CS122A: Intermediate Embedded and Real Time Operating Systems

Jeffrey McDaniel

University of California, Riverside

▶ Bugs in your code are inevitable

- Bugs in your code are inevitable
- ► Software bugs cost the U.S. economy \$59.6 billion annually

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:
 - Simulators

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:
 - Simulators
 - Output (LCD, LED, and Pin Debugging)

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:
 - Simulators
 - Output (LCD, LED, and Pin Debugging)
 - UART

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:
 - Simulators
 - Output (LCD, LED, and Pin Debugging)
 - UART
 - Logic Analyzer

- Bugs in your code are inevitable
- ▶ Software bugs cost the U.S. economy \$59.6 billion annually
- "More than a third of these costs ... could be eliminated by an improved testing infrastructure that enables earlier and more effective identification and removal of software defects." NIST
- Available tools and techniques for debugging:
 - Simulators
 - Output (LCD, LED, and Pin Debugging)
 - UART
 - Logic Analyzer
 - On-Chip-Debuggers (OCD)

Simulators

Simulators

- Simulators model the internal state of the device
- Great for testing logic and tracking values of variables

Simulators

- Simulators model the internal state of the device
- Great for testing logic and tracking values of variables
- Simulator is not running on the hardware and so not all bugs can be caught

Using Output

Simulators are not always able to catch every bug

Using Output

- Simulators are not always able to catch every bug
- Sometimes you need to see what is happening on the hardware itself

► LED's are the simplest way to debug

- ► LED's are the simplest way to debug
- ► Test to see if a port is getting the output (1/0) that it is supposed to

- ► LED's are the simplest way to debug
- ► Test to see if a port is getting the output (1/0) that it is supposed to
- Output the binary value of a variable

- ► LED's are the simplest way to debug
- ► Test to see if a port is getting the output (1/0) that it is supposed to
- Output the binary value of a variable
- Output the binary value of the state that an SM is in

► The LCD screen allows you to display more information

- ► The LCD screen allows you to display more information
- ► The integration is slightly more complex however

- ► The LCD screen allows you to display more information
- ► The integration is slightly more complex however
- ► Display the value of variables

- ► The LCD screen allows you to display more information
- ► The integration is slightly more complex however
- Display the value of variables
- Display the state of each state machine

- The LCD screen allows you to display more information
- ► The integration is slightly more complex however
- Display the value of variables
- Display the state of each state machine
- Create a more complex on chip debug environment

UART Debugging

ieee.ucr.edu/parts.cs120b/atmega/

- UART allows you to send messages to your computer to help debug
- More information is able to be displayed this way
- ► The integration process is more difficult
- If you are already using your UART ports it is more difficult

Logic Analyzers

Captures and displays multiple signals

Logic Analyzers

- Captures and displays multiple signals
- Display uses timing diagrams, SM traces, raw signal, or other formats

Logic Analyzers

- Captures and displays multiple signals
- Display uses timing diagrams, SM traces, raw signal, or other formats
- Useful for seeing exactly what signals are coming for analyzing sensor data

On-Chip-Debugger

 Mechanisms for monitoring and controlling execution on the device

On-Chip-Debugger

- Mechanisms for monitoring and controlling execution on the device
- Application is not being emulated/simulated but actually running on the target hardware

On-Chip-Debugger

- Mechanisms for monitoring and controlling execution on the device
- Application is not being emulated/simulated but actually running on the target hardware
- Not available on all microcontrollers