Idea #1: Soft Robotic Wearable for Early Detection and Support of Joint Degeneration (e.g. Osteoarthritis)

- Research Interests: Soft Robotics/Wearable Sensors/Biomechanics/Medical Diagnostics
- Research Goals:
 - Develop a wearable sleeve with embedded soft actuators and stretch sensors
 - Monitor joint kinematics and loading patterns
 - Use Machine Learning to detect deviations that correlate with early-stage degeneration.
- Novelty:
 - o Most current wearables lack actuation or biomechanical intelligence
- Feasibility:
 - Moderate
 - o Off-the-Shelf sensors
 - o 3D-printed soft actuators can speeden up prototyping
- Real-World Impact:
 - o Can help people of all ages who may face the challenge of Joint degenerations
 - o Can assist people in early stages, through warning and preventive action

Idea #2: Soft Micro-Robot for Targeted Movement in Fluid Environments

- Research Interests: Microrobotics/actuation/soft mechanics/soft materials
- Research Goals:
 - Develop a small-scale soft robot that can navigate viscous fluids (e.g. using magnetic actuation or acoustic propulsion)
 - Test in gelatin or synthetic fluid environments
 - Integrate micro pressure or magnetic sensors for localization
- Novelty:
 - Focus on controlled movement in confined or medical-like environments
- Feasibility:
 - Small-scale build with soft polymers
 - o External actuation systems
- Real-World Impact:
 - o Can help advance drug delivery by mimicking travel in bodily fluids.

Idea #3: Magnetic Soft Actuators for Programmable Morphing Structures

- Research Interests: Smart Materials/Remote Actuation/Shape Control
- Research Goals:
 - Design a structure embedded with soft magnetic elastomers
 - Use an external magnetic field to trigger morphing (e.g. folding, bending, twisting)
 - Explore sensor integration to create a feedback loop for shape control
- Novelty:
 - Programmable matter concepts for robotics and morphing surfaces
- Feasibility:
 - o Can use low-field permanent magnets

- o Iron-Particle Elastomers
- Real-World Impact:
 - o Can help in search and rescue

Idea #4: Modular Soft Actuation Units for Rapid Robot Reconfiguration

- Research Interests: Modularity/Plug-and-Play Robotics
- Research Goals:
 - Develop soft actuator modules that can be rearranged to create different robot morphologies.
 - Each module includes actuation and minimal sensing
 - o Explore how reconfiguration affects robot behavior
- Novelty:
 - Few soft robotics systems explore true reconfigurability
- Feasibility:
 - o Can be done with a few module designs
- Real-World Impact:
 - o Can assist in search and rescue
 - o Can assist in warzones where robots can be easily destroyed