Continued fractions using a Laguerre digraph interpretation of the Foata–Zeilberger bijection and its variants

Bishal Deb (he/him)

Sorbonne Université and Université Paris-Cité, CNRS, LPSM

April 16, 2024 Institut Camille Jordan

arxiv: 2304.14487

Structure

- Ontinued fractions and enumerative combinatorics
 - Classical continued fractions
 - Sokal-Zeng's results for factorials
 - 3 D.-Sokal's results for Genocchi and median Genocchi numbers
 - Onjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - Poata-Zeilberger bijection
- What's new
 - Laguerre digraphs
 - New interpretation of the FZ bijection
- The story continues ...

Structure

- Continued fractions and enumerative combinatorics
 - Classical continued fractions
 - Sokal-Zeng's results for factorials
 - 3 D.-Sokal's results for Genocchi and median Genocchi numbers
 - Conjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - Poata-Zeilberger bijection
- What's new
 - Laguerre digraphs
 - New interpretation of the FZ bijection
- The story continues . . .

Continued fractions for ogf

Given sequence $(a_n)_{n\geq 0}$

Continued fractions for ogf

Given sequence $(a_n)_{n\geq 0}$

want to write

$$\sum_{n=0}^{\infty} a_n t^n = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \ddots}}}$$

Continued fractions for ogf

Given sequence $(a_n)_{n\geq 0}$

want to write

$$\sum_{n=0}^{\infty} a_n t^n = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \ddots}}}$$

Stieltjes-type continued fractions (S-fractions)

An example

$$\sum_{i=0}^{\infty} n!t^{n} = \frac{1}{1 - \frac{1 \cdot t}{1 - \frac{1 \cdot t}{1 - \frac{2 \cdot t}{1 - \frac{2 \cdot t}{1 - \frac{3 \cdot t}{1 - \dots}}}}}}$$

This line of thought goes back to Euler

DIVERGENTIBVS. 225

\$. 22. Quemadmodum autem huiusmodi fractionmocromoturum valor fit invettigandus, alibi oftendi: Scilicet cum fingulorum denominatorum patres integrae fint variates, foli numeratores in computum veniunt; fit ergo x=1, atque invettigatio fimmae A fequenti modo infituetur:

num.1, 1, 2, 2, 3, 3, 4, 4, 5, 5, etc:

Fractiones nimirum hic exhibitae continuo propius ad verum valorem ipfius A accedunt, et quidem alternatim eo funt maiores et minores; ita vt fit:

Tom. V. Nou. Com.

.

A>

Euler (1760)

Jacobi-type continued fractions

$$\frac{1}{1-\gamma_0 t - \frac{\beta_1 t^2}{1-\gamma_1 t - \frac{\beta_2 t^2}{1-\cdots}}}$$

J-fractions in short

J-fraction for n!

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\gamma_n = 2n + 1$$
$$\beta_n = n^2$$

Sokal–Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\gamma_n = 2n + 1$$

$$\beta_n = n^2$$

Sokal–Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\gamma_n = 2n+1
\beta_n = n^2$$

Instead consider

$$\gamma_0 = w_0
\gamma_n = [x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + w_n
\beta_n = [x_1 + (n-1)u_1] [y_1 + (n-1)v_1]$$

Sokal–Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \cdots}}}$$

where

$$\beta_n = n^2$$

Instead consider

$$\gamma_0 = w_0
\gamma_n = [x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + w_n
\beta_n = [x_1 + (n-1)u_1] [y_1 + (n-1)v_1]$$

Question

Find the 10 permutation statistics $x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w_0, (w_n)_{n\geq 1}$

"First" (Cycles not counted)	"Second" (Cycles counted)
· ····································	(Second (Second Seconds)
	Conjecture: J-fraction with 10-statistics
J-fraction with 10-statistics	

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics p,q -generalisation: J-fraction with 18 statistics	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics ↑ p, q-generalisation: J-fraction with 15 statistics

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics ↑ p, q-generalisation: J-fraction with 18 statistics ↑	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics ↑ p, q-generalisation: J-fraction with 15 statistics ↑

"First" (Cycles not counted) **J-fraction** with 10-statistics p, q-generalisation: J-fraction with 18 statistics Master J-fraction: four infinite 2-parameter families one infinite 1-parameter family

"Second" (Cycles counted)

Conjecture: J-fraction with 10-statistics

J-fraction with 9-statistics

↑ gonoralisatio

p,q-generalisation:

J-fraction with 15 statistics

Master J-fraction:

three infinite 2-parameter families two infinite 1-parameter family and one statistic for counting cycles

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics p, q-generalisation: J-fraction with 18 statistics Master J-fraction: four infinite 2-parameter families one infinite 1-parameter family	Conjecture: J-fraction with 10-statistics J-fraction with 9-statistics p, q-generalisation: J-fraction with 15 statistics Master J-fraction: three infinite 2-parameter families two infinite 1-parameter family and one statistic for counting cycles
Proof: Foata–Zeilberger bijection (1990)	Proof: Biane bijection (1993)

At around the same time, Blitvić-Steingrímsson (2021) independently came up with a 14-variable continued fraction

At around the same time, Blitvić–Steingrímsson (2021) independently came up with a 14-variable continued fraction

They later discovered that Randrianarivony (1998) had a 17-variable continued fraction.

Results and conjecture for factorials

Cycle classification

For a permutation σ , compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

Cycle classification

For a permutation σ , compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

- cycle valley $\sigma^{-1}(i) > i < \sigma(i)$
- cycle peaks $\sigma^{-1}(i) < i > \sigma(i)$
- cycle double rise $\sigma^{-1}(i) < i < \sigma(i)$
- cycle double fall $\sigma^{-1}(i) > i > \sigma(i)$
- fixed point $i = \sigma(i) = \sigma^{-1}(i)$

Consider σ as $\sigma(1)\sigma(2)\ldots\sigma(n)$:

Consider σ as $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima

Consider σ as $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima

Each i is one of the following four types:

Consider σ as $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima

Each i is one of the following four types:

- rar record-antirecord
- erec exclusive record
- earec exclusive antirecord
- nrar neither record-antirecord

Consider σ as $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima

Each i is one of the following four types:

- rar record-antirecord
- erec exclusive record
- earec exclusive antirecord
- nrar neither record-antirecord

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

	cpeak	cval	cdrise	cdfall	fix
erec		ereccval	ereccdrise		
earec	eareccpeak			eareccdfall	
rar					rar
nrar	nrcpeak	nrcval	nrcdrise	nrcdfall	nrfix

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ &u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} &\times \\ &u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) t^n}{1 - z \cdot t - \frac{1}{1 - (x_2 + y_2 + w) \cdot t - \frac{(x_1 + u_1)(y_1 + v_1) \cdot t^2}{1 - ((x_2 + u_2) + (y_2 + v_2) + w) \cdot t - \frac{(x_1 + 2u_1)(y_1 + 2v_1) \cdot t^2}{1 - \ddots}}$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} &\times \\ &u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) t^n}{1 - z \cdot t - \frac{1}{1 - (x_2 + y_2 + w) \cdot t - \frac{(x_1 + u_1)(y_1 + v_1) \cdot t^2}{1 - ((x_2 + u_2) + (y_2 + v_2) + w) \cdot t - \frac{(x_1 + 2u_1)(y_1 + 2v_1) \cdot t^2}{1 - \ddots}}$$

Proof uses the Foata-Zeilberger bijection (1990)

Can we count cycles as well?

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ &u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

Can we count cycles as well?

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\mathrm{eareccpeak}(\sigma)} x_2^{\mathrm{eareccdfall}(\sigma)} y_1^{\mathrm{ereccval}(\sigma)} y_2^{\mathrm{ereccdrise}(\sigma)} z^{\mathrm{rar}(\sigma)} \times \\ &u_1^{\mathrm{nrcpeak}(\sigma)} u_2^{\mathrm{nrcdfall}(\sigma)} v_1^{\mathrm{nrcval}(\sigma)} v_2^{\mathrm{nrcdrise}(\sigma)} w^{\mathrm{nrfix}(\sigma)} \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

No nice J-fraction!

Can we count cycles as well?

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\mathrm{eareccpeak}(\sigma)} x_2^{\mathrm{eareccdfall}(\sigma)} y_1^{\mathrm{ereccval}(\sigma)} y_2^{\mathrm{ereccdrise}(\sigma)} z^{\mathrm{rar}(\sigma)} \times \\ &u_1^{\mathrm{nrcpeak}(\sigma)} u_2^{\mathrm{nrcdfall}(\sigma)} v_1^{\mathrm{nrcval}(\sigma)} v_2^{\mathrm{nrcdrise}(\sigma)} w^{\mathrm{nrfix}(\sigma)} \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Can we count cycles as well?

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} x_1^{\mathrm{eareccpeak}(\sigma)} x_2^{\mathrm{eareccdfall}(\sigma)} y_1^{\mathrm{ereccval}(\sigma)} y_2^{\mathrm{ereccdrise}(\sigma)} z^{\mathrm{rar}(\sigma)} \times \\ &u_1^{\mathrm{nrcpeak}(\sigma)} u_2^{\mathrm{nrcdfall}(\sigma)} v_1^{\mathrm{nrcval}(\sigma)} v_2^{\mathrm{nrcdrise}(\sigma)} w^{\mathrm{nrfix}(\sigma)} \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

No nice J-fraction!

But can obtain J-fraction by specialising $y_1 = v_1$:

Conjecture (Sokal–Zeng (2022))

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, y_1, v_2, w, z, \lambda) t^n}{\frac{1}{1 - \lambda z \cdot t - \frac{\lambda x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + \lambda w) \cdot t - \frac{(\lambda + 1)(x_1 + u_1)y_1 \cdot t^2}{1 - ((x_2 + v_2) + (y_2 + v_2) + \lambda w) \cdot t - \frac{(\lambda + 2)(x_1 + 2u_1)y_1 \cdot t^2}{1 - \ddots}}}$$

They could only prove with two specialisations y_1 = v_1 and y_2 = v_2

They could only prove with two specialisations y_1 = v_1 and y_2 = v_2 Second J-fraction for permutations

They could only prove with two specialisations y_1 = v_1 and y_2 = v_2 Second J-fraction for permutations

Used Biane bijection (1993).

They could only prove with two specialisations y_1 = v_1 and y_2 = v_2 Second J-fraction for permutations

Used Biane bijection (1993).

Genocchi and median Genocchi numbers

Genocchi numbers

The Genocchi numbers are given by

$$t \tan\left(\frac{t}{2}\right) = \sum_{n=0}^{\infty} g_n \frac{t^{2n+2}}{(2n+2)!}$$

Genocchi numbers

The Genocchi numbers are given by

$$t \tan\left(\frac{t}{2}\right) = \sum_{n=0}^{\infty} g_n \frac{t^{2n+2}}{(2n+2)!}$$

The first few numbers are 1, 1, 3, 17, 155, 2073, ...

Combinatorial Interpretation

Genocchi numbers:

D-e-semiderangements

$$g_n = \#\{\sigma \in \mathfrak{S}_{2n}|2i > \sigma(2i) \text{ and } 2i-1 \le \sigma(2i-1)\}$$

D-o-semiderangements

$$= \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$$

Combinatorial Interpretation

Genocchi numbers:

$$g_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$$

D-o-semiderangements

$$= \#\{\sigma \in \mathfrak{S}_{2n} | 2i \geq \sigma(2i) \text{ and } 2i-1 < \sigma(2i-1)\}$$

Median Genocchi numbers:

D-permutations (introduced by Lazar and Wachs (2019))

$$h_{n+1} = |\mathfrak{D}_{2n}| = \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$$

D-derangements

$$h_n = \#\{\sigma \in \mathfrak{S}_{2n}|2i > \sigma(2i) \text{ and } 2i-1 < \sigma(2i-1)\}$$

Combinatorial Interpretation

Genocchi numbers:

$$g_n = \#\{\sigma \in \mathfrak{S}_{2n}|2i > \sigma(2i) \text{ and } 2i-1 \leq \sigma(2i-1)\}$$

$$\text{D-o-semiderangements}$$

$$= \#\{\sigma \in \mathfrak{S}_{2n}|2i \geq \sigma(2i) \text{ and } 2i-1 < \sigma(2i-1)\}$$

Median Genocchi numbers:

D-permutations (introduced by Lazar and Wachs (2019))

$$h_{n+1} = |\mathfrak{D}_{2n}| = \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$$

D-derangements

$$h_n = \#\{\sigma \in \mathfrak{S}_{2n}|2i > \sigma(2i) \text{ and } 2i-1 < \sigma(2i-1)\}$$

D — Dumont-like

Continued fractions for median Genocchi numbers

The once-shifted median Genocchi numbers h_{n+1} have the following Thron-type continued fraction

$$\sum_{n=0}^{\infty} h_{n+1} t^n = \frac{1}{1 - t - \frac{1t}{1 - \frac{4t}{1 - \frac{9t}{1 - \dots}}}}$$

Story for Genocchi and median Genocchi

D.-Sokal (2022):

Story for Genocchi and median Genocchi

D.-Sokal (2022):

"First" (Cycles not counted)

"Second" (Cycles counted)

0-T-fraction with 12-statistics

p, q-generalisation:

0-T-fraction with 22 statistics

Master T-fraction:

four infinite 2-parameter families two infinite 1-parameter family

Proof:

FZ-like bijection

Variant forms with slightly different statistics

Conjecture: 0-T-fraction

with 12-statistics

0-T-fraction with 12-statistics

p, q-generalisation:

0-T-fraction with 21 statistics

Master T-fraction:

three infinite 2-parameter families, three infinite 1-parameter families, and one statistic for counting cycles

Proof:

Biane-like bijection

Randrianarivony-Zeng conjecture (1996)

Define the polynomials

$$G_n(x,y,\bar{x},\bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^\circ} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$
 where

Randrianarivony-Zeng conjecture (1996)

Define the polynomials

where

$$G_n(x,y,\bar{x},\bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^{\circ}} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$

- comi odd cycle minima,
- lema left-to-right maxima whose value is even
- cemi even cycle minima
- remi right-to-left minima whose value is even

Randrianarivony-Zeng conjecture (1996)

Define the polynomials

$$G_n(x,y,\bar{x},\bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^\circ} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$
 where

- comi odd cycle minima,
- lema left-to-right maxima whose value is even
- cemi even cycle minima
- remi right-to-left minima whose value is even

Conjecture

The ogf of the polynomials $G_n(x,y,\bar x,\bar y)$ has the following S-fraction

Plot twist for Sokal-Zeng conjecture

"First" (Cycles not counted)

"Second" (Cycles counted)

J-fraction with 10 statistics

↑

p,q-generalisation:

J-fraction with 18 statistics

Master J-fraction:

four infinite 2-parameter families one infinite 1-parameter family

Proof:

Foata-Zeilberger bijection (1990)

Conjecture: J-fraction with 10 statistics

 \downarrow

J-fraction with 9 statistics

p,q-generalisation:

J-fraction with 15 statistics

Master J-fraction:

three infinite 2-parameter families two infinite 1-parameter family and one statistic for counting cycles

Proof:

Biane bijection (1993)

Conjectures of D.-Sokal, Randrianarivony-Zeng

"First" (Cycles not counted)	"Second" (Cycles counted)
	Conjecture: 0-T-fraction
	with 12 statistics
0-T-fraction with 12 statistics	0-T-fraction with 12 statistics
↑	\uparrow
p,q-generalisation:	p,q-generalisation
0-T-fraction with 22 statistics	0-T-fraction with 21 statistics
Master T-fraction: four infinite	Master T-fraction:
2-parameter families	three infinite 2-parameter families,
two infinite 1-parameter families	three infinite 1-parameter families,
	and one statistic for counting cycles
Proof:	Proof:
FZ-like bijection	Biane-like bijection
Variant forms	Variant forms ⇒
	Randrianarivony–Zeng (1996) S-fraction with 4 statistics

Pan–Zeng ('23) came up with multivariate continued fractions for other objects enumerated by Genocchi numbers also introduced in work of Lazar's PhD thesis

Structure

- Continued fractions and enumerative combinatorics
 - Classical continued fractions
 - ② Sokal-Zeng's results for factorials
 - O.—Sokal's results for Genocchi and median Genocchi numbers
 - Onjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - Foata-Zeilberger bijection
- What's new
 - Laguerre digraphs
 - New interpretation of the FZ bijection
- The story continues . . .

Consider a Motzkin path, let's say

Consider a Motzkin path, let's say

Consider a Motzkin path, let's say

Assign weights:

- ▶ 1 : 1
- ullet \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

Consider a Motzkin path, let's say

Assign weights:

- → 1:1
- \bullet \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

Consider a Motzkin path, let's say

Assign weights:

- ullet \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot \cdot}}}$$

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot \cdot \cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot \cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

- Stieltjes-type continued fractions weighted Dyck paths (Flajolet '80)
- Thron-type continued fractions weighted Schröder paths (Oste-Van der Jeugt (2015), Fusy-Guitter(2017), Josuat-Vergès (2018), Sokal (unpublished))

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

- Stieltjes-type continued fractions weighted Dyck paths (Flajolet '80)
- Thron-type continued fractions weighted Schröder paths (Oste-Van der Jeugt (2015), Fusy-Guitter(2017), Josuat-Vergès (2018), Sokal (unpublished))

Gateway for proving continued fractions using bijective combinatorics :-D

Foata–Zeilberger bijection

excedance indices $F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval}$

excedance indices $F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval}$ excedance values $F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak}$

```
excedance indices F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval} excedance values F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak} antiexcedance indices G = \{i \in \sigma : \sigma(i) < i\} = \mathsf{Cdfall} \cup \mathsf{Cpeak}
```

```
excedance indices F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval} excedance values F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak} antiexcedance indices G = \{i \in \sigma : \sigma(i) < i\} = \mathsf{Cdfall} \cup \mathsf{Cpeak} antiexcedance values G' = \{i \in \sigma : i < \sigma^{-1}(i)\} = \mathsf{Cdfall} \cup \mathsf{Cval}
```

```
excedance indices F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval} excedance values F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak} antiexcedance indices G = \{i \in \sigma : \sigma(i) < i\} = \mathsf{Cdfall} \cup \mathsf{Cpeak} antiexcedance values G' = \{i \in \sigma : i < \sigma^{-1}(i)\} = \mathsf{Cdfall} \cup \mathsf{Cval} fixed points H = \{i \in \sigma : i = \sigma(i)\} = \mathsf{Fix}
```

```
excedance indices F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval} excedance values F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak} antiexcedance indices G = \{i \in \sigma : \sigma(i) < i\} = \mathsf{Cdfall} \cup \mathsf{Cpeak} antiexcedance values G' = \{i \in \sigma : i < \sigma^{-1}(i)\} = \mathsf{Cdfall} \cup \mathsf{Cval} fixed points H = \{i \in \sigma : i = \sigma(i)\} = \mathsf{Fix}
```

A permutation can be fully described the following data:

• Sets F, F', G, G', H

```
excedance indices F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval} excedance values F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \mathsf{Cdrise} \cup \mathsf{Cpeak} antiexcedance indices G = \{i \in \sigma : \sigma(i) < i\} = \mathsf{Cdfall} \cup \mathsf{Cpeak} antiexcedance values G' = \{i \in \sigma : i < \sigma^{-1}(i)\} = \mathsf{Cdfall} \cup \mathsf{Cval} fixed points H = \{i \in \sigma : i = \sigma(i)\} = \mathsf{Fix}
```

A permutation can be fully described the following data:

- Sets F, F', G, G', H
- $\bullet \ \sigma|_F : F \to F'$
- $\bullet \ \sigma|_G:G\to G'$

Foata-Zeilberger bijection:

$$\sigma \mapsto (\omega, \xi)$$

Foata–Zeilberger bijection:

$$\sigma \mapsto (\omega, \xi)$$

where

 \bullet ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)

Foata–Zeilberger bijection:

$$\sigma \mapsto (\omega, \xi)$$

where

 $m{\omega}$ is a Motzkin path, where the level steps come in three different colours (red, blue, green) Correspond to F,F',G,G',H

Foata–Zeilberger bijection:

$$\sigma \mapsto (\omega, \xi)$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green) Correspond to F,F',G,G',H
- $\xi = (\xi_1, \dots, \xi_n)$ are labels on the steps of the Motzkin paths

Foata–Zeilberger bijection:

$$\sigma \mapsto (\omega, \xi)$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green) Correspond to F,F',G,G',H
- $\xi = (\xi_1, \dots, \xi_n)$ are labels on the steps of the Motzkin paths Correspond to $\sigma|_F : F \to F'$ and $\sigma|_G : G \to G'$

Description of $\sigma \rightarrow \omega$

- If i is a cycle valley, step i is \nearrow
- If i is a cycle peak, step i is \searrow
- If i is a cycle double rise, cycle double fall or fixed, step i is →, → or
 → respectively.

Description of labels $\sigma \rightarrow \xi$

For $i \in [n]$

$$\xi_i = \begin{cases} \#\{j \colon j < i \text{ and } \sigma(j) > \sigma(i)\} & \text{if } \sigma(i) > i & \text{if } i \in \text{Cval} \cup \text{Cdrise} \\ \#\{j \colon j > i \text{ and } \sigma(j) < \sigma(i)\} & \text{if } \sigma(i) < i & \text{if } i \in \text{Cpeak} \cup \text{Cdfall} \\ 0 & \text{if } \sigma(i) = i & \text{if } i \in \text{Fix} \end{cases}$$

An example

```
Let \sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9.

- Cval = \{1,3\} - Cpeak = \{7,9\} - Cdrise = \{5\}

- Cdfall = \{2,6,8\}

- Fix = \{4\}
```

An example

Let
$$\sigma$$
 = 715492638 = (1762)(3598)(4) $\in \mathfrak{S}_9$.
- Cval = $\{1,3\}$ - Cpeak = $\{7,9\}$ - Cdrise = $\{5\}$
Cdfall = $\{2,6,8\}$
- Fix = $\{4\}$

The Motzkin path ω is

An example

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

- Cval =
$$\{1,3\}$$
 - Cpeak = $\{7,9\}$ - Cdrise = $\{5\}$ Cdfall = $\{2,6,8\}$

The Motzkin path ω is

- $Fix = \{4\}$

The labels ξ and the sets F, F', G, G' are:

5			
$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$, \alpha, \alpha$ are.					
$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Structure

- Continued fractions and enumerative combinatorics
 - Classical continued fractions
 - Sokal–Zeng's results for factorials
 - O.—Sokal's results for Genocchi and median Genocchi numbers
 - Onjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - ② Foata-Zeilberger bijection
- What's new
 - Laguerre digraphs
 - New interpretation of the FZ bijection
- The story continues . . .

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1,\ldots,n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1,\dots,n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1,\ldots,n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

- Directed cycle
- Directed paths

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1,\ldots,n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

- Directed cycle
- Directed paths

Generalise permutations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

Laguerre digraphs after Sokal (2022)

Start with all n vertices and no edges

Start with all n vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$

Start with all n vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Stage (a): $i \in H$ (fixed points) in increasing order

Stage (b): $i \in G$ (antiexcedances) in increasing order

Stage (c): $i \in F$ (excedances) in decreasing order

Start with all n vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Stage (a): $i \in H$ (fixed points) in increasing order

Stage (b): $i \in G$ (antiexcedances) in increasing order

Stage (c): $i \in F$ (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (b): G in increasing order

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$.

$$H = \{4\}$$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Structure

- Continued fractions and enumerative combinatorics
 - Classical continued fractions
 - Sokal–Zeng's results for factorials
 - O.—Sokal's results for Genocchi and median Genocchi numbers
 - Onjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - Poata-Zeilberger bijection
- What's new
 - Laguerre digraphs
 - New interpretation of the FZ bijection
- The story continues ...

Remarks

Flajolet's 1980 paper allowed continued fractions with non-commutative variables

Remarks

Flajolet's 1980 paper allowed continued fractions with non-commutative variables

However, for this work, it is very important that the variables commute

Remarks

Flajolet's 1980 paper allowed continued fractions with non-commutative variables

However, for this work, it is very important that the variables commute

So there must be non-commutative analogues of continued fractions coming from Biane bijection or Françon–Viennot bijection

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des_2 , cyc) and (pex,cyc) are equidistributed.

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des_2 , cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

Conjecture

$$\sum_{n=0}^{\infty} y^{\operatorname{des}_2 \sigma} \lambda^{\operatorname{cyc} \sigma} = \frac{1}{1 - \lambda z - \frac{\lambda y z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{1 - (\lambda + 2)z}}}$$

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des_2 , cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

Conjecture

$$\sum_{n=0}^{\infty} y^{\operatorname{des}_2 \sigma} \lambda^{\operatorname{cyc} \sigma} = \frac{1}{1 - \lambda z - \frac{\lambda y z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{\dots}}}$$

How do we resolve this???

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des_2 , cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

Conjecture

$$\sum_{n=0}^{\infty} y^{\operatorname{des}_2 \sigma} \lambda^{\operatorname{cyc} \sigma} = \frac{1}{1 - \lambda z - \frac{\lambda y z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{\dots}}}$$

How do we resolve this???

An index i is a descent of type 2 if i is a descent and i is a record (left-to-right maxima)

Merci pour votre attention

 ${\sf Sokal-Zeng's\ master\ J-fraction}$

Pictorial representation

Pictorial representation

$$\begin{split} \sigma &= 7\,1\,9\,2\,5\,4\,8\,6\,10\,3\,11\,12\,14\,13 = \\ &(1,7,8,6,4,2)\,(3,9,10)\,(5)\,(11)\,(12)\,(13,14) \in \mathfrak{S}_{14}. \end{split}$$

Due to Corteel (2007)

Crossings, nestings and pseudo-nestings

Sokal-Zeng first master J-fraction for permutations

$$\begin{split} Q_n \big(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e} \big) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} &\times \\ &\prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} &\times \\ &\prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)} \end{split}$$

Sokal-Zeng first master J-fraction for permutations

$$\begin{split} Q_n \big(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e} \big) &= \\ &\sum_{\sigma \in \mathfrak{S}_n} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)} \end{split}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}}}$$

Sokal-Zeng first master J-fraction for permutations

$$\begin{split} Q_{n}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{e}) &= \\ &\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} &\times \\ &\prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} &\times \\ &\prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)} \end{split}$$

Theorem

$$\begin{split} \sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) t^n &= \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}}} \\ \gamma_k &= \left(\sum_{\xi=0}^{k-1} \mathsf{c}_{k-1-\xi, \xi}\right) + \left(\sum_{\xi=0}^{k-1} \mathsf{d}_{k-1-\xi, \xi}\right) + \mathsf{e}_k \\ \beta_k &= \left(\sum_{\xi=0}^{k-1} \mathsf{a}_{k-1-\xi, \xi}\right) \left(\sum_{\xi=0}^{k-1} \mathsf{b}_{k-1-\xi, \xi}\right) \end{split}$$

(D. arxiv '23) master J-fraction for permutations

$$\begin{split} Q_{n}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{e},\lambda) &= \\ &\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \mathrm{Cval}(\sigma)} \mathsf{a}_{\mathrm{ucross}(i,\sigma) + \mathrm{unest}(i,\sigma)} \prod_{i \in \mathrm{Cpeak}(\sigma)} \mathsf{b}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Cdfall}(\sigma)} \mathsf{c}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \prod_{i \in \mathrm{Cdrise}(\sigma)} \mathsf{d}_{\mathrm{ucross}(i,\sigma), \, \mathrm{unest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Fix}(\sigma)} \mathsf{e}_{\mathrm{psnest}(i,\sigma)} \, \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

(D. arxiv '23) master J-fraction for permutations

$$\begin{split} Q_{n}\big(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{e},\lambda\big) &= \\ &\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \mathrm{Cval}(\sigma)} \mathbf{a}_{\mathrm{ucross}(i,\sigma) + \mathrm{unest}(i,\sigma)} \prod_{i \in \mathrm{Cpeak}(\sigma)} \mathbf{b}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Cdfall}(\sigma)} \mathbf{c}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \prod_{i \in \mathrm{Cdrise}(\sigma)} \mathbf{d}_{\mathrm{ucross}(i,\sigma), \, \mathrm{unest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Fix}(\sigma)} \mathbf{e}_{\mathrm{psnest}(i,\sigma)} \, \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot \cdot \cdot}}}}$$

(D. arxiv '23) master J-fraction for permutations

$$\begin{split} Q_{n}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\mathbf{e},\lambda) &= \\ &\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \mathrm{Cval}(\sigma)} \mathsf{a}_{\mathrm{ucross}(i,\sigma) + \mathrm{unest}(i,\sigma)} \prod_{i \in \mathrm{Cpeak}(\sigma)} \mathsf{b}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Cdfall}(\sigma)} \mathsf{c}_{\mathrm{lcross}(i,\sigma), \, \mathrm{lnest}(i,\sigma)} \prod_{i \in \mathrm{Cdrise}(\sigma)} \mathsf{d}_{\mathrm{ucross}(i,\sigma), \, \mathrm{unest}(i,\sigma)} \times \\ &\prod_{i \in \mathrm{Fix}(\sigma)} \mathsf{e}_{\mathrm{psnest}(i,\sigma)} \, \lambda^{\mathrm{cyc}(\sigma)} \end{split}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}}}$$

$$\gamma_k = \left(\sum_{\xi=0}^{k-1} c_{k-1-\xi, \xi}\right) + \left(\sum_{\xi=0}^{k-1} d_{k-1-\xi, \xi}\right) + \lambda e_k$$

$$\beta_k = (\lambda + k - 1) a_{k-1} \left(\sum_{\xi=0}^{k-1} b_{k-1-\xi, \xi}\right)$$