Using Defects to Store Energy

R Mythreyi

Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras

November 9, 2017

Outline

- 1 The Idea
 - Explanation
- 2 Calculations
 - Set Up
 - Methods
 - Results
- 3 Implementation
 - Caveats
 - Realisation
- 4 Wrap Up

_ The Idea

Windscale Disaster

Windscale Fire

Worst Nuclear Disaster in Great Britain's History

- October 10, 1957.Northwest England.
- Fire burnt for three days.
- Wigner Energy

Explanation

Rationale

- Defects have an energy cost.
- Non-equilibrium defects.
- Long-lived. Stable at Room Temperature.

Proof?

Setting up the Calculations

 ΔH_m gives the upper limit.

Setting up the Calculations

Materials

- Graphite, Graphene, Diamond
- Si
- W

Defects

- Vacancies
- Interstitials
- Frenkel Pairs
- Stone-Wales Defects

└─Set Up

Calculation Methods I

Defect Formation Energy

$$E_F = E_D - \left(\frac{N}{N_0}\right) \times E_0$$

E_F - Defect Formation Energy

 E_0 - Energy of Pristine Cell (N_0 atoms, 0 defects)

 E_D - Energy of Supercell (N atoms, 1 defect)

Bigger the N, better the estimate.

Calculation Methods II

Stored Energy

$$E = E_F \times C_{NE}$$

E - Energy stored

 E_F - Defect Formation Energy

 C_{NE} - Concentration of non-equilibrium defects

$$C_{NE} \sim 1 \text{ at.}\%$$

Calculated E_F

Results

Calculated E

Works!

Role of Kinetics

- This energy is borrowed and will be returned.
- Conventional may be inefficient. Localised is better.
- Positive feedback possible.

Proof of Concept

■ Storage Efficiency (η_S) .

$$\eta_{S} = \frac{formation}{generation}$$

b

■ Release Efficiency (η_R) .

$$\eta_R = \frac{stored + input}{input}$$

Main Challenges

- Simple and inexpensive ways to generate defects.
- Minimal waste during recombination.
- Mechanically and chemically stable materials during generation and recombination.
- Reversible storing and releasing of energy.
- Defect aggregation during release.

We don't want another Windscale!

Denouement

- Follows an emerging trend : Cis-Trans Azobenzene
- Generalises the idea of energy storage using bond rearrangement.
- Niche Applications
 - Heating, Catalysts
 - Combustion
 - Space-shuttles

Infinite Improbability Drive?

Summary

- Storing energy using defects is a novel idea.
- Calculations show promising results.
- Engineering is an open challenge.
- Outlook
 - High-throughput calculations to identify better materials.
 - Practical implementation.

Further Reading

Lu, I-Te and Bernardi, Marco.

Using defects to store energy in materials - a computational study

Scientific Reports, 2017.

Matlack, Gerry.

The Windscale Disaster

Damn Interesting, 2007.

https://www.damninteresting.com/the-windscale-disaster/