Exámenes

Índice

1.	Examen:	Operaciones con polinomios]
2.	Examen:	Factorización de polinomios	9
3.	Examen:	Operaciones con fracciones de polinomios	4

1. Examen: Operaciones con polinomios

- 1. Si p(x) y q(x) son dos polinomios, entonces
 - a) grad (p(x) + q(x)) = grad p(x) + grad q(x)
 - b) grad $(p(x) + q(x)) \le \max \{ \text{grad } p(x), \text{grad } q(x) \}$
 - c) grad $(p(x) \cdot q(x)) = \text{grad } p(x) \cdot \text{grad } q(x)$
 - d) grad $(p(x) \cdot q(x)) = \text{grad } (p(x) + q(x))$
- 2. De las siguientes expresiones, ¿cuál es un polinomio de $\mathbb{Z}[x]$?
 - a) $3x^4 2x + \sqrt{2}$
 - b) $2x^{-3} + x^2 2x + 1$
 - c) $x^5 \frac{8}{2}x^3 4x 1$
 - d) $3\sqrt{x^3} + 2x^2 + x 1$
- 3. Si $p(x) = 2x^3 3x^2 + 4x 1$, entonces
 - a) p(-1) = -4
 - b) $p(\sqrt{2}) = -7$
 - c) $p(\frac{1}{2}) = -\frac{11}{8}$
 - d) Ninguna de las anteriores
- 4. Sabiendo que $p(x) = 3x^3 5x^2 + 5x + 1$ y $q(x) = Ax^3 + (B C)x^2 + (2A + B + C)x + 1$. Entonces p(x) = q(x) si
 - a) A = 3, B = -3, C = 2
 - b) A = 3, B = 2, C = -3
 - c) A = 3, B = C = 2
 - d) Ninguna de las anteriores
- 5. Dada la siguiente potencia

$$\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)^{21}$$

entonces:

- a) El término general de su desarrollo por la fórmula de Newton es $\binom{21}{k}\left(\sqrt{2}\right)^{23-2k}$
- b) El término undécimo de su desarrollo es $2\binom{21}{10}\sqrt{2}$

- c) El último término de su desarrollo es $\frac{1}{1024\sqrt{2}}$
- d) Ninguna de las anteriores
- 6. En el desarrollo por la fórmula de Newton de la potencia

$$\left(2x+\frac{1}{2}\right)^{15}$$

se cumple:

- a) El término cuarto del desarrollo es $\binom{15}{3} \cdot x^{12}$
- b) El término independiente de x en el desarrollo es 2^{-15}
- c) El coeficiente del término de lugar 14 es $\binom{15}{13} \cdot 2^{-9}$
- d) El término en que aparece x^{10} es $16 \cdot \binom{15}{5} \cdot x^{10}$
- 7. Calculando los productos indicados

$$(x-1+\sqrt{2})\cdot(x-1-\sqrt{2})\cdot(x+1+\sqrt{2})\cdot(x+1-\sqrt{2})$$

y expresando el resultado en forma de polinomio, se obtiene

- a) $x^4 6x^2 1$
- b) $x^4 + 6x^2 + 1$
- c) $x^4 6x^2 + 1$
- d) $x^4 + 6x^2 1$
- 8. El cociente c(x) y el resto r(x) de dividir $12x^4 7x^3 74x^2 + 7x + 10$ por $3x^2 7x 4$ son

a)
$$c(x) = x^2 + x + 1$$
 y $r(x) = x - 1$

b)
$$c(x) = 4x^2 + 7x - 3 \text{ y } r(x) = 7x - 1$$

c)
$$c(x) = x^2 + x + 1$$
 y $r(x) = 2x - 2$

d)
$$c(x) = 4x^2 + 7x - 3 \text{ y } r(x) = 14x - 2$$

9. Dados los polinomios

$$p(x) = 6x^3 + 9x^2 + 2x + 3$$

$$q(x) = 2x^3 + 3x^2 + 4x + 6$$

entonces:

a) m.c.d.
$$(p(x), q(x)) = x + \frac{3}{2}$$

b) m.c.d.
$$(p(x), q(x)) = x^2 + 2$$

c) m.c.d.
$$(p(x), q(x)) = x^3 + \frac{3}{2}x^2$$

- d) Ninguna de las anteriores
- 10. Si $x^3 3x^2 + x a$ es divisible por $x^2 + 1$, entonces

$$a) \ a = 4$$

b)
$$a = 3$$

c)
$$a = 2$$

$$d) \ a = 1$$

2. Examen: Factorización de polinomios

- 1. Si un polinomio p(x) cumple p(a) = 0 para un cierto número real, entonces
 - a) p(x) es divisible por x-a
 - b) p(x) es divisible por x + a
 - c) p(x) no es divisible por x a
 - d) No se puede asegurar nada si no sabemos el valor de a
- 2. En la siguiente división

$$\begin{array}{c|c} p(x) & x+a \\ \hline R & c(x) \end{array}$$

se cumple:

- a) p(a) = c(a)
- b) p(-a) = R
- c) p(a) = R
- $d) \ p(-a) = c(a)$
- 3. Si un polinomio p(x) tiene todos sus coeficientes enteros y -3 es una de sus raíces, entonces
 - a) Su término independiente puede ser 8
 - b) Su término independiente puede ser 9
 - c) Su término independiente puede ser cualquier número negativo
 - d) p(3) = 0
- 4. El cociente c(x) y el resto r(x) de dividir $\sqrt{2}x^4 4\sqrt{2}$ por $x + \sqrt{2}$ es
 - a) $c(x) = \sqrt{2}x^3 + 2x^3 + 2\sqrt{2}x + 4 \text{ y } r(x) = 0$
 - b) $c(x) = \sqrt{2}x^3 + 2x^3 + 2\sqrt{2}x + 4 \text{ v } r(x) = \sqrt{2}$
 - c) $c(x) = \sqrt{2}x^3 2x^2 + 2\sqrt{2}x 4 \text{ y } r(x) = 0$
 - d) $c(x) = \sqrt{2}x^3 2x^2 + 2\sqrt{2}x 4$ y $r(x) = -\sqrt{2}$
- 5. ¿Cuál de los siguientes polinomios es divisible por x-2?
 - a) $x^2 + 2x + 1$
 - b) $x^2 + x 2$
 - c) $x^3 3x + 2$
 - d) $x^6 64$
- 6. Si el resto de dividir $p(x) = x^3 + ax^2 bx + 6$ por x 1 es 5 y el de dividirlo por x + 1 es 3, entonces:
 - a) a = -2 y b = 0
 - b) a = -2 y b = -4
 - c) a = 2 y b = -4
 - a = 2 y b = -2
- 7. Un polinomio tiene resto 5 al dividirlo por x-3 y también al dividirlo por x+1. ¿Cuál es el resto de dividirlo por (x-3)(x+1)?
 - a) 3x + 5
 - b) x + 5
 - c) 5

- d) No podemos hallarlo porque faltan datos
- 8. Las soluciones reales de la ecuación

$$x^6 - x^5 - 6x^4 - x^2 + x + 6 = 0$$

son:

- a) -2, -1, 1 y 2
- b) -2, -1, 1 y 3
- c) -3, -1, 1 y 2
- d) Ninguna de las anteriores
- 9. La descomposición factorial del polinomio $p(x) = 4x^4 17x^2 + 4$ es
 - a) 4(x-1)(x+1)(x-2)(x+2)
 - b) $4(x^2+1)(x-2)(x+2)$
 - c) $4(x^2+1)(x^2+4)$
 - d) $4(x-2)(x+2)(x-\frac{1}{2})(x+\frac{1}{2})$
- 10. ¿Cuál de los siguientes polinomios tiene -2 como raíz doble, 0 como raíz triple y 1 como raíz de multiplicidad 4?
 - a) $(x-2)^2(x+1)^4$
 - b) $x(x+2)^2(x-1)^4$
 - c) $x^3(x+2)^2(x-1)^4$
 - d) $x^3(x-2)^2(x+1)^4$

3. Examen: Operaciones con fracciones de polinomios

1. La fracción algebraica

$$\frac{x^2 + x}{x^2 + 2x}$$

es equivalente a:

- $a) \frac{x+1}{x+2}$
- $b) \frac{x}{2x}$
- $c) \frac{x^3}{2x^3}$
- $d) \frac{x}{x+2}$
- 2. ¿Cuál es la fracción irreducible, equivalente a

$$\frac{x^2 - 25}{x^2 + 10x + 25}$$

- $a) \frac{1}{10x}$
- $b) \ \frac{x+5}{x-5}$
- $c) \frac{x-5}{x+5}$
- d) Ninguna de las anteriores
- 3. Al simplificar la siguiente fracción algebraica

$$\frac{2x^4+3x^3-4x^2-4x+3}{2x^5+x^3+2x^2-10x+5}$$

se obtiene:

- a) $\frac{2x-3}{2x^2+5}$
- b) $\frac{2x+3}{2x^2+5}$
- $c) \frac{2x+3}{2x^2+1}$
- $d) \frac{2x-1}{2x^2+1}$
- 4. Al efectuar las operaciones indicadas y simplificar

$$\frac{x+1}{2x-2} - \frac{4x}{x^2-1} - \frac{x^2+1}{1-x^2} - \frac{x-1}{2x+2}$$

se obtiene:

- $a) \frac{x-1}{x+1}$
- $b) \ \ \tfrac{-1}{x+1}$
- $c) \frac{x}{x+1}$
- $d) \ \frac{x+1}{x-1}$
- 5. Al efectuar las operaciones indicadas y simplificar

$$\left(\frac{x}{x+1} + \frac{x-1}{x}\right) : \left(\frac{x}{x+1} - \frac{x-1}{x}\right)$$

se obtiene:

- a) -1
- b) 1
- c) $2x^2 1$
- $d) -2x^2 + 1$
- 6. Dada la siguiente gráfica de una función polinómica de tercer grado f

entonces, ¿cuál de las siguientes afirmaciones es falsa?

- $a)\,$ La función es decreciente para 0 < x < 3
- b) Dominio de f es \mathbb{R}
- c) Para x < -2 la función es negativa
- d) 1 tiene dos antiimágenes
- 7. Dada la siguiente gráfica de una función cuadrática f

entonces, ¿cuál de las siguientes afirmaciones es falsa?

- a) La función presenta un punto de ordenada máxima en x=2 y su valor es 5
- b) La gráfica de esta función es la parábola de ecuación $y=-x^2+4x+1$
- c) La función es negativa para $2 \sqrt{5} < x < 2 + \sqrt{5}$
- d) La función es creciente x < 2
- 8. Dada la siguiente gráfica de una función cuadrática f

¿cuál de las siguientes características corresponde a dicha gráfica?

- a) La función es positiva para -1 < x < 3
- b) La función tiene un punto de ordenada mínima en x=1 cuyo valor es 2
- c) La función es creciente para x < 1
- d) La gráfica de esta función es la parábola de ecuación $y = x^2 2x 3$
- 9. Dada la función cuadrática f definida por $f(x) = x^2 + 2x + k$, entonces:
 - a) Su gráfica corta al eje de abscisas en un punto si k=1
 - b) Su gráfica corta el eje de abscisas en dos puntos si k>1
 - c) Su gráfica no corta al eje de abscisas si k < 1
 - d) Ninguna de las anteriores
- 10. Dada las siguientes gráficas de dos funciones

¿cuál de las siguientes afirmaciones es falsa?

- a) La gráfica de la función lineal es la recta de ecuación $y=-\frac{3}{4}x$
- b) La gráfica de la función afín es la recta de ecuación $y=\frac{3}{2}x-1$
- $c) \ \frac{12}{17}$ tiene la misma imagen en ambas funciones
- d) Las dos funciones son negativas $(0,\frac{3}{2})$