Mineração de Dados 2018.2

Algoritmos de Agrupamento -Hierárquicos Thiago Ferreira Covões

Créditos

- O material a seguir consiste de adaptações e extensões dos originais:
 - Elaborados por Eduardo R. Hruschka e Ricardo J. G. B. Campello
 - de (Tan et al., 2006)
 - de E. Keogh (SBBD 2003)
- Algumas figuras foram gentilmente cedidas por Lucas Vendramin

Relembrando...

- **Agrupamento Particional:** constrói uma *partição* dos dados
- **Agrupamento Hierárquico:** constrói uma *hierarquia de partições*

Particionais

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Definição de Partição de Dados

- Consideremos um conjunto de N objetos a serem agrupados: $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$
- **Partição** (rígida): coleção de k grupos não sobrepostos $\mathbf{P} = \{\mathbf{C}_1, \mathbf{C}_2, ..., \mathbf{C}_k\}$ tal que:

$$\mathbf{C}_1 \cup \mathbf{C}_2 \cup ... \cup \mathbf{C}_k = \mathbf{X}$$
 $\mathbf{C}_i \neq \emptyset$
 $\mathbf{C}_i \cap \mathbf{C}_j = \emptyset \text{ para } i \neq j$

Exemplo: $P = \{ (x_1), (x_3, x_4, x_6), (x_2, x_5) \}$

- Hierarquia (de partições de dados):
 - Sequência de partições aninhadas
 - Uma partição \mathbf{P}_1 está *aninhada* em \mathbf{P}_2 se cada componente (grupo) de \mathbf{P}_1 é um subconjunto de um componente de \mathbf{P}_2

Exemplo:

```
\mathbf{P}_1 = \{ (\mathbf{x}_1), (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}

\mathbf{P}_2 = \{ (\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}
```

- Hierarquia (de partições de dados):
 - Sequência de partições aninhadas
 - Uma partição \mathbf{P}_1 está *aninhada* em \mathbf{P}_2 se cada componente (grupo) de \mathbf{P}_1 é um subconjunto de um componente de \mathbf{P}_2

Exemplo:

```
\mathbf{P}_1 = \{ (\mathbf{x}_1), (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}

\mathbf{P}_2 = \{ (\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}
```

Contra-Exemplo:

$$\mathbf{P}_3 = \{ (\mathbf{x}_1, \, \mathbf{x}_3, \, \mathbf{x}_4, \, \mathbf{x}_6), (\mathbf{x}_2, \, \mathbf{x}_5) \}$$

 $\mathbf{P}_4 = \{ (\mathbf{x}_1, \, \mathbf{x}_2), (\mathbf{x}_3, \, \mathbf{x}_4, \, \mathbf{x}_6), (\mathbf{x}_5) \}$

- Uma hierarquia completa:
 - Inicia ou termina com partição totalmente disjunta
 - **Disjoint clustering**: apenas grupos **atômicos** (**singletons**)
 - \triangleright Exemplo: **P** = { (**x**₁), (**x**₂), (**x**₃), (**x**₄), (**x**₅), (**x**₆) }
 - Também denominada "solução trivial"

- Uma hierarquia completa:
 - Inicia ou termina com partição totalmente disjunta
 - Disjoint clustering: apenas grupos atômicos (singletons)
 - \triangleright Exemplo: **P** = { (**x**₁), (**x**₂), (**x**₃), (**x**₄), (**x**₅), (**x**₆) }
 - Também denominada "solução trivial"
 - Inicia ou termina com partição totalmente conjunta
 - **Conjoint clustering**: grupo único com todos os objetos
 - \triangleright Exemplo: **P** = { (\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 , \mathbf{x}_6) }

- Uma hierarquia completa:
 - Inicia ou termina com partição totalmente disjunta
 - **Disjoint clustering**: apenas grupos **atômicos** (**singletons**)
 - ightharpoonup Exemplo: $\mathbf{P} = \{ (\mathbf{x}_1), (\mathbf{x}_2), (\mathbf{x}_3), (\mathbf{x}_4), (\mathbf{x}_5), (\mathbf{x}_6) \}$
 - Também denominada "solução trivial"
 - Inicia ou termina com partição totalmente conjunta
 - **Conjoint clustering**: grupo único com todos os objetos
 - ightharpoonup Exemplo: **P** = { (\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 , \mathbf{x}_6) }
 - \triangleright Geralmente possui N-2 partições intermediárias

Hierarquias são
comumente usadas para
organizar informação,
como, por exemplo, num
portal

Business & Economy

B2B, Finance, Shopping, Jobs...

Computers & Internet

Internet, WWW, Software, Games...

Regional

Countries, Regions, US States ...

Society & Culture

People, Environment, Religion...

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Outro Exemplo:

Árvores Filogenéticas em Biologia

Métodos Clássicos para Agrupamento Hierárquico

Bottom-Up (aglomerativos):

- Iniciar colocando cada objeto em um *cluster*
- Encontrar o melhor par de *clusters* para unir
- Unir o par de *clusters* escolhido
- Repetir até que todos os objetos estejam reunidos em um só *cluster*

Métodos Clássicos para Agrupamento Hierárquico

Bottom-Up (aglomerativos):

- Iniciar colocando cada objeto em um *cluster*
- Encontrar o melhor par de *clusters* para unir
- Unir o par de *clusters* escolhido
- Repetir até que todos os objetos estejam reunidos em um só *cluster*

Top-Down (divisivos):

- Iniciar com todos objetos em um único *cluster*
- Sub-dividir o *cluster* em dois novos *clusters*
- Aplicar o algoritmo recursivamente em ambos, até que cada objeto forme um *cluster* por si só

Algoritmos hierárquicos podem operar somente sobre uma matriz de distâncias: são (ou podem ser) **relacionais**.

Iniciando com cada objeto em seu próprio cluster, encontrar o melhor par de *clusters* para unir em um novo *cluster*. Repetir até que todos os *clusters* sejam fundidos em um único *cluster*.

Iniciando com cada objeto em seu próprio cluster, encontrar o melhor par de *clusters* para unir em um novo *cluster*. Repetir até que todos os *clusters* sejam fundidos em um único *cluster*.

Escolher a melhor

Iniciando com cada objeto em seu próprio cluster, encontrar o melhor par de *clusters* para unir em um novo *cluster*. Repetir até que todos os *clusters* sejam fundidos em um único *cluster*.

Considerar

possíveis ...

todas as uniões

Escolher

a melhor

Iniciando com cada objeto em seu próprio cluster, encontrar o melhor par de *clusters* para unir em um novo *cluster*. Repetir até que todos os *clusters* sejam fundidos em um único *cluster*.

Escolher a melhor

Considerar todas as uniões possíveis ...

Escolher a melhor

Considerar todas as uniões possíveis ...

Escolher a melhor

Iniciando com cada objeto em seu próprio cluster, encontrar o melhor par de *clusters* para unir em um novo *cluster*. Repetir até que todos os *clusters* sejam fundidos em um único *cluster*.

Considerar todas as uniões possíveis ...

Escolher a melhor

Considerar todas as uniões possíveis ...

Escolher a melhor

Considerar todas as uniões possíveis ...

Escolher a melhor

	p1	p2	рЗ	p4	p5	<u>.</u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Média do grupos
- Distância entre centróides
- Outros métodos
 - Ward's

— ...

	p1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
рЗ						_
p 4						
р5						

- MIN
- MAX
- Média do grupos
- Distância entre centróides
- Outros métodos
 - Ward's

— ...

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Média do grupos
- Distância entre centróides
- Outros métodos
 - Ward's

_ ...

	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Média do grupos
- Distância entre centróides
- Outros métodos
 - Ward's

— ...

	p1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
р3						
p 4						
p5						

- MIN
- MAX
- Média do grupos
- Distância entre centróides
- Outros métodos
 - Ward's

— ...

Como Comparar os Clusters?

- Single Linkage , Min, ou Vizinho mais Próximo :
 - Dissimilaridade entre clusters é dada pela menor dissimilaridade entre 2 objetos (um de cada cluster)

single link (Florek, 1951; Sneath, 1957)

Originalmente baseado em **Grafos**: menor aresta entre dois vértices de subconjuntos distintos

Propriedade Útil

- Propriedade da Função Mínimo (min):
 - $\bullet \min\{\mathbf{D}\} = \min\{\min\{\mathbf{D}_1\}, \min\{\mathbf{D}_2\}\}$
 - **D**, D_1 e D_2 são conjuntos de valores reais tais que $D_1 \cup D_2 = D$
 - Exemplo:
 - min{10, -3, 0, 100} = min { min{10, -3}, min{0, 100} }
 = -3
 - Propriedade vale recursivamente (para min{ \mathbf{D}_1 } e min{ \mathbf{D}_2 })

Propriedade Útil

- Propriedade da Função Mínimo (min):
 - $\bullet \min\{\mathbf{D}\} = \min\{\min\{\mathbf{D}_1\}, \min\{\mathbf{D}_2\}\}$
 - **D**, D_1 e D_2 são conjuntos de valores reais tais que $D_1 \cup D_2 = D$
 - Exemplo:
 - $\min\{10, -3, 0, 100\} = \min\{\min\{10, -3\}, \min\{0, 100\}\} = -3$
 - Propriedade vale recursivamente (para min{D₁} e min{D₂})
- Utilidade para Single-Linkage
 - Dada a distância entre os grupos A e B e entre A e C
 - É trivial calcular a distância entre \mathbf{A} e ($\mathbf{B} \cup \mathbf{C}$).

Exemplo de Single Linkage: Método de Johnson (1967)

• Consideremos a seguinte matriz de distâncias iniciais (\mathbf{D}_1) entre 5 objetos {1,2,3,4,5}. Qual par de objetos será escolhido para formar

o 1º cluster?

Exemplo de Single Linkage: Método de Johnson (1967)

• Consideremos a seguinte matriz de distâncias iniciais (\mathbf{D}_1) entre 5 objetos {1,2,3,4,5}. Qual par de objetos será escolhido para formar

o 1º cluster?

Exemplo de Single Linkage: Método de Johnson (1967)

Consideremos a seguinte matriz de distâncias iniciais (\mathbf{D}_1) entre 5 objetos {1,2,3,4,5}. Qual par de objetos será escolhido para formar

o 1º cluster?

• A menor distância entre objetos é $d_{12}=d_{21}=2$, indicando que estes dois objetos serão unidos em um *cluster*. Na sequência, calcula-se:

$$\begin{aligned} &d_{(12)3} = min\{d_{13}, d_{23}\} = d_{23} = 5;\\ &d_{(12)4} = min\{d_{14}, d_{24}\} = d_{24} = 9;\\ &d_{(12)5} = min\{d_{15}, d_{25}\} = d_{25} = 8; \end{aligned}$$

Desta forma, obtém-se uma nova matriz de distâncias (D₂), que será usada na próxima etapa do agrupamento hierárquico:

$$D_2 = \begin{bmatrix} 12 & 0 & & & \\ 3 & 5 & 0 & & \\ 4 & 9 & 4 & 0 & \\ 5 & 8 & 5 & 3 & 0 \end{bmatrix}$$

• Qual o novo cluster a ser formado?

Desta forma, obtém-se uma nova matriz de distâncias (D₂), que será usada na próxima etapa do agrupamento hierárquico:

$$D_{2} = \begin{bmatrix} 12 & 0 & & & \\ 3 & 5 & 0 & & \\ 4 & 9 & 4 & 0 & \\ 5 & 8 & 5 & \boxed{3} & 0 \end{bmatrix}$$

• Qual o novo cluster a ser formado?

Desta forma, obtém-se uma nova matriz de distâncias (D₂), que será usada na próxima etapa do agrupamento hierárquico:

$$D_{2} = \begin{bmatrix} 12 & 0 & & & \\ 3 & 5 & 0 & & \\ 4 & 9 & 4 & 0 & \\ 5 & 8 & 5 & \boxed{3} & 0 \end{bmatrix}$$

• Qual o novo cluster a ser formado?

• Unindo os objetos 4 e 5 obtemos três clusters: {1,2}, {4,5}, {3} • Como $d_{(12)3}$ já está calculada, calculamos na sequência:

$$d_{(12)(45)} = min\{d_{(12)(4)}, d_{(12)(5)}\} = d_{(12)(5)} = 8$$
 $d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$
obtendo a seguinte matriz:

• Como $d_{(12)3}$ já está calculada, calculamos na sequência:

$$d_{(12)(45)} = min\{d_{(12)(4)}, d_{(12)(5)}\} = d_{(12)(5)} = 8$$
 $d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$
obtendo a seguinte matriz:

$$\begin{array}{c|cccc}
 & 12 & 0 & & \\
D_3 & 3 & 5 & 0 & \\
 & 45 & 8 & 4 & 0
\end{array}$$

• Como $d_{(12)3}$ já está calculada, calculamos na sequência:

$$d_{(12)(45)} = min\{d_{(12)(4)}, d_{(12)(5)}\} = d_{(12)(5)} = 8$$
 $d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$
obtendo a seguinte matriz:

$$\begin{array}{c|cccc}
 & 12 & 0 & & \\
 D_3 = 3 & 5 & 0 & & \\
 & 45 & 8 & 4 & 0
\end{array}$$

• Como $d_{(12)3}$ já está calculada, calculamos na sequência:

$$d_{(12)(45)} = min\{d_{(12)(4)}, d_{(12)(5)}\} = d_{(12)(5)} = 8$$
 $d_{(45)3} = min\{d_{43}, d_{53}\} = d_{43} = 4$
obtendo a seguinte matriz:

* Unir cluster {3} com {4,5};
$$D_3 = 3 \begin{bmatrix} 0 \\ 5 \\ 45 \end{bmatrix} = 3 \begin{bmatrix} 8 \\ 4 \end{bmatrix} = 0$$
* Finalmente, unir todos os clusters em um único cluster

* Unir *cluster* {3} com {4,5};

A sequência de partições obtidas neste exemplo é, portanto:

```
 \{ \ (1), \ (2), \ (3), \ (4), \ (5) \ \} \rightarrow \{ \ (1, \ 2), \ (3), \ (4), \ (5) \ \} \rightarrow   \{ \ (1, \ 2), \ (3), \ (4, \ 5) \ \} \rightarrow \{ \ (1, \ 2), \ (3, \ 4, \ 5) \ \} \rightarrow \{ \ (1, \ 2, \ 3, \ 4, \ 5) \ \}
```

A sequência de partições obtidas neste exemplo é, portanto:

$$\{ \ (1), \ (2), \ (3), \ (4), \ (5) \ \} \rightarrow \{ \ (1, \ 2), \ (3), \ (4), \ (5) \ \} \rightarrow$$

$$\{ \ (1, \ 2), \ (3), \ (4, \ 5) \ \} \rightarrow \{ \ (1, \ 2), \ (3, \ 4, \ 5) \ \} \rightarrow \{ \ (1, \ 2, \ 3, \ 4, \ 5) \ \}$$

- Nota: Para single link, a dissimilaridade entre 2 clusters pode ser computada naturalmente a partir da matriz atualizada na iteração anterior, sem necessidade da matriz original
 - Isso vale devido à propriedade da função min vista anteriormente

Dendrograma

Dendrograma: Hierarquia + Dissimilaridades entre Clusters

* A dissimilaridade entre dois clusters (possivelmente **singletons**) é representada como a altura do nó interno mais baixo compartilhado

Exemplo de Dendrograma

$$D = \begin{bmatrix} 1 & 0 & 2 & 7 & 13 \\ 2 & 0 & 5 & 10 \\ 7 & 5 & 0 & 4 \\ 4 & 13 & 10 & 4 & 0 \end{bmatrix}$$

Dendrograma

uma das partições aninhadas

Exemplo de Dendrograma

$$D = \begin{bmatrix} 1 & 0 & 2 & 7 & 13 \\ 2 & 0 & 5 & 10 \\ 7 & 5 & 0 & 4 \\ 4 & 13 & 10 & 4 & 0 \end{bmatrix}$$

Dendrograma

uma das partições aninhadas

Outro Exemplo de Dendrograma

Nested Clusters

Cophenetic Matrix

• Matriz com as dissimilaridades que levaram à união de cada par de objetos na base de dados. Exemplo:

 Esta matriz é importante para a validação de agrupamentos hierárquicos

Exercício:

 Obtenha o dendrograma completo para o exemplo visto de execução do single linkage (matriz de distâncias abaixo)

 Apresente também a cophenetic matrix correspondente

Dendrogramas e Partições

- Partições são obtidas via cortes no dendrograma
 - cortes horizontais
 - no. de grupos da partição = no. de interseções

Exemplos:

```
P_{2} = \{ (\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{6}), (\mathbf{x}_{2}, \mathbf{x}_{5}) \}
P_{1} = \{ (\mathbf{x}_{1}), (\mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{6}), (\mathbf{x}_{2}, \mathbf{x}_{5}) \}
```


Pode-se examinar o dendrograma para tentar estimar o número *mais natural* de clusters. No caso abaixo, existem duas sub-árvores bem separadas, sugerindo dois grupos de dados. Infelizmente, na prática, as distinções não são tão simples...

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Pode-se usar o dendrograma para tentar detectar *outliers*:

Vantagens do MIN

•Capacidade de lidar com formas não globulares

Limitações do MIN

• Sensibilidade a ruídos e outliers

Como Comparar os Clusters?

Complete Linkage , Max, ou Vizinho mais Distante:

 Dissimilaridade entre clusters é dada pela maior dissimilaridade entre dois objetos (um de cada cluster)

complete link (Sorensen, 1948)

Originalmente baseado em **Grafos**: maior aresta entre
dois vértices de subconjuntos
distintos

Propriedade Útil

- Propriedade da Função Máximo (max):
 - $\mathbf{nax}\{\mathbf{D}\} = \max\{ \max\{\mathbf{D}_1\}, \max\{\mathbf{D}_2\} \}$
 - **D**, \mathbf{D}_1 e \mathbf{D}_2 são conjuntos de valores reais tais que $\mathbf{D}_1 \cup \mathbf{D}_2 = \mathbf{D}$
 - Exemplo:
 - $\max\{10, -3, 0, 100\} = \max\{\max\{10, -3\}, \max\{0, 100\}\} = 100$
 - Propriedade vale recursivamente (para max{D₁} e max{D₂})

Propriedade Útil

- Propriedade da Função Máximo (max):
 - $\mathbf{n} = \max{\{\mathbf{D}_1\}}, \max{\{\mathbf{D}_2\}}\}$
 - **D**, \mathbf{D}_1 e \mathbf{D}_2 são conjuntos de valores reais tais que $\mathbf{D}_1 \cup \mathbf{D}_2 = \mathbf{D}_2$
 - Exemplo:
 - $\max\{10, -3, 0, 100\} = \max\{\max\{10, -3\}, \max\{0, 100\}\} = 100$
 - Propriedade vale recursivamente (para max{D₁} e max{D₂})
- Utilidade para Complete-Linkage
 - Dada a distância entre os grupos A e B e entre A e C
 - É trivial calcular a distância entre \mathbf{A} e ($\mathbf{B} \cup \mathbf{C}$).

Seja a seguinte matriz de distâncias iniciais (D₁) entre 5 objetos :

<u>Exercício</u>: executar o complete linkage através de sucessivas atualizações da matriz de distâncias.

Agrupamento Hierárquico: MAX

Nested Clusters

Dendrogram

Vantagens do MAX

Pontos Originais

Dois Grupos

• Menos suscetível a ruído e *outliers*

Limitações do MAX

- •Tendência a quebrar grupos grandes
- Enviesado para grupos globulares

Group Average

 Dissimilaridade entre dois clusters é a média das dissimilaridades entre os objetos dos dois clusters

$$d(G_i, G_j) = \frac{\sum_{\mathbf{x}_n \in G_i} \sum_{\mathbf{x}_m \in G_j} d(\mathbf{x}_n, \mathbf{x}_m)}{|G_i| \times |G_j|}$$

Matriz de distância

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Nested Clusters

Nested Clusters

Nested Clusters

Nested Clusters

Dendrogram

Nested Clusters

Dendrogram

Nested Clusters

Dendrogram

Meio-termo entre Single e Complete Link

Menos suscetível à outliers e ruído

Enviesado para clusters globulares

Método de Ward

- Distância entre dois grupos baseado no aumento no erro quadrático quando os grupos são unidos
- Menos suscetível à ruidos e outliers

- Enviesado para clusters globulares
- Similar ao k-means, mas hierárquico
 - Pode ser usado para iniciar o k-means

Generalizando: Esquema Lance-Williams

- Todos os algoritmos que vimos são instâncias de um modelo geral:
 - d_{ik} = distância entre G_i e G_k
 - $d_{(ij)k}$ = distância entre os grupos $G_i \cup G_j$ e G_k

$$d_{(ij)k} = \alpha_i d_{ik} + \alpha_j d_{jk} + \beta d_{ij} + \gamma |d_{ik} - d_{jk}|$$

• Para single-linkage: $\alpha_i = \alpha_i = 0.5$ e $\gamma = -0.5$

Referências

- Tan, P.-N., Steinbach, M., and Kumar, V., Introduction to Data Mining, Capítulo 8. Addison-Wesley, 2006
- Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, 1988
- Everitt, B. S., Landau, S., and Leese, M., Cluster Analysis, Arnold, 4th Edition, 2001.