Chapter 10

TRIGONOMETRIC IDENTITIES

FUNDAMENTAL LAW OF TRIGONOMETRY

Let α , β any two angles (real number), then

$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$

DEDUCTIONS FROM FUNDAMENTAL LAW

$$\cos\left(\frac{\pi}{2} - \beta\right) = \sin\beta$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

 $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

 $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

DOUBLE ANGLE IDENTITIES

(i) $\sin 2 \alpha = 2 \sin \alpha \cos \alpha$

(ii)
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$
 (Lahore Board 2005)

(iii)
$$\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

TRIPLE ANGLE IDENTITIES

$$\sin 3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha$$

(Gujranwala Board 2005)

Visit for other book notes, past papers, tests papers and guess papers

taleemcity.com

$$\cos 3 \alpha = 4 \cos^3 \alpha - 3 \cos \alpha$$

$$\tan 3 \alpha = \frac{3 \tan \alpha - \tan^3 \alpha}{1 - 3 \tan^2 \alpha}$$

HALF ANGLE IDENTITIES

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

SUM, DIFFERENCE & PRODUCT OF SINES & COSINES

$$2 \sin \alpha \cos \beta = \sin (\alpha + \beta) + \sin (\alpha - \beta)$$

$$2\cos\alpha\sin\beta = \sin(\alpha+\beta) - \sin(\alpha-\beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$$

$$-2 \sin \alpha \sin \beta = \cos (\alpha + \beta) - \cos (\alpha - \beta)$$

and

$$\sin P + \sin Q = 2 \sin \frac{P + Q}{2} \cos \frac{P - Q}{2}$$

$$\sin P - \sin Q = 2 \cos \frac{P + Q}{2} \sin \frac{P - Q}{2}$$

$$\cos P + \cos Q = 2 \cos \frac{P+Q}{2} \cos \frac{P-Q}{2}$$

$$\cos P - \cos Q = -2 \sin \frac{P+Q}{2} \sin \frac{P-Q}{2}$$

where
$$P = \alpha + \beta$$
 , $Q = \alpha - \beta$

EXERCISE 10.1

Q.1 Without using the table, find values of:

Solution:

- (i) $\sin(-780^{\circ})$
- (ii) $\cot(-855^\circ)$
- (iii) cosec(2040°)

- (iv) $sec(-960^\circ)$
- (v) $\tan(1110^{\circ})$
- (vi) $sin(-300^\circ)$

$$780^{\circ} = 8 \times 90^{\circ} + 60^{\circ}$$
 $-\sin (780^{\circ}) = -\sin(8 \times 90^{\circ} + 60^{\circ})$
 $= -\sin 60^{\circ}$
 $= -\frac{\sqrt{3}}{2}$

(ii) -cot 855°

Solution:

$$855^{\circ} = 9 \times 90^{\circ} + 45^{\circ}$$

$$-\cot (855^{\circ}) = -\cot (9 \times 90^{\circ} + 45^{\circ})$$

$$= -\cot 45^{\circ}$$

$$= -(-1)$$

$$= 1$$

(iii) csc (2040°)

Solution:

$$2040^{\circ} = 22 \times 90^{\circ} + 60^{\circ}$$

Apply 'csc' both side.

$$csc (2040^{\circ}) = csc (22 \times 90^{\circ} + 60^{\circ})$$

$$= -csc 60^{\circ}$$

$$= -\frac{2}{\sqrt{3}}$$

Note:

- (i) When R = 0, then quad. I or IV
- (ii) When R = 1, then quad. II or I
- (iii) When R = 2, then quad. III or II
- (iv) When R = 3, then quad. IV or III

(iv)

Solution:

$$sec(-960^{\circ}) = sec(960^{\circ})$$

 $960^{\circ} = 10 \times 90^{\circ} + 60^{\circ}$

Apply 'sec' both sides.

$$secf(780^{\circ}) = sec(10 \times 90^{\circ} + 60^{\circ})$$
$$= -sec 60^{\circ}$$
$$= -2$$

$$\frac{960^{\circ}}{90^{\circ}} = 10.666$$

We take only 10.

(v) tan 1110°

Solution:

$$1110^{\circ} = 12 \times 90^{\circ} + 30$$

Apply 'tan' both sides.

$$\tan (1110^{\circ})$$
 = $\tan (12 \times 90^{\circ} + 30^{\circ})$
= $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

$$\therefore \frac{1110^{\circ}}{90^{\circ}} = 120$$

We take only 12.

(vi) $\sin(-300^{\circ}) = -\sin 300^{\circ}$

Solution:

$$300^{\circ} = 3 \times 90^{\circ} + 30^{\circ}$$

Apply '-sin' both sides.

$$-\sin(300^\circ)$$
 = $-\sin(3 \times 90^\circ + 30^\circ)$
= $-\cos 30^\circ$

:. Angle is in II quadrant cos is the in IV quadrant. So

$$= -\left(-\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2} \quad \text{Ans.}$$

- Q.2 Express each of the following as a trigonometric function of an angle of positive degree measure of less than 45°.
 - (i) $\sin 196^{\circ}$ (ii) $\cos 147^{\circ}$ (iii) $\sin 319^{\circ}$
 - (iv) $\cos 254^{\circ}$ (v) $\tan 294^{\circ}$ (vi) $\cos 728^{\circ}$
 - (vii) $\sin (-625^{\circ})$ (viii) $\cos (-435^{\circ})$ (ix) $\sin (150^{\circ})$

Solution:

(i) $\sin 196^{\circ}$

$$= \sin{(180^{\circ} + 16^{\circ})}$$

$$= \sin 180^{\circ} \cos 16^{\circ} + \cos 180^{\circ} \sin 16^{\circ}$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$= 0 \times \cos 16^{\circ} + (-1) \sin 16^{\circ}$$

$$= -\sin 16^{\circ}$$

Alternative Method:

$$\sin 196^{\circ} = \sin (180^{\circ} + 16^{\circ})$$

= $\sin [2(90^{\circ}) + 16^{\circ}]$

Visit for other book notes, past papers, tests papers and guess papers

(ii)
$$\cos 147^{\circ}$$

$$= \cos (180^{\circ} - 33^{\circ}) \qquad \boxed{\cos (\alpha - \beta) = \cos \beta \cos \beta + \sin \alpha \sin \beta}$$

$$= \cos 180^{\circ} \cos 33^{\circ} + \sin 180^{\circ} \sin 33^{\circ}$$

$$= -1 \times \cos 33^{\circ} + 0 \times \sin 33^{\circ}$$
Alternative Method:
$$\cos 147^{\circ} = \cos (180^{\circ} - 33^{\circ})$$

$$\cos 147^{\circ} = \cos (180^{\circ} - 33^{\circ})$$

Alternative Method:

$$\cos 147^{\circ} = \cos (180^{\circ} - 33^{\circ})$$

= $\cos [2(90^{\circ}) - 33^{\circ}]$
= $-\cos 33^{\circ}$

sin 319° (iii)

 $=-\cos 33^{\circ}$

$$= \sin (360^{\circ} - 41^{\circ})$$

$$= \sin 360^{\circ} \cos 41^{\circ} - \sin 41^{\circ} \cos 360^{\circ}$$

$$= 0 \times \cos 41^{\circ} - \sin 41^{\circ} \times 1$$

$$= -\sin 41^{\circ}$$

Alternative Method:

$$\sin 319^{\circ} = \sin (360^{\circ} - 41^{\circ})$$

= $\sin [4(90^{\circ}) - 41^{\circ}]$
= $-\sin 41^{\circ}$

cos 254° (iv)

$$\cos (270^{\circ} - 16^{\circ})$$
= $\cos 270^{\circ} \cos 16^{\circ} + \sin 270^{\circ} \sin 16^{\circ}$
= $0 \times \cos 16^{\circ} + (-1) \times \sin 16^{\circ}$
= $-\sin 16^{\circ}$

Alternative Method:

$$\cos 254^{\circ} = \cos (270^{\circ} - 16^{\circ})$$

= $\cos [3(90^{\circ}) - 16^{\circ}]$
= $-\sin 16^{\circ}$

tan 294° **(v)**

$$\tan 294^{\circ} = \tan (270^{\circ} + 24^{\circ})$$

$$= \tan [3(90^{\circ}) + 24^{\circ}]$$

$$= -\cot 24^{\circ}$$

(vi)
$$\cos 728^{\circ}$$

$$\cos 728^{\circ} = \cos(720^{\circ} + 8^{\circ})$$

$$= \cos [8(90^{\circ}) + 8^{\circ}]$$

$$= \cos 8^{\circ}$$

(vii) $\sin (-625^{\circ})$

$$\sin (-625^{\circ}) = -\sin 625^{\circ}$$

$$= -\sin (630^{\circ} - 5^{\circ})$$

$$= -\sin [7(90^{\circ}) - 5^{\circ}]$$

$$= -(-\cos 5^{\circ})$$

$$= \cos 5^{\circ}$$

(viii) $\cos (-435^{\circ})$

$$cos (-435) = cos 435^{\circ}$$

= $cos (450^{\circ} - 15^{\circ})$
= $cos [5(90^{\circ}) - 15^{\circ}]$
= $sin 15^{\circ}$

(ix) $\sin 150^{\circ}$ = $\sin (180^{\circ} - 30^{\circ})$ = $\sin 180^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 180^{\circ}$ = $0 \times \cos 30^{\circ} - \sin 30^{\circ} (-1)$

$$= \sin 30^{\circ}$$

Alternative Method:

675

$$\sin 150^{\circ} = \sin(180^{\circ} - 30^{\circ})$$

= $\sin [2(90^{\circ}) - 30^{\circ}]$
= $\sin 30^{\circ}$

Q.3 Prove the following:

(i)
$$\sin (180^{\circ} + \alpha) \sin (90^{\circ} - \alpha) = -\sin \alpha \cos \alpha$$

(ii)
$$\sin 780^{\circ} \sin 480^{\circ} + \cos 120^{\circ} \sin 30^{\circ} = \frac{1}{2}$$

(iii)
$$\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ} = 0$$

(iv)
$$\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$$

Solution:

(i)
$$\sin (180^{\circ} + \alpha) \sin (90^{\circ} - \alpha) = -\sin \alpha \cos \alpha$$
L.H.S.
$$= \sin (180^{\circ} + \alpha) \sin (90^{\circ} - \alpha)$$

$$= [\sin 180^{\circ} \cos \alpha + \cos 180^{\circ} \sin \alpha] [\sin 90^{\circ} \cos \alpha - \cos 90^{\circ} \sin \alpha]$$

$$= [0 \times \cos \alpha + (-1) \sin \alpha] [1 \times \cos \alpha - 0 \times \sin \alpha]$$

$$= (-\sin \alpha) (\cos \alpha)$$

 $= -\sin \alpha \cos \alpha$

= R.H.S. Hence proved.

Alternative Method:

L.H.S =
$$\sin(180^{\circ} + \alpha) \sin(90^{\circ} - \alpha)$$

= $\sin[2(90^{\circ}) + \alpha] \sin(90^{\circ} - \alpha)$
= $(-\sin\alpha)(\cos\alpha)$
= $-\sin\alpha\cos\alpha$

(ii) $\sin 780^{\circ} \sin 480^{\circ} + \cos 120^{\circ} \sin 30^{\circ} = \frac{1}{2}$

L.H.S. =
$$\sin 780^{\circ} \sin 480^{\circ} + \cos 120^{\circ} \sin 30^{\circ}$$

= $\sin 60^{\circ} \cos 30^{\circ} + (-\cos 60^{\circ}) \sin 30^{\circ}$
= $\left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$
= $\frac{3}{4} - \frac{1}{4}$
= $\frac{3-1}{4} = \frac{2}{4}$
= $\frac{1}{2}$ = R.H.S

(iii) $\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ} = 0$

L.H.S. =
$$\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ}$$

= $\cos (360^{\circ} - 54^{\circ}) + \cos (180^{\circ} + 54^{\circ}) + \cos (180^{\circ} - 18^{\circ}) + \cos 18^{\circ}$
= $\cos 54^{\circ} - \cos 54^{\circ} - \cos 18^{\circ} + \cos 18^{\circ}$ $\left(\begin{array}{c} \therefore \cos (2\pi - \theta) = \cos \theta \\ \cos (\pi + \theta) = -\cos \theta \\ \cos (\pi - \theta) = -\cos \theta \end{array}\right)$
= 0
= R.H.S.

(iv)
$$\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$$

L.H.S. = $\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ}$
= $\cos (360^{\circ} - 30^{\circ}) \sin (540^{\circ} + 60^{\circ}) + \cos (180^{\circ} - 60^{\circ}) \sin (180^{\circ} - 30^{\circ})$
 $\cos [4(90^{\circ}) - 30^{\circ}] \sin [6(90^{\circ}) + 60^{\circ}] + \cos [2(90^{\circ}) - 60^{\circ}] \sin [2(90^{\circ}) - 30^{\circ}]$
= $\cos 30^{\circ} (-\sin 60^{\circ}) + (\cos 60^{\circ}) \sin 30^{\circ}$
= $\frac{-\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}$
= $-\frac{3}{4} - \frac{1}{4} = \frac{-3 - 1}{4} = \frac{-4}{4} = -1 = \text{R.H.S.}$

Q.4 Prove that

(i)
$$\frac{\sin^2(\pi+\theta)\tan\left(\frac{3\pi}{2}+\theta\right)}{\cot^2\left(\frac{3\pi}{2}-\theta\right)\cos^2(\pi-\theta)\csc(2\pi-\theta)} = \cos\theta$$

(ii)
$$\frac{\cos (90^{\circ} + \theta) \sec (-\theta) \tan (180^{\circ} - \theta)}{\sec (360^{\circ} - \theta) \sin (180^{\circ} + \theta) \cot (90^{\circ} - \theta)} = -1$$

Solution:

(i)
$$\frac{\sin^2(\pi + \theta) \tan\left(\frac{3\pi}{2} + \theta\right)}{\cot^2\left(\frac{3\pi}{2} - \theta\right) \cos^2(\pi - \theta) \csc(2\pi - \theta)} = \cos\theta$$

$$L.H.S. = \frac{\sin^2(\pi + \theta) \tan\left(\frac{3\pi}{2} + \theta\right)}{\cot^2\left(\frac{3\pi}{2} - \theta\right) \cos^2(\pi - \theta) \csc(2\pi - \theta)}$$

$$= \frac{\left[\sin(\pi + \theta)\right]^2 \tan\left(\frac{3\pi}{2} + \theta\right)}{\left[\cot\left(\frac{3\pi}{2} - \theta\right)\right]^2 \csc(2\pi - \theta)}$$

$$= \frac{\left[\sin(\pi + \theta)\right]^2 \left[\cos(\pi - \theta)\right]^2 \csc(2\pi - \theta)}{\left[\tan\theta\right]^2 \left(-\cot\theta\right)}$$

$$= \frac{\left(-\sin\theta\right)^2 \left(-\cot\theta\right)}{\left(\tan\theta\right)^2 \left(-\cos\theta\right)^2 \left(-\csc\theta\right)}$$

$$= \frac{\sin^2\theta \left(\frac{-\cos\theta}{\sin\theta}\right)}{-\tan^2\theta \cos^2\theta \csc\theta}$$

$$= \frac{-\sin\theta\cos\theta}{-\frac{\sin^2\theta}{\cos^2\theta}\cdot\cos^2\theta\cdot\frac{1}{\sin\theta}}$$
$$= \frac{\sin\theta\cos\theta}{\sin\theta}$$

 $= \cos \theta = R.H.S.$

Hence proved.

(ii)
$$\frac{\cos(90^{\circ} + \theta)\sec(-\theta)\tan(180^{\circ} - \theta)}{\sec(360^{\circ} - \theta)\sin(180^{\circ} + \theta)\cot(90^{\circ} - \theta)} = -1$$

L.H.S.
$$= \frac{\cos(90^{\circ} + \theta) \sec(-\theta) \tan(180^{\circ} - \theta)}{\sec(360^{\circ} - \theta) \sin(180^{\circ} + \theta) \cot(90^{\circ} - \theta)}$$

$$= \frac{-\sin\theta \sec\theta(-\tan\theta)}{\sec\theta(-\sin\theta) \tan\theta} \qquad \begin{pmatrix} \therefore \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta\\ \cos(-\theta) = \cos\theta\\ \tan(\pi - \theta) = -\tan\theta \end{pmatrix}$$

678

$$=\frac{+1}{-1}=-1=$$
 R.H.S.

If α , β , γ are the angles of a triangle ABC, then prove that 0.5

(i)
$$\sin(\alpha + \beta) = \sin \gamma$$

$$\sin (\alpha + \beta) = \sin \gamma$$
 (ii) $\cos \left(\frac{\alpha + \beta}{2}\right) = \sin \frac{\gamma}{2}$

(iii)
$$\cos{(\alpha + \beta)} = -\cos{\gamma}$$

(iv)
$$\tan (\alpha + \beta) + \tan \gamma = 0$$

Solution:

(i)
$$\sin(\alpha + \beta) = \sin \gamma$$

For a triangle ABC we know that

$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\alpha + \beta = 180^{\circ} - \gamma$$

$$\sin (\alpha + \beta) = \sin (180^{\circ} - \gamma)$$

$$= \sin \gamma \qquad (\therefore \sin (\pi - \theta) = \sin \theta)$$

Hence proved.

(ii)
$$\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$$

Since α , β , γ are angles of triangle ABC

so
$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\alpha + \beta = 180^{\circ} - \gamma$$

$$\Rightarrow \frac{\alpha + \beta}{2} = \frac{180^{\circ} - \gamma}{2} = 90^{\circ} - \frac{\gamma}{2}$$

$$\cos\left(\frac{\alpha+\beta}{2}\right) = \cos\left(90^{\circ} - \frac{\gamma}{2}\right)$$

$$\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$$
 Hence proved.

(iii)
$$\cos(\alpha + \beta) = -\cos \gamma$$

since α , β , γ are angles of triangle

so
$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\alpha + \beta = 180^{\circ} - \gamma$$

$$\cos (\alpha + \beta) = \cos (180^{\circ} - \gamma)$$

$$cos(\alpha + \beta) = -cos \gamma$$
 Hence proved.

(iv)
$$\tan (\alpha + \beta) + \tan \gamma = 0$$

since α , β , γ are angles of triangle so

$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\alpha + \beta = 180^{\circ} - \gamma$$

taking tan on both sides

$$\tan (\alpha + \beta) = \tan (180^{\circ} - \gamma) = -\tan \gamma$$

$$\tan (\alpha + \beta) + \tan \gamma = 0$$

Hence proved.