Short-time existence and regularity for nonlinear heat equation: Polynomial differential operators and Besov spaces

Tien NGUYEN MANH

May 27, 2018

Contents

1	Pol	ynomial differential operator.	2
	1.1	A regularity estimate for polynomial differential operator	2
	1.2	Review of Besov spaces $B^{s,p}$	
	1.3	Proof of the local estimate	
2	Reg	gularity for nonlinear heat equation.	7
3	Sho	ort-time existence for nonlinear heat equation.	ç
	We	will establish in this part a regularity estimate for differential operat	toı
wi	th co	efficient depending nonlinearly in x and $f(x)$. Although the res	ult
ca	n be	stated using only Sobolev spaces, it is natural for the proof to ma	ıke
a c	letou	r to Besov space where we can use Theorem 5.	

We will then apply the regularity estimate for the nonlinear part of the heat operator in order to setup a bootstrap scheme that eventually will prove that any $W^{2,p}$ solution of nonlinear heat equation that is initially C^{∞} will be always C^{∞} .

We will also prove short-time existence using well-known method of Implicit function theorem for Banach spaces. Since the solution is smooth, we can apply Theorem ?? to conclude that the it remains in $M' \subset \mathbb{R}^N$.

1 Polynomial differential operator.

Definition 1. We say that P is a polynomial differential operator of type (n, k) if P is of the form

$$P(F) = \sum c_{\alpha_1,\dots,\alpha_{\nu}}(x,F(x))D^{\alpha_1}F^{a_1}\dots D^{\alpha_{\nu}}F^{a_{\nu}}$$

where the coefficients $c_{\alpha_1,...,\alpha_n u}$ depend smoothly and nonlinearly on x and F and $\alpha_i \in \mathbb{R}^N$ are indices with the weighted norm $\|\alpha_i\| \leq k$ and $\sum \|\alpha_i\| \leq n$.

Example 1. On $M \times [\alpha, \omega]$ the nonlinear heat operator $PF := \frac{dF}{dt} - \tau(F_t)$ is a polynomial differential operator of type (2,2). The tension field alone is of type (2,1).

1.1 A regularity estimate for polynomial differential operator.

Our goal in this part is to prove the following estimate for polynomial differential operator, in which X will be $M \times [\alpha, \omega]$.

Theorem 1 (Regularity of polynomial differential operator). Let X be a compact Riemannian manifold, $B \subset \mathbb{R}^N$ is a large Euclidean ball and P be a polynomial differential operator of type (n,k) on X. Suppose that

$$r \ge 0, \quad p, q \in (1, \infty), \quad r + k < s, \quad \frac{1}{p} > \frac{r + n}{s} \frac{1}{q}.$$
 (1)

Then for all $F \in C(X,B) \cap W^{s,q}(X)$, one has $PF \in W^{r,p}(X)$ and

$$||PF||_{W^{r,p}} \le C (1 + ||F||_{W^{s,q}})^{q/p}.$$

where C is a constant independent of F.

We will prove that the result is *local*, in a sense to be defined. Then we will prove the local statement using Besov spaces.

Proof (reduction of Theorem 1 to a local statement). Let $\{\varphi_i: U_i \longrightarrow V_i\}$ be an atlas of M. We denote a point in U_i by x and its coordinates in V_i by ξ . Let $\sum \psi_i = 1$ be a partition of unity subordinated to $\{U_i\}$ and $\tilde{\psi}_i$ be smooth functions supported in U_i with $0 \le \tilde{\psi}_i \le 1$ and $\tilde{\psi}_i = 1$ in the support of ψ_i , as in the definition of Sobolev spaces on manifold. We suppose the following local statement is true:

Lemma 2 (Local statement). Let P be a polynomial differential operator of type (n,k) and coefficients $c_{\alpha_1,\dots,\alpha_{\nu}}(x,F)$ are smooth and vanish when $x \in \mathbb{R}^{\dim X}$ is outside of a compact. Let $B \subset \mathbb{R}^N$ be a large Euclidean ball and r, p, q, s as in (1). Then for all compactly supported $F \in C(\mathbb{R}^{\dim X}, B) \cap W^{s,q}(\mathbb{R}^{\dim X})$, one has

$$||PF||_{W^{r,p}} \le C (1 + ||F||_{W^{s,q}})^{q/p}$$

where the constant C depends only on B and the support of F, and not on F.

One has

$$||PF||_{W^{r,p}} := \sum_{i} ||\psi_i PF||_{W^{r,p}}$$

where viewed in the chart U_i , each $\psi_i(x)PF(x)$ is $\sum_{\alpha} \psi_i(\xi).c_{\alpha}(\xi,g_i).D^{\alpha}g_i$ where $g_i = f_i \circ \varphi_i^{-1}$ is f_i viewed in the chart. Since $\tilde{\psi}_i = 1$ in the support of ψ_i , one has

$$\psi_i(\xi).c_{\alpha}(\xi,g_i).D^{\alpha}g_i = \psi_i(\xi).c_{\alpha}(\xi,\tilde{\psi}_ig_i)D^{\alpha}(\tilde{\psi}_ig_i)$$

hence by the local statement:

$$\|\psi_i(\xi).c_{\alpha}(\xi,g_i).D^{\alpha}g_i\|_{W^{r,p}} \le C\left(1+\|\tilde{\psi}_ig_i\|_{W^{s,q}}\right)^{q/p} \le C\left(1+\|F\|_{W^{s,q}}\right)^{q/p}.$$

Therefore $||PF||_{W^{r,p}} \leq mC (1+||F||_{W^{s,q}})^{q/p}$ where m is the number of charts we used to cover M.

Remark 1. The use of partition of unity in the last proof is to decompose $PF = \sum \psi_i PF$ and not $F = \psi_i F$ since we no longer have linearity of the operator P in F.

1.2 Review of Besov spaces $B^{s,p}$.

In this part, $X = \mathbb{R}^n$ coordinated by (x_1, \dots, x_n) with weight $(\sigma_1, \dots, \sigma_n)$. We define

$$T_j^v f(x_1, \dots, x_n) := f(x_1, \dots, x_j + v, \dots, x_n), \quad \Delta_j^v := T_j^v - \mathrm{Id}$$

for $f \in \mathcal{S}(X)$.

For the notation, we will denote the Besov spaces by $B^{s,p}$ with $s \in \mathbb{R}_{>0} \setminus \mathbb{Z}$ and $p \in (1, \infty)$ so that they look similar to Sobolev space $W^{s,p}$. In a more standard notation, our spaces $B^{s,p}$ are denoted by $B^s_{p,p}$

Definition 2. We define $B^{s,p}$ as the completion of S(X) under the norm

$$||f||_{B^{s,p}} := \sum_{||\gamma|| < s} ||D^{\gamma} f||_{L^p} + \sum_{s - \frac{\sigma}{\sigma_j} < ||\gamma|| < s} \sup_{v} \frac{||\Delta_j^v D^{\gamma} f||_{L^p}}{|v|^{(s - ||\gamma||)\sigma_j/\sigma}}$$

We cite here some well-known facts

- 1. While Sobolev spaces with non-integral regularity are complex interpolation of integral ones, Besov spaces are their real interpolation.
- 2. Besov spaces $B^{s,p}(X)$ are reflexive Banach spaces with their dual spaces being $B^{-s,p'}(X)$ where $\frac{1}{p} + \frac{1}{p'} = 1$.

Theorem 3. If r < s then

$$W^{s,p}(X) \subset B^{s,p}(X) \subset W^{r,p}(X)$$
.

Theorem 4 (Multiplication). For $f,g\in\mathcal{S}(X)$ and $\begin{cases} 0<\alpha<1, \tilde{p}\leq p, \tilde{q}\leq q, \tilde{r}\leq r\\ \frac{1}{p}+\frac{1}{q}=\frac{1}{r}, \frac{1}{\tilde{p}}+\frac{1}{q}=\frac{1}{p}+\frac{1}{\tilde{q}}=\frac{1}{\tilde{r}} \end{cases},$ one has

$$||fg||_{B^{\alpha,\tilde{r}}} \le C(||f||_{B^{\alpha,\tilde{p}}}||g||_{L^q} + ||f||_{L^p}||g||_{B^{\alpha,\tilde{q}}})$$
(2)

$$||fg||_{L^r} \le ||f||_{L^p} ||g||_{L^q} \tag{3}$$

Therefore by density (2) is true for all $f \in L^p \cap B^{\alpha,\tilde{p}}$, $g \in L^q \cap B^{\alpha,\tilde{q}}$ and (3) is true for all $f \in L^p$, $g \in L^q$.

The reason for which we use the Besov norm is the following estimate:

Theorem 5 (Composition). Let $\Gamma(x,y)$ be a continuous, nonlinear function of variables $x \in \mathbb{R}^n$, $y \in \mathbb{R}^N$. Suppose that Γ vanishes for all x outside of a compact in \mathbb{R}^n and Γ is C-Lipschitz in y, and define

$$\Gamma f := (x \longmapsto \Gamma(x, f(x))).$$

Then

$$\|\Gamma f\| \le C \left(1 + \|f\|_{B^{\alpha,p}}\right)$$

1.3 Proof of the local estimate.

Since $B^{r+\epsilon,p}(X) \subset W^{r,p}(X)$, by increasing r a bit, we can suppose that $r \notin \mathbb{Z}$ and replace the $W^{r,p}$ norm in the statement by the $B^{r,p}$ norm, that is to estimate:

$$||PF||_{B^{r,p}} = \sum_{||\gamma|| < r} ||D^{\gamma}(PF)||_{L^{p}} + \sum_{r - \sigma/\sigma_{j} < ||\gamma|| < r} \frac{||\Delta_{j}^{v}D^{\gamma}(PF)||_{L^{p}}}{|v|^{(r - ||\gamma||)\sigma_{j}/\sigma}}$$

where

$$D^{\gamma}(PF) = \sum c_{\beta_1, \dots, \beta_{\mu}}(x, F) D^{\beta_1} f^{b_1} \dots D^{\beta_{\mu}} f^{b_{\mu}}$$
 (4)

with $\max \|\beta_i\| \le k + \|\gamma\|$ and $\sum \|\beta_i\| \le n + \|\gamma\|$.

Using $\Delta_j^v(fg) = \Delta_j^v f \ T_j^v g + f \Delta_j^v g$, one can see that $\Delta_j^v D^{\gamma}(PF)$ is a sum of terms of 2 types:

$$\Delta_{j}^{v} c_{\beta_{1},\dots,\beta_{\mu}} T_{j}^{v}(D^{\beta_{1}} f^{b_{1}}) \dots T_{j}^{v}(D^{\beta_{\mu}} f^{b_{\mu}})$$
 (5)

and

$$c_{\beta_1,\dots,\beta_{\mu}} D^{\beta_1} f^{b_1} \dots D^{\beta_{i-1}} f^{b_{i-1}} \Delta_j^v(D^{\beta_i} f^{b_i}) T_j^v(D^{\beta_{i+1}} f^{b_{i+1}}) \dots T_j^v(D^{\beta_{\mu}} f^{b_{\mu}})$$
(6)

Our strategy is to use Theorem 4 to estimate the terms (4), (5) and (6) as follows, where we denote $||g||_p := ||g||_{L^p}$

$$\left\| c_{\beta_1,\dots,\beta_{\mu}}(x,F) \ D^{\beta_1} f^{b_1} \dots D^{\beta_{\mu}} f^{b_{\mu}} \right\|_p \le \|c_{\beta_1,\dots,\beta_{\mu}}\|_{\infty} \cdot \|D^{\beta_1} f^{b_1}\|_{p_1} \dots \|D^{\beta_{\mu}} f^{b_{\mu}}\|_{p_{\mu}}$$

$$(7)$$

$$\left\| \Delta_{j}^{v} c_{\beta_{1},\dots,\beta_{\mu}} T_{j}^{v}(D^{\beta_{1}} f^{b_{1}}) \dots T_{j}^{v}(D^{\beta_{\mu}} f^{b_{\mu}}) \right\|_{p} \leq \left\| \Delta_{j}^{v} c_{\beta_{1},\dots,\beta_{\mu}} \right\|_{\tilde{p}_{0}} \cdot \left\| D^{\beta_{1}} f^{b_{1}} \right\|_{p_{1}} \dots \left\| D^{\beta_{\mu}} f^{b_{\mu}} \right\|_{p_{\mu}}$$

$$(8)$$

$$\left\| c_{\beta_{1},\dots,\beta_{\mu}} D^{\beta_{1}} f^{b_{1}} \dots D^{\beta_{i-1}} f^{b_{i-1}} \Delta_{j}^{v} (D^{\beta_{i}} f^{b_{i}}) T_{j}^{v} (D^{\beta_{i+1}} f^{b_{i+1}}) \dots T_{j}^{v} (D^{\beta_{\mu}} f^{b_{\mu}}) \right\|_{p} \leq$$

$$\| c_{\beta_{1},\dots,\beta_{\mu}} \|_{\infty} \cdot \| D^{\beta_{1}} f^{b_{1}} \|_{p_{1}} \dots \| D^{\beta_{i-1}} f^{b_{i-1}} \|_{p_{i-1}} \cdot \| \Delta_{j}^{v} (D^{\beta_{i}} f^{b_{i}}) \|_{\tilde{p}_{i}} \cdot \| D^{\beta_{i+1}} f^{b_{i+1}} \|_{p_{i+1}} \dots \| D^{\beta_{\mu}} f^{b_{\mu}} \|_{p_{\mu}}$$

$$(9)$$

Then continue by bounding the Δ_j^v terms:

$$\|\Delta_{j}^{v}c_{\beta_{1},\dots,\beta_{\mu}}\|_{\tilde{p}_{0}} \leq |v|^{\theta\sigma_{j}/\sigma}C(1+\|F\|_{B^{\theta,\tilde{p}_{0}}}) \leq |v|^{\theta\sigma_{j}/\sigma}C(1+\|F\|_{W^{\theta,\tilde{p}_{0}}}) \quad (10)$$

using Theorem 5, where C is the Lipschitz constant of $c_{\beta_1,\dots,\beta_{\mu}}(x,F)$ in F, which exists because $c_{\beta_1,\dots,\beta_{\mu}}$ is smooth and F always remains in a large Euclidean ball B. The next Δ_i^v term to bound is, using Theorem 3:

$$\|\Delta_{j}^{v}(D^{\beta_{i}}f^{b_{i}})\|_{\tilde{p}_{i}} \leq |v|^{\theta\sigma_{j}/\sigma}\|f^{b_{i}}\|_{B^{\|\beta_{i}\|+\theta,\tilde{p}_{i}}} \leq |v|^{\theta\sigma_{j}/\sigma}\|f^{b_{i}}\|_{W^{\|\beta_{i}\|+\theta,\tilde{p}_{i}}} \tag{11}$$

And finally plugging (10) and (11) in (8) and (9), and noting that $\|c_{\beta_1,\ldots,\beta_{\mu}}\|_{\infty}$ in (7) is bounded by a constant, it remains to estimate $\|f^{b_i}\|_{W^{\|\beta_i\|+\theta,\tilde{p}_i}}$ and $\|F\|_{W^{\theta,\tilde{p}_0}}$ in term of $\|F\|_{W^{s,q}}$, for which we will use the following consequence of Interpolation inequality.

Lemma 6. Let $0 \le r \le s$ and $p,q \in (1,\infty)$ such that $0 < \frac{1}{p} - \frac{r}{s} \frac{1}{q} < 1 - \frac{r}{s}$. Then for all compactly supported $F \in C(X,B) \cap W^{s,q}$ where $B \subset \mathbb{R}^N$ is a large Euclidean ball, one has

$$||F||_{W^{r,p}} \le C||F||_{\infty}^{1-r/s}||F||_{W^{s,q}}^{r/s} \le C'||F||_{W^{s,q}}^{r/s}$$

where C, C' depend only on B and the support of F, but not F.

Proof. Since F is bounded, $f^{\alpha} \in W^{s,q} \cap W^{0,v}$ for all v > 1. By Interpolation inequality

$$||f^{\alpha}||_{W^{r,p}} \le 2||f^{\alpha}||_{W^{s,q}}^{r/s}||f^{\alpha}||_{W^{0,v}}^{1-r/s}$$

then choose v with $(1-\frac{r}{s})\frac{1}{v} = \frac{1}{p} - \frac{r}{s}\frac{1}{q}$.

To apply Lemma 6, we have to choose p_i , \tilde{p}_i , \tilde{p}_0 , θ such that $\begin{cases} 0 < \frac{1}{p_i} - \frac{\|\beta_i\|}{s} \frac{1}{q} < 1 - \frac{\|\beta_i\|}{s}, \\ 0 < \frac{1}{\tilde{p}_i} - \frac{\|\beta_i + \theta\|}{s} \frac{1}{q} < 1 - \frac{\|\beta_i + \theta\|}{s} \\ 0 < \frac{1}{\tilde{p}_0} - \frac{\theta}{s} \frac{1}{q} < 1 - \frac{\theta}{s} \end{cases}$

We choose $\frac{1}{p_i}$ just a bit bigger than $\frac{\|\beta_i\|}{s} \frac{1}{q}$, $\frac{1}{\tilde{p}_i}$ just a bit bigger than $\frac{\|\beta_i + \theta\|}{s} \frac{1}{q}$ and $\frac{1}{\tilde{p}_0}$ just a bit bigger than $\frac{\theta}{s} \frac{1}{q}$. We will now come back to justify the estimates (7), (8), (9). Since F is bounded in B and compactly supported in an open set V, we see that $\|f^{\alpha}\|_{p} \leq C(B, V) \|f^{\alpha}\|_{q}$ if $p \leq q$. Therefore,

1. For (7), it is sufficient to have

$$\frac{1}{p} \ge \frac{1}{p_1} + \dots + \frac{1}{p_\mu}$$

which is true because the RHS is is a bit bigger than $\frac{1}{qs} \sum \|\beta_i\| \le \frac{n+\|\gamma\|}{qs} < \frac{n+r}{qs} < \frac{1}{p}$.

2. For (8), it is sufficient to have

$$\frac{1}{p} \ge \frac{1}{\tilde{p}_0} + \frac{1}{p_1} + \dots + \frac{1}{p_\mu}$$

where the RHS is is a bit bigger than $\frac{\theta}{s} \frac{1}{q} + \frac{1}{qs} \sum \|\beta_i\| \leq \frac{n + \|\gamma\| + \theta}{qs}$.

3. For (9), it is sufficient to have

$$\frac{1}{p} \ge \frac{1}{p_1} + \dots + \frac{1}{\tilde{p}_i} + \dots + \frac{1}{p_\mu}$$

where the RHS is is a bit bigger than $\frac{\theta}{s} \frac{1}{q} + \frac{1}{qs} \sum \|\beta_i\| \leq \frac{n + \|\gamma\| + \theta}{qs}$.

It is sufficient then to take $\theta = r - ||\gamma||$. Now the estimates (7), (8), (9) can be continued as

$$RHS(7) \le \prod_{i} \|f^{b_i}\|_{W^{s,q}}^{\|\beta_i\|/s} \le \|F\|_{W^{s,q}}^{\frac{n+\|\gamma\|}{s}} \le \|F\|_{W^{s,q}}^{q/p}$$
(12)

$$RHS(8) \leq |v|^{\theta\sigma_j/\sigma} \left(1 + \|F\|_{W^{s,q}}^{\theta/s}\right) \prod_i \|f^{b_i}\|_{W^{s,q}}^{\|\beta_i\|/s} \leq |v|^{\theta\sigma_j/\sigma} \left(1 + \|F\|_{W^{s,q}}^{\theta/s}\right) \|F\|_{W^{s,q}}^{q/p}$$

(13)

$$RHS(9) \leq |v|^{\theta\sigma_{j}/\sigma} \left(1 + \|f^{b_{i}}\|_{W^{s,q}}^{\frac{\|\beta_{i}\| + \theta}{s}}\right) \prod_{u \neq i} \|f^{b_{u}}\|_{W^{s,q}}^{\|\beta_{u}\|/s} \leq |v|^{\theta\sigma_{j}/\sigma} \left(1 + \|F\|_{W^{s,q}}^{\frac{\|\beta_{i}\| + \theta}{s}}\right) \|F\|_{W^{s,q}}^{q/p}$$

$$(14)$$

While (12) gives $||D^{\gamma}(PF)||_p \leq C||F||_{W^{s,q}}^{q/p}$, the last two (13) and (14) give

$$\sum_{s - \frac{\sigma}{\sigma_i} < \|\gamma\| < s} \sup_{v} \frac{\|\Delta_j^v D^\gamma (PF)\|_p}{|v|^{(r - \|\gamma\|)\sigma_j/\sigma}} \le C \left(1 + \|F\|_{W^{q,s}}^{(n+r)/s}\right)$$

We proved the local statement Lemma 2.

2 Regularity for nonlinear heat equation.

Let $p > \dim M + 2$, using the regularity estimate for polynomial differential operator, we now can prove:

Theorem 7 (Bootstrap for nonlinear heat equation). Let $F: M \times [\alpha, \omega] \longrightarrow B$ such that $F \in W^{2,p}(M \times [\alpha, \omega])$ and $\frac{dF_t}{dt} = \tau(F_t)$, i.e.

$$\frac{dF^{\alpha}}{dt} = -\Delta F^{\alpha} + g^{ij}\Gamma^{\prime\alpha}_{\beta\gamma}(F)F^{\beta}_iF^{\gamma}_j$$

and $F|_{M \times \{\alpha\}}$ is smooth. Then F is smooth on $M \times [\alpha, \omega]$.

Remark 2. Note that since $p > \dim M + 2 = \dim(M \times [\alpha, \omega]) + 1$, if $F \in W^{2,p}(M \times [\alpha, \omega])$ then F and $\frac{\partial F}{\partial x^i}$ are in $C(M \times [\alpha, \omega])$ by Sobolev imbeddings. It makes sense then to talk about:

- 1. the restriction and boundary condition at time $t = \alpha$ (in fact, by Trace theorem, p > 1 is enough).
- 2. the pointwise condition $F: M \times [\alpha, \omega] \longrightarrow B \subset V$.

Proof. We define the operators $PF := g^{ij}\Gamma'^{\alpha}_{\beta\gamma}(F)F^{\beta}_iF^{\gamma}_j$ of type (2,1) and $AF := \frac{dF}{dt} + \Delta F$ of type (2,2). As in Theorem ??, we will abusively denote $W^{k,p}(M \times [\beta,\gamma])$ by $W^{k,p}([\beta,\gamma])$. Our bootstrap scheme consists of 3 steps:

- 1. Prove that $F \in W^{2,\tilde{p}}([\pi,\omega])$ for every $\pi > \alpha$ and $\tilde{p} \in (1,\infty)$. By compactness of M, it is sufficient to prove this for a sequence $\tilde{p} \to +\infty$.
- 2. Prove that F is C^{∞} for all time $t > \alpha$.
- 3. Prove that F is C^{∞} on $M \times [\alpha, \omega]$.

Step 1. By Theorem 1, $AF = PF \in W^{r,q}([\alpha,\omega])$ whenever r < 1 and $\frac{1}{q} > (\frac{r}{2}+1)\frac{1}{p}$. Apply Gårding inequality, for all $\pi > \alpha$, $F \in W^{r+2,q}([\pi,\omega]) \subset W^{2,\tilde{p}}([\pi,\omega])$ for $\frac{1}{\tilde{p}} = \frac{1}{q} - \frac{r}{\dim M+1}$. Choose $\frac{1}{q}$ very close to $(\frac{r}{2}+1)\frac{1}{p}$, one sees that the condition on \tilde{p} is $\frac{1}{\tilde{p}} > (\frac{r}{2}+1)\frac{1}{p} - \frac{r}{p-1}$, which will be satisfied if $\frac{1}{\tilde{p}} > (1-\frac{r}{2})\frac{1}{p}$, i.e. for all $\tilde{p} < \frac{p}{1-r/2}$. It remains to repeat this result to finish the first step. We will say $F \in W^{2,*}([\pi,\omega])$ for $F \in W^{2,p}([\pi,\omega])$ for all $p \in (1,\infty)$.

Step 2. By Theorem 1, for all r < 1, one has $AF = PF \in W^{r,*}([\pi,\omega])$, therefore by Gårding inequality, $F \in W^{r+2,*}([\pi,\omega])$. Iterate this result and one has $F \in W^{k,*}([\pi,\omega])$ for all $k \in [2,\infty)$ and $\pi > \alpha$. So F is smooth for $t > \alpha$.

Step 3. We apply regularity result (Theorem ??) for elliptic operator A and boundary operators $B^0: F \mapsto F\big|_{M \times \{\alpha\}}$ and $B^1: F \mapsto F\big|_{M \times \{\omega\}}$, both are of weight 0: For q, r in Step 1, one has $AF = PF \in W^{r,q}([\alpha, \omega])$ and $B^jF \in \partial W^{r,q}$, therefore $F \in W^{r+2,q}([\alpha, \omega]) \subset W^{2,\tilde{p}}([\alpha, \omega])$ for the same \tilde{p} as Step 1. This proves that $F \in W^{2,*}([\alpha, \omega])$, which also means that one has $F \in W^{r+2,q}([\alpha, \omega])$ with no additional condition on q except $q \in (1, \infty)$. Iterate and one obtains the regularity of F on $[\alpha, \omega]$.

Remark 3. The first 2 steps were to prove the regularity of $F|_{M \times \{\omega\}}$, which was then used as a boundary condition in order to apply regularity result for elliptic operator on manifold with boundary.

3 Short-time existence for nonlinear heat equation.

We will choose as always $p>\dim M+2$. As before, M is a compact Riemannian manifold and $f:M\longrightarrow B\subset V=\mathbb{R}^N$ where B is a large Euclidean ball.

Theorem 8 (Short-time existence). Let $F_{\alpha}: M \longrightarrow B$ be a smooth map, then there exists $\epsilon > 0$ depending on F_{α} and $F: M \times [\alpha, \alpha + \epsilon] \longrightarrow B$ such that $F \in W^{2,p}(M \times [\alpha, \alpha + \epsilon])$ with $F|_{M \times \{\alpha\}} = F_{\alpha}$ and

$$\frac{dF_t}{dt} = \tau(F_t) \quad on \ M \times [\alpha, \alpha + \epsilon]$$

Proof. We find F as a sum $F = F_b + F_\#$ where $F_b \in C^\infty(M \times [\alpha, \omega])$ satisfies the initial condition and $F_\# \in W^{2,p}(M \times [\alpha, \alpha + \epsilon]/\alpha)$.

The nonlinear heat operator is

$$T: W^{2,p}(M \times [\alpha, \omega]/\alpha)^{\oplus N} \longrightarrow L^p(M \times [\alpha, \omega])^{\oplus N}$$

 $F_\# \longmapsto \tau(F_b + F_\#)$

where $\tau(F)^{\alpha} = \Delta F^{\alpha} + g^{ij}\Gamma^{\prime\alpha}_{\beta\gamma}(F)F^{\beta}_{i}F^{\gamma}_{j}$, which can be rewritten as $\tau(F) = -\Delta F + \Gamma(F)(\nabla F)^{2}$. The derivative of T at $F_{\#}$ in direction $k \in W^{2,p}(M \times [\alpha,\omega]/\alpha)^{\oplus N}$ is

$$DT(F_{\#})k = \Delta k + D\Gamma(F) \cdot k.(\nabla F)^2 + 2\Gamma(F)\nabla F.\nabla k,$$

or in local coordinates:

$$DT(F_{\#})^{\alpha} = g^{ij} \left(\frac{\partial^{2} k^{\alpha}}{\partial x^{i} \partial x^{j}} - k_{l}^{\alpha} \Gamma_{ij}^{l} \right) + g^{ij} \frac{\partial \Gamma_{\beta\gamma}^{\prime \alpha}}{\partial y^{\delta}} k^{\delta} F_{i}^{\beta} F_{j}^{\gamma} + 2g^{ij} \Gamma_{\beta\gamma}^{\prime \alpha}(F) F_{i}^{\beta} F_{j}^{\gamma}$$

which is of form $DT(F_{\#})k = -\Delta k - a(x,F)\nabla k - b(x,F)k$ where a,b are smooth.

Therefore if we note by

$$H: W^{2,p}(M \times [\alpha, \omega]/\alpha)^{\oplus N} \longrightarrow L^p(M \times [\alpha, \omega])^{\oplus N}$$
$$F_\# \longmapsto (\frac{d}{dt} - \tau)(F_b + F_\#)$$

then the derivative of H at $F_{\#} = 0$ is

$$DH(0) \cdot k = \frac{dk}{dt} + \Delta k + a(x, F_b)\nabla k + b(x, F_b)k$$

which by Theorem ?? is an isomorphism from $W^{2,p}(M \times [\alpha,\omega]/\alpha)^{\oplus N}$ to $W^{0,p}(M \times [\alpha,\omega]/\alpha)^{\oplus N} = L^p(M \times [\alpha,\omega])^{\oplus N}$. This shows that H is a local isomorphism mapping a neighborhood of 0 to a neighborhood of $(\frac{d}{dt} - \tau)F_b$.

Define $g_{\epsilon} \in L^p(M \times [\alpha, \omega])^{\oplus N}$ by

$$g_{\epsilon} := \begin{cases} 0, & \text{if } t \in [\alpha, \alpha + \epsilon] \\ (\frac{d}{dt} - \tau) F_b, & \text{if } t > \alpha + \epsilon \end{cases}$$

which is arbitrarily $L^p(M \times [\alpha, \omega])$ -close to $(\frac{d}{dt} - \tau)F_b$ for $0 < \epsilon \ll 1$. There exists therefore $F_\# \in W^{2,p}(M \times [\alpha, \omega]/\alpha)^{\oplus N}$ such that $H(F_\#) = g_\epsilon$, meaning that the function $F = F_b + F_\# : M \longrightarrow V$ satisfies $F|_{M \times \{\alpha\}} = F_\alpha$ and $\frac{dF}{dt} - \tau(F_t) = 0 \text{ for } t \in [\alpha, \alpha + \epsilon].$ By Regularity Theorem 7, F is C^{∞} for $t \in [\alpha, \alpha + \epsilon]$. Theorem ?? assures

that the image of F is in B, hence in M' for $t \in [\alpha, \alpha + \epsilon]$.