

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 Ist SESSIONAL TEST QUESTION PAPER 2018–19 Even SEMESTER

USN					

Degree : B.E Semester : IV

Branch : Computer Science & Engineering Subject Code : 17CS43
Subject Title : Design and Analysis of Algorithms Date : 2019-03-12

Duration: 90 Minutes Max Marks: 30

Note: Answer ONE full question from each part.

Q No.	Question	Marks	K Level	CO mapping						
	PART-A									
1(a)	Write an algorithm using iteration to output all prime factors of a given positive integer N.	5	Under- standing	CO1						
(b)	Discuss an algorithm using recursion to output all prime factors of a given positive integer N.	5	Under- standing	CO1						
(c)	Evaluate the performance of above two algorithms w.r.t. time computation and memory requirements.	5	Applying	CO2						
	OR									
2(a)	Write an algorithm using recursion to compute Binomial coefficients ${}^{n}C_{k} = n!/(k!*(n-k)!)$	5	Under- standing	CO1						
(b)	Outline an algorithm to compute a polynomial using Horner's rule $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0$.	5	Under- standing	CO1						
(c)	Construct the recurrence equation for the computation of Q2(b) and solve the same.	5	Applying	CO2						
	PART-B									
3(a)	Outline an algorithm to compute sum of N numbers given in an array using divide and conquer technique by dividing the input into two (approximately) equal parts.	5	Under- standing	CO1						
(b)	Show the recurrence equation for the computation of Q3(a) and solve the same.	5	Under- standing	CO1						
(c)	Apply the algorithm in Q3(a) to find the sum of following numbers 11, 27, 18, 14, 25, 31, 29, 15. Show the results at each step of the computation.	5	Applying	CO2						
	OR									
4(a)	Compare the order of growth of following functions: $f(n) = n(n+1)(2n+1)/6$, $g(n) = n^3$	5	Under- standing	CO1						
(b)	Explain Big-Oh, Big-Theta and Big-Sigma notations and provide one example of each	5	Under- standing	CO1						
(c)	Develop an algorithm to sort 4 numbers a, b, c, d using max of 5 comparisons.	5		CO2						

Signature of the Faculty

Signature of the Module Coordinator

Signature of the HOD