第七章 双线性型、二次型

1. (线性型的定义: 设 $V \in \mathbb{F}$ 上的线性空间. 一个从 $V \in \mathbb{F}$ 的线性映射 f 称为 V 上的一个线性型一个线性型也称为一个线性函数.)

解:

(1) 对任意 $f, g \in \mathbb{F}[x]_n, a, b \in \mathbb{F}$ 有:

$$\phi(af + bg) = (af + bg)(0) = af(0) + bg(0) = a\phi(f) + b\phi(g),$$

所以, ϕ 是 $\mathbb{F}[x]_n$ 上的一个线性型.

注: 本题给出的例子在函数空间上有类似的构造: 称为赋值线性函数: 例如: 在 V = C[a,b] 上, $x_0 \in [a,b]$, 则 ϕ : $C[a,b] \to \mathbb{R}$: $\phi(f) = f(x_0)$, 就是 C[a,b] 上的一个线性型.

(2) 不是, 因为行列式函数不是线性的: 存在 A, B 使得 $\det(A+B) \neq \det(A) + \det(B)$.

注: 行列式 $\det(a_{ij})$ 是 n^2 个变量 a_{ij} 的多项式函数. 但是, 由行列式的基本性质可知, det 可以看成是从 $\mathbb{F}^n \times \cdots \times \mathbb{F}^n$ 上的多重线性函数. (multilinear function.)

(3) 如果 A = 0, 则 $f \equiv 0$ 是线性的; 否则, 不是. 事实上,

$$f(aX + bY) = (aX + bY)'A(aX + bY)$$
$$= a^{2}X'AX + abX'AY + abY'AX + b^{2}Y'AY, \overrightarrow{m}$$
$$af(X) + bf(Y) = aX'AX + bY'AY.$$

(4) 由方阵的 trace 的性质有: 对任意 $A, B \in M_n(\mathbb{F})$ 和 $a, b \in \mathbb{F}$ 有:

$$\operatorname{tr}(aA+bB)=\operatorname{tr}(aA)+\operatorname{tr}(bB)=a\operatorname{tr}(A)+b\operatorname{tr}(B),$$
 所以, tr 是 $\operatorname{M}_n(\mathbb{F})$ 上的一个线性型.

 $\mathbf{\dot{z}}$: 这个线性型的定义是整体的, 即, 不依赖于 $\mathbf{M}_n(\mathbb{F})$ 的基的选取.

(5) 由定积分的性质有: 对任意 $f, g \in C[a, b]$ 和 $k, \ell \in \mathbb{R}$ 有:

$$\int_a^b (kf(x) + \ell g(x)) dx = k \int_a^b f(x) dx + \ell \int_a^b g(x) dx,$$
 所以, $f(x) \mapsto \int_a^b f(x) dx$ 是 $C[a,b]$ 上的一个线性型.

- 2. (线性型的基本计算: 任意线性型由它在基向量出的函数值唯一确定.)
 - (1) 由题设有

$$(f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 2 & -2 \\ 0 & -1 & 3 \end{array} \right) = (-3 \ -1 \ 2),$$

所以,

$$(f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) = (-3 \ -1 \ 2) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -2 \\ 0 & -1 & 3 \end{pmatrix}^{-1}$$
$$= (-3 \ -1 \ 2) \begin{pmatrix} 4/3 & -1/3 & -2/3 \\ -1 & 1 & 1 \\ -1/3 & 1/3 & 2/3 \end{pmatrix}$$
$$= (-11/3 \ 2/3 \ 7/3),$$

所以,

$$f(2047\varepsilon_1 + \varepsilon_2 + 2046\varepsilon_3) = (f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) \begin{pmatrix} 2047 \\ 1 \\ 2046 \end{pmatrix}$$
$$= (-11/3 \ 2/3 \ 7/3) \begin{pmatrix} 2047 \\ 1 \\ 2046 \end{pmatrix}$$
$$= -\frac{11}{3} \times 2047 + \frac{2}{3} \times 1 + \frac{7}{3} \times 2046 = -2737. \square$$

(2) (本质上与 (1) 相同.) 由题设有

$$(f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) \left(\begin{array}{ccc} 1 & 1 & 2 \\ -1 & 3 & 0 \\ 1 & 0 & -1 \end{array} \right) = (1 \ 0 \ -1),$$

所以,

$$(f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) = (-3 \ -1 \ 2) \begin{pmatrix} 1 & 1 & 2 \\ -1 & 3 & 0 \\ 1 & 0 & -1 \end{pmatrix}^{-1}$$
$$= (1 \ 0 \ -1) \begin{pmatrix} 0.3 & -0.1 & 0.6 \\ 0.1 & 0.3 & 0.2 \\ 0.3 & -0.1 & -0.4 \end{pmatrix}$$
$$= (0 \ 0 \ 1),$$

所以, 对任意 $\alpha = x\varepsilon_1 + y\varepsilon_2 + z\varepsilon_3 \in V$ 有:

$$f(x\varepsilon_1 + y\varepsilon_2 + z\varepsilon_3) = (f(\varepsilon_1) \ f(\varepsilon_2) \ f(\varepsilon_3)) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= (0 \ 0 \ 1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z,$$

即, 所求的线性型为 f 为: $x\varepsilon_1 + y\varepsilon_2 + z\varepsilon_3 \mapsto z$.

- **3.** (\mathbb{R}^n 上的线性型, 对偶基.)
 - (1) 证明: (列向量空间上的线性型的一般形式.)

法一: (线性映射的存在唯一性定理: 任意线性映射由它在基向量上的作用唯一确定.)

设 ε_i 是 \mathbb{R}^n 的第 i 个基本向量, $1 \le i \le n$. 则, $\varepsilon_1, \dots, \varepsilon_n$ 是 \mathbb{R}^n 的一个基.

对任意 $f \in (\mathbb{R}^n)^*$, 设 $f(\varepsilon_i) = a_i$, 则对任意 $(x_1, \dots, x_n)' \in \mathbb{R}^n$ 有:

$$f((x_1, \dots, x_n)') = f\left(\sum_{i=1}^n x_i \varepsilon_i\right) = \sum_{i=1}^n x_i f(\varepsilon_i) = \sum_{i=1}^n a_i x_i.$$

法二: (用对偶基.)

设 ε_i 是 \mathbb{R}^n 的第 i 个基本向量, $1 \le i \le n$. 设 ε_i^* $(1 \le i \le n)$ 是 ε_i $(1 \le i \le n)$ 的对偶基.

则, 对任意 $f \in (\mathbb{R}^n)^*$ 都存在唯一的 $a_i \in \mathbb{R}$ 使得 $f = \sum_{i=1}^n a_i \varepsilon_i^*$; 从而, 对任意 $(x_1, \ldots, x_n)' \in \mathbb{R}^n$ 有:

$$f((x_1, \dots, x_n)') = f\left(\sum_{i=1}^n x_i \varepsilon_i\right) = \left(\sum_{j=1}^n a_j \varepsilon_j^*\right) \left(\sum_{i=1}^n x_i \varepsilon_i\right)$$
$$= \sum_{i,j=1}^n a_j x_i \varepsilon_j^*(\varepsilon_i) = \sum_{i,j=1}^n a_j x_i \delta_{ij} = \sum_{i=1}^n a_i x_i. \quad \Box$$

注: 这个结论对任意的列向量空间 \mathbb{F}^n 都成立. 事实上, 上面的两个证明方法都可以用于证明如下的更一般的结论:

对任意的 \mathbb{F} 上的 n 维空间 V, 任意取定 V 的一个基 ξ_1, \dots, ξ_n . 则, 对任意 $f \in V^*$, 存在 $a_i \in \mathbb{F}$ 使得

$$f\left(\sum_{i=1}^{n} x_i \xi_i\right) = \sum_{i=1}^{n} a_i x_i$$
,任意 $x_i \in \mathbb{F}$.

(2) (对偶基之间的过渡矩阵. 题目的意思是写出 α_1^* , α_2^* , α_3^* 的作为 \mathbb{R}^3 上的线性函数的具体表达式.)

 \mathbf{M} : 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是 \mathbb{R}^3 的基本向量. (把 \mathbb{R}^3 中的向量都看成列向量.) 由题设有:

$$(\alpha_1 \ \alpha_2 \ \alpha_3) = (\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3)A, \ \sharp \oplus, \ A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 2 \\ 3 & 0 & 1 \end{pmatrix},$$

即, A 是从 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 到 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵.

设从对偶基 ε_1^* , ε_2^* , ε_3^* 到对偶基 α_1^* , α_2^* , α_3^* 的过渡矩阵为 B, 即, $(\alpha_1^* \alpha_2^* \alpha_3^*) = (\varepsilon_1^* \varepsilon_2^* \varepsilon_3^*) B$. 则, 只需计算 B. 但是

$$\delta_{ij} = \alpha_i^*(\alpha_j) = \left(\sum_{k=1}^3 B(k,i)\varepsilon_k^*\right) \left(\sum_{\ell=1}^3 A(\ell,j)\varepsilon_\ell\right)$$
$$= \sum_{k,\ell=1}^3 B(k,i)A(\ell,j)$$
$$= \sum_{k=1}^3 (B^T)(i,k)A(k,j),$$

此即表明,

$$B = (A^{-1})' = \begin{pmatrix} 1 & 1 & -1 \\ -4 & -5 & 6 \\ -3 & -3 & 4 \end{pmatrix}' = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}.$$

(这里用伴随矩阵来求逆: $A^{-1} = \frac{1}{|A|}A^*$, 较为简便.)

$$\begin{split} &\alpha_1^* = \varepsilon_1^* + \varepsilon_2^* - \varepsilon_3^*, \; \mathbb{II}, \; \alpha_1^*((x,y,z)') = x + y - z; \\ &\alpha_2^* = -4\varepsilon_1^* - 5\varepsilon_2^* + 6\varepsilon_3^*, \; \mathbb{II}, \; \alpha_2^*((x,y,z)') = -4x - 5y + 6z; \\ &\alpha_3^* = -3\varepsilon_1^* - 3\varepsilon_2^* + 4\varepsilon_3^*, \; \mathbb{II}, \; \alpha_3^*((x,y,z)') = -3x - 3y + 4z. \end{split}$$

注: 上面的计算适用于一般的情形, 即:

结论: 设从基 ξ_1, \dots, ξ_n 到基 η_1, \dots, η_n 的过渡矩阵为 A, 则从对偶基 ξ_1^*, \dots, ξ_n^* 到对偶基 $\eta_1^*, \dots, \eta_n^*$ 的过渡矩阵为 $(A^{-1})'$.

4. (线性型的核.)

证明:由于 $f_i \neq 0 \in V^*$,所以它的核 $\ker f_i$ 是 V 的真子空间, $i=1,\ldots,s$. 利用关于子空间的结论:任意非零的线性空间都不是它的有限多个真子空间的并 (参见 Chapter 4 Ex. 58 中的**命题**): $V \neq \bigcup_{i=1}^s \ker f_i$,即,存在 $\alpha \in V \setminus \bigcup_{i=1}^s \ker f_i$ 使得对每个 $1 \leq i \leq s$ 都有 $\alpha \notin \ker f_i$,即, $f_i(\alpha) \neq 0$.

注1: 如果 $V = \mathbb{F}^n$ 是列向量空间, 则任意线性函数 $0 \neq f_i \in V^*$ 的核 ker f_i 是一个由一个方程所组成的其次线性方程组

$$a_{i1}x_1 + \cdots + a_{in}x_n = 0$$

的解空间. (参见上面的第3题的(1).)

注2: 该习题的上述证明中没有用到 f_i 是 V 上的线性型的事实, 而只是用到 $\ker f_i$ 是子空间的事实. 因此, f_i 可以换成是从 V 到另一个线性空间 W 的线性映射, 参见 Chapter 4 Ex. 58 中的应用1.

5. (线性空间的基与坐标, 对偶基.)

解: 设 $f = x_n \varepsilon_n^* + x_{n-1} \varepsilon_{n-1}^* + \cdots + x_2 \varepsilon_2^* + x_1 \varepsilon_1^*$, 即, f 关于 ε_n^* , ε_{n-1}^* , \cdots , ε_1^* 的坐标是 $(x_n, x_{n-1}, \cdots, x_2, x_1)'$. 由

$$j = f(j) = \left(\sum_{i=1}^{n} x_i \varepsilon_i^*\right) (\varepsilon_j) = \sum_{i=1}^{n} x_i \varepsilon_i^* (\varepsilon_j) = \sum_{i=1}^{n} x_i \delta_{ij} = x_j$$

可得: $x_i = j$,

即,
$$f$$
 关于 ε_n^* , ε_{n-1}^* , \cdots , ε_1^* 的坐标是 $(n, n-1, \cdots, 2, 1)'$.

注: 此题不必用第 **3** 题中的**结论**去计算, 因为 f 的作用是明显给出了的.

6. (基的扩充定理的应用.)

证明: 设 $\alpha = x - y$. 假设 $\alpha \neq 0$. (为了得到矛盾, 需要构造一个 $f \in V^*$ 使得 $f(\alpha) \neq 0$, 即, $f(x) \neq f(y)$.)

那么, 根据基的存在性定理, 有直和分解: $V = \langle \alpha \rangle \oplus V_1$. 定义函数 f: $V \to \mathbb{F}$ 为: 对任意 $\gamma = k\alpha + \gamma_1$, $k \in \mathbb{F}$, $\gamma_1 \in V_1$, $f(\gamma) = k$. 易见 f 是 线性函数: $f \in V^*$. 特别, $f(\alpha) = 1 \neq 0$, 矛盾.

注1: 这个结论等价于说, 对任意 $0 \neq \alpha \in V$ 都存在 V 上的线性函数 f (与 α 有关) 使得 $f(\alpha) \neq 0$.

注2: 如果 dim $V = n < \infty$, 则可以用对偶基和基的扩充定理直接证明 如下:

7. (有限维空间与它的对偶空间是同构的, 本题给出了用基和对偶基构造 同构映射的方法.)

证明: 首先证明, 对任意 $\eta = \sum_{i=1}^{n} c_i \varepsilon_i \in V$ 都有 $\eta^* \in V^*$.

对任意
$$\alpha = \sum_{i=1}^{n} x_i \varepsilon_i \in V$$
, $\beta = \sum_{i=1}^{n} y_i \varepsilon_i \in V$ 和任意 $a, b \in \mathbb{F}$ 有:

$$\eta^*(a\alpha + b\beta) = \sum_{i=1}^n c_i(ax_i + by_i)$$

= $a \sum_{i=1}^n c_i x_i + b \sum_{i=1}^n c_i y_i = a\eta^*(\alpha) + b\eta^*(\beta),$

此即表明, $\eta^* \in V^*$.

其次, 验证映射: φ : $V \to V^*$: $\eta \mapsto \eta^*$, 是线性的, 即, 要验证: 对任意 $\eta_1 = \sum_{i=1}^n c_i \varepsilon_i \in V$, $\eta_2 \in \sum_{i=1}^n d_i \varepsilon_i \in V$ 和 $k, \ell \in \mathbb{F}$ 有:

 $\varphi(k\eta_1 + \ell\eta_2) = k\varphi(\eta_1) + \ell\varphi(\eta_2)$,即, $(k\eta_1 + \ell\eta_2)^* = a\eta_1^* + \ell\eta_2^*$. ① (要证明①成立,只需验证左右两边作用在任意 $\gamma \in V$ 都相等.) 对任意 $\gamma = \sum_{i=1}^n z_i \varepsilon_i$ 有:

$$\varphi(k\eta_1 + \ell\eta_2)(\gamma) = (k\eta_1 + \ell\eta_2)^*(\gamma) = \sum_{i=1}^n (kc_i + \ell d_i) z_i$$

= $k \sum_{i=1} c_i z_i + \ell \sum_{i=1}^n d_i z_i = k\eta_1^*(\gamma) + \ell\eta_2^*(\gamma) = (k\eta_1^* + \ell\eta_2^*)(\gamma),$

所以, ①成立, 即, $\varphi: V \to V^*$ 是线性映射.

最后, 有以下两个方法证明 φ 是同构映射:

法一: 由于 $\dim V = \dim V^*$, 所以, 为了证明 φ 是同构映射, 只需证明 φ 是单射.

(回忆线性映射的维数公式: $\dim \ker f + \dim \operatorname{im}(f) = \dim V$, 其中, $f \in \operatorname{Hom}(V, W)$.)

设
$$\eta = \sum_{i=1}^{n} c_i \varepsilon_i \in \ker \varphi$$
, 即, $\varphi(\eta) = \eta^* = 0 \in V^*$.

则对任意 $\delta = \sum_{i=1}^{n} w_i \varepsilon_i \in V$ 有 $\sum_{i=1}^{n} c_i w_i = 0$,从而,下述线性方程组 $(c_1 \ c_2 \ \cdots \ c_n)X = 0$

的解空间是整个 \mathbb{F}^n . 所以 $(c_1 \ c_2 \ \cdots \ c_n) = 0$, 即 $\eta = 0$, 从而 φ 是单射.

法二: 对每个 $1 \le j \le n$,由于 $\varepsilon_j = \sum_{j=1}^n c_j \varepsilon_j$,其中, $c_i = \delta_{ij}$,从而由题设有:

$$\varepsilon_j^* \left(\sum_{i=1}^n a_i \varepsilon_i \right) = \sum_{i=1}^n a_i c_i = \sum_{i=1}^n a_i \delta_{ij} = a_j,$$

特别, $\varepsilon_j^*(\varepsilon_i) = \delta_{ij}$, 此即表明, $\varepsilon_1^*, \dots, \varepsilon_n^*$ 是 $\varepsilon_1, \dots, \varepsilon_n$ 的对偶基, 即, 线性映射 φ 满足: $\varphi(\varepsilon_j) = \varepsilon_j^*$, $1 \le j \le n$, 即, φ 把 V 的基映为 V^* 的基, 所以, φ 是同构映射.

8. (双线性型的定义, trace 的性质.)

证明: 对任意 $a_1, a_2 \in \mathbb{F}$, $A_1, A_2, B \in M_n(\mathbb{F})$ 有:

$$f(a_1A_1 + a_2A_2, B) = \operatorname{tr}((a_1A_1 + a_2A_2)B) = \operatorname{tr}(a_1A_1B + a_2A_2B)$$
$$= \operatorname{tr}(a_1A_1B) + \operatorname{tr}(a_2A_2B) = a_1\operatorname{tr}(A_1B) + a_2\operatorname{tr}(A_2B)$$
$$= a_1f(A_1, B) + a_2f(A_2, B);$$

同理可验证: 对任意 $b_1, b_2 \in \mathbb{F}$, $A, B_1, B_2 \in M_n(\mathbb{F})$ 有:

$$f(A, b_1B_1 + b_2B_2) = b_1f(A, B_1) + b_2f(A, B_2).$$

综上,
$$f \in B(M_n(\mathbb{F}))$$
.

注: 本题中的双线性型是整体定义的, 即, 没有用到 $M_n(\mathbb{F})$ 的基. 事实上, 由于 tr(AB) = tr(BA), 所以本题中的 f 是一个对称的双线性型.

9. (双线性型的度量阵.)

解:

(1) 设 $\varepsilon_1, \varepsilon_2$ 是 \mathbb{R}^2 的基本向量. 由题设有:

$$f(\varepsilon_1, \varepsilon_1) = f((1,0)', (1,0)') = 0;$$

$$f(\varepsilon_1, \varepsilon_2) = f((1,0)', (0,1)') = 1;$$

$$f(\varepsilon_2, \varepsilon_1) = f((0,1)', (1,0)') = -2;$$

$$f(\varepsilon_2, \varepsilon_2) = f((0,1)', (0,1)') = 1;$$

所以, f 的关于基本向量的度量阵为

$$\begin{pmatrix} f(\varepsilon_1, \varepsilon_1) & f(\varepsilon_1, \varepsilon_2) \\ f(\varepsilon_2, \varepsilon_1) & f(\varepsilon_2, \varepsilon_2) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & 1 \end{pmatrix}.$$
(由此可见, f 不是对称的.)

(2) 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是 \mathbb{R}^3 的基本向量. 由题设有:

$$f(\varepsilon_{1}, \varepsilon_{1}) = f((1, 0, 0)', (1, 0, 0)') = 1;$$

$$f(\varepsilon_{1}, \varepsilon_{2}) = f((1, 0, 0)', (0, 1, 0)') = -3;$$

$$f(\varepsilon_{1}, \varepsilon_{3}) = f((1, 0, 0)', (0, 0, 1)') = 0;$$

$$f(\varepsilon_{2}, \varepsilon_{1}) = f((0, 1, 0)', (1, 0, 0)') = 1;$$

$$f(\varepsilon_{2}, \varepsilon_{2}) = f((0, 1, 0)', (0, 1, 0)') = -2;$$

$$f(\varepsilon_{2}, \varepsilon_{3}) = f((0, 1, 0)', (0, 0, 1)') = 0;$$

$$f(\varepsilon_3, \varepsilon_1) = f((0, 0, 1)', (1, 0, 0)') = 0;$$

$$f(\varepsilon_3, \varepsilon_2) = f((0, 0, 1)', (0, 1, 0)') = 0;$$

$$f(\varepsilon_3, \varepsilon_3) = f((0, 0, 1)', (0, 0, 1)') = 1;$$

所以, f 的关于基本向量的度量阵为:

$$\begin{pmatrix} f(\varepsilon_1, \varepsilon_1) & f(\varepsilon_1, \varepsilon_2) & f(\varepsilon_1, \varepsilon_3) \\ f(\varepsilon_2, \varepsilon_1) & f(\varepsilon_2, \varepsilon_2) & f(\varepsilon_2, \varepsilon_3) \\ f(\varepsilon_3, \varepsilon_1) & f(\varepsilon_3, \varepsilon_2) & f(\varepsilon_3, \varepsilon_3) \end{pmatrix} = \begin{pmatrix} 1 & -3 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad \Box$$

10. (双线性型、线性型的概念, 双线性型的度量阵, 秩为 1 的矩阵)

解: 不一定. 事实上, 有如下的

断言: 设 V 是数域 \mathbb{F} 上的有限维线性空间, f 是 V 上的一个双线性型.则存在 $f_1, f_2 \in V^*$ 使得对任意 $\alpha, \beta \in V$ 都有 $f(\alpha, \beta) = f_1(\alpha)f_2(\beta)$ 的充分必要条件是 $\operatorname{rank}(f) \leq 1$.

证明: 任取 V 的一个基 $\alpha_1, \ldots, \alpha_n$. 设 f 在这个基下的度量阵是 $A = (f(\alpha_i, \alpha_j))_{1 \leq i, j \leq n}$. 设 $\alpha_1^*, \ldots, \alpha_n^* \in V^*$ 是对偶基.

充分性. 如果 $rank(f) \le 1$, 即, $rank(A) \le 1$, 那么 A 必然具有形式:

$$A = \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} (b_1 \cdots b_n),$$

其中, $a_i, b_i \in \mathbb{F}$. 定义:

$$f_1 = \sum_{i=1}^n a_i \alpha_i^*, \quad f_2 = \sum_{j=1}^n b_j \alpha_j^* \in V^*.$$

则对任意 $\alpha = (\alpha_1 \cdots \alpha_n)X \in V$ 和 $\beta = (\alpha_1 \cdots \beta_n)Y \in V$ 都有

$$f(\alpha, \beta) = X'AY = \left(X' \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} (b_1 \cdots b_n)Y\right)$$
$$= \left((a_1 \cdots a_n)X\right)'((b_1 \cdots b_n)Y) = f_1(\alpha)f_2(\beta),$$

正如所需.

必要性. 以上讨论每步可逆.

注: 相当于考虑二元函数 f(x,y) 能否"可分离变量": f(x,y) = g(x)h(y) 是否成立. 一般地,多元函数是不能分离变量的. 上面的讨论给出二元的线性函数可分离变量的一个充要条件.

11. (用度量阵计算双线性型的函数值.)

证明: 由题设有: $A(i,j) = (f(\eta_i, \eta_i)), 1 \le i, j \le n$. 所以, 对任意

$$\alpha = (\eta_1 \cdots \eta_n) X \not \exists \exists \beta = (\eta_1 \cdots \eta_n) Y,$$

(其中, $X = (x_1 \cdots x_n)', Y = (y_1 \cdots y_n)'$.) 都有:

$$f(\alpha, \beta) = f\left(\sum_{i=1}^{n} x_i \eta_i, \sum_{j=1}^{n} y_j \eta_j\right) = \sum_{i,j=1}^{n} x_i y_j f(\eta_i, \eta_j)$$
$$= \sum_{i,j=1}^{n} x_i A(i,j) y_j = X' A Y.$$

注: 由本题的结论可知, 对于有限维空间上的双线性型 f, 如何选取 V的一个基, 使得 f 在这个基下的度量阵 A 具有简单的形式, 是一个重要的问题.

12. (双线性型的(非)退化性,度量阵的应用.)

 $\mathbf{\dot{\Sigma}}$ 1: 题目中应该加上 dim $V < \infty$ 的条件.

注2: 回忆教材上的定义 (Definition 7.3, p355): 设 $f \in V$ 上的一个双线性型. 如果存在 $0 \neq \alpha \in V$ 使得 $f(\alpha, \beta) = 0$ 对任意 $\beta \in V$ 都成立, 则称 f 是退化的.

这个定义是针对 f 的第一个变量 (或, 左边的变量) 而言的. 所以, 一个自然的问题是, f 的退化性是否可以用 f 的第二个变量 (或, 右边的变量) 来定义. 本题的含义就是, 当 $\dim V < \infty$ 时, 结论是肯定的, 即, 双线性型的退化性 (或, 非退化性) 可以用两个变量中的任意一个变量来定义. (当然, 如果 f 是对称的双线性型, 这是显然的.)

证明: 设 V 上的双线性型 f 是退化的. 任取 V 的一个基 ξ_1, \dots, ξ_n . 设 f 在这个基下的度量阵为 A. 则 r(A) < n. (Theorem 7.6, p355.)

于是, 存在 $0 \neq \delta \in \mathbb{F}^n$ 使得 $A\delta = 0$.

$$\Leftrightarrow \beta = (\xi_1 \cdots \xi_n) \delta \in V. \text{ } \emptyset \text{ } \beta \neq 0,$$

且对任意 $\alpha = (\xi_1 \cdots \xi_n) X \in V$ 有 (参见第 **11** 题):

$$f(\alpha, \beta) = X'A\delta = X'0 = 0.$$

注3: 一般地, 有如下的概念: 设 $V \in \mathbb{F}$ 上的任意线性空间, $f \in V$ 的任意双线性型. 定义:

$$\operatorname{rad}_{L}(f) = \{ \alpha \in V \mid f(\alpha, \beta) = 0 \ \text{对任意 } \beta \in V \ \text{都成立} \};$$

$$\operatorname{rad}_{R}(f) = \{\beta \in V \mid f(\alpha, \beta) = 0 \text{ 对任意 } \alpha \in V \text{ 都成立}\}.$$

可直接验证, $rad_L(f)$ 和 $rad_R(f)$ 都是 V 的子空间. 称 $rad_L(f)$ 为 f 的左根, $rad_R(f)$ 为 f 的右根. 则有如下的

引理: 设 dim V = n, $f \neq V$ 上的一个双线性型. 则

$$\dim \operatorname{rad}_{L}(f) = \dim \operatorname{rad}_{R}(f) = n - r(A),$$

特别地, $\operatorname{rad}_L(f) \cong \operatorname{rad}_R(f)$, 且, f 非退化当且仅当 $\operatorname{rad}_L(f) = 0$, 当且仅当 $\operatorname{rad}_R(f) = 0$, 当且仅当 r(A) = n.

证明: 任意取定 V 的一个基 ξ_1, \dots, ξ_n . 设 f 在这个基下的度量阵为 A. 则 $\alpha = (\xi_1 \dots \xi_n)X \in \operatorname{rad}_L(f)$

当且仅当, $0 = f(\alpha, \beta) = X'AY$ 对任意 $\beta = (\xi_1 \cdots \xi_n)Y$ 都成立;

当且仅当 (X'A)Y = 0 (关于 Y 的齐次线性方程组) 的解空间是 \mathbb{F}^n ,

当且仅当 X'A = 0, 当且仅当 A'X = 0,

当且仅当 X 是齐次线性方程组的解.

所以, 有从 $rad_L(f)$ 到 A'X = 0 的解空间之间的线性空间同构:

 $\alpha \mapsto X$, $\text{M} \cap \text{dim } \text{rad}_L(f) = n - r(A)$.

同理可证
$$\dim \operatorname{rad}_R(f) = n - r(A)$$
.

13. (双线性型的 Gram 矩阵: 是度量阵的推广.)

证明:

(1) (验证左右两边的 (i, j)-元相等.)

由题设有:
$$f(\varepsilon_i) = \sum_{k=1}^n C(k,i)\eta_k$$
, $f(\varepsilon_j) = \sum_{\ell=1}^n C(\ell,j)\eta_\ell$, 从而, \triangle 的 (i,j) -元为:

$$\Delta(i,j) = f(\varepsilon_i, \varepsilon_j) = f\left(\sum_{k=1}^n C(k,i)\eta_k, \sum_{\ell=1}^n C(\ell,j)\eta_\ell\right)$$
$$= \sum_{k,\ell=1}^n C(k,i)A(k,\ell)C(\ell,j) = \sum_{k,\ell=1}^n C'(i,k)A(k,\ell)C(\ell,j)$$
$$= (C'AC)(i,j).$$

(2) 由 (1) 可知, 如果 \triangle 可逆, 即, $r(\triangle) = m$, 从而

$$r(C) \ge C'AC = r(\triangle) = m;$$

而 C 是 $n \times m$ 型矩阵, 所以, $r(C) \leq m$. 于是, r(C) = m.

由于 η_1, \dots, η_n 线性无关, 所以, 由 Chapter 2, Ex. 26 可知及 $(\varepsilon_1 \dots \varepsilon_m) = (\eta_1 \dots \eta_n)C$ 可知, 向量组 $\varepsilon_1, \dots, \eta_m$ 的秩等于 r(C) = m, 从而是线性无关的.

反之不成立. 例如, 当 f = 0 时, $\triangle = 0$ 是零矩阵.

注: 本题是欧式空间的相应结论的推广, 参见 Chapter 6 Ex. 38.

14. (列向量空间 \mathbb{F}^n 上的双线性型的一般形式.)

证明: 取 \mathbb{F}^n 的基本向量 $\varepsilon_1, \dots, \varepsilon_n$ 所构成的基. 令 $a_{ij} = f(\varepsilon_i, \varepsilon_j)$, $1 \leq i, j \leq n$. 注意到, 任意 $X = (x_1, \dots, x_n)' \in \mathbb{F}^n$ 在 $\varepsilon_1, \dots, \varepsilon_n$ 下的坐标是 X 本身. 所以, 本题的结论由第 **11** 题立即得到. (当然也可以直接验证.)

- **15.** (n) 维线性空间上的双线性型与方阵之间的一一对应关系.) 略.
- **16.** (双线性型空间 B(V) 与 $L(V, V^*)$ 之间的关系.)

证明: (本题的含义是: 任意 $\phi \in L(V, V^*)$ 都可以确定一个双线性型 f. $f = \phi$ 有关, 所以, 把 f 记为 f_{ϕ} .)

对任意 $\alpha, \beta, \gamma \in V$ 和 $a, b \in \mathbb{F}$, 由定义有:

$$f_{\phi}(a\alpha + b\beta, \gamma) = \phi(a\alpha + b\beta)(\gamma) = (a\phi(\alpha) + b\phi(\beta))(\gamma)$$

 $(由于 <math>\phi$ 是线性的.)

$$= a\phi(\alpha)(\gamma) + b\phi(\beta)(\gamma) = af_{\phi}(\alpha, \gamma) + bf_{\phi}(\beta, \gamma).$$

类似地有: $f_{\phi}(\alpha, a\beta + b\gamma) = af_{\phi}(\alpha, \beta) + bf_{\phi}(\alpha, \gamma)$.

所以我们证明了 $f_{\phi} \in B(V)$.

注1: 实际上, 本题的结论不需要用到 $\dim V < \infty$.

注2: 在本题的基础上, 有如下的

引理: 设V是 \mathbb{F} 上的线性空间.则

(1) 映射 $\rho: L(V,V^*) \to B(V)$: $\phi \mapsto f_{\phi}$ 是线性映射, 其中, f_{ϕ} 的定义为:

$$f_{\phi}(\alpha,\beta) = \phi(\alpha)(\beta)$$
, 任意 $\alpha,\beta \in V$.

(2) 假设 V是有限维的. 则 ρ 是同构映射.

证明:

(1) 只需验证, 对任意 $\phi_1, \phi_2 \in L(V, V^*)$ 和任意 $a, b \in \mathbb{F}$ 有

$$\rho(a\phi_1 + b\phi_2) = a\rho(\phi_1) + b\rho(\phi_2),$$

而由定义, 这又等价于:

$$f_{a\phi_1+b\phi_2} = af_{\phi_1} + bf_{\phi_2} \in B(V).$$
 (*)

为了验证 (*), 对任意 $\alpha, \beta \in V$, 计算

$$f_{a\phi_1+b\phi_2}(\alpha,\beta) = (a\phi_1 + b\phi_2)(\alpha)(\beta) = a\phi_1(\alpha)(\beta) + b\phi_2(\alpha)(\beta)$$
$$= af_{\phi_1}(\alpha,\beta) + bf_{\phi_2}(\alpha,\beta) = (af_{\phi_1} + bf_{\phi_2})(\alpha,\beta),$$

有此即得 (*). □

(2) 设 $\dim V = n$. 我们知道 $\dim B(V) = \dim L(V, V^*) = n^2$. 所以, 为了证明 ρ 是同构映射, 只需验证 ρ 是单射. 如果

$$\rho(\phi) = f_{\phi} = 0 \in B(V),$$

那么对任意 $\alpha, \beta \in V$ 有:

$$f_{\phi}(\alpha,\beta) = \phi(\alpha)(\beta) = 0,$$

此即表明 $\phi(\alpha) = 0$ 对任意 $\alpha \in V$ 都成立. 所以 $\phi = 0 \in V^*$, 从 而 $\ker \rho = 0$, 即, ρ 是单射.

17. (线性空间 V 上的所有双线性型组成一个线性空间 B(V);

如果 dim $V = n < \infty$, 则 dim $B(V) = n^2$.)

课堂上已经证明 (利用 B(V) 与 $M_n(\mathbb{F})$ 之间的同构映射. 略.

18. (线性空间的张量积.)

(Before proceeding we make the following remark on this exercise itself: One should bear in mind that the notion of tensor products is very crucial in mathematics and physics.)

Remark. The standard definition of tensor products, which is defined via quotient spaces, is different essentially from the definition given in this Exercise. In fact, it's the dual space $(U \otimes V)^*$ of the usual tensor product $U \otimes V$ that is isomorphic canonically to $L(U^*, V)$, not the usual tensor product $U \otimes V$ itself. However, If both U and V are finite dimensional, the space $L(U^*, V)$ here shares many similar properties of the usual tensor product (See (2), (3), (4) and (5) below). So, this exercise is basically about the finite-dimensional space $L(U^*, V)$, not the tensor product $U \otimes V$, though the symbol \otimes is temporarily introduced here.

(1) **证明**: 对任意 $f_1, f_2 \in U^*$ 和 $k, \ell \in \mathbb{F}$ 有:

$$(u \otimes v)(kf_1 + \ell f_2) = (kf_1 + \ell f_2)(u)v = kf_1(u)v + \ell f_2(u)v$$

= $k(u \otimes v)(f_1) + \ell(u \otimes v)(f_2),$

此即表明: $u \otimes v$ 是从 U^* 到 V 的线性映射.

$$\mathbb{P}, u \otimes v \in U \otimes V = L(U^*, V).$$

(2) **证明**: 验证各等式的左右两边在任意 $f \in U^*$ 上的作用相等即可,例如,

$$((u + u_1) \otimes v)(f) = f(u + u_1)(v) = f(u)(v) + f(u_1)(v)$$

= $(u \otimes v)(f) + (u_1 \otimes v)(f) = (u \otimes v + u_1 \otimes v)(f).$

由 $f \in U^*$ 的任意性得: $(u + u_1) \otimes v = u \otimes v + u_1 \otimes v$.

(3) 证明: 要证
$$f = \sum_{k=1}^{n} \sum_{i=1}^{m} a_{ki} \varepsilon_k \otimes \eta_i \in U \otimes V = L(U^*, V),$$
 (*)

只需验证 (*) 的左右两边在任意 $\xi \in U^*$ 上的作用相同.

对任意
$$\xi = \sum_{i=1}^{n} x_i \varepsilon_i^*$$
, 由 $f(\varepsilon_i^*) = \sum_{k=1}^{m} a_{ik} \eta_k$ 得:

$$f(\xi) = \sum_{i=1}^{n} x_i f(\varepsilon_i^*) = \sum_{i=1}^{n} x_i \sum_{k=1}^{m} a_{ik} \eta_k = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{ik} x_i\right) \eta_k; \qquad (1)$$

而

$$\left(\sum_{k=1}^{n} \sum_{i=1}^{m} a_{ki} \varepsilon_{k} \otimes \eta_{i}\right) (\xi) = \left(\sum_{k=1}^{n} \sum_{i=1}^{m} a_{ki} \varepsilon_{k} \otimes \eta_{i}\right) \left(\sum_{j=1}^{n} x_{j} \varepsilon_{j}^{*}\right)$$

$$= \sum_{i=1}^{m} \left(\sum_{k=1}^{n} \sum_{j=1}^{n} x_{j} a_{ki} (\varepsilon_{j}^{*}) (\varepsilon_{k})\right) \eta_{i} = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} x_{k} a_{ki}\right) \eta_{i}$$
(注意到: $\varepsilon_{j}^{*}(\varepsilon_{k}) = \delta_{jk}$; 再交换下标的记号: $i \leftrightarrow k$ 即得:)
$$= \sum_{k=1}^{m} \left(\sum_{i=1}^{n} x_{i} a_{ik}\right) \eta_{k};$$
②

比较①②, 由 f 的任意性即得: $f = \sum_{k=1}^{n} \sum_{i=1}^{m} a_{ki} \varepsilon_k \otimes \eta_i$ 成立.

(4) 证明: 由题设中的定义有: $U \otimes V = L(U^*, V)$. 而 dim $U^* = \dim U = n$, dim V = m, 所以

 $\dim U \otimes V = \dim L(U^*, V) = mn.$

由于向量组 $\varepsilon_i \otimes \eta_j \in U \otimes V$ 含有 mn 个向量, 所以只需验证 $\varepsilon_i \otimes \eta_j$, $1 \leq i \leq m$, $1 \leq j \leq n$ 线性无关. 设

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \varepsilon_i \otimes \eta_j = 0 \in U \otimes V, \quad a_{ij} \in \mathbb{F}.$$
 (*)

设 $\varepsilon_1^*, \dots, \varepsilon_m^* \in U^*$ 是 $\varepsilon_1, \dots, \varepsilon_m$ 的对偶基. 由 (*) 可得, 对每个 1 < k < m 有:

$$\left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}\varepsilon_i \otimes \eta_j\right)(\varepsilon_k^*) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}\varepsilon_k^*(\varepsilon_i)\eta_j = \sum_{j=1}^n a_{kj}\eta_j = 0,$$

此即表明 $a_{kj} = 0, 1 \le j \le n$ (因为 $\eta_1, ..., \eta_n$ 线性无关). 再让 k 变动即得 $a_{ij} = 0$ 对任意 $1 \le i \le m, 1 \le j \le n$ 都成立.

(5) (张量积满足"消去律".)

证明: 假设 $u \neq 0$, 要证 v = 0. 由第 **6** 题可知, 存在 $f \in U^*$ 使得 $f(u) \neq 0$. 从而

$$0=0(f)=(u\otimes v)(f)=f(u)v,$$

由此即得 $v=0.$

(6) Prove that there is a *canonical* isomorphism between $U \otimes V$ and $V \otimes U$.

Caution. It sounds reasonable to define a "map" from $U \otimes V$ to $V \otimes U$ by $u \otimes v \mapsto v \otimes u$ for any $u \in U$ and $v \in V$. This is

really the case for tensor products. However, by (7) below there is a large gap to show that this is *indeed* a map for $L(U^*, V)$. So we have to restrict ourselves to finite-dimensional case.

If $\dim U = n < \infty$ and $\dim V = m < \infty$ then by (4) we have $\dim(U \otimes V) = mn = \dim(V \otimes U)$, and hence $U \otimes V \cong V \otimes U$. However, this item requires to construct a *canonical* isomorphism, i.e., usage of bases is prohibited.

证明: 这里我们假设 U 和 V 都是有限维的. 从而由对偶定理我们可以分别把 U^{**} 和 U, V^{**} 和 V 等同起来. 定义从 $L(U^*,V)$ 到 $L(V^*,U)$ 的映射 ρ 如下: 对任意 $f \in L(U^*,V)$ 定义 $\rho(f) \in L(V^*,U)$ 为 $\rho(f)(\xi) = u \in U = U^{**}$, 其中 $u \in U = U^{**}$ 由条件 $\eta(u) = u(\eta) = \xi(f(\eta))$ (对任意 $\eta \in U^*$) 唯一确定. 易证 ρ 是线性的: 例如, 对任意 $\xi \in V^*$, $\eta \in U^*$, $f_1, f_2 \in L(U^*,V)$ 有:

$$\eta(\rho(f_1 + f_2)(\xi)) = \xi((f_1 + f_2)(\eta)) = \xi(f_1(\eta) + f_2(\eta))$$

= $\eta(\rho(f_1)(\xi)) + \eta(\rho(f_2)(\xi)) = \eta(\rho(f_1) + \rho(f_2)(\xi)),$

此即表明 $\rho(f_1 + f_2)(\xi) = (\rho(f_1) + \rho(f_2))(\xi),$

从而 $\rho(f_1 + f_2) = \rho(f_1) + \rho(f_2)$.

完全类似地, 我们可以定义一个从 $L(V^*,U)$ 到 $L(U^*,V)$ 的映射 σ 如下: 对任意 $g \in V^*$, 定义 $\sigma(g)$ 为 $\sigma(g)(\eta) = v$ (任意 $\eta \in U^*$), 其中 v 由条件 $\xi(v) = \xi(v) = \eta(g(\xi))$ 唯一确定 (任意 $\xi \in V^*$).

断言: $\sigma \rho = \mathrm{id}_{L(U^*,V)}$ 和 $\rho \sigma = \mathrm{id}_{L(V^*,U)}$ 成立.

事实上, 对任意 $f \in L(U^*, V)$, $\xi \in V^*$ 和 $\eta \in U^*$ 有

$$\xi((\sigma\rho)(f))(\eta) = \xi(\sigma(\rho(f))(\eta)) = \eta(\rho(f)(\xi)) = \xi(f(\eta)),$$

此即表明 $(\sigma\rho)(f)(\eta) = f(\eta)$,从而 $(\sigma\rho)(f) = f$. 另一个等式类似地可以证明. 所以我们证明了 ρ 是从 $L(U^*,V)$ 到 $L(V^*,U)$ 的一个自然的同构映射.

(7) **解**: **不成立**, 即, 一般地, 张量积 $U \otimes V$ 中的元未必都能写成 $u \otimes v$ (这种形式的张量称为秩 1 张量) 的形式. 显然, 当 dim $U \leq 1$, 或者 dim $V \leq 1$ 成立时, 结论正确.

例如, 假设 dim U=2 和 dim V=2. 设 α_1, α_2 是 U 的基而 β_1, β_2

是V的基.

断言:元素 $\alpha_1 \otimes \beta_1 + \alpha_2 \otimes \beta_2 \in U \otimes V = L(U^*, V)$ 不可能等于 $u \otimes v$, 任意 $u \in U$ 和 $v \in v$.

断言的证明: 否则, 设

$$\alpha_1 \otimes \beta_1 + \alpha_2 \otimes \beta_2 = (a_1\alpha_1 + a_2\alpha_2) \otimes (b_1\beta_1 + b_2\beta_2)$$

$$= a_1b_1(\alpha_1 \otimes \beta_1) + a_1b_2(\alpha_1 \otimes \beta_2) + a_2b_1(\alpha_2 \otimes \beta_1) + a_2b_2(\alpha_2 \otimes \beta_2).$$

(这里用到了 (2) 的结论). 两边作用于 α_1^* , α_2^* (α_1 , α_2 的对偶基), 我们得到

$$a_1b_1=1,\ a_1b_2=0;\ a_2b_1=0,\ a_2b_2=1,$$
这是不可能的, 矛盾.

- 19. (线性映射的张量积.) 略.
- 20. (列向量空间上的双线性型.)

证明:

(1) (由矩阵的运算性质即得) 对任意 $\alpha_1, \alpha_2, \beta \in \mathbb{R}^n$, $a_1, a_2 \in \mathbb{R}$ 有:

$$f(a_1\alpha_1 + a_2\alpha_2, \beta) = (a_1\alpha_1 + a_2\alpha_2)'A\beta = a_1\alpha_1'A\beta + a_2\alpha_2'A\beta$$

= $a_1f(\alpha_1, \beta) + a_2f(\alpha_2, \beta),$

此即表明 f 关于第一个变量 (左边的变量) 是线性的; 同理可证 f 关于第二个变量 (右边的变量) 是线性的.

注: 事实上, \mathbb{R}^n 上的任意双线性型都具有这种形式, 参见第 **14**, **15** 题, 且有线性空间同构: $B(\mathbb{R}^n) \cong \mathrm{M}_n(\mathbb{F})$.

- (2) 直接计算得: $f \in \mathbb{R}^n$ 的由基本向量所组成的基下的度量阵就是 A 本身. 所以, f 非退化当且仅当 r(A) = n (参见第 **12** 题中的**引 理**.)
- (3) 注意到: $A(i,j) = f(\varepsilon_i, \varepsilon_j)$, 其中, $\varepsilon_1, \dots, \varepsilon_n$ 为 \mathbb{R}^n 的基本向量. 所以, 如果 f 是对称的, 则

$$A(i,j) = f(\varepsilon_i, \varepsilon_j) = f(\varepsilon_j, \varepsilon_i) = A(j,i),$$

即, A是对称阵;

反之, 如果 A 是对称阵, 则对任意 $\alpha, \beta \in \mathbb{R}^n$ 有

 $f(\alpha,\beta)=\alpha'A\beta=(\alpha'A\beta)'=\beta'A'\alpha=\beta'A\alpha=f(\beta,\alpha),$ 即, f 是对称的.

- **21.** (子空间的关于某个双线性型的正交补, 是第六章中内积空间的子空间的正交补的推广.)
 - (1) **证明**: 首先, W^{\perp} 不是空集, 因为 $f(0,\beta) = 0$ 对任意 $\beta \in V$ 都成立, 从而 $0 \in W^{\perp}$;

其次, 对任意 $\alpha_1, \alpha_2 \in W^{\perp}, a_1, a_2 \in \mathbb{F}$ 和任意的 $\beta \in W$ 有:

$$f(a_1\alpha_1 + a_2\alpha_2, \beta) = a_1f(\alpha_1, \beta) + a_2f(\alpha_2, \beta) = 0 + 0 = 0,$$

所以, $a_1\alpha_1 + a_2\alpha_2 \in W^{\perp}$.

 $\mathbf{\dot{L}}$: W^{\perp} 的定义依赖于实现给定的双线性型 f; 不需要有限维的条件.

(2) 不一定. 如果 f 是欧式空间 V 的内积, 结论成立; 一般地, 不成立.

极端情形是,如果 f 是反对称的,即,对任意 $\alpha,\beta \in V$ 都有 $f(\alpha,\beta) = -f(\beta,\alpha)$,特别地, $f(\alpha,\alpha) = 0$ 对任意 $\alpha \in V$ 都成立.于是,对任意一维子空间 $W = L(\alpha)$ 都有 $W^{\perp} = W$.

- (3) 证明: 设 f 非退化. 如果 α ∈ V[⊥], 则对任意 β ∈ V 有 f(α, β) = 0 成立; 但是 f 非退化, 所以, α = 0, 即, V[⊥] = 0;
 反之, 设 V[⊥] = 0. 如果 α ∈ V 使得 f(α, β) = 0 对任意 β 都成立, 则 α ∈ V[⊥] = 0, 从而 α = 0, 即, f 非退化.
- 23. (二次型的矩阵: 二次型的矩阵是对称阵, 因而是唯一的.)

答案:

$$\begin{pmatrix}
0 & 1/2 & 1/2 \\
1/2 & 0 & 1/2 \\
1/2 & 1/2 & 0
\end{pmatrix}
\begin{pmatrix}
2 & 0 & -2 \\
0 & 0 & 4 \\
-2 & 4 & -1
\end{pmatrix}
\begin{pmatrix}
3 & \begin{pmatrix}
1 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
-5 & -3 & 0 & 0 \\
-3 & 1 & 0 & -2 \\
0 & 0 & 1 & -1 \\
0 & -2 & -1 & 2
\end{pmatrix}$$
(5)
$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

(注意不要把 (5) 的矩阵写成二阶方阵了, 因为所给的二次型是一个 5元二次型.)

24. (二次型的矩阵.)

答案:

- (1) $f(x_1, x_2, x_3) = x_1^2 x_2^2 x_3^2 + 4x_1x_2 + 6x_1x_3 4x_2x_3$.
- (2) $f(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 2x_1x_3 + 4x_2x_3$.
- 25. (二次型的矩阵.)

证明: 对任意二次型 $f(x_1, \dots, x_n) = X'AX$ (A 未必是对称的), 由于 X'AX = (X'AX)' = X'A'X,

所以,
$$X'\left(\frac{1}{2}(A+A')X\right) = \frac{1}{2}X'AX + \frac{1}{2}X'A'X = X'AX$$
,

而 $B := \frac{1}{2}(A + A')$ 是对称阵, 所以 $f(x_1, \dots, x_n) = X'AX$ 的矩阵是 $B = \frac{1}{2}(A + A')$.

26. (二次型与双线性之间的关系, 是第六章中内积与距离的关系的推广.)

注: 对 \mathbb{F}^n 上的任意双线性型 B 可以构造二次型: f(X) = B(X,X); 反之, 利用极化等式, 由任意二次型 Q(X) 可以构造 \mathbb{F}^n 上的一个双线性型 (这就是本题要证的).

证明: (用矩阵的语言较为简便.)

设二次型 Q(X) 的矩阵为 A, 即, Q(X) = X'AX (A 是对称阵), 则 $B(X,Y) = \frac{1}{2}(Q(X+Y) - Q(X) - Q(Y))$ 1

$$= \frac{1}{2}((X+Y)'A(X+Y) - X'AX - Y'AY)$$

(由于 A 对称, 所以 X'AY = Y'AX.)

$$= \frac{1}{2}(X'AX + Y'AY + 2X'AY - X'AX - Y'AY) = X'AY;$$

由矩阵的乘法性质 (或者, 由第 **20** 题) 可知, $B \in \mathbb{F}^n$ 上的一个双线性型.

27. (矩阵的合同 (congruence) 关系.)

证明:

法一: (利用同一个双线性型在不同基下的矩阵是合同的.)

考虑 \mathbb{F}^n 上的双线性型: $f(\alpha, \beta) = \alpha' A \beta$. 则 $A \in \mathcal{F}$ 在基 $\varepsilon_1, \dots, \varepsilon_n$ (基本向量) 下的度量阵.

于是, f 在基 $\varepsilon_{i_1}, \dots, \varepsilon_{i_n}$ 下的度量阵是 B. 从而 A 与 B 合同. \square

法二: (利用二次型的非退化线性替换.)

考虑二次型 $f(x_1,\dots,x_n) = a_1x_1^2 + a_2x_2^2 + \dots + a_nx_n^2$, 其矩阵为

则 f 经过非退化线性替换: $\begin{cases} y_1 = x_{i_1} \\ y_2 = x_{i_2} \\ \vdots \\ y_n = x_{i_n} \end{cases}$ 后变为二次型

$$g(y_1, \dots, y_n) = a_{i_1}y_1^2 + a_{i_2}y_2^2 + \dots + a_{i_n}y_n^2,$$

其矩阵为 $B = \operatorname{diag}(a_{i_1}, \dots, a_{i_n})$. 所以, $A \ni B$ 合同.

法三: (用合同变换.)

由于任意排列 $i_1i_2\cdots i_n$ 可以经过若干对换 $(k_1,\ell_1),\cdots,(k_s,\ell_s)$ 变为自然排列 $12\cdots n$, 所以矩阵 B 可以经过交换第 k_1,ℓ_1 行及 第 k_1,ℓ_1 列, \cdots , 交换第 k_s,ℓ_s 行及第 k_s,ℓ_s 列变为 A. 由于所做的初等变换为合同变换, 所以 A 与 B 合同.

注: 以上三种方法具有代表性. 进一步, 利用二次型的规范型, 可以直接得到本题中的 A 与 B 在复数域上是合同的 (因为 a_1, \dots, a_n 与 a_{i_1}, \dots, a_{i_n} 中的非零数的个数相同); 如果 $a_i \in \mathbb{R}$, 则也可以利用规范型直接得到 A 与 B 在实数域上是相似的 (因为 a_1, \dots, a_n 与 a_{i_1}, \dots, a_{i_n} 中正数的个数,负数的个数以及 0 的个数相同.)

28. (用正交变换求实二次型的标准型. 题目要求用正交变换, 因此不能用 配方法或合同变换法.)

算法:

Step 1: 写出二次型的矩阵 (必然是实对称矩阵).

Step 2: 求出正交阵 T 使得 $T'AT = T^{-1}AT$ 是对角阵 (对角元必然是 A 的全部特征值), 参见 Chapter 6 Ex. 77 中的**算法**.

Step 3: 结论: 作非退化线性替换 X = TY, 则原二次型的标准型为:

$$Y'(T'AT)Y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

其中, $\lambda_1, \dots, \lambda_n$ 是对角阵 T'AT 的对角元, 也就是 A 的全部特征值 (重根按重数计).

解:

(1) 原二次型的矩阵为
$$A=\begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & -1/2 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$
, 其特征多项式为 $f(\lambda)=\begin{pmatrix} \lambda & -1/2 & -1/2 \\ -1/2 & \lambda & 1/2 \\ -1/2 & 1/2 & \lambda \end{pmatrix}$
$$=\left(\lambda-\frac{1}{2}\right)^2(\lambda+1),$$
 (把第二列加到第一列.)

所以, A 的全部互不相同的特征值为 $\lambda_1 = \frac{1}{2}$ (二重), $\lambda_2 = -1$. 方程组 $(\lambda_1 E - A)X = 0$ 的一个基础解系为:

$$\xi_{11} = (1, 0, 1)', \, \xi_{12} = (1, 1, 0)';$$

正交化, 单位化后得: $\eta_{11} = \frac{\sqrt{2}}{2}(1,0,1)', \, \eta_{12} = \frac{\sqrt{6}}{3}(1/2,1,-1/2);$ 方程组 $(\lambda_2 E - A)X = 0$ 的一个基础解系为: $\xi_{21} = (-1, 1, 1)'$;

单位化后得:
$$\eta_{21} = \frac{\sqrt{3}}{3}(-1,1,1)';$$

令 $T = (\eta_{11} \ \eta_{12} \ \eta_{21})$. 作正交替换 X = TY, 则得到原二次型的标 准型: $\frac{1}{2}y_1^2 + \frac{1}{2}y_2^2 - y_3^2$.

(2) 原二次型的矩阵为
$$A = \begin{pmatrix} 7 & -4 & 4 \\ -4 & 1 & 8 \\ 4 & 8 & 1 \end{pmatrix}$$
,
其特征多项式为 $f(\lambda) = \begin{vmatrix} \lambda - 7 & 4 & -4 \\ 4 & \lambda - 1 & -8 \\ -4 & -8 & \lambda - 1 \end{vmatrix}$
$$= (\lambda - 9)^2 (\lambda + 9),$$

(把第二列加到第一列.)

所以, A 的全部互不相同的特征值为 $\lambda_1 = 9$ (二重), $\lambda_2 = -9$. 方程组 ($\lambda_1 E - A$)X = 0 的一个基础解系为:

$$\xi_{11}=(2,0,1)',\ \xi_{12}=(-2,1,0)';$$
 正交化,单位化后得: $\eta_{11}=\frac{\sqrt{5}}{5}(2,0,1)',\ \eta_{12}=\frac{\sqrt{5}}{3}(-2/5,1,4/5);$ 方程组 $(\lambda_2 E-A)X=0$ 的一个基础解系为: $\xi_{21}=(-1/2,-1,1)';$ 单位化后得: $\eta_{21}=\frac{2}{2}(-1/2,-1,1)';$

令 $T = (\eta_{11} \ \eta_{12} \ \eta_{21})$. 作正交替换 X = TY, 则得到原二次型的标准型: $9y_1^2 + 9y_2^2 - 9y_3^2$.

(3) 原二次型的矩阵为
$$A = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \end{pmatrix}$$
,
其特征多项式为 $f(\lambda) = \begin{pmatrix} \lambda & -1/2 & 0 & -1/2 \\ -1/2 & \lambda & -1/2 & 0 \\ 0 & -1/2 & \lambda & -1/2 \\ -1/2 & 0 & -1/2 & \lambda \end{pmatrix}$
 $= \lambda^2(\lambda - 1)(\lambda + 1)$,

(把后面各列加到第一列.)

所以, A 的全部互不相同的特征值为 $\lambda_1 = 0$ (二重), $\lambda_2 = 1$, $\lambda_3 = -1$.

方程组 $(\lambda_1 E - A)X = 0$ 的一个基础解系为:

$$\xi_{11} = (0, -1, 0, 1)', \ \xi_{12} = (-1, 0, 1, 0)';$$

单位化后得 (它们已经是正交的了):

$$\eta_{11} = \frac{\sqrt{2}}{2}(0, -1, 0, 1)', \ \eta_{12} = \frac{\sqrt{2}}{2}(-1, 0, 1, 0);$$

方程组 $(\lambda_2 E - A)X = 0$ 的一个基础解系为: $\xi_{21} = (1, 1, 1, 1)'$;

单位化后得: $\eta_{21} = \frac{1}{2}(1,1,1,1)'$;

方程组 $(\lambda_3 E - A)X = 0$ 的一个基础解系为: $\xi_{31} = (-1, 1, -1, 1)$;

单位化后得: $\eta_{31} = \frac{1}{2}(-1,1,-1,1)$.

令 $T = (\eta_{11} \ \eta_{12} \ \eta_{21} \ \eta_{31})$. 作正交替换 X = TY,则得到原二次型的标准型: $0y_1^2 + 0y_2^2 + y_3^2 - y_4^2 = y_3^2 - y_4^2$.

注: 注意到, $(x_1, x_2, x_3, x_4) = (x_1 + x_4)(x_2 + x_3)$, 则直接作非退化线性替换: (平方差公式.)

$$\begin{cases} z_3 = x_1 + x_4 \\ z_4 = x_2 + x_3 \\ z_3 = x_3 \\ z_4 = x_4 \end{cases}$$

即可得到原二次型的一个标准型: z3z3; 再作非退化线性替换:

$$\begin{cases} z_3 = y_3 + y_4 \\ z_4 = y_3 - y_4 \\ z_1 = y_1 \\ z_2 = y_2 \end{cases}$$

也得到标准型 $y_3^2 - y_4^2$.

(4) 原二次型的矩阵为
$$A = \begin{pmatrix} 3 & 4 & -2 \\ 4 & 3 & 2 \\ -2 & 2 & 6 \end{pmatrix}$$
, 其特征多项式为 $f(\lambda) = \begin{vmatrix} \lambda - 7 & 4 & -4 \\ 4 & \lambda - 1 & -8 \\ -4 & -8 & \lambda - 1 \end{vmatrix}$ $= (\lambda - 7)^2(\lambda + 2)$,

(把第二列加到第一列.)

所以, A 的全部互不相同的特征值为 $\lambda_1 = 7$ (二重), $\lambda_2 = -2$.

方程组 $(\lambda_1 E - A)X = 0$ 的一个基础解系为:

$$\xi_{11} = (-1,0,2)', \ \xi_{12} = (1,1,0)';$$
 正交化,单位化后得: $\eta_{11} = \frac{\sqrt{2}}{2}(1,1,0)', \ \eta_{12} = \frac{\sqrt{2}}{3}(-1/2,1/2,2);$ 方程组 $(\lambda_2 E - A)X = 0$ 的一个基础解系为: $\xi_{21} = (2,-2,1)';$ 单位化后得: $\eta_{21} = \frac{1}{3}(2,-2,1)';$ 令 $T = (\eta_{11} \ \eta_{12} \ \eta_{21}).$ 作正交替换 $X = TY$,则得到原二次型的标准型: $7y_1^2 + 7y_2^2 - 2y_3^2$.

29. (求二次型的标准型.)

注: 求二次型的标准型的常用方法:

- (1) 合同变换法: 对二次型的矩阵作合同变换, 变为对角阵.
- (2) 配方法.
- (3) 如果是在实数域上求二次型的标准型, 还可以用正交变换.

解:

(1) (平方差公式.) 作
$$\begin{cases} x_1 = y_1 + y_2 \\ x_2 = y_1 - y_2 \\ x_3 = y_3 + y_4 \\ x_4 = y_3 - y_4 \end{cases}$$

$$\mathbb{E}, X = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} Y,$$

即可得到原二次型的一个标准型 $4y_1^2 - 4y_2^2 + 4y_3^2 - 4y_4^2$.

(2) (用合同变换较简.)

原二次型的矩阵为
$$A = \begin{pmatrix} 7 & -4 & 0 \\ -4 & 5 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$
.

对矩阵 (A:E) 作合同变换:

$$\begin{pmatrix}
7 & -4 & 0 & 1 & 0 & 0 \\
-4 & 5 & 4 & 0 & 1 & 0 \\
0 & 4 & 3 & 0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
7 & 0 & 0 & 1 & 0 & 0 \\
0 & 19/5 & 4 & 4/7 & 1 & 0 \\
0 & 4 & 3 & 0 & 0 & 1
\end{pmatrix}$$

(把第1行的4/7倍加到第2行, 再把第1列的4/7倍加到第2列)

$$\rightarrow \left(\begin{array}{ccccc} 7 & 0 & 0 & 1 & 0 & 0 \\ 0 & 19/5 & 0 & 4/7 & 1 & 0 \\ 0 & 0 & -23/19 & -80/133 & -20/19 & 1 \end{array}\right),$$

(把第2行的-20/19倍加到第3行, 再把第2列的-20/19倍加到第3列)

则, 在非退化线性替换 X = CY 下

得到原二次型的一个标准型:
$$7y_1^2 + \frac{19}{5}y_2^2 - \frac{23}{19}y_3^2$$
.

(4) 注意到: 原二次型的矩阵可以分块为: $A = \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix}$,

其中,
$$B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$$
.

对 (B:E₂) 作合同变换:

$$(B:E) = \begin{pmatrix} 4 & 1 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 4 & 0 & 1 & 0 \\ 0 & 15/4 & -1/4 & 1 \end{pmatrix}.$$

$$\Leftrightarrow C_1 = \left(\begin{array}{cc} 1 & -1/4 \\ 0 & 1 \end{array}\right).$$

则
$$C_1'BC_1 = D = \begin{pmatrix} 4 & 0 \\ 0 & 15/4 \end{pmatrix}$$
 是二阶对角阵. ①

$$\Leftrightarrow C = \begin{pmatrix} 0 & C_1 \\ C_1 & 0 \end{pmatrix}$$
. 则

$$C'AC = \begin{pmatrix} 0 & C_1' \\ C_1' & 0 \end{pmatrix} \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix} \begin{pmatrix} 0 & C_1 \\ C_1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & C_1'BC_1 \\ C_1'BC_1 & 0 \end{pmatrix}$$
 (2)

(3)

由①②得: 在非退化线性替换 X = CY 下, 原二次型变为:

$$Y'\begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix}Y = Y'\begin{pmatrix} 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 15/4 \\ 4 & 0 & 0 & 0 \\ 0 & 15/4 & 0 & 0 \end{pmatrix}Y$$

$$=8y_1y_3+15/2y_2y_4.$$

对二次型③作非退化线性替换(平方差公式):

$$\begin{cases} y_1 = z_1 + z_3 \\ y_3 = z_1 - z_3 \\ y_2 = z_2 + z_4 \end{cases}, \ \mathbb{U},$$
$$y_4 = z_2 - z_4$$

$$Y = PZ,$$
其中, $Z = \left(egin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{array}
ight),$

则③变为:

$$8(z_1^2-z_3^2)+15/2(z_2^2-z_4^2)=8z_1^2+15/2z_2^2-8z_3^2-15/2z_4^2$$
、④即,原二次型在非退化线性替换 $X=CY=C(PZ)=(CP)Z$ 下变为标准型④.

注: 虽然二次型的标准型不是唯一的, 但是要得到一个标准型, 可能会涉及到复杂的计算, 特别是在要求写出具体的非退化线性替换的情况下, 运算量较大. 特别注意, 利用合同变换可以直接得到非退化的矩阵; 如果是只求一个实二次型的标准型而不要求写出非退化替换, 则只需求出该实二次型的矩阵的全部特征值 (重根按重数计) 即可.

30. (实二次型与 \mathbb{R}^n 上的标准内积, 实对称阵的正交对角化, 正交变换.)

证明: 不失一般性我们可以设 A 是对称的 (否则考虑 $\frac{1}{2}(A+A^T)$). 从而存在正交矩阵 P 使得

$$P^{-1}AP = P^{T}AP = \operatorname{diag}(\lambda_1, \cdots, \lambda_n),$$

其中 $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ 是 A 的全部特征值 (重根按重数计).

设 $c := \max_{1 \le i \le n} |\lambda_i| > 0$. (如果 A 的特征值全为 0, 那么对任意 $X \in \mathbb{R}^n$ 都有 $X^T A X = 0$, 从而可以取 c 为任意正数.)

对任意
$$X = (x_1 \cdots x_n)^T \in \mathbb{R}^n$$
,

设
$$P^{-1}X = P^TX = (y_1 \cdots y_n)^T \in \mathbb{R}^n$$
. 由于 P 是正交阵, 所以

$$\textstyle \sum_{i=1}^n x_i^2 = X^TX = (X^TP)(P^TX) = (P^{-1}X)^T(P^{-1}X) = \sum_{i=1}^n y_i^2,$$

从而有

$$|X^T A X| = |X^T (P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^{-1}) X|$$

$$= |(P^{-1} X)^T \operatorname{diag}(\lambda_1, \dots, \lambda_n) (P^{-1} X)|$$

$$= |\sum_{i=1}^n \lambda_i y_i^2| \le \sum_{i=1}^n |\lambda_i| y_i^2 \le c \sum_i y_i^n = c \sum_i x_i^2 = c |X^T X|.$$

31. (实二次型的惯性定理 (Sylvester), 二次型的等价.)

证明: 由题设存在非退化线性替换 X = CY使得

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2$$

$$\xrightarrow{X=CY} y_1^2 + \dots + y_{p'}^2 - y_{p'+1}^2 - \dots - y_{r'}^2, \quad (\star)$$

其中 $C = (c_{ij})$ 是可逆的 n 阶实矩阵. 要证明 p = p'. 用反证法.

假设 p < p'. (想法: 把 (*) 左右两边看成实数域上的 n 元函数. 可以通过取 x_i , y_j 的特殊值使 (*) 左右两边具有符号不同的取值来构造矛盾. 例如, 我们考察是否存在特殊的 $\tilde{X}=(\tilde{x}_1,\cdots,\tilde{x}_n)^t$ 和 $\tilde{Y}=(\tilde{y}_1,\cdots,\tilde{y}_n)^t$ 使得 $\tilde{X}=C\tilde{Y},\,\tilde{x}_1=\cdots=\tilde{x}_p=0$ 而 $\tilde{y}_{p'+1}=\cdots=\tilde{y}_n=0$ 且至少有一个 $\tilde{y}_j\neq 0,\,1\leq j\leq p'$. 则 (*) 的左边在点 $\tilde{X}=(\tilde{x}_1,\cdots,\tilde{x}_n)^t$ 处的函数值 ≤ 0 ,而 (*) 的右边在 $\tilde{Y}=(\tilde{y}_1,\cdots,\tilde{y}_n)^t$ 处的函数值 ≥ 0 ,从而得到矛盾.)

我们考虑如下的关于 y_1, \dots, y_n 的齐次线性方程组:

$$\begin{cases} x_1 = c_{11}y_1 + \dots + c_{1n}y_n = 0 \\ & \dots \\ x_p = c_{p1}y_1 + \dots + c_{pn}y_n = 0 \\ & y_{p'+1} = 0 \\ & \dots \\ & y_n = 0 \end{cases}$$

由于该方程组的方程个数为 p + (n - p') = n - (p' - p) < n, 所以它必有非零解

$$\tilde{Y} = (\tilde{y}_1, \cdots, \tilde{y}_n)^t = (\tilde{y}_1, \cdots, \tilde{y}_{p'}, 0, \cdots, 0)^t,$$

其中,至少有一个 $\tilde{y}_j \neq 0$, $1 \leq j \leq p'$. 令 $\tilde{X} = (\tilde{x}_1, \dots, \tilde{x}_n)^t = C\tilde{Y}$. 则 $\tilde{x}_1 = \dots = \tilde{x}_p = 0$, 从而, (*) 的左边在 \tilde{X} 处的函数值 ≤ 0 , 而 (*) 的右边在 \tilde{Y} 处的函数值 > 0, 矛盾. 所以 $p \geq p'$. 同理可证 $p' \geq p$.

注: 这个结论说明实二次型的规范型是唯一的, 因此可以定义实二次型的正(负) 惯性指数.

32. (由线性函数的平方和给出的二次型.)

证明: 设 $X = (x_1 \cdots x_n)^T$. 则

$$f(x_1,...,x_n) = f(X) = (AX)^T(AX) = X^T(A^TA)X.$$

由于 A^TA 是对称的, 所以二次型 $f(x_1,\ldots,x_n)$ 的矩阵正好是 A^TA . 从而

$$rank(f) = rank(A^T A) = rank(A).$$

这里用了一个结论: 对任意实矩阵 A 有 $rank(A^TA) = rank(A)$.

33. (求实对称矩阵或二次型的正、负惯性指数和符号差.)

法一: 对实对称矩阵作合同变换, 变为对角阵. 则, 正 (负) 对角元的个数就是正 (负) 惯性指数;

法二: 求出实对称阵的全部特征值 (重根按重数计). 则, 正 (负) 特征值的个数就是正 (负) 惯性指数.

$$(1) \ A = \left(\begin{array}{rrr} -1 & 1 & -3 \\ 1 & -2 & -2 \\ -3 & -2 & 2 \end{array} \right).$$

法一: (用合同变换.) 对 (A:E) 作台

$$(A:E) \xrightarrow{\text{合同变换}} \begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 36 & -8 & -5 & 1 \end{pmatrix},$$
即, A 合同于对角阵
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 36 \end{pmatrix},$$

即,
$$A$$
 合同于对角阵 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 36 \end{pmatrix}$

法二: (用特征值.) <math>A 的特征多项式为

$$f(\lambda) = \begin{vmatrix} \lambda + 1 & -1 & 3 \\ -1 & \lambda + 2 & 2 \\ 3 & 2 & \lambda - 2 \end{vmatrix} = (\lambda + 3)(\lambda^2 - 2\lambda - 12),$$

由此即得 A 有两个负特征值 $-3,1-\sqrt{13}$ 和一个正特征值 $1 + \sqrt{13}$,

所以, A 的正惯性指数为 1, 负惯性指数为 2.

$$(2) \ A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 7 & -4 \\ 1 & -4 & 7 \end{array}\right).$$

法一: (用合同变换.) 对 (A:E) 作合同图

(用合同变换.) 对
$$(A:E)$$
 作合同变换后得:
$$(A:E) \xrightarrow{\text{合同变换}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 13/2 & 0 & -1/2 & 1 & 0 \\ 0 & 0 & 44/13 & -11/13 & 19/3 & 1 \end{pmatrix},$$
即, A 合同于对角阵 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 13/2 & 0 \\ 0 & 0 & 44/13 \end{pmatrix}$,

即,
$$A$$
 合同于对角阵 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 13/2 & 0 \\ 0 & 0 & 44/13 \end{pmatrix}$,

法二: (用特征值.) <math>A 的特征多项式为

$$f(\lambda) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -1 & \lambda - 7 & 4 \\ -1 & 4 & \lambda - 7 \end{vmatrix} = (\lambda - 4)(\lambda - 1)(\lambda - 11),$$

$$(A = \pi \times \pi) = \pi \times \pi = \pi \times \pi$$

由此即得 A 有三个正特征值 4,1,11, 所以, A 的正惯性指数为 3, 负惯性指数为 0.

34. (*n* 阶实对称阵合同当且仅当它们的正、负特征值的个数相等,当且仅当它们的正、负惯性指数相等.)

解: 直接用合同变换求出:

A 的正惯性指数为 3, 负惯性指数为 1;

B 的正惯性指数为 2, 负惯性指数为 2;

C 的正惯性指数为 3, 负惯性指数为 1;

所以, A 与 C 合同, 而不与 B 合同.

注: 因为不要求写出非退化线性替换, 所以在作合同变换时, 不需要拼上右边的单位阵, 这样可以节约运算时间.

35. (n 元实二次型等价当且仅当它们的矩阵合同.)

解: 直接计算各个二次型的正、负惯性指数如下:

f 的正惯性指数为 2, 负惯性指数为 1; (对其矩阵作合同变换.)

q 的正惯性指数为 2, 负惯性指数为 1; (对其矩阵作合同变换.)

h 的正惯性指数为 3, 负惯性指数为 0; (用顺序主子式得 h 正定.)

u 的正惯性指数为 3, 负惯性指数为 0; (用顺序主子式得 u 正定.)

所以, 在 \mathbb{R} 上 f 与 g 等价, h 与 u 等价.

36. (n 阶实对称矩阵在合同意义下的分类,n 阶复对称矩阵在合同意义下的分类.)

解:由于 n 阶实对称阵合同当且仅当它们的正、负惯性指数相同,而正、负惯性指数的和等于矩阵的秩,所以,在合同意义下 n 阶实对称矩阵先按秩进行分类,再按正惯性指数进行分类:

当秩为r时有r+1类(因为正惯性指数只可能是 $0,1,\dots,r$);

而秩 r 可以是 $0, 1, \dots, n$;

所以, 共有 $1+2+\cdots+(n+1)=\frac{1}{2}(n+1)(n+2)$ 类.

由于 n 阶复对称阵合同当且仅当它们的秩相等, 所以, 在合同意义下有 n+1 类.

注: 矩阵的合同分类问题是困难的问题. 实数域上的**对称**矩阵或复数域上的**对称**矩阵的分类是清楚的.

37. (注意与第 10 题中双线性型的区别, 非退化线性替换.)

证明: (因为题目中涉及到符号差的概念, 所以, 考虑的二次型必然是实二次型.)

必要性:设

$$f(x_1, \dots, x_n) = (a_1x + \dots + a_nx_n)(b_1x_1 + \dots + b_nx_n).$$

设 $\alpha_1 := (a_1, \dots, a_n)', \alpha_2 := (b_1, \dots, b_n)' \in \mathbb{R}^n$ 都是非零向量.

如果 α_1, α_2 线性无关, 则可以把 α_1, α_2 扩充为 \mathbb{R}^n 的一个基

$$\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$$
.

令 $C = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n)$. 则 $C \in M_n(\mathbb{R})$ 可逆, 从而有非退化线性替换:

$$Y = CX$$
, $\sharp P$, $Y = (y_1, y_2, \dots, y_n)'$, $X = (x_1, x_2, \dots, x_n)'$,

使得:

$$f(x_1, \dots, x_n) \stackrel{X = C^{-1}Y}{=} g(y_1, \dots, y_n) = y_1 y_2$$
$$= \frac{1}{4} (y_1 + y_2)^2 - \frac{1}{4} (y_1 - y_2)^2,$$

此即表明 $f(x_1, \dots, x_n)$ 的秩为 2, 且正惯性指数和负惯性指数都为 1 (符号差为 0):

如果 α_1, α_2 线性相关, 不妨设 $\alpha_2 = k\alpha_1, 0 \neq k \in \mathbb{F}$, 于是,

$$f(x_1,\cdots,x_n)=k(a_1x_1+\cdots+a_nx_n)^2.$$

此时, 类似地, 把 α_1 扩充为 \mathbb{R}^n 的一个基, 从而得到一个以 α_1 为第一列的可逆实矩阵 D, 由此作非退化线性替换, 使得

$$f(x_1, \dots, x_n) \stackrel{X = D^{-1}Z}{=} h(z_1, \dots, z_n) = kz_1^2,$$

此即表明 f 的秩为 1, 且正惯性指数为 1 当且仅当 k > 0.

综上, 必要性得证.

反之, 假设 f 的秩为 2 且符号差为 0, 或者 f 的秩为 1.

如果 f 的秩为 2 且符号差为 0, 则 f 的标准型形如: $y_1^2 - y_2^2$, 即, 存在 非退化线性替换 X = PY 使得

$$f(x_1, \dots, x_n) \stackrel{X=PY}{=} g(y_1, \dots, y_n) = y_1^2 - y_2^2 = (y_1 + y_2)(y_1 - y_2),$$

而 y_1, y_2 是 x_1, \dots, x_n 的线性函数, 所以, 此时, $f(x_1, \dots, x_n)$ 能够分解为两个线性函数的乘积;

如果 f 的秩为 1, 则 f 的标准型形如: $\pm z_1^2$, (正负号取决于正惯性指数是否是 1.) 即, 存在非退化线性替换 X=QZ 使得

$$f(x_1, \dots, x_n) \stackrel{X=QZ}{=} g(y_1, \dots, y_n) = \pm z_1^2,$$

而 z_1 是 x_1, \dots, x_n 的线性函数, 所以, 此时, $f(x_1, \dots, x_n)$ 能够写为一个线性函数的平方.

注: 由①, $f(x_1, \dots, x_n)$ 可以写成矩阵乘积的形式:

$$f(x_1, \dots, x_n) = (x_1 \dots x_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \dots b_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

即,

$$f(x_1, \dots, x_n) = X'BX,$$

其中, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \dots b_n).$

显然, $r(B) \le 1$ (参见第 **10** 题: **双线性型** X'BY 的矩阵为 B, 其秩不超过 1); **但是**, B 未必是对称的, 所以, 未必是**二次型** $f(x_1, \dots, x_n) = X'BX$ 的矩阵 $A = \frac{1}{2}(B+B')$. 因此, 本题中的必要性可以用矩阵的语言叙述为:

设 $B \neq n$ 阶实方阵. 设 $A = \frac{1}{2}(B + B')$. 如果 $r(B) \leq 1$, 则 $r(A) \leq 2$.

- 38. (欧式空间的内积在任意基下的度量阵都是正定阵.) 略.
- **39.** (n 阶实方阵 A 是正定阵当且仅当 A 是某个欧式空间的内积在某个基下的度量阵.)

证明: 由定义, 对任意 $\alpha = (\alpha_1 \cdots \alpha_n)X \in V$ 和 $\beta = (\alpha_1 \cdots \alpha_n)Y \in V$ 有 $(\alpha, \beta) = X'AY$.

假设 A 正定. 那么对任意 $\alpha = (\alpha_1 \cdots \alpha_n)X \in V$ 有 $(\alpha, \alpha) = X'AX \ge 0$ 且 $(\alpha, \alpha) = 0$ 当且仅当 X = 0,从而 $\alpha = 0$.于是 (-, -) 是一个内积.

反之, 假设 A 是内积 (-,-) 的度量阵. 首先, A 必然是实对称阵, 其次, 对任意 $X \in \mathbb{R}^n$, 考虑以 X 为坐标的 $\alpha \in V$. 则 $0 \le (\alpha,\alpha) = X'AX$, 且 $X'AX = 0 = (\alpha,\alpha)$ 当且仅当 $\alpha = 0$, 当且仅当, X = 0, 所以, A 是正定阵.

注: 这个结论可以用于验证一个矩阵是否正定. 下面是一个例子. 设

$$A = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{n+1} & \frac{1}{n+2} & \frac{1}{n+3} & \cdots & \frac{1}{2n+1} \end{pmatrix}.$$

则 A 是正定的, 可以证明如下. 设 $V = \mathbb{R}[x]_{n+1}$. 考虑 V 上的如下的内积 (-,-):

$$(f(x),g(x)) = \int_0^1 (f(x)g(x))dx$$
 任意 $f(x),g(x) \in V$.

由于

$$(x^{i}, x^{j}) = \int_{0}^{1} x^{i+j} dx = \frac{1}{i+j+1},$$

所以 A 正好是 V 的这个内积在基 $1, x, x^2, \ldots, x^n$ 下的度量矩阵, 从而必然是一个正定阵.

40. (正定阵的一个刻画.)

证明: A 正定当且仅当 A 合同于单位阵 E_n , 即, 当且仅当存在可逆的 n 阶实方阵 B 使得 $A = B'E_nB = B'B$.

- 41. 就是前面的第 39 题. 略.
- **42.** (正定阵可以开平方. 题目只要求证明存在性, 实际上唯一性也是成立的.)

证明: 存在性. 存在正交矩阵 P 使得

$$P^{-1}AP = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

其中 $\lambda_1, \ldots, \lambda_n$ 是 A 的全部特征值 (重根按重数计). 由于 A 是正定的, 所以 $\lambda_i > 0$, $1 \le i \le n$, 从而对角阵 $D_1 = \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$ 满足

$$A = PDP^{-1} = PD_1^2P^{-1} = (PD_1P^{-1})(PD_1P^{-1}).$$

令 $B := PD_1P^{-1}$. 则 $A = B^2$ 且 B 也是正定的 (因为 B 与 D 相似, 从而特征值全大于 0.)

<u>唯一性</u>. 设 $A = B_1^2 = B_2^2$, 其中 B_1 , B_2 都是正定阵, 要证明 $B_1 = B_2$. 我们断言 B_1 和 B_2 有公共的特征值和特征向量.

事实上, 对 B_1 的任意特征值 μ 和相应的特征向量 ξ_1 : $B_1\xi_1 = \mu_1\xi_1$, 都有

$$B_2^2\xi_1=B_1^2\xi_1=\mu_1^2\xi_1,$$

即,

$$(B_2 + \mu_1 E_n)(B_2 - \mu_1 E_n)\xi_1 = 0,$$

其中 E_n 是单位阵. 由于 B_1 是正定的, 所以 $\mu_1 > 0$. 又由于 B_2 是正定的, 所以 B_2 的特征值也都是正的. 从而 $B_2 + \mu_1 E_n$ 是可逆的, 于是 $(B_2 - \mu_1 E_n)\xi_1 = 0$, 即 μ_1 也是 B_2 的特征值, ξ_1 是相应的特征向量. 同理, B_2 的特征值和特征向量都是 B_1 的特征值和特征向量.

所以存在正交阵 Q 使得 $Q^{-1}B_1Q = Q^{-1}B_2Q$ 是对角阵 (即, B_1 , B_2 能够同时正交对角化), 从而 $B_1 = B_2$.

43. (正定阵的性质.)

证明: 由于 A 正定, 所以 A 的特征值全大于 0, 而 |A| 等于 A 的全部特征值 (重根按重数计) 的积, 所以 |A| > 0, 从而 A 可逆.

(或者, 由于 A 正定, 所以 A 合同于单位阵, 即, 存在可逆实方阵 B 使得 $A = B'E_nB = B'B$, 从而 $|A| = |B|^2 > 0$, 所以 A 可逆.)

(或者, 用反证法: 若不然, 存在 $0 \neq X \in \mathbb{R}^n$ 使得 AX = 0, 从而 X'AX = 0, 与 A 是正定阵矛盾.)

注: 对于 n 阶实方阵 A, A 可逆只是 A 正定的必要条件.

设 A, B 为 n 阶正定矩阵. 则对任意 $X \in \mathbb{R}^n$ 有:

$$X'(A+B)X = X'AX + X'BX \ge 0.$$

如果 X'(A+B)X = X'AX + X'BX = 0,

则由 $X'AX \ge 0$ 和 $X'BX \ge 0$ 知, X'AX = 0, 但 A 正定, 所以必然有 X = 0.

综上, A + B 正定.

注: 不能用 A, B 的特征值去证明 A+B 的特征值大于 0 (因为 A+B 的特征值与 A, B 的特征值没有直接的联系); 也不能用 A, B 合同于单位阵直接推出 A+B 合同于单位阵 (因为, A, B 未必能同时合同于单位阵, 即, 未必存在公共的可逆实矩阵 P 使得 P'AP 和 P'BP 都是单位阵.)

44. (特征值, 正定阵.)

证明: 首先, $\lambda E_n + A$ 是实对称矩阵. 其次, 考虑 $\lambda E_n + A$ 的特征多项式:

$$f(x) = |xE_n - (\lambda E_n + A)| = |(x - \lambda)E_n - A| = q(x - \lambda),$$

其中, g(x) 为 A 的特征多项式. 由此即得: 如果 $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值 (重根按重数计), 则 $\lambda + \lambda_1, \lambda + \lambda_2, \dots, \lambda + \lambda_n$ 为 $\lambda E + A$ 的全部特征值 (重根按重数计).

(也可以由 Chapter 5 Ex. 31 的**推论**直接得到.)

于是, 任取充分大的 $\lambda \in \mathbb{R}$ 使得 $\lambda + \lambda_i > 0$ $(1 \le i \le n)$ 即可以使 $\lambda E_n + A$ 是正定阵.

45. (二阶正定阵. 此时用顺序主子式较为简便.)

解:
$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 的顺序主子式为 $a, ac - b^2$,

所以, A 正定当且仅当 a > 0 且 $ac - b^2 > 0$.

46. (正定二次型的判定, 此时用顺序主子式较为简便.)

解:
$$f(x_1, x_2, x_3)$$
 的矩阵为 $A = \begin{pmatrix} 1 & -\lambda & 1 \\ -\lambda & 1 & -2 \\ 1 & -2 & 5 \end{pmatrix}$.

其顺序主子式为:

1;
$$\begin{vmatrix} 1 & -1 \\ -\lambda & 1 \end{vmatrix} = 1 - \lambda^2$$
; $|A| = \begin{vmatrix} 1 & -\lambda & 1 \\ -\lambda & 1 & -2 \\ 1 & -2 & 5 \end{vmatrix} = -5\lambda^2 + 4\lambda$,

所以, A 正定, 也就是原二次型正定, 当且仅当 $0 < \lambda < \frac{4}{5}$.

47. (负定二次型, 半负定二次型.)

证明:

(1) 由
$$X'AX = -X'(-A)X$$
 即得.

(2) 设 $f(x_1, \dots, x_n) = X'AX (A' = A)$ 的标准型为:

$$g(y_1, \dots, y_n) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2,$$

其中, $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值 (重根按重数计), 即, 存在正交变换 X = PY 使得

$$f(X) = X'AX \stackrel{X=PY}{==} g(y_1, \cdots, y_n) = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$$
. ① 考虑负定的情形.

必要性: 设 $f(x_1, \dots, x_n)$ 负定. 假设第 i 个特征值 $\lambda_i \geq 0$. 令 $X_i = P\varepsilon_i$, 其中, ε_i 为 \mathbb{R}^n 中的第 i 个基本向量. 则

$$0 > f(X_i) = X_i' A X_i = \lambda_i \ge 0,$$

矛盾. 所以, A 的特征值全部为负数.

充分性: 设 A 的全部特征值都是负数. 则对任意 $X \in \mathbb{R}^n$, 由① 得:

$$f(X) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \le 0;$$

且, 如果 f(X) = 0, 则由②得: $y_1 = \cdots = y_n = 0$, 从而 X = PY = P0 = 0,

所以 f 是负定的.

半负定的情形类似地可得.

- (3) 由 (2) 可知, *f* 负定当且仅当 *A* 的全部特征值 (重根按重数计) 都是负数, 而负惯性指数等于负特征值的个数. 所以, 结论成立. □
- (4) 由 (2) 可知, f 半负定当且仅当 A 的全部特征值 (重根按重数计) 都是非正的, 而正惯性指数等于正特征值的个数. 所以, 结论成立.
- 48. (正定、负定阵的定义, 实对称阵的正交对角化.)

证明: 设 A 是任意的 n 阶实对称阵. 则存在正交阵 T 使得

$$A = T \operatorname{diag}(\lambda_1, \cdots, \lambda_n) T^{-1},$$

其中, $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值 (重根按重数计).

对每个 1 < i < n, 取 $a_i > 0, b_i < 0$ 使得 $\lambda_i = a_i + b_i$, 并令

$$B = T\operatorname{diag}(a_1, \dots, a_n)T^{-1}, C = T\operatorname{diag}(b_1, \dots, b_n)T^{-1}.$$

则,
$$B$$
 是正定的, C 是负定, 且 $A = B + C$.

49. (不定二次型, 标准型的应用, 正交对角化.)

证明: 由题设可知, f(X) = X'AX (A' = A) 不是正定的和半正定的, 也不是负定和半负定的, 因此 A 既有正特征值, 又有负特征值.

设 $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值 (重根按重数计). 不妨设 $\lambda_1 > 0$, $\lambda_2 < 0$.

由于 A 是实对称阵, 所以存在正交阵 P 使得:

$$f(X) = X'AX \stackrel{X=PY}{=} g(y_1, \dots, y_n) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$
 (1)

令
$$Y_0 = (1/\sqrt{\lambda_1}, 1/\sqrt{-\lambda_2}, 0, \dots, 0)' \in \mathbb{R}^n, X_3 = PY_0 \in \mathbb{R}^n, 则由①得:$$
 $f(X_3) = \lambda_1 \cdot \frac{1}{\lambda_1} + \lambda_2 \cdot (-\frac{1}{\lambda_2}) = 1 - 1 = 0.$

注: 与线性型 (或, 线性函数) 的零点集 (齐次线性方程组的解集) 不同的是, 一般地, 二次型 X'AX (A'=A) 的零点集不是 \mathbb{F}^n 的子空间.

50. (正定二次型的判定: 用顺序主子式较为简便.)

解:

(1) 原二次型的矩阵为
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
, 其顺序主子式为 $2 > 0$; $\begin{vmatrix} 2 & -2 \\ -2 & 1 \end{vmatrix} < 0$, 所以, 原二次型是不定型.

(2) 原二次型的矩阵为
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,

其顺序主子式为:

$$2 > 0;$$
 $\begin{vmatrix} 2 & 2 \\ 2 & 5 \end{vmatrix} = 6 > 0,$ $|A| = \begin{vmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{vmatrix} = 5 > 0,$

所以, 原二次型是正定的.

- (3) 完全类似, 略.
- (4) 完全类似. 略.
- 51. (半正定二次型的定义, C-B 不等式.)

证明: 考虑 \mathbb{R}^n 上的标准内积 (-,-). 则对 $\alpha = (\frac{1}{n} \cdots \frac{1}{n})' \in \mathbb{R}^n$ 和任 意 $\beta = (x_1 \cdots x_n)' \in \mathbb{R}^n$,由 Cauchy-Buniyakowski 不等式可得

- 52. 略.
- 53. 略.

The followings are some classical exercises.

A1. Assume that A, B are positive definite $n \times n$ matrices. Prove that AB is positive definite if and only if AB = BA.

证明: 必要性. 假设 AB 正定. 则 AB 当然是对称的, 从而

$$AB = (AB)' = B'A' = BA.$$

<u>充分性</u>. 假设 AB = BA. 则 AB 是对称的, 所以只需证明 AB 的特征 值全是正的.

为此, 我们证明 A 和 B 可以同时对角化. 设 $\lambda_1, \ldots, \lambda_s$ 是 A 的全部互不相同的特征值.

于是存在正交矩阵P使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 E_{r_1} & & & \\ & \lambda_2 E_{r_2} & & \\ & & \ddots & \\ & & & \lambda_s E_{r_s} \end{pmatrix}$$

是对角阵, 其中 E_{r_i} 是 r_i 阶单位阵. 注意到

$$(P^{-1}AP)(P^{-1}BP) = P^{-1}(AB)P = P^{-1}(BA)P = (P^{-1}BP)(P^{-1}AP),$$

即, $P^{-1}AP$ 和 $P^{-1}BP$ 可交换. 把 $P^{-1}BP$ 按 $P^{-1}AP$ 的分块方式进行分块:

$$P^{-1}BP = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1s} \\ B_{21} & B_{22} & \cdots & B_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ B_{s1} & B_{s2} & \cdots & B_{ss} \end{pmatrix}.$$

则

$$\begin{pmatrix} \lambda_{1}E_{r_{1}} & & & \\ & \lambda_{2}E_{r_{2}} & & \\ & & \ddots & \\ & & & \lambda_{s}E_{r_{s}} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1s} \\ B_{21} & B_{22} & \cdots & B_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ B_{s1} & B_{s2} & \cdots & B_{ss} \end{pmatrix}$$

$$= \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1s} \\ B_{21} & B_{22} & \cdots & B_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ B_{s1} & B_{s2} & \cdots & B_{ss} \end{pmatrix} \begin{pmatrix} \lambda_1 E_{r_1} & & & & \\ & \lambda_2 E_{r_2} & & & \\ & & \ddots & & \\ & & & \lambda_s E_{r_s} \end{pmatrix},$$

有此即得 $B_{ij} = 0$ $(i \neq j)$. 所以

$$P^{-1}BP = \begin{pmatrix} B_{11} & & & \\ & B_{22} & & \\ & & \ddots & \\ & & & B_{ss} \end{pmatrix}.$$

对每个 $1 \le i \le s$, 由于 B_{ii} 是实对称矩阵, 所以存在正交阵 Q_i 使得 $Q^{-1}B_{ii}Q$ 是对角阵. 令

$$Q = \begin{pmatrix} Q_1 & & & \\ & Q_2 & & \\ & & \ddots & \\ & & & Q_s \end{pmatrix}.$$

则 Q 是正交阵. 令 T = PQ. 则

$$T^{-1}BT = Q^{-1}(P^{-1}BP)Q = \begin{pmatrix} \mu_1 E_{r_1} & & & \\ & \mu_2 E_{r_2} & & \\ & & \ddots & \\ & & & \mu_s E_{r_s} \end{pmatrix}$$

和

$$T^{-1}AT = Q^{-1}(P^{-1}AP)Q$$

$$= \begin{pmatrix} Q_1^{-1} & & & \\ & Q_2^{-1} & & \\ & & \ddots & \\ & & Q_s^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 E_{r_1} & & \\ & \lambda_2 E_{r_2} & & \\ & & \ddots & \\ & & \lambda_s E_{r_s} \end{pmatrix}$$

$$\times \begin{pmatrix} Q_1 & & & \\ & Q_2 & & & \\ & & \ddots & & \\ & & Q_s \end{pmatrix}$$

$$= \begin{pmatrix} Q_1^{-1}\lambda_1 E_{r_1}Q_1 & & & \\ & & Q_2^{-1}\lambda_2 E_{r_2}Q_2 & & & \\ & & & \ddots & & \\ & & & Q_s^{-1}\lambda_s E_{r_s} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 E_{r_1} & & & & \\ & & \lambda_2 E_{r_2} & & & \\ & & & \ddots & & \\ & & & & \lambda_s E_{r_s} \end{pmatrix}$$

都是对角阵. 特别,

$$T^{-1}(AB)T = \begin{pmatrix} \lambda_1 \mu_1 E_{r_1} & & & \\ & \lambda_2 \mu_2 E_{r_2} & & \\ & & \ddots & \\ & & & \lambda_s \mu_s E_{r_s} \end{pmatrix},$$

即, AB 的任意特征值都具有 $\lambda_i \mu_i > 0$ 的形式, 从而 AB 是正定的. \square 注: 关于充分性有如下的简单证明, 不涉及到 AB 的特征值.

<u>充分性</u>的另一个证明. 由于 AB = BA, 所以 AB 是实对称矩阵. 所以只需证明 AB 合同于一个正定矩阵. 事实上, 由于 A 和 B 都是正定的, 所以存在实可逆矩阵 P,Q 使得 A = P'P, B = Q'Q, 从而

$$AB = P'PQ'Q = P'(PQ'QP^{-1})P,$$

此即表明, AB 合同于 $PQ'QP^{-1}$, 而 $PQ'QP^{-1}$ 与 Q'Q 相似, 从而有相同的特征值. 但是 Q'Q 是正定的, 所以其特征值全大于 0. 于是 $PQ'QP^{-1}$ 的特征值全大于 0, 从而是正定的.

A2. Assume that A is a real $n \times n$ symmetric matrix, B is a positive definite $n \times n$ matrix. Prove that there exists an invertible real matrix C such that both C'AC and C'BC are diagonal.

证明: 由于 B 正定, 所以存在实可逆矩阵 C_1 使得 $C_1'BC_1 = E_n$ 是单位阵. 对于实对称矩阵 $C_1'AC_1$ 存在正交矩阵 C_2 使得 $C_2'(C_1'AC_1)C_2$ 是对角阵. 设 $C = C_1C_2$. 则 C'AC 是对角阵且

$$C'BC = C'_2(C'_1BC_1)C_2 = C'_2C_2 = E_n$$

也是对角阵.

A3. Assume that $0 \neq A$ is positive semidefinite $n \times n$ matrix, while S is an $n \times n$ positive definite matrix. Prove that $\det(A+S) > \det(A)$ and $\det(A+S) > \det(S)$.

证明: 由 **A2** 知存在可逆实矩阵 C 使得 $C'AC = \operatorname{diag}(a_1, \ldots, a_n)$ 和 $C'SC = \operatorname{diag}(b_1, \ldots, b_n)$ 都是对角阵. 由于 $0 \neq A$ 是半正定的, 所以 $a_i \geq 0$ $(1 \leq i \leq n)$, $a_k > 0$ (对某些 k); 由于 S 是正定的, 所以 $b_j > 0 (1 \leq j \leq n)$. 于是

$$(\det C)^2 \det(A+S) = \prod_{i=1}^n (a_i + b_i) > \prod_{i=1}^n a_i = (\det C)^2 \det(A),$$

此即表明 $\det(A+S) > \det(A)$.

A4. Let $M = \begin{pmatrix} A & B \\ B' & D \end{pmatrix}$ be an $n \times n$ positive definite matrix, where A is an $r \times r$ (r < n) matrix. Prove that $A, D, D - B'A^{-1}B$ are positive definite.

证明: 考虑由 M 给出的二次型:

$$f(X) = f(x_1, \dots, x_r, x_{r+1}, \dots, x_n) = X'MX.$$

则由假设可知 f(X) 是正定的. 考虑如下的二次型

$$f_1(x_1, \dots, x_r) = f(x_1, \dots, x_r, 0, \dots, 0)$$

$$= (x_1 \dots x_r) A(x_1 \dots x_r)^T,$$

$$f_2(x_{r+1}, \dots, x_n) = f(0, \dots, 0, x_{r+1}, \dots, x_n)$$

$$= (x_{r+1} \dots x_n) D(x_{r+1} \dots x_n)^T.$$

则 f_1 和 f_2 都是正定的, 从而 A, D 都是正定矩阵.

注意到

$$\begin{pmatrix} E_r & 0 \\ -B'A^{-1} & E_{n-r} \end{pmatrix} \begin{pmatrix} A & B \\ B' & D \end{pmatrix} \begin{pmatrix} E_r & 0 \\ -B'A^{-1} & E_{n-r} \end{pmatrix}^T$$
$$= \begin{pmatrix} A & 0 \\ 0 & D - B'A^{-1}B \end{pmatrix},$$

其中 E_r , E_{n-r} 是单位阵. 所以 M 合同于 $\begin{pmatrix} A & 0 \\ 0 & D - B'A^{-1}B \end{pmatrix}$. 由于 M 正定, 所以 $\begin{pmatrix} A & 0 \\ 0 & D - B'A^{-1}B \end{pmatrix}$ 也是正定的, 从而由前段的讨论可知 $D - B'A^{-1}B$ 是正定的.

A5. Assume that $\begin{pmatrix} A & B \\ B' & D \end{pmatrix}$ is positive definite, where A, D are square matrices. Prove that

$$\det \left(\begin{array}{cc} A & B \\ B' & D \end{array} \right) \le \det(A)\det(D),$$

and the equality holds if and only if B = 0.

证明: 与 A4 中的证明一样, 我们有如下的等式:

$$\begin{pmatrix} E_r & 0 \\ -B'A^{-1} & E_{n-r} \end{pmatrix} \begin{pmatrix} A & B \\ B' & D \end{pmatrix} \begin{pmatrix} E_r & 0 \\ -B'A^{-1} & E_{n-r} \end{pmatrix}^T$$
$$= \begin{pmatrix} A & 0 \\ 0 & D - B'A^{-1}B \end{pmatrix},$$

其中 E_r , E_{n-r} 是单位阵. 取行列式即得

$$\det\begin{pmatrix} A & B \\ B' & D \end{pmatrix} = \det(A)\det(D - B'A^{-1}B). \tag{*}$$

对任意 $X \in \mathbb{R}^n$, 其中 n 是 $\begin{pmatrix} A & B \\ B' & D \end{pmatrix}$ 的阶数.

由于 A 和 A^{-1} 都是正定的, 所以

$$X'(B'A^{-1}B)X = (BX)'A^{-1}(BX) \ge 0, (**)$$

此即表明 $B'A^{-1}B$ 是正定的. 又利用 A4 可得 $D-B'A^{-1}B$ 是正定的. 所以由 A3 可得: 如果 $B'A^{-1}B \neq 0$ 那么

$$\det(D) = \det((D - B'A^{-1}B) + B'A^{-1}B) > \det(D - B'A^{-1}B),$$

从而, 由(*)可得 (注意到 det(A) > 0):

$$\det \left(\begin{array}{cc} A & B \\ B' & D \end{array} \right) < \det(A)\det(D).$$

如果 $B'A^{-1}B = 0$, 那么, 由于 A^{-1} 正定, 从而由 (**) 可知, 对任意 $X \in \mathbb{R}^n$ 有 BX = 0, 于是 B = 0, 进而有

$$\det \left(\begin{array}{cc} A & B \\ B' & D \end{array} \right) = \det(A)\det(D).$$

其余结论是显然的.

A6. Let A be any invertible real matrix. Prove that there exist an orthogonal matrix T and positive definite matrices S_1 , S_2 such that $A = TS_1 = S_2T$. Moreover, such decompositions are unique.

证明: <u>存在性</u>. 由于 A 是可逆实矩阵, 所以 AA' 是正定矩阵. 于是存在正定矩阵 B 使得 $AA' = B^2 = A'A$ (参见前面的第 **42** 题). 设 $T = BA'^{-1}$. 则

$$TT' = (BA'^{-1})(A^{-1}B') = B(AA')^{-1}B' = BB^{-2}B = E_n,$$

其中 E_n 是单位阵. 从而 T 是正交阵, 而且 A = T'B 是所求的分解. 类似地可以得到另一个分解.

<u>唯一性</u>. 假设 $A = T_1B_1 = T_2B_2$, 其中 T_1, T_2 是正交阵, B_1, B_2 是正定阵. 则

$$B_2B_1^{-1} = T_2T_1^{-1}$$

是正交阵,从而

$$E_n = (B_2B_1^{-1})(B_2B_1^{-1})' = B_2(B_1^2)^{-1}B_2,$$

即, $B_1^2 = B_2^2$. 由于 B_1, B_2 都是正定阵, 所以由前面的第 **42** 题可知, $B_1 = B_2$, 从而 $T_1 = T_2$.

A7. Prove the following statements.

(1) Let A be an $n \times n$ positive matrix and α a nonzero column vector in \mathbb{R}^n . Then

$$\det \left(\begin{array}{cc} A & \alpha \\ \alpha' & 0 \end{array} \right) < 0.$$

证明: 与 A4 中的证明相同, 我们有:

$$\begin{pmatrix} E_{n-1} & 0 \\ -\alpha' A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & \alpha \\ \alpha' & 0 \end{pmatrix} \begin{pmatrix} E_{n-1} & 0 \\ -\alpha' A^{-1} & 1 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} A & 0 \\ 0 & -\alpha' A^{-1} \alpha \end{pmatrix}, \tag{*}$$

其中 E_{n-1} 是单位阵. 由于 $\alpha \neq 0$ 和 A^{-1} 是正定阵, 所以 $-\alpha' A \alpha < 0$, 从而, 通过在 (*) 两边取行列式我们得到:

$$\det \begin{pmatrix} A & \alpha \\ \alpha' & 0 \end{pmatrix} = \det(A)(-\alpha'A\alpha) < 0.$$

(2) Let $A = (a_{ij})_{n \times n}$ be positive definite. Then

$$\det(A) \le a_{nn}\det(A_{n-1}),$$

where A_{n-1} is the (n-1)-th principal sub-matrix of A.

证明: 对正定阵

$$A = \left(\begin{array}{cc} A_{n-1} & \beta \\ \beta' & a_{nn} \end{array}\right)$$

运用 A5 的结果即得.

(3) (Again we obtain the following *Hadamard inequality*: 参见 Chapter 6 Ex. 41). Let $C = (c_{ij})_{n \times n}$ be any invertible matrix. Then

$$(\det(C))^2 \le \prod_{j=1}^n (c_{1j}^2 + \dots + c_{nj}^2).$$

证明:由(2)我们得到如下的:

断言: 设 $A = (a_{ij})_{n \times n}$ 是正定矩阵. 那么 $\det(A) \leq \prod_{i=1}^n a_{ii}$.

事实上, 由于对每个 $1 \le j \le n$, 第 j 个主子阵 A_j 是正定的, 所以由 (2) 可知:

$$\det(A) \le a_{nn}\det(A_{n-1}) \le a_{nn}a_{n-1,n-1}\det(A_{n-2}) \le \cdots \le a_{nn}a_{n-1,n-1}\cdots a_{11},$$

从而断言得证.

现在, 对任意可逆实矩阵 C 有 $A=(a_{ij})_{1\leq i,j\leq n}:=C'C$ 是正定的, 从而

$$(\det(C))^2 = \det(C'C) = \det(A) \le \prod_{i=1}^n a_{ii},$$

其中, $a_{ii} = c_{1j}^2 + \dots + c_{nj}^2$, $1 \le i \le n$.

注: 上面的断言已经在 Chapter 6 中得到了. 由前面的第 **39** 题可知, 任意正定矩阵 $A=(a_{ij})_{1\leq i,j\leq n}$ 也是欧式空间的内积 (-,-) 关于某个基 α_1,\ldots,α_n 的度量阵, 而且 $a_{ii}=(\alpha_i,\alpha_i)$.

The results in the following exercises generalize some properties of orthogonal complementary subspaces in Euclidean spaces.

A8. Let V be a finite dimensional linear space over a number field \mathbb{F} . Let f be a symmetric *non-degenerate* bilinear form on V. Let W be a *proper* subspace of V. Set

$$W^{\perp} = \{ \alpha \in V \, | \, f(\alpha, \beta) = 0 \text{ for any } \beta \in W \}.$$

Prove the following statements.

- $(1) \dim W + \dim W^{\perp} = \dim V.$
- (2) $(W^{\perp})^{\perp} = W$.

证明:

(1) 设 $\alpha_1, \ldots, \alpha_r$ 是 W 的一个基.

把它扩充为 V 的一个基 $\alpha_1,\ldots,\alpha_r,\alpha_{r+1},\ldots,\alpha_n$,并设 f 在这个基下的度量矩阵为 $A=(a_{ij})_{n\times n}$.

设 $\varepsilon_i = (0 \cdots 0 \ 1 \ 0 \cdots 0)^T \in \mathbb{F}^n$ 是基本向量 $(1 \le i \le n)$, 即, ε_i 也是 α_i 关于基 $\alpha_1, \ldots, \alpha_r, \alpha_{r+1}, \ldots, \alpha_n$ 的坐标. 从而对任意 $\alpha = (\alpha_1 \cdots \alpha_r \alpha_{r+1} \cdots \alpha_n)X \in V$ 有

$$\alpha \in W^{\perp} \Leftrightarrow f(\alpha_{i}, \alpha) = 0: \qquad 1 \leq i \leq r$$

$$\Leftrightarrow \varepsilon_{i}^{T} A X = 0: \qquad 1 \leq i \leq r$$

$$\Leftrightarrow X \text{ 是如下的齐次线性方程组的解:}$$

$$\begin{cases} a_{11}x_{1} + \dots + a_{1n}x_{n} = 0 \\ a_{21}x_{1} + \dots + a_{2n}x_{n} = 0 \\ \dots & \dots \\ a_{r1}x_{1} + \dots + a_{rn}x_{n} = 0 \end{cases}$$
(*)

另一方面, 由于 f 非退化, 所以 A 是满秩的, 从而 (*) 的系数矩阵的秩为 r, 所以 (*) 的解空间的维数是 n-r, 进而 W^{\perp} 的维数也是 n-r, 即, $\dim W + \dim W^{\perp} = \dim V$, 正如所需.

(2) 注意到 $W \subset (W^{\perp})^{\perp}$.

由 (1) 可得 dim
$$W = \dim(W^{\perp})^{\perp}$$
, 从而 $W = (W^{\perp})^{\perp}$.

注: 一般情况下 (1) 并不意味着 $W+W^{\perp}=V$, 更谈不上 $W\oplus W^{\perp}=V$ (在欧式空间情形下是正确的). 但是, 我们有下一个练习中给出的结论.

22. Let V be a finite dimensional linear space over a number field \mathbb{F} . Let f be a symmetric bilinear form on V. Let W be a *proper* subspace of V. Prove that, $V = W \oplus W^{\perp}$ if and only if the restriction of f to W is *non-degenerate*.

证明: 设 $f_1 = f|_W$ 是 f 在 W 上的限制. 注意到 f_1 是 W 上的对称双线性型.

<u>必要性</u>. 假设 $V = W \oplus W^{\perp}$. 假设 f_1 是退化的. 那么存在非零的 $\alpha \in W \cap W^{\perp}$, 矛盾.

<u>充分性</u>. 假设 f_1 是非退化的. 于是存在 W 的一个基 $\gamma_1, \ldots, \gamma_r$ 使得 $f_1(\gamma_i, \gamma_j) = \delta_{ij}d_i$, 其中, $d_i \neq 0$ 对任意 $1 \leq i \leq r$ 都成立(对称矩阵合同于对角阵), 即, f_1 的关于 $\gamma_1, \ldots, \gamma_r$ 的度量阵是可逆的对角阵. 从而对任意 $\beta \in V$ 我们可以定义

$$\gamma := \beta - \sum_{i=1}^{r} \frac{f(\beta, \gamma_i)}{f(\gamma_i, \gamma_i)} \gamma_i.$$

易见, 对任意 $1 \le j \le r$ 有

$$f(\gamma, \gamma_j) = f(\beta, \gamma_j) - \frac{f(\beta, \gamma_j)}{f(\gamma_j, \gamma_j)} f(\gamma_j, \gamma_j) = 0,$$

此即表明, $\gamma \in W^{\perp}$, 从而

$$\beta = \gamma + \sum_{i=1}^{r} \frac{f(\beta, \gamma_i)}{f(\gamma_i, \gamma_i)} \gamma_i \in W + W^{\perp}.$$

所以我们证明了 $V = W + W^{\perp}$.

另一方面, 如果 $\alpha \in W \cap W^{\perp}$ 那么对任意 $\alpha' \in W$ 都有 $f_1(\alpha, \alpha') = 0$, 此即表明 $\alpha = 0$ (因为 f_1 非退化). 所以 $W \cap W^{\perp} = 0$.

综上我们证明了
$$V=W\oplus W^{\perp}$$
.