

Reminders

Assignment #3 is due Friday

https://github.com/dilevin/CSC2549-a3-finite-elements-3d

Assignment #4 is live and is due on October 25th https://github.com/dilevin/CSC2549-a4-cloth-simulation

Graphics Reading Group

Seminar Room in BA5166 (Dynamic Graphics Project) Wednesdays 11am

Finite Elements on Surfaces

Triangular Finite Elements

Barycentric Coordinates as Shape Functions

Generalized Coordinates and Velocities

Generalizades coordinates $v^{t}(\overline{Y}) = \frac{d}{de} x^{e} = N(\overline{Y}) \dot{q}^{t}$ g-velocity

Deformation

Deformation Gradients for a 2D Triangle

Deformation Gradients for a 2D Triangle

Deformation Gradients for a 2D Triangle in 3D

Deformation Gradients for a 2D Triangle in 3D

Kinetic Energy

Potential Energy via Principal Stretches

before

after

Principal Stretches

& Principal Stether; Teigenraher FTF Undermed Deforma F=USVT Idx12 = dx TPT F dx right Cauchy Silver densur $\int dx \int dx = (dxV) \Lambda (V T dx)$

A Quadratic Energy Model

- 1. Measure deformation
- 2. Measure Volume change.

$$\Psi(s_{*}, s_{i}) = u \leq (s_{i}-1)^{2} + \lambda \cdot (s_{0} \cdot s_{i}-1)^{2}$$

A Quadratic Energy Model in 2D

Problem: area term Isn't quadratic: (
Solution: l'incari de around
$$S_0 = 1$$
 $S_1 = 1$
 $F(S_0, S_1) = S_0 \cdot S_1$ linearitation $\frac{\partial P}{\partial S_0}(S_0 + 1) + \frac{\partial F}{\partial S_0}(S_$

Final Energy: US (Si-1)2+ = (5x+5,-2) deformation (inear "Linear" Forces that rotate /w element Co-rotational linearly elasticity

Gradients of Principal Stretch Materials

Forces need
$$\frac{\partial \Psi}{\partial F}$$

Forces = $\frac{\partial F}{\partial F}$ $\frac{\partial \Psi}{\partial F}$, $F = \begin{bmatrix} F_{11} \\ F_{12} \\ F_{23} \end{bmatrix}$

BY

 $V(F) = \int \Psi(F) d\Delta = \int \frac{\partial V}{\partial F} d\Delta$

$$V(s_{s}(F), s_{t}(F)), F = U[s_{s_{t}}]V$$
 $V(s_{s}(F), s_{t}(F)), F = U[s_{s_{t}}]V$
 $V(s_{s}(F), s_{t}(F)), S_{t}(F)), F = U[s_{s_{t}}]V$
 $V(s_{s}(F), s_{t}(F)), S_{t}(F)), F = U[s_{s_{t}}]V$
 $V(s_{s}(F), s_{t}(F)), S_{t}(F)), V(s_{t}(F)), V$

) = [s₁]

Hessian of Principal Stretch Materials

$$H = \frac{2F}{34} + \frac{2V}{3F^2} = \frac{2^2V}{3F^2} = \frac{3^2V}{3F^2} d\Delta$$

$$\frac{2}{3F_3} = \frac{2}{3F_3} (UV, SUT)$$

$$\frac{2}{3F_3} = \frac{2}{3F_3} (UV, SUT)$$

$$=\frac{2U}{2Fc},\Psi,sUT+U\frac{2V,s}{2Fc}J+U\Psi,s\frac{2VT}{2Fc}$$

27,5 251 afij Js, JFi; Jso 2 Fij Rule Scalar salar vector Jy Jy O Jeigh Given

35,25 O Jeigh

Codel,

25,25 O Jeigh equi voler Ucctor You

The Singularity

Collisions in Simulation

Two phases detection and response

Detection: Did I hit anything?

Response: I hit something! What do I do?

Assignment #4 collision with analytical sphere.

Collision Detection

Next Week:

