

Particule dans un puits de potentiel - états liés de la particule

Plan du chapitre

I	Situ	ation du problème	3
	I.1	Confinement d'une particule : comparaison "classique-quantique"	3
	I.2	Modélisation	4
	I.3	Fonction d'onde en région de potentiel infini - dégagement des C.L. du puits infini .	5
II	Etat	ts stationnaires du puits infini	5
	II.1	Equation de Schrödinger indépendante du temps - Etats liés	5
	II.2	Résolution - quantification de l'énergie	6
		a - Fonction d'onde - les états liés	6
		b - Quantification de l'énergie	8
		c - Allure des fonctions d'onde spatiales	8
		${\bf d}$ - Application : première transition électronique dans la molécule d'hexa-1,3,5-	
		triène	8
	II.3	Analogie avec la corde vibrante (mode propre de vibration \equiv état stationnaire)	9
		a - Principe	9
		b - Exemple d'application : détermination des niveaux énergétiques de la par-	
		ticule confinée	9
III	Le d	louble puits de potentiel : application à l'oscillation de la molécule d'am-	
	mor	niac - MAZER	10
	III.1	Structure de la molécule - modélisation du potentiel	10
	III.2	Première approche : double puits infini	10
		a - Fonctions d'onde "attendues" - dégénérescence des niveaux d'énergie	10
		h Evploitation des symétries fonctions d'anda plus "commades"	11

CHAPITRE XXIII. PARTICULE DANS UN PUITS DE POTENTIEL - ÉTATS LIÉS DE LA PARTICULE

III.3	Double puits "fini"	11
	a - Fonctions d'ondes "idéales" : symétriques et antisymétriques	11
	b - Quantification de l'énergie - équation transcendante - équation algébrique	
	approximée	12
	c - Application : le MASER à ammoniac (1953)	14

