1. PnP 算法简单介绍

PnP(pespective-n-point), 求解3D-2D点对运动的方法。在已知n个三维空间点坐标(相对于某个指定的坐标系A)及其二维投影位置的情况下,估计相机的位姿(即相机在坐标系A下的姿态)的方法。 PNP 的问题是一致的,不同的就是在已知3D-2D的点对的情况下,怎么求出相机的位姿或者说点对在相机坐标系下的姿态。常见的PNP问题的求解方法,有以下几种:

world

PnP算法大体分为直接法和优化法 常见的直接法包括: P3P、DLT、EPnP等 优化的算法包括: LHM、Only pos BA

PnP算法的指标主要包括: 匹配点数、鲁棒性、速度、精度

P3P: 3对匹配点,需要相机内参

DLT: 不需要内参,4点法求出单映矩阵,DLT分解出K、R、T

EPnP: 最小4个点,性价比高,精度较高,需要内参K

LHM: 复杂度较高,具有全局凸性,收敛性好,精度高 (在object坐标系建立误差模型)

only-pos BA: 复杂度高,需要初始解,精度高(在image坐标系建立误差模型)

- EPnP: 利用已知的3d点,通过PCA选择4个控制点,建立新的局部坐标系,从而将3d坐标用新的控制点表示出来。然后,利用相机投影模型和2d点,转换到相机坐标系中,再在相机坐标系中建立和世界坐标系同样关系(每个点在相机坐标系和世界坐标系下控制点处的坐标一致)的4个控制点,求解出相机坐标系下的四个控制点的坐标,进而利用ICP求解pose。
- SDP
- P3P
- UPnP
- 非线性优化方法等......

2. opencv 函数说明:

solvePnPRansac by opency doc

bool solvePnPRansac(InputArray _opoints, InputArray _ipoints,
 InputArray _cameraMatrix, InputArray _distCoeffs,
 OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess,
 int iterationsCount, float reprojectionError, double confidence,
 OutputArray _inliers, int flags)

参数说明:

objectPoints - 世界坐标系下的控制点的坐标,vector<Point3f>的数据类型在这里可以使用imagePoints - 在图像坐标系下对应的控制点的坐标。vector<Point2f>在这里可以使用cameraMatrix - 相机的内参矩阵

distCoeffs - 相机的畸变系数

rvec - 输出的旋转向量。使坐标点从世界坐标系旋转到相机坐标系

tvec - 输出的平移向量。使坐标点从世界坐标系平移到相机坐标系

flags - 默认使用CV_ITERATIV迭代法

SOLVEPNP_ITERATIVE(此方案,最小模型用的EPNP,内点选出之后用了一个迭代);

SOLVE_P3P(P3P只用在最小模型上,内点选出之后用了一个EPNP) SOLVE_AP3P(AP3P只用在最小模型上,内点选出之后用了一个EPNP) SOLVE_EPnP(最小模型上&内点选出之后都采用了EPNP)

3. 实验数据与结果分析

3.0. SOLVEPNP_ITERATIVE

evo_traj tum frame_traj_est_SOLVEPNP_ITERATIVE.txt -ref=frame_traj_gt_SOLVEPNP_ITERATIVE.txt -p --plot_mode xyz --align -correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_ITERATIVE.txt
frame_traj_gt_SOLVEPNP_ITERATIVE.txt -va --plot --plot_mode xyz --save_results
SOLVEPNP_ITERATIVE_ape.zip
       max
               0.434389
      mean
                0.178372
                0.171207
    median
                0.039869
       min
                0.197632
      rmse
                3.749621
       sse
                0.085099
       std
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_ITERATIVE.txt
frame\_traj\_gt\_SOLVEPNP\_ITERATIVE.txt \quad -va \ --plot \ --plot\_mode \ xyz \ --save\_results
SOLVEPNP_ITERATIVE_rpe.zip
                 4.377182
       max
                 2.601915
      mean
    median
                 2.644808
                 0.074727
       min
                 2.779581
      rmse
                 733.976471
       sse
       std
                 0.977806
```

```
evo_res SOLVEPNP_ITERATIVE_ape.zip -p --save_table SOLVEPNP_ITERATIVE_table.csv

max mean median min rmse \
frame_traj_gt_SOL... 0.434389 0.178372 0.171207 0.0398691 0.197632

sse std
frame_traj_gt_SOL... 3.74962 0.0850991
```

3.1. SOLVEPNP_EPNP

evo_traj tum frame_traj_est_SOLVEPNP_EPNP.txt -ref=frame_traj_gt_SOLVEPNP_EPNP.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_EPNP.txt frame_traj_gt_SOLVEPNP_EPNP.txt -
va --plot --plot_mode xyz --save_results SOLVEPNP_EPNP_ape.zip
                0.242836
       max
      mean
                0.117471
    median
               0.114078
               0.017015
      min
      rmse
                0.126450
       sse
                1.534998
       std
                0.046799
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_EPNP.txt frame_traj_gt_SOLVEPNP_EPNP.txt
va --plot --plot_mode xyz --save_results SOLVEPNP_EPNP_rpe.zip
                4.352881
       max
                2.587162
      mean
    median
                2.637466
                0.074727
       min
                2.763539
      rmse
                725.528841
       sse
                0.971461
       std
```

```
evo_res SOLVEPNP_EPNP_ape.zip -p --save_table SOLVEPNP_EPNP_table.csv

max mean median min rmse sse \
frame_traj_gt_SOL... 0.242836 0.117471 0.114078 0.0170151 0.12645 1.535

std
frame_traj_gt_SOL... 0.0467992
```

3.2. SOLVEPNP_P3P

evo_traj tum frame_traj_est_SOLVEPNP_P3P.txt -ref=frame_traj_gt_SOLVEPNP_P3P.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_P3P.txt frame_traj_gt_SOLVEPNP_P3P.txt -va
--plot --plot_mode xyz --save_results SOLVEPNP_P3P_ape.zip
      max
             0.246748
             0.116399
     mean
   median
             0.108588
      min
             0.040195
             0.124018
     rmse
      sse
             1.476530
              0.042799
      std
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_P3P.txt frame_traj_gt_SOLVEPNP_P3P.txt -va
--plot --plot_mode xyz --save_results SOLVEPNP_P3P_rpe.zip
             4.376081
      max
             2.589348
     mean
   median
            2.609933
     min
             0.031821
     rmse
             2.764878
            726.232326
      sse
             0.969448
      std
```

```
evo_res SOLVEPNP_P3P_ape.zip -p --save_table SOLVEPNP_P3P_table.csv

max mean median min rmse \
frame_traj_gt_SOL... 0.246748 0.116399 0.108588 0.0401949 0.124018

sse std
frame_traj_gt_SOL... 1.47653 0.0427988
```

3.3. SOLVEPNP_DLS

evo_traj tum frame_traj_est_SOLVEPNP_DLS.txt -ref=frame_traj_gt_SOLVEPNP_DLS.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_DLS.txt frame_traj_gt_SOLVEPNP_DLS.txt -va
--plot --plot_mode xyz --save_results SOLVEPNP_DLS_ape.zip
             0.225975
      max
     mean
             0.113513
            0.106261
   median
     min
             0.035635
     rmse
             0.122289
             1.435645
      sse
      std
            0.045492
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_DLS.txt frame_traj_gt_SOLVEPNP_DLS.txt -va
--plot --plot_mode xyz --save_results SOLVEPNP_DLS_rpe.zip
      max
            4.333318
            2.583120
     mean
            2.601981
   median
     min
            0.017241
            2.759503
     rmse
      sse
            723.411568
      std
           0.970746
```

```
evo_res SOLVEPNP_DLS_ape.zip -p --save_table SOLVEPNP_DLS_table.csv

max mean median min rmse \
frame_traj_gt_SOL... 0.225975 0.113513 0.106261 0.0356351 0.122289

sse std
frame_traj_gt_SOL... 1.43565 0.0454917
```

3.4. SOLVEPNP_UPNP

evo_traj tum frame_traj_est_SOLVEPNP_UPNP.txt -ref=frame_traj_gt_SOLVEPNP_UPNP.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_UPNP.txt frame_traj_gt_SOLVEPNP_UPNP.txt -
va --plot --plot_mode xyz --save_results SOLVEPNP_UPNP_ape.zip
    max     0.218468
    mean     0.106990
    median     0.094463
        min     0.033494
    rmse     0.115861
        sse     1.288688
        std     0.044462
```

3.5. SOLVEPNP_AP3P

evo_traj tum frame_traj_est_SOLVEPNP_AP3P.txt -ref=frame_traj_gt_SOLVEPNP_AP3P.txt -p --plot_mode xyz --align --correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_AP3P.txt frame_traj_gt_SOLVEPNP_AP3P.txt -
va --plot --plot_mode xyz --save_results SOLVEPNP_AP3P_ape.zip
             0.236128
      max
     mean
             0.105609
   median
             0.097849
     min
             0.034734
     rmse
             0.116205
      sse
             1.296356
      std
             0.048481
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_AP3P.txt frame_traj_gt_SOLVEPNP_AP3P.txt -
va --plot --plot_mode xyz --save_results SOLVEPNP_AP3P_rpe.zip
      max
             4.316022
     mean
             2.581949
   median
             2.619087
      min
             0.016013
     rmse
             2.758708
             722.994698
      sse
             0.971603
      std
```

```
evo_res SOLVEPNP_AP3P_ape.zip -p --save_table SOLVEPNP_AP3P_table.csv

max mean median min rmse \
frame_traj_gt_SOL... 0.236128 0.105609 0.0978492 0.034734 0.116205

sse std
frame_traj_gt_SOL... 1.29636 0.0484811
```

3.6. SOLVEPNP_MAX_COUNT

evo_traj tum frame_traj_est_SOLVEPNP_MAX_COUNT.txt -ref=frame_traj_gt_SOLVEPNP_MAX_COUNT.txt -p --plot_mode xyz --align -correct_scale


```
evo_ape tum frame_traj_est_SOLVEPNP_MAX_COUNT.txt
frame_traj_gt_SOLVEPNP_MAX_COUNT.txt -va --plot --plot_mode xyz --save_results
SOLVEPNP_MAX_COUNT_ape.zip
       max
               0.262875
      mean
                0.090947
                0.078453
    median
                0.025371
       min
                0.101519
      rmse
       sse
                0.989395
       std
                0.045109
```

```
evo_rpe tum frame_traj_est_SOLVEPNP_MAX_COUNT.txt
frame\_traj\_gt\_SOLVEPNP\_MAX\_COUNT.txt \quad -va \ --plot \ --plot\_mode \ xyz \ --save\_results
SOLVEPNP_MAX_COUNT_rpe.zip
       max
                 4.313694
                 2.582501
      mean
                 2.616074
    median
       min
                 0.016013
                 2.758629
      rmse
                 722.953111
       sse
                 0.969907
       std
```

evo_res SOLVEPNP_MAX_COUNT_ape.zip -p --save_table SOLVEPNP_MAX_COUNT_table.csv

max mean median min rmse \

frame_traj_gt_SOL... 0.262875 0.0909472 0.0784525 0.0253707 0.101519

sse std

frame_traj_gt_SOL... 0.989395 0.0451088

3.7 结果分析

method: 0~6 依次代表以下方法:

SOLVEPNP_ITERATIVE

SOLVEPNP_EPNP

SOLVEPNP_P3P

SOLVEPNP_DLS

SOLVEPNP_UPNP

SOLVEPNP_AP3P

SOLVEPNP_MAX_COUNT

evo_ape(计算绝对位姿误差)

param	0	1	2	3	4	5	6
max	0.434389	0.242836	0.246748	0.225975	0.218468	0.236128	0.262875
mean	0.178372	0.117471	0.116399	0.113513	0.10699	0.105609	0.090947
median	0.171207	0.114078	0.108588	0.106261	0.094463	0.097849	0.078453
min	0.039869	0.017015	0.040195	0.035635	0.033494	0.034734	0.025371
rmse	0.197632	0.12645	0.124018	0.122289	0.115861	0.116205	0.101519
sse	3.749621	1.534998	1.47653	1.435645	1.288688	1.296356	0.989395
std	0.085099	0.046799	0.042799	0.045492	0.044462	0.048481	0.045109

evo_rpe(计算相对位姿误差)

param	0	1	2	3	4	5	6
max	4.377182	4.352881	4.376081	4.333318	4.361522	4.316022	4.313694
mean	2.601915	2.587162	2.589348	2.58312	2.585335	2.581949	2.582501
median	2.644808	2.637466	2.609933	2.601981	2.631826	2.619087	2.616074
min	0.074727	0.074727	0.031821	0.017241	0.016013	0.016013	0.016013
rmse	2.779581	2.763539	2.764878	2.759503	2.760945	2.758708	2.758629
sse	733.976471	725.528841	726.232326	723.411568	724.167897	722.994698	722.953111
std	0.977806	0.971461	0.969448	0.970746	0.96895	0.971603	0.969907

evo_res(结果比较)

	max	mean	median	min	rmse	sse	std
0	0.434389	0.178372	0.171207	0.0398691	0.197632	3.74962	0.0850991
1	0.242836	0.117471	0.114078	0.0170151	0.12645	1.535	0.0467992
2	0.246748	0.116399	0.108588	0.0401949	0.124018	1.47653	0.0427988
3	0.225975	0.113513	0.106261	0.0356351	0.122289	1.43565	0.0454917
4	0.218468	0.10699	0.0944627	0.0334936	0.115861	1.28869	0.0444622
5	0.236128	0.105609	0.0978492	0.034734	0.116205	1.29636	0.0484811
6	0.262875	0.0909472	0.0784525	0.0253707	0.101519	0.989395	0.0451088

整个轨迹估计时间消耗(ms), 基本都在4 sec左右

param	0	1	2	3	4	5	6
time	5704151	6099984	5622415	4662723	4643438	5104300	4497043

综合比较, SOLVEPNP_MAX_COUNT 方法估计的精度更加准确可靠,整体方法比对相差不大.

- 1) 一般VO看RPE,有闭环的SLAM系统ATE RPE都要看;
- 2)RPE反映了VO局部轨迹的精度情况,相当于是只使用某个轨迹点附近的一段轨迹计算误差,ATE则是使用全部长度的轨迹真值计算误差。
- 3)VO不带闭环,跑久了之后轨迹不可避免有漂移,如果计算ATE误差的话,相比那些有闭环的系统误差就太大了,并不是很公平,所以VO和带闭环的SLAM的话只比较RPE是相对公平的

4. 注意点

- 1. solvePnPRansac 求得的R.t 为 相机的世界坐标在相机坐标系下的表示。
- 2. solvePnPRansac参数列表(带缺省较多),运用网上例子调用出错。 下回注意check opencv的api 手册