Raspberry Pi를 활용한 IoT 프로젝트

라즈베리 파이 GPIO와 센서 동작하기

4일차

담당교수 : 조도은

https://github.com/DoEunCho/raspberrypi

학습 목차

1일차 : 라즈베리파이 소개와 환경 구축(3H)

2일차 : 라즈베리 파이를 위한 리눅스 기초 배우기(3H)

3일차 : 파이썬 기초 명령어 익히기(3H)

4일차: 라즈베리 파이 GPIO와 센서 동작하기(3H)

5일차 : 나만의 가상비서 만들기(구글 어시스턴트)(3H)

4일차

강의 내용

• 라즈베리 파이 GPIO 및 센서 사용하기

- GPIO 핀 구조
- LED
- Button
- Button과 LED
- Servo Motor
- PIR(HC-SR501)

GPIO 핀 구조

GPIO

- General Purpose Input Output의 약자
- 라즈베리 파이에서 범용 입출력으로 많이 사용
- 총 26개 포트가 있음(GPIO 2~GPIO 27)
- 기본 입출력 외에 하나의 핀에 다른 기능의 입 출력도 사용 가능
- 전원은 micro-USB 단자를 통해 5V 전원을 제 공(내부 동작은 3.3Volt기반)
- GPIO 핀 당 3.3V/50mA의 최대 허용 전원이내 에서 사용할 것

GPIO 핀구조 : https://pinout.xyz/

Pin#	NAME		NAME	Pin#
01	3.3v DC Power	0	DC Power 5v	02
03	GPIO02 (SDA1 , I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)		Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

GPIO 핀 구조

■ GPIO 라이브러리

- GPIO 사용을 위해서는 센서와 라즈베리 파이의 GPIO핀을 연결해야 함
- 프로그램으로 센서를 제어하기 위해 라즈비안에 포함된 RPi.GPIO 라이브러리가 필요.
- GPIO.setmode 함수
 - GPIO 세팅을 위해 사용하는 함수로 BCM 옵션은 "브로드컴 SOC채널"번호에 의한 핀 번호를 사용할 경우 세팅하는 옵션
 - BOARD 옵션은 그림의 물리적 구성(핀)을 핀 번호로 사용할 경우 세팅하는 옵션
 - BCM으로 세팅하는 경우 GPIO 4에 해당하는 핀은 BOARD로 세팅하는 경우 7번 핀에 해당

GPIO.setmode(GPIO.BCM) # BCM 핀번호 GPIO.setmode(GPIO.BOARD) #물리적 핀번호

4-1

GPIO 핀 구조

■ 브레드보드

- 브레드보드는 납땜하지 않고도 각종 전자 부품을 쉽게 꽂아 전자회로를 구성할 수 있는 보드

LED

LED 실습

라즈베리 파이의 GPIO 출력을 제어하기 위해 LED를 브레드 보드에 연결하여 ON/OFF 실습을 진행한다.

(1) 브레드 보드 연결하기

준비물: LED×1, 저항(220Ω)×1, 점퍼선×2

라즈베리 파이	LED
GPIO 4	+ 저항
GND	-

LED

LED 실습

- (2) 파이썬 코드 작성하기
- (3) 코드 실행하기

LED가 10회 깜빡이는 것을 확인할 수 있다.

```
#모듈 불러오기
import RPi.GPIO as GPIO
import time
#GPIO 핀 번호 모드를 BCM으로 설정
GPIO.setmode(GPIO.BCM)
#LED 핀번호 설정
led_pin = 4
#LED 핀 출력으로 설정화
GPIO.setup(led_pin, GPIO.OUT)
#10번 반복하여 LED on/off
for i in range(10):
        GPIO.output(led_pin, 1)
        time.sleep(1)
        GPIO.output(led_pin, 0)
        time.sleep(1)
#GPIO 설정 초기화
GPIO.cleanup()
```

led.py

LED

LED PWM 실습

- (2) 파이썬 코드 작성하기
- (3) 코드 실행하기

LED가 점점 밝아지는 것을 확인할 수 있다.

```
import RPi.GPIO as GPIO
                                                        ledpwm.py
import time
GPIO.setmode(GPIO.BCM)
                             # LED 핀은 라즈베리파이 GPIO 2번 핀
LED pin = 18
                            # LED 핀을 출력으로 설정
GPIO.setup(LED_pin, GPIO.OUT)
                            # LED 핀에 100Hz의 PWM을 설정
pwm = GPIO.PWM(LED_pin, 100)
                            # 처음 PWM 출력은 0으로 설정
pwm.start(0)
try:
  while True:
                           # pwm의 듀티사이클을 0%로(LED 끔)
     pwm.ChangeDutyCycle(0)
     time.sleep(1)
     pwm.ChangeDutyCycle(25)
                           # 듀티사이클을 25%로(LED 밝기 25%)
     time.sleep(1)
                           # 듀티사이클을 50%로(LED 최대의 절반 밝기로)
     pwm.ChangeDutyCycle(50)
     time.sleep(1)
     pwm.ChangeDutyCycle(75) # 듀티사이클을 75%로(LED 밝기 75%)
     time.sleep(1)
     pwm.ChangeDutyCycle(100) # 듀티사이클을 100%로(LED 최대 밝기)
     time.sleep(1)
finally:
                           # GPIO 핀들을 초기화
  GPIO.cleanup()
```


• 3개의 LED로 신호등 실습

라즈베리 파이의 GPIO 출력을 제어하기 위해 3개의 LED를 브레드 보드에 연결하여 ON/OFF 실습을 진행한다.

준비물: LED×3, 저항(220Ω)×3, 점퍼선×3

라즈베리 파이	LED
GPIO 2	+ 저항
GPIO 3	+ 저항
GPIO 4	+ 저항
GND	-

■ 3개 LED 실습

(2) 파이썬 코드 작성하기

(3) 코드 실행하기

3개의 LED가 순서대로 켜 지고 꺼지는 것을 확인할 수 있다.

```
import RPi.GPIO as GPIO
import time
# GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
led_pin1 = 2
led pin2 = 3
led pin3 = 7
GPIO.setup(led_pin1, GPIO.OUT)
GPIO.setup(led_pin2, GPIO.OUT)
GPIO.setup(led pin3, GPIO.OUT)
try:
   while True:
     GPIO.output(led pin1, 1) #True
     GPIO.output(led_pin2, 0) #False
     GPIO.output(led_pin3, 0) #False
     time.sleep(1)
     GPIO.output(led_pin1, 0)
     GPIO.output(led pin2, 1)
     GPIO.output(led_pin3, 0)
     time.sleep(1)
```

3led.py

```
GPIO.output(led_pin1, 0)
GPIO.output(led_pin2, 0)
GPIO.output(led_pin3, 1)
time.sleep(1)
```

except KeyboardInterrupt : GPIO.cleanup()

Button

■ 푸시 버튼 입력 감지하기

푸시 버튼을 추가 연결하여 버튼을 눌렀을 때 모니터에 "Button push!" 메시지를 출력한다.

(1) 브레드 보드 연결하기

준비물: Button×1, 저항(10kΩ)×1 ×1 점퍼선×2

라즈베리 파이	Button
VCC(3.3V)	버튼 연결
GPIO 15	버튼 연결

button.py

■ Button 실습

- (2) 파이썬 코드 작성하기
- (3) 코드 실행하기Button을 눌렀을 때 출력창에"Button pushed!"가 출력되는 것을 확인한다.

```
#모듈 불러오기
import RPi.GPIO as GPIO
import time
#GPIO 핀 번호 모드를 BCM으로 설정
GPIO.setmode(GPIO.BCM)
#Button 핀번호 설정
button = 15
#버튼을 input으로 설정
GPIO.setup(button, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
while 1:
     if GPIO.input(button) == GPIO.HIGH:
          print("Button pushed!")
     time.sleep(0.1)
```

Button과 LED

■ 푸시 버튼 입력으로 LED 켜고 끄기 실습

푸시 버튼 을 연결하여 Event 알림 방식으로 입력을 받아서 LED의 ON/OFF를 제어한다.

(1) 브레드 보드 연결하기

준비물: LED×1, 저항(220Ω)×1 저항(10kΩ)×1, 점퍼선×6, Button×1

라즈베리 파이	LED	Button
GPIO 4	+ 저항	
GND	-	
VCC(3.3V)		버튼 연결
GPIO 15		버튼 연결

Button과 LED

■ 푸시 버튼 입력으로 LED 켜고 끄기 실습

(2) 파이썬 코드 작성하고, 버튼을 눌렀을 때 LED가 켜지는 것을 확인한다.

```
import RPi.GPIO as GPIO
                                                    # 버튼 핀이 HIGH이면 LED 핀을 HIGH(LED 켬)
GPIO.setmode(GPIO.BCM)
                                                    # 버튼 핀이 HIGH가 아니면 LED 핀을 LOW(LED 끔)
                                                    try:
# LED 핀은 GPIO 4번 핀으로 설정
                                                      while True:
led_pin =4
                                                         if GPIO.input(button pin) == GPIO.HIGH:
                                                           GPIO.output(led pin, GPIO.HIGH)
# 버튼 핀은 GPIO 15번 핀으로 설정
                                                         else:
button_pin = 15
                                                           GPIO.output(led pin, GPIO.LOW)
# IFD 핀을 출력으로 설정
                                                    finally:
GPIO.setup(led pin, GPIO.OUT, initial=GPIO.LOW)
                                                                       # GPIO 핀들을 초기화
                                                      GPIO.cleanup()
#BUTTON 핀을 입력으로 설정
GPIO.setup(button_pin, GPIO.IN, pull_up_down =
GPIO.PUD DOWN)
# 버튼 핀을 풀다운저항이 있는 출력으로 설정
# 풀다운 저항이 있으면 버튼을 누르지 않으면 LOW 신호가 됨
# GPIO.PUD UP으로 하면 버튼을 누르지 않으면 HIGH 신호가 됨
```

Button과 LED

■ 2개의 푸시 버튼 입력으로 2개의 LED 켜고 끄기 실습

(2) 파이썬 코드 작성하고, 버튼을 눌렀을 때 해당 LED가 켜지고 꺼지는 것을 확인한다.

```
import RPi.GPIO as GPIO
                                                         try:
GPIO.setmode(GPIO.BCM)
                                                            while True:
                                                               if GPIO.input(button_pin1) == 0:
# LED 핀은 GPIO 4번 핀으로 설정
                                                                 GPIO.output(led pin1, True)
led_pin1 =4
led_pin2 = 17
                                                              if GPIO.input(button_pin2) == 0:
                                                                 GPIO.output(led_pin2, True)
# 버튼 핀은 GPIO 15번 핀으로 설정
button pin1 = 14
                                                         finally:
button pin2 = 15
                                                                                # GPIO 핀들을 초기화
                                                            GPIO.cleanup()
# LED 핀을 출력으로 설정
GPIO.setup(led_pin1, GPIO.OUT)
GPIO.setup(led pin2, GPIO.OUT)
#BUTTON 핀을 입력으로 설정
GPIO.setup(button_pin1 , GPIO.IN)
GPIO.setup(button_pin2 , GPIO.IN)
```

Servo Motor

■ PWM으로 서버모터 움직이기

서버모터가 원하는 각도만큼 움직이게 한다.

(1) 브레드 보드 연결하기

준비물 : Servo×1, 점퍼선×3

라즈베리 파이	Servo
VCC(5V)	빨간색
GPIO 18	오렌지
GND	갈색

Servo Motor

■ PWM으로 서버모터 움직이기

(2) 파이썬 코드 작성하고, 실행했을 때 서보 모터가 듀티를 변경하여 움직이는 것을 확인한다.

```
#모듈 불러오기
                                          #PWM 듀티비 0으로 시작
import RPi.GPIO as GPIO
                                          servo.start(0)
import time
                                          try:
#불필요한 warning 제거
                                                while True:
GPIO.setwarnings(False)
                                                     servo.ChangeDutyCycle(7.5) #90도
                                                     time.slpeep(1)
#GPIO 핀모드 설정
                                                     servo.ChangeDutyCycle(12.5) #180도
GPIO.setmode(GPIO.BCM)
                                                     time.slpeep(1)
                                                     servo.ChangeDutyCycle(2.5) #0도
#사용할 GPIO핀 번호 설정
                                                     time.slpeep(1)
SERVO PIN = 18
                                          except KeyboardInterrupt:
#서보 핀의 출력 설정
                                                servo.stop()
GPIO.setup(SERVO_PIN, GPIO.OUT)
                                                GPIO.cleanup()
```

PIR 센서(HC-SR501)

■ 적외선 인체감지 센서(PIP)를 이용하여 LED 켜고 끄기 실습

사람의 움직임을 감지하여 적외선 변화가 있을 때 노란색 LED를 켜고, 감지되지 않을 때 빨간색 LED를 켠다.

PIR 센서(HC-SR501)

■ 적외선 인체감지 센서(PIP)를 이용하여 LED 켜고 끄기 실습

(1) 브레드 보드 연결하기

준비물: PIP센서×1, 저항(220Ω)×2, 점퍼선×5, LED × 2

라즈베리 파이	PIP센서	LED
VCC(5V)	VCC	
GPIO 4	OUT	
GPIO 20		LED(Red) +
GPIO 21		LED(Yellow) +
GND	GND	

PIR 센서(HC-SR501)

■ 적외선 인체감지 센서(PIP)를 이용하여 LED 켜고 끄기 실습

(2) 파이썬 코드 작성하고, 실행했을 때 인체의 움직임을 감지하여 LED가 켜지는 것을 확인한다.

```
#모듈 불러오기
                                                     print("PIR Ready ....")
import RPi.GPIO as GPIO
                                                    time.sleep(5) # 센서 준비 시간
import time
                                                    try:
#불필요한 warning 제거
                                                          while True:
GPIO.setwarnings(False)
                                                                if GPIO.input(sensor) == 1:
                                                                      GPIO.output(led Y, 1)
#GPIO 핀모드 설정
                                                                      GPIO.output(led R, 0)
GPIO.setmode(GPIO.BCM)
                                                                      print("Motion detected!")
                                                                      time.sleep(0.2)
#사용할 GPIO핀 번호 설정
led R = 20
                                                                if GPIO.input(sensor) == 0:
led Y = 21
                                                                      GPIO.output(led_Y, 0)
sensor = 4
                                                                      GPIO.output(led_R, 1)
                                                                      print("Motion
#핀 입출력 설정
                                                     undetected!")
GPIO.setup(led R, GPIO.OUT)
                                                                      time.sleep(0.2)
GPIO.setup(led Y, GPIO.OUT)
GPIO.setup(sensor, GPIO.IN)
                                                     except KeyboardInterrupt:
                                                          print("Stopped by user")
                                                          GPIO.cleanup()
```

Raspberry Pi를 활용한 IoT 프로젝트

Thank You