## 112-1 Electrical Engineering Fundamentals I

Quiz 4

Keys

## 1. 30% Use superposition to obtain *i*<sub>0</sub> for the circuit of Fig. 1.

 $i_{\rm O} = i_{\rm O1} + i_{\rm O2} + i_{\rm O3}$  due to the 12-V, 4-A, and 2-A sources



$$R_{eq} = 4 + 10 \parallel (3 + 2 + 5) = 9(\Omega)$$

$$0 \Omega \leq i_{O1} = \frac{12}{9} = 1.33333(A)$$



$$i_{02}$$
 $3\Omega$ 
 $2\Omega$ 
 $4\Omega$ 
 $10\Omega$ 
 $i_{1}$ 
 $i_{02}$ 
 $i_{1}$ 

$$R_{eq} = 2 + 5 + 4 \parallel 10 = \frac{69}{7} = 9.8571(\Omega)$$
  
 $i_1 = 4 \times \frac{3}{3 + 9.8571} = 0.9333(A)$   
 $i_{02} = -i_1 \times \frac{10}{10 + 4} = -0.6666(A)$ 

$$R_{eq} = 2 + 3 + 4 \parallel 10 = \frac{55}{7} = 7.8571(\Omega)$$

 $4 \Omega$ 

$$i_2 = 2 \times \frac{5}{5 + 7.8571} = 0.7778(A)$$
 $i_{03} = -i_2 \times \frac{10}{10 + 4} = -0.5556(A)$ 

$$i_{03} = -i_2 \times \frac{10}{10+4} = -0.5556(A)$$

$$i_0 = i_{01} + i_{02} + i_{03}$$
  
= 1.3333 - 0.6666 - 0.5556 = 0.1111(A)

4 A

 $3\Omega$ 

10  $\Omega$ 

Figure 1

 $2 \Omega$ 

2. 20% Use source transformation to obtain  $v_0$  in the circuit of Fig.

2. (Redraw the equivalent circuit as you convert the source.)

Applying KVL to the loop gives,





$$(9+5+2+4) \cdot i - 18 - 15 - 30 + 24 = 0$$
  

$$\Rightarrow i = \frac{39}{20} = 1.95 (A)$$

$$\Rightarrow v_0 = -i \times 2 = -3.9 (V)$$

## 3. 30% In the circuit of Fig. 3, use Thevenin theorem to find the V<sub>Th</sub> and R<sub>Th</sub> across the terminal a-b.



 $\leq 40 \text{ k}\Omega$ 

100V

Nodal analysis on 
$$v_1$$
:

$$\frac{v_1}{30} + \frac{v_1}{30} = 1 + 3 \cdot v_0$$

$$\to v_1 = 15 + 45v_0$$

$$v_0 = v_1 \times \frac{10 \parallel 40}{22 + 10 \parallel 40} = \frac{4v_1}{15}$$

$$\Rightarrow v_1 = 15 + 45v_0$$

$$\Rightarrow v_1 - 15 + 45v_0$$

$$= 15 + 45 \times \frac{4}{15}v_1$$

$$\Rightarrow v_1 = -\frac{15}{11} = -1.3636(V)$$

$$R_{Th} = \frac{v_1}{i} = -1.3636(k\Omega)$$

Nodal analysis on 
$$v_0$$
:

 $\leq 30 \text{ k}\Omega$ 

$$\frac{100 - v_0}{10} = \frac{v_0}{40} + \frac{v_0 - v_1}{22} \dots (1)$$
$$\frac{v_0 - v_1}{22} + 3 \cdot v_0 = \frac{v_1}{30} \dots (2)$$

$$\Rightarrow 75v_0 - 20v_1 = 4400$$

$$2010v_0 - 52v_1 = 0$$

$$\Rightarrow v_1 = -243.6364 (V)$$

$$v_0 = -6.3030 (V)$$

$$V_{Th} = v_1 = -243.6364(V)$$

- 4. 30% For the circuit in Fig. 4,
- (A) 10% Use the Norton theorem to obtain equivalent circuit (find I<sub>SC</sub> and R<sub>N</sub>, and draw the Norton equivalent circuit) at terminals a-b
- (B) 10% Convert the Norton equivalent circuit of (A) into its Thevenin's form.
- (C) 10% As the circuit is connected to a load, what is the maximal power that can be transferred to the load?

