Artificial Neural networks for the prediction of phage protein function

Adrian Cantu

San Diego State University Computational Science Research Center

March 23th 2019

BacterioPhage

A. Cantu 03/23/2019 VII meeting - 2019 2 / 14

Databases

Function	Dereplicated by FastGroup	# of Seqs	En	codi	ing F	unct	ions	to 1	0 Lab	oel N	euro	ns
major capsid	√	3,793	1	0	0	0	0	0	0	0	0	0
minor capsid		1,544	0	1	0	0	0	0	0	0	0	0
baseplate	\checkmark	4,227	0	0	1	0	0	0	0	0	0	0
major tail	\checkmark	1,851	0	0	0	1	0	0	0	0	0	0
minor tail	\checkmark	1,536	0	0	0	0	1	0	0	0	0	0
portal	\checkmark	3,110	0	0	0	0	0	1	0	0	0	0
tail fiber, major	\checkmark	3,213	0	0	0	0	0	0	1	0	0	0
tail shaft,sheath	\checkmark	1,818	0	0	0	0	0	0	0	1	0	0
collar	\checkmark	1,546	0	0	0	0	0	0	0	0	1	0
head-tail joining		3,037	0	0	0	0	0	0	0	0	0	1

A. Cantu 03/23/2019 VII meeting - 2019 3 /

Protein Sequences

- >AAA32580 1
- MFGATAGGTASALAGGAMSKLFGGGOKAASGGTOGDVLATDNNTVGMGDAGTKSATOGSNVPNPDEAAPS
- FVSGAMAKAGKGLLEGTLOAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- AGMVDAGFENOKELTKMOLDNOKEIAEMONETOKEIAGIOSATSRONTKDOVYAONEMLAYOOKESTARV
- ASIMENTNLSOOOOVSEIMROMLTOAOTAGOYFTNDOIKEMTRKVSAEVDLVHOOTONORYGSSHIGATA KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK
- >AAA32580 2
- MFGAIAGGIASALAGGAMSKLFGGGOKAASGGIOGDVLATDNNTVGMGDAGIKSAIOGSNVPNPDEAAPS
- FVSGAMAKAGKGLLEGTLOAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- AGMVDAGFENOKELTKMOLDNOKEIAEMONETOKEIAGIQSATSRONTKDQVYAQNEMLAYQQKESTARV
- ASIMENTNLSKOOOVSEIMROMLTOAOTAGOYFTNDOIKEMTRKVSAEVDLVHOOTONORYGSSHIGATA
- KDISNVVTDAASGVVDIFHGIDKAVADTWNNFWKDGKADGIGSNLSRK
- >AAA32580 3
- 14 MFGAIAGGIASALAGGAMSKLFGGGOKAASGGIOGDVLATDNNTVGMGDAGIKSAIOGSNVPNPDEAAPS
- FVSGAMAKAGKGLLEGTLOAGTSAVSDKLLDLVGLGGKSAADKGKDTRDYLAAAFPELNAWERAGADASS
- 16 AGMVDAGFENOKELTKMOLDNOKEIAEMONETOKEIAGIOSATSRONTKDOVYAONEMLAYOOKESTARV
- ASIMENTNLSKQQQVSEIMRQMLTQAQTAGQYFTNDQIKEMTRKVVAEVDLVHQQTQNQRYGSSHIGATA
- KDTSNVVTDAASGVVDTFHGTDKAVADTWNNFWKDGKADGTGSNLSRK
- >AAA32580 4
- MFGATAGGTASALAGGAMSKLFGGGOKAASGGTOGDVLATDNNTVGMGDAGTKSATOGSNVPNPDEAAPS
- FVSGAMAKAGKGI.I.EGTI.OAGTSAVSDKI.I.DI.VGI.GGKSAADKGKDTRDYI.AAAFPEI.NAWERAGADASS
- AGMVDAGFENTKELTKMOLDNOKEIAEMONETOKEIAGIOSATSRONTKDOVYAONEMLAYOOKESTARV
- ASIMENTNLSKOOOVSEIMROMLTOAOTAGOYFTNDOIKEMTRKVSAEVDLVHOOTONORYGSSHIGATA
 - KDTSNVVTDAASGVVDTFHGTDKAVADTWNNFWKDGKADGTGSNLSRK

03/23/2019 VII meeting - 2019 4 / 14

F:Sequence -> Function

A. Cantu 03/23/2019 VII meeting - 2019 5 /

Artificial Neural Networks

ANN have been shown to be universal approximators of continuous functions in \mathbb{R}^n

$$d=\left(\int_0^{2\pi}|f_1(t)-f_2(t)|^pdt
ight)^{rac{1}{p}}$$
 where $1< p<\infty$

A. Cantu 03/23/2019 VII meeting - 2019 6 /

Artificial Neural Networks

$$\begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ Z_{410} \end{pmatrix} = X$$

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \\ Y_6 \\ Y_7 \\ Y_8 \\ Y_9 \\ Y_{10} \end{pmatrix} = Y$$

$$\text{where } \sum_{n=1}^{10} Y_n = 1$$

A. Cantu 03/23/2019 VII meeting - 2019 7 /

The 'black box' function

$$F(X) = \underbrace{[10*200]}_{W_3} \left(\underbrace{[200*200]}_{W_2} \left(\underbrace{[200*407]}_{W_1} \underbrace{[407*1]}_{X} + \underbrace{[200*1]}_{\delta_1}\right) + \underbrace{[200*10]}_{\delta_2}\right) + \underbrace{[10*1]}_{\delta_1}$$

289,866 Trainable parameters

	Precision	Recall	f1-score	Support
Major capsid	0.91	0.79	0.85	95
Minor capsid	0.78	0.93	0.85	45
Baseplate	0.72	0.91	0.80	108
Major tail	0.91	0.67	0.77	43
Minor Tail	0.93	0.93	0.93	44
Portal	0.92	0.81	0.86	80
Tail Fiber	0.78	0.41	0.53	96
Tail shaft	0.70	0.72	0.71	39
Collar	0.39	0.83	0.53	53
Head — Tail Joining	0.98	0.98	0.98	90
weighted avg	0.82	0.79	0.79	675

A. Cantu

03/23/2019

VII meeting - 2019

Results Confusion matrix

A. Cantu 03/23/2019 VII meeting - 2019 10 / 14

Weighted average

A. Cantu 03/23/2019 VII meeting - 2019 11 /

A. Cantu 03/23/2019 VII meeting - 2019 12 / 14

https://edwards.sdsu.edu/adrian_net

A. Cantu 03/23/2019 VII meeting - 2019 13 / 14

Conclusions

- ANN is slow to train but fast to run.
- Robots will rule the world
- "Collar" proteins are not a real thing

A. Cantu 03/23/2019 VII meeting - 2019 14 /