Project02

I have assumed F is positive

We have the following equations:

 $M_1 \text{ in } x \text{ direction}: F - N_{0x} - F_{F1} - F_1 = M_1 a_1$

 M_1 in y direction: $N_1 - M_1 g - N_2 - N_{0y} = 0$ (doesn't move in y direction)

 M_2 in x direction: $F_{F2} + T = M_2 a_2$ M_2 in y direction: $N_2 - M_2 g = 0$

 $M_3 \ in \ x \ direction: N_3 + F_1 - N_3 = M_3 a_{3x} \implies F_1 = M_3 a_3 x$

 M_3 in y direction: $T - M_3 g - 2F_{F3} = M_3 a_{3y}$

 M_0 in x direction: $N_{0x} - T = M_0g = 0 \Longrightarrow N_{0x} = T$

And the following constraints

The length of the rope is constant $\implies a_1 - a_2 - a_{3y} = 0 \implies a_1 = a_2 + a_{3y}$ M3 cannot escape the hole $\implies a_1 = a_{3x}$

 $x_1 - x_2 = a_2 t^2 / 2$ (if M_2 goes to the right and stops at x_1) $\Longrightarrow a_2 = 2(x_1 - x_2) / t^2$

$$y_1 - y_3 = a_{3y}t^2/2$$
 (if M_3 stops at the bottom) $\implies a_{3y} = 2(y_1 - y_3)/t^2$

We have equal number of unknowns and equations and by solving we get:

$$t = \sqrt{\frac{2(x_1 - x_2)(\mu_1 M_2 - M_2) - 2(x_1 - x_2 + y_1 - y_3)(M_3 + M_1)}{\mu_1 \mu_2 M_2 g - F - \mu_2 M_2 g + \mu_1 M_1 g + \mu_1 M_2 g}} \Longrightarrow$$

We can insert t and find a_1 , a_2 , a_{3x} , a_{3y} . after that we can find the coordinates at a given time t_0 by inserting t in the following equations

$$X_{1n} = x_1 + a_1 t_0^2 / 2$$
, $Y_{1n} = y_1$
 $X_{2n} = x_2 + a_2 t_0^2 / 2 + a_1 t_0^2 / 2$, $Y_{2n} = y_2$
 $X_{3n} = X_{1n}$, $Y_{3n} = y_3 + a_{3y} t_0^2 / 2$

Code workflow:

We get the parameters M_1 , M_2 , M_3 , F, μ_1 , μ_2 , μ_2 , μ_2 , μ_3 , μ_4 , μ_2 , μ_3 , μ_4 , μ_5 , μ_6 and find μ_6 based on that we find μ_6 , μ_6 , μ_6 , μ_6 , and then find the coordinates at time μ_6 using the equations above