LEX6: NFA to DFA

Lexical Analysis

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Building a Lexical Analyzer

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression \Rightarrow NFA
- → NFA ⇒ DFA
 - DFA ⇒ Table-driven implementation of DFA

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(C) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(C) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(C) = {C, D, E}

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ε -closure(C) = {C, D, E} ε -closure(G) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(C) = {C, D, E} ϵ -closure(G) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ϵ -closure(C) = {C, D, E} ϵ -closure(G) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

 ε -closure(C) = {C, D, E} ε -closure(G) =

 ϵ -closure(s)= all states reached by following only ϵ -transitions

$$\epsilon$$
-closure(C) = {C, D, E}
 ϵ -closure(G) =

ε-Closure (T: set of states)

```
push all states in T onto stack
initialize \varepsilon-closure(T) to T
while stack is not empty do begin
     pop t off stack
     for each state u with u \in move(t, \varepsilon) do
        if u ∉ ε-closure(T) do begin
          add u to ε-closure(T)
          push u onto stack
        end
end
```

 An NFA may be in many states at any time

 An NFA may be in many states at any time

 An NFA may be in many states at any time

$$|S|=N$$
 No. of states

 An NFA may be in many states at any time

 An NFA may be in many states at any time

$$|S|=N$$
 No. of states $|s| \le N$ possible states in each step

 An NFA may be in many states at any time

How many different states?

$$|S|=N$$
 No. of states 2^N-1 $|s| \le N$ possible states in each step

5/31/2016

NFA

- states
- start
- final
- transition

NFA

- states
- start
- final
- transition

NFA

• states

• start q_0

final

NFA

• states

• start q_0

• final $F \subseteq S$

NFA

• states

• start q_o

• final $F \subseteq S$

• transition $\delta(x, a) = Y$

NFA

DFA

states

S

start

 q_0

final

 $F \subseteq S$

$$\delta(x, a) = Y$$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_0

• final

 $F \subseteq S$

$$\delta(x, a) = Y$$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_{o}

final

$$F \subseteq S$$

$$\delta(x, a) = Y$$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_0

final

$$F \subseteq S$$

$$\delta(x, a) = Y$$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_0

ε-closure(q_o)

• final

 $F \subseteq S$

$$\delta(x, a) = Y$$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_0

ε-closure(q_o)

final

 $F \subseteq S$

$$\delta(x, a) = Y$$

NFA

DFA

• states

S

 $X \subseteq S$

• start

 q_0

ε-closure(q_o)

• final

$$F \subseteq S$$

$$\delta(x,a) = Y$$

NFA

DFA

- states
- start
- final
- transition

S

qo

 $F \subseteq S$

$$\delta(x,a) = Y$$

 $X \subseteq S$

ε-closure(q_o)

 ${X \mid X \cap F \neq \emptyset}$

state input

{A} 100

 $\{A\}$ 100

 $\{A,B\}$ 100

{A,B,**C**} 100_↑

N	FA

DFA

states

S

 $X \subseteq S$

• start

qo

ε-closure(q_o)

final

$$F \subseteq S$$

 $\{X \mid X \cap F \neq \emptyset\}$

$$\delta(x,a) = Y$$

$$\delta(X, a) =$$

NFA

DFA

states

 $X \subseteq S$

start

 q_0

ε-closure(q_o)

final

$$F \subseteq S$$

 ${X \mid X \cap F \neq \emptyset}$

$$\delta(x,a) = Y$$
 $\delta(X,a) =$

$$\delta(X,a)=$$

NFA

DFA

states

 $X \subseteq S$

start

 q_0

ε-closure(q_o)

final

 $F \subseteq S$

 ${X \mid X \cap F \neq \emptyset}$

$$\delta(x,a) = Y$$

$$\delta(x, a) = Y$$
 $\delta(X, a) = \bigcup_{x \in X} \delta(x, a)$

NFA

DFA

states

 $X \subseteq S$

start

 q_0

ε-closure(q_o)

final

$$F \subseteq S$$

 ${X \mid X \cap F \neq \emptyset}$

$$\delta(x,a) = Y$$

$$\delta(x, a) = Y$$
 $\delta(X, a) = \bigcup_{x \in X} \delta(x, a)$

NFA

DFA

states

S

 $X \subseteq S$

• start

 q_0

ε-closure(q_o)

final

$$F \subseteq S$$

 ${X \mid X \cap F \neq \emptyset}$

$$\delta(x,a) = Y$$

$$\delta(X, a) = \bigcup_{x \in X} \delta(x, a)$$

$$\epsilon$$
-closure($\delta(X, a)$)

NFA to DFA Conversion

NFA

DFA

states

 $X \subseteq S$

start

 q_0

ε-closure(q₀)

final

$$F \subseteq S$$

 $\{X \mid X \cap F \neq \emptyset\}$

transition

$$\delta(x,a) = Y$$

$$\delta(x, a) = Y$$
 $\delta(X, a) = \bigcup_{x \in X} \delta(x, a)$

$$\epsilon$$
-closure($\delta(X, a)$)

DFAedge(X,a)= ε -closure($\bigcup_{x \in X} \delta(x, a)$)

DFA construction

```
Dstates = {}, Dtrans = []
add \varepsilon-closure(q_0) to Dstates unmarked
while \exists unmarked T \in Dstates do
    mark T;
    for each symbol c do
       U := DFAedge(T,c);
       if U ∉ Dstates then
          add U to Dstates unmarked
       Dtrans[T, c] := U;
```

DFA construction

```
Dstates = {}, Dtrans = []
add \varepsilon-closure(q_0) to Dstates unmarked
while \exists unmarked T \in Dstates do
     mark T;
                                        DFAedge(T, c) =
    for each symbol c do
                                        \varepsilon-closure( \bigcup_{t \in T} \delta(t, c) )
        U := DFAedge(T,c);
        if U ∉ Dstates then
           add U to Dstates unmarked
        Dtrans[T, c] := U;
```

NFA to DFA

ε -closure(q_o)

ε -closure(q_o)

DFAedge(ε -closure(q_o), o)

DFAedge(ε -closure(q_o), o)

DFAedge(ε -closure(q_o), o)

DFAedge(ϵ -closure(q_o), 1)

DFAedge(ε -closure(q_o), 1)

5/31/2016

5/31/2016

NFA to DFA Conversion

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

NFA to DFA

```
states[0] = \varepsilon-closure(\{q_0\})
p = j = 0
while j \le p do
        for each symbol c \in \Sigma do
                 e = \mathbf{DFAedge}(states[i], c)
                 if e = states[i] for some i \le p
                 then Dtrans[j, c] = i
                 else p = p+1
                          states[p] = e
                          Dtrans[i, c] = p
        j = j + 1
```