TMR4243 - Marine Control Systems II

Homework assignment 3

1 Stabilization

Consider the scalar system

$$\dot{x} = u + 2|x|x.$$

- 1. Let $V(x) = \frac{1}{2}x^2$ be a CLF for the system, and design a corresponding control for u that renders x = 0 UGES.
- 2. For the above quadratic CLF, derive the control law based on Sontag's formula, and discuss the achieved stability.
- 3. Show that the control law

$$u = -kx, \qquad k > 0$$

achieves:

- Local stabilization.
- Regional stabilization.
- Semiglobal stabilization but not global stabilization.

2 Practical stabilization

Consider the scalar system

$$\dot{x} = u + d(t), \qquad \|d\| \le 1.$$

1. Show that the control law

$$u = -kx, \qquad k > 0$$

achieves global practical stabilization.

3 Diesel generator control

The (simplified) mechanical dynamics of a diesel-generator is given by

$$\dot{\delta} = \omega_B (\omega - \omega_0)$$
$$2H\dot{\omega} = t_m - D\omega - t_e(t)$$

where ω is the normalized (per-unit) electric frequency, δ is the load angle of the generator, t_m is the per-unit control torque from the cylinder combustion dynamics (our control input), t_e is the per-unit electric load torque, H>0 is an inertia constant, D>0 is a damping gain, $\omega_B=120\pi$ [rad/s] is the base frequency constant, and ω_0 is the per-unit electric frequency of the connected electric power bus.

Suppose we want to control δ to δ_{ref} and ω to ω_0 and define the error states $e_{\delta} := \delta - \delta_{ref}$ and $e_{\omega} := \omega - \omega_0$. Assume that $t_e(t) = t_L + w(t)$ where t_L is a constant electric load torque and w a bounded disturbance torque.

- 1. Assume $w(t) \equiv 0$ and t_L is known. Write the system as a linear state-space vectorial system with $x = \text{col}(e_{\delta}, e_{\omega})$ and $u = t_m$.
- 2. State the control objective.
- 3. Let $P \in \mathbb{R}^{2 \times 2}$ with $P = P^{\top} > 0$. For an appropriate choice of P, let $V(x) = x^{\top}Px$ be a CLF for the system and propose a corresponding control law for t_m that renders x = 0 UGES.
- 4. Let the bound for $||w|| \le w_0$. In presence of the disturbance w, show that your control law renders the closed-loop system Practically-UGES with respect to x = 0.

References