1982 FI3.1

下圖中求a的值。

Find the value of a in the figure.

1982 FI3.3

在以下數列中求c的值。

Find the value of c from the sequence: $\frac{3}{12}$, $\frac{7}{34}$, $\frac{c}{56}$, $\frac{15}{78}$.

1982 FG9.1

在以下數列中求A的值。

Find the value of A from the sequence: 0, 3, 8, A, 24, 35, \cdots

1985 FI2.1

在以下數列中, 求 a 的值:1,8,27,64,a,216,….

Find a in the following sequence: 1, 8, 27, 64, a, 216, \cdots .

1995 HI1

求 1234567654321 的平方根。

Find the square root of 1234567654321.

1997 FI2.1

考慮:
$$\frac{1^2}{1} = 1$$
, $\frac{1^2 + 2^2}{1 + 2} = \frac{5}{3}$, $\frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} = \frac{7}{3}$, $\frac{1^2 + 2^2 + 3^2 + 4^2}{1 + 2 + 3 + 4} = 3$,

求 a 的值使得 $\frac{1^2 + 2^2 + \dots + a^2}{1 + 2 + \dots + a} = \frac{25}{3}$ 。

By considering: $\frac{1^2}{1} = 1$, $\frac{1^2 + 2^2}{1 + 2} = \frac{5}{3}$, $\frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} = \frac{7}{3}$, $\frac{1^2 + 2^2 + 3^2 + 4^2}{1 + 2 + 3 + 4} = 3$,

find the value of a such that $\frac{1^2 + 2^2 + \dots + a^2}{1 + 2 + \dots + a} = \frac{25}{3}.$

2000 FI4.3

已知兩個 12 位數 1111...11 和 9999...99 的乘積中有 R 個數字是奇數,求 R 的值。

Given that there are R odd numbers in the digits of the product of the two 12-digit numbers 1111...11 and 9999...99, find the value of R.

2004 FI4.4

已知 $241\times462 + 214 = d^2$, 求 d 的正數值。

Given that $241 \times 462 + 214 = d^2$, find the positive value of d.

2006 FI4.3

如圖一,八個正數排成一列,從第三個數開始,每個數都等於前面兩個數的乘積。已知第五個是 $\frac{1}{2}$,而第八個數是 $\frac{1}{16}$ 。若第一個是 s,求 s 的值。

In Figure 1, there are eight positive numbers in series. Starting from the 3rd number, each number is the product of the previous two numbers. Given that the

$$5^{th}$$
 number is $\frac{1}{2}$ and the 8^{th} number is $\frac{1}{16}$.

If the first number is s, find the value of s.

2015 FI1.2

若 β 為乘積 $\underbrace{11111\cdots11}_{10@1}$ × 999999···99 所有數位的數字之和,求 β 的值。

If β is the sum of all digits of the product $\underbrace{11111\cdots11}_{10\ 1\text{'s}} \times \underbrace{99999\cdots99}_{10\ 9\text{'s}}$,

determine the value of β .

Answers

1982 FI3.1	1982 FI3.3	1982 FG9.1	1985 FI2.1	1995 HI1
9	11	15	125	1111111
1997 FI2.1 12	2000 FI4.4 12	2004 FI4.4 334	$\frac{2006 \text{ FI4.3}}{\sqrt{2}}$	2015 FI1.3 90