# DCB 統計処理法

#### TatsuoYAMAGUCHI

#### 2022-04-17

### はじめに

細胞生物学分野に所属する人間が最低限の統計処理を行うことができるように記した。そのため導出等無視して記載していくため、人によっては分かりづらい等あるかもしれない。そのときは以下の書籍等を参考にして欲しい。以下の書籍を参考文献であげておく。

#### 統計学入門

#### 自然科学のための統計学

東京大学教養学部統計学教室 東京大学出版会

#### 心理統計学の基礎

#### 続 心理統計学の基礎

南風原朝和著 有斐閣アルマ

#### 多重比較法の基礎

永田靖・吉田道弘 著 サイエンティスト社

#### 実験計画法入門

永田靖 著 日科技連

#### サンプルサイズの決め方\*\*

永田靖 著 朝倉書店

#### データ解析のための統計モデリング入門

久保拓弥 著 岩波書店

### 実験計画

#### 実験計画

#### 誤差伝搬

## データの要約

データが出たらまずはグラフの描画である。ここではフローサイトメトリーを例に説明しよう。例えばフローサイトメトリーと呼ばれる細胞 1 個あたりの蛍光強度を測定する方法がある。ここでは細胞の膜タンパク質の量を蛍光抗体を用いて定量化すると仮定する。

この仮想実験では、あるタンパク質 X を導入した細胞株、X を knock down した細胞株、未処理の細胞株と 比較した。

まず測定時にx軸(FSC(前面散乱光))とy軸(SSC(側面散乱光))から測定したい細胞の範囲を決める。このグラフのことを散布図もしくは point plot と呼ぶ。



このサーモン色の範囲の細胞の膜タンパク質の量を測定すると、ヒストグラムと呼ばれる頻度を表すグラフを出力できる。

今回の仮想実験の結果から以下のようなヒストグラムを得ることが出来た。

# **Quantification of Transmembrane protein**



このグラフは x 軸が蛍光強度、y 軸が対数蛍光強度の頻度を表しており、各色は各細胞株を示している。この結果から、(※実際の検出では  $1.0 \times 10^6$  以上で測定することはない)

今回サンプルサイズ 7 で実験を行い、それぞれの各細胞株の蛍光強度を数値でまとめると以下のような結果が得られた。

## `summarise()` has grouped output by 'group'. You can override using the
## `.groups` argument.

| group | number | n     | mean         | geo_mean    | median      | $\operatorname{sd}$ | CV        |
|-------|--------|-------|--------------|-------------|-------------|---------------------|-----------|
| WT    | 1      | 15000 | 5286731318   | 33035648122 | 34153293962 | 30312866987         | 0.7521897 |
| WT    | 2      | 15000 | 74944842411  | 33136951783 | 33968345182 | 29930106115         | 0.7512204 |
| WT    | 3      | 15000 | 113104555044 | 28052014984 | 33615664609 | 29940062563         | 0.7530024 |
| WT    | 4      | 15000 | 114866262195 | 8532235353  | 34491666150 | 30047657986         | 0.7468636 |
| WT    | 5      | 15000 | 74083961814  | 18531961943 | 33792849785 | 30249076169         | 0.7590760 |
| WT    | 6      | 15000 | 113498265458 | 17967126066 | 33904058920 | 30464584383         | 0.7575796 |
| WT    | 7      | 15000 | 101992678704 | 5344949917  | 34701158647 | 30150219671         | 0.7440022 |

| group           | number | n     | mean     | geo_mean    | median   | $\operatorname{sd}$ | CV        |
|-----------------|--------|-------|----------|-------------|----------|---------------------|-----------|
| Over expression | 1      | 15000 | 20751514 | 31830674.66 | 33382826 | 30350505            | 0.7614692 |
| Over expression | 2      | 15000 | 70431146 | 1231519.54  | 33021387 | 29954281            | 0.7568548 |
| Over expression | 3      | 15000 | 78004985 | 53989985.95 | 33511234 | 30457124            | 0.7642261 |
| Over expression | 4      | 15000 | 64219705 | 59244.42    | 33695986 | 30160848            | 0.7563831 |
| Over expression | 5      | 15000 | 36586217 | 64624325.73 | 34207954 | 30223547            | 0.7528679 |
| Over expression | 6      | 15000 | 95742501 | 60717831.94 | 34032307 | 30332984            | 0.7592394 |
| Over expression | 7      | 15000 | 40357591 | 7633049.98  | 34358920 | 30062691            | 0.7499754 |

| group      | number | n     | mean         | geo_mean    | median      | $\operatorname{sd}$ | CV        |
|------------|--------|-------|--------------|-------------|-------------|---------------------|-----------|
| Knock down | 1      | 15000 | 240210023987 | 25357982046 | 51086413085 | 45365464306         | 0.7536942 |
| Knock down | 2      | 15000 | 77299184629  | 66873668338 | 51177670743 | 45145770782         | 0.7546393 |
| Knock down | 3      | 15000 | 189392456533 | 34680421808 | 50963921235 | 44928681222         | 0.7529941 |
| Knock down | 4      | 15000 | 45392404647  | 32651412195 | 50100902870 | 44887609933         | 0.7572284 |
| Knock down | 5      | 15000 | 71059046087  | 51489071415 | 49805585491 | 44966598984         | 0.7572404 |
| Knock down | 6      | 15000 | 135485834888 | 90469022246 | 49675965042 | 45267043696         | 0.7578109 |
| Knock down | 7      | 15000 | 101537490603 | 36599016380 | 49818335689 | 45261501188         | 0.7614641 |

この図で表されるのは number が本実験における replicate、つまりサンプルサイズ、mean が算術平均 (arithmetic mean)、geo mean が幾何平均 (geometric mean)、sd が標準偏差 (standard deviation)、CV が変動係数(標準偏差を算術平均で割った値)である。

幾何平均は、

$$Geometric mean = \sqrt[n]{x_1 \times x_2 \cdots x_n} = (\Pi x_i)^{1/n} = \exp(\frac{1}{n} \Sigma \ln(x_i))$$

である。ここで対数正規分布について説明する。対数正規分布は

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}x} \exp(\frac{\ln(x) - \mu}{2\sigma^2})$$

で表される分布であり、平均値が

$$E(x) = \exp(\,+\,\frac{\sigma^2}{2})$$

分散が

$$V(x) = \exp(2 + \sigma^2)(\exp(\sigma^2) - 1)$$

中央値が

$$Median = \exp(\mu)$$

最頻値が

$$Mode = \exp(\mu - \sigma^2)$$

と表される。



上記の数値ではわかりにくいので、WTで除したときの比率でグラフを描画してみる。そうすると以下のようになる。



上のグラフを箱ひげ図(Box plot)、下のグラフを棒グラフ (Bar plot) と呼ぶ。このグラフだと箱ひげ図が見づらいので、WT を例に箱ひげ図について説明する。



Box plot の上側のひげが最大値、Box の上側が 75 (%)、中心の横線が 50(%) (Median)、Box の下側が 25 (%)、下側のひげが最小値である。

#### 分布

#### 検定

ではここで先ほどのデータの WT と Overexpression のあるタンパク質 X の mRNA 発現量を確かめるため に、RT-qPCR をおこなった。その結果が以下の結果である。

このとき、実験で取り出してきたデータが母集団から取り出してきた、代表するデータであるならば、この平均値の推定を抽出する大元の母集団の平均に違いが見られるかを判別する、これが統計学的検定である。しかし統計学的検定で有意な差が見られても、生物学の観点から考えて有意でない場合も有るし、逆に統計学検定が有意でなくても生物学の観点から考えて有意な場合もある。こうした場合をできるだけ減らすために、予め実験をおこなう際にサンプルサイズ(nをいくつ取るのか)を決めたり、検出力の高い検定方法を選択したりする必要がある。とは言え、最終的には我々の持つ生物学的知見を大事にするべきであると私は思う。

#### さて、

| method            | $t\_statistics$   | df | p-value           | alternative |
|-------------------|-------------------|----|-------------------|-------------|
| Two Sample t-test | -1.23221975699043 | 12 | 0.241465515786257 | two.sided   |

Two Sample t-test -1.23221975699043 12 0.120732757893128 less Welch Two Sample t-test -1.23221975699043 9.45115943957309 0.247641420274116 two.sided Welch Two Sample t-test -1.23221975699043 9.45115943957309 0.123820710137058 less

# point plot in x-axis is category variate







# 棒グラフ



# ヒストグラム



# 検定

## 二群間の検定

対応の無い検定 対応のある検定 三群以上の処理

## 分散分析

# 推定

線形回帰モデル

単回帰分析 重回帰分析 非線形回帰モデル

 $EC_{50}\ IC_{50}$  の推定