Programare logică

Signaturi, Algebre, Morfisme

Exemplu. Signatura

$$MONOID = (S = \{s\}, \Sigma = \{e : \rightarrow s, * : ss \rightarrow s\})$$

Fie $(A, 1, *)$ şi $(B, 0, +)$ monoizi
 $(A_e := 1, A_* := *, B_e := 0, B_* := +)$

Exemplu. Signatura

$$MONOID = (S = \{s\}, \Sigma = \{e : \rightarrow s, * : ss \rightarrow s\})$$

Fie $(A, 1, \star)$ şi (B, 0, +) monoizi

$$(A_e := 1, A_* := \star, B_e := 0, B_* := +)$$

O funcție $f: A \rightarrow B$ este morfism de monoizi dacă:

- $f(x \star y) = f(x) + f(y) \Leftrightarrow f(A_*(x,y)) = B_*(f(x),f(y))$ or. $x,y \in A$.

Exemplu. Signatura

$$MONOID = (S = \{s\}, \Sigma = \{e : \rightarrow s, * : ss \rightarrow s\})$$

Fie $(A, 1, \star)$ şi (B, 0, +) monoizi

$$(A_e := 1, A_* := \star, B_e := 0, B_* := +)$$

O funcție $f: A \rightarrow B$ este morfism de monoizi dacă:

$$f(x \star y) = f(x) + f(y) \Leftrightarrow f(A_*(x,y)) = B_*(f(x),f(y))$$
 or, $x,y \in A$.

$$\begin{array}{cccccc}
A & \times & A & \stackrel{A_*}{\to} & A \\
f \downarrow & & f \downarrow & & f \downarrow \\
B & \times & B & \stackrel{B_*}{\to} & B
\end{array}$$

 (A_S,A_Σ) , (B_S,B_Σ) (S,Σ) -algebre Un morfism de (S,Σ) -algebre $((S,\Sigma)$ -morfism) este o funcţie S-sortată $f:A\to B$ care verifică condiţiile de compatibilitate:

 (A_S,A_Σ) , (B_S,B_Σ) (S,Σ) -algebre Un morfism de (S,Σ) -algebre $((S,\Sigma)$ -morfism) este o funcţie S-sortată $f:A\to B$ care verifică condiţiile de compatibilitate:

- $\bullet f_s(A_\sigma) = (B_\sigma) \text{ oricare } \sigma : \to s,$
- $f_s(A_\sigma(a_1,\ldots,a_n)) = B_\sigma(f_{s_1}(a_1),\ldots,f_{s_n}(a_n))$ or, $\sigma:s_1\cdots s_n\to s$, or, $(a_1,\ldots,a_n)\in A_{s_1}\times\cdots\times A_{s_n}$.

 (A_S,A_Σ) , (B_S,B_Σ) (S,Σ) -algebre Un morfism de (S,Σ) -algebre $((S,\Sigma)$ -morfism) este o funcţie S-sortată $f:A\to B$ care verifică condiţiile de compatibilitate:

$$\bullet f_s(A_\sigma) = (B_\sigma)$$
 oricare $\sigma : \to s$,

$$\bullet f_s(A_{\sigma}(a_1, \dots, a_n)) = B_{\sigma}(f_{s_1}(a_1), \dots, f_{s_n}(a_n))$$
or. $\sigma: s_1 \cdots s_n \to s$, or. $(a_1, \dots, a_n) \in A_{s_1} \times \cdots \times A_{s_n}$.
$$A_{s_1} \times \cdots \times A_{s_n} \stackrel{A_{\sigma}}{\to} A_s$$

$$f_{s_1} \downarrow \qquad \cdots \qquad f_{s_n} \downarrow \qquad f_s \downarrow$$

$$B_{s_1} \times \cdots \times B_{s_n} \stackrel{B_{\sigma}}{\to} B_s$$

Exemplu

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 :\rightarrow nat, succ : nat \rightarrow nat\})$
- $\blacksquare NAT$ -algebra A:

$$A_{nat} := \mathbb{N}, A_0 := 0, A_{succ}(x) := x + 1$$

 $\blacksquare NAT$ -algebra B:

$$B_{nat} := \{0, 1\}, B_0 := 0, B_{succ}(x) := 1 - x$$

- $f: A \to B$, $f = \{f_{nat}\}$, $f_{nat}(n) = n \pmod{2}$ este morfism de NAT-algebre
- ■Nu există morfism de NAT-algebre $g: B \rightarrow A$.

■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem \}$

- ■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem \}$
- ■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$

- ■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem \}$
- ■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$
- ■STIVA-algebra B: $B_{elem} := \{0\}, B_{stiva} := \mathbb{N}$ $B_0 := 0, B_{empty} := 0, B_{push}(0, n) := n + 1$ or. n, $B_{pop}(0) := 0, A_{pop}(n) := n 1$ pt. $n \ge 1$, $B_{top}(n) := 0$ or. n.

- $\blacksquare STIVA$ -algebra $A = (A_{elem} = \mathbb{N}, A_{stiva} = \mathbb{N}^*, \ldots)$
- $\blacksquare STIVA$ -algebra $B = (B_{elem} = \{0\}, B_{stiva} := \mathbb{N}, \ldots)$
- $f: A \to B, f = (f_{elem}: \mathbb{N} \to \{0\}, f_{stiva}: \mathbb{N}^* \to \mathbb{N})$ $f_{elem}(n) := 0 \text{ or. } n,$ $f_{stiva}(\lambda) := 0, f_{stiva}(n_1 \cdots n_k) := k \text{ pt. } k \ge 1$
- $g: B \to A, g = (g_{elem}: \{0\} \to \mathbb{N}, g_{stiva}: \mathbb{N} \to \mathbb{N}^*)$ $g_{elem}(0) := 0,$ $g_{stiva}(0) := \lambda, g_{stiva}(k) := \underbrace{0 \cdots 0}_{k} \text{ pt. } k \geq 1$

f și g sunt morfisme de STIVA-algebre

 $f:A\to B,\,g:B\to C,\,h:C\to D$ morfisme de (S,Σ) -algebre

• $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)

 $f:A\to B,\,g:B\to C,\,h:C\to D$ morfisme de (S,Σ) -algebre

- $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)
- $\blacksquare 1_A:A\to A$ este morfism

 $f:A\to B,\,g:B\to C,\,h:C\to D$ morfisme de (S,Σ) -algebre

- $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)
- $\blacksquare 1_A:A\to A$ este morfism
- lacksquare P parte stabilă în $A\Rightarrow f(P)$ parte stabilă în B

 $f:A\to B,\ g:B\to C,\ h:C\to D$ morfisme de (S,Σ) -algebre

- $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)
- $\blacksquare 1_A:A\to A$ este morfism
- $\blacksquare P$ parte stabilă în $A \Rightarrow f(P)$ parte stabilă în B
- lacksq Q parte stabilă în $B \Rightarrow f^{-1}(Q)$ parte stabilă în A

 $f:A\to B,\ g:B\to C,\ h:C\to D$ morfisme de (S,Σ) -algebre

- $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)
- $\blacksquare 1_A:A\to A$ este morfism
- $\blacksquare P$ parte stabilă în $A \Rightarrow f(P)$ parte stabilă în B
- lacksq Q parte stabilă în $B \Rightarrow f^{-1}(Q)$ parte stabilă în A

 $f:A\to B,\ g:B\to C,\ h:C\to D$ morfisme de (S,Σ) -algebre

- $f: A \to B, g: B \to C$ morfisme $\Rightarrow f; g: A \to C$ morfism (compunerea a două morfisme este tot un morfism)
- $\blacksquare 1_A:A\to A$ este morfism
- $\blacksquare P$ parte stabilă în $A \Rightarrow f(P)$ parte stabilă în B
- lacksq Q parte stabilă în $B \Rightarrow f^{-1}(Q)$ parte stabilă în A

Un (S, Σ) -morfism $f: A \to B$ este izomorfism dacă există un morfism $g: B \to A$ a.î. $f; g = 1_A$ şi $g; f = 1_B$.

Un (S, Σ) -morfism $f: A \to B$ este izomorfism dacă există un morfism $g: B \to A$ a.î. $f; g = 1_A$ şi $g; f = 1_B$.

Propoziţie. Un morfism $f:A\to B$ este izomorfism dacă şi numai dacă este funcţie bijectivă, adică $f_s:A_s\to B_s$ este bijecţie oricare $s\in S$.

Un (S, Σ) -morfism $f: A \to B$ este izomorfism dacă există un morfism $g: B \to A$ a.î. $f; g = 1_A$ şi $g; f = 1_B$.

Propoziţie. Un morfism $f:A\to B$ este izomorfism dacă şi numai dacă este funcţie bijectivă, adică $f_s:A_s\to B_s$ este bijecţie oricare $s\in S$.

Observație. f morfism și bijecție $\Rightarrow f^{-1}$ morfism

Spunem că algebrele $A=(A_S,A_\Sigma)$ şi $B=(B_S,B_\Sigma)$ sunt izomorfe dacă există un izomorfism $f:A\to B$. În acest caz notăm $A\simeq B$.

Spunem că algebrele $A=(A_S,A_\Sigma)$ și $B=(B_S,B_\Sigma)$ sunt izomorfe dacă există un izomorfism $f:A\to B$. În acest caz notăm $A\simeq B$.

- $\blacksquare A \simeq A$ (1_A este izomorfism)
- $\blacksquare A \simeq B \Rightarrow B \simeq A$
- $\blacksquare A \simeq B, B \simeq C \Rightarrow A \simeq C$

Relaţia de izomorfism este o relaţie de echivalenţă (reflexivă, simetrică şi tranzitivă).

Spunem că algebrele $A=(A_S,A_\Sigma)$ și $B=(B_S,B_\Sigma)$ sunt izomorfe dacă există un izomorfism $f:A\to B$. În acest caz notăm $A\simeq B$.

- $\blacksquare A \simeq A$ (1_A este izomorfism)
- $\blacksquare A \simeq B \Rightarrow B \simeq A$
- $\blacksquare A \simeq B, B \simeq C \Rightarrow A \simeq C$

Relaţia de izomorfism este o relaţie de echivalenţă (reflexivă, simetrică şi tranzitivă).

Observație. $A \simeq B \Rightarrow A_s \simeq B_s$ oricare $s \in S$

 $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$
- $\blacksquare NAT$ -algebra A: $A_{nat} = \mathbb{N}$, $A_0 := 0$, $A_{succ}(x) := x + 1$

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$
- NAT-algebra A: $A_{nat} = \mathbb{N}$, $A_0 := 0$, $A_{succ}(x) := x + 1$
- $\blacksquare NAT$ -algebra B: $B_{nat} := \{0, 1\}$, $B_0 := 0$, $B_{succ}(x) := 1 x$

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$
- NAT-algebra A: $A_{nat} = \mathbb{N}$, $A_0 := 0$, $A_{succ}(x) := x + 1$
- $\blacksquare NAT$ -algebra B: $B_{nat} := \{0, 1\}$, $B_0 := 0$, $B_{succ}(x) := 1 x$
- NAT-algebra C: $C_{nat} := \{2^n | n \in \mathbb{N}\}$ $C_0 := 1$, $C_{succ}(2^n) := 2^{n+1}$

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$
- NAT-algebra A: $A_{nat} = \mathbb{N}$, $A_0 := 0$, $A_{succ}(x) := x + 1$
- $\blacksquare NAT$ -algebra B: $B_{nat} := \{0, 1\}$, $B_0 := 0$, $B_{succ}(x) := 1 x$
- NAT-algebra C: $C_{nat} := \{2^n | n \in \mathbb{N}\}$ $C_0 := 1$, $C_{succ}(2^n) := 2^{n+1}$
- $\blacksquare A \not\simeq B$

- $\blacksquare NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})$
- $\blacksquare NAT$ -algebra A: $A_{nat} = \mathbb{N}$, $A_0 := 0$, $A_{succ}(x) := x + 1$
- $\blacksquare NAT$ -algebra B: $B_{nat} := \{0, 1\}$, $B_0 := 0$, $B_{succ}(x) := 1 x$
- NAT-algebra C: $C_{nat} := \{2^n | n \in \mathbb{N}\}$ $C_0 := 1, C_{succ}(2^n) := 2^{n+1}$
- $\blacksquare A \not\simeq B$
- $lacksquare A \simeq C$ $f:A \to C, \ f(n):=2^n \ ext{este un } NAT ext{-izomorfism.}$

■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$

- ■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$
- $lackbox{\blacksquare} A_{bool} := \{0, 1\}$ $A_T := 1, A_F := 0, A_{\neg}(x) := 1 x,$ $A_{\lor}(x, y) := max(x, y), A_{\land}(x, y) := min(x, y)$

- ■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$
- $lackbox{\blacksquare} A_{bool} := \{0, 1\}$ $A_T := 1, A_F := 0, A_{\neg}(x) := 1 x,$ $A_{\lor}(x, y) := max(x, y), A_{\land}(x, y) := min(x, y)$
- $B_{bool} := \mathcal{P}(\mathbb{N})$ $B_T := \mathbb{N}, B_F := \emptyset, B_{\neg}(X) := \mathbb{N} \setminus X,$ $B_{\vee}(X,Y) := X \cup Y, B_{\wedge}(X,Y) := X \cap Y$

- ■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$
- $lackbox{\blacksquare} A_{bool} := \{0, 1\}$ $A_T := 1, A_F := 0, A_{\neg}(x) := 1 x,$ $A_{\lor}(x, y) := max(x, y), A_{\land}(x, y) := min(x, y)$
- $B_{bool} := \mathcal{P}(\mathbb{N})$ $B_T := \mathbb{N}, B_F := \emptyset, B_{\neg}(X) := \mathbb{N} \setminus X,$ $B_{\vee}(X,Y) := X \cup Y, B_{\wedge}(X,Y) := X \cap Y$
- $\blacksquare A \not\simeq B$

$\blacksquare BOOL$ -algebra C:

$$\begin{split} C_{bool} &:= \{t: \mathbb{N} \to \{0,1\} | \ t \ \mathsf{func} \mathsf{jie} \} \\ C_T(n) &:= 1, \, C_F(n) := 0 \ \mathsf{or.} \ n \in \mathbb{N} \\ C_\neg(t)(n) &:= 1 - t(n) \ \mathsf{or.} \ t \in C_{bool}, \, n \in \mathbb{N} \\ C_\lor(t_1,t_2)(n) &:= \max(t_1(n),t_2(n)) \ \mathsf{or.} \ t_1, \, t_2 \in C_{bool}, \, n \in \mathbb{N} \\ C_\land(t_1,t_2)(n) &:= \min(t_1(n),t_2(n)) \ \mathsf{or.} \ t_1, \, t_2 \in C_{bool}, \, n \in \mathbb{N} \end{split}$$

$\blacksquare BOOL$ -algebra C:

$$\begin{split} &C_{bool} := \{t : \mathbb{N} \to \{0,1\} | \ t \ \mathsf{func} \mathsf{jie} \} \\ &C_T(n) := 1, \, C_F(n) := 0 \ \mathsf{or.} \ n \in \mathbb{N} \\ &C_{\neg}(t)(n) := 1 - t(n) \ \mathsf{or.} \ t \in C_{bool}, \, n \in \mathbb{N} \\ &C_{\lor}(t_1, t_2)(n) := \max(t_1(n), t_2(n)) \ \mathsf{or.} \ t_1, \, t_2 \in C_{bool}, \, n \in \mathbb{N} \\ &C_{\land}(t_1, t_2)(n) := \min(t_1(n), t_2(n)) \ \mathsf{or.} \ t_1, \, t_2 \in C_{bool}, \, n \in \mathbb{N} \end{split}$$

$\blacksquare B \simeq C$

$$f: B \to C$$
, $f(Y) := \chi_Y$ oricare $Y \in \mathcal{P}(\mathbb{N})$ $f(Y)(n) = 1$ dacă $n \in Y$, $f(Y)(n) = 0$ dacă $n \notin Y$ f este $BOOL$ -izomorfism

- $\blacksquare STIVA$ -algebra $A = (A_{elem} = \mathbb{N}, A_{stiva} = \mathbb{N}^*, \ldots)$
- $\blacksquare STIVA$ -algebra $B = (B_{elem} = \{0\}, B_{stiva} := \mathbb{N}, \ldots)$
- $\blacksquare A \not\simeq B$

■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0,$ $A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$

- ■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0,$ $A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$
- ■STIVA-algebra C: $A_{elem} := \mathbb{Z}$, $A_{stiva} := \mathbb{Z}^*$ $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(x, x_1 \cdots x_k) := x_1 \cdots x_k x$, $A_{pop}(\lambda) = A_{pop}(x) := \lambda$, $A_{pop}(x_1 \cdots x_{k-1} x_k) := x_1 \cdots x_{k-1}$ pt. $k \ge 2$, $A_{top}(\lambda) := 0$, $A_{top}(x_1 \cdots x_k) := x_k$ pt. $k \ge 1$.

- $lacksquare{STIV}A$ -algebra A: $A_{elem}:=\mathbb{N}, A_{stiva}:=\mathbb{N}^*$
- lacksquare STIVA-algebra C: $A_{elem}:=\mathbb{Z},\ A_{stiva}:=\mathbb{Z}^*$
- $f: A \to C, \ f = (f_{elem}: \mathbb{N} \to \mathbb{Z}, f_{stiva}: \mathbb{N}^* \to \mathbb{Z}^*)$ $f_{elem}(2k) := k, f_{elem}(2k+1) := -k-1 \text{ pt. } k \in \mathbb{N},$ $f_{stiva}(n_1 \cdots n_k) := f_{elem}(n_k) \cdots f_{elem}(n_1) \text{ pt. } n_1 \cdots n_k \in \mathbb{N}^*.$ f este STIVA-izomorfism
- ■Algebrele izomorfe satisfac "aceleaşi proprietăţi".

$\blacksquare AUTOMAT$ -algebra A:

$$A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$$

 $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$
 $A_f(x, s0) := s0, A_f(y, s0) := s1,$
 $A_f(x, s1) := s0, A_f(y, s1) := s1.$

 $\blacksquare AUTOMAT$ -algebra A:

$$A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$$

 $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$
 $A_f(x, s0) := s0, A_f(y, s0) := s1,$
 $A_f(x, s1) := s0, A_f(y, s1) := s1.$

Exerciţiu. Dacă C este o AUTOMAT-algebră şi $C \simeq A$ atunci automatele asociate acceptă acelaşi limbaj (modulo redenumire).

 $\blacksquare AUTOMAT$ -algebra A:

$$A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$$

 $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$
 $A_f(x, s0) := s0, A_f(y, s0) := s1,$
 $A_f(x, s1) := s0, A_f(y, s1) := s1.$

- Exerciţiu. Dacă C este o AUTOMAT-algebră şi $C \simeq A$ atunci automatele asociate acceptă acelaşi limbaj (modulo redenumire).
- ■Algebrele izomorfe sunt "identice" (modulo redenumire).

Un tip abstract de date este o mulţime de date (valori) şi operaţii asociate lor, a căror descriere (specificare) este independentă de implementare.

abstract=disassociated from any specific instance

- Un tip abstract de date este o mulţime de date (valori) şi operaţii asociate lor, a căror descriere (specificare) este independentă de implementare.
 - abstract=disassociated from any specific instance
- O algebră este este formată dintr-o mulţime de elemente şi o mulţime de operaţii. Algebrele pot modela tipuri de date.

- Un tip abstract de date este o mulţime de date (valori) şi operaţii asociate lor, a căror descriere (specificare) este independentă de implementare.
 - abstract=disassociated from any specific instance
- O algebră este este formată dintr-o mulţime de elemente şi o mulţime de operaţii. Algebrele pot modela tipuri de date.
- Două algebre izomorfe au acelaşi comportament, deci trebuie sa fie modele ale acelaşi tip de date. Aceasta asigură independenţa de implementare.

lacksquare O signatură (S,Σ) este interfaţa sintactică a unui tip abstract de date.

- lacksquare O signatură (S, Σ) este interfaţa sintactică a unui tip abstract de date.
- ■O algebră $A = (A_S, A_\Sigma)$ este o posibilă implementare.

- lacksquare O signatură (S,Σ) este interfaţa sintactică a unui tip abstract de date.
- ■O algebră $A = (A_S, A_\Sigma)$ este o posibilă implementare.
- Dacă $A \simeq B$, atunci A şi B implementează acelaşi tip de date.

- ■O signatură (S, Σ) este interfaţa sintactică a unui tip abstract de date.
- ■O algebră $A = (A_S, A_\Sigma)$ este o posibilă implementare.
- Dacă $A \simeq B$, atunci A şi B implementează acelaşi tip de date.
- ■Un tip abstract de date este o clasă \mathcal{C} de (S, Σ) -algebre închisă la izomorfism:

$$A \in \mathcal{C}$$
, $A \simeq B \Rightarrow B \in \mathcal{C}$.