Solución Prueba N°1 IME 002 Cálculo I

Profesores: Mauricio Carrillo O., Alex Sepúlveda C.

08 de abril de 2008

1. Sean $a, b, c, d \in \mathbb{R}$ tal que a < b < c < d. Simplifique,

$$\frac{|a-b|}{a-b} - \frac{|a-c||c-b||d-a|}{(c-a)(b-c)(a-d)} + \frac{\sqrt{(b-d)^2}}{d-b}$$
 (1)

Solución.

De acuerdo a las hipótesis tenemos,

$$a < b \Rightarrow a - b < 0 \Rightarrow |a - b| = -(a - b),$$

$$a < c \Rightarrow a - c < 0 \Rightarrow |a - c| = -(a - c),$$

$$b < c \Rightarrow c - b > 0 \Rightarrow |c - b| = c - b,$$

$$a < d \Rightarrow d - a > 0 \Rightarrow |d - a| = d - a,$$

$$b < d \Rightarrow b - d < 0 \Rightarrow \sqrt{(b - d)^2} = \sqrt{(d - b)^2} = d - b.$$

Reemplazando en (1) concluimos,

$$\frac{-(a-b)}{a-b} - \frac{-(a-c)\cdot(c-b)\cdot(d-a)}{(c-a)(b-c)(a-d)} + \frac{d-b}{d-b} = \frac{-(a-b)}{a-b} - \frac{(c-a)\cdot(b-c)\cdot(a-d)}{(c-a)(b-c)(a-d)} + \frac{d-b}{d-b} = -1 - 1 + 1 = -1.$$

- 2. Encuentre el conjunto solución de las siguientes inecuaciones,
 - a) $|x^2 5| \le 1$.
 - b) $\frac{2}{x} + \frac{x-1}{x+1} \ge 1$.

Solución.

a) Aplicando propiedades del valor absoluto a la inecuación $|x^2 - 5| \le 1$ tenemos,

$$|x^2 - 5| \le 1 \Rightarrow -1 \le x^2 - 5 \le 1.$$
 (2)

Esto implica que debemos resolver $-1 \le x^2 - 5$ y $x^2 - 5 \le 1$.

Para la inecuación $-1 \le x^2 - 5$ tenemos,

$$-1 \le x^2 - 5 \Leftrightarrow x^2 - 4 \ge 0 \Leftrightarrow (x+2)(x-2) \ge 0.$$

Los puntos que anulan los factores son $x = \pm 2$. Luego, la tabla de signos es,

	$(-\infty, -2)$	(-2,2)	$(2,\infty)$
x+2	_	+	+
x-2	_	_	+
(x+2)(x-2)	(+)	(-)	(+)

De donde, $S_1 = (-\infty, -2] \cup [2, \infty)$.

Por su parte, para $x^2 - 5 \le 1$ tenemos,

$$x^2 - 5 \le 1 \Leftrightarrow x^2 - 6 \le 9 \Leftrightarrow \left(x + \sqrt{6}\right)\left(x - \sqrt{6}\right) \le 0.$$

Los puntos que anulan las factores son $x = \pm \sqrt{6}$. Con esto, la tabla de signos es,

	$\left(-\infty, -\sqrt{6}\right)$	$\left(-\sqrt{6},\sqrt{6}\right)$	$\left(\sqrt{6},\infty\right)$
$x+\sqrt{6}$	_	+	+
$x-\sqrt{6}$	_	_	+
$(x+\sqrt{6})(x-\sqrt{6})$	(+)	(-)	(+)

De donde $S_2 = \left[-\sqrt{6}, \sqrt{6} \right]$.

Finalmente la solución de (2) es (Ver Figura 1)

$$S = S_1 \cap S_2 = ((-\infty, -2] \cup [2, \infty)) \cap [-\sqrt{6}, \sqrt{6}] = [-\sqrt{6}, 2] \cup [2, \sqrt{6}].$$

Figura 1: Solución de (2).

b) Para la inecuación $\frac{2}{x} + \frac{x-1}{x+1} \geq 1$ tenemos,

$$\frac{2}{x} + \frac{x-1}{x+1} \ge 1 \quad \Leftrightarrow \quad \frac{2}{x} + \frac{x-1}{x+1} - 1 \ge 0$$
$$\Leftrightarrow \quad \frac{2}{x(x+1)} \ge 0.$$

Los puntos que anulan los factores son x=0 y x=-1. Luego, la tabla de signos queda como,

	$(-\infty, -1)$	(-1,0)	$(0,\infty)$
x	_	_	+
x+1	_	+	+
x(x+1)	(+)	(-)	(+)

De donde $S = (-\infty, -1) \cup (0, \infty)$.

3. Demuestre que $\forall x, y \in \mathbb{R}$ se tiene que $x^2 + xy + y^2 \ge 0$.

Solución.

Si $xy \ge 0$ es inmediato que $x^2 + xy + y^2 \ge 0$, pues es suma de números reales no negativos. Si $xy \le 0$, entonces $-xy \ge 0$, de donde $-2xy \ge -xy \ge 0$. Esto junto al hecho que $(x+y)^2 \ge 0$, o equivalentemente $x^2 + y^2 \ge -2xy$ permite concluir que $x^2 + y^2 \ge -xy$, de donde $x^2 + xy + y^2 \ge 0$.

- 4. Indique si la afirmación es verdadera (V) o falsa (F). Justifique las falsas.
 - a) Todo $S \subset \mathbb{R}$, no vacío y acotado superiormente tiene máximo.

Solución.

Falso. Basta tomar como contraejemplo S = (a, b), con $a < b < \infty$. Tenemos que $\sup(S) = b$, pero $b \notin S$, luego b no es máximo.

b) El conjunto $A=\left\{x\in\mathbb{R}\mid x=2-\frac{1}{n},n\in\mathbb{N}\right\}\cup[0,1),$ tiene sup (A)=2 y mín (A)=0. Solución.

El intervalo [0,1) es continuo, por lo cual, toma todos sus puntos incluyendo al 0 y exceptuando al 1. Por su parte, el conjunto $\{x \in \mathbb{R} \mid x = 2 - \frac{1}{n}, n \in \mathbb{N}\}$ es discreto, por tanto, tomará sólo algunos puntos de la recta real, comenzando por el 1; intuitivamente vemos que este conjunto se acerca tanto como se quiera al 2, pero nunca llega a tocarlo ni superarlo. Gráficamente tenemos,

Figura 2: Conjunto A.

Así, sup (A) = 2 y mín (A) = 0.

c) El conjunto \mathbb{Q} , de los números racionales, satisface el axioma del supremo.

Solución.

Falso. Pues, por ejemplo, el conjunto $S = \{x \in \mathbb{Q} \mid x^2 \leq 2\}$ es acotado, pero el sup $(S) = \sqrt{2} \notin \mathbb{Q}$.

d) Si $S \subset \mathbb{R}$ tiene supremo, entonces él es único.

Solución.

Verdadero. Sean M y M' supremos de S. Por definición, M es la menor de las cotas superiores, así $M \leq M'$. De forma análoga, $M' \leq M$. Por tanto, M = M'.

e) La ecuación |x|+|x-1|=-3, sólo tiene dos soluciones. Solución.

Falso. La ecuación |x|+|x-1|=-3 no tiene solución, pues $|x|\geq 0$ y $|x-1|\geq 0$. Luego, la suma de números reales no negativos no puede dar negativo.