Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 148.5 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E

657.89

657.87

657.85

0 10 20 30 40 50 60

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 12.66, tilsynelatende blå størrelseklass $m_B=13.69$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 3.94, tilsynelatende blå størrelseklass $m_B = 5.97$

Stjerna C: Tilsynelatende visuell størrelseklasse $m_{-}V = 3.94$, tilsynelatende

blå størrelseklass m_B = 4.97

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 12.66, tilsynelatende blå størrelseklass $m_B = 14.69$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.17 og store halvakse a=25.57 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.17 og store halvakse a=43.88 AU.

Filen 1F.txt

Ved bølgelengden 657.08 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 7.70 7.60 Tilsynelatende størrelsklasse $m_{\!\scriptscriptstyle V}$ 7.50 7.40 7.30 7.20 7.10 7.00 6.90 5 10 15 20 25 Ó Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 18.40 solmasser, temperatur på 49.40 Kelvin og tetthet 3.05e-21 kg per kubikkmeter

Gass-sky B har masse på 20.00 solmasser, temperatur på 65.50 Kelvin og tetthet 3.38e-21 kg per kubikkmeter

Gass-sky C har masse på 13.00 solmasser, temperatur på 13.90 Kelvin og

tetthet 9.15e-21 kg per kubikkmeter

Gass-sky D har masse på 16.00 solmasser, temperatur på 61.30 Kelvin og tetthet 5.82e-22 kg per kubikkmeter

Gass-sky E har masse på 22.00 solmasser, temperatur på 84.40 Kelvin og tetthet 5.52e-22 kg per kubikkmeter

Filen 1J.txt

STJERNE A) hele stjerna er elektrondegenerert

STJERNE B) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE C) stjernas overflate består hovedsaklig av helium

STJERNE D) stjerna har en degenerert heliumkjerne

STJERNE E) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

Filen 1L.txt

Stjerne A har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V = 9.36

Stjerne B har spektralklasse G9 og visuell tilsynelatende størrelseklasse m_V = 6.32

Stjerne C har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 7.74

Stjerne D har spektralklasse K4 og visuell tilsynelatende størrelseklasse m_V = 1.55

Stjerne E har spektralklasse A6 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 4.84

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

1 -

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.6490000000000002131628 AU.

Tangensiell hastighet er 51726.385355657643231098 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.642 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.385 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.854.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9540 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00057 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=180.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9923 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 725.40 nm.

Filen 4A.txt

Stjernas masse er 5.82 solmasser.

Stjernas radius er 0.82 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -400 400 -600 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.09 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.46 solmasser.

r-koordinaten til det innerste romskipet er
r $=13.35~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=24.50~\mathrm{km}.$