Objectifs

Être capable:

- 1 de reconnaître une suite arithmétique ou géométrique;
- 2 de calculer le terme de rang n d'une suite arithmétique ou géométrique;
- 3 de représenter graphiquement une suite arithmétique ou géométrique.

I. Suites arithmétiques

Activite La suite des nombres impairs

On considère la suite des nombres impairs, 1, 3, 5, 7, ..., que l'on note successivement u_1, u_2, u_3, u_4 ... Donc $u_1 = 1, u_2 = 3, u_3 = 5$...

- 1 Compléter : $u_4 = \dots, u_7 = 15, u_{10} = \dots$
- 2 Quel est le premier terme de la suite?
- 3 Comment passe-t-on d'un terme au suivant?
- 4 n est est nombre entier positif non nul, on s'intéresse au terme de rang n (donc le $n^{i \`eme}$ nombre impair). Exprimer u_{n+1} en fonction de u_n .
- 5 Exprimer u_n en fonction de n.
- 6 Calculer u_{100} , u_{150} , u_{1000} .

Á retenir

- Une suite numérique est constituée de plusieurs nombres rangés dans un certain ordre. Ces nombres sont les termes de la suite. u_1 est le premier terme de la suite, u_2 le deuxième, u_n est le n-ième. Le terme suivant est noté u_{n+1} .
- Une suite arithmétique est une suite de nombres, où chaque terme, à partir du deuxième est obtenu en ajoutant au précédent un même nombre, la raison de la suite (notée r). On note :

$$u_{n+1} = u_n + r$$

1

Á retenir

Dans une suite arithmétique de raison r, le terme u_n est obtenu à partir du premier terme par la relation :

- $u_n = u_0 + nr$ (lorsque le terme initial est u_0)
- $u_n = u_1 + (n-1)r$ (lorsque le terme initial est u_1)