```
In [2]:
          1 import numpy as np
          2 import pandas as pd
          3 import matplotlib.pyplot as plt
          4 import seaborn as sns
         1 df_train = pd.read_csv('train.csv')
In [3]:
In [4]:
         1 df_train
Out[4]:
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

EDA

```
In [5]:
          1 df train.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
              Column
                           Non-Null Count Dtype
             PassengerId 891 non-null
                                           int64
                           891 non-null
             Survived
                                           int64
              Pclass
                           891 non-null
                                           int64
          3
                           891 non-null
                                           obiect
              Name
                           891 non-null
                                           object
              Sex
             Age
                          714 non-null
                                           float64
                           891 non-null
             SibSp
                                           int64
                           891 non-null
              Parch
                                           int64
                           891 non-null
                                           object
             Ticket
              Fare
                           891 non-null
                                           float64
         10 Cabin
                           204 non-null
                                           obiect
         11 Embarked
                           889 non-null
                                           object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
          1 df train.drop(['PassengerId','Name','Ticket'],axis = 1,inplace = True)
In [6]:
          1 | 100*df train.isna().sum()/df train.shape[0]## Percentage of Na values in our dataset
In [7]:
Out[7]: Survived
                     0.000000
        Pclass
                      0.000000
        Sex
                      0.000000
        Age
                    19.865320
        SibSp
                     0.000000
        Parch
                     0.000000
        Fare
                      0.000000
        Cabin
                     77.104377
        Embarked
                      0.224467
        dtype: float64
```

In [8]: 1 df_train.head()

Out[8]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	male	22.0	1	0	7.2500	NaN	S
1	1	1	female	38.0	1	0	71.2833	C85	С
2	1	3	female	26.0	0	0	7.9250	NaN	S
3	1	1	female	35.0	1	0	53.1000	C123	S
4	0	3	male	35.0	0	0	8.0500	NaN	S

Questions to ask:

- 1. Analyse the distribution in X variable/Who were the passengers
- 2. Analyse the distribution in the Y variable/Understand the distribution in the Survived column
- 3. Analyse the relation between X and Y/ Find out which attributes are affecting the Y variable

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x26e9558bdc8>


```
In [10]: 1 df_train['Sex'].value_counts()/df_train.shape[0]
```

Out[10]: male 0.647587 female 0.352413

Name: Sex, dtype: float64

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x26e956d67c8>

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x26e9573a788>


```
In [14]: 1 df_train['Embarked'].value_counts()/df_train.shape[0]
```

Out[14]: S 0.722783 C 0.188552 O 0.086420

Name: Embarked, dtype: float64

```
In [15]: 1 df_train['Age'].hist()
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95c01148>


```
In [16]: 1 df_train['Age'].describe()
```

Out[16]: count 714.000000 mean 29.699118 std 14.526497 0.420000 min 25% 20.125000 50% 28.000000 75% 38.000000 80.000000 max

Name: Age, dtype: float64

```
In [17]: 1 df_train['Fare'].hist()
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95a2de08>

std 49.693429 min 0.000000 25% 7.910400 50% 14.454200 75% 31.000000 max 512.329200

Name: Fare, dtype: float64

Multivariate Analysis

```
In [19]: 1 sns.countplot(x = 'Pclass',data = df_train,hue = 'Sex')
2 ## homework: Find the numbers eg in plcass 3 what is the percentage of males vs females
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95b2fb48>


```
In [20]: 1 sns.countplot(x = 'Pclass',data = df_train,hue = 'Embarked')
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95c8f148>


```
In [21]: 1 sns.countplot(x = 'Embarked',data = df_train,hue = 'Pclass')
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95ce7d48>


```
In [22]: 1 df_train['Cabin'].isna().sum()/df_train.shape[0]
2 ## Depending on your domain and column importance if you have more than 25-30% na values in any particular column your
```

Out[22]: 0.7710437710437711

```
In [23]:
           1 for i in df_train['Embarked'].dropna().unique():
                  print(f"Passangers Embarked from Port {i} : the distribution is \n {100*df_train[df_train['Embarked']==i]['Pclas
           2
         Passangers Embarked from Port S : the distribution is
               39,618406
              18.406285
         2
              14,253648
         Name: Pclass, dtype: float64
         Passangers Embarked from Port C : the distribution is
               9.539843
              7,407407
         3
              1.907969
         Name: Pclass, dtype: float64
         Passangers Embarked from Port Q : the distribution is
               8.080808
              0.336700
              0.224467
         Name: Pclass, dtype: float64
In [24]:
           1 df train['Cabin']
Out[24]: 0
                 NaN
                 C85
                 NaN
                C123
                 NaN
                 . . .
         886
                 NaN
         887
                 B42
         888
                 NaN
         889
                C148
         890
                 NaN
         Name: Cabin, Length: 891, dtype: object
           1 levels = []
In [25]:
           3 levels = [i[0] for i in df_train['Cabin'].dropna()]
```

```
In [26]:
            1 levels
           'Ε',
           'Ε',
           'C',
           'C',
           'C',
           'F',
           'C',
           'Ε',
           'Ε',
           'Β',
           'Β',
           'D',
           'C',
           'Β',
           'B',
           'D',
           'Ε',
           'Β',
           'ח'
           1 cabin = pd.DataFrame(levels,columns = ['Cabin'])
In [27]:
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95d94548>


```
In [30]: 1 df_train['Alone'].loc[df_train['Alone']>0] = 'With Family'
2 df_train['Alone'].loc[df_train['Alone']==0] = 'Alone'
```

C:\Users\yashm\anaconda3\lib\site-packages\pandas\core\indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_block(indexer, value, name)

```
In [31]: 1 sns.countplot(x = 'Alone',data = df_train)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95e23708>

Analyse the distribution in the Y variable/Understand the distribution in the Survived column

```
In [32]: 1 sns.countplot(x = 'Survived',data = df_train)
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95e671c8>


```
In [33]: 1 df_train['Survived'].value_counts()/df_train.shape[0]
```

Out[33]: 0 0.616162 1 0.383838

Name: Survived, dtype: float64

```
In [34]: 1 sns.countplot(x = 'Survived',data = df_train,hue = 'Sex')
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x26e95ebefc8>

In [35]: 1 df_train

Out[35]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	Alone
0	0	3	male	22.0	1	0	7.2500	NaN	S	With Family
1	1	1	female	38.0	1	0	71.2833	C85	С	With Family
2	1	3	female	26.0	0	0	7.9250	NaN	S	Alone
3	1	1	female	35.0	1	0	53.1000	C123	S	With Family
4	0	3	male	35.0	0	0	8.0500	NaN	S	Alone
886	0	2	male	27.0	0	0	13.0000	NaN	S	Alone
887	1	1	female	19.0	0	0	30.0000	B42	S	Alone
888	0	3	female	NaN	1	2	23.4500	NaN	S	With Family
889	1	1	male	26.0	0	0	30.0000	C148	С	Alone
890	0	3	male	32.0	0	0	7.7500	NaN	Q	Alone

891 rows × 10 columns

```
1 df_train['Person']
In [71]:
Out[71]: 0
                  male
                female
                female
         3
                female
                  male
         886
                  male
         887
                female
                female
         888
         889
                  male
         890
                  male
         Name: Person, Length: 891, dtype: object
           1 sns.countplot(x = 'Person',data = df_train)
In [72]:
```

Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x26e98cf2148>


```
In [73]: 1 sns.countplot(x = 'Person',data = df_train,hue = 'Survived')
```

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0x26e9a323808>

Numerical variables vs categoricals

Out[74]: <seaborn.axisgrid.FacetGrid at 0x26e9a38aa48>

Out[75]: <seaborn.axisgrid.FacetGrid at 0x26e9a3df348>

Conclusive graphs/Analyse the relation between X and Y/ Find out which attributes are affecting the Y variable

Out[77]: <seaborn.axisgrid.FacetGrid at 0x26e9906a288>


```
In [78]: 1 sns.factorplot(x = 'Pclass',y = 'Survived',data = df_train,hue = 'Person')
```

C:\Users\yashm\anaconda3\lib\site-packages\seaborn\categorical.py:3669: UserWarning: The `factorplot` function has been
renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the def
ault `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

Out[78]: <seaborn.axisgrid.FacetGrid at 0x26e9a59dc08>


```
In [79]: 1 sns.factorplot(x = 'Pclass',y = 'Survived',data = df_train,hue = 'Alone')
```

C:\Users\yashm\anaconda3\lib\site-packages\seaborn\categorical.py:3669: UserWarning: The `factorplot` function has been
renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the def
ault `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

Out[79]: <seaborn.axisgrid.FacetGrid at 0x26e9a572f48>

Out[80]: <seaborn.axisgrid.FacetGrid at 0x26e9a5a9948>


```
In [83]: 1 sns.lmplot('Age','Survived',df_train,hue = 'Person',x_bins = [10,20,40,60,80])
```

Out[83]: <seaborn.axisgrid.FacetGrid at 0x26e9b795b08>


```
In [84]: 1 sns.lmplot('Fare','Survived',df_train)
```

Out[84]: <seaborn.axisgrid.FacetGrid at 0x26e9b81e608>

Homework

Write down the inference that we have discussed and if you find anymore for each of these graphs

Model Building

Data Cleaning

```
In [85]: 1  from sklearn.linear_model import LogisticRegression
2  from sklearn.neighbors import KNeighborsClassifier
3  from sklearn.tree import DecisionTreeClassifier
4  from sklearn.ensemble import RandomForestClassifier
5  from sklearn.svm import SVC
```

In [86]: 1 | df_train.head()

Out[86]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	Alone	Person
0	0	3	male	22.0	1	0	7.2500	NaN	S	With Family	male
1	1	1	female	38.0	1	0	71.2833	C85	С	With Family	female
2	1	3	female	26.0	0	0	7.9250	NaN	S	Alone	female
3	1	1	female	35.0	1	0	53.1000	C123	S	With Family	female
4	0	3	male	35.0	0	0	8.0500	NaN	S	Alone	male

In [88]: 1 df_train = df_train.drop(['Alone', 'Person', 'Cabin'],1)

C:\Users\yashm\anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: In a future version of pandas all ar guments of DataFrame.drop except for the argument 'labels' will be keyword-only """Entry point for launching an IPython kernel.

In [89]: 1 df_train.isna().sum()

Out[89]: Survived 0
Pclass 0
Sex 0
Age 177
SibSp 0
Parch 0
Fare 0
Embarked 2
dtype: int64

```
In [90]:    1    df_train['Embarked'].value_counts()

Out[90]:    S     644
    C     168
    Q     77
    Name: Embarked, dtype: int64

In [92]:    1    df_train['Embarked'].fillna('S',inplace = True)

In [95]:    1    df_train['Age'].fillna(df_train['Age'].mean(),inplace = True)

In [96]:    1    df_train
Out[96]:

Survived Pclass Sex Age SibSp Parch Fare Embarked
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	71.2833	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	male	35.000000	0	0	8.0500	S
886	0	2	male	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	male	26.000000	0	0	30.0000	С
890	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 8 columns

```
1 from sklearn.model selection import train test split
In [102]:
In [106]:
            1 X_train,X_test,y_train,y_test = train_test_split(df_train.drop('Survived',1),df_train['Survived']
                                                                ,stratify=df train['Survived'])
          C:\Users\yashm\anaconda3\lib\site-packages\ipykernel launcher.py:1: FutureWarning: In a future version of pandas all ar
          guments of DataFrame.drop except for the argument 'labels' will be keyword-only
            """Entry point for launching an IPython kernel.
In [100]:
            1 from sklearn.preprocessing import StandardScaler
            1 scaler = StandardScaler()
In [107]:
            1 | X_train[['Age', 'Fare']] = scaler.fit_transform(X_train[['Age', 'Fare']])
In [109]:
            1 | X_test[['Age', 'Fare']] = scaler.transform(X_test[['Age', 'Fare']])
In [111]:
```

In [112]: 1 X_train

Out[112]:

	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S
778	3	0.010684	0	0	-0.469543	1	1	0
272	2	0.852969	0	1	-0.239754	0	0	1
253	3	0.033110	1	0	-0.306175	1	0	1
767	3	0.070376	0	0	-0.469299	0	1	0
779	1	1.002034	0	1	3.507934	0	0	1
							•••	
881	3	0.256708	0	0	-0.466450	1	0	1
125	3	-1.308478	1	0	-0.401086	1	0	0
21	2	0.331240	0	0	-0.366736	1	0	1
878	3	0.010684	0	0	-0.466450	1	0	1
707	1	0.927501	0	0	-0.107155	1	0	1

668 rows × 8 columns

```
In [113]:
            1 y_train
Out[113]: 778
          272
                 1
          253
          767
                 0
          779
                 1
          881
                 0
          125
                 1
          21
                 1
          878
                 0
          707
```

Name: Survived, Length: 668, dtype: int64

```
In [119]:
         2 from sklearn.metrics import classification report
         3 model = LogisticRegression()
         4 model.fit(X train,y train)
         5 print("Results of The Logistic Regression Model is: \n")
           print(classification report(model.predict(X test),y test))
           print("-----")
           model = KNeighborsClassifier()
        10 model.fit(X train,y train)
        11 print("Results of The Knn is : \n")
        12 print(classification_report(model.predict(X_test),y_test))
           print("-----")
        14
        15 model = DecisionTreeClassifier()
        16 model.fit(X train,y train)
        17 print("Results of The Decision Tree is: \n")
        18 print(classification report(model.predict(X test),y test))
        19 print("-----")
        20
        21 model = RandomForestClassifier()
        22 model.fit(X train,y train)
        23 print("Results of The Random Forest is : \n")
        24 print(classification report(model.predict(X test),y test))
        25 print("-----")
        26
        27 model = SVC()
        28 model.fit(X_train,y_train)
        29 print("Results of The Support Vector Machine is : \n")
        30 print(classification_report(model.predict(X_test),y_test))
        31 print("-----")
```

Results of The Logistic Regression Model is:

	precision	recall	f1-score	support
0	0.83	0.79	0.81	144
1	0.65	0.71	0.68	79
accuracy			0.76	223

				Titanic_4_ED	Α
macro avg	0.74	0.75	0.75	223	
weighted avg	0.77	0.76	0.76	223	
	****	******			
Results of Th					
	precision	recall	f1-score	support	
0	0.82	0.80	0.81	142	
1	0.66	0.70	0.68	81	
accuracy			0.76	223	
macro avg	0.74	0.75	0.75	223	
weighted avg					
	****	*****			_
Results of Th	e Decision T	ree is:			
	precision	recall	f1-score	support	
0	0.77	0.82	0.79	130	
1	0.72	0.67	0.69	93	
accuracy			0.75	223	
macro avg	0.75	0.74			
weighted avg		0.75	0.75		
	****	******			_
Results of Th	e Random For	est is:			
	precision	recall	f1-score	support	
0	0.82	0.82	0.82	136	
1	0.72	0.71	0.72		
accuracy			0.78	223	
macro avg	0.77	0.77		223	
weighted avg	0.78	0.78	0.78	223	
	****	******			
- 1. 6 =:					

Results of The Support Vector Machine is :

	precision	recall	f1-score	support	
0 1	0.89 0.64	0.80 0.79	0.84 0.71	153 70	
accuracy macro avg weighted avg	0.77 0.81	0.79 0.79	0.79 0.77 0.80	223 223 223	

______*******************

In []:

1