Модуль #4 Электронные таблицы

• В данном модуле изучим задания КЕГЭ #3, #9 и #18, содержащие такие понятия: кодирование и декодирование, передача информации, а также объём информации

Задание #3

Поиск в реляционных базах данных.

Реляционная база данных — это совокупность таблиц, которые связываются между собой (между которыми устанавливаются отношения). Связь создается с помощью числовых кодов (ключевых полей).

В задании 3 КЕГЭ, как правило, даётся 3 таблицы, среди которых можно выделить главную, которая связана со всеми остальными. Именно по этой таблице будет необходимо отвечать на вопрос задачи.

С помощью инструмента фильтр можно увидеть только те строки таблицы, в которых присутствует определённое значение в заданном столбце.

Необходимо выделить заголовок таблицы, которую вы хотите отсортировать, и активировать фильтр, нажав на иконку воронки.

Допустим, по условию задачи нас интересуют магазины только Октябрьского района.

Отфильтруем магазины, поставив галочку только рядом с нужным районом.

	А	В	С
1	ID магазиг 🔻	Район	Адрес
2	M1	Октябрьский	просп. Мира, 45
3	M2	Первомайский	ул. Металлургов, 12
4	M3	Заречный	Колхозная, 11
5	M4	Первомайский	Заводская, 22
6	M5	Октябрьский	ул. Гагарина, 17
7	M6	Октябрьский	просп. Мира, 10
8	M7	Первомайский	Заводская, 3
9	M8	Первомайский	ул. Сталеваров, 14
10	M9	Заречный	Прибрежная, 7
11	M10	Октябрьский	пл. Революции, 1
12	M11	Заречный	Луговая, 21
13	M12	Первомайский	Мартеновская, 2
14	M13	Первомайский	Мартеновская, 36
15	M14	Заречный	Элеваторная, 15
16	M15	Октябрьский	Пушкинская, 8
17	M16	Первомайский	ул. Металлургов. 29

Необходимо внимательно читать задание, а именно его последнюю часть:

Используя информацию из приведённой базы данных, определите общий вес (в кг) крахмала картофельного, поступившего в магазины Заречного района за период с 1 по 8 июня включительно. В ответе запишите только число.

Алгоритм решения будет следующим:

- 1. Находим артикул крахмала в таблице «Товар».
- 2. Находим ID всех магазинов Заречного района в таблице «Магазин».
- 3. В главной таблице «Движение товаров» выбираем только поступление товара, применяем необходимый артикул товара из пункта 1 и ID магазинов из пункта 2. Ставим фильтр по дате.
- 4. Ответом будет являться произведение суммы поступивших пачек крахмала на вес одной пачки в кг (вес смотрим в таблице «Товар»).

Функция ВПР (Vlookup, или вертикальный просмотр) — поисковая функция, она находит значения в одной таблице и переносит их в другую.

Функция ВПР нужна, чтобы работать с большими объёмами данных— не нужно самостоятельно сопоставлять и переносить сотни наименований, функция делает это автоматически: просматривает выбранный диапазон первой таблицы вертикально сверху вниз до искомого значения—идентификатора. Когда видит его, забирает значение напротив него из нужного столбца и копирует во вторую таблицу.

Задание #9

Обработка числовой информации в базах данных.

Функция ЕСЛИ позволяет выполнять логические сравнения значений и ожидаемых результатов. Поэтому у функции ЕСЛИ возможны два результата. Всего функция принимает три аргумента:

- 1. Логическое выражение
- 2. Возвращаемый результат, если выражение истинно
- 3. Возвращаемый результат, если выражение ложно

=ЕСЛИ(логическое выражение; [результат, если выражение истинно]; [результат, если выражение ложно])

Написание формул в электронных таблицах сильно напоминает написание программ. Например, во многих формулах, где требуется условие в качестве аргумента выступает логическое выражение. В таких случаях полезно применять логические формулы:

- Функция И возвращает истину тогда, когда выполняются все её аргументы
- Функция ИЛИ возвращает истину тогда, когда выполняется хотя бы один её аргумент

C1 .		▼ (n	$f_{x} = N(A1 = 1; B1 = 1)$	
	А		В	С
1		1	1	ИСТИНА
2		1	0	ЛОЖЬ
3		0	1	ЛОЖЬ
4		0	0	ЛОЖЬ

	C1 ▼	- f _x :	<i>f</i> _ж =ИЛИ(А1=1;В1=1)		
	А	В		С	
1	1	-	1	ИСТИНА	
2	1	(O	ИСТИНА	
3	0	1	1	ИСТИНА	
4	0	(О	ЛОЖЬ	

Таблица истинности функции И

Таблица истинности функции ИЛИ

Функция СЧЁТЕСЛИ используется для подсчета ячеек в пределах заданного диапазона, которые соответствуют определенному критерию или условию.

Например, используя функцию СЧЁТЕСЛИ, можно узнать, сколько ячеек содержит число равное указанному числу.

Всего у функции два аргумента:

- 1. Диапазон подсчёта
- 2. Критерий подсчёта (можно указать какое-то число или ячейку и будет подсчитано число ячеек диапазона, равных указанной)

=СЧЁТЕСЛИ(диапазон; критерий)

Функция СЧЁТЕСЛИ позволяет узнать, сколько раз в строке встречается число 7

		E1 ▼	$f_x = 0$	ЧЁТЕСЛИ(А1:D1;	7)	
		А	В	С	D	Е
1	1	7	13	1	7	2

Функция СУММЕСЛИ используется для нахождения суммы ячеек в пределах заданного диапазона, которые соответствуют в своём диапазоне определенному критерию или условию.

Всего у функции три аргумента:

- 1. Диапазон проверки условия
- 2. Критерий суммирования (можно указать какое-то число или ячейку и будет подсчитано число ячеек диапазона, равных указанной)
- 3. Диапазон суммирования (необязательный аргумент, если его не указать, то будут суммироваться ячейки диапазона из пункта 1)

=СУММЕСЛИ(диапазон; критерий; [диапазон суммирования])

Задание #18

Динамическое программирование в электронных таблицах.

Динамическое программирование

Динамическое программирование — способ решения сложных задач путём разбиения их на более простые подзадачи, сложность которых меньше исходной Чтобы решить поставленную задачу, требуется решить подзадачи, после чего объединить решения подзадач в одно общее решение.

В данном задании необходимо рассматривать перемещения робота пошагово.

Пример задания

18

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

Решим задачу для случая минимальной суммы. Каждый раз есть два варианта хода: вправо или вниз. Для того, чтобы набрать наименьшую сумму необходимо при каждом ходе выбирать клетку с наименьшим числом:

Пример входных данных:

1	8	8 8			
10	1	1	3		
1	3	12	2		
2	3	5	6		

Для указанных входных данных ответом должна быть пара чисел

41 22

Ход решения

Создаём вспомогательную таблицу такого же размера. Для каждой ячейки будем динамически высчитывать максимальную/минимальную сумму, которую будет иметь робот, находясь в ней. То есть для каждой клетки необходимо рассматривать клетки, из которых можно в неё попасть.

Значение клетки берём из исходной таблицы, а сумму в предыдущей клетке из вспомогательной