Convolutional Neural Networks for Crack Detection Classification

Using Convolutional Neural Networks for binary classification of concrete with and without cracks

Megan Arnold DTSA 5511 Final September 30th, 2025

Problem Overview

- Images contain very useful information, but are difficult to classify as there are potentially many features within a single image.
- Detecting cracks and deviations can enable early detection; thus, enabling timely repairs or replacement before catastrophic and expensive failure
- Challenge: Many features not relevant to cracks are present
- Challenge: Labels are binary for the images, nothing spatial is encode

Cracked Examples:

Uncracked Examples:

Project Goals

- Explore dataset to **understand data diversity** and guide model selections and identifying potential pitfalls and confounding factors
- **Build Baseline CNN Model** based on exploratory data analysis.
- Evaluate model performance and attempt to improve architecture and parameters for subsequent models
- Visualize CNN gradient heatmaps to determine the strengths and weaknesses of models; thus, guiding future architecture decisions
- Use **Data Augmentation** on the best performing model to determine if that will help the model generalize
- **Evaluate hyperparameter** tuning outcomes on test dataset, via Kaggle Submission
- Make future work **recommendations**

Dataset Overview

- About 7500 cracked and uncracked images
- Balanced dataset between binary classification
- Observations
 - Cracked:
 - Thick and thin cracks
 - Some are hardly visible to the naked eye
 - No spatial labeling
 - Uncracked:
 - Many uncracked images have significant craters

Examples of Data:

Exploratory Data Analysis

- 256 by 256 pixels with 3 color channels
- Balanced Dataset
- Consistent histograms on pixel values.
 Reduces the probability of the model learning a shortcut
- Challenges:
 - There appears to be a potential confounding factor of craters in uncracked images
 - *Note: My first baseline model used the craters as an important feature for classification, as observed by the heatmaps

Cracked Histograms:

Uncracked Histograms:

Baseline Convolutional Model

- Rescaling to pixel value range of [0,1]
- 7 Convolutional Layers
 - 32,32,64, 64, 128, 128, 256
- Batch Normalization between odd and even layers
- MaxPooling between even and odd layers
- Global Average Pooling between CNN and
 - classification blocks
- Dense layer of 64 neurons
- Sigmoid activation neuron

		П
M- 4-1 -	W	۰

Layer (type)	Output		Param #
rescaling (Rescaling)		256, 256, 3)	0
conv2d (Conv2D)	(None,	256, 256, 32)	896
batch_normalization (Batch Normalization)	(None,	256, 256, 32)	128
conv2d_1 (Conv2D)	(None,	256, 256, 32)	9248
max_pooling2d (MaxPooling2 D)	(None,	128, 128, 32)	0
conv2d_2 (Conv2D)	(None,	128, 128, 64)	18496
batch_normalization_1 (Bat chNormalization)	(None,	128, 128, 64)	256
conv2d_3 (Conv2D)	(None,	128, 128, 64)	36928
max_pooling2d_1 (MaxPoolin g2D)	(None,	64, 64, 64)	0
conv2d_4 (Conv2D)	(None,	64, 64, 128)	73856
batch_normalization_2 (Bat chNormalization)	(None,	64, 64, 128)	512
conv2d_5 (Conv2D)	(None,	64, 64, 128)	147584
conv2d_6 (Conv2D)	(None,	64, 64, 256)	295168
global_average_pooling2d (GlobalAveragePooling2D)	(None,	256)	0
dropout (Dropout)	(None,	256)	0
dense (Dense)	(None,	64)	16448
dense_1 (Dense)	(None,	1)	65

Total params: 599585 (2.29 MB) Trainable params: 599137 (2.29 MB) Non-trainable params: 448 (1.75 KB)

Baseline Observations

- Test Accuracy: 0.78
- General Observations
 - Started overfitting around epoch 10
 - Significant focus on craters instead of cracks
 - Focus on small local areas instead of global context
 - Some focus on parts of a crack that look like craters
 - No edge artifacts seen

Model and Hyperparameter Tuning Version 2

Overfitting Fixes:

- Decrease Dense layer in classification from 64 to 16
- Increased the dropout before classification
- Global vs Local Context Fixes:
 - Added Dilation rate of 2 to the final two convolutional layer
 - Changed padding of first convolutional layer to "valid" instead of "same"

Model Description	Validation Accuracy	Public Kaggle Accuracy	Private Kaggle Accuracy
Model Baseline	~0.85	0.780	0.773
Version 2	~0.85	0.721	0.699

Version 2 Observations

- Test Results: 0.721
- Observations:
 - Edge artifacts on visualization heat maps
 - Suggests "valid" isn't an ideal choice here
 - Focus on craters still
 - Focus on small local contexts still
- Significant changes need to occur for the third version

Model and Hyperparameter Tuning Version 3

Global vs Local Context Fixes

- Increased kernel size from 3 to 5 of first convolutional layer
- Added LeakyReLU as activation instead of ReLU. Allows negative values to propagate, although at a decreased rate
- Average Pooling Instead of Max Pooling
 - Max Pooling was hiding the darker cracks
- Overfitting
 - Added regularization to the convolutional layers
 - Kept the decreased Dense Layer size
- Edge Artifacts
 - Change back to "same" padding

Model Description	Validation Accuracy	Public Kaggle Accuracy	Private Kaggle Accuracy
Model Baseline	~0.85	0.780	0.773
Version 2	~0.85	0.721	0.699
Version 3	~0.86	0.795	0.771

Version 3 Observations and Results

- Test Results: 0.795
- Observations
 - Smaller overfitting gap between train and validation metric
 - Regularization
 - Ignores non-relevant craters/features
 - Has global context on cracks
 - Kernel size increase
 - Better at identifying thin cracks
 - Average Pooling
- Overall, best model so far and doesn't highlight confounding factors, only cracks.
- Explainable model when GradCAM is applied Prob: 0.99347937

Prob: 0.97978514

Data Augmentation

- Augmentation Layers
 - Random Contrast
 - Random Flip
 - Random Rotation
 - Random Zoom
 - Random Translation
 - Gaussian Noise
- Test Result: 0.713
- Hypothesis
 - Augmentation was too aggressive and cause the cracks to potentially be removed if they were near the edge.
 - Future work should tune this portion of the model

Model Description	Validation Accuracy	Public Kaggle Accuracy	Private Kaggle Accuracy
Model Baseline	~0.85	0.780	0.773
Version 2	~0.85	0.721	0.699
Version 3	~0.86	0.795	0.771
Augmented Version 3	~0.77	0.713	0.704

Recommendations, Use Cases, and Next Steps

Results

- Convolutional Neural Network for Binary Classification of images
- Explainable model with additional GradCAM visualization
- Model is capable of identifying the entire crack in the global context
- Model is capable of ignoring the non-relevant, but confounding factors of craters

Benefits

- Improves the ability to automate defect identification
- Less expensive than having human inspectors
- Enables earlier identification of defects; thus, potentially mitigating costly repairs and replacements

- Next Steps

- Have spatially labeled images with either bounding boxes or individual pixels
- Further hyperparameter tuning with the architecture and classification head to increase accuracy and explainability
- Further work with data augmentation to decrease overfitting and reduce the amount of training data needed
- Explore transfer learning of commonly used models

Conclusion

- Binary Classification Convolutional Neural Networks are able to still highlight the important features in the original image that is important to the classification
- The model was relatively fast to train and inference on a commercially available GPU
- Future work:
 - Improved spatial labeling with bounding boxes instead of binary labeling for entire image
 - Data Augmentation to further reduce overfitting
 - Hyperparameter tuning to further improve performance

