ROBUST EXTENSIONS OF THE FAY HERRIOT MODEL IN SMALL AREA ESTIMATION

SEBASTIAN WARNHOLZ

Theory, Implementation and Simulation Studies

January 4, 2016 – version 0.1

Sebastian Warnholz: *Robust Extensions of the Fay Herriot Model in Small Area Estimation*, Theory, Implementation and Simulation Studies, © January 4, 2016

SUPERVISORS: Prof. Dr. Timo Schmid Nikos Tzavidis

LOCATION:
Berlin

TIME FRAME: January 4, 2016

CONTENTS

1	INTRODUCTION		1
i	THEORY		3
2	2 MIXED MODELS		5
3	ROBUST STATISTICS		7
4	SMALL AREA ESTIMATION		9
	4.1 Unit Level Models		9
	4.2 Area Level Models		9
	4.2.1 The Fay Herriot Model		10
	4.2.2 From Unit to Area Level Models		10
	4.2.3 Spatio-Temporal Fay Harriot model .		11
	4.3 Robust Methods in Small Area Estimation .		13
	4.3.1 Robust ML Score Functions		13
	4.3.2 Bias Correction		14
	4.3.3 Mean squared error		14
5	ROBUST AREA LEVEL MODELS		17
	5.1 The Problem of Outlying Observations for A	rea-Level	
	Models		17
	5.1.1 Unit-Level Outliers		17
	5.1.2 Area-Level Outliers		18
	5.1.3 The Creation of Overly Influencial Obs	servations	19
	5.2 The Robust Fay-Herriot Model and Extension		20
	5.3 Bias correction		20
	5.4 Mean Squared Error Estimation		20
	5.4.1 Bootstrap		20
	5.4.2 Pseudo Linearization		20
	5.5 Algorithm		23
	5.5.1 Newton Raphson Algorithms		23
	5.5.2 Fixed Point Algorithms		25
ii	i IMPLEMENTATION		29
6	ALGORITHMS AND STATISTICS		31
	6.1 Non-Linear Optimizations in Statistics		31
	6.2 Algorithms for Robust Estimators in Statistics		31
7	7 IMPLEMENTATION		33
	7.1 Software		33
	7.2 Verification of Results		33
	7.3 Accuracy of Results		33
	7.4 Validation of Results		33
	7.4.1 Four Steps		33
iii	ii RESULTS		35
8	NUMERICAL PROPERTIES		37

	8.1	Accuracy	37		
	8.2	Stability	37		
	8.3	Speed of Convergence	37		
9	SIM	ULATION STUDIES	39		
	9.1	Model Based Simulation Studies	39		
		9.1.1 The Area-Level Perspective	39		
		9.1.2 From Unit to Area Level Data	41		
	9.2	Design Based Simulation Studies	42		
iv	API	PENDIX	45		
BI	BIBLIOGRAPHY				

INTRODUCTION

This thesis introduces extensions to the Fay-Herriot Model, a frequentist approach to Empirical Bayes estimators (i.e. James-Stein estimators) frequently used in Small Area Estimation which is a sub-field within the field of Statistics. In the three parts of this thesis I provide methodological extensions to existing statistical models (i *Theory*), considerations for implementing the findings as software (7 *Implementation*) and results on numerical stability as well as statistical properties of the introduced estimators as well as a short case study (iii *Results*).

Small Area Estimation ...

Robust Methods in Small Area Estimation ...

Software in stats ...

The thesis is seperated into three main parts. i *Theory* introduces the underlying esimation methodology, i.e. linear mixed models, a review of model based methods in Small Area Estimation as well as outlier robust extensions within the field. Given these results extensions to existing methodology is introduced in the form of a robustified Fay-Herriot estimator with optional spatial and temporal correlated random effects. A special interest lies in the concrete implementation of such (robust) estimators, and to meet this focus several algorithms are proposed. (MSE, bias-correction)

7 Implementation introduces three main aspects: The verification that the implementation (in terms of software) is correct; How to evaluate the numerical accuracy and stability of the introduced algorithms; And which results to report to judge the quality of the numerical solution.

In iii *Results* the properties of the estimators are investigated in simulations and in the context of part 7. The numerical properties are devided into accuracy and stability. Statistical properties are shown for the most reliable implementations using model and design based simulation studies.

Part I

THEORY

This is the chapter where I want to present the theoretical concepts underpinning the development of software and application.

2

ROBUST STATISTICS

Gervini / Yohai (2002): *A Class of Robust and Fully Efficient Regression Estima tors*

- Clement (2014): *Small Area Estimation with Application to Disease Mapping*
 - Desease mapping has specific metrics to measure deseases,
 like poverty mapping has its own metrics for that.
 - It is a review of SAE methods applied on that topic. Because the field is mostly concerned with counting the prevalence of deseases it is concerned with poisson models and variations on such models, used with EB and HB.
 - Some examples can be found.
- Lopez-Vicaino / et. al. (2015): Small area estimation of labour force indicators under a multinomial model with correlated time and area effects
 - An application of small area estimation with a multinomial mixed effects model. The random effect is modelled using a AR(1) process.
 - The study predictes unemplayment and employment rates for subgroups in the Spanisch province Galicia.

4.1 UNIT LEVEL MODELS

4.2 AREA LEVEL MODELS

Area Level Models in Small Area Estimation play an important role in the production of reliable domain estimates.

- They can be used even if unit level observations are not accessible.
- In a model based estimation it is largely unsolved to incorporate design weights. Area level models can be used to start from a direct design based estimator.
- Unit level models often have problems with heterogeneity. An assumption, for example, for unit level data is that the error terms of a model are homescedastic given the random effects. This assumption is often not plausible and may call for more complex assumptions on the variance structure of the data. However such structures may or may not be known and cannot be modelled easily. This can also lead to computationally demanding procedures.

Given these considerations the most important factor to choose cadidate models is the availability of data. Very often there is not much of a choice but rather a decission given the available information. And given the availability of unit level data, the obvious choice is to consider a model which can use such information. Only if that fails for one of the above reasons can an area level model be of interest.

4.2.1 The Fay Herriot Model

A frequently used model in Small Area Estimation is a model introduced by Fay and Herriot (1979). It starts on the area level and is used in small area estimation for research on area-level. It is build on a sampling model:

$$\tilde{y}_i = \theta_i + e_i$$

where \tilde{y}_i is a direct estimator of a statistic of interest θ_i for an area i with $i=1,\ldots,D$ and D being the number of areas. The sampling error e_i is assumed to be independent and normally distributed with known variances $\sigma_{e,i}^2$, i.e. $e_i|\theta_i\sim \mathcal{N}(0,\sigma_{e,i}^2)$. The model is modified with the linking model by assuming a linear relationship between the true area statistic θ_i and some diterministic auxiliary variables x_i :

$$\theta_i = x_i^{\top} \beta + u_i$$

Note that x_i is a vector containing area-level (aggregated) information for P variables and β is a vector (1 × P) of regression coefficients describing the (linear) relationship. The model errors u are assumed to be independent and normally distributed, i.e. $u_i \sim \mathcal{N}(0, \sigma_u^2)$ furthermore e_i and u_i are assumed to be independent. Combining the sampling and linking model leads to:

$$\tilde{\mathbf{y}}_{i} = \mathbf{x}_{i}^{\mathsf{T}} \mathbf{\beta} + \mathbf{u}_{i} + \mathbf{e}_{i}. \tag{4.1}$$

4.2.2 From Unit to Area Level Models

In later simulation studies we will consider data in which area level statistics are computed from individual information. From a contextual point of view, starting from individual information is advantageous in the sense that outlying areas can be motivated more easily. Also the question for a good estimator for the sampling variances can be motivated when knowing the underlying individual model. Hence, I will derive the Fay-Herriot model starting from unit-level. Consider the following model:

$$y_{ij} = x_i^\top \beta + u + e_i ,$$

where y_{ij} is the response in domain i of unit j with $i=1,\ldots,n_i$, where n_i is the number of units in domain i. u is an area specific random effect following (i.i.d.) a normal distribution with zero mean and σ_u^2 as variance parameter. e_{ij} is the remaining deviation from the model, following (i.i.d.) a normal distribution with zero mean and $\sigma_{e,i}^2$ as variance parameter. This unit level model is defined under strong assumptions, still, assumptions most practitioner are willing to make which could simplify the identification of the sampling variances under the area level model.

From this model consider the area statistics $\tilde{y}_i = \frac{1}{n_j} \sum_{j=1}^{n_i} y_{ij}$, for which an area level model can be derived as:

$$\tilde{\mathbf{y}}_{i} = \mathbf{x}_{i}^{\top} \mathbf{\beta} + \mathbf{u}_{i} + \mathbf{e}_{i}$$

Considering the mean in a linear model, it can be expressed as $\bar{y} = \bar{x}\beta$; the random effect was defined for each area, hence it remains unaltered for the area level model. The error term in this model can be expressed as the sampling error and its standard deviation as the (conditional) standard deviation of the aggregated area statistic, which in this case is a mean. Hence, $e_i \sim \mathcal{N}(0, \sigma_{e,i}^2 = \sigma_e^2/n_i)$. Under this unit level model a sufficient estimator for $\sigma_{e,i}^2$ can be derived from estimating $\sigma_{e,i}^2$, which can be done robust and non-robust in many ways.

4.2.3 Spatio-Temporal Fay Harriot model

The model stated in equation 4.1 has been modified for including historical information by modelling autocorrelated model errors and also by allowing for spatial correlation (in the model error). See the discussion in Marhuenda, Molina, and Morales (2013) for more details. Marhuenda, Molina, and Morales (2013) allow for both spatial and temporal correlation in the model errors. Hence the sampling model is (simply) extended to include historical information:

$$y_{dt} = \mu_{dt} + e_{dt},$$

with d = 1, ..., D and t = 1, ..., T where D and T are the total number of areas and time periods respectively. Here $e_{dt} \sim N(0, \sigma_{dt}^2)$ are independent with known variances σ_{dt}^2 . The model error is composed of a spatial autoregressive process of order 1 (SAR(1)) and an autoregressive process of order 1 (AR(1)):

$$\mu_{dt} = \boldsymbol{x}_{dt}^{\top}\boldsymbol{\beta} + \boldsymbol{u}_{1d} + \boldsymbol{u}_{2dt},$$

where u_{1d} and u_{2dt} follow a SAR(1) and AR(1) respectively:

$$u_{1d} = \rho_1 \sum_{l \neq d} w_{d,l} u_{1l} + \epsilon_{1d},$$

where $|\rho_1| < 1$ and $\epsilon_{1d} \sim N(0, \sigma_1^2)$ are i.i.d. with $d = 1, \ldots, D$. $w_{d,l}$ are the elements of W which is the row standardized proximity matrix W^0 . The elements in W^0 are equal to 1 if areas are neighboured and 0 otherwise (an area is not neighboured with itself) - thus the dimension of W^0 is $D \times D$. As stated above \mathfrak{u}_{2dt} follows an AR(1):

$$u_{2dt} = \rho_2 u_{2d,t-1} + \epsilon_{2dt}$$

where $|\rho_2| < 1$ and $\varepsilon_{2dt} \sim N(0, \sigma_2^2)$ are i.i.d. with $d = 1, \ldots, D$ and $t = 1, \ldots, T$. Note that u_{1d} and u_{2dt} and e_{dt} are independent and the sampling error variance parameters are assumed to be known. The model can then be stated as:

$$y = X\beta + Zu + e$$
,

where \mathbf{y} is the DT \times 1 vector containing \mathbf{y}_{dt} as elements, \mathbf{X} is the DT \times p design matrix containing the vectors \mathbf{x}_{dt}^{\top} as rows, \mathbf{u} is the $(D+DT)\times 1$ vector of model errors and \mathbf{e} the DT \times 1 vector of sampling errors e_{dt} . Note that $\mathbf{u}=(\mathbf{u}_1^{\top},\mathbf{u}_2^{\top})$ where the D \times 1 vector \mathbf{u}_1 and DT \times 1 vector \mathbf{u}_2 have \mathbf{u}_{1d} and \mathbf{u}_{2dt} as elements respectively. Furthermore $\mathbf{Z}=(\mathbf{Z}_1,\mathbf{Z}_2)$ has dimension DT \times (D + DT), where $\mathbf{Z}_1=\mathbf{I}_D\otimes\mathbf{1}_T$ (\mathbf{I}_D denotes a D \times D identity matrix and $\mathbf{1}_T$ a 1 \times T vector of ones) has dimension DT \times D and \mathbf{Z}_2 is a DT \times DT identity matrix.

Concerning the variance of \mathbf{y} first consider the distributions of all error components. $\mathbf{e} \sim N(\mathbf{o}, \mathbf{V}_e)$ where \mathbf{V}_e is a diagonal matrix with the known σ_{dt}^2 on the main diagonal. $\mathbf{u} \sim N(\mathbf{o}, \mathbf{V}_u(\theta))$ with the block diagonal covariance matrix $\mathbf{V}_u(\theta) = \text{diag}(\sigma_1^2\Omega_1(\rho_1), \sigma_2^2\Omega_2(\rho_2))$ where $\theta = (\sigma_1^2, \rho_1, \sigma_2^2, \rho_2)$.

$$\Omega_1(\rho_1) = \left((\mathbf{I}_D - \rho_1 \mathbf{W})^\top (\mathbf{I}_D - \rho_1 \mathbf{W}) \right)^{-1}$$

and follows from the SAR(1) process in the model errors. $\Omega_2(\rho_2)$ has a block diagonal structure with $\Omega_{2d}(\rho_2)$ denoting the blocks where the definition of $\Omega_{2d}(\rho_2)$ follows from the AR(1) process:

$$\Omega_{2d}(\rho_2) = \frac{1}{1 - \rho_2^2} \begin{pmatrix} 1 & \rho_2 & \cdots & \rho_2^{T-2} & \rho_2^{T-1} \\ \rho_2 & 1 & & & \rho_2^{T-2} \\ \vdots & & \ddots & & \vdots \\ \rho_2^{T-2} & & 1 & \rho_2 \\ \rho_2^{T-1} & \rho_2^{T-2} & \cdots & \rho_2 & 1 \end{pmatrix}_{T \times T}$$

The variance of **y** can thus be stated as:

$$\mathbb{V}(\mathbf{y}) = \mathbf{V}(\mathbf{\theta}) = \mathbf{Z} \mathbf{V}_{\mathbf{u}}(\mathbf{\theta}) \mathbf{Z}^{\top} + \mathbf{V}_{\mathbf{e}}$$

The BLUE of β and BLUP of θ can be stated as (see Henderson, 1975):

$$\tilde{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \left(\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}(\boldsymbol{\theta})\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}(\boldsymbol{\theta})\boldsymbol{y}$$

$$\tilde{\mathbf{u}}(\boldsymbol{\theta}) = \mathbf{V}_{\mathbf{u}}(\boldsymbol{\theta}) \mathbf{Z}^{\top} \mathbf{V}^{-1}(\boldsymbol{\theta}) \left(\mathbf{y} - \mathbf{X} \tilde{\boldsymbol{\beta}}(\boldsymbol{\theta}) \right)$$

Hence the BLUP of u_1 and u_2 can be stated as:

$$\tilde{\boldsymbol{u}}_1(\boldsymbol{\theta}) = \sigma_1^2 \boldsymbol{\Omega}_1(\boldsymbol{\rho}_1) \boldsymbol{Z}^\top \boldsymbol{V}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{y} \! - \! \boldsymbol{X} \tilde{\boldsymbol{\beta}}(\boldsymbol{\theta}) \right)$$

$$\tilde{\boldsymbol{u}}_2(\boldsymbol{\theta}) = \sigma_2^2 \boldsymbol{\Omega}_2(\boldsymbol{\rho}_2) \boldsymbol{Z}^\top \boldsymbol{V}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\tilde{\boldsymbol{\beta}}}(\boldsymbol{\theta})\right)$$

Estimating θ leads to the EBLUE for β and EBLUPs for u_1 and u_2 , hence an predictor for the area characteristic μ_{dt} is given by:

$$\hat{\mu}_{dt} = x_{dt}^{\top} \hat{\beta} + \hat{u}_{1d} + \hat{u}_{2dt}$$

Marhuenda, Molina, and Morales (2013) use a restricted maximum likelihood method to estimate θ independently of β . An open question is if this approach can be applied for the robust spatio-temporal model. Thus we will continue with the discussion of robust small area methods.

4.3 ROBUST METHODS IN SMALL AREA ESTIMATION

4.3.1 Robust ML Score Functions

Fellner (1986) studied the robust estimation of linear mixed model parameters. However, the proposed approach is based on given variance parameters θ which is why Sinha and Rao (2009) propose an estimation procedure in which robust estimators for β and θ are solved iteratively. With given robust estimates for β and θ the estimation of the random effects is straight forward, the main concern, however, lies with the estimation of robust variance parameters. Starting from a mixed model:

$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e}$$

where y is the response vector with elements y_i , X the design matrix, u the vector of random effects and e the vector of sampling errors. Both error components are assumed to be normally distributed with $u \sim \mathcal{N}(0,G)$ and $e \sim \mathcal{N}(0,R)$ where G and R typically depend on some variance parameters θ . Thus the variance of y is given by $V(y) = V(\theta) = ZGZ^{\top} + R$. Maximizing the likelihood of y with respect to β and θ leads to the following equations:

$$\begin{aligned} \mathbf{X}^{\top}\mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right) = & 0\\ \left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right)^{\top}\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\boldsymbol{\theta}_{1}}\mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right) - \operatorname{tr}\left(\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\boldsymbol{\theta}_{1}}\right) = & 0 \end{aligned}$$

where q denotes the number of unknown variance parameters with $l=1,\ldots,q$. Solving the above equations leads to the ML-estimates for β and θ . To robustify against outliers in the response variable, the

residuals $(y - X\beta)$ are standardized and restricted by some influence function $\psi(\cdot)$. The standardized residuals are given by

$$\mathbf{r} = \mathbf{U}^{-\frac{1}{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

where **U** is the matrix of diagonal elements of **V** and thus also depends on the variance parameters θ . A typical choice for $\psi(\cdot)$ is Hubers influence function:

$$\psi(u)=u\,min\left(1,\frac{b}{|u|}\right).$$

A typical choice for b is 1.345. The vector of robustified residuals is denoted by $\underline{\ }(\mathbf{r})=(\psi(r_1),\ldots,\psi(r_n)).$ Solving the following robust ML-equations leads to robustified estimators for β and θ :

$$\mathbf{X}^{\top}\mathbf{V}^{-1}\mathbf{U}^{\frac{1}{2}}\psi(\mathbf{r}) = 0$$

$$(4.2)$$

$$\Phi_{1}(\theta) = \psi(\mathbf{r})^{\top}\mathbf{U}^{\frac{1}{2}}\mathbf{V}^{-1}\frac{\partial \mathbf{V}}{\partial \theta_{1}}\mathbf{V}^{-1}\mathbf{U}^{\frac{1}{2}}\psi(\mathbf{r}) - \operatorname{tr}\left(\mathbf{K}\mathbf{V}^{-1}\frac{\partial \mathbf{V}}{\partial \theta_{1}}\right) = 0$$

$$(4.3)$$

where K is a diagonal matrix of the same order as **V** with diagonal elements $c = \mathbb{E}[\psi^2(r)|b]$ where r follows a standard normal distribution.

4.3.2 Bias Correction

Tzavidis and Chambers (2005): BIAS ADJUSTED SMALL AREA ES-TIMATION WITH M-QUANTILE MODELS

Jiongo, Haziza and Duchesne (2013): Controlling the bias of robust small-area estimators

4.3.3 Mean squared error

4.3.3.1 *Bootstrap*

4.3.3.2 Pseudo Linearization

Chambers, J. Chandra, and Tzavidis (2011) and Chambers, H. Chandra, et al. (2014) deal with the estimation of the MSE of robust area predictors in the context of Small Area Estimation. In this section I review their results. Later in section? I will, firt, adapt their findings to estimate the MSE of the robustified Fay Herriot model, and second use the linearization of robust mixed models to derive a fixed point algorithm to find solutions for the model parameters.

The central idea is to formulate the RBLUP as wigthed sum of the response vector:

$$\theta_{i}^{RBLUP} = \sum_{i \in s} w_{ij}^{RBLUP} y_{ij} = (\mathbf{w}_{is}^{RBLUP})^{\top} \mathbf{y}_{s}$$

where

$$\left(\boldsymbol{w}_{is}^{RBLUP}\right)^{\top} = N_{i}^{-1} \left(\boldsymbol{1}_{s}^{\top} + (N_{i} - n_{i}) \left(\bar{\boldsymbol{x}}_{ir}^{\top} \boldsymbol{A}_{s} + \bar{\boldsymbol{z}}_{ir}^{\top} \boldsymbol{B}_{s} \left(\boldsymbol{I}_{s} - \boldsymbol{X}_{s} \boldsymbol{A}_{s}\right)\right)\right)$$

and

$$\mathbf{A}_{s} = \left(\mathbf{X}_{s}^{\top} \mathbf{V}_{s}^{-1} \mathbf{U}_{s}^{\frac{1}{2}} \mathbf{W}_{1s} \mathbf{U}_{s}^{-\frac{1}{2}} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\top} \mathbf{V}_{s}^{-1} \mathbf{U}_{s}^{\frac{1}{2}} \mathbf{W}_{1s} \mathbf{U}_{s}^{-\frac{1}{2}}$$

with

$$\mathbf{W}_{1s} = \operatorname{diag}\left(w_{j}\right)_{n \times n}$$

and

$$w_{1j} = \frac{\psi\left(U_{j}^{-\frac{1}{2}}\left(y_{j} - x_{j}^{\top}\hat{\beta}^{\psi}\right)\right)}{U_{j}^{-\frac{1}{2}}\left(y_{j} - x_{j}^{\top}\hat{\beta}^{\psi}\right)}$$

$$\boldsymbol{B}_{s} = \left(\boldsymbol{Z}_{s}^{\top}\boldsymbol{V}_{es}^{-\frac{1}{2}}\boldsymbol{W}_{2s}\boldsymbol{V}_{es}^{-\frac{1}{2}}\boldsymbol{Z}_{s} + \boldsymbol{V}_{u}^{-\frac{1}{2}}\boldsymbol{W}_{3s}\boldsymbol{V}_{u}^{-\frac{1}{2}}\right)^{-1}\boldsymbol{Z}_{s}^{\top}\boldsymbol{V}_{e}^{-\frac{1}{2}}\boldsymbol{W}_{2s}\boldsymbol{V}_{e}^{-\frac{1}{2}}$$

with W_{2s} as diagonal matrix with ith component:

$$w_{2i} = \frac{\psi\left(\left(\sigma_{e,i}^{\psi}\right)^{-1}\left(y_{i} - x_{i}^{\top}\hat{\beta}^{\psi} - \hat{u}_{i}^{\psi}\right)\right)}{\left(\sigma_{e,i}^{\psi}\right)^{-1}\left(y_{i} - x_{i}^{\top}\hat{\beta}^{\psi} - \hat{u}_{i}^{\psi}\right)}$$

and with W_{3s} as $(m \times m)$ diagonal matrix with ith component:

$$w_{3i} = \frac{\psi\left(\left(\sigma_{u}^{\psi}\right)^{-1} \hat{u}_{i}^{\psi}\right)}{\left(\sigma_{u}^{\psi}\right)^{-1} \hat{u}_{i}^{\psi}}$$

This all assumes known variance parameters. When the variance parameters are unknown, they are estimated and instead of \mathbf{w}_{is}^{RBLUP} we have to use \mathbf{w}_{is}^{REBLUP} . Then the estimator of the conditional MSE is given by:

$$\widehat{MSE}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) = \widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) + \widehat{\mathbb{B}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right)^{2}$$

$$\widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) = N_{i}^{-2} \sum_{j \in s} \left(\boldsymbol{\alpha}_{ij}^{2} + \left(N_{i} - n_{i}\right)\boldsymbol{n}^{-1}\right) \boldsymbol{\lambda}_{j}^{-1} \left(y_{j} - \hat{\boldsymbol{\mu}}_{j}\right)^{2}$$

with

$$a_{ij} = N_i w_{ij}^{REBLUP} - I (j \in i)$$

and

$$\widehat{\mathbb{B}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) = \sum_{j \in s} w_{ij}^{REBLUP} \hat{\boldsymbol{\mu}}_{j} - N_{i}^{-1} \sum_{j \in (r_{i} \cup s_{i})} \hat{\boldsymbol{\mu}}_{j}$$

Note that $\hat{\mu}_j$ is an unbiased estimator of the the conditional expectation $\mu_j = \mathbb{E}\left(y_j|x_j, \boldsymbol{u}^{\psi}\right)$. $\lambda_j = 1 - 2\varphi_{jj} + \sum_{k \in s} \varphi_{kj}^2$.

5.1 THE PROBLEM OF OUTLYING OBSERVATIONS FOR AREA-LEVEL MODELS

This section provides some motivation for the study of robust arealevel models. It mainly lays out under which scenarios a robust estimation may proove to be beneficial and how these points are addressed in later chapters. Most importantly you can find insights on what outlying observations are from an area-level perspective. And if such data points exist, what is the source of this abnormal behaviour?

In the following I want to distinguish between three types of outlying observations. Unit-level outliers and how they may effect the area-level analysis are discussed in 5.1.1. Area-level outliers can be described as outlying domains, which means that an entire domain or all units in that domain - behaves differently than all others and are further discussed in section 5.1.2. A third kind can be best described as overly influential observations. The effect of such observations on the area-level is more subtle. A first intuition and possible sources of this type is given in section 5.1.3.

5.1.1 Unit-Level Outliers

Unit-level outliers can be representative or non-representative values but in most cases it is beyond our reach to judge which kind they are because we only see aggregates. They will influence the direct estimator in that this quntity may have unexpected high or low values. But they also influence the estimation of the standard error of the direct estimator which in turn can be used as the true or rather given variance parameters in a Fay-Herriot type model.

In the situation where the direct variance estimators are used, two conflicting effects need to be considered. First, we use an obviously unreliable estimator for the sampling error and assume that such values can be used as the *true* variance parameters in the Fay-Herriot model. Such estimators will have poor properties when the target is the *true* sampling error especially in the context of outliers. This problem stimulates the recent discussion around smoothing the variance estimates prior to using them in a Fay-Herriot model (see ? for reference of this discussion and section 5.1.3 for how the robust estimator relates to this discussion).

Second, we may consider the direct variance estimators not as an informative quantity for the *true* sampling error, but as informative

about the unit-level sample. This is an important aspect because the variance becomes a reliablility index. The estimated sampling variance is large if outliers are present or in general the sample is heterogenous; and it is low for areas in which we have a reliable direct estimator. In this case the direct variance estimation will weight down unreliable direct estimators, which is why the Fay-Herriot model can be considered to be robust against unit-level outliers.

When we consider unit-level outliers it is relevant to ask why we would not use a robust direct estimator. From a practical point of view we may only have access to non-robust estimators. On the other hand it may be crucial feedback to a data provider to instead report robust estimates, e.g. a robust mean or median. Also it is unclear how this relates to the *self-adjusting* effect of the Fay-Herriot model. This aspect is addressed by model-based simulations in section (?).

5.1.2 Area-Level Outliers

Area-level outliers are domains or areas which are far away from the bulk of the observations. The source of such observations are not single units influencing the direct estimator, but the fact that there exist domains which are substantially different from the majority.

If we take the standpoint of a mixed-model perspective this means that there are outliers in the random effect. From a model perspective where we treat the random effect as i.i.d. random variable following a normal distribution such values may arise by chance alone. This would mean that in truth the distribution is indeed normal but we are in one of those rare cases in which we observe abnormal behaviour of single domains.

This argumentation seems to be unrealistic because under repeated sampling we would expect the same domains to be abnormal which stimulates a more fundamental discussion of mixed-models in Small Area Estimation (see ?); and it gives reason to frame a random effect as fixed but unknown quntity which is approximated by a normal distribution. In this setting the existance of outliers means that the normal distribution may well be a good approximation for the majority of areas but not for all them. This will raise the question if a different distribution should be used to approximate the random effect, e.g. a mixture distribution of normals or a scewed distribution.

Regardless of the perspective, in the application in which such values are observed a robust estimation technique can be beneficial. The main effect of a misspecified distributional assumption is that the variance parameter of the random effect will be overestimated - at least this is what we should expect in the presence of outliers. Also the parameter estimates of the fixed effects part can be influenced by such observations, allthough it is unclear how they are unfluenced specifically (under- or over-estimated).

Looking at the shrinkage estimator it can be derived how an overestimation of the estimated variance parameter of the random effect influences area-level predictions. The larger the estimated variance compared to the area-specific sampling variance the stronger the prediction relies on the direct estimator. However, the robust prediction will turn out not to be the shrinkage estimator but instead a robustified best linear unbiased predictor for which the influence is more subtle. The intuition of the effect, however, remains the same.

5.1.3 The Creation of Overly Influencial Observations

In this section I want to introduce a third kind of outlying observation. Such values are better understood as overly influencial observations as they do not necessarily are far away from the center of the data. Furthermore they can not be understood by looking at the direct estimator alone but must be seen as pairs of direct estimator and sampling variance. Together they determine the impact of a single observation on the overall predictions.

To distinguish them from area- and unit-level outliers consider two hypothetical scenarios from which these values can arise:

- There are no outliers present and the unit-level population model is that of (?). However, the sample sizes for most areas are very small say between 5 and 50 and only for very few domains we have sufficient sample size of say 500. This will inevitably result in a very heterogenous picture on the area-level where domains with sample size 500 will appear to be extremely reliable. The effect can be that such observations will dominate the global mean and thus effectively become the value we are shrinking against.
- We have unit-level outliers influencing domain specific direct estimators. However, instead of using the estimated sampling variance we smooth the variances against a global parameter essentially shrinking both means and variances as suggested in (?). This results in outlying domains for which, after smoothing, the direct estimators appear to be more reliable than they truly are. Effectively this reduces the self adjusting effect described in section 5.1.1.

Especially the second scenario should not be misunderstood as an argument against smoothing, or that we should not care about unstable variance estimation. Allthogh the variances are not directly smoothed the influence of observations is bounded in a robust estimation procedure. In fact the introduced robust area-level model can be considered to have a positive effect with respect to both scenarios because single observations are restricted in their influence.

Furthermore the robust model may present an alternative to smoothing strategies, although that has not been the initial intention, without the danger of creating overly influencial observations.

5.2 THE ROBUST FAY-HERRIOT MODEL AND EXTENSIONS

5.3 BIAS CORRECTION

The two existing methodologies which are available to do bias correction for robust models in SAE are not easily adapted to the general context of the discussed area level models. Both approaches are based on a robust scale estimate of the residuals within in a domain. In the standard RFH and SRFH there is only one observation per domain, such that these estimates can not be directly transfered.

However, the general problem remains. In the setting of the robustified score functions and a misspecified distribution in the sense that outlying observations have a different mean, the model can introduce a severe bias to those outlying estimations.

Independet of this question Fay and Herriot (1979) refer to Efron and Morris (1971) and Efron and Morris (1972) who argue that the Bayes Estimator and and the Emperical Bayes Estimator may improve the overall prediction performance but can be ill suited for specific domains. In essence this describes also the situation with the RFH models which introduce a bias to the prediction of outlying domains.

Efron and Morris also suggest a simple correction to the prediction which can be directly applied to the robust models under study. They suggest to restrict the prediction by an interval around the direct estimator. The width of this interval can be constructed as a multiple of the known standard errors under the model:

$$\theta_i^{BC} = \begin{cases} \tilde{y}_i - c & \text{if } \theta_i^{RFH} < \tilde{y}_i - c \\ \theta_i^{RFH} & \text{if } \tilde{y}_i - c \leqslant \theta_i^{RFH} \leqslant \tilde{y}_i + c \\ \tilde{y}_i + c & \text{if } \theta_i^{RFH} > \tilde{y}_i + c \end{cases}$$

5.4 MEAN SQUARED ERROR ESTIMATION

5.4.1 Bootstrap

5.4.2 Pseudo Linearization

This is the representation of the pseudo linear representation of the FH model. As it is introduced in Chambers, J. Chandra, and Tzavidis (2011) and Chambers, H. Chandra, et al. (2014).

Presenting the FH in pseudo linear form means to present the area means as a weighted sum of the response vector y. The FH model is given by

$$\theta_{i} = \gamma_{i} y_{i} + (1 - \gamma_{i}) x_{i}^{\top} \beta \tag{5.1}$$

where $\gamma_i = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$, so it can be represented as

$$\theta_i = w_i^{\mathsf{T}} y$$

where

$$\mathbf{w}_{i}^{\top} = \mathbf{\gamma}_{i} \mathbf{I}_{i}^{\top} + (1 - \mathbf{\gamma}_{i}) \mathbf{x}_{i}^{\top} \mathbf{A}$$

and

$$\mathbf{A} = \left(\mathbf{X} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \mathbf{W} \mathbf{U}^{-\frac{1}{2}} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \mathbf{W} \mathbf{U}^{-\frac{1}{2}}$$

with

$$\mathbf{W} = \text{Diag}(w_j)$$
, with $j = 1, ..., n$

and

$$w_j = \frac{\psi\left(u_j^{-\frac{1}{2}}(y_j - x_j^{\top}\beta)\right)}{u_j^{-\frac{1}{2}}(y_j - x_j^{\top}\beta)}$$

Note that if ψ is the identity or equally a huber influence function with a large smoothing constant, i.e.inf:

$$\mathbf{A} = \left(\mathbf{X}\mathbf{V}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{V}^{-1}$$

The fixed point function derived from these formulas are the following:

$$\beta = \mathbf{A}(\beta)\mathbf{y}$$

This whole thing can also be addapted to define the random effects. If we define the model in an alternative way:

$$\theta_{i} = x_{i}^{\top} \beta + u_{i} \tag{5.2}$$

we can restate it similarly to the above as:

$$\theta_{i} = w_{s,i}^{\top} \mathbf{y}$$

$$\theta = Wv$$

where **W** is the matrix containing the weights, i.e.

$$\mathbf{W} = \begin{pmatrix} w_{s,1}^{\top} \\ \vdots \\ w_{s,D}^{\top} \end{pmatrix} = \mathbf{X}\mathbf{A} + \mathbf{B}(\mathbf{I} - \mathbf{X}\mathbf{A})$$

with

$$w_{s,i}^{\top} = x_i^{\top} \mathbf{A} + z_i^{\top} \mathbf{B} \left(\mathbf{I} - x_i^{\top} \mathbf{A} \right)$$

where A is defined as above and

$$\mathbf{B} = \left(\mathbf{V}_{e}^{-\frac{1}{2}}\mathbf{W}_{2}\mathbf{V}_{e}^{-\frac{1}{2}} + \mathbf{V}_{u}^{-\frac{1}{2}}\mathbf{W}_{3}\mathbf{V}_{u}^{-\frac{1}{2}}\right)^{-1}\mathbf{V}_{e}^{-\frac{1}{2}}\mathbf{W}_{2}\mathbf{V}_{e}^{-\frac{1}{2}}$$

with W_2 as diagonal matrix with ith component:

$$w_{2i} = \frac{\psi\{\sigma_{e,i}^{-1}(y_i - x_i^\top \beta - u_i)\}}{\sigma_{e,i}^{-1}(y_i - x_i^\top \beta - u_i)}$$

and with W_3 as diagonal matrix with ith component:

$$w_{3i} = \frac{\psi \{\sigma_u^{-1} u_i\}}{\sigma_u^{-1} u_i}$$

The fixed point function derived from these formulas are the following:

$$u = \mathbf{B}(\mathbf{u}) (\mathbf{I} - \mathbf{X}\mathbf{A}) \mathbf{y}$$
$$= \mathbf{B}(\mathbf{u}) (\mathbf{y} - \mathbf{X}\mathbf{\beta})$$

Given the weights we have a weighted mean, for which we need the MSE:

$$\mathbb{MSE}\left(\hat{\boldsymbol{\theta}}|\boldsymbol{X},\boldsymbol{\beta},\boldsymbol{u}\right) = \mathbb{E}\left(\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right)^2\right) = \mathbb{V}\left(\hat{\boldsymbol{\theta}}\right) + \mathbb{E}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right)^2$$

$$\mathbb{V}\left(\hat{\theta}\right) = \mathbb{V}\left(\mathbf{W}\mathbf{y}\right) = \mathbf{W}^{2}\mathbb{V}\left(\mathbf{y}\right) = \mathbf{W}^{2}\left(\sigma_{e,1}^{2}, \dots, \sigma_{e,D}^{2}\right)^{\top}$$

$$\mathbb{E}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) = \mathbb{E}\left(\boldsymbol{W}\boldsymbol{y}\right) - \mathbb{E}\left(\boldsymbol{\theta}\right) = \boldsymbol{W}\mathbb{E}\left(\boldsymbol{y}\right) - \mathbb{E}\left(\boldsymbol{\theta}\right) = \boldsymbol{W}\boldsymbol{\theta} - \boldsymbol{\theta}$$

5.5 ALGORITHM

5.5.1 Newton Raphson Algorithms

Sinha and Rao (2009) propose a Newton-Raphson algorithm to solve equations 4.2 and 4.3 iteratively. The iterative equation for β is given by:

$$\boldsymbol{\beta}^{(\mathfrak{m}+1)} = \boldsymbol{\beta}^{(\mathfrak{m})} + \left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{D}(\boldsymbol{\beta}^{(\mathfrak{m})}) \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{\psi}(\boldsymbol{r}(\boldsymbol{\beta}^{(\mathfrak{m})}))$$

where $D(\beta) = \frac{\partial \psi(r)}{\partial r}$ is a diagonal matrix of the same order as V with elements

$$D_{jj} = \begin{cases} 1 \text{ for } |r_j| \leqslant b \\ 0 \text{ else} \end{cases}, j = 1, \dots, n$$

The iterative equation for θ can be stated as:

$$\boldsymbol{\theta}^{(m+1)} = \boldsymbol{\theta}^{(m)} - \left(\boldsymbol{\Phi}'(\boldsymbol{\theta}^{(m)})\right)^{-1} \boldsymbol{\Phi}(\boldsymbol{\theta}^{(m)})$$

where $\Phi'(\theta^m)$ is the derivative of $\Phi(\theta)$ evaluated at $\theta^{(m)}$. The derivative of Φ is given by Schmid, 2012, p.53:

$$\frac{\partial \Phi}{\partial \theta_{l}} = 2 \frac{\partial}{\partial \theta_{l}} \left(\psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \right) \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) + tr \left(\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{K} \right)$$
(5.3)

where

$$\frac{\partial}{\partial \theta_1} \left(\psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \right) = \frac{\partial}{\partial \theta_1} (\psi(\boldsymbol{r})^\top) \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} + \psi(\boldsymbol{r})^\top \frac{\partial}{\partial \theta_1} (\boldsymbol{U}^{\frac{1}{2}}) \boldsymbol{V}^{-1} - \psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \theta_1} \boldsymbol{V}^{-1}.$$

In Schmid (2012) adopted this procedure for the Spatial Robust EBLUP and essentially we will follow the same procedure Schmid (2012, p.74ff.). Thus we will directly consider the algorithm for the Spatio Temporal model introduced earlier. Since the model considered by Sinha and Rao (2009) contained a block diagonal variance structure where all off-diagonals are zero, equation 5.3 is valid with respect to the earlier specified variance parameters σ_1^2 and σ_2^2 from the spatio temporal Fay Herriot model. The derivative of Φ with respect to ρ_1 and ρ_2 , however, is different. To adapt the notation, let $\theta=(\sigma_1^2,\sigma_2^2)$ for which equation 5.3 holds. Let $\rho=(\rho_1,\rho_2)$ denote the vector of correlation parameters as they already have been defined above. Then the iterative equation for ρ is can be stated as:

$$\boldsymbol{\rho}^{(\mathfrak{m}+1)} = \boldsymbol{\rho}^{(\mathfrak{m})} + \left(\boldsymbol{\Phi}'(\boldsymbol{\rho}^{(\mathfrak{m})}\right)^{-1} \boldsymbol{\Phi}(\boldsymbol{\rho}^{(\mathfrak{m})})$$

where the derivative of Φ with respect to ρ is given by Schmid (2012, p.76):

$$\begin{split} \frac{\partial \Phi}{\partial \rho_{l}} = & 2 \frac{\partial}{\partial \rho_{l}} \left(\psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \right) \frac{\partial \mathbf{V}}{\partial \rho_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ & + \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \rho_{l} \partial \rho_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ & + \text{tr} \left(\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \rho_{1} \partial \rho_{1}} \mathbf{K} - \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{1}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{1}} \mathbf{K} \right) \end{split}$$

The partial derivatives of **V** with respect to θ and ρ are given by:

$$\begin{split} \frac{\partial \mathbf{V}}{\partial \sigma_1^2} = & \mathbf{Z}_1 \Omega_1(\rho_1) \mathbf{Z}_1^\top \\ \frac{\partial \mathbf{V}}{\partial \sigma_2^2} = & \Omega_2(\rho_2) \\ \frac{\partial \mathbf{V}}{\partial \rho_1} = & -\sigma_1^2 \mathbf{Z}_1 \Omega_1(\rho_1) \frac{\partial \Omega_1^{-1}(\rho_1)}{\partial \rho_1} \Omega_1(\rho_1) \mathbf{Z}_1^\top \\ \frac{\partial \mathbf{V}}{\partial \rho_2} = & \sigma_2^2 \operatorname{diag} \left(\frac{\partial \Omega_{2d}(\rho_2)}{\partial \rho_2} \right) \\ \frac{\partial \mathbf{V}}{\partial \rho_1 \partial \rho_1} = & -\sigma_1^2 \mathbf{Z}_1 \frac{\partial \Omega_1(\rho_1)}{\partial \rho_1} \frac{\partial \Omega_1^{-1}(\rho_1)}{\partial \rho_1} \Omega_1(\rho_1) \mathbf{Z}_1^\top \\ & -\sigma_1^2 \mathbf{Z}_1 \Omega_1(\rho_1) \frac{\partial \Omega_1^{-1}(\rho_1)}{\partial \rho_1 \partial \rho_1} \Omega_1(\rho_1) \mathbf{Z}_1^\top \\ & -\sigma_1^2 \mathbf{Z}_1 \Omega_1(\rho_1) \frac{\partial \Omega_1^{-1}(\rho_1)}{\partial \rho_1} \frac{\partial \Omega_1(\rho_1)}{\partial \rho_1} \mathbf{Z}_1^\top \\ \frac{\partial \mathbf{V}}{\partial \rho_2 \partial \rho_2} = & \text{Needs to be TEXed} \end{split}$$

where

$$\begin{split} \frac{\Omega_{1}(\rho_{1})}{\partial \rho_{1}} &= -\Omega_{1}(\rho_{1}) \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} \Omega_{1}(\rho_{1}) \,, \\ \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} &= -\mathbf{W} - \mathbf{W}^{T} + 2\rho_{1} \mathbf{W}^{T} \mathbf{W} \,, \\ \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1} \partial \rho_{1}} &= 2 \mathbf{W}^{T} \mathbf{W} \end{split}$$

$$\frac{\partial \Omega_{2d}^{-1}(\rho_{1})}{\partial \rho_{2}} &= \frac{1}{1 - \rho_{2}^{2}} \begin{pmatrix} 0 & 1 & \cdots & \cdots & (T - 1)\rho_{2}^{T - 2} \\ 1 & 0 & & (T - 2)\rho_{2}^{T - 3} \\ \vdots & & \ddots & & \vdots \\ (T - 2)\rho_{2}^{T - 3} & & 0 & 1 \\ (T - 1)\rho_{2}^{T - 2} & \cdots & \cdots & 1 & 0 \end{pmatrix} + \frac{2\rho_{2}\Omega_{2d}(\rho_{2})}{1 - \rho_{2}^{2}} \end{split}$$

Having identified all iterative equations the adapted algorithm from Schmid (2012) is as follows:

- Choose initial values for β^0 , θ^0 and ρ^0 .
- Compute $\beta^{(m+1)}$, with given variance parameters and correlation parameters
 - Compute $\theta^{(m+1)}$, with given regression and correlation parameters
 - Compute $\rho^{(m+1)}$, with given variance and regression parameters
- Continue step 2 until the following stopping rule holds:

$$||\beta^{(m+1)} - \beta^{(m)}||^2 < const \\ (\sigma_1^{2(m+1)} - \sigma_1^{2(m)})^2 + (\sigma_2^{2(m+1)} - \sigma_2^{2(m)})^2 + (\rho_1^{(m+1)} - \rho_1^{(m)})^2 + (\rho_2^{(m+1)} - \rho_2^{(m)})^2 < const$$

5.5.2 Fixed Point Algorithms

Inspired by: Chatrchi Golshid (2012): Robust Estimation of Variance Components in Small Area Estimation, Master-Thesis, Ottawa, Ontario, Canada: p. 16ff.:

The fixed-point iterative method relies on the fixed-point theorem: "If g(x) is a continuous function for all $x \in [a;b]$, then g has a fixed point in [a;b]." This can be proven by assuming that $g(a) \geqslant a$ and $g(b) \leqslant b$. Since g is continuous the intermediate value theorem guarantees that there exists a c such that g(c) = c.

Starting from equation 4.3 where $\theta = (\sigma_1^2, \sigma_2^2)$ and (ρ_1, ρ_2) are assumed to be known, we can rewrite the equation such that:

$$\begin{split} \Phi_{l}(\theta) &= \psi(r)^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(r) - \\ & \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} (\mathbf{Z} \mathbf{V}_{u} \mathbf{Z}^{\top})^{-1} (\mathbf{Z} \mathbf{V}_{u} \mathbf{Z}^{\top}) \right) = \mathbf{0} \quad (5.4) \end{split}$$

Note that because the matrix V_e is assumed to be known for the FH model, it can be omitted. Let $o_{r \times c}$ define a matrix filled with 0 of dimension $(r \times c)$ then:

$$\begin{split} \boldsymbol{Z} \boldsymbol{V}_{u} \boldsymbol{Z}^{\top} = & \boldsymbol{Z} \begin{pmatrix} \sigma_{1}^{2} \Omega_{1} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \sigma_{2}^{2} \Omega_{2} \end{pmatrix} \boldsymbol{Z}^{\top} \\ = & \boldsymbol{Z} \begin{bmatrix} \sigma_{1}^{2} \begin{pmatrix} \Omega_{1} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \boldsymbol{o}_{DT \times DT} \end{pmatrix} + \sigma_{2}^{2} \begin{pmatrix} \boldsymbol{o}_{D \times D} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \Omega_{2} \end{pmatrix} \end{bmatrix} \boldsymbol{Z}^{\top} \\ = & \begin{pmatrix} \boldsymbol{Z} \bar{\Omega}_{1} \boldsymbol{Z}^{\top} & \boldsymbol{Z} \bar{\Omega}_{2} \boldsymbol{Z}^{\top} \end{pmatrix} \begin{pmatrix} \sigma_{1}^{2} \\ \sigma_{2}^{2} \end{pmatrix} \end{split}$$

Thus equation 5.7 can be rewritten to:

$$\begin{split} \psi(r)^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \theta_1} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \psi(r) = \\ tr \left(\boldsymbol{K} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \theta_1} (\boldsymbol{Z} \boldsymbol{V}_u \boldsymbol{Z}^\top)^{-1} \left(\boldsymbol{Z} \bar{\boldsymbol{\Omega}}_1 \boldsymbol{Z}^\top \quad \boldsymbol{Z} \bar{\boldsymbol{\Omega}}_2 \boldsymbol{Z}^\top \right) \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \end{pmatrix} \right) \end{split}$$

Let

$$\begin{pmatrix} \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{1}^{2}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{2}^{2}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \end{pmatrix} = \alpha(\theta) ,$$

then

$$\theta = \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \end{pmatrix} = A(\theta)^{-1} \alpha(\theta) \ ,$$

where

$$A(\theta) = \begin{pmatrix} \text{tr}\left(\mathsf{K}\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_1^2} (\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1} \mathbf{Z}\bar{\Omega}_1 \mathbf{Z}^\top\right) & \text{tr}\left(\mathsf{K}\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_1^2} (\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1} \mathbf{Z}\bar{\Omega}_2 \mathbf{Z}^\top\right) \\ \text{tr}\left(\mathsf{K}\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_2^2} (\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1} \mathbf{Z}\bar{\Omega}_1 \mathbf{Z}^\top\right) & \text{tr}\left(\mathsf{K}\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_2^2} (\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1} \mathbf{Z}\bar{\Omega}_2 \mathbf{Z}^\top\right) \end{pmatrix}.$$

So, the fixed point algorithm can be presented as follows:

$$\theta^{m+1} = A(\theta^{(m)})^{-1}\alpha(\theta^{(m)})$$

At this time the fixed-point algorithm for $\theta=(\sigma_1^2,\sigma_2^2)$ will replace the corresponding step in Issue 1.

5.5.2.1 N-S: Fixed-Point-Algorithm - Spatial Correlation

To extend the above algorithm to not only being used for the estimation of $\theta=(\sigma_1^2,\sigma_2^2)$ but also for the spatial correlation parameter ρ_1 reconsider:

$$\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^{\top} = \mathbf{Z}\begin{pmatrix} \sigma_{1}^{2}\Omega_{1} & \mathbf{o}_{\mathbf{D}\times\mathbf{D}\mathsf{T}} \\ \mathbf{o}_{\mathbf{D}\mathsf{T}\times\mathbf{D}} & \sigma_{2}^{2}\Omega_{2} \end{pmatrix} \mathbf{Z}^{\top}$$
(5.5)

and the specification of $\Omega_1(\rho_1) = ((I - \rho_1 \mathbf{W})^\top (I - \rho_1 \mathbf{W}))^{-1}$:

$$\begin{split} \sigma_{1}^{2}\Omega_{1}(\rho_{1}) &= \sigma_{1}^{2}\Omega_{1}\Omega_{1}(I - \rho_{1}\mathbf{W})^{\top}(I - \rho_{1}\mathbf{W}) \\ &= \sigma_{1}^{2}\left(\Omega_{1}\Omega_{1} - \rho_{1}\Omega_{1}\Omega_{1}\mathbf{W}^{\top} - \rho_{1}\Omega_{1}\Omega_{1}\mathbf{W} + \rho_{1}^{2}\Omega_{1}\Omega_{1}\mathbf{W}^{\top}\mathbf{W}\right) \\ &= \sigma_{1}^{2}\left(\Omega_{1}\Omega_{1} - \rho_{1}\Omega_{1}\Omega_{1}\mathbf{W}^{\top}\right) + \rho_{1}\left(-\sigma_{1}^{2}\Omega_{1}\Omega_{1}\mathbf{W} + \sigma_{1}^{2}\rho_{1}\Omega_{1}\Omega_{1}\mathbf{W}^{\top}\mathbf{W}\right) \end{split}$$

$$(5.6)$$

Thus equation 5.5 can be rewritten as:

$$\begin{split} \boldsymbol{Z} \boldsymbol{V}_{u} \boldsymbol{Z}^{\top} &= \boldsymbol{Z} \Bigg[\sigma_{1}^{2} \begin{pmatrix} \Omega_{1} \Omega_{1} - \rho_{1} \Omega_{1} \Omega_{1} \boldsymbol{W}^{\top} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \boldsymbol{o}_{DT \times DT} \end{pmatrix} \\ &+ \rho_{1} \begin{pmatrix} -\sigma_{1}^{2} \Omega_{1} \Omega_{1} \boldsymbol{W} + \sigma_{1}^{2} \rho_{1} \Omega_{1} \Omega_{1} \boldsymbol{W}^{\top} \boldsymbol{W} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \boldsymbol{o}_{DT \times DT} \end{pmatrix} \\ &+ \sigma_{2}^{2} \begin{pmatrix} \boldsymbol{o}_{D \times D} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \Omega_{2} \end{pmatrix} \Bigg] \boldsymbol{Z}^{\top} \\ &= \Big(\boldsymbol{Z} \bar{\Omega}_{1, \sigma_{1}^{2}} \boldsymbol{Z}^{\top} & \boldsymbol{Z} \bar{\Omega}_{1, \rho_{1}} \boldsymbol{Z}^{\top} & \boldsymbol{Z} \bar{\Omega}_{2} \boldsymbol{Z}^{\top} \end{pmatrix} \begin{pmatrix} \sigma_{1}^{2} \\ \rho_{1} \\ \sigma_{2}^{2} \end{pmatrix} \end{split}$$

Thus equation 5.7 can be rewritten (analogously as above) to:

$$\psi(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\frac{\partial\boldsymbol{V}}{\partial\boldsymbol{\theta}_{l}}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\psi(\boldsymbol{r}) = tr\left(\boldsymbol{K}\boldsymbol{V}^{-1}\frac{\partial\boldsymbol{V}}{\partial\boldsymbol{\theta}_{l}}(\boldsymbol{Z}\boldsymbol{V}_{u}\boldsymbol{Z}^{\top})^{-1}\left(\boldsymbol{Z}\boldsymbol{\bar{\Omega}}_{1,\sigma_{1}^{2}}\boldsymbol{Z}^{\top} \quad \boldsymbol{Z}\boldsymbol{\bar{\Omega}}_{1,\rho_{1}}\boldsymbol{Z}^{\top} \quad \boldsymbol{Z}\boldsymbol{\bar{\Omega}}_{2}\boldsymbol{Z}^{\top}\right)\begin{pmatrix}\sigma_{1}^{2}\\\rho_{1}\\\sigma_{2}^{2}\end{pmatrix}\right)$$

Let

$$\begin{pmatrix} \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{1}^{2}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \rho_{1}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{2}^{2}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \end{pmatrix} = \alpha(\theta) ,$$

then

$$\theta = \begin{pmatrix} \sigma_1^2 \\ \rho_1 \\ \sigma_2^2 \end{pmatrix} = A(\theta)^{-1} \alpha(\theta) ,$$

where

$$\begin{split} A(\theta) &= \begin{pmatrix} \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \\ \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \\ \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \end{pmatrix} \end{split}$$
 and
$$\gamma(\theta_1) = K\mathbf{V}^{-1}\tfrac{\partial \mathbf{V}}{\partial \theta_1}(\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1}$$

5.5.2.2 More on the Fixed Point

Inspired by: Chatrchi Golshid (2012): Robust Estimation of Variance Components in Small Area Estimation, Master-Thesis, Ottawa, Ontario, Canada: p. 16ff.:

The fixed-point iterative method relies on the fixed-point theorem: "If g(x) is a continuous function for all $x \in [a;b]$, then g has a fixed point in [a;b]." This can be proven by assuming that $g(a) \geqslant a$ and $g(b) \leqslant b$. Since g is continuous the intermediate value theorem guarantees that there exists a c such that g(c) = c.

Starting from equation 4.3 where $\theta = \sigma_u^2$ we can rewrite the equation such that:

$$\Phi(\theta) = \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) - \operatorname{tr} \left(\mathbf{K} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta} (\mathbf{Z} \mathbf{G} \mathbf{Z}^{\top})^{-1} (\mathbf{Z} \mathbf{G} \mathbf{Z}^{\top}) \right) = 0$$
(5.7)

Note that because the matrix **R** is assumed to be known for the FH model, it can be omitted. Note that under the simple Fay-Herriot Model $\mathbf{Z}\mathbf{G}\mathbf{Z}^{\top} = \sigma_{\mathbf{u}}^{2}\mathbf{I}$, where **I** is a $(D \times D)$ identity matrix. Furthermore $\frac{\partial \mathbf{V}}{\partial \theta} = \mathbf{I}$. Thus equation 5.7 can be rewritten to:

$$\boldsymbol{\psi}(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{\psi}(\boldsymbol{r}) = \operatorname{tr}\left(\boldsymbol{K}\boldsymbol{V}^{-1}\boldsymbol{G}^{-1}\boldsymbol{\sigma}_{\boldsymbol{u}}^{2}\right)$$

This can be solved for the fixed Point and is directly presented in algorithmic notation, such that:

$$\boldsymbol{\theta}^{m+1} = A(\boldsymbol{\theta}^{(m)})^{-1} \boldsymbol{\alpha}(\boldsymbol{\theta}^{(m)})$$
 ,

where

$$A(\theta) = tr\left(K\mathbf{V}^{-1}\mathbf{G}^{-1}\right)$$

and

$$\alpha(\boldsymbol{\theta}) = \boldsymbol{\psi}(\boldsymbol{r})^{\top} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{\psi}(\boldsymbol{r})$$

Part II IMPLEMENTATION

ALGORITHMS AND STATISTICS

- 6.1 NON-LINEAR OPTIMIZATIONS IN STATISTICS
- 6.2 Algorithms for robust estimators in statistics

7

IMPLEMENTATION

- 7.1 SOFTWARE
- 7.2 VERIFICATION OF RESULTS
- 7.3 ACCURACY OF RESULTS
- 7.4 VALIDATION OF RESULTS
- 7.4.1 Four Steps

Section based on McCullough (2004)

Part III

RESULTS

This is the part where I will present all results.

8

NUMERICAL PROPERTIES

- 8.1 ACCURACY
- 8.2 STABILITY
- 8.3 Speed of convergence

9

9.1 MODEL BASED SIMULATION STUDIES

9.1.1 The Area-Level Perspective

In this section we present some results of a simulation study. To make the results comparable to other model based simulations on area level models we begin in this section with a simulation study on area level. Thus we can discuss area level outliers which is what all the others do. Section? will then introduce then a simulation study in which we start with a unit-level population and can thus introduce both, outlying observations and areas.

To begin with we define the area level model from which we draw the data:

$$\bar{\mathbf{y}}_{i} = 100 + 1 \cdot \mathbf{x}_{i} + \mathbf{v}_{i} + \bar{\mathbf{e}}_{i}$$

- The single regressor, x, is a deterministic sequence defined as $x_i = \frac{i}{2D} + 1$ where D is the number of domains (taken from spatio temporal FH).
- The random effect, ν , is drawn from a normal distribution, i.e. $\nu_i \sim \mathcal{N}(0, \sigma_u^2)$ where σ_u^2 is defined with respect to the scenario.
- The sampling error, e, is drawn from $e_i \sim \mathcal{N}(0, \sigma_{e,i}^2)$ where $\sigma_{e,i}^2$ is an equidistant sequence from 0.8 to 1.2 with D elements.
- General characteristics: D = 100 and R = 500 being the sumber of Monte Carlo repetitions.

To illustrate the greatness of the model we investigate two different scenarios:

- 1. (o, o) This is the scenario where the Fay Herriot model holds. In this scenario $\sigma_u^2 = 1$.
- 2. (v, o) This is the scenario with area level outliers. $\sigma_u^2 = 1$ for 95 % of the areas, i.e. for $i \in \{1, ..., 95\}$, and $\sigma_u^2 = 20^2$ for $i \in \{96, ..., 100\}$.

9.1.1.1 Estimation of the MSE

To begin with we define the area level model from which we draw the data:

$$\tilde{y}_i = 100 + 2 \cdot x_i + u_i + e_i$$

Figure 9.1: Boxplot with Relative Root Mean Squared Error (RRMSE)

Figure 9.2: Boxplot with Relative Bias (RBIAS)

Figure 9.3: Absolute values of the estimated Mean Squared Error using the pseudo linearizatin compared to the Monte Carlo MSE

9.1.2 From Unit to Area Level Data

In this section we want to present a different perspective for simulation studies on area level models. Namely by starting from the unit level population data. This allows for a number of interesting aspects which can be investigated and explained:

- Under the Fay Herriot model we specify an area level model with heteroscedastic sampling distribution. The model does not explain what the source of heteroscedasticity is. We induce two different sources, one is the sampling size varying accross domains, and the other one are unit level outliers.
- When we begin from the unit level we may ask what the true sampling variance is; which is assumed to be known under the model. In practice it is an estimated quantity which itself, like a direct estimator of the mean, is unreliable. So it will be relevant to discuss how the Fay Herriot estimator is performing when the direct variance estimator is an additional source of uncertainty. Recent research suggests that smoothed variances should be plugged into the FH estimator. In contrast to this discussion we will argue that direct variance estimators are a viable source of information when unit level outliers are an issue.
- In the context of unit level outliers it can be intuitive to suggest
 a robust direct estimator instead of the sample mean. Hence we
 compare how the use of a median and a huber type estimator
 of the mean compete against the sampling mean.

In general our simulation setup borrows from unit level scenarios from the literature to make this exercise as convenient as possible. The basis is again a linear mixed model, this time defined on the unit population level:

$$y_{ij} = 100 + 1 \cdot x_i + v_i + e_{ij}$$

- The regressor, x_i , and random effect, v_i , are defined in the same way as for the area level scenario.
- The error term, e_{ij} , is defined as $e_{ij} \sim \mathcal{N}(0, \sigma_e^2)$ where σ_e^2 is varies across simulation scenarios.
- From this populatin model we draw samples with simple random sampling without replacement. The sample sizes are $n_i \in \{5,...,15\}$ and $N_i = 1000$; D is again 100.
- The sample is then aggregated using different direct estimators.
 The sample mean, the sample median and a robust direct estimator (huber m-type). Note that x_i is constant within domains.

 For the variance estimation we use the sample variance, a generalized variance function which can be considered optimal under the population model and the median absolute deviance from the median within domains.
- On area level the standard Fay Herriot model is used with different variance estimators and corresponding direct estimators and compared with the RFH.

With these settings we are interested in several different choices varying across simulation scenarios. We want to emphasise how unit and area level outliers can influence area level predictions.

- 1. (o, o) This is the scenario in which the area level model as described in section? holds, i.e. there are no outliers. Here $\sigma_e^2 = 4^2$ and $\sigma_u^2 = 1$ for all domains. However, the sampling variances $(\sigma_{e,i}^2 = \frac{\sigma_e^2}{n_i})$ derived under the unit level population model range from 1 to 3.2 for their respective sample size. $\sigma_u^2 = 1$.
- 2. (*v*, *o*) This scenario is close to the area level data generation in the previous section where we induced area level outliers. For that purpose we choose $\sigma_u^2 = 1$ for the areas where $i \in \{1, \ldots, 95\}$ and $\sigma_u^2 = 20^2$ for $i \in \{96, \ldots, 100\}$
- 3. (o, e) In this scenario unit level outliers do exist. To make the magnitude comparable to simulation studies in the literature we choose $\sigma_e^2 = 150^2$ for $i \in \{90, \dots, 95\}$.
- 4. (*v*, *e*) This scenario is the combination of 2 and 3 where we have area level and unit level outliers, however not in the same domains.

9.2 DESIGN BASED SIMULATION STUDIES

Figure 9.4: Boxplot with Relative Root Mean Squared Error (RRMSE)

Figure 9.5: Boxplot with Relative Bias (RBIAS)

Part IV

APPENDIX

- Chambers, R., H. Chandra, et al. (2014). "Outlier Robust Small Area Estimation." In: *Journal of the Royal Statistical Society: Series B* 76 (1), pp. 47–69.
- Chambers, R., J. Chandra, and N. Tzavidis (2011). "On bias-robust mean squared error estimation for pseudo-linear small area estimators." In: *Survey Methodology* 37 (2), pp. 153–170.
- Efron, B. and C. Morris (1971). "Limiting the Risk of Bayes and Empirical Bayes Estimators Part I: The Bayes Case." In: *Journal of the American Statistical Association* 66.336, pp. 807–815.
- (1972). "Limiting the Risk of Bayes and Empirical Bayes Estimators Part II: The Empirical Bayes Case." In: *Journal of the American Statistical Association* 67.337, pp. 130–139.
- Fay, R. E. and R. A. Herriot (1979). "Estimation of Income for Small Places: An Application of James-Stein Procedures to Census Data." In: *Journal of the American Statistical Association* 74 (366), pp. 269–277.
- Fellner, W. H. (1986). "Robust Estimation of Variance Components." In: *Technometrics* 28 (1), pp. 51–60.
- Henderson, C. R. (1975). "Best Linear Unbiased Estimation and Prediction under a Selection Model." In: *Biometrics* 31 (2), pp. 423–447.
- Marhuenda, Y., I. Molina, and D. Morales (2013). "Small area estimation with spatio-temporal Fay-Herriot models." In: *Computational Statistics and Data Analysis* 58, pp. 308–325.
- McCullough, B. D. (2004). "Numerical Issues in Statistical Computing for the Social Scientist." In: ed. by D. J. Balding, N. A. C. Cressie, and N. I. Fisher. John Wiley & Sons, Inc. Chap. Some Details of Nonlinear Estimation, pp. 199–218.
- Schmid, T. (2012). "Spatial Robust Small Area Estimation applied on Business Data." PhD thesis. University of Trier.
- Sinha, S. K. and J. N. K. Rao (2009). "Robust Small Area Estimation." In: *The Canadian Journal of Statistics* 37 (3), pp. 381–399.