ASSIGNMENT #1.

Using k-Nearest Neighbours, predict if a student will Pass (1) or Fail (0) based on:

- X, = hours studied
- X2 = sleep hours

TRAINING DATA

STUDENT	HOURS STUDIED (X1)	SLEEP HOURS(X2)	PASS/FAIL(Y)
1	1.0	5.0	O (FAIL)
2	2.0	5.5	D (FAIL)
3	3.0	6.0	O (FAIL)
4	4.5	5.0	O (FAIL)
5	5.0	6.5	1 (PASS)
G	5.5	7.0	1 (PASS)
7	6.0	6 .0	1 (PASS)
8	7.0	7.0	1 (PASS)
9	g.D	G.D	1 (PASS)
10	9. D	7.5	1 (PASS)

TASK

A new student studied 4 hours and slept 6 hours. We want to predict whether they PASS or FAIL using KNN with k=3.

PLOT ALL DATA POINTS USING A SCATTER PLOT

COMPUTE DISTANCES

COM232

For the new student, compute the EUCLIDEAN DISTANCE from all data points

$$d = \sqrt{(x_1 - 4)^2 + (x_2 - 6)^2}$$

STUDENT	(x')	(X_2)	(Y)	EUCLIDEAN DISTANCE
1	1.0	5.0	O (FAIL)	3.16
2	2.0	5,5	O (FAIL)	2.06
3	3.0	G .0	O (FAIL)	1.0
4	4.5	5.0	O (FAIL)	1.12
5	5.0	6.5	1 (PASS)	1.12
G	5.5	7.0	1 (PASS)	1.80
7	6.0	6 .0	1 (PASS)	2.0
8	7.0	7.0	1 (PASS)	3.16
9	8 .D	G.D	1 (PASS)	4
ID	9.0	75	1 (PASS)	5.22

SOLUTION:

 $d_n = \sqrt{(4.5-4)^2 + (5-6)^2} = 1.12$

 $d_5 = \sqrt{(5-4)^2 + (6.5-6)^2} = 1.12$

$$d_1 = \sqrt{(1-4)^2 + (5-6)^2} = 3.16$$

$$d_2 = \sqrt{(2-4)^2 + (5.5-6)^2} = 2.06$$

$$d_3 = \sqrt{(3-4)^2 + (6-6)^2} = 1.0$$

$$d_4 = \sqrt{(6-4)^2 + (6-6)^2} = 2.0$$

$$d_4 = \sqrt{(7-4)^2 + (7-6)^2} = 3.16$$

 $d_0 = \sqrt{(8-4)^2 + (6-6)^2} = 4$

 $d_{10} = \sqrt{(9-4)^2 + (7.5-6)^2} = 5.22$

FIND THE 3 NEAREST NEIGHBORS

Hic	ighlight the rows with the 3 smallest distances				
	STUDENT	(x')	(X_2)	(Y)	EUCLIDEAN DISTANCE
	1	1.0	5.0	O (FAIL)	3.16
	2	2.0	5 5	O (FAIL)	2.06
	3	3.0	G .0	O (FAIL)	1.D
	4	4.5	5.0	O (FAIL)	1.12
	5	5.0	6.5	1 (PASS)	1.12
	G	5.5	7.0	1 (PASS)	1.80
	7	6.0	G .0	1 (PASS)	2.0
	8	7.0	7.0	1 (PASS)	3.16
	9	8.D	G.D	1 (PASS)	4
	10	9.0	7.5	1 (PASS)	5.22

MAJORITY VOTE

- Count how many are PASS (1) and how many are FAIL (0)

 - PASS(1)=1

FAIL(0) the exam

- FAIL (0) = 2
- · Predict the outcome for the new student A new student who studied 4 hours and slept 6 hours will

DISCUSSION QUESTION

- 1. What was your final prediction?
 - With k=3, my final prediction is that the new student who studied 4 hours and slept 6 hours will FAIL(0) the exam
- 2 How would the prediction change if we use k=5 instead of k=3

How work the prediction change it we use k-3 instead of k-					
STUDENT	(x')	(X_2)	(Y)	EUCLIDEAN DISTANCE	
1	1.0	5.0	O (FAIL)	3.16	
2	2.0	5.5	O (FAIL)	2.06	
3	3.0	G .0	O (FAIL)	1.D	
4	4.5	5.0	O (FAIL)	1.12	
5	5.0	6.5	1 (PASS)	1.12	
6	5.5	7.0	1 (PASS)	1.80	
7	6.0	6.0	1 (PASS)	2.0	
8	7.0	7.0	1 (PASS)	3.16	
9	8.D	G.D	1 (PASS)	4	
10	9.0	7.5	1 (PASS)	5.22	

As you can see on the table, if we change the k valve into k=5, the prediction will change. With PASS (1)=3 and FAIL (0)=2, the new student who studied 4 hours and slept 6 hours will PASS(1) the exam since the majority of nearest neighbors are PASS(1).