杭州电子科技大学学生考试卷(B)卷

考试课程	数据结构		考试日期	2018年	月	日	成 绩	
课程号	A2701410	教师号		任课者	任课教师姓名			
考生姓名		学号 (8 位)		年级			专业	

特别提醒:答案一律写在答题纸上,否则不给分。

- 一.判断题(每题 2 分,共 10 分)(正确的打"√",错误的打"×"。)
- 1. 数据结构中数据对象通常是指性质相同的数据元素的集合。()
- 2. 线性表采用链式存储结构时,要求内存中可用存储单元的地址是连续的。()
- 3. 一棵所有结点的度最大为2的树是二叉树。()
- 4. 折半查找(二分查找)要求线性表中的节点必须按关键字递增排列。()
- 5. 一个有 n (n>0) 个顶点的无向图最多有 n(n-1)条边。 ()

二. 单选题 (每题 2 分, 共 30 分)

- 1. 堆排序的时间复杂度为()。
- A. $O(n^2)$
- B. O(n)
- C. O(nlogn)
- $D.O(n^{3/2})$
- 2. 链表区别于线性表的特点是()。
- A. 可随机访问任一元素
- B. 插入、删除不需要移动元素
- C. 事先需估计存储空间
- D. 所需空间与线性表长度成正比
- 3.一个栈的入栈序列为 A、B、C、D、E,则出栈时不可能的输出序列是(
- A. EDCBA B.DECBA C.ABCDE D. DECAB
- 4. 判断一个顺序队列 sq(容量为 QueueSize)为空队列的条件是()。
- A. sq.rear== sq.front B. sq.rear==0
- C. sq.front==QueueSize D. sq.rear==QueueSize+1
- 5. 一个循环队列一旦定义,其占用空间的大小()。
- A.已固定
- B.可以改变
- C.不能固定
- D.动态变化
- 6.非空顺序栈 s 出栈(pop)时,用 e 返回其值的语句是 ()。
- A. e = --*s.top;
- B. e = *s.top--;
- C. e = *--s.top;
- D. e = *(s.top-1);
- 7. G 是一个非连通无向图, 共有 32 条边, 则该图至少有() 个顶点。
- A. 6 B. 7
- C. 8 D. 9
- 8. 深度为6的二叉树, 节点数最多可达(
- A. 32 B. 31
- C. 63 D. 64
- 9. 某项目的 AOE 图如下所示,则该项目完工最少需要()单位时间。
- A. 18 B. 17 C. 16 D. 15

- 10. 广义表 D = (A, B, C), 其中 A 的长度为 0, B 的长度为 1, C 的长度为 2, 则 D 的长度为 ()。
- A. 2
- B. 3
- C. 4
- D. 无法确定
- 11.采用顺序查找法查找长度为 n 的线性表时,则表中每个元素的平均查找长度为(
- A. n
- B. n/2 C. (n-1)/2 D. (n+1)/2
- 12. 如果图 G 是一个具有 n 个顶点和 e 条边的无向连通图,则必满足 ()。
- A. n>e B. n<e C. n=e D. e>n-2
- 13. 平衡二叉树上所有结点的平衡因子(BF)均不可能为()。
- A. -2 B. -1 C. 0 14.对线性表进行二分查找时,要求线性表必须(
- D. 1
- A. 顺序方式存储

- B. 链式方式存储
- C. 顺序方式存储, 且结点按关键字有序排序 D. 链式方式存储, 且结点按关键字有序排序
- 15. 下列排序方法中, 所需辅助存储空间最少的是()。
- A. 快速排序 B. 堆排序 C. 归并排序 D. 基数排序

三. 填空题(每空2分,共10分)

- 1. 表达式 a+b*c-(d+e)的前缀表达式为_____
- 2. 设 S 为一个长度为 n (n>3)的字符串,其中的字符各不相同,则长度为 2 的子串个数
- 3. 己知某二叉树的后序遍历次序为 DABEC,中序遍历次序为 DEBAC。其前序遍历次序 为 , 层次遍历次序为
- 4. 在各种内部查找方法中,平均查找长度与结点个数 n 无关的查找方法是

四. 问答题 (每题 10 分, 共 40 分)

1. 请使用克鲁斯卡尔(Kruskal)算法(5分)和普里姆(Prim)(5分)(以0点为起点)求出下图的最小生 成树,依次写出每次被选择的合法的合并代价最小的边的编号,用一个空格分隔。顶点 a 到顶点 b (a<b) 之间的边编号为 ab,例如图中权值为 10 的边编号为 03。

图 1

座位号:

2. 一个包含 100,000 个字符的文件,各字符出现频率如下表所示。

	a	b	С	d	е	f
频率(千次)	45	13	12	16	9	5

- ①、构造赫夫曼(Huffman)树。(7分)
- ②、确定其对应的赫夫曼编码。(3分)
- 3. 设有一组关键字{19,01,23,14,55,20,84,27,68,11} ,采用哈希函数为H(key) = key % 13

采用开放地址法的二次探测再散列方法解决冲突,在 $0^{\sim}18$ 的散列地址空间:

- ①、画出哈希表示意图;(5分)
- ②、若查找关键字84,需要依次与哪些关键字比较;(3分)
- ③、假定每个关键字的查找概率相等,求查找成功时的平均查找长度。(2分)
- 4. 以关键字序列(500,87,512,61,907,170,888,275,653,466)为例,分别写出进行以下排列算法 进行升序排列时,关键字序列排序的前两趟状态。
- ①起泡排序;(2分)
- ②直接插入排序; (从 i=2 起作为第一趟排序) (2 分)
- ③简单选择排序;(2分)
- ④快速排序;(2分)
- ⑤基数排序。(2分)

五.程序设计题(10分)。

- 1. 当二叉树采用**二叉链表存储结构**存储方式时,写出二叉树及其结点结构的 C 语言实现代码。(4 分)
- 2. 在 1 的基础上,设计一个计算一颗给定二叉树的**所有节点总数的**算法。(6 分)

杭州电子科技大学学生考试卷(B)卷答卷

考试课程	数据结构		考试日期	2018年	月	日	成 绩	
课程号	A2701410	教师号		任课者	汝师姓	엄	Ξ	小军、王慧
考生姓名		学号 (8 位)		年级			专业	

一、判断题(每题2分,共10分)

1. √	2. ×	3. ×	4. ×	5. ×

二、单选题(每选2分,共30分)

1. C	2. B	3. D	4. A	5. A	6 . C	7. D	8. C	9. A	10 .B
11. D	12. D	13. A	14. C	15. B					

三、填空题(每空2分,共10分)

1+a*bc+de 或	2. n-1	3. CEDBA	4. CEDBA	哈希查找
+a-*bc+de				

四、问答题(每题10分,共40分)

1.

Kruskal 算法: 45 35 14 25 02 (5分)(1+2+3+4+9=19)

Prim 算法: 02 25 45 35 14 (5分)(9+4+1+2+3=19)

2. (1)

- (2) a:0 b:101 c:100 d:111 e:1101 f:1100 (每个符号 0.5 分, 3 分)
- 3. (1)

```
0
1
2
3
4
6
7
8
9
10
11
15
16
17

27
01
14
55
68
84
19
20
23
11
1
1

3
1
2
1
1
3
1
1
1
1
```

- (2) 关键字: 19 20
- (3) 平均查找长度: 15/10=1.5

4.

- (1) 起泡排序排序:
- 87, 500, 61, 512, 170, 888, 275, 653, 466, 907;
- 87, 61, 500, 170, 512, 275, 653, 466, 888, 907;
- (2) 直接插入排序:
- 87, 500, 512, 61, 907, 170, 888, 275, 653, 466;
- 87, 500, 512, 61, 907, 170, 888, 275, 653, 466;
- (3) 简单选择排序:
- 61, 500, 512, 87, 907, 170, 888, 275, 653, 466;
- 61, 87, 512, 500, 907, 170, 888, 275, 653, 466;
- (4) 快速排序:
- 466, 87, 275, 61, 170, 500, 888, 907, 653, 512;
- 170, 87, 275, 61, 466, 500, 888, 907, 653, 512;
- (5) 基数排序:
- 500, 170, 61, 512, 653, 275, 466, 87, 907, 888;
- 500, 907, 512, 653, 61, 466, 170, 275, 87, 888;

五、程序设计题(10分)。

- (1) 参考代码(可以有所不同)
- typedef struct node *link;
- struct node{Item item; link l,r};
 - (2) 参考答案(可以有所不同)
- int nodes(link t){
 - int nl,nr;
 - if (t==NULL) return 0;
 - else if((t->l==NULL)&& (t->r==NULL)) return 1;
 - else{
 - nl = nodes(t->l);
 - m = nodes(t-x)
 - nr = nodes(t->r);
 - return (nl + nr + 1);
 - }