1. The following block diagrams represent three different controls (P, PI, and PID) for a DC motor.

- (a) Using $K_P = 5$, $K_I = 5/0.01 = 500$ and $K_D = 5(.0004) = 0.002$ with w = -0.1 (W(s) = -0.1/s), r = 100 (R(s) = 100/s), $\tau_1 = 1/60$, $\tau_2 = 1/600$, and A = 10, B = 50, calculate the steady-state response of the three different cases using the final value theorem.
- (b) Obtain the system responses up to 0.06 seconds using Simulink and plot them together on the same graph. Attach the Simulink block diagrams as well as the MATLAB script files.
- 2. A paper machine is to be controlled by a PID controller. The input is stock flow onto the wire and the output is basis weight or thickness.
 - (a) From experimental step response, the machine was found to be approximated by

$$G(s) = \frac{e^{-2s}}{3s+1}$$

Find the **PI-controller** parameters using the transient response method. Simulate the system with the selected parameters for a unit-step input and plot the response from 0 to 50 seconds.

(b) The system becomes marginally stable for a proportional gain of $K_u = 3.044$, as shown by the unit-impulse response below. Find the optimal **PID-controller** parameters according to the Zeigler-Nichols tuning rules.

