Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Networks

Sho Sonoda

Senior Research Scientist Deep Learning Theory team RIKEN AIP

CMAI: Interface of Math and Artificial Intelligence Seminar at The Chinese University of Hong Kong (CUHK), online July 3, 2024

Self-Introduction—Sho Sonoda

Brief Bio:

Apr 2018-Present: Postdoc Researcher \rightarrow Senior Research Scientist, RIKEN AIP, Japan

Apr 2017–Mar 2018: Research Associate, Waseda Univ.

Apr 2015–Mar 2017: JSPS Research Fellowships (DC2)

Sep 2013-Mar 2017: Doctor of Engineering, Waseda Univ., Japan

Apr 2012–Sep 2013: Software Engineer, Panasonic Corp.

Backgrounds:

- Neural Network Theory based on
 - harmonic analysis, differential equations
- Machine Learning Applications for...
 - theorem proving, quantum machine learning, autonomous driving, EEG analysis, steel making

Q. What is a typical solution obtained by deep learning?

- Want to identify what solution is typically acquired via deep learning
- Want to know why (and when) deep learning performs better (than shallow networks)

Problem Formulation

Problem (NN Learning Equation)

Given a data generating function $f:X\to\mathbb{R}$, find a parameter γ of DNN satisfying

$$\mathtt{DNN}[\gamma] = f.$$

We call a solution operator $R = \mathtt{DNN}^\dagger$ the ridgelet transform, which satisfies

$$\mathtt{DNN}[R[f]] = f.$$

Today's setting:

- Depth-2 fully-connected NN on Euclidean space $X=\mathbb{R}^m$ and
- ullet Depth-n fully-connected NN on Euclidean space $X=\mathbb{R}^m$

Shallow neural network (SNN)

Definition (single-hidden-layer fully-connected neural network)

For any function $\sigma: \mathbb{R} \to \mathbb{R}$,

$$exttt{SNN}(oldsymbol{x};oldsymbol{ heta}) := \sum_{i=1}^p c_i \sigma(oldsymbol{a}_i \cdot oldsymbol{x} - b_i), \quad oldsymbol{x} \in \mathbb{R}^m$$

Here $\theta = \{(a_i, b_i, c_i)\}_{i=1}^p \subset \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}$ is the parameters

Visual Example: single Gaussian hidden unit

- input dimension m=2
- hidden layer width p=1
- activation function $\sigma(t) = \exp(-t^2/2)$

$$SNN(\boldsymbol{x}; \boldsymbol{\theta}) = c\sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b), \quad \boldsymbol{x} \in \mathbb{R}^2$$

Visual understanding of how SNN approximates functions

Theorem (Universal Approximation Property, or Universality)

A SNN can approximate any continuous function

Figure: Petros Vrellis, Knit#1, 2016

Recap:

$$\mathtt{SNN}(oldsymbol{x};oldsymbol{ heta}) = \sum_{i=1}^p c_i \sigma(oldsymbol{a}_i \cdot oldsymbol{x} - b_i)$$

a: width and direction of a ridge

b: location of a ridge

c: height of a ridge

drawing method by lines

- Fourier series expansion, X-ray tomography drawing method by points (pixels/dots)
 - pixel art, computer screen, kernel regression

Integral Representation of Neural Network $S[\gamma]$

Finite-width (Discrete, or "Ordinary") NN

- $\mathrm{SNN}(oldsymbol{x}; heta_p) = \sum_{i=1}^p c_i \sigma(oldsymbol{a}_i \cdot oldsymbol{x} b_i)$
- nonlinear parameters: $\theta_p = \{(a_i, b_i, c_i)\}_{i=1}^p \in \mathbb{R}^{(m+2)p}$

discretization $\gamma_p = \sum_{i=1}^p c_i \delta_{(\boldsymbol{a}_i,b_i)}$

Infinite-width (Continuous, or Integral Representation of) NN

- $S[\gamma](\boldsymbol{x}) = \int_{\mathbb{R}^m \times \mathbb{R}} \gamma(\boldsymbol{a}, b) \sigma(\boldsymbol{a} \cdot \boldsymbol{x} b) d\boldsymbol{a} db$
- *linear* parameter: $\gamma \in \operatorname{Map}(\mathbb{R}^m \times \mathbb{R} \to \mathbb{C})$

Ridgelet Transform $R[f; \rho]$

Definition (Ridgelet Transform)

For any function $f:\mathbb{R}^m \to \mathbb{C}$ and $\rho:\mathbb{R} \to \mathbb{C}$, put

$$R[f;
ho](oldsymbol{a},b)=\int_{\mathbb{R}^m}f(oldsymbol{x})\overline{
ho(oldsymbol{a}\cdotoldsymbol{x}-b)}\mathrm{d}oldsymbol{x},\quad (oldsymbol{a},b)\in\mathbb{R}^m imes\mathbb{R}.$$

Theorem (Reconstruction Formula)

For any $\sigma\in\mathcal{S}'(\mathbb{R}), \rho\in\mathcal{S}(\mathbb{R})$ and $f\in L^2(\mathbb{R}^m)$, we have

$$S[R[f;
ho]](oldsymbol{x}) = \int_{\mathbb{R}^m imes \mathbb{R}} R[f;
ho](oldsymbol{a},b) \sigma(oldsymbol{a} \cdot oldsymbol{x} - b) \mathrm{d}oldsymbol{a} \mathrm{d}b = (\!(\sigma,
ho)\!) f(oldsymbol{x}), \quad oldsymbol{x} \in \mathbb{R}^m$$

where $((\sigma,\rho))=(2\pi)^{m-1}\int_{\mathbb{R}}\sigma^{\sharp}(\omega)\overline{\rho^{\sharp}(\omega)}|\omega|^{-m}\mathrm{d}\omega$ and \sharp denotes the Fourier transform

- Meaning 1: Continuous NN is a universal approximator
- Meaning 2: R and S play the same role as Fourier F and inverse Fourier F^{-1} transforms:

$$F^{-1}[F[f]](\boldsymbol{x}) = (2\pi)^{-m} \int_{\mathbb{R}^m} F[f](\boldsymbol{\xi}) e^{i\boldsymbol{x}\cdot\boldsymbol{\xi}} \mathrm{d}\boldsymbol{\xi} = f(\boldsymbol{x})$$

Numerical Example of Ridgelet Transform $R[f; \rho](a, b)$

- $f(x) = \sin(2\pi x) \mathbf{1}_{[-1,1]}(x)$
- $R[f; \rho](a, b) = \int_{\mathbb{R}} f(x)\rho(ax b)dx \approx \sum_{i} \sin(2\pi x_i)\rho(ax_i b)\Delta x$
- $\rho_2(b) := H[\rho_0^{(2)}](b)$ with $\rho_0(b) := \exp(-b^2/2)$ where H is Hilbert transform, $H[\rho_0]$ is the Dawson function

Visualization Results of Reconstruction Formula $S[R[f; \rho]] = ((\sigma, \rho))f$

- $\rho_k := H\rho_0^{(k)}$, $\sigma(b) = \tanh(b)$
- $S[R[f;\rho]] = ((\sigma,\rho))f \equiv 0$ (degenerate) when $((\sigma,\rho_k)) = 0$

How the parameter distribution looks like?

We will train many (n=1,000) neural networks $\mathrm{SNN}(x; \boldsymbol{\theta}) = \sum_{j=1}^p c_j \sigma(a_j \cdot x - b_j)$ with p=10 hidden units, and see the distribution of trained parameters (a_j,b_j,c_j) .

- $f(x) = \sin(2\pi x) \mathbf{1}_{[-1,1]}(x)$
- $\sigma(z) = \tanh(z)$
- $\widehat{L}(\theta)$ is square error loss
- SGD with weight decay

A scatter plot of $d \times n = 10$ hidden parameters (a_j, b_j, c_j) obtained from n = 1 neural network $\sum_{j=1}^d c_j \sigma(a_j \cdot x - b_j)$ with p = 10 hidden units.

A scatter plot of $d \times n = 20$ hidden parameters (a_j,b_j,c_j) obtained from n=2 neural networks with p=10 hidden units.

A scatter plot of $d \times n = 50$ hidden parameters (a_j,b_j,c_j) obtained from n=5 neural networks with p=10 hidden units.

A scatter plot of $d \times n = 100$ hidden parameters (a_j, b_j, c_j) obtained from n = 10 neural networks with p = 10 hidden units.

A scatter plot of $d \times n = 500$ hidden parameters (a_j,b_j,c_j) obtained from n=50 neural networks with p=10 hidden units.

 $\arg\min \widehat{L}(\boldsymbol{\theta})$

A scatter plot of $d \times n = 1,000$ hidden parameters (a_j,b_j,c_j) obtained from n=100 neural networks with p=10 hidden units.

A scatter plot of $d \times n = 5,000$ hidden parameters (a_j,b_j,c_j) obtained from n = 500 neural networks with p = 10 hidden units.

A scatter plot of $d \times n = 10,000$ hidden parameters (a_j,b_j,c_j) obtained from n=1,000 neural networks with p=10 hidden units.

Ridgelet Transform Characterizes Gradient Descent Solutions

Theorem (simplified, S-Ishikawa-Ikeda, AISTATS2021)

$$\lim_{n\to\infty} \lim_{d\to\infty} \operatorname*{arg\,min}_{\gamma_d = \sum_{i=1}^d c_i \delta_{(\boldsymbol{a}_i,b_i)}} \left[\frac{1}{n} \sum_{i=1}^n |f(\boldsymbol{x}_i) - S[\gamma_d](\boldsymbol{x}_i)|^2 + \beta \|(c_i)\|_{\ell^2}^2 \right] = R \left[\frac{f}{\beta+1}; \sigma_* \right]$$

scatter plot of GD trained parameters

How to find the ridgelet transform R?

Problem: NN learning equation

Given a data generating function f and network $\mathtt{NN}[\gamma]$, find the unknown parameter γ satisfying

$$\mathtt{NN}[\gamma] = f$$

- By inspiration
 - Murata, An Integral Representation of Functions..., Neural Networks, 1996.
 - Candes, Ridgelets: Theory and Applications, dissertation, 1998.
- By Fourier expression
 - General solution for fully-connected SNN S-Ishikawa-Ikeda, arXiv:2106.04770
 - SNN on finite fields $\mathbb{Z}/p\mathbb{Z}$ Yamasaki-Subramanian-Hayakawa-S, ICML2023
 - Group convolution network S-Ishikawa-Ikeda, NeurlPS2022
 - SNN on manifold (noncompact symmetric space G/K) S-Ishikawa-Ikeda, ICML2022
- By group equivariant/invariant functions
 - joint-group-equivariant map S-Hashimoto-Ishikawa-Ikeda, arXiv2405.13682 ← NEW!
 - joint-group-invariant map S-Ishi-Ishikawa-Ikeda, NeurReps2023
 - formal deep network S-Hashimoto-Ishikawa-Ikeda, NeurReps2023

Solve $S[\gamma] = f$

Appendix A.3, in Sonoda-Ishikawa-Ikeda, arXiv:2106.04770

Step 1. Turn the network into a Fourier expression as below.

$$S[\gamma](\boldsymbol{x}) = \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}} \gamma(\boldsymbol{a}, b) \sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b) \mathrm{d}b \right] \mathrm{d}\boldsymbol{a}$$

By an identity $\frac{1}{2\pi}\int_{\mathbb{R}}\gamma^{\sharp}(\boldsymbol{a},\omega)\sigma^{\sharp}(\omega)e^{i\omega b}\mathrm{d}\omega=(\gamma(\boldsymbol{a},ullet)*\sigma)(b)$,

$$= \int_{\mathbb{R}^m} \left[\frac{1}{2\pi} \int_{\mathbb{R}} \gamma^{\sharp}(\boldsymbol{a}, \omega) \sigma^{\sharp}(\omega) e^{i\boldsymbol{\omega} \boldsymbol{a} \cdot \boldsymbol{x}} d\omega \right] d\boldsymbol{a}$$

By changing the variable $(a, \omega) = (\xi/\omega, \omega)$,

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\mathbb{R}^m} \gamma^{\sharp}(\boldsymbol{\xi}/\omega, \omega) e^{i\boldsymbol{\xi} \cdot \boldsymbol{x}} d\boldsymbol{\xi} \right] |\omega|^{-m} \sigma^{\sharp}(\omega) d\omega,$$

where \cdot^{\sharp} denotes the Fourier transform in b

Recap:

$$S[\gamma](\boldsymbol{x}) = \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\mathbb{R}^m} \gamma^{\sharp}(\boldsymbol{\xi}/\omega, \omega) e^{i\boldsymbol{\xi}\cdot\boldsymbol{x}} d\boldsymbol{\xi} \right] |\omega|^{-m} \sigma^{\sharp}(\omega) d\omega$$

Step 2. Assume a separation-of-variables form

$$\gamma_{f,\rho}^{\sharp}(\boldsymbol{\xi}/\omega,\omega):=\widehat{f}(\boldsymbol{\xi})\overline{
ho^{\sharp}(\omega)}$$

Then, $\gamma_{f,\rho}$ is a particular solution

$$S[\gamma_{f,\rho}] = \frac{1}{2\pi} \left[\int \sigma^{\sharp}(\omega) \overline{\rho^{\sharp}(\omega)} |\omega|^{-m} d\omega \right] \left[\int \widehat{f}(\boldsymbol{\xi}) e^{i\boldsymbol{\xi} \cdot \boldsymbol{x}} d\boldsymbol{\xi} \right] = ((\sigma,\rho)) f$$

Furthermore, $\gamma_{f,\rho}(\boldsymbol{a},b)=R[f;\rho](\boldsymbol{a},b)$.

$$\gamma_{f,\rho}(\boldsymbol{a},b) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega \boldsymbol{a}) \overline{\rho^{\sharp}(\omega)} e^{ib\omega} d\omega$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}^m \times \mathbb{R}} f(\boldsymbol{x}) \overline{\rho^{\sharp}(\omega)} e^{i\omega(b-\boldsymbol{a}\cdot\boldsymbol{x})} d\boldsymbol{x} d\omega$$

$$= \int_{\mathbb{R}^m} f(\boldsymbol{x}) \overline{\rho(\boldsymbol{a}\cdot\boldsymbol{x}-b)} d\boldsymbol{x}$$

$$=: R[f;\rho](\boldsymbol{a},b).$$

A general solution is given by

$$\gamma_f := R[f; \rho_0] + \sum_{ij} c_{ij} R[e_i; \rho_j].$$

Here.

- $\{c_{ij}\}_{i,j\in\mathbb{N}^2}$ is an ℓ^2 -sequence $\{e_i\}_{i\in\mathbb{N}}$ is an o.n.b. of $L^2(\mathbb{R}^m)$,
- $\{\rho_i\}_{i\in\mathbb{N}}$ is a subsystem of o.n.s. of $L^2_m(\mathbb{R})$ satisfying $((\sigma,\rho_i))=0$.

Necessity: γ_f is a solution.

$$S[\gamma_f] = ((\sigma, \rho_0))f(x) + \sum_{ij} c_{ij}((\sigma, \rho_j))e_i(x) = ((\sigma, \rho_0))f(x) + 0.$$

Sufficiency: (Lemma) Any $\gamma \in L^2(\mathbb{R}^m \times \mathbb{R})$ can be expanded as

$$\gamma = \sum_{ij} \langle \gamma, R[e_i; \rho_j] \rangle R[e_i; \rho_j]$$

Deep Ridgelet Transform for Joint-Equivariant Feature Maps ¹

—the first ridgelet transform for deep networks—

¹S-Hashimoto-Ishikawa-Ikeda, arXiv:2405.13682, 2024

Joint-G-Equivariant Map

Definition (Joint-G-Equivariant Map)

- Let G be a group
- Let X, Y and Ξ be G-spaces
- A map $\phi: X \times \Xi \to Y$ is joint-G-equivariant when it satisfies

$$\phi(g\cdot x,g\cdot \xi)=g\cdot \phi(x,\xi),\quad \text{for all }g\in G \text{ and } (x,\xi)\in X\times \Xi$$

Joint-Equivariant Maps are Ubiquitous

Lemma (1. Easy to synthesize)

- Let G be a group, and X, Y be G-spaces
- Let $\phi_0: X \to Y$ be any map
- Then, the following $\phi: X \times G \to Y$ with

$$\phi(x,\xi) := \xi \cdot \phi_0(\xi^{-1} \cdot x), \quad (x,\xi) \in X \times G$$

is joint-equivariant

Lemma (2. Easy to be realized as a network)

- Let $\phi: \mathbb{R}^m \times G \to \mathbb{R}^n$ be a joint-equivariant map
- Then, the following depth-2 fully-connected network

$$\mathtt{NN}(oldsymbol{x},\xi) := \int_{\mathbb{R}^m imes \mathbb{R}} \mathtt{R}_2[\phi(ullet,\xi)](oldsymbol{a},b) \sigma(oldsymbol{a} \cdot oldsymbol{x} - b) \mathrm{d}oldsymbol{a} \mathrm{d}b, \quad (oldsymbol{x},\xi) \in \mathbb{R}^m imes G$$

is joint-equivariant

Composite of joint-equivariant maps is joint-equivariant

Lemma (3. Easy to compose)

- Let $\phi_i: X_{i-1} \times \Xi_i \to X_i$ be joint-equivariant maps
- Then, the composite $\phi: X_0 \times (\Xi_1 \times \cdots \times \Xi_n) \to X_n$

$$\phi(x,\xi) := \phi_n(\bullet,\xi_n) \circ \cdots \circ \phi_1(x,\xi_1)$$

is joint-equivariant as well.

Main Results

Definition

- Let G be a locally compact group
- Let X (input domain) and Ξ (parameter domain) be G-spaces with Haar measures $\mathrm{d}x$ and $\mathrm{d}\xi$,
- Let Y (output domain) be a separable Hilbert space with unitary G-action
- Let $\phi, \psi: X \times \Xi \to Y$ be joint-equivariant maps
- For any maps $f: X \to Y$ and $\gamma: \Xi \to \mathbb{C}$, put

$$\mathtt{DNN}[\gamma;\phi](x) := \int_\Xi \gamma(\xi)\phi(x,\xi)\mathrm{d}\xi, \qquad \mathtt{R}[f;\psi](\xi) := \int_X \langle f(x),\psi(x,\xi)\rangle_Y\mathrm{d}x.$$

Theorem (Reconstruction Formula)

- Suppose that the induced representation $\pi: G \to \mathcal{U}(L^2(X;Y))$ is irreducible
- Then, there exists a constant $c_{\phi,\psi}$ such that for any $f \in L^2(X;Y)$,

$$\mathtt{DNN} \circ \mathtt{R}[f] = c_{\phi,\psi} f.$$

Proof

Theorem (Schur's Lemma)

A unitary representation π of G on \mathcal{H} is irreducible

 \iff If a bounded operator $T:\mathcal{H}\to\mathcal{H}$ commutes with π , then $T=c\operatorname{Id}_{\mathcal{H}}$ for some $c\in\mathbb{C}$

We can check $T:=\mathtt{DNN}\circ\mathtt{R}:L^2(X;Y)\to L^2(X;Y)$ commutes with π as below: For each $g\in G$,

$$\begin{split} \mathbf{R}[\pi_g[f]](\xi) &= \int_X \langle g \cdot f(g^{-1} \cdot x), \psi(x, \xi) \rangle_Y \mathrm{d}x = \int_X \langle f(x), \psi(x, g^{-1} \cdot \xi) \rangle_Y \mathrm{d}x = \widehat{\pi}_g[\mathbf{R}_{\psi}[f]](\xi), \\ \mathbf{NN}[\widehat{\pi}_g[\gamma]](x) &= \int_\Xi \gamma(g^{-1} \cdot \xi) \phi(x, \xi) \mathrm{d}\xi = \int_\Xi \gamma(\xi) \left(g \cdot \phi(g^{-1} \cdot x, \xi)\right) \mathrm{d}\xi = \pi_g[\mathbf{NN}_{\phi}[\gamma]](x). \end{split}$$

Therefore,

$$\mathtt{NN} \circ \mathtt{R} \circ \pi_g = \mathtt{NN} \circ \widehat{\pi}_g \circ \mathtt{R} = \pi_g \circ \mathtt{NN} \circ \mathtt{R}.$$

Hence Schur's lemma yields that there exist a constant $c_{\phi,\psi}\in\mathbb{C}$ such that $\mathtt{NN}_\phi\circ\mathtt{R}_\psi=c_{\phi,\psi}\,\mathrm{Id}_{L^2(X;Y)}.$

Example: Depth-2 Fully-Connected Network

- G is the affine group $Aff(m) = GL(m) \ltimes \mathbb{R}^m$
- $X = \mathbb{R}^m$ (data domain) with G-action

$$g \cdot x := Lx + t, \quad g = (L, t) \in G,$$

• $\Xi = \mathbb{R}^m \times \mathbb{R}$ (parameter domain) with dual G-action

$$g \cdot (\boldsymbol{a}, b) = (L^{-\top} \boldsymbol{a}, b + \boldsymbol{t}^{\top} L^{-\top} \boldsymbol{a}), \quad g = (L, \boldsymbol{t}) \in G$$

- Then, $\phi(\boldsymbol{x},(\boldsymbol{a},b)) := \sigma(\boldsymbol{a}\cdot\boldsymbol{x}-b)$ and $\psi(\boldsymbol{x},(\boldsymbol{a},b)) := \rho(\boldsymbol{a}\cdot\boldsymbol{x}-b)$ are joint-G-invariant. Indeed, $\phi(g\cdot\boldsymbol{x},g\cdot(\boldsymbol{a},b)) = \sigma\left(L^{-\top}a\cdot(L\boldsymbol{x}+t)-(b+t^{\top}L^{-\top}a)\right) = \sigma(a\cdot\boldsymbol{x}-b) = \phi(\boldsymbol{x},(\boldsymbol{a},b))$
- Put

$$\mathrm{NN}_2[\gamma](oldsymbol{x}) = \int_{\mathbb{R}^m} \gamma(oldsymbol{a}, b) \sigma(oldsymbol{a} \cdot oldsymbol{x} - b) \mathrm{d}oldsymbol{a} \mathrm{d}b, \quad ext{and} \quad \mathrm{R}_2[f](oldsymbol{a}, b) = \int_{\mathbb{R}^m} f(oldsymbol{x}) \overline{
ho(oldsymbol{a} \cdot oldsymbol{x} - b)} \mathrm{d}oldsymbol{x}$$

Lemma

The regular representation $\pi_g: \mathrm{Aff}(m) \to \mathcal{U}(L^2(\mathbb{R}^m;\mathbb{R}))$ is irreducible

• So, $NN_2 \circ R_2 = ((\sigma, \rho)) \operatorname{Id}_{L^2(\mathbb{R}^m)}$

Example: Depth-n Fully-Connected Network

• For any $f_i \in L^2(\mathbb{R}^m;\mathbb{R}^m)$ and $\xi = G := (Q,L,t) \in O(m) \times (GL(m) \ltimes \mathbb{R}^m)$, put

$$\mathtt{NN}_i(oldsymbol{x}; \xi) := \int_{\mathbb{R}^m imes \mathbb{R}} Q\mathtt{R}_2[oldsymbol{f}_i](oldsymbol{a}, b) \sigma(oldsymbol{a} \cdot L^{-1}(oldsymbol{x} - oldsymbol{t}) - b) \mathrm{d}oldsymbol{a} \mathrm{d}b$$

• For any functions $\gamma:\mathbb{R}^m o \mathbb{C}$ and $m{f}:\mathbb{R}^m o \mathbb{R}^m$, put

$$\mathtt{DNN}[\gamma](oldsymbol{x}) := \int_{G^n} \gamma(oldsymbol{\xi}) \mathtt{NN}_n(ullet, \xi_n) \circ \cdots \circ \mathtt{NN}_1(oldsymbol{x}, \xi_1) \mathrm{d} oldsymbol{\xi},$$

$$\mathtt{R}_n[oldsymbol{f}](oldsymbol{\xi}) := \int_{\mathbb{R}} \langle oldsymbol{f}(oldsymbol{x}), \mathtt{NN}_n(ullet, \xi_n) \circ \cdots \circ \mathtt{NN}_1(oldsymbol{x}, \xi_1)
angle \mathrm{d}oldsymbol{x}$$

Lemma

The unitary representation $\pi_q: G \to \mathcal{U}(L^2(\mathbb{R}^m; \mathbb{R}^m))$ is irreducible

Thus, DNN
$$\circ R_n[f] = cf$$

Conclusion

- Ultimate goal:
 - Characterize deep solutions
- integral representation $S[\gamma]$ is a linearization trick of NN parameters
- ridgelet transform R[f] is its right inverse operator: $S[R[f]] = (\!(\sigma, \rho)\!)f$
 - can prove the universality in a constructive manner
 - ullet can visualize/analyze the distribution γ of parameters
- How to find the ridgelet transform?
 - (By inspiration)
 - By Fourier expression
 - By group equivariant functions

Supplementary Slides

NNs on Finite Field

Yamasaki et al. Quantum Ridgelet Transform: Winning Lottery Ticket of Neural Networks with Quantum Computation, ICML2023

Let
$$\mathbb{F} = \mathbb{Z}/p\mathbb{Z}$$
.

$$\begin{split} S[\gamma](\boldsymbol{x}) &:= \sum_{(\boldsymbol{a},b) \in \mathbb{F}^m \times \mathbb{F}} \gamma(\boldsymbol{a},b) \sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b), \quad \boldsymbol{x} \in \mathbb{F}^m \\ R[f;\rho](\boldsymbol{a},b) &= \sum_{\boldsymbol{x} \in \mathbb{F}^m} f(\boldsymbol{x}) \overline{\rho(\boldsymbol{a} \cdot \boldsymbol{x} - b)}, \quad (\boldsymbol{a},b) \in \mathbb{F}^m \times \mathbb{F} \\ (\!(\sigma,\rho)\!) &= \frac{1}{|\mathbb{F}|^{m-1}} \sum_{\omega \in \mathbb{F}} \sigma^\sharp(\omega) \overline{\rho^\sharp(\omega)} \\ S[R[f;\rho]](\boldsymbol{x}) &= (\!(\sigma,\rho)\!) f(\boldsymbol{x}) \end{split}$$

Sketch Proof

First, turn to the Fourier expression. Then, assume the separation-of-variables form.

$$\begin{split} S[\gamma](\boldsymbol{x}) &:= \sum_{(\boldsymbol{a},b) \in \mathbb{F}^m \times \mathbb{F}} \gamma(\boldsymbol{a},b) \sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b) \\ &= \frac{1}{|\mathbb{F}|} \sum_{(\boldsymbol{a},\omega) \in \mathbb{F}^m \times \mathbb{F}} \gamma^{\sharp}(\boldsymbol{a},\omega) \sigma(\omega) e^{2\pi i \omega \boldsymbol{a} \cdot \boldsymbol{x}} \end{split}$$

Put $\boldsymbol{\xi} = \omega \boldsymbol{a}$

$$= \frac{1}{|\mathbb{F}|} \sum_{(\boldsymbol{\xi},\omega) \in \mathbb{F}^m \times \mathbb{F}} \gamma^{\sharp}(\boldsymbol{\xi}/\omega,\omega) \sigma(\omega) e^{2\pi i \boldsymbol{\xi} \cdot \boldsymbol{x}}$$

Assume
$$\gamma^{\sharp}(\boldsymbol{\xi}/\omega,\omega)=\widehat{f}(\boldsymbol{\xi})\overline{\rho^{\sharp}(\omega)}$$

$$= \left(|\mathbb{F}|^{m-1} \sum_{\omega \in \mathbb{F}} \sigma^{\sharp}(\omega) \overline{\rho^{\sharp}(\omega)} \right) \left(\frac{1}{|\mathbb{F}|^{m}} \sum_{\boldsymbol{\xi} \in \mathbb{F}^{m}} \widehat{f}(\boldsymbol{\xi}) e^{2\pi i \boldsymbol{\xi} \cdot \boldsymbol{x}} \right)$$

$$= ((\sigma, \rho)) f(\boldsymbol{x})$$

Group Convolutional NNs on Hilbert Space \mathcal{H}^2

²S-Ishikawa-Ikeda, NeurlPS2022

Fourier Transform on a Hilbert space $\mathcal{H}_m \subset \mathcal{H}$

Definition

Let $\mathcal H$ be a Hilbert space, $\mathcal H_m\subset\mathcal H$ be an m-dimensional subspace, and λ be the Lebesgue measure induced from $\mathbb R^m$. Put

$$\widehat{f}(\xi) := \int_{\mathcal{H}_m} f(x)e^{-i\langle x,\xi\rangle} d\lambda(x), \quad x \in \mathcal{H}_m$$

Theorem

For any $f \in L^2(\mathcal{H}_m)$,

$$\frac{1}{(2\pi)^m} \int_{\mathcal{H}_m} \widehat{f}(\xi) e^{i\langle x,\xi\rangle} d\lambda(\xi) = f(x), \quad x \in \mathcal{H}_m$$

Definition (Generalized group convolution)

Let G be a group, $\mathcal H$ be a Hilbert space, and $T:G\to GL(\mathcal H)$ be a group representation. The (G,T)-convolution is given by

$$(a*x)(g) := \langle T_{g^{-1}}[x], a \rangle_{\mathcal{H}}, \quad a, x \in \mathcal{H}.$$

Definition (Group CNN)

Let $\mathcal{H}_m \subset \mathcal{H}$ be an m-dimensional subspace equipped with the Lebesgue measure λ . Put

$$S[\gamma](x)(g) := \int_{\mathcal{H}_{-} \times \mathbb{R}} \gamma(a, b) \sigma((a * x)(g) - b) d\lambda(a) db, \quad x \in \mathcal{H}, g \in G$$

Example (Cyclic CNN for n-channel $m \times m$ -image)

$$\mathtt{CNN}(\boldsymbol{x})(\boldsymbol{p},\boldsymbol{q}) = \sum_{\ell=1}^{n'} c^{\ell} \sigma \left(\sum_{k=1}^{n} \sum_{i,j=1}^{m} a_{ij}^{k\ell} x_{i+\boldsymbol{p},j+\boldsymbol{q}}^{k} - b^{\ell} \right), \quad \boldsymbol{x} = (x_{ij}^{k}) \in \mathbb{R}^{m^{2} \times n}, \; (p,q) \in (\mathbb{Z}/m\mathbb{Z})^{2}$$

i.e.,
$$G=(\mathbb{Z}/m\mathbb{Z})^2, \mathcal{H}=\mathbb{R}^{m^2 \times n}, \ T_{\pmb{p},\pmb{q}}(\pmb{x}):=(x^{\bullet}_{\pmb{\bullet}-\pmb{p},\pmb{\bullet}-\pmb{q}})$$

In the following, $e\in {\cal G}$ denotes the identity element.

Definition (Ridgelet Transform)

For any function $f:\mathcal{H}_m\to\mathbb{C}^G$ and $\rho:\mathbb{R}\to\mathbb{C}$, put

$$R[f;\rho](a,b) := \int_{\mathcal{H}_{\pi}} f(x)(e) \overline{\rho(\langle a, x \rangle_{\mathcal{H}} - b)} d\lambda(x).$$

Definition ((G, T)-Equivariance)

A (nonlinear) map $f:\mathcal{H}\to\mathbb{C}^G$ is (G,T)-equivariant when

$$f(T_g[x])(h) = f(x)(g^{-1}h), \quad \forall x \in \mathcal{H}_m, g, h \in G$$

Theorem (Reconstruction Formula)

Suppose that f is (G,T)-equivariant and $f(\bullet)(e) \in L^2(\mathcal{H}_m)$, then $S[R[f;\rho]] = ((\sigma,\rho))f$.

- Meaning: Universality of continuous GCNN
- Corollary: cc-universality of finite GCNNs

Sketch Proof

Step 1. Turn to Fourier expression:

$$S[\gamma](x)(g) = \int_{\mathcal{H}_m \times \mathbb{R}} \gamma(a, b) \sigma(\langle T_{g^{-1}}[x], a \rangle_{\mathcal{H}} - b) dadb$$

$$= \frac{1}{2\pi} \int_{\mathcal{H}_m \times \mathbb{R}} \gamma^{\sharp}(a, \omega) \sigma^{\sharp}(\omega) e^{i\omega \langle T_{g^{-1}}[x], a \rangle_{\mathcal{H}}} dad\omega$$

$$= \frac{1}{2\pi} \int_{\mathcal{H}_m \times \mathbb{R}} \gamma^{\sharp}(\xi/\omega, \omega) \sigma^{\sharp}(\omega) e^{i\langle T_{g^{-1}}[x], \xi \rangle_{\mathcal{H}}} |\omega|^{-m} d\xi d\omega.$$

Step 2. Put separation-of-variables form:

$$\gamma_{f,\rho}^{\sharp}(\xi/\omega,\omega) := \widehat{f}(\xi)(e)\overline{\rho^{\sharp}(\omega)}.$$

By the construction it is a particular solution:

$$S[\gamma_{f,\rho}](x)(g) = \frac{1}{2\pi} \int_{\mathcal{H}_m} \widehat{f}(\xi)(e) e^{i\langle T_{g^{-1}}[x],\xi\rangle_{\mathcal{H}}} d\lambda(\xi) \int_{\mathbb{R}} \sigma^{\sharp}(\omega) \overline{\rho^{\sharp}(\omega)} |\omega|^{-m} d\omega$$
$$= ((\sigma,\rho)) f(x)(g).$$

and
$$\gamma_{f,\rho} = R[f;\rho]$$
.

³S-Ishikawa-Ikeda, ICML2022

Past Attempts to Design Neural Networks on Manifolds ${}^{"}G/K"$

Difficulty: But, how to define an "affine map $a \cdot x - b$ on a manifold"?

Hyperbolic NNs (Ganea+18, Gulcehre+19, Shimizu+21)

- For each point $x \in \mathbb{H}^m$,
- the affine map is re-defined by Gyrovector calculus,
- the elementwise activation is defined on a tangent space: $\exp_0 \circ \sigma \circ \log_0(x)$

SPDNets (Huang-Gool17, Dong+17, Gao+19)

- For an SPD matrix $x \in \mathbb{P}_m$,
- BiMap layer: $w^{\top}xw$
- ReEig layer: $u^{\top} \max(0, \lambda b)u$ where $x = u^{\top} \lambda u$

Ideas

- 1. Use the Fourier transform on manifolds, and
- 2. geometrically rewrite $\mathbf{a} \cdot \mathbf{x} \mathbf{b}$ as the distance between point \mathbf{x} and hyperplane ξ , namely,

$$\boldsymbol{a} \cdot \boldsymbol{x} - b = rd(\boldsymbol{x}, \xi).$$

where

- a = ru (polar coordinates $(r, u) \in \mathbb{R} \times \mathbb{S}^{m-1}$)
- $\xi := \{ \boldsymbol{y} \in \mathbb{R}^m \mid \boldsymbol{a} \cdot \boldsymbol{y} = b \}$ (a hyperplane passing through point $(b/r)\boldsymbol{u}$ with normal \boldsymbol{u})
- $d({m x},\xi)$ signed distance from point ${m x}$ to hyperplane ξ

Geometric Reparametrization of Euclidean NN

For scales $r_i>0$, hyperplanes $\xi_i\subset\mathbb{R}^m$, and weights $c_i\in\mathbb{R}$,

$$extstyle extstyle ext$$

Figure: Points x and hyperplane ξ in the Euclidean space \mathbb{R}^m

3. we employed *horospheres* as the G/K-counter of hyperplanes

A Noncompact Symmetric Space G/K

ullet is a homogeneous space G/K with nonpositive sectional curvature on which G acts transitively

Definition (Noncompact Symmetric Space G/K)

- ullet Let G be a connected semisimple real Lie group, and
- let G = KAN be the Iwasawa decomposition (K compact, A abelian, N nilpotent).
- A noncompact symmetric space is given by the quotient (the set of all left cosets)

$$X := G/K = \{gK \mid g \in G\}.$$

Example (Hyperbolic Space $\mathbb{H}^m = O(1, m)/O(1) \times O(m)$) for embedding words, and tree-structured dataset

Example (SPD Manifold $\mathbb{P}_m = GL(m)/O(m)$)

or a manifold of postive definite matrices, e.g., covariance matrices

Figure: Poincare \P Disk \mathbb{B}^2 is a noncompact symmetric space SU(1,1)/SO(2)

Basic Example: Hyperbolic Space \mathbb{H}^m

Poincare \forall ball model \mathbb{B}^m —One of a few models of \mathbb{H}^m

- Unit ball $\mathbb{B}^m := \{ \boldsymbol{x} \in \mathbb{R}^m \mid |\boldsymbol{x}|_E < 1 \}$ equipped with metric $g_{\boldsymbol{x}} = \frac{4}{(1-|\boldsymbol{x}|_E^2)^2} \sum_{i=1}^m \mathrm{d}x_i \otimes \mathrm{d}x_i,$
- $d_P(x, y) = \cosh^{-1}\left(1 + \frac{2|x-y|_E^2}{(1-|x|_E^2)(1-|y|_E^2)}\right); \quad d\operatorname{vol}_g(x) = \left(\frac{2}{1-|x|_E^2}\right)^m dx$

Basic objects in \mathbb{B}^m

- ullet Boundary/Ideal sphere $\partial \mathbb{B}^m$:= the set of points at infinity
 - Unit sphere $\partial \mathbb{B}^m = \{m{x} \in \mathbb{R}^m \mid |m{x}|_E = 1\}$
- Geodesic
 - Euclidean arcs/lines orthogonal to $\partial \mathbb{B}^m$
- (Hyperbolic) sphere $S(\boldsymbol{x},r) := \{ \boldsymbol{y} \in \mathbb{B}^m \mid d_P(\boldsymbol{x},\boldsymbol{y}) = r \}$
 - Euclidean sphere (but the center is biased outward)
- Horosphere ξ := a sphere with infinite radius $S(x, \infty)$
 - Euclidean sphere tangent to $\partial \mathbb{B}^m$
 - A hyperbolic counterpart of the Euclidean hyperplane, since it is a Euclidean sphere with infinite radius

Figure: Poincare ♥ Disk B²

Horospheres in G/K and Vector-Valued Composite Distance $\langle x,u\rangle$

Known Facts on the Horospheres in G/K

- On every G/K, the horosphere ξ can be defined.
- A horosphere $\xi(x,u)$ is parametrized by points $x\in X$ and $u\in\partial X$

like "a horosphere ξ passing through point x with normal u"

Vector-Valued Composite Distance $\langle x, u \rangle$

• denotes the distance between origin o and a horosphere $\xi(x,u)$ as

$$\langle x, u \rangle := d(o, \xi(x, u)) \quad \Big(= d(o, x_o) \Big)$$

- In general, it is *vector-valued*, which means that the absolute value $|\langle x,u\rangle|$ coincides with the Riemannian distance
- To be precise, it is \mathfrak{a} -valued, where \mathfrak{a} is the Lie algebra of A in G=KAN

Fourier Transform on X = G/K

Helgason, GGA (1984, Introduction); GASS (2008, Chapter III)

Definition (Helgason-Fourier Transform)

For any function $f: X \to \mathbb{C}$,

$$\widehat{f}(\lambda, u) := \int_{X} f(x)e^{(-i\lambda + \varrho)\langle x, u\rangle} dx, \quad (\lambda, u) \in \mathfrak{a}^* \times \partial X$$

with a certain constant vector $\varrho \in \mathfrak{a}^*$. Here, $\langle x,u \rangle$ denotes the <u>vector-valued distance</u> from the origin o to the <u>horosphere</u> through point $x \in G/K$ with normal $u \in \partial X$.

Theorem (Inversion Formula)

For any $f \in L^2(X)$ (or $f \in C_c^\infty(X)$),

$$f(x) = |W|^{-1} \int_{\mathfrak{a}^* \times \partial X} \widehat{f}(\lambda, u) e^{(i\lambda + \varrho)\langle x, u \rangle} |\mathbf{c}(\lambda)|^{-2} d\lambda du, \quad x \in X$$

38/48

where c is the Harish-Chandra c-function, and |W| is a constant.

This is a "Fourier transform" because $e^{(-i\lambda+\varrho)\langle x,u\rangle}$ is the eigenfunction of Laplace-Beltrami operator Δ_X on X

Definition (Fully-Connected NNs on Noncompact Symmetric Space G/K)

Let G be a connected semisimple real Lie group, let G=KAN be the Iwasawa decomposition, and let X:=G/K be the noncompact symmetric space. Put

$$S[\gamma](x) := \int_{\mathfrak{a}^* \times \partial X \times \mathbb{R}} \gamma(a, u, b) \sigma(a\langle x, u \rangle - b) e^{\varrho\langle x, u \rangle} da du db, \quad x \in X = G/K$$

where \mathfrak{a}^* is the dual of Lie algebra of A, ∂X is the boundary, and $\langle x,u\rangle$ is an X-counter of the Euclidean inner product $\boldsymbol{x}\cdot\boldsymbol{u}$ for $(\boldsymbol{x},\boldsymbol{u})\in\mathbb{R}^m\times\mathbb{S}^{m-1}$.

Example (Continuous Horospherical Hyperbolic NN)

On the Poincaré ball model $\mathbb{B}^m := \{ x \in \mathbb{R}^m \mid |x| < 1 \}$ equipped with the Riemannian metric $\mathfrak{g} = 4(1-|x|)^{-2} \sum_{i=1}^m \mathrm{d} x_i \otimes \mathrm{d} x_i$,

$$S[\gamma](\boldsymbol{x}) := \int_{\mathbb{R} \times \partial \mathbb{B}^m \times \mathbb{R}} \gamma(a, \boldsymbol{u}, b) \sigma(a\langle \boldsymbol{x}, \boldsymbol{u} \rangle - b) e^{\varrho \langle \boldsymbol{x}, \boldsymbol{u} \rangle} da d\boldsymbol{u} db, \quad \boldsymbol{x} \in \mathbb{B}^m$$

$$\varrho = (m-1)/2, \langle \boldsymbol{x}, \boldsymbol{u} \rangle = \log \left(\frac{1 - |\boldsymbol{x}|_E^2}{|\boldsymbol{x} - \boldsymbol{u}|_E^2} \right), \quad (\boldsymbol{x}, \boldsymbol{u}) \in \mathbb{B}^m \times \partial \mathbb{B}^m$$

Definition (Ridgelet Transform)

For any function $f:X\to\mathbb{C}$ and an auxiliary function $\rho:\mathbb{R}\to\mathbb{C}$, put

$$R[f;\rho](a,u,b) := \int_X \mathbf{c}[f](x)\overline{\rho(a\langle x,u\rangle - b)}e^{\varrho\langle x,u\rangle} dx$$

where c[f] is a Helgason-Fourier multiplier.

Theorem (Reconstruction Formula)

For any $\sigma \in \mathcal{S}'(\mathbb{R})$, $\rho \in \mathcal{S}(\mathbb{R})$, and $f \in L^2(X)$, we have

$$S[R[f;\rho]] = \int_{\mathfrak{a}^* \times \partial X \times \mathbb{R}} R[f;\rho](a,u,b) \sigma(a\langle x,u\rangle - b) e^{\varrho\langle x,u\rangle} da du db = ((\sigma,\rho)) f.$$

where $((\sigma, \rho))$ is a certain scalar product.

- ullet Meaning: Universality of continuous Fully-Connected NN on X
- ullet Corollary: cc-universality of finite Fully-Connected NNs on X

Sketch Proof

- Given a function $f: G/K \to \mathbb{C}$, consider solving an integral equation $S[\gamma] = f$ of unknown γ .
- Step 1: Change the frame of $S[\gamma]$ from neurons to a *Fourier expression*:

$$S[\gamma](x) := \int_{\mathfrak{a}^* \times \partial X \times \mathbb{R}} \gamma(a, u, b) \sigma(a\langle x, u \rangle - b) e^{\varrho\langle x, u \rangle} da du db$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \left[\int_{\mathfrak{a}^* \times \partial X} \gamma^{\sharp}(\lambda/\omega, u, \omega) |c(\lambda)|^2 e^{(i\lambda + \varrho)\langle x, u \rangle} \frac{d\lambda du}{|c(\lambda)|^2} \right] |\omega|^{-r} \sigma^{\sharp}(\omega) d\omega,$$

where \sharp denotes the Euclidean-Fourier transform in b.

• Step 2: Since inside $[\cdots]$ is the *inverse Helgason-Fourier transform*, put a separation-of-variables form:

$$\gamma_{f,\rho}^{\sharp}(\lambda/\omega,\boldsymbol{u},\omega)=\widehat{f}(\lambda,\boldsymbol{u})\overline{\rho^{\sharp}(\omega)}|\boldsymbol{c}(\lambda)|^{-2}.$$

Then, by the construction, it is a particular solution:

$$S[\gamma_{f,\rho}] = ((\sigma,\rho))f,$$

where $((\sigma, \rho)) := \frac{|W|}{2\pi} \int_{\mathbb{R}} \sigma^{\sharp}(\omega) \overline{\rho^{\sharp}(\omega)} |\omega|^{-m} d\omega$.

• In the end, we can verify that $\gamma_{f,\rho}$ is the ridgelet transform $R[f;\rho].$

Generalized NN and Ridgelet Transform Induced from Invariant Functions ⁴

⁴S-Ishi-Ishikawa-Ikeda, NeurReps2023

Joint G-Invariant Function

- ullet Let G be a locally compact group equipped with invariant Haar measure $\mathrm{d}g$
 - e.g. a finite group, compact group, Lie group, ...
- Let X and Ξ be homogeneous G-spaces equipped with invariant Haar measures $\mathrm{d}x$ and $\mathrm{d}\xi$
 - we call X the "data domain" and Ξ the "parameter domain"
- Let π_g and $\widehat{\pi}_g$ be regular G-acitions on $L^2(X)$ and $C_c(\Xi)$, i.e.

$$\pi_g[f](x) := f(g^{-1} \cdot x), \quad \text{and} \quad \widehat{\pi}_g[\gamma](\xi) := \gamma(g^{-1} \cdot \xi)$$

Definition (Joint G-Invariant Functions)

• We say a function ϕ on $X \times \Xi$ is joint G-invariant when

$$\phi(g \cdot x, g \cdot \xi) = \phi(x, \xi),$$

for all $g \in G$ and $(x, \xi) \in X \times \Xi$.

• \mathcal{A} denote the algebra of all joint G-invariant functions.

Main Results

Definition (Generalized Network)

For any joint G-invariant function $\phi \in \mathcal{A}$ and $\gamma \in L^2(\Xi)$, put

$$\mathtt{NN}[\gamma;\phi](x) := \int_\Xi \gamma(\xi)\phi(x,\xi)\mathrm{d}\xi, \quad x \in X$$

Definition (Generalized Ridgelet Transform)

For any joint G-invariant function $\psi \in \mathcal{A}$ and $f \in L^2(X)$, put

$$\mathtt{R}[f;\psi](\xi) := \int_{Y} f(x) \overline{\psi(x,\xi)} \mathrm{d}x, \quad \xi \in \Xi$$

Theorem (Reconstruction Formula)

Supopse that the regular action π_g is an irreducible unitary representation of G on $L^2(X)$. Then, there exists a bilinear form $((\phi, \psi))$ such that for any $f \in L^2(X)$

$$NN_{\phi}[R_{\psi}[f]] = \int_{\Xi} R[f; \psi](\xi) \phi(\bullet, \xi) d\xi = ((\phi, \psi))f.$$

Proof

 \iff

Theorem (Schur's Lemma)

A unitary representation (π, \mathcal{H}) of G is irreducible

$$\iff$$
 Any bounded operator T that commutes with π is a scalar multiple of the identity

 $\forall q \in G \ [T \circ \pi_q = \pi_q \circ T] \implies \exists c \in \mathbb{C} \ [T = c \operatorname{Id}_{\mathcal{H}}]$

By the left-invariances of dx and ψ (resp. $d\xi$ and ϕ), we have

$$\mathbb{R}_{\psi}[\pi_{g}[f]](\xi) = \int_{X} f(g^{-1} \cdot x) \overline{\psi(x, \xi)} dx = \int_{X} f(x) \overline{\psi(g \cdot x, \xi)} dx = \int_{X} f(x) \overline{\psi(x, g^{-1} \cdot \xi)} dx = \widehat{\pi}_{g}[\mathbb{R}_{\psi}[f]](\xi)$$

 $\mathrm{NN}_{\phi}[\widehat{\pi}_{g}[\gamma]](x) = \int_{-\gamma} (g^{-1} \cdot \xi) \phi(x, \xi) \mathrm{d}\xi = \int_{-\gamma} (\xi) \phi(x, g \cdot \xi) \mathrm{d}\xi = \int_{-\gamma} (\xi) \phi(g^{-1} \cdot x, \xi) \mathrm{d}\xi = \pi_{g}[\mathrm{NN}_{\phi}[\gamma]](x).$

As a consequence, $NN_{\phi} \circ R_{\psi} : L^2(X) \to L^2(X)$ commutes with π , namely

$$\mathtt{NN}_\phi \circ \mathtt{R}_\psi \circ \pi_q = \mathtt{NN}_\phi \circ \widehat{\pi}_q \circ \mathtt{R}_\psi = \pi_q \circ \mathtt{NN}_\phi \circ \mathtt{R}_\psi$$

for all $g \in G$. Hence Schur's lemma yields that there exist a constant $C_{\phi,\psi} \in \mathbb{C}$ such that $\mathtt{NN}_{\phi} \circ \mathtt{R}_{\psi} = C_{\phi,\psi} \, \mathrm{Id}_{L^2(X)}$. By the construction of left-hand side, $C_{\phi,\psi}$ is bilinear in ϕ and ψ .

Example

Original Ridgelet Transform

- G is the affine group $Aff(m) = GL(m) \ltimes \mathbb{R}^m$
- $X = \mathbb{R}^m$ (data domain) with G-action

$$g \cdot \boldsymbol{x} := L\boldsymbol{x} + \boldsymbol{t}, \quad g = (L, \boldsymbol{t}) \in G,$$

• $\Xi = \mathbb{R}^m \times \mathbb{R}$ (parameter domain) with dual G-action

$$g \cdot (\boldsymbol{a}, b) = (L^{-\top} \boldsymbol{a}, b + \boldsymbol{t}^{\top} L^{-\top} \boldsymbol{a}), \quad g = (L, \boldsymbol{t}) \in G$$

- Then, $\phi(x, (a, b)) := \sigma(a \cdot x b)$ and $\psi(x, (a, b)) := \rho(a \cdot x b)$ are joint G-invariant. Indeed, $\phi(g \cdot x, g \cdot (a, b)) = \sigma(L^{-\top}a \cdot (Lx + t) (b + t^{\top}L^{-\top}a)) = \sigma(a \cdot x b) = \phi(x, (a, b))$
- Thus, we may put

$$\mathrm{NN}[\gamma](\boldsymbol{x}) = \int_{\mathbb{R}^m \times \mathbb{R}} \gamma(\boldsymbol{a}, b) \sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b) \mathrm{d}\boldsymbol{a} \mathrm{d}b, \quad \text{and} \quad \mathrm{R}[f](\boldsymbol{a}, b) = \int_{\mathbb{R}^m} f(\boldsymbol{x}) \overline{\rho(\boldsymbol{a} \cdot \boldsymbol{x} - b)} \mathrm{d}\boldsymbol{x}$$

• Since π_g is known to be irreducible, NN \circ R = $((\sigma, \rho))$ $\mathrm{Id}_{L^2(\mathbb{R}^m)}$

Geometric Interpretation

Let

$$\xi(\boldsymbol{a},b) := \{ \boldsymbol{y} \in \mathbb{R}^m \mid \boldsymbol{a} \cdot \boldsymbol{x} - b = 0 \}$$

be the hyperplane determined by $\mathbf{a} \cdot \mathbf{x} - b = 0$

• The invariant $\phi(\boldsymbol{x},(\boldsymbol{a},b)) = \sigma(\boldsymbol{a}\cdot\boldsymbol{x}-b)$ is a signed distance between point \boldsymbol{x} and hyperplane $\xi(\boldsymbol{a},b)$ followed by scale $|\boldsymbol{a}|$ and nonlinearity σ :

$$\sigma(\boldsymbol{a} \cdot \boldsymbol{x} - b) = \sigma(|\boldsymbol{a}| d(\boldsymbol{x}, \xi(\boldsymbol{a}, b)))$$

- While G-action g · x is cast as the transportation of point x,
- the dual G-action $g \cdot (a, b)$ is cast as the parallel transport of hyperplane $\xi(a, b)$ so that

$$d(g \cdot \boldsymbol{x}, g \cdot \xi(\boldsymbol{a}, b)) = d(\boldsymbol{x}, \xi(\boldsymbol{a}, b))$$

Deep Ridgelet Transform for Formal Deep Network⁵

⁵S-Hashimoto-Ishikawa-Ikeda, NeurReps2023

Formal DNN

Idea 1. Identify each hidden map $g: X \to X$ with a group action (of group G on X) $\implies g$ is invertible (without specific implementation)

Idea 2. Integrate all the candidate subnetworks $\{\psi \circ g \mid g \in G\}$ (linearization trick!)

Idea 3. Then, $\theta(x,g) := \psi \circ g(x)$ is joint *G*-invariant!

Definition (Formal DNN)

For any function $\psi \in L^2(X)$ and measure γ on G, put

$$\mathtt{DNN}[\gamma;\psi](x) := \int_G \gamma(g) \; \psi \circ g(x) \mathrm{d}g, \quad x \in X.$$

Main Theorem

Definition (Deep Ridgelet Transform)

For any functions f and ϕ on X, put

$$R[f;\phi](g) := \int_{\mathcal{X}} f(x) \, \overline{\phi \circ g(x)} \mathrm{d}x.$$

Theorem (Reconstruction Formula)

Provided $\pi_g[f]:=f\circ g$ is an irreducible unitary representation of G acting from right on $L^2(X)$, there exists a bilinear form $((\psi,\phi))$ such that

$$\mathrm{DNN}_{\psi}[R_{\phi}[f]] = \int_G R_{\phi}[f](g) \; \psi \circ g(x) \mathrm{d}g = (\!(\psi,\phi)\!)f, \quad \text{for all } f \in L^2(X).$$

Proof

- Put the dual G-action on the parameter domain G as $g \cdot \xi := \xi \circ g^{-1}$
- Then, $\theta(x,\xi) := \psi \circ \xi(x)$ is joint *G*-invariant. Indeed.

$$\theta(q \cdot x, q \cdot \xi) = \psi \circ (q \cdot \xi)(q \cdot x) = \psi \circ (\xi \circ q^{-1})(q(x)) = \psi \circ \xi(x) = \theta(x, \xi)$$

 Thus, formal DNN and deep ridgelet transform are generalized DNN and generalized ridgelet transform, resp.