# Higher Algebra

# ${\rm Jeremy\ Le-UNSW\ MATH 3711\ 25T1}$

## Contents

| 1 | The Mathematical Language of Symmetry |
|---|---------------------------------------|
| 2 | Matrix Groups and Subgroups           |
| 3 | Permutation Groups                    |
| 4 | Generators and Dihedral Groups        |
| 5 | Alternating and Abelian Groups        |
| 6 | Cosets and Lagrange's Theorem         |
| 7 | Normal Subgroups and Quotient Groups  |
| 8 | Group Homomorphisms                   |

## 1 The Mathematical Language of Symmetry

**Definition 1.1** (Isometry). A function  $f: \mathbb{R}^n \to \mathbb{R}^n$  is an isometry if ||f(x) - f(y)|| = ||x - y|| for all  $x, y \in \mathbb{R}^n$ . i.e. preserves distances.

**Definition 1.2** (Symmetry). Let  $F \subseteq \mathbb{R}^n$ , a symmetry of F is a (surjective) isometry  $T : \mathbb{R}^n \to \mathbb{R}^n$  such that T(F) = F.

**Properties 1.3.** Let S, T be symmetries of  $F \subseteq \mathbb{R}^n$ . Then  $S \cdot T : \mathbb{R}^n \to \mathbb{R}^n$  is also a symmetry of F.

**Proof.** Given  $x, y \in \mathbb{R}^n$ .

$$||STx - STy|| = ||Tx - Ty||$$

$$= ||x - y||.$$
(S is an isometry)
$$(T \text{ is an isometry})$$

Therefore ST is an isometry. Clearly ST is surjective as both S and T are surjective. Also,

$$ST(F) = S(F)$$
  $(T(F) = F)$   
=  $F$ .  $(S(F) = F)$ 

So ST is a symmetry of F.

**Properties 1.4.** If  $G = \text{set of symmetries of } F \subseteq \mathbb{R}^n$ , then G satisfies:

- i) Composition is associative, ST(R) = S(TR) for all  $S, T, R \in G$ .
- ii)  $id_{\mathbb{R}^n} \in G$   $(id_{\mathbb{R}^n}(x) = x$  for all  $x \in \mathbb{R}^n$ ). Also,  $id_G T = T$  and  $T id_G = T$  for all  $T \in G$ .
- iii) If  $T \in G$ , then T is bijective and  $T^{-1} \in G$ .

**Proof.** If Tx = Ty, then ||Tx - Ty|| = 0. So ||x - y|| = 0, x = y, therefore T is injective. By definition T is surjective, hence, T is bijective and therefore  $T^{-1}$  is surjective.

To prove  $T^{-1}$  is an isometry.

$$||T^{-1}x - T^{-1}y|| = ||TT^{-1}x - TT^{-1}y||$$

$$= ||id x - id y||$$

$$= ||x - y||.$$

To prove symmetry,  $T^{-1}F = F$ :

$$T^{-1}F = T^{-1}(T(F)) = F.$$

Thus  $T^{-1} \in G$ .

**Definition 1.5** (Group). A group is a set G equipped with a "multiplication map"  $\mu: G \times G \to G$  such that

- 1) Associativity: (gh)k = g(hk) for all  $g, h, j \in G$ .
- 2) Existence of identity: There exists  $1 \in G$  such that 1g = g and g1 = g for all  $g \in G$ .

3) Existence of inverses:  $\forall g \in G$ , there exists  $h \in G$  such that gh = 1 and hg = 1. Denoted by  $g^{-1}$ .

Properties 1.6. Basic facts about groups.

• "Generalised Associativity". When multiplying three or more elements, the bracketing does not matter. E.g. (a(b(cd)))e = (ab)(c(de)).

**Proof.** Mathematical Induction as for matrix multiplication.

• Cancellation Law. If qh = qk then h = k for all  $q, h, k \in G$ .

**Proof.** 
$$gh = gk \implies g^{-1}(gh) = g^{-1}(gk) \implies (g^{-1}g)h = (g^{-1}g)k \implies 1h = 1k \implies h = k.$$

## 2 Matrix Groups and Subgroups

Recall  $GL_n(\mathbb{R})$  and  $GL_n(\mathbb{C})$  which represent the set of real/complex invertible  $n \times n$  matrices.

**Proposition 2.1.**  $GL_n(\mathbb{R})$  and  $GL_n(\mathbb{C})$  are groups when endowed with matrix multiplication.

**Proof.** Product of real invertible matrices is in  $GL_n(\mathbb{R})$ .

- i) matrix multiplication is associative.
- ii) identity matrix  $I_n: I_n m = m$  and  $mI_n = m$  for all  $m \in GL_n(\mathbb{R})$
- iii) if  $m \in GL_n(\mathbb{R})$  then  $m^{-1}$ .  $mm^{-1} = I$  and  $m^{-1}m = I$ .

Proposition 2.2. Let G = group.

1) Identity is unique i.e. suppose 1, e are both identities then 1 = e.

**Proof.** 
$$1 = 1 \cdot e = e$$
.

2) Inverses are unique.

**Proof.** If 
$$g \in G$$
,  $gh = hg = 1$  and  $gk = kg = 1$  then  $h = k$ .

3) For  $g, h \in G$  we have  $(gh)^{-1} = h^{-1}g^{-1}$ .

**Proof.** 
$$(gh)(h^{-1}g^{-1}) = ghh^{-1}g^{-1} = g1g^{-1} = gg^{-1} = 1$$
. Similarly,  $(h^{-1}g^{-1}(gh) = 1)$ .

**Definition 2.3** (Subgroup). Let G be a group with multiplication  $\mu$ . A subset  $H \subseteq G$  is called a subgroup of G (denoted  $H \subseteq G$ ) if it satisfies:

- i)  $1_G \in H$  (contains identity),
- ii) if  $g, h \in H$  then  $gh \in H$  (closed under multiplication),
- iii) if  $g \in H$  then  $g^{-1} \in H$  (closed under inverse).

**Proposition 2.4.** H is a group with the induced multiplication map  $\mu_H: H \times H \to H$  by  $\mu_H(g,h) = \mu(g,h)$ .

**Proof.** (ii) tells us that  $\mu_H$  makes sense.  $\mu_H$  is associative because  $\mu$  is. H has an identity from (i). H has inverses from (iii).

**Proposition 2.5.** Set of orthogonal matrices  $O_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : M^T = M^{-1}\} \leq GL_n(\mathbb{R})$  forms a group. Namely the set of symmetries of an n-1 sphere, i.e. an n dimensional circle.

**Proof.** Check axioms.

- i)  $I_n \in O_n(\mathbb{R})$
- ii) If  $M, N \in O_n(\mathbb{R})$  then  $(MN)^T = N^T M^T = N^{-1} M^{-1} = (MN)^{-1}$ , so  $MN \in O_n(\mathbb{R})$ .
- iii) If  $M \in O_n(\mathbb{R})$  then  $(M^{-1})^T = (M^T)^{-1} = (M^{-1})^{-1}$  so  $M^{-1} \in O_n(\mathbb{R})$ .

**Proposition 2.6.** Basic subgroup facts.

- i) Any group G has two trivial subgroups: itself and  $1 = \{1_G\}$ .
- ii) If  $J \leq H$  and  $H \leq G$  then  $J \leq G$ .

Here are some notations. For  $g \in G$  where G is a group.

- i) If n positive integer, define  $q^n = q \cdot q \cdots q$  (n times)
- ii)  $q^0 = 1$
- iii) *n* positive:  $g^{-n} = (g^{-1})^n$  or  $(g^n)^{-1}$ .
- iv) For  $m, n \in \mathbb{Z}$ ,  $g^m \cdot g^n = g^{m+n}$  and  $(g^m)^n = g^{mn}$ .

**Definition 2.7.** The order of a group G, denoted |G| is the cardinality of G. For  $g \in G$ , the order of g is the smallest positive integer n such that  $g^n = 1$ . If no such integer exists, order is  $\infty$ .

## 3 Permutation Groups

**Definition 3.1** (Permutations). Let S be a set. Let Perm(S) be the set of permutations of S. This is the set of bijections of form  $\sigma: S \to S$ .

**Proposition 3.2.** Perm(S) is a group when endowed with composition of functions.

**Proof.** Composition of bijections is a bijection. The identity is  $id_S$  and group inverse is the inverse function.

**Definition 3.3** (Symmetric Group). Let  $S = \{1, ..., n\}$ . The symmetric group  $S_n$  is Perm(S).

Two notations are used. With the two line notation, represent  $\sigma \in S_n$  by

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

 $(\sigma(i))$ 's are all distinct, hence  $\sigma$  is one to one and bijective). Note this shows  $|S_n| = n!$ .

With the cyclic notation, let  $s_1, s_2, \ldots, s_k \in S$  be distinct. We define a new permutation  $\sigma \in \text{Perm}(S)$  by  $\sigma(s_i) = s_{i+1}$  for  $i = 1, 2, \ldots, k-1, \sigma(s_k) = \sigma(s_1)$  and  $\sigma(s) = s$  for  $s \notin \{s_1, s_2, \ldots, s_k\}$ . Denoted  $(s_1 s_2 \ldots s_k)$  and called a k-cycle.

Example 3.4. For n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4 \quad \text{means} \quad \begin{array}{c} \sigma(1) = 2, & \sigma(2) = 3 \\ \sigma(3) = 1, & \sigma(4) = 4. \end{array}$$

In cyclic notation this is (123)(4) or (123) where the cycle is  $1 \to 2 \to 3 \to 1$ .

Note that a 1-cycle is the identity and the order of a k-cycle is k. So  $\sigma^k = 1$  and  $\sigma^{-1} = \sigma^{k-1}$ .

**Definition 3.5** (Disjoint Cycles). Cycles  $s_1 ldots s_k$  and  $t_1 ldots t_k$  are disjoint if  $\{s_1, ldots, s_k\} \cup \{t_1, ldots, t_k\} = \emptyset$ .

**Definition 3.6** (Commutativity). In any group, two elements g, h commute if gh = hg.

**Proposition 3.7.** Disjoint cycles commute.

**Proposition 3.8.** Any permutation  $\sigma$  of a finite set S is a product of disjoint cycles.

**Example 3.9.** 
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} \in S_6 \text{ does } 1 \to 2 \to 4 \to 1, 3 \to 6 \to 3 \text{ and } 5 \to 5.$$
 Thus  $\sigma = (124)(36)$  since (5) is the identity.

**Proposition 3.10.** Let  $\sigma$  be a permutation of a finite set S. Then S is a disjoint union of subsets, say  $S_1, \ldots, S_r$ , such that  $\sigma$  permutes the elements of each  $S_i$  cyclically.

**Definition 3.11** (Transposition). A transposition is a 2-cycle i.e. (ab).

**Proposition 3.12.** i) The k-cycle  $(s_1 s_2 ... s_k) = (s_1 s_k)(s_1 s_{k-1}) ... (s_1 s_3)(s_1 s_2)$ 

**Example 3.13.** 
$$(3625) = (35)(32)(36) = (36)(62)(25)$$

**Proof.** The RHS produces the mapping below which is equivalent to the LHS.

$$s_1 \rightarrow s_2$$

$$s_2 \rightarrow s_1 \rightarrow s_3$$

$$s_3 \rightarrow s_1 \rightarrow s_4$$

$$\vdots$$

$$s_{k-1} \rightarrow s_1 \rightarrow s_k$$

$$s_k \rightarrow s_1.$$

ii) Any permutations in  $S_n$  is a product of transpositions.

**Proof.** We can write any  $\sigma \in S_n$  as product of (disjoint) cycles. By part i), each cycle is a product of transpositions. So we can write  $\sigma$  as product of transpositions.

## 4 Generators and Dihedral Groups

**Lemma 4.1.** Let  $\{H_i\}_{i\in I}$  be a (non-empty) collection of subgroups of G. Then  $\bigcap_{i\in I} H_i \leq G$ .

#### Proof.

- 1) Why is  $1 \in \bigcap_{i \in I} H_i$ ? Because  $1 \in H_i$  for all i.
- 2) Closed under multiplication? If  $g, h \in \bigcap_{i \in I} H_i$ , then  $g, h \in H_i$  for all  $i \implies gh \in H_i$  for all  $i \implies gh \in H_i$ .
- 3) Closed under taking inverse? If  $g \in \bigcap_{i \in I} H_i$  then  $g \in H_i$  for all i as  $H_i$  are subgroups, every element has an inverse. So an inverse exists for all elements in  $H_i$  for all i.

**Proposition - Definition 4.2.** Let G be a group and  $S \subseteq G$ . Let  $\mathcal{J}$  be the set of subgroups  $J \subseteq G$  containing S.

i) [Definition] The subgroup generated by S,  $\langle S \rangle$  is  $\bigcap J \in \mathcal{J} \leq J \leq G$ . i.e. it's the intersection of all subgroups of G containing S.

**Proof.** Lemma 4.1 implies  $\langle S \rangle$  is a subgroup of G.

ii) [Proposition]  $\langle S \rangle$  is the set of elements of the form  $g = s_1 s_2 \dots s_n$  where  $n \geq 0$  and  $s_i \in S \cup S^{-1}$ . Define g = 1 when n = 0.

**Proof.** Let  $H = \{s_1 \dots s_n : s_i \in S \cup S^{-1}\}$ . First,  $H \subseteq \langle S \rangle$ . Need to prove that  $s_i \dots s_n \in \text{every } J$ . Each  $s_i \in J$  because  $s_i = s$  or  $s^{-1}$  for some  $s \in S \subseteq J$  and J closed under inversion. Therefore,  $s_1 \dots s_n \in J$  by closure under multiplication. Hence  $s_1 \dots s_n \in \bigcap_{J \in \mathcal{J}} J = \langle S \rangle$ .

Second,  $\langle S \rangle \subseteq H$ . Need to prove H is a subgroup containing S. Closure under multiplication:  $(s_1 \ldots s_n)(t_1 \ldots t_m) = s_1 \ldots s_n t_1 \ldots t_m$  also closure under inversion:  $(s_1 \ldots s_n)^{-1} = s_1^{-1} \ldots s_n^{-1} \in H$  since  $s_i^{-1} \in S$  for all i. Identity:  $s, s^{-1} \in S \neq \emptyset \implies ss^{-1} = 1 \in H$ .

**Definition 4.3** (Finitely Generated). A group G is finitely generated f.g. if  $G = \langle S \rangle$  for a finite subset  $S \subseteq G$ . G is cyclic if we can take |S| = 1.

**Example 4.4.** Take  $G \in GL_2(\mathbb{R})$  with  $\sigma = \begin{pmatrix} \cos(\frac{2\pi}{n}) & -\sin(\frac{2\pi}{n}) \\ \sin(\frac{2\pi}{n}) & -\cos(\frac{2\pi}{n}) \end{pmatrix}$  and  $\tau = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ . Find the subgroup generated by  $\{\sigma, \tau\}$ .

Notice both  $\sigma, \tau$  are symmetries of any n-gon. Any element of  $\langle \sigma, \tau \rangle$  has form

$$\sigma^{i_1} \tau^{j_1} \sigma^{i_2} \tau^{j_2} \dots \sigma^{i_r} \tau^{j_r}$$
 for  $i_1, \dots, i_r, j_1, \dots, j_r \in \mathbb{Z}$ .

We have relations:  $\sigma^n = 1, \tau^2 = 1$  and  $\tau \sigma \tau^{-1} = \sigma^{-1}$ . We use these relations to push all  $\sigma$ 's to the left and all  $\tau$ 's to the right to achieve the form  $\sigma^i \tau^j$  where  $0 \le i < n$  and j = 0, 1.

**Proposition - Definition 4.5.**  $\langle \sigma, \tau \rangle = \text{dihedral group of } 2n, \text{ denoted } D_n \text{ (sometimes } D_{2n}).$ 

$$D_n = \{1, \sigma, \dots, \sigma^{n-1}, \tau, \sigma\tau, \sigma^2\tau, \dots, \sigma^{n-1}\tau\}$$
 and  $|D_n| = 2n$ .

6

**Proof.** Need to show 2n elements are all distinct.  $\det(\sigma^i) = 1$  (because  $\det(\sigma) = 1$ ),  $\det(\tau) = -1$  and  $\det(\sigma^i\tau) = -1$ . We conclude,  $\{1, \sigma, \dots, \sigma^{n-1}\} \cap \{\tau, \sigma\tau, \dots, \sigma^{n-1}\tau\} = \emptyset$  because  $\sigma^k = \begin{pmatrix} \cos\left(\frac{2k\pi}{n}\right) & -\sin\left(\frac{2k\pi}{n}\right) \\ \sin\left(\frac{2k\pi}{n}\right) & \cos\left(\frac{2k\pi}{n}\right) \end{pmatrix}$  are distinct. If  $\sigma^i\tau = \sigma^j\tau$  then  $\sigma^i = \sigma^j$  then i = j.

## 5 Alternating and Abelian Groups

**Definition 5.1** (Symmetric Functions). Let  $f(x_1, \ldots, x_n)$  be a function of n variables. Let  $\sigma \in S_n$ . We define function  $(\sigma f)(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ . We say that f is symmetric if  $\sigma f = f$  for all  $\sigma \in S_n$ .

**Example 5.2.** Suppose  $f(x_1, x_2, x_3) = x_1^3 x_2^2 x_3$  and  $\sigma = (12)$  then  $\sigma f(x_1, x_2, x_3) = x_2^3, x_1^2 x_3$ . Not symmetric because  $x_1^3 x_2^2 x_3 \neq x_2^3 x_1^2 x_3$ . But  $f(x_1, x_2) = x_1^2 x_2^2$  is symmetric in two variables.

**Definition 5.3** (Difference Product). The difference product in (n variables) is

$$\Delta(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j).$$

**Lemma 5.4.** Let  $f(x_1, \ldots, x_n)$  be a function in n variables. Let  $\sigma, \tau \in S_n$ , then  $(\sigma \tau) \cdot f = \sigma \cdot (\tau f)$ .

Proof.

$$(\sigma \cdot (\tau f))(x_1, \dots, x_n) = (\tau f)(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$
 (by definition)  

$$= f(y_{\tau(1)}, \dots, y_{\tau(n)})$$
 (where  $y_i = x_{\sigma}(i)$ )  

$$= f(x_{\sigma(\tau(1))}, \dots, x_{\sigma(\tau(n))})$$
  

$$= f(x_{(\sigma\tau)(1)}, \dots, x_{(\sigma\tau)(n)})$$
  

$$= ((\sigma\tau) \cdot f)(x_1, \dots, x_n).$$

Note, the second and third step follows because  $x_{\sigma(1)}$  is not necessarily  $x_1$ , so  $\tau$  is applied to  $x_1$  first, then  $\sigma$  can be applied.

**Proposition - Definition 5.5.** For  $\sigma \in S_n$  write  $\sigma = \tau_1 \tau_2 \dots \tau_m$  where  $\tau_i$  are transpositions. Then

$$\sigma \cdot \Delta = \begin{cases} \Delta & \text{if } m \text{ even (call } \sigma \text{ an even permutation)} \\ -\Delta & \text{if } m \text{ odd (call } \sigma \text{ an odd permutation)} \end{cases}$$

**Proof.** Sufficent to prove for a single transposition (i.e. m=1) because by the above Lemma,

$$\sigma\Delta = \tau_1(\tau_2 \dots (\tau_{m-1}(\tau_m \Delta)) \dots) = \tau_1((-1)^{m-1}\Delta) = (-1)^m \Delta.$$

Let's assume  $\sigma = (ij), i < j$ . There are 3 cases:

- i)  $x_i x_j \implies x_j x_i$  (factor of -1).
- ii)  $x_r x_s$  where i, j, r, s all distinct  $\implies x_r x_s$  (factor of +1).
- iii)  $x_r x_s$  where one of r, s is equal to i or j. There are several subcases:
  - (a) r < i < j:  $x_r x_i \implies x_r x_j$  but also  $x_r x_j \implies x_r x_i$ , no change (factor of +1).

- (b) i < r < j:  $(x_i x_r)(x_r x_j) \implies (x_j x_r)(x_r x_i)$  (factor of +1).
- (c) i < j < r: similar to (a) (factor of +1).

So only change in i). Multiplying the three cases together yields  $\sigma \cdot \Delta = -\Delta$ .

Corollary - Definition 5.6 (Alternating Group). The alternating group (on n symbols) is

$$A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}.$$

This is a subgroup of  $S_n$ . Also  $A_n$  is generated by  $\{\tau_1\tau_2:\tau_1,\tau_2\text{ are transposition}\}.$ 

**Example 5.7.** 
$$A_3 = \{1, (123), (132)\}, S_3 \setminus A_3 = \{(12), (13), (23)\}, |A_n| = n!/2$$
 except for  $n = 1, A_1 = S_1 = \{1\}.$ 

**Definition 5.8** (Abelian Group). A group G is abelian if any two elements commute.

In abelian groups, often switch to additive notation:

- i) product  $gh \implies g+h$
- ii) identity  $1 \implies 0$
- iii) power  $g^n \implies ng$
- iv) inverse  $g^-1 \implies -g$

This notation follows from  $\mathbb{Z}$  endowed with addition which forms an abelian group.

## 6 Cosets and Lagrange's Theorem

Let  $H \leq G$  be a subgroup. This will apply to all statements in this section unless mentioned otherwise.

**Definition 6.1** (Coset). A left coset of H in G is a set of the form  $gH = \{gh : h \in H\} \subseteq G$  for some  $g \in G$ . The set of left cosets is denoted by G/H.

**Example 6.2.** Let  $H = A_n \leq S_n = G$  for  $n \geq 2$ . Let  $\tau$  be any transposition. We claim that  $\tau A_n = \{\text{odd permutations}\}.$ 

- $\subseteq$ :  $\tau A_n = \{\tau \sigma : \sigma \text{ even}\}$ , they are all odd.
- $\supseteq$ : Suppose  $\sigma$  is odd, then  $\sigma = \tau \cdot (\tau^{-1}\sigma) \in \tau A_n$ .

**Theorem 6.3.** Define a relation on  $G: g \equiv g'$  if and only if  $g \in g'H$ . Then  $\equiv$  is an equivalence relation, the equivalence classes are the left cosets. Therefore  $G = \bigcup_{i \in I} g_i H$  (disjoint union).

#### Proof.

- i) Reflexive. i.e.  $g \in gH$  for all  $g \in G$ . True because  $1 \in H$ .
- ii) Symmetry. Suppose  $g \in g'H$ , need to prove  $g' \in gH$ . Since  $g \in g'H$  we have g = g'H for some  $h \in H$ .  $g' = gh^{-1}$  so  $g' \in gH$  (as  $h^{-1} \in H$ ).
- iii) Transitivity. Suppose  $g \in g'H$  and  $g' \in g''H$ . Then g = g'h and g' = g''h' for  $h, h' \in H$ .

Therefore  $g = (g''h)h = g''(h'h) \in g''H$  from associativity and  $h'h \in H$ .

Thus  $\equiv$  is an equivalence relation and G is a disjoint union of equivalence classes.

Note 1H = H is always a coset of G and the coset containing  $g \in G$  is gH.

**Example 6.4.** 
$$H = A_n \leq S_n = G$$
 cosets are exactly  $S_n$  and  $\tau S_n$  where  $S_n = A_n \dot{\bigcup} \tau A_n$ .

**Definition 6.5** (Index). The index of H in G is the number of left cosets, i.e. |G/H|. Denoted by [G:H].

**Lemma 6.6.** Let  $g \in G$ . Then H and gH have the same cardinality.

**Proof.** Bijection,  $H \to gH, h \mapsto gh$ . Surjective and injective (multiply on left by  $g^{-1}$ ).

**Theorem 6.7** (Lagrange's Theorem). Assume G finite. Then |G| = |H|[G:H] i.e. |G/H| = |G|/|H|.

**Proof.** Using Lemma 6.6, we have:

$$G = \bigcup_{i=1}^{[G:H]} g_i H$$
 (disjoint union)  $\Longrightarrow |G| = \sum_{i=1}^{[G:H]} |g_i H| = \sum_{i=1}^{[G:H]} |H| = [G:H]|H|$ .

**Example 6.8.** 
$$A_n \leq S_n$$
.  $[S_n : A_n] = 2 \implies |S_n| = 2|A_n| \implies n! = 2 * n!/2$ .

All above statements hold for right cosets which have form  $Hg = \{hg : h \in H\}$  denoted  $H \setminus G$ . The number of left cosets are equal the number of right cosets.

## 7 Normal Subgroups and Quotient Groups

Let G = group and  $J, K \subseteq G$ . Define the subset product  $JK = \{jk : j \in J, k \in K\}$ .

**Proposition 7.1.** Let G = group.

- i) If  $J' \subseteq J \subseteq G$  and  $K \subseteq G$  then  $KJ' \subseteq KJ$ .
- ii) If  $H \leq G$ , then  $HH = H(= H^2)$ .
- iii) For  $J,K,L\subseteq G$  then  $(JK)L=J(KL)=\{jkl:j\in J,k\in K,\ell\in L\}$

**Proposition - Definition 7.2** (Normal Subgroup). Let  $N \leq G$ . We say N is a normal subgroup of G and write  $N \subseteq G$  if any of the following equivalent conditions hold:

- i) gN = Ng for all  $g \in G$ .
- ii)  $g^{-1}Ng = N$  for all  $g \in G$ .
- iii)  $g^{-1}Ng \subseteq N$  for all  $g \in G$

**Proof.** (i)  $\iff$  (ii), multiply both sides on the left by  $g^{-1}$ . (ii)  $\implies$  (iii) by definition. (iii)  $\implies$  (ii), assume  $g^{-1}Ng\subseteq N$  for all  $g\in G$ , apply this with  $g^{-1}:(g^{-1})Ng^{-1}\subseteq N\implies N\subseteq g^{-1}Ng$ . Therefore  $g^{-1}Ng=N$ .

**Theorem - Definition 7.3** (Quotient Group). Let  $N \subseteq G$ . Then subset product is a well-defined multiplication map on G/N which makes G/N into a group, called the quotient group. Also:

- i) (gN)(g'N) = (gg')N
- ii)  $1_{G/N} = N$
- iii)  $(qN)^{-1} = q^{-1}N$ .

**Proof.** Why is this well-defined? Why is the product of 2 cosets another coset?

Take cosets  $gN = \{g\}N$  and g'N. Calculate

$$(gN)(g'N) = g(Ng')N$$
 (associative)  
 $= g(g'N)N$   $(N \le G)$   
 $= (gg')(NN)$  (associative)  
 $= gg'N$   $(N^2 = N)$ 

This is a coset. Also proves (i). For (ii),  $(gN)N = g(NN) = gN \implies N(gN) = (Ng)N = (gN)N = gN$ , N is an identity. For (iii),  $(g^{-1}N)(gN) = g^{-1}(Ng)N = g^{-1}(gN)N = (g^{-1}g)(NN) = 1 \cdot N = N$ .

## 8 Group Homomorphisms

**Definition 8.1** (Homomorphism). Given groups G, H. A function  $\phi : H \to G$  is a homomorphism of groups if  $\phi(hh') = \phi(h)\phi(h')$  for all  $h, h' \in H$ .

**Proposition - Definition 8.2** (Isomorphisms and Automorphisms). Let  $\phi: H \to G$  be a group homomorphism. The following are equivalent:

- There exists a group homomorphism,  $\psi: G \to H$  such that  $\psi \phi = \mathrm{id}_H$  and  $= \phi \psi = \mathrm{id}_G$
- $\phi$  is bijective.

We call  $\phi$  is a group isomorphism. If H = G,  $\phi$  is an automorphism.

**Proposition 8.3.** If  $\phi: H \to G, \psi: K \to H$  are group homomorphism then  $\phi \cdot \psi: K \to G$  is a homomorphism.

**Proof.** 
$$(\phi \cdot \psi)(kk') = \phi(\psi(kk')) = \phi(\psi(k)\psi(k')) = \phi(\psi(k))\phi(\psi(k'))$$

**Proposition 8.4.** Let  $\phi: H \to G$  be a group homomorphism.

- i)  $\phi(1_H) = 1_G$ .
- ii)  $\phi(h^{-1}) = \phi(h)^{-1}$  for all  $h \in H$ .
- iii) if  $H' \leq H$  then  $\phi(H') \leq G$ .

**Proposition - Definition 8.5.** Let G be a group with  $g \in G$ . Conjugation by g is the map  $C_g : G \to G$ ;  $h \mapsto ghg^{-1}$ . Then  $C_g$  is an automorphism with inverse  $C_{g^{-1}}$ .

**Proof.**  $C_g$  is a homomorphism:  $C_g(h_1h_2) = C_g(h_1)C_g(h_2)$ . Check:  $C_g(h_1h_2) = gh_1h_2g^{-1} = gh_1g^{-1}gh_2g^{-1} = C_g(h_1)C_g(h_2)$ . Now check  $C_{g^{-1}}$  is an inverse.  $C_{g^{-1}}(C_g(h)) = C_{g^{-1}}(ghg^{-1}) = g^{-1}ghg^{-1}g = h$ . Similarly  $C_g(C_{g^{-1}})(h) = h$ , therefore  $(C_g)^{-1} = C_{g^{-1}}$ .

Corollary - Definition 8.6. For  $H \leq G$ , a conjugate of H (in G) is a subgroup of G of the form  $gHg^{-1} := c_g(H)$ .