Sprawozdanie

Elektronika analogowa

Filtry Pasywne

1. Wstep

Filtrem częstotliwości nazywamy układ o strukturze czwórnika (czwórnik to układ mający cztery zaciski – jedna z par zacisków pełni rolę wejścia, zaś druga wyjścia), który przepuszcza bez tłumienia lub z małym tłumieniem napięcia i prądy o określonym paśmie częstotliwości, a tłumi napięcia i prądy leżące poza tym pasmem. Filtry częstotliwości mają głównie zastosowanie w urządzeniach elektronicznych i energetycznych.

Wyrozniamy filtry aktywne, czyli takie w, ktorych ukladzie wykorzystuje sie elementy aktywne takie jak wzmacniacze operacyjne. Na zajeciach zajmowalismy sie filtrami pasywnymi zbudowanych z samych elementow pasywnych.

```
In [96]: import pandas as pd
  import numpy as np
  import scipy.signal as signal
  import matplotlib.pyplot as plt
  from IPython.display import clear_output
```

Filtr dolnoprzepustowy

Pracowalismy na stanowisku numer 5 przydzielona do naszego stanowiska rezystancja wynosiła $10k\Omega$ natomiast pojemnosc wynosiła 330pF. Do pomiarow wykorzystalismy kondensator o pojemnosci 408pF oraz rezystor o rezystancji $9,9664k\Omega$.

```
In [97]: R = 9.9664 * 1e3
C = 3.3 * 1e-9

# Czestotliwosc graniczna naszego filtra
borderFreq = 1 / (2* np.pi * R * C)
print(f"Czestotliwosc graniczna uzytego filtra wynosi: {borderFreq}")
print(f"Czestosc graniczna uzytego filtra wynosi: {borderFreq*2*np.pi}")
```

Czestotliwosc graniczna uzytego filtra wynosi: 4839.136562239894 Czestosc graniczna uzytego filtra wynosi: 30405.191747301236

Transmitancja filtra dolno przepustowego

$$G(s) = rac{1}{1 + RCs}$$
 $G(s) = rac{1}{1 + 3.288912 \cdot 10^{-6} s}$

In [98]: dolnoPrzepustowy = pd.read_csv("dolno_przepustowy.csv", sep=";")
 dolnoPrzepustowy["G[db]"] = 20 * np.log10(dolnoPrzepustowy["Vpp_wyj"] / dolnoPrzepustowy
 dolnoPrzepustowy

		=			
Out[98]:		Vpp_wyj	Vpp_wej	Freq	G[db]
	0	1.04	1.02	1.0	0.168663
	1	1.04	1.02	1.3	0.168663
	2	1.04	1.02	1.7	0.168663
	3	1.04	1.02	2.1	0.168663
	4	1.02	1.02	2.8	0.000000
	5	1.02	1.02	3.6	0.000000
	6	1.02	1.02	4.6	0.000000
	7	1.02	1.02	6.0	0.000000
	8	1.00	1.02	7.7	-0.172003
	9	1.00	1.02	10.0	-0.172003
	10	0.96	1.02	13.0	-0.526579
	11	0.94	1.02	17.0	-0.709446
	12	0.90	1.02	21.0	-1.087153
	13	0.82	1.02	28.0	-1.895726
	14	0.76	1.02	36.0	-2.555732
	15	0.66	1.02	46.0	-3.781125
	16	0.56	1.02	60.0	-5.208243
	17	0.48	1.02	77.0	-6.547179
	18	0.38	1.02	100.0	-8.576332

```
In [101...] num = [0, 1]
          den = [R*C, 1]
         s1 = signal.TransferFunction(num, den)
         w, mag, phase = signal.bode(s1, w=dolnoPrzepustowy["Freq"]*1000)
          clear output()
          fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 7))
          fig.suptitle("Charakterystyka Bodego", fontsize=16)
          ax1.semilogx(w, mag)
          # ax1.scatter(borderFreq, 0, color="red", label="Czestotliwosc graniczna")
         ax1.semilogx(w, dolnoPrzepustowy["G[db]"])
          ax1.grid()
          ax1.set title("Wykres charakterystyki amplitudowej", fontsize=15)
         ax1.set xlabel("$\omega$", fontsize=14)
          ax1.set ylabel("dB", fontsize=14)
          # ax1.legend()
         ax2.semilogx(w, phase)
          # ax2.set xlim(10e-10, 10e10)
         ax2.set title("Wykres charakterystyki fazowej", fontsize=15)
         ax2.grid()
         ax2.set xlabel("$\omega$", fontsize=14)
          ax2.set ylabel("rad", fontsize=14)
         plt.show()
```

Charakterystyka Bodego

