4. 掌中天幕

特殊性质 A

不妨假设第一颗树是从 1 到 n 顺次连成的链,那么其上的一条链的标号即为一个区间 [l,r]。我们首先处理出 l=1 时所有 [l,r] 在第二棵树上形成的连通块数 $c_{l,r}$,随后从左往右扫 l 并对每个 r 维护 $c_{l,r}$ 。每当 $l\to l+1$ 时,所有的 [l,r] 点数都会减少 1,边数则会减少 l 在第二颗树上所有标号在 [l,r] 中的邻居个数。注意到在森林中有连通块数等于点数减去边数,因此上述变化很容易被写成关于 $c_{l,r}$ 的 $\Theta(deg_l)$ 个区间加的形式。使用线段树维护区间最小值与区间最小值的个数即可做到 $\Theta(n\log n)$ 。

正解

与上面的方法类似,处理出 u=1 时所有链 $u\to v$ 在第二颗树上形成的连通块数 $c_{u,v}$ 并进行换根。换根过程中 $u\to u'$ 时,我们需要对 u' 子树内所有的 u 在第二颗树上的邻居 v 做子树加。如果我们每次暴力地对每一个 u 的邻居 v 去检查,那么检查次数即为 u 在两棵树上的度数之积,可能退化至 $\Theta(n^2)$ 。稍加观察不难发现我们可以将 u 的邻居(第二颗树)v 和 u 的儿子(第一颗树)按照其在第一颗树上的 dfs 序排序,并做一个类似双指针的过程。这样,由于子树是两两不交的,每个点 v 只会做一次区间加,复杂度依然为 $\Theta(n\log n)$ 。