

ThinkR

Autor: Buhai Iulia Georgiana

Categorie: Software Educațional

Anul: 2025

Capitolul I. Arhitectura aplicației

I.1. Tehnologii utilizate

Aplicația ThinkR este dezvoltată utilizând un set de tehnologii moderne, potrivite pentru aplicații web interactive și scalabile:

- Frontend: HTML5, CSS3, JavaScript, Chart.js pentru vizualizări grafice
- Backend: Firebase Firestore (bază de date NoSQL), Firebase Authentication (autentificare)
- Hosting: Netlify + Neftlify Functions pentru a stoca datele sensibile

Tehnologiile alese oferă portabilitate nativă, suport cross-platform, sincronizare în timp real și securitate în cloud, eliminând nevoia unui server dedicat.

I.2. Structura arhitecturală

Arhitectura aplicației este organizată modular, după principiile separării responsabilităților:

- Fiecare componentă (dashboard, planificare, statistici) este implementată în module distincte.
- Codul JavaScript este structurat în funcții pure și reutilizabile, evitând duplicarea logicii.
- Se utilizează asincronismul pentru interacțiunile cu baza de date.

I.3. Portabilitate

Aplicația este complet web-based, compatibilă cu toate browserele moderne (Chrome, Firefox, Edge, Safari) și poate fi accesată de pe:

- Desktop: Windows, Linux, macOS
- Mobile: Android și iOS
- Tablete / Chromebook-uri

```
async function getTotalStudyTime(){
   const sessionsQuery= query(
        collection(db, "studySessions"),
        where("userId", "==", currentUser.uid)
);

const snapshot= await getDocs(sessionsQuery);

let totalStudyTime = 0;

snapshot.forEach(doc => {
   const data= doc.data();
   const sessionDuration = parseInt(data.seconds);
   totalStudyTime+=sessionDuration;

});

return totalStudyTime;
}
```


Capitolul II. Implementarea aplicației

II.1. Calitatea implementării

- Codul este lizibil, documentat, cu o denumire clară a variabilelor şi funcţiilor.
- Se respectă standardele ECMAScript 6+ şi principiile DRY (Don't Repeat Yourself) şi KISS (Keep It Simple).
- Modul CSS folosește variabile CSS și layouturi responsive pentru adaptabilitate.

II.2. Testare

- Aplicația a fost testată manual pe multiple platforme.
- Au fost simulate cazuri de eroare (ex. lipsa de conexiune, lipsă date).
- Interfața răspunde coerent în toate scenariile, fără erori de execuție în consolă.

II.3. Versionare

- Proiectul publicat pe GitHub.
- Istoricul dezvoltării este documentat prin commit-uri semnificative.

II.4. Maturitate

Aplicația este complet funcțională, publicabilă și utilizabilă de către elevi. Poate fi accesată online, fără cerințe speciale de instalare.

II.5. Securitate

 Utilizatorii sunt autentificați cu Firebase Auth.

Buhai Iulia Georgiana

- Datele sunt protejate prin reguli de acces în Firestore.
- Toate comunicațiile se realizează prin HTTPS, fără stocarea locală de date sensibile.

Capitolul III. Interfața aplicației

III.1. Design și adaptabilitate

- Interfață curată, minimalistă, bazată pe principiile Material Design.
- Elemente dinamice (grafice, bare de progres, heatmap) oferă feedback vizual în timp real.
- Layoutul se adaptează automat la dimensiunile dispozitivului.

Buhai Iulia Georgiana

III.2. Ergonomie și accesibilitate

- Navigația este intuitivă, cu etichete clare și secțiuni bine delimitate.
- Formularele au validare simplă, iar butoanele au stări vizuale pentru claritate.
- Aplicația poate fi localizată și adaptată pentru utilizatori din alte zone lingvistice.

Capitolul IV. Conținut și valoare educațională

IV.1. Funcționalitate și interactivitate

- Utilizatorul își înregistrează sesiunile de studiu (materie, durată, data).
- Sistemul generează automat:
 - o Grafic de progres zilnic

Buhai Iulia Georgiana

- o Analiză săptămânală
- o Heatmap de învățare pe 90 de zile
- Se pot seta obiective zilnice, iar progresul este afișat în timp real.

IV.2. Evaluare şi feedback

- Sistemul compară datele introduse cu obiectivul zilnic.
- Feedback-ul este vizual (bare de progres, mesaje personalizate).
- Planurile generate țin cont de timpul rămas, priorități și sesiuni anterioare.

IV.3. Administrarea conținutului

• Planurile de studiu pot fi regenerate în funcție de evoluția zilnică.

IV.4. Corectitudine științifică

• Terminologia educațională este folosită conform standardelor.

Capitolul V. Originalitate și inovație

- ThinkR combină două direcții complementare: *monitorizare personală a studiului* și *planificare inteligentă*, o abordare rar întâlnită în aplicații educaționale locale.
- Spre deosebire de platforme de tip to-do, ThinkR e dedicată în mod exclusiv progresului educațional, iar interfața este optimizată pentru uz academic.

Pagina 6 din 6