Department of Computer Engineering

Experiment No. 6

Apply Boosting Algorithm on Adult Census Income Dataset and analyze the performance of the model

Date of Performance:

Date of Submission:

Department of Computer Engineering

Aim: Apply Boosting algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Apply Boosting algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Suppose that as a patient, you have certain symptoms. Instead of consulting one doctor, you choose to consult several. Suppose you assign weights to the value or worth of each doctor's diagnosis, based on the accuracies of previous diagnosis they have made. The final diagnosis is then a combination of the weighted diagnosis. This is the essence behind boosting.

Algorithm: Adaboost- A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

- D, a set of d class labelled training tuples
- k, the number of rounds (one classifier is generated per round)
- a classification learning scheme

Output: A composite model

Method

- 1. Initialize the weight of each tuple in D is 1/d
- 2. For i=1 to k do // for each round
- 3. Sample D with replacement according to the tuple weights to obtain D
- 4. Use training set D to derive a model M
- 5. Computer $error(M_{\cdot})$, the error rate of M_{\cdot}
- 6. Error(M)= $\sum w_i * err(X_i)$
- 7. If Error(M) > 0.5 then
- 8. Go back to step 3 and try again
- 9. endif
- 10. for each tuple in D_i that was correctly classified do
- 11. Multiply the weight of the tuple by $error(Mi)/(1-error(M_{\downarrow}))$
- 12. Normalize the weight of each tuple
- 13. end for

Department of Computer Engineering

To use the ensemble to classify tuple X

- 1. Initialize the weight of each class to 0
- 2. for i=1 to k do // for each classifier
- 3. $w = \log((1-\text{error}(M_i))/\text{error}(M_i))$ //weight of the classifiers vote
- 4. C=M(X) // get class prediction for X from M
- 5. Add w to weight for class C
- 6. end for
- 7. Return the class with the largest weight.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

Department of Computer Engineering

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

Conclusion:

Comment on the accuracy, confusion matrix, precision, recall and F1 score obtained.
Accuracy score obtained by applying boosting algo for the adult census data is 85.01 which means our model is 85% accurate on the testing data.

Confusion matrix is used to assess the performance of a classification model, in our case the no. of TP is 1444, no. of TN is 6374, no. of FP is 379 and no. of FN are 854 which means our model is better in predicting negative cases than the positive cases.

Precision measures the accuracy of the positive predictions and the precision score obtained by our model is 0.886

Recall measures the ability of the model to correctly identify all relevant instances and the Recall score obtained by our model is 0.94

Fl-score is the harmonic mean of precision and recall and provides a balance between the 2 metrics and the F1-score obtained by our model is 0.90

2. Compare the results obtained by applying boosting and random forest algorithm on the Adult Census Income Dataset.

In the random forest algorithm, the accuracy, precision, recall and F1-score obtained respectively is 84%, 82%, 56%, 68%. and the accuracy, precision, recall and F1-score obtained by boosting algorithm respectively is 86%, 84%, 89%, 85%. Thus we can conclude that boosting algorithm is slightly better than the random forest algorithm.

Department of Computer Engineering