

Pedigrees and relatedness analysis in R

Zakopane - 23.05.2022 Magnus Dehli Vigeland

Plan

- Lecture
 - Part 1: Genetic relatedness
 - Part 2: Forensic applications

- Workshop:
 - Seesion 1: Pedigree analysis in R
 - Session 2: Forensic case studies

Lecture notes and exercise sets

https://magnusdv.github.io/pedsuite/articles/web only/courses.html

The ped suite

A collection of packages for pedigree analysis in R

Home page: https://magnusdv.github.io/pedsuite/

- Attempt 1
 - being connected through a pedigree
 - having a common ancestor...
 not too far back
- Attempt 2 genetic
 - sharing DNA
 - (more than unrelated people)
- To make this precise, we need some terminology!

IBD and autozygosity

- IBD = Identical by descent
 - identical alleles with a common origin in the given pedigree

autozygous = homozygous + IBD

Inbreeding coefficient f = P(autozygosity)

Coefficient of kinship/inbreeding

Sewall Wright (1889 - 1988)

• Wright (1921): The **kinship coefficient** φ between P and Q

$$\varphi_{P,Q} = P(\text{random allele of P is IBD with random allele of Q})$$

$$= P(\text{ R is autozygous })$$

$$= f_R$$

Inbreeding coefficient of a child = kinship between parents

P and Q related

$$\varphi_{P,Q} > 0$$

Inbreding coefficient: Example

Wright's path formula:

$$\varphi_{P,Q} = \sum_{A} \sum_{n} \left(\frac{1}{2}\right)^{|\nu|+1} (1 + f_A)$$

By hand

In R

- > library(ribd)
- > x = cousinPed(1, child = T)
- > inbreeding(x, ids = 9)

[1] 0.0625

More kinship & inbreeding coefficients

Relationship	Kinship	f (of child)
Parent-child	1/4	1/4
Full siblings	1/4	1/4
Half siblings	1/8	1/8
Grandparent- grandchild	1/8	1/8
Avuncular (uncle/aunt)	1/8	1/8
1st cousins	1/16	1/16
2nd cousins	1/64	1/64
3rd cousins	1/256	1/256


```
> x = nuclearPed(1, sex = 2)
> kinship(x, ids = c(1, 3))
[1] 0.25

> x = addchildren(x, 1, 3, nch = 1)
> inbreeding(x, 4)
[1] 0.25
```

The IBD triangle

Charles Cotterman (1914-1989)

Elisabeth Thompson (1949 -)

IBD coefficients: Warm-up

- Summary so far:
 - Two individuals are related if they can have IBD alleles
 - Their kinship coefficient meassures the amount of IBD sharing
- Natural generalisation:
 - How many alleles are IBD in each locus?

Humans are

IBD coefficients: Definition

Given two (non-inbred) individuals

For a random autosomal locus

$$\kappa_0 = P(0 \text{ alleles IBD})$$

$$\kappa_1 = P(1 \text{ alleles IBD})$$

$$\kappa_2 = P(2 \text{ alleles IBD})$$

• We always have: $\kappa_0 + \kappa_1 + \kappa_2 = 1$

An important identity:
$$\varphi = \frac{1}{4} \kappa_1 + \frac{1}{2} \kappa_2$$

Reminder

 κ -coefficients are only defined for non-inbred individuals. For the whole story, we need 9 coefficients!

Jacquard's identity coefficients

Covered in Chapter 3 of *Pedigree analysis in R*

Albert Jacquard (1925 - 2013)

Realised relatedness

Why are some siblings more alike than others?

Recombination

Rule of thumb: One crossover per chromosome arm

Variation in realised IBD coefficients

- 1000 simulations
- Decode recombination map
- All 22 human autosomes

```
> library(ibdsim2)
> x = nuclearPed(2)
> s = ibdsim(x, N = 1000)
> k = realisedKappa(s, ids = 3:4)
> ribd::showInTriangle(k)
```


Variation depends on the genome

Variation in realised inbreeding

Indistinguishable relationships?

$$\kappa_0 = 0.5$$
 $\kappa_1 = 0.5$
 $\kappa_2 = 0$

$$\kappa_2 = 0$$

Simulated IBD distributions

Conclusion

In theory often distinguishable! In practice quite hard.

The probability of zero IBD

N'th cousins	P(zero IBD)
first	0.0 %
second	0.0 %
third	1.5 %
fourth	28 %
fifth	67 %

Third cousins: Expected fraction of the genome with shared DNA:

$$k_1 = 1/64$$

Two individuals can have a common ancestor without being genetically related

So...what does it mean to be related?

- Pedigree based definition: $\varphi > 0$ <u>potentially</u> having alleles IBD
- Genomic definition (realised relatedness):
 <u>actually</u> having alleles IBD

Questions

Coffee break

Forensic application 1: Missing person identification

Argentina 1976 - 1983

- Military dictatorship
- Dirty war against left-wing guerrillas
- Opponents killed or disappeared
 - counts: 20,000 30,000

- 500 children abducted
 - kidnapped with their parents, or born in captivity
 - parents killed
 - raised by police or military families.

The missing grandchildren

- Grandmothers of Plaza de Mayo
 - formed in 1977
 - weekly marches ever since
- 1984: First grandchild recovered
 - HLA typing + blood groups
- 1989: National genetic data bank

2022: 130 reunifications so far

Missing person cases: Basics

Reference family

DNA-based identification

- Forensic markers
 - autosomal, X, Y, mtDNA
- Simplest with DNA from
 - the missing person
 - parents of the missing

Standard forensic kits

- 15 24 autosomal STRs
- Typically 10 50 alleles
- Mostly unlinked

Argentina: Parents usually unavailable

The likelihood ratio (LR)

$$LR = \frac{P(\text{data} \mid H_1)}{P(\text{data} \mid H_2)}$$

Positive match if LR > 10,000*

Pedigree likelihood - software

Familias

- Egeland, Mostad et al, 2000
- Currently maintained by Daniel Kling

• R/ped suite

- Very flexible
- Great for plotting
- Advanced analysis
- Example: Power analysis

Power in missing person cases

- Two complementary measures of power
 - Inclusion: The probability of recognizing the true MP
 - Exclusion: The probability of excluding an unrelated POI

Note: Computed <u>before</u> POI is genotyped!

Depend on

- Reference individuals
- Reference genotypes
- Number of markers
- Allele frequencies

Inclusion power (IP)

• If POI = MP: Do we have enough data to detect it?

$$IP_{10000} = P(LR > 10,000 \mid POI = MP)$$

Computed by simulations of MP - condititional on the reference

Inclusion power in R

R code

Exclusion power (EP)

• If POI ≠ MP: Probability of mismatch in at least 1 marker?

 $EP = P(\text{exclusion} \mid POI \text{ unrelated})$

• Can be computed exactly!

Egeland, Pinto, Vigeland (2014). A general approach to power calculation for relationship testing

Exclusion power in R

R code

> missingPersonEP(ref, missing = "MP")

Potential mismatches: 8 (D3S1358, D7S820, CSF1PO,

PENTA_D, VWA, TPOX, D19S433, D2S1338)

Expected mismatches: 1.679

P(at least 1 mismatch): 0.863

Power plot

Argentina: Power analysis of 200 unsolved cases

Disaster victim identification (DVI)

High-profile DVI cases

- World Trade Center attack
- Drowned immigrants
- Thailand tsunami

Disaster Victim Identification in R

- Traditional approach/software
 - One victim or family at a time
 - Manual sequential analysis
- Further possibilities in R (dvir)
 - Joint analysis!
- Key functions
 - pairwiseLR()
 - jointDVI()

R code

> library(dvir)
> pm = example2\$pm
> am = example2\$am
> missing = example2\$missing
> jointDVI(pm, am, missing)

	V_1	V_2	V_3	loglik	LR	posterior
1	M_1	M_2	M_3	-16.12	250.00	0.72
2	M_1	M_2	*	-17.73	50.00	0.14
3	*	M_2	M_3	-18.42	25.00	0.07
4	M_1	*	M_3	-20.03	5.00	0.01
5	*	M_1	M_3	-20.03	5.00	0.01
6	*	M_2	*	-20.03	5.00	0.01
7	*	*	M_3	-20.03	5.00	0.01
8	M_1	*	*	-21.64	1.00	0.00
9	*	\mathbf{M}_1	*	-21.64	1.00	0.00
10	*	*	*	-21.64	1.00	0.00

Biased selection of references

Thore

Article Open Access | Published: 01 July 2021

Joint DNA-based disaster victim identification

Magnus D. Vigeland [™] & Thore Egeland

Scientific Reports 11, Article number: 13661 (2021) | Cite this article

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

Mariana

Research paper

Prioritising family members for genotyping in missing person cases: A general approach combining the statistical power of exclusion and inclusion

Daniel

Forensic Science International: Genetics

Volume 31, November 2017, Pages 57-66

Research paper

Evaluating the statistical power of DNA-based identification, exemplified by "The missing grandchildren of Argentina"

Daniel Kling ^a ♀ ⊠, Thore Egeland ^b ⊠, Mariana Herrera Piñero ^c ⊠, Magnus Dehli Vigeland ^d ⊠

Lourdes

