Cache-Einführung

Architekturen und Entwurf von Rechnersystemen

"Why did the developer go broke?" ... "Because he used up all his Cache"

[really_good_jokes@google]

Speicherhierarchie

Speicherhierarchie

^{*}John L. Hennessy und David A. Patterson. Computer Architecture: A Quantitative Approach. 5. Aufl. Amsterdam: Morgan Kaufmann, 2012. isbn: 978-0-12-383872-8.

Caches

- Speichert Daten zwischen
 - Größer, aber langsamer als Registersatz
 - Kleiner, aber schneller als Hauptspeicher

Sind Daten im Cache vorhanden?

Ja: HIT

Nein: MISS

Cache - Funktion

- CPU ruft Daten an bestimmter
 Adresse aus Cache ab
- Annahmen
 - Speicher ist byte-adressierbar
 - Block-Größe des Caches: 32 Byte

Cache - Funktion

- CPU ruft Daten an bestimmter
 Adresse aus Cache ab
- Annahmen
 - Speicher ist byte-adressierbar
 - Block-Größe des Caches: 32 Byte
- Adresse kann unterteilt werden in...
 - Block-Adresse des Cache-Blocks/Cache-Line
 - Offset innerhalb des Blocks

Status - Gültigkeit

 Im Cache gespeicherte Daten können (teilweise) ungültig sein

Beispielsweise beim
 Systemstart: alle Daten sind ungültig

⇒ Valid Bit

Status - Dirty

- Cache enthält Kopie von
 Daten aus dem Hauptspeicher
- Änderungen im Cache müssen (irgendwann) an den Hauptspeicher übermittelt werden

⇒ Dirty Bit

Cache - Adressen

- Hauptspeicher ist größer als Cache
 - ⇒ Wie werden Adressen behandelt?
- Adresse wird unterteilt in...
 - Offset (innerhalb eines Cache-Blocks)
 - Index (Auswahl des Cache-Blocks)
 - Tag

Cache - Adressen

- Hauptspeicher ist größer als Cache
 - ⇒ Wie werden Adressen behandelt?
- Adresse wird unterteilt in...
 - Offset (innerhalb einer Cache-Line)
 - Index (Auswahl der Cache-Line)
 - Tag
- ⇒ Cache-Lines werden mehrfach zugewiesen

Cache - Funktion

Cache - Konflikte

 Cache-Lines werden mehrfach zugewiesen

Zugriff verdrängt alte Daten

Cache - Konflikte

 Cache-Lines werden mehrfach zugewiesen

Zugriff verdrängt alte Daten

⇒ Cache mit mehreren "Ways"

Direct-Mapped Cache

Mehrere Sets

Ein Way

⇒ Ein Datum ist genau einer Cache-Line zugeordnet

Set-Associative Cache

Mehrere Sets

- Mehrere Ways
 - "n-way set-associate"

⇒ Ein Datum ist mehrerenCache-Lines zugeordnet

Fully-Associate Cache

Ein Set

Mehrere Ways

⇒ Jedes Datum ist allen Cache-Lines zugeordnet

Cache Replacement Policies

- Keine dem Datum zugeordnete Cache-Line ist frei
 - ⇒ Anderes Datum wird verdrängt

- Bei mehreren Optionen: Wie auswählen?
 - Random replacement (RR)
 - Least-Recently-Used (LRU)
 - Least-Frequently-Used (LFU)

Write Policies

- Daten werden im Cache aktualisiert
 - ⇒ Hauptspeicher muss ebenfalls aktualisiert werden

- Wann findet Hauptspeicher-Aktualisierung statt?
 - Write-through
 - Write-back

Cache Misses

- Erster Zugriff auf Daten
 - ⇒ Compulsory Miss
- Daten wurden verdrängt, da Set voll
 - ⇒ Conflict Miss
- Daten wurden verdrängt, da Cache voll
 - ⇒ Capacity Miss

