

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Digital Lab (ENCS2110)

Experiment No.2 Pre-Lab

Title: Comparators, Adders and Subtractors

Prepared by:

Name: Aya Dahbour Number: 1201738

Instructor: Dr. Bilal Karaki TA: Eng. Ali Hamoudeh

Section: 2 Date: September 20, 2022

1. Design a three-bit comparator (using the basic comparator)

Basic comparator (1-bit comparator):

Figure (1): 1-bit comparator logic diagram

3-bit comparator using basic comparator:

Figure (2): 3-bit comparator logic diagram

2. Design, Boolean function, and truth table of half-and full-adder

A. Half-adder:

Inp	out		Output
Α	В	S	Cout(Carry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

AB	0	1
0		1
1	1	

Table (2): S k-map

Table (3): Cout k-map

Table (1): Half-adder truth table

Summation and carry Boolean functions of half-adder obtained from K-maps:

- $S = AB' + A'B \equiv A \oplus B$
- Cout = AB

Half-adder circuit (logic diagram) design using basic gates:

Figure (3): Half-adder logic diagram

B. Full-adder

I	npu	t	Output		
A	В	C	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Table (4): Full-adder truth table

A BC	00	01	11	10
0		1	() (2)	1
1	(1)		1	

T	ah	0	15	. 6	k-	m	an
	d D	ıe	ı) K-	ш	аD

A BC	00	01	11	10
0			1	
1		1	(1)	1

Table (6): Cout k-map

Summation and carry Boolean functions of full-adder obtained from K-maps:

- $S = A'B'C+A'BC'+AB'C'+ABC = A \oplus B \oplus C$
- Cout = A'BC+AB'C+ABC'+ABC=(A \bigoplus B)C + AB

Full-adder circuit design using basic gates: it also can be designed using HA component.

Figure (4): Full-adder logic diagram

3. Design the Logic Diagram, Boolean function, and truth table of a halfand full- Subtractor

C. Half-subtractor:

Inp	out		Output
Α	В	D	Bout(Borrow)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

AB	0	1
0	12	1
1	1	

AB	0	1
0		1
1	2 3	

Table (8): D k-map

Table (9): Bout k-map

Table (7): Half-Subtractor truth table

Difference and borrow Boolean functions of half-subtractor obtained from K-maps:

- $D = AB' + A'B \equiv A \oplus B$
- Bout = AB

Half-subtractor circuit (logic diagram) design using basic gates:

Figure (5): Half- subtractor logic diagram

D. Full-subtractor

I	npu	t	Output		
A	В	C	D	Bout	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Table (10): Full-Subtractor truth table

A BC	00	01	11	10
0		1		1
1	(1)		(1)	

A	—BC	00	01	11	10
()	9	1	D	1
	1	0		(1)	

Table (11): D k-map

Table (12): Bout k-map

Difference and borrow Boolean functions of full-subtractor obtained from K-maps:

- $D = A'B'C+A'BC'+AB'C'+ABC = A \oplus B \oplus C$
- Bout = A'B'C+A'BC'+A'BC+ABC=(A⊕B)'C + A'B

Full- subtractor circuit design using basic gates: it also can be designed using HA component.

Figure (6): Full- subtractor logic diagram