Problem Set 2 ECE 685D Fall 2020

Instructor: Vahid Tarokh ECE Department, Duke University

Due: 8:59:59 a.m. EST on Sept. 22, 2020

Problem 1: Conditional Multivariate Gaussian Distribution

Let \mathbf{x} denote a D-dimensional multivariate Gaussian random vector with mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{D \times D}$ with probability density function (PDF) denoted as $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ and given by

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-D/2} \det(\boldsymbol{\Sigma})^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}.$$

Let $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)$ denote a partition of \mathbf{x} such that $\mathbf{x}_1 \in \mathbb{R}^p$ and $\mathbf{x}_2 \in \mathbb{R}^{D-p}$. Derive the conditional PDF of \mathbf{x}_2 given $\mathbf{x}_1=\mathbf{a}$ where \mathbf{a} is a constant vector in \mathbb{R}^p and provide brief explanation of each derivation step. Compute the mean vector and the covariance matrix of the conditional PDF of $\mathbf{x}_2 \in \mathbb{R}^2$ given $\mathbf{x}_1=(1,1)$ when \mathbf{x} follows a multivariate Gaussian distribution with

$$\boldsymbol{\mu} = (1,1,1,2), \quad \boldsymbol{\Sigma} = \begin{pmatrix} \mathbf{I}_2 & 0.25 \times \mathbf{I}_2 \\ 0.25 \times \mathbf{I}_2 & 1.25 \times \mathbf{I}_2 \end{pmatrix},$$

where I_2 is the identity matrix of dimension 2×2 .

Problem 2: Gaussian Mixture Model

Recall from the lecture slides that the PDF of a D-dimensional Gaussian Mixture Model (GMM) with K Gaussian densities is given by

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

where $\pi_k \geq 0$ are the mixing coefficients satisfying $\sum_{k=1}^K \pi_k = 1$, whereas μ_k and Σ_k denote the mean vector and the covariance matrix of the k-th Gaussian density.

Write a Python program for generating 10^3 2-dimensional random samples (i.e., D=2) from a GMM with the following parameters: K=4, $\{\pi_1,\pi_2,\pi_3,\pi_4\}=\{1/8,1/8,1/4,1/2\}$, $\boldsymbol{\mu}_1=(0,0)$, $\boldsymbol{\mu}_2=(0,2)$, $\boldsymbol{\mu}_3=(2,0)$, $\boldsymbol{\mu}_4=(2,2)$ and covariance matrices

$$\boldsymbol{\Sigma}_1 = \begin{pmatrix} 0.2 & 0.1 \\ 0.1 & 0.2 \end{pmatrix}, \quad \boldsymbol{\Sigma}_2 = \begin{pmatrix} 0.1 & -0.15 \\ -0.15 & 0.3 \end{pmatrix}, \quad \boldsymbol{\Sigma}_3 = \begin{pmatrix} 0.3 & 0.05 \\ 0.05 & 0.3 \end{pmatrix}, \quad \boldsymbol{\Sigma}_4 = 0.15 \times \boldsymbol{I}_2.$$

Write a Python program to fit a GMM to the data generated in part 1.1 with varying number of components $K = \{1, 2, 3, 4, 5, 6, 7\}$. For each estimated model compute the log-likelihood function given the generated data (see lecture slides) and plot it with respect to K. Note: to perform the fitting, you can use the class mixture.GMM from the sklearn package and the score method to compute the log-likelhood.

Problem 3: Bayesian linear regression

Suppose we want to estimate the location of an object $(x_1 \text{ and } x_2 \text{ coordinates})$ in a large field with size $2 \text{ km} \times 2 \text{ km}$. To this end, we are going to use N sensors which can estimate the coordinates. Our prior knowledge of the coordinates of the location is a 2-dimensional random Gaussian vector given by $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu_0}, \boldsymbol{\Sigma_0})$. In addition, the measurement of each sensor, y_i is a random vector distributed as $y_i \sim \mathcal{N}(\mathbf{x}, \boldsymbol{\Sigma_y})$ for $i = 1, 2, \dots, N$.

- a What is the distribution of coordinates of the object after observing the sensor measurements. Please provide all the details including the pdf, and all the necessary moments information.
- b What is your predicted location based on the sensor measurements? What is the MLE estimate?
- c Assume that N=10, $\boldsymbol{\mu_0}=[0.5,0.5]^T$, $\boldsymbol{\Sigma_0}=0.1\boldsymbol{I_2}$, $\boldsymbol{x}=[1.5,1.5]^T$, and $\boldsymbol{\Sigma_y}=\begin{bmatrix}0.2 & 0.1\\0.1 & 0.1\end{bmatrix}$. Plot the contour of prior and posterior distributions.
- d Repeat part c, with $\Sigma_0 = 10I_2$, with N = 10. Now let $\Sigma_0 = 0.1I_2$ and N = 100, and repeat part c.
- e What is your conclusion from part d?

Problem 4: Bias-variance trade-off

Generate a training data set of 5 samples $\mathbf{x}=(x_1,\ldots,x_5)$ placed between 0 and 1 on a regular grid with step 0.2, together with the corresponding real-valued targets $\mathbf{t}=(t_1,\ldots,t_5)$ such that $t_i=\sin(2\pi x_i)+\cos(4\pi x_i)$. Also, in the same manner as above, generate a test data set of 100 regularly placed samples in (0,1) with step 0.01. Using a built in method from any python package of choice that supports polynomial fitting (such as the polyfit method from numpy), fit a polynomial model to the training data of varying degrees $M=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$. Plot the sum-of-squares error with respect to M computed on both training and test data sets.

Fix the polynomial model to degree $M=\{14\}$. Using L_2 regularization, penalizing the sum of squares of the model weights (as in the lecture slides), fit a regularized model with regularization parameter $\lambda \in [10^{-2}, 50]$. Plot the sum-of-squares error with respect to $\ln \lambda$ computed on both training and test data sets. Note: you are free to use any python package of your choice.

Problem 5: Minimizing Minkowski Loss

Let $p(\mathbf{x},t)$ denote the joint PDF of real-valued input vector $\mathbf{x} \in \mathbb{R}^D$ and real-valued target variable $t \in \mathbb{R}$. Let

$$\mathbb{E}[L] = \int \int L(t, y(\mathbf{x})) p(\mathbf{x}, t) d\mathbf{x} dt,$$

denote the expected loss with respect to a model $y(\mathbf{x})$ and some loss function $L(t, y(\mathbf{x}))$. Show that for $L(t, y(\mathbf{x})) = |t - y(\mathbf{x})|$, $\mathbb{E}[L]$ is minimized by the median of the conditional distribution $p(t|\mathbf{x})$.

$$L(t, y(\mathbf{x})) = \begin{cases} 0 & |t - y(\mathbf{x})| \le \delta \\ 1 & |t - y(\mathbf{x})| > \delta \end{cases}, \quad \delta > 0$$

denote the hit-or-miss loss function. Show that $\mathbb{E}[L]$ is minimized by the mode of the conditional distribution $p(t|\mathbf{x})$.

Problem 6: Nonlinear Basis Functions

Let

Let GMM-1 denote a 2-dimensional GMM with parameters $K=1, \mu=(0,0)$ and covariance matrix $\Sigma=0.1\times \mathbf{I}_2$. Similarly, let GMM-2 denote a 2-dimensional GMM with parameters $K=2, \pi_1=\pi_2=0.5, \ \boldsymbol{\mu}_1=(-1,-1), \boldsymbol{\mu}_2=(1,1)$ and covariance matrices $\Sigma_1=\Sigma_2=0.1\times \mathbf{I}_2$. Generate 100 samples from GMM-1 and 200 samples from GMM-2. Plot the data using different colors for the GMMs. Could you find a single line that separates the two data sets?

Let

$$\phi_1(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T(\mathbf{x} - \boldsymbol{\mu})\right) \text{ and } \phi_2(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^T(\mathbf{x} - \boldsymbol{\mu}_1)\right),$$

be two 2-dimensional Gaussian basis functions. Define the transformation $\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}))$ and plot the transformed data from GMM-1 and GMM-2. What do you observe?