Authentication withTrusted Third Parties / KDCs

SAML Web Browser SSO Profile Kerberos

Shared-key authentication

Connection-oriented

> Connection-less

- ▶ Issue
 - How to distribute K_{ab} to all possible A-B pairs?

Authentication with Trusted Third Party: Key Distribution Center (KDC) concept

- > TTP is responsible for bridging the gap between peers
 - A and B don't have any shared information
 - A and B have shared information with TTP

Why KDC?

- Because a TTP can distribute a session key to A and B for proving each other their identity
 - Session key K_{AB}
 - It is temporary (only for one session)
 - A uses K_{AB} to prove its identity is B
 - B uses K_{AB} to prove its identity is A
- > The proofs by A and B can be made in different ways
 - Only in the beginning of a session
 - On each interaction along a session

Session key distribution

Example:

SAML Web Browser SSO Profile

Kerberos: Goals

- Authenticate peers in a distributed environment
 - Targeted for Athena (at MIT)
- Distribute session keys for adding security to sessions between peers
 - Authentication (the initial goal)
 - Confidentiality (optional)
- Single Sign-On
 - Only one password to remember
 - Daily use (typically)

Kerberos background: Needham-Schroeder (1978)

- A and B trust on a common KDC
 - Key Distribution Center
- KDC shares a key with every A and B
 - Central authentication authority

Architecture and base concepts

- Architecture
 - Two Kerberos KDC services
 - Authentication Service (AS)
 - Ticket Granting Server (TGS)
 - Entities (principals)
 - All have a secret shared with Kerberos (AS or TGS)
 - People: a key derived from a password:
 - $K_U = hash(password)$
 - Services/servers: key stored in some repository
 - Requisites
 - Clocks (very well) synchronized
- Authentication elements
 - Ticket: required to make a request of a service
 - Authenticator: proof of the identity of a requester

Tickets and authenticators

> Ticket

- Unforgeable piece of data
- Can only be interpreted by the <u>target service</u>
- Carries the identities of the client that can use it
- Carries a <u>session key</u>
- Carries a <u>validity timestamp</u>

Authenticator

- Carries a timestamp of the request
- Carries the identity of the client
- Proves that the client knows the session key

Overview of Kerberos SSO: 1st step: Login

- Authentication of user U by Kerberos (AS)
 - User gets a Ticket Granting Ticket (TGT) and a session key (K_{TGT}) for interacting with another Kerberos service (TGS)
 - The TGT can be used to request other tickets needed by the user U to access each and every service S

Overview of Kerberos SSO: 2nd step: Authenticated access to servers

- U requests Kerberos (TGS) a ticket for accessing S
 - U uses TGT in the request
 - U must prove that he is the owner of TGT
 - U gets a session key (K_{US}) and a ticket to S (T_{US})
- U uses T_{US} to make authenticated requests to S
 - Server S uses T_{US} to check the identity of U
 - U must prove that he is the owner of T_{US}

Protocol (of version V5)

Pre-authentication alternative

	C (U)	TGS	S
AS	K _U	K _{tgs}	
TGS	K _{c,tgs}		K _s
S	K _{c,s}		

Vulnerable to proactive dictionary attacks! (Kerberoasting)

for filtering out illegitimate requests (limiting kerberoasting)

Scalability

- Authentication scope
 - Realms
 - A kerberos server per realm
- - Fundamental to allow a client from a realm to access a server on another realm
 - Realms need to trust on authentication performed by other realms
- Protocol
 - Secret keys shared between TGS servers of different realms
 - · Inter-realm key
 - Each inter-realm key is associated to a trust path
 - A client (user) needs to jump from TGS to TGS for getting a ticket
 - Not particularly user-friendly

Kerberos V5:

Security politics and mechanisms

- Entity authentication
 - Secret keys, names, networks addresses
 - name/instance@realm (user@ua.pt, ftp/ftp.ua.pt@ua.pt)
- Validity periods
 - Timestamps in tickets (hours)
 - Timestamps in authenticators (seconds, minutes)
- Replay protections
 - Nonces (in ticket distributions)
 - Timestamps / sequence numbers (in authenticators)
- Protection against an excessive use of session keys
 - Key distribution in authenticators
- Delegation (proxying)
 - Options and authorizations in tickets
- Inter-real authentication
 - Secret keys shared among TGS services, trust paths
 - Ticket issuing from a TGS to another TGS

Kerberos: Security issues

- Kerberos KDC can impersonate anyone
 - Needs maximum security in its administration
- - Replication is an option, since stored keys are seldom updated
- A stolen user password allows others to impersonate the victim in every service of the realm
 - Stolen TGS credentials are less risky, as their validity is shortly limited (≈ one day, usually)

Kerberos V5: Actual availability

- MIT releases
 - http://web.mit.edu/kerberos
 - Sources and binaries
- Windows versions
 - Windows 2000 adopted Kerberos for inter-domain authentication
 - Kerberos was modified to accommodate Windows credentials
- Components
 - Kerberos servers/daemons
 - Libraries for "kerberizing" applications
 - Support applications
 - · klogin, kpasswd, kadmin
 - Kerberized applications (clients and servers)

