	200 C V 100 ' 2017			
	300 CMS	300 GeV, 100 cm, region 2017		
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\rm sim},{ m MLM}$	$\epsilon_i^{\rm sim}$, MLM, no pileup	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.5^{+0.13}_{-0.13} \times 10^{-2}$	$5.6^{+0.08}_{-0.08} \times 10^{-2}$	$5.5^{+0.07}_{-0.07} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$\frac{1}{7}$ $\frac{1}{4}$ $+0.12$ \times $\frac{1}{10}$ -2	$1 \times 0^{+0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$	
$ \Delta\phi({ m leading\ jet},ar{p}_{ m T}^{ m miss}) >0.5$	$\begin{array}{c} 7.4^{+}_{-0.12} \times 10 \\ 7.4^{+0.12}_{-0.12} \times 10^{-2} \\ 7.4^{+0.12}_{-0.12} \times 10^{-2} \\ 5.9^{+0.11}_{-0.11} \times 10^{-2} \\ 4.9^{+0.09}_{-0.01} \times 10^{-2} \end{array}$	$4.9^{+0.07}_{-0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$	
$\geq 1 \text{ track with } \eta < 2.1$	$7.4^{+0.12}_{-0.12} \times 10^{-2}$	$\begin{array}{c} -0.07 \times 10^{-2} \\ 4.9^{+0.07}_{-0.07} \times 10^{-2} \\ 4.6^{+0.07}_{-0.07} \times 10^{-2} \\ 3.8^{+0.06}_{-0.06} \times 10^{-2} \end{array}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$5.9^{+0.11}_{-0.11} \times 10^{-2}$	$4.6^{+0.07}_{-0.07} \times 10^{-2}$	$4.3^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$ \begin{array}{c} 7.4_{-0.12} \times 10 \\ 5.9_{-0.11}^{+0.11} \times 10^{-2} \\ 4.2_{-0.09}^{+0.09} \times 10^{-2} \end{array} $	$ 3.8^{+0.06}_{-0.06} \times 10^{-2} $	$3.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits		$2.7^{+0.05}_{-0.05} \times 10^{-2}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
≥ 1 track with no missing inner hits	$2.9^{+0.08}_{-0.08} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$2.7^{+0.07}_{-0.07} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$\begin{array}{c} 2.5_{-0.05}^{+0.05} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.4_{-0.04}^{+0.04} \times 10^{-2} \end{array}$	
≥ 1 track with relative track isolation $< 5\%$	$ 2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.01}_{-0.04} \times 10^{-2}$	
$\geq 1 ext{ track with } d_{ ext{xy}} < 0.02 ext{ cm}$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$2.1^{+0.07}_{-0.07} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\rm calo} < 10 {\rm GeV}$	$1.9^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$ \begin{array}{c} $	
≥ 1 track with ≥ 3 missing outer hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$7.8^{+0.29}_{-0.29} \times 10^{-3}$	$8.0^{+0.29}_{-0.29} \times 10^{-3}$	
≥ 1 track with number of tracker layers with measurement == 4	$2.3^{+0.22}_{-0.22} \times 10^{-3}$	$1.2^{+0.11}_{-0.11} \times 10^{-3}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$	
≥ 1 track with number of tracker layers with measurement == 5	$ \begin{vmatrix} 1.1_{-0.05}^{+0.05} \times 10^{-2} \\ 2.3_{-0.22}^{+0.22} \times 10^{-3} \\ 2.1_{-0.20}^{+0.20} \times 10^{-3} \end{vmatrix} $	$\begin{array}{c c} 1.2_{-0.11} \times 10^{-3} \\ 1.2_{-0.11}^{+0.11} \times 10^{-3} \end{array}$	$\begin{array}{c} 8.0^{+0.29}_{-0.29} \times 10^{-3} \\ 1.4^{+0.12}_{-0.12} \times 10^{-3} \\ 1.4^{+0.12}_{-0.12} \times 10^{-3} \end{array}$	
≥ 1 track with number of tracker layers with measurement ≥ 6	$7.1^{+0.38}_{-0.38} \times 10^{-3}$	$5.3^{+0.24}_{-0.24} \times 10^{-3}$	$5.1^{+0.23}_{-0.23} \times 10^{-3}$	

Table 1: Cutflow comparison for 300 GeV, 100 cm, region 2017

	200 C II 100 1 2010 A		
	300 GeV, 100 cm, region 2018A		
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\rm sim},{ m MLM}$	$\epsilon_i^{\rm sim}$, MLM, no pileup
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$9.3^{+0.14}_{-0.14} \times 10^{-2}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.2^{+0.13}_{-0.13} \times 10^{-2}$	$5.6^{+0.08}_{-0.08} \times 10^{-2}$	$5.5^{+0.07}_{-0.07} \times 10^{-2}$
==0 pairs of jets with $\Delta\phi_{\rm jet,\ jet} > 2.5$	$7.1^{+0.12}_{-0.12} \times 10^{-2}$	$5.0^{+0.07}_{-0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$ \Delta\phi({ m leading jet}, ec{p}_{ m T}^{ m miss}) >0.5$	$ \begin{vmatrix} 7.1_{-0.12}^{+0.12} \times 10^{-2} \\ 7.0_{-0.12}^{+0.12} \times 10^{-2} \\ 5.5_{-0.11}^{+0.11} \times 10^{-2} \end{vmatrix} $	$4.9^{+0.07}_{-0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$\geq 1 \text{ track with } \eta < 2.1$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$ \begin{vmatrix} 4.9^{+0.07}_{-0.07} \times 10^{-2} \\ 4.6^{+0.07}_{-0.07} \times 10^{-2} \\ 4.6^{+0.06}_{-0.07} \times 10^{-2} \\ 3.8^{+0.06}_{-0.06} \times 10^{-2} \end{vmatrix} $	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$5.5^{+0.11}_{-0.11} \times 10^{-2}$	$4.6^{+0.07}_{-0.07} \times 10^{-2}$	$4.3^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track passing fiducial selections	$\begin{bmatrix} 5.5_{-0.11}^{+0.12} \times 10^{-2} \\ 5.5_{-0.11}^{+0.11} \times 10^{-2} \\ 3.8_{-0.09}^{+0.09} \times 10^{-2} \end{bmatrix}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$\begin{array}{c} 4.7_{-0.07}^{+0.07} \times 10^{-2} \\ 4.3_{-0.07}^{+0.07} \times 10^{-2} \\ 3.6_{-0.06}^{+0.06} \times 10^{-2} \end{array}$
$\geq 1 \text{ track with } \geq 4 \text{ pixel hits}$	$ \begin{array}{c} 3.5 - 0.09 \\ 2.5 + 0.07 \\ -0.07 \times 10^{-2} \\ 2.5 + 0.07 \\ -0.07 \times 10^{-2} \\ 2.2 + 0.07 \\ -0.07 \times 10^{-2} \end{array} $	$ 2.7^{+0.05}_{-0.05} \times 10^{-2} $	$0.07 \pm 0.05 \dots 10 - 2$
≥ 1 track with no missing inner hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with no missing middle hits	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$\begin{array}{c} 2.5_{-0.05}^{+0.05} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.9_{-0.04}^{+0.04} \times 10^{-2} \\ 1.4_{-0.04}^{+0.04} \times 10^{-2} \end{array}$
≥ 1 track with relative track isolation $< 5\%$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4_{-0.04} \times 10^{-2}$
≥ 1 track with $ d_{ m xy} < 0.02{ m cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with $ d_z < 0.5 \mathrm{cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } E_{\rm calo} < 10 {\rm GeV}$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$ \begin{vmatrix} 1.4_{-0.04}^{+0.04} \times 10^{-2} \\ 1.4_{-0.04}^{+0.04} \times 10^{-2} \\ 1.4_{-0.04}^{+0.04} \times 10^{-2} \end{vmatrix} $	$1.4_{-0.04}^{+0.04} \times 10^{-2}$ $1.4_{-0.04}^{+0.04} \times 10^{-2}$ $1.4_{-0.04}^{+0.04} \times 10^{-2}$ $1.4_{-0.04}^{+0.04} \times 10^{-2}$
≥ 1 track with ≥ 3 missing outer hits	$8.8^{+0.42}_{-0.42} \times 10^{-3}$	$7.8^{+0.29}_{-0.29} \times 10^{-3}$	$8.0^{+0.29}_{-0.29} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 4	$1.7^{+0.19}_{-0.19} \times 10^{-3}$	$1.2^{+0.11}_{-0.11} \times 10^{-3}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 5	$ \begin{array}{c} 8.8^{+0.42}_{-0.42} \times 10^{-3} \\ 8.8^{+0.42}_{-0.19} \times 10^{-3} \\ 1.7^{+0.19}_{-0.19} \times 10^{-3} \\ 1.6^{+0.18}_{-0.18} \times 10^{-3} \end{array} $	$\begin{array}{ c c c c c c }\hline 1.2_{-0.11}^{-0.11} \times 10 \\ 1.2_{-0.11}^{+0.11} \times 10^{-3} \end{array}$	$\begin{array}{c} 1.4_{-0.04}^{+0.04} \times 10^{-2} \\ 8.0_{-0.29}^{+0.29} \times 10^{-3} \\ 1.4_{-0.12}^{+0.12} \times 10^{-3} \\ 1.4_{-0.12}^{+0.12} \times 10^{-3} \end{array}$
≥ 1 track with number of tracker layers with measurement ≥ 6	$5.7^{+0.34}_{-0.34} \times 10^{-3}$	$5.3^{+0.24}_{-0.24} \times 10^{-3}$	$5.2^{+0.23}_{-0.23} \times 10^{-3}$

Table 2: Cutflow comparison for 300 GeV, 100 cm, region 2018 A

	300 GeV, 100 cm, region 2018B		
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\rm sim},{ m MLM}$	$\epsilon_i^{\mathrm{sim}},\mathrm{MLM},\mathrm{no}$ pileup
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$\begin{vmatrix} 8.4^{+0.09}_{-0.09} \times 10^{-2} \\ 8.4^{+0.09}_{-0.09} \times 10^{-2} \end{vmatrix}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$9.5^{+0.14}_{-0.14} \times 10^{-2}$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	1.03 ± 0.14 $1.0-2$	$8.4^{+0.09}_{-0.09} \times 10^{-2}$	$8.1^{+0.09}_{-0.09} \times 10^{-2}$
≥ 1 jet with $p_{\mathrm{T}} > 110\mathrm{GeV}$ and $ \eta < 2.4$	$ \begin{array}{c} 9.5_{-0.14}^{+0.14} \times 10^{-2} \\ 9.3_{-0.14}^{+0.14} \times 10^{-2} \\ 8.2_{-0.13}^{+0.13} \times 10^{-2} \\ 7.1_{-0.12}^{+0.12} \times 10^{-2} \\ \end{array} $	$\begin{array}{c} 8.4^{+0.09}_{-0.09} \times 10^{-2} \\ 8.4^{+0.09}_{-0.08} \times 10^{-2} \\ 5.6^{+0.08}_{-0.08} \times 10^{-2} \\ 5.0^{+0.07}_{-0.07} \times 10^{-2} \end{array}$	$8.1_{-0.09}^{+0.09} \times 10^{-2} 5.5_{-0.07}^{+0.07} \times 10^{-2}$
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$7.1^{+0.12}_{-0.12} \times 10^{-2}$	$5.0^{+0.07}_{-0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$ \Delta\phi({ m leading\ jet},ec{p}_{ m T}^{ m miss}) >0.5$	$ 7.1^{+0.12}_{-0.12} \times 10^{-2}$	$\begin{array}{c} 5.0_{-0.07}^{-0.07} \times 10^{-2} \\ 4.9_{-0.07}^{+0.07} \times 10^{-2} \\ 4.9_{-0.07}^{+0.07} \times 10^{-2} \end{array}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$\geq 1 \text{ track with } \eta < 2.1$	$1.0^{+0.12}_{-0.12} \times 10^{-2}$	$ 4.9^{+0.07}_{-0.07} \times 10^{-2}$	$4.7^{+0.07}_{-0.07} \times 10^{-2}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$5.5^{+0.10}_{-0.10} \times 10^{-2}$	$4.6^{+0.07}_{-0.07} \times 10^{-2}$	$4.3^{+0.07}_{-0.07} \times 10^{-2}$
≥ 1 track passing fiducial selections	$3.8^{+0.09}_{-0.09} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.6^{+0.06}_{-0.06} \times 10^{-2}$
$\geq 1 \text{ track with } \geq 4 \text{ pixel hits}$	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.5^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with no missing inner hits	$2.5^{+0.07}_{-0.07} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with no missing middle hits	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$2.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with relative track isolation $< 5\%$	$ \begin{vmatrix} 1.8^{+0.06}_{-0.06} \times 10^{-2} \\ 1.8^{+0.06}_{-0.06} \times 10^{-2} \end{vmatrix} $	$\begin{array}{c} 2.1^{+0.05}_{-0.05} \times 10^{-2} \\ 2.1^{+0.05}_{-0.05} \times 10^{-2} \\ 1.5^{+0.04}_{-0.04} \times 10^{-2} \\ 1.5^{+0.04}_{-0.04} \times 10^{-2} \\ 1.5^{+0.04}_{-0.04} \times 10^{-2} \end{array}$	$1.9^{+0.04}_{-0.04} \times 10^{-2} 1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \; { m track \; with } \; d_{ m xy} < 0.02 { m cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$1.8^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track, electron}) > 0.15$	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$\begin{array}{c} 1.5_{-0.04}^{+0.04} \times 10^{-2} \\ 1.5_{-0.04}^{+0.04} \times 10^{-2} \\ 1.5_{-0.04}^{+0.04} \times 10^{-2} \\ 1.4_{-0.04}^{+0.04} \times 10^{-2} \end{array}$	$1.4^{+0.04}_{-0.04} \times 10^{-2} \\ 1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$1.6^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$1.5^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$	$1.4^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with ≥ 3 missing outer hits	$8.8^{+0.42}_{-0.42} \times 10^{-3}$	$7.8^{+0.29}_{-0.29} \times 10^{-3}$	$8.0^{+0.29}_{-0.29} \times 10^{-3}$
$\phi(p_{\rm T}^{\rm miss}) < -1.6 \text{ or } \phi(p_{\rm T}^{\rm miss}) > -0.6$	$7.8^{+0.39}_{-0.39} \times 10^{-3}$	$6.4^{+0.26}_{-0.26} \times 10^{-3}$	$6.7^{+0.26}_{-0.26} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 4	$1.4^{+0.17}_{-0.17} \times 10^{-3}$	$1.0^{+0.10}_{-0.10} \times 10^{-3}$	$1.1^{+0.11}_{-0.11} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement == 5	$\begin{array}{ c c c c c }\hline 1.4^{+0.17}_{-0.17} \times 10^{-3} \\ 1.4^{+0.17}_{-0.17} \times 10^{-3} \\ \hline \end{array}$	$\begin{vmatrix} 1.0^{+0.10}_{-0.10} \times 10^{-3} \\ 9.0^{+0.98}_{-0.98} \times 10^{-4} \end{vmatrix}$	$1.2^{+0.11}_{-0.11} \times 10^{-3}$
≥ 1 track with number of tracker layers with measurement ≥ 6	$5.2^{+0.32}_{-0.32} \times 10^{-3}$	$4.4^{+0.22}_{-0.22} \times 10^{-3}$	$4.3^{+0.21}_{-0.21} \times 10^{-3}$

Table 3: Cutflow comparison for 300 GeV, 100 cm, region 2018B