CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Linear Regression

Find the price!

Area		Price
	1,510	30,250
	1,005	20,150
	2,500	50,050
	3,000	60,050

Price for Area: 500? 2000?, 3500?

Area		1-NN	3-NN
	500	20,150	30,150
	2,000	30,250	33,483.33
	3,500	60,050	50,050

The Dot Product is Commutative

For two vectors, **A** and **B**

$$A.B = B.A$$

As

$$\mathbf{A}.\mathbf{B} = A^T B$$

And

$$\mathbf{B} \cdot \mathbf{A} = B^T A$$

Therefore,

$$A^TB = B^TA$$

Geometric Interpretation of absorbing the Bias (Kilian Weinberger, Lecture 3: The Perceptron, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html)

A quick overview of it all

- Fitting a line to data
- How to predict using the equation of line
- How to fit the line to data?
 - Cost function: Mean Square Error
 - Plot of the cost function
 - Gradients of the cost function
 - Stepping down the slopes: Gradient descent
 - Convex and non-convex cost functions
 - Local and global minima

Linear Regression

Linear Regression with one variable

Size ($feet^2$)	Price \$(×1000)
1500	190
2250	285
2740	420
2318	300
2500	350
1250	180

Notation:

m = Number of training samples

n = Number of features

 $x_i = j$ th feature

y = Label

 (x^i, y^i) : the *ith* sample in the dataset

Linear Regression with one variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable, univariate linear regression, simple linear regression

Choose θ_0 , θ_1 such that $h_{\theta}(x) \approx y$ for our training examples (x, y).

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

A simplified case

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

Assume $\theta_0 = 0$

Hypothesis

$$h_{\theta}(x) = \theta_1 x$$

Parameters

$$\theta_1$$

Cost function

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

 $Minimize_{\theta_1}J(\theta_1)$

$h_{\theta}(x) = \theta_1 x$

(for a fixed θ_1 , this is a function of x)

X	у	3	_				$h_{\theta}(x)$
1	1			θ_1 =	-1 /	/	-0.5
2	2	2	+	o_1 -		θ_1	=0.5
3	3	У					
		1				$\theta_1 = 0$	
$ heta_1$ =	= {0,1,	2 }	0	1 x	2	3	_

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$J(\theta_1)$

(function of the parameter θ_1)

$$J(1) = \frac{1}{2(3)} \Big((1-1)^2 + (2-2)^2 + (3-3)^2 \Big) = 0$$

$$J(0.5) = \frac{1}{6} \Big((0.5-1)^2 + (1-2)^2 + (1.5-3)^2 \Big) = 0.58$$

$$J(0) = \frac{1}{6} \Big((1)^2 + (2)^2 + (3)^2 \Big) = 2.3$$

Using both of the "knobs"

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters

$$\theta_0$$
, θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$Minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$J(\theta_0,\theta_1)$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

Goal: Minimize $J(\theta_0, \theta_1)$

Outline:

- Start with some (θ_0, θ_1) For example (0,0)
- Keep updating (θ_0, θ_1) to reduce $J(\theta_0, \theta_1)$
 - Until we <u>hopefully</u> reach <u>a</u> minimum

A simplified version of gradient descent

Assume again that we set $\theta_0 = 0$ and our hypothesis and cost function practically have only one coefficient, θ_1 .

$$h_{\theta}(x) = \theta_1 x$$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{\ddot{d}}{d\theta_1} (J(\theta_1))$$

 $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$

Direction of step

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches x_1 $= \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

2.5
$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} (J(\theta_1))$$

 $\theta_1 \coloneqq \theta_1 - \alpha(negative)$: Increases θ_1

 $\theta_1 \coloneqq \theta_1 - \alpha(positive)$: Decreases θ_1

Step size

Gradient =
$$\frac{y_2-y_1}{x_2-x_1} = \frac{f(x_2)-f(x_1)}{x_2-x_1}$$

The limiting case is when x_2 approaches $x_1 = \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

$$\theta_1 \coloneqq \theta_1 - \alpha \, \frac{d}{d\theta_1} \big(J(\theta_1) \big)$$
 $\theta_1 \coloneqq \theta_1 - \alpha \, (negative) \text{: Increases } \theta_1$
 $\theta_1 \coloneqq \theta_1 - \alpha \, (positive) \text{: Decreases } \theta_1$

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- With α too small, takes a long time to reach the minimum

Step size

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches $x_1 = \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} \big(J(\theta_1) \big)$$
 $\theta_1 \coloneqq \theta_1 - \alpha (negative)$: Increases θ_1
 $\theta_1 \coloneqq \theta_1 - \alpha (positive)$: Decreases θ_1

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- With α too small, takes a long time to reach the minimum
- With α too big, we can miss the minimum, and may fail to converge

Step size

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The limiting case is when x_2 approaches x_1 $= \frac{\Delta y}{\Delta x} as \Delta x \rightarrow 0 = \frac{dy}{dx}$

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α .
- No need to decrease α with time or number of steps

$$h_{\theta}(x) = \theta_1 x$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

θ_1	=	0.1
α	=	0.1

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{\frac{d}{d\theta_1}}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

Cost = 8.423, theta_1 = 0.1 Theta 1 = 0.986 (after first iteration)

Cost = 2.39, theta_1 = 0.986 Theta_1 = 1.466 (after second iteration)

х	Y	predictions1	predictions2
1	2	0.1	0.986
2	4	0.2	1.972
3	6	0.3	2.958

$$h_{\theta}\left(x\right) = \theta_{0} + \theta_{1}x$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

x	Y
1	2
2	4
3	6

$$\theta_1 = 0.1$$
 $\alpha = 0.5$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$$h_{\theta}\left(x\right) = \theta_{0} + \theta_{1}x$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

X	Y
1	2
2	4
3	6

$$\theta_1 = 0.1$$
 $\alpha = 0.9$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

x	Y
2	4
4	8
6	12

$$\theta_1 = 0.5$$

$$\alpha = 0.1$$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \frac{\alpha}{\alpha} \frac{d}{d\theta_1} (J(\theta_1))$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

(Where α is the learning rate. E.g., 1, 0.1, 0.01, 0.001,... etc.)

Correct: **Simultaneous update**

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) } }
```

```
repeat until convergence {
   \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \qquad h_{\theta}(x) = \theta_0 + \theta_1 x
        (for j = 1 and j = 0)
```

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) x^{(i)}$$

```
\begin{array}{l} \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \end{array} \right] \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \\ \} \end{array}
```

Convex function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0,\theta_1)$

$$w_j \leftarrow w_j - \eta rac{\partial E}{\partial w_j} \ w_j \leftarrow w_j + \Delta w_j \ \Delta w_j = -\eta rac{\partial E}{\partial w_j} \ \Delta w_j = \eta (t-y) x_j^{(i)}$$

Batch Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Types of Gradient Descent

Batch gradient descent: Computes the gradient of the cost function with respect to to the parameters θ for the entire training dataset (m instances).

Stochastic gradient descent: SGD performs a parameter update for *each* training example $x^{(j)}$ and label $y^{(j)}$

Mini-batch gradient descent: Mini-batch gradient descent takes the best of both worlds and performs an update for random mini-batches of k training examples, where k < m.

Read: https://ruder.io/optimizing-gradient-descent/

Types of Gradient Descent

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

Multivariate

Single feature (variable)

Size (feet ²)	Price (\$1000)		
x	y		
2104	460		
1416	232		
1534	315		
852	178		
•••	•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables)

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	• • •	• • •	• • •	• • •

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Notation:

m = Number of training samples

n = Number of features

x = Feature

y = Label

 $(\mathbf{x_i}^{(i)}, \mathbf{y_i}^{(i)})$: the jth feature of the ith sample in the dataset

Generally speaking, weights are indicating the importance of each feature.

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now:

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^n$$
 $\mathbf{\Theta} \in \mathbb{R}^{n+1}$

Geometric Interpretation

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
 (a 2-D hyperplane in 3-D)

Hypothesis

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_1 \ x_2 \ ... \ x_n]$ is the n-dimensional feature vector, and $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^n$$
, $\Theta \in \mathbb{R}^{n+1}$

To make this more uniform, assume $x_0 = 1$ to get:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

where, $X = [x_0 \ x_1 \ x_2 \ ... \ x_n]$ is the (n+1)-dimensional feature vector, and

 $\Theta = [\theta_0 \ \theta_1 \ ... \ \theta_n]$ is an (n+1)-dimensional vector of weights.

$$X \in \mathbb{R}^{n+1}$$
, $\Theta \in \mathbb{R}^{n+1}$

Vectorizing the notation

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Now we can redefine our hypothesis as:

$$\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ and where } \Theta \in \mathbb{R}^{n+1} \text{ and } X \in \mathbb{R}^{n+1}$$
 and,
$$h_{\Theta}(X) = \Theta^T X$$

Multivariate linear regression

For m-training instances

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

$$\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}, X = \begin{bmatrix} x_0^{(1)} & x_0^{(2)} & x_0^{(3)} & x_0^{(m)} \\ x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & x_n^{(m)} \end{bmatrix}$$

$$n \times 1$$

$$n \times m$$

$$h_{\theta}(X) = \theta^{T} X = [\theta_{0} \ \theta_{1} \ \dots \theta_{n}] \begin{bmatrix} x_{0}^{(1)} x_{0}^{(2)} x_{0}^{(3)} & x_{0}^{(m)} \\ x_{1}^{(1)} x_{1}^{(2)} x_{1}^{(3)} & \dots & x_{1}^{(m)} \\ \dots & \dots & \dots \\ x_{n}^{(1)} x_{n}^{(2)} x_{n}^{(3)} & x_{n}^{(m)} \end{bmatrix} = [h_{\theta}(x^{(0)}) \ h_{\theta}(x^{(1)}) \ \dots h_{\theta}(x^{(m)})]$$

$$1 \times n \qquad n \times m \qquad = \qquad 1 \times m$$

Multivariate Gradient Descent

Multivariate Gradient Descent

Hypothesis:
$$h_{\theta}(x) = h_{\Theta}(X) = \Theta^T X = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Parameter vector: $\Theta = \theta_0$, $\theta_1 \dots \theta_n$

Feature vector: $X = x_0 x_1 \cdots x_n$

Cost Function:
$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
repeat{ \theta_j \coloneqq \theta_j - \alpha \, \frac{\partial}{\partial \, \theta_j} \big( J(\Theta) \big) \qquad \text{//simultaneously update for all } j = 0 \, \dots \, n }
```

Gradient Descent

```
Previously (n=1):
Repeat {
      \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})
                                               \frac{\partial}{\partial \theta_0} J(\theta)
      \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}
                              (simultaneously update \theta_0, \theta_1)
```

```
New algorithm (n \ge 1):
Repeat {
    \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
                (simultaneously update \theta_j for j=0,\ldots,n )
 \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}
```

Sources

- Worldwide Calculus: Lines, Planes, and Hyperplanes, https://www.youtube.com/watch?v=-sNDkhE2Vsk
- Akshay L Chandra medium.com
 - McCulloch-Pitts Neuron—Mankind's First Mathematical Model Of A Biological Neuron: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
 - Perceptron: The Artificial Neuron (An Essential Upgrade To The McCulloch-Pitts Neuron): https://towardsdatascience.com/perceptron-the-artificial-neuron-4d8c70d5cc8d
 - Perceptron Learning Algorithm: A Graphical Explanation Of Why It Works: https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
- Prof. Mitesh M. Khapra (https://www.cse.iitm.ac.in/~miteshk/) on NPTEL's (https://nptel.ac.in/) Deep Learning course (https://onlinecourses.nptel.ac.in/noc18_cs41/preview)
- Machine Learning for Intelligent Systems, Kilian Weinberger, Cornell, Lectures 3-6, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
 - Dr. Agha Ali Lectures
- Perceptrons. An Introduction to Computational Geometry. Marvin Minsky and Seymour Papert.
 M.I.T. Press, Cambridge, Mass., 1969. https://science.sciencemag.org/content/165/3895/780