浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: 2021-12-17

地点: 教二-213

课程名称: 控制理论(乙) 指导老师: 姚维、韩涛 成绩:

实验名称: 频率特性的测量 实验类型: 验证实验 同组学生姓名: 无

一、 实验目的

1. 掌握通过实验测量典型环节的频率特性的方法

2. 掌握利用测量数据,作出对数幅频、相频特性曲线,并根据对数幅频曲线的渐近线估计出开环系统的传递函数的方法。

3. 掌握 matlab 电路仿真方法

二、实验内容

电路图如下图所示:

其中, $R_1 = R_2 = 10K$, $C_1 = 0.01\mu F$, $C_2 = 0.1\mu F$

1. 根据实验测得的数据分别作出开环的幅频和相频特性曲线

2. 作出开环幅频特性曲线的渐近线,据此求得 RC 网络的开环传递函数

三、 实验结果与数据分析

1. 绘制幅频相频曲线

按照电路图连接电路图,如下图所示:

图 2: Simulink 仿真电路图

设定频率为 100Hz, 测得示波器图像如下图所示:

图 3: Simulink 示波器图像

测得 X-Y 图像如下图所示:

图 4: 李萨如图像

使用 matlab 脚本记录题目中要求的频率的相关参数,记录数据如下所示:

序号	$\omega(rad/s)$	f(hz)	$2X_m$	$2Y_m$	$\phi(\omega)$	$2LY_m/2X_m$	$L(\omega)$
1	62.83185	10	2	1.987516	-0.0622	0.993758	-0.05439
2	125.6637	20	2	1.952009	-0.12095	0.976004	-0.21097
3	188.4956	30	2	1.89848	-0.17279	0.94924	-0.45248
4	251.3274	40	2	1.83335	-0.21677	0.916675	-0.75569
5	314.1593	50	2	1.762788	-0.25196	0.881394	-1.0966
6	376.9911	60	2	1.691697	-0.27834	0.845848	-1.45415
7	439.823	70	2	1.623415	-0.2972	0.811707	-1.81201
8	502.6548	80	2	1.559895	-0.30913	0.779947	-2.15869
9	565.4867	90	2	1.50205	-0.31573	0.751025	-2.48691
10	628.3185	100	2	1.450105	-0.31793	0.725052	-2.79261
11	691.1504	110	2	1.403873	-0.31636	0.701937	-3.07404
12	942.4778	150	2	1.26693	-0.28965	0.633465	-3.96555
13	1256.637	200	2	1.16867	-0.23813	0.584335	-4.66676
14	1884.956	300	2	1.082856	-0.1398	0.541428	-5.32918
15	2513.274	400	2	1.054349	-0.06283	0.527175	-5.56091
16	3141.593	500	2	1.047664	-0.00188	0.523832	-5.61616
17	4398.23	700	2	1.061604	0.08985	0.530802	-5.50135
18	5026.548	800	2	1.075668	0.125664	0.537834	-5.38703
19	6283.185	1000	2	1.111568	0.183469	0.555784	-5.10188
20	12566.37	2000	2	1.338448	0.30819	0.669224	-3.48857
21	18849.56	3000	2	1.533552	0.312595	0.766776	-2.30663
22	31415.93	5000	2	1.758095	0.253841	0.879048	-1.11975
23	43982.3	7000	2	1.85917	0.201063	0.929585	-0.63422
24	62831.85	10000	2	1.925339	0.14954	0.96267	-0.33046
25	125663.7	20000	2	1.980146	0.078226	0.990073	-0.08665
26	251327.4	40000	2	1.994951	0.039584	0.997475	-0.02196
27	628318.5	100000	2	1.999185	0.016022	0.999593	-0.00354

表 1: 实验数据记录

绘制开环的幅频和相频特性曲线如下所示:

学号: 3190105197

图 5: 开环幅频相频特性曲线

2. 计算开环传递函数

根据电路图进行计算,可以得到其传递函数为:

$$G(s) = \frac{10^{-7} \cdot s^2 + 1.1 \times 10^{-3} s + 1}{10^{-7} \cdot s^2 + 1.2 \times 10^{-3} s + 1}$$

$$\tag{1}$$

根据 bode 图,近似画出其渐进线,进而计算出相关参数如下图所示:

图 6: Simulink 示波器图像

可以计算得系统的开环传递函数为:

$$G(s) = \frac{(s+10^3)(s+10^4)}{(s+800)(s+11000)} = \frac{10^{-7}s^2 + 1.1 \times 10^{-3}s + 1}{10^{-7} \cdot s^2 + 1.18 \times 10^{-3}s + 0.88}$$
(2)

与计算所得到的开环传递函数大致相同,可知实验结果正确。

四、 思考题

相频特性时,若把信号发生器的正弦信号送入 Y 轴,而把被测系统的输出信号送入 X 轴,试问这种情况下如何根据旋转的光电方向来确定相位的超前与滞后。

判断方式与原来基本不变,当顺时针旋转时,说明 Y 轴输入的图像超前 X 轴输入的图像,即相位滞后,当逆时针旋转时,说明 X 轴输入的图像超前 Y 轴输入的图像,即相位超前。

五、 心得与体会

在本次实验中,我们进行了频率特性曲线测量的相关实验,通过这次实验,我了解了使用 simulink 仿真的相关方法,同时也懂得了如何使用 Matlab 以及 Simulink 联合分析数据。总体而言,收获颇多。