From Semantic Understanding to Geometric Features: Using Foundation Models for Novel Robotic Tasks

Technion - Autonomous system program

Nizan Mashall, Erez Karpas, Miriam Zacksenhouse

Goal Household robotics

Setup of the near future:

- Pre-trained with fundamental capabilities (walking, grasping)
- Integrated sensing capabilities (e.g., cameras)
- Perform new tasks autonomously

Household Robot

Novel Tasks | Learning-based methods

Require extensive training through:

- Demonstration videos
- Teleoperation records

- New tasks
- Different tools
- Various environments

Novel Tasks | Model-Based Planning

Model-based methods encounter two main challenges in automating novel tasks:

- Automating plan generation
- Automating reference frame assignment

Yu, Wenhao, et al. "Language to rewards for robotic skill synthesis." *arXiv preprint arXiv:2306.08647* (2023).

3/3/2025 4

Novel Tasks | Model-Based Planning Example

Input(Point, Direction):

- Colinear
- Coincident

We designed a fully automated system for 3D geometric feature detection and reference frame assignment

Key Insights | VLM Limitations

- VLMs can perform 2D affordance grounding
- However, there is a dramatic
 performance gap between real and
 synthetic images

ground truth

Objects	Models									
	CogVLM		Claude 3.5 Sonnet		Gemini		Grounding Dino			
	Syn	Real	Syn	Real	Syn	Real	Syn	Real		
Camera 1 - Hammer-striking face	100%	0%	0%	0%	11%	0%	0%	0%		
Camera 1 - Screwdriver-tip	100%	0%	0%	0%	0%	0%	0%	0%		
Camera 1 - Broom bristles	100%	0%	66%	0%	0%	0%	100%	77%		
Camera 1 - Toothbrush bristles	100%	0%	44%	0%	66%	0%	100%	88%		
Camera 1 - Pen tip	100%	0%	0%	0%	0%	0%	0%	0%		
Camera 1 - Key blade	100%	0%	88%	0%	33%	0%	88%	44%		
Camera 2 - Hammer-striking face	_	0%	-	0%	-	0%	-	0%		
Camera 2 - Screwdriver-tip	_	0%	-	0%	_	0%	-	0%		

User: "Using your visual understanding capabilities, locate the hammer's main impact surface."

CogVLM:

Key Insights Common Hand Tool Similarity

- Hand tools share common geometric patterns across different variants
- This similarity enables geometric feature detection to be transferred across variants

Method Task Analysis and Detection over Digital Twin

Detecting the geometric feature in digital twin

Method | Registration of Digital Twin with Real Tool

Transferring the detected geometric feature to the real object

Method | Results

Method | Evaluation

Summary table of the results

Object/Stage	Hammer	Screwdriver	Broom	Pen	Key	Toothbrush	
	striking, nail	screwing, screw	sweep, floor	writing, paper	inserting, lock	applying, toothpaste	
Image generation	86.2%	81.2%	92.5%	73.7%	100%	43.5%	
Object detection	32.8%	93.7%	94.7%	100%	65%	93.7%	
Result filtering	74.1%	85.7%	65%	62.5%	82.5%	55%	
3D reconstruction	94.1%	100%	100%	100%	93.7%	100%	
Feature mapping	87.5%	87.5%	95%	100%	100%	100%	
Total success rate	70%	70%	95%	95%	85%	80%	

Additional Usage

Main Contributions

- Zero-shot 3D detection
- Generalization across diverse objects and tasks
- No training or demonstration required

From Semantic Understanding to Geometric Features: Using Foundation Models for Novel Robotic Tasks

Thank You! Questions?

Nizan Mashall

Erez Karpas

Miriam Zacksenhouse