Processamento Digital de Imagens

Professor: Dr. Franklin Cesar Flores

Acadêmico: Munif Gebara Junior R.A.:pg 5575-2

Introdução

O Processamento Digital de Imagens (PDI) é uma área central da visão computacional que visa o aprimoramento, análise e extração de informações visuais a partir de imagens digitais. Entre as diversas transformações possíveis, operações baseadas em intensidade e cor são amplamente utilizadas para melhorar o contraste, segmentar regiões de interesse ou preparar imagens para análises subsequentes. Neste contexto, a representação de imagens no espaço de cores HSV (Hue, Saturation, Value) torna-se particularmente útil, pois permite isolar o componente de brilho (Value) dos demais atributos cromáticos (matiz e saturação), possibilitando intervenções mais direcionadas e perceptualmente relevantes.

Modelo HSV

O modelo HSV é uma transformação do espaço RGB que separa informações de cor e intensidade de forma mais coerente com a percepção humana. Neste modelo: Hue (H) representa a tonalidade da cor (0–360 graus), como vermelho, verde, azul etc.; Saturation (S) indica o grau de pureza da cor (0 = cinza, 100% = cor pura); Value (V) corresponde à intensidade ou brilho da cor, variando entre 0 (preto) e 255 (branco). Esta decomposição permite, por exemplo, manipular o brilho de uma imagem mantendo as cores originais inalteradas, ou converter a imagem para tons de cinza atuando apenas sobre os componentes H e S.

Passagem de HSV para Tons de Cinza

Uma conversão efetiva de uma imagem HSV para uma aparência monocromática (preto e branco ou tons de cinza) pode ser realizada zerando os componentes H e S, mantendo o canal V intacto. Isso resulta em uma imagem cuja aparência depende exclusivamente da intensidade luminosa, já que a matiz e a saturação — atributos cromáticos — são anulados. Esta técnica é útil para analisar a distribuição de brilho na imagem sem a interferência de informações de cor.

Operações de Limite (Thresholding)

A operação de limiarização (ou thresholding) consiste em segmentar uma imagem com base em um valor de intensidade: todos os pixels com intensidade inferior a um limiar predefinido são classificados como "baixos", enquanto os superiores são classificados como "altos". Este tipo de operação é comum em binarização e realce seletivo de regiões com determinadas faixas de brilho.

Limiar de Otsu

O método de Otsu (1979) é uma técnica não supervisionada de seleção de limiar ótimo baseada na minimização da variância intra-classe ou, equivalentemente, maximização da variância entre classes. O algoritmo analisa o histograma da imagem para encontrar o valor de limiar T*T* que melhor separa os pixels em dois grupos distintos (geralmente, fundo e objeto), sem conhecimento prévio do conteúdo da imagem.

Contraste e Normalização

Contraste refere-se à diferença visual entre tons claros e escuros em uma imagem. Baixo contraste resulta em imagens "lavadas" ou escuras, enquanto alto contraste enfatiza bordas e formas. A normalização é uma técnica clássica para maximizar o contraste dinâmico de uma imagem, expandindo a faixa de intensidades para um intervalo padrão, geralmente [0,255]. Esse procedimento permite que diferenças sutis de intensidade se tornem mais perceptíveis, melhorando a visualização e o desempenho de algoritmos de segmentação.

Ajuste de Gama

A correção gama é uma transformação não linear utilizada para ajustar a luminosidade de uma imagem de acordo com a resposta perceptual humana. O gama > 1 realça regiões claras da imagem. Útil para compensar imagens subexpostas ou para realçar brilhos sutis. O 0<gama < 1 realça regiões escuras da imagem. Escurece tons médios e altos. Indicado para imagens superexpostas ou para enfatizar sombras. A escolha de diferentes valores de gama para diferentes regiões da imagem (por exemplo, com base em um limiar como o de Otsu) permite um controle localizado do contraste, maximizando a percepção em múltiplas faixas dinâmicas simultaneamente.

Neste trabalho, tais fundamentos teóricos foram integrados de forma modular para compor um conjunto de experimentos práticos aplicados a imagens reais. As operações foram implementadas em Python utilizando bibliotecas como NumPy, OpenCV e Matplotlib, permitindo manipulações diretas no espaço HSV. A partir disso, foram desenvolvidas abordagens específicas de realce de brilho, conversão seletiva para tons de cinza, limiarização automática via Otsu, normalização dinâmica e correção gama adaptativa, com aplicação diferenciada em regiões escuras e claras da imagem. Esses recursos foram combinados em pipelines flexíveis que possibilitam a análise comparativa entre métodos, visando a compreensão dos efeitos visuais e computacionais decorrentes de cada técnica.

A solução faz a leitura de todas as imagens na pasta *input* e manipula e escreve as imagens na pasta *output*. As imagens utilizadas antes e depois da normalização tradicional estão na Figura 1. As imagens bar e igreja são iguais na entrada e na saída, já a imagem show apresenta diferença. Isso ocorre porque o V máximo e mínimo é 0 e 255 nas imagens bar e igreja e 10 e 177 na imagem show.

Figura 1 - Imagens Utilizadas antes de depois da normalização tradicional em V

A normalização tradicional é aplicada no espaço HSV alterando apenas o V como a função python no Código 1, em destaque a função de normalização.

A primeira variação da normalização é feita através de um threshold manual mas com saídas V dos pixels normalizados entre 0 - 255. As imagens estão na Figura 2. Embora para as imagens bar e igreja os resultados tenham sido interessantes, a imagem show ficou ruim.

Projeto de Processamento Digital de Imagens (PDI)

Este projeto realiza operações de processamento digital de imagens utilizando Python 3, com as bibliotecas OpenCV, NumPy e Matplotlib. Ele inclui funções para:

- Carregar e salvar imagens
- Conversão para HSV
- Normalização do canal V (brilho)
- Cálculo de limiar com o método de Otsu
- Correção gama com limiar adaptativo
- Transformação HSV → escala de cinza
- Visualização lado a lado

📁 Estrutura de pastas

X Requisitos

- Python 3.8+
- NumPy
- OpenCV
- Matplotlib

Instale com:

pip install -r requirements.txt

Como executar

Execute o script principal:

python main.py

O script irá:

- Processar todas as imagens .jpg na pasta input/
- 2. Aplicar transformação de brilho, correção gama ou outra operação conforme configurado
- 3. Salvar os resultados na pasta output/
- 4. Exibir visualização comparativa (original vs. processada)

Funcionalidades implementadas

- V Normalização de brilho (canal V)
- V Correção gama adaptativa (dupla)
- Aplicação de limiar de Otsu
- Conversão para preto e branco via HSV
- Visualização com matplotlib

📌 Exemplos de uso

from utils_pdi import normalizar_v_com_limite, corrigir_gama_duplo img_hsv_norm = normalizar_v_com_limite(img_hsv, limite_v=80) img_hsv_corr = corrigir_gama_duplo(img_hsv, gama_baixo=2.0, gama_alto=0.8)

Todas as Funções:

Função	Parâmetros	Descrição
carregar_imagem	caminho	Carrega uma imagem BGR a partir do caminho informado.
converter_para_hsv	imagem_bgr	Converte uma imagem BGR para HSV (float32).
salvar_imagem	imagem_bgr, caminho_saida	Salva uma imagem BGR no caminho especificado.
mostrar_imagem	imagem_bgr, titulo='Imagem'	Exibe uma imagem BGR com Matplotlib.
mostrar_imagens_lado_a_lado	img1_bgr, img2_bgr, titulo1, titulo2	Mostra duas imagens lado a lado.
normalizar_v	hsv_img	Normaliza todo o canal V da imagem HSV.
normalizar_v_com_limite	hsv_img, limite_v	Normaliza o V apenas onde V < limite_v.
normalizar_v_com_limite_limita do	hsv_img, limite_v	Normaliza V < limite_v com reescala limitada.
limiar_otsu	V	Calcula o limiar ótimo com o método de Otsu para o canal V.
normalizar_v_com_limite_limita do_otsu	hsv_img	Aplica normalização limitada onde V < limiar de Otsu.
corrigir_gama_duplo	hsv_img, gama_baixo, gama_alto	Aplica correção gama dupla no canal V com base no limiar de Otsu.
hsv_para_pb	hsv_img	Remove cor (zera H e S), mantendo o brilho V para efeito em tons de cinza.