Aufgabe 1 Berechnen Sie jeweils das totale Differential df von f.

a)
$$f(x,y) = \sin(x^2 + 2y)$$

b)
$$f(x,y) = 3x^2 + 4xy - 2y^2$$
 c) $f(x,y) = \frac{xy}{y-x}$

c)
$$f(x,y) = \frac{xy}{y-x}$$

d)
$$f(x, y, z) = x^2 \ln y + \ln x + y^2 \ln z$$
 e) $f(x, y, z) = xe^{yz}$ f) $f(x, y, z) = xy^2 z^3$

$$e) f(x,y,z) = xe^{y}$$

f)
$$f(x, y, z) = xy^2z^3$$

Aufgabe 2 Handelt es sich bei den folgenden Ausdrücken jeweils um das totale Differential einer Funktion f der Variablen x und y? Falls ja: Wie lautet f?

a)
$$x^2ydx + x^2ydy$$

a)
$$x^2ydx + x^2ydy$$
 b) $(ye^x + 2xy)dx + (e^x + x^2 + y^4)dy$ c) $dx + dy$

c)
$$dx + dx$$

Aufgabe 3 Linearisieren Sie jeweils die Funktion f an der Stelle a.

a)
$$f(x, y, z) = e^x + 2e^y + 3e^z$$
, $\mathbf{a} = (1, 1, 1)$

b)
$$f(x,y) = 5\frac{y^2}{x}$$
, $\mathbf{a} = (1,2)$

c)
$$f(x_1, x_2, x_3, x_4) = (x_1^2 + x_2)\sin x_2 + x_3x_4 + \frac{1}{2\pi}\sin(2\pi x_4)$$
, $\mathbf{a} = (-1, \frac{\pi}{2}, -2, 1)$

Aufgabe 4 Wenden Sie die Regel für die lineare Fehlerfortpflanzung an.

- a) Zur Berechnung eines elektrischen Widerstandes R = U/I werden die Stromstärke $I = (10 \pm 0.5)A$ und die Spannung $U=(80\pm2)V$ gemessen. Wie groß sind Näherungswert und Messunsicherheit von R?
- b) Zur Berechnung der Schwingungsdauer $T=2\pi\sqrt{LC}$ eines ungedämpften elektromagnetischen Schwingkreises werden die Kapazität $C=(32\pm 2)\mu F$ und die Induktivität $L=(0,5\pm 0,1)H$ gemessen. Wie groß sind Näherungswert und Messunsicherheit von T?

Aufgabe 5 Verwenden Sie die Kettenregel, um die Funktion F mit F(t) = f(x(t), y(t)) nach t zu differenzieren.

a)
$$f(x,y) = xy - y$$
, $x(t) = 1 - \sin t$, $y(t) = t - \cos t$

b)
$$f(x,y) = \tan(xy)$$
, $x(t) = 2t - 3$, $y(t) = 4t + 6$

Aufgabe 6 Für die Koordinaten x, y und z eines punktförmigen Teilchens im dreidimensionalen Raum als Funktionen der Zeit gelte $x(t) = 7\cos t$, $y(t) = 7\sin t$ und z(t) = 3t, d.h. das Teilchen bewege sich entlang einer Schraubenlinie. Ermitteln Sie auf zwei unterschiedliche Arten den Zeitpunkt t, zu dem der Abstand des Teilchens zum Ursprung des Koordinatensystems minimal ist.

Aufgabe 7 Die reellwertige Funktion f einer Variable sei implizit durch die Gleichung g(x, f(x)) = 0definiert, wobei $g(x,y) = y^2 - 16x^2y - 17x^3$. Es gelte f > 0. Berechnen Sie f'(1).

Aufgabe 8 Beweisen Sie die folgende Produktregel für Gradienten, wobei f und g auf \mathbb{R}^n definierte, reellwertige und total differenzierbare Funktionen seien:

$$\operatorname{grad}(fg) = \operatorname{grad} f \cdot g + f \cdot \operatorname{grad} g.$$

Aufgabe 9

- a) Berechnen Sie grad $f(\mathbf{a})$ und $|\operatorname{grad} f(\mathbf{a})|$ für $f(x,y) = x + y^2$ und $\mathbf{a} = (3,1)$.
- b) Berechnen Sie grad f(x,y) und $|\operatorname{grad} f(x,y)|$ für $f(x,y) = y^2 \tan(xy)$.
- c) Berechnen Sie grad f(x, y, z) und $|\operatorname{grad} f(x, y, z)|$ für $f(x, y, z) = xz\sin(y) + ye^{xy}$.