Вопросы и ответы

Много сезонных составляющих

Много сезонных составляющих: план

• Наложение нескольких частот.

Много сезонных составляющих: план

- Наложение нескольких частот.
- Краткое напоминание STL.

Много сезонных составляющих: план

- Наложение нескольких частот.
- Краткое напоминание STL.
- MSTL = STL много раз.

Картинка

Дневные данные, много частот

Что делать со сложной сезонностью?

• Использовать подходящую модель: ARIMA + предикторы Фурье, PROPHET, TBATS, ...

Что делать со сложной сезонностью?

- Использовать подходящую модель:
 ARIMA + предикторы Фурье, PROPHET, TBATS, ...
- Разложить ряд на много составляющих:

$$y_t = trend_t + seas_t^{(1)} + seas_t^{(2)} + remainder_t$$

На входе:

Ряд y_t .

На входе:

Ряд y_t .

• n_p — периодичность сезонности, например, $n_p = 12$.

На входе:

 $\mathsf{P}\mathsf{я}\mathsf{д}\,y_t.$

- n_p периодичность сезонности, например, $n_p = 12$.
- n_l сила сглаживания низкочастотного фильтра.

На входе:

Ряд y_t .

- n_p периодичность сезонности, например, $n_p = 12$.
- n_l сила сглаживания низкочастотного фильтра.
- n_s сила сглаживания сезонных подрядов.

На входе:

 $\mathsf{P}\mathsf{я}\mathsf{д}\,y_t.$

- n_p периодичность сезонности, например, $n_p = 12$.
- n_l сила сглаживания низкочастотного фильтра.
- n_s сила сглаживания сезонных подрядов.
- n_t сила сглаживания при выделении тренда.

На входе:

Ряд y_t .

- n_p периодичность сезонности, например, $n_p = 12$.
- n_l сила сглаживания низкочастотного фильтра.
- n_s сила сглаживания сезонных подрядов.
- n_t сила сглаживания при выделении тренда.

На выходе:

Разложение $y_t = trend_t + seas_t + remainder_t$.

Применим STL последовательно!

1. Первичное выделение сезонных компонент.

Применим STL последовательно!

- 1. Первичное выделение сезонных компонент.
- 2. Корректировка сезонных компонент.

Применим STL последовательно!

- 1. Первичное выделение сезонных компонент.
- 2. Корректировка сезонных компонент.
- 3. Добываем тренд и остаток.

MSTL = STL много раз!

- Шаг 1. Первичное выделение сезонных компонент.
- 1. Запустим STL для выделения сезонности высокой частоты.

Запомним выделенную компоненту $seas_t^{(1)}$ и удалим её из ряда, $y_t^{(-1)} = y_t - seas_t^{(1)}$.

MSTL = STL много раз!

Шаг 1. Первичное выделение сезонных компонент.

1. Запустим STL для выделения сезонности высокой частоты.

Запомним выделенную компоненту $seas_t^{(1)}$ и удалим её из ряда, $y_t^{(-1)} = y_t - seas_t^{(1)}$.

2. Запустим STL для выделения сезонности средней частоты.

Запомним выделенную компоненту $seas_t^{(2)}$ и удалим её из ряда, $y_t^{(-1,2)} = y_t^{(-1)} - seas_t^{(2)}$.

MSTL = STL много раз!

Шаг 1. Первичное выделение сезонных компонент.

1. Запустим STL для выделения сезонности высокой частоты.

Запомним выделенную компоненту $seas_t^{(1)}$ и удалим её из ряда, $y_t^{(-1)} = y_t - seas_t^{(1)}$.

2. Запустим STL для выделения сезонности средней частоты.

Запомним выделенную компоненту $seas_t^{(2)}$ и удалим её из ряда, $y_t^{(-1,2)} = y_t^{(-1)} - seas_t^{(2)}$.

3. ...

Уточняем сезонные компоненты

- Шаг 2. Корректировка сезонных компонент.
- 1. Временно возвращаем в полностью очищенный ряд найденную сезонность высокой частоты. Запускаем STL и получаем уточнённую компоненту $seas_t^{(1)}$, удаляем её из ряда и получаем уточнённый очищенный ряд.

Уточняем сезонные компоненты

- Шаг 2. Корректировка сезонных компонент.
- 1. Временно возвращаем в полностью очищенный ряд найденную сезонность высокой частоты. Запускаем STL и получаем уточнённую компоненту $seas_t^{(1)}$, удаляем её из ряда и получаем уточнённый очищенный ряд.
- 2. Временно возвращаем в полностью очищенный ряд найденную сезонность средней частоты. Запускаем STL и получаем уточнённую компоненту $seas_t^{(2)}$, удаляем её из ряда и получаем уточнённый очищенный ряд.

Уточняем сезонные компоненты

- Шаг 2. Корректировка сезонных компонент.
- 1. Временно возвращаем в полностью очищенный ряд найденную сезонность высокой частоты. Запускаем STL и получаем уточнённую компоненту $seas_t^{(1)}$, удаляем её из ряда и получаем уточнённый очищенный ряд.
- 2. Временно возвращаем в полностью очищенный ряд найденную сезонность средней частоты. Запускаем STL и получаем уточнённую компоненту $seas_t^{(2)}$, удаляем её из ряда и получаем уточнённый очищенный ряд.
- 3. ...

Завершаем алгоритм

Шаг 3. Добываем тренд и остаток.

Тренд и остаток берем из самого последнего STL разложения, уточнявшего сезонные компоненты.

Много сезонных составляющих: итоги

• MSTL — быстрый и устойчивый алгоритм разложения ряда.

Много сезонных составляющих: итоги

- MSTL быстрый и устойчивый алгоритм разложения ряда.
- Теоретически MSTL может работать с пропусками.

Много сезонных составляющих: итоги

- MSTL быстрый и устойчивый алгоритм разложения ряда.
- Теоретически MSTL может работать с пропусками.
- Есть другие алгоритмы: ARIMA + предикторы Фурье, TBATS, PROPHET, ...

Данные прерывающиеся нулями

Данные прерывающиеся нулями: план

• Нули в данных.

Данные прерывающиеся нулями: план

- Нули в данных.
- Алгоритм Кростона.

Откуда нули в данных?

Счётные данные с небольшим ожиданием:

• Ежедневное количество пожаров в небольшое городе.

Откуда нули в данных?

Счётные данные с небольшим ожиданием:

- Ежедневное количество пожаров в небольшое городе.
- Еженедельное количество написанных писателем романов.

Откуда нули в данных?

Счётные данные с небольшим ожиданием:

- Ежедневное количество пожаров в небольшое городе.
- Еженедельное количество написанных писателем романов.

•

Как моделировать?

• Специальные модели для счётных данных. Используют распределение Пуассона, отрицательное биномиальное, ...

Как моделировать?

- Специальные модели для счётных данных. Используют распределение Пуассона, отрицательное биномиальное, ...
- Простой алгоритм Кростона.
 Подходит для несезонных данных, основан на экспоненциальном сглаживании.

Напоминание про ETS(ANN)

Уравнения модели:

$$\begin{cases} y_t = \ell_{t-1} + u_t \\ \ell_t = \ell_{t-1} + \alpha u_t \end{cases}$$

Напоминание про ETS(ANN)

Уравнения модели:

$$\begin{cases} y_t = \ell_{t-1} + u_t \\ \ell_t = \ell_{t-1} + \alpha u_t \end{cases}$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Напоминание про ETS(ANN)

Уравнения модели:

$$\begin{cases} y_t = \ell_{t-1} + u_t \\ \ell_t = \ell_{t-1} + \alpha u_t \end{cases}$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Прогноз на 1 шаг вперёд:

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t.$$

Шаг 1. Разобъём исходный ряд (y_t)

$$3, 0, 2, 0, 0, 4, 0, 0, 0, 3, 0, 1, \dots$$

Шаг 1. Разобъём исходный ряд (y_t)

$$3, 0, 2, 0, 0, 4, 0, 0, 0, 3, 0, 1, \dots$$

на ряд положительных значений $\left(q_{t}\right)$

$$3, 2, 4, 3, 1, \dots$$

и длины нулевых промежутков (a_t) :

$$1, 2, 3, 1, \dots$$

Шаг 1. Разобъём исходный ряд (y_t)

$$3, 0, 2, 0, 0, 4, 0, 0, 0, 3, 0, 1, \dots$$

на ряд положительных значений $\left(q_{t}\right)$

$$3, 2, 4, 3, 1, \dots$$

и длины нулевых промежутков (a_t) :

$$1, 2, 3, 1, \dots$$

Шаг 2. Применим простое экспоненциальное сглаживание.

$$\begin{cases} \hat{q}_{t+1} = \alpha_q q_t + (1 - \alpha_q) \hat{q}_t \\ \hat{a}_{t+1} = \alpha_a a_t + (1 - \alpha_a) \hat{a}_t \end{cases}$$

Шаг 1. Разобъём исходный ряд (y_t)

$$3, 0, 2, 0, 0, 4, 0, 0, 0, 3, 0, 1, \dots$$

на ряд положительных значений $\left(q_{t}\right)$

$$3, 2, 4, 3, 1, \dots$$

и длины нулевых промежутков (a_t) :

$$1, 2, 3, 1, \dots$$

Шаг 2. Применим простое экспоненциальное сглаживание.

$$\begin{cases} \hat{q}_{t+1} = \alpha_q q_t + (1 - \alpha_q) \hat{q}_t \\ \hat{a}_{t+1} = \alpha_a a_t + (1 - \alpha_a) \hat{a}_t \end{cases}$$

Параметры: α_a , α_q , \hat{a}_0 , \hat{q}_0 .

Прогнозирование

Из алгоритма Кростона можно извлечь:

• \hat{q}_{T+1} — прогноз следующего ненулевого числа.

Прогнозирование

Из алгоритма Кростона можно извлечь:

- \hat{q}_{T+1} прогноз следующего ненулевого числа.
- \hat{a}_{T+1} прогноз длины нулевого промежутка.

Прогнозирование

Из алгоритма Кростона можно извлечь:

- \hat{q}_{T+1} прогноз следующего ненулевого числа.
- \hat{a}_{T+1} прогноз длины нулевого промежутка.
- $\hat{y}_{T+1} = \hat{q}_{T+1}/\hat{a}_{T+1}$ прогноз для исходного ряда.

Данные прерывающиеся нулями: итоги

• Как правило, много нулей в счётных данных.

Данные прерывающиеся нулями: итоги

- Как правило, много нулей в счётных данных.
- Алгоритм Кростона подойдёт для несезонных данных.

Данные прерывающиеся нулями: итоги

- Как правило, много нулей в счётных данных.
- Алгоритм Кростона подойдёт для несезонных данных.
- Алгоритм Кростона нестатический: нет прогнозных интервалов.