Game Theory and Applications (博弈论及其应用)

Chapter 15: Review

南京大学

高尉

考试

考试时间: 2018年1月4日 16:30-18:30

考试地点: 仙I-207

答疑时间: 2018年1月3日下午3:00-5:00

晚上6:00-8:00

其他时间可邮件咨询

答疑地点: 计算机系楼919房间 (或909房间)

Content

- II Strategic game with imperfect information
- III Extensive game with perfect information
- IV Extensive game with imperfect information
- V Repeated game

Definition

A strategic game (normal form game) consists of

- \triangleright A finite set N of players
- \triangleright A non-empty strategy set A_i for each player $i \in N$
- A payoff function $u_i: A_1 \times A_2 \times \cdots \times A_N \to R$ for $i \in N$ $G = \{N, \{A_i\}_{i=1}^N, \{u_i\}_{i=1}^N\}$
- An outcome $a^* = (a_1^*, a_2^*, ..., a_N^*)$ is a Nash equilibrium (NE) if for each players i

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*)$$
 for all $a_i \in A_i$.

How to Find Nash Equilibria

- One way of finding Nash equilibrium for continuous strategies A_i :
 - (1) Find the best response correspondence for each player

Best response correspondence

$$B_i(a_{-i}) = \{a_i \in \operatorname{argmax}_{a_i \in A_i} u_i(a_i, a_{-i})\}$$

(2) Find all Nash Equilibria $(a_1^*, a_2^*, ..., a_N^*)$ such that

$$a_i^* \in B_i(a_{-i}^*)$$
 for each player

Example

• Find all Nash equilibria

h k m a b **P1** C 10, 12 d e

P2

Cournot Competition(古偌竞争, 1838)

Two firms compete by choosing how much to produce

$$G = \{\{1, 2\}, \{q_1, q_2\}, \{u_1, u_2\}\}$$

- Price

$$p(q_1 + q_2) = \max(0, a - b(q_1 + q_2))$$

- Costs (i = 1, 2)

$$c_i(q_i) = cq_i$$

- Payoffs (i = 1, 2)

$$u_i(q_1, q_2) = (\max(0, a - b(q_1 + q_2)) - c)q_i$$

- Condition $a > b, c > 0, q_1 \ge 0, q_2 \ge 0$

Cournot: Best Response Correspondence

Best Response Correspondence is given by

$$B_i(q_{-i}) = \max(0, (a-c-bq_{-i})/2b)$$

Proof. We will prove for i=1 (similarly for i=2)

If
$$q_2 \ge (a-c)/b$$
, then $u_1(q_1, q_2) \le 0$ for any $q_1 > 0$. $q_1 = 0$.

If
$$q_2 < (a-c)/b$$
, then

$$u_i(q_1, q_2) = (a - c - b(q_1 + q_2))q_i$$

$$\frac{\partial u_1(q_1, q_2)}{\partial q_1} = a - c - bq_2 - 2bq_1 = 0$$

$$q_1 = (a - c - bq_2)/2b$$

Cournot: Nash Equilibrium

The Nash equilibria is give by

$$\left\{ \left(\frac{a-c}{3b}, \frac{a-c}{3b} \right) \right\}$$

Proof. Assume that (q_1^*, q_2^*) is a Nash equilibrium.

- 1) Prove $q_1^* > 0$ and $q_2^* > 0$ by contradiction
- 2) (q_1^*, q_2^*) is such that $q_1^* > 0, q_2^* > 0$ $q_1^* = B_1(q_2^*) = (a - c - bq_2^*)/2b$ $q_2^* = B_2(q_1^*) = (a - c - bq_1^*)/2b$

Mixed Strategies

Strategy game

$$G = \{N, \{A_1, A_2, \dots, A_N\}, \{u_1, u_2, \dots, u_N\}\}$$

Pure strategy: each strategy in A_i

Mixed strategy: a probability over the set A_i of strategies

Pure strategy can be viewed as a special mixed strategy

Nash Theorem Every finite strategic game has a mixed strategy Nash equilibrium

How to calculate Mixed Nash Equilibria

Theorem If a mixed strategy is a best response, then each of the pure strategies (positive prob.) involved in the mixed strategy must be a best response. Particularly, each must yield the same expected payoff

Dominant Strategies and Nash Equilibrium

A pure strategy a_i strictly dominates a_i' if $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for all $a_{-i} \in A_{-i}$

Theorem A strictly dominated strategy is never used with positive probability in a mixed strategy Nash equilibrium

How to find NE:

Step 1: eliminate all strictly dominated strategies

Step 2: Find all Nash Equilibria

Content

- I Strategic game with perfect information
- II Strategic game with imperfect information
- III Extensive game with imperfect information
- IV Extensive game with imperfect information
- V Repeated game

Bayesian Games

A Bayesian game consists of

- A set of players N
- A set of strategies A_i for each player i
- A set of types Θ_i for each player i
 - Type set Θ_i includes all private information for player i
 - The types on payoff are adequate (Payoff types)
- Probability distribution $p = p(\theta_1, ..., \theta_N)$ on $\times_{i=1...n} \Theta_i$
- A payoff function $u_i:\times_{i=1..N} A_i \times \times_{i=1..n} \Theta_i \to R$ $u_i(a_1, ..., a_N, \theta_1, ..., \theta_N) \text{ for } a_i \in A_i \text{ and } \theta_i \in \Theta_i$ $G = \{N, \{A_i\}, \{\Theta_i\}, \{u_i\}, p\}$

Definition The outcome $(a_1, a_2, ..., a_N)$ is a **Bayesian** Nash Equilibrium if for each type θ_i , we have

$$U_i(a_i(\theta_i), a_{-i}) \ge U_i(a'_i(\theta_i), a_{-i})$$
 for all $a'_i(\theta_i) \in A_i$

Theorem The outcome $(a_1, a_2, ..., a_N)$ is a Bayesian NE if and only if for every player i and each type θ_i , we have

$$a_i(\theta_i) \in B_i(a_{-i}, \theta_i)$$

How to find Bayesian Nash Equilibria

How to find Bayesian Nash Equilibrium

- 1) Find the best response function for each player and type
- 2) Find Bayesian NE by $a_i(\theta_i) \in B_i(a_{-i}, \theta_i)$

Bank Runs (cont.)

- Two players
- Strategies $A_1 = A_2 = \{W, N\}$
- Types $\Theta_1 = \{1\}; \Theta_2 = \{G, B\}$
- A probability distribution $p_1(\theta_2 = G) = p$
- Payoffs

	Player 2 (G, p)					
	W		N			
T W	50	50	100	0		
Playe Z	0	100	150	150		

Player 2 (B, $1-p$)							
	W		N				
W W	50	50	100	0			
Playe N	0	100	0	0			

Content

- I Strategic game with perfect information
- II Strategic game with imperfect information
- III Extensive game with perfect information
- IV Extensive game with imperfect information
- V Repeated game

Extensive Game

An extensive game with perfect information is defined by

- Players *N* is the set of *N* players
- Histories *H* is a set of sequence (finite or infinite)
- Player function
 - P assigns to each non-terminal history a player of N
 - -P(h) denotes the player who takes action after the history h
- Payoff function $u_i: Z \to R$

$$G = \{N, H, P, \{u_i\}\}$$

Induced Strategic Game and NE

Every extensive game can be converted to a strategy game

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
4H	3,8	3,8	8,3	8,3
BG	5,5	2,10	5, 5	2, 10
BH	5,5	1,0	5, 5	1,0

Definition A subgame is a set of nodes, strategies and payoffs, following from a single node to the end of game.

Definition An outcome is $a = (a_1^*, a_2^*, ..., a_N^*)$ is a subgame perfect (子博弈完美) if it is Nash Equilibrium in every subgame

- > Subgame perfect is a Nash Equilibrium
- This definition rules out "non-credible threat"

Theorem Every extensive game with perfect information has a subgame perfect

Back Induction (后向归纳)

How to find subgame perfect Equilibria (SPE)

Back induction is the process of "pruning the game tree" described as follows:

- Step 1: start at each of the final subgame in the game, and solve for the player's equilibrium. Remove that subgame and replace it with payoff of the player's choice
- Step 2: Repeat step 1 until we arrive at the first node in the extensive game

Theorem The set of strategy game constructed by backwards induction is equivalent to the set of SPE

Content

- I Strategic game with perfect information
- II Strategic game with imperfect information
- III Extensive game with perfect information
- IV Extensive game with imperfect information
- V Repeated game

Definition of Extensive Game with Imperfect Information

An extensive game with imperfect information is defined by $G = \{N, H, P, I, \{u_i\}\}$

- Information set $I = \{I_1, I_2, ... I_N\}$ is the set of information partition of all players' strategy nodes, where the nodes in an information set are indistinguishable to player
 - $I_i = \{I_{i1}, ..., I_{ik_i}\}$ is the information partition of player i
 - $I_{i1} \cup \cdots \cup I_{ik_i} = \{\text{all nodes of player } i\}$
 - $-I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$
 - Action set A(h) = A(h') for $h, h' \in I_{ij}$, denote by $A(I_{ij})$
 - $P(I_{ij})$ be the player who plays at information set I_{ij}
- An extensive game with perfect information is a special case where each I_{ij} contains only one node

Pure Strategies

- A pure strategy for player i selects an available action at each of i's information sets I_{i1}, \dots, I_{im}
- All pure strategies for player *i* is

$$A(I_{i1}) \times A(I_{i2}) \times A(I_{im})$$

where $A(I_{ij})$ denotes the strategies available in I_{ij}

What's the pure strategies for players 1 and 2?

Normal-Form Representation of Extensive Imperf. Game

0,2

R

1,1

• The pure and mixed strategy Nash Equilibrium remains?

(1,1)

• What's the difference from the extensive game with perfect information game?

How to calculate the sequential equilibrium?

Content

- I Strategic game with perfect information
- II Strategic game with imperfect information
- III Extensive game with perfect information
- IV Extensive game with imperfect information
- V Repeated game

Definition and Folk Theorem

• A repeated game $G^{T}(\delta)$ consists of stage game G, terminal date T and discount factor δ

Folk Theorem

- An infinitely repeated game with a stage game equilibrium $a^* = (a_1^*, a_2^*, ..., a_N^*)$ with payoffs $u^* = (u_1^*, u_2^*, ..., u_N^*)$.
- Suppose there is another $\hat{a} = (\hat{a}_1, \hat{a}_2, ..., \hat{a}_N)$ with payoffs $\hat{u} = (\hat{u}_1, \hat{u}_2, ..., \hat{u}_N)$, where, $\hat{u}_i \ge u_i^*$ for every player i
- There is a Subgame Perfect Nash Equilibrium for some discount factor δ

Solving for Equilibria in Repeated Games

- 1. Solve all equilibria of the stage game (Competition)
- 2. Find an outcome (equilibrium/not) where all the players do at least as well as in the stage game (Cooperation)
- 3. Design trigger strategies that support cooperation and punish with competition
- 4. Compute the maximum discount factor so that cooperation is an equilibrium
- 5. The trigger strategies are an SPEN of the infinitely repeated game for some larger discount factor

• Minmax payoff of player *i*: the lowest payoff that player *i*'s opponent can hold him to:

$$\underline{u_i} = \min_{a_{-i}} \left[\max_{a_i} u_i(a_i, a_{-i}) \right]$$

Definition A payoff vector $(u_1, u_2, ..., u_N) \in \mathbb{R}^N$ is strictly individually rational if $u_i > \underline{u}_i$ for all i

Nash Folk Theorem If $(u_1, u_2, ..., u_N) \in U$ is strictly individually rational, then there exists some $\delta_0 < 1$ such that for all $\delta \geq \delta_0$, there is Nash equilibrium of $G^{\infty}(\delta)$ with payoff $(u_1, u_2, ..., u_N)$