

Team Batiki

Members: ALBUQUERQUE SILVA Igor GALVÃO LOPES Aloysio MAIA MORAIS Lucas

Table 1: Feature importance measured using correlations and a random forest model.

	n_followers	verified	n_words	n_chars	n_friends	timestamp	n_urls	n_statuses	n_covid	# - u	n_0	hour
Correlation	0.13	0.06	0.04	0.03	0.02	0.02	0.02	0.00	-0.00	-0.00	-0.00	-0.01
Random Forest	0.37	0.00	0.05	0.07	0.09	0.12	0.01	0.16	0.01	0.01	0.00	0.04

First model: GloVe

	input	preprocessed
0	https://t.co/hfuhufds	<uri></uri>
1	@kaggle	<user></user>
2	:")	<smile></smile>
3	8`p	<lolface></lolface>
4)-=	<sadface></sadface>
5	;/	<neutralface></neutralface>
6	<3	<heart></heart>
7	123.56	<number></number>
8	#kaggle	<hashtag> kaggle</hashtag>
9	#KAGGLE	<hashtag> kaggle <allcaps></allcaps></hashtag>
10	#KaggleCompetition	<hashtag> kaggle competition</hashtag>
11	kaggle!!!!!	kaggle! <repeat></repeat>
12	kaggleeee	kaggle <elong></elong>
13	KAGGLE	kaggle <allcaps></allcaps>
14	cat/dog	cat / dog

Found embeddings for 57.38% of vocab Found embeddings for 98.92% of all text

First model: GloVe + LSTM

First approach

- The correlations indicated very small linear correlation between features and retweet count
- Feed forward neural network should behave well with lack of linearity
- Feed forward neural network with numerical features
- Equivalent to constant zero after training

After thinking a little bit more

- Should be able to able to capture nonlinear relations from the numerical data
- A spline regression would be a possibility
- Approximate by ranges could also be a good idea
- These ideas are similar to estimate the point based on a neighborhood

KNN!

- We decided to use KNN classifier just with the numerical features and it yielded awesome results
- We selected the features that were working best and also the best number of neighbors, 3.
- Very hard to generalize to lots of features because of the metric

Tentative of improvement of the KNN using neural networks

- First use NN to learn metric, but new metric on KNN was too slow and NN wasn't learning anything
- Then try to predict inputting to a NN the predictions of the nearest neighbors
- Results still worse than KNN we believe that because there was not enough data and because of the imbalanced dataset
- Upsampling/downsampling didn't work

New ideas...

- We could divide the space in different zones based on different criteria
- For example if user verified or not, if n_followers > 100 or not
 etc
- For each zone we could predict the the data point to the best prediction in a given zone

But what's the best prediction for a given zone

- We realized that given a set of points with different values, if we introduce a new value, its MAE in relation to the others is minimized if the value is the median, not the average!
- This way if we assume that all of the point in a given region are equally likely the median of the region is the best prediction

A new inspiration for the KNN

- We can apply the same principle for the KNN, we can select the median among the neighbors
- This gave us an incredibly big performance boost (the two main ones were KNN and KNN+median)
- We could make it a little bit better by selecting the median-1 as not all neighbors are equal (this is equivalent to be more conservative)
- Now from 3 we are considering 10 neighbors

An extra boost to the KNN

- The feature user verified is boolean, thus easy to consider
- Do KNN in groups didn't work
- We decided to bring closer the verified ones and that worked!

New possibilities

- Even just considering two neighbors the best neighbor prediction is better than anything we did
- A key possibility would be to choose better the neighbor
- We decided to study the text to better decide which neighbor to pick

All-zero	143			
Median-KNN	135			
Best KNN n_neighbors= inf	1.7			
Best KNN n_neighbors=1000	32			
Best KNN n_neighbors=100	65			
Best KNN n_neighbors=50	73			
Best KNN n_neighbors=10	92			
Best KNN n_neighbors=5	103			
Best KNN n_neighbors=3	111			
Best KNN n_neighbors=2	127			
Best KNN n_neighbors=1	231			

Retweet count increases

TF-IDF

BERTweet 0.5 -0.5 -1.0

0.0

0.5

-0.5

1.5

1.0

How to integrate the text embedding in our KNN

- Two approaches: learn a similarity measure or use the embedding directly on a classifier or regressor
- We tried to train siamese networks to learn a similarity measure between tweets but that didn't work

Gradient Boosting

- Predict best neighbor index, using numeric and textual features.
- Calculate training data neighbors on KNN and exclude the first one.
- Using neighbors features didn't provide noticeable improvement.

PCA 1	followers_count	statuses_count	PCA 2	friends_count	verified
0.59	0.18	0.07	0.06	0.05	0.04

Final results

Table 2: Models MAE's for a Monte-Carlo cross validation.

	0	1	2	3	4	Average	Public	Private
XGBoost-uv-KNN	145.50632	139.22579	137.72118	140.47844	136.37302	139.86095	149.2915	130.8230
XGBoost-KNN	145.74780	138.72360	137.92012	140.62056	136.35116	139.87265	149.5399	131.2015
Grouped-KNN	145.93770	139.96711	137.74569	140.93580	136.61703	140.24066	150.2692	131.2121
Corrected-Median-UV	146.38611	140.08023	138.62018	141.46235	136.73156	140.65608	149.6434	131.7287
Corrected-10-Median	146.57085	140.09473	138.60681	141.52308	136.69178	140.69745	-	-
KNN	145.86524	139.18615	140.24764	143.34072	138.09455	141.34686	152.7042	131.0499
LogGradientBoosting	150.29024	143.07951	142.19235	145.13001	139.56261	144.05095		
GradientBoosting	151.26142	144.10285	143.01257	145.65797	140.39442	144.88585	-	=
All-zero	155.43425	149.21205	147.99024	150.39015	145.28295	149.66193	161.0395	141.3318
RandomForest	235.29432	225.99619	231.22650	234.94854	231.32672	231.75845	_	
LinearRegression	268.36285	260.95524	260.24058	265.35576	258.78022	262.73893	-	-