Amendments to the Claims:

The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

1. (Original) A compound having the formula:

$$R^{6}$$
 R^{7}
 R^{1}
 R^{2}
 R^{10}
 R^{10

or pharmaceutically acceptable salt, ester or prodrug thereof,

wherein:

D-Het is selected from the group consisting of:

Oyelere et al.
Preliminary amendment
PCT/US2004/036146

A is selected from the group consisting of:

- a) carbonyl, b) C_{1-6} alkyl, c) C_{2-6} alkenyl d) -C(O)- C_{1-6} alkyl, and
- e) -C(O)- C_{2-6} alkenyl,

wherein

- i) 0-2 carbon atoms of the C₁₋₆ alkyl and C₂₋₆ alkenyl groups in any of
 b) e) optionally are replaced by a moiety selected from the group
 consisting of O, S(O)_p, and NR¹¹, and
- ii) any of b) e) optionally is substituted with one or more R^{12} groups;

B is selected from the group consisting of:

- a) -C(O)NH-, b) -C(S)NH-, c) -NHC(O)-, d) -NHC(S)-, e) -S(O)₂NH-,
- f) -NHS(O)₂-, g) -OC(O)NH-, h) -OC(S)NH-, i) -NHC(O)NH-, j) -NHC(S)NH-,
- k) -NHC(O)O-, l) -NHC(S)O-, and m) -NR 11 -;

n is 0 or 1;

D is selected from the group consisting of:

E is selected from the group consisting of:

a)

b)

$$R^{21}$$
 R^{21}
 R^{21}
 R^{21}
 R^{21}

c)

- d) 5-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R¹² groups;
- e) C_{5-10} saturated, unsaturated, or aromatic carbocycle, optionally substituted with one or more R^{12} groups;
- f) C_{1-8} alkyl,
- g) C₂₋₈ alkenyl,
- h) C₂₋₈ alkynyl,
- i) C₁₋₈ alkoxy,

- j) C_{1-8} alkylthio,
- k) C_{1-8} acyl,
- 1) $S(O)_rR^{11}$; and
- m) hydrogen, wherein any of f(-k) optionally is substituted with
 - i) one or more R¹² groups;
 - ii) 5-6 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R¹² groups; or
 - iii) C_{5-10} saturated, unsaturated, or aromatic carbocycle, optionally substituted with one or more R^{12} groups;

M is selected from the group consisting of:

f)
$$-CH(NR^{11}R^{11})$$
-, g) $-C(=NNR^{11}R^{11})$ -, h) $-NR^{11}$ -C(O)-, i) $-C(O)NR^{11}$ -, and

$$j) - C(=NR^{11})-;$$

R is selected from the group consisting of H and C_{1-6} alkyl;

R¹ is selected from the group consisting of:

i)
$$-OC(O)R^{11}$$
, j) $-OC(O)OR^{11}$, k) $-OC(O)NR^{11}R^{11}$, l) $-O-C_{1-6}$ alkyl- R^{12} ,

o) -OC(O)NR¹¹-C₁₋₆ alkyl-R¹², p) C_{1-6} alkyl, q) C_{1-6} alkenyl, r) C_{1-6} alkynyl, wherein any of l) – r) optionally is substituted with one or more R^{12} groups;

 R^2 is H;

R³ is selected from the group consisting of:

a) H, b)
$$-OR^{11}$$
, c) $-O-C_{1-6}$ alkyl- R^{12} , d) $-OC(O)R^{11}$, e) $-OC(O)-C_{1-6}$ alkyl- R^{12} ,

i)
$$-OC(O)NR^{11}-C_{1-6}$$
 alkyl- R^{12} , and

alternatively, R² and R³ taken together form a carbonyl group;

R⁴ is selected from the group consisting of:

g) $-C_{2-6}$ alkenyl-G-R¹¹, and h) $-C_{2-6}$ alkynyl-G-R¹¹;

alternatively R³ and R⁴, taken together with the atoms to which they are bonded, form:

G is selected from the group consisting of:

a)
$$-C(O)$$
-, b) $-C(O)O$ -, c) $-C(O)NR^{11}$ -, d) $-C(=NR^{11})$ -, e) $-C(=NR^{11})O$ -,

k)
$$-NR^{11}C(O)O-$$
, l) $-NR^{11}C(O)NR^{11}-$, m) $-NR^{11}C(=NR^{11})NR^{11}-$, and o) $-S(O)_p-$;

R⁵ is selected from the group consisting of:

a)
$$R^{11}$$
, b) $-OR^{11}$, c) $-NR^{11}R^{11}$, d) $-O-C_{1-6}$ alkyl- R^{12} , e) $-C(O)-R^{11}$,

l) -OC(O)NR
11
-C $_{1-6}$ alkyl-R 12 , m) -C(O)-C $_{2-6}$ alkenyl-R 12 , and

n) -C(O)-
$$C_{2-6}$$
 alkynyl- R^{12} ;

alternatively, R⁴ and R⁵, taken together with the atoms to which they are bonded, form:

Oyelere et al.
Preliminary amendment
PCT/US2004/036146

wherein

Q is CH or N, and R^{23} is $-OR^{11}$, or R^{11} ;

R⁶ is selected from the group consisting of:

a) $-OR^{11}$, b) $-C_{1-6}$ alkoxy- R^{12} , c) $-C(O)R^{11}$, d) $-OC(O)R^{11}$, e) $-OC(O)OR^{11}$,

f) -OC(O)NR¹¹R¹¹, and g) -NR¹¹R¹¹;

alternatively, R⁵ and R⁶ taken together with the atoms to which they are attached form a 5-membered ring by attachment to each other through a linker selected from the group consisting of:

a)
$$-OC(R^{12})_2O$$
-, b) $-OC(O)O$ -, c) $-OC(O)NR^{11}$ -, d) $-NR^{11}C(O)O$ -,

$$l) - OC(S)NR^{11}-, \, m) - NR^{11}C(S)O-, \, n) - OC(S)NOR^{11}-, \, o) - NOR^{11}-C(S)O-, \, n) - OC(S)NOR^{11}-, \, o) - OC($$

p)
$$-OC(S)NNR^{11}R^{11}$$
, q) $-NNR^{11}R^{11}$ - $C(S)O$ -, r) $-OC(S)C(R^{12})_2$ -, and

s)
$$-C(R^{12})_2C(S)O-;$$

alternatively, M, R⁵, and R⁶ taken together with the atoms to which they are attached form:

wherein J is selected from the group consisting of O and NR¹¹;

R6' is selected from the group consisting of

a) -H, b) $-C_{1.4}$ alkyl, c) $C_{2.4}$ alkenyl, which can be further substituted with C_{1-12} alkyl or one or more halogens, d) $C_{2.4}$ alkynyl, which can be further substituted with C_{1-12} alkyl or one or more halogens, e) aryl or heteroaryl, which can be further substituted with C_{1-12} alkyl or one or more halogens, f) -C(O)H, g) -C(O)H, h) -C(O)H, i) $-C(O)R^{11}$, j) $-C(O)R^{11}R^{11}$, k) $-C(O)R^{11}$, and l) $-C(O)SR^{11}$, wherein b) is further substituted with one or more substituents selected from the group consisting of aa) $-OR^{11}$, bb) halogen, cc) $-SR^{11}$, dd) C_{1-12} alkyl, which can be further substituted with halogen, hydroxyl, C_{1-6} alkoxy, or amino, ee) $-OR^{11}$, ff) $-SR^{11}$, gg) $-NR^{11}R^{11}$, hh) -CN, ii) $-NO_2$, jj) $-NC(O)R^{11}$, kk) $-COOR^{11}$, ll) $-N_3$, mm) $=N-O-R^{11}$, nn) $=NR^{11}$, oo) $=N-NR^{11}R^{11}$, pp) $=N-NH-C(O)R^{11}$, and qq) $=N-NH-C(O)NR^{11}R^{11}$;

alternatively R6 and R6' are taken together with the atom to which they are attached to form an epoxide, a carbonyl, an olefin, or a substituted olefin, or a C₃-C₇ carbocyclic, carbonate, or carbamate, wherein the nitrogen of said carbamate can be further substituted with a C₁-C₆ alkyl;

R⁷ is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) – c) optionally is substituted with one or more R^{12} groups;

R⁸ is selected from the group consisting of H and -C(O)R¹¹;

R⁹ is selected from the group consisting of H, OH, and OR¹¹;

R¹⁰ is selected from the group consisting of:

a) H, b)
$$R^{11}$$
, c) $-C_{1-6}$ alkyl-G- R^{12} , d) $-C_{2-6}$ alkenyl-G- R^{12} , and

e) -C₂₋₆ alkynyl-G-R¹²,

wherein the C_{1-6} -alkyl, C_{2-6} alkenyl, and C_{2-6} alkynyl group in any of c) - e) optionally is substituted with one or more R^{12} groups;

R¹¹, at each occurrence, independently is selected from the group consisting of:

- a) H, b) C₁₋₆ alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) C₆₋₁₀ saturated, unsaturated, or aromatic carbocycle, f) 3-12 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, g) -C(O)-C₁₋₆ alkyl,
- h) -C(O)-C₂₋₆ alkenyl, i) -C(O)-C₂₋₆ alkynyl, j) -C(O)-C₆₋₁₀ saturated, unsaturated, or aromatic carbocycle, k) -C(O)-3-12 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, l) -C(O)O-C₁₋₆ alkyl,
- m) -C(O)O-C₂₋₆ alkenyl, n) -C(O)O-C₂₋₆ alkynyl, o) -C(O)O-C₆₋₁₀ saturated, unsaturated, or aromatic carbocycle, p) -C(O)O-3-12 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and q) -C(O)NR¹³R¹³,

wherein any of b) – p) optionally is substituted with one or more R^{12} groups,

alternatively, $NR^{11}R^{11}$ forms a 3-7 membered saturated, unsaturated or aromatic ring including the nitrogen atom to which the R^{11} groups are bonded and optionally one or more moieties selected from the group consisting of: O, $S(O)_p$, and NR^{15} ;

R¹² is selected from the group consisting of:

a) R^{14} , b) C_{1-8} alkyl, c) C_{2-8} alkenyl, d) C_{2-8} alkynyl, e) C_{3-12} saturated, unsaturated, or aromatic carbocycle, f) 3-12 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and g) -NR¹⁵C(O)OR¹⁵,

wherein any of b) – f) optionally is substituted with one or more R^{14} groups;

R¹³, at each occurrence, independently is selected from the group consisting of:

a) H, b) C₁₋₆ alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) C₃₋₁₀ saturated, unsaturated, or aromatic carbocycle, and f) 3-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of b) – f) optionally is substituted with one or more moieties selected from the group consisting of:

```
carbonyl; formyl; F; Cl; Br; I; CN; NO<sub>2</sub>; OR<sup>15</sup>; -S(O)<sub>p</sub>R<sup>15</sup>;
-C(O)R<sup>15</sup>; -C(O)OR<sup>15</sup>; -OC(O)R<sup>15</sup>; -C(O)NR<sup>15</sup>R<sup>15</sup>;
-OC(O)NR<sup>15</sup>R<sup>15</sup>; -C(=NR<sup>15</sup>)R<sup>15</sup>; -C(R<sup>15</sup>)(R<sup>15</sup>)OR<sup>15</sup>;
-C(R<sup>15</sup>)<sub>2</sub>OC(O)R<sup>15</sup>; -C(R<sup>15</sup>)(OR<sup>15</sup>)(CH<sub>2</sub>)<sub>r</sub>NR<sup>15</sup>R<sup>15</sup>; -NR<sup>15</sup>R<sup>15</sup>;
-NR<sup>15</sup>OR<sup>15</sup>; -NR<sup>15</sup>C(O)R<sup>15</sup>; -NR<sup>15</sup>C(O)OR<sup>15</sup>; -NR<sup>15</sup>C(O)NR<sup>15</sup>R<sup>15</sup>;
-NR<sup>15</sup>S(O)<sub>r</sub>R<sup>15</sup>; -C(OR<sup>15</sup>)(OR<sup>15</sup>)R<sup>15</sup>; -C(R<sup>15</sup>)<sub>2</sub>NR<sup>15</sup>R<sup>15</sup>; =NR<sup>15</sup>;
-C(S)NR<sup>15</sup>R<sup>15</sup>; -NR<sup>15</sup>C(S)R<sup>15</sup>; -OC(S)NR<sup>15</sup>R<sup>15</sup>; -NR<sup>15</sup>C(S)OR<sup>15</sup>;
-NR<sup>15</sup>C(S)NR<sup>15</sup>R<sup>15</sup>; -SC(O)R<sup>15</sup>; C<sub>1-8</sub> alkyl, C<sub>2-8</sub> alkenyl;
C<sub>2-8</sub> alkynyl; C<sub>1-8</sub> alkoxy; C<sub>1-8</sub> alkylthio; C<sub>1-8</sub> acyl; saturated, unsaturated, or aromatic C<sub>3-10</sub> carbocycle; and saturated, unsaturated, or aromatic 3-10 membered heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
```

alternatively, $NR^{13}R^{13}$ forms a 3-10 membered saturated, unsaturated or aromatic ring including the nitrogen atom to which the R^{13} groups are attached and optionally one or more moieties selected from the group consisting of O, $S(O)_p$, NR^{15} , and N;

alternatively, CR¹³R¹³ forms a carbonyl group;

R¹⁴, at each occurrence, is selected from the group consisting of:

u)
$$(CR^{13}R^{13})_{r}C(=NNR^{13}C(O)R^{13})(CR^{13}R^{13})_{t}R^{16}$$
,

v)
$$(CR^{13}R^{13})_{t}C(=NOR^{16})(CR^{13}R^{13})_{t}R^{16}$$

w)
$$(CR^{13}R^{13})_rNR^{13}C(O)O(CR^{13}R^{13})_tR^{16}$$
,

$$x) (CR^{13}R^{13})_{t}OC(O)NR^{13}(CR^{13}R^{13})_{t}R^{16}$$

y)
$$(CR^{13}R^{13})_{r}NR^{13}C(O)NR^{13}(CR^{13}R^{13})_{t}R^{16}$$
,

z)
$$(CR^{13}R^{13})_rNR^{13}S(O)_p(CR^{13}R^{13})_tR^{16}$$
, aa) $(CR^{13}R^{13})_rS(O)_pNR^{13}(CR^{13}R^{13})_tR^{16}$,

bb)
$$(CR^{13}R^{13})_rNR^{13}S(O)_pNR^{13}(CR^{13}R^{13})_tR^{16}$$
, cc) $(CR^{13}R^{13})_rNR^{13}R^{13}$,

dd) C₁₋₆ alkyl, ee) C₂₋₆ alkenyl, ff) C₂₋₆ alkynyl, gg) (CR¹³R¹³)_r-C₃₋₁₀ saturated, unsaturated, or aromatic carbocycle, and hh) (CR¹³R¹³)_r-3-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of dd) – hh) optionally is substituted with one or more R¹⁶ groups;

alternatively, two R¹⁴ groups may form -O(CH₂)_sO-;

R¹⁵ is selected from the group consisting of:

- a) H, b) C₁₋₆ alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) C₃₋₁₀ saturated, unsaturated, or aromatic carbocycle, f) 3-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, g) –C(O)-C₁₋₆ alkyl,
- h) -C(O)-C₁₋₆ alkenyl, g) -C(O)-C₁₋₆ alkynyl, i) -C(O)-C₃₋₁₀ saturated, unsaturated, or aromatic carbocycle, and j) -C(O)-3-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of b) – j) optionally is substituted with one or more moieties selected from the group consisting of H; F; Cl; Br; I; CN; NO₂; OH; NH₂; NH(C_{1-6} alkyl); N(C_{1-6} alkyl)₂; C_{1-6} alkoxy; aryl; substituted aryl; heteroaryl; substituted heteroaryl; and C_{1-6} alkyl, optionally substituted

with one or more moieties selected from the group consisting of aryl, substituted aryl, heteroaryl, substituted heteroaryl, F, Cl, Br, I, CN, NO₂, and OH;

R¹⁶, at each occurrence, independently is selected from the group consisting of:

a) R¹⁷, b) C₁₋₆ alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) -C₃₋₁₀ saturated,
unsaturated, or aromatic carbocycle, and f) -3-10 membered saturated,
unsaturated, or aromatic heterocycle containing one or more heteroatoms selected
from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of b) – f) optionally is substituted with one or more R^{17} groups;

R¹⁷, at each occurrence, independently is selected from the group consisting of:

a) H, b) carbonyl, c) F, d) Cl, e) Br, f) I, g) (CR¹³R¹³)_rCF₃, h) (CR¹³R¹³)_rCN,

i) $(CR^{13}R^{13})_rNO_2$, j) $(CR^{13}R^{13})_r(CR^{13}R^{13})$, k) $(CR^{13}R^{13})_rOR^{11}$,

l) $(CR^{13}R^{13})_rS(O)_nR^{13}$, m) $(CR^{13}R^{13})_rC(O)R^{13}$, n) $(CR^{13}R^{13})_rC(O)OR^{13}$,

o) $(CR^{13}R^{13})_{r}OC(O)R^{13}$, p) $(CR^{13}R^{13})_{r}NR^{13}C(O)R^{13}$,

q) $(CR^{13}R^{13})_rC(O)NR^{13}R^{13}$, r) $(CR^{13}R^{13})_rC(=NR^{13})R^{13}$.

s) $(CR^{13}R^{13})_rNR^{13}C(O)NR^{13}R^{13}$, t) $(CR^{13}R^{13})_rNR^{13}S(O)_rR^{13}$,

u) $(CR^{13}R^{13})_rS(O)_pNR^{13}R^{13}$, v) $(CR^{13}R^{13})_rNR^{13}S(O)_pNR^{13}R^{13}$, w) C_{1-6} alkyl,

x) C₂₋₆ alkenyl, y) C₂₋₆ alkynyl, z) $(CR^{13}R^{13})_{r}$ -C₃₋₁₀ saturated, unsaturated, or aromatic carbocycle, and aa) $(CR^{13}R^{13})_{r}$ -3-10 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of w) – aa) optionally is substituted with one or more moieties selected from the group consisting of R^{13} ; F; Cl; Br; I; CN; NO₂; -OR¹³; -NH₂; -NH(C₁₋₆ alkyl); -N(C₁₋₆ alkyl)₂; C₁₋₆ alkoxy; C₁₋₆ alkylthio; and C₁₋₆ acyl;

R¹⁸, at each occurrence, independently is selected from the group consisting of:

```
a) H, b) OR<sup>15</sup>, c) -O-C<sub>1-6</sub> alkyl-OC(O)R<sup>15</sup>, d) -O-C<sub>1-6</sub> alkyl-OC(O)OR<sup>15</sup>,
```

g)
$$-O-C_{1-6}$$
 alkyl-NR¹⁵C(O)R¹⁵, h) $-O-C_{1-6}$ alkyl-NR¹⁵C(O)OR¹⁵,

i)
$$-O-C_{1-6}$$
 alkyl $-NR^{15}C(O)NR^{15}R^{15}$, j) $-O-C_{1-6}$ alkyl $-NR^{15}C(=NH)NR^{15}R^{15}$,

k)
$$-O-C_{1-6}$$
 alkyl $-S(O)_pR^{15}$, l) $-O-C_{2-6}$ alkenyl $-OC(O)R^{15}$,

q)
$$-O-C_{2-6}$$
 alkenyl-NR¹⁵C(O)OR¹⁵, r) $-O-C_{2-6}$ alkenyl-NR¹⁵C(O)NR¹⁵R¹⁵,

s)
$$-O-C_{2-6}$$
 alkenyl-NR¹⁵C(=NH)NR¹⁵R¹⁵, t) $-O-C_{2-6}$ alkenyl-S(O)_nR¹⁵,

u) -O-
$$C_{2-6}$$
 alkynyl-OC(O) R^{15} , v) -O- C_{2-6} alkynyl-OC(O)OR 15 ,

y) -O-
$$C_{2-6}$$
 alkynyl-NR 15 C(O)R 15 , z) -O- C_{2-6} alkynyl-NR 15 C(O)OR 15 ,

bb) -O-
$$C_{2-6}$$
 alkynyl-NR¹⁵C(=NH)NR¹⁵R¹⁵, cc) -O- C_{2-6} alkynyl-S(O)_pR¹⁵; and

dd)
$$-NR^{15}R^{15}$$
;

alternatively, two R^{18} groups taken together form =0, =NOR¹⁵, or =NNR¹⁵R¹⁵; R^{19} is R^{12} ;

R²⁰ is selected from the group consisting of:

a)
$$R^{13}$$
, b) F, c) Cl, d) Br, e) I, f) CN, g) NO_2 , and h) -OR¹¹; alternatively, R^{19} and R^{20} taken together are $-O(CH_2)_rO$ -;

R²¹, at each occurrence, independently is selected from the group consisting of:

k)
$$C_{1-6}$$
 acyl, and l) C_{1-6} alkoxy;

R²² is selected from the group consisting of:

a)
$$C_{1-6}$$
 alkyl, b) C_{2-6} alkenyl, c) C_{2-6} alkynyl, d) C_{1-6} acyl, e) C_{1-6} alkoxy,

- f) C₁₋₆ alkylthio, g) saturated, unsaturated, or aromatic C₅₋₁₀ carbocycle,
- h) saturated, unsaturated, or aromatic 5-10 membered heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -O-C₁₋₆ alkyl-saturated, unsaturated, or aromatic 5-10 membered

heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, j) -NR¹¹-C₁₋₆ alkyl-saturated, unsaturated, or aromatic 5-10 membered heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, k) saturated, unsaturated, or aromatic 10-membered bicyclic ring system optionally containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, l) saturated, unsaturated, or aromatic 13-membered tricyclic ring system optionally containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, m) -OR¹¹, n) -NR¹¹R¹¹, o) S(O)_rR¹¹, and p) R²¹,

wherein any of a) - l) optionally is substituted with one or more R¹² groups;

alternatively, R^{22} and one R^{21} group, taken together with the atoms to which they are bonded, form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with one or more R^{12} groups; or a 5-7 membered saturated or unsaturated heterocycle containing one or more atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R^{12} groups;

R²³ at each occurrence, independently is selected from the group consisting of:

- a) hydrogen; b) an electron-withdrawing group; c) aryl; d) substituted aryl;
- e) heteroaryl; f) substituted heteroaryl; and g) C_{1-6} alkyl, optionally substituted with one or more R^{12} groups;

alternatively, any R^{23} and any R^{20} , taken together with the atoms to which they are bonded, form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with one or more R^{12} groups; or a 5-7 membered saturated or unsaturated heterocycle containing one or more atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally substituted with one or more R^{12} groups;

- p, at each occurrence, is selected from the group consisting of 0, 1, and 2;
- r, at each occurrence, is selected from the group consisting of 0, 1, and 2;
- s, at each occurrence, is selected from the group consisting of 1, 2, 3, or 4;

t, at each occurrence, is selected from the group consisting of 0, 1, or 2; u, at each occurrence, is selected from the group consisting of 1, 2, 3, 4, or 5; and, v, at each occurrence, is selected from the group consisting of 0, 1, 2, or 3.

2. (Currently amended) A compound <u>according to claim 1,</u> having the formula selected from the group consisting of:

or a pharmaceutically acceptable salt, ester, or prodrug thereof,

wherein A, B, n, D, E, R, R^1 , R^4 , R^5 , R^6 , R^6 , R^7 , R^8 , R^9 , R^{10} and R^{1017} are as defined in claim 1.

3. (Currently amended) A compound <u>according to claim 1,</u> having the formula selected from the group consisting of:

or a pharmaceutically acceptable salt, ester, or prodrug thereof,

wherein A, B, n, D, E, R, R^1 , R^4 , R^5 , R^6 , R^6 , R^7 , R^8 , R^9 , R^{10} and R^{1017} are as defined in claim 1.

4. (Currently amended) A compound <u>according to claim 1</u>, having the formula selected from the group consisting of:

or a pharmaceutically acceptable salt, ester, or prodrug thereof, wherein A, B, n, E, R^4 , and R^{10} are as defined in claim 1.

5. (Currently amended) A compound <u>according to claim 1,</u> having the formula selected from the group consisting of:

or a pharmaceutically acceptable salt, ester, or prodrug thereof, wherein A, B, n, E, R^4 , and R^{10} are as defined in claim 1.

6. (Currently amended) A compound <u>according to claim 1</u>, having the formula selected from the group consisting of:

$$H_3C$$
 H_3C
 H_3C
 CH_3
 CH_3

$$H_3C$$
 CH_3
 CH_3

or a pharmaceutically acceptable salt, ester, or prodrug thereof, wherein A, B, n, E, and R^{10} are as defined in claim 1.

7. (Currently amended) A compound <u>according to claim 1</u>, having the formula selected from the group consisting of:

Oyelere et al. Preliminary amendment PCT/US2004/036146

$$H_3C$$
 CH_3
 CH_3

$$H_3C$$
 CH_3
 CH_3

or a pharmaceutically acceptable salt, ester, or prodrug thereof, wherein A, B, n, E, and R¹⁰ are as defined in claim 1.

- 8. (Currently amended) The compound according to <u>claim 1 any of claims 1-7</u>, wherein n is 1.
- 9. (Currently amended) The compound according to <u>claim 1 any of claims 1 8</u>, wherein A- $(B)_n$ -D is:

10. (Currently amended) The compound according to <u>claim 1 any of claims 1 8</u>, wherein A- $(B)_n$ -D is:

A-SO₂NH-D.

11. (Currently amended) The compound according to claim 1 any of claims 1-8, wherein A- $(B)_n$ -D is:

12. (Original) A compound having the formula

$$M \longrightarrow (CH_2)_m \longrightarrow B \longrightarrow O$$

or a pharmaceutically acceptable salt, ester, or prodrug thereof,
wherein M is a macrolide selected from the group consisting of

B is a linker selected from the group consisting of

O is a heterocyclic side chain selected from the group consisting of

and m is an integer from 1-4.

13. (Original) A compound having the formula selected from the group consisting of:

or a pharmaceutically acceptable salt, ester, or prodrug thereof.

- 14. (Currently amended) A pharmaceutical composition comprising a compound according to <u>claim 1 any one of claims 1-13</u> and a pharmaceutically acceptable carrier.
- 15. (Currently amended) A method of treating a microbial infection in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim</u> <u>lany one of claims 1-13</u>.
- 16. (Currently amended) A method of treating a fungal infection in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim 1</u> any one of <u>claims 1-13</u>.
- 17. (Currently amended) A method of treating a parasitic disease in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim 1 any one of claims 1 13</u>.
- 18. (Currently amended) A method of treating a proliferative disease in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim</u> <u>lany one of claims 1-13</u>.
- 19. (Currently amended) A method of treating a viral infection in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim 1 any one of claims 1-13</u>.

Oyelere et al.
Preliminary amendment
PCT/US2004/036146

- 20. (Currently amended) A method of treating an inflammatory disease in a mammal comprising administering to the mammal an effective amount of a compound according to <u>claim</u> <u>lany one of claims 1-13</u>.
- 21. (Currently amended) A method of treating a gastrointestinal motility disorder in a mammal comprising administering to the mammal an effective amount of a compound according to claim 1 any one of claims 1 13.
- 22. (Currently amended) The method according to <u>claim 15 any one of claims 15 21</u> wherein the compound is administered orally, parentally, or topically.
- 23. (Currently amended) A method of synthesizing a compound according to <u>claim 1</u> any one of claims 1 13.
- 24. (Currently amended) A medical device containing a compound according to <u>claim 1 any</u> one of claims 1-13.
- 25. (Original) The medical device according to claim 24, wherein the device is a stent.