デジタルトレーニング FPGA編

飯塚研究室 B4 福島幸弥

はじめに

• 100桁求めるアルゴリズムは実装できなかった

・試みたことを紹介する

Binary-Splitting 法

- ・ $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ このような級数を再帰的に二分して求めていく方法
- Pythonで仮実装したら100桁以上の精度で求められた (参考: https://qiita.com/kyamaz/items/0061710cdadc11e3a644 ChatGPT)
- Verilogでの再帰の方法がわからず断念

代わりに用いたアルゴリズム

•
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

・nが十分大きければ、eに近似できる

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
の短所

- ・収束が非常に遅い
 - \rightarrow Pythonで確かめると $n=2^{32}$ でも10桁程度しか一致しない 2.71828182814259...

- ・多倍長演算が事実上できない
 - →主に2乗で求めるため、上位の桁がどうしても必要となる
 - →データ長がnに比例して増加

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
の長所

・2乗器しか必要ない

$$\rightarrow n = 2^N$$
とすると非常に都合がよく

•
$$1 + \frac{1}{n} = 1.00 \cdots 1_{(2)}$$

- ・n乗の部分は2乗をN回行えば良い
- と、かなり簡単に実装できる
- ・計算量は増えづらい
 - \rightarrow 2乗の計算しか行わないため、計算量は $O(\log_2 n)$

シミュレーション波形

```
\buffer[0][15:0] =0001
\buffer[1][15:0] =0080
\buffer[2][15:0] =1FC0
\buffer[3][15:0] =3580
\buffer[4][15:0] =C7E0
\buffer[5][15:0] =F680
```

	0001							
:	0001	0002	0004	8000	0010	0020	0040	0080
:	0000	0001	000€	001C	0078	01F0	07E0	1FC0
1	0000		0004	0038	0230	1360	A2C0	3580
	0000		0001	0046	071C	8C78	B1F0	C7E0
	0000			0038	1110	12A0	5740	F680

- ・ 2乗器は正しく動作した
- ・ 10進への変換器は未実装