Odbicie lambertowskie – odbicie rozproszone przez idealnie matową powierzchnię, opisane prawem Lamberta. Jest stosowanym w grafice komputerowej modelem oświetlenia powierzchni matowych (takich jak papier, kreda) przez światło punktowe.

Rys. 1 Lambert shader

Rys 2. Ilustracja odbicia rozproszonego

Powierzchnie matowe rozpraszają światło w jednakowy sposób we wszystkich kierunkach i dlatego wydają się jednakowo jasne, niezależnie od kąta patrzenia

Jeśli strumień światła ma nieskończenie mały przekrój dA, to oświetla on powierzchnię równą $\frac{dA}{\cos\alpha}$, gdzie α to kąt pomiędzy wektorem normalnym \vec{N} a kierunkiem \vec{L} do światła

Dla powierzchni matowych prawdziwe jest *prawo Lamberta* które mówi, że natężenie docierające z powierzchni elementarnej dA do obserwatora jest proporcjonalne do cosinusa kąta między \vec{N} a kierunkiem do obserwatora. Ale pole powierzchni obserwowanej pod tym kątem jest z kolei odwrotnie proporcjonalne do cosinusa kąta (analogicznie jak to miało miejsce dla strumienia światła). Dlatego cosinusy znoszą się, co oznacza, że natężenie światła docierające do obserwatora zależy wyłącznie od $cos\alpha$.

Natężenie to wyraża się wzorem: $I=I_{aA}+I_d\,k_d\,coslpha$, gdzie I_a to natężenie światła otoczenia a I_a to natężenie światła punktowego źródła światła. $k_d\,\epsilon\,[0,1]$ określa jaki procent energii światła padającego na powierzchnię ulega odbiciu.

Jeśli wektory \vec{N} oraz \vec{L} są znormalizowane (ich długość jest równa jeden), to równanie można zapisać używając iloczynu skalarnego: $I=I_a+I_d\,k_d\,(\vec{N}\cdot\vec{L})$. Jeśli odległość światła od obiektów jest bardzo duża (dąży do nieskończoności), wówczas kąt pomiedzy \vec{N} , a \vec{L} jest praktycznie stały. Wówczas takie światło nazywa się kierunkowym.

Źródła:https://docs.microsoft.com/en-us/visualstudio/designers/how-to-create-a-basic-lambert-shader,
https://pl.wikipedia.org/wiki/Odbicie_lambertowskie