

Disciplina: Cálculo

FUNÇÕES DE UMA VARIÁVEL REAL

Prof. Dra. PhD. Adriana Silveira Vieira

Definição 1

Neste capítulo estudaremos uma das noções fundamentais da Matemática, o conceito de função. Uma função de uma variável real é uma regra que descreve como uma quantidade é determinada por outra quantidade, de maneira única. Existem várias alternativas para definir formalmente uma função. Escolhemos a seguinte:

Definição 2.1. Sejam $A, B \subset \mathbb{R}$. Uma função f definida em A e com valores em B é uma regra que associa a cada elemento $x \in A$ um único elemento $y \in B$.

As notações usuais são: $f:A\longrightarrow B$ tal que y=f(x) ou

$$f:A \longrightarrow B$$

 $x \longrightarrow f(x).$

O número x é chamado variável independente da função e y variável dependente da função.

Exemplos

[1] A seguinte tabela, que mostra a vazão semanal de água de uma represa, representa uma função:

Dia	1	2	3	4	5	6	7
m^3/seg	360	510	870	870	950	497	510

De fato, a tabela representa uma função, pois a cada dia fica associada uma única quantidade de vazão. Note que, possivelmente, não existe uma fórmula matemática para expressar a função do exemplo, mas, a definição de função é satisfeita.

[2] Foi feita uma pesquisa de preços (em R\$) de produtos da cesta básica em três supermercados de um determinado bairro, obtendo-se a seguinte tabela:

Produto	Sup. A	Sup. B	Sup. C
1	2.6	2.9	2.52
2	0.96	0.94	1.0
3	1.78	1.5	1.6
4	1.23	1.45	1.36
5	3.2	3.0	2.95
6	4.07	3.96	4.2
7	2.3	2.62	2.5

Esta tabela não representa uma função, pois a cada produto corresponde mais de um preço.

[3] Uma pequena empresa de serviço postal cobra 10 reais pelo primeiro quilo de correspondência e 4 reais por cada quilo adicional; se a capacidade máxima de cada envio de correpondência é de 4 quilos, a seguinte função representa o custo de entrega da correspondência:

$$f(x) = \begin{cases} 10 & \text{se } 0 < x \le 1 \\ 14 & \text{se } 1 < x \le 2 \\ 18 & \text{se } 2 < x \le 3 \\ 22 & \text{se } 3 < x \le 4. \end{cases}$$

[4] A população P de um país, em milhões é função do tempo t, em anos. Na seguinte tabela temos a estimativa de população P no tempo t:

Ano	População
2000	5
2003	5.3
2006	5.6
2008	6.1
2009	6.2

Como a cada valor de t existe um único valor de P(t), temos que P=P(t) é uma função.

[5] Um tanque para estocagem de oxigênio líquido num hospital deve ter a forma de um cilindro circular reto de 8 m (m =metros) de altura, com um hemisfério em cada extremidade. O volume do tanque é descrito em função do raio r.

Figura 2.1: Tanque de raio r.

O volume do cilindro é $8\,r^2\,\pi\,m^3$ e o dos dois hemisférios é $\frac{4\,r^3\,\pi}{3}\,m^3$; logo, o volume total é:

$$V(r) = \frac{4 r^2 (r+6) \pi}{3} m^3.$$

Por exemplo, se o raio for r = 1 m, o volume é $V(1) = \frac{28 \pi}{3} m^3$.

[6] Temos 1000 metros de arame para fazer um curral de formato retangular. Podemos escrever a área do curral em função de um dos lados. De fato, se x e y são os lados do curral, seu perímetro é 2(x+y)=1000 e a área do retângulo é A=xy; logo:

$$A(x) = x (500 - x) = 500 x - x^{2}.$$

[7] Considere $A=\mathbb{R}$ e f a regra que associa a cada número real $x\in A$, o seu cubo, isto é: $y=f(x)=x^3$.

Por exemplo, ao número -1 associamos o número $f(-1)=(-1)^3=-1$; ao número 2 associamos o número $f(2)=(2)^3=8$; ao número $\sqrt{2}$ associamos o número $f(\sqrt{2})=2\sqrt{2}$, ao número t^4+1 associamos o número $f(t^4+1)=(t^4+1)^3$, etc.

x	$f(x) = x^3$
$ \begin{array}{c} -1 \\ 2 \\ \sqrt{2} \\ t \\ t^4 + 1 \\ t^{-1/4} \\ \sqrt[6]{m} \\ (t^4 - 4\sqrt[7]{t} + 1)^5 \end{array} $	$(-1)^{3} = -1$ $(2)^{3} = 8$ $(\sqrt{2})^{3} = 2\sqrt{2}$ t^{3} $(t^{4} + 1)^{3}$ $t^{-3/4}$ $m^{1/2}$ $(t^{4} - 4\sqrt[7]{t} + 1)^{15}$

[8] Seja $A=[0,+\infty)$ e f a regra que associa a cada número real $x\geq 0$ sua raiz quadrada, isto é: $y=f(x)=\sqrt{x}$. Por exemplo, ao número 0 associamos o número $f(0)=\sqrt{0}=0$; ao número t^4 associamos o número $f(t^4)=\sqrt{t^4}=t^2$ e ao número -4 não podemos associar nenhum número real, pois, $\sqrt{-4}$ não é um número real.

x	$f(x) = \sqrt{x}$
0	0
2	$\sqrt{2}$
4	2
-4	indefinido
t^4	t^2
$t^4 + 1$	$\sqrt{t^4+1}$
$\sqrt[6]{m}$	$\sqrt[12]{m}$
$(t^4 + 4\sqrt[8]{t} + 1)^{10}$	$(t^4 + 4\sqrt[8]{t} + 1)^5$

[9] Seja $A = \mathbb{R}$ e f a seguinte função :

$$f(x) = \begin{cases} x^2 & \text{se} \quad x < 2\\ x^3 & \text{se} \quad x \ge 2. \end{cases}$$

Ao número -1 associamos o número $f(-1)=(-1)^2=1$; ao número 2 associamos o número $f(2)=2^3=8$; ao número $\sqrt{2}$ associamos o número $f(\sqrt{2})=(\sqrt{2})^2=2$, etc.

x	0	-1	-3	2	$\sqrt{3}$	$\sqrt{5}$
f(x)	0	$(-1)^2 = 1$	$(-3)^2 = 9$	$(2)^3 = 8$	3	$5\sqrt{5}$

[10] Seja $A = \mathbb{R}$ e f a seguinte função :

$$f(x) = \begin{cases} 1 & \text{se} \quad x \in \mathbb{Q} \\ -1 & \text{se} \quad x \notin \mathbb{Q}. \end{cases}$$

Por exemplo, ao número -1 associamos o número f(-1)=1; ao número 2 associamos o número f(2)=1; ao número $\sqrt{2}$ associamos o número $f(\sqrt{2})=-1$, pois $\sqrt{2}$ é irracional; $f(\pi)=-1$; $f(\frac{5}{7})=1$.

x	0	-1	2	e	$\sqrt{3}$	$\sqrt{5}$
f(x)	1	1	1	-1	-1	-1

[11] Se, durante o verão de 2012, no Rio de Janeiro, registrássemos a temperatura máxima ocorrida em cada dia, obteríamos uma função. De fato, a cada dia, está associado uma única temperatura máxima, isto é, a temperatura é função do dia. Embora não exista uma fórmula explícita para expressar a função do exemplo, a definição de função é satisfeita.

Em geral, a maioria das funções usadas nas aplicações são dadas por fórmulas ou equações. Mas é preciso ter um pouco de cuidado, pois nem toda equação de duas variáveis define uma função. Por exemplo, a equação $y^2=x$ não define uma função, pois para x=1 temos dois valores para y, a saber: $y=\pm 1$; mas $y^2=x$ dá origem a duas funções: $y=f_1(x)=\sqrt{x}$ e $y=f_2(x)=-\sqrt{x}$.

Podemos imaginar uma função como uma máquina que utiliza uma certa matéria prima (input) para elaborar algum produto final (output) e o conjunto dos números reais como um depósito de matérias primas. Fica evidente que é fundamental determinar, exatamente, neste depósito, qual matéria prima faz funcionar nossa máquina; caso contrário, com certeza, a estragaremos.

Definição 2

- 1. O conjunto de todos os $x \in \mathbb{R}$ que satisfazem a definição de função é chamado **domínio da função** f e é denotado por Dom(f).
- 2. O conjunto de todos os $y \in \mathbb{R}$ tais que y = f(x), onde $x \in Dom(f)$ é chamado imagem da função f e é denotado por Im(f).

É claro que $Dom(f) \subset \mathbb{R}$, $Im(f) \subset \mathbb{R}$, e que Dom(f) é o conjunto dos valores da variável independente para os quais f é definida; Im(f) é o conjunto dos valores da variável dependente calculados a partir dos elementos do domínio.

Duas funções f e g são ditas idênticas se tem o mesmo domínio D e f(x) = g(x), para todo $x \in D$; por exemplo as funções $f(x) = x^2$, x > 0 e $g(x) = x^2$, $x \in \mathbb{R}$ são diferentes pois seus domínios são diferentes.

Antes de ver alguns exemplos, voltamos a insistir que para estudar qualquer função, devemos sempre determinar os conjuntos Dom(f) e Im(f).

Exemplos

[1] A área de qualquer círculo é função de seu raio.

De fato, se o raio do círculo é denotado por r>0, então, a área é $A(r)=\pi\,r^2$; logo,

$$Dom(A) = Im(A) = (0, +\infty).$$

Um círculo de raio igual a $5\,u.c.$, tem área $A(5)=25\,\pi\,u.a$; um círculo de raio igual a $300\,u.c.$, tem área $A(300)=90000\,\pi\,u.a.$ (u.c.=unidades de comprimento) e (u.a.=unidades de área).

[2] Considere a função $y = f(x) = x^2$.

É claro que não existem restrições para o número real x; logo, temos que:

$$Dom(f) = \mathbb{R}$$

e $y=x^2\geq 0$, para todo $x\in\mathbb{R}$; então $Im(f)\subset[0,+\infty)$. Como todo número real não negativo possui raiz quadrada real; então:

$$Im(f) = [0, +\infty).$$

[3] Considere a função $y = f(x) = \sqrt{x}$.

Uma raiz quadrada existe somente se $x \ge 0$; então:

$$Dom(f) = [0, +\infty).$$

Como todo número real $x \ge 0$ possui raiz quadrada:

$$Im(f) = [0, +\infty).$$

[4] Considere a função $y = f(x) = \sqrt{x^2 - 1}$.

Como no caso anterior, $\sqrt{x^2-1}$ existe somente se $x^2-1\geq 0$; resolvendo a inequação temos:

 $Dom(f) = (-\infty, -1] \cup [1, +\infty)$ e, novamente, temos: $Im(f) = [0, +\infty)$.

[5] Considere a função $y = f(x) = \frac{1}{x}$.

É claro que f é definida se e somente se $x \neq 0$; logo temos que:

$$Dom(f) = \mathbb{R} - \{0\} = (-\infty, 0) \cup (0, +\infty);$$

por outro lado, uma fração é nula se e somente se o numerador é nulo; então

$$Im(f) = \mathbb{R} - \{0\}.$$

[6] Considere a função $y = f(x) = \frac{1}{x^2 - 1}$.

Como no caso anterior o denominador da fração não pode ser nulo; logo $x^2-1\neq 0$; então, $x\neq \pm 1$ e:

$$Dom(f) = \mathbb{R} - \{-1, 1\}; \quad Im(f) = \mathbb{R} - \{0\}.$$

[7] Considere a função $y = f(x) = \sqrt[3]{x}$.

Como a raiz cúbica de um número positivo ou negativo é positiva ou negativa,

$$Dom(f) = Im(f) = \mathbb{R}.$$

[8] Considere a função $y = f(x) = \sqrt{x} + \sqrt{x^2 - 1}$.

A função é definida se $x \ge 0$ e $x^2 - 1 \ge 0$ simultaneamente. Resolvendo as inequações, obtemos $x \ge 1$; logo,

$$Dom(f) = [1, +\infty)$$
 e $Im(f) = (0, +\infty)$.

Agora que determinamos nos exemplos os domínios e imagens das funções, podemos avaliar, sem perigo, estas funções.

[9] Se $f(x) = \sqrt{x}$, então $f(5) = \sqrt{5}$, $f(\pi) = \sqrt{\pi}$ e $f(x^2 + 1) = \sqrt{x^2 + 1}$, pois $x^2 + 1$ é sempre positivo.

[10] Se
$$g(x) = \frac{1}{x}$$
, calculamos $g(\frac{1}{t}) = t$, se $t \neq 0$ e $g(x^4 + 4) = \frac{1}{x^4 + 4}$.

Gráfico de Funções

A representação geométrica de uma função de uma variável real é dada por seu gráfico no plano coordenado xy.

Definição 2.3. O gráfico de uma função y = f(x) é o seguinte subconjunto do plano:

$$G(f) = \{(x, f(x))/x \in Dom(f)\}$$

Geometricamente G(f) é, em geral, uma curva no plano. Nos exemplos [1], [2] e [4] da seção 2.1, G(f) não é uma curva. Nos casos em que G(f) é uma curva, intuitivamente podemos pensar que os conjuntos Dom(f) e Im(f) representam a "largura" e "altura" máxima da curva, respectivamente. Inicialmente, a construção dos gráficos será realizada fazendo uma tabela, onde as entradas da tabela são os elementos do domínio e as saídas, as respectivas imagens.

Exemplos

[1] Esboce o gráfico da função dada pela seguinte tabela, que mostra a vazão semanal de água de uma represa:

O gráfico desta função não representa uma curva. A primeira coluna da tabela representa a abscissa e a segunda coluna as respectivas ordenadas; logo, obtemos:

Dia	m^3/seg
1	360
2	510
3	870
4	870
5	950
6	497
7	510

[2] Esboce o gráfico da função $f(x) = x^2$. Note que $Dom(f) = \mathbb{R}$ e $Im(f) = [0, \infty)$. Fazendo a tabela:

x	$f(x) = x^2$
0	0
$\pm 1/4$	1/16
$\pm 1/3$	1/9
$\pm 1/2$	1/4
±1	1
± 2	4
±3	9

 $x^2 \geq 0$ para todo $x \in \mathbb{R}$, os pontos de abscissas x e -x tem a mesma ordenada $y = x^2$. Logo, o gráfico de f fica situado no primeiro e segundo quadrantes. Observando a tabela, conclui-se que se o valor de |x| aumenta, os valores da correspondente ordenada aumentam mais rapidamente. Se os valores de |x| aproximam-se a zero, os valores correspondentes da ordenada aproximam-se mais rapidamente de zero.

[3] Esboce o gráfico da função $f(x)=x^3$. Note que $Dom(f)=Im(f)=\mathbb{R}$. Fazendo a tabela:

x	$f(x) = x^3$
0	0
$\pm 1/4$	$\pm 1/64$
$\pm 1/3$	$\pm 1/27$
$\pm 1/2$	$\pm 1/8$
±1	±1
±2	±8

Se $x \ge 0$, então $y \ge 0$ e se x < 0, então y < 0. Logo, o gráfico está situado no primeiro e terceiro quadrantes. Observando a tabela, vemos que quando x > 0 e x cresce, os valores correspondentes da ordenada y também crescem e mais rapidamente. Quando x < 0 e x decresce, os valores correspondentes da ordenada y decrescem e mais rapidamente. O gráfico de f é:

[4] Esboce o gráfico da função $f(x) = \frac{1}{x}$. Note que $Dom(f) = Im(f) = \mathbb{R} - \{0\}$. Fazendo a

tabela: $x \qquad f(x) = \frac{1}{x}$

x	$f(x) = \frac{1}{x}$
$\pm 1/100$ $\pm 1/4$ $\pm 1/3$ $\pm 1/2$ ± 1 ± 2 ± 3	±100 ±4 ±3 ±2 ±1 ±1/2 ±1/3

Se x>0, então y>0 e se x<0, então y<0. Logo, o gráfico está situado no primeiro e terceiro quadrantes. Observando a tabela, vemos que quando x>0 e x cresce, os valores correspondentes da ordenada y aproximam-se de zero e à medida que x aproxima-se de zero, os valores correspondentes da ordenada y aumentam muito. Quando x<0 e x cresce, os valores correspondentes da ordenada y decrescem e à medida que x decresce, os valores correspondentes da ordenada y aproximam-se de zero. O gráfico de f é:

$$[5] \text{ Esboce o gráfico da seguinte função}: f(x) = \begin{cases} x-x^2 & \text{se} \quad x \geq \frac{1}{2} \\ x & \text{se} \quad -\frac{1}{2} < x < \frac{1}{2} \\ x^2+x & \text{se} \quad x < -\frac{1}{2}. \end{cases}$$

Figura 2.8: Gráfico de f(x) do exemplo [5].

Lista de Exercícios 1

- 1. Seja a função $f: D \rightarrow R$ dada pela lei de formação f(x) = 5x + 2, de domínio $D = \{-3, -2, -1, 0, 1, 2, 3, 4\}$. Determine o conjunto imagem dessa função.
- 2. Dada a função f : R \rightarrow R por f(x) = x² + 2x, determine o valor de f(2) + f(3) f(1).
- 3. Uma função f de variável real satisfaz a condição f(x + 1) = f(x) + f(1), qualquer que seja o valor da variável x. Sabendo que f(2) = 1, determine o valor de f(5).

(Enem-2008-Adaptado)

 A figura abaixo representa o boleto de cobrança da mensalidade de uma escola referente ao mês de junho de 2008.

Banco S.A.	
Pagável em qualquer agência bancária até a data de vencimento	30/06/2008
Cedente Escola de Ensino Médio	Agêncialoòd, cedente
Data documento 02/06/2008	Nosso número
Uso do banos	(*) Valor documento R\$ 500,00
Instruções	(-) Descontos
Observação: no caso de pagamento em atraso, cobrar multa de R\$ 10,00 mais 40 centavos por dia de atraso.	(-) Outras deduções
	(+) Mora/Multa
	(+) Outros acrésdmos
	(=) Valor Cobrado

Temos que M(x) é o valor, em reais, da mensalidade a ser paga, e x é o número de dias em atraso. Determine a função que oferece o valor do boleto para pagamento com atraso, e calcule o valor de uma mensalidade com 12 dias de atraso.

Respostas

Resposta Questão 1

$$f(x) = 5x + 2$$

$$f(-3) = 5 * (-3) + 2 = -15 + 2 = -13$$

$$f(-2) = 5 * (-2) + 2 = -10 + 2 = -8$$

$$f(-1) = 5 * (-1) + 2 = -5 + 2 = -3$$

$$f(0) = 5 * 0 + 2 = 2$$

$$f(1) = 5 * 1 + 2 = 5 + 2 = 7$$

$$f(2) = 5 * 2 + 2 = 10 + 2 = 12$$

$$f(3) = 5 * 3 + 2 = 15 + 2 = 17$$

$$f(4) = 5 * 4 + 2 = 20 + 2 = 22$$

Conjunto imagem da função, de acordo com o domínio estabelecido: {-13, -8, -3, 2, 7, 12, 17, 22}

Resposta Questão 2

$$f(2) = 2^2 + 2 * 2 = 4 + 4 = 8$$

$$f(3) = 3^2 + 2 * 3 = 9 + 6 = 15$$

$$f(1) = 1^2 + 2 * 1 = 1 + 2 = 3$$

$$f(2) + f(3) - f(1) = 8 + 15 - 3$$

$$f(2) + f(3) - f(1) = 23 - 3$$

$$f(2) + f(3) - f(1) = 20$$

Temos que o valor de f(2) + f(3) - f(1) é igual a 20.

Resposta Questão 3

$$x = 1$$

 $f(1+1) = f(1) + f(1)$
 $f(2) = 2f(1)$
 $2f(1) = f(2)$
 $2f(1) = 1$
 $f(1) = 1/2$
 $x = 2$
 $f(2+1) = f(2) + f(1)$
 $f(3) = 1 + 1/2$
 $f(3) = 3/2$

$$x = 3$$

 $f(3+1) = f(3) + f(1)$
 $f(4) = 3/2 + 1/2$
 $f(4) = 4/2$
 $f(4) = 2$
 $x = 4$
 $f(4+1) = f(4) + f(1)$
 $f(5) = 2 + 1/2$
 $f(5) = 5/2$
O valor de $f(5)$ na função é igual a 5/2.

Resposta Questão 4

O valor a ser pago é de R\$ 500,00, mas caso o pagamento seja feito com atraso ocorrerá um acréscimo fixo de R\$ 10,00 mais R\$ 0,40 por dia de atraso. Dessa forma, temos que a função será dada por:

$$M(x) = 500 + 10 + 0,40x$$

$$M(x) = 510 + 0.40x$$

Valor da mensalidade após 12 días de atraso:

$$M(x) = 510 + 0.40x$$

$$M(x) = 510 + 0.40 * 12$$

$$M(x) = 510 + 4.80$$

$$M(x) = 514,80$$

O valor da prestação decorrido 12 dias de atraso corresponde a R\$ 514,80.

Lista de Exercícios 2

Determine e esboce o domínio das funções abaixo:

a)
$$f(x, y) = \frac{2}{x^2 + y^2 - 16}$$
 b) $f(x, y) = \frac{x}{-2x + y - 8}$

b)
$$f(x, y) = \frac{x}{-2x + y - 8}$$

c)
$$f(x, y) = \frac{x}{y - x^2 - 1}$$

c)
$$f(x, y) = \frac{x}{y - x^2 - 1}$$
 d) $f(x, y) = \sqrt{25 - x^2 - y^2}$

e)
$$f(x, y) = \sqrt{x^2 + y^2 - 1}$$
 f) $f(x, y) = \sqrt{x + y - 1}$

f)
$$f(x, y) = \sqrt{x + y - 1}$$

g)
$$f(x, y) = \sqrt{2x^2 + 18y^2 - 72}$$
 h) $f(x, y) = \sqrt{x^2 - y - 9}$

h)
$$f(x, y) = \sqrt{x^2 - y - 9}$$

i)
$$f(x, y) = \frac{1}{\sqrt{-1 - x^2 + y^2}}$$
 j) $f(x, y) = \frac{1}{\sqrt{3 - x^2 - y^2}}$

j)
$$f(x, y) = \frac{1}{\sqrt{3 - x^2 - y^2}}$$

k)
$$f(x, y) = \frac{1}{\sqrt{4 - x - 2y}}$$

k)
$$f(x, y) = \frac{1}{\sqrt{4 - x - 2y}}$$
 l) $f(x, y) = \frac{1}{\sqrt{4 - x^2 - 4y^2}}$

m)
$$f(x,y) = \frac{1}{\sqrt{-9 + x^2 + y}}$$
 n) $f(x,y) = \frac{4}{\sqrt[3]{-x^2 + y} - 1}$

n)
$$f(x, y) = \frac{4}{\sqrt[3]{-x^2 + y - 1}}$$

o)
$$f(x, y) = \ln(x^2 + y^2 - 9)$$

o)
$$f(x, y) = \ln(x^2 + y^2 - 9)$$
 p) $f(x, y) = \ln(-9x^2 - 16y^2 + 144)$

- 2. As funções $f(x, y) = \frac{x + y}{2}$ e $g(x, y) = \sqrt{xy}$ calculam, respectivamente, a média aritmética e a média geométrica dos números x e y. Determine:
 - a) A média aritmética e a média geométrica dos números x = 8e y = 2.
 - b) Os valores de x e y para os quais a média geométrica é igual a média aritmética.
 - c) O domínio da função f. Faça um esboço.
 - d) O domínio da função g. Faça um esboço.
- Uma empresa que aluga carros cobra R\$40,00 por dia e 15 centavos por quilômetros rodado.
 - a) Obtenha uma fórmula para o custo, C, do aluguel como função do número de dias, d, e o número de quilômetros, q.
 - b) Calcule C(5,300) e interprete o resultado.

- 4. Em 1928 Charles Cobb e Paul Douglas publicaram um estudo no qual modelavam o crescimento da economia americana durante o período 1899-1922. Eles consideravam uma visão simplificada onde a produção é determinada pela quantidade de trabalho e pela quantidade de capital investido. Apesar de existirem muitos outros fatores afetando o desempenho da economia, o modelo provou-se impressionante razoável. A função utilizada para modelar a produção era da forma P(T, C) = 1,01T^{0,75}C^{0,25}, onde P é a produção total (valor monetário dos bens produzidos no ano), T é a quantidade de trabalho (número total de pessoas-hora trabalhadas em um ano) e C é a quantidade de capital investido (valor monetário das máquinas, equipamentos e prédios).
 - a) Determine o domínio da função P. Faça um esboço.
 - b) Em 1920, os valores da produção, do trabalho e do capital, de acordo com dados econômicos divulgados pelo governo americano, foram respectivamente, 231,194 e 407 em unidades apropriadas. Utilize a função de Cobb e Douglas para calcular a produção em 1920 e compare com o seu valor real.
 - c) O que acontece com a produção se o trabalho e o capital investido forem dobrados?
 - d) O que acontece com a produção se o trabalho e o capital investido forem multiplicados por um número positivo k?

- 5. Quando injetamos um medicamento em um tecido musculoso, ele se espalha na corrente sanguínea. A concentração do medicamento no sangue aumenta até atingir um máximo, e depois decresce. A concentração C (em mg por litro) do medicamento no sangue é uma função de duas variáveis: q, a quantidade (em mg) do medicamento injetado, e t, o número de horas desde que a injeção foi administrada. A concentração pode ser modelada pela seguinte fórmula C(q,t) = te^{-t(5-q)} para 0 ≤ q ≤ 4 e t ≥ 0.
 - a) Faça um esboço do domínio dessa função
 - Calcule a concentração 2 horas e 30 minutos após a injeção de 2,4mg do medicamento.
 - c) Supondo que sejam injetados 4mg do medicamento, determine após quantas horas o medicamento atinge a concentração máxima. Qual é a concentração máxima? Faça um esboço do gráfico da concentração em função do tempo.

Respostas da lista 2 - exercício 1

e)
$$D = \{(x,y) \in \mathbb{R}^2 / x^0 + y^0 - 1 > 0\}$$

$$(0,1)$$

$$(0,1)$$

$$(0,-1)$$

Todo o plama exceto o interior da cincumferência

Todo o plano exceto o semi-plano obaixo da reta

Todo o plamo excito o interior da parabola

o exterior da parabola

Todo o plamo exceto a parabola

o interior da elipse