PHYS-F432 – THÉORIE DE LA GRAVITATION

Seconde séance d'exercices –

calcul tensoriel sur une variété différentielle et équations de Maxwell en espace-temps courbe

« Aide-mémoire »

1 Tenseurs sur une variété différentielle

On définit un tenseur de rang (p,q) par la façon dont laquelle ses composantes $T^{\mu_1...\mu_p}_{\nu_1...\nu_q}$ se transforment sous un changement de coordonnées quelconque $x^{\mu} \to x^{\mu'}(x)$:

$$T^{\mu_1...\mu_p}_{\nu_1...\nu_q} \to T^{\mu'_1...\mu'_p}_{\nu'_1...\nu'_q} = \frac{\partial x^{\mu'_1}}{\partial x^{\alpha_1}}\dots \frac{\partial x^{\mu'_p}}{\partial x^{\alpha_p}} \frac{\partial x^{\beta_1}}{\partial x^{\nu'_1}}\dots \frac{\partial x^{\beta_q}}{\partial x^{\nu'_q}} T^{\alpha_1...\alpha_p}_{\beta_1...\beta_q}.$$

Quelques cas particuliers:

- \diamond Un **scalaire** est un tenseur de rang (0,0);
- \diamond Un **vecteur** est un tenseur de rang (1,0);
- \diamond Un **covecteur** est un tenseur de rang (0,1);
- \diamond Une **métrique** est un tenseur de rang (0,2) symétrique et non-dégénéré.

On introduit la notation (\cdot) (respectivement $[\cdot]$) pour la partie totalement symétrique (respectivement antisymétrique) d'un tenseur de rang $(0,\ell)$ $T_{\mu_1...\mu_\ell}$:

$$\begin{split} T_{(\mu_1\dots\mu_\ell)} &\equiv \frac{1}{\ell!} \sum_{\pi \in S_\ell} T_{\mu_{\pi(1)}\dots\mu_{\pi(\ell)}}, \\ T_{[\mu_1\dots\mu_\ell]} &\equiv \frac{1}{\ell!} \sum_{\pi \in S_\ell} \mathrm{sgn}(\pi) T_{\mu_{\pi(1)}\dots\mu_{\pi(\ell)}}. \end{split}$$

Ici, S_{ℓ} désigne le groupe des permutations à ℓ éléments.

2 Dérivées covariantes

La **dérivée covariante** d'un tenseur $T^{\alpha_1\dots\alpha_m}_{\ \beta_1\dots\beta_n}$ de rang (m,n) est donnée par 1

$$\nabla_{\gamma} T^{\alpha_{1} \dots \alpha_{m}}_{\beta_{1} \dots \beta_{n}} = T^{\alpha_{1} \dots \alpha_{m}}_{\beta_{1} \dots \beta_{n}, \gamma} + \Gamma^{\alpha_{1}}_{\lambda \gamma} T^{\lambda \alpha_{2} \dots \alpha_{m}}_{\beta_{1} \dots \beta_{n}} + \dots + \Gamma^{\alpha_{m}}_{\lambda \gamma} T^{\alpha_{1} \dots \alpha_{m-1} \lambda}_{\beta_{1} \dots \beta_{n}} - \Gamma^{\lambda}_{\beta_{1} \gamma} T^{\alpha_{1} \dots \alpha_{m}}_{\lambda \beta_{2} \dots \beta_{n}} - \dots - \Gamma^{\lambda}_{\beta_{n} \gamma} T^{\alpha_{1} \dots \alpha_{m}}_{\beta_{1} \dots \beta_{n-1} \lambda}.$$

C'est un tenseur de rang (m, n + 1). On utilise parfois les notations compactes

$$\begin{split} T^{\alpha_1...\alpha_m}_{\quad \beta_1...\beta_n;\mu} &\equiv \nabla_{\mu} T^{\alpha_1...\alpha_m}_{\quad \beta_1...\beta_n}, \\ T^{\alpha_1...\alpha_m}_{\quad \beta_1...\beta_n,\mu} &\equiv \partial_{\mu} T^{\alpha_1...\alpha_m}_{\quad \beta_1...\beta_n}. \end{split}$$

^{1.} Plus exactement, ce sont ses composantes que nous écrivons ici.

Sauf mention contraire, nous emploierons toujours la connexion de Levi-Civita. Ses coefficients de connexion sont les **symboles de Christoffel** :

$$\Gamma^{\mu}_{\nu\rho} \equiv \frac{1}{2} g^{\mu\lambda} (\partial_{\nu} g_{\rho\lambda} + \partial_{\rho} g_{\nu\lambda} - \partial_{\lambda} g_{\nu\rho}).$$

3 Formes différentielles

Une forme différentielle de rang p (ou **p-forme**) ω est un tenseur totalement antisymétrique de rang (0,p):

$$\omega \equiv \frac{1}{p!} \omega_{\alpha_1 \dots \alpha_p} dx^{\alpha_1} \wedge \dots \wedge dx^{\alpha_p}.$$

On note Ω^p l'ensemble des champs de p-formes sur une variété. Il est utile de se souvenir des opérations suivantes :

 \diamond Le **wedge-produit** \land est une application $\land: \Omega^p \times \Omega^q \to \Omega^{p+q}$ dont l'action est définie (en composantes) par

$$(\omega \wedge \mu)_{\alpha_1 \dots \alpha_p \beta_1 \dots \beta_q} \equiv \frac{(p+q)!}{p! \, q!} \omega_{[\alpha_1 \dots \alpha_p} \mu_{\beta_1 \dots \beta_q]}.$$

 \diamond La **dérivée extérieure** d est une application d : $\Omega^p \to \Omega^{p+1}$, dont l'action sur une p-forme est définie par

$$(d\omega)_{\alpha_1...\alpha_{p+1}} \equiv (p+1)\partial_{[\alpha_1}\omega_{\alpha_2...\alpha_{p+1}]}.$$

 \diamond Le **dual de Hodge** est une application $\star:\Omega^p\to\Omega^{n-p}$ définie par

$$(\star A)_{\alpha_1...\alpha_{n-p}} \equiv \frac{1}{p!} \varepsilon^{\beta_1...\beta_p}_{\alpha_1...\alpha_{n-p}} A_{\beta_1...\beta_p}.$$

4 Symbole et tenseur de Levi-Civita

Sur une variété (pseudo-)Riemannienne (\mathcal{M}, g) de dimension n, le **tenseur de Levi-Civita** $\varepsilon_{\mu_1...\mu_n}$ est le tenseur totalement antisymétrique défini comme

$$\varepsilon_{\mu_1\mu_2...\mu_n} \equiv \sqrt{|g|}\,\tilde{\varepsilon}_{\mu_1\mu_2...\mu_n},$$

avec $\tilde{\varepsilon}_{\mu_1\mu_2...\mu_n}$ l'habituel symbole de Levi-Civita, c-à-d le symbole totalement antisymétrique et numériquement invariant (sous les transformations de déterminant positif) tel que $\tilde{\varepsilon}_{1...n}=+1$. On montre que $\tilde{\varepsilon}_{\mu_1...\mu_n}$ est une densité tensorielle de poids 1 et que $\varepsilon_{\mu_1...\mu_n}$ est un tenseur (c.f. exercice 2).

On note qu'on a

$$\varepsilon^{\alpha_1...\alpha_n}\varepsilon_{\alpha_1...\alpha_n}=(-1)^s n!,$$

où s est le nombre de '-' apparaissant dans la signature de la métrique. En agissant avec ∇_{μ} sur cette équation et en utilisant le fait que $\varepsilon^{\alpha_1...\alpha_n}$ est non-nul, on obtient

$$\nabla_{\mu} \varepsilon_{\alpha_1 \dots \alpha_n} = 0.$$

Enfin, on peut montrer que

$$\varepsilon^{\alpha_1...\alpha_n}\varepsilon_{\beta_1...\beta_n}=(-1)^s n!\,\delta_{\beta_1}^{[\alpha_1}\ldots\delta_{\beta_n}^{\alpha_n]}.$$

En contractant cette équation sur j de ses indices, on trouve l'identité remarquable

$$\varepsilon^{\alpha_1...\alpha_j\alpha_{j+1}...\alpha_n}\varepsilon_{\alpha_1...\alpha_j\beta_{j+1}...\beta_n} = (-1)^s(n-j)!\,j!\,\delta_{\beta_{j+1}}^{[\alpha_{j+1}}...\delta_{\beta_n}^{\alpha_n]}.$$