NPRE 560 Fall 2024 HW 2 Due 2024.09.30

- Show your work.
- This work must be submitted online as a .pdf through Canvas.
- Work completed with LaTeX or Jupyter earns 1 extra point. Submit source file (e.g. .tex or .ipynb) along with the .pdf file.
- If this work is completed with the aid of a numerical program (such as Python, Wolfram Alpha, or MATLAB) all scripts and data must be submitted in addition to the .pdf.
- If you work with anyone else, document what you worked on together.

1. (Ott Problem 3.3)

- (a) (5 points) Define a one-group $\nu\Sigma_f$ based on the two group values $\nu\Sigma_{f1} = 0.015 \left[\frac{1}{cm}\right]$ and $\nu\Sigma_{f2} = 0.3 \left[\frac{1}{cm}\right]$.
- (b) (5 points) Calculate Λ with \bar{v} and with $\frac{1}{v}$.
- (c) (5 points) Discuss the results.
- 2. (Ott Review 3.8)
 - (a) (5 points) Give the formula for β_{eff} in the one group approximation.
 - (b) (10 points) Which physical fact is described by β_{eff} in this approximation?
- 3. (10 points) (Ott Review 3.10) Why is the diffusion equation a reasonable approximation for kinetics in large reactors?
- 4. (Ott 4.4) Consider a perturbation of $+\delta\Sigma_a$ for $r < r_a$ in a critical sphere. Assume r_a is much less than the critical radius, R. Find the corresponding change in the reactivity using the unperturbed flux
 - (a) (5 points) from reaction rates
 - (b) (5 points) from the first-order perturbation formula for the one-group approximation.
- 5. (5 points) (Ott Review 5.4) What does "exact" mean in the context of exact point kinetics equations?
- 6. (Ott Problem 6.1) Inhour equation.
 - (a) (10 points) Find the stable and prompt-period branches for ^{235}U fuel with $\Lambda = 10^{-4}$ s, $\Lambda = 10^{-5}$ s, and $\Lambda = 4 \times 10^{-7}$ s. Data is given in Table 2-III.
 - (b) (10 points) Find $\rho(\alpha)$ in the one-delay-group approximation with $\lambda = \bar{\lambda}$.
- 7. (5 points) (Ott Review 6.13) Which conditions have to be fulfilled to yield an asymptotic transient with a "stable" period?
- 8. (10 points) (Ott Review 6.18b) Estimate the stable period for an asymptotic transient following a reactivity insertion of $\rho = 1.25$ ¢.
- 9. (10 points) (Ott Review 6.19) Give a list of six to seven kinetics equations with decreasing sophistication of the description of delayed neutrons.