Flots

© N. Brauner, 2019, M. Stehlik 2020

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- Flots et coupes
- 4 Algorithme de Ford-Fulkerson
- 5 Flot maximum / Coupe minimum

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- 3 Flots et coupes
- 4 Algorithme de Ford-Fulkerson
- 5 Flot maximum / Coupe minimum

Arcs sortants et entrants

Définition

Soient G=(V,A) un graphe orienté et $U\subseteq V$. Alors, on note $\delta^+(U)$ l'ensemble des arcs sortants de l'ensemble U (cocycle positif). De même, on note $\delta^-(U)$ l'ensemble des arcs entrants dans U (cocycle négatif).

Rappel:

- arc sortant de l'ensemble U : arc dont le début est dans U et la fin dans $V \setminus U$.
- arc entrant de l'ensemble U : arc dont le début est dans $V \setminus U$ et la fin dans U.

Définition

Soient G = (V, A) un graphe orienté et $U \subseteq V$. Alors, on note $\delta^+(U)$ l'ensemble des arcs sortants de l'ensemble U (cocycle positif). De même, on note $\delta^-(U)$ l'ensemble des arcs entrants dans U (cocycle négatif).

Rappel:

- $\delta^+(U)$ $\delta^{-}(U)$
- arc sortant de l'ensemble U: arc dont le début est dans U et la fin dans $V \setminus U$.
- arc entrant de l'ensemble U : arc dont le début est dans $V \setminus U$ et la fin dans U.

Définition

- le degré entrant d⁻(v), est le nombre d'arcs dont la fin est v.
- le degré sortant d⁺(v), est le nombre d'arcs dont le début est v.
- On a $d^-(v) = |\delta^-(\{v\})|$ et $d^+(v) = |\delta^+(\{v\})|$.
- v est une source si $d^-(v) = 0$.
- v est un puits si $d^+(v) = 0$.

Degré sortant et degré entrant

Définition

- le degré entrant d⁻(v), est le nombre d'arcs dont la fin est v.
- le degré sortant d⁺(v), est le nombre d'arcs dont le début est v.
- On a $d^-(v) = |\delta^-(\{v\})|$ et $d^+(v) = |\delta^+(\{v\})|$.
- v est une source si $d^-(v) = 0$.
- v est un puits si $d^+(v) = 0$.

$$d^+(v) = 1$$
$$d^-(v) = 2$$

Réseaux

Définition

Un réseau est un graphe orienté G = (V, A) avec :

- deux sommets spéciaux :
 - la source s tel que $d^{-}(s) = 0$
 - le puits t tel que $d^+(t) = 0$
- une fonction de capacité $c: A \to \mathbb{R}^+$.

Coupes

Définition

 $X \subset V$ est une s - t coupe de Gsi $s \in X$ et $t \notin X$

Définition

La capacité d'une coupe X est $cap(X) = \sum_{a \in \delta^+(X)} c(a).$

$$cap(X) = 2 + 4 + 1 + 2 + 5 = 14$$

Le problème de la coupe minimum

Problème

Trouver une s - t coupe de capacité minimum.

$$cap(X) = 2 + 2 + 2 + 3 = 9$$

3

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- 3 Flots et coupes
- 4 Algorithme de Ford-Fulkersor
- 5 Flot maximum / Coupe minimum

Flot Maximum

Un exemple

La compagnie pétrolière Inti T'schouff souhaite acheminer du pétrole par oléoduc vers un pays client. Le réseau d'oléoducs comporte plusieurs tronçons, chacun ayant une capacité maximale (en débit) à ne pas dépasser. Les tronçons sont directionnels.

Comment modéliser le problème par un graphe?

Flot Maximum

Un exemple

Sur le graphe suivant, la compagnie pétrolière est représentée par le cylindre, le client par le jeton. La capacité maximale de chaque arc est indiquée.

Quel est le débit maximum que la compagnie pétrolière peut envoyer vers le client via le réseau? En général, est-ce facile de trouver le débit maximum d'un tel réseau?

Algo de Ford-Fulkerson

Quelques exemples

- Les réseaux : réseaux de train, canalisations, tuyaux, routes, câbles électriques, réseaux d'information, réseaux routier, infrastructures de déplacement d'une station de ski
- La question : combien (d'information, d'eau, de touristes, de voitures, d'électrons...) peut-on faire transiter sur le réseau?

Leur interprétation correspond à la circulation de flux physiques sur un réseau : distribution électrique, réseau d'adduction, acheminement de paquets sur Internet... Il s'agit d'acheminer la plus grande quantité possible de matière entre une source s et une destination t. Les liens permettant d'acheminer les flux ont une capacité limitée, et il n'y a ni perte, ni création de matière lors de l'acheminement : pour chaque noeud intermédiaire du réseau, le flux entrant (ce qui arrive) doit être égal au flux sortant (ce qui repart).

Flots

Définition

Soit G = (V, A) un réseau

- de capacité $c: A \to \mathbb{R}^+$
- avec la source s et le puits t

Un s-t flot est une fonction $f:A\to\mathbb{R}^+$ qui vérifie

- $\forall a \in A$, $0 \le f(a) \le c(a)$ (contrainte de capacité)
- $\forall v \in V \setminus \{s, t\},$ $\sum_{a \in \delta^{-}(\{v\})} f(a) = \sum_{a \in \delta^{+}(\{v\})} f(a)$ (conservation de flot).

Définition

Algo de Ford-Fulkerson

La valeur d'un flot f est $val(f) = \sum_{a \in \delta^+(\{s\})} f(a)$.

Définition

Définitions et rappels

Soit G = (V, A) un réseau

- de capacité $c: A \to \mathbb{R}^+$
- avec la source s et le puits t

Un s - t flot est une fonction $f: A \to \mathbb{R}^+$ qui vérifie

- $\forall a \in A$, $0 \le f(a) \le c(a)$ (contrainte de capacité)
- $\forall v \in V \setminus \{s, t\},\$ $\sum_{a \in \delta^{-}(\{v\})} f(a) = \sum_{a \in \delta^{+}(\{v\})} f(a)$ (conservation de flot).

Définition

La valeur d'un flot f est $\operatorname{val}(f) = \sum_{a \in \delta^+(\{s\})} f(a).$

$$val(f) = 2 + 1 + 3 = 6$$

Flot Maximum

Gustav Kirchhoff, physicien allemand de la fin du XIXe siècle né à Königsberg (!) a énoncé deux lois (1845), la loi des mailles et la loi des nœuds : en chaque point du réseau électrique, la somme des intensités entrantes est égale à la somme des intensités sortantes.

Le problème du flot maximum

Problème

Trouver un s - t flot de valeur maximum.

$$val(f) = 2 + 2 + 5 = 9$$

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- S Flots et coupes
- 4 Algorithme de Ford-Fulkersor
- 5 Flot maximum / Coupe minimum

Lemme

Définitions et rappels

Soit f un flot et X une s-t coupe. Alors, le flot qui traverse la coupe est égal au flot qui sort du sommet s.

$$\sum_{a \in \delta^+(X)} f(a) - \sum_{a \in \delta^-(X)} f(a) = \operatorname{val}(f)$$

$$val(f) = 2 + 2 + 5$$

= 5 + 2 - 2 + 4

Algo de Ford-Fulkerson

Flots et coupes

Démonstration

$$val(f) = \sum_{a \in \delta^{+}(\{s\})} f(a)$$

$$= \sum_{a \in \delta^{+}(\{s\})} f(a) - \sum_{a \in \delta^{-}(\{s\})} f(a)$$

$$= \sum_{v \in X} \left(\sum_{a \in \delta^{+}(\{v\})} f(a) - \sum_{a \in \delta^{-}(\{v\})} f(a) \right)^{-(*)}$$

$$= \sum_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a).$$

 $^{^{(*)}}$ Par conservation de flot, tous les termes sont égaux à 0 sauf quand v=s

Définitions et rappels

iante laible

Lemme

Soit f un flot et X une s-t coupe quelconques. Alors, la valeur de f est inférieure ou égale à la capacité de la coupe X.

Démonstration

$$\operatorname{val}(f) = \sum_{a \in \delta^+(X)} f(a) - \sum_{a \in \delta^-(X)} f(a)$$
 $\leq \sum_{a \in \delta^+(X)} f(a)$
 $\leq \sum_{a \in \delta^+(X)} c(a)$
 $= \operatorname{cap}(X).$

Corollaire

Soit f un flot et X une coupe. Si val(f) = cap(X), alors f est un flot max et X est une coupe min.

Corollaire

Soit f un flot et X une coupe. Si val(f) = cap(X), alors f est un flot max et X est une coupe min.

$$val(f) = 9$$
$$cap(X) = 9$$

Le flot f est maximum. La coupe X est minimum.

Corollaire

Soit f un flot et X une coupe. Si val(f) = cap(X), alors f est un flot max et X est une coupe min.

$$val(f) = 9$$
$$cap(X) = 9$$

La coupe *X* est minimum.

<u>Attention</u>: pour la capacité de la coupe, il faut bien prendre la valeur des capacités des arcs, et non la valeur du flot.

Le flot f est maximum.

Corollaire

Soit f un flot et X une coupe. Si val(f) = cap(X), alors f est un flot max et X est une coupe min.

$$val(f) = 9$$
$$cap(X) = 9$$

Le flot f est maximum. La coupe X est minimum.

Attention : pour la capacité de la coupe, il faut bien prendre la valeur des capacités des arcs, et non la valeur du flot.

$$\operatorname{cap}(X') = 22 > \operatorname{cap}(X)$$

La coupe X' n'est pas minimum.

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- 3 Flots et coupes
- 4 Algorithme de Ford-Fulkerson
- 5 Flot maximum / Coupe minimum

Un algorithme glouton

- Commencer par le flot nul, càd, f(a) = 0 pour chaque arc $a \in A$.
- Trouver un s t chemin P où tout arc vérifie f(a) < c(a).
- Augmenter le flot le long le chemin P.
- Répéter jusqu'à être coincé.

Un algorithme glouton

- Commencer par le flot nul, càd, f(a) = 0 pour chaque arc $a \in A$.
- Trouver un s t chemin P où tout arc vérifie f(a) < c(a).
- Augmenter le flot le long le chemin P.
- Répéter jusqu'à être coincé.

is un algorithme de not max

Un algorithme glouton

Définitions et rappels

- Commencer par le flot nul, càd, f(a) = 0 pour chaque arc $a \in A$.
- Trouver un s t chemin P où tout arc vérifie f(a) < c(a).
- Augmenter le flot le long le chemin P.
- Répéter jusqu'à être coincé.

On est coincé, pourtant le flot n'est pas maximum!

Le graphe résiduel

Arc originel:

- $a = (u, v) \in A$.
- Flot f(a), capacité c(a).

Arc résiduel:

- "annuler" le flot envoyé (ou une partie)
- a = (u, v) et $a^R = (v, u)$.
- Capacité résiduelle :

$$c_f(a) = \begin{cases} c(a) - f(a) & \text{si } a \in A \\ f(a) & \text{si } a^R \in A. \end{cases}$$

arc de G

arcs de R_f

Le graphe résiduel

Graphe résiduel :

- Arcs résiduels avec capacité résiduelle positive.
- $A_f = \{a \mid f(a) < c(a)\} \cup \{a^R \mid a\}$ f(a) > 0.

Chemin augmentant:

- Un chemin augmentant est un s-t chemin simple (="sans répétition d'arc'') dans le graphe résiduel R_f .
- La capacité cap (R_f, P) d'un chemin augmentant P est le minimum des capacités résiduelles parmi tous les arcs de P.

Définitions et rappels

- Soit f un flot et P un chemin augmentant dans R_f .
- En envoyant un flot de valeur $cap(R_f, P)$ on obtient un nouveau flot f' de valeur $val(f') = val(f) + cap(R_f, P)$.

augmenter : mettre à jour le flot selon un chemin augmentant

Données:

$$ig | G = (V,A) \ | c : A
ightarrow \mathbb{R}^+ \ | ext{flot } f \ | ext{chemin augmentant } P$$

Résultat: flot f mis à jour (augmenté)

$$\varepsilon \leftarrow \min\{c_f(a) : a \in A(P)\}$$

pour tout a arc de P faire

si
$$a \in A$$
 alors

sinon

Propriété clé

Définitions et rappels

augmenter : mettre à jour le flot (version abrégée)

Données : voir page précédente

Résultat : flot f mis à jour

$$\varepsilon \leftarrow \min\{c_f(a) : a \in A(P)\}$$

pour tout a arc de P faire

Propriété clé

Définitions et rappels

augmenter : mettre à jour le flot (version abrégée)

Données : voir page précédente

Résultat : flot f mis à jour

$$\varepsilon \leftarrow \min\{c_f(a) : a \in A(P)\}$$

pour tout a arc de P faire

si
$$a \in A$$
 alors
 $\[f(a) \leftarrow f(a) + \varepsilon \]$
sinon

augmenter: mettre à jour le flot (version abrégée)

Données: voir page précédente

Résultat : flot f mis à jour

$$\varepsilon \leftarrow \min\{c_f(a) : a \in A(P)\}$$

pour tout a arc de P faire

$$\ \ \, \bigsqcup f(a^R) \leftarrow f(a) - \varepsilon$$

Définitions et rappels

augmenter : mettre à jour le flot (version abrégée)

Données : voir page précédente

Résultat : flot f mis à jour

$$\varepsilon \leftarrow \min\{c_f(a) : a \in A(P)\}$$

pour tout a arc de P faire

retourner f

Données:

Définitions et rappels

$$G = (V, A)$$

$$c:A\to\mathbb{R}^+$$

 $s, t \in V$ (source et puits)

Résultat : Un flot f maximum

Initialisation

$$f(a) = 0 \quad \forall a \in A$$

 $f(a) = 0 \quad \forall a \in A$ $R_f \leftarrow \text{graphe residuel}$

tant que il existe un chemin augmentant P faire

 $f \leftarrow \operatorname{augmenter}(G, f, c, P)$

mettre a jour R_f

retourner f

Données:

Définitions et rappels

$$G = (V, A)$$

$$c:A o\mathbb{R}^+$$

 $s, t \in V$ (source et puits)

Résultat : Un flot f maximum

Initialisation

$$f(a) = 0 \quad \forall a \in A$$

 $f(a) = 0 \quad \forall a \in A$ $R_f \leftarrow \text{graphe residuel}$

tant que il existe un chemin augmentant P faire

 $f \leftarrow \operatorname{augmenter}(G, f, c, P)$

mettre a jour R_f

retourner f

Données:

Définitions et rappels

$$G = (V, A)$$

$$c:A\to\mathbb{R}^+$$

 $s, t \in V$ (source et puits)

Résultat : Un flot f maximum

Initialisation

$$f(a) = 0 \quad \forall a \in A$$

 $f(a) = 0 \quad \forall a \in A$ $R_f \leftarrow \text{graphe residuel}$

tant que il existe un chemin augmentant P faire

 $f \leftarrow \operatorname{augmenter}(G, f, c, P)$

mettre a jour R_f

retourner f

Données:

Définitions et rappels

$$G = (V, A)$$

$$c: A \to \mathbb{R}^+$$

 $s, t \in V$ (source et puits)

Résultat : Un flot f maximum

Initialisation

$$f(a) = 0 \quad \forall a \in A$$

 $f(a) = 0 \quad \forall a \in A$ $R_f \leftarrow \text{graphe residuel}$

tant que il existe un chemin augmentant P faire

 $f \leftarrow \operatorname{augmenter}(G, f, c, P)$

mettre a jour R_f

retourner f

Plan

- 1 Définitions et rappels
- 2 Flot maximum
- 3 Flots et coupes
- Algorithme de Ford-Fulkersor
- 5 Flot maximum / Coupe minimum

Le théorème flot-max/coupe-min

Théorème des chemins augmentants

Un flot f est maximum ssi il n'y a pas de chemin augmentant.

Théorème (Elias-Feinstein-Shannon 1956; Ford-Fulkerson 1956)

La valeur maximum d'un flot est égale à la capacité minimum d'une coupe.

On va prouver les deux théorèmes en même temps en démontrant que les énoncés suivants sont équivalents :

- (1) Il existe une coupe X telle que val(f) = cap(X).
- (2) Le flot f est maximum.
- (3) Il n'existe pas de chemin augmentant par rapport à f.

(1) Il existe une coupe X telle que val(f) = cap(X).

Démonstration du théorème flot-max/coupe-min (1/2)

- (2) Le flot f est maximum.
- (3) Il n'existe pas de chemin augmentant par rapport à f.

- $(1) \Rightarrow (2)$ Corollaire à la dualité faible.
- (2) \Rightarrow (3) Soit f un flot. S'il existe un chemin augmentant P, on peut augmenter f en envoyant un flot le long P.
- $(3) \Rightarrow (1)$
 - Soit f un flot sans chemin augmentant.
 - Soit X un ensemble de sommets atteignables depuis s dans le graphe résiduel.
 - Par la définition de X, $s \in X$.
 - Par la définition de f, $t \notin X$.
 - Donc X est une s-t coupe

Démonstration du théorème flot-max/coupe-min (2/2)

$$val(f) = \sum_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$= \sum_{a \in \delta^{+}(X)} c(a)$$

$$= cap(X)$$

$$= cap(X)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{-}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f(a) - \sum_{a \in \delta^{+}(X)} f(a)$$

$$\int_{a \in \delta^{+}(X)} f($$

 R_f

- Il suffit de prendre X comme l'ensemble des sommets atteignables à partir de s dans le graphe résiduel R_f .
- C'est-à-dire, $v \in X$ ssi il existe un chemin orienté dans R_f avec sommet de départ s et sommet d'arrivée v.
- Si vous trouvez que $t \in X$, alors il existe un chemin augmentant et f n'est pas maximum dans ce cas, il faut encore faire tourner Ford-Fulkerson!

Conclusion

Définitions et rappels

Quand on vous demande de trouver un flot maximum dans un graphe, il faut :

- appliquer l'algorithme de Ford-Fulkerson,
- vérifier que vous ne vous êtes pas arrêtés trop tôt en cherchant une s-t coupe de capacité égale à la valeur du flot trouvé.