Step 1

import pandas as pd
import seaborn as sns

from google.colab import files
uploaded = files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving Churn Modelling.csv to Churn Modelling.csv

df=pd.read_csv("Churn_Modelling.csv")
df

3		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
	0	1	15634602	Hargrave	619	France	Female	42	2
	1	2	15647311	Hill	608	Spain	Female	41	1
	2	3	15619304	Onio	502	France	Female	42	8
	3	4	15701354	Boni	699	France	Female	39	1
	4	5	15737888	Mitchell	850	Spain	Female	43	2
	9995	9996	15606229	Obijiaku	771	France	Male	39	5
	9996	9997	15569892	Johnstone	516	France	Male	35	10
	9997	9998	15584532	Liu	709	France	Female	36	7
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
	9999	10000	15628319	Walker	792	France	Female	28	4
	10000 i	rows × 14 colu	umns						
	◀ 📗								•

Step 2

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64

HasCrCard int64
IsActiveMember int64
EstimatedSalary float64
Exited int64

dtype: object

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balaı
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000(
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900

df.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

df.isna().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0

EstimatedSalary 0
Exited 0

dtype: int64

df.skew()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

RowNumber 0.000000 CustomerId 0.001149 CreditScore -0.071607 Age 1.011320 Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611

dtype: float64

df.boxplot(column="EstimatedSalary")

df=df[(df.EstimatedSalary > 25000) & (df.EstimatedSalary<175000)]
df</pre>

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	
	2	3	15619304	Onio	502	France	Female	42	8	
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	
<pre>df.NumOfProducts.unique()</pre>										
array([1, 3, 2, 4])										
	9996	9997	15569892	Johnstone	516	France	Male	35	10	

df.boxplot(column="Balance")

<matplotlib.axes._subplots.AxesSubplot at 0x7ff3b17f9410>

df=df[df.Balance < 150000]</pre> df

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure		
	0	1	15634602	Hargrave	619	France	Female	42	2		
<pre>df.boxplot(column="Age")</pre>											

6700 ----- 4 44 ------

df=df[(df.Age <50) & (df.Age >20)]
df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42	2
1	2	15647311	Hill	608	Spain	Female	41	1
3	4	15701354	Boni	699	France	Female	39	1
4	5	15737888	Mitchell	850	Spain	Female	43	2
5	6	15574012	Chu	645	Spain	Male	44	8
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4

5783 rows × 14 columns

df.boxplot(column="CreditScore")

<matplotlib.axes._subplots.AxesSubplot at 0x7ff3b1295d10>

df=df[(df.CreditScore>500) & (df.CreditScore<790)]
df</pre>

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
0	1	15634602	Hargrave	619	France	Female	42	
1	2	15647311	Hill	608	Spain	Female	41	
3	4	15701354	Boni	699	France	Female	39	
5	6	15574012	Chu	645	Spain	Male	44	
8	9	15792365	He	501	France	Male	44	
9990	9991	15798964	Nkemakonam	714	Germany	Male	33	
9995	9996	15606229	Obijiaku	771	France	Male	39	
9996	9997	15569892	Johnstone	516	France	Male	35	1
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	

4993 rows × 14 columns

```
churn_yes=df['Tenure'][df.Exited == 1]
churn_no=df['Tenure'][df.Exited == 0]
```

```
import matplotlib.pyplot as plt
```

```
plt.xlabel("Tenure")
plt.ylabel("No of Customers")
plt.title("churn prediction ")
plt.hist([churn_yes,churn_no],color=["green","red"],label=["churn=yes","churn=no"])
plt.legend()
plt.show()
```

/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:3208: VisibleDeprecareturn asarray(a).size

/usr/local/lib/python3.7/dist-packages/matplotlib/cbook/__init__.py:1376: VisibleDepr
X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))

df.columns

sns.pairplot(data=df,hue='Exited')

feature=df[['CreditScore','Geography',

feature

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCaı
0	619	France	Female	42	2	0.00	1	
1	608	Spain	Female	41	1	83807.86	1	
3	699	France	Female	39	1	0.00	2	
5	645	Spain	Male	44	8	113755.78	2	
8	501	France	Male	44	4	142051.07	2	
9990	714	Germany	Male	33	3	35016.60	1	
9995	771	France	Male	39	5	0.00	2	
9996	516	France	Male	35	10	57369.61	1	
9997	709	France	Female	36	7	0.00	1	
9998	772	Germany	Male	42	3	75075.31	2	

4993 rows × 10 columns

^{&#}x27;Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',

^{&#}x27;IsActiveMember', 'EstimatedSalary']]

```
label
```

```
a
             1
    1
             0
     3
             0
     5
             1
     8
             0
            . .
    9990
             a
     9995
             0
     9996
             0
     9997
             1
     9998
     Name: Exited, Length: 4993, dtype: int64
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer([("oh",OneHotEncoder(),[1,2])],remainder="passthrough")
feature_onehot= ct.fit_transform(feature)
feature onehot
     array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
             1.0000000e+00, 1.0134888e+05],
            [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
             1.0000000e+00, 1.1254258e+05],
            [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
             0.0000000e+00, 9.3826630e+04],
            [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
             1.0000000e+00, 1.0169977e+05],
            [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
             1.0000000e+00, 4.2085580e+04],
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
             0.0000000e+00, 9.2888520e+04]])
len(feature_onehot)
     4993
feature onehot[0]
     array([1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
            0.0000000e+00, 6.1900000e+02, 4.2000000e+01, 2.0000000e+00,
            0.0000000e+00, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00,
            1.0134888e+05])
df["Geography"].unique()
     array(['France', 'Spain', 'Germany'], dtype=object)
df["Gender"].unique()
     array(['Female', 'Male'], dtype=object)
```

```
from sklearn.model_selection import train_test_split
trainX,testX,trainY,testY = train_test_split(feature_onehot,label,test_size=0.2,random_sta
```

trainX

testX

```
array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 1.0000000e+00, 1.1045799e+05],
[0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, 6.3981370e+04],
[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, 1.1343608e+05],
...,
[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, 2.6450570e+04],
[0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, 5.4947510e+04],
[0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00, 0.0000000e+00, 1.6318162e+05]])
```

trainY

```
3935
        1
34
4189
        0
5100
        0
5918
9864
        0
6541
        0
3333
        0
5298
        0
5530
Name: Exited, Length: 3994, dtype: int64
```

testY

2378 6

```
8392
             1
     8410
     4970
     7674
            0
     7618
     5529
            0
     2262
            1
     7122
            0
     7061
     Name: Exited, Length: 999, dtype: int64
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
trainX_scale = scaler.fit_transform(trainX)
testX scale = scaler.transform(testX)
trainX_scale
     array([[-1.0305103 , 1.81765764, -0.58139784, ..., 0.64211021,
             -0.97918504, -0.37178651],
            [-1.0305103, -0.55015861, 1.71999262, ..., 0.64211021,
              1.02125744, 0.97885865],
            [0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
              1.02125744, 1.57175791],
            [-1.0305103, 1.81765764, -0.58139784, ..., 0.64211021,
             -0.97918504, -1.44864824],
            [0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
             -0.97918504, 0.41943738],
            [0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
              1.02125744, -0.05701184]])
testX_scale
     array([[ 0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
              1.02125744, 0.24016548],
            [-1.0305103, 1.81765764, -0.58139784, ..., 0.64211021,
             -0.97918504, -0.84714647],
            [0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
             -0.97918504, 0.30983735],
            [0.97039302, -0.55015861, -0.58139784, ..., 0.64211021,
             -0.97918504, -1.72517262],
            [-1.0305103, -0.55015861, 1.71999262, ..., 0.64211021,
             -0.97918504, -1.05849196],
            [-1.0305103, 1.81765764, -0.58139784, ..., 0.64211021,
             -0.97918504, 1.47362508]])
trainY
     3935
             1
     34
             0
```

4189

Name: Exited, Length: 999, dtype: int64

Colab paid products - Cancel contracts here