

Lecture #19

Sequential Logic

Questions?

Ask at

https://sets.netlify.app/module/676ca3a07d7f5ffc1741dc65

OR

Scan and ask your questions here! (May be obscured in some slides)

6. Synchronous Sequential Circuits

- Building blocks: logic gates and flip-flops.
- Flip-flops make up the memory while the gates form one or more combinational sub-circuits.
- We have discussed S-R flip-flop, J-K flip-flop, D flip-flop and T flip-flop.

6.1 Flip-flop Characteristic Tables

Each type of flip-flop has its own behaviour, shown by its characteristic table.

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

D	Q(t+1)	-
0	0	Reset
1	1	Set

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle

6.2 Sequential Circuits: Analysis (1/7)

- Given a sequential circuit diagram, we can analyze its behaviour by deriving its state table and hence its state diagram.
- Requires state equations to be derived for the flip-flop inputs, as well as output functions for the circuit outputs other than the flip-flops (if any).
- We use A(t) and A(t+1) (or simply A and A+) to represent the present state and next state, respectively, of a flip-flop represented by A.

6.2 Sequential Circuits: Analysis (2/7)

Example using D flip-flops

State equations:

$$A^+ = A \cdot x + B \cdot x$$

$$B^+ = A' \cdot x$$

Output function:

$$y = (A + B) \cdot x'$$

6.2 Sequential Circuits: Analysis (3/7)

Lecture #19: Sequential Logic

- From the *state equations* and *output function*, we derive the *state table*, consisting of all possible binary combinations of present states and inputs.
- State table
 - Similar to truth table.
 - Inputs and present state on the left side.
 - Outputs and next state on the right side.
- *m* flip-flops and *n* inputs $\rightarrow 2^{m+n}$ rows.

6.2 Sequential Circuits: Analysis (4/7)

State table for circuit of Figure 1:

State equations:

Output function:

$$A^+ = A \cdot x + B \cdot x$$

$$y = (A + B) \cdot x'$$

$$B^+ = A' \cdot x$$

Present			Next				
Sta	ate_	<u>Input</u>	St	ate_	<u>Output</u>		
_ A _	В	X	A⁺	B ⁺	У		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	1		
0	1	1	1	1	0		
1	0	0	0	0	1		
1	0	1	1	0	0		
1	1	0	0	0	1		
1	1	1	1	0	0		

6.2 Sequential Circuits: Analysis (5/7)

• Alternative form of state table:

Full table

Pres Sta	sent ate	Input		ext ate	Output	
A	В	<u> </u>	$\overline{A^+}$ B^+		<i>y</i>	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Compact table

Present	Next	State	Out	Output		
State	<i>x</i> =0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1		
AB	$A^{\dagger}B^{\dagger}$	$A^{\dagger}B^{\dagger}$	У	У		
00	00	01	0	0		
01	00	11	1	0		
10	00	10	1	0		
11	00	10	1	0		

6.2 Sequential Circuits: Analysis (6/7)

- From the state table, we can draw the state diagram.
- State diagram
 - Each state is denoted by a circle.
 - Each arrow (between two circles) denotes a transition of the sequential circuit (a row in state table).
 - A label of the form a/b is attached to each arrow where a (if there is one) denotes the inputs while b (if there is one) denotes the outputs of the circuit in that transition.
- Each combination of the flip-flop values represents a state. Hence, m flip-flops → up to 2^m states.

6.2 Sequential Circuits: Analysis (7/7)

State diagram of the circuit of Figure 1:

Present	Next	State	Output		
State	<i>x</i> =0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1	
AB	A ⁺ B ⁺	A ⁺ B ⁺	У	У	
00	00	01	0	0	
01	00	11	1	0	
10	00	10	1	0	
11	00	10	1	0	

6.2 Flip-flop Input Functions (1/3)

- The outputs of a sequential circuit are functions of the present states of the flip-flops and the inputs. These are described algebraically by the *circuit output functions*.
 - In Figure 1: $y = (A + B) \cdot x'$
- The part of the circuit that generates inputs to the flipflops are described algebraically by the flip-flop input functions (or flip-flop input equations).
- The flip-flop input functions determine the next state generation.
- From the flip-flop input functions and the characteristic tables of the flip-flops, we obtain the next states of the flip-flops.

6.2 Flip-flop Input Functions (2/3)

- Example: circuit with a JK flip-flop.
- We use 2 letters to denote each flip-flop input: the first letter denotes the input of the flip-flop (J or K for J-K flipflop, S or R for S-R flip-flop, D for D flip-flop, T for T flipflop) and the second letter denotes the name of the flipflop.

$$JA = B \cdot C' \cdot x + B' \cdot C \cdot x'$$

 $KA = B + y$

6.2 Flip-flop Input Functions (3/3)

• In Figure 1, we obtain the following state equations by observing that $Q^+ = DQ$ for a D flip-flop:

```
A^+ = A \cdot x + B \cdot x (since DA = A \cdot x + B \cdot x)

B^+ = A' \cdot x (since DB = A' \cdot x)
```


6.2 Analysis: Example #2 (1/3)

Given Figure 2, a sequential circuit with two J-K flip-flops
 A and B, and one input x.

Obtain the flip-flop input functions from the circuit:

$$JA = B$$
 $JB = x'$
 $KA = B \cdot x'$ $KB = A' \cdot x + A \cdot x' = A \oplus x$

6.2 Analysis: Example #2 (2/3)

$$JA = B$$
 $JB = x'$
 $KA = B \cdot x'$ $KB = A' \cdot x + A \cdot x' = A \oplus x$

Fill the state table using the above functions, knowing the characteristics of the flip-flops used.

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

Present state		Input	Next <u>state</u>		_FIi	Flip-flop inputs				
A	В	X	A^{+}	B^{+}	JA	KA	JB	KB		
0	0	0	0	1	0	0	1	0		
0	0	1	0	0	0	0	0	1		
0	1	0	1	1	1	1	1	0		
0	1	1	1	0	1	0	0	1		
1	0	0	1	1	0	0	1	1		
1	0	1	1	0	0	0	0	0		
1	1	0	0	0	1	1	1	1		
1	1	1	1	1	1	0	0	0		

0

6.2 Analysis: Example #2 (3/3)

Draw the state diagram from the state table.

	sent ate	Input		ext ate	Flip-flop inputs			ts
A	В	X	A ⁺	B ⁺	JA	KA	JB	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

6.2 Analysis: Example #3 (1/3)

Derive the state table and state diagram of this circuit.

Figure 3

Flip-flop input functions:

$$JA = B$$
 $JB = KB = (A \oplus x)' = A \cdot x + A' \cdot x'$
 $KA = B'$

6.2 Analysis: Example #3 (2/3)

Flip-flop input functions:

$$JA = B$$

 $KA = B'$

State table:

Pres		lmmt		ext	Output		in fla	. !	.40
Sta	ate_	<u>Input</u>		ate_	<u>Output</u>	<u> </u>	ip-flo _l	o inpu	ITS_
A	В	X	A^{+}	B^{\dagger}	y	JA	KA	JB	KE
0	0	0	0	1	0	0	1	1	1
0	0	1	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	1	1
0	1	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	1	0	0
1	0	1	0	1	0	0	1	1	1
1	1	0	1	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1	1

 $JB = KB = (A \oplus x)' = A \cdot x + A' \cdot x'$

6.2 Analysis: Example #3 (3/3)

State diagram:

Present state		Next							
		Input	state		Output	Flip-flop inputs			
A	В	<u> </u>	A ⁺	B ⁺		JA	KA	JB	KB
0	0	0	0	1	0	0	1	1	1
0	0	1	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	1	1
0	1	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	1	0	0
1	0	1	0	1	0	0	1	1	1
1	1	0	1	1	0	1	0	0	0
_1	1	1	1	0	1	1	0	1	1

1/1

End of File

