פתרון מטלה – 09 מבוא לטופולוגיה,

2025 ביוני

יהי f,g:X o Y מתקיים f,g:X o Y מתקיים שתי פונקציות לכל מרחב אם לכל מרחב אם ורק אם מסילתית שיר מסילתית אם ורק אם לכל מרחב אולכל מרחב אולכל מחדש האוטופיות.

קיימת מסילה $a,b\in Y$ עבור $f=c_a,g=c_b$ נניח שהמרחב. נניח שהמרחב f,g קשיר מסילתית ונניח שהמרחב f קשיר מסילתית ונניח שהמרחב f קולכן פונקציות קבועות כלשהן. נניח שהמרחב f קשיר מסילתית ונניח עבור f באירה, ולכן זוהי הומוטופיה המעידה f בי f עבור f בי f מהגדרה, ולכן זוהי הומוטופיה המעידה f בי f עבור f בי f ב

נניח שכל שתי פונקציות קבועות כנתון הן הומוטופיות. נניח ש $a,b\in Y$ שתי נקודות כלשהן, אז קיימת $h:I\times X\to Y$ המעידה על הומוטופיה $a,b\in Y$ שתי נניח שכל שתי פונקציות קבועות כנתון הן הומוטופיות. נניח עבור $a,b\in Y$ עבור עבור עבור עבור $\gamma(t)=h(t,x)$ עבור $\gamma:I\to Y$ ונגדיר עבור $\gamma:I\to Y$ ונגדיר עבור עבור מסילה רציפה ולכן $a,b\in Y$ קשירות מסילתית לכל $a,b\in Y$ וניסיק כי זוהי מסילה רציפה ולכן $a,b\in Y$ קשירות מסילתית לכל עבור מסילה רציפה ולכן מסילה ולכ

 $.x \in S^n$ לכל |f(x) - g(x)| < 2ש־כך היחידה מספירת רציפות פונקציות פונקציות קונק $f,g:S^n \to S^n$ יהיו הייו נראה $f \sim g$

הוכחה. נבחין כי לכל $x\in S^n$ נתון ש $x\in S^n$ נתון ש $x\in S^n$. נגדיר $x\in S^n$ נגדיר הוכחה. נבחין כי לכל $x\in S^n$ נתון שי $x\in S^n$ נגדיר $x\in S^n$ נגדיר אם כך את המסילה נוכל לבדוק ולקבל לקבון ולקבל בסתירה לנתון. נגדיר אם כך את המסילה נוכל לבדוק ולקבל $x\in S^n$ נערות מהגדרת המסילה (והיותה קאנונית על $x\in S^n$) נסיק שההעתקה לא המעידה על קשירות מסילתית. ישירות מהגדרת המסילה (והיותה קאנונית על $x\in S^n$) נסיק שההעתקה המסילה המוגדרת על-ידי,

$$h(t,x) = \gamma^x(t)$$

היא העתקה רציפה, וכן,

$$h(0,x) = \gamma^x(t) = \frac{\gamma_0^x(0)}{\|\gamma_0^x(0)\|} = \frac{f(x)}{\|f(x)\|} = f(x)$$

 $x\in S^n$ לכל לכל h(1,x)=g(x) זאת שכן f(x)=f(x) בהתאם. נוכל להראות בהופן זהה שגם לכל ובהכרח בהכרח לכל לכל יש

X יהיו במרחב מסילות מסילות $eta_1,eta_2,\gamma_1,\gamma_2:I o X$ יהיו $eta_1\sim_peta_2$ אז $\gamma_1\sim_p\gamma_2$ וגם $\beta_1*\gamma_1\sim_peta_2*\gamma_2$ אז בראה שאם מתקיים מסילתית.

את הנבחן המסילות $h,k:I\times I\to X$ היפוך המסילות על הנתון בהתאמה. נבחר k^{-1} המוגדרת על־ידי היפוך המסילות המעידות על הנתון באופן דומה $h,k:I\times I\to X$ הומוטופיה המסילתית באופן דומה על המעידה על $l(0,t)=h(0,t)=\beta_1(t)$ באופן באופן דומה באופן דומה באופן דומה באופן באופן באופן באופן באופן באופן דומה באופן באופן

$$l(s,0) = (h * k^{-1})(s,0) = h(s,0) = \beta_1(0)$$

ומהצד השני גם,

$$l(s,1) = k^{-1}(s,1) = k(s,0) = \gamma_1(0) = \beta_1(1)$$

ונבחין אלה ומההומוטופיה. $\beta_1(0)=\beta_2(0), \beta_1(1)=\beta_2(1)$ כי כי ונבחין משוויונות אלה ומההומוטופיה.

'סעיף א

. נוכיח ש־p העתקת כיסוי

הוכחה. נבחין כי p רציפה כרציפה קורדינטה קורדינטה.

 $B((x,y),\delta)\subseteq$ עבור $B((x,y),\delta)$ בדיום ליים על הארגומנט. קיים ליים אבור פון עבור $\theta=\mathrm{Arg}(x,y)$ וכן $r=\sqrt{x^2+y^2}$ נגדיר (גדיר בחין כי $p(U)=B((x,y),\delta)$ אם שכן $B((x,y),\delta)$ בדיום, בחין כי $P(U)=B((x,y),\delta)$ בדיום ליים אבוצה פתוחה, את שכן ליים בחיות מהגדרת $P(U)=B((x,y),\delta)$ בדיום ליים בחיות מהגדרת $P(U)=B((x,y),\delta)$ בדיום בחיות בחיות מהגדרת $P(U)=B((x,y),\delta)$ בחיץ בוצה פתוחה בחיות בחיות ליים בחיות מהגדרת ליים בחיות בחיות מהגדרת בחיות בחיות מהגדרת בחיות בחיות מהגדרת בחיות בחיים ב

$$p^{-1}(B((x,y),\delta)) = \bigcup_{n \in \mathbb{Z}} U_z$$

וקיבלנו כי p היא אכן העתקת כיסוי.

סעיף ב׳

 E^{-1} בכל תת־סעיף נשרטט מסילה מוגדרת ב־ B^{-1} ואת אחת שלה ל

i

$$f: I \to B, \quad f(t) = (0, 2 - t).$$

 $f(B)\subseteq B$ פתרון נצייר את

, כפי שרצינו ונבחין כפי $p(\tilde{f}(0))=(0,2)$ מתקיים $.\tilde{f}(0)=(2,\frac{\pi}{2})$ שרצינו כך להרמה להרמה ונעבור $\tilde{f}(t)=(2-t,\frac{\pi}{2})$

מחישוב ישיר של ההפיכה ל-p. נעבור לשרטוט.

ii

נגדיר,

$$g: I \to B, \quad g(t) = ((1+t)\cos(2\pi t), (1+t)\sin(2\pi t)) = p(1+t, 2\pi t)$$

 $g(I)\subseteq B$ פתרון נשרטט את

, זו הרמה שיר נבחר ולכן ק $\tilde{g}(t) = (1+t, 2\pi + 2\pi t)$ המסילה על־ידי ישיר באופן מוגדרת מוגדרת המסילה

