

INTERPRÉTATIONS

• Vocabulaire: $\mathcal{V} = (\mathcal{P}, \mathcal{C})$, où

 \mathcal{P} = ensemble fini de prédicats

C = ensemble de constantes (peut être infini)

- ⇒ les formules sont construites sur ce vocabulaire
- ⇒ un **atome** est de la forme $p(e_1, ..., e_k)$ où $p \in \mathcal{P}$ et chaque e_i (terme) est une constante de C ou une variable
- Interprétation de V: $I = (D_I, .^I)$, où

 $D_I \neq \emptyset$ (le domaine de l'interprétation) pour tout $c \in C$, $c^I \in D_I$ pour tout $p \in \mathcal{P}$ d'arité k, $p^I \subseteq D_I^k$

$$\mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\})$$

$$I: \qquad D_I = \{d_1, d_2, d_3\}$$

$$a^I = d_1, b^I = d_2$$

$$p^I = \{(d_2, d_1), (d_2, d_3), (d_3, d_2)\}$$

$$r^I = \{(d_3, d_3, d_3)\}$$

HYPOTHÈSE SIMPLIFICATRICE SUR LES INTERPRÉTATIONS

On va adopter une hypothèse couramment faite qui simplifiera nos notations :

- hypothèse du nom unique (Unique Name Assumption) : deux constantes différentes désignent forcément des objets différents
- ⇒ dans toute interprétation, deux constantes différentes s'interprètent par deux éléments de domaine différents
- ⇒ on peut donc simplier les notations en appelant par le même nom une constante et l'élément du domaine qui l'interprète (« toute constante s'interprète par elle-même »)

```
 \mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\}) 
 I: \quad D_I = \{d_1, d_2, d_3\} 
 a^I = d_1, b^I = d_2 
 p^I = \{ (d_2, d_1), (d_2, d_3), (d_3, d_2) \} 
 r^I = \{ (d_3, d_3, d_3) \} 
 r^I = \{ (d_3, d_3, d_3) \} 
 D_I = \{a, b, d_3\} 
 p^I = \{ (b, a), (b, d_3), (d_3, b) \} 
 r^I = \{ (d_3, d_3, d_3) \}
```

INTERPRETATIONS (AVEC HYPOTHÈSE UNA)

• Vocabulaire: $\mathcal{V} = (\mathcal{P}, \mathcal{C})$, où

- \mathcal{P} = ensemble fini de prédicats
- *C* = ensemble de constantes (peut être infini)
- Interprétation de V: $I = (D_I, .^I)$, où

 $D_I \neq \emptyset$ (le domaine de l'interprétation)

 $C \subseteq D_I$ (et pour tout $c \in C$, $c^I = c$)

pour tout $p \in \mathcal{P}$ d'arité k, $p^I \subseteq D_I^k$

 \circ I est un modèle d'une formule close f (construite sur \mathcal{V}) si f est vraie pour I

$$\mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\})$$

I:
$$D_I = \{a, b, d_3\}$$

 $p^I = \{ (b, a), (b, d_3), (d_3, b) \}$
 $r^I = \{ (d_3, d_3, a) \}$

$$f_1 = \exists x \exists y (p(b,x) \land r(x,x,y))$$

$$f_2 = p(a,b) \wedge p(b,a)$$

$$f_3 = \exists x p(x,y)$$

On n'interprétera que des formules closes

HOMOMORPHISME ET CONSÉQUENCE LOGIQUE

```
Etant données deux formules f et g,

f \models g (g est conséquence de f)

signifie que

tout modèle de f est un modèle de g
```

(« dans toute situation où f est vraie, g est forcément vraie aussi »)

```
Base de faits F
CQ booléenne q()
```

 $F \models q()$ ssi il existe un homomorphisme de q dans F

Pourquoi?

Modèles d'une base de faits (sans variables)

$$F = \{p(a,b), p(b,c),q(c)\}$$

Si une interprétation *I* est un modèle de *F*, que contient-elle *forcément* ?

p^I contient forcément (a,b) et (b,c) q^I contient forcément c

Qu'y a-t-il de commun à *tous* les modèles de F?

$$p^{I} = \{ (a,b), (b,c) \}$$

 $q^{I} = \{ c \}$

Un **plus petit modèle** d'une formule f est un modèle de f qui n'est plus un modèle si on enlève un élément de l'interprétation d'un prédicat

Une base de faits a un unique plus petit modèle

$$I:$$
 $D_I = \{a,b,c, ...\}$
 $p^I = \{ (a,b), (b,c) \}$
 $q^I = \{ c \}$

Remarque : on doit interpréter toutes les constantes du vocabulaire même si elles n'apparaissent pas dans F

Modèle canonique d'une base de faits (sans variables)

Vocabulaire $\mathcal{V} = (\mathcal{P}, C)$ Base de faits F sur \mathcal{V}

Modèle canonique de F

M:
$$D^M = C$$

pour tout $p \in \mathcal{P}$ d'arité k , $p^M = \{ (c_1, ..., c_k) \mid p(c_1, ..., c_k) \in F \}$

Le modèle canonique de F correspond à l'**intersection** de tous les modèles de F

$$\mathcal{V} = (\{r_{/3}, p_{/2}, q_{/1}\}, \{a, b, c, d, e\})$$

$$F = \{ p(a,b), p(b,c), q(c) \} \qquad \mathcal{M}: \qquad D_{\mathcal{M}} = \{ a,b,c,d,e \}$$

$$p^{M} = \{ (a,b), (b,c) \}$$

$$q^{M} = \{ c \}$$

$$r^{M} = \emptyset$$

CES FORMULES ONT-ELLES UN PLUS PETIT MODÈLE (UNIQUE) ?

$$f = p(a) \vee p(b)$$

$$f = p(a) \rightarrow p(b)$$

$$\equiv \\ \neg p(a) \lor p(b)$$

$$f = p(a) \land (p(a) \rightarrow p(b))$$

$$f = p(a) \rightarrow \neg p(a)$$

$$f = p(a) \wedge \neg p(a)$$

Qu'est-ce q'un modèle d'une CQ Booléenne?

$$q() = \exists x \exists y \exists z (p(x,y) \land p(y,z) \land r(x,z,a))$$

I:
$$D_I = \{a,b,c\}$$

 $p^I = \{ (a,b), (b,c) \}$
 $r^I = \{ (a,b,c), (b,c,a) \}$

Une interprétation *l* est un modèle de *q* si :

il existe une application f des termes de q() dans D_I telle que :

- 1. f(c) = c pour toute constante c
- 2. pour tout atome $p(e_1,...,e_k)$ de q, on a $(f(e_1),...,f(e_k)) \in p^k$

HOMOMORPHISME ET CONSÉQUENCE LOGIQUE

Base de faits *F*CQ booléenne q()

Pourquoi?

 $F \models q()$ ssi il existe un homomorphisme de q dans F

- (⇒) Supposons que F ⊨ q, c'est-à-dire « tout modèle de F est un modèle de q »
 Prenons en particulier le modèle de canonique de F (soit M)
 M est un modèle de q
 Il existe donc une application f des termes de q dans D_M
 telle que :
 - 1. f(c) = c pour toute constante c
 - 2. pour tout atome $p(e_1,...,e_k)$ de q, $(f(e_1),...,f(e_k)) \in p^M$

f définit un homomorphisme de q dans F

(⇐) Soit h un homomorphisme de q dans F
 h montre que le modèle canonique de F est un modèle de q
 donc tout modèle de F est un modèle de q
 c'est-à-dire F ⊨ q

Modèles d'une KB (base de faits, règles Datalog)

 $K = (F, \mathcal{R})$ est vue d'un point de vue logique comme la conjonction de F et de toutes les règles de \mathcal{R}

donc : un modèle de K est un modèle de chaque fait de F et chaque règle de ${\cal R}$

```
K = (F, \mathcal{R})
F = \{p(a,b), p(b,c) \}
\mathcal{R} = \{R_1, R_2\} \text{ avec } R_1 : p(x,y) \rightarrow q(y)
R_2 : q(x), p(x,y) \rightarrow r(y) \}
```

I est un modèle de K ssi:

- I modèle de F : (a,b) ∈ pl et (b,c) ∈ pl
- I modèle de R₁: pour tout couple (d₁,d₂) ∈ p¹, on a d₂ ∈ q¹
- I modèle de R₂: pour tout d₁ ∈ q¹ et (d₁,d₂) ∈ p¹, on a d₂ ∈ r¹

EXEMPLE

```
K = (F, \mathcal{R})
F = \{p(a,b), p(b,c)\}
\mathcal{R} = \{R_1, R_2\} \text{ avec } R_1 : p(x,y) \rightarrow q(y)
R_2 : q(x), p(x,y) \rightarrow r(y)\}
I = (D, .I) \text{ avec } D = \{a, b, c, e\} \text{ Rappel } : a, b \text{ et } c \text{ désignent en fait } a^l, b^l \text{ et } c^l
p^l = \{(a,b), (b,c), (e,c)\}
q^l = \{b, c\}
r^l = \{a\}
I \text{ est-elle un modèle de } K ?
```

```
 I = (D, .I) \text{ avec } D = \{ a, b, c, e \}   p^I = \{ (a,b), (b,c) \}   q^I = \{ b, c \}   r^I = \{ a,c \}  I est-elle un modèle de K ?
```

Propriété du plus petit modèle unique

Toute base de connaissances $K = (F, \mathbb{R})$ où \mathbb{R} est un ensemble de règles Datalog possède un unique plus petit modèle M:

pour tout modèle I de K, pour tout prédicat p, on a $p^M \subseteq p^I$

```
F = {p(a,b), p(b,c)}

\mathcal{R} = {R<sub>1</sub>,R<sub>2</sub>} avec R<sub>1</sub>: p(x,y) \rightarrow q(y)

R<sub>2</sub>: q(x), p(x,y) \rightarrow r(y)}
```

Quel est son plus petit modèle?

Etant donnée une CQ booléenne q, pour déterminer si $K \models q$ il suffit donc de vérifier si le plus petit modèle de K est un modèle de K :

- si oui, tout modèle de K contient ce modèle, c'est donc un modèle de q
- si non, on a un modèle de K qui n'est pas un modèle de q

How to actually compute the answers to a query on a KB?

Forward chaining: starting from F, we iteratively compute all the facts that are consequences of the current factbase and the rules.

```
F = { fundedBy(Bob,C), Company(C) }

R = \forall x \forall y (fundedBy(x,y) \rightarrow relatedTo(x,y))

F,R \models relatedTo(Bob,C)
```

A rule $R: B \rightarrow H$ is applicable to a factbase F if there is a homomorphism h from B to F

Applying R to F according to h consists of adding h(H) to F

$$\begin{array}{c} h: body(R) \rightarrow F \\ x \mapsto Bob \\ y \mapsto C \end{array}$$

EXEMPLE (PISTES CYCLABLES)

Direct(A,B)

Direct(C,D)

Direct(B,C)

Direct(D,B)

R

R1 : Direct(x,y) \rightarrow Chemin(x,y)

R2 : Direct(x,y) \land Chemin(y,z) \rightarrow Chemin(x,z)

PROPERTIES OF DATALOG RULES

• $K = (F, \mathcal{R})$ where

F is a set of (ground) facts

 ${\mathcal R}$ is a set of Datalog rules

By applying rules from \mathcal{R} starting from F, a unique result is obtained:

the saturation of F by \mathcal{R} (denoted here by F^*)

F* is finite since no new variable is created

F* allows to compute the **answers** to a CQ on K:

 $(a_1, ..., a_k)$ is an answer to $q(x_1, ..., x_k)$ on K iff there is a homomorphism from q to K that maps each x_i to a_i

If k=0: () is an answer means « yes »

Why? Because the canonical model of the saturated factbase F* is the **unique smallest model** of *K*

EXEMPLE (PISTES CYCLABLES)

Direct(A,B)
Direct(B,C)
Direct(C,D)
Direct(D,B)

R

 $R1: Direct(x,y) \rightarrow Chemin(x,y)$

R2 : Direct(x,y) \land Chemin(y,z) \rightarrow Chemin(x,z)

```
F* = F U { Ch(A,B), Ch(B,C), Ch(C,D), Ch(D,B)
Ch(A,C), Ch(B,D), Ch(C,B), Ch(D,C)
Ch(A,D), Ch(B,B), Ch(C,C), Ch(D,D)
}
```

 $Q(x) = Chemin(A,x) \land Chemin(x,D)$ « trouver tous les x qui sont sur un chemin de A à D »

Pour toute constante c, (c) est une réponse à Q(x) sur K si $K \models Chemin(A,c) \land Chemin(c,D)$

On cherche les homomorphismes de Q dans F*

$$x \mapsto B$$

$$x \mapsto C$$

$$x \mapsto D$$

$$Q(F^*) = \{ (B), (C), (D) \}$$

Cadre étudié dans ce cours

- Base de connaissances (KB) composée :
 - d'une base de faits
 (qu'on peut voir comme une base de données relationnelle)
 - d'une base de règles positives et conjonctives (Datalog)
- Requêtes conjonctives
 (correspondant à des requêtes de base en SQL / SPARQI)
- Problème fondamental : interrogation de la KB
 (calculer toutes les réponses à une requête conjonctive sur la KB)

Extensions

- Contraintes négatives
- (on évoquera les règles existentielles qui généralisent Datalog)
- Mappings pour extraire une partie d'une base de données relationnelle et la traduire en une base de faits

SI ON AJOUTE DES CONTRAINTES NÉGATIVES

Une contrainte négative est de la forme

$$\forall X (Condition[X] \rightarrow \bot)$$

où *Condition* est une conjonction d'atomes et ⊥ le symbole absurde

$$\forall x \text{ (Film(x)} \land \text{Personne (x)} \rightarrow \bot)$$

• Une base de faits F satisfait une contrainte négative C s'il n'y a pas d'homomorphisme de la condition de C dans F (autrement dit, C vue comme une règle n'est pas applicable)

Remarque : $F \cup \{C\}$ est consistante (satisfiable) ssi F satisfait C

• Une base de connaissances $K = (F, \mathcal{R}, C)$ • où C est un ensemble de contraintes négatives est consistante (satisfiable) ssi F^* (la saturation de F par \mathcal{R}) satisfait toutes les contraintes de C

EXERCICE (APPLICATION DIRECTE DU COURS)

```
Soit la KB \mathcal{K} = (F, \mathcal{R}, C)

F = \{ r(a,b), r(b,c), r(c,a) \}

\mathcal{R} = \{ r(x,y) \rightarrow s(x,y) ; s(x,y) \land s(y,z) \rightarrow s(x,z) \}

C = \{ s(x,y) \land s(y,x) \rightarrow \bot \}
```

L'interprétation I :

```
D = {a,b,c, d,e}

r^{I} = {(a,b), (b,c), (c,a), (d,e)}

s^{I} = D x D

est-elle un modèle de (F,R)?
```

- Quel est le plus petit modèle de (F, \mathcal{R}) ?
- F satisfait-elle C? \mathcal{K} satisfait-elle C?
- \circ \mathcal{K} est-elle consistante (satisfiable) ?
- Soit $q() = \exists x \ lapin(x)$. \mathcal{K} répond-t-elle oui à q?

Interrogation de KBs avec contraintes négatives

Soit une base de connaissances K = (F, R, C)

1. K est-elle satisfiable?

On calcule F^* la saturation de F par \mathcal{R} Puis on teste si F^* satisfait C.

2. Interrogation de *K*

Si K n'est pas satisfiable, le problème d'interrogation « trivialise ».

Sinon, les réponses à une CQ q sont données par les homomorphismes de q dans F^* .

ALGORITHME DE CHAÎNAGE AVANT NAÏF

```
Algorithme ForwardChaining (K)
                                                            // Données : K = (F, R)
Début
                                                            // Résultat : F* (F saturée par R)
Fin \leftarrow faux
i ← 0 // numéro d'étape
F(0) \leftarrow F // base de faits à l'étape 0
Tant que non fin
            i \leftarrow i + 1
            nouvFaits(i) \leftarrow \emptyset // ensemble des nouveaux faits obtenus à l'étape i
            Pour toute règle R : B \rightarrow H \in \mathcal{R}
                 Pour tout homomorphisme h de B dans F(i-1)
                     Si h(H) \notin (F(i-1) \cup nouvFaits(i))
                                                Ajouter h(H) à nouvFaits(i)
            Si nouvFaits(i) = \emptyset, Fin \leftarrow vrai
                                                              | F* | dans le pire des cas ?
            Sinon F(i) \leftarrow F(i-1) \cup nouvFaits(i)
```

Retourner F(i) Fin

#atomes ayant un prédicat p d'arité k : au plus [#constantes(K)]^k

=> | F* | **exponentielle** en l'arité maximale des prédicats

ALGORITHME DE CHAÎNAGE AVANT NAÏF

Fin

```
Algorithme ForwardChaining (K)
                                                            // Données : K = (F, R)
Début
                                                            // Résultat : F* (F saturée par R)
Fin \leftarrow faux
i ← 0 // numéro d'étape
F(0) \leftarrow F // base de faits à l'étape 0
Tant que non fin
            i \leftarrow i + 1
            nouvFaits(i) \leftarrow \emptyset // ensemble des nouveaux faits obtenus à l'étape i
            Pour toute règle R : B \rightarrow H \in \mathcal{R}
                 Pour tout homomorphisme h de B dans F(i-1)
                     Si h(H) \notin (F(i-1) \cup nouvFaits(i))
                                                Ajouter h(H) à nouvFaits(i)
            Si nouvFaits(i) = \emptyset, Fin \leftarrow vrai
            Sinon F(i) \leftarrow F(i-1) \cup nouvFaits(i)
Retourner F(i)
```

AMÉLIORATIONS DE L'ALGORITHME NAÏF DE CHAINAGE AVANT

Test d'homomorphisme :

étant donnés B et F, déterminer s'il existe un homomorphisme de B dans F est un problème NP-complet

Mais B est petit ...

Eviter de recalculer tous les homomorphismes de B dans F à chaque étape
 ⇒ ne rechercher que les homomorphismes nouveaux

Un homomorphisme h est nouveau à l'étape i s'il envoie au moins un atome de B dans un fait produit à l'étape i-1

Autrement dit : $h(B) \nsubseteq F(i-2)$

ou encore : $h(B) \cap nouveauxFaits(i-1) \neq \emptyset$

 Ne pas considérer toutes les règles à chaque étape, mais seulement celles pour lesquelles il y a potentiellement un nouvel homomorphisme de B (voir exercice)

ONTOLOGY-MEDIATED QUERY ANSWERING

Query

Compute answers to queries

while taking into account inferences

enabled by an ontology

Limitation up to now:

facts and data expressed on the same vocabulary

(or on similar vocabularies, cf. the natural translation from a relational database to a factbase)

Knowledge Base

MAPPINGS

Patient_T [ID_PATIENT, NAME,SSN]

Diagnosis_T[ID_PATIENT, DISORDER]

Patient /1
Diagnosis / 2
Influenza /1

Mapping = database query(X) \rightarrow conjunction with free variables X

q(x): $\exists n \exists s \ Patient_T(x,n,s) \rightarrow Patient(x)$

q'(x): \exists n \exists s Patient_T (x,n,s) \land Diagnostic_T(x,y) \land y = « influenza » \rightarrow \exists z (diagnosis(x,z) \land Influenza(z))

Patient(P)
Diagnosis(P,M)
Influenza(M)

Mappings can be seen as Rules

Patient T [ID PATIENT, NAME, SSN]

Diagnosis T[ID PATIENT, DISORDER]

q(x): $\exists n\exists s \ Patient_T(x,n,s)$

 \rightarrow Patient(x)

GAV (Global-As-View)

q'(x): $\exists n\exists s \ Patient_T(x,n,s) \land Diagnosis_T(x,y) \land y = « influenza »$ \rightarrow $\exists z \text{ diagnosis}(x,z) \land \text{Influenza}(z)$

Patient $T(x,n,s) \rightarrow Patient(x)$

Datalog Rule

Patient_T (x,n,s), Diagnosis_T(x, \ll influenza \gg) $\rightarrow \exists z \text{ diagnosis}(x,z)$, Influenza(z) **Existential Rule**

More generally: $q_1(X) \rightarrow q_2(X)$ where q_1 is expressed in a native query language

Decomposition of a mapping into 2 mappings

low level: $q_1(X) \rightarrow \text{view}(X)$ Result of the query stored in a view

high level: view(X) \rightarrow q₂(X) Logical rule

OBDA: TOTAL MATERIALIZATION (FORWARD CHAINING)

RuleML+RR

Cadre étudié dans ce cours

- Base de connaissances (KB) composée :
 - o d'une base de faits (qu'on peut voir comme une base de données relationnelle)
 - d'une base de règles positives et conjonctives (Datalog)
- Requêtes conjonctives
 (correspondant à des requêtes de base en SQL / SPARQI)
- Problème fondamental : interrogation de la KB
 (calculer toutes les réponses à une requête conjonctive sur la KB)

Extensions

Prochain cours: autre approche algorithmique pour l'interrogation

- Contraintes négatives
- (on évoquera les règles existentielles qui généralisent Datalog)
- Mappings pour extraire une partie d'une base de données relationnelle et la traduire en une base de faits