

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Campo Mourão

Departamento Acadêmico de Matemática - DAMAT

Geometria Analítica e Álgebra Linear

Notas de Aula

Profa. Dra. Érika Patrícia Dantas de Oliveira Guazzi ${\rm Campo~Mour\~ao-PR}$ $1^{\underline{0}}~{\rm Per\'iodo~de~2021}$

Sumário

1 Mat	rizes -	Parte 2	26		
1.7	Determinante de uma Matriz Quadrada				
	1.7.1	A expansão em cofatores	27		
	1.7.2	Algumas propriedades de determinante de uma matriz	29		
1.8	Matrizes Inversas				
	1.8.1	Cálculo da Matriz Inversa usando Cofatores	32		
	1.8.2	Cálculo da Matriz Inversa usando Operações Elementares	33		
1.9	Exerci	cios sobre Matrizes - Parte 2	35		
Referê	ncias I	Bibliográficas	42		
TOTOLO	iicias i	JIDIIO SI UIIO U			

Matrizes - Parte 2

1.7 Determinante de uma Matriz Quadrada

No Ensino Médio você deve ter se deparado com o cálculo de determinante de matrizes de ordem 2×2 e 3×3 , fazendo uso de algumas regras e fórmulas.

No entanto, nesta seção verificaremos que o 'determinante' é um certo tipo de função, que associa a cada matriz quadrada um número real, independente da ordem da matriz quadrada.

Definição 1. Define-se o determinante de uma matriz $A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ como o produto das entradas na diagonal principal menos o produto das entradas na diagonal secundária, ou seja,

$$det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

Exemplo 1.7.1. Calcule o determinante das seguintes matrizes:

$$1. \ A = \left[\begin{array}{cc} 7 & 5 \\ 2 & 4 \end{array} \right]$$

$$2. B = \begin{bmatrix} -3 & -8 \\ -5 & -2 \end{bmatrix}$$

Solução:

Definição 2. Define-se o determinante de uma matriz
$$A_{3\times 3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 pela

fórmula

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}.$$

Observação 1.7.1. Observando a definição acima, notamos que o determinante da matriz de ordem 3×3 pode ser desenvolvida em função de determinantes de submatrizes 2×2 como segue:

$$det A = a_{11} \begin{pmatrix} a_{22}a_{33} - a_{23}a_{32} \end{pmatrix} + a_{12} \begin{pmatrix} -a_{21}a_{33} + a_{23}a_{31} \end{pmatrix} + a_{13} \begin{pmatrix} a_{21}a_{32} - a_{22}a_{31} \end{pmatrix}$$
$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Exemplo 1.7.2. Calcule o determinante da seguintes matrizes:

$$1. \ A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$

$$2. B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 3 & 1 \\ 6 & -5 & 0 \end{bmatrix}$$

Solução:

Como calcular o determinante para matrizes de ordens maiores que 3?

1.7.1 A expansão em cofatores

Definição 3. Seja A é uma matriz quadrada, o menor da entrada a_{ij} é denotado por M_{ij} e definido como o determinante da submatriz que sobra quando suprimimos de A a

i-ésima linha e a j-ésima coluna. O número $C_{ij} = (-1)^{i+j} M_{ij}$ é denominado o cofator da entrada a_{ij} , ou seja, C_{ij} é o determinante afetado pelo sinal $(-1)^{i+j}$ da submatriz obtida de A retirando-se a i-ésima linha e a j-ésima coluna.

Exemplo 1.7.3. Dada a matriz
$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$
, calcule o menor da entrada a_{11} , a_{23}

e a₃₂, e o cofator correspondente.

Solução:

Definição 4. O determinante de uma matriz $A_{n\times n}$ pode ser calculado multiplicando as entradas de uma linha (ou coluna) qualquer pelo seus cofatores e somando os produtos assim obtidos, ou seja, para cada $1 \le i \le n$ e $1 \le j \le n$ temos

$$det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$$

(expansão em cofatores ao longo da j-ésima coluna), e

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

(expansão em cofatores ao longo da i-ésima linha).

Exemplo 1.7.4. Encontre o determinante da matriz $A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$ usando a expansão em cofatores.

Solução: Primeiro vamos calcular o determinante menor da entrada a_{ij} .

O menor de
$$a_{11}$$
 é $M_{11} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 40 - 24 = 16;$
O menor de a_{12} é $M_{12} = \begin{vmatrix} 2 & 6 \\ 1 & 8 \end{vmatrix} = 16 - 6 = 10;$
O menor de a_{13} é $M_{13} = \begin{vmatrix} 2 & 5 \\ 1 & 4 \end{vmatrix} = 8 - 5 = 3$. Então
$$\det A = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} = 3(16) - 1(10) + (-4)3 = 26.$$

Exemplo 1.7.5. Encontre o determinante da matriz
$$B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$$
 usando a expansão em cofatores.

Solução:

Observação 1.7.2. A expansão em cofatores é uma fórmula de recorrência que permite calcular o determinante de uma matriz de ordem n, a partir dos determinantes das submatrizes quadradas de ordem n-1. Em grande parte dos casos ele simplifica muito o cálculo de determinantes, principalmente se for utilizado em conjunto com outras propriedades dos determinantes.

Exemplo 1.7.6. Calcule
$$det(A) = \begin{vmatrix} -1 & 2 & 3 & -4 \\ 4 & 2 & 0 & 0 \\ -1 & 2 & -3 & 0 \\ 2 & 5 & 3 & 1 \end{vmatrix}$$
 usando a linha (e depois a coluna)

mais apropriada.

Solução:

1.7.2 Algumas propriedades de determinante de uma matriz

Seja A uma matriz de ordem $n \times n$.

- 1. O determinante de uma matriz A não se altera quando se trocam as linhas pelas colunas.
- 2. Se todos os elementos de uma linha (ou coluna) de A são nulos, então det A = 0.
- 3. O determinante de uma matriz que tem duas linhas (ou colunas) iguais ou proporcionais é zero.
- 4. O determinante de uma matriz diagonal A (ou triangular superior ou triangular inferior) é igual ao produto dos elementos da diagonal principal da matriz, ou seja,

$$det(A) = a_{11} \cdot a_{22} \cdots a_{nn}.$$

5. Se B é a matriz que resulta quando duas linhas ou duas colunas de A são permutadas, então det B = -det A.

- 6. Se B é a matriz que resulta quando multiplicarmos uma única linha ou coluna de A por uma constante k, então det(B) = kdet(A).
- 7. Se B é a matriz que resulta quando uma linha de A é somada a um múltiplo de outra linha, então det B = det A.
- 8. $det(A \cdot B) = detA \cdot detB$.
- 9. $det(A^n) = (det A)^n$.

Portanto, usando as propriedades de determinante acima, podemos calcular determinante de uma matriz quadrada qualquer reduzindo-a ao formato triangular superior (ou triangular inferior ou diagonal). Para tal redução usaremos as operações elementares sobre as linhas ou colunas de uma matriz.

Definição 5. Denomina-se operações elementares sobre as linhas ou colunas de uma matriz as seguintes operações:

- I) permutação de duas linhas (ou de duas colunas);
- II) multiplicação de todos os elementos de uma linha (ou coluna) por um número real diferente de zero;
- III) substituição dos elementos de uma linha (ou coluna) pela soma deles com os elementos correspondentes de outra linha (coluna) previamente multiplicados por um número real diferente de zero.
- Observação 1.7.3. 1. Utilizando as propriedades de determinante e o item (I) da definição acima obtemos que o determinante da matriz resultante é igual ao determinante da matriz inicial multiplicada por (-1), ou seja,

$$L_i \Leftrightarrow L_i$$

$$det(A) = D \rightarrow det(B) = -det(A)$$

2. Utilizando as propriedades de determinante e o item (II) da definição acima obtemos que o determinante da matriz resultante é igual ao determinante da matriz inicial multiplicada pelo número real diferente de zero, ou seja,

$$L_i \to k \cdot L_i$$

$$det(A) = D \rightarrow det(B) = k \cdot det(A), \ k \in \mathbb{R}^*$$

3. Utilizando as propriedades de determinante e o item (III) da definição acima obtemos que o determinante da matriz resultante é igual ao determinante da matriz inicial, ou seja,

$$L_i \to L_i + k \cdot L_j, \ k \in \mathbb{R}^*$$

$$det(A) = det(B)$$

Apliquemos este método de Redução por linha para o cálculo do determinante de matrizes.

Exemplo 1.7.7. Utilizando o método de redução por linhas, calcule o determinante das seguintes matrizes:

$$1. \ A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

$$2. B = \begin{bmatrix} 3 & 6 & -9 \\ 0 & 0 & -2 \\ -2 & 1 & 5 \end{bmatrix}$$

$$3. \ C = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 4 \end{bmatrix}$$

Solução:

1.8 Matrizes Inversas

Estamos em condições de obter uma fórmula e/ou método para determinar a inversa de uma matriz invertível.

Recordemos a definição de matriz inversa.

Definição 6. Dados A e B matrizes tais que AB = BA = I, dizemos que a matriz A é inversível e B é sua inversa $(B = A^{-1})$.

Toda matriz admite inversa?

Definição 7. Uma matriz quadrada $A = [a_{ij}]$ cujo determinante é diferente de zero é uma matriz não-singular ou regular, e tal matriz sempre tem inversa.

Agora, munidos da condição para uma matriz ter inversa, ou seja, $det(A) \neq 0$, veremos duas maneiras de calcular a matriz inversa.

1.8.1 Cálculo da Matriz Inversa usando Cofatores

Definição 8. Se $A = [a_{ij}]$ é uma matriz $n \times n$ e C_{ij} é o cofator de a_{ij} , então a matriz

$$Cof(A) = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

é chamada matriz de cofatores de A. A transposta desta matriz é chamada matriz adjunta da matriz A e é denotada por adj(A), ou seja,

$$adj(A) = (Cof(A))^t.$$

Exemplo 1.8.1. Dado a matriz
$$A=\begin{bmatrix}3&2&-1\\1&6&3\\2&-4&0\end{bmatrix}$$
 calcule a matriz adjunta de A , e verifique que $A\cdot adj(A)=det(A)\cdot I$. Solução:

Teorema 1.8.1. Se A é uma matriz inversível, então

$$A^{-1} = \frac{1}{\det(A)} adj(A).$$

Exemplo 1.8.2. Dada as matrizes abaixo, determine a inversa usando cofatores:

$$(a) A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

$$(b) B = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$

Solução:

1.8.2 Cálculo da Matriz Inversa usando Operações Elementares

Nesta subseção vamos desenvolver um algoritmo para encontrar a inversa de uma matriz invertível fazendo uso das operações elementares.

Recordemos a definição de operações elementares sobre uma matriz.

Definição 9. Denominam-se operações elementares de uma matriz as seguintes operações:

- I) permutação de duas linhas (ou de duas colunas)
- II) multiplicação de todas os elementos de uma linha (ou coluna) por um número real diferente de zero.
- III) substituição dos elementos de uma linha (ou coluna) pela soma deles com os elementos correspondentes de outra linha (ou coluna) previamente multiplicados por um número real diferente de zero.

Definição 10. Uma matriz $n \times n$ que pode ser obtida da matriz identidade I_n executando uma única operação elementar sobre linhas é chamada **matriz elementar**.

Teorema 1.8.2 (Operações sobre Linhas por Multiplicação Matricial). Se a matriz elementar E resulta de efetuar uma certa operação sobre linhas em I_m e se A é uma matriz $m \times n$, então o produto EA é a matriz que resulta quando esta mesma operação sobre linhas é efetuada sobre A.

Observação 1.8.1. Este teorema nos auxiliará nos cálculos, pois é preferível efetuar operações sobre linhas diretamente do que multiplicar à esquerda por uma matriz elementar.

Teorema 1.8.3. Qualquer matriz elementar é invertível e a inversa é, também, uma matriz elementar.

Teorema 1.8.4. Se A é uma matriz $n \times n$ então as seguintes afirmações são equivalentes:

- (a) A é invertível.
- (b) Usando operações elementares sobre as linhas de A obtemos a matriz I_n , ou seja,

$$E_k...E_2.E_1.A = I_n.$$

(c) A pode ser expressa como um produto de matrizes elementares, ou seja,

$$A = (E_1)^{-1} \cdot (E_2)^{-1} \cdot \dots (E_k)^{-1}$$
.

Usando a equação $E_k...E_2.E_1.A = I_n$ apontada anteriormente podemos escrever:

$$A^{-1} = E_k ... E_2 .E_1 .I_n$$
.

Esta equação nos indica que A^{-1} pode ser obtida multiplicando I_n sucessivamente à esquerda pelas matrizes elementares.

Por outro lado, observe que estas mesmas operações aplicadas sobre A faz com que obtemos I_n .

Portanto, podemos enunciar o seguinte método:

Teorema 1.8.5 (Método para Calcular Inversa usando Operações Elementares). *Para encontrar a inversa de uma matriz invertível A, nós devemos encontrar uma sequência de*

operações elementares sobre linhas que reduz A à identidade I. Estas mesmas operações efetuadas em I nos dará \mathbf{A}^{-1} .

Simbolicamente temos:

$$[A|I] \approx [I|A^{-1}]$$

Exemplo 1.8.3. Dadas as matrizes abaixo, determine a sua inversa usando as operações elementares:

$$(a) A = \begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$$

$$(b) B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

$$(c) A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}$$

Solução:

1.9 Exercícios sobre Matrizes - Parte 2

Exercício 1.9.1. Dada as matrizes
$$A = \begin{bmatrix} 3 & 4 & 1 \\ -5 & -2 & -9 \\ 7 & 8 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -1 & 3 \\ 3 & 0 & 1 \\ 7 & 2 & -4 \end{bmatrix}$ e

$$C = \begin{bmatrix} 2 & 6 & 8 \\ 3 & 9 & 12 \\ -1 & -2 & -3 \end{bmatrix}$$
 calcular, pelo método de redução de linhas ou pela expansão em cofatores:

- a) det(A)
- **b)** det(B)
- c) det(C)

d)
$$det(2A - 3B + 4C)$$

e)
$$det(AC^t)$$

f) Verificar se
$$det(A + B) = det(A) + det(B)$$

g) Verificar se
$$det(BC) = det(B) \cdot det(C)$$

Exercício 1.9.2. Resolver as equações:

a)
$$\begin{vmatrix} 5 & 1 & 3 \\ 3x & 0 & 1 \\ 7x & 2 & 1 \end{vmatrix} = 100$$

b)
$$\begin{vmatrix} x+3 & x+1 & x+4 \\ 4 & 5 & 3 \\ 9 & 10 & 7 \end{vmatrix} = -7$$

Exercício 1.9.3. Encontre todos os valores de λ para os quais det(A) = 0.

a)
$$A = \begin{bmatrix} \lambda - 2 & 1 \\ -5 & \lambda + 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} \lambda - 4 & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 3 & \lambda - 1 \end{bmatrix}$$

Exercício 1.9.4. Resolva em
$$x$$
: $\begin{vmatrix} x & -1 \\ 3 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}$

Exercício 1.9.5. Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dado por:

	Ferro	Madeira	Vidro	Tinta	Tijolo
Moderno	5	20	16	7	17
Mediterrâneo	7	18	12	9	21
Colonial	6	25	8	5	13

a) Represente as informações acima por meio de uma matriz $C_{3\times 5}$ e escreva de que ordem é essa matriz.

b) Se ele vai construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas? (Sugestão: crie a matriz quantidade, $Q_{1\times 3}$ e calcule a matriz material $M=Q_{1\times 3}.C_{3\times 5}$)

c) Suponha agora que os preços por unidades de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10 reais. Com relação a esses materiais qual é o preço unitário de cada tipo de casa? (Sugestão: crie a matriz preço-material PM_{5×1} e calcule a matriz preço-casa PC = C_{3×5}.PM_{5×1})

d) Se ele vai construir 5,7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente. Considerando os mesmos preços, use produto de matrizes para obter o custo total de material empregado.

Exercício 1.9.6. Encontre todos os menores de A e todos os cofatores de A.

$$\mathbf{a)} \ A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}$$

$$\mathbf{b)} \ \ A = \left[\begin{array}{ccc} 1 & 1 & 2 \\ 3 & 3 & 6 \\ 0 & 1 & 4 \end{array} \right]$$

38

Exercício 1.9.7. Calcule o determinante da matriz
$$A = \begin{bmatrix} 4 & -1 & 1 & 6 \\ 0 & 0 & -3 & 3 \\ 4 & 1 & 0 & 14 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$
 usando

uma expansão em cofatores ao longo da

- a) primeira linha
- **b)** primeira coluna
- c) segunda linha
- d) segunda coluna
- e) terceira linha
- f) terceira coluna

Exercício 1.9.8. Calcule o determinante da matriz dada usando as propriedades de de-

$$b) \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 \end{bmatrix}$$

$$d) \begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \qquad e) \begin{bmatrix} 1 & 3 & 1 & 5 & 3 \\ -2 & -7 & 0 & -4 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & -0 & 0 & 1 & 1 \end{bmatrix}$$

Exercício 1.9.9. Sabendo que
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$$
, encontre

Exercício 1.9.10. Calcular a matriz inversa de cada uma das matrizes dadas utilizando expansão em cofatores ou operações elementares.

$$\mathbf{a)} \ A = \left[\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array} \right]$$

$$\mathbf{b)} \ B = \begin{bmatrix} -3 & 4 & -5 \\ 0 & 1 & 2 \\ 3 & -5 & 4 \end{bmatrix}$$

$$\mathbf{c}) \ C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\mathbf{d}) \ D = \begin{bmatrix} 1 & 0 & -2 \\ 2 & -2 & -2 \\ -3 & 0 & 2 \end{bmatrix}$$

e)
$$E = \begin{bmatrix} -4 & 0 & -10 \\ -2 & -4 & -4 \\ 2 & -2 & 6 \end{bmatrix}$$

$$\mathbf{f)} \ F = \begin{bmatrix} -3 & -6 & -12 \\ 0 & 3 & -3 \\ -6 & -9 & -24 \end{bmatrix}$$

40

$$\mathbf{g)} \quad G = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{array} \right]$$

Exercício 1.9.11. Seja dada a matriz $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$, encontre sua inversa.

Exercício 1.9.12. Encontre a inversa da matriz dada usando operações elementares.

a)
$$\begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 2 & 1 & 5 & -3 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2 \end{bmatrix}$$
 c)
$$\begin{bmatrix} \sqrt{2} & 3\sqrt{2} & 0 \\ -4\sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$d) \begin{bmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{bmatrix} \qquad e) \begin{bmatrix} 2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7 \end{bmatrix}$$

Exercício 1.9.13. Encontre a inversa de cada uma das seguintes matrizes 4×4 , onde k, k_1, k_2, k_3, k_4 e k_5 são todos não nulos.

$$\mathbf{a}) \begin{bmatrix} k_1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k_3 & 0 \\ 0 & 0 & 0 & k_4 \end{bmatrix}$$

$$\mathbf{b}) \begin{bmatrix} 0 & 0 & 0 & k_1 \\ 0 & 0 & k_2 & 0 \\ 0 & k_3 & 0 & 0 \\ k_4 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{c}) \begin{bmatrix} k & 0 & 0 & 0 \\ 1 & k & 0 & 0 \\ 0 & 1 & k & 0 \\ 0 & 0 & 1 & k \end{bmatrix}$$

 $SUM\acute{A}RIO$ 41

$$\mathbf{d}) \begin{bmatrix} k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

e)
$$\begin{bmatrix} k & k & k \\ 0 & k & k \\ 0 & 0 & k \end{bmatrix}$$

Exercício 1.9.14. Use det(A) para determinar quais das seguintes matrizes são invertíveis.

vertice is.
$$\begin{bmatrix} 1 & 0 & -1 \\ 9 & -1 & 4 \\ 8 & 9 & -1 \end{bmatrix} \quad b) \begin{bmatrix} 4 & 2 & 8 \\ -2 & 1 & -4 \\ 3 & 1 & 6 \end{bmatrix} \quad c) \begin{bmatrix} \sqrt{2} & -\sqrt{7} & 0 \\ 3\sqrt{2} & -3\sqrt{7} & 0 \\ 5 & -9 & 0 \end{bmatrix} \quad d) \begin{bmatrix} -3 & 0 & 1 \\ 5 & 0 & 6 \\ 8 & 0 & 3 \end{bmatrix}$$
$$e) \begin{bmatrix} 3 & 0 & 6 \\ 1 & 0 & 2 \\ 2 & 3 & 7 \end{bmatrix}$$

Exercício 1.9.15. Seja

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

Supondo que det(A) = -7, obtenha

a)
$$det(3A)$$
 b) $det(A^{-1})$ c) $det((2A)^{-1})$ d) $det(2A^{-1})$ e) $det\begin{bmatrix} a & g & d \\ b & h & e \\ c & i & f \end{bmatrix}$

Exercício 1.9.16. Use $A^{-1} = \frac{1}{\det A} \cdot adj(A)$ para o cálculo da inversa de A e estude o determinante de A por cofatores da linha ou coluna mais apropriada.

$$a) \begin{bmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{bmatrix} \qquad b) \begin{bmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{bmatrix} \qquad c) \begin{bmatrix} 3 & 3 & 0 & 5 \\ 2 & 2 & 0 & -2 \\ 4 & 1 & -3 & 0 \\ 2 & 10 & 3 & 2 \end{bmatrix}$$

$$d) \begin{bmatrix} 4 & 0 & 0 & 1 & 0 \\ 3 & 3 & 3 & -1 & 0 \\ 1 & 2 & 4 & 2 & 3 \\ 9 & 4 & 6 & 2 & 3 \\ 2 & 2 & 4 & 2 & 3 \end{bmatrix} \qquad e) \begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{bmatrix}$$

$$e) \left[\begin{array}{ccc} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{array} \right]$$

Referências Bibliográficas

- [1] ANTON, Howard; BUSBY, Robert C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006.
- [2] BOYER, Carl B.; MERZBACH, Uta C. *História da matemática*. Editora Blucher, 2012.
- [3] CAMARGO, Ivan de; BOULOS, Paulo. Geometria analítica: um tratamento vetorial. 3ª edição rev e ampl. São Paulo: Prentice Hall, 2005.
- [4] LEON, Steven J. Álgebra Linear com Aplicações . Rio de Janeiro: LTC, 2013.
- [5] LIMA, Elon Lages. Álgebra linear. Rio de Janeiro: IMPA, 2006.
- [6] LIMA, Elon Lages. Geometria Analítica e Álgebra linear. Rio de Janeiro: IMPA, 2015.
- [7] MARCONDES, C. A.; GENTIL, N.; GRECO, S. E. Matemática, Série Novo Ensino Médio. volume único. São Paulo: Editora Ática.
- [8] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. São Paulo: McGraw-Hill, 1987.
- [9] STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria Analítica. São Paulo: McGraw-Hill, 1987.

Neste arquivo contém as referências para a disciplina de Geometria Analítica e Álgebra Linear. Ressalto ainda a disponibilidade online de diversas outras referências via Bibliotec-UTFPR pelo link http://www.utfpr.edu.br/biblioteca/bibliotec.