

Katedra kybernetiky Katedra počítačů

Vytěžování dat – cvičení V

Klasifikace a regrese pomocí k-NN a lineárních modelů Křivka učení, křížová validace

Petr Pošík: posik@labe.felk.cvut.cz Pavel Kordík: kordikp@fel.cvut.cz

Program cvičení

- Klasifikace pomocí k-NN
 - Vizualizace, křivka učení, chyby vs. "ohebnost" modelu
- Klasifikace pomocí lineárního modelu (perceptron)
 - Vizualizace, křivka učení, chyby vs. "ohebnost" modelu
- Regrese pomocí k-NN
 - Vizualizace, křivka učení, chyby vs. "ohebnost" modelu
- Regrese pomocí lineárního modelu
 - Vizualizace, křivka učení, chyby vs. "ohebnost" modelu
- Křížová validace, rozšíření báze

Typický postup učení

Načtení dat

- V dnešním cvičení budeme opět používat databázi aut.
- Načtěte soubor auto-mpg.data-modnames.csv do objektu dataset a definujte jména jednotlivých atributů

Načtení dat

- V dnešním cvičení budeme opět používat databázi aut.
- Načtěte soubor auto-mpg.data-modnames.csv do objektu dataset a definujte jména jednotlivých atributů

```
auta = dataset('file', 'auto-mpg.data-mod-names.csv',...
'ReadVarNames', false, 'ReadObsNames', false,...
'delimiter', ',', ...
'VarNames', {'mpg', 'cyl', 'disp', ...
'hp', 'wgt', 'acc', 'year', 'org', 'name'});
```


Normalizace dat

- auta_norm = datasetfun(@minmax, auta(:,1:5),
 'UniformOutput', false);
- auta_norm = [auta_norm{:}];
- auta = replacedata(auta, auta_norm, 1:5);

KLASIFIKACE

K-NN:

Připomenutí

Když je potřeba oklasifikovat novou instanci, naleznu v trénovací množině nejbližší instanci (k nejbližších instancí) a podle jejich tříd určím výslednou třídu nové instance.

K-NN: Vizualizace

■ Viz scrVizClassKNN.m

K-NN:

Chyba vs. "ohebnost" modelu

- Parametr k určuje ohebnost modelu.
 - Jak? Jak se to projeví z hlediska chyb?
 - Viz scrVizClassKNN.m

K-NN:

Chyba vs. "ohebnost" modelu II

- Závislost chyby kNN klasifikátoru na parametru k
 - viz scrClassTTErrorKNN.m
 - Jak to, že trénovací chyba pro 1NN je nulová?

Křížová validace

- Znáte z přednášky
 - K čemu slouží?
 - Jak funguje?

Křížová validace

- Umožňuje odhadnout testovací chybu a potřebuje k tomu jen trénovací data
- Slouží k výběru (vhodné struktury a parametrů) modelu

Úplný postup pro výběr algoritmu křížovou validací, získání klasifikátoru a odhad jeho kvality

Wřížovou validací na Train vybereme algoritmus

November 1 propriední pro

Zvoleným algoritmem sestrojíme klasifikátor na Train

Jeho kvalitu odhadneme na Test

Lineární klasifikátor: Princip

- Lineární funkce: $f(\mathbf{x}) = w_1x_1 + w_2x_2 + ... + w_0$
- Stejná funkce, jiný zápis:

$$\mathbf{x} = (x_1, x_2, ..., x_D, 1), \quad \mathbf{w} = (w_1, w_2, ..., w_D, w_0)$$

 $f(\mathbf{x}) = \mathbf{w}^* \mathbf{x} \quad ... \text{ skalární součin}$

- Klasifikační pravidlo:
 - když f(x)>0,
 x je ze třídy 1,
 - když f(x)<0,x je ze třídy 2.

■ Hranice mezi třídami: $f(\mathbf{x}) = 0$

Lineární klasifikátor: Učení

- Známe-li vektor w, klasifikace je jednoduchá
- Jak vektor w zjistit? (Jak sestrojit lineární kl.?)
 - stanovit "ručně"
 - naučit na základě trénovacích dat
- Existuje mnoho metod učení lin. klasifikátoru
 - perceptron
 - lineární diskriminační analýza
 - **...**

Lineární klasifikátor: Perceptronový algoritmus

```
Perceptronový algoritmus

Input: \vec{w}, \eta(.), \theta

Output: \vec{w}
repeat
\begin{vmatrix} k \leftarrow k + 1 \\ \vec{w} \leftarrow \vec{w} + \eta(k) \sum_{\vec{x}_i \in E} \vec{x}_i \\ \text{until } |\eta(k) \sum_{\vec{x}_i \in E} \vec{x}_i| < \theta \text{;} \\ \text{return } \vec{w} \end{vmatrix}
```

- body x jsou v homogenních souřadnicích, tedy "s přidanou jedničkou na konci."
- body ve třídě 2 jsou invertovány
- množina E špatně zaklasifikovaných bodů se mění s každou iterací cyklu

Lineární klasifikátor: Vizualizace učení perceptronem

viz scrVizClassLinear.m

Rozšíření báze

- Převádí lineární separaci na nelineární v prostoru o vyšším rozměru
- $\mathbf{z} = (x_1, x_2) \rightarrow \mathbf{z} = (z_1, z_2, z_3) = (x_1^2, x_1 x_2, x_2^2)$
- Najdeme-li lin. funkci $f(\mathbf{z}) = W_1 Z_1 + W_2 Z_2 + W_3 Z_3$, najdeme i nelin.fci $f(\mathbf{x}) = w_1 x_1^2 + w_2 x_1 x_2 + w_3 x_2^2$
- w zjistíme metodami pro učení lineárního klasifikátoru
- scrVizClassLinear.m
- nastavit deg>1

Y336VD Vytěžování c

Lineární klasifikátor:

Chyba vs. "ohebnost" modelu

- "Ohebnost" zajištěna rozšířením báze
- viz scrClassTTErrorLinear.m

REGRESE

Regrese: Úvod

Klasifikační i regresní model:
y = f(x)

- Klasifikace: y je nominální (název třídy)
- Regrese: y je spojitá veličina (teplota, výška)

Chyba modelu

- Klasifikační model:
 - procento nesprávných předpovědí
- Regresní model:
 - součet absolutních hodnot odchylek $err = \sum_{i} |y_i f(x_i)|$
 - součet čtverců odchylek

$$err = \sum_{i} |y_{i} - f(x_{i})|$$

$$err = \sum_{i} |y_{i} - f(x_{i})|^{2}$$

průměrný čtverec odchylky

$$err = \frac{1}{N} \sum_{i} y_{i} - f(x_{i})^{2}$$

 odmocnina průměrného čtverce odchylky (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i} y_{i} - f(x_{i})^{2}}$$

K-NN pro regresi

Jak byste použili k-NN pro regresi (pro predikci spojité veličiny)?

cyl	disp	wgt	mpg
2	1800	2000	35
2	1900	2500	30
4	1800	1500	33
4	2400	2200	25
6	2000	2500	16

cyl	disp	wgt	mpg
4	2000	2800	????

K-NN regrese

- viz scrVizRegrKNN.m
- \blacksquare acc = f(disp)
- Experimentujte s parametrem k

K-NN regrese: Chyba vs. "ohebnost" modelu II

- Závislost chyby kNN modelu na parametru k
 - Viz scrRegrTTErrorKNN.m
 - Jak to, že trénovací chyba pro 1NN není nulová?

Lineární regrese

- viz scrVizRegrLinear.m
- \blacksquare acc = f(disp)
- Experimentujte s parametrem deg

Lineární regrese: Chyba vs. "ohebnost" modelu

- Závislost chyby lin. modelu na parametru deg
 - viz scrRegrTTErrorLinear.m

KŘIVKY UČENÍ

K-NN klasifikátor: Křivka učení

- Opakování z přednášky:
 - přesnost (chyba) modelu (na testovacích datech) v závislosti na velikosti trénovacích dat
 - viz scrClassLearningCurveKNN.m

Lineární klasifikátor: Křivka učení

viz scrClassLearningCurveLinear.m

K-NN regresní model: Křivka učení

■ Viz scrRegrLearningCurveKNN.m

Lineární regresní model: Křivka učení

viz scrRegrLearningCurveLinear.m

