2702208575 \ MICHELLE NATHANIA \ DEEP LEARNING FINAL EXAM

air temperature forecasting with LSTM

OVERVIEW

EDA

PREPROCESSING

MODELING

OVERVIEW

why air quality forecasting?

Forecasting future air temperature is crucial for many sectors, including public health and energy management.

	From Date	To Date	PM2.5 (ug/m3)	PM10 (ug/m3)	NO (ug/m3)	NO2 (ug/m3)	NOx (ppb)	NH3 (ug/m3)	SO2 (ug/m3)	CO (mg/m3)	Ozone (ug/m3)
0	2017- 09-05 14:00:00	2017- 09-05 15:00:00	25.00	45.00	1.80	12.20	7.90	10.20	5.60	0.35	79.50
1	2017- 09-05 15:00:00	2017- 09-05 16:00:00	23.00	49.50	0.65	14.55	8.28	8.85	4.52	0.41	62.50
2	2017- 09-05 16:00:00	2017- 09-05 17:00:00	18.00	55.75	4.00	26.58	17.40	6.23	5.35	0.38	40.50
3	2017- 09-05 17:00:00	2017- 09-05 18:00:00	19.75	33.50	1.63	21.78	12.92	8.30	5.30	0.48	34.43
4	2017- 09-05	2017- 09-05	14.00	28.00	1.07	26.38	14.90	3.42	4.68	0.43	33.00

dataset

A rich air quality dataset spanning over 5 years, containing 24 different features including pollutants and meteorological data, recorded at hourly intervals.

objective

LSTM models to accurately predict the air temperature (AT) one hour into the future, based on data from the preceding five hours.

approach

Multivariate time series analysis

 \longrightarrow

AT is influenced by many factors that provide richer context to the model

OVERVIEW

EDA

PREPROCESSING

MODELING

first glance of the data

EDA is important to decide which preprocessing methods to use.

initial findings

- Substantial dataset, spanning from Sep 2017 - Mar 2023
- Data is skewed and has significant outliers

```
Temp (degree C)
                        55.741568
Eth-Benzene (ug/m3)
                        50.846277
MP-Xylene (ug/m3)
                        19.560674
PM2.5 (ug/m3)
                        5.036679
CO (mg/m3)
                        4.948568
```

#	of	rows:	48802
#	of	columns	3: 24

statistical summary

	PM2.5 (ug/m3)	PM10 (ug/m3)	NO (ug/m3)
count	48802.000000	48802.000000	48802.000000
mean	34.597196	71.466791	2.506647
std	30.839854	48.413886	4.993837
min	0.250000	0.250000	0.030000
25%	11.750000	34.250000	1.450000
50%	24.500000	59.500000	1.900000
75%	51.000000	100.000000	2.600000
max	723.000000	835.500000	216.170000

numerical data viz.

OVERVIEW

EDA

PREPROCESSING

MODELING

visualizing trends and patterns

identified patterns

strong annual seasonality

OVERVIEW

EDA

PREPROCESSING

MODELING

visualizing trends and patterns

identified patterns

clear daily cycles

OVERVIEW

EDA

PREPROCESSING

MODELING

visualizing trends and patterns

identified patterns

long term trends

OVERVIEW

EDA

PREPROCESSING

MODELING

visualizing trends and patterns

identified patterns

extreme outliers

OVERVIEW

EDA

PREPROCESSING

MODELING

feature engineering & scaling

cyclical features

- P: LSTMs see numbers like 0 and 360 degree as far apart, when they are actually adjacent.
- S: Use sine and cosine functions.

splitting & scaling

- Split data 80/10/10 for train/val/test
- Scaled all features with RobustScaler

input sequence

- Make sliding window that LSTM understands
- input_length = 5
- output_length = 1

```
X_train shape: (39036, 5, 28) -> (Samples, Time Steps, Features)
y_train shape: (39036, 1, 1) -> (Samples, Prediction Time Steps, Target Features)

X_val shape: (4875, 5, 28)
y_val shape: (4875, 1, 1)

X_test shape: (4876, 5, 28)
y_test shape: (4876, 1, 1)
```

model parameters

LSTM

Layer (type)	Output Shape	Param #
lstm_5 (LSTM)	(None, 10)	1,560
dense_5 (Dense)	(None, 1)	11

LSTM Modified

Layer (type)	Output Shape	Param #
lstm_6 (LSTM)	(None, 5, 128)	80,384
dropout_3 (Dropout)	(None, 5, 128)	0
lstm_7 (LSTM)	(None, 64)	49,408
dropout_4 (Dropout)	(None, 64)	0
dense_6 (Dense)	(None, 32)	2,080
dense_7 (Dense)	(None, 1)	33

LSTM Baseline Tuned

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 50)	15,800
dropout_1 (Dropout)	(None, 50)	0
dense_1 (Dense)	(None, 1)	51

Trial 5 Complete [00h 01m 19s] val_loss: 0.021622434258461

Best val_loss So Far: 0.018529120832681656

Total elapsed time: 00h 13m 06s

Optimal units in LSTM layer: 50

Optimal dropout rate: 0.15 Optimal learning rate: 0.001

OVERVIEW

EDA

PREPROCESSING

MODELING

MODELING & TRAINING

loss plot

OVERVIEW

EDA

PREPROCESSING

MODELING

EVALUATION

evaluation metrics

	MAE	MSE	R-squared
Model			
Model 1 (LSTM)	0.737125	0.919030	0.869581
Model 2 (LSTM Modified)	0.701035	0.774790	0.890050
Model 3 (LSTM Baseline Tuned)	0.572590	0.542816	0.922969

All models performed well, with Model 3 (LSTM Baseline Tuned) being the best model.

OVERVIEW EDA PREPROCESSING MODELING EVALUATION

EVALUATION

verdict

- Treating this case as a multivariate time series is a correct approach.
- The preprocessing steps result in good model performance.
- Model doesn't require complex architecture, but tuning helps improve the performance significantly.

All models performed well, with Model 3 (LSTM Baseline Tuned) being the best model.

OVERVIEW

EDA

PREPROCESSING

MODELING