

COMSATS University, Islamabad

Assignment # 1

Authors: Muhammad Mujtaba SP22-BSE-036 1A Mona Khalil SP22-BSE-028 1A

Course: Mathematics (MTH-100)

Instructor: Dr. Amna Nazeer

Date: March 21, 2022

Solve for x in the following problems

Solution

1.
$$7 + |2x - 5| = 4$$

$$7 + |2x - 5| = 4$$
$$|2x - 5| = 4 - 7$$
$$|2x - 5| = -3$$

The absolute number can never be negative, so there is no solution.

$$2. - |-8 - 2x| = -12$$

Therefore, the solution set is: $x = \{-10, 2\}$

3.
$$x^2 - 8x + 13 = 0$$

For this question, we use quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here a = 1, b = -8, c = 13

$$x = \frac{-(-8) + \sqrt{-8^2 - 4(1)(13)}}{2(1)} \qquad | \qquad x = \frac{-(-8) - \sqrt{-8^2 - 4(1)(13)}}{2(1)}$$

$$x = \frac{8 + \sqrt{64 - 52}}{2} \qquad | \qquad x = \frac{8 - \sqrt{64 - 52}}{2}$$

$$x = \frac{8 + \sqrt{12}}{2} \qquad | \qquad x = \frac{8 - \sqrt{12}}{2}$$

$$x = \frac{8 + 3.46}{2} \qquad | \qquad x = \frac{8 - 3.46}{2}$$

$$x = \frac{11.46}{2} \qquad | \qquad x = \frac{4.54}{2}$$

$$x = 5.73 \qquad | \qquad x = 2.27$$

Therefore, the solution set is: $x = \{5.73, 2.27\}$

$$4. \frac{3}{x} + \frac{5}{x+2} = 2$$

$$\frac{3(x+2) + 5x}{(x)(x+2)} = 2$$

$$\frac{3x + 6 + 5x}{x^2 + 2x} = 2$$

$$8x + 6 = 2x^2 + 4x$$

$$2x^2 - 4x - 6 = 0$$

Taking '2' common,

$$2(x^2 - 2x - 3) = 0$$
$$x^2 - 2x - 3 = 0$$

Muhammad Mujtaba SP22-BSE-036 & Mona Khalil SP22-BSE-028

$$x^{2} - 3x + x - 3 = 0$$

$$x(x - 3) + (x - 3) = 0$$

$$(x + 1)(x - 3) = 0$$

$$x + 1 = 0 \qquad | \qquad x - 3 = 0$$

$$x = -1 \qquad | \qquad x = 3$$

Therefore, the solution set is $\{-1,3\}$

Question # 2

Solve for x and write the solution in interval notation. Show the solution graphically on number line.

Solution

1.
$$|2+2x| > 0$$

$$2x + 2 = 0$$

$$x = -\frac{2}{2}$$

$$x = -1$$
Check if $x < -1$:
$$|2(-2) + 2| > 0$$

$$|-4 + 2| > 0$$

$$|-2| > 0$$

$$2 > 0 \ (true)$$
Check if $x > -1$:
$$|2(1) + 2| > 0$$

$$|2 + 2| > 0$$

$$|4| > 0$$

$$4 > 0 \ (true)$$
Check if $x = -1$:
$$|2(-1) + 2| > 0$$

$$|-2 + 2| > 0$$

$$|0| > 0$$

Muhammad Mujtaba SP22-BSE-036 & Mona Khalil SP22-BSE-028

0 > 0 (false)

In interval notation,

$$(-1, +\infty)$$
 | $(-\infty, -1)$

In line number,

2. $|4x - 2| \le 17$

$$4x - 2 = \pm 17$$

$$4x - 2 = 17 \qquad | \qquad 4x - 2 = -17$$

$$4x = 19 \qquad | \qquad 4x = -15$$

$$x = 19/4 \qquad | \qquad x = -15/4$$

$$x = 4.75 \qquad | \qquad x = -3.75$$

Check if x < -3.75 & x > 4.75:

Check if $-3.75 \le x \le 4.75$:

$$|4(2) - 2| \le 17$$

 $|8 - 2| \le 17$
 $|6| \le 17$
 $6 \le 17 (true)$

Solution set = [-3.75, 4.75]

3.
$$4 \le 3x - 2 \le 13$$

$$4 \le 3x - 2$$
 | $3x - 2 \le 13$
 $6 \le 3x$ | $3x \le 15$
 $6/3 \le x$ | $x \le 15/3$
 $x \ge 2$ | $x \le 5$

Therefore, $2 \le x \le 5$

4.
$$x^2 \le 5x - 6$$

Change into quadratic form,

$$x^{2} - 3x - 2x + 6 = 0$$

$$x(x - 3) - 2(x - 3) = 0$$

$$(x - 3)(x - 2) = 0$$

$$(x - 3) = 0 \qquad | \qquad (x - 2) = 0$$

$$x = 3 \qquad | \qquad x = 2$$

$$2 \le x \le 3$$

5.
$$\frac{1+x}{1-x} \ge 1$$

$$1 + x = 1(1 - x)$$
$$1 + x = 1 - x$$
$$2x = 0$$
$$x = 0$$

Check if x = 0:

$$\frac{1+0}{1-0} \ge 1$$
$$1 \ge 1 \ (true)$$

Check if x < 0:

$$\frac{1 + (-1)}{1 - (-1)} \ge 1$$

$$\frac{0}{2} \ge 1$$

$$0 \ge 1 (false)$$

Check if $0 \le x < 1$:

$$\frac{1 + (0.5)}{1 - (0.5)} \ge 1$$
$$\frac{1.5}{0.5} \ge 1$$
$$3 \ge 1 (true)$$

Question # 3

Derive the quadratic formula to find the roots of quadratic equation.

$$ax^2 + bx + c = 0$$

Solution

Divide by a,

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

$$x^{2} + 2(x)\left(\frac{b}{2a}\right) + \left(\frac{b^{2}}{4a^{2}}\right) - \left(\frac{b^{2}}{4a^{2}}\right) + \frac{c}{a} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{-4ac + b^{2}}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{-4ac + b^{2}}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{-4ac + b^{2}}{4a^{2}}}$$

$$x = \frac{-b \pm \sqrt[2]{b^{2} - 4ac}}{2a}$$

Muhammad Mujtaba SP22-BSE-036 & Mona Khalil SP22-BSE-028

COMSATS University, Islamabad

Assignment # 2

Authors: Muhammad Mujtaba SP22-BSE-036 1A Mona Khalil SP22-BSE-028 1A

Course: Mathematics (MTH-100)

Instructor: Dr. Amna Nazeer

Date: March 21, 2022

Which of the points P(1,-2) or Q(8,9) is closer to the point A(5,3)?

Solution

We have three vectors \vec{P} , \vec{Q} and \vec{A} . We want to know whether \vec{P} or \vec{Q} is closer to \vec{A} .

Distance from \vec{P} to \vec{A} is:

$$\vec{D}_{P \to A} = (5 - 1.3 - (-2)) = (4.5)$$

$$D_{P \to A} = \sqrt{(4^2 + 5^2)} = \sqrt{(41)} = 6.4$$

Distance from \vec{Q} to \vec{A} is:

$$\vec{D}_{Q \to A} = (5 - 8, 3 - 9) = (-3, -6)$$

$$D_{Q \to A} = \sqrt{(-3^2 + -6^2)} = \sqrt{(45)} = 6.7$$

From above two calculations, it is clear that:

✓ Distance from \vec{P} to \vec{A} is smaller, hence it is closer to \vec{A} .

Show that the quadrilateral with vertices P(1,2), Q(4,4), R(5,9), and S(2,7) is a parallelogram by proving that its two diagonals bisect each other. (Show the quadrilateral on the coordinate plane).

Solution

To prove this, we need to find the mid-point of its diagonals. If mid-points are equal, it means that the two diagonals bisect each other.

Mid-point of any line is:

$$M_p = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Where x_1 and x_2 are initial and Final points respectively. Same case with Y_1 and y_2 .

Mid-point of \overline{PR} is:

$$M_P = \left(\frac{1+5}{2}, \frac{2+9}{2}\right)$$

 $M_P = (3, 5.5) \dots \dots \dots (1)$

Mid-point of \overline{SQ} is:

$$M_P = \left(\frac{2+4}{2}, \frac{7+4}{2}\right)$$

 $M_P = (3, 5.5) \dots \dots (2)$

✓ Comparing (1) and (2), it is proved that it is a parallelogram.

Sketch the graph of the equations $y = x^2 - 2$ and y = |x| for $-3 \le x \le 3$

Solution

a) Graph for $y = x^2 - 2$ (in range $-3 \le x \le 3$) is:

b) Graph for y = |x| (in range $-3 \le x \le 3$) is:

Muhammad Mujtaba SP22-BSE-036 & Mona Khalil SP22-BSE-028

Write the equation of the line in slope-intercept form (y = mx + b). Identify slope and y-intercept of the line.

a)
$$8x - 9y = 0$$

b)
$$9x - 3y + 15 = 0$$

Solution

a) Slope-intercept form of 8x - 9y = 0:

$$8x - 9y = 0$$
$$9y = 8x + 0$$
$$y = \frac{(8x + 0)}{9}$$
$$y = \frac{8}{9}x + 0$$

Here, the slope is $\frac{8}{9}$ and y-intercept is 0, i.e. (0, 0).

b) Slope-intercept form of 9x - 3y + 15 = 0:

$$9x - 3y + 15 = 0$$
$$3y = 9x + 15$$
$$y = \frac{(9x + 15)}{3}$$
$$y = 3x + 5$$

Here, the slope is 3 and y-intercept is 5, i.e. (0, 5).

Find an equation of the line through the points (-1,2) and (3,-4) using point-slope form of the equation.

Solution

The point-slope form of the equation is: $\frac{y_2-y_1}{x_2-x_1}=m$ So,

$$m = \frac{(-4) - 2}{3 - (-1)}$$
$$m = \frac{-6}{4} = \frac{-3}{2}$$

We can also write this in the form $(y_2 - y_1) = m \cdot (x_2 - x_1)$:

$$y_2 = m \cdot (x_2 - x_1) + y_1$$

$$y_2 = \frac{-3}{2} \cdot (x_2 - (-1)) + 2$$

$$y_2 = \frac{-3}{2} x_2 - \frac{3}{2} + 2$$

$$y_2 = \frac{-3}{2} x_2 + \frac{1}{2}$$

Question # 6

Find an equation of the line that is perpendicular to the line 4x + 6y + 5 = 0 and passes through the origin.

Solution

- The slope m of parallel lines is equal.
- The slope m of perpendicular lines have their product = -1 For line 4x + 6y + 5 = 0:

$$6y = -4x - 5$$

$$y = \frac{-4}{6}x - \frac{5}{6}$$

So the slope of given line is: $m = \frac{-4}{6}$

The slope of perpendicular line is such that, when multiplied by this slope, yields -1: So,

$$mw = -1$$

$$\frac{-4}{6}w = -1$$

$$w = \frac{3}{2} \dots \dots \dots (1)$$

The line must have y-intercept = (0, 0) in order for it to be passing through the origin. Therefore,

$$b = 0 \dots \dots (2)$$

From the above discussion, we are synthesizing the equation for the perpendicular line:

$$y = wx + b$$
$$y = \frac{3}{2}x + 0$$

Or,

$$2y - 3x = 0$$