UNIVERSITE ABDELMALEK ESSAADI ECOLE NATIONALE DES SCIENCES APPLIQUEES D' ALHOCEIMA (ENSAH)

Deuxième année préparatoire

Cours

Probabilités et Statistiques Descriptives

Réalisé par Pr. **ABDELHAFID SALMANI**

Année universitaire 2020-2021

Table des matières

1		Notions élémentaires du calcul des probabilités			
	1.1	Généralités sur les ensembles et événements aléatoires	3		
		1.1.1 Généralités sur les ensembles :	3		
		1.1.2 Evénements aléatoires	5		
	1.2	Dénombrement :	6		
		1.2.1 Permutations d'un ensemble fini	6		
		1.2.2 Modèle du tirage avec remise	6		
		1.2.3 Modèle du tirage sans remise	7		
		1.2.4 Modèle du tirage simultané :	7		
	1.3	Espace probabilisé et calcul des probabilités :	8		
		1.3.1 Définitions et proprietés	8		
		1.3.2 Equiprobabilité des événements élémentaires	Ö		
	1.4	Probabilité conditionnelle	L(
	1.5	Indépendance et Indépendance mutuelle	1		
		1.5.1 Indépendance de deux événements	1		
		1.5.2 Indépendance de n événements avec $n \geq 2$	1		
		1.5.3 Formule de la probabilté complète	3		
	1.6	Formules de Bayes	3		

Chapitre 1

Notions élémentaires du calcul des probabilités

1.1 Généralités sur les ensembles et événements aléatoires

1.1.1 Généralités sur les ensembles :

Définition 1.1.1 - Cardinal

Le cardinal d'un ensemble fini A, noté card(A), est le nombre d'élément de A. Par convention, l'ensemble vide \varnothing a un cardinal nul.

Proposition 1.1.1

1. Si A et B sont des ensembles finis, l'ensemble des parties de A, $\mathcal{P}(A)$ et le produit cartésien $A \times B$ sont des ensembles finis, de cardinal respectifs :

$$card\mathcal{P}(A) = 2^{card(A)}$$

$$card(A \times B) = card(A) \times card(B)$$

2. Le cardinal du complémentaire d'un sous ensemble A d'un ensemble Ω se déduit du cardinal de A et de Ω :

$$card(\overline{A}) = card(\Omega) - card(A)$$

3. Si A et B sont deux sous-ensembles d'un ensemble fini alors

$$card(A \cup B) = card(A) + card(B) - card(A \cap B)$$

Remarque 1.1.1

Le cardinal de la réunion de deux sous-ensembles disjoints est la somme des cardinaux : $A \cap B = \emptyset \Longrightarrow card(A \cup B) = card(A) + card(B)$

Définition 1.1.2 - Fonction caractéristique

La fonction caractéristique d'un sous ensemble A d'un ensemble Ω est la fonction $\mathbb{1}_A$ définie par :

$$\forall \omega \in \Omega, \quad \mathbb{1}_A(\omega) = \begin{cases} 1 & si \ \omega \in A \\ 0 & sinon \end{cases}.$$

Proposition 1.1.2

1. La fonction caractéristique de l'intersection de deux sous ensembles A et B d'un ensemble Ω est le produit des fonctions caractéristiques :

$$\forall \omega \in \Omega, \quad \mathbb{1}_{A \cap B}(\omega) = \mathbb{1}_A(\omega) \times \mathbb{1}_B(\omega)$$

2. La fonction caratéristique du complémentaire d'un sous ensemble A d'un ensemble Ω est le complémentaire de la fonction caractéristique :

$$\mathbb{1}_{\overline{A}}(\omega) = 1 - \mathbb{1}_A(\omega).$$

3. Si Ω est un ensemble fini, le cardinal de A se calcule à partir de la fonction caractéristique :

$$card(A) = \sum_{\omega \in \Omega} \mathbb{1}_A(\omega)$$

Theorème 1.1.1 - Formule du crible

Si $(A_i)_{1 \leq i \leq n}$ sont n sous ensembles d'un ensemble fini Ω , le cardinal de la réunion se déduit des cardinaux des intersections finis par la formule du cribe :

$$card(\bigcup_{i=1}^{n} A_i) = \sum_{k=1}^{n} (-1)^{k+1} \underbrace{\sum_{J \subset [1,n], card(J)=k}^{n} card(\bigcap_{j \in J} A_j)}_{C_n^k termes}$$

Remarque 1.1.2

La formule du crible peut s'écrire sous forme dévelopée :

- lorsque n=2:

$$card(A \cup B) = card(A) + card(B) - card(A \cap B)$$

- lorsque n=3:

$$card(A \cup B \cup C) = card(A) + card(B) + card(C)$$

$$-card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C)$$

- En général :

$$card(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} (cardA_{i}) - \sum_{1 \leq i \leq j \leq n} card(A_{i} \cap A_{j})$$

$$+ \dots + (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} card(\bigcap_{1 \leq j \leq n} A_{i_{j}})$$

$$+ \dots + (-1)^{n+1} card(\bigcap_{1 \leq i \leq n} A_{i})$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} < n} card(\bigcap_{1 \leq j \leq n} A_{i_{j}})$$

Corollaire 1.1.1 - Réunion d'ensembles disjoints

Le cardinal de la réunion de sous ensembles deux à deux disjoints est la somme des cardinaux :

$$(\forall i \neq j, A_i \cap A_j = \varnothing) \Longrightarrow card(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n card(A_i).$$

1.1.2 Evénements aléatoires

L'étude d'un phénomène aléatoire commence par la description de l'ensemble des résultats possibles d'une expérience aléatoire.

Exemple 1

Expérience 1 :

On jette un dé cubique dont les faces sont numérotées de 1 à 6 et on lit le numéro apparu sur la face supérieure. On obtient un nombre $\omega \in \{1, 2, 3, 4, 5, 6\} = \Omega$.

 $\omega \in \Omega$ est appelé une réalisation ou une "épreuve".

 $A \subset \Omega$ est appelé un événement.

A = "le nombre obtenu est pair", A est réalisé $\iff \omega \in \{2,4,6\}$.

Expérience 2 :

Soit un jeu de dominos (chacun des dominos porte deux nombres de $\{0, 1, 2, 3, 4, 5, 6\}$ éventuellement identiques).

On tire au hasard un domino. On obtient une paire $\{x,y\} \in \Omega = \{\{x,y\} : x,y \in \{0,1,2,...,6\}\}$ $\{x,y\}$ est une rélaisation ou une épreuve.

 $A \subset \Omega$ est appelé un événement.

A = l'événement "la somme des deux nombres obtenus est supérieure ou égale à 8"

$$A = \{\{x, y\}/x + y \ge 8\}$$

$$= \{\{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 4\}, \{4, 5\}, \{4, 6\}, \{5, 5\}, \{5, 6\}, \{2, 6\}, \{6, 6\}\}\}$$

$$A \text{ est } r\'{e}alis\'{e} \iff \{x, y\} \in A.$$

Exemple 2

N°	Expérience	Ensemble de résultats possibles
	Jeter un dé et relever le	
	nombre qui est sur sa face	
1	$sup\'erieure$	$\Omega = \{1; 2; 3; 4; 5; 6\}$
2	Jeter une pièce de monnaie	$\Omega = \{pile; face\} = \{P; F\}$
	Compter le nombre de	
	personnes entrant dans un	
3	magasin entre 8h 30 et 22h	$\Omega = \{1, 2, 3, \dots\} = \mathbb{N}$
	Jeter un dé deux fois de	
4	suite	$\Omega = \{(1,1); (1,2); (1,3);; (1,6); (2,1);; (6,6)\}$
	Jeter une pièce de monnaie	$\Omega =$
5	trois fois de suite	$\{PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF\}$
	Observer la durée de vie	
6	d'une ampoule électrique	$\Omega = \mathbb{R}^+$

Les sous-ensembles de Ω sont appelés événements. On distingue les événements simples ou événements élémentaires qui sont constitués d'un seul élément (autrement dit, un singleton), des événements composés.

Exemple 3

Dans l'expérience N°4 de l'exemple 2 :

 $A = \{(1,2)\}\ est\ un\ événement\ simple.$

 $B = \{(1,2); (1,4); (5,3)\}$ est un événement composé.

 $C = \{la \ somme \ des \ points \ obtenus \ est \ égale \ à 4\}$. Il est clair que $C = \{(1,3); (2,2); (3,1)\}$ est un événement composé.

1.2 Dénombrement :

1.2.1 Permutations d'un ensemble fini

Définition 1.2.1 - Permutation

Une permutation d'un ensemble fini Ω est une bijection de Ω dans Ω .

Theorème 1.2.1 - Dénombrement des permutations

Le nombre de permutations d'un ensemble Ω à n éléments est le nombre noté n! (factorielle n) :

$$n! = 1 \times 2 \times ... \times n$$

Démonstration:

Une permutation σ d'un ensemble à n éléments ω_i , numérotés de 1 à n est caractérisée par les images successives de ses éléments :

- 1. Il y a *n* possibiltés pour l'image de ω_1 ,
- 2. une fois fixée l'image de ω_1 , il y a n-1 possibiltés pour l'image de ω_2 ,
- 3. puis n-2 possibiltés pour celle de ω_3 , et ainsi de suite

Le nombre total de possibiltés est donc $n \times (n-1) \times ... \times 1$

Exemple 4

Le nombre de façons de trier un jeu de 32 cartes est le nombre de permutations d'un ensemble à 32 éléments, c'est à dire 32!.

1.2.2 Modèle du tirage avec remise

Le tirage avec remise consiste à réaliser le tirage successif de p éléments d'un ensemble Ω , en remettant l'élément tiré à l'issue de chaque tirage. Le résultat est la liste ordonnée des éléments tirés, successivement (dans laquelle un élément donné peut éventuellement apparaître plusieurs fois)

Définition 1.2.2 - Liste (avec répétition)

Soit Ω un ensemble fini à n éléments. Une p-liste à valeur dans Ω est un p-uplet $(x_1, x_2, ..., x_p)$ d'éléments de Ω .

Theorème 1.2.2 - Dénombrement des p-listes

Si $A_p(\Omega)$ est l'ensemble des p-listes à valeur dans un ensemble Ω à n éléments :

$$card(A_p(\Omega)) = n^p$$

Démonstration:

$$A_p(\Omega) = \Omega^p = \underbrace{\Omega \times \Omega \times ... \times \Omega}_{pfois}$$
$$card(A_p(\Omega)) = card(\Omega) \times card(\Omega) \times ... \times card(\Omega) = n^p$$

Donc

Exemple 5

Une urne contient 10 boules numérotées de 1 à 10. On effectue 5 tirages successifs avec remise et on note les numéros obtenus. Le nombre totale de tirages possibles est le nombre de 5-listes à valeur dans $\{1, 2, ..., 10\}$, c'est à dire 10^5 .

1.2.3 Modèle du tirage sans remise

Le tirage sans remise consiste à réaliser p tirages successif d'éléments d'un ensemble Ω , sans remettre l'élément tiré à l'issue de chaque tirage. Le résultat est la liste ordonnée des éléments tirés successivement (dans laquelle un élément donné ne peut pas apparaître plus d'une fois):

Définition 1.2.3 -Liste sans répétition

Une p-liste sans répétition à valeur dans un ensemble Ω est un p-uplet $(x_1, x_2, ..., x_p)$ d'éléments $de \ \Omega \ deux \ à \ deux \ distincts.$ On parle aussi d'arrangement à $n \ éléments \ est$:

$$A_n^p = \underbrace{n(n-1)...(n-p+1)}_{p \text{ facteurs}} = \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \leq n \\ 0 & \text{sinon} \end{cases}$$

Remarque 1.2.1

-Dénombrement des injections entre ensemble finis

 A_n^p est le nombre d'injections d'un ensemble de p éléments dans un ensemble à n éléments. En effet, si $A = \{a_1, a_2, ..., a_p\}$ est un ensemble à p éléments et $B = \{b_1, b_2, ..., b_n\}$ un ensemble à n éléments, on peut associer à toute injection $\sigma:A\longrightarrow B$ la p-listes des images des éléments $de\ A: (\sigma(a_1), ..., \sigma(a_n)).$

Démonstration:

Lorsque l'on réalise un tirage sans répétition, on a n choix possibles pour le premier tirage, n-1 choix possibles pour le deuxième tirage et ainsi de suite, soit :

$$A_n^p = \underbrace{n(n-1)...(n-p+1)}_{p \text{ facteurs}}$$

Si $p \le n$, on en déduit $A_n^p = \frac{n!}{(n-p)!}$. Si $p \ge n+1$, l'un des termes du produit est nul, donc $A_n^p = 0$.

Exemple 6

20 athlètes s'affrontent lors d'une compétition. On suppose qu'il ne peut pas y avoir d'ex-aquo. Le nombre de podiums possibles est le nombre de 3-listes sans répétition dans l'ensemble des 20 athlètes : il y a donc A_{20}^3 podiums possibles.

1.2.4 Modèle du tirage simultané:

Le tirage simultané consiste à tirer simultanément k éléments d'un ensemble Ω . Le résultat est une partie à k éléments de l'ensemble Ω :

Définition 1.2.4 - Coefficients binomiaux

Soient k et n deux entiers. Le coefficient bonomial $C_n^k = \frac{n!}{(n-k)!k!}$ est le nombre de parties à k éléments d'un ensemble à n éléments.

Proposition 1.2.1 -Coefficients binomiaux

Les coefficients binomiaux vérifient :

1. Complémentaire :

$$C_n^{n-k} = C_n^k$$

2. Formule de Pascal:

$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$

3. Identité de Van der Monde :

$$\sum_{n=0}^{k} C_n^p C_m^{k-p} = C_{n+m}^k$$

1.3 Espace probabilisé et calcul des probabilités :

1.3.1 Définitions et proprietés

Définition 1.3.1 - Tribu

Soit Ω un ensemble et \mathcal{T} un ensemble de parties de Ω . \mathcal{T} est une tribu de Ω si elle vérifie les propriétés suivantes :

- 1) $\Omega \in \mathcal{T}$.
- 2) Si $A \in \mathcal{T}$, alors $\overline{A} \in \mathcal{T}$ où \overline{A} est le complémentaire de A dans Ω .
- 3) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments de \mathcal{T} , alors $\bigcup_{n=1}^{\infty} A_n \in \mathcal{T}$.

Les éléments de \mathcal{T} sont appelés événements. En particulier pour tout $\omega \in \Omega$, le singleton $\{\omega\}$ est appelé élémentaire.

Exemple 7

L'ensemble des parties de Ω est une tribu de Ω . C'est la plus grande tribu que l'on peut construire sur Ω . Considérons l'experience aléatoire qui consiste à tirer au hasard un objet sur une ligne de conditionnement sur laquelle circulent trois types d'objets différents : a,b,c. L'univers associé à cette experience est $\Omega = \{a,b,c\}$ et l'ensemble des parties de Ω , $\mathcal{P}(\Omega) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \Omega\}$ est une tribu de Ω .

Exemple 8

 $Si\ A\subset\Omega,\ alors\ \{\varnothing,\Omega,A,\overline{A}\}\ est\ une\ tribu\ de\ \Omega.$

Dans de nombreuses applications, Ω est \mathbb{R} . Dans ce cas, nous ne choisissons pas l'ensemble des parties de $\Omega = \mathbb{R}$ comme tribu. En effet, cet ensemble de parties est beaucoup trop grand pour y définir une probabilité \mathbb{P} . On utilisera la tribu $\mathcal{B}(\mathbb{R})$ des boréliens de \mathbb{R} , c'est à dire la plus petite tribu contenat tous les intervalles de \mathbb{R} . Cette tribu est déjà grande et largement suffisante pour les applications pratiques.

Définition 1.3.2 - Probabilité

Soient Ω un ensemble et \mathcal{T} une tribu de Ω . Un probabilté sur (Ω, \mathcal{T}) est une application $\mathbb{P}: \mathcal{T} \longrightarrow [0; +\infty[$ telle que :

- 1. $\mathbb{P}(\Omega) = 1$
- 2. $\forall (A,B) \in \mathcal{T}^2 \text{ tels que } A \cap B = \emptyset, \text{ on } a \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$
- 3. σ -additivité :

Pour toute famille $(A_i)_{i \in \mathbb{N}^*}$ d'événements de \mathcal{T} incompatibles deux à deux (c'est à dire $A_i \cap A_j = \emptyset$ si $i \neq j$), on a :

$$\mathbb{P}\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Définition 1.3.3 - Espace probabilisé

Soient Ω un ensemble, \mathcal{T} une tribu et $\mathbb{P}: \mathcal{T} \longrightarrow [0; +\infty[$ une probabilité sur (Ω, \mathcal{T}) . le couple (Ω, \mathcal{T}) est appelé un espace probabilisable et le triplet $(\Omega, \mathcal{T}, \mathbb{P})$ est appelé un espace probabilisé.

Proposition 1.3.1

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé.

1.
$$\forall A \in \mathcal{T}, \ \mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$$

2.
$$\mathbb{P}(\varnothing) = 0$$

3.
$$\forall (A, B) \in \mathcal{T}^2$$

a.
$$A \subset B \Longrightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$$
. D'où $\forall A \in \mathcal{T}, 0 \leq \mathbb{P}(A) \leq 1$.

b.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

4.
$$\forall (A_i)_{i \in \mathbb{N}^*} \subset \mathcal{T} \ on \ a', \mathbb{P}\Big(\bigcup_{i \in \mathbb{N}^*} A_i\Big) \leq \sum_{i \in \mathbb{N}^*} \mathbb{P}(A_i)$$

Démonstration:

1.
$$A$$
 et \overline{A} forment une réunion disjointe : $A \cup \overline{A} = \Omega$ donc $\mathbb{P}(A) + \mathbb{P}(\overline{A}) = 1$.

2.
$$\emptyset = \overline{\Omega} \text{ donc } \mathbb{P}(\emptyset) = 1 - \mathbb{P}(\Omega) = 0.$$

3. **a.** Soit
$$A \subset B$$
. Alors on a la réunion disjointe $B = A \cup (B \cap \overline{A})$

donc
$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \cap \overline{A}).$$

Comme
$$\mathbb{P}(B \cap \overline{A}) \geq 0$$
, on a $\mathbb{P}(A) \leq \mathbb{P}(B)$.

En prenant $B = \Omega$, on obtient l'encadrement voulu.

b. D'une part
$$A \cup B = A \cup (B \cap \overline{A})$$
 donc $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B \cap \overline{A})$.

D'autre part
$$B = B \cap \Omega = B \cap (A \cup \overline{A}) = (B \cap A) \cup (B \cap \overline{A})$$

Donc
$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(\overline{A} \cap B)$$
, d'où le résultat.

1.3.2 Equiprobabilité des événements élémentaires

Considérons $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé fini.

On note $\Omega' = \{E_i, 1 \le i \le n\}$ une partition de Ω en événements élémentaires.

Définition 1.3.4

On dit qu'il y a équiprobabilté des événements si:

$$\forall (i,j) \in \{1,...,n\}^2, \ \mathbb{P}(E_i) = \mathbb{P}(E_j)$$

Proposition 1.3.1

1. S'il y a équiprobabilité des événements élémentaires, alors

$$\forall i \in \{1, ..., n\}, \ \mathbb{P}(E_i) = \frac{1}{n} \ où \ n = card(\Omega').$$

2. Si A est un événement composé :
$$A = \bigcup_{i=1}^{m} E_i$$
, alors $\mathbb{P}(A) = \frac{m}{n} = \frac{card(A)}{card(\Omega)}$

Démonstration

Demonstration:

1.
$$\mathbb{P}(\Omega) = \mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \mathbb{P}(E_i) = n\mathbb{P}(E_1) \text{ donc } \mathbb{P}(E_1) = \frac{1}{n}$$

2. $\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{m} \mathbb{P}(E_i) = \frac{m}{n}$. Alors pour un événement A de cardinal m :

$$\mathbb{P}(A) = \frac{m}{n} = \frac{card(A)}{card(\Omega)}.$$

Exemple 9

 $Si\ \Omega = \{\omega_1, ..., \omega_n\}\ est\ fini,\ les\ \omega_i\ étant\ distincts\ 2\ à\ 2,\ la\ probabilité\ uniforme\ sur\ \Omega\ est\ définie$ en posant $p_i = \frac{1}{n}$.

Exemple 10

On jette deux dés de couleurs différentes. On note i le résultat du premier dé et j du second

On a donc
$$\Omega = \{(i,j)/1 \le i \le 6; 1 \le j \le 6\}$$

 $Card(\Omega) = 36$.
On munit l'ensemble Ω de la probabilité uniforme, $\mathbb{P}(\{(i,j)\}) = \frac{1}{Card(\Omega)} = \frac{1}{36}$.
On s'intéresse à la probabilité de la somme $i+j$ des deux dés.
Soit l'événement $A_k = \{(i,j) \in \Omega; i+j=k\}; k \in \{2,3,...12\}$
 $\mathbb{P}(\{A_2\}) = \mathbb{P}(\{(1,1)\}) = \frac{1}{36}$
 $\mathbb{P}(\{A_3\}) = \mathbb{P}(\{(1,2),(2,1)\}) = \frac{2}{36} = \frac{1}{18}$
 $\mathbb{P}(\{A_4\}) = \mathbb{P}(\{(1,3),(2,2),(3,1)\}) = \frac{3}{36} = \frac{1}{12}$
 $\mathbb{P}(\{A_{12}\}) = \mathbb{P}(\{(6,6)\}) = \frac{1}{36}$

Probabilité conditionnelle 1.4

Dans la pratique, il est très souvent utile de savoir calculer la probabilité d'un événement A, conditionnellement à ou sachant l'événement B. Par exemple, dans un jeu de dé à 6 faces, quelle est la probabilité que le résultat soit 6 sachant que ce résultat est pair? Dans cette question, on cherche donc à calculer la probabilité de l'événement $A = \{6\}$ conditionnellement à l'événement $B = \{2, 4, 6\}$. Comme il y a équiprobabilité des tirages et qu'il n'y a qu'une seule chance sur 3 de tirer 6 parmi {2,4,6}, l'intuition nous dit que la probabilité conditionnelle de A sachant B est 1/3. La définition générale qui permet de retrouver ce résultat est l'axiome de Bayes suivant

Définition 1.4.1 Probabilité conditionnelle

Soit un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ et un événement A tel que $\mathbb{P}(A) \neq 0$. Pour tout $B \in \mathcal{T}$, on définit la probabilité conditionnelle de B sachant A, noté $\mathbb{P}_A(B)$ ou $\mathbb{P}(B/A)$, par : $\mathbb{P}_A(B) = \mathbb{P}(B/A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \ [Axiome \ de \ Bayes]$

$$\mathbb{P}_A(B) = \mathbb{P}(B/A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$
 [Axiome de Bayes]

Remarque 1.4.1

- -L'application \mathbb{P}_A définit un nouvel espace probabilisé : $(\Omega, \mathcal{T}, \mathbb{P}_A)$.
- -On peut aussi considérer une nouvelle tribu \mathcal{T}_A , la tribu-trace sur A constitué des événements $B \cap A \ our \ B \in \mathcal{T}$.

On a ainsi un autre espace probabilisé : $(A, \mathcal{T}_A, \mathbb{P}_A)$.

Indépendance et Indépendance mutuelle 1.5

1.5.1 Indépendance de deux événements

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Définition 1.5.1 Soient A et B deus événements tels que $\mathbb{P}(A) \times \mathbb{P}(\overline{A}) \times \mathbb{P}(B) \times \mathbb{P}(\overline{B}) \neq 0$. On dit que A et B sont \mathbb{P} -indépendants lorsque $\mathbb{P}(A/B) = \mathbb{P}(A/\overline{B})$.

Savoir que B est vrai, ou que \overline{B} est vrai, ne modifie pas la probabilité que A soit vrai.

Proposition 1.5.1

A et B sont deux événements \mathbb{P} -indépendants si et seulement si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$.

Démonstration:

$$\begin{array}{l} \forall (A,B) \in \mathcal{T}^2 \text{ on a } B = (B \cap A) \cup (B \cap \overline{A}) \text{ donc} \\ \mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap \overline{A}) \\ = \mathbb{P}(A)\mathbb{P}(B/A) + \mathbb{P}(\overline{A})\mathbb{P}(B/\overline{A}) \\ = (1 - \mathbb{P}(\overline{A}))\mathbb{P}(B/A) + \mathbb{P}(\overline{A})\mathbb{P}(B/\overline{A}) \\ = \mathbb{P}(B/A) + \mathbb{P}(\overline{A})[\mathbb{P}(B/\overline{A}) - \mathbb{P}(B/A)] \end{array}$$
 Donc
$$\left(\mathbb{P}(B \cap A) = \mathbb{P}(A) \times \mathbb{P}(B)\right) \Longleftrightarrow \left(\mathbb{P}(B) = \mathbb{P}(B/A)\right) \\ \Longleftrightarrow \left(\mathbb{P}(B/A) = \mathbb{P}(B/\overline{A})\right) \\ \text{et de même en échangeant les rôles de A et B.}$$

Proposition 1.5.1

Si A et B sont des événements \mathbb{P} -indépendants, alors \overline{A} et B, A et \overline{B} , \overline{A} et \overline{B} sont aussi \mathbb{P} -indépendants.

Démonstration:

Il suffit de démontrer que si A et B sont P-indépendants, alors A et \overline{B} sont P-indépendants : $A = (A \cap B) \cup (A \cap B)$, donc

$$\mathbb{P}(A) = \mathbb{P}(B \cap A) + \mathbb{P}(\overline{B} \cap A) = \mathbb{P}(A)\mathbb{P}(B) + \mathbb{P}(\overline{B} \cap A)$$
$$\operatorname{donc} \mathbb{P}(\overline{B} \cap A) = \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A)\mathbb{P}(\overline{B}).$$

Indépendance de n événements avec $n \ge 2$ 1.5.2

Définition 1.5.2

Soient A, B et C 3 événement de l'espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$.

Ils sont dits \mathbb{P} - mutuellement indépendants si et seulement si :

- ils sont 2 à 2 P- indépendants
- $-\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$

Pour n=3, l'indépendance mutuelle entaîne l'indépendance deux à deux mais la réciproque est fausse.

Généralisation:

n événements $(A_i)_{1 \leq i \leq n}$ sont dit \mathbb{P} - mutuellement indépendants si et seulement si pour toute famille finie $K \subset \{1, 2, ..., n\}$, avec $card(K) \ge 2$, on a $\mathbb{P}\Big(\bigcap_{i \in K} A_i\Big) = \prod_{i \in K} \mathbb{P}(A_i)$.

Pour $n \geq 3$, l'indépendance mutuelle entraı̂ne l'indépendance deux à deux mais la réciproque est fausse.

Exemple 11

Une fabrique produit des articles, avec une probabilité globale de 4% qu'ils soient défectueux. Une procédé de contrôle rapide mais imparfait, conduit à mettre au rebut les articles corrects avec une probabilité de 2% et à accepter des articles défetueux avec une probabilité de 5%. Quelle est la probabilité qu'un article pris au hasard soit accepté?

Pour un article, on distingue les événements :

- B il est bon ou corrrect
- \overline{B} il est déffectueux
- A il est accepté au contrôle
- A il est refusé

Arbre des causes : on représente tous les cas possibles

<u>Données</u>: on sait que

- $\mathbb{P}(\overline{B}) = 0.04$
- $-\mathbb{P}(\overline{A}/B) = 0.02$
- $\mathbb{P}(A/\overline{B}) = 0.05$

Arbre des causes : on représente tous les cas possibles

On a
$$\Omega = B \cup \overline{B}$$
 donc $A = A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$.
D'où $\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B})$
 $= \mathbb{P}(B)\mathbb{P}(A/B) + \mathbb{P}(\overline{B})\mathbb{P}(A/\overline{B})$
 $= 0.96 \times 0.98 + 0.04 \times 0.05 = 0.9458$.

Ainsi: $\mathbb{P}(A) = 0.9428$.

1.5.3 Formule de la probabilté complète

Soit $(\Omega,\mathcal{T},\mathbb{P})$ un espace probabilisé fini

Définition 1.5.3

Soient $n \geq 2$, n événements $(B_i)_{1 \leq i \leq n}$ de probabilités non mullles forment un système complet d'événements si et seulement si constituent une partition de Ω .

 Ω est ainsi la réunion disjointe de ces événements : $\Omega = B_1 \cup B_2 \cup \cup B_n$. Soit un système complet d'événements $(B_i)_{1 \leq i \leq n}$ tel que $\forall i \in \{1, 2, ..., n\}, \mathbb{P}(B_i) \neq 0$. Soit A un événement de \mathcal{T} , on a

$$A = A \cap \Omega = (A \cap B_1) \cup ... \cup (A \cap B_n)$$

$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + + \mathbb{P}(A \cap B_n)$$

$$= \mathbb{P}(A/B_1)\mathbb{P}(B_1) + + \mathbb{P}(A/B_n)\mathbb{P}(A/B_n)$$

Theorème 1.5.1 - Formule de la probabilité complète

On suppose que $\forall i\{1,...,n\}, \mathbb{P}(B_i) \neq 0$. Si $(B_i)_{1 \leq i \leq n}$ est un système complet d'événements, pour tout événement A on a:

$$\mathbb{P}(A) = \sum_{1 \le i \le n} \mathbb{P}(A/B_i) \mathbb{P}(B_i)$$

1.6 Formules de Bayes

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé fini.

Theorème 1.6.1 - Formule de Bayes, cas simple

Si A et B deux événements tels que $\mathbb{P}(A).\mathbb{P}(B) \neq 0$, on a: $\mathbb{P}(B/A) = \frac{\mathbb{P}(A/B).\mathbb{P}(B)}{\mathbb{P}(A)}$

$$\mathbb{P}(B/A) = \frac{\mathbb{P}(A/B).\mathbb{P}(B)}{\mathbb{P}(A)}$$

On a aussi : $\mathbb{P}(A/B).\mathbb{P}(B) = \mathbb{P}(A \cap B) = \mathbb{P}(B/A).\mathbb{P}(A)$.

C'est un changement de point de vue : on passe de probabilités "sachant B", à des probabilités "sachant A".

Exemple 12

1) Exemple du contrôle de qualité :

Pour un article, on a distingué les événements :

-B il est bon ou correct

 $-\overline{B}$ il est défectueux

- A il est accepté au contrôle

- A il est refusé

a) Risque de première espèce :

Quelle est la probabilité pour qu'un article accepté par ce contrôle rapide soit en réalité défectueux?

$$\mathbb{P}(\overline{B}/A) = \frac{\mathbb{P}(A \cap \overline{B})}{\mathbb{P}(A)} = \frac{\mathbb{P}(A/\overline{B})\mathbb{P}(\overline{B})}{\mathbb{P}(A)} = \frac{0.04 \times 0.05}{0.9428} = 0.0021$$

C'est le risque client.

b) Risque de deuxième espèce : Quelle est la probabilité pour qu'un article soit bon, sachant qu'il a été refusé?

$$\mathbb{P}(B/\overline{A}) = \frac{\mathbb{P}(\overline{A} \cap B)}{\mathbb{P}(\overline{A})} = \frac{\mathbb{P}(\overline{A}/B)\mathbb{P}(B)}{\mathbb{P}(\overline{A})} = \frac{0.96 \times 0.02}{0.0572} = 0.0336$$

C'est le risque vendeur.

2) Exemple d'un test :

Une population est atteinte par un virus. On dispose d'un test.

Pour un individu, on distingue les événements :

- V il est porteur du virus
- \overline{V} il n'est pas porteur du virus

- P son test est positif
- N son test est négatif

On envisage différentes situations selon :

- La probabilité (proportion) qu'une personne soit porteur du virus : $\mathbb{P}(V)$
- La probabilité qu'un test soit positif pour un porteur du virus : $\mathbb{P}(P/V)$
- La probabilité qu'un test soit négatif pour un non-porteur du virus : $\mathbb{P}(N/\overline{V})$ 1^{er} cas : Les données sont :

$$- \mathbb{P}(V) = 0.001$$

$$- \mathbb{P}(P/\underline{V}) = 0.999$$

$$-\mathbb{P}(N/\overline{V}) = 0.999$$

 $\mathbb{P}(V/P) = \frac{\mathbb{P}(P/V) \times \mathbb{P}(V)}{\mathbb{P}(P)} \text{ est la probabilt\'e d'être porteur du virus, sachant que le test est positif.}$

$$\mathbb{P}(V/P) = \frac{\mathbb{P}(P/V) \times \mathbb{P}(V)}{\mathbb{P}(P/V) \times \mathbb{P}(V) + \mathbb{P}(P/\overline{V}) \times \mathbb{P}(\overline{V})} = \frac{0.999 \times 0.001}{0.999 \times 0.001 + 0.001 \times 0.999} = \frac{1}{2}$$

$$- \mathbb{P}(V) = 0.02$$

$$-\mathbb{P}(P/V) = 0.999$$

$$-\mathbb{P}(N/\overline{V}) = 0.999$$

Theorème 1.6.2 - Formule de Bayes, cas général

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, et un entier $n \geq 1$. Si $(B_i)_{1 \leq i \leq n}$ est un système complet d'événements, avec $\forall i, \mathbb{P}(B_i) \neq 0$, alors, pour A tel que $\mathbb{P}(A) \neq 0$, on a:

$$\forall j \in \{1, 2, ..., n\} \qquad \mathbb{P}(B_j / A) = \frac{\mathbb{P}(A / B_j) \times \mathbb{P}(B_j)}{\sum_{1 \le i \le n} \mathbb{P}(A / B_i) \times \mathbb{P}(B_i)}$$