

Erweiterung der CARNOT-Bibliothek im Bereich Hydraulik

IGE_THAMO

M.Sc. Stephan Volkmer

Hochschule Biberach
Studiengang Gebäudeklimatik & Energiesysteme
Institut für Gebäude- und Energiesysteme (IGE)

INHALT

- Das Forschungsprojekt AutTherm
- Vorstellung der Erweiterungen und Änderungen
- Ausblick
- Offene Fragen und Probleme

Hochschule Biberach

Institut für Gebäude- und Energiesysteme

- Kooperationen mit Industrie, Wirtschaft & Kommunen
- Lehrplattform f
 ür den Studiengang Energieingenieurwesen (Ba & Ma)
- 11 Professoren, 17 Mitarbeiter, 7 Labore
- Fachgebiete: MSR & Automatisierung, Lichttechnik, Lüftungstechnik,
 Kältetechnik und Hydraulik, Elektrotechnik & Smart Grid, Geothermie,
 energetische Bewertung
- Forschungsintensiv (~1,1 Mio. € Drittmittel / Jahr)
 (für eine HS dieser Größe)

Forschungsprojekt AutTherm

Automatisierungsgestützte Systemoptimierung therm. Energiesysteme

- Projektleitung Prof. Dr.-Ing. Martin Becker

Prof. Dr.-Ing. Alexander Floß

Prof. Dr. rer. nat. Stefan Hofmann

- Mitarbeiter 2 Vollzeit + 3 Teilzeit

- Laufzeit 10.2016 – 09.2019

Vorstellung der Erweiterungen und Änderungen

Vorbemerkungen

- Erfahrung mit CARNOT ~ 1 Jahr (erstes Nutzertreffen)
- Änderungen teilweise nur zur Erhöhung der Benutzerfreundlichkeit
- Berechnungen nicht in C-Skript, sondern als Funktionen

Veränderung der Kennlinie bei unterschiedliche Drehzahlen

Bisher:

Stellsignal ctr mit linearem Einfluss auf a₀

Geändert:

- Quadratischer Einfluss auf a₀
- Linearer Einfluss auf a₁
- Abgeleitet aus:

$$\frac{\dot{V}_1}{\dot{V}_2} = \frac{n_1}{n_2} \qquad \frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2$$

Wirkungsgradberechnung

Bisher:

- Fester maximaler Wirkungsgrad mit parabelartigem Verlauf
- Festgelegt für einen maximalen Massenstrom von 5 kg/s

Geändert:

- Maximaler Wirkungsgrad in Maske editierbar
- Einführung Wirkungsgradexponent a, mit dem variabler maximaler Wirkungsgrad bei variablen Drehzahlen möglich

$$\eta_2 = 1 - (1 - \eta_1) \cdot \left(\frac{n_1}{n_2}\right)^a \text{ (abgeleitet aus } \frac{1 - \eta_1}{1 - \eta_2} = \left(\frac{Re_1}{Re_2}\right)^{0,1})$$

Wirkungsgradberechnung

Geändert:

Wirkungsgradverlauf weiterhin parabelförmig

$$\eta(\dot{m}) = 4 \cdot \frac{\eta_{\text{max}}}{\dot{m}_{\text{max}}} \cdot \left(-\frac{\dot{m}^2}{\dot{m}_{\text{max}}} + \dot{m}\right)$$

Maximaler Massenstrom abhängig von Koeffizienten a₀, a₁, a₂
 (auch bei variablen Drehzahlen) (Nullstellensuche)

Lösungsformel für Massenstromberechnung

Bisher:

• C-Skript, das MATLAB-Solve zur Lösung verwendet

Geändert:

 Vorgegebener Lösungsweg durch quad. Lösungsgleichung (Mitternachtsformel) -> Schnittpunkt im 1.Quadranten

Pumpenregelung

Bisher:

ohne

Zusätzlich:

- Δp-c- und Δp-p-Regelung passend zur Pumpe
- Variabler Fußpunkt
- Einstellbarer Mindestmassenstrom
- Minimale Drehzahl

Pumpenregelung

Modellansatz Schleifenauflösung

Memory-Blöcke statt Übertragungsfunktionen

Bisher:

• Übertragungsfunktion mit variabler Zeitkonstante

Geändert:

Memory – Block

Grund: Übertragungsfunktionen dämpfen v.a. bei größeren Zeitkonstanten Signal und Massenströme erheblich, Memory-Blöcke zerhacken das Signal nur. Nachteil: Längere Rechenzeit

Modellansatz Schleifenauflösung

Memory-Blöcke statt Übertragungsfunktionen

Ventilmodell

Kennlinie

Bisher:

- Eingabewerte entweder als Array oder
- mit zwei Betriebspunkten (Umrechnungsformel sehr fragwürdig)

Geändert:

- Ventilcharakteristiken linear oder gleichprozentig
- Eingabewert k_{vs} (aus Datenblatt, praxisnah)

Ventilmodell

Ventillaufzeit

Bisher:

• ohne

Geändert:

- Begrenzung der Steigung des Eingangssignals Stellsignal als Abbildung der Ventillaufzeit
- Steigung $m = \frac{1}{\Delta t_V}$

Druckverlustberechnung

In Rohren

Bisher:

- Mit Vorgabe von linearen und eines quadratischen Koeffizienten oder
- Druckverlustberechnung mit Nikuradse u.ä.

Geändert:

- Berechnung von λ abhängig von laminarer und turbulenter Strömung (Colebrook-White)
- Allerdings nur Einfluss auf quadratischen Koeffizienten

Vorteil:

Schnellere Berechnung

Druckverlustberechnung

In anderen Bauteilen

Bisher:

Mit Vorgabe von Druckverlustkoeffizienten

Geändert:

Berechnung durch Vorgabe eines bekannten Wertes

$$q = \frac{\rho^3 \cdot 100}{3600^2 \cdot k_{vs}}$$

$$q = \frac{\xi}{2 \cdot \rho \cdot A}$$

$$q = \frac{\Delta p_N}{\dot{m}_N}$$

Hydraulische Weiche

Entkopplung von zwei Kreisen ohne Kapazität

Bisher:

• Ohne (Einsatz eines kleinen Multiportspeichers möglich, Druckverlust?)

Zusätzlich:

 Hydraulische Weiche, durch die die Temperaturen der austretenden Ströme bei ungleichen Massenströmen geändert wird

Ausblick

Aktuelle Arbeiten

- Gegenseitige Beeinflussung von Pumpen
- Abgleich Wärmekapazitätsströme bei hydr. Weichen und WÜ
- Optimale Stellsignale für Rückkühlkreise
- Modellierung CO₂-Kältemaschine
- Modellierungsansatz Kolbenströmung im Rohr

Ausblick

Geplante Entwicklungen

- Verfeinerung Pumpenmodell (max. el. Leistung, max. Förderhöhe)
- Bauteile des hydraulischen Abgleichs
 - Massenstromregler
 - Differenzdruckregler
 - Differenzdruckunabhängige Regelventile

Offene Fragen und Probleme

Denkanstöße

- Seit CARNOT 6.1 ist die Bibliothek gegen Bearbeitung gesperrt
- Welche Bauteile wurden bereits validiert (Übersichten vorhanden?)
- Strömungsumkehr in Rohrleitungen mit SIMULINK nicht möglich
 - Verwendung bei hydr. Weichen mit mehreren Bauteilen oder bei gegenseitiger Beeinflussung von Pumpen
 - Ggf. mit SimScape?
- Konzept für Hydraulic Inductivity?
- Darstellung von Luftblasen/-polstern im System möglich?

Danke für eure Aufmerksamkeit Fragen ?

