Regularized Regression

Ryan Henning Frank Burkholder Elliot Cohen

Learning Objectives:

- Explain the shortcomings of un-regularized regression
- Relate shortcomings to:
 - The Curse of Dimensionality
 - The Bias-Variance Tradeoff
- Mitigate shortcomings with:
 - Ridge Regression
 - Lasso Regression

Let's suppose we want to model housing prices as a function of house size.

Do you see a signal?

How is house price is related to house size?

Fit a polynomial model to data

Fit a polynomial model to data

Likely underfit.
The fit doesn't fully capture the relationship between house size and price in the data.

in the data.

p = b0 + b1*s

house size and price

in the data.

Likely overfit.
Fits perfectly to the data, including signal and noise..

Interactive Demo

http://madrury.github.io/smoothers/

In high dimensions, data is (usually) sparse

Curse of Dimensionality

As the number of dimensions increase, the volume that data can occupy grows exponentially.

D = number of dimensions

N = number of datapoints

sampling density is proportional to $N^{\frac{1}{D}}$.

Curse of Dimensionality example

sampling density $N_1^{1/D_1} \propto N_2^{1/D_1}$

Curse of Dimensionality: Breakout

Suppose I want to model housing prices (y) as a function of square footage (x1), number of bedrooms (x2), number of bathrooms (x3), vintage (x4) and distance from downtown (x5). Suppose I have 1000 records (N).

What is the sampling density of my model?

Now suppose a colleague suggests I look at all pairwise interaction terms as well.

How many new features do I have?

What is the new sampling density?

How many new observations would I need to maintain the original sampling density?

Consider the following polynomial models

https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/

Here are the coefficients of the models on the previous slide. Notice how the magnitude of the coefficients increases as complexity increases

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11	0
model_pow_1	3.3	2	-0.62	NaN	NaN	ı								
model_pow_2	3.3	1.9	-0.58	-0.006	NaN	NaN	I							
model_pow_3	1.1	-1.1	3	-1.3	0.14	NaN	NaN	I						
model_pow_4	1.1	-0.27	1.7	-0.53	-0.036	0.014	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
model_pow_5	1	3	-5.1	4.7	-1.9	0.33	-0.021	NaN	NaN	NaN	NaN	NaN	NaN	N
model_pow_6	0.99	-2.8	9.5	-9.7	5.2	-1.6	0.23	-0.014	NaN	NaN	NaN	NaN	NaN	N
model_pow_7	0.93	19	-56	69	-45	17	-3.5	0.4	-0.019	NaN	NaN	NaN	NaN	N
model_pow_8	0.92	43	-1.4e+02	1.8e+02	-1.3e+02	58	-15	2.4	-0.21	0.0077	NaN	NaN	NaN	N
model_pow_9	0.87	1.7e+02	-6.1e+02	9.6e+02	-8.5e+02	4.6e+02	-1.6e+02	37	-5.2	0.42	-0.015	NaN	NaN	N
model_pow_10	0.87	1.4e+02	-4.9e+02	7.3e+02	-6e+02	2.9e+02	-87	15	-0.81	-0.14	0.026	-0.0013	NaN	N
model_pow_11	0.87	-75	5.1e+02	-1.3e+03	1.9e+03	-1.6e+03	9.1e+02	-3.5e+02	91	-16	1.8	-0.12	0.0034	N
model_pow_12	0.87	-3.4e+02	1.9e+03	-4.4e+03	6e+03	-5.2e+03	3.1e+03	-1.3e+03	3.8e+02	-80	12	-1.1	0.062	-
model_pow_13	0.86	3.2e+03	-1.8e+04	4.5e+04	-6.7e+04	6.6e+04	-4.6e+04	2.3e+04	-8.5e+03	2.3e+03	-4.5e+02	62	-5.7	0
model_pow_14	0.79	2.4e+04	-1.4e+05	3.8e+05	-6.1e+05	6.6e+05	-5e+05	2.8e+05	-1.2e+05	3.7e+04	-8.5e+03	1.5e+03	-1.8e+02	1
model_pow_15	0.7	-3.6e+04	2.4e+05	-7.5e+05	1.4e+06	-1.7e+06	1.5e+06	-1e+06	5e+05	-1.9e+05	5.4e+04	-1.2e+04	1.9e+03	1-

https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/

Summary of shortcomings of un-regularized regression

As model complexity increases...

- (1) magnitude of model coefficients tends to increase
- (2) stability of model coefficients (particularly those corresponding to correlated features) tends to decrease for even small perturbations in sample data
- (3) sampling density decreases exponentially for a given sample size N.
- (4) generalizability to unseen data decreases.

Linear Regression (review)

We model the world as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

We estimate the model parameters by minimizing:

$$\sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} x_{ij} \hat{\beta}_j)^2$$

Linear Regression with (L2) Regularization

We model the world as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

(same as before)

We estimate the model parameters by minimizing:
$$\sum_{i=1}^{N}(y_i-\hat{\beta}_0-\sum_{j=1}^{p}x_{ij}\hat{\beta}_j)^2+\lambda\sum_{i=1}^{p}\hat{\beta}_i^2$$

(the "regularization" parameter)

Ridge Regression

$$\sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} x_{ij} \hat{\beta}_j)^2 + \lambda \sum_{i=1}^{p} \hat{\beta}_i^2$$

Notice, we do not penalize B_0 .

Changing the hyperparameter lambda changes the amount that large coefficients are penalized.

Increasing lambda increases the model's bias and decreases its variance. ← this is cool!

10

Normalized Data Non-Normalized Data 10 0.0001

Single value for λ assumes features are on the same scale!!

LASSO Regression

(Linear Regression w/ LASSO (L1) Regularization)

We model the world as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

(same as before)

(the "regularization" parameter)

We estimate the model parameters to minimizing:

$$\sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} x_{ij} \hat{\beta}_j)^2 + \lambda \sum_{i=1}^{p} |\hat{\beta}_i|$$
 (absolute value instead of squared)

- Ridge forces parameters to be small + Ridge is computationally easier (faster!) because it's differentiable
- Lasso tends to set coefficients exactly equal to zero
 - This is useful as a sort-of "automatic feature selection" mechanism,
 - o leads to "sparse" models, and
 - o serves a similar purpose to stepwise features selection

Which is better depends on your dataset!

How might we select (tune) lambda??

galvanize

scikit-learn

Classes:

- sklearn.linear_model.LinearRegression(...)
- sklearn.linear_model.Ridge(alpha=my_alpha, ...)
- sklearn.linear_model.**Lasso**(alpha=my_alpha, ...)
- sklearn.linear_model.ElasticNet(alpha=my_alpha, I1_ratio = !!!!, ...) Wow!

(In sklearn alpha = lambda)

All have these methods:

- fit(X, y)
- predict(X)
- score(X, y)

- 1) Use regularization!
 - a) Helps prevent overfitting
 - b) Helps with collinearity
 - c) Gives you a knob to adjust bias/variance trade-off
- 2) Don't forget to standardize your data!
 - a) Column-by-column, de-mean and divide by the standard deviation
- 3) Lambdas control the size (L1 & L2) and existence (L1) of feature coefficients.
 - a) Large lambdas mean more regularization (fewer/smaller coefficients) and *less* model complexity.
- 4) You can have it all! (ElasticNet)