DSA5103 Optimization Problem for Data Modelling

Nonlinear Programming A general nonlinear programming problem (NLP) is to minimize/maximize a function f(x), subject to equality constraints $g_i(x) = 0$, $i \in [m]$, and inequality constraints $h_j(x) \leq 0$, $j \in [p]$. Here, f, g_i , and h_i are functions of the variable $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$. The term definitions are as follows:

- f: Objective function
- $g_i(x) = 0$: Equality constraints
- $h_i(x) < 0$: Inequality constraints

It suffices to discuss minimization problems since minimizing f(x) is equivalent to maximizing -f(x).

Feasible Set

$$S = \{x \in \mathbb{R}^n \mid g_1(x) = 0, \dots, g_m(x) = 0, h_1(x) < 0, \dots, h_p(x) < 0\}.$$

A point in the feasible set is a feasible solution or feasible point where all constraints are satisfied; otherwise, it is an infeasible solution or infeasible point. When there is no constraint, $S = \mathbb{R}^n$, we say the NLP is unconstrained.

Local and Global Minimizer Let S be the feasible set. Define $B_{\epsilon}(y) = \{x \in \mathbb{R}^n \mid ||x - y|| < \epsilon\}$ to be the open ball with center y and radius ϵ . Here, $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$

1. A point $x^* \in S$ is said to be a **local minimizer** of f if there exists $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \in S \cap B_{\epsilon}(x^*).$$

2. A point $x^* \in S$ is said to be a **global minimizer** of f if

$$f(x^*) \le f(x) \quad \forall x \in S.$$

Interior point Let $S \subseteq \mathbb{R}^n$ be a nonempty set. An point $x \in S$ is called an interior point of S if

$$\exists \epsilon > 0 \quad s.t. \quad B_{\epsilon}(x) \subseteq S.$$

Gradient Vector Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f is differentiable at x. Then the gradient vector of f at x is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}.$$

Hessian Matrix Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f has second-order partial derivatives at x. Then the **Hessian** of f at x is the $n \times n$ matrix:

$$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}.$$

- The *ij*-entry of $H_f(x)$ is $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$.
- In general, $H_f(x)$ is not symmetric. However, if f has continuous second-order derivatives, then the Hessian matrix is symmetric since ∂x_i and ∂x_j are interchangeable.

Positive (Semi)Definite Let A be a real $n \times n$ matrix.

- 1. A is said to be positive semidefinite if $x^T Ax > 0$, $\forall x \in \mathbb{R}^n$.
- 2. A is said to be **positive definite** if $x^T A x > 0$, $\forall x \neq 0$.
- 3. A is said to be **negative semidefinite** if -A is positive (semi)definite.
- 4. A is said to be **negative definite** if -A is positive definite.
- 5. A is said to be **indefinite** if A is neither positive nor negative semidefinite.

Eigenvalue Test Theorem Let A be a real symmetric $n \times n$ matrix.

- 1. A is positive semidefinite iff every eigenvalue of A is nonnegative
- 2. A is **positive definite** iff every eigenvalue of A is positive.
- A is negative semidefinite iff every eigenvalue of A is nonpositive. 4. A is negative definite iff every eigenvalue of A is negative.
- 5. A is indefinite iff it has both a positive eigenvalue and a negative eigenvalue.

Proof for: A is positive semidefinite iff every eigenvalue of A is nonnegative

(Forward) Suppose A is positive semidefinite, show that its eigenvalues are nonnegative. By definition, a Hermitian matrix A is positive semidefinite if for all nonzero vectors $x \in \mathbb{C}^n$

$$x^*Ax \ge 0$$

Let λ be an eigenvalue of A with corresponding eigenvector x such tha $Ax = \lambda x$. Taking the inner product of both sides

$$x^* A v = v^* (\lambda x) = \lambda (x^* x)$$

Since v^*v (the squared norm of v) is always positive for nonzero v, the above equation implies $\lambda \geq 0$

(Backward) Since A is Hermitian, it has an orthonormal basis of eigenvectors $\{q_1, q_2, \ldots, q_n\}$ with corresponding real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

For any vector x, we can express it in terms of the eigenvectors as:

$$x = \sum_{i=1}^{n} c_i q_i$$

for some scalars c_i , and compute the quadratic form

$$x^* A x = \left(\sum_{i=1}^n c_i^* q_i^*\right) A \left(\sum_{j=1}^n c_j q_j\right)$$

Expanding the expression using the orthonormality of the eigenvectors

$$x^*Ax = \sum_{i=1}^n \lambda_i |c_i|^2$$

Since we are given that all eigenvalues $\lambda_i \geq 0$, and the squared magnitudes $|c_i|^2$ are nonnegative, it follows that:

$$x^*Ax > 0 \quad \forall x \neq 0$$

Thus, A is positive semidefinite.

Necessary and Sufficient Conditions

 $\mathbb{R}^n \to \mathbb{R}$ is nonlinear and differentiable. A point x^* is called a **stationary point** of f if $\nabla f(x^*) = 0$. Necessary condition: Confine our search for global minimizers within the set of stationary points If x^* is a local minimizer of f, then

- 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive semidefinite

Sufficient condition: Verify that a point is indeed a local minimizer If the following conditions hold, then x^* is a local minimizer of f. 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive definite,

Convex set A set $D \in \mathbb{R}^n$ is said to be a convex set if for any two points x and y in D, the line segment joining x and u also lies in D. That is.

$$x, y \in D \Rightarrow \lambda x + (1 - \lambda)y \in D \quad \forall \lambda \in [0, 1].$$

Strictly convex function

Let $D \subseteq \mathbb{R}^n$ be a convex set. Consider a function $f: D \to \mathbb{R}$.

- 1. The function f is said to be **convex** if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, $\forall x, y \in D$, $\lambda \in [0, 1]$. 2. The function f is said to be **strictly convex** if $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$, for all distinct $x, y \in D$, $\lambda \in (0, 1).$

For a convex f It holds that

- 1. any local minimizer is a global minimizer.
- 2. if f is strictly convex, then the global minimizer is unique

Test for convexity of a differentiable function

Suppose that f has continuous second partial derivatives on an open convex set D in \mathbb{R}^n

- 1. The function f is convex on D iff the Hessian matrix $H_f(x)$ is positive semidefinite at each $x \in D$.
- 2. If $H_f(x)$ is positive definite at each $x \in D$, then f is strictly convex on D.
- 3. If $H_f(\hat{x})$ is indefinite at some point $\hat{x} \in D$, then f is not a convex nor a concave function on D.

Eigenvalue Decomposition: The eigenvalue decomposition of $A \in \mathbb{S}^n$ is given by:

$$A = Q\Lambda Q^T = \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^{\lambda_1} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^T$$

where Q is an orthogonal matrix whose **columns** are eigenvectors of A, Λ is a diagonal matrix with eigenvalues of A or

Change of bases using eigenvectors Denote the ith column of orthogonal matrix Q as q_i . Change the bases to $\{q_1, q_2\}$

• For any vector x, $x = Q(Q^T x)$, so its representation becomes

$$\tilde{x} = Q^T x = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$$

• Since $y = Ax = Q\Sigma Q^T x$, the representation of y is

$$\tilde{y} = \Sigma \tilde{x} = \begin{bmatrix} \lambda_1 \tilde{x}_1 \\ \lambda_2 \tilde{x}_2 \end{bmatrix}$$

Hence, the linear transformation results in a scaling of λ along the eigenvector associated with λ .

Statistical Properties Let $x_1,\ldots,x_n\in\mathbb{R}^p$ be n observations of a random variable x.

• Mean vector: $\mu=\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i\in\mathbb{R}^p$

- (Sample/Empirical) Covariance matrix: $\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)(x_i \mu)^T \in \mathbb{R}^{p \times p}$ (Covariance matrices are symmetric and positive semidefinite)
- Standard deviation (for p=1): $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2}$

PCA

- PCA is often used to reduce the dimensionality of large data sets while preserving as much information as possible.PCA allows us to identify the principal directions in which the data varies.

Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be n observations of a random variable x and

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}.$$

The mean vectors of x_i and $Q^T x_i$ (for i = 1, ..., n) are, respectively,

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Q^T x_i = Q^T \mu.$$

Consequently, the associated covariance matrices are, respectively.

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T,$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (Q^T x_i - Q^T \mu) (Q^T x_i - Q^T \mu)^T = Q^T \Sigma Q.$$

Optimization problem of PCA

$$\max_{Q \in \mathbb{R}^{p \times k}, \ Q^T Q = I} \operatorname{trace}(Q^T \Sigma Q).$$

Let the eigenvalue decomposition of Σ be

$$\Sigma = \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_p \end{bmatrix} \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix}^T,$$

where

$$\lambda_1 \geq \cdots \geq \lambda_p \geq 0$$

Then

$$Q = [q_1 \quad \cdots \quad q_k]$$
.

Standard PCA workflow

- 1. Make sure the data X are rows = observations and columns = variables.
- Standardize the columns of X.
- $3. \ \ \mathrm{Run} \ [Q, X_{\mbox{new}}, d, \mbox{tsquared}, \mbox{explained}] = \mathrm{pca}(X).$
- 4. Using the variance in "explained", choose k (usually 1, 2, or 3) components for visual analysis.
 - For example, if d = (1.9087, 0.0913), explained= (95.4, 4.6), one may choose k = 1 as the first principal component carries 95.4% of the information.
 - For example, if d = (2.9108, 0.9212, 0.1474, 0.0206), explained = (72.8, 23.0, 3.7, 0.5), one may choose k=2 as the first two principal components carry 95.8% of the information.
- 5. Plot $X_{\text{new}}(:, 1), \ldots, X_{\text{new}}(:, k)$ on a k-dimensional plot.

Lecture 2

Gradient Descent Method Given $x_0 \in \mathbb{R}^n$, for $k = 0, 1, 2, \ldots$ do:

$$\begin{split} r_k &= Ax_k - b, \\ \alpha_k &= \frac{(r_k, r_k)}{(Ar_k, r_k)}, \\ k+1 &= x_k - \alpha_k r_k. \end{split}$$

Gradient Descent Method Example: Ax = b where A is Symmetric Positive Definite

$$f(x) = \|x - x_{\star}\|_{A}^{2} = (A(x - x_{\star}), (x - x_{\star})) = (x - x_{\star})^{T} A(x - x_{\star}),$$

where x_{\star} is the solution of

$$Ax = b$$
.

It is obvious that

$$f(x) = 0$$
 if and only if $x = x_{\star}$.

Denote

$$x = x_0 + \delta_0$$
.

Then.

$$\begin{split} f(x) &= f(x_0) + (A\delta_0, \delta_0) + 2\delta_0^T (Ax_0 - b) \\ &= f(x_0) + \delta_0^T A\delta_0 + 2\delta_0^T r_0, \end{split}$$

$$r_0 = Ax_0 - b$$
.

It is clear that

$$f(x) \le f(x_0)$$

only if

$$\delta_0^T r_0 \leq 0$$
,

in particular,

is the negative of the gradient direction $-\nabla f$ at the point x_0 . The negative of the gradient direction is locally the direction that yields the fastest rate of decrease for f. Hence, we can

$$\delta_0 = -\alpha_0 r_0$$

so that

$$\begin{split} f(x) &= f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0 \\ &= f(x_0) + \alpha_0^2 r_0^T Ar_0 - 2\alpha_0 r_0^T r_0 \leq f(x_0), \end{split}$$

provided

$$\alpha_0 \geq 0$$
.

It is obvious, we have

$$f(x) \le f(x_0), \quad \forall 0 \le \alpha \le \frac{2(r_0, r_0)}{(Ar_0, r_0)}.$$

The optimal α shall satisfy

$$f(x) = \min_{\alpha_0 \in \mathbb{R}} f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0,$$

$$\alpha_0 = \frac{(r_0, r_0)}{(Ar_0, r_0)} \ge 0.$$

Therefore, we conclude

If
$$x = x_0 - \alpha_0 r_0$$
, then $f(x) \le f(x_0)$.

Kantorovich Inequality Let B be any Symmetric Positive Definite real matrix and λ_{\max} and λ_{\min} its largest and

$$\frac{(Bx,x)(B^{-1}x,x)}{(x,x)^2} \leq \frac{(\lambda_{\max} + \lambda_{\min})^2}{4\lambda_{\max}\lambda_{\min}}, \quad \forall x \neq 0.$$

Kantorovich Inequality Proof

Clearly, it is equivalent to show that the result is true for any unit vector x. Since B is symmetric, we have

$$B = Q^T DQ$$

where Q is orthogonal and

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix},$$

$$\lambda_{\max} = \lambda_1 \ge \cdots \ge \lambda_n = \lambda_{\min} > 0$$

We have

$$(Bx, x)(B^{-1}x, x) = (DQx, Qx)(D^{-1}Qx, Qx).$$

Setting

$$y = Qx = [y_1 \quad \cdots \quad y_n]^T, \quad \beta_i = y_i^2.$$

Note that $\sum_{i=1}^{n} \beta_i = 1$, and

$$\lambda = (Dy, y) = \sum_{i=1}^{n} \beta_i \lambda_i$$

is a convex combination of the eigenvalues λ_i , $i=1,\cdots,n$, and furthermore, the following relation holds,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y),$$

with

$$\psi(y) = (D^{-1}y, y) = \sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i}.$$

Noting that

$$\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}, \quad \text{(since } \sum_{i=1}^n \beta_i = 1, \text{proved later)}$$

therefore,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right).$$

The maximum of the right-hand side is reached for

$$\lambda = \frac{\lambda_1 + \lambda_n}{2}$$

yielding

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right)$$
$$\le \frac{\lambda_1 + \lambda_n}{4} \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n}\right)$$

Proof for $\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}$

$$0 < \lambda_n \leq \cdots \leq \lambda_i \leq \cdots \leq \lambda_1, \quad i = 1, \dots, n,$$

we have for any $i = 1, \ldots, n$ that

$$\lambda_1 \ge \lambda_i > 0, \quad \lambda_i - \lambda_n \ge 0, \quad i = 1, \dots, n,$$

which gives

$$\lambda_1(\lambda_i - \lambda_n) > \lambda_i(\lambda_1 - \lambda_n),$$

i.e.,

$$\lambda_1 \lambda_n \leq \lambda_i (\lambda_1 + \lambda_n - \lambda_i),$$

and

$$\frac{1}{\lambda_i} \le \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}.$$

Note that

$$\beta_i \ge 0, \quad \sum_{i=1}^n \beta_i = 1,$$

we get

$$\beta_i \frac{1}{\lambda_i} \le \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n},$$

and so.

$$\sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i} \le \sum_{i=1}^{n} \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}$$
$$= \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\sum_{i=1}^{n} \beta_i \lambda_i}{\lambda_1 \lambda_n}.$$

This lemma helps to establish the following result regarding the convergence rate of the method.

Theorem Let A be a Symmetric Positive Definite matrix. Then, the A-norms of the error vectors

$$d_{L} = x_{\star} - x_{L} = -A^{-1}r_{L}$$

generated by the Gradient Descent Algorithm satisfy the relation

$$\|d_{k+1}\|_A \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \|d_k\|_A$$

and so,

$$\lim_{k\to\infty} \|d_k\|_A = 0,$$

which gives

$$\lim_{k \to \infty} d_k = 0,$$

i.e., the algorithm converges for any initial guess x_0

Proof First, we have

$$\|d_k\|_A^2 = (Ad_k, d_k) = (-r_k, d_k) = (r_k, A^{-1}r_k).$$

Then we have

$$\|d_{k+1}\|_A^2 = (Ad_{k+1}, d_{k+1}) = (-r_{k+1}, d_{k+1})$$

and by simple substitution

$$\begin{split} & d_{k+1} = d_k + \alpha_k r_k, \\ \| d_{k+1} \|_A^2 &= (-r_{k+1}, d_k + \alpha_k r_k), \\ &= (-r_{k+1}, d_k) - \alpha(r_{k+1}, r_k), \\ &= (-r_{k+1}, d_k), \end{split}$$

$$(r_{k+1}, r_k) = 0.$$

Thus.

$$\begin{split} \|d_{k+1}\|_A^2 &= (-r_{k+1}, d_k), \\ &= (-r_k + \alpha_k A r_k, d_k), \\ &= (-r_k, d_k) + \alpha_k (A r_k, d_k), \\ &= (r_k, A^{-1} r_k) - \alpha_k (A r_k, A^{-1} r_k), \\ &= (r_k, A^{-1} r_k) - \frac{(r_k, r_k)^2}{(A r_k, r_k)}, \\ &= \|d_k\|_A^2 \left(1 - \frac{(r_k, r_k)}{(A r_k, r_k)} \times \frac{(r_k, r_k)}{(r_k, A^{-1} r_k)}\right). \end{split}$$

The result follows by applying the Kantorovich inequality

Unconstrained problem

To minimize a differentiable function f

$$\min_{x \in \mathbb{R}^n} f(x)$$

Recall that a global minimizer is a local minimizer, and a local minimizer is a stationary point.

• We may try to find stationary points x, i.e., $\nabla f(x) = 0$ for solving an unconstrained problem. • When it is difficult to solve $\nabla f(x) = 0$, we look for an approximate solution via iterative methods.

A general algorithmic framework

Choose $x^{(0)}$ and repeat

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, \quad k = 0, 1, 2, \dots$$

until some stopping criteria is satisfied.

- x⁽⁰⁾ initial guess of the solution.
- $\bullet ~~\alpha_k > 0$ is called the step length/step size/learning rate.
- $p^{(k)}$ is a search direction.

Descent Direction
The search direction $p^{(k)}$ should be a descent direction at $x^{(k)}$

• We say $p^{(k)}$ is a descent direction at $x^{(k)}$ if

$$\nabla f(\boldsymbol{x}^{\left(k\right)})^{T} \boldsymbol{p}^{\left(k\right)} < 0$$

ullet The function value f can be reduced along this descent direction with "appropriate" step length

$$\exists \delta > 0$$
 such that $f(x^{(k)} + \alpha_k p^{(k)}) < f(x^{(k)}) \quad \forall \alpha_k \in (0, \delta)$

Algorithm 1 Steepest Descent Method

- 1: Initialization: Choose initial point $x^{(0)}$, tolerance $\epsilon > 0$, set $k \leftarrow 0$.
- 2: while $\|\nabla f(x^{(k)})\| > \epsilon$ do
- Find the step length α_k (e.g., by a certain line search rule).
- Update the solution:

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$$

- Increment $k \leftarrow k + 1$.
- 6: end while
- 7: Output: $x^{(k)}$ (approximate solution)

One may choose to use a constant step length (say $\alpha_k = 0.1$), or find it via line search rules:

• Exact line search

· Backtracking line search

Exact line search

Exact line search tries to find α_k by solving the one-dimensional problem:

$$\min_{\alpha > 0} \quad \varphi(\alpha) := f(x^{(k)} + \alpha p^{(k)})$$

• In general, exact line search is the most difficult part of the steepest descent method.

• If f is a simple function, it may be possible to obtain an analytical solution for α_k by solving $\varphi'(\alpha)=0$. Contour plot A contour is a fixed height $f(x_1, x_2) = c$.

Algorithm 2 Steepest Descent Method with Exact Line Search

1: Initialization: Choose initial point
$$x^{(0)}$$
, tolerance $\epsilon > 0$, set $k \leftarrow 0$.

2: while
$$\|\nabla f(x^{(k)})\| > \epsilon$$
 do

3: Compute search direction:
$$p^{(k)} = -\nabla f(x^{(k)})$$
.

Find optimal step length:

$$\alpha_k = \arg\min_{\alpha > 0} f(x^{(k)} + \alpha p^{(k)})$$

5: Update the solution:

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

Increment $k \leftarrow k + 1$.

7: end while

8: Output: $x^{(k)}$ (approximate solution)

Properties of steepest descent method with exact line search

Let $\{x^{(k)}\}$ be the sequence generated by the steepest descent method with exact line search.

Monotonic decreasing property:

$$f(x^{(k+1)}) < f(x^{(k)})$$
 if $\nabla f(x^{(k)}) \neq 0$.

• Suppose f is a coercive function with continuous first-order derivatives on \mathbb{R}^n . Then some subsequence of $\{x^{(k)}\}$

The limit of any convergent subsequence of $\{x^{(k)}\}\$ is a stationary point of f

Backtracking Line Search

Backtracking line search starts with a relatively large step length and iteratively shrinks it (i.e., "backtracking") until the Armijo condition holds.

Algorithm 3 Backtracking Line Search

1: Choose $\bar{\alpha} > 0$, $\rho \in (0,1)$, $c_1 \in (0,1)$; Set $\alpha \leftarrow \bar{\alpha}$.

2: repeat

3: Until

$$f(x^{(k)} + \alpha p^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T p^{(k)}$$

▶ Armijo Condition

 $\alpha \leftarrow \rho \alpha$

5: until Armijo condition holds

6: return $\alpha_k = \alpha$

 $p^{(k)}$ is a descent direction:

$$\nabla f(x^{(k)})^T p^{(k)} < 0$$

The Armijo condition:

$$f(x^{(k)} + \alpha p^{(k)}) < f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T p^{(k)}$$

ensures a reasonable amount of decrease in the objective function.

Example parameter choices

$$\bar{\alpha} = 1$$
, $\rho = 0.9$, $c_1 = 10^{-4}$

Algorithm 4 Steepest Descent Method with Backtracking Line Search

1: Choose $x^{(0)}$, $\epsilon > 0$, $\bar{\alpha} > 0$, $\rho \in (0,1)$, $c_1 \in (0,1)$; Set $k \leftarrow 0$.

2: while $\|\nabla f(x^{(k)})\| > \epsilon$ do

Compute search direction: $p^{(k)} = -\nabla f(x^{(k)})$.

Set $\alpha \leftarrow \bar{\alpha}$.

5:

Until Armijo condition holds:

$$f(x^{(k)} + \alpha p^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T p^{(k)}$$

 $\alpha \leftarrow \rho \alpha$.

8: until Armijo condition holds

 $\alpha \iota \leftarrow \alpha$.

10: Update the solution:

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

Increment $k \leftarrow k + 1$.

12: end while

13: return $x^{(k)}$

Steepest Descent Method for Multivariate Linear Regression

Algorithm 5 Steepest Descent for Multivariate Linear Regression

1: Choose $\beta_0^{(0)}, \beta^{(0)} = (\beta_1^{(0)}, \dots, \beta_n^{(0)})^T$ and $\epsilon > 0$; Set $k \leftarrow 0$.

2: while $\|\nabla L(\beta_0^{(k)}, \beta^{(k)})\| > \epsilon$ do

Determine step length α_k .

Update parameters:

$$\beta_0^{(k+1)} = \beta_0^{(k)} - \alpha_k \sum_{i=1}^n ((\beta^{(k)})^T x_i + \beta_0^{(k)} - y_i)$$

for j = 1, 2, ..., p do

$$\beta_j^{(k+1)} = \beta_j^{(k)} - \alpha_k \sum_{i=1}^n ((\beta^{(k)})^T x_i + \beta_0^{(k)} - y_i) x_{ij}$$

end for

Increment $k \leftarrow k + 1$.

8: end while 9: return $\beta_0^{(k)}, \beta^{(k)} = (\beta_1^{(k)}, \dots, \beta_p^{(k)})^T$.

Normal Equation

$$\min_{\beta_0,\beta_1,...,\beta_p} L(\beta_0,\beta_1,...,\beta_p) = \frac{1}{2} \sum_{i=1}^n \left(\beta^T x_i + \beta_0 - y_i\right)^2$$

$$\hat{X}^T \hat{X} \hat{\beta} = \hat{X}^T Y$$

How to solve

$$\hat{X}^T \hat{X} \hat{\beta} = \hat{X}^T Y$$

Case 1. When $\hat{X}^T\hat{X}$ is invertible, the normal equation implies that

$$\hat{\beta} = (\hat{X}^T \hat{X})^{-1} \hat{X}^T Y$$

is the unique solution of linear regression.

This often happens when we face an over-determined system — number of training examples n is much larger than

We have many training samples to fit but do not have enough degree of freedom.

Case 2. When $\hat{X}^T\hat{X}$ is not invertible, the normal equation will have infinite number of solutions.

 $\hat{X}^T\hat{X}$ is not invertible when we face an under-determined problem — n < p.

We have too many degrees of freedom and do not have enough training samples We can apply any method for solving a linear system (e.g., Gaussian elimination) to obtain a solution.

Classification Binary classification:

• Email: spam/not spam

• Student: fail/pass We usually assign:

label
$$\begin{cases} 0, & \text{normal state/negative class, e.g., not spam} \\ 1, & \text{abnormal state/positive class, e.g., spam} \end{cases}$$

However, the label assignment can be arbitrary

$$0 = \text{not spam}, 1 = \text{spam}$$
 or $0 = \text{spam}, 1 = \text{not spam}$

Data: $x_i \in \mathbb{R}^p$, $y_i \in \{0, 1\}$, $i = 1, 2, \dots, n$. Multi-class classification:

• Iris flower (3 species: Setosa, Versicolor, Virginica)

Optical character recognition

Data: $x_i \in \mathbb{R}^p, y_i \in \{1, ..., K\}, i = 1, 2, ..., n.$

Linear Regression vs. Logistic Regression

Linear Regression

- Data $x_i, y_i \in \mathbb{R}$
- Fit: $f(x) = \beta^T x + \beta_0 = \hat{\beta}^T \hat{x}$, where $\hat{\beta} = [\beta_0; \beta]$, $\hat{x} = [1; x]$

Logistic Regression

- $\bullet \ \ \mathsf{Data} \ x_i, y_i \in \{0,1\}$

$$f(x) = g(\hat{\beta}^T \hat{x})$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$
 (logistic function)

so.

$$f(x) = g(\hat{\beta}^T \hat{x}) = \frac{1}{1 + e^{-(\beta^T x + \beta_0)}}$$

Logistic Regression Decision Rule

$$f(x) = g(\hat{\beta}^T \hat{x}), \quad g(z) = \frac{1}{1 + e^{-z}}$$

$$f(x) = p(y = 1|x; \hat{\beta})$$

Predict y = 1 (class 1) if:

$$f(x) \ge 0.5$$
 i.e., $\hat{\beta}^T \hat{x} \ge 0$

Predict y = 0 (class 0) if:

$$f(x) < 0.5$$
 i.e., $\hat{\beta}^T \hat{x} < 0$

Decision Boundary
The set of all $x \in \mathbb{R}^p$ such that:

is called the decision boundary between classes 0 and 1.

The logistic regression has a linear decision boundary; it is:

- a point when p=1
- a line when p=2
- a plane when p=3
- in general a (p-1)-dimensional subspace

Maximum Likelihood Estimation

- Data (x_i, y_i), i = 1, 2, ..., n, x_i ∈ ℝ^p, y_i ∈ {0, 1}.
 The likelihood of a single training example (x_i, y_i) is:

$$\text{probability}(x_i \in \text{class } y_i) = \begin{cases} p(y_i = 1 | x_i; \hat{\beta}) = f(x_i), & \text{if } y_i = 1 \\ p(y_i = 0 | x_i; \hat{\beta}) = 1 - f(x_i), & \text{if } y_i = 0 \end{cases}$$

$$= f(x_i)^{y_i} [1 - f(x_i)]^{1-y_i}$$

• Assuming independence of training samples, the likelihood is:

$$\prod_{i=1}^{n} f(x_i)^{y_i} [1 - f(x_i)]^{1-y_i}$$

Want to find β̂ to maximize the log-likelihood:

$$L(\hat{\beta}) = -\log \left(\prod_{i=1}^{n} f(x_i)^{y_i} [1 - f(x_i)]^{1 - y_i} \right)$$

$$= -\sum_{i=1}^{n} \left(y_i \log f(x_i) + (1-y_i) \log (1-f(x_i)) \right)$$

For a single training example (x_i, y_i) , the cost is:

$$-y_i \log f(x_i) - (1 - y_i) \log(1 - f(x_i))$$

$$= \begin{cases} -\log f(x_i), & \text{if } y_i = 1\\ -\log(1 - f(x_i)), & \text{if } y_i = 0 \end{cases}$$

Simplifying the Cost Function

$$\log\left(\frac{f(x_i)}{1 - f(x_i)}\right) = \log\left(\frac{\frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}}{1 - \frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}}\right)$$

$$= \log(e^{\hat{\beta}T\hat{x}_i}) = \hat{\beta}^T\hat{x}_i$$

$$\log(1 - f(x_i)) = \log\left(1 - \frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}\right)$$

$$= \log\left(\frac{1 + e^{\hat{\beta}T\hat{x}_i} - 1}{1 + e^{\hat{\beta}T\hat{x}_i}}\right)$$

$$= -\log\left(1 + e^{\hat{\beta}T\hat{x}_i}\right)$$

Gradient of the cost function

• Cost function

$$L(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n \log(1 + e^{\beta_0 + \beta^T x_i}) - y_i(\beta_0 + \beta^T x_i)$$
$$\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

• Calculate

$$\begin{split} \frac{\partial}{\partial \beta_0} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-(\beta_0+\beta^T x_i)}} - y_i \right) = \sum_{i=1}^n (f(x_i) - y_i) \\ \frac{\partial}{\partial \beta_1} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-(\beta_0+\beta^T x_i)}} - y_i \right) x_{i1} = \sum_{i=1}^n (f(x_i) - y_i) x_{i1} \\ \frac{\partial}{\partial \beta_2} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-(\beta_0+\beta^T x_i)}} - y_i \right) x_{i2} = \sum_{i=1}^n (f(x_i) - y_i) x_{i2} \end{split}$$

$$\frac{\partial}{\partial \beta_p} L = \sum_{i=1}^n \left(\frac{1}{1 + e^{-\left(\beta_0 + \beta^T x_i\right)}} - y_i \right) x_{ip} = \sum_{i=1}^n (f(x_i) - y_i) x_{ip}$$

Solution may not exist

The solution (global minimizer) of the minimization problem

$$\min_{\beta_{0},\beta_{1},...,\beta_{p}} \sum_{i=1}^{n} \log(1 + e^{\beta_{0} + \beta^{T} x_{i}}) - y_{i}(\beta_{0} + \beta^{T} x_{i})$$

may not exist. (Regularization will help solve this issue)

Example. $n = 1, x_1 = -1, y_1 = 0$. Then the cost function

$$L(\beta_0,\beta_1) = \log(1 + e^{\beta_0 - \beta_1})$$

We can see that $\min L = 0$. However, this value cannot be attained

Idea: transfer multi-class classification to multiple binary classification problems Data: $x_i \in \mathbb{R}^p$, $y_i \in \{1, \dots, K\}$, $i = 1, 2, \dots, n$. For each $k \in \{1, 2, \dots, K\}$

- 1. Construct a new label $\tilde{y}_i = 1$ if $y_i = k$ and $\tilde{y}_i = 0$ otherwise
- 2. Learn a binary classifier f_k with data x_i , \tilde{y}_i

Multi-class classifier predicts class k where k achieves the maximal value

$$\max_{k \in \{1, 2, \dots, K\}} f_k(x)$$

Overfitting

- Underfitting: a model is too simple and does not adequately capture the underlying structure of the data • Overfitting: a model is too complicated and contains more parameters that can be justified by the data; it does
- not generalize well from training data to test data
- Good fit: a model adequately learns the training data and generalizes well to test data

Ridge regularization

In linear/logistic regression, over-fitting occurs frequently. Regularization will make the model simpler and works well for most of the regression/classification problems.

• Ridge regularization:

$$\lambda \|\beta\|^2 = \lambda \sum_{j=1}^p \beta_j^2$$

- $$\begin{split} &\lambda\colon \text{regularization parameter, } \|\beta\|^2\colon \text{regularizer}\\ &\bullet\quad \text{It is differentiable. It forces } \beta_j\text{'s to be small}\\ &\bullet\quad \text{Extreme case: suppose } \lambda\text{ is a huge number, it will push all } \beta_j\text{'s to be zero and the model will be naive} \end{split}$$

Ridge regularized problems

• Logistic regression + ridge regularization (Gradient methods can be used, a solution exists)

$$\min_{\beta_0,\beta_1,...,\beta_p} \sum_{i=1}^n \log(1+e^{\beta_0+\beta^Tx_i}) - y_i(\beta_0+\beta^Tx_i) + \lambda \sum_{j=1}^p \beta_j^2$$

• Linear regression + ridge regularization (Apply either normal equation or gradient methods)

$$\min_{\beta_0,\beta_1,...,\beta_p} \frac{1}{2} \sum_{i=1}^n (\beta^T x_i + \beta_0 - y_i)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

$$\lambda \|\beta\|_1 = \lambda \sum_{j=1}^p |\beta_j|$$

- It is non-differentiable. It forces some β_j 's to be exactly zero It can be used for feature selection (model selection). It selects important features (removing non-informative or redundant features)
- When λ is larger, less features will be selected