

Introduction

Code mixing is the use of multiple languages in a single sentence, often seen in bilingual or multilingual communities. Code mix generation in Natural Language Processing (NLP) refers to the creation of code-mixed text using statistical methods or neural networks. Code mix generation has applications in fields such as machine translation, speech recognition, and sentiment analysis.

Project Proposal

- Code Mixed Generation:
 Generate code mixed sentences.
- Code Mixed Translation: Translate
 English to Code Mixed sentences.

Part I: Code Mixed Generation

Generating code mixed (Hinglish) text...

Tasks:

- Data Exploration
- Data Pre-processing
- Model Creations
- Hyper-Parameter Tuning
- Metric Analysis and reports

Models

- 1. Baseline Model : Single LSTM based model to predict next word
- 2. Improved Model: Two LSTM based model, one to encode language-id, another to predict the word.

Generated Sentences

Baseline

Seed	Generated
you	you can mein character ka unique hai to kya hum is
me abhi	me abhi bhi yanhi nahi hota achyar bhi toy story dekhi usme
hi me	hi me se he jo app over par can interesting sound kartha
me sochta	me sochta nahi hu but <number> ghante kahana hoga aur voh enigma</number>
life me always	life me always aisa hi lagta tha wo karke jo usko mila wo

Improved

Seed	Generated
you	you seen waise mai use bar dekh sakta hun ki unpredictable
me abhi	me abhi tak same cheej he jitni kuch der pahale ye movie
hi me	hi me nahi dekhi main sochta hoon ke wo lucky ho raha
me sochta	me sochta hu wwe nahi karte even if they dont recall the
life me always	life me always wonder karti hai yah use itna trouble kiya <end> ne</end>

Metrics and performance

Perplexity

Train Dataset	2.6851668370395037
Validation Dataset	216.5501515989133

Perplexity

Train Dataset	2.4366996327589905
Validation Dataset	6.972607726896829

Mix Factor (MF): 44.86507936507939

Mix Factor (MF): 50.102777777779

Part II: Code Mixed Translation

Translating English text to Code Mixed (Hinglish)

Tasks:

- Data Exploration
- Data Pre-processing
- Model Creation
- Hyper-Parameter Tuning
- Metric Analysis and reports

Models

Baseline Model: Encoder Decoder

Model using LSTM

Translated Sentences

Baseline

English Sentence	Translated Sentence
Alright that is fine. What is the movie?	interesting hai kya ye ek long movie hai?
I have not seen that one either	maine kabhi nahi dekhi
may be worth watching!	do box bhi man!

Metrics and performance

Epochs	Loss
1	1.9689141511917114
2	1.7652822732925415
3	1.062523365020752
4	1.53066086769104
5	4.017604351043701
6	1.7632946968078613
7	1.7939538955688477
8	1.436180591583252
9	2.4345710277557373
10	0.7464218735694885
11	0.7255614995956421
12	0.8602990508079529
13	0.7542532682418823
14	0.786764919757843
15	1.1678128242492676
16	1.1889249086380005
17	0.9799388647079468
18	1.3740839958190918
19	0.9729033708572388
20	0.49897074699401855

BLEU SCORE: 1.38

Future Work

Generation

- Use Transformers.
- Using context based embeddings like BERT, ELMo

Translation

- Apply attention to Encoder Decoder Models.
- Use Transformers and various pretrained models available.

References

- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://medium.com/analytics-vidhya/machine-translation-encoder-decoder-model-7e4867377161
- https://towardsdatascience.com/perplexity-in-language-models-87a196019a94
- https://www.kdnuggets.com/2020/07/pytorch-lstm-text-generation-tutorial.html

Thank you

- Ashutosh gupta (2021201085)
- Sk Abukhoyer (2021201023)
- Soumodipta Bose(2021201086)