Bipolar Junction Transistor (BJT)

Construction & Operation

- BJT: A three-layer semiconductor device with Emitter (E), Base (B), and Collector (C).
- Types:
- NPN: Current flows from collector to emitter.
- **PNP**: Current flows from emitter to collector.
- Operation: Works by controlling a small base current to regulate a larger collector current.

BJT Configurations & Characteristics

1st Common Base (CB):

- Low input impedance, high output impedance.
- Voltage gain is high, but current gain is less than 1.

2ndCommon Emitter (CE):

- Most used configuration.
- High voltage and current gain.
- Provides phase inversion.

3rd Common Collector (CC):

- Also called an emitter follower.
- High input impedance, low output impedance.
- Voltage gain ≈ 1 , but high current gain.

•

Biasing of BJT

- Ensures **stable operation** of the transistor in amplification mode.
- Types of Biasing:
- Fixed Bias
- Collector-to-Base Bias
- Voltage Divider Bias (most stable method).

•

Junction Field Effect Transistor (JFET)

Construction & Operation

- JFET: A unipolar device controlled by voltage, with terminals Drain (D), Source (S), and Gate (G).
- Types:
- N-channel JFET: Majority carriers are electrons.
- **P-channel JFET**: Majority carriers are holes.

• Operation:

- When voltage at the Gate is negative (for N-channel), the conduction channel narrows, reducing current.
- No gate current flows, making it highly efficient.

•

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Types of MOSFET

1st Enhancement MOSFET (EMOSFET)

- •
- No conduction at zero gate voltage.
- Needs a **positive voltage** (N-channel) or **negative voltage** (P-channel) to conduct.

2ndDepletion MOSFET (DMOSFET)

- •
- Conducts even at zero gate voltage.
- Can operate in both enhancement and depletion modes.

•

MOSFET Operation Characteristics

- High input impedance (ideal for signal amplification).
- Faster switching speed than BJTs (used in digital circuits).
- Less power consumption, making it suitable for low-power applications.