Inoffizielles Vorlesungsskript zur Vorlesung "Logik", Prof. Volkmar Welker, WS 2013/2014

Stand:

18. Oktober 2013

Die offizielle Vorlesungsseite:

http://www.mathematik.uni-marburg.de/~welker/logik_ws2013.html

Fehler und Verbesserungsvorschläge bitte melden an: nano13@gmx.net

Die Vorlesung ist laut Herrn Welker an das Buch "Schöning, Logik für Informatiker" angelehnt.

Inhaltsverzeichnis

1 Aussagenlogik

2

1 Aussagenlogik

Logische Systeme haben immer zwei Teile:

- Syntax (Formeln)
- Semantik (Wahrheitswerte der Formeln)

Def.: (Syntax der Aussagenlogik)

- Menge $A = \{A_1, A_2, ...\}$ von atomaren Formeln
- Wir definieren induktiv die Menge der Formeln der Aussagenlogik
 - jede atomare Formel ist Formel
 - sind G und H Formel, so auch $(G \wedge H)$ "G und H " $(G \vee H)$ "G oder H " $\neg G$ "nicht G "

Bem.: Die Menge der Formeln der Aussagenlogik ist Sprache (= Menge von Wörtern) über Alphabet $A \cup \{\land, \lor, \neg, (,)\}$

Bsp.:

- $((A_{17} \lor A_2) \land \neg (A_3 \land A_4))$ Formel der Aussagenlogik
- reine syntaktische Objekte $\neg \neg A \neq A$

Bew.: Sei G eine Formel der Aussagenlogik

T(G) die Menge der Teilformeln von G induktiv definiert als

 $T(G) = \{G\}$ falls G atomare Formel

$$T(G) = T(G_1) \cup T(G_2) \cup \{G\}$$

falls
$$G = (G_1 \vee G_2)$$
 oder $G = (G_1 \wedge G_2)$

$$T(G) = T(G_1) \cup \{G\}$$

Bsp.:
$$G = ((A_{17} \land A_2) \lor \neg (A_3 \land A_4))$$

 $T(G) = T((A_{17} \lor A_2)) \cup T(\neg (A_3 \land A_4)) \cup \{G\}$
 $= \{A_{17}, A_2, (A_{17} \lor A_2)\} \cup T((A_3 \land A_4)) \cup \{\neg (A_3 \land A_4)\} \cup \{G\}$
 $= \{A_{17}, A_2, (A_{17} \lor A_2), A_3, A_4, (A_3 \land A_4), \neg (A_3 \lor A_4), ((A_{17} \lor A_2) \land \neg (A_3 \lor A_4))\}$

Bem.: T(G) ist die Menge der Formeln, die bei der induktiven Konstruktion von G auftauchen.

Sprechweisen:

Für $(G \wedge H)$ sagt man auch "Konjunktion von G und H" Für $(G \vee H)$ sagt man auch "Disjunktion von G und H" Für $\neg G$ sagt man auch "Negation von G".

Abkürzende Schreibweisen:

G, H Formeln der Aussagenlogik

 $(G \to H)$ aus G folgt H, für $(\neg G \land H)$; G impliziert H; Implikation

 $(G \leftrightarrow H) \; G$ äquivalent zu H, für $(G \to H) \land (H \to G)$; Äquivalenz

$$(\bigvee_{i=1}^n G_i) \text{ für } (\dots (G_1 \vee G_2) \vee G_3) \dots \vee G_n) \\ (\bigvee_{i=1}^n G_i) \text{ für } (\dots (G_1 \wedge G_2) \wedge G_3) \dots \wedge G_n) \\ \text{mit } G_1, \dots, G_n \text{ Formeln }$$

Def.: (Semantik der Aussagenlogik)

- Sei $\emptyset \neq A' \subseteq A$ eine Teilmenge der atomaren Formeln
- Eine Abbildung $f: A' \to \{W, F\}$ (wahr, falsch) heißt Interpretation von A'
- Eine Formel G heißt Formel über A' falls $T(G) \cap A \subseteq A'$
- eine Interpretation $f: A \to \{W, F\}$ heißt passend zu Formel G, falls G Formel über A' ist.
- Sei $f:A'\to \{W,F\}$ eine zur Formel G passende Interpretation. Dann definieren wir

$$f(G) = f((G_1 \land G_2)) = \begin{cases} W \ falls \ f(G_1) = f(G_2) = W \\ F \ sonst \end{cases}$$

$$f(G) = f((G_1 \lor G_2)) = \begin{cases} W \ sonst \\ F \ falls \ f(G_1) = f(G_2) = F \end{cases}$$

$$f(G) = f(\neg G_1) = \begin{cases} W \ falls \ f(G_1) = F \\ F \ falls \ f(G_1) = W \end{cases}$$
 für $G = \neg G_1$

Bsp.: Semantik der abkürzenden Schreibweisen

G	H	$(G \to H)$	$(G \leftrightarrow H)$
F	F	W	W
F	W	W	F
F W W	W F W	F	F
W	W	W	W

Lemma.: 1.1 Sei A' eine Menge von n atomaren Formeln. Dann gibt es 2^n Interpretationen von A'

Bew.: Für jede atomare Formel mit A' gibt es 2 Möglichkeiten für das Bild unter f

 \rightarrow Die atomaren Formeln A' können unabhängig voneinander interpretiert werden

$$\Rightarrow$$
 # Interpretationen = $\underbrace{2 \cdot 2 \cdot 2}_{n} = 2^{n}$

Def.: Sei G eine Formel über $A' = \{A_1, \dots, A_n\}$ seien f_1, \dots, f_{2^n} die 2^n Interpretationen von A'

Dann heißt das Schema

Wahrheitstabelle von G

Bsp.: $(A_1 \lor (A_2 \land \neg A_3))$

A_1	A_2	A_3	$(A_1 \vee (A_2 \wedge \neg A_3))$
F	F	F	F
F	F	W	F
F	W	F	W
W	F	F	W
F	W	W	F
W	F	W	W
W	W	F	W
W	W	W	W

Def.: Sei $F_{A'}$ die Menge aller Formeln über A'

Für $G,H\in F_{A'}$ sagen wir G ist semantisch äquivalent zu H, falls f(G)=f(H) für alle Interpretationen $f:A'\to\{W,F\}$

Wir schreiben $G\equiv H$