13BS1003 AR13/SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

IB. Tech II Semester Supplementary Examinations, April-2017 **ENGINEERING MATHEMATICS-III** (Common to CE, ME, CSE, IT, ECE &EEE)

Time: 3 hours Max Marks: 70

PART- A

Answer all questions

[10 x 1=10M]

- Define the rank of a matrix with suitable example. 1. a)
 - Represent the following system as matrix form b) 4x+2y+z=-3w; 6x+3y+4z+7z=0; 2x+w=-y.
 - If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ then determine the Eigen values of A^{-1} . c)
 - Write the quadratic form corresponding to the symmetric matrix $\begin{bmatrix} 1 & 3 \\ 3 & -4 \end{bmatrix}$. d)
 - Test the function for even and odd $f(x) = x^2 \pi \le x \le 0$ $-x^2 \quad 0 \le x \le \pi$. e)
 - Test the function for even and odd $f(x) = x^2 \pi \le x \le 0$ $-x^2 \quad 0 \le x \le \pi$. If the Fourier transform of e^{-x^2} is $\sqrt{\pi}e^{-\frac{s^2}{4}}$, then find Fourier transform of e^{-3x^2} . f)
 - Find the Z-transform of $\frac{1}{(n+1)!}$. g)
 - Find the inverse Z-transform of $z/(z^2-1)$. h)
 - i) Determine $\Gamma(1)$.
 - Write the relation between beta and gamma functions. <u>i</u>)

PART-B

Answer one question from each unit

[5 X 12 = 60 M]

UNIT - I

2. [6M]

- Reduce the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$ in to its normal form and hence find its rank.
- Investigate for what values of λ and μ the simultaneous equations [6M] x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \lambda z = \mu$, have
 - (i) No solution (ii) a unique solution, (iii) an infinite number of solutions.

[6M]

[8M]

3. a) Reduce to echelon form and hence find the rank of the matrix A= [6M]

$$\begin{bmatrix} 1 & -1 & -2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}.$$

b) Using the loop current method on a circuit, the following equations are obtained:

 $7i_1-4i_2=12$, $-4i_1+12i_2-6i_3=0$, $-6i_2+14$ $i_3=0$, by matrix method, solve for i_1 , i_2 and i_3 .

UNIT-II

4. a) Determine the characteristic values and characteristic vectors of the matrix [6M]

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

b) Verify Cayley-Hamilton theorem and hence find A^4 of the matrix A = [6M]

$$\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}.$$

OR)

5. Reduce the quadratic form $2x_1x_2+2x_1x_3-2x_2x_3$ into canonical form by [12M] orthogonal transformation. Also identify its nature, rank, signature and index

UNIT-III

6. a) Obtain the Fourier series for

$$f(x) = x$$
; $-1 < x \le 0$
 $x+2$; $0 < x \le 1$

and hence deduce the sum of the series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$.

b) Solve the integral equation $\int_{0}^{\infty} f(x) \sin px dx = \begin{cases} 1 & 0 2 \end{cases}$ [4M]

(OR)

- 7. a) Expand f(x)=2-x in a half range Fourier sine and cosine series in the interval 0 < x < 4. [8M]
 - b) Find the Fourier transform of $f(x) = \begin{cases} 1 & -|x|; & |x| < 1 \\ 0; & |x| > 1 \end{cases}$ [4M]

13BS1003

UNIT-IV

Using initial value theorem find u_2 , from $U(z) = \frac{z(z - \cos a\theta)}{z^2 - 2z \cos a\theta + 1}$. 8.

[6M]

Where U(z) is the Z-transform of u_n .

Find the response of the systems $y_{n+2} - y_{n+1} + 6 y_n = u_n$ with $y_0 = 0$, $y_1 = 1$ b) [6M] and $u_n = 1$ for n=0, 1, 2, 3, ... by Z-transform technique.

(OR)

9. Using damping rule, find (i) Z(n 2ⁿ), (ii)Z(n² 4ⁿ). [6M] [6M]

Evaluate inverse Z-transform of $\frac{(2z^2 + 3z)}{(z+2)(z-4)}$ b)

UNIT-V

10. Evaluate the following using beta- gamma functions

[6M]

 $\int_{0}^{\pi/2} \sin^{\frac{9}{2}} \vartheta \cos^{5} \vartheta \ d\vartheta.$

Prove the following (i) $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$

[6M]

(ii) $\Gamma(m)\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$.

(OR)

a) Prove that $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{4}}} dx \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}} = \frac{\pi}{4\sqrt{2}}$.

[8M]

b) Evaluate $\int_{0}^{\infty} x^{11/3} e^{-x^3} dx.$

[4M]

3-3
