Session 8

Fairness

Recap

A binary classifier does not suffer from disparate impact if, given a sensitive variable z and a positive outcome y=1,

$$P(\hat{y} = 1|z = 0) = P(\hat{y} = 1|z = 1)$$

Fairness

In the regression case, we can define

$$ext{fairness} = \left| rac{1}{|Z_1|} \sum_{i \in Z_1} \hat{y}_i - rac{1}{|Z_0|} \sum_{i \in Z_0} \hat{y}_i
ight|$$

Scores for classification

In the classification case, we can approximate

$$ext{p-score} = \min\left(rac{P(\hat{y}=1|z=1)}{P(\hat{y}=1|z=0)}, rac{P(\hat{y}=1|z=0)}{P(\hat{y}=1|z=1)}
ight),$$

or

equal-op. =
$$\min \left(\frac{P(\hat{y} = 1 | z = 1, y = 1)}{P(\hat{y} = 1 | z = 0, y = 1)}, \frac{P(\hat{y} = 1 | z = 0, y = 1)}{P(\hat{y} = 1 | z = 1, y = 1)} \right)$$

Possible strategies

- Modify the data
- Modify the prediction process
- Modify model training

Modify the data

- Anonymize sensitive variable z
 - Probably not enough
- ullet Drop sensitive variable z
 - Might not be enough
- Project out *z* covariance (analogous to PCA)
 - Makes model less interpretable / gain less insight

Modify the prediction process

- Most classification models can incorporate a decision threshold
 - \circ Basically, use different thresholds dependent on z
- ullet Needs knowledge of z at decision time

Modify model training

Training a Classifier

A classification algorithm with parameters θ is trained giving a convex loss function $L(\theta)$, such that we find the optimal parameters θ^*

$$heta^* = \operatorname*{argmin}_{ heta} L(heta)$$

Constrained fits

L is usually something that defines goodness-of-fit like cross-entropy, but can also contain terms that e.g. keep θ as small as feasible (ref. Lasso, Ridge regression). Why not try

$$heta^* = rgmin_{ heta} \ L(heta)$$
 subject to $|P(\hat{y}=1|z=0) - P(\hat{y}=1|z=1)| \leq \epsilon$

But this is non-convex.

A better way

The way out is to constrain covariance of the outcome \hat{y} and the sensitive variable z.

$$heta^* = rgmin_{ heta} L(heta) \ ext{subject to} \quad |\operatorname{Cov}ig(z, g_{ heta}(y, x)ig)| \leq c,$$

where

$$g_{ heta}(y,x) = \minig(0,y\,d_{ heta}(x)ig),$$

and $d_{\theta}(x)$ is the signed distance from the classification boundary ($\theta^T x$ for linear models).