Notions of resplendency for logics stronger than first-order logic

FREDRIK ENGSTRÖM
RICHARD KAYE

These slides are available at:

http://engstrom.morot.org

Preliminaries

- All languages will be recursive, all extensions of languages recursive extensions.
- We will restrict ourselfs to models of arithmetic, even though many of the results hold for arbitrary models.

Plan

We introduce three new variations on resplendency and recursive saturation:

- transcendence, resplendency for a specifi c infi nitary language;
- subtranscendence, subresplendency for the same language; and
- recursive standard saturation, recursive saturation for a language with a standard predicate.

Recursive saturation...

- A type p(x, a) over a model M is a set of formulas, with parameter $a \in M$, consistent with the theory of (M, a).
- ullet M is recursively saturated if all recursive types over M are realized.
- Any model M has an elementary extension of the same cardinality which is recursively saturated.

...continued

- SSy(M) is the standard system of $M \models PA$, i.e., the collection of standard parts of parameter defi nable sets; i.e., the collection of all $\{n \in \omega \mid M \models \varphi(n,a)\}$, where $a \in M$.
- If M is recursively saturated then any type $p(x, a) \in SSy(M)$ over M is realized in M.

Resplendency

- A model M is *resplendent* if for every $a \in M$, every $\mathcal{L}^+ \supseteq \mathcal{L}(a)$, and every recursive T in \mathcal{L}^+ such that $\operatorname{Th}(M,a) + T$ is consistent there is an expansion M^+ of M satisfying T.
- Every countable recursively saturated model is resplendent, and every resplendent model is recursively saturated.

Stronger logics

- If p(x, a) is a type, $p\uparrow$ stands for the infi nitary sentence expressing that p(x, a) is omitted.
- If T_0 is a fi rst-order theory, T also fi rst-order in an extended language, and $p(\bar{x})$ a type in the same language as T; then $\operatorname{SatCon}(T+p\uparrow/T_0)$ holds iff there is an ω -saturated model of T_0 with an expansion satisfying $T+p\uparrow$.

A strong saturation property...

- If a recursively saturated model, M, satisfies that for all $T_0, T, p(x) \in \mathrm{SSy}(M)$ such that $\mathrm{SatCon}(T+p\uparrow/T_0)$ there is a completion $T_c \in \mathrm{SSy}(M)$ of T such that $\mathrm{SatCon}(T_c+p\uparrow/T_0)$; then M is said to be SatCon -saturated.
- Every model has a SatCon-saturated elementary extension of the same cardinality.

... continued

Every SatCon-saturated countable model M is transcendent:

For all $a \in M$ and all $T, p(x) \in SSy(M)$, in an extension of the language of (M, a), if $SatCon(T + p\uparrow/Th(M, a))$ then there is an expansion M^+ of M such that $M^+ \models T + p\uparrow$.

Is a transcendent model SatCon-saturated?

Subresplendency

- A model M is subresplendent if for every $a \in M$, every recursive extension \mathcal{L}^+ of $\mathcal{L}(a)$ and every recursive T in \mathcal{L}^+ such that $\operatorname{Th}(M,a)+T$ is consistent there is an elementary submodel $a \in N \prec M$ and an expansion N^+ of N satisfying T.
- A model is subresplendent iff it is recursively saturated.

β -saturation

- A recursively saturated model is β -saturated if SSy(M) is a β -model.
- All β -saturated models are subtranscendent: For all $a \in M$ and all $T, p(x) \in \mathrm{SSy}(M)$, if $\mathrm{Th}(M,a) + T + p \uparrow$ is consistent then there is an elementary submodel $a \in N \prec M$ and an expansion N^+ of N satisfying $T + p \uparrow$.
- In fact; a model is subtranscendent iff it is β -saturated.

The standard predicate

- The standard predicate, st, is the predicate of standard numbers.
- No model (M, st) is recursively saturated since the type

$$\{x > n \land \operatorname{st}(x) \mid n \in \omega\}$$

is omitted.

Standard recursive saturation

- A standard type over M is a type over (M, st) such that there is an ω -saturated elementary extension of M realizing the type.
- A model is recursively standard saturated (rec std sat) if all recursive standard types are realized.
- Any type over M (in which st is not mentioned) is a standard type.

An equivalence

A countable recursively saturated model is rec std sat iff

for all standard types $p(x, a) \in SSy(M)$ over M there is a complete standard type $q(x, a) \in SSy(M)$ extending p(x, a).

We call this property SatCon*-saturated.

Summary

The end

That's all folks!