Session 3: Cell Phenotype

Aneequa Sundus y @AneequaSundus Furkan Kurtoglu y @FKurtogluSysBio

PhysiCell Project

July 25, 2022

Agenda:

- Background
- Time steps
- Diffusion in PhysiCell(Microenvironment)
- Cell Motility
- Cell Mechanics
- Cell Volume
- Cell interactions
- Cell Cycle
- Cell Death
- Cell Secretion and Uptake

Key parts of a PhysiCell model (1)

Microenvironment (stage):

- diffusing substrates
 - ♦ diffusion coefficient
 - ♦ decay rate
 - boundary conditions
 - ◆ Defined in XML configuration file

Cell Definitions (types of players):

- name
- default phenotype (more on next page)
- defined in XML configuration file

Key parts of a PhysiCell model (2)

- Cell agents (individual players):
 - Which cell type? (the cell agent is initialized based on a cell definition)
 - State variables:
 - ◆ position
 - ♦ mechanical pressure
 - interaction list (optional)
 - Phenotype (the script)
 - ♦ Cell cycle
 - ♦ Volume
 - ♦ Death
 - ♦ Motility
 - ♦ Mechanics
 - ♦ Substrate uptake & release
 - ◆ Cell interactions
 - Custom variables
 - Custom functions that act upon the phenotype, variables, and state (script)

A note about time steps

 PhysiCell is designed to account for the multiple time scales inherent to these problems, and has 3 time scales:

• $\Delta t_{ m diffusion}$	diffusion, secretion, and uptake	(default: 0.01 min)
• $\Delta t_{ m mechanics}$	cell movement	(default: 0.1 min)
■ Δt_{cell}	phenotype and volume changes	(default: 6 min)

• This allows some efficiency improvements: not all functions need to be evaluated at each time step.

See the PhysiCell method paper. (Oddly, not in the User Guide (yet).)

Microenvironment

- Boundary Conditions
 - By default, Von Neuman boundaries
 - Dirichlet's conditions and fine tuning
 - Dirichlet's nodes

- Define all substrates in the environment
 - Diffusion rate constant
 - Decay Rate

Cell phenotype

- One of the most critical data elements in a PhysiCell Cell is phenotype
- Hierarchically organize key behavioral elements:
 - Phenotype
 - ◆ cycle: advancement through a cell cycle model
 - ◆ death: one or more types of cell death
 - ◆ volume: cell's volume regulation
 - ◆ geometry: cell's radius and surface area
 - ♦ mechanics: adhesion and resistance to deformation ("repulsion")
 - ◆ motility: active motion (other than "passive" mechanics)
 - ◆ secretion: both release and uptake of chemical substrates. Interfaces with BioFVM
 - ◆ molecular: a place to store internalized substrates
 - ◆ cell interactions: contact interactions with neighboring cells

Documentation: User Guide, Sec. 10

Phenotype: Motility

- Motility controls biased random migration
 - Migration speed s
 - Bias direction d_{bias}
 - Migration bias $0 \le b \le 1$
 - If b = 1, deterministic motion
 - If b = 0, purely Brownian motion
 - Persistence time T_{per}

$$\mathbf{v}_{\text{mot}} \sim s(b\mathbf{d}_{\text{bias}} + (1 - s)\mathbf{d}_{\text{rand}})$$

Cell definition: motility

- If "enabled" is set to false, the cell will not be motile, regardless of what speed you give it above.
- If you set use_2D to true, then the cell restricts its motile motion to its current z-plane.
- chemotaxis allows you to use out-of-the-box chemotaxis:
 - set enabled to true to use this.
 - use "substrate" to choose which chemical factor it follows.
 - use direction = 1 to go up the gradient, and -1 to go against the gradient
 - advanced chemotaxis motility
 - Important!!! If the "substrate" does not match something defined in the microenvironment above, the initialization will fail.

motility app demo

https://nanohub.org/tools/trmotility/

Phenotype: Mechanics

- Mechanics keeps parameters for adhesion and "repulsion"
 - Key parameter: maximum adhesion distance
 - ♦ a multiple of the cell's radius
 - (as a multiple of the cell's radius)
- Default model uses potential functions, but this can be supplemented or replaced.
- cell adhesion affinities for preferential adhesion. Default=1
- Documentation: User Guide 11.5

Cell definition: mechanics

- The options give you some easy ways to *override* the cell-cell adhesion strength to accomplish other calibration goals:
- set_relative_equilibrium_distance lets you choose the equilibrium cell-cell spacing, as a multiple of the cell radius. It will automatically choose a cell_cell_adhesion_strength to meet your selected equilibrium spacing.
 - 2.0 would have an equilibrium spacing of 2 cell radii (radius of cell 1 + radius of cell 2). Don't exceed this!
 - 1.8 or 1.9 is more typical.
- set_absolute_equilibrium_distance allows you to choose this equilibrium distance in absolute (dimensional) units. This may or may not make sense as the cell changes size!

mechanics app demo

https://nanohub.org/tools/trmechanics/

Phenotype: Volume

- volume records the cell's sub-volumes:
 - nuclear and cytoplasmic
 - solid vs. fluid
 - calcified fraction
 - key parameters
- a very simple default model to regulate volume based on ODEs
 - Change the parameters, target values based on environment and cell state

$$\frac{dV_F}{dt} = r_F (V_F^* - V_F)$$

$$\frac{dV_{NS}}{dt} = r_N (V_{NS}^* - V_{NS})$$

$$\frac{dV_{CS}}{dt} = r_C (V_{CS}^* - V_{CS})$$

Documentation: User Guide 11.3

Cell definition: Phenotype: Volume

- This gives both the steady-state "target" volume of the cell type and the initial volume for any cells you seed in the simulation.
- Use the change rates to control how quickly cells move towards their target volume.
- The relative rupture volume is mostly useful to death models.
- Distinguish between State variables vs Target Parameters

Phenotype: Volume app demo

https://nanohub.org/tools/volumetr

Cell interactions

- Phagocytosis
 - dead_phagocytosis_rate(scalar)
 - live_phagocytosis_rates(vector)
- cell attack that increases a tracked damage variable
 - attack_rates
 - damage rate
- cell fusion
 - fusion_rates
- cell transformations
 - transformation rates

Phenotype: Cycle

- Each agent's phenotype had a cycle with:
 - Cycle model
 - A directional graph: nodes are cycle phases {P_i} and edges are transition rates {r_{ij}}
 - r_{ij} is the transition rate from phase P_i to phase P_j
 - ♦ One of the transitions must be marked as a division transition
 - Users can attach arrest condition functions to these transitions (e.g., size checks)
 - Cycle data
 - ♦ stores the cell's current transition rates
- Documentation: User Guide, Sec. 11.1

Phenotype: Cycle

Cell Cycles available in PhysiCell

- Live
- Ki-67 Basic
- Ki-67 Advanced
- Flow Cytometry
- Flow Cytometry Separated
- Cycling-Quiescent

Cell definition: cycle

- For some problems, it's easier to work in terms of transition rates. Use the "phase_transition_rates" code for these.
 - In this example, the "live" cell cycle (with a single phase) transitions at a rate of 0.002 1/min.
- Sometimes, it's easier to work in terms of how long a cell spends in a phase. Use "phase_durations" for these.
 - In this example, the "live" cell cycle (with a single phase) lasts (on average) 500 minutes.

cycle app demo

https://nanohub.org/resources/trcycle

Phenotype: Death

- Death has one or more death models:
 - A specialized cycle model with a removal transition rate
 - Extra parameters to help govern cell volume
 - Each death model has an associate death rate
 - Also stores an easy Boolean dead to easily check if the cell is alive.
- PhysiCell has built-in apoptosis and necrosis death models

Documentation: User Guide, Sec. 11.2

Cell definition: death

```
<death>
     <model code="100" name="apoptosis">
          <death rate units="1/min">0</death rate>
          <!-- use phase transition rates OR phase durations -->
          <phase durations units="min">
              <duration index="0" fixed duration="true">516</duration>
          </phase durations>
          <parameters>
              <unlysed fluid change rate units="1/min">0.05</unlysed fluid change rate>
              <lysed fluid change rate units="1/min">0</lysed fluid change rate>
              <cytoplasmic biomass change rate units="1/min">1.66667e-02</cytoplasmic biomass change rate>
              <nuclear biomass change rate units="1/min">5.83333e-03/nuclear biomass change rate>
              <calcification rate units="1/min">0</calcification rate>
              <relative rupture volume units="dimensionless">2.0</relative rupture volume>
          </parameters>
     </model>
     <model code="101" name="necrosis">
          <death rate units="1/min">0.0</death rate>
          <!-- necrosis uses phase duration[0] = 0 so that it always immediately
                tries to transition and instead checks volume against the rupture volume -->
          <phase durations units="min">
              <duration index="0" fixed duration="true">0</duration>
              <duration index="1" fixed duration="true">86400</duration>
          </phase durations>
          <parameters>
              <unlysed fluid change rate units="1/min">0.05</unlysed fluid change rate>
              <lysed fluid change rate units="1/min">0</lysed fluid change rate>
              <cytoplasmic biomass change rate units="1/min">1.66667e-02</cytoplasmic biomass change rate>
              <nuclear biomass change rate units="1/min">5.83333e-03/nuclear biomass change rate>
              <calcification rate units="1/min">0</calcification rate>
              <relative rupture volume units="dimensionless">2.0</relative rupture volume>
          </parameters>
    </model>
</death>
```

- Use death_rate to determine the rate of starting each mode of death.
- Use the phase_durations and parameters to control how cells progress through each death model.

death app demo

https://nanohub.org/resources/trdeath

Phenotype: Secretion

• **Secretion** stores parameters for secretion, uptake, and generalized export of diffusing substrates

$$\frac{\partial \boldsymbol{\rho}}{\partial t} = \nabla \cdot (\boldsymbol{D} \nabla \boldsymbol{\rho}) - \boldsymbol{\lambda} \cdot \boldsymbol{\rho} + \sum_{i} \delta(\boldsymbol{x} - \boldsymbol{x}_{i}) V_{i} (\boldsymbol{S}_{i} \cdot (\boldsymbol{\rho}_{i}^{*} - \boldsymbol{\rho}) - \boldsymbol{U}_{i} \cdot \boldsymbol{\rho} + \boldsymbol{E}_{i})$$

PhysiCell automatically tracks the mass of substrates removed from the tissue (added to cells) or added to tissue (removed from cells).

Documentation: User Guide Sec. 11.7

Important Parameters

- Differentiate between net export vs secretion rate
- Secretion rate is dependent upon Volume

Cell definition: Secretion

PhysiCell Project

PhysiCell.org

● @PhysiCell

```
<secretion>
    <substrate name="chemical A">
        <secretion_rate units="1/min">0</secretion_rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
    <substrate name="chemical B">
        <secretion rate units="1/min">0</secretion rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
    <substrate name="chemical C">
        <secretion rate units="1/min">0</secretion rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
</secretion>
```

secretion app demo

https://nanohub.org/resources/32528

Coming up

- Example project Session 4
- Dictionary for Signals and Behaviors mapping session 5

Reference to PhysiCell training Apps:

bioRxiv 2022.06.24.497566; doi: https://doi.org/10.1101/2022.06.24.497566

Funding Acknowledgements

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625, 1818187)

Training Materials:

Administrative supplement to NCI U01CA232137 (Year 2)

Other Funding:

- NCI / DOE / Frederick National Lab for Cancer Research (21X126F)
- DOD / Defense Threat Reduction Agency (HDTRA12110015)
- NIH Common Fund (3OT2OD026671-01S4)

