Állománynév: aramkorok_06nemlin_eszkozok30.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

(5th Edition), pp. 340-349, 364-375, 590-599, 612-645.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

6. NEMLINEÁRIS ESZKÖZÖK: DIÓDA, BIPOLÁRIS TRANZISZTOR ÉS MOSFET TRANZISZTOROK

Nemlineáris rendszerek:

- Néhány egyszerű esettől eltekintve zárt alakú megoldás nem létezik, általában csak numerikus vagy grafikus megoldás található
- Unicitás tétele nem igaz, különböző kezdeti feltételekhez sokszor más megoldás tartozik (pl. hiszterézis, káosz)
- Szuperpozició tétele nem alkalmazható
- Impedanciamódszer nem alkalmazható, átviteli függvények nem generálhatók
- Nemlineáris rendszerek nem konzervatívok a gerjesztő frekvenciákra nézve

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 1. oldal

R I + V

 $I = I_S \left(e^{\frac{V}{\eta V_T}} - 1 \right)$

ahol szobahőmérsékleten

$$V_T = \frac{kT}{e} = 25 \text{ mV}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 2. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

(b) Tranzisztoros differenciál erősítő átviteli karakterisztikája

$$V_{out} = -\alpha RI_{EE}\tanh\underbrace{\left(\frac{V_{in}}{2V_T}\right)}_{V_{in}} \approx C_1V_{in} + C_2V_{in}^2 + C_3V_{in}^3 \ \text{ ahol} \ C_1 \text{ \'es } C_2 > 0, \text{ de } C_3 < 0$$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A rossz hír:

• Minden fizikai rendszer nemlineáris, tipikusan előbb-utóbb telítésbe megy

VALÓSÁGOS ESZKÖZÖK TIPIKUS KARAKTERISZTIKÁI

(a) A félvezető dióda feszültség-áram karakterisztikája

- Zárt alakú tervezési módszerek csak lineáris rendszerekre léteznek, azok használatának feltétele a nemlineáris rendszer linearizálása
- Mit lehet tenni?

Modellek és megoldások

- Nagyjelű analízis
 - Grafikus és numerikus megoldások
 Nem linearizálás, tehát a lineáris rendszerekre kidolgozott módszerek nem alkalmazhatók
- Törtvonalas közelítés large-signal model
 Matematikai háttér: Nemlineáris karakterisztikát szakaszonként lineárissal közelítjük
- Kisjelű modell small-signal model
 - Linearizálás az adott munkapontban
 - Matematikai háttér: Taylor soros közelítés

Pázmány Péter Katolikus Egyetem

NEMLIN ÁRAMKÖR

Linearizálás:
1. Nagyjelű modell

2. Kisjelű modell

A nemlineáris eszköz karakterisztikáját kétféle módon linearizálhatjuk

Cél: Linerizáljuk a fekete átviteli függvénnyel megadott nemlineáris eszközt

 Piros:
 Nagyjelű modell (törtvonalas közelítés)

Kék:
 Kisjelű modell
 a Q munkapontbeli linearizálás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 5. oldal

LTI ÁRAMKÖRÖK

Analóg rendszerek analízisének mérnöki módszere (teljes kép)

1. Matematikai modell: Differenciál egyenlet

- 2. Impedancia módszer bevezetése
- Diff. egy. helyett algebrai egyenlet
- Átviteli függvények
- Impedancia módszer csak akkor használható, ha korlátozzuk a gerjesztéseket a komplex exponenciálisok osztályára

GERJESZTÉSEK

Tetszőleges gerjesztés

- 1. Lineáris rendszer => szuperpozició
- 2. Fourier sor és Fourier transzformáció
- 3. Laplace transzformáció

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A linearizált helyettesítő kép, ami egy LTI áramkör, analízise

Linearizált helyettesítő kép = LTI Áramkör ⇒		Egyszerűsített áramkör
ldőtartomány		Transzformált tartomány
\		↓
Lineáris rendszer		Transzformált rendszer
		Impedancia koncepció
↓		↓ ↓
Differenciál egyenlet	\Rightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
↓		↓ ↓
Diff. egy. megoldása		Algebrai módszerek
\		↓ ↓
Válaszjel	←	Megoldás a transzformált
	Inverz transzformáció	tartományban

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

ELEKTRONIKÁBAN HASZNÁLT, LINEÁRIS HELYETTESÍTŐ KÉPET (AZAZ ZÁRT ALAKÚ MEGOLDÁST ADÓ) MÓDSZEREK

I. Nagyjelű modell: A nemlineáris karakterisztika törtvonalas közelítése

- 1. A nemlineáris eszköz karakterisztikáját törtvonalasan közelítjük
- 2. Különböző, de lineáris modelleket rendelünk az egyes tartományokhoz
- 3. Meghatározzuk, vagy feltételezést teszünk a nemlineáris eszköz működési tartományára
- 4. Egy tartományon belül az eszközt lineárisnak tekintjük

Megjegyzések:

- Nehézséget a működési tartomány meghatározása jelenti (próbálkozás)
- Tipikus alkalmazás:
 Munkapont meghatározása, kapcsolóüzemű
 és logikai áramkörök

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 7. oldal

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 8. oldal

Pázmány Péter Katolikus Egyetem

KI

II. Kisjelű közelítés, azaz munkaponti linearizálás módszere

• Matematikai háttér: Taylor vagy hatványsoros közelítés

$$\underbrace{f(Q + \Delta x) - f(Q)}_{\Delta y} = \frac{1}{1!} \frac{df}{dx} \bigg|_{x=Q} \Delta x + \underbrace{\frac{1}{2!} \frac{d^2 f}{dx^2} \bigg|_{x=Q} \Delta x^2 + \dots + \frac{1}{n!} \frac{d^n f}{dx^n} \bigg|_{x=Q} \Delta x^n + \dots}_{maradéktag}$$

- ullet Eredmény: A perturbácókra a Q munkapontban érvényes kisjelű modell (pirossal jelölve)
- Mivel a kisjelű modell lineáris, a kisjelű modellt tartalmazó rendszer is lineáris, azaz rá a lineáris rendszerekre kidolgozott módszerek alkalmazhatók
- Vedd észre, a kisjelű modell csak a perturbációkra érvényes!!!
- Kisjelű modell tipikus alkalmazása: Kisjelű erősítők (small-signal amplifier)
- Jelölés: Munkapont nagybetű
 - Perturbáció (hasznos feldolgozandó jel) kisbetű

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 9. oldal

Jelmagyarázat:

- Fekete: Eszköz nemlineáris karakterisztikája
- Piros: Nagyjelű modell, törtvonalas közelítés
- Kék:
 Kisjelű modell, a
 Q munkapontbeli linearizálás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 10. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A lineáris közelítő modellekre érvényes megjegyzések:

Törtvonalas közelítés (nagyjelű modell):

- Durva közelítés (nagy hiba)
- Nagy kivezérlés estén is alkalmazható
- Leginkább a munkapont meghatározására használják
- Az eszközparaméterekben mért nagy szórás miatt a durva közelítés által okozott hiba nem érdekes. A munkapontot egyéb módszerekkel stabilizáljuk

Munkaponti linearizálás (kisjelű modell):

- Csak az adott munkapont szűk környezetében érvényes
- Kis kivezérlés esetén alkalmazható
- Az adott munkapontban pontos modellt biztosít
- Csak a perturbációkra igaz
- A DC munkapontot és az AC feldolgozandó jelet csatoló kondenzátorokkal választjuk szét

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.1 A FÉLVEZETŐ DIÓDA

A dióda keresztmetszete

A kiürített réteg kialakulása

Az alkalmazandó modell típusát a bemeneti jel nagysága határozza meg

BE

Kettősréteg és potenciálgát a szakadással lezárt diódában

- Külső záró feszültség alkalmazása (Záró irányú előfeszítés):
 - Szélesíti a kiürített réteget és megnöveli a potenciálgátat
 - Exponenciálisan csökken annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton
- Külső nyitó feszültség alkalmazása (Nyitó irányú előfeszítés):
 - Keskenyíti a kiürített réteget és lecsökkenti a potenciálgátat
 - Exponenciálisan nő annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 13. oldal

A dióda karakterisztikája és kapcsolási rajzban használt szimbóluma

Pázmány Péter Katolikus Egyetem

$$I = I_S \left(e^{rac{V}{V_T}} - 1
ight)$$
 ahol $V_T pprox 25 \; {
m mV}$

Megjegyzések

- Feszültségforrást tilos nyitó irányban előfeszített pn átmenettel párhuzamosan kapcsolni
- $\begin{array}{lll} \bullet & pn & {\rm atmenet \ nyito} & {\rm iranyu \ karakterisztikája} & {\rm függ} & {\rm a} & {\rm h\"om\'ers\'eklett\"ol} \\ \approx & -2\frac{{\rm mV}}{\circ C} \\ \end{array}$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Dióda törtvonalas nagyjelű modelljének származtatása

Nyitó irányú előfeszítés Feltétel: I>0 $V_F=V_\gamma+I_FR_F \ \approx 0,7 \ {
m V}$

Záró irányú előfeszítés Feltétel:

I < 0 és $V_b < V < 0$

Letörési tartomány Feltétel: I < 0 és $V < V_b$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Dióda kisjelű modelljének származtatása

Dióda egyenlete

$$I = I_S \left(e^{rac{V}{V_T}} - 1
ight)$$
 ahol $V_T pprox 25 \ \mathrm{mV}$

A dióda dinamikus vezetése (azaz a Taylor sor lineáris tagja az adott $I_{\cal O}$ munkapontban)

$$\begin{split} g_d = & \frac{dI}{dV} \mid_{V_Q} = \frac{d}{dV} I_S \left(e^{\frac{V}{V_T}} - 1 \right) \mid_{V_Q} \\ = & \frac{1}{V_T} I_S e^{\frac{V_Q}{V_T}} = \frac{I_Q + I_S}{V_T} \approx \frac{I_Q}{V_T} \end{split}$$

A dióda dinamikus ellenállása, azaz kisjelű modellje

$$\begin{split} r_d = & \frac{1}{g_d} = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} \quad [\Omega] \\ & \overset{i}{\underset{v}{\bigvee}} \quad \overset{\downarrow}{\underset{v}{\bigvee}} \quad \overset{\downarrow}{\underset{r_d}{\bigvee}} \end{split}$$

Pázmány Péter Katolikus Egyetem

A KISJELŰ ANALÍZIS LÉPÉSEI

- A nemlineáris eszköz munkapontjának kiválasztása ill. meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A nemlineáris eszköz adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell (helyettesítő kép) paramétereinek meghatározása
- III. Az áramkör kisjelű modelljének (helyettesítő képének) és a jelúti paraméterek meghatározása Lineáris AC analízis

Hidegítések és szűrések, csatoló kondenzátorok

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 17. oldal

I. A dióda munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással helyettesítendők
- Induktivitások rövidzárral helyettesítendők

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

II. A dióda adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

A dióda dinamikus ellenállása a munkaponti áram függvénye

$$r_d = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} \quad [\Omega]$$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

III. A kisjelű modell és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

Collector

 αi_E

6.2 A (BIPOLÁRIS RÉTEG-)TRANZISZTOR (BJT)

BJT emitter és bázisrétegeinek előfeszítése

Potenciáleloszlás a BJT-ban

Tranzisztor előfeszítése a normál aktív tartományban: ullet EB átmenet: nyító irányú

ullet CB átmenet: záró irányú

Például egy npn tranzisztor esetén: • $v_{EB} \approx -0.7 \, \text{V}$ (azaz $v_{BE} = -v_{EB} \approx 0.7 \, \text{V}$)

• $v_{CB} \geq 0 \text{ V}$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 21. oldal

Electrons

Többségi és kisebbségi töltéshordozók mozgása egy npn transzisztorban

Tranzisztorhatás: Rekombináció a bázisban igen kicsi, azaz $\alpha \approx 1$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 22. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Egy npn típusú bipoláris tranzisztor karakterisztikái

Bemeneti kar.

Kimeneti karakterisztika

A karakterisztikák felvétele

- • Mivel $i_B>0,$ a tranzisztor vezérléséhez teljesítmény szükséges
- A pnp tranzisztor karakterisztikái teljesen megegyeznek a fenti be- és kimeneti karakterisztikával, de minden feszültség és áram -1-vel szorzandó
- Fizikai áramirányt az emittert azonosító nyíl iránya adja meg

Pázmány Péter Katolikus Egyetem

Pázmány Péter Katolikus Egyetem

Emitter

Elektronikai és biológiai áramkörök

Egy npn típusú bipoláris tranzisztor üzemmódjai

Bemeneti kar.

Kimeneti karakterisztika

A kapcsolási rajz

Erősítő üzemmód (Q)

KOLUMBÁN Géza — Információs Technológiai Kar

Normál, aktív: BE átmenet nyító, míg BC átmenet záró írányban van előfeszítve

Kapcsoló üzemmód (Kapcsoló és digitális áramkörök)
 Ugrás (BE) és (KI) pontok között

Elektronikai és biológiai áramkörök

Az npn bipoláris transzisztor erősítő üzemmódjának grafikus analízise

Vedd észre, Thévenin ekvivalens

Ahol: • Q a munkapont helyét adja meg

• "Load line" a munkaegyenest jelenti

 $v_{CE} + i_C R_L = V_{CC} \label{eq:vce}$

$$i_C = -\frac{1}{R_L} v_{CE} + \frac{V_{CC}}{R_L}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 25. oldal

6.2(a) BJT MODELLEZÉSE FÖLDELT BÁZISÚ KAPCSOLÁSBAN

npn normál aktív üzemmódban

• EB átmenet: nyító irányú $v_{EB} \approx -0,7 \text{ V}$

Pázmány Péter Katolikus Egyetem

 $CB ext{ átmenet: záró irányú}$ $v_{CB} > 0 ext{ V}$

Ahol α a földelt bázisú áramerősítési tényező

Földelt bázisú (FB) npn tranzisztor

Nagyjelű FB modell

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 26. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.2(b) BJT MODELLJE FÖLDELT EMITTERES KAPCSOLÁSBAN

Előzmények: A földelt bázisú npn tranzisztor nagyjelű modellje $i_C(i_E)$

$$\begin{split} i_E + i_B + i_C &= 0 \\ i_C &= -\alpha \, i_E \quad \text{\'es} \quad v_{EB,A} \approx -0,7 \, \text{V} \\ e &= -I_{ES} \left[e^{\left(-\frac{v_{EB}}{V_T} \right)} - 1 \right] \approx -I_{ES} \, e^{\frac{v_{BE}}{V_T}} \end{split}$$

Földelt emitteres (FE) npn tranzisztor nagyjelű modellje $i_C(i_B)$

$$egin{aligned} i_E + i_B + i_C &= -rac{i_C}{lpha} + i_B + i_C &= 0 & i_B & \ i_C &= rac{lpha}{1-lpha} i_B &= eta \, i_B & ext{és} \, \, v_{BE,A} pprox 0,7 \lor & v_{BE} \ i_C &= -lpha \, i_E &= lpha \, I_{ES} \left(e^{rac{v_{BE}}{V_T}} - 1
ight) \end{aligned}$$

Ahol $oldsymbol{eta}$ a földelt emitteres áramerősítési tényező

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Egy alternatív lehetőség:

A nagyjelű modell meghatározása a be- és kimeneti karakterisztikákból

Kimeneti karakterisztika

A karakterisztikák felvétele

Bemeneti kar.

A nagyjelű modell:

6.2(c) AZ npn FE TRANZISZTOR KISJELŰ π MODELLJE

Linearizálás az adott I_E munkapontban: Egyetlen nemlináris elem a $BE\ pn$ átmenet

A kiinduló egyenletek

$$egin{aligned} i_E + i_B + i_C &= i_E + i_B + eta i_B = 0 &\Longrightarrow &i_B = -rac{i_E}{eta + 1} \ i_E &= -I_{ES} \left(e^{rac{v_{BE}}{V_T}} - 1
ight) pprox -I_{ES} \ e^{rac{v_{BE}}{V_T}} \end{aligned}$$

A $BE\ pn$ átmenet dinamikus vezetése (linearizálás az $i_E=I_E$ munkapontban)

$$\begin{split} g_{\pi} = & \frac{d \, i_{B}}{d v_{BE}} \mid_{v_{BE,Q}} = \frac{d}{d v_{BE}} \left(-\frac{i_{E}}{\beta + 1} \right) \mid_{v_{BE,Q}} \\ = & \frac{1}{\beta + 1} I_{ES} \frac{d}{d v_{BE}} \, e^{\frac{v_{BE}}{V_{T}}} \mid_{v_{BE,Q}} = \frac{1}{\beta + 1} \frac{1}{V_{T}} \underbrace{I_{ES} e^{\frac{v_{BE,Q}}{V_{T}}}}_{-i_{E} \mid v_{BE,Q}} = \frac{1}{\beta + 1} \underbrace{\left(-\frac{I_{E}}{V_{T}} \right)}_{1 \mid r_{e}} \end{split}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 29. oldal

A tranzisztor BE átmenetének dinamikus ellenállása

$$r_{\pi}=rac{oldsymbol{v_{be}}}{oldsymbol{i_b}}\equivrac{1}{g_{\pi}}=(eta+1)r_e$$

ahol

$$r_e = -rac{V_T}{I_E} = -rac{25}{I_E^{[mA]}} \left[\Omega
ight] @~T = 25^{\circ}$$
C és $I_E < 0$

A kollektoráram kifejezése

Pázmány Péter Katolikus Egyetem

$$i_b = rac{v_{be}}{r_\pi}$$

$$i_c = eta i_b = eta rac{v_{be}}{(eta+1)r_e} = rac{lpha}{r_e} v_{be} = g_m v_{be}$$

ahol a tranzisztor meredeksége

$$g_m = rac{i_c}{v_{be}} = rac{lpha i_e}{v_{be}} = lpha r_e = -lpha rac{I_E}{V_T} pprox -rac{I_E^{[ext{mA}]}}{0,025} \, \left[rac{ ext{mA}}{ ext{V}}
ight] \, @ \, T = 25 ^{\circ} ext{C}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 30. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramköröl

A tranzisztorok adott munkapontban érvényes, kisjelű modellje

$$\begin{array}{c|c}
i_b & \mathbf{B} & \mathbf{C} & i_c \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
v_{be} & & \downarrow & \uparrow & \downarrow & \downarrow \\
\end{array}$$

 $\pi - q_m$ modell

Ahol a munkapontfüggő kisjelű tranzisztorparaméterek értéke

$$r_{\pi}=(eta+1)rac{V_{T}}{|I_{E}|}=rac{25}{|I_{E}^{[mA]}|}\left[\Omega
ight]$$
 @ $T=25^{\circ}$ C

$$g_m = lpha \; rac{|I_E|}{V_T} pprox rac{|I_E^{[{\mathsf{mA}}]}|}{0.025} \; \left[rac{{\mathsf{mA}}}{{\mathsf{V}}}
ight] \; @ \; T = 25 ^{\circ} \mathsf{C}$$

 $|I_E|$ bevezetésével a kisjelű modellt **függetlenítettük** a tranzisztor típusától!

Pázmány Péter Katolikus Egyetem

Elektronikai és hiológiai áramkörök

6.2(d) FE TRANZISZTOROS KISJELŰ ERŐSÍTŐ ANALÍZISE

- A tranzisztor munkapontjának meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A tranzisztor adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása
- III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása Állandósult állapotú, lineáris AC analízis

I. A tranzisztor munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Rossz hír: A BJT munkapontja **érzékeny** a réteghőmérsékletre A tranzisztort helyettesíteni kell az FE nemlineáris transzisztor modellel

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 33. oldal

Az npn tranzisztor FE nagyjelű modellje és a Thèvenin tétel alapján

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (bázis) körre
- Hurokegyenlet a kimeneti (kollektor) körre
- Tranzisztorra vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától Ebben az esetben: normál aktív tartományban üzemelő, npn tranzisztor

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 34. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

II. A tranzisztor adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

A $\pi-g_m$ modell paraméterei a munkaponti emitteráram függvényei

$$egin{align} r_\pi &= (eta+1)rac{V_T}{|I_E|} = (eta+1)rac{25}{|I_E^{[mA]}|} \; \Omega \; @ \; T = 25^\circ extsf{C} \ & \ g_m &= rac{|I_E^{[mA]}|}{0.025} \; \left[rac{ extsf{mA}}{ extsf{V}}
ight] \; @ \; T = 25^\circ extsf{C} \ & \ \end{array}$$

Ne feledd: A kisjelű modell **független** a tranzisztor típusától

Pázmány Péter Katolikus Egyetem

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

6.2(e) AZ npn FE TRANZISZTOROK MODELLJE

Erősítő üzemmód, azaz normál aktív tartomány:

Feszültség és áram mérőírányok

$$I_{E} < 0 \ I_{B} > 0, I_{C} > 0 \ V_{BE,A} pprox 0, 7 \ ee V_{CE} > 0, 5 \ ee$$

Nagyjelű modell

$$I_E+I_B+I_C=0$$
 $I_C=eta\,I_B~$ és $~V_{BE,A}pprox 0,7\,ee$ $eta~$ a földelt emitteres áramerősítési tényező

Ahol: • Erősítőkben a tranzisztorokat normál aktív üzemmódba kell előfeszíteni

• Segítség az ellenőrzéshez: Az emitteren lévő nyíl a fizikai áramírányt mutatja

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 37. oldal

Liosito dzeminod, azaz normai aktiv tartomanyb

6.2(f) A pnp FE TRANZISZTOROK MODELLJE

Erősítő üzemmód, azaz normál aktív tartományban:

Feszültség és áram mérőírányok

Pázmány Péter Katolikus Egyetem

$$\begin{split} I_E &> 0 \\ I_B &< 0, I_C < 0 \\ V_{BE,A} &\approx -0, 7 \ \lor \\ V_{CE} &< -0, 5 \ \lor \end{split}$$

Nagyjelű modell

$$I_E+I_B+I_C=0$$
 $I_C=eta\,I_B\;\;$ és $\;V_{BE,A}pprox -0,7\;$ V $\;eta\;$ a földelt emitteres áramerősítési tényező

Ahol: • Erősítőkben a tranzisztorokat normál aktív üzemmódba kell előfeszíteni

• Segítség az ellenőrzéshez: Az emitteren lévő nyíl a fizikai áramírányt mutatja

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok 06nemlin eszkozok30.pdf: 38. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.2(g) Mindkét tranzisztorra érvényes kisjelű modellek:

Az $|I_E|$ bevezetésével a npn/pnp tranzisztorok kisjelű modelljei megegyeznek

Feszültségvezérelt áramgenerátor

$$r_e=rac{V_T}{|I_E|}$$
 ahol $V_T=25$ mV $r_\pi=(eta+1)r_e$ $g_m=rac{lpha}{r_e}=lpharac{|I_E|}{V_T}pproxrac{|I_E|}{V_T}$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.3 A MOSFET TRANZISZTOROK

Növekményes (E) módú, n-csatornás MOSFET tranzisztor

Áramköri szimbólum MOSFET keresztmetszete Töltéshordozók eloszlása alacsony v_{GS} mellett

Kimeneti karakterisztika

KOLUMBÁN Géza — Információs Technológiai Kar

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

Kiürítéses/növekményes (DE) módú, n-csatornás MOSFET tranzisztor

Szimbólum

MOSFET keresztmetszete

Kimeneti karakterisztika

Üzemmódok: • Q: Telítéses üzemmód, itt használható erősítésre

• BE és KI: Kapcsoló üzemmód

• $v_{DS} \sim 0$ V: Rezisztív tartomány (vezérelhető ellenállás)

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 41. oldal

n-csatornás MOSFET-ek szimbólumai

Növekményes (E) MOSFET

Pázmány Péter Katolikus Egyetem

Kiürítéses (DE) MOSFET

n-csatornás MOSFET-ek transzfer karakterisztikái

ahol V_p az elzáródási feszültség

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok 06nemlin eszkozok30.ndf: 42. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

6.3(a) A MOSFET TRANZISZTOROK NAGYJELŰ MODELLJE

A MOSFET erősít, ha a telítéses tartományba van előfeszítve, amelynek feltétele

$$v_{DS} > v_{GS} - V_t$$

A nagyjelű modell:

Transzfer karakterisztika: $i_D = K(v_{GS} - V_t)^2$ és $i_S = -i_D$

Bemenetre vonatkozó egyenlet: $i_G = 0 \; \; orall \; v_{GS}$ -re

azaz a MOSFET tranzisztorok **vezérléséhez nem kell teljesítmény** (se erősítő, se kapcsoló üzemmódban!!!)

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

A nagyjelű modellek gyakorlatban használt egyenletei (n-csatornás MOSFET)

Növekményes (E) MOSFET

$$V_t = V_T > 0$$
 $i_D = K \left(v_{GS} - V_T
ight)^2 \,\, ext{\'es} \,\, i_S = -i_D$ $i_G = 0$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_T$$

Kiürítéses (DE) MOSFET

$$V_t = V_p < 0$$
 $i_D = I_{DSS} \left(1 - rac{v_{GS}}{V_p}
ight)^2$ és $i_S = -i_D$ $i_G = 0$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_p$$

6.3(c) MOSFET KISJELŰ ERŐSÍTŐ ANALÍZISE

6.3(b) E és DE MOSFET TRANZISZTOROK KISJELŰ MODELLJE

Vedd észre, a MOSFET egy feszültségvezérelt áramgenerátorral modellezhető

ahol • MOSFET kimeneti csatorna ellenállása: $n \times 1$ k $\Omega \le r_d \le n \times 10$ k Ω

ullet meredeksége: $g_m = rac{di_D}{dv_{CG}}\mid_{V_{GS}}$

Növekményes (E) MOSFET

Kiürítéses (DE) MOSFET

$$g_m^E = 2K \left(V_{GS} - V_T
ight)$$

$$g_m^E = 2K\left(V_{GS} - V_T
ight) \qquad \qquad g_m^{DE} = -rac{2I_{DSS}}{V_p}\left(1 - rac{V_{GS}}{V_p}
ight)$$

MOSFET jellemzők: $i_G = 0$, de g_m nagyon kicsi \Rightarrow kis erősítés!!!

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 45. oldal

aramkorok_06nemlin_eszkozok30.pdf: 47. oldal

II. A MOSFET adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása

I. Az *n*-csatornás kiürítéses MOSFET munkapontjának meghatározása

Állandósult állapotú, lineáris AC analízis

Nemlineáris, állandósult állapotú DC analízis

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 46. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

I. A MOSFET munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Jó hír: A MOSFET munkapontja nem érzékeny a hőmérséklet változására

MOSFET-et helyettesíteni kell a nemlineáris nagyjelű modellel

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Az előző ábrát a MOSFET eszközök nagyielű modellje alapján átrajzolva kapiuk

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (gate) körre
- Hurokegyenlet a kimeneti (drain) körre
- MOSFET eszközre vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától

Ebben az esetben: Telítéses tartományban üzemelő, n-csatornás kiürítéses MOSFET A négyzetes transzfer karakterisztika miatt két megoldás adódik: (1) $V_p < V_{GS}$, a keresett megoldás és (2) $V_{GS} < V_p$, nem fizikai, hanem csak matematikai megoldás

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 48. oldal

II. A MOSFET adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

Az n-csatornás kiürítéses (DE) MOSFET kisjelű modellje a munkaponti gate-source feszültség függvénye

$$g_m^{DE} = -rac{2I_{DSS}}{V_p} \left(1 - rac{V_{GS}}{V_p}
ight)$$

Az r_d kimeneti csatorna ellenállás a katalógusból keresendő ki

A MOSFET paraméterek függetlenek a hőmérséklettől

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 49. oldal

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

• Lineáris AC analízis

Pázmány Péter Katolikus Egyetem

- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_06nemlin_eszkozok30.pdf: 50. oldal