单元12.3 二部图中的匹配

第二编 图论 第十二章支配集、覆盖集、 独立集与匹配

13.3 二部图中的匹配

内容提要

- 完备匹配
 - 充要条件: Hall-条件 (相异性条件)
 - 充分条件: t-条件
- k正则二部图
- 无孤立点二部图

完备匹配

二部图G=<V₁,V₂,E>, |V₁|≤|V₂|,
M是匹配 ∧ |M|=|V₁|

霍尔条件

• 又称"相异性条件":

$$\forall S \subseteq V_1, |S| \leq |N(S)|$$

• N(S) = { u | $\exists v \in S$, $(v,u) \in E$ } = $\bigcup_{v \in S} \Gamma(v)$

霍尔定理(婚姻定理)

• 定理13.11(Hall,1935):

二部图G有完备匹配 \leftrightarrow G满足霍尔条件 ($\forall S$, $|S| \le |N(S)|$)

霍尔定理证明

• 证: (⇒) 显然 (⇐) (反证) 设G=<V₁,V₂,E>是极小反例, 则存在 $a_1,a_2 \in V_1$, $x \in V_2$, $(a_1,x),(a_2,x) \in E$. 删除任一个(a_i,x)将破坏条件, 则存在 $A_1,A_2\subseteq V_1$, $a_i\in A_i$, 在A_i中只有a_i与x相邻, $|\Gamma(A_i)| = |A_i|$.

霍尔定理证明

•
$$|\Gamma(A_1) \cap \Gamma(A_2)|$$

$$\geq |\Gamma(A_1-\{a_1\}) \cap \Gamma(A_2-\{a_2\})| + 1$$

$$\geq |\Gamma(A_1 \cap A_2)| + 1 \geq |A_1 \cap A_2| + 1.$$

$$|\Gamma(A_1 \cup A_2)| = |\Gamma(A_1) \cup \Gamma(A_2)|$$

$$= |\Gamma(A_1)| + |\Gamma(A_2)| - |\Gamma(A_1) \cap \Gamma(A_2)|$$

$$\leq |A_1| + |A_2| - (|A_1 \cap A_2| + 1)$$

t-条件

二部图G=<V₁,V₂,E>, t≥1
V₁中每个顶点至少关联t条边 ∧
V₂中每个顶点至多关联t条边

t=3

定理13.12

• 设G=<V₁,V₂,E>是二部图,则

G满足t-条件 → G中存在完备匹配

定理13.12证明

证:

 V_1 中任意 k 个顶点至少关联 kt 条边, 这 kt 条边至少关联 V_2 中 k 个顶点, 即相异性条件成立. #

例

- (1) 满足t-条件(t=3) (也满足Hall-条件)
- (2) 满足Hall-条件 (但不满足t-条件)
- (3) 不满足Hall-条件 (无完备匹配)

定理13.13 (k-正则二部图)

• k-正则二部图 $G=\langle V_1,V_2,E\rangle$ 中, 存在k个边不重的完美匹配

定理13.13证明

• 证: G满足t=k的t条件, 所以有完备匹配 M_1 ,又 $|V_1|=|V_2|$, 所以完备匹配就是完美匹配. G- M_1 是(k-1)-正则二部图,又有完美匹配 M_2 , G- M_1 - M_2 是(k-2)-正则二部图,……,一共可得k个完美匹配.

显然这些匹配是边不重的.

定理13.14(无孤立点二部图)

• 无孤立点二部图G=<V₁,V₂,E>中,

$$\alpha_0 = \beta_1$$

定理13.14证明

• 证: 设M是最大匹配, X是 V_1 非饱和点集, $S = \{u \in V_1 \mid \exists v \in X, \text{ M}v \text{到u有交错路径}\}$, $T = \{u \in V_2 \mid \exists v \in X, \text{ M}v \text{到u有交错路径}\}$. 则 $N = (V_1 - S) \cup T$ 是点覆盖, |N| = |M|, 由定理13.6知 N 是最小覆盖. #

小结

- 完备匹配
 - 充要条件: Hall-条件 (相异性条件)
 - 充分条件: t-条件
- k正则二部图
 - 有k个边不重完美匹配
- 无孤立点二部图
 - $-\alpha_0=\beta_1$

