1

Assignment 6

AI1110: Probability and Random Variables

Indian Institute of Technology, Hyderabad

JARUPULA SAI KUMAR CS21BTECH11023

Question: The readings of a voltmeter introduces an error nu with mean 0. We wish to estimate its standard deviation σ . We measure a calibrated source V = 3 V four times and obtain the values 2.90, 3.15, 3.05, 2.96 Assuming that ν is normal, find the 0.95 confidence interval of σ .

Solution So,We are having 4 observations like 2.90, 3.15, 3.05, 2.96 where, are the expected values for each are 3.00.

Also, 0.95 level of confidence for σ is nothing but an interval between 0.025, 0.975.

The Confidence interval for the variance is given by:

$$\frac{k}{\chi_{0.025}^2} > \sigma^2 > \frac{k}{\chi_{0.975}^2} \tag{1}$$

 $\chi^2_{0.025}$ and $\chi^2_{0.975}$ can be calculated respectively from Fig?? and Fig2 for values of v=4 and the critical probability from above

$$\chi_{0.025}^2 = 0.484 \tag{2}$$

$$\chi_{0.975}^2 = 11.143 \tag{3}$$

the value of k is given by $n \times v$ where v is the variance of the observations and n is the no of observations

$$k = 4((2.90 - 3.00)^2 + (3.15 - 3.00)^2 + (3.05 - 3.00)^2$$

which on calculating we will get

$$k = 0.0366$$
 (4)

Lower-tail critical values of chi-square distribution with ν degrees of freedom

	Probability less than the critical value					
ν	0.10	0.05	0.025	0.01	0.001	
1.	.016	.004	.001	.000	.000	
2.	.211	.103	.051	.020	.002	
3.	.584	.352	. 216	.115	.024	
4.	1.064	.711	. 484	. 297	.091	
5.	1.610	1.145	.831	.554	.210	
6.	2.204	1.635	1.237	.872	.381	
7.	2.833	2.167	1.690	1.239	. 598	
8.	3.490	2.733	2.180	1.646	.857	
9.	4.168	3.325	2.700	2.088	1.152	
10.	4.865	3.940	3.247	2.558	1.479	
11.	5.578	4.575	3.816	3.053	1.834	
12.	6.304	5.226	4.404	3.571	2.214	
13.	7.042	5.892	5.009	4.107	2.617	
14.	7.790	6.571	5.629	4.660	3.041	
15.	8.547	7.261	6.262	5.229	3.483	
16.	9.312	7.962	6.908	5.812	3.942	
10.	9.312	7.962	0.908	5.812	3.94	

Fig. 1. lower tail critical values of χ^2 with v degrees of freedom

Upper-tail critical values	of chi-square	distribution	with v
degrees of freedom			

	Prob	ability le	ss than th	e critical	value
ν	0.90	0.95	0.975	0.99	0.999
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
12	18.549	21.026	23.337	26.217	32.910
13	19.812	22.362	24.736	27.688	34.528
14	21.064	23.685	26.119	29.141	36.123
15	22.307	24.996	27.488	30.578	37.697
16	23.542	26.296	28.845	32.000	39.252

Substituting and solving Solving On substituting Fall values in Eq(1) we will get

Fig. 2. lower tail critical values of χ^2 with v degrees of freedom

$$\frac{0.0366}{0.484} > \sigma^2 > \frac{0.0366}{11.143} \tag{5}$$

on simplyfying Eq(5) we will get

$$0.275 > \sigma > 0.057$$
 (6)

or simply

$$0.057 < \sigma < 0.275 \tag{7}$$