Introdução a Ciências de Dados

Aula 1 parte 2: Ciência de Dados e suas etapas

Francisco A. Rodrigues ICMC/USP francisco@icmc.usp.br

Ciências de Dados e suas Etapas

- Tipos de dados.
- Estatística descritiva.
- Visualização

Copyright © 2019. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização

Dados podem ter diferentes formatos:

Séries temporais

Páginas web

Textos

bisonders durch die Neigung der hellen Bindenzeichnung zur lösung in eine upregelmässige Fleckenreihe, sowie das Auf örreh die bei diesen beiden Arten ganz fehlenden oder zur ag

Vídeos

Geralmente transformados para o formato atributo-valor

- Representação de conjunto de dados
 - Formados por objetos
 - Cada objeto corresponde a uma ocorrência dos dados

	temperatura (°C)	dor	•••	pressão	doente
Paciente 1	38	Sim	•••	12.7	Sim
Paciente 2	36	Não		12.7	Não
		•••			
Paciente n	40	Não	•••	14	Sim

- Representação de conjunto de dados
 - Formados por objetos
 - Cada objeto corresponde a uma ocorrência dos dados

Objetos					
	temperatura (°C)	dor	•••	pressão	doente
Paciente 1	38	Sim	•••	12.7	Sim
Paciente 2	36	Não	:	12.7	Não
		•••	:		
Paciente n	40	Não	•••	14	Sim

- Representação de conjunto de dados
 - Formados por objetos
 - Cada objeto corresponde a uma ocorrência dos dados

Objetos	A	tributos			
	temperatura (°C)	dor	•••	pressão	doente
Paciente 1	38	Sim	•••	12.7	Sim
Paciente 2	36	Não		12.7	Não
			•••		
Paciente n	40	Não		14	Sim
		•			

- Representação de conjunto de dados
 - Formados por objetos

Conjunto de Dados

- Pode ser representado por uma matriz de objetos $\mathbf{X}_{n \times d}$
 - \circ n = número de objetos
 - d = número de atributos (excluindo atributo-meta)
 - Dimensionalidade dos objetos
 - ∘ Elemento x_i^j (ou x_{ii}) ⇒ valor da j-ésima característica para o objeto i

Conjunto de Dados: Visualização

Análise de dados

- Análise das características de um conjunto de dados
 - o Muitas podem ser obtidas por fórmulas estatísticas simples.
 - Estatística descritiva
 - Análise visual também é importante.

Análise de dados

Caracterização de dados

- Instâncias e Atributos
- Tipos de Dados

Exploração de dados

- Dados univariados
- Medidas de localidade, espalhamento e distribuição
- Dados multivariados
- Visualização

Análise dos dados

- Valores de atributos podem ser definidos por:
 - Tipo
 - Grau de quantização nos dados
 - Escala
 - Significância relativa dos valores

Conhecer o tipo/escala dos atributos auxilia a identificar a forma adequada de preparar os dados e posteriormente modelá-los

Tipos de Atributos

Quantitativo (numérico)

Representa quantidades.

Valores podem ser ordenados e usados em operações aritméticas.

Podem ser continuos ou discretos.

Possuem unidade associada.

Qualitativo (simbólico ou categórico)

Representa qualidades.

Valores podem ser associados a categorias.

Alguns podem ser ordenados, mas operações aritméticas não são aplicáveis.

Ex. [pequeno, médio, grande]

Tipos de Atributos

Atributos Quantitativos

Continuos

- Podem assumir um número infinito de valores.
- Geralmente resultados de medidas.
- Frequentemente representados por números reais
- Ex. peso, distância.

Discretos

- Número finito ou infinito contável de valores.
- Caso especial: atributos binários (booleanos).
- Ex. {12, 23, 45}, {0, 1}

Tipos de atributos

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	M	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	M	120,2	Média	Sim	Doente
40	João	RS	21	M	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	AM	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	M	110	Alta	Sim	Doente
123	José	RJ	30	M	80,1	Baixa	Sim	Saudável

Qualitativo

Quantitativo discreto

Quantitativo contínuo

Tipos de atributos

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	M	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	M	120,2	Média	Sim	Doente
40	João	RS	21	M	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	AM	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	M	110	Alta	Sim	Doente
123	José	RJ	30	M	80,1	Baixa	Sim	Saudável

Alguns atributos qualitativos são representados por números, mas não faz sentido a utilização de operadores aritméticos sobre seus valores.

Qualitativo

Quantitativo discreto

Quantitativo contínuo

Escala de atributos

 Define operações que podem ser realizadas sobre os valores dos atributos

NominaisOrdinais	Qualitativos
IntervalaresRacionais	Quantitativos

Escala de atributos

Escala nominal

- Valores são nomes diferentes e carregam a menor quantidade de informação possível
- Não existe relação de ordem entre os valores
- Operações aplicáveis: =, ≠
- Ex.: número de conta em banco, cores, sexo

Escala ordinal

- Valores refletem ordem das categorias representadas
- Operações aplicáveis: =, ≠, <, >, ≤, ≥
- Ex.: hierarquia militar, avaliações qualitativas de temperatura

Escala de atributos

Escala intervalar

- Números que variam em um intervalo
- É possível definir ordem e diferença em magnitude entre dois valores
- Origem da escala definida de maneira arbitrária
- Operações aplicáveis: =, ≠, <, >, ≤, ≥, +, -
- Ex.: temperatura em °C ou °F, datas

Escala racional

- Carregam mais informações
- Têm significado absoluto (existe 0 absoluto)
- Razão tem significado
- Operações aplicáveis: =, ≠, <, >, ≤, ≥, +, -, *, /
- Ex.: tamanho, distância, salário, saldo em conta

Tipos de atributos

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	М	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	М	120,2	Baixa	Sim	Doente
40	João	RS	21	М	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	AM	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	М	110	Média	Sim	Doente
123	José	RJ	30	М	80,1	Baixa	Sim	Saudável

Nominal
Ordinal
Intervalar
Racional

Estatística Descritiva

Exploração dos dados

- Estatística descritiva: resumo quantitativo das principais características de um conjunto de dados
 - Muitas medidas podem ser calculadas rapidamente
 - Captura de informações como:
 - Frequência
 - Localização ou tendência central
 - Dispersão ou espalhamento
 - Distribuição ou formato

Frequência

- Proporção de vezes que um atributo assume um dado valor.
- Aplicável a valores numéricos e simbólicos.

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	М	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	М	120,2	Baixa	Sim	Doente
40	João	RS	21	М	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	AM	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	М	110	Média	Sim	Doente
123	José	RJ	30	М	80,1	Baixa	Sim	Saudável

62,5% dos pacientes são homens

Moda

 Retorna o valor mais comum. Geralmente usada com dados nominais.

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	М	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	М	120,2	Baixa	Sim	Doente
40	João	RS	21	М	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	AM	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	М	110	Média	Sim	Doente
123	José	RJ	30	М	80,1	Baixa	Sim	Saudável
		4		4		4		

Moda: SP

Moda: M

Moda: Baixa

Média

$$\overline{X} = \sum_{i=1}^{N} \frac{X_i}{N}$$

Problema: sensível a outliers

Bom indicador apenas se valores são distribuídos simetricamente

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	М	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	М	120,2	Baixa	Sim	Doente
40	João	RS	21	М	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	АМ	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	М	110	Média	Sim	Doente
123	José	RJ	30	М	80,1	Baixa	Sim	Saudável

Média: 29,5

Média: 92,6

Mediana

Passos:

- Ordenar os valores de forma crescente
- O Calcular a equação:

 $mediana(\mathbf{x}) = \begin{cases} \frac{1}{2} (x_r + x_{r+1}) & \text{se } n \text{ for par } (n = 2r) \\ x_{r+1} & \text{se } n \text{ for impar } (n = 2r + 1) \end{cases}$

Média: 29,5 Mediana: 29,5

Média: 92,6 Mediana: 87,6

Identificação	Nome	Estado	Idade	Sexo	Nível de Glicose	Febre	Dores no corpo	Diagnóstico
100	João	SP	22	М	90,5	Baixa	Não	Saudável
102	Maria	SP	39	F	86,5	Baixa	Não	Saudável
230	Rubens	RJ	23	М	120,2	Baixa	Sim	Doente
40	João	RS	21	М	85,9	Alta	Não	Doente
543	Marta	SP	40	F	88,7	Alta	Sim	Doente
12	Ana	АМ	32	F	78,8	Média	Não	Saudável
130	Carlos	SP	29	М	110	Média	Sim	Doente
123	José	RJ	30	М	80,1	Baixa	Sim	Saudável

Mediana

- Exemplos:
 - 0 {17, 4, 8, 21, 4}
 - Ordenando: 4, 4, 8, 17, 21
 - Número ímpar de elementos ⇒ mediana = 8
 - Valor do meio na ordenação
 - {17, 4, 8, 21, 4, 15, 13, 9}
 - Ordenando: 4, 4, 8, 9, 13, 15, 17, 21
 - Número par de elementos \Rightarrow mediana = (9+13)/2 = 11
 - Média dos dois valores do meio na ordenação

Quartil e percentil

Quartis

- Divide em quartos
- 1^o quartil (Q1) ⇒ valor que tem 25% dos demais valores abaixo dele
- 2º quartil = mediana

Percentil

- Para p entre 0 e 100
- p percentil = Pp ⇒ x_i tal que p% dos valores observados são menores do que x_i
- P25 = Q1
- P50 = Q2 = mediana

Quartil e percentil

Dados: {8,3,11,14,20,4,17,6,17,24,21,23}

Boxplots

Boxplots

Medidas de dispersão

- Medem dispersão ou espalhamento de um conjunto de valores
 - Permitem observar se valores estão:
 - Espalhados
 - Concentrados em torno de um valor (ex. da média)
 - Medidas mais comuns:
 - Intervalo
 - Variância
 - Desvio padrão

Medidas de dispersão

Variância

$$\sigma^2 = E[(X - E(X))^2] = E[X^2] - E[X] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Desvio padrão

População

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Amostra

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Estimador não-viesado

Medidas de dispersão

Exemplo: Seja uma amostra do número de erros em um servidor na última hora: $X = \{6,2,3,1\}$

$$\mu = \frac{6+2+3+1}{4} = 3$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$\sigma = \sqrt{\frac{1}{3}[(6-3)^2 + (2-3)^2 + (3-3)^2 + (1-3)^2]} = \sqrt{\frac{9+1+0+4}{3}} = 2,16$$

Medidas de correlação

Coeficiente de Pearson:

Para duas variáveis aleatórias X e Y:

$$\rho_{X,Y} = \frac{E[XY] - E[X]E[Y]}{\sqrt{E[X^2] - [E[X]]^2} \sqrt{E[Y^2] - [E[Y]]^2}} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Para uma amostra:

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X) \cdot \text{var}(Y)}}$$

Correlação de Pearson

Correlação de Pearson

Interpretação:

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Sugestão de leitura

Noções de Probabilidade e Estatística, Marcos N. Magalhães e Antonio C. P. De Lima, Edusp.

Copyright © 2019. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização

Depende do tipo de dados:

Quantitativo (numérico)

Representa quantidades

Valores podem ser ordenados e usados em operações aritméticas

Podem ser continuos ou discretos

Possuem unidade associada

Qualitativo (simbólico ou categórico)

Representa qualidades

Valores podem ser associados a categorias

Alguns podem ser ordenados, mas operações aritméticas não são aplicáveis

Ex. {pequeno, médio, grande}

Dados qualitativos

Gráficos de barra

Gráficos de setores

Dados quantitativos: histograma

Histograma de frequência e densidade

Histograma:

- Não há um método geral para definir o tamanho da caixa.
- Deve-se escolher de modo a não perder informação.

Histograma acumulado

Histograma acumulado: soma-se as frequências até um dado valor.

Box plot

Observação: Sempre tente criar um gráfico que seja claro, com legendas, variáveis e eixos visíveis. Cuidado com as cores!

Gráfico de dispersão (scatterplot)

```
X = \begin{bmatrix} -2.25230219 & 0.17488531 & 0.86807664 & 1.57008988 & -0.8529788 \end{bmatrix}

Y = \begin{bmatrix} -1.23335724 & -0.50329834 & -0.16286028 & -0.63108853 & 0.36720953 \end{bmatrix}
```


1000 pontos

Três variáveis

Gráficos espaciais:

Grafos:

Grafos:

Sumário

Ciência de dados e suas etapas

- Tipos de dados.
- Estatística descritiva.
- Visualização

Leitura Complementar

Chen, Härdle, Unwin, Handbook of Data Visualization, Springer.