Data-driven parameter inference for gene circuit modeling

Linh Huynh* and Ilias Tagkopoulos
Department of Computer Science
UC Davis Genome Center
University of California, Davis
*Email: huynh@ucdavis.edu

 Our goal: Accurate model-driven designs for synthetic biology.

- Our goal: Accurate model-driven designs for synthetic biology.
- Challenge
 - Lack of accurate parameter values

- Our goal: Accurate model-driven designs for synthetic biology.
- Challenge
 - Lack of accurate parameter values
 - Measuring directly from experiment is difficult

 Our goal: Accurate model-driven designs for synthetic biology.

Challenge

- Lack of accurate parameter values
 - Measuring directly from experiment is difficult
 - Estimating indirectly from experimental data is inaccurate

(Tamsir et al, Nature, 2011)

(Tamsir et al, Nature, 2011)

(Tamsir et al, Nature, 2011)

Multiple solutions $(K_d = 1.7, K_2 = 160)$ vs $(K_d = 0.17, K_2 = 1260)$

(Tamsir et al, Nature, 2011)

Multiple solutions $(K_d = 1.7, K_2 = 160)$ vs $(K_d = 0.17, K_2 = 1260)$

Parameters K_d, K₂ are uncertain!

Circuit behavior prediction is unreliable!

Parameters are not well-constrained

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.
- Can we add more constraints for parameters?

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.
- Can we add more constraints for parameters?
 - Do more experiments (e.g. measure tetR)

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.
- Can we add more constraints for parameters?
 - Do more experiments (e.g. measure tetR)
 - Prohibitively costly

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.
- Can we add more constraints for parameters?
 - Do more experiments (e.g. measure tetR)
 - Prohibitively costly
 - Data-driven alternative: Integrate data from overlapping circuits and infer parameters

- Parameters are not well-constrained
 - The model output change due to the change of one parameter can be compensated by the change from changing other parameters.
- Can we add more constraints for parameters?
 - Do more experiments (e.g. measure tetR)
 - Prohibitively costly
 - Data-driven alternative: Integrate data from overlapping circuits and infer parameters
 - Simple

Approach

• From 138 publications containing gene circuits of *E. coli*

- From 138 publications containing gene circuits of *E. coli*
- Only 43 publications containing gene circuits with
 - No protein-protein interaction
 - No RNA-RNA interaction
 - No metabolism
 - No cell-cell communication
 - No recombination
 - Steady state characterization data

- From 138 publications containing gene circuits of E. coli
- Only 43 publications containing gene circuits with
 - No protein-protein interaction
 - No RNA-RNA interaction
 - No metabolism
 - No cell-cell communication
 - No recombination
 - Steady state characterization data
- Limit to only pLAC, pTET, pBAD, and constitutive promoters

- From 138 publications containing gene circuits of E. coli
- Only 43 publications containing gene circuits with
 - No protein-protein interaction
 - No RNA-RNA interaction
 - No metabolism
 - No cell-cell communication
 - No recombination
 - Steady state characterization data
- Limit to only pLAC, pTET, pBAD, and constitutive promoters
 - Only 13 publications with 34 datasets

$$\mu_g = N_g \alpha_r \nu_g^{(1)}$$

$$\nu_g^{(1)} = \begin{cases} \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{K_{Pr}}{\mu'_{TF}}\right)^{n_{Pr}}} & TF \text{ is an activator} \\ \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{\mu'_{TF}}{K_{Pr}}\right)^{n_{Pr}}} & TF \text{ is a repressor} \end{cases}$$

$$\begin{aligned} \textbf{Ligand binding} \ \ \mu_{TF}' &= \begin{cases} \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{K_{L_{TF}}}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } TF \text{ binds to } Pr \\ \frac{\mu_{TF}}{1 + \left(\frac{K_{L_{TF}}}{[L_{TF}]}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } L_{TF} - TF \text{ binds to } Pr \end{cases} \end{aligned}$$

$$\mu_g = N_g \alpha_r \nu_g^{(1)}$$

$$\nu_g^{(1)} = \begin{cases} \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{K_{Pr}}{\mu'_{TF}}\right)^{n_{Pr}}} & TF \text{ is an activator} \\ \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{\mu'_{TF}}{K_{Pr}}\right)^{n_{Pr}}} & TF \text{ is a repressor} \end{cases}$$

Consistent minimal model over all circuits

$$\text{Ligand binding } \mu_{TF}' = \begin{cases} \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{K_{L_{TF}}}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } TF \text{ binds to } Pr \\ \frac{\mu_{TF}}{1 + \left(\frac{K_{L_{TF}}}{|L_{TF}|}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } L_{TF} - TF \text{ binds to } Pr \end{cases}$$

$$\begin{aligned} &\textbf{Translation} & \mu_g = N_g \alpha_r \nu_g^{(1)} \\ & \textbf{Transcription} & \nu_g^{(1)} = \begin{cases} \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{K_{Pr}}{\mu_{TF}'}\right)^{n_{Pr}}} & TF \text{ is an activator} \\ \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{\mu_{TF}'}{K_{Pr}}\right)^{n_{Pr}}} & TF \text{ is a repressor} \end{cases} \end{aligned}$$

$\text{Ligand binding } \mu_{TF}' = \begin{cases} \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{K_{L_{TF}}}\right)^{n_{L_{TF}}}} & TF \text{ is non-inducible} \\ \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{[L_{TF}]}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } TF \text{ binds to } Pr \end{cases}$

Consistent minimal model over all circuits

Parameter	Description	Unit
α_r	RBS strength	Relative RBS unit (RRU), normalized by BBa_B0032
$ u_g^{(1)}$	Expression level of one copy of g	Relative promoter unit (RPU), normalized by BBa_J23101
α_{Pr}, β_{Pr}	Promoter strength & basal level	RPU
μ_g, μ_{TF}	Protein expression level of g, TF	$RRU \times RPU$
K_{Pr}	Binding affinity	$RRU \times RPU$
$[L_{TF}]$	Ligand concentration & dissociation constant	mM
$n_{L_{TF}}, n_{Pr}, N_g$	Hill coefficient, cooperativity & copy number	N/A

Translation
$$\mu_g = N_g \alpha_r \nu_g^{(1)}$$

$$\nu_g^{(1)} = \begin{cases} \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{K_{Pr}}{\mu'_{TF}}\right)^{n_{Pr}}} & TF \text{ is an activator} \\ \beta_{Pr} + \frac{\alpha_{Pr} - \beta_{Pr}}{1 + \left(\frac{\mu'_{TF}}{K_{Pr}}\right)^{n_{Pr}}} & TF \text{ is a repressor} \end{cases}$$

Consistent minimal model over all circuits

$$\text{Ligand binding } \mu_{TF}' = \begin{cases} \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{K_{L_{TF}}}\right)^{n_{L_{TF}}}} & TF \text{ is non-inducible} \\ \frac{\mu_{TF}}{1 + \left(\frac{[L_{TF}]}{[L_{TF}]}\right)^{n_{L_{TF}}}} & TF \text{ binds with } L_{TF} \text{ and } TF \text{ binds to } Pr \end{cases}$$

Parameter	Description	Unit
α_r	RBS strength	Relative RBS unit (RRU), normalized by BBa_B0032
$ u_g^{(1)}$	Expression level of one copy of g	Relative promoter unit (RPU), normalized by BBa_J23101
α_{Pr}, β_{Pr}	Promoter strength & basal level	RPU
μ_g, μ_{TF}	Protein expression level of g, TF	RRU×RPU Relative unit
K_{Pr}	Binding affinity	RRU×RPU Relative unit
$[L_{TF}]$	Ligand concentration & dissociation constant	mM
$n_{L_{TF}}, n_{Pr}, N_g$	Hill coefficient, cooperativity & copy number	N/A

$$LL(D|\theta) = -\frac{1}{2} \sum_{i=1}^{n} \left(\frac{M(x_i, \theta) - y_i}{\sigma_i} \right)^2 + const$$

$$LL(D|\theta) = -\frac{1}{2} \sum_{i=1}^{n} \left(\frac{M(x_i, \theta) - y_i}{\sigma_i} \right)^2 + const$$

Log-likelihood

Exp. output standard error

Maximum log-likelihood

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \ LL(D|\theta)$$

Measuring the uncertainty of a parameter

- Measuring the uncertainty of a parameter
 - Longer confidence interval (CI) → more uncertain

- Measuring the uncertainty of a parameter
 - Longer confidence interval (CI) → more uncertain
- Estimate through the profile log-likelihood

$$CI_{\alpha}(\theta_i) = \left\{ x \mid \max_{\theta \mid \theta_i = x} LL(D|\theta) \le \max_{\theta} LL(D|\theta) - \Delta(\alpha) \right\}$$

- Measuring the uncertainty of a parameter
 - Longer confidence interval (CI) → more uncertain
- Estimate through the profile log-likelihood

$$CI_{\alpha}(\theta_i) = \left\{ x \mid \max_{\theta \mid \theta_i = x} LL(D|\theta) \le \max_{\theta} LL(D|\theta) - \Delta(\alpha) \right\}$$

One parameter

- Measuring the uncertainty of a parameter
 - Longer confidence interval (CI) → more uncertain
- Estimate through the profile log-likelihood

$$CI_{\alpha}(\theta_i) = \left\{ x \mid \max_{\theta \mid \theta_i = x} LL(D|\theta) \leq \max_{\theta} LL(D|\theta) - \Delta(\alpha) \right\}$$

One parameter

Threshold

- Independent fitting
 - Fit each model independently

- Independent fitting
 - Fit each model independently
- Simultaneous fitting
 - Fit all models at the same time

- Independent fitting
 - Fit each model independently
- Simultaneous fitting
 - Fit all models at the same time
- Sequential fitting
 - Fit each model, one by one
 - The results from the former fittings are used in the latter fittings

Simultaneous fitting vs independent fitting

log₁₀(parameter)

Simultaneous fitting vs independent fitting

Confidence interval length (log-scale) reduces 19% in average

log₁₀(parameter)

0

Simultaneous fitting vs sequential fitting

Simultaneous fitting vs sequential fitting

Sequential fitting

Simultaneous fitting

Simultaneous fitting vs sequential fitting

Sequential fitting

$R^2 = 0.65$ Experiment 8.0 1 1.2 0.2 0.6 0.4 Prediction

Simultaneous fitting

Error reduction: $R^2 = 0.95 \text{ vs } R^2 = 0.65$

Data integration & simultaneous fitting

- Data integration & simultaneous fitting
 - CI reduction: 19%

- Data integration & simultaneous fitting
 - CI reduction: 19%
 - Error reduction: $R^2 = 0.95 \text{ vs } R^2 = 0.65$

- Data integration & simultaneous fitting
 - CI reduction: 19%
 - Error reduction: $R^2 = 0.95 \text{ vs } R^2 = 0.65$
 - Running time: 5x increase

Model extensions

- Model extensions
 - RNA-RNA interactions

- Model extensions
 - RNA-RNA interactions
 - Protein-protein interactions

- Model extensions
 - RNA-RNA interactions
 - Protein-protein interactions
 - Integration with genome-scale model

- Model extensions
 - RNA-RNA interactions
 - Protein-protein interactions
 - Integration with genome-scale model
- Online resource for dataset and inference tool

- Model extensions
 - RNA-RNA interactions
 - Protein-protein interactions
 - Integration with genome-scale model
- Online resource for dataset and inference tool
 - SBOL: Need an extension for specifying experimental data

- Model extensions
 - RNA-RNA interactions
 - Protein-protein interactions
 - Integration with genome-scale model
- Online resource for dataset and inference tool
 - SBOL: Need an extension for specifying experimental data
- Experimental validation

Acknowledgments

Tagkopoulos lab members:

- Violeta Zorraquino
- Navneet Rai
- Minseung Kim
- Ameen Eetemadi
- Xiaokang Wang
- Beatriz Pereira

Funding

