Modal and Temporal Logic, 2012-2013

James Lawson

- 1.(a) i. A is valid in a model, \mathcal{M} , if A is satisfied at every world of \mathcal{M} .
 - ii. A is valid in a frame, \mathcal{F} , if for any model, \mathcal{M} , constructed from \mathcal{F} , A is valid in \mathcal{M} .
 - iii. A is valid if A is valid in all frames.
 - (b) i. Reflexive frames.
 - ii. Let $A = \Box p \to p$. In the \mathcal{M} given, A is valid because it is satisfied at all worlds. We can see that $1, \mathcal{M} \models A$ (1 sees only 2 and p is true at 2), and that $2, \mathcal{M} \models A$ (2 sees no worlds). However, A is not valid for the frame, \mathcal{F} . We can find a witness model \mathcal{M}_0 created from \mathcal{F} and see that A is not valid in \mathcal{M}_0 . Take \mathcal{M}_0 as below (where $h(p) = \emptyset$). $1, \mathcal{M} \nvDash A$ so A is not valid in \mathcal{M}_0 . Hence A cannot be valid in \mathcal{F} .
 - (c) i. Assume without proof $\mathcal{M}, t \models A \rightarrow B$ iff $\mathcal{M}, t \models A \rightarrow \mathcal{M}, t \models B$. Take arbt. world t from arbt. model \mathcal{M} constructed from arbt. frame \mathcal{F} . To show: $\mathcal{M}, t \models \Box(p \rightarrow q) \rightarrow (\Diamond p \rightarrow \Diamond q)$. Assume $\mathcal{M}, t \models \Box(p \rightarrow q)$. By Kripke semantics, if R(t, u) then $\mathcal{M}, u \models p \rightarrow q$ for all u in \mathcal{F} . Now assume $\mathcal{M}, t \models \Diamond p$. Then $R(t, u_0)$ and $\mathcal{M}, u_0 \models p$ for some world u_0 . But we also have $\mathcal{M}, u_0 \models p \rightarrow q$ by first assumption. So $\mathcal{M}, u_0 \models q$. Hence $\mathcal{M}, t \models \Diamond q$ So $\mathcal{M}, t \models \Diamond p \rightarrow \Diamond q$, and, $\mathcal{M}, t \models \Box(p \rightarrow q) \rightarrow (\Diamond p \rightarrow \Diamond q)$
 - ii. Not valid.

We can have $\mathcal{M}, t \models \Diamond(p \rightarrow q)$ but not $\mathcal{M}, t \models \Diamond p \rightarrow \Diamond q$. Assume $\mathcal{M}, t \models \Diamond(p \rightarrow q)$, then assume $\mathcal{M}, t \models \Diamond p$. There is some world that t can see that satisfies $p \rightarrow q$ and some world that t can see that satisfies p. However we cannot guarantee that these worlds as the *same*. We cannot apply modus ponens like before and say there is a world that t can see that satisfies q. Counter-example:

- (d) i. $\neg \Diamond (\Diamond \Box p \land \neg p)$
 - ii. Let $A = \Diamond(\Diamond \Box p \land \neg p)$

We will apply Sahlqvist's algorithm to find the *Sahlqvist's correspondant* of A, $\alpha[t]$ and thus have $\mathcal{F}, u \models \neg A$ iff $\mathcal{F} \models \forall t \neg \alpha(t)$. *Boxed atoms*: $\Box p$. *Negative formulas*: $\neg p$. We want to find a lazy assignment that makes boxed atoms true without concern for negative formulas. Suppose arbt world t sees some world u and u sees some world v, then our assignment must make p true at worlds v can see in order to make boxed atom $\Box p$ true. So *lazy assignment* is $h^o(p) = \{x \mid R(v,x)\}$.

Now we take the *standard translation* of *A*:

$$A^{t} = \exists u (R(t,u) \land (\Diamond \Box p \land \neg p)^{u}$$

$$= \exists u (R(t,u) \land ((\Diamond \Box p)^{u} \land (\neg p)^{u})$$

$$= \exists u (R(t,u) \land ((\exists v (R(u,v) \land (\Box p)^{v}) \land (\neg p^{u}))$$

$$= \exists u (R(t,u) \land \exists v (R(u,v) \land (\Box p)^{v} \land \neg P(u))$$

To preserve equivalence, we move $\exists v$ outside:

 $\exists u \exists v (R(t,u) \land R(u,v) \land (\Box p)^v \land \neg P(u)).$

Our lazy assignment lets us replace P(u) with R(u,v) and $(\Box p)^v$ with $(\top)^v = \top$. $\exists u \exists v (R(t,u) \land R(u,v) \land \top \land \neg R(u,v)) = \alpha[t]$.

So $\forall t \neg \alpha(t) = \forall t \exists u \exists v (R(t, u) \land R(u, v) \land (\top)^v \land \neg R(u, v))$ which is logically equivalent to $\forall t \forall u \forall v (R(t, u) \land R(u, v) \rightarrow \neg R(u, v))$.

Since $(\mathcal{F}, h), t \models A$ iff $\mathcal{F} \models (\mathcal{F}, h^o), t \models A$ iff $\mathcal{F} \models \alpha[t]$.

we have: $(\mathcal{F}, h), t \models \neg A$ iff $\mathcal{F} \models \forall t \neg \alpha[t]$ for any \mathcal{F}, h, t . That is, B is valid in \mathcal{F} iff \mathcal{F} satisfies (using first-order semantics) $\forall t \neg \alpha[t]$

- iii. *B* is valid in \mathcal{F} iff $\forall t \forall u \forall v (R(t,u) \land R(u,v) \rightarrow \neg R(u,v))$. So we need to find a frame \mathcal{F}_0 that doesn't satisfy this first-order condition. The frame below doesn't satisfy the condition because there are some worlds x, y, z where x sees y, y sees z but we have z sees y.
- 2.(a) i. Since \mathcal{F}' is a p-morphic image of \mathcal{F} , there is a p-morphism from \mathcal{F} to \mathcal{F}' . Every p-morphism satisfies the forth property and back-property. Forth property: $R(x,y) \to R'(f(x),f(y))$ for all $x,y \in W$

Back property: $R'(f(x), v) \rightarrow (R(x, y) \text{ and } f(y) = v \text{ for some } y \in W)$

for all $x \in W, v \in W'$.

Take arbt $x, y, z \in W'$. Assume R'(x, y) and R'(y, z) To show R'(x, z).

x must the image of some world $t \in W$, x = f(t). By the back-property, given R'(f(t),y), we must have R(t,t') where f(t') = y for some world $t' \in W$. By the back-property, since R'(f(t'),z), we have R(t',t'') where f(t'') = z for some world $t'' \in W$.

Since \mathcal{F} is transitive, given that R(t,t') and R(t',t''), we must have R(t,t''). And by the forth property, given that R(t,t'') we must have R'(f(t),f(t'')), in other words, R(x,z).

- ii. No. Counter-example:
- (b) i. Example:
 - ii. Let $\mathcal{F} \times (\mathbb{N},<) = (W^{\times},R^{\times})$ $(x,u)R^{\times}(y,v)$ iff R(x,y) and u < v. Assume \mathcal{F} is triangle-free. To show: $R^{\times}(x,y)$ is triangle free. Assume for contradiction, $R^{\times}(x,y)$, $R^{\times}(y,z)$, $R^{\times}(z,x)$ for some $x,y,z \in W^{\times}$.

Then by def. of R^{\times} , we have x < y, we have y < z and z < x. By transitivity of <, we have x < z but this contradicts z < x.

(*alternatively*: derive contradiction by seeing that there is a triangle in \mathcal{F}). So there are no $x, y, z \in W^{\times}$ such that $R^{\times}(x, y), R^{\times}(y, z), R^{\times}(z, x)$.

- iii. From lectures, there is a p-morphism from $\mathcal{F} \times (\mathbb{N},<)$ to \mathcal{F} . So \mathcal{F} is a p-morphic image of $(\mathbb{N},<)$. From lectures, p-morphic images preserve validity of modal formulas. That is, if A valid in $\mathcal{F} \times (\mathbb{N},<)$ then A valid in \mathcal{F} .
- i. Take some arbitrary time t, in $\mathcal{M} = ((\mathbb{N}, <), h)$ for some arbitrary h. Assume $\mathcal{M}, t \models FGq$. Then there is some future time f, where q is true for the all future times of f.

 Now take any time t' in the future of t. If t' < f then there is indeed a future time where q is true (f). So t' must satisfy Fq. If $t' \geqslant f'$, q is always true in the future of f', and so must always be true in the future of f'. So there must be a time when f is true in the future f. Hence f must satisfy f and f are always true in the future f. Hence f must satisfy f and f are always true in the future f. Hence f must satisfy f and f are always true in the future f must satisfy f and f are always true in the future f must satisfy f and f are always true in the future f. Hence f must satisfy f are always true in the future f must satisfy f and f are always true in the future f.
 - ii. Not valid. We can find some model \mathcal{M}_0 constructed from $(\mathbb{N},<)$ where at some world, t, GFq holds but FGq doesn't. Let \mathcal{M}_0 have assignment $h(q) = \{t \in \mathbb{N} \mid t \text{ is even }\}.$ GFq is satisfied at t, as for all future times of t, t', there will be some future time of t' where q is true (say, at the next even time larger than t'). However FGq isn't satisfied at t. We cannot find a future time of t, f, where for all times in future of f, g is true. There will be some odd time in the future of f where g is false.

3.(a) Lemmon filtration for *A*:

- $W^f = \text{set of } \sim \text{-equivalence classes}$, where \sim is a relation on W where $t \sim u \iff [\mathcal{M}, t \models B \Leftrightarrow \mathcal{M}, u \models B$, for all subformulas, B, of A]
- $R^{\ell}(X,Y) \iff [\mathcal{M},x \models \Box B \Rightarrow \mathcal{M},y \models \Box B \land B \text{ for all } x \in X,y \in Y, \text{ subformulas, } \Box B, \text{ of } A]$
- $h^f(p) = \{ X \in W^f \mid \mathcal{M}, x \models p \text{ for some } x \in X \}$
- (b) Lemmon filtration $\mathcal{N}_{\square p}^{\ell}$:

(c) Take any arbitrary $X \in \mathcal{F}_A^{\ell}$.

Take any arbitrary world $x \in X$. Let *B* be any subformula of *A*.

Assume $\mathcal{M}, x \models \Box B$.

 \mathcal{F} is serial, so there is some world $y \in W$ with R(x,y). So by our assumption, $\mathcal{M}, y \models B$. Take some arbt $z \in W$. Assume R(y,z). By transitivity of \mathcal{F} , we have R(x,z). And so by our first assumption, $\mathcal{M}, z \models B$. Hence $\forall z (R(y,z) \rightarrow \mathcal{M}, z \models B)$, so $\mathcal{M}, y \models \Box B$. Hence $\mathcal{M}, y \models \Box B \land B$

Let $Y \in \mathcal{F}_A^{\ell}$ be the \sim -equivalence class that y is in. Take any y' in Y. Since y and y' agree on the satisfiability of all subformulas of A, they agree on the satisfisfiability of $B \wedge \Box B$. So must have for all $y' \in Y$, $\mathcal{M}, y' \models B \wedge \Box B$. So $\mathcal{M}, x \models \Box B$ implies $[\mathcal{M}, y' \models B \wedge \Box B$ for all $x \in X, y' \in Y$, all subformulas B.] Hence $R^{\ell}(X, Y)$.

So for any $X \in \mathcal{F}_A^{\ell}$, there is some $Y \in \mathcal{F}_A^{\ell}$ such that $R^{\ell}(X,Y)$.

(d) $KTS = K + (\lozenge \top, \square p \to \square \square p)$ is sound and complete for \mathcal{TS} . We claim Thm(KTS) has the strong finite model property.

Take some $A \notin \text{Thm}(KTS)$, Since KTS is sound and complete over \mathcal{TS} , $A \notin \text{Log}(\mathcal{TS})$, in other words, there is some model \mathcal{M} constructed from a frame in \mathcal{TS} with $\mathcal{M}, t \models \neg A$. We can take this \mathcal{M} and find the Lemmon filtration, \mathcal{M}_A^{ℓ} . By the Filtration lemma, $\neg A$ is satisfied in \mathcal{M}_A^{ℓ}

From part (c), \mathcal{F}_A^ℓ is serial. From lectures, The Lemmon filtration relation R^ℓ is transitive (Lemma 9.19), so \mathcal{F}_A^ℓ is transitive. Hence \mathcal{M}_A^ℓ is serial and transitive and so validates Thm(KTS).

Since \mathcal{F}_A^ℓ is finite with at most 2^n worlds (where n is the number of subformulas of $\neg A$), KTS has the strong finite model property. There is an algorithm to decide whether \mathcal{F}_A^ℓ validates KTS (KTS has finite many axioms - by Theorem 8.3, it is enough to just check each axiom true for all finite worlds taken from finitely possible models build from \mathcal{F}_A^ℓ) - so by Theorem 9.8, KTS is decidable. Algorithm:

Compute $s(A) = 2^n$, where *n* is the number of subformulas of *A*.

Enumerate all models whose frame is \mathcal{F}_A^{ℓ} .

If we find a model satisfies $\neg A$, halt and print $A \notin L$.

If no models are found that satisfy $\neg A$, halt and print $A \in L$

- 4.(a) i. For any $\Gamma, \Delta \in W_C$, $R_C(\Gamma, \Delta)$ iff [if $\Box A \in \Gamma$ then $A \in \Delta$, for all formulas, A].
 - ii. (\Rightarrow) Assume $R_C(\Gamma, \Delta)$.

Take any A. Assume $A \in \Delta$. By the truth lemma, $\mathcal{M}_C, \Delta \models A$. By Kripke semantics, $\mathcal{M}_C, \Gamma \models \Diamond A$. By the truth lemma, $\Diamond A \in \Gamma$.

 (\Leftarrow) Assume A ∈ Δ implies ◊A ∈ Γ for any A.

Assume $\Box A \in \Gamma$.

Suppose for contradiction, $A \notin \Delta$.

 Δ is a MCS, so by MCS properties (lemma 7.20), $\neg A \in \Delta$. So by our first assumption, $\Diamond \neg A \in \Gamma$. But $\Diamond B$ is an abbreviation for $\neg \Box \neg B$, so we have $\neg \Box \neg \neg A \in \Gamma$. By the truth lemma, $\mathcal{M}_C, \Gamma \models \neg \Box \neg \neg A$. By equivalence in Kriple semantics $\mathcal{M}_C, \Gamma \models \neg \Box A$. And by the truth lemma we have $\neg \Box A \in \Gamma$. Γ is a MCS, so by properties of MCSs, $\Box A \notin \Gamma$. Contradiction. So $A \in \Delta$. Hence $R(\Gamma, \Delta)$.

iii. Take any worlds $\Gamma, \Delta_1, \Delta_2 \in W_C$.

Assume $R_C(\Gamma, \Delta_1)$ and $R_C(\Gamma, \Delta_2)$.

To show $R_C(\Delta_1, \Delta_2)$.

Assume $\Box A \in \Delta_1$

From part ii, since $R_C(\Gamma, \Delta_1)$, we have $\Diamond \Box A \in \Gamma$. Since Γ is an MCS, by Lemma 7.19, $\Gamma \vdash_C \Diamond \Box A$. Now, $\Diamond \Box p \to \Box p$ is an axiom of C, so by sub, $\vdash_C \Diamond \Box A \to \Box A$. Since $\Gamma \vdash_C \Diamond \Box A$ and $\vdash_C \Diamond \Box A \to \Box A$, we have $\Gamma \vdash_C \Box A$, which by MCS properties, gives $\Box A \in \Gamma$. But since $R(\Gamma, \Delta_2)$, $A \in \Delta_2$. Hence $R_C(\Delta_1, \Delta_2)$.

- iv. The *Completeness Theorem* states that the if a class of frames C contains the canonical frame F_H , then H is complete over C. In part iii, we showed that the class of balloon-like frames contains F_C , and so our Hilbert system is complete over the class.
- (b) i. f is monotonic iff for all sets $U, V \subseteq W$: if $U \subseteq V$ then $f(U) \subseteq f(V)$.
 - ii. $U \subseteq W$ is a fixed point of f iff f(U) = U.
 - iii. $f^0(\emptyset) = \emptyset$ by def of f. But $\emptyset \subseteq f^1(\emptyset)$, as the emptyset is a subset of all sets. Since f is monotonic, we have $f^1(\emptyset) \subseteq f^2(\emptyset)$. By monotonicity of f we have $f^2(\emptyset) \subseteq f^3(\emptyset)$ and $f^3(\emptyset) \subseteq f^4(\emptyset)$, ...

As W is finite, there must be some m such that $f^m(\emptyset) = f^{m+1}(\emptyset)$. Hence $Z = f^m(\emptyset)$ is a fixed point of f. Since $f^0(\emptyset) \cup f^1(\emptyset) \cup ... \cup f^m(\emptyset) = Z$ and $f^m(\emptyset) \cup f^{m+1}(\emptyset) \cup ... = Z$, we have $Z = Z \cup Z = \bigcup_{n \in \mathbb{N}} f^n(\emptyset)$.

- (c) i. Let $A = p \wedge \Box q$. Then $\llbracket \mu q A \rrbracket_h = \text{LFP}(A_q^h)$ where $A_q^h(U) = \llbracket A \rrbracket_{h[p \mapsto U]}$.
 - Let $h_0 = h[q \mapsto \emptyset]$. Then $A_q^h(\emptyset)$ = $[\![p \land \Box q]\!]_{h_0} = [\![p]\!]_{h_0} \cap [\![\Box q]\!]_{h_0} = \{2,3,4,5\} \cap \Box [\![q]\!]_{h_0}$ = $\{2,3,4,5\} \cap \Box \emptyset = \{2,3,4,5\} \cap \{5\} = \{5\}$
 - Let $h_1 = h[q \mapsto \{5\}]$. Then $A_q^h(A_q^h(\emptyset))$ = $[\![p \land \Box q]\!]_{h_1} = [\![p]\!]_{h_1} \cap [\![\Box q]\!]_{h_1} = \{2,3,4,5\} \cap \Box [\![q]\!]_{h_1}$ = $\{2,3,4,5\} \cap \Box \{5\} = \{2,3,4,5\} \cap \{4,5\} = \{4,5\}$.
 - Let $h_2 = h[q \mapsto \{4,5\}]$. Then $A_q^h(A_q^h(A_q^h(\emptyset)))$ = $\llbracket p \land \Box q \rrbracket_{h_2} = \llbracket p \rrbracket_{h_2} \cap \llbracket \Box q \rrbracket_{h_2} = \{2,3,4,5\} \cap \Box \llbracket q \rrbracket_{h_2}$ = $\{2,3,4,5\} \cap \Box \{4,5\} = \{2,3,4,5\} \cap \{4,5\} = \{4,5\}$.

So LFP $(A_a^h) = \bigcup_{n \in \mathbb{N}} (A_a^h)^n(\emptyset) = \{4, 5\}$. So $[\![\mu q A]\!]_h = \{4, 5\}$.

- ii. $[vqA]_h = GFP(A_q^h)$. Let $W = \{1, 2, 3, 4, 5\}$.
 - Let $h_0 = h[q \mapsto W]$. Then: $A_q^h(W) = [\![p \land \Box q]\!]_{h_0} = [\![p]\!]_{h_0} \cap [\![\Box q]\!]_{h_0} = \{2,3,4,5\} \cap \Box [\![q]\!]_{h_0}$ $= \{2,3,4,5\} \cap \Box W = \{2,3,4,5\} \cap W = \{2,3,4,5\}.$
 - Let $h_1 = h[q \mapsto \{2,3,4,5\}]$. Then: $A_q^h(W) = [\![p \land \Box q]\!]_{h_1} = [\![p]\!]_{h_0} \cap [\![\Box q]\!]_{h_1} = \{2,3,4,5\} \cap \Box [\![q]\!]_{h_1}$ $= \{2,3,4,5\} \cap \Box \{2,3,4,5\} = \{2,3,4,5\} \cap \{3,4,5\} = \{3,4,5\}.$
 - Let $h_2 = h[q \mapsto \{3,4,5\}]$. Then: $A_q^h(W) = [\![p \land \Box q]\!]_{h_2} = [\![p]\!]_{h_0} \cap [\![\Box q]\!]_{h_2} = \{2,3,4,5\} \cap \Box [\![q]\!]_{h_2} = \{2,3,4,5\} \cap \Box \{3,4,5\} = \{2,3,4,5\} \cap \{3,4,5\} = \{3,4,5\}$. So LFP $(A_q^h) = \cap_{n \in \mathbb{N}} (A_q^h)^n(W) = \{3,4,5\}$. So $[\![vqA]\!]_h = \{3,4,5\}$.