Figure 1

HIF-1 Regulation by Hypoxia

Figure 2

Figure 3

A. Abbreviated diagram of oxygen-independent glucose metabolism and relevant inhibitors.

B. Structural comparisons of key glucose metabolites.

2-0G	Succ	OAA	Pyr		
1 COOH 2 C=0 3 CH2 4 CH2 5 COOH	ÇООН ÇH2 ÇH2 СООН	СООН СН2 СООН	çоон с=о сн₃		

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

B.
Digitonin permeabilized cells

Figure 9

Figure 10

Figure 11

Figure 12

A.	2-OG	(μ M)			a salata	and the same	
	0	0.2	1	5	25	125	
B.	Fe ²⁺ (alst Vill				
	1.2	3.6			100	300	
C.	Asc	(µ W)	i abasans		72 E E		
	O Mensioner	0.2	2	20		2000	

Figure 13

Figure 14

HPH-1		+ 1 mM OAA				<u> </u>	+ 1 mW PYK						
: 100					unicocki.				es e de la composition della c	es de la companie de			
Ascorbate	4	20	100	500	4	20	100	500	4	20	100	500	
HPH-2					+ 1 mM OAA					+1 mM, PYR			
Ascorbate	4	20	100	500	4	20	100	500	4	20	100	500	
НРН-3	•	''	N 2 41.	4 -::	+1 mM OAA			+ 1 mM PYR					
											310 40 A		
Ascorbate	8	40	200	1000	8	40	200	1000	8	40	200	1000	

Figure 15

Figure 16

Figure 17

Figure 18

A. FIH-1 expression

B. HIF-1 Gelshift (U87)

C. RT-PCR (U87)

D. RT-PCR (Hep3B)

E. HRE-GFP Expression

F. HRE-Luciferase expression

Figure 19

Ascorbate inhibits HIF-1 mediated gene expression induced by Pyruvate and Oxaloacetate

Figure 20

Figure 21

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.