

SOLID-STATE LASER APPARATUS EXCITED BY LASER LIGHT FROM
SEMICONDUCTOR LASER UNIT HAVING INCREASED RESONATOR
LENGTH

5

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a semiconductor-laser-excited solid-state laser apparatus in which a solid-state laser crystal is excited by excitation laser light emitted from a semiconductor laser unit as an excitation light source, and emits laser light.

Description of the Related Art

Currently, there are demands for increase in output power and improvement in quality of solid-state laser apparatuses. In response to these demands, a solid-state laser apparatus achieving high output power is proposed. In the proposed solid-state laser apparatus, a solid-state laser crystal of Nd:YAG, Nd:YVO₄, Nd:YLF or the like is excited by excitation laser light emitted from a broad-guide semiconductor laser unit having a high power output. In addition, as a widespread technique, the laser light generated by the solid-state laser crystal may be converted into a second harmonic wave by providing a wavelength conversion element made of, for example, a nonlinear crystal or a domain-inverted LiNbO₃, in an external

CROSS-REFERENCE TO RELATED APPLICATIONS

20

25

resonator arranged outside of the solid-state laser crystal.

On the other hand, in the current semiconductor-laser-excited solid-state laser apparatuses, the excitation light source is driven under a so-called automatic power control (APC) so as to stabilize the laser oscillation. That is, a portion of output laser light is monitored and fed back to the excitation light source so as to reduce variation in the output laser light. In order to stabilize the output laser light by the automatic power control, it is desirable that the ratio of an increase in the output of the semiconductor laser unit to an increase in the output of the solid-state laser apparatus is constant, i.e., the output of the solid-state laser apparatus monotonously increases with the increase in the output of the semiconductor laser unit.

Nevertheless, in practice, the output of the solid-state laser apparatus does not monotonously increase even when the output of the semiconductor laser unit is increased by 10% or 20%. In a typical example of the solid-state laser apparatus, the output of the solid-state laser apparatus reaches a level of saturation when the output of the semiconductor laser unit is increased by 8% over an initial driving state.

The above problem is caused by deviation of the

oscillation wavelength of the semiconductor laser unit from a desired absorption peak of the solid-state laser crystal. Since a great amount of heat is generated by the semiconductor laser unit, the oscillation wavelength of the semiconductor laser unit is highly dependent on the driving current. That is, the oscillation wavelength of the semiconductor laser unit shifts toward the longer wavelength side with increase in the driving current. Consequently, the deviation of the oscillation wavelength of the semiconductor laser unit from the desired absorption peak of the solid-state laser crystal becomes great.

For example, in a known semiconductor-laser-excited solid-state laser apparatus, a solid-state laser crystal of Nd:YAG is excited by excitation laser light having a wavelength of 809 nm emitted from a semiconductor laser unit, and emits laser light having a wavelength of 946 nm. The full width at half maximum of the peak of the oscillation wavelength at which the solid-state laser crystal of Nd:YAG best absorbs light is very small, i.e., at most 10 nm. Therefore, even when the shift of the wavelength of the excitation laser light is only a few nanometers, the wavelength of the excitation laser light deviates from the desired absorption peak of the solid-state laser crystal of Nd:YAG, and therefore the excitation laser light cannot

G0
G1
G2
G3
G4
G5
G6
G7
G8
G9

be efficiently absorbed by the solid-state laser crystal of Nd:YAG. Thus, even when the driving current (driving power) is greatly increased, the increase in the output power of the solid-state laser apparatus is often small.

In order to solve the above problem, an attempt has been made to suppress the dependence of the oscillation wavelength of the semiconductor laser unit on the driving current by enhancing radiation effect of the semiconductor laser unit during emission of high power laser light. As disclosed in Japanese Unexamined Patent Publication No. 10(1998)-190131, which is assigned to the present assignee, an attempt has been made to optimize a mechanical member which fixes a semiconductor laser unit so as to enhance radiation efficiency and reduce the dependence of the oscillation wavelength of the semiconductor laser unit on the driving current.

However, when the output power of the semiconductor laser unit is further increased, the above optimization of the mechanical member is insufficient to sufficiently reduce the dependence of the oscillation wavelength of the semiconductor laser unit on the driving current.

Japanese Patent Application No. 11(1999)-82723, which is also assigned to the present assignee,

proposes a method for solving the above problems. In the proposed method, provision is made in driving of the semiconductor laser unit so that the deviation of the oscillation wavelength of the semiconductor laser unit is prevented. Nevertheless, the characteristic of the semiconductor laser unit per se has not been fundamentally improved by the method. Therefore, output loss occurs in the solid-state laser apparatus. Thus, it is not possible to further increase the output power by the method.

SUMMARY OF THE INVENTION

The object of the present invention is to provide a semiconductor-laser-excited solid-state laser apparatus in which stable automatic power control is performed, and from which high power laser light is output.

According to the present invention, there is provided a semiconductor-laser-excited solid-state laser apparatus includes a solid-state laser element and a semiconductor laser unit including a resonator. The solid-state laser element is excited by light emitted from the semiconductor laser unit, and emits laser light. The resonator length in the semiconductor laser unit is arranged to be at least 0.8 mm.

According to the present invention, the resonator length in the semiconductor laser unit is arranged to

be at least 0.8 mm, which is longer than the lengths of the resonators in the semiconductor laser units in the conventional semiconductor-laser-excited solid-state laser apparatuses. Since heat is mainly generated in
5 the resonator of the semiconductor laser unit, the area of the semiconductor laser unit which is in contact with a radiation member such as a heatsink is increased with the increase in the resonator length, and therefore ability to dissipate the heat generated in
10 the semiconductor laser unit is enhanced. Accordingly, the dependence of the oscillation wavelength of the semiconductor laser unit on the driving current can be remarkably reduced. Thus, the wavelength of the excitation laser light does not substantially deviate from an absorption band of the solid-state laser crystal, in which the solid-state laser crystal best
15 absorbs the excitation laser light. Thus, the solid-state laser crystal can be efficiently excited, and a stable laser output can be obtained from the
20 semiconductor-laser-excited solid-state laser apparatus.

In addition, the substantial area of the light emitting portion of the semiconductor laser unit is increased due to the above increase in the length of the resonator. Therefore, the operating current density
25 can be reduced. Accordingly, it is possible to prevent deterioration of the semiconductor laser unit due to

damage of the light emitting portion caused by the high current density. Thus, reliability of the semiconductor-laser-excited solid-state laser apparatus can be increased.

5 Preferably, the resonator length in the semiconductor laser unit is at least 1 mm. It is further preferable that the length of the resonator is at least 1.5 mm.

Further, the semiconductor-laser-excited solid-state laser apparatus according to the present invention may further comprise a second resonator which is formed by the solid-state laser element and a mirror arranged outside of the solid-state laser element, and a wavelength conversion element which is arranged in the second resonator, and generates a second harmonic wave.

DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram illustrating the construction of the semiconductor-laser-excited solid-state laser apparatus in an embodiment of the present invention.

Fig. 2 shows graphs of the second harmonic wave output versus the output power of the semiconductor laser unit in semiconductor-laser-excited solid-state laser apparatuses in which lengths of resonators in the semiconductor laser units are respectively 0.5 mm, 0.75 mm, 1 mm, 1.5 mm, 2 mm, and 3 mm.

Fig. 3 is a graph illustrating the relationship between the wavelength shift in the semiconductor laser output and the resonator length in the semiconductor laser unit.

5

DESCRIPTION OF PREFERRED EMBODIMENTS

Embodiments of the present invention are explained in detail below with reference to drawings.

Fig. 1 is a diagram illustrating the construction of the semiconductor-laser-excited solid-state laser apparatus in an embodiment of the present invention. The semiconductor-laser-excited solid-state laser apparatus of Fig. 1 comprises a semiconductor laser unit 11, condenser lenses 12a and 12b, a solid-state laser medium 13, a resonator mirror 14, quarter-wave plates 15 and 16, an optical wavelength conversion element 17, a polarization control element 18, a wavelength selection element 19, a beam splitter 22, an optical detector 23, and an automatic power control (APC) circuit 24.

The semiconductor laser unit 11 emits a laser beam 10 as excitation light. The condenser lenses 12a and 12b condense the laser beam 10, which is originally divergent light. The solid-state laser medium 13 is, for example, a neodymium-doped YLF crystal (Nd:YLF crystal). The resonator mirror 14 is arranged at the forward end of a solid-state laser resonator 31. The

040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
224100
224101
224102
224103
224104
224105
224106
224107
224108
224109
224110
224111
224112
224113
224114
224115
224116
224117
224118
224119
224120
224121
224122
224123
224124
224125
224126
224127
224128
224129
224130
224131
224132
224133
224134
224135
224136
224137
224138
224139
224140
224141
224142
224143
224144
224145
224146
224147
224148
224149
224150
224151
224152
224153
224154
224155
224156
224157
224158
224159
224160
224161
224162
224163
224164
224165
224166
224167
224168
224169
224170
224171
224172
224173
224174
224175
224176
224177
224178
224179
224180
224181
224182
224183
224184
224185
224186
224187
224188
224189
224190
224191
224192
224193
224194
224195
224196
224197
224198
224199
224200
224201
224202
224203
224204
224205
224206
224207
224208
224209
224210
224211
224212
224213
224214
224215
224216
224217
224218
224219
224220
224221
224222
224223
224224
224225
224226
224227
224228
224229
224230
224231
224232
224233
224234
224235
224236
224237
224238
224239
224240
224241
224242
224243
224244
224245
224246
224247
224248
224249
224250
224251
224252
224253
224254
224255
224256
224257
224258
224259
224260
224261
224262
224263
224264
224265
224266
224267
224268
224269
224270
224271
224272
224273
224274
224275
224276
224277
224278
224279
224280
224281
224282
224283
224284
224285
224286
224287
224288
224289
224290
224291
224292
224293
224294
224295
224296
224297
224298
224299
224300
224301
224302
224303
224304
224305
224306
224307
224308
224309
224310
224311
224312
224313
224314
224315
224316
224317
224318
224319
224320
224321
224322
224323
224324
224325
224326
224327
224328
224329
224330
224331
224332
224333
224334
224335
224336
224337
224338
224339
224340
224341
224342
224343
224344
224345
224346
224347
224348
224349
224350
224351
224352
224353
224354
224355
224356
224357
224358
224359
224360
224361
224362
224363
224364
224365
224366
224367
224368
224369
224370
224371
224372
224373
224374
224375
224376
224377
224378
224379
224380
224381
224382
224383
224384
224385
224386
224387
224388
224389
224390
224391
224392
224393
224394
224395
224396
224397
224398
224399
224400
224401
224402
224403
224404
224405
224406
224407
224408
224409
224410
224411
224412
224413
224414
224415
224416
224417
224418
224419
224420
224421
224422
224423
224424
224425
224426
224427
224428
224429
224430
224431
224432
224433
224434
224435
224436
224437
224438
224439
224440
224441
224442
224443
224444
224445
224446
224447
224448
224449
224450
224451
224452
224453
224454
224455
224456
224457
224458
224459
224460
224461
224462
224463
224464
224465
224466
224467
224468
224469
224470
224471
224472
224473
224474
224475
224476
224477
224478
224479
224480
224481
224482
224483
224484
224485
224486
224487
224488
224489
224490
224491
224492
224493
224494
224495
224496
224497
224498
224499
224500
224501
224502
224503
224504
224505
224506
224507
224508
224509
224510
224511
224512
224513
224514
224515
224516
224517
224518
224519
224520
224521
224522
224523
224524
224525
224526
224527
224528
224529
224530
224531
224532
224533
224534
224535
224536
224537
224538
224539
224540
224541
224542
224543
224544
224545
224546
224547
224548
224549
224550
224551
224552
224553
224554
224555
224556
224557
224558
224559
224560
224561
224562
224563
224564
224565
224566
224567
224568
224569
224570
224571
224572
224573
224574
224575
224576
224577
224578
224579
224580
224581
224582
224583
224584
224585
224586
224587
224588
224589
224590
224591
224592
224593
224594
224595
224596
224597
224598
224599
224600
224601
224602
224603
224604
224605
224606
224607
224608
224609
224610
224611
224612
224613
224614
224615
224616
224617
224618
224619
224620
224621
224622
224623
224624
224625
224626
224627
224628
224629
224630
224631
224632
224633
224634
224635
224636
224637
224638
224639
224640
224641
224642
224643
224644
224645
224646
224647
224648
224649
224650
224651
224652
224653
224654
224655
224656
224657
224658
224659
224660
224661
224662
224663
224664
224665
224666
224667
224668
224669
224670
224671
224672
224673
224674
224675
224676
224677
224678
224679
224680
224681
224682
224683
224684
224685
224686
224687
224688
224689
224690
224691
224692
224693
224694
224695
224696
224697
224698
224699
224700
224701
224702
224703
224704
224705
224706
224707
224708
224709
224710
224711
224712
224713
224714
224715
224716
224717
224718
224719
224720
224721
224722
224723
224724
224725
224726
224727
224728
224729
224730
224731
224732
224733
224734
224735
224736
224737
224738
224739
224740
224741
224742
224743
224744
224745
224746
224747
224748
224749
224750
224751
224752
224753
224754
224755
224756
224757
224758
224759
224760
224761
224762
224763
224764
224765
224766
224767
224768
224769
224770
224771
224772
224773
224774
224775
224776
224777
224778
224779
224780
224781
224782
224783
224784
224785
224786
224787
224788
224789
224790
224791
224792
224793
224794
224795
224796
224797
224798
224799
224800
224801
224802
224803
224804
224805
224806
224807
224808
224809
224810
224811
224812
224813
224814
224815
224816
224817
224818
224819
224820
224821
224822
224823
224824
224825
224826
224827
224828
224829
224830
224831
224832
224833
224834
224835
224836
224837
224838
224839
224840
224841
224842
224843
224844
224845
224846
224847
224848
224849
224850
224851
224852
224853
224854
224855
224856
224857
224858
224859
224860
224861
224862
224863
224864
224865
224866
224867
224868
224869
224870
224871
224872
224873
224874
224875
224876
224877
224878
224879
224880
224881
224882
224883
224884
224885
224886
224887
224888
224889
224890
224891
224892
224893
224894
224895
224896
224897
224898
224899
224900
224901
224902
224903
224904
224905
224906
224907
224908
224909
224910
224911
224912
224913
224914
224915
224916
224917
224918
224919
224920
224921
224922
224923
224924
224925
224926
224927
224928
224929
224930
224931
224932
224933
224934
224935
224936
224937
224938
224939
224940
224941
224942
224943
224944
224945
224946
224947
224948
224949
224950
224951
224952
224953
224954
224955
224956
224957
224958
224959
224960
224961
224962
224963
224964
224965
224966
224967
224968
224969
224970
224971
224972
224973
224974
224975
224976
224977
224978
224979
224980
224981
224982
224983
224984
224985
224986
224987
224988
224989
224990
224991
224992
224993
224994
224995
224996
224997
224998
224999
2249999

quarter-wave plates 15 and 16 are provided on the forward and back sides of the Nd:YLF crystal 13 for realizing the so-called twist mode oscillation in the solid-state laser resonator. The optical wavelength conversion element 17, the polarization control element 18, and the wavelength selection element 19 are arranged on the forward side of the quarter-wave plate 16 in this order.

In addition, the semiconductor laser unit 11 and the condenser lenses 12a and 12b are fixed on a mount 30 to form an excitation unit. The mount 30 is made of, for example, copper, and the excitation unit is maintained at a predetermined temperature by a temperature control element and a temperature control circuit, which are not shown.

The optical wavelength conversion element 17 is made of an MgO-doped LiNbO₃ crystal, and periodic domain-inverted structure is formed in the MgO-doped LiNbO₃ crystal. For example, the polarization control element 18 is realized by a Brewster plate, and the wavelength selection element 19 is realized by an etalon.

The semiconductor laser unit 11 emits the laser beam 10 having a wavelength of 797 nm. When neodymium ions in the Nd:YLF crystal 13 are excited by the laser beam 10, the Nd:YLF crystal 13 emits light having a

wavelength of 1,313 nm.

The outer end surface 15a of the quarter-wave plate 15 is coated so that the outer end surface 15a allows passage of the excitation laser light 10 having the wavelength of 797 nm, and efficiently reflects light having the wavelength of 1,313 nm or 657 nm, where the outer end surface 15a of the quarter-wave plate 15 has a form of a concave mirror. The light having the wavelength of 657 nm will be explained later. The mirror surface 14a of the resonator mirror 14 is coated so that the mirror surface 14a efficiently reflects light having the wavelength of 1,313 nm and the excitation laser light 10, and allows passage of a portion of the light having the wavelength of 657 nm. Therefore, the light having the wavelength of 1,313 nm resonates between the outer end surface 15a of the quarter-wave plate 15 and the mirror surface 14a of the resonator mirror 14 to generate laser oscillation. The optical wavelength conversion element 17 converts the light having the wavelength of 1,313 nm into a second harmonic wave, which is the above light having the wavelength of 657 nm. Thus, a Fabry-Perot solid-state laser resonator 31 is formed between the outer end surface 15a of the quarter-wave plate 15 and the mirror surface 14a of the resonator mirror 14, and almost only the second harmonic wave 21 is output through the

resonator mirror 14. In the Fabry-Perot solid-state laser resonator 31, the direction of the linear polarization is controlled by the polarization control element 18, and single-wavelength oscillation is
5 realized by the wavelength selection element 19.

The beam splitter 22 is provided on the forward side of the resonator mirror 14 so that a first portion of the laser light emitted through the resonator mirror 14 is received by the optical detector 23, and the second portion 21 of the laser light passes through the beam splitter 22 and is output from the semiconductor-laser-excited solid-state laser apparatus of Fig. 1. The optical detector 23 is realized, for example, by a photodiode, and detects the intensity of the first portion of the laser light emitted through the resonator mirror 14. The detected result (the output of the optical detector 23) is supplied to the automatic power control (APC) circuit 24, and the automatic power control (APC) circuit 24 controls the driving current
20 of the semiconductor laser unit 11 based on the output of the optical detector 23 so that the intensity of the second harmonic wave 21 output from the semiconductor-laser-excited solid-state laser apparatus of Fig. 1 is maintained constant.
25

Fig. 2 shows graphs illustrating relationships between the second harmonic wave output and the output

power of the semiconductor laser unit, in semiconductor-laser-excited solid-state laser apparatuses in which the resonator lengths in the semiconductor laser units are respectively 0.5 mm, 0.75 mm, 1 mm, 1.5 mm, 2 mm, and 3 mm. As illustrated by the curve b in Fig. 2, when the output power of the semiconductor laser unit is increased by 10% from 2.0 W to 2.2 W in the conventional semiconductor-laser-excited solid-state laser apparatus in which the resonator length in the semiconductor laser unit is 0.75 mm, the increase in the second harmonic wave output is only 4%. That is, the solid-state laser is not efficiently excited by the semiconductor laser unit having the 0.75 mm long resonator.

On the other hand, the second harmonic wave output is increased by 8% with 10% increase in the output power of the semiconductor laser unit having a 1.5 mm long resonator, as illustrated by the curve d in Fig. 2. That is, the increase in the second harmonic wave output is doubled when the resonator length in the semiconductor laser unit is increased from 0.75 mm to 1.5 mm. When the resonator length in the semiconductor laser unit is further increased, the second harmonic wave output can be increased accordingly, as illustrated in Fig. 2. For example, in the semiconductor-laser-excited solid-state laser apparatus

in which the resonator length in the semiconductor laser unit is 3.0 mm, the second harmonic wave output increases linearly with the increase in the output power of the semiconductor laser unit, as illustrated by the curve f in Fig. 2. That is, an ideal output characteristic is obtained when the semiconductor laser unit includes the 3.0 mm long resonator.

Fig. 3 is a graph illustrating the relationship between the wavelength shift and the resonator length in the semiconductor laser unit. In Fig. 3, the blank circles indicate the wavelength shift values in the output of the semiconductor laser unit when the semiconductor laser unit including a 1.0 mm long resonator is simply fixed to a block stem as a fixture; the blank squares indicate the wavelength shift values when the semiconductor laser unit having a 1.5 mm long resonator is simply fixed to a block stem as a fixture; the filled circle indicates the wavelength shift value when the semiconductor laser unit having a 1.0 mm long resonator is mounted in a laser diode (LD) package; and the filled squares indicate the wavelength shift values when the semiconductor laser unit having a 1.5 mm long resonator is mounted in a laser diode (LD) package. In the laser diode (LD) package, the semiconductor laser unit is in contact with a heatsink or the like, and is provided with a cooling apparatus.

As illustrated in Fig. 3, although the wavelength shift value is about 1.4 nm/A when the semiconductor laser unit is mounted in the laser diode (LD) package having a 1.0 mm long resonator, the wavelength shift values are reduced to about 1.1 to 1.3 nm/A when the resonator length in the semiconductor laser unit mounted in the laser diode (LD) package is increased to 1.5 mm. That is, when the resonator length in the semiconductor laser unit is arranged to be at least 1.0 mm, it is possible to maintain the wavelength shift values within the width of the absorption band of the solid-state laser crystal, and obtain a stable laser output. In addition, it is preferable that the resonator length in the semiconductor laser unit is arranged to be at least 1.5 mm. Although not shown in Fig. 3, when the resonator length in the semiconductor laser unit is further increased, the wavelength shift values can be reduced to at most 1 nm/A, and a further stable optical output can be obtained.

The present invention can be applied to all types of semiconductor-laser-excited solid-state laser apparatuses. For example, the scope of the present invention is not limited to the semiconductor-laser-excited solid-state laser apparatuses in which wavelength conversion is performed by an optical wavelength conversion element. The advantages of the

present invention can be obtained in other semiconductor-laser-excited solid-state laser apparatuses in which the wavelength conversion of the solid-state laser light is not performed.

5 In addition, all of the contents of the Japanese patent application No. 11(1999)-113482 are incorporated into this specification by reference.

00001400-001525250