Exemplo 3: Calcular

$$\int_{3.0}^{3.6} \frac{1}{x} dx$$

pela regra dos trapézios e, depois, analiticamente. Considere $\mathbf{n}=\mathbf{6}$ e $\mathbf{4}$ casas decimais com arredondamento.

a) Número de intervalos:

n=	6
----	---

b) Tamanho do intervalo

a=	3,0
b=	3,6

h=	0,1
----	-----

c) iterações:

$$T(h_n) = \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

i	X' _i	f(x';)	C _i	c _i *f(x' _i)
0	3,0000	0,3333	1	0,3333
1	3,1000	0,3226	2	0,6452
2	3,2000	0,3125	2	0,6250
3	3,3000	0,3030	2	0,6061
4	3,4000	0,2941	2	0,5882
5	3,5000	0,2857	2	0,5714
6	3,6000	0,2778	1	0,2778
Soma				3,6470

$$T(h_6) = 0.05 * 3.6470 = 0.18235$$