

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»



Кафедра прикладной математики

Лабораторная работа №2

по дисциплине «Уравнения математической физики»

# Решение нелинейных начально-краевых задач

Группа ПМ-92 АРТЮХОВ РОМАН

Вариант 3

Преподаватели ЗАДОРОЖНЫЙ А. Г. ПАТРУШЕВ И. И.

Новосибирск, 2022

## Цель работы

Разработать программу решения нелинейной одномерной краевой задачи методом конечных элементов. Провести сравнение метода простой итерации и метода Ньютона для решения данной задачи.

## Задача (вариант 3)

Уравнение:

$$-div\left(\lambda\left(\frac{\partial u}{\partial x}\right)gradu\right) + \gamma u = f$$

Базисные функции – линейные. Краевые условия всех типов.

### Анализ

Система нелинейных уравнений:

$$A(q)q = b$$
 , где:

$$A_{ij} = \int_{\Omega} \lambda \left( \frac{\partial u(q)}{\partial x} \right) grad\psi_{j} grad\psi_{i} d\Omega + \int_{\Omega} \gamma \psi_{j} \psi_{i} d\Omega + \int_{S_{3}} \beta \psi_{j} \psi_{i} dS$$

$$b_{i} = \int_{\Omega} f \psi_{i} d\Omega + \int_{S} \theta \psi_{i} dS + \int_{S} \beta u_{\beta} \psi_{i} dS$$

# Метод простой итерации

$$u = \sum_{i=1}^{n} q_i \psi_i(x)$$

Поскольку случай одномерный, линейные базисные функции на конечном элементе могут быть записаны в виде:

$$\begin{split} \boldsymbol{\psi}_{k} &= \frac{\boldsymbol{x}_{k+1} - \boldsymbol{x}}{h_{k}}; \ \boldsymbol{\psi}_{k+1} = \frac{\boldsymbol{x} - \boldsymbol{x}_{k}}{h_{k}}; \ \boldsymbol{h}_{k} = \boldsymbol{x}_{k+1} - \boldsymbol{x}_{k} \\ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}} &= \boldsymbol{q}_{1} \frac{\partial \boldsymbol{\psi}_{1} \left( \boldsymbol{x} \right)}{\partial \boldsymbol{x}} + \boldsymbol{q}_{2} \frac{\partial \boldsymbol{\psi}_{2} \left( \boldsymbol{x} \right)}{\partial \boldsymbol{x}} = \frac{\boldsymbol{q}_{2} - \boldsymbol{q}_{1}}{h} \\ \text{Получаем: } \boldsymbol{\lambda} \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}} \right) &= \boldsymbol{\lambda} \left( \frac{\boldsymbol{q}_{2} - \boldsymbol{q}_{1}}{h} \right) \end{split}$$

Вид локальной матрицы будет следующим:

$$A_{ij} = \int_{x_1}^{x_2} \lambda \left( \frac{\partial u(q)}{\partial x} \right) \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx + \int_{x_1}^{x_2} \gamma_k \psi_i \psi_j dx = G_{ij} + M_{ij}$$

Матрица жесткости (2х2):

$$G_{ij} = \int_{x_1}^{x_2} \lambda \left( \frac{q_2 - q_1}{h} \right) \Big|_{x = x_1} \psi_1(x) \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx + \int_{x_1}^{x_2} \lambda \left( \frac{q_2 - q_1}{h} \right) \Big|_{x = x_2} \psi_2(x) \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx$$

$$\lambda_i = \lambda \left( \frac{q_2 - q_1}{h} \right) \Big|_{x = x_1}$$

На диагонали матрицы жесткости:  $\frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} = \frac{1}{h^2}$ 

Вне диагонали матрицы жесткости:  $\frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} = -\frac{1}{h^2}$ 

Остальная часть: 
$$\int\limits_{x_1}^{x_2} \lambda_1 \psi_1(x) dx + \int\limits_{x_1}^{x_2} \lambda_2 \psi_2(x) dx = \frac{h}{2} (\lambda_1 + \lambda_2)$$

Следовательно матрица жесткости выглядит следующим образом:

$$G = \left(\frac{\lambda_1 + \lambda_2}{2h}\right) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Матрица масс:

$$M = \frac{\gamma h}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Вектор правой части:

$$b = \frac{h}{6} \left( \frac{2f(x_k) + f(x_{k+1})}{2f(x_{k+1}) + f(x_k)} \right)$$

### Метод Ньютона

Метод Ньютона основан на линеаризации нелинейных уравнений нашей системы с использованием разложения в ряд Тейлора. Каждый нелинейный член уравнения представляется в виде разложения в ряд Тейлора в окрестности вектора весов q<sup>0</sup>:

$$\begin{split} &A_{ij}\left(q\right)\cdot q_{j}\approx A_{ij}\left(q^{0}\right)\cdot q_{j}^{0}+\sum_{r}\frac{\partial\left(A_{ij}\left(q^{0}\right)\cdot q_{j}\right)}{\partial q_{r}}\left(q_{r}-q_{r}^{0}\right)\\ &b_{i}\left(q\right)\approx b_{i}\left(q^{0}\right)+\sum_{r}\frac{\partial\left(b_{i}q^{0}\right)}{\partial q}\left(q-q_{r}^{0}\right) \end{split}$$

В результате получаем новую СЛАУ  $A^{L}q=b^{L}$ :

Для нашей задачи матрица и правая часть выглядит следующим образом:

$$\begin{split} A_{ij}^{L} &= A_{ij}\left(q^{0}\right) + \sum_{r=1}^{n} \frac{\partial \left(A_{ir}\left(q^{0}\right)\right)}{\partial q_{j}} q_{r}^{0} \\ b_{i}^{L} &= b_{i}\left(q^{0}\right) + \sum_{i=1}^{n} q_{j}^{0} \sum_{r=1}^{n} \frac{\partial \left(A_{ij}\left(q^{0}\right)\right)}{\partial q} q_{r}^{0} \end{split}$$

Выпишем производные:

$$\begin{split} &\frac{\partial A_{11}}{\partial q_1} = \frac{1}{2h} \left( \frac{\partial \lambda_1}{\partial q_1} + \frac{\partial \lambda_2}{\partial q_1} \right); \qquad \frac{\partial A_{12}}{\partial q_1} = -\frac{1}{2h} \left( \frac{\partial \lambda_1}{\partial q_1} + \frac{\partial \lambda_2}{\partial q_1} \right) \\ &\frac{\partial A_{11}}{\partial q_2} = \frac{1}{2h} \left( \frac{\partial \lambda_1}{\partial q_2} + \frac{\partial \lambda_2}{\partial q_2} \right); \qquad \frac{\partial A_{12}}{\partial q_2} = -\frac{1}{2h} \left( \frac{\partial \lambda_1}{\partial q_2} + \frac{\partial \lambda_2}{\partial q_2} \right) \\ &\frac{\partial A_{21}}{\partial q_1} = \frac{\partial A_{12}}{\partial q_1}; \quad \frac{\partial A_{21}}{\partial q_2} = \frac{\partial A_{12}}{\partial q_2} \\ &\frac{\partial A_{22}}{\partial q_1} = \frac{\partial A_{11}}{\partial q_1}; \quad \frac{\partial A_{22}}{\partial q_2} = \frac{\partial A_{11}}{\partial q_2} \end{split}$$

Для выхода из итерационного процесса воспользуемся формулой:

$$\frac{\left\|A\left(q^{k}\right)q^{k}-b\left(q^{k}\right)\right\|}{\left\|b\right\|}<\varepsilon$$

Для ускорения процесса сходимости нелинейной задачи, ищем следующие приближения по формуле:

$$q^{k} = \omega^{k} \overline{q}^{k} + (1 - \omega^{k}) q^{(k-1)}$$

# Учет краевых условий

Для учета первых краевых условий нужно сделать следующее: соответствующий диагональный элемент заменяют единицей, а соответствующую координату вектора правой части значением  $q_i$ , где  $q_i$  – есть первое краевое условие в узле.

$$\lambda \left. \frac{\partial u}{\partial n} \right|_{s_2} = heta$$
 При учете вторых краевых условий идет добавка значения  $heta$  к глобальному вектору.

$$\left(\lambdarac{\partial u}{\partial n}+eta(u-u_eta)
ight|_{S_3}=0$$
 При учете третьих краевых условий идет добавка значения  $eta$  к

диагональному элементу глобальной матрицы и значения  $eta \cdot u_eta$  к глобальному вектору.

#### Helper.cs

```
namespace NonLinear.helper;
public struct Elem
                       /// Структура конечного элемента
{
    public double x1; /// Координата начала КЭ
    public double x2; /// Координата конца КЭ
    public double h;
                      /// Длина КЭ
    public Elem(double _x1, double _x2, double _h) {
        x1 = _x1; x2 = _x2; h = _h;
    public override string ToString() => x^2,24} {h,24};
}
public struct SLAU
                                   /// Структура СЛАУ
    public double[] di, dl, du;
                                   /// Матрица
    public double[] q, q1;
                                   /// Вектора решений
    public double[] f;
                                   /// Правая часть
    public int MaxIter;
                                   /// Максимальное количество итераций
    public double EPS;
                                   /// Точность
    //* Обнуление СЛАУ (левой и правой частей)
    public void Clear() {
        Array.Clear(di, 0, di.Length);
        Array.Clear(dl, 0, dl.Length);
        Array.Clear(du, 0, du.Length);
        Array.Clear(f , 0, f.Length);
    }
    //* Перемножение матрицы на вектор
    public void Mult(double[] vec, out double[] res_vec) {
        res_vec = new double[vec.Length];
        res_{vec[0]} = di[0] * q[0] + du[0] * q[1];
        for (int i = 1; i < vec.Length - 1; i++) {</pre>
            res_vec[i] = di[i] * q[i];
            res_vec[i] += du[i] * q[i + 1];
            res_vec[i] += dl[i] * q[i - 1];
        res_{e}(ec.Length - 1) = di[vec.Length - 1] * q[vec.Length - 1] + dl[vec.Length - 1] * q[vec.Length - 2];
    //* Метод прогонки
    public double[] Progonka() {
        var alpha = new double[q.Length];
        var betta = new double[q.Length];
        // Подсчет альф и бетт
        alpha[0] = -du[0] / di[0];
        betta[0] = f[0] / di[0];
        for (int i = 1; i < q.Length; i++) {</pre>
            alpha[i] = -du[i] / (di[i] + dl[i] * alpha[i - 1]);
            betta[i] = (f[i] - dl[i] * betta[i - 1]) / (di[i] + dl[i] * alpha[i - 1]);
        }
        q[q.Length - 1] = betta[q.Length - 1];
        for (int i = q.Length - 2; i >= 0; i--)
            q[i] = alpha[i] * q[i + 1] + betta[i];
        return q;
    }
public static class Helper
```

```
//: ************ Перечисления ************ :\\
public enum Method {
   Iteration,
    Newton
//: ************ Перечисления *******************************
//* Вычисление нормы вектора
public static double Norm(double[] array) {
    double norm = 0;
    for (int i = 0; i < array.Count(); i++)</pre>
        norm += array[i] * array[i];
   return Sqrt(norm);
}
//* Окно помощи при запуске (если нет аргументов или по команде)
public static void ShowHelp() {
    WriteLine("----Команды----
                                                     \n" +
                                                     \n" +
    "-help
                   - показать справку
    "-i
                                                     \n" +
                     - входной файл
    "-m iteration - метод простой итерации
                                                     \n" +
    "-m newton
                                                     \n" +
                     - метод Ньютона
    "-func 'number' - номер функции
                                                     \n");
}
```

#### Data.cs

```
namespace NonLinear;
public class Data
   //* Данные задачи
   public uint countEl { get; set; } /// Количество КЭ/отрезков
   public double begin { get; set; } /// Начало отрезка
   public double end
                          { get; set; } /// Конец отрезка
   public double k
                          { get; set; }
                                        /// Коэффициент разрядки
   public double gamma { get; set; }
                                        /// Коэффициенты гамма
   public double betta
                         { get; set; }
                                        /// Коэффициенты бетта
   public double[] kraev
                         { get; set; }
                                        /// Краевые условия
   public double[] init_q { get; set; }
                                        /// Начальное приближение
```

#### **Function.cs**

```
namespace NonLinear;
public static class Function
{
    public static uint NumberFunc; /// Номер задачи

    //* Функция u(x,y)
    public static double Absolut(double x)
    {
        switch(NumberFunc)
        {
            case 1: /// test1-evenly (const)
            return 2.5;

            case 2: /// test2-polynom1
            return x;

            case 3: /// test3-polynom2
```

```
return x*x;
        case 4: /// test4-polynom3
        return Pow(x, 3);
        case 5: /// test5_nopolynom
        return Sin(2*x);
    }
    return 0;
}
//* Функция f(x,y)
public static double Func(double x)
{
    switch(NumberFunc)
    {
        case 1: /// test1-evenly (const)
        return 5;
        case 2: /// test2-polynom1
        return 2*x;
        case 3: /// test3-polynom2
        return 2*x*x - 8*x - 8;
        case 4: /// test4-polynom3
        return -34*Pow(x, 3) - 24*x;
        case 5: /// test5_nopolynom
        return 16*Sin(2*x)*Cos(2*x);
    }
    return 0;
}
//* Лямбда от производной l(u`)
public static double Lambda(double diff, double x)
{
    switch(NumberFunc)
    {
        case 1: /// test1-evenly (const)
        return diff + 4;
        case 2: /// test2-polynom1
        return diff + 4;
        case 3: /// test3-polynom2
        return diff + 4;
        case 4: /// test4-polynom3
        return diff + 4;
        case 5: /// test5_nopolynom
        return diff + 4;
    }
    return 0;
}
//* Производная от Лямбды (в зависимости почему берем)
public static double DiffLambda(double diff, double x, double h, uint num_q)
    switch(NumberFunc)
        case 1: /// test1-evenly (const)
        return num_q switch
            1 = -1/h,
            2 \Rightarrow 1/h,
            _ => 0
```

```
};
        case 2: /// test2-polynom1
        return num_q switch
            1 = -1/h,
            2 => 1/h,
            _ => 0
        };
        case 3: /// test3-polynom2
        return num_q switch
            1 = -1/h,
            2 \Rightarrow 1/h,
            _ => 0
        };
        case 4: /// test4-polynom3
        return num_q switch
            1 = -1/h,
            2 => 1/h,
            _ => 0
        };
        case 5: /// test5_nopolynom
        return num_q switch
            1 = -1/h,
            2 \Rightarrow 1/h,
            _ => 0
        };
    }
    return 0;
}
//* Производная абсолютной функции
public static double Diff(double x)
{
    switch(NumberFunc)
        case 1: /// test1-evenly (const)
        return 0;
        case 2: /// test2-polynom1
        return 1;
        case 3: /// test3-polynom2
        return 2*x;
        case 4: /// test4-polynom3
        return 3*Pow(x, 2);
        case 5: /// test5_nopolynom
        return Cos(2*x);
    return 0;
}
```

}

#### **PSolve.cs**

```
public partial class Solve
{
    //* Генерация сетки
    private Elem[] Generate() {
        Elem[] elems = new Elem[data.countEl];
        // Подсчет начального шага
        double _h = data.k == 1
                    ? (data.end - data.begin) / data.countEl
                    : (1 - data.k) * (data.end - data.begin) / (1 - Pow(data.k, data.countEl));
        double x = data.begin; // Текущая позиция
        for (int i = 0; i < data.countEl && x <= data.end; i++) {</pre>
            elems[i] = new Elem(x, x + _h, _h);
            x += _h;
            _h *= data.k;
        StringBuilder grid = new StringBuilder();
        grid.Append($"{"x1",20} {"x2",24} {"h",24}\n");
        grid.Append(String.Join("\n", elems));
        File.WriteAllText($"{path}\\grid.txt", grid.ToString());
        return elems;
    }
    //* Путь к папке, где наход. решение задачи
    public void SetPath(string _path) {
        path = _path;
    public partial void solve();
    private partial void memory();
```

#### Solve.cs

```
public partial class Solve
{
   protected Data
                     data;
                                              /// Данные задачи
   protected Method method;
                                              /// Метод решения (Итерация или Ньютон)
   protected Elem[] elems;
                                              /// Конечные элементы
   protected SLAU
                     slau;
                                              /// Структура СЛАУ
   protected string path { get; set; }
                                              /// Путь к папке с задачей
   public Solve(Data _data, Method _method, uint _funcNumber) {
       Function.NumberFunc = _funcNumber;
       method
                           = _method
       data
                           = _data
   }
   public partial void solve() {
       elems = Generate();
                                        //? Генерация сетки
       memory();
                                        //? Выделение памяти под матрица и вектора
       IMethods task = method switch
                   {
                       Method.Iteration => new Iteration(slau, data, elems),
                       Method.Newton => new Newton(slau, data, elems),
                                        => new Iteration(slau, data, elems)
                   };
       Directory.CreateDirectory($"{path}\\output");
```

```
File.WriteAllText($"{path}\\output\\table_" + $"{task.GetName()}" + ".txt", task.solve());
   }
   private partial void memory() {
        slau.di
                = new double[data.countEl + 1];
        slau.dl
                 = new double[data.countEl + 1];
        slau.du
                 = new double[data.countEl + 1];
                 = new double[data.countEl + 1];
        slau.q
        slau.q1
                 = new double[data.countEl + 1];
        slau.f
                 = new double[data.countEl + 1];
        // Записываем начальное приближение
       Array.Copy(data.init_q, slau.q, slau.q.Length);
   }
}
```

#### IMethods.cs

```
namespace NonLinear.methods;
public interface IMethods
{
    public string GetName();
                                                                           /// Возвращает имя метода
   public string solve();
                                                                           /// Главная функция решения
   public void global();
                                                                           /// Генерация глобальной матрицы
   public (double[][], double[]) local(int _i);
                                                                           /// Генерация локальной матрицы
   public void add_to_global(double[][] _mat, double[] _vec, int _i);
                                                                           /// Занесение локальной в глоабльную
   public void kraev();
                                                                           /// Учет краевых условий
   public void firstKraev(int _i);
                                                                           /// Учет первого краевого
   public void secondKraev(int _i);
                                                                           /// Учет второго краевого
   public void thirdKraev(int _i);
                                                                           /// Учет третьего краевого
                                                                           /// Получение нового приближения (релаксация)
   public double[] newApprox();
   public StringBuilder output();
                                                                           /// Вывод решения
}
```

#### Iteration.cs

```
namespace NonLinear.methods;
public class Iteration : IMethods
{
    double w;
                              /// Параметр релаксации
    private SLAU
                              /// структура СЛАУ
                    slau:
    private Data
                    data;
                              /// Данные задачи
    private Elem[] elems;
                              /// Конечные элементы
    public string GetName() => "Iteration";
    public Iteration(SLAU _slau, Data _data, Elem[] _elems, double _w = 1) {
        slau
                     = _slau;
        data
                     = _data;
        elems
                     = _elems;
                     = _w;
        slau.MaxIter = 1000;
        slau.EPS
                    = 1e-10;
    }
    private bool Check(int iter, bool log = true) {
        global();
        slau.Mult(slau.q, out double[] vec_nev);
        vec_nev = slau.f.Zip(vec_nev, (f, s) => f - s).ToArray();
        double value = Norm(vec_nev) / Norm(slau.f);
        if (log)
```

```
WriteLine($"{iter,5} : {value,10}");
    if (iter > slau.MaxIter) return false;
    if (value < slau.EPS)</pre>
                            return false;
   return true;
}
//: **** Реализация функций интерфейса ***** :\\
public string solve() {
    int Iter = 0; //? Количество итераций
    do {
                                                        //? q1 = q
        Array.Copy(slau.q, slau.q1, slau.q.Length);
                                                         //? Генерация глобальной матрицы
        global();
        slau.q = slau.Progonka();
                                                         //? Решаем СЛАУ методом Прогонки
                                                         //? Получаем новое приближение (релаксация)
        slau.q = newApprox();
    } while (Check(++Iter));
    return output().ToString();
}
public void global() {
    slau.Clear();
                                                              // Очищаем СЛАУ
    for (int index = 0; index < data.countEl; index++) {</pre>
                                                              // Проход по всем КЭ
        (double[][] mat, double[] vec) = local(index);
                                                              // Генерируем локальную матрицу и вектор
        add_to_global(mat, vec, index);
                                                              // Заносим локальное в глобальное
    kraev();
                                                              // Учет краевых
}
public (double[][], double[]) local(int i) {
    var local_vec = new double[2];
    var local_mat = new double[2][];
    for (int j = 0; j < 2; j++) local_mat[j] = new double[2];
    double lam_arg = (slau.q[i + 1] - slau.q[i]) / elems[i].h;
    // + Матрица жесткости
    double value = (Lambda(lam_arg, elems[i].x1) + Lambda(lam_arg, elems[i].x2)) / (2*elems[i].h);
    for (int j = 0; j < 2; j++)
        for (int k = 0; k < 2; k++)
            local_mat[j][k] = j == k
                            ? value
                            : -value;
    // + Матрица масс
    value = data.gamma * elems[i].h / 6.0;
    for (int j = 0; j < 2; j++)
        for (int k = 0; k < 2; k++)
            local_mat[j][k] += j == k
                            ? 2*value
                                 value;
    // Правая часть
    var f = new double[2] { Func(elems[i].x1), Func(elems[i].x2) };
    for (int j = 0, k = 1; j < 2; j++, k--)
        local_vec[j] = (elems[i].h / 6.0) * (2*f[j] + f[k]);
   return (local_mat, local_vec);
}
public void add_to_global(double[][] mat, double[] vec, int i) {
    slau.di[i]
                += mat[0][0];
    slau.di[i + 1] += mat[1][1];
    slau.du[i]
                 += mat[0][1];
    slau.dl[i + 1] += mat[1][0];
```

```
slau.f[i] += vec[0];
    slau.f[i + 1] += vec[1];
public void kraev() {
    for (int i = 0; i < data.kraev.Length; i++) {</pre>
        switch (data.kraev[i])
            case 1: firstKraev(i); break;
            case 2: secondKraev(i); break;
            case 3: thirdKraev(i); break;
        }
   }
}
public void firstKraev(int i) {
    switch(i) {
        // Левая граница
        case 0:
            slau.di[0] = 1;
            slau.du[0] = 0;
            slau.f[0] = Absolut(elems[0].x1);
        break;
        // Правая граница
        case 1:
            slau.di[data.countEl] = 1;
            slau.dl[data.countEl] = 0;
            slau.f [data.countEl] = Absolut(elems[data.countEl - 1].x2);
        break;
   }
}
public void secondKraev(int i) {
    switch(i) {
        // Левая граница
        case 0:
            double lam_arg = (slau.q[1] - slau.q[0]) / elems[0].h;
            slau.f[0] -= Lambda(lam_arg, elems[0].x1) * Diff(elems[0].x1);
        break;
        // Правая граница
            lam_arg = (slau.q[data.countEl] - slau.q[data.countEl - 1]) / elems[data.countEl - 1].h;
            slau.f[data.countEl] += Lambda(lam_arg, elems[data.countEl - 1].x2) * Diff(elems[data.countEl - 1].x2);
   }
public void thirdKraev(int i)
{
    switch(i) {
       // Левая граница
        case 0:
            slau.di[0] += data.betta;
            double lam_arg = (slau.q[1] - slau.q[0]) / elems[0].h;
            double res = Lambda(lam_arg, elems[0].x1) * (-1) * Diff(elems[0].x1);
            slau.f[0] += data.betta * (res + data.betta * Absolut(elems[0].x1));
        break;
        // Правая граница
        case 1:
            slau.di[data.countEl] += data.betta;
            lam_arg = (slau.q[data.countEl] - slau.q[data.countEl - 1]) / elems[data.countEl - 1].h;
            res = Lambda(lam_arg, elems[data.countEl - 1].x2) * Diff(elems[data.countEl - 1].x2);
            slau.f[data.countEl] += data.betta * (res + data.betta * Absolut(elems[data.countEl - 1].x2));
        break;
```

```
public double[] newApprox() {
           return slau.q.Zip(slau.q1, (f, s) => w*f + (1 - w)*s).ToArray();
public StringBuilder output() {
           var table = new StringBuilder();
           string margin = String.Join("", Enumerable.Repeat("-", 16));
           table.Append(String.Join("", Enumerable.Repeat("-", 52)) + "\n");
           table.Append("|U"",-14 | U^{"}",-12 | |U^{-}U| {" ",-7}|\n");
           table.Append($"|" + margin + "|" + margin + "|" + margin + "|\n");
           for (int i = 0; i < data.countEl; i++)</pre>
                       table.Append($"|{String.Format("{0,16}", slau.q[i].ToString("E6"))}" +
                                                          $"|{String.Format("{0,16}", Absolut(elems[i].x1).ToString("E6"))}"
                                                          $"|{String.Format("{0,16}", Abs(Absolut(elems[i].x1) - slau.q[i]).ToString("E6"))}|\n");
           table.Append($"|{String.Format("{0,16}", slau.q[data.countEl].ToString("E6"))}" +
                                                 $"|{String.Format("{0,16}", Absolut(elems[data.countEl - 1].x2).ToString("E6"))}"
                                                 "|\{String.Format("\{0,16\}", Abs(Absolut(elems[data.countEl - 1].x2) - slau.q[data.countEl]).ToString(" - 1].x3) - slau.q[data.countEl]).ToString(" - 1].x
           table.Append(String.Join("", Enumerable.Repeat("-", 52)) + "\n");
           return table;
}
```

#### **Newton.cs**

```
namespace NonLinear.methods;
public class Newton : IMethods
{
    double w;
                              /// Параметр релаксации
    private SLAU
                              /// структура СЛАУ
                    slau:
    private Data
                    data;
                              /// Данные задачи
    private Elem[] elems;
                              /// Конечные элементы
    public string GetName() => "Newton";
    public Newton(SLAU _slau, Data _data, Elem[] _elems, double _w = 1) {
                     = _slau;
        slau
        data
                     = _data;
        elems
                     = _elems;
                     = _w;
        slau.MaxIter = 1000;
        slau.EPS
                    = 1e-10;
    private bool Check(int iter, bool log = true) {
        global();
        slau.Mult(slau.q, out double[] vec_nev);
        vec_nev = slau.f.Zip(vec_nev, (f, s) => f - s).ToArray();
        double value = Norm(vec_nev) / Norm(slau.f);
        if (log)
            WriteLine($"{iter,5} : {value,10}");
        if (iter > slau.MaxIter) return false;
        if (value < slau.EPS)</pre>
                                  return false;
        return true;
```

```
void AddNewton(ref double[] mat_newton, int i) {
    double lam_arg = (slau.q[i + 1] - slau.q[i]) / elems[i].h;
    double diff_l_q1_x1 = DiffLambda(lam_arg, elems[i].x1, elems[i].h, 1);
    double diff_l_q1_x2 = DiffLambda(lam_arq, elems[i].x2, elems[i].h, 1);
    double diff_l_q2_x1 = DiffLambda(lam_arg, elems[i].x1, elems[i].h, 2);
    double diff_l_q2_x2 = DiffLambda(lam_arg, elems[i].x2, elems[i].h, 2);
    // Матрица 1х4
    // A11_q1=A22_q1
    // A11_q2=A22_q2
    // A12_q1=A21_q1
    // A12_q2=A21_q2
    mat_newton[0] = (diff_l_q1_x1 + diff_l_q1_x2) / (2 * elems[i].h);
    mat_newton[1] = (diff_l_q2_x1 + diff_l_q2_x2) / (2 * elems[i].h);
    mat_newton[2] = -(diff_l_q1_x1 + diff_l_q1_x2) / (2 * elems[i].h);
    mat_newton[3] = -(diff_l_q2_x1 + diff_l_q2_x2) / (2 * elems[i].h);
}
//: **** Реализация функций интерфейса **** :\\
public string solve() {
    int Iter = 0; //? Количество итераций
    do {
        Array.Copy(slau.q, slau.q1, slau.q.Length);
                                                        //? q1 = q
                                                        //? Генерация глобальной матрицы
        global();
        slau.q = slau.Progonka();
                                                        //? Решаем СЛАУ методом Прогонки
        slau.q = newApprox();
                                                        //? Получаем новое приближение (релаксация)
    } while (Check(++Iter));
   return output().ToString();
}
public void global() {
    slau.Clear();
                                                              // Очищаем СЛАУ
    for (int index = 0; index < data.countEl; index++) {</pre>
                                                             // Проход по всем КЭ
        (double[][] mat, double[] vec) = local(index);
                                                             // Генерируем локальную матрицу и вектор
        add_to_global(mat, vec, index);
                                                             // Заносим локальное в глобальное
    }
                                                             // Учет краевых
    kraev();
}
public (double[][], double[]) local(int i) {
    var local_vec = new double[2];
    var local_mat = new double[2][];
    var mat_newton = new double[4];
    for (int j = 0; j < 2; j++) local_mat[j] = new double[2];
    double lam_arg = (slau.q[i + 1] - slau.q[i]) / elems[i].h;
    AddNewton(ref mat_newton, i);
    // + Матрица жесткости
    double value = (Lambda(lam_arg, elems[i].x1) + Lambda(lam_arg, elems[i].x2)) / (2*elems[i].h);
    local_mat[0][0] = value + (mat_newton[0]*slau.q[i] + mat_newton[2]*slau.q[i + 1]);
    local_mat[0][1] = -value + (mat_newton[1]*slau.q[i] + mat_newton[3]*slau.q[i + 1]);
    local_mat[1][0] = -value + (mat_newton[2]*slau.q[i] + mat_newton[0]*slau.q[i + 1]);
    local_mat[1][1] = value + (mat_newton[3]*slau.q[i] + mat_newton[1]*slau.q[i + 1]);
    // + Матрица масс
    value = (data.gamma * elems[i].h) / 6.0;
    for (int j = 0; j < 2; j++)
        for (int k = 0; k < 2; k++)
            local_mat[j][k] += j == k
                            ? 2*value
                                 value;
    // Правая часть
```

```
var f = new double[2] { Func(elems[i].x1), Func(elems[i].x2) };
                                      * (mat_newton[0]*slau.q[i] + mat_newton[1]*slau.q[i + 1]) +
    double add_newton_b0 = slau.q[i]
                           slau.q[i + 1] * (mat_newton[2]*slau.q[i] + mat_newton[3]*slau.q[i + 1]);
                                       * (mat_newton[2]*slau.q[i] + mat_newton[3]*slau.q[i + 1]) +
    double add_newton_b1 = slau.q[i]
                           slau.q[i + 1] * (mat_newton[0]*slau.q[i] + mat_newton[1]*slau.q[i + 1]);
    local\_vec[0] = (elems[i].h / 6.0) * (2*f[0] + f[1]) + add\_newton\_b0;
    local\_vec[1] = (elems[i].h / 6.0) * (2*f[1] + f[0]) + add\_newton\_b1;
    return (local_mat, local_vec);
}
public void add_to_global(double[][] mat, double[] vec, int i) {
    slau.di[i]
                   += mat[0][0];
    slau.di[i + 1] += mat[1][1];
    slau.du[i]
                  += mat[0][1];
    slau.dl[i + 1] += mat[1][0];
    slau.f[i]
                  += vec[0];
    slau.f[i + 1] += vec[1];
}
public void kraev() {
    for (int i = 0; i < data.kraev.Length; i++) {</pre>
        switch (data.kraev[i])
            case 1: firstKraev(i); break;
            case 2: secondKraev(i); break;
            case 3: thirdKraev(i); break;
        }
    }
}
public void firstKraev(int i) {
    switch(i) {
        // Левая граница
        case 0:
            slau.di[0] = 1;
            slau.du[0] = 0;
            slau.f[0] = Absolut(elems[0].x1);
        break;
        // Правая граница
        case 1:
            slau.di[data.countEl] = 1;
            slau.dl[data.countEl] = 0;
            slau.f [data.countEl] = Absolut(elems[data.countEl - 1].x2);
        break;
    }
}
public void secondKraev(int i) {
    switch(i) {
        // Левая граница
        case 0:
            double lam_arg = (slau.q[1] - slau.q[0]) / elems[0].h;
            slau.f[0] -= Lambda(lam_arg, elems[0].x1) * Diff(elems[0].x1);
        break;
        // Правая граница
        case 1:
            lam_arg = (slau.q[data.countEl] - slau.q[data.countEl - 1]) / elems[data.countEl - 1].h;
            slau.f[data.countEl] += Lambda(lam_arg, elems[data.countEl - 1].x2) * Diff(elems[data.countEl - 1].x2);
        break;
    }
}
```

```
public void thirdKraev(int i)
    switch(i) {
        // Левая граница
        case 0:
            slau.di[0] += data.betta;
            double lam_arg = (slau.q[1] - slau.q[0]) / elems[0].h;
            double res = Lambda(lam_arg, elems[0].x1) * (-1) * Diff(elems[0].x1);
            slau.f[0] += data.betta * (res + data.betta * Absolut(elems[0].x1));
        break;
        // Правая граница
        case 1:
            slau.di[data.countEl] += data.betta;
            lam_arg = (slau.q[data.countEl] - slau.q[data.countEl - 1]) / elems[data.countEl - 1].h;
            res = Lambda(lam_arg, elems[data.countEl - 1].x2) * Diff(elems[data.countEl - 1].x2);
            slau.f[data.countEl] += data.betta * (res + data.betta * Absolut(elems[data.countEl - 1].x2));
        break;
    }
}
public double[] newApprox() {
    return slau.q.Zip(slau.q1, (f, s) => w*f + (1 - w)*s).ToArray();
public StringBuilder output() {
    var table = new StringBuilder();
    string margin = String.Join("", Enumerable.Repeat("-", 16));
    table.Append(String.Join("", Enumerable.Repeat("-", 52)) + "\n");
    table.Append($"|U{" ",-14} | U`{" ",-12} | |U`- U| {" ",-7}|\n");
    table.Append($"|" + margin + "|" + margin + "|" + margin + "|\n");
    for (int i = 0; i < data.countEl; i++)</pre>
        table.Append($"|{String.Format("{0,16}", slau.q[i].ToString("E6"))}" +
                    $"|{String.Format("{0,16}", Absolut(elems[i].x1).ToString("E6"))}"
                    '' = (String.Format('', 0, 16)'', Abs(Absolut(elems[i].x1) - slau.q[i]).ToString(''E6'')) \n'');
    table.Append($"|{String.Format("{0,16}", slau.q[data.countEl].ToString("E6"))}" +
                 $"|{String.Format("{0,16}", Absolut(elems[data.countEl - 1].x2).ToString("E6"))}"
                 $"|{String.Format("{0,16}", Abs(Absolut(elems[data.countEl - 1].x2) - slau.q[data.countEl]).ToString("
    table.Append(String.Join("", Enumerable.Repeat("-", 52)) + "\n");
    return table;
```

#### Program.cs

```
if (args.Length == 0) throw new ArgumentException("Not found arguments!");
if (args[0] == "-help") {
    ShowHelp(); return;
}

string json = File.ReadAllText(args[1]);
Data data = JsonConvert.DeserializeObject<Data>(json)!;
if (data is null) throw new FileNotFoundException("File uncorrected!");

Solve task = args[3] switch
{
    "iteration" => new Solve(data, Method.Iteration, uint.Parse(args[5])),
```

### Данные задачи (тест с константой):

```
u = 2.5

f = 5

\gamma = 2, \beta = 1

\lambda(u') = u' + 4

Кол. K\Im: 5

Сетка: [0;1]

Коеф. k = 1

Краевые условия: [1,1]
```

### Метод простой итерации:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 2,500000E+000 | 2,500000E+000 | 0,000000E+000 |
| 2,500000E+000 | 2,500000E+000 | 8,881784E-016 |
| 2,500000E+000 | 2,500000E+000 | 8,881784E-016 |
| 2,500000E+000 | , ,           | 8,881784E-016 |
| 2,500000E+000 |               | 4,440892E-016 |
| 2,500000E+000 | 2,500000E+000 | 0,000000E+000 |

#### Количество итераций: 1

### Данные задачи (Полином первой степени):

```
u = x
f = 2x
\gamma = 2, \beta = 1
\lambda(u') = u' + 4
Kon. K9: 5
Cemka: [0;1]
Koe\phi. k = 1
Kpaeвые условия: [1,1]
```

### Метод простой итерации:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 2,000000E-001 | 2,000000E-001 | 5,551115E-017 |
| 4,000000E-001 | 4,000000E-001 | 1,110223E-016 |
| 6,000000E-001 | 6,000000E-001 | 0,000000E+000 |
| 8,000000E-001 | 8,000000E-001 | 0,000000E+000 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 1

### Метод Ньютона:

| U |               | U`            | U`- U         |
|---|---------------|---------------|---------------|
|   |               |               |               |
|   | 2,500000E+000 | 2,500000E+000 | 0,000000E+000 |
|   | 2,500000E+000 | 2,500000E+000 | 8,881784E-016 |
|   | 2,500000E+000 | 2,500000E+000 | 8,881784E-016 |
|   | 2,500000E+000 | 2,500000E+000 | 8,881784E-016 |
|   | 2,500000E+000 | 2,500000E+000 | 4,440892E-016 |
|   | 2,500000E+000 | 2,500000E+000 | 0,000000E+000 |
|   |               |               |               |

Количество итераций: 1

### Метод Ньютона:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 2,000000E-001 | 2,000000E-001 | 5,551115E-017 |
| 4,000000E-001 | 4,000000E-001 | 1,110223E-016 |
| 6,000000E-001 | 6,000000E-001 | 0,000000E+000 |
| 8,000000E-001 | 8,000000E-001 | 0,000000E+000 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 1

### Данные задачи (Полином второй степени):

$$u = x^2$$
 $f = 2x^2 - 8x - 8$ 
 $\gamma = 2, \beta = 1$ 
 $\lambda(u') = u' + 4$ 
 $K$ ол.  $K$ Э:  $5$ 
 $C$ ет $\kappa$ a:  $[0;1]$ 
 $K$ ое $\phi$ .  $k = 1$ 
 $K$ раевые условия:  $[1,1]$ 

#### Метод простой итерации:

| U             | U`                | U`- U         |
|---------------|-------------------|---------------|
|               |                   |               |
| 0,000000E+000 | 0,000000E+000     | 0,000000E+000 |
| 4,000000E-002 | 4,000000E-002     | 3,030076E-013 |
| 1,600000E-001 | .   1,600000E-001 | 7,352452E-013 |
| 3,600000E-001 | .  3,600000E-001  | 1,496525E-012 |
| 6,400000E-001 | 6,400000E-001     | 3,664513E-012 |
| 1,000000E+000 | 1,000000E+000     | 0,000000E+000 |
|               |                   |               |

Количество итераций: 20

### Данные задачи (Полином третьей степени):

```
f = -34x^3 - 24x
\gamma = 2, \beta = 1
\lambda(u') = u' + 4
Kon. K\Theta: 5
Cem\kappa a: [0;1]
Koe\phi. k = 1
Kpaeвые условия: [1,1]
```

 $u = x^3$ 

### Метод простой итерации:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 2,454818E-003 | 8,000000E-003 | 5,545182E-003 |
| 5,510813E-002 | 6,400000E-002 | 8,891870E-003 |
| 2,070152E-001 | 2,160000E-001 | 8,984788E-003 |
| 5,061477E-001 | 5,120000E-001 | 5,852274E-003 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 23

### Метод Ньютона:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 4,000000E-002 | 4,000000E-002 | 1,517494E-012 |
| 1,600000E-001 | 1,600000E-001 | 1,706774E-012 |
| 3,600000E-001 | 3,600000E-001 | 6,171286E-012 |
| 6,400000E-001 | 6,400000E-001 | 1,045175E-011 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 4

#### Метод Ньютона:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 2,454818E-003 | 8,000000E-003 | 5,545182E-003 |
| 5,510813E-002 | 6,400000E-002 | 8,891870E-003 |
| 2,070152E-001 | 2,160000E-001 | 8,984788E-003 |
| 5,061477E-001 | 5,120000E-001 | 5,852274E-003 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 5

### Данные задачи (Не полиноминальная функция):

| $\int u = \sin(2x)$       | $\int u = \sin(2x)$           | $\int u = \sin(2x)$         |
|---------------------------|-------------------------------|-----------------------------|
| $f = 16\sin(2x)\cos(2x)$  | $\int f = 16\sin(2x)\cos(2x)$ | $f = 16\sin(2x)\cos(2x)$    |
| $\gamma = -16, \beta = 1$ | $\gamma = -16, \ \beta = 1$   | $\gamma = -16, \ \beta = 1$ |
| $\lambda(u') = u' + 4$    | $\lambda(u') = u' + 4$        | $\lambda(u') = u' + 4$      |
| Кол. КЭ: 5                | Кол. КЭ: 10                   | Кол. КЭ : <mark>20</mark>   |
| Сетка: [0;1]              | Сетка: [0;1]                  | Сетка: [0;1]                |
| $Koe\phi$ . $k=1$         | $Koe\phi$ . $k=1$             | $Koe\phi.$ $k=1$            |
| [1,1] Краевые условия:    | [1,1] Краевые условия:        | [1,1] Краевые условия:      |

#### Метод простой итерации:

| U(5)          | U(10)         | U(20)         | U`            |
|---------------|---------------|---------------|---------------|
| 3,810239E-001 | 3,872491E-001 | 3,888715E-001 | 3,894183E-001 |
|               |               |               |               |
| U^- U(5)      | U`- U(10)     | U`- U(20)     | -<br> <br>    |
| 8,394444E-003 | 2,169228E-003 | 5,468633E-004 |               |

(Количество КЭ -> Количество итераций)

5 -> 24; 10 -> 25; 20 -> 25

#### Метод Ньютона:



(Количество КЭ -> Количество итераций)

5 -> 5; 10 -> 5; 20 -> 5

# Прогоним некоторые тесты на неравномерной сетке

Тест с полиномом первой степени

Сетка (k=1.4):

| x1                  | x2                  | h                   |
|---------------------|---------------------|---------------------|
| 0                   | 0,0913609121473469  | 0,0913609121473469  |
| 0,0913609121473469  | 0,21926618915363255 | 0,12790527700628565 |
| 0,21926618915363255 | 0,39833357696243243 | 0,1790673878087999  |
| 0,39833357696243243 | 0,6490279198947523  | 0,25069434293231985 |
| 0,6490279198947523  | 1                   | 0,3509720801052478  |

### Метод простой итерации:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 9,136091E-002 | 9,136091E-002 | 2,775558E-017 |
| 2,192662E-001 | 2,192662E-001 | 2,775558E-017 |
| 3,983336E-001 | 3,983336E-001 | 0,000000E+000 |
| 6,490279E-001 | 6,490279E-001 | 0,000000E+000 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 1

# Тест с полиномом второй степени

Сетка такая же

### Метод простой итерации:

| U | (             | n,            | U`- U         |
|---|---------------|---------------|---------------|
|   |               |               |               |
|   | 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
|   | 7,989164E-003 | 8,346816E-003 | 3,576523E-004 |
|   | 4,733860E-002 | 4,807766E-002 | 7,390652E-004 |
|   | 1,576307E-001 | 1,586696E-001 | 1,038965E-003 |
|   | 4,202423E-001 | 4,212372E-001 | 9,949189E-004 |
|   | 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|   |               |               |               |

Количество итераций: 18

### Метод Ньютона:

| U             | U`            | U`- U         |  |
|---------------|---------------|---------------|--|
|               |               |               |  |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |  |
| 9,136091E-002 | 9,136091E-002 | 2,775558E-017 |  |
| 2,192662E-001 | 2,192662E-001 | 2,775558E-017 |  |
| 3,983336E-001 | 3,983336E-001 | 0,000000E+000 |  |
| 6,490279E-001 | 6,490279E-001 | 0,000000E+000 |  |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |  |
|               |               |               |  |

Количество итераций: 1

### Метод Ньютона:

| U             | U`            | U`- U         |
|---------------|---------------|---------------|
|               |               |               |
| 0,000000E+000 | 0,000000E+000 | 0,000000E+000 |
| 7,989164E-003 | 8,346816E-003 | 3,576523E-004 |
| 4,733860E-002 | 4,807766E-002 | 7,390652E-004 |
| 1,576307E-001 | 1,586696E-001 | 1,038965E-003 |
| 4,202423E-001 | 4,212372E-001 | 9,949189E-004 |
| 1,000000E+000 | 1,000000E+000 | 0,000000E+000 |
|               |               |               |

Количество итераций: 4

# Проведем сходимость от параметра релаксации

На тесте с полиномом второй степени, на равномерной сетке:

|     | Количество итераций    |               |  |
|-----|------------------------|---------------|--|
| ω   | Метод простой итерации | Метод Ньютона |  |
| 0.1 | 222                    | 216           |  |
| 0.2 | 105                    | 102           |  |
| 0.3 | 66                     | 64            |  |
| 0.4 | 46                     | 44            |  |
| 0.5 | 34                     | 33            |  |
| 0.6 | 26                     | 25            |  |
| 0.7 | 20                     | 19            |  |
| 0.8 | 15                     | 15            |  |
| 0.9 | 14                     | 11            |  |
| 1   | 20                     | 4             |  |

# График



# Вывод

Метод Ньютона решает быстрее нелинейную систему по количеству итераций чем метод простой итерации. Но построение матрицы и получение формул у метода Ньютона значительно сложнее.