

Structure. Symbol

Physical structure

Diode - semiconductor device

The *pn* junction - an interface between two types of semiconductor materials, *p*-type and *n*-type.

In the outer shells of the electrically neutral atoms:

- the p (positive) side contains an excess of holes (positive charges)
- the n (negative) side contains an excess of electrons (negative charges)

The *pn* junction is created by **doping**:

- ✓ p-type doping an intrinsic semiconductor (e.g. Si) is doped with acceptor impurities (column 3 in the periodic table \rightarrow excess of holes
- ✓ n-type doping an intrinsic semiconductor (e.g. Si) is doped with donor impurities (column 5 in the periodic table \rightarrow excess of electrons

A *pn* junction diode allows electric charges to flow only in one direction:

- negative charges (electrons) can flow through the junction from n to p but not from p to n,
- positive charges (holes) can flow through the junction from n to p but not from p to n,

When the *pn* junction is forward-biased, electric charge flows freely due to reduced resistance of the *pn* junction.

When the p-n junction is reverse-biased, the junction barrier (and therefore resistance) becomes greater and charge flow is minimal (zero).

Circuit symbol

Positive directions for current and voltage

The arrow in the diode's symbol points in the direction of forward current flow

Current – voltage characteristic

The current flowing through the diode is controlled by the voltage drop across the diode itself – **nonlinear semiconductor device**

Shockley diode equation (diffusion equation)

$$i_D = I_S(e^{\frac{v_D}{nV_T}} - 1) \approx I_S e^{\frac{v_D}{nV_T}}$$

 I_S - saturation current (~ nA - pA) depends on temperature

 i_D depends exponentialy on v_D

$$V_T = \frac{KT}{a}$$
 thermal voltage (depends on temperature)

K - Boltzmann's constant

$$V_T = 25 \text{mV} @ 20^{\circ} \text{C}$$

q – elementary charge (electric charge carried by a single electron)

T – absolute temperature measured in K degrees

 $n-ideality\ factor\ (emission\ coefficient)$

n = 2 discrete diodes

n = 1 integrated diodes

Operating regions

$$i_D \approx I_S \cdot e^{\frac{v_D}{nV_T}}$$

reverse bias
$$v_D < 0V$$

forward bias $v_D > 0V$

$$\begin{cases} (off) & v_D < v_{Th}; i_D = 0 \\ (on) & v_D > v_{Th}; i_D > 0 \end{cases}$$

$$V_{Th} \approx 0.6 \mathrm{V}$$

Illustration

D is a rectifier diode, 1N400x with I_S =14nA, n = 2

Assuming a voltage drop across the diode in conduction

$$v_D = 0.7V = 700 \text{ mV}$$

$$V_T = 25 \text{mV} @ 20^{\circ} \text{C}$$

the current through the diode results as:

$$i_D = 14 \cdot 10^{-9} \cdot e^{\frac{700}{2 \cdot 25}} = 16.8 \text{mA}$$

Operating (quiescent) point

 $Q(V_D; I_D)$

Illustration for 1N400x with I_S =14nA, n=2

Temperature dependence

At a constant voltage across the diode the current increases with the temperature

Determining the operating point

☐ Circuit with a dc voltage source and a resistor

⇒ Transcendental equation

Two solving methods:

- 1. Graphical method
- 2. Numerical method (successive approximation)

Graphical method

Diode equation: $I_D = I_S e^{\overline{nV_T}}$

Load line equation: $V_I = I_D R + V_D$

Numerical analysis - simplified

If $V_I > 0.6$ V, the *D* is on; (else *D* is off)

Assume the voltage drop across the conducting diode $V_D = 0.7V$ and compute the current I_D using the load line (circuit) equation

Circuit equation:
$$V_I = I_D R + V_D$$

$$V_{I} \downarrow \begin{matrix} \downarrow \\ \end{matrix} \downarrow V_{D} \end{matrix} \qquad V_{D} = 0.7V$$

$$I_{D} = \frac{V_{I} - V_{D}}{R}$$

Illustration

$$V_I = 9V, R = 0.5K\Omega$$

 $\bigvee_{D} V_{D}$ a) What is the operating (quiescent) point of the diode D?

$$V_D > 0.6 \text{V}$$
 $D - (\text{on})$

Assume $V_D = 0.7 \text{V}$ across the conducting diode

$$I_D = \frac{V_I - V_D}{R}$$
 $I_D = \frac{9 - 0.7}{0.5} = 16.6 \text{mA}$

Q(0.7V, 16.6mA)

Numerical analysis - iteratively

1. Consider an initial value of diode voltage, eg. $V_D^{(0)} = 0.7V$ and compute the current $I_D^{(0)}$ using the load line equation.

$$(V_D^{(0)}, I_D^{(0)})$$
 – initial solution

2. With $I_D^{(0)}$ compute the diode voltage from **diode equation**, then the current $I_D^{(1)}$ from load line equation

$$(V_D^{(1)}, I_D^{(1)})$$
 – solution after first iteration

We finalize one iteration. If a more accurate solution is necessary, further iteration should be performed.

For quick, first order analysis of the circuit, usually the initial solution is considered!

Illustration

Consider V_I =3V, R=0.5K Ω , D is 1N400x with I_S =14nA and n=2.

What is the operating (quiescent) point of the diode?

Quick, first order analysis:

$$V_D > 0.6 \text{V}$$
 $D - (\text{on})$

Assume $V_D = 0.7 \text{V}$ in conduction

$$I_D = \frac{V_I - V_D}{R}$$
 $I_D = \frac{3 - 0.7}{0.5} = 4.6 \text{mA}$ $Q(0.7 \text{V}, 4.6 \text{mA})$

Detailed analysis:

$$I_D = \frac{V_I - V_D}{R} \qquad V_D = nV_T \ln \frac{I_D}{I_S}$$

$$V_D^{(0)} = 0.7 \text{V}$$

$$I_D^{(0)} = \frac{3 - 0.7}{0.5} = 4.6 \text{ mA}$$

$$Q^{(0)}(0.7\text{V}, 4.6\text{mA})$$

$$V_D^{(1)} = nV_T \cdot \ln \frac{I_D^{(0)}}{I_S} = 2 \cdot 0.025 \cdot \ln \frac{4.6 \text{mA}}{14 \text{nA}} = 0.635 \text{V}$$

$$I_D^{(1)} = \frac{V_I - V_D^{(1)}}{R} = \frac{3 - 0.635}{0.5} = 4.73 \text{mA}$$

 $Q^{(1)}(0.635V, 4.73mA)$

$$V_D^{(2)} = n \cdot V_T \cdot \ln \frac{I_D^{(1)}}{I_S} = 2 \cdot 0.025 \cdot \ln \frac{4.73 \text{mA}}{14 \text{nA}} = 0.637 \text{V}$$

$$I_D^{(2)} = \frac{V_I - V_D^{(2)}}{R} = \frac{3 - 0.637}{0.5} = 4.726 \text{mA}$$

 $Q^{(2)}(0.637V, 4.726mA)$

Constant-voltage-drop model

If
$$v_D < 0.7V$$
 $D - (off)$

If
$$v_D$$
 tends $D - (on)$ to $be > 0.7V$

$$A$$
 $V_D < 0.7V$

$$A \xrightarrow[i_D>0]{0.7V} K$$

$$\begin{cases} v_D < 0.7V \\ i_D = 0 \end{cases}$$

$$\begin{cases} v_D = 0.7V \\ i_D > 0 \end{cases}$$

DR two-port networks analysis

VTC – voltage transfer characteristic

- 1. Consider **all possible situations** resulting from the combination of the **diode states** (*on*, *off*)
- 2. For each situation:
 - i. draw the equivalent circuit
 - ii. find v_0
 - iii. determine the range of v_I for that particular situation
- 3. Draw *VTC*.

Example

What is the VTC $v_O(v_I)$?

Example - cont

What is the VTC $v_O(v_I)$?

$$v_O = 0$$

$$v_O = v_I - v_D = v_I - 0.7 V$$

$$\frac{v_D = v_I - v_O}{v_I < 0.7 \text{V}}$$

$$i_D = \frac{v_O}{R} = \frac{v_I - 0.7V}{R}$$

 $v_I > 0.7 V$

Example - cont

Waveforms for a voltage rectifier

$$v_{o}(t) = ?$$

Waveforms for a voltage rectifier

The influence of the threshold voltage and voltage drop across the diode in conduction

- \clubsuit If the input voltage is large enough (>> 0.7V)
 - the threshold voltage can be considered 0V
 - the voltage drop across the conducting diode can be neglected; D (on); $v_O = v_I$

Applications of *DR* two-port networks

Half-wave rectifier

Pulses selector

Voltage limiters

Maximum multi-port networks

$$\begin{cases} v_A > v_B \\ v_A > 0.7 V \end{cases}$$

$$D_1 - (on), D_2 - (off); v_O = v_A - 0.7V$$

$$\begin{cases} v_B > v_A \\ v_B > 0.7 V \end{cases}$$

$$D_1 - (off), D_2 - (on); v_O = v_B - 0.7V$$

$$\begin{cases} v_A < 0.7V \\ v_B < 0.7V \end{cases}$$

$$D_1 - (off), D_2 - (off); v_O = 0$$

$$v_O = \max(v_A - 0.7V; v_B - 0.7V; 0V)$$

$$v_O = \max(v_A - 0.7V; v_B - 0.7V; 0)$$

$$v_O = \max(v_A; v_B; 0)$$
 neglecting 0.7V

neglecting 0.7VD – constant-voltage-drop

What is the peak value of the current through each circuit element if $R=5k\Omega$?

What is the range of values for *R*, if the peak forward current through diode is 200mA?

Minimum multi-port networks

$$v_0 = ?$$

$$v_O = \min(v_A + 0.7V; v_B + 0.7V; V_{PS})$$

$$v_O = \min(v_A, v_B, V_{PS})$$
 neglecting 0.7V

$$v_{o}(t)$$

DR logic circuits

two-input OR circuit

 $0V \rightarrow logic 0$ $5V \rightarrow logic 1$

v_A	v_{B}	v_Y	D_1	D_2
0V	0V	0V	(off)	(off)
0V	5V	4.3V	(off)	(on)
5V	0V	4.3V	(on)	(off)
5V	5V	4.3V	(on)	(on)

operating table

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

truth table

three-input AND circuit

 $0V \rightarrow logic 0$ $5V \rightarrow logic 1$

5V

$v_A[V]$	$\mathbf{v}_{B}[V]$	$\mathbf{v}_{\mathbb{C}}[\mathrm{V}]$	$v_Y[V]$
0	0	0	0.7
0	0	5	0.7
0	5	0	0.7
0	5	5	0.7
5	0	0	0.7
5	0	5	0.7
5	5	0	0 <u>.</u> 7
5	5	5	5

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

operating table

truth table

Full wave rectifier

- diode bridge

neglecting 0.7V across the conducting diode

- positive half, $v_I > 0$ $D_1, D_3 - \text{(on) } D_2, D_4 - \text{(off)}$
 - right negative half, $v_I < 0$ $D_1, D_3 - (\text{off}) D_2, D_4 - (\text{on})$

Backup Supply

Problem

$$v_I(t) = \hat{V}_I \sin \omega t$$

For the circuit in the figure, $R_L = 50\Omega$. Assume $\hat{V}_I = 25\text{V}$

- a) $v_O(t)$ and $i_O(t)$
- b) What are the value of the maximum reverse voltage v_{DR} across each diode and the maximum forward current through each diode?
- c) Repeat a) and b) assuming $\hat{V}_I = 6.4 \text{V}$

Power-supply filtering

 v_I is the voltage in a secondary winding of a step-down line transformer.

It is required to obtain an almost dc voltage (on a load resistor)

How "to smooth" the output voltage (as close as possible to dc)?

Power-supply filtering - cont.

1st step

Half-wave (full wave) rectifier

How "to smooth" the output voltage (as close as possible to dc)?

Power-supply filtering

Half-wave rectifier with capacitive filter (and load)

Between successive peeks of input voltage (and rectified voltage), D - off, the capacitor acts as a element of electrical energy storage, providing electrical energy in the load, with a decrease of its own voltage.

$$C \stackrel{Q_{+}}{=} \begin{array}{|c|c|} & Cdv_{C}(t) = i_{C}(t)dt \\ \hline \\ v_{C} & \\ \hline \end{array}$$

$$v_{C} = \frac{1}{C} \int_{t_{0}}^{t} i_{C}(t)dt + v_{C}(t_{0})$$

$$Cdv_C(t) = i_C(t)dt$$

$$v_{c(t)} = \frac{1}{C} \int_{t_0}^{t} i_c(t) dt + v_c(t_0)$$

If the **current** through the capacitor, can be approximated as being a **constant** one I_C :

$$v_{c(t)} = \frac{1}{C}I_C(t - t_0) + v_C(t_0)$$

$$v_{c(t)} - v_c(t_0) = \frac{1}{C}I_C(t - t_0)$$

$$\Delta v_c = \frac{1}{C} I_C \Delta t$$

$$Cdv_C(t) = i_C(t)dt$$

$$C\Delta v_c = I_C\Delta t$$

For I_C constant

Between successive peeks of input voltage (and rectified voltage), **D** - *off*, the capacitor acts as a element of electrical energy storage, providing electrical energy in the load, with a decrease of its own voltage:

C discharges through R; the discharging current is supposed to be constant, to its maximum value.

$$\Delta v_c = \frac{1}{C} I_C \Delta t$$

$$I_c = \frac{\hat{V}_o}{R}$$

$$\Delta t = t_d = T - t_c \approx T$$

$$\Delta v_c = \Delta v = \frac{1}{C} I_C \Delta t = \frac{1}{C} \frac{\hat{V}_o}{R} T$$

$$\Delta v = \hat{V_o} \frac{T}{RC} = \frac{1}{f} \frac{\hat{V_o}}{RC}$$

RC – time constant of the circuit

Example

$$\hat{V}_{L} = 10.7 \text{V}$$
 $f = 50 \text{ Hz}$ $R_{L} = 100 \Omega$ $\Delta v < 1.5 \text{V}$

$$\hat{V_O} = \hat{V_I} - 0.7V = 10V$$

$$\int_{\mathbf{v}_{O}} \mathbf{v}_{O} = \frac{\hat{V}_{O}}{fRC} < 1.5V$$

$$C > \frac{\hat{V_O}}{1.5 fR} = \frac{10}{1.5 \cdot 50 \cdot 100} = 1333 \,\mu\text{F}$$
 $C > 1333 \,\mu\text{F}$

We chose an electrolytic capacitor $C = 1500 \mu F/25 V$

What is the actual value of the output ripple?

What should be a new value of *C* if the output ripple have to be reduce to the half?

Solve again in the case of full-wave rectification.