Kinematics Fundamentals

- Acceleration Analysis
- □ Four Bar Linkage
- □ Slider Crank
- Inverted Slider Crank

Acceleration Fundamentals

TYPE I: (RRRR)

Four Bar Linkage

4-Bar Algorithm Inputs and Initial Calculations

a=	5	Link 2	p=
b=	12	Link 3	δ=
C=	10	Link 4	U
d=	15	Link 1	
$\theta_2 =$	60	1.047197551	
$egin{aligned} heta_2 &= \ heta_2 &= \ heta_2 &= \ heta_2 &= \end{aligned}$	-25	$\frac{1}{s}$	
$\theta_2 =$	-180	$\frac{1}{s^2}$	
By=	9.83	-6.59	
Bx=	13.17	7.48	
$\theta_3 =$	27.3	-65.5	A
$\theta_{\scriptscriptstyle A} =$	100.6	-138.8	1k 2
$\dot{\theta}_3 =$	7.0737E+00	-3.5022E+00	
$\theta_4 =$	-7.0545E+00	1.0626E+01	Å
$\dot{\theta}_{3} \stackrel{4}{=}$ $\dot{\theta}_{4} =$ $\ddot{\theta}_{3} \stackrel{.}{=}$	2.2918E+02	3.2675E+02	—
$\theta_4 =$	2.7146E+02	2.8447E+02	-1.14308

p= 5 δ= 331

4-Bar Algorithm, (OPEN) Acceleration Vector Results

	1	,						
					e	r	$e_{\scriptscriptstyle{\theta}}$	
	x comp	y comp	mag	angle	i	j	i	j
r04=	15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000
rA=	2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500
rBA=	10.67	5.50	12.000	27.3	0.889	0.458	-0.458	0.889
rBO4=	-1.83	9.83	10.000	100.6	-0.183	0.983	-0.983	-0.183
rB=	13.17	9.83	16.430	36.7	0.801	0.598	-0.598	0.801
rPA=	5.00	-0.15	5.000	-1.7	1.000	-0.030	0.030	1.000
rP=	7.50	4.18	8.584	29.1	0.873	0.487	-0.487	0.873
vA=	108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866
vBA=	-38.91	75.44	84.884	117.3	-0.458	0.889	-0.889	-0.458
vB=	69.35	12.94	70.545	10.6	0.983	0.183	-0.183	0.983
vPA=	1.06	35.35	35.368	88.3	0.030	1.000	-1.000	0.030
vP=	109.31	-27.15	112.635	-13.9	0.971	-0.241	0.241	0.971
aA=	-783.08	-3156.33	3252.019	-103.9	-0.241	-0.971	0.971	-0.241
аВА	-1794.18	2169.07	2814.948	129.6	-0.637	0.771	-0.771	-0.637
аВ	-2577.26	-987.26	2759.879	-159.0	-0.934	-0.358	0.358	-0.934
aPA=	-215.68	1152.89	1172.895	100.6	-0.184	0.983	-0.983	-0.184
aP=	-998.76	-2003.44	2238.588	-116.5	-0.446	-0.895	0.895	-0.446

4-Bar Algorithm, (CLOSED) Acceleration Vector Results

AL.	T	x comp	y comp	mag	angle	i	j	i	j	Ē
rO4	 =	15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000	E
rA=	=	2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500	Ė
rBA	\ =	4.98	-10.92	12.000	-65.5	0.415	-0.910	0.910	0.415	E
rBC)4=	-7.52	-6.59	10.000	-138.8	-0.752	-0.659	0.659	-0.752	E
rB=	•	7.48	-6.59	9.966	-41.4	0.750	-0.661	0.661	0.750	Ē
rPA	\ =	-0.39	-4.98	5.000	-94.5	-0.078	-0.997	0.997	-0.078	Ē
rP=	=	2.11	-0.65	2.208	-17.2	0.955	-0.296	0.296	0.955	
vA=	=	108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866	Ė
vBA	\ =	-38.24	-17.43	42.027	-155.5	-0.910	-0.415	0.415	-0.910	E
vB=	=	70.01	-79.93	106.259	-48.8	0.659	-0.752	0.752	0.659	Ė
νPΑ	\ =	-17.46	1.37	17.511	175.5	-0.997	0.078	-0.078	-0.997	E
vP=	=	90.80	-61.13	109.456	-34.0	0.830	-0.558	0.558	0.830	E
aA:	=	-783.08	-3156.33	3252.019	-103.9	-0.241	-0.971	0.971	-0.241	Ė
aB/	4	3506.76	1760.36	3923.805	26.7	0.894	0.449	-0.449	0.894	Ė
аВ		2723.68	-1395.97	3060.583	-27.1	0.890	-0.456	0.456	0.890	Ė
aP/	4=	1633.55	-66.86	1634.919	-2.3	0.999	-0.041	0.041	0.999	
aP:	=	850.47	-3223.19	3333.504	-75.2	0.255	-0.967	0.967	0.255	

TYPE II: (RRRP) Slider Crank Linkage

Slider Crank Algorithm Inputs and Initial Results

Slider Crank Algorithm Acceleration Results

					E	r	$e_{\scriptscriptstyle{\theta}}$	
	x comp	y comp	mag	angle	i	j	i	j
rB=	24.00	2.00	24.09	4.8	0.997	0.083	-0.083	0.997
rA=	3.15	4.51	5.50	55.0	0.574	0.819	-0.819	0.574
rBA=	20.85	-2.51	21.00	-6.9	0.993	-0.119	0.119	0.993
vB	97.69	0.00	97.69	0.0	1.000	0.000	0.000	1.000
vA	90.11	-63.09	110.00	-35.0	0.819	-0.574	0.574	0.819
√BA	7.58	63.09	63.55	83.1	0.119	0.993	-0.993	0.119
аВ	-1263.43	0.00	1263.43	180.0	-1.000	0.000	0.000	-1.000
aA	-1284.39	-1786.36	2200.17	-125.7	-0.584	-0.812	0.812	-0.584
aBA	20.97	1786.36	1786.48	89.3	0.012	1.000	-1.000	0.012
alt	x comp	y comp	mag	angle	i	j	i	j
rB=	-17.70	2.00	17.81	173.6	-0.994	0.112	-0.112	-0.994
rA=	3.15	4.51	5.50	55.0	0.574	0.819	-0.819	0.574
rBA=	-20.85	-2.51	21.00	-173.1	-0.993	-0.119	0.119	-0.993
vB	82.53	0.00	82.53	0.0	1.000	0.000	0.000	1.000
vA	90.11	-63.09	110.00	-35.0	0.819	-0.574	0.574	0.819
vBA	-7.58	63.09	63.55	96.9	-0.119	0.993	-0.993	-0.119
аВ	-1305.36	0.00	1305.36	180.0	-1.000	0.000	0.000	-1.000
aA	-1284.39	-1786.36	2200.17	-125.7	-0.584	-0.812	0.812	-0.584
aBA	-20.97	1786.36	1786.48	90.7	-0.012	1.000	-1.000	-0.012

TYPE II: (RRRP)

Mechanical Engineering

Inverted Slider Crank Linkage

RBB

Slider Crank Algorithm Inputs and Initial Results

a=	10	Link 2	
C=	6	Link 4	
d=	3	Link 1	
$\theta_{2} =$	45		
γ =	45		
$egin{aligned} heta_2 = \ heta = \ heta_2 = \ heta_2 = \ heta_2 \end{aligned}$	100		
$\theta_2^- =$	-65	$\frac{1}{s^2}$	
b=	2.73	-11.	.21
$\theta_{\!\scriptscriptstyle 4} =$	46.40	163.	.74
_	-88.60	28.	.74
$ heta_3 = \dot{\theta}_4 = \dot{\theta}_4 = \dot{\theta}_4$	98.95	137.	.74
$\theta_3 = $	98.95	137.	.74
b-dot=	304.37	-304	.37
$\ddot{ heta}_{\!\scriptscriptstyle A} =$	-4276.32	-4588	.65
$\ddot{\theta}_{2} =$	-4276.32	-4588	.65
b-dotdot=	16946.79	-16946	.79

ζ=	135
K1=	-7.878679656
K2=	2.121320344
K3=	4.242640687

Slider Crank Algorithm (OPEN) Acceleration Vector Analysis

					e _r		е	θ
	x comp	y comp	mag	angle	i	j	i	j
rO4=	3.00	0.00	3.00	0.0	1.000	0.000	0.000	1.000
rA=	7.07	7.07	10.00	45.0	0.707	0.707	-0.707	0.707
rBA=	0.07	-2.73	2.73	-88.6	0.024	-1.000	1.000	0.024
rBO4=	4.14	4.35	6.00	46.4	0.690	0.724	-0.724	0.690
rB=	7.14	4.35	8.36	31.3	0.854	0.520	-0.520	0.854
vA=	-707.11	707.11	1000.00	135.0	-0.707	0.707	-0.707	-0.707
vBA=	277.17	-297.69	406.75	-47.0	0.681	-0.732	0.732	0.681
vB=	-429.93	409.42	593.69	136.4	-0.724	0.690	-0.690	-0.724
aA=	-70251.06	-71170.30	100002.11	-134.6	-0.702	-0.712	0.712	-0.702
aBA=	48320.71	10934.97	49542.55	12.8	0.975	0.221	-0.221	0.975
aB=	-21930.35	-60235.33	64103.32	-110.0	-0.342	-0.940	0.940	-0.342

Slider Crank Algorithm (CLOSED) Acceleration Vector Analysis

alt	x comp	y comp	mag	angle	i	j	i	j
rO4=	3.00	0.00	3.00	0.0	1.000	0.000	0.000	1.000
rA=	7.07	7.07	10.00	45.0	0.707	0.707	-0.707	0.707
rBA=	-9.83	-5.39	11.21	-151.3	-0.877	-0.481	0.481	-0.877
rB04=	-5.76	1.68	6.00	163.7	-0.960	0.280	-0.280	-0.960
rB=	-2.76	1.68	3.23	148.7	-0.854	0.520	-0.520	-0.854
vA=	-707.11	707.11	1000.00	135.0	-0.707	0.707	-0.707	-0.707
vBA=	475.68	-1500.50	1574.09	-72.4	0.302	-0.953	0.953	0.302
vB=	-231.42	-793.39	826.46	-106.3	-0.280	-0.960	0.960	-0.280
aA=	-70251.06	-71170.30	100002.11	-134.6	-0.702	-0.712	0.712	-0.702
aBA=	187244.61	65723.78	198444.35	19.3	0.944	0.331	-0.331	0.944
aB=	116993.55	-5446.51	117120.26	-2.7	0.999	-0.047	0.047	0.999

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel: Scotch Yoke

Type IV: RPRP Rapson Slide Linkage

Example 1

Rods "R" and "L" are pinned at "O" and "O" to a frame.
Rod "L" is also pinned to the slotted body "B" at "B". ?The upper end of "R" is pinned at P to a roller that moves freely in the slot of "B". The angular velocities of the rod "R" and link "L" are constants:

 ω_R =-0.2 rad/s

 ω_L =-0.4 rad/s

Determine the velocity of "P" and the angular velocity of "B" at the given instant.

Diagram of Problem

Problem Geometry

