CSC 358 - Principles of Computer Networks

Handout # 7: Internet Topology and Routing

Joe Lim

Department of Mathematical and Computational
Sciences
joe.lim@utoronto.ca

Announcements

- PS2 Due: Fri, Mar 9 @11:59PM
- PA2: Due: Fri, Mar 30 @11:59PM
 - 6%: Working PA112%: Working PA2
- Need to work on PA1?
 - Use PA1-Test on MarkUs
- PA2 Autotester running on MarkUs
- Finals: Mon, Apr 9, 2018 from 9-12 in IB120
 - Please consult the official timetable website https://student.utm.utoronto.ca/examschedule/finalexams.
 php

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Outline

Internet's Topology

- Internet's two-tiered topology
- AS-level topology
- Router-level topology
- Routing in the Internet
 - Hierarchy and Autonomous Systems
 - Interior Routing Protocols: RIP, OSPF
 - Exterior Routing Protocol: BGP

CSC 358 - Principles of Computer Networks

UTM Spring 2018

2

Internet Routing Architecture

- Divided into Autonomous Systems
 - Distinct regions of administrative control
 - Routers/links managed by a single "institution"
 - Service provider, company, university, ...
- Hierarchy of Autonomous Systems
 - Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university
- Interaction between Autonomous Systems
 - Internal topology is not shared between AS's
 - ... but, neighboring AS's interact to coordinate routing

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Identifying Autonomous Systems

AS Numbers are 32 bit values (used to be 16)

Currently just over 54,000 in use.

• Level 3: 1

• MIT: 3

• Harvard: 11

• Yale: 29

• U of T: 239

• AT&T: 7018, 6341, 5074, ...

• UUNET: 701, 702, 284, 12199, ...

• Sprint: 1239, 1240, 6211, 6242, ...

• ...

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Business Relationships

- Neighboring AS's have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay
- Common business relationships
 - Customer-provider
 - · E.g., Princeton is a customer of AT&T
 - E.g., MIT is a customer of Level 3
 - Peer-peer
 - E.g., Princeton is a peer of Patriot Media
 - E.g., AT&T is a peer of Sprint

CSC 358 - Principles of Computer Networks

UTM Spring 2018

9

Customer-Provider Relationship

- Customer needs to be reachable from everyone
 - Provider tells all neighbors how to reach the customer
- Customer does not want to provide transit service
 - Customer does not let its providers route through it

Traffic to the customer

CSC 358 – Principles of Computer Networks

Traffic **from** the customer

UTM Spring 2018

Peer-Peer Relationship

- Peers exchange traffic between customers
 - AS exports only customer routes to a peer
 - AS exports a peer's routes only to its customers
 - Often the relationship is settlement-free (i.e., no \$\$\$)

Traffic to/from the peer and its customers

CSC 358 - Principles of Computer Networks

UTM Spring 2018

11

Princeton Example

- Internet: customer of AT&T and USLEC
- Research universities/labs: customer of Internet2
- Local residences: peer with Patriot Media
- Local non-profits: provider for several non-profits

AS Structure: Tier-1 Providers

- Tier-1 provider
 - Has no upstream provider of its own
 - Typically has a national or international backbone
 - UUNET, Sprint, AT&T, Level 3, ...
- Top of the Internet hierarchy of 12-20 AS's
 - Full peer-peer connections between tier-1 providers

CSC 358 - Principles of Computer Networks

UTM Spring 2018

13

AS Structure: Other AS's

- Tier-2 providers
 - Provide transit service to downstream customers
 - ... but, need at least one provider of their own
 - Typically have national or regional scope
 - E.g., Minnesota Regional Network
 - Includes a few thousand of the AS's
- Stub AS's
 - Do not provide transit service to others
 - Connect to one or more upstream providers
 - Includes vast majority (e.g., 85-90%) of the AS's

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Points-of-Presence (PoPs)

- Inter-PoP links
 - Long distances
 - High bandwidth
- Intra-PoP links
 - Short cables between racks or floors
 - Aggregated bandwidth
- Links to other networks
 - Wide range of media and bandwidth

CSC 358 - Principles of Computer Networks

UTM Spring 2018

19

Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - Other providers or exchange points
 - Cost and availability of real-estate
 - Mostly in major metropolitan areas
- Placing links between PoPs
 - Already fiber in the ground
 - Needed to limit propagation delay
 - Needed to handle the traffic load

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Inferring the AS-Level Topology

- Collect AS paths from many vantage points
 - Learn a large number of AS paths
 - Extract the nodes and the edges from the path
- Example: AS path "1 7018 88" implies
 - Nodes: 1, 7018, and 88
 - Edges: (1, 7018) and (7018, 88)
- Ways to collect AS paths from many places
 - Mapping traceroute data to the AS level
 - · Map using whois
 - Example: try whois –h whois.arin.net "MCI Worldcom"
 - Measurements of the interdomain routing protocol

CSC 358 - Principles of Computer Networks

UTM Spring 2018

23

Inferring AS Relationships

- Key idea
 - The business relationships determine the routing policies
 - The routing policies determine the paths that are chosen
 - So, look at the chosen paths and infer the policies
- Example: AS path "1 7018 88" implies
 - AS 7018 allows AS 1 to reach AS 88
 - AT&T allows Level 3 to reach Princeton
 - Each "triple" tells something about transit service
- Collect and analyze AS path data
 - Identify which AS's can transit through the other
 - ... and which other AS's they are able to reach this way

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Challenges of Relationship Inference

- Incomplete measurement data
 - Hard to get a complete view of the AS graph
 - Especially hard to see peer-peer edges low in hierarchy
- Real relationships are sometime more complex
 - Peer in one part of the world, customer in another
 - Other kinds of relationships (e.g., backup)
 - Special relationships for certain destination prefixes
- Still, inference work has proven very useful
 - Qualitative view of Internet topology and relationships

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Outline

- Internet's Topology
 - Internet's two-tiered topology
 - AS-level topology
 - Router-level topology

Routing in the Internet

- Hierarchy and Autonomous Systems
- Interior Routing Protocols: RIP, OSPF
- Exterior Routing Protocol: BGP

CSC 358 - Principles of Computer Networks

UTM Spring 2018

27

Routing Story So Far ...

- Techniques
 - Flooding
 - Distributed Bellman Ford Algorithm
 - Dijkstra's Shortest Path First Algorithm
- Question 1. Can we apply these to the Internet as a whole?
- Question 2. If not, what can we do?

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Routing in the Internet

- The Internet uses hierarchical routing.
- Within an AS, the administrator chooses an Interior Gateway Protocol (IGP)
 - Examples of IGPs: RIP (rfc1058), OSPF (rfc1247, IS-IS (rfc1142).
- Between AS's, the Internet uses an Exterior Gateway
 Protocol
 - AS's today use the Border Gateway Protocol, BGP-4 (rfc 1771)

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Interior Routing Protocols

- RIP (Routing Information Protocol)
 - Uses distance vector (distributed Bellman-Ford algorithm).
 - Updates sent every 30 seconds.
 - No authentication.
 - Originally in BSD UNIX.
 - Widely used for many years; not used much anymore.
- OSPF (Open Shortest Path First)
 - Link-state updates sent (using flooding) as and when required.
 - Every router runs Dijkstra's algorithm.
 - Authenticated updates.
 - Autonomous system may be partitioned into "areas".
 - Widely used.

CSC 358 - Principles of Computer Networks

UTM Spring 2018

31

Interdomain Routing

- AS-level topology
 - Destinations are IP prefixes (e.g., 12.0.0.0/8)
 - Nodes are Autonomous Systems (AS's)
 - Links are connections & business relationships

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Challenges for Interdomain Routing

- Scale
 - Prefixes: 150,000-500,000, and growing
 - AS's: 54,000 visible ones, and growing
 - AS paths and routers: at least in the millions...
- Privacy
 - AS's don't want to divulge internal topologies
 - ... or their business relationships with neighbors
- Policy
 - No Internet-wide notion of a link cost metric
 - Need control over where you send traffic
 - ... and who can send traffic through you

CSC 358 - Principles of Computer Networks

UTM Spring 2018

33

Link-State Routing is Problematic

- Topology information is flooded
 - High bandwidth and storage overhead
 - Forces nodes to divulge sensitive information
- Entire path computed locally per node
 - High processing overhead in a large network
- Minimizes some notion of total distance
 - Works only if policy is shared and uniform
- Typically used only inside an AS
 - E.g., OSPF and IS-IS

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Distance Vector is on the Right Track

- Advantages
 - Hides details of the network topology
 - Nodes determine only "next hop" toward the dest
- Disadvantages
 - Minimizes some notion of total distance, which is difficult in an interdomain setting
 - Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector

CSC 358 - Principles of Computer Networks

UTM Spring 2018

35

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

Border Gateway Protocol (BGP-4)

- BGP is a path-vector routing protocol.
- BGP advertises complete paths (a list of AS's).
 - Also called AS_PATH (this is the path vector)
 - Example of path advertisement: "The network 171.64/16 can be reached via the path {AS1, AS5, AS13}".
- Paths with loops are detected locally and ignored.
- Local policies pick the preferred path among options.
- When a link/router fails, the path is "withdrawn".

CSC 358 – Principles of Computer Networks

UTM Spring 2018

BGP

- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASes
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and *policy*
- allows subnet to advertise its existence to rest of Internet: "I am here"

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Incremental Protocol

- A node learns multiple paths to destination
 - Stores all of the routes in a routing table
 - Applies policy to select a single active route
 - ... and may advertise the route to its neighbors
- Incremental updates
 - Announcement
 - Upon selecting a new active route, add node id to path
 - ... and (optionally) advertise to each neighbor
 - Withdrawal
 - If the active route is no longer available
 - ... send a withdrawal message to the neighbors

CSC 358 - Principles of Computer Networks

UTM Spring 2018

41

BGP Messages

- Open: Establish a BGP session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announcing new routes or withdrawing previously announced routes.

BGP announcement = prefix + path attributes

- Attributes include: Next hop, AS Path, local preference, Multi-exit discriminator, ...
 - Used to select among multiple options for paths

CSC 358 - Principles of Computer Networks

UTM Spring 2018

BGP Route Selection

- 1. local preference value attribute: policy decision
- 2. shortest AS-PATH
- 3. closest NEXT-HOP router: hot potato routing
- 4. additional criteria

CSC 358 - Principles of Computer Networks

UTM Spring 2018

45

Hot Potato Routing

- 2d learns (via iBGP) it can route to X via 2a or 2c
- hot potato routing: choose local gateway that has least intradomain cost (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost!

CSC 358 – Principles of Computer Networks

UTM Spring 2018

BGP Policy: Applying Policy to Routes

- Import policy
 - Filter unwanted routes from neighbor
 - E.g. prefix that your customer doesn't own
 - Manipulate attributes to influence path selection
 - E.g., assign local preference to favored routes
- Export policy
 - Filter routes you don't want to tell your neighbor
 - E.g., don't tell a peer a route learned from other peer
 - Manipulate attributes to control what they see
 - E.g., make a path look artificially longer than it is

CSC 358 – Principles of Computer Networks

UTM Spring 2018

Import Policy: Filtering

- Discard some route announcements
 - Detect configuration mistakes and attacks
- Examples on session to a customer
 - Discard route if prefix not owned by the customer
 - Discard route that contains other large ISP in AS path

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Export Policy: Filtering

- Discard some route announcements
 - Limit propagation of routing information
- Examples
 - Don't announce routes from one peer to another
 - Don't announce routes for network-management hosts

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Export Policy: Attribute Manipulation

- Modify attributes of the active route
 - To influence the way other AS's behave
- Example: AS prepending
 - Artificially inflate the AS path length seen by others
 - To convince some AS's to send traffic another way

BGP Policy Configuration

- Routing policy languages are vendor-specific
 - Not part of the BGP protocol specification
 - Different languages for Cisco, Juniper, etc.
- Still, all languages have some key features
 - Policy as a list of clauses
 - Each clause matches on route attributes
 - ... and either discards or modifies the matching routes
- Configuration done by human operators
 - Implementing the policies of their AS
 - Business relationships, traffic engineering, security, ...
 - http://www.cs.princeton.edu/~jrex/papers/policies.pdf

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Causes of BGP Routing Changes

- Topology changes
 - Equipment going up or down
 - Deployment of new routers or sessions
- BGP session failures
 - Due to equipment failures, maintenance, etc.
 - Or, due to congestion on the physical path
- Changes in routing policy
 - Reconfiguration of preferences
 - Reconfiguration of route filters
- Persistent protocol oscillation
 - Conflicts between policies in different AS's

CSC 358 - Principles of Computer Networks

UTM Spring 2018

Routing Change: Path Exploration Initial situation • Destination 0 is alive (2,0)(1,0)• All AS's use direct path (2,1,0)(1,2,0) When destination dies (2,3,0)(1,3,0)• All AS's lose direct path (2,1,3,0)• All switch to longer paths • Eventually withdrawn 1 2 • E.g., AS 2 • $(2,0) \rightarrow (2,1,0)$ • $(2,1,0) \rightarrow (2,3,0)$ • (2,3,0) → (2,1,3,0) (3,0)• (2,1,3,0) → null 3 (3,1,0)(3,2,0)

BGP Converges Slowly, if at All

- Path vector avoids count-to-infinity
 - But, AS's still must explore many alternate paths
 - ... to find the highest-ranked path that is still available
- Fortunately, in practice
 - Most popular destinations have very stable BGP routes
 - And most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 - Can be tens of seconds to tens of minutes
 - High for important interactive applications
 - ... or even conventional application, like Web browsing

CSC 358 - Principles of Computer Networks

UTM Spring 2018

67

Conclusions

- BGP is solving a hard problem
 - Routing protocol operating at a global scale
 - With tens of thousands of independent networks
 - That each have their own policy goals
 - And all want fast convergence
- Key features of BGP
 - Prefix-based path-vector protocol
 - Incremental updates (announcements and withdrawals)
 - Policies applied at import and export of routes
 - Internal BGP to distribute information within an AS
 - Interaction with the IGP to compute forwarding tables

CSC 358 - Principles of Computer Networks

UTM Spring 2018