Maximize Array

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 megabytes

You are given a sequence of positive integers $A = (A_1, A_2, \dots, A_N)$ of length N and a positive integer K. Find the lexicographically greatest sequence that can be obtained by applying the following operation to A zero or more times:

• Delete a contiguous subsequence of length K from A. Specifically, select an integer i (where $1 \leq i \leq |A| - K + 1$, |A| is the length of A) and replace $A = (A_1, A_2, \ldots, A_{|A|})$ with $(A_1, \ldots, A_{i-1}, A_{i+K}, \ldots, A_{|A|})$.

Input

The input is given from Standard Input in the following format:

$$N K A_1 A_2 \dots A_N$$

- $2 \le N \le 3 \times 10^5$
- $1 \le K \le N 1$
- $1 \le A_i \le N$
- All input values are integers.

Output

Print the answer in a single line.

Examples

standard input	standard output
9 3	4 4 1
1 2 3 4 1 2 3 4 1	
6 1	6 5
1 6 4 2 3 5	
6 5	6 5 4 3 2 1
6 5 4 3 2 1	

Note

In the first example, the following is one possible sequence of operations that obtains a lexicographically greatest sequence.

•
$$(1,2,3,4,1,2,3,4,1) \rightarrow (1,2,3,4,4,1) \rightarrow (4,4,1)$$