Синтаксический анализ графов через умножение матриц

В рамках проекта лаборатории JetBrains

Автор: Рустам Шухратуллович Азимов, 646 группа Научный руководитель: к.ф.-м.н., доцент С.В. Григорьев Рецензент: преподаватель, научный координатор Академии Або и Центра Компьютерных Наук TUCS М.Л. Бараш

Санкт-Петербургский Государственный Университет Кафедра системного программирования

28 марта 2018г.

Синтаксический анализ графов

- Вход:
 - Ориентированный граф D = (V,E) с метками на ребрах из алфавита Σ
 - КС-грамматика (запрос к графу) $G = (\Sigma, N, P)$ над тем же алфавитом
- Выход для реляционной семантики запросов:
 - Множество всех троек (A, m, n), где существует путь из вершины m в вершину n, метки на ребрах которого образуют строку, выводимую из нетерминала A
- Выход для single-path семантики запросов:
 - lacktriangle Дополнительно предоставить один такой путь для каждой тройки (A,m,n)

Пример

 $0: S \rightarrow subClassOf^{-1} S subClassOf$

1: $S \rightarrow type^{-1} S type$

 $2: S \rightarrow subClassOf^{-1} subClassOf$

 $3: S \rightarrow type^{-1} type$

Рис.: Пример входной грамматики

Рис.: Пример входного графа

Применимость

- Запросы к графовым базам данных
- Анализ RDF файлов
- Биоинформатика
- Статический анализ программ

Существующие алгоритмы

- Реляционная семантика запросов
 - ▶ Основанный на СҮК (J. Hellings, 2014)
 - ▶ Тот же алгоритм, реализованный для анализа RDF файлов (X. Zhang, Z. Feng, X. Wang et al., 2016)
- Single-path семантика запросов
 - Основанный на методе динамического программирования (J. Hellings, 2015)
 - ▶ Основанный на GLL (Григорьев Семен, Рогозина Анастасия, 2016)

Проблемы

- Низкая производительность на больших графах
- Существующие алгоритмы не позволяют эффективно применить такие техники, как вычисление на графическом процессоре, параллельное вычисление
- Возможность создания матричного алгоритма синтаксического анализа графов является открытой проблемой

Постановка задачи

Цель: Разработать эффективный матричный алгоритм синтаксического анализа графов **Задачи**:

- Разработать матричный алгоритм синтаксического анализа графов для реляционной семантики запросов
- Разработать матричный алгоритм синтаксического анализа графов для single-path семантики запросов
- Показать практическую применимость предложенных алгоритмов на общепринятом наборе данных

Результаты

- Предложены алгоритмы синтаксического анализа графов, вычисляющие матричное транзитивное замыкание
- Доказана корректность предложенных алгоритмов
- Алгоритмы реализованы с использованием комбинаций таких оптимизаций, как:
 - Разреженное представление матриц
 - ▶ Умножение матриц на графическом процессоре
 - Параллельное умножение матриц
- Проведена апробация на общепринятом наборе RDF файлов

Пример работы алгоритма

 $0: S \rightarrow subClassOf^{-1} S subClassOf$

 $1: S \rightarrow type^{-1} S type$

 $2: S \rightarrow subClassOf^{-1} subClassOf$

 $3: S \rightarrow type^{-1} type$

Рис.: Пример входной грамматики

Рис.: Пример входного графа

Пример: Грамматика в нормальной форме

Рис.: Входная грамматика в нормальной форме Хомского

Пример: Начальная матрица и первая итерация

$$\mathcal{T}_0 = \begin{pmatrix} \{S_1\} & \{S_3\} & \varnothing \\ \varnothing & \varnothing & \{S_3\} \\ \{S_2\} & \varnothing & \{S_4\} \end{pmatrix}$$

Рис.: Начальная матрица

$$T_{0} \cdot T_{0} = \begin{pmatrix} \varnothing & \varnothing & \varnothing \\ \varnothing & \varnothing & \{S\} \\ \varnothing & \varnothing & \varnothing \end{pmatrix}$$

$$T_{1} = T_{0} \cup (T_{0} \cdot T_{0}) = \begin{pmatrix} \{S_{1}\} & \{S_{3}\} & \varnothing \\ \varnothing & \varnothing & \{S_{3}, S\} \\ \{S_{0}\} & \varnothing & \{S_{4}\} \end{pmatrix}$$

Пример: Остальные итерации

$$T_2 = egin{pmatrix} \{S_1\} & \{S_3\} & \varnothing \ \{S_5\} & \varnothing & \{S_3, S, S_6\} \ \{S_2\} & \varnothing & \{S_4\} \end{pmatrix}$$
 $T_3 = egin{pmatrix} \{S_1\} & \{S_3\} & \{S_1\} \ \{S_5\} & \varnothing & \{S_3, S, S_6\} \ \{S_2\} & \varnothing & \{S_4\} \end{pmatrix}$
 $T_4 = egin{pmatrix} \{S_1, S_5\} & \{S_3\} & \{S, S_6\} \ \{S_2\} & \varnothing & \{S_4\} \end{pmatrix}$
 $T_5 = egin{pmatrix} \{S_1, S_5, S_1\} & \{S_3\} & \{S, S_6\} \ \{S_2\} & \varnothing & \{S_3, S, S_6\} \ \{S_2\} & \varnothing & \{S_4\} \end{pmatrix}$

Пример: Результирующие отношения по матрице $T_6=T_5$

$$R_{S} = \{(0,0), (0,2), (1,2)\},\$$

$$R_{S_{1}} = \{(0,0)\},\$$

$$R_{S_{2}} = \{(2,0)\},\$$

$$R_{S_{3}} = \{(0,1), (1,2)\},\$$

$$R_{S_{4}} = \{(2,2)\},\$$

$$R_{S_{5}} = \{(0,0), (1,0)\},\$$

$$R_{S_{6}} = \{(0,2), (1,2)\}.$$

Рис.: Результирующие КС-отношения

Апробация: Запрос 1

```
\begin{array}{lll} 0: & S & \rightarrow & subClassOf^{-1} \ S \ subClassOf \\ 1: & S & \rightarrow & type^{-1} \ S \ type \\ 2: & S & \rightarrow & subClassOf^{-1} \ subClassOf \\ 3: & S & \rightarrow & type^{-1} \ type \end{array}
```

Рис.: Грамматика для запроса 1

Апробация: результаты для запроса 1

Ontology	edgs	result	GLL	dGPU	sCPU	sGPU
skos	252	810	10	56	14	12
generations	273	2164	19	62	20	13
travel	277	2499	24	69	22	30
univ-bench	293	2540	25	81	25	15
atom-primitive	425	15454	255	190	92	22
biomedical	459	15156	261	266	113	20
foaf	631	4118	39	154	48	9
people-pets	640	9472	89	392	142	32
funding	1086	17634	212	1410	447	36
wine	1839	66572	819	2047	797	54
pizza	1980	56195	697	1104	430	24
g ₁	8688	141072	1926	_	26957	82
g ₂	14712	532576	6246	_	46809	185
g 3	15840	449560	7014	_	24967	127

Апробация: Запрос 2

```
\begin{array}{lll} 0: & S & \rightarrow & B \; subClassOf \\ 1: & S & \rightarrow & subClassOf \\ 2: & B & \rightarrow & subClassOf^{-1} \; B \; subClassOf \\ 3: & B & \rightarrow & subClassOf^{-1} \; subClassOf \end{array}
```

Рис.: Грамматика для запроса 2

Апробация: результаты для запроса 2

Ontology	edgs	result	GLL	dGPU	sCPU	sGPU
skos	252	1	1	10	2	1
generations	273	0	1	9	2	0
travel	277	63	1	31	7	10
univ-bench	293	81	11	55	15	9
atom-primitive	425	122	66	36	9	2
biomedical	459	2871	45	276	91	24
foaf	631	10	2	53	14	3
people-pets	640	37	3	144	38	6
funding	1086	1158	23	1246	344	27
wine	1839	133	8	722	179	6
pizza	1980	1262	29	943	258	23
g ₁	8688	9264	167	_	21115	38
g ₂	14712	1064	46	_	10874	21
g 3	15840	10096	393	_	15736	40

Результаты

- Разработан матричный алгоритм синтаксического анализа графов для реляционной семантики запросов
- Разработан матричный алгоритм синтаксического анализа графов для single-path семантики запросов
- Показана практическая применимость предложенных алгоритмов на общепринятом наборе данных