Lecture 1 Matrix-Vector Multiplication

Fang Zhu

February 17, 2023

1 Prerequisite

 ${\rm todo}...$

2 Solutions

2.1 Exercise 1.3

Proof. We denote a non-singular matrix R as

$$\boldsymbol{R} = \left(\begin{array}{ccc} r_{11} & \cdots & r_{1m} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{mm} \end{array} \right),$$

it is clear that $r_{ii} \neq 0$, otherwise R is singular. Since R is non-singular, we assume that

$$m{I} = (m{e}_1, m{e}_2, \cdots, m{e}_m) = (m{a}_1, m{a}_2, \cdots, m{a}_n) \left(egin{array}{ccc} r_{11} & \cdots & r_{1m} \ dots & \ddots & dots \ 0 & \cdots & r_{mm} \end{array}
ight)$$

where $(\boldsymbol{a}_1, \cdots, \boldsymbol{a}_n) = \boldsymbol{R}^{-1}$. To show \boldsymbol{R}^{-1} is upper-triangular, we work by induction. To begin with, we have $\boldsymbol{e}_1 = r_{11}\boldsymbol{a}_1$ and hence $\boldsymbol{a}_1 = r_{11}^{-1}\boldsymbol{e}_1$ has zero entries except the first one. For convenience, we denote by \mathbb{C}_k^m the column space

$$\mathbb{C}_k^m = \{ \boldsymbol{v} = (v_1, \cdots, v_k, 0, \cdots, 0)^T, v_i \neq 0 \ (1 \le i \le k) \},\$$

Then

$$\mathbb{C}_1^m\subset\mathbb{C}_2^m\cdots\mathbb{C}_m^m=\mathbb{C}^m.$$

We have shown that $a_1 \in \mathbb{C}^m(1)$, assume that for any $k \leq s$, we have that $\mathbf{a}_k \in \mathbb{C}_k^m$. Then by equation Page 8, (1.8), we have

$$e_{s+1} = \sum_{k=1}^{m} a_k r_{k,s+1}.$$

Note that $r_{k,s+1} = 0$, $\forall k > s+1$, then

$$\sum_{k=1}^{m} a_k r_{k,s+1} = \sum_{k=1}^{s} a_k r_{k,s+1} + a_{s+1} r_{s+1,s+1} = e_{s+1},$$

Therefore

$$a_{s+1} = r_{s+1,s+1}^{-1}(\mathbf{e}_{s+1} - \sum_{k=1}^{s} a_k r_{k,s+1}) \in \mathbb{C}_{s+1}^m$$

By induction, we have proved that $a_k \in \mathbb{C}_k^m$ for $1 \le k \le m$, which is equivalent to the fact that \mathbb{R}^{-1} is upper-triangular.

2.2 Exercise 1.4(a)

Proof. Denote the column vectors $(c_1, \dots, c_n)^T$, $(d_1, \dots, d_n)^T$ by notations \boldsymbol{c} and \boldsymbol{d} , let \boldsymbol{F} be the matrix whose (i, j) entry is $f_j(i)$. Then, the given condition can be rephrased as: ForAll $\boldsymbol{d} \in \mathbb{C}^8$, there must exist a vector \boldsymbol{c} such that $\boldsymbol{F}\boldsymbol{c} = \boldsymbol{d}$. This means that

range{
$$\mathbf{F}$$
} = \mathbb{C}^8 ,

which implies that ${\pmb F}$ has full rank by theorem 1.3. Furthermore, ${\pmb F}$ is non-singular. Therefore

$$c = F^{-1}d$$

and hence d determines c uniquely.

2.3 Exerciese 1.4(b)

The given condition can be reformatted as

$$Ad = c$$
.

Note that $\boldsymbol{c} = \boldsymbol{F}^{-1} \boldsymbol{d}$, then

$$Ad = c = F^{-1}d,$$

then we have

$$(\mathbf{F}\mathbf{A} - \mathbf{I})\mathbf{d} = \mathbf{0},$$

note that this equation above is true for any $d \in \mathbb{C}^8$, then $\mathbf{F}\mathbf{A} - \mathbf{I}$ must be zero matrix, which is $\mathbf{F}\mathbf{A} = \mathbf{I}$. Hence the i, j entry of \mathbf{A}^{-1} is the i, j entry of \mathbf{F} we defined in 1.4(a).