Simulation

Simone Velardita

16/03/2021 HYDRA meeting

Drift of the electrons

- → Homogeneous B field parallel to the E drift field
- \rightarrow 2x2 mm² pad size
- → Projection of the electrons into the <u>pad-plane</u>

Electronics response (1)

→ Amplification stage: random gain for each pad, following the Polya distribution

$$P_G(G/ar{G}; heta) = rac{(heta+1)^{ heta+1}}{\Gamma(heta+1)} \Big(rac{G}{ar{G}}\Big)^{ heta} \exp\Big(-(heta+1)\Big(rac{G}{ar{G}}\Big)\Big)$$

→ Pad response: The signal for each pad is

$$N(t) \propto \sum_{i=1}^{N} G_i * \exp\left(-3rac{t-t_i}{ au}
ight) \sin\left(rac{t-t_i}{ au}
ight) \left(rac{t-t_i}{ au}
ight)^3$$

- → The signal is **sampled** in time and white noise is added for each sample
- → A threshold is applied to select pads for which SNR is larger than

$$5 * \sigma_{r.m.s.}$$
 of the noise

Eur. Phys. J. A (2014) 50: 8 A. Obertelli

Electronics response (2)

→ Finally, the signal is analyzed by the following mathematical function

$$f(t) \propto Q_{pad} * \exp\left(-3rac{t-t_{pad}}{ au}
ight) \sin\left(rac{t-t_{pad}}{ au}
ight) \left(rac{t-t_{pad}}{ au}
ight)^3$$

- → Qpad represents the total number of electrons collected on the pad
- → t pad is the trigger time of the pad converted in a drift distance

Electronics response (3)

	Y	~ ~
•	-	25
•	_	

Composition	$Ar_{82}(CF_4)_{15}(iso)_3$
Longitudinal diffusion	$186\mu\mathrm{m}/\sqrt{\mathrm{cm}}$
Transverse diffusion	$195\mu\mathrm{m}/\sqrt{\mathrm{cm}}$
Drift speed	$66\mu\mathrm{m/ns}$
Ionisation threshold	$26\mathrm{eV}$
Average gain	1500

Electronics

Shaping time	$426\mathrm{ns}$
Time sampling	$10\mathrm{ns}$
Noise $(\sigma_{\rm r.m.s.})$	2500 electrons r.m.s.
Detection threshold	$5\sigma_{ m r.m.s.}$

Electronics response (4)

5 pion events inside the active volume

FULL HYDRA

- → Compare different geometries for the final detector:
 - Efficiency
 - Space charge
 - Momentum resolution
 - Trigger rate