Computer Network Lab #4

Announcement

- Socket Programming Project Presentation on Wed23 Apr 2025
 - Please follow seating announcement on Discord and MCV
- OComputer network lab final examination on Thu 24 Apr 2025 at 16:15 18:00
 - Please follow lab final exam preparation announcement on Discord and MCV
 - The announcement and example exam are now published on MCV

Schedule & Content

O09:00 – 10:00 [60 mins] [Provided Packet Tracer]OLab 8.2 - Configuring VLANs and Trunking

- 10:00 10:50 [50 mins] [Provided Packet Tracer]Lab 9 Configuring Basic DHCPv4 on a Router
- 10:50 11:50 [60 mins] [Provided Packet Tracer]Lab 10 Configuring Dynamic and Static NAT

Agreement

OAll of those who late than 15 minutes is considered to be absent. (50% will be deducted)

OLab assignments must be submitted by deadline (Any late submission 50% will be deducted)

Lab 8.2 - Configuring VLANs and Trunking [Provided Packet Tracer]

09:00 - 10:00 [60 mins]

Objectives

- Build the Network and Configure Basic Device Settings
- Create VLANs and Assign Switch Ports
- Maintain VLAN Port Assignments and the VLAN Database
- 4. Configure an 802.1Q Trunk between the Switches

What is VLANs?

- OVirtual Local Area Networks
 - OSwitch can be configured to define multiple **virtual** LANs over single physical LAN infrastructure.

VLAN's Features

- Otraffic Isolation: frames to/from ports 0-4 can only reach ports 0-4
- ODynamic membership: ports can be dynamically assigned among VLANs
- OForwarding between VLANS: done via routing

Trunk Port

Otrunk Port: carries frames between VLANS defined over multiple physical switches

Topology and Devices

Devices

- O3 PCs
- O2 Switches
- OConsole Cables
- OEthernet Cables
 - o? crossover
 - o? straight thru

Addressing Table									
	Device	Interface	IP Address	Subnet Mask	Default Gateway				
	S1	VLAN 1	192.168.1.11	255.255.255.0	N/A				
	S2	VLAN 1	192.168.1.12	255.255.255.0	N/A				
	PC-A	NIC	192.168.10.3	255.255.255.0	192.168.10.1				
	РС-В	NIC	192.168.10.4	255.255.255.0	192.168.10.1				
ı	PC-C	NIC	192.168.20.3	255.255.255.0	192.168.20.1				

1. Build the Network and Configure Basic Device Settings

- 1. Cable the network as shown in the topology
 - Attach the devices as shown in the topology diagram, and cable as necessary
- Initialize and reload the switches
- Configure basic settings for each switch
- 4. Configure PC hosts
- 5. Test connectivity

2. Create VLANs and Assign Switch Ports

- Create the VLANs on Switch
 - Switch(config)# vlan [vlan no]
- View the list of VLANs on Switch
 - Switch# show vlan
 - Switch# show vlan brief
- Assign interfaces to VLAN
 - Switch(config)# interface [int]
 - Switch(config-if)# switchport mode access
 - Switch(config-if)# switchport access vlan [vlan no]

3. Maintain VLAN Port Assignments and the VLAN Database

Range of interfaces

- To configure a range of interfaces
 - Switch(config)#interface range [int int]
 - i.e., Switch(config)#interface range f0/1 24

4. Configure an 802.1Q Trunk Between the Switches

- Config switch port mode
 - Switch(config)# interface f0/1
 - Switch(config-if)# switchport mode [mode]
 - Mode = dynamic desirable, auto, trunk
- View trunked interfaces
 - Switch# show interfaces trunk

(1/3) User Profile Setting

Press Ctrl(Cmd)+Shift+U to Open User Profile Dialog

These information cannot be changed, otherwise all the activities will be reset.

(2/3) Assessment

Assessment Items

(3/3) How to use Packet Tracer file

- Devices used in each lab assignment (e.g. switch, router and PC) have been already provided
 - O DO NOT add or remove any devices
- 1. Set the user profile
 - O Cannot be changed later, otherwise all the activities will be reset
- 2. Select the appropriate cable type and connect it to each device
 - Corresponding to the network topology and the addressing table
- 3. Complete device configuration according to the lab instruction
 - Review: "Lab1. Packet Tracer Tutorial & Build a Simple Network"
- 4. Check the completion percentage and assessment items
- 5. Save and submit file

Lab 8.2 - Configuring VLANs and Trunking

Video Clip

Lab8.Configuring VLANs and Trunking

Materials

- Slide ([#4] Lab #4 Slide)
- Lab sheet ([#4] Lab 8.2 Configuring VLANs and Trunking)
- Packet Tracer File ([#4] Lab 8.2 [Packet Tracer] Configuring VLANs and Trunking)

Submission

- Individual Assignment ([#4] Lab 8.2: Answer Sheet)
 - Answer the question set on mCV
 - Upload your Packet Tracer File

Please practice using the Packet Tracer file <u>individually</u>, as <u>the final test</u> will require you to complete tasks on your own.

Lab 9 - Configuring Basic DHCPv4 on a Router [Provided Packet Tracer]

10:00 – 10:50 [50 mins]

Objectives

- OBuild the Network and Configure Basic Device Settings
- Configure a DHCPv4 Server and a DHCP Relay Agent

Network topology

ddress	dressing Table								
	Device	Interface	IP Address	Subnet Mask	Default Gateway				
	R1	G0/0	192.168.0.1	255.255.255.0	N/A				
		G0/1	192.168.1.1	255.255.255.0	N/A				
		S0/0/0 (DCE)	a)	255.255.255.252	N/A				
	R2	S0/0/0	192.168.2.254	b)	N/A				
		S0/0/1 (DCE)	209.165.200.226	255.255.255.224	N/A				
	ISP	S0/0/1	209.165.200.225	255.255.255.224	N/A				
	PC-A	NIC	DHCP	DHCP	DHCP				
	PC-B	NIC	DHCP	DHCP	DHCP				

Equipment

- O Devices
 - O3 Routers Cisco 1941
 - O2 Switches Cisco 2960
 - O2 PCs
 - O2 Serial DCE Cables
 - O4 Straight-through cables

DHCP

- A protocol that automatically provide IP address and configurations, for example, subnet mask and default gateway to hosts in network
- Without DHCP, network administrators must manually assign IP to hosts which isn't scalable

4 Steps in DHCP

DHCP overview:

- host broadcasts DHCP discover msg [optional]
- DHCP server responds with DHCP offer msg [optional]
- host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ack msg

DHCP

- O In this lab, we want to set up the R2 router to allocate IPv4 addresses across two distinct subnets, each connecting with R1 and the ISP, respectively.
- R2 is a DHCPv4 server
- R1 is a DHCP relay agent.

Configuration Guide

- OR1> enable
- ○R1# configure terminal
- R1(config)# ?
- OR1 (config-if)#?
- OR1(dhcp-config)#?

Note:

You can type ? to show command manual

```
Example: Router(config) #ip dhcp ?
excluded-address Prevent DHCP from assigning certain addresses
pool Configure DHCP address pools
```

DHCP relay agent parameters

Packet Trace for this Lab

ODownload Packet Tracer File from MyCourseVille

(1/3) User Profile Setting

Press Ctrl(Cmd)+Shift+U to Open User Profile Dialog

These information cannot be changed, otherwise all the activities will be reset.

(2/3) Assessment

Assessment Items

(3/3) How to use Packet Tracer file

- Devices used in each lab assignment (e.g. switch, router and PC) have been already provided
 - O DO NOT add or remove any devices
- 1. Set the user profile
 - O Cannot be changed later, otherwise all the activities will be reset
- 2. Select the appropriate cable type and connect it to each device
 - Corresponding to the network topology and the addressing table
- 3. Complete device configuration according to the lab instruction
 - Review: "Lab1. Packet Tracer Tutorial & Build a Simple Network"
- 4. Check the completion percentage and assessment items
- 5. Save and submit file

Lab 9 - Configuring Basic DHCPv4 on a Router

Video Clip

Lab9.Configuring Basic DHCPv4 on a Router

Materials

- Slide ([#4] Lab #4 Slide)
- Lab sheet ([#4] Lab 9 Configuring Basic DHCPv4 on a Router)
- Packet Tracer File ([#4] Lab 9 [Packet Tracer] Configuring Basic DHCPv4 on a Router)

Submission

- Individual Assignment ([#4] Lab 9: Answer Sheet)
 - Answer the question set on mCV
 - Upload your Packet Tracer File

Please practice using the Packet Tracer file <u>individually</u>, as <u>the final test</u> will require you to complete tasks on your own.

Lab 10 – Configuring Dynamic and Static NAT [Provided Packet Tracer]

10:50 – 11:50 [60 mins]

Objectives

- Build the Network and Verify Connectivity
 - Configure basic settings for each router
 - Configure static routing
- Configure and Verify Static NAT
- Configure and Verify Dynamic NAT

NAT

- ONetwork Address Translation
- To mitigate an allocation of IPV4
- All devices in a private network share the same public IP address

Network Topology

- 2 Routers Cisco 1941
- 1 Switch Cisco 2960
- O 2 PCs
- 1 Serial DCE Cable
- 3 Straight-through cables

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
Gateway	G0/1	192.168.1.1	a)	N/A
	S0/0/1	209.165.201.18	b)	N/A
ISP	S0/0/0 (DCE)	c)	255.255.255.252	N/A
	Lo0	192.31.7.1	255.255.255.255	N/A
PC-A (Simulated Server)	NIC	192.168.1.20	255.255.255.0	d)
РС-В	NIC	192.168.1.21	e)	f)

ISP: IP Address Allocation (209.165.200.224/27)

- Static allocation
 - 209.165.200.225 241
- O Dynamic allocation
 - **O** 209.165.200.242 255

Configure static routing

- Create a static route from the ISP router to the Gateway router (Review: Lab 4 – "Summarization")
- Create a default route from Gateway to ISP router
- Routers don't know each other's networks if we don't config route

Static NAT

- O It is a one-to-one mapping of local and global addresses
- Every internal IP address is mapped to a unique external IP address.

Configuration

- Configure a static mapping
- Specify the interfaces

Dynamic NAT

- O A pool of IP addresses are assigned to each device on first-come, first serve basis.
- There are many-to-many address mapping between local and global addresses

Configuration

- Define an access control list (ACL) that matches the LAN private IP address range
- Define the pool of usable public IP addresses
- Define the NAT from the inside source list to the outside pool
- Specify the interfaces

Verify Command

- OR1# show ip route
- OR1# show ip interface brief
- OR1# show ip nat translations
- OR1# show ip nat statistics

Packet Trace for this Lab

ODownload Packet Tracer File from MyCourseVille

(1/3) User Profile Setting

Press Ctrl(Cmd)+Shift+U to Open User Profile Dialog

These information cannot be changed, otherwise all the activities will be reset.

(2/3) Assessment

Assessment Items

(3/3) How to use Packet Tracer file

- Devices used in each lab assignment (e.g. switch, router and PC) have been already provided
 - O DO NOT add or remove any devices
- 1. Set the user profile
 - O Cannot be changed later, otherwise all the activities will be reset
- 2. Select the appropriate cable type and connect it to each device
 - Corresponding to the network topology and the addressing table
- 3. Complete device configuration according to the lab instruction
 - Review: "Lab1. Packet Tracer Tutorial & Build a Simple Network"
- 4. Check the completion percentage and assessment items
- 5. Save and submit file

Lab 10 – Configuring Dynamic and Static NAT

Video Clip

Lab10.Configuring Dynamic and Static NAT

Materials

- Slide ([#4] Lab #4 Slide)
- Lab sheet ([#4] Lab 10 Configuring Dynamic and Static NAT)
- Packet Tracer File ([#4] Lab 10 [Packet Tracer] Configuring Dynamic and Static NAT)

Submission

- Individual Assignment ([#4] Lab 10: Answer Sheet)
 - Answer the question set on mCV
 - Upload your Packet Tracer File

Please practice using the Packet Tracer file <u>individually</u>, as <u>the final test</u> will require you to complete tasks on your own.