一种 6~18 GHz 宽带高精度有源移相器

南亚琪^{1,2},雷 鑫^{1,2},范 超³,桂小琰^{1,2}

(1. 西安交通大学 微电子学院, 西安 710049;

2. 广东顺德西安交通大学研究院, 广东 佛山 528000; 3. 成都振芯科技股份有限公司, 成都 610000)

摘 要: 设计了一种 6 bit $6\sim18$ GHz 工作频段的宽带高精度有源移相器。片上集成了输入无源 巴伦、逻辑编码器、RC 多相滤波器、矢量合成单元、数控单元等。该移相器的设计采用 55 nm CMOS 工艺实现,芯片尺寸为 1.29 mm×0.9 mm,移相器核心尺寸为 1.02 mm×0.58 mm。后仿结果表明,在 $6\sim18$ GHz 频率范围内,增益误差 RMS 值小于 1 dB,相位误差 RMS 值小于 0.75° ,输入回波损耗、输出回波损耗分别小于-8.5 dB、-8.9 dB,芯片总功耗为 20.7 mW。该 6 bit 移相器的相对带宽为 100%,覆盖 C、X 和 Ku 波段,适用于雷达探测等领域。

关键词: 相控阵;有源移相器;正交网络;多相滤波器;矢量合成

中图分类号:TN623

文献标志码:A

文章编号:1004-3365(2022)04-0651-05

DOI: 10.13911/j.cnki.1004-3365.210458

A 6~18 GHz Wideband High Accuracy Active Phase Shifter

NAN Yaqi^{1, 2}, LEI Xin^{1, 2}, FAN Chao³, GUI Xiaoyan^{1, 2}

(1. School of Microelectronics, Xi'an Jiaotong University, Xi'an 71004, P. R. China;

2. Guangdong Xi'an Jiaotong University Academy, Foshan, Guangdong 528000, P. R. China;

3. Chengdu Corpro Technology Co., Ltd., Chengdu 610000, P. R. China)

Abstract: A 6-bit wideband high accuracy active phase shifter with $6 \sim 18$ GHz frequency range was designed. The passive baluns, poly-phase filters, vector-sum cells and digital controlled cells were included in the proposed phase shifter. This phase shifter was implemented in a 55 nm CMOS process. The overall chip size was 1.29 mm \times 0.9 mm, and the phase shifter core chip size was 1.02 mm \times 0.58 mm. The post-simulation results showed that the RMS gain variation was less than 1 dB, and the RMS phase error was less than 0.75° within $6 \sim 18$ GHz frequency range. The input and output return losses were less than -8.5 dB and -10 dB, and the total power consumption was 20.7 mW. The relative bandwidth of the 6 bit phase shifter was 100%, covering C, X and Ku band. It was suitable for radar detection and other applications.

Key words: phased array; active phase shifter; quadrature network; poly phase filter; vector-sum

0 引 言

相控阵技术具有信噪比高、信道容量高的特点,被广泛应用于雷达探测、微波通信领域。移相器作

为构成有源相控阵系统中 T/R 组件的核心模块,其相位误差、增益误差决定着相控阵系统的精度、信噪比等重要指标。移相器按分为无源和有源两类。有源移相器因带宽大、精度高、增益误差低、面积小而成为移相器的首选。

收稿日期:2021-11-25;定稿日期:2022-01-24

基金项目:广东省基础与应用基础研究基金资助项目(2020A1515010001)

作者简介:南亚琪(1996—),女(汉族),山东齐河人,硕士研究生,研究方向为射频集成电路设计。

桂小琰(1981—),男(汉族),安徽舒城人,博士,副教授,博士生导师,研究领域为高速宽带和射频集成电路设计。通信作者。

有源移相器的原理是<mark>通过矢量合成法对一对输入正交信号进行合成</mark>,调控输入的 I 路与 Q 路信号增益比值,最终生成所需相位的信号。实现更通用、更大工作带宽、更高精度的移相器成为发展方向。

C 波段、X 波段($8\sim12~GHz$) [1-2] 和 Ku 波段($12\sim18~GHz$) [3] 能采用极窄发射脉冲传输数据。这些波段应用的有源相控阵系统成为研究热点 [4-7]。基于 SiGe 工艺的移相器的功耗和成本高 [4-5],基于 CMOS 工艺的移相器的 RMS 相位误差较大 [7]。

本文基于 SMIC 55 nm CMOS 工艺,设计了一种工作频率覆盖 C 波段、X 波段和 Ku 波段的有源移相器。该移相器基于 3 阶 RC 多相滤波器和矢量合成单元,移相步进为 5.625° 。仿真结果表明,在 $6\sim18$ GHz 频段内,RMS 相位误差小于 0.75° ,RMS 插损误差小于 1 dB,相对带宽为 100%。

1 移相器架构

本文提出的有源移相器框图如图 1 所示。经过输入无源巴伦,输入射频信号实现了从单端信号到差分信号转换。差分射频信号在 3 阶多相滤波器 (PPF)作用下,转换为 $I_{in}+/I_{in}$ —和 $Q_{in}+/Q_{in}$ —两对正交信号。矢量合成单元由两个可变增益放大器构成,对两组正交信号进行合成。通过选择输出信号象限和调整两个可变增益放大器的增益比,即调节 I/Q 信号的比值,得到所需相位的输出信号。

图 1 本文提出的有源移相器框图

改变控制逻辑电路的控制码,调节 DAC 工作状态,从而改变可变增益放大器中 I/Q 两路的增益比。合成后的差分信号经输出有源巴伦转换为单端射频信号^[4],再经最后一级放大器调整,最终获得目标相位的输出信号。

2 关键单元电路设计

2.1 输入无源巴伦

输入无源巴伦对输入信号进行单端一差分转换。

本文 6 bit 移相器的工作频段为 $6\sim18$ GHz,它能覆盖多个波段。综合考虑带宽、相位精度等因素,输入巴伦选取马相(Marchand)巴伦结构。巴伦结构的等效电路如图 2 所示。

图 2 巴伦结构的等效电路

巴伦结构采用顶层和次顶层金属堆叠,通过两层金属的相互耦合来实现。该电路不仅可实现高耦合系数,还可以减小面积。 $IN、OUT-, \cdot OUT+$ 端口分别接 50 Ω 匹配阻抗。电磁仿真结果表明,采用堆叠结构使自谐振频率较低,但仍能满足该工作频段需求。

巴伦由主线圈和副线圈两层层叠构成,分别使用顶层金属和次顶层金属实现。线圈匝数为 3 匝,内径为 $60~\mu m$,线宽为 $8~\mu m$,线间距为 $2~\mu m$ 。

2.2 多相滤波器

正交信号的相位误差和带宽决定移相器的移相精度,正交网络的插损和面积决定移相器性能。正交全通滤波器^[8](QAF)和多相滤波器(PPF)是目前广泛应用的两种正交信号产生网络。QAF基于*LC*谐振网络,其插损较低,但宽带条件下相位误差较大。PPF对下级电路的负载电容不敏感,可引入多个极点来扩展带宽。

综合考虑到 $6\sim18~\mathrm{GHz}$ 宽频段和相位误差等 要求,本文选择 3 阶多相滤波器,结构如图 3 所示。

图 3 阶多相滤波器电路

3 阶多相滤波器中,引入了 3 个极点 ω_1 、 ω_2 、 ω_3 。为确保相位误差尽可能小,令 3 个极点分别谐振于 6 GHz、12 GHz、18 GHz。

第一级电路中, R_1 、 C_1 分别为 102 Ω 、90 fF;第

二级电路中, R_2 、 C_2 分别为 102 Ω 、240 fF;第三级电路中, R_3 、 C_3 分别为 102 Ω 、134 fF。

2.3 矢量合成单元

矢量合成单元是<mark>有源移相器的核心部分</mark>,利用 3 阶多相滤波器产生的 I/Q 正交信号合成所需相位的信号。该矢量合成单元由两个可变增益放大器构成,结构如图 4 所示。

图 4 矢量合成单元结构

矢量合成单元实现象限选择和矢量合成两种功能,原理如图 5 所示。象限选择功能由开关管和 M_9 、 M_{10} 、 M_{11} 、 M_{12} 管实现。通过控制 S_I 、 S_{IN} 和 S_Q 、 S_{QN} 两组开关,保证任意时刻每组开关只有一个导通,使 M_9 、 M_{10} 和 M_{11} 、 M_{12} 两组对管任意时刻每组只有一个导通,使得相应极性的支路导通,即 I+和 I-、Q+和 Q-中分别只有一路导通,从而实现信号在四个象限内的自由切换。

图 5 矢量合成原理图

矢量合成功能由 $M_1 \sim M_4$ 、 $M_5 \sim M_8$ 管实现。 I 路、Q 路的吉尔伯特单元通过调节 I 与 Q 之比值,在输出端对两路信号矢量求和。通过对 I 信号、Q 信号的象限选择与矢量合成,实现了 2π 范围内的 64 位全相位移相。

矢量合成单元的电压增益为:

$$A_{\rm V} = \sqrt{\mu_{\rm n} C_{\rm OX} \frac{W}{L}} \times Z_{\rm eq} \times \sqrt{I_{\rm I,SS} + I_{\rm Q,SS}}$$
 (1)

式中, Z_{eq} 为可变增益放大器等效负载电阻, $I_{1,ss}$ 、 $I_{0,ss}$ 分别为两组可变增益放大器的尾电流。

根据式(1)推出输出信号的相位 θ :

$$\tan \theta = \frac{A_{\text{V,Q}}}{A_{\text{V,I}}} = \sqrt{\frac{I_{\text{Q,SS}}}{I_{\text{I,SS}}}}$$
 (2)

$$\theta = \arctan \sqrt{\frac{I_{Q,SS}}{I_{LS}}} \tag{3}$$

由式(2)、(3)可知,两组可变增益放大器的尾电流之比决定了输出信号相位。

2.4 数控电流源

数控电流源的功能是 实现特定的相移值,保证在不同移相状态下移相器增益不变,即 $I_{I.SS} + I_{Q.SS}$ 之和为常数^[9]。本文设计的数控电流源采用 6 位共源共栅电流镜电路,结构如图 6 所示。

图 6 数控电流源电路

输入控制信号控制各组电流镜,改变尾电流 $I_{\mathrm{Q.ss}}$ 、 $I_{\mathrm{I.ss}}$ 的值,确定所需输出信号的相位值。同时,保持 $I_{\mathrm{I.ss}}$ 与 $I_{\mathrm{Q.ss}}$ 之和不变,使得各移相状态下矢量合成单元增益不变。这有效降低了 RMS 增益误差。每组电流镜由一对逻辑非关系的开关信号S、 S_{N} 控制。

3 版图设计与仿真结果

采用 55 nm CMOS TZ,实现了一种相控阵系统 T/R 组件的有源移相器。完成的版图设计如图 76 mm 形示。芯片尺寸为 $1.29 \text{ mm} \times 0.9 \text{ mm}$ 移相器核心尺寸为 $1.02 \text{ mm} \times 0.58 \text{ mm}$ 。总功耗为 20.7 mW。

RMS 相位误差仿真曲线如图 8 所示。相对相位响应仿真曲线如图 9 所示。输出、输入回波反射仿真曲线分别如图 $10\sqrt{11}$ 所示。插入损耗仿真曲线如图 12 所示。可以看出,在 $6\sim18$ GHz 频段内,各状态的相对移相的步进呈单调增加,分布均匀、无交叠、平坦度良好。 RMS 相位误差最大值小于 0.75° 。输出回波损耗 S_{22} 和输入回波损耗 S_{11} 分别小于

-8.7 dB、-8 dB。插入损耗 S_{21} 为 $-16.5 \sim -11$ dB,最大移相附加衰减小于 $\pm 0.6 \text{ dB}$ 。

图 7 移相器电路整体版图

图 8 RMS 相位误差仿真曲线

图 9 相对相位响应仿真曲线

图 10 输出回波反射仿真曲线

图 11 输入回波反射仿真曲线

图 12 插入损耗仿真曲线

本文与其他文献中<mark>有源数控移相器</mark>的参数对比如表 1 所示。可以看出,在工作频段、移相精度近似的情况下,本文有源移相器在相位 RMS 误差和增益 RMS 误差方面具有一定优势。本文移相器具有较高集成度和较低功耗。

表 1 本文与其他文献中有源数控移相器的参数对比

参数	文献[4]	文献[5]	文献[6]	文献[7]	文献[10]	本文
工艺尺寸/nm	180, BiCMOS	130,BiCMOS	130,CMOS	65,CMOS	250,BiCMOS	55,CMOS
工作频段/GHz	$6 \sim 18$	$6\sim18$	$12 \sim 18$	6 - 18	8~12	$6 \sim 18$
插入损耗/dB	$-16.5 \sim -19.5$	0.12~3.12	$-2.5 \sim 1$	$-15 \sim -5$	<-2.5	$-16.5 \sim -11$
移相精度/bit	5	6	6	6	6	6
RMS 相位误差/(°)	≪ 5.6	<5.6	1.8~4	<1.8	<6.4	<0.75
RMS 增益误差/dB	<1.1	<1.05	0.6~0.9	<0.55	<2	<1
功耗/mW	17.6	93.06	37.5	-	110	20.7
芯片面积/mm²	0.9	2.44	0.57	-	1.64	1.16

4 结 论

基于 SMIC 55 nm CMOS 工艺,设计了一种 6 bit 有源移相器。正交信号产生模块使用 3 阶多相滤波器结构,在宽带条件下有效降低了移相器的相位误差。该移相器的相对带宽为 100%,覆盖后 C 波段、X 波段和 Ku 波段。后仿结果显示,在 $6\sim18$ GHz 频带内,RMS 相位误差最大值为 0.75° ,RMS 插损误差小于 1 dB,输入与输出回波损耗良好,功耗较低,集成度较好。该有源移相器适用于有源相控阵系统 T/R 组件。

参考文献:

- [1] 丁武伟,赵文普,穆仕博. 有源相控阵雷达 T/R 组件 技术研究 [J]. 飞航导弹,2016(12): 77-83.
- [2] GHARIBDOUST K, MOUSAVI N, KALANTARI M, et al, A fully integrated 0. 18-μm CMOS transceiver chip for X-band phased-array systems [J]. IEEE Trans Microw Theo & Techniq, 2012, 60(7): 2192-2202.
- [3] MARK S H, JOHN J W. High density packaging of X-band active array modules [J]. IEEE Trans Compon

- & Manufact Technol Part B, 2002, 20(3): 279-291.
- [4] KOH K J, REBEIZ G M. A 6-18 GHz 5-bit active phase shifter [C] // MTT-S. Anaheim, CA, USA. 2010: 792-795.
- [5] YAO Y, LI Z, CHENG G, et al, A 6-bitactive phase shifter for X- and Ku-band phased arrays [C] // ICTA. Beijing, China. 2018: 124-125.
- [6] DUAN Z, WANG Y, LV W, et al. A 6-bit CMOS active phase shifter for Ku-band phased arrays [J]. IEEE Microw Compon Lett, 2018, 28(7): 615-617.
- [7] HU J, LI W, HE L, et al. A 65 nm CMOS 6-18 GHz full 360° 6-bit phase shifter [C] // SIRF. Anaheim, CA, USA. 2018: 51-53.
- [8] KOH K J, REBEIZ G M. 0. 13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays [J]. IEEE J Sol Sta Circ, 2007, 42(11): 2535-2546.
- [9] 袁刚,郭宽田,周小川,等. 一种基于 0.13 μm SiGe BiCMOS 工艺的 Ka 波段宽带有源移相器 [J]. 微电子学, 2020, 50(5): 615-620.
- [10] CETINDOGAN B, OZEREN E, USTUNDAG B, et al, A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays [J]. IEEE Microw Wirel Compon Lett, 2016, 26(1): 64-66.