Lecture 9

DUAL MAPS

Given $T:V\to W$ that is linear, we will define a corresponding transformation T^t on the dual spaces, but it will act in the other direction. We will have $T^t:W^*\to V^*$.

Definition 0.1. If $T: V \to W$ is linear, we define the function $T^t: W^* \to V^*$ by the following. Given $g \in W^*$, set $T^t(g) \in V^*$ as the linear functional such that

$$(T^t(g))(v) = g(T(v)) \text{ for all } v \in V.$$

 T^t is called the transpose of T.

Note that the definition here is $T^t(g) = g \circ T$. Since both maps on the right are linear, so is their composition. So $T^t(g)$ is in fact a linear functional (it is in V^*).

Proposition 0.2. If $T: V \to W$ is linear then $T^t: W^* \to V^*$ is linear.

Proof. Let $g_1, g_2 \in W^*$ and $c \in \mathbb{F}$. We want to show that $T^t(cg_1 + g_2) = cT^t(g_1) + T^t(g_2)$ and these are both elements of V^* , so we want to show they act the same on each element of V. So let $v \in V$ and compute

$$(T^{t}(cg_{1}+g_{2}))(v) = (cg_{1}+g_{2})(T(v)) = cg_{1}(T(v)) + g_{2}(T(v)) = c(T^{t}(g_{1}))(v) + (T^{t}(g_{2}))(v)$$
$$= (cT^{t}(g_{1}) + T^{t}(g_{2}))(v) .$$

The matrix of T^t can be written in a very simple way using dual bases.

Theorem 0.3. Let $T: V \to W$ be linear and B, C bases for V and W. Writing B^* and C^* for the dual bases,

$$[T^t]_{B^*}^{C^*} = ([T]_C^B)^t$$
.

The matrix on the right the transpose matrix; that is, if A is a matrix then the transposed matrix A^t is defined by $(A^t)_{i,j} = A_{j,i}$.

Proof. Let $B = \{v_1, \ldots, v_n\}$ and $C = \{w_1, \ldots, w_m\}$. When we build the matrix $[T]_C^B$, we make the j-th column by expanding $T(v_j)$ in terms of the basis C. So our matrix can be rewritten as

$$[T]_C^B = \begin{pmatrix} w_1^*(T(v_1)) & w_1^*(T(v_2)) & \cdots & w_1^*(T(v_n)) \\ w_2^*(T(v_1)) & w_2^*(T(v_2)) & \cdots & w_2^*(T(v_n)) \\ & & \cdots & & \cdots \\ w_m^*(T(v_1)) & w_m^*(T(v_2)) & \cdots & w_m^*(T(v_n)) \end{pmatrix}.$$

To build the matrix $[T^t]_{B^*}^{C^*}$, we begin with the first vector of C^* and express it in terms of B^* . We write

$$T^{t}(w_{1}^{*}) = a_{1}v_{1}^{*} + \dots + a_{n}v_{n}^{*}.$$

The coefficients have a simple form:

$$T^{t}(w_{1}^{*}) = (T^{t}(w_{1}^{*}))(v_{1})v_{1}^{*} + \dots + (T^{t}(w_{1}^{*}))(v_{n})v_{n}^{*}$$
$$= w_{1}^{*}(T(v_{1}))v_{1}^{*} + \dots + w_{1}^{*}(T(v_{n}))v_{n}^{*}.$$

This means the first column of our matrix is

$$\begin{pmatrix} w_1^*(T(v_1)) \\ \cdots \\ w_1^*(T(v_n)) \end{pmatrix} .$$

This is just the first row of $[T]_C^B$. Similarly, the *j*-th column is the *j*-th row of $[T]_C^B$ and this completes the proof.

Proposition 0.4. Let $T: V \to W$ be linear with V, W finite-dimensional. Then

- 1. $N(T^t) = R(T)^{\perp}$,
- 2. $R(T^t) = N(T)^{\perp}$,
- 3. $rank(T^t) = rank(T)$ and $nullity(T^t) = nullity(T)$.

Proof. For the first item, let $g \in R(T)^{\perp}$. Then we would like to show that $g \in N(T^t)$, or that $T^t(g) = 0$. Since $T^t(g) \in V^*$ this amounts to showing that $(T^t(g))(v) = 0$ for all $v \in V$. So let $v \in V$ and compute

$$(T^t(g))(v) = g(T(v)) = 0$$
,

since g annihilates the range of T. This shows that $R(T)^{\perp} \subset N(T^t)$. For the other direction, let $g \in N(T^t)$ and $w \in R(T)$. Then we can find $v \in V$ such that w = T(v) and so

$$g(w) = g(T(v)) = (T^{t}(g))(v) = 0$$
,

since $T^t(g) = 0$. This completes the proof of the first item.

Next if $f \in R(T^t)$ we can find $g \in W^*$ such that $f = T^t(g)$. If $v \in N(T)$ then

$$f(v) = (T^t(g))(v) = g(T(v)) = g(0) = 0$$
,

so $f \in N(T)^{\perp}$. This shows that $R(T^t) \subset N(T)^{\perp}$. To show the other direction, we count dimensions.

$$\begin{aligned} \dim \, R(T^t) &= \dim \, W - \dim \, N(T^t) \\ &= \dim \, W - \dim \, R(T)^\perp \\ &= \dim \, R(T) \\ &= \dim \, W - \dim \, N(T) \\ &= \dim \, N(T)^\perp \ . \end{aligned}$$

Since these spaces have the same dimension and one is contained in the other, they must be equal.

The last item follows from dimension counting as well.

Double dual

We now move one level up, to look at the dual of the dual, the double dual.

Definition 0.5. If V is a vector space, we define the double dual V^{**} as the dual of V^* . It is the space $L(V^*, \mathbb{F})$ of linear functionals on V^* .

As before, when V is finite-dimensional, since dim $L(V^*, \mathbb{F}) = \dim(V^*) \dim(\mathbb{F})$, we find

$$\dim V^{**} = \dim V$$
 when $\dim V < \infty$.

Exercise. Show this is true even if dim $V = \infty$.

There are some simple elements of V^{**} , the evaluation maps. given $v \in V$ we set

$$eval_v: V^* \to \mathbb{F}$$
 by $eval_v(f) = f(v)$.

• $eval_v$ is a linear functional on V^* . To see this, note first that it certainly maps V^* to \mathbb{F} , so we must only show it is linear. The proof is the same as in the previous homework: let $f, g \in V^*$ and $c \in \mathbb{F}$. Then

$$eval_v(cf+g) = (cf+g)(v) = cf(v) + g(v) = c \ eval_v(f) + eval_v(g) \ .$$

• In fact the map $\Phi: V \to V^{**}$ given by $\Phi(v) = eval_v$ is an isomorphism when dim $V < \infty$. It is called the *natural isomorphism*. We first show it is linear, so let $v_1, v_2 \in V$ and $c \in \mathbb{F}$. If $f \in V^*$ then

$$(\Phi(cv_1 + v_2))(f) = eval_{cv_1 + v_2}(f) = f(cv_1 + v_2) = cf(v_1) + f(v_2)$$

$$= c \ eval_{v_1}(f) + eval_{v_2}(f) = c(\Phi(v_1))(f) + (\Phi(v_2))(f)$$

$$= (c\Phi(v_1) + \Phi(v_2))(f) \ .$$

Since this is true for all f, we get $\Phi(cv_1 + v_2) = c\Phi(v_1) + \Phi(v_2)$.

Now to prove that Φ is an isomorphism we only need to show injective (since V and V^{**} have the same dimension). So assume that $\Phi(v) = 0$ (the zero element of V^{**}). Then for all $f \in V^*$, we have $f(v) = eval_v(f) = 0$. We now use a lemma to finish the proof.

Lemma 0.6. If $v \in V$ is nonzero, there exists $f \in V^*$ such that $f(v) \neq 0$.

Proof. Let $v \in V$ be nonzero and extend it to a basis B for v. Then the element v^* in the dual basis B^* has $v^*(v) = 1$. So set $f = v^*$.

Because f(v) = 0 for all $f \in V^*$, the lemma says $v = \vec{0}$. Therefore $N(\Phi) = {\vec{0}}$ and Φ is injective, implying it is an isomorphism.