ДЗ №3

Даниил Дмитриев, 494 27 марта 2017 г.

1 Задание 2.2

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} a_i(x)$$
$$\mathbb{E}_{X,Y,x,y}(a(x)) = \frac{1}{k} \sum_{i=1}^{k} \mathbb{E}_{X,Y,x,y}(a_i(x)) = \mathbb{E}_{X,Y,x,y}(a_1(x)),$$

значит **Bias** не меняется.

$$\mathbf{Var}_{X,Y,x,y}(a(x)^2) = \frac{1}{k} \mathbf{Var}_{X,Y,x,y}(a_1(x)) + \frac{1}{k^2} \sum_{i \neq j} \mathbf{cov}(a_i(x), a_j(x))$$

Пусть коэффициент корреляции (a_i, a_j) равен ρ , тогда

$$\frac{1}{k} \mathbf{Var}_{X,Y,x,y}(a_1(x)) + \frac{1}{k^2} \sum_{i \neq j} cov(a_i(x), a_j(x)) =
= \frac{1}{k} \mathbf{Var}_{X,Y,x,y}(a_1(x)) + \frac{1}{k^2} \sum_{i \neq j} \rho \mathbf{Var}_{X,Y,x,y}(a_1(x)) =
= \left(\frac{1}{k} + \frac{\rho(k-1)}{k}\right) \mathbf{Var}_{X,Y,x,y}(a_1(x))$$

Значит, чем меньше корреляция между базовыми алгоритмами, тем меньше **Variance**.

2 Задача 2.3

Пусть $\xi_1,...,\xi_M$ - одинаково распределенные величины, $D\xi_1=\sigma^2,cor(\xi_1,\xi_2)=\rho.$ Обозначим $\mathbb{E}\xi_1=a,$ тогда $\mathbb{E}\xi_1^2=\sigma^2+a^2.$

$$D\overline{\xi} = \frac{1}{M^2}D(\xi_1 + \dots + \xi_M) = \frac{1}{M^2}\mathbb{E}(\xi_1 + \dots + \xi_M)^2 - a^2.$$

$$\mathbb{E}(\xi_1 + \dots + \xi_M)^2 = M(\sigma^2 + a^2) + \sum_{i \neq j} \mathbb{E}\xi_i \xi_j$$

Из определения корреляции следует, что $\mathbb{E}\xi_i\xi_j=
ho\sigma^2+a^2.$ Значит,

$$\mathbb{E}(\xi_1 + \ldots + \xi_M)^2 = M(\sigma^2 + a^2) + M(M - 1)(\rho\sigma^2 + a^2) = M^2(\rho\sigma^2 + a^2) + M\sigma^2(1 - \rho),$$

откуда,

$$D\overline{\xi} = \rho \sigma^2 + a^2 + \frac{1}{M}\sigma^2(1-\rho) - a^2 = \sigma^2\rho + \frac{1}{M}\sigma^2(1-\rho)$$

3 Задание 3.1

В $sample_submission$ для всех значений предсказывается среднее по всем таргетам из train