Braid graphs in simply-laced triangle-free Coxeter systems are median

CU Lie Theory Seminar

Dana C. Ernst Team Green Northern Arizona University March 19, 2024

Joint work with J. Barnes, F. Awik, J. Breland, Q. Cadman, R. Perry

Coxeter systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, \quad (st)^{m(s,t)} = e \rangle,$$

where $m(s, t) \ge 2$ for $s \ne t$.

Comments

- The elements of *S* are distinct as group elements.
- m(s, t) is the order of st.

Coxeter systems (continued)

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten:

$$m(s,t) = 2 \implies st = ts$$
 } commutation relation $m(s,t) = 3 \implies sts = tst$ $m(s,t) = 4 \implies stst = tsts$ } braid relations

This allows the replacement

$$\underbrace{\mathit{sts}\cdots}_{\mathit{m}(\mathit{s},\mathit{t})}\mapsto\underbrace{\mathit{tst}\cdots}_{\mathit{m}(\mathit{s},\mathit{t})}$$

in any word, which is called a commutation move if m(s,t)=2 and a braid move if $m(s,t)\geq 3$.

3

Coxeter graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- Vertex set = S
- $\{s,t\}$ edge labeled with m(s,t) whenever $m(s,t) \ge 3$

Comments

- Typically labels of m(s, t) = 3 are omitted.
- Edges correspond to non-commuting pairs of generators.
- If all $m(s, t) \leq 3$, then Γ and W are called simply laced.
- If Γ has no 3-cycles, then Γ and W are called triangle free.
- If both simply laced and triangle free, then Γ and W are of type Λ .

Coxeter graphs (continued)

Example

Here are Coxeter graphs for four common simply-laced Coxeter systems. With the exception of \widetilde{A}_2 (3-cycle), the rest are of type Λ .

The top two Coxeter graphs yield finite groups while the bottom two yield infinite groups.

5

Reduced expressions & Matsumoto's Theorem

Definition

A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression, and w has length $\ell(w) := m$.

$$\mathcal{R}(w) = \text{set of reduced expressions for } w$$

A factor of α is a word of the form $\beta = s_{x_i} s_{x_{i+1}} \cdots s_{x_{j-1}} s_{x_j}$ for $1 \le i \le j \le m$. We write $\beta \le \alpha$.

Matsumoto's Theorem

Any two reduced expressions for $w \in W$ differ by a sequence of commutation & braid moves.

Matsumoto graphs

Definition

For $w \in W$, define the Matsumoto graph $\mathcal{M}(w)$ via:

- Vertex set = $\mathcal{R}(w)$
- $\{\alpha,\beta\}$ iff α and β are related via a commutation or braid move

Comments

- Matsumoto's Theorem implies that $\mathcal{M}(w)$ is connected.
- Every cycle in a Matsumoto graph has even length (Bergeron, Ceballos, Labbé / Grinberg, Postnikov).
- Every Matsumoto graph is bipartite.

Matsumoto graphs (continued)

Example

Consider reduced expression $\alpha = 121321$ for $w \in W(A_3)$. Then $\mathcal{M}(w)$ is as follows:

Braid equivalence & Braid graphs

Definition

If $\alpha, \beta \in \mathcal{R}(w)$, then α and β are braid equivalent iff α and β are related by a sequence of braid moves. We write $\alpha \sim \beta$.

Comments

- Braid equivalence is an equivalence relation.
- Equivalence classes are called braid classes, denoted $[\alpha]$.

Definition

We can encode a braid class $[\alpha]$ in a braid graph, denoted $\mathcal{B}(\alpha)$:

- Vertex set $= [\alpha]$
- $\{\gamma, \beta\}$ iff γ and β are related via a single braid move

Braid graphs are the maximal blue connected components in the Matsumoto graph.

Braid graphs (continued)

Example

Consider Coxeter system of type A_4 . The braid class for the reduced expression $\alpha_1 = 1213243$ consists of the following reduced expressions:

$$\alpha_1 = \underline{121}3243, \ \alpha_2 = \underline{21232}43, \ \alpha_3 = \underline{2132343}, \ \alpha_4 = \underline{2132434}.$$

Braid graphs (continued)

Example

In the Coxeter system of type A_6 , the expression $\beta_1 = 1213243565$ is reduced. Its braid class consists of the following reduced expressions:

$$\beta_1 = \underline{121}3243\underline{565}, \ \beta_2 = \underline{21}\overline{232}43\underline{565}, \ \beta_3 = \underline{2132}\overline{343}\underline{565}, \ \beta_4 = \underline{2132}\overline{434}\underline{565},$$

$$\beta_5 = \underline{121}3243\underline{656}, \ \beta_6 = \underline{21}\overline{232}43\underline{656}, \ \beta_7 = \underline{2132}\overline{343}\underline{656}, \ \beta_8 = \underline{2132}\overline{434}\underline{656}.$$

Braid graphs (continued)

Example

Consider Coxeter system of type D_4 . The expression $\gamma_1 = 2321434$ is reduced and its braid class consists of the following reduced expressions:

$$\gamma_1 = \underline{4341232}, \ \gamma_2 = \underline{3431232}, \ \gamma_3 = \underline{4341323}, \ \gamma_4 = \underline{3431323}, \ \gamma_5 = 34\underline{131}23.$$

Local support of reduced expressions

Notation

For $i \leq j$, we define the interval

$$[\![i,j]\!] := \{i,i+1,\ldots,j-1,j\}.$$

Definition

If $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m}$ is a reduced expression, we define:

- $\alpha_{\llbracket i,j \rrbracket} := s_{\mathsf{x}_i} s_{\mathsf{x}_{i+1}} \cdots s_{\mathsf{x}_{i-1}} s_{\mathsf{x}_i}$ (factor of α).
- Local support of α over [i,j]:

$$\mathsf{supp}_{\llbracket i,j\rrbracket}(\alpha) := \{s_{\mathsf{x}_k} \mid k \in \llbracket i,j\rrbracket \}.$$

• Local support of the braid class $[\alpha]$ over [i,j]:

$$\operatorname{supp}_{\llbracket i,j \rrbracket}([\alpha]) := \bigcup_{eta \in [\alpha]} \operatorname{supp}_{\llbracket i,j \rrbracket}(eta).$$

Braid shadows

Important!

We assume all Coxeter systems are simply laced, often of type Λ .

Definition

Let α be a reduced expression.

- [i, i+2] is braid shadow for α if $\alpha_{[i,i+2]} = sts$ with m(s,t) = 3.
- Set of braid shadows for α denoted by $\mathcal{S}(\alpha)$.
- ullet Collection of braid shadows for braid class [lpha] is given by

$$\mathcal{S}([\alpha]) := \bigcup_{\beta \in [\alpha]} \mathcal{S}(\beta).$$

- If [i, i+2] is a braid shadow for $[\alpha]$, then position i+1 (in any reduced expression in $[\alpha]$) is called the center of the braid shadow.
- Cardinality of $\mathcal{S}([\alpha])$ is rank of α , denoted by rank (α) .

Links and braid chains

Theorem

If lpha is a reduced expression, then

$$\llbracket i, i+2 \rrbracket \in \mathcal{S}([\alpha]) \implies \llbracket i+1, i+3 \rrbracket \notin \mathcal{S}([\alpha]).$$

Upshot: braid shadows are either disjoint or overlap by a single position.

Definition

Let $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m}$ be a reduced expression.

• α is a link provided either m=1 or m is odd and

$$S([\alpha]) = { [[1,3], [3,5], ..., [m-4, m-2], [m-2, m] }.$$

ullet If lpha is a link, then corresponding braid class is called a braid chain.

Loosely speaking, α is link if there is a sequence of overlapping braid moves that "cover" the positions $1, 2, \ldots, m$.

Links and braid chains (continued)

Example

Recall the reduced expression $\alpha_1=1213243$ in the Coxeter system of type A_4 with braid class:

$$\alpha_1 = \underline{1213243}, \ \alpha_2 = \underline{2123243}, \ \alpha_3 = 2132343, \ \alpha_4 = 2132434.$$

By inspection, we see that

$$\mathcal{S}(\alpha_1) = \{ \llbracket 1, 3 \rrbracket \} \quad \text{and} \quad \mathcal{S}([\alpha_1]) = \{ \llbracket 1, 3 \rrbracket, \llbracket 3, 5 \rrbracket, \llbracket 5, 7 \rrbracket \}.$$

Hence $lpha_1$ is a link of rank 3 and $[lpha_1]$ is a braid chain

Links and braid chains (continued)

Example

Recall the reduced expression $\beta_1=1213243565$ in the Coxeter system of type A_6 with braid class:

$$\beta_1 = \underline{121}3243\underline{565}, \ \beta_2 = \underline{21}\overline{232}43\underline{565}, \ \beta_3 = 21\underline{32}\overline{343}\underline{565}, \ \beta_4 = 2132\overline{434}\underline{565},$$

$$\beta_5 = \underline{121}3243\underline{656}, \ \beta_6 = \underline{21}\overline{232}43\underline{656}, \ \beta_7 = 21\underline{32}\overline{343}\underline{656}, \ \beta_8 = 2132\overline{434}\underline{656}.$$

We see that

$$\mathcal{S}(\beta_1) = \{ [\![1,3]\!], [\![8,10]\!] \} \text{ and } \mathcal{S}([\beta_1]) = \{ [\![1,3]\!], [\![3,5]\!], [\![5,7]\!], [\![8,10]\!] \},$$

It follows that β_1 is not a link. However, it turns out that the factors 1213243 and 565 of β_1 are links in their own right.

Links and braid chains (continued)

Example

Recall the reduced expression $\gamma_1=2321434$ in the Coxeter system of type D_4 with braid class:

$$\gamma_1 = \underline{4341232}, \ \gamma_2 = \underline{3431232}, \ \gamma_3 = \underline{4341323}, \ \gamma_4 = \underline{3431323}, \ \gamma_5 = 34\underline{131}23.$$

We see that

$$\mathcal{S}(\gamma_1) = \{ [\![1,3]\!], [\![5,7]\!] \} \text{ and } \mathcal{S}([\gamma_1]) = \{ [\![1,3]\!], [\![3,5]\!], [\![5,7]\!] \}.$$

So, γ_1 is a link of rank 3 and $[\gamma_1]$ is a braid chain. The link γ_4 is an example of something special called a Fibonacci link (braid graph is a Fibonacci cube).

Link factorization for reduced expressions

Definition

If α is a reduced expression for $w \in W$ with $\ell(w) \ge 1$, then β is a link factor of α provided:

- $\beta \leq \alpha$,
- β is a link, and
- If $\beta < \gamma \leq \alpha$, then γ is not a link.

Theorem

Every reduced expression α for a nonidentity group element can be written uniquely as a product of link factors, say $\alpha_1\alpha_2\cdots\alpha_k$, where each α_i is a link factor of α .

We refer to this product as the link factorization of α . For emphasis:

$$\alpha = \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k.$$

Link factorization across braid classes

Theorem

If α is a reduced expression with link factorization $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$, then

$$[\alpha] = \{\beta_1 \mid \beta_2 \mid \dots \mid \beta_k : \beta_i \in [\alpha_i] \text{ for } 1 \leq i \leq k\}.$$

Moreover, the cardinality of the braid class for α is given by

$$\operatorname{\mathsf{card}}([lpha]) = \prod_{i=1}^k \operatorname{\mathsf{card}}([lpha_i]),$$

and the rank of lpha is given by

$$\operatorname{rank}(\alpha) = \sum_{i=1}^k \operatorname{rank}(\alpha_i).$$

Braid graphs for link factorizations

Corollary

If lpha is reduced expression with link factorization

$$\alpha = \beta_1 \mid \beta_1 \mid \cdots \mid \beta_m,$$

then $\mathcal{B}(\alpha)$ is the box product of the braid graphs for each β_i .

Comment

- Upshot: if you want to understand the structure of braid graphs, you can first characterize braid graphs for links.
- In the case of type A_n , links have odd length and the corresponding braid graphs are paths.

Braid graphs for link factorizations

Example

Consider reduced expression $\beta_1 = 1213243565$ in type A_6 from earlier. It has link factorization:

1213243 | 565.

Braid graphs for link factorizations

Example

Consider reduced expression $\alpha = 3231343567543231343$ in type D_7 . It has link factorization:

3231343 | 5 | 6 | 7 | 5 | 4 | 3231343.

Braid graphs for link factorizations in type A_n

Theorem

If α is reduced expression for nonidentity element in type A_n with link factorization $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$ such that each α_i has $2l_i - 1$ letters, then

where ith link factor in the decomposition is a path graph with l_i vertices.

Braid graphs for link factorizations in type A_n (continued)

Example

Consider reduced expression $\alpha = 12143456576$ in type A_7 with link factorization:

121 | 434 | 56576.

Facts about braid shadows

Theorem

Suppose (W, S) is of type Λ and let $\alpha \sim \beta$ be links of rank at least one.

- If $[i, i+2] \in \mathcal{S}(\alpha) \cap \mathcal{S}(\beta)$, then $\sup_{[i, i+2]} (\alpha) = \sup_{[i, i+2]} (\beta)$.
- If $\llbracket i, i+2 \rrbracket \in \mathcal{S}(\alpha)$, then $\operatorname{supp}_{\llbracket i, i+2 \rrbracket}(\alpha) = \{s, t\}$ with m(s, t) = 3 and $\operatorname{supp}_{\llbracket i+1 \rrbracket}(\llbracket \alpha \rrbracket) = \{s, t\}$.
- If additionally $\llbracket i+2,i+4 \rrbracket \in \mathcal{S}(\alpha)$, then $\sup_{\llbracket i+2,i+4 \rrbracket} (\alpha) = \{t,u\}$ and $\sup_{\llbracket i+3 \rrbracket} (\llbracket \alpha \rrbracket) = \{t,u\}$ with m(t,u) = 3, m(s,u) = 2.

Why triangle free?

Example

Consider reduced expression $\delta_1=1213121$ in type \widetilde{A}_2 with braid class:

$$\delta_1 = \underline{12\overline{131}21}, \ \delta_2 = 12\overline{313}21, \ \delta_3 = \underline{2123121}$$

$$\delta_4 = \underline{12}\overline{13212}, \ \delta_5 = \underline{21}\overline{23212}, \ \delta_6 = 21\overline{323}12$$

Notice:

- $\bullet \ \mathsf{supp}_{\llbracket 3,5 \rrbracket}(\pmb{\delta}_1) = \{1,3\} \neq \{2,3\} = \mathsf{supp}_{\llbracket 3,5 \rrbracket}(\pmb{\delta}_5)$
- Cardinality of center of middle braid shadow is larger than 2.

Links are uniquely determined by signature

Definition

If (W, S) is of type Λ and α is a link of rank r, the signature of α , denoted $\operatorname{sig}(\alpha)$, is the ordered list of generators appearing in the centers of the braid shadows of α . Let $\operatorname{sig}_i(\alpha)$ represent ith position of $\operatorname{sig}(\alpha)$.

Theorem

Suppose (W, S) is of type Λ and let $\alpha \sim \beta$ be links. Then $\alpha = \beta$ iff $sig(\alpha) = sig(\beta)$.

Upshot: Every link is uniquely determined by the generators appearing at the centers of the braid shadows.

Intervals in braid graphs

Definition

The interval between vertices u and v in a graph G, denoted I(u, v), is the collection of vertices on any geodesic between u and v.

Definition

We define

$$\overline{\operatorname{sig}}(\alpha,\beta) := \{ \mathbf{x} \in [\alpha] \mid \operatorname{sig}_i(\mathbf{x}) = \operatorname{sig}_i(\alpha) \text{ if } \operatorname{sig}_i(\alpha) = \operatorname{sig}_i(\beta) \}.$$

That is, $\overline{\text{sig}}(\alpha, \beta)$ is the set of reduced expressions whose signatures agrees with common signatures of α and β .

Theorem

If (W, S) is type Λ and $\alpha \sim \beta$ are links, then $I(\alpha, \beta) = \overline{\text{sig}}(\alpha, \beta)$.

Median graphs

Definition

A connected graph is median if for any three vertices:

$$| \operatorname{med}(u, v, w) := I(u, v) \cap I(u, w) \cap I(v, w) | = 1.$$

That is, there is a unique vertex, called the median, that simultaneously lies on a geodesic between u and v, a geodesic between u and w, and a geodesic between v and w.

Example

The graph on the left is median while the one on the right is not.

Median graphs (continued)

Definition

Given a graph G and a convex set $C \subseteq V(G)$, we define the expanded graph relative to C:

- Start with a graph G;
- Make an isomorphic copy of G[C], denoted G'_C, where each u ∈ C corresponds to u' ∈ C' := V(G'_C);
- For each $u \in C$, join u and u' with an edge.

Median graphs (continued)

Median graphs (continued)

Proposition

A graph is median iff it can be obtained from a single vertex by a sequence of convex expansions.

Example

Tools for our main result

Notation

Given a reduced expression α , let $\hat{\alpha}$ to be the expression obtained by deleting the rightmost two letters of α .

Warning!

Certainly, $\hat{\alpha}$ is reduced but may not be a link!

Definition

Suppose α is a link of rank $r \geq 1$ and let $\sigma \in [\alpha]$:

$$X_{\sigma} := \{\beta \in [\alpha] \mid \operatorname{sig}_r(\beta) = \operatorname{sig}_r(\sigma)\}$$

$$Y_{\boldsymbol{\sigma}} := \{ \boldsymbol{\beta} \in [\boldsymbol{\alpha}] \mid \operatorname{sig}_r(\boldsymbol{\beta}) \neq \operatorname{sig}_r(\boldsymbol{\sigma}) \}$$

Theorem

If (W, S) is type Λ and α is a link of rank $r \geq 2$, then there exists $\sigma \in [\alpha]$ such that [2r - 3, 2r - 1], $[2r - 1, 2r + 1] \in \mathcal{S}(\sigma)$. In this case, $\hat{\sigma}$ is a link of rank r - 1.

Tools for our main result (continued)

Theorem

Suppose (W, S) is type Λ and α is a link of rank $r \geq 2$. Choose $\sigma \in [\alpha]$ according to previous theorem. Then

- $\{X_{\sigma}, Y_{\sigma}\}$ is a partition of $[\alpha]$.
- X_{σ} and Y_{σ} are convex.
- $\beta \in X_{\sigma}$ iff $\hat{\beta} \in [\hat{\sigma}]$.
- If $\beta \in Y_{\sigma}$, then $[2r-1, 2r+1] \in \mathcal{S}(\beta)$ and $b_{2r}(\beta) \in [\hat{\sigma}]$.
- There exists an isometric embedding from $\mathcal{B}(\hat{\sigma})$ into $\mathcal{B}(\alpha)$ whose image is $\mathcal{B}(\alpha)[X_{\sigma}]$.
- $\mathcal{B}(\alpha)[Y_{\sigma}]$ is an isometric subgraph of $\mathcal{B}(\alpha)$.
- If $\beta \in X_{\sigma}$ and $\gamma \in Y_{\sigma}$, then $d(\beta, \gamma) = d(\beta, b_{2r}(\gamma)) + 1$.

Visualizing previous result

Example

Consider link lpha= 32313435464 in the Coxeter system of type \widetilde{D}_5 .

Braid graphs for links are median

Theorem

If (W, S) is of type Λ and α is a link, then $\mathcal{B}(\alpha)$ is median.

Outline of Proof

- We induct on rank. Base cases r = 0 and r = 1 check out.
- Suppose all braid graphs for links of rank r-1 are median and consider a link α or rank r.
- Choose $\sigma \in [\alpha]$ with [2r-3, 2r-1], [2r-1, 2r+1] $\in \mathcal{S}(\sigma)$ according to earlier result.
- By induction $\mathcal{B}(\hat{\sigma}) \cong \mathcal{B}(\alpha)[X_{\sigma}]$ is median.
- The set $C := \{ \beta \in X_{\sigma} \mid \operatorname{sig}_r(\beta) \operatorname{sig}_r(\sigma) \}$ is convex and $\mathcal{B}(\alpha)[C] \cong \mathcal{B}(\alpha)[Y_{\sigma}]$ via $\mu \mapsto b_r(\mu)$.
- It follows that $\mathcal{B}(\alpha)$ is obtained from $\mathcal{B}(\alpha)[X_{\sigma}]$ via a convex expansion relative to C.

Signature majority determines median

Definition

We define the *i*th majority of links $lpha \sim eta \sim \sigma$ of rank r via

$$\mathsf{maj}_i(\alpha,\beta,\sigma) := \begin{cases} \mathsf{sig}_i(\alpha), \ \mathsf{if} \ \mathsf{sig}_i(\alpha) = \mathsf{sig}_i(\beta) \ \mathsf{or} \ \mathsf{sig}_i(\alpha) = \mathsf{sig}_i(\sigma) \\ \mathsf{sig}_i(\beta), \ \mathsf{otherwise}, \end{cases}$$

and their majority via

$$\mathsf{maj}(\alpha,\beta,\sigma) := (\mathsf{maj}_1(\alpha,\beta,\sigma),\ldots,\mathsf{maj}_r(\alpha,\beta,\sigma)).$$

Corollary

If (W,S) is type Λ , then the median of links $\alpha \sim \beta \sim \sigma$ is the unique link x satisfying

$$\operatorname{sig}(\boldsymbol{x}) = \operatorname{maj}(\alpha, \beta, \boldsymbol{\sigma}).$$

Signature majority determines median (continued)

Example

Consider braid equivalent links $\alpha = 34312324131$, $\beta = 34313243413$, and $\sigma = 34131234131$ in $[\alpha]$ in Coxeter system of type D_4 .

We see that

$$maj(\alpha, \beta, \sigma) = (4, 1, 2, 4, 3),$$

which corresponds to the signature of x = 34313234131 in $[\alpha]$.

Braid graphs for reduced expressions are median

Proposition

If graphs G_1 and G_2 are median, then $G_1 \square G_2$ is also median.

Theorem

If (W, S) is type Λ and α is any reduced expression, $\mathcal{B}(\alpha)$ is median.

Example

Not every median graph can be realized as the braid graph for a reduced expression! This graph is median but does not correspond to a braid graph in a type Λ Coxeter system.

Upshot: Braid graphs are "special" median graphs. What is "special"???

Partial cubes

If $n \in \mathbb{N} \cup \{0\}$, then we define the set of binary strings of length n as:

$$\{0,1\}^n:=\{a_1a_2\cdots a_n\mid a_k\in\{0,1\}\}.$$

Definition

The hypercube of dimension n, denoted Q_n , is the graph with vertex set $V(Q_n) = \{0,1\}^n$ and two vertices are adjacent when their corresponding binary strings differ by exactly one digit.

Definition

A graph G is a partial cube if it can be isometrically embedded in some hypercube Q_n . The isometric dimension $\dim_I(G)$ of a partial cube is the minimum dimension of the hypercube into which the partial cube can be isometrically embedded.

Partial cubes (continued)

Proposition

- If G_1 and G_2 are partial cubes, then $G_1 \square G_2$ is a partial cube with $\dim_I(G_1 \square G_2) = \dim_I(G_1) + \dim_I(G_2)$.
- Every median graph is a partial cube.

Example

The converse of second bullet is not true! We saw earlier that C_6 is not median. But it is a partial cube with isometric dimension 3.

Braid graphs are partial cubes

Theorem

If (W, S) is type Λ and α is a reduced expression with link factorization $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$, then $\mathcal{B}(\alpha)$ is a partial cube with isometric dimension given by

$$\dim_I(\mathcal{B}(lpha)) = \sum_{i=1}^k \operatorname{rank}(lpha_i).$$

In light of previous theorem about centers determining a link α of rank r, we can define $\Phi_{\alpha}: [\alpha] \to \{0,1\}^r$ via $\Phi_{\alpha}(\beta) = a_1 a_2 \cdots a_r$, where

$$a_k = \begin{cases} 0, & \operatorname{sig}_k(\beta) = \operatorname{sig}_k(\alpha) \\ 1, & \operatorname{otherwise.} \end{cases}$$

This map is an isometric embedding of $\mathcal{B}(\alpha)$ into Q_r .

Braid graphs are partial cubes (continued)

Example

Recall the braid chain in type D_4 from earlier:

$$\gamma_1 = \underline{434}1\underline{232}, \ \gamma_2 = \underline{343}1\underline{232}, \ \gamma_3 = \underline{434}1\underline{323}, \ \gamma_4 = \underline{34}\overline{313}\underline{23}, \ \gamma_5 = \underline{34}\underline{131}\underline{23}.$$

Some additional results

Theorem

Suppose (W, S) is type Λ and let $\alpha \sim \beta$ be links of rank at least one.

- Braid shadows appear once in a geodesic from α to β .
- ullet Any two geodesics from lpha to eta utilize same set of braid shadows.
- $d(\alpha, \beta) = \Delta(\operatorname{sig}(\alpha), \operatorname{sig}(\beta))$.
- $\exists \beta \in [\alpha]$ that has two non-overlapping braid shadows iff $\mathcal{B}(\alpha)$ has a 4-cycle (where opposite edges correspond to same braid shadow).
- If $\mathcal{B}(\alpha)$ is a tree, then it is a path.
- Every "primitive cycle" in a braid graph is of length 4.

Open problems & conjectures

Conjectures

For Coxeter systems of type Λ , we conjecture:

• If α is a link, then $\operatorname{diam}(\mathcal{B}(\alpha)) = \operatorname{rank}(\alpha)$. If true, it follows that that if $\alpha = \alpha_1 | \cdots | \alpha_k$ is link factorization, then

$$\mathsf{diam}(\mathcal{B}(oldsymbol{lpha})) = \sum_{i=1}^k \mathsf{rank}(oldsymbol{lpha}_i).$$

- ullet For lpha a link, there exists a unique diametrical pair $\gamma, \mu \in [lpha].$
- If α is a link, then $\mathcal{B}(\alpha)$ is underlying graph for Hasse diagram for distributive lattice (diametrical pair are min and max).

Other work to do

- Generalize to arbitrary bond strengths. If all bond strengths odd, fairly certain everything "just works". Even bond strengths?
- Deal with triangle obstruction in Coxeter graph.

Braid graph as Hasse diagram for ranked poset

Construction

- Let α be a link of rank $r \geq 1$.
- Identify diametrical pair of vertices μ and γ of $\mathcal{B}(\alpha)$.
- Elect μ to be the designated smallest vertex.
- Define $\beta \lessdot \sigma$ if there exists a unique i such that $\operatorname{sig}_i(\beta) \neq \operatorname{sig}_i(\sigma)$ and $\Delta(\operatorname{sig}(\mu),\operatorname{sig}(\beta)) + 1 = \Delta(\operatorname{sig}(\mu),\operatorname{sig}(\sigma))$.
- $\mathcal{P}(\mu) := ([\alpha], \leq)$ is partial order induced by these covering relations.

Theorem

If (W, S) is of type Λ and α is a link, then

- β and σ are adjacent in $\mathcal{B}(\alpha)$ iff $\beta \lessdot \sigma$ or $\sigma \lessdot \beta$.
- $\mathcal{P}(\mu)$ is ranked by $\Delta(\operatorname{sig}(\mu),\operatorname{sig}(\beta))$
- $\mathcal{B}(\alpha)$ is underlying graph for the Hasse diagram of $\mathcal{P}(\mu)$.

THANK YOU!