

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

5. (Currently Amended) A method of treating ~~or inhibiting~~ hyperproliferative vascular disorders in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, benzoyl, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, or acyl of 2-7 carbon atoms, ~~or benzoyl~~;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, or trifluoromethylacyl of 3-8 carbon atoms, ~~or benzoyl~~;

or a pharmaceutically acceptable salt thereof.

6. (Currently Amended) A method of treating ~~or inhibiting~~ restenosis in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, ~~benzoyl~~, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, or acyl of 2-7 carbon atoms, ~~or~~ benzoyl;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, or trifluoromethylacyl of 3-8 carbon atoms, ~~or~~ benzoyl;

or a pharmaceutically acceptable salt thereof.

7. (Original) The method according to claim 6, wherein the restenosis results from a vascular angioplasty procedure, vascular reconstructive surgery, or organ or tissue transplantation.

8. (Currently Amended) A method of inhibiting angiogenesis in a malignant tumor, sarcoma, or neoplastic tissue in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, ~~benzoyl~~, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms; R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, or acyl of 2-7 carbon atoms, ~~or benzoyl~~;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, or trifluoromethylacyl of 3-8 carbon atoms, ~~or benzoyl~~;

or a pharmaceutically acceptable salt thereof.

9. (New) A method of preventing hyperproliferative vascular disorders following vascular reconstructive surgery or transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, or acyl of 2-7 carbon atoms;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, or trifluoromethylacyl of 3-8 carbon atoms; or a pharmaceutically acceptable salt thereof.

10. (New) A method of preventing restenosis following vascular reconstructive surgery or transplantation in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of formula I having the structure

wherein

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, trifluoromethylacyl of 3-8 carbon atoms, or -SO₃H;

R⁹ is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, or alkoxy of 1-6 carbon atoms;

R¹⁰ is hydrogen, -NO₂, -NHR¹¹, -NHR¹³, -N(R¹³)₂, -NCH₃R¹³, -NHCO₂alkyl, wherein the alkyl moiety contains 1-6 carbon atoms, alkylsulfonamide of 1 to 4 carbon atoms,

Z is O or S;

R¹¹ is an α -amino acid in which the α carboxyl group forms an amide with the nitrogen of R¹⁰, wherein if said amino acid is glutamic acid or aspartic acid, the non- α carboxylic acid is an alkyl ester in which the alkyl moiety contains from 1-6 carbon atoms;

R¹² is hydrogen, CN, NO₂, halo, CF₃, alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, or acyl of 2-7 carbon atoms;

R¹³ is hydrogen, acyl of 2-7 carbon atoms, haloacyl of 2-7 carbon atoms, nitroacyl of 2-7 carbon atoms, cyanoacyl of 2-7 carbon atoms, or trifluoromethylacyl of 3-8 carbon atoms; or a pharmaceutically acceptable salt thereof.

11. (New) The method according to claim 10, wherein the vascular reconstructive surgery or transplantation is vascular angioplasty procedure; vascular reconstructive surgery; or organ or tissue transplantation.

12. (New) The method according to claim 5, wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acyl of 2-7 carbon atoms or -SO₃H; Z is O; or a pharmaceutically acceptable salt thereof.

13. (New) The method according to claim 5, wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are each, independently, acetyl or -SO₃H; R¹⁰ is hydrogen, -NO₂, -NHR¹³, -N(R¹³)₂; R¹³ is hydrogen, or acyl of 2-7 carbon atoms; or a pharmaceutically acceptable salt thereof.

14. (New) The method according to claim 5, which the compound of formula I is:
a) N-Benzyl-octa-O-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

- b) *N*-Benzyl-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
- c) *N*-(4-Nitro-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- d) *N*-(4-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- e) *N*-(3-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- f) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
- g) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.

15. (New) The method of claim 5, wherein the method comprises administering the compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.

16. (New) The method according to claim 6, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acyl of 2-7 carbon atoms or $-SO_3H$;
Z is O;
or a pharmaceutically acceptable salt thereof.

17. (New) The method according to claim 6, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acetyl or $-SO_3H$;
 R^{10} is hydrogen, $-NO_2$, $-NHR^{13}$, $-N(R^{13})_2$,
 R^{13} is hydrogen, or acyl of 2-7 carbon atoms;
or a pharmaceutically acceptable salt thereof.
18. (New) The method according to claim 6, which the compound of formula I is:
- a) N -Benzyl-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - b) N -Benzyl-octa- O -sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
 - c) N -(4-Nitro-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - d) N -(4-Amino-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - e) N -(3-Amino-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - f) N -[3-(Acetylamino)-benzyl]-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
 - g) N -[3-(Acetylamino)-benzyl]-octa- O -sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.

19. (New) The method of claim 6, wherein the method comprises administering the compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.

20. (New) The method according to claim 8, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acyl of 2-7 carbon atoms or $-SO_3H$;
Z is O;
or a pharmaceutically acceptable salt thereof.

21. (New) The method according to claim 8, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acetyl or $-SO_3H$;
 R^{10} is hydrogen, $-NO_2$, $-NHR^{13}$, $-N(R^{13})_2$,
 R^{13} is hydrogen, or acyl of 2-7 carbon atoms;
or a pharmaceutically acceptable salt thereof.

22. (New) The method according to claim 8, which the compound of formula I is:
a) *N*-Benzyl-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
b) *N*-Benzyl-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
c) *N*-(4-Nitro-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
d) *N*-(4-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

- e) *N*-(3-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- f) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
- g) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.

23. (New) The method of claim 8, wherein the method comprises administering the compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.

24. (New) The method according to claim 9, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acyl of 2-7 carbon atoms or $-SO_3H$;
 Z is O;
or a pharmaceutically acceptable salt thereof.

25. (New) The method according to claim 9, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acetyl or $-SO_3H$;
 R^{10} is hydrogen, $-NO_2$, $-NHR^{13}$, $-N(R^{13})_2$,
 R^{13} is hydrogen, or acyl of 2-7 carbon atoms;
or a pharmaceutically acceptable salt thereof.

26. (New) The method according to claim 9, which the compound of formula I is:
- a) *N*-Benzyl-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - b) *N*-Benzyl-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
 - c) *N*-(4-Nitro-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - d) *N*-(4-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - e) *N*-(3-Amino-benzyl)-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
 - f) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
 - g) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.
27. (New) The method of claim 9, wherein the method comprises administering the compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.

28. (New) The method according to claim 10, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acyl of 2-7 carbon atoms or $-SO_3H$;
Z is O;
or a pharmaceutically acceptable salt thereof.

29. (New) The method according to claim 10, wherein
 $R^1, R^2, R^3, R^4, R^5, R^6, R^7$, and R^8 are each, independently, acetyl or $-SO_3H$;
 R^{10} is hydrogen, $-NO_2$, $-NHR^{13}$, $-N(R^{13})_2$,
 R^{13} is hydrogen, or acyl of 2-7 carbon atoms;
or a pharmaceutically acceptable salt thereof.

30. (New) The method according to claim 10, which the compound of formula I is:

- a) N -Benzyl-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- b) N -Benzyl-octa- O -sulfo-lactobionamide or a pharmaceutically acceptable salt thereof;
- c) N -(4-Nitro-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- d) N -(4-Amino-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;
- e) N -(3-Amino-benzyl)-octa- O -acetyl-lactobionamide or a pharmaceutically acceptable salt thereof;

- f) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-acetyl-lactobionamide or a pharmaceutically acceptable salt thereof; or
- g) *N*-[3-(Acetylamino)-benzyl]-octa-*O*-sulfo-lactobionamide or a pharmaceutically acceptable salt thereof.

31. (New) The method of claim 10, wherein the method comprises administering the compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.