Pseudo codes

- 1. Consider input data X of N by P, where each row consists vectorized connectivity matrix;
- 2. r-split X (row-wise) into r groups, X_1, ..., X_r;
- 3. Break each X_i into training and testing parts; denoted as X_i_train and X_i_test;
- 4. Run clustering algorithm on X_i_train and X_i_test, and obtain labels Y_i_train, and Y_i_test. Also obtain a classifier (e.g. in our case we used K-medoids and SVM) from (X_i_train, Y_i_train), test it on X_i_test, and obtain Y_i_classified.
- 5. Calculate the minimal (permuted) distance, d_i, between (Y_i_test, Y_i_classified).
- 6. Repeat 3-5 for every X_i and obtain d_1, ..., d_r. Average them to get S_1.
- 7. Repeat 3-5 (but instead of using a classifier, we use random labeling with 1/k probability). Obtain S 2.
- 8. Compute S_1/S_2 as the estimated stability of the clustering algorithm (for each k) in relation to random labeling.
- 9. Plot S_1/S_2 for each k = 1, 2, ..., k.

Instability Analysis (Toy Example on Iris Data by Chén and Others)

