

PHILOSOPHISCHE
FAKULTÄT
Seminar für Sprachwissenschaft

Keno's Logic tutorial 01

2021.11.12

Nr	Date	Content	Main reading	Additional Reading
1	08. Nov	Overview & Sets	Script Sets, Section 1	
2	15. Nov	Proofs	Script Sets, Section 2	
3	22. Nov	Relations & Functions	Script Sets, Sections 3 & 4	
4	29. Nov	Propositional Logic: Syntax & Truth Tables		Gamut 2.1 - 2.3
5	06. Dec	Propositional Logic: Semantics		Gamut 2.5
6	13. Dec	Logical Validity		Gamut 4.2 (up to page 118)
7	20. Dec	Predicate Logic: Syntax & Semantics		Gamut 3.1 - 3.3, 3.6
		XMAS		
8	10. Jan	Predicate Logic: Semantics, Identity & Validity		Gamut 3.6, 3.7, 4.21
9	17. Jan	Natural Deduction: Propositional Logic		Gamut 4.3.1 - 4.3.5
10	24. Jan	Natural Deduction: Predicate Logic; Meta Logic		Gamut 4.3.6 - 4.3.7 & 4.4
11	31. Jan	trade-in or something fun (informal argumentation, probability logic)		
12	07. Feb	spill-over, reflection Q&A		
	14. Feb	Exam		

Keno's Logic tutorial 01

- 1. Naïve set theory
 - 1.1. Sets and elements
 - 1.2. Specification of sets
 - 1.3. Identity & Cardinality
 - 1.4 Subsets
 - 1.5 Power sets
 - 1.6 Set operations
 - 1.7 Set-theoretic equalities

1. Naïve set theory

Key points: Sets, elements, relations between and operations on sets

1.1. Sets and elements

• A set is an abstract collection of distinct objects which are called the *members* or *elements* of that set. $Y = \{a, b, c, d\}$

notice:

- We write A, B, C (Italic) for sets, and a, b, c, ... or sometimes x, y, z, ... for members of sets.
- We use notation with curly braces " $\{\dots\}$ " which means the order of representation of elements is *irrelevant* to represent such a collection.

If we use **angle bracket** " $< \dots >$ ", which means the order of the elements is *relevant*, in this case $\langle a, b \rangle = \{\{a\}, \{a, b\}\}\$

- *singleton*: A set with only one member.
- *empty set*: a set to have no element at all \emptyset .

 $b \in A$ is read as 'b is a member of A'.

 $b \notin A$ is read as 'b is not a member of A'.

Exercise 01: Given the following set:

$$A=\{a,b,c,2,3,4\}$$

$$E = \{a, b, \{c\}\}$$

$$B = \{a, b\}$$

$$F = \emptyset$$

$$C = \{c, 2\}$$

$$G = \{\{a,b\},\{c,2\}\}$$

$$D = \{b, c\}$$

classify each of the following statements as true or false

- (a) $c \in A$
- (b) $\{c\} \in E$ (c) $\{c\} \in C$
- (d) $B \subseteq G$
- (e) $D \subseteq G$ (f) $\{\{c\}\}\subseteq E$

Exercise 02: For any arbitrary set *S*,

- (a) is S a member of $\{S\}$?
- (b) is $\{S\}$ a member of $\{S\}$?
- (c) is $\{S\}$ a subset of $\{S\}$?
- (d) what is the set whose only member is $\{S\}$?

1.2. Specification of sets

Three main methods for describing sets exist:

(1) **List notation**: by listing all its members.

e.g., the set whose members are the world's longest river, the first president of the United States and the number five {The Amazon River, George Washington, 5}

(2) Predicate notation: by stating a property which an object must have to qualify as a member of it

e.g., the predicate 'x is an even number between 3 and $9' = \{4, 6, 8\}$

(3) **Recursive rules**: by defining a set of rules which generate its members.

e.g., the set $E = \{4,6,8,...\}$ can be generated by the following rule:

- a) $4 \in E$
- b) If $x \in E$, then $x + 2 \in E$
- c) Nothing else belongs to *E*.

Exercise 03: Write a specification of the following sets.

- (a) $\{5, 10, 15, 20, \dots\}$
- (b) $\{0, 2, -2, 4, -4, 6, -6, \dots\}$
- (c) $\{300, 301, 302, \dots, 399, 400\}$

1.3. Identity & Cardinality

- **Identity:** two sets are identical if and only if they have exactly the same members.
- **Cardinality:** The number of members in a set A is called the *cardinality* of A, written |A| or #(A). The cardinality of a finite set is given by one of the natural numbers.

Exercise 04: Let $A = \{x | x \text{ is a positive integer less than 7} \}$

- i). What is the List notation and Recursive rules of *A*?
- ii). What is the |A|?

1.4 Subsets

- A ⊆ B: When every member of a set A is also a member of a set B we call A a *subset* of B.
 Note that B may contain other members besides those of A, but this is not necessarily so. Thus the subset relation allows any set to be a subset of itself.
- $A \subset B$: To exclude the case of a set being a subset of itself, the notion is called *proper subset*.
- $A \subseteq B$: A is not a subset of B, hence that A has at least one member which is not a member of B.

Exercise 05: Classify each of the following statements as true or false:

- a) $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- b) $\{a, b, j\} \subseteq \{s, b, a, e, g, i, c\}$
- c) $\{a,b,c\} \subset \{s,b,a,e,g,i,c\}$
- d) $\emptyset \subset \{a\}$
- e) $\{a, \{a\}\} \subseteq \{a, b, \{a\}\}$
- f) $\{\{a\}\} \subseteq \{a\}$
- g) $\{a\} \subseteq \{\{a\}\}$
- h) $\{a\} \in \{\{a\}\}$

1.5 Power sets

■ **Power set:** The set whose members are all the subsets of a given set A, write as $\mathscr{P}(A)$. Suppose $A = \{a, b\}$; then the power set of A, $\mathscr{P}(A)$, is $\{\{a\}, \{b\}, \{a, b\}, \emptyset\}$.

If the cardinality of A is some natural number n, then $\mathcal{P}(A)$ has cardinality 2^n i.e., 2 raised to the n power, or 2 x 2 x 2 x ... x 2 (n times). The power set of A is sometimes denoted as 2^A .

Exercise 06: Specify each of the following sets by listing its members:

- (a) 𝒯 ∅
- (b) $\mathscr{P} \{\emptyset\}$
- (c) PP {a}

1.6 Set operations

■ The *union* of *A* and *B*

$$A \cup B =_{def} \{x | x \in A \ or \ x \in B\}$$

■ The *intersection* of *A* and *B*

$$A\cap B=_{def}\{x|x\in A\ or\ x\in B\}$$

■ The *relative complement of A* and *B*

$$A-B=_{def}\{x|x\in A\ or\ x\not\in B\}$$

• the *complement* of a set *A*,

$$A' =_{def} \{x | x \not\in A\} = U - A$$

Exercise 07: Let $A = \{a, b, c\}, B = \{c, d\}$ and $C = \{d, e, f\}$

what are (i) $A \cap B$

(ii) $A \cap (B \cup C)$

(iii) A - B

1.7 Set-theoretic equalities

1. Idempotent Laws

(a)
$$X \cup X = X$$

(b)
$$X \cap X = X$$

2. Commutative Laws

(a)
$$X \cup Y = Y \cup X$$

(b)
$$X \cap Y = Y \cap X$$

3. Associative Laws

(a)
$$(X \cup Y) \cup Z = X \cup (Y \cup Z)$$
 (b) $(X \cap Y) \cap Z = X \cap (Y \cap Z)$

4. Distributive Laws

(a)
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

(b)
$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

5. Identity Laws

(a)
$$X \cup \emptyset = X$$

(c)
$$X \cap \emptyset = \emptyset$$

(b)
$$X \cup U = U$$

(d)
$$X \cap U = X$$

6. Complement Laws

(a)
$$X \cup X' = U$$

(c)
$$X \cap X' = \emptyset$$

(b)
$$(X')' = X$$

(d)
$$X - Y = X \cap Y'$$

7. DeMorgan's Laws

(a)
$$(X \cup Y)' = X' \cap Y'$$

(b)
$$(X \cap Y)' = X' \cup Y'$$

8. Consistency Principle

(a)
$$X \subseteq Y \text{ iff } X \cup Y = Y$$

(b)
$$X \subseteq Y \text{ iff } X \cap Y = X$$

Exercise 08. Show that the Distributive Law 4(a) is true by constructing Venn diagrams for

 $X \cap (Y \cup Z)$ and $(X \cap Y) \cup (X \cap Z)$.