Санкт-Петербургский государственный университет Программная инженерия

Погожельская Влада

Анализ решений задачи о подсчете количества треугольников в графе, основанных на линейной алгебре

Курсовая работа

Научный руководитель: к. ф.-м. н., доцент Григорьев С. В.

Оглавление

Введение									
1.	. Постановка задачи								
2.	Обз	ор существующих решений и библиотек	6						
3.	Pea	лизация	10						
	3.1.	Базовый алгоритм	10						
	3.2.	Особенности реализации с помощью							
		SuiteSparse:GraphBLAS	11						
	3.3.	Архитектура решения	12						
4.	Cpa	внительный анализ	14						
5.	. Заключение								
Cı	іисо:	к литературы	18						

Введение

Анализ больших данных является важной областью современных научных исследований. Многие задачи из этой области естественным образом выражаются в терминах графов. Данные, представленные в виде графа, могут отражать отношения между людьми в социальных сетях, биологические или генетические взаимодействия или, например, отображать сеть цитирования в Интернете. В связи с широкой областью их применения, понимание базовой структуры графа становится все более важной задачей при разработке эффективных алгоритмов анализа больших данных.

Важным направлением изучения структуры графов является поиск в нём некоторых шаблонных подграфов, иначе говоря, subgraph matching. Одним из наиболее часто используемых является треугольник.

Подсчет количества треугольников в графе — это проблема нахождения количества уникальных троек вершин u, v, w в неориентированном графе, таких что $(u, v), (u, w), (v, w) \in E$, где E — множество ребер графа. Данная задача может быть применена в анализе социальных сетей, где используется для обнаружения сообществ и степени сплоченности между ними. Также, на этой мере основаны такие важные характеристики в анализе сетей, как коэффициент кластеризации и коэффициент транзитивности.

Растущая потребность использования данного алгоритма как структурного элемента в прикладных задачах актуализирует исследования по его ускорению и увеличению масштабируемости при запуске на больших параллельных системах.

Однако, по мере роста количества вершин и ребер в графе, возникает вопрос об эффективной параллельной обработке данных. Благодаря высокой степени параллелизма и высокой пропускной способности доступа к памяти, графические процессоры все чаще начали применять в неграфических вычислениях. Впоследствии, графические процессоры были адаптированы для ускорения обработки графов больших размеров и для них был разработан ряд алгоритмов. Но, несмотря на это, высокопроизводительные графовые алгоритмы всё еще требует больших трудозатрат со стороны программиста по реализации как на GPU, так и на CPU, так как зачастую для их эффективного использования необходимо знать аппаратные особенности. Для решения данной проблемы было разработано несколько библиотек, предоставляющих высокоуровневый интерфейс и помогающих лаконично выражать графовые алгоритмы. Многие из них базируются на представлении графовых алгоритмов в терминах линейной алгебры. Задача подсчета количества треугольников не стала исключением и для ее решения было реализовано несколько матричных алгоритмов с помощью различных библиотек. Так как данные разработки в первую очередь были направлены на обработку графов, которые возникают в реальной жизни, то важной частью является анализ применимости данных результатов на практике.

В данной работе планируется провести сравнение и анализ существующих на данный момент решений задачи подсчета количества треугольников, основанных на линейной алгебре.

1. Постановка задачи

Целью данной работы является сравнительный анализ существующих на данный момент решений задачи подсчета количества треугольников, основанных на линейной алгебре. Для достижения цели были выделены перечисленные ниже задачи.

- Выполнить обзор существующих решений задачи о подсчете количества треугольников, основанных на линейной алгебре, и использованных для этого инструментов. Целью обзора является: выбрать алгоритмы, которые необходимо реализовать для полноты планируемого сравнения и выбрать подходящую библиотеку для реализации.
- Выполнить реализацию выбранного алгоритма подсчета количества треугольников в графе с помощью выбранной библиотеки.
- Провести экспериментальное исследование реализованного алгоритма и уже существующих в данной библиотеке.

2. Обзор существующих решений и библиотек

В последние годы вследствие быстрого роста размеров графов, которые необходимо анализировать, были проведены серьезные исследования в области повышения производительности алгоритмов подсчета количества треугольников в графе. В этом разделе будут кратко описаны основные подходы к решению этой задачи в контексте ее реализации в терминах линейной алгебры. Также будут рассмотрены использованные при этом библиотеки и их особенности.

Для дальнейшего описания алгоритмов обозначим за A — булеву симметричную матрицу смежности входного графа, L — верхнетреугольную матрицу от A, а U — нижнетреугольную (A = L + U); (*) — оператор стандартного умножения матриц, (.*) — оператор поэлементного умножения матриц, (') — транспонирование матрицы.

• Базовая версия матричного алгоритма

Количество треугольников в графе выражается формулой: $\frac{1}{6}trace(A^3)$, где trace — след матрицы, выражающийся формулой $trace(A) = \sum_i a_{ii}$.

• Burkhardt algorithm

Алгоритм отличается от базового тем, что одна из операций умножения матриц заменена менее "тяжеловесной" операцией поэлементного умножения. Итоговое количество треугольников: $\frac{1}{6}\sum_{j}(\sum_{i}((A^{2}).*A)).$

• Cohen algorithm

Данный алгоритм подсчета количества треугольников основан на алгоритме MapReduce, автором которого является J.Cohen [1]. Идея реализованного алгоритма заключается в следующем:

— Разбить матрицу смежности A на верхнетреугольную матрицу L и нижнетреугольную матрицу U.

- Посчитать матрицу B = LU.
- Наконец, $C = A \circ B$ (поэлементное умножение). Тогда, итоговое количество треугольников — $\frac{1}{2} \sum_i \sum_j C_{ij}$.

Данный алгоритм использует менее тяжеловесные операции умножения матриц, однако, каждый треугольник в итоге будет посчитан дважды.

• Sandia algorithm

Данный алгоритм является последним по времени разработки и является наиболее производительным. Данный алгоритм базируется на следующей формуле: sum(sum((U*U).*U)), при этом каждый треугольник будет посчитан единожды.

• SandiaDot algorithm

Метод SandiaDot аналогичен Sandia, но опирается на тот факт, что L=U', так как матрица A симметричная, и не транспонирует матрицу U явно. Тогда итоговая формула, использующаяся в алгоритме: sum(sum((L*U').*L))

Из обзора подходов к решению задачи с помощью линейной алгебры видно, что базовый алгоритм имеет большие просторы для оптимизаций и ускорения засчёт уменьшения количества умножений и повышения их эффективности (использование верхне- или нижнетреугольной матрицы вместо полной). Однако, также важным фактором целесообразности использования того или иного алгоритма в реальных условиях является не только его эффективность, но и воспроизводимость — то, насколько кратко и лаконично позволяют описать его современные инструменты. С этой целью были рассмотрены следующие библиотеки.

• GraphBLAS Template Library (GBTL)

GBTL [3] — реализация открытого стандарта GraphBLAS для языка C++. GraphBLAS — это новая парадигма для обработки

графов, которая облегчает разработку графовых алгоритмов, выражая их в терминах линейной алгебры. Важно отметить, что графовый алгоритм, написанный согласно этому стандарту, может выполняться в самых разных средах программирования, от встроенных сред до компьютеров с распределенной памятью. В данной библиотеке содержится реализация алгоритма Cohen, однако, в ней не поддерживается вычисления на GPU.

• GraphBLAST

GraphBLAST [4] — высокопроизводительный фреймворк с открытым исходным кодом, помогающий реализовывать графовые алгоритмы в терминах линейной алгебры. Библиотека GraphBLAST представляет особенный интерес для реализации графовых алгоритмов, так как совмещает в себе Gunrock [5] в качестве backend'а и компактный и простой в использовании пользовательский интерфейс стандарта GraphBLAS. На данный момент алгоритм подсчета количества треугольников в графе не поддерживается библиотекой. Однако, разработчиками утверждается, что основной код реализации занимает 6 строк и по крайней мере, не уступает по производительности реализациям использующих другие графовые фреймфорки [8].

• SuiteSparse:GraphBLAS

SuiteSparse:GraphBLAS — фреймворк так же полностью соответствует стандарту GraphBLAS, при этом дополнен поддержкой операций с разреженными матрицами над расширенной алгеброй полуколец. Применительно к разреженным матрицам смежности эти алгебраические операции эквивалентны вычислениям на графах. Стоит отметить, что GraphBLAS предоставляет мощную и выразительную основу для создания графовых алгоритмов, основанных на изящной математике разреженных матричных операций в полукольце.

В примерах библиотеки представлены все выше описанные алго-

ритмы решения задачи подсчета количества треугольников, кроме базового. Все они оптимизированы для быстрого умножения разреженных матриц с помощью методов, предоставляемых библиотекой. На сегодняшний день поддерживаемые ей реализации алгоритмов подсчета треугольников SuiteSparse показывают наиболее высокие результаты по сравнению с другими графовыми фреймворками [2].

В результате анализа существующих решений были выявлены особенности реализации алгоритмов подсчета треугольников в зависимости от используемых технологий. Графовые алгоритмы удобно представлять в терминах линейной алгебры по крайней мере по двум причинам. Во-первых, многие алгоритмы, в том числе и подсчет количества треугольников, кратко и лаконично выражаются через матричное представление. Во-вторых, как было показано выше на примере SuiteSparse, для них реализованы эффективные алгоритмы. Тем не менее, вопрос о практической применимости базового алгоритма остается открытым, так как ни в одной из представленных библиотек не был реализован базовый алгоритм для решения задачи подсчета количества треугольников в графе, хотя сравнение оптимизированных алгоритмов с ним является показательным с точки зрения эффективности примененных оптимизаций. По этим причинам этот алгоритм был выбран для дальнейшей реализации.

3. Реализация

Как было показано в предыдущем разделе, решение проблемы подсчета количества треугольников поддерживается несколькими библиотеками, позволяющими выразить алгоритм через матричное представление. В ходе изучения библиотек изначально было принято решение реализовывать базовый алгоритм с помощью библиотеки GraphBLAST. Однако, в процессе сборки и тестирования ее существующих компонент и уже написанных в качестве демо алгоритмов был обнаружен ряд проблем, не позволяющих реализовать стабильно работающую версию алгоритма. О найденных ошибках было сообщено разработчикам в виде issues в репозитории библиотеки. Так как быстрого решения проблем не ожидалось, то в качестве альтернативной библиотеки для реализации алгоритма была выбрана наиболее стабильная и производительная на сегодняшний день библиотека, соответствующая стандарту GraphBLAS — SuiteSparse. Эта библиотека "заточена" под работу над разреженными матрицами, которые наиболее часто возникают в реальных графах. Также, для дальнейшего проведения экспериментального сравнения необходимо обеспечить соответствующую архитектуру решения.

3.1. Базовый алгоритм

Проблема подсчета количества треугольников имеет множество путей решения. В том числе, было разработано несколько алгоритмов, основанных на матричных операциях. В библиотеке SuiteSparse поддерживается 4 метода решения задачи, отличающихся по использованию памяти и времени работы.

В рамках данной работы был реализован еще не представленный в библиотеке метод, который, тем не менее, является наиболее известным подходом к решению задачи в терминах линейной алгебры.

Дан неориентированный граф G=(V,E) без петель и кратных ребер, где V — множество вершин графа, |V|=N, E — множество ребер. Пусть A — матрица смежности, размером $N \times N$ со значениями 0 и

1, причем она симметрична и имеет все нули на диагонали. Если вычислить A^n , то $A^n[i][j]$ будет представлять собой количество различных путей в графе из i в j длины п. Соответственно, для того, чтобы найти пути длины 3, необходимо вычислить A^3 . При этом, значение $A^3[i][i]$ отображает количество путей, начинающийся и заканчивающийся в вершине i, что и есть количество треугольников, проходящих через вершину i. Так как число треугольников считается для каждой вершины и каждый треугольник будет посчитан трижды, то общее количество необходимо разделить на 3, так же, так как граф неориентированный, делим еще на 2. Итого, число треугольников в графе можно выразить в виде формулы: $\frac{1}{6}trace(A^3)$. Данный алгоритм является "наивным" и его асимптотическая сложность составляет $\mathcal{O}(N^3)$, а объем занимаемой памяти — размер матрицы A.

3.2. Особенности реализации с помощью SuiteSparse:GraphBLAS

Особенность реализации данного алгоритма на SuiteSparse состоит в том, что функция перемножения двух разреженных матриц GrB_mxm использует полукольцо. Поэтому сначала необходимо сконструировать коммутативный и ассоциативный моноид по сложению и далее сконструировать из него полукольцо по умножению.

Моноиды в SuiteSparse: скалярное сложение в стандартном умножении матриц заменяется моноидом. Моноид (GrB_Monoid) является ассоциативным и коммутативным бинарным оператором z = f(x;y), где x, y и z одинакового типа и оператор имеет нейтральный элемент e такой, что f(x;e) = f(e;x) = x.

Полукольца в SuiteSparse: Полукольцо $(GrB_Semiring)$ состоит из моноида и оператора «умножения». Вместе эти операции определяют операцию матричного умножения C = AB, где моноид используется как аддитивный оператор и полукольцо используется как оператор «умножения» вместо стандартного скалярного умножения. SuiteSparse дает возможность определять свои собственные моноиды и полукольца.

В библиотеку встроены несколько алгоритмов умножения матриц, в том числе те, у которых асимптотическое время работы меньше, чем $\mathcal{O}(N^3)$, из чего следует улучшение асимптотики работы алгоритма подсчета количества треугольников. В данной реализации был использован оптимизированный метод умножения матриц — Gustavson's method [6].

3.3. Архитектура решения

Для проведения экспериментального исследования реализованного алгоритма и уже существующих была разработана система, позволяющая автоматизировать процесс сборки, запуска и замеров времени работы алгоритмов. На рисунке 1 представлена архитектура реализованного решения.

Данная система состоит из:

- скрипта test.py, написанного на Python;
- исходных файлов main.c, mytricount.c, timer.c;
- библиотеки SuiteSparse: GraphBLAS.

Рис. 1: Архитектура решения

Для старта алгоритма необходимо запустить скрипт test.py, внутри которого последовательно вызывается:

1. Сборка исходных файлов с помощью make.

В файле main.c выполняется загрузка графа и запуск реализованного алгоритма и уже существующих в библиотеке алгоритмов подсчета количества треугольников на реальных и полных графах вместе с замерами времени.

В папке mytricount лежит файл с исходным кодом алгоритмов и заголовочный файл к нему.

В папке timer лежит файл с исходным кодом таймера для замера производительности и заголовочный файл у нему.

B deps находится исходный код самой библиотеки SuiteSparse: GraphBLAS.

- 2. Загрузка графов, представляющих собой реальные данные, в папку input 1 .
- 3. Генерация полных графов и сохранение их в ту же папку.
- 4. Запуск собранного с помощью таке исполняемого файла.
- 5. Запись результатов замеров в две итоговые таблицы отдельно для реальных и полных графов.

¹Графы доступны по ссылке: [7]

4. Сравнительный анализ

В данном разделе приведен сравнительный анализ результатов работы алгоритма на различных графах. Для его проведения использовалось два типа графов: сгенерированные полные графы и реальные графы, которые возникают на практике и являются довольно разреженными. В таблице данные представлены в секундах.

В таблице 1 приведены результаты замеров алгоритмов на полных графах. В ней можно увидеть, что наивный алгоритм показывает сравнимые с оптимизированными алгоритмами результаты времени работы даже с ростом количества вершин и разница времени его работы с остальными алгоритмами сохраняется на том же уровне по мере роста количества вершин в графе. Однако, полные графы в реальной жизни возникают достаточно редко, поэтому полученные результаты на синтетических графах ничего не говорят о практической применимости. Также, поддерживаемые библиотекой алгоритмы являются оптимизированными для работы с большими разреженными матрицами, что означает, что плотный граф с небольшим количеством вершин является для них худшим случаем и их время работы может приближаться к базовому алгоритму.

В таблице 2 приведены результаты замеров работы алгоритмов на реальных графах. Определенно, запуск "наивного" алгоритма на реальных графах явно показал, что он сильно проигрывает другим алгоритмам и количество работы, выполняемое им, не является оптимальным. Методы Burkhardt и Cohen намного более эффективны по сравнению с "наивным" методом, но при этом занимают пространство в памяти того же размера, то есть размера матрицы А. С другой стороны, они работают медленнее, чем метод Sandia, который занимает немного меньше памяти, чем Burkhardt и Cohen, и, безусловно, является самым быстрым среди всех представленных алгоритмов. При этом, модернизация последнего алгоритма почти ни на одном графе не дала выигрыша по времени.

В результате сравнительного анализа можно смело делать выводы

о том, что проведенные оптимизации базового алгоритма дали существенный прирост в производительности на графах, отражающих реальные данные и задачи, а базовый алгоритм есть смысл применять только на полных или очень плотных графах. Из всех рассмотренных алгоритмов наиболее эффективным во всей сценариях показал себя алгоритм Sandia, в пользу которого следует делать выбор на практике при необходимости решить задачу подсчета количества треугольников лаконичным и при этом эффективным способом.

Таблица 1: Результаты замеров на полных графах

N	Naive	Burkhardt	Cohen	Sandia	SandiaDot
10	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
50	0.002	< 0.001	< 0.001	< 0.001	< 0.001
100	0.002	0.002	< 0.001	< 0.001	< 0.001
200	0.014	0.017	0.002	0.001	0.003
300	0.048	0.021	0.007	0.004	0.011
400	0.112	0.048	0.017	0.010	0.025
500	0.217	0.107	0.033	0.017	0.048
600	0.392	0.167	0.064	0.029	0.082
700	0.611	0.261	0.089	0.045	0.134
800	0.924	0.402	0.144	0.067	0.201
900	1.356	0.589	0.203	0.094	0.284
1000	1.915	0.820	0.251	0.129	0.382

Таблица 2: Результаты замеров на реальных графах

Name	$\begin{array}{c} \textbf{nodes} \\ \times 10^6 \end{array}$	$\begin{array}{c} \textbf{edges} \\ \times 10^6 \end{array}$	Naive	Burkhardt	Cohen	Sandia	SandiaDot
loc-brightkite_edges	0.06	0.21	5.880	0.050	0.030	0.018	0.016
amazon0302	0.40	2.35	2.220	0.111	0.063	0.034	0.035
roadNet-PA	1.09	1.54	0.351	0.045	0.075	0.053	0.032
amazon0505	0.41	2.44	28.143	0.480	0.270	0.095	0.111
soc-Epinions1	0.08	0.41	33.430	0.146	0.060	0.035	0.052
email-EuAll	0.27	0.36	NaN	0.333	0.111	0.019	0.040
loc-gowalla_edges	0.20	0.95	NaN	0.484	0.303	0.116	0.097
soc-Slashdot0902	0.08	0.50	50.605	0.168	0.075	0.039	0.057
soc-Slashdot0811	0.08	0.47	47.451	0.152	0.068	0.035	0.053

5. Заключение

В рамках данной работы были выполнены следующие задачи:

- Выполнен обзор существующих решений задачи о подсчете количества треугольников, основанных на линейной алгебре, и использованных для этого инструментов. Выбран алгоритм и библиотека.
- Выполнена реализация выбранного алгоритма подсчета количества треугольников в графе с помощью библиотеки GraphBLAS: SuiteSparse.
- Проведено экспериментальное исследование реализованного алгоритма и уже существующих в данной библиотеке.

В качестве дальнейшего исследования возможна реализация описанных алгоритмов с помощью библиотеки GraphBLAST и экспериментальное сравнение их производительности с полученными результами в данной работе.

Список литературы

- [1] Cohen J. Graph Twiddling in a MapReduce World // Computing in Science Engineering. 2009. P. 29–41.
- [2] Davis T. A. Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and K-truss // IEEE High Performance extreme Computing Conference (HPEC). 2018.
- [3] GBTL-CUDA: Graph Algorithms and Primitives for GPUs / Peter Zhang, Marcin Zalewski, Andrew Lumsdaine et al. // 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2016. P. 912–920.
- [4] GraphBLAST implementation.— URL: https://github.com/gunrock/graphblast (online; accessed: 05.06.2020).
- [5] Gunrock: A High-Performance Graph Processing Library on the GPU / Yangzihao Wang, Andrew Davidson, Yuechao Pan et al. 2015.
- [6] Gustavson Fred G. Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition // ACM Trans. Math. Softw. — 1978.
- [7] Source for real graphs.— URL: http://snap.stanford.edu/data/ (online; accessed: 05.06.2020).
- [8] Yang Carl, Buluç Aydin, Owens John Douglas. GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU // ArXiv. 2019.