PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-134663

(43) Date of publication of application: 21.05.1999

(51)Int.CI.

G11B 7/09

(21)Application number : 10-250103

(71)Applicant: TEAC CORP

(22)Date of filing:

03.09.1998

(72)Inventor: MASHITA TSUGUAKI

ONDA HIROYUKI NAGATA TAKUYA MURATA HIDEHIKO YOSHIMOTO KYOSUKE KOYANAGI KIMIYUKI

FURUKAWA TERUO

(54) OPTICAL DISK DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To correctly control the irradiating state of a light beam by controlling the irradiating state of the light beam while reading out stored controller variables every time a temp, detection result reaches a prescribed temp. range or a temp. change reaches a prescribed value to make a storage capacity small. SOLUTION: When command signals to be applied to the driving circuits 13, 14 of a linear motor IC and an electromagnetic actuator 1d are not generated for a prescribed time a control circuit 8 judges that the recording and reproducing of information is not present and it reads out respective values of stored offsets and gains till then from a memory 15. Then, it sets these offset values and gain values every prescribed temp, range or every time the temp, change reaches a prescribed temp, to preliminarily store them in the memory 15 and it reads out an offset value and an gain value corresponding to a detected temp. at the time of changing an offset and an gain to change them. Then, when an ambient temp, is changed, the circuit 8

is changed to controlled variables related to its ambient temps. and the light beam is subjected to a tracking control and, then, the proper tracking control of the light beam is performed without being affected by the change in ambient temps.

LEGAL STATUS

[Date of request for examination]

03.09.1998

[Date of sending the examiner's decision of

21.12.1999

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号

特開平11-134663

(43)公開日 平成11年(1989)5月21日

(51) Int.CL6 G11B 7/09 織別記号

ΡI G11B 7/09

A

審査前求 有 商求項の数1 OL (全 6 頁)

(21)出顧番号	特顯平10-250103	(71)出顧人	000003676
(62)分割の表示	特職平2-337531の分割		ティアック株式会社
(22)出版日	平成2年(1990)11月30日		東京都武蔵野市中町3丁目7番3号
		(72) 発明者	真下 著明
	·		東京都武蔵野市中町3丁目7番3号 ティ
			アック株式会社内
		(72) 発明者	恩田 浩行
			東京都武蔵野市中町3丁目7番3号 ティ
			アック株式会社内
		(72) 発明者	永田 庫也
			東京都武蔵野市中町3丁目7番3号 ティ
			アック株式会社内
		(74)代理人	
			最終頁に続く

(54) 【発明の名称】 光ディスク装置

(57)【要約】

【課題】 光ディスク、光磁気ディスク(以下単に光デ ィスクという) に情報を記録し、また再生する光ディス ク装置に関し、光ディスク装置の設置場所の周囲温度が 変化した場合は、周囲温度に関連してオフセット値が結 正されて、記録情報、再生情報に誤りが生じない光ディ スク装置を提供することを目的とする。

【解決手段】 周闓温度を検出し、その検出結果に応じ て光ビームの照射状態を制御する制御量を設定し、検出 された温度検出結果に対応して設定された範囲及び該範 岡毎に制御畳を記憶し、温度検出結果から範囲毎に記憶 手段に記憶された制御置を読み出し、読み出された制御 置に応じて光ビームの照射状態を制御する。

特闘平11-134663

【特許請求の範囲】

【請求項1】 光ディスクに投射した光ビームの反射光 に応じて該光ビームの照射状態を制御しつつ、該光ディ スクに対し情報の記憶、再生を行う光ディスク装置にお 1.50

周囲温度を検出する温度検出手段と、

前記温度検出手段の検出結果に応じて前記光ビームの照 射状態を制御する制御置を設定する設定手段と

前記温度検出手段で検出された検出結果に対応して設定 された範囲または所定値、及び該範囲または該所定値毎 16 対し情報の記憶、再生を行う光ディスク装置において、 に前記設定手段で設定された前記光ビームの照射状態を 制御する制御室を記述する記述手段と、

前記温度検出手段で検出された検出結果から該範囲また は該所定値毎に前記記憶手段に記憶された制御屋を読み 出し、読み出された制御量に応じて前記光ビームの照射 状態を制御する制御手段とを有することを特徴とする光 ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ディスク、光磁気 20 ディスク (以下単に光ディスクといろ) に情報を記録 し、また再生する光ディスク装置に関し、更に詳述すれ は光ディスクに投射する光ビームの照射状態を副御する サーボ回路の動作を安定させるようにしてある光ディス ク装置を提案するものである。

[0002]

【従来の技術】光ディスクに対する情報の記録。情報の 再生は、光ヘッドを光ディスクに対して非接触で行われ るのでトラッキング制御が必要であり、また正確に情報 の記録、再生を行うためにフォーカス制御が必要であ り、いずれの制御にもサーボ回路が用いられる。ところ で、このサーボ回路の動作を安定させるために、従来は 例えばトラッキング制御についてみると、個体差を解消 するために所要のオフセット値を与える。これは機械的 に調整し得ない光学系の制御誤差を、正しいトラッキン グを行わせるために電気的に調整すべく与える信号であ り、安定した副御を行わせるためにはこのような補正を 必要とし、例えば製造者の最終調整工程で決定される。 1000031

【発明が解決しようとする課題】このようにしてオフセ 49 ット値を設定した光ディスク装置を、需要家で使用する 場合、光ディスク装置の設置場所の周囲温度が変化した 場合には、設定されているオフセット値が最適値から外 れることがある。したがって、需要家では、光ディスク 装置を設置する場所の周囲温度が大きく変化した場合に は、オフセット値を再調整することが望まれるが、その 調整作業は甚だ煩わしく現実には困難である。そのよう にオフセット値が適正でない場合はトラックのアクセス ミスが生じて記録情報、再生情報に誤りが生じる遅れが あるという問題がある。

【①①①4】本発明は斯かる問題に鑑み、光ディスク装 置の設置場所の周囲温度が変化した場合は、周囲温度に 関連してオフセット値が補正されて、記録情報、再生情 級に誤りが生じない光ディスク装置を提供することを目 的とする。

[0005]

(2)

【課題を解決するための手段】本発明に係る光ディスク 装置は、光ディスクに投射した光ビームの反射光に応じ て該光ビームの照射状態を制御しつつ。該光ディスクに 周囲温度を検出する温度検出手段と、前記温度検出手段 の検出結果に応じて前記光ビームの照射状態を制御する 制御量を設定する設定手段と、前記温度検出手段で検出 された検出結果に対応して設定された範囲または所定 値、及び、該範囲または該所定値毎に前記設定手段で設 定された前記光ビームの照射状態を制御する制御量を記 慥する記憶手段と、前記温度検出手段で検出された検出 結果から該範囲または該所定値毎に前記記憶手段に記憶 された制御畳を読み出し、読み出された制御畳に応じて 前記光ビームの照射状態を調御する副御手段とを有する ことを特徴とする。

【0006】本発明によれば、所定温度範囲又は温度変 化が所定値に達する毎に制御費を記憶手段に格納し、温 度検出手段での検出結果。所定温度範囲又は温度変化が 所定値に達する毎に記憶手段に記憶された制御量を読み 出して、前記光ビームの照射状態を調剤することによ り、所定温度範囲又は温度変化が所定値に達する毎の制 御量を格納すればよいので記憶手段の記憶容置を小さく でき、簡単な構成で正確な光ビームの照射状態制御が行 30 える。

[0007]

【発明の真施の形態】以下本発明をその真施例を示す図 面によって詳述する。図1は本発明に係る光ディスク装 置の要部を示す模式的ブロック図である。光ディスク1 ①の下方には、固定の発光素子1b 受光素子1e, 1 eを構える光ヘッド101.及び対物レンズ1aを備え る光ヘッド102が配置されており、発光素子1bが出 射した光ビームは光ヘッド102の対物レンズlaを通 って光ディスク10へ投射され、ここからの反射光が再 び対物レンズlaを通って受光素子le、leに入射す るようになっている。光ヘッド102はキャリッジ10 3に絡載されており、これに設けたリニアモータ1cの 駆動によってシーク動作。即ち光ディスク10の半径方 向へ銀移動させ、また対物レンズlaに設けた電磁アク チュエータ1dの駆動により、光ビーム投射点を光ディ スク10の半径方向へ密移動させてトラッキング副御を 行わせるようになっている。

【0008】前記受光素子1e, 1eの各出力は、増幅 器11,11に各別に入力されており、それらの各出力。 56 は差跡増幅器1gの正、負側入力幾子+, - へ各別に入

力されている。差動増幅器1gの出力たる差信号はアナ ログノデジタル変換器2へ入力されており、それをアナ ログノデジタル変換した信号は、サーボ外れ検出回路で 及びマイクロプロセッサからなる制御部8へ入力されて いる。制御部8にはタイマT及び図示しない演算部が内 蔵されている。副御部8には周囲温度を検出する温度検 **出器20の検出出力が入力されており、制御部8が出力** するサーボ外れの基準値を挟める基準信号はサーボ外れ 検出回路7へ入力される。制御部8には図示しないホス 信号が与えられる。そして制御部8は、その指令信号の 入力により発生する電磁アクチュエータ1dの駆動を指 今する指令信号を電磁アクチュエータ駆動回路 14 4 5 え、更にリニアモータ103の駆動を指令する指令信号 をリニアモータ駆動回路13へ与えるようになってい る。副御部8とオフセット加算・ゲイン切換回路9との 間で、オフセット及びゲインの値に関連する信号を、入 出力できるようになっており、制御部8はEEPROM からなるメモリ15に対して、温度検出器20が検出し た温度の値、オフセット及びゲインの値を書込み、読出 29 しできるようになっている。オフセット加算・ゲイン切 換回路9の出力は、電磁アクチュエータ14の動作を安 定化させる位組補償回路 1.1 へ入力され、その出力は電 磁アクチュエータ駆動回路14及びリニアモータ駆動回 路13へ入力されている。電磁アクチュエータ駆動回路 14の出力は電磁アクチュエータ1 dへ与えられ、リニ アモータ駆動回路 13の出力はリニアモータ 1 c へ与え **られている。**

【0009】次にこのように構成した光ディスク装置の 動作を、その副御部8の副御内容を示す図2とともに説 30 明する。光ディスク10を図示しないスピンドルモータ により回転させる。そして発光素子lbから光ビームを 出射すると、その光ビームは光ヘッド102の対物レン ズlaを通って回転している光ディスク10に役射さ れ、光ディスク10で反射した反射光が再び対物レンズ laを通って受光素子le、leに入射する。これらの 受光素子le、leの各出力が差動増幅器lgに入力さ れて、差動増幅器1gは差信号を出力してアナログ/デ ジタル変換器2に入力し、デジタル変換された信号がサ ーボ外れ検出回路7及び副御部8へ入力される。サーボ 45 外れ検出回路?は入力された信号と副御部8から与えら れた基準信号とを比較し、サーボ外れが生じたことを検 出するとサーボ外れ信号Sを出力する。

【0010】アナログ/デジタル変換器2からサーボ外 れ鈴出回路7に入力された信号は、オフセット加算・ゲ イン切換回路9へ入力され、その出力が位相循償回路1 1を介して電磁アクチュエータ駆動回路14及びリニア モータ駆動回路13へ入力される。そして情報の記録, 再生を指令すべき指令信号に関連して副御部8がリニア モータ1cを駆動すべき指令信号をリニアモータ駆動回 50 の値をメモリ15から譲出して移動平均値を算出して変

路13へ入力すると、位組補償回路11の出力信号に関 連するリニアモータ駆動回路13の出力がリニアモータ 1 cに与えられてリニアモータ1 cが駆動し、光ヘッド 102が光ディスク10の半径方向へ組移動する。また 制御部8が電磁アクチュエータ1 dを駆動すべき指令信 号を電磁アクチュエータ駆動回路14へ与えると、位相 **循償回路 1 1 の出力信号に関連する電磁アクチュエータ** 駆動回路 1.4の出力が電磁アクチュエータ 1.dに与えら れて光ヘッド102が光ディスク10の半径方向へ密移 トコンピュータから情報の記録、再生を指令すべき指令 19 動する。そして光ディスク10からの反射光に関連して 差動増幅器18が出力する差信号に応じて光へッド10 2がトラッキング制御される。

> 【0011】ところで、副御部8には、温度検出器20 の検出出力が入力されており、制御部8は周囲温度を検 出すべく制御する(Sl)、続いて周囲温度が変化した か否かを判断し(S2)、温度変化するまで待つ。また 制御部8は、情報の記録、再生を指令する指令信号によ りリニアモータlc及び電磁アクチュエータldを駆動 すべくリニアモータ駆動回路13及び電磁アクチュエー タ駆動回路!4 へ与える指令信号を検出する制御をして いて、この指令信号が非発生の時点からタイマ子が計時 を開始する。

【0012】そしてステップ(\$2)で温度変化したと 判断した場合は、タイマTの計時が所定時間に達したか 否かを判断し(S3)、所定時間経過するまで待ち、所 定時間を計時した場合、即ち指令信号が所定時間非発生 の場合は情報の記録、再生をしないものと判断して、制 御部8はそれまでのオフセット及びゲインの値をメモリ 15から該出して、移動平均値を演算し、演算後のオフ セット及びゲインを、オフセット加算・ゲイン切換回路 9へ与えて、オフセット加算・ゲイン切換回路9の出力 を変更し (S4)、即ちリニアモータ1c及び電磁アク チュエータ」dを駆動する副御畳を変更する。つまり、 過去のオフセット及びゲインの値のデータ数を引とした 場合に、1/nの重み付けによる移動平均値でオフセッ ト及びゲインの値を変更することになる。

【りり13】とれにより、周囲温度が変化した場合は、 その周囲温度に関連する副御費に変更されてトラッキン グ制御されることになり、周囲温度の変化の影響をうけ ず常に適正にトラッキング副御が行え、記録情報、再生 情報に誤りが生じることがない。またオフセット及びゲ インの値の変更を、情報の記録、再生を指令すべき指令 信号が所定時間非発生にある場合に行うから、情報の記 録、再生動作が妨けられず、情報の記録、再生速度が低 下することなく合理的に行うことができる。

【0014】なお、このようなオフセット及びゲインの 変更は特定のトラックアドレス又は全てのトラックにつ いて同様に行うことができる。なお、オフセット及びゲ インの値を変更する際に、オフセット及びゲインの過去

力されている。差動増幅器1gの出力たる差信号はアナ ログ/デジタル変換器2へ入力されており、それをアナ ログノデジタル変換した信号は、サーボ外れ検出回路7 及びマイクロプロセッサからなる制御部8へ入力されて いる。制御部8にはタイマT及び図示しない演算部が内 蔵されている。副御部8には周囲温度を検出する温度検 出器20の検出出力が入力されており、制御部8が出力 するサーボ外れの基準値を決める基準信号はサーボ外れ 検出回路7へ入力される。制御部8には図示しないホス トコンピュータから情報の記録、再生を指令すべき指令 10 動する。そして光ディスク10からの反射光に関連して 信号が与えられる。そして副御部8は、その指令信号の 入力により発生する電磁アクチュエータ1dの駆動を指 令する指令信号を電磁アクチュエータ駆動回路 14ヘ与 え、更にリニアモータ103の駆動を指令する指令信号 をリニアモータ駆動回路13へ与えるようになってい る。副御部8とオフセット順算・ゲイン切換回路9との 間で、オフセット及びゲインの値に関連する信号を、入 出力できるようになっており、制御部8はEEPROM からなるメモリ15に対して、温度検出器20が検出し た温度の値、オフセット及びゲインの値を書込み。読出 20 しできるようになっている。オフセット加算・ゲイン切 換回路9の出力は、電磁アクチュエータ14の動作を安 定化させる位相補償回路 1 1 へ入力され、その出力は電 磁アクチュエータ駆動回路 1.4 及びリニアモータ駆動回 路13へ入力されている。電磁アクチュエータ駆動回路 14の出力は電磁アクチュエータ1 dへ与えられ、リニ アモータ駆動回路13の出力はリニアモータ1 c へ与え **られている。**

3

【0009】次にこのように構成した光ディスク装置の 動作を、その制御部8の制御内容を示す図2とともに説 30 明する。光ディスク10を図示しないスピンドルモータ により回転させる。そして発光素子1bから光ビームを 出射すると、その光ビームは光ヘッド102の対物レン ズlaを通って回転している光ディスク10に役射さ れ、光ディスク10で反射した反射光が再び対物レンズ laを通って受光素子le、leに入射する。これらの 受光素子! e. leの各出力が差動増幅器! gに入力さ れて、差動増幅器1gは差信号を出力してアナログ/デ ジタル変換器2に入力し、デジタル変換された信号がサ 外れ検出回路?は入力された信号と制御部8から与えら れた基準信号とを比較し、サーボ外れが生じたことを検 出するとサーボ外れ信号Sを出力する。

【0010】アナログ/デジタル変換器2からサーボ外 れ鈴出回路7に入力された信号は、オフセット創算・ゲ イン切換回路9へ入力され、その出力が位相補償回路1 1を介して電磁アクチュエータ駆動回路14及びリニア モータ駆動回路13へ入力される。そして情報の記録、 再生を指令すべき指令信号に関連して制御部8がリニア モータ1cを駆動すべき指令信号をリニアモータ駆動回 50 の値をメモリ15から読出して移動平均値を算出して変

路13へ入力すると、位祖補償回路11の出力信号に関 連するリニアモータ駆動回路13の出力がリニアモータ 1 c に与えられてリニアモータ 1 c が駆動し、光ヘッド 102が光ディスク10の半径方向へ組移動する。また 制御部8が延越アクチュエータ! dを駆動すべき指令信 号を電磁アクチュエータ駆動回路14へ与えると、位相 **循償回路!!の出力信号に関連する露磁アクチュエータ** 駆動回路 1.4 の出力が電磁アクチュエータ 1.4 に与えら れて光ヘッド102が光ディスク10の半径方向へ密移 差跡増幅器1gが出力する差信号に応じて光ヘッド10 2がトラッキング制御される。

【0011】ところで、副御部8には、温度検出器20 の検出出力が入力されており、制御部8は周囲温度を検 出すべく制御する(Sl)、続いて周囲温度が変化した か否かを判断し(S2) 温度変化するまで待つ。また 制御部8は、情報の記録、再生を指令する指令信号によ りリニアモータlc及び電磁アクチュエータldを駆動 すべくリニアモータ駆動回路13及び電磁アクチュエー タ駆動回路 1.4 ヘ与える指令信号を検出する制御をして いて、この指令信号が非発生の時点からタイマ下が計時 を開始する。

【0012】そしてステップ(\$2)で温度変化したと 判断した場合は、タイマTの計時が所定時間に達したか 否かを判断し(S3)、所定時間経過するまで待ち、所 定時間を計時した場合、即ち指令信号が所定時間非発生 の場合は情報の記録,再生をしないものと判断して、制 御部8はそれまでのオフセット及びゲインの値をメモリ 15から設出して、移動平均値を演算し、演算後のオフ セット及びゲインを、オフセット加算・ゲイン切換回路 9へ与えて、オフセット加算・ゲイン切換回路9の出力 を変更し (S4)、即ちリニアモータ1c及び電磁アク チュエータ1 dを駆動する副御畳を変更する。つまり、 過去のオフセット及びゲインの値のデータ数をnとした 場合に、1/mの重み付けによる移動平均値でオフセッ ト及びゲインの値を変更することになる。

【りり13】これにより、周囲温度が変化した場合は、 その周囲温度に関連する副御畳に変更されてトラッキン グ制御されることになり、周囲温度の変化の影響をうけ ーボ外れ検出回路7及び副御部8へ入力される。サーボ 40 ず常に適正にトラッキング副御が行え、記録情報、再生 **情報に誤りが生じることがない。またオフセット及びゲ** インの値の変更を、情報の記録、再生を指令すべき指令 信号が所定時間非発生にある場合に行うから、情報の記 録、再生動作が妨げられず、情報の記録、再生速度が低 下することなく合理的に行うことができる。

> 【0014】なお、このようなオフセット及びゲインの 変更は特定のトラックアドレス又は全てのトラックにつ いて同機に行うことができる。なお、オフセット及びゲ インの値を変更する際に、オフセット及びゲインの過去

(4)

特闘平11-134663

見したが、オフセット及びゲインの値を所定温度範囲ご とに、あるいは温度変化が所定値に達することに設定 し、それをメモリ15に予め格納しておいて、オフセッ ト及びゲインを変更するときに、検出している周囲温度 に対応するオフセット及びゲインをメモリ15から読出 して、オフセット及びゲインを変更するようにしてもよ Ļ,

【0015】本実施例ではトラッキング制御するサーボ 回路について説明したが、光ディスクに投射した光ビー ムの合焦点を得るべく、フォーカス制御するサーボ回路 10 1 c リニアモータ 及びトラックをアクセスすべくラジアル制御をするサー ボ回路についても同様に適用でき、同様の効果が得られ るととは勿論である。

[0016]

【発明の効果】以上詳述したように本発明によれば、所 定温度範囲又は温度変化が所定値に達する毎に副御置を 記憶手段に格納し、温度検出手段での検出結果。所定温 度範囲又は温度変化が所定値に達する毎に記憶手段に記 慥された制御量を読み出して、前記光ビームの照射状態 を制御することにより、所定温度範囲又は温度変化が所※20

*定値に達する毎の制御置を格納すればよいので記憶手段 の記憶容置を小さくでき、簡単な構成で正確な光ビーム の照射状態制御が行える等の特長を育する。

【図面の簡単な説明】

【図1】本発明に係る光ディスク装置の要部を示す模式 的ブロック図である。

【図2】制御部の制御内容を示すフローチャートであ る。

【符号の説明】

- ld 電磁アクチュエータ
- 8 制御部
- 9 オフセット加算・ゲイン切換回路
- 10 光ディスク
- 13 リニアモータ駆動回路
- 14 電磁アクチュエータ駆動回路
- 15 メモリ
- 20 温度検出器
- 101, 102 光ヘッド

[図2]

(5)

特関平11-134663

フロントページの続き

(72)発明者 村田 英彦

東京都武蔵野市中町3丁目7番3号 ティ アック株式会社内 (72)発明者 吉本 恭輔

尼崎市塚口本町8丁目1番1号 三菱電機 株式会社産業システム研究所内 (6)

特闘平11-134663

(72)発明者 小柳 公之

尼崎市塚口本町8丁目1番1号 三菱電機 株式会社産業システム研究所内 (72)発明者 古川 輝雄 尼時市塚口本町8丁目1番1号 三菱電機 株式会社産業システム研究所内