

Recurrent Neural Networks (RNNs)

Konda Reddy Mopuri

Dr. Konda Reddy Mopuri dl4cv-10/RNNs

Recap

- MP neuron, Perceptron, MLP, and CNNs
- In other words, we have seen feedforward neural nets
 - No loops in the computational graphs
 - Input or output is not sequential

one to one

Figure Credit Andrej Karpathy

Many real-world problems have to process data with sequential nature

Many real-world problems have to process data with sequential

nature

- Sentiment analysis
- Action recognition
- DNA sequence classification

Sequence classification

Source

 Many real-world problems have to process data with sequential nature

- Sentiment analysis
- Action recognition
- DNA sequence classification

Source

Sequence classification

Many real-world problems have to process data with sequential nature

- Image Captioning
- Music/Art generation

<u>Caption generator</u>

- a laptop computer sitting on top of a desk
- a desktop computer sitting on top of a desk
- a laptop computer sitting on top of a wooden desk
- a desktop computer sitting on top of a wooden desk
- a laptop computer sitting on top of a table
- a desk with a keyboard and a monitor
- a desk with a laptop and a monitor
- a laptop computer sitting on top of a wooden table
- a laptop computer sitting on top of a desk next to a desktop computer
- a laptop computer sitting on top of a desk next to a computer

 Many real-world problems have to process data with sequential nature

- Machine translation
- PoS tagging

Sequence-to-sequence prediction

Formally

Given a set \mathcal{X} , and if $S(\mathcal{X})$ is the set of sequences of elements from \mathcal{X}

$$S(\mathcal{X}) = \bigcup_{t=1}^{\infty} \mathcal{X}^t$$

Formally

Given a set \mathcal{X} , and if $S(\mathcal{X})$ is the set of sequences of elements from \mathcal{X}

$$S(\mathcal{X}) = \bigcup_{t=1}^{\infty} \mathcal{X}^t$$

$$f:S(\mathcal{X})\to\{1,\ldots,C\}$$

$$f: \mathcal{R}^D \to S(\mathcal{X})$$

$$f:S(\mathcal{X})\to S(\mathcal{Y})$$

Sequence classification

Sequence Synthesis

Sequence-to-sequence prediction

Can we use the known techniques to process the 'sequential' data?

Dr. Konda Reddy Mopuri dl4cv-10/RNNs 10

Temporal Convolution

Temporal Convolutional Networks (TCN)

Figure credits: Bai et al.

RNNs and backprop through time

dl4cv-10/RNNs 13

Maintains a recurrent state updated at each time step

Maintains a recurrent state updated at each time step

With
$$\mathcal{X} = \mathcal{R}^D$$
, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$,

Maintains a recurrent state updated at each time step

With $\mathcal{X} = \mathcal{R}^D$, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$, an input sequence $x \in \mathcal{S}(\mathcal{R}^D)$, an initial recurrent state $h_0 \in \mathcal{R}^Q$,

Maintains a recurrent state updated at each time step

With
$$\mathcal{X} = \mathcal{R}^D$$
, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$, an input sequence $x \in \mathcal{S}(\mathcal{R}^D)$, an initial recurrent state $h_0 \in \mathcal{R}^Q$,

model computes sequence of recurrent states iteratively

$$\forall t = 1, \dots, T(x), h_t = \phi(x_t, h_{t-1}; w)$$

Recurrence in a graph

State computes the output

 Prediction can be computed at any time step using the recurrent state

Dr. Konda Reddy Mopuri dl4cv-10/RNNs 19

State computes the output

 Prediction can be computed at any time step using the recurrent state

$$y_t = \psi(h_t; w)$$

$$\psi(\cdot; w): \mathcal{R}^Q \to \mathcal{R}^C$$

Dr. Konda Reddy Mopuri dl4cv-10/RNNs 20

Recurrence in a graph

Backprop in time

Number of steps is equal to the length of sequence T. The rest is similar to the DAGs we know, and autograd can handle.

Different types of RNNs and a sample problem

Dr. Konda Reddy Mopuri dl4cv-10/RNNs 23

Elman Network (Elman, 1990)

$$h_0 = 0$$

$$h_t = tanh(w_{hh}h_{t-1} + w_{xh}x_t + b_h)$$

$$h_t = tanh(\left[w_{hh}w_{xh}\right] \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix} + b_h)$$

$$y_t = w_{hy}h_t + b_y$$

Elman Network (Elman, 1990)

Sequence classification

Class 1: sequence is concatenation of two identical halves

Class 0: otherwise

Sequence classification

Class 1: sequence is concatenation of two identical halves

Class 0: otherwise

$$\begin{array}{c} x \rightarrow y \\ (1,2,3,4,5,6) \rightarrow 0 \\ (3,9,9,3) \rightarrow 0 \\ (7,4,4,7,5,4) \rightarrow 0 \\ (7,7) \rightarrow 1 \\ (1,2,3,1,2,3) \rightarrow 1 \\ (5,1,1,2,5,1,1,2) \rightarrow 1 \end{array}$$

<u>Implementation</u>

What is the depth of the model?

- What is the depth of the model?
 - Length of the input

- What is the depth of the model?
 - Length of the input
- → vanishing or exploding gradient issue

$$h_0 = 0$$

$$h_t = tanh(w_{hh}h_{t-1} + w_{xh}x_t + b_h)$$

→ vanishing or exploding gradient issue

- → vanishing or exploding gradient issue
- Gradient clipping is employed (to handle explosion)
- Introduce a 'pass-through'
 - recurrent state does not go repeatedly through a squashing nonlinearity

Pass-through

 Recurrent state update can be weighted avg. of previous value and current full update

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t$$

where,
$$\bar{h}_t = \phi(x_t, h_{t-1})$$
 and weight $z_t = f(x_t, h_{t-1})$

Pass-through

 Recurrent state update can be weighted avg. of previous value and current full update

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t$$

where,
$$\bar{h}_t = \phi(x_t, h_{t-1})$$
 and weight $z_t = f(x_t, h_{t-1})$

Acts as a 'forget' gate

Gating

Update equations will now become

```
h_0 = 0
\bar{h}_t = \tanh (W_{xh}x_t + W_{hh}h_{t-1} + b_h) \text{ (full update)}
z_t = sigm(W_{xz}x_t + W_{hz}h_{t-1} + b_z) \text{ (forget gate)}
h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t \text{ (recurrent state)}
y_t = W_{hy}h_t + b_y \text{ (output)}
```


LSTM

Work to do!

Improve the sample problem with the updated model

- Hochreiter and Schmidhuber (1997)
- Later improved by a forget gate (Gers, et al 2000)

- Hochreiter and Schmidhuber (1997)
- Later improved by a forget gate (Gers, et al 2000)

It uses the structure founded on the short-term processes to create a long-term memory

- Consists of a cell state (c_t) and an output state (h_t)
- Gates
 - \circ f₊ if the cell state should be forgotten
 - \circ i₊ if the new update should be taken into account
 - o o_f if the output state should be reset

- Consists of a cell state (c₊) and an output state (h₊)
- Gates
 - o f₊ if the cell state should be forgotten
 - i₁ if the new update should be taken into account
 - \circ o_r if the output state should be reset

$$f_{t} = sigm(W_{xf}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$g_{t} = tanh(W_{xc}X_{t} + W_{hc}h_{t-1} + b_{c})$$

$$i_{t} = sigm(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$o_{t} = sigm(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

Figure credits: Dr Justin Johnson, U Michigan

LSTM unit

LSTM layers

Dr. Konda Reddy Mopuri dl4cv-10/RNNs 45

torch.nn.LSTM

- Layers D
- Processes sequence of length T and outputs
- Outputs for all the layers at the last time step T: h_T^{-1} , h_T^{-2} , h_T^{-D}
- Outputs for the last layer at all the time steps: h_1^D , h_2^D , h_T^D

Try LSTM on the toy task

```
class LSTMNet(nn.Module):
    def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):
        super().__init__()
        self.lstm = nn.LSTM(input_size = dim_input, hidden_size = dim_recurrent, num_layers =
num_layers)
        self.fc_o2y = nn.Linear(dim_recurrent, dim_output)
    def forward(self, input):
        # Get the last layer's last time step activation
        output, _ = self.lstm(input.permute(1, 0, 2))
        output = output[-1]
        return self.fc_o2y(F.relu(output))
```


Gated Recurrent Unit (GRU)

- LSTM was simplified by Cho et al. (2014)
- Has a gating for recurrent state
- Also has a reset gate

Gated Recurrent Unit (GRU)

$$r_t = sigm(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$
 (reset gate)
 $z_t = sigm(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$ (forget gate)

$$\bar{h}_t = tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$
 (full update)

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t$$
 (hidden update)

Different sequence tasks

Figure Credit Andrej Karpathy

Many-to-One

Sentiment classification, etc.

One-to-Many

Music generation, image captioning, etc.

Many-to-Many

PoS tagging, etc.

Many-to-Many

Thank You