Prolégomènes

Dans tout le texte n désigne un entier naturel strictement positif, \mathbb{R} le corps des nombres réels et \mathbb{R}^n l'espace vectoriel euclidien canonique de dimension n. \mathbb{R}^n est également canoniquement muni d'une structure d'espace affine. On choisit pour origine, notée O, le vecteur nul de l'espace vectoriel.

On note $\langle x, y \rangle$ le produit scalaire de deux vecteurs x et y de \mathbb{R}^n et ||x|| la norme euclidienne de x.

On note $GL_n(\mathbb{R})$ le groupe des matrices carrées de dimension n inversibles et on note $\det(A)$ le déterminant de la matrice carrée A. Si E est une partie de \mathbb{R}^n et A un matrice dans $GL_n(\mathbb{R})$, on note A(E) l'image de E par l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

Si E est une partie de \mathbb{R}^n , on appelle figure polaire de E, notée E^* , la partie de \mathbb{R}^n formée des points y tels que $\langle x, y \rangle$ est inférieur à 1 pour tout x dans E:

$$E^* = \{ y \in \mathbb{R}^n | \forall x \in E, \ \langle x, y \rangle \le 1 \}.$$

On rappelle qu'une partie de \mathbb{R}^n est convexe si, pour tout couple (A, B) de ses points, elle contient le segment [A, B]. Une fonction f d'une partie E de \mathbb{R}^n à valeurs dans \mathbb{R} est dite convexe si E est convexe et si

$$\forall (x,y) \in E^2, \ \forall \lambda \in [0,1], f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

(i.e le graphe de f est sous ses cordes). On dit que f est strictement convexe si elle est convexe et si l'inégalité précédente n'est une égalité que si x=y ou $\lambda \in \{0,1\}$. Enfin f est (strictement) concave si -f est (strictement) convexe.

Une partie E de \mathbb{R}^n est dite O-symétrique si elle est globalement invariante par la symétrie centrale affine de centre O. Si λ est un scalaire, on note λE l'image de E par l'homothétie de centre O et de rapport λ .

On dit qu'une partie E de \mathbb{R}^n est un corps convexe si elle est convexe et d'intérieur non vide. On remarquera qu'un corps convexe O-symétrique contient toujours O dans son intérieur (car si x est intérieur, il en est de même de -x par symétrie at aussi de $\left(\frac{x+(-x)}{2}\right)$ par convexité.

Enfin si E est une partie Lebesgue-mesurable de \mathbb{R}^n , on note $\operatorname{vol}(E)$ son volume.

Les deuxième et troisième parties sont indépendantes l'une de l'autre. Il est rappelé que la présentation, la rédaction et la précision sont des éléments importants d'appréciation des copies.

m01z--eb.tex - page 1

Partie I – Généralités

Soit K un corps convexe et compact de \mathbb{R}^n contenant O dans son intérieur.

Question 1

Soit K_0 et K_1 deux parties convexes de \mathbb{R}^n et θ un réel dans [0;1]; montrer que K_{θ} est convexe, où on a noté

$$K_{\theta} = (1 - \theta)K_0 + \theta K_1 = \{x \in \mathbb{R}^n | \exists (x_0, x_1) \in K_0 \times K_1, x = (1 - \theta)x_0 + \theta x_1 \}.$$

Question 2

Soit A une matrice dans $GL_n(\mathbb{R})$. Montrer que $(A(K))^* = {}^tA^{-1}(K^*)$.

Question 3

Soit x dans \mathbb{R}^n , on pose $I_x = \{\lambda \in \mathbb{R}_+ | x \in \lambda K\}$.

3.a Montrer que I_x est un intervalle fermé non majoré de \mathbb{R}_+ .

3.b On peut donc poser $j_K(x) = \inf I_x$; c'est un réel positif. Soit ∂K la frontière de K. Montrer que :

$$x \in K \iff j_K(x) \le 1 \text{ et } x \in \partial K \iff j_K(x) = 1$$

Question 3 (Étude d'exemples)

4.a Expliciter K^* , j_K et j_{K^*} dans les trois cas suivants :

- 1. K est le disque unité (euclidien de \mathbb{R}^2 ,
- 2. K est le carré $K = \{(x_1, x_2) \in \mathbb{R}^2 | -1 \le x_1, x_2 \le 1\}$,
- 3. K est un parallélogramme de centre O.

4.b Montrer que K^* est un corps convexe, compact, contenant O dans son intérieur et

$$\forall y \in \mathbb{R}^n \ j_{K^*}(y) = \max\{\langle x, y \rangle | x \in K\}.$$

4.c On suppose que K est O-symétrique. Montrer que j_K et j_{K^*} sont des normes. Que dire de (\mathbb{R}^n, j_K) et de (\mathbb{R}^n, j_{K^*}) ?

Question 5(un résultat de dualité)

On note p_K la projection sur le convexe compact K.

5.a Soit a n'appartenant pas à K et H l'hyperplan passant par $p_K(a)$ et orthogonal à la droite passant par a et $p_K(a)$. Montrer qu'il existe une équation de H de la forme

$$H = \{x \in \mathbb{R}^n | \langle x, a \rangle = 1\}$$

pour un certain vecteur u de \mathbb{R}^n , telle que $\langle a,u\rangle>1$ et , pour tout x de K, $\langle x,u\rangle\leq 1$.

5.b Montrer que $(K^*)^* = K$.

Question 6 Projection d'un convexe

Soit pr_H une projection (affine) de \mathbb{R}^n d'image l'hyperplan affine H et de direction quelconque D (une droite affine) non parallèle à H. On munit l'espace affine d'un repère (non nécessairement orthogonal) tel que H soit l'hyperplan d'équation $x_n=0$ et D la droite d'équation $x_1=x_2=\cdots=x_{n-1}=0$.

Montrer qu'il existe φ_K et φ^K des applications de $pr_H(K)$ dans \mathbb{R} respectivement convexe et concave telles que K soit l'ensemble des $x=(x_1,\dots,x_n)$ tels que (x_1,\dots,x_{n-1}) appartient à $pr_H(K)$ et

$$\varphi_K(x_1,\dots,x_{n-1}) \le x_n \le \varphi^K(x_1,\dots,x_{n-1}).$$

Partie II – Géométrie des formes quadratiques

On appelle ellipsoïde (sous-entendu centré en O) la boule unité pour une forme quadratique définie positive de \mathbb{R}^n . Il revient au même de se donner une matrice symétrique définie positive A et de considérer le sous-ensemble E(A) de \mathbb{R}^n des x tels que $\langle x, Ax \rangle \leq 1$. On note \mathcal{E} l'ensemble des ellipsoïdes. En identifiant l'ellipsoïde E(A) aux coefficients $a_{(i,j)}$ avec $i \leq j$, on considère \mathcal{E} comme une partie de $\mathbb{R}^{\frac{n(n+1)}{2}}$ et on le munit de la topologie induite.

Question 1(Ellipsoïdes et boules unités)

Soit A une matrice symétrique définie positive. Montrer qu'il existe une matrice symétrique définie positive telle que $B^2 = A^{-1}$. En déduire qu'un ellipsoïde est l'image de la boule unité (euclidienne) par une application linéaire.

Question 2 (Ellipsoïdes et convexité)

Montrer que l'application $A \mapsto (\det A)^{\frac{1}{2}}$ de l'ensemble des matrices $n \times n$ symétriques définies positives dans \mathbb{R}_+^* est strictement convexe. (On pourra songer à considérer le logarithme.)

Question 3 (Ellipsoïde maximal)

Soit K un corps convexe compact O-symétrique de \mathbb{R}^n .

- **3.a** Soit v un réel strictement positif. Montrer que l'ensemble $\mathcal{E}_{K,n}$ des ellipsoïdes de \mathbb{R}^n ayant un volume supérieur à v et inclus dans K est une partie compacte de \mathcal{E} .
- **3.b** En déduire qu'il existe un unique ellipsoïde E_K de \mathbb{R}^n inclus dans K de volume maximal pour cette propriété.

Question 4 (Formes quadratiques et corps convexes)

4.a Soit K un corps convexe compact O-symétrique de \mathbb{R}^n . On note Is_K le groupe des automorphismes linéaires u de \mathbb{R}^n tels que u(K) = K. Montrer qu'il existe une forme quadratique q_K définie positive invariante par Is_K , i.e,

$$\forall u \in Is_K, \forall x \in \mathbb{R}^n \quad q_K(u(x)) = q_K(x).$$

4.b Donner E_K et une forme q_K possible dans chacun des exemples de **I.4.a**.

Partie III – Théorème de Brunn-Minkowski

Soit K_0 et K_1 deux parties compactes de \mathbb{R}^n non nécessairement convexes. On note

$$K_0 + K_1 = \{x \in \mathbb{R}^n | \exists (k_0, k_1) \in K_0 \times K_1, x = k_0 + k_1 \}.$$

Le but de cette partie est de démontrer l'inégalité suivante (théorème de Bruun-Minkowski) :

$$vol(K_O)^{\frac{1}{n}} + vol(K_1)^{\frac{1}{n}} \le vol(K_O + K_1)^{\frac{1}{n}} \tag{1}$$

On admettra pour la suite la précision suivante. L'égalité ne se produit que dans les cas suivants : soit $vol(K_0) = vol(K_1) = 0$, soit l'un des compacts est réduit à un point, soit K_0 et K_1 sont images l'un de l'autre par une homothétie affine ou une translation.

Question 1

Si $a = (a_1, \dots, a_n)$ et $b = (b_1, \dots, b_n)$ sont deux n-uplets de réels, on note P(a, b) le parallélépipède rectangle donné par

$$P(a,b) = \{(x_1, \dots, x_n) \in \mathbb{R}^n | \forall i \in [1, n] | a_i < x_i < b_i \}.$$

On appelle standard un parallélépipède qui est de cette forme et d'intérieur non vide.

On suppose que K_0 et K_1 sont chacun réunions finies de parallélépipèdes standard d'intérieurs disjoints :

$$K_0 = \bigcup_{i=1}^{n_0} P(a^{(i)}, b^{(i)}) \quad K_1 = \bigcup_{i=1}^{n_1} P(c^{(i)}, d^{(i)})$$

On va montrer par récurrence sur $n_0 + n_1$ que l'inégalité (1) est valable pour K_0 et K_1 .

- **1.a** Établir l'égalité (1) dans le cas où K_0 et K_1 sont des parallélépipèdes standard (i.e $n_0 = n_1 = 1$) en précisant le cas d'égalité (on pourra commencer par diviser par $vol(K_0 + K_1)^{\frac{1}{n}}$).
- **1.b** Pour n_0 et n_1 quelconques avec n_0 entier supérieur ou égal à 2, trouver une entier k compris entre 1 et n ainsi que deux réels t et u de sorte que chacun des demi-espaces $x_k \geq t$ et $x_k \leq t$ contienne l'un des parallélépipèdes constituant K_0 et que l'hyperplan $x_k = u$ partage K_1 suivant les mêmes proportions que ne la fait $x_k = t$ pour K_0 :

$$\frac{vol(K_0 \cap \{x_k \le t\})}{vol(K_0 \cap \{x_k \ge t\})} = \frac{vol(K_1 \cap \{x_k \le u\})}{vol(K_1 \cap \{x_k \ge u\})}$$

1.c Établir l'inégalité (1) dans le cas où K_0 et K_1 sont des réunions finies de parallélépipèdes standards d'intérieurs disjoints.

Question 2

En déduire le théorème de Bruun-Minkowski.

Partie IV – Étude de la quantité
$$vol(K)vol(K^*)$$

Soit K un corps convexe compact O-symétrique et E_K l'ellipsoïde de volume maximal inclus dans K (cf partie \mathbf{II}).

Question $1(Minoration \ de \ vol(K)vol(k^*))$

1.aOn suppose que ici E_K est la boule unité (euclidienne) de \mathbb{R}^n , notée B_n . soit x un réel. Montrer que si le point de coordonnées $(x,0,\cdots,0)$ appartient à K alors $|x| \leq \sqrt{n}$.

1.bOn se place dans le cas général où E_K est quelconque. Montrer que $E_K \subset K \subset \sqrt{n}E_K$ et

$$vol(K)vol(K^*) \ge n^{-\frac{n}{2}}vol(B_n)^2.$$

question 2(Étude du cas maximal)

On suppose ici que K maximalise la quantité $vol(K)vol(K^*)$ parmi les corps convexes compacts O-symétriques.

Soit H un hyperplan vectoriel de \mathbb{R}^n . La décomposition orthogonale $\mathbb{R}^n = H \bigoplus H^{\perp}$ et le choix d'une base de H^{\perp} permet d'identifier les points de \mathbb{R}^n à des couples (x,t) avec x dans H et t dans \mathbb{R} . On note, pour t réel,

$$K_t = \{x \in H | (x, t) \in K\}$$

L'ensemble I des réels t tels que K_t est non vide est donc un intervalle symétrique, d'intérieur non vide et compact de \mathbb{R} (ces faits n'ont pas à être démontrés). **2.a** Soit ξ dans H, on note φ_{ξ}^{K} la fonction convexe de I dans \mathbb{R}

$$\varphi_{\xi}^{K}(t) = 1 - \sup_{x \in K_{t}} \langle \xi, x \rangle.$$

Montrer qu'un couple (ξ, λ) de $H \times \mathbb{R}$ appartient à K^* si et seulement si

$$\xi \in (K_0)^*$$
 et $-\inf_{t>0} \frac{\varphi_{\xi}^K(-t)}{t} \le \lambda \le \inf_{t>0} \frac{\varphi_{\xi}^K(t)}{t}$

On définit un ensemble K' ainsi : (x,t) appartient à K' si et seulement si t et x appartiennent respectivement à I et à $\frac{1}{2}(K_t+K_{-t})$ (ce qui est la même chose que $\frac{1}{2}(K_t-K_t)$). Autrement dit x est le milieu d'un point de K_t et d'un point de $K_{-t}=-K_t$. Remarquons que K_t et K_{-t} sont convexes ou vides et que K' est un corps convexe compact et K_t -symétrique. (On ne demande pas de démontrer ces faits.)

2.b Montrer que K' a un plus grand volume que K et qu'il n'y a égalité que si pour t intérieur à I les K_t admettent un centre de symétrie, i.e il existe μ_t dans H tel que $K_t = \mu_t - K_t$ (la symétrie de centre μ_t laisse K_t globalement

invariant).

2.c Déduire de la question **2.a** que $(K')^*$ a plus grand volume que K' et donc que K_t admet un centre de symétrie (noté μ_t) pour tout t dans l'intérieur de I. **2.d**Soit ξ dans H; montrer qu'il existe un réel μ_{ξ} tel que, pour tout t intérieur à I et strictement positif,

$$\varphi_{\xi}^{K}(-t) - \varphi_{\xi}^{K}(t) = \mu_{\xi}t.$$

2.eEn déduire qu'il existe μ dans H tel que, pour tout t dans I, K_t admet $t\mu$ comme centre de symétrie et donc qu'il existe un symétrie (non nécessairement orthogonale) s par rapport à H qui laisse K globalement invariant et qui est un isométrie de \mathbb{R}^n pour la jauge j_K introduite en première partie.

2.fEn déduire que K est un ellipsoïde et que $vol(K)vol(K^*) = vol(B_n)^2$. (On rappelle que B_n désigne la boule unité euclidienne de \mathbb{R}^n .)

Question 3 (Conclusion)

Soit \mathcal{C} l'ensemble des corps convexes compacts O-symétriques de \mathbb{R}^n . Pour K_0 et K_1 dans \mathcal{C} , on pose

$$d(K_0, K_1) = \inf\{\lambda \in \mathbb{R}_+ | e^{-\lambda K_1} \subset K_0 \subset e^{\lambda} K_1\}$$

On admettra que (C, d) est un espace métrique et que, pour tout K dans C et tout couple de réels (a, b) avec $a \leq b$ l'ensemble

$$\{K' \in \mathcal{C} | aK \subset K' \subset bK\}$$

est compact.

Montrer que pour tout corps convexe compact et O-symétrique de \mathbb{R}^n , on a

$$\frac{vol(B_n)^2}{n^{\frac{n}{2}}} \le vol(K)vol(K^*) \le vol(B_n)^2$$