Sommaire

Chapitre I. Topologie, Convergence	
I.1 - Espaces métriques	
I.2 - Espaces vectoriels normés	
I.3 - Espaces topologiques	
Chapitre II. Espaces de Hilbert, Séries de Fourier	
II.1 - Produit scalaire	
II.2 - Espaces de Hilbert	
•	
II.3 - Séries de Fourier	
(hanitus III. Magunahilitá	
Chapitre III. Mesurabilité	
III.1 - Tribus	
III.2 - Mesures	
hanitus IV Intégnation	
hapitre IV. Intégration	
IV.1 - Intégrale par rapport à une mesure	
IV.2 - Intégrale de Lebesgue	
IV.3 - Mesure de densité	
1 to 17 To 17	
hapitre V. Espaces L^p	
V.1 - Relations d'équivalence	
V.2 - Construction de l'e.v.n. L^p	
V.3 - Propriétés de l'e.v.n. L^p	
V.4 - L'espace $L^2_{\mathbb{C}}$	
napitre VI. Introduction aux probabilités	
VI.1 - Mesure de probabilité	
VI.2 - Probabilité conditionnelle	
VI.3 - Variables aléatoires	
VI.4 - Moments	
VI.5 - Fonction de répartition	
VI.6 - Quelques lois remarquables	
V1.0 - Querques fois remarquables	
napitre VII. Mesure produit, Convolution	
VII.1 - Espace produit	
VII.2 - Intégrales multiples	
•	
VII.3 - Indépendance des variables aléatoires	
VII.4 - Convolution	
:t	
hapitre VIII. Vecteurs aléatoires	
VIII.1 - Fonctions de répartition, Copules	
VIII.2 - Moments, Covariance	
napitre IX. Transformée de Fourier, Fonction caractéristique	
IX.1 - Transformée de Fourier d'une mesure	
IX.2 - Transformée de Fourier d'une fonction	
IX.3 - Fonction caractéristique	
napitre X. Vecteurs Gaussiens	
X.1 - Définition d'un vecteur gaussien	
X.2 - Caractérisation d'un vecteur gaussien	
X.3 - Loi d'un vecteur gaussien	
apitre XI. Convergence de variables aléatoires	
XI.1 - Les différents modes de convergence d'une v.a	
XI.2 - Lois des grands nombres	
XI.3 - Convergence en loi	
XI.4 - Théorème Central Limite (TCL)	
ALT - INCOLUME CEMMA DIMINE (ICD)	
hapitre XII. Introduction aux processus stochastiques	
XII.1 - Espérance conditionnelle	
-	
XII.2 - Processus stochastiques	

Chapitre I. Topologie, Convergence

Section I.1 - Espaces métriques

Définition

Soit E un ensemble et $d: E \times E \to \mathbb{R}^+$ une fonction.

d est une **distance** sur E ssi :

- 1. $\forall (x,y) \in E \times E, d(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall (x,y) \in E \times E, d(x,y) = d(y,x)$
- 3. $\forall (x, y, z) \in E \times E \times E, d(x, z) \leq d(x, y) + d(y, z)$

On dit alors que (E, d) est un **espace métrique.**

Exemples: Sur n'importe quel ensemble E, on peut définir une distance : la distance triviale, pour laquelle d(x,y) = 0 si x = y et d(x,y) = 1 sinon.

Sur \mathbb{R}^n , on note $d_p(X,Y) = \left(\sum_{i=1}^n |y_i - x_i|^p\right)^{\frac{1}{p}}$.

Sur $\mathcal{C}([0,1],\mathbb{R})$, $d(f,g) = \sup_{x \in [0,1]} |g(x) - f(x)|$ définit une distance.

Définition

Soit (E, d) un espace métrique et $l \in E$.

 (u_n) tend vers l ssi $\forall \epsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow d(u_n, l) < \epsilon$.

Remarque : \mathbb{R} peut être muni de distances différentes, qui peuvent mener à des convergences différentes. La suite $u_n = \frac{1}{n}$ tend vers 0 avec les distances d_p , mais pas avec la distance triviale.

Définition

Soit (E, d) un espace métrique, $a \in E$ et $r \ge 0$.

La **boule ouverte** centrée en a de rayon r est :

$$B(a,r) = \{x \in E | d(x,a) < r\}$$

Proposition

Soit (E, d) un espace métrique.

 (u_n) tend vers l ssi $\forall \epsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow u_n \in B(l, \epsilon)$

Définition

Soit E un ensemble, d_a et d_b deux distances sur E.

On dit que d_a est **plus fine** que d_b si $\exists C > 0, d_b \leq C d_a$.

Si d_a est plus fine que d_b et d_b est plus fine que d_a , alors on dit que d_a et d_b sont **équivalentes**.

Exemple : Sur \mathbb{R}^n , toutes les distances d_p sont équivalentes.

Définition

Soit E un ensemble, $A \subset E$ non vide et $x \in E$. La **distance** du point x à A est :

$$d(x, A) = \inf\{d(x, a), a \in A\}$$

Définition

Soit (u_n) une suite réelle majorée.

On définit sa limite supérieure par :

$$\lim_{n \to +\infty} \sup u_n = \lim_{n \to +\infty} \sup_{m \ge n} u_m$$

Soit (u_n) une suite réelle minorée.

On définit sa limite inférieure par :

$$\liminf_{n \to +\infty} u_n = \lim_{n \to +\infty} \inf_{m \ge n} u_m$$

Remarque : Si (u_n) converge, limite, limite supérieure et limite inférieure sont des quantités égales.

Définition

Une suite (u_n) est de Cauchy si :

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2, q > p > N \Rightarrow d(u_q, u_p) < \epsilon$$

Proposition

Toute suite convergente est de Cauchy.

Remarque : La réciproque est fausse : la suite de \mathbb{Q} définie par $u_n = \frac{\lfloor \sqrt{2}10^n \rfloor}{10^n}$ ne converge pas dans \mathbb{Q} , mais est de Cauchy car si q > p > N alors $|u_q - u_p| < \frac{1}{10^N}$.

Définition

Soit E un ensemble. On dit que E est **complet** si toute suite de Cauchy de E converge.

Théorème

 \mathbb{R} est complet.

Exemple : $\mathcal{C}([0,1],\mathbb{R})$ muni de la distance $d(f,g)=\int_0^1|g(x)-f(x)|dx$ n'est pas complet. En effet, la suite de fonctions définies par :

$$f_n(x) = \begin{cases} 0 & \text{si } x < \frac{1}{2} - \frac{1}{n} \\ \frac{n}{2}x + \frac{1}{2} - \frac{n}{4} & \text{si } \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2} + \frac{1}{n} \\ 1 & \text{si } x > \frac{1}{2} + \frac{1}{n} \end{cases}$$

vérifie, pour q > p, $d(f_q, f_p) = \frac{1}{2p} - \frac{1}{2q}$, et est donc de Cauchy, mais ne converge pas dans $\mathcal{C}([0, 1], \mathbb{R})$.

Section I.2 - Espaces vectoriels normés

Définition

Soit E un espace vectoriel et $N: E \times E \to \mathbb{R}^+$ une fonction.

N est une **norme** sur E ssi :

- 1. $\forall x \in E, N(x) = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in E, \lambda \in \mathbb{R}, N(\lambda x) = |\lambda|N(x)$
- 3. $\forall (x,y) \in E \times E, N(x+y) \leq N(x) + N(y)$

On dit alors que (E, d) est un **espace vectoriel normé.**

Exemple : Soit $p \in [1, +\infty[$.

Sur \mathbb{R}^n , on définit la norme $N_p(f) = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$.

Sur $\mathcal{C}([0,1],\mathbb{R})$, on définit la norme $N_p(f) = (\int_0^1 |f(x)|^p dx)^{\frac{1}{p}}$.

Soit (E, N) un espace vectoriel normé.

d(x,y) = N(x-y) est une distance sur E, appelée **distance induite** par N.

Remarque: Toute distance n'est pas forcément induite par une norme; par exemple, la distance triviale ne l'est jamais.

Définition

Soit E un espace vectoriel, N_a et N_b deux normes sur E.

On dit que N_a est **plus fine** que N_b si $\exists C > 0, N_b \leq CN_a$.

Si N_a est plus fine que N_b et N_b est plus fine que N_a , alors on dit que N_a et N_b sont **équivalentes**.

Proposition

La relation "être plus fine que" est réflexive et transitive. On dit que c'est un **pré-ordre** et on note $N_b \leq N_a$.

Théorème

Soit (E, N) un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

E est de dimension finie ssi toutes ses normes sont équivalentes.

Définition

Soit (E, N) un espace vectoriel normé, $a \in E$ et $r \ge 0$.

La **boule ouverte** centrée en a de rayon r est :

$$B(a,r) = \{x \in E | N(x-a) < r\}$$

Proposition

Deux normes sont équivalentes si et seulement si leurs boules unité peuvent être incluses l'une dans l'autre après application d'une homothétie.

Définition

Soit (E, N) un espace métrique et $l \in E$.

 (u_n) tend vers l ssi $\forall \epsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow N(u_n - l) < \epsilon$.

Définition

On appelle espace de Banach tout espace vectoriel normé complet.

Exemples : $\mathcal{C}([0,1],\mathbb{R})$ muni de N_p est un espace vectoriel normé, mais pas un espace de Banach.

 $\overline{R^3}$ est un espace de Banach (peu importe la norme choisie : cf. proposition suivante)

Proposition

Deux normes équivalentes conduisent à la même convergence.

Remarque : En dimension infinie, il faut toujours préciser la norme lorsque l'on parle de convergence. Par exemple $\overline{\operatorname{dans}\,\mathcal{C}([0,1],\mathbb{R})}$, la suite de fonctions définies par :

$$f_n(x) = \begin{cases} 1 - nx & \text{si } 0 \le x \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} \le x \le 1 \end{cases}$$

4

converge vers 0 pour N_1 (car $N_1(f_n) = \frac{1}{n}$) mais converge vers 1 pour N_∞ (car $N_\infty(f_n) = 1$).

Section I.3 - Espaces topologiques

Définition

Soit E un ensemble. \mathcal{T} est une **topologie** sur E ssi :

- 1. $\emptyset \in \mathcal{T}$ et $E \in \mathcal{T}$.
- 2. Toute union d'éléments de \mathcal{T} est dans \mathcal{T} .
- 3. Toute intersection finie d'élements de \mathcal{T} est dans \mathcal{T} .
- (E,\mathcal{T}) est alors un **espace topologique** et les éléments de \mathcal{T} sont appelés les ouverts.

Exemples: Pour $E = \{1, 2, 3, 4, 5\}, \mathcal{T} = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}, E\}$ est une topologie.

Pour E un ensemble quelconque, les topologies $\mathcal{T} = \{\emptyset, E\}$ et $\mathcal{T} = \mathcal{P}(E)$ sont toujours des topologies sur E, qu'on appelle respectivement **topologie grossière** et **topologie discrète**.

Définition

Soit \mathcal{T}_a et \mathcal{T}_b deux topologies sur E. On dit que \mathcal{T}_b est **plus fine** que \mathcal{T}_a si $\mathcal{T}_a \subset \mathcal{T}_b$. On dit alors que \mathcal{T}_a est **plus grossière** que \mathcal{T}_b .

Définition

Soit (E, \mathcal{T}) un espace topologique. $X \subset E$ est un **fermé** si $E \setminus X$ est un ouvert.

Définition

Soit (E, \mathcal{T}) un espace topologique et $x \in E$. On dit que $V \subset E$ est un **voisinage** de x si $\exists U \in \mathcal{T}$ tel que $x \in U$ et $U \subset V$.

On note $\mathcal{V}(x)$ l'ensemble des voisinages de x.

On appelle base de voisinages de x toute partie $\mathcal{B} \subset \mathcal{V}(x)$ telle que $\forall V \in \mathcal{V}(x), \exists B \in \mathcal{B}, B \subset V$.

Remarque: Si \mathcal{T}_a et \mathcal{T}_b sont deux topologies sur E telles que \mathcal{T}_b est plus fine que \mathcal{T}_a , alors tout voisinage de x pour \mathcal{T}_a sera un voisinage de x pour \mathcal{T}_b .

Proposition

Soit (E, \mathcal{T}) un espace topologique.

 $U \subset E$ est un ouvert ssi il est voisinage de chacun de ses points.

<u>Démonstration</u>: Si U est un ouvert, alors pour chaque point x de U, on a $x \in U \subset U$ et donc U est voisinage de chacun de ses points.

Réciproquement, si U est voisinage de chacun de ses points, alors pour tout x de U, on choisit un ouvert A_x qui contient x inclus dans U. Alors, $A = \bigcup_{x \in U} A_x$ est un ouvert (union d'ouverts), tel que $U \subset A$ car tous les éléments de x sont dans A et $A \subset U$ car chaque A_x est inclus dans U. On a donc U = A ouvert.

Proposition

Soit (E,d) un espace métrique.

 $\mathcal{T} = \{\text{unions de } B(x,r), x \in E, r > 0\}$ est une topologie sur E, on parle de **topologie induite** par la distance.

Démonstration : Vérifions que l'on a effectivement une topologie.

- $\emptyset = B(0,0) \in \mathcal{T} \text{ et } E = \bigcup_{r>0} B(0,r) \in \mathcal{T}.$
- \bullet ${\mathcal T}$ est par définition stable par union.
- Soit $U, V \in \mathcal{T}$. On écrit $U = \bigcup_{i \in I} B(x_i, r_i)$ et $V = \bigcup_{j \in J} B(x_j, r_j)$. Alors $U \cap V = \bigcup_{(i,j) \in I \times J} (B(x_i, r_i) \cap B(x_j, r_j))$. Soit $B(x_i, r_i) \cap B(x_j, r_j)$ est vide, et alors c'est un ouvert, soit elle est non vide et alors on considère, pour tout $z \in B(x_i, r_i) \cap B(x_j, r_j)$, $\rho_z = \min(r_i d(z, x_i), r_j d(z, x_j))$ de sorte que $B(z, \rho_z) \subset B(x_i, r_i) \cap B(x_j, r_j)$. On a alors $\bigcup_{z \in B(x_i, r_i) \cap B(x_j, r_j)} B(z, \rho_z) \subset B(x_i, r_i) \cap B(x_j, r_j)$ et puisque $B(x_i, r_i) \cap B(x_j, r_j) \subset \bigcup_{z \in B(x_i, r_i) \cap B(x_j, r_j)} B(z, \rho_z)$, on en déduit que $B(x_i, r_i) \cap B(x_j, r_j) = \bigcup_{z \in B(x_i, r_i) \cap B(x_j, r_j)} B(z, \rho_z)$. Donc $B(x_i, r_i) \cap B(x_j, r_j)$ est un ouvert, et on étend le résultat par récurrence à une intersection finie, ce qui conclut.

Exemple : La topologie induite par la distance triviale est la topologie discrète.

Remarque: Si d_a et d_b sont deux distances sur E telles que d_b est plus fine que d_a , alors la topologie induite par d_b est plus fine que la topologique induite par d_a .

Définition

Sur \mathbb{R} , la distance d(x,y) = |y-x| induit la topologie suivante : $\mathcal{T} = \{\text{unions d'intervalles ouverts}\}$. On l'appelle la **topologie usuelle** de \mathbb{R} .

Définition

Soit (E, \mathcal{T}) un espace topologique et $l \in E$. (u_n) tend vers l ssi $\forall V \in \mathcal{V}(l), \exists N \in \mathbb{N}, n \geq N \Rightarrow u_n \in V$.

Remarque : Dans les espaces métriques, on peut prendre $V = B(l, \epsilon)$, ce qui nous ramène à la définition de la convergence dans un espace métrique.

Définition

Un espace topologique E est dit de **Hausdorff** (ou T_2) si :

$$\forall (x,y) \in E^2, x \neq y, \exists U \in \mathcal{V}(x), \exists V \in \mathcal{V}(y), U \cap V = \emptyset$$

Proposition

Dans un espace de Hausdorff, la limite, si elle existe, est unique.

<u>Démonstration</u>: Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'un espace de Hausdorff et l sa limite. Supposons par l'absurde que $l'\neq l$ soit une autre limite de $(u_n)_{n\in\mathbb{N}}$. Alors il existe $U\in\mathcal{V}(l)$ et $V\in\mathcal{V}(l')$ tel que $U\cap V=\emptyset$. Or par définition de la limite, il existe $N\in\mathbb{N}$ tel que $u_N\in U$ et $u_N\in V$, d'où la contradiction.

Proposition

Toute topologie induite par une distance est de Hausdorff.

<u>Démonstration</u>: Soit x et y deux points de l'espace topologique. En posant $U = B(x, \frac{d(x,y)}{2})$ et $V = B(y, \frac{d(x,y)}{2})$, on a $U \in \mathcal{V}(x), V \in \mathcal{V}(y)$ et $U \cap V = \emptyset$.

Définition

Soit (E, \mathcal{T}_E) et (F, \mathcal{T}_F) deux espaces topologiques. Une fonction $f: E \to F$ est **continue** ssi $\forall U \in \mathcal{T}_F, f^{-1}(U) \in \mathcal{T}_E$.

Proposition

Soit (E, \mathcal{T}_E) et (F, \mathcal{T}_F) deux espaces topologiques, $f: E \to F$ une fonction continue et $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E convergente vers l.

Alors $\lim_{n \to +\infty} f(u_n) = f(l)$.

<u>Démonstration</u>: Soit W un voisinage de f(l). Il existe un ouvert U tel que $f(l) \in U$ et $U \subset W$. On a alors $l \in f^{-1}(U)$, $f^{-1}(U) \subset f^{-1}(W)$ et $f^{-1}(U)$ ouvert car f est continue et U ouvert. Ainsi, $f^{-1}(W)$ est un voisinage de l. Or $(u_n)_{n \in \mathbb{N}}$ converge vers l, donc $\exists N \in \mathbb{N}, n \geq N \Rightarrow u_n \in f^{-1}(W) \Rightarrow f(u_n) \in W$. Ceci vaut quelque soit le voisinage de f(l) considéré, et donc on conclut que $f(u_n)$ tend vers f(l).

Définition

Soit (E, \mathcal{T}_E) un espace topologique.

 $K \in E$ non vide est **compact** ssi pour tout recouvrement de K par des ouverts, on peut extraire un sous-recouvrement fini.

Exemple : Pour $E = \mathbb{R}$ avec la topologie usuelle, \mathbb{N} n'est pas compact : en considérant $U_i =]i - \frac{1}{10}, i + \frac{1}{10}[$, on a bien $\overline{\mathbb{N}} \subset \bigcup_{i \in \mathbb{N}} U_i$ mais on ne peut pas trouver de sous-recouvrement fini de \mathbb{N} . (enlever un des U_i ne recouvre plus \mathbb{N})

Théorème (Borel-Lebesgue)

Lorsque $E = \mathbb{R}^n$ est muni de la topologie usuelle, les compacts sont les fermés bornés.

Théorème (Bolzano-Weierstrass)

Soit E un espace topologique métrisable (dont la topologie est induite par une distance). $K \subset E$ est compact ssi toute suite d'éléments de K admet une sous-suite convergente (dans K).

Définition

Soit (E, \mathcal{T}_E) un espace topologique, $A \subset E$ et $x \in E$.

On dit que x est **adhérent** à A ssi $\forall V \in \mathcal{V}(x), V \cap A \neq \emptyset$.

On dit que x est un **point isolé** de A ssi $\exists V \in \mathcal{V}(x), V \cap A = \{x\}.$

On dit que x est un **point d'accumulation** de A ssi $\forall V \in \mathcal{V}(x), V \cap A \setminus \{x\} \neq \emptyset$

Définition

Soit (E, \mathcal{T}_E) un espace topologique et $D \subset E$.

On dit que D est **discret** ssi tout point de D est isolé.

Définition

Soit (E, \mathcal{T}_E) un espace topologique.

On appelle adhérence de A, et on note \overline{A} , l'ensemble des points adhérents à A.

Définition

Soit (E, \mathcal{T}_E) un espace topologique et (u_n) une suite de E.

On dit que $a \in E$ est une valeur d'adhérence de (u_n) si $\forall N \in \mathbb{N}, a \in \overline{\{u_n, n \geq N\}}$.

Définition

Soit (u_n) une suite majorée (resp. minorée).

 $\liminf u_n$ (resp. $\limsup u_n$) est la plus petite (resp. plus grande) valeur d'adhérence de (u_n) .

Remarque : Dans le cas réel, la définition donnée ci-dessus coincide bien avec celle donnée au début du chapitre.

Définition

Soit (E, \mathcal{T}_E) un espace topologique.

On dit que A est **dense** dans E si $\overline{A} = E$.

Exemple : Pour la topologie usuelle, \mathbb{Q} est dense dans \mathbb{R} .

Définition

Soit (E, \mathcal{T}_E) un espace topologique, $A \subset E$

On appelle intérieur de A, et on note $\overset{\circ}{A}$, l'ensemble des points dont A est le voisinage.

Proposition

 \overline{A} est le plus petit fermé contenant A.

A est le plus grand ouvert contenu dans A.

Définition

Soit (E, \mathcal{T}_E) un espace topologique, $A \subset E$

On appelle **frontière** de A, et on note ∂A , l'ensemble $\overline{A} \backslash A$.

Chapitre II. Espaces de Hilbert, Séries de Fourier

Section II.1 - Produit scalaire

Définition

Soit E un espace vectoriel sur \mathbb{C} .

On dit que $\phi: E \times E \to \mathbb{C}$ est une **forme sesquilinéaire** si :

$$\forall (x,y,z) \in E \times E \times E, \forall \lambda \in \mathbb{C}, \left\{ \begin{array}{l} \phi(x+\lambda z,y) = \phi(x,y) + \lambda \phi(z,y) \\ \phi(x,y+\lambda z) = \phi(x,y) + \overline{\lambda} \phi(x,z) \end{array} \right.$$

On dit alors que cette forme est :

- hermitienne ssi $\forall (x,y) \in E \times E, \phi(x,y) = \overline{\phi(y,x)}$
- **positive** ssi $\forall x \in E, \phi(x, x) \in \mathbb{R}^+$
- définie ssi $\phi(x,x) = 0 \Rightarrow x = 0$.

Définition

Soit E un espace vectoriel sur \mathbb{C} .

On appelle **produit scalaire** sur E toute forme sesquilinéaire ϕ hermitienne définie positive.

On dit alors que (E, ϕ) est un **espace préhilbertien**.

Lorsque E est de dimension finie, on dit que (E, ϕ) est un **espace hermitien**.

Exemples: \mathbb{C}^2 muni de $\phi: (x,y) \mapsto 2x_1\overline{y_1} + x_2\overline{y_2}$ est un espace hermitien. $\mathcal{C}([0,1],\mathbb{C})$ muni de $\phi: (f,g) \mapsto \int_0^1 f(x)\overline{g(x)}dx$ est un espace préhilbertien.

Proposition (Identité du parallélogramme)

Soit E un espace préhilbertien et $x, y \in E$. Alors :

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Proposition (Pythagore)

Soit E un espace préhilbertien et $x, y \in E$. Alors :

$$x \perp y \Rightarrow ||x + y||^2 = ||x||^2 + ||y^2||$$

Remarque: On veillera bien au fait que dans C, il n'y a qu'une implication.

Proposition (Identité de polarisation)

Soit E un espace préhilbertien et $x, y \in E$. Alors :

$$\langle x, y \rangle = \frac{1}{4}(||x+y||^2 + i||x+iy||^2 - ||x-y||^2 - i||x-iy||^2)$$

Section II.2 - Espaces de Hilbert

Définition

On appelle espace de Hilbert tout espace préhilbertien complet.

Exemples: $l^2 = \{(u_n)_{n \in \mathbb{N}} | \sum_{n \geq 0} u_n^2 \text{ converge} \}$ muni de $\langle (u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}} \rangle = \sum_{n=0}^{+\infty} u_n v_n$ est un espace de Hilbert. $C([0,1],\mathbb{C})$ muni de $\langle f,g \rangle = \int_0^1 f(x) \overline{g(x)} dx$ n'est pas un espace de Hilbert (car non complet)

8

Définition

Soit H un espace de Hilbert.

On dit que $\{e_i\}_{i\in I}$ est une base hilbertienne de H ssi :

- $\forall (i,j) \in I \times I, \langle e_i, e_j \rangle = \delta_{ij}$
- $\overline{\text{Vect}\{e_i, i \in I\}} = H$

Remarque: Une base hilbertienne est donc une base orthonormale totale.

Définition

On dit qu'un espace de Hilbert H est séparable s'il existe $E \subset H$ dénombrable et dense dans H.

Proposition

Tout espace de Hilbert séparable admet une base hilbertienne au plus dénombrable.

<u>Démonstration</u>: Soit $(v_n)_{n\in\mathbb{N}}$ une suite d'éléments de H telle que $\overline{\{v_n,n\in\mathbb{N}\}}=H$. Pour $N\in N$, on note $F_N=\mathrm{Vect}(\{v_n,n\in[\![1,n]\!]\})$; la suite $(F_N)_{N\in\mathbb{N}}$ est une suite croissante d'espaces vectoriels de dimension finie. On construit alors une base orthonormée pour F_1 , qu'on complète pour F_2 ... etc, ce qui conclut puisque $\cup_{N\in\mathbb{N}}F_N$ est dense dans H.

Exemple: Une base hilbertienne de l^2 est $\{(u_n^i)_{n\in\mathbb{N}}, i\in\mathbb{N}\}$ où $u_n^i = \delta_{i,n}$.

Théorème (Projection sur un convexe fermé)

Soit H un espace de Hilbert et $A\subset H$ un convexe fermé non vide.

Pour tout x dans H, il existe un unique $x_0 \in A$ tel que $d(x, x_0) = \min_{a \in A} d(x, a)$.

On note alors $x_0 = P_A(x)$, qu'on appelle **projection orthogonale** de x sur A.

De plus, $x_0 = P_A(x) \Leftrightarrow \forall u \in A, \langle x - x_0, u - x_0 \rangle \leq 0.$

Remarque : Dans le cas complexe, on aurait $\forall u \in A, \operatorname{Re}(\langle x - x_0, u - x_0 \rangle) \leq 0.$

<u>Démonstration</u>: On a défini $d(x, A) = \inf_{a \in A} d(x, a)$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite de A telle que $(d_n)_{n \in \mathbb{N}}$ définie par $d_n = d(x, u_n)$ soit décroissante et tende vers d(x, A) (on dit que $(d_n)_{n \in \mathbb{N}}$ est une suite minimisante). On va montrer que $(u_n)_{n \in \mathbb{N}}$ est de Cauchy.

Soit $\epsilon > 0$ et q > p deux entiers. On applique l'inégalité du parallélogramme avec $x - u_p$ et $x - u_q$:

$$||(x - u_p) + (x - u_q)||^2 + ||(x - u_p) - (x - u_q)||^2 = 2||x - u_p||^2 + 2||x - u_q||^2$$

$$\Leftrightarrow ||u_q - u_p||^2 = 2||x - u_p||^2 + 2||x - u_q||^2 - 4||x - \frac{u_p + u_q}{2}||^2$$

Or A est convexe donc $\frac{u_p+u_q}{2} \in A$; on a donc

$$||u_q - u_p||^2 \le 2d(x, u_p)^2 + 2d(x, u_q)^2 - 4d(x, A)^2$$

$$\Leftrightarrow ||u_q - u_p||^2 \le 2(d(x, u_p)^2 - d(x, A)^2) + 2(d(x, u_q)^2 - d(x, A)^2)$$

Or d_p et d_q tendent vers d(x,A); on peut donc écrire qu'il existe $N_1 \in \mathbb{N}$ tel que $p \geq N_1 \Rightarrow d_p^2 - d(x,A)^2 < \epsilon$ et $N_2 \in \mathbb{N}$ tel que $q \geq N_2 \Rightarrow d_q^2 - d(x,A)^2 < \epsilon$. Alors, pour $q > p > N = \max(N_1,N_2)$, on a $||u_q - u_p||^2 < 4\epsilon$, et on en déduit que $(u_n)_{n \in \mathbb{N}}$ est de Cauchy. Puisque $(u_n)_{n \in \mathbb{N}}$ est une suite de Cauchy d'un ensemble fermé et complet, on sait qu'il existe $x_0 \in A$ tel que $\lim_{n \to +\infty} u_n = x_0$. D'où $d(x,A) = \inf_{a \in A} d(x,a) = \min_{a \in A} d(x,a) = d(x,x_0)$.

Soit $u \in A$ et $t \in]0,1]$. On pose $v = (1-t)x_0 + tu \in A$. Alors:

$$||x - x_0|| \le ||x - v|| = ||x - x_0 + t(u - x_0)||$$

$$\Leftrightarrow ||x - x_0||^2 \le \langle (x - x_0) - t(u - x_0), (x - x_0) - t(u - x_0) \rangle$$

$$\Leftrightarrow ||x - x_0||^2 \le ||x - x_0||^2 - 2t\langle x - x_0, u - x_0 \rangle + t^2||u - x_0||^2$$

$$\Leftrightarrow \langle x - x_0, u - x_0 \rangle \le \frac{t}{2}||u - x_0||^2$$

Lorsque $t \to 0$, on obtient alors $\langle x - x_0, u - x_0 \rangle \leq 0$.

Réciproquement, on suppose que $\forall u \in A, \langle x - x_0, u - x_0 \rangle \leq 0$. On a alors $2\langle x - x_0, u - x_0 \rangle - ||x_0 - u||^2 \leq 0$. Or, $2\langle u - x_0, x - x_0 \rangle - ||x_0 - u||^2 = \langle 2x - 2x_0, u - x_0 \rangle + \langle x_0 - u, u - x_0 \rangle = \langle 2x - x_0 - u, u - x_0 \rangle = 2\langle x, u \rangle - 2\langle x, x_0 \rangle + ||x_0||^2 - ||u||^2 = (||x_0||^2 - 2\langle x, x_0 \rangle + ||x||^2) - (||u||^2 - 2\langle x, u \rangle + ||x||^2) = ||x_0 - x||^2 - ||x - u||^2$. Ainsi, on a $||x_0 - x||^2 \leq ||u - x||^2$ soit $d(x_0, x) \leq d(u, x)$: x_0 est donc bien égal à $P_A(x)$, puisqu'il minimise la distance de x à A.

On termine par vérifier l'unicité de x_0 : si il existe $x_1 \in A$ tel que $\forall u \in A, \langle x - x_1, u - x_1 \rangle \leq 0$, alors $\langle x - x_1, x_0 - x_1 \rangle \leq 0$ et $\langle x - x_0, x_1 - x_0 \rangle \leq 0$ implique $\langle x_1 - x + x - x_0, x_1 - x_0 \rangle = ||x_1 - x_0||^2 \leq 0$, d'où $x_0 = x_1$.

Proposition

Soit H un espace de Hilbert et $A\subset H$ un convexe fermé non vide.

Soit $x, y \in H$, et x_0, y_0 leurs projections orthogonales sur A respectives.

Alors $||x_0 - y_0|| \le ||x - y||$.

Remarque : En particulier, l'application P_A est 1-lipschitzienne, donc continue.

Proposition

Soit H un espace de Hilbert et $A \subset H$ un sev fermé. Soit $x \in H$.

Alors $x_0 = P_A(x) \Leftrightarrow x_0 \in A \text{ et } \forall u \in A, \langle x - x_0, u \rangle = 0$

<u>Démonstration</u>: Supposons que $x_0 = P_A(x)$, et soit $u \in A$. Puisque $u + x_0 \in A$, on a $\langle x - x_0, (u + x_0) - x_0 \rangle \leq 0$ donc $\langle x - x_0, u \rangle \leq 0$. Or $-u \in A$, donc on a aussi $\langle x - x_0, -u \rangle \leq 0$ soit $\langle x - x_0, u \rangle \geq 0$. Ainsi $\langle x - x_0, u \rangle = 0$. La réciproque est immédiate.

Proposition

Soit H un espace de Hilbert et $A \subset H$ un sev fermé.

Alors P_A est un opérateur linéaire.

<u>Démonstration</u>: Soit $x, y \in H, \lambda \in \mathbb{R}$. $\forall u \in A, \langle x - P_A(x), u \rangle = 0$ et $\langle y - P_A(y), u \rangle = 0$. Donc $\forall u \in A, \langle x + \lambda y - (P_A(x) + \lambda P_A(y)), u \rangle = 0$, et on en déduit que $P_A(x) + \lambda P_A(y) = P_A(x + \lambda y)$.

Théorème (Parseval)

Soit H un espace de Hilbert séparable, et $\{e_n, x \in \mathbb{N}\}$ une base hilbertienne de H.

Pour tout x dans H, on a:

$$x = \sum_{n=0}^{+\infty} \langle x, e_n \rangle e_n \text{ et } ||x||^2 = \sum_{n=0}^{+\infty} |\langle x, e_n \rangle|^2$$

<u>Démonstration</u>: Soit $N \in \mathbb{N}$ et $E_N = \text{Vect}(\{e_n, n \in [0, N]\})$. E_N est un sev fermé de H, donc P_{E_N} est un opérateur linéaire de H dans H. Soit $x \in H$, alors :

$$P_{E_N}(x) = \sum_{n=0}^{N} \langle x, e_n \rangle e_n$$

$$\Rightarrow ||P_{E_N}(x)||^2 = ||\sum_{n=0}^{N} \langle x, e_n \rangle e_n||^2 = \sum_{n=0}^{N} |\langle x, e_n \rangle|^2$$

On remarque par ailleurs que $\langle x, e_n \rangle e_n \rangle = |\langle x, e_n \rangle|^2$, et donc que $\langle x, P_{E_N}(x) \rangle = \sum_{n=0}^N |\langle x, e_n \rangle|^2$. On a alors $||P_{E_N}(x)||^2 = \langle x, P_{E_N}(x) \rangle \leq ||P_{E_N}(x)|| \ ||x||$. Ainsi, pour tout $x \in H, ||P_{E_N}(x)|| \leq ||x||$. On note désormais $F = \bigcup_{N \in \mathbb{N}} E_N$, et on considère $y \in H$ et $\epsilon > 0$. F est dense dans H, donc il existe $y' \in F$ tel que $||y - y'|| < \epsilon$. Comme $y' \in F$, on sait qu'il existe n_0 tel que $y' \in E_{n_0} \Rightarrow P_{E_{n_0}}(y') = y'$. Alors: $||P_{E_{n_0}}(y) - y|| = ||P_{E_{n_0}}(y) - P_{E_{n_0}}(y') - y + y'|| \leq ||P_{E_{n_0}}(y - y')|| + ||y - y'|| \leq 2||y - y'|| \leq 2\epsilon$. On conclut alors que $y = \lim_{N \to +\infty} P_{E_N}(y)$. En passant à la limite dans les

égalités $P_{E_N}(x) = \sum_{n=0}^N \langle x, e_n \rangle e_n$ et $||P_{E_N}(x)||^2 = \sum_{n=0}^N |\langle x, e_n \rangle|^2$, on obtient donc le résultat recherché.

Définition

Soit E un espace vectoriel.

On appelle dual algébrique de E l'ensemble des formes linéaires. On le note E^* .

Si de plus E est muni d'une topologie, on appelle dual topologique de E l'ensemble des formes linéaires continues. On le note E'.

Remarque : Si E est de dimension finie, alors bien entendu $E^* = E'$.

Théorème (Représentation de Riesz)

Soit H un espace de Hilbert.

Pour tout $\phi \in H'$, il existe un unique $u \in H$ tel que $\phi = x \mapsto \langle x, u \rangle$.

On a par ailleurs $||\phi||_{H'} = ||u||_H$.

<u>Démonstration</u>: Soit $M = \text{Ker } \phi$. Si M = H, alors $\phi = 0$; on peut donc prendre u = 0. Sinon, on suppose $\overline{M \neq H}$. Soit $z \in H \setminus M$. On pose $g = \frac{z - P_M(z)}{||z - P_M(z)||}$ puis $u = \phi(g)g$. On remarque qu'on a ||g|| = 1. Soit $x \in H$; on note $\lambda = \frac{\phi(x)}{\phi(g)}$ et $m = x - \lambda g$. Ainsi, $x = \lambda g + m$ avec $g \in M^{\perp}$ et $m \in M$ (car $\phi(m) = 0$). $\langle g,m\rangle = 0 \Rightarrow \langle g,x-\lambda g\rangle = 0 \Rightarrow \langle g,x\rangle = \lambda \langle g,g\rangle = \lambda = \frac{\phi(x)}{\phi(g)}. \text{ D'où } \phi(x) = \langle u,x\rangle.$ Pour l'unicité, si il existe $v\in H$ tel que $\forall x\in E, \phi(x) = \langle x,u\rangle = \langle x,v\rangle,$ alors pour x=u-v, on a $\langle u-v,u-v\rangle = 0$

soit u = v.

Remarque: L'application $\phi \mapsto u$ est un isomorphisme isométrique; on peut donc identifier H et H', et on notera (un peu abusivement) H = H'.

Définition

Soit E un espace vectoriel normé.

On appelle **bidual** de E le dual de son dual, c'est-à-dire E''.

Lorsque E = E'' (au sens de l'identification), on dit que E est **réflexif**.

Proposition (Prolongement de H' dans V')

Soit H un espace de Hilbert, $V \subset H$ un espace de Banach dense dans H.

Soit $\phi \in H'$ et $u \in H$ sa représentation au sens du théorème de Riesz.

On définit $T\phi: V \to \mathbb{R}$ telle que $T\phi = (v \mapsto \langle v, u \rangle)$. $T\phi \in V'$; on peut donc définir $T: H' \to V'$ telle que $T = (\phi \mapsto T\phi)$. T est linéaire, injective et continue, et T(H) est dense dans V'.

On dit qu'on a **injecté** H' dans V'. On identifie H et H' qu'on appelle **espace pivot**, et on écrira $V \subset H =$ $H' \subset V'$. (ou $V \subset H \subset V'$)

Exemple: $l_1 = \{(x_n)_{n \in \mathbb{N}}, \sum_{n=0}^{+\infty} |u_n| < \infty\}$ est un espace de Banach mais pas un espace de Hilbert, et $l^2 = \sum_{n=0}^{+\infty} |u_n| < \infty$ $\frac{1}{\{(x_n)_{n\in\mathbb{N}},\sum_{n=0}^{+\infty}u_n^2<\infty\}} \text{ est un espace de Hilbert. On admet ici que } l_1\subset l_2 \text{ et que } l_1 \text{ est dense dans } l_2. \text{ Alors en posant } H=l^2 \text{ et } V=l^1, \text{ on a par ce qui précède } V\subset H\subset V'. \text{ On a cependant pas } V'=H' \text{ ; par exemple } \phi \text{ définie par } \phi((u_n)_{n\in\mathbb{N}})=\sum_{n=0}^{+\infty}u_n \text{ appartient à } V', \text{ mais pas à } H'.$

Section II.3 - Séries de Fourier

Définition

Soit $f: \mathbb{R} \to \mathbb{C}$ continue par morceaux et 2π -périodique.

On appelle **coefficient de Fourier** de f les coordonnées de f dans la base hilbertienne $\{e_n : x \mapsto e^{inx}, n \in \mathbb{Z}\}$ avec le produit scalaire :

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$$

On note ces coefficients c_n et on a :

$$\forall n \in \mathbb{Z}, c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$$

On appelle série de Fourier la série $\sum_{n\in\mathbb{Z}} c_n e^{inx}$.

Définition

Soit $f: \mathbb{R} \to \mathbb{C}$ continue par morceaux et 2π -périodique.

On appelle coefficients de Fourier trigonométriques les coefficients $a_n = c_n + c_{-n}$ et $b_n = i(c_n - c_{-n})$.

On a alors:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$

La série de Fourier s'écrit $\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos(nx) + b_n \sin(nx)).$

Remarque : Cette écriture permet, lorsque f est à valeurs dans \mathbb{R} , de ne travailler qu'avec des nombres réels.

Définition

Soit f une fonction continue par morceaux. On note \tilde{f} la fonction définie pour tout x du domaine de f par :

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } f \text{ est continue en } x \\ \frac{1}{2}(\lim_{x^{-}} f + \lim_{x^{+}} f) & \text{sinon} \end{cases}$$

Théorème (Dirichlet)

Soit $f: \mathbb{R} \to \mathbb{C}$ de classe \mathcal{C}^1 par morceaux et 2π -périodique.

Alors la série de Fourier de f converge simplement vers \hat{f} .

Si de plus f est continue, alors la convergence est normale.

Chapitre III. Mesurabilité

Section III.1 - Tribus

Définition

Soit E un ensemble.

On dit que $\mathcal{E} \subset \mathcal{P}(E)$ est une **tribu** ssi :

- 1. $\emptyset \in \mathcal{E}$
- 2. \mathcal{E} est stable par complémentarité $(A \in \mathcal{E} \Rightarrow E \setminus A \in \mathcal{E})$
- 3. \mathcal{E} est stable par union dénombrable $(\forall n \in \mathbb{N}, A_n \in \mathcal{E} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{E})$

 (E,\mathcal{E}) est alors un **espace mesurable**, et les ensembles de \mathcal{E} sont les **ensembles mesurables**.

Exemples: Pour $E = \{1, 2, 3, 4\}, \mathcal{E} = \{\emptyset, \{1, 2\}, \{3, 4\}, E\}$ est une tribu.

Pour $E = \mathbb{R}$, $\mathcal{E} = \{\emptyset, \mathbb{R}^{-*}, \mathbb{R}^+, \mathbb{R}\}$ est une tribu. Par contre, l'ensemble des ouverts de \mathbb{R} pour la topologie usuelle n'en est pas une, car il n'est pas stable par complémentarité.

Pour E un ensemble quelconque, $\mathcal{E} = \{\emptyset, E\}$ et $\mathcal{E} = \mathcal{P}(E)$ sont toujours des tribus sur E, qu'on appelle respectivement **tribu grossière** et **tribu discrète**.

Proposition

Soit (E,\mathcal{E}) un espace mesurable. La définition d'une tribu entraı̂ne :

- $-E \in \mathcal{E}$
- La stabilité de \mathcal{E} par différence ensembliste $(A, B \in \mathcal{E} \Rightarrow A \backslash B \in \mathcal{E})$
- La stabilité de \mathcal{E} par intersection dénombrable $(\forall n \in \mathbb{N}, A_n \in \mathcal{E} \Rightarrow \cap_{n \in \mathbb{N}} A_n \in \mathcal{E})$

Proposition

Soit E un ensemble, et $(\mathcal{E}_i)_{i\in I}$ une famille de tribus sur E.

Alors $\cap_{i \in I} \mathcal{E}_i$ est une tribu sur E.

<u>Démonstration</u>: 1. $\forall i \in I, \emptyset \in \mathcal{E}_i \Rightarrow \emptyset \in \cap_{i \in I} \mathcal{E}_i$

- 2. Soit $A \in \cap_{i \in I} \mathcal{E}_i$. Alors $\forall i \in I, A \in \mathcal{E}_i \Rightarrow \forall i \in I, E \setminus A \mathcal{E}_i \Rightarrow E \setminus A \in \cap_{i \in I} \mathcal{E}_i$.
- 3. Soit $(A_n)_{n\in\mathbb{N}}$ des éléments de $\cap_{i\in I}\mathcal{E}_i$, alors $\forall n\in\mathbb{N}, \forall i\in I, A_n\in\mathcal{E}_i\Rightarrow \forall i\in I, \cup_{n\in\mathbb{N}}A_n\in\mathcal{E}_i\Rightarrow \cup_{n\in\mathbb{N}}A_n\in\cap_{i\in I}\mathcal{E}_i$.

Définition

Soit E un ensemble, et $C \subset \mathcal{P}(E)$ une famille de sous-ensembles de E.

On appelle **tribu engendrée** par C, et on note $\sigma(C)$, l'intersection de toutes les tribus de E contenant C. Il s'agit de la plus petite tribu de E contenant C.

Exemple: Si $E = \{1, 2, 3, 4\}$, alors $\sigma(\{1\}) = \{\emptyset, \{1\}, \{2, 3, 4\}, E\}$.

Définition

Soit (E, \mathcal{T}) un espace topologique.

La **tribu de Borel** de (E, \mathcal{T}) est la tribu engendrée par \mathcal{T} .

On note $\mathcal{B}(\mathcal{T}) = \sigma(\mathcal{T})$. Lorsqu'il y a une topologie usuelle sur E, on note aussi $\mathcal{B}(E)$.

Les éléments de cette tribu sont appelés les boréliens.

Exemples : $\mathcal{B}(\mathbb{R})$ est la tribu engendrée par les intervalles ouverts. Elle contient les ouverts, les fermés donc les singletons, tous les ensembles dénombrables...

 $\mathcal{B}(\mathbb{N}) = \mathcal{P}(\mathbb{N})$, la topologie usuelle sur \mathbb{N} étant $\mathcal{P}(\mathbb{N})$.

Définition

On note $\overline{\mathbb{R}^+} = [0, +\infty]$ l'ensemble $\mathbb{R}^+ \cup \{+\infty\}$.

On peut définir une addition et une multiplication qui étend les opérations de \mathbb{R}^+ :

- $\forall a \in \mathbb{R}^+, a + (+\infty) = +\infty$
- $\bullet \ (+\infty) + (+\infty) = +\infty$
- $\forall a \in \mathbb{R}^{+*}, a \times (+\infty) = +\infty$
- $\bullet \ 0 \times (+\infty) = 0$
- $\bullet \ (+\infty) \times (+\infty) = +\infty$

Définition

On munit $\overline{\mathbb{R}^+}$ de la topologie obtenue par union des ensembles :

- $\forall a, b \in \mathbb{R}^+,]a, b[$
- $\forall a \in R^+, [a, +\infty]$
- $\bullet \ \forall b \in R^+, [0, b[$

Cette topologie s'appelle topologie de l'ordre.

Définition

Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables.

La fonction $f: E \to F$ est **mesurable** ssi $f^{-1}(\mathcal{F}) \subset \mathcal{E}$, c'est-à-dire si pour tout ensemble mesurable B inclus dans F, son image réciproque $\{x \in E, f(x) \in B\}$ est mesurable.

Proposition

Soit (E, \mathcal{E}) un espace mesurable et $A \subset E$.

 1_A est mesurable ssi A est mesurable.

<u>Démonstration</u>: Si 1_A est mesurable, alors $1_A^{-1}(\{1\}) = A$ donc A est mesurable.

Réciproquement soit A mesurable, et soit $B\in\mathcal{B}(\mathbb{R}).$ Il y a 4 cas à considérer :

- B ne contient ni 0 ni 1; alors $1_A^{-1}(B) = \emptyset$. B contient 1, mais pas 0, alors $1_A^{-1}(B) = A$ B contient 0, mais pas 1, alors $1_A^{-1}(B) = E \setminus A$

• B contient 0 et 1, alors $1_A^{-1}(B) = E$ Dans tous les cas $1_A^{-1}(B)$ est mesurable, ce qui conclut.

Proposition

Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables avec $\mathcal{F} = \sigma(C)$ pour $C \in \mathcal{P}(F)$.

 $f: E \to F$ est mesurable ssi $f^{-1}(C) \in \mathcal{E}$

<u>Démonstration</u>: Le sens direct est immédiat ; montrons la réciproque.

Vérifions que $\mathcal{F}' = \{B \subset \mathcal{F}, f^{-1}(B) \in \mathcal{E}\}$ est une tribu.

- 1. $f^{-1}(\emptyset) = \emptyset \in \mathcal{E} \text{ donc } \emptyset \in \mathcal{F}'$
- 2. Soit $B \in \mathcal{F}'$, alors $f^{-1}(B) \in \epsilon \Rightarrow E \setminus f^{-1}(B) \in \mathcal{E} \Rightarrow f^{-1}(F \setminus B) \in \mathcal{E} \to F \setminus B \in \mathcal{F}'$.
- 3. Soit $(B_n)_{n\in\mathbb{N}}$ des éléments de \mathcal{F}' , alors $\bigcup_{n\in\mathbb{N}}f^{-1}(B_n)\in\mathcal{E}\Rightarrow f^{-1}(\bigcup_{n\in\mathbb{N}}B_n)\in\mathcal{E}\Rightarrow \bigcup_{n\in\mathbb{N}}B_n\in\mathcal{F}'$. Si $C\subset\mathcal{F}'$, alors $\mathcal{F}=\sigma(C)\subset\mathcal{F}'$. Ainsi $\forall B\in\mathcal{F}, f^{-1}(B)\in\epsilon$. Donc f est mesurable.

Définition

Soit (E, \mathcal{T}) et (F, \mathcal{U}) deux espaces topologiques, qu'on équipe de leurs tribus de Borel $\mathcal{E} = \sigma(\mathcal{T})$ et $\mathcal{F} = \sigma(\mathcal{U})$. On appelle fonction borélienne toute fonction mesurable $f:(E,\mathcal{E})\to (F,\mathcal{F})$.

Proposition

Toute fonction continue est borélienne.

Démonstration: Les ouverts engendrent la tribu, et l'image réciproque des ouverts sont des ouverts.

Soit (E, \mathcal{E}) , (F, \mathcal{F}) et (G, \mathcal{G}) trois espaces mesurables.

Soit $f: E \to F$ et $g: F \to G$ deux fonctions mesurables. Alors $g \circ f$ est mesurable.

Proposition

Soit (E, \mathcal{E}) un espace mesurable.

Soit f et g deux fonctions mesurables de E dans \mathbb{R} , \mathbb{R}^+ ou $\overline{\mathbb{R}^+}$. Alors f+g, fg, $\max(f,g)$, $\min(f,g)$ et |f| sont mesurables.

Soit $(f_n)_{n\in\mathbb{N}}$ des fonctions mesurables de E dans \mathbb{R} , \mathbb{R}^+ ou $\overline{\mathbb{R}^+}$. Alors $\sup_{n\in\mathbb{N}} f_n$, $\inf_{n\in\mathbb{N}} f_n$, $\limsup_{n\to+\infty} f_n$, $\lim\sup_{n\to+\infty} f_n$ et $\sum_{n=0}^{+\infty} f_n$ sont mesurables lorsqu'elles existent.

Définition

Soit (E, \mathcal{E}) un espace mesurable.

Une fonction $f: E \to \mathbb{R}$ est dite **étagée** ssi elle est mesurable et prend un nombre fini de valeurs.

Remarque : Une fonction est étagée si et seulement si elle est combinaison linéaire de fonctions indicatrices.

Théorème

Soit (E, \mathcal{E}) un espace mesurable.

Toute fonction mesurable $f: E \to \overline{\mathbb{R}^+}$ est la limite simple d'une suite croissante de fonctions étagées.

Section III.2 - Mesures

Définition

Soit (E, \mathcal{E}) un espace mesurable.

On dit que $\mu: \mathcal{E} \Rightarrow [0, +\infty]$ est une **mesure** ssi :

1. $\mu(\emptyset) = 0$

2. Pour toute famille dénombrable $(A_n)_{n\in\mathbb{N}}$ d'élements de \mathcal{E} deux-à-deux disjoints, $\mu(\cup_{n\in\mathbb{N}}A_n)=\sum_{n=0}^{+\infty}\mu(A_n)$ (E,\mathcal{E},μ) est alors un **espace mesuré**.

Exemples : Pour $E = \mathbb{N}, \mathcal{E} = \mathcal{P}(\mathbb{N})$, on définit la mesure $\mu : \mathcal{E} \to [0, +\infty]$ telle que pour $A \subset \mathbb{N}$, on a :

$$\mu(A) = \begin{cases} \operatorname{Card}(A) & \text{si } A \text{ est fini} \\ +\infty & \text{sinon.} \end{cases}$$

Cette mesure s'appelle mesure de comptage.

Pour E quelconque, \mathcal{E} une tribu et $x_0 \in E$, on définit la mesure $\mu : \mathcal{E} \to [0, +\infty]$ telle que pour $A \in \mathcal{E}, \mu(A) = 1_A(x_0)$. Cette mesure s'appelle **mesure de Dirac** au point x_0 , qu'on note δ_{x_0} .

Pour $E = \mathbb{R}^3$, $\mathcal{E} = \mathcal{P}(\mathbb{R}^3)$, on sait par le théorème de Banach-Tarski qu'il ne peut pas exister de mesure $\mu : \mathcal{E} \to [0, +\infty]$ qui généralise la notion de volumes.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré.

Soit $A \in \mathcal{E}$ et $B \in \mathcal{E}$, alors :

- $\bullet A \subset B \Rightarrow \mu(A) < \mu(B)$
- $A \subset B$ et $\mu(B) < +\infty \Rightarrow \mu(B \setminus A) \leq \mu(B) \mu(A)$
- $\bullet \ \mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Soit $(A_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{E} , alors :

- $\mu(\bigcup_{n\in\mathbb{N}}) \leq \sum_{n=0}^{+\infty} \mu(A_n)$
- $A_n \subset A_{n+1} \Rightarrow \mu(\cup_{n \in \mathbb{N}} A_n) = \lim_{n \to +\infty} \mu(A_n) = \sup_{n \in \mathbb{N}} \mu(A_n)$
- $A_{n+1} \subset A_n$ et $\mu(A_0) < +\infty \Rightarrow \mu(\cap_{n \in \mathbb{N}} A_n) = \lim_{n \in \mathbb{N}} \mu(A_n) = \inf_{n \in \mathbb{N}} \mu(A_n)$

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré.

Si $\mu(E) < +\infty$, on dit que μ est une **mesure finie**.

Si $\mu(E) = 1$, on dit que μ est une **mesure de probabilité**.

Exemple : La mesure de Dirac est une mesure de probabilité. La mesure de comptage de N n'est pas une mesure finie.

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré.

 $x \in E$ est un **atome** si $\{x\} \in \mathcal{E}$ et $\mu(\{x\}) > 0$.

Si μ est sans atome, on dit que c'est une **mesure diffuse**.

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré. On dit que μ est **discrète** s'il existe une suite $(a_i)_{i \in I}$ dans E, avec I au plus dénombrable, telle que $\mu(E \setminus \bigcup_{i \in I} \{a_i\}) = 0$.

Remarque : Si les singletons appartiennent à la tribu, alors μ se décompose comme une combinaison linéaire de mesures de Dirac.

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré.

Si E est une réunion dénombrable d'ensembles de mesures finies, on dit que μ est σ -finie.

Exemple : La mesure de comptage est σ -finie sur \mathbb{N} , mais pas sur \mathbb{R} .

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré.

On dit que $A \in \mathcal{E}$ est **négligeable** si $\mu(A) = 0$.

Lorsqu'une proposition logique est vraie, sauf sur un ensemble négligeable, on dit qu'elle est vraie **presque** partout (p.p).

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré.

On dit que μ est une **mesure complète** si tout sous-ensemble d'un ensemble mesurable négligeable est luimême mesurable (et donc négligeable).

Remarque : Si μ n'est pas une mesure complète, on peut toujours "compléter" $\mathcal E$ afin qu'elle le devienne : en considérant l'ensemble $N=\{S\subset E, \exists A\in \mathcal E, \mu(A)=0, S\subset A\}$, la tribu complétée est $\overline{\mathcal E}=\sigma(\mathcal E\cup N)$. μ s'étend de manière unique de $\mathcal E$ à $\overline{\mathcal E}$, et cette extension est une mesure complète.

Objectif : On cherche désormais à définir une mesure μ sur \mathbb{R}^n telle que :

$$\mu([a_1, b_1] \times ... \times [a_n, b_n]) = \prod_{i=1}^n |b_i - a_i|$$

Nous n'y parviendrons pas sur la tribu $\mathcal{P}(\mathbb{R})$, et nous allons donc devoir accepter une tribu (légèrement) plus petite.

Définition

On définit l'application λ^* pour $A \in \mathcal{P}(\mathbb{R})$ par :

$$\lambda^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} (b_i - a_i), A \subset \bigcup_{i \in \mathbb{N}} [a_i, b_i], a_i \le b_i \right\}$$

Soit $\mathcal{M} = \{B \in \mathcal{P}(\mathbb{R}), \forall X \in \mathcal{P}(\mathbb{R}), \lambda^*(B) = \lambda^*(B \cap X) + \lambda^*(B \setminus X)\}.$ Alors \mathcal{M} est une tribu, et $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$.

Proposition

La restriction de λ^* à \mathcal{M} est une mesure ; on la note λ et on l'appelle **mesure de Lebesgue**. $\mathcal{M} = \overline{\mathcal{B}(\mathbb{R})}$ est le complété de la tribu de Borel, on l'appelle la **tribu de Lebesgue**.

Proposition

La mesure de Lebesgue λ a la propriété suivante :

$$\forall A \in \overline{\mathcal{B}(\mathbb{R})}, \lambda(A) = \inf\{\lambda(U), A \subset U, U \text{ ouvert}\}\$$

$$\forall A \in \overline{\mathcal{B}(\mathbb{R})}, \lambda(A) = \sup{\{\lambda(K), K \subset A, K \text{ compact}\}}$$

On dit qu'elle est **régulière**.

<u>Démonstration</u>: Soit $A \in \overline{\mathcal{B}(\mathbb{R})}$. Clairement $\lambda(A) \leq \inf\{\lambda(U), A \subset U, U \text{ ouvert}\}$. Supposons $\lambda(A) < +\infty$ (le cas échéant, c'est trivial). Pour tout $\epsilon > 0$, il existe un recouvrement de A par des $]a_i, b_i[$ tels que $\lambda(A) \geq \sum_{i \in \mathbb{N}} (b_i - a_i) - \epsilon$. En notant $U = \bigcup_{i \in \mathbb{N}}]a_i, b_i[$, on a donc $\lambda(A) \geq \lambda(U) - \epsilon$. Ainsi $\lambda(A) \geq \inf\{\lambda(U), A \subset U, U \text{ ouvert}\}$, puis $\lambda(A) = \inf\{\lambda(U), A \subset U, U \text{ ouvert}\}$.

Montrons la seconde proposition ; clairement $\lambda(A) \geq \sup\{\lambda(K), K \subset A, K \text{ compact}\}$. On suppose d'abord qu'il existe un compact C tel que $A \subset C$. Pour tout $\epsilon > 0$, il existe U ouvert contenant $C \setminus A$ tel que $\lambda(C \setminus A) \geq \lambda(U) - \epsilon$. Or $C \setminus U = (A \cup (C \setminus A)) \setminus U \subset (A \cup (C \setminus A)) \setminus (C \setminus A) = A$. On note donc $K = C \setminus U$ tel que K soit compact et inclus dans A; on a alors $\lambda(K) = \lambda(C \setminus U) \geq \lambda(C) - \lambda(U) \geq \lambda(C) - \lambda(C \setminus A) - \epsilon \geq \lambda(A) - \epsilon$. En conclusion, pour tout $\epsilon > 0$, il existe un compact K tel que $\lambda(K) \geq \lambda(A) + \epsilon$, ce qui montre que $\lambda(A) \leq \sup\{\lambda(K), K \subset A, K \text{ compact}\} \Rightarrow \lambda(A) = \sup\{\lambda(K), K \subset A, K \text{ compact}\}$.

Supposons maintenant qu'il n'existe pas de compact C tel que $A \subset C$. On se ramène au cas précédent en faisant entrer $A \cap [-n, n]$ dans un compact ; on a alors $\forall n \in \mathbb{N}^*, \lambda(A \cap [-n, n]) \leq \sup\{\lambda(K), K \subset A \cap [-n, n], K \text{ compact}\}$, d'où le résultat en passant à la limite lorsque $n \to +\infty$.

Proposition

Soit μ une mesure sur \mathbb{R}^d invariante par translations, et telle que $0 < \mu(]0,1[^d) < +\infty$. Alors, μ est proportionnelle à la mesure de Lebesgue λ .

Remarque : La mesure de Lebesgue est elle-même invariante par translations, et telle que $0 < \lambda(]0,1[^d) = 1 < +\infty$.

Chapitre IV. Intégration

Section IV.1 - Intégrale par rapport à une mesure

Définition

Soit (E, \mathcal{E}) un espace mesurable, μ une mesure sur (E, \mathcal{E}) et $f : E \to \overline{\mathbb{R}^+}$ une fonction étagée. On note α_i les n valeurs distinctes prises par f qu'on ordonne $(\alpha_1 < \dots < \alpha_n)$, et $A_i = f^{-1}(\alpha_i)$. On a alors $f = \sum_{i \in I} \alpha_i 1_{A_i}$

L'intégrale de la fonction étagée positive f par rapport à μ est :

$$\int_{E} f(x)\mu(dx) = \sum_{i=1}^{n} \alpha_{i}\mu(A_{i})$$

On la note également $\int f d\mu$.

Remarque : Si f est exprimée sous forme d'une autre combinaison linéaire de fonction indicatrices $f = \sum_{i \in I} \beta_i 1_{B_i}$, alors $\sum_{i \in I} \beta_i \mu(B_i) = \int_E f(x) \mu(dx) = \sum_{i=1}^n \alpha_i \mu(A_i)$. En effet, pour tout $i \in I$, on peut définir un ensemble fini J_i tel que $\forall j \in J_i, \beta_j = \alpha_i$ et $A_i = \bigcup_{i \in J_i} B_i$.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré, f, g deux fonctions étagées à valeurs dans \mathbb{R}^+ et $\lambda \in \mathbb{R}^+$. Alors :

$$\int (f + \lambda g) d\mu = \int f d\mu + \lambda \int g d\mu$$

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré et f, g deux fonctions étagées à valeurs dans \mathbb{R}^+ telles que $f \leq g$. Alors:

$$\int f d\mu \le \int g d\mu$$

<u>Démonstration</u>: $g - f \ge 0$, donc $\int g d\mu = \int f d\mu + \int (g - f) d\mu \ge \int f d\mu$.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré et f une fonction étagée à valeurs dans $\overline{\mathbb{R}^+}$ nulle presque partout. Alors :

$$\int f d\mu = 0$$

 $\underline{\underline{\text{D\'emonstration}:}} \text{ On \'ecrit } f = \sum_{i=1}^n \alpha_i 1_{A_i} \text{ avec } \alpha_1 < ... \alpha_n \text{ et } A_i = f^{-1}(\alpha_i). \text{ Si } \alpha_1 = 0, \text{ alors } \forall i \in \llbracket 2, n \rrbracket, A_i = \{x \in E; f(x) = \alpha_i\} \subset \{x \in E; f(x) > 0\}. \text{ Dans tous les } \text{cas } \int f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i) = 0.$

Définition

Soit (E, \mathcal{E}) un espace mesurable.

On note $\mathcal{S}(\mathcal{E})$ l'ensemble des fonctions étagées de (E, \mathcal{E}) .

On note $\mathcal{S}^+(\mathcal{E})$ l'ensemble des fonctions étagées positives de (E,\mathcal{E}) .

Définition

Soit $f: (E, \mathcal{E}, \mu) \to ([0, +\infty], \mathcal{B}([0, +\infty])$ une fonction mesurable. L'intégrale de f par rapport à la mesure μ est définie par :

$$\int_{E} f(x)\mu(dx) = \sup_{h \in \mathcal{S}^{+}(\mathcal{E}), h \le f} \int_{E} h(x)\mu(dx)$$

On la note également $\int f d\mu$.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré et f, g deux fonctions mesurables de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$ telles que $f \leq g$. Alors :

$$\int f d\mu \le \int g d\mu$$

 $\underline{\text{D\'emonstration}}: \text{Si } h \in \mathcal{S}^+(\mathcal{E}) \text{ et } h \leq f, \text{ alors } h \in \mathcal{S}^+(\mathcal{E}) \text{ et } h \leq f. \text{ Donc } \sup_{h \in \mathcal{S}^+(\mathcal{E}), h \leq f} \int h d\mu \leq \sup_{h \in \mathcal{S}^+(\mathcal{E}), h \leq g} \int h d\mu.$

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré et f une fonction mesurable de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$ nulle presque partout. Alors :

$$\int f d\mu = 0$$

<u>Démonstration</u>: Soit h une fonction étagée à valeurs dans $[0, +\infty]$ inférieure à f. Alors $\mu(\{x \in E, f(x) > 0\}) = 0 \Rightarrow \mu(\{x \in E, h(x) > 0\} = 0$. Donc $\int h d\mu = 0$, et ceci valant quelque soit h, $\int f d\mu = 0$.

Remarque : L'intégrale de f peut être nulle sans que f ne soit nulle (elle ne le sera seulement que presque partout).

Théorème (Convergence monotone)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante de fonctions mesurables $f_n:E\to\overline{\mathbb{R}^+}$ convergeant simplement vers $f:E\to\overline{\mathbb{R}^+}$. Alors:

$$\int f d\mu = \lim_{n \to +\infty} \int f_n d\mu$$

Soit $h \in \mathcal{S}^+(\mathcal{E})$ telle que $h \leq f$. On écrit $h = \sum_{i=1}^m \alpha_i 1_{A_i}$. Soit $a \in]0,1[$. Pour tout $n \in \mathbb{N}$, on définit $E_n^a = \{x \in E; ah(x) \leq f_n(x)\}$. Comme f_n et h sont mesurables, E_n^a est mesurable et on a :

$$\int f_n d\mu \ge \int ah 1_{E_n^a} d\mu = a \sum_{i=1}^m \alpha_i \mu(A_i \cap E_n^a)$$

Or $(f_n)_{n\in\mathbb{N}}$ est croissante donc $E_n^a\subset E_{n+1}^a\Rightarrow A_i\cap E_n^a\subset A_i\cap E_{n+1}^a$. Supposons qu'il existe $x\in E$ tel que $x\not\in \cup_{n\in\mathbb{N}}E_n^a$, alors $\forall n\in\mathbb{N}, ah(x)>f_n(x)$ donc $h(x)>ah(x)\geq f(x)$ impossible. Ainsi $E=\cup_{n\in\mathbb{N}}E_n^a$, soit $A_i=\cup_{n\in\mathbb{N}}(A_i\cap E_n^a)$. On a donc $\lim_{n\to+\infty}\mu(A_i\cap E_n^a)=\mu(A_i)$, soit :

$$\lim_{n \to +\infty} \int f_n d\mu \ge a \sum_{i=1}^m \alpha_i \mu(A_i) = a \int h d\mu$$

19

Ceci vaut pour tout a < 1; on a donc $\lim_{n \to +\infty} \int f_n d\mu \ge \int f d\mu$, et en conclusion, $\int f d\mu = \lim_{n \to +\infty} \int f_n d\mu$.

Soit (E, \mathcal{E}, μ) un espace mesuré, f, g deux fonctions mesurables de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$ et $\lambda \in [0, +\infty]$. Alors :

$$\int (f + \lambda g) d\mu = \int f d\mu + \lambda \int g d\mu$$

<u>Démonstration</u>: Il existe une suite de fonctions étagées positives $(f_n)_{n\in\mathbb{N}}$ qui converge simplement vers f, et il existe une suite de fonctions étagées positives $(g_n)_{n\in\mathbb{N}}$ qui converge simplement vers g (cf. théorème du chapitre précédent). Alors $\forall n\in\mathbb{N}, \int (f_n+\lambda g_n)d\mu=\int f_nd\mu+\lambda\int gd\mu$, soit en passant à la limite par le théorème de convergence monotone : $\int (f+\lambda g)d\mu=\int fd\mu+\lambda\int gd\mu$.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty]))$. Alors :

$$\int \left(\sum_{n=0}^{+\infty} f_n\right) d\mu = \sum_{n=0}^{+\infty} \int f_n d\mu$$

<u>Démonstration</u>: On applique le théorème de convergence monotone à la suite des sommes partielles $S_N = \sum_{n=0}^N f_n$:

$$\int \left(\sum_{n=0}^{+\infty} f_n\right) d\mu = \lim_{N \to +\infty} \int S_N d\mu = \lim_{N \to +\infty} \sum_{n=0}^{N} \int f_n d\mu = \sum_{n=0}^{+\infty} \int f_n d\mu$$

Proposition (Inégalité de Markov)

Soit (E, \mathcal{E}, μ) un espace mesuré, f une fonction mesurable de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$. Alors:

$$\forall a > 0, \mu(\{x \in E; f(x) \ge a\}) \le \frac{1}{a} \int f d\mu$$

<u>Démonstration</u>: Soit $A = \{x \in E; f(x) \ge a\}$. Alors $f \ge a1_A \Rightarrow \int f d\mu \ge \int a1_A d\mu = a\mu(A)$.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré, f une fonction mesurable de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$. Alors:

$$f = 0$$
 p.p. $\Leftrightarrow \int f d\mu = 0$

<u>Démonstration</u>: On a déjà traité le sens direct ; pour la réciproque, on pose $B_n = \{x \in E; f(x) \ge \frac{1}{n}\}$. Alors $\mu(B_n) \le \frac{1}{n} \int f d\mu = 0$. Or $B_n \subset B_{n+1}$ et $\bigcup_{n \in \mathbb{N}^*} B_n = \{x \in E; f(x) > 0\}$ donc $\mu(\{x \in E; f(x) > 0\}) = \lim_{n \to +\infty} \mu(B_n) = 0$. Ainsi f = 0 presque partout.

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré, f, g deux fonctions mesurables de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$. Alors:

$$f = g \text{ p.p.} \Leftrightarrow \int f d\mu = \int g d\mu$$

<u>Démonstration</u>: $f - \min(f, g) = 0$ p.p. et $f - \min(f, g) \ge 0$. Par la proposition précédente, on a donc $\int (f - \min(f, g)) d\mu = 0$, soit $\int f d\mu = \int \min(f, g) d\mu$. De la même manière, on montre que $\int g d\mu = \int \min(f, g) d\mu$, et donc $\int f d\mu = \int g d\mu$.

Soit (E, \mathcal{E}, μ) un espace mesuré, f une fonction mesurable de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty])$. Alors:

$$\int f d\mu < +\infty \Rightarrow f < +\infty \text{ p.p.}$$

<u>Démonstration</u>: Soit $A_n = \{x \in E; f(x) \ge n\}$ et $A_\infty = \{x \in E; f(x) = +\infty\}$. $\mu(A_n) \le \frac{1}{n} \int f d\mu$ donc $\lim_{n \to +\infty} \mu(A_n) = 0$. Comme $A_{n+1} \subset A_n$, $\mu(A_0) < \infty$ et $\bigcap_{n \in \mathbb{N}^*} A_n = A_\infty$, on a $\mu(A_\infty) = \mu(\bigcap_{n \in \mathbb{N}} A_n) = \lim_{n \to +\infty} \mu(A_n) = 0$. Alnsi $f < +\infty$ p.p.

Proposition (Lemme de Fatou)

Soit (E, \mathcal{E}, μ) un espace mesuré, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de (E, \mathcal{E}, μ) à valeurs dans $([0, +\infty], \mathcal{B}([0, +\infty]))$. Alors :

$$\int (\liminf f_n) d\mu \le \liminf \int f_n d\mu$$

Définition

Soit (E, \mathcal{E}, μ) un espace mesuré, $f: (E, \mathcal{E}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction mesurable. On dit que f est **intégrable** par rapport à la mesure μ ssi :

$$\int |f|d\mu < +\infty$$

On note $\mathcal{L}^1(E,\mathcal{E},\mu)$ l'ensemble des fonctions intégrables par rapport à μ .

Lorsque f est intégrable par rapport à la mesure μ , on note $f^+ = \max(f,0)$ et $f^- = -\min(f,0)$. On définit **l'intégrale** de f par :

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré.

Pour tout $f \in \mathcal{L}^1(E, \mathcal{E}, \mu), | \int f d\mu | \leq \int |f| d\mu$.

<u>Démonstration</u>: Puisque $|f| = f^+ + f^-$, on a :

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| \le \left| \int f^+ d\mu \right| + \left| \int f^- d\mu \right| = \int f^+ + f^- d\mu = \int |f| d\mu$$

Proposition

Soit (E, \mathcal{E}, μ) un espace mesuré. $\mathcal{L}^1(E, \mathcal{E}, \mu)$ est un espace vectoriel et l'application $f \mapsto \int f d\mu$ est une forme linéaire sur $\mathcal{L}^1(E, \mathcal{E}, \mu)$.

Remarque : L'application $f \mapsto \int |f|$ n'est pas une norme sur $\mathcal{L}^1(E, \mathcal{E}, \mu)$.

Soit (E, \mathcal{E}, μ) un espace mesuré, $f, g \in \mathcal{L}^1(E, \mathcal{E}, \mu)$. Alors :

- $f \leq g \Rightarrow \int f d\mu \leq \int g d\mu$ $f = g \text{ p.p. } \Rightarrow \int f d\mu = \int g d\mu$

Théorème (Convergence dominée)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de $\mathcal{L}^1(E,\mathcal{E},\mu)$. On suppose que :

- Il existe une fonction mesurable f tel que $\lim_{n\to+\infty} f_n(x) = f(x)$ pour presque tout x dans E
- Il existe une fonction mesurable g à valeurs positives tel que $\forall n \in \mathbb{N}, |f_n| \leq g$ p.p. et $\int g d\mu < +\infty$ Alors $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$, $\lim_{n \to +\infty} \int f_n d\mu = \int f d\mu$ et $\lim_{n \to +\infty} \int |f_n - f| d\mu = 0$.

Démonstration: On commence par supposer les hypothèses partout (et pas seulement presque partout). En faisant tendre n vers $+\infty$ dans $|f_n| \leq g$, on a $|f| \leq g$ donc $f \in \mathcal{L}^1(E, \mathcal{E}, \mu)$. On a aussi $|f_n - f| \leq 2g$, soit $2g - |f_n - f| \geq 0$; en appliquant le lemme de Fatou, on trouve alors $\liminf_{n \to +\infty} \int (2g - |f_n - f|) d\mu \ge \int 2g d\mu$. Or $\liminf_{n \to +\infty} (-u_n) = -\limsup_{n \to +\infty} u_n$; ceci est donc équivalent à $\int 2g d\mu - \limsup_{n \to +\infty} |f_n - f| d\mu \ge \int 2g d\mu \Leftrightarrow \limsup_{n \to +\infty} |f_n - f| d\mu \le 0$. Par positivité de l'intégrale, on a donc $\lim_{n \to +\infty} \int |f_n - f| d\mu = 0$. Ceci implique aussi $\lim_{n \to +\infty} \int f_n d\mu = \int f d\mu$.

On suppose désormais les hypothèses telles quelles. Soit $\tilde{E} = \{x \in E; \lim_{n \to +\infty} f_n(x) = f(x) \text{ et } \sup_{n \in \mathbb{N}} f_n(x) \leq g(x)\}.$ Les fonctions $\tilde{f} = f1_{\tilde{E}}$ et $\tilde{f}_n = f_n1_{\tilde{E}}$ satisfont les hypothèses partout ; par ailleurs, $\mu(E \setminus \tilde{E}) = 0$ donc $f = \tilde{f}$ et $f_n = \tilde{f}_n$ p.p. soit $\int |f_n - f| d\mu = \int |\tilde{f}_n - \tilde{f}| d\mu$, ce qui conclut.

Définition

Pour tout $p \in [1, +\infty[$, on définit :

$$\mathcal{L}^p(E, \mathcal{E}, \mu) = \{ f : E \to \mathbb{R} \text{ mesurable } ; \int |f|^p d\mu < +\infty \}$$
 et $\mathcal{L}^{\infty}(E, \mathcal{E}, \mu) = \{ f : E \to \mathbb{R} \text{ mesurable } ; \exists C > 0, |f| \le C \text{ p.p} \}$

Remarque : Lorsque μ est une mesure finie, alors $p < q \Rightarrow \mathcal{L}^p(E, \mathcal{E}, \mu) \subset \mathcal{L}^q(E, \mathcal{E}, \mu)$. Attention, cela est faux dans le cas général.

Section IV.2 - Intégrale de Lebesgue

Définition

Considérons $E = \mathbb{R}^d$ muni de la tribu de Lebesgue et de la mesure de Lebesgue $\lambda^{(d)}$. On appelle intégrale de Lebesgue l'intégrale par rapport à $\lambda^{(d)}$. Soit $f \in \mathcal{L}^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)})$. L'intégrale de f est notée :

$$\int_{\mathbb{R}^d} f d\lambda^{(d)} \text{ ou } \int_{\mathbb{R}^d} f(x)\lambda^{(d)}(dx) \text{ ou } \int_{\mathbb{R}^d} f(x_1,...,x_d)\lambda^{(d)}(dx_1,...,dx_d)$$

Définition

Soit $f \in \mathcal{L}^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)})$ et $U \subset \mathbb{R}^d$ mesurable. $|f1_U| \le |f| \text{ donc } f1_U \in \mathcal{L}^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)}).$ On note alors $\int_U f d\lambda^{(d)} = \int_U f 1_U d\lambda^{(d)}$

Définition

Une fonction $f: \mathbb{R}^d \to \mathbb{R}$ est dite localement intégrable si pour tout compact $K \subset \mathbb{R}^d, f1_K \in$ $\mathcal{L}^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}), \lambda^{(d)}).$

On note $\mathcal{L}^1_{loc}(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)})$ l'ensemble de ces fonctions.

 $\underline{\text{Remarque}}: \mathcal{L}^1_{\text{loc}}(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)}) \subset \mathcal{L}^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)}), \text{ mais l'inclusion est stricte (on peut par exemple considérer la fonction de } \mathbb{R} \text{ dans } \mathbb{R} \text{ constante égale à 1, qui est intégrable sur tout compact mais pas sur } \mathbb{R}).$

Définition

Soit a et b deux réels tels que a < b.

On dit que $f:[a,b]\to\mathbb{R}$ est une fonction en escalier s'il existe une subdivision de $[a,b]:a=x_0< x_1<$ $\dots < x_J = b$ et des réels y_1, \dots, y_J tels que $\forall i \in [1, J], \forall x \in]x_{i-1}, x_i[, f(x) = y_i]$

L'ensemble de ces fonctions se note $\mathcal{R}([a,b])$. Pour $h \in \mathcal{R}([a,b])$, on note $I(h) = \sum_{i=1}^{J} (x_i - x_{i-1})y_i$.

Remarque : $\mathcal{R}([a,b]) \subset \mathcal{S}([a,b])$.

Définition

Une fonction $f:[a,b]\to\mathbb{R}$ est dite **Riemann-intégrable** ssi :

$$\sup_{h \in \mathcal{R}([a,b]), h \le f} I(h) = \inf_{h \in \mathcal{R}([a,b]), h \ge f} I(h)$$

On note alors $\int_a^b f(x)dx$ cette valeur.

Proposition

Soit $h \in \mathcal{R}([a,b])$. Alors $I(h) = \int_{[a,b]} h d\lambda$.

<u>Démonstration</u>: $\int_{[a,b]} h d\lambda = \sum_{i=1}^{J} y_i \lambda(] \overline{x_{i-1}}, \overline{x_i[)} = I(h)$

Théorème

Soit $f:[a,b]\to\mathbb{R}$ une fonction Riemann-intégrable.

Alors f est mesurable pour la tribu de Lebesgue, et les intégrales de Riemann et de Lebesgue coïncident i.e.

$$\int_{[a,b]} f d\lambda = \int_a^b f(x) dx$$

décroissante de $(h_n^+)_{n\in\mathbb{N}}$. Elles sont bornées. On pose par ailleurs h_∞^+ et h_∞^- les limites simples de $(h_n^+)_{n\in\mathbb{N}}$ et $(h_n^-)_{n\in\mathbb{N}}$. Elles sont mesurables.

On applique le théorème de convergence dominée à h_n^+ et à h_n^- :

$$\int_{[a,b]} h_{\infty}^+ d\lambda = \lim_{n \to +\infty} \int_{[a,b]} h_n^+ d\lambda = \lim_{n \to +\infty} I(h_n^+) = \int_a^b f(x) dx$$

$$\int_{[a,b]} h_{\infty}^{-} d\lambda = \lim_{n \to +\infty} \int_{[a,b]} h_{n}^{-} d\lambda = \lim_{n \to +\infty} I(h_{n}^{-}) = \int_{a}^{b} f(x) dx$$

On a donc $\int_{[a,b]} h_{\infty}^+ d\lambda = \int_{[a,b]} h_{\infty}^- d\lambda$, soit $\int_{[a,b]} h_{\infty}^+ - h_{\infty}^- d\lambda = 0$ ou encore $h_{\infty}^+ = h_{\infty}^-$ presque partout (car $h_{\infty}^+ - h_{\infty}^- \ge 0$). Puisque $h_{\infty}^- \le f \le h_{\infty}^+$, on a donc $f = h_{\infty}^+$ presque partout soit :

$$\int_{[a,b]} f d\lambda = \int_{[a,b]} h_{\infty}^{+} d\lambda = \int_{a}^{b} f(x) dx$$

Remarque: Certaines fonctions peuvent être Lebesgue-intégrables sans être Riemann-intégrables, par exemple $f=1_{\mathbb{Q}}$

Définition

Soit $a \in \mathbb{R}$ et $b \in]a, +\infty]$ (respectivement $b \in \mathbb{R}$ et $a \in [-\infty, a[)$).

La fonction $f:[a,b]\to\mathbb{R}$ (respectivement $f:[a,b]\to\mathbb{R}$) est localement Riemann-intégrable si f est intégrable sur tout compact de [a, b[(respectivement]a, b]).

Théorème

Toute fonction localement Riemann-intégrable est Lebesgue-intégrable si et seulement si elle est Riemannabsolument convergente (i.e. $\int_a^b |f(x)| dx$ existe et est finie).

Dans ce cas les deux intégrales coïncident.

Conséquence : Les intégrales impropres absolument convergentes sont dans \mathcal{L}^1 , mais les intégrales impropres semiconvergentes ne sont pas dans \mathcal{L}^1 .

Théorème

Soit $f \in \mathcal{L}^1_{loc}$ et $a \in \mathbb{R}$. On définit :

$$F(x) = \int_{[a,x]} f d\lambda$$

Alors F est continue et dérivable presque partout, et F' = f p.p.

Théorème

Soit $F: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en tout point de \mathbb{R} .

Supposons $f = F' \in \mathcal{L}^1_{loc}$. Alors pour tous réels a et b tels que a < b:

$$\int_{[a,b]} f d\lambda = F(b) - F(a)$$

Proposition

Considérons $E = \mathbb{N}$, $\mathcal{E} = \mathcal{P}(\mathbb{N})$ et $\mu = \sum_{n \in \mathbb{N}} \delta_n$. Soit $u : E \to \mathbb{N}$; on note $u_n = u(n)$. Si la série de terme général $(u_n)_{n \in \mathbb{N}}$ est absolument convergente, alors :

$$\int u(x)\mu(dx) = \sum_{n=0}^{+\infty} u_n$$

Définition

On note:

$$\ell^p = \mathcal{L}^p \left(\mathbb{N}, \mathcal{P}(\mathbb{N}), \sum_{n \in \mathbb{N}} \delta_n \right)$$

$$\ell^{\infty} = \mathcal{L}^{\infty}\left(\mathbb{N}, \mathcal{P}(\mathbb{N}), \sum_{n \in \mathbb{N}} \delta_n\right)$$

Section IV.3 - Mesure de densité

Proposition

Soit $f:(E,\mathcal{E},\mu)\to([0,+\infty],\mathcal{B}([0,+\infty])$ une fonction mesurable.

L'application ν définie pour tout $A \in \mathcal{E}$ par $\nu(A) = \int_A f d\mu = \int_E f 1_A d\mu$ est une mesure sur (E, \mathcal{E}) .

Définition

On dit que ν est la **mesure de densité f** par rapport à μ .

Exemple : Considérons $E = \mathbb{R}$ équipé de la tribu de Lebesgue et de la mesure de Lebesgue λ . Soit f définie sur \mathbb{R} par

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-x} & \text{si } x \ge 0 \end{cases}$$

On a alors, par exemple, $\nu([0,1]) = 1 - \frac{1}{e}$, $\nu([-69,420]) = 1 - e^{-420}$ et $\nu(\mathbb{R}) = 1$, ce qui fait par ailleurs de ν une mesure de probabilité.

Remarque : Si A est de mesure nulle pour μ alors $\nu(A)=0$ donc A est de mesure nulle pour ν . On dit que ν est absolument continue par rapport à μ et on note $\nu \ll \mu$.

Théorème

Une fonction borélienne $f: \mathbb{R} \to \mathbb{R}^+$ est la densité d'une mesure de probabilité \mathbb{P} ssi

$$\int_{\mathbb{R}} f(x)\lambda(dx) = 1$$

Dans ce cas, $\mathbb{P}(A) = \int_A f(x)\lambda(dx)$ et on dit que f est la **dérivée de Radon-Nikodym** de \mathbb{P} par rapport à λ .

Démonstration : Immédiate en prenant $A = \mathbb{R}$ dans la définition d'une mesure de densité f.

Théorème (Continuité des intégrales dépendant d'un paramètre)

Soit (E, \mathcal{E}, μ) un espace mesuré, (U, d) un espace métrique, $f_u : E \to \mathbb{R}$ une fonction dépendant d'un paramètre $u \in U$ et $u_0 \in U$.

On suppose que:

- Pour presque tout $u \in U$, la fonction $x \mapsto f_u(x)$ est mesurable.
- Pour presque tout $x \in E$, la fonction $u \mapsto f_u(x)$ est continue en u_0 .
- Il existe une fonction positive $g \in \mathcal{L}^1(E, \mathcal{E}, \mu)$ telle que $\forall u \in U, |f_u(x)| \leq g(x)$ pour presque tout x. Alors $u \mapsto \int_E f_u(x)\mu(dx)$ est définie pour presque tout $u \in U$ et continue en u_0 .

Théorème (Dérivabilité sous le signe somme)

Soit (E, \mathcal{E}, μ) un espace mesuré, $U \subset \mathbb{R}$ muni de sa tribu de Borel et $I \subset U$ un intervalle, $f: I \times E \to \mathbb{R}$ une fonction dépendant d'un paramètre et $u_0 \in I$. On suppose que :

- Pour presque tout $u \in U$, la fonction $x \mapsto f_u(x) \in \mathcal{L}^1(E, \mathcal{E}, \mu)$
- Pour presque tout $x \in E$, la fonction $u \mapsto f_u(x)$ est dérivable en u_0 .
- Il existe une fonction positive $g \in \mathcal{L}^1(E, \mathcal{E}, \mu \text{ telle que } \forall u \in U, |f_u(x) f(u_0, x)| \leq g(x)|u u_0|$ pour presque tout x.

Alors $u \mapsto \int_E f_u(x)\mu(dx)$ est dérivable en u_0 , de dérivée $\int_E \frac{\partial f}{\partial u}(u_0, x)\mu(dx)$.

Chapitre V. Espaces L^p

Section V.1 - Relations d'équivalence

Définition

Soit E un ensemble. On dit qu'une relation \sim est une **relation d'équivalence** ssi :

- Elle est **réflexive** $(\forall x \in E, x \sim x)$
- Elle est symétrique $(\forall x, y \in E, x \sim y \Rightarrow y \sim x)$
- Elle est **transitive** $(\forall x, y, z \in E, x \sim y \land y \sim z \Rightarrow x \sim z)$

Définition

Soit \sim une relation d'équivalence sur un ensemble E et $x \in E$.

On appelle classe d'équivalence de x l'ensemble $\{y \in E, y \sim x\}$.

On le note \dot{x} ou [x].

Définition

Soit \sim une relation d'équivalence sur un ensemble E et $x \in E$.

On appele l'ensemble quotient de E par \sim l'ensemble des classes d'équivalences des éléments de E, qu'on note E/\sim .

Proposition

 E/\sim forme une partition de E.

<u>Démonstration</u>: $\forall x \in E, x \in \dot{x} \text{ donc } E = \bigcup_{x \in E} \dot{x}.$

Si $\dot{x} \cap \dot{y} \neq \emptyset$, soit $z \in \dot{x} \cap \dot{y}$. Soit $a \in \dot{x}$ et $b \in \dot{y}$, alors $a \sim z \sim b$ donc $\dot{x} = \dot{a} = \dot{b} = \dot{y}$. On a donc une partition de E. (les classes d'équivalences sont deux-à-deux disjointes et leur réunion forme E)

Exemple : Soit $E = \mathcal{L}^p(E, \mathcal{E}, \mu)$ et $p \in [1, +\infty]$.

La relation \sim définie par $f \sim g \Leftrightarrow f - g = 0$ p.p est une relation d'équivalence.

On aura alors, par exemple, $1_{\mathbb Q}\sim 0$ si μ est la mesure de Lebesgue.

Définition

Soit \sim une relation d'équivalence sur un ensemble E.

Une application $f: E \to E$ est **compatible** avec \sim ssi

$$\forall x \in E, \forall y \in E, x \sim y \Rightarrow f(x) \sim f(y)$$

On peut alors définir une fonction f/\sim sur l'ensemble quotient E/\sim . Pour $C\in E/\sim$, on considère un représentant $x\in C$ et on pose :

 $f/\sim (C)=f(x)$. On notera souvent f au lieu de f/\sim .

Définition

Soit \sim une relation d'équivalence sur un ensemble E.

Une loi interne * est **compatible** avec \sim ssi

$$\forall x_1, x_2, y_1, y_2 \in E, x_1 \sim x_2 \text{ et } y_1 \sim y_2 \Rightarrow x_1 * y_1 \sim x_2 * y_2$$

On définit alors la loi quotient $*/\sim$ sur E/\sim en associant aux classes d'équivalences de x et y la classe d'équivalence de x*y. On notera souvent * au lieu de f/\sim .

Section V.2 - Construction de l'e.v.n. L^p

Définition

Soit $p \in [1, +\infty]$. On note $L^p(E, \mathcal{E}, \mu)$ le quotient de l'espace $\mathcal{L}^p(E, \mathcal{E}, \mu)$ par la relation d'égalité μ -presque partout. On note $L^p(\mathbb{R}^d) = L^p(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda^{(d)})$.

Remarque : $L^p(\mathbb{N}, \mathcal{P}(N), \sum_{n \in \mathbb{N}} \delta_n) = \mathcal{L}^p(\mathbb{N}, \mathcal{P}(N), \sum_{n \in \mathbb{N}} \delta_n) = \ell^p$, puisque l'égalité presque partout pour la mesure $\sum_{n \in \mathbb{N}} \delta_n$ sur \mathbb{N} est l'égalité (chaque classe d'équivalence contient un unique élément, donc les ensembles $L^p(\mathbb{N}, \mathcal{P}(N), \sum_{n \in \mathbb{N}} \delta_n)$ et $\mathcal{L}^p(\mathbb{N}, \mathcal{P}(N), \sum_{n \in \mathbb{N}} \delta_n)$ sont en bijection ; on les identifie).

Proposition

Les opérations + et \times de $\mathcal{L}^p(E,\mathcal{E},\mu)$ sont compatibles avec la relation d'équivalence μ -pp.

<u>Démonstration</u>: Soit f_1, f_2, g_1, g_2 dans $\mathcal{L}^p(E, \mathcal{E}, \mu)$ avec $f_1 \sim f_2$ et $g_1 \sim g_2$. Alors $(f_1 + g_1) - (f_2 + g_2) = (f_1 - f_2) + (g_1 - g_2) = 0$ presque partout, donc $f_1 + g_1 \sim f_2 + g_2$, et $f_1g_1 - f_2g_2 = f_1(g_1 - g_2) + (f_1 - f_2)g_2 = 0$ presque partout, donc $f_1g_1 \sim f_2g_2$.

Proposition

 $L^p(E,\mathcal{E},\mu)$ est un espace vectoriel.

Remarque : Soit $x_0 \in E$. La fonction d'évaluation en x_0 (appelée également trace sur $\{x_0\}$) de $L^p(E, \mathcal{E}, \mu) \to \mathbb{R}$ qui à f associe $f(x_0)$ n'est pas compatible avec la relation d'équivalence égalité μ -pp. En d'autres termes, la valeur des éléments de $L^p(E, \mathcal{E}, \mu)$ en un point n'a pas de sens.

Proposition

La forme linéaire $f \mapsto \int_E f^p d\mu$ sur $\mathcal{L}^p(E, \mathcal{E}, \mu)$ est compatible avec la relation d'équivalence μ -pp.

<u>Démonstration</u>: Soit f, g dans $\mathcal{L}^p(E, \mathcal{E}, \mu)$ avec $f \sim g$, alors $\int_E f^p d\mu = \int_E g^p d\mu$.

Proposition

Dans $L^p(E, \mathcal{E}, \mu)$:

$$\int_{E} |f|^p d\mu = 0 \Leftrightarrow f = 0$$

Définition

On dit que $M \in \mathbb{R}$ est un presque majorant de $f: E \to \mathbb{R}$ si $f(x) \leq M$ pour presque tout $x \in E$.

Définition

Soit $f: E \to \mathbb{R}$. Si f admet un ou plusieurs presque majorants, on appelle **borne supérieure essentielle** le plus petit d'entre eux et on le note sup ess f

Définition

Soit $p \in [1, +\infty]$.

- Si $p \in]1, +\infty[$, son conjugué est $\frac{p}{p-1}$ i.e. le réel q tel que $\frac{1}{p} + \frac{1}{q} = 1$.
- Si p = 1, son conjugué est $+\infty$.
- Si $p = \infty$, son conjugué est 1.

Théorème (Inégalité de Young)

Soit p et q dans $]1, +\infty[$ conjugués. Alors :

$$\forall (a,b) \in \mathbb{R}^+ \times \mathbb{R}^+, ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

 $\underline{\text{D\'emonstration}}: \text{Par concavit\'e de } x \mapsto \ln(x) \text{ sur }]0, +\infty[, \text{ on a } \forall t \in [0,1], \ln(ta^p + (1-t)b^q) \geq t \ln(a^p) + (1-t)\ln(b^q).$ En posant $t = \frac{1}{p}$, alors $1 - t = \frac{1}{q}$ et :

$$\ln(\frac{a^p}{p} + \frac{b^q}{q}) \ge \frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q) = \ln(ab)$$

d'où le résultat en passant à l'exponentielle strictement croissante.

Définition

Pour $f \in L^p(E, \mathcal{E}, \mu)$ avec $p \in [1, +\infty]$, on note :

$$||f||_p = \left(\int_E |f|^p d\mu\right)^{\frac{1}{p}} \text{ si } p < +\infty \text{ et } ||f||_\infty = \sup \operatorname{ess} |f|$$

Théorème (Inégalité de Hölder)

Soit p et q dans $]1, +\infty[$ conjugués. Soit $f \in L^p(E, \mathcal{E}, \mu)$ et $g \in L^q(E, \mathcal{E}, \mu)$. Alors :

$$fg \in L^1(E, \mathcal{E}, \mu) \text{ et } ||fg||_1 \le ||f||_p ||g||_q$$

<u>Démonstration</u>: Si p=1 ou q=1 alors le résultat est trivial, si f=0 ou g=0 aussi. On élimine donc ces cas, et on suppose $p \in]1, +\infty[$. L'inégalité de Young donne :

$$|f(x)||g(x)| \le \frac{|f(x)|^p}{p} + \frac{|f(x)|^q}{q}$$

Ainsi $fg \in L^1(E, \mathcal{E}, \mu)$ et, en intégrant :

$$||fg||_1 \le \frac{1}{p}||f||_p^p + \frac{1}{q}||g||_q^q$$

Pour $\lambda > 0$, le même raisonnement sur les fonctions λf et g conduisent à l'inégalité :

$$||fg||_1 \le \frac{\lambda^{p-1}}{p}||f||_p^p + \frac{1}{\lambda q}||g||_q^q$$

On pose alors $\lambda = \frac{||g||_q^{\frac{q}{p}}}{||f||_p}$, ce qui nous permet d'obtenir :

$$||fg||_1 \le \frac{1}{p} \left(\frac{||g||_q^{\frac{q}{p}}}{||f||_p} \right)^{p-1} ||f||_p^p + \frac{1}{q} \frac{||f||_p}{||g||_q^{\frac{q}{p}}} ||g||_q^q = \frac{1}{p} ||g||_q^{\frac{q(p-1)}{p}} ||f||_p + \frac{1}{q} ||f||^p ||g||_q^{\frac{q(p-1)}{p}} ||f||_p + \frac{1}{q} ||f||_p^{\frac{q(p-1)}{p}} ||f||_p + \frac{1}{q} ||f||_p^{\frac{q(p-1)}{p}} ||f||_p + \frac{1}{q} ||f||_p^{\frac{q(p-1)}{p}} ||f||_p$$

Or $\frac{q(p-1)}{p} = 1$ et $\frac{1}{p} + \frac{1}{q} = 1$, d'où :

$$||fg||_1 \le ||f||_p ||f||_q$$

Théorème (Inégalité de Minkowski)

Soit $p \in [1, +\infty]$. Soit f et g dans $L^p(E, \mathcal{E}, \mu)$. Alors:

$$f + g \in L^p(E, \mathcal{E}, \mu)$$
 et $||f + g||_p \le ||f||_p + ||g||_p$

<u>Démonstration</u>: Puisque $p \in [1, +\infty], x \mapsto x^p$ est convexe sur \mathbb{R}^+ donc:

$$\left|\frac{1}{2}f + \frac{1}{2}g\right|^p \le \left|\frac{1}{2}|f| + \frac{1}{2}|g|\right|^p \le \frac{1}{2}|f|^p + \frac{1}{2}|g|^p$$

$$\Leftrightarrow |f+g|^p \le 2^{p-1}|f|^p + 2^{p-1}|g|^p$$

On a donc $f + g \in L^p(E, \mathcal{E}, \mu)$. Alors:

$$||f+g||_p^p = \int_E |f+g|^{p-1}|f+g|d\mu \le \int_E |f+g|^{p-1}|f| + \int_E |f+g|^{p-1}|g|$$

Appliquons l'inégalité de Hölder :

$$\begin{split} \int_{E} |f+g|^{p-1}|f| &\leq |||f+g|^{p-1}||_{\frac{p}{p-1}}||f||_{p} = \left(\int_{E} (|f+g|^{p-1})^{\frac{p}{p-1}} d\mu\right)^{\frac{p-1}{p}} ||f||^{p} \\ &= \left(\left(\int_{E} (|f+g|^{p}) d\mu\right)^{\frac{1}{p}}\right)^{p-1} ||f||^{p} = (||f+g||_{p})^{p-1}||f||_{p} \end{split}$$

De manière équivalente, on a aussi :

$$\int_{E} |f+g|^{p-1}|f| \le (||f+g||_{p})^{p-1}||g||_{p}$$

Ainsi:

$$||f+g||_p^p \le (||f+g||_p)^{p-1}(||f||_p + ||g||_p) \Leftrightarrow ||f+g||_p \le ||f||_p + ||g||_p$$

Proposition

Soit $p \in [1, +\infty]$.

Alors $L^p(E, \mathcal{E}, \mu)$ est un espace vectoriel normé, de norme $||f||^p$.

<u>Démonstration</u>: Clairement $||f||_p = 0 \Leftrightarrow f = 0$ et $||\lambda f||_p = \lambda ||f||_p$. L'inégalité triangulaire n'est autre que l'inégalité de Minkowski démontrée ci-dessus.

 $\underline{\text{Remarque}:} \text{ Il ne faut pas confondre "} f \text{ une fonction continue presque partout" et "} f \text{ est \'egale presque partout \`a une fonction continue"}.$

Définition

Soit $f: E \to \mathbb{R}$ une classe de fonctions.

S'il y a une fonction continue dans cette classe, on dira que f est **continue**.

Dans ce cas, pour $x_0 \in E$ on donnera à $f(x_0)$ la valeur de son représentant continu en x_0 .

Section V.3 - Propriétés de l'e.v.n. L^p

Théorème (Fischer-Riesz)

Soit $p \in [1, +\infty]$. $L^p(E, \mathcal{E}, \mu)$ est un espace de Banach.

 $\begin{array}{l} \underline{\text{D\'emonstration}} : \text{On commence par traiter le cas } p = +\infty. \text{ Soit } (f_n)_{n \in \mathbb{N}} \text{ une suite de Cauchy d'\'el\'ements de } L^{\infty}(E, \mathcal{E}, \mu). \\ \forall k \in \mathbb{N}^*, \exists N \in \mathbb{N}, \forall (m,n) \in \mathbb{N}^2, m > n > N \Rightarrow ||f_m - f_n||_{\infty} < \frac{1}{k}. \text{ Il existe } Z_k \text{ de mesure nulle tel que } \forall k \in \mathbb{N}^*, \exists N \in \mathbb{N}, \forall (m,n) \in \mathbb{N}^2, \forall x \in E \backslash Z_k, m > n > N \Rightarrow |f_m - f_n| < \frac{1}{k}. \ Z = \cup_{k \in \mathbb{N}^*} Z_k \text{ est de mesure nulle, alors } \forall k \in \mathbb{N}^*, \exists N \in \mathbb{N}, \forall (m,n) \in \mathbb{N}^2, \forall x \in E \backslash Z, m > n > N \Rightarrow |f_m(x) - f_n(x)| < \frac{1}{k}. \text{ On en d\'eduit que } \forall x \in E \backslash Z, (f_n(x))_{n \in \mathbb{N}} \text{ est une suite de Cauchy d'\'el\'ements de } \mathbb{R}, \text{ qui converge car } \mathbb{R} \text{ est complet. Notons } f(x) \text{ sa limite } ; \ (f_n)_{n \in \mathbb{N}} \text{ converge simplement vers } f \text{ sur } E \backslash Z. \text{ Ainsi } \forall x \in E \backslash Z, \forall k \in \mathbb{N}^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, |f_n(x) - f(x)| < \frac{1}{k}. \text{ Ainsi } f \in L^{\infty}(E, \mathcal{E}, \mu) \text{ et } \lim_{n \to +\infty} ||f_n - f||_{\infty} = 0, \text{ donc } (f_n)_{n \in \mathbb{N}} \text{ converge dans } L^{\infty}(E, \mathcal{E}, \mu). \end{array}$

Désormais, soit $p \in [1, +\infty[$, et $(f_n)_{n \in \mathbb{N}}$ une suite de Cauchy d'éléments de $L^p(E, \mathcal{E}, \mu)$. On extrait (f_{n_k}) telle que $||f_{n_{k+1}} - f_{n_k}||_p < \frac{1}{2^k}$. On note $g_n = \sum_{k=1}^n |f_{n_{k+1}} - f_{n_k}|$. Alors :

$$||g_n||_p = ||\sum_{k=1}^n |f_{n_{k+1}} - f_{n_k}||_p \le \sum_{k=1}^n ||f_{n_{k+1}} - f_{n_k}||_p \le 1 - \frac{1}{2^m} \le 1$$

Ainsi $(g_n(x))$ converge vers g(x) presque partout. Soit s et t deux entiers avec s > t. Par téléscopage, $|f_{n_s} - f_{n_t}| \le g - g_{t-1}$ donc $(f_{n_k}(x))$ est de Cauchy pour presque tout x. Ainsi, elle converge, et on note f(x) sa limite. Lorsque

 $s \to +\infty$, on $|f - f_{n_t}| \le g - g_{t-1} \le g$, ce qu'on réecrit $|f_{n_k} - f(x)|^p < g^p(x)$, soit $|f_{n_k}(x) - f(x)|^p \to 0$ lorsque $n_k \to +\infty$. D'après le théorème de convergence dominée, $f \in L^p(E, \mathcal{E}, \mu)$ et $\lim_{k \to +\infty} ||f_{n_k}(x) - f(x)||_p = 0$.

Proposition

 $L^2(E,\mathcal{E},\mu)$ est un espace de Hilbert.

<u>Démonstration</u>: $\langle f,g\rangle=\int_E fgd\mu$ est un produit scalaire sur $L^2(E,\mathcal{E},\mu)$. C'est un espace préhilbertien, et il est complet pour la norme induite par le produit scalaire par la proposition précédente.

Théorème (Riesz)

Soit $p \in]1, +\infty[$ et q son conjugué.

Pour tout $\phi \in (L^p(E, \mathcal{E}, \mu)', \text{ il existe un unique } g \in L^q(E, \mathcal{E}, \mu) \text{ tel que } \phi = f \mapsto \int fg d\mu.$

En outre, $||\phi||_{(L^p)'} = ||g||_q$.

Remarque : On identifie $(L^p)'$ et L^q : $(L^p)' = L^q$.

Attention cependant, on a exclu $p=1:(L^{\infty})'\neq L^1$. Le dual de L^{∞} contient strictement L^1 .

Définition

Soit $p \in]1, +\infty[$ et q son conjugué.

Pour $f \in L^p$ et $g \in L^q$, on note $\langle f, g \rangle = \int_E fg d\mu$.

⟨.,.⟩ s'appelle un crochet de dualité.

Avec ces notations, pour $\phi \in (L^p)'$, il lui correspond un unique $g \in L^q$ par Riesz. On a alors $\phi(f) = \langle f, g \rangle$.

Remarque : Dans l'espace de Hilbert L^2 , le crochet de dualité est le produit scalaire.

Théorème

Soit $p \in [1, +\infty[$.

L'ensemble $C_c(E)$ des fonctions continues à support compact de E dans \mathbb{R} est dense dans $L^p(E, \mathcal{E}, \mu)$.

Mieux encore, l'ensemble $C_c^{\infty}(E)$ des fonctions infiniment dérivables à support compact de E dans \mathbb{R} est dense dans $L^p(E, \mathcal{E}, \mu)$.

Section V.4 - L'espace $L^2_{\mathbb{C}}$

Définition

Soit $f:(E,\mathcal{E},\mu)\to(\mathbb{C},\mathcal{B}(\mathbb{C}))$ une fonction mesurable.

On dit que f est **intégrable** par rapport à la mesure μ ssi

$$\int |f|d\mu < +\infty$$

On note $\mathcal{L}^1_{\mathbb{C}}(E,\mathcal{E},\mu)$ l'ensemble des fonctions intégrables par rapport à μ .

Lorsque f est intégrable par rapport à la mesure μ , on définit **l'intégrale** de f par

$$\int f d\mu = \int \operatorname{Re} f d\mu + i \int \operatorname{Im} f d\mu$$

Définition

Pour tout $p \in [1, +\infty[$, on définit :

$$\mathcal{L}^p_{\mathbb{C}}(E,\mathcal{E},\mu) = \{ f : E \to \mathbb{C} \text{ mesurable } ; \int |f|^p d\mu < +\infty \}$$

$$\mathcal{L}^{\infty}_{\mathbb{C}}(E,\mathcal{E},\mu) = \{f: E \to \mathbb{C} \text{ mesurable } ; \exists C > 0, |f| \leq C \text{ p.p.} \}$$

Pour tout $p \in [1, +\infty]$, on définit

$$L^p_{\mathbb{C}}(E,\mathcal{E},\mu) = \mathcal{L}^p_{\mathbb{C}}(E,\mathcal{E},\mu)/\sim$$

où \sim est la relation d'égalité presque partout.

Proposition

Pour tout $p \in [1, +\infty]$, $L^p_{\mathbb{C}}(E, \mathcal{E}, \mu)$ est un espace de Banach. $L^p_{\mathbb{C}}(E, \mathcal{E}, \mu)$ est un espace de Hilbert.

Proposition

On considère l'espace de Hilbert $H=L^2_{\mathbb{C}}([0,2\pi],\overline{\mathcal{B}([0,2\pi])},\frac{1}{2\pi}\lambda)$. Le produit scalaire est $\langle f,g\rangle=\frac{1}{2\pi}\int_{[0,2\pi]}fg\ d\lambda$.

Alors, H admet la base hilbertienne $\{e_n, n \in \mathbb{Z}\}$, où e_n est défini par $e_n(x) = e^{inx} = \cos(nx) + i\sin(nx)$

<u>Démonstration</u> : Soit $n, m \in \mathbb{Z}$. Par le calcul :

$$\langle e_n, e_m \rangle = \frac{1}{2\pi} \int_{[0,2\pi]} e^{inx} e^{-imx} dx = \delta_{n,m}$$

Soit $f \in H$, et $\epsilon > 0$. $C_c([0, 2\pi], \mathbb{C})$ est dense dans $H = L^2_{\mathbb{C}}([0, 2\pi], \overline{\mathcal{B}([0, 2\pi])}, \frac{1}{2\pi}\lambda)$. Ainsi il existe $u \in C_c([0, 2\pi], \mathbb{C})$ tel que $||u - f||_2 < \frac{\epsilon}{2}$. On pose :

$$D_k(x) = \sum_{n=-k}^{k} e^{inx} = \frac{\sin((k + \frac{1}{2})x)}{\sin\frac{x}{2}}$$

qu'on appelle le k-ième noyau de Dirichet. On pose alors :

$$F_K(x) = \frac{1}{K} \sum_{k=0}^{K-1} D_k(x) = \frac{1}{K} \left(\frac{\sin \frac{Kx}{2}}{\sin \frac{x}{2}} \right)$$

qu'on appelle K-ième terme du noyau de Fejér. Alors $\forall K \in \mathbb{N}^*, F_K(x) \geq 0, \frac{1}{2\pi} \int_{[-\pi,\pi]} F_K(x) d\lambda = 1$ et $\forall h > 0, \frac{1}{2\pi} \int_{[-\pi,-\frac{h}{2}] \cup [\frac{h}{2},\pi]} F_K(x) d\lambda \to 0$ lorsque $K \to +\infty$. En notant $Z_K = \frac{1}{2\pi} \int_{[\frac{h}{2},2\pi-\frac{h}{2}]} F_K(x) d\lambda$, ceci implique que $\forall h > 0, \lim_{K \to +\infty} Z_K = 0$. On pose maintenant :

$$u_K(x) = \frac{1}{2\pi} \int_{[0,2\pi]} u(x-t) F_K(t) d\lambda(t)$$

On a alors:

$$||u_K - u||_2 = ||x \mapsto \frac{1}{2\pi} \int_{[0,2\pi]} [u(x-t) - u(x)] F_K(t) d\lambda(t)||_2$$

Soit h > 0 tel que $|y_2 - y_1| < \frac{h}{2} \Rightarrow |u(y_1) - u(y_2)| \le \frac{\epsilon}{4}$. Sur $[0, \frac{h}{2}] \cup [2\pi - \frac{h}{2}, 2\pi]$, on a $(u(x - t) - u(x)) < \frac{\epsilon}{4}$. Donc :

$$||x \mapsto \frac{1}{2\pi} \int_{[0, \frac{h}{3}] \cup [2\pi - \frac{h}{3}, 2\pi]} [u(x-t) - u(x)] F_K(t) d\lambda(t) ||_2 < \frac{\epsilon}{4}$$

$$\operatorname{et} \exists K \in \mathbb{N}^*, ||x \mapsto \frac{1}{2\pi} \int_{[\frac{h}{2}, 2\pi - \frac{h}{2}]} [u(x-t) - u(x)] F_K(t) d\lambda(t) ||_2 \leq M Z_K < \frac{\epsilon}{4}$$

$$\Rightarrow ||u_K - u||_2 = ||x \mapsto \frac{1}{2\pi} \int_{[0,2\pi]} [u(x-t) - u(x)] F_K(t) d\lambda(t)||_2 < \frac{\epsilon}{2}$$

Or, on a:

$$u_K(x) = \sum_{k=0}^{K-1} \sum_{n=-k}^{k} \left(\frac{1}{2\pi} \frac{1}{K} \int_{[0,2\pi]} u(x-t) d\lambda(t) \right) e^{int}$$

Donc u_K est une combinaison linéaire de e_n . Il existe un $N \in N$ et des c_n tels que $||u - \sum_{n=-N}^N c_n e_n||_2 < \frac{\epsilon}{2}$. Alors :

$$||f - \sum_{n=-N}^{N} c_n e_n||_2 \le ||f - u||_2 + ||u - \sum_{n=-N}^{N} c_n e_n||_2 < \epsilon$$

On conclut que $H = \overline{\text{Vect}\{e_n, n \in \mathbb{Z}\}}$.

Chapitre VI. Introduction aux probabilités

Section VI.1 - Mesure de probabilité

Définition

On appelle espace probabilisé un espace mesuré pour lequel la mesure \mathbb{P} est une mesure de probabilité. ($\mathbb{P}(\Omega)$)

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

On appelle espace d'états l'ensemble Ω .

On appelle **événements** les éléments de \mathcal{F} .

La mesure \mathbb{P} associe à chaque événement une **probabilité**.

Définition

Les singletons de \mathcal{F} sont appelés évènements élémentaires.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé avec Ω fini et $\mathcal{F} = \mathcal{P}(\Omega)$. On dit qu'il y a **équiprobabilité** si la mesure \mathbb{P} est définie par

$$\mathbb{P}: \mathcal{P}(\Omega) \to [0,1], \mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}$$

Les évènements élémentaires sont dits équiprobables. Ils ont tous la même probabilité $\frac{1}{\operatorname{Card}(\Omega)}$. On dit également que \mathbb{P} est la mesure uniforme discrète sur l'ensemble Ω .

Théorème

Soit $\Omega = \{\omega_i; i \in I\}$ un ensemble fini ou dénombrable. Soit $F = \mathcal{P}(\Omega)$.

Toute mesure de probabilité \mathbb{P} est caractérisée par sa valeur sur les atomes : $p_i = \mathbb{P}(\omega_i)$ pour tout $i \in I$. Réciproquement, soit $(p_i)_{i \in I}$ une suite de réels positifs de nombres réels positifs tels que $\sum_{i \in I} p_i = 1$ alors il existe une mesure de probabilité \mathbb{P} telle que $\forall i \in I, \mathbb{P}(\omega_i) = p_i$

<u>Démonstration</u>: Soit $\Omega = \{\omega_i; i \in I\}$ un ensemble fini ou dénombrable. Supposons connaître $p_i = \mathbb{P}(\omega_i)$ pour tout

Soit $A \in \mathcal{F} = \mathcal{P}(\Omega)$. $A = \bigcup_{i \in I, \omega_i \in A}$ donc $\mathbb{P}(A) = \sum_{i \in I, \omega_i \in A} p_i$ est définie de manière unique. Soit $(p_i)_{i \in I}$ une suite de réels positifs tels que $\sum_{i \in I} p_i = 1$. On suppose $\mathbb{P}(\omega_i) = p_i$. Soit $A = \bigcup_{i \in I, \omega_i \in A} \{\omega_i\} \in \mathcal{F}$. Alors on définit la mesure \mathbb{P} par $\mathbb{P}(A) = \sum_{i \in I, \omega_i \in A} p_i$.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Soit $A \in \mathcal{F}$.

On dit que A est **presque sûr** ssi $\mathbb{P}(A) = 1$.

Section VI.2 - Probabilité conditionnelle

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, et A et B deux évènements avec $\mathbb{P}(B) > 0$. La **probabilité conditionnelle** de A sachant B est définie par

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Remarque : $A \mapsto \mathbb{P}(A|B)$ définit une mesure de probabilité sur (Ω, F) .

Proposition (Formule des probabilités totales)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Soit $(E_i)_{i \in I}$ une partition des évènements de mesure non nulle, avec I fini ou dénombrable.

Pour tout évènement A, on a :

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A|E_i)\mathbb{P}(E_i)$$

Théorème (Bayes)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Soit $(E_i)_{i \in I}$ une partition des évènements de mesure non nulle, avec I fini ou dénombrable.

Soit A un évènement et $n \in I$. Alors :

$$\mathbb{P}(E_n|A) = \frac{\mathbb{P}(A|E_n)\mathbb{P}(E_n)}{\sum_{i \in I} \mathbb{P}(A|E_i)\mathbb{P}(E_i)}$$

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

On dit que deux évènements A et B sont **indépendants** ssi :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Remarque : Si $\mathbb{P}(B) > 0$, alors A et B sont indépendants ssi $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, $(A_i)_{i \in I}$ une famille d'évènements.

Les A_i sont mutuellement indépendants ssi :

$$\forall J \subset I, J \text{ fini}, \mathbb{P}(\cap_{i \in J}) = \prod_{i \in J} \mathbb{P}(A_i)$$

Remarque : L'indépendance mutuelle entraı̂ne l'indépendance deux-à-deux, mais la réciproque est fausse. Prenons $\overline{\Omega} = \llbracket 1, 6 \rrbracket^2, \mathcal{F} = \mathcal{P}(\Omega)$ et \mathbb{P} la mesure d'équiprobabilité. Alors les évènements $A_1 = \{6\} \times \llbracket 1, 6 \rrbracket, A_2 = \llbracket 1, 6 \rrbracket \times \{6\}$ et $A_3 = \{(x, x); x \in \llbracket 1, 6 \rrbracket \}$ sont deux-à-deux indépendants, mais pas mutuellement indépendants.

Section VI.3 - Variables aléatoires

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et (E, \mathcal{E}) un espace mesuré.

On appelle variable aléatoire (de Ω à valeurs dans E) toute fonction mesurable de Ω dans E.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, (E, \mathcal{E}) un espace mesuré et X une variable aléatoire.

L'application P_X définie de \mathcal{E} dans [0,1] par $P_X(A) = \mathbb{P}(X^{-1}(A))$ est une mesure de probabilité sur (E,\mathcal{E}) , que l'on appelle **loi de** X.

On ne peut que recommander d'aller voir <u>la vidéo de John Cagnol</u>, qui introduit les variables aléatoires par l'exemple du jeu de l'oie.

Exemples : Pour $A \in \mathcal{E}, \mathbb{P}(X \in A)$ signifie $\mathbb{P}(X^{-1}(A))$.

Pour $E = \mathbb{R}$, $\mathcal{E} = \overline{\mathcal{B}(\Omega)}$ et $a \in \mathbb{R}$, $\mathbb{P}(X \ge a)$ signifie $\mathbb{P}(X^{-1}([a, +\infty[)))$. $\mathbb{P}(X^2 + 1 \ge a)$ signifie $\mathbb{P}(\{\omega \in \Omega; X^2(\omega) + 1 \ge a\})$.

 $\mathbb{P}(X = Y)$ signifie $\mathbb{P}(\{\omega \in \Omega; X(\omega) = Y(\omega)\}).$

Remarque : Supposons E au plus dénombrable et prenons $\mathcal{E} = \mathcal{P}(E)$. Puisqu'une variable aléatoire X est une fonction mesurable de (Ω, F) dans (E, \mathcal{E}) , il y a équivalence entre "X est une variable aléatoire" et " $\forall e \in E, X^{-1}(\{E\}) \in F$ ".

Définition

Soit X une variable aléatoire.

On appelle tribu engendrée par la variable aléatoire, et on note $\sigma(X)$, la tribu $\sigma(X^{-1}(\mathcal{E}))$.

Section VI.4 - Moments

Définition

Soit X une variable aléatoire sur un espace probabilisé (Ω, F, \mathbb{P}) à valeurs dans \mathbb{R} .

On dit que X admet un moment d'ordre $n \in \mathbb{N}^*$ si $X \in L^n(\Omega, \mathcal{F}, \mathbb{P})$. Dans ce cas, on note :

$$m_n = \int_{\Omega} X^n d\mathbb{P}$$

Le moment d'ordre 1 est appelé **espérance** de la variable aléatoire et noté $\mathbb{E}(X)$.

Remarque : $p \leq q \Rightarrow L^q(\Omega, \mathcal{F}, \mathbb{P}) \subset L^p(\Omega, \mathcal{F}, \mathbb{P})$ puisque \mathbb{P} est une mesure finie.

Proposition

Soit X une variable aléatoire sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans (E, \mathcal{E}) et $h : E \to \mathbb{R}$ une fonction mesurable.

Alors h(X) est une variable aléatoire sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans \mathbb{R} .

Théorème (de transfert)

Soit X une variable aléatoire sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans (E, \mathcal{E}) . Alors pour toute fonction mesurable bornée $h: E \to \mathbb{R}$:

$$\mathbb{E}(h(X)) = \int_E h dP_X$$

<u>Démonstration</u>: Soit $A \in \mathcal{E}$ et $h = 1_A$.

$$\mathbb{E}(h(X)) = \int_{\Omega} 1_A(X) d\mathbb{P} = \mathbb{P}(X^{-1}(A)) = P_X(A) = \int_E 1_A dP_X = \int_E h dP_X$$

On a donc l'égalité pour toute fonction indicatrice, et par linéarité de l'intégrale, cela s'étend pour toute fonction étagée $h: E \to \mathbb{R}^+$.

Soit $h: E \to [0, +\infty]$ une fonction mesurable. Il existe une suite croissante $(h_n)_{n \in \mathbb{N}}$ de fonctions étagées positives convergeant simplement vers h. Le théorème de transfert s'applique aux (h_n) , et le théorème de convergence monotone permet d'obtenir le théorème pour h.

Soit $h:E\to\mathbb{R}$ une fonction mesurable. Le théorème de transfert s'applique à |h| :

$$\mathbb{E}(|h(X)|) = \int_{E} |h| dP_X$$

Ainsi $h \in \mathcal{L}^1(E, \mathcal{E}, P_X) \Leftrightarrow h(X) \in \mathcal{L}^1(E, \mathcal{E}, \mathbb{P})$. On décompose $h = h^+ - h^-$ et on applique le théorème de transfert à h^+ et h^- , ce qui conclut.

Remarque : Si il existe une mesure μ telle que pour toute fonction mesurable bornée $h: E \to \mathbb{R}, \mathbb{E}(h(X)) = \int_E h d\mu$, alors $\mu = P_X$ est la loi de X.

Théorème

Soit X une variable aléatoire sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans E dont la loi P_X admet une densité f_X et soit $h: E \to \mathbb{R}$ une fonction mesurable telle que :

$$\int_{\mathbb{R}} |h(x)| f_X(x) \lambda(dx) < +\infty$$

Alors, X admet un moment d'ordre 1 et :

$$\mathbb{E}(h(X)) = \int_{\mathbb{R}} h(x) f_X(x) \lambda(dx)$$

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans \mathbb{R} .

- Si (X_n) est une suite croissante et positive, alors $\lim_{n\to+\infty} \mathbb{E}(X_n) = \mathbb{E}(\lim_{n\to+\infty} X_n)$ (théorème de la convergence monotone)
- Si $(X_n)_{n\in\mathbb{N}}$ est une suite positive alors $\mathbb{E}(\liminf X_n) \leq \liminf \mathbb{E}(X_n)$ (lemme de Fatou)
- Si $\forall n \in \mathbb{N}, X_n \leq Z$ avec $Z \in \mathcal{L}^1$ alors $\lim_{n \to +\infty} \mathbb{E}(X_n) = \mathbb{E}(\lim_{n \to +\infty} X_n)$ (théorème de la convergence dominée)

Proposition

Pour un évènement $A, \mathbb{E}(1_A) = \mathbb{P}(A)$.

Pour deux variables aléatoires X et Y, et un réel $a, \mathbb{E}(aX + Y) = a\mathbb{E}(X) + \mathbb{E}(Y)$.

Remarque : Cela nous permet d'en déduire par exemple que pour tout réel $a, \mathbb{E}(a) = a$ ou encore que $\mathbb{E}(X - \mathbb{E}(X)) = 0$.

Définition

Soit X une variable aléatoire sur un espace probabilisé (Ω, F, \mathbb{P}) à valeurs dans \mathbb{R} .

On dit que X admet un moment centré d'ordre $n \in \mathbb{N}^*$ si $X - \mathbb{E}(X) \in L^n(\Omega, \mathcal{F}, \mathbb{P})$. Dans ce cas, on note :

$$\mu_n = \int_{\Omega} (X - \mathbb{E}(X))^n d\mathbb{P}$$

Le moment centré d'ordre 2 est appelé variance de la variable aléatoire et noté Var(X).

Remarque : $\mu_2 = m_2 - m_1^2$ c'est-à-dire $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 > 0$.

Proposition

Pour deux variables aléatoires X et Y, et un réel a, $Var(aX) = a^2 Var(X)$ et Var(X + a) = Var(X).

Définition

Soit X une variable aléatoire sur un espace probabilisé (Ω, F, \mathbb{P}) à valeurs dans \mathbb{R} admettant un moment d'ordre 2.

On appelle **écart-type** le réel positif $\sigma(X) = \sqrt{\operatorname{Var}(X)}$.

Remarque : On a la propriété $\sigma(aX) = a\sigma(X)$. Attention cependant, contrairement à l'espérance on a généralement pas Var(X+Y) = Var(X) + Var(Y) ou $\sigma(X+Y) = \sigma(X) + \sigma(Y)$.

Théorème (Inégalité de Chebyshev)

Soit X une variable aléatoire sur un espace probabilisé (Ω, F, \mathbb{P}) à valeurs dans \mathbb{R} admettant un moment d'ordre 2. Alors :

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a\sigma) \le \frac{1}{a^2}$$

<u>Démonstration</u>: On utilise l'inégalité de Markov :

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a\sigma) = \mathbb{P}(|X - \mathbb{E}(X)|^2 \ge a^2 \operatorname{Var}(X)) \le \frac{\mathbb{E}(|X - \mathbb{E}(X)|^2}{a^2 \operatorname{Var}(X)} = \frac{1}{a^2}$$

Remarque : Ceci implique que $Var(X) = 0 \Leftrightarrow X = \mathbb{E}(X)$ presque partout.

Définition

Le moment d'ordre 3 donne une indication sur la symétrie. On utilise souvent le **coefficient d'asymétrie** $\frac{\mu_3}{\mu^{3/2}}$.

Le moment d'ordre 4 donne une indication sur les queues de distribution. On utilise souvent le **kurtosis** $\frac{\mu_4}{\mu_2^2}$ (et l'excès de kurtosis : $\frac{\mu_4}{\mu_2^2} - 3$)

Section VI.5 - Fonction de répartition

Définition

Considérons \mathbb{R} muni d'une tribu contenant la tribu de Borel, et muni d'une mesure de probabilité \mathbb{P} . On appelle fonction de **répartition** l'application $F: \mathbb{R} \to [0,1]$ définie par $F(x) = \mathbb{P}(]-\infty,x]$).

Exemple: Pour la modélistion du lancé d'un dé, $\mathbb{P} = \sum_{i=1}^{6} \frac{1}{6} \delta_i$. La fonction de répartition est alors $f(x) = \sum_{i=1}^{6} 1_{[i,+\infty[}(x)$.

Proposition

Soit F une fonction de répartition. Alors, F est croissante et continue à droite, et vérifie $\lim_{x\to -\infty} F(x) = 0$ et $\lim_{x\to +\infty} F(x) = 1$

Théorème

Soit F une fonction de $\mathbb R$ dans $\mathbb R$ croissante, continue à droite et vérifiant $\lim_{x\to -\infty} F(x)=0$ et $\lim_{x\to +\infty} F(x)=1$. Alors il existe une mesure de probabilité dont elle est la fonction de répartition.

Définition

On appelle π -système sur Ω toute collection \mathcal{J} de parties de Ω stable par intersection finie.

Exemple : L'ensemble $\{]-\infty,x];x\in\mathbb{R}\}$ est un π -système.

Proposition (Lemme de classe monotone)

Deux mesures de probabilité qui coïncident sur un π -système \mathcal{J} coïncident également sur $\sigma(\mathcal{J})$, la tribu engendrée par \mathcal{J} .

Théorème

Considérons \mathbb{R} muni de la tribu de Borel. Soit \mathbb{P}_1 et \mathbb{P}_2 deux mesures, F_1 et F_2 leurs fonctions de répartition respectives. Alors :

$$F_1 = F_2 \Leftrightarrow \mathbb{P}_1 = \mathbb{P}_2$$

<u>Démonstration</u>: Le sens \Leftarrow est immédiat. Pour le sens \Rightarrow , on suppose que $\forall x \in \mathbb{R}, \mathbb{P}_1(]-\infty, x]) = \mathbb{P}_2(]-\infty, x]$. On a $\sigma(\{]-\infty, x]$; $x \in \mathbb{R}\}$) $\subset \mathcal{B}(\mathbb{R})$ car les fermés sont dans $\mathcal{B}(\mathbb{R})$, et $\mathcal{B}(\mathbb{R}) \subset \sigma(\{]-\infty, x]$; $x \in \mathbb{R}\}$) car les]a, b[sont une

base de la topologie de \mathbb{R} et $]a,b[=(\cup_{n\in\mathbb{N}^*}]-\infty,b-\frac{1}{n}])\cap]-\infty,a]$. Ainsi $\sigma(\{]-\infty,x];x\in\mathbb{R}\})=\mathcal{B}(\mathbb{R})$ ce qui conclut que $\mathbb{P}_1=\mathbb{P}_2$ par le lemme de classe monotone.

Proposition

Considérons $\mathbb R$ muni de la tribu de Borel, $\mathbb P$ une mesure et F sa fonction de répartition. Alors :

$$\forall x \in \mathbb{R}, \mathbb{P}(\{x\}) = F(x) - \lim_{x^{-}} F(x)$$

 $\underline{\text{D\'emonstration}:} \ \mathbb{P}(]-\infty,x[) = \lim_{x^-} F \text{ et }]-\infty,x[\cup \{x\} \text{ donc } \mathbb{P}(]-\infty,x]) = \mathbb{P}(]-\infty,x[) + \mathbb{P}(\{x\}). \text{ Ainsi } \mathbb{P}(\{x\}) = F(x) - \lim_{x^-} F.$

Proposition

La fonction de répartition est continue si et seulement si la msure de probabilité associée est diffuse (i.e. sans atomes)

<u>Démonstration</u>: Il s'agit d'un corollaire de la proposition précédente.

Proposition

Si $\mathbb P$ est une mesure de probabilité de densité f alors sa fonction de répartition est :

$$F: x \mapsto \int_{]-\infty,x]} f d\lambda$$

Section VI.6 - Quelques lois remarquables

Définition

Soit $n \in N^*$. On considère $E = \{e_1, ..., e_n\}$.

Une variable aléatoire X suit la loi uniforme discrète signifie :

$$P_X = \sum_{i=1}^n \frac{1}{n} \delta_{e_i}$$

Cette loi permet de modéliser des situations où il y a un nombre fini de résultats équiprobables.

Définition

Soit $p \in]0,1[$. On considère $E = \{e_1, e_2\}$.

X suit une loi de Bernoulli de paramètre p signifie

$$P_X = p\delta_{e_1} + (1-p)\delta_{e_2}$$

Cette loi permet de modéliser des expériences aléatoires dont l'issue est le succès ou l'échec.

Définition

Soit $n \in \mathbb{N}^*, p \in]0,1[$. On considère E = [0,n].

X suit une **loi binomiale** de paramètres n, p signifie

$$P_X = \sum_{k=0}^{n} p^k (1-p)^{n-k} \delta_k$$

Cette loi permet de modéliser le nombre de succès lors de la répétition de n expériences aléatoires identiques et indépendantes dont la probabilité de succès est p. On note $X \sim B(n,p)$.

Soit $n \in \mathbb{N}^*, p \in]0,1[$ et $X \sim B(n,p).$ Alors $\mathbb{E}(X) = np$, $\mathrm{Var}(X) = np(1-p)$ et le coefficient d'asymétrie de X vaut $\frac{1-2p}{\sqrt{np(1-p)}}$

Définition

Soit $\lambda \in]0, +\infty[$. On considère $E = \mathbb{N}$.

X suit une loi de Poisson de paramètre λ signifie

$$P_X = \sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} e^{-\lambda} \delta_k$$

Cette loi permet de modéliser le nombre de fois où un évènement se produit dans un intervalle, lorsque l'on sait que le nombre moyen d'occurrences et habituellement de λ dans cet intervalle. On note $X \sim \text{Pois}(\lambda)$.

Proposition

Soit $\lambda \in]0, +\infty[$ et $X \sim Pois(\lambda)$.

Alors $\mathbb{E}(X) = \lambda$, $\operatorname{Var}(X) = \lambda$ et le coefficient d'asymétrie de X vaut $\frac{1}{\sqrt{\lambda}}$.

Définition

Soit $p \in]0,1[$ et $E = \mathbb{N}^*$.

X suit une **loi géométrique** de paramètre p signifie

$$P_X = \sum_{k=1}^{+\infty} p^k (1-p) \delta_k$$

Cette loi est utile pour modéliser le nombre de succès consécutifs avant un échec lorsque l'on répète des expériences identiques et indépendantes de probabilité de succès p. On note $X \sim G(p)$.

Proposition

Soit $p \in]0,1[$ et $X \sim G(p)$. Alors $\mathbb{E}(X) = \frac{p}{1-p}, \mathrm{Var}(X) = \frac{p}{(1-p)^2}$ et le coefficient d'asymétrie de X vaut $\frac{1+p}{\sqrt{p}}$.

Définition

Soit $a, b \in \mathbb{R}$ tels que a < b. On considère $E = \mathbb{R}$.

X suit une loi uniforme continue de paramètres a et b signifie P_X a pour densité

$$f_X(x) = \frac{1}{b-a} 1_{[a,b]}$$

Cette loi est utile pour modéliser le nombre de succès consécutifs avant un échec lorsque l'on répète des expériences identiques et indépendantes de probabilité de succès p. On note $X \sim \mathcal{U}(a,b)$.

39

Proposition

Soit $a,b\in\mathbb{R}$ tels que a< b et $X\sim\mathcal{U}(a,b)$. Alors $\mathbb{E}(X)=\frac{a+b}{2}, \mathrm{Var}(X)=\frac{(b-a)^2}{12}$ et le coefficient d'asymétrie de X vaut 0.

Définition

Soit $\lambda \in]0, +\infty[$. On considère $E = \mathbb{R}^+$.

X suit une loi exponentielle de paramètre λ signifie P_X a pour densité

$$f_X(x) = \lambda e^{-\lambda x}$$

Cette loi permet de modéliser la durée entre les occurrences d'un évènement.

Proposition

Soit $\lambda \in]0, +\infty[$ et X qui suit une loi exponentielle.

Alors $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$ et le coefficient d'asymétrie de X vaut 2.

Définition

Soit $p \in]0, +\infty[$ et $\lambda \in]0, +\infty[$. On considère $E = \mathbb{R}^+$.

X suit une loi Gamma de paramètres p et λ signifie P_X a pour densité

$$f_X(x) = \frac{\lambda}{\Gamma(p)} (\lambda x)^{p-1} e^{-\lambda x}$$

où $\Gamma(z) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. Lorsque p = 1, on retrouve une loi exponentielle. On note parfois $\theta = \frac{1}{\lambda}$. On note $X \sim \gamma(p, \lambda)$.

Proposition

Soit $p, \lambda \in]0, +\infty[$ et $X \sim \gamma(p, \lambda)$.

Alors $\mathbb{E}(X) = \frac{p}{\lambda}$, $\mathrm{Var}(X) = \frac{p}{\lambda^2}$ et le coefficient d'asymétrie de X vaut $\frac{2}{\sqrt{p}}$.

Définition

Soit $m \in_R$ et $\sigma \in]0, +\infty[$. On considère $E = \mathbb{R}$.

X suit une loi normale de paramètres m et σ^2 signifie P_X a pour densité

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

On note $X \sim \mathcal{N}(m, \sigma^2)$.

Proposition

Soit $m \in \mathbb{R}, \sigma \in]0, +\infty[$ et $X \sim \mathcal{N}(m, \sigma^2)$.

Alors $\mathbb{E}(X) = m$, $Var(X) = \sigma^2$ et le coefficient d'asymétrie de X vaut 0.

Chapitre VII. Mesure produit, Convolution

Section VII.1 - Espace produit

Définition

Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables.

On appelle **tribu produit** sur $E \times F$ la tribu $\sigma(\mathcal{E} \times \mathcal{F})$. On la note $\mathcal{E} \otimes \mathcal{F}$.

Exemple: Si $E = F = \mathbb{R}, \mathcal{E} = \mathcal{F} = \mathcal{B}(\mathbb{R})$, alors $\mathcal{E} \times \mathcal{F}$ n'est pas directement une tribu (la réunion de deux rectangles n'est pas un rectangle). $\mathcal{E} \otimes \mathcal{F}$ est la plus petite tribu contenant $\mathcal{E} \times \mathcal{F}$; on part de $\mathcal{E} \times \mathcal{F}$, et on espère s'arrêter avant $\mathcal{P}(\mathcal{E} \times \mathcal{F})$.

Remarque : En général, \otimes n'est pas commutatif.

Proposition

Soit $(E_1, \mathcal{E}_1), ..., (E_n, \mathcal{E}_n)$ des espaces mesurables.

Pour tout $k \in [1, n]$, la projection canonique $\pi_k : \prod_{i=1}^n E_i \to E_k$ définie par $\pi_k = (x_1, ..., x_n) \mapsto x_k$ est mesurable.

La tribu produit est la plus petite tribu rendant mesurable les n projections canoniques.

<u>Démonstration</u>: Soit $A \in \mathcal{E}_k$. Alors $\pi_k^{-1}(A) = (\prod_{i=1}^{k-1} E_i) \times A \times (\prod_{i=k+1}^n E_i) \in \prod_{i=1}^n \mathcal{E}_i \subset \otimes_{i=1}^n \mathcal{E}_i$, donc π_k est mesurable.

Supposons $\pi_1, ..., \pi_n$ mesurables et $A = \prod_{i=1}^n A_i$ où $A_i \in \mathcal{E}_i$. Alors $\forall k \in [\![1,n]\!], \pi_k^{-1}(A_k) = (\prod_{i=1}^{k-1} E_i) \times A_k \times (\prod_{i=k+1}^n E_i) \in \otimes_{i=1}^n \mathcal{E}_i$. Donc $A = \cap_{k=1}^n (\prod_{i=1}^{k-1} E_i) \times A_k \times (\prod_{i=k+1}^n E_i) \in \otimes_{i=1}^n \mathcal{E}_i$. Ainsi $\otimes_{i=1}^n \mathcal{E}_i$ contient $\sigma(\prod_{i=1}^n \mathcal{E}_i)$. La plus petite tribu rendant les π_k mesurables est $\sigma(\prod_{i=1}^n \mathcal{E}_i)$.

Proposition

On a $\mathcal{B}(\mathbb{R}^n) = (\mathcal{B}(\mathbb{R}))^{\otimes n} = \mathcal{B}(\mathbb{R}) \otimes ... \otimes \mathcal{B}(\mathbb{R}).$

On considère désormais \mathcal{C} l'ensemble des pavés de \mathbb{R}^n :

$$\mathcal{C} = \left\{ \prod_{i=1}^{n}]a_i, b_i[; \forall i \in [1, n], a_i \in \mathbb{R}, b_i \in R \text{ et } a_i < b_i \right\}$$

et l'ensemble \mathbb{R} des produits cartésiens mesurables de $(\mathcal{B}(\mathbb{R}))^{\otimes n}$. $\mathcal{C} \subset \mathbb{R}$ donc $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{C}) \subset \sigma(\mathcal{R}) = (\mathcal{B}(\mathbb{R}))^{\otimes n}$, car les ouverts s'expriment comme réunion dénombrable de pavés. D'où le résultat.

Définition

Soit E et F deux ensembles et $A \subset E \times F$.

Pour $e \in E$, on appelle la **x-section** de A l'ensemble

$$A_e = \{ y \in F; (e, y) \in A \}$$

Pour $f \in F$, on appelle la **y-section** de A l'ensemble

$$A^f = \{x \in E; (x, f) \in A\}$$

Proposition

Soit E et F deux ensembles.

Pour tout $A \subset E \times F$, $(E \times F \setminus A)_e = F \setminus A_e$.

Pour toute famille $(A_i)_{i\in I}$ d'ensembles inclus dans $E\times F$, $(\bigcup_{i\in I}A_i)_e=\bigcup_{i\in I}(A_i)_e$ et $(\bigcap_{i\in I}A_i)_e=\bigcap_{i\in I}(A_i)_e$. Les propriétés sont analogues pour les y-sections.

Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables, et $C \in \mathcal{E} \otimes \mathcal{F}$. Alors, $\forall e \in E, C_e \in \mathcal{F}$ et $\forall f \in F, C^f \in \mathcal{E}$.

<u>Démonstration</u>: Soit $C(e) = \{C \in \mathcal{E} \otimes \mathcal{F}; C_e \in \mathcal{F}\}$. C'est une tribu. Soit $C = A \times B$ où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. Si $e \in A$ alors $C_e = B$, sinon $C = \emptyset$. Dans les deux cas, $C_e \in \mathcal{F}$. Donc $C \in C(e)$: cette tribu contient les $A \times B$ où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. Ainsi $\mathcal{E} \otimes \mathcal{F} \subset C(e)$, d'où $\mathcal{E} \otimes \mathcal{F} = C(e)$.

Proposition

Soit (E, \mathcal{E}) , (F, \mathcal{F}) et (G, \mathcal{G}) des espaces mesurables.

Soit $e \in E, f \in F$ et $\phi : E \times F \to G$ mesurable.

Alors les applications partielles $\phi_{y=f}: E \to G$ telle que $\phi_{y=f}: x \mapsto \phi(x,f)$ et $\phi_{x=e}: F \to G$ telle que $\phi_{x=e}: y \mapsto \phi(e,y)$ sont mesurables.

<u>Démonstration</u>: Soit $C \in \mathcal{G}$. Alors $\phi_{y=f}^{-1}(C) = \{x \in E; \phi(x,f) \in C\} = \{(x,f) \in E \times F; (x,f) \in \phi^{-1}(C)\} = \phi^{-1}(C)^f$, ce qui conclut puisque $\phi^{-1}(C)$ est mesurable, donc sa y-section aussi.

Proposition (Lemme de classe monotone, généralisation)

Soit μ et ν deux mesures finies sur un espace mesurable (E, \mathcal{E}) .

Soit \mathcal{J} un π -système sur E.

Si μ et ν coïncident sur \mathcal{J} alors elles coïncident sur $\sigma(\mathcal{J})$. De plus, s'il existe dans \mathcal{J} une suite $(A_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, \mu(A_n)<+\infty$ et $\cup_{n\in\mathbb{N}}A_n=E$, alors le résultat persiste même lorsque $\mu(E)=+\infty$.

Définition

On dit qu'une collection $\mathcal J$ de parties de E est un λ -système ssi :

- 1. $E \in \mathcal{J}$
- 2. $A \in \mathcal{J} \Rightarrow E \backslash A \in \mathcal{J}$
- 3. Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments disjoints de $\mathcal{J}, \cup_{n\in\mathbb{N}} A_n \in \mathcal{J}$.

Théorème (Dynkin)

Tout λ -système qui contient un π -système contient également la tribu engendrée par ce π -système.

Théorème

Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) . On suppose que μ et ν sont σ -finies. Alors :

• Il existe une unique mesure m sur $(E \times F, \mathcal{E} \otimes \mathcal{F})$ telle que

$$\forall A \in \mathcal{E}, \forall B \in \mathcal{F}, m(A \times B) = \mu(A)\nu(B)$$

• m est σ -finie, on l'appelle mesure produit de μ et ν et on note

$$m=\mu\otimes\nu$$

• Pour tout $C \in \mathcal{E} \otimes \mathcal{F}$:

$$(\mu \otimes \nu)(C) = \int_{E} \nu(C_x)\mu(dx) = \int_{E} \mu(C^y)\nu(dy)$$

<u>Démonstration</u>: On se place dans le cas où μ et ν sont finies. On définit la fonction m de $\mathcal{E} \otimes \mathcal{F}$ dans $[0, +\infty]$ par :

$$\forall C \in \mathcal{E} \otimes \mathcal{F}, m(C) = \int_{E} \nu(C_x) \mu(dx)$$

 $\nu(C_x)$ est bien défini puisque C_x est la x-section d'un ensemble mesurable. On pose

$$\mathcal{G} = \{C \in \mathcal{E} \otimes \mathcal{F}; h_C \text{ est borélienne}\}$$

 \mathcal{G} contient tous les produits cartésiens $A \times B$ où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. En effet, soit $A \in \mathcal{E}$ et $B \in \mathcal{F}$. $(A \times B)_x = B$ si $x \in A$, $(A \times B)_x = \emptyset$ sinon. Ainsi $\nu((A \times B)_x) = 1_A(x)\nu(B)$, donc $h_{A \times B}$ est borélienne (A est mesurable). Par

ailleurs, c'est un λ -système ; $\emptyset \in \mathcal{G}$ car h_{\emptyset} est la fonction nulle, donc mesurable. Soit $C \in \mathcal{G}$. Alors $h_{(E \times F) \setminus C} = \nu(((E \times F) \setminus C)_x) = \nu(F \setminus C_x) = \nu(F) - \nu(C_x)$. Ainsi $h_{(E \times F) \setminus C} = \nu(F) - h_C$ est borélienne, et $(E \times F) \setminus C \in \mathcal{G}$. Si C_1 et C_2 sont deux ensembles disjoints de \mathcal{G} alors $h_{C_1 \cup C_2} = h_{C_1} + h_{C_2}$ est borélienne donc $C_1 \cup C_2 \in \mathcal{G}$. \mathcal{G} est stable par union disjointe finie. Soit $(C_n)_{n \in \mathbb{N}}$ une suite d'ensembles disjoints de \mathcal{G} . On pose $Y_N = \bigcup_{n=0}^N C_n$ et $Z = \bigcup_{n=0}^{+\infty} C_n$. h_{Y_N} est borélienne et croissante. Elle converge vers h_Z , qui est donc borélienne. Ainsi $Z \in \mathcal{G}$. En conséquence, \mathcal{G} est un λ -système, qui contient le π -système de l'ensemble des produits cartésiens $A \times B$ où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. D'après le théorème de Dynkin, \mathcal{G} contient la tribu engendrée par ce π -système, donc contient $\mathcal{E} \otimes \mathcal{F}$, soit $\mathcal{G} = \mathcal{E} \otimes \mathcal{F}$. Ainsi $h_C : x \mapsto \nu(C_x)$ est bien borélienne, et m est bien définie, et

$$m(A \times B) = \int_{E} \nu((A \times B)_{x})\mu(dx) = \int_{E} 1_{A}(x)\nu(B)\mu(dx)$$
$$= \nu(B) \int 1_{A}(x)\mu(dx) = \mu(A)\nu(B)$$

Vérifions maintenant que m est une mesure. On a $m(\emptyset) = \int_E \nu(\emptyset_x) \mu(dx) = 0$, et pour toute suite $(C_n)_{n \in \mathbb{N}}$ d'éléments deux-à-deux disjoints de $\mathcal{E} \otimes \mathcal{F}$:

$$m(\cup_{n\in\mathbb{N}}C_n) = \int_E \nu((\cup_{n\in\mathbb{N}}C_n)_x)\mu(dx) = \int_E \nu(\cup_{n\in\mathbb{N}}((C_n)_x)\mu(dx)$$

$$= \int_{E} \left(\sum_{n=0}^{+\infty} \nu((C_n)_x) \right) \mu(dx) = \sum_{n=0}^{+\infty} \int_{E} \nu((C_n)_x) \mu(dx) = \sum_{n=0}^{+\infty} m(C_n)$$

m est donc bien une mesure. Celle-ci est par ailleurs unique, car si m et m' sont deux mesures telles que $\forall A \in \mathcal{E}, \forall B \in \mathcal{F}, m(A \times B) = \mu(A)\nu(B) = m'(A \times B)$, alors m et m' coïncident sur un π -système et donc d'après le lemme de classe monotone, m et m' coïncident sur la tribu engendrée par les produits cartésiens d'ensembles de \mathcal{E} et \mathcal{F} , c'est-à-dire $\mathcal{E} \otimes \mathcal{F}$; donc m = m'.

Exemple : Considérons la mesure de Lebesgue λ sur \mathbb{R} muni de la tribu de Lebesgue. Soit a_1, a_2, b_1, b_2 quatre réels avec $a_1 < b_1$ et $a_2 < b_2$. Alors $(\lambda \otimes \lambda)(]a_1, b_1[\times]a_2, b_2[) = \lambda(]a_1, b_1[)\lambda(]a_2, b_2[) = (b_1 - a_1)(b_2 - a_2)$. On a donc bien généralisé le fait que l'aire d'un rectangle est le produit du longueur par la largeur. De façon analogue, $\lambda^{(n)} = \lambda^{\otimes n}$.

Section VII.2 - Intégrales multiples

Théorème (Fubini-Tonelli)

Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) deux espaces mesurés, avec μ et ν σ -finies. Soit $f: E \times F \to [0, +\infty]$ mesurable. Alors :

•
$$x \mapsto \int_{F} f(x,y)\nu(dy)$$
 est μ -mesurable

•
$$y \mapsto \int_E f(x,y)\mu(dx)$$
 est ν -mesurable

•
$$\int_{E} \left(\int_{F} f(x, y) \nu(dy) \right) \mu(dx) = \int_{F} \left(\int_{E} f(x, y) \mu(dx) \right) \nu(dy)$$
$$= \int_{E \times F} f(x, y) (\mu \otimes \nu) (dx, dy)$$

<u>Démonstration</u>: Soit $C \in \mathcal{E} \otimes \mathcal{F}$. Pour $f = 1_C$, on a $x \mapsto \int_F 1_C(x,y)\nu(dy) = \int_F 1_{C_x}(y)\nu(dy) = \nu(C_x)$ qui est μ -mesurable, et $y \mapsto \int_E 1_C(x,y)\mu(dx) = \mu(C^y)$ est ν -mesurable. Par linéarité, on obtient la mesurabilité pour toute fonction étagée positive, puis par limite croissante, pour tout f positive.

Soit $C \in \mathcal{E} \otimes \mathcal{F}$. Pour $f = 1_C$, l'égalité demandée est $(\mathcal{E} \otimes \mathcal{F})(C) = \int_E \nu(C_x)\mu(dx) = \int_F \mu(C^y)\nu(dy)$ que l'on sait vraie. On l'obtient ensuite par linéarité pour toute f étagée positive, puis, par limite croissante, pour toute fonction f positive.

Théorème (Fubini-Lebesgue)

Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) deux espaces mesurés, avec μ et ν σ -finies. Soit $f \in \mathcal{L}^1(E \times F, \mathcal{E} \otimes \mathcal{F}, \mu \otimes \nu)$. Alors: • $x \mapsto f(x,y)$ est dans $\mathcal{L}^1(E,\mathcal{E},\mu)$ pour ν -presque tout $y,y\mapsto f(x,y)$ est dans $\mathcal{L}^1(F,\mathcal{F},\nu)$ pour μ -presque tout

• $y \mapsto \int_E f(x,y)\mu(dx)$ est ν -mesurable, définie presque partout et dans $\mathcal{L}^1(F,\mathcal{F},\nu)$, et $x \mapsto \int_F f(x,y)\nu(dy)$ est μ -mesurable, définie presque partout et dans $\mathcal{L}^1(E,\mathcal{E},\mu)$

•
$$\int_{E} \left(\int_{F} f(x, y) \nu(dy) \right) \mu(dx) = \int_{F} \left(\int_{E} f(x, y) \mu(dx) \right) \nu(dy)$$
$$= \int_{E \times F} f(x, y) (\mu \otimes \nu) (dx, dy)$$

<u>Démonstration</u>: |f| est mesurable est positive, donc d'après le théorème de Fubini-Tonelli, $\int_E (\int_F |f(x,y)| \mu(dx)) \nu(dy) =$ $\int_{E\times F} |f(x,y)| (\mu\otimes\nu)(dx,dy) < +\infty$ par hypothèse, donc $\int_F |f(x,y)| \mu(dx) < +\infty$ presque partout. Ainsi $y\mapsto f(x,y)$ est dans $\mathcal{L}^1(F, \mathcal{F}, \nu)$ presque partout. De même, on montre que $x \mapsto f(x, y)$ est dans $\mathcal{L}^1(E, \mathcal{E}, \mu)$ presque partout. $x\mapsto \int_F f(x,y)\nu(dy)$ est bien définie sauf sur un ensemble négligeable. On a alors $\int_E \left|\int_F f(x,y)\nu(dy)\right|\mu(dx) \le 1$ $\int_{E} (\int_{F} |f(x,y)| \nu(dy) |\mu(dx)| \leq \int_{E \times F} |f| d(\mu \otimes \nu). \text{ Ainsi } x \mapsto \int_{F} f(x,y) \nu(dy) \text{ est dans } \mathcal{L}^{1}(E,\mathcal{E},\mu) \text{ et de la même manière,}$ $y \mapsto \int_E f(x,y)\mu(dx)$ est dans $\mathcal{L}^1(F,\mathcal{F},\nu)$.

Enfin, en décomposant $f = f^+ - f^-$, et en appliquant le théorème de Fubini-Tonelli à f^+ et à f^- , on obtient le dernier

Exemples : Pour calculer $\int_{[2,3]\times[0,1]} xy\lambda^{(2)}(dx,dy)$, on peut remarquer que la mesure de Lebesgue est σ -finie et que $(x,y)\mapsto xy1_{[2,3]\times[0,1]}\in\mathcal{L}^1(\mathbb{R}^2)$ donc le théorème de Fubini-Lebesgue s'applique.

 $\int_{[2,3]\times[0,1]} xy \lambda^{(2)}(dx,dy) = \int_{[0,1]} y(\int_{[2,3]} x\lambda(dx))\lambda(dy) = \frac{5}{4}.$ Pour calculer $\sum_{n\in\mathbb{N},m\in\mathbb{N}} \frac{1}{2^n 3^m}$, on peut remarquer que la mesure de comptage sur \mathbb{N} est σ -finie sur \mathbb{N} , et donc le théorème de Fubini-Tonelli s'applique : $\sum_{n\in\mathbb{N},m\in\mathbb{N}}\frac{1}{2^n3^m}=\sum_{n\in\mathbb{N}}\frac{1}{2^n}\sum_{m\in\mathbb{N}}\frac{1}{3^m}=3.$

Proposition (Changement de variable linéaire)

Soit $\phi: \mathbb{R}^d \to \mathbb{R}^d$ une application linéaire bijective. Soit f une application intégrable sur \mathbb{R}^d . Alors :

$$\int_{\mathbb{R}^d} f(\phi(x))|\det\phi|\lambda^{(d)}(dx) = \int_{\mathbb{R}^d} f(y)\lambda^{(d)}(dy)$$

et pour tout borélien A:

$$\int_A f(\phi(x))|\det\phi|\lambda^{(d)}(dx) = \int_{\phi(A)} f(y)\lambda^{(d)}(dy)$$

Exemple: $\int_{B(0,1)} (y_1^2 + y_2^2) \lambda^{(2)}(dy_1, dy_2) = \int_{B(0,\frac{1}{n})} ((2x_1)^2 + (2x_2)^2) 4\lambda^{(2)}(dx_1, dx_2).$

Définition

Soit U et V deux ouverts non vides de \mathbb{R}^d , $\phi:U\to V$ un difféomorphisme \mathcal{C}^1 et $x=(x_1,...,x_n)\in\mathbb{R}^d$. On appelle matrice jacobienne de ϕ la matrice :

$$D\phi(x) = \begin{pmatrix} \frac{\partial \phi_1}{\partial x_1}(x_1, ..., x_n) & \dots & \frac{\partial \phi_1}{\partial x_d}(x_1, ..., x_d) \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_d}{\partial x_1}(x_1, ..., x_d) & \dots & \frac{\partial \phi_d}{\partial x_d}(x_1, ..., x_d) \end{pmatrix}$$

On appelle alors **Jacobien** de ϕ en x le nombre réel $J\phi(x) = \det(D\phi(x))$.

Proposition (Changement de variable linéaire)

Soit U et V deux ouverts non vides de \mathbb{R}^d et $\phi: U \to V$ un difféomorphisme \mathcal{C}^1 . Soit f une application borélienne sur U. Alors f est intégrable sur V ssi $(f \circ \phi)|J\phi|$ est intégrable sur U. Dans ce cas :

 $\int_{U} f(\phi(x))|J\phi(x)|\lambda^{(d)}(dx) = \int_{V} f(y)\lambda^{(d)}(dy)$

Exemple: En prenant $\phi: (r, \theta) \mapsto (r \cos \theta, r \sin \theta)$, on a $J\phi = r$ et: $\int_{B(0,1)} e^{x_1^2 + x_2^2} \lambda^{(2)}(dx_1, dx_2) = \int_{]0,1[\times]0,2\pi[} r e^{r^2} \lambda(dr, d\theta) = \int_{]0,2\pi[} (\int_{[0,1]} r \exp(r^2) \lambda(dr)) \lambda(d\theta) = \pi(e-1).$

Section VII.3 - Indépendance des variables aléatoires

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to (E, \mathcal{E}), Y : \Omega \to (F, \mathcal{F})$ deux variables aléatoires. La construction de la tribu produit et de la mesure produit permet de définir une variable aléatoire $Z : \Omega \to (E \times F, \mathcal{E} \otimes \mathcal{F})$ telle que $Z(\omega) = (X(\omega), Y(\omega))$. Z sera notée (X, Y). La loi $P_{(X,Y)}$ de (X,Y) est la mesure définie sur $\mathcal{E} \otimes \mathcal{F}$ par $\forall C \in \mathcal{E} \otimes \mathcal{F}, P_{(X,Y)}(C) = \mathbb{P}((X,Y) \in C)$.

Remarque : Pour $C = A \times B$ avec $A \in \mathcal{E}$ et $B \in \mathcal{F}$, on a $P_{(X,Y)}(C) = \mathbb{P}((X,Y) \in A \times B) = \mathbb{P}(X \in A, Y \in B)$.

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to (E, \mathcal{E}), Y : \Omega \to (F, \mathcal{F})$ deux variables aléatoires. On note P_X la loi de X, P_Y la loi de Y et $P_{(X,Y)}$ la loi jointe de (X,Y). On dit alors que X et Y sont **indépendantes** ssi $P_{(X,Y)} = P_X \otimes P_Y$. Les lois P_X et P_Y sont appelées **lois marginales** de (X,Y).

Proposition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to (E, \mathcal{E}), Y : \Omega \to (F, \mathcal{F})$ deux variables aléatoires. X et Y sont indépendantes ssi :

$$\forall A \in \mathcal{E}, \forall B \in \mathcal{F}, \mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(X \in B)$$

<u>Démonstration</u>: Le sens \Rightarrow découle directement de la définition de l'indépendance, et le sens \Leftarrow repose sur le fait que $P_{(X,Y)}$ et $P_X \otimes P_Y$ sont finies et coïncident sur un π -système, donc sont égales par le lemme de classe monotone.

Proposition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $X : \Omega \to (E, \mathcal{E})$ et $Y : \Omega \to (F, \mathcal{F})$ deux variables aléatoires. X et Y sont indépendantes ssi pour toutes fonctions bornées mesurables $f : E \to \mathbb{R}$ et $g : F \to \mathbb{R}$, $\mathbb{E}(f(X)g(Y)) = \mathbb{E}(f(X))\mathbb{E}(g(Y))$.

<u>Démonstration</u>: Le sens direct se démontre en remarquant qu'on a l'égalité pour les fonctions indicatrices, puis on procède comme habituellement : on étend l'égalité aux fonctions étagées positives, puis aux fonctions positives, puis à toute fonction bornée mesurable. Le sens indirect se montre en choisissant, pour $A \in \mathcal{E}$ et $B \in \mathcal{F}$, les fonctions $f = 1_A$ et $g = 1_B$.

Remarque : X et Y sont indépendantes si et seulement si pour toutes fonctions bornées mesurables $f: E \to \mathbb{R}$ et $g: F \to \mathbb{R}$, f(X) et g(Y) sont indépendantes.

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(X_i)_{i \in I}$ une famille de variables aléatoires. On dit que $(X_i)_{i \in I}$ est une famille **indépendante** ssi :

Pour tout
$$J \subset I$$
 fini, $P_{((X_i)_{i \in J})} = \bigotimes_{i \in J} P_{X_i}$

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(\mathcal{A}_i)_{i \in I}$ une famille de sous-tribus de \mathcal{A} . On dit que $(\mathcal{A}_i)_{i \in I}$ est une famille de sous-tribus **indépendante** ssi :

$$\forall J \subset I \text{ fini}, \forall A_i \in \mathcal{A}_i, \mathbb{P}(\cap_{i \in J} A_i) = \prod_{i \in J} \mathbb{P}(A_i)$$

Proposition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $X : \Omega \to (E, \mathcal{E})$ et $Y : \Omega \to (F, \mathcal{F})$ deux variables aléatoires. X et Y sont indépendantes ssi pour toutes fonctions bornées mesurables $f : E \to \mathbb{R}$ et $g : F \to \mathbb{R}$, $\mathbb{E}(f(X)g(Y)) = \mathbb{E}(f(X))\mathbb{E}(g(Y))$.

Proposition

Une famille de variables aléatoires $(X_i)_{i \in J}$ est indépendantes ssi les tribus $\sigma(X_i)$ le sont.

Section VII.4 - Convolution

Définition

Soit (E, +) un groupe commutatif, et \mathcal{T} une topologie rendant l'application $(x, y) \mapsto x - y$ continue. On munit E de sa tribu borélienne $\mathcal{B}(\mathcal{T})$. Soit λ et μ deux mesures σ -finies sur $(E, \mathcal{B}(\mathcal{T}))$. On appelle **produit de convolution** de la mesure μ par la mesure ν la mesure $\mu \times \nu$ définie par :

$$\forall A \in \mathcal{B}(\mathcal{T}), (\mu * \nu)(A) = \int_{E \times E} 1_A(x+y)(\mu \otimes \nu)(dx, dy)$$

Remarque : $\mu * \nu$ est bien définie puisque $(x,y) \mapsto x + y$ est borélienne. $\mu * \nu$ est la mesure image de $\mu \otimes \nu$ par $(x,y) \mapsto x + y$.

Proposition

Si μ et ν sont des mesures de probabilité, alors $\mu * \nu$ est une mesure de probabilité.

<u>Démonstration</u>: $(\mu * \nu)(E) = \int_{E \times E} 1_E(x+y)(\mu \otimes \nu)(dx,dy) = (\mu \otimes \nu)(E) = 1.$

Proposition

Si X et Y sont deux variables aléatoires indépendantes, alors $P_X * P_Y = P_{X+Y}$.

 $\underline{\text{D\'emonstration}}: P_{X+Y}(A) = \mathbb{P}((X+Y) \in A) = \int_{E \times E} 1_A(X+Y) dP_{X,Y} = \int_{E \times E} 1_A(x+y) (P_X \otimes P_Y) (dx, dy) = P_X * P_Y.$

Proposition

La mesure de Dirac en 0 est élément neutre pour la convolution.

<u>Démonstration</u>: $(\delta * \nu)(A) = \int_E (\int_E 1_A(x+y)\delta(dx))\nu(dy) = \int_E 1_A(y)\nu(dy) = \nu(A)$.

Proposition

Le produit de convolution est commutatif.

<u>Démonstration</u>: $\mu * \nu$ est la mesure image de $\mu \otimes \nu$ par $(x,y) \mapsto x + y$. L'addition étant commutative, on a donc $\mu * \nu = \nu * \mu$.

Définition

Soit f et g deux fonctions mesurables de \mathbb{R}^d dans \mathbb{R} . Lorsque $\int_{\mathbb{R}^d} |f(x-y)g(y)| \lambda^{(d)}(dy) < +\infty$, on définit le **produit de convolution** de la fonction f par la function g par :

$$f * g = x \mapsto \int_{\mathbb{R}^d} f(x - y)g(y)\lambda^{(d)}(dy)$$

Remarque : Si f et g sont positives et si μ et ν sont des mesures de densité f et g par rapport à la mesure de Lebesgue, $\overline{\text{alors } \mu * \nu}$ est une mesure de densité f * g par rapport à la mesure de Lebesgue.

Proposition

- $\bullet \ f * g = g * f$

 $\bullet (f * g) * h = f * (g * h)$ $\forall a \in \mathbb{R}, f * (g + ah) = f * g + a(f * h)$

Théorème

Soit f et g dans $L^1(\mathbb{R}^d, \mathcal{B}(R^d), \lambda^{(d)})$. Alors:

- (f * g)(x) est définie pour presque tout $x \in \mathbb{R}$
- $f * g \in L^1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda^{(d)})$
- $||f * g||_1 \le ||f||_1 ||g||_1$

Démonstration : On note par commodité $\lambda = \lambda^{(d)}$. D'après le théorème de Fubinni-Tonelli :

$$\begin{split} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x-y)| |g(y)| \lambda(dy) \right) \lambda(dx) &= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x-y)| |g(y)| \lambda(dx) \right) \lambda(dx) \\ \int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(t-y)| |g(y)| \lambda(dt) \right) \lambda(dy) &= \int_{\mathbb{R}^d} |g(y)| \left(\int_{\mathbb{R}^d} |f(x)| \lambda(dx) \right) \lambda(dy) \\ &= \int_{\mathbb{R}^d} |f(x)| \lambda(dx) \int_{\mathbb{R}^d} |g(y)| \lambda(dy) < +\infty \end{split}$$

Théorème

Soit p et q dans $[1, +\infty]$ conjugués, soit $f \in L^p(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda^{(d)})$ et $g \in L^q(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda^{(d)})$. Alors f * q est bien définie, uniformément continue et bornée.

<u>Démonstration</u>: D'après Hölder:

$$||(y \mapsto f(x-y)) \times g||_1 \le ||y \mapsto f(x-y)||_p ||g||_q = ||f||_p ||g||_q$$

Ainsi f * g est bien définie. On ne démontrera pas ici les autres propriétés.

Théorème

Soit $f \in \mathcal{C}^1_C(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda^{(d)})$. Alors f * g est bien définie, de classe C^1 et $\forall i \in [1, d], \partial_i(f * g) = (\partial_i f) * g$.

<u>Démonstration</u>: On traite le cas d=1. On a $\mathcal{C}^1_C(\mathbb{R}) \subset \mathcal{C}^0_C(\mathbb{R}) \subset L^1(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d),\lambda^{(d)})$ donc f*g et f'*g sont bien définies. Soit $x \in \mathbb{R}$ et $\epsilon > 0$. Soit $z \in \mathbb{R}$ et h > 0. Alors :

$$f(z+h) - f(z) = \int_{[z,z+h]} f'(u)\lambda(du)$$

$$\Rightarrow f(z+h) - f(z) - hf'(z) = \int_{[z,z+h]} (f'(u) - f'(z))\lambda(du)$$

$$= h \int_{[0,1]} (f'(z+hv) - f'(z))\lambda(dv)$$

$$\Rightarrow \frac{f(z+h) - f(z)}{h} - f'(z) = \int_{[0,1]} (f'(z+hv) - f'(z)) \lambda(dv)$$

f' est continue sur un compact, donc uniformément continue (Heine), donc il existe $\eta > 0$ tel que $|z_1 - z_2| < \eta \Rightarrow |f'(z_1) - f'(z_2)| < \frac{\epsilon}{||g||_1}$. Pour $h < \eta$, on a donc $|f'(z + hv) - f'(z)| < \frac{\epsilon}{||g||_1}$ d'où $|\frac{f(z+h) - f(z)}{h} - f'(z)| < \frac{\epsilon}{||g||_1}$. On a alors, en multipliant par g(y) et en intégrant :

$$\int_{\mathbb{R}} \left(\frac{f(x-y+h) - f(x-y)}{h} - f'(x-y) \right) g(y) \lambda(dy) < \epsilon$$

$$\Rightarrow \frac{(f*g)(x+h) - (f*g)(x)}{h} - (f'*g)(x) < \epsilon$$

D'où le résultat.

Proposition

Soit $f \in \mathcal{C}_C^k(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda^{(d)})$. Alors f * g est bien définie, de classe \mathcal{C}^k et :

$$\partial_1^{n_1}...\partial_d^{n_d}(f*g) = (\partial_1^{n_1}...\partial_d^{n_d}f)*g$$

où $n_1 + ... + n_d \le k$.

<u>Démonstration</u>: C'est un corollaire du théorème précédent.

Définition

Soit $u = (u_n)_{n \in \mathbb{Z}^d}$ et $v = (v_n)_{n \in \mathbb{Z}^d}$ deux suites.

La suite u * v dont le n-ième terme vaut

$$\sum_{k \in Z^d} u_{n-k} v_k$$

est le **produit de convolution** de $u = (u_n)_{n \in \mathbb{Z}^d}$ par $(v = (v_n)_{n \in \mathbb{Z}^d})$.

Remarques: On prendra gare au fait que n et k sont des multi-indices: $n = (n_1, ..., n_d)$ et $k = (k_1, ..., k_d)$.

Si u et v sont positives et si μ et ν sont des mesures de densité u et v par rapport à la mesure de comptage alors $\mu * \nu$ est une mesure de densité u * v par rapport à la mesure de comptage.

Si u et v sont absolument convergentes alors u * v est bien défini.

La mesure de Dirac δ en 0 est une mesure de densité $u=(u_n)_{n\in\mathbb{Z}}$ par rapport à la mesure de comptage pour $u_0=1$ et $\forall n\in\mathbb{Z}^d\setminus\{0,\}, u_n=0$. Cette suite $(u_n)_{n\in\mathbb{Z}^d}$ est donc élément neutre pour la convolution des suites.

Exemple: Soit $u_n = \frac{\alpha^n}{n!} e^{-\alpha}$ et $v_n = \frac{\beta^n}{n!} e^{-\beta}$, où α et β sont des réels strictement positifs. Soit la suite $(w_n)_{n \in \mathbb{N}} = \overline{(u_n)_{n \in \mathbb{N}} * (v_n)_{n \in \mathbb{N}}}$. Alors:

$$w_n = \sum_{k=0}^{n} u_{n-k} v_k = \sum_{k=0}^{n} \frac{\alpha^{n-k}}{(n-k)!} e^{-\alpha} \frac{\beta^k}{k!} e^{-\beta}$$

$$=\frac{e^{-(\alpha+\beta)}}{n!}\sum_{k=0}^{n}\binom{n}{k}\alpha^{n-k}\beta^k=\frac{(\alpha+\beta)^n}{n!}e^{-(\alpha+\beta)}$$

On vient ici de montrer que la somme de deux variables indépendantes suivant des lois de Poisson de paramètre α et β est une loi de Poisson de paramètre $\alpha + \beta$.

Définition

On appelle **noyau de sommabilité** toute suite $(k_n)_{n\in\mathbb{N}}$ de fonctions intégrables vérifiant :

- 1. $\int_{E} k_{n} d\mu = 1$
- 2. $\sup_{n\in\mathbb{N}}\int |k_n|d\mu<+\infty$
- 3. Pour tout $F \subset E \setminus \{0\}$ fermé, $\lim_{n \to +\infty} \int_F k_n d\mu = 0$

Soit $f \in L^p(E, \mathcal{E}, \mu)$ et $(k_n)_{n \in \mathbb{N}}$ un noyau de sommabilité. Alors :

$$\lim_{n \to +\infty} ||k_n * f - f||_p = 0$$

Exemple : On considère $D_k(x) = \sum_{n=-k}^k e^{inx}$ et $F_K(x) = \frac{1}{K} \sum_{k=0}^{K-1} D_k(x)$. On rappelle que nous avons déjà vu dans le chapitre V que :

$$F_K(x) = \frac{1}{K} \left(\frac{\sin \frac{Kx}{2}}{\sin \frac{x}{2}} \right)^2$$
 prolongé par K en $0[2\pi]$

 $(F_K)_{K\in\mathbb{N}^*}$ est un noyau de sommabilité pour $E=[0,2\pi]$. Dans le chapitre V, la démonstration effectuée pour démontrer que $\{x\mapsto e^{inx}, n\in\mathbb{Z}\}$ est une base hilbertienne de $L^2_{\mathbb{C}}([0,2\pi],\mathcal{B}([0,2\pi]),\frac{1}{2\pi}\lambda)$ revient fondamentalement à appliquer cette proposition.

On se place désormais dans \mathbb{R}^d avec $d \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$, on définit :

$$k_n(x) = x \mapsto n^d \exp(-\pi n^2 ||x||^2)$$

Il s'agit d'un noyau de sommabilité, qu'on appelle noyau de Gauss.

Définition

On appelle suite régularisante toute suite $(\rho_n)_{n\in\mathbb{N}}$ satisfaisant pour tout n:

- 1. $\int_E \rho_n d\mu = 1$
- $2. \ \rho_n \geq 0$
- 3. Supp $\rho_n \subset B(0, \epsilon_n)$ avec $\lim_{n \to +\infty} \epsilon_n = 0$
- 4. $\rho_n \in C^{+\infty}(\mathbb{R}^d)$

Exemple: On pose:

$$\Psi(x) = \begin{cases} \exp\left(\frac{-1}{1 - ||x||^2}\right) & \text{si } ||x|| < 1\\ 0 & \text{sinon} \end{cases}$$

et on note $c=\int_{\mathbb{R}^d}\Psi d\lambda.$ Un exemple de suite régularisante est alors :

$$\rho_n(x) = \frac{n^d}{c} \Psi(nx) = \begin{cases} \frac{n^d}{c} \exp\left(\frac{-1}{1 - n^2 ||x||^2}\right) & \text{si } ||x|| < \frac{1}{n} \\ 0 & \text{sinon} \end{cases}$$

Proposition

Soit $(\rho_n)_{n\in\mathbb{N}}$ une suite régularisante, $p\in[1,+\infty[$ et $f\in L^p(\mathbb{R}^d)$. Alors $\rho_n*f\to f$ dans L^p et $\rho_n*f\to f$ uniformément sur tout compact.

Théorème

Pour tout ouvert connexe Ω de \mathbb{R}^d et pour tout $p \in [1, +\infty[$, $\mathcal{D}(\Omega) = \mathcal{C}_C^{\infty}(\Omega)$ est dense dans $L^p(\Omega, \mathcal{B}(\Omega), \lambda)$.

Chapitre VIII. Vecteurs aléatoires

Section VIII.1 - Fonctions de répartition, Copules

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $X_1, ..., X_d$ des variables aléatoires définies sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que $X : \Omega \mapsto \mathbb{R}^d$ telle que

$$\forall \omega \in \Omega, X(\omega) = \begin{pmatrix} X_1(\omega) \\ \vdots \\ X_d(\omega) \end{pmatrix}$$

est un vecteur aléatoire.

On parle aussi de variable aléatoire multidimensionnelle.

Exemple : Le lancer de 2 dés peut être modélisée par un vecteur aléatoire de \mathbb{R}^2 .

Définition

Soit $X: \Omega \to \mathbb{R}^d$ un vecteur aléatoire $(X = (X_1, ..., X_d))$.

La fonction de répartition (multivariée) de X est la fonction $F_X : \mathbb{R}^d \to [0,1]$ définie par :

$$F_X(x_1, ..., x_d) = \mathbb{P}(X_i < x_i \text{ pour } i \in [1, d])$$

Proposition

Soit $X:\Omega\to R^d$ un vecteur aléatoire. Notons $F=F_X$. Alors :

- ullet F est croissante dans chacune de ses variables.
- \bullet F est continue à droite dans chacune de ses variables.
- Pour tout $i \in [1, d], \lim_{x_i \to -\infty} F(x_1, ..., x_d) = 0.$
- $\lim_{(x_1,...,x_d)\to(+\infty,...,+\infty)} F(x_1,...,x_d) = 1.$

Proposition

Soit $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$ un vecteur aléatoire dont la fonction de répartition est $F : \mathbb{R}^d \to \mathbb{R}$, alors :

$$\mathbb{P}(X \in [x_1^i, x_2^i], i \in [\![1,d]\!]) = \sum_{(i_1,...,i_d) \in \{1,2\}^d} (-1)^{(\sum_{j=1}^d i_j)} F(x_{i_1}^1,...,x_{i_d}^d)$$

 $\underline{\text{D\'emonstration}}$: Par récurrence sur d.

Proposition

Soit $X: \Omega \to \mathbb{R}^d$ un vecteur aléatoire. Sa loi $P_X: \mathbb{R}^d \to \mathbb{R}$ est caractérisée par sa fonction de répartition $F_X: \mathbb{R}^d \to \mathbb{R}$.

<u>Démonstration</u>: P_X caractérise F_X par construction de F_X , et F_X caractérise P_X par coïncidence sur le π -système des pavés.

Définition

Soit $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$ un vecteur aléatoire et F_X sa fonction de répartition. On appelle **lois marginales** de X les lois :

• des X_i prises séparément

$$F_{X_i}(x_i) = \mathbb{P}(X_i \le x_i) = \lim_{(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d \to (+\infty, \dots, +\infty)} F_X(x_1, \dots, x_d)$$

 \bullet ou de plusieurs composantes $X_{i_1},...,X_{i_k}$ du vecteur aléatoire X

$$\begin{split} F_{X_{i_1},...,X_{i_k}}(x_{i_1},...,x_{i_k}) &= \mathbb{P}(X_{i_1} \leq x_{i_1},...,X_{i_k} \leq x_{i_k}) \\ &= \lim_{x_{i_i} \to +\infty \text{ pour } j \notin [\![1,k]\!]} F_X(x_1,...,x_d) \end{split}$$

Proposition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $X_i : \Omega \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ d variables aléatoires. Alors, les X_i sont indépendantes ssi :

$$\forall (x_1, ..., x_d) \in \mathbb{R}^d, F_X(x_1, ..., x_d) = F_{X_1}(x_1) \times ... \times F_{X_d}(x_d)$$

Si les X_i admettent une densité f_{X_i} , alors elles sont indépendantes ssi :

$$\forall (x_1, ..., x_d) \in \mathbb{R}^d, f_X(x_1, ..., x_d) = f_{X_1}(x_1) \times ... \times f_{X_d}(x_d)$$

Définition

On appelle **copule** de dimension 2 toute fonction $C: \mathbb{R}^2 \to [0,1]$ tq:

- C(x, y) = 0 si $x \le 0$ ou $y \le 0$.
- $C(x, y) = x \text{ si } y \ge 1.$
- $C(x,y) = y \text{ si } x \ge 1.$
- C(x,y) = 1 si $x \ge 1$ et $y \ge 1$.
- $0 \le a \le b \le 1$ et $0 \le c \le d \le 1$ entraı̂ne :

$$C(b,d) - C(b,c) - C(a,d) + C(a,c) \ge 0$$

Remarque : Il suffit de définir C sur $[0,1]^2$.

Exemples: C(x,y) = xy pour $(x,y) \in [0,1]^2$ est une copule. On l'appelle la **copule d'indépendance**. $C(x,y) = \min(x,y)$ pour $(x,y) \in [0,1]^2$ est une copule. On l'appelle la **copule de comonotonicité**. $C(x,y) = e^{-((-\ln x)^{\theta} + (-\ln y)^{\theta})^{\frac{1}{\theta}}}$ pour $(x,y) \in [0,1]^2$ est une copule. On l'appelle la **copule de Gumbel** de paramètre $\theta \in [1,+\infty[$.

Théorème (Sklar)

• Soit $Z = (X, Y) : \Omega \to \mathbb{R}^2$ un vecteur aléatoire. On note F_Z la fonction de répartition (bi-variée) de Z, F_X et F_Y les fonctions de répartition de X et Y.

Alors, il existe une copule C de dimension 2 telle que $F_Z(x,y) = C(F_X(x), F_Y(y))$. Elle est unique si F_X et F_Y sont continues

• Soit $X : \Omega \to \mathbb{R}$ et $Y : \Omega \to \mathbb{R}$ deux variables aléatoires, de fonctions de répartition F_X et F_Y . Soit C une copule de dimension 2.

Alors, on peut construire une variable aléatoire $Z:\Omega\to\mathbb{R}^2$ sur un espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$ dont la fonction de répartition est $F_Z(x,y)=C(F_X(x),F_Y(y))$.

Définition

On appelle **copule** de dimension d toute fonction $C: \mathbb{R}^d \to [0,1]$ tq:

- $C(x_1,...,x_d)=0$ si l'un des x_i est nul.
- $C(x_1,...,x_d) = x_j$ si $\forall i \in [1,d] \setminus \{j\}, x_i = 1$.
- $C(x_1,...,x_d) = 1$ si $\forall i \in [1,d], x_i = 1$.
- $\forall i \in [1, d], 0 \le x_1^i \le x_2^i \le 1$ entraı̂ne :

$$\sum_{(i_1,...,i_d)\in\{1,2\}^d} (-1)^{(\sum_{j=1}^d i_j)} C(x_{i_1}^1,...,x_{i_d}^d) \geq 0$$

Remarque : Le théorème de Sklar se généralise aux copules de dimension d.

Section VIII.2 - Moments, Covariance

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, et $X : \Omega \to \mathbb{R}^d$ un vecteur aléatoire tel que $\forall i \in [\![1,d]\!], X_i \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. On appelle **espérance** de X le vecteur

$$\mathbb{E}(X) = \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_d) \end{pmatrix}$$

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $X : \Omega \to \mathbb{R}$ et $Y : \Omega \to \mathbb{R}$ deux variables aléatoires dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$. On appelle **covariance** de X et Y le réel

$$Cov(x, y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

Proposition

Soit $X: \Omega \to \mathbb{R}$ et $Y: \Omega \to \mathbb{R}$ deux variables aléatoires dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$.

- $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$.
- Cov(X, Y) = Cov(Y, X).
- Cov(X, X) = Var(X).
- Cov : $L^2(\Omega, \mathcal{F}, \mathbb{P}) \times L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ est bilinéaire.
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Proposition (inégalité de Cauchy-Schwarz)

Soit X et Y deux variables aléatoires réelles dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$. Alors :

$$|\operatorname{Cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$$

 $\underline{\text{D\'emonstration}} : |\operatorname{Cov}(X,Y)| = |\mathbb{E}((X - \mathbb{E}(X)(Y - \mathbb{E}(Y)))| = |\langle X - \mathbb{E}(X), Y - \mathbb{E}(Y)\rangle_{L^2(\Omega,\mathcal{F},\mathbb{P})}| \leq ||X - \mathbb{E}(X)||_{L^2(\Omega,\mathcal{F},\mathbb{P})}||Y - \mathbb{E}(Y)||_{L^2(\Omega,\mathcal{F},\mathbb{P})} = \sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)} \text{ par l'in\'egalit\'e de Cauchy-Schwarz classique.}$

Définition

Soit X et Y deux variables aléatoires réelles dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$ de variance non nulle. On appelle **coefficient de corrélation linéaire** le réel de [-1, 1]

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Soit X et Y deux variables aléatoires réelles dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$ de variance non nulle. Alors :

$$\exists (a,b) \in \mathbb{R}^2, Y = aX + b \Leftrightarrow |\rho_{X,Y}| = 1$$

Proposition

Soit X et Y deux variables aléatoires réelles dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$.

Si X et Y sont indépendantes, alors Cov(X,Y) = 0. Si de plus elles sont de variance non nulle, alors $\rho_{X,Y} = 0$.

<u>Démonstration</u>: $Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0.$

Définition

Soit X et Y deux variables aléatoires réelles dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$.

X et Y sont dites linéairement indépendantes si Cov(X,Y) = 0.

Remarques: Deux variables aléatoires indépendantes sont linéairement indépendantes, mais la réciproque est fausse. Par exemple, $X \sim \mathcal{U}([-1,1])$ et $Y = X^2$ ne sont pas indépendantes, mais $Cov(X,Y) = \mathbb{E}(X^3) - \mathbb{E}(X^2)\mathbb{E}(X) = 0 - 1 \times 0 = 0$.

Cov : $L^2(\Omega, \mathcal{F}, \mathbb{P}) \times L^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ est bilinéaire, symétrique et positive, mais pas définie : en effect $\operatorname{Cov}(X, X) = \operatorname{Var}(X) = 0$ n'implique pas que X = 0 (seulement X constante). On peut remédier à cela en considérant la relation d'équivalence \equiv définie par $X \equiv Y$ ssi X et Y diffèrent d'une constante ($\exists a \in \mathbb{R}, Y = X + a$). Cov est alors un produit scalaire sur $L^2(\Omega, \mathcal{F}, \mathbb{P})/\equiv$. On a par ailleurs la complétude de $L^2(\Omega, \mathcal{F}, \mathbb{P})/\equiv$, ce qui nous permet d'affirmer que $(L^2(\Omega, \mathcal{F}, \mathbb{P})/\equiv$, Cov) est un espace de Hilbert pour lequel la norme induite est l'écart-type, et l'orthogonalité est l'indépendance linéaire.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, $X : \Omega \to \mathbb{R}^d$ un vecteur aléatoire tel que $\forall i \in [\![1,d]\!], X_i \in L^2(\Omega, \mathcal{F}, \mathbb{P})$. On appelle **matrice de covariances** de X la matrice

$$\Sigma = \begin{pmatrix} \operatorname{Cov}(X_1, X_1) & \dots & \operatorname{Cov}(X_1, X_d) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_d, X_1) & \dots & \operatorname{Cov}(X_d, X_d) \end{pmatrix}$$

Proposition

 Σ est la matrice de la forme quadratique q définie sur $L = \mathbb{R}^d$ par

$$\forall V \in \mathbb{R}^d, q(V) = \text{Var}(\langle X, V \rangle)$$

Démonstration : Soit q la forme quadratique associée à la matrice Σ . Alors :

$$q(V) = {}^{t}V\Sigma V = \sum_{i=1}^{d} \sum_{j=1}^{d} \text{Cov}(X_i, X_j) V_i V_j = \sum_{i=1}^{d} \sum_{j=1}^{d} \text{Cov}(V_i X_i, V_j X_j)$$

$$= \operatorname{Cov}(\sum_{i=1}^d V_i X_i, \sum_{i=1}^d V_j X_j) = \operatorname{Cov}(\langle X, V \rangle, \langle X, V \rangle) = \operatorname{Var}(\langle X, V \rangle)$$

Proposition

La matrice de covariances est symétrique et positive.

<u>Démonstration</u>: $Cov(X_i, X_j) = Cov(X_j, X_i)$ et $\forall V \in \mathbb{R}^d, {}^tV\Sigma V = Var(\langle X, V \rangle) \geq 0$.

Soit $X: \Omega \to \mathbb{R}^d$ un vecteur aléatoire admettant une densité f_X dont le support est A. Soit $\phi: A \to B$ un difféomorphisme \mathcal{C}^1 et $Y = \phi(X)$.

Alors Y admet une densité f_Y définie par

$$f_Y = f_X \circ \phi^{-1} \frac{1}{|J_\phi \circ \phi^{-1}|} 1_B$$

où $J_{\phi} = \det D\phi$ est la jacobienne de ϕ .

 $\underline{\text{D\'emonstration}}: \text{Soit } V \in \mathcal{B}(\mathbb{R}^d) \text{ et } U = \phi^{-1}(V \cap B).$

$$\mathbb{P}(X \in U) = \int_{U} f_X(x) \lambda^{(d)}(dx) = \int_{\phi^{-1}(V \cap B)} f_X(x) \lambda^{(d)}(dx)$$

$$\Rightarrow \mathbb{P}(Y \in B \cap D) = \int_{V \cap B} f_X(\phi^{-1}(y)) |J_{\phi^{-1}}(y)| \lambda^{(d)}(dy)$$

Chapitre IX. Transformée de Fourier, Fonction caractéristique

Section IX.1 - Transformée de Fourier d'une mesure

Définition

Soit μ une mesure finie sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. On appelle **transformée de Fourier** de μ la fonction $\hat{\mu} : \mathbb{R}^d \to \mathbb{C}$ définie par

 $\hat{\mu}(y) = \int_{\mathbb{R}^d} e^{i\langle x, y \rangle} \mu(dx)$

Remarque : Le fait que l'on ait choisi une mesure finie rend $e^{i\langle x,y\rangle}$ intégrable. On ne peut pas définir la transformée de Fourier de $\lambda^{(d)}$.

Exemples: Soit $a \in \mathbb{R}^d$ et $\mu = \delta_a$, alors $\hat{\mu}(y) = \int_{\mathbb{R}^d} e^{i\langle x,y \rangle} \delta_a(dx) = e^{i\langle a,x \rangle}$. Soit $\mu = 1_{[-1,1]} \frac{1}{2\pi} \lambda$, alors $\hat{\mu}(y) = \int_{\mathbb{R}^d} e^{ixy} 1_{[-1,1]} \frac{1}{2\pi} \lambda(dx)$.

Proposition

La fonction $\hat{\mu}$ est continue et bornée (par $\hat{\mu}(0) = \mu(\mathbb{R}^d)$)

 $\underline{\text{D\'emonstration}:} \text{ Soit } y \in \mathbb{R}^d. \text{ Alors } |\hat{\mu}(y)| = |\int_{\mathbb{R}^d} e^{i\langle x,y\rangle} \mu(dx)| \leq \int_{\mathbb{R}^d} |e^{i\langle x,y\rangle}| \mu(dx) = \int_{\mathbb{R}^d} \mu(dx) = \mu(\mathbb{R}^d). \text{ Ainsi } \hat{\mu} \text{ est born\'ee. Pour la continuit\'e, on peut appliquer le th\'eor\`eme de continuit\'e sous le signe somme avec domination de <math>|e^{i\langle x,y\rangle}|$ par 1.

Théorème

Soit μ et ν deux mesures finies sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, alors

$$\widehat{\mu * \nu} = \hat{\mu}\hat{\nu}$$

Démonstration : Soit $x \in \mathbb{R}^d$.

$$\widehat{\mu * \nu}(x) = \int_{\mathbb{R}^d} e^{i\langle x, y \rangle} (\mu * \nu) (dy)$$

 $\mu * \nu$ est la mesure image de la somme pour la mesure produit donc :

$$\widehat{\mu * \nu}(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} e^{i\langle x, u + v \rangle} (\mu \otimes \nu) (du, dv)$$

$$= \int_{\mathbb{R}^d} e^{i\langle x,u\rangle} \mu(du) \int_{\mathbb{R}^d} e^{i\langle x,v\rangle} \nu(dv) = \hat{\mu(x)} \hat{\nu(x)}$$

D'où le résultat.

Théorème

Soit μ et ν deux mesures finies sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, alors

$$\hat{\mu} = \hat{\nu} \Leftrightarrow \mu = \nu$$

Section IX.2 - Transformée de Fourier d'une fonction

Définition

Soit $f \in L^1(\mathbb{R})$. On appelle **transformée de Fourier** de f la fonction $\hat{f} : \mathbb{R} \to \mathbb{C}$ définie par

$$\hat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} f(x) \lambda(dx)$$

On la note aussi $\mathcal{F}f$.

Remarque : La fonction $\mathcal{F}f$ est bien définie puisque $|e^{-ixy}f(x)|=|f(x)|$ et $f\in L^1(\mathbb{R})$.

Proposition

Lorsque $f \in L^1(\mathbb{R})$, la fonction $\mathcal{F}f$ est continue est bornée sur \mathbb{R} . De plus, $||\mathcal{F}f||_{\infty} \leq \frac{1}{\sqrt{2\pi}}||f||_1$ et $\lim_{x \to -\infty} \mathcal{F}f(x) = \lim_{x \to +\infty} \mathcal{F}f(x) = 0$

<u>Démonstration</u>: Si f est à valeurs positives, on pose $\lambda_f = \frac{1}{2\pi} f \lambda$. Alors $\hat{\lambda_f} \leq \lambda_f(\mathbb{R})$, donc $\hat{\lambda_f}$ est borné par $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f d\lambda = \frac{1}{2\pi} \int_{\mathbb{R}} f d\lambda$ $\frac{1}{\sqrt{2\pi}}||f||_1$. On a aussi la continuité par le résultat de la section précédente. Dans le cas général, on peut refaire un raisonnement analogue sur la fonction et non la mesure.

Les limites en $+\infty$ et $-\infty$ s'obtiennent en établissant le résultat sur les fonctions f en escalier puis en raisonnant par densité des fonctions en escalier dans $L^1(\mathbb{R})$.

Proposition

Soit $f, g \in L^1(\mathbb{R})$ et $a, b \in \mathbb{C}$. Alors :

- $\mathcal{F}(af + bg) = a\mathcal{F}f + b\mathcal{F}g$.
- $\forall c \in \mathbb{R}^*, \mathcal{F}(x \mapsto f(cx)) = y \mapsto \frac{1}{c} \mathcal{F}f(\frac{y}{c}).$ $\forall x_0 \in \mathbb{R}^*, \mathcal{F}(x \mapsto f(x x_0)) = e^{-ix_0y} \mathcal{F}f.$
- $\mathcal{F}(f * g) = \sqrt{2\pi} \mathcal{F} f \mathcal{F} g$.

Démonstration : La première proposition découle de la linéarité de l'intégrale, les deux suivantes des changements de variables $x \mapsto cx$ et $x \mapsto x - x_0$ et la dernière en utilisant les mesures de densité f et g.

Proposition

Si f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors :

- $\mathcal{F}f \in C^1(\mathbb{R})$.
- $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ixf(x)).$

<u>Démonstration</u>: $\forall y \in \mathbb{R}, (x \mapsto f(x)e^{-ixy}) \in L^1(\mathbb{R}), \forall x \in R, l'application <math>y \mapsto f(x)e^{-ixy}$ est dérivable et $(y \mapsto f(x)e^{-ixy})$ $f(x)e^{-ixy}$ $\leq |xf(x)|$ qui est intégrable. Le théorème de dérivation des intégrales à paramètre donne alors le résultat.

Proposition

Soit $f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R})$ tel que $f' \in L^1(\mathbb{R})$. Alors $\mathcal{F}(f') = y \mapsto iy(\mathcal{F}f)(y)$.

<u>Démonstration</u>: $\mathcal{F}(f')$ est bien définie puisque f' existe et $f' \in L^1(\mathbb{R})$. Soit A > 0, alors:

$$\frac{1}{\sqrt{2\pi}} \int_{[-A,A]} f'(x)e^{-ixy} \lambda(dx) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x)e^{-ixy} dx$$

$$iy \int_{-A}^{A} f(x)e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x)e^{-ixy} dx$$

 $=\frac{iy}{\sqrt{2\pi}}\int_{A}^{A}f(x)e^{-ixy}dx+\frac{1}{\sqrt{2\pi}}\left[f(x)e^{-ixy}\right]_{-A}^{A}$

En faisant tendre A vers $+\infty$, on obtient le résultat.

Définition

Soit $F \in L^1(\mathbb{R})$. On appelle **transformée de Fourier inverse** de F la fonction $\overline{\mathcal{F}} : \mathbb{R} \to \mathbb{C}$ définie par :

$$\overline{\mathcal{F}}F = y \mapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbb{T}} e^{ixy} F(x) \lambda(dx)$$

On la note aussi parfois \mathcal{F}^{-1} .

Remarque: La fonction $\mathcal{F}f$ est bien définie puisque $|e^{ixy}F(x)|=|F(x)|$ et $F\in L^1(\mathbb{R})$.

Soit $f \in L^1(\mathbb{R})$ telle que $\mathcal{F}f \in L^1(\mathbb{R})$, alors

$$\overline{\mathcal{F}}\mathcal{F}f = f$$
 p.p.

Démonstration:

$$(\overline{\mathcal{F}}\mathcal{F}f)(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ixu} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-iuy} f(y) \lambda(dy) \right) \lambda(du)$$

A ce stade, on pourrait être tenté d'appliquer Fubini, mais ce n'est pas possible ici car $(u, y) \mapsto e^{iu(x-y)} f(y) \notin L^1(\mathbb{R}^2)$. Cependant, pour $n \in \mathbb{N}^*$, posons $a_n(u) = \frac{1}{2\pi} e^{-\frac{|u|}{n}}$ et notons $k_n = \mathcal{F}a_n$.

$$k_n(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixu - \frac{|u|}{n}} \lambda(du)$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}^-} e^{-ixu + \frac{u}{n}} \lambda(du) + \frac{1}{2\pi} \int_{\mathbb{R}^+} e^{-ixu - \frac{u}{n}} \lambda(du)$$

$$= \frac{1}{2\pi} \left(\frac{1}{-ix + \frac{1}{n}} + \frac{1}{ix + \frac{1}{n}} \right) = \frac{n}{\pi} \frac{1}{1 + (nx)^2}$$

On remarque que $\int_{\mathbb{R}} k_n d\lambda = 1$, $\sup_{n \in \mathbb{N}} \int_{\mathbb{R}} |k_n| d\lambda < +\infty$ et pour tout $F \subset \mathbb{R}^*$ fermé, $\lim_{n \to +\infty} \int_F k_n d\lambda = 0$. Ainsi, k_n est un noyau de sommabilité. Ainsi $k_n * f \to f$ lorsque n tend vers $+\infty$ dans L^p . Or :

$$(k_n * f)(x) = \int_{\mathbb{R}} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} a_n(u) e^{-u(x-y)} \lambda(du) \right) f(y) \lambda dy$$

et $(u,y) \mapsto e^{i(y-u)x} a_n(u) f(y) \in L^1(\mathbb{R}^2)$, ce qui nous permet d'utiliser le théorème de Fubini :

$$(k_n * f)(x) = \int_{\mathbb{R}} a_n(u)e^{-iux} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{iuy} f(y)\lambda(dy)\right) \lambda(du)$$
$$= a_n(-u)e^{iux} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-iuy} f(y)\lambda(dy)\right) \lambda(du) = \int_{\mathbb{R}} a_n(u)e^{iux} (\mathcal{F}f)(u)\lambda(du)$$

Puisque $|a_n(u)e^{iux}(\mathcal{F}f)(u)| \le |(\mathcal{F}f)(u)|$ avec $\mathcal{F}f \in L^1(\mathbb{R})$, le théorème de convergence dominée s'applique. Puisque l'on a la convergence L^p du membre de gauche, on peut trouver une extractrice ϕ telle que la sous-suite $(k_{\phi(n)}*f)$ converge simplement vers f. Ainsi en passant à la limite lorsque $n \to +\infty$:

$$(k_{\phi(n)} * f)(x) = \int_{\mathbb{R}} a_{\phi(n)}(u)e^{iux}(\mathcal{F}f)(u)\lambda(du)$$
$$\Rightarrow f(x) = \overline{\mathcal{F}}\mathcal{F}(x)$$

Ce qui nous donne le résultat attendu.

Remarque: Si $f \in L^1(\mathbb{R})$, on a pas forcément $\mathcal{F}f \in L^1(\mathbb{R})$. Par exemple, avec $f = 1_{[-1,1]} \in L^1(\mathbb{R})$, le calcul fournit $\overline{\mathcal{F}f} = \sqrt{\frac{2}{\pi}} \operatorname{sinc} \not\in L^1(\mathbb{R})$.

Définition

On appelle espace de Schwartz l'ensemble des fonctions $\phi \in C^{\infty}(\mathbb{R})$ à décroissance rapide, c'est-à-dire vérifiant

$$\forall (p,q) \in \mathbb{N}^2, \exists M > 0, \forall x \in \mathbb{R}, (1+x^2)^p |\phi^{(q)}(x)| \le M$$

On le note $\mathcal{S}(\mathbb{R})$.

Remarque : La décroissance rapide est équivalente à

$$\forall p \in \mathbb{N}, \exists C > 0, \sup_{\alpha \le p, \beta \le p} ||x^{\alpha} \phi^{(b)}||_{\infty} \le C$$

Proposition

Soit $\phi, \psi \in \mathcal{S}(\mathbb{R}), P \in \mathbb{R}[X]$ et $\lambda \in \mathbb{C}$.

Alors, ϕ' , ϕP , $\phi + \psi$, $\lambda \phi$ et $\phi \psi$ sont dans $\mathcal{S}(\mathbb{R})$.

Exemple : La fonction ϕ définie par $\phi(x) = e^{-x^2}$ est dans l'espace de Schwartz.

Définition

On dit que $\phi \in C^{\infty}(\mathbb{R})$ est dans $\mathcal{C}_{C}^{+\infty}(\mathbb{R}) = \mathcal{C}_{0}^{+\infty}(\mathbb{R}) = \mathcal{D}(\mathbb{R})$ si elle est à support compact, i.e. $\overline{\{x \in \mathbb{R}, \phi(x) \neq 0\}}$ compact.

Exemple : La fonction ϕ définie par

$$\phi(x) = \begin{cases} \exp\left(\frac{-1}{1-x^2}\right) & \text{si } |x| < 1\\ 0 & \text{sinon} \end{cases}$$

appartient à $\mathcal{C}_C^{+\infty}(\mathbb{R})$.

Proposition

$$\mathcal{C}_0^{+\infty}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$$

<u>Démonstration</u>: La première inclusion se déduit du fait qu'une fonction continue sur un compact est bornée. La seconde se déduit du fait que pour tout $p \in [1, +\infty[$, $x \mapsto (\frac{M}{1+x^2})^p$ est intégrable.

Définition

Soit $\phi \in \mathcal{S}(\mathbb{R})$. Pour α et β dans \mathbb{N} , on note $|\phi|_{\alpha,\beta} = ||x^{(a)}\phi^{(b)}||_{\infty}$ et on considère la topologie initiale associée aux fonctions $\phi \mapsto |\phi|_{\alpha,\beta}$, c'est-à-dire la topologie la plus fine rendant ces fonctions continues. On l'appelle la topologie de $\mathcal{S}(\mathbb{R})$.

Remarque: Soit $(\phi_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R})$.

$$\overline{\phi_n \to \phi \text{ lorsque } n \to +\infty}$$
 signifie $\forall p \in \mathbb{N}, \lim_{n \to +\infty} \mathcal{N}_p(\phi_n - \phi) = 0$ où $\mathcal{N}_p(\cdot) = \sum_{0 \le \alpha, \beta \le p} |\cdot|_{\alpha, \beta}$.

Proposition

 $\mathcal{C}_0^{\infty}(\mathbb{R})$ est dense dans \mathcal{S} .

Théorème

La transformée de Fourier \mathcal{F} est un automorphisme de $\mathcal{S}(\mathbb{R})$ et $\mathcal{F}^{-1} = \overline{\mathcal{F}}$.

<u>Démonstration</u>: Soit $\phi \in \mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$. On a aussi $x \mapsto x\phi(x) \in \mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$. Donc $\mathcal{F}\phi \in \mathcal{C}^1(\mathbb{R})$ et $(\mathcal{F}\phi)' = \mathcal{F}(x \mapsto -ix\phi(x))$. Par récurrence, on vérifie que $\forall \beta \in \mathbb{N}^*, (\mathcal{F}\phi)^{(\beta)} = (-1)^{\beta} \mathcal{F}(x \mapsto x^{\beta}\phi(x))$. Par ailleurs, $\phi \in \mathcal{S}(\mathbb{R})$ donc $\phi' \in L^1(\mathbb{R})$. Ainsi, $\mathcal{F}(\phi') = y \mapsto iy(\mathcal{F}\phi)(y)$. Par récurrence, $\forall \alpha \in \mathbb{N}^*, \mathcal{F}(\phi^{(a)}) = y \mapsto (iy)^{\alpha}(\mathcal{F}\phi)(y)$. On a alors:

$$y^{\alpha}(\mathcal{F}\phi)^{(\beta)}(y) = (-i)^{\alpha+\beta}(iy)^{\alpha}\mathcal{F}(x \mapsto x^{\beta}\phi(x))(y)$$
$$= (-i)^{\alpha+\beta}\mathcal{F}((x \mapsto x^{\beta}\phi(x))^{(\alpha)})(y)$$

On en déduit que $y^{\alpha}(\mathcal{F}\phi)^{\beta}$ est borné, et donc que $\mathcal{F}\phi \in \mathcal{S}(\mathbb{R})$. Puisque $\mathcal{F}\phi \in L^{1}(\mathbb{R})$, on a l'égalité $\overline{\mathcal{F}}\mathcal{F}\phi = \phi$ presque partout, ce qui achève la démonstration.

Théorème (Formule de Plancherel)

Pour tout ϕ et ψ dans $\mathcal{S}(\mathbb{R})$:

$$\langle \mathcal{F}\phi, \mathcal{F}\psi \rangle_{L^2(\mathbb{R})} = \langle \phi, \psi \rangle_{L^2(\mathbb{R})}$$

Démonstration : Soit ϕ et ψ dans $\mathcal{S}(\mathbb{R})$.

$$\langle \phi, \psi \rangle_{L^{2}(\mathbb{R})} = \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \lambda(dx)$$
$$= \int_{\mathbb{R}} \frac{1}{2\pi} \int_{\mathbb{R}} (\mathcal{F}\phi)(y) e^{ixy} \lambda(dy) \psi(x) \lambda(dx)$$

 $(x,y)\mapsto \overline{\mathcal{F}\phi}(y)\psi(x)\in L^1(\mathbb{R})$ donc Fubini s'applique.

$$\langle \phi, \psi \rangle_{L^{2}(\mathbb{R})} = \int_{\mathbb{R}} \frac{1}{2\pi} \overline{(\mathcal{F}\phi)(y)} \int_{\mathbb{R}} \psi(x) e^{-ixy} \lambda(dx) \lambda(dy)$$
$$= \int_{\mathbb{R}} \overline{\mathcal{F}\phi}(y) (\mathcal{F}\psi)(y) \lambda(dy) = \langle \mathcal{F}\phi, \mathcal{F}\psi \rangle_{L^{2}(\mathbb{R})}$$

 $\underline{\text{Remarque}:} \langle \mathcal{F}\phi, \psi \rangle_{L^2(\mathbb{R})} = \langle \phi, \overline{\mathcal{F}}\psi \rangle_{L^2(\mathbb{R})}.$

On dit que $\overline{\mathcal{F}}$ est l'opérateur adjoint de \mathcal{F} .

Définition

On définit \mathcal{F} de $L^2(\mathbb{R})$ dans $L^2(\mathbb{R})$ par densité. Si $f \in L^2(\mathbb{R})$, on peut construire une suite f_n d'éléments de $\mathcal{S}(\mathbb{R})$ qui converge vers f. \mathcal{F} étant une isométrie de $\mathcal{S}(\mathbb{R})$ et par complétude de $L^2(\mathbb{R})$, $\mathcal{F}f_n$ admet une limite dans $L^2(\mathbb{R})$, qu'on note $\mathcal{F}f$. Si $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, \mathcal{F} coïncide bien avec la définition donnée sur $L^1(\mathbb{R})$.

Proposition

Soit $f \in L^2(\mathbb{R})$. Alors:

$$\mathcal{F}f = \frac{1}{\sqrt{2\pi}} \lim_{n \to +\infty} \left(y \mapsto \int_{[-n,n]} f(x) e^{-ixy} \lambda(dx) \right) \text{ dans } L^2(\mathbb{R})$$

Proposition

Soit $f \in L^2(\mathbb{R})$. Alors:

$$\mathcal{F}f = \frac{1}{\sqrt{2\pi}} \frac{d}{dy} \int_{\mathbb{R}} f(x) \frac{1 - e^{-ixy}}{ix} \lambda(dx)$$

 $\underline{\text{D\'emonstration}:} \text{ On pose } \phi_n = f1_{[-n,n]} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}). \text{ Soit } y \in \mathbb{R}^+. \lim_{n \to +\infty} \langle 1_{[0,y]}, \mathcal{F}\phi_n \rangle = \langle 1_{[0,y]}, \mathcal{F}f \rangle. \text{ En appliquant Fubini à } (x,t) \mapsto f(x)e^{-ixt} \in L^1([-n,n] \times [0,y]:$

$$\lim_{n \to +\infty} \int_{[0,y]} \frac{1}{\sqrt{2\pi}} \int_{[-n,n]} f(x) e^{-ixt} \lambda(dx) \lambda(dt) = \int_{[0,y]} \mathcal{F}f(x) \lambda(dx)$$

$$\Rightarrow \frac{1}{\sqrt{2\pi}} \lim_{n \to +\infty} \int_{[-n,n]} \int_{[0,y]} f(x) e^{-ixt} \lambda(dt) \lambda(dx) = \int_{[0,y]} \mathcal{F}f(x) \lambda(dx)$$

$$\Rightarrow \frac{1}{\sqrt{2\pi}} \lim_{n \to +\infty} \int_{[-n,n]} f(x) \frac{1 - e^{-ixy}}{ix} \lambda(dx) = \int_{[0,y]} \mathcal{F}f(x) \lambda(dx)$$

Comme $f \in L^2(\mathbb{R})$ et $x \mapsto \frac{1-e^{-ixy}}{ix} \in L^2(\mathbb{R})$, on a $y \mapsto f(x) \frac{1-e^{-ixy}}{ix} \in L^2(\mathbb{R})$ et on peut alors appliquer le théorème de convergence dominée :

$$\int_{\mathbb{R}} f(x) \frac{1 - e^{-ixy}}{ix} \lambda(dx) = \int_{[0,y]} \mathcal{F}f(x) \lambda(dx)$$

D'où le résultat après dérivation.

Théorème (Plancherel)

 \mathcal{F} est un automorphisme isométrique de $L^2(\mathbb{R})$.

<u>Démonstration</u>: C'est une conséquence directe du fait que \mathcal{F} est un automorphisme isométrique dans $\mathcal{S}(\mathbb{R})$. (cf. formule de Plancherel)

Soit $f \in L^2(\mathbb{R}) \cap \mathcal{C}^1(\mathbb{R})$, tel que $f' \in L^2(\mathbb{R})$. Alors :

$$\mathcal{F}(f') = (y \mapsto iy)\mathcal{F}f$$

<u>Démonstration</u>: La proposition s'établit dans $\mathcal{S}(\mathbb{R})$, puis en passant à la limite.

Section IX.3 - Fonction caractéristique

Définition

Soit X une variable aléatoire et P_X sa loi.

 \hat{P}_X s'appelle la fonction caractéristique de X, et se note Φ_X :

$$\Phi_X(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} P_X(dx) = \mathbb{E}(e^{i\langle t, X \rangle})$$

Remarque : Lorsque P_X a une densité f par rapport à la mesure de Lebesgue, alors

$$\Phi_X(t) = \int_{\mathbb{R}^d} f(x) e^{i\langle t, x \rangle} \lambda(dx)$$

Exemples: Pour $P_X = \sum_{k=1}^n \frac{1}{n} \delta_{a_k}$ (loi uniforme discrète):

$$\Phi_X(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} \left(\sum_{k=1}^n \frac{1}{n} \delta_{a_k} \right) (dx) = \frac{1}{n} \sum_{k=1}^n e^{ia_k t}$$

Proposition

Soit X une variable aléatoire. Alors :

- $\Phi_X(0) = 1$
- $\forall t \in \mathbb{R}^d, |\Phi_X(t)| \leq 1$
- $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}^d, \Phi_{aX+b} = e^{ibt}\Phi_X(at)$
- Φ_X est continue sur \mathbb{R}^d .

Proposition

Soit X une variable aléatoire dont la loi a une densité f_X par rapport à la mesure de Lebesgue. Alors :

- $\lim_{t \to -\infty} \Phi_X(t) = \lim_{t \to +\infty} \Phi_X(t) = 0.$ $f_X(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle t, x \rangle} \Phi_X(t) \lambda^{(d)}(dt)$

Proposition

Soit X une variable aléatoire. Φ_X satisfait :

$$\forall N \in \mathbb{N}^*, (t_1, ..., t_N) \in \mathbb{R}^N, (x_1, ..., x_N) \in \mathbb{R}^N, \sum_{1 \le j, k \le N} x_j \Phi_X(t_j - t_k) \overline{x_k} \ge 0$$

<u>Démonstration</u>: Cela provient de l'égalité :

$$\sum_{1 \le j,k \le N} x_j \Phi_X(t_j - t_k) \overline{x_k} = \mathbb{E}\left(\left| \sum_{i=1}^N x_j e^{i\langle t_j, X \rangle} \right|^2 \right) \ge 0$$

Théorème (Théorème d'unicité)

Deux variables aléatoires X et Y ont la même loi ssi $\Phi_X = \Phi_Y$.

<u>Démonstration</u>: Deux mesures ayant la même transformée de Fourier sont égales.

Théorème

Les variables aléatoires réelles $X_1,...,X_n$ sont indépendantes ssi :

$$\forall (t_1, ..., t_n) \in R^N, \Phi_{(X_1, ..., X_n)}(t_1, ..., t_n) = \prod_{k=1}^n \Phi_{X_k}(t_k)$$

<u>Démonstration</u>: Par définition de la mesure produit :

$$\int_{\mathbb{R}^n} e^{i\langle t, x \rangle} (P_{X_1} \otimes ... P_{X_k}) (dx_1, ..., dx_k) = \prod_{k=1}^N \int_{\mathbb{R}} e^{it_k x_k} P_{X_k} (dt_k)$$

Le résultat équivaut donc à $P_{(X_1,\dots,X_n)}=P_{X_1}\otimes\dots\otimes P_{X_k},$ c'est-à-dire à l'indépendance des variables aléatoires.

Proposition

Soit $X_1,...,X_n$ des variables aléatoires indépendantes. Alors :

$$\Phi_{X_1+\ldots+X_N} = \prod_{k=1}^N \Phi_{X_k}$$

 $\underline{\underline{\text{D\'emonstration}:}} \text{ On sait que } P_{X_1+...+X_n} = P_{X_1} * ... * P_{X_n}. \text{ On a alors } \widehat{P_{X_1+...+X_n}} = \widehat{P_{X_1}}...\widehat{P_{X_N}}, \text{ d'où le r\'esultat.}$

Proposition

Soit X une variable aléatoire dans $L^n(\Omega, \mathcal{F}, \mathbb{P})$ avec $n \in \mathbb{N}^*$. Alors $\Phi_X \in C^n(\mathbb{R})$ et

$$\forall k \leq n, \forall t \in \mathbb{R}, \Phi_X^{(k)}(t) = i^k \mathbb{E}(X^k e^{itX})$$

Proposition

Soit X une variable aléatoire dans $L^n(\Omega, \mathcal{F}, \mathbb{P})$ avec $n \in \mathbb{N}^*$. Alors :

$$\mathbb{E}(X^k) = (-i)^n \Phi_X^{(k)}(0)$$

<u>Démonstration</u>: C'est un corollaire immédiat de la proposition précédente.

Chapitre X. Vecteurs Gaussiens

Section X.1 - Définition d'un vecteur gaussien

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, et $X_1, ..., X_d$ des variables aléatoires sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que le vecteur $X = (X_1, ..., X_d)$ est **gaussien** si $\forall (a_1, ..., a_d) \in \mathbb{R}^d, a_1 X_1 + ... + a_d X_d$ suit une loi normale.

Exemples: Soit $X_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ et $X_2 \sim \mathcal{N}(m_2, \sigma_2^2)$ deux variables aléatoires indépendantes. Alors $X = (X_1, X_2)$ est un vecteur aléatoire gaussien. En effet, $\forall (a_1, a_2) \in \mathbb{R}^2, a_1X_1 + a_2X_2 \sim \mathcal{N}(a_1m_1 + a_2m_2, a_1^2\sigma_1^2 + a_2^2\sigma_2^2)$. (pour le montrer, utiliser le fait que la fonction caractéristique d'une somme de deux variables aléatoires indépendantes est le produit des fonctions caractéristiques de chaque variable)

Soit $X_1 \sim \mathcal{N}(m_1, \sigma_1^2)$, ϵ suivant la loi de Bernoulli $\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$ indépendante de X_1 et $X_2 = \epsilon X_1$. On a $\Phi_{X_2}(t) = \int_{\mathbb{R}^2} e^{itux}(\mathbb{P}_{X_1} \otimes P_{\epsilon})(dx, du)$ par indépendance des variables aléatoires, ce qui ce simplifie par application du théorème de Fubini en $\Phi_{X_2}(t) = \int_{\mathbb{R}} \cos(tx) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \lambda(dx) = e^{-\frac{1}{2}t^2}$. Ainsi $X_2 \sim \mathcal{N}(0, 1)$. Or, $X_1 + X_2 = (1 + \epsilon)X_1$ donc $\mathbb{P}(X_1 + X_2 = 0) = \frac{1}{2} : X_1 + X_2$ ne peut pas suivre de loi normale, et donc (X_1, X_2) n'est pas gaussien puisque l'on a trouvé une combinaison linéaire de X_1 et X_2 qui ne suit pas une loi normale.

On retiendra que si $X = (X_1, ..., X_n)$ est gaussien, alors les X_i suivent une loi normale, mais que la réciproque est fausse.

Section X.2 - Caractérisation d'un vecteur gaussien

Proposition

Soit $X = (X_1, ..., X_d)$ un vecteur gaussien.

Sa fonction caractéristique $\Phi_X : \mathbb{R}^d \to \mathbb{C}$ est donnée par

$$\Phi_X(t) = \exp\left(i\langle t, m \rangle - \frac{1}{2}\langle t, Dt \rangle\right)$$

où $m = (m_j)_{1 \le j \le d}$ est le vecteur d'espérance de X et $D = (D_{j,k})_{1 \le j,k \le d}$ est la matrice de covariances de X.

<u>Démonstration</u>: Soit $t = (t_1, ..., t_d) \in \mathbb{R}^d$ et $Y = \langle t, X \rangle = t_1 X_1 + ... + t_d X_d$. X étant gaussien, Y suit une loi normale. $\mathbb{E}(Y) = \sum_{k=1}^d t_k m_k = \langle t, m \rangle$ et $\text{Var}(Y) = \text{Cov}(Y, Y) = \sum_{1 \leq k, j \leq d} t_j D_{j,k} t_k = \langle t, Dt \rangle$. On en déduit que $\Phi_Y(u) = \exp(i\langle t, m \rangle u - \frac{1}{2}\langle t, Dt \rangle u^2)$. Or $\Phi_X(t) = \mathbb{E}(\exp(i\langle t, X \rangle)) = \mathbb{E}(\exp(iY)) = \Phi_Y(1)$, d'où le résultat.

Proposition

La loi d'un vecteur gaussien est entièrement caractérisée par son vecteur d'espérance $m \in \mathbb{R}^d$ et sa matrice de covariances $D \in \mathcal{M}_d(\mathbb{R})$.

On notera alors $\mathcal{N}(m, D)$ cette loi.

<u>Démonstration</u>: Φ_X caractérise la loi de X.

Théorème

Soit $X=(X_1,...,X_d)$ un vecteur gaussien. Les X_i sont indépendants si et seulement si la matrice D de covariance de X est diagonale.

<u>Démonstration</u>: Pour le sens direct, cela vient simplement du fait que l'indépendance entraı̂ne la non-corrélation. Pour le sens indirect, si D est diagonale alors on a l'égalité $\Phi_X(t_1,...,t_d) = \prod_{k=1}^d \Phi_{X_k}(t_k)$.

Proposition

Soit $m \in \mathbb{R}^d$ et $D \in \mathcal{M}_d(\mathbb{R})$ symétrique et positive. Alors, il existe un vecteur gaussien à valeurs dans \mathbb{R}^d d'espérance m et de matrice de covariance D.

Section X.3 - Loi d'un vecteur gaussien

Proposition

Soit $m \in \mathbb{R}^d$ et $D \in \mathcal{M}_d(\mathbb{R})$ symétrique positive.

D est inversible si et seulement si la loi $\mathcal{N}(m, D)$ est absolument continue par rapport à la mesure de Lebesgue. La densité est alors la fonction de \mathbb{R}^d dans \mathbb{R} :

$$x \mapsto \frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{\det D}} \exp\left(-\frac{1}{2}\langle x-m, D^{-1}(x-m)\rangle\right)$$

$$\mathbb{P}(Y \in B) = \int_{B} \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{1}{2}\langle y, y \rangle) \lambda^{(d)}(dy). \text{ On a donc } \mathbb{P}(X \in A) = \int_{\phi(A)} \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{1}{2}\langle y, y \rangle) \lambda^{(d)}(dy)$$

$$= \int_{A} \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{1}{2}\langle C^{-1}(x-m), C^{-1}(x-m) \rangle) |\det C^{-1}| \lambda^{(d)}(dx) = \int_{A} \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{1}{2}\langle x-m, D^{-1}(x-m) \rangle) \lambda^{(d)}(dx),$$

et on en déduit, puisque det $C = \sqrt{\det D}$, la densité attendue.

Réciproquement, on suppose que D est singulière, et $X \sim \mathcal{N}(m,D)$. Soit $v \in (\text{Ker }D) \setminus \{0\}$. On pose $Z = \langle v, X \rangle$. Alors, $\mathbb{E}(Z) = \mathbb{E}(\langle v, X \rangle) = \mathbb{E}(\sum_{i=1}^d v_i X_i = \sum_{i=1}^d v_i \mathbb{E}(X_i) = \langle v, m \rangle,$ et $\text{Var}(Z) = \text{Var}(\langle v, X \rangle) = {}^t v D v = 0$. On en déduit que Z est égale à son espérance presque partout, soit $\mathbb{P}(Z = \langle v, m \rangle) = 1$. Ainsi, $\mathbb{P}(\langle v, X \rangle = \langle v, m \rangle) = \mathbb{P}(\langle v, X - m \rangle = 0) = 1$. En notant H l'hyperplan de vecteur normal v, cela siginfie que $\mathbb{P}(X - m \in H) = \mathbb{P}(X \in m + H) = P_X(m + H) = 1$. Or un hyperplan est de mesure nulle pour la mesure de Lebesgue $\lambda^{(d)}$; si P_X était absolument continue par rapport à la mesure de Lebesgue, on devrait donc avoir $P_x(m + H) = 0$. On conclut donc que si D est singulière alors la loi $\mathcal{N}(m,D)$ ne peut pas être absolument continue par rapport à la mesure de Lebesgue, ce qui achève la preuve.

Chapitre XI. Convergence de variables aléatoires

Section XI.1 - Les différents modes de convergence d'une v.a.

Définition

La suite de v.a. $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers la v.a. X ssi :

$$\forall \epsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0$$

On note alors $X_n \stackrel{P}{\to} X$.

Exemple : Pour $n \in \mathbb{N}^*$, on considère $X_n : \mathbb{R} \to \mathbb{R}$ définie par :

$$X_n = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0\\ 1 - n\omega & \text{si } \omega \in [0, \frac{1}{n}]\\ 0 & \text{si } \omega > \frac{1}{n} \end{cases}$$

Soit $\epsilon > 0$, et $X = \omega \mapsto X$. Alors, $\mathbb{P}(|X_n - X| > \epsilon) = \mathbb{P}([0, \frac{1 - \epsilon}{n})$. Ainsi, si \mathbb{P} est une mesure à densité par rapport à la mesure de Lebesgue, $\lim_{n \to +\infty} \mathbb{P}([0, \frac{1 - \epsilon}{n}]) = \lim_{n \to +\infty} \int_0^{\frac{1 - \epsilon}{n}} f(x) dx = 0$, c'est-à-dire $X_n \stackrel{P}{\to} X$.

Définition

La suite de v.a. $(X_n)_{n\in\mathbb{N}}$ converge presque sûrement vers la v.a. X ssi :

$$\mathbb{P}(\{\omega \in \Omega; \lim_{n \to +\infty} X_n(\omega) = X(\omega)\}) = 1$$

On note alors $X_n \stackrel{p.s.}{\to} X$.

Exemple: En reprenant X_n définie $\forall n \in \mathbb{N}$ comme précédemment et $X = \omega \mapsto 0$, on remarque que la suite de variables aléatoires $(X_n)_{n \in \mathbb{N}}$ converge simplement vers X presque partout (il n'y a qu'en 0 qu'en 0 qu'en a pas la convergence simple). Ainsi, $X_n \stackrel{p.s.}{\longrightarrow} X$.

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant presque sûrement vers X. Alors, $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers X.

 $\frac{\text{D\'{e}monstration}: \text{Soit } (X_n)_{n\in\mathbb{N}} \text{ une suite de variables al\'{e}atoires convergeant presque sûrement vers } X. \text{ Alors, } \Omega^* = \{\omega \in \Omega; \lim_{n \to +\infty} X_n(\omega) = X(\omega)\} \text{ a pour mesure 1. Pour } \epsilon > 0, \text{ on pose } \Omega^\epsilon = \{\omega \in \Omega; \exists N \in \mathbb{N}, \forall n \geq N, |X_n(\omega) - X(\omega)| < \epsilon\}.$ On remarque que $\Omega^\epsilon = \bigcup_{N \in \mathbb{N}^*} \bigcap_{n \geq N} \{\omega \in \Omega, |X_n(\omega) - X(\omega)| < \epsilon\}$ est une union d'intersections d'ensembles mesurables, donc est mesurable, et que $\Omega^* \subset \Omega^\epsilon$. Ainsi, $\mathbb{P}(\Omega^\epsilon) = 1$. Posons $A_N^\epsilon = \bigcap_{n \geq N} \{\omega \in \Omega, |X_n(\omega) - X(\omega)| < \epsilon\}$. Alors, $(A_N^\epsilon)_{N \in \mathbb{N}^*}$ est croissante et $\bigcup_{N \in \mathbb{N}^*} A_N^\epsilon = \Omega^\epsilon$. Donc, $\lim_{N \to +\infty} \mathbb{P}(A_N^\epsilon) = 1$. Dit autrement, $\forall \delta > 0, \exists N \in \mathbb{N}^*, \mathbb{P}(A_n^\epsilon) > 1 - \delta$, avec pour $n \geq N, A_N^\epsilon \subset \{\omega \in \Omega; |X_n(\omega) - X(\omega)| < \epsilon\}$. Donc $\mathbb{P}(|X_n - X| < \epsilon) > 1 - \delta$. Ainsi, $\lim_{n \to +\infty} \mathbb{P}(|X_n - X| < \epsilon) = 1$, d'où $\lim_{n \to +\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0$ et donc $X_n \overset{p.s.}{\to} X$.

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant en probabilité vers X. Alors, on peut extraire une sous-suite $(X_{\phi(n)})_{n\in\mathbb{N}}$ qui converge presque sûrement vers X.

Remarque : Généralement, la convergence en probabilité n'entraîne pas la convergence presque sûrement. Par ailleurs, elle n'entraîne pas non plus la convergence des moments : en modifiant la définition de la suite de variables aléatoires définies dans le premier exemple par

$$X_n = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0\\ n - n^2 \omega & \text{si } \omega \in [0, \frac{1}{n}]\\ 0 & \text{si } \omega > \frac{1}{n} \end{cases}$$

alors on a $\forall n \in \mathbb{N}, \mathbb{E}(X_n) = \frac{1}{2}$ mais $\mathbb{E}(X) = 0$, donc $\lim_{n \to +\infty} \mathbb{E}(X_n) \neq \mathbb{E}(X)$.

Définition

Soit $p \ge 1$. La suite de variables aléatoires $(X_n)_{n \in \mathbb{N}}$ converge dans L^p vers la v.a. X ssi toutes les variables aléatoires X_n et X sont dans L^p et :

$$\lim_{n \to +\infty} \mathbb{E}(|X_n - X|^p) = 0$$

On note alors $X_n \xrightarrow{L^p} X$.

Exemple : Soit $p \in [1, +\infty[$. On reprend la définition de $(X_n)_{n \in \mathbb{N}}$ du premier exemple :

$$X_n = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0\\ 1 - n\omega & \text{si } \omega \in [0, \frac{1}{n}]\\ 0 & \text{si } \omega > \frac{1}{n} \end{cases}$$

et $X = \omega \mapsto 0$. Alors :

$$\mathbb{E}(|X_n - X|^p) = \int_0^{\frac{1}{n}} (1 - n\omega)^p d\omega = \left[\frac{1}{p+1} \frac{-1}{n} (1 - n\omega)^{p+1} \right]_0^{\frac{1}{n}} = \frac{1}{n(p+1)} \underset{n \to +\infty}{\to} 0$$

et donc $(X_n)_{n\in\mathbb{N}}$ converge vers X dans L^p .

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant dans L^p vers X. Alors, $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers X.

 $\underline{\text{D\'emonstration}}: \text{Cela r\'esulte de l'in\'egalit\'e de Markov}: \mathbb{P}(|X_n - X| > \epsilon) < \frac{1}{\epsilon^p} \mathbb{E}(|X_n - X|^p) \underset{n \to +\infty}{\longrightarrow} 0.$

Théorème

Soit $p \in [1, +\infty[$ et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires vérifiant $X_n \stackrel{P}{\to} X$ et $\exists Y \in L^p, \forall n \in \mathbb{N}, |X_n| \leq Y$. Alors, $X \in L^p$ et $X_n \stackrel{L^p}{\to} X$.

Proposition

Les limites ainsi définies par les convergences en probabilité, presque sûre et dans L^p vérifient l'unicité de la limite, la linéarité et le passage à la limite dans les inégalités.

De plus, pour toute fonction f continue, on a $X_n \to X \Rightarrow f(X_n) \to f(X)$.

Section XI.2 - Lois des grands nombres

Théorème (Loi faible des grands nombres)

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires de $L^2(\Omega, \mathcal{F}, \mathbb{P})$ indépendantes et identiquement distribuées. On note $m=\mathbb{E}(X_n)$ et $M_N=\frac{1}{N}\sum_{n=1}^N X_n$. Alors, $M_N\stackrel{P}{\to} m$, c'est-à-dire $\forall \epsilon>0$, $\lim_{N\to+\infty}\mathbb{P}(|M_N-m|>\epsilon)=0$.

<u>Démonstration</u>: On note $m = \mathbb{E}(X_n)$ et $\sigma^2 = \operatorname{Var}(X_n)$. Alors, $\mathbb{E}(M_N) = \frac{1}{N} \sum_{n=1}^N \mathbb{E}(X_n) = \frac{Nm}{m} = m$ et $\operatorname{Var}(M_N) = \frac{1}{N^2} \sum_{n=1}^N \operatorname{Var}(X_n) = \frac{N\sigma^2}{N^2} = \frac{\sigma^2}{N}$. Pour tout $\epsilon > 0$, on applique l'inégalité de Chebyshev :

$$\mathbb{P}(|M_n - m| > \epsilon) \le \frac{\sigma^2}{N\epsilon^2} \underset{N \to +\infty}{\to} 0$$

d'où $M_N \stackrel{P}{\to} m$.

Théorème (Loi forte des grands nombres)

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires de $L^2(\Omega, \mathcal{F}, \mathbb{P})$ indépendantes et identiquement distribuées. On note $m=\mathbb{E}(X_n)$ et $M_N=\frac{1}{N}\sum_{n=1}^N X_n$. Alors, $M_N\stackrel{p.s.}{\to} m$ et $M_N\stackrel{L^p}{\to} m$.

Remarque : Cela nous permet d'effectuer des approximations numériques, par exemple la méthode de Monte Carlo. On prend $X_n \sim \mathcal{U}([0,1])$ une suite de variables aléatoires indépendantes, et alors on a :

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} f(X_n) = \mathbb{E}(f(X_n)) = \int_{[0,1]} f(x) \lambda(dx)$$

Cela permet d'approcher la valeur d'intégrales par l'utilisation de variables aléatoires, et on peut par exemple en déduire une approximation de la valeur de π avec l'intégrale sur [0,1] de $f(x) = \sqrt{1-x^2}$.

Section XI.3 - Convergence en loi

Définition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles, $(F_{X_n})_{n\in\mathbb{N}}$ leurs fonctions de répartition respectives, et soit X une variable aléatoire de fonction de répartition F_X .

On dit que la suite des variables aléatoires $(X_n)_{n\in\mathbb{N}}$ converge en loi vers la variable aléatoire X ssi $(F_{X_n})_{n\in\mathbb{N}}$ converge simplement vers F_X , sauf éventuellement aux points de discontinuité de F_X . On note $X_n \xrightarrow{\mathcal{L}} X$.

Exemple : Considérons $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{U}([0,1]))$ et :

$$X_n = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0\\ 1 - n\omega & \text{si } \omega \in [0, \frac{1}{n}]\\ 0 & \text{si } \omega > \frac{1}{n} \end{cases}$$

de fonctions de répartition respectives :

$$F_{X_n} = x \mapsto \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{n} + (1 - \frac{1}{n})x & \text{si } x \in [0, \frac{1}{n}]\\ 1 & \text{si } x > 1 \end{cases}$$

Alors, $(F_{X_n})_{n\in\mathbb{N}}$ converge simplement vers $F_X=1_{[0,+\infty[}$. Ainsi $X_n\stackrel{\mathcal{L}}{\to} 0$.

Définition

Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur E. On dit que $(\mu_n)_{n\in\mathbb{N}}$ converge faiblement (ou étroitement) vers μ ssi

$$\forall f \in \mathcal{C}_b(E), \lim_{n \to +\infty} \int_E f d\mu_n = \int_E f d\mu$$

où $C_b(E)$ est l'ensemble des fonctions continues et bornées de E.

Proposition

Lorsque $E = \mathbb{R}$, la suite de variables $(X_n)_{n \in \mathbb{N}}$ converge en loi vers X ssi la suite des lois de X_n converge vers la loi de X.

Définition

Lorsque $E \neq \mathbb{R}$, on dit que la suite de variables $(X_n)_{n \in \mathbb{N}}$ converge en loi vers X ssi la suite des lois de X_n converge vers la loi de X. On note $X_n \xrightarrow{\mathcal{L}} X$.

Théorème (Portmanteau pour les mesures)

Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur E. Toutes les propositions suivantes sont équivalentes :

- $(\mu_n)_{n\in\mathbb{N}}$ converge faiblement vers μ .
- Pour toute fonction f de E uniformément continue et bornée, $\lim_{n \to +\infty} \int_E f d\mu_n = \int_E f d\mu$.
- Pour toute fonction f de E continue et à support compact, $\lim_{n \to +\infty} \int_E f d\mu_n = \int_E f d\mu$.
- Pour tout $A \subset E$ fermé, $\limsup \mu_n(A) \leq \mu(A)$.
- Pour tout $A \subset E$ ouvert, $\liminf_{n \to +\infty} \mu_n(A) \ge \mu(A)$.
- Pour tout $A \in \mathcal{B}(E)$ tel que $\mu(\partial A) = 0$, $\lim_{n \to +\infty} \mu_n(A) = \mu(A)$.

Théorème (Portmanteau pour les variables aléatoires)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires sur E. Toutes les propositions suivantes sont équivalentes :

- $\bullet X_n \stackrel{\mathcal{L}}{\to} X.$
- Pour toute fonction f de E uniformément continue et bornée, $\lim_{n\to+\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$.
- Pour toute fonction f de E continue et à support compact, $\lim_{n\to+\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$.
- Pour tout $A \subset E$ fermé, $\limsup \mathbb{P}(X_n \in A) \leq \mathbb{P}(X \in A)$.
- Pour tout $A \subset E$ ouvert, $\liminf_{n \to +\infty} \mathbb{P}(X_n \in A) \geq \mathbb{P}(X \in A)$.
- Pour tout $A \in \mathcal{B}(E)$ tel que $\mathbb{P}(X \in \partial A) = 0$, $\lim_{n \to +\infty} \mathbb{P}(X_n \in A) = \mathbb{P}(X \in A)$.

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans un ensemble discret. Alors :

$$X_n \stackrel{\mathcal{L}}{\to} X \Leftrightarrow \forall k \in E, \lim_{n \to +\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$$

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires de fonction caractéristiques respectives $\Phi_n = \Phi_{X_n}$ et X une variable aléatoire de fonction caractéristique $\Phi = \Phi_X$. Alors :

$$X_n \xrightarrow{\mathcal{L}} X \Leftrightarrow \Phi_n \to \Phi \text{ simplement}$$

Exemple : Soit $\lambda > 0$, $X_n \sim \mathcal{B}(n, \frac{\lambda}{n})$, et $X \sim \operatorname{Pois}(\lambda)$. La fonction caractéristique de X_n est $\Phi_n = t \mapsto (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n$, et $(\Phi(n))_{n \in \mathbb{N}}$ converge simplement vers $\phi = t \mapsto \exp(\lambda(e^{it} - 1))$ qui est précisément la fonction caractéristique de X. On en déduit que $X_n \xrightarrow{\mathcal{L}} X$.

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires convergeant en probabilité vers X. Alors, $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X.

<u>Démonstration</u>: Supposons que $X_n \stackrel{P}{\to} X$. Soit f une fonction continue et bornée. Alors, $f(X_n) \stackrel{P}{\to} f(X)$ et puisque f est bornée, $|f(X_n)| \le C \in L^1$ donc $f(X_n) \stackrel{L^1}{\to} f(X)$. Dit autrement, $\lim_{n \to +\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$, ce qui donne la convergence en loi par le théorème Portmanteau.

Proposition

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans $E = \mathbb{R}^d$. On suppose que $X_n \xrightarrow{\mathcal{L}} X$ et X = c presque sûrement, où $c \in E$ est une constante. Alors, $X_n \xrightarrow{P} X$.

Section XI.4 - Théorème Central Limite (TCL)

Théorème (Central Limite)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires de $L^2(\Omega,\mathcal{F},\mathbb{P})$ indépendantes et identiquement distribuées. On note $S_N = \sum_{n=1}^N X_n, \ m = \mathbb{E}(X_n)$ et $\sigma^2 = \mathrm{Var}(X_n)$. On suppose que $\sigma \neq 0$. Alors :

$$\frac{S_N - Nm}{\sigma\sqrt{N}} \xrightarrow[N \to +\infty]{\mathcal{L}} Y$$

où $Y \sim \mathcal{N}(0,1)$.

<u>Démonstration</u>: Quitte à remplacer X_n par $\frac{X_n-m}{\sigma}$, on suppose que m=0 et $\sigma=1$. Soit $Y_N=\frac{1}{\sqrt{N}}S_N=\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n$. Alors, puisque les X_n sont indépendants et identiquement distribués :

$$\Phi_{Y_N}(t) = \Phi_{\frac{1}{\sqrt{N}} \sum_{n=1}^N X_n}(t) = \prod_{i=1}^n \Phi_{X_n}\left(\frac{t}{\sqrt{N}}\right) = \left(\Phi_X\left(\frac{t}{\sqrt{N}}\right)\right)^N$$

Les X_n sont dans L^2 , donc $\Phi_X \in \mathcal{C}^2$. On a alors $\Phi_X(0) = 1$, $\Phi_X'(t) = i\mathbb{E}(Xe^{itX})$ donc $\Phi_X'(0) = im = 0$ et $\Phi_X''(t) = -\mathbb{E}(X^2e^{itX})$ donc $\Phi_X''(0) = -\sigma = -1$. On en déduit que :

$$\Phi_X(t) = 1 - t^2 + o(t^2) \Rightarrow \Phi_X\left(\frac{t}{\sqrt{N}}\right) = 1 - \frac{t^2}{2N} + o\left(\frac{t^2}{\sqrt{N}}\right)$$

$$\Rightarrow \ln \Phi_X \left(\frac{t}{\sqrt{N}} \right) = -\frac{t^2}{2N} + o\left(\frac{t^2}{\sqrt{N}} \right) \Rightarrow N \ln \Phi_X \left(\frac{t}{\sqrt{N}} \right) = -\frac{t^2}{2} + o(t^2)$$

On obtient ainsi un équivalent à t fixé lorsque $N \to +\infty$. On en déduit que

$$\forall t \in \mathbb{R}, \Phi_{Y_N}(t) = \left(\Phi_X\left(\frac{t}{\sqrt{N}}\right)\right)^N \underset{N \to +\infty}{\longrightarrow} \exp\left(\frac{t^2}{2}\right)$$

On a établi que $(\Phi_{Y_N})_{N\in\mathbb{N}}$ converge simplement vers la fonction caractéristique de $Y\sim\mathcal{N}(0,1)$, d'où $Y_N\stackrel{\mathcal{L}}{\to}Y$.

Chapitre XII. Introduction aux processus stochastiques

Section XII.1 - Espérance conditionnelle

Proposition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire. Soit $\mathcal{G} \subset \mathcal{F}$ une sous-tribu. Alors, il existe une unique variable aléatoire $Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ vérifiant $\forall U \in L^2(\Omega, \mathcal{G}, \mathbb{P}), \mathbb{E}(XU) = \mathbb{E}(YU)$.

<u>Démonstration</u>: $H = L^2(\Omega, \mathcal{F}, \mathbb{P})$ est un espace de Hilbert, de produit scalaire $\langle X, Y \rangle = \int_{\Omega} XY d\mathbb{P} = \mathbb{E}(XY)$. $A = L^2(\Omega, \mathcal{G}, \mathbb{P})$ est un sous-espace vectoriel fermé de H, on peut donc définir la projection orthogonale sur A. Ainsi, il existe un unique $Y \in A$ tel que $\forall U \in A, \langle X - Y, U \rangle = 0 \Rightarrow \forall U \in A, \mathbb{E}(XU) = \mathbb{E}(YU)$.

Définition

La variable aléatoire Y définie précédemment est appelée **espérance conditionnelle de** X **sachant** \mathcal{G} . Elle est notée $\mathbb{E}(X|\mathcal{G})$.

Proposition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $\mathcal{G} \subset \mathcal{F}$ une sous-tribu. Alors :

- L'application $X \mapsto \mathbb{E}(X|\mathcal{G})$ est linéaire dans $L^1(\Omega, \mathcal{F}, \mathbb{P})$.
- $X \ge 0$ p.s. $\Rightarrow \mathbb{E}(X|\mathcal{G}) \ge 0$ p.s.
- $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$.

Remarque : Cette proposition et un argument de densité permettent d'étendre la définition de $\mathbb{E}(X|G)$ à L^1 .

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire. Soit $\mathcal{G} \subset \mathcal{F}$ une sous-tribu. La variable aléatoire $Y \in L^1(\Omega, \mathcal{G}, \mathbb{P})$ vérifiant pour toute variable aléatoire U \mathcal{G} -mesurable et bornée, $\mathbb{E}(XU) = \mathbb{E}(YU)$ est appelée **espérance conditionnelle de** X **sachant** \mathcal{G} . Elle est notée $\mathbb{E}(X|\mathcal{G})$.

Remarque : Cela équivaut à vérifier $\forall A \in \mathcal{G}, \int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$.

Proposition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $\mathcal{G} \subset \mathcal{F}$ une sous-tribu. Alors :

- L'application $X \mapsto \mathbb{E}(X|\mathcal{G})$ est linéaire dans $L^1(\Omega, \mathcal{F}, \mathbb{P})$.
- $X \ge 0$ p.s. $\Rightarrow \mathbb{E}(X|\mathcal{G}) \ge 0$ p.s.
- $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$.
- $\mathcal{J} \subset \mathcal{G} \subset \mathcal{F} \Rightarrow \mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{J}) = \mathbb{E}(X|\mathcal{J}).$

Proposition

Soit X et Y des variables aléatoires réelles sur $(\Omega, \mathcal{F}, \mathbb{P})$, et $\mathcal{G} \subset \mathcal{F}$ une sous-tribu. On suppose que X est \mathcal{G} -mesurable. Si X, Y et XY sont intégrables (ou positives), alors $\mathbb{E}(XY|\mathcal{G}) = X\mathbb{E}(Y|\mathcal{G})$.

Proposition (Inégalité de Jensen)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, $\mathcal{G} \subset \mathcal{F}$ une sous-tribu et $\phi : \mathbb{R} \to \mathbb{R}$ convexe. Si X et $\phi(X)$ sont intégrables, alors $\phi(\mathbb{E}(X|\mathcal{G})) \leq \mathbb{E}(\phi(X)|\mathcal{G})$

Exemple : On considère $(\Omega, \mathcal{F}, \mathbb{P}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{U}([0,1])$ et $X : \mathbb{R} \to \mathbb{R}$ définie par :

$$X = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0 \\ 1 - \omega & \text{si } \omega \in [0, 1] \\ 0 & \text{si } \omega > 1 \end{cases}$$

On pose $\mathcal{G} = \sigma(\{[\frac{i}{2}, \frac{i+1}{2}], i \in \mathbb{Z}\})$. On remarque que X n'est pas \mathcal{G} -mesurable. On cherche à déterminer $\mathbb{E}(X|\mathcal{G})$, qui doit être $L^1(\Omega, \mathcal{G}, \mathbb{P})$ et vérifier $\forall A \in \mathcal{G}, \int_A X d\mathbb{P} = \int_A \mathbb{E}(X|\mathcal{G}) d\mathbb{P}$. Puisque $\mathbb{E}(X|\mathcal{G})$ doit être \mathcal{G} -mesurable, elle doit être constante sur les intervalles de la forme $[\frac{i}{2}, \frac{i+1}{2}]$. En calculant l'intégrale de X sur chacun de ces intervalles, on trouve alors que :

$$\mathbb{E}(X|\mathcal{G}) = \omega \mapsto \begin{cases} 0 & \text{si } \omega < 0\\ \frac{3}{4} & \text{si } \omega \in [0, \frac{1}{2}]\\ \frac{1}{4} & \text{si } \omega \in]\frac{1}{2}, 1]\\ 0 & \text{si } \omega > 1 \end{cases}$$

Pour $\mathcal{J} = \{\emptyset, \Omega\}$, on a $\mathbb{E}(X|\mathcal{J}) = \omega \mapsto \frac{1}{2}$. Puisque $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, on a $\mathbb{E}(X|\mathcal{F}) = X$.

Théorème

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire intégrable (ou positive). Alors :

$$\mathbb{E}(X|\mathcal{G}) = X \Leftrightarrow X \text{ est } \mathcal{G}\text{-mesurable}$$

Proposition

Soit $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$ une variable aléatoire et $B \in \mathcal{F}$ tel que $\mathbb{P}(B) > 0$ et $\mathbb{P}(\Omega \setminus B) > 0$. Alors, $\mathbb{E}(X | \sigma(B))$ est la variable aléatoire

$$\frac{\mathbb{E}(X1_B)}{\mathbb{P}(B)}1_B + \frac{\mathbb{E}(X1_{\Omega \setminus B})}{1 - \mathbb{P}(B)}1_{\Omega \setminus B}$$

Définition

Soit $B \in \mathcal{F}$ tel que $\mathbb{P}(B) > 0$ et $\mathbb{P}(\Omega \backslash B) > 0$.

On appelle espérance conditionnelle de X sachant B, et on note $\mathbb{E}(X|B)$, le réel :

$$\mathbb{E}(X|B) = \frac{\mathbb{E}(X1_B)}{\mathbb{P}(B)}$$

 $\text{Remarque}: \mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|\sigma(B))) = \mathbb{E}(\mathbb{E}(X|B)1_B + \mathbb{E}(X|\Omega\backslash B)1_{\Omega\backslash B}) = \mathbb{E}(X|B)\mathbb{P}(B) + \mathbb{E}(X|\Omega\backslash B)\mathbb{P}(\Omega\backslash B).$

Définition

Soit $X:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{R}$) et $Y:(\Omega,\mathcal{F},\mathbb{P})\to(E,\mathcal{E})$ deux variables aléatoires.

On appelle **espérance conditionnelle de** X **sachant** Y la variable aléatoire $\mathbb{E}(X|\sigma(Y))$. On la note $\mathbb{E}(X|Y)$. De manière analogue, on notera $\mathbb{E}(X|Y_1,...,Y_n) = \mathbb{E}(X|\sigma(Y_1,...,Y_n))$.

Théorème

Soit $X: (\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$) et $Y: (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$ deux variables aléatoires. Il existe une application borélienne $h: E \to \mathbb{R}$ telle que $\mathbb{E}(X|Y) = h(Y)$.

Proposition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $(X, Y): \Omega \to \mathbb{R}^2$ un vecteur aléatoire admettant une densité $f_{(X,Y)}$. On suppose que $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ et $\forall y \in \mathbb{R}, f_Y(y) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) \lambda(dx) > 0$. On pose :

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \text{ et } h(y) = \int_{\mathbb{R}} x f_{X|Y=y}(x) \lambda(dx)$$

Alors, $\mathbb{E}(X|Y) = h(Y)$.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires. Alors :

$$X_n \xrightarrow{\text{p.s.}} X \text{ et } \forall n \in \mathbb{N}, X_n \ge 0 \Rightarrow \mathbb{E}(X_n | \mathcal{G}) \xrightarrow{\text{p.s.}} \mathbb{E}(X | \mathcal{G}) \text{ (convergence monotone)}$$

$$X_n \xrightarrow{\text{p.s.}} X \Rightarrow \mathbb{E}(\liminf X_n | \mathcal{G}) \leq \liminf \mathbb{E}(X | \mathcal{G})$$
 p.s. (lemme de Fatou)

$$X_n \xrightarrow{\text{p.s.}} X \text{ et } \exists Z \in L^1(\Omega, \mathcal{F}, \mathbb{P}), \forall n \in \mathbb{N}, |X_n| \leq Z \Rightarrow \mathbb{E}(X_n | \mathcal{G}) \xrightarrow{\text{p.s.}} \mathbb{E}(X | \mathcal{G}) \text{ (convergence dominée)}$$

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $A \in \mathcal{F}$. Soit $\mathcal{G} \subset \mathcal{F}$ une sous-tribu.

On appelle **probabilité conditionnelle de** A sachant \mathcal{G} , et on note $\mathbb{P}(A|\mathcal{G})$, la variable aléatoire :

$$\mathbb{P}(A|\mathcal{G}) = \mathbb{E}(1_A|\mathcal{G})$$

Remarque : Pour $B \in \mathcal{F}$, alors :

$$\mathbb{P}(A|\sigma(B)) = \frac{\mathbb{E}(1_A 1_B)}{\mathbb{P}(B)} 1_B + \frac{\mathbb{E}(1_A 1_{\Omega \backslash B})}{\mathbb{P}(\Omega \backslash B)} 1_{\Omega \backslash B} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} 1_B + \frac{\mathbb{P}(A \cap (\Omega \backslash B))}{\mathbb{P}(\Omega \backslash B)} 1_{\Omega \backslash B} = \mathbb{P}(A|B) 1_B + \mathbb{P}(A|(\Omega \backslash B)) 1_{\Omega \backslash B}.$$

Section XII.2 - Processus stochastiques

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et (E, \mathcal{E}) un espace mesuré. On appelle **processus stochastique** (ou **processus aléatoire**) toute collection de variables aléatoires $(X_t)_{t \in \mathcal{T}}$ sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans E. On le note $X = \{X_t, t \in \mathcal{T}\}$. Lorsque $\mathcal{T} = \mathbb{N}$, le processus est dit **discret**.

Définition

Un processus stochastique discret $(S_n)_{n\in\mathbb{N}}$ est appelé **marche aléatoire** à un paramètre si ses accroissements $X_n = S_n - S_{n-1}$ pour $n \ge 1$ sont indépendants et identiquement distribués.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On appelle filtration toute suite croissante $(\mathcal{F}_n)_{n \in \mathbb{N}}$ de sous-tribus de \mathcal{F} .

Définition

On dit qu'un processus stochastique discret $X = \{X_n, n \in \mathbb{N}\}$ est **adapté à la filtration** \mathcal{F} si pour tout $n \in \mathbb{N}$, X_n est \mathcal{F}_n -mesurable.

Exemple : Soit $X = \{X_n, n \in \mathbb{N}\}$. La filtration $(F_n)_{n \in \mathbb{N}}$ définie par $\mathcal{F}_n = \sigma(X_k, k \in [1, n])$ est adaptée au processus \overline{X} . On l'appelle filtration naturelle de X.

Définition

Un processus discret X est appelé une **martingale** par rapport à la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ ssi le processus est adapté à la filtration, pour tout $n\in\mathbb{N}, X_n\in L^1(\Omega,\mathcal{F},\mathbb{P})$ et pour tout $n\in\mathbb{N}, X_n=\mathbb{E}(X_{n+1}|\mathcal{F}_n)$ p.s. (*) En remplaçant (*) par $X_n\leq \mathbb{E}(X_{n+1}|\mathcal{F}_n)$ p.s., on l'appelle une **sous-martingale**. En remplaçant (*) par $X_n\geq \mathbb{E}(X_{n+1}|\mathcal{F}_n)$ p.s., on l'appelle une **sur-martingale**.

Proposition

Si X est une martingale, alors $\forall n \in \mathbb{N}, \mathbb{E}(X_n) = \mathbb{E}(X_0)$.

<u>Démonstration</u>: Pour $n \in \mathbb{N}$, $\mathbb{E}(X_n) = \mathbb{E}(\mathbb{E}(X_{n+1}|\mathcal{F}_n)) = \mathbb{E}(X_{n+1})$, et on conclut par récurrence.

Définition

Un processus X adapté à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est **prévisible** si $\forall n\in\mathbb{N}, X_n$ est \mathcal{F}_{n+1} -mesurable.

Proposition

Soit \mathcal{S} une martingale et \mathcal{C} un processus prévisible et borné. Alors, le processus stochastique $((\mathcal{C} \cdot \mathcal{S})_n)_{n \in \mathbb{N}}$ défini par :

$$\begin{cases} (\mathcal{C} \cdot \mathcal{S})_0 = 0 \\ \forall n \in \mathbb{N}^*, (\mathcal{C} \cdot \mathcal{S})_n = \sum_{k=1}^n C_k (S_n - S_{n-1}) \end{cases}$$

est une martingale.

Définition

On appelle $\mathcal{C}\cdot\mathcal{S}$ la transformée de la martingale \mathcal{S} par le processus $\mathcal{C}.$