Group Theory

Rubik's Cube and the Permutation Group

Mohammed Alshamsi 2021004826

mo.alshamsi@aurak.ac.ae

Coding Club at the American University of Ras Al Khaimah

September 29, 2024

▶ Group Theory?

▶ Group Theory? Study of groups (abstract algebraic structures)

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ▶ Format?

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ▶ Format? You'll see the following:

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math?

- ► Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ▶ These Slides?

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ► These Slides? See our GitHub repository.

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ► These Slides? See our GitHub repository.
- Coding Background?

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ▶ These Slides? See our GitHub repository.
- ▶ Coding Background? Check GitHub or find a guide online. (We won't need it in this presentation.)

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
 - ▶ Mathematical definitions with examples
 - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ► These Slides? See our GitHub repository.
- ▶ Coding Background? Check GitHub or find a guide online. (We won't need it in this presentation.)

Any questions?

Outline

- Review of Sets
 - Set Basics
 - Functions
- 2 Groups
 - Group Definition
 - Examples
 - Some Properties of Groups
- 3 Integers modulo 12
 - Subgroups
 - Generating Sets
 - Cosets
- 4 The Rubik's Cube Group
 - Thistlethwaite's Algorithm

Example (Familiar Sets)

Example (Familiar Sets)

$$\{0,1,2,3,\ldots\} = \mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\} = \mathbb{Z}$$

Example (Familiar Sets)

$$\{0, 1, 2, 3, \ldots\} = \mathbb{N}$$
 $\{\ldots, -2, -1, 0, 1, 2, \ldots\} = \mathbb{Z}$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\}=\mathbb{Q}$$

Example (Familiar Sets)

$$\{0,1,2,3,\ldots\}=\mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\}=\mathbb{Z}$$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\}=\mathbb{Q}$$

Definition

Example (Familiar Sets)

$$\{0,1,2,3,\dots\} = \mathbb{N} \qquad \{\dots,-2,-1,0,1,2,\dots\} = \mathbb{Z}$$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\} = \mathbb{Q}$$

Definition

Union: $A \cup B$, all elements that are in A or B

Example (Familiar Sets)

$$\{0,1,2,3,\ldots\}=\mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\}=\mathbb{Z}$$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\}=\mathbb{Q}$$

Definition

Union: $A \cup B$, all elements that are in A or B

Intersection: $A \cap B$, all elements that are in A and B

Example (Familiar Sets)

$$\{0,1,2,3,\ldots\}=\mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\}=\mathbb{Z}$$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\}=\mathbb{Q}$$

Definition

Union: $A \cup B$, all elements that are in A or B

Intersection: $A \cap B$, all elements that are in A and B

Subtraction: A - B, all elements in A that are not in B

Example (Familiar Sets)

$$\{0,1,2,3,\ldots\}=\mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\}=\mathbb{Z}$$

$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\}=\mathbb{Q}$$

Definition

Union: $A \cup B$, all elements that are in A or B

Intersection: $A \cap B$, all elements that are in A and B

Subtraction: A - B, all elements in A that are not in B

Subset: $B \subseteq A$, all elements of B are in A.

Definition (Function)

Definition (Function)

This is denoted f(x)

 $f:X \to Y$, rule that assigns to each element of X exactly one element of Y.

Definition (Function)

 $f: X \to Y$, rule that assigns to each element of X exactly one element of Y. This is denoted f(x)

Definition (Operation)

Definition (Function)

 $f: X \to Y$, rule that assigns to each element of X exactly one element of Y. This is denoted f(x)

Definition (Operation)

 $*: X \times X \to X$, assigns to each pair of elements x, y from X an element of X. This is denoted x * y

Definition (Group)

Definition (Group)

Set G and an operation $*:G\times G\to G,$ where:

Definition (Group)

Set G and an operation $*: G \times G \to G$, where:

 \blacksquare * is associative; (a*b)*c = a*(b*c)

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- \blacksquare * is associative; (a*b)*c = a*(b*c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- **3** For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- **3** For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example ($\mathbb Z$ under addition)

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- **3** For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example (\mathbb{Z} under addition)

1 Addition is associative; (a + b) + c = a + (b + c)

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example (\mathbb{Z} under addition)

- 1 Addition is associative; (a + b) + c = a + (b + c)
- 2 Identity element is 0

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example (\mathbb{Z} under addition)

- 1 Addition is associative; (a + b) + c = a + (b + c)
- 2 Identity element is 0
- 3 Every element's inverse is its negative

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- 1 * is associative; (a * b) * c = a * (b * c)
- There is $e \in G$ such that e * a = a * e = a for all $a \in G$
- For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example (\mathbb{Z} under addition)

- 1 Addition is associative; (a + b) + c = a + (b + c)
- 2 Identity element is 0
- 3 Every element's inverse is its negative
- \mathbb{Z} is a group under addition!

Definition (Group)

Set G and an operation $*: G \times G \rightarrow G$, where:

- \bullet * is associative; (a*b)*c = a*(b*c)
- There is $e \in G$ such that $e * \alpha = \alpha * e = \alpha$ for all $\alpha \in G$
- For each $a \in G$ there is a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

Example (\mathbb{Z} under addition)

- 1 Addition is associative; (a + b) + c = a + (b + c)
- 2 Identity element is 0
- 3 Every element's inverse is its negative
- \mathbb{Z} is a group under addition!

Notational shortcut: ab instead of a * b.

Example (Integers modulo 12)

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$

Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic. $8+9=5 \pmod{12}$, for example.

Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic. $8+9=5 \pmod{12}$, for example.

Associativity?

Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic. $8+9=5 \pmod{12}$, for example.

- 1 Associativity?
- 2 Identity?

Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic. $8+9=5 \pmod{12}$, for example.

- 1 Associativity?
- 2 Identity?
- 3 Inverses?

Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic. $8+9=5 \pmod{12}$, for example.

- 1 Associativity?
- 2 Identity?
- 3 Inverses?

It's a group.

Theorem (Group Properties)

▶ Identity is unique

- ▶ Identity is unique
- ▶ Cancellation law: $ab = ac \implies b = c$, and $ba = ca \implies b = c$

- ▶ Identity is unique
- ▶ Cancellation law: $ab = ac \implies b = c$, and $ba = ca \implies b = c$
- ▶ Exactly one inverse per element

- ▶ Identity is unique
- ▶ Cancellation law: $ab = ac \implies b = c$, and $ba = ca \implies b = c$
- ► Exactly one inverse per element
- ► Inverse of ab is $b^{-1}a^{-1}$

Definition (Subgroup)

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. " $H \leq G$ " means "H is a subgroup of G".

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. " $H \leq G$ " means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. " $H \leq G$ " means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ and $\{0\}$

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. "H \leqslant G" means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$
 and $\{0, 6\}$

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. "H \leqslant G" means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$
 and $\{0\}$

 $\{0, 6\}$

 $\{0, 4, 8\}$

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. "H \leq G" means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$
 and $\{0\}$

 $\{0, 6\}$

 $\{0,4,8\}$

 $\{0, 3, 6, 9\}$

Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation. "H \leq G" means "H is a subgroup of G".

Example (Subgroups of \mathbb{Z}_{12})

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$
 and $\{0\}$

$$\{0, 6\}$$

$$\{0, 4, 8\}$$

$$\{0, 3, 6, 9\}$$

$$\{0, 2, 4, 6, 8, 10\}$$

Basic Properties of Subgroups

Theorem (Basic Properties of Subgroups)

Basic Properties of Subgroups

Theorem (Basic Properties of Subgroups)

▶ A subgroup H of a group G always contains the identity.

Basic Properties of Subgroups

Theorem (Basic Properties of Subgroups)

- ▶ A subgroup H of a group G always contains the identity.
- ▶ The inverse of any $h \in H$ is the same as in G, and is also a part of H.

Definition (Generating Set)

Definition (Generating Set)

Given a group G and a subset S of its group set.

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

$\overline{\text{Example (Generators in } \mathbb{Z}_{12})}$

1 generates \mathbb{Z}_{12} .

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

- 1 generates \mathbb{Z}_{12} .
- 2 generates $\{0, 2, 4, 6, 8, 10\}$.

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

- 1 generates \mathbb{Z}_{12} .
- 2 generates $\{0, 2, 4, 6, 8, 10\}$.
- 3 generates:

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

1 generates \mathbb{Z}_{12} .

4 generates:

- 2 generates $\{0, 2, 4, 6, 8, 10\}$.
- 3 generates:

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

1 generates \mathbb{Z}_{12} . 4 generates:

2 generates {0, 2, 4, 6, 8, 10}. 6 generates:

3 generates:

Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted $\langle S \rangle$.

Example (Generators in \mathbb{Z}_{12})

1 generates \mathbb{Z}_{12} . 4 generates:

2 generates $\{0, 2, 4, 6, 8, 10\}$. 6 generates:

3 generates: What is $\langle 5 \rangle$?

Cosets

Definition (Coset)

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Example (Right Cosets in \mathbb{Z}_{12})

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Example (Right Cosets in \mathbb{Z}_{12})

 $\{1,3,5,7,9,11\}$ is a coset of $\langle 2 \rangle$. We can denote it by $\langle 2 \rangle + 1$, $\langle 2 \rangle + 3$, et cetera. (They're all the same coset!)

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Example (Right Cosets in \mathbb{Z}_{12})

 $\{1,3,5,7,9,11\}$ is a coset of $\langle 2 \rangle$. We can denote it by $\langle 2 \rangle + 1$, $\langle 2 \rangle + 3$, et cetera. (They're all the same coset!)

Cosets of $\langle 3 \rangle$ are $\langle 3 \rangle + 1$ and $\langle 3 \rangle + 2$.

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Example (Right Cosets in \mathbb{Z}_{12})

 $\{1,3,5,7,9,11\}$ is a coset of $\langle 2 \rangle$. We can denote it by $\langle 2 \rangle + 1$, $\langle 2 \rangle + 3$, et cetera. (They're all the same coset!)

Cosets of $\langle 3 \rangle$ are $\langle 3 \rangle + 1$ and $\langle 3 \rangle + 2$.

Cosets of $\langle 4 \rangle$ are:

Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

Example (Right Cosets in \mathbb{Z}_{12})

 $\{1,3,5,7,9,11\}$ is a coset of $\langle 2 \rangle$. We can denote it by $\langle 2 \rangle + 1$, $\langle 2 \rangle + 3$, et cetera. (They're all the same coset!)

Cosets of $\langle 3 \rangle$ are $\langle 3 \rangle + 1$ and $\langle 3 \rangle + 2$.

Cosets of $\langle 4 \rangle$ are:

Cosets of $\langle 6 \rangle$ are:

Theorem (Properties of Cosets)

▶ Hg_1 and Hg_2 , for any g_1 and g_2 , are either the same coset or are completely disjoint.

- ▶ Hg_1 and Hg_2 , for any g_1 and g_2 , are either the same coset or are completely disjoint.
- ▶ All cosets of H, including H itself (He), are the same size.

- ▶ Hg_1 and Hg_2 , for any g_1 and g_2 , are either the same coset or are completely disjoint.
- ▶ All cosets of H, including H itself (He), are the same size.
- ▶ The union of all cosets of H produces the group set of G.

- ▶ Hg_1 and Hg_2 , for any g_1 and g_2 , are either the same coset or are completely disjoint.
- ▶ All cosets of H, including H itself (He), are the same size.
- ▶ The union of all cosets of H produces the group set of G.
- ▶ (Lagrange's Theorem) The number of cosets, (G : H), is equal to $\frac{|G|}{|H|}$.

The Rubik's Cube

Here's a Rubik's Cube:

The Rubik's Cube Group

The group is generated by the following set of rotations:

This group has $2^{27}3^{14}5^{3}7^{2}11 = 43,252,003,274,489,856,000$ elements!

The Rubik's Cube group G may be split into these subgroups:

The Rubik's Cube group G may be split into these subgroups:

$$\begin{split} G_0 &= \langle L, R, F, B, U, D \rangle & |G_0| = 4.3 \times 10^{19} \\ G_1 &= \langle L, R, F, B, U^2, D^2 \rangle & |G_1| = 2.1 \times 10^{16} \\ G_2 &= \langle L, R, F^2, B^2, U^2, D^2 \rangle & |G_2| = 1.9 \times 10^{10} \\ G_3 &= \langle L^2, R^2, F^2, B^2, U^2, D^2 \rangle & |G_3| = 6.6 \times 10^5 \\ G_4 &= \langle 1 \rangle & |G_4| = 1 \end{split}$$

The Rubik's Cube group G may be split into these subgroups:

$$\begin{split} G_0 &= \langle L, R, F, B, U, D \rangle & |G_0| = 4.3 \times 10^{19} \\ G_1 &= \langle L, R, F, B, U^2, D^2 \rangle & |G_1| = 2.1 \times 10^{16} \\ G_2 &= \langle L, R, F^2, B^2, U^2, D^2 \rangle & |G_2| = 1.9 \times 10^{10} \\ G_3 &= \langle L^2, R^2, F^2, B^2, U^2, D^2 \rangle & |G_3| = 6.6 \times 10^5 \\ G_4 &= \langle 1 \rangle & |G_4| = 1 \end{split}$$

 G_{i+1} is a subgroup of G_i , and thus has cosets in G_i .

The Rubik's Cube group G may be split into these subgroups:

$$\begin{split} G_0 &= \langle L, R, F, B, U, D \rangle & |G_0| = 4.3 \times 10^{19} \\ G_1 &= \langle L, R, F, B, U^2, D^2 \rangle & |G_1| = 2.1 \times 10^{16} \\ G_2 &= \langle L, R, F^2, B^2, U^2, D^2 \rangle & |G_2| = 1.9 \times 10^{10} \\ G_3 &= \langle L^2, R^2, F^2, B^2, U^2, D^2 \rangle & |G_3| = 6.6 \times 10^5 \\ G_4 &= \langle 1 \rangle & |G_4| = 1 \end{split}$$

 G_{i+1} is a subgroup of G_i , and thus has cosets in G_i .

Definition (Coset Space)

The set of all right cosets of H in G is called its right coset space, and is denoted $H \setminus G$.

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

Strategy: Traverse cosets in $G_{i+1} \setminus G_i$ to reach G_{i+1} . Repeat until G_4 reached.

$$G_4 \leqslant G_3 \leqslant G_2 \leqslant G_1 \leqslant G_0$$

Strategy: Traverse cosets in $G_{i+1} \setminus G_i$ to reach G_{i+1} . Repeat until G_4 reached.

▶ From G_0 to G_1 , we traverse a coset space of cardinality 2048, using all legal moves. Goal is to *orient* all the edges.

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

Strategy: Traverse cosets in $G_{i+1} \setminus G_i$ to reach G_{i+1} . Repeat until G_4 reached.

- ▶ From G_0 to G_1 , we traverse a coset space of cardinality 2048, using all legal moves. Goal is to *orient* all the edges.
- $ightharpoonup |G_2 \setminus G_1| = 1082565$. Goal is to orient all the corners.

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

Strategy: Traverse cosets in $G_{i+1} \setminus G_i$ to reach G_{i+1} . Repeat until G_4 reached.

- ▶ From G_0 to G_1 , we traverse a coset space of cardinality 2048, using all legal moves. Goal is to *orient* all the edges.
- $ightharpoonup |G_2 \setminus G_1| = 1082565$. Goal is to orient all the corners.
- ▶ $|G_3 \setminus G_2| = 29400$. Goal is to correctly position the corners (which may lose orientation here), and put edges in their correct *slices*.

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

Strategy: Traverse cosets in $G_{\mathfrak{i}+1}\setminus G_{\mathfrak{i}}$ to reach $G_{\mathfrak{i}+1}.$ Repeat until G_4 reached.

- ▶ From G_0 to G_1 , we traverse a coset space of cardinality 2048, using all legal moves. Goal is to *orient* all the edges.
- $ightharpoonup |G_2 \setminus G_1| = 1082565$. Goal is to orient all the corners.
- ▶ $|G_3 \setminus G_2| = 29400$. Goal is to correctly position the corners (which may lose orientation here), and put edges in their correct *slices*.
- ▶ $|G_4 \setminus G_3| = 663,552$. Goal is to re-orient the corners and position the edges, solving the cube.

$$G_4\leqslant G_3\leqslant G_2\leqslant G_1\leqslant G_0$$

Strategy: Traverse cosets in $G_{\mathfrak{i}+1}\setminus G_{\mathfrak{i}}$ to reach $G_{\mathfrak{i}+1}.$ Repeat until G_4 reached.

- ▶ From G_0 to G_1 , we traverse a coset space of cardinality 2048, using all legal moves. Goal is to *orient* all the edges.
- $ightharpoonup |G_2 \setminus G_1| = 1082565$. Goal is to orient all the corners.
- ▶ $|G_3 \setminus G_2| = 29400$. Goal is to correctly position the corners (which may lose orientation here), and put edges in their correct *slices*.
- ▶ $|G_4 \setminus G_3| = 663,552$. Goal is to re-orient the corners and position the edges, solving the cube.

Move choices are done using look-up tables.

That's All, Folks!

Thank you:)

That's All, Folks!

Thank you:)

(Sources will be sent later)

That's All, Folks!

Thank you:)

(Sources will be sent later)

Questions? Comments? Concerns?

qr codes or something idk

