Symbols	Meanings
i, j, l	the counter variables
k	the number of sampled instances in
	sampleVR
s	the counter of epochs
t	the counter of iterations in an epoch
i_t	the index of an instance $\langle x_{i_t}, y_{i_t} \rangle$ which is
	sampled randomly
α	the level of significance
ρ	$[-\rho,\rho]$ is the $(1-\alpha)$ -confidence interval
δ	the rate of convergence
p	the number of dimensions
$\omega, \tilde{\omega}, \omega_*$	ω_* is the optimum. ω is a parameter, and $\tilde{\omega}$
	is its snapshot
d, d_t	the variance, $d_t = \parallel \omega_t - \tilde{\omega}_t \parallel^2$
a_{ij}	the j_{th} entry of of d_i
b_{ij}	the j_{th} entry of of $\nabla f_i(\omega)$
$\gamma_t, \dot{\gamma_t}$	the update gradient, and $\dot{\gamma}_t$ is its estimation.
m_s, m	the epoch size, and m is a constant.
η	the constant learning rate
ϵ, ζ	the positive real numbers
•	the 2-norm of a vector
g,\dot{g}	the full gradient g and its estimation \dot{g}
ν	$\nu = \dot{g} - g$

Figure 1: Symbols used in the paper and their notations.

Symbol notations

The symbols used in the paper and their notations are presented in Figure 1.

Proofs

In order to make the proofs of the theorems in this paper easy to read, the loss function and assumptions are re-presented here. The optimisation objective is:

$$\min F(\omega), \quad F(\omega) = \frac{1}{n} \sum_{i=1}^{n} f_i(\omega) + R(\omega)$$
 (1)

. The assumptions are shown as follows:

Assumption 1. Each differentiable function f_{i_t} with $i_t \in \{1, 2, ..., n\}$ in Equation 1 is L-Liptchiz continuous, that is, $\|f_{i_t}(\omega_i) - f_{i_t}(\omega_j)\| \le L \|\omega_i - \omega_j\|$ holds for any two parameters ω_i and ω_j . Equivalently, we obtain

$$f_{i_t}(\omega_i) \le f_{i_t}(\omega_j) + \nabla f_{i_t}(\omega_j)^{\mathrm{T}}(\omega_i - \omega_j) + \frac{L}{2} \parallel \omega_i - \omega_j \parallel^2$$

Assumption 2. The function F in Equation 11 is μ -strongly convex. That is, for any two parameters ω_i and ω_i , we obtain

$$F(\omega_i) \ge F(\omega_j) + \nabla F(\omega_j)^{\mathrm{T}} (\omega_i - \omega_j) + \frac{\mu}{2} \parallel \omega_i - \omega_j \parallel^2$$

Theorem 1. After t iterations in an epoch, the distance d_t holds that $d_t = \eta^2 \sum_{j=1}^p \left(\sum_{i=1}^t a_{ij}\right)^2$. Furthermore, d_t has an

upper bound such that $d_t \leq \eta^2 t^2 p\left(\frac{1}{tp}\sum_{i=1}^t\sum_{j=1}^p a_{ij}^2\right)$, and a lower bound such that $d_t \geq \eta^2 t^2 p\left(\frac{1}{tp}\sum_{i=1}^t\sum_{j=1}^p a_{ij}\right)^2$.

Proof.

$$d_{t} = \| \omega_{t} - \tilde{\omega} \|^{2} = \| \omega_{t-1} - \eta \gamma_{t-1} - \tilde{\omega} \|^{2}$$

$$= \| \omega_{0} - \tilde{\omega} - \sum_{i=1}^{t} \eta \gamma_{i} \|^{2} = \| - \sum_{i=1}^{t} \eta \gamma_{i} \|^{2}$$

$$= \eta^{2} \sum_{j=1}^{p} \left(\sum_{i=1}^{t} a_{ij} \right)^{2}$$
(2)

. Taken the expectation of i_t , $\mathbb{E}(\gamma_t) = \mathbb{E}(\nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\tilde{\omega}) + \nabla F(\tilde{\omega})) = \nabla F(\omega_t)$ holds, and we thus obtain the upper bound of the distance:

$$d_{t} = \eta^{2} t^{2} \sum_{j=1}^{p} \left(\frac{1}{t} \sum_{i=1}^{t} a_{ij} \right)^{2} \leq \eta^{2} t^{2} \sum_{j=1}^{p} \left(\frac{1}{t} \sum_{i=1}^{t} a_{ij}^{2} \right)$$

$$= \eta^{2} t \left(\sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij}^{2} \right) = \eta^{2} t^{2} p \left(\frac{1}{tp} \sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij}^{2} \right)$$
(3)

, and the lower bound of the distance:

$$d_{t} = \eta^{2} p \left(\frac{1}{p} \sum_{j=1}^{p} \left(\sum_{i=1}^{t} a_{ij} \right)^{2} \right) \ge \eta^{2} p \left(\frac{1}{p} \sum_{j=1}^{p} \sum_{i=1}^{t} a_{ij} \right)^{2}$$

$$= \frac{\eta^{2}}{p} \left(\sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij} \right)^{2} = \eta^{2} t^{2} p \left(\frac{1}{tp} \sum_{i=1}^{t} \sum_{j=1}^{p} a_{ij} \right)^{2}$$
(4)

Lemma 1. Given $\nu = \frac{1}{k} \sum_{t=1}^{k} \nabla f_{i_t}(\omega) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\omega)$, we obtain $\| \nu \|^2 \le \frac{2(n-k)L^2}{nk}$.

Proof. Since f_{i_t} is L-Liptchiz continuous according to Assumption 1, we obtain $\parallel f_{i_t}(\omega_i) - f_{i_t}(\omega_j) \parallel \leq L \parallel \omega_i - \omega_j \parallel$. Thus, $\parallel \nabla f_{i_t}(\omega) \parallel \leq L$ holds for an arbitrary parameter ω . Without loss of generality, suppose that indices of the sampled k instances are $i_t = t$ with $t \in \{1, 2, ..., k\}$.

$$\|\nu\|^{2} = \|\frac{1}{k} \sum_{t=1}^{k} \nabla f_{t}(\omega) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\omega) \|^{2}$$

$$= \frac{1}{(nk)^{2}} \|(n-k) \sum_{t=1}^{k} \nabla f_{t}(\omega) - k \sum_{i=k+1}^{n} \nabla f_{i}(\omega) \|^{2}$$

$$\leq \frac{1}{(nk)^{2}} (2(n-k)^{2}k^{2} \| \frac{1}{k} \sum_{t=1}^{k} \nabla f_{t}(\omega) \|^{2}$$

$$+2k^{2}(n-k)^{2} \| \frac{1}{n-k} \sum_{i=k+1}^{n} \nabla f_{i}(\omega) \|^{2})$$

$$\leq \frac{1}{(nk)^{2}} (2(n-k)^{2}k \sum_{t=1}^{k} \| \nabla f_{t}(\omega) \|^{2})$$

$$\leq \frac{1}{(nk)^{2}} (2(n-k) \sum_{i=k+1}^{n} \| \nabla f_{i}(\omega) \|^{2})$$

$$\leq \frac{4(n-k)^{2}L^{2}}{n^{2}}$$

 $\frac{1+4L\mu m\eta^2}{\mu m\eta(1-2\eta L)}$ **Theorem 2.** Given δ 1 η < SAMPLEVR makes the training loss converge as $\mathbb{E}[F(\tilde{\omega}_{s+1})-F(\omega_*)]$ \leq $\delta \mathbb{E}[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{8(\epsilon n + s \log \frac{\alpha}{2})^2 L^2 \eta}{\epsilon^2 n^2 (1 - 2\eta L)}$

Proof. Construct an auxiliary function $h_i(\omega)$ $f_i(\omega) - f_i(\omega_*) - \nabla f_i(\omega_*)^{\mathrm{T}}(\omega - \omega_*), \quad \text{and} \quad h_i(\omega_*)$ $\min h_i(\omega)$ holds because of $\nabla h_i(\omega_*) = 0$. Thus, $h_i(\omega_*) \leq$ $\min[h_i(\omega - \eta \nabla h_i(\omega))]$ holds. We obtain $h_i(\omega_*)$ $\min_{i} [h_i(\omega) - \eta \parallel \nabla h_i(\omega) \parallel^2 + \frac{1}{2} L \eta^2 \parallel \nabla h_i(\omega) \parallel^2] =$ $h_i(\omega) - \frac{1}{2L} \parallel \nabla h_i(\omega) \parallel^2$. That is, $\parallel \nabla f_i(\omega) - \nabla f_i(\omega_*) \parallel^2 \le$ $2L[f_i(\omega)-f_i(\omega_*)-\nabla f_i(\omega_*)^{\mathrm{T}}(\omega-\omega_*)].$ ming this inequality over $i=\{1,2,...,n\}$, and using the fact that $\nabla F(\omega_*)=0$, we obtain $\begin{array}{lll} \frac{1}{n}\sum_{i=1}^{n} & \parallel & \nabla f_{i}(\omega) - \nabla f_{i}(\omega_{*}) & \parallel^{2} & \leq 2L[F(\omega) - F(\omega_{*})]. \ i_{t} \\ \text{is a random variable which is sampled from } \{1,2,...,n\} \end{array}$

randomly. Taking the expectation of i_t , we obtain

$$\mathbb{E}_{i_t}(\parallel \nabla f_{i_t}(\omega) - \nabla f_{i_t}(\omega_*) \parallel^2)$$

$$= \frac{1}{n} \sum_{i=1}^n \parallel \nabla f_i(\omega) - \nabla f_i(\omega_*) \parallel^2 \le 2L[F(\omega) - F(\omega_*)]$$
(6)

. Therefore,

$$\mathbb{E}_{i_t} \parallel \dot{\gamma}_t \parallel^2 = \mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\tilde{\omega}_s) + \nabla F(\tilde{\omega}_s) + \nu \parallel^2$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{1}{12L} \left(1 - \sqrt{\frac{\mu m - 24L}{\mu m}}\right) < \eta < \frac{1}{12L} \left(1 + \sqrt{\frac{\mu m - 24L}{\mu m}}\right),$$
and thus the training loss converges such that
$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_s) - \nabla f_{i_t}(\omega_*) - \nabla F(\tilde{\omega}_s) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nu \parallel^2$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nu \parallel^2$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_s) - \nabla f_{i_t}(\omega_*)$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_s) - \nabla f_{i_t}(\omega_*)$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_s) - \nabla f_{i_t}(\omega_*)$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + 4\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_s) - \nabla f_{i_t}(\omega_*)$$

$$\leq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\omega_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t}(\omega_*) \parallel^2 + \frac{16(n-k)^2L^2}{n^2}$$

$$\geq 2\mathbb{E}_{i_t} \parallel \nabla f_{i_t}(\tilde{\omega}_t) - \nabla f_{i_t$$

. The third inequality uses Lemma 1, and the fourth inequality uses $\mathbb{E}[\xi - \hat{\mathbb{E}}\xi]^2 \leq \mathbb{E}\xi^2$, and the fifth inequality uses (6). Therefore, we obtain

$$\begin{split} & \mathbb{E}_{i_t} \parallel \omega_{t+1} - \omega_* \parallel^2 = \mathbb{E}_{i_t} \parallel \omega_t - \eta \dot{\gamma}_t - \omega_* \parallel^2 \\ & = \parallel \omega_t - \omega_* \parallel^2 - 2\eta(\omega_t - \omega_*)^T \mathbb{E}_{i_t} \dot{\gamma}_t + \eta^2 \mathbb{E}_{i_t} \parallel \dot{\gamma}_t \parallel^2 \\ & \leq \parallel \omega_t - \omega_* \parallel^2 - 2\eta(\omega_t - \omega_*)^T \nabla F(\omega_t) + \\ & \eta^2 \left(4L[F(\omega_t) - F(\omega_*)] + 8L[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{16(n-k)^2 L^2}{n^2} \right) \\ & \leq \parallel \omega_t - \omega_* \parallel^2 - 2\eta(F(\omega_t) - F(\omega_*)) + \\ & \eta^2 \left(4L[F(\omega_t) - F(\omega_*)] + 8L[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{16(n-k)^2 L^2}{n^2} \right) \\ & = \parallel \omega_t - \omega_* \parallel^2 - 2\eta(1 - 2\eta L)[F(\omega_t) - F(\omega_*)] + \\ & 8L\eta^2 [F(\tilde{\omega}_s) - F(\omega_*)] + \frac{16(n-k)^2 L^2 \eta^2}{n^2} \end{split}$$

(8)

. The first inequality uses $\mathbb{E}_{i_t}(\dot{\gamma}_t) = \nabla F(\omega_t)$ and (7), and the second inequality holds because that $F(\omega)$ is convex. We thus obtain

$$\| \omega_{m} - \omega_{*} \|^{2}$$

$$\leq \| \omega_{0} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L) \sum_{t=0}^{m-1} [F(\omega_{t}) - F(\omega_{*})] +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{16m(n-k)^{2}L^{2}\eta^{2}}{n^{2}}$$

$$= \| \tilde{\omega}_{s} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L)m \left(\frac{1}{m} \sum_{t=0}^{m-1} [F(\omega_{t}) - F(\omega_{*})] \right) +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{16m(n-k)^{2}L^{2}\eta^{2}}{n^{2}}$$

$$= \| \tilde{\omega}_{s} - \omega_{*} \|^{2} - 2\eta(1 - 2\eta L)m \mathbb{E}_{t} [F(\tilde{\omega}_{s+1}) - F(\omega_{*})] +$$

$$8Lm\eta^{2} [F(\tilde{\omega}_{s}) - F(\omega_{*})] + \frac{16m(n-k)^{2}L^{2}\eta^{2}}{n^{2}}$$

$$(9)$$

. The second equality holds because of $\omega_0 = \tilde{\omega}_s$. The third equality holds when we take expectation of t. The reason is that $\tilde{\omega}_{s+1}$ is identified by picking ω_t with $t \in \{0, 1, ..., m-1\}$ 1} randomly, and $\tilde{\omega}_s$ is a constant in an epoch. Thus,

$$\begin{split} &2\eta(1-2\eta L)m\mathbb{E}[F(\tilde{\omega}_{s+1})-F(\omega_*)]\\ \leq &\parallel \tilde{\omega}_s-\omega_*\parallel^2 +8Lm\eta^2\mathbb{E}[F(\tilde{\omega}_s)-F(\omega_*)] + \frac{16m(n-k)^2L^2\eta^2}{n^2}\\ &\leq \frac{2}{\mu}\mathbb{E}[F(\tilde{\omega}_s)-F(\omega_*)] +8Lm\eta^2\mathbb{E}[F(\tilde{\omega}_s)-F(\omega_*)]\\ &+\frac{16m(n-k)^2L^2\eta^2}{n^2} \end{split}$$

. The second inequality holds due to the Assumption 2. Therefore, we obtain $\delta = \frac{1+4L\mu m\eta^2}{\mu m\eta(1-2\eta L)}$ $\frac{1}{12L}\left(1-\sqrt{\frac{\mu m-24L}{\mu m}}\right) < \eta < \frac{1}{12L}\left(1+\sqrt{\frac{\mu m-24L}{\mu m}}\right),$ and thus the training loss converges such that $\mathbb{E}[F(\tilde{\omega}_{s+1}) - F(\omega_*)] \leq \delta \mathbb{E}[F(\tilde{\omega}_s) - F(\omega_*)] + \frac{8(n-k)^2 L^2 \eta}{n^2 (1-2\eta L)}$ 2 have been proved.

Theorem 3. Let α be small enough, so that $\frac{8(\epsilon n + \log \frac{\alpha}{2})^2 L^2 \eta}{\epsilon^2 n^2 (1 - 2\eta L)} \le F(\tilde{\omega}_0) - F(\omega_*)$ holds, samplevr requires $O(\ln^2 \frac{1}{\epsilon})$ atomic gradient calculations to achieve $\mathbb{E}[F(\tilde{\omega}_s) - F(\omega_*)] \leq \zeta.$

Proof. $\mathbb{E}[F(\tilde{\omega}_{s+1})-F(\omega_*)] \leq \delta^s (2\mathbb{E}[F(\tilde{\omega}_0)-F(\omega_*)]), \text{ ac-}$ cording to Theorem 2. If $\mathbb{E}[F(\tilde{\omega}_{s+1}) - F(\omega_*)] \leq \zeta$ holds, we obtain $s \geq \frac{1}{\ln \delta} \ln \frac{\zeta}{2(F(\tilde{\omega}_0) - F(\omega_*))}$ which can be denoted by $s = O(\ln \frac{1}{7}).$ Here, ω_* is the optimum of the loss function. The required atomic gradient calculations for the s_{th} epoch is denoted by G_s . We obtain $G_s = k+m =$ $-\frac{s\log\frac{\alpha}{2}}{\epsilon}+m$, which can be denoted by $O(\ln\frac{1}{\zeta})$ because of $s = O(\ln \frac{1}{\zeta})$. Thus, the total gradient complexity is denoted by $O(\ln^2 \frac{1}{c})$.