MH1812 Tutorial Chapter 1: Elementary Number Theory

- \cancel{Q} 1: Show that 2 is the only prime number which is even.
- Q2 Show that if $\underline{n^2}$ is even, than n is even, for n an integer.
- Q3: The goal of this exercise is to show that $\sqrt{2}$ is irrational. We provide a step by step way of doing so.
 - 1. Suppose by contradiction that $\sqrt{2}$ is rational, that is $\sqrt{2} = \frac{m}{n}$, for m and n integers with no common factor. Show that m has to be even.
 - 2 Compute m^2 , and deduce that n has to be even too, a contradiction.
- \mathbb{Q}_4 : Show the following two properties of the integers modulo n:
 - $(a \mod n) + (b \mod n) \equiv a + b \pmod n.$
 - \mathcal{Z} . $(a \mod n) \cdot (b \mod n) \equiv a \cdot b \pmod n$.
- 25: Compute the <u>addition table</u> and the multiplication tables for integers modulo 4.
- Q6. Show that $\frac{p(p+1)}{2} \equiv 0 \pmod{p}$ for p an odd prime.
- Q7: Find the last digit of 7^{9999}
- Q8: Find the last digit of 8^{9999} .
- \emptyset 9: Consider the following sets S, with respective operator Δ .
 - 1. Let S be the set of odd integers and Δ be the multiplication. Is S closed under Δ ?

 Justify your answer.
 - 7. Let S be the set of nonzero rational numbers $\mathbb{Q} \setminus \{0\}$ and Δ be the division. Is S closed under Δ ? Justify your answer.
 - Δ . Let S be the set of positive integers \mathbb{Z}^+ and Δ be the subtraction. Is S closed under Δ ? Justify your answer.
 - A. Let \underline{S} be the set of irrational numbers and Δ be the addition. Is \underline{S} closed under $\underline{\Delta}$? Justify your answer.