TYP TR-0463

FUNKTIONSGENERATOR

Hersteller:

WERK FÜR ELEKTRONISCHE MESSGERÄTE

H-1163 Budapest, Cziráky u. 26-32.

Fernschreiber: 22-45-35.

Exporteur: METRIMPEX

UNGARISCHES AUSSENHANDELSUNTERNEHMEN

FÜR ERZEUGNISSE

DER INSTRUMENTENINDUSTRIE

Briefanschrift: H-1391 Budapest, Postfach 202.

512570 .VIII* pr.sz.

1986

F.k.: Kiss Jovák Józsei

INHALTSVERZEICHNIS

			Seite
1.	VERWE1	NDUNGSZWECK UND ANWENDUNGSGEBIET	3
2.	TECHN	ISCHE DATEN	4
3.	LIEFE	RUMFANG	11
	3.1.	Instrument	11
	3.2.	Zubehör	11
4.	WIRKUI	NGSWEISE UND AUFBAU DES GERÄTES UND SEINER	
	HAUPT	TEILE	12
	4.1.	Arbeitsprinzip	12
	4.2.	Wirkungsweise	12
	4.3.	Ausführliche Funktionsbeschreibung	
		(Beschreibung der Stromkreise aufgrund der	
		Schaltpläne)	14
	4.4.	Mechanischer Aufbau	31
5.	ALLGE	MEINE BETRIEBSANWEISUNGEN	32
	5.1.	Aus- und Einpacken	32
6.	SICHE	RHEITSMASSNAHMEN	33.
7.	VORBE	REITUNG DER INBETRIEBSETZUNG	34
	7.1.	Bedienungsorgane und Steckverbinder	34
	7.2.	Sicherheitsmaßnahmen	36
8.	GEBRA	UCHSVORSCHRIFTEN	37
	8.1.	Inbetriebsetzung	37
	8.2.	Eichung	37
	8.3.	Betriebsarten, Messungen	37
9.	TYPIS	CHE BETRIEBSSTÖRUNGEN UND IHRE BEHEBUNG-	39
10.	TECHN	ISCHE WARTUNG.	40
11.	PRÜFU.	NG DES TECHNISCHEN ZUSTANDES	40
12.	LAGE	RUNG- UND TRANSPORTBEDINGUNGEN	41
BEI	LAGEN		42

1. VERWENDUNGSZWECK UND ANWENDUNGSGEBIET

Der Wobbelgenerator Typ 1257 besteht aus einem Hauptgenerator (main generator) mit weitem Frequenzbereich und einem sich für die Modulation des Hauptgenerators eignenden Modulationsgenerator.

Mit dem Modulationsgenerator kann das Signal des Hauptgenerators wahlweise getriggert, getort, gewobbelt, sowie in der Frequenz und in der Amplitude moduliert werden. Sowohl mit dem Hauptgenerator als auch mit dem Modulationsgenerator können Sinus-, Dreieck-, Rechteck, Impuls- und Sägezahnsignale erzeugt werden. Beim Sägezahnsignal kann der Anstieg und beim Impulssignal das Tastverhältnis auch stetig geändert werden.

Beim Hauptgenerator kann die Grundlinie stetig verschoben werden. Demzufolge bicten die vom Gerät erzeugten Signale sowohl hinsichtlich der Frequenz als auch im Hinblick auf die Signalformen und die Betriebsarten eine breite Auswahl, demzufolge der Generator auf den verschiedensten Anwendungsgebieten eingesetzt werden kann. Das Gerät eignet sich unter anderen für die Modellierung bzw. Steuerung langsamer industrieller Prozesse, für die Prüffeldmessung von NF-Filtern und für Servicezwecke.

Die bei Funktionsgeneratoren ungewohnte obere Grenzfrequenz von 10 MHz gestattet auch IC-Prüfungen.

Die beiden Generatoren können auch unabhängig voneinander betrieben werden, so daß dem Benutzer auf diese Weise in einem Gehäuse zwei Generatoren mit geringer Stromaufnahme und kleinen Abmessungen zur Verfügung stehen.

2. TECHNISCHE DATEN

2.1.	Hauptgenerator	
2.1.1.	Betriebsarten:	stetig, getriggert, getort AM, FM, gewobbelt
2.1.2.	Wellenformen:	Sinus, Dreieck, Rechteck, Impuls, Sägezahn
2.1.3.	Frequenz Beim Sinus-, Dreieck- und Rechtecksignal: Beim Impuls- und Sägezahn- signal:	0,01 Hz 10 MHz (9 Teilbereiche) 0,01 Hz 2 MHz
	Bereichaufteilung	Frequenzbereich
	Teilbereich	
	0,01	0,01 0,1 Hz
	0,1	0,1 1 Hz
	1	1 10 Hz
	10	10 100 Hz
	100	100 1 kHz
	1 kHz	1 kHz 10 kHz
	10 kHz	10 kHz 100 kHz
	100 kHz	100 kHz 1 MHz
	1 MHz	1 MHz .,. 10 MHz
2.1.3	.l. Frequenzgenauigkeit bei	
	den symmetrischen Wellen-	
	formen:	0,01 Hz 10 MHz:
	(In ansgefahrener Stellung	± 2 % vom Einstellwert
	der Drucktaste VAR)	± 2 % vom Endwert
		0,1 Hz 100 kHz:
		±1 % vom Einstellwert,
•		+1% vom Endwert

```
2.1.4. Ausgänge
```

2.1.4.1. Synchronausgang

2.1.4.1.1. Ausgangswellenform:

Rechteck (beim Sinus-, Rechteck- und Dreiecksignal)

Impuls (beim Impuls- und Sä-

gezahnsignal)

2.1.4.1.2. Amplitude:

3 V_{ss} unbelastet, erdsymmetrisch

 \geq 1,5 V_{ss} an 50 Ω , erdsymmetrisch

2.1.4.1.3. Anstiegs- und Rücklaufzeit:

≤ 30 ns

2.7.4.2. Hauptausgang

2.1.4.2.1. Ausgangswellenformen: Sinus, Dreieck, Recheck, Im-

puls, Sägezahn (wahlweise)

2.1.4.2.2. Amplitude:

> 30 V_{ss} unbelastet \geq 15 V_{SS} an 50 Ω

2.1.1.2.3. Amplitudenfrequenzgang

(Referenzdaten: 1 kHz, 15 V_{ss} Amplitude, an 5C Ω Belastung) Frequenzgang der

Sinuswelle.

 \pm 0,2 dB (0,01 Hz - 10 kHz) \pm 0,5 dB (10 kHz - 1 MHz)

+ 1 dB (1 MHz - 10 MHz)

Frequenzgang des Dreiecksignals:

 $^{+}$ 0,2dB (0,01Hz-10kHz) ± 3 dB bis 10MHz

Frequenzgang des Rechtecksignals:

<u>+</u>] dB (1 MHz - 10 MHz)

2.1.4.2.4. Zeitsymmetrie

(in Stellung OFF des Symmetrieschalters):

> 98 % (0,1 Hz - 10 kHz)> 95 % (0,1 Hz - 10 MHz)

2.1.4.2.5. Linearität des Dreieck- und Sägezahnsignals: (gemessen bei einer Amplitude von

15 V_{aa}, an 50 Ohm) > 98 % bis 10 kHz

2.1.4.2.6. Sinussignalverzerrung: (gemessen bei einer Amplitude von 15 V_{ss}, an 50 Ohm): typisch 0,5 % ≤ 1 % bis 20 kHz -28 dB bis 10 MHz sämtliche Oberwellen 2.1.4.2.7. Tastverhältnis des Impuls- und Sägezahnsignals: zwischen 30 % - 70 % - 30 % stetig einstellbar 2.1.4.2.8. Anstiegs- und Abfallzeit (Rechteck- und Impulssignal): ≤ 40 ns 2.1.4.2.9. Gesamter Dachfehler und Überschwingen Rechteckund Impulssignal : ≤ 10 % , bei 15 $V_{\rm SS}$ Amplitude an 50 Ω Belastung 2.1.4.2.10. Grundlinienverschiebung (stetig einstellbar): ±5 V an einer Belastung von 50 Ω ± 10 V ohne Belastung Der Gesamtwert von Grundlinienverschiebung und Amplitude darf bei einer Belastung von 50 Ohm ±7,5 V bzw. ohne Belastung ±15 V nicht überschreiten. 2.1.4.2.11. Dämpfung: 1:1, 10:1, 100:1 2.1.4.2.12. Abweichung der Dämpfung < 0,1 dB/10 dB vom Nennwert: 2.1.4.2.13. Umfang der Amplituden-

10

feinregelung:

2.2.	Modulationsgenerator	
	Wellenformen:	Sinus, Dreieck, Rechteck, Sägezahn, Impuls
2.2.2.	Frequenz:	0,01 10 kHz (3 Teilbereiche)
2.2.2.1	. Teilbereiche	() iclideretche)
	Teilbereich	Frequenzbereich
	0,1	0,01 Hz - 1 Hz
	10 .	1 Hz - 100 Hz
*	l kHz	100 Hz - 10 kHz
2.2.2.2	. Umfang der Freguenz-	
	feinregelung:	≥ 100
2.2.3.	Amplitude des Modulator-	
	ausganges:	\geq 4 V_{SS} (an 50 Ω , erd-frei)
2.3.	Modulationsarten	
	Modulationssignalquellen:	intern
		extern
2.3.2.	Interne Modulationen	,
	. Amplitudenmodulation	
	.l. Modulationsgrad:	0 - 100 %
	.2. Modulationsfrequenz:	0,01 Hz - 10 kHz
2.3.2.2		0,01 Hz 10 KHz
	.2. Modulationshub:	0 ± 5 %
2.3.2.3		
	l. Wobbelumfang:	100:1 (bis zur oberen
		Grenze des eingestellten
		Teilbereiches)
2.3.2.3.	2. Wobbelfrequenz:	0,01 Hz - 10 kHz
2.3.2.4.	· ·	
	Folgefrequenz des Tor-	
	signals:	0,01 Hz - 10 kHz
		wy war and will

Wellenform:
Amplitude:

Rechteck oder Impuls
Amplitudenregelknopf in
Maximumstellung

- 2.3.2.5. Betriebsart mit Triggerung
 Unter dem Einfluß des Triggersignals startet der
 Oszillator und kehrt nach Ablauf einer Periode in
 den Grundzustand zurück. Die am Gerät eingestellte
 Frequenz soll die Triggerfrequenz in jedem Fall
 überschreiten.
- 2.3.2.5.1. Triggerfrequenz:

0.01 Hz - 10 kHz

2.3.2.5.2. Wellenform:

Rechteck oder Impuls

2.3.2.5.3. Amplitude:

Amplitudenregelknopf in

Maximumstellung

2.3.3. Externe Modulationen

Mit dem an den Eingang MOD IN gelegten Signal kann wahlweise eine Amplituden- oder Frequenzmodulation Torung, Wobbelung (VCF) bzw. eine Triggerung (Einzelstart) des Oszillators bewirkt werden.

2.3.3.1. Amplitudenmodulation

2.3.3.1.1. Modulationstiefe:

0 - 100 % .

2.3.3.1.2. Modulationsfrequenz:

DC - 100 kHz

2.3.3.1.3. Modulationsspannungs-

bedarf:

max. 50 mV $_{ss}$ / %

Amplitudenfeinregel-

potentiometer:

in Stellung xl

2.3.3.2. Frequenzmodulation

2.3.3.2.1. Modulationsfrequenz:

DC - 100 kHz

2.3.3.2.2. Modulationsspannungs-

bedarf:

max. 500 mV $_{ss}$ /%

In der Stellung 5 des Frequenzfeinreglers

2.3.3.3. Wobbelbetrieb (VCF)

Unter dem Einfluß der Eingangsspannungsänderung von 5 V andert sich die Frequenz bis zur oberen Grenze des eingestellten Teilbereiches in einem Verhältnis von min. 100:1. Eine positive Spannung erhöht und eine negative Spannung vermindert die eingestellte Frequenz.

2.3.3.4. Betriebsart mit Triggerung

2.3.3.4.1. Mindeststeilheit des

Triggersignals:

10 V//us

2.3.3.4.2. Amplitude:

TTL-Pegel

2.3.3.4.3. Folgefrequenz des Trigger-

signals:

0 - 10 kHz

2.3.3.5. Getorter Betrieb

2.5.3.5.1. Folgefrequenz des Tor-

signals:

0 - 10 kHz

2.3.3.5.2. Mindeststeilheit des

Triggersignals:

10 V//us

2.3.3.5.3. Amplitude:

TTL-Pegel

2.4. Netzangaben

2.4.1. Spannung:

110, 127, 220 V \pm 10 %

2.4.2. Frequenz;

50/60 Hz

2.4.3. Leistungsaufnahme:

38 VA

2.5. Abmessungen

Höhe:

108 👊

Breite:

266 mm

Tiefe:

308 mm

2.6. Massa:

ca. 4,5 kg

2.7. Klimatische Angaben 2.7.1. Normal- und Nennbetriebsbedingungen +10°C ... +35°C 2.7.1.1. Umgebungstemperatur: max. 85 🕉 2.7.1.2. Relative Luftfeuchte: 0,6...1,06 bar 2.7.1.5. Luftdruck: 2.7.2. Grenzbetriebsbedingungen +5°C ... +40°C 2.7.2.1. Umgebungstemperetur: max. 85 % 2.7.2.21 Relative Luftfeuchte: 0,6...1,06 bar 2.7.2.9. Luftdruck: 2.7.3. Transport- und Lagerungsbedingungen -25°C ... +55°C 2.7.3.1. Umgebungstemperatur: mar. 98 % 2.7.5.2. Relative Luftfeuchte: 0,6...1,06 bar 2.7.3.3. Luftdruck: 2.8. Periodische Stoßprüfung 2.8.1. Dauer des Stoßes: 12 ms 2.8.2. Maximale Beschleunigung: 5 B 2.8.3. Anzahl der Stöße: 1000

2.9. Das Gerät entspricht folgenden Normen und Empfehlungen

2.9.1. MSZ 94-70

2.9.2. RSZ 2657-73, RSZ 3824-73, RSZ 3825-73, RSZ 4492-74

3. LIEFERUMFANG

3.1.	Funktionsgenerator Typ 1257/TR-0463	1 St.	
•	Zubehör "A" (im Gerätekaufpreis enthalten)		
	1024-4 50- Ω -Kabel (1 m) mit BNC-Stecker an beiden Enden Bedienungsanleitung	1 St. 1 Ex.	
	Sicherungseinsätze MSZ 8863/2-66		
	1 A (Go 20/5,2 - 1 A) 800 mA (Go 20/5,2 - 800 mA) 220 V - 200 mA (FST + 200 mA + 5x20)		
	110 V bow 127 V 400 mA (FST +400 mA+5x20)	1 St. 2 St.	

4. WIRKUNGSWEISE UND AUFBAU DES GERÄTES UND SEINER HAUPTTEILE

4.1. Arbeitsprinzip

Die Wirkungsweise des Gerätes wird anhand des Blockschaltbildes in Bild 1 geschildert.

In elektrischer Hinsicht gliedert sich das Gerät in folgende Teile:

- 1. Frequenzeinheit
- 2. Triggersignalverstärker
- 3. Dreieck-Sinus-Umsetzer
- 4. Summierverstärker
- 5. Multiplizierstromkreis
- 6. Endverstärkerstufe
- 7. Ausgangsteiler
- 8. Interner Modulationsgenerator
- 9. Netzteil

4.2. Wirkungsweise des Gerätes

(Kurzgefaßte Beschreibung anhand des in Bild 1 enthaltenen Blockschaltbildes)

Das Dreieck- und Rechtecksignal mit eingestellter Frequenz wird vom Grundgenerator (1) erzeugt. Der Grundgenerator kann in folgenden Betriebsarten arbeiten.

- Getorter Betrieb:

während der Dauer des von dem externen oder dem Modulationsgenerator gelieferten internen Torsignals ist die Funktion des Grundgenerators genehmigt.

- Getriggerter Betrieb:

unter dem Einfluß eines jeden externen oder internen Triggerimpulses liefert die Frequenzeinheit ein einmaliges Ausgangssignal

- FM-Betrieb: die Frequenz des Grundgenerators wird

mit einem externen oder internen Si-

gnal moduliert

- Wobbelbetrieb: die Frequenz des Grundgenerators än-

dert sich in Abhängigkeit vom Steuer-

signal in einem breiten Bereich

- AM-Betrieb: das Ausgangssignal des Gerätes kann

mit einem externen oder internen Modulationssignal in der Amplitude mo-

duliert werden.

Aus dem Dreiecksignal des Grundgenerators erzeugt der Dreieck-Sinus-Umsetzer (3) ein Sinussignal mit niedrigem geringer Klirrfaktor. Von den zur Verfügung stehenden drei Signalformen gelangt die mit dem Betriebsartenschalter gewählte an den Multiplizierstromkreis (5), in dem die Amplitudenmodulation und die Amplitudenregelung stattfinden. Das andere Eingangssignal des Multiplizierstromkreises kommt aus dem Summierer. Der Summierverstärker bewirkt die Addierung zweier Signale, die Überlagerung des Amplitudenmodulationssignals und der die Ausgangsamplitude bestimmenden Gleichspannung.

Der Multiplizierstromkreis speist die Endverstärkerstufe (6). Die Verlagerung der Grundlinie wird ebenfalls in dieser Stufe verwirklicht.

Das Ausgangssignal des Endverstärkers gelangt an den Ausgangsteiler (7), mit dem man die Amplitude des Ausgangssignals in 20-dB-Schritten ändern kann.

Das Gerät besitzt auch einen Synchronsignalausgang. Dieses Signal wird von der Triggerstufe (2) aus dem Signal des Grundgenerators erzeugt.

Für die Zwecke der Modulation, der Triggerung und der Torung

sowie für externe Verwendung enthält das Gerät auch einen internen Modulationsgenerator (8). Dieser Generator ist ein mit integrierten Schaltkreisen aufgebauter Funktionsgenerator, der Dreieck-, Sinus- und Rechtecksignale liefert.

Die Stromkreise des Gerätes werden vom stabilisierten Netzteil (9) mit Energie versorgt.

4.3. Ausführliche Funktionsbeschreibung (Beschreibung der Stromkreise)

4.3.1. Funktion des Grundgenerators

4.3.1.1. Funktion bei Freilaufbetrieb

Der Grundgenerator des Gerätes liefert Dreieck- bzw. Sägezahnsignale. Die Wirkungsweise geht aus dem nachstehenden Blockschaltbild hervor.

Beim Einschalten befindet sich der Ausgang des Komparators mit großer Hysterese in einem Zustand, in dem die Funktion z.B. des negativen Stromgenerators genehmigt wird. Demzufolge nimmt die Spannung am Kondensator C_T in negativer Richtung linear zu, Wenn die Spannung des negativen Komparationspegel des Komparators erreicht, kippt der Komparator und blockiert den den negativen Strom liefernden Stromgenerator und genehmigt zugleich

die Funktion des positiven Stromgenerators, der den Kondensator in positiver Richtung zu entladen bzw. zu laden beginnt. Beim Erreichen des positiven Komparationspegels kippt der Komparator erneut. Er blockiert den positiven Ladestrom und gibt zugleich den negativen Ladestrom frei, der den Zeiteinstellkondensator in negativer Richtung zu entladen bzw. zu laden beginnt. Damit ist eine Periode beendet.

Aus dem Ausgangsrechtecksignal des Komparators erzeugt ein Begrenzerstromkreis ein steil ansteigendes Rechtecksignal mit stabiler Amplitude.

Es ist zu sehen, daß man durch Änderung des Verhältnisses der Ladeströme anstelle des Dreiecksignals ein Sägezahnsignal und anstelle des Ausgangsrechtecksignals ein Impulssignal mit veränderbarem Tastverhältnis erhält.

Ausführliche Beschreibung der Funktion des Stromkreises

Die Ladeströme durchfließen die Widerstände R434 und R438. Auf ihre Erzeugung wird später eingegangen.

Für das Ein- und Ausschalten der Ladeströme sorgen die Dioden D322-D325, die vom Ausgang des Komparators mit großer Hysterese gesteuert werden.

Bei der Freigabe des positiven Ladestromes sind D322 und D324 leitend. Dabei fließt ein Teil des positiven Ladestromes über D322.

Die Ladeströme laden den vom Schalter Sl/D eingeschalteten Zeiteinstellkondensator.

Das am Zeiteinstellkondensator entstehende Dreiecksignal gelangt an den mit den Transistoren TR339-345 aufgebauten Trennverstärker, dessen Spannungsverstärkung eine Einheit beträgt.

Der Ausgang des Trennverstärkers speist den mit IC304 aufgebauten Komparator mit großer Hysterese. Infolge der positiven Rückkopplung liefert der Komparator ein sehr steil ansteigendes Ausgangssignal. Der eine Ausgang steuert über die Emitterfolger TR348 und TR349 die Schaltdioden D322 und D324, während der gegenphasige Ausgang den Begrenzerstromkreis und die Synchronsignalverstärkerstufe speist.

Der Begrenzerstromkreis hat die Aufgabe, das Impuls- und das Rechtecksignal zu erzeugen. Die als Emitterfolger arbeitenden beiden ersten Transistoren (TR350-351) des Begrenzerstromkreises gewährleisten die Trennung und die Ansteuerung des Begrenzerstromkreises mit niedriger Impedanz.

Die beiden anderen Transistoren (TR352-353) dienen zur Erzeugung des Klemmpegels. Die Begrenzung wird von zwei Begrenzerdioden (D339-340) verrichtet. Im Interesse der Temperaturstabilität der Klemmspannung war es zweckmäßig, eine stromverringernde Klemmung anzuwenden, weil dabei die Begrenzerdiode und die durch die Wärme hervorgerufene Änderung der Basis-Emitter-Durchlaßspannung des den Klemmpegel erzeugenden Transistors sich gegenseitig kompensieren.

Das Ausgangssynchronsignal wird von der aus den Transistoren TR354-355 bestehenden Emitterfolgerstufe erzeugt.

4.3.1.2. Betrieb mit Torung

Man wählt diese Betriebsart durch Drücken der Taste GATE. Das externe oder interne Torsignal trifft am Schalter EXT ein. Es wird von D343 gleichgerichtet und von D344 geklemmt. Das auf diese Weise vorbereitete Torsignal ateuert die aus den Transistoren TR356-357 bestehende Kippschaltung. Der Kipppegel ist mit der Basisspannung von TR357 auf ungefähr +1,8 V eingestellt.

Solang die Amplitude des Torsignals O V bzw. Lleiner ist als der Umschaltpegel, ist der Transistor TR356 leitend und TR357 gesperrt. Dabei ist der dem Kollektor des Transistors TR356 angeschlossene n-Kanal-FET TR337 leitend, so daß er den Ladestrom ableitet und dadurch die Funktion des Hauptgenerators verhindert.

Wenn die Amplitude des Torsignals +5 V bzw. größer ist als der Kipp-Pegel, wird TR356 gesperrt. Die Kollektorspannung steigt auf -14 V an und an das Gate des FET TR337 gelangt eine große Sperrspannung. Durch das Sperren des FET wird für den Ladestrom der Weg zum Zeiteinstellkondensator freigegeben, so daß der Grundgenerator zu arbeiten beginnt. Die Funktion wird beim Ausbleiben des Torsignals auf die bereits beschriebene Weise eingestellt.

Eine weitere Voraussetzung für die richtige Funktion des Grundgenerators ist, daß die Aufladung des Zeiteinstellkondensators bei Beginn der Torung stets in derselben Richtung einsetzt.

Um das zu gewährleisten, wird beim Ablauf des vorangehenden Torsignals der Komparator - ungeachtet der Stellung, in der er sich befindet - stets in diejenige stabile Position gebracht, die zur Freigabe des Ladestromes entsprechender Polarität erforderlich ist. Diese Einstellung erfolgt mit Hilfe eines positiven Nadelimpulses, den man an die miteinander verbundenen Punkte 1, 4 von IC304 legt. Zur Erzeugung des Nadelimpulses wird der am Kollektor von TR357 entstehende negative Spannungssprung differenziert und dann dem aus TR358 bestehenden Inverter zugeführt. Der bei der Differenzierung entstehende positive Nadelimpuls wird zum Schutz des Transistors beseitigt.

Da der externe Torsignaleingang des Gerätes The-kompatibel ist, kann das Gerät auch in programmierten Systemen verwendet werden.

4.3.1.3. Wirkungsweise bei getriggertem Betrieb

In dieser Betriebsart erzeugt das Gerät unter dem Einfluß eines externen oder internen Triggersignals Einzelausgangssignale.

Diese Betriebsart kann durch Drücken der Drucktaste TRIG gewählt werden.

Das externe oder interne Triggersignal trifft am Schalter EXT ein. Es wird dann von der Diode D343 gleichgerichtet und von D344 auf +5 V begrenzt. Die Triggerung findet unter dem Einfluß des Überganges 1-0 statt. Das vorbereitete Triggersignal gelangt an die Inverter, die aus den beiden NAND-Gattern der IC305 aufgebaut sind. Die Gatter dienen zur Signalformung. Der Ausgang von IC305 /3/ liefert ein steiles Signal zur ansteuerung des Differenzierkreises /R509, R518, C382/. Unter dem Einfluß des Triggersignals liefert der Differenzierkreis einen negativen Nadelimpuls. Dieser Impuls läßt dann das aus den beiden restlichen NAND-Gattern von IC305 bestehende Flipflop kippen.

Im Ruhezustand befindet sich der Ausgang des Flipflops im Zustand "O". Dieser Spannungspegel ist über den Arbeitskontakt des Betriebsartenschalters TRIG an die Basis von TR356 gelegt. Dabei ist TR356 leitend, weil die Basis des Transistors TR357, der mit ihm den Differenzverstärker bildet, auf ungefähr +1,8 V eingestellt ist.

Am Kollektor von TR356 beträgt der Spannungswert O V weshalb auch der n-Kanal-FET TR337 leitend ist. Der leitende FET entzieht den Strom von dem gerade eingeschalteten Zeiteinstell-kondensator, so daß die Funktion der Frequenzeinheit blockiert ist.

Wenn der Triggerimpuls eintrifft, kippt das Flipflop und der

Ausgang wird 1. Demzufolge wird der Transistor TR356 gesperrt. Der Kollektor erhält eine große negative Spannung, woraufhin auch der FET TR337 gesperrt und der Weg für den Ladestrom zum Zeiteinstellkondensator freigegeben wird. Es beginnt die Funktion des Grundgenerators. In der Betriebsart mit Triggerung muß das Gerät ein Einzelausgangssignal liefern, weshalb die Funktion des Grundgenerators am Ende der ersten Periode zu blockieren ist. Die Blockierung erfolgt durch das Rückkippen des aus IC305 bestehenden Flipflops.

Das Rückkippen findet auf folgende Weise statt. Das Dreiecksignal des Grundgenerators wird von einem mit den Transistoren TR359-TR360 realisierten Schmitt-Trigger überwacht. Der Umschaltpegel kann mit dem Potentiometer P317 auf O V bzw. auf eine negative Spannung von einigen Zehntelvolt eingestellt werden.

Durch diese Einstellung kann erreicht werden, daß der Schmitt-Trigger auch schon im blockierten Zustand des Grundgenerators gekippt ist. Dem Kollektor von TR360 schließt sich ein Differenzierstromkreis (Cl, C379, R508) an. Der Ausgang des Differenzierstromkreises steuert den aus den Transistor TR361 aufgebauten Inverter, der das Flipflop zurückkippen läßt.

Wenn der Grundgenerator unter dem Einfluß des Triggersignals auf die bereits geschilderte Weise zu arbeiten beginnt, ist der Schmitt-Trigger bereits gekippt. Am Ende der positiven Halbperiode des Dreiecksignals kippt der Schmitt-Trigger in der Nähe von O zurück. Von dem sich aus dem Rückkippen ergebenden Spannungssprung würde der Differenzierstromkreis einen negativen Nadelimpuls liefern, was jedoch unnötig ist, weshalb er zum Schutz des Transistors TR361 mit der Diode D376 beseitigt wird.

Inzwischen beginnt die negative Halbperiode des Rechtecksignals.

Das Signal erreicht die Spitze und nimmt dann ab, bis die Nähe von O V erreicht wird.

Beim Erreichen des Kipp-Pegels des Schmitt-Triggers kippt der Stromkreis. Am Ausgang entsteht ein positiver Spannungssprung, aus dem der Differenzierstromkreis einen positiven Nadelimpuls erzeugt. Dieser Impuls erzeugt an dem aus dem Transistor TR361 aufgebauten Inverters einen sehr schmalen Impuls mit steilem 1-0-Übergang.

Dieser Impuls läßt das Flipflop zurückkippen, welches nun in den Grundzustand versetzt wird. Dadurch wird die Funktion des Grundgenerators auf die weiter oben bereits beschriebene Weise blockiert.

Im Augenblick, wo die Funktion des Grundgenerators blockiert wird, entsteht auch bei der getriggerten Betriebsart der Rück-kippimpuls, dessen Entstehung bei der Erörterung der getorten Betriebsart bereits beschrieben wurde und der den über eine große Hysterese verfügenden Komparator des Grundgenerators in den Grundzustand versetzt.

Dadurch wird gewährleistet, daß die Funktion des Grundgenerators beim Erscheinen des Triggerimpulses immer in derselben, in der positiven Richtung einsetzt.

4.3.1.4. Erzeugung der Ladeströme

Die Frequenz des Grundgenerators wird durch zwei Faktoren bestimmt. Diese sind der in der Schalterreihe Sl gerade eingeschaltete Zeiteinstellkondensator, mit dem die Frequenz in l:10-Schritten eingestellt werden kann und die Stärke des den Zeiteinstellkondensator ladenden positiven und negativen Stromes, mit dem die Feinregelung der Frequenz verrichtet wird.

Der positive und negative Ladestrom wird von den spannungsgesteuerten Stromgeneratoren erzeugt, die aus den integrierten Schaltkreisen IC201-IC205, und den Transistoren TR201-TR202 sowie TR336, TR338 aufgebaut sind.

Die Steuerspannung setzt sich aus zwei Teilen zusammen: aus der Spannung, welche von dem die Feinregelung der Frequenz verrichtenden Potentiometer FREQ FINE (P5) geliefert wird und aus dem FM-Modulations- oder Wobbelsignal, das vom externen Eingang oder vom internen Modulationsgenerator eintrifft. Die beiden Teile werden von dem Summierverstärker summiert, der aus einem Operationsverstärker von IC201 aufgebaut ist. Die Ausgangsspannung des Summierers gelangt über den Schalter VAR (S3-3) an den Schleifer des Potentiometers SYM (P6).

Bei eingeschaltetem Schalter entspricht dieser Punkt den verbundenen Eingangspunkten der aus dem Operationsverstärker IC202 aufgebauten beiden invertierenden Verstärker. Am Ausgang des einen Verstärkers erscheint die den positiven Ladestrom und am Ausgang des anderen Verstärkers die den negativen Ladestrom steuernde Spannung. Je nach der Einstellung des Potentiometers P6 ändert sich das Verhältnis zwischen den durch die beiden Verstärker bewirkten Verstärkungen. Dasselbe Verhältnis wird auch für die Ausgangsspannungen und somit für die durch diese gesteuerten Ströme kennzeichnend sein.

Kurz gesagt, kann mit dem Potentiometer P6 das Verhältnis zwischen den Ladeströmen und dadurch die Zeitsymmetrie des Dreiecksignals des Grundgenerators geändert werden. Die Randwerte der Symmetrieregelung betragen 30 und 70 %. Bei der Änderung der Symmetrie ist auch mit einer geringfühigen Frequenzänderung zu rechnen.

In der Stellung OFF des Schalters S3-3 wird das Potentiometer P6 durch zwei Widerstände vom gleichen Wert ersetzt. In die-

sem Fall erhält man ein symmetriesches Dreiecksignal.

Die am Ausgang von IC202 erscheinenden Steuerspannungen gelan gen an die Pegelumsetzerstufe. Diese Stufe setzt sich aus den Bauelementen IC203-TR201 bzw. IC203-TR202 zusammen. Da die Steuerspannungen einen negativen Pegel haben, zur Steuerung des positiven Stromgenerators jedoch eine positive Steuerspannung benötigt wird, mußte der aus IC201 bestehende invertierende Verstärker eingefügt werden, dessen Verstärkung 1 beträgt.

Die Pegelumsetzer setzen die Steuerspannung aus dem Bereich 0 - $U_{St.max}$. in den Bereich $U_{T} = (U_{T} - U_{St.max})$ um.

Die den positiven und den negativen Strom erzeugenden Stromgeneratoren haben denselben Aufbau, weahalb nur der eine, und zwar der positive Stromgenerator beschrieben wird.

Die Steuerspannung erscheint am Widerstand R220. IC205 regelt den Strom des Feldeffekttransistors TR336 so, daß dieser beim Durchfließen des Widerstandes R434 immer einen mit der Steuerspannung übereinstimmenden Spannungsabfall bewirkt. Demzufolge ist dieser Strom immer konstant, seine Größe ist nur von der Steuerspannung abhängig. Dieser Strom lädt den Zeiteinstell-kondensator.

In den drei unteren Teilbereichen hätte sich der Wert der Zeiteinstellkondensatoren so hoch ergeben, daß es zweckmäßig war,
die größere Zeitkonstante anstelle der Erhöhung des Zeiteinstellkondensators durch Verminderung des Ladestromes zu gewährleisten. Demzufolge fließt in den besagten drei unteren Frequenzteilbereichen nur ein 0,1-, 0,01- bzw. 0,001stel des Ladestromes zum Zeiteinstellkondensator.

Die Ladestromverminderung wird durch den aus dem integrierten Schaltkreis IC206 und den Transistoren TR203-TR206 aufgebauten Teil, den Kapazitätsvervielfacher (Capacitance Multiplier) bewirkt.

Der Kapazitätsvervielfacher besteht aus einer Verstärkerstufe und einem aktiven Differenzierstromkreis. Die Verstärkerstufe verstärkt das Dreiecksignal des Hauptgenerators auf den für den Differenzierkreis erforderlichen Pegel. Der aktive Differenzierstromkreis besteht aus einem durch Feldeffekttransistoren und Emitterfolgern ergänzten Operationsverstärker sowie aus den Rückkopplungselementen C206-207 bzw. R514-R516.

Am Ausgang des Differenzierkreises erhält man aus dem Eingangsdreiecksignal ein Rechtecksignal. Die Amplitude des Rechtecksignals ist von der eingestellten Frequenz und der Größe des vom Schalter Sl gerade eingeschalteten Rückkopplungswiderstandes abhängig. Diesem Rechtecksignal wird noch das an das Gate von TR203 gelegte Dreiecksignal überlagert. Dieses zusammengesetzte Signal erscheint am Ausgang der Emitterfolger TR205-TR206 an einem Punkt mit sehr niedriger Impedanz. Zwischen diesen Punkt und den Zeiteinstellkondensator schaltet sich der Widerstand R232 ein, über den der Stromentzug stattfindet. Bei den unteren vier und den oberen fünf Frequenzteilbereichen wurden besondere Frequenzeichpotentiometer (P201, P202) vorgesehen. P201 stellt die Frequenz in den unteren vier und P202 in den oberen fünf Bereichen ein. Die Umschaltungen werden vom Schalter S1 verrichtet.

4.3.1.5. Wirkungsweise in der FM-Betriebsart

Diese Betriebsart erhält man durch Drücken des FM-Betriebsartenschalters.

Die von der Buchse EXT IN oder vom internen Modulationsgenerator eintreffende Frequenzmodulationsspannung gelangt nach Teilung durch die Widerstände R493-R494 an den Eingang des Summierers IC201. Die Frequenz des Grundgenerators wird in jedem Fall durch die Spannungen bestimmt, die am Eingang der beiden Summierer İC201 eintreffen.

Mit dem Potentiometer P5 kann die Grundfrequenz des Gerätes eingestellt werden. Der Frequenzhub wird durch die Amplitude des Frequenzmodulationssignals bestimmt.

4.3.1.6. Wirkungsweise in der Betriebsart SWEEP (VCF)

In dieser Betriebsart arbeitet der Grundgenerator als ein spannungsgesteuerter Oszillator.

Das Funktionsprinzip stimmt mit dem bei der FM-Betriebsart beschriebenen Prinzip überein.

Der einzige Unterschied besteht darin, daß das externe oder interne Modulationssignal nicht geteilt ist, so daß mit der FM verglichen, ein vielfacher Frequenzhub erzielt werden kann.

4.3.2. Triggersignalverstärker

Das Gerät besitzt auch einen Synchronsignalausgang. Das Synchronsignal erscheint an der BNC-Buchse TRIG OUT. Es wird von dem aus den Transistoren TR354-TR355 aufgebauten Emitterfolger erzeugt, der vom Ausgangsrechtecksignal des über eine große Hysterese verfügenden Komparators des Grundgenerators angesteuert wird.

Der Ausgang TRIG OUT kann mit 50 Ω belastet werden.

4.3.3. Dreieck/Sinussignal-Umsetzer

Der Umsetzer besteht aus zwei Verstärkerstufen und einem mit einem Feldeffekttransistor realisierten Sinusformerstromkreis.

Die aus den Transistoren TR308-TR312 aufgebaute Verstärkerstu-

fe verstärkt das Drejecksignal des Grundgenerators auf den zur Ansteuerung des Sinusformerstromkreises erforderlichen Pegel. Die Symmetrie und das Maß der Verstärkung kann mit dem Potentiometer P303 bzw. P304 eingestellt werden.

Das Ausgangssignal des Verstärkers gelangt an den Sinusformerstromkreis, der aus den Dioden D314, D315, sowie dem n-Kanal-Feldeffekttransistor TR313.

Dieser Stromkreis erzeugt unter Verwendung zweier Dioden und der nichtlinearen Kennlinie des Feldeffekttransistors ein Sinussignal mit geringer Verzerrung, das am Source des Feldeffekttransistors erscheint. Dieses Sinussignal von niedriger Amplitude wird von dem aus den Transistoren TR314-TR319 bestehenden Verstärker auf den erforderlichen Pegel verstärkt. Die Symmetrie und die Verstärkung des Stromkreises werden mit den Potentiometern P305 bzw. P306 eingestellt. Zur Verbesserung der HF-Eigenschaften bewirken die Elemente C320, R349, R350 eine HF-Anhebung.

4.3.4. Summierverstärker, Multiplizierstromkreis

Der durch den Summierverstärker ergänzte Multiplizierstromkreis dient zur Realisierung der Amplitudenregelung und der Amplitudenmodulation.

Der Multiplizierstromkreis ist mit dem integrierten Schaltkreis IC303 aufgebaut und durch die Emitterfolger TR302, TR321 ergänzt, welche für die Trennung sorgen.

Am Eingang Y des Multiplizierstromkreises trifft das vom Signalformwählschalter S1-2 kommende Sinus-, Dreieck- oder Rechtecksignal ein, während an den Eingang X die vom Summierverstärker IC103 kommende Amplitudenregel- und Amplitudenmodulationsspannung gelegt wird.

Die Ausgangsspannung des Summierverstärkers ist der Summe der

vom Amplitudenregelpotentiometer AMPL (P4) kommenden Spannung und dem vom Eingang EXT IN oder vom internen Modulationsgenerator kommenden Amplitudenmodulationssignal proportional.

Die Amplitudeneichung erfolgt durch die entsprechende Einstellung der Verstärkung des Summierverstärkers.

Die Ausgangsspannung des Multiplizierstromkreises gestaltet sich gemäß dem Zusammenhang $U_{Aus} = k \cdot U_{x} \cdot U_{y}$. Die Eingangs-Offset-Spannungen lassen sich mit den Potentiometern P307, P308 ausgleichen.

Der Trimmerkondensator C327 gewährleistet die HF-Kompensation und das Potentiometer P311 dient zum Einstellen der Amplitudensymmetrie des Ausgangssignals.

4.3.5. Endverstärkerstufe

Die Endverstärkerstufe des Gerätes setzt sich aus den Transistoren TR322-TR335 zusammen. Das vom Multiplizierstromkreis kommende Gegentaktsignal wird von dem aus dem Doppeltransistor TR329 bestehenden Differenzverstärker empfangen. Die Kollektorströme des Differenzverstärkers werden von Stromgeneratoren geliefert.

Dann folgt der trennende Emitterfolger TR325, dessen Ausgangssignal an die aus den Transistoren TR332, TR333 bestehende Verstärkerstufe gelangt, die hinsichtlich dieses Signals in Basisschaltung arbeitet und zur Ansteuerung der Endtransistoren TR334, TR335 dient.

Die Endverstärkerstufe verfügt über eine hohe Verstärkung und besitzt infolge der großen negativen Rückkopplung über eine sehr gute Stabilität. Die HF-Kompensierung kann mit den Trimmerkondensatoren C343, C348 geregelt werden. Die Offset-Spannung der Endstufe kann mit dem Potentiometer P312 ausgeglichen

werden. Die Grundlinienverschiebung des Ausgangssignals wird von der vom Potentiometer OFFSET an der Frontplatte kommenden Spannung verrichtet, die an den Eingang des Differenzverstärkers gelangt. Mit dem Schalter ON (S3-1) kann die Grundlinienverschiebung ein- und ausgeschaltet werden.

Das Ausgangssignal der Endverstärkerstufe gelangt über einen $50-\Omega$ -Widerstand an den Ausgangsteiler.

4.3.6. Ausgangsteiler

Mit dem Ausgangsteiler kann man die Amplitude des Ausgangssignals in drei Stufen, in 10-, 1- und 0,1fachen Schritten, also 20-dB-Schritten einstellen. Der $50-\Omega$ -Ausgangswiderstand besteht aus zwei π -Teilern, die vom Schalter S3-2 geschaltet werden.

In der Stellung 10 gelangt das Ausgangssignal der Endstufe über den 50- Ω -Widerstand und den Schalter S5 unmittelbar an die BNC-Buchse OUT an der Frontplatte.

In der Stellung 1 schaltet sich der aus den Widerständen R6-R9 bestehende 20-dB- **-Teiler ein.

In der Stellung O,l schaltet sich der aus den Widerständen RlO-Rl2 bestehende andere # -Teiler in Reihe so daß die Teilung 40 dB beträgt.

4.3.7. Interner Modulationsgenerator

Der Modulationsgenerator liefert die zu den verschiedenen Betriebsarten des Gerätes erforderlichen Tor-, Trigger-, AM-FM-Modulations-, bzw. Wobbelsignale und arbeitet ferner als ein selbständiger Funktionsgenerator, dessen Ausgangssignal an der BNC-Buchse OUT an der Frontplatte erscheint.

Der Modulationsgenerator besteht aus zwei Einheiten: dem die Sinus-, Dreieck- und Rechtecksignalform erzeugenden Funktionsgenerator und aus der, von diesem gespeisten Endverstärkerstufe.

Die Sinus-, Dreieck- und Rechtecksignalform wird vom Funktionsgenerator IClOl (ICL8038) erzeugt. Zum Wechseln der Frequenzteilbereiches des Generators dient der Schalter S4-1, welcher
die Zeiteinstellkondensatoren (ClOl-103) schaltet. Für die
Feinregelung (1:100) der Frequenz dient das Potentiometer FREQ
(Pl). Mit dem Potentiometer SYM (P2) kann die Zeitsymmetrie des
Dreiecksignals bzw. das Tastverhältnis des Impulssignals geändert werden.

Die Verzerrung des Sinussignals kann mit den Trimmerpotentiometern Plo1, Plo2 auf den Mindestwert eingestellt werden. Da der Sinussignalausgang nur mit einem kleinen Strom belastet werden kann, wurde die Einfügung einer aus den Transistoren TRlo1-TRlo4 bestehenden Trennstufe notwendig. Die Amplitude des Dreieck- und Rechtecksignals wird von den Teilern Rlo5-Rlo6 sowie Rlo3-Rlo4 auf den mit der Amplitude des Sinussignals übereinstimmenden Pegel eingestellt.

Die erforderliche Signalform wird von den drei verschiedenen Signalformen mit dem Schalter S4-2 gewählt. Das gewählte Signal gelangt an die aus dem einen Operationsverstärker von IClO2 aufgebaute Verstärkerstufe, die eine Spannungsverstärkung von einer Einheit bewirkt.

Eine geringe Verschiebung der Grundlinie ist mit dem Potentiometer N OFFSET (PlO4) möglich. An den Ausgang des Verstärkers schließt sich das Amplitudenregelpotentiometer AMPL (P3) an, von dem das Signal an den Eingang der Endverstärkerstufe gelangt, die aus dem anderen Operationsverstärker von IClO2 und den Komplenemtär-Transistoren TRlO5-TRlO6 besteht.

Das Ausgangssignal des Endverstärkers erscheint teils am Punkt INT MOD für die internen Modulationsbetriebsarten, teils an der BNC-Buchse MOD OUT an der Frontplatte für externe Verwendung.

4.3.8. <u>Netzteil (Bild 12)</u>

Die Stromkreise des Gerätes werden von fünf stabilisierten Netzteilen mit Energie versorgt.

Erzeugung der +26-V-Speisespannung

Der mit den Dioden D301 und D303 aufgebaute Zweiweggleichrichter erhält die Energie von den Punkten 6 und 9 des Netztransformators. Die pulsierende Gleichspannung des Gleichrichters wird vom Siebkondensator C301 gesiebt.

Der Spannungsstabilisator ist aus diskreten Elementen aufgebaut. Die Referenzspannung wird von der Zenerdiode D309 gelliefert. Das Fehlersignal wird von dem aus TR302-TR303 aufgebauten Differenzverstärker erzeugt und verstärkt. Der Basisstrom des Längstransistors TR1 wird vom Transistor TR301 geliefert, dessen Einbau zugleich auch der Erhöhung der Verstärkung dient.

Die Ausgangsspannung des Stabilisators wird mit dem Widerstand R305* auf den genauen Wert eingestellt.

Erzeugung der -26 V Speisespannung

Dieser Stabilisator hat genau denselben Aufbau wie das +26-V-Netzteil. Er erhält die Energie von derselben Wicklung des Netztransformators durch Zweiweggleichrichtung. Die Ausgangsspannung wird mit dem Widerstand R312* genau eingestellt.

Erzeugung der +14 V Speisespannung

Die Speisespannung von +14 V wird von dem durch den externen Längstransistor TR3 ergänzten integrierten Stabilisatorkreis 723 (IC301) erzeugt. Die Energie kommt von den Punkten 10 und 13 des Netztransformators nach der Zweiweggleichrichtung (D305, D307). Der integrierte Spannungsregler arbeitet in der von den Katalogen angegebenen Schaltanordnung. Die genaue Einstellung der Ausgangsspannung erfolgt mit dem Potentiometer P301.

Erzeugung der -14 V Speisespannung

Diese Speisespannung wird von dem integrierten Spannungsregler Typ 723 (IC302) erzeugt, der durch den Längstransistor TR4 und den Treibertransistor TR307 ergänzt ist.

Die erforderliche Wechselspannung kommt von den Punkten 10-13 des Netztransformators und die Zweiweggleichrichtung wird von D306, D308 verrichtet. Die pulsierende Gleichspannung wird von C313 gesiebt. Diese Gleichspannung speist den Stabilisator, der in der von den Katalogen angegebenen Schaltanordnung arbeitet.

Zur genauen Einstellung der Ausgangsspannung dient das Potentiometer P302.

Erzeugung der +5-V-Speisespannung (Bild 8)

Diese Spannung speist nur den TTL-Schaltkreis IC305, so daß an sie keine besonderen Forderungen gestellt werden.

Sie wird aus der stabilisierten Speisespannung von +14 V mit Hilfe des Längstransistors TR207 und der Zenerdiode D202 erzeugt.

Das Gerät enthält keinen Netzschalter. Der eingeschaltete Zustand wird von der Leuchtdiode Dl angezeigt,

4.4. Mechanischer Aufbau

Das Gerät ist in einem 2/3-Einschub untergebracht. Das Gehäuse hat moderne Spritzguß-Seitenplatten. Die Grund- und die Deckplatte sind aus Aluminiumplatten hergestellt.

Im Gerät sind drei gedruckte Leiterplatten enthalten. Die Längs- und die Endtransistoren sind auf einer besonderen Kühlplatte angeordnet. Der Traggriff des Gerätes läßt sich in drei Positionen einrasten.

Beim Ausbau des Gerätes aus dem Gehäuse sind zunächst die Boden- und die Deckplatte nach Lösen der Befestigungsschrauben zu entfernen. Die an der Seitenplatte des Gerätes angeordneten gedruckten Leiterplatten werden nach Abnahme der mit jeweils 4 Schrauben befestigten Seitenplatten zugänglich.

Bild 2 zeigt die Frontplatte des FUNKTIONSGENERATORS Typ 1257 mit den Bedienungsorganen, während in Bild 3 die an der Rückplatte angeordneten Bedienungsorgane dargestellt sind.

5. ALLGEMEINE BETRIEBSANWEISUNGEN

5.1. Aus- und Einpacken des Gerätes

Das mehrfach verpackte Gerät befindet sich in einem Wellpappkarton, der entlang den Klebstellen zu öffnen ist. Nach Entnahme des Gerätes aus dem Karton werden die luftdicht verschlossene Plastikverpackung und dann auch die innere Papierverpackung entfernt. Anschließend kann das Gerät ohne weiteres in Betrieb gesetzt werden.

Sollte das Gerät erneut zum Transport gelangen, so ist es, um eventuellen Schäden vorzubeugen, unter Verwendung möglichst sämtlicher Originalverpackungsstoffe so zu verpacken, wie es ursprünglich verpackt war.

6. SICHERHEITSMASSNAHMEN

Beim Betrieb des Gerätes brauchen keine besonderen Sicherheitsmaßnahmen getroffen zu werden. Die Umschaltung des Gerätes auf
einen anderen Netzspannungswert und die eventuelle Auswechslung
der Sicherung können an der Rückseite des Gerätes ohne Schwierigkeit verrichtet werden. Vorher muß aber der Netzstecker aus
der Steckdose gezogen werden. Das Ersetzen der geschmolzenen
Sicherung durch ein Drahtstück oder Ähnliches ist gefährlich
und deshalb strengstens untersagt. Es darf ausschließlich eine
Sicherung eingesetzt werden, die dem Wert und der Größe nach
mit der vom Hersteller vorgeschriebenen Sicherung übereinstimmt. Nach dem Sicherungswechsel ist der Sicherungskopf mit
einem Werkzeug zu sichern, damit er von Hand nicht ausgeschraubt
werden kann. Das Gerät darf nur einer Schukosteckdose angeschlossen werden.

7. VORBEREITUNG DER INBETRIEBSETZUNG

7.1. Bedienungsorgane und Anschlußbuchsen

7.1.1. Bedienungsorgane an der Frontplatte (Bild 2)

FREQ (1)	Drucktastenreihe mit 9 Tasten zum groben
	Einstellen der Frequenz des Grundgenerators
(2)	Potentiometer zur stetigen Regelung der
	Frequenz
FUNKTION (3)	Drei Drucktasten zur Wahl der Wellenform
OFFSET (4)	Potentiometer zur kontinuierlichen Verschie-
,	bung der Grundlinie
ON (5)	Drucktaste zum Ein- und Ausschalten der
	Grundlinienverschiebung
AMPL (V) (6)	Potentiometer zur stetigen Regelung der
	Amplitude
(7)	Drei Drucktasten zur Regelung der Amplitude
	in 20-dB-Schritten
SYM (8)	Potentiometer zur Änderung der Zeitsymmetrie
	des Dreiecksignals und des Tastverhältnisses
	des Impulssignals
VAR (9)	Potentiometer SYM (8) ist nur wirksam, wenn
	dieser Schalter gedrückt ist
TRIG OUT (10)	An dieser BNC-Buchse erscheint das vom Ge-
	rät gelieferte Synchronsignal
OUT (11)	An dieser BNC-Buchse erscheint das Ausgangs-
	signal des Gerätes
MODULATOR (12)	Drucktastenreihe für Betriebsartenwahl
EXT	wird bei Steuerung mit externem Signal ge-
	drückt
AM	Amplitudenmodulation
FM	Frequenzmodulation

SWP	Wobbelbetriebsart
TRIG	Getriggerte Betriebsart
GÀTE	Getorte Betriebsart
OFF	Gesteuerte und Modulationsbetriebsarten ausgeschältet
FREQ (13)	Potentiometer zur kontinuierlichen Regelung
	der Frequenz des Modulationsgenerators
(14)	Drei Drucktasten zur Umschaltung der Fre-
	quenzteilbereiche
AMPL (15)	Potentiometer zur Amplitudenregelung des
	Signals des Modulationsgenerators
FUNCTION (16)	Drucktastenreihe zur Wahl der Signalform
	des Modulationsgenerators
SYM (17)	Potentiometer zum Einstellen der Zeit-
	symmetrie des Modulationssignals
EXT IN (18)	BNC-Buchse zum Empfang des externen Modu-
	lationssignals (Torsignals, Triggersignals)
MOD OUT (19)	Ausgang des internen Modulationsgenerators
POWER (20)	Leuchtdiode zur Anzeige des eingeschalteten
	Zustandes

7.1.2. Bedienungsorgane an der Rückplatte (Bild 3)

(1)	Netzspannungswählstecker
	Ermöglicht eine der Netzspannung ent-
	sprechende Einstellung
FUSE (2)	Netzsicherung
(3)	Netzkabel
	Zum Anschluß des Gerätes an das Netz. Nach
	dem Anschluß an das Netz ist das Gerät so-
	fort betriebsbereit.

7.2. Sicherheitsmaßnahmen

Die bei der Vorbereitung der Inbetriebsetzung benötigten Bauteile sind an der Rückseite des Gerätes zu finden (Bild 3). Das Gerät ist im Werk vor dem Versand auf 220 V Netzspannung eingestellt worden.

Beträgt der Wert der Netzspannung am Einsatzort 110 V oder 127 V, so ist der Netzspannungswähler in die entsprechende Stellung umzustecken. Die bei 220 V verwendete Sicherung (F1) ist durch eine sich für die Netzspannung von 110 V bzw. 127 V eignende Sicherung zu ersetzen. Nach Prüfung der Stellung des Netzspannungswählers kann das Gerät dem Netz angeschlossen werden.

8. BETRIEBSVORSCHRIFTEN

8.1. Inbetriebsetzung

Das Gerät ist nach dem Anschluß an das Netz sofort betriebsfähig. Da im Gerät kein Netzschalter enthalten ist, wird das Gerät durch Einstecken und Ziehen des Netzsteckers ein- bzw. ausgeschaltet. Der eingeschaltete Zustand wird von der Leuchtdiode POWER angezeigt.

8.2. Neukalibration

Falls die Neukalibration des Instruments erforderlich ist (z.B. nach Schadhaftwerden), aber es kann in eine Servicewerkstatt nicht eingeliefert werden, so muss die Neukalibration folgendermassen durchgeführt werden.

Kalibration des Netzgerätes

Die Speisespannungen sollen zur Kontrolle mit Digitalvoltmesser eingestellt werden.

Grösse der Speisespannung:	Einstellorgan:	Genauigkeil:
+14 V	P301	<u>+</u> 2 %
-14 V	P302	<u>+</u> 2 %
+26 V	R305	<u>+</u> 2 %
-26 V	R312	<u>+</u> 2 %
+5 V	: 90%	_

Frequenzkalibration

Kontrollieren die Dreiecksignalamplitude des Grundgenerators im Punkt "hj". Die richtige Grosse beträgt 2,5 $\rm V_{s-s}$. Im Bedarfsfall korrigieren die Amplitude und die Amplitudensymmetrie mit den Trimmerpotentiometers P314 und P315.

In der Stellung "10" des 1-kHz-Frequenzbandes kontrollieren die Signalsymmetrie. Die Messung wird mit Frequenz- und Zeitmesser am Ausgang TRIG OUT vorgenommen. Die Einstellung zum Punkt erfolgt mit dem Trimmerpotentiometer P204. Messen die Frequenz und korrigieren sie mit dem Trimmerpotentiometer P202. Stellen uns auf den Wert "1" der 1-kHz-Frequenz und korrigieren die Frequenz mit dem Trimmerpotentiometer P203. Wiederholen die Einstellung am 10 kHz, dann wieder am 1 kHz. Kontrollieren den

Gleichlauf von Bändern, korrigieren im 1-MHz-Frequenzband mit dem Trimmerpotmeter C389.

Zur Einstellung des Endwertes von vier unteren Frequenzbändern dient der Trimmerpotmeter P201.

Während der obigen Einstellungen sollen der Hauptausgang und der Triggerausgang mit 50 Ohm abgeschlossen werden. Die Einstellungen sollen gemäss der in Spezifikation bestimmten Genauigkeit vorgenommen werden.

Kalibration der Sinusverzerrung

Bei Maximalamplitude, ausgeschaltetem Offset anschliessen mit einem Kabel von 50-Ohm-Abschluss den Ausgang OUT des Gerätes an Eingang des Verzerrungsmessers.

Kontrollieren die Sinusverzerrung bis 20-kHz-Frequenz.

Mit den Trimmerpotmetern P304 und P303 einstellen das Verzerrungsminimum, das kleiner als 1 % betragen soll.

Kalibration der Endstufe

Den Ausgang OUT des Gerätes anschliessen mit einem Kabel von 50-Ohm-Abschluss an den Oszilloskop-Eingang.

In ausgeschalteter Offset-Stellung einstellen die Amplitude-Symmetrie des Ausgangssignals mit dem Trimmerpotmeter P312. Die Ausgangsamplitude kann mit dem Trimmerpotmeter P105 kalibiert werden.

8.3. Betriebsarten, Messungen

8.3.1. Wahl der Betriebsart

Die Betriebsarten des Gerätes können mit den Drucktasten des unter der Aufschrift MODULATOR befindlichen Betriebsartenschalters eingestellt werden. Wenn der Schalter OFF gedrückt ist, arbeitet das Gerät in Freilaufbetrieb. Durch Drücken der Tasten TRIG, GATE, AM, FM, SWP werden die bezüglichen Betriebsarten gewählt.

Die Modulations-, Tor- und Triggersignale können vom internen Modulationsgenerator oder vom der externen BNC-Buchse EXT IN kommen. Die Wahl erfolgt mit dem Schalter EXT.

8.3.2. Einstellen des Ausgangssignals

Das Ausgangssignal des Gerätes erscheint an der ENC-Buchse OUT. Die Frequenz des Ausgangssignals kann mit der Drucktastenreihe FREQ in 1:10-Schritten und mit dem Frequenzregelpotentiometer an der Frontplatte stetig eingestellt werden.

Die Form des Ausgangssignals des Gerätes kann mit den Drucktasten FUNCTION eingestellt werden. Es ist möglich, die Zeitsymmetrie des Dreiecksignals und das Tastverhältnis des Impulssignals zu ändern. Zu diesem Zweck lient das Potentiometer SYM, das durch Drücken der Taste VAR in Betrieb gesetzt werden kann. Die Amplitude des Ausgangssignals kann in einem sehr weitem Bereich eingestellt werden. Die Amplitude läßt sich mit dem Ausgangsteiler in O,1, 1, 10 Stufen d.h. in 20-dB-Schritten und mit dem Potentiometer AMPL (V) im Verhältnis 1:10 stetig ändern. Die Grundlinie des Ausgangssignals wird beim Drücken des Schalters OFFSET ON vom Potentiometer OFFSET geregelt. Anderenfalls liegt die Grundlinie des Ausgangssignals auf O V. Das Gerät besitzt auch einen Synchronsignalausgang und das

8.3.3. Bedienung des internen Modulationsgenerators

Synchronsignal erscheint an der BNC-Buchse TRIG OUT.

Der interne Modulationsgenerator ist eigentlich ein selbständiger Funktionsgenerator, der die Modulationsbetriebsarten ermöglicht. Außerdem steht das Ausgangssignal des Modulators an der BNC-Buchse MOD OUT auch für externe Verwendungen zur Verfügung.

Zum Einstellen der Frequenz des Modulationsgenerators dienen das Potentiometer FREQ (Hz) und die Drucktastenreihe 0,1, 10, 1k.

Die erforderliche Signalform ist mit den Drucktasten FUNCTION einzustellen. Die Zeitsymmetrie des Ausgangssignals kann mit dem Potentiometer SYM eingestellt werden. Die Amplitude des Ausgangssignals wird mit dem Potentiometer AMPL auf den erforderlichen Pegel eingestellt.

9. TYPISCHE BETRIEBSSTÖRUNGEN UND IHRE BEHEBUNG

Das Gerät ist so bemessen, daß die Wahrscheinlichkeit von Betriebsstörungen äußerst gering ist. Das nachstehend Gesagte ist zur Erleichterung des Behebung eventueller Störungen bestimmt.

9.1. Zerlegen des Gerätes

Das Gerät kann unter Beachtung des in Punkt 4.4 beschriebenen mechanischen Aufbaus ausgebaut werden.

9.2. Eventuelle Störungen und ihre Behebung

Beim Vorliegen irgendwelcher Störung sind zunächst in jedem Fall die Speisespannungen zu prüfen. Wenn diese von den angegebenen Werten abweichen, dann beginne man die Fehlersuche mit der Prüfung der Sicherungen. Wenn die Sicherungen einwandfrei sind, prüfe man die nichtgeregelten Gleichspannungen der internen Netzteile. Dann prüfe man die Stabilisatoren.

10. TECHNISCHE WARTUNG

Das Gerät bedarf keiner besonderen Wartung.

11. PRÜFUNG DES TECHNISCHEN ZUSTANDES

Zur Prüfung der Funktion des Gerätes werden im Prüffeld sämtliche mögliche Betriebsarten erprobt und die Ausgangssignale geprüft.

Bei den Prüfungen ist das in der Meßanweisung (Punkt 8.3) Gesagte maßgebend.

12. LAGERUNG- UND TRANSPORTBEDINGUNGEN

Das entsprechend dem in Punkt 5.1 Gesagten verpackte und verklebte Gerät ist unter solchen Bedingungen zu lagern bzw. zu transportieren, die mit den nachstehend angeführten Werten in Einklang stehen:

Umgebungstemperatur: -25°C ... +55°C

Relative Luftfeuchte: max. 98 %

Luftdruck: 0,6...1,06 bar

Vor einer eventuellen Dauerlagerung des Gerätes brauchen keine besonderen Schutzmaßnahmen getroffen zu werden. Das nach einer solchen Lagerung ausgepackte und dem Netz angeschlossene Gerät ist unter den normalen Betriebsverhältnissen ohne weiteres betriebsbereit. Wenn das Gerät bei einer Temperatur unter dem Gefrierpunkt gelagert worden ist, wird es vor der Inbetriebsetzung zweckmäßigerweise in einen Übergangsluftraum gebracht und dort solange aufbewahrt, bis sich das Temperaturgleichgewicht eingestellt hat.

BEILAGEN

Schaltteilliste	
Foto des Gerätes	
Blockschaltbild	Bild 1
Frontplatte .	Bild 2
Rückplatte	Bild 3
Innere Anordnung	Bilder 4, 5, 6
Schaltplan der Frequenzeinheit	Bilder 7, 8
Schaltplan des Sinussignal/Breiecksignal-	
Umsetzers	Bild 9
Schaltplan des Ausgangsverstärkers	Bild 10
Schaltplan der Modulatorkarte	Bild 11
Schaltplan des Netzteiles	Bild 12
Anschlußplan der gedruckten Schaltungen	Bilder 13,14,15
<u> </u>	

MELLÉKLETEK APPENDICES ANHANG ПРИЛОЖЕНИЯ

ALKATRÉSZJEGYZÉK PARTS LIST SCHALTTEILLISTE LISTE DU MATERIEL СПЕЦИФИКАЦИЯ ДЕТАЛЕЙ

RF	fémréteg-ellenállás	metal-film resistor	Metallschichtwiderstand
RK	szénréteg-ellenállás	crystal-carbon detector	Kohlenschichtwiderstand
RT	tárcsaellenállás	disc resistor	Scheibenwiderstand
RH	huzalellegállás	wire-wound resistor	Drahtwiderstand
RPH	precíziós huzalellenállás	precision wire-wound resistor	Präzisions-Drahtwiderstand
RZ	zománcbevonatú huzalellenállás	wire-wound resistor (enamelled)	Drahtwiderstand
PH	huzalpotenciométer	-wire-wound potentiometer	Drahtpotentiometer
PR	rétegpotenciométer	film-type potentiometer	Schichtpotentiometer
111	retegpotentionieter	Time type peterralements	osmonipo terresmoter
СР	papírkondenzátor	paper capacitor	Papierkondensator
CC	csillámkondenzátor	mica capacitor	Glimmerkondensator
СК	kerámía kondenzátor	ceramic capacitor	Keramikkondensator
CE	elektrolit kondenzátor	electrolytic capacitor	Elektrolytkondensator
CS	styroflex kondenzátor	styroflex capacitor	Styroflexkondensator
CMP	fémezett papírkondenzátor	metallized paper capacitor	Metallpapierkondensator
CMF	fémezett müanyagfólíás kondenzátor	metallized plastic foil capacitor	Metalikunststoff- Folienkondensator
CML	fémezett lakkfilm kondenzátor	metallized lacquered capacitor	Metallisierte Kunststoff- kondensator mit Lackfolien
CMS	fémezétt styroflex kondenzátor	metallized styroflex capacitor	Metallstyroflexkondensator
СТ	trimmer kondenzátor	trimmer capacitor	Trimmerkondensator
CME	fémezett poliészter kondenzátor	metallized polyester condensator	Metallpolyesterkondensator
CET	tantál elektrolit kondenzátor	tantal electrolytic capacitor	Tantalelektrolytkondensator
CFE	políészter kondenzátor	polyester capacitor	Polyesterfolienkondensator
V.			0.71
V	elektroncső	tube	Röhren
NJ	számjelző eszközök	numerical indicators	Ziffernanzeígen
D	díóda	diode	Dioden
Se	szelén egyenírányító	selenium rectifier	Selen
TR	tranzisztor	transistor	Transistoren
Th	termisztor	thermistor	Termistor
IC Y	integrált áramkör	integrated circuit	Integrierte Stromkreise
XL	kristály	crystal	Schwinguarz
So	csatlakozó aljzat	socket	Buchse
PI -	csatlakozó aljzat	plug connector	Stecker
Τ .	transzformátor	transformer	Transformatoren/Übertrager
L	índuktivitás	inductivity, coil	Spulen
Α	akkumulator	rechargeable battery	Batterie
REG	regisztráló	recorder	Schreiber
F	biztosító betét	fuse	Sicherungseinsatz
H	hallgató	headphone	Kopfhörer/Ohrhörer
Hx	hangszóró	loudspeaker	Lautsprecher
RY	jelfogó	relay	Relaís
J	jelzőlámpa	pilot lamp	Signallampe
G	parázsfénylámpa	glow discharge lamp	Glimmlampe
S	kapcsoló	switch	Schalter
MOT	motor	motor	Motor
В	telep	battery	Batterie
M	műszer	meter	Anzeigeinstrument

резистор метаппизированный резистор углеродистый поверхностный резистор дисковый резистор проволочный провопочный резистор проволочный с эмапевым покрытием	RF RK RT RH
резистор углеродистый поверхностный резистор дисковый резистор проволочный резистор превизионный провопочный	RK RT
резистор дисковый резистор проволочный резистор прецизионный проволочный	RT
резистор проволочный резистор прецизионный проволочный	RH
резистор прецизионный проволочный	
	RPH
	RZ
резистор переменный провопочный	PH
резистор переменный углеродистый	PR
конденсатор бумажный	СР
конденсатор спюдяной	cc
конденсатор керамический	СК
конденсатор эпектропитический	CE
конденсатор полистиропьный	cs
	CMP
конденсатор метаппизированный	CMF
метаппизированный конденсатор на эакопленочной основе	CML
конденсатор полистирольный, металлизированный	CMS
конденсатор построечный	СТ
метаппизированный полиэфирный конденсатор	CME
электропитический тантаповый конденсатор	CET
полизфирный конденсатор	CFE
электронная памла	V
цифровой индикатор	NJ
диод	D
выпрямитель селеновый	Se
транзистор	TR
термистор	Th
интеграпьная схема	IC
кварцевый резонатор	XL
разьем	So
штелсель	Pi
трансформатор	Т
	L
	Α
регистратор	REG
предохранительная вставка	F
наушник	н
громкоговоритель	Hx
реле	RY
сигнальная лампа	J
лампа тлеющего разряда	G
выключатель	S
мотор	MOT
батарея	В
	М
	конденсатор бумажный конденсатор сподяной конденсатор керамический конденсатор электропитический конденсатор металлизированный бумажный конденсатор метаппизированный с ппастмассовой фольтой метаппизированный конденсатор на эакопленочной основе конденсатор полистирольный, металлизированный конденсатор полистирольный, металлизированный конденсатор электропитический тантаповый конденсатор электропитический тантаповый конденсатор полиэфирный конденсатор злектронная памла цифровой индикатор диод выпрямитель селеновый транзистор термистор интеграпьная схема кварцевый резонатор разьем штелсель трансформатор катушка индуктивности аккумулаторная батарея регистратор предохранительная вставка наушник громкоговоритель реле сигнальная лампа лампа тлеющего разряда выключатель мотор

Minden mérőkészülék – a megbízhatóság és a műszaki adatokban előírt határértékeken belüli nagyobb pontosság érdekében – gondos egyedi méréssel és beszabályozással készül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékű alkatelemeket is tartalmaznak.

With a view to reliability and increased accuracy within the specifications, each unit has been subjected to careful individual control measurement and alignment. Therefore, it may occur that an instrument includes components with ratings slightly different from those given in the Parts List below.

Jedes Gerät wird im Interesse einer höchstmöglichen Genauigkeit und Verlässlichkeit einer sorgfältigen individuellen Messung und Eichnung unterzogen. Demzufolge kann es verkommen, dass die Geräte auch Teile enthalten, deren Werte von den in der vorliegenden Schaltteilliste angeführten Werten abweichen.

Chaque appareil de meşure a été fabriqué avec des mesures et des réglages individuels soignés dans l'intérêt de la fiabilitée et d'une plus grande précision, en-dedans des valeurs limites prescrites dans les caractéristiques tèchniques. En raison de ceci il peut arriver que l'appareil contienne des éléments dont la valeur est autre que celle spécifiée dans la Liste du matériel ci-jointe.

Каждый прибор — в интересах достижения более высокой точности в пределах величин, приведенных в технических данных, а также с цепью повышения надёжности — подвергается тщательной индивидуальной настройке и наладке. В результате этого может спучиться, что приборы содержат и детали, вепичина которых отпичается от вепичины, приведенной в спецификации деталей прибора.

				R -					
No		Ω	%	W	No		Ω	*	W
Rl	RF	330 k	5	0,25	R127	RF	51	5	0,25
R2	RF	5,1 k	1	0,25	R128	RF	4,7 k	5	0,25
R3	RF	5,1 k	1	0,25	R129	RF	1 k	5	0,25
R4	RF	10 k	5	0,25	R130	RF	8,2 k	5	0,25
R5	RF	10 k	5	0,25	R131	RF	9,1 k	5	0,25
R6	RF	124	1	0,5	R132	R F	160	5	0,25
R7	RF	124	1	0,5	R133	RF	150	5	0,25
R8	RF	246	1	0,5	R134	RF	2,2 k	5	0,25
R9	RF	60,7	1	0,25	R315	RF	5,1 k	5	0,25
R10	RF	246	1	0,25	R201	R F	33 k	1	0,25
Rll	RF	60,7	1	0,25	R202	RF	680	1	0,25
R12	RF	60,7	1	0,25	R203	RF	33	5	0,25
R13	RF	620	5	0,5	R204	RF	470	5	0,25
R136	RF	2 k	5	0,25	R205	RF	16 k	5	0,25
R101	RF	68	5	0,25	R206	RF	30 k	1	0,125
R102	RF	220	5	0,25	R207	RF	5,1 k	1	0,25
R103	RF	27 k	5	0,25	R208	RF	5,1 k	1	0,25
R104	RF	6,2 k	5	0,25	R209	RF	8,2 k	5	0,25
R105	R F	3 k	5	0,25	R 21 0	R F	3,9 k	5	0,25
R106	RF	2,7 k	5	0,25	R211	RF	3,9 k	5	0,25
R107	RF	7,5 k	5	0,25	R212	RF	8,2 k	1	0,25
R108	RF	22 k	5	0,25	R213	RF	1,6 k	1	0,25
R109	RF	4,7 k	5	0,25	R214	RF	820	5	0,25
R110	RF	1,8 k	5	0,25	R215	RF	1,6 k	1	0,25
Rlll	RF	22	5	0,25	R216	R F	l k	1	0,25
R112	RF	1,5 k	5	0,25	R217	RF	l k	1	0,25
R113	RF	lk	5	0,25	R218	RF	100	5	0,25
R114	RF	470	5	0,25	R219	R F	100	5	0,25
R115	RF	10 k	5	0,25	R220	RF	1 k	1	0,25
R116	RF	l k	5	0,25	R221	RF	1 k	1	0,25
R117	PF	1 k	5	0,25	R222	RF	910	1	0,25
R118	RF	10 k	5	0,25	R223	RF	5,1 k	1	0,25
R119	RF	10 k	5	0,25	R224	RF	390	1	0,25
R120	RF	22 k	5	0,25	R225	RF	lk	1	0,25
R121	RF	10 k	5	0,25	R226	RF	15 k	5	0,25
R122	RF	5,1 k	5	0,25	R227	RF	15 k	5	0,25
R123	RF	24 k	5	0,25	R228	RF	150	1	0,25
R124	RF	2 k	5	0,25	R229	RF	lk	5	0,25
R125	RF	10	5	0,25	R230	RF	82	5	0,25
R126 R14	RF RF	10 100 k	5 5	0,25 0,25	R231 R15	RF RF	680 47 k	1 5	0,25 0, 2 5

			~	R -					
No		Ω	%	W	Жo		Ω	%	W
 232	RF	1 k	1	0,25	R338	RF	1,3 k	5	0,25
R233	RF	1,6 k	5	0,25	R 339	RF	2,4 k	5	0,25
R137	RF	3 k	5	0,25	R340	RF	2,4 k	5	0,25
R 3 01	\mathbf{RF}	2,4 k	5	0,25	R341	KF	1,5 k	5	0,25
R302	RF	4,7 k	5	0,25	R342	RF	75	1	0,25
R 3 03	RF	360	5	0,25	R343	R	100	5	0,25
R304	RF	430	5	0,25	R344	RF	3,9 k	5	0,25
ñ 3 05	R	5,1 k	5	0,25	R345	RF	100	5	0,25
		22			R 34 6	R	10	5	0,25
R307	R	k	5	0,25	R 347	R	10	5	0,25
R 3 08	RF	2,4 k	5	0,25	R348	RF	100	5	0,25
R309	RF	4,7 k	5	0,25	R349	\mathbf{RF}	100	5	0,25
R310	RF	430	5	0,25	R 35 0	RF	270	5	0,25
R311	RF	360		0,25	R351	RF	1 0 k	1	0,25
R312	R	5,1 k	. 5 5	0,25	R352	RF	1 k	1	0,25
					R353	RF	l k	1	0,25
R314	RF	22 k	5	0,25	R354	RF	10 k	1	0,25
R315	RF	10 k	5	0,25	R355	RF	120	5	0,25
R316	RF	1,2 k	5	0,25	R356	RF	270	5	0,25
R317	RF	1,6 k	5	0,25	R357	RF	270	5	0,25
R318	RF	820	5	0,25	R358	RF	270	5	0,25
R 31 9	\mathbf{RF}	5,1 k	5	0,25	R359	RF	8,2k	5	0,25
R320	RF	51	5	0,25	R360	RF	47 k	5	0,25
R 321	RF	3 k	5	0,25	R361	RF	3,3 k	5	0,25
R322	RF	3 k	5	0,25	R362	RF	2 k	1	0,25
R323	$R\mathbf{F}$	2,2 k	5	0,25	R363	RF	2 k	1	0,25
R324	RF	820	5	0,25	R364	RF	56	5	0,25
R325	RF	3,6 k	5	0,25	R 3 65	$R\mathbf{F}$	6,8 k	1	0,25
R 326	RF	2,7 k	5	0,25	R366	RF	6,8 k	1	0,25
R327	RF	47	1	0,25	R367	RF	2,4 k	1	0,25
R328	R	270	1	0,9	R368	RF	1 00	5	0,25
R329	RF	100	5	0,25	R369	RF	2 k	1	0,25
R330	RF	10	5	0,25	R370	RF	2 k	1	0,25
R331	RF	10	5	0,25	R371	RF	10 k	1	0,25
R332	RF	100	5	0,25	R372	RF	10 k	1	0,25
R333	RF	3,9k	5	0,25	R373	RF	4,1 k	1	0,25
R334	RF	33 k	5	0,25	R374	RF	38,3 k	1	0,25
R335	RF	33 k	5	0,25	R375	RF	4,1 k	1	0,25
R336	RF	180	5	0,25	R376	RF	10 k	5	0,25
R337	RF	180	5	0,25	R377	RF	10 k	5	0,25
				L		<u> </u>			

	R -⊂⊃-											
No		Ω	5	T	No		Ω	%	T			
R378	RF	10 k	5	0,25	R418	RF	246	1	0,25			
R379	RF	15	5	0,25	R419	RF	15	5	0,25			
R 380	RF	492	ı	0,25	R420	RF	330	5	0,25			
R381	RF	4,7 k	5	0,25	R421	RF	4,64 k	1	0,25			
R382	RF	2,2 k	5	0,25	R422	RF	246	1	0,25			
R383	RF	492	1	0,25	R423	RF	15	5	0,25			
R384	RF	15	5	0,25	13424	RF	10	1	0,25			
R385	RF	3 k	1	0,25	R425	RF	10	,1	0,25			
R386	$\mathbb{R}\mathbf{F}$	100 k	5	0,25	R426	RF	200	1	0,25			
R387	$\mathbb{R}\mathbf{F}$	68 k	5	0,25	R427	RF	1,75 k	1	0,25			
R388	RF	1,5 k	1	0,25	R428	RF	10	1	0,25			
R389	RF	100	5	0,25	R429	RF	10	1	0,25			
R390	RF	15 k	5	0,25	R4 3 0	$R\mathbf{F}$	50,1	1	0,25			
R391	RF	6,8 k	1	0,25	R 431	RF	50,1	1	0,25			
R392	$\mathbb{R}\mathbf{F}$	8,2 k	5	0,25	R432	RF	50,1	1	0,25			
R393	RF	2,2 k	1	0,125	R433	RF	50,1	1	0,25			
R394	RF	3,3 k	1	0,25	R434:	RF	1 k	1	0,25			
R395	ŖF	2 2	1	0,125	R435	RF	33	5	0,25			
R396	RF	2,87 k	1	0,125	R436	RF	22	5	0,25			
R397	RF	2,87 k	1	0,125	R437	RF	33	5	0,25			
요398	RF	3,9 k	1	0,25	R438	RF	lk	1	0,25			
R 39 9	RF	18 k	1	0,25	R439	RF	3,3 k	5	0,25			
11400	RF	240 k	5	0,25	R440	$k\mathbf{F}$	100	5	0,25			
R401	RF	22	1	0,125	R441	RF	1,6 k	5	0,25			
R402	RF	2,2 k	1	0,125	R442	$\mathbb{R}\mathbf{F}$	100	5	0,25			
R403	RF	1,5 k	1	0,25	R443	RF	10	5	0,25			
R404	RF	270	5	0,25	R444	R F	10	5	0,25			
R405	RF	3 k	1	0,25	R445	R F	.3,9 k	5	0,25			
R406	RF	62	5	0,25	R446	kF	15	5	0,25			
R407	RF	8,2 k	1	0,25	R447	RF	7,5 k	5	0,25			
R408	RF	4,06k	1	0,25	R448	RF	316	1	0,25			
R409	RF	10 kr	1	0,25	R449	RF	316	1	0,25			
R410	RF	38,3 k	1	0,25	R 45 0	RF	7,5 k	5	0,25			
R411	R F	4,06 k	1	0,25	R451	RF	15	5	0,25			
R412	RF	10 k	1	0,25	R452	R F	4,3 k	1	0,125			
R413	R F	10 k	1	0,25	R453	RF	4,3 k	1	0,25			
R414	RF	10 k	1	0,25	R454	RF	316	1	0,25			
R415	RF	3 k	1	0,25	R455	RF	316	1	0,25			
≾416	RF	560	5	0,25	R456	RF	470	1	0,25			
R417	RF	1,65 k	1	0,25	R457	RF	lk	1	0,25			

				R -					
No		Ω	%	W	No		Ω	*	W
R458	RF	1,2 k	1	0,25	R138	RF	3 k	5	0,25
R459	$R\mathbf{F}$	33	5	0,25	R488	RF	10 k	5	0,25
R460	RF	33	5	0,25	R489	$R\mathbf{F}$	270	5	0,25
R461	RF	10 k	1	0,25	R490	RF	10 k	5	0,25
R462	RF	470	1	0,25	R491	RF	270	5	0,25
R463	RF	1 k	1	0,25	1₹492	RF	51	5	0,25
R464	RF	150	5	0,25	R493	RF	l k	5	0,25
R465	RF	1,2 k	1	0,25	R494	RF	51	5	0,25
13466	RF	510	1	0,25	R495	Ä	620	5	0,25
R467	$\mathbb{R}\mathbf{F}$	1,2 k	1.	0,25	R496	RF	24 k	1	0,25
R468	RF	270	1	0,25	R497	RF	1,2 k	5	0,25
R469	$R\mathbf{F}$	3 3	1	0,25	⊮ 498	RF	10 k	5	0,25
R470	RF	33	1.	0,25	R499	RF	1,5 k	5	0,25
R471	RF	3,3 k	1	0,25	R500	RF	10 k	5	0,25
R472	RF	33	5	0,25	R501	RF	820	5	0,25
₽473	RF	33	5	0,25	R502	RF	1,1 k	5	0,25
R474	RF	3,3 k	1	0,25	R503	RF	1 k	5	0,25
R475	RF	7,5 k	5	0,25	R504	RF	200	5	0,25
R476	RF	7,5 k	5	0,25	R505	RF	1,2 k	5	0,25
R477	RF	3,3 k	1	0,125	R 5 06	RF	10 k	5	0,25
R478	RF	10	5	0,25	£507	RF	12 k	5	U,25
R479	RF	10	5	0,25	R508	КF	820	5	0,25
R480	RF	3,3 k	1	0,125	R509	RF	2,2 k	5	0,25
R481	RF	620	5	0,25	R510	RF	5,1 k	5	0,25
R482	RF	2,2 k	5	0,25	R511	RF	10	5	0,25
R483	RF	10 k	1	0,125	R512	RF	510	5	0,25
R484	RF	841	1	0,125	R513	RF	6,2 k	5	0,25
₹485	RF	841	1	0,125	R514	RF	200 k	1	0,25
R486	RF	2,2 k	5	0,25	R515	RF	20 k	1	0,25
R487	RF	10 k	1	0,125	R516	RF	1,5 k	1	0,25
R339	RF	27 k	5	0,25	R517	RF	1 k	5	0,25
R140	RF	390 k	5	0,25	R518	RF	l k	5	0,25

				P -	Z -				
No		Ω	%	W	No		Ω	%	¥
Pl	PRK	250 k	20	1	P206	PR	10 k	10	0,5
P2	PRK	2,5 k	20	1			,		,,,
P3	PRK	l k	20	1	P301	PR	470	20	0,5
P4	$\operatorname{PR} \mathbf{K}$	1 k	20	1	P302	PR	470	20	0,5
₽5	PH	510	5	1	P303	PR	100	20	0,5
P6	PRK	10 k	20	1	P304	PR	100	20	0,5
P7	$\operatorname{PR} K$	10 k	20	1	P305	PR	470	20	0,5
					P306	PR	100	10	0,5
P101	PR	47 k	30	0,2	P307	PR	10 k	10	0,5
P102	PR	47 k	30	0,2	P308	PR	10 k	10	0,5
P103	PR	1 k	3 0	0,2	P309	PR	100 k	10	0,5
P 1 04	PR	l k	30	0,2	P310	$\mathbb{P}\mathrm{R}$	100 k	10	0,5
P105	PR	l k	<i>3</i> 0	0,2	P311	${ m PR}$	100	10	0,5
				,	P312	PR	100	20	0,5
P201	PR	5 k	10	0,5	P313	PR	100	20	0,5
P202	PR	5 k	10	0,5	P314	PR	470	20	0,5
P203	PR	10 k	10	0,5	₽315	PR	500	10	0,5
P204	PR	10 k	10	0,5	₽316	$_{\mathrm{PR}}$	470	20	0,5
P205	PR	500	10	0,5	P317	PR	500	10	0,5
					P318 P319	PRK PRK	500 500	10 10	0,5 0,5

				C	+				
То		1	*	V	Ло		I	*	V
C101	CFE	10 n	10	400	C321	CK	22 p	5	500
C102	CMF	1_u	5	63	0322	Cιζ	100 n	+80-20	40
C103	CE	100 u	5	25	0323	СК	100 n	+80-20	40
C104	СК	100 n	+80-20	40	C324	C.C	4,7 n	20	50
C105	CK	100 n	+80-20	40	0 3 25	CK	4,7 n	20	50
0106	CK	100 p	20	500	0326	CK	5 p	0,5p	500
[C327	CJ.	6-25p		250
C201	CK	100 n	+80-20	40	0328	Cζ	100 n	+80-20	40
C505	CX	100 n	+80-20	· 40	0329	CK	10 n	20	50
0203	CK	100 n	+80-20	40	C330	CK	10 n	20	50
C204	CK	100 n	+80-20	40	C331	CK	100 n	+80-20	40
C205	СК	220 p	20	500	C 3 32	CK	10 n	20	50
C506	CME	3,3/u	10	63	C333	CK	10 n	20	50
C207	CME	4,7/u	10	63	C334	TRL	330 p	20	500
C208	CK	l'n	20	500	C335	CK	10 n	20	50
0209	CK	470 p	20	500	0336	CiC	5 p	U,5p	500
C210	CK	10 n	50	50	0337	O.C	10 n	20	50
C211	CIC	470 p	20	500	0358	CK	10 n	20	5C
C212	CK	100 n	+80~20	40	C339	CK	22 p	5	500
			[0340	CX	10 n	20	50
C3O1	CE	2200 ju	+100-10	40	0341	СК	100 p	20	50C
0302	CK	100 n	+80-20	40	C 342	Ciá	10 n	20	50
C3O3	CE	100 ju	+100-10	63	0343	СT	6-25 _P		250
C304	CK	100 n	+80-20	40	C344	CX	33 p	5	500
C 305	CE .	2200 _/ u	+100-10	40	C345	CK	10 n	20	50
C306	СК	100 n	+80-20	40	0346	CiC	10 n	20	50
C307	CE	100 _/ u	+100-10	63	C347	CTC	10 n	20	50
C308	CK	100 n	+80-20	40	C348	CT	10-40p		250
0309	CE	4700 ju	+100-10	25	C 349	Cζ	10 n	20	50
C310	CK	l'n	20	500	C350	CX	10 n	50	50
C311	CE	100 ju	+100-10	25	0351	G₹	100 n	+80-20	₹ FO
C312	CK	100 n	+80-20	40	0352	CK	100 n	+80-20	4-C
C313	CE	4700 /u	+100-10	25	C353	CZ	100 n	+80-20	40
C314	CK	l'n	20	500	0354	CE	4,7/u	+100-10	40
C315	CK	100 n	+80-20	40	C355	CK	5 p	0,5p	500
C316	CE	100 ju	+100-10	25	C 356	СК	100 n	+80-20	40
C317	CK	100 n	+80-20	40	¢357	CE	4,7/u	+100-10	4C
C318	CK	10 n	20	50	C358	СК	100 n	+80~20	40
C319	CK	10 n	20	50	¢359	CE	4,7/u	+100-10	40
C320	TRL	4 70 p	20	500	C360	CK	100 n	+80-20	40
		L			1		<u> </u>		

				C					
No		7	%	V	No		¥	*	V
0361	CE	4,7/u	+100-10	40	C396	сĸ	27 p	5	500
0362	CK	1 00 n	+80-20	40	C378	CK	4,7 n	20	50
C363	CK	1 0 n	20	50	C379	CK	ln	20	500
0364	CK	q 22	5	500	C380	CX	10 n	20	50
0365	СK	22 p	5	500	0381	CK	10 n	20	50
0366	CK	1 0 n	20	50	0382	CK	100 p	20	500
0367	CK	10 n	20	50	0383	CK	1 00 n	+80-20	40
C368	CK	1 00 p	20	500	C384	CMF	10/u	5	63
0369	CK	150 p	20	500	0385	CMF	1/u	1	63
0370	CK	150 p	20	500	0386	CMF	100 n	1	63
0371	CK	100 p	20	500	C387	CMF	10 n	1	250
0372	CK	10 n	20	50	C388	CC	820 p	2	500
C373	CK	1 50 p	20	500	C389	CT	10-4Cp		250
C374	CK	100 n	+80-20	40	0390	CK	22 p	5	500
0375	CK	1 00 n	+80-20	40	C391	CK	100 n	+80~20	4C
0376	CK	10 n	20	, 50	0392	CK	100 n	+80-20	40
C377 C397	CK C3L	1 00 n	+80-20	40 500	C 393	CK	10 n	20	50
0397 0398	C3L FSM	220 p 33 p	5 5	500 63	C394	CK	100 n	+80-20	40
0399	TRL	68 p	5	500	C395	CK	3 p	0,5 p	500

V	-	D -	14-	TR -	D
Dl	D	CQY40L			
1			D320	D	lN4148
D101	D	1N4148	D321	D	1114148
D105	D	1N4148	D322	D	1N4148
]			D323	D	1N4148
D2ol	D	1N4148	บ324	D	1N4148
D202	D	ZPD5,6	D325	D	1N4148
			D326	D	Z: D8,2
D301	D	SY320/2	D327	ט	11/4148
D302	D	SY320/2	ມ328	D	154148
D303	D	SY320/2	D329	D	1114148
D304	D	£Y320 / 2	D330	D	IN4148
D305	D	SY320/2	D331	D	FD777
D306	D	SY320/2	D332	D	FD777
D307	D	SY320/2	D333	D	LN4148
D308	D	SY320/2	D334	D	134148
D309	D	ZPD5,1	D335	D	1374148
D310	D	ZPD5,1	D336	D	lN4148
D311	D	ZPD5,6	D337	D	1114148
D312	D	1114148	D338	D	1N4148
D313	D	LN4148	D339	D	1114148
D314	D	1174148	D340	D	1114148
D315	D	1114148	D341	D	1N4148
D316	D	1N4148	D342	D	1N4148
D317	D	Z. D8,2	D343	D	11v4148
D318	D	1114148	D3 44	D	1N4148
D319	D	1114148	D345	D	<u>1</u> N4148
[D346	D	1N4148

V	-	D -	→ TR -®		
TR1	ΤR	2N 30 55	TR322	TR	BC182
TR2	TR	BD242A	TR323	TR	Cz12
TR3	TR	2N 3C 55	TR324	TR	BC212
TR4	TR	2N 3055	Tn 325	$ ext{TR}$	2N2369A
			TR 326	TR	2N2 369A
TR101	ΥR	BC212	TR 327	$^{ m TR}$	BC212
TR102	TR	BC212	1R328	TR	BC212
cR103	TR	BC182	TR329	ľR	, D812
TR104	$^{ m LR}$	BC182	TR330	TR	£L 3:40
TR105	TR	2N2219A	TR331	ľR	6رے
5R106	$ ext{TR}$	2N2905A	. 332	TR	2N 866
			1.£3 3 3	TR	2N5150
TR201	TR	BF245A	TR334	TR	2N 3866
r _{R202}	T:R	2N 5462	ıR335	${ m TR}$	2N 5160
13203	TR	BF245A	TR336	1B	2N5462
TR204	T'R	BF245A	TR337	TR	BF2560
TR205	${}^{\mathrm{t}}\mathrm{R}$	BC182	.TR338	TR	3F2 45 C
1. (206	9.13	BC212	TR3 9	μR	BT 256.
TR207	TR	2W2219A	- R 340	14.2.	BF256C
			TR341	. 1<	BC182
TR301	TR	2N2905A	1R342)R	4344
1R302	TR	30182	1R343	477	7 7 369 A
1R303	.¹R	201.82	5R344	TR	N2369
R304	TR	BC182	TR345	. R	3640
1R305		BC212	:Ex346	$_{\perp \mathrm{R}}$	£ 2,3640
TR306	FR	BC212	ER347	TP	all 3640
R307	411 F	0212	R348	TI	211
FR 308	$\Phi_{ m R}$	ے 2 369 A	LR349	433	LES3640
TR309	ČB	2N2369A	TR350	'r'R	2 2369
TR310	٠.,	∠.N2369A	TR351	TR	^c 3540
1R311	11:3	2:12:369A	IR352	${ m TR}$	3C182
1R312	Π R	aPS 3640	TR353	TR	BC212
1R313	TR	BF245B	TR354	TR	2N2369A
TR314	TR	2N2369A	TR 355	\mathtt{TR}	MP\$ 3640
TR315	TR	2N2369A	TR356	$\mathbf{T}_{\Gamma_{-}}$	MPS 3640
'-R316	1R	BC182	TR357	${ m TR}$	La: \$3640
TR317	TR	2N 23 69A	TR358	IR	BC212
TR318	${ m TR}$	2N2369A	1R359	TR	2N2369A
IR319	TR	MP\$ 3640	TR360	111	2N2369A
Uk 320	II.	2N 5769	1R361	TR	BC182
.R321	TR	21/15769			

•••	3 3	E Ø	0		6
IC101	IC	ICL8038JC			
10102	IC	747 DC	F301	\mathcal{F}	Go2C/5,2 8CGun
IC103	IC	741FC	F302	F	0020/5,2 800mi
			¥303	F	Go20/5,2 1 /.
10201	IC	747DC	F304	3	.020/5,2 1 A
IC202	IC	747DC		1	
IC203	IC	747.DC	li		
IC204	IC	741±°C	11		
IC205	IC	741PC	L301	L	
IC206	IC	747.DC	L302	L	
IC301	IC	72 3 PC			
10302	IC	723FC	11		
IC303	IC	795FC			
IC304	IC	CA3049	! !		·
IC305	IC	Sh74CON	Fl	F	F\$T+2COmA+5x2O
]]		

4,5,6 1257

7 1257 linker Teil

