

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Find the equ	ation of the	curve						
rina me equ	ation of the C	cui ve.						
								•••••
	•••••		••••••	••••••	••••••			•••••
								•••••
	•••••		••••••	••••••	••••••			•••••
•••••	•••••	•••••	•••••	••••••	••••••	•••••		•••••
								•••••
•••••••	••••••••••	••••••	•••••	••••••	••••••	••••••	•••••••	•••••
								•••••
•••••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••••	•••••
••••••	•••••	••••••	•••••	••••••	••••••	•••••		•••••
								•••••
•••••	•••••	•••••	•••••		••••••	•••••	••••••	•••••

$(ax+3)^4$ is q. It is given that $p+q=276$.	
Find the possible values of the constant <i>a</i> .	

	in terms of the constant p .
)	Hence or otherwise find the set of values of p for which the equation $4x^2 - 24x + p = 0$
))	Hence or otherwise find the set of values of p for which the equation $4x^2 - 24x + p = 0$ real roots.
))	
))	
))	
))	
))	
))	
))	
))	real roots.
))	real roots.
	real roots.
))	real roots.
))	real roots.
))	real roots.
	real roots.

5

The diagram shows the curve with equation $y = 10x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}$ for x > 0. The curve meets the *x*-axis at the points (0, 0) and (4, 0).

Find the area of the shaded region.	[4]

The diagram shows a sector OAB of a circle with centre O. Angle $AOB = \theta$ radians and OP = AP = x. (a) Show that the arc length AB is $2x\theta \cos \theta$. [2] (b) Find the area of the shaded region APB in terms of x and θ . [4] (a) (i) By first expanding $(\cos \theta + \sin \theta)^2$, find the three solutions of the equation

7

	$(\cos\theta + \sin\theta)^2 = 1$	
	for $0 \le \theta \le \pi$.	[3]
ii)	Hence verify that the only solutions of the equation $\cos \theta + \sin \theta = 1$ for $0 \le \theta \le 0$ and $\frac{1}{2}\pi$.	π are [2]
		•••••
		•••••
		•••••

Prove the identi-	$\sin \theta$	1 - 0080	$=\frac{\cos\theta+\sin\theta-1}{\sin\theta}$	[3
1 TOVE THE IDENT	$\frac{1}{\cos \theta + \sin \theta}$	$\cos \theta - \sin \theta$	$\equiv \frac{\cos\theta + \sin\theta - 1}{1 - 2\sin^2\theta}.$	r.
	••••••			
		•••••		
••••••	••••••			
•••••		•••••		
TT:				
Using the result	s of (a)(ii) and (l			
			uation $= 2(\cos\theta + \sin\theta - 1)$	
Using the result for $0 \le \theta \le \pi$.				[:
				[:
				[:
				[:
				[:
				[:
				[:
				[3

[2]

8

The diagram shows the graph of y = f(x) where the function f is defined by

$$f(x) = 3 + 2\sin\frac{1}{4}x \text{ for } 0 \le x \le 2\pi.$$

(a) On the diagram above, sketch the graph of $y = f^{-1}(x)$.

Find an expression for $f^{-1}(x)$.	[2]
	•••••
	•••••
	•••••

(c)

(d)

The diagram above shows part of the graph of the function $g(x) = 3 + 2\sin\frac{1}{4}x$ for $-2\pi \le x \le 2\pi$.

Complete the sketch of the graph of $g(x)$ on the diagram above and hence explaifunction g has an inverse.	n whether the [2]
	••••••
Describe fully a sequence of three transformations which can be combined to graph of $y = \sin x$ for $0 \le x \le \frac{1}{2}\pi$ to the graph of $y = f(x)$, making clear the order	

graph of $y = \sin x$ for $0 \le x \le \frac{1}{2}\pi$ to the graph of $y = f(x)$, making clear the order in which transformations are applied.	the [6]

F	ind the two possible values of the first term.	[4
••		•••
		•••
•		•••
		•••
		•••
•		•••
		•••
		•••
•		•••
		• • •
•		•••
		• • •
		•••
		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•		•••
•••		•••

	price by tr	ne <i>n</i> th terr	n or the	ounci ge	ometric	progres	oioii.			
		•••••			•••••					•••••
•••••		•••••	•••••	•••••	•••••				•••••	•••••
•••••	•••••	••••••	••••••	••••••	•••••	•••••	•	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
				••••••	•••••					•••••
•••••		•••••	••••••	••••••	••••••				••••••	• • • • • • • • •
										•••••
				•••••	•••••				•••••	•••••
•••••	•••••	•••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • •
		•••••								•••••
•••••			••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • •
		•••••								
•••••	•••••	••••••	••••••	••••••	•••••	••••••	•	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
				••••••	•••••					•••••
•••••		•••••	••••••	••••••	••••••				••••••	• • • • • • • •
		•••••			•••••					•••••
		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	•••••

(a)	Show that one possible value of a is 4 and find the other possible value.

•••••		•••••					
•••••••••••••••••••••••••••••••••••••••	••••••						
••••••			•••••				
•••••	•	•••••	•••••	•••••	•••••	•••••••••••	••••••
	••••••						
		quations c	of the two t	angents to t	he circle whi	cn are paran	iei to the nor
For $a = 4$, found in (b		quations (of the two t		ne circle whi		
		quations o					
		quations o					

11 The	eq	uation	of	a	curve	is

$$y = k\sqrt{4x+1} - x + 5,$$

where k is a positive constant.

(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. [2]
(h)	Find the x -coordinate of the stationary point in terms of k . [2]
(D)	

to the curve makes an angle of $tan^{-1}(2)$ with the positive x-axis.	
	•••••
	,

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

19

BLANK PAGE

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.