18.745: Lecture 21

Professor: Victor Kač Scribe: Ruochuan Liu, Zhongtao Wu

Let (V, \triangle) be a root system. Define a reflection $r_{\alpha} \in \text{End}(V)$ for every $\alpha \in \triangle$ by:

$$r_{\alpha}(v) = v - \frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha$$

 r_{α} has properties:

- (i) r_{α} fixes pointwise the hyperplane $\tau_{\alpha} = \{u \in V | (u, \alpha) = 0\}.$
- (ii) $r_{\alpha} = -\alpha$.
- (iii) $r_{\alpha}^2 = 1$ and $\gamma_{\alpha} \in O(V, (\cdot, \cdot))$, i.e r_{α} is invertible and $(\gamma_{\alpha}(v), \gamma_{\alpha}(v)) = (v, v)$.
- (iv) $r_{\alpha}(\triangle) = \triangle$.
- (i), (ii) and (iii) are obvious. (iv) follows from the string property.

Exercise 21.1 (optional). Show that property (iv) along with $\frac{2(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{Z}$ for all $\alpha,\beta \in \Delta$ implies the string property.

 $\textit{Proof. Denote} <\beta, \alpha> := \frac{2(\beta, \alpha)}{(\alpha, \alpha)}. \text{ Then } <\beta, \alpha> \in \mathbb{Z} \text{ for all } \alpha, \beta \in \Delta, \text{ and } r_{\alpha}(\beta) = \beta - <\beta, \alpha>\alpha.$

Step I: Let α, β be nonproportional roots. If $(\alpha, \beta) > 0$, then $\alpha - \beta$ is a root. If $(\alpha, \beta) < 0$, then $\alpha + \beta$ is a root

Proof: If $(\alpha, \beta) > 0$, then both $<\alpha, \beta>$ and $<\beta, \alpha>$ are positive. By Cauchy's inequality,

$$<\alpha, \beta><\beta, \alpha> = \frac{4(\alpha, \beta)^2}{(\alpha, \alpha)(\beta, \beta)} < 4,$$

where the inequality is strict since α and β are nonproportional roots. Hence, at least one of $<\alpha,\beta>$, $<\beta,\alpha>$ equals 1. If $<\alpha,\beta>=1$, then $r_{\beta}(\alpha)=\alpha-\beta\in\Delta$; similarly, if $<\beta,\alpha>=1$, then $\beta-\alpha\in\Delta$, hence $r_{\beta-\alpha}(\beta-\alpha)=\alpha-\beta\in\Delta$.

The case $(\alpha, \beta) < 0$ is similar.

Step II: The α -string through β is unbroken, i.e., if $p, q \in \mathbb{Z}_+$ are the largest integers for which $\beta - p\alpha, \beta + q\alpha \in \Delta$, then $\beta + i\alpha \in \Delta$, $\forall -p \leq i \leq q$.

Proof: If not, we can find $-p \le i < j \le q$ such that $\beta + i\alpha \in \Delta$, $\beta + (i+1)\alpha \notin \Delta$, $\beta + (j-1)\alpha \notin \Delta$, $\beta + j\alpha \in \Delta$. But then the claim in Step I implies both $(\beta + i\alpha, \alpha) \ge 0$, $(\beta + j\alpha, \alpha) \le 0$. Hence, $(\alpha, \alpha) \le 0$. Contradiction!

Step III: p, q as in Step II, then $p - q = <\beta, \alpha>$.

Proof: Since r_{α} just adds or subtracts a multiple of α to any root, the string is invariant under r_{α} . In particular, $r_{\alpha}(\beta + q\alpha) = \beta - p\alpha$. The left hand side is also equal to $\beta - < \beta, \alpha > \alpha - q\alpha$. Hence, $p - q = < \beta, \alpha >$.

1

Thus, we proved the string property for Δ .

Definition 1. The Weyl group of a root system is a subgroup W of $O(V, (\cdot, \cdot))$ generated by all reflections γ_{α} for $\alpha \in \Delta$. This is a finite group since it permutes elements of a finite set which spans V.

Example 2. $\triangle_{A_r} = \{\varepsilon_i - \varepsilon_j | 1 \le i, j \le r+1, i \ne j\}$. Let $\alpha = \varepsilon_i - \varepsilon_j$, then

$$r_{\alpha}(\varepsilon_{k}) = \left\{ \begin{array}{lcl} \varepsilon_{k} & : & k \neq i, j \\ \varepsilon_{j} & : & k = i \\ \varepsilon_{i} & : & k = j \end{array} \right\}$$

Hence $r_{\alpha} = (ij)$, i.e., it just permutes ε_i and ε_j . Thus the Weyl group of A_r is S_{r+1} .

Exercise 21.2. Compute the Weyl group of the root systems B, C and D.

Proof.

- (a) Root system $\Delta_{B_r} = \{ \pm \epsilon_i \pm \epsilon_j \ (i \neq j), \ \pm \epsilon_i \}.$
 - When $\alpha = \epsilon_i \epsilon_j$, $r_{\alpha}(\epsilon_k) = \begin{cases} \epsilon_k & \text{if } k \neq i, j; \\ \epsilon_j & \text{if } k = i; \\ \epsilon_i & \text{if } k = j. \end{cases}$
 - When $\alpha = \epsilon_i + \epsilon_j$, $r_{\alpha}(\epsilon_k) = \begin{cases} \epsilon_k & \text{if } k \neq i, j; \\ -\epsilon_j & \text{if } k = i; \\ -\epsilon_i & \text{if } k = j. \end{cases}$
 - When $\alpha = \epsilon_i$, $r_{\alpha}(\epsilon_k) = \begin{cases} \epsilon_k & \text{if } k \neq i; \\ -\epsilon_i & \text{if } k = i. \end{cases}$

Hence, the Weyl group is generated by all permutations of the set $\{\epsilon_1, \epsilon_2, \dots, \epsilon_r\}$ and the operations of sign changes. In terms of group, it is isomorphic to $S_r \times \mathbb{Z}_2^r$.

(b) Root system $\Delta_{C_r} = \{ \pm \epsilon_i \pm \epsilon_j \ (i \neq j), \ \pm 2\epsilon_i \}$. We can check that $r_{\alpha}(\epsilon_k)$ has exactly the same form as the previous case, hence its We

We can check that $r_{\alpha}(\epsilon_k)$ has exactly the same form as the previous case, hence its Weyl group is also $S_r \ltimes \mathbb{Z}_2^r$.

(c) Root system $\Delta_{D_r} = \{ \pm \epsilon_i \pm \epsilon_j, i \neq j \}.$

In this case, the Weyl group is generated by the first two types of reflections in (a). Also, notice that

$$r_{\epsilon_i - \epsilon_j} \circ r_{\epsilon_i + \epsilon_j}(\epsilon_k) = \begin{cases} \epsilon_k & \text{if } k \neq i, j; \\ -\epsilon_i & \text{if } k = i; \\ -\epsilon_j & \text{if } k = j. \end{cases}$$

This is the same as changing signs for a pair (ϵ_i, ϵ_j) . Hence, each element in the Weyl group is a permutation of set $\{\epsilon_1, \epsilon_2, \dots, \epsilon_r\}$, composed with an even number of sign changes. In terms of group, it is isomorphic to $S_r \ltimes \mathbb{Z}_2^{r-1}$.

Exercise 21.3. If $A \in O(V, (\cdot, \cdot))$, then $Ar_{\alpha}A^{-1} = r_{A(\alpha)}$.

Proof. Let $AT_{\alpha} := \{A(u) | (\alpha, u) = 0\}$. Since $A \in O(V, (\cdot, \cdot))$, we have $(A(u), A(\alpha)) = (u, \alpha) = 0$ for all $A(u) \in AT_{\alpha}$. Hence $r_{A(\alpha)}(AT_{\alpha}) = AT_{\alpha}$.

Also, $Ar_{\alpha}A^{-1}(AT_{\alpha}) = Ar_{\alpha}(T_{\alpha}) = AT_{\alpha}$. So both reflections $Ar_{\alpha}A^{-1}$ and $r_{A(\alpha)}$ fix the hyperplane AT_{α} , hence $Ar_{\alpha}A^{-1} = r_{A(\alpha)}$.

Recall that, given a choice of $f \in V^*$ such that $f(\alpha) \neq 0$ for all $\alpha \in \triangle$, we get a subset $\triangle_+ = \{\alpha \in \triangle | f(\alpha) > 0\}$ and $\Pi = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$ of simple roots such that any $\alpha \in \triangle_+$ is of the form $\alpha = \sum_i k_i \alpha_i$, $k_i \in \mathbb{Z}_{>0}$. The reflections $s_i = r_{\alpha_i}$ are called *simple reflections*. We use the notation height(α) := $\sum_i k_i$.

Theorem 3.

- (a) $\triangle_+ \setminus \{\alpha_i\}$ is s_i -invariant.
- (b) If $\alpha \in \triangle_+ \backslash \Pi$, there is a s_i such that $height(s_i(\alpha)) < height(\alpha)$.
- (c) If $\alpha \in \triangle_+ \backslash \Pi$, we can choose a sequence of simple reflections s_{i_1}, \ldots, s_{i_k} such that s_{i_1}, \ldots, s_{i_k} and s_{i_j}, \ldots, s_{i_k} (α) $\in \triangle_+$ for each $1 \leq j \leq k$.
- (d) W is generated by simple reflections.

Proof.

- (a) Applying simple reflection s_i changes sign of at most one coefficient k_i of $\alpha \in \triangle_+$. If k_i changes to negative, then $s_i(\alpha)$ wouldn't be a root, hence $s_i(\alpha) \in \triangle_+$.
- (b) If height($s_i(\alpha)$) doesn't decrease for all s_i , then from $s_i(\alpha) = \alpha \frac{2(\alpha, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i$ we get $(\alpha, \alpha_i) \leq 0$ for all i. Hence $(\alpha, \alpha) = \sum_i k_i(\alpha, \alpha_i) \leq 0$, a contradiction!
- (c) follows from (b) and (a).
- (d) Denote $W^{'}$ the subgroup of W generated by simple reflections. By (c), for any $\alpha \in \triangle_{+}$, there exists $w \in W^{'}$ such that $w(\alpha) = \alpha_{i} \in \Pi$ for some i. By Ex21.3, $wr_{\alpha}w^{-1} = r_{w(\alpha)}$, hence $r_{\alpha} = w^{-1}s_{i}w \in W^{'}$.

Consider $V \setminus \bigcup_{\alpha \in \triangle_+} T_\alpha = \coprod_j C_j$, where C_j are connected components of this set. C_j 's are called open chambers, $\overline{C_j}$'s are called (closed) chambers. Also, define the fundamental chamber: $\overline{C} = \{v \in V | (\alpha_i, v) \geq 0 \}$ $i = 1, \ldots, r\}$.

Exercise 21.4. Show that $T_{\alpha} \cap C = \emptyset$, where $C = \{v \in V | (\alpha_i, v) > 0, i = 1, ..., r\}$ is the open fundamental chamber. Hence the fundamental chamber is a chamber.

Proof. Suppose $v \in T_{\alpha} \cap C$, then $(v, \alpha) = 0$ and $(v, \alpha_i) > 0$ for i = 1, ..., r. But $\alpha = \sum_{i=1}^{r} k_i \alpha_i$, where $k_i \in \mathbb{Z}_+$. Hence, $k_i = 0$ for all i, and consequently v = 0.

So we proved $T_{\alpha} \cap C = \emptyset$. Since C is connected, $C \subset C_j$ for some j. On the other hand, $(\alpha_i, v) \neq 0$, $\forall i, v \in C_j$ by definition. And since the inner product is a continuous function of v, we conclude that $(\alpha_i, v) > 0 \ \forall v \in C_j$. Hence $C_j \subset C$.

Thus, $C = C_i$, i.e, the fundamental chamber is a chamber.

Theorem 4.

- (a) W permutes all chambers transitively, i.e for any chamber $\overline{C_1}$ and $\overline{C_2}$, there exists $w \in W$ such that $w\overline{C_1} = \overline{C_2}$.
- (b) Let \triangle_+ and \triangle_+' be subsets of positive roots of \triangle defined by f and f' respectively. Then there exists $w \in W$ such that $w(\triangle_+) = \triangle_+'$. In particular, the Cartan matrix is independent of the choice of f.

Proof.

- (a) Choose $P_i \in C_i$ (i = 1, 2) such that the interval $[P_1, P_2]$ doesn't intersect any of $\tau_{\alpha} \cap \tau_{\beta}$, where α , $\beta \in \Delta_+$ and $\alpha \neq \beta$. Now move along the interval $[P_1, P_2]$ until we hit a hyperplane τ_{α} . Apply reflection r_{α} to $\overline{C_1}$. Keep moving and applying reflections until we reach $\overline{C_2}$.
- (b) \triangle_+ and \triangle'_+ define fundamental chamber \overline{C} and $\overline{C'}$ respectively. By (a), there exists $w \in W$ such that $w(\overline{C}) = \overline{C'}$. Hence $w(\triangle_+) = w(\triangle'_+)$, since $\overline{C} = \{v \in V | (\alpha_i, v) \geq 0 \ i = 1, \dots, r\}$.

Definition 5. Fix $\Pi \subset \Delta_+ \subset \Delta$, then we have simple reflections $s_1, \ldots, s_r \in W$. Given $w \in W$, an expression $w = s_{i_1} \ldots s_{i_l}$ is called *reduced* if l is minimal possible. We let l = l(w) called the length of w. Note that $\det w = (-1)^{l(w)}$ since $\det s_i = -1$.

Example 6. $l(s_i) = 1$, $l(s_i s_j) = 2$ if $i \neq j$, but $l(s_i^2) = 0$.

Lemma 7 (Exchange Lemma). Suppose that $s_{i_1} \dots s_{i_{t-1}}(\alpha_{i_t}) \in \triangle_-$, then the expression $w = s_{i_1} \dots s_{i_t}$ is not reduced. Namely, there exists $1 \le r < t$ such that $w = s_{i_1} \dots s_{i_{t-1}} s_{i_{t+1}} \dots s_{i_{t-1}}$.

Proof. Consider the roots $\beta_k = s_{i_{k+1}} \dots s_{i_{t-1}}(\alpha_{i_t})$ for $0 \le k \le t-1$. Then $\beta_0 \in \triangle_-$ by assumption and $\beta_{t-1} = \alpha_{i_t} \in \triangle_+$. Hence there exists $0 \le r \le t-1$ such that $\beta_{r-1} \in \triangle_-$ and $\beta_r \in \triangle_+$. But by definition $\beta_r = s_{i_r}(\beta_r)$, hence $\beta_r = \alpha_{i_r}$. Recall that, by definition, $\beta_r = s_{i_{r+1}} \dots s_{i_{t-1}}(\alpha_{i_t}) = \alpha_{i_r}$. Thus if we denote $\overline{w} = s_{i_{r+1}} \dots s_{i_{t-1}}$, using Ex21.3 we see that $\overline{w}s_{i_t}\overline{w}^{-1} = s_{i_r}$, thus $\overline{w}s_{i_t} = s_{i_r}\overline{w}$. Now multiplying both sides by $s_{i_1} \dots s_{i_r}$, we get the result.

Corollary 8. W acts simply transitive on chambers, i.e if $w(\overline{C}) = \overline{C}$, then w = 1. In particular if $\lambda \in C(open\ chamber)$, $w(\lambda) = \lambda$, then w = 1.

Proof. If $w \neq 1$, take its reduced expression: $w = s_{i_1} \dots s_{i_l}$. If $w(\overline{C}) = \overline{C}$, then $w(\Pi) = \Pi$, in particular $w(\alpha_{i_l}) \in \Delta_+$. On the other hand, $w(\alpha_{i_l}) = s_{i_1} \dots s_{i_{l-1}}(-\alpha_{i_l}) \in \Delta_+$ means $s_{i_1} \dots s_{i_{l-1}}(\alpha_{i_l}) \in \Delta_-$, hence by exchange lemma $s_{i_1} \dots s_{i_l}$ is not a reduced expression. That's a contradiction!