Institutt for fysikk 2011 TFY4155/FY1003 Elektromagnetisme

Øving 10 Magnetisk kraft på leder. Biot-Savarts lov.

Veiledning: Uke 11 ifølge nettsider. Innlevering: Tirsdag 22. mars kl. 11:00

Oppgave 1. Halleffekt.

En sølvleder med rektangulært tverrsnitt (tykkelse $t=1,00~\mathrm{mm}$ og høyde $d=1,50~\mathrm{cm}$) fører en strøm på $I=2,5~\mathrm{A}$ i et område med konstant B-felt lik 1,25 T. B-feltet er horisontalt og normalt på strømretningen. Hallspenningen måles mellom øvre og nedre del av lederen (over avstanden d) til $V_H=0,334~\mu\mathrm{V}$.

- a) Tegn figur og forklar hva som skjer. Legg inn et kartesisk koordinatsystem med x langs strømretningen. Finn uttrykk for Hallspenningen gitt ved v_d , B og d.
- b) Beregn antallstettheten av ladningsbærere n. Sammenlign svaret med atomtettheten i sølv, som har massetetthet $\rho = 10, 5\,\mathrm{g/cm^3}$ og en molmasse på $M = 107, 9\,\mathrm{g/mol}$.

Oppgave 2. Kraft på strømførende sløyfe i ikke-uniformt magnetfelt.

En strømsløyfe som fører en strøm I_2 er vist i figuren til venstre. Den er plassert ved siden av en rett leder som fører en strøm I_1 . To sidekanter (med lengde ℓ_2) er parallelle med den rette lederen mens to sidekanter (lengde ℓ_1) er normal på lederen.

Hvor stor er nettokrafta på strømsløyfa når følgende tallverdier gjelder:

$$I_1 = 30 \text{ A}, I_2 = 10.0 \text{ A},$$

 $\ell_1 = 7.0 \text{ cm}, \ell_2 = 20 \text{ cm}, \ell_3 = 1.00 \text{ cm}.$

Oppgave 3. Kraft mellom to strømførende ledere.

To parallelle, stive ledere henger i 8,0 cm lange tråder fra en bjelke. I figuren til venstre går bjelken og lederne loddrett ut av papirplanet. Lederne har masse per lengdeenhet lik 0,075 kg/m og fører den samme strømmen I, men i motsatt retning.

Hva må strømmen være for at trådenes vinkel med vertikalen skal bli 8.0° ?

Oppgave 4. Biot-Savart på rektangulær strømsløyfe.

Vi har i forelesning (eller Ch. 28.5 i Y&F) funnet at magnetfeltet på aksen (sammenfallende med x-aksen) til en sirkulær strømsløyfe med radius a er

 $B_x^{\text{(sirk)}}(x) = \frac{\mu_0 I}{2} \frac{a^2}{(x^2 + a^2)^{3/2}}.$ (1)

Vi har også i forelesning (og Ch. 28.3) vist at B-feltet i avstand ρ fra midtaksen på en rett leder med lengde 2a er asimutal (ϕ) og lik

 $B_{\phi} = \frac{\mu_0 I}{4\pi} \frac{2a}{\rho \sqrt{\rho^2 + a^2}} \tag{2}$

a) Bruk resultat (2) til å finne uttrykk for magnetfeltet $\vec{B}^{(\text{kvad})}(x)$ på midtnormalen til en kvadratisk strømsløyfe med sidekant 2a. Legg origo i sentrum av kvadratet med x-aksen langs normalen etter høyrehåndsregel for strømmen.

TIPS: Se på bidraget til B fra to og to motstående sidekanter samtidig.

b) Vis at følgende sammenheng gjelder i sentrum av strømsløyfene (dvs. x = 0):

$$B_x^{(\text{kvad})} = B_x^{(\text{sirk})} \frac{2\sqrt{2}}{\pi} = B_x^{(\text{sirk})} \cdot 0,90.$$

(Og dermed har du en sjekk av svaret ditt i a)).

c) Finn uttrykk for $\vec{B}^{(\text{sirk})}(x\gg a)$ og $\vec{B}^{(\text{kvad})}(x\gg a)$. Uttrykk disse ved de respektive strømsløyfers magnetiske moment $\mu=I\vec{A}$. Til slutt sammenlikn disse med uttrykket for elektrisk felt på aksen til en elektrisk dipol, langt unna: $\vec{E}(x)=\frac{1}{2\pi\epsilon_0}\frac{\vec{p}}{x^3}$.

Ekstraoppgave (5). Biot-Savart halvsirkel.

En ledning ligger i yz-planet og er formet som en halvsirkel med radius a som vist i figuren. Ledningen fører en strøm I og tilførselsledningene ligger svært tett og langs z-aksen. x-aksen er normal til papirplanet og går opp av papiret og origo er i sentrum av halvsirkelen. (For å synes godt er koordinatsystem i figuren lagt utenfor halvsirkelen).

Finn uttrykk for magnetfeltet B i et punkt P som ligger på x-aksen i høyden x over yz-planet. Bruk Biot-Savarts lov og/eller ta til hjelp kjente uttrykk fra forelesning eller læreboka.

Denne oppgaven er nok hakket vanskeligere enn hva blir gitt til eksamen og er av den grunn anført som ekstraoppgave. Men hvis du mestrer såpass vanskelige oppgaver har du bedre kontroll på det som er lettere.