BSB 2017

Exercice 1 -

1. Je calcule P^2 puis P^3 :

$$P^{2} = P \times P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

et

$$P^{3} = P^{2} \times P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I.$$

J'obtiens finalement que $P^3 = I$, *i.e.* $P \times P^2 = I$.

J'en déduis alors que P est inversible et que $P^{-1} = P^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

2. Je calcule $P^{-1}A$ puis multiplie le résultat par P:

$$P^{-1} \times A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

et

$$P^{-1}A \times P = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = L.$$

Ainsi j'ai bien montré que $P^{-1}AP = L$.

3. a) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $P^{-1}A^nP = L^n$.

Initialisation : Pour n = 0,

$$P^{-1}A^{0}P = P^{-1}IP = P^{-1}P = I$$
 et $L^{0} = I$.

Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $P^{-1}A^nP = L^n$. Alors

$$L^{n+1} = L^n \times L = P^{-1}A^nP \times P^{-1}AP = P^{-1}A^nIAP = P^{-1}A^{n+1}P.$$

Donc $P^{-1}A^{n+1}P = L^{n+1}$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 0 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad P^{-1}A^nP = L^n.$$

b) Je détermine *J* puis calcule ses puissances successives :

$$J = L - I = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi

$$J^{2} = J \times J = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

et

$$J^{3} = J^{2} \times J = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0_{3}.$$

c) D'après la question précédente, pour tout $k \geqslant 3$, $J^k = J^3 \times J^{k-3} = 0_3 \times J^{k-3} = 0_3$. Par ailleurs, les matrices I et J commutent donc je peux appliquer la formule du binôme de Newton à la matrice L = I + J. J'obtiens alors

$$L^{n} = (I+J)^{n} = \sum_{k=0}^{n} {n \choose k} I^{n-k} J^{k}.$$

Comme tous les termes de cette somme sont nuls dès lors que $k \ge 3$, j'obtiens que

$$\forall n \geq 2, \quad L^n = \binom{n}{0} I^{n-0} J^0 + \binom{n}{1} I^{n-1} J^1 + \binom{n}{2} I^{n-2} J^2 = I + nJ + \frac{n(n-1)}{2} J^2.$$

d) D'après les résultats obtenus aux questions précédentes, pour $n \ge 2$,

$$L^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2n & 0 \\ 0 & 0 & 2n \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 2n(n-1) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}.$$

Pour n = 0 et n = 1, cette formule me donne les matrices

$$\begin{pmatrix} 1 & 2 \times 0 & 2 \times 0 \times (-1) \\ 0 & 1 & 2 \times 0 \\ 0 & 0 & 1 \end{pmatrix} = I = L^0 \quad \text{et} \quad \begin{pmatrix} 1 & 2 \times 1 & 2 \times 1 \times 0 \\ 0 & 1 & 2 \times 1 \\ 0 & 0 & 1 \end{pmatrix} = L = L^1.$$

Donc cette formule est bien valable pour tous les entiers naturels $n \in \mathbb{N}$.

e) Je sais désormais que $P^{-1}A^nP = L^n$, donc que $PL^nP^{-1} = PP^{-1}A^nPP^{-1} = IA^nI = A^n$. Ainsi $A^n = PL^nP^{-1}$ et il ne me reste plus qu'à calculer les produits :

$$P \times L^{n} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \end{pmatrix}$$

et

$$A^{n} = PL^{n} \times P^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}.$$

4. a) La suite $(u_n)_{n\in\mathbb{N}}$ est une suite constante égale à $u_1=1$. Alors pour tout $n\in\mathbb{N}^*$,

$$u_n = 1$$
.

b) Pour $n \ge 1$, je calcule le produit AX_n :

$$A \times X_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix} = \begin{pmatrix} 1 \\ v_n + 2w_n \\ 2 + w_n \end{pmatrix} = \begin{pmatrix} 1 \\ v_{n+1} \\ w_{n+1} \end{pmatrix} = X_{n+1}.$$

Ainsi j'ai bien montré que $X_{n+1} = AX_n$.

c) Je raisonne par récurrence sur $n \in \mathbb{N}^*$.

Énoncé: Je note \mathcal{P}_n la propriété: $X_n = A^{n-1}X_1$.

Initialisation : Pour n = 1, $A^0 X_1 = I X_1 = X_1$. Ainsi \mathcal{P}_1 est vraie.

Hérédité : Soit $n \ge 1$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $X_n = A^{n-1}X_1$. Alors

$$X_{n+1} = A \times X_n = A \times A^{n-1} X_1 = A^n X_1.$$

Donc $X_{n+1} = A^{n+1-1}X_1$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 1 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 1$, *i.e.*

$$\forall n \in \mathbb{N}^*, \quad X_n = A^{n-1}X_1.$$

d) Par définition, je sais que $X_n = \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix}$. Or j'ai montré que $X_n = A^{n-1}X_1$.

Donc il me suffit de calculer $X_n = A^{n-1}X_1$ pour déduire les formules de v_n et w_n :

$$A^{n-1}X_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2(n-1)(n-2) & 1 & 2(n-1) \\ 2(n-1) & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2(n-1)(n-2) + 4(n-1) \\ 2(n-1) + 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2n(n-1) \\ 2n \end{pmatrix}$$

Ainsi j'en déduis bien que pour tout $n \ge 1$,

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

- 5. a) La ligne 1 doit être complétée de la façon suivante : 1. A=[1,0,0;0,1,2;2,0,1].
 - b) Il faut, pour chaque i, mémoriser le deuxième coefficient de la matrice colonne X.
 D'où la réponse C: v(i)=X(2).
 - c) De la même manière, pour mémoriser les termes de la suite $(w_n)_{n\geqslant 1}$, il faut cette fois considérer le troisième coefficient de la matrice colonne X. D'où w(i)=X(3).

Finalement, voici le programme complété:

1.	A=[1,0,0;0,1,2;2,0,1].
2.	u=zeros(1,10)
3.	v=zeros(1,10)
4.	w=zeros(1,10)
5.	u(1)=1,v(1)=0,w(1)=2
6.	X = [1;0;2]
7.	for i=2:10
8.	X=A*X
9.	u(i)=1
10.	v(i)=X(2)
11.	w(i)=X(3)
12.	end

Exercice 2 -

1. a) Je calcule la limite de la fonction g en $+\infty$:

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$$
Par produit,
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} xe^x = +\infty.$$

Donc par somme,

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x e^x - 1 = +\infty.$$

b) La fonction g est donnée sous la forme d'une somme. Plus particulièrement, g est de la forme $g(x) = u(x) \times v(x) - 1$ avec u(x) = x et $v(x) = e^x$. Comme u'(x) = 1 et $v'(x) = e^x$, alors

$$g'(x) = 1 \times e^x + x \times e^x + 0 = (x+1)e^x$$
.

Pour obtenir les variations de g, il me faut étudier le signe de g'(x): pour tout $x \ge 0$, x+1>0 et $e^x>0$ donc g'(x)>0. Ainsi la fonction g est strictement croissante sur \mathbb{R}_+ . De plus, g(0)=-1, ce qui me permet de déduire le tableau des variations suivant pour la fonction g sur $\mathbb{R}_+=[0,+\infty[$:

x	0	α	+∞
g'(x)		+	
g	-1	0	+∞

Remarque : J'anticipe la question suivante en plaçant le réel α .

c) Sur l'intervalle $[0, +\infty[$, la fonction g est dérivable donc continue. Elle y est aussi strictement croissante d'après le tableau de variation précédent. Aussi, comme g(0) = -1 et que $\lim_{x \to +\infty} g(x) = +\infty$, alors d'après le théorème des valeurs intermédiaires, il existe un unique antécédent de 0 dans l'intervalle $[0, +\infty[$ (l'unicité provenant de la stricte monotonie). Donc l'équation g(x) = 0 admet une unique solution α dans $[0, +\infty[$. Plus précisément, puisque g(0) = -1 < 0 et $g(1) = e - 1 \approx 1.7 > 0$, alors j'en déduis que $0 < \alpha < 1$, i.e.

$$\alpha \in [0,1].$$

d) Je sais désormais que la fonction g est strictement croissante sur $[0, +\infty[$ et qu'elle s'annule en α . Alors le signe de g(x) est directement donné par le tableau suivant :

x	0		α		+∞
g(x)		_	0	+	

2. a) Je calcule les limites de la fonction f en 0^+ et en $+\infty$:

$$\lim_{x \to 0^{+}} e^{x} = 1$$

$$\lim_{x \to 0^{+}} -\ln(x) = +\infty$$
Par somme,
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} - \ln(x) = +\infty.$$

Lorsque x tend vers $+\infty$, les formules habituelles me donnent une forme indéterminée. Je réécris donc la fonction f sous une forme plus adaptée aux croissances comparées :

$$\forall x > 0, \quad f(x) = x \left(\frac{e^x}{x} - \frac{\ln(x)}{x} \right).$$

Alors par croissances comparées,

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{e^x}{x} = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} -\frac{\ln(x)}{x} = 0$$
Par somme,
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{e^x}{x} - \frac{\ln(x)}{x} = +\infty.$$

Puis

$$\lim_{x \to +\infty} \frac{e^x}{x} - \frac{\ln(x)}{x} = +\infty$$

$$\lim_{x \to +\infty} x = +\infty$$
Par produit,
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - \frac{\ln(x)}{x} \right) = +\infty.$$

b) La fonction f est donnée sous la forme d'une somme donc je dérive terme à terme :

$$f'(x) = e^x - \frac{1}{x} = \frac{xe^x}{x} - \frac{1}{x} = \frac{xe^x - 1}{x} = \frac{g(x)}{x}.$$

Ainsi j'ai bien montré que $\forall x > 0$, $f'(x) = \frac{g(x)}{x}$

Pour obtenir les variations de f, il me faut étudier le signe de f'(x) : sur $]0, +\infty[$, x > 0 et j'ai déjà étudié le signe de g(x). J'en déduis donc le tableau de variation de f :

x	0 α	+∞
f'(x)	- 0	+
f	$+\infty$ $f(\alpha)$	+∞

c) Par définition, α est l'unique solution de l'équation $g(\alpha)=0$. Donc $\alpha\times e^{\alpha}-1=0$. Par suite, $\alpha\times e^{\alpha}=1$ et puisque α est non nul (je sais que g(0)=-1), je peux en conclure que le réel α vérifie

$$\frac{1}{\alpha} = e^{\alpha}$$
.

Par conséquent, en utilisant cette identité dans les deux sens, j'obtiens que

$$f(\alpha) = e^{\alpha} - \ln(\alpha) = \frac{1}{\alpha} + \ln\left(\frac{1}{\alpha}\right) = \frac{1}{\alpha} + \ln\left(e^{\alpha}\right) = \frac{1}{\alpha} + \alpha.$$

Ainsi j'ai bien montré que $f(\alpha) = \alpha + \frac{1}{\alpha}$.

3. a) D'après la question **2.b**), pour tout x > 0, $f'(x) = e^x - \frac{1}{x}$. Ainsi f' est donnée sous la forme d'une somme, donc je dérive terme à terme :

$$f''(x) = e^x - \left(-\frac{1}{x^2}\right) = e^x + \frac{1}{x^2}.$$

- b) Pour tout x > 0, $e^x > 0$ et $\frac{1}{x^2} > 0$ donc $f''(x) = e^x + \frac{1}{x^2} > 0$ ce qui démontre que la fonction f est convexe sur l'intervalle $]0, +\infty[$.
- 4. Voici l'allure de la courbe représentative de la fonction f.

Exercice 3 -

1. Selon l'énoncé, à l'instant 0, l'enfant se trouve au niveau A. Alors à l'instant 1, il sera toujours au niveau A avec probabilité $\frac{1}{3}$ et il passera au niveau B avec probabilité $\frac{2}{3}$. Donc

$$a_1 = \frac{1}{3}$$
, $b_1 = \frac{2}{3}$ et $c_1 = 0$.

2. À l'instant n, l'enfant se trouve au niveau A, B ou C. Donc $\{A_n, B_n, C_n\}$ forme un système complet d'événements. Alors par la formule des probabilités totales,

$$\begin{aligned} a_{n+1} &= P(A_{n+1}) = P(A_n \cap A_{n+1}) + P(B_n \cap A_{n+1}) + P(C_n \cap A_{n+1}) \\ &= P(A_n) \times P_{A_n}(A_{n+1}) + P(B_n) \times P_{B_n}(A_{n+1}) + P(C_n) \times P_{C_n}(A_{n+1}) \\ &= a_n \times \frac{1}{3} + b_n \times 0 + c_n \times 0 = \frac{1}{3} a_n \end{aligned}$$

De la même manière,

$$b_{n+1} = P(B_{n+1}) = P(A_n \cap B_{n+1}) + P(B_n \cap B_{n+1}) + P(C_n \cap B_{n+1})$$

$$= P(A_n) \times P_{A_n}(B_{n+1}) + P(B_n) \times P_{B_n}(B_{n+1}) + P(C_n) \times P_{C_n}(B_{n+1})$$

$$= a_n \times \frac{2}{3} + b_n \times \frac{1}{3} + c_n \times 0 = \frac{2}{3}a_n + \frac{1}{3}b_n$$

et

$$\begin{split} c_{n+1} &= P(C_{n+1}) = P(A_n \cap C_{n+1}) + P(B_n \cap C_{n+1}) + P(C_n \cap C_{n+1}) \\ &= P(A_n) \times P_{A_n}(C_{n+1}) + P(B_n) \times P_{B_n}(C_{n+1}) + P(C_n) \times P_{C_n}(C_{n+1}) \\ &= a_n \times 0 + b_n \times \frac{2}{3} + c_n \times 1 = \frac{2}{3}b_n + c_n \end{split}$$

Finalement j'ai bien montré que pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \frac{1}{3}a_n$$
, $b_{n+1} = \frac{2}{3}a_n + \frac{1}{3}b_n$ et $c_{n+1} = \frac{2}{3}b_n + c_n$.

3. Je sais que pour tout $n \in \mathbb{N}$, $a_{n+1} = \frac{1}{3}a_n$. Donc la suite $(a_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison $q = \frac{1}{3}$. Comme l'enfant débute au niveau A, le premier terme est $a_0 = 1$. Je peux alors donner la forme explicite de la suite $(a_n)_{n \in \mathbb{N}}$: pour tout $n \in \mathbb{N}$,

The explicite de la suite $(a_n)_{n\in\mathbb{N}}$: pour tout $n\in\mathbb{N}$,

$$a_n = a_0 \times q^n = 1 \times \left(\frac{1}{3}\right)^n = \frac{1}{3^n}.$$

J'ai bien montré que

$$\forall n \in \mathbb{N}, \quad a_n = \frac{1}{3^n}.$$

4. a) Pour montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique, j'exprime v_{n+1} en fonction de v_n pour un $n\in\mathbb{N}$ quelconque :

$$v_{n+1} = 3^{n+1}b_{n+1} = 3^{n+1}\left(\frac{2}{3}a_n + \frac{1}{3}b_n\right) = 3^n(2a_n + b_n)$$
$$= 2 \times 3^n a_n + 3^n b_n = 2 \times 3^n \times \frac{1}{3^n} + v_n = 2 + v_n$$

Finalement j'ai montré que pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + 2$. Donc la suite $(v_n)_{n \in \mathbb{N}}$ est bien une suite arithmétique de raison r = 2. b) Comme la suite $(v_n)_{n \in \mathbb{N}}$ est arithmétique de raison r = 2 et de premier terme $v_0 = 3^0 b_0 = 1 \times 0 = 0$, je peux alors donner sa forme explicite : pour tout $n \in \mathbb{N}$,

$$v_n = v_0 + n \times r = 0 + n \times 2 = 2n$$
.

Et puisque pour tout $n \in \mathbb{N}$, $v_n = 3^n b_n$, alors j'en déduis que

$$\forall n \in \mathbb{N}, \quad b_n = \frac{v_n}{3^n} = \frac{2n}{3^n}.$$

5. Pour tout entier naturel n, la somme des probabilités $a_n + b_n + c_n$ correspond à la probabilité que l'enfant soit au niveau A, au niveau B ou au niveau C. Ainsi

$$\forall n \in \mathbb{N}, \quad a_n + b_n + c_n = 1.$$

Je peux alors en déduire une expression de c_n en fonction de n grâce aux expressions désormais connues pour a_n et b_n :

$$c_n = 1 - a_n - b_n = 1 - \frac{1}{3^n} - \frac{2n}{3^n} = 1 - \frac{2n+1}{3^n}.$$

Comme par croissances comparées $\lim_{n\to+\infty} \frac{2n+1}{3^n} = 0$, alors

$$\lim_{n\to+\infty}c_n=1.$$

Cela signifie que l'enfant terminera par arriver au niveau C avec une probabilité 1.

- 6. a) Les valeurs prises par la variable aléatoire *X* sont entières. En outre, il faut au moins deux étapes pour arriver du niveau *A* au niveau *C*. Ainsi *X* peut prendre n'importe quelle valeur entière supérieure ou égale à 2.
 - b) Soit $n \ge 2$. L'événement [X = n] correspond au fait que l'enfant atteint le sommet à l'instant n, donc qu'il se trouve au niveau C à l'instant n mais est encore au niveau B à l'instant n-1. Cela justifie bien l'égalité ensembliste $[X = n] = B_{n-1} \cap C_n$.
 - c) D'après la question précédente et en me servant des formules déjà connues, pour $n \ge 2$, en appliquant la formules des probabilités composées, j'obtiens que

$$P(X=n) = P(B_{n-1} \cap C_n) = P(B_{n-1}) \times P_{B_{n+1}}(C_n) = \frac{2(n-1)}{3^{n-1}} \times \frac{2}{3} = \frac{4(n-1)}{3^n}.$$

7. a) La variable aléatoire X_1 suit une loi géométrique de paramètre $p=\frac{2}{3}$. En effet, X_1 est le rang du premier succès "monter au niveau B" lors de répétitions identiques et indépendantes d'expériences de Bernoulli (montera ou ne montera pas) de probabilité de succès $p=\frac{2}{3}$.

Le support de X_1 est donné par $X_1(\Omega) = \mathbb{N}^*$ et pour tout $k \in \mathbb{N}^*$,

$$P(X_1 = k) = p(1-p)^{k-1} = \frac{2}{3} \times \left(\frac{1}{3}\right)^{k-1} = \frac{2}{3^k}.$$

L'espérance de X_1 est donnée par $E(X_1) = \frac{1}{p} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$.

b) Il s'agit exactement de la même situation sauf que l'enfant se trouve cette fois au niveau B et le succès devient "monter au niveau C", avec la même probabilité $p=\frac{2}{3}$. Donc X_2 suit aussi une loi géométrique de paramètre $p=\frac{2}{3}$.

c) Le nombre d'étapes nécessaires pour rejoindre le niveau C depuis le niveau A est égal à la somme du nombre d'étapes pour passer de A à B et de celui pour passer de B à C. Ainsi

$$X = X_1 + X_2$$
.

Comme X_1 admet une espérance et que X_2 suit la même loi que X_1 , alors X_2 admet une espérance et $E(X_2) = E(X_1) = \frac{3}{2}$.

Puis par linéarité, la variable aléatoire X admet aussi une espérance et

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = \frac{3}{2} + \frac{3}{2} = 3.$$

Exercice 4 -

1. a) Soit $A \geqslant 1$. Je cherche à calculer $I(A) = \int_1^A \frac{\alpha}{t^{\alpha+1}} \, \mathrm{d}t$. Je commence par chercher une primitive à $f(t) = \frac{\alpha}{t^{\alpha+1}} = \alpha \times t^{-(\alpha+1)}$. Une primitive de f est donnée par

$$F(t) = \alpha \times \frac{t^{-(\alpha+1)+1}}{-(\alpha+1)+1} = \alpha \times \frac{t^{-\alpha}}{-\alpha} = -t^{-\alpha} = -\frac{1}{t^{\alpha}}.$$

Finalement

$$I(A) = \int_{1}^{A} \frac{\alpha}{t^{\alpha+1}} dt = \left[-\frac{1}{t^{\alpha}} \right]_{1}^{A} = -\frac{1}{A^{\alpha}} + \frac{1}{1^{\alpha}} = 1 - \frac{1}{A^{\alpha}}.$$

- b) Pour t < 1, $f(t) = 0 \ge 0$ et pour $t \ge 1$, $f(t) = \frac{\alpha}{t^{\alpha+1}} \ge 0$, car $\alpha > 1$ et $t \ge 1$. Donc f est positive sur \mathbb{R} .
 - La fonction f est continue sur $]-\infty,1[$ car constante et elle est continue sur $[1,+\infty[$ comme fraction rationnelle. Donc f admet au plus un point de discontinuité.
 - Il reste à montrer que l'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut 1. Or $\int_{-\infty}^{1} f(t) \, \mathrm{d}t = \int_{-\infty}^{1} 0 \, \mathrm{d}t$ converge et vaut 0 et d'après la question précédente, $\int_{1}^{+\infty} f(t) \, \mathrm{d}t$ est la limite de I(A) lorsque A tend vers $+\infty$. Comme $\lim_{A \to +\infty} \frac{1}{A^{\alpha}} = 0$, alors l'intégrale généralisée $\int_{1}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut $\lim_{A \to +\infty} I(A) = 1 0 = 1$. Alors par la relation de Chasles, l'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge et vaut

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{1} f(t) dt + \int_{1}^{+\infty} f(t) dt = 0 + 1 = 1.$$

Selon les trois points précédents, f décrit bien une densité de probabilité.

2. a) Soit $A \geqslant 1$. Je cherche à calculer $J(A) = \int_1^A \frac{\alpha}{t^{\alpha}} dt$. Je commence par chercher une primitive à $f(t) = \frac{\alpha}{t^{\alpha}} = \alpha \times t^{-\alpha}$. Une primitive de f est donnée par

$$F(t) = \alpha \times \frac{t^{-\alpha+1}}{-\alpha+1} = \frac{\alpha}{1-\alpha} \times t^{-(\alpha-1)} = \frac{\alpha}{1-\alpha} \times \frac{1}{t^{\alpha-1}}.$$

Finalement

$$J(A) = \int_1^A \frac{\alpha}{t^{\alpha}} dt = \left[\frac{\alpha}{1 - \alpha} \times \frac{1}{t^{\alpha - 1}} \right]_1^A = \frac{\alpha}{1 - \alpha} \times \left(\frac{1}{A^{\alpha - 1}} - \frac{1}{1^{\alpha - 1}} \right) = \frac{\alpha}{1 - \alpha} \left(\frac{1}{A^{\alpha - 1}} - 1 \right).$$

b) La variable aléatoire X admet une espérance si et seulement si l'intégrale généralisée $\int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t \text{ converge.} \qquad \text{Or } \int_{-\infty}^{1} t f(t) \, \mathrm{d}t = \int_{-\infty}^{1} 0 \, \mathrm{d}t \text{ converge et vaut } 0 \quad \text{et d'après}$ la question précédente, $\int_{1}^{+\infty} t f(t) \, \mathrm{d}t \text{ est la limite de } J(A) \text{ lorsque } A \text{ tend vers } +\infty.$ Comme $\lim_{A \to +\infty} \frac{1}{A^{\alpha-1}} = 0, \text{ alors l'intégrale généralisée} \int_{1}^{+\infty} t f(t) \, \mathrm{d}t \text{ converge et vaut}$

$$\lim_{A \to +\infty} J(A) = \frac{\alpha}{1 - \alpha} \times (0 - 1) = -\frac{\alpha}{1 - \alpha} = \frac{\alpha}{\alpha - 1}.$$

Alors par la relation de Chasles, l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ converge, *i.e.* la variable aléatoire X admet une espérance et

$$E(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-\infty}^{1} t f(t) dt + \int_{1}^{+\infty} t f(t) dt = 0 + \frac{\alpha}{\alpha - 1} = \frac{\alpha}{\alpha - 1}.$$

Ainsi j'ai bien montré que $E(X) = \frac{\alpha}{\alpha - 1}$.

- 3. La fonction de répartition F de X est donnée par $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$. Je raisonne par disjonction de cas :
 - Si x < 1, alors $F(x) = \int_{-\infty}^{x} 0 \, dt = 0$.
 - Si $x \ge 1$, alors $F(x) = \int_{-\infty}^{1} 0 \, dt + \int_{1}^{x} \frac{\alpha}{t^{\alpha+1}} \, dt = I(x) = 1 \frac{1}{x^{\alpha}}$.

Ainsi j'ai montré que pour tout $x \in \mathbb{R}$,

$$F(x) = \begin{cases} 0 & \text{si } x < 1, \\ 1 - \frac{1}{x^{\alpha}} & \text{si } x \ge 1. \end{cases}$$

4. a) Je cherche P(X > 2), pour un paramètre α égal à 2 :

$$P(X > 2) = 1 - P(X \le 2) = 1 - F(2) = 1 - \left(1 - \frac{1}{2^{\alpha}}\right) = \frac{1}{2^2} = \frac{1}{4}.$$

La probabilité que la bougie reste allumée plus de deux heures est $\frac{1}{4}$.

De même, la probabilité pour que la bougie reste allumée entre deux et trois heures est

$$P(2 < X < 3) = F(3) - F(2) = \left(1 - \frac{1}{3^2}\right) - \left(1 - \frac{1}{2^2}\right) = 1 - \frac{1}{9} - 1 + \frac{1}{4} = \frac{1}{4} - \frac{1}{9} = \frac{5}{36}$$

b) Il s'agit là d'une probabilité conditionnelle : je suppose que l'événement [X > 2] est vérifié et j'étudie la probabilité que l'événement [X > 3] se réalise. D'après la formule des probabilités conditionnelles,

$$P_{[X>2]}(X>3) = \frac{P\left([X>2]\cap[X>3]\right)}{P(X>2)} = \frac{P(X>3)}{P(X>2)} = \frac{1-F(3)}{\frac{1}{4}} = \left(1-\left(1-\frac{1}{3^2}\right)\right)\times 4 = \frac{4}{9}.$$

5. a) Par définition de la fonction de répartition, pour tout réel $x \in \mathbb{R}$,

$$G(x) = P(Y \leqslant x) = P(\ln(X) \leqslant x) = P(X \leqslant e^x) = F(e^x).$$

- b) Grâce au résultat de la question 3.,
 - Si $x \ge 1$, alors $e^x \ge 1$ et $G(x) = F(e^x) = 1 \frac{1}{(e^x)^{\alpha}} = 1 \frac{1}{e^{\alpha x}} = 1 e^{-\alpha x}$.
 - Si x < 0, alors $e^x < 1$ et $G(x) = F(e^x) = 0$.

Ainsi j'ai montré que pour tout $x \in \mathbb{R}$,

$$G(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-\alpha x} & \text{si } x \geqslant 0. \end{cases}$$

c) Je reconnais en G la fonction de répartition d'une loi exponentielle de paramètre α . Donc Y suit une loi exponentielle de paramètre α , *i.e.* $Y \hookrightarrow \mathcal{E}(\alpha)$. En particulier,

$$E(Y) = \frac{1}{\alpha}$$
 et $V(Y) = \frac{1}{\alpha^2}$.

6. a) Les X_i représentes les durées de vie des bougies, donc elles suivent la même loi que X. Alors les $\ln(X_i)$ suivent la même loi que $Y = \ln(X)$. Donc pour tout $i \in [1, n]$, $E(\ln(X_i)) = E(Y) = \frac{1}{\alpha}$ et par linéarité de l'espérance,

$$E(Z_n) = E\left(\frac{1}{n}\sum_{i=1}^{n}\ln(X_i)\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(\ln(X_i)\right) = \frac{1}{n}\sum_{i=1}^{n}\frac{1}{\alpha} = \frac{1}{n} \times n \times \frac{1}{\alpha} = \frac{1}{\alpha}.$$

Comme $E(Z_n) = \frac{1}{\alpha}$, alors Z_n est bien un estimateur sans biais de $\frac{1}{\alpha}$.

b) De la même manière qu'à la question précédente, je sais que pour tout $i \in [1, n]$, $V(\ln(X_i)) = V(Y) = \frac{1}{\alpha^2}$. Dès lors, comme les X_i sont indépendantes,

$$V(Z_n) = V\left(\frac{1}{n}\sum_{i=1}^n \ln(X_i)\right) = \frac{1}{n^2}\sum_{i=1}^n V(\ln(X_i)) = \frac{1}{n^2}\sum_{i=1}^n \frac{1}{\alpha^2} = \frac{1}{n^2} \times n \times \frac{1}{\alpha^2} = \frac{1}{n\alpha^2}.$$

Et comme Z_n est un estimateur sans biais, alors le risque quadratique est donné directement par la variance. Donc

$$r(Z_n) = \frac{1}{n\alpha^2}.$$

7. L'instruction mean $(\log(X))$ donne la moyenne des logarithmes des valeurs contenues dans la matrice X: il s'agit exactement de Z_{100} . Comme Z_n est un estimateur sans biais de $\frac{1}{\alpha}$, une estimation de α est donnée par

$$\frac{1}{Z_{100}} \approx \frac{1}{0.33} \approx 3.$$

La durée de vie moyenne d'une bougie est donnée par l'espérance de X, calculée à la question **2.b**). En remplaçant α par mon estimation dans la formule obtenue, j'obtiens que

$$E(X) = \frac{\alpha}{\alpha - 1} \approx \frac{3}{3 - 1} = \frac{3}{2}.$$

Ainsi la durée de vie moyenne d'une bougie est d'environ une heure et demie selon cette estimation.