定理 1.17 集合 A,B,C について, $C \neq f$ の場合,次の各事項は等しい。

(1) $A \subseteq B$

(2) $A \times C \subseteq B \times C$

(3) $C \times A \subseteq C \times B$

【証明】

- (1) (2): $\langle x, z \rangle \in A \times C$ とすると, $x \in A$ かつ $z \in C$ 。 $A \subseteq B$ より, $x \in B$ かつ $z \in C$ 。すなわち, $\langle x, z \rangle \in B \times C$ 。ゆえに, $A \times C \subseteq B \times C$ 。
- (2) (3): $\langle z,x \rangle \in C \times A$ とすると $,z \in C$ かつ $x \in A$ 。すなわち $,\langle x,z \rangle \in A \times C$ 。 $A \times C \subseteq B \times C$ より $,\langle x,z \rangle \in B \times C$ 。 よって $,x \in B$ かつ $z \in C$ 。 すなわち $,\langle z,x \rangle \in C \times B$ 。 ゆえに $,C \times A \subseteq C \times B$ 。
- (3) (1): $x \in A$ とすると , $C \neq f$ より ,< $z, x > \in C \times A$ となる $z \in C$ が存在する。 $C \times A \subset C \times B$ より ,< $z, x > \in C \times B$ 。すなわち , $x \in B$ 。ゆえに , $A \subseteq B$ 。