Jogo Puzzle

Davi Caetano Tavares Ramos 1398113

A implementação apresenta três algoritmos de busca: profundidade limitada (DFS-L), amplitude (BFS) e A*.

Esses algoritmos foram aplicados ao 8 puzzle, cujo objetivo é transformar o estado inicial em 1 2 3 4 5 6 7 8 0. O ambiente de teste fixou o tabuleiro inicial [[1, 2, 3], [4, 0, 5], [6, 7, 8]], atribuindo um custo unitário a cada deslocamento do espaço em branco. Todos os algoritmos partem da mesma representação de estado, armazenam o caminho percorrido e medem o número de nós expandidos, a profundidade da solução e o tempo decorrido com "time.perf_counter()" para permitir a comparação direta.

A busca em profundidade limitada foi configurada com um limite de 50, limite que é o suficiente para encontrar uma solução, mas não necessariamente para explorar todo o espaço. Sua operação sempre expande o sucessor mais profundo até atingir o teto de profundidade, o que produz margens de memória restritas, mas pode alongar o caminho até o objetivo.

A busca em largura visita nós em camadas equidistantes da raiz; a fila "deque" garante totalidade e uma optimização em ambientes de custo unitário, mas o algoritmo tende a consumir mais memória porque deve manter simultaneamente toda a fronteira do nível atual.

A* combina um custo cumulativo g(n) com uma estimativa h(n) do custo restante.

Para avaliar o impacto da qualidade heurística, implementamos a distância de Manhattan, que soma as distâncias horizontal e vertical de cada peça até sua posição objetivo, e a contagem de peças mal colocadas, ambas admissíveis de acordo com a definição clássica de heurística otimista e consistentes no sentido da desigualdade triangular.

Os experimentos produziram a seguinte saída:

Estado inicial:

123

4 5

678

DFS limit=50 | tempo = 0.9809 s | nós expandidos = 21473 | profundidade da solução = 46

BFS | tempo = 0.3537 s | nós expandidos = 4693 | profundidade da solução = 14

```
A* Manhattan | tempo = 0.0144 s | nós expandidos = 128 | profundidade da solução = 14
A* Misplaced | tempo = 0.0451 s | nós expandidos = 321 | profundidade da solução = 14
Profundidade: 0
123
4 5
678
Profundidade: 1
123
4 5
678
Profundidade: 2
123
458
67
Profundidade: 3
123
458
6 7
Profundidade: 4
123
458
 67
```

Profundidade: 5
123
5 8
467
Profundidade: 6
123
5 8
4 6 7
Profundidade: 7
123
5 6 8
4 7
Profundidade: 8
123
5 6 8
4 7
Profundidade: 9
123
5 6
478

Profundidade: 10
1 2 3
5 6
478
Profundidade: 11
1 2 3
5 6
478
Profundidade: 12
1 2 3
4 5 6
7 8
Profundidade: 13
1 2 3
4 5 6
7 8
Profundidade: 14
123
4 5 6
7 8

DFS-L expandiu 21.473 nós, levou 0,981 s e retornou um caminho de profundidade 46; BFS expandiu 4.693 nós, levou 0,354 s e encontrou a solução ótima de profundidade 14; A* com Manhattan exigiu apenas 128 expansões e 0,014 s, enquanto A* com peças mal posicionadas exigiu 321 expansões e 0,045 s, ambas retornando profundidade 14. A diferença de desempenho aponta para dois aspectos.

Primeiro, heurísticas admissíveis e mais bem informadas reduzem drasticamente o fator de ramificação efetivo: Manhattan está mais próximo do custo real porque considera quantos movimentos cada peça ainda requer, enquanto a contagem de peças fornece apenas um limite inferior aproximado, daí o motivo para cerca de 2,5 vezes mais expansões.

Segundo, embora o BFS também seja ótimo neste cenário de custo uniforme, ele paga o preço de visitar todos os nós nas primeiras treze camadas antes de atingir o objetivo, gerando sobrecarga temporal e espacial que A^* evita ao priorizar nós com menor f(n) = g(n) + h(n).

A busca com profundidade limitada, mesmo encontrando uma solução, ilustra o risco de trajetórias longas: 46 movimentos contra o ótimo de 14. Esse alongamento se deve à estratégia de descer por um único ramo até forçar o backtracking, característica que, combinada à ausência de heurísticas e ao limite arbitrário, impede a garantia de otimalidade e pode causar explosões de custos quando o fator de ramificação é alto.

O método que "melhor desenvolveu o problema" foi, portanto, o A* com distância de Manhattan. Com o menor tempo, com a menor expansão de nós e produzindo a solução ótima. Em segundo lugar ficou o A* com peças mal posicionadas, demonstrando que mesmo uma heurística simples já traz ganhos substanciais em comparação ao BFS. O BFS, por sua vez, serve como referência para completude e otimalidade sem informações heurísticas, enquanto o DFS limitado se mostrou menos eficaz para esta instância.

Dado o mesmo ponto de partida e custo uniforme, A* expande, no máximo, o conjunto de nós igualmente promissores de acordo com a heurística escolhida, e nenhuma estratégia ótima e completa pode se sair melhor com a mesma estimativa. Conclui-se que, para o 8-Puzzle e as heurísticas admissíveis, a distância de Manhattan oferece o melhor compromisso entre qualidade da solução e custo computacional dentre os algoritmos selecionados.

Fontes: https://www.geeksforgeeks.org/8-puzzle-problem-using-branch-and-bound/ e pdfs disponibilizados no canvas.