Use this document as a template

My PhD Thesis

Customise this page according to your needs

Tobias Hangleiter*

April 30, 2025

^{*} A LaTeX lover/hater

The kaobook class

Disclaimer

You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon and some other information. This page is based on the corresponding page of Ken Arroyo Ohori's thesis, with minimal changes.

No copyright

6 This book is released into the public domain using the CC0 code. To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon

This document was typeset with the help of KOMA-Script and LATEX using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher

First printed in May 2019 by

Contents

Co	ontents	1
Ι	A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY	1
1	Introduction	3
2	Theory of spectral noise estimation 2.1 Spectrum estimation from time series 2.2 Window functions 2.3 Welch's method 2.4 Parameters & Properties of the PSD	8 9 10
3	The python_spectrometer software package 3.1 Package design and implementation	13 13 13 15 16 17 20
4	Conclusion and outlook	23
II 5	CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE Introduction	27
6	Characterization of electrical performance 6.1 Electron temperature	3: 3:
7	Characterization and improvements of the optical path	33
8	Vibration performance 8.1 Accelerometric vibration spectroscopy 8.2 Optical vibration spectroscopy	35 35 36
9	Conclusion & outlook	39
II	OPTICAL MEASUREMENTS OF ELECTROSTATIC EXCITON TRAPS IN SEMICON- DUCTOR MEMBRANES	41
IV	A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS	43
A 1	PPENDIX	45
Lis	st of Terms	47

Part I

A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY

Part II

CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE

Introduction 5

OISE

Characterization of electrical performance

6.1 Electron temperature

Figure 6.1

Figure 6.2

Figure 6.3

Characterization and improvements of the optical path

OISE

Vibration performance

OISE

8.1 Accelerometric vibration spectroscopy

Figure 8.1

8.2 Optical vibration spectroscopy

Figure 8.2

Figure 8.3

Figure 8.5

Conclusion & outlook

OISE OISE

Part III

OPTICAL MEASUREMENTS OF ELECTROSTATIC EXCITON TRAPS IN SEMICONDUCTOR MEMBRANES

Part IV

A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS

Special Terms

P PSD power spectral density. v