

F1G.15

F16.16

F16.23

F16.20

FIG. 22

Drive voltage

Drive voltage

Prive Voltage

Waveform

Glindrical PVDF

transducer on pen

FIG. 24

FIG. 30A

FIG.32

1002 / 1013 1103 PVOF with electrode F16.30B 1100 PVDF with electron

FIG. 33A

F1G.34

FIG. 35 A

sensor Assembly Signal 5, 1203' 1210 12021 Wall-thickness designed of operation PCB Electrodes 120' pass through Plastic, metal, etc. housing to connect to FIG. 35 C main circuitry

Sensor Assembly

FIG. 35D

1200"

Semi-Cylindrical Sensor

Plastic Housing w/ 12 03 "
Cutout for Accoustic Energy to pass

Electic Contacts pass through housing to connect to main circuit

FIG. 35 E

Semi Cylindrical Sensor

1306

W=0.1 ~ 0.4 mm

1304

Wall

Thickness

L=0.25 mm

PZT

1310

Metal(Aluminum)

FIG. 36

FIG. 39 C

Plastic Housing w/
Geometry to keep Piezo Film in a cylindrical Shape

Piezo Electic Film U/S welded or Taped i a Cylindrical Shape

1720'

Elèctical Pins Press Fit into Plastic Housing Contacting Film Electrodes

FIG. 39D

Capacitive Micro Machined Ultrasonic Transducer (c-MUT)

Following numbers are example of c-MUT diaphragm; material is silicon nitride.

- (a) 1-2 MHz range design ($\lambda = 0.34 0.17$ mm) Diaphragm diameter; 50 um, thickness 0.5 - 1 um
- (b) 300 900KHz; $(\lambda = 1.1 3.8 \text{ mm})$ Diaphragm diameter; 200 um, thickness 2.5 - 7.5 um
- (c) 80 -200 KHz design; ($\lambda = 4.3 1.7 \text{ mm}$) Diaphragm diameter 0.4 mm, thickness 3 - 7 um

In all the design, the diameters are roughly equal to quarter wavelength or smaller. In such a condition, the sensitivity has no angle dependence (no directivity).

Such a transducer can be mounted on the surface of receiving equipment.

Desktop computer,

F16.45A

F16.45B

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.