

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6679/01)

January 2008 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
1.(a)	T or $\frac{\lambda \times e}{l} = mg$ (even $T = m$ is M1, A0, A0 sp case)	M1
	$\frac{\lambda \times 0.16}{0.4} = 2g$	A1
(b)	$\Rightarrow \lambda = \underline{49 \text{ N}} \text{or 5g}$ Special case $T \sin \theta = mg$	A1 (3)
	giving $\theta = 30$ is M1 A0 A0 unless there is evidence that they think θ is with horizontal – then M1 A1 A0 $R(\uparrow) T\cos\theta = mg \text{ or } \cos\theta = \frac{mg}{T}$	M1
	$49.\frac{0.32}{0.4}.\cos\theta = 19.6 \text{ or } 4g.\cos\theta = 2g \text{ or } 2mg.\cos\theta = mg \qquad \text{(ft on their } \lambda\text{)}$	A1ft
	$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ} \qquad (\text{ or } \frac{\pi}{3} \text{ radians})$	A1 (3)
		6
2.	$m'a' = \pm \frac{16}{5x^2}$, with acceleration in any form (e.g. $\frac{d^2x}{dt^2}$, $v\frac{dv}{dx}$, $\frac{dv}{dt}$ or a)	B1
	Uses $a = v \frac{dv}{dx}$ to obtain $kv \frac{dv}{dx} = \pm k' \frac{32}{x^2}$	M1
	Separates variables, $k \int v dv = k' \int \frac{32}{x^2} dx$	dM1
	Obtains $\frac{1}{2}v^2 = \mp \frac{32}{x} (+C)$ or equivalent e.g. $\frac{0.1}{2}v^2 = -\frac{16}{5x} (+C)$	A1
	Substituting $x = 2$ if + used earlier or -2 if - used in d.e. $x = 2$, $v = \pm 8 \Rightarrow 32 = -16 + C \Rightarrow C = 48$ (or value appropriate to their correct equation)	M1 A1
	$v = 0 \Rightarrow \frac{32}{x} = 48 \Rightarrow x = \frac{2}{3} \text{m}$ (N.B. $-\frac{2}{3}$ is not acceptable for final answer)	M1 A1 cao 8
	N.B $\frac{d}{dx}(\frac{1}{2}mv^2) = \frac{16}{5x^2}$, is also a valid approach. Last two method marks are independent of earlier marks and of each other	

Question Number	Scheme	Marks
3.(a)	Large cone small cone S	
	Vol. $\frac{1}{3}\pi(2r)^2(2h)$ $\frac{1}{3}\pi r^2 h$ (accept ratios 8 : 1 : 7)	B1
	C of M $\frac{1}{2}h$, $\frac{5}{4}h$ \overline{x} (or equivalent)	B1, B1
	$\frac{8}{3}\pi r^2 h \cdot \frac{1}{2}h - \frac{1}{3}\pi r^2 h \cdot \frac{5}{4}h = \frac{7}{3}\pi r^2 h \cdot \overline{x} \qquad \text{or equivalent}$	M1
	$\rightarrow \overline{x} = \frac{11}{28}h$	A1 (5)
(b)	$\tan \theta = \frac{2r}{\overline{x}} = \frac{2r}{\frac{11}{28}h}, = \frac{2r}{\frac{11}{14}r} = \frac{28}{11}$	M1, A1
	$\theta \approx 68.6^{\circ}$ or 1.20 radians	A1 (3) 8
	(Special case – obtains complement by using $\tan \theta = \frac{2r}{x}$ giving 21.4° or .374 radians M1A0A0)	
	Centres of mass may be measured from another point (e.g. centre of small circle, or vertex) The Method mark will then require a complete method (Moments and subtraction) to give required value for \bar{x}). However B marks can be awarded for correct values if the candidate makes the working clear.	

		1
4. (a)	Energy equation with at least three terms, including K.E term 1	M1
	$\frac{1}{2}mV^{2} + \dots$ $+ \dots \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{a^{2}}{16}, +mg \cdot \frac{1}{2} a \cdot \sin 30, = \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{9a^{2}}{16}$	A1, A1, A1
	$\Rightarrow V = \sqrt{\frac{ga}{2}}$	dM1 A1 (6)
(b)	Using point where velocity is zero and point where string becomes slack:	M1
	$\frac{1}{2}mw^2 = $ $1 2m\sigma 9a^2 \qquad 3a$	A1, A1
	$\frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{9a^2}{16}, -mg \cdot \frac{3a}{4} \cdot \sin 30$ $\Rightarrow w = \sqrt{\frac{3ag}{8}}$	A1 (4)
	Alternative (using point of projection and point where string becomes slack):	M1,A1 A1
	$\frac{1}{2}mw^{2} - \frac{1}{2}mV_{1}^{2} = \frac{mga}{16} - \frac{mga}{8}$	A1
	So $w = \sqrt{\frac{3ag}{8}}$	10
	In part (a) DM1 requires EE, PE and KE to have been included in the energy equation.	
	If sign errors lead to $V^2 = -\frac{ga}{2}$, the last two marks are M0 A0	
	In parts (a) and (b) A marks need to have the correct signs In part (b) for M1 need one KE term in energy equation of at least 3 terms with distance	
	$\frac{3a}{4}$ to indicate first method, and two KE terms in energy equation of at least 4 terms with	
	distance $\frac{a}{4}$ to indicate second method.	M1 A1 A1
	SHM approach in part (b). (Condone this method only if SHM is proved)	WII AI AI
	Using $v^2 = \omega^2 (a^2 - x^2)$ with $\omega^2 = \frac{2g}{a}$ and $x = \pm \frac{a}{4}$. Using 'a' = $\frac{a}{2}$ to give $w = \sqrt{\frac{3ag}{8}}$.	A1
	Using 'a' = $\frac{a}{2}$ to give $w = \sqrt{\frac{3ag}{8}}$.	

5.(a)	$\mu N \stackrel{\longleftarrow}{\longleftarrow} N \qquad \qquad \frac{mv^2}{r} = \mu N, = \mu mg$	M1, A1
	$\mu = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6$	A1 (3)
(b)	(b) $R(\uparrow) R \cos \alpha, \mp 0.6R \sin \alpha = mg$ $\Rightarrow R\left(\frac{4}{3}, \frac{3}{3}\right) = mg \Rightarrow R = \frac{25mg}{3}$	M1, A1, A1
	$\Rightarrow R\left(\frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5}\right) = mg \Rightarrow R = \frac{25mg}{11}$	A1 (4)
(c)	$R(\leftarrow) R \sin \alpha, \pm 0.6R \cos \alpha = \frac{mv^2}{r}$	M1, A1, A1
	$v \approx 32.5 \text{ m s}^{-1}$	dM1 A1cao (5) 12
	In part (b) M1 needs three terms of which one is mg If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1	
	In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$	
	If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1	
	If they resolve along the plane and perpendicular to the plane in part (b), then attempt at	
	$R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha$, and $0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha$ and attempt to eliminate v	M1
	Two correct equations	A1
	Correct work to solve simultaneous equations Answer	A1 A1 (4)
	In part (c) Substitute R into one of the equations	M1
	Substitutes into a correct equation (earning accuracy marks in part (b))	A1
	Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)	A1
	Obtain $v = 32.5$	M1A1 (5)

6.(a)	Energy equation with two terms on RHS, $\frac{1}{2}mv^2 = \frac{1}{2}m \cdot \frac{5ga}{2} + mga \sin \theta$	M1, A1
(b)	$\Rightarrow v^2 = \frac{ga}{2} (5 + 4\sin\theta) $ $R(\text{\lambda string}) T - mg\sin\theta = \frac{mv^2}{a} $ (3 terms)	A1 cso (3) M1 A1
(c)	$\Rightarrow T = \frac{mg}{2}(5 + 6\sin\theta) \text{ o.e.}$ $T = 0 \Rightarrow \sin\theta, = -\frac{5}{6}$ Has a solution, so string slack when $\alpha \approx 236(.4)^\circ$ or 4.13 radians	A1 (3) M1, A1 A1 (3)
(d)	At top of small circle, $\frac{1}{2}mv^2 = \frac{1}{2}m \cdot \frac{5ga}{2} - \frac{mga}{2}$ (M1 for energy equation with 3 terms) $\Rightarrow v^2 = \frac{3}{2}ga = 14.7a$	M1 A1 A1
	Resolving and using Force = $\frac{mv^2}{r}$, $T + mg = m \cdot \frac{\frac{3}{2}ga}{\frac{1}{2}a}$ (M1 needs three terms, but any v) $\Rightarrow T = 2mg$	M1 A1 A1 (6) 15
	Use of $v^2 = u^2 + 2gh$ is M0 in part (a)	

7.(a)	(Measuring x from E) $2\ddot{x} = 2g - 98(x + 0.2)$, and so $\ddot{x} = -49x$	M1 A1, A1
	SHM period with $\omega^2 = 49$ so $T = \frac{2\pi}{7}$	d M1 A1cso (5)
(b)	Max. acceleration = $49 \times \text{max. } x = 49 \times 0.4 = 19.6 \text{ m s}^{-2}$	B1 (1)
(c)	String slack when $x = -0.2$: $v^2 = 49(0.4^2 - 0.2^2)$	M1 A1
	$\Rightarrow v \approx 2.42 \text{ m s}^{-1} = \frac{7\sqrt{3}}{5}$	A1 (3)
(d)	Uses $x = a \cos \omega t$ or use $x = a \sin \omega t$ but not with $x = 0$ or $\pm a$	M1
	Attempt complete method for finding time when string goes slack $-0.2 = 0.4 \cos 7t \implies \cos 7t = -1$	dM1 A1
	$7t = -\frac{1}{2}$ $t = \frac{2\pi}{21} \approx 0.299 \mathrm{s}$	A1
	21	M1 A1ft
	Time when string is slack $=$ $\frac{(2) \times 2.42}{g} = \frac{2\sqrt{3}}{7} \approx 0.495 \mathrm{s}$ (2 needed for A)	A1 (7)
	Total time = $2 \times 0.299 + 0.495 \approx 1.09 \text{ s}$	16
(a)		
	DM1 requires the minus sign. Special case	
(h)	$2\ddot{x} = 2g - 98x$ is M1A1A0M0A0 $2\ddot{x} = -98x$ is M0A0A0M0A0 No use of \ddot{x} , just a is M1 A0,A0 then M1 A0 if otherwise correct.	
(b) (c)	Quoted results are not acceptable.	
(c)	Answer must be positive and evaluated for B1	
	M1 – Use correct formula with their ω , a and x but not $x = 0$. A1 Correct values but allow $x = +0.2$ Alternative	
(d)	It is possible to use energy instead to do this part $\frac{1}{2}mv^2 + mg \times 0.6 = \frac{\lambda \times 0.6^2}{2l} \text{ M1 A1}$	
	If they use $x = a \sin \omega t$ with $x = \pm 0.2$ and add $\frac{\pi}{7}$ or $\frac{\pi}{14}$ this is dM1, A1 if done correctly If they use $x = a \cos \omega t$ with $x = -0.2$ this is dM1, then A1 (as in scheme)	
	If they use $x = a \cos \omega t$ with $x = +0.2$ this needs their $\frac{\pi}{7}$ minus answer to reach dM1, then	
	A1	