Домашна работа 1

Увод в теория на кодирането

Кристиян Стоименов ф.н 3МІ0400121, ФМИ

Април 2023

Задача 1

Да се съставят матрици на Адамар от ред 12 и ред 16 и да се обясни начина, по който са получени. От тях да се съставят оптималните нелинейни кодове с дължини 10, 11 и 12 и 14, 15 и 16, съответно.

Решение: За да съставим Адамарова матрица от ред 12, използваме метода на Пейли. Търсим квадратичните остатъци $(mod\ 11)$ - то ни дава общо 12 класа остатъци. Необходимо е да проверим само числата в интервала $[1,\frac{p-1}{2}],p=11.$ Получаваме следните стойности:

• $1^2 = 1 < 11$

• $4^2 \equiv 5 \pmod{11}$

• $2^2 = 4 < 11$

• $5^2 \equiv 3 \pmod{11}$

• $3^2 = 9 < 11$

Следователно числата 1, 3, 4, 5, 9 са $\kappa вадратични остатъци$, а 2, 6, 7, 8, 10 - неостатъци. 0 не считаме нито за остатък, нито за неостатък. Използвайки следната дефиниция за характеристична функция,

$$\chi(i) = \begin{cases} 1 & \text{когато и е квадратичен остатък по } (mod\ p), \\ -1 & \text{когато не е квадратичен остатък по } (mod\ p), \\ 0 & \text{когато } p\mid i \end{cases}$$

пресмятаме $\chi(1)=\chi(3)=\chi(4)=\chi(5)=\chi(9)=1$ и $\chi(2)=\chi(6)=\chi(7)=\chi(8)=\chi(10)=-1$. След това съставяме матрица $Q_{11\times 11}=(q_{ij}), q_{ij}=\chi(j-i)$:

Тогава получаваме Адамарова матрица от ред 12 като вградим получената Q_{11} по следния начин:

За да съставим Адамарова матрица от ред 16, използваме метода на Силвестър. Знаем, че $A_1=(1)$ е Адамарова и поради това, можем да конструираме $A_2=\begin{pmatrix} A_1 & A_1 \\ A_1 & -A_1 \end{pmatrix}=\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Аналогично създаваме A_4 , A_8 и A_{16} :

За да съставим оптималните нелинейни кодове с дължини 10, 11 и 12, използваме получената Адамарова матрица от ред 12. След като я нормализираме можем директно да изведем Адамаровите кодове \mathscr{A}_{11} , \mathscr{B}_{10} , \mathscr{D}_{12} :

```
Нормализирана матрицата A_{12} изглежда така: B_{12}=\begin{pmatrix} 1&0&1&0&0&0&1&1&1&0&1\\ 1&1&0&1&0&0&0&1&1&1&0\\ 0&1&1&0&1&0&0&0&1&1&1\\ 1&0&1&1&0&1&0&0&0&1&1\\ 1&1&0&1&1&0&1&0&0&0&0&1\\ 1&1&1&0&1&1&0&1&0&0&0&0\\ 0&1&1&1&0&1&1&0&1&0&0&0\\ 0&0&1&1&1&0&1&1&0&1&1&0&1\\ 1&0&0&0&1&1&1&0&1&1&0&1&1\\ 0&0&0&0&1&1&1&1&0&1&1&0&1\\ 1&0&0&0&0&1&1&1&1&0&1&1&0\\ 0&1&0&0&0&1&1&1&1&0&1&1&1\\ \end{pmatrix}
\mathscr{D}_{12} е (12, 24, 6) код и изглежда по следния начин: \mathscr{D}_{12} =
```

$$\mathscr{B}_{10}$$
 е (10, 6, 6) код и изглежда по следния начин: $\mathscr{B}_{10} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}.$

За да съставим оптималните нелинейни кодове с дължини 14, 15 и 16, използваме получената Адамарова матрица от ред 16. След като я нормализираме можем директно да изведем Адамаровите кодове \mathcal{A}_{15} , \mathcal{B}_{14} , \mathcal{D}_{16} :

Нормализирана матрицата A_{16} изглежда така: $B_{16} =$

0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 \mathscr{D}_{12} е (12,24,8) код и изглежда по следния начин: $\mathscr{D}_{12}=$