)

När x är större än 1 så är det y=x-1+x=2x-1 som gäller och när x är mindre än 1 är det y=-(x-1)+x=1.

5.21 (s.)

Använd definitionen av absolutbelopp (hoppat över ett steg för att det ska vara mer lättläst).

$$|x+1| = \begin{cases} x+1 & \text{då } x \ge -1 \\ -(x+1) & \text{då } x < -1 \end{cases} \quad |x-1| = \begin{cases} x-1 & \text{då } x \ge 1 \\ -(x-1) & \text{då } x < 1 \end{cases}$$

Slå samman båda till ett gemensamt uttryck

$$|x+1|+|x-1| = \begin{cases} x+1+x-1 & \text{då } x \ge 1 \\ x+1-(x-1) & \text{då } -1 \le x < 1 \\ -(x+1)-(x-1) & \text{då } x < -1 \end{cases}$$

$$\begin{array}{c} x\geq 1:\ x+1+x-1=4\Leftrightarrow 2x=4\Leftrightarrow x=2\\ -1\leq x<1:\ x+1-(x-1)=4\Leftrightarrow 2\neq 4\Rightarrow \text{ ingen l\"osning}\\ x<-1:\ -(x+1)-(x-1)=4\Leftrightarrow -2x=4\Leftrightarrow x=-2 \end{array}$$

Svar: x = 2 eller x = -2

5.22 a) (s.)

Använd definitionen av absolutbelopp (hoppat över ett steg för att det ska vara mer lättläst).

$$|x+1| = \begin{cases} x+1 & \text{då } x \ge -1 \\ -(x+1) & \text{då } x < -1 \end{cases} \quad |x-1| = \begin{cases} x-1 & \text{då } x \ge 1 \\ -(x-1) & \text{då } x < 1 \end{cases}$$

Slå samman båda till ett gemensamt uttryck

$$|x+1| - |x-1| = \begin{cases} x+1 - (x-1) & \text{då } x \ge 1\\ x+1 + (x-1) & \text{då } -1 \le x < 1\\ -(x+1) + (x-1) & \text{då } x < -1 \end{cases}$$

$$\begin{split} x \geq 1: & \ x+1-(x-1)=1 \Leftrightarrow 2 \neq 1 \Rightarrow \text{ ingen l\"osning} \\ -1 \leq x < 1: & \ x+1+(x-1)=1 \Leftrightarrow 2x=1 \Leftrightarrow x=\frac{1}{2} \\ & \ x < -1: & \ -(x+1)+(x-1)=1 \Leftrightarrow -2 \neq 1 \Rightarrow \text{ ingen l\"osning} \end{split}$$

Svar: $x = \frac{1}{2}$ b) (s.)

Använd resonemanget från uppgift a) för intervallen.

$$x \geq 1: \ x+1-(x-1) = 3 \Leftrightarrow 2 \neq 3 \Rightarrow \text{ ingen lösning}$$

$$-1 \leq x < 1: \ x+1+(x-1) = 3 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2} \not< 1 \Rightarrow \text{falsk lösning}$$

$$x < -1: \ -(x+1)+(x-1) = 3 \Leftrightarrow -2 \neq 3 \Rightarrow \text{ ingen lösning}$$

Svar: saknar lösning

Använd resonemanget från uppgift a) för intervallen.

$$x \geq 1: \ x+1-(x-1)=-2 \Leftrightarrow 2 \neq -2 \Rightarrow \text{ ingen l\"osning}$$

$$-1 \leq x < 1: \ x+1+(x-1)=-2 \Leftrightarrow 2x=-2 \Leftrightarrow x=-1$$

$$x < -1: \ -(x+1)+(x-1)=-2 \Leftrightarrow -2=-2 \Rightarrow \text{ alla l\"osningar}$$

$$x < -1 \text{ eller } x=-1 \Leftrightarrow x < -1$$

Svar: $x \leq -1$

d) (s.)

Under -2 är y = -2, mellan -2 och 2 är y = 2x och efter 2 är y = 2.

5.23 a) (s.)

Använd definitionen av absolutbelopp (hoppat över ett steg för att det ska vara mer lättläst).

$$|x-1| = \begin{cases} x-1 & \text{då } x \ge 1 \\ -(x-1) & \text{då } x < 1 \end{cases} \qquad |x-2| = \begin{cases} x-2 & \text{då } x \ge 2 \\ -(x-2) & \text{då } x < 2 \end{cases}$$

Slå samman båda till ett gemensamt uttryck.

$$|x-1|+|x-2| = \begin{cases} x-1+x-2 & \text{då } x \ge 2 \\ x-1-(x-2) & \text{då } 1 \le x < 2 \\ -(x-1)-(x-2) & \text{då } x < 1 \end{cases}$$

$$\begin{split} x \geq 2: & \ x-1+x-2=2 \Leftrightarrow x=\frac{5}{2} \\ 1 \leq x < 2: & \ x-1-(x-2)=2 \Leftrightarrow 1 \neq 2 \Rightarrow \text{ ingen l\"osning} \\ x < 1: & \ -(x-1)-(x-2)=2 \Leftrightarrow x=\frac{1}{2} \end{split}$$

Svar: $x = \frac{1}{2}$ eller $x = \frac{5}{2}$

b) (s.)

Använd resonemanget från uppgift a) för intervallen.

$$\begin{split} x \geq 2: & \ x-1+x-2 = \frac{1}{2} \Leftrightarrow x = \frac{7}{4} \not\geq 2 \Rightarrow \text{falsk l\"osning} \\ 1 \leq x < 2: & \ x-1-(x-2) = \frac{1}{2} \Leftrightarrow 1 \neq \frac{1}{2} \Rightarrow \text{ ingen l\"osning} \\ x < 1: & \ -(x-1)-(x-2) = \frac{1}{2} \Leftrightarrow x = \frac{5}{2} \not< 1 \Rightarrow \text{falsk l\"osning} \end{split}$$

Svar: saknar lösning

5.24 (s.)

Använd definitionen av absolutbelopp (hoppat över ett steg för att det ska vara mer lättläst).

$$|x-1| = \begin{cases} x-1 & \text{då } x \ge 1 \\ -(x-1) & \text{då } x < 1 \end{cases} \qquad |x-2| = \begin{cases} x-2 & \text{då } x \ge 2 \\ -(x-2) & \text{då } x < 2 \end{cases}$$

Slå samman båda till ett gemensamt uttryck.

$$|x-1|+2|x-2| = \begin{cases} x-1+2(x-2) & \text{då } x \ge 2\\ x-1-2(x-2) & \text{då } 1 \le x < 2\\ -(x-1)-2(x-2) & \text{då } x < 1 \end{cases}$$

För att lösa uppgiften behöver vi veta värdemängden för varje uttryck och eftersom de är linjär kommer det endast finnas ett värde på x för varje värde på a och ändarna kommer alltid vara minsta respektive största värdet.

Värdemängden för första uttrycket ges av $x=2 \Rightarrow a=1$ och $x\to\infty\Rightarrow a\to\infty$.

Värdemängden för andra uttrycket ges av $x=1 \Rightarrow a=2$ och $x \to 2 \Rightarrow a \to 1$.

Värdemängden för tredje uttrycket ges av $x \to -\infty \Rightarrow a \to \infty$ och $x \to 1 \Rightarrow a \to 2$.

För alla a större än 1 kommer det alltså finnas två lösningar.

Svar: a > 1

5.25 (s.)

Utnyttja faktumen att $\sqrt{a^2} = |a|$, att |a| = -a eftersom a < 0 och att $a^2 + b^2 >= 0$ oberoende av värden på a och b.

$$\sqrt{a^6 + 2a^4b^2 + a^2b^4} = \sqrt{a^2}\sqrt{a^4 + 2a^2b^2 + b^4} = |a|\sqrt{(a^2 + b^2)^2} = -a|a^2 + b^2| = -a(a^2 + b^2)$$

Svar: $-a(a^2 + b^2)$

5.26 (s.)

Avståndet mellan punkterna i x-led kan skrivas som $|x_2-x_1|$ och i y-led som $|y_2-y_1|$. Eftersom x- och y-axeln är vinkelräta mot varandra kan en vinkelrät triangel ritas upp där avståndet mellan punkterna är hypotenusan och avståndet i x- respektive y-led är kateterna. Pyth. sats säger då att:

$$d^{2} = |x_{2} - x_{1}|^{2} + |y_{2} - y_{1}|^{2} \Leftrightarrow d = (\pm)\sqrt{|x_{2} - x_{1}|^{2} + |y_{2} - y_{1}|^{2}} \Leftrightarrow d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} \text{ V.S.V.}$$

Cirkeln, ellipsen och hyperbeln

5.27 (s.)

Svar:

5.28 (s.)

Svar:

5.29 a) (s.)

Svar:

b) (s.)

Svar:

5.30 (s.)

Svar:

5.31 a) (s.)

Svar:

b) (s.)

Svar:

Svar:

d) (s.)

Svar:

5.32 (s.)

Svar:

5.33 (s.)

Svar: