Problemas de Otimização - Solução pelo Método L-BFGS $_B$

Maria Marcolina Lima Cardoso

September 16, 2025

1 Problemas de Otimização Implementados

1.1 Problema 1: Penalty 1

Seja $x \in \mathbb{R}^n$. O problema é definido como:

$$f(x) = a\sum_{i=1}^{n} (x_i - 1)^2 + b\left(\sum_{i=1}^{n} x_i^2 - 0.25\right)^2$$
(1)

com parâmetros a = 1 e $b = 10^{-3}$.

1.2 Problema 2: Trigonometric

Dado $x \in \mathbb{R}^n$, definimos o vetor $f(x) = (f_1(x), \dots, f_n(x))$ por:

$$f_i(x) = n - \sum_{j=1}^n \cos(x_j) + (i+1)(1 - \cos(x_i)) - \sin(x_i)$$
 (2)

O objetivo é minimizar a norma quadrática:

$$F(x) = ||f(x)||^2 = \sum_{i=1}^{n} f_i(x)^2$$
(3)

1.3 Problema 3: Extended Rosenbrock

Definido para $x \in \mathbb{R}^n$, com n par. O resíduo é dado por pares:

$$r_{2k-1} = 10(x_{2k} - x_{2k-1}^2) (4)$$

$$r_{2k} = 1 - x_{2k-1}, \quad k = 1, \dots, n/2$$
 (5)

A função objetivo é:

$$F(x) = \sum_{i=1}^{n} r_i(x)^2 \tag{6}$$

1.4 Problema 4: Extended Powell

Seja $x \in \mathbb{R}^n$, com n múltiplo de 4. Os resíduos são definidos em blocos:

$$r_{4i-3} = x_{4i-3} + 10x_{4i-2} \tag{7}$$

$$r_{4i-2} = \sqrt{5}(x_{4i-1} - x_{4i}) \tag{8}$$

$$r_{4i-1} = (x_{4i-2} - 2x_{4i-1})^2 (9)$$

$$r_{4i} = \sqrt{10}(x_{4i-3} - x_{4i})^2 \tag{10}$$

A função objetivo é:

$$F(x) = \sum_{i=1}^{n} r_i(x)^2 \tag{11}$$

1.5 Problema 6: QOR

Seja $x \in \mathbb{R}^{50}$. O problema é definido como:

$$F(x) = \sum_{i=1}^{50} a_i x_i^2 + \sum_{i=1}^{33} B_i \left(d_i - \sum_{j \in A(i)} x_j + \sum_{j \in B(i)} x_j \right)^2$$
 (12)

com coeficientes a, B, d e conjuntos de índices A(i), B(i).

1.6 Problema 7: GOR

Definimos $c_i(x_i)$ e $b_i(y_i)$ como:

$$c_i(x_i) = \begin{cases} a_i x_i \ln(1+x_i), & x_i \ge 0\\ -a_i x_i \ln(1-x_i), & x_i < 0 \end{cases}$$
 (13)

$$b_i(y_i) = \begin{cases} B_i y_i^2 \ln(1+y_i), & y_i \ge 0\\ B_i y_i^2, & y_i < 0 \end{cases}$$
 (14)

O problema é:

$$F(x) = \sum_{i=1}^{50} c_i(x_i) + \sum_{i=1}^{33} b_i \left(d_i - \sum_{j \in A(i)} x_j + \sum_{j \in B(i)} x_j \right)$$
(15)

1.7 Problema 8: PSP

Definimos:

$$h(y) = \begin{cases} \frac{1}{y}, & y \ge 0.1\\ 100(0.1 - y) + 10, & y < 0.1 \end{cases}$$
 (16)

O problema é:

$$F(x) = \sum_{i=1}^{50} a_i (x_i - 5)^2 + \sum_{i=1}^{33} B_i h \left(d_i - \sum_{j \in A(i)} x_j + \sum_{j \in B(i)} x_j \right)$$
(17)

1.8 Problema 9: Tridia (Shanno's TRIDIA)

Para $x \in \mathbb{R}^n$, a função objetivo é:

$$F(x) = (x_1 - 1)^2 + \sum_{i=2}^{n} (2x_i - x_{i-1})^2$$
(18)

Características:

- Ponto inicial: $x_0 = (1, 1, ..., 1)^T$
- Mínimo: $F(x^*) = 0$
- Estrutura tridiagonal implícita na forma dos termos quadráticos encadeados

1.9 Problema 10: Engval1

Para $x \in \mathbb{R}^n$, a função objetivo é:

$$F(x) = \sum_{i=1}^{n-1} \left[(x_i^2 + x_{i+1}^2)^2 - 4x_i + 3 \right]$$
 (19)

Características:

• Ponto inicial: $x_0 = (2, 2, ..., 2)^T$

• Mínimo: $F(x^*) = 0$

• Estrutura de pares consecutivos de variáveis

1.10 Problema 11: Freuroth (Extended Freudentstein and Roth)

Para $x \in \mathbb{R}^n$, a função objetivo é:

$$F(x) = \sum_{i=1}^{n-1} \left[r_1^2 + r_2^2 \right]$$
 (20)

onde:

$$r_1 = x_i - 13 + 5x_{i+1}^2 - x_{i+1}^3 - 2x_{i+1} (21)$$

$$r_2 = x_i - 29 + x_{i+1}^3 + x_{i+1}^2 - 14x_{i+1}$$
(22)

Características:

• Ponto inicial: $x_0 = (-2, -2, \dots, -2)^T$

• Mínimo: $F(x^*) = 0$

• Termos cúbicos e quadráticos em pares consecutivos

1.11 Problema 12: Lminsurf (Linear Minimum Surface)

Para $x \in \mathbb{R}^n$, onde $n = p^2$ (quadrado perfeito), a função objetivo é:

$$F(x) = \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \frac{\sqrt{1 + 0.5(p-1)^2 (a_{ij}^2 + b_{ij}^2)}}{(p-1)^2}$$
(23)

onde:

$$a_{ij} = x_{i,j} - x_{i+1,j+1} \tag{24}$$

$$b_{ij} = x_{i+1,j} - x_{i,j+1} (25)$$

Características:

• Ponto inicial: configurado com condições de contorno fixas

• Mínimo: $F(x^*) = 9$

• Problema de superfície mínima com restrições de contorno

• Condições de contorno: bordas fixas com valores lineares

1.12 Problema 13: Matrix Square Root 1

$$b_i = \sin(i^2), \quad i = 1, 2, \dots, n$$
 (26)

$$B = reshape(b, m, m)^{T}$$
(27)

$$A = B \cdot B \tag{28}$$

$$X = \text{reshape}(x, m, m) \tag{29}$$

$$F(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} (A_{ij} - (X \cdot X)_{ij})^{2}$$
(30)

onde $n = m^2$ e $m \ge 2$.

1.13Problema 14: Matrix Square Root 2

$$b_i = \sin(i^2), \quad i = 1, 2, \dots, n$$
 (31)

$$b_{2m+1} = 0$$
 (Case 1) (32)

$$B = \text{reshape}(b, m, m)^T \tag{33}$$

$$A = B \cdot B \tag{34}$$

$$X = reshape(x, m, m) \tag{35}$$

$$F(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} (A_{ij} - (X \cdot X)_{ij})^2$$
(36)

onde $n=m^2$ e $m\geq 2$.

Problema 14: Sparce Matrix Square Root

$$b_i = \sin(i^2), \quad i = 1, 2, \dots, 3m - 2$$
 (37)

$$B_{ij} = \begin{cases} b_k, & \text{se } |i-j| \le 1 \text{ e } (i,j) \text{ está na estrutura tridiagonal} \\ 0, & \text{caso contrário} \end{cases}$$
(38)

$$A = B \cdot B \tag{39}$$

$$A = B \cdot B$$

$$X_{ij} = \begin{cases} x_k, & \text{se } |i-j| \le 1 \text{ e } (i,j) \text{ está na estrutura tridiagonal} \\ 0, & \text{caso contrário} \end{cases}$$

$$(39)$$

$$X_{ij} = \begin{cases} x_k, & \text{se } |i-j| \le 1 \text{ e } (i,j) \text{ está na estrutura tridiagonal} \\ 0, & \text{caso contrário} \end{cases}$$

$$F(x) = \sum_{|i-j| \le 2} (A_{ij} - (X \cdot X)_{ij})^2$$
(41)

onde n=3m-2 e $m\geq 2$. A soma é tomada apenas sobre os elementos não-zero da estrutura tridiagonal expandida de A.

Implementação Computacional 2

Todos os problemas foram implementados em Python usando o método L-BFGS-B do pacote SciPy. As funções seguem a estrutura, veja problema Penalti:

```
def Penalti(x, a, b):
   # Somatório de (xi - 1)^2 para i = 1...n
   term1 = a * sum((xi - 1)**2 for xi in x)
   # Somatório de xi^2
    sum_x2 = sum(xi**2 for xi in x)
   # Aplicando toda a expressão
   term2 = b * (sum_x2 - 0.25)**2
   return term1 + term2
def penalty_objective(x):
    """Wrapper para a função Penalty com parâmetros padrão"""
   return Penalti(x, a=1.0, b=1e-3)
n = 10
x0 = 2 * np.ones(n)
res = minimize(penalty_objective, x0, method='L-BFGS-B')
```

3 Problemas de Otimização

Esta tabela apresenta os problemas de otimização não-linear resolvidos usando o método L-BFGS-B e o número de variáveis de cada problema.

Table 1: Problemas de otimização e número de variáveis

Problema	Número de Variáveis
PENALTY	5
TRIGONOMETRIC	10
EXTENDED ROSENBROCK	10
EXTENDED POWELL	12
QOR	50
GOR	50
PSP	50
TRIDIAGONAL	10
ENGGVAL1	10
LINEAR MINIMUM SURFACE	9
SQUARE ROOT 1	16
SQUARE ROOT 2	16
FREUDENTHAL ROTH	10
SPARSE MATRIX SQRT	10
ULTS0	64

4 Resultados de Convergência

Esta tabela apresenta os resultados de convergência para cada problema, incluindo o número de iterações necessárias, o valor mínimo da função objetivo encontrado e a precisão da solução (norma do gradiente).

Table 2: Resultados de convergência dos problemas de otimização

Problema	Iterações	Valor Mínimo	Precisão ($ \nabla f(x^*) $)	Tempo (s)
ROSENBROCK	0	0.000e+00	2.492e-14	0.001s
PENALTY	2	9.147e-02	1.350e-07	0.001s
TRIGONOMETRIC	17	2.953e-05	7.046e-04	0.014s
EXTENDED ROSENBROCK	0	0.000e+00	5.573e-14	0.000s
EXTENDED POWELL	22	4.231e-05	4.555e-03	0.007s
QOR	18	1.175e + 03	9.031e-02	0.095s
GOR	48	1.381e + 03	2.399e-01	0.301s
PSP	52	2.020e+02	1.774e-01	0.337s
TRIDIAGONAL	11	3.182e-07	2.909e-03	0.004s
ENGGVAL1	13	9.177e + 00	2.961e-03	0.007s
LINEAR MINIMUM SURFACE	15	1.000e+00	2.382e-04	0.007s
SQUARE ROOT 1	31	5.688e-07	4.098e-03	0.031s
SQUARE ROOT 2	27	1.623 e - 05	1.120e-03	0.017s
FREUDENTHAL ROTH	17	1.014e + 03	2.689e-02	0.012s
SPARSE MATRIX SQRT	17	1.337e-07	8.884e-04	0.022s
ULTS0	81	6.891e-04	inf	0.607s

5 Soluções Encontradas (Primeiras 5 Variáveis)

Esta tabela apresenta as primeiras 5 variáveis da solução encontrada para cada problema. Para problemas com menos de 5 variáveis, apenas as variáveis disponíveis são mostradas.

Table 3: Primeiras 5 variáveis das soluções encontradas

TO	Table 9: I initel as 9 validivels and soluções encolle adas	variaveis das so	rações encontradad	Cir	
Problema	x1	x2	x3	x4	x5
ROSENBROCK	1.0000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00
PENALTY	9.815760e-01	9.815760e-01	9.815760e-01	9.815760e-01	9.815760e-01
TRIGONOMETRIC	5.518703e-02	5.701373e-02	5.907165e-02	6.122623e-02	6.381526e-02
EXTENDED ROSENBROCK	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00
EXTENDED POWELL	-3.813064e-03	3.803176e-04	2.555891e-02	2.565090e-02	-3.780608e-03
QOR	5.905318e-01	-7.117038e-01	5.928327e-02	-2.650935e+00	1.582984e+00
GOR	-1.788766e+00	-3.489299e-01	-3.036930e+00	-1.044801e-01	7.355008e+00
PSP	4.998829e+00	4.944708e+00	5.005284e+00	2.903690e+00	4.995937e+00
TRIDIAGONAL	9.999171e-01	5.000239e-01	2.499564e-01	1.251208e-01	6.256216e-02
ENGGVAL1	9.010185e-01	5.458682e-01	6.513009e-01	6.241739e-01	6.319658e-01
LINEAR MINIMUM SURFACE	5.600260e+00	7.000008e+00	5.599940e+00	6.999983e+00	5.599955e+00
SQUARE ROOT 1	8.417381e-01	-1.321477e-01	-6.299345e-01	-6.020073e-01	-7.562167e-01
SQUARE ROOT 2	8.271115e-01	-1.932556e-01	-3.576348e-02	-6.574053e-01	-7.359113e-01
FREUDENTHAL ROTH	1.226978e + 01	-8.318089e-01	-1.506914e+00	-1.534665e+00	-1.535793e+00
SPARSE MATRIX SQRT	8.416055e-01	-7.569929e-01	4.122362e-01	-2.882124e-01	-1.323440e-01
ULTS0	1.177964e-03	9.001633e-03	-1.129870e-03	-4.014181e-03	-2.210035e-02