PROGRAMA M_pedagogic

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

COMPETENȚE DE EVALUAT ȘI CONȚINUTURI

CLASA a IX-a - 2 ore/săpt. (TC)

Competențe specifice

- 1. Identificarea în limbaj cotidian sau în probleme a unor noțiuni specifice logicii matematice și/sau a teoriei mulțimilor
- **2. Transcrierea** unui enunț în limbajul logicii matematice sau al teoriei mulțimilor
- 3. Utilizarea reprezentărilor grafice (diagrame, reprezentari pe axă), a tabelelor de adevăr, pentru efectuarea unor operații
- **4. Explicitarea** caracteristicilor unor mulțimi folosind limbajul logicii matematice
- **5. Redactarea** rezolvării unor probleme, corelând limbajul uzual cu cel al logicii matematice și/sau al teoriei mulțimilor
- **6. Transpunerea** unei situații cotidiene în limbaj matematic, rezolvarea problemei obținute și interpretarea rezultatului
- **1. Recunoașterea** unor corespondențe care sunt șiruri, progresii aritmetice sau geometrice
- **2. Reprezentarea** în diverse moduri a unor corespondențe, șiruri în scopul caracterizării acestora
- **3. Identificarea** unor formule de recurență pe bază de raționamente de tip inductiv
- **4. Exprimarea** caracteristicilor unor șiruri folosind diverse reprezentări (formule, diagrame, grafice)
- **5. Deducerea** unor proprietăți ale șirurilor folosind diferite reprezentări sau raționamente de tip inductiv
- **6. Asocierea** unei situații-problemă cu un model matematic de tip şir, progresie aritmetică sau geometrică
- **1. Identificarea** valorilor unei funcții folosind reprezentarea grafică a acesteia
- **2. Identificarea** unor puncte semnificative de pe graficul unei funcții
- **3. Folosirea** unor proprietăți ale funcțiilor pentru completarea graficului unei funcții pare, impare sau periodice
- **4. Exprimarea** proprietăților unor funcții pe baza lecturii grafice
- **5. Reprezentarea** graficului prin puncte și aproximarea acestuia printr-o curbă continuă
- 6. **Deducerea** unor proprietăți ale funcțiilor numerice prin lectură grafică

Conținuturi

Mulțimi și elemente de logică matematică

- Mulţimea numerelor reale: operaţii algebrice cu numere reale, ordonarea numerelor reale, modulul unui număr real, aproximări prin lipsă sau prin adaos; operaţii cu intervale de numere reale
- Propoziție, predicat, cuantificatori
- Operații logice elementare (negație, conjuncție, disjuncție, implicație, echivalență), corelate cu operațiile și cu relațiile dintre mulțimi (complementară, intersecție, reuniune, incluziune, egalitate)

Şiruri

 Modalități de a descrie un şir; şiruri particulare: progresii aritmetice, progresii geometrice, determinarea termenului general al unei progresii; suma primilor n termeni ai unei progresii

Funcții; lecturi grafice

- Reper cartezian, produs cartezian, reprezentarea prin puncte a unui produs cartezian de mulțimi numerice; condiții algebrice pentru puncte aflate în cadrane; drepte în plan de forma x = m sau de forma y = m, $m \in \mathbb{R}$
- Funcția: definiție, exemple, exemple de corespondențe care nu sunt funcții, modalități de a descrie o funcție, lectură grafică; egalitatea a două funcții, imaginea unei funcții, graficul unei funcții
- Funcții numerice $f: I \to \mathbb{R}$, I interval de numere reale; graficul unei funcții, reprezentarea geometrică a graficului, intersecția graficului cu axele de coordonate, interpretarea grafică a unor ecuații de forma f(x) = g(x); proprietăți ale funcțiilor numerice introduse prin lectură grafică:

1. Recunoașterea funcției de gradul I descrisă în moduri diferite

- 2. Identificarea unor metode grafice pentru rezolvarea ecuațiilor, inecuațiilor, sistemelor de ecuatii
- **3. Descrierea** unor proprietăți desprinse din rezolvarea ecuațiilor, inecuațiilor, sistemelor de ecuații și din reprezentarea grafică a funcției de gradul I
- **4. Exprimarea** în limbaj matematic a unor situații concrete ce se pot descrie prin funcții de gradul I, ecuații, inecuații sau sisteme de ecuații
- **5. Interpretarea** cu ajutorul proporționalității a condițiilor pentru ca diverse date să fie caracterizate cu ajutorul unei funcții de gradul I
- **6. Rezolvarea** cu ajutorul funcțiilor a unei situații-problemă și interpretarea rezultatului
- **1. Diferențierea** variației liniare/pătratice prin exemple
- **2. Completarea** unor tabele de valori necesare pentru trasarea graficului
- **3. Aplicarea** unor algoritmi pentru trasarea graficului (trasarea prin puncte semnificative)
- **4. Exprimarea** proprietăților unei funcții prin condiții algebrice sau geometrice
- **5. Utilizarea** relațiilor lui Viète pentru caracterizarea soluțiilor și rezolvarea unor sisteme
- **6. Identificarea** unor metode grafice de rezolvare a ecuațiilor sau a sistemelor de ecuații
- **1. Recunoașterea** corespondenței dintre seturi de date și reprezentări grafice
- **2. Reprezentarea** grafică a unor date diverse în vederea comparării variației lor
- **3. Utilizarea** lecturii grafice pentru rezolvarea de ecuații, inecuații și sisteme de ecuații
- **4. Exprimarea** prin reprezentări grafice a unor condiții algebrice; exprimarea prin condiții algebrice a unor reprezentări grafice
- **5. Interpretarea** unei configurații din perspectiva poziției relative a unei drepte față de o parabolă
- **6. Utilizarea** lecturilor grafice în vederea optimizării rezolvării unor probleme practice
- **1. Identificarea** unor elemente de geometrie vectorială în diferite contexte
- 2. Utilizarea rețelelor de pătrate pentru determinarea caracteristicilor unor segmente orientate pe configurații date
- **3. Efectuarea** de operații cu vectori pe configurații geometrice date
- **4. Utilizarea** limbajului calculului vectorial pentru a descrie anumite configurații geometrice

mărginire, monotonie, paritate/imparitate (simetria graficului față de axa *Oy* sau față de origine), periodicitate

Funcția de gradul I

- Definiție; reprezentarea grafică a funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b, unde $a, b \in \mathbb{R}$, intersecția graficului cu axele de coordonate, ecuația f(x) = 0
- Interpretarea grafică a proprietăților algebrice ale funcției: monotonie, semnul funcției
- Inecuații de forma $ax+b \le 0, (<,>,\ge), a, b \in \mathbb{R}$ studiate pe \mathbb{R}
- Poziția relativă a două drepte; sisteme de tipul $\begin{cases} ax + by = c \\ mx + ny = p \end{cases}, \ a, b, c, m, n, p \in \mathbb{R}$

Funcția de gradul al II-lea

- Reprezentarea grafică a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^2 + bx + c$, $a,b,c \in \mathbb{R}$, $a \ne 0$, intersecția graficului cu axele de coordonate, ecuația f(x) = 0, simetria față de drepte de forma x = m, cu $m \in \mathbb{R}$
- Relațiile lui Viète, rezolvarea sistemelor de forma $\begin{cases} x + y = s \\ xy = p \end{cases}$, cu $s, p \in \mathbb{R}$

Interpretarea geometrică a proprietăților algebrice ale funcției de gradul al II-lea

- Monotonie; punct de extrem, vârful parabolei, interpretare geometrică
- Poziționarea parabolei față de axa Ox, semnul funcției, inecuații de forma $ax^2 + bx + c \le 0$ $(\ge,<,>)$, cu $a,b,c \in \mathbb{R}$, $a \ne 0$, interpretare geometrică
- Poziția relativă a unei drepte față de o parabolă: rezolvarea sistemelor de forma $\begin{cases} mx + n = y \\ ax^2 + bx + c = y \end{cases},$ $a,b,c,m,n \in \mathbb{R}$, interpretare geometrică

Vectori în plan

- Segment orientat, vectori, vectori coliniari
- Operații cu vectori: adunarea (regula triunghiului, regula paralelogramului), proprietăți ale operației de adunare, înmulțirea cu un scalar, proprietăți ale înmulțirii cu un scalar, condiția de coliniaritate, descompunerea după doi vectori necoliniari

- **5. Identificarea** condițiilor necesare pentru efectuarea operațiilor cu vectori
- **6. Aplicarea** calculului vectorial în descrierea proprietăților unor configurații geometrice date
- 1. Descrierea sintetică sau vectorială a proprietăților unor configurații geometrice în plan
- **2. Reprezentarea** prin intermediul vectorilor a unei configurații geometrice plane date
- **3. Utilizarea** calcului vectorial sau a metodelor sintetice în rezolvarea unor probleme de geometrie metrică
- **4. Trecerea** de la caracterizarea sintetică la cea vectorială (și invers) a unei configurații geometrice date
- **5. Determinarea** condițiilor necesare pentru coliniaritate, concurență sau paralelism
- **6. Analizarea** comparativă a rezolvărilor vectorială și sintetică ale aceleiași probleme
- **1. Identificarea** elementelor necesare pentru calcularea unor lungimi de segmente și a unor măsuri de unghiuri
- **2. Utilizarea** unor tabele și a unor formule pentru calcule în trigonometrie și în geometrie
- 3. Aplicarea teoremelor și a formulelor pentru determinarea unor măsuri (lungimi sau unghiuri)
- **4. Transpunerea** într-un limbaj specific trigonometriei şi/sau geometriei a unor probleme practice
- **5. Utilizarea** unor elemente de trigonometrie în rezolvarea triunghiului dreptunghic/oarecare
- **6. Analizarea** și **interpretarea** rezultatelor obținute prin rezolvarea unor probleme practice

Coliniaritate, concurență, paralelism – calcul vectorial în geometria plană

- Vectorul de poziție a unui punct
- Vectorul de poziție a punctului care împarte un segment într-un raport dat, teorema lui Thales (condiții de paralelism)
- Vectorul de poziție a centrului de greutate al unui triunghi (concurența medianelor unui triunghi)

Aplicatii ale trigonometriei în geometrie

- Rezolvarea triunghiului dreptunghic
- Formulele (fără demonstrație): $cos(180^{\circ} - x) = -cos x$; $sin(180^{\circ} - x) = sin x$
- Modalități de calcul a lungimii unui segment și a măsurii unui unghi: teorema sinusurilor și teorema cosinusului

CLASA a X-a - 2ore/săpt. (TC)

Competente specifice

- 1. Identificarea caracteristicilor tipurilor de numere utilizate în algebră și a formei de scriere a unui număr real în contexte variate
- **2. Compararea** și **ordonarea** numerelor reale utilizând metode variate
- **3. Aplicarea** unor algoritmi specifici calculului cu puteri, radicali și logaritmi în contexte variate
- **4. Alegerea** formei de reprezentare a unui număr real pentru optimizarea calculelor
- **5. Alegerea** strategiilor de rezolvare în vederea optimizării calculelor
- **6. Analizarea** validității unor afirmații prin utilizarea aproximărilor, a proprietăților sau a regulilor de calcul
- **1. Exprimarea** relațiilor de tip funcțional în diverse moduri
- 2. **Prelucrarea** informațiilor ilustrate prin graficul unei funcții în scopul deducerii unor proprietăți algebrice ale acesteia (monotonie, bijectivitate, semn, convexitate)
- **3. Utilizarea** de proprietăți ale funcțiilor în calcule și aproximări, prin metode diverse

Conținuturi

Numere reale

- Numere reale: proprietăți ale puterilor cu exponent rațional, irațional și real ale unui număr pozitiv nenul, aproximări raționale pentru numere reale
- Radical dintr-un număr (ordin 2 sau ordin 3), proprietăți ale radicalilor
- Noțiunea de logaritm, proprietăți ale logaritmilor, calcule cu logaritmi, operația de logaritmare

Funcții și ecuații

• Funcția putere: $f: \mathbb{R} \to D$, $f(x) = x^n$, $n \in \mathbb{N}$, $n \ge 2$ și funcția radical: $f: D \to \mathbb{R}$, $f(x) = \sqrt[n]{x}$, $n = \overline{2,3}$, unde $D = [0,+\infty)$ pentru n par și $D = \mathbb{R}$ pentru n impar

- **4. Exprimarea** în limbaj matematic a unor situații concrete ce se pot descrie printr-o funcție de o variabilă
- **5. Interpretarea** unor probleme de calcul în vederea optimizării rezultatului
- **6. Utilizarea** echivalenței dintre bijectivitate și inversabilitate în trasarea unor grafice și în rezolvarea unor ecuații

Notă: Pentru toate tipurile de funcții se vor studia: intersecția cu axele de coordonate, ecuația f(x)=0, reprezentarea grafică prin puncte, simetrie, lectura grafică a proprietăților algebrice ale funcțiilor: monotonie, bijectivitate, inversabilitate, semn, convexitate

- **1. Recunoașterea** unor date de tip probabilistic sau statistic în situații concrete
- **2. Interpretarea** primară a datelor statistice sau probabilistice cu ajutorul calculului financiar, al graficelor si al diagramelor
- **3. Utilizarea** unor algoritmi specifici calculului financiar, statisticii sau probabilităților pentru analiza de caz
- **4. Transpunerea** în limbaj matematic prin mijloace statistice sau probabilistice a unor probleme practice
- **5. Analizarea** și **interpretarea** unor situații practice cu ajutorul conceptelor statistice sau probabilistice
- 6. Corelarea datelor statistice sau probabilistice în scopul predicției comportării unui sistem prin analogie cu modul de comportare în situații studiate
- **1. Descrierea** unor configurații geometrice analitic sau utilizând vectori
- **2. Descrierea** analitică, sintetică sau vectorială a relațiilor de paralelism și de perpendicularitate
- 3. Utilizarea informațiilor oferite de o configurație geometrică pentru deducerea unor proprietăți ale acesteia si calcularea unor distante si a unor arii
- **4. Exprimarea** analitică, sintetică sau vectorială a caracteristicilor matematice ale unei configurații geometrice
- **5. Interpretarea** perpendicularității în relație cu paralelismul și minimul distanței
- **6. Modelarea** unor configurații geometrice analitic, sintetic sau vectorial

- Funcția exponențială $f: \mathbb{R} \to (0, +\infty)$, $f(x) = a^x$, $a \in (0, +\infty)$, $a \neq 1$ și funcția logaritmică $f: (0, +\infty) \to \mathbb{R}$, $f(x) = \log_a x$, $a \in (0, +\infty)$
- Rezolvări de ecuații folosind proprietățile funcțiilor:
 - Ecuații care conțin radicali de ordinul 2 sau de ordinul 3
 - Ecuații exponențiale, ecuații logaritmice, utilizarea unor substituții care conduc la rezolvarea unor ecuații algebrice

Matematici financiare

- Probleme de numărare: permutări, aranjamente, combinări
- Elemente de calcul financiar: procente, dobânzi, TVA
- Culegerea, clasificarea şi prelucrarea datelor statistice: date statistice, reprezentarea grafică a datelor statistice. Interpretarea datelor statistice
- Evenimente aleatoare egal probabile, operații cu evenimente, probabilitatea unui eveniment compus din evenimente egal probabile

Notă: Aplicațiile vor fi din domeniul financiar: profit, calcularea prețului de cost al unui produs, amortizări de investiții, tipuri de credite, metode de finanțare, buget personal, buget familial.

Geometrie

- Reper cartezian în plan, coordonatele unui vector în plan; coordonatele sumei vectoriale, coordonatele produsului dintre un vector şi un număr real coordonate carteziene ale unui punct din plan, distanţa dintre două puncte în plan
- Ecuații ale dreptei în plan determinată de un punct şi de o direcție dată şi ale dreptei determinată de două puncte distincte date
- Condiții de paralelism, condiții de perpendicularitate a două drepte din plan, calcularea unor distanțe și a unor arii

CLASA a XI-a -1 oră/săpt. (TC)

Competențe specifice

- 1. Recunoașterea și diferențierea mulțimilor de numere și a structurilor algebrice
- **2. Identificarea** unei structuri algebrice prin verificarea proprietăților acesteia
- **3. Compararea** proprietăților algebrice sau aritmetice ale operațiilor definite pe diverse mulțimi în scopul identificării unor algoritmi
- **4. Exprimarea** proprietăților mulțimilor înzestrate cu operații prin identificarea organizării

Conținuturi

Structuri algebrice

- Legi de compoziție, proprietăți
- Structuri algebrice: monoid, grup, inel, corp. Exemple: mulțimile $\mathbb{N}, \mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}, \mathbb{R}$

structurale a acestora

5. Utilizarea similarității operațiilor definite pe mulțimi diferite în deducerea unor proprietăți algebrice

CLASA a XII-a - 1 oră/săpt. (TC)

	Competențe specifice	Conținuturi
1.	Identificarea unor situații practice concrete, care necesită asocierea unui tabel de date cu reprezentarea sa matriceală	Elemente de calcul matriceal și sisteme de ecuații liniare
3.	Asocierea unui tabel de date cu reprezentarea matriceală a unui proces	 Matrice Tabel de tip matriceal. Matrice, mulțimi de matrice Operații cu matrice: adunarea, înmulțirea, înmulțirea unei matrice cu un scalar, proprietăți
5.	diferite de rezolvare și compararea acestor metode Stabilirea compatibilității unor sisteme liniare și identificarea unor metode adecvate de rezolvare	 Determinanți Determinantul unei matrice pătratice de ordin cel mult 3, proprietăți Sisteme de ecuații liniare
	a acestora	 Matrice inversabile din M_n(ℝ), n = 2,3. Ecuații matriceale Sisteme de ecuații liniare cu cel mult 3 necunoscute; forma matriceală a unui sistem liniar Metoda Cramer de rezolvare a sistemelor liniare Aplicații: ecuația unei drepte determinate de două puncte distincte, aria unui triunghi și caracterizarea coliniarității a trei puncte în plan