

IAO2 : Résolution de Problèmes et Programmation Logique

Logique du Premier Ordre

Sylvain Lagrue

sylvain.lagrue@hds.utc.fr

À propos de ce document...

Information	Valeur
Auteur	Sylvain Lagrue (sylvain.lagrue@utc.fr)
Licence	Creative Common CC BY-SA 3.0
Version document	1.2.5

Sources/bibliographie:

- Artificial Intelligence: A Modern Approach: Stuart Russell and Peter Norvig, I.S.B.N 0136042597, 2009
- Intelligence Artificielle et Informatique Théorique (2^e édition): Jean-Marc Alliot, Pascal Brisset, Frederick Garcia, Thomas Schiex, I.S.B.N. 2854285786, 2002

Des coquilles ? sylvain.lagrue@utc.fr ou sur le forum du cours moodle

Présentation

- appelé aussi calcul des prédicats
- à la base de la « logique mathématique »
- logique de Platon et de Socrate (syllogismes)
- généralisation de la logique propositionnelle
- utilisation de fonctions, de prédicats et de quantificateurs

Liens très forts avec :

- la programmation logique (*Prolog*)
- la programmation par contrainte (CSP)
- les bases de données
- les bases de données déductives (Datalog)
- le web sémantique et les ontologies (logiques de description)
- ...

ALLIANCE SORBONNE UTCC UNIVERSITE

Quelques exemples...

Tous les Schtroumpfs sont bleus.

$$\forall x \ schtroumpf(x) \rightarrow bleu(x)$$

Rq: l'implication est utilisée comme filtrage

■ Il existe un Schtroumpf à lunettes.

Rq: ici, on ne veut surtout pas filtrer...

$$\exists x \ schtroumpf(x) \land lunettes(x)$$

■ Il n'existe pas de Schtroumpf qui n'aime pas la salsepareille.

```
\neg(\exists x \ schtroumpf(x) \land \neg aimeSalsepareille(x))

\forall x \ \neg(schtroumpf(x) \land \neg aimeSalsepareille(x))

\forall x \ (\neg schtroumpf(x) \lor aimeSalsepareille(x))

\forall x \ (schtroumpf(x) \rightarrow aimeSalsepareille(x))
```


■ Tout le monde aime tout le monde.

$$\forall x \forall y \ aime(x, y)$$

Tout le monde aime quelqu'un.

$$\forall x \exists y \ aime(x, y)$$

• Quelqu'un aime tout le monde.

$$\exists x \forall y \ aime(x, y)$$

■ Tout le monde s'aime soi-même.

$$\forall x \forall y (x = y) \rightarrow aime(x, y)$$

$$\forall x \ aime(x, x)$$

• Il existe quelqu'un qui n'aime personne.

$$\exists x \forall y \neg aime(x, y)$$

Exemple de syllogisme

Tous les humains sont mortels. Socrate est un humain. Donc Socrate est mortel.

```
((\forall x \ humain(x) \rightarrow mortel(x)) \land humain(Socrate)) \rightarrow mortel(Socrate)
```

Exemple de paralogisme

- Je ne suis pas dans la même pièce que mon frère.
- Ma fille n'est pas dans la même pièce que mon frère.
- Donc ma fille et moi sommes dans la même pièce...

Pourquoi « premier ordre »?

- on ne peut pas avoir de « prédicats de prédicats »
- en particulier, on ne peut pas quantifier les prédicats :

$$\forall p \exists x p(x)$$

Remarque

 la logique du premier ordre est suffisante pour formaliser l'ensemble des preuves de la théorie des ensembles

Les briques de base

- *F* : un ensemble dénombrable de symboles de fonctions (*f*, *g*, etc.)
- P: un ensemble dénombrable de symboles de prédicats (p, q, etc.)
- C : un ensemble dénombrable de constantes (a, b, c, etc.)
- V: un ensemble dénombrable de variables (x, y, z, etc.)

Remarques

- les fonctions et les prédicats possèdent une arité
- un prédicat d'arité 0 est une constante propositionnelle
- les constantes peuvent être vues comme des fonctions d'arité 0

Connecteurs usuels

■ → V ∧ ↔ ¬ ⊥ T et les quantificateurs ∃ et ∀

Le prédicat d'égalité

= =

Définition: terme

- 1. une variable est un terme
- 2. un symbole de constante est un terme
- 3. si f est une fonction d'arité n et si $t_1, \ldots t_n$ sont des termes, alors $f(t_1, \ldots, t_n)$ est un terme

Tout terme est obtenu par l'application de ces règles un nombre fini de fois.

Exemples

- 1 + 2 > 12
- square(abs(x))
- **■** *concat*(*x*, " *toto* ")

Définition: atome

• si p est un symbole de prédicat d'arité n et t_1, t_2, \ldots, t_n sont des termes, alors $p(t_1, t_2, \ldots, t_n)$ est un atome (ou formule atomique)

Exemples

- schtroumpf(x)
- 12 = abs(-12)
- $cos(\pi + x) = -cos(x)$

Définition : formule

- 1. un atome est une formule
- 2. si A et B sont des formules, alors $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \to B)$ et $(\neg A)$ sont des formules
- 3. \top et \bot sont des formules
- 4. Si A est une formule et x est une variable, alors $(\forall x A)$ et $(\exists x A)$ sont des formules

Une formule ne peut être définie que par un nombre fin de ces règles.

Exemple

$$(\forall x(\exists y ((p(x, f(g(a), y)) \land q) \rightarrow r)))$$

- On peut représenter une formule sous forme d'arbre...
- On utilisera les mêmes priorités qu'en logique propositionnelle, ∃ et ∀ seront les moins prioritaires avec une priorité droite/gauche

Variables liées et variables libres

Exemple

$$\forall x p(x, y)$$

x est liée et y est libre

Définition (inductive) variables liées

Soit A une formule et Linked(A) l'ensemble des variables liées de A

- 1. si A est un atome alors $Linked(A) = \emptyset$
- 2. $Linked(\bot) = Linked(\top) = \emptyset$
- 3. si A est de la forme B * C alors $Linked(A) = Linked(B) \cup Linked(C)$ (avec $* \in \{ \rightarrow, \lor, \land, \leftrightarrow \}$)
- 4. si A est de la forme $\neg B$ alors Linked(A) = Linked(B)
- 5. si A est de la forme $\forall x B$ ou de la forme $\exists x B$ alors $Linked(A) = \{x\} \cup Linked(B)$

Autres définitions

- une variable libre est une variable non liée!
- Free(A) représente l'ensemble des variables libres de la formule A
- une formule close (fermée) est une formule ne contenant aucune variable libre

Exercices:

quelles sont les variables libres et les variables liées de la formule suivante ?

$$p(x, y) \lor (\forall x q(x) \land r(x))$$

donner une définition inductive des variables libres

Définition (inductive) variables libres

Soit A une formule et Free(A) l'ensemble des variables libres de A.

- 1. $si A est un atome alors Free(A) = {variables apparaissant dans A}$
- 2. $Free(\bot) = Free(\top) = \emptyset$
- 3. si A est de la forme B * C alors $Free(A) = Free(B) \cup Free(C)$ (avec $* \in \{ \rightarrow, \lor, \land, \leftrightarrow \}$)
- 4. si A est de la forme $\neg B$ alors Free(A) = Free(B)
- 5. si *A* est de la forme $\forall x B$ ou de la forme $\exists x B$ alors $Free(A) = Free(B) \setminus \{x\}$

Clôture d'une formule

• la clôture universelle (resp. existentielle) de A est telle que, si $\{x_1, x_2, \dots x_n\}$ est l'ensemble des variables libres de A:

$$\forall x_1 \forall x_2 \dots \forall x_n A$$

(resp.
$$\exists x_1 \exists x_2 \dots \exists x_n A$$
)

Attention, il peut être nécessaire de renommer des variables...

Remarque: identité vs égalité conditionnelle...

$$(x+1)^2 = x^2 + 2x + 1$$

$$x^2 + 2x + 1 = 0$$

Schéma d'axiomes

Soient A, B, C, D des formules du premier ordre quelconques, x une variable et t un terme, tel que $x \notin Free(D)$:

- $A1: (A \rightarrow (B \rightarrow A))$
- $\bullet \ A2: ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$
- $A3: ((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$
- $A4: (\forall x A(x) \rightarrow A(t))$
- $A5: ((D \rightarrow B) \rightarrow (D \rightarrow \forall x B))$

Règles d'inférences

Modus Ponens:

■ Généralisation:

$$\frac{\vdash A}{\vdash (\forall x A)}$$

■ Règle de substitution

$$\frac{A(x)\{x:=t\}}{A(t)}$$

- soit A(x) une formule contenant x comme variable libre et t un terme
- A(t): obtenue en remplaçant les occurrences libres de x par t dans A(x)
- Si x ou t apparaissent comme variables liées dans la formule A(x) alors renommer ces occurrences

ALLIANCE SORBONIE UTC

Exemples de substitution :

$$\frac{(p(x) \lor q(x,y))\{x := z\}}{p(z) \lor q(z,y)}$$

$$\frac{((p(x) \lor q(x,y))\{x:=y\}}{p(y) \lor q(y,y)}$$

$$\frac{(\forall x \ q(x,y))\{y:=x,x:=z\}}{\forall z \ q(z,x)}$$

Exemple

Montrons: $\vdash (\forall x A \rightarrow A)$

Étape 1 :
$$\vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
 (Axiome 2)

Étape 2: en substituant $A \rightarrow A$ à B et A à C on obtient :

$$\vdash (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$

Étape 3 : $\vdash A \rightarrow (B \rightarrow A)$ (Axiome 1)

Étape 4: en substituant $A \rightarrow A$ à B dans 3 on obtient :

$$\vdash A \rightarrow ((A \rightarrow A) \rightarrow A)$$

Étape 5 : modus ponens entre 4 et 2 permet d'obtenir :

$$\vdash (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

Étape 5 : modus ponens entre 4 et 2 permet d'obtenir :

$$\vdash (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

Étape 6 : En substituant A à B dans l'axiome 1 on obtient :

$$\vdash A \rightarrow (A \rightarrow A)$$

Étape 7 : modus ponens entre 5 et 6

$$\vdash A \rightarrow A$$

Étape 8 : généralisation sur 7

$$\vdash (\forall x A \rightarrow A)$$

Théorèmes de la déduction

■ Soit *A* une formule **close**. Si $A \vdash B$ alors $\vdash A \rightarrow B$.

Plus généralement :

• Soient A_1, \ldots, A_n des formules **closes** :

$$\operatorname{Si} A_1, \dots, A_n \vdash B \operatorname{alors} A_1, \dots, A_{n-1} \vdash A_n \rightarrow B$$

Pour cela, on va avoir besoin de domaines pour l'ensemble des variables des prédicats et des fonctions.

Exemple : prédicat *bleu* dont le domaine est

D = {*Xzulrb_le_martien*, *Ernest*, *Schtroumpf_grognon*}

X	V(I,bleu(x))
Xzulrb_le_martien	F
Ernest	F
Schtroumpf_grognon	V

Remarque : les domaines peuvent être infinis (par exemple les entiers...)

ALLIANCE SORBONE UTC

Définition d'un interprétation

Une interprétation I est un triplet (D, I_c, I_v) avec :

- *D* le domaine d'interprétation
- lacksquare une fonction qui associe à toute variable libre une valeur de D
- lacksquare I_c une fonction qui associe :
 - à toute constante une valeur de D
 - $\,\blacksquare\,$ à toute constante fonctionnelle f_n une fonction $I_c(f_n)$ de D^n dans D
 - à toute constante prédicative p_m une fonction $I_c(p_m)$ de D^m dans $\{V, F\}$

Valuation

Valuation d'une formule *A* par l'interprétation *I* :

- Si x est une variable libre, alors $I(x) = I_{\nu}(x)$
- $I(f(t_1, ..., t_n)) = (I_c(f))(I(t_1), ..., I(t_n))$
- $I(p(t_1, ..., t_m)) = (I_c(p))(I(t_1), ..., I(t_m))$
- si A et B sont des formules alors $\neg A$, $A \land B$, $A \lor B$, $A \to B$, $A \leftrightarrow B$ s'interprètent comme dans la logique propositionnelle
- si A est une formule et x une variable alors $I(\forall x A) = V$ si $I_{\{x:=d\}}(A) = V$ pour tout élément $d \in D$
- si A est une formule et x une variable alors $I(\exists x\,A) = V$ si $I_{\{x:=d\}}(A) = V$ pour au moins un élément $d\in D$

ALLIANCE SORBONNE ULTC

Exercice

Traduire les phrases suivantes en logique des prédicats

- A : Toutes les voitures ont exactement un propriétaire
- B : Certains étudiants ont une voiture
- C : Certains étudiants n'ont pas de voiture

Soit I = (D, Ic, Iv) avec $D = \{a, b\}$ telle que :

- $I_c(voiture) = p_v \operatorname{tq} \operatorname{si} x = a \operatorname{alors} p_v(x) = V \operatorname{sinon} p_v(x) = F$
- $I_c(etudiant) = p_e \operatorname{tq} \operatorname{si} x = b \operatorname{alors} p_e(x) = V \operatorname{sinon} p_e(x) = F$
- $I_c(possede) = p_p \operatorname{tq} \operatorname{si} x = b \operatorname{et} y = a \operatorname{alors} p_p(x, y) = V \operatorname{sinon} p_p(x, y) = F$

I(A) ? I(B) ? I(C) ?

Traduire la phrase suivante en logique des prédicats

■ B : Certains étudiants ont une voiture

 $\exists x \exists y \ etudiant(x) \land voiture(y) \land possede(x, y)$

Soit I = (D, Ic, Iv) avec $D = \{a, b\}$ telle que:

- $I_c(voiture) = p_v \operatorname{tq} \operatorname{si} x = a \operatorname{alors} p_v(x) = V \operatorname{sinon} p_v(x) = F$
- $I_c(etudiant) = p_e \operatorname{tq} \operatorname{si} x = b \operatorname{alors} p_e(x) = V \operatorname{sinon} p_e(x) = F$
- $I_c(possede) = p_p \operatorname{tq} \operatorname{si} x = b \operatorname{et} y = a \operatorname{alors} p_p(x, y) = V \operatorname{sinon} p_p(x, y) = F$
- $I(B) = I(\exists x \exists y \ etudiant(x) \land voiture(y) \land possede(x, y)) = ?$
 - $I_{\{x:=a\}}(\exists y \ etudiant(a) \land voiture(y) \land possede(a, y))$
 - $I_{\{y:=a\}}(\exists y \ etudiant(a) \land voiture(a) \land possede(a, a))$
 - $I(etudiant(a) \land voiture(a) \land possede(a, a))$
 - $I_c(etudiant)(a) \land I_c(voiture)(a) \land I_c(possede)(a, a)$
 - $p_e(a) \wedge p_v(a) \wedge p_p(a, a)$
 - $\blacksquare F \land V \land F$

Soit I = (D, Ic, Iv) avec $D = \{a, b\}$ telle que :

- $I_c(voiture) = p_v \operatorname{tq} \operatorname{si} x = a \operatorname{alors} p_v(x) = V \operatorname{sinon} p_v(x) = F$
- $I_c(etudiant) = p_e \operatorname{tq} \operatorname{si} x = b \operatorname{alors} p_e(x) = V \operatorname{sinon} p_e(x) = F$
- $I_c(possede) = p_p \operatorname{tq} \operatorname{si} x = b \operatorname{et} y = a \operatorname{alors} p_p(x, y) = V \operatorname{sinon} p_p(x, y) = F$
- $I_{\{x:=a\}}(\exists y \ etudiant(a) \land voiture(y) \land possede(a, y))$
 - $I_{\{y:=b\}}(\exists y \ etudiant(a) \land voiture(b) \land possede(a,b))$
 - $I(etudiant(a) \land voiture(b) \land possede(a, b))$
 - $I_c(etudiant)(a) \land I_c(voiture)(b) \land I_c(possede)(a, b)$
 - $p_e(a) \wedge p_v(b) \wedge p_p(a, b)$
 - $\blacksquare F \land F \land F$

Soit I = (D, Ic, Iv) avec $D = \{a, b\}$ telle que:

- $I_c(voiture) = p_v \operatorname{tq} \operatorname{si} x = a \operatorname{alors} p_v(x) = V \operatorname{sinon} p_v(x) = F$
- $I_c(etudiant) = p_e \operatorname{tq} \operatorname{si} x = b \operatorname{alors} p_e(x) = V \operatorname{sinon} p_e(x) = F$
- $I_c(possede) = p_p \operatorname{tq} \operatorname{si} x = b \operatorname{et} y = a \operatorname{alors} p_p(x, y) = V \operatorname{sinon} p_p(x, y) = F$
- $I_{\{x:=b\}}(\exists y \ etudiant(b) \land voiture(y) \land possede(b, y))$
 - $I_{\{y:=a\}}(\exists y \ etudiant(b) \land voiture(a) \land possede(b, a))$
 - $I(etudiant(b) \land voiture(a) \land possede(b, a))$
 - $I_c(etudiant)(b) \land I_c(voiture)(a) \land I_c(possede)(b, a)$
 - $\bullet \ p_e(b) \ \land \ p_v(a) \ \land \ p_p(b,a)$
 - $\blacksquare V \land V \land V$

- ...

 $\mathsf{Donc}\,I(B)=V$

Conséquence logique

Les définitions de conséquence logique, de formules valides, contingentes et contradictoires s'étendent directement depuis celles de la logique propositionnelle.

Soit *W* l'ensemble des interprétations :

- $\models A \text{ si pour tout } I \in W \text{ on a } I(A) = V$
- $A \models B$ si pour tout $I \in W$ telle que I(A) = V on a I(B) = V

ALLINCE SORBONNE UNIVERSITE

Quelques propriétés...

$$(\forall x A) \land (\forall x B) \equiv \forall x (A \land B)$$

$$(\forall x A) \lor (\forall x B) \models \forall x (A \lor B)$$

$$\forall x (A \rightarrow B) \vDash (\forall x A) \rightarrow (\forall x B)$$

$$\forall x (A \leftrightarrow B) \vDash (\forall x A) \leftrightarrow (\forall x B)$$

$$\exists x (A \lor B) \equiv (\exists x A) \lor (\exists x B)$$

$$\exists x (A \land B) \vDash (\exists x A) \land (\exists x B)$$

$$\exists x (A \rightarrow B) \equiv (\exists x A) \rightarrow (\exists x B)$$

$$\forall x \neg A \equiv \neg \exists x A$$

Théorèmes

- théorème (d'adéquation) : pour toute formule $A \in L$ si $\vdash A$ alors $\models A$
- théorème (de complétude faible): pour toute formule $A \in L$, si $\models A$ alors $\vdash A$
- théorème (de complétude forte) : pour tout ensemble de formules $E \subseteq L$ et pour toute formule $C \in L$, si $E \models C$ alors $E \vdash C$
- théorème (de décidabilité): la logique des prédicats est semi-décidable. Il n'existe aucun programme qui pour une formule A indique en un temps fini si A n'est pas un théorème.

SALIANCE SORBONNE ULCC

Propositions (3)

- Toute théorie axiomatique égalitaire ayant :
 - un nombre fini de symboles, un nombre fini de constantes
 - un seul symbole fonctionnel unaire f
 - un nombre fini de prédicats unaires et le prédicat binaire égalité
 - n'ayant pas d'axiomes non logiques

est décidable.

V. Formes normales et univers de Herbrand

Objectif : se ramener à des formes plus facilement calculables... Voire à des formes proches de la logique propositionnelle !

- forme prénexe
- forme de Skolem
- forme normale (conjonctive)

V. Formes normales et univers de Herbrand

Forme prénexe

Définition. Une matrice est une formule de la logique du premier ordre ne comportant aucun quantificateur.

$$p(x) \leftrightarrow q(f(g(y)), a)$$

Définition. Une formule est sous forme prénexe si elle est de la forme :

$$Q_1x_1Q_2x_2\dots Q_nx_nM$$

où $Q \in \{\exists, \forall\}$ et M est une matrice.

Exemple.

Exemple.

$$\exists x \, \forall y \, (p(x) \leftrightarrow (q(f(g(y)), a)))$$

Théorème. Toute formule admet une forme prénexe équivalente.

Preuve (constructive).

- 1. supprimer les connecteurs d'équivalence et d'implication
- 2. renommer les variables liées afin qu'une même variable ne soit pas quantifiée 2 fois $Q_1x A(x)$ est équivalent à $Q_1y A(y)$
- 3. supprimer les quantificateurs inutiles (dont la variable quantifiée n'apparaît pas dans leur portée)
- 4. transférer les négations devant les atomes en utilisant les règles de la logique propositionnelle et les 2 règles suivantes

$$\neg \exists x A \equiv \forall x \neg A$$

$$\neg \forall x A \equiv \exists x \neg A$$

- 5. faire passer les quantificateur en tête en utilisant les règles suivantes (et en utilisant éventuellement l'associativité, la commutativité et le renommage de variable) :
 - $(\forall x A) \land B \equiv \forall x (A \land B) \text{ si } B \text{ ne contient pas } x$
 - $(\exists x A) \land B \equiv \exists x (A \land B) \text{ si } B \text{ ne contient pas } x$
 - $(\forall x A) \lor B \equiv \forall x (A \lor B) \text{ si } B \text{ ne contient pas } x$
 - $(\exists x A) \lor B \equiv \exists x (A \lor B) \text{ si } B \text{ ne contient pas } x$

Exemple

$$((\forall x \, p(x)) \land (\exists y \, q(y))) \rightarrow (\exists y \, p(y) \land q(y))$$

$$\equiv \neg ((\forall x \, p(x)) \land (\exists y \, q(y))) \lor (\exists y \, p(y) \land q(y))$$

$$\equiv (\neg \forall x \, p(x)) \lor (\neg \exists y \, q(y)) \lor (\exists y \, p(y) \land q(y))$$

$$\equiv (\exists x \, \neg p(x)) \lor (\forall y \, \neg q(y)) \lor (\exists y \, p(y) \land q(y))$$

$$\equiv (\exists x \, \neg p(x)) \lor (\forall y \, \neg q(y)) \lor (\exists z \, p(z) \land q(z))$$

$$\equiv \exists x \forall y \exists z \, \neg p(x) \lor \neg q(y) \lor (p(z) \land q(z))$$

Forme de Skolem

Objectif

Faire disparaître les quantificateurs existentiels et se ramener à la forme la plus simple possible pour le calcul.

Algorithme (de Skolémisation)

Soit une formule *F*

- 1. transformer la formule *F* en une forme prénexe
- 2. remplacer toutes les variables quantifiées existentiellement par un symbole de fonction dont les arguments sont les variables quantifiées universellement qui le précèdent
- 3. on supprime les quantificateurs existentiels

Exemple (suite)

$$\exists x \, \forall y \, \exists z \, \neg p(x) \, \vee \, \neg q(y) \, \vee \, (p(z) \, \wedge \, q(z))$$

$$\exists x \, \forall y \, \exists z \, \neg p(x) \, \vee \, \neg q(y) \, \vee \, (p(f(y)) \, \wedge \, q(f(y)))$$

$$\exists x \, \forall y \, \exists z \, \neg p(a) \, \vee \, \neg q(y) \, \vee \, (p(f(y)) \, \wedge \, q(f(y)))$$

$$\forall y \, \neg p(a) \, \vee \, \neg q(y) \, \vee \, (p(f(y)) \, \wedge \, q(f(y)))$$

Forme normale (conjonctive)

Extension directe des concepts

- littéral
- clause
- cube
- forme normale conjonctive
- forme normale disjonctive

Définition

Une formule est sous **forme normale conjonctive** si elle est sous forme de Skolem et que sa matrice est composée uniquement de conjonctions de clauses.

N.B. (1): On peut supprimer les quantificateurs universels.

N.B. (2): On peut écrire la formule sous forme ensembliste en enlevant les conjonctions.

Exemple (suite)

$$\forall y \neg p(a) \lor \neg q(y) \lor (p(f(y)) \land q(f(y)))$$

$$\forall x \neg p(a) \lor \neg q(x) \lor (p(f(x)) \land q(f(x)))$$

$$\forall x (\neg p(a) \lor \neg q(x)) \lor (p(f(x)) \land q(f(x)))$$

$$\forall x (\neg p(a) \lor \neg q(x) \lor p(f(x))) \land (\neg p(a) \lor \neg q(x) \lor q(f(x)))$$

$$(\neg p(a) \lor \neg q(x) \lor p(f(x))) \land (\neg p(a) \lor \neg q(x) \lor q(f(x)))$$

$$\{\neg p(a) \lor \neg q(x) \lor p(f(x)), \neg p(a) \lor \neg q(x) \lor q(f(x))\}$$

Univers de Herbrand

Objectif. Restreindre les domaines aux domaines apparaissant réellement dans la formule.

Terme de base et atome de base

Définition. Un terme (resp. un atome) de base est un terme (resp. un atome) ou n'apparaît pas de variable. On parle également de terme (resp. d'atome) complètement instancié.

Univers de Herbrand

Définition. On appelle univers de Herbrand d'une forme normale E l'ensemble des termes de base que l'on peut construire à partir des symboles de fonction et des symboles de constantes qui apparaissent dans E.

Si aucun symbole de constante n'apparaît, on introduit abitrairement une constante afin de ne pas laisser l'univers vide.

Exemple.

$$E = \{p(f(x)) \lor q(a), r(g(x))\}$$

L'univers de Herbrand associé à E est :

$${a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), \dots}$$

Base de Herbrand

Définition. On appelle base de Herbrand d'un ensemble de clauses E l'ensemble des atomes de base qui peuvent être construits à partir des symboles de prédicats de E, appliqués aux termes de l'univers de Herbrand associé.

Sur l'exemple précédent :

$$E = \{p(f(x)) \lor q(a), r(g(x))\}$$

$$\{p(a), q(a), r(a), p(f(a)), q(f(a)), r(f(a)), \dots, p(f(g(a))), q(f(g(a))), r(f(g(a))), \dots\}$$

Système de Herbrand

Soit E un ensemble de clauses, le système de Herbrand est l'ensemble des clauses obtenues à partir de E en remplaçant les variables par des éléments de l'univers de Herbrand.

Théorème de Herbrand

Un ensemble de clauses *E* est satisfiable si et seulement si il a un modèle de Herbrand.

ALLIANCE SORBONNE UNIVERSITÉ

Exemple (1)

$$F = \forall x p(x) \land \neg p(a)$$

$$E = \{p(x), \neg p(a)\}$$

$$D_H = \{a\}$$

$$S = \{\neg p(a), p(a)\}$$

Contradiction!

Exemple (2)

$$F = \forall x (p(x) \lor q(x)) \land \neg p(a) \land \neg q(b)$$

$$E = \{p(x) \lor q(x), \neg p(a), \neg q(b)\}$$

$$D_H = \{a, b\}$$

$$S_1 = \{p(a) \lor q(a), \neg p(a), \neg q(b)\}$$

(qui est vrai si q(a) est vrai)

$$S_2 = S_1 \cup \{p(b) \vee q(b), \neg p(a), \neg q(b)\}$$

(qui est vrai si p(b) est vrai)

Tout le domaine ayant été utilisé, on obtient le modèle I suivant :

•
$$I(p(a)) = F \text{ et } I(p(b)) = V$$
,

•
$$I(q(a)) = V \text{ et } I(q(b)) = F$$

Exemple (3)

$$F = \forall x \forall y (p(x) \lor q(x)) \land p(x) \land \neg p(f(y)))$$

$$E = \{p(x) \lor q(x), p(x), \neg p(f(y))\}$$

$$D_{H} = \{a, f(a), f(f(a)), f(f(f(a))), \dots\}$$

$$S_{1} = \{p(a), \neg p(f(a))\}$$

$$S_{2} = S_{1} \cup \{p(f(a)), \neg p(f(f(a)))\}$$

Ce qui est impossible!

Objectif : généraliser le principe de résolution de la logique propositionnelle !

- substitution
- unification
- résolution

Substitution

Définition: substitution

• Une **substitution** σ est une application de l'ensemble des variables Var dans l'ensemble des termes T telle que l'ensemble $\{x \in Var, \sigma(x) \neq x\}$ est fini.

Définition: instance

- Le terme $\sigma(t)$ obtenu en remplaçant simultanément dans le terme t toutes les occurrences des variables x_i par $\sigma(x_i)$ est une **instance** de t.
- Soit t_1 et t_2 des termes, t_2 est une **instance** de t_1 s'il existe une substitution σ telle que $t_2 = \sigma(t_1)$.

Exemple

Soient x et y 2 variables et a une constante.

Soit σ tel que :

- $\sigma(x) = a$

Soit le terme t = g(x, y, f(x, y))

$$\sigma(t) = g(a, f(x, a), f(a, f(x, a)))$$

 $\sigma(t)$ n'est pas totalement instanciée...

$$\sigma(\sigma(t)) = g(a, f(a, a), f(a, f(a, a)))$$

Unification

Définition: instance fondamentale d'une clause

Une instance d'une clause C dont tous les termes sont complètement instanciés est une instance fondamentale (ou de base) de C.

Exemple: $p(a, f(b)) \vee q(g(c))$

Définition: littéraux unifiables

Deux termes sont dits unifiables s'ils possèdent une instance fondamentale commune.

Exemple: f(x) et f(g(y, z)) avec f(g(a, b))

Définition: unificateur principal

 σ' est plus général que σ , s'il existe σ'' tq $\sigma = \sigma'' \circ \sigma'$

Un unificateur principal (unificateur le plus général) est un unificateur pour qui il n'existe pas d'unificateur plus général.

Exemple

Soit p(a, y, z) et p(x, b, z), on a:

•
$$\sigma_1 = \{x := a, y := b, z := c\} \rightsquigarrow p(a, b, c)$$

•
$$\sigma_2 = \{x := a, y := b, z := d\} \rightsquigarrow p(a, b, d)$$

•
$$\sigma_3 = \{x := a, y := b, z := f(c)\} \rightsquigarrow p(a, b, f(c))$$

...

Si on considère $\sigma = \{x := a, y := b\}$:

$$\bullet \ \sigma_1 = \{z := c\} \circ \sigma$$

$$\sigma_2 = \{z := d\} \circ \sigma$$

$$\bullet \ \sigma_3 = \{z := f(c)\} \circ \sigma$$

...

Algorithme de Robinson (1965)

entrée: A_1 et A_2 deux atomes à unifier

sortie : un unificateur principal σ

$$\sigma = \{\}$$

tant que $\sigma(A_1) \neq \sigma(A_2)$:

- trouver le premier symbole de A_1 différent du symbole correspondant de A_2 déterminer les termes respectifs t_1 et t_2 de A_1 et A_2 débutant à ce rang
- si t_1 et t_2 ne sont pas des variables : Échec
- si l'un des 2 termes est une variable x contenue dans l'autre terme t : Échec
- sinon composer σ avec $\{x := t\}$

 $\textbf{renvoyer} \; \sigma$

Exemple:

$$A_1 = p(x, a) \text{ et } A_2 = p(f(y), y)$$

- itération 1 : $\sigma(A_1) \neq \sigma(A_2)$
 - premiers symboles non concordants : *x* et *f*
 - termes : x et f(y)
 - $\sigma = \{x := f(y)\}$
- itération 2 : $\sigma(A_1) = p(f(y), a)$ et $\sigma(A_2) = p(f(y), y)$ donc $\sigma(A_1) \neq \sigma(A_2)$
 - premiers symboles non concordants : *a* et *y*
 - termes : a et y
 - $\sigma = \{y := a\} \circ \{x := f(y)\}$
- itération 3 : $\sigma(A_1) = p(f(a), a) = \sigma(A_2)$
- renvoyer σ

SALUANCE SORBONNE UTC

Remarques:

- algorithme très simple
- particulièrement coûteux (en temps et en mémoire)
- il existe des algorithme beaucoup plus performants...

Principe de résolution

- S: un ensemble de clauses, $c_1, c_2 \in S$
- l_1 apparaı̂t dans c_1 et $\neg l_2$ apparaı̂t dans c_2
- θ une substitution de renommage telle que $\theta(c_1)$ et c_2 n'ont aucune variable libre en commun
- soit σ l'unificateur principal de $\theta(c_1)$ et c_2

Alors:

$$S \equiv S \cup \{r\}$$

avec $r = \sigma((\theta(c_1) \setminus \{l_1\}) \vee (c_2 \setminus \{\neg l_2\}))$ appelée résolvante

Exemple

- $\bullet (1) \neg p(x) \lor p(f(x))$
- **(**2) *p*(*a*)
- (3) $\neg p(f(z))$
- (1) et (2) avec $\sigma(x) = a \text{ produit (4) } p(f(a))$
- (3) et (4) avec $\sigma(z) = a$ produit une contradiction!

ALLIANCE SORBONNE UTC

Exemple

- A: les Schtroumpfs aiment la salsepareille
- *B* : il existe un Schtroumpf grognon
- C: les Schtroumpfs grognons n'aiment rien

Montrer que ces assertions sont incohérentes.

Vocabulaire

- prédicats (concepts + relation) : schtroumpf/1, grognon/1, aime/2
- variables : x, y
- constante : salsepareille

Représentation du problème

- $A = \forall x \ schtroumpf(x) \rightarrow aime(x, salsepareille)$
- $B = \exists x \ schtroumpf(x) \land grognon(x)$
- $C = \forall x \ schtroumpf(x) \land grognon(x) \rightarrow \neg(\exists y \ aime(x, y))$

La formule à traiter

```
F = (\forall x \ schtroumpf(x) \rightarrow aime(x, salsepareille)) \land (\exists x \ schtroumpf(x) \land grognon(x)) \land (\forall x \ schtroumpf(x) \land grognon(x) \rightarrow aime(x, salsepareille)) \land (\exists x \ schtroumpf(x) \land grognon(x)) \land (\forall x
```

Mise sous forme prénexe

```
C \equiv \forall x \ schtroumpf(x) \land grognon(x) \rightarrow \neg(\exists y \ aime(x, y))

\equiv \forall x \ schtroumpf(x) \land grognon(x) \rightarrow (\forall y \neg aime(x, y))

\equiv \forall x \ \forall y \ schtroumpf(x) \land grognon(x) \rightarrow \neg aime(x, y)
```

Rappel 1 : commutativité de la conjonction

 $F \equiv (\exists x \ schtroumpf(x) \land grognon(x)) \land (\forall x \ schtroumpf(x) \rightarrow aime(x, salsepareille)) \land (\forall x \ \forall y \ schtroumpf(x) \land grognon(x))$

Rappel 2: $(\forall x F) \land (\forall x G) \equiv \forall x (F \land G)$

 $F \equiv (\exists x \ schtroumpf(x) \land grognon(x)) \land \forall x ((schtroumpf(x) \rightarrow aime(x, salsepareille) \land (\forall y \ schtroumpf(x) \land grognon(x) \rightarrow Après \ renommage...$

 $F \equiv \exists z \, \forall x \, (schtroumpf(z) \, \land \, grognon(z)) \, \land \, (schtroumpf(x) \rightarrow aime(x, salsepareille)) \, \land \, (\forall y \, schtroumpf(x) \, \land \, grognon(x) \rightarrow y \, n'apparaissant pas dans la partie gauche de la formule...$

 $F \equiv \exists z \forall x \forall y \ schtroumpf(z) \land grognon(z) \land (schtroumpf(x) \rightarrow aime(x, salsepareille)) \land (schtroumpf(x) \land grognon(x) \rightarrow \neg aime(x, salsepareille))$

Mise sous forme de Skolem

 $F \equiv schtroumpf(a) \land grognon(a) \land (schtroumpf(x) \rightarrow aime(x, salsepareille)) \land (schtroumpf(x) \land grognon(x) \rightarrow \neg aime(x, y))$

Mise sous forme normale conjonctive...

Rappel 3:
$$F \wedge G \rightarrow H \equiv \neg (F \wedge G) \vee H \equiv \neg F \vee \neg G \vee H$$

 $F \equiv schtroumpf(a) \land grognon(a) \land (\neg schtroumpf(x) \lor aime(x, salsepareille)) \land (\neg schtroumpf(x) \lor \neg grognon(x) \lor \neg aime(x, salsepareille))$

La base de clauses KB:

- C_1 = schtroumpf(a)
- $C_2 = grognon(a)$
- $C_3 = \neg schtroumpf(x) \lor aime(x, salsepareille)$
- $C_4 = \neg schtroumpf(x) \lor \neg grognon(x) \lor \neg aime(x, y)$

Applications du principe de résolution

D'après le théorème de Herbrand, la formule est inconsistante et l'énoncé est donc incohérent.

ALLIANCE SORBONNE UNIVERSITÉ

Question...

Comment déduire une formule F d'un ensemble de clause KB?

En montrant que $KB \cup \{ \neg F \}$ est inconsistant !

Conclusion et synthèse des points abordés

Le langage, la syntaxe et la sémantique

- définition d'un nouveau langage (ajout de quantificateurs, de prédicats, de fonctions et de constantes)
- si la formule ne contient que des prédicats 0-aire, on retrouve la logique propositionnelle
- définition d'une syntaxe basée sur des règles de réécritures
- définition d'une sémantique basée sur des domaines et des interprétations
- la logique du premier ordre est adéquate et complète
- en revanche elle n'est que semi-décidable

Conclusion et synthèse des points abordés

D'un point de vue computationnel

- il est toujours possible de mettre une formule/un sensemble de formules sous forme normale conjonctive (via les formes prénexes et de Skolem)
- le principe de résolution s'étend à la logique du premier ordre via le principe d'unification
- le calcul d'incohérence et d'inférence est rendu possible via le théorème de Herbrand

La suite?

la programmation logique!