computing longest (common) Lyndon subsequences

Hideo Bannai¹, Tomohiro I², Tomasz Kociumaka³, Dominik Köppl¹, Simon J. Puglisi⁴

- ¹ M&D Data Science Center, Tokyo Medical and Dental University
- ² Department of Artificial Intelligence, Kyushu Institute of Technology
- ³ University of California, Berkeley
- ⁴ Department of Computer Science, Helsinki University

Lyndon

 a string is called Lyndon if it is lexicographically smaller (≺) than all its proper suffixes

example:

- a, ab, aab
- not Lyndon:
 - aba (a \prec aba)
 - abab (ab \prec abab)

input

- text T of length n
- T[i]: character $\in \Sigma$
- Σ : alphabet, $\sigma := |\Sigma|$ alphabet size
- $\sigma = n^{O(1)}$, i.e., Σ is integer alphabet

Lyndon factorization [Chen+ '58]

- factorization $T = T_1...T_t$ with $T_x \ge T_{x+1} \forall x$
- T_x is Lyndon; called Lyndon factor
- factorization uniquely defined
- linear time [Duval' 88]

Lyndon factorization [Chen+ '58]

- factorization $T = T_1...T_t$ with $T_x \ge T_{x+1} \forall x$
- T_x is Lyndon; called Lyndon factor
- factorization uniquely defined
- linear time [Duval' 88]

example: $T_1 = bcc$ $T_2 = adb$ $T_3 = accbcd$

longest Lyndon substring S

answer S is longest Lyndon factor

longest Lyndon substring S

- answer S is longest Lyndon factor
- assume $S = T_x[i..|T_x|] T_{x+1} \cdots T_y T_{y+1}[1..j]$
- then $T_{y+1}[1..j] \le T_x \le T_x[i..|T_x|]$ by the Lyndon factorization $\Rightarrow S$ not Lyndon

substring → subsequence

 can find longest Lyndon substring in O(n) time

for longest Lyndon subsequence:

- usually: to find longest *** subsequence: use dynamic programming (DP)
- can we use DP / greedy approach here?

DP?

compute solution for T[1..i+1] from T[1..i]?

longest Lyndon subsequence of

T[1..9]: bccdcc

T[1..11]: abaccbc

T[1..12]: bbcbccbcd

looks difficult!

our results

compute longest Lyndon subsequence in

- $O(n^3)$ time and
- O(n) space

not in this talk but in the paper:

- online: $O(n^3\sigma)$ time, $O(n^3\sigma)$ space
- longest common: $O(n^4\sigma)$ time, $O(n^3)$ space but how? (if not greedy / DP)

trie of Lyndon subsequences

T = bccadbaproperties

- label c(v) of node v 6
 = end of leftmost occurrence of string read from root to v
- c(parent(v)) < c(v)

1 2 3 4 5 6 7 T = b c c a d b a

trie of Lyndon subsequences

- leaves are Lyndon subsequences
- deepest leaf is longest Lyndon subsequence!

enumerate all?

- idea: build trie on all Lyndon subsequences and take deepest leaf
- # distinct Lyndon subsequences = $O(2^n)$ e.g., for $T = 1 \cdots n$ this number is $\Theta(2^n)$
- exact number still unknown!
 (only expected number [Hirakawa+ '21])

pre-Lyndon / immature

- so: build trie on-the-fly
- but which nodes lead to Lyndon subsequences?

for that, we need some definitions:

- a string is called pre-Lyndon if it is a prefix of a Lyndon string
- a pre-Lyndon string is called immature if it is not Lyndon (e.g., it is a proper prefix of a Lyndon string)

key observation

- a node has at most one child that is immature
- determined by its (minimal) period p

key observation

W pre-Lyndon, c character, p period of W

- $c = W[|W|-p+1] \Leftrightarrow Wc$ immature
- $c > W[|W|-p+1] \Leftrightarrow Wc$ Lyndon

key observation

W pre-Lyndon, c character, p period of W

- $c = W[|W|-p+1] \Leftrightarrow Wc$ immature
- $c > W[|W|-p+1] \Leftrightarrow Wc$ Lyndon

more properties

• W Lyndon $\Rightarrow p = |W|$ ($\Rightarrow W[|W|-p+1] = W[1]$) p is also the period of Wc

 W[1..p] is Lyndon (otherwise W is not pre-Lyndon)

trie of pre-Lyndon subsequences

- leaves no longer necessarily Lyndon (pink)
- how can we represent this trie more efficiently?

$$T = b c c a d b a$$

stack

 implicitly represent trie by a stack S simulating a depth-first search (DFS)

• T[S[1]]...T[S[|S|]] is pre-Lyndon subsequence

• S = [4,6,7]

stack + periods

- augment *S* with periods: S = [(4,1),(6,2)]
- when visiting v:
- last period p
 on stack is 2

compare
T[S[|S|-p+1]] =
with in-going
edge of *v*⇒ immature

time?

- \Rightarrow space is O(n), but time can still be $O(2^n)$
- idea: explore in lexicographic order, but "prune" a node if its subtree cannot lead to a longer Lyndon subsequence
- if we visit a node u whose subsequence is lexicographically larger than a longer subsequence of an already visited node v, we prune u
- why can we do that?

lemma

- V Lyndon • U, $W \in \Sigma^*$ such that • V < U• $|V| \ge |U|$
- *⇒ VW* Lyndon and *VW* < *UW*

lemma

V Lyndon such that

Lyndon

• $U, W \in \Sigma^*$

- UW Lyndon
- *V* < *U*
- $|V| \ge |U|$
- ⇒ VW Lyndon and VW < UW

proof.

take suffix *S* of *VW*

$$1. |S| \leq |W|$$

 $V \triangleleft U :\Leftrightarrow V \prec U$ and V not prefix of U

lemma

V Lyndon such that

Lyndon

• U, $W \in \Sigma^*$

- UW Lyndon
- V < U
- |V| ≥ |U|
- ⇒ VW Lyndon and VW < UW

proof.

take suffix *S* of *VW*

 $1. |S| \leq |W|$

 $V \triangleleft U :\Leftrightarrow V \prec U$ and V not prefix of U

lemma

- V Lyndon such that
- $U, W \in \Sigma^*$

- UW Lyndon
- V < U
- $|V| \ge |U|$
- ⇒ VW Lyndon and VW < UW

proof.

take suffix *S* of *VW*

2. |S| > |W|

 $V \triangleleft U :\Leftrightarrow V \prec U$ and V not prefix of U

lemma

- V Lyndon such that -
- $U, W \in \Sigma^*$

- UW Lyndon
- *V* < *U*
- $|V| \ge |U|$
- ⇒ VW Lyndon and VW < UW

proof.

take suffix *S* of *VW*

2. |S| > |W|

$$V \triangleleft V'$$
 since
 V is Lyndon
 $\Rightarrow VW \prec V'$
 \downarrow
 $\Rightarrow S > V' > VW$

leverage lemma

- maintain dynamic array L[1..n]: $L[\ell]$: smallest text position i for which we know that \exists Lyndon subsequence W in T[1..i] with $|W| = \ell$
- $L[\ell] = \infty \ \forall \ \ell$ at start
- since our DFS is in lexicographic order, when visiting a node u at depth ℓ , we prune u if $L[\ell] < c(u)$ (the label of u)

initial state: $S = \emptyset$

$$L = \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$$

$$S = (4,1) (6,2)$$

Lyndon
subsequences:

- a
- ab

S = (4,1) (5,2) (6,3) Lyndon subsequences:

- ad
- adb

since ad ends earlier than ab, we can update *L*[2]

S = (1,1)(2,2)(3,3)(5,4) find subsequences

- b
- bc
- bcc
- bccd

skip bcd

S = (1,1)(2,2)(5,3)a find subsequence bcd at node <u>u</u> but b L[|bcd|] = 3 < 5⇒ prune *u* b bccadba

observation

- either
 - decrement $L[\ell]$,
 - prune subtree, or
 - visit immature child (immature is not Lyndon and thus cannot lower L)
- $L[\ell] \in [1..n] \Rightarrow$ all values of L can be decremented $O(n^2)$ times

node visits

node visits between two $L[\ell]$ decrements is $O(n\sigma)$

- $\ell \leq n$
- $\leq \sigma$ siblings that are pre-Lyndon

depth

 $\leq n$

⇒ total node visits: $O(n^3\sigma)$

 $< \sigma$ right siblings

total time

parent \rightarrow child traversal in O(1) time:

- let T[i] store an array $F_i[1..\sigma]$ such that $F_i[c]$ is the next occurrence of c in T, i.e., $F_i[c] = \min \{ j \in [i..n] \mid T[j] = c \}$
- total time: $O(n^3 \sigma)$, space: $O(n\sigma)$
- can shave off σ in time&space by using RMQ + wavelet tree instead of $F_i[c]$

skip nodes

suppose node has lowered $L[\ell]$

can lower $L[\ell]$ only if $j < i = L[\ell]$

⇒ consider only those with a label in $[k+1..L[\ell]-1]$

data structures

- build range maximum query (RMQ) data structure and wavelet tree on T
- given an interval J and a character c, query:
- max { $T[j] \mid j \in J$ } in O(1) time (RMQ)
- min { $T[j] \mid j \in J \land T[j] > c$ } in O(lg n) time (range successor query)

leverage data structures

YES

suppose node has lowered $L[\ell] \leftarrow i$ with a subsequence Wc, p: period of W

 $RMQ[k+1..L[\ell]-1] > W[|W|-p+1]?$

NO

can lower L[ℓ] ⇒ use wavelet tree to find next node

RMQ $[k+1..L[\ell]-1] = W[|W|-p+1]$?

YES found the immature child ⇒ descend

NO skip all siblings

34 / 36

time complexity

- $O(n^2)$ nodes lower L
- each such node
 - found by wavelet tree query: O(lg n) time
 - can have O(n) immature ancestors
- ⇒ $O(n^3)$ immature nodes, each found in O(1) time by RMQ
- total time: $O(n^2 \lg \sigma + n^3) = O(n^3)$ time
- data structures use O(n) space

summary

computing longest Lyndon subsequence

- $O(n^3)$ time and O(n) space
- simulate DFS on trie of all pre-Lyndon subsequences with a stack
- use wavelet tree + RMQ data structure to
 - speed up trie navigation
 - skip nodes that cannot lower L
- output is actually the lexicographically smallest among all longest ones