大促活动前团购系统流量预算和容量评估实践

丁媛 2016-09-06

目录

大促活动前团购系统 流量预算和容量评估实践 01 背景介绍02 流量预算03 容量评估——压力测试策略04 容量评估——压力测试方法

总结展望

05

个人介绍

引言

业务初期

重点是如何快速地进行功能开发和上线

2015年之后

产品形态比较稳定,产品运营会策划各种大促活动,为业务带来更多的流量和用户,从而提升交易额。

大促活动的特点

瞬时流量 核心路径 热点团单

大促活动前的准备

运维 • 活动页的PV 活动经费预算 DBA/架构 运营/产品 活动流量预算 活动页UV 活动push量 👐 系统容量评估 抢购用户数 经验转化率 测试 开发

大促活动前的准备——扩容

扩容是提升系统容量的最简单直接的办法,在系统没有瓶颈,可以水平扩展的前提下,扩容机器的数量为:

团购系统架构演进

早期的团购系统

- 不管在线上还是在线上,做一次有效的压力测试比较困难。
- 根据木桶短板理论,不需要压力测试也可以知道当时的团单服务性能不会很好。

团购系统架构的演进

微服务化:

- 服务层拆包、消除出轨应用
- 逻辑耦合在一起的情况按服务化拆 分出来,每个服务独立专注的做一 件事情。

数据库拆分

• 拆分独立的团单属性库、库存库

团购系统架构的演进

现在的团购系统

MAPI应用拆分

- MAPI系统大而全
- 影响系统容量、稳定性、研发效率
- 按照业务领域拆分成三个应用

复杂的系统架构如何扩容?

目录

大促活动前团购系统 流量预算和容量评估实践 01 背景介绍
 02 活动流量预算
 03 系统容量评估——压力测试策略
 04 系统容量评估——压力测试过程

05

总结展望

大促活动流量模型

- 流量模型分析是容量评估的关键,只有清楚了系统的流量模型,才有可能进行准确的评估。
 - 平时的流量模型
 - 大促活动时的流量模型
 - 大促时核心路径的流量模型
 - 之后所讲到的流量分析和容量评估都是围绕这条核心路径展开

大促活动的核心路径

- 大促活动下,用户的行为是 从活动落地页直接跳转到团 购详情页,然后到支付流程 并完成支付
- 在大促抢购活动一开始,商 品系统的流量主要来自于团 购详情页

2、团购详情页

3、提交订单页

大促时核心路径架构图

第一步: 根据活动页每个按钮的位置 → 梳理APP Native页面每个接口的调用

团购详情应用有6个基础模块,占应用访问量的97%

核心路径

- 团购基本信息接口
- 团购详情须知接口
- 团购适用商户接口

非核心路径

- 本店其他团购推荐接口
- 看了又看接口
- 网友点评接口

IOS/Android 团购基本信息接口 团购详情接口 团购适用商户接口 本店其他团购推荐 看了又看接口 网友点评接口

团购详情页6个基础模块的接口之间调用顺序

第三步: 通过代码分析和CAT堆栈, 梳理接口依赖的服务及服务调用次数

在大促活动流量模型下,设详情页的流量为单位1,此时流量构成如下:

• 访问服务次数:

服务	访问次数	
团购基础服务	7	
团购详情服务	1	
团购价格服务	7	
团购属性读服务	2	
团购库存读服务	7	
团购商户服务	1	
团购后台服务	2	
团购历史服务	7	
团购收藏服务	1	

在大促活动流量模型下,设详情页的流量为单位1,此时流量构成如下:

• 访问cache次数:

缓存系统	访问次数	
memcached-A	7	
memcached-B	11	
memcached-C	7	

• 访问DB次数(通过分析cache命中率及各服务的读接口调用次数得出):

数据库	访问次数(不考虑缓 存)	访问次数(考虑缓存)
团购基础库	49	6. 23
团购属性库	11	0. 214
团购库存库	7	0. 14

活动流量预算——扩容计划表

系统	应用	单机QPS	活动流量预算	预计提供集群容量	当前机器数	需扩容机器数
MAPI	团购基础应用	?	xxx	XXX	XXX	
	团购详情应用	?	xxx	XXX	XXX	
	团购交易应用	?	xxx	xxx	XXX	
	个人中心应用	?	xxx	xxx	XXX	
商品系统	团购搜索服务	?	xxx	xxx	XXX	
	团购基础服务	?	xxx	xxx	XXX	
	团购详情服务	?	xxx	xxx	XXX	
	0 0 0 0 0					

大促活动前的准备

目录

大促活动前团购系统 流量预算和容量评估实践 01 背景介绍
 02 活动流量预算
 03 系统容量评估——压力测试策略
 04 系统容量评估——压力测试过程
 05 总结展望

系统容量评估——压力测试

理想

- 线上压测
- 系统全链路压测
- 一次压测解决问题

现实

- 线上压测有风险,成本高
- 时间紧(活动测试、版本发布和压力测试并行)
- 全链路压测依赖服务多,参与/ 周知人员多
- 全链路可以压出系统瓶颈,但是不能提供单机容量

保证压测数据有效性的基础上,做性价比最高的压力测试

系统容量评估——压力测试

- 应用级压测方案,根据应用的类型,分层压测
 - MAPI-WEB
 - Pigeon Service聚合服务
 - Pigeon Service基础服务
 - 数据库
- 根据实际场景特点,选择压测环境
 - 区分读场景、写场景

系统容量评估——压力测试

压测策略

- 压测目的
- 压测环境
- 风险成本

压测过程

- 压测方法
- 压测场景
- 压测数据

压测结论

- 数据采集
- 数据分析
- 监控告警

系统容量评估——压测目的

单机容量

应用的单机容量是多少?

是否可以通过水平扩容来提升 集群容量,系统瓶颈在哪?

DB容量

数据库能承担的压力是多少?

监控告警

监控指标应该如何设置, 若超过阈值告警机制是否生效?

系统容量评估——压测环境

D BETA / PPE环境

- 数据可靠性:硬件环境、数据等与线上差异较大;

- 稳定性:被测服务和依赖服务容易被压挂,影响功能测试;

- 易用性:支持常用压测工具和方法,压测脚本在本地执行;

- 局限性:只能评估单机容量,无法对集群进行压测;

系统容量评估——压测环境

容量评估方法——压测环境

复制一套线上环境和数据,搭建性能测试环境?

- 机器数量有限
- 维护成本很高
- 资源利用率低

容量评估方法——PTP性能测试环境

- 机器数量有限 → 基于Docker的虚拟机器池
- 维护成本很高 > 一键部署被测应用
- 资源利用率低 → 定期环境清理

如何部署依赖的服务?

容量评估方法——PTP性能测试环境

- 智能依赖模块
 - □ 直接依赖服务
 - □ 间接依赖服务
 - □ 数据库依赖
 - □ 公共服务
 - □ 手动添加

容量评估方法——PTP性能测试环境

• 智能依赖模块

直接获取的依赖服务不全怎么办?

容量评估方法——PTP性能测试环境

回流依赖模块

· 数据可靠性:

- □ 硬件环境灵活配置 ✓
- □ 数据库可以随时同步线上数据 ✓
- □ 数据较可靠 ✓
- □ 施压机和被测应用都可以是集群 ✓

· 稳定性:

- □ 专职专用,不会影响正常的功能测试 ✓
- □ 自动部署依赖应用的稳定版本 ✓
- □ 支持泳道配置,可以同时压测多个服务 ✓

易用性:

- □ 支持jmeter、tcpcopy等压测方法 ✓
- □ 施压机和被测应用都可以是集群 ✓

目录

大促活动前团购系统 流量预算和容量评估实践 01 背景介绍
 02 活动流量预算
 03 系统容量评估——压力测试策略
 04 系统容量评估——压力测试过程
 05 总结展望

系统容量评估——压力测试

压测策略

- 压测目的
- 压测环境
- 风险成本

压测过程

- 压测方法
- 压测场景
- 压测数据

压测结论

- 数据采集
- 数据分析
- 监控告警

系统容量评估——压测方法

口 线上压测方法——逐步减小集群规模

- 通过逐台摘机器的方法,使得单台机器的访问量不断提升,来达到压力测试的目的。需要 运维人员的密切配合。
- 优点:应用无需是读写接口分离的
- 缺点: 1. 逐个摘机器有风险 2. 对流量规模有要求,不能太小,否则压不到瓶颈

系统容量评估——压测方法

口 线上压测方法——线上Tcpcopy

- 在集群中挑选A、B两台机器,A为被压机,B为施压机。
- 将A配置一个泳道(机器不对外提供服务),通过Tcpcopy将B的流量逐渐放大至A。
- 优点:

流量比例、风险小,可以随时修改放大倍数

- 缺点:
 - 1、要求被压的服务只能是纯读服务,不能有写接口,否则会带来脏数据
 - 2、Tcpcopy工具限制,放大40倍会挂掉,若线上流量太小。则需要首先摘掉部分机器以提高单机的QPS

系统容量评估——压测方法

- □ 线下压测方法——性能测试平台
 - □ 模拟线上机器配置、JVM配置
 - □ 模拟线上接口请求比例
 - □ 模拟线上接口请求参数分布
 - □ 模拟线上缓存命中率

系统容量评估——压力测试

压测策略

- 压测目的
- 压测环境
- 风险成本

压测过程

- 压测方法
- 压测场景
- 压测数据

压测结论

- 数据采集
- 数据分析
- 监控告警

实例一

- 团购基础查询服务提供了两种查询方式: 单个查询和批量查询
- 设计测试场景时需要考虑两种接口的比例分布
- 使用jmeter比例控制器做控制

Name	Total	Failure	Failure%	Sample Link	Min(ms)	Max(ms)	Avg(ms)	95Line(ms)	99.9Line(ms)	Std(ms)	QPS	Percent%
TOTAL	3,837,734	0	0.0000%	Log View	0	970	5.3	-	-	9.6	0.0	100.00%
dealService:dealGroupBaseService_1.0.0:getDealGroup(int)	1,724,345	0	0.0000%	Log View	0	970	4.2	11.3	25.1	5.8	479.0	44.93%
$deal Service: deal Group Base Service_1.0.0: multi Get Deal Group (List)$	1,364,444	0	0.0000%	Log View	0	929	7.4	19.6	200.0	14.0	379.0	35.55%
dealService:dealBaseService_1.0.0:getDeal(int)	424,333	0	0.0000%	Log View	0	829	3.8	8.1	19.0	4.8	117.9	11.06%
dealService:dealBaseService_1.0.0:multiGetDeal(List)	324,612	0	0.0000%	Log View	0	720	4.3	10.5	35.2	5.8	90.2	8.46%

实例二

- 团购基础查询服务的批量接口参数个数
- 需要设计调用批量查询接口时传入的团单id个数

实例三

- 针对对应用性能有影响的参数类型、逻辑分支设计场景
- 例如团购销量查询服务区分品类
 - 结婚团单需要聚合销量、丽人团单需要分城市销量
 - 不同的逻辑分支,查询不同的缓存和数据库

实例四

- 针对开关和降级场景设计场景
- 例如团购价格查询服务有一个"诚信旁路"开关
 - 一 对"诚信旁路"开关打开或关闭的情况分别进行压力测试
 - 大促期间如果必要可以把"诚信旁路"开关关闭

口 压力测试数据的构造

- 线上流量tcpdump,到性能测试环境做流量翻倍回放
- 采取MAPI Nginx access log回放机制,对用户真实访问行为进行回放
- 人工构造数据

实例一

• 被测应用: 团购详情WEB应用(纯读服务)

• 压测环境: 性能测试环境

• 压测数据: tcpdump复制线上流量在性能环境做回放

• 压测方法:

- 选择合适的时间段(流量不要太低)
- dump流量时间足够长,流量翻倍时数据离散度需满足要求

实例二

- 被测应用: 个人中心WEB应用(读+写)
- 压测环境: 性能测试环境
- 压测数据: nginx access log
- 压测方法:
- 将最近通过app的访问nginx access log进行分类(读、写)
- 线上到线下token的解析问题
- 重复写请求报错的问题


```
192.168.216.185 10.66.40.77 [06/Sep/2016:13:10:29 +0800] 1473138629.032+1799879 "GET /dealdetailinfogn.bin?id=200030115&shopid=3169789&token=7019
claee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50 HTTP/1.1" 200 1799879 0.066 1056 "-" "MApi 1.1 (com.dianping.v1 9.0.0 null HUAWEI_P7
-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.77" - -
192.168.216.185 10.66.40.185 [06/Sep/2016:13:10:29 +0800] 1473138629.070+1799871 "GET /moredealslistgn.bin?categorykeys=70%2C7001&lng=121.415846&
shopid=3169789&dealgroupid=200030115&token=7019c1aee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50&lat=31.21796&cityid=1 HTTP/1.1" 200 1
799871 0.110 880 "-" "MApi 1.1 (com.dianping.∨1 9.0.0 null HUAWEI_P7-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.185" - -
192.168.216.185 10.66.40.77 [06/Sep/2016:13:10:29 +0800] 1473138629.445+1799881 "GET /dealdetailinfogn.bin?id=200030115&shopid=3169789&token=7019
claee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50 HTTP/1.1" 200 1799881 0.022 1056 "-" "MApi 1.1 (com.dianping.v1 9.0.0 null HUAWEI_P7
-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.77" - -
192.168.216.185 10.66.40.77 [06/Sep/2016:13:10:56 +0800] 1473138656.006+1799887 "GET /dealbaseinfogn.bin?id=200030116&cityid=1&shopid=0&isgoodsho
p=0&token=7019c1aee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50&lat=31.21796&lng=121.415846 HTTP/1.1" 200 1799887 0.109 832 "-" "MApi
1.1 (com.dianping.v1 9.0.0 null HUAWEI_P7-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.77" - -
192.168.216.185 10.66.40.77 [06/Sep/2016:13:10:56 +0800] 1473138656.216+1799889 "GET /bestshopgn.bin?lng=121.415846&shopid=0&dealgroupid=20003011
6&token=7019c1aee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50&lat=31.21796&cityid=1 HTTP/1.1" 200 1799889 0.022 304 "-" "MApi 1.1 (com
.dianping.∨1 9.0.0 null HUAWEI_P7-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.77" - -
192.168.216.185 10.66.40.185 [06/Sep/2016:13:10:56 +0800] 1473138656.371+1799891 "GET /dealdetailinfogn.bin?id=200030116&shopid=3169789&token=701
9c1aee56420793d570659246778e1a767b0a0dff6bb8a0bde44305cb05c50 HTTP/1.1" 200 1799891 0.039 1776 "-" "MApi 1.1 (com.dianping.v1 9.0.0 null HUAWEI_P
7-L07; Android 4.4.2)" "180.166.152.90, 192.168.5.8, 10.66.40.185" - -
192.168.216.185 10.66.40.77 [06/Sep/2016:13:10:56 +0800] 1473138656.372+1799894 "GET /bestshopreviewgn.bin?lng=121.415846&shopid=3169789&lat=31.2
1796&dealid=200030116&cityid=1 HTTP/1.1" 200 1799894 0.031 624 "-" "MApi 1.1 (com.dianping.v1 9.0.0 null HUAWEI_P7-L07; Android 4.4.2)" "180.166.
152.90, 192.168.5.8, 10.66.40.77" - -
```

实例三

- 被测应用: 团购基础信息服务
- 压测环境: 性能测试环境
- 压测数据:人工构造数据(csv文件)
- 压测方法:
- 人工构造的数据应模拟线上的缓存命中率
- 缓存命中率比线上环境偏低,需要进行缓存预热
- 缓存命中率比线上环境偏高,需要尽量模拟线上团单的离散程度

系统容量评估——压测工具

口 压力测试工具的选择

- Jmeter + Http
- Jmeter + Pigeon Client
- arch/test benchmark
- PTP性能测试平台(Jmeter/Tcpcopy)
- PTEST(支持高并发、万级QPS)

系统容量评估——压测结果采集

口 压力结果数据的采集

- CAT Heartbeat / Transacation
- PTP性能测试平台监控报告
- PTEST平台监控报告
- Jconsole/VisualVM (推荐,集成多个JVM命令的可视化工具)
- JVM命令: jstack/jstat/jmap

系统容量评估——压测结果采集

扩容计划表

系统	应用	单机QPS	活动流量预算	预计提供集群容量	当前机器数	需扩容机器数
MAPI	团购基础应用	XXX	XXX	xxx	XXX	
	团购详情应用	xxx	XXX	xxx	XXX	
	团购交易应用	XXX	XXX	xxx	XXX	
	个人中心应用	XXX	XXX	xxx	XXX	
商品系统	团购搜索服务	XXX	XXX	xxx	XXX	
	团购基础服务	XXX	XXX	xxx	XXX	
	团购详情服务	XXX	XXX	xxx	XXX	
	0 0 0 0 0					

系统容量评估——DB容量

- 压测目的: 获取数据库最高可以承受的QPS
- 压测环境: 性能测试环境(全量同步线上数据库)
- 压测数据:平日10点高峰流量,通过分析sql访问日志,从中获取各类sql的比例与in参数的分布
- 压测方法: 通过Jmeter + JDBC Request执行压测

系统容量评估——DB容量

主库压测数据:

数据库	流量类型	压测类型	峰值	读写比
团购属性库 Master	平日10点高峰流量	读+写	12w	10: 3
团购基础库 Master	平日10点高峰流量	读+写	$7\mathrm{w}$	60 : 1
团购库存库 Master	平日10点高峰流量	读+写	15.8w	11: 1

从库压测数据:

数据库	数据库 流量类型 点		峰值	主从读流量比
团购属性库 Slave	平日10点高峰流量	读	12.3w	13: 10
团购基础库 Slave	平日10点高峰流量	读	12. 3w	17: 10

容量评估方法——缓存容量

集群名	节点数 量	容量	应用	流量占比	实际容量
memcached-tgdeal	3	24w	deal-price-query-service	100%	24w
memcached-dealbase	3	24w	deal-base-service	99%	24w
memcached-tuangou	13	104w	deal-detail-service deal-attribute-get-service deal-stock-query-service deal-favorite-service	72%	75w

性能优化

- 性能优化没有银弹
- 架构的设计(微服务拆分、异步化改造)
- 业务的裁减(不必要的查询、服务接口批量调用)
- 活动前期避免性能优化引入的新的性能不确定性

降级和流控方案

- Lion开关集合
- 关闭"诚信旁路"分支调用
- 关闭非核心路径接口功能
- 流量超过阈值随机失败
- 静态化
- 降级预案有多种,大部分都用不到,但是要定期验证降级预案的有效性

目录

大促活动前团购系统 流量预算和容量评估实践 01 背景介绍02 活动流量预算03 系统容量评估——压力测试策略04 系统容量评估——压力测试过程

05

总结展望

总结

- 活动流量预算: 从上到下评估流量
- 系统容量评估: 从下到上提供能力
- 保证大促期间核心路径用户体验

展望

- 简单化
- 标准化
- 流程化
- 自动化

Thank You