Finite elements: Dr Colin Cotter

- Fluid dynamics application normally start from differential equations
- Structural mechanics also use point of view of energy of force balance at equilibrium

Two approaches to formulating problems:

Two approaches to formulating problems:

Method of weighted residuals

Two approaches to formulating problems:

- Method of weighted residuals
- Principle of virtual work

• Numerical approximation implies replacing an **infinite** expansion with a **finite** representation

- Numerical approximation implies replacing an **infinite** expansion with a **finite** representation
- This necessarily means that the differential equation cannot be satisfied everywhere and so we can satisfy a finite number of **conditions**

- Numerical approximation implies replacing an **infinite** expansion with a **finite** representation
- This necessarily means that the differential equation cannot be satisfied everywhere and so we can satisfy a finite number of **conditions**
- The choice of the **conditions** which are to be satisfied defines the type of numerical method.

- Numerical approximation implies replacing an **infinite** expansion with a **finite** representation
- This necessarily means that the differential equation cannot be satisfied everywhere and so we can satisfy a finite number of **conditions**
- The choice of the **conditions** which are to be satisfied defines the type of numerical method.
- The method of weighted residuals illustrates how the choice of different weight (or test) functions in an integral or **weak form** of the equation can be used to construct many of the common numerical methods

General linear problem: L(u) = q

General linear problem: L(u) = q

For example: $u_{xx} = f(x)$

General linear problem: L(u) = q

For example: $u_{xx} = f(x)$

If we use an approximate numerical solution, denoted by $u^\delta(x)$ then the LHS may not exactly equal the RHS.

General linear problem: L(u) = q

For example: $u_{xx} = f(x)$

If we use an approximate numerical solution, denoted by $u^\delta(x)$ then the LHS may not exactly equal the RHS.

We therefore introduce the residual R(u) such that

$$R(u^{\delta}) = L(u^{\delta}) - q$$

General linear problem: L(u) = q

For example: $u_{xx} = f(x)$

If we use an approximate numerical solution, denoted by $u^\delta(x)$ then the LHS may not exactly equal the RHS.

We therefore introduce the residual R(u) such that

$$R(u^{\delta}) = L(u^{\delta}) - q$$

When we have the exact answer which satisfies then R(u)=0. This is the only way of ensuring R(u) is zero everywhere.

Method of weighted residuals

For a given numerical approximation we don't know the exact form of the residual and so we want to eliminate this term.

We multiply the equation by a weight (test) function, and integrated over the solution region, to obtain

$$\int_{\Omega} w(x)R(u^{\delta}(x))dx = \int_{\Omega} w(x)L(u(x)^{\delta})dx - \int_{\Omega} w(x)q(x)dx.$$

Method of weighted residuals

For a given numerical approximation we don't know the exact form of the residual and so we want to eliminate this term.

We multiply the equation by a weight (test) function, and integrated over the solution region, to obtain

$$\int_{\Omega} w(x)R(u^{\delta}(x))dx = \int_{\Omega} w(x)L(u(x)^{\delta})dx - \int_{\Omega} w(x)q(x)dx.$$

Finally we set the integral of the weighted residual equal to zero and we are left with

$$\int_{\Omega} w(x)L(u^{\delta}(x))dx = \int_{\Omega} w(x)q(x)dx$$

Method of weighted residuals

For a given numerical approximation we don't know the exact form of the residual and so we want to eliminate this term.

We multiply the equation by a weight (test) function, and integrated over the solution region, to obtain

$$\int_{\Omega} w(x)R(u^{\delta}(x))dx = \int_{\Omega} w(x)L(u(x)^{\delta})dx - \int_{\Omega} w(x)q(x)dx.$$

Finally we set the integral of the weighted residual equal to zero and we are left with

$$\int_{\Omega} w(x)L(u^{\delta}(x))dx = \int_{\Omega} w(x)q(x)dx$$

This is the integral (weak) form of the equation, if true for all w

If we represent our solution as
$$u(x) = \sum_{i=1}^{N} \hat{u_i} N_i(x)$$

If we represent our solution as $u(x) = \sum_{i=1}^{N} \hat{u_i} N_i(x)$

If we represent our solution as $u(x) = \sum_{i=1}^{N} \hat{u_i} N_i(x)$

$$N_{I}(x) = \begin{cases} 1 \\ 0 \end{cases} \begin{array}{c} \frac{x - x_{0}}{x_{1} - x_{0}} & x_{0} < x < x_{1} \\ \frac{x_{2} - x_{1}}{x_{2} - x_{1}} & x_{1} < x < x_{2} \\ x_{0} - x_{1} - x_{2} - x_{3} - x_{4} - x_{5} - x_{6} \end{cases}$$

then the Galerkin finite element method has a weight function $w_i(x) = N_i(x)$

If we represent our solution as $u(x) = \sum_{i=1}^{N} \hat{u_i} N_i(x)$

then the Galerkin finite element method has a weight function $w_j(x) = N_j(x)$

If we use a different choice of a continuous function so then the projection is referred to as the Petrov-Galerkin methods. This arises when we want to introduce upwinding into the finite element method

Finite volume and finite difference

If we choose a step type function which has a value of 1 in a cell and is zero outside then we have a subdomain projection which is used in the finite volume methods.

Finite volume and finite difference

If we choose a step type function which has a value of 1 in a cell and is zero outside then we have a subdomain projection which is used in the finite volume methods.

Finite volume and finite difference

If we choose a step type function which has a value of 1 in a cell and is zero outside then we have a subdomain projection which is used in the finite volume methods.

If we choose $w_i(x) = \delta(x - x_j)$ where x_j are the mesh points then we have the collocation method which is the starting point of the finite difference method.

Consider a general second order partial differential equation (PDE) of the form

Consider a general second order partial differential equation (PDE) of the form

$$a(x,y)\frac{\partial^2 \phi}{\partial x^2} + b(x,y)\frac{\partial^2 \phi}{\partial x \partial y} + c(x,y)\frac{\partial^2 \phi}{\partial y^2} = 0$$

Consider a general second order partial differential equation (PDE) of the form

$$a(x,y)\frac{\partial^2 \phi}{\partial x^2} + b(x,y)\frac{\partial^2 \phi}{\partial x \partial y} + c(x,y)\frac{\partial^2 \phi}{\partial y^2} = 0$$

Then the PDE is classified according to

Consider a general second order partial differential equation (PDE) of the form

$$a(x,y)\frac{\partial^2 \phi}{\partial x^2} + b(x,y)\frac{\partial^2 \phi}{\partial x \partial y} + c(x,y)\frac{\partial^2 \phi}{\partial y^2} = 0$$

Then the PDE is classified according to

$$(b^2 - 4ac) > 0 \Rightarrow \mathbf{Hyberbolic}$$

$$(b^2 - 4ac) = 0 \Rightarrow \mathbf{Parabolic}$$

$$(b^2 - 4ac) < 0 \Rightarrow \textbf{Elliptic}$$

But what does this mean physically? A classical example of each types of equation is

But what does this mean physically? A classical example of each types of equation is

Hyperbolic

But what does this mean physically? A classical example of each types of equation is

- Hyperbolic
- Elliptic

But what does this mean physically? A classical example of each types of equation is

- Hyperbolic
- Elliptic
- Parabolic

But what does this mean physically? A classical example of each types of equation is

- Hyperbolic
- Elliptic
- Parabolic

Wave equation

But what does this mean physically? A classical example of each types of equation is

- Hyperbolic
- Elliptic
- Parabolic

- Wave equation
- Laplace equation

But what does this mean physically? A classical example of each types of equation is

- Hyperbolic
- Elliptic
- Parabolic

- Wave equation
- Laplace equation
- Heat equation

Boundary conditions

For a differential equation to be well posed we need to have appropriate boundary conditions and the same is true for the matrix problem.

Type

1D example

2D example

Type	1D example	2D example
Dirichlet/ Essential	$u(\partial\Omega) = c$	$u(\partial\Omega) = f(\partial\Omega)$

Type	1D example	2D example
Dirichlet/ Essential	$u(\partial\Omega) = c$	$u(\partial\Omega) = f(\partial\Omega)$
Neumann/Free	$\frac{\partial u}{\partial x}(\partial \Omega) = d$	$\frac{\partial u}{\partial n}(\partial \Omega) = g(\partial \Omega)$

Type	1D example	2D example
Dirichlet/ Essential	$u(\partial\Omega) = c$	$u(\partial\Omega) = f(\partial\Omega)$
Neumann/Free	$\frac{\partial u}{\partial x}(\partial \Omega) = d$	$\frac{\partial u}{\partial n}(\partial \Omega) = g(\partial \Omega)$
Robin/Mixed	$u(\partial\Omega) + \frac{\partial u}{\partial x}(\partial\Omega) = e$	$u(\partial\Omega) + \frac{\partial u}{\partial n}(\partial\Omega) = h(\partial\Omega)$

Boundary properties

- Different conditions can (and sometimes must) be attached to different parts of the boundary depending on the mathematical properties of the equation.
- For example, if the equation is hyperbolic we must only specify conditions on an inflow boundary.

A useful type of boundary condition is a periodic condition

A useful type of boundary condition is a periodic condition

A useful type of boundary condition is a periodic condition

• For a one-dimensional region, periodic boundary condition implies u(a)=u(b)

A useful type of boundary condition is a periodic condition

- For a one-dimensional region, periodic boundary condition implies u(a)=u(b)
- A stage of a compressor which is not close to inlet or outlet might also be considered as having periodic boundary conditions.