Quantum Mechanics Exercises 5:

STANDING COMPLEX

This is a follow up to the Quantum Exercise: Standing Waves Real. As discussed in the lectures, a free or bound particle is described quantum mechanically by a complex wave, which solves the problem of the particle "blinking in and out of existence."

[easy]

1. In the Quantum Exercise: Standing Waves Real you found that a particle with momentum **+p** and energy $E = \frac{p^2}{2m}$ (right-moving) could be described by the real traveling wave: $\psi_R(x,t) = -\sin\left(\frac{1}{\hbar}(Et - px)\right)$, and similarly for a left-moving

$$\psi_R(x,t) = -\sin\left(\frac{1}{\hbar}(Et - px)\right)$$
, and similarly for a left-moving

particle we have $\psi_L(x,t) = \sin\left(\frac{1}{\hbar}(Et+px)\right)$. We can construct

complex traveling waves by simply replacing the sine function with a complex exponential:

$$\psi_R(x,t) = -e^{\frac{i}{\hbar}(Et-px)}$$

$$\psi_L(x,t) = e^{\frac{i}{\hbar}(Et+px)}$$

where i is the unit imaginary number: $i^2 = -1$

Make sure you understand this.

[medium] 2. If a particle is confined to a box, both the right- and left-moving complex traveling waves will necessarily be present due to reflections off the ends of the box. Thus, consider a superposition of the right- and left-moving complex traveling waves:

> $\psi(x,t) = \psi_R(x,t) + \psi_L(x,t)$. Factor out the $e^{\frac{i}{\hbar}Et}$ then use Euler's Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ to express the remainder in terms of a sine function.

[hard]

3. As discussed in class, the squared magnitude of a complex wavefunction is to be interpreted as a function describing the probability of finding the particle at various positions (as a function of time). Refer back to exercise 2 and calculate $|\psi(x,t)|^2$. Observe that it is independent of time, i.e., the probability pattern is **static** (physicists call this a "**stationary state**"). Using the de Broglie relation $p = \frac{h}{\lambda}$, re-express $|\psi(x,t)|^2$ in terms of λ instead of \mathbf{p} , and sketch it for $\mathbf{x} = 0$ to $\mathbf{x} = \lambda$. The particle no longer "blinks in and out of existence"!