SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

MÉTODO DE EULER

MAT 271 – Cálculo Numérico – PER3/2021/UFV

Professor Amarísio Araújo DMA/UFV

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Uma equação diferencial ordinária (EDO) com variável real y, dependente de uma variável real independente x, é uma equação que relaciona y e suas derivadas em relação a x.

Um exemplo:
$$y + \frac{dy}{dx} + xy^2 = x^2 + 1$$

A variável y é a incógnita da equação.

A ordem de uma EDO é a maior ordem de derivação presente na equação.

Podemos representar uma EDO de ordem n, de maneira genérica, pela expressão:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

onde
$$y' = \frac{dy}{dx}$$
, $y'' = \frac{d^2y}{dx^2}$, ..., $y^{(n)} = \frac{d^ny}{dx^n}$.

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EXEMPLOS

$$1 - \frac{dy}{dx} = x^2 - 1$$
 (ordem 1)

$$2 - y' - xy^2 - cosx = 0$$
 (ordem 1)

$$3 - \frac{d^2y}{dx^2} - \frac{dy}{dx} = y + e^x$$
 (ordem 2)

$$4 - y''' + 2y'' + 5y = x$$
 (ordem 3)

$$5 - xy''' - y^5 + xlnx = 0$$
 (ordem 3)

SOLUÇÃO DE UMA EQUAÇÃO DIFERENCIAL ORDINÁRIA

Seja uma EDO de ordem n:

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Uma solução da EDO em um intervalo real I é uma função φ definida e n vezes derivável em I tal que $y = \varphi(x)$ satisfaz a equação, isto é:

$$F(x,\varphi(x),\varphi'(x),\varphi''(x),...,\varphi^{(n)}(x))=0.$$

Seja a EDO de primeira ordem: y' - xy = 0.

 $\varphi(x) = e^{x^2/2}$ é uma solução da EDO.

De fato: φ é derivável em todo \mathbb{R} e $\varphi'(x) = xe^{x^2/2}$.

Assim, fazendo $y = \varphi(x)$, temos:

$$y' - xy = \varphi'(x) - x\varphi(x) = xe^{x^2/2} - xe^{x^2/2} = 0$$

Observe que, para qualquer $c \in \mathbb{R}$, $\varphi(x) = c e^{x^2/2}$ é também solução da EDO, pois φ é derivável em todo \mathbb{R} , e, fazendo $y = \varphi(x)$, temos:

$$y' - xy = \varphi'(x) - x\varphi(x) = cxe^{x^2/2} - xce^{x^2/2} = 0$$

Portanto a EDO y'-xy=0 tem uma infinidade de soluções, que podem ser representadas por: $y=ce^{x^2/2}$ $(c\in\mathbb{R})$, que é chamada de solução geral da EDO.

PROBLEMA DE VALOR INICIAL

Vimos, no exemplo anterior, que a EDO y'-xy=0 tem uma infinidade de soluções $y=ce^{x^2/2}$, $c\in\mathbb{R}$.

A solução $y = e^{x^2/2}$ é uma solução particular da EDO (c=1).

Esta solução particular é tal que y(0) = 1.

Quando temos uma EDO de primeira ordem F(x,y,y')=0 e queremos encontrar uma solução particular da EDO, isto é, encontrar uma solução y da EDO satisfazendo uma dada condição $y(x_0)=y_0$, chamada de condição inicial, temos um Problema de Valor Inicial (PVI).

$$PVI: \begin{cases} F(x,y,y') = 0 & \text{EDO DE PRIMEIRA ORDEM} \\ y(x_0) = y_0 & \text{CONDIÇÃO INICIAL} \end{cases}$$

PROBLEMA DE VALOR INICIAL

Considerando o exemplo anterior, o PVI: $\begin{cases} y'-xy=0\\ y(0)=1 \end{cases} \text{, tem solução } y=e^{x^2/2} \,.$

Para resolver um PVI, encontra-se a solução geral da EDO (alguma estratégia analítica) e, em seguida, usa-se a condição inicial para determinar a solução do PVI, que é uma solução particular.

No caso do exemplo, a solução geral é $y = ce^{x^2/2}$ $(c \in \mathbb{R})$.

Usando a condição inicial y(0) = 1, obtém-se c = 1.

Portanto, $y = e^{x^2/2}$ é, de fato, solução do PVI.

Há um resultado na Teoria de Equações Diferenciais Ordinárias que garante a unicidade de tal solução.

SOLUÇÃO NUMÉRICA DE UM PROBLEMA DE VALOR INICIAL

Aprenderemos, aqui, métodos numéricos para resolver de forma aproximada um PVI, considerando que este tenha solução única em um intervalo $[x_0, b]$.

Consideraremos que a EDO de primeira ordem seja tal que possa ser escrita na forma y' = f(x, y).

Isto é, y' pode ser isolado na equação, de modo que o PVI seja:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_o \end{cases}$$

No exemplo 1:
$$\begin{cases} y' = xy \\ y(0) = 1 \end{cases}$$

O objetivo é encontrar, de forma aproximada, y(b) para $b>x_0$ e, assim, encontrar uma aproximação da solução y do PVI no intervalo $[x_0,b]$.

SOLUÇÃO NUMÉRICA DE UMPVI

PVI:
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_o \end{cases}$$

Objetivo: encontrar, de forma aproximada, y(b) para $b > x_0$ e, assim, encontrar uma aproximação da solução y do PVI no intervalo $[x_0, b]$.

Dividimos o intervalo $[x_0, b]$ em um número N de subintervalos de mesmo comprimento $h = \frac{b-x_0}{N}$.

$$x_0, x_1 = x_0 + h, x_2 = x_1 + h, ..., x_N = x_{N-1} + h = b$$
 são uma discretização do intervalo $[x_0, b]$.

O valor da solução y do PVI em x_0 já é conhecido (condição inicial: $y(x_0) = y_0$).

Vamos, então, estabelecer métodos numéricos para calcular, de forma aproximada, os valores de y nos demais pontos $x_1, x_2, ..., x_N$.

Assim uma aproximação da solução y do PVI no intervalo $[x_0, b]$ será construída, passo a passo:

$$y_1 \cong y(x_0 + h) = y(x_1), y_2 \cong y(x_1 + h) = y(x_2), ..., y_N \cong y(x_{n-1} + h) = y(x_N) = y(b).$$

MÉTODO DE EULER

Temos
$$x_0$$
, $x_1 = x_0 + h$, $x_2 = x_1 + h$, ..., $x_N = x_{N-1} + h = b$, sendo $h = \frac{b - x_0}{N}$

Sabemos o valor exato da solução y da EDO y' = f(x, y) em x_0 : $y(x_0) = y_0$.

Vamos obter, de forma aproximada os valores de y em $x_1, x_2, ..., x_N$:

$$y_1 \cong y(x_0 + h) = y(x_1), y_2 \cong y(x_1 + h) = y(x_2), ..., y_N \cong y(x_{n-1} + h) = y(x_N) = y(b).$$

Por definição de derivada, temos que:
$$y'(x_0) = \lim_{h \to 0} \frac{y(x_0 + h) - y(x_0)}{h}$$

Assim, para
$$h$$
 pequeno: $y'(x_0) \cong \frac{y(x_0 + h) - y(x_0)}{h} \implies y(x_0 + h) \cong y(x_0) + hy'(x_0)$

$$\Rightarrow y(x_1) \cong y(x_0) + hy'(x_0) \Rightarrow y_1 \cong y_0 + hy'(x_0)$$

Da EDO y'=f(x,y), concluímos que $y'(x_0)=f(x_0,y(x_0))=f(x_0,y_0)$

Portanto:
$$y_1 \cong y_0 + hf(x_0, y_0)$$

MÉTODO DE EULER

Também por definição de derivada, temos que:
$$y'(x_1) = \lim_{h \to 0} \frac{y(x_1 + h) - y(x_1)}{h}$$

Assim, para
$$h$$
 pequeno: $y'(x_1) \cong \frac{y(x_1+h)-y(x_1)}{h} \implies y(x_1+h) \cong y(x_1) + hy'(x_1)$

$$\Rightarrow y(x_2) \cong y(x_1) + hy'(x_1) \Rightarrow y_2 \cong y_1 + hy'(x_1)$$

Da EDO y' = f(x, y), concluímos que $y'(x_1) = f(x_1, y(x_1)) = f(x_1, y_1)$

Portanto:
$$y_2 \cong y_1 + hf(x_1, y_1)$$

Observem que, até aqui, obtivemos as seguintes aproximações para $y_1 = y(x_1)$ e $y_2 = y(x_2)$:

$$y_1 \cong y_0 + hf(x_0, y_0)$$
 $y_2 \cong y_1 + hf(x_1, y_1)$

Com o mesmo processo, obteremos as aproximações para $y_3 = y(x_3), ..., y_N = y(x_N)$.

Assim:
$$y_{n+1} \cong y_n + hf(x_n, y_n)$$
, para $n = 0, 1, 2, ..., N - 1$

MÉTODO DE EULER - RESUMINDO:

Temos um PVI:
$$\begin{cases} y' = f(x,y) \\ & \text{com solução única em um intervalo } [x_0,b]. \end{cases}$$

Objetivo: Encontrar uma aproximação do valor da solução y do PVI em b, y(b), e, com isso, uma aproximação da solução y do PVI em $[x_0, b]$.

Tomamos $h = \frac{b-x_0}{N}$ (h é o tamanho do passo e N é o número de passos).

Discretizamos o intervalo $[x_0, b] : x_0, x_1 = x_0 + h, x_2 = x_1 + h, ..., x_N = x_{N-1} + h = b.$

Calculamos os valores aproximados de $y_1 = y(x_1)$, $y_2 = y(x_2)$, ..., $y_N = y(x_N)$, usando:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
, para $n = 0, 1, 2, ..., N - 1$

(NA FÓRMULA DO MÉTODO DE EULER USAMOS O SÍMBOLO DE IGUALDADE)

 $y(b) \cong y_N = y(x_N); \ y_0, y_1, y_2, ..., y_N$, formam uma aproximação da solução y do PVI em $[x_0, b]$.

Seja o PVI:
$$\begin{cases} y' = xy \\ y(0) = 1 \end{cases}$$
 com solução única em um intervalo [0,1].

Usando um número de passos N=5, vamos obter aproximação da solução y do PVI em x=1, isto é, do valor y(1), e, com isso, uma aproximação de y em [0,1].

Neste caso:
$$f(x, y) = xy$$
, $x_0 = 0$, $y_0 = y(x_0) = y(0) = 1$.

Objetivo: encontrar um valor aproximado de y(1).

Temos:
$$h = \frac{b-x_0}{N} = \frac{1-0}{5} = 0.2$$
; $x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8$ e $x_5 = 1$.
$$y_{n+1} = y_n + hf(x_n, y_n), \text{ para } n = 0,1,2,..., N-1$$

$$y_{n+1} = y_n + hf(x_n, y_n), \text{ para } n = 0,1,2,3,4 \quad \boxed{f(x_n, y_n) = x_n y_n}$$

$$y_{n+1} = y_n + 0.2x_n y_n, \text{ para } n = 0,1,2,3,4 \quad \boxed{x_0 = 0, y_0 = 1}$$

$$x_0=0, x_1=0.2, x_2=0.4, x_3=0.6, x_4=0.8 \text{ e } x_5=1; \quad y_0=1$$

$$y_{n+1}=y_n+0.2x_ny_n, \text{ para } n=0,1,2,3,4$$

$$y_1 = y_0 + 0.2x_0y_0 = 1 + (0.2)(0)(1) = 1$$

$$y_2 = y_1 + 0.2x_1y_1 = 1 + (0.2)(0.2)(1) = 1.04$$

$$y_3 = y_2 + 0.2x_2y_2 = 1.04 + (0.2)(0.4)(1.04) = 1.1232$$

$$y_4 = y_3 + 0.2x_3y_3 = 1.1232 + (0.2)(0.6)(1.1232) = 1.257984$$

$$y_5 = y_4 + 0.2x_4y_4 = 1.257984 + (0.2)(0.8)(1.257984) = 1.45926144$$

$$y(1) \approx y_4 - 1.45926144$$

$$y(1) \cong y_5 = 1.45926144$$

Como vimos anteriormente (Exemplo 1), a solução exata deste pvi é: $y=e^{x^2/2}$ Logo, o valor exato de y(1) é: $y(1)=e^{0.5}=1.64872127$

COMPARANDO NO INTERVALO

у	APROXIMADO	EXATO
y(0)	1	1
y(0.2)	1	1.0202
y(0.4)	1.04	1.0833
y(0.6)	1.1232	1.1972
y(0.8)	1.2580	1.3771
y(1)	1.4593	1.6487

AINDA NO EXEMPLO 2, AGORA COM N=8

$$h = \frac{1-0}{8} = 0.125 \; ;$$

$$x_0 = 0$$
, $x_1 = 0.125$, $x_2 = 0.25$, $x_3 = 0.375$, $x_4 = 0.5$ e $x_5 = 0.625$, $x_6 = 0.75$, $x_7 = 0.875$ e $x_8 = 1$; $y_0 = 1$. $y_{n+1} = y_n + 0.125x_ny_n$, para $n = 0.1, 2, 3, 4, 5, 6, 7$

$$y_1 = y_0 + 0.125x_0y_0 = 1 + (0.125)(0)(1) = 1$$

$$y_2 = y_1 + 0.125x_1y_1 = 1 + (0.125)(0.125)(1) = 1.0156$$

$$y_3 = y_2 + 0.125x_2y_2 = 1.0156 + (0.125)(0.25)(1.0156) = 1.0473$$

$$y_4 = y_3 + 0.125x_3y_3 = 1.0473 + (0.125)(0.375)(1.0473) = 1.0964$$

$$y_5 = y_4 + 0.125x_4y_4 = 1.0964 + (0.125)(0.5)(1.0964) = 1.1649$$

$$y_6 = y_5 + 0.125x_5y_5 = 1.1649 + (0.125)(0.625)(1.1649) = 1.2559$$

$$y_7 = y_6 + 0.125x_6y_6 = 1.2559 + (0.125)(0.75)(1.2559) = 1.3736$$

$$y_8 = y_7 + 0.125x_7y_7 = 1.3736 + (0.125)(0.875)(1.3736) = 1.5238$$

$$y(1) \cong y_8 = 1.5238$$

AINDA NO EXEMPLO 2, COM N=8 COMPARANDO NO INTERVALO

у	APROXIMADO	EXATO
y(0)	1	1
y(0.125)	1	1.0078
y(0.25)	1.0156	1.0317
y(0.375)	1.0473	1.0728
y(0.5)	1.0964	1.1331
y(0.625)	1.1649	1.2157
y(0.75)	1.2559	1.3248
y(0.875)	1.3736	1.4664
y(1)	1.5238	1.6487

EXEMPLO 2, COM N = 5 e N = 8 COMPARANDO

