

CONCEVEZ UNE APPLICATION AU SERVICE DE LA SANTÉ POUBLIQUE

Emanuele Partenza

CONCEVEZ UNE APPLICATION AU SERVICE DE LA SANTÉ PUBLIQUE:

1. IDEE D'APPLICATION

Input: Genre, poids, taille, âge.

Calcul du Basal Metabolic Rate (BMR); 3 possibilités:

- à partir des équation de Harris-Benedict;
- le laisser insérer à l'utilisateur;
- un mix des deux.

A chaque repas scanner les produits utilisés en insérant la quantité.

Pour faciliter cette tâche, créer son propre gardemanger et des convertion du style: une cuillère à soupe, une pincée etc.

L'application nous dit nos carences et nos surplus alimentaires.

2. UNE PREMIÈRE ANALYSE

- 1. Le 76,22 % des valeurs sont nulles;
- 2. Je supprime le colonnes complètement vides ;
- Après avoir vu la distribution des valeurs nulles par catégorie je choisie les features qui vont être utiles pour la création de mon application;

NaN Percentage

3. NETTOYAGE DU DATA FRAME

- Drop energy-from-fat > energy;
- 2. Drop saturated-fat > fat;
- 3. Drop sugar > carbhoydrates;
- 4. Drop duplicated;
- 5. Remplace les valeurs aberrantes avec NaN;
- 6. Remplace la valeur 'unknown' avec NaN

NaN Percentage

4. REMPLACE NAN VALUES

NaN Percentage

4.1 remplace avec des valeurs similaires ou par zéro

- 1. Energy from energy-from-fat;
- 2. Fat from saturated-fat;
- 3. Carbohydrates from sugar;
- 4. Si la somme des macronutriments est 100 je remplace les valeurs NaN avec zero.

NaN Percentage

4. REMPLACE NAN VALUES

4.2 remplace avec la moyenne de leur pnns

4. REMPLACE NAN VALUES

4.1 Sklearn methods

- 1. KNN Imputer
- 2. Iterative imputer
- 3. Simple Imputer

Data Frame	Size après drop_macronutrients_range
Data_knn_X_scaled	61847
Data_knn_X	61823
Data_ite_imp	62221
Data_simp_imp	61940
Data	60993

Méthode	Temp (min)
Knn_X_scaled	2416.07
Knn_X	2333.96
lte_imp	0.1226
Simp_imp	0.0015

DESCRIBE MEAN

	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_ 100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
data_knn_X_scaled	8.966750e-01	1.293830e-02	3.944591e-01	1.065809e-03	1.239906e-02	3.399495e-01	1.866752e-01	8.441628e-03	-4.381985e-03
data_knn_X	7.959261e-01	1.028784e-02	3.958510e-01	1.452035e-03	1.166080e-02	3.580134e-01	1.854004e-01	7.199175e-03	2.198744e-04
data_ite_imp	-1.047140e+00	-3.568533e-03	-2.351983e-02	-1.666679e-03	-8.666548e-03	-1.398835e-01	-2.800383e-02	-7.305144e-03	-2.623944e-03
data_simp_imp	1.182116e-09	-7.972289e-12	5.547562e-12	-3.642225e-14	-4.168399e-11	-5.471179e-13	-2.920775e-12	5.240253e-13	2.251976e-12

	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100 g	salt_100g
data_knn_X_scaled	0.943428	1.166170	0.995745	0.705899	0.978295	0.930864	1.001468	1.008134	1.404554
data_knn_X	0.814163	0.780960	1.002581	1.025513	0.893830	1.014759	0.988784	0.811120	1.002308
data_ite_imp	1.550554	1.232885	1.056915	1.555320	1.431835	1.297645	1.134435	1.488811	0.485064
data_simp_imp	0.207037	0.714245	0.941411	0.176091	0.440290	0.647978	0.855817	0.330444	0.887310

Data Frame	SUM
data_knn_X_scaled	6.502049
data_knn_X	5.291166
data_ite_imp	7.323584
data_simp_imp	3.435142

DESCRIBE MEDIAN

	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
data_knn_X_scaled	-39.465419	-2.3	-0.16	-0.001027	-6.25	-1.67	-0.2	-1.1	-0.16002
data_knn_X	-39.465419	-2.3	-0.17	-0.001982	-6.25	-1.67	-0.2	-1.1	-0.15818
data_ite_imp	-39.465419	-2.4	-1.62	-0.019712	-6.25	-3.17	-1.0	-1.1	-0.17818
data_simp_imp	-39.465419	-2.4	-1.62	-0.019712	-6.25	-3.17	-1.0	-1.1	-0.17818
	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
data_knn_X_scaled	energy_100g	fat_100g	saturated-fat_100g 1.006861	cholesterol_100g	carbohydrates_100g 0.0	sugars_100g	fiber_100g	proteins_100g	salt_100g 0.901470
data_knn_X_scaled data_knn_X				_ •			-		
	1.732051	1.0	1.006861	1.051748	0.0	1.0	1.0	0.0	0.901470
data_knn_X	1.732051 0.577350	1.0	1.006861 0.99311 <i>5</i>	1.051748 0.946877	0.0	1.0	1.0	0.0	0.901470

SUM
4.644521
3.67124
3.575033
3.57033

DESCRIBE MEAN

cholesterol_100g

carbohydrates_100g

sugars_100g

energy_100g

fat_100g

saturated-fat_100g

proteins_100

salt_100g

fiber_100g

								9	
data_knn_X_scaled_droped	3.734796	0.122546	0.380616	-0.001174	0.083882	0.519576	0.286354	0.003910	-0.016339
data_knn_X_droped	3.457381	0.104734	0.382274	-0.000397	0.099203	0.561245	0.277832	0.002706	-0.016514
data_ite_imp_droped	8.457727	0.317341	0.175119	-0.002558	-0.137213	-0.112187	0.151543	0.055764	-0.039327
data_simp_imp_droped	9.656012	0.270221	0.192557	-0.001273	-0.132403	0.183339	0.223041	0.064956	-0.040041
	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g p	oroteins_100g	salt_100g
data_knn_X_scaled_droped	0.937384	0.884006	0.989667	0.227554	0.931141	0.846476	0.960182	0.972501	1.007253
data_knn_X_droped	1.037722	1.078006	1.006416	1.229964	1.066347	0.998785	0.801785	1.014428	0.992247
data_ite_imp_droped		1 007/10	1.00/110	1 557201	1.019968	1.462729	1.545411	0.833414	0.969037
	0.770850	1.237610	1.086112	1.557381	1.019900	1.402/27	1.545411	0.000717	0.707007
data_simp_imp_droped	0.770850 1.204257	0.724402	0.909970	0.099863	0.977520	0.382532	0.216557	1.153515	1.030463

Data Frame	SUM
data_knn_X_scaled_droped	5.692468
data_knn_X_droped	5.990535
data_ite_imp_droped	6.376290
data_simp_imp_droped	5.306714

DESCRIBE MEDIAN

	energy_100g	fat_100g	saturated-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
data_knn_X_scaled_droped	0.0	0.24	0.360000	0.0	0.05	0.81	0.0	0.0	0.00038
data_knn_X_droped	0.0	0.19	0.360000	0.0	0.05	0.89	0.0	0.0	-0.00254
data_ite_imp_droped	6.0	0.69	0.295845	0.0	-0.26	0.17	0.0	0.0	-0.00762
data_simp_imp_droped	6.0	0.69	0.295845	0.0	-0.26	1.81	0.0	0.0	-0.00762
	energy_100g	fat_100g	saturated- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
data_knn_X_scaled_droped	energy_100g		fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g 0.188124	fiber_100g 0.0	proteins_100g	salt_100g
data_knn_X_scaled_droped data_knn_X_droped		0.892269	fat_100g		,				
	1.0	0.892269	fat_100g	0.0	1.0	0.188124	0.0	0.0	1.379372

Data Frame	SUM
data_knn_X_scaled_droped	4.633521
data_knn_X_droped	3.671246
data_ite_imp_droped	3.575033
data_simp_imp_droped	3.575033

5. QUARTILLE OUTLIERS

Number of Outliers for pnns group

Products with more outliers elements

Box plot of :Sugary snacks, Chocolate products 80 60 40 20 salt_100g · carbohydrates_100g fiber_100g proteins_100g saturated-fat_100g sugars_100g

Box plot of :Sugary snacks, Chocolate products, energy_100g

6. ANALYSE UNIVARIÉE ET BIVARIÉE

DISTRIBUTION OF PNNS GROUP 1

DISTRIBUTION OF PNNS GROUP 2

PNNS 1 & 2

ANALYSE UNIVARIÉE ET BIVARIÉE

- 1. Energy_100g;
- 2. Fat_100g;
- Saturated_fat_100g;
- 4. Cholesterol_100g;
- Carbohydrates_100g;
- 6. Sugars_100g
- 7. Fiber_100g
- 8. Proteins_100g
- 9. Salt_100g

CORRELATIONS

- 1.00

-1.00

ANOVA PNNS 1

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid:

- 1. The samples are independent.
- 2. Each sample is from a normally distributed population.
- 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity.

	F_statistics	p-values
cholesterol_100g	124.440153	4.509190e-272
energy_100g	1694.200128	0.000000e+00
fat_100g	2107.148301	0.000000e+00
saturated-fat_100g	491.663730	0.000000e+00
carbohydrates_100g	851.593744	0.000000e+00
sugars_100g	1573.172442	0.000000e+00
fiber_100g	200.518792	0.000000e+00
proteins_100g	403.426138	0.000000e+00
salt_100g	259.396382	0.000000e+00

ANOVA PNNS 2

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid:

- 1. The samples are independent.
- 2. Each sample is from a normally distributed population.
- 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity.

	F_statistics	p-values
energy_100g	880.076507	0.0
fat_100g	1307.931627	0.0
saturated-fat_100g	332.944747	0.0
cholesterol_100g	149.982729	0.0
carbohydrates_100g	774.537278	0.0
sugars_100g	957.154400	0.0
fiber_100g	193.778707	0.0
proteins_100g	462.492656	0.0
salt_100g	142.093494	0.0

7. ANALYSE MULTIVARIÉE

PCA SCREE PLOT

ANOVA MULTIVARIÉE

- Dataframe limité à la population munie de pnns;
- Souspopulation: répartition par quantitative_features

	F_statistics	p-values
Fish Meat Eggs, Fish and seafood	3.673917	1.040436e-02
fruits-and-vegetables, vegetables	154.296475	1.025263e-08
Composite foods, Sandwich	32.208205	3.958901e-09
Milk and dairy products, Cheese	527.446671	4.208567e-11
Milk and dairy products, Milk and yogurt	72.669018	4.027599e-12
Fish Meat Eggs, Processed meat	73.647053	3.587706e-12
Milk and dairy products, Ice cream	102.311970	2.052234e-13
Beverages, Artificially sweetened beverages	22671.398894	1.907964e-18
Milk and dairy products, Dairy desserts	3081.786483	6.548609e-38
Fruits and vegetables, Vegetables	161.245389	2.049360e-56
sugary-snacks, pastries	1121.670136	3.762518e-57
Fat and sauces, Dressings and sauces	96.026703	3.460496e-59
Fruits and vegetables, Soups	503.322143	5.592616e-60
Fruits and vegetables, Fruits	269.507003	1.268690e-82
Salty snacks, Salty and fatty products	1605.098789	1.585139e-108
Beverages, Non-sugared beverages	747.008490	5.655637e-251

8. POC

Une telle application n'est malheureusement pas réalisable avec ce jeu de donnée.

Une idée pour subvenir aux manques du Data Frame est celle de demander aux utilisateurs d'insérer les valeurs manquantes et de valider si le valeurs ajoutés pendant cette analyse sont correctes.