Learning For Search Result Diversification

Paper Presentation

Fatimah Al Mubarak

Why use search result diversification?

To tackle the ambiguous or multi-faceted information needs of different users

Existing methods:

- heuristic predefined ranking function; implicit and explicit methods.
- Usually are "based on greedy approximation, which sequentially select a 'local-best' document from the remanent candidate set"

Proposed Solution:

- Relational Learning To Rank framework
- New definitions for ranking function and loss function based on the foundation of sequential selection process for diverse ranking.

Definitions:

- Ranking Function: "the combination of relevance score and diversity score"
- loss function: "the likelihood loss of the generation probability"

R-LTR

 Documents ranking is obtained by looking to the document's relevance AND the relations between documents

Adding a new document to the ranking list in a sequential order

R-LTR: Ranking Function

$$f_S(x_i, R_i) = \omega_r^T \mathbf{x}_i + \omega_d^T h_S(R_i), \forall x_i \in X \backslash S, \tag{2}$$

where:

xi: the relevance feature vector of the candidate document xi

Ri: the matrix of relationships between document xi and other selected documents

h_S (Ri): the relational function on Ri

 $\omega_r{}^T\ \&\ \omega_d{}^T$: the corresponding relevance and diversity weight vector

R-LTR: Ranking Function

 $h_S(R_i)$: represents the diversity relationship between the current document x_i and the previously selected documents in S.

In the paper, $h_S(R_i)$ is presented as the distance of x_i to the set S, thus $h_S(R_i)$ can be represented by three ways:

- Minimal Distance: the distance between a document x_i and a set S is defined as the minimal distance of all the document pairs $(x_i, x_j), x_i \in S$.
- Average Distance: The distance between a document x_i and a set S is defined as the average distance of all the document pairs $(x_i, x_j), x_i \in S$.
- Maximal Distance: The distance between a document x_i and a set S is defined as the maximal distance of all the document pairs $(x_i, x_j), x_i \in S$.

How to capture Diversity

Semantic Diversity:

- Subtopic Diversity
- -Text Diversity
- -title diversity
- -anchor text diversity
- -ODP-based diversity; using existing ODP taxonomy, "the distance between documents on similar topics in the taxonomy is likely to be small"

Structural Diversity:

linked-based diversity, and URL-based diversity

Constructing Training Data

Algorithm 1 Construction of Approximate Ideal Ranking List

Input:

$$(q_i, X^{(i)}, \mathbf{T}_i, P(x_j^{(i)}|t)), t \in \mathbf{T}_i, x_j^{(i)} \in X^{(i)}$$

Output: $y^{(i)}$

- 1: Initialize $S_0 \leftarrow \emptyset, \mathbf{y}^{(i)} = (1, \dots, n_i)$
- 2: for $k = 1, ..., n_i$ do
- 3: bestDoc $\leftarrow \operatorname{argmax}_{x \in X^{(i)} \setminus S_{k-1}} ODM(S_{k-1} \cup x)$
- 4: $S_k \leftarrow S_{k-1} \cup \text{bestDoc}$
- 5: $y^{(i)}(k) = \text{the } index \text{ of bestDoc}$
- 6: end for
- 7: **return** $\mathbf{y}^{(i)} = (y^{(i)}(1), \cdots, y^{(i)}(n_i)).$

Optimization Process

Algorithm 2 Optimization Algorithm

```
Input: training data \{(X^{(i)}, R^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{N},
    parameter: learning rate \eta, tolerance rate \epsilon
Output: model vector: \omega_r, \omega_d
1: Initialize parameter value \omega_r, \omega_d
2: repeat
       Shuffle the training data
3:
       for i = 1, ..., N do
          Compute gradient \Delta \omega_r^{(i)} and \Delta \omega_d^{(i)}
5:
          Update model: \omega_r = \omega_r - \eta \times \Delta \omega_r^{(i)},
6:
                                \omega_d = \omega_d - \eta \times \Delta \omega_d^{(i)}
7:
       end for
       Calculate likelihood loss on the training set
9: until the change of likelihood loss is below \epsilon
```

Ranking Prediction

Algorithm 3 Ranking Prediction via Sequential Selection

```
Input: X^{(t)}, R^{(t)}, \omega_r, \omega_d

Output: \mathbf{y}^{(t)}

1: Initialize S_0 \leftarrow \emptyset, \mathbf{y}^{(t)} = (1, \dots, n_t)

2: for k = 1, \dots, n_t do

3: bestDoc \leftarrow \operatorname{argmax}_{x \in X_t} f_{S_{k-1}}(x, R)

4: S_k \leftarrow S_{k-1} \cup \operatorname{bestDoc}

5: y^{(t)}(k) \leftarrow \operatorname{the} index \text{ of bestDoc}

6: end for

7: return \mathbf{y}^{(t)} = (y^{(t)}(1), \dots, y^{(t)}(n_t))
```

Feature Importance Analysis

Table 6: Order list of diversity features with corresponding weight value.

feature	weight
$R_{ij1}(ext{topic})$	3.71635
$R_{ij3}({ m title})$	1.53026
$R_{ij4}({ m anchor})$	1.34293
$R_{ij2}(\mathrm{text})$	0.98912
$R_{ij5}(\text{ODP})$	0.52627
$R_{ij6}({ m Link})$	0.04683
$R_{ij7}(\mathrm{URL})$	0.01514

Evaluation:

- TREC dataset.
- Intent-aware measures: Precision-IA & Subtopic recall
- Performance comparison with state-of-art approaches

Experiment Setup

Implementation:

- Retrieval platform: Indri toolkit
- Data processing: porter stemmer and stopwords removing for both indexing and query processing.

Evaluation Results

Table 2: Performance comparison of all methods in official TREC diversity measures for WT2009.

Method	ERR-IA	α -NDCG	NRBP
$_{ m QL}$	0.1637	0.2691	0.1382
ListMLE	0.1913 (+16.86%)	$0.3074 \ (+14.23\%)$	0.1681 (+21.64%)
MMR_{list}	0.2022 (+23.52%)	0.3083 (+14.57%)	0.1715 (+24.09%)
xQuAD_{list}	0.2316 (+41.48%)	0.3437 (+27.72%)	$0.1956 \ (+41.53\%)$
$PM-2_{list}$	0.2294 (+40.13%)	0.3369 (+25.20%)	0.1788 (+29.38%)
SVMDIV	0.2408 (+47.10%)	0.3526 (+31.03%)	0.2073 (+50.00%)
$R-LTR_{min}$	0.2714 (+65.79%)	0.3915 (+45.48%)	$0.2339 \ \ (+69.25\%)$
$R-LTR_{avg}$	0.2671 (+63.16%)	0.3964 (+47.31%)	$0.2268 \ (+64.11\%)$
$R-LTR_{max}$	0.2683 (+63.90%)	$0.3933 \ (+46.15\%)$	$0.2281 \ (+65.05\%)$
TREC-Best	0.1922	0.3081	0.1617

Table 3: Performance comparison of all methods in official TREC diversity measures for WT2010.

Method	ERR-IA	lpha-NDCG	NRBP
$_{ m QL}$	0.1980	0.3024	0.1549
ListMLE	0.2436 (+23.03%)	0.3755 (+24.17%)	0.1949 (+25.82%)
MMR_{list}	0.2735 (+38.13%)	0.4036 (+33.47%)	0.2252 (+45.38%)
xQuAD_{list}	0.3278 (+65.56%)	0.4445 (+46.99%)	0.2872 (+85.41%)
$PM-2_{list}$	0.3296 (+66.46%)	0.4478 (+48.08%)	0.2901 (+87.28%)
SVMDIV	0.3331 (+68.23%)	0.4593 (+51.88%)	0.2934 (+89.41%)
$R-LTR_{min}$	0.3647 (+84.19%)	$0.4924 \ \ (+62.83\%)$	$0.3293 \ (+112.59\%)$
$R-LTR_{avg}$	0.3587 (+81.16%)	$0.4781 \ (+58.10\%)$	0.3125 (+101.74%)
$R-LTR_{max}$	0.3639 (+83.79%)	$0.4836 \ (+59.92\%)$	$0.3218 \ (+107.74\%)$
TREC-Best	0.2981	0.4178	0.2616

Some Highlights of the Comparison

- explicit methods(xQuAD & PM-2) outperformed implicit methods (MMR) in the test
- "SVMDIV simply uses weighted word coverage as a proxy for explicitly covering subtopics, while our R-LTR approach directly models the generation probability of the diverse ranking based on the sequential ranking formulation."
- R-LTR outperformance is significantly different (p-value <0.01)

Evaluation on Traditional Diversity Metrics

Figure 2: Performance comparison of all methods in Precision-IA for WT2009, WT2010, WT2011.

igure 3: Performance comparison of all methods in Subtopic Recall for WT2009, WT2010, WT2011.

Robustness Analysis

Table 5: The robustness of the performance of all diversity methods in Win/Loss ratio

	WT2009	WT2010	WT2011	Total
ListMLE	20/18	27/16	26/11	73/45
MMR_{list}	22/15	29/13	29/10	80/38
xQuAD_{list}	28/11	31/12	31/12	90/35
$PM-2_{list}$	26/15	32/12	32/11	90/38
SVMDIV	30/12	32/11	32/11	94/34
$R-LTR_{min}$	34/9	35/10	35/9	104/28
$R-LTR_{avg}$	33/9	34/11	34/10	101/30
$R-LTR_{max}$	33/10	35/10	34/10	102/30

Future improvements

- Algorithms running time : O(n * K)
- Average training time:

ListMLE ($\sim 1.5h$) < SVMDIV ($\sim 2h$) < R-LTR ($\sim 3h$)

Discussion

- where would this approach be most useful?
- what features that you think should be considered in this approach?
- what parts of the paper needs more clarification?

Source Paper

Learning for Search Result Diversification

Yadong Zhu Yanyan Lan Jiafeng Guo Xueqi Cheng Shuzi Niu Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China