

Lehrstuhl für Regelungsund Steuerungstechnik

Mechatronic Systems Laboratory Winter term 2023-24

Report

Manipulator Robot – Pick & Place

Submitted by: Group 5

Name of the Student	Matriculation Number
Aakash Deshpande	1701953
Chirag Angadi	1725283
Raaj Nihaal Jeevannath Kotian	1702017
Sanketh Ganesh	1712320
Shri Hari Murali Krishna	1711109

Table of Contents

1. Objective 2. Overview of Robot 2.1 Robot Operating Range 3. Robot Inverse Kinematics 3.1 Equation for θ ₁ 3.2 Equation for θ ₂ 4. PI Controller for Joints	3 4 4 4
5. Robot pick and place process	
Table of Figures	
1. Figure 1: Sensors and Actuators2. Figure 2: Gear ratio	- 3
2. Figure 2: Oear ratio	3 3
4. Figure 4: Robot links Configuaration	4
$F = \Gamma^{\dagger} = \dots = F = \Gamma^{\dagger} = \dots = \Lambda^{\dagger} = \dots$	1
5. Figure 5: Top View	4 1
5. Figure 5: 1 op view	4

1. Objective

- The objective of robot manipulator is to complete the sequential task by picking an object from desired loaction and placing it at respective locations.
- To implement the PID controller at joint angles in program for efficient movement of robot links.

2. Overview of Robot

A robotic manipulator consists of a sequence of rigid links joined by articulated joints, designed with one end fixed and the other end free to create an arm-like structure. This mechanism enables the manipulation of objects within a specified range of motion, typically dictated by the number of degrees of freedom. In the context of a Pick and Place task, a specific robotic manipulator comprises four links and three motors to execute its functions.

Figure 1: Sensors and Actuators Source: Task Sheet

Figure 2: Gear ratio Source: Task Sheet

2.1 Robot Operating Range

The operating range of robot is restricted between three stations namely A, B and C by touch sensor indications. Considering B position as homing postion, A and C stations are at +90deg and -90deg respectively.

Figure 3: Operating Areas Source: Task Sheet

3. Robot Inverse Kinematics

Figure 4: Robot Links Configuaration

- As the robot has two motors (i.e B and C) which are mainly involved for movement of robot links. The the two degrees of freedom (i.e angles θ_1 and θ_2) are calculated using inverse kinematics analytical approch.
- \triangleright θ_1 and θ_2 are obtained in terms of (x,y,z) coordinates of manipulator.

3.1 Equation for θ_1

Figure 5: Top View

- In the top view of the manipulator robot, the angle θ_1 represents the rotation of link L_1 about the z-axis.
- \triangleright This angle, calculated using the arctangent function of the ratio (y/x), determines the orientation of the first link relative to the Cartesian coordinates (x,y).
- \rightarrow $\theta_1 = \tan^{-1}(y/x)$

3.2 Equation for θ_2

Case 0:

Figure 6: Side View of robot

- \triangleright Consider a position where L3 is parallel to the ground and $\theta 1 = 0$ o.
- > Considering X from the diagram

$$X = L_3 - L_2 \cos 45^{\circ}$$

 $X = 117.9 \text{ mm}$

Case 1: Considering Link 3 (L_3) to be above the horizontal axis of joint 2.

Figure 7: Side View case 1

From Fig 7, equations can be obtained:

$$L_4 + Z = b + L_2 \sin 45^{\circ} + L_1 + 70$$

From equation 1 & 2:

$$\theta_2 = \text{Sin}^{-1}((L_4 + Z - (L_2/\sqrt{2}) - L_1 - 70)/L_3) + 45^\circ$$

Case 2: Considering Link 3 (L_3) to be below the horizontal axis of joint 2.

Figure 8: Side View case 2

From Fig 8, equations can be obtained:

$$L_4 + Z + b = L_2 \sin 45^{\circ} + L_1 + 70$$

From equation 1 & 2:

$$\theta_2 = 45^{\circ} - \text{Sin}^{-1}((L_2/\sqrt{2}) + L_1 + 70 - L_4 - Z)/L_3)$$

4. PI Controller for Joints

- ➤ PI controller is implemented in operations of robot while the robot is moving from one station to other station and while picking placing of object at respective stations.
- The controller is designed as function in MATLAB script (Function name: PIController) which called in other MATLAB functions namely, position, pick and place. (refer MATLAB code file: Group5.m)
- ➤ The **PIController** function is designed in such a way that it will take error and total error as arguments and provide controlled value (Motor speed):

Controlled value = Kp*error + Ki*total error

$$Kp = 0.05$$
 $Ki = 10$

- An if-else statments are used to make sure controlled value (motor speed) will not go beyond certain limit to ensure the robot resitance from wirings.
- \triangleright If 0 < controlled value < 20 then function returns 20, if -20 < controlled value < 0 then function returns
- **→ -20** as speed.
- The error is difference between the desired position(encoder value) and currrent position (encoder value).

error = Desired encoder vaue - Current encoder value

The total error is calculated from accumulation of error till the operation is changed to other.

total error = total error + error

5. Robot pick and place process

- > The task for picking an object from one station and placing it at other station is accomplised by sequential tasks performed.
- Initially the robot determine the height of the each station and store the data in variables. (Function name: initial height)
- An function **home_posi** is defined in code to position the manipulator at certain position, considered as initially position. A combination of motor B and motor C will lead motor to be in home position from any other position.
- Further function namely **position** is defined for positioning of robot arm at desired station using base motor C.
- Functions like **pick and place** are used to actuate motor B for arm movement and motor A for endeffector opening and closing.
- > Station_A, Station_B, Station_C functions are defined to perform set of operations like picking object and placing object at there respective stations.

5.1 Flow chart for pick and place Start/Homing Function call home_posi Measuring heights of station. Function call Initial_heights Picking process from Function call Station B to pick. station B Inverse kinematics to determine angle. Desired angle PI Controller Actual angle Motor B and Motor C Placing process at Function call Station_C to place. station C Inverse kinematics to determine angle. Desired angle PI Controller Actual angle Motor B and Motor C Home position Page 6