

Day : Wednesday

Date: 7/14/2004

Time: 11:31:02

PALM INTRANET**Inventor Name Search Result**

Your Search was:

Last Name = WATANABE

First Name = TAKUYA

Application#	Patent#	Status	Date Filed	Title	Inventor Name 41
<u>10839643</u>	Not Issued	019	05/05/2004	THIN FILM TRANSISTOR DEVICE AND METHOD OF MANUFACTURING THE SAME	WATANABE, TAKUYA
<u>10806780</u>	Not Issued	030	03/23/2004	DISPLAY DEVICE AND METHOD FOR FABRICATING THE SAME	WATANABE, TAKUYA
<u>10771417</u>	Not Issued	030	02/05/2004	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN, DNA AND ITS LIGAND	WATANABE, TAKUYA
<u>10745419</u>	Not Issued	030	12/22/2003	THIN FILM TRANSISTOR, ITS MANUFACTURE METHOD AND DISPLAY DEVICE	WATANABE, TAKUYA
<u>10719587</u>	Not Issued	020	11/21/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND LIGAND THEREOF	WATANABE, TAKUYA
<u>10467019</u>	Not Issued	030	08/01/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	WATANABE, TAKUYA
<u>10389914</u>	Not Issued	041	03/18/2003	FIXING STRUCTURE	WATANABE, TAKUYA
<u>10344381</u>	Not Issued	030	02/06/2003	USES OF POLYPEPTIDES	WATANABE, TAKUYA
<u>10333192</u>	Not Issued	030	09/29/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	WATANABE, TAKUYA
<u>10325603</u>	Not Issued	041	12/19/2002	THIN FILM TRANSISTOR DEVICE AND METHOD OF MANUFACTURING THE SAME	WATANABE, TAKUYA
<u>10311019</u>	Not	030	12/11/2003	LIGAND TO GPR8 AND DNA	WATANABE,

	Issued			THEREOF	TAKUYA
<u>10192075</u>	Not Issued	030	07/11/2002	PREVENTIVE, ALLEVIATIVE OR REMEDY FOR HYPERTENSION	WATANABE, TAKUYA
<u>10107057</u>	<u>6580406</u>	150	03/28/2002	POWER CONTROLLING CIRCUIT IN PLASMA DISPLAY UNIT AND METHOD OF CONTROLLING POWER IN THE SAME	WATANABE, TAKUYA
<u>10070334</u>	Not Issued	030	07/12/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>10070241</u>	Not Issued	071	02/27/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>10070240</u>	Not Issued	061	02/27/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>09927360</u>	<u>6707442</u>	150	08/13/2001	DRIVING APPARATUS AND DRIVING METHOD OF LIQUID CRYSTAL DISPLAY APPARATUS	WATANABE, TAKUYA
<u>09913770</u>	Not Issued	071	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>09901909</u>	<u>6458392</u>	150	07/11/2001	PREVENTIVE, ALLEVIATIVE OR REMEDY FOR HYPERTENSION	WATANABE, TAKUYA
<u>09868010</u>	Not Issued	164	06/11/2001	G PROTEIN-COUPLED RECEPTOR PROTEIN	WATANABE, TAKUYA
<u>09831758</u>	Not Issued	161	05/11/2001	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN ITS DNA AND LIGAND THEREOF	WATANABE, TAKUYA
<u>09830707</u>	Not Issued	161	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>09830428</u>	<u>6699965</u>	150	04/26/2001	PEPTIDES THAT ACTIVATE THE G-PROTEIN COUPLED RECEPTOR PROTEIN, OT7T175	WATANABE, TAKUYA

<u>09806924</u>	Not Issued	161	05/07/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>09806258</u>	Not Issued	161	03/28/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND IT'S DNA	WATANABE, TAKUYA
<u>09799695</u>	<u>6502829</u>	150	03/07/2001	GASKET-SQUEEZE CONSTRUCTION	WATANABE, TAKUYA
<u>09787879</u>	Not Issued	061	03/22/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
<u>09739789</u>	Not Issued	083	12/20/2000	PLASMA DISPLAY PANEL DRIVE APPARATUS AND DRIVE METHOD	WATANABE, TAKUYA
<u>09713890</u>	<u>6376861</u>	150	11/16/2000	THIN FILM TRANSISTOR AND METHOD FOR FABRICATING THE SAME	WATANABE, TAKUYA
<u>09477059</u>	<u>6255706</u>	150	01/03/2000	THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING SAME	WATANABE , TAKUYA
<u>09380593</u>	<u>6287624</u>	150	09/13/1999	FOODS CONTAINING FAT OR OIL	WATANABE , TAKUYA
<u>09176102</u>	<u>6236393</u>	150	10/21/1998	INTERFACE CIRCUIT AND LIQUID CRYSTAL DRIVING CIRCUIT	WATANABE , TAKUYA
<u>09173001</u>	<u>6340961</u>	150	10/15/1998	METHOD AND APPARATUS FOR DISPLAYING MOVING IMAGES WHILE CORRECTING FALSE MOVING IMAGE CONTOURS	WATANABE , TAKUYA
<u>09149128</u>	<u>5994717</u>	150	09/08/1998	THIN-FILM TRANSISTOR AND METHOD FOR FABRICATING SAME AND LIQUID CRYSTAL DISPLAY DEVICE	WATANABE , TAKUYA
<u>08766725</u>	<u>5801147</u>	150	12/13/1996	POLYPEPTIDES AND USE THEREOF	WATANABE , TAKUYA
<u>08749675</u>	<u>5846855</u>	150	11/15/1996	THIN-FILM TRANSISTOR AND METHOD FOR FABRICATING SAME AND LIQUID CRYSTAL DISPLAY DEVICE	WATANABE , TAKUYA
<u>07932455</u>	<u>5623050</u>	150	08/18/1992	STABLE POLYPEPTIDES	WATANABE ,

				HAVING C-AMP PRODUCTION ENHANCING ACTIVITY AND THE USE THEREOF	TAKUYA
07912486	5340977	150	07/13/1992	SOLID-STATE IMAGE PICKUP DEVICE	WATANABE , TAKUYA
07732059	5208320	150	07/18/1991	A NOVEL POLYPEPTIDE HAVING C-AMP-PRODUCING ACTIVITY	WATANABE , TAKUYA
07318638	4876219	250	03/03/1989	METHOD OF FORMING A HETEROEPITAXIAL SEMICONDUCTOR THIN FILM USING AMORPHOUS BUFFER LAYERS	WATANABE , TAKUYA
07026900	4804560	150	03/17/1987	METHOD OF SELECTIVELY DEPOSITING TUNGSTEN UPON A SEMICONDUCTOR SUBSTRATE	WATANABE , TAKUYA

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name
	<input type="text" value="WATANABE"/>	<input type="text" value="TAKUYA"/>
	<input type="button" value="Search"/>	

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

Day : Wednesday

Date: 7/14/2004

Time: 11:31:55

PALM INTRANET**Inventor Name Search Result**

Your Search was:

Last Name = TERAO

First Name = YASUKO

Application#	Patent#	Status	Date Filed	Title	Inventor Name 15
<u>10771417</u>	Not Issued	030	02/05/2004	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN, DNA AND ITS LIGAND	TERAO, YASUKO
<u>10719587</u>	Not Issued	020	11/21/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND LIGAND THEREOF	TERAO, YASUKO
<u>10467019</u>	Not Issued	030	08/01/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	TERAO, YASUKO
<u>10433561</u>	Not Issued	030	05/30/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAS THEREOF	TERAO, YASUKO
<u>10362504</u>	Not Issued	030	05/29/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN	TERAO, YASUKO
<u>10333192</u>	Not Issued	030	09/29/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	TERAO, YASUKO
<u>10296294</u>	Not Issued	030	11/21/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
<u>10070240</u>	Not Issued	061	02/27/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
<u>09913770</u>	Not Issued	071	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
<u>09831758</u>	Not Issued	161	05/11/2001	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN ITS DNA AND LIGAND THEREOF	TERAO, YASUKO
<u>09830707</u>	Not Issued	161	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
<u>09830428</u>	6699965	150	04/26/2001	PEPTIDES THAT ACTIVATE	TERAO, YASUKO

				THE G-PROTEIN COUPLED RECEPTOR PROTEIN, OT7T175	
<u>09806924</u>	Not Issued	161	05/07/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
<u>09806258</u>	Not Issued	161	03/28/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND IT'S DNA	TERAO, YASUKO
<u>09787879</u>	Not Issued	061	03/22/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO

Inventor Search Completed: No Records to Display.

Search Another: Inventor

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

Day : Wednesday

Date: 7/14/2004

Time: 11:32:08

PALM INTRANET**Inventor Name Search Result**

Your Search was:

Last Name = SHINTANI

First Name = YASUKO

Application#	Patent#	Status	Date Filed	Title	Inventor Name 1
09913770	Not Issued	071	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	SHINTANI, YASUKO

Inventor Search Completed: No Records to Display.

Search Another: Inventor**Last Name**

SHINTANI

First Name

YASUKO

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

FILE 'HOME' ENTERED AT 11:53:19 ON 14 JUL 2004

=> FIL MEDLINE SCISEARCH EMBASE BIOSIS

COST IN U.S. DOLLARS

SINCE FILE

TOTAL

ENTRY

SESSION

FULL ESTIMATED COST

0.21

0.21

FILE : MEDLINE : ENTERED AT 11:53:29 ON 14 JUL 2004

FILE 'SCISEARCH' ENTERED AT 11:53:29 ON 14 JUL 2004

COPYRIGHT 2004 THOMSON TST

FILE 'EMBASE' ENTERED AT 11:53:29 ON 14 JUL 2004

COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'BIOSIS' ENTERED AT 11:53:29 ON 14 JUL 2004

COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC. (R)

=> s hSLT

18 HSLT

=> dup rem 11

PROCESSING COMPLETED FOR L1

L2 6 DUP REM L1 (12 DUPLICATES REMOVED)

=> d his

(FILE 'HOME' ENTERED AT 11:53:19 ON 14 JUL 2004)

FILE 'MEDLINE, SCISEARCH, EMBASE, BIOSIS' ENTERED AT 11:53:29 ON 14 JUL
2004

L1 18 S HSLT

L2 6 DUP REM L1 (12 DUPLICATES REMOVED)

=> d 12 1-6 ti ab au

L2 ANSWER 1 OF 6 MEDLINE on STN

DUPLICATE 1

TI Gene expression in *Escherichia coli* biofilms.

AB DNA microarrays were used to study the gene expression profile of *Escherichia coli* JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly ($p <$ or ≤ 0.05) compared to suspension cells, including several genes for the stress response (*hslS*, *hslT*, *hha*, and *soxS*), type I fimbriae (*fimG*), metabolism (*metK*), and 11 genes of unknown function (*ybaJ*, *ychM*, *yefM*, *ygfA*, *b1060*, *b1112*, *b2377*, *b3022*, *b1373*, *b1601*, and *b0836*). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in *E. coli* JM109 biofilm formation. Copyright 2004 Springer-Verlag

AU Ren D; Bedzyk L A; Thomas S M; Ye R W; Wood T K

L2 ANSWER 2 OF 6 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
TI Retention of nutritional quality of soybean during extrusion cooking.

AB Trypsin inhibitor (TI) is one of the major anti-nutritional components of soybean and must be inactivated before its protein content can be safely and efficiently utilized for food and feed purposes. However, retention of the protein quality is also a prime consideration while inactivating TI. This research was conducted to study the effect of extrusion process conditions (temperature, screw speed and moisture content) on trypsin inhibitor activity (TIA) and nitrogen solubility index (NSI) and to develop a model for prediction of TI inactivation during extrusion cooking based on its reaction kinetics. A laboratory size single screw extruder was used for extrusion cooking of full-fat soybean implementing a (4X4X4)X2 full factorial design. TIA was measured using a standard procedure and NSI by AACC procedure. The reaction rate constant for loss of TIA was calculated based on its activation energy from literature and experimental TIA data. The statistical models correlating product temperature with operating conditions and activation energy were combined with mathematical equations for predicting TIA during the cooking process. TIA and NSI of the soybean (William 82 variety) were found to be 47.0 TIU mg⁻¹ and 78% respectively. Trypsin inhibitor inactivation ranged from 90% of that of raw soybean at low screw speed (75 rpm) and high barrel temperature (170degreeC) (LSHT) to 50% for higher screw speed (150 rpm) and low barrel temperature (140degreeC) (HSLT). Reduction in NSI for similar extrusion conditions ranged from 95% at LSHT to 50% at HSLT of that of raw soybeans. Variations between predicted and measured TIA values were less than 1% for the given conditions. Results indicated that reduction in TIA and NSI occurred mainly in the compression and metering sections of the extruder and that they paralleled each other, thereby making it difficult to retain high NSI while inactivating TI. However, the efficiency of extrusion cooking for TI inactivation has been proved. The model can be used for determining optimum conditions for extrusion cooking of soybean for food and feed purposes.

AU Khan, M.; Huff, H. E.; Hsieh, F. [Reprint Author]; Grebing, S.; Porter, J.; Li, Y.

L2 ANSWER 3 OF 6 MEDLINE on STN DUPLICATE 2
TI Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature.

AB The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high temperature (41.5 degrees C) for 2,000 generations. These lines exhibited significant changes in heat-inducible gene expression relative to their ancestor, including parallel changes in fkpA, gapA, and hslT. As a group, the heat-inducible genes were significantly more likely than noncandidate genes to have evolved changes in expression. Genes encoding molecular chaperones and ATP-dependent proteases, key components of the cytoplasmic stress response, exhibit relatively little expression change; whereas genes with periplasmic functions exhibit significant expression changes suggesting a key role for the extracytoplasmic stress response in the adaptation to high temperature. Following acclimation at 41.5 degrees C, two of the three lines exhibited significantly improved survival at 50 degrees C, indicating changes in inducible thermotolerance. Thus evolution at high temperature led to significant changes at the molecular level in heat-inducible gene expression and at the organismal level in inducible thermotolerance and fitness.

AU Riehle Michelle M; Bennett Albert F; Lenski Richard E; Long Anthony D

- L2 ANSWER 4 OF 6 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
 TI DEFECTS IN PLASTICALLY DEFORMED SEMICONDUCTORS STUDIED BY
 POSITRON-ANNIHILATION - SILICON AND GERMANIUM
- AB This paper is concerned with positron-annihilation studies in floating-zone silicon, which has been plastically deformed under high-stress and low-temperature conditions (HSLT). Positron lifetime spectra were decomposed into three components by means of the trapping model. Two defect-related lifetimes were found to be constant ($\tau_{\text{a}2} = 300$ ps and $\tau_{\text{a}3} = 590$ ps); they are constant during annealing. They are attributed to positron capture and annihilation by dislocation states ($\tau_{\text{a}2}$) and microvoids ($\tau_{\text{a}3}$). The microvoids (vacancy clusters) consist of at least ten vacancies. According to the model of diffusion-limited positron trapping, an upper limit of the microvoid concentrations is estimated. A pronounced increase of the microvoid-related trapping rate was observed after 600-degrees-C annealing of samples macroscopically deformed in the HSLT step. The positron capture to dislocations is also described as diffusion limited and the dislocation densities obtained agree satisfactorily with densities measured by transmission electron microscopy. Nonconservative dislocation motion and relaxation (jog dragging) during annealing is proposed as an efficient vacancy-generation process. Similar clustering effects were observed for HSLT-deformed high-purity germanium at appropriately lower temperatures. The characteristic defect-related positron lifetimes in Ge are determined to be $\tau_{\text{a}2} = 325$ ps and $\tau_{\text{a}3} = 520$ ps for dislocations and microvoids, respectively.
- AU KRAUSERHEBERG R (Reprint); BROHL M; LEIPNER H S; DROST T; POLITY A; BEYER U; ALEXANDER H
- L2 ANSWER 5 OF 6 MEDLINE on STN DUPLICATE 3
 TI Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli.
 AB Sequences of four new heat-shock (HS) genes of Escherichia coli organized into two operons were determined. The operon at 83 min specifies two proteins of 15.8 kDa (HslT) and 16.1 kDa (HslS), which are identical to IbpA and IbpB, respectively. Expression of mRNA from a sigma 32-dependent promoter of the hslTS/ibpAB operon is stimulated 30-75-fold upon temperature upshift. The transcription start point (tsp) is located at a G, 96 bp upstream from the AUG start codon of hslT /ibpA. The deduced amino acid sequences of HslT/IbpA and HslS/IbpB are 48% identical to each other and were found to be remotely related to the chloroplast low-molecular-weight HS protein, which is highly conserved among plants. The second hs operon is much less actively stimulated by temperature upshift, although it has a hs promoter that perfectly matches the consensus of promoters recognized by sigma 32. Located at 88.9 min, the hslVU operon specifies proteins of 19.1 kDa (HslV) and 49.6 kDa (HslU). Multiple tsp were found in this operon. HslV is remotely related to the eukaryotic proteasome proteins, and HslU is very similar to a Pasteurella haemolytica protein of unknown function. Both HslU and the P. haemolytica protein share a ATP/GTP-binding motif near their N-termini. The two operons described here are transcribed counterclockwise on the standard genetic map.
- AU Chuang S E; Burland V; Plunkett G 3rd; Daniels D L; Blattner F R
- L2 ANSWER 6 OF 6 MEDLINE on STN DUPLICATE 4
 TI The relationship between antidiuretic hormone and plasma or urine osmolalities during water restriction test and hypertonic saline loading test in normal children--a change in the apparent tubular response to AVP during these two tests.
 AB We present here the results of water restriction test (WRT) and hypertonic saline loading test (HSLT) in normal children. Maximal urine osmolality during WRT (W-Umax; 1040 ± 154 mOsm/kg) may be age-dependent ($W\text{-Umax} = 812 + 23 * \text{age}$, $r = 0.52$, $p < 0.05$), although maximal arginine vasopressin (AVP) levels during WRT did not show any correlation with age. The relationship

between plasma osmolality (Posm) and AVP during HSLT in children (AVP = 0.31* (Posm-277)) was similar to that in normal adults. A plateau urine osmolality during HSLT (H-Umax) was 713 +/- 109 mOsm/kg. It did not increase with age. AVP levels 3 h after the infusion did not correlate with age. Minimal AVP and Posm values (about 6 pg/ml, 295 mOsm/kg, respectively) for creating H-Umax apparently existed during HSLT. The minimal AVP value (about 6 pg/ml) for H-Umax (during HSLT) was higher than the AVP levels (2.41 +/- 1.37 pg/ml) at W-Umax (during WRT). W-Umax (1040 +/- 154 mOsm/kg) was significantly higher than H-Umax (713 +/- 109 mOsm/kg). Judging from the above comparison of AVP and Uosm (W, H-Umax) at the plateau state of WRT and HSLT in normal children, a change in the apparent tubular response to AVP may be one of the important factors to maintain circulatory volume (CV).

AU Hasegawa Y

=>

---Logging off of STN---

=>

Executing the logoff script...

=> LOG Y

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	59.81	60.02

STN INTERNATIONAL LOGOFF AT 11:55:47 ON 14 JUL 2004

L Number	Hits	Search Text	DB	Time stamp
1	62	watanabe-takuya.in. or terao-yasuko.in. or shintani-yasuko.in.	USPAT; US-PGPUB; EPO; DERWENT	2004/07/14 11:46
4	15	hSLT	USPAT; US-PGPUB; EPO; DERWENT	2004/07/14 11:47

East Search 14 July 2004

US 20040086941 A1	US-PGPUB	20040506	Method for screening mch receptor antagonist/agonist 435/7.1 514/12
US 20040009485 A1	US-PGPUB	20040115	Cellular arrays for the identification of altered gene expression 435/6 702/20
US 200400002094 A1	US-PGPUB	20040101	Method for high-density microarray mediated gene expression profiling 435/6
US 20030219736 A1	US-PGPUB	200311127	Cellular arrays for the identification of altered gene expression 435/6 435/471
US 20020041816 A1	US-PGPUB	20020411	Hydraulic motor having multiple speed ratio capability 418/61.3
US 6716582 B2	USPAT	20040406	Cellular arrays for the identification of altered gene expression 435/6 435/29
US 6679691 B1	USPAT	20040120	Anti cavitation system for two-speed motors 418/61.3 418/1
US 6607885 B1	USPAT	20030819	Method for high-density microarray medicated gene expression profiling 435/6 435/252.31; 435/252.32; 435/252.33; 435/252.34; 435/252.5; 435/5; 435/91.1; 435/91.2; 536/23.1; 536/24.3; 536/24.32; 536/24.33
US 6544018 B2	USPAT	20030408	Hydraulic motor having multiple speed ratio capability 418/61.3 418/60
US 5613454 A	USPAT	19970325	Vacuum latchack throat plate with a vacuum generating apparatus 112/260 112/287; 112/288; 112/DIG.1
US 5159874 A	USPAT	19921103	Aligning device for sleeve 112/470.03 112/272; 112/306; 112/320; 112/470.05; 112/470.07; 112/475.03; 112/475.07
US 4715798 A	USPAT	19871229	Two-speed valve-in star motor 418/57 418/133; 418/186; 418/61.3
US 3873817 A	USPAT	19750325	On-line monitoring of steam turbine performance 700/287 376/211; 376/217; 376/245; 376/259
EP 276680 A2 A2, A3, B1	EPO	19880803	Two-speed valve in-star motor.
EP 1184573 A2, A3DERWENT		20020306	Hydraulic motor with multiple speed ratio capability has gerotor gear set serving as fluid displacement mechanism

US 20040132073 A1	US-PGPUB	20040708	Novel G protein-coupled receptor protein, its DNA and ligand thereof 435/6 435/320.1; 435/325; 435/69.1; 530/350; 536/23.5
US 20040101956 A1	US-PGPUB	20040527	Novel g protein-coupled receptor protein 435/320.1 435/325; 435/69.1; 435/7.1; 514/12; 530/350
US 20040077535 A1	US-PGPUB	20040422	Novel physiologically active peptide and use thereof 514/12 435/320.1; 435/325; 435/69.1; 530/350; 530/388.1; 536/23.5
US 20040053826 A1	US-PGPUB	20040318	Uses of polypeptides 514/12 514/44
US 20040048314 A1	US-PGPUB	20040311	Novel physiologically active peptide and use thereof 435/7.1 530/387.1
US 20040029224 A1	US-PGPUB	20040212	Novel g protein-coupled receptor protein and dna thereof 435/69.1 435/320.1; 435/325; 435/7.1; 530/350; 530/388.22; 536/23.5
US 20040029178 A1	US-PGPUB	20040212	Novel g protein-coupled receptor proteins and dnas thereof 435/7.1 435/320.1; 435/325; 435/69.1; 530/350; 530/388.22; 536/23.5
US 20030178424 A1	US-PGPUB	20030925	Fixing structure 220/200
US 20030153110 A1	US-PGPUB	20030814	Thin film transistor substrate and method of manufacturing the same 438/30 257/59; 257/E21.703; 257/E27.111; 438/151; 438/154
US 20030151049 A1	US-PGPUB	20030814	Thin film transistor device and method of manufacturing the same 257/59 257/72; 438/149; 438/48
US 20020192317 A1	US-PGPUB	20021219	Preventive, alleviative or remedy for hypertension 424/776 514/263.31
US 20020140640 A1	US-PGPUB	20021003	Power controlling circuit in plasma display unit and method of controlling power in the same 345/63
US 20020041274 A1	US-PGPUB	20020411	Driving apparatus and driving method of liquid crystal display apparatus 345/204
US 20020022062 A1	US-PGPUB	20020221	Preventive, alleviative or remedy for hypertension 424/776
US 20020003542 A1	US-PGPUB	20020110	METHOD AND APPARATUS FOR DISPLAYING MOVING IMAGES

				WHILE CORRECTING FALSE MOVING IMAGE CONTOURS
US 20010024019 A1	US-PGPUB	20010927	345/581	
US 20010005188 A1	US-PGPUB	20010628	277/594	Gasket-squeeze construction
US 6707442 B2	USPAT	20040316	345/60 345/77	Plasma display panel drive apparatus and drive method
US 6699965 B1	USPAT	20040302	345/100 345/96	Driving apparatus and driving method of liquid crystal display apparatus
US 6580406 B2	USPAT	20030617	530/300 530/326; 530/327; 530/328	Peptides that activate the G-protein coupled receptor protein, 0T77T175
			345/63 315/169.3	Power controlling circuit in plasma display unit and method of controlling power in the same
US 6502829 B2	USPAT	20030107	277/593 277/598	Gasket-squeeze construction
US 6458392 B1	USPAT	20021001	424/776 424/725; 426/629	Preventive, alleviative or remedy for hypertension
US 6376861 B1	USPAT	20020423	424/776 424/725; 426/629	Thin film transistor and method for fabricating the same
US 6340961 B1	USPAT	20020122	257/59 257/350; 257/412; 257/72; 257/762; 257/763; 257/764; 257/765; 257/E21.19; 257/E21.703; 257/E27.111; 257/E29.147; 257/E29.151; 438/155	Method and apparatus for displaying moving images while correcting false moving image contours
US 6287624 B1	USPAT	20010911	345/63 84/690; 84/88; 84/89; 84/90	
US 6255706 B1	USPAT	20010703	426/601 426/602; 426/611	Foods containing fat or oil
US 6236393 B1	USPAT	20010522	257/412 257/350; 257/59; 257/72; 257/905; 257/E29.147; 257/E29.291; 438/155; 438/162	Thin film transistor and method of manufacturing same
US 5994717 A	USPAT	19991130	345/211 345/204; 345/98	Interface circuit and liquid crystal driving circuit
			345/63 84/690; 84/88; 84/89; 84/90	Thin-film transistor and method for fabricating same and liquid crystal display device

US 5846855 A	USPAT	19981208	257/59 257/350; 257/61; 257/66; 257/72; 257/E21.414; 257/E29.117; 257/E29.299
			Thin-film transistor and method for fabricating same and liquid crystal display device
US 5801147 A	USPAT	19980901	438/158 257/E21.414; 257/E29.117; 257/E29.299; 438/159
			Polypeptides and use thereof
US 5623050 A	USPAT	19970422	514/12 530/324; 530/326
			Stable polypeptides having c-AMP production enhancing activity and the use thereof
US 5340977 A	USPAT	19940823	530/324 530/326
			Solid-state image pickup device
US 5208320 A	USPAT	19930504	250/208.1 257/222; 257/234; 257/241; 257/E27.159; 348/282;
US 4876219 A	USPAT	19891024	348/283
			Polypeptide having c-AMP-producing activity
US 4804560 A	USPAT	19890214	530/324 530/326
			Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
EP 1357129 A2	EPO	20031029	117/90 117/104; 117/105; 117/106; 117/953; 117/954; 148/DIG.154; 148/DIG.169; 148/DIG.25; 148/DIG.72; 148/DIG.97; 257/190; 257/63; 257/646; 257/E21.112; 257/E21.125; 438/483; 438/933
EP 1344823 A1 THEREOF	EPO	20030917	438/675 257/E21.171; 257/E21.295; 257/E21.586; 427/125; 427/253; 427/255.21; 427/255.392; 438/629; 438/680
EP 1293567 A1 EP 1273658 A1 SAME	EPO	20030319	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF
	EPO	20030416	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAs
	EPO	20030507	USE OF POLYPEPTIDE
	EPO	20030416	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF
EP 1293567 A1 EP 1273658 A1 SAME	EPO	20030108	LIGAND TO GPR8 AND DNA THEREOF NOVEL PROTEIN, DNA THEREOF AND PROCESS FOR PRODUCING THE SAME

EP 1262190 A1	EPO	20021204	RFRP-CONTAINING PROLACTIN SECRETION REGULATORY AGENT
WO 2072816 A1	EPO	20020919	NOVEL MOUSE TYPE KISS-1 RECEPTOR PROTEIN AND DNA THEREOF
WO 2062944 A2	EPO	20020815	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF
EP 1207201 A1 THEREOF	EPO	20020522	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1207198 A1 THEREOF	EPO	20020522	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1207169 A1 THEREOF	EPO	20020522	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1172112 A2	EPO	20020116	Preventive, alleviative or remedy for hypertension
EP 1153932 A1 THEREOF	EPO	20011114	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1138693 A1 THEREOF	EPO	20011004	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1136732 A2	EPO	20010926	Gasket-squeeze construction
EP 1132405 A1 LIGAND THEREOF	EPO	20010912	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND DNAs
EP 1126029 A1 THEREOF	EPO	20010822	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAs
EP 1126028 A1 AND LIGANDS TO THE SAME	EPO	20010822	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS, DNAS THEREOF
EP 1122313 A1 THEREOF	EPO	20010808	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1118621 A1 THEREOF	EPO	20010725	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 1118620 A1 THEREOF	EPO	20010725	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA
EP 970615 A1	EPO	20000112	FOOD CONTAINING FAT OR OIL
EP 910061 A1	EPO	19990421	Method and apparatus for correcting false contours in a moving display
EP 529487 A2	EPO	19930303	PACAP derivatives having c-AMP producing activity.

EP 467279 A2

EPO 19920122 Polypeptides having c-AMP producing activity.
514/12; 514/13; 530/324; 530/325; 530/326
EP 331467 A2 A2, A3, B1 EPO 19890906 Method of forming semiconductor thin film.