Correction Bobineuse

1)

1.1) Régulateur PI. Amélioration de la précision en régime permanent.

$$\frac{V_X}{V_E} = \frac{40}{p(1+0.01p)}$$

1.2)

Arg (boucle ouverte) = -112° $(M_{\phi} = 68^{\circ})$

1.3)

V_{ϵ}	V_X	$\Omega'_{ m B}$	$\Omega_{ m B}$	U _B	V_{B}
0	10 V	100 rad/s	5 rad/s	5 V	2,5 V

1.4)

$$\frac{\Omega'_{B}}{V_{E}} = \frac{10}{\frac{p^{2}}{4000} + \frac{p}{40} + 1} \Rightarrow Z = 0.79 \Rightarrow D\% = 1.6\% (n\acute{e}gligeab\r{e})$$

2) 2.1)

,		En début de période					En fin de	e période
Instant	Echelon	X	3	V	$V_{\rm B}$	U_{B}	Ω'Β	X
(n° échantillon)								
t = 0	1000	0	1000	250	1,221 V	2,442 V	48,84	1000
(k=0)							rad/s	
$t = T_{e}$	1000	1000	0	250	1,221 V	2,442 V	48,84	1000
(k=1)							rad/s	
$t = 2T_e$	1000	1000	0	250	1,221 V	2,442 V	48,84	1000
(k=2)							rad/s	

(réponse "pile")

2.2) X = 1000 (valeur atteinte dès la 1° période d'échantillonnage)

 $\varepsilon = 0$ (erreur de position nulle)

2.3)
$$\frac{V}{\varepsilon} = \frac{0.25z}{z-1}$$
 (régulateur PI)

$$\alpha(t) = \int_{0}^{t} (\Omega_{B} - \Omega_{A}) d\tau = \frac{1}{30} rad$$

$$\frac{V_{\alpha}}{V_{C}} = \frac{10}{p(1+0.1p)(1+0.01p)}$$
 non corrigée (dessin en traits pleins)

$$\frac{V_{\alpha}}{V_{C}} = \frac{10}{p(1+0.01p)}$$
 corrigée (dessin en pointillés)

3.3)

	Non corrigée	corrigée	
Argument en boucle ouverte	-141°	-96°	
${ m M}_{ m \phi}$	39° (M _{φ1})	84° (M _{φ2})	

3.4)

UA	$\mathbf{V}_{\mathbf{A}}$	V_{ϵ}	V_{α}	α
5 V	0,25V	0,25 V	10,25 V	0,68 rad