Shopping Time and Frictional Goods Markets:

Implications for the New-Keynesian Business Cycle Model

VfS Conference 2025 Köln

Konstantin Gantert

K. Gantert @tilburguniver sity.edu

September 15, 2025

Household Shopping Time Increases over the Business Cycle

NOTE: Taken from (Petrosky-Nadeau et al., 2016)

- ➤ **Shopping time** increases with income:
 - → Evidence in favor of quantity/variety search!
 - \rightarrow Slope(Low-High Income): 1.53 4.01
 - → Drivers: consumer goods/services & travel time.
 - $\,\rightarrow\,$ Information costs are small and less cyclical!
- ► Capacity utilization increases with search effort.
 - $\,\rightarrow\,$ Search effort shows positive input to market result.
 - ightarrow Market efficiency depends on demand and supply.
- ⇒ Business cycle models are silent about it!

Barro (2025): The Old Keynesian Model

"A promising alternative to the non-price rationing of quantities in the Old Keynesian Model is a setup with search-and-matching frictions in the markets for goods and labor."

Implementing Procyclical Search Time in a NK Model

Research Question

How does costly shopping effort and imperfect goods market matching influence time allocation of households over the business cycle and thus the supply and demand channels of the New-Keynesian (NK) model?

Research Approach/Methods

- ► Small-sized DSGE model with variable search effort and imperfect goods matching.
- ▶ Pen-and-paper: Linearization and channel decomposition by hand!
- ▶ Simulation of calibrated (and extended) model using Dynare.

Literature & Contributions: Separating Search from Home Production

- ► Home Production Literature: Becker (1965), Benhabib et al. (1991), Greenwood & Hercowitz (1991), Lester (2014), Gnocchi et al. (2016).
 - → Contribution: Separate search effort (market impact) from home production.
- ► Search-and-Matching Literature: Diamond (1971, 1982), Benabou (1988, 1992), Burdett & Judd (1993), Kaplan & Menzio (2016), Michaillat
 - & Saez (2015, 2024), Petrosky-Nadeau & Wasmer (2015), Petrosky-Nadeau et al. (2016, 2021), Qiu & Rios-Rull (2022), Bai et al. (2025), Den Haan & Sun (2024).
 - → Contribution: Model flex-search-sticky-price nexus and derive reduced-form GE model.
- ▶ NK-DSGE Literature: Erceg et al. (2000), Christiano et al. (2005), Smets and Wouters (2007), Gali (2011), Ascari et al. (2020).
 - ightarrow Contribution: Analyze impact of search costs & market tightness on Euler & Phillips curves.
- ► Customer Capital & Spatial Search: Drozd and Nosal (2012), Gilchrist et al. (2017), Gourio and Rudanko (2014), Paciello et al. (2019), Schmitt-Grohe and Uribe (2025).
 - \rightarrow Contribution: Complementary approach with focus on market interactions.

Main Findings: A NK Model that looks more like a RBC Model

- ▶ State-Dependent Price Elasticity of Demand driven by Goods Market Tightness:
 - ightarrow Second cost of consumption varying in market tightness and affecting demand function.
 - → Euler equation slope ten times smaller (closer to the data)!
- ▶ Endogenous Capacity Utilization driven by Search Effort:
 - → Search effort as latent input factor increases firm productivity (trade-off with markups).
 - → Phillips curve is about 12% steeper.
- ▶ The NK Model calibrated to slopes in the data resembles more an RBC model.
 - → Output gap variation decreases significantly.
 - → Monetary Policy has significantly lower allocative power.
 - ightarrow Cost-push shocks arise naturally in this framework as price elasticity is endogenous.

Outline of the Presentation

- 1. Introduction
- 2. Model Setup: Optimization Problems and Calibration
- 3. Linearized Dynamics: Market Efficiency, Price Elasticity, and real GDP
- 4. Simulations: Decomposing IRFs to Technology, Monetary Policy, and Cost-Push Shocks
- 5. Robustness Analysis: (More) Labor Frictions, Capital (Utilization), and Long-Term Search Channels
- 6. Concluding Remarks

Model Framework

Goods Market Matching: Search Effort as a Utilization Driver

Matching function as a modeling short cut of heterogeneity:

Output:
$$C_{M,t}(i) = \psi_t \left[\gamma_S H_{S,t}(i)^{\Gamma_S} + (1 - \gamma_S) S_t(i)^{\Gamma_S} \right]^{\frac{1}{\Gamma_S}}$$
 (1)
$$= \psi_t \left[\gamma_S x_t(i)^{\Gamma_S} + (1 - \gamma_S) \right]^{\frac{1}{\Gamma_S}} S_t(i)$$
Utilization: $\Leftrightarrow \frac{C_{M,t}(i)}{S_t(i)} = \mathbf{q}_t$ (2)

Properties of the Goods Market

- ▶ Broad search cost: shopping time, travel time (location, availability), information (limited) . . .
- ▶ There is always some idle production capacity if $\psi < 1$ and $\gamma_S > 0$.
- \blacktriangleright The impact of search effort on market matching increases in $\gamma_{\mathcal{S}}$.
- ▶ Amount of matched goods increases in goods market tightness, $x_t(i)$!

HH Utility: Search Costs depend on Market Tightness

Intertemporal utility maximization:

$$\mathbb{U}_{t} = \max_{C_{t}(i), H_{S,t}(i), H_{H,t}, H_{M,t}, B_{t}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{C_{t}^{1-\sigma} - 1}{1-\sigma} - \mu_{S,t} \frac{H_{S,t}^{1+\nu_{S}}}{1+\nu_{S}} - \mu_{H} \frac{H_{H,t}^{1+\nu_{H}}}{1+\nu_{H}} - \mu_{M} \frac{H_{M,t}^{1+\nu_{M}}}{1+\nu_{M}} \right)$$
(3)

Budget Constraint:
$$B_t = (1 + r_{t-1}) B_{t-1} + W_t H_{M,t} - \int_0^1 P_t(i) C_{M,t}(i) di + \Pi_t$$
 (4)

Market Goods:
$$C_{M,t} = \left(\int_0^1 C_{M,t}(i)^{\frac{\epsilon_t - 1}{\epsilon_t}} di\right)^{\frac{\epsilon_t}{\epsilon_t - 1}}$$
 (5)

Composite Goods:
$$C_t = \left[\gamma_H C_{H,t}^{\Gamma_H} + (1 - \gamma_H) C_{M,t}^{\Gamma_H} \right]^{\frac{1}{\Gamma_H}}$$
 (6)

Trade Law of Motion:
$$C_{M,t}(i) = f_t(i) \cdot H_{S,t}(i)$$
 (7)

Cyclical Search Cost of Consumption

 \Rightarrow Cost of consumption: (1) Purchase price, and (2) search cost dependent on market tightness.

Demand Function: Price Elasticity of Demand decreases in Search Prices

Demand function (derived from household utility maximization):

$$\frac{P_{t}(i)}{P_{t}} = \underbrace{\frac{\partial \mathbb{U}_{t}}{\partial C_{t}(i)}}_{\text{Marg. Utility of Consumption}} - \underbrace{\frac{\partial \mathbb{U}_{t}}{\partial H_{S,t}(i)}}_{\text{Search Price}} \times f(x_{t}(i))^{-1}$$
Search Price = $P_{S,t}(i)$ (8)

Price elasticity of demand (FOC of demand function wrt $P_t(i)$):

$$\Xi_t(i) = \left(-\epsilon_t\right) \left[1 + \frac{P_t}{P_t(i)} P_{S,t}(i)\right]^{-1} \tag{9}$$

Cyclicality of the Price Elasticity of Demand

⇒ Price elasticity decreases in search prices as posted price share of total consumption costs drops!

Firm Profits: Markups vs Capacity Utilization

Intertemporal profit maximization:

$$\Pi_{t} = \max_{P_{t}(i), C_{M,t}(i), H_{M,t}(i), \mathbf{S}_{t}(i), \mathbf{x}_{t}(i)} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{0,t} \left[P_{t}(i) C_{M,t}(i) - W_{t} H_{M,t}(i) \right]$$
(10)

Resource Constraint:
$$\left(1 + \frac{\kappa_P}{2} \left(\frac{P_t(i)}{P_{t-1}(i)} - 1\right)^2\right) S_t(i) = A_t H_{M,t}(i)$$
 (11)

Demand Function:
$$\frac{P_t(i)}{P_t} = \frac{\frac{\partial \mathbb{U}_t}{\partial C_t(i)}}{muc_t} - \frac{\frac{\partial \mathbb{U}_t}{\partial H_{s,t}(i)}}{muc_t} \times f(x_t(i))^{-1}$$
(12)

Trade Law of Motion:
$$C_{M,t}(i) = \psi_t \left[\gamma_S x_t(i)^{\Gamma_S} + (1 - \gamma_S) \right]^{\frac{1}{\Gamma_S}} S_t(i)$$
 (13)

Trade-Off: Markup vs Utilization

Higher posted prices raise markups but lower HH search effort (capacity utilization)!

General Equilibrium: Sticky Wages and a Taylor Rule

- ▶ Representative firm and household: Symmetric firm technology and preferences!
- ▶ Numeraire good: Real GDP/market consumption.
- ► Sticky wages similar to Erceg et al. (2000).
- ► Monetary policy rule (Taylor (1993)):

$$\frac{1+r_t}{1+r} = \left(\frac{1+r_{t-1}}{1+r}\right)^{i_r} \left[\left(\frac{\pi_t}{\pi}\right)^{i_{\pi}} \tilde{Y}_t^{i_{Gap}} \right]^{1-i_r} M_t$$
 (14)

► Shock processes:

$$X_{t} = X^{1-\rho_{X}} X_{t-1}^{\rho_{X}} \varepsilon_{X,t}, \quad \varepsilon_{X,t} \sim \mathcal{N}(0, \sigma_{X}^{2})$$
 (15)

▶ Shocks: TFP, Monetary Policy, Elasticity of Substitution, Search Effort, Goods Market Mismatch.

Calibration of the Model

Parameter	Value	Value Parameter		Parameter	Value	
β	0.99	μн	$\frac{\bar{H}_H}{\bar{H}_M} = 0.54$	ϵ_W	$\bar{u} = 0.043$	
σ	1.5	γ_H	0.55	κ_W	$\lambda_u = -0.026$	
μ_{M}	$ar{ extit{H}}_{ extit{M}}=1$	Γ_H	0.5	i _R	0.8	
$ u_{M}$	2	ν_H	$ u_{M}$	i_{π}	1.7	
ϵ	$\frac{1}{mc} = 1.2$	κ_P	$\lambda_{\mathit{ls}} = 0.047$	i _{Gap}	0.12	
$oldsymbol{\psi}$	q = 0.86	μ_{S}	x = 1	γ_s	[0.11 0.32]	
$ u_{S}$	[0 5]	Γ_S	[-2.7 0]			

We target moments from the empirical literature as follows:

- Price (labor share) and wage (unemployment) Phillips curve slopes as in the data.
- Time allocation (market, home, search) according to American Time Use Survey.
- Goods market SaM parameters following Bai et al. (2025), Qiu and Rios-Rull (2022).
- $\frac{\nu_S}{\nu_M} = \frac{\nu_H}{\nu_M} = 1$: Time allocation elasticities symmetric across uses.

Dynamics Linearized Model

A Nested Five-Equation NK Model

Real GDP decreases in idle capacity and increases in price elasticity:

Procyclical Utilization is driven by Price Elasticity

$$\tilde{q}_{t} = \frac{\psi \phi_{\gamma}}{1 + \nu_{S} - \Gamma_{S} (1 + \phi_{\gamma})} \left[(1 - \phi_{\epsilon}) \, \epsilon \tilde{m} c_{t} - (\nu_{S} + \phi_{C}) \, \tilde{Y}_{t} \right] \tag{17}$$

Assume Okun's Law: $\tilde{Y}_t = -2.23\tilde{u}_t$

- ► Capacity utilization gap variation ...
 - ightarrow ... increases in γ_S (search productivity)
 - \rightarrow ... increases in Γ_S (input substitutability)
- $ightharpoonup rac{
 u_S}{
 u_M}$ amplifies marginal costs variation:
 - $\rightarrow~\gamma_S <$ 0.167: Labor demand channel dominates: Hours worked increase in marginal cost.
 - Rel. higher search cost convexity $(\frac{\nu_S}{\nu_M}\uparrow)$ lowers slope.
 - $ightarrow \ \gamma_S >$ 0.167: Price elasticity channel dominates: Hours worked decrease in marginal cost.
 - Rel. higher search cost convexity $(\frac{\nu_S}{\nu_M}\uparrow)$ rises slope.

Price Elasticity depends on Variation in Market Tightness

$$\tilde{\Xi}_{t} = -\phi_{\epsilon} \left[\epsilon \tilde{mc}_{t} + \frac{\Gamma_{s}}{1 - \phi_{\epsilon}} \frac{1 + \phi_{\gamma}}{\psi \phi_{\gamma}} \tilde{q}_{t} \right]$$
(18)

Assume Okun's Law: $\tilde{Y}_t = -2.23 \tilde{u}_t$

- ► Price elasticity variation ...
 - ightarrow ... decreases in search prices.
 - $\rightarrow \ \dots$ is thus the mirror image of utilization.
- ▶ Slope depends on super-elasticity: $\phi_{\epsilon} = \frac{\epsilon 1}{\epsilon} \gamma_{S}$.
- ▶ For $\Gamma_S = -\infty$, its slope reduces to approx. -1.26.

Euler Equation: Monetary Policy looses its Power

$$\tilde{r}_{t} - \mathbb{E}_{t} \hat{\pi}_{t+1} = \phi_{C} \mathbb{E}_{t} \Delta \tilde{Y}_{t+1} - \mathbb{E}_{t} \Delta \tilde{\Xi}_{t+1}$$
(19)

Assume Okun's Law: $\tilde{Y}_t = -2.23\tilde{u}_t$

- ► Search price growth is inflationary!
 - $\,\rightarrow\,$ Consumption growth increases in price elasticity.
 - \rightarrow However, price elasticity is countercyclical!
 - ightarrow Hence, consumption grows less for interest rate cut.
- ▶ Data: Slope positive, close to zero (Ascari et al., 2021).
- ⇒ Monetary policy has a lower impact on consumption growth compared to the NK model!
 - → Impact of interest rate about ten times smaller!

Phillips Curve: Trade-Off Markups and Utilization

$$\hat{\pi}_{t} = \frac{1 + \phi_{\gamma}}{\kappa_{P}} \left[\epsilon (1 - \phi_{\epsilon}) \tilde{m} c_{t} + \frac{\Gamma_{s}}{\psi} \tilde{q}_{t} \right] \beta \mathbb{E}_{t} \hat{\pi}_{t+1}$$
(20)

Assume Okun's Law: $\tilde{Y}_t = -2.23\tilde{u}_t$

- Labor share slope fixed to empirical counterpart!
- ▶ Identical slopes for $\bar{\nu}_{SM}(\Gamma_S = 0) \approx 0.9$.
 - → Matching input share constant as convexity equal.
- $ightharpoonup \frac{\nu_S}{\nu_M} > \bar{\nu}_{SM}$: Price setting becomes more flexible as adjustment through utilization is more costly.
 - → Firms adjust prices through less convex margin.
 - \rightarrow Marg. costs increase in $\frac{\nu_S}{\nu_M}$ as for cap. utilization.
- ightharpoonup For $\Gamma_S < 0$: Lower substitutability of matching inputs leads to lower adjustment through utilization. $_{16/22}$

Model Simulations

IRFs to TFP, Policy, and Cost-Push Shocks

Impulse Responses to an Expansionary TFP Shock

Impulse Responses to an Expansionary Monetary Policy Shock

Impulse Responses to an Expansionary Search Effort Shock

Second Moments: Can the Model Match Search Data?

Table 1: Relative Standard Deviations and Correlations of Model Simulations

NK-SaM Model	Technology		Demand (Policy)		Cost-Push (EIS)		Search Effort	
Variable	Rel.Std.	Corr.	Rel.Std.	Corr.	Rel.Std.	Corr.	Rel.Std.	Corr.
Output Gap	0.08	0.28	1.00	1.00	0.45	0.94	0.06	0.30
UE Gap	0.29	-0.70	1.48	-0.96	1.43	-0.98	0.33	-0.92
Inflation	0.05	-0.99	0.24	0.94	0.04	-1.00	0.03	-0.99
Real Wage	0.58	0.91	1.82	0.80	1.06	0.82	0.27	0.90
Utilization	0.57	-1.00	0.61	0.67	0.70	-1.00	0.53	0.99
Marginal Cost	0.22	-0.95	1.14	0.87	1.77	0.95	0.36	-1.00
Price Elasticity	0.52	0.95	2.67	-0.87	13.56	0.97	0.86	1.00
Labor Wedge	0.37	0.42	1.13	-0.35	2.97	-1.00	0.23	-0.51
Search Effort	0.42	-0.95	2.29	0.87	0.72	-1.00	2.30	1.00

NOTE: The table shows simulated second moments for the benchmark and NK-SaM model. It shows relative standard deviations - standard deviation of each variable relative to

Robustness Analysis

The Results are Robust to a Variety of Extensions

- 1. GHH Preferences: Reduce slopes by approx. 25%.
- 2. No Home Production: Increases slopes by 33%.
- 3. No Sticky Wages: Increases slopes by 25% to 50%.
- 4. Capital (Utilization): Labor wedge becomes acyclical.
- 5. Long-Term Contracts and Inventories:
 - Inventories quantitatively and qualitatively irrelevant.
 - Long-term contracts reduce search costs significantly.

Conclusion

Concluding Remarks

Research Question

How does costly shopping effort and imperfect goods market matching influence timeallocation of households over the business cycle and thus the supply and demand channels of the New-Keynesian (NK) model?

- **▶** State-Dependent Price Elasticity of Demand:
 - ightarrow Second cost of consumption varying in market tightness and affecting demand function.
 - → Euler equation slope ten times smaller (closer to the data)!
- ► Endogenous Capacity Utilization driven by Search Effort:
 - → Search effort as latent input factor increases firm productivity (trade-off with markups).
 - → Phillips curve is about 12% steeper.
- ▶ The NK Model calibrated to slopes in the data resembles more an RBC model.

 - ightarrow Monetary Policy has significantly lower allocative power.
 - ightarrow Cost-push shocks arise naturally in this framework as price elasticity is endogenous.

Thank you for your attention!

k.gantert@tilburguniversity.edu

Paper:

Appendix

References (1/4)

- Petrosky-Nadeau, N., Wasmer, E., Zeng, S., 2016. Shopping Time. Economics Letters 143, 52–60. https://doi.org/10.1016/j.econlet.2016.02.003
- Barro, R.J., 2025. The Old Keynesian Model. NBER Working Paper Series 33850.
- Becker, G.S., 1965. A theory of the allocation of time. The economic journal 75, 493–517.
- Benhabib, J., Rogerson, R., Wright, R., 1991. Homework in macroeconomics: Household production and aggregate fluctuations. Journal of Political Economy 99, 1166-1187.
- Greenwood, J., Hercowitz, Z., 1991. The allocation of capital and time over the business cycle. Journal of political Economy 99, 1188-1214.
- Lester, R., 2014. Home production and sticky price models: Implications for monetary policy. Journal of Macroeconomics 41, 107-121.
- Gnocchi, S., Hauser, D., Pappa, E., 2016. Housework and fiscal expansions. Journal of Monetary Economics 79, 94-108.
- Diamond, P., 1971. A model of price adjustment. Journal of Economic Theory 3, 156–168. https://doi.org/10.1016/0022-0531(71)90013-5
- Diamond, P.A., 1982. Aggregate Demand Management in Search Equilibrium. Journal of political Economy 90, 881–894. https://doi.org/10.1086/261099
- Benabou, R., 1988. Search, Price Setting and Inflation. The Review of Economic Studies 55, 353–376. https://doi.org/10.2307/2297389

Refernces (2/4)

- Benabou, R., 1992. Inflation and Efficiency in Search Markets. The Review of Economic Studies 59, 299–329. https://doi.org/10.2307/2297956
- Burdett, K., Judd, K.L., 1983. Equilibrium Price Dispersion. Econometrica 51, 955–969. https://doi.org/10.2307/1912045
- Kaplan, G., Menzio, G., 2016. Shopping externalities and self-fulfilling unemployment fluctuations. Journal of Political Economy 124, 771–825.
- Michaillat, P., Saez, E., 2015. Aggregate Demand, Idle Time, and Unemployment. Quarterly Journal of Economics 130, 507–569. https://doi.org/10.1093/qje/qjv006
- Michaillat, P., Saez, E., 2024. Beveridgean Phillips Curve. arXiv preprint arXiv:2401.12475.
- Petrosky-Nadeau, N., Wasmer, E., 2015. Macroeconomic Dynamics in a Model of Goods, Labor, and Credit Market Frictions. Journal of Monetary Economics 72, 97–113. https://doi.org/j.jmoneco.2015.01.006
- Petrosky-Nadeau, N., Wasmer, E., Weil, P., 2021. When Hosios meets Phillips: Connecting efficiency and stability to demand shocks.
- Qiu, Z., Rios-Rull, J.-V., 2022. Procyclical Productivity in New Keynesian Models. NBER Working Paper Series. https://doi.org/10.3386/w29769
- Bai, Y., Rios-Rull, J.-V., Storesletten, K., 2025. Demand Shocks as Technology Shocks. Review of Economic Studies. https://doi.org/10.1093/restud/rdaf045

Refernces (3/4)

- Den Haan, W.J., Sun, T., 2024. The role of sell frictions for inventories and business cycles. London School of Economics and Political Science.
- Erceg, C.J., Henderson, D.W., Levin, A.T., 2000. Optimal monetary policy with staggered wage and price contracts.
 Journal of Monetary Economics 46, 281–313.
- Christiano, L.J., Eichenbaum, M., Evans, C.L., 2005. Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy 113, 1–45. https://doi.org/10.1086/426038
- Smets, F., Wouters, R., 2007. Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach. American Economic Review 97, 586–606. https://doi.org/10.1257/aer.97.3.586
- Gali, J., 2011. Unemployment fluctuations and stabilization policies: a new Keynesian perspective. MIT press.
- Ascari, G., Magnusson, L.M., Mavroeidis, S., 2021. Empirical evidence on the Euler equation for consumption in the US.
 Journal of Monetary Economics 117, 129–152.
- Drozd, L.A., Nosal, J.B., 2012. Understanding international prices: Customers as capital. American Economic Review 102, 364–395.
- Gilchrist, S., Schoenle, R., Sim, J., Zakrajšek, E., 2017. Inflation Dynamics during the Financial Crisis. American Economic Review 107, 785–823. https://doi.org/10.1257/aer.20150248
- Gourio, F., Rudanko, L., 2014. Customer capital. Review of Economic Studies 81, 1102–1136.

References (4/4)

- Paciello, L., Pozzi, A., Trachter, N., 2019. Price dynamics with customer markets. International Economic Review 60, 413-446-413-446.
- Schmitt-Grohé, S., Uribe, M., 2025. Hotelling meets Keynes: Aggregate Adjustment with Spatial Competition and Nominal Rigidity. NBER Working Paper Series.
- Taylor, J.B., 1993. Discretion versus policy rules in practice. Presented at the Carnegie-Rochester Conference Series on Public Policy, pp. 195–214. https://doi.org/10.1016/0167-2231(93)90009-L
- Chari, V.V., Kehoe, P.J., McGrattan, E.R., 2007. Business cycle accounting. Econometrica 75, 781-836.
- Gali, J., Gertler, M., 1999. Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics 44, 195–222.

Optimization Problem:

$$\Pi_{U,t} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_{0,t} \left[W_t \left(\int_0^1 H_{M,t}(i) di - \left(\int_0^1 H_{M,t}(j)^{\frac{\epsilon_W - 1}{\epsilon_W}} dj \right)^{\frac{\epsilon_W}{\epsilon_W - 1}} \right) \right]$$
(21)

First-Order Condition:

$$W_t(j) \left(\frac{H_{M,t}(j)}{H_{M,t}}\right)^{\frac{1}{\epsilon_W}} = W_t \tag{22}$$

Search Prices:

$$\hat{\boldsymbol{P}}_{\boldsymbol{S},t} = \epsilon \cdot \hat{\boldsymbol{m}} \boldsymbol{c}_{t} + \frac{\Gamma_{S}}{1 - \phi_{\epsilon}} \frac{1 + \phi_{\gamma}}{\psi \phi_{\gamma}} \left(\hat{\boldsymbol{q}}_{t} - \hat{\boldsymbol{\psi}}_{t} \right) - (1 + \phi_{\gamma}) \, \hat{\boldsymbol{\epsilon}}_{t}$$
(23)

Price Elasticity of Demand:

$$\hat{\Xi}_t = -\phi_{\epsilon} \hat{P}_{S,t} + \hat{\epsilon}_t \tag{24}$$

Capacity Utilization:

$$\hat{\boldsymbol{q}}_{t} = \frac{\psi \phi_{\gamma}}{1 + \nu_{S}} \left[(1 - \phi_{\epsilon}) \, \hat{\boldsymbol{P}}_{S,t} - (\nu_{S} + \phi_{C}) \, \hat{\boldsymbol{Y}}_{t} - \hat{\boldsymbol{\mu}}_{S,t} \right] + (1 + \phi_{\gamma}) \, \hat{\psi}_{t}$$
(25)

Consumption Euler Equation:

$$\hat{\mathbf{r}}_{t} - \mathbb{E}_{t}\hat{\boldsymbol{\pi}}_{t+1} = \phi_{C}\mathbb{E}_{t}\boldsymbol{\Delta}\hat{\mathbf{Y}}_{t+1} + \phi_{\epsilon}\mathbb{E}_{t}\boldsymbol{\Delta}\hat{\mathbf{P}}_{S,t+1}$$
(26)

Posted Price NK Phillips Curve:

$$\hat{\boldsymbol{\pi}}_{t} = \frac{1 + \phi_{\gamma}}{\kappa_{P}} \left[\epsilon \left(1 - \phi_{\epsilon} \right) \hat{\boldsymbol{m}} \boldsymbol{c}_{t} + \frac{\Gamma_{S}}{\psi} \left(\hat{\boldsymbol{q}}_{t} - \hat{\boldsymbol{\psi}}_{t} \right) - \frac{\hat{\boldsymbol{\epsilon}}_{t}}{\epsilon - 1} \right] + \beta \mathbb{E}_{t} \hat{\boldsymbol{\pi}}_{t+1}$$
(27)

Nominal Wage NK Phillips Curve:

$$\hat{\boldsymbol{\pi}}_{\boldsymbol{W},t} = (-1) \frac{\nu_{M} \left(\epsilon_{W} - 1\right)}{\kappa_{W}} \phi_{u} \hat{\boldsymbol{u}}_{t} + \beta \mathbb{E}_{t} \hat{\boldsymbol{\pi}}_{\boldsymbol{W},t+1}$$
(28)

Real Wage Growth:

$$\hat{\pi}_{W,t} - \hat{\pi}_t = \Delta \hat{m} c_t + \Delta \psi^{-1} \hat{q}_t + \Delta \hat{A}_t$$
 (29)

Real Gross Domestic Product:

$$\hat{\mathbf{Y}}_{t} = \nu_{M}^{-1} \left[(1 + \nu_{M}) \, \hat{\boldsymbol{\tau}}_{E,t} - \hat{\boldsymbol{\tau}}_{L,t} \right] \tag{30}$$

Labor Wedges (following Chari et al. (2007)):

$$\hat{\tau}_{L,t} = \phi_C \hat{\mathbf{Y}}_t + \nu_M \phi_u \hat{\mathbf{u}}_t - \hat{\mathbf{m}} c_t + \phi_\epsilon \hat{\mathbf{P}}_{S,t}$$
(31)

Efficiency Wedges (following Chari et al. (2007)):

$$\hat{\boldsymbol{\tau}}_{\boldsymbol{E},t} = \psi^{-1}\hat{\boldsymbol{q}}_t + \hat{\boldsymbol{A}}_t \tag{32}$$

Appendix: Calibration Targets

Determining the price adjustment cost parameter, κ :

Values based on Phillips curve estimation using labor share data (Gali & Gertler (1999)):

$$\hat{\pi}_t = \lambda_{ls} \hat{ls}_t + \hat{\xi}_t + \beta \mathbb{E}_t \hat{\pi}_{t+1}$$

- κ_p is set as residual value to match estimated value in the calibrated model.
- Results for default calibration: (1) $\kappa_{NK} \approx$ 130, (2) $\kappa_{SaM} \approx$ 171.

Determining the output gap Phillips curve slope:

- Output gap can be approximated by labor share: $\tilde{C}_t = \Omega_{ls.NK}^{-1} \hat{ls}_t$.
- Output gap approximation by labor share is biased: $ilde{C}_t = \Omega_{ls,SaM}^{-1} \Big[\hat{ls}_t \hat{ls}_{N,t} \Big]$
- Bias by $\hat{ls}_{N,t}$ is small in goods market SaM model, hence let's ignore it for now.

If $\frac{\Omega_{LS,SaM}}{\Omega_{LS},NK} \neq 1$, the slopes of the output gap Phillips curves across models are different even though the labor share Phillips curve slopes are identical.

Appendix - Full Steady-State Model

(36)

Firm Side:

$$P_S = \frac{\phi_\epsilon}{1 - \phi_\epsilon} \tag{33}$$

$$mc = P_S \phi_{\gamma}^{-1} = \frac{\epsilon - 1}{\epsilon} \left(1 + \frac{\phi_{\gamma}}{\epsilon} \right)^{-1}$$
 (34)

$$q = \psi \tag{35}$$

Household Side:

$$\Xi \,=\, (-\epsilon)\,(1-\phi_\epsilon)$$

$$muc = \xi_{C_M} (1 - \phi_{\epsilon}) C^{-\sigma}$$
 (37)

General Equilibrium:

$$Y = C_M = q \cdot \left[\frac{muc}{\mu_M} \cdot \frac{\epsilon_W - 1}{\epsilon_W} \cdot q \cdot mc \right]^{\frac{1}{\nu_M}}$$
 (38)

$$\hat{\mathbf{r}}_{t} - \hat{\mathbf{r}}_{t}^{N} - \mathbb{E}_{t} \hat{\boldsymbol{\pi}}_{t+1} = \Theta_{M,Y} \mathbb{E}_{t} \boldsymbol{\Delta} \tilde{\mathbf{Y}}_{t+1} + \Theta_{M,u} \mathbb{E}_{t} \boldsymbol{\Delta} \tilde{\mathbf{u}}_{t+1}, \tag{39}$$

$$\hat{\boldsymbol{\pi}}_{t} = \Theta_{\pi,Y} \tilde{\boldsymbol{Y}}_{t} + \Theta_{\pi,u} \tilde{\boldsymbol{u}}_{t} + \beta \mathbb{E}_{t} \hat{\boldsymbol{\pi}}_{t+1}, \tag{40}$$

$$\hat{\boldsymbol{\pi}}_{\boldsymbol{W},t} = (-1)\frac{\epsilon_{\boldsymbol{W}} - 1}{\kappa_{\boldsymbol{W}}} \phi_{\boldsymbol{u}} \tilde{\boldsymbol{u}}_{t} + \beta \mathbb{E}_{t} \hat{\boldsymbol{\pi}}_{\boldsymbol{W},t+1}, \tag{41}$$

$$\hat{\boldsymbol{\pi}}_{\boldsymbol{W},t} - \hat{\boldsymbol{\pi}}_t = \Theta_{\boldsymbol{w},Y} \Delta \tilde{\boldsymbol{Y}}_t + \Theta_{\boldsymbol{w},u} \Delta \tilde{\boldsymbol{u}}_t, \tag{42}$$

$$\hat{\mathbf{r}}_{t} = i_{r}\hat{\mathbf{r}}_{t-1} + (1 - i_{r})\left[i_{\pi}\hat{\boldsymbol{\pi}}_{t} + i_{Gap}\tilde{\boldsymbol{Y}}_{t}\right] + \hat{\boldsymbol{M}}_{t}, \tag{43}$$

$$\begin{array}{l} \theta_{q,Y} = \theta_{q,q}^{-1} \left\{ \epsilon \left(1 - \phi_{\epsilon} \right) \left[\nu_{M} + \phi_{C} \right] - \left(1 - \epsilon \phi_{\epsilon} \right) \left[\nu_{S} + \phi_{C} \right] \right\} \text{ and } \theta_{q,u} = \theta_{q,q}^{-1} \epsilon \left(1 - \phi_{\epsilon} \right) \nu_{M} \phi_{u} \text{ with } \\ \theta_{q,q} = \epsilon \left(1 - \phi_{\epsilon} \right) \left[1 + \nu_{M} - \frac{\Gamma_{S}}{1 - \phi_{\epsilon}} \frac{\epsilon - 1}{\epsilon} \right] + \frac{1 - \epsilon \phi_{\epsilon}}{\psi \phi \gamma} \left[1 + \nu_{S} - \left(1 + \phi_{\gamma} \right) \Gamma_{S} \right] \\ \theta_{\Xi,Y} = \frac{\phi_{\epsilon}}{1 - \phi_{\epsilon}} \left[\nu_{S} + \phi_{C} + \frac{1 + \nu_{S}}{2 + \phi_{\gamma}} \frac{\theta_{q,Y}}{\psi} \right] \text{ and } \theta_{\Xi,u} = \frac{\phi_{\epsilon}}{1 - \phi_{\epsilon}} \frac{1 + \nu_{S}}{\psi \gamma} \frac{\theta_{q,u}}{\psi} \\ \Theta_{M,Y} = \phi_{C} + \theta_{\Xi,Y} \text{ and } \Theta_{M,u} = \theta_{\Xi,u} \\ \Theta_{\pi,Y} = \frac{1 + \phi_{\gamma}}{\kappa_{P}} \left[\frac{1 - \phi_{\epsilon}}{\phi_{\epsilon}} \theta_{\Xi,Y} - \frac{\Gamma_{S}}{\phi_{\gamma}} \frac{\theta_{q,Y}}{\psi} \right] \text{ and } \Theta_{\pi,u} = \frac{1 + \phi_{\gamma}}{\kappa_{P}} \left[\frac{1 - \phi_{\epsilon}}{\phi_{\epsilon}} \theta_{\Xi,u} - \frac{\Gamma_{S}}{\phi_{\gamma}} \frac{\theta_{q,u}}{\psi} \right] \\ \Theta_{W,Y} = \frac{\theta_{\Xi,Y}}{\phi_{\gamma}} + \left(1 - \frac{\Gamma_{S}}{\sqrt{1 + \phi_{\gamma}}} \frac{1 + \phi_{\gamma}}{\sqrt{1 + \phi_{\gamma}}} \right) \frac{\theta_{q,Y}}{\phi_{\gamma}} \text{ and } \Theta_{W,u} = \frac{\theta_{\Xi,u}}{\phi_{\gamma}} + \left(1 - \frac{\Gamma_{S}}{\sqrt{1 + \phi_{\gamma}}} \frac{1 + \phi_{\gamma}}{\phi_{\gamma}} \right) \frac{\theta_{q,u}}{\phi_{\gamma}} \end{array}$$

The change in the Phillips curve slope is ambiguous:

- $\blacktriangleright \ \ \mathsf{If} \ \tfrac{\nu_{\mathcal{S}}}{\nu_{\mathit{M}}} < \bar{\nu}_{\mathit{SM}} \colon (\mathsf{Slope} \downarrow) \to (\Delta \tilde{\mathcal{C}}_{\mathit{M},t} = 1\%) \to (\Delta \hat{\pi}_t \downarrow).$
- ▶ If $\frac{\nu_S}{\nu_M} > \bar{\nu}_{SM}$: (Slope ↑) \rightarrow ($\Delta \tilde{C}_{M,t} = 1\%$) \rightarrow ($\Delta \hat{\pi}_t$ ↑).

The Euler equation slope is flatter with goods market SaM:

▶ Real interest rate change leads to lower output gap growth response.

Corollary: Overall Output Gap Response

Goods market SaM impact ...

- ▶ Case 1: $\frac{\nu_S}{\nu_M} < \bar{\nu}_{SM}$: ... on Phillips & Euler eq. counteract each other.
- ▶ Case 2: $\frac{\nu_S}{\nu_M} > \bar{\nu}_{SM}$: ... on Phillips & Euler eq. amplify each other.

Appendix - IRFs to Different Expansionary Cost-Push Shocks

