Discrete Mathematics

Relations
Relations and Their Properties

Contents

1	Relations and Their Properties
2	N-ary Relations and Their Applications
3	Representing Relations
4	Equivalence Relations
5	Partial Orderings

Relations and Their Properties

DEFINITION 1

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

A binary relation from *A* to *B* is a set *R* of ordered pairs where the first element of each ordered pair comes from *A* and the second element comes from *B*.

We use the notation a R b to denote that $(a,b) \in R$. Moreover, when (a,b) belongs to R, a is said to be **related to** b by R.

Relations and Their Properties

EXAMPLE 1

Let *A* be the set of students in your school, and let *B* be the set of courses.

Let R be the relation that consists of those pairs (a,b), where a is a student enrolled in course b.

EXAMPLE 3

Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B.

R	а	b
0	×	X
1	×	
2		×

Relations and Their Properties

Functions As Relations

Recall that a function *f* from a set *A* to a set *B* assigns exactly one element of *B* to each element of *A*.

The graph of f is the set of ordered pairs (a,b) such that b=f(a).

Because the graph of f is a subset of $A \times B$, it is a relation from A to B.

Moreover, the graph of a function has the property that every element of A is the first element of exactly one ordered pair of the graph.

Relations on a Set

DEFINITION 2

A *relation on a set A* is a relation from *A* to *A*.

EXAMPLE 4

Let *A* be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

FIGURE 2 Displaying the Ordered Pairs in the Relation R from Example 4.

Properties of Relations

DEFINITION 3

A relation R on a set A is called *reflexive* if $(a,a) \in R$ for every element $a \in A$.

EXAMPLE 7

Consider the following relations on {1, 2, 3, 4}. Which of these relations are reflexive?

$$R_{1} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

$$R_{2} = \{(1, 1), (1, 2), (2, 1)\},\$$

$$R_{3} = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$$

$$R_{4} = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

$$R_{5} = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$$

$$R_{6} = \{(3, 4)\}.$$

Properties of Relations

DEFINITION 4

A relation R on a set A is called *symmetric* if $(b,a) \in R$ whenever $(a,b) \in R$, for all $a,b \in A$.

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.

Using quantifiers, we see that the relation R on the set A is symmetric if $\forall a \forall b \ ((a, b) \in R \rightarrow (b, a) \in R)$.

Similarly, the relation R on the set A is antisymmetric if $\forall a \forall b (((a, b) \in R \land (b, a) \in R) \rightarrow (a = b))$.

That is, a relation is *symmetric* if and only if *a* is related to *b* implies that *b* is related to *a*.

A relation is *antisymmetric* if and only if there are no pairs of distinct elements *a* and *b* with *a* related to *b* and *b* related to *a*.

Properties of Relations

DEFINITION 5

A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

Using quantifiers we see that the relation R on a set A is *transitive* if we have $\forall a \forall b \forall c (((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R)$.