Théorème Soit $u \in \mathcal{L}(E, F)$. Supposons de plus que u est continue. Posons :

•
$$N_1 := \sup_{x \in E \setminus \{0_E\}} \left(\frac{\|u(x)\|}{N(x)}\right)$$
.
• $N_2 := \sup_{x \in \mathcal{S}} (\|u(x)\|)$.
• $N_3 := \sup_{x \in \mathcal{B}} (\|u(x)\|)$.
• $N_4 := \inf_{x \in \mathcal{B}} \|f\|_{\mathcal{E}} \in \mathbb{R}^* : \forall x \in E$.

- $N_4 := \inf_{x \in \mathcal{B}} \{k \in \mathbb{R}_+^* : \forall x \in E, \|u(x)\| \le kN(x)\}.$ Alors on $a : N_1 = N_2$ Alors, on $a: N_1 = N_2 = N_3 = N_3$

Démonstration. On procéde en établissant des inégalités :

- $N_2 \leq N_1$: par définition du suprémum, pour tout $x \neq 0_E$, on a: $\frac{\|u(x)\|}{N(x)} \leq N_1$. Donc, si $x \in \mathcal{S}$, on en déduit immédiatement que $||u(x)|| \leq N_1$ donc $N_2 \leq N_1$.
- $N_1 \leq N_2$: en effet, $\frac{x}{N(x)} \in \mathcal{S}$ donc $\left\{\frac{\|u(x)\|}{N(x)}, x \in E \setminus 0_E\right\} \subset \{\|u(x)\|, x \in \mathcal{S}\}$. Un passage au sup fournit l'inégalité souhaitée.
- $N_2 \leq N_3$: en effet, cela vient du fait que $\mathcal{S} \subset \mathcal{B}$.
- $N_3 \leq N_4$: Si $x \in \mathcal{S}$, alors $||u(x)|| \leq N_4$ d'où l'inégalité.
- $N_2 \leq N_4$: on utilise le même raisonnement que ci-dessus.
- $N_4 \leq N_2 : \forall x \in E \setminus \{0_E\}$, on a : $\left\| u\left(\frac{x}{N(x)}\right) \right\| \leq N_2$. On en déduit que $\forall x \in E, \|u(x)\| \leq N_2$ $N_2N(x)$. On en déduit que $N_4 \leq N$

Ce théorème étant établi, il est possible de norme l'espace $\mathcal{L}(E,F)$. C'est l'objet de la définition qui suit.

Définition Si u est une application linéaire continue de E dans F, on pose :

$$|||u||| := N_1 = N_2 = N_3 = N_4.$$

 $\|\|.\|\|$ s'appelle la **triple norme** ou norme subordonnée à la norme de E et F. On a en particulier :

$$\forall x \in E, \ \|u(x)\| \le \|\|u\|\| . \|x\|.$$

La conséquence directe de cette définition est énoncée dans le théorème qui suit :

Théorème

- (i) L(E,F) est un sous-espace vectoriel de $\mathcal{L}(E,F)$.
- (ii) L'application $L(E,F) \longrightarrow \mathbb{R}$ est une norme sur L(E,F). $u \longmapsto ||u||$

Démonstration. (i) et (ii) vont être démontrés simultanément. $L(E,F) \neq \emptyset$ car l'application identiquement nulle est continue. De plus, il est bien évident que si λ est un scalaire et u un élément de L(E,F), alors $\lambda.u$ est encore un élément de L(E,F). Il nous reste donc à démontrer que si $u \in L(E, F)$ et $v \in L(E, F)$, alors $u + v \in L(E, F)$. Soit $x \in \mathcal{B}$, la boule unité fermée de E. Alors, $||u(x) + v(x)|| \le ||u(x)|| + ||v(x)||$. Or, $||u(x)|| \le ||u||$ et $||v(x)|| \le ||v||$. On en déduit

donc que $||u(x) + v(x)|| \le |||u||| + |||v|||$, ce qui montre que $v + v \in L(E, F)$ (propriété énoncée précédemment). Un passage à la borne supérieure, pour $x \in \mathcal{B}$ démontre donc que :

$$|||u+v||| \le |||u||| + |||v|||$$
.

Les autres propriétés sur cette norme étant aisées à vérifier, je laisse ce soin au lecteur. \Box

Théorème Soient E, F et G, trois espaces vectoriels normés, $u \in L(E, F)$ et $v \in L(F, G)$. Alors, $v \circ u \in L(E, G)$ et $||v \circ u|| \le ||v \mid|| \cdot ||u||$.

Démonstration. Il est clair que $v \circ u$ est linéaire (si cela n'est pas totalement clair pour vous, n'hésitez pas à le redémontrer rapidement...). De plus, soit $x \in E$. Alors, $||v \circ u(x)|| = ||v[u(x)]|| \le ||v|| ||u(x)|| \le ||v||| \cdot ||u|| \cdot ||u|| \cdot ||u||| \cdot ||u|| \cdot ||u$

Quelques exemples:

• Exemple 1: on considère $\mathcal{C}([0,\pi])$, l'espace des fonctions f continues sur $[0,\pi]$ à valeurs réelles . Si $f \in \mathcal{C}([0,\pi])$, il est tout à fait clair que les intégrales $\int_0^\pi |f(x)| dx$ et $\int_0^\pi [f(x)]^2 dx$ existent et sont finies. On peut normer $\mathcal{C}([0,\pi])$ par la norme $\|.\|_1$ définie pour $f \in \mathcal{C}([0,\pi])$ par : $\|f\|_1 = \int_0^\pi |f(x)| dx < +\infty$, ou encore par la norme $\|.\|_2$ définie pour $f \in \mathcal{C}([0,\pi])$ par : $\|f\|_2 = \left(\int_0^\pi [f(x)]^2 dx\right)^2$. Je vous laisse le soin de que ces applications définissent des normes. Soit a_0 , une fonction continue sur $[0,\pi]$. Considérons alors l'application φ définie par :

$$\varphi: (\mathcal{C}([0,\pi]), \|.\|_2) \longrightarrow (\mathcal{C}([0,\pi]), \|.\|_1)$$

$$f \longmapsto a_0 f$$

Alors, φ est linéaire et continue. Il est évident que φ est une application linéaire. En effet, si λ est un réel et f et g, deux fonctions de $\mathcal{C}([0,\pi])$, on vérifie très facilement que l'on a : $\varphi(f+\lambda.g)=\varphi(f)+\lambda.\varphi(g)$. Reste à prouver que φ est continue. On va le démontrer, puis tenter de calculer $|||\varphi|||$. Mais au préalable, il faut montrer que l'application φ est bien définie, autrement dit, que si l'on choisit $f\in\mathcal{C}([0,\pi])$, alors, $\varphi(f)\in\mathcal{C}([0,\pi])$. C'est immédiat, car un produit de fonctions continues est continu.

Prouvons à présent que l'application φ est continue. Soit $f \in \mathcal{C}([0,\pi])$. Posons $g := \varphi(f)$. On a, en utilisant l'inégalité de Cauchy-Schwarz :

$$\|\varphi(f)\|_1 := \int_0^{\pi} |g(x)| dx = \int_0^{\pi} |a_0(x)f(x)| dx \le \left(\int_0^{\pi} a_0^2(x) dx\right)^{\frac{1}{2}} \left(\int_0^{\pi} f^2(x) dx\right)^{\frac{1}{2}} = \|a_0\|_2 \cdot \|f\|_2.$$

Cela prouve donc que φ est continue en $0_{\mathcal{C}([0,\pi])}$ donc sur $\mathcal{C}([0,\pi])$ tout entier

De plus, on obtient également l'information suivante : $|||\varphi||| \le ||a_0||_2$. On va démontrer qu'en fait, cette inégalité est une égalité. En effet, il suffit de supposer que f est la fonction a_0 (cas d'égalité dans l'inégalité de Cauchy-Schwarz). Alors, $||\varphi(f)||_1 = ||a_0||_2^2$ et on en déduit (par définition de la borne supérieure) que $|||\varphi||| \ge ||a_0||_2$. Finalement, on a donc : $|||\varphi||| = ||a_0||_2$.

• Exemple 2 : on appelle $\mathbb{R}[X]$ l'espace des polynômes à coefficients réels. On munit cet espace de la norme $\|.\|$ définie pour $P \in \mathbb{R}[X]$, s'écrivant sous la forme $P = \sum_{n=0}^{\deg P} a_n X^n$, par : $\|P\| := \sup_{n \in \{0, \dots, \deg P\}} |a_n|$. Soit $x_0 \in \mathbb{R}$, tel que $|x_0| < 1$. On appelle u l'application (linéaire, mais à vous $n \in \{0, \dots, \deg P\}$ de le vérifier) définie par :

$$u = (\mathbb{R}[X], ||.||) \longrightarrow (\mathbb{R}, |.|) .$$

$$P \longmapsto P(x_0)$$

On va démontrer que u est continue et calculer sa norme subordonnée. Soit $P \in \mathbb{R}[X]$, s'écrivant sous la forme $P = \sum_{n=0}^{\deg P} a_n X^n$. On sait que $u(P) = \sum_{n=0}^{\deg P} a_n x_0^n$. On peut donc écrire que :

$$|P(x_0)| \le ||P|| \cdot \sum_{n=0}^{\deg P} |x_0|^n = ||P|| \cdot \frac{1 - |x_0|^{\deg P + 1}}{1 - |x_0|} \le \frac{||P||}{1 - |x_0|}.$$

Cette inégalité nous prouve en particulier que u est continue. Nous allons à présent construire une suite d'éléments de $\mathbb{R}[X]$ de norme 1, que nous allons tenter de faire converger vers ||u|||. (caractérisation de la borne supérieure à l'aide de suites) Choisissons pour tout entier n, $Q_n := \sum_{k=0}^n \varepsilon_k X^k$, où ε_k désigne le signe de x_0^k . Il est clair que pour tout entier n, $||Q_n|| = 1$. On a :

$$u(Q_n) = \sum_{k=0}^{n} |x_0|^k = \frac{1 - |x_0|^{n+1}}{1 - |x_0|}.$$

On en déduit que pour tout entier naturel n, on a : $\frac{|u(Q_n)|}{\|Q_n\|} \le \|u\| \le \frac{1}{1-|x_0|}$. Un passage à la limite démontre donc que : $\|u\| = \frac{1}{1-|x_0|}$.