WHAT IS CLAIMED IS:

- A method of treating or suppressing the symptoms
 of at least one disorder selected from addictive disorders, psychoactive substance use disorders, intoxication disorders, inhalation disorders, alcohol addiction, tobacco addiction, and nicotine addiction, said method comprising the step of administering a
 therapeutically effective, nontoxic amount of an active agent selected from the group consisting of a heterocyclic amine, a phenylazacycloalkane, a cabergoline, an aromatic bicyclic amine, and pharmaceutically acceptable derivatives or salts of any
 said active agent, to a patient in need of treatment.
 - The method of claim 1 wherein the active agent is a heterocyclic amine of the formula:

15

or a pharmaceutically acceptable salt thereof, wherein: $R^1,\ R^2,\ \text{and}\ R^3\ \text{are each independently hydrogen,}\ C_{1\text{-}6}$

alkyl, C_{3-5} alkenyl, C_{3-5} alkynyl, C_{3-7} cycloalkyl,

5 C_{4-10} cycloalkyl- or phenyl- substituted C_{1-6} alkyl, or \mathbb{R}^1 and \mathbb{R}^2 are joined to form a C_{3-7} cyclic amine which can contain additional heteroatoms and/or unsaturation;

n is 0 or 1;

X is hydrogen, C₁₋₆ alkyl, halogen, hydroxy, alkoxy, cyano, carboxamide, carboxyl, or carboalkoxyl;

A is CH, CH₂, CH-halogen, CHCH₃, C=O, C=S, C-SCH₃, C=NH, C-NH₂, C-NHCH₃, C-NHCOOCH₃, C-NHCN, SO₂, or N;

B is CH_2 , CH, CH-halogen, C=0, N, NH, $N-CH_3$, or 0; and

- D is CH, CH2, CH-halogen, C=O, O, N, NH, or N-CH3.
 - 3. The method of claim 2, wherein:

D is N or NH, n is 0, and $R^1,\ R^2,\ R^3,\ X,\ A,$ and B are as defined in claim 2; or

20 A is CH, CH₂, CHCH₃, C=O, C=S, C-SCH₃, C=NH, C-NH₂, C-NHCH₃, C-NHCOOCH₃, or C-NHCN, and R^1 , R^2 , R^3 , n, X, B, and D are as defined in claim 2; or

A is CH or C=O, and \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , n, X, B, and D are as defined in claim 2.

25

4. The method of claim 2 wherein the active agent is selected from the group consisting of:

PATENT APPLICATION 00287 PRO2

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidao[4,5,1-ij]quinolin-(2H)-one;

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione;

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione maleate; and

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione 2-butenedioanate.

5. The method of claim 1 wherein the active agent is a phenylazacycloalkane compound of the formula:

$$\mathbb{R}^{5}$$
 \mathbb{R}^{7}
 $\mathbb{C}(\mathrm{CH}_{2})_{n2}$

15

5

10

or a pharmaceutically acceptable salt thereof, wherein:

n2 is 0-3;

 R^4 and R^5 are independently hydrogen, -OH, CN, $CH_2CN, \\$

10

15

PATENT APPLICATION 00287 PRO2

R7 is other than hydrogen;

2- CF₃, 4-CF₃, CH₂CF₃, CH₂CHF₂, CH=CF₂, (CH₂)₂CF₃, ethenyl, 2-propenyl, OSO_2CH_3 , OSO_2CF_3 , SSO_2CF_3 , COR^7 , COR^7 , COR^7 , $COR(R^7)_2$, $SO_{xx}CH_3$, wherein xl is 0-2, $SO_{xx}CF_3$, $O(CH_2)_{xx}CF_3$, $SO_2N(R^7)_2$, $CH=NOR^7$, $COCOOR^7$, $COCOON(R^7)_2$, C_{1-8} alkyl, C_{3-8} cycloalkyl, CH_2OR^7 , $CH_2(R^7)_2$, $NR^7SO_2CF_3$, NO_2 , halogen, a phenyl at positions 2, 3 or 4, thienyl, furyl, pyrrole, oxazole, thiazole, N-pyrroline, triazole, tetrazole or pyridine; provided that at least one of R^4 and R^5 is a substituent other than hydrogen and provided that when R^4 or R^5 is -OH

 R^{6} is hydrogen, CF_{3} , $CH_{2}CF_{3}$, C_{1} - C_{8} alkyl, C_{3} - C_{8} cycloalkyl, C_{4} - C_{9} cycloalkyl-methyl, C_{2} - C_{8} alkenyl, C_{2} - C_{8} alkynyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, $-(CH_{2})_{m}$ - R^{8} , wherein m is 1-8, $CH_{2}SCH_{3}$ or a C_{4} - C_{8} alkyl bonded to said nitrogen and one of its adjacent carbon atoms inclusive to form a heterocyclic structure;

 R^7 is independently hydrogen, CF3, CH2CF3, $C_1\text{-}C_8$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $C_4\text{-}C_9$ cycloalkyl-methyl, $C_2\text{-}C_8$ alkenyl, $C_2\text{-}C_8$ alkynyl, 3,3,3-trifluoropropyl,

4,4,4-trifluorobutyl, $-(CH_2)_m-R^8$, wherein m is 1-8; R^8 is phenyl optionally substituted with a CN, CF₃, CH_2CF_3 , C_1-C_8 alkyl, C_3-C_8 cycloalkyl, C_4-C_9 cycloalkyl-methyl, C_2-C_8 alkenyl, C_2-C_8 alkynyl, 2-thiophenyl, 3-thiophenyl, $-NR^9CONR^9R^{10}$, or $-CONR^9R^{10}$; and R^9 and R^{10} are each independently hydrogen, C_1-C_8

alkyl, C_3-C_8 cycloalkyl, C_4-C_9 cycloalkylmethyl, C_2-C_8

15

PATENT APPLICATION 00287 PRO2

alkenyl or C2-C8 alkynyl.

- 6. The method of claim 5 wherein:
- R^4 is CN, and n2, R^5 , R^5 , and R^7 are as defined in
- 5 claim 5; or

 R^6 is $H,\ R^6$ is n-propyl, and n2, $R^4,$ and R^7 are as defined in claim 5; or

 R^6 is $-OSO_2CF_{3,}$ and n2 and $R^5\!-\!R^7$ are as defined in claim 5: or

 R^5 is H, R^6 is C_{1-8} alkyl, and n2, $R^4,$ and R^7 are as defined in claim 5; or

 R^4 is 3-OH, R^5 is H, R^6 is n-propyl, R^7 is a C_{1-8} alkyl, and n is as defined in claim 5; or

n2 is 2, and R^4-R^7 are as defined in claim 5; or n2 is 0, and R^4-R^7 are as defined in claim 5.

- 7. The method of claim 5 wherein the phenylazacycloalkane compound is selected from the group consisting of:
- 20 (3S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride;
 - $\label{eq:condition} (3S) 3 [3 (methylsulfonyl) phenyl] 1 propylpiperidine hydrobromide; and$
- (3S)-3-[3-methylsulfonyl)phenyl]-1-propylpiperidine
 25 (2E)-2-butenedioate.

8. The method of claim 1 wherein the active agent is a cabergoline of the formula:

10 or a pharmaceutically acceptable salt thereof, wherein:

R11 is hydrogen or methyl;

 R^{12} is independently hydrogen, halogen, methyl,

PATENT APPLICATION 00287 PRO2

formyl, S-R¹⁷, or SO-R¹⁷, wherein R¹⁷ is $C_1 - C_4$ alkyl or phenyl;

R13 is hydrogen or methoxy;

 R^{14} is independently $C_1 - C_4$ alkyl, $C_1 - C_4$ alkenyl, $C_1 - C_4$

5 alkynyl, benzyl, or phenyl; and

 R^{16} and R^{16} are each independently $C_1\text{-}C_4$ alkyl, cyclohexyl, benzyl, phenyl optionally substituted with halogen or methoxy, or $(CH_2)_{n3}N\,(CH_3)_2$, wherein n3 is an integer.

10

15

- 9. The method of claim 8 wherein the active agent is 1-((6-allylergolin-8\beta-yl)carbonyl)-1- (3-(dimethylamino)propyl)-3-ethylurea.
- 10. The method of claim 1 wherein the active agent is an aromatic bicyclic amine compound of the formula:

$$R^{23}$$
 R^{24}
 R^{25}
 R^{19}
 R^{19}
 R^{20}
 R^{20}

PATENT APPLICATION 00287 PRO2

wherein:

n3 is 0 or 1;

n4 is 0 or 1, provided that \mathbb{R}^{20} is not present when n4 is 0;

 $\begin{array}{ll} 5 & R^{18} \text{ is } \alpha\text{-}R^{18\text{-}1}\text{:}\beta\text{-}R^{18\text{-}2} \text{ where one of } R^{18\text{-}1} \text{ or } R^{18\text{-}2} \text{ is} \\ \\ \text{selected from the group consisting of H or } C_1\text{-}C_6 \text{ alkyl}, \\ \\ \text{and the other of } R^{18\text{-}1} \text{ or } R^{18\text{-}2} \text{ is a group of the formula:} \end{array}$

$$\begin{array}{c|c}
R^{26} & R^{28} \\
 & \parallel \\
 & C \\
 & R^{29} \\
 & R^{30}
\end{array}$$

wherein R²⁶ and R²⁷ are independently selected from H or C_1 - C_5 -alkyl; R²⁸ is oxygen (O) or R²⁸ is α -R²⁸⁻¹: β -R²⁸⁻², wherein R²⁸⁻¹ and R²⁸⁻² are independently selected from H or C_1 - C_6 alkyl; R²⁹ is selected from the group consisting of:

$$-N R^{31}$$

$$-R^{32}$$

$$R^{33}$$

wherein R^{31} and R^{33} are independently selected from H or $C_1\text{-}C_6$ alkyl; R^{32} is nitrogen (N-) or methine (HC-); and s is 1 or 2;

10

$$-N$$
 OH
,
 OH
,
 NR^{34}
, and

wherein R^{14} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, $-C_1$ - C_3 alkyl- $(C_3$ - C_7 cycloalkyl); and S2 is 0, 1, or 2;

$$-NR^{34}$$
 $N-$

 $\label{eq:wherein R34} \text{ and s2 are as defined above;}$ R^{19} is oxygen (O) or sulfur (S);

 R^{20} is $\alpha-R^{20-1}\colon\ \beta-R^{20-1},$ wherein one of R^{20-1} and R^{20-2} is H, C_1-C_6 alkyl, and the other of R^{20-1} or R^{20-2} is H, C_1-C_6 alkyl, phenyl, hydroxy, and -O-(C_1-C_3 alkyl);

 R^{21} is $\alpha\text{-}R^{21\text{-}1}\colon\ \beta\text{-}R^{21\text{-}1},$ wherein one of $R^{21\text{-}1}$ and $R^{21\text{-}2}$ is

20

25

cvcloalkvl);

PATENT APPLICATION 00287 PRO2

H, C_1 - C_6 alkyl, and the other of R^{21-1} or $R^{21\cdot 2}$ is H, C_1 - C_6 alkyl, phenyl, hydroxy, and -O-(C_1 - C_3 alkyl);

and when n4 is 1, one of R^{20-1} or R^{20-2} and one of R^{21-3} or R^{21-2} can be taken together with the carbon atoms to 5 which they are attached to form a carbon ring of 5-, 6-, or 7- members;

 R^{22} is H, F, Cl, Br, I, -CONR³⁵R³⁶, -SONR³⁵R³⁶, CF₃, NR³⁵R³⁶, NO₂, CN, -NR³⁵-CO-R³⁶, -SO₂CF₃, C₁-C₄ alkyl, Si(CH₃)₃, and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, Br, I, and -CO-NR³⁵R³⁶, wherein R³⁵ and R³⁶ are independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, and -C₁-C₃ alkyl-(C₃-C₇ cycloalkyl);

and where R^{22} and one of R^{21-1} or R^{21-2} are taken together with the carbon atoms to which they are attached to form a carbon ring of 5-, 6-, or 7-members;

 R^{23} is H, F, Cl, Br, I, -CONR^{37}R^{38}, -SONR^{37}R^{38}, CF_3, \$\$NR^{37}R^{38}, NO_2, CN, -NR^{37}-CO-R^{38}, -SO_2CF_3, C_1-C_4 alkyl, Si(CH_3)_3, \$\$and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, Br, I, and -CO-NR^{37}R^{38}, wherein R^{37} and R^{38} are independently selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, and $-C_1$ - C_3 alkyl- $(C_3$ - C_7

 $\rm R^{24}$ is H, F, Cl, Br, I, -CONR^39R^40, -SONR^39R^40, CF_3, NR^39R^40, NO_2, CN, -NR^39-CO-R^40, -SO_2CF_3, C_1-C_4 alkyl, Si(CH_3)_3, and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl,

30 Br, I, and $-CO-NR^{39}R^{40}$, wherein R^{39} and R^{40} are independently selected from the group consisting of H, C_1-C_6 alkyl, C_3-C_7 cycloalkyl, and $-C_1-C_3$ alkyl- $(C_3-C_7$ cycloalkyl);

$$\begin{split} R^{25} \ \ \text{is H, F, Cl, Br, I, -CONR^{41}R^{42}, -SONR^{41}R^{42}, \ CF_3,} \\ 35 \ \ \ \ NR^{41}R^{42}, \ NO_2, \ CN, \ -NR^{41}-CO-R^{42}, \ -SO_2CF_3, \ C_1-C_4 \ \text{alkyl, Si(CH_3)}_3, \end{split}$$

15

20

30

PATENT APPLICATION

and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, Br, I, and $-CO-NR^{c_1}R^{c_2}$, wherein R^{c_1} and R^{c_2} are independently selected from the group consisting of H, C_1-C_4 alkyl, C_3-C_7 cycloalkyl, and $-C_1-C_3$ alkyl- (C_3-C_7) cycloalkyl;

with the proviso that not more than two of $R^{22},\ R^{23},$ $R^{24},$ and R^{25} are other than H; and

 R^{30} is selected from the group consisting of: phenyl optionally substituted with one or two substituents selected from the group consisting of CF₃, COR⁴³, COOR⁴³, CN, NO₂, NR⁴⁴-CO-R⁴⁵, -S-(C₁-C₆ alkyl), NR⁴⁴R⁴⁵, or a group represented by R⁴⁶;

2-, 3-, and 4-pyridinyl optionally substituted with one or two substituents represented by $R^{46};$ and

2-, 4-, and 5-pyrimidinyl optionally substituted with one or two substituents represented by $R^{\rm 46}\,;$

wherein $R^{43},\ R^{44}$ and R^{45} are independently selected from the group consisting of $\ H,\ C_1\text{-}C_6$ alkyl, $C_3\text{-}C_7$ cycloalkyl,

-C₁-C₃ alkyl-(C₃-C₇ cycloalkyl); and R⁴⁶ is selected from the group consisting of F, Cl, Br, I, -CO-NR⁴⁴R⁴⁵, -SO₂NR⁴⁴R⁴⁵, OH, SH, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, -OR⁴⁷, -CH₂-(C₃-C₆ cycloalkyl), -CH₂-phenyl, C₃-C₆ cycloalkyl, -

25 SO_2CF_3 , and $-CH_2CF_3$, wherein R^{44} and R^{45} are as previously defined and R^{47} is C_1-C_6 alkyl; and

enantiomers and diasteromers thereof, where such exist, and pharmaceutically acceptable salts thereof.

11. The method of claim 10 wherein: one of the substituents represented by R^{18-1} or R^{18-2} is H, and the other substituent represented by R^{18-1} or R^{18-2} is a group of the formula:

-35-

wherein $R^{26},\ R^{27},\ R^{28},\ R^{29}$ and R^{30} are as defined in claim 10.

12. The method of claim 10 wherein the active agent is selected from the group consisting of:

1-(4-fluorophenyl)-4-[2-(isochroman-1-yl)ethyl]piperazine;

1-[2-(isochroman-1-yl)ethyl]-4-phenylpiperazine;

1-[2-(isochroman-1-yl)ethyl]-4-(4-

methoxyphenyl)piperazine;

(-)-4-[4-[2-(isochroman-1-yl)ethyl]piperazin-1-

yl]benzamide; and

(-)-4-[4-[2-(isochroman-1-yl)ethyl]piperazin-1-

15 yl]benzenesulfonamide.

13. The method of claim 1 wherein the active agent is used to treat or enhance the treatment of tobacco and/or nicotine addiction.

20

14. The method of claim 1 wherein the active agent is used to reduce the craving for tobacco and/or nicotine containing products.

25 15. The method of claim 1 wherein the active agent

15

2.5

PATENT APPLICATION 00287 PRO2

is used to reduce the smoking and/or chewing of tobaccoor nicotine-containing products.

- 16. The method of claim 1 wherein the active agent is administered to the patient three times a day.
 - 17. The method of claim 1 wherein the active agent is selected from the group consisting of a heterocyclic amine, a phenylazacycloalkane, and a cabergoline administered in a dose of about 0.01 mg/day to about 10.0 mg/day.
 - 18. The method of claim 17 wherein the active agent is selected from the group consisting of a heterocyclic amine, a phenylazacycloalkane, a cabergoline, and a cabergoline-type derivative administered in a dose of about 0.125 mg/day to about 6 mg/day.
- 19. The method of claim 18 wherein the active agent 20 is administered in an amount from about 0.375 mg/day to about 5 mg/day.
 - 20. The method of claim 19 wherein the active agent is administered in an amount from about 0.75 mg/day to about 4.5 mg/day.

10

15

PATENT APPLICATION 00287 PRO2

- 21. The method of claim 17 wherein an initial dose of active agent of about 0.125 mg/day administered to the patient three times a day is titrated to higher levels every five to seven days until therapeutic effect is achieved.
- 22. The method of claim 1 wherein the active agent is an aromatic bicyclic amine administered in an amount of from about 5 mg/day to about 120 mg/day.
- 23. The method of claim 22 wherein the aromatic bicyclic amine is administered in an amount of from about 20 mg/day to about 100 mg/day.
- 24. The method of claim 23 wherein the aromatic bicyclic amine is administered in an amount of from about 40 mg/day to about 80 mg/day.
- 25. The method of claim 22 wherein an initial dose 20 of active agent of about 5 mg/day is administered to the patient three times a day and is titrated to higher levels every five to seven days until therapeutic effect is achieved.