Reg. No.								

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18ECE307J - APPLIED MACHINE LEARNING

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

(ii)		t - B & Part - C should be answered						
Γime: 3	hours	3		I	Max. N	⁄1ark	s: 1	00
		$PART - A (20 \times 1 =$	= 20 I	Marks)	Marks	BL	со	РО
e 1		Answer ALL Q						
1.		od glucose level is depends on ca lict blood glucose level	lorie	intake and physical activity. For	1	1	1	1
	(A)	Simple regression can be used	(B)	Two variable regression can be used				
	(C)	Three variable regression can be used	(D)	Four variable regression can be used				
2.	Reir	nforcement learning is			1	2	1	1
		Supervised Learning	(B)	Un supervised Learning				
	(C)	Moderate between supervised and unsupervised Learning	` /	1 0				
3.	unla	is the machine learning beled data.	g alg	gorithms that can be used with	1	1	1	1
	(A)	Regression Algorithm	(B)	Clustering Algorithm				
	(C)	Instance – based algorithms	(D)	Reinforcement Algorithms				
4.		at is called the average squared of out and actual output?	liffer	ence between classifier predicted	1	1	1	1
	(A)	Mean relative error	(B)	Mean squared error				
	(C)	Mean absolute error	(D)	Root mean square error				
5.	Dec	ision tree algorithm falls under th	e cat	egory of	1	2	2	1
5.		Unsupervised learning		Reinforcement learning				
	()	algorithm	(-)	algorithm				

(C) Supervised learning algorithm (D) Prove to errors in classification

characterizes the impurity of an arbitrary collection of examples

is the measure of uncertainity of a random variable, it

(B) Mini Index

(D) Mini Value

problems with many class

1

2 1

(A) Information Gain

(C) Entropy

Note:

(i)

7.	In pruning method			1	1	2	1
•	-	.(B)	The twins with least information gain is used for pruning				
	(C) The twins with most information gain is used for pruning	(D)	We can select any node for pruning				
8.	Multi layer perception			1	2	2	1
	(A) Cannot solve non-linear problems		Has only one hidden layer always Every layer including output layer has bias neuron				
•				1	1	3	1
9.	Chain effect exist in (A) Single link method (C) Centroid method		Complete link method Average link method	1	1	j IĒ	1
10.	Learning vector quantization is based	on		1	1	3	1
	(A) Supervised Learning	100	Un Supervised Learning Semi Supervised Learning				
11.	Which is true for cluster analysis?		n let a see a let	1 .	2	3	1
	(A) Intra-cluster distance to be minimized		Intra – cluster distance to be maximized Both Intra and inter cluster distance to be maximized			ā	
12.	The main application of SOM is (A) Regression (C) Reducing the dimension of data via feature extraction	(B) (D)		1	1	3	1
13	Where does the Bayes rule can be use	42		1	1	4	1
10.	•	(B)	Increasing Complexity Answering Probabilistic Query				
14.	How the components of the Bayesian			1	1	4	1
	(A) Locally Structured(C) Partial Structured		Fully Structured Globally Structured				
15.	 The CNN than conventional f (A) Reduces the weight allocation in the hidden layers (C) Uses more number of nodes in hidden layers 	(B)	Uses more number of hidden layers	1	2	4	1
16.	Which one of the following is a blind	sear	ch?	1	1	4	1
	 (A) Depth – search first (C) Depth – first search 	(B)	Best – first search Best – search first				

1/.			akes good string		~ -		1	1)	1
	, ,	Tourna		, ,	Niching					
	(C)	Elitism		(D)	Fitness Shari	ng				
18.			y value of chrome			d	1	1	5	1
	(A)		ver	` ,	Mutation					
	(C)	Fitness		(D)	Offspring Se	lection				
19.			nition is the proc	ess of conve	rting		1	1	5	1
	2		speech signal		Speech to tex					
	(C)		al Reproduction	human (D)	Sign to speed	h signal				
		speech								
•	****					manager . "				
20.	Whie	ch one o	of the following	can be cons	idered as the	class of computer	. 1	2	5	1
	threa		_	2.1-	Z					
		DOS att		. ,	Phishing		- 2			
	(C)	Solicitin	ng	(D)	Stalking	*				
				$-\mathbf{B}\left(5\times 4=2\right)$						
0.1	D '1	1.1 3.4		ANY FIVE	Questions		Marks	BL	CO	PO
21.	Build	the Ma	chine Learning F	ramework.			4	3	1	3
22	D.cc		1 00	A						
22.	Dille	rentiate	underfitting and o	over fitting lo	earning curve.		4	2	1	1
22	I I arr	dosa CA	DT1 41		1 0		4	2	2	1
23.	now	does CA	ART solve the reg	ression prob	lems?		4	2	2	1
24	Ident	ify the cl	hallenges of clust	orina alaamit	lara	'= To	4	3	3	3
Z 4.	ruem	my me c	namenges of clust	ering algori	nm.			J	3	3
25	What	is in K -	- means algorithm	n? How it is	s selected?		4	2	3	1
20.	** 114	ID III IX	means argorum	n: How it is	s sciected:			_		-
26.	What	are the	Bayesian belief n	ets? Where	are they used?		4	2	4	1
-0.	17 114	are the	Day estan sener n	ets: Where	are they used:					
27.	Write	short no	otes on:				4	2	5	1
	(i)		ssover							
	(ii)		tation							
	(")									
			PART - C (5	$\times 12 = 60 \text{ N}$	[arks]					
			· · · · · · · · · · · · · · · · · · ·	LL Question	,		Marks	BL	СО	РО
28. a.	Give	the con	fusion matrix	Q., 050.0			12	3	1	2
				Actual Win	Actual Loss					
			Predicted Win	85	4	89				
			Predicted Loss	2	9	11				
				87	13					
	For th	ne above	data, calculate th							
	(i)		sitivity							
	(ii)		cificity							
	(iii	_	e Positive							
	(iv	,	e Negative							

2 12 29. a. Illustrate with an example, how classification and regression can be done using MLP. (OR) 3 2 2 12 b. Calculate the Mini index, Entropy and information gain of the feature "Classification" from the below table. S.No | Classification | Hour of Practice | Pass the Quiz Freshman >2h Yes Yes 1 Freshman >2h Yes Sophomore <2h 2 <2hYes 3 Junior >2h No 4 Freshman No 5 Sophomore <2h3 12 3 30. a. Predict the cluster tree using single link method for the following data. $\delta |B|C|D|E$ 3 2 4 1 A 2 В 3 3 C 1 3 5 D (OR) b. Sketch the architecture of KSOM and analyze the three competitive learning process. 3 12 31. a. For the below frequency table of sample weather dataset. Play Golf Yes No 2 Sunny 3 4 0 Overcast Outlook 3 Rainy Calculate Conditional Probability P(Sunny/Yes) i. Conditional Probability P (Over cast/Yes) ii. Conditional Probability P (Rainy/No) iii. (OR) 3 b. Examine the reinforcement learning process with an example. 12 32. a. Analyze the genetic learning algorithm with Knapsack Problem. (OR) b. Illustrate the application of ML in speech emotion recognition. 12

b. Outline the perception algorithm.

* * * * *

12

1 3