Analysis, Topology, Optimization, Machine Learning, and Computational Analysis

Daniel Drake

June 11, 2020

1 Notation, Set Theory, and Logic

Definition 1.1. Common Sets of Numbers

$$\mathbb{N} = \{1, 2, ...\}$$

$$\mathbb{N}_0 = \{0, 1, 2, ...\}$$

$$\mathbb{N}_m = \{1, 2, ..., m\} \text{ where } m \in \mathbb{N}$$

$$\mathbb{R} \text{ is the set of Real Numbers}$$

$$\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$$

$$\mathbb{R}^+_0 = \{x \in \mathbb{R} : x \geq 0\}$$

$$\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$$

$$\mathbb{R}^-_0 = \{x \in \mathbb{R} : x < 0\}$$

Definition 1.2. Sets and Set Builder Notation

Set builder notation is a way of describing a set using mathematical, logical symbols, or words. Look at the following example:

$$E = \{ x \in \mathbb{N} : x = 2n \text{ where } n \in \mathbb{N} \}$$

This reads: E is the set of all x in \mathbb{N} such that x = 2n where n is in \mathbb{N} . This set is also known as the even numbers.

When talking about functions, another common way of describing a set is:

$$C_X^Y = \{f : X \to Y | f \text{ is continuous}\}$$

This reads: C_X^Y is the set of all functions f mapping from X to Y such that f is continuous.

Definition 1.3. Primitives

The logical or and not are both primitives and are written:

 $logicalor: \lor$

and

not: ``

Respectively.

Statements are written: L, M, N, O, P, Q, ...etc

A statement is a sequence of words or symbols which is either true or false.

So then $L \vee M$ is a new statement composed of L, \vee , and M.

We can then use this as the definition of a new statement:

$$N := L \vee M$$

Which is read: N is defined as L or M.

So N is true if:

L is true, M is true, or N and M are both true.

Definition 1.4. Intersection and Union

Let A, B be sets.

$$A \cap B = \{x : x \in A \land x \in B\}$$

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Definition 1.5. Subsets

Let A, B be sets.

 $A \subset B \Leftrightarrow (x \in A \Rightarrow x \in B)$

Theorem 1.1. The union only makes things larger

Let A, B be sets.

Then: $A \subset A \cup B$

Theorem 1.2. Union and Intersection Distributive Properties

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof:

Let
$$x \in A \cap (B \cup C) \Rightarrow x \in A \land x \in B \cup C$$

Suppose that $x \notin C \Rightarrow x \in B$

 $\Rightarrow x \in A \land x \in B$

 $\Rightarrow x \in A \cap B$

 $\Rightarrow x \in (A \cap B) \cup (A \cap C)$

 $[(A \cap B) \subset (A \cap B) \cup (A \cap C)]$

Suppose that $x \not\in B \Rightarrow x \in C$

 $\Rightarrow x \in A \ and \ x \in C$

 $\Rightarrow x \in A \cap C$

 $\Rightarrow x \in (A \cap B) \cup (A \cap C)$

 $[(A \cap C) \subset (A \cap B) \cup (A \cap C)]$

Therefore:

$$A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$$

Definition 1.6. Power Set

Let $X \neq \phi$

$$2^X := \{V : V \subseteq X\}$$

2 Topology

Definition 2.1. Topology

Let $X \neq \phi$

Further let $\tau \subseteq 2^X$ such that:

$$\phi, X \in \tau$$

$$(\forall A \neq \phi) \left(\{U_{\alpha}\}_{\alpha \in A} \subseteq \tau \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \tau \right)$$

$$(\forall m \in \mathbb{N}) \left(\{U_{j}\}_{j \in \mathbb{N}_{m}} \Rightarrow \bigcap_{j=1^{m}} U_{j} \in \tau \right)$$

Definition 2.2. Relative Topology

Let $X \neq \phi$ and $Z \subset X$

Then the relative topology on Z is written as follows:

$$\tau_Z = \{ Z \cap U : U \in \tau_X \}$$

Theorem 2.1. The Relative Topology is a Topology on Z Let $E \in \tau_Z$

$$\Rightarrow E = Z \cap U \subset Z$$
$$\Rightarrow \tau_Z \subseteq 2^Z$$

And so we have met the first criteria.

Next:

$$\phi \in \tau \Rightarrow Z \cap \phi \in \tau_Z \Rightarrow Z \cap \phi = \phi \in \tau_Z$$

Next:

$$X \in \tau \Rightarrow Z \cap X \in \tau_Z \Rightarrow Z \cap X = Z \in \tau_Z$$

Next: Let $A \neq \phi$ and $\{U_{\alpha}\}_{{\alpha} \in A} \in \tau_Z$

$$\Rightarrow \exists \{V_{\alpha}\}_{\alpha \in A} \subset \tau \text{ such that: } U_{\alpha} = Z \cap V_{\alpha}$$
$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} Z \cap V_{\alpha}$$

${\bf Theorem~2.2.~\it Topologies~on~\it Finite~\it Spaces}$

Let $E \neq \phi$ and $card(E) = \phi$ then $\tau_E = 2^E$

3 Change

Definition 3.1. Metric

Let X be a non-empty set..

Let $d: X \times X \to \mathbb{R}_0^+$ such that:

- $(\forall x, y \in X)d(x, y) = 0 \Leftrightarrow x = y$
- $(\forall x, y \in X)d(x, y) = d(y, x)$
- $(\forall x, y, z \in X)d(x, z) \le d(x, y) + d(y, z)$

Then d is called a metric and (X, d) is called a metric space. Reference

Definition 3.2. Limit of a function

Let $T: X \to Y$ where (X, d_X) and (Y, d_Y) are metric spaces.

Then fix $x_0 \in X$.

If:

$$(\exists L \in Y)(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in X)(d(x, x_0) < \delta \Rightarrow d(f(x), L) < \epsilon)$$

Then:

$$\lim_{x \to x_0} f(x) = L$$

Reference

Definition 3.3. Derivative

Let $f: \mathbb{R} \to \mathbb{R}$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}}$

Then f is said to be differentiable at $x \in U$ if there exists an L_x such that:

$$L_x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If L_x exists for all $x \in U$ then we write:

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Reference

Theorem 3.1. Fundamental increment lemma

Let f be described as above and be differentiable at x.

Then there exists a function $\phi: \mathbb{R} \to \mathbb{R}$ such that:

$$f(x+h) = f(x) + \frac{d}{dx}f(x)h + \phi(x)h$$

and

$$\lim_{h \to 0} \phi(h) = 0$$

Proof:

Define: $\phi(h) = \frac{f(x+h)-f(x)}{h} - \frac{d}{dx}f(x)$ Then: $\phi(h)h = f(x+h) - f(x) - \frac{d}{dx}f(x)h$ Then: $\phi(h)h + f(x) - \frac{d}{dx}f(x)h = f(x+h)$

And so we have property 1.

Next:

$$\lim_{h \to 0} \phi(h) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x) - \frac{d}{dx}f(x)h}{h} \right] = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} - \frac{d}{dx}f(x) \right]$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \lim_{h \to 0} \frac{d}{dx}f(x) = \frac{d}{dx}f(x) - \frac{d}{dx}f(x) = 0$$

Definition 3.4. Partial Derivative

Let $\hat{f}: \mathbb{R}^n \to \mathbb{R}$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}^n}$

Then f is said to be differentiable at $x \in U$ with respect to the i'th component of x if there exists an L_{x_i}

such that:

$$L_{x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

If L_{x_i} exists for all $x \in U$ then we write:

$$\frac{\partial}{\partial x_i} f(x) = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

Reference

Theorem 3.2. Equivalent characterization

Let $\hat{f}: \mathbb{R}^n \to \mathbb{R}$

Further let $f = f|_U$ where $U \in \tau_{\mathbb{R}^n}$

And let f be differentiable at $x \in U$ with respect to the i'th component of x, then:

$$L_{x_{i}} = \lim_{h \to 0} \frac{f(x_{1}, ..., x_{i} + h, ..., x_{n}) - f(x_{1}, ..., x_{i}, ..., x_{n})}{h}$$

$$\Leftrightarrow 0 = \lim_{h \to 0} \left[\frac{f(x_{1}, ..., x_{i} + h, ..., x_{n}) - f(x_{1}, ..., x_{i}, ..., x_{n})}{h} - L_{x_{i}} \right]$$

$$\Leftrightarrow 0 = \lim_{h \to 0} \left[\frac{f(x_{1}, ..., x_{i} + h, ..., x_{n}) - f(x_{1}, ..., x_{i}, ..., x_{n})}{h} - \frac{L_{x_{i}} \cdot h}{h} \right]$$

$$\Leftrightarrow 0 = \lim_{h \to 0} \left[\frac{f(x_{1}, ..., x_{i} + h, ..., x_{n}) - f(x_{1}, ..., x_{i}, ..., x_{n}) - \langle L_{x_{i}}, h \rangle}{h} \right]$$

Definition 3.5. Gradient

Let $\hat{f}: \mathbb{R}^n \to \mathbb{R}$ and let $f: U \to \mathbb{R}$ such that $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}^n}$ f is said to be differentiable at $x \in U$ if $\exists \nabla f: \mathbb{R}^n \to \mathbb{R}^n$ such that:

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - \langle \nabla f(x), h \rangle|}{||h||} = 0$$

Theorem 3.3. Form of the Gradient

Let f be defined as above.

Then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ where:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} \forall x \in \mathbb{R}^n$$

is the form of ∇f which satisfies the above statement if f is differentiable. Reference

Proof:

Suppose ∇f is defined as above and all the partial derivatives exist. Then:

$$\frac{1}{||h||}|f(x+h) - f(x) - \langle \nabla f(x), h \rangle| = \frac{1}{||h||} \left| f(x+h) - f(x) - \sum_{j=1}^{n} \frac{\partial}{\partial x_j} f(x) \cdot h_j \right|$$

Definition 3.6. Matrix Functional Differentiability

Let $\hat{T}: \mathbb{R}^{n \times m} \to \mathbb{R}$ and let $T: U \to \mathbb{R}$ such that $T = \hat{T}|_U$ where $U \in \tau_{\mathbb{R}^{n \times m}}$ T is said to be differentiable at $x \in U$ if $\exists D: \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ such that:

$$\lim_{h \to 0} \frac{|T(x+h) - T(x) - \langle DT(x), h \rangle|}{||h||} = 0$$

where $\langle \cdot, \cdot \rangle$ is an inner product defined on $\mathbb{R}^{n \times m}$

Definition 3.7. Frobenius inner product

The Frobenius inner product is defined as:

$$\langle \cdot, \cdot \rangle_{FB} : \mathbb{R}^{n \times m} \times \mathbb{R}^{n \times m} \to \mathbb{R} \text{ such that: } \langle A, B \rangle_{FB} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} b_{i,j} \text{ for all } A, B \in \mathbb{R}^{n \times m}$$

Theorem 3.4. Form of Matrix Functional Derivative

$$DT(x) = \begin{bmatrix} \frac{\partial}{\partial x_{1,1}} & \cdots & \frac{\partial}{\partial x_{1,m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{n,1}} & \cdots & \frac{\partial}{\partial x_{n,m}} \end{bmatrix}$$

Definition 3.8. Differentiability of a multi-variable function.

Let $\hat{f}: \mathbb{R}^m \to \mathbb{R}^n$ such that:

$$\hat{f}(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix} \text{ and } (\forall j \in \mathbb{N}_n)(f_j : \mathbb{R}^m \to \mathbb{R})$$

Further let $f = \hat{f}|_U$ where $U \in \tau_{\mathbb{R}^m}$

Then f is said to be differentiable at $x \in U$ if there exists a linear operator $J_{f(x)}: \mathbb{R}^m \to \mathbb{R}^n$ such that:

$$\lim_{h \to \vec{0}} \frac{||f(x+h) - f(x) + J_{f(x)}(h)||_{\mathbb{R}^m}}{||h||_{\mathbb{R}^n}} = 0$$

Reference

Theorem 3.5. If a multi-variable function, f, is differentiable at x then the linear operator J is the Jacobian matrix.

So our guess is that:

$$J_{f(x)} = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(x) & \cdots & \frac{\partial}{\partial x_n} f_1(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_m(x) & \cdots & \frac{\partial}{\partial x_n} f_m(x) \end{bmatrix}$$

since this form is a linear operator mapping from the appropriate space to the appropriate space. It should be noted that the transpose of this matrix can not satisfy the definition of differentiability of a multi-variable function and so it is not the correct linear operator.

Definition 3.9. Matrix operator differentiability

Let $T: \mathbb{R}^{n \times m} \to \mathbb{R}^n$ such that:

$$T(A) = \begin{bmatrix} T_1(A) \\ \vdots \\ T_n(A) \end{bmatrix} \forall A \in \mathbb{R}^{n \times m} \ and \ (\forall j \in \mathbb{N}_n)(T_j : \mathbb{R}^{n \times m} \to \mathbb{R})$$

Then T is said to be differentiable at $A \in \mathbb{R}^{n \times m}$ if there exists a linear operator $D : \mathbb{R}^{n \times m} \to \mathbb{R}^n$ where:

$$\lim_{h \to 0} \frac{||T(A+h) - T(A) + D(h)||_{\mathbb{R}^n}}{||h||_{\mathbb{R}^{n \times m}}} = 0$$

If D exists then it is called the Matrix operator derivative and is written: $D_{\mathbb{R}^{n\times m}}T(A)$

Theorem 3.6. The form of the Matrix operator derivative.

Let T be described as above and differentiable at $A \in \mathbb{R}^{n \times m}$

$$\frac{T(A+h) - T(A)}{||h||} = \begin{bmatrix} \frac{T_1(A+h) - T_1(A)}{||h||} \\ \vdots \\ \frac{T_n(A+h) - T_n(A)}{||h||} \end{bmatrix}$$

and so:

$$\lim_{h \to 0} \frac{T(A+h) - T(A)}{||h||} = \begin{bmatrix} \lim_{h \to 0} \frac{T_1(A+h) - T_1(A)}{||h||} \\ \vdots \\ \lim_{h \to 0} \frac{T_n(A+h) - T_n(A)}{||h||} \end{bmatrix}$$

Definition 3.10. Subspace Differentiability

Let $X = \{X_j\}_{j=1}^n$ be a sequence of finite dimensional vector spaces where $\dim(X_j) = k_j = m_j \times n_j$ Let $T : \prod_{j=1}^n X_j \to Y$ where Y is a finite dimensional vector space with $\dim(Y) = k_y$ Let $x_j \in X_j$ for some $j \in \mathbb{N}_n$ Where

$$x_j = \begin{bmatrix} x_{1,1} & \cdots & x_{1,n_j} \\ \vdots & \ddots & \vdots \\ x_{m_j,1} & \cdots & x_{m_j,n_j} \end{bmatrix}$$

T is said to be differentiable at $x \in X$ where $x = (x_0, ..., x_j, ..., x_{n-1})$ with respect to X_j if there exists a linear operator $D: X_j \to Y$:

Given $h \in X_j \setminus \{\vec{0}\}$ define $\hat{h} = (0, ..., h, ..., 0) \in X$ where h is in the j'th place of \hat{h} :

$$\lim_{h \to 0} \frac{||T(x+\hat{h}) - T(x) + D(h)||_X}{||h||_{X_j}} = 0$$

Then D is called the subspace derivative of T at x with respect to X_j and is written: $D_{x_j}T(x)$

Definition 3.11. Product space Derivative

Let $X = \{X_j\}_{j=0}^{n-1}$ be a sequence of finite dimensional vector spaces where $\dim(X_j) = k_j$ Let $T : \prod_{j=0}^{n-1} X_j \to Y$ where Y is a finite dimensional vector space with $\dim(Y) = k_y$ Let $\{x_j\}_{j=0}^{n-1}$ be a sequence of vectors such that: $(\forall j \in \{0, ..., n-1\})(x_j \in X_j)$ The product space derivative at the point $z \in X$ is:

$$D_X T(z) = \begin{bmatrix} D_{x_0} T(z) \\ \vdots \\ D_{x_{n-1}} T(z) \end{bmatrix}$$

Definition 3.12. Fréchet derivative

Let V, W be normed vector spaces and $U \subset V$ be an open set.

An operator $f: U \to W$ is said to be Fréchet differentiable if there exists a bounded linear operator $A: V \to W$ such that:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Reference

Theorem 3.7. Fréchet derivative of a bounded linear operator

Let V, W be normed vector spaces and $U \subset V$ be an open set.

Let $\hat{f}: V \to W$ be a bounded linear operator.

Then lets look at $f = \hat{f}|_U$

My guess is that $A = \hat{f}$

Let $x \in U$ and $h \in U \pitchfork ||h|| \neq 0$ and $x + h \in U$, Then:

$$\frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + \hat{f}(h)||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + f(h)||_W}{||h||_V} = 0$$

Thus let $\epsilon > 0$ and $\delta > 0$

Then if $0 < ||h|| < \delta$ we know that $\frac{||f(x+h)-f(x)+Ah||_W}{||h||_V} = 0 < \epsilon$

Therefore:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Thus $A = \hat{f}$ is the Fréchet derivative of f.

3.1 Finite Composition Operator

Definition 3.13. Finite Composition Operator

Let the collection $X = \{X_j\}_{j=0}^n$ be a finite sequence of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \to X_{j+1})$

Then $T^n: X_0 \to X_n$ defined by:

$$T^n := \bigcap_{i=0}^{n-1} T_i$$

is called the Finite Composition Operator defined on X.

${\bf Definition~3.14.~} \textit{Multi-variable~Finite~Composition~Iteration}$

Let the collection $X = \{X_j\}_{j=0}^n$ and $Y = \{Y_j\}_{j=0}^{n-1}$ be finite sequences of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that: $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \times Y_j \to X_{j+1})$

Let $T^n: X_0 \times \prod_{j=0}^{n-1} Y_j \to X_n$ where:

$$T^{n}(x,y) = z_{n} \text{ where } z_{j+1} = T_{j}(z_{j}, \pi_{j}(y)) \text{ or } z_{j+1} = T_{j}(z_{j}) \text{ and } z_{0} = x \in X_{0}$$

Definition 3.15. Gradient Descent

Let $E: \mathbb{R}^n \to \mathbb{R}$ be a differentiable operator.

 $The \ method \ of \ Gradient \ Descent \ says \ that \ a \ local \ minimum \ of \ E \ can \ be \ found \ using \ the \ following \ iteration:$

$$a_{n+1} = a_n - \gamma \nabla E(a_n)$$

Where $\gamma > 0$

Example 3.1. Objective Operator for Data Set Defined Operator Approximation Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ such that $X \times Y$ defines an operator T.

$$E(a) = \sum_{x \in X} ||T(x) - T^{n}(x, a)||$$

4 Surjective Continuous Non-decreasing Bounded Functionals

Let $B = \{f : \mathbb{R} \to [0,1] | f \text{ is surjective, continuous, and non-decreasing.} \}$

Theorem 4.1. B is convex.

Let $f, g \in B$ and $h(x) := \lambda f(x) + (1 - \lambda)g(x)$ where $\lambda \in [0, 1]$

Then h is still continuous since the linear combination of continuous functions is continuous.

Since both f and g are surjective and non-decreasing, then there exists x_0, y_0, x_1, y_1 in \mathbb{R} such that:

$$f(x_0) = 0 = g(y_0)$$
 and $f(x_1) = 1 = g(y_1)$

Suppose WLOG that $x_0 \leq y_0$ and $x_1 \leq y_1$

Then we know that:

$$h(x_0) = \lambda f(x_0) + (1 - \lambda)g(x_0) = \lambda 0 + (1 - \lambda)0 = 0$$

and

$$h(y_1) = \lambda f(y_1) + (1 - \lambda)g(y_1) = \lambda 1 + (1 - \lambda)1 = 1$$

Now if we pick $\alpha \in [0,1]$ by the intermediate value theorem, we know that there exists an $x_{\alpha} \in [x_0, y_1]$ such that:

$$h(x_{\alpha}) = \alpha$$

Since α was arbitrary element, I have shown that h is surjective.

Finally, let $x_0 < x_1$ be elements in \mathbb{R}

Then we know that $f(x_0) \leq f(x_1)$ and $g(x_0) \leq g(x_1)$

$$\Rightarrow \lambda f(x_0) \leq \lambda f(x_1)$$
 and $(1 - \lambda)g(x_0) \leq (1 - \lambda)g(x_1)$

$$\Rightarrow \lambda f(x_0) + (1 - \lambda)g(x_0) \le \lambda f(x_1) + (1 - \lambda)g(x_1)$$

$$\Rightarrow h(x_0) \le h(x_1)$$

Thus h is non-decreasing.

Since h is surjective, continuous, and non-decreasing, then $h \in B$

Thus B is convex.

Theorem 4.2. B is translation invariant.

Let $f \in B$ and g(x) := f(x+c) where $c \in \mathbb{R}$

f is continuous and so is the addition operator so g is continuous.

Let $\alpha \in [0,1]$ since f is surjective then $\exists x \in \mathbb{R} \cap f(x) = \alpha$

Then $g(x-c) = f(x+c-c) = f(x) = \alpha$ and so g is surjective.

Let x < y be elements in \mathbb{R}

Then $f(x) \le f(y) \Rightarrow f(x+c) \le f(y+c)$

 $\Rightarrow g(x) \leq f(y)$ and so g is non-decreasing.

Thus $g \in B$ and B is therefore translation invariant.

Theorem 4.3. B is not complete.

Theorem 4.4. Every element in B can be decomposed as a finite non-trivial convex combination from B

5 K-Operators

Let $\hat{f}: X \to Y$ where X, Y are topological spaces.

Let $V \subset X$ and $W \subset Y$ where $card(V) < card(\mathbb{N})$ and $card(W) < card(\mathbb{N})$ Then define $f: V \to W$ where the associated topological spaces are:

$$\tau_V = \{ V \cap U : U \in \tau_X \} \text{ and } \tau_W = \{ W \cap U : U \in \tau_Y \}$$