II. Vorbereitung

Definition

Seien $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3) \in \mathbb{R}^3$

$$a \times b := (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \in \mathbb{R}^3$$

heißt das Kreuzprodukt von a und b

Formal gilt mit $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$:

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

Beispiel

a = (1, 1, 2), b = (1, 1, 0).

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ 1 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} = e_3 + 2e_2 - e_3 - 2e_1 = (-2, 2, 0)$$

Bemerkung (Regeln):

$$b \times a = -(a \times b)$$

$$(\alpha a) \times (\beta b) = \alpha \beta (a \times b) \ \forall \alpha, \beta \in \mathbb{R}$$

$$a \times a = 0$$

$$a \cdot (a \times b) = 0 = b \cdot (a \times b)$$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}^3$, D offen und $F = (P, Q, R) \in C^1(D, \mathbb{R}^3)$.

$$rot F := (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

heißt Rotation von F.

Formal: rot $F = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (P, Q, R)$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}^n, D$ offen, $f = (f_1, f_2, \dots, f_n) \in C^1(D, \mathbb{R}^n)$

$$\operatorname{div} f := \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \dots + \frac{\partial f_n}{\partial x_n}$$

heißt **Divergenz** von f.

Definition

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg. Ist γ in $t_0\in[a,b]$ differenzierbar und ist $\gamma'(t_0)\neq 0$, so heißt $\gamma'(t_0)$ Tangentialvektor von γ in t_0 .