PROBLEMAS SURTIDOS

- Consideremos en $\mathbb{C}^{n\times n}$ el producto interno dado por $\langle A,B\rangle=\operatorname{tr}(AB^*)$. Dada $Q\in\mathbb{C}^{n\times n}$ sea $T_Q:\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n}$ la transformación lineal definida por $T_Q(A)=QA-AQ$.
 - (a) Hallar T_Q^* .
 - (b) Probar que T_Q es autoadjunta si y sólo si $Q = Q^* + \lambda I$ para algún $\lambda \in \mathbb{C}$.

$$\langle T_{P}(A), B \rangle = \langle A, T_{P}^{*}(B) \rangle$$

CALCULO:

$$\langle T_{\varphi}(A), B \rangle = t_{r}(T_{\varphi}(A))B^{*}$$

= $t_{r}(\varphi A - \Delta \varphi)B^{*}) = t_{r}(\varphi(A)B^{*}) - t_{r}(\Delta \varphi B^{*})$

=
$$tr(AB^*Q)-tr(AQB^*) = tr(A(B^*Q-QB^*)^*)$$

$$=\langle A, (B^{*}Q-QB^{*})\rangle$$

$$\sim$$
 Asi, $(T_{Q})^{*}(3) = (3^{*}Q - Q3^{*})^{*}$; más aún, $(T_{Q})^{*}(3) = Q^{*}(3^{*}) - (3^{*})^{*}Q^{*} = T_{Q}^{*}(3)$,

$$B$$
 B

$$\Delta = A \left(\partial - \partial_{k} \right) A = A \left(\partial - \partial_{k} \right) A$$

Sea V un \mathbb{R} -espacio vectorial con producto interno, de dimensión n. Dado $w \in V$ no nulo, denotamos por s_w a la transformación lineal

$$s_w: V \longrightarrow V, \qquad s_w(v) = v - 2 \frac{\langle v, w \rangle}{\|w\|^2} w.$$

- (a) Probar que s_w es una transformación ortogonal, con $\det(s_w) = -1$. A estas transformaciones ortogonales las llamaremos *simetrías*.
- (b) Sea $f:V\to V$ una transformación ortogonal tal que $f\neq id_V$. Probar que existen $v\in V$ no nulo y una simetría s_w tales que $(s_w\circ f)(v)=v$.
- (c) Probar que toda transformación ortogonal $f:V\to V$ es una composición de a lo sumo n simetrías. Es decir, que existen $w_1,\ldots,w_m\in V$ no nulos, con $0\le m\le n$, tales que $f=s_{w_1}\circ\cdots\circ s_{w_m}$.

(a) SEA
$$B = \{V_1, V_2, ..., V_m\}$$
 Ban con $V_1 = \lambda W$.
 $S_W(V_1) = \lambda S_W(W) = \lambda (W - 2\{V_1W\}W)$
 $= -\lambda W = -V_1$

$$Sw(Vi) = Vi - 2\langle Vi, W \rangle w = Vi, i > 1$$

$$V_1 < Vi, V_1 \rangle$$

CON LO QUE SU ES ORTOGONAL; MÁS AUN,
$$e^{t}(su) = det(su) = -1$$

DIBULO:
$$f(v)$$
 $V = f(v) - V$
 $V = f(v) - V$

$$=\langle v, f(v) \rangle - \langle v, v \rangle + \langle f(v), f(v) \rangle - \langle f(v), v \rangle = 0$$

Sw (w) = w, o sea:

Sw (v+
$$f(v)$$
) = v+ $f(v)$;

ADEMÁS Sw ($f(v)$ -v) = v- $f(v)$

2 Sw ($f(v)$) = 2 v

(C) SEA $f: V \rightarrow V$ DETOGONAL

So $f=1_V$, ES LA COMPOSICIÓN DE O SIMETOIAS

SUP $f \neq 1_V$. SEAN V, w COMO EN b)

SEA $S=(V)$, y SEA $g=Swef$.

COMO f (S DETOGONAL),

PODEMAS CONSIDERAR

OMO f (S DETOGONAL),

OMO f (S) DETOGONAL,

OMO f (S) DETOGONAL

OMO f (S) DETOG

como $dim_1(S^{\perp}) = m-1$, existen $W_2,...,W_m$ $\in S^{\perp}$, con $m \leq m$ TALES QUE

SIMET RÍAS EN V

AFIRMO: f = Swo Swo o Swm

DEM: BUP COINCIDEN EN S Y 5¹.

$$= SW\left(\left(SW_{2}\circ \dots \circ SW_{m}\right)|V)\right) = SW(V) = f(V)$$

$$= V, PUES VELW_{2}, \dots, W_{m} \rangle^{\perp}$$

· SI LIES,

$$\sum_{N} (S_{N} \circ S_{N} \circ \cdots S_{N})(N) = f(N)$$

$$S_{N}^{-1} = S_{N}$$