# SAE24: Projet intégratif

### Partie Internet des Objets et Mobilité

IOM = Internet des objets et mobilité

| Mar 07/06/2022                                                                                 | Mer 08/06/2022                                                    |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| LK2                                                                                            | LK2                                                               |
| SAE24 Projet intégratif - Présentation<br>BUT1 BALT1<br>RT-Amphi 1<br>GIVRON STEPHANE          | SAE24 Projet intégratif - Givro<br>BUTI<br>GIVRON STEPHANE        |
| SAE24 Projet intégratif - Givron<br>BUTI<br>GIVRON STEPHANE                                    | SAE24 Projet intégratif - Bouille<br>BUT1<br>BOUILLET JEAN-MICHEL |
| SAE24 Projet intégratif - Givron<br>BUT1<br>GIVRON STEPHANE                                    | SAE24 Projet intégratif<br>BUT1                                   |
|                                                                                                |                                                                   |
| o<br>SAE24 Projet intégratif<br>BUT1                                                           | SAE24 Projet intégratif - Givro<br>BUTI<br>GIVRON STEPHANE        |
| SAE 25 - Porfolio - LK<br>TD LK<br>RT-Salle 106<br>RT-Salle 107<br>BOLOU-CHIARAVALLI CHRISTINE | o<br>SAE24 Projet intégratif<br>BUT1                              |
| SAE24 Projet intégratif - LK<br>TD_LK                                                          | SAE24 Projet intégratif - Givro<br>BUTI<br>GIVRON STEPHANE        |

Yassine El Hamioui, Thomas Raynaud et Thomas Mirbey

## Sommaire

1. Matériel mis à notre disposition

2. Organisation du projet

4. Outils/Services mis en place

5. Lien entre code Arduino et PHP

6. Mesures de température

7. Sécurisation





## Matériel mis à notre disposition



Borne Wifi Linksys



Carte SD









## Matériel mis à notre disposition



Figure 1 : Topologie physique réalisée

## Organisation du projet



Organisation des jalons



Figure 2 : Image des salons discord



Figure 3 : Surlignement des tâches



Blanc: Commun

Jaune : Thomas Raynaud

Violet: Thomas Mirbey

Bleu : Yassine El Hamioui

Figure 4 : Légendes du schéma

## Organisation du projet





Figure 5 : Page principale du document Notion



#### Jalon 2



Figure 6 : Exemple de page jalon

## Outils/Services mis en place



Figure 7 : Schéma présentant les outils mis en place du le Raspberry Pi

#### > Côté serveur web :



Figure 8 : Informations sur le serveur Apache



Figure 10 : Stockage des informations de l'url dans un fichier texte

#### > Côté Arduino:

```
17: [CH 06] [A4:BE:2B:BF:1B:E3] -61dBm * V ufc-vpn-wpa
.8: [CH 06] [C0:56:27:19:85:21]
.9: [CH 06] [C0:56:27:1A:FE:3F] -82dBm * V dd-wrt
!0: [CH 06] [C0:56:27:19:B3:F2] -51dBm * V binome_2
!1: [CH 06] [C0:56:27:19:84:DC]
                               -52dBm * V binome 3
!2: [CH 06] [C0:56:27:19:B3:EF]
                                -48dBm * V trinome 1
!3: [CH 06] [00:1E:E5:56:F8:7A] -74dBm * V binome 12
!4: [CH 06] [C0:56:27:19:B3:B0] -60dBm * V binome B
!5: [CH 06] [00:1C:10:A4:51:04] -65dBm * V dd-wrt
!6: [CH 06] [00:1C:10:A4:44:E9] -81dBm * V binome 10
!7: [CH 06] [00:22:6B:48:98:7F] -77dBm * V binome 9
!8: [CH 06] [C0:56:27:19:86:A4] -87dBm * V binome 14
!9: [CH 06] [C0:56:27:19:B3:CE] -75dBm * V binome_10
   [CH 01] [A4:BE:2B:BF:F9:A9] -77dBm * V ufc-wifi-invites
II. ICH 181 [F6:0F:FF:09:21:C2] L63dBm * V la sainte connevion interne
```

Figure 11 : résultat de wifiScan.ino



Figure 12 : résultat de wifiClientBasique.ino

#### > Côté Arduino:

```
tp@rt:-/Bureau$ cat exemple3.txt
temp= 24.56,num= 3,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 4,mac= E8:DB:84:95:DF:49
temp= 24.56,num= 5,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 6,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 7,mac= E8:DB:84:95:DF:49
```

Figure 13: Stockage dans un fichier texte

```
[HTTPS] GET...
[HTTPS] GET... code: 200
<!DOCTYPE html>
<html lang="fr">
<head>
        <title>Echo PHP</title>
 <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <body>
    Adresse MAC comprise
       La temperature correspondante a la requete 1 est de 32, la mac source est E8:DB:84:95:DF:49
    </body>
</html>
Wait 10s before next round...
ESP Board MAC Address: E8:DB:84:95:DF:49[HTTPS] begin...
[HTTPS] GET...
[HTTPS] GET... code: 200
<!DOCTYPE html>
<html lang="fr">
<head>
        <title>Echo PHP</title>
 <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
    <body>
    Adresse MAC comprise
       La temperature correspondante a la requete 2 est de 32, la mac source est E8:DB:84:95:DF:49
    </body>
</html>
Wait 10s before next round...
```

#### > Côté Arduino :



Figure 15 : Schéma du montage du capteur de température



Figure 16 : Montage physique réalisé

```
+String(temp)+
```

Figure 17 : Conversion de la température en chaîne de caractères

```
tp@rt:-/Bureau$ cat exemple3.txt
temp= 24.56,num= 3,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 4,mac= E8:DB:84:95:DF:49
temp= 24.56,num= 5,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 6,mac= E8:DB:84:95:DF:49
temp= 24.63,num= 7,mac= E8:DB:84:95:DF:49
```

Figure 18 : Fichier stockant les températures

## Sécurisation

- Sécurisation dans le domaine de l'IOM
- Interception de données, sécurisation appareils
- HTTPS et l'URL?
- Wireshark:
- Man In The Middle
- POST <= GFT</li>
- Injection SQL
- Restriction réseau



Figure 19 : Capture Wireshark d'une requête HTTPS



Figure 20 : Détail de l'URL de la requête HTTPS

RT2-Connecter Niveau 1

RT3-Programmer Niveau 1

## Conclusion

- Premiers pas dans l'IOM
- Robot Arduino et dongue USB
- Valider des acquis dans des ressources
- Problèmes rencontrés ?
- Situation imprévue : Buster -> contourner le problème
- Bonne méthodologie dans le découpage de tâches
- Conservation des traces

- Chercher par nous même
- Entraide
- Future?

