Correction

Partie I

- 1. Soit $g:\mathbb{R}^{+*} \to \mathbb{R}$ définie par $g(x) = \ln x + x$. $g \text{ est continue et strictement croissante donc } g \text{ réalise une bijection de }]0,+\infty \big[\text{ sur } \Big] \lim_0 g, \lim_{+\infty} g \Big[= \mathbb{R} \text{ .}$ Par suite l'équation (E_p) possède une unique solution $x_p = g^{-1}(p)$. De plus : $g(1) = 1 \le p \le \ln p + p = g(p)$ donc $x_p \in [1,p]$.
- 2. g^{-1} est croissante et $p \le p+1$ donc $x_p = g^{-1}(p) \le g^{-1}(p+1) = x_{p+1}$. Ainsi (x_p) est croissante.
- $\begin{array}{ll} \text{3.a} & \text{Comme } 1 \leq x_p \leq p \ \text{ on a } 0 \leq \frac{\ln x_p}{p} \leq \frac{\ln p}{p} \to 0 \ \text{ et donc } \frac{\ln x_p}{p} \to 0 \ . \\ & \text{Ainsi } \ln x_p = o(p) \ . \\ & \text{La relation } x_p + \ln x_p = p \ \text{ donne alors } x_p = p + o(p) \sim p \ . \end{array}$
- $$\begin{split} 3.\text{b} & x_{p+1} x_p = (p+1 \ln x_{p+1}) (p \ln x_p) = 1 \ln \frac{x_{p+1}}{x_p} \,. \\ & \text{Or } x_p \sim p \;\; \text{et} \;\; x_{p+1} \sim p + 1 \sim p \;\; \text{donc} \;\; \frac{x_{p+1}}{x_p} \to 1 \;\; \text{puis} \;\; x_{p+1} x_p \to 1 \,. \end{split}$$
- 4.a $x_p \sim p \to +\infty \neq 1$ donc $\ln x_p \sim \ln p$. Puisque $\ln x_p = \ln p + o(\ln p)$ on a $x_p = p - \ln(x_p) = p - \ln p + o(\ln p)$.
- $\begin{aligned} 4.\text{b} \qquad & y_p = -\ln x_p + \ln p = -\ln \frac{x_p}{p} = -\ln \frac{p \ln x_p}{p} = -\ln \left(1 \frac{\ln x_p}{p}\right) \\ & \text{Or } \frac{\ln x_p}{p} \sim \frac{\ln p}{p} \to 0 \ \text{donc} \ y_p \sim \frac{\ln x_p}{p} \sim \frac{\ln p}{p} \ . \\ & \text{Ainsi} \ y_p = \frac{\ln p}{p} + o\left(\frac{\ln p}{p}\right) \ \text{puis} \ x_p = p \ln p + \frac{\ln p}{p} + o\left(\frac{\ln p}{p}\right). \end{aligned}$

Partie II

- 1. Soit $h:[1,+\infty[\to \mathbb{R} \ \text{définie par} \ h(x)=x-\ln x \ .$ h est dérivable et $h'(x)=1-\frac{1}{x}\leq 0 \ \text{sur} \ [1,+\infty[\ .$ Ainsi h est décroissante et puisque h(1)=1 on a $\forall x\geq 1, h(x)\geq 1$. Finalement $\forall x\in[1,+\infty[\,,\ln x\leq x-1\,.$
- 2.a Puisque $x\mapsto \ln x$ est croissante, $f:x\mapsto p-\ln x$ est décroissante. Les points fixes de f correspondent aux valeurs d'annulation de $\varphi:\mathbb{R}^{+*}\to\mathbb{R}$ définie par $\varphi(x)=f(x)-x=p-(\ln x+x)$. Or φ est strictement décroissante et $\varphi(x_p)=0$ donc x_p est le seul point fixe de f.
- 2.b Puisque f(1) = p, $f(p) = p \ln p \ge 1$ et f décroissante la restriction de f à $\left[1, p\right]$ est à valeurs dans $\left[1, p\right]$. Il s'en suit que la suite (u_n) est bien définie et est formée d'éléments de $\left[1, p\right]$.
- 2.c Comme $f:[1,p] \to [1,p]$ est décroissante, les suites extraites (u_{2n}) et (u_{2n+1}) sont monotones (et de monotonies contraires).

 De plus ces suites sont bornées car formées d'éléments de [1,p], donc ces deux suites sont convergentes.

 $2. \text{d} \qquad \forall n \in \mathbb{N}, \ 1 \leq u_{2n}, u_{2n+1} \leq p \ \text{ donne à la limite } 1 \leq \alpha, \beta \leq p \ .$

Comme f est continue et $u_{2n+1}=f(u_{2n})$ on obtient à la limite $\beta=f(\alpha)$.

De même, à partir de $\,u_{2n+2}=f(u_{2n})$, on obtient $\,\alpha=f(\beta)$.

2.e Considérons à nouveau $h:[1,+\infty[\to \mathbb{R} \text{ définie par } h(x)=x-\ln x \text{ .}$

h est dérivable et $h'(x) = 1 - \frac{1}{x}$. Puisque $\forall x \in]1, p], h'(x) > 0$, la fonction h est strictement croissante sur [1, p].

Les égalités $\beta = f(\alpha)$ et $\alpha = f(\beta)$ donnent :

$$\beta = p - \ln \alpha$$
 (1) et $\alpha = p - \ln \beta$ (2).

(1) – (2) donne
$$\beta - \alpha = \ln \beta - \ln \alpha$$
 puis $\beta - \ln \beta = \alpha - \ln \alpha$.

Ainsi $h(\beta) = h(\alpha)$. Or h étant strictement monotone, h est injective et donc $\alpha = \beta$.

2.f Puisque (u_{2n}) et (u_{2n+1}) convergent vers une même limite α , (u_n) converge aussi vers α . Or $u_{n+1} = f(u_n)$ donne à la limite $f(\alpha) = \alpha$.

 $\alpha \,$ est donc point fixe de $\,f\,$ et par suite $\,\alpha = x_{\scriptscriptstyle p}\,.$

Finalement $u_n \to x_p$.

3.a

3.b On sait (u_{2n}) et (u_{2n+1}) monotones.

A la calculatrice : $u_2 - u_0 > 0$ et $u_3 - u_1 < 0$

Donc (u_{2n}) est croissante et (u_{2n+1}) est décroissante.

De plus ces deux suites convergent vers x_2 par suite $\forall n \in \mathbb{N}, u_{2n} \leq x_2 \leq u_{2n+1}$.

A la calculatrice :

$$u_{\rm 12} = 1{,}554 \ \ {\rm a} \ \ 10^{-3} \ \ {\rm pr\`es} \ {\rm et} \ \ u_{\rm 13} = 1{,}559 \ \ {\rm a} \ \ 10^{-3} \ \ {\rm pr\`es}.$$

Par suite $x_2 = 1,55$ à 10^{-2} près par défaut.