

Modeling Funding of Kickstarter Tabletop Games

Luke LaJoie

Introduction

 Many new board games are funded through Kickstarter

 Acquire data from Kickstarter

\$7,737,145 pledged of \$500,000 goal 53,292 backers Determine features which most affect funding

Methodology

Methodology

Correlation Heatmap

Metrics

- R^2
- Adj R^2
- RMSE

Models

- OLS
- Ridge
- Lasso

Results

After splitting the data and running the models

- OLS and Ridge had very similar R-Squared: ~0.05
- 2nd degree polynomial mean: negative R-Square by factor of
 100
- LassoCV R-Squared ~0.06
 - Data split differently, so not valid comparison
- OLS, Ridge and LassoCV had very similar RMSE
- 2nd degree polynomial

Results

 Added all features shown in heatmap and stat models with OLS

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	6.6661	0.154	43.374	0.000	6.364	6.968	
Staff Pick	0.4962	0.111	4.474	0.000	0.279	0.714	
Funding Goal	-0.1336	0.020	-6.585	0.000	-0.173	-0.094	
Created Projects	0.1227	0.030	4.073	0.000	0.064	0.182	
Duration	0.0076	0.004	2.098	0.036	0.000	0.015	

Conclusions

- These models did not account for much variance
- May want to consider factor marketing, advertising, YouTube reviewers, etc.

Future Work

- Get more data
 - More Kickstarter scraping
 - Kicktraq, Boardgamegeek
- Classification may be more relevant to model if projects will fund or not

Questions?

Questions?

Appendix

Before Transformations

After Transformations

OLS Regression

Dep. Variable:	log_	per_fund	R-squared:			0.066	
Model:		OLS Adj. R-		squared:		0.062	
Method:	Least	Squares	F-statistic:		tic:	15.89	
Date:	Fri, 17	Apr 2020	Prob (F-statistic):		c): 1.4	2e-12	
Time:		01:19:46	Log-Likelihood:		od: -1	259.1	
No. Observations:	900			A	IC:	2528.	
Df Residuals:		895		В	IC:	2552.	
Df Model:		4					
Covariance Type:	n	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	6.6661	0.154	43.374	0.000	6.364	6.968	
staff_pick[T.True]	0.4962	0.111	4.474	0.000	0.279	0.714	
log_goal	-0.1336	0.020	-6.585	0.000	-0.173	-0.094	
log_created	0.1227	0.030	4.073	0.000	0.064	0.182	
duration	0.0076	0.004	2.098	0.036	0.000	0.015	
Omnibus:	109.819	Durbir	n-Watson:	1.	955		
Prob(Omnibus):	0.000 Jarque-E		Bera (JB): 15		248		
Skew:	0.892		Prob(JB):	1.94	e-34		
Kurtosis:	3.980		Cond. No.		120.		

CV: Simple, Ridge, Poly(2nd)

Simple regression scores: [0.026579358917850793, 0.042986726079853654, 0.04064433499357778, 0.03350101722456533, 0.02419757543410994]

Ridge scores: [0.02648539845169773, 0.042966486374552915, 0.04063672561083442, 0.03381675445031196, 0.02499222870346618]

Degree 2 polynomial: [0.11601087366630859, 0.09066726237683354, 0.049376268356580266, -0.014727048686371534, -0.006935456404602469]

Simple mean cv r^2: 0.034 +- 0.007 Ridge mean cv r^2: 0.034 +- 0.007

Degree 2 polynomial mean cv R^2: 0.047 +- 0.052

Simple mean cv rmse: 0.997 +- 0.045 Ridge mean cv rmse: 0.997 +- 0.045

Degree 2 polynomial mean cv rmse: 0.990 +- 0.047

LassoCV

```
Out[278]: [('staff pick', 0.09426745031501062),
           ('is_starrable', -0.0318220984852419),
           ('spotlight', -0.0),
           ('duration', 0.0716453234341529),
           ('log_goal', -0.2037579781868695),
           ('log_fb', 0.0),
           ('log created', 0.167554641533311),
           ('log backed', -0.0)]
In [279]: # Make predictions on the test set using the new model
          test set pred = lasso model.predict(X te)
In [280]: # Find the MAE and R^2 on the test set using this model
          mae(y test, test set pred)
Out[280]: 0.8478544186745868
In [281]: lasso CV rmse = np.sqrt(mean squared error(y test, test set pred))
          lasso CV rmse
Out[281]: 1.0729815039311457
In [282]: lasso CV r2 = r2 score(y test, test set pred)
          lasso CV r2
Out[282]: 0.04107750228775209
```


Modeling Funding of Kickstarter Tabletop Games

Luke LaJoie

Introduction

 Many new board games are funded through Kickstarter

 Acquire data from Kickstarter

 Determine features which most affect funding