- 23) Indicar ecuación de disociación o reacción y calcular el pH de la solución al mezclar:
- a) 2L de HCl 0,03 M (α =1) y 1 L de agua.
- b) 2L de HCl 0,03 M (α =1) y 1 L Na OH 0,03 M (α =1).
- c) 2L de H2SO4 0,03 M (α =1) y 1 L K OH 0,03 M (α =1).
- d) 2L de ácido acético 0,03 M (Ki=1.8x10-5) y 1 L de agua.
- e) 2L de NH3 0,03 M (Ki=1.8x10-5) y 1 L de agua. Rta: a) 1,7 b)2 c) 1,52 d)3,22 e)10,78
 - a) 2L de HCl 0,03 M (α =1) y 1 L de agua.

Es una dilución, con disociación total por ser α =1, por lo que la ecuación es:

$$HCI (ac) \rightarrow H^+ (ac) + CI^- (ac)$$

[HCI]
$$_i$$
 = 0,03M , V $_i$ =2L , al agregar 1 L de agua \rightarrow V $_f$ =3L Siendo que sólo se agregó agua \rightarrow V $_i$ x M $_i$ = V $_f$ x M $_f$ \rightarrow M $_f$ = (2L x 0,03M)/3L M $_f$ = 0,02M= 0,02 moles HCI/litro

Como el HCI se disocia totalmente,

$$\rightarrow$$
 [H⁺]=0,02moles /L

Siendo pH= -
$$\log [H^+]$$
= - $\log 0.02 = 1.698 \approx 1.7$

b) 2L de HCl 0,03 M (α =1) y 1 L NaOH 0,03 M (α =1).

HCl (ac) + Na (OH) (ac)
$$\rightarrow$$
 Na Cl (ac) + H2O (I), (ecuación molecular)
 α =1: H⁺ (ac) + Cl ⁻ (ac) + Na⁺ (ac) + (OH)⁻ (ac) \rightarrow Na⁺ (ac) + Cl ⁻ (ac) + H2O (I) (ecuación iónica)
 H⁺ (ac) + (OH) ⁻(a) \rightarrow H2O (I) (ecuación neta). Es una reacción de neutralización.

Cálculo
$$n^{o}$$
 de moles HCl = V x M = 2L x 0,03 M = 0,06 moles HCl n^{o} de moles Na (OH) = V x M = 1L x 0,03 M = 0,03 moles NaOH

Por estequiometria: 1 mol de ácido (HCl) reacciona con 1 mol de base (Na (OH), esto indica que 0,03 moles NaOH reacciona con 0,03 moles HCl, quedando sin reaccionar 0,03 moles de HCl(reactivo en exceso), los cuales están en un volumen final de 3 litros.

Siendo: HCl (ac) \rightarrow H⁺ (ac) + Cl⁻ (ac) (α =1), [H⁺]=0,03moles/3 litros = 0,01 moles/litro

$$pH = - \log [H^+] = - \log 0.01 = 2$$

c) 2L de H₂SO4 0,03 M (α =1) y 1 L K OH 0,03 M (α =1).

$$H_2SO_4$$
 (ac) +2 K(OH)(ac) \rightarrow K₂SO₄(ac) + 2 H₂O(I)

$$2H^{+}(ac)+SO4^{2-}(ac) + 2 K^{+}(ac) + 2 (OH)^{-}(ac) \rightarrow 2 K^{+}(ac) + SO4^{2-}(ac) + 2 H_2O (I)$$

 $H^+(ac) + (OH)^-(ac) \rightarrow H_2O(I)$. Es una reacción de neutralización.

Cálculo
$$n^{\circ}$$
 de moles $H_2SO_4 = V \times M = 2L \times 0,03 M = 0,06 moles H_2SO_4
 n° de moles $K(OH) = V \times M = 1L \times 0,03 M = 0,03 moles KOH$$

Teniendo en cuenta la estequiometria de la reacción y los datos, siendo el KOH el reactivo limitante:

2 moles de K (OH) → 1mol de H₂SO₄

0,03 moles de K (OH) \rightarrow x = 0,015 moles H₂SO₄,

quedan en exceso sin neutralizar (0,06-0,015)= 0,045 moles H2SO4,

en un volumen final de $3L \rightarrow [H₂SO₄] = (0,045/3) moles/l= 0,015 moles/l H₂SO₄$

Teniendo en cuenta la disociación del 1 mol H₂SO₄ (ac) \rightarrow 2moles H⁺(ac)+ 1 mol SO₄²⁻(ac)

0,015 moles $H_2SO_4/I \rightarrow (2 \text{moles H}^+/ (\text{mol H}_2SO_4)) \times 0,015 \text{ moles H}_2SO_4/I = 0,030 \text{ moles}/I H^+$

$$pH = - log (0,030) = 1,52$$

Utilizando concentraciones expresadas en equiv./litro:

2L de H₂SO₄ 0,03 M (α =1) y 1 L KOH 0,03 M (α =1).

 H_2SO_4 0,03 M \rightarrow 0,06 N ----- n^0 equiv = V H_2SO_4 x N H_2SO_4 = 2 L x 0,06 N= 0,12 equiv.ácido

K OH 0,03 M \rightarrow 0,03 N ---- n⁰ equiv = V KOH x N KOH = 1 L x 0,03 N = 0,03 equiv.base

Hay un exceso de equiv.ácido : 0,12-0,03 = 0,09 equiv. ácido en un V_T = 3L , $[H^+]$ = 0,09/3= 0,03 moles/L Siendo que 1 equiv.de acido \approx 1 mol H^+ , pH = - log $[H^+]$ = 1,52

d) 2L de ácido acético 0,03 M (Ki=1.8x10-5) y 1 L de agua.

Ácido acético: CH₃-COOH, se simboliza como: HAc, es un ácido débil, hay un equilibrio dinámico entre los reactivos y productos; por lo que en el equilibrio no cambian las concentraciones de ninguna de las sustancias intervinientes en la reacción.

Como datos tenemos Vi = 2 L, [HAc]i = 0,03 M , $\alpha \neq 1 \rightarrow \text{Ki}(\text{constante de ionización}) = 1.8x10-5$

Vf= 3 L
$$\rightarrow$$
Vi x Mi = Vf x Mf \rightarrow Mf = (2L x 0,03M)/3L = 0,02 M de HAc = c

La ecuación de disociación es: CH3-COOH (ac) \leftrightarrow CH3-COO $^-$ (ac) + H $^+$ (ac)

$$HAc (ac) \leftrightarrow Ac^{-}(ac) + H^{+}(ac)$$

inicialmente hay: 1 0 0

se disocian de HAc, α y se

generan α de cada producto: $-\alpha$ α α

quedando en el equilibrio: 1- α α

Teniendo en cuenta c=Mf: $c(1-\alpha)$ $c\alpha$ $c\alpha$

$$\rightarrow$$
 K_i = K_a= ([Ac⁻][H⁺])/ [HAc] = (c\alpha x c\alpha)/c(1-\alpha) = (c x \alpha^2)/(1-\alpha) = 1.8x10-5

$$\rightarrow \alpha = \sqrt{(1.8 \times 10^{-5}/0.02)} = 0.03 \rightarrow [H^{+}] = c\alpha = 0.02 \times 0.03 = 0.0006 \text{ moles/l}$$

$$pH = -log [H^+] = 3,22$$

e) 2L de NH3 0,03 M (Ki=1.8x10-5) y 1 L de agua.

 $\alpha \neq 1$, siendo que el NH3 es un gas , la ecuación de disociación se obtiene :

NH₃ (g)+ H₂O (I)
$$\rightarrow$$
 NH₄(OH)(ac) \leftrightarrow NH₄⁺(ac) + OH⁻(ac)

Como datos tenemos Vi = 2 L, [NH4(OH)]i = 0,03 M , $\alpha \neq 1 \rightarrow \text{Ki}(\text{constante de ionización}) = 1.8x10-5$

Vf= 3 L
$$\rightarrow$$
Vi x Mi = Vf x Mf \rightarrow Mf = (2L x 0,03M)/3L = 0,02 M de NH4(OH) = c

La ecuación de disociación es: $NH_4(OH)$ (ac) $\leftrightarrow NH_4^+(ac) + OH^-(ac)$

Inicialmente hay: 1 0 0

se disocian de NH4(OH) α

y se generan α de cada producto: $-\alpha$ α α

quedando en el equilibrio: 1- α α α

Teniendo en cuenta c=Mf: $c(1-\alpha)$ $c\alpha$ $c\alpha$

$$\rightarrow$$
 Ki = Kb= ([NH4⁺][OH⁻])/[NH4(OH)] = (c\alpha x c\alpha)/c(1-\alpha) = (c x \alpha^2)/(1-\alpha) = 1.8x10-5

$$\rightarrow \alpha = \sqrt{(1.8 \times 10^{-5}/0.02)} = 0.03 \rightarrow [OH^{-}] = c\alpha = 0.02 \times 0.03 = 0.0006 \text{ moles/l}$$

$$pOH = -log [OH^{-}] = 3,22 \rightarrow pH = 14 - pOH = 10,78$$