Beschreibung

Ansteuereinrichtung für ein lichtemittierendes Bauelement

5

10

30

Bei Ansteuereinrichtungen für lichtemittierende Bauelemente, beispielsweise Laser, sind bekanntermaßen Detektoren (z. B. Monitorphotodioden) vorhanden, die die Lichtleistung des lichtemittierenden Bauelements messen und eine Regelung der Lichtleistung ermöglichen.

Bei in Laserdioden integrierten Monitorphotodioden entstehen aufgrund von verschiedenen Ursachen sogenannte "Monitor Tracking Fehler". Diese "Monitor Tracking Fehler" beruhen auf 15 temperaturabhängigen Ungenauigkeiten bzw. Messfehlern der Monitordiode, die die eingekoppelte optische Leistung der Laserdiode eigentlich korrekt messen sollte. Ein "Monitor Tracking Fehler" kann bei einem kantenemittierenden Laser beispielsweise darauf beruhen, dass die optische Leistung am 20 vorderen Spiegel des Lasers und die optische Leistung am rückseitigen Spiegel des Lasers - temperaturabhängig - nicht proportional sind. Im Falle eines oberflächenemittierenden Lasers (VCSEL-Laser) kann die Ursache für einen "Monitor Tracking Fehler" auch eine modenselektive und damit 25 temperaturabhängige Kopplung zwischen dem Laser und seiner Monitorphotodiode sein.

Der Erfindung liegt die Aufgabe zugrunde, eine Ansteuereinrichtung für ein lichtemittierendes Bauelement anzugeben, bei der Schwankungen der Ausgangsleistung des lichtemittierenden Bauelements aufgrund von Messfehlern des zugeordneten Photodetektors, insbesondere aufgrund von "Monitor Tracking Fehlern", vermieden werden.

Diese Aufgabe wird erfindungsgemäß durch eine Ansteuereinrichtung mit den Merkmalen gemäß Patentanspruch 1

gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Ansteuereinrichtung sind in den Unteransprüchen angegeben.

Danach ist erfindungsgemäß eine Ansteuereinrichtung mit einer Referenzquelle vorgesehen, die ein eine Soll-Lichtleistung vorgebendes Leistungsvorgabe-Signal erzeugt. Außerdem weist die Ansteuereinrichtung einen Fotodetektor zum Messen der jeweiligen Ist-Lichtleistung auf. Mit dem Fotodetektor und mit der Referenzquelle steht eine Regeleinrichtung in Verbindung, die ein die Lichtleistung regelndes Regelsignal für das lichtemittierende Bauelement erzeugt. Zusätzlich weist die erfindungsgemäße Ansteuereinrichtung eine Korrektureinrichtung auf, die temperaturbedingte Messfehler des Fotodetektors kompensiert, indem sie das von der Referenzquelle erzeugte Leistungsvorgabe-Signal temperaturabhängig modifiziert.

Ein wesentlicher Vorteil der erfindungsgemäßen
Ansteuereinrichtung ist darin zu sehen, dass diese mit
relativ einfachen und kostengünstigen Komponenten realisiert
werden kann, da zum Kompensieren der temperaturbedingten
Messfehler lediglich das von der Referenzquelle erzeugte
Leistungsvorgabe-Signal temperaturabhängig modifiziert werden
muss.

25

30

35

20

Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Ansteuereinrichtung besteht darin, dass die bisher üblichen Komponenten zur Lichtregelung, also die Regeleinrichtung und der Photodetektor unverändert weiter verwendet werden können; diese Komponenten müssen nicht modifiziert werden, da erfindungsgemäß lediglich die Soll-Lichtleistung bzw. das Leistungsvorgabe-Signal temperaturabhängig verändert wird.

Besonders kostengûnstig sind digitale Komponenten, so dass es als vorteilhaft angesehen wird, wenn die Korrektureinrichtung zumindest teilweise durch digitale Komponenten gebildet ist. Gemäß einer vorteilhaften Ausgestaltung der Ansteuereinrichtung ist vorgesehen, dass die Korrektureinrichtung einen Speicher aufweist, in dem Korrekturwerte zum temperaturabhängigen Modifizieren des Leistungsvorgabe-Signals hinterlegt sind.

Vorzugsweise weist die Korrektureinrichtung eine Steuereinrichtung auf, die mit einem Temperatursensor die Temperatur der Monitordiode oder eine dazu proportionale Temperatur misst und anschließend aus dem Speicher denjenigen Korrekturwert ausliest, der dem gemessenen Temperaturwert zugeordnet ist.

10

Die Korrekturwerte und die zugeordneten Temperaturstufen bzw.

Temperaturbereiche können in dem Speicher vorzugsweise in
Tabellenform hinterlegt sein. Die Tabelle kann vorzugsweise
als "Look-Up-Tabelle" ausgestaltet sein.

Die Steuereinrichtung der Korrektureinrichtung ist bevorzugt 20 durch einen Controllerbaustein, insbesondere durch einen Mikroprozessor, gebildet.

Um zu gewährleisten, dass der Temperaturgang bzw. die Kompensationsregelung benutzerseitig beliebig veränderbar bzw. von außen einstellbar ist, wird es als vorteilhaft angesehen, wenn der Speicher und damit die darin enthaltenen Speicherwerte beliebig programmierbar sind. In einem solchen Fall können Tracking-Fehler mit beliebigen Temperaturkennlinien kompensiert werden; die Kompensation kann also an die jeweils eingesetzten optischen Komponenten z. B. also an den jeweiligen Laser und die jeweils zugeordnete Monitordiode – angepasst werden.

Darüber hinaus weist die Korrektureinrichtung vorzugsweise 35 einen Digital-Analog-Wandler auf, der der Steuereinrichtung nachgeschaltet ist. Dieser Digital-Analog-Wandler (D/A-Wandler) bildet aus dem von der Steuereinrichtung aus dem Speicher ausgelesenen Korrekturwert oder einem daraus von der Steuereinrichtung abgeleiteten Hilfskorrekturwert ein analoges Modifikationssignal, mit dem das Leistungsvorgabe-Signal der Referenzquelle modifiziert wird.

5

10

15

Im Rahmen einer weiteren vorteilhaften Ausgestaltung weist die Steuereinrichtung ein analoges Addierglied auf, das das Leistungsvorgabe-Signal der Referenzquelle und das Modifikationssignal des D/A-Wandlers addiert. Das Addierglied kann beispielsweise durch eine Operationsverstärker-Schaltung gebildet sein.

Wie bereits eingangs ausgeführt wurde, treten "Monitor Tracking"-Fehler insbesondere bei Laserdioden auf, so dass es als vorteilhaft angesehen wird, wenn die Ansteuereinrichtung zur Ansteuerung eines Lasers als lichtemittierendem Bauelement verwendet wird. Der Fotodetektor zum Detektieren der Lichtleistung des Lasers ist dann vorzugsweise eine Monitordiode des Lasers.

20

Die Erfindung bezieht sich darüber hinaus auf ein Verfahren zum Ansteuern eines lichtemittierenden Bauelementes.

Um ein solches Verfahren unaufwendig und mit einfachen
Komponenten durchführen zu können, ist erfindungsgemäß
vorgesehen, dass eine Soll-Lichtleistung vorgegeben wird und
die Ist-Lichtleistung mit einem Fotodetektor gemessen wird,
die Lichtleistung des lichtemittierenden Bauelements derart
geregelt wird, dass die Abweichung zwischen Soll-

- Jo Lichtleistung und der gemessenen Ist-Lichtleistung minimal wird, wobei ein temperaturbedingter Messfehler des Fotodetektors kompensiert wird, indem die Soll-Lichtleistung temperaturabhängig modifiziert wird.
- Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen angegeben.

Bezüglich der Vorteile des erfindungsgemäßen Verfahrens und der vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens wird auf die obigen Ausführungen im Zusammenhang mit der erfindungsgemäßen Ansteuereinrichtung verwiesen.

5

Zur Erläuterung der Erfindung zeigen

Figur 1 - ein Ausführungsbeispiel für eine erfindungsgemäße Ansteuereinrichtung und

10

Figur 2 - ein Ausführungsbeispiel für eine
Korrektureinrichtung, wie sie in der
erfindungsgemäßen Ansteuereinrichtung gemäß
der Figur 1 eingesetzt werden kann.

15

In der Figur 1 erkennt man eine Ansteuereinrichtung 10 für eine Laserdiode 20. Die Ansteuereinrichtung 10 weist eine Referenzquelle 30 auf, die ein eine Soll-Lichtleistung vorgebendes Leistungsvorgabe-Signal UREF1 erzeugt.

20

Die Ansteuereinrichtung 10 weist darüber hinaus eine Monitordiode 40 auf, die als Fotodetektor zum Messen der Ist-Lichtleistung der Laserdiode 20 geeignet ist.

Die Monitordiode 40 ist mit einem Eingang E50a einer als BIAS-Regler ausgeführten Regeleinrichtung 50 verbunden. Die Regeleinrichtung 50 erzeugt ein die Lichtleistung der Laserdiode 20 steuerndes Regelsignal - beispielsweise einen Laserstrom Il - für den Laser 20. Die Regeleinrichtung 50 steht mit ihrem weiteren Eingang E50b darüber hinaus mit der Referenzquelle 30 über eine Korrektureinrichtung 60 in Verbindung.

Die Aufgabe der Korrektureinrichtung 60 besteht darin, das 5 Leistungsvorgabe-Signal UREF1 der Referenzquelle 30 zu modifizieren, und zwar derart, dass ein temperaturbedingter Messfehler der Monitordiode 40 kompensiert wird. Hierzu erzeugt die Korrektureinrichtung 60 aus dem von der Referenzquelle 30 vorgegebenen Leistungsvorgabe-Signal UREF1 ein modifiziertes Leistungsvorgabe-Signal UREF2.

Das modifizierte Leistungsvorgabe-Signal UREF2 gelangt zu dem weiteren Eingang E50b der Regeleinrichtung 50 und wird von der Regeleinrichtung 50 verarbeitet. Die Aufgabe der Regeleinrichtung 50 besteht darin, unter Berücksichtigung des eingangsseitig anliegenden, modifizierten Leistungsvorgabe-Signals UREF2 und des von der Monitordiode 40 gelieferten Ist-Lichtleistungs-Messsignals Imess den Laserstrom Il für die Laserdiode 20 derart einzustellen, dass die Abweichung zwischen der Ist-Lichtleistung und der durch das modifizierte Leistungsvorgabe-Signal UREF2 vorgegebenen Soll-Lichtleistung minimal wird.

Zum Erzeugen des Laserstroms Il weist die Regeleinrichtung 50 einen Operationsverstärker 510 auf, dessen "Minus"-Eingang mit einem einstellbaren Widerstand RBIAS in Verbindung steht. An dem "Minus"-Eingang des Operationsverstärkers 510 liegt somit eine Spannung an, die proportional zu dem durch die Monitordiode 40 fließenden Strom Imess ist.

Mit dem einstellbaren Widerstand RBIAS kann der Laserstrom Il 25 "per Hand" bzw. benutzerindividuell voreingestellt werden.

20

30

35

Der "Plus"-Eingang des Operationsverstärkers 510 steht mit dem weiteren Eingang E50b der Regeleinrichtung 50 in Verbindung und ist somit mit dem modifizierten Leistungsvorgabe-Signal UREF2 der Korrektureinrichtung 60 beaufschlagt.

Der Operationsverstärker 510 ist ausgangsseitig mit einem Basisanschluss eines Transistora verbunden, dessen Emitteranschluss auf Masse liegt und dessen Kollektoranschluss den Anschluss für die Laserdiode 20

bildet. Die Ausgangsspannung des Operationsverstärkers 510 wird durch eine Kapazität CBIAS "gepuffert".

Die Korrektureinrichtung 60 weist an ihrem Eingang E60 ein analoges Addierglied 600 auf, dessen Ausgang den Ausgang A60 der Kontrolleinrichtung 60 bildet. Das analoge Addierglied 600 ist außerdem mit einem Steuereingang S600 ausgestattet, der mit einem Ausgang A610 eines Digital/Analog-Wandlers (D/A-Wandlers) 610 verbunden ist. Eingangsseitig steht der D/A-Wandler 610 mit einer Steuereinrichtung 620 in Verbindung, die an einen Temperatursensor 630 und einen frei programmierbaren Speicher (RAM-Baustein) 640 angeschlossen ist.

15 Die Ansteuereinrichtung gemäß der Figur 1 wird wie folgt betrieben:

Mit der Referenzquelle 30 wird das Leistungsvorgabe-Signal UREF1 erzeugt, das die Soll-Lichtleistung der Laserdiode 20 vorgibt. Dieses Leistungsvorgabe-Signal UREF1 wird von der Korrektureinrichtung 60 modifiziert, wobei das modifizierte Leistungsvorgabe-Signal UREF2 erzeugt wird. Das modifizierte Leistungsvorgabe-Signal UREF2 gelangt zu der Regeleinrichtung 50, die die Laserdiode 20 mittels des Laserstromes Il derart ansteuert, dass die Laserdiode 20 eine dem modifizierten Leistungsvorgabe-Signal UREF2 entsprechende Lichtleistung abgibt.

Die Lichtleistung der Laserdiode 20 wird mit der Monitordiode 30 40 gemessen, die ein der gemessenen Ist-Lichtleistung entsprechendes Messsignal Imess an die Regeleinrichtung 50 weiterleitet. Der Operationsverstärker 510 innerhalb der Regeleinrichtung 50 regelt den Laserstrom Il nun derart nach, dass die von der Monitordiode 40 gemessene Ist-Lichtleistung der durch das modifizierte Leistungsvorgabe-Signal UREF 2 vorgegebenen Soll-Lichtleistung entspricht.

Würde es sich bei der Monitordiode 40 um eine "ideale"
Monitordiode handeln, die überhaupt keinen
temperaturbedingten Messfehler aufweist, so wäre eine
Modifikation des Leistungsvorgabe-Signals UREF1 unnötig. In
der Realität weisen Monitordioden wie die Monitordiode 40
jedoch sogenannte "Monitor Tracking-Fehler" auf; dabei
handelt es sich um temperaturabhängige Messfehler. Aufgrund
dieser Messfehler entspricht die von der Monitordiode 40
gemessene Ist-Lichtleistung nicht der tatsächlichen IstLichtleistung der Laserdiode 20. Es kommt somit zu einem
Regelfehler der Regeleinrichtung 50, so dass der Laserstrom
Il von der Regeleinrichtung 50 nicht mehr korrekt eingestellt
wird.

- Um diesen temperaturbedingten Messfehler der Monitordiode 40 zu vermeiden, modifiziert die Korrektureinrichtung 60 das von der Referenzquelle 30 erzeugte Leistungsvorgabe-Signal UREF1 unter Bildung des modifizierten Leistungsvorgabe-Signals UREF2. Dies geschieht folgendermaßen:
- Die Steuereinrichtung 620 misst mit dem Temperatursensor 630 die jeweils an der Monitordiode 40 herrschende Temperatur bzw. eine dazu proportionale Temperatur. In Abhängigkeit von dem mit dem Temperatursensor 630 gemessenen
- 25 Temperaturmesswert T liest die Steuereinrichtung 630 aus dem Speicher 640 eine zu dem jeweiligen Temperaturmesswert T passenden Korrekturwert (K(T)) aus. Hierzu sind in dem Speicher 640 Korrekturwerte zusammen mit den zugeordneten Temperaturstufen bzw. Temperaturbereichen in einer
- Tabellenform hinterlegt. Diese Tabelle bildet eine sogenannte "Look-Up-Tabelle". Die Look-Up-Tabelle kann beispielsweise für n verschiedene Temperaturstufen "Delta-Werte" enthalten, welche das ursprüngliche Leistungsvorgabe-Signal UREF1 der Referenzquelle 30 "additiv" oder "subtraktiv" modifizieren.

Die "Look-Up-Tabelle" ("Look up table") kann beispielsweise derart aufgebaut sein, dass die Speicheradressen der Speicherzellen des Speichers 640 jeweils einer Temperatur bzw. einem Temperaturmesswert T entsprechen; der Inhalt der Speicherzellen gibt dann den zugeordneten Korrekturwert K(T) an. Die Anzahl der Temperaturstufen ergibt sich über die Anzahl der implementierten Speicherzellen und damit über die Anzahl der zur Verfügung stehenden Adressbits (bei 7 Bits z.B. 128 Speicherzellen).

10

15

Nachdem die Steuereinrichtung 620 den zu dem jeweiligen Temperaturmesswert T zugehörigem Korrekturwert K(T) aus dem Speicher 640 ausgelesen hat, überträgt sie diesen zu dem D/A-Wandler 610. Der D/A-Wandler 610 erzeugt daraus ein analoges Modifikationssignal Imod und überträgt dieses zu dem analogen Addierglied 600. Das analoge Addierglied 600 verwendet das analoge Modifikationssignal Imod dazu, aus dem eingangsseitig anliegenden Leistungsvorgabe-Signal UREF1 das modifizierte Leistungsvorgabe-Signal UREF2 durch Addition zu erzeugen.

20

Die Funktionsweise des analogen Addierglieds 600 ist im Detail in der Figur 2 dargestellt. Man erkennt in der Figur 2 die Referenzquelle 30, die an einen Eingang E600 des analogen Addierglieds 600 angeschlossen ist. Außerdem erkennt man den D/A-Wandler 610, der mit dem Steuereingang S600 des analogen Addierglieds 600 in Verbindung steht und das Modifikationssignal Imod einspeist.

Das analoge Addierglied 600 weist einen Operationsverstärker
30 610 auf, dessen "Plus"-Eingang mit der Referenzquelle 30 in
Verbindung steht. Der Ausgang des Operationsverstärkers 610
ist mit dem "Minus"-Eingang des Operationsverstärkers und
außerdem mit einem Anschluss eines Widerstandes R verbunden,
dessen anderer Anschluss den Ausgang des Addierglieds und
35 damit den Ausgang A60 der Korrektureinrichtung 60 bildet. An

dem anderen Anschluss des Widerstands R ist außerdem eine Stromquelle 620 angeschlossen, die einen Strom Imod' erzeugt, der dem analogen Modifikationssignal Imod des D/A-Wandlers 610 entspricht.

5

Ein positives oder negatives analoges Modifikationssignal
Imod erzeugt einen positiven bzw. negativen Stromfluss Imod'
durch die Stromquelle 620 und damit einen Spannungsabfall
UREF2-UREF1 am Widerstand R. Dieser "positive" oder
10 "negative" Spannungsabfall - je nach Richtung des Stromes
Imod' - wird zur Referenzspannung UREF1 addiert. Mit anderen
Worten ergibt sich das modifizierte Leistungsvorgabesignal
UREF2 gemäß:

15 UREF2 = UREF1 + Imod' * R

wobei die Stromrichtung des Stromes Imod' vom jeweiligen Vorzeichen des analogen Modifikationssignals Imod des Digitalanalogwandlers 610 abhängt.

Bezugszeichenliste

10	Ansteuereinrichtung
20	Laserdiode
30	Referenzquelle
40	Monitordiode
50	Regeleinrichtung
60	Korrektureinrichtung
510	Operationsverstärker
600	Analoges Addierglied
610	Digitalanalogwandler
620	Steuereinrichtung
630	Temperatursensor
640	Speicher
Il	Laserstrom
Imess	Messatrom der Monitordiode 40
Il	Laserstrom
Imod	Modifikationssignal
Imod'	Strom
CBIAS	Kapazität
RBIAS	einstellbarer Widerstand
UREF1	Leistungsvorgabe-Signal
UREF2	modifiziertes
	Leistungsvorgabe-Signal
K(T)	Korrekturwert

Patentansprüche

20

- 1. Ansteuereinrichtung (10) für ein lichtemittierendes Bauelement (20)
- 5 mit einer Referenzquelle (30), die ein eine Soll-Lichtleistung vorgebendes Leistungsvorgabe-Signal (UREF1) erzeugt,
 - mit einem Fotodetektor (40) zum Messen der Ist-Lichtleistung des lichtemittierenden Bauelementes,
- nit einer mit dem Fotodetektor (40) und der
 Referenzquelle (30) in Verbindung stehenden
 Regeleinrichtung (50), die ein die Lichtleistung des
 lichtemittierenden Bauelementes (20) regelndes
 Regelsignal (II) derart erzeugt, dass die Abweichung
 zwischen der Soll-Lichtleistung und der gemessenen IstLichtleistung minimal wird, und
 - mit einer Korrektureinrichtung (60), die einen temperaturbedingten Messfehler des Fotodetektors (40) kompensiert, indem sie das von der Referenzquelle (30) erzeugte Leistungsvorgabe-Signal (UREF1) temperaturabhängig modifiziert.
 - 2. Ansteuereinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Korrektureinrichtung (60) einen Speicher (640) aufweist, in dem Korrekturwerte (K(T)) zum temperaturabhängigen Modifizieren des Leistungsvorgabe-Signals (UREF1) hinterlegt sind.
- Ansteuereinrichtung nach Anspruch 2, dadurch
 gekennzeichnet, dass die Korrektureinrichtung (60) eine Steuereinrichtung (620) aufweist, die mit einem Temperatursensor (630) die Temperatur (T) der Monitordiode (40) oder eine dazu proportionale Temperatur (T) misst und aus dem Speicher (640) denjenigen Korrekturwert (K(T))
 ausliest, der dem gemessenen Temperaturwert (T) jeweils zugeordnet ist.

4. Ansteuereinrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass in dem Speicher (640) die Korrekturwerte (K(T)) und die zugeordneten Temperaturstufen oder Temperaturbereiche in Tabellenform hinterlegt sind.

- 5. Ansteuereinrichtung nach Anspruch 4. dadurch gekennzeichnet, dass der Speicher (640) als Tabelle eine "Look-Up-Tabelle" enthält.
- 6. Ansteuereinrichtung nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass die Steuereinrichtung (620) der Korrektureinrichtung (60) durch einen Controllerbaustein, insbesondere durch einen Mikroprozessor, gebildet ist.
- 7. Ansteuereinrichtung nach einem der vorangehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Speicher (640) frei programmierbar ist.
- 8. Ansteuereinrichtung nach einem der vorangehenden
 20 Ansprüche, dadurch gekennzeichnet, dass die
 Korrektureinrichtung (60) einen Digital-Analog-Wandler (610)
 aufweist, der der Steuereinrichtung (620) nachgeschaltet ist.
- 9. Ansteuereinrichtung nach Anspruch 8, dadurch
 25 gekennzeichnet, dass der Digital-Analog-Wandler (610) aus dem
 von der Steuereinrichtung (620) aus dem Speicher (640)
 ausgelesenen Korrekturwert (K(T)) oder einem daraus
 abgeleiteten Hilfskorrekturwert ein analoges
 Modifikationssignal (Imod) bildet, mit dem das
- 30 Leistungsvorgabe-Signal (UREF1) der Referenzquelle (30) modifiziert wird.
 - 10. Ansteuereinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die
- Korrektureinrichtung (60) ein analoges Addierglied (600) aufweist, das das Modifikationssignal (Imod) des Digital-Analog-Wandlers (610) oder ein mit diesem gebildetes Hilfs-

Modifikationssignal (Imod') zu dem Leistungsvorgabe-Signal (UREF1) der Referenzquelle (30) addiert.

- 11. Ansteuereinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Addierglied (600) durch eine Operationsverstärkerschaltung gebildet ist.
- 12. Ansteuereinrichtung nach einem der vorangehenden
 Ansprüche, dadurch gekennzeichnet, dass das lichtemittierende
 10 Bauelement ein Laser (20) ist.
 - 13. Ansteuereinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Photodetektor eine Monitordiode (40) des Lasers (20) ist.
 - 14. Verfahren zum Ansteuern eines lichtemittierenden Bauelements (20), bei dem
 - eine Soll-Lichtleistung vorgegeben wird,

15

- die Ist-Lichtleistung des lichtemittierenden Bauelements (20) mit einem Fotodetektor (40) gemessen wird und
- das lichtemittierende Bauelement (20) derart geregelt wird, dass die Abweichung zwischen der Soll-Lichtleistung und der gemessenen Ist-Lichtleistung minimal wird,
- 25 wobei ein temperaturbedingter Messfehler des Fotodetektors kompensiert wird, indem die vorgegebene Soll-Lichtleistung temperaturabhängig modifiziert wird.
- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass zum Modifizieren der Soll-Lichtleistung Korrekturwerte (K(T)) aus einem Speicher (640) ausgelesen werden.
- 16. Verfahren nach Anspruch 14 oder 15. dadurch gekennzeichnet, dass die Korrekturwerte (K(T)) zum temperaturabhängigen Modifizieren der Soll-Lichtleistung in dem Speicher in Tabellenform hinterlegt sind.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Korrekturwerte in Form einer "Look-Up-Tabelle" hinterlegt sind.

Zusammenfassung

Ansteuereinrichtung für ein lichtemittierendes Bauelement

- Der Erfindung liegt die Aufgabe zugrunde, eine Ansteuereinrichtung für ein lichtemittierendes Bauelement anzugeben, bei der Schwankungen der Ausgangsleistung des lichtemittierenden Bauelements aufgrund von Messfehlern des zugeordneten Photodetektors, insbesondere aufgrund von "Monitor Tracking Fehlern", vermieden werden.
 - Diese Aufgabe wird erfindungsgemäß gelöst durch eine Ansteuereinrichtung (10) für ein lichtemittierendes Bauelement (20)
- mit einer Referenzquelle (30), die ein eine Soll-Lichtleistung vorgebendes Leistungsvorgabe-Signal (UREF1) erzeugt,
 - mit einem Fotodetektor (40) zum Messen der Ist-Lichtleistung des lichtemittierenden Bauelementes,
- mit einer mit dem Fotodetektor (40) und der
 Referenzquelle (30) in Verbindung stehenden
 Regeleinrichtung (50), die ein die Lichtleistung des
 lichtemittierenden Bauelementes (20) regelndes
 Regelsignal (II) derart erzeugt, dass die Abweichung
 zwischen der Soll-Lichtleistung und der gemessenen IstLichtleistung minimal wird, und
- mit einer Korrektureinrichtung (60), die einen temperaturbedingten Messfehler des Fotodetektors (40) kompensiert, indem sie das von der Referenzquelle (30) erzeugte Leistungsvorgabe-Signal (UREF1) temperaturabhängig modifiziert.