Lab-4

PID Tuning using Ziegler-Nichols Method

PID

- What is PID Control?
- PID stands for Proportional-Integral-Derivative control.
- It is the **most widely used feedback controller** in engineering and industry (applied in robotics, process control, automotive, aerospace, etc.).
- Goal: minimize the error

$$e(t) = r(t) - y(t)$$

 where r(t) is the reference (setpoint) and y(t) is the actual output.

Proportional Controller

- Advantages: reduces rise time, speeds up response
- Limitation: cannot fully remove steady-state error
- Proportional Gain (Kp):
- ↓ Rise time (faster response)
- 个 Overshoot
- 个 Oscillations
- Small effect on steady-state error

Integral Controller

- Advantages: eliminates steadystate error
- Limitation: too much →Slow response, oscillations, instability
- Eliminates steady-state error
- ↓ Rise time slightly
- ↑ Overshoot
- ↑ Settling time (system takes longer to stabilize)
- May reduce stability if too high

Derivative Controller

- Advantages: improves damping, reduces overshoot, improves stability
- Limitation: amplifies high-frequency noise
- Derivative Gain (Kd):
- 个 Stability (adds damping)
- ↓ Overshoot
- ↓ Settling time
- Minimal effect on rise time
- Sensitive to noise

How to manage each performance metric:

- If rise time is too slow → increase Kp.
- If overshoot is too high → reduce Kp or increase Kd.
- If settling time is too long → increase Kd, but not too much.
- If steady-state error exists → increase Ki.

PK, PI, PD

Parameter	Rise Time	Overshoot	Settling Time	Steady-State Error	Stability
K_p	Decrease	Increase	Small Change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K _d	Minor Change	Decrease	Decrease	No Effect	Improve if K_d small

Response after Controller

Ziegler-Nichols

- The Ziegler-Nichols (ZN) method is a classical empirical procedure for tuning PID controllers.
 It provides systematic formulas for setting controller gains.
- Set controller to P-only mode
 ((K_i = 0, K_d = 0)) Apply a proportional gain
 (K_p) and close the loop.

Ziegler-Nichols

- Increase (K_p) until the system output exhibits sustained oscillations. Record: Ultimate Gain ((K_u)) → the proportional gain at which oscillations first occur.
- Ultimate Period ((T_u)) → oscillation period at (K_u).

Ziegler-Nichols

Control Type	K_p	T_i	T_d
P	$0.5K_u$	_	_
PI	$0.45K_u$	$0.80T_u$	_
PD	$0.8K_u$	_	$0.125T_u$
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$
Pessen Integral Rule ^[2]	$0.7K_u$	$0.4T_u$	$0.15T_u$
some overshoot ^[2]	$0.3\overline{3}K_u$	$0.50T_u$	$0.3\overline{3}T_u$
no overshoot[2]	$0.20K_u$	$0.50T_u$	$0.3\overline{3}T_u$

PID in Simulink

RLC

Controller	Transfer Function	Components Used		
Р	(K_p)	Resistors (R)		
I	(K_i/s)	Capacitors (C)		
PI	(K_p + K_i/s)	Resistors + Capacitors (parallel feedback)		
PD	(K_p + K_d s)	Resistors + Capacitors (series feedback)		
PID	(K_p + K_i/s + K_d s)	Resistors + Capacitors (combined RC networks)		
 Op-Amps are the core building block Resistors (R) → proportional control Capacitors (C) → integration & differentiation 				

•PID = combination of all