

Universidad Politécnica de Madrid Instituto Universitario de Microgravedad "Ignacio Da Riva" Máster Universitario en Sistemas Espaciales

Caso de Estudio 2

Modelización térmica del Telescope Assembly de la misión ARIEL mediante ESATAN-TMS

Zatón Miguel, Javier javier.zmiguel@alumnos.upm.es

26 de diciembre de 2023

Índice

1.	Esta	ado del Arte	1
	1.1.	Misión	1
2.	Dise	eño térmico y Modelo	1
	2.1.	Estructura y diseño térmico	1
	2.2.	Refrigeración Pasiva	1
	2.3.	Refrigeración Activa	1
	2.4.	GMM y TMM	1
	2.5.	Lista de nodos (3.3)	1
	2.6.	Casos de análisis	1
3.	Dise	eño de interfaz Hinge con TOB y M1	1
	3.1.	Refinado de Mallado	1
		3.1.1. Malla 1	1
		3.1.2. Malla 2	1
		3.1.3. Malla 3	2
		3.1.4. Malla 4	2
		3.1.5. Resultados	2
	3.2.	Efecto de valores h c en Delta T I/F \hdots	2
		3.2.1. Malla 1-Gruesa	2
		3.2.2. Malla 4-Fina	2
		3.2.3. Resultados	2
	2 2	Conclusiones	า

Índice de figuras CE2

Índice de figuras

Índice de tablas CE2

Índice de tablas

Índice de tablas CE2

1 Estado del Arte

PRUEBA

JEJEJEJJE

1.1 Misión

- 2 Diseño térmico y Modelo
- 2.1 Estructura y diseño térmico
- 2.2 Refrigeración Pasiva
- 2.3 Refrigeración Activa
- $2.4~\mathrm{GMM}~\mathrm{y}~\mathrm{TMM}$
- 2.5 Lista de nodos (3.3)
- 2.6 Casos de análisis
- 3 Diseño de interfaz Hinge con TOB y M1

3.1 Refinado de Mallado

Explicar el objetivo del estudio de sensibilidad y el problema de los tornillos y la IF (REQUISITO DE UNION??)

3.1.1 Malla 1

Meter foto de la malla (Paint) Explicar lo del rango de nodos del M1 ribs y la malla del punto de partida

3.1.2 Malla 2

Foto de la malla (Paint) Cambios respecto a la malla 1

3.1.3 Malla 3

Repetir

3.1.4 Malla 4

Foto de la malla (Final) Cambios y problema de las label ->Solución de cambiar label de geometria Meter una labla con estructura de label??

3.1.5 Resultados

Meter tabla y gráficas del Delta T, para comparar mejor meter tabla con los puntos maximos.

3.2 Efecto de valores hc en DeltaT I/F

Explicar que se hace este otro analisis pero cambiando valor de hc, en la malla mas refinada y la original para ver el efecto combinado del cambio de mallado y hc simultaneamente.

3.2.1 Malla 1-Gruesa

Meter los 4 casos

3.2.2 Malla 4-Fina

 $Meter \ los \ 4 \ casos$

3.2.3 Resultados

Comparar y explicar que el efecto de la malla es menor que el cambio de hc

3.3 Conclusiones

Resumen final de ambos analisis