

Vidyalankar Institute of Technology Department of Computer Engineering

Semester	T.E. Semester VI – Computer Engineering
Subject	QA
Subject Professor In-charge	Prof. Kavita Shirsat
Assisting Teachers	Prof. Kavita Shirsat

Student Name	Deep Salunkhe	
Roll Number	21102A0014	
Grade and Subject		
Teacher's Signature		

Mini Project Title	Multiple Regression	
Resource s / Apparatu s Required	Hardware: Computer system	Software: Python
Descripti	1. Theoretical Background:	
on		e code implements multiple linear
	regression, a statistical technique between multiple independent	ue used to model the relationship variables (X1, X2,) and a dependent
	parameters of the linear regress OLS aims to minimize the sum of the observed and predicted value • Assumptions of Linear Regression results relies on several assumption independence of errors, homosed. 2. Mathematical Formulation: • Model Equation: The model equerepresented as: Y = b0 + b1*X1 + b2*X2 + + bn*Xn + ε where Y is the dependent variable, X1, X2, b0 is the intercept term, b1, b2,, bn are the error term. • Coefficients Estimation: The coefficients Estimation is the method of the sum	ion: The validity of the regression vitions, including linearity, cedasticity, and normality of errors. uation for multiple linear regression is , Xn are the independent variables, he regression coefficients, and ε is the efficients (b1, b2,, bn) are Ordinary Least Squares (OLS) to crors between the observed and

Department of Computer Engineering

Model Summary: The model.summary() function provides a detailed summary of the regression results, including coefficients, standard errors, t-values, p-values, and various statistics such as R-squared and adjusted R-squared.

3. Statistical Metrics:

- **R-squared (R^2):** R-squared is a measure of the proportion of variance in the dependent variable that is explained by the independent variables. It ranges from 0 to 1, where higher values indicate a better fit of the model to the data.
- Total Sum of Squares (SST): SST measures the total variance in the dependent variable.
- Regression Sum of Squares (SSR): SSR measures the variance explained by the regression model.
- **Error Sum of Squares (SSE):** SSE measures the unexplained variance or residual variance.
- Mean Square Regression (MSR): MSR is the average amount of variance explained by the regression model.
- Mean Square Error (MSE): MSE is the average amount of unexplained variance or residual variance.
- **Degrees of Freedom:** Degrees of freedom represent the number of independent pieces of information in the data used to estimate a statistic. In the context of regression, df_model represents the degrees of freedom for the model, and df resid represents the degrees of freedom for the residuals.

Program

```
import pandas <mark>as</mark> pd
 mport statsmodels.api as sm
# Read data from Excel file
data = pd.read_excel("data.xlsx")
# Separate independent variables (X) and dependent variable (Y)
X = data[['X1', 'X2']]
Y = data['Y']
# Add constant term for intercept
X = sm.add_constant(X)
# Create and fit the regression model
model = sm.OLS(Y, X).fit()
# Print the model summary
print(model.summary())
# Calculate SST (Total Sum of Squares)
```



```
Vidyalankar Institute of Technology Workest Endalm Department of Computer Engineering
  SST = ((Y - y_mean) ** 2).sum()
  # Calculate SSR (Regression Sum of Squares)
  SSR = ((model.predict(X) - y_mean) ** 2).sum()
  # Calculate SSE (Error Sum of Squares)
  SSE = ((Y - model.predict(X)) ** 2).sum()
  # Calculate R-squared
  R_squared = SSR / SST
  # Calculate MSR (Mean Regression Sum of Squares)
  MSR = SSR / model.df_model
  # Calculate MSE (Mean Error Sum of Squares)
  MSE = SSE / model.df_resid
  # Print calculated values
  print("SST:", SST)
  print("SSR:", SSR)
  print("SSE:", SSE)
  print("R^2:", R_squared)
  print("MSR:", MSR)
  print("MSE:", MSE)
  # Print model equation
  print("Model Equation:")
  print("Y = {:.2f} + {:.2f}*X1 + {:.2f}*X2".format(model.params[0],
  model.params[1], model.params[2]))
```


B X1 160 80 112 185 152	6 9.5 5	D	
160 80 112 185 152	5.5 6 9.5 5		
80 112 185 152	6 9.5 5		
112 185 152	9.5 5		
185 152	5		
152			
	8		
90	3		
170	9		
140	5		
115	0.5		
150	1.5		
	150	150 1.5	150 1.5

OLS Regression Results								
Dep. Variable:		Y R-squared:				0.988		
Model:		C	DLS	Adj. R	-squared:		0.984	
Method:		Least Squar		F-stat			285.8	
Date:	9	Sat, 23 Mar 20	24		F-statistic	:):	1.95e-07	
Time:		17:36:	50	Log-Li	kelihood:		-15.01	
No. Observation	ns:		10	AIC:			36.03	
Df Residuals:			7	BIC:			36.93	
Df Model:			2					
Covariance Typ	e:	nonrobu	ist 					
	coef	std err		t	P> t	[0.025	0.975]	
const -	13.8246	1.795	-7	7.701	0.000	-18.069	-9.586	
X1	0.2122	0.013	16	.759	0.000	0.182	0.242	
X2	1.9995	0.146	13	3.728	0.000	1.655	2.344	
Omnibus:		0.5	67	Durbin	 -Watson:		2.132	
Prob(Omnibus):		0.7	753	Jarque	-Bera (JB):		0.550	
Skew:		0.2	240	Prob()	B):		0.759	
Kurtosis:		1.9	956	Cond.	No.		610.	