Los infinitos en el mundo de las Matemáticas: Cardinales y Ordinales.

Enrique Acosta Jaramillo

Escuela Nacional de Instructores Rodoflo Martínez Tono Servicio Nacional de Aprendizaje SENA

Julio 2014

1845 - 1918

Pregunta:

¿Hay más sillas, o personas en este auditorio?

1845 - 1918

1845 - 1918

Pregunta:

¿Hay más sillas, o personas en este auditorio?

Cantor definió:

Dos conjuntos tienen el mismo cardinal ("tamaño") si sus elementos se pueden emparejar de forma tal que no sobre ninguno.

1845 - 1918

Pregunta:

¿Hay más sillas, o personas en este auditorio?

Cantor definió:

Dos conjuntos tienen el mismo cardinal ("tamaño") si sus elementos se pueden emparejar de forma tal que no sobre ninguno.

En términos matemáticos:

... si existe una función biyectiva entre los dos conjuntos.

$$\{1, 2, 3, 4, \ldots\}$$
 $y \{0, 1, 2, 3, 4 \ldots\}$

Comentarios:

▶ ¡Tienen el mismo cardinal aunque parece que uno es mas grande que el otro!

Comentarios:

- ▶ ¡Tienen el mismo cardinal aunque parece que uno es mas grande que el otro!
- ▶ El emparejamiento se puede escribir como una función:

$$f(n) = n - 1$$

El hotel infinito....

Naturales =
$$\{1, 2, 3, \ldots\}$$
 y Pares = $\{2, 4, 6, 8, 10, \ldots\}$

Naturales =
$$\{1, 2, 3, ...\}$$
 y Pares = $\{2, 4, 6, 8, 10, ...\}$

Comentarios:

- ▶ ¡Tienen el mismo cardinal aunque parece que uno es mas grande que el otro!
- ▶ El emparejamiento se puede escribir como una función:

$$f(n) = 2 \times n$$

El hotel infinito....

- ► Naturales = $\{1, 2, 3, ...\}$
- ▶ Enteros = $\{..., -2, -1, 0, 1, 2, 3, ...\}$ (infinito en ambas direcciones)

- Naturales = $\{1, 2, 3, ...\}$
- ► Enteros = $\{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$ (infinito en ambas direcciones)

¡SI!

 $\begin{bmatrix} 2 & & 3 \\ & & & \\ & & & \\ & & & \\ 1 & & - \end{bmatrix}$

- Naturales = $\{1, 2, 3, ...\}$
- ► Enteros = $\{..., -2, -1, 0, 1, 2, 3, ...\}$ (infinito en ambas direcciones)

 $i^{\text{SI!}}$ 1 2 3 4 5 103 i^{A} i^{\text

Comentarios:

- ▶ ¡Tienen el mismo cardinal aunque parece que uno es mas grande que el otro!
- ► Tarea: El emparejamiento se puede escribir como una función

$$f(n) = ??$$

- Naturales = $\{1, 2, 3, ...\}$
- ▶ Puntos en el plano con coordenadas enteras:

- Naturales = $\{1, 2, 3, ...\}$
- ▶ Puntos en el plano con coordenadas enteras:

- ▶ $\mathbb{N} = \text{Naturales} = \{1, 2, 3, ...\}$
- ▶ $\mathbb{Q} = \text{Los números racionales (las fracciones, por ejemplo } 2/3, -134/67)$

- ▶ $\mathbb{N} = \text{Naturales} = \{1, 2, 3, ...\}$
- ▶ $\mathbb{Q} = \text{Los n\'umeros racionales (las fracciones, por ejemplo } 2/3, -134/67)$

Respuesta

¡Si!

¡Tienen el mismo cardinal!

¿Todos los conjuntos tienen el mismo Cardinal?

¿Todos los conjuntos tienen el mismo Cardinal?

Cantor: ¡NO!

Cantor: El Cardinal de [0,1] (los números reales entre 0 y 1) es mayor que el cardinal de los números Naturales \mathbb{N} .

Cantor: El Cardinal de [0,1] (los números reales entre 0 y 1) es mayor que el cardinal de los números Naturales \mathbb{N} .

ightharpoonup Primero: El cardinal de $\mathbb N$ es menor o igual que el cardinal de [0,1].

Cantor: El Cardinal de [0,1] (los números reales entre 0 y 1) es mayor que el cardinal de los números Naturales \mathbb{N} .

▶ Primero: El cardinal de \mathbb{N} es menor o igual que el cardinal de [0,1]. Por ejemplo:

Cantor: El Cardinal de [0,1] (los números reales entre 0 y 1) es mayor que el cardinal de los números Naturales \mathbb{N} .

▶ Primero: El cardinal de \mathbb{N} es menor o igual que el cardinal de [0,1]. Por ejemplo:

Luego

Cardinal de $\mathbb{N} \leq$ Cardinal de [0,1]

Cantor: El Cardinal de [0,1] (los números reales entre 0 y 1) es mayor que el cardinal de los números Naturales \mathbb{N} .

▶ Primero: El cardinal de \mathbb{N} es menor o igual que el cardinal de [0,1]. Por ejemplo:

Luego

Cardinal de $\mathbb{N} \leq$ Cardinal de [0,1]

► Cantor mostró que no pueden ser iguales con el argumento de la diagonal.

Sólo nos toca mostrar que los cardinales no son iguales.

- Sólo nos toca mostrar que los cardinales no son iguales.
- Supongamos que SI son iguales (si llegamos a un absurdo, ¡significa que no pueden ser iguales!).

- Sólo nos toca mostrar que los cardinales no son iguales.
- Supongamos que SI son iguales (si llegamos a un absurdo, ¡significa que no pueden ser iguales!).
- Si asumimos que son iguales los cardinales, entonces hay un emparejamiento entre los elemento de los conjuntos. Por ejemplo:

 Cantor nos muestra como construir un número que no está en el emparejamiento....

Construimos un número que no sale en la lista así:

Construimos un número que no sale en la lista así:

Elegimos el primer decimal distinto al del primer número.

Construimos un número que no sale en la lista así:

- ► Elegimos el primer decimal distinto al del primer número.
- ► Elegimos el segundo decimal distinto al del segundo número.

Construimos un número que no sale en la lista así:

- ► Elegimos el primer decimal distinto al del primer número.
- ▶ Elegimos el segundo decimal distinto al del segundo número.
- ▶ Elegimos el tercer decimal distinto al del tercer número.
- etc.

Por ejemplo:

0,3516...

¡El número azul no sale en la lista!

¡El número azul no sale en la lista!

Es distinto al número emparejado con 1, porque el primer decimal es distintos.

0,3516...

¡El número azul no sale en la lista!

- ► Es distinto al número emparejado con 1, porque el primer decimal es distintos.
- ► Es distinto al número emparejado con 2, porque el segundo decimal es distinto.

0,3516...

¡El número azul no sale en la lista!

- ► Es distinto al número emparejado con 1, porque el primer decimal es distintos.
- ► Es distinto al número emparejado con 2, porque el segundo decimal es distinto.
- ...etc .

0,3516...

▶ ¡Pero esto no tiene sentido! Se supone que todos los números estaban emparejados. ¡El número 0, 3516... debería estar emparejado!

0,3516...

- ▶ ¡Pero esto no tiene sentido! Se supone que todos los números estaban emparejados. ¡El número 0, 3516... debería estar emparejado!
- Esta contradicción muestra que el emparejamiento no podía existir en un principio.

Lo más importante es lo siguiente:

Lo más importante es lo siguiente:

Lo mismo se puede hacer con cualquier emparejamiento que nos den que pretende ser completo...siempre vamos a poder construir un número que no está en esa lista con la misma estrategia.

Lo más importante es lo siguiente:

- Lo mismo se puede hacer con cualquier emparejamiento que nos den que pretende ser completo...siempre vamos a poder construir un número que no está en esa lista con la misma estrategia.
- ► Es decir, no puede existir ningún emparejamiento entre los números naturales N y los números reales entre 0 y 1.

Lo más importante es lo siguiente:

- Lo mismo se puede hacer con cualquier emparejamiento que nos den que pretende ser completo...siempre vamos a poder construir un número que no está en esa lista con la misma estrategia.
- ► Es decir, no puede existir ningún emparejamiento entre los números naturales N y los números reales entre 0 y 1.
- En otras palabras, los cardinales de los dos conjuntos no pueden ser iguales.

Lo más importante es lo siguiente:

- Lo mismo se puede hacer con cualquier emparejamiento que nos den que pretende ser completo...siempre vamos a poder construir un número que no está en esa lista con la misma estrategia.
- ► Es decir, no puede existir ningún emparejamiento entre los números naturales N y los números reales entre 0 y 1.
- En otras palabras, los cardinales de los dos conjuntos no pueden ser iguales.

¡Hay más de un infinito!

Cardinal de \mathbb{N} < Cardinal de [0,1]

- ightharpoonup [0,1]: Todos los números reales entre 0 y 1
- ▶ [0,2]: Todos los números reales entre 0 y 2

- ightharpoonup [0,1]: Todos los números reales entre 0 y 1
- ▶ [0,2]: Todos los números reales entre 0 y 2

¡SI!

- ightharpoonup [0,1]: Todos los números reales entre 0 y 1
- ightharpoonup [0,2]: Todos los números reales entre 0 y 2

¡SI!

► El emparejamiento también se puede escribir como una función:

- ▶ [0, 1]: Todos los números reales entre 0 y 1
- ▶ [0,2]: Todos los números reales entre 0 y 2

¡SI!

► El emparejamiento también se puede escribir como una función:

$$f(x) = 2x$$

para ir de [0,1] a [0,2].

- ightharpoonup [0,1]: Todos los números reales entre 0 y 1
- ▶ [0,2]: Todos los números reales entre 0 y 2

¡SI!

► El emparejamiento también se puede escribir como una función:

$$f(x) = 2x$$

para ir de [0,1] a [0,2]. Y para ir en el sentido opuesto:

- ightharpoonup [0,1]: Todos los números reales entre 0 y 1
- ▶ [0,2]: Todos los números reales entre 0 y 2

¡SI!

► El emparejamiento también se puede escribir como una función:

$$f(x) = 2x$$

para ir de [0,1] a [0,2]. Y para ir en el sentido opuesto:

$$g(x) = \frac{x}{2}$$

▶ En general, cualquier intervalo [a,b] tiene el mismo cardinal que [0,1]. RETO: !Escribir las funciones!

- ▶ En general, cualquier intervalo [a,b] tiene el mismo cardinal que [0,1]. RETO: !Escribir las funciones!
- ▶ Incluso, ¡el conjunto de todos los números reales \mathbb{R} tiene el mismo cardinal que [0,1]!

- ▶ En general, cualquier intervalo [a, b] tiene el mismo cardinal que [0, 1]. RETO: !Escribir las funciones!
- ▶ Incluso, ¡el conjunto de todos los números reales \mathbb{R} tiene el mismo cardinal que [0,1]!
- ► A este Cardinal se le llama el Cardinal del continuo.

- ▶ En general, cualquier intervalo [a, b] tiene el mismo cardinal que [0, 1]. RETO: !Escribir las funciones!
- ▶ Incluso, ¡el conjunto de todos los números reales \mathbb{R} tiene el mismo cardinal que [0,1]!
- ► A este Cardinal se le llama el Cardinal del continuo.

Este Cardinal es estrictamente mayor que el Cardinal de los números naturales $\mathbb{N}=\{1,2,3,\ldots\}$

Cardinal de \mathbb{N} < Cardinal de \mathbb{R}

¡El emparejamiento entre (-90,90) y $\mathbb R$ está en sus calculadoras!

¡El emparejamiento entre (-90,90) y $\mathbb R$ está en sus calculadoras!

► El Cardinal de los números naturales: ℵ₀.

- ▶ El Cardinal de los números naturales: \aleph_0 .
- Este es Cardinal infinito "más pequeño".

- ▶ El Cardinal de los números naturales: \aleph_0 .
- Este es Cardinal infinito "más pequeño".
- Cantor: ¡Siempre hay un siguiente cardinal más grande!

- ► El Cardinal de los números naturales: 🔌
- Este es Cardinal infinito "más pequeño".
- ► Cantor: ¡Siempre hay un siguiente cardinal más grande!
- Es decir,

¡Hay infinitos infinitos!

- ► El Cardinal de los números naturales: 🔌
- Este es Cardinal infinito "más pequeño".
- ► Cantor: ¡Siempre hay un siguiente cardinal más grande!
- ► Es decir,

¡Hay infinitos infinitos!

▶ El siguiente Cardinal después de \aleph_0 :

- ► El Cardinal de los números naturales: 🔌
- Este es Cardinal infinito "más pequeño".
- ► Cantor: ¡Siempre hay un siguiente cardinal más grande!
- Es decir,

¡Hay infinitos infinitos!

▶ El siguiente Cardinal después de \aleph_0 : \aleph_1 .

- ► El Cardinal de los números naturales: ℵ₀.
- Este es Cardinal infinito "más pequeño".
- Cantor: ¡Siempre hay un siguiente cardinal más grande!
- Es decir,

¡Hay infinitos infinitos!

- ► El siguiente Cardinal después de \aleph_0 : \aleph_1 .
- Los Cardinales infinitos:

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \dots$$

¡Sigue sin parar!

- ► El Cardinal de los números naturales: 🔌
- Este es Cardinal infinito "más pequeño".
- ► Cantor: ¡Siempre hay un siguiente cardinal más grande!
- Es decir,

¡Hay infinitos infinitos!

- ► El siguiente Cardinal después de \aleph_0 : \aleph_1 .
- Los Cardinales infinitos:

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \dots$$

¡Sigue sin parar!

Más adelante seguimos con esto....

Pregunta de Cantor:

Pregunta de Cantor:

El Cardinal del continuo (de los números reales) debe ser un \aleph_- . ¿Cuál?

▶ ¿ Es ℵ₁ ?

Pregunta de Cantor:

- ▶ ¿ Es ℵ₁ ?
- ightharpoonup ¿ Es $leph_{20}$?

Pregunta de Cantor:

- ▶ ¿ Es ℵ₁ ?
- ▶ ¿ Es ℵ₂₀ ?
- ▶ ¿ Es ℵ₃₀₀₀₀ ?

Pregunta de Cantor:

- ▶ ¿ Es ℵ₁ ?
- ▶ ¿ Es ℵ₂₀ ?
- ▶ ¿ Es ℵ₃₀₀₀₀ ?

Pregunta de Cantor:

El Cardinal del continuo (de los números reales) debe ser un \aleph_- . ¿Cuál?

- ▶ ¿ Es ℵ₁ ?
- ▶ ¿ Es ℵ₂₀ ?
- ► ¿ Es ℵ₃₀₀₀₀ ?

▶ Cantor pensaba que era \aleph_1 .

Pregunta de Cantor:

- ▶ ¿ Es ℵ₁ ?
- ▶ ¿ Es ℵ₂₀ ?
- ► ¿ Es ℵ₃₀₀₀₀ ?

- ▶ Cantor pensaba que era \aleph_1 .
- Cantor nunca logró responder su pregunta.... esto le causó ataques de depresión a lo largo de la vida.

Pregunta de Cantor:

El Cardinal del continuo (de los números reales) debe ser un \aleph_- . ¿Cuál?

- ▶ ¿ Es ℵ₁ ?
- ▶ ¿ Es ℵ₂₀ ?
- ► ¿ Es ℵ₃₀₀₀₀ ?

- ▶ Cantor pensaba que era \aleph_1 .
- Cantor nunca logró responder su pregunta.... esto le causó ataques de depresión a lo largo de la vida.
- En 1963 (45 años después de la muerte de Cantor) el matemático Paul Cohen mostró que no hoy respuesta a la pregunta de Cantor.

¿Cuál N es el cardinal de los números reales?

¡No hay respuesta!

...No es que no sepamos cuál es la respuesta todavía...

¿Cuál N es el cardinal de los números reales?

¡No hay respuesta!

...No es que no sepamos cuál es la respuesta todavía...

¡NO HAY RESPUESTA!

¿Cuál N es el cardinal de los números reales?

¡No hay respuesta!

...No es que no sepamos cuál es la respuesta todavía...

iNO HAY RESPUESTA!

Las matemáticas no nos dan la respuesta. ¡No son absolutas!

¿Cuál X es el cardinal de los números reales?

¡No hay respuesta!

...No es que no sepamos cuál es la respuesta todavía...

iNO HAY RESPUESTA!

- Las matemáticas no nos dan la respuesta. ¡No son absolutas!
- ▶ Podemos elegir cual es la respuesta..., pero cada una determina "matemáticas" distintas.

PAUSA ACTIVA

Un juego:

▶ ¿Cuál es el número natural más grande?

Un juego:

- ¿Cuál es el número natural más grande?
- ▶ ¡Uno siempre puede decir un número más grande!

Un juego:

- ¿Cuál es el número natural más grande?
- ▶ ¡Uno siempre puede decir un número más grande!
- Cantor no paró donde todos paramos....

1, 2, 3, 4, 5, ...

 $1, 2, 3, 4, 5, \ldots, \omega$

 $1, 2, 3, 4, 5, \ldots, \omega, \omega + 1$

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$

1, 2, 3, 4, 5, ..., ω , ω + 1, ω + 2, ω + 3 , ...

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega$

1, 2, 3, 4, 5, ..., ω , ω + 1, ω + 2, ω + 3 , ..., ω + ω =: ω · 2

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ...

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$ $\omega \cdot 5$

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, $\omega \cdot 5$...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$ $\omega \cdot 5$ $\omega \cdot \omega$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, $\omega \cdot 5$, $\omega \cdot \omega := \omega^2$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, $\omega \cdot 5$..., $\omega \cdot \omega := \omega^2$. $\omega^2 + 1$, $\omega^2 + 2$, $\omega^2 + \omega$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega + 2$, ...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega + 2$, ..., $\omega^2 + \omega^2 + 2$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega + 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., ω^3

1, 2, 3, 4, 5, ..., ω , $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ..., ω^3 , $\omega^3 + 1$, ..., ω^4 , ..., ω^5

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ..., ω^3 , $\omega^3 + 1$, ..., ω^4 , ..., ω^5 , ..., ω^6

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ..., ω^3 , $\omega^3 + 1$, ..., ω^4 , ..., ω^5 , ..., ω^{ω} , $\omega^{\omega} + 1$, ...

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ..., ω^3 , $\omega^3 + 1$, ..., ω^4 , ..., ω^5 , ..., ω^{ω} , $\omega^{\omega} + 1$, ..., $\omega^{\omega \cdot 2}$

1, 2, 3, 4, 5, ...,
$$\omega$$
, $\omega + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + \omega =: \omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, $\omega \cdot 2 + 3$, ..., $\omega \cdot 3$, $\omega \cdot 3 + 1$, $\omega \cdot 3 + 2$, ..., $\omega \cdot 4$, ..., $\omega \cdot 5$, ..., $\omega \cdot \omega := \omega^2$, $\omega^2 + 1$, $\omega^2 + 2$, ..., $\omega^2 + \omega$, $\omega^2 + \omega + 1$, ..., $\omega^2 + \omega \cdot 2$, ..., $\omega^2 + \omega^2 := \omega^2 \cdot 2$, $\omega^2 \cdot 2 + 1$, $\omega^2 \cdot 2 + 2$, ..., $\omega^2 \cdot 2 + \omega$, ..., $\omega^2 \cdot 3$, ..., ω^3 , $\omega^3 + 1$, ..., ω^4 , ..., ω^5 , ..., ω^ω , $\omega^\omega + 1$, ..., $\omega^{\omega \cdot 2}$, $\omega^{\omega \cdot 2} + 1$, ..., $\omega^{\omega \cdot 3}$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\;,\,\omega+1,\,\omega+2,\,\omega+3\;,\,\ldots,\,\omega+\omega=:\omega\cdot2\;,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\;,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\;,\,\ldots,\,\omega\cdot5\;,\,\ldots,\,\omega\cdot\omega:=\omega^2\;,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\;,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\;,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\;,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\;,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\;,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\;,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\;,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5} \end{array}$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\;,\,\omega+1,\,\omega+2,\,\omega+3\;,\,\ldots,\,\omega+\omega=:\omega\cdot2\;,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\;,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\;,\,\ldots,\,\omega\cdot5\;,\,\ldots,\,\omega\cdot\omega:=\omega^2\;,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\;,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\;,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\;,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\;,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\;,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\;,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\;,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5}\,\ldots\,\omega^{\omega^2} \end{array}$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\;,\,\omega+1,\,\omega+2,\,\omega+3\;,\,\ldots,\,\omega+\omega=:\omega\cdot2\;,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\;,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\;,\,\ldots,\,\omega\cdot5\;,\,\ldots,\,\omega\cdot\omega:=\omega^2\;,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\;,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\;,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\;,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\;,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\;,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\;,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\;,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5}\,\ldots,\,\omega^{\omega^2}\;,\,\omega^{\omega^2}+1,\,\ldots.\end{array}$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\;,\,\omega+1,\,\omega+2,\,\omega+3\;,\,\ldots,\,\omega+\omega=:\omega\cdot2\;,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\;,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\;,\,\ldots,\,\omega\cdot5\;,\,\ldots,\,\omega\cdot\omega:=\omega^2\;,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\;,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\;,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\;,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\;,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\;,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\;,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\;,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5}\,\ldots,\,\omega^{\omega^2}\;,\,\omega^{\omega^2}+1,\,\ldots,\,\omega^{\omega^3}\end{array}$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot2\,\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots\,,\,\omega\cdot3\,\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots\,,\\ \omega\cdot4\,\,,\,\ldots\,,\,\omega\cdot5\,\,,\,\ldots\,,\,\omega\cdot\omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot2\,\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot2\,\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots\,,\,\omega^2\cdot2+\omega,\,\ldots\,,\,\omega^2\cdot3,\,\ldots\,,\,\omega^3\,\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot2}\,\,,\,\omega^{\omega\cdot2}+1,\,\ldots\,,\,\omega^{\omega\cdot3}\,\,,\,\ldots\,,\,,\\ \omega^{\omega\cdot4}\,\,,\,\ldots\,,\,\omega^{\omega\cdot5}\,\,\ldots\,,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,\,,\,\ldots\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,$

 $\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\;,\,\omega+1,\,\omega+2,\,\omega+3\;,\,\ldots,\,\omega+\omega=:\omega\cdot2\;,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\;,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\;,\,\ldots,\,\omega\cdot5\;,\,\ldots,\,\omega\cdot\omega:=\omega^2\;,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\;,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\;,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\;,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\;,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\;,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\;,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\;,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5}\,\ldots,\,\omega^{\omega^2}\;,\,\omega^{\omega^2}+1,\,\ldots,\,\omega^{\omega^3}\;,\,\ldots,\,\omega^{\omega^4}\;,\ldots,\,\omega^{\omega^4}\end{array}$

```
\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots,\,\omega+\omega=:\omega\cdot2\,\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots,\,\omega\cdot3\,\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots,\\ \omega\cdot4\,\,,\,\ldots,\,\omega\cdot5\,\,,\,\ldots,\,\omega\cdot\omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots,\,\omega^2+\omega\cdot2\,\,,\,\ldots,\,\omega^2+\omega^2:=\omega^2\cdot2\,\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots,\,\omega^2\cdot2+\omega,\,\ldots,\,\omega^2\cdot3,\,\ldots,\,\omega^3\,\,,\,\omega^3+1,\,\ldots,\,\omega^4,\\ \ldots,\,\omega^5,\,\ldots,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots,\,\omega^{\omega\cdot2}\,\,,\,\omega^{\omega\cdot2}+1,\,\ldots,\,\omega^{\omega\cdot3}\,\,,\,\ldots,\,,\\ \omega^{\omega\cdot4},\,\ldots,\,\omega^{\omega\cdot5}\,\ldots,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots,\,\omega^{\omega^3}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\ldots,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,
```

 $\omega^{\omega^{\omega}} + 1, \ldots$

$$\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,,\,\omega+1,\,\omega+2,\,\omega+3\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot2\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots\,,\,\omega\cdot3\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots\,,\\ \omega\cdot4\,,\,\ldots\,,\,\omega\cdot5\,,\,\ldots\,,\,\omega\cdot\omega:=\omega^2\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot2\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot2\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots\,,\,\omega^2\cdot2+\omega,\,\ldots\,,\,\omega^2\cdot3,\,\ldots\,,\,\omega^3\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot2}\,,\,\omega^{\omega\cdot2}+1,\,\ldots\,,\,\omega^{\omega\cdot3}\,,\,\ldots\,,\\ \omega^{\omega\cdot4},\,\ldots\,,\,\omega^{\omega\cdot5}\,\ldots\,,\,\omega^{\omega^2}\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,,\,\ldots\,,\,\omega^{\omega^4}\,,\,\omega^{\omega^4}\,,\,\omega^{\omega$$

$$\omega^{\omega^{\omega}}+1,\ldots,\omega^{\omega^{\omega^{\omega}}},\ldots$$

$$\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot2\,\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots\,,\,\omega\cdot3\,\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots\,,\\ \omega\cdot4\,\,,\,\ldots\,,\,\omega\cdot5\,\,,\,\ldots\,,\,\omega\cdot\omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot2\,\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot2\,\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots\,,\,\omega^2\cdot2+\omega,\,\ldots\,,\,\omega^2\cdot3,\,\ldots\,,\,\omega^3\,\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot2}\,\,,\,\omega^{\omega\cdot2}+1,\,\ldots\,,\,\omega^{\omega\cdot3}\,\,,\,\ldots\,,\\ \omega^{\omega\cdot4},\,\ldots\,,\,\omega^{\omega\cdot5}\,\ldots\,,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,\,,\,\ldots\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega$$

$$\omega^{\omega^{\omega}}+1,\ldots,\omega^{\omega^{\omega^{\omega}}},\ldots,\omega^{\omega^{\omega^{\omega^{\omega}}}}$$

$$\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot2\,\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots\,,\,\omega\cdot3\,\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots\,,\\ \omega\cdot4\,\,,\,\ldots\,,\,\omega\cdot5\,\,,\,\ldots\,,\,\omega\cdot\omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot2\,\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot2\,\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots\,,\,\omega^2\cdot2+\omega,\,\ldots\,,\,\omega^2\cdot3,\,\ldots\,,\,\omega^3\,\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot2}\,\,,\,\omega^{\omega\cdot2}+1,\,\ldots\,,\,\omega^{\omega\cdot3}\,\,,\,\ldots\,,\\ \omega^{\omega\cdot4},\,\ldots\,,\,\omega^{\omega\cdot5}\,\ldots\,,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,\,,\,\ldots\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\omega$$

$$\omega^{\omega^{\omega}} + 1, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots, \omega^{\omega^{\omega^{\omega^{\omega}}}}, \ldots$$

```
\begin{array}{l} 1,\, 2,\, 3,\, 4,\, 5,\, \ldots \,,\, \omega \,,\, \omega + 1,\, \omega + 2,\, \omega + 3\,\,,\, \ldots \,,\, \omega + \omega =: \omega \cdot 2\,\,,\\ \omega \cdot 2 + 1,\, \omega \cdot 2 + 2,\, \omega \cdot 2 + 3,\, \ldots \,,\, \omega \cdot 3\,\,,\, \omega \cdot 3 + 1,\, \omega \cdot 3 + 2,\, \ldots \,,\\ \omega \cdot 4\,\,,\, \ldots \,,\, \omega \cdot 5\,\,,\, \ldots \,,\, \omega \cdot \omega := \omega^2\,\,,\, \omega^2 + 1,\, \omega^2 + 2,\, \ldots \,,\, \omega^2 + \omega\,\,,\\ \omega^2 + \omega + 1,\, \ldots \,,\, \omega^2 + \omega \cdot 2\,\,,\, \ldots \,,\, \omega^2 + \omega^2 := \omega^2 \cdot 2\,\,,\, \omega^2 \cdot 2 + 1,\\ \omega^2 \cdot 2 + 2,\, \ldots \,,\, \omega^2 \cdot 2 + \omega,\, \ldots \,,\, \omega^2 \cdot 3,\, \ldots \,,\, \omega^3\,\,,\, \omega^3 + 1,\, \ldots \,,\, \omega^4\,\,,\\ \ldots \,,\, \omega^5,\, \ldots \,,\, \omega^\omega\,\,,\, \omega^\omega + 1,\, \ldots \,,\, \omega^{\omega\cdot 2}\,\,,\, \omega^{\omega\cdot 2} + 1,\, \ldots \,,\, \omega^{\omega\cdot 3}\,\,,\, \ldots \,,\, \omega^{\omega^4}\,\,,\, \ldots \,,\, \omega^{\omega^\omega}\,\,,\, \omega^\omega\,\,,\, \omega^\omega
```

$$\begin{array}{l} 1,\, 2,\, 3,\, 4,\, 5,\, \ldots,\, \omega\,\,,\, \omega+1,\, \omega+2,\, \omega+3\,\,,\, \ldots,\, \omega+\omega=:\omega\cdot 2\,\,,\\ \omega\cdot 2+1,\, \omega\cdot 2+2,\, \omega\cdot 2+3,\, \ldots,\, \omega\cdot 3\,\,,\, \omega\cdot 3+1,\, \omega\cdot 3+2,\, \ldots,\\ \omega\cdot 4\,\,,\, \ldots,\, \omega\cdot 5\,\,,\, \ldots,\, \omega\cdot \omega:=\omega^2\,\,,\, \omega^2+1,\, \omega^2+2,\, \ldots,\, \omega^2+\omega\,\,,\\ \omega^2+\omega+1,\, \ldots,\, \omega^2+\omega\cdot 2\,\,,\, \ldots,\, \omega^2+\omega^2:=\omega^2\cdot 2\,\,,\, \omega^2\cdot 2+1,\\ \omega^2\cdot 2+2,\, \ldots,\, \omega^2\cdot 2+\omega,\, \ldots,\, \omega^2\cdot 3,\, \ldots,\, \omega^3\,\,,\, \omega^3+1,\, \ldots,\, \omega^4,\\ \ldots,\, \omega^5,\, \ldots,\, \omega^\omega\,\,,\, \omega^\omega+1,\, \ldots,\, \omega^{\omega\cdot 2}\,\,,\, \omega^{\omega\cdot 2}+1,\, \ldots,\, \omega^{\omega\cdot 3}\,\,,\, \ldots,\, \omega^\omega\,\,,\\ \omega^{\omega\cdot 4},\, \ldots,\, \omega^{\omega\cdot 5}\, \ldots,\, \omega^{\omega^2}\,\,,\, \omega^{\omega^2}+1,\, \ldots,\, \omega^{\omega^3}\,\,,\, \ldots,\, \omega^{\omega^4}\,\,,\, \ldots,\, \omega^{\omega^\omega}\,\,,\\ \omega^{\omega^\omega}+1,\, \ldots,\, \omega^{\omega^\omega}\,\,,\, \ldots,\, \omega^\omega\,\,,\, \omega^\omega\,\,,\, \omega^\omega\,\,,\, \omega^\omega\,\,,$$

```
\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot 2\,\,,\\ \omega\cdot 2+1,\,\omega\cdot 2+2,\,\omega\cdot 2+3,\,\ldots\,,\,\omega\cdot 3\,\,,\,\omega\cdot 3+1,\,\omega\cdot 3+2,\,\ldots\,,\\ \omega\cdot 4\,\,,\,\ldots\,,\,\omega\cdot 5\,\,,\,\ldots\,,\,\omega\cdot \omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot 2\,\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot 2\,\,,\,\omega^2\cdot 2+1,\\ \omega^2\cdot 2+2,\,\ldots\,,\,\omega^2\cdot 2+\omega,\,\ldots\,,\,\omega^2\cdot 3,\,\ldots\,,\,\omega^3\,\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot 2}\,\,,\,\omega^{\omega\cdot 2}+1,\,\ldots\,,\,\omega^{\omega\cdot 3}\,\,,\,\ldots\,,\\ \omega^{\omega\cdot 4},\,\ldots\,,\,\omega^{\omega\cdot 5}\,\ldots\,,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\\ \omega^{\omega^\omega}+1,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\ldots\,,\,\omega^{\omega^\omega}\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega^\omega\,\,,\,\omega
```

$$\begin{array}{l} 1,\,2,\,3,\,4,\,5,\,\ldots\,,\,\omega\,\,,\,\omega+1,\,\omega+2,\,\omega+3\,\,,\,\ldots\,,\,\omega+\omega=:\omega\cdot2\,\,,\\ \omega\cdot2+1,\,\omega\cdot2+2,\,\omega\cdot2+3,\,\ldots\,,\,\omega\cdot3\,\,,\,\omega\cdot3+1,\,\omega\cdot3+2,\,\ldots\,,\\ \omega\cdot4\,\,,\,\ldots\,,\,\omega\cdot5\,\,,\,\ldots\,,\,\omega\cdot\omega:=\omega^2\,\,,\,\omega^2+1,\,\omega^2+2,\,\ldots\,,\,\omega^2+\omega\,\,,\\ \omega^2+\omega+1,\,\ldots\,,\,\omega^2+\omega\cdot2\,\,,\,\ldots\,,\,\omega^2+\omega^2:=\omega^2\cdot2\,\,,\,\omega^2\cdot2+1,\\ \omega^2\cdot2+2,\,\ldots\,,\,\omega^2\cdot2+\omega,\,\ldots\,,\,\omega^2\cdot3,\,\ldots\,,\,\omega^3\,\,,\,\omega^3+1,\,\ldots\,,\,\omega^4,\\ \ldots\,,\,\omega^5,\,\ldots\,,\,\omega^\omega\,\,,\,\omega^\omega+1,\,\ldots\,,\,\omega^{\omega\cdot2}\,\,,\,\omega^{\omega\cdot2}+1,\,\ldots\,,\,\omega^{\omega\cdot3}\,\,,\,\ldots\,,\\ \omega^{\omega\cdot4}\,,\,\ldots\,,\,\omega^{\omega\cdot5}\,\,\ldots\,,\,\omega^{\omega^2}\,\,,\,\omega^{\omega^2}+1,\,\ldots\,,\,\omega^{\omega^3}\,\,,\,\ldots\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4}\,\,,\,\ldots\,,\,\omega^{\omega^4}\,\,,\,\omega^{\omega^4$$

..... etc.

Los Ordinales nos sirven para establecer un ORDEN. Son para contar, y no para ver tamaños.

Los Ordinales representan ordenes

RETO: ¡El cardinal de todos estos es el cardinal de los naturales! (el cardinal de \mathbb{N}).

RETO: ¡El cardinal de todos estos es el cardinal de los naturales! (el cardinal de \mathbb{N}). Por ejemplo:

• Que ω y $\omega + 1$ tienen el miso cardinal es lo que vimos que

$$\{1, 2, 3, 4, \ldots\}$$
 $y \{0, 1, 2, 3, 4 \ldots\}$

tienen el mismo cardinal (que es \aleph_0).

RETO: ¡El cardinal de todos estos es el cardinal de los naturales! (el cardinal de \mathbb{N}). Por ejemplo:

 $lackbox{ Que }\omega$ y $\omega+1$ tienen el miso cardinal es lo que vimos que

$$\{1, 2, 3, 4, \ldots\}$$
 $y = \{0, 1, 2, 3, 4 \ldots\}$

tienen el mismo cardinal (que es \aleph_0).

 $\triangleright \omega + \omega$ tiene el mismo cardinal de ω :

esto es lo mismo que vimos que $\{1,2,3,\ldots\}$ y $\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$ tienen el mismo cardinal.

RETO: El cardinal de todos estos es el cardinal de los naturales! (el cardinal de \mathbb{N}). Por ejemplo:

 $lackbox{ Que }\omega$ y $\omega+1$ tienen el miso cardinal es lo que vimos que

$$\{1, 2, 3, 4, \ldots\}$$
 $y = \{0, 1, 2, 3, 4 \ldots\}$

tienen el mismo cardinal (que es \aleph_0).

 $\triangleright \omega + \omega$ tiene el mismo cardinal de ω :

esto es lo mismo que vimos que $\{1,2,3,\ldots\}$ y $\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$ tiene el mismo cardinal.

Los Alephs

Los Cardinales son lo Ordinales que no se pueden emparejar con sus antecesores.

- $ightharpoonup
 angle_0 := \omega$ (el Cardinal de los números naturales 1, 2, 3, ...
- $lacktriangleright lpha_1 :=$ el primer Ordinal que no se puede emparejar con $leph_0$

Los Alephs

Los Cardinales son lo Ordinales que no se pueden emparejar con sus antecesores.

- $ightharpoonup
 angle_0 := \omega$ (el Cardinal de los números naturales 1, 2, 3, ...
- $lephi_1 :=$ el primer Ordinal que no se puede emparejar con $lephi_0$ (sabemos que con el juego de sumar 1 nunca lo vamos a alcanzar, pero también sabemos que muy, muy, muy adelante está)

Los Alephs

Los Cardinales son lo Ordinales que no se pueden emparejar con sus antecesores.

- $ightharpoonup
 angle_0 := \omega$ (el Cardinal de los números naturales 1,2,3,...
- $ightharpoonup
 vert_1 :=$ el primer Ordinal que no se puede emparejar con $vert_0$ (sabemos que con el juego de sumar 1 nunca lo vamos a alcanzar, pero también sabemos que muy, muy, muy adelante está)
- $ightarrow
 vert_2 :=$ El primer Ordinal que no se puede emparejar con $vert_1$:

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega}$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2}$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots$$
...

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots$$

$$\ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \end{split}$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots$$

$$\ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots$$

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2}$$

$$< \ldots < \aleph_{\omega+1000} < \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots$$

$$\ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_2} < \ldots \\ \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_N} < \ldots < \aleph_{\aleph_N} \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \end{split}$$

$$\begin{split} \aleph_0 &< \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ &< \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ & \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ &< \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ &< \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot 2} < \ldots < \aleph_{\omega\cdot 3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ < \ldots \ldots \end{split}$$

$$\begin{split} \aleph_0 &< \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_{\omega} < \aleph_{\omega+1} < \aleph_{\omega+2} \\ &< \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega \cdot 2} < \ldots < \aleph_{\omega \cdot 3} < \ldots \\ & \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ &< \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_{\omega}} = \aleph_{\aleph_{\aleph_0}} \\ &< \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ &< \ldots \ldots < \aleph_{\aleph_{\aleph_{\aleph_0}}} < \ldots \ldots \end{split}$$

$$\begin{split} \aleph_0 &< \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_\omega < \aleph_{\omega+1} < \aleph_{\omega+2} \\ &< \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots \\ &\ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ &< \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_\omega} = \aleph_{\aleph_{\aleph_0}} \\ &< \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ &< \ldots < \aleph_{\aleph_{\aleph_0}} < \ldots \\ & \ldots < \aleph_{\aleph_{\aleph_0}} &< \ldots \\ & \ldots < \aleph_{\aleph_{\aleph_1}} & (\aleph_0 \text{ veces}) < \ldots \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_\omega < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_\omega} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ < \ldots \ldots < \aleph_{\aleph_{\aleph_N}} < \ldots \\ \ldots < \aleph_{\aleph_{\aleph_N}} (\aleph_0 \text{ veces}) < \ldots < \aleph_{\aleph_{\aleph}} \qquad (\aleph_1 \text{ veces}) < \ldots \end{split}$$

$$\begin{split} &\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_\omega < \aleph_{\omega+1} < \aleph_{\omega+2} \\ &< \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots \\ &\ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ &< \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_\omega} = \aleph_{\aleph_{\aleph_0}} \\ &< \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ &< \ldots < \aleph_{\aleph_{\aleph_0}} < \ldots \\ & \ldots < \aleph_{\aleph_{\aleph_{\aleph_0}}} & (\aleph_0 \text{ veces}) < \ldots < \aleph_{\aleph_{\aleph_{\aleph_1}}} & (\aleph_1 \text{ veces}) < \ldots \\ & \ldots \text{ para SIEMPRE}. \end{split}$$

$$\begin{split} \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \ldots < \aleph_{1000} < \ldots < \aleph_\omega < \aleph_{\omega+1} < \aleph_{\omega+2} \\ < \ldots < \aleph_{\omega+1000} < \ldots \ldots < \aleph_{\omega+\omega} = \aleph_{\omega\cdot2} < \ldots < \aleph_{\omega\cdot3} < \ldots \\ \ldots \ldots < \aleph_{\omega^2} < \aleph_{\omega^2+1} < \ldots < \aleph_{\varepsilon_0} < \ldots \ldots < \aleph_{\aleph_1} \\ < \aleph_{\aleph_1+1} < \aleph_{\aleph_1+2} < \ldots < \aleph_{\aleph_2} < \ldots < \aleph_{\aleph_3} < \ldots < \aleph_{\aleph_\omega} = \aleph_{\aleph_{\aleph_0}} \\ < \aleph_{\aleph_{\aleph_0}+1} < \aleph_{\aleph_{\aleph_0}+2} < \ldots < \ldots < \aleph_{\aleph_{\aleph_1}} < \ldots < \aleph_{\aleph_{\aleph_2}} \\ < \ldots < \aleph_{\aleph_{\aleph_0}} < \ldots \\ \ldots < \aleph_{\aleph_{\aleph_N}} \quad (\aleph_0 \text{ veces}) < \ldots < \aleph_{\aleph_{\aleph}} \quad (\aleph_1 \text{ veces}) < \ldots \\ \ldots \text{ para SIEMPRE}. \end{split}$$

Esta cadena de infinitos es más larga que cualquier infinito....

Mas Información

- ► Introduction to set Theory, Thomas Jech and Karel Hrbacek.
- ▶ Set Theory, Thomas Jech.
- ▶ Set Theory, Kenneth Kunen.

- $ightharpoonup
 ightharpoonup
 begin{align*}
 boldsymbol{\mathbb{N}} = \mathsf{Naturales} = \{1,2,3,\ldots\} \end{cases}$
- $ightharpoonup \mathbb{Q} = \mathsf{Los}\ \mathsf{n\'umeros}\ \mathsf{racionales}\ \mathsf{(las}\ \mathsf{fracciones)}$

- ▶ $\mathbb{N} = \text{Naturales} = \{1, 2, 3, ...\}$
- $ightharpoonup \mathbb{Q} = \mathsf{Los}\ \mathsf{n\'umeros}\ \mathsf{racionales}\ \mathsf{(las}\ \mathsf{fracciones)}$

Solución

Comenzamos con

Cardinal de $\mathbb{N} \leq$ Cardinal de \mathbb{Q}

- ▶ $\mathbb{N} = \text{Naturales} = \{1, 2, 3, ...\}$
- ▶ Q = Los números racionales (las fracciones)

Solución

Comenzamos con

Cardinal de \mathbb{N} < Cardinal de \mathbb{Q}

▶ Pero de cada punto del plano con coordenadas enteras podemos sacar una fracción:

$$(a,b) \bullet \longrightarrow \frac{a}{b}$$

- ightharpoonup
 vert
 vert
- $ightharpoonup \mathbb{Q} = \mathsf{Los}\ \mathsf{n\'umeros}\ \mathsf{racionales}\ \mathsf{(las}\ \mathsf{fracciones)}$

Solución

Comenzamos con

Cardinal de $\mathbb{N} \leq$ Cardinal de \mathbb{Q}

Pero de cada punto del plano con coordenadas enteras podemos sacar una fracción:

$$(a,b) \bullet \longrightarrow \frac{a}{b}$$

▶ Luego, el cardinal de $\mathbb Q$ es menor que el cardinal de los puntos en el plano con coordenadas enteras, que sabemos que es igual al de $\mathbb N!$

- ▶ $\mathbb{N} = \text{Naturales} = \{1, 2, 3, ...\}$
- $ightharpoonup \mathbb{Q} = \mathsf{Los}\ \mathsf{n\'umeros}\ \mathsf{racionales}\ \mathsf{(las}\ \mathsf{fracciones)}$

Solución

Comenzamos con

Cardinal de $\mathbb{N} \leq$ Cardinal de \mathbb{Q}

Pero de cada punto del plano con coordenadas enteras podemos sacar una fracción:

$$(a,b) \bullet \longrightarrow \frac{a}{b}$$

- ▶ Luego, el cardinal de $\mathbb Q$ es menor que el cardinal de los puntos en el plano con coordenadas enteras, que sabemos que es igual al de $\mathbb N!$
- ▶ ¡Tienen el mismo cardinal!