Invariant mass evaluation for e^+e^- events Optimization of a Neural Network regression model

Durando Matteo

Machine Learning for Applied Physics and High Energy Physics

UniTO - A.A. 2023/2024

Index

- Data and goal
- 2 Dataset
 - Features and correlation
 - PreProcessing
- Model Architecture
 - Shallow Neural Network
 - Basic Design
 - Hyperparameters Tuning
 - Hyperparameters Results
 - Training Time scaling
- 4 Results
 - Training
 - Invariant mass prediction
- Conclusions

Data and goal

Data used in this work are taken from a selection of pp collisions simulated for the LHC experiments resulting in e^+e^- measured in the detector.

The goal of the project is to build a model able to make a prediction of the invariant mass of the couple e^+e^- generated in the range $2-110 {\rm GeV}$. This is particularly important to identify hadronic resonances produced in the collisions. Since the final state has no electrical charge and produces 2 leptons (+ neutrinos eventually since it is not back-to-back emission) the resonance produced must be a neutral meson or boson.

Meson	Theoretical Mass
J/ψ	\sim 3 GeV
$\Upsilon(1,2,3S)$	\sim 10 GeV
Z	\sim 91 GeV

Dataset - Features and correlation

Name	Physical quantity			
Run, Event	Event identifiers (not used for model evaluation)			
E1, E2	Total energies [GeV]			
px1, py1, pz1, px2, py2, pz2	Components of the 4-momenta [GeV]			
pt1, pt2	Transverse momenta [GeV]			
eta1, eta2	Pseudorapidities			
phi1, phi2	Azimuthal angles			
Q1, Q2	Charge of the particles (e^+/e^-)			
M	Invariant mass [GeV]			

No linear correlation between features and target

- ⇒ Difficult to solve with analytical techniques
- ⇒ Need to develop non-linear models

Dataset - PreProcessing

- Data cleaning: delete rows with NaN mass and duplicated events
- Splitting data: divide training, validation and test sets
- Features normalization: apply MinMaxScaler (range 0-100)

Model Architecture - Shallow Neural Network

Advantages

- General purpose model
- Faster training compared to deep learning models
- Reduce overfitting for simple taget functions

Disadvantages

- Possibly not the most CPU efficient model (e.g. Decision Trees)
- Need to find the correct architecture (layers/nodes)

Model Architecture - Basic Design

Parameter	Choice		
Activation	ReLU		
Initializer	Glorot-Bengio		
Optimizer	AdamW		
Loss/Metric	MeanSquaredError		
Batch size	32		

Glorot-Bengio Initializer

Initial weights are drawn from a uniform normalized distribution to avoid extreme results during parameters training

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right]$$

AdamW implements weight decay for Adam optimizer

- ⇒ Avoid large weights
- \Rightarrow Significant improvements in generalization performance

Algorithm 2 Adam with L₂ regularization and Adam with weight decay (AdamW)

- 1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, w \in \mathbb{R}$
- initialize time step t ← 0, parameter vector x_{t=0} ∈ ℝⁿ, first moment vector m_{t=0} ← 0, second moment vector v_{t=0} ← 0, schedule multiplier η_{t=0} ∈ ℝ
- 3: repeat
 - $t \leftarrow t+1$
- 6: $\mathbf{g}_t \leftarrow \nabla f_t(\mathbf{x}_{t-1}) + w\mathbf{x}_{t-1}$
- 7: $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 \beta_1) \mathbf{g}_t$ operations are element-wise
- 3: $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$
- 9: $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\hat{\beta}_1^t)$ $\Rightarrow \beta_1$ is taken to the power of t
- 10: \$\hat{v}_t \leftrightarrow \epsilon_t / (1 \hat{\beta}_2^t) \quad > \beta_2\$ is taken to the power of t
 11: \$\eta_t \leftrightarrow \text{setScheduleMultiplier}(t) \quad \text{can be fixed, decay, or also be used for warm restarts}\$
- 12: $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} \eta_t \left(\alpha \hat{\mathbf{n}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \epsilon) \right) + w \mathbf{x}_{t-1}$
- 13: **until** stopping criterion is met
- 14: return optimized parameters x_t

b here and below all

Model Architecture - Hyperparameters Tuning

Bayesian Optimization

Sequential design strategy for global optimization of black-box functions that does not assume any functional forms

Research algorithm:

- **1** Define range of parameters \Rightarrow Parameters space is limited
- ② Define a surrogate gaussian model for the objective function
- Open Pick some random sets of hyperparameters to evaluate the model
- Update hyperparameters by evaluating the covariance matrix of the model
 ⇒ Balance exploitation and exploration

Model Architecture - Hyperparameters Results

HyperPar	Unconstraine	ed Model	Constrained Model		
Пурегнаг	Range	Best values	Range	Best values	
N Layer	1 - 4	2	2 - 4	4	
Node 0	1 - 1000	706	90 - 140	140	
Node 1	1 - 1000	460	50 - 80	64	
Node 2	1 - 1000	/	20 - 40	26	
Node 3	1 - 1000	/	10 - 20	18	
LearningRate	$10^{-4} - 10^{-3}$	$5 \cdot 10^{-4}$	$10^{-4} - 10^{-3}$	$5 \cdot 10^{-4}$	
RMSE [GeV]	0.74 ± 0.09		0.80 ± 0.08		
Exec Time [s]	2700 ± 400		980 ± 300		

Small Layers Model

input_19	InputLaver		HL1	Dense		HL2	Dense		HL3	Dense		HL4	Dense		RegOut	Dense
input:	output:		11111	relu	_	1102	relu	۱ .	111.0	relu	_	111.4	relu	_	Regout	relu
	· ·	_	input:	output:		input:	output:		input:	output:		input:	output:	_	input:	output:
[(None, 16)	[(None, 16)]		(None, 16)	(None, 140)		(None, 140)	(None, 64)		(None, 64)	(None, 26)		(None, 26)	(None, 18)		(None, 18)	(None, 1)

Large Layers Model

				Dense
input 8	InputLayer		HL1	Delise
mpuc_0	Imputitioyer		11111	relu
input:	output:	-		
	*		input:	output:
[(None, 16)]	[(None, 16)]		07 100	07 #0.C
			(None 16)	(None 706)

•	s Wouei		
	HL2	Dense	
	nL2	relu	
1	input:	output:	
	(None, 706)	(None, 460)	

RegOut	Dense
Regout	relu
input:	output:
(None, 460)	(None, 1)

Model Architecture - Training Time scaling

Training time scales as $\mathcal{O}(N_{par}^2)$ while the performance improvement is small \Rightarrow Large models are inefficient for linear regression tasks

Results - Training

Oscillation in the loss function evaluation is caused by the presence of local minima during the optimisation of the parameters.

EarlyStopping criteria (patience =50 epochs) were implemented on both loss and val_loss functions to avoid getting stuck in local minima.

Results - Invariant mass prediction

Conclusions

Achieved goals:

- Testing different models proved that shallow models are more efficient for linear regression tasks thanks to the limited number of free parameters to train
- Hyperparameters tuning resulted in significant improvements for the training of the model (especially for learning rate)
- The achieved error (RMSE $\leq 0.8 \, GeV$) is coherent with the experimental error usually found for $M_{inv} \gtrsim 10 \, GeV$ ($\Delta E/E < 10\%$)

Possible improvements:

- Compare other algorithms to improve performance and/or efficiency (e.g. DecisionTrees)
- Try different features (e.g. invariants)
- Dataset with experimental error on the features may result in better performance

References

- [1] T. McCauley, "Events with two electrons from 2010," (2014), [Online]. Available: http://doi.org/10.7483/OPENDATA.CMS.PCSW.AHVG.
- [2] H. Nguyen, "Improving neural network's performance with bayesian optimization," (2020), [Online]. Available: https://medium.com/@hiepnguyen034/improving-neural-networks-performance-with-bayesian-optimization-efbaa801ad26.
- [3] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization,", 2019. arXiv: 1711.05101 [cs.LG].
- [4] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks,", Proceedings of Machine Learning Research, vol. 9, Y. W. Teh and M. Titterington, Eds., pp. 249–256, 13–15 May 2010. [Online]. Available: https://proceedings.mlr.press/v9/glorot10a.html.