Amendments to the Claims:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-3. (Canceled).
- 4. (Currently Amended) The method according to claim \pm <u>31</u>, wherein the resulting microparticles have an average particle diameter of 0.01. μ m to 150 μ m.
- 5. (Currently Amended) The method according to claim \pm 31, wherein the resulting microparticle is a drug carrier.
- 6. (Currently Amended) The method according to claim \pm <u>31</u>, wherein the resulting microparticle is a sustained-release drug carrier.
- 7. (Currently Amended) The method according to claim \pm <u>31</u>, wherein the dilute solution before the crosslinking reaction contains a drug, and the drug is held in microparticles obtained after the crosslinking reaction.

- 3 -

 (Original) The method according to claim 7, wherein the crosslinking reaction does not cause drug denaturation even in the presence of the drug.

9-10. (Canceled).

11. (Withdrawn) The method according to claim 1, wherein the crosslinking reaction is a reaction in which crosslinkages are formed by reaction between hydrazide group and an activated carboxylic acid ester.

12-19. (Canceled).

20. (Withdrawn) The microparticle according to claim 12, wherein the crosslinkage functional group is a mercapto group, and the crosslinking reaction is a reaction in which crosslinkages are formed by disulfide formation.

21. (Canceled).

22. (Withdrawn) The microparticle according to claim 12, wherein the crosslinking reaction is a reaction in which crosslinkages are formed by reaction between a hydrazide group and an activated carboxylic acid ester.

- 4 -

23. (Canceled).

 $24\,.\,$ (Currently Amended) The method according to claim $23\,\,\underline{4}\,,$ wherein the resulting microparticle is a drug carrier.

- 25. (Previously Presented) The method according to claim 24, wherein the resulting microparticle is a sustainedrelease drug carrier.
- 26. (Previously Presented) the method according to claim 25, wherein the dilute solution before the crosslinking reaction contains a drug, and the dug is held in the microparticles obtained after the crosslinking reaction.
- 27. (Previously Presented) The method according to claim 26, wherein the crosslinking reaction does not cause drug denaturation even in the presence of the drug.

28-30. (Canceled).

31. (New) A method for preparing crosslinked polysaccharide microparticles, which comprise the following steps:

- a) preparing a dilute solution containing (1) a
 polysaccharide derivative having at least one crosslinkage
 functional group in a range of 0.1 to 5%(w/v) and (2) a
 crosslinking agent;
- b) dispersing the solution by spraying to form microparticulate droplets; and
- c) concentrating the solution contained in the droplets to facilitate a crosslinking addition reaction of the polysaccharide derivative between a mercapto group and a unsaturated C-C bond;

wherein steps b) and c) are carried in a spray drying procedure;

wherein the polysaccharide derivative is a hyaluronic acid derivative comprising at least one repeating unit represented by Formula (I);

[Formula I]

 $\label{eq:wherein X2 represents -Y1-Q1-2-N(-R2)-Y3-Q2-SH, -N(-R2)-Y3-Q2-SH, -NHCO-(CH2)_4-CONH-NH-C(=NH)-(CH2)_3-SH, -(CH2)_2-NH-C(-NH)-(CH2)_3-SH, or -(CH2)_2-O-(CH2)_2-O-(CH2)_2-NH-C(=NH)-(CH2)_3-SH, SH,$

 R_1 represents a hydrogen atom, a linear or branched C_{1-10} alkyl group, a linear or branched C_{1-10} hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 R_{62} , R_{63} , R_{64} , R_{65} and R_{66} each independently represent a hydrogen atom, a linear or branched C_{1-6} alkyl group, a linear or branched C_{1-16} alkynyl group, a linear or branched C_{1-16} alkynyl group, a linear or branched C_{1-16} alkynyl group, a linear or branched C_{1-16} alkenylcarbonyl group, a linear or branched C_{1-16} alkynylcarbonyl group or $-SO_2OH$,

 $\label{eq:Y1} Y_1 \text{ represents a single bond, } -N\left(-R_3\right)CO-, \ -N\left(-R_3\right)-, \ -CO- \text{ or } -CH_2CO-,$

 Y_2 represents a single bond, -CON(-R4)- or -N(-R4)-,

 Q_1 represents a linear or branched C_{1-10} alkylene group, a linear or branched C_{1-10} hydroxyalkylene group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 R_2 , R_3 and R_4 each independently represent a hydrogen atom, a liner or branched $C_{1:10}$ alkyl group, a linear or

branched C_{1-10} hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 $Y_3 \mbox{ represents a single bond, -CO-, -CO$_2-, -CH$_2-} \label{eq:Y3}$ CH(OH)- or -CONH- and

 Q_2 represents a linear or branched $C_{1\cdot 10}$ alkylene group, a linear or branched $C_{1\cdot 10}$ hydroxyalkylene group, a polyalkylene oxide group, a polyapetide group or a polyester group,

and the crosslinking agent is a compound having two or more unsaturated C-C bond-containing groups; or

the polysaccharide derivative is a hyaluronic acid derivative comprising at least one repeating unit represent by Formula (II):

[Formula 2]

wherein X_3 represents $-Y_3,Q_2-Y_2-N\left(-R_2\right)-Y_3-Q_4$ or $-n\left(-R_2\right)-Y_3-Q_4$,

 R_1 represents a hydrogen atom, a linear or branched $C_{1\cdot 10}$ alkyl group, a linear or branched $C_{1\cdot 10}$ hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 R_{a2} , R_{a3} , R_{a4} , R_{a5} and R_{a6} each independently represent a hydrogen atom, a linear or branched C_{1-6} alkyl group, a linear or branched C_{1-16} alkenyl group, a linear or branched C_{1-16} alkylogroup, a linear or branched C_{1-16} alkenylcarbonyl group, a linear or branched C_{1-16} alkenylcarbonyl group, a linear or branched C_{1-16} alkynvlcarbonyl group or $-SO_{2}OH_{2}$.

 $Y_1 \text{ represents a single bond, } -N(-R_3)\,\text{CO-, } -N(-R_3)\,\text{-, } -N(-R_3)\,\text{-, }$ CO- or -CH₂CO-,

 Y_2 represents a single bond, $-CON(-R_4)$ - or $-N(-R_4)$ -,

 Y_3 represents a single bond, -CO- or -CH₂CO-,

 Q_1 represents a linear or branched $C_{1\cdot 10}$ alkylene group, a linear or branched $C_{1\cdot 10}$ hydroxyalkylene group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 R_2 , R_3 and R_4 each independently represent a hydrogen atom, a liner or branched $C_{1\text{-}10}$ alkyl group, a linear or branched $C_{1\text{-}10}$ hydroxyalkyl group, a polyalkylene oxide group, a polypeptide group or a polyester group,

 $Q_4 \mbox{ represents a linear or branched C_{2-10} alkenyl} \label{eq:Q4}$ group, a linear or branched \$C_{2-10}\$ alkynyl group,

and the crosslinking agent is a compound having two or more mercapto groups.

- 32. (New) The method according to claim 5, wherein the crosslinked polysaccharide microparticles are injectable.
- $\,$ 33. (New) The method according to claim 5, wherein the drug is a protein.
- 34. (New) The method according to claim 6, wherein the sustained release period of the carrier is 24 hours or more.
- 35. (New) The method according to claim 6, wherein the sustained release period of the carrier is 5 days or more.
- 36. (New) The method according to claim 6, wherein the drug is released upon enzymatic digestion.