

Piano Octave Filtering

Cade Boynton, Giovanni Gutierrez, Katie Henn, David Needens University of Utah, Salt Lake City, Utah 84112

Introduction

Multiple FIR filters can be used to decode piano signals into octaves. Each filter is a bandpass filter with a frequency range of its designated octave. After the filtering would be a detection system to recognize which filters had passed a note from the original signal.

<u>Data</u>

	Starting Freq (Hz)	Ending Freq (Hz)	Starting Freq (dig omega)	Ending Freq (dig omega)	Center Freq (omega c)
Octave 1	32.703	61.735	0.026	0.048	0.037
Octave 2	65.406	123.471	0.051	0.097	0.074
Octave 3	130.813	246.942	0.103	0.194	0.148
Octave 4	261.626	493.883	0.205	0.388	0.297
Octave 5	523.251	987.767	0.411	0.776	0.593
Octave 6	1046.502	1975.533	0.822	1.552	1.187
Octave 7	2093.005	3951.066	1.644	3.103	2.374

Method

Bandpass filtering: In order to decode the octaves on the piano, we used bandpass filtering which filters out the noise from a signal outside of a specific chosen cutoff frequency. This ensure that only the desired frequencies are represented in the output.

Hamming Window: We used a Hamming window for our filtering method to reduce noise from the side lobes, though windowing like this does increase the width of the passband.

$$h[n] = \beta (0.54 - 0.46\cos(2\pi n/(L-1)))\cos(\hat{\omega}_c(n - (L-1)/2))$$

for
$$n = 0, 1, 2, \dots L-1$$

Bandwidth Tuning: To give each octave the desired bandwidth, we will adjust the filter length (L) of the hamming window. As L gets higher the bandwidth gets narrower.

We first scaled each frequency response, H, to have an amplitude of 1 by multiplying the response with the term \Box , where \Box =1/max(H). Then we tuned L through trial and error so each filter had the appropriate bandwidth with a 0.01 stopband. For octaves 1-7 L = [943, 546, 246,133, 67, 34, 17]

Summary

- **Objective**: Design and evaluate methods to isolate and decode octave bands using bandpass filtering, windowing, and normalization.
- Approach:
- Applied Hamming-based bandpass filters for frequency isolation.
- Used windowing to minimize spectral leakage.
- Implemented normalization to improve signal consistency.
- Results:
- Normalized filters demonstrated precise frequency isolation.
- Reliable decoding of octave bands across diverse input signals.
- Impact: Insights into signal processing with applications in audio analysis, communications, and frequency-based data analysis.

Results

References

[1]R. M. Mottola, "Liutaio Mottola Lutherie Information Website," *Liutaio Mottola Lutherie Information Website*, 2024. https://liutaiomottola.com/ (accessed Dec. 02, 2024).