Perturbed Universes and Inflationary Models

MSci. Thesis

IMPERIAL COLLEGE LONDON

Author:

Thomas Fletcher

Supervisor:

Assessor:

Prof. João MAGUEIJO

Dr Carlo Contaldi

A thesis submitted in fulfilment of the requirements for the degree of MSci. Physics

in the

Theoretical Physics Department Imperial College London April 2, 2014

Contents

1	Ack	knowledgments	2
2	Abstract		3
3	Inti	roduction	4
	3.1	Cosmological Principle	4
	3.2	Hubble Law	4
	3.3	Cosmic Microwave Background (CMB)	4
	3.4	Cosmological Problems	4
	3.5	Inflation and why it is needed	4
	3.6	Aims of the Project	4
4	Theory		
	4.1	Friedmann Equations	4
	4.2	Inflation	4
	4.3	Mukhanov Sasaki Equation	4
	4.4	Power Spectrum	4
	4.5	Spectral Index	4
5	Matching Conditions		
	5.1	Outline	4
	5.2	Constant w	5
	5.3	Jacobi Elliptic Function Solutions	5
6	Hamiltonian Jacobi		5
	6.1	Outline	5
	6.2	Intermediate Inflation	6
	6.3	$n_s = 1 \dots \dots$	6
	6.4	$n_s \neq 1$	6
	6.5	Proof of Slow roll	6
	6.6	Equation of State	6
	6.7	Potential	6
7	Conclusion		6

1 Acknowledgments

blah blah

2 Abstract

The aim of this project is to investigate inflationary models and discover new models that give near scale invariance in accordance with Cosmic Microwave Background data.

3 Introduction

- 3.1 Cosmological Principle
- 3.2 Hubble Law
- 3.3 Cosmic Microwave Background (CMB)
- 3.4 Cosmological Problems
- 3.5 Inflation and why it is needed
- 3.6 Aims of the Project
- 4 Theory
- 4.1 Friedmann Equations
- 4.2 Inflation
- 4.3 Mukhanov Sasaki Equation
- 4.4 Power Spectrum

$$P(k) = A \left(\frac{k}{k_0}\right)^{n_s - 1} \tag{1}$$

$$n_s - 1 = \frac{\log(P(k))}{\log(k)} \tag{2}$$

- 4.5 Spectral Index
- 5 Matching Conditions
- 5.1 Outline

$$\left[k^2 - \frac{a''}{a}\right] = 0\tag{3}$$

$$\frac{1}{\sqrt{k}} \approx a(\eta)F(k) \tag{4}$$

$$P(k) = k^3 \frac{v^2}{a^2} = k^3 F(k)^2 \tag{5}$$

5.2 Constant w

$$a \approx \eta^{\frac{2}{3w+1}} \tag{6}$$

$$n_s(w) = 4 \pm \frac{3(1-w)}{3w+1} \tag{7}$$

5.3 Jacobi Elliptic Function Solutions

The matching condition method can be used to derive an expression for $a(\eta)$ that gives scale invariance. Equation 4 can be expressed purely in terms of the scale factor and its derivatives with respect to conformal time using equation 3 to give the following.

$$a(\eta) \approx \frac{1}{F\left(\sqrt{\frac{a''}{a}}\right)\left(\frac{a''}{a}\right)^{\frac{1}{4}}}$$
 (8)

From equations 2 and 5 it can be seen that $F(k) \propto k^{-\frac{3}{2}}$ is required for exact scale invariance. If this condition is imposed in equation 8 a second order differential equation can be found for the scale factor $a(\eta)$.

$$a''(\eta) \propto a(\eta)^3 \tag{9}$$

It is immediately clear to see that $a \propto \frac{1}{|\eta|}$ is a solution.

6 Hamiltonian Jacobi

6.1 Outline

The evolution of scalar fields is described by the Klein [1] Gordon Equation

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \tag{10}$$

$$H^2 = \frac{8\pi}{3m_{pl}^2} \left[\frac{1}{2}\dot{\phi}^2 + V(\phi) \right] \tag{11}$$

- 6.2 Intermediate Inflation
- **6.3** $n_s = 1$
- **6.4** $n_s \neq 1$
- 6.5 Proof of Slow roll
- 6.6 Equation of State
- 6.7 Potential

7 Conclusion

References

[1] Herbert Goldstein. Classical mechanics. Addison-Wesley, Reading, Mass. ; Wokingham, 2nd ed. edition, 1980. ID: $44 \text{IMP}_A LMA_D S2141267570001591$.