

Document Title

Document N – List of End Points of the Active Substance Flupyradifurone (BYI 02960)

Data Requirements

According to OECD format guidance for industry data submissions on plant protection products and their active substances Revision 2 May 2005 Document N

Date

2012-04-20

Author(s)

Nuesslein, F.; Rauen, H.W.; Spiegel K.; Lasserre-Bigot D.; Garside C.; Hellpointner, E

Bayer CropScience

M-429794-01-1

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

TABLE OF CONTENTS

		Page
Chapter 1:	Identity, physical and chemical properties, details of uses, further information, and proposed classification and labelling	6
	Identity (OECD data point IIA 1)	6
	Physical-chemical properties (OECD data point IIA 2)	7
	Classification and proposed labelling (OECD data point IIA 10)	9
Chapter 2:	Methods of analysis	10
	Analytical methods for the active substance (OECD data point IIA 4.2)	10
	Analytical methods for residues (OECD data points IIA 4.3 to IIA 4.8)	10
Chapter 3:	Impact on human and animal health	11
	Absorption, distribution, excretion and metabolism in mammals (OECD data point IIA 5.1)	11
	Acute toxicity (OECD data point IIA 5.2)	12
	Short term toxicity (OECD data point IIA 5.3)	12
	Genotoxicity (OECD data point IIA 5.4)	12
	Long term toxicity and carcinogenicity (OECD data point number IIA 5.5)	13
	Reproductive toxicity (OECD data point IIA 5.6)	13
	Neurotoxicity / delayed neurotoxicity (OECD data point IIA 5.7)	13
	Other toxicological studies (OECD data points IIA 5.8 and IIA 5.10)	13
	Medical data (OECD data point IIA 5.9)	13
	Summary (OECD data point IIA 5.11)	14
	Dermal absorption (OECD data points IIA 5.9.9 and IIIA 7.6)	14
	Acceptable exposure scenarios (including method of calculation)	14
Chapter 4:	Residues	15
	Metabolism in plants (OECD data point s IIA 6.2.1, IIA 6.7, IIIA 8.2 and IIIA 8.7)	15
	Metabolism in livestock (OECD data points IIA 6.2.2 to IIA 6.2.5, IIA 6.7, IIIA 8.4 and IIIA 8.7)	15
	Residues in succeeding crops (OECD data points IIA 6.6 and IIIA 8.6)	15
	Stability of residues (OECD data points IIA 6.1 and IIIA 8.1)	16

	Residues from livestock feeding studies (OECD data points IIA 6.4 and IIIA 8.4)	16
	Summary of critical residues data (OECD data points IIA 6.3 and IIIA 8.3)	17
	Consumer risk assessment (OECD data points IIA 6.9 and IIIA 8.10)	18
	Processing factors (OECD data points IIA 6.5 and IIIA 8.5)	19
	Proposed MRLs (OECD data point IIA 6.7.2 and IIIA 8.7.2)	19
Chapter 5:	Fate and behaviour in the environment	20
	Route of degradation (aerobic) in soil (OECD data point IIA 7.1.1)	20
	Route of degradation in soil (anaerobic & photolysis) (OECD data points IIA 7.1.2 & IIA 7.1.3)	20
	Rate of degradation in soil (OECD data points IIA 7.2, IIA 7.3, IIIA 9.1 and IIIA 9.2)	21
	Soil adsorption/desorption (OECD data points IIA 7.4.1 and IIA 7.4.2)	22
	Mobility in soil (OECD data points IIA 7.4.3 to IIA 7.4.8 and IIIA 9.3)	22
	PEC (soil) (OECD data point IIIA 9.4)	22
	Route and rate of degradation in water (OECD data points IIA 2.9 and IIA 7.5 to IIA 7.9)	24
	PEC (surface water) (OECD data points IIIA 9.7)	25
	PEC (sediment)	32
	PEC (ground water) (OECD data point IIIA 9.6)	41
	Fate and behaviour in air (OECD data points IIA 7.10 and IIIA 9.9)	43
	Definition of the Residue (OECD data point IIA 7.11)	43
	Monitoring data, if available (OECD data point IIA 7.12)	44
Chapter 6:	Effects on non-target species	45
	Effects on terrestrial vertebrates (OECD data points IIA 8.1, IIIA 10.1 and IIIA 10.3)	45
	Toxicity/exposure ratios for terrestrial vertebrates (OECD data points IIIA 10.1 and IIIA 10.3)	45
	Toxicity data for aquatic species (most sensitive species of each group) (OECD data points IIA 8.2 and IIIA 10.2)	46
	Toxicity/exposure ratios for the most sensitive aquatic organisms (OECD data point IIIA 10.2.1)	47
	Bioconcentration	49
	Effects on honeybees (OECD data points IIA 8.7 and IIIA 10.4)	49
	Hazard quotients for honey bees (OECD data point number IIIA 10.4.1)	50

Effects on other arthropod species (OECD data points IIA 8.8.1, IIA 8.8.2 and IIIA 10.5)	50
Effects on earthworms (OECD data points IIA 8.9 and IIIA 10.6)	51
Toxicity/exposure ratios for earthworms (OECD data point IIIA 10.6.1)	51
Toxicity/exposure ratios for other soil non-target macro-organisms (OECD data point IIIA 10.6.6)	52
Effects on soil micro-organisms (OECD data points IIA 8.10 and IIIA 10.7)	52

List of end points for the active substance BYI 02960 (Flupyradifurone) & its product Flupyradifurone SL 200

Chapter 1: Identity, physical and chemical properties, details of uses, further information, and proposed classification and labelling

Active substance (ISO Common Name) Function (e.g. fungicide)

Flupyradifurone Insecticide

Rapporteur Member State

Netherlands

Identity (OECD data point IIA 1)

Chemical name (IUPAC)

Chemical name (CA)

CIPAC No CAS No

EEC No (EINECS or ELINCS)

FAO Specification (including year of publication) Minimum purity of the active substance as

manufactured (g/kg)

Identity of relevant impurities (of toxicological, environmental and/or other significance) in the active substance as manufactured (g/kg)

Molecular formula Molecular mass Structural formula

4-[(6-chloro-3-pyridylméthyl)(2,2-
difluoroéthyl)amino]furan-2(5H)-one
2(5H)-furanone, 4-[[(6-chloro-3-pyridinyl)methyl](2,2-
difluoroethyl)amino]-
not available
951659-40-8
not available
not available
960 g/kg
There are no relevant impurities

Physical-chemical properties (OECD data point IIA 2)

Melting point (state purity)	69.0 °C (purity 99.4%)		
Boiling point (state purity)	No boiling point, test item decomposes at a temperature		
	of 270°C (purity 99.4%)		
Temperature of decomposition	Exothermal decomposition in the range 270 – 355°C		
1	(purity 99.4%)		
Appearance (state purity)	White powder (purity 99.4%)		
Relative density (state purity)	D=1.43 (purity 99.4%)		
Surface tension	69.1 mN/m (20°C)		
Vapour pressure (in Pa, state temperature)	1.7 x 10 ⁻⁶ Pa (25°C)		
Henry's law constant (Pa m ³ mol ⁻¹)	8.2 x 10 ⁻⁸ Pa m ³ mol ⁻¹		
Solubility in water (g/l or mg/l, state temperature)	pH 4: 3.2 g/L at 20°C		
	pH 7: 3.2 g/L at 20°C		
Calabitation and a salar state of a salar state of	pH 9: 3.0 g/L at 20°C		
Solubility in organic solvents (in g/l or mg/l,	[g/L at 20 °C]		
State temperature)	methanol > 250		
	n-heptane 0.0005 toluene 3.7		
	dichloromethane > 250		
	acetone > 250		
	ethylacetate > 250		
	dimethyl sulfoxide > 250		
Partition as officient (log P) (state nH and	nH 4: log P 1 2 at 25°C		
Partition co-efficient (log P _{OW}) (state pH and	pH 4: log P _{OW} = 1.2 at 25°C pH 7: log P _{OW} = 1.2 at 25°C		
temperature)			
Hydrolytic stability (DT ₅₀) (state pH and	pH 9: log P _{OW} = 1.2 at 25°C pH 5: stable at 20°C		
	pH 7: stable at 20°C		
temperature)	pH 9: stable at 20°C		
D'anadatan			
Dissociation constant	No dissociation occurs in aqueous solutions in the pH-range 1< pH <12		
IIV/VIS absorption (may)	Peak maxima molar absorptivity		
UV/VIS absorption (max.)			
(if absorption > 290 nm state ε at wavelength)	[nm] [1000 cm²/mol] 213 9615.06		
	259 25800.49		
	No peak maxima above 290 nm, however,		
	absorption extends at greater 290nm		
Photostability (DT ₅₀) (aqueous, sunlight, state pH)	SFO DT ₅₀ in sterile phosphate buffer (pH 7) = 13.8		
	experimental hrs.		
	BYI 02960 should rapidly degrade by photolysis in top		
	water layers exposed to sunlight, e. g. the DT50 under		
	environmental conditions is calculated to be 1.75 days in		
	Phoenix, AZ (latitude 33.3°N).		
Quantum yield of direct phototransformation in	$\Phi = 0.000138 \text{ (mean, n = 2)}$		
water at λ > 290 nm			
Flammability	Substance is not a highly flammable solid		
Explosive properties	Not explosive		

Safe GAPs (uses) in European Union

Crop and/ or situation (a)	Country	Product Name	F G or I (b)	Pests or Group of pests controlle d	Form				lication	peum es		ion rate pe	r treatment	PHI (days)	Remarks:
				(c)	Type (d-f)	Conc. of as	method kind (f-h)	growth stage & season (j)	number min max (k)	interval between applications (min)	kg as/hL min max	water L/ha min max	kg as/ha min max		
	Crop Protection Uses														
Hops	N-EU	Sivanto	F	aphids	SL	200	spray	31-75	1	n.a.	0.0045- 0.0075	2000- 3300	0.150	21	
Lettuce	N-EU (S-EU)	Sivanto	F	aphids	SL	200	spray	12-49	1	n.a.	0.0125- 0.0250	500-1000	0.125	10	
Lettuce	n.a.	Sivanto	G	aphids	SL	200	spray	12-49	2	10	0.0125- 0.0250	500-1000	0.125	3	
Environmental Science Uses (Home & Garden Uses) to be submitted in 2012															
Lettuce	N-EU S-EU	Sivanto	F	aphids	SL	050	spray	12-49	2	10	0.0125- 0.0250	500-1000	0.125	3	Treatment of only a small area of the garden

Remarks:

- (a) For crops, the EU and Codex classifications (both) should be used; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plants type of equipment used must be indicated

- (i) g/kg or g/l
- (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of application possible under practical conditions of use must be provided
- (l) PHI minimum pre-harvest interval
- (m) Remarks may include: Extent of use/economic importance/restrictions

Classification and proposed labelling (OECD data point IIA 10)

with respect to physical/chemical data

Classification: none
Proposed label: none
Symbol: none
Indication of danger: none
Risk phrases: none
Safety phrases: none

with respect to toxicological data

Classification: Harmful
Proposed label: See Doc. C

Symbol: Xn

Indication of danger: Harmful if swallowed

Risk phrases: R 22 Safety phrases: none

with respect to fate and behaviour data

Classification: none
Proposed label: none
Symbol: none
Indication of danger: none
Risk phrases: none
Safety phrases: none

with respect to ecotoxicological data

Classification: Dangerous to the environment

Proposed label: See Doc. C

Symbol: N

Indication of Very toxic to aquatic danger: organisms, may cause

organisms, may cause longterm adverse effect in the

aquatic environment

Risk phrases: R 50/53 Safety phrases: S 60, S 61

Chapter 2: Methods of analysis

Analytical methods for the active substance (OECD data point IIA 4.2)

Technical as (principle of method)

Impurities in technical as (principle of method)

Plant protection product (principle of method)

HPLC-UV
HPLC-DAD (diode array detector)
HPLC-UV

Analytical methods for residues (OECD data points IIA 4.3 to IIA 4.8)

Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)

Food/feed of animal origin (principle of method and LOQ for methods for monitoring purposes)

Soil (principle of method and LOQ)

Water (principle of method and LOQ)

Air (principle of method and LOQ)

Body fluids and tissues (principle of method and LOQ)

HPLC-MS/MS:	0.01 mg/kg (BYI 02960) &				
	0.02 mg/kg (DFA); except for hops				
hops:	0.1 mg/kg (BYI 02960) &				
	0.2 mg/kg (DFA)				
HPLC-MS/MS:	0.01 mg/kg (BYI 02960) &				
	0.02 mg/kg (DFA)				
HPLC-MS/MS: 5 μg/kg					
HPLC-MS/MS: 0.05 μg/L					
HPLC-MS/MS: 7 μg/m					
not applicable					
11					

The gastrointestinal absorption of radioactivity was

conjugation reactions and cleavage of the molecule (leading to metabolites of less toxicological concern)

The main metabolic reactions observed in plants and

livestock were also observed in the rat. Metabolites

BYI 02960-difluoroethyl-aminofuranone, DFA, 6-

were more pronounced in livestock.

high and fast. It accounted for >80 % of the dose

Rate and extent of absorption

Toxicologically significant compounds

(animals, plants and environment)

Document N / List of End Points: Flupyradifurone (BYI 2960) & Flupyradifurone SL 200

Chapter 3: Impact on human and animal health

Absorption, distribution, excretion and metabolism in mammals (OECD data point IIA 5.1)

independent of the labelling position used. **Distribution** The maximum plasma concentration was reached in most cases within 1 or 2 hours after administration of low doses. Only after administration of the high dose the peak plasma concentration was observed between 2 an 4 hours after dosage. After reaching the peak concentration, the radioactivity levels in plasma declined steadily by several orders of magnitude in all studies independent of sex or labelling position of the test compound. There is no indication of any accumulation or Potential for accumulation significant retention of radioactivity in male and female rats. This observation is supported by the low Pow of 1.2. Concentrations of radioactivity detected in tissues and organs at sacrifice were either very low or below the limit of detection. Excretion was very fast, mainly renal and almost Rate and extent of excretion completed after 24 h. No radioactivity was detected in the expired air after dosing of the pyridinylmethyland ethyl-1-labelled compounds, proving the stability of these labelling positions in the molecule. Only after administration of [furanone-4-¹⁴C]BYI 02960 between 1 and 3% of the administered radioactivity was exhaled. This demonstrated that for a small portion of the dose (higher in males than in females) the furanone ring of the molecule obviously was opened and underwent biotransformation to C-1 fragments. Metabolism in animals BYI 02960 was rather moderately metabolised in the rat. The parent compound represented the predominant part of the radioactivity in urine of male and female rats. The principal metabolic reactions of BYI 02960 in rats were: hydroxylation followed by conjugation with glucuronic acid or sulfate, cleavage of the difluoroethyl group forming BYI 02960-des-difluoroethyl, and difluoroacetic acid (DFA), cleavage of the molecule at the pyridinylmethylene bridge forming 6-CNA, which was further conjugated with glycine to BYI 02960-hippuric acid and BYI 02960difluoroethyl-amino-furanone. These main metabolic reactions were also observed in the livestock metabolism studies, however

CNA and BYI 02960-CHMP were additionally addressed by toxicological tests, which showed no concern.

For plant and animal matrices, all metabolites were either covered by the toxicological endpoints derived for parent compound, or showed no consumer exposure or a consumer exposure below the threshold of toxicological concern (1.5 μ g/kg bw). All metabolites present in the environment were minor and well below 5% of the applied radioactivity, except for DFA and 6-CNA. Both metabolites were covered by findings in the rat (< 10% of the dose administered) and by additional toxicological tests which showed no toxicological concern.

Acute toxicity (OECD data point IIA 5.2)

Rat LD₅₀ oral Rat LD₅₀ dermal Rat LC₅₀ inhalation

Skin irritation Eye irritation

Skin sensitization (test method used and result)

Category 4 (LD ₅₀ cut off = 2000 mg/kg)
Category 5 / Unclassified LD ₅₀ > 2 000 mg/kg,
LC50 at 4 hours > 4671 mg/m3, Category 5 /
Unclassified
Non irritating, Category 5 / Unclassified
Slight redness of the conjunctivae, reversed within
48 hours Category 5 / Unclassified
Not sensitising Category 5 / Unclassified

Short term toxicity (OECD data point IIA 5.3)

Target / critical effect

Lowest relevant oral NOAEL / NOEL Lowest relevant dermal NOAEL / NOEL

Lowest relevant inhalation NOAEL / NOEL

Liver effects in rodents and dogs, thyroid effects in
rats, kidney effects in mice and dogs and
degeneration of myofibers in skeletal muscles in
dogs

12 mg/kg/day (90-day dog study)

28-day dermal study ongoing for registration in Canada

Not required

Genotoxicity (OECD data point IIA 5.4)

Ames (S. typh.)	negative
HGPRT (CHO)	negative
CA (CHL)	negative
CA (human lymphocytes)	Not required
Mouse micronucleus	negative

Long term toxicity and carcinogenicity (OECD data point number IIA 5.5)

Target/critical effect

Liver in both species, thyroid and lung in rats and kidney in mice

Lowest relevant NOAEL / NOEL Carcinogenicity

15.8 mg/kg/day (2-year rat carcinogenicity)

Not carcinogenic in both rats (> 80 mg/kg/day) and

mice (>224 mg/kg/day)

Reproductive toxicity (OECD data point IIA 5.6)

Reproduction target / critical effect

Decreased cycle number, litter size and number of implants in F1 generation at the high dose; organ weight effects in P generation males, Decreased body weight or body weight gain in females at the intermediate and high doses, decreased body weight in F2 pups at the intermediate and high doses

Lowest relevant reproductive NOAEL / NOEL Developmental target / critical effect

7.8 mg/kg/day

No teratogenicity in rats and rabbits. Decreased body weight or body weight gain in dams, decreased foetal weights and reduced ossification in a few skull bones in rat pups

Lowest relevant developmental NOAEL / NOEL

30 mg/kg/day (developmental toxicity in rats)

Neurotoxicity / delayed neurotoxicity (OECD data point IIA 5.7)

Acute neurotoxicity

Piloerection and dilated pupils -At high dose levels: lower muscle tone, rapid respiration, gait incoordination, tremors, reduced motor activity, impaired righting reflex, impaired flexor and tail pinch responses:

Subchronic neurotoxicity

NO(A)EL: 35 mg/kg, (m/f), LOAEL: 50 mg/kg (m/f) No adverse effects, NO(A)EL: 143/173 mg/kg (m/f), LOAEL: >143/173 mg/kg (m/f)

Other toxicological studies (OECD data points IIA 5.8 and IIA 5.10)

Toxicity on metabolites (IIA 5.8)

In vitro genotoxicity studies and subchronic studies performed on three metabolites: Difluoroacetic acid, BYI 02960-difluoroethylamino-furanone, BYI 02960-CHMP, showing no genotoxic potential and general toxicological profile less toxic than parent or similar to parent. An Ames test and an acute oral rat was also performed on BYI 02960-6CNA showing no

toxicological issues.

Immunotoxicity (IIA 5.10)

No immunotoxicity in rats

NOAEL immunotoxicity = 230 mg/kg/day NOAEL systemic toxicity = 50 mg/kg/day

Medical data (OECD data point IIA 5.9)

Limited as this is a new active ingredient

Summary (OECD data point IIA 5.11)

ADI

AOEL

Drinking water limit

ARfD (acute reference dose)

Value	Study	Safety factor
0.078 mg kg/day	NOAEL of the rat 2-	100
	generation study	
0.12 mg	NOAEL of the 90-	100
	day dog study	
0.234 mg/L	NOAEL of the rat 2-	10% ADI
	generation study	
0.35 mg/kg	NOAEL of the acute	100
	neurotox study	

Dermal absorption (OECD data points IIA 5.9.9 and IIIA 7.6)

In vivo + in vitro dermal absorption studies

Human in vivo absorption values:

22% at 200 g/L 3% at 0.625 g/L 15% at 0.1 g/L

Acceptable exposure scenarios (including method of calculation)

Operator

Field crop application (0.125 kg a.s./ha):

German Model: no PPE – 18% of the AOEL

with PPE -<1% of the AOEL

UK-POEM: no PPE – 65% of the AOEL

with PPE - 6% of the AOEL

Broadcast air assisted application (0.150 kg a.s./ha):

German Model: no PPE – 13% of the AOEL

with PPE - 4% of the AOEL

UK-POEM: no PPE – 38% of the AOEL

with PPE – 15% of the AOEL

Greenhouse application (0.125 kg a.s./ha):

Greenhouse Model (low crops)

standard scenario: no PPE – 3% of the AOEL

with PPE - <1% of the AOEL

intensive scenario: no PPE – 77% of the AOEL

with PPE - 3% of the AOEL

Exposure estimates for workers (considering worst case assumptions according to EUROPOEM) indicate that levels of exposure will be in maximum at 55% of the

AOEL without PPE.

Field crop application (German Model):

Bystanders <1% of AOEL (including children)
Residents <1% of AOEL (including children)

Broadcast air assisted application (German Model):
Bystanders max. 3% of AOEL (including children)
Residents <1% of AOEL (including children)

Greenhouse application:

No bystander/resident scenario for applications in

greenhouses

Workers

Bystanders

Chapter 4: Residues

Metabolism in plants (OECD data point s IIA 6.2.1, IIA 6.7, IIIA 8.2 and IIIA 8.7)

Plant groups covered	Fruits: Pome fruit (apple), F
	Vegetables: Fruiting vegetables (tomato), F
	Vegetables: Root and tuber vegetables (potato), R
	Oilseeds: (cotton), P/O
	Rice/Cereals (rice), C
Rotational crops	Vegetables: Leaf vegetables (Swiss chard), L
	Vegetables: Root and tuber vegetables (turnips), R
	Cereals (spring wheat), C
Plant residue definition for monitoring	Target and rotational crops:
	BYI 02960, DFA
Plant residue definition for risk assessment	Target and rotational crops:
	BYI 02960 (parent), DFA, BYI 02960-difluoroethyl-
	aminofuranone
Conversion factor (monitoring to risk assessment)	1 (no conversion factor defined)

Metabolism in livestock (OECD data points IIA 6.2.2 to IIA 6.2.5, IIA 6.7, IIIA 8.4 and IIIA 8.7)

Animals covered	Poultry (laying hen)
	Ruminants (lactating goat)
Animal residue definition for monitoring	BYI 02960 (parent), DFA
Animal residue definition for risk assessment	BYI 02960 (parent), DFA
Conversion factor	1
(monitoring to risk assessment)	
Metabolism in rat and ruminant similar (yes/no)	Yes
Fat soluble residue: (yes/no)	No

Residues in succeeding crops (OECD data points IIA 6.6 and IIIA 8.6)

Confined rotation crop studies conducted with radiolabelled parent compound indicated that edible commodities of succeeding crops will show BYI 02960 residues above 0.01 mg/kg.

In the field rotational crop studies, the highest residues were generally found in the first rotation, i.e. after the shortest plant-back interval of 25-30 days. Total BYI 02960 residues (sum of BYI 02960, DFA and DFEAF) were detected in marketable crops:

- root crops (carrots and turnips): up to $0.14\ mg/kg$
- turnip tops: up to 0.24 mg/kg
- leafy crops (lettuce): up to 0.16 mg/kg
- cereal grains (barley): up to 0.65 mg/kg
- cereal straw (barley): up to 0.39 mg/kg
- cereal forage (barley): up to 0.41 mg/kg

Based on these results, MRLs for crops originating from crop rotation are proposed for leafy and root vegetables and cereals.

Stability of residues (OECD data points IIA 6.1 and IIIA 8.1)

During a storage period of 12 months under deep-freezer conditions, the components of the relevant residues of BYI 02960 (including parent compound, BYI 02960-difluoroethyl-aminofuranone, and DFA) were stable in orange fruit (high acid content), spinach leaves and tomato fruit (high water content), wheat grain (high starch content), bean seed (high protein content), coffee bean and soybean seed (high oil content), and sugar cane, representing a wide array of plant-based sample materials.

The storage stability study will be continued until a storage period of 2 years has been covered.

Residues from livestock feeding studies (OECD data points IIA 6.4 and IIIA 8.4)

Intakes by livestock ≥ 0.1 mg/kg diet/day:	Ruminant:	Poultry:	Pig:
	yes	yes	no
	(4.8 mg/kg feed)	(1.5 mg/kg feed)	
Muscle	0.065 mg/kg ¹	0.093 mg/kg ¹	
	0.045 mg/kg (1)	<0.010 mg/kg (1)	
	<0.020 mg/kg (2)	0.083 mg/kg(2)	
Liver	0.174 mg/kg ¹	0.114 mg/kg ¹	
	0.154 mg/kg (1)	<0.01 mg/kg(1)	
	<0.020 mg/kg (2)	0.104 mg/kg(2)	
Kidney	0.179 mg/kg^1		
	0.159 mg/kg (1)		
	<0.020 mg/kg (2)		
Fat	0.042 mg/kg^1	0.039 mg/kg^1	
	0.022 mg/kg (1)	<0.010mg/kg (1)	
	<0.020 mg/kg (2)	0.029 mg/kg(2)	
Milk	0.045 mg/kg^{1}		
	0.025 mg/kg (1)		
	<0.020 mg/kg (2)		
Eggs		0.057 mg/kg ¹	
		<0.010 mg/kg (1)	
		0.047 mg/kg (2	

total residue of BYI 02960, consisting of BYI 02960 (1) and DFA (2)

Summary of critical residues data (OECD data points IIA 6.3 and IIIA 8.3)

Crop	Country	Trials results relevant to the critical GAP	Recommendation/comments	MRL	STMR
	and / or Region				
		(a)			(b)
Lettuce	greenhouse	0.80; 1.4; 1.8; 2.0; 2.2; 2.5; 2.7; 3.5; 6.0		9.0	2.2
Hops (dried cone)	EU-N	0.61; 0.73; 0.78; 1.1; 1.2; 1.6; 2.3; 2.4		4.0	1.2
Leafy vegetables (crop rotation)	EU	<0.04; 0.07; 0.09; 0.16		0.3	0.08
Root vegetables (crop rotation)	EU	0.06; 0.07; 0.08; 0.14		0.3	0.08
Cereals (crop rotation)	EU	0.11; 0.35; 0.65	In one trial, no grain samples could be taken due to damage by geese. Based on the data from straw, it is clear that the missing trial would have yielded residues well below the highest residues and probably below the current median.	1.5	0.23

⁽a) Numbers of trials in which particular residue levels were reported e.g. 3 x <0.01, 1 x 0.01, 6 x 0.02, 1 x 0.04, 1 x 0.08, 2 x 0.1, 2 x 0.15, 1 x 0.17

⁽b) Supervised Trials Median Residue i.e. the median residue level estimated on the basis of supervised trials relating to the critical GAP

Consumer risk assessment (OECD data points IIA 6.9 and IIIA 8.10)

TMDI (European Diet) (% ADI)

Top ten ADI usage results including top contributors

NEDI (% ADI) **Factors included in NEDI**

ARfD

TMDI (% ADI)	Diet
29.4	WHO Cluster diet B
23.8	DK child
20.3	IT children/toddlers
18.8	NL child
18.0	WHO cluster diet D
16.9	ES child
16.6	IE adult
15.4	WHO cluster diet E
15.4	DE child
15.3	WHO cluster diet F

Not necessary since TMDI calculation for BYI 02960 shows that residues at the level of the proposed MRLs do not result in a chronic risk to the consumer.

0.35	mg/kg	bw
------	-------	----

0.35 mg/kg bw		
IESTI 1 (%ARfD)	Commoditiy	
CHILDREN		
53.8	lettuce	
7.5	broad-leaf endive (scarole)	
6.2	wheat	
6.2	rocket (rucola)	
5.6	lamb's lettuce	
ADULTS (GEN. POPULA	TION)	
22.0	lettuce	
3.8	lamb's lettuce	
3.4	wheat	
3.2	rice	
3.1	barley	
IESTI 2 (%ARfD)	Commoditiy	
CHILDREN		
32.3	lettuce	
7.5	broad-leaf endive (scarole)	
6.2	wheat	
6.2	rocket (rucola)	
5.6	lamb's lettuce	
ADULTS (GEN. POPULATION)		
13.2	lettuce	
3.8	lamb's lettuce	
3.4	wheat	
3.2	rice	
3.1	barley	

It should be noted that the use in lettuce does not include broad-leafed endive; use in "scarole" will not be registered in the EU and thus will not appear on any label. Its appearance in the list above is due to the proposed MRL for rotational leafy vegetables. Despite using the most conservative approach for the assessment of the acute risk (based on MRLs instead of HRs), it is evident that no acute risk for consumers will arise from the uses of BYI 02960 as presented in this dossier.

Processing factors (OECD data points IIA 6.5 and IIIA 8.5)

Crop/processed crop	Number of studies	Transfer factor	% Transference
Lettuce	4		
Lettuce/outer leaves		1.8	
Lettuce/inner head parts		0.73	
Lettuce/inner leaves		0.76	
Lettuce/washed inner leaves		0.67	
Lettuce/washing water		0.07	
Hops	2		
Hops/hops draff		<0.1	
Hops/brewer's yeast		<0.1	
Hops/beer		0.1	

Proposed MRLs (OECD data point IIA 6.7.2 and IIIA 8.7.2)

Plant commodities	Proposed MRLs	
Lettuce	9.0	
Hops	4.0	
Leafy vegetables (crop rotation)	0.30	
Root vegetables (crop rotation)	0.30	
Cereals (crop rotation)	1.5	
Animal matrices		
eggs	0.15	
poultry meat (muscle)	0.20	
poultry fat	0.07	
poultry liver/offal	0.30	
milk	0.07	
bovine meat (muscle)	0.20	
bovine fat	0.15	
bovine liver	0.30	
bovine kidney	0.40	
other bovine offal	0.40	

Chapter 5: Fate and behaviour in the environment

Route of degradation (aerobic) in soil (OECD data point IIA 7.1.1)

Mineralization after 100 days	PYM label 29.4 to 58.6% after 120 days
	FUR label 12.3 to 32% after 120 days
	ETH label 25.9 to 33.9% after 120 days
	PYR label 20.2 to 47.4 after 120 days
	De linear autum eletion haturean comulina maint
	By linear extrapolation between sampling point
	PYM label 26.2 to 51.6 %after 100 days
	FUR label 10.5 to 35.4% after 100 days
	ETH label 22.9 to 26.6% after 100 days
	PYR label 18.1 to 54.3% after 100 days
Non-extractable residues after 100 days	PYM label 12.5 to 16.8% after 120 days
•	FUR label 16.4to 33.0% after 120 days
	ETH label 14.3 to 17.9% after 120 days
	PYR label 11.37 to 25.5 after 120 days
	By linear extrapolation between sampling point
	PYM label 12.3 to 15.9 %after 100 days
	FUR label 15.0 to 33.1% after 100 days
	ETH label 14.6 to 17.6% after 100 days
	PYR label 10.7 to 24.0% after 100 days

Relevant metabolites*) - name and/or code, % of applied (range and maximum)

6-CNA maximum 17.1% want metabolites has not been elaborated

DFA maximum 33.9%

Route of degradation in soil (anaerobic & photolysis) (OECD data points IIA 7.1.2 & IIA 7.1.3)

Angerobic	degradation	

Following an aerobic ageing period BYF 02960 showed moderate degradation under anaerobic conditions of the test. No major transformation products were detected for any of the three labels used. Mineralisation and formation of NER during the anaerobic phase was low (<5%) and there were no major metabolites formed

Soil photolysis

Following exposure to artificial sunlight BYI 02960 was moderately degraded with low formation of CO_2 (0.1 to 2.2%) and NER (0.9 to 1.1%). There were no major metabolites formed .

^{*)} An internationally agreed definition of the term *relevant metabolites* has not been elaborated. Pending the development of such a definition, applicants should consult the regulatory authority of the country to which application is to be made, for guidance concerning selection of the metabolites for which information must be reported

Rate of degradation in soil (OECD data points IIA 7.2, IIA 7.3, IIIA 9.1 and IIIA 9.2)

Method of Calculation Laboratory studies (range or median, with n value, with r² value)

FOCUS Kinetic	EU trigger end-points
DT _{50lab} (20°C, aerobic):	BYI 02960 (n=16, 6 soils)
	33.0 to 242 days (SFO or
	DFOP) GeoMean 73 days
	6-CNA (n=5)
	2.9 to 36.6 days (SFO or
	DFOP) GeoMean 5.3 days
	DFA (n=3)
	44.9-73.6 days (SFO)
	GeoMean 60.6 days
DT _{90lab} (20°C, aerobic):	BYI 02960 (n=16, 6 soils)
	209.3-> 1000 days (SFO
	or DFOP
	6-CNA (n=5)
	7.4 to 121 days
	(SFO/DFOP)
	DFA (n=3)
	149-244.5 days (SFO)
	GeoMean 201 days
DT _{50lab} (10°C, aerobic):	BYI 02960 (n=16, 6 soils)
	85-624 days by
	calculation $(Q_{10}=2.58)$
DT _{50lab} (20°C, anaerobic):	Not calculable due to
	moderate degradation
degradation in the	Not investigated
saturated zone:	
DT_{50f} :	Trigger values (non-
	normalised) DFOP
	Monheim, DEU 41.0 days
	Burscheid, DEU 42.8 days
	UK, 251 days
	Italy 8.3 days
	Spain 22.6 days
	Hanschedier Hof, DE 39.0
	days
DT _{90f} :	Trigger values (non-
	normalised) DFOP
	Monheim, DEU 749 days
	Burscheid, DEU 484 days
	UK, >1000 days
	Italy 279 days
	Spain 215 days
	Hanschedier Hof, DEU
	579 days

Field studies (state location, range or median with n value)

Soil accumulation and plateau concentration

BYI 02960

Accumulation calculated for applications in successive years assuming a fast-phase half-life of 0.02 days and a slow-phase half-life of 462 days (worst-case DFOP kinetics of field study non-normalised)

Hops 1×150 g/ha plateau = 0.080 mg/kg (5cm depth)

Lettuce 1×125 g/ha plateau = 0.031 mg/kg (20cm depth)

Soil adsorption/desorption (OECD data points IIA 7.4.1 and IIA 7.4.2)

K_f/K_{oc}	K _{F,oc} BYI 02960	74.9-132.2 mean 98.3
	K _{F,OC} 6-CNA	(n=6) 70-129 (n=4)
	K _{f oc} DFA	1.7 - 9.5 (n=5)
K_d	K _{d, oc} BYI 02960	138-306 (n=6)
	Time dependant sorption	Significant increase in
		sorption over time
		(2.6 to 4.4 fold over 120
		days)
pH dependence (yes / no)	No	
(if yes type of dependence)		

Mobility in soil (OECD data points IIA 7.4.3 to IIA 7.4.8 and IIIA 9.3)

Column leaching	Not required
	Low to moderate mobility in Brazilian soils
Aged residues leaching	Not required
Lysimeter/ field leaching studies	Not required

PEC (soil) (OECD data point IIIA 9.4)

Method of calculation	DFOP kinetics of worst-case field study
Application rate	1 x 150g/ha (application on hops, 60% crop
	interception)
	1 x 125 g/ha (application on lettuce, 25% crop
	interception)

Use in hops BYI 02960

PEC(s) (mg/kg)	Single application Actual 1 x 150g/ha [mg/kg]	Single application Time weighted average [mg/kg]
Initial	0.080	
Short term 24h	0.058	0.069
2d	0.058	0.066
4d	0.058	0.063
Long term 7d	0.058	0.061
14d	0.057	0.059
21d	0.057	0.058
28d	0.056	0.058
50d	0.054	0.057
100d	0.050	0.054

PECsoil considering accumulation plateau

				Background Cmin +
		max. soil residue in	\mathbf{C}_{min}	max. of
	over	1 st year		1 year in 5 cm
	[cm]	[mg/kg]	[mg/kg]	[mg/kg]
Hops	5	0.080	0.080	0.160
1 x 150 g/ha				

Metabolite DFA

Method of calculation

Max. SFO from parent laboratory studies (DT₅₀ 73.6

davs

Application rate

33.9% formed in soil

PEC_(s) (mg/kg)

Initial

Single	Single
application	application
Actual	Time weighted
1 x 125g/ha	average
[mg/kg]	[mg/kg]
0.009	

Metabolite 6-CNA

Method of calculation Application rate Max. SFO from laboratory studies (DT₅₀ 36.6 days) 17.1% formed in soil

PEC(s)	Single	Single
(mg/kg)	application	application
	Actual	Time weighted
	1 x 125g/ha	average
	[mg/kg]	[mg/kg]
Initial	0.007	

Use in lettuce BYI 02960

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted
	1 x 150g/ha [mg/kg]	average [mg/kg]
Initial	0.125	[mg/kg]
Short term 24h	0.091	0.108
2d	0.091	0.102
4d	0.091	0.098
Long term 7d	0.090	0.095
14d	0.089	0.093
21d	0.088	0.091
28d	0.087	0.091
50d	0.085	0.089
100d	0.079	0.085

PECsoil considering accumulation plateau

	Residues distributed	Seasonal PEC _{s, max} , max. soil residue in	Long-term plateau / background conc.	Background C _{min} + max. of
	over	1st year	Cmin	1 year in
				5 cm
	[cm]	[mg/kg]	[mg/kg]	[mg/kg]
Lettuce 1 x 125g/ha	20	0.031	0.031	0.156

Metabolite DFA

Method of calculation

Max. SFO from parent laboratory studies (DT₅₀ 73.6

days)

Application rate 33.9% formed in soil

PEC_(s) (mg/kg)

Single	Single
application	application
Actual	Time weighted
1 x 125g/ha	average
[mg/kg]	[mg/kg]
0.014	<u> </u>

Initial

Metabolite 6-CNA

Method of calculation Application rate Max. SFO from laboratory studies (DT₅₀ 36.6 days) 17.1% formed in soil

Use in lettuce

PEC_(s) (mg/kg)

Single	Single
application	application
Actual	Time weighted
1 x 125g/ha	average
[mg/kg]	[mg/kg]
0.012	

Initial

Route and rate of degradation in water (OECD data points IIA 2.9 and IIA 7.5 to IIA 7.9)

Hydrolysis of active substance and relevant metabolites*) (DT₅₀) (state pH and temperature)

Photolytic degradation of active substance and relevant metabolites

Readily biodegradable (yes/no)

 $\begin{array}{ll} \textbf{Degradation in} & \textbf{-DT}_{50} \ water \\ \textbf{water/sediment} & \textbf{-DT}_{90} \ water \end{array}$

- DT₅₀ whole system - DT₉₀ whole system

Mineralization

Non-extractable residues

Distribution in water / sediment systems (active substance)

Distribution in water / sediment systems (metabolites)²)

pH 4: stable at 50°C

pH 7: stable at 50°C

pH 9: stable at 50°C

BYI 02960 rapid degradation DT₅₀ 13.8 experimental hours (equivalent to 2.7 days, Athens, Greece)

BYI 02960-succinamide (max. 39.6 %),

BYI 02960-azabicyclosuccinamide (max. 25.9 %)

NO

Best-fit trigger 8.5- 34.5 days FOMC/DFOP (n=6)

Best-fit trigger 174.6 - 345 days FOMC/DFOP (n=6)

Best-fit trigger 193.1 - 285days SFO/DFOP (n=6)

Best-fit trigger 641 – 947 days SFO (n=6)

Modelling input parameters

DT₅₀ water 8.5-117.5 days

 DT_{50} whole system 193 - 285 days

PYR label 6.8 - 8.5%, after 119 days (n=2)

FUR label 3.9 – 5.5% after 120 days (n=2)

ETH label 0.9 - 1.5 % after 120 days (n=2)

PYR label 13.6 - 25% after 119 days (n=2)

FUR label 22.6 – 17.9% after 120 days (n=2)

ETH label 15.2 - 26.6 % after 120 days (n=2)

Water 11.4 – 36.8 % after 119/120 days (n=6)

Sediment 37.6 – 54.3 % after 119/120 days (n=6)

DFA Water 6.0% after 120 days Sediment 0.9% after 120 days

^{*)} An internationally agreed definition of the term *relevant metabolites* has not been elaborated. Pending the development of such a definition, applicants should consult the regulatory authority of the country to which application is to be made, for guidance concerning selection of the metabolites for which information must be reported

PEC (surface water) (OECD data points IIIA 9.7)

Application to Hops BYI 02960

Method of calculation

BYI 02960

FOCUS Surface Water

Steps 1, 2, 3, 4

 K_{oc} , 98.4 mL/g, (arithmetic mean)

Freundlich Exponent, , 0.866 (arithmetic mean)

Degradation,,

Soil DT₅₀, 94.8 days, (GeoMean lab. Studies at 20°C

and field capacity)

Water/Sediment

Total, DT₅₀ 228 days,

DT₅₀ Water 228 days Sediment 1000 days(default)

1 x 150g/ha spray application to hops Main routes of entry

Spray drift

FOCUS Step 2

Application rate

PEC _(sw)	Single application Actual Maximum (S. Europe)	Single application Time weighted average
Initial	μ g/L 17.36	μg/L
1	16.9727	17.1682
2	16.9212	17.0576
4	16.8186	16.9637
7	16.6659	16.8688
14	16.3150	16.6793
21	15.9715	16.5004
28	15.6352	16.3260
42	14.9837	15.9864
50	14.6237	15.7970
100	12.5615	14.6817

FOCUS Step 3

PEC _(sw)	Single application Maximum µg/L
R1, pond	0.394
R1, stream	5.531

PEC _(sw)	Buffer zone m	PECsw [μg/L] Drift reduction				
		25%	50%	75%	90%	
R1, pond	0	0.296	0.197	0.099	0.039	
R1, stream	0	4.149	2.766	1.383	0.553	
R1, pond	5m (drift)	0.445	0.223	0.111	0.045	
R1, stream	5m (drift)	4.515	2.258	1.129	0.452	
R1, pond	10m (drift)	0.253	0.126	0.063	0.025	
R1, stream	10m (drift)	2.354	1.177	0.589	0.235	
R1, pond	15m (drift)	0.141	0.071	0.035	0.014	
R1, stream	15m (drift)	1.554	0.777	0.388	0.155	
R1, pond	20m (drift)	0.078	0.039	0.02	0.008	
R1, stream	20m (drift)	0.708	0.354	0.177	0.071	

Metabolite DFA

Method of calculation

Application rate Main routes of entry

FOCUS Step 2

PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	1.268

Metabolite 6-CNA

Method of calculation

Application rate

FOCUS Step 2	
PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	0.463

Metabolite DFA

FOCUS Surface Water

Steps 1,2

K_{oc}, 6.8 mL/g, (arithmetic mean)

Degradation,,

Soil DT_{50} 44.7 days, (GeoMean lab. Studies at 20°C and

field capacity)

Water/Sediment

Total system, DT₅₀ 249 days,

Water DT₅₀ 249 days (Sedciment default 1000 days)

Maximum occurance

Water/sediment 6.9%

Soil 33.9%

1 x 150g/ha spray application to hops

Run-off/Drainage

Metabolite 6-CNA

FOCUS Surface Water

Steps 1,2

K_{oc}, 88 mL/g, (arithmetic mean)

Degradation,,

Soil DT₅₀ 4.7 days, (GeoMean lab. Studies)

Water/Sediment

 $Total\ system\ ,\ DT_{50}\ 1000\ \ days\ (default),$

Water DT₅₀ 1000 days (default)

Sediment DT_{50} 100 days (default)

Maximum occurance

Water/sediment 0%

Soil 17.1%

1 x 150g/ha spray application to hops

Metabolite BYI 02960-succinamide

Method of calculation

Metabolite BYI 02960-succinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT_{50} 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (default)

Maximum occurance Water/sediment 39.6%

Soil 0%

1 x 150g/ha spray application to hops

Formed from BYI 02960 in water

Application rate Main routes of entry

FOCUS Step 2

PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	4.065

Metabolite BYI 02960-azabicyclosuccinamide Method of calculation

Metabolite BYI 02960-azabicyclosuccinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT₅₀ 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (defualt)

Maximum occurance

Water/sediment 25.9%

Soil 0%

1 x 150g/ha spray application to hops

Formed from BYI 02960 in water

Application rate Main routes of entry

PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	2.499

Application to Lettuce BYI 02960

Method of calculation

BYI 02960

FOCUS Surface Water

Steps 1, 2, 3,4

K_{oc}, 98.4 mL/g, (arithmetic mean)

Freundlich Exponent, , 0.866 (arithmetic mean)

Degradation,,

Soil DT₅₀, 94.8 days, (GeoMean lab. Studies at 20°C and field capacity)

Water/Sediment

Total , DT_{50} 228 days

DT₅₀ Water 228 days Sediment 1000 days(default)

1 x 125g/ha spray application to lettuce

Spray drift/Run-off/ Drainage

Application rate Main routes of entry

FOCUS Step 2

PEC _(sw)	Single application	Single application
	Maximum	Time weighted
	(S. Europe)	average
	μg/L	μg/L
Initial	11.78	=
1	11.7001	11.7381
2	11.6645	11.7102
4	11.5938	11.6697
7	11.4886	11.6146
14	11.2467	11.4909
21	11.0099	11.3699
28	10.7780	11.2508
42	10.3289	11.0178
50	10.0807	10.8877
100	8.6592	10.1198

PEC(sw)	Major entry route S = spray drift, R=run-off,	Single application Actual	
	D= drainflow	Maximum μg/L	
D3 (ditch, 1st)	S	0.830	
D3 (ditch, 2nd)	S	0.840	
D4 (pond, 1st)	D	1.035	
D4 (stream, 1st)	S	0.794	
D6 (ditch, 1st)	D	1.268	
R1 (pond, 1st)	R	0.060	
R1 (stream, 1st)	R	0.858	
R1 (pond, 2nd)	R	0.097	
R1 (stream, 2nd)	R	1.186	
R2 (stream, 1st)	R	1.586	
R2 (stream, 2nd)	R	0.940	
R3 (stream, 1st)	R	2.226	
R3 (stream, 2nd)	R	3.570	
R4 (stream, 1st)	S	0.522	
R4 (stream, 2nd)	R	4.808	

FOCUS Scenario	Buffer zone	PECsw [μg/L] Drift reduction			
		25%	50%	75%	90%
D3 (ditch, 1st)	0m	0.632	0.434	0.235	0.117
D3 (ditch, 2nd)		0.643	0.446	0.249	0.130
D4 (pond, 1st)		1.034	1.034	1.033	1.033
D4 (stream, 1st)		0.721	0.721	0.721	0.721
D6 (ditch, 1st)		1.268	1.268	1.268	1.268
R1 (pond, 1st)		0.055	0.050	0.045	0.043
R1 (stream, 1st)		0.858	0.858	0.858	0.858
R1 (pond, 2nd)		0.092	0.087	0.082	0.079
R1 (stream, 2nd)		1.186	1.186	1.186	1.186
R2 (stream, 1st)		1.586	1.586	1.586	1.586
R2 (stream, 2nd)		0.940	0.940	0.940	0.940
R3 (stream, 1st)		2.226	2.226	2.226	2.226
R3 (stream, 2nd)		3.570	3.570	3.570	3.570
R4 (stream, 1st)]	0.392	0.261	0.131	0.074
R4 (stream, 2nd		4.808	4.808	4.808	4.808

FOCUS Scenario	Buffer zone	PECsw [μg/L] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	5m	0.252	0.145	0.091	0.059	
D3 (ditch, 2nd)	(drift)	0.265	0.158	0.105	0.073	
D4 (pond, 1st)		1.035	1.034	1.033	1.033	
D4 (stream, 1st)		0.721	0.721	0.721	0.721	
D6 (ditch, 1st)		1.268	1.268	1.268	1.268	
R1 (pond, 1st)		0.057	0.049	0.045	0.042	
R1 (stream, 1st)		0.858	0.858	0.858	0.858	
R1 (pond, 2nd)		0.094	0.086	0.082	0.079	
R1 (stream, 2nd)		1.186	1.186	1.186	1.186	
R2 (stream, 1st)		1.586	1.586	1.586	1.586	
R2 (stream, 2nd)		0.940	0.940	0.940	0.940	
R3 (stream, 1st)		2.226	2.226	2.226	2.226	
R3 (stream, 2nd)		3.570	3.570	3.570	3.570	
R4 (stream, 1st)		0.191	0.095	0.074	0.074	
R4 (stream, 2nd)		4.808	4.808	4.808	4.808	

FOCUS Scenario	Buffer zone	PECsw [µg/L] Drift reduction			
		25%	50%	75%	90%
D3 (ditch, 1st)	10m (drift)	0.151	0.094	0.066	0.049
D3 (ditch, 2nd)	10m (drift)	0.165	0.108	0.080	0.063
D4 (pond, 1st)	10m (drift)	1.034	1.033	1.033	1.033
D4 (stream, 1st)	10m (drift)	0.721	0.721	0.721	0.721
D6 (ditch, 1st)	10m (drift)	1.268	1.268	1.268	1.268
R1 (pond, 1st)	10m (drift)	0.029	0.022	0.019	0.018
R1 (stream, 1st)	10m (run-off)	0.389	0.389	0.389	0.389
R1 (pond, 2nd)	10m (drift)	0.043	0.037	0.034	0.032
R1 (stream, 2nd)	10m (run-off)	0.540	0.540	0.540	0.540
R2 (stream, 1st)	10m (run-off)	0.716	0.716	0.716	0.716
R2 (stream, 2nd)	10m (run-off)	0.422	0.422	0.422	0.422
R3 (stream, 1st)	10m (run-off)	1.009	1.009	1.009	1.009
R3 (stream, 2nd)	10m (run-off)	1.630	1.630	1.630	1.630
R4 (stream, 1st)	10m (drift)	0.101	0.051	0.034	0.034
R4 (stream, 2nd)	10m (run-off)	2.184	2.184	2.184	2.184

FOCUS Scenario	Buffer zone	PECsw [µg/L] Drift reduction			
		25%	50%	75%	90%
D3 (ditch, 1st)	15m (drift)	0.115	0.076	0.057	0.045
D3 (ditch, 2nd)	15m (drift)	0.129	0.090	0.071	0.059
D4 (pond, 1st)	15m (drift)	1.034	1.033	1.033	1.033
D4 (stream, 1st)	15m (drift)	0.721	0.721	0.721	0.721
D6 (ditch, 1st)	15m (drift)	1.268	1.268	1.268	1.268
R1 (pond, 1st)	15m (drift)	0.018	0.013	0.011	0.009
R1 (stream, 1st)	15m (run-off)	0.204	0.204	0.204	0.204
R1 (pond, 2nd)	15m (drift)	0.025	0.021	0.018	0.017
R1 (stream, 2nd)	15m (run-off)	0.283	0.283	0.283	0.283
R2 (stream, 1st)	15m (run-off)	0.375	0.375	0.375	0.375
R2 (stream, 2nd)	15m (run-off)	0.220	0.220	0.220	0.220
R3 (stream, 1st)	15m (run-off)	0.528	0.528	0.528	0.528
R3 (stream, 2nd)	15m (run-off)	0.856	0.856	0.856	0.856
R4 (stream, 1st)	15m (drift)	0.069	0.035	0.018	0.018
R4 (stream, 2nd)	15m (run-off)	1.144	1.144	1.144	1.144

FOCUS Scenario	Buffer zone	PECsw [µg/L] Drift reduction			
				1	2001
		25%	50%	75%	90%
D3 (ditch, 1st)	20m (drift)	0.097	0.067	0.052	0.045
D3 (ditch, 2nd)	20m (drift)	0.110	0.081	0.066	0.057
D4 (pond, 1st)	20m (drift)	1.033	1.033	1.033	1.033
D4 (stream, 1st)	20m (drift)	0.721	0.721	0.721	0.721
D6 (ditch, 1st)	20m (drift)	1.268	1.268	1.268	1.268
R1 (pond, 1st)	20m (drift)	0.016	0.012	0.010	0.009
R1 (stream, 1st)	20m (run-off)	0.204	0.204	0.204	0.204
R1 (pond, 2nd)	20m (drift)	0.024	0.020	0.018	0.016
R1 (stream, 2nd)	20m (run-off)	0.283	0.283	0.283	0.283
R2 (stream, 1st)	20m (run-off)	0.375	0.375	0.375	0.375
R2 (stream, 2nd)	20m (run-off)	0.220	0.220	0.220	0.220
R3 (stream, 1st)	20m (run-off)	0.528	0.528	0.528	0.528
R3 (stream, 2nd)	20m (run-off)	0.856	0.856	0.856	0.856
R4 (stream, 1st)	20m (drift)	0.053	0.026	0.018	0.018
R4 (stream, 2nd)	20m (run-off)	1.144	1.144	1.144	1.144

Metabolite DFA Method of calculation

Metabolite DFA

FOCUS Surface Water

Steps 1,2

 K_{oc} , 6.8 mL/g, (arithmetic mean)

Degradation,,

Soil DT₅₀ 44.7 days, (GeoMean lab. Studies at 20°C and

field capacity)

Water/Sediment

Total system, DT₅₀ 249 days,

1 x 125g/ha spray application to lettuce

Water DT₅₀249 days (Sediment default 1000 days)

Maximum occurance

Water/sediment 6.9%

Run-off/Drainage

Soil 33.9%

Application rate Main routes of entry

FOCUS Step 2

Single
application
Maximum
(S. Europe)
μg/L
1.1339

Metabolite 6-CNA Method of calculation

Metabolite 6-CNA

FOCUS Surface Water

Steps 1,2

K_{oc}, 88 mL/g, (arithmetic mean)

Degradation,,

Soil DT₅₀ 4.7 days, (GeoMean lab. Studies)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (default)

Maximum occurance

Water/sediment 0%

Soil 17.1%

1 x 125g/ha spray application to lettuce

Application rate

PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	0.579

Metabolite BYI 02960-succinamide Method of calculation

Metabolite BYI 02960-succinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil $DT_{50}\,0.1$ days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

1 x 125g/ha spray application to lettuce

Formed from BYI 02960 in water

Water DT₅₀ 1000 days (default) Sediment DT₅₀ 1000 days (defualt)

Maximum occurance

Water/sediment 39.6%

Soil 0%

Application rate Main routes of entry

Method of calculation

ivialii i outes oi

FOCUS Step 2	
PEC _(sw)	Single
	application
	Maximum
	(S. Europe)
	μg/L
Initial	0.48/4

Metabolite BYI 02960-azabicyclosuccinamide

Metabolite BYI 02960-azabicyclosuccinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT_{50} 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Formed from BYI 02960 in water

Sediment DT₅₀ 1000 days (defualt)

1 x 125g/ha spray application to lettuce

Maximum occurance

Water/sediment 25.9%

Soil 0%

Application rate Main routes of entry

FOCUS Step 2

rocus step 2	
PEC _(sw)	Single
	Application
	Maximum
	(S. Europe)
	μg/L
Initial	0.297

PEC (sediment)

Application to Hops BYI 02960

Method of calculation

BYI 02960

FOCUS Surface Water

Steps 1, 2, 3, 4

K_{oc}, 98.4 mL/g, (arithmetic mean)

Freundlich Exponent, , 0.866 (arithmetic mean)

Degradation,

Soil DT₅₀, 94.8 days, (GeoMean lab. Studies at 20°C

and field capacity)

Water/Sediment

Total , DT_{50} 228 days,

DT₅₀ Water 228 days Sediment 1000 days(default)

1 x 150g/ha spray application to hops

Spray drift

Application rate Main routes of entry

FOCUS Step 2

PEC _(sed)	Single application Actual	Single application
	Maximum	Time weighted
	(S. Europe)	average
	μg/kg	μg/kg
Initial	16.70	=
1	16.6504	16.6758
2	16.5999	16.6505
4	16.4993	16.6000
7	16.3495	16.5247
14	16.0052	16.3507
21	15.6682	16.1792
28	15.3383	16.0101
42	14.6992	15.6789
50	14.3460	15.4938
100	12.3230	14.4013

FOCUS Step 3

PEC _(sed)	Single Application Maximum µg/kg
R1, pond	0.795
R1, stream	0.362

	Buffer zone m		PECsed [μg/kg] Drift reduction		
		25%	50%	75%	90%
R1, pond	0	0.607	0.415	0.218	0.094
R1, stream	0	0.273	0.184	0.093	0.072
R1, pond	5m (drift)	0.891	0.465	0.244	0.105
R1, stream	5m (drift)	0.297	0.151	0.076	0.071
R1, pond	10m (drift)	0.522	0.273	0.142	0.061
R1, stream	10m (drift)	0.157	0.080	0.04	0.031
R1, pond	15m (drift)	0.302	0.158	0.083	0.036
R1, stream	15m (drift)	0.104	0.053	0.032	0.03
R1, pond	20m (drift)	0.174	0.091	0.048	0.021
R1, stream	20m (drift)	0.048	0.025	0.017	0.016

Metabolite DFA Method of calculation

Metabolite DFA

FOCUS Surface Water

Steps 1,2

K_{oc}, 6.8 mL/g, (arithmetic mean)

Degradation,,

Soil DT_{50} 44.7 days, (GeoMean lab. Studies at 20°C and

field capacity)

Water/Sediment

Total system, DT₅₀ 249 days,

Water DT₅₀ 249 days (Sedciment default 1000 days)

Maximum occurance

Water/sediment 6.9%

Soil 33.9%

1 x 150g/ha spray application to hops

Run-off/Drainage

Application rate Main routes of entry

FOCUS Step 2

PEC(sed)	Single Application Maximum (S. Europe) µg/kg
Initial	0.086

Metabolite 6-CNA Method of calculation

Metabolite 6-CNA

FOCUS Surface Water

Steps 1,2

K_{oc}, 88 mL/g, (arithmetic mean)

Degradation,

Soil DT₅₀ 4.7 days, (GeoMean lab. Studies)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 100 days (default)

Maximum occurance

Water/sediment 0%

Soil 17.1%

1 x 150g/ha spray application to hops

Application rate

rocos step 2	
PEC _(sed)	Single
	application
	Maximum
	(S. Europe)
	μg/kg
Initial	0.408

Metabolite BYI 02960-succinamide Method of calculation

Metabolite BYI 02960-succinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT₅₀ 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default) Sediment DT₅₀ 1000 days (default)

Maximum occurance

Water/sediment 39.6%

Soil 0%

1 x 150g/ha spray application to hops

Formed from BYI 02960 in water

Application rate Main routes of entry

FOCUS Step 2

- 0 0 0 0 0 0 1	
PEC _(sed)	Single
	application
	Maximum
	(S. Europe)
	μg/kg
Initial	< 0.001

Metabolite BYI 02960-azabicyclosuccinamide Method of calculation

Metabolite BYI 02960-azabicyclosuccinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT₅₀ 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (defualt)

Maximum occurance

Water/sediment 25.9%

Soil 0%

1 x 150g/ha spray application to hops

Formed from BYI 02960 in water

Application rate Main routes of entry

PEC(sed)	Single
	application
	Maximum
	(S. Europe)
	μg/kg
Initial	< 0.001

Application to Lettuce BYI 02960

Method of calculation

BYI 02960

FOCUS Surface Water

Steps 1, 2, 3,4

K_{oc}, 98.4 mL/g, (arithmetic mean)

Freundlich Exponent, , 0.866 (arithmetic mean)

Degradation,,

Soil DT₅₀, 94.8 days, (GeoMean lab. Studies at 20°C

and field capacity)
Water/Sediment

Total , DT_{50} 228 days

DT₅₀ Water 228 days Sediment 1000 days(default)

1 x 125g/ha spray application to lettuce

Spray drift/Run-off/ Drainage

Application rate Main routes of entry

FOCUS Step 2

PEC(sed)	Single application Actual Maximum (S. Europe) µg/kg	Single application Time weighted average µg/kg
Initial	11.51	-
1	11.4779	11.4954
2	11.4431	11.4779
4	11.3737	11.4431
7	11.2704	11.3912
14	11.0331	11.2713
21	10.8008	11.1531
28	10.5734	11.0365
42	10.1328	10.8082
50	9.8893	10.6806
100	8.4948	9.9275

PEC(sed)	Major entry route S = spray drift, R=run-off, D= drainflow	Single application Actual Maximum µg/kg
D3 (ditch, 1st)	S	0.380
D3 (ditch, 2nd)	S	0.460
D4 (pond, 1st)	D	4.545
D4 (stream, 1st)	S	1.772
D6 (ditch, 1st)	D	1.766
R1 (pond, 1st)	R	0.162
R1 (stream, 1st)	R	0.211
R1 (pond, 2nd)	R	0.254
R1 (stream, 2nd)	R	0.334
R2 (stream, 1st)	R	0.521
R2 (stream, 2nd)	R	0.342
R3 (stream, 1st)	R	0.469
R3 (stream, 2nd)	R	1.011
R4 (stream, 1st)	S	0.054
R4 (stream, 2nd)	R	1.255

FOCUS Step 4

FOCUS Scenario	Buffer zone	PECsed [µg/kg] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	0m	0.335	0.334	0.333	0.332	
D3 (ditch, 2nd)		0.419	0.399	0.398	0.397	
D4 (pond, 1st)		4.538	4.531	4.524	4.520	
D4 (stream, 1st)		1.771	1.771	1.771	1.771	
D6 (ditch, 1st)		1.766	1.765	1.765	1.764	
R1 (pond, 1st)		0.148	0.134	0.119	0.111	
R1 (stream, 1st)		0.210	0.208	0.207	0.206	
R1 (pond, 2nd)		0.240	0.225	0.210	0.201	
R1 (stream, 2nd)		0.333	0.332	0.330	0.330	
R2 (stream, 1st)		0.520	0.520	0.519	0.518	
R2 (stream, 2nd)		0.342	0.341	0.341	0.340	
R3 (stream, 1st)		0.466	0.462	0.459	0.456	
R3 (stream, 2nd)		1.006	1.000	0.995	0.991	
R4 (stream, 1st)		0.041	0.027	0.025	0.024	
R4 (stream, 2nd		1.253	1.251	1.249	1.248	

FOCUS Scenario	Buffer zone	PECsed [μg/kg] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	5m	0.333	0.332	0.332	0.332	
D3 (ditch, 2nd)	(drift)	0.398	0.397	0.397	0.396	
D4 (pond, 1st)		4.541	4.529	4.523	4.520	
D4 (stream, 1st)		1.771	1.771	1.771	1.771	
D6 (ditch, 1st)		1.765	1.764	1.764	1.764	
R1 (pond, 1st)		0.154	0.130	0.117	0.11	
R1 (stream, 1st)		0.208	0.207	0.206	0.206	
R1 (pond, 2nd)		0.247	0.221	0.208	0.201	
R1 (stream, 2nd)		0.331	0.330	0.33	0.329	
R2 (stream, 1st)		0.519	0.518	0.518	0.518	
R2 (stream, 2nd)		0.341	0.341	0.34	0.34	
R3 (stream, 1st)		0.460	0.458	0.456	0.455	
R3 (stream, 2nd)		0.997	0.993	0.991	0.99	
R4 (stream, 1st)		0.025	0.025	0.024	0.024	
R4 (stream, 2nd)		1.250	1.248	1.247	1.247	

FOCUS Scenario	Buffer zone	PECsed [µg/kg] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	10m (drift)	0.332	0.332	0.332	0.332	
D3 (ditch, 2nd)	10m (drift)	0.397	0.397	0.396	0.396	
D4 (pond, 1st)	10m (drift)	4.534	4.526	4.522	4.519	
D4 (stream, 1st)	10m (drift)	1.771	1.771	1.771	1.771	
D6 (ditch, 1st)	10m (drift)	1.764	1.764	1.764	1.764	
R1 (pond, 1st)	10m (drift)	0.083	0.064	0.055	0.049	
R1 (stream, 1st)	10m (run-off)	0.097	0.097	0.097	0.096	
R1 (pond, 2nd)	10m (drift)	0.122	0.103	0.094	0.088	
R1 (stream, 2nd)	10m (run-off)	0.157	0.157	0.157	0.156	
R2 (stream, 1st)	10m (run-off)	0.228	0.228	0.228	0.228	
R2 (stream, 2nd)	10m (run-off)	0.151	0.151	0.151	0.151	
R3 (stream, 1st)	10m (run-off)	0.219	0.217	0.216	0.216	
R3 (stream, 2nd)	10m (run-off)	0.452	0.450	0.449	0.448	
R4 (stream, 1st)	10m (drift)	0.012	0.012	0.012	0.011	
R4 (stream, 2nd)	10m (run-off)	0.585	0.584	0.584	0.584	

FOCUS Scenario	Buffer zone	PECsed [µg/kg] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	15m (drift)	0.332	0.332	0.332	0.332	
D3 (ditch, 2nd)	15m (drift)	0.397	0.396	0.396	0.396	
D4 (pond, 1st)	15m (drift)	4.531	4.524	4.521	4.519	
D4 (stream, 1st)	15m (drift)	1.771	1.771	1.771	1.771	
D6 (ditch, 1st)	15m (drift)	1.764	1.764	1.764	1.764	
R1 (pond, 1st)	15m (drift)	0.055	0.039	0.032	0.027	
R1 (stream, 1st)	15m (run-off)	0.053	0.052	0.052	0.052	
R1 (pond, 2nd)	15m (drift)	0.076	0.060	0.052	0.047	
R1 (stream, 2nd)	15m (run-off)	0.086	0.085	0.085	0.085	
R2 (stream, 1st)	15m (run-off)	0.122	0.122	0.122	0.122	
R2 (stream, 2nd)	15m (run-off)	0.081	0.081	0.081	0.081	
R3 (stream, 1st)	15m (run-off)	0.119	0.118	0.117	0.117	
R3 (stream, 2nd)	15m (run-off)	0.245	0.243	0.242	0.242	
R4 (stream, 1st)	15m (drift)	0.008	0.006	0.006	0.006	
R4 (stream, 2nd)	15m (run-off)	0.318	0.317	0.317	0.316	

FOCUS Scenario	Buffer zone	PECsed [μg/kg] Drift reduction				
		25%	50%	75%	90%	
D3 (ditch, 1st)	20m (drift)	0.332	0.332	0.332	0.332	
D3 (ditch, 2nd)	20m (drift)	0.397	0.396	0.396	0.396	
D4 (pond, 1st)	20m (drift)	4.529	4.523	4.520	4.518	
D4 (stream, 1st)	20m (drift)	1.771	1.771	1.771	1.771	
D6 (ditch, 1st)	20m (drift)	1.764	1.764	1.764	1.764	
R1 (pond, 1st)	20m (drift)	0.050	0.037	0.03	0.026	
R1 (stream, 1st)	20m (run-off)	0.052	0.052	0.052	0.052	
R1 (pond, 2nd)	20m (drift)	0.071	0.057	0.05	0.046	
R1 (stream, 2nd)	20m (run-off)	0.086	0.085	0.085	0.085	
R2 (stream, 1st)	20m (run-off)	0.122	0.122	0.122	0.122	
R2 (stream, 2nd)	20m (run-off)	0.081	0.081	0.081	0.081	
R3 (stream, 1st)	20m (run-off)	0.118	0.117	0.117	0.117	
R3 (stream, 2nd)	20m (run-off)	0.244	0.243	0.242	0.242	
R4 (stream, 1st)	20m (drift)	0.007	0.006	0.006	0.006	
R4 (stream, 2nd)	20m (run-off)	0.317	0.317	0.317	0.316	

Metabolite DFA Method of calculation

Metabolite DFA

FOCUS Surface Water

Steps 1,2

 K_{oc} , 6.8 mL/g, (arithmetic mean)

Degradation,,

Soil DT₅₀ 44.7 days, (GeoMean lab. Studies at 20°C and

field capacity)

Water/Sediment

Total system, DT₅₀ 249 days,

1 x 125g/ha spray application to lettuce

Water DT₅₀249 days (Sediment default 1000 days)

Maximum occurance

Water/sediment 6.9%

Run-off/Drainage

Soil 33.9%

Application rate Main routes of entry

FOCUS Step 2

PEC _(sed)	Single
	application
	Maximum
	(S. Europe)
	μg/kg
Initial	0.091
-	•

Metabolite 6-CNA Method of calculation

Metabolite 6-CNA

FOCUS Surface Water

Steps 1,2

K_{oc}, 88 mL/g, (arithmetic mean)

Degradation,,

Soil DT₅₀ 4.7 days, (GeoMean lab. Studies)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (default)

Maximum occurance

Water/sediment 0%

Soil 17.1%

Application rate 1 x 125g/ha spray application to lettuce

FOCUS Step 2

PEC(sed)	Single application Maximum (S. Europe)
	μg/kg
Initial	0.509

Metabolite BYI 02960-succinamide Method of calculation

Metabolite BYI 02960-succinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT₅₀ 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default) Sediment DT₅₀ 1000 days (defualt)

Maximum occurance

Water/sediment 39.6%

Soil 0%

Application rate Main routes of entry

1 x 125g/ha spray application to lettuce

Formed from BYI 02960 in water

FOCUS Step 2

PEC _(sed)	Single
	application
	Maximum
	(S. Europe)
	μgkg
Initial	< 0.001

Metabolite BYI 02960-azabicyclosuccinamide Method of calculation

Metabolite BYI 02960-azabicyclosuccinamide

FOCUS Surface Water

Steps 1,2

 K_{oc} , 0 mL/g,

Degradation,,

Soil DT₅₀ 0.1 days, (model STEP2 does not accept

0 days)

Water/Sediment

Total system, DT₅₀ 1000 days (default),

Water DT₅₀ 1000 days (default)

Sediment DT₅₀ 1000 days (defualt)

Maximum occurance

Water/sediment 25.9%

Soil 0%

Application rate Main routes of entry

FOCUS Sten 2

rocos step 2	
PEC(sed)	Single
	Application
	Maximum
	(S. Europe)
	μg/kg
Initial	< 0.001

1 x 125g/ha spray application to lettuce

Formed from BYI 02960 in water

PEC (ground water) (OECD data point IIIA 9.6)

Method of calculation and type of study (e.g. modelling, monitoring, lysimeter)

FOCUS Groundwater 2009

Tiered approach

Tier 1 Laboratory DT₅₀ SFO at 20°C and filed capacity Tier 2a Laboratory DT₅₀ DFOP approach (FOCUS

2009)

Tier 2a Laboratory TDS approach

1 x 150g/ha in Hops

1 x 125 g/ha in Lettuce

PEC_(gw)

Application rate

Maximum concentration

Average annual concentration

(Results quoted for modelling with FOCUS gw scenarios, according to FOCUS guidance)

See	below
See	below

Tier 1

1101 1							
	BYI 02960						
	Hops (ev	ery year),	Hops (every 2 nd year),				
Scenario	1 x 15	0 g/ha	1 x 150 g/ha				
	PEARL	PELMO	PEARL	PELMO			
	PEC_{gw}	PECgw	PEC_{gw}	PEC_{gw}			
	[µg/L]	[µg/L]	[µg/L]	[µg/L]			
Châteaudun	0.453	0.415	0.193	0.168			
Hamburg	0.579	0.634	0.283	0.249			
Kremsmuenster	0.430	0.481	0.172	0.196			
Piacenza	0.359	0.442	0.154	0.211			
Porto	0.220	0.286	0.093	0.122			
Sevilla	0.223	0.063	0.091	0.022			
Thiva	0.183	0.155	0.073	0.059			

Tier 2a (DFOP)

Her 2a (DFOP)		BYI 02960					
Scenario		ery year), 0 g/ha	Hops (every 2 nd year), 1 x 150 g/ha				
	PEARL PECgw [μg/L]	PELMO PEC _{gw} [μg/L]	PEARL PEC _{gw} [μg/L]	PELMO PEC _{gw} [µg/L]			
Châteaudun	0.272	0.251	0.116	0.102			
Hamburg	0.346	0.380	0.172	0.151			
Kremsmuenster	0.257	0.287	0.103	0.118			
Piacenza	0.213	0.263	0.093	0.127			
Porto	0.133	0.171	0.056	0.073			
Sevilla	0.137	0.039	0.056	0.015			
Thiva	0.111	0.095	0.045	0.037			

Tier 2a(TDS)

, ,		BYI (02960		
		ery year),	Hops (every 2nd year),		
Scenario	1 x 15	0 g/ha	1 x 15	0 g/ha	
	PEARL	PELMO	PEARL	PELMO	
	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	
	[µg/L]	[µg/L]	[µg/L]	[µg/L]	
Châteaudun	0.116	0.100	0.044	0.035	
Hamburg	0.175	0.175	0.069	0.065	
Kremsmuenster	0.135	0.157	0.049	0.056	
Piacenza	0.118	0.157	0.041	0.065	
Porto	0.056	0.087	0.020	0.030	
Sevilla	0.042	0.007	0.014	0.002	
Thiva	0.030	0.023	0.010	0.006	

Tier 1

1101 1								
		_		BYI 02960	(field use)			
	Lettu	ce, 1st	Lettu	Lettuce, 2 nd		ce, 2 nd	Lettuce, 2nd	
Scenario	croppin	g, every	croppin	g, every	croppin	g, every	cropping, every 2 nd year,	
	ye	ar,	•	ar,	ye	ar,		
	1 x 12	5 g/ha	1 x 12	5 g/ha	1 x 12	5 g/ha	1 x 12	5 g/ha
	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO
	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}
	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]
Châteaudun	0.413	0.298	0.556	0.396	0.154	0.111	0.207	0.142
Hamburg	0.809	0.724	1.081	0.983	0.379	0.298	0.443	0.401
Jokioinen	0.325	0.269	ı	•	0.109	0.088	•	-
Kremsmuenster	0.595	0.517	0.698	0.637	0.242	0.210	0.291	0.255
Porto	0.327	0.413	0.643	0.713	0.137	0.177	0.253	0.305
Sevilla	0.018	0.005	0.025	0.006	0.006	0.002	0.009	0.002
Thiva	0.313	0.221	-	-	0.109	0.069	-	=

Tier 2a (DFOP)

	BYI 02960 (field use)							
	Lettu	ice, 1st	Lettu	ce, 2 nd	Lettu	ce, 2 nd	Lettuce, 2nd	
Scenario	croppin	ıg, every	croppin	g, every	croppin	g, every	cropping.	every 2 nd
		ar,		ar,		ar,		ar,
	1 x 12	5 g/ha	1 x 12	5 g/ha	1 x 12	5 g/ha	1 x 12	5 g/ha
	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO
	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}
	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]
Châteaudun	0.269	0.194	0.355	0.257	0.095	0.068	0.126	0.087
Hamburg	0.630	0.462	0.751	0.708	0.230	0.179	0.270	0.244
Jokioinen	0.213	0.175	-	-	0.068	0.055	-	-
Kremsmuenster	0.382	0.347	0.451	0.417	0.146	0.128	0.177	0.155
Porto	0.216	0.255	0.431	0.461	0.082	0.105	0.153	0.182
Sevilla	0.016	0.005	0.025	0.006	0.004	0.001	0.006	0.002
Thiva	0.224	0.149	-	-	0.067	0.043	-	-

Tier 2a (TDS)

		BYI 02960 (field use)						
	Lettu	ce, 1st	Lettu	Lettuce, 2 nd		ce, 2 nd	Lettuce, 2 nd	
Scenario	croppin	g, every	croppin	g, every	croppin	g, every	cropping, every 2nd	
	ye	ar,	ye	ar,	ye	ar,	year,	
	1 x 12	5 g/ha	1 x 12	5 g/ha	1 x 125 g/ha		1 x 125 g/ha	
	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO
	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}	PEC_{gw}
	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]
Châteaudun	0.085	0.053	0.111	0.070	0.025	0.015	0.034	0.020
Hamburg	0.263	0.194	0.329	0.272	0.099	0.075	0.132	0.107
Jokioinen	0.055	0.046	ı	•	0.014	0.011	•	-
Kremsmuenster	0.181	0.157	0.216	0.198	0.064	0.052	0.075	0.067
Porto	0.090	0.133	0.176	0.247	0.032	0.052	0.061	0.086
Sevilla	0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Thiva	0.047	0.036	-	-	0.014	0.009	-	-

Fate and behaviour in air (OECD data points IIA 7.10 and IIIA 9.9)

Direct photolysis in air Quantum yield of direct phototransformation

Photochemical oxidative degradation in air

Volatilization

at $\lambda > 290 \text{ nm}$

PEC (air)

Method of calculation

PEC_(a)

Maximum concentration

Not required due to low volatility

Quantum yield $\Phi = 0.000138$ was determined according to ECETOC method in aqueous solution

A half-life time (T1/2) of 4.4 hours was calculated for a 'short term' atmospheric hydroxyl radical concentration of 1.5 x 10^6 OH radicals / cm3 being accepted as typical average over 12 daylight hours per day for the temperate zone

from plant surfaces: Not required due to low vapour pressure (9.1 x 10⁻⁷ Pa)

from soil: Not required due to low vapour pressure $(9.1 \times 10^{-7} \text{ Pa})$

Not required due to low volatility

Not required due to low volatility

Definition of the Residue (OECD data point IIA 7.11)

Relevant to the environment

Definition for further evaluation

Metabolites found in soil or aquatic degradation tests are not necessarily relevant by default but are defined for assessments of environmental exposure in soil and water.

Soil: BYI 02960, DFA, 6-CNA Groundwater: BYI 02960, DFA, 6-CNA

Surface water

and sediment: BYI 02960, DFA, 6-CNA, BYI 02960-succinamide, BYI 02960-azabicyclosuccinamide

Monitoring data, if available (OECD data point IIA 7.12)

Soil (indicate location and type of study)
Surface water
(indicate location and type of study)
Ground water
(indicate location and type of study)
Air
(indicate location and type of study)

Not available (new active substance)
Not available (new active substance)
Not available (new active substance)
Not available (new active substance)

Chapter 6: Effects on non-target species

Effects on terrestrial vertebrates (OECD data points IIA 8.1, IIIA 10.1 and IIIA 10.3)

LD50 1607 mg a.i./kg bw Acute toxicity to mammals Reproductive toxicity to mammals Tier 1 7.8mg/kg bw/day Tier 2 (refined) 39.2 mg/kg bw/d Acute toxicity to birds LD50 active substance Colinus virginanus 232 mg LD50 BYI 02960 SL200 431 mg a.i./kg bw LC50 Colinus virginanus > 4876 mg a.i./ kg diet (> 470 Dietary toxicity to birds mg a.i./kg bw) NOAEL Colinus virginanus 302 mg a.i./kg bw (40 mg Reproductive toxicity to birds a.i./kg bw) End –point for Tier 1 reproductive risk assessment 23.2 mg a.i./kg bw/day (Lowest acute LD50 divided by 10)

Toxicity/exposure ratios for terrestrial vertebrates (OECD data points IIIA 10.1 and IIIA 10.3)

A 1' '	Τ σ	G 4	/D* 1	1	TED .:
Application rate (kg as/ha)	Crop	Category (e.g. insectivorous bird)	Time-scale	TER	TER risk assesment trigger*
1 x 150g/ha	Нор	Small insectivorous bird "finch" (Chaffinch)	Acute	61	10
1 x 150g/ha	Нор	Small granivorous bird "finch"(Goldfinch)	Acute	126	10
1 x 150g/ha	Нор	Small insectivorous bird "finch" (Chaffinch)	Long-term	28	5
1 x 150g/ha	Нор	Small granivorous bird "finch"(Goldfinch)	Long-term	51	5
1 x 150g/ha	Нор	Small insectivorous mammal "shrew" Common shrew	Acute	1984	10
1 x 150g/ha	Нор	Small herbivorous mammal "vole" Common vole	Acute	262	10
1 x 150g/ha	Нор	Small omnivorous mammal "mouse" Wood mouse			10
1 x 150g/ha	Нор	Small insectivorous mammal "shrew" Common shrew	Small insectivorous mammal Long-term		5
1 x 150g/ha	Нор	Small herbivorous mammal "vole" Common vole	Long-term	4.5 (tier 1)	5
				12.6 to 22.8 (refined)	5
1 x 150g/ha	Нор	Small omnivorous mammal "mouse" Wood mouse	Long-term	25	5
1 x 125g/ha	Lettuce	Medium herbivorous /granivorous bird "pigeon" (Wood pigeon)	Acute	20	10
1 x 125g/ha	Lettuce	Small granivorous bird "finch" (Serin)	Acute	68	10
1 x 125g/ha	Lettuce	Small omnivorous bird "lark" (Woodlark)	Acute	77	10
1 x 125g/ha	Lettuce	Small insectivorous bird "wagtail" (Yellow wagtail)	Acute	69	10
1 x 125g/ha	Lettuce	Medium herbivorous /granivorous bird "pigeon" (Wood pigeon)	Long-term	9	5

1 x 125g/ha	Lettuce	Small granivorous bird "finch" Long-term (Serin)		28	5
1 x 125g/ha	Lettuce	Small omnivorous bird "lark" (Woodlark)			5
1 x 125g/ha	Lettuce	Small insectivorous bird "wagtail" (Yellow wagtail)	Long-term	31	5
1 x 125g/ha	Lettuce	Small insectivorous mammal "shrew" Common shrew	Acute	2381	10
1 x 125g/ha	Lettuce	Small herbivorous mammal "vole" Common vole	Acute	94	10
1 x 125g/ha	Lettuce	Large herbivorous mammal "lagomorph" Rabbit	Acute	366	10
1 x 125g/ha	Lettuce	Small omnivorous mammal "mouse" Wood mouse	Acute	747	10
1 x 125g/ha	Lettuce	Small insectivorous mammal "shrew" Common shrew	Long-term	62	5
1 x 125g/ha	Lettuce	Small herbivorous mammal "vole" Common vole	Long-term	1.6 (Tier 1)	5
				4.5-22.8 (refined	5
1 x 125g/ha	Lettuce	Large herbivorous mammal "lagomorph" Rabbit	Long-term	8	5
1 x 125g/ha	Lettuce	Small omnivorous mammal "mouse" Wood mouse	Long-term	15	5

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the TER values reported are less than these values

Toxicity data for aquatic species (most sensitive species of each group) (OECD data points IIA 8.2 and IIIA 10.2)

Group	Test substance	Time-scale	Endpoint	Toxicity (mg/l)
Laboratory tests				
Fish species				
Pimephales promelas	BYI 02960	acute	LC50	> 70.5
Pimephales promelas	BYI 02960	chronic	NOEC	4.41
Oncorhynchus mykiss	BYI 02960 SL200	acute	LC50	> 105
Oncorhynchus mykiss	BYI 02960 –	acute	LC50	> 100
	succinamide			
Oncorhynchus mykiss	DFA	acute	LC50	> 10
Invertebrate				
Chironomus riparius	BYI 02960	acute	EC50	0.062
Chironomus riparius	BYI 02960	chronic	NOEC	0.0105
Chironomus riparius	BYI 02960 SL200	chronic	NOEC	0.012
Chironomus riparius	BYI 02960 –	acute	EC50	> 100
	succinamide			
Daphnia magna	BYI 02960 –	chronic	NOEC	43.3
	succinamide			
Chironomus riparius	BYI 02960 –	acute	EC50	> 100
	azabicyclosuccinamide			
Daphnia magna	DFA	acute	EC50	> 10
Chironomus riparius	DFA	chronic	NOEC	> 100
Chironomus tenants	6-CNA	acute	LC50	1
Chironomus riparius	6-CNA	chronic	NOEC	> 100
Algal species				
Pseudokirchneriella subcapitata	BYI 02960	chronic	E_rC_{50}	> 80

Pseudokirchneriella subcapitata	BYI 02960 SL200	chronic	E _r C ₅₀	> 42.5
Pseudokirchneriella subcapitata	BYI 02960 – succinamide	chronic	E _r C ₅₀	> 10
Pseudokirchneriella subcapitata	DFA	chronic	E_rC_{50}	> 10
Pseudokirchneriella subcapitata	6-CNA	chronic	E_rC_{50}	> 100
Aquatic plants				
Lemna gibba	BYI 02960	Chronic	E _b C ₅₀	> 67.7
Microcosm or mesocosm	tests:			
Not applicable				

Toxicity/exposure ratios for the most sensitive aquatic organisms (OECD data point IIIA 10.2.1) BYI 02960

Application rate (kg as/ha)	Crop	Organism	Time- scale	Distance (m)	Scenario	TER	TER risk assesmen t trigger*
1 x 0.150	Нор	Chironomus riparius	acute	Step 3	R1 pond	157	100
			acute	Step 3	R1 stream	11	100
			acute	Step 4 0m + 90% drift reduction	R1 stream	112	100
			chronic	Step 3	R1 pond	30	10
			chronic	Step 3	R1 stream	2	10
			chronic	Step 4 0m + 90% drift reduction	R1 stream	22	10
1 x 0.125	Lettuce	Chironomus riparius	acute	Step 3	D3 ditch, 1	75	100
			acute		D3 ditch, 2	74	100
			acute		D4 pond	60	100
			acute		D4 stream	78	100
			acute		D6 ditch,	49	100
			acute		R1 pond, 1	1033	100
			acute		R1 stream,1	72	100
			acute		R1 pond, 2	639	100
			acute		R1 stream, 2	52	100
			acute		R2 stream,	39	100
			acute		R2 stream,	66	100
			acute		R3 stream,	28	100
			acute		R3 stream,	17	100
			acute		R4 stream,	119	100
			acute		R4 stream,	13	100
			acute	Step 4	D3 ditch, 1	143	100

		1	1	
	0m + 50%			
	drift			
	reduction			
acute	Step 4			100
	0m + 50%	D3 ditch, 2		
	drift			
	reduction		139	
acute	Step 4 10m	R1 stream,		100
		1	159	
acute		R1 stream,		100
		2	115	
acute		R2 stream,		100
		2	147	
acute	Step 4 20m	D4 pond, 1	60	100
acute		D4 stream,		100
		1	86	
acute		D6 ditch, 1	49	100
acute		R2 stream,		100
		1	165	
acute		R3 stream,		100
		1	117	
acute	1	R3 stream,		100
		2	72	
acute	1	R4 stream,		100
		2	54	
chronic	Step 3	D3 ditch, 1	14	10
chronic	1	D3 ditch, 2	14	-
chronic	1	D4 pond, 1	12	
chronic	1	D4 stream,	12	
· · · · · · · · · · · · · · · · · · ·		1	15	
chronic	1	D6 ditch, 1	9	
chronic	1	R1 pond, 1	200	
chronic	1	R1 stream,		
Cinomic		1	14	
chronic	1	R1 pond, 2	124	
chronic	†	R1 stream,	121	
Cinonic		2	10	
chronic	-	R2 stream,	10	
Cinonic		1	8	
chronic	1	R2 stream,	O	
Chronic		2 Stream,	13	
chronic	1		1.3	
CHIOMIC		R3 stream,	5	
chronic	1		,	
Cilionic		R3 stream,	2	
ohmom: c	-	P.4 stroom	3	
chronic		R4 stream,	22	
olement:	-	D4 stream	23	
chronic		R4 stream,	2	
alan i -	Cton 4 10	2 D(ditab 1	2	
chronic	Step 4 10m	D6 ditch, 1	9.5	
chronic		R2 stream,	17	
a1	4	D2 stream		
chronic		R3 stream,	12	
1 .	4	1		
chronic		R3 stream,	7	
1 .	4	2		
chronic		R4 stream,	5	
		2	1	

chronic	Step 4 20m	D6 ditch, 1	9.5	
chronic		R3 stream,	14	
chronic		R4 stream,	10.5	

BYI 02960 metabolites

Application	Crop	Organism	Time-	Distance	TER	TER risk		
rate			scale	(m)		assesment		
(kg as/ha)						trigger*		
BYI 02960 succ	inamide							
1 x 0.150	Нор	C. riparius	acute	Step 2	> 24 600	100		
1 x 0.125	Lettuce	C. riparius	acute	Step 2	> 206 612	100		
BYI 02960 -aza	bicyclosuccina	amide						
1 x 0.150	Нор	C. riparius	acute	Step 2	> 40 016	100		
1 x 0.125	Lettuce	C. riparius	acute	Step 2	> 336 700	100		
6-CNA								
1 x 0.150	Нор	C. tentans	acute	Step 2	2 160	100		
1 x 0.150	Нор	C. riparius	chronic	Step 2	≥ 215 983	10		
1 x 0.125	Lettuce	C. tentans	acute	Step 2	1 727	100		
1 x 0.150	Нор	C. riparius	chronic	Step 2	≥ 172 712	10		
DFA	DFA							
1 x 0.150	Нор	C. riparius	chronic	Step 2	≥ 70 274	10		
1 x 0.125	Lettuce	C. riparius	chronic	Step 2	≥ 41 982	100		

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the TER values reported are less than these values

Bioconcentration

Bioconcentration factor (BCF)
Risk assessment trigger (practical conditions of use) for the bioconcentration factor
Clearance time (CT50)
(CT90)

Level of residues (%) in organisms after the 14 day depuration phase

No fish bioconcentration study presented or required Log Pow < 3
Logiow

Effects on honeybees (OECD data points IIA 8.7 and IIIA 10.4)

Acute oral toxicity

BYI 02960	LD ₅₀ 1.2 μg/bee
BYI 02960 SL200	LD ₅₀ 3.2 μg/bee
BYI 02960-DFEAF	$LD_{50} > 82.5 \mu g/bee$
BYI 02960-OH	$LD_{50} > 105.3 \mu g/bee$
DFA	$LD_{50} > 107/9 \mu g/bee$
6-CNA	$LD_{50} > 107.1 \mu g/bee$
BYI 02960 -CHMP	$LD_{50} > 106.7 \mu g/bee$
BYI 02960	LD ₅₀ 122.8 μg/bee
BYI 02960 SL200	LD ₅₀ 15.7 μg a.i /bee
BYI 02960-DFEAF	$LD_{50} > 100 \ \mu g/bee$
BYI 02960-OH	$LD_{50} > 100 \ \mu g/bee$
DFA	$LD_{50} > 100 \ \mu g/bee$
6-CNA	$LD_{50} > 100 \ \mu g/bee$

LD₅₀ > 100 μg/bee

BYI 02960 -CHMP

Acute contact toxicity

Hazard quotients for honey bees (OECD data point number IIIA 10.4.1)

Application rate (kg as/ha)	Сгор	Route	Hazard quotient	Hazard quotient risk assessment trigger *
Laboratory tests				
1 x 0.150	Hops	Oral	125 (a.i.)	50
		Oral	47 (SL 200)	50
		Contact	1.2 (a.i.)	50
		Contact	9.6 (SL 200)	50
1 x 0.125	Lettuce	Oral	104 (a.i.)	50
		Oral	39 (SL200)	50
		Contact	1.0 (a.i.)	50
		Contact	8.0 (SL200)	50

Field or semi-field tests

Six independent semi-field (gauze tunnel) studies, where BYI 02960 formulations were applied to the highly bee attractive surrogate crop Phacelia tanacetifolia with honey bees actively foraging on the crop (i.e. during bee flight).

In one pilot research semi-field study, BYI 02960 was applied during bee flight at a rate of 75 and 150 g a.i./ha, respectively, and in a 2nd pilot research semi-field study, BYI 02960 was applied during bee flight at a rate of 150 g a.i./ha.

In four further independent (GLP-compliant) semi-field studies, conducted in Germany, Denmark and Italy, BYI 02960 was always applied at a rate corresponding to 200 g a.i./ha during full flowering of Phacelia tanacetifolia with honey bees actively foraging on the crop (i.e. during bee flight). In all of these four GLP-compliant semi-field studies, the Phacelia-crop received, in addition to the full-flowering treatment, a preflowering application, just before onset of flowering, also at a rate corresponding to 200 g a.i./ha. In two of these four GLP-compliant semi-field studies, there was in addition to the two sequential foliar applications also a soil treatment at a rate corresponding to 300 g a.i./ha at the day of sowing of the Phacelia-seeds. In one of these four GLP-compliant semi-field studies, additionally a detailed, quantitative digital brood assessment of individually marked cells has been conducted.

The results of all of the six semi-field (tunnel) studies under forced and as such worst-case exposure conditions consistently did not show any adverse effects on mortality, foraging activity, behaviour, brood-, food- and population development or on overall colony vitality.

Effects on other arthropod species (OECD data points IIA 8.8.1, IIA 8.8.2 and IIIA 10.5)

Species	Stage	Test Substance	Dose (g as/ha)	Endpoint	Effect	Annex VI Trigger*
Laboratory tests						
Tier 1 glass plat	es					
Aphidius	Adult	BYI 02960	$LR_{50} < 0.5$	Mortality	100%	50%-
rhopalosiphi		SL 200				
Typhlodromus	Adult	BYI 02960	LR ₅₀ 17.3	Mortality	< 50%	50%
pyri		SL 200				
Extended labora	itory					
Aphidius	Adult	BYI 02960	LR ₅₀ 2.02	Mortality	100%	50%
rhopalosiphi		SL 200				
Typhlodromus	Adult	BYI 02960	LR ₅₀ 177	Mortality	< 50%	50%
pyri		SL 200				
Coccinella	Adult	BYI 02960	LR ₅₀ 273.9	Mortality	< 50%	50%
septempunctata		SL 200				
Aleochara	Adult	BYI 02960	$ER_{50} > 300$	Reproduction	13%	50%
bilineata		SL 200				

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the hazard quotients reported are greater than these values

Aged residue laboratory						
Aphidius rhopalosiphi	Adult	BYI 02960 SL 200	2 x 250 at 10 day interval;	Mortality Reproduction	< 50% after 42 d < 50% after 49d	50%
Orius laevigatus	adult	BYI 02960 SL 200	2 x 250 at 10 day interval;	Mortality	< 50% after 28 days	50%

Field or semi-field tests

BYI 02960 SL 200 (g/L)

Netherlands: NTA full fauna off-crop field study. Spray application rates: 0.51, 1.7, 5.1, 21 g a.i./ha

Community level NOER = 21 g a.i./ha Population level NOER = 5.1 g a.i./ha Population level NOEAER = 21 g a.i./ha

SW France: NTA full fauna off-crop field study. Spray application rates: 0.51, 1.7, 5.1, 21 g a.i./ha

Community level NOER = 21 g a.i./ha Population level NOER = 1.7 g a.i./ha Population level NOEAER = 21 g a.i./ha

NOER: No Observed Effect Rate

NOEAER: No Observed Ecologically Adverse Effect Rate

Effects on earthworms (OECD data points IIA 8.9 and IIIA 10.6)

Acute toxicity	BYI 02960 LC50 192.9 mg/kg dws		
	BYI 02960 SL200	LC50 709 mg product/kg dws	
	DFA	LC50 > 1000 mg/kg dws	
	6-CNA	LC50 > 1000 mg/kg dws	
Reproductive toxicity	BYI 02960 SL200	NOEC 8.9 mg prod/kg soil	
	DFA	NOEC 62 mg/kg dws	
	6-CNA	NOEC 95 mg/kg dws	
Field Study Eartworm fauna	Reduction of abundance (-33%) and biomass (-38%) at		
	1500 g a.i./ha and biomass at 600 g a.i./ha (-36%) after 1		
	month; full recovery of earthworm population after 11		
	months		

Toxicity/exposure ratios for earthworms (OECD data point IIIA 10.6.1)

Application rate (kg as/ha)	Crop	Substance	Time-scale	TER	Risk assessment trigger *
1 x 0.150g	Нор	BYI 02960 SL200	acute	1509	10
		BYI 02960	acute	1206	10
		DFA	acute	> 111 111	10
		6-CNA	acute	≥ 142 857	10
		BYI 02960 SL200	chronic	19	5
		DFA	chronic	6889	5
		6-CNA	chronic	13 571	5
1 x 0.125	Lettuce	BYI 02960 SL200	acute	1035	10
		BYI 02960	acute	1237	10
		DFA	acute	> 71 429	10
		6-CNA	acute	> 83 333	10
		BYI 02960 SL200	chronic	13	5
		DFA	chronic	4429	5
		6-CNA	chronic	7917	5

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the TER values reported are less than these values

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the effects reported are greater than these values

Toxicity/exposure ratios for other soil non-target macro-organisms (OECD data point IIIA 10.6.6)

Application rate	Crop	Substance	Time-scale	TER	Risk
(kg as/ha)					assessment
					trigger *
Folsomia candida					
1 x 150g/ha	Нор	BYI 02960 SL200	Chronic	12	5
		DFA	Chronic	≥ 7143	5
		6-CNA	Chronic	7500	5
1 x 125g/ha	Lettuce	BYI 02960 SL200	Chronic	≥ 1460	5
		DFA	Chronic	≥ 71 429	5
		6-CNA	Chronic	≥ 8333	5

^{*} in the EU a risk assessment must be carried out relevant to practical conditions of use where the TER values reported are less than these values

Effects on soil micro-organisms (OECD data points IIA 8.10 and IIIA 10.7)

Nitrogen mineralization Carbon mineralization

< 25% effect after 28 days 12.44 L product/ha	
< 25% effect after 28 days 12.45 L product/ha	