International Macroeconomics Lecture 5.2: Business Cycles in Open Economies

Zachary R. Stangebye

University of Notre Dame

April 21st, 2016

Business Cycles

- Dynamics of aggregate economies
 - 1. Trend (growth)
 - 2. Cycles (booms/recessions)

Business Cycles

- Dynamics of aggregate economies
 - 1. Trend (growth)
 - 2. Cycles (booms/recessions)
- Got a handle on how they grow last time
 - What happens when borders open

Business Cycles

- Dynamics of aggregate economies
 - 1. Trend (growth)
 - 2. Cycles (booms/recessions)
- Got a handle on how they grow last time
 - What happens when borders open
- Now we turn to cycles in open economies
- Start with closed economy refresher (as before)

 Real business cycle model (and variations on it) still leading model for explaining cycles in closed economies

- Real business cycle model (and variations on it) still leading model for explaining cycles in closed economies
- Ingredients
 - 1. Closed economy, NCG model
 - 2. Add persistent fluctuations in productivity (A_t)

- Real business cycle model (and variations on it) still leading model for explaining cycles in closed economies
- Ingredients
 - 1. Closed economy, NCG model
 - 2. Add persistent fluctuations in productivity (A_t)

$$A_t = \hat{A}_t e^{z_t}$$

- $\hat{A}_{t+1}/\hat{A}_t = 1+z$, as in NCG (deterministic)
- z_t follows mean-zero, AR(1) process (random)

$$z_t = \rho_z z_{t-1} + \epsilon_t$$

- Real business cycle model (and variations on it) still leading model for explaining cycles in closed economies
- Ingredients
 - 1. Closed economy, NCG model
 - 2. Add persistent fluctuations in productivity (A_t)

$$A_t = \hat{A}_t e^{z_t}$$

- $\hat{A}_{t+1}/\hat{A}_t = 1+z$, as in NCG (deterministic)
- z_t follows mean-zero, AR(1) process (random)

$$z_t = \rho_z z_{t-1} + \epsilon_t$$

 ρ_z is close to one, but strictly less than one

1. Closed economy, no population growth

- 1. Closed economy, no population growth
- 2. Representative consumer maximizes expected utility

- 1. Closed economy, no population growth
- 2. Representative consumer maximizes expected utility

$$U_t = E_t \left[\sum_{s=t}^{\infty} \beta^{s-t} \log C_s \right]$$

3. Households supply $L_s=1$ inelastically in each period

- 1. Closed economy, no population growth
- 2. Representative consumer maximizes expected utility

$$U_t = E_t \left[\sum_{s=t}^{\infty} \beta^{s-t} \log C_s \right]$$

- 3. Households supply $L_s = 1$ inelastically in each period
- 4. Cobb-Douglas Production Function

$$Y_t = A_t K_t^{\alpha}$$

- 1. Closed economy, no population growth
- 2. Representative consumer maximizes expected utility

$$U_t = E_t \left[\sum_{s=t}^{\infty} \beta^{s-t} \log C_s \right]$$

- 3. Households supply $L_s = 1$ inelastically in each period
- 4. Cobb-Douglas Production Function

$$Y_t = A_t K_t^{\alpha}$$

5. 100% Capital Depreciation \rightarrow Resource constraint

$$K_{t+1} = A_t K_t^{\alpha} - C_t$$

• Euler equation with uncertainty in A_t:

$$u'(C_t) = \beta E_t \left[(1 + \tilde{r}_{t+1})u'(\tilde{C}_{t+1}) \right]$$

tilde implies a random variable

Euler equation with uncertainty in A_t:

$$u'(C_t) = \beta E_t \left[(1 + \tilde{r}_{t+1}) u'(\tilde{C}_{t+1}) \right]$$

tilde implies a random variable

 For any productivity realization tomorrow (unknown today), we have

$$1 + \tilde{r}_{t+1} = \alpha \tilde{A}_{t+1} K_{t+1}^{\alpha - 1}$$

Euler equation with uncertainty in A_t:

$$u'(C_t) = \beta E_t \left[(1 + \tilde{r}_{t+1}) u'(\tilde{C}_{t+1}) \right]$$

tilde implies a random variable

 For any productivity realization tomorrow (unknown today), we have

$$1 + \tilde{r}_{t+1} = \alpha \tilde{A}_{t+1} K_{t+1}^{\alpha - 1}$$

Substituting in (with log-utility)

$$1 = \beta E_t \left[\frac{\alpha \tilde{A}_{t+1} K_{t+1}^{\alpha - 1}}{\tilde{C}_{t+1} / C_t} \right]$$

Euler equation with uncertainty in A_t:

$$u'(C_t) = \beta E_t \left[(1 + \tilde{r}_{t+1}) u'(\tilde{C}_{t+1}) \right]$$

tilde implies a random variable

 For any productivity realization tomorrow (unknown today), we have

$$1 + \tilde{r}_{t+1} = \alpha \tilde{A}_{t+1} K_{t+1}^{\alpha - 1}$$

Substituting in (with log-utility)

$$1 = \beta E_t \left[\frac{\alpha \tilde{A}_{t+1} K_{t+1}^{\alpha - 1}}{\tilde{C}_{t+1} / C_t} \right]$$

 Consumption growth high when expected productivity high and vice versa

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)
 - 2. Raises saving (K_{t+1}) and consumption (C_t)

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)
 - 2. Raises saving (K_{t+1}) and consumption (C_t)
 - 3. Since $E_t[z_{t+1}] = \rho_z z_t < z_t$, income expected to be lower tomorrow (though still high)
 - 4. Saving raised relatively higher than consumption

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)
 - 2. Raises saving (K_{t+1}) and consumption (C_t)
 - 3. Since $E_t[z_{t+1}] = \rho_z z_t < z_t$, income expected to be lower tomorrow (though still high)
 - 4. Saving raised relatively higher than consumption
- Opposite true for negative productivity shock

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)
 - 2. Raises saving (K_{t+1}) and consumption (C_t)
 - 3. Since $E_t[z_{t+1}] = \rho_z z_t < z_t$, income expected to be lower tomorrow (though still high)
 - 4. Saving raised relatively higher than consumption
- Opposite true for negative productivity shock
- In percentage terms, when a productivity shock hits

$$|\%\Delta K_{t+1}| > |\%\Delta Y_t| > |\%\Delta C_t|$$

i.e. Saving/Investment more volatile than $\operatorname{output}/\operatorname{GDP}$ more volatile than consumption

- In general, impossible to solve by hand
- Intuition is simple, nevertheless: A positive productivity shock
 - 1. Raises lifetime income (current and expected)
 - 2. Raises saving (K_{t+1}) and consumption (C_t)
 - 3. Since $E_t[z_{t+1}] = \rho_z z_t < z_t$, income expected to be lower tomorrow (though still high)
 - 4. Saving raised relatively higher than consumption
- Opposite true for negative productivity shock
- In percentage terms, when a productivity shock hits

$$|\%\Delta K_{t+1}| > |\%\Delta Y_t| > |\%\Delta C_t|$$

- i.e. Saving/Investment more volatile than $\operatorname{output}/\operatorname{GDP}$ more volatile than consumption
- Exactly pattern for developed world business cycles

 How does this canonical model fare when we open the borders?

- How does this canonical model fare when we open the borders? Not well at all
 - 1. Generates counterfactual cross-country correlations/interactions

- How does this canonical model fare when we open the borders? Not well at all
 - Generates counterfactual cross-country correlations/interactions
 - 2. Many emerging markets don't exhibit consumption smoothing in the aggregate. Rather

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- How does this canonical model fare when we open the borders? Not well at all
 - Generates counterfactual cross-country correlations/interactions
 - Many emerging markets don't exhibit consumption smoothing in the aggregate. Rather

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

 Point (2) implies a relatively necessary failure of the RBC model: Explore other options

- How does this canonical model fare when we open the borders? Not well at all
 - Generates counterfactual cross-country correlations/interactions
 - Many emerging markets don't exhibit consumption smoothing in the aggregate. Rather

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- Point (2) implies a relatively necessary failure of the RBC model: Explore other options
- Point (1) requires some explicit exploration

World RBC Model

- Put two RBC countries together in the same world
- Set growth in \tilde{A}_t to zero for simplicity

$$Y_t = e^{z_t} K_t^{\alpha}$$
 $Y_t^{\star} = e^{z_t^{\star}} (K_t^{\star})^{\alpha}$

World RBC Model

- Put two RBC countries together in the same world
- Set growth in \tilde{A}_t to zero for simplicity

$$Y_t = e^{z_t} K_t^{\alpha} \quad Y_t^{\star} = e^{z_t^{\star}} (K_t^{\star})^{\alpha}$$

• Solve SPP (eq'm efficient). For $\lambda \in (0,1)$,

$$\max \lambda U_t + (1-\lambda)U_t^\star$$

s.t.
$$K_{t+1} + K_{t+1}^{\star} = e^{z_t} K_t^{\alpha} + e^{z_t^{\star}} (K_t^{\star})^{\alpha} - (C_t + C_t^{\star})$$

World RBC Model

- Put two RBC countries together in the same world
- Set growth in \tilde{A}_t to zero for simplicity

$$Y_t = e^{z_t} K_t^{\alpha} \quad Y_t^{\star} = e^{z_t^{\star}} (K_t^{\star})^{\alpha}$$

• Solve SPP (eq'm efficient). For $\lambda \in (0,1)$,

$$\max \lambda U_t + (1-\lambda)U_t^\star$$

s.t.
$$K_{t+1} + K_{t+1}^{\star} = e^{z_t} K_t^{\alpha} + e^{z_t^{\star}} (K_t^{\star})^{\alpha} - (C_t + C_t^{\star})$$

- $\lambda \to \mathsf{Planner's}$ preference for home
 - Corresponds to home having more initial capital in competitive eg'm

 Households in either country (i) can invest in either country (j)

- Households in either country (i) can invest in either country (j)
- Implies the following for any i, j in Home/Foreign

$$1 = \beta E_t \left[\alpha e^{z_{t+1}^j} \left(K_{t+1}^j \right)^{\alpha - 1} \times \left(\frac{C_t^i}{C_{t+1}^i} \right) \right]$$

- Households in either country (i) can invest in either country (j)
- Implies the following for any i, j in Home/Foreign

$$1 = \beta E_t \left[\alpha e^{z_{t+1}^j} \left(K_{t+1}^j \right)^{\alpha - 1} \times \left(\frac{C_t^i}{C_{t+1}^i} \right) \right]$$

 Identical investment opportunities imply consumption growth same in both countries

$$\frac{C_{t+1}}{C_t} = \frac{C_{t+1}^{\star}}{C_t^{\star}}$$

- Households in either country (i) can invest in either country (j)
- Implies the following for any i, j in Home/Foreign

$$1 = \beta E_t \left[\alpha e^{z_{t+1}^j} \left(K_{t+1}^j \right)^{\alpha - 1} \times \left(\frac{C_t^i}{C_{t+1}^i} \right) \right]$$

 Identical investment opportunities imply consumption growth same in both countries

$$\frac{C_{t+1}}{C_t} = \frac{C_{t+1}^{\star}}{C_t^{\star}}$$

• Growth rates of C_t same but the *levels* will depend on λ

• Where will capital go?

- Where will capital go? Highest return
- Invest approximately according to average productivity tomorrow

$$E_t[z_{t+1}] = \rho_z z_t$$

• MPK(Home) \approx MPK(Foreign)

$$\alpha e^{\rho_z z_t} (K_{t+1})^{\alpha-1} \approx \alpha e^{\rho_z z_t^{\star}} (K_{t+1}^{\star})^{\alpha-1}$$

- Where will capital go? Highest return
- Invest approximately according to average productivity tomorrow

$$E_t[z_{t+1}] = \rho_z z_t$$

• MPK(Home) \approx MPK(Foreign)

$$\alpha e^{\rho_z z_t} \left(K_{t+1} \right)^{\alpha - 1} \approx \alpha e^{\rho_z z_t^{\star}} \left(K_{t+1}^{\star} \right)^{\alpha - 1}$$

Suppose that

$$z_t > z_t^{\star} \rightarrow \rho_z z_t > \rho_z z_t^{\star}$$

- Where will capital go? Highest return
- Invest approximately according to average productivity tomorrow

$$E_t[z_{t+1}] = \rho_z z_t$$

• MPK(Home) \approx MPK(Foreign)

$$\alpha e^{\rho_z z_t} \left(K_{t+1} \right)^{\alpha - 1} \approx \alpha e^{\rho_z z_t^{\star}} \left(K_{t+1}^{\star} \right)^{\alpha - 1}$$

Suppose that

$$z_t > z_t^{\star} \rightarrow \rho_z z_t > \rho_z z_t^{\star}$$

- Then $K_{t+1} > K_{t+1}^*$
 - Since $E_t[z_{t+1}] > E_t[z_{t+1}^*]$ too, clearly $E_t[Y_{t+1}] > E_t[Y_{t+1}^*]$

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation weak or negative across countries

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation weak or negative across countries
 - 3. Capital flows enormous, highly volatile (especially for high α)

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation weak or negative across countries
 - 3. Capital flows enormous, highly volatile (especially for high α)
- In the data
 - 1. Consumption less correlated across countries than output

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation *weak or negative* across countries
 - 3. Capital flows enormous, highly volatile (especially for high α)
- In the data
 - 1. Consumption less correlated across countries than output
 - 2. Output strongly positively correlated across countries

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation *weak or negative* across countries
 - 3. Capital flows enormous, highly volatile (especially for high α)
- In the data
 - 1. Consumption less correlated across countries than output
 - 2. Output strongly positively correlated across countries
 - 3. Capital flows much smaller and less volatile than RBC model predicts (about $7 \times$ smaller)

- In standard RBC model with open borders
 - 1. Consumption perfectly correlated across countries
 - 2. Output correlation weak or negative across countries
 - 3. Capital flows enormous, highly volatile (especially for high α)
- In the data
 - 1. Consumption less correlated across countries than output
 - 2. Output strongly positively correlated across countries
 - 3. Capital flows *much* smaller and less volatile than RBC model predicts (about $7 \times$ smaller)
- In general, model does a terrible job of matching data

• There are two relatively quick fixes to match cross-country moments better

- There are two relatively quick fixes to match cross-country moments better
 - 1. Limited commitment restrictions on capital movements à la sovereign debt

- There are two relatively quick fixes to match cross-country moments better
 - Limited commitment restrictions on capital movements à la sovereign debt
 - 2. Correlated productivity shocks e.g.

$$A_t = e^{z_t^W} \times e^{z_t}$$
 $A_t^{\star} = e^{z_t^W} \times e^{z_t^{\star}}$

- There are two relatively quick fixes to match cross-country moments better
 - Limited commitment restrictions on capital movements à la sovereign debt
 - 2. Correlated productivity shocks e.g.

$$A_t = e^{z_t^W} \times e^{z_t} \quad A_t^* = e^{z_t^W} \times e^{z_t^*}$$

Limited commitment prevents huge movements in capital:
 Dampens negative correlation in output, positive correlation in consumption

- There are two relatively quick fixes to match cross-country moments better
 - Limited commitment restrictions on capital movements à la sovereign debt
 - 2. Correlated productivity shocks e.g.

$$A_t = e^{z_t^W} \times e^{z_t}$$
 $A_t^{\star} = e^{z_t^W} \times e^{z_t^{\star}}$

- Limited commitment prevents huge movements in capital:
 Dampens negative correlation in output, positive correlation in consumption
- Correlated productivity shocks get us the rest of the way i.e. raise output correlation above consumption correlation

 Consumption smoothing dynamics don't govern many country business cycles

- Consumption smoothing dynamics don't govern many country business cycles
- Emerging markets exhibit opposite fluctuations

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- Consumption smoothing dynamics don't govern many country business cycles
- Emerging markets exhibit opposite fluctuations

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- Also, they exhibit countercyclical net exports:
 - NX higher in bad times: Send output abroad in bad times
 - NX lower in good times: Import more stuff in good times

- Consumption smoothing dynamics don't govern many country business cycles
- Emerging markets exhibit opposite fluctuations

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- Also, they exhibit countercyclical net exports:
 - NX higher in bad times: Send output abroad in bad times
 - NX lower in good times: Import more stuff in good times
- Also, they exhibit pro-cyclical fiscal policy
 - Entitlements/transfers higher in good times, lower in bad
- · Both further fly in face of consumption smoothing!

- Consumption smoothing dynamics don't govern many country business cycles
- Emerging markets exhibit opposite fluctuations

$$|\%\Delta C_t| > |\%\Delta Y_t| > |\%\Delta K_{t+1}|$$

- Also, they exhibit countercyclical net exports:
 - NX higher in bad times: Send output abroad in bad times
 - NX lower in good times: Import more stuff in good times
- Also, they exhibit pro-cyclical fiscal policy
 - Entitlements/transfers higher in good times, lower in bad
- Both further fly in face of consumption smoothing!
- Even if RBC works for cross-country developed world, need another framework for these economies...

 RBC model does a terrible job of predicting business cycle movements in small open economies (SOEs)

- RBC model does a terrible job of predicting business cycle movements in small open economies (SOEs)
- Consumption smoothing doesn't govern dynamics:
 - See the opposite of it along most dimensions

- RBC model does a terrible job of predicting business cycle movements in small open economies (SOEs)
- Consumption smoothing doesn't govern dynamics:
 - See the opposite of it along most dimensions
- Now, turn to several theories of SOE business cycles
 - 1. Structure of economic growth
 - Preferences
 - 3. Interest rate shocks (sovereign debt)

- RBC model does a terrible job of predicting business cycle movements in small open economies (SOEs)
- Consumption smoothing doesn't govern dynamics:
 - See the opposite of it along most dimensions
- Now, turn to several theories of SOE business cycles
 - 1. Structure of economic growth
 - 2. Preferences
 - 3. Interest rate shocks (sovereign debt)
- Start with structure of growth: Aguiar and Gopinath (2007)

Basic Idea

• Recall we broke productivity into two components

$$A_t = \underbrace{\hat{A}_t}_{Trend} \times \underbrace{e^{z_t}}_{Cycle}$$

Basic Idea

Recall we broke productivity into two components

$$A_t = \underbrace{\hat{A}_t}_{Trend} \times \underbrace{e^{z_t}}_{Cycle}$$

- Suppose that not only is z_t random, but also \hat{A}_t
 - How does RBC economy respond to 'trend' shocks?

Basic Idea

Recall we broke productivity into two components

$$A_t = \underbrace{\hat{A}_t}_{Trend} \times \underbrace{e^{z_t}}_{Cycle}$$

- Suppose that not only is z_t random, but also \hat{A}_t
 - How does RBC economy respond to 'trend' shocks?

$$\hat{A}_t = A_0 \times \Pi_{s=0}^t e^{g_s}$$

i.e.

$$\hat{A}_1 = A_0 e^{g_1}$$
$$\hat{A}_2 = A_1 e^{g_2}$$

• Where g_t is random and follows AR(1) (just like z_t)

A Trend Shock to Productivity

One-time, positive shock to g_t at time t_1

A Cycle Shock to Productivity

One-time, positive shock to z_t at time t_1

Example: Both Shocks Simultaneously

Large, negative shock to z_t and small, positive shock to g_t

• Easiest to think in terms of *long forecasts*

- Easiest to think in terms of long forecasts
- With a shock to z_t...
 - No change in productivity forecast over 100 years
 - Effects of shock fizzle out with no long-term effect

- Easiest to think in terms of long forecasts
- With a shock to z_t...
 - No change in productivity forecast over 100 years
 - Effects of shock fizzle out with no long-term effect
- With a shock to g_t...
 - Productivity now expected to be higher in 100 years
 - Effects of shock never fizzle out

- Easiest to think in terms of long forecasts
- With a shock to z_t...
 - No change in productivity forecast over 100 years
 - Effects of shock fizzle out with no long-term effect
- With a shock to g_t...
 - Productivity now expected to be higher in 100 years
 - Effects of shock never fizzle out
- z_t is a transitory productivity shock and g_t is a permanent productivity shock

Productivity Process

• Productivity evolves via two AR(1) processes

$$z_t = \rho_z z_{t-1} + \epsilon_{z,t}$$

$$g_t = (1 - \rho_g)\bar{g} + \rho_g g_{t-1} + \epsilon_{g,t}$$

$$z_t = \rho_z z_{t-1} + \epsilon_{z,t}$$

$$g_t = (1 - \rho_g)\bar{g} + \rho_g g_{t-1} + \epsilon_{g,t}$$

- Notice that mean of z_t (\bar{z}) set to zero, but not \bar{g}
 - On average, countries grow, even if the trend is volatile i.e. $\bar{\it g}>0$

$$z_t = \rho_z z_{t-1} + \epsilon_{z,t}$$

$$g_t = (1 - \rho_g)\bar{g} + \rho_g g_{t-1} + \epsilon_{g,t}$$

- Notice that mean of z_t (\bar{z}) set to zero, but not \bar{g}
 - On average, countries grow, even if the trend is volatile i.e. $\bar{g}>0$
- Subsumes the RBC model if we set $\sigma_{g,t} = 0$:

$$z_t = \rho_z z_{t-1} + \epsilon_{z,t}$$

$$g_t = (1 - \rho_g)\bar{g} + \rho_g g_{t-1} + \epsilon_{g,t}$$

- Notice that mean of z_t (\bar{z}) set to zero, but not \bar{g}
 - On average, countries grow, even if the trend is volatile i.e. $\bar{g}>0$
- Subsumes the RBC model if we set $\sigma_{g,t}=0$: $g_t=\bar{g}$ for all t
 - No changes in trend, only cycle

$$z_t = \rho_z z_{t-1} + \epsilon_{z,t}$$

$$g_t = (1 - \rho_g)\bar{g} + \rho_g g_{t-1} + \epsilon_{g,t}$$

- Notice that mean of z_t (\bar{z}) set to zero, but not \bar{g}
 - On average, countries grow, even if the trend is volatile i.e. $\bar{g}>0$
- Subsumes the RBC model if we set $\sigma_{g,t}=0$: $g_t=\bar{g}$ for all t
 - No changes in trend, only cycle
- Relative magnitudes of $\sigma_{g,t}$ and $\sigma_{z,t}$ govern business cycle dynamics

• We know how households respond to z_t shocks:

- We know how households respond to z_t shocks: Consumption smoothing
- How do they respond to g_t shocks?

- We know how households respond to z_t shocks: Consumption smoothing
- How do they respond to g_t shocks?
- For a positive shock at t_1
 - 1. Income is currently higher
 - 2. It's expected to continue to grow $(g_t \text{ persistent})$
 - 3. It's expected to be higher forever (permanent)

- We know how households respond to z_t shocks: Consumption smoothing
- How do they respond to g_t shocks?
- For a positive shock at t_1
 - 1. Income is currently higher
 - 2. It's expected to continue to grow $(g_t \text{ persistent})$
 - 3. It's expected to be higher forever (permanent)
- No reason to save! Unlike z_t, income not likely to come down again

- We know how households respond to z_t shocks: Consumption smoothing
- How do they respond to g_t shocks?
- For a positive shock at t_1
 - 1. Income is currently higher
 - 2. It's expected to continue to grow $(g_t \text{ persistent})$
 - 3. It's expected to be higher forever (permanent)
- No reason to save! Unlike z_t, income not likely to come down again
- In fact, since income is expected to be higher following initial shock
 - Incentive to borrow at t_1

Positive Trend Shock

Incentive to borrow at time t_1

- ullet For a negative shock at t_1
 - 1. Income is currently lower
 - 2. It's expected to continue to fall $(g_t \text{ persistent})$
 - 3. It's expected to be lower forever (permanent)
- No reason to borrow! Unlike z_t , not 'weathering a rough patch'

- ullet For a negative shock at t_1
 - 1. Income is currently lower
 - 2. It's expected to continue to fall $(g_t \text{ persistent})$
 - 3. It's expected to be lower forever (permanent)
- No reason to borrow! Unlike z_t , not 'weathering a rough patch'
- In fact, since income is expected to be lower following initial shock
 - Incentive to save at t₁

Negative Trend Shock

Incentive to save at time t_1

• Get a good g_t shock: Borrow

• Get a bad g_t shock: Save

- Get a good g_t shock: Borrow
- Get a bad g_t shock: Save
- Consumption smoothing gone: Save in bad times and borrow in good
 - If these shocks comprise the bulk of productivity shocks, get emerging market business cycles

- Get a good g_t shock: Borrow
- Get a bad g_t shock: Save
- Consumption smoothing gone: Save in bad times and borrow in good
 - If these shocks comprise the bulk of productivity shocks, get emerging market business cycles
- With open borders, also get counter-cyclical net exports
 - Households use foreign assets to save/borrow

- Get a good g_t shock: Borrow
- Get a bad g_t shock: Save
- Consumption smoothing gone: Save in bad times and borrow in good
 - If these shocks comprise the bulk of productivity shocks, get emerging market business cycles
- With open borders, also get counter-cyclical net exports
 - Households use foreign assets to save/borrow
 - Borrow in good times: CA Deficit \rightarrow Import more \rightarrow NX \downarrow
 - \bullet Save in bad times: CA Surplus \to Export more \to NX \uparrow

- Get a good g_t shock: Borrow
- Get a bad g_t shock: Save
- Consumption smoothing gone: Save in bad times and borrow in good
 - If these shocks comprise the bulk of productivity shocks, get emerging market business cycles
- With open borders, also get counter-cyclical net exports
 - Households use foreign assets to save/borrow
 - Borrow in good times: CA Deficit o Import more o NX \downarrow
 - \bullet Save in bad times: CA Surplus \to Export more \to NX \uparrow
- To sum up, emerging market business cycle features emerge when $\sigma_{g,t}$ large relative to $\sigma_{z,t}$

Minor trend shocks can generate relevant business cycle properties

- Minor trend shocks can generate relevant business cycle properties
- Large negative ones can generate crises
- Large, negative shock to g_t implies
 - 1. Large, persistent recession/depression

- Minor trend shocks can generate relevant business cycle properties
- Large negative ones can generate crises
- Large, negative shock to g_t implies
 - 1. Large, persistent recession/depression
 - 2. Swift and severe capital flight: 'Current Account Reversal'

- Minor trend shocks can generate relevant business cycle properties
- Large negative ones can generate crises
- Large, negative shock to g_t implies
 - 1. Large, persistent recession/depression
 - 2. Swift and severe capital flight: 'Current Account Reversal'
 - In a model with money, money demand falls and with it the value of the currency (depreciation)

- Minor trend shocks can generate relevant business cycle properties
- Large negative ones can generate crises
- Large, negative shock to g_t implies
 - 1. Large, persistent recession/depression
 - 2. Swift and severe capital flight: 'Current Account Reversal'
 - In a model with money, money demand falls and with it the value of the currency (depreciation)
- Aguiar and Gopinath (2004) show that a large permanent shock alone can explain most of Mexico's 1994 Crisis

Interest Rates

- Structure of productivity not only way to get SOE cycles
- Alternative theory: Interest rates

Interest Rates

- Structure of productivity not only way to get SOE cycles
- Alternative theory: Interest rates
- Exploit fact that SOEs are in fact open
 - In a small open economy, world interest rate taken as given
 - Fluctuations in it will impact economic activity

EME Cycles and Interest Rates

Table 2. Argentine Business Cycles. 1983.1-2000.2. Correlations 12

	Correlation of GDP with					
	R	NX	Tot. Cons	Inv.	Emp.	Hrs
Argentina	-0.59	-0.87	0.97	0.93	0.37	0.51
	(0.12)	(0.03)	(0.01)	(0.02)	(0.08)	(0.11)
Canada	0.30	-0.04	0.86	0.73	0.86	0.94
	(0.14)	(0.17)	(0.04)	(0.09)	(0.06)	(0.04)
	Correlation of R with					
	Y	NX	Tot. Cons.	Inv.	Emp.	Hrs
Argentina	-0.59	0.66	-0.62	-0.57	-0.31	-0.55
	(0.12)	(0.07)	(0.11)	(0.12)	(0.13)	(0.13)
Canada	0.30	0.22	0.20	0.05	0.34	0.22
	(0.14)	(0.14)	(0.14)	(0.17)	(0.24)	(0.22)

The number in parentheses are the standard errors of the GMM estimates of the correlations

- Interest rate in SOE composed of two components:
 - 1. World risk-free rate (Fed Funds Rate, Libor, etc.)
 - 2. Country-specific risk component

- Interest rate in SOE composed of two components:
 - 1. World risk-free rate (Fed Funds Rate, Libor, etc.)
 - 2. Country-specific risk component
 - Country-specific risk-premium
 - Autonomously chosen rate by central bankc

- Interest rate in SOE composed of two components:
 - 1. World risk-free rate (Fed Funds Rate, Libor, etc.)
 - 2. Country-specific risk component
 - Country-specific risk-premium
 - Autonomously chosen rate by central bankc
- Latter is far more volatile

- Interest rate in SOE composed of two components:
 - 1. World risk-free rate (Fed Funds Rate, Libor, etc.)
 - 2. Country-specific risk component
 - Country-specific risk-premium
 - Autonomously chosen rate by central bankc
- Latter is far more volatile
- Interest rates in emerging markets are
 - 1. Volatile
 - 2. Strongly countercyclical
 - 3. Strongly positively correlated with net exports

- Interest rate in SOE composed of two components:
 - 1. World risk-free rate (Fed Funds Rate, Libor, etc.)
 - 2. Country-specific risk component
 - Country-specific risk-premium
 - Autonomously chosen rate by central bankc
- Latter is far more volatile
- Interest rates in emerging markets are
 - 1. Volatile
 - 2. Strongly countercyclical
 - 3. Strongly positively correlated with net exports

1. Traditional: 'Fear of Free Falling'

- 1. Traditional: 'Fear of Free Falling'
 - Monetary authority (in principle) has some control over interest rate
 - When bad shocks hit economy, capital wants to leave
 - To prevent capital flight, raise interest rates

- 1. Traditional: 'Fear of Free Falling'
 - Monetary authority (in principle) has some control over interest rate
 - When bad shocks hit economy, capital wants to leave
 - To prevent capital flight, raise interest rates
- 2. Movements in interest rate are not under country's control

- 1. Traditional: 'Fear of Free Falling'
 - Monetary authority (in principle) has some control over interest rate
 - When bad shocks hit economy, capital wants to leave
 - To prevent capital flight, raise interest rates
- 2. Movements in interest rate are not under country's control
 - Global risk factors/risk-free rate fluctuates
 - Sovereign default/ER/country-specific risk fluctuates

- 1. Traditional: 'Fear of Free Falling'
 - Monetary authority (in principle) has some control over interest rate
 - When bad shocks hit economy, capital wants to leave
 - To prevent capital flight, raise interest rates
- 2. Movements in interest rate are not under country's control
 - Global risk factors/risk-free rate fluctuates
 - Sovereign default/ER/country-specific risk fluctuates
 - Causality reversed in two cases: Focus on case (2)
 - Fluctuations in interest rates imply plausible EME cycles when domestic agents respond: Neumeyer and Perri (2001)

 Suppose interest rate faced by country (risk-free rate + country-specific factor) follows AR(1)

$$R_t = (1 - \rho_r)\bar{R} + \rho_R R_{t-1} + \epsilon_{R,t}$$

 Suppose interest rate faced by country (risk-free rate + country-specific factor) follows AR(1)

$$R_t = (1 - \rho_r)\bar{R} + \rho_R R_{t-1} + \epsilon_{R,t}$$

• Firms maximize profits (as before): Per-period profits

$$F(K_t, L_t) - r_t K_t - w_t L_t$$

 Suppose interest rate faced by country (risk-free rate + country-specific factor) follows AR(1)

$$R_t = (1 - \rho_r)\bar{R} + \rho_R R_{t-1} + \epsilon_{R,t}$$

Firms maximize profits (as before): Per-period profits

$$F(K_t, L_t) - r_t K_t - w_t L_t$$

- New friction: Firms must pay for a fraction of their inputs, θ , before production takes place
 - Called a Working Capital Constraint
 - Borrow from foreigners to do this at R_t
 - Pay back at end of period (not tomorrow)

 Suppose interest rate faced by country (risk-free rate + country-specific factor) follows AR(1)

$$R_t = (1 - \rho_r)\bar{R} + \rho_R R_{t-1} + \epsilon_{R,t}$$

Firms maximize profits (as before): Per-period profits

$$F(K_t, L_t) - r_t K_t - w_t L_t$$

- New friction: Firms must pay for a fraction of their inputs, θ , before production takes place
 - Called a Working Capital Constraint
 - Borrow from foreigners to do this at R_t
 - Pay back at end of period (not tomorrow)
- Borrow $\theta(w_t L_t + r_t K_t)$

Impact of Financial Frictions

- Fact that firms must borrow in this way implies $R_t
 eq 1 + r_t$
- Rather, factor prices set by

$$r_t(1 + (R_t - 1)\theta) = F_k(K_t, L_t)$$

 $w_t(1 + (R_t - 1)\theta) = F_l(K_t, L_t)$

Implies

$$r_t = rac{f'(k_t)}{1 + (R_t - 1) heta}$$
 $w_t = rac{f(k_t) - k_t f'(k_t)}{1 + (R_t - 1) heta}$

Impact of Financial Frictions

- Fact that firms must borrow in this way implies $R_t
 eq 1 + r_t$
- Rather, factor prices set by

$$r_t(1 + (R_t - 1)\theta) = F_k(K_t, L_t)$$

 $w_t(1 + (R_t - 1)\theta) = F_l(K_t, L_t)$

Implies

$$r_t = rac{f'(k_t)}{1 + (R_t - 1) heta}$$
 $w_t = rac{f(k_t) - k_t f'(k_t)}{1 + (R_t - 1) heta}$

Note r_t and R_t do not move in same direction!

Impact of Financial Frictions

- Fact that firms must borrow in this way implies $R_t
 eq 1 + r_t$
- Rather, factor prices set by

$$r_t(1 + (R_t - 1)\theta) = F_k(K_t, L_t)$$

 $w_t(1 + (R_t - 1)\theta) = F_l(K_t, L_t)$

Implies

$$r_t = rac{f'(k_t)}{1 + (R_t - 1) heta}$$
 $w_t = rac{f(k_t) - k_t f'(k_t)}{1 + (R_t - 1) heta}$

Note r_t and R_t do not move in same direction!

Response to R_t Shock

 k_t

• When $R_t \uparrow$, both r_t and k_t go down

- When $R_t \uparrow$, both r_t and k_t go down
- When $R_t \uparrow$ and $k_t \downarrow$, labor demand curve implies $w_t \downarrow$

- When $R_t \uparrow$, both r_t and k_t go down
- When $R_t \uparrow$ and $k_t \downarrow$, labor demand curve implies $w_t \downarrow$
- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop

- When $R_t \uparrow$, both r_t and k_t go down
- When $R_t \uparrow$ and $k_t \downarrow$, labor demand curve implies $w_t \downarrow$
- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop
- Output will definitely fall unless labor supply increases a lot
- Will it?

Household Side

- Standard NCG household, but who choose labor supply
- Two big assumptions
 - Costly to adjust holdings of both domestic capital and foreign assets
 - Allows $1 + r_t$ to differ from R_t

Household Side

- Standard NCG household, but who choose labor supply
- Two big assumptions
 - Costly to adjust holdings of both domestic capital and foreign assets
 - Allows $1 + r_t$ to differ from R_t
 - 2. Labor supply decision depends only on w_t
 - Wealth concerns don't impact labor decision
 - Not actually that hard to get even in complicated models

Household Side

- Standard NCG household, but who choose labor supply
- Two big assumptions
 - Costly to adjust holdings of both domestic capital and foreign assets
 - Allows $1 + r_t$ to differ from R_t
 - 2. Labor supply decision depends only on w_t
 - Wealth concerns don't impact labor decision
 - Not actually that hard to get even in complicated models
- When R_t goes up, labor demand falls
- Labor supply does not respond to $R_t o L_t$ falls

Response to R_t Shock: Labor

 L_t

- In sum
 - 1. Capital stock (investment) falls

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop
 - 4. Labor supply drops

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop
 - 4. Labor supply drops
 - 5. Output drops
- Opposite will be true if R_t goes down

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop
 - Labor supply drops
 - Output drops
- Opposite will be true if R_t goes down
- But since households can save/borrow abroad, it has anticipated effect on saving/consumption
 - 1. Output drops \rightarrow Consumption drops proportionally

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - 3. Wages drop
 - Labor supply drops
 - Output drops
- Opposite will be true if R_t goes down
- But since households can save/borrow abroad, it has anticipated effect on saving/consumption
 - 1. Output drops \rightarrow Consumption drops proportionally
 - 2. Further, $R_t \uparrow$: Save more, consume less

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - Wages drop
 - Labor supply drops
 - Output drops
- Opposite will be true if R_t goes down
- But since households can save/borrow abroad, it has anticipated effect on saving/consumption
 - 1. Output drops \rightarrow Consumption drops proportionally
 - 2. Further, $R_t \uparrow$: Save more, consume less
 - 3. Save abroad in bad times (countercyclical NX)

- In sum
 - 1. Capital stock (investment) falls
 - 2. Rate of return on capital drops
 - Wages drop
 - Labor supply drops
 - Output drops
- Opposite will be true if R_t goes down
- But since households can save/borrow abroad, it has anticipated effect on saving/consumption
 - 1. Output drops \rightarrow Consumption drops proportionally
 - 2. Further, $R_t \uparrow$: Save more, consume less
 - 3. Save abroad in bad times (countercyclical NX)
 - 4. Consumption drops above and beyond fall in output