Cálculo Proposicional

A linguagem natural nem sempre é clara e precisa, sendo muito comum a ocorrência de ambigüidades que geram dúvidas sobre o significado do que se está falando.

Por isso, um dos objetivos da **lógica** é estabelecer uma **linguagem formal**, onde se pode expressar com **clareza**, **precisão** e emitir juízo de **verdadeiro** ou **falso** para determinadas frases.

Proposição é um conceito primitivo (aceito sem definição). Mas nada impede que se estabeleçam as suas características para melhor entendimento.

Proposição é uma frase **declarativa** (com sujeito e predicado), à qual pode ser atribuído, sem ambigüidade, um dos valores lógicos: **verdadeiro** (V) ou **falso** (F).

Exemplos:

- 1) São proposições:
 - a) O Japão fica na África.
 - b) O Brasil é banhado pelo Oceano Atlântico.
 - c) 3 + 4 = 7

Tautologia

Uma proposição composta é uma **tautologia** quando o seu valor lógico é **sempre verdade** (V), quaisquer que sejam os valores lógicos das proposições componentes.

Exemplos:

p: Chove

~p: Não chove

 $(p \lor \sim p)$

Contradição

Uma proposição composta é uma **contradição** quando o seu valor lógico é **sempre** a **falsidade** (**F**), quaisquer que sejam os valores lógicos das proposições componentes.

Exemplo:

p: Chove

~p: Não chove

 $(p \land \sim p)$

Na concepção de *prova em matemática* que surge com Tales (século V a.C.), provar um resultado em geometria, por exemplo, é como participar de um jogo onde as regras estão de uma vez por todas fixadas. Os conceitos primitivos são do conhecimento de todos os jogadores e todos aceitam os axiomas como verdades, diante das quais não cabe discussão. Estas são as regras do jogo, as quais todos aceitam de antemão. Para provar um resultado julgado verdadeiro é preciso argumentar logicamente (jogar), a partir dos conceitos primitivos, dos axiomas e das premissas colocadas no enunciado, de modo que, nenhum erro lógico seja cometido (jogada ilícita).

<u>Elementos primitivos</u>: são entes sem definição, que estão na base de uma teoria matemática. Ex: na geometria básica, os conceitos de ponto e reta.

<u>Axiomas</u>: são enunciados evolvendo elementos primitivos e descrevem propriedades admitidas como verdadeiras, sem necessidade de demonstração. Ex: por dois pontos do plano, passa uma e somente uma única reta.

Toda proposição enunciada, a qual desejamos demonstrar como verdadeira, tem a seguinte estrutura universal: a **Hipótese e a Tese**.

A **Hipótese** é a premissa, isto é, a parte do enunciado contido na proposição, o qual é admitido como verdadeiro ou conhecido. A **Tese** é a parte da proposição que pretendemos provar como verdadeira. A **Tese** é a conclusão da proposição. É onde queremos chegar.

"Portanto para provar que uma proposição é verdadeira, procedemos do seguinte modo: admitida a hipótese como verdadeira temos que mostrar, através de uma argumentação consistente, que a tese é também verdadeira".

Esquematicamente, precisamos provar que a Hipótese implica a Tese. Isto é, que

Para desenvolver a prova, precisamos traduzir o problema em uma linguagem lógica. Para tal, precisamos utilizar os conectivos e os modificadores lógicos. Na tabela abaixo apresentamos os conectivos e os modificadores, a simbologia e sua função lógica.

Conectivo	Símbolo	Função Lógica
Е	٨	Conjunção.
Ou	V	Disjunção.
não	~	negar uma proposição.
se então	→	estabelecer que uma proposição é condição suficiente para outra proposição.
Se e somente se	\leftrightarrow	estabelecer equivalência entre duas proposições.

Considere as seguintes proposições compostas por ações de conectivos e modificadores.

- a) Tenho um gato e vou ao cinema todos os domingos
- b) Tenho um gato ou vou ao cinema todos os domingos
- c) Não tenho um gato
- d) Não vou ao cinema todos os domingos
- e) Se tenho um gato vou ao cinema todos os domingos

f) Tenho um gato se e somente se vou ao cinema todos os domingos Denotando por p e q as proposições,

- p Tenho um gato
- q Vou ao cinema todos os domingos,

e usando os conectivos e modificadores definidos, podemos expressar sumariamente as proposições de a) até f):

- a) $p \wedge q$
- b) $p \vee q$

- $d) \sim q$
- e) $p \rightarrow q$ f) $p \leftrightarrow q$

Tabela resumo sobre valorização de proposições compostas.

Proposições	p	q	p∧q	p v q	~ p	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
Valores Lógicos	V	V	V	V	F	V	V	V
Valores Lógicos	V	F	F	V	F	F	V	F
Valores Lógicos	F	V	F	V	V	V	F	F
Valores Lógicos	F	F	F	F	V	V	V	V

Algumas frases para entender o "então" (→)

- Se ele é juiz → ele é advogado.
- Sinto frio \rightarrow visto o casaco.
- Se chover \rightarrow a rua fica molhada.

Disjunção exclusiva, "ou exclusivo" (simbolizada por ∨)

Uma proposição composta por duas proposições simples conectadas por "ou exclusivo" é verdadeira quando os valores lógicos das proposições simples forem diferentes

Exemplo de verificação de valores de proposição:

Construir todas as possibilidade de atribuição de valor lógico à proposição composta:

$$(p \ v \ q) \rightarrow p$$

Solução: Para construir a tabela, partimos da atribuição de valores lógicos a p e q, em seguida estes valores lógicos servem para construir os valores lógicos possíveis para p v q. Em seguida, integrar toda a proposição.

p	q	pvq	$(p \lor q) \to p$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

Exercício:

O gato não entrou no buraco ou não seguiu o rato.

$$P: \sim p \ v \sim q$$

Solução:

p: O gato entrou no buraco.

~ p: O gato não entrou no buraco.

q: O gato seguiu o rato.

~ q: O gato não seguiu o rato.

P	q	~ p	~ q	~ p v ~ q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Equivalência Lógica

Distinção entre: (\leftrightarrow) e (\Leftrightarrow) .

- (\leftrightarrow) *Bicondicional:* o símbolo (\leftrightarrow) representa uma operação entre proposições, resultando em uma nova proposição.
- (⇔) *Equivalência*: o símbolo (⇔) indica uma relação entre duas proposições dadas. Equivalências entre proposições.

Uma proposição p é equivalente a proposição q quando em suas tabelas verdade não ocorre VF e nem FV.

Exemplo: Verificar se: $(p \rightarrow q) \Leftrightarrow \sim p \ v \ q$

p	q	$p \rightarrow q$	~ p	~ p v q	$(p \rightarrow q) \leftrightarrow \sim p \vee q$
V	V	V	F	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

Comparando as colunas 1 e 2 verificamos que não ocorre VF e FV numa mesma linha. Verificamos que os valores lógicos são os mesmos.

Equivalências Notáveis:

1) Dupla negação:

$$p \Leftrightarrow \sim (\sim p)$$

2) Leis Idempotentes:

$$p \wedge p \Leftrightarrow p$$

$$p \ v \ p \Leftrightarrow p$$

3) Leis Comutativas:

$$p \wedge q \Leftrightarrow q \wedge p$$

$$p v q \Leftrightarrow q v p$$

4) Leis Associativas:

$$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$$

$$p v (q v r) \Leftrightarrow (p v q) v r$$

5) Leis de De Morgan:

$$\sim (p \land q) \Leftrightarrow \sim p \ v \sim q$$

$$\sim \left(p\ v\ q\right) \Longleftrightarrow \sim p\ \wedge \sim q$$

6) Leis Distributivas:

$$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$$

$$p v (q \wedge r) \Leftrightarrow (p v q) \wedge (p v r)$$

7) Condicionais:

$$(p \rightarrow q) \Leftrightarrow (\sim q \rightarrow \sim p)$$

$$(p \rightarrow q) \Leftrightarrow (\sim p \vee q)$$

8) Bicondicional:

$$(p \leftrightarrow q) \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

9) Modus Ponens:

 $((p\to q) \land p) \to q$ (Se existe água em marte, então existe vida. Existe água em Marte. Logo, existe vida)

10) Modus Talens:

 $((p \rightarrow q) \land \neg q) \rightarrow \neg p$ (Se este animal for peixe, tem escamas e guelras. Mas, ele não tem escamas nem guelras. Então, não é peixe)

11) Silogismo Disjunto:

$$(p \vee q) \wedge \sim p \rightarrow q$$

12) Silogismo Hipotético:

$$(p \to q) \land (q \to r) \ \boldsymbol{\to} \ p \to r$$