113-2 Final Presentation: An RC Oscillator With Comparator Offset Cancellation

B11202010 韓裕民

B11901193 劉又慈

B11901194 簡敦賢

May 29, 2025

Department of Electrical Engineering, National Taiwan University

Outline (1/2)

- Abstract
- Proposed architecture
 - RC Core
 - Switch Matrix
 - Comparator
 - Level Shifter
 - Schmitt Trigger

Outline (2/2)

- Simulation result
 - Nominal performance
 - Temperature Variation
 - Supply Voltage Variation
 - Device Mismatch
 - Comparator
 - Current
 - Capacitor
 - Noise Analysis
 - Setup time
 - Comparison Table
- Conclusion
- References

Abstract

Abstract

This project presents a low-power RC oscillator featuring offset cancellation[1] and enhanced energy efficiency. A level shifter is introduced as a logic-control switch for the comparator, significantly reducing current consumption during idle periods[2]. The oscillator operates at 1 V with an oscillation frequency of 18.37 kHz and a power consumption of just 72.02 nW. Simulated using a 180 nm TSMC CMOS process, the design demonstrates a temperature accuracy of \pm 0.52% over -50 °C to 120 °C. Across a supply voltage range of 0.95 to 1.05 V, the frequency exhibits a linear sensitivity of 0.66%/V. Additionally, the oscillator achieves a fast startup, with frequency settling within 4 cycles.

Proposed architecture

Architecture Overview

- RC Core
- Switch Matrix
- Comparator
- Level Shifter
- Schmitt Trigger

I. Proposed architecture

- During $\phi=0$, V_2 sets a reference $(I\cdot R)$; V_1 ramps and triggers the comparator when exceeding $I\cdot R$, switching to $\phi=1$ (symmetric operation).
- A Schmitt trigger suppresses output glitches during phase shifts.
- To save power, the RC core generates an enable signal (EN) that activates the comparator only during comparisons.

Fig. 1. Architecture of the RC oscillator

I-A. RC Core

- $R = 7.5 \text{ M}\Omega$, C = 3.6 pF $\rightarrow \text{RC time constant} = 27 \mu\text{s}$
- Charging current I = 20 nA $\rightarrow \text{Voltage swing} \approx 156.7 \text{ mV}$
- Capacitor C_2 helps suppress glitches on $V_1 \ / \ V_2$ during phase transitions and stabilizes V_2 .
- The total period is: $t_{\rm period} = 2RC + t_{\rm delay}$, where $t_{\rm delay}$ comes from the comparator and Schmitt trigger. $t_{\rm delay}$ is minimized by using a high-speed comparator in our design.
- Oscillation frequency \approx 18.3736 kHz (at 27 $^{\circ}\mathrm{C}$)

Fig. 2. Schematic of the RC core

I-B. Switch Matrix

- Using a **4-point probe** (Fig. 4) removes resistance constraints on $S_1 \sim S_4$, reducing sensitivity to mismatch-induced voltage errors and frequency variation.
- $S_7 \sim S_{10}$ multiplex voltages to the comparator and carry no current, simplifying design.
- Using smaller switches helps minimize glitches during phase transitions, improving signal integrity.

Fig. 3. Original RC architecture

Fig. 4. 4-point probe RC architecture

I-C. Comparator

- We used minimal-sized transistors for ultra-low delay \sim 400 $\mathrm{ns}.$
- We added an EN signal to shut down idle current sources, cutting power without sacrificing speed.

Fig. 5. Comparator schematic with EN-controlled

I-D. Level Shifter

- Converts low-level RC signals to high-level logic with low power and fast response.
- M_{p1} splits the input to reduce short-circuit current at the output buffer.
- M_{p2} pulls node Q high when input is low, preventing current leakage into the RC core and preserving frequency stability.
- In this design, LS input tracks the RC charging voltage. Output goes high near I · R and resets low when input drops to 0. (Fig. 7)[3]

Fig. 6. Proposed level shifter architecture

Fig. 7. Timing diagram of level shifter

I-E. Schmitt Trigger

 Our goal is simply to separate the output switching thresholds rather than to space them evenly; accordingly, only four transistors are required[4].

Fig. 8. 4T Schmitt trigger

Fig. 9. Simulation result of 4T ST

Simulation result

II. Simulation Results

- All simulations were conducted using the T18 CMOS process.
- For nominal threshold voltage devices, the nmos2v and pmos2v models were used. For high-threshold voltage transistors, the nmos3v and pmos3v models were applied.
- All simulations were performed under the TT (typical-typical) process corner.

Fig. 1. Architecture of the RC oscillator

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Comparator
 - Capacitor
 - Current Source
- Noise Analysis
- Setup Time
- Comparison Table

II-A. Nominal Performance

Parameter	Value
Frequency	18.37 kHz
Period	54.43 μs
Power	$72.02~\mathrm{nW}$

clock E 75.0 V1150.0 -V2250.0 300.0 350.0 400.0 450.0 500.0 550.0

Table 1. Nominal performance of the oscillator

Fig. 10. Clock, V_1 , and V_2 waveforms

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Capacitor
 - Comparator
 - Current Source
- Noise Analysis
- Setup Time
- Comparison table

II-B. Temperature & Supply Voltage Variation

Parameter	Value
Temp. Acc. (−50 °C to 120 °C)	±0.52 %
Vol. Acc. (0.95 $V\sim 1.05~V)$	0.66 %/V

Table 2. Accuracy summary under temperature and voltage variation

Fig. 11. Temperature variation result

Fig. 12. Supply voltage variation result

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Comparator
 - Capacitor
 - Current Source
- Noise Analysis
- Setup Time
- Comparison Table

II-C. Recall: Offset Cancellation Mechanism

Reviewing:

- The oscillator period is determined by two charging phases.
- With offset voltage $V_{\rm os}$, its impact is largely canceled as it appears with opposite sign in each half cycle.
- Only under mismatch (e.g., current or capacitance), $V_{
 m os}$ will partially remain.

Key equation:

$$t_{
m period} pprox 2RC \left[1 + 2lphaeta + rac{V_{
m os}}{IR} (lpha + eta)
ight] + 2t_{
m delay}$$

where α , β represent mismatch in C and I

Fig. 13. Waveform showing offset cancellation behavior

II-C1. Offset-only Effect

- In this setup, only comparator offset $V_{\rm os}$ is swept, while current and capacitor are matched $(\alpha=\beta=0).$
- According to the equation:

$$t_{\rm period} \approx 2RC + V_{\rm os} \left(\frac{C_1}{I_1} - \frac{C_2}{I_2}\right) + 2t_{\rm delay}$$

when $rac{C_1}{I_1}=rac{C_2}{I_2}$, the impact of $V_{
m os}$ cancels out.

Simulation confirms the variation is extremely small:

Line Sensitivity $\approx 4.33 \mathrm{~ppm/mV}$

Fig. 14. Period variation versus V_{os} (no mismatch)

II-C2. Mismatch: Comparator Offset under Mismatch

- Now we introduce mismatch in current and capacitor: $\alpha = \beta = 2.5\%$.
- According to the formula:

$$t_{
m period} pprox 2RC \left[1 + 2lphaeta + rac{V_{
m os}}{IR} (lpha + eta)
ight] + 2t_{
m delay}$$

- ullet $V_{
 m os}$ term no longer cancels. It now causes a linear period variation.
- Simulation result shows Line Sensitivity \approx 444 $\mathrm{ppm/mV}$

Fig. 15. Period variation vs V_{os} under $\alpha=\beta=2.5\%$

II-C3. Offset Cancellation Observation

Observation:

- From previous simulations, total period variation is small.
- \bullet But when comparing both half cycles at $V_{\rm os}=0$ and $10~{\rm mV},$ the change in each half period is significant and opposite.
- This shows the effect of offset cancellation —offset shifts one half up, the other down.
- As a result, the overall period remains relatively stable.

Current mismatch: 2.5% Capacitor mismatch: 2.5%	$V_{\rm os}=0$	$V_{ m os}=10~{ m mV}$
Half period 1 (μs) Half period 2 (μs)	27.7635 26.6527	29.5333 (+6.374%) 24.9726 (-6.304%)
Total period (μs)	54.4162	54.5059 (+0.165%)

Table 3. Period observation

Fig. 16. Cancellation of $V_{
m os}$ across two charging phases

II-C4. Bonus: Individual α , β Effects (No $V_{\rm os}$)

- In this additional simulation, we removed offset $(V_{
 m os}=0)$ and swept:
 - α only (capacitor mismatch)
 - β only (current mismatch)

$$t_{\mathrm{period},\alpha} pprox 2RC + 2t_{\mathrm{delay}}$$
 (1)

$$t_{
m period}$$
, $\beta \approx 2RC \left[1 + 2\beta^2 \right] + 2t_{
m delay}$ (2)

 This demonstrates the robustness of the oscillator even under mismatch.

Mismatch Type	Impact (ppm/%)
Current Mismatch	627.7
Capacitor Mismatch	35.6

Table 4. Period variation slope from individual mismatch

Fig. 17. Sweep of α (capacitor mismatch)

Fig. 18. Sweep of β (current source mismatch)

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Comparator
 - Capacitor
 - Current Source
- Noise Analysis
- Setup Time
- Comparison Table

II-D1. Phase Noise Analysis

Overview:

- Phase noise represents the short-term frequency stability of the oscillator.
- It is defined as the noise power at a given frequency offset from the carrier, expressed in dBc/Hz.
- In our design, the phase noise follows a typical slope:
 - $-25.87~{\rm dBc/Hz} @ 10~{\rm Hz}, \quad -90.7~{\rm dBc/Hz} @ 10~{\rm kHz}$
- The result indicates acceptable phase noise for low-frequency clock generation.

Fig. 19. Phase noise versus frequency offset

II-D2. Allan Deviation Analysis

Overview:

- Allan deviation $\sigma_y(\tau)$ characterizes long-term stability and noise type.
- For $\tau < 1~\mathrm{s}$, our data shows a slope of approximately -1/2.
- This indicates that our oscillator is dominated by white phase noise in this range.
- Due to simulation limits, we only measured up to $\tau \approx 1~\mathrm{s}.$
- Further explanation is provided in Appendix B.

Fig. 20. Allan deviation of the oscillator vs averaging time τ

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Comparator
 - Capacitor
 - Current Source
- Noise Analysis
- Setup Time
- Comparison Table

II-E. Setup Time Analysis

Overview:

- Setup time indicates the number of cycles required for the oscillator to stabilize after power-up.
- As shown, the oscillator begins generating a stable waveform immediately after V_{DD} is applied.
- The output period converges within 4 clock cycles.

Fig. 21. Setup behavior showing convergence

II. Simulation Results — Outline

- Nominal Performance
- Temperature Variation
- Supply Voltage Variation
- Device Mismatch
 - Comparator
 - Capacitor
 - Current Source
- Noise Analysis
- Setup Time
- Comparison Table

II.F Comparison Table

Spec	Paper	Proposed Circuit	
Technology	65 nm	180 nm	
Frequency	18.5~kHz	18.37 <i>kHz</i>	
Power	130 nW	72.02 <i>nW</i>	
Temp. Accuracy (%)	$\pm 0.18 \sim \pm 0.55$ (-40 °C ~ 90 °C)	±0.52 (-50 °C ~ 120°C)	
Voltage Accuracy (0.95 <i>V</i> ~1.05 <i>V</i>)	< 5 %/V	0.66 %/V	
Start up cycles 4		4	

Conclusion

III. Conclusion

This project presents the design of a low-power relaxation oscillator implemented in a **180 nm CMOS** process. An **offset cancellation scheme** is adopted to enhance accuracy, and **power consumption is minimized** by integrating a logic-controlled switch into the voltage comparator. This allows high current only during evaluation and significantly reduces idle power.

The oscillator achieves a **startup time of only 4 cycles** and demonstrates robust performance across varying conditions:

- Operates with a power consumption of 72.02 nW.
- Maintains temperature stability within $\pm 0.52\%$ over a wide range of -50° C to 120° C.
- Exhibits a line supply sensitivity of 0.66%/V across 0.95 V to 1.05 V.

These results demonstrate the oscillator's suitability for energy-efficient and temperature-resilient timing applications.

Appendix

Appendix A. Delay $\propto \sqrt{C}$

The comparator delay $t_{\rm delay}$ is shown to be proportional to \sqrt{C} based on the small-signal response of the first stage of the comparator. When the input ramp $\Delta V_{\rm in}$ increases linearly with time.

An integration-based model leads to:

$$C_{L} \frac{dV_{x}}{dt} \propto g_{m} \cdot \Delta V_{\text{in}} \propto g_{m} \cdot t$$

$$\Rightarrow \quad \Delta V_{x} \propto \int \frac{g_{m}}{C_{L}} \cdot t \, dt \propto \frac{g_{m}}{C_{L}} \cdot t^{2}$$

$$\Rightarrow \quad t \propto \sqrt{\frac{C_{L}}{g_{m}}} \propto \sqrt{C_{L}}$$

Appendix A. Delay $\propto \sqrt{C} \propto \sqrt{Area\ Ratio}$

$\sqrt{\text{Area Ratio}}$	Delay (s)
14.83	0.2989
24.49	0.7039
31.62	0.8401
44.72	1.1713
54.77	1.4469
63.25	1.6805
70.71	1.8866
77.46	2.0732

Table 1: Delay vs. √Area Ratio Data

Appendix B. Trade-Off in Allan Deviation Measurement

Concept: Allan deviation is sensitive to quantization error in period measurement.

Suppose that the oscillator period is $T=50~\mu$ s and the measurement resolution is δt .

The normalized error caused by the 1-tick quantization is:

$$\epsilon = \frac{\delta t}{T} \times 10^6 \text{ ppm}$$

For the Allan deviation using the period difference:

$$\sigma_y(au) pprox rac{\epsilon}{\sqrt{12}}$$

Hence, **the step size** is proportional to error floor; **finer step** improves the resolution but requires more data.

There's a practical trade-off between accuracy and time required.

Appendix B. Trade-Off in Allan Deviation Measurement

δt	$\delta t/T$ (%)	ϵ (ppm)	$\sigma_{\it y}(au)$ (ppm)
5 μ s	10	100 000	28 900
$0.5\mu\mathrm{s}$	1	10 000	2890
$0.05\mu\mathrm{s}$	0.1	1 000	289
$0.01\mu\mathrm{s}$	0.02	200	58
1 ns	0.002	20	5.8

Table 2: Step size vs. Allan deviation ($T = 50 \,\mu\text{s}$)

Appendix C. Setup-Time vs. Glitch Trade-off

Idea: The auxiliary capacitor C_2 (highlighted on the right) forms an RC low-pass filter that suppresses charge glitches on V_1/V_2 when phases switch.

- With $C_2 \Rightarrow$ No output glitches —but the extra load delays the comparator, so the period settles after **4 cycles** (longer setup—time).
- Without C₂ ⇒ Fast start-up (almost 0-cycle setup) —but noticeable glitches on the first transition.

(a) Location of C_2

Startup Waveforms Comparison

(a) With C_2 : clean waveform but **4-cycle** setup

(b) Without C_2 : small glitch, **instant** setup

References i

- [1] A. Paidimarri, B. H. Calhoun, and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," *IEEE Journal of Solid-State Circuits*, vol. 51, no. 8, pp. 1866–1876, 2016. DOI: 10.1109/JSSC.2016.2569484.
- [2] H. Zhang and Y. Wang, "A 5.27nw/khz Low Power Relaxation Oscillator with Current Consumption Reduction Technique," in 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 7, 2024, pp. 1336–1339.

References ii

- [3] S. Kabirpour and M. Jalali, "A Power-Delay and Area Efficient Voltage Level Shifter Based on a Reflected-Output Wilson Current Mirror Level Shifter," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 67, no. 2, pp. 250–254, Feb. 2020. DOI: 10.1109/TCSII.2019.2927431.
- [4] J. P. Kulkarni, K. Kim, and K. Roy, "A 160 mv Robust Schmitt Trigger Based Subthreshold SRAM," IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2303–2313, Oct. 2007. DOI: 10.1109/JSSC.2007.897148.

Thank You

Thanks for Listening!