

Validation of the Short Time-series Expression Miner (STEM) on Iron Cycling in a Shallow Alluvial Aquifer

Paul Soper, Michela Taufer, Clara Chan, and Stephen Herbein

Background

- We have time expression data for Zetaproteobacteria, ironoxidizing bacteria found at deep-sea hydrothermal vents
- Using the STEM software to analyze the data produced interesting graphs, but it was unclear what they meant
- Our data are similar to those analyzed in the paper Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer by Jewell et al.
- We want to use this better-understood system to see whether STEM correctly clusters genes involved in iron oxidation

Can STEM replicate bin 22.6 of Jewell et al.?

Methodology – Tools

- STEM was developed at Carnegie-Mellon University by Jason Ernst and Ziv Bar-Joseph
- Written in java, and available free for non-commercial use
- Although it can exploit gene annotations and get location data, these were not available
- STEM generates an exhaustive set of profiles, then selects the ones that match the data
- Values are the log of the ratio of a gene's expression at time t >
 0 to its expression at t = 0

What are these results trying to tell us?

To find out, we ran STEM on a known system.

Methodology – Data

- Gene expression data were downloaded from the Supplemental Information provided for the Jewell paper
- Some open reading frames (contiguous stretches of RNA) were labelled with the corresponding gene
- We filtered the data to include only bins 22.6 and 22.9, which were processed separately

STEM's profiles and clusters are reasonable

Bin 22.6

gene	profile	cluster
dsrL	20	1
cyc2	29	1
mtoA	29	1
dsrO	29	1
mtoB	30	1

Filtered Gene List | Main Gene Table | Interface Options... | Order Profiles By... | Order Clusters By... | Compare... |

- 6 Expression Change 90.0 Genes Assigned; 22.8 Genes Expected; p-value = 4.5E-27 (significant)

 5
 4
 3
 2
 1
 1/13/13
 12/18/13
 12/18/13
 12/30

 TIME
 12/30

 -1
 -2
 -3
 -4
 -5
 -6
- Statistically significant profiles have colored backgrounds
- Profiles with the same color are in the same cluster

Bin 22.9

gene	profile	cluster
dsrO	5	1
dsrK	5	1
dsrP	5	1
dsrL	7	1
mtoB	21	3
dsrF	21	3
cvc2	42	4

Filtered Gene List Main Gene Table Interface Options... Order Profiles By... Order Clusters By... Compare...

• For bin 22.9, all of the identified genes appear in statistically significant clusters

Cluster Gene Table

Conclusions

- STEM allocates all known genes to statistically significant clusters
- For bin 22.6, agreement with Jewell is good (keeping in mind the differences in normalization and y scale)