

planetmath.org

Math for the people, by the people.

Balian-Low

Canonical name BalianLow

 $\begin{array}{lll} \text{Date of creation} & 2013\text{-}03\text{-}22 \ 15\text{:}35\text{:}12 \\ \text{Last modified on} & 2013\text{-}03\text{-}22 \ 15\text{:}35\text{:}12 \end{array}$

Owner swiftset (1337) Last modified by swiftset (1337)

Numerical id 4

Author swiftset (1337)
Entry type Theorem
Classification msc 42C10

Theorem 1 (Balian-Low) Suppose $g \in L^2(\mathbb{R})$ and $g_{m,n}(x) = e^{2\pi i m x} g(x - n)$, where $m, n \in \mathbb{Z}$. If $\{g_{m,n} : m, n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\mathbb{R})$, then either

$$\int_{-\infty}^{\infty} x^2 |g(x)|^2 dx = \infty \text{ or } \int_{-\infty}^{\infty} \xi^2 |\hat{g}(\xi)|^2 d\xi = \infty.$$