5

10

15

20

25

3

aspect of the present invention, the tension band includes a plurality of tension adjusting features being positioned at locations around the band aft of the inside blend radius.

Brief Description of the Drawings

The invention will now be described by way of example with reference to the accompanying Figures of which:

Figure 1 shows a perspective view of a CRT having an implosion prevention tension band.

Figure 2 is a cross sectional view of the CRT taken along the line 2-2 of Figure 1.

Figure 3 is a partial perspective view of a corner of a second alternate implosion prevention tension band applied on a CRT.

Figure 4 is a cross sectional view taken along the line 4-4 of Figure 3.

Figure 5 is a partial perspective view of a corner of a third alternate implosion prevention tension band applied on a CRT.

Figure 6 is a cross sectional view taken along the line 6-6 of Figure 5

Figure 7 is a partial perspective view of a corner of a fourth alternate implosion prevention tension band applied on a CRT.

Figure 8 is a cross sectional view taken along the line 8-8 of Figure 7

Figure 9 is a cross sectional view taken along the line 9-9 of Figure 7.

Figure 10 is a partial perspective view of a corner of a fifth alternate implosion prevention tension band applied on a CRT.

Figure 11 is a cross sectional view taken along the line 11-11 of Figure 10.

Detailed Description of the Invention

As best shown in Figures 1 and 2, a CRT 10 is surrounded by an implosion prevention tension band 16 having a plurality of mounting lugs 14 usually positioned in the corners 36. The CRT 10 consists of an evacuated envelope 28 including a faceplate panel 18 connected to a tubular neck 20 by a funnel 25. The funnel 25 has an internal conductive coating (not shown) that extends from an anode button 27 toward the faceplate panel 18. The faceplate panel 18 comprises a substantially flat