Automatentheorie

endliche deterministische Automaten

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 3.Aufl. Springer Vieweg 2022;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien, Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.;
 Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- Allgemeine Einführung
- Definition eines Automaten
- Typen von deterministischen Automaten
- Aufbau von Automaten
- Modellierung von Automaten
- Sprachen eines Automaten

Einführung

- Viele Systeme des t\u00e4glichen Lebens lassen sich als Automaten auffassen.
- Betrachte dazu eine Schwimmbaddrehkreuz als Zugangskontrolle

- Das Verhalten des System hängt offenbar von der Aktion und von dem Zustand des Systems ab.
- Andere Beispiele sind z.B.
 - Getränke- und Zigarettenautomaten
 - Scanner-Systeme, Paritätsprüfung

Einführung

Paritätsprüfung

Beispiel für eine Paritätsprüfung

Man kann endliche Automaten auch als die Abstraktion eines einfachen Computer auffassen, der endliche viele Zustände einnehmen kann und von einem Eingabeband liest.

Aufgaben

Wo sind Ihnen endliche Automaten noch begegnet?

Deterministischer endlicher Automat (DEA) Abstraktion

- Allgemeines Modell einer Maschine
 - Ein Einleseband mit Eingabezeichen,
 - eine Maschine, die endliche viele interne Zustände haben kann
 - eine Funktion, die abhängig von dem gelesenen Eingabezeichen und des momentanen Zustandes der Maschine, die Zustände der Maschine ändern kann.
- Wøiter muss man noch festlegen:
 - die Startkonfiguration der Maschine
 - und die Endkonfigurationen der Maschine

Deterministischer endlicher Automat (DEA) Formale Definition

Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA

 $Q = \{q_1, ,q_n\}$ eine nicht leere Menge von Zuständen

 $\Sigma = \{e_1,...,e_n\}$ eine nicht leere Menge von Zeichen, das Eingabealphabet

 $\mathcal{S}: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ eine Funktion, die Überführungsfunktion

q₀ ∈ Q der Anfangszustand

F ⊆ Q die nicht leere Menge von Endzustände

DEA

Überführungsfunktion und Zustandsdiagramm

- Zustandsdiagramm
 - Startzustand
 - Endzustände
 - Übergänge, als Pfeile zwischen den Zuständen

- Überführungsfunktion
 - Tabelle, die für jedes Eingabezeichen den Folgezustand spezifiziert
 - Beispiel: DEA = $(\{q_{0}, q_{1}, q_{2}\}, \{0,1\}, \delta, q_{0}, \{q_{2}\})$

Überführungsfunktion δ für DEA₁

δ	0	1
q_0	q_0	q_1
q_1	q_2	q_0
q_2	q_2	q_2

Tools zu den Automaten

- Nutzen Sie die Tools der Webseite AtoCC
 - Es erlaubt Automaten und Grammatiken aufzubauen und zu simulieren
 - Zugang https://atocc.de/cgi-bin/atocc/site.cgi?lang=de&site=main

Toolbox FLACI I

(Formale Sprachen, abstrakte Automaten, Compiler und Interpreter)

- Zugang https://flaci.com/home/
- Das Tool "Abstrakte Automaten" erlaubt die Automaten aufzubauen und zu simulieren.
- Rufen Sie das Tool "Abstrakte Automaten" auf und melden Sie sich an dem System an.

12

Toolbox FLACI II

Einführendes Modell

Drücken Sie den + Buttom unten rechts.

Füllen Sie das Popup-Window wie folgt aus.

Name: Beispiel 1

Beschreibung: Einführendes Modell

Typ: DEA

Neuen Automaten erstellen: Name Beispiel 1 Beschreibung Einführendes Modell Typ **DEA**: deterministischer endlicher Automat NEA: nichtdeterministischer endlicher Automat MEALY: Mealy-Maschine MOORE: Moore-Maschine **DKA**: deterministischer Kellerautomat NKA: nichtdeterministischer Kellerautomat TM: deterministische Turingmaschine ABBRECHEN **SPEICHERN**

Toolbox FLACI III

Einführendes Modell

- Nach der Bestätigung erscheint der Startzustand q0
- Wählen Sie das 5 Alphabet und geben Sie die Zustände 0 und 1 ein.
- Nun erstellen Sie einen weiteren Zustand und einen Übergang mit dem Zeichen 0.
- Kennzeichnen Sie den neuen Zustand als Endzustand.
- Tügen Sie ein Übergang mit dem Zeichen 1 vom Endzustand zu dem Startzustand ein.
- Drücken Sie den Reiter "überprüfen".

Eingabealphabet:

- $\sum_{1} = \{a, b, c\}$
- $\Sigma_2 = \{ a, b, c, ..., z \}$
- $\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- \bigcirc $\Sigma_4 = \{ \lor, \nrightarrow, \boxtimes, \nwarrow, \times, \circledast \}$

Alphabetszeichen (mit Komma getrennt eingeben)

0,1

Start

Toolbox FLACI IV

Einführendes Modell

- Der Automat ist nicht vollständig.
- Fügen Sie noch die fehlenden Übergänge bei q0 und q1 ein.
- Drücken Sie "überprüfen"
- Nun Drücken Sie auf "Simulation" und geben das Wort ,,,01011"
- Und drücken Sie auf "Simulation starten".
- Exportieren Sie die Datei.

Start

q0

Aufgabel FLACI

- Erstellen Sie den unten angegebenen Automaten
 - In FLACI drücken sie auf den "+"-Button unten rechts.
 - Geben Sie einen Namen "Beispiel 2" und kurze Beschreibung an.
 - Definieren Sie den Automatentyp (DEA)
 - Drücken Sie okay.
 - Geben Sie das Alphabet ein {0,1} und Erstellen Sie den Automaten
 - Legen Sie zunächst die 3 Zustände wie unten angegeben an.
 - Dann fügen Sie die Übergänge hinzu. Wenn Sie auf die Übergänge klicken können Sie die Zeichen auch nachträglich eingeben.
 - Checken Sie den Automaten. Er sollte korrekt sein.

Aufgabe 1 FLACI Übergangstabelle

Lassen Sie sich die Übergangstabelle anzeigen

δ	0	1
q0	q 0	ql
q1	q2	q0
q2	q2	q2

- Führen Sie ein Simulation mit verschiedene Worten durch.
 - Welche Worte landen am Schluss im Endzustand?

DEA

vollständiger/nicht vollständiger Automat

- Man nennt einen Automaten
 - lue vollständig, wenn die Überführungsfunktion δ für jedes Eingabezeichen einen Folgezustand spezifiziert (totale Funktion).
 - nicht vollständig, wenn die Überführungsfunktion δ nur für die erlaubten Übergänge einen Folgezustand spezifiziert (partielle Funktion).
- Beispiel: DEA₂ = ({q₀, q₁, q₂}, {0,1}, δ, q₀,{q₂}) (Nicht vollständiger Automat)

Überführungsfunktion δ für DEA₂

δ	0	1
q_0	q_0	q_1
q_1	q_2	-
q_2	-	-

DEA

Äquivalenz vollständiger und nicht vollständiger Automat

- Jeder nicht vollständiger Automat lässt sich in einen vollständigen Automaten umwandeln, durch Einfügen eines neuen Zustandes "TRAP".
- Beispiel umwandeln von DEA2 in einen vollständigen Automaten DEA3
- \blacksquare DEA₃ = ({q₀, q₁, q₂, TRAP}, {0,1}, δ , q₀,{q₂})

Überführungsfunktion δ für DEA₃

δ	0	1
q_0	q_0	q_1
q_1	q_2	TRAP
q_2	TRAP	TRAP
TRAP	TRAP	TRAP

Sprache eines DEAs

Konfigurationsübergänge

- Eine Maschine liest Schritt für Schritt die Zeichen $e_i \in \Sigma$ vom Band und ändert abhängig von der Überführungsfunktion seinen internen Zustand.
- Man charakterisiert Zustände k der Maschine durch das Tupel k = (q,v) mit $q \in Q$ und $v \in \Sigma^*$. Dabei ist v das noch zu verarbeitende Wort aus Σ^* .
- Ein Zustandsübergang von k nach k' findet beim Einlesen eines Zeichens $e \in \Sigma$ statt, wenn es dazu einen Übergang gibt:

```
d.h k = (q, ew) geht in k' = (q', w), wenn
die Überführungsfunktion \delta(q, e) = q' existiert.
```

Man schreibt formal: (q,ew) → (q',w)

Sprache eines DEAs

Konfigurationsübergänge

Die Abarbeitung eines Wortes w =e₁e₂...e_r durch einen endlichen Automaten kann man daher als eine Folge von Konfigurationsübergänge ansehen.

$$(q_0, e_1e_2...e_r) \rightarrow (q_1, e_2...e_r) \rightarrow ... \rightarrow (q_r, \epsilon)$$

mit $\delta(q_i, e_i) = q_{i+1}$

Kurze Notation dafür:

$$(q_0, e_1e_2...e_r) \rightarrow^* (q_r, \epsilon)$$

(endliche Folge von Zustandsübergänge, die von q_0 nach q_r führt)

Aufgabe 2 Sprache eines Automaten I

- Ein Automat über dem Alphabet {0,1} ist gegeben.
- In Input geben Sie das Worte: 0110100 ein und drücken "Start Simulation".
- Geben Sie verschiedene Worte ein. Auch Worte die der Automat nicht akzeptiert.
- Beobachte Sie das Verhalten
- Was ist das kleinste Wort, was der Automat akzeptiert?
- Was f
 ür eine Struktur haben die Worte der Sprache?

Aufgabe 2

Sprache eines Automaten II

- ► Ein Automat über dem Alphabet {a,b,c} ist gegeben
- Als Input geben Sie das Worte: bccacb ein und drücken "Start Simulation".
- Geben Sie verschiedene Worte ein. Auch Worte die der Automat nicht akzeptiert.
- Beobachte Sie das Verhalten
- Was ist das kleinste Wort, was der Automat akzeptiert?
- Was für eine Struktur haben die Worte der Sprache?

Aufgabe 2 Sprache eines Automaten III

- Ein Automat über dem Alphabet {0,1,2} ist gegeben
- Als Input geben Sie das Worte: 0101221022 ein und drücken "Start Simulation".
- Geben Sie verschiedene Worte ein. Auch Worte die der Automat nicht akzeptiert.
- Beobachte Sie das Verhalten.
- Was ist das kleinste Wort, was der Automat akzeptiert?
- Was für eine Struktur haben die Worte der Sprache?

Sprache eines DEAs Die Sprache L(A)

Wörter w werden akzeptiert, wenn ausgehend vom Startzustand q₀ die Maschine nach der Bearbeitung aller Zeichen sich in einem der Endzustände q_F befindet.

$$(q_0, w) \rightarrow^* (q_F, \epsilon)$$

Die Menge aller Wörter w, die eine Maschine A = $(Q, \Sigma, \delta, s_0, F)$ akzeptiert, bezeichnet man als die Sprache L(A) der Maschine:

$$L(A) = \{ w \in \Sigma^* \mid (q_0, w) \rightarrow^* (q_F, \varepsilon), q_F \in F \}$$

Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, falls es einen endlichen Automaten gibt, der L akzeptiert, d.h. für den L = L(A) gilt.

Sprache eines DEAs

Beispiel Arbeitsweise und L(A)

- Der Automat DEA₂ akzeptiert alle Wörter w die, entweder
 - 10 oder
 - 0..010 lauten.
- \blacksquare L(DEA₂) = {10, 010, 0010, 0...10} = 0*10
- Nøtation $0^* = \{\epsilon, 0, 00, 000, ..., 000000...\}$. Beliebig viele 0-Zeichen, aber auch kein 0-Zeichen kann vorkommen.
- Notation 0⁺ = {0,00,000,...,000000...). Beliebig viele 0-Zeichen, aber mindestens ein 0-Zeichen muss vorkommen.
- Konstruieren Sie zuerst einen unvollständigen Automaten
- Überführen Sie ihn in einen vollständigen Automaten
- Geben Sie die Überführungsfunktion an.
- Leiten Sie die 4 Worte 010, 0101,10110, 10 ab.

Sprache eines DEAs

Beispiel Arbeitsweise und L(A)

- Lösung zu den 4 Worte 010, 0101,10110, 10.
- Ableiten der Worte
 - $(q_0,010)->(q_0,10)->(q_1,0)->(q_2,\epsilon)$ (Wort wird akzeptiert)
 - $(q_0,0101)->(q_0,101)->(q_1,01)->(q_2,1)$ (Wort wird nicht akzeptiert)
 - $(q_0,10110)->(q_1,0110)->(q_2,110)$ (Wort wird nicht akzeptiert)
 - $(q_0,10) \rightarrow q_1,0) \rightarrow (q_2,\epsilon)$ (Wort wird akzeptiert)

Abarbeiten der Worte durch DEA₂

W	010	0101	10110	10
1./	q_0	q_0	q_1	q_1
2.	S ₁	S ₁	1	S_2
3.	S ₂	S ₂	-	
4.		-	-	
akzeptiert?	ja	nein	nein	ja

δ	0	1
q_0	q_0	q_1
q_1	q_2	-
q_2	-	-

Einfache Automatenkonstruktion

- Wie konstruiert man endliche deterministische Automaten
- Man geht vom kleinsten Wort aus, was der Automat akzeptieren soll (Rumpf-Automat)
- Man erweitert den Automat durch geschickte Wahl der Übergänge, dass er alle Worte der der Sprache versteht.
- Beispiel:
 - ► Alle Wort aus dem Alphabet {0,1} die am Anfang eine 0 haben sollen.
 - Kleinstes Wort ist w=,,0"

Nun betrachtet man jeden Zustand und versucht die fehlenden Übergänge zu ergänzen, so dass nur Worte der Sprache erkannt werden.

Einfache Automatenkonstruktion

- ► Alle Wort aus dem Alphabet {0,1} die am Anfang eine 0 haben sollen.
- Kleinstes Wort ist w=,,0"

- Nun betrachtet man jeden Zustand und versucht die fehlenden Übergänge zu ergänzen, so dass nur Worte der Sprache erkannt werden.
- Entwickeln Sie den Automaten auf Papier.

Aufgabe 3 DEA-Konstruktionen

- Das Alphabet sei $\Sigma = \{0,1\}$
 - 1) Konstruieren Sie einen deterministischen Automaten, der alle Worte erkennt, die am Schluss eine "0" haben.
 - 2) Konstruieren Sie einen deterministischen Automaten, der die Zeichenkette "00" im Wort erkennt.
 - 3) Konstruieren Sie einen deterministischen Automaten, der alle Worte erkennt, die am Schluss die Zeichenfolge "00" haben.
 - 4) Konstruieren Sie einen deterministischen Automaten, der alle Worte erkennt, die an der zweitletzten Stelle eine "0" haben.

- Das Alphabet sei $\Sigma = \{0,1\}$
 - Konstruieren Sie einen deterministischen Automaten, der alle Worte erkennt, die am Schluss eine "0" haben.

Überführungsfunktion δ für DEA $_1$

δ	0	1
$\rightarrow q_0$	q_1	q_0
$*q_1$	q_1	q_0

- Das Alphabet sei $\Sigma = \{0,1\}$
 - Konstruieren Sie einen deterministischen Automaten, der die Zeichenkette "00" im Wort erkennt.

Überführungsfunktion δ für DEA₁

δ	0	1
$\rightarrow q_0$	q_1	q_0
$q_{\scriptscriptstyle 1}$	q_2	q_0
*q ₂	q_2	q_2

- Das Alphabet sei $\Sigma = \{0,1\}$
 - Konstruieren Sie einen deterministischen Automaten, der die Zeichenkette "00" am Ende enthält.

Überführungsfunktion δ für DEA₂

δ	0	1
$\rightarrow q_0$	q_1	q_0
$q_{\scriptscriptstyle 1}$	q_2	q_0
*q ₂	q_2	q_0

- Das Alphabet sei $\Sigma = \{0,1\}$
 - Konstruieren Sie einen deterministischen Automaten, der eine 0 an der vorletzten Stelle hat.

Überführungsfunktion δ für DEA₃

δ	0	1
$\rightarrow q_0$	q_1	q_0
$q_{\scriptscriptstyle 1}$	q_2	q_3
*q ₂	q_2	q_3
*q ₃	q_1	q_0