Abstract

. . . .

5 CIRCUIT ARRANGEMENT AND METHOD FOR GENERATING AN X-RAY TUBE VOLTAGE

A circuit arrangement for generating an x-ray tube voltage is described, comprises an inverse rectifier circuit (Gsi) for generating a high-frequency alternating 10 voltage, a high-voltage generator (G_{su}) for converting the high-frequency inverse rectifier into a high voltage for the x-ray tube, and a voltage controller (G_{RU}) , which based on a deviation of an actual x-ray tube voltage $(V_{U}(t))$ from a set-point x-ray tube voltage $(W_{U(t)})$ generates a first 15 controlling variable value $(Y_{U(t)})$ for a controlling variable for the inverse rectifier circuit (G_{si}) . The circuit arrangement further comprises a measurement circuit for measuring an oscillating current (isw(t)), 20 connected to one output of the inverse rectifier circuit (Gsi) of the high-frequency alternating voltage, an oscillating current controller (G_{RI}) , which based on a deviation of an ascertained actual oscillating current value $(V_I(t))$ from a predetermined maximum oscillating 25 current value $(W_{I max})$, generates a second controlling variable value (Y_{I(t)}). Further, a switching device is connected downstream of the voltage controller (G_{RU}) and the oscillating current controller and compares the first controlling variable value $(Y_{U(t)})$ and the second 30 controlling variable value $(Y_{I(t)})$ to send the lesser of the first and second controlling variable values $(Y_{U(t)})$ and $Y_{I(t)}$) onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .