Lab 9: Phasors

Report

Part 1: Capacitive Circuit

Figure 1: Series RC Circuit

Construct the circuit from Figure 1 on your breadboard.

- 1. Set the signal generator on the ADALM2000 to give a sinusoidal wave output with an amplitude of $1V (2V_{pp})$, offset = 0V, and frequency = 500 Hz.
- 2. Connect channel 1 of the oscilloscope across V1 to measure V_{Source}.
- 3. Connect channel 2 of the oscilloscope across resistor R_1 to measure V_R .

Using cursors, measure the amplitude of the voltage across the resistor (not peak-peak) and the phase angle ϕ between V_R and V_{Source} (Hint: measure the time between a peak in V_R and V_{Source} and use that to calculate phase angle, and remember that sign matters). Write the measured V_R and ϕ_R in phasor notation below (include calculations).

```
V_R \angle \phi_R:
2\pi * 500 * 400 u = 72.5 \text{ degrees}
0.288 < 72.00
```

Using V_R , how can we calculate the current going through the circuit (in phasor notation)? Calculate it below:

I∠φ: I=V/R=0.288/1000=0.000288 A Angle=72.5-0=72 degrees Answer: 0.000288 < 72 degrees

Next, move channel 2 of the oscilloscope across C_1 to measure V_C (amplitude, not peak-peak). Find the amplitude and phase angle:

```
V_C∠φ_C: V_C = 0.961 Angle = 2\pi*500*-113u=-20.34 degrees V=0.961 < -20.7
```


Using the measured current and V_C , can you calculate and verify the complex impedance of the capacitor? Calculate Z_C using the measurements, and then calculate Z_C using the formula from the manual. Do they match up?

$$Z_{C,\,measured} :$$

$$Z_{C=(V/I)=(\ 0.961 < -20.7)/(\ 0.000288 < 72\ degrees) = 3336.8 < -92.7\ degrees}$$

$$Z_{C,\,calculated} : 1/jwc = 3189.099 < -90\ degrees$$

CHECKPOINT 1: SHOW YOUR TA THE OSCILLOSCOPE RECORDING OF YOUR V_{SOURCE} AND $V_{\rm C}.$

We have now verified the impedance of a capacitor using experimental measurements. Repeat this process now with the following frequencies: 1000, 2000, 4000, 8000 Hz. Fill Table 1 below. You do not need to show all your work.

Table 1: Measurements to verify a capacitor's complex impedance.

Freq.	$Z_{ ext{C,calculated}}(\Omega)$	V_R		I		$V_{\rm C}$		$Z_{C,measured}(\Omega)$
(Hz)		mag	phase	mag	phase	mag	phase	
				(mA)				
500	3183 < -90	0.28	72	0.28	72	0.961	-20.7	3712.34<-92.7
1000	1592 < -90	0.53	26.8	0.45	26.8	0.805	-15.5	1428.84<-42.3
2000	795.79 < -90	0.809	12.37	0.703	12.37	0.652	-12.3	803.45<-24.67

4000	379.9 < -90	0.880	3.56	0.892	3.56	0.402	-7.77	420.20<-11.33
8000	198.944<-90	0.95	0.80	0.901	0.8	0.230	-3.5	164.23<-4.30

Part 2: Inductive Circuit

Figure 2: Series RL Circuit

We will now repeat the same experiments with an inductive circuit. Construct the circuit from Figure 2 on your breadboard.

- 1. Set the signal generator on the ADALM2000 to give a sinusoidal wave output with an amplitude of $1V (2V_{pp})$, offset = 0V, and frequency = 500 Hz.
- 2. Connect channel 1 of the oscilloscope across V1 to measure V_{Source} .
- 3. Connect channel 2 of the oscilloscope across resistor R_1 to measure V_R .

Using cursors, measure the amplitude of the voltage across the resistor and the phase angle ϕ between V_R and V_{Source} .

Calculate current:

$$I \angle \varphi$$
: 0.00759 <-6.023 degrees = (V/(100<0))

Next, move channel 2 of the oscilloscope across L_1 to measure V_L (amplitude, not peak-peak). Find the amplitude and phase angle:

$$V_L \angle \phi_L$$
: $0.077 < 60.3 \text{ degrees (V)}$

Using the measured current and V_L , calculate and verify the complex impedance of the inductor. Calculate Z_L using the measurements, and then calculate Z_L using the formula from the manual. Do they match up?

$$Z_{L,\,measured} :$$

$$Z= (0.077 < 60.3) / (0.00759 < -6.023) = 10.145 < 66.023 \, degrees$$

$$Z_{L,\,calculated} : jwL=j*(500*2pi)*(3.3*10^-3)=10.367j=10.367 < 90 \, degrees$$

CHECKPOINT 2: SHOW YOUR TA THE OSCILLOSCOPE RECORDING OF YOUR V_{SOURCE} AND V_{L} .

Repeat this process now with the following frequencies: 1000, 2000, 4000, 8000 Hz. Fill Table 2 below. You do not need to show all your work.

Table 1: Measurements to verify a capacitor's complex impedance.

Freq.	$Z_{L, calculated}(\Omega)$	V_R		I		$V_{\rm L}$		$Z_{L,measured}(\Omega)$
(Hz)		mag	phase	Mag(mA)	phase	mag	phase	
500	10.367 < 90	0.731	-6.562	7.23	-6.562	0.076	62.37	10.36<57.3
1000	20.7325<90	0.630	-12.13	7.06	-12.13	0.153	71.25	20.67<85.43
2000	41.47<90	0.622	-24.32	6.52	-24.32	0.272	67.32	41.05<86.81
4000	82.938<90	0.604	-37.76	4.97	-37.76	0.531	50.52	100.54<83.15
8000	165.876<90	0.513	-57.10	4.35	-57.10	0.821	33.03	140.67<87.72

Does the voltage measured across the capacitor from Part 1 lead or lag behind V_{Source} ? What about the voltage measured across the inductor in Part 2? Use the complex impedance equations from the formulas section on the first page of the manual to provide a mathematical explanation for this.

In the part we know that the voltage across the capacitor lags behind the voltage source sinch the capacitor has causes a negative reactive, more specifically though, the impedence is purely imaginary and thus the phase angle is -90 degrees.

$$Zc = -\frac{j}{\omega C} = \left(\frac{1}{\omega C}\right) < -90$$

$$Z_{eq} = R - \frac{1}{\omega C}j = A < -\phi \rightarrow where - \phi \text{ is in the fourth quadrant}$$

$$Ic = \frac{Vs < 0}{A < -\phi} = B < \phi \rightarrow where B \text{ is } \left(\frac{Vs}{A}\right)$$

Thus one can derive the voltage across the capacitor by:

$$Vc=(Ic)*(Z_c) = (B < \phi)\left(\frac{1}{\omega c}\right) < -90\right) = Vc < (\phi - 90)$$

Since we know the ϕ is between 0 and 90 (by way of it being in the fourth quadrant), we know that the phase angle of Vc (ϕ – 90) is always less than, and thus Vc lags Vs.

(Note: additionally that the in-phase, $\phi = 90$ condition is not possible unless w or c are infinite)

We can apply the same principles to the inductive circuit:

$$ZL = jwL = (wL) < 90$$

$$Z_{eq} = R + (wL)j = A < \phi \rightarrow where \ \phi \ is \ in \ the \ first \ quadrant$$

$$Ic = \frac{Vs < 0}{A < \phi} = B < -\phi \rightarrow where \ B \ is \ \left(\frac{Vs}{A}\right)$$

Thus one can derive the voltage across the capacitor by: $Vc=(Ic)*(Z_c) = (B < -\phi)(wL < 90) = Vc < (90 - \phi)$

Conversely to the capacitor calculations, by way of ϕ being in the first quadrant always, we can say that the phase angle $(90 - \phi)$ is always greater than or equal to 0

(Note: additionally that the in-phase, $\phi = 90$ condition is not possible unless w=0)