(19) Weltorganisation für geistiges Eigentum Internationales Büro

- 1 (1811 | 1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1 (1818) | 1

(43) Internationales Veröffentlichungsdatum
1. Februar 2001 (01.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/07535 A1

(51) Internationale Patentklassifikation⁷: C09K 19/02, G02F 1/141

(21) Internationales Aktenzeichen:

PCT/EP00/07075

(22) Internationales Anmeldedatum:

24. Juli 2000 (24.07.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 34 798.0

28. Juli 1999 (28.07.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CLARIANT INTERNATIONAL LTD. [CH/CH]; Rothausstrasse 61, CH-4132 Muttenz (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): DÜBAL, Hans-Rolf [DE/DE]; Am Langenstück 13, D-65343 Eltville (DE).

HORNUNG, Barbara [DE/DE]; Schulstrasse 21A, D-63594 Hasselroth (DE). NONAKA, Toshiaki [JP/JP]; 1-18-10, Kubo, Kakegawa-shi, Shizuoka Pref. 436-0027 (JP).

(74) Anwalt: ISENBRUCK, Günter; Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, Theodor-Heuss-Anlage 12, D-68165 Mannheim (DE).

(81) Bestimmungsstaaten (national): CN, JP, KR, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: SMECTIC LIQUID CRYSTAL HIGH-CONTRAST CONTROL OR DISPLAY DEVICE

(54) Bezeichnung: SMEKTISCHE FLÜSSIGKRISTALLSCHALT- ODER ANZEIGEVORRICHTUNG MIT HOHEM KONTRAST

(57) Abstract: The invention relates to a liquid crystal control or display device that contains a chiral smectic liquid crystal mixture. The ratio Δ/Θ of the angle between the rubbing direction and the smectic layer normal to the tilt angle is at least 0.41. The liquid crystal mixture preferably has the phase sequence I-N-C and the tilt angle Θ at 25 °C ranges from 19° to 39°.

(57) Zusammenfassung: Die Flüssigkristallschalt- oder Anzeigevorrichtung enthält eine chiral-smektische Flüssigkristallmischung, wobei in der Flüssigkristallmischung das Verhältnis Δ/Θ des Winkels zwischen der Reiberichtung und der smektischen Schichtennormale zum Tiltwinkel mindestens 0,41 beträgt und vorzugsweise die Flüssigkristallmischung die Phasenfolge I-N-C aufweist und bei 25 °C der Tiltwinkel Θ zwischen 19° und 39° liegt.

. • 1 .

10

15

20

25

30

1

Smektische Flüssigkristallschalt- oder -anzeigevorrichtung mit hohem Kontrast

Displays oder elektro-optische Anzeigevorrichtungen basierend auf smektischen Flüssigkristallmischungen als elektro-optisch aktive Schicht gewinnen wegen ihrer hohen Schaltgeschwindigkeit an Bedeutung.

Für die Verwendung von smektischen Flüssigkristallen in elektrooptischen oder vollständig optischen Bauelementen benötigt man entweder Verbindungen, die geneigte bzw. orthogonale smektische Phasen ausbilden und selbst optisch aktiv sind, oder man kann durch Dotierung von Verbindungen, die zwar solche smektischen Phasen ausbilden, selbst aber nicht optisch aktiv sind, mit optisch aktiven Verbindungen ferroelektrische oder elektroklin aktive smektische Phasen induzieren. Die gewünschte Phase soll dabei über einen möglichst großen Temperaturbereich stabil sein, um einen breiten Arbeitsbereich des Displays sicherzustellen. Insbesondere soll der erzielbare Kontrast im gesamten Arbeitsbereich möglichst hoch sein. Flüssigkristalldisplays können grundsätzlich als Aktiv- oder Passivmatrixdisplay betrieben werden.

Bei der sogenannten Aktivmatrix-Technologie (AMLCD) wird üblicherweise ein nicht-strukturiertes Substrat mit einem Aktivmatrix-Substrat kombiniert. An jedem Pixel des Aktivmatrixsubstrates ist ein elektrisch nichtlineares Element, beispielsweise ein Dünnschichttransistor, integriert. Bei dem nichtlinearen Element kann es sich auch um Dioden, Metall-Insulator-Metall- u.ä. Elemente handeln, die vorteilhaft mit Dünnschichtverfahren hergestellt werden und in der einschlägigen Literatur beschrieben sind (s. z.B. T. Tsukuda, TFT/LCD: Liquid Crystal Displays Addressed by Thin-Film Transistors, Gordon and Breach 1996, ISBN 2-919875-01-9 und darin zitierte Literatur).

10

15

20

25

Aktivmatrix-LCDs werden üblicherweise mit nematischen Flüssigkristallen im TN-(twisted nematics), ECB- (electrically controlled birefringence), VA- (vertically aligned), IPS- (in plane switching) oder OCB- (optically compensated bend) Modus betrieben. In jedem Fall wird durch die aktive Matrix an jedem Bildpunkt ein elektrisches Feld individueller Stärke erzeugt, das eine Orientierungsänderung und damit eine Änderung der Doppelbrechung erzeugt, die wiederum im polarisierten Licht optisch sichtbar ist. Ein schwerwiegender Nachteil dieser Verfahren ist die mangelnde Videofähigkeit, d.h. die zu langen Schaltzeiten nematischer Flüssigkristalle. Insbesondere besitzen nematische LCDs nicht die Fähigkeit, scharfe bewegte Bilder darzustellen, wie z.B. bei Sueoka et.al. (K. Sueoka, H. Nakamura und Y. Taira, SID 1997, S. 203-206, ISSN 1083-1312/97/1701-0203) beschrieben.

Unter anderem aus diesem Grunde wurden Flüssigkristallanzeigen, die auf der Kombination aus ferroelektrischen Flüssigkristallmaterialien und aktiven Matrix-Elementen beruhen, z.B. in WO 97/12355 oder in Ferroelectrics 1996, 179, 141-152 oder bei W.J.A.M. Hartmann (IEEE Trans. Electron. Devices 1989, 36, 9; Pt. 1, Seiten 1895-9, sowie Dissertation Eindhoven, Niederlande 1990) vorgeschlagen, die allerdings aus Gründen eines eingeschränkten Temperaturbereiches und einer schwierigen Reproduzierbarkeit der smektischen Textur nie zur Praxisreife entwickelt wurden.

Während Hartmann die ladungskontrollierte Bistabilität zur Darstellung einer nahezu kontinuierlichen Grauskala ausnutzt, haben Nito et. al. eine monostabile FLC Geometrie vorgeschlagen (Journal of the SID, 1 / 2, 1993, Seiten 163-169), bei der das FLC Material mit Hilfe verhältnismäßig hoher Spannungen derart orientiert wird, daß nur eine stabile Lage entsteht, aus der dann bei Anlegen eines elektrischen Feldes über einen Dünnschichttransistor eine Reihe von Zwischenzuständen erzeugt werden, die bei angepaßter Zellgeometrie zwischen gekreuzten Polarisatoren einer Reihe von verschiedenen Helligkeitsgraden (Grauwerte) entsprechen.

Der Nachteil der FLC von Nito et.al. ist das Auftreten einer Streifentextur, die den Kontrast und die Helligkeit dieser Zelle begrenzt (siehe Abb. 8 des o.a. Zitates). Darüber hinaus ergibt diese Methode lediglich ein Schalten in einem Winkelbereich von bis zu maximal dem einfachen Tiltwinkel, der bei dem von Nito et. al. verwendeten Material bei ca. 22 ° liegt (s.S. 165 Abb. 6) und damit nur eine Transmission von maximal 50 % der Transmission zweier paralleler Polarisatoren ergibt.

Terada et. al. haben eine monostabile FLC-Konfiguration vorgeschlagen (Terada, M., Togano, T., Asao, Y., Moriyama, T., Nakamura, S., Iba, J., vorgestellt bei der Applied Physics Conference, March-28-1999, Tokyo, Japan; Abstract No. 28p-V-8). Bei Terada et.al. wird hinsichtlich der Phasen die Sequenz I-N-C (siehe nachstehende Definition) als ,hinreichend' definiert. Diese Prototypen sind aber noch nicht über einen größeren Temperaturbereich hinweg praxistauglich, unter anderem deshalb, weil I-N-C in der Praxis zwar eine notwendige, aber keine hinreichende Bedingung ist, sondern die Praxistauglichkeit eine Reihe von zusätzlichen Bedingungen an den Flüssigkristall stellt.

Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung einer geeigneten chiral-smektischen Flüssigkristallmischung sowie einer Schalt- und Anzeigevorrichtung, enthaltend eine solche geeignete chiral-smektische Flüssigkristallmischung, wobei die Flüssigkristallmischung durch ihre vorzüglichen Orientierungseigenschaften und bestimmten günstigen Orientierungswinkel einen sehr hohen Kontrast über einen breiten Temperaturbereich ermöglichen soll.

25

30

10

15

20

Voraussetzung für einen sehr hohen Kontrast über einen weiten Temperaturbereich ist eine äußerst geringe Dunkeltransmission der LCD Zelle. Diese wird wiederum erstens nur bei exzellenten Orientierungseigenschaften der Mischung erzielt, da jede Fehlstelle oder jede lokale Abweichung des Direktors von der Dunkelstellung den Kontrast erheblich verringert und zweitens bei nur geringer Veränderung der

Orientierung mit der Temperatur. Dieses gilt insbesondere, wenn ein breiter Anwendungstemperaturbereich, z.B. von -10 °C bis +60 °C, bevorzugt 0°C bis +55 °C, speziell 10 °C bis 50 °C betrachtet wird.

Die Aufgabe wird erfindungsgemäß gelöst durch eine Flüssigkristallschalt- oder -anzeigevorrichtung, enthaltend eine chiral-smektische Flüssigkristallmischung, dadurch gekennzeichnet, daß in der Flüssigkristallmischung das Verhältnis Δ/Θ des Winkels zwischen der Reiberichtung und der smektischen Schichtennormale zum Tiltwinkel mindestens 0,41 beträgt.

10

20

25

Die Aufgabe wird erfindungsgemäß vorzugsweise gelöst durch eine chiralsmektische Schalt- oder -anzeigevorrichtung, in der man eine chiral-smektische Flüssigkristallmischung der Phasenfolge I-N-C verwendet, wobei die Symbole folgende Bedeutung besitzen:

15 I = isotrope Phase

N = nematische bzw. cholesterische Phase

C = smektische C Phase (einschließlich aller Untergattungen der C-Phase) oder eine andere getiltete Phase, chiral oder chiral dotiert (der in der Literatur übliche * ist aus Gründen der Einfachheit der Schreibweise weggelassen), und wobei so orientiert wird, daß das Winkelverhältnis w. definiert als

$w = \Delta/\Theta$ mindestens 0.41 ist, wobei

A der Winkel zwischen Reiberichtung (Fig. 1, Achse 1) und der smektischen Schichtennormale (Fig. 1, Achse 2) ist, wobei unter Reiberichtung auch eine Vorzugsrichtung durch andere Verfahren als die Reibebehandlung verstanden wird, z.B. das Foto-Alignment o.ä., und Θ der Tiltwinkel ist, vorzugsweise durch das Schaltverhalten mit Hilfe elektrischer Spannungen oder Röntgenuntersuchung ermittelt (Fig. 1, Achsen 2 und 4' bzw. 2 und 4).

Bevorzugt sind Werte von w mindestens 0.45, besonders bevorzugt > 0.53, speziell zwischen 0.55 und 0.99, ganz speziell zwischen 0.60 und 0.85.

Besonders bevorzugt ist w mindestens 0.41 bei gleichzeitiger Einschränkung des Tiltwinkelbereiches auf 19° bis 39°, vorzugsweise 20° bis 36°, besonders bevorzugt 22° bis 34°, ganz besonders bevorzugt 23° bis 33°, speziell 24° bis 32° (bei 25°C).

Die Aufgabe wird zudem erfindungsgemäß gelöst durch eine chiral-smektische Schalt- oder -anzeigevorrichtung mit einer chiral-smektischen Flüssigkristallmischung der Phasenfolge I-N-C in monostabiler Orientierung, wobei so orientiert wird, daß der Winkel ρ zwischen Reiberichtung und monostabiler Position (maximale Dunkelstellung, Achsen 1 und 3 in Fig. 1) mindestens 1°, vorzugsweise mindestens 1.3°, besonders bevorzugt mindestens 1.6°, speziell mindestens 1.9° beträgt.

15

10

Bevorzugt sind Kombinationen der Merkmale der ersten und zweiten, ersten und dritten, zweiten und dritten oder ersten bis dritten vorstehend beschriebenen Ausführungsformen der erfindungsgemäßen Flüssigkristallschalt- und Anzeigevorrichtung.

20

Besonders bevorzugt ist w mindestens 0.41 bei gleichzeitiger Einhaltung des Winkels ρ größer 1°.

Besonders bevorzugt ist w mindestens 0.41 bei gleichzeitiger Einschränkung des

Tiltwinkelbereiches zwischen 19° und 39° (bei 25°C), sowie als zusätzliche

Bedingung Winkel o größer 1°.

Besonders bevorzugt ist w mindestens 0.41 bei gleichzeitiger Einschränkung des Tiltwinkelbereiches auf 19° bis 39° (bei 25°C), Winkel ρ größer 1° sowie als zusätzliche Bedingung Spontanpolarisation < 150 nC/cm².

- Bevorzugt wird eine Mischung mit der Phasenfolge I-N-C, deren Spontanpolarisation im Bereich der Arbeitstemperatur <150 nC/cm² ist, besonders bevorzugt <70 nC/cm², ganz besonders bevorzugt <35 nC/cm², speziell <15 nC/cm², ganz speziell im Bereich von 4.1 bis 9.9 nC/cm².
- 10 Solche Displays weisen eine sehr defektarme oder völlig defektfreie Orientierung und eine sehr dunkle Dunkelstellung und damit einen hohen Kontrast über einen weiten Temperaturbereich auf. Es kann sich beispielsweise um Aktivmatrixdisplays oder Passivmatrixdisplays handeln.
- Die Aufgabe wird ebenfalls erfindungsgemäß gelöst durch eine chiral-smektische Schalt- oder -anzeigevorrichtung, speziell einem Aktivmatrixdisplay enthaltend eine Flüssigkristallmischung und durch die Flüssigkristallmischung selbst, die die Phasen(übergangs)folge

$$I-N-C$$

20

mit einer mäßig, d.h. nicht zu schwach und nicht zu stark unterdrückten smektischen A-Phase besitzen, was sich durch eines oder beide der folgenden Merkmale ausdrückt:

25 - die Erhöhung der Konzentration mindestens einer Komponente der Mischung, die eine smektische A Phase induziert, um 25 Gew%, bezogen auf die Gesamtmischung, führt zum Auftreten eines signifikanten smA-Phasenbereiches in der Mischung, bei nur 5 Gew% Erhöhung tritt dagegen noch keine smA-Phase auf, oder

der Zusatz von zehn (10) Gew%, bezogen auf die Gesamtmischung, eines smektisch-A-Induzierers, bevorzugt Komponente A, CAS-Reg.-Nr.: 156682-16-5, Bezeichnung: 5-[6-(Octyloxy)-3-pyridinyl]-2-(octyloxy) pyrimidin

5

führt zu einem Auftreten eines smA-Phasenbereiches von weniger als 5.5 °C (Phasenbreite), mindestens jedoch von 0.1 °C bei Zugabe von 25 Gew%, bezogen auf die Gesamtmischung, der Komponente A.

Die Erfindung betrifft auch ein Verfahren zum Auffinden geeigneter Flüssigkristallmischungen, das die obigen Verfahrensschritte beinhaltet.

15

Darüber hinaus ist es vorteilhaft, wenn die LCD-Zelle einen asymmetrischen Aufbau besitzt, was bedeutet, daß Ober- und Unterseite der Zelle sich in mindestens einem Merkmal, abgesehen von einem möglichen Aktivmatrixaufbau (Dünnschicht-Transistor) selber, unterscheiden. Dies ist insbesondere der Fall bei

20

25

- Unsymmetrischen oder unsymmetrisch behandelten Orientierungsschichten (z.B. bei anti-paralleler Reibung)
- Weglassen einer der beiden Orientierungsschichten
- Weglassen oder Verändern des Reibeschrittes bei einer der beiden Orientierungsschichten
- Einbringen einer unsymmetrischen Schichtstruktur, z.B. durch zusätzliche Isolierschichten mit unterschiedlichen Eigenschaften auf Ober- und Unterseite
- Allen Maßnahmen, die letztlich bewirken, daß die Flüssigkristalldomäne einer unsymmetrischen Umgebung ausgesetzt ist, bezogen auf eine zu den Elektrodenflächen parallel gedachte Symmetrieebene.

Ausdrücklich einbezogen ist die vorteilhafte Verwendung der erfindungsgemäßen Materialien und Mischungen für Aktivmatrix-Displays, antiferroelektrische Displays sowie smektische Displays, wobei unter Display jegliche Art von optischer Anzeigeund Schaltvorrichtung ungeachtet von Größe, Aufbau, Lichtführung, Ansteuerung und Verwendung verstanden werden soll.

Insbesondere wird unter Aktivmatrixdisplay im Sinne der vorliegenden Erfindung auch ein LCD verstanden, bei dem eines der beiden Substrate durch die Rückseite eines IC-Chips (IC = integrated circuit) ersetzt wird, wie beispielsweise bei D.M.Walba, Science 270, 250-251 (1995) oder http://www.dispaytech.com beschrieben, also die sogenannte LCOS-Technik (LC On Silicon).

Insbesondere wird unter Aktivmatrixdisplay im Sinne der vorliegenden Erfindung auch ein LCD verstanden, bei dem eines der beiden Substrate durch die Rückseite einer Plasmazelle (plasma-addressed LCD) ersetzt wird.

Generell werden Displays mit einem Elektrodenabstand von 0,7 bis 3,0 µm, speziell Aktivmatrixdisplays mit einem Elektrodenabstand von 0,8 bis 2,0 µm bevorzugt, die eine chiral-smektische Mischung mit schwach unterdrückter smA-Phase enthalten.

20

5

10

15

Besonders bevorzugt ist ein Display, das mit gepulster oder schnell wechselnder Hintergrundbeleuchtung (sogenannte ,sequential backlight' Technik) arbeitet.

Die Aufgabe wird auch gelöst durch die Verwendung einer chiral-smektischen
Flüssigkristallmischung mit der Phasenfolge I-N-C als elektro-optisch aktive Schicht
in monostabilen Schalt- und Anzeigevorrichtungen oder Displays, wobei die chiralsmektische Flüssigkristallmischung folgende Eigenschaftskombination besitzt:

10

9

TC größer als 50 °C und

T_{NI} kleiner als 105 °C und

19° < Tiltwinkel (25 °C) < 39 ° und

Spontanpolarisation kleiner 150 nC/cm² und

Ganghöhe der cholesterischen Helix größer 2 µm und

die Differenz der Tiltwinkel, gemessen bei 15 °C und 5 °C unterhalb Tc, dem oberen Ende des Existenzbereiches der optisch aktiven smektischen Phase, weniger als 9.5 °C beträgt. Dabei ist vorteilhaft, wenn die Mischung mindestens 20 Gewichtsprozent (in Summe) an N- und/oder S-heterocyclischen Verbindungen enthält. Insbesondere Thiophenderivate sind hier bevorzugt.

In der Zeichnung zeigt

15 Fig. 1 schematisch die Lage der einzelnen verwendeten Winkel zueinander

Fig. 2 das Phasendiagramm zu Beispiel 1

Fig. 3 die optische Transmission einer Testzelle in Abhängigkeit von der Spannung für eine Mischung aus Beispiel 6.

20 Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.

Beispiel 1

Zur Illustration der mäßig unterdrückten smA-Phase wird eine Mischung erstellt aus einer Mischung M1 und der Komponente B:

Dabei wird die Konzentration der Komponente B kontinuierlich variiert. Man erhält so einen zweidimensionalen Ausschnitt aus dem Phasendiagramm der Mischung, das in Fig. 2 dargestellt ist.

5 <u>Tabelle 1</u>: Zusammensetzung der Testmischung M1:

C ₈ H ₁₇ O — OR	Gew%
$R = C_8 H_{17}$	14,43
$R = C_6 H_{13}$	29,12
$R = C_4 H_9$	28,47
$R = C_{10}H_{21}$	27,98
Summe Gew%	100,00

Der trikritische Punkt NAC liegt bei ([M1]=66 Gew%, [B]=34 Gew%), wie in Fig.2 dargestellt (in Fig.2 bedeuten T die Celsiustemperatur, [B] die Gewichtsprozente der Komponente B, bezogen auf die gesamte Mischung). Die Definition für I, N, C ist vorstehend angegeben. A bedeutet smektisch-A-Phase. Die erfindungsgemäße Umgebung des NAC-Punktes wird wie folgt ermittelt.

Es werden sechs Testmischungen mit den folgenden Zusammensetzungen erstellt:

15 <u>Tabelle 2</u>: Testmischungen P-U und deren Phasenfolgen

Mischung	[M1]	M1] [B] Phasenfolge	
	Gew%		Phasen, Temperatur in °C
P	75	25	C 85,3 A 90,6 N 108 I
Q	66	34	C 85.6 (NAC) 85.6 N 115 I
R	60	40	C 85.6 N 116 I
S	55	45	C 86,5 N 119 I
T	50	50	C 87 N 122 I
U	20	80	C 92.7 N 145 I

Die so erhaltenen Mischungen werden mit 10 Gew% der Komponente A (wie vorstehend definiert) als smA-Induzierer versetzt. Man erhält die folgenden Phasenbereiche:

5 <u>Tabelle 3</u>: Testmischungen PA-UA und deren Phasenfolgen nach Zugabe von Komponente A (siehe oben, 10 Gew%)

Mischung 90 Gew%		Phasenfolge mit 10 Gew% A	Breite der smA-Phase
		Phasen, Temperatur in °C	°C
PA	P	C 82.6 A 94.3 N 103 I	11.7
QA	Q	C 85.5 A 93.0 N 106 I	7.5
RA	R	C 86.8 A 92.5 N 109 I	5.7
SA	S	C 88.2 A 90.6 N 112 I	2.4
TA	T	C 88.5 (NAC) 88.5 N 114 I	0.0
UA	U	Keine smA-Phase	0.0

Hierbei zeigt sich, daß die Mischungen U,T,S im bevorzugten Bereich der vorliegenden Erfindung liegen, da sie weit genug vom multikritschen Punkt NAC entfernt liegen und die smA-Phase stark genug unterdrückt ist. Insbesondere bei den Mischungen T, S und U treten bei Zugabe von 25 % der Komponente A smA-Phasenbereiche von mehr als 0.1 °C auf.

Die Spontanpolarisation läßt sich nahezu beliebig einstellen durch Zugabe eines geeigneten chiralen Stoffes oder Stoffgemisches. Z.B. erhält man, ausgehend von Mischung T, durch Zugabe von 5 Gew% der Komponente C8 (siehe Beispiel 3 unten) eine chiral-smektische Mischung der Phasenfolge

I 115 N 84 C.

25

20 mit Ps= -7,8 nC/cm² und einem Tiltwinkel von 27° bei 25°C.

Beispiel 2 LCD Testzelle

Eine LCD Testzelle wird hergestellt aus zwei handelsüblichen, mit Indium-Zinnoxid leitfähig transparent beschichteten Glasplatten. Diese werden mit der Orientierungsschicht LQT-120 (Hersteller: Hitachi Chemicals KK), welche mit N-

Methylpyrrolidon auf 8.3% ihres ursprünglichen Feststoffgehaltes verdünnt wurde, durch Spin-coating beschichtet (2500 U/min, 10 sec), durch Erhitzen gehärtet (230°C, 1 Stunde) und anschließend einem Reibeprozeß zwecks Orientierung unterzogen (Reibestoff: Rayon-Typ YA-20-R*, clearance 0.2 mm,

5 1 mal, 700 U/min Walzendrehzahl, 10 cm/s Substratgeschwindigkeit, 10 cm Rollendurchmesser).

Die geriebenen Gläser werden bei antiparalleler Ausrichtung der Reiberichtung zu Testzellen verklebt und mittels Abstandhalter auf einen Abstand von $1,3~\mu m$ eingestellt.

Die FLC-Mischung wird in die Zelle gefüllt und durch Abkühlen zunächst in der nematischen bzw. cholesterischen Phase orientiert. Beim weiteren Abkühlen wird eine Gleichspannung von 3 Volt angelegt und die Zelle mit einer Abkühlrate von 2 K/min in den Bereich der smC Phase (chiral smektisch C) überführt. Dabei bildet sich bei Verwendung erfindungsgemäßer Mischungen eine monostabile Domäne aus.

Die Bestimmung der Reiberichtung, sofern diese nicht ohnehin bekannt ist, kann experimentell durch eine Überführung in die nematische Phase durch Erwärmung und anschließende Bestimmung der Dunkelstellung zwischen gekreuzten Polarisatoren geschehen.

Die Bestimmung des Tiltwinkels kann experimentell durch ein Beschalten der Zelle bei Betriebstemperatur erfolgen. Hier beobachtet man eine Sättigung der optischen Transmissionen bei positiver und negativer Spannung (typisch 20 V), denen bestimmte Drehwinkel zugeordnet sind (Fig. 1, Achsen 4, 4'). Die Winkeldifferenz bei Sättigung ergibt den Wert 2Θ (= doppelter Tiltwinkel), die Winkelhalbierende gibt die Schichtennormale (Fig. 1, Achse 2). Die Dunkelposition ist einfach bestimmbar.

10

15

20

Beispiel 3

5

Es werden Testmischungen aus den folgenden Komponenten C1-C8 erstellt (Mischungen V,W,X, siehe Tabelle 4). Die Phasenübergänge und einige Eigenschaften der in Beispiel 2 beschriebenen, mit diesen Mischungen hergestellten Zelle sind in Tabelle 5 zusammengefaßt.

$$C_{10}H_{21} \longrightarrow OC_{12}H_{25}$$
Komponente C1

$$C_{8}H_{17} \longrightarrow OC_{10}H_{21}$$
Komponente C3

$$C_{9}H_{19} \longrightarrow OC_{7}H_{15}$$
Komponente C4

$$C_{9}H_{19} \longrightarrow OC_{9}H_{19}$$
Komponente C5

$$C_{9}H_{19} \longrightarrow OC_{9}H_{19}$$
Komponente C6

$$C_{10}H_{21} \longrightarrow OC_{12}H_{25}$$
Komponente C2

$$C_{9}H_{19} \longrightarrow OC_{9}H_{19}$$
Komponente C6

$$C_{10}H_{21} \longrightarrow OC_{9}H_{19}$$
Komponente C6

$$C_{10}H_{21} \longrightarrow OC_{12}H_{25}$$
Komponente C6

$$C_{9}H_{19} \longrightarrow OC_{12}H_{25}$$
Komponente C7

Komponente C6

Tabelle 4: Zusammensetzungen der Mischungen V,W,X

Komponente	V	W	X
C1 C2	14,4%	7,2%	
	14,4%	7,2%	
C3	14,4%	7,2%	
C4	14,4%	21,6%	28,8%
C5	14,4%	21,6%	28,8%
C6	14,4%	21,6%	28,8%
C 7	10,0%	10,0%	10,0%
C8	3,6%	3,6%	3,6%

5 <u>Tabelle 5</u>: Eigenschaften der chiral-smektischen Mischungen sowie der Zelle, die nach dem in Beispiel 2 beschriebenen Verfahren hergestellt wurde

				10V, 60	Hz				
Mischung	Тс	ΔSa	Ps (nC/cm²) 25 °C	Ө тс-10	ρ	Σ	Σ/Θ	Δ	w= Δ/Θ
V	62,8	1,5	3,7	19,9	-	19,9	1,0	0	0
W	56,1	0	4,8	23,1	3,6	13,7	0,59	9,4	0,41
X	59,2	0	5,9	23,9	4	12,2	0,51	11,7	0,49

Hierbei besitzen die Mischungen W und X die Phasenfolge I-N-C und ein Verhältnis von Δ/Θ von 0.41 (V) und 0,49 (W). Dagegen führt die Verwendung von Mischung V mit der Phasenfolge I-N-A-C zu keiner vorteilhaften Verwendbarkeit im Sinne der vorliegenden Erfindung.

Beispiel 4

Die Mischungen W, X werden mit der Komponente A gemischt, wiederum so, daß in diesen neuen Mischungen die Konzentration der Komponente A 10 Gewichtsprozent beträgt. Man erhält folgende smA-Phasenbreiten (ΔSa): 5

Tabelle 6: smA-Phasenbereich mit 10 Gew% der Komponente A in °C

Mischung	Tc	ΔSa
w	59	4
X	62	2.5

10

15

Hieraus ergibt sich, daß die Mischungen W und X eine stark genug unterdrückte smA-Phase besitzen, die bei Zugabe von 10% des smA-Induzierers hervortritt, und eine Breite von weniger als 5,5°C besitzt. Bei Zugabe von 25 Gew% der Komponente A werden smA-Phasenbereiche von mehr als 0,1°C erhalten.

Beispiel 5

20

Die mit den Mischungen W und X gefüllten Testzellen (Tabelle 2) werden auf ihre Schalteigenschaften untersucht. Dazu wird die optische Transmission zwischen gekreuzten Polarisatoren in Abhängigkeit der anliegenden Spannung (bipolare Pulsfolgen mit 60 Hz Frequenz = 8,3 ms Breite) untersucht. Man erhielt folgende Ergebnisse bei einer Temperatur von 30 °C:

Tabelle 7: Analoge Grauskala mit Mischungen W und X

Spannung (Volt)	Transmission (%) Mischung W	Transmission (%) Mischung X
0	0	0
0,5	2	14,8
1	5,4	24,2
1,5	12	40,2
2	21,4	48,4
2,5	38,2	53,8
3	48,4	57,6
3,5	54	60,4
4	59,6	63,2
4,5	63,2	65
5	65,8	66,6
8	71,2	69,6
10	72,2	70

Schaltzeiten (10 V) Mischung W: 0.22 ms (0-50%) bzw. 0.15 ms (100-50%)

5 Schaltzeiten (10 V) Mischung X: 0.20 ms (0-50%) bzw. 0.12 ms (100-50%)

Beide Mischungen mit mäßig, aber stark genug unterdrückter smA-Phase lassen sich vorteilhaft verwenden, da eine analoge Grauskala und Submillisekunden- Schalten mit niedrigen Werten der Spontanpolarisation realisiert werden.

Beispiel 6

Es werden acht weitere Testmischungen hergestellt, enthaltend die folgenden Komponenten:

$$C_8H_{17}$$
 OC_8H_{17}

Komponente C9

$$C_8H_{17}O$$
 $OC_{10}H_{21}$

Komponente C11

$$\mathsf{C_8H_{17}O} - \underbrace{ \left\langle \begin{array}{c} \mathsf{N} \\ -\mathsf{N} \\ \end{array} \right\rangle}_{\mathsf{N}} - \underbrace{ \left\langle \begin{array}{c} \mathsf{OC_4H_5} \\ -\mathsf{OC_4H_5} \\ \end{array} \right\rangle}_{\mathsf{N}} - \mathsf{OC_4H_5}_{\mathsf{N}}$$

Komponente C13

$$C_{12}H_{25}$$
 $C_{5}H_{11}$

Komponente C15

$$H_{20}C_{11} - \left(\begin{array}{c} N \\ \\ \end{array}\right) - \left(\begin{array}{c} O \\ \\ \end{array}\right$$

Komponente C17

$$C_8H_{17}O$$
 N
 $OC_8H_{17}O$

Komponente C10

$$C_8H_{17}O N$$
 OC_6H_{13}

Komponente C12

$$\mathsf{C_8H_{17}} - \underbrace{ \left\langle \begin{array}{c} \mathsf{N} \\ -\mathsf{N} \\ \end{array} \right\rangle}_{\mathsf{N}} - \underbrace{ \left\langle \begin{array}{c} \mathsf{D} \\ -\mathsf{OC_6H_{13}} \\ \end{array} \right\rangle}_{\mathsf{N}} - \mathsf{OC_6H_{13}}$$

Komponente C14

Komponente C16

<u>Tabelle 8:</u> Zusammensetzungen der Testmischungen Y1 bis Y8. Angaben in Gewichtsprozent.

Komponente	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
C9	8,5%	9,7%	10,8%	12,0%	13,0%	9,6%	8,5%	7,4%
C10	2,8%	3,2%	3,6%	4,0%	4,4%	3,2%	2,8%	2,5%
C3	6,8%	7,7%	8,6%	9,5%	10,4%	7,7%	6,8%	5,9%
C12	5,7%	6,5%	7,3%	8,1%	8,8%	6,5%	5,7%	5,0%
C13	5,6%	6.4%	7,1%	7,9%	8,6%	6,4%	5,6%	4,9%
C11	5,5%	6,3%	7,0%	7,8%	8,5%	6,3%	5,5%	4,8%
C14	8,8%	10,0%	11,1%	12,4%	13,5%	10,0%	8,8%	7,7%
C15	12,3%	14,0%	15,6%	17,3%	18,9%	13,9%	12,3%	10,7%
C16	10,0%	10,0%	10,0%	10.0%	10,0%	9.0%	7,9%	6,9%
C4	10.0%	7.5%	5.0%	2,5%	0.0%	4.5%	4,0%	3,4%
C6	10,0%	7.5%	5.0%	2,5%	0.0%	4.5%	4,0%	3.4%
C5	10,0%	7,5%	5.0%	2,5%	0,0%	4.5%	4,0%	3,4%
C17	0,0%	0,0%	0,0%	0,0%	0,0%	10.0%	20,0%	30,0%
C8	4,0%	4,0%	4,0%	4,0%	4,0%	4,0%	4,0%	4,0%

Die Mischungen Y1 bis Y8 wurden nun auf ihre Schalteigenschaften, auf die Qualität der Orientierung, auf die Temperaturabhängigkeit des Kontrastes und des Tiltwinkels, auf die Winkel gemäß Fig. 1, das Winkelverhältnis w sowie auf das Maß der Unterdrückung der smektischen A Phase hin untersucht. Die experimentellen Ergebnis sind in Tabelle 9 zusammengefaßt. Dabei wurden die Größen TK (Temperaturabhängigkeit des Kontrastes) und Orientierung durch optische Inspektion und Messungen in drei Stufen (+ gut, 0 mittelmäßig,

- schlecht) eingestuft. Die Größe TT ergibt sich aus Messungen der Temperaturabhängigkeit des Tiltwinkels bei 5 °C (Θ 5) und 15 °C (Θ 15) unterhalb T_C , dem Ende des smC-Existenzbereiches. Dann ergibt sich

$$TT = (\Theta15 - \Theta5)/10.$$

Die Größen Vo und Vs sind in Fig. 3 definiert (Schwellspannung bzw. Sättigungsspannung). Fig. 3 stellt die optische Transmission einer Testzelle in Abhängigkeit von der Spannung für die Mischung Y7, die sehr gut geeignet ist, dar.

Tabelle 9: Meßdaten der Testmischungen Y1 bis Y8

Meßgröße	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
[Einheit]								
T _{NI} [°C]	76	79	83	85	86	82	84	84
T _{NA} [°C]					68.8	1		
T _c [°C]	62.8	64.6	66.1	67.0	67.5	63.6	60.7	59.1
Δ smA [°C]	0	0	0	0	1.3	0	0	0
θ [°]	29.5	28.3	27.6	26.0	23.7	28.2	29.0	29.6
20 V, Tc-30°C								Ì
Δ [°]	20.4	18.5	14.7	10.6	0	18.7	22.4	23.6
ρ [°]	3.4	3.5	3.3	3.5		3.0	2.2	3.0
Σ [°]	9.1	9.8	12.9	15.4	23.7	9.5	6.6	6
w = Δ / Θ	0.692	0.654	0.533	0.408	0.000	0.663	0.772	0.797
Σ/Θ	0.308	0.346	0.467	0.592	1.000	0.337	0.228	0.203
ρ/Σ	0.374	0.357	0.256	0.227		0.316	0.333	0.500
Δ smA* [°C]	3.2	3.3	5.4	5.7	7.9	0.8	0.0	0.0
+10% Komp. A								
Vo [Volt]	0.8	0.7	0.3	1.0	 -	0.8	1.0	0.3
Vs [Volt]	6	6	7	6	-	8	4.5	3.8
Orientierung	+	+	0	0	-	+	+	+
TK (s. Text)	0	0	-	-	-	+	+	+
TT (s. Text)	0.61	0.62	0.72	0.95	0.75	0.49	0.38	0.29
Gesamtbewert	+	+	0	 -	-	+	+	+
ung der Zeile	,			<u> </u>				,

15

Patentansprüche

- Flüssigkristallschalt- oder -anzeigevorrichtung, enthaltend eine chiralsmektische Flüssigkristallmischung, dadurch gekennzeichnet, daß in der Flüssigkristallmischung das Verhältnis Δ/Θ des Winkels zwischen der Reiberichtung und der smektischen Schichtennormale zum Tiltwinkel mindestens 0,41 beträgt.
- Flüssigkristallschalt- oder -anzeigevorrichtung nach Anspruch 1, dadurch
 gekennzeichnet, daß die Flüssigkristallmischung die Phasenfolge I-N-C
 aufweist und bei 25°C der Tiltwinkel Θ zwischen 19° und 39° liegt.
 - 3. Flüssigkristallschalt- oder -anzeigevorrichtung, enthaltend eine chiralsmektische Flüssigkristallmischung mit der Phasenfolge I-N-C in
 monostabiler Orientierung, dadurch gekennzeichnet, daß der Winkel ρ
 zwischen Reiberichtung und monostabiler Position mindestens 1 ° beträgt.
- Flüssigkristallschalt- oder -anzeigevorrichtung, enthaltend eine chiralsmektische Flüssigkristallmischung mit der Phasenfolge I-N-C in
 monostabiler Orientierung, dadurch gekennzeichnet, daß die Differenz der
 Tiltwinkel, gemessen bei 15 °C und 5 °C unterhalb Tc, dem oberen Ende des
 Existenzbereiches der optisch aktiven smektischen Phase, weniger als 9.5 °C
 beträgt.
- 5. Flüssigkristallschalt- oder -anzeigevorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mischung eine Spontanpolarisation von weniger als 150 nC/cm² besitzt.

15

20

- Flüssigkristallschalt- oder -anzeigevorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Vorrichtung ein Aktivmatrixdisplay oder Passivmatrixdisplay ist.
- Verwendung einer chiral-smektischen Flüssigkristallmischung mit der Phasenfolge I-N-C als elektro-optisch aktive Schicht in monostabilen Schaltund Anzeigevorrichtungen oder Displays, dadurch gekennzeichnet, daß die chiral-smektische Flüssigkristallmischung folgende Eigenschaften besitzt:

T_C größer als 50 °C und

T_{NI} kleiner als 105 °C und

19° < Tiltwinkel (25 °C) < 39 ° und

Spontanpolarisation kleiner 150 nC/cm² und

Ganghöhe der cholesterischen Helix größer 2 μ m und die Differenz der Tiltwinkel, gemessen bei 15 °C und 5 °C unterhalb Tc, dem oberen Ende des Existenzbereiches der optisch aktiven smektischen Phase, weniger als 9.5 °C beträgt.

- 8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, daß die Schalt- und Anzeigevorrichtung wie in einem der Ansprüche 1 bis 6 definiert ist.
- 9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß die Mischung in Summe mindestens 20 Gew% an stickstoff- oder schwefelhaltigen heterocyclischen Verbindungen enthält.
- 25 10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß die Mischung mindestens ein Thiophenderivat enthält.

11. Chiral-smektische Flüssigkristallmischung mit der Phasenfolge I-N-C, dadurch gekennzeichnet, daß der Zusatz von 10 Gew%, bezogen auf die Gesamtmischung, eines smektisch-A-Induzierers zu einem Auftreten eines smA-Phasenbereichs von weniger als 5,5°C führt und der Zusatz von 25 Gew%, bezogen auf die Gesamtmischung, zu einem Auftreten eines smA-Phasenbereichs von mindestens 0,1°C führt.

WO 01/07535

1/3

ERSÄTZBLATT (REGEL 26)

39 POTH 25 JAN 20

Fig. 2

59 Rec'd PCT// 25 JAN 20

Fig. 3

531 Rec'd PCT/F1. 25 JAN 2002

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09K19/02 G02F1/141

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 CO9K GO2F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

INSPEC, EPO-Internal, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 629 788 A (MORI SHOSEI ET AL) 13 May 1997 (1997-05-13) column 7, line 4 -column 9, line 35 examples 1-3; tables 1,3,5,9 claims 1,3,5,7	1,2,5-7, 9,10
X	EP 0 532 210 A (SHARP KK) 17 March 1993 (1993-03-17) page 4, line 21 - line 23 example 1; table 1	1,2,7
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 453 (E-1417), 19 August 1993 (1993-08-19) & JP 05 102227 A (SEIKO EPSON CORP), 23 April 1993 (1993-04-23) abstract	1
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
31 October 2000	08/11/2000
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Boulon, A

Into that Application No PCI/EP 00/07075

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
-alegoly *	Orașian orașiani maranavani, wriete appropriate, or ure renevant passages	пания и сали но.
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 654 (P-1653), 3 December 1993 (1993-12-03) & JP 05 216034 A (CANON INC), 27 August 1993 (1993-08-27) abstract	1
(EP 0 539 991 A (CANON KK) 5 May 1993 (1993-05-05) examples 1,4	1,5,9
4	EP 0 548 548 A (CANON KK) 30 June 1993 (1993-06-30) page 7, line 12 -page 10, line 44; figures 5A,5B examples 1-17	1,7,9,10

INTERN ONAL SEARCH REPORT ...ormanon on patent tamily members

Internal Application No
PCT/EP 00/07075

	tent document in search report		Publication : date	ĺ	Patent family member(s)	Publication date
US	5629788	A	13-05-1997	JP	3000504 B	17-01-2000
				JP	6250186 A	09-09-1994
EP	0532210	Α	17-03-1993	JP	2713513 B	16-02-1998
				JP	5053116 A	05-03-1993
				CA	2077132 A	01-03-1993
				US	5537237 A	16 - 07-1996
JP	05102227	Α	23-04-1993	NONE		
JP	05216034	Α	27-08-1993	NONE		
EP	0539991	Α	05-05-1993	AT	147519 T	15-01-1997
				DE	69216548 D	20-02-1997
				DE	69216548 T	31-07-1997
				ES	2098416 T	01-05-1997
				JP	2663082 B	15-10-1997
				JP	5333342 A	17-12-1993
				US	5453861 A	26-09-1995
EP	0548548	Α	30-06-1993	AT	166729 T	15-06-1998
				DE	69225685 D	02-07-1998
				DE	69225685 T	26-11-1998
				ΕP	0770662 A	02-05-1997
				JP	2976202 B	10-11-1999
				JP	10279942 A	20-10-1998
				JP	5345891 A	27-12-1993
				US	5305131 A	19-04-1994

			•.
			•
			•
			٠
	•		
			i

INTERNATIONALER PECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C09K19/02 G02F1/141

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Massifikationssystem und Klassifikationssymbole)

IPK 7 C09K G02F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

INSPEC, EPO-Internal, PAJ

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 629 788 A (MORI SHOSEI ET AL) 13. Mai 1997 (1997-05-13) Spalte 7, Zeile 4 -Spalte 9, Zeile 35 Beispiele 1-3; Tabellen 1,3,5,9 Ansprüche 1,3,5,7	1,2,5-7, 9,10
X	EP 0 532 210 A (SHARP KK) 17. März 1993 (1993-03-17) Seite 4, Zeile 21 - Zeile 23 Beispiel 1; Tabelle 1	1,2,7
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 453 (E-1417), 19. August 1993 (1993-08-19) & JP 05 102227 A (SEIKO EPSON CORP), 23. April 1993 (1993-04-23) Zusammenfassung	1
	-/	

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden «y» soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden
- Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6ffentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung f\u00fcr einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

31. Oktober 2000

08/11/2000

Bevollmächtigter Bediensteter

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Boulon, A

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Internaliales Aktenzeichen
PCTyEP 00/07075

		00/0/0/5		
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 654 (P-1653), 3. Dezember 1993 (1993-12-03) & JP 05 216034 A (CANON INC), 27. August 1993 (1993-08-27) Zusammenfassung	1		
X	EP 0 539 991 A (CANON KK) 5. Mai 1993 (1993-05-05) Beispiele 1,4	1,5,9		
Α	EP 0 548 548 A (CANON KK) 30. Juni 1993 (1993-06-30) Seite 7, Zeile 12 -Seite 10, Zeile 44; Abbildungen 5A,5B Beispiele 1-17	1,7,9,10		

INTERNATIONALER RECHENBERICHT

Angaben zu Veröffentlichunge... die Leiben Patentfamilie gehören

Intermediles Aktenzeichen
PCT/EP 00/07075

lm Recherchenberich ngeführtes Patentdokui		Datum der Veröffentlichung		litglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5629788	A	13-05-1997	JP JP	3000504 B 6250186 A	17-01-2000 09-09-1994
EP 0532210	Α	17-03-1993	JP JP CA US	2713513 B 5053116 A 2077132 A 5537237 A	16-02-1998 05-03-1993 01-03-1993 16-07-1996
JP 05102227	Α	23-04-1993	KEI	NE	
JP 05216034	Α	27-08-1993	KEIN	NE	
EP 0539991	A	05-05-1993	AT DE DE ES JP JP US	147519 T 69216548 D 69216548 T 2098416 T 2663082 B 5333342 A 5453861 A	15-01-1997 20-02-1997 31-07-1997 01-05-1997 15-10-1997 17-12-1993 26-09-1995
EP 0548548	A	30-06-1993	AT DE DE EP JP JP JP	166729 T 69225685 D 69225685 T 0770662 A 2976202 B 10279942 A 5345891 A 5305131 A	15-06-1998 02-07-1998 26-11-1998 02-05-1997 10-11-1999 20-10-1998 27-12-1993 19-04-1994

	•		•		-
-			•		,
					.
					ł
		•			
					`
					ļ
					1
		•			
					ų.
				•	
					4
					¢
					•