RZECZPOSPOLITA **POLSKA**

(12) OPIS PATENTOWY (19) PL (11) 211538

(13) **B1**

Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 393130

(22) Data zgłoszenia: 03.12.2010

(51) Int.Cl. G01D 5/36 (2006.01) G01D 5/244 (2006.01) G01D 5/245 (2006.01)

Układ określania położenia liniału inkrementalnego przetwornika optoelektronicznego (54)

(43) Zgłoszenie ogłoszono:

01.08.2011 BUP 16/11

(45) O udzieleniu patentu ogłoszono:

31.05.2012 WUP 05/12

(73) Uprawniony z patentu:

POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL

(72) Twórca(y) wynalazku:

ZBIGNIEW SZCZEŚNIAK, Kielce, PL

(74) Pełnomocnik:

rzecz. pat. Antoni Garstka

2 PL 211 538 B1

Opis wynalazku

Przedmiotem wynalazku jest układ określania położenia liniału inkrementalnego przetwornika optoelektronicznego.

W cyfrowych pomiarach położenia można zaobserwować dwa kierunki badań zmierzające do uzyskania pomiarów z dużą dokładnością. Pierwszy polega na precyzyjnej budowie liniału pomiarowego i konstrukcji przetwornika z wykorzystaniem prostych układów elektronicznego przetwarzania, natomiast w drugim, dla mniej precyzyjnej budowy przetwornika, zwiększoną dokładność uzyskuje się na drodze elektronicznej, poprzez odpowiednie przetwarzanie sygnałów pomiarowych.

W ostatnim czasie obserwuje się tendencję do stosowania kwantujących optoelektronicznych przetworników położenia o prostszej budowie, a tym samym o mniejszej dokładności przetwarzania. Wagę uzyskania zwiększonej dokładności przenosi się na drogę elektroniczną.

Znane metody interpolacji sygnałów przetwornika z wyróżnianiem kierunku jego ruchu, sprzęgniętego z obiektem umożliwiające zwiększenie dokładności optoelektronicznego przetwornika położenia, realizowane są na podstawie funkcji logicznych sygnałów przetwornika i impulsów ruchu wygenerowanych z sygnałów tego przetwornika w układach przerzutnikowych lub w układach RC oraz poprzez metodę fazowego przetwarzania sygnałów przetwornika położenia.

Uzyskanie wielokrotnie większych dokładności przetwarzania przetwornika, wymusza stosowanie programowalnych i mikroprocesorowych metod przetwarzania sygnałów przetwornika. Metody te wypierają inne metody ze względu na takie zalety jak zmniejszenie struktury urządzenia, niższe koszty realizacji, większą dokładność i niezawodność.

Wyjściowe sygnały z fotoelektrycznego przetwornika położenia to dwa sygnały sinusoidalne, przesunięte w fazie względem siebie o ¹/₄ okresu. Okres sygnału jest równy okresowi siatki podziałki skali liniału tego przetwornika.

Wynalazek ma na celu wyeliminowanie wpisywania kąta położenia i ułatwienia programowania.

Układ określania położenia liniału inkrementalnego przetwornika optoelektronicznego, charakteryzuje się tym, że wyjścia przetwornika połączone są z wejściami układów kształtowania piłokształtnych sygnałów, a ich wyjścia połączone są z wejściami przetworników A/C1, A/C2, których wyjścia połączone są z wejściami adresowymi pamięci. Cztery wyjścia pamięci połączone są z wejściami układu określania kierunku zmian sygnałów oraz jedno z wyjść pamięci stanowią wyjście układu określania położenia.

Wspomniane wyjście pamięci połączone jest z wejściami zegarowymi dwóch przerzutników, przy czym wyjście pierwszego przerzutnika stanowi wyjście sygnału prostokątnego licznika śledzącego, natomiast wyjście drugiego przerzutnika połączone jest z wejściem bramki iloczynowej, której drugie wejście połączone jest z wyjściem układu sekwencyjnego, a drugie wyjście drugiego przerzutnika połączone jest z wejściem drugiej bramki iloczynowej, której drugie wejście połączone jest z wyjściem układu sekwencyjnego, a wyjścia bramek iloczynowych połączone są z wejściami bramki logicznej, której wyjście stanowi wyjście sygnału prostokątnego licznika śledzącego.

Istotą rozwiązania jest układ, w którym dwa sinusoidalne sygnały U_1 = $Asin\alpha$, U_2 = $Acos\alpha$ z optoelektronicznego przetwornika położenia, ograniczono do liniowych części i tylko te liniowe części przebiegów poddawane są przetwarzaniu na sygnał cyfrowy. Wybrano, najbardziej korzystne z punktu widzenia dokładności dalszego przetwarzania, ograniczenie przebiegów U_1 , U_2 do wartości, w której następuje przecięcie się obu sygnałów. Dla jednakowych wartości amplitud sygnałów U_1 , U_2 przecięcie następuje dla względnego przesunięcia liniału pomiarowego przetwornika położenia wynoszącego 45°.

W metodzie cyfrowej interpolacji, która wykorzystuje tzw. "kalkulator arcus tangens", dwa analogowe sygnały U_1 = $A \sin \alpha$, U_2 = $A \cos \alpha$ podawane są na wejścia przetworników analogowo-cyfrowych i zamieniane na cyfrowe n-bitowe sygnały S_1 , S_2 . Sygnały te wprowadzane są do procesora, który oblicza ilorazy, tangens S_1/S_2 i wyprowadza odpowiadającą wartość kąta, arcus tangens z tablicy zapamiętanej w pamięci EPROM. Tablica wskazuje położenie wewnątrz jednego okresu sygnału. W tym samym czasie analogowe sygnały skanujące U_1 i U_2 są zamieniane w sygnały prostokątne i liczone są okresy sygnału. Rzeczywista wartość położenia jest następnie wyprowadzana z wartości zliczonych okresów sygnałów i obliczonej wartości kąta.

W programowalnych metodach, w układzie próbkująco - pamiętającym napięcia analogowe są zapamiętywane i przekazywane w regularnych przedziałach czasu do przetwornika analogowocyfrowego, gdzie zamieniane są na postać cyfrową. Dwie cyfrowe wartości napięcia S_1 , S_2 wykorzyPL 211 538 B1 3

stywane są do adresowania interpolacyjnej tablicy przeglądowej w celu określenia chwilowej wartości położenia.

Układ śledzący porównuje chwilową wartość położenia z wartością określoną w poprzednim cyklu. Z różnicy dwóch wartości położenia licznik śledzący generuje dwa przyrostowe sygnały prostokątne U_a , U_b przesunięte względem siebie o $^1/_4$ okresu w zależności od kierunku ruchu liniału pomiarowego. Metoda ta wymaga wpisania kąta odpowiadającego położeniu przetwornika.

Przedmiot wynalazku przedstawiony jest w przykładzie wykonania na rysunku, na którym fig. 1 przedstawia układ z zastosowaniem pamięci stałej do określania położenia liniału inkrementalnego przetwornika optoelektronicznego na podstawie jego sygnałów, natomiast fig. 2 - przykładowe przebiegi czasowe sygnałów z optoelektronicznego przetwornika położenia i odpowiadające im przebiegi cyfrowe po zastosowaniu układu z licznikiem śledzącym i tablicą interpolacyjną dla czterobitowego przetwarzania.

Układ z zastosowaniem pamięci stałej do określania położenia liniału inkrementalnego przetwornika optoelektronicznego na podstawie jego sygnałów zawiera w swej strukturze:

- dwa układy $\underline{U_{k1}}$, $\underline{U_{k2}}$ ograniczające wejściowe przebiegi sinusoidalne do ich liniowych części do napięcia $\underline{U_z}$;
 - dwa bipolarne 4-bitowe przetworniki analogowo-cyfrowe A/C1, A/C2;
 - pamięć stałą (EPROM 256-bąjtowa);
- licznik śledzący <u>LS</u>, w skład którego wchodzi układ sekwencyjny <u>US</u> oraz układ formujący wyjściowe przebiegi prostokątne składający się z przerzutników <u>P1</u>, <u>P2</u> i bramek <u>B1</u>, <u>B2</u> i <u>B</u>.

Sygnały $\underline{S_1}$ i $\underline{S_2}$ wykorzystywane są do 8-bitowego adresowania komórek pamięci EPROM. Adresując daną komórkę pamięci, jej wartość (8-bitów) jest wystawiana na wyjście równoległe w postaci 8 bitowego słowa binarnego - bity od $\underline{x_0}$ do $\underline{x_7}$. Wartości zawarte w komórkach pamięci w sposób bezpośredni informują o zmianie wartości ciągłych sygnałów $\underline{U_1}$, $\underline{U_2}$, co jest jednoznaczne ze zmianą liniału pomiarowego optoelektronicznego przetwornika położenia.

W celu określenia przyrostu i kierunku przesunięcia liniału pomiarowego optoelektronicznego przetwornika położenia wykorzystuje się pięć bitów wystawianych na równoległe wyjście pamięci EPROM $\underline{x_0}$, $\underline{x_1}$, $\underline{x_2}$, $\underline{x_3}$, $\underline{x_4}$. Cztery mniej znaczące bity $\underline{x_0}$, $\underline{x_1}$, $\underline{x_2}$ i $\underline{x_3}$ podawane są bezpośrednio na wejście układu sekwencyjnego \underline{US} , który służy do wyróżnienia kierunku ruchu poprzez wystawienie na jednym z wyjść \underline{P} lub \underline{L} stanu wysokiego P=1, L-0 oznaczający ruch w prawo, P=0 L=1 - ruch w lewo. Bit wyjściowy pamięci $\underline{x_4}$ tworzy sygnał zegarowy dla przerzutników $\underline{P1}$, $\underline{P2}$, na podstawie zmian liniału pomiarowego o przedział kwantowania q. Na wyjściu przerzutnika $\underline{P1}$ otrzymuje się pierwszy sygnał prostokątny $\underline{U_a}$ o częstotliwości dwa razy mniejszej od częstotliwości sygnału $\underline{x_4}$. Na wyjściu przerzutnika $\underline{P2}$ otrzymuje się dwa przebiegi $\underline{U_{bp}}$ i $\underline{U_{bl}}$. Sygnał $\underline{U_{bp}}$ wyprzedza przebieg $\underline{U_a}$ o $^1/_4$ okresu natomiast sygnał $\underline{U_{bl}}$ opóźnia się za przebiegiem $\underline{U_a}$ o $^1/_4$ okresu. Oba te sygnały jak również bity z wyjścia układu sekwencyjnego podawane są na wejścia układu kombinacyjnego. Układ ten w zależności od kierunku ruchu wyróżnionego przez układ sekwencyjny, na wyjście $\underline{U_b}$ podaje przebieg $\underline{U_{bp}}$ lub $\underline{U_{bl}}$. W ten sposób otrzymuje się dwa gotowe sygnały prostokątne dające informacje o położeniu i kierunku ruchu optoelektronicznego przetwornika położenia.

Istnieje również możliwość otrzymania tej samej informacji wykorzystując przebieg \underline{x}_4 oraz wyjścia układu sekwencyjnego \underline{P} i \underline{L} . Dzięki temu dokładność pomiaru jest dwukrotnie większa niż przy wykorzystaniu sygnałów \underline{U}_a i \underline{U}_b . Najczęściej jednak przy pomiarach z wykorzystaniem optoelektronicznego przetwornika położenia wykorzystuje się dwa przebiegi prostokątne przesunięte względem siebie o $^1/_4$ okresu co związane jest ze standaryzacją urządzeń pomiarowych.

Zastrzeżenia patentowe

1. Układ określania położenia liniału inkrementalnego przetwornika optoelektronicznego, zawierający pamięć stałą, **znamienny tym**, że wyjścia przetwornika $(\underline{U}_1, \underline{U}_2)$ połączone są z wejściami $(\underline{U}_{k1}, \underline{U}_{k2})$ układów kształtowania piłokształtnych sygnałów, a ich wyjścia połączone są z wejściami przetworników (A/C1, A/C2), których wyjścia ($\underline{S}_1, \underline{S}_2$) połączone są z wejściami adresowymi pamięci, przy czym cztery wyjścia pamięci ($\underline{x}_0, \underline{x}_1, \underline{x}_2, \underline{x}_3$) połączone są z wejściami układu (\underline{U}_3) określania kierunku zmian sygnałów ($\underline{U}_1, \underline{U}_2$) a wyjścia ($\underline{L}, \underline{P}$) układu (\underline{U}_3) określania kierunku zmian sygnałów ($\underline{U}_1, \underline{U}_2$) oraz jedno z wyjść pamięci (\underline{x}_4), stanowią wyjście układu określania położenia.

4 PL 211 538 B1

2. Układ według zastrz. 1, **znamienny tym**, że wyjście pamięci ($\underline{x}_{\underline{4}}$) połączone jest z wejściami zegarowymi przerzutników ($\underline{P1}$, $\underline{P2}$) przy czym wyjście pierwszego przerzutnika ($\underline{P1}$) stanowi wyjście sygnału prostokątnego ($\underline{U}_{\underline{a}}$) licznika śledzącego (\underline{LS}), natomiast wyjście ($\underline{U}_{\underline{bp}}$) drugiego przerzutnika ($\underline{P2}$) połączone jest z wejściem bramki iloczynowej ($\underline{B1}$), której drugie wejście połączone jest z wyjściem (\underline{P}) układu sekwencyjnego (\underline{US}), a drugie wyjście ($\underline{U}_{\underline{bl}}$) drugiego przerzutnika ($\underline{P2}$) połączone jest z wejściem drugiej bramki iloczynowej ($\underline{B2}$), której drugie wejście połączone jest z wyjściem (\underline{L}) układu sekwencyjnego (\underline{US}), a wyjścia bramek ($\underline{B1}$, $\underline{B2}$) połączone są z wejściami bramki logicznej (\underline{B}), której wyjście stanowi wyjście sygnału prostokątnego ($\underline{U}_{\underline{b}}$) licznika śledzącego (\underline{LS}).

Rysunki

Fig.1

6 PL 211 538 B1