МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича (СПбГУТ)»

СПб ГУТ)))

Формирование и обработка звуковых сигналов

ЛАБОРАТОРНАЯ РАБОТА № 1

Исследование характеристик сжимателя (компрессора)

Выполнил:

Балан К. А.

Студент группы:

РЦТ-22

Преподаватель:

Ишутина О. Ю.

1. Формирование испытательного сигнала

1. Сформируем испытательные сигналы с параметрами, взятыми из Таблицы 1.

Таблица 1 – Параметры испытательного сигнала

Время	Сигнал	Примечание к сигналу	Амплитуда
0 – 9 сек	Последовательность	Длительность тональных	0,8
0 – 9 CCR	тональных сигналов сигналов 1,8 сек	0,0	
10 – 19 сек	Последовательность	Длительность тональных	0,5
10 – 19 CCK	тональных сигналов	сигналов 1,8 сек	0,5
20 – 29 сек	Последовательность	Длительность тональных	0,7
20 – 29 CER	тональных сигналов	сигналов 1,8 сек	0,7
30 – 40 сек	Последовательность	Длительность тональных	0,4
30 – 40 CER	тональных сигналов	сигналов 1,8 сек	U, 4
0-40 сек	Коричневый шум	-	0,1

2. Замкнем вход звуковой карты на выход.

Рисунок 1 – Сформированный испытательный сигнал.

2. Исследование параметра порога срабатывания (threshold) на параметры сигнала

- 1. Запустим приложение Easy Effect.
- 2. Добавим компрессор в цепочку обработки сигнала.
- 3. В соответствии с таблицей 2 установим параметры инструмента компрессор и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 2 – Параметры инструмента компрессор.

Параметр	Значение
Время установления (attack), мс	41
Время восстановления (release), мс	522
Порог (attack threshold), дБ	-6
Сжатие (ratio)	8
Колено (knee), дБ	-6
Выходное усиление (Максир), дБ	0
Уровень обработанного сигнала (wet level), дБ	0

- 4. Назовем записанную дорожку ТН(-6).
- 5. Повторим п. 3-4 для порогов срабатывания -10 и -18 дБ.
- 6. Зафиксируем сигналограммы в отчет.

Рисунок 2 – Испытательный и полученные сигналограммы.

3. Исследование влияния параметра степени сжатия (ratio) на параметры сигнала

1. В соответствии с таблицей 3 установим параметры инструмента компрессор и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 3 – Параметры инструмента компрессор.

Параметр	Значение
Время установления (attack), мс	41
Время восстановления (release), мс	522
Порог (attack threshold), дБ	-12
Сжатие (ratio)	8
Колено (knee), дБ	-6
Выходное усиление (Максир), дБ	0
Уровень обработанного сигнала (wet level), дБ	0

- 2. Назовем записанную дорожку Ratio(8).
- 3. Повторим п. 2-3 для степени сжатия 4 и 2.
- 4. Зафиксируем сигналограммы в отчет.

Рисунок 3 – Испытательный и полученные сигналограммы.

4. Исследование влияния параметра колено (knee) на параметры сигнала

1. В соответствии с таблицей 4 установим параметры инструмента компрессор и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 4 – Параметры инструмента компрессор.

Параметр	Значение
Время установления (attack), мс	41
Время восстановления (release), мс	522
Порог (attack threshold), дБ	-12
Сжатие (ratio)	8
Колено (knee), дБ	-6
Выходное усиление (Максир), дБ	0
Уровень обработанного сигнала (wet level), дБ	0

- 2. Назовем записанную дорожку knee(-6).
- 3. Повторим п. 2-3 для значения параметра колено 0.
- 4. Зафиксируем сигналограммы в отчет.

Рисунок 4 – Испытательный и полученные сигналограммы.

5. Исследование влияния параметра время установления (attack) на параметры сигнала.

1. В соответствии с таблицей 5 установим параметры инструмента компрессор и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 5 – Параметры инструмента компрессор.

Параметр	Значение
Время установления (attack), мс	41
Время восстановления (release), мс	522
Порог (attack threshold), дБ	-12
Сжатие (ratio)	8
Колено (knee), дБ	-6
Выходное усиление (Максир), дБ	0
Уровень обработанного сигнала (wet level), дБ	0

- 2. Назовем записанную дорожку attack(41).
- 3. Повторим п. 2-3 для значений параметра время установки 61 и 101.
- 4. Зафиксируем сигналограммы в отчет.

Рисунок 5 – Испытательный и полученные сигналограммы.

6. Исследование влияния параметра время восстановления (release) на параметры сигнала.

1. В соответствии с таблицей 6 установим параметры инструмента компрессор и запустим обработку исследуемого сигнала, активировав режим записи в ПО Audacity, заглушив при этом все дорожки, кроме испытательного сигнала.

Таблица 6 –Параметры инструмента компрессор.

Параметр	Значение
Время установления (attack), мс	41
Время восстановления (release), мс	522
Порог (attack threshold), дБ	-12
Сжатие (ratio)	8
Колено (knee), дБ	-6
Выходное усиление (Максир), дБ	0
Уровень обработанного сигнала (wet level), дБ	0

- 2. Назовем записанную дорожку release(522).
- 3. Повторим п. 2-3 для значений параметра время восстановления 622 и 722.
- 4. Зафиксируем сигналограммы в отчет.

Рисунок 6 – Испытательный и полученные сигналы.

7. Исследование влияния параметров компрессора на динамические характеристики сигнала.

- 1. Запустим ПО Ocenaudio. Импортируем полученные в ходе выполнения лабораторной работы сигналы, включая испытательный.
- 2. Для каждого из сигналов проведем анализ его динамических характеристик Analyse/Statistics. Вычислим значения динамического диапазона сигнала и пик-фактора. Запишем полученные значения в сводную таблицу 7.

Таблица 7 – Динамические диапазоны и Пик-факторы полученных сигналов.

Сигнал	Динамический диапазон	Пик-фактор
Сформированный	29,95	5,11
TH(-6)	79,25	5,4
TH(-10)	78,58	6,14
TH(-18)	75,77	8,64
ratio(8)	75,34	6,59
ratio(4)	81,78	6,48
ratio(2)	79,94	6,01
knee(-6)	75,34	6,59
knee(0)	80,29	6,65
attack(41)	75,34	6,59
attack(61)	75,73	6,91
attack(81)	80,19	7,28
release(522)	75,34	6,59
release(622)	83,7	6,64
release(722)	78,7	6