

martedì 31 maggio 2022

12.55

Supponiamo avere algoritmo ricorsivo:

$$T(n) = \begin{cases} 6 \to n = 1 \\ 8 + t(n+1) \to n > 1 \end{cases}$$

Nota:

$$8 + T(n-1) = 8 + [8 + t(n-2)] = 2 * 8 + t(n-1) =$$

$$2 * 8 * [8 + t(n-3)] = 3 * 8 + t(n-3) = 4 * 8 + t(n-4)$$

Quindi è possibile generalizzare a passo K se vediamo un pattern

$$K_n = K * 8 + T(n - K)$$

Supponiamo K=n-1

$$(n-1)8 + Tn(-(n-1)) + (n-1)8 + 6$$

Facendo così è sparita la ricorrenza t(n+1)Ed essendo sparita è possibile scrivere limite asintotico: $\theta(n)$

$$T(n) = \left\{ 2t \left(\frac{n}{2} \right) n \to n > 1 \right\}$$

				n		1	И	n			N
				$\frac{n}{2}$				$\frac{\pi}{2}$			N
		n				n	n		n		'`
		4				4	4		4		N
\rightarrow	$\frac{n}{2^k}$	$\rightarrow r$	ı =	2^h	\rightarrow	h =	log 1	ı			
	Z۲										N

Albero è profondo $\log_2 n$ che moltiplica ogni livello, quindi $T(n) = \theta(n \log n)$