計量経済 II: 宿題 9

村澤 康友

提出期限: 2022年12月6日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ sw-ch12 の変数 GDP_JP は 1959 年第 1 四半期~1999 年第 2 四半期の日本 の 1 人当たり実質 GDP の季節調整済み系列である。第 1 次オイル・ショック(1974 年第 1 四半期)とバブル崩壊(1991 年第 2 四半期)の構造変化ダミーを用いて GDP_JP の対数系列の線形トレンドの 構造変化を OLS で推定し、結果を図示しなさい。
 - ※ gretl で構造変化ダミーを作成する手順は以下の通り.
 - (a) メニューから「追加」→「観測範囲ダミー」を選択.
 - (b)「ダミー範囲」を設定し、変数名を入力.
 - (c) 「OK」をクリック.
- 2. 前問と同じデータを使用する. 以下の 2 つの時点について, GDP_JP の対数系列の線形トレンドの構造変化のチョウ検定を実行しなさい.
 - (a) 第1次オイル・ショック(1974年第1四半期)
 - (b) バブル崩壊(1991年第2四半期)
 - ※ gretl でチョウ検定を実行する手順は以下の通り.
 - (a) OLS を実行した画面のメニューから「検定」→「チョウ検定」を選択.
 - (b)「標本を分割する観測」(構造変化の時点)を指定.
 - (c) $\lceil OK \rfloor$ をクリック.

解答例

1. 構造変化の回帰分析

モデル 1: 最小二乗法 (OLS), 観測: 1959:1–1999:2 (T=162) 従属変数: l_GDP_JP

	係数	標準誤差	t-ratio	p 値
const	2.68269	0.0049194	5 545.3	0.0000
d1	0.683499	0.0120857	56.55	0.0000
d2	0.930776	0.0515238	18.06	0.0000
$_{ m time}$	0.0231227	0.0001402	60 164.9	0.0000
d1time	-0.0131904	0.0001805	75 -73.05	0.0000
d2time	-0.00703978	0.0003622	91 -19.43	0.0000
Mean depende:	nt var 4.051	760 S.D.	dependent v	ar 0.600922
Sum squared r	esid 0.055	226 S.E.	of regression	0.018815
R^2	0.999	050 Adju	sted R^2	0.999020
F(5, 156)	32814	4.03 P-val	ue(F)	9.6e-234
Log-likelihood	416.8	290 Akail	ke criterion	-821.6581
Schwarz criteri	on -803.1	325 Hanr	nan-Quinn	-814.1364
$\hat{ ho}$	0.765	804 Durb	in-Watson	0.433666

線形トレンドの構造変化

2. (a) 第 1 次オイル・ショック(1974 年第 1 四半期)

チョウ (Chow) 検定のための拡張された回帰

最小二乗法 (OLS), 観測: 1959:1-1999:2 (T = 162)

従属変数: 1_GDP_JP

	係数	標準誤		差 t 値		p 値			
const	2.6826	9	0.009	71256		276.2	5.	13e-214	- ! ***
time	0.0231	227	0.000	276918	3	83.50	1.	27e-132	***
splitdum	0.8179	64	0.0173	3745		47.08	6.	95e-095	***
sd_time	-0.0146	779	0.000	303791	•	-48.32	1.	50e-096	***
Mean depende	ent var	4.05	1760	S.D.	dep	endent	var	0.600	922
Sum squared	resid	0.218	3028	S.E.	of	regress	sion	0.037	147
R-squared		0.996	3250	Adjus	ted	l R-squa	red	0.996	3179
F(3, 158)		13991	1.18	P-val	ue(F)		2.3e	-191
Log-likeliho	ood	305.6	6009	Akaik	e c	riterio	n	-603.2	2019
Schwarz crit	erion ·	-590.8	3515	Hanna	ın-Q	uinn		-598.2	1875
rho		0.975	5745	Durbi	n-W	atson		0.093	3901

F(2, 158) = 1284.99 なお、p値(p-value) 0.0000

(b) バブル崩壊(1991年第2四半期)

チョウ (Chow) 検定のための拡張された回帰

最小二乗法 (OLS), 観測: 1959:1-1999:2 (T = 162)

従属変数: 1_GDP_JP

	係数		標準誤差		t 値 		p 値		
const	2.93764	1	0.019	7773	148	3.5	1.2	27e-171	***
time	0.0145	0.0145132		0.000264011		54.97		54e-105	***
splitdum	1.35932	2	0.2993	327	4	1.541	1.1	10e-05	***
sd_time	- 0.011	6207	0.00	20583	7	- 5.646		7.45e-0	8 ***
Mean depend	ent var	4.051	760	S.D.	depend	dent var	•	0.60092	22
Sum squared	resid	1.969	979	S.E.	of reg	gression	ı	0.11166	31
R-squared		0.966	3116	Adjus	sted R-	-squared	l	0.96547	72
F(3, 158)		1501.	640	P-val	Lue(F)			7.3e-11	16
Log-likelih	ood	127.3	8074	Akail	ke crit	erion		- 246.6	148
Schwarz cri	terion	- 234	. 2644	Han	nan-Qu:	inn		- 241.	6004
rho	rho 0.9		3986 Durbin-Watson			son	0.023203		

F(2, 158) = 71.9604 なお、p値(p-value) 0.0000