MAT223 - Linear Algebra

Classnotes for Summer 2019

by

Callum Cassidy-Nolan

Computer Science

University of Toronto

Table of Contents

Table of Contents	2
List of Definitions	3
List of Theorems	4
List of Procedures	5
1 Week 9	7
1.1 Linear Transformations	7
1.2 Image	9
Bibliography	11
Index	12

List of Definitions

1	Definition (Linear Transformation)
2	Definition (Image)

List of Theorems

List of Procedures

Linear transformations and such

1.1 Linear Transformations

■ Definition 1 (Linear Transformation)

Let V and W be subspaces. A function $\mathcal{T}:V\to W$ is called a linear transformation if for all $\vec{u},\vec{v}\in V$ and $a\in\mathbb{R}$ it satisfies

1.
$$\mathcal{T}(\vec{u} + \vec{v}) = \mathcal{T}(\vec{u}) + \mathcal{T}(\vec{v})$$

2.
$$\mathcal{T}(a\vec{u}) = a\mathcal{T}(\vec{u})$$

Example 1.1.1

We'll show that $\mathcal R$ is a linear transformation where $\mathcal R$ is a counter clockwise rotation of $\frac{\pi}{2}$ radians

$$\mathcal{R}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Let $\vec{u}, \vec{v} \in \mathbb{R}^2$ we know that for some $x_1, y_1, x_2, y_2 \in \mathbb{R}$ that

$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

$$\mathcal{R}\left(egin{bmatrix} x_1 \ y_1 \end{bmatrix}
ight) + \mathcal{R}\left(egin{bmatrix} x_2 \ y_2 \end{bmatrix}
ight) = egin{bmatrix} -y_1 \ x_1 \end{bmatrix} + egin{bmatrix} -y_2 \ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} -(y_1 + y_2) \\ x_1 + x_2 \end{bmatrix}$$

Which is exactly equal to \mathcal{R} $(\vec{u} + \vec{v})$ as required, then let $\alpha \in \mathbb{R}$ and we know that

$$\mathcal{R}\left(\alpha\vec{u}\right) = \begin{bmatrix} -\alpha y_1 \\ \alpha x_1 \end{bmatrix}$$

But also that

$$\alpha \mathcal{R}\left(\vec{u}\right) = \begin{bmatrix} -\alpha y_1 \\ \alpha x_1 \end{bmatrix}$$

So then we've shown that $\mathcal{R}\left(\alpha\vec{u}\right) = \alpha\mathcal{R}\left(\vec{u}\right)$ but also that $\mathcal{R}\left(\vec{u} + \vec{v}\right) = \mathcal{R}\left(\vec{u}\right) + \mathcal{R}\left(\vec{v}\right)$ as req'd

Example 1.1.2

We'll show that $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$ where $\mathcal{T} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2 \\ y \end{bmatrix}$ is not a linear transformation.

Let
$$\vec{j} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\vec{k} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ we have that

$$\mathcal{T}(\begin{bmatrix}0\\0\end{bmatrix}+\begin{bmatrix}0\\0\end{bmatrix})=\begin{bmatrix}2\\0\end{bmatrix}$$

But then we can see that

$$\mathcal{T}(\begin{bmatrix}0\\0\end{bmatrix}) + \mathcal{T}(\begin{bmatrix}0\\0\end{bmatrix}) = \begin{bmatrix}2\\0\end{bmatrix} + \begin{bmatrix}2\\0\end{bmatrix} = \begin{bmatrix}4\\0\end{bmatrix}$$

Then we conclude that $\mathcal{T}(\vec{j} + \vec{k}) \neq \overline{\mathcal{T}(\vec{j}) + \mathcal{T}(\vec{k})}$

~

Example 1.1.3

We'll show that \mathcal{P} is a linear transformation ¹

$$\mathcal{P}(\begin{bmatrix} x \\ y \end{bmatrix}) = comp_{\vec{u}} \begin{bmatrix} x \\ y \end{bmatrix}$$

¹ We'll show that it is closed under addition and multiplication

Let $\vec{j}, \vec{k} \in \mathbb{R}^2$ we know that

$$comp_{\vec{u}}\vec{j} = \left(\frac{\vec{u} \cdot \vec{j}}{\|\vec{u}\|^2}\right) \vec{u} \text{ and } comp_{\vec{u}}\vec{k} = \left(\frac{\vec{u} \cdot \vec{k}}{\|\vec{u}\|^2}\right) \vec{u}$$

And thus their product yields

$$comp_{\vec{u}}\vec{j} + comp_{\vec{u}}\vec{k} = \left(\frac{\vec{u} \cdot \left(\vec{j} + \vec{k}\right)}{\left\|\vec{u}\right\|^2}\right) \vec{u}$$

Which is equal to

$$comp_{\vec{u}}(\vec{j}+\vec{k})$$

We must then show that it holds under multiplication let $\alpha \in \mathbb{R}$ and we know that

$$\alpha comp_{\vec{u}}\vec{j} = \alpha \left(\frac{\vec{u} \cdot \vec{j}}{\left\| \vec{u} \right\|^2} \right) \vec{u} = \left(\frac{\vec{u} \cdot \alpha \vec{j}}{\left\| \vec{u} \right\|^2} \right) \vec{u} = comp_{\vec{u}} \alpha \vec{j}$$

1.2 Image

■ Definition 2 (Image)

Let $L: V \to W$ be a transformation and let $X \subseteq V$ be a set. The *image* of the set X under L, denoted as L(X), is the set

$$L(X) = {\vec{x} \in W : \vec{x} = L(\vec{y}) \text{ for some } \vec{y} \in X}$$

Image, 9

Linear Transformation, 7