Работа выполнена авторами www.MatBuro.ru Онлайн помощь по случайным процессам ©МатБюро - Решение задач по математике, экономике, статистике

1. Случайная функция $X(t) = U \cos 2t$, где U - случайная величина. Найти сечения функции X(t), соответствующие значениям аргумента $t_1 = \frac{\pi}{4}$ и $t_2 = \frac{\pi}{8}$.

Задача 1. Случайная функция $X(t) = U\cos 2t$, где U — случайная величина. Найти сечения функции X(t), соответствующие значениям аргумента $t_1 = \frac{\pi}{4}$ и $t_2 = \frac{\pi}{8}$.

Решение

Найдем сечение функции X(t), соответствующее значению аргумента $t_1=\frac{\pi}{4}$:

$$X(t_1) = X\left(\frac{\pi}{4}\right) = U\cos\left(2\cdot\frac{\pi}{4}\right) = U\cos\left(\frac{\pi}{2}\right) = 0.$$

Найдем сечение функции X(t), соответствующее значению аргумента $t_2 = \frac{\pi}{8}$:

$$X(t_2) = X\left(\frac{\pi}{8}\right) = U\cos\left(2\cdot\frac{\pi}{8}\right) = U\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\cdot U.$$

Задача 2. Найти математическое ожидание случайного процесса $X(t) = e^t U$, где U — случайная величина, причем M(U) = 6.

Решение

Математическое ожидание (неслучайный множитель можно выносить за знак математического ожидания):

$$M(X(t)) = M[e^{t}U] = e^{t} \cdot M(U) = 6e^{t}$$

Работа выполнена авторами www.MatBuro.ru Онлайн помощь по случайным процессам ©MatBiopo - Решение задач по математике, экономике, статистике

Задача 3. Известна корреляционная функция K_x случайного процесса X(t). Найти корреляционную функция случайного процесса Y(t) = X(t)(3t+2).

Решение.

Так как случайный процесс Y(t) = X(t)(3t+2). представляет собой произведение случайного процесса X(t) с корреляционной функцией K_x и неслучайного множителя (3t+2), то по свойствам корреляционной функции получаем:

$$K_{y}(t_{1},t_{2}) = (3t_{1}+2)\cdot(3t_{2}+2)\cdot K_{x}(t_{1},t_{2}).$$

Задача 4. Задана корреляционная функция $K_x = 2e^{-(t_1-t_2)^2}$ случайного процесса X(t). Найти корреляционную функцию ее производной.

Решение

По определению, если Y(t) = X'(t), то корреляционная функция K_y равна частной производной по обоим переменным от K_y :

$$\begin{split} K_{y}(t_{1},t_{2}) &= \frac{\partial^{2}}{\partial t_{1}\partial t_{2}} \Big(K_{y} \left(t_{1},t_{2} \right) \Big) = \frac{\partial^{2}}{\partial t_{1}\partial t_{2}} \Big(2e^{-(t_{1}-t_{2})^{2}} \Big) = \frac{\partial}{\partial t_{2}} \Big(2e^{-(t_{1}-t_{2})^{2}} \left(-2\left(t_{1}-t_{2} \right) \right) \Big) = \\ &= -4 \cdot \frac{\partial}{\partial t_{2}} \Big(e^{-(t_{1}-t_{2})^{2}} \cdot \left(t_{1}-t_{2} \right) \Big) = -4 \cdot \Big(e^{-(t_{1}-t_{2})^{2}} \left(-2\left(t_{1}-t_{2} \right) \cdot \left(-1 \right) \right) \cdot \left(t_{1}-t_{2} \right) + e^{-(t_{1}-t_{2})^{2}} \cdot \left(-1 \right) \Big) = \\ &= -4 \cdot e^{-(t_{1}-t_{2})^{2}} \left(2 \cdot \left(t_{1}-t_{2} \right)^{2} - 1 \right). \end{split}$$