Санкт-Петербургский Политехнический Университет Высшая школа прикладной математики и вычислительной физики, ФизМех 01.03.02 Прикладная математика и информатика

Лабораторная работа №2 Дисциплина "Дискретная математика" Тема " Графы "

Вариант "Алгоритм Флойда-Уоршалла"

Поставленная задача

Реализовать алгоритм Флойда-Уоршалла для поиска кратчайших путей между всеми парами вершин взвешенного орграфа.

Используемый язык программирования

Python 3.12.6

Описание алгоритма Флойда-Уоршалла

```
Функция Floyd_Warshall(W, p, T, P)
 // Инициализация матриц Т и Р
 Для і от 0 до р-1
    Для ј от 0 до р-1
      T[i][j] \leftarrow W[i][j] // Кратчайшие расстояния инициализируются значениями из W
      Если W[i][j] равно бесконечность
        P[i][i] \leftarrow 0 // Отсутствует путь
      Иначе
        P[i][j] \leftarrow i // Устанавливаем предшественника для пути i -> j
 // Основной цикл алгоритма Флойда-Уоршалла
  Для k от 0 до p-1
    Для і от 0 до р-1
      Для ј от 0 до р-1
        Если T[i][k] не равно бесконечность И T[k][j] не равно бесконечность
           Если T[i][j] > T[i][k] + T[k][j] // Проверка на более короткий путь
             T[i][j] \leftarrow T[i][k] + T[k][j] // Обновление кратчайшего расстояния
             P[i][j] \leftarrow P[k][j] // Устанавливаем предшественника
 // Проверка на наличие отрицательных циклов
  Для ј от 0 до р-1
    Если T[j][j] < 0
      Вернуть -1 // Найден отрицательный цикл
```

Пример работы алгоритма

Для примера рассмотрим орграф W

	0	1	2	3	4
0	0	4	inf	5	Inf
1	inf	0	1	inf	6
2	2	inf	0	3	Inf
3	inf	inf	1	0	2
4	1	inf	inf	4	0

После прохождения алгоритмом получим

	0	1	2	3	4
0	0	4	5	5	7
1	3	0	1	4	6
2	2	6	0	3	5
3	3	7	1	0	2
4	1	5	5	4	0

Вывод

Алгоритм Флойда-Уоршалла позволяет найти кратчайшее расстояние между любыми двумя вершинами в графе, при этом веса ребер могут быть как положительными, так и отрицательными. Для графов большой размерности алгоритм может выполняться медленно из-за сложности O(p^3), где p — кол-во вершин.