ETP1 Lab 2 Report

Jan-Malte Lübcke, Christopher Klix, Jannik Erdmann, Raphael Weinhart December 2, 2022

Contents

1	Zie	lsetzu	ng	V
II	Kon	zepte	eine Berechnungsgrundlagen	
II:	ΙV	ersuc	he	1
1	Wio	derstar	ndsmessung	2
	1.1		neter	2
		1.1.1	Versuchsbeschreibung	2
		1.1.2	Vorbereitung	2
		1.1.3	Durchführung	2
		1.1.4	Messdaten	3
		1.1.5	Auswertung	3
	1.2		richtige Messung	3
		1.2.1	Versuchsbeschreibung	3
		1.2.2	Durchführung	3
		1.2.3	Messdaten	4
		1.2.4	Auswertung	5
	1.3	Spann	nungsrichtige Messung	5
		1.3.1	Versuchsbeschreibung	5
		1.3.2	Durchführung	5
		1.3.3	Messdaten	6
		1.3.4	Auswertung	6
2	Zwe	eipunk	t- und Vierpunktmessung	7
	2.1	Zweip	unktmessung	7
		2.1.1	Durchführung	7
		2.1.2	Skizze	7
		2.1.3	Messdaten	8
	2.2	Vierp	unktmessung	9
		2.2.1	Durchführung	9
		2.2.2	Skizze	9
		2.2.3	Messdaten	9
	2.3	A 1153376	erting	O

CONTENTS

3	Nic	nt-lineare Widerstände	11
	3.1	Experimentelle Vermessung	11
		3.1.1 Versuchsbeschreibung	11
		3.1.2 Vorbereitung	11
		3.1.3 Durchführung	11
		3.1.4 Messdaten	12
		3.1.5 I-U-Kennlinie	12
	3.2	Ohmmeter	13
		3.2.1 Versuchsbeschreibung	13
		3.2.2 Messdaten	13
	3.3	Auswertung	13
4	Ers	atzquellen	15
	4.1	•	15
			15
		4.1.2 Schaltplan	15
		4.1.3 Vorbereitung	16
		4.1.4 Durchführung	18
		4.1.5 Messdaten	18
	4.2	Messung Ersatz-Schaltung	18
		4.2.1 Versuchsbeschreibung	18
		4.2.2 Skizze	19
		4.2.3 Messdaten	19
	4.3	Auswertung	19
5	Aus	wertung	20

List of Figures

2.1	Zweipunkt-Schaltung	7
2.2	Vierpunkt-Schaltung	9
3.1	I-U-Kennlinie	12
4.1	Original-Schaltung	15
4.2	Innenwiderstands-Schaltkreis	16
4.3	Ersatz-Schaltung	19

List of Tables

1.1	Widerstandsmessung mittels Multimeter	3
	Widerstandsmessung	
2.1	Zweipunkt- und Vierpunkt-Widerstandsmessung	8
3.1	Strom- und Spannungsmessung der Glühlampe	12
3.2	Glühlampen-Vermessung	13
3.3	R_A -Berechnung	14
3.4	Differentielle Widerstände	14
4.1	Original-Schaltungs-Vermessung	18
4.2	Ersatz-Schaltungs-Vermessung	19

I Zielsetzung

Verdeutlichung, dass Messungen nur dann zu sinnvollen Ergebnissen führen, wenn die Messgeräte und der Messaufbau zur Aufgabenstellung bzw. zum jeweiligen Ziel der Messung passen.

Zudem soll das Verständnis von Ersatzspannungsquellen vertieft werden durch einen Experimentellen Nachbau mit vorheriger Berechnung.

II

Allgemeine Berechnungsgrundlagen

Allgemeine Berechnungsgrundlagen

Konzepte

- Grundlagen der Netzwerkanalyse
- Ermittlung einer linearen Ersatzspannungsquelle
 - Ermittlung des Innenwiderstandes R_i
 - Spannung der idealen Ersatzspannungsquelle U_{ab} = Spannung zwischen den Messpunkten a & b.
 - Leistungsanpassung
- Kirchoff'schen Gesetze
 - Knotenregel:

Die Summe aller ein und ausfliesenden Ströme in einem Knoten sind Null.

- Maschenregel

Die Summe aller Spannungen entlang eines Maschenumlaufes ist gleich Null.

• Superpositionsprinzip in Schaltkreisen

Formeln

Ohm'sche Gesetz

$$U = R \cdot I$$

Widerstände in Reihe

$$\sum_{i=1}^{n} R_i = R_{ges}$$

Widerstände in Parallel

$$\sum_{i=1}^{n} \frac{1}{R_i} = R_{ges}^{-1}$$

$$\left[\sum_{i=1}^{n} \frac{1}{R_i}\right]^{-1} = R_{ges}$$

Spannungsteiler

$$U_i = U_0 \cdot \frac{R_i}{R_{qes}}$$

Leistungsanpassung für lineare Ersatzspannungsquelle

Leistung ist maximal, wenn R_i gleich R_L ist.

$$P_{max} = \frac{U_0^2}{4R_i}$$

Widerstandsmessung - Relativer Fehler bei stromrichtiger Messung

$$e_{rel} \approx \frac{R_{i_A}}{R_x}$$

wobei R_x der zu messende Widerstand ist.

Widerstandsmessung - Relativer Fehler bei spannungsrichtiger Messung

$$e_{rel} \approx -\frac{R_x}{R_{i_V}}$$

wobei R_x der zu messende Widerstand ist.

${ m III}$ ${ m Versuche}$

Versuch 1

Strom- und spannungsrichtiges Messen von Widerständen

In diesem Teilversuch sollen die drei unterschiedlichen ohmschen Widerstände

$$R_1 = 0.22\Omega, R_2 = 1k\Omega \text{ und } R_3 = 1M\Omega$$

mit verschiedenen Methoden gemessen werden. Die Messmethoden sind hinsichtlich ihrer Brauchbarkeit für die einzelnen Widerstände zu vergleichen und die Ursachen der auftretenden Fehler sind zu diskutieren.

1.1 Widerstandsmessung mittels Ohmmeter

1.1.1 Versuchsbeschreibung

Zur Widerstandsmessung der drei zu messenden Widerstände wird ein Digitalmultimeter (METRAHit Tech) und ein Analogmultimeter verwendet.

Gemessen wird über den Widerstand, das bedeuten ein Messpunkt liegt vor und einer nach dem Widerstand. Beim Analogmessgerät ist zu beachten, dass dieses vor jeder Messung kalibriert werden muss. Hierzu muss der Zeiger des Messgerätes so eingestellt sein, dass er einen unendlichen großen Widerstand anzeigt.

Hintergrund hierfür ist, dass wenn kein Widerstand angeschlossen ist kein Strom fließt und somit nach dem Ohmischen Gesetz der Widerstand unendlich groß sein muss.

1.1.2 Vorbereitung

Zu Beginn wird das analoge Multimeter der entsprechenden Widerstandsgröße kalibriert.

1.1.3 Durchführung

Zur Widerstandsmessung der drei zumessenden Widerstände, wir ein Digitalmultimeter METRAHit Tech und ein Analogmultimeter verwendet.

Gemessen wird über den Widerstand, das bedeuten ein Messpunkt liegt vor und einer nach dem Widerstand. Beim Analogmessgerät ist zu beachten, dass dieses vor jeder Messung kalibriert werden muss. Hierzu muss der Zeiger des Messgerätes so eingestellt sein, dass er einen unendlichen großen Widerstand anzeigt.

Hintergrund hierfür ist, dass wenn kein Widerstand angeschlossen ist, kein Strom fließt und somit nach dem Ohmischen Gesetz der Widerstand unendlich groß sein muss.

1.1.4 Messdaten

	METRAHit TECH	Analog Unigor	Deriva	ation
Measured resistor	(R) Resistance	(R) Resistance	abs	rel $\%$
0.22Ω	0.640Ω		0.420Ω	-190.91%
$1 \mathrm{k} \Omega$	990.100Ω		-9.900Ω	0.99%
$1 \mathrm{M}\Omega$	$1,005,300.000\Omega$		$5{,}300.000\Omega$	-0.53%
0.22Ω		1Ω	0.780Ω	-354.55%
$1 \mathrm{k} \Omega$		960Ω	-40.000Ω	4.00%
$-1M\Omega$		$1,\!000,\!000\Omega$	$\Omega 0000\Omega$	0.00%

Table 1.1: Widerstandsmessung mittels Multimeter.

1.1.5 Auswertung

Zu sehen ist, dass bei einem sehr kleinen 0.22Ω Widerstand beide Geräte sehr ungenau messen, wobei das analoge Gerät sogar einen deutlich größeren relativen Fehler aufweist als das digitale. Bei dem $1k\Omega$ Widerstand messen beide Geräte recht genau, wobei das digitale Gerät etwas genauer misst. Lediglich beim dem großen $1M\Omega$ Widerstand misst das analoge Gerät genauer, jedoch ist der Unterschied sehr gering. Ein Vergleich der Genauigkeit der Geräte ist nur bedingt möglich, da bei dem analogen Gerät weitere Fehlerquellen Einfluss nehmen, welche über die Qualität des Gerätes selber hinausgehen. So können Fehler bzw. Ungenauigkeiten beim händischen kalibrieren des Gerätes oder beim ablesen der Scala entstehen, wie zum Beispiel durch den Parallax-Effekt.

1.2 Widerstandsmessung mittles stromrichtiger Messung

1.2.1 Versuchsbeschreibung

In diesem versuch sollen drei Widerstände mittels einer Stromrichtigen Messung ermittelt werden. Die Ergebnisse werden mit dem erwartungswert als auch mit den Ergebnissen einer späteren Spannungsrichtigen Messung verglichen.

1.2.2 Durchführung

Verschalten werden die Messgeräte wie im unten dargestellten Schaltbild, sodass der Strom durch den zu messenden Widerstand systematisch richtig erfasst wird. Als Spannungsquelle steht ein regelbares Labornetzgerät Hameg Triple Power Supply HM7042-5 zur Verfügung. Die Spannungsmessung wird mit einem Digitalmultimeter METRAHit TECH, die Strommessung mit einem METRAHit 18S durchgeführt.

Die drei zu messenden Widerstände sind: $R_1=0.22\Omega, R_2=1k\Omega$ und $R_3=1M\Omega$. Folgende Einstellungen sind am Labornetzgerät für die jeweiligen Widerstände einzustellen und der gemessene Strom und die gemessene Spannung abzulesen.

 $R_1: I_m = 200mA, 500mA, 800mA$

 $R_2: U_m = 2V, 4V, 6V$

 $R_3: U_m = 9V, 12V, 15V$

1.2.3 Messdaten

	\mathbf{N}	Ieasurements		Sc	ource	Derived	Derivati	on
Target	(U)	(I)	res	(U)	(I)	(R)	abs	rel $\%$
Current								
accurate								
0.22Ω						0.220Ω		
$200 \mathrm{mA}$	0.119V	$199.000 \mathrm{mA}$	(A)	0.150 V	$199.000 \mathrm{mA}$	0.596Ω	0.376Ω	171.13%
$500 \mathrm{mA}$	0.295V	$497.000 \mathrm{mA}$	(A)	0.410V	$498.000\mathrm{mA}$	0.593Ω	0.373Ω	169.34%
800mA	0.473V	$798.000 \mathrm{mA}$	(A)	0.660V	800.000mA	0.592Ω	0.372Ω	169.20%
$1 \mathrm{k} \Omega$						$1{,}000.00\Omega$		
2V	2.015V	$1.930 \mathrm{mA}$	(mA)			$1,044.04\Omega$	44.041Ω	4.40%
4V	4.010V	$4.043 \mathrm{mA}$	(mA)			991.84Ω	-8.162Ω	-0.82%
6V	6.009V	6.061 mA	(mA)			991.42Ω	-8.579Ω	-0.86%
$1 \mathrm{M}\Omega$						$1,000,000\Omega$		
9V	9.025V	$0.009 \mathrm{mA}$	(mA)			$1,002,778\Omega$	$2,777.778\Omega$	0.28%
12V	12.020 V	$0.012 \mathrm{mA}$	(mA)			$977,236\Omega$	$\text{-}22,\!764.228\Omega$	-2.28%
15V	15.010V	$0.015 \mathrm{mA}$	(mA)			$1,\!000,\!667\Omega$	666.667Ω	0.07%
Voltage								
accurate								
0.22Ω						0.220Ω		
$200 \mathrm{mA}$	0.051 V	$203.300 \mathrm{mA}$	(A)	0.180 V	0.200 A	0.253Ω	0.033Ω	14.92%
$500 \mathrm{mA}$	0.131V	$512.000 \mathrm{mA}$	(A)	0.450V	$0.503 \; A$	0.256Ω	0.036Ω	16.21%
$800 \mathrm{mA}$	0.204V	802.500 mA	(A)	0.070V	0.800 A	0.254Ω	0.034Ω	15.55%
$1 \mathrm{k} \Omega$						$1,000.00\Omega$		
2V	1.913V	$1.933 \mathrm{mA}$	(mA)	2.000 V	0.002 A	989.55Ω	-10.449Ω	-1.04%
4V	4.008V	$4.048 \mathrm{mA}$	(mA)	4.000V	0.004 A	990.12Ω	-9.881Ω	-0.99%
6V	6.004V	$6.066 \mathrm{mA}$	(mA)	6.000V	0.005 A	989.78Ω	$\text{-}10.221\Omega$	-1.02%
$1 \mathrm{M}\Omega$						$1,000,000\Omega$		
9V	9.020 V	$0.010 \mathrm{mA}$	(mA)	9.000V	0.000 A	$909{,}274\Omega$	$\text{-}90,\!725.806\Omega$	-9.07%
12V	12.000V	$0.013 \mathrm{mA}$	(mA)	12.000 V	0.000 A	$907{,}029\Omega$	$\textbf{-92,}970.522\Omega$	-9.30%
15V	15.010V	$0.017 \mathrm{mA}$	(mA)	15.000V	0.000 A	$906,949\Omega$	$-93,051.360\Omega$	-9.31%

Table 1.2: Widerstandsmessung.

1.2.4 Auswertung

0.22 Ω : weist einen gemittelten widerstand 0.594 Ω auf, welcher einem relativen Fehler von 169.85% entspricht.

1kΩ: weist einen gemittelten widerstand 1009.10Ω auf, welcher einem relativen Fehler von 0.91% entspricht.

1M Ω : weist einen gemittelten widerstand 993.560 Ω auf, welcher einem relativen Fehler von -0.64% entspricht.

Hier ist zu erkennen, dass sehr kleine Widerstände schlechter zu messen sind. Da bei dieser Messung das Amperemeter und so dessen Innenwiderstand mit dem zu messenden Widerstand in Reihe geschaltet ist, und die Spannung über beiden Widerständen gemessen wird, nimmt dieser direkt Einfluss auf die Messung. Im Idealfall wäre dieser Innenwiderstand unendlich klein und würde dann keinen Fehler verursachen. Doch dies ist offensichtlich nicht möglich. Da nun der sehr kleine widerstand des Messgerätes und der sehr kleine zu messendem Widerstand in den Dimensionen sehr nah beieinander liegen ist der dabei entstehende Fehler nicht trivial.

Zusätzlich werden die Leiterwiderstände bei der Messung von kleinen Widerständen relevant.

$$e_{rel} = \frac{R_{x,m} - R_x}{R_x} = \frac{R_i}{\frac{U_m}{I_m} - R_i} \approx \frac{R_i}{R_x}$$

$$(1.1)$$

Daraus ist zu erwarten, dass größere Widerstände genauer gemessen werden, was auch durch die Ergebnisse bestätigt wird.

1.3 Widerstandsmessung mittles spannungsrichtiger Messung

1.3.1 Versuchsbeschreibung

In diesem versuch sollen drei Widerstände mittels einer Spannungsrichtigen Messung ermittelt werden. Die Ergebnisse werden mit den Erwartungswerten als auch mit den Ergebnissen der vorrangegangen Stromrichtigen Messung verglichen.

1.3.2 Durchführung

Verschalten werden die Messgeräte wie im unten dargestellten Schaltbild, sodass die Spannung durch den zu messenden Widerstand systematisch richtig erfasst wird. Als Spannungsquelle steht ein regelbares Labornetzgerät Hameg Triple Power Supply HM7042-5 zur Verfügung. Die Spannungsmessung wird mit einem Digitalmultimeter METRAHit TECH, die Strommessung mit einem METRAHit 18S durchgeführt.

Die drei zu messenden Widerstände sind: $R_1=0.22\Omega, R_2=1k\Omega$ und $R_3=1M\Omega$. Folgende Einstellungen sind am Labornetzgerät für die jeweiligen Widerstände einzustellen und der gemessene Strom und die gemessene Spannung abzulesen.

 $R_1: I_m = 200mA, 500mA, 800mA$

 $R_2: U_m = 2V, 4V, 6V$

 $R_3: U_m = 9V, 12V, 15V$

1.3.3 Messdaten

Siehe Tabelle 1.2.

1.3.4 Auswertung

0.22Ω: weist einen gemittelten widerstand 0.254Ω auf, welcher einem relativen Fehler von 15.61% entspricht.

1kΩ: weist einen gemittelten widerstand 989.82Ω auf, welcher einem relativen Fehler von -1.02% entspricht.

1M Ω : weist einen gemittelten widerstand 907.751 Ω auf, welcher einem relativen Fehler von -9.22% entspricht.

Hier ist zu erkennen das der $1k\Omega$ sich am genausten bestimmen lässt und der $1M\Omega$ Widerstand sich schlechter erfassen lässt. In der Theorie müsste sich der 0.22Ω Widerstand am genausten bestimmen lassen, da bei der Spannungsrichtigen Messung die Spannung nur über dem zu messenden Widerstand gemessen wird. Somit ist der innenwiderstand des Voltmeters die Ursache für Messfehler. Da dieser hier sehr groß ist (idealer Weise unendlich groß) fallen die Fehler bei kleinen zu messenden Widerständen klein aus.

Entgegen dessen weist die Messung des 0.22Ω Widerstandes den größten Fehler auf, was wahrscheinlich auf den hier im Verhältnis zum Messwiderstand großen Leiterwiderstand zurückzuführen ist.

$$e_{rel} = \frac{R_{x,m} - R_x}{R_x} = \frac{R_i}{\frac{U_m}{I_m} - R_i} \approx \frac{R_i}{R_x}$$

$$(1.2)$$

Abschließend ist zu sagen, dass sich die stromrichtige Messung für große Widerstände und die spannungsrichtige Messung für kleine Widerstände besser geeignet sind. Allerdings nur in einem Bereich, wo die Leiterwiederstände einen zu vernachlässigbaren Anteil am Gesamtwiderstand haben.

Versuch 2

Zweipunkt- und Vierpunktmessung

Es soll ein sehr kleiner Widerstand $R_1 = 0.22\Omega$ und ein größerer Widerstand $R_2 = 1k\Omega$ sowohl mit der Zweipunktmethode als auch mit der Vierpunktmethode bestimmt werden. Es sollen beide Methoden verglichen und der Einfluss der langen Verkabelung untersucht werden.

2.1 Zweipunktmessung

2.1.1 Durchführung

Es sollen folgende Widerstände bestimmt werden: $R_1=0.22\Omega$ und $R_2=1k\Omega$. Die Messungen sollen entsprechend der Schaltskizze 2.1 erstellt werden. Die Verkabelung zwischen dem Widerstand und der Messgeräte wurden verhältnismäßig lang gewählt. Als Spannungsquelle steht ein regelbares Labornetzgerät Hameg Triple Power Supply HM7042-5 zur Verfügung. Die Spannungsmessung wurde mit einem Digitalmultimeter METRAHit 15S, die Strommessung mit einem Digitalmultimeter METRAHit TECH durchgeführt. Die Messung erfolgte spannungsrichtig (siehe Skizze). Die Messung wurde einmal für R_1 mit $I_m=800mA$ und einmal für R_2 mit $U_m=10$ V durchgeführt.

2.1.2 Skizze

Figure 2.1: Zweipunkt-Schaltung

2.1.3 Messdaten

	Measurer	nents	Sou	rce	Derived	Deriv	ation
Target	(U)	(I)	(U)	(I)	(R)	abs	rel $\%$
Current							
accurate							
0.22Ω							
$800 \mathrm{mA}$	$805.000 \mathrm{mA}$	0.602V	1.070 V	0.802A	0.748Ω	0.528Ω	239.92%
$1 \mathrm{k}\Omega$							
10V	$10.112 \mathrm{mA}$	9.990 V	10.000 V	0.010A	987.94Ω	-12.065Ω	-1.21%
Voltage							
accurate							
0.22Ω							
$800 \mathrm{mA}$	$852.000 \mathrm{mA}$	0.204 V	1.140V	0.858A	0.239Ω	0.019Ω	8.83%
$800 \mathrm{mA}$	$890.000 \mathrm{mA}$	0.210V			0.236Ω	0.016Ω	7.25%
49 mA	$49.000 \mathrm{mA}$	0.110V			2.245Ω	2.025Ω	920.41%
1.5A	$1,500 \mathrm{mA}$	0.356V			0.237Ω	0.017Ω	7.88%
$1 \mathrm{k}\Omega$							
10V	$10.117 \mathrm{mA}$	9.990V	10.000 V	0.010A	987.45Ω	-12.553Ω	-1.26%

Table 2.1: Zweipunkt- und Vierpunkt-Widerstandsmessung.

2.2 Vierpunktmessung

2.2.1 Durchführung

Es sollen folgende Widerstände bestimmt werden: $R_1=0.22\Omega$ und $R_2=1k\Omega$. Die Messungen sollen entsprechend der Schaltskizze 2.2 erstellt werden. Die Verkabelung zwischen dem Widerstand und der Messgeräte wurden verhältnismäßig lang gewählt. Als Spannungsquelle steht ein regelbares Labornetzgerät Hameg Triple Power Supply HM7042-5 zur Verfügung. Die Spannungsmessung wurde mit einem Digitalmultimeter METRAHit 15S, die Strommessung mit einem Digitalmultimeter METRAHit 15S, die Strommessung mit einem Digitalmultimeter METRAHit TECH durchgeführt. Die Messung erfolgte spannungsrichtig (siehe Skizze). Die Messung wurde einmal für R_1 mit $I_m=800mA$ und einmal für R_2 mit $U_m=10$ V durchgeführt.

2.2.2 Skizze

Figure 2.2: Vierpunkt-Schaltung

2.2.3 Messdaten

Siehe Tabelle 2.1.

2.3 Auswertung

Bezüglich des 0.22Ω Widerstandes, liefert die Zwei-Punkt-Methode einen großen relativen Fehler von 239.92%. Dies ist darauf zurückzuführen, dass bei dieser Methode der im Verhältnis zum 0.22Ω Widerstand, große Leiterwiederstand mit gemessen wird. So wird die Spannung über dem Widerstand und den langen Leitern gemessen. Dieser Effekt fällt bei größeren Widerständen nicht so ins Gewicht. Bei dem $1k\Omega$ Widerstand ist lediglich ein relativer Fehler von -1.21% ermittelt worden.

Bei der Vier-Punkt-Methode wird am 0.22Ω Widerstand, wird ein gemittelter relativer Fehler von 7,99% gemessen. Dieser ist gegenüber der Zwei-Punkt-Methode deutlich kleiner. Dies liegt daran, dass hier das Voltmeter mit zusätzlichen Leitern direkt über dem zu messenden Widerstand angeschlossen wird. Diese Leiter sind zwar ebenfalls sehr lang, aber aufgrund des sehr großen Innenwiderstand des Voltmeters, fliest hier äußerst wenig Strom. Der Großteil des Stromes fließt also durch den zu messenden widerstand und verursacht so einen nur kleinen Fehler.

Nur die Messung mit einem kleinen Strom von 49mA wird ihr ein sehr großer Fehler von 920.41% ermittelt. Dieser Wert ist nicht in den oben gemittelten relativen Fehler mit eingeflossen.

Bei dem $1k\Omega$ Widerstand verhält sich die Vier-Punkt-Methode ähnlich zur Zwei-Punkt-Methode. Hier wird ein relativer Fehler von -1.26% gemessen.

Versuch 3

Nicht-lineare Widerstände

3.1 Vermessung mittels spannungs- und stromrichtiger Messung

3.1.1 Versuchsbeschreibung

In diesem Versuch, soll durch Messung die nicht lineare U-I-Kennlinie einer Glühlampe erstellt werden und damit das gegebene Potenzgesetz (3.1) belegen werden.

$$I(U) = \frac{I}{\text{mA}} = a \cdot \left(\frac{U}{V}\right)^b \tag{3.1}$$

wobei a = 15.2 und b = 0.55. Des weiteren ist der Widerstand der Glühlampe mit dem analogen Ohmmeter und einem Digitalmultimeter zu messen, um den unterschied der Messmethoden zu ermitteln.

3.1.2 Vorbereitung

Es wird nach der obigen Gleichung der Glühlampenstrom als Funktion der anliegenden Spannung für

$$U=10 {\rm mV}, 50 {\rm mV}, 100 {\rm mV}, 500 {\rm mV}, 1{\rm V}, 5{\rm V}, 10{\rm V}, 15{\rm V}$$

berechnet. Die Ergebnisse werden in einem U-I-Diagramm in doppelt-logarithmischem Maßstab dargestellt, sprich sowohl die X-Achse als auch die Y-Achse folgen einem logarithmischen Maßstab.

3.1.3 Durchführung

Durch gleichzeitige Strom- und Spannungsmessung ist die I-U-Kennlinie der Glühlampe (hps Typ-Nr. 9122.1) zu erstellen. Hierzu ist die Schaltung entsprechend der Skizze zu erstellen. Zur Spannungsversorgung wird das Labornetzgerät Hameg Triple Power Supply HM7042-5 verwendet. Die Spannungsmessung wird mit einem Digitalmultimeter METRAHit 15S und die Strommessung mit einem Digitalmultimeter METRAHit TECH durchgeführt. Es werden folgende Spannungen am Labornetzgerät eingestellt und die jeweiligen Ströme und Spannungen an den Messgeräten abgelesen.

$$U = 10 \text{mV}, 50 \text{mV}, 100 \text{mV}, 500 \text{mV}, 1V, 5V, 10V, 15V$$

3.1.4 Messdaten

-	Measurements		Source		Derived	Deri	vation
Target	(I) Current	(U) Voltage	(U) Voltage	(I) Current	(R) Resistance	abs $\%$	rel $\%$
$10 \mathrm{mV}$	0.911 mA	0.019V	0.010V	0.000A	20.856Ω	100.27%	-0.27%
$20 \mathrm{mV}$	$1.487 \mathrm{mA}$	0.030V	0.020V	0.001A	20.175Ω	96.99%	3.01%
$30 \mathrm{mV}$	$1.816 \mathrm{mA}$	0.037V	0.030V	0.001A	20.374Ω	97.95%	2.05%
$50 \mathrm{mV}$	$2.886 \mathrm{mA}$	0.060V	0.050V	0.002A	20.790Ω	99.95%	0.05%
$100 \mathrm{mV}$	$4.735 \mathrm{mA}$	0.102V	0.100V	0.005A	21.542Ω	103.57%	-3.57%
$200 \mathrm{mV}$	$8.381 \mathrm{mA}$	0.201V	0.200V	0.008A	23.983Ω	115.30%	-15.30%
$300 \mathrm{mV}$	$10.766 \mathrm{mA}$	0.290V	0.300V	0.010A	26.937Ω	129.50%	-29.50%
$500 \mathrm{mV}$	$14.090 \mathrm{mA}$	0.490V	0.500V	0.014A	34.776Ω	167.19%	-67.19%
1V	$18.450 \mathrm{mA}$	0.976V	1.000V	0.018A	52.900Ω	254.33%	-154.33%
2V	$25.980 \mathrm{mA}$	1.966V	2.000V	0.025A	75.674Ω	363.82%	-263.82%
3V	$32.560 \mathrm{mA}$	2.950V	3.000V	0.032A	90.602Ω	435.59%	-335.59%
5V	$43.660 \mathrm{mA}$	4.920V	5.000V	0.043A	112.689Ω	541.77%	-441.77%
8V	$57.570 \mathrm{mA}$	7.900V	8.000V	0.057A	137.224Ω	659.73%	-559.73%
9V	$61.700 \mathrm{mA}$	8.900V	9.000V	0.061A	144.246Ω	693.49%	-593.49%
10V	$65.680 \mathrm{mA}$	9.900V	10.000V	0.065A	150.731Ω	724.67%	-624.67%
11V	$69.400 \mathrm{mA}$	10.880V	11.000V	0.069A	156.772Ω	753.71%	-653.71%
12V	$73.060 \mathrm{mA}$	11.880V	12.000V	0.073A	162.606Ω	781.76%	-681.76%
13V	$76.580 \mathrm{mA}$	12.870V	13.000V	0.076A	168.060Ω	807.98%	-707.98%
14V	$79.970 \mathrm{mA}$	13.860V	14.000V	0.080A	173.315Ω	833.25%	-733.25%
15V	$83.280 \mathrm{mA}$	14.870V	15.000V	0.083A	178.554Ω	858.43%	-758.43%

Table 3.1: Strom- und Spannungsmessung der Glühlampe.

3.1.5 I-U-Kennlinie

Figure 3.1: I-U-Kennlinie.

3.2 Widerstandsmessung mittels Ohmmeter

3.2.1 Versuchsbeschreibung

Nun wird der Widerstand der Glühbirne zum Abgleich mit den gemessenen Widerständen aus der Vermessung mittels spannungs- und stromrichtiger Messung 3.1 mittels eines Ohmmeters bestimmt. Dies geschieht mittels eines analogen Multimeters und eines digitalen Multimeters METRAHit TECH.

3.2.2 Messdaten

Device	(R) Resistance
METRAHit TECH	20.8Ω
Analog Unigor	21Ω

Table 3.2: Glühlampen-Vermessung.

3.3 Auswertung

Bei Betrachtung der jeweiligen Gerade der berechneten Erwartungswerte und die der Messwerte wird eindeutig, dass diese sehr nah beieinander liegen. Daher bestätigt dies die Formel 3.1 zur Näherung der Glühbirne. Zur Ermittlung der Formel mit unseren Messwerten bzw. mit der Ausgleichsgeraden, werden die Werte a & b wie folgt bestimmt:

$$I_M = a \cdot U_M^b \tag{3.2}$$

wobei $U_M = 0.976 \text{V} \approx 1 \text{V}$ (siehe Tabelle 3.2) und $b \in \mathbb{R}$.

wobei $I_M = 18.450 \text{mA}$.

$$\therefore \quad a = 18.45 \tag{3.4}$$

$$I_{M} = a \cdot U_{M}^{b}$$

$$b = \frac{\log_{10} I_{M} - \log_{10} a}{\log_{10} U_{M}}$$
(3.5)

wobei $U_M = 9.9 \text{V} \approx 10 \text{V}$ und $I_M = 65.68 \text{mA}$ (siehe Tabelle 3.2).

$$b = \frac{\log_{10}(65.68) - \log_{10}(18.45)}{\log_{10}(10)}$$

$$\approx 0.551$$
(3.6)

Measurements Derived					
			Derived		
Target	(I) Current	(U) Voltage	(R_A) Resistance		
$10 \mathrm{mV}$	$0.911 \mathrm{mA}$	0.019V	20.85620Ω		
$100 \mathrm{mV}$	$4.735 \mathrm{mA}$	0.102V	21.54171Ω		
$300 \mathrm{mV}$	$10.766 \mathrm{mA}$	0.290 V	26.93665Ω		
2V	$25.980 \mathrm{mA}$	1.996V	76.82832Ω		
5V	$43.660 \mathrm{mA}$	4.920V	112.68896Ω		
10V	$65.680 \mathrm{mA}$	9.900V	150.73081Ω		

Table 3.3: R_A -Berechnung.

Der Wert b ist nahezu identisch zum vorgegebenen Näherungswert. Der Wert a weicht allerdings um 21.38% ab.

Vergleicht man die Gleichstromwiderstände, ist zu erkennen, dass bei kleinen Spannungen die Werte noch nah an den Werten der Ohmmeter liegen. Hier stimmen die Ströme, mit denen die Ohmmeter messen, mit den der Messreihe überein. Da die Glühbirne ein nicht linearer Widerstand ist, gehen die Werte bei höheren Spannungen auseinander.

Die differentiellen Widerstände ergeben sich aus dem Kehrwert der Ableitung der Formel.

Target	(R_d) Expected	(R_d) Measured	rel. Error
$10 \mathrm{mV}$	0.015Ω	0.012Ω	0.174
$100 \mathrm{mV}$	0.042Ω	0.035Ω	0.176
$300 \mathrm{mV}$	0.070Ω	0.057Ω	0.177
2V	0.163Ω	0.134Ω	0.178
5V	0.247Ω	0.203Ω	0.179
10V	0.337Ω	0.277Ω	0.180

Table 3.4: Differentielle Widerstände.

Versuch 4

Ersatzquellen

4.1 Messung Original-Schaltung

4.1.1 Versuchsbeschreibung

Für ein Widerstandsnetzwerk mit zwei Spannungsquellen soll rechnerisch und experimentell eine Ersatzquelle bestimmt werden, die sich bezüglich der Klemmen ${\bf a}$ und ${\bf b}$ genau wie das ursprüngliche Netzwerk verhält.

Das Netzwerk 4.1 soll verschaltet werden und R_7 soll zunächst **nicht** angeschlossen werden. Als Spannungsquelle wird das Labornetzgerät $Hameg\ Triple\ Power\ Supply\ HM7042-5$ verwendet.

$$U_1 = U_2 = 4.5V$$

$$R_1 = 1k\Omega, R_2 = 100\Omega, R_3 = 220\Omega, R_4 = 680\Omega, R_7 = 470\Omega.$$

4.1.2 Schaltplan

Figure 4.1: Original-Schaltung

4.1.3 Vorbereitung

Es werden folgende vorbereitende Berechnungen durchgeführt:

Berechnung der Innenwiderstandes R_i

Umformung des Original Schaltkreises 4.1.

Figure 4.2: Innenwiderstands-Schaltkreis

$$R_{1||2} = \left[\frac{1}{R_1} + \frac{1}{R_2}\right]^{-1} = \left[\frac{1}{1000\Omega} + \frac{1}{100\Omega}\right]^{-1} = \frac{1000}{11}\Omega \approx 90.91\Omega \tag{4.1}$$

$$R_{(1||2)+R_3} = R_{1||2} + R_3 = \frac{1000}{11}\Omega + 220\Omega = 310.91\Omega \tag{4.2}$$

$$R_i = R_{[(1||2) + R_3]||R_4} = \left[\frac{1}{R_{(1||2) + R_3}} + \frac{1}{R_4}\right]^{-1} = 310.91\Omega + 680\Omega = 213.36\Omega \tag{4.3}$$

Berechnung der Leeflaufspannung U_L

Leerlaufspannung U_L (ohne Belastung mit R_7) wird mittels der Superpositionsprinzip berechnet.

$$U_L = U_{ab} = U_{4.2} + U_{4.1}$$

Einfluss von U_1 : Alle Teilspannungen & Teilströme sind in Bezug auf U_1 als Gesamtspannung und I_1 als Gesamtstrom.

$$R_{g1} = R_4 + \left[\frac{1}{R_2} + \frac{1}{R_3 + R_4}\right]^{-1} = 1,090\Omega \tag{4.4}$$

$$I_1 = \frac{U_1}{R_{g1}} = 4.128 \times 10^{-3}$$
A (4.5)

Nun wird der Spannungsabfall über der Masche $R_3 + R_4$ berechnet.

$$U_{R_3+R_4} = U_1 - (I_1 \cdot R_1) \approx 0.372V \tag{4.6}$$

Nun wird der Spannungsabfall über R_4 mittels des Spannungsteilers berechnet.

$$U_{4,1} = U_{R_3 + R_4} \cdot \frac{R_4}{R_3 + R_4} \approx 0.281 \text{V}$$
 (4.7)

Einfluss von U_2 : Alle Teilspannungen & Teilströme sind in Bezug auf U_2 als Gesamtspannung und I_2 als Gesamtstrom.

$$R_{g2} = R_2 + \left[\frac{1}{R_1} + \frac{1}{R_3 + R_4}\right]^{-1} = 573.68\Omega \tag{4.8}$$

$$I_2 = \frac{U_2}{R_{a2}} = 7.844 \times 10^{-3}$$
A (4.9)

Nun wird der Spannungsabfall über der Masche $R_3 + R_4$ berechnet.

$$U_{R_3+R_4} = U_2 - (I_2 \cdot R_2) \approx 3.716 \text{V}$$
 (4.10)

Nun wird der Spannungsabfall über R_4 mittels des Spannungsteilers berechnet.

$$U_{4,2} = U_{R_3 + R_4} \cdot \frac{R_4}{R_3 + R_4} \approx 2.808 \text{V}$$
 (4.11)

Kombination der einzelnen Einflüsse von U_1 und U_2 :

$$U_{ab} = U_{4,1} + U_{4,2}$$

$$= 0.281V + 2.808V$$

$$= 3.089V$$
(4.12)

Berechnung der Kurzschlussstromes I_K

$$I_K = I_{ab} = \frac{U_{ab}}{R_i} = \frac{U_L}{R_i}$$

$$= \frac{3.089 \text{V}}{213.36\Omega}$$

$$\approx 0.014 \text{A}$$
(4.13)

Berechnung der Klemmenspannung U_{R_7}

Klemmenspannung U_{R_7} bei Belastung mit R_7

$$U_{R_7} = U_{ab} \cdot \frac{R_7}{R_i + R_7}$$

$$= 3.089 \text{V} \cdot \frac{470\Omega}{213.36\Omega + 470\Omega}$$

$$\approx 2.125 \text{V}$$
(4.14)

Berechnung des Laststromes I_7

Laststrom I_{R_7} bei Belastung mit R_7

$$I_{R_7} = \frac{U_{ab}}{R_i + R_7}$$

$$= \frac{3.089 \text{V}}{213.36\Omega + 470\Omega}$$

$$\approx 4.52 \times 10^{-3} \text{A}$$
(4.15)

4.1.4 Durchführung

Der Original-Schaltkreis 4.1 wurde auf dem Steckboard aufgebaut. Das Labornetzgerät $Hameg\ Triple\ Power\ Supply\ HM7042-5$ wurde auf die Spannungen $U_1=U_2=4.5\mathrm{V}$ eingestellt. Die Leerlaufspannung U_L wurde mit dem Digitalmultimeter $METRAHit\ 15S$ an den Klemmen \mathbf{a} und \mathbf{b} ohne den Lastwiderstand R_7 gemessen. Der Kurschlussstrom I_K wurde mit einem digitales Amperemeter $METRAHit\ TECH\ 18s$ an den Klemmen \mathbf{a} und \mathbf{b} gemessen.

4.1.5 Messdaten

	Calculated Value	Measured Value
$\overline{U_{ab}}$	3.089V	3.11V
I_K	$14 \mathrm{mA}$	14.5 mA
U_{R_7}	2.125V	2.136V
I_{R_7}	$4.52 \mathrm{mA}$	$4.556 \mathrm{mA}$

Table 4.1: Original-Schaltungs-Vermessung.

4.2 Messung Ersatz-Schaltung

4.2.1 Versuchsbeschreibung

Das Widerstandsnetzwerk 4.1 links von den Klemmen **a** und **b** soll durch eine Ersatzschaltung 4.3 ersetzt werden. Der Innenwiderstand links von den Klemmen **a** und **b** liegenden Widerstandsnetzwerk 4.1 wird aus der Vorbereitungsrechnung bezogen.

$$R_i = R_{[(1||2) + R_3]||R_4} = \left[\frac{1}{R_{(1||2) + R_3}} + \frac{1}{R_4}\right]^{-1} = 310.91\Omega + 680\Omega = 213.36\Omega$$

Die Schaltung soll aufgebaut werden mit Hilfe eines einstellbaren Netzteiles $Hameg\ Triple\ Power\ Supply\ HM7042-5$ und einer Widerstandsdekade. Es sind die Werte für U_L und R_i aus der Vorbereitungsrechnung einzustellen. Leerlaufspannung U_L und Kurzschlussstrom I_K sind an den Klemmen ${\bf a}$ und ${\bf b}$ zu messen.

Im Folgenden wird der Widerstand R_7 angeschlossen und der durch ihn fließende Strom I_7 und die anliegende Spannung U_{R_7} wird gemessen.

4.2.2 Skizze

Figure 4.3: Ersatz-Schaltung

4.2.3 Messdaten

	Calculated Value	Measured Value
$\overline{U_{ab}}$	3.089V	3.09V
I_K	$14 \mathrm{mA}$	$14.23 \mathrm{mA}$
U_{R_7}	2.125V	2.118V
I_{R_7}	$4.52 \mathrm{mA}$	4.522 mA

Table 4.2: Ersatz-Schaltungs-Vermessung.

4.3 Auswertung

Die Messungen in der Originalschaltung haben ergeben, dass die vorher angefertigten Berechnung korrekt waren. Durch den Aufbau der Ersatzschaltung 4.3 konnte gut dargestellt werden, dass die Schaltung 4.1 (Originalschaltung) durch den errechneten Ersatzwiderstand $R_i = 213.36\Omega$ nachgestellt werden kann.

Auch die Messungen am angeschlossenen Widerstand R_7 in der Ersatzschaltung waren identisch zur Messung am Widerstand R_7 in der Originalschaltung. Die Abweichung sind $< 1 \times 10^{-2}$ weshalb diese zu vernachlässigen sind.

Die geringen Abweichungen (< 1×10^{-1}) der Berechnung erklären wir uns durch nicht berücksichtige Leiterwiderstände in der Rechnung.

Versuch 5

Auswertung

Die Zielsetzung konnte anhand der Experimente gut erfüllt werden. Es sind Erkenntnisse über die sinnvolle Anwendung der Messmethoden gewonnen worden und das Verständnis von Ersatzquellen konnte durch Abgleichen der Messung mit den Berechnungen gefestigt werden.

Die Auswertung aus den Versuchen führen zu folgenden Erkenntnissen:

- Eine Messung von kleinen Widerständen mittels Multimeter ist sehr ungenau.
- Leiterwiderstände haben einen großen Einfluss bei kleinen Widerständen.
- Analoge Multimeter sind deutlich fehleranfälliger als Digitale Multimeter.
- Stromrichtiges Messen ist besser geeignet für das Messen von großen Widerständen.
- Spannungsrichtiges Messen ist besser geeignet für das Messen von kleinen Widerständen.
- Zwei-Punkt-Methode sorgt bei kleinen Widerständen für sehr große Abweichung, die Vier-Punkt-Methode ist besser geeignet.
- Zwei- und Vier-Punkt-Methode verhalten sich beim Messen des 1kOHM Widerstandes nahezu identisch.
- Nichtlineare Widerstände stimmen nur bei sehr kleinen Strömen mit den Messungen eines Ohmmeters überein.
- Temperatur hat hier einen Einfluss auf den nichtlinearen Widerstand.
- Eine Schaltung kann durch die Berechnung des Innenwiderstands in eine Ersatzschaltung umgebaut werden.
- Die Messwerte in der Ersatzschaltung sind identisch zur Originalschaltung.

Für die nächsten Praktika empfiehlt es sich, parallel zur Versuchsdurchführung, ein Gruppenmitglied zur direkten Diagramm Erstellung zu beauftragen, um mögliche Messfehler oder anderweitige Abweichungen schnell erkennen zu können. Zudem können sofort erste Erkenntnisse gewonnen werden, was die Erstellung des Berichtes vereinfacht.