# **Final Report: Customer Churn Analysis**

# 1. Objective

The primary goal of this project is to predict customer churn using machine learning techniques and identify key factors contributing to customer attrition.

# 2. Exploratory Modeling and Evaluation

### **Dataset Overview**

- The dataset includes 10,000 rows and 15 features, encompassing both numerical and categorical variables.
- Target variable: **Exited** (1 = Churned, 0 = Stayed).

## **Key Observations**

### 1. Target Variable Distribution:

- o 79.6% of customers stayed.
- o 20.4% of customers churned.

#### Distribution of Target Variable: Exited



### 2. Feature Distribution and Correlation:

- Age and EstimatedSalary exhibit normal distributions.
- Categorical variables such as **Geography** and **Gender** are imbalanced.



# 3. Initial Insights:

• The dataset appears manipulated, as linear relationships between features are weak or non-existent.

• The imbalance in the **target variable**, **Geography**, and **Gender** suggests that mitigation techniques will be necessary.

# 3. Machine Learning Models Selected

1. LightGBM: Gradient Boosting Decision Tree.

2. XGBoost: Extreme Gradient Boosting.

3. KNN: Baseline distance-based model.

### **Handling Class Imbalance**

- **SMOTE**: Synthetic Minority Oversampling Technique was applied to oversample the minority class in the training set.
- Stratified Train-Test Split: Ensured consistent class proportions.

#### **Evaluation Metrics**

- Accuracy, Precision, Recall, F1-Score, and ROC-AUC.
- Confusion matrices were used for a detailed breakdown of model predictions.

### **Key Results**

## LightGBM

- **Performance**: Near-perfect results with **Accuracy** = 100% and **ROC-AUC** = 0.9966.
- Confusion Matrix:
  - o 1 False Positive and 2 False Negatives.

| LightGBM              | Evaluation - |        |          |         |  |  |
|-----------------------|--------------|--------|----------|---------|--|--|
|                       | precision    | recall | f1-score | support |  |  |
|                       |              |        |          |         |  |  |
| 0                     | 1.00         | 1.00   | 1.00     | 1592    |  |  |
| 1                     | 1.00         | 1.00   | 1.00     | 408     |  |  |
|                       |              |        |          |         |  |  |
| accuracy              |              |        | 1.00     | 2000    |  |  |
| macro avg             | 1.00         | 1.00   | 1.00     | 2000    |  |  |
| weighted avg          | 1.00         | 1.00   | 1.00     | 2000    |  |  |
|                       |              |        |          |         |  |  |
| ROC-AUC Score: 0.9966 |              |        |          |         |  |  |



## XGBoost

- **Performance**: Similar to LightGBM, with **Accuracy** = 100% and **ROC-AUC** = 0.9971.
- Confusion Matrix: Identical results as LightGBM.

## KNN

- **Performance**: Weaker compared to tree-based models.
  - **Accuracy** = 98%.
  - o **ROC-AUC** = 0.9957.
- **Key Issues**: Sensitivity to feature scaling, data dimensionality, and class imbalance.

| KNN Evalu             | ation<br>precision | recall | f1-score | support |  |  |
|-----------------------|--------------------|--------|----------|---------|--|--|
| Ø                     | 0.99               | 0.99   | 0.99     | 1592    |  |  |
| 1                     | 0.98               | 0.95   | 0.96     | 408     |  |  |
|                       |                    |        |          |         |  |  |
| accuracy              |                    |        | 0.98     | 2000    |  |  |
| macro avg             | 0.98               | 0.97   | 0.98     | 2000    |  |  |
| weighted avg          | 0.98               | 0.98   | 0.98     | 2000    |  |  |
| ROC-AUC Score: 0.9957 |                    |        |          |         |  |  |



## 4. Conclusion on Models: LGBM

- LightGBM and XGBoost outperformed KNN, achieving near-perfect results.
- Given computational efficiency and compatibility issues, LightGBM was selected for further refinement.

## **Model Refinement and Interpretability**

### **Hyperparameter Tuning**

- Grid Search was performed to optimize LightGBM parameters.
- Best Parameters:

```
{'colsample_bytree': 0.6, 'learning_rate': 0.05, 'max_depth': 10, 'min_child_samples': 20, 'n_estimators': 500, 'num_leaves': 40, 'subsample': 0.6}
```

**Performance After Tuning**: Identical to the initial evaluation.

```
Confusion Matrix:
[[1591 1]
[ 2 406]]
```

#### **Cross-Validation**

- Cross-Validation Scores (ROC-AUC):
   [1.0, 0.9999, 0.9999, 0.9998, 0.9999]
- Mean ROC-AUC: 0.99993, indicating strong generalizability.

### **Feature Importance and SHAP Interpretation**

- SHAP Summary Plot provided insights into feature contributions:
  - o **Complain**: Customers who filed complaints are more likely to churn.
  - o Age: Older customers are less likely to churn.
  - IsActiveMember and NumOfProducts: Active customers with multiple products have reduced churn risk.



# 5. Key Insights

1. **Best Model**: LightGBM provided robust and near-perfect results, making it the final choice for deployment.

## 2. Key Predictors:

- o Address customer complaints promptly to reduce churn.
- o Focus on retention strategies for younger customers.
- o Encourage product diversification among customers.

#### Limitations

- The dataset appeared heavily manipulated, limiting real-world generalizability.
- XGBoost and KNN were excluded due to computational cost and underperformance, respectively.

### **Future Steps**

- Validate LightGBM on unseen, real-world data.
- Investigate potential relationships between **Complain** and **Satisfaction Score**.