

Diabetes Research and Clinical Practice 32 (1996) 187-189

Lack of acute insulin effect on plasma endothelin-1 levels in humans

Kozo Katsumoria, Taro Wasadaa,*, Akiko Saekia, Mitsuhide Naruseb, Yasue Omoria

^aDiabetes Center, Tokyo Women's Medical College, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162 Japan ^bInstitute of Clinical Endocrinology, Tokyo Women's Medical College, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162 Japan

Received 22 February 1996; revised 13 March 1996; accepted 14 March 1996

Abstract

Acute hyperinsulinemia does not increase circulating ET-1 levels in subjects with normal and deranged glucose metabolism.

Keywords: Plasma endothelin-1; Humans; NIDDM; Insulin

Recent in vivo studies indicate that plasma endothelin(ET)-1 levels increase during hyperinsulinemic euglycemic clamp studies in obese women [1] and lean normotensive men with NIDDM [2]. These findings are also in keeping with the in vitro data [3-5]. Since ET-1 is a potent vasoconstrictive and mitogenic endothelium-derived peptide, it may be involved in the pathogenesis of hypertension and atherosclerosis associated with insulin resistance. However, the in vivo results are still controversial [6]. To address the issue, we re-evaluated whether hyperinsulinemia modulates circulating ET-1 levels in the normotensive subjects with varying degree of glucose tolerance(NGT. IGT and NIDDM). Demographic features of these subjects are presented in Table 1. Euglycemic hyperinsulinemic clamp studies were per-

Before and during final 30 min of hyperinsulinemic euglycemia, blood samples for ET-1 were collected into chilled tube containing EDTA-2Na(2 mg/ml) and aprotinin(300 kIU/ml). In order to avoid venous stasis and venipuncture, blood samples were drawn through an indwelling heparin-lock catheter.

Plasma ET-1 levels were determined by a sensitive enzyme immunoassay as described previously [8]. This assay is based on a sandwich method that used two different anti-endothelin-1 antibodies with the first monoclonal antibody against the N-terminal portion and the second polyclonal antibody against the C-terminal heptapeptide. The

formed after an overnight fast, as reported previously [7]. Two stepwise insulin infusion rates (1.12 and 5.0 mU/kg/min) were used with resultant hyperinsulinemia of 50–80 μ U/ml and 300–500 μ U/ml, respectively.

^{*} Corresponding author.

Table 1
Demographic features of the subjects

	NGT	IGT	NIDDM
Number (M:F)	4 (1:3)	3 (2:1)	4 (2:2)
Age (years)	39.5 (17–67)	49.7 (42-59)	57.5 (47-67)
BMI (kg/m ²)	23.1 (20.6–25.1)	27.5 (23.8–32.5)	25.1 (21.5–29.5)
FPG (mg/dl)	88 (76–98)	104 (94–107)	132 (100–164)
HbA _{1c} (%)	4.5 (4.1-5.0)	5.8 (5.0-6.4)	7.0 (5.1–9.5)
FIRI (μU/ml)	15.5 (5.8–28.4)	9.1 (8.0–10.7)	6.1 (3.2–7.6)
BP (mmHg)			
Syst	130 (118–140)	125 (100–145)	134 (128–146)
Diast	80 (70-88)	82 (70–92)	81 (70–87)
GIR (mg/kg/min)	5.1 (3.3-6.8)	4.2 (3.6-5.4)	3.9 (2.0-5.7)
Therapy			
D:OHG:Ins			2:0:2

Mean(range); D, diet alone; OHA, oral hypoglycemic agent; In, insulin; FIRI, fasting immunoreactive insulin; GIR, glucose infusion rate.

sensitivity of the assay was 0.2 pg of ET- 1/well. Although first antibody showed a cross-reactivity of 160% with ET-2 which does not exist in the blood [9], there was no significant cross-reactivity (less than 0.25%) with other related ET-family peptides.

As shown in Table 2, the mean baseline level of plasma ET-1 showed a tendency to increase along with increasing glucose intolerance. However, mean plasma ET-1 level did not show any significant change during physiological and supraphysiological degree of hyperinsulinemia. In fact, there was no individual case that showed an increase more than 50% of the baseline level. In addition, no significant relationship was found between plasma ET-1 levels and plasma insulin level or degree of insulin resistance. Therefore, the current findings cast doubt on the acute stimulation of

Table 2 Change of plasma endothelin-1 levels during euglycemic hyperinsulinemic clamp study

Plasma endothelin-1 level (pg/ml)				
		Insulin infusion rate (mU/kg/min)		
	Baseline	1.12	5.0	
NGT(4)	1.2(0.9-1.7)	1.3(1.0-2.0)	1.1(0.5-1.6)	
IGT(3)	1.9(1.4-2.8)	1.5(1.1-2.0)	1.3(0.9-1.8)	
NIDDM(4)	2.1(1.0-3.5)	1.8(1.3-2.3)	1.8(1.3-2.2)	

Mean (range).

ET-1 secretion by insulin. Lack of acute effect seems to agree with the general concept that ET synthesis and release from endothelial cells is regulated at a transcriptional step rather than during secretory process [9]. Further studies on more chronic effect are required to conclude the physiological importance of insulin in modifying plasma ET-1 levels.

References

- Wolpert, H.A., Steen, S.N., Istfan, N.W. and Simonson, D.C. (1993) Insulin modulates circulating endothelin-1 levels in humans. Metabolism 42, 1027-1030.
- [2] Ferri, C., Carlomagno, A., Coassin, S., Baldoncini, R., Faldetta, M.R.C., Laurenti, O., Properzi, G., Santucci, A. and DeMattia, G. (1995) Circulating endothelin-I levels increase during euglycemic hyperinsulinemic clamp in lean NIDDM men. Diabetes Care 18, 226-233.
- [3] Hu, R., Levin, E.R., Pedram, A. and Frank, H.J.L. (1993) Insulin stimulates production and secretion of endothelin from bovin endothelial cells. Diabetes 42, 351-358.
- [4] Hattori, Y., Kasai, K., Nakamura, T., Emoto, T. and Shimoda, S. (1991) Effect of glucose and insulin on immunoreactive endothelin-1 release from cultured porcine aortic endothelial cells. Metabolism 40, 165-169.
- [5] Ferri, C., Piccoli, A., Properzi, G., Belline, C., Pittoni, V., Valesin, G. and Santucci, A. (1994) Insulin induces endothelin-1 release from human cultured endothelial cells(Abstract). J. Hypertens. 12 (Suppl. 3), S127.
- [6] Metsarinne, K., Saijonmaa, O., Yki-Jarvinen, H. and Fyhrquist, F. (1994) Insulin increases the release of endothelin in endothelial cell cultures in vitro but not in vivo. Metabolism 43, 878-882.

- [7] Wasada, T., Kuroki, H., Naruse, M., Arii, H., Maruyama, A., Katsumori, K., Saito, S., Watanabe, Y., Naruse, K., Demura, H. and Omori, Y. (1995) Insulin resistance is associated with high plasma ouabain-like immunoreactivity concentration in NIDDM. Diabetologia 38, 792-797.
- [8] Suzuki, N., Matsumoto, H., Kitada, C., Masaki, T. and Fujino, M. (1989) A sensitive sandwich-enzyme immunoassay for human endothelin. J. Immunol. Methods 118, 245-250.
- [9] Inagami, T., Naruse, M. and Hoover, R. (1995) Endothelium as an endocrine organ. Annu. Rev. Physiol. 57, 171-189.