speed of light in vacuum	c	299 792 458	${ m m~s^{-1}}$	exact
vacuum magnetic permeability $4\pi\alpha\hbar/e^2c$	μ_0	$1.25663706127(20)\times 10^{-6}$	${ m NA^{-2}}$	1.6×10^{-10}
$\mu_0/(4\pi \times 10^{-7})$, 0	0.99999999987(16)	${ m N~A^{-2}}$	1.6×10^{-10}
vacuum electric permittivity $1/\mu_0 c^2$	ϵ_0	$8.8541878188(14)\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	1.6×10^{-10}
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730 313 412(59)	Ω	1.6×10^{-10}
Newtonian constant of gravitation	G	$6.67430(15) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	2.2×10^{-5}
Newtonian constant of gravitation			$(\text{GeV}/c^2)^{-2}$	2.2×10^{-5} 2.2×10^{-5}
Dl	$G/\hbar c$	$6.70883(15) \times 10^{-39}$	(GeV/C) J Hz ⁻¹	
Planck constant*	h	$6.62607015 \times 10^{-34}$		exact
		$4.135667696 \times 10^{-15}$	eV Hz ^{−1}	exact
	\hbar	$1.054571817\ldots \times 10^{-34}$	J s	exact
		$6.582119569\ldots\times10^{-16}$	eV s	exact
. (0	$\hbar c$	$197.3269804\dots$	MeV fm	exact
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.176434(24) \times 10^{-8}$	kg	1.1×10^{-5}
energy equivalent	$m_{ m P}c^2$	$1.220890(14) \times 10^{19}$	GeV	1.1×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416784(16) \times 10^{32}$	K	1.1×10^{-5}
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616255(18) \times 10^{-35}$	m	1.1×10^{-5}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.391247(60) \times 10^{-44}$	S	1.1×10^{-5}
(((((((((((((((((((((((((((((((((((((((~1	0.00 = 2.7 (0.0) 1.1 = 0		
elementary charge	e	$1.602176634\times10^{-19}$	С	exact
,g-	e/\hbar	$1.519267447\ldots \times 10^{15}$	$\mathrm{A}~\mathrm{J}^{-1}$	exact
magnetic flux quantum $2\pi\hbar/(2e)$	Φ_0	$2.067833848\ldots\times10^{-15}$	Wb	exact
conductance quantum $2e^2/2\pi\hbar$	G_0	$7.748091729 \times 10^{-5}$	S	exact
	G_0^{-1}		Ω	
inverse of conductance quantum		12 906.403 72		exact
Josephson constant $2e/h$	$K_{ m J}$	483597.8484×10^9	$Hz V^{-1}$	exact
von Klitzing constant $\mu_0 c/2\alpha = 2\pi\hbar/e^2$	$R_{ m K}$	25 812.807 45	Ω	exact
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$9.2740100657(29)\times10^{-24}$	$ m JT^{-1}$	3.1×10^{-10}
		$5.7883817982(18) \times 10^{-5}$	eV T ⁻¹	3.1×10^{-10}
	$\mu_{ m B}/h$	$1.39962449171(44) \times 10^{10}$	$\mathrm{Hz}\mathrm{T}^{-1}$	3.1×10^{-10}
	$\mu_{ m B}/hc$	46.686447719(15)	$[m^{-1} T^{-1}]^{\dagger}$	3.1×10^{-10}
	$\mu_{ m B}/k$	0.67171381472(21)	$ m K~T^{-1}$	3.1×10^{-10}
nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.0507837393(16) \times 10^{-27}$	$ m J~T^{-1}$	3.1×10^{-10}
- , 1	•	$3.15245125417(98) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	3.1×10^{-10}
	$\mu_{ m N}/h$	7.6225932188(24)	$ m MHz~T^{-1}$	3.1×10^{-10}
	$\mu_{ m N}/hc$	$2.54262341009(79) \times 10^{-2}$	$[m^{-1} T^{-1}]^{\dagger}$	3.1×10^{-10}
	$\mu_{ m N}/k$	$3.6582677706(11)\times10^{-4}$	$ m K~T^{-1}$	3.1×10^{-10}
	Palv/ re	3.000 20. 1.00(11) // 10		0.1 / 10
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525643(11) \times 10^{-3}$		1.6×10^{-10}
inverse fine-structure constant	α^{-1}	137.035999177(21)		1.6×10^{-10}
Rydberg frequency $\alpha^2 m_{\rm e} c^2/2h = E_{\rm h}/2h$	cR_{∞}	$3.2898419602500(36)\times10^{15}$	Hz	1.1×10^{-12}
energy equivalent	$hc R_{\infty}$	$2.1798723611030(24)\times10^{-18}$	J	1.1×10^{-12}
		13.605693122990(15)	eV	1.1×10^{-12} 1.1×10^{-12}
Rydberg constant	R_{∞}	10 973 731.568 157(12)	$[m^{-1}]^\dagger$	1.1×10^{-12} 1.1×10^{-12}
Bohr radius $\hbar/\alpha m_{\rm e}c = 4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$		$5.29177210544(82) \times 10^{-11}$		1.6×10^{-10}
Dom radius $n/\alpha m_e c = 4 \kappa \epsilon_0 n / m_e e$	a_0	0.231 / /2 100 44(02) × 10	m	1.0 × 10

Hartree energy $\alpha^2 m_{\rm e} c^2 = e^2/4\pi\epsilon_0 a_0 = 2hcR_{\infty}$	$E_{ m h}$	$4.3597447222060(48) \times 10^{-18}$	J	1.1×10^{-12}
quantum of circulation	$\pi \hbar/m_{ m e}$	27.211386245981(30) $3.6369475467(11) \times 10^{-4}$	${ m eV} \\ { m m}^2 { m s}^{-1}$	$1.1 \times 10^{-12} \\ 3.1 \times 10^{-10}$
quantum of circulation	$2\pi\hbar/m_{ m e}$	$7.2738950934(23) \times 10^{-4}$	$m^2 s^{-1}$	3.1×10^{-10} 3.1×10^{-10}
	 , e		0	3.1 / 10
Fermi coupling constant [‡]	$G_{\mathrm{F}}/(\hbar c)^3$	$1.1663787(6) \times 10^{-5}$	${\rm GeV^{-2}}$	5.1×10^{-7}
weak mixing angle θ_{W} (on-shell scheme)	- 1 / (***)			
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.22305(23)		1.0×10^{-3}
· · · · · · · · · · · · · · · · · · ·		` '		
electron mass	$m_{ m e}$	$9.1093837139(28) \times 10^{-31}$	kg	3.1×10^{-10}
		$5.485799090441(97) \times 10^{-4}$	u	1.8×10^{-11}
energy equivalent	$m_{ m e}c^2$	$8.1871057880(26)\times10^{-14}$	J	3.1×10^{-10}
		0.51099895069(16)	MeV	3.1×10^{-10}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633170(11)\times 10^{-3}$		2.2×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87585(19) \times 10^{-4}$		6.8×10^{-5}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.446170214889(94) \times 10^{-4}$		1.7×10^{-11}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734416(22) \times 10^{-4}$		4.0×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.724437107629(47) \times 10^{-4}$		1.7×10^{-11}
electron-triton mass ratio	$m_{ m e}/m_{ m t}$	$1.819200062327(68)\times10^{-4}$		3.8×10^{-11}
electron-helion mass ratio	$m_{ m e}/m_{ m h}$	$1.819543074649(53) \times 10^{-4}$		2.9×10^{-11}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m lpha}$	$1.370933554733(32)\times10^{-4}$		2.4×10^{-11}
electron charge to mass quotient	$-e/m_{ m e}$	$-1.75882000838(55)\times10^{11}$	$\mathrm{C}\mathrm{kg}^{-1}$	3.1×10^{-10}
electron molar mass $N_{ m A} m_{ m e}$	$M(\mathrm{e}), M_\mathrm{e}$	$5.4857990962(17) \times 10^{-7}$	${ m kg\ mol^{-1}}$	3.1×10^{-10}
reduced Compton wavelength $\hbar/m_{\rm e}c=\alpha a_0$	$\lambda_{ m C}$	$3.8615926744(12)\times10^{-13}$	m	3.1×10^{-10}
Compton wavelength	$\lambda_{ m C}$	$2.42631023538(76) \times 10^{-12}$	$[m]^{\dagger}$	3.1×10^{-10}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403205(13) \times 10^{-15}$	m	4.7×10^{-10}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$6.6524587051(62) \times 10^{-29}$	m^2	9.3×10^{-10}
electron magnetic moment	$\mu_{ m e}$	$-9.2847646917(29) \times 10^{-24}$	$ m J~T^{-1}$	3.1×10^{-10}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.00115965218046(18)		1.8×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.281971877(32)		1.7×10^{-11}
electron magnetic moment				10
anomaly $ \mu_{ m e} /\mu_{ m B}-1$	a_{e}	$1.15965218046(18) \times 10^{-3}$		1.6×10^{-10}
electron g -factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.00231930436092(36)		1.8×10^{-13}
electron-muon magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.7669881(46)		2.2×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.21068789(19)		3.0×10^{-10}
electron to shielded proton magnetic				
moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275856(27)		4.1×10^{-9}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.92048(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.9234921(56)		2.6×10^{-9}
electron to shielded helion magnetic		, .		4.0
moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058 239 86(70)		8.1×10^{-10}
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.76085962784(55) \times 10^{11}$	$s^{-1} T^{-1}$	3.1×10^{-10}
		28024.9513861(87)	$ m MHz~T^{-1}$	3.1×10^{-10}

muon mass	$m_{ m \mu}$	$1.883531627(42)\times10^{-28}$	kg	2.2×10^{-8}
	2	0.1134289257(25)	u	2.2×10^{-8}
energy equivalent	$m_{\mu}c^2$	$1.692833804(38) \times 10^{-11}$	J	2.2×10^{-8}
		105.6583755(23)	MeV	2.2×10^{-8}
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2827(46)		2.2×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94635(40) \times 10^{-2}$		6.8×10^{-5}
muon-proton mass ratio	$m_{ m \mu}/m_{ m p}$	0.1126095262(25)		2.2×10^{-8}
muon-neutron mass ratio	$m_{ m \mu}/m_{ m n}$	0.1124545168(25)		2.2×10^{-8}
muon molar mass $N_{ m A} m_{ m \mu}$	$M(\mu), M_{\mu}$	$1.134289258(25) \times 10^{-4}$	kg mol ⁻¹	2.2×10^{-8}
reduced muon Compton wavelength $\hbar/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$1.867594306(42) \times 10^{-15}$	m	2.2×10^{-8}
muon Compton wavelength	$\lambda_{\mathrm{C},\mu}$	$1.173444110(26) \times 10^{-14}$	[m] [†]	2.2×10^{-8}
muon magnetic moment	μ_{μ}	$-4.49044830(10) \times 10^{-26}$	$ m J T^{-1}$	2.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197048(11)\times10^{-3}$		2.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059704(20)		2.2×10^{-8}
muon magnetic moment anomaly				
$ \mu_{ m \mu} /(e\hbar/2m_{ m \mu})-1$	a_{μ}	$1.16592062(41) \times 10^{-3}$		3.5×10^{-7}
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.00233184123(82)		4.1×10^{-10}
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345146(71)		2.2×10^{-8}
tau mass [¶]	$m_{ au}$	$3.16754(21) \times 10^{-27}$	kg	6.8×10^{-5}
		1.90754(13)	u	6.8×10^{-5}
energy equivalent	$m_{ au}c^2$	$2.84684(19) \times 10^{-10}$	J	6.8×10^{-5}
		1776.86(12)	MeV	6.8×10^{-5}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.23(23)		6.8×10^{-5}
tau-muon mass ratio	$m_{ au}/m_{\mu}$	16.8170(11)		6.8×10^{-5}
tau-proton mass ratio	$m_{ au}/m_{ m p}$	1.89376(13)		6.8×10^{-5}
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.89115(13)		6.8×10^{-5}
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90754(13) \times 10^{-3}$	$kg mol^{-1}$	6.8×10^{-5}
reduced tau Compton wavelength $\hbar/m_{\tau}c$	$\lambda_{\mathrm{C}, au}$	$1.110538(75)\times10^{-16}$	m	6.8×10^{-5}
tau Compton wavelength	$\lambda_{\mathrm{C},\tau}$	$6.97771(47) \times 10^{-16}$	$[m]^{\dagger}$	6.8×10^{-5}
		25		4.0
proton mass	$m_{ m p}$	$1.67262192595(52) \times 10^{-27}$	kg	3.1×10^{-10}
	2	1.0072764665789(83)	u	8.3×10^{-12}
energy equivalent	$m_{ m p}c^2$	$1.50327761802(47)\times10^{-10}$	J	3.1×10^{-10}
		938.27208943(29)	MeV	3.1×10^{-10}
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.152673426(32)		1.7×10^{-11}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.88024338(20)		2.2×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.528051(36)		6.8×10^{-5}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347797(40)	1	4.0×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.5788331430(30)\times10^7$	$C kg^{-1}$	3.1×10^{-10}
proton molar mass $N_{ m A} m_{ m p}$	$M(p), M_p$	$1.00727646764(31) \times 10^{-3}$	$kg mol^{-1}$	3.1×10^{-10}
reduced proton Compton wavelength $\hbar/m_{ m p}c$	$\lambda_{ m C,p}$	$2.10308910051(66)\times10^{-16}$	m	3.1×10^{-10}
proton Compton wavelength	$\lambda_{ ext{C,p}}$	$1.32140985360(41) \times 10^{-15}$	$[m]^{\dagger}$	3.1×10^{-10}
proton rms charge radius	$r_{ m p}$	$8.4075(64) \times 10^{-16}$	m	7.6×10^{-4}
proton magnetic moment	$\mu_{ m p}$	$1.41060679545(60)\times10^{-26}$	$ m J~T^{-1}$	4.3×10^{-10}

to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.52103220230(45)\times 10^{-3}$		3.0×10^{-10}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792 847 344 63(82)		2.9×10^{-10}
proton g-factor $2\mu_{\rm p}/\mu_{\rm N}$	$g_{ m p}$	5.585 694 6893(16)		2.9×10^{-10}
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989802(34)		2.4×10^{-7}
shielded proton magnetic moment	$\mu_{ m p}'$	$1.4105705830(58) \times 10^{-26}$	$ m J~T^{-1}$	4.1×10^{-9}
(H_2O , sphere, 25 °C)	μ p	1.110 010 0000(00) × 10	0 1	1.1 / 10
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.5209931551(62) \times 10^{-3}$		4.1×10^{-9}
to nuclear magneton ratio	$\mu_{ m p}^{\prime}/\mu_{ m N}$	2.792775648(11)		4.1×10^{-9}
proton magnetic shielding correction	$\mu_{ m p}/\mu_{ m N}$	2.192119 040(11)		4.1 × 10
$1 - \mu'_{\rm p}/\mu_{\rm p}$ (H ₂ O, sphere, 25 °C)	σ'	$2.56715(41) \times 10^{-5}$		1.6×10^{-4}
proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\sigma_{ m p}'$	$2.6752218708(11) \times 10^{8}$	$s^{-1} T^{-1}$	4.3×10^{-10}
proton gyromagnetic ratio $2\mu_{ m p}/n$	$\gamma_{ m p}$	42.577478461(18)	$^{ m S}$ $^{ m I}$ MHz $^{ m T}$	4.3×10^{-10} 4.3×10^{-10}
shielded proton gyromagnetic ratio		42.377 476 401(16)	MITIZ I	4.3×10
	2/	$2.675153194(11) \times 10^8$	$s^{-1} T^{-1}$	4.1×10^{-9}
$2\mu_{\rm p}^{\prime}/\hbar$ (H ₂ O, sphere, 25 °C)	$\gamma_{ m p}'$	` /	8 1 MHz $^{-1}$	4.1×10^{-9} 4.1×10^{-9}
		42.57638543(17)	MHZ I	4.1×10^{-5}
neutron mass	$m_{ m n}$	$1.67492750056(85)\times 10^{-27}$	kg	5.1×10^{-10}
		1.008 664 916 06(40)	u	4.0×10^{-10}
energy equivalent	$m_{ m n}c^2$	$1.50534976514(76)\times10^{-10}$	J	5.1×10^{-10}
energy equivalent	$m_{ m n}c$	939.56542194(48)	MeV	5.1×10^{-10}
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.683 662 00(74)	1110 1	4.0×10^{-10}
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.892 484 08(20)		2.2×10^{-8}
neutron-tau mass ratio	$m_{ m n}/m_{ m t}$	0.528779(36)		6.8×10^{-5}
neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 419 46(40)		4.0×10^{-10}
neutron-proton mass difference	$m_{\rm n}/m_{\rm p}$ $m_{\rm n}-m_{\rm p}$	$2.30557461(67)\times10^{-30}$	kg	2.9×10^{-7}
neutron-proton mass unreferee	$m_{ m n}-m_{ m p}$	$1.38844948(40) \times 10^{-3}$	u u	2.9×10^{-7} 2.9×10^{-7}
energy equivalent	$(m_{\rm n} - m_{\rm p})c^2$	$2.07214712(60)\times10^{-13}$	J	2.9×10^{-7}
chergy equivalent	$(m_{\rm n} - m_{\rm p})c$	1.29333251(38)	MeV	2.9×10^{-7}
neutron molar mass $N_{ m A} m_{ m n}$	$M(\mathrm{n}), M_{\mathrm{n}}$	$1.00866491712(51) \times 10^{-3}$	$kg \text{ mol}^{-1}$	5.1×10^{-10}
reduced neutron Compton wavelength $\hbar/m_{\rm n}c$	* * *	$2.1001941520(11) \times 10^{-16}$	m	5.1×10^{-10} 5.1×10^{-10}
	$\lambda_{\mathrm{C,n}}$	$1.31959090382(67)\times10^{-15}$	[m] [†]	5.1×10 5.1×10^{-10}
neutron Compton wavelength	$\lambda_{ m C,n}$	$-9.6623653(23) \times 10^{-27}$	J T ⁻¹	2.4×10^{-7}
neutron magnetic moment	$\mu_{ m n}$		J 1	2.4×10^{-7} 2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187565(25)\times 10^{-3}$		2.4×10^{-7} 2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304276(45)		
neutron g-factor $2\mu_{\rm n}/\mu_{\rm N}$	$g_{ m n}$	-3.82608552(90)		2.4×10^{-7}
neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066884(24) \times 10^{-3}$		2.4×10^{-7}
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497935(16)		2.4×10^{-7}
neutron to shielded proton magnetic	/ /	0.004.000.04(1.0)		0.4.10-7
moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)	_1 m_ 1	2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	$1.83247174(43) \times 10^{8}$	$s^{-1} T^{-1}$	2.4×10^{-7}
		29.1646935(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
deuteron mass	$m_{ m d}$	$3.3435837768(10)\times 10^{-27}$	kg	3.1×10^{-10}
	·u	2.013 553 212 544(15)	u	7.4×10^{-12}
energy equivalent	$m_{ m d}c^2$	$3.00506323491(94) \times 10^{-10}$	J	3.1×10^{-10}
	u	= = = = = = = = = = = = = = = = = = = =	-	

deuteron-electron mass ratio deuteron-proton mass ratio deuteron molar mass $N_{\rm A}m_{\rm d}$ deuteron rms charge radius deuteron magnetic moment to Bohr magneton ratio to nuclear magneton ratio deuteron g -factor $\mu_{\rm d}/\mu_{\rm N}$ deuteron-electron magnetic moment ratio deuteron-proton magnetic moment ratio deuteron-neutron magnetic moment ratio	$m_{ m d}/m_{ m e}$ $m_{ m d}/m_{ m p}$ $M(m d), M_{ m d}$ $r_{ m d}$ $\mu_{ m d}$ $\mu_{ m d}/\mu_{ m B}$ $\mu_{ m d}/\mu_{ m N}$ $g_{ m d}$ $\mu_{ m d}/\mu_{ m e}$ $\mu_{ m d}/\mu_{ m p}$ $\mu_{ m d}/\mu_{ m p}$	$1875.61294500(58) \\ 3670.482967655(63) \\ 1.9990075012699(84) \\ 2.01355321466(63)\times10^{-3} \\ 2.12778(27)\times10^{-15} \\ 4.330735087(11)\times10^{-27} \\ 4.669754568(12)\times10^{-4} \\ 0.8574382335(22) \\ 0.8574382335(22) \\ -4.664345550(12)\times10^{-4} \\ 0.30701220930(79) \\ -0.44820652(11)$	$ m MeV$ $ m kg~mol^{-1}$ $ m m$ $ m J~T^{-1}$	3.1×10^{-10} 1.7×10^{-11} 4.2×10^{-12} 3.1×10^{-10} 1.3×10^{-4} 2.6×10^{-9} 2.4×10^{-7}
triton mass	$m_{ m t}$	$5.0073567512(16) \times 10^{-27}$ 3.01550071597(10)	kg u	3.1×10^{-10} 3.4×10^{-11}
energy equivalent	$m_{ m t}c^2$	$\begin{array}{c} 3.01330011331(10) \\ 4.5003878119(14) \times 10^{-10} \\ 2808.92113668(88) \end{array}$	J MeV	$3.1 \times 10^{-10} \\ 3.1 \times 10^{-10}$
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.92153551(21)		3.8×10^{-11}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.99371703403(10)	1	3.4×10^{-11}
triton molar mass $N_{ m A} m_{ m t}$	$M(\mathrm{t}), M_{\mathrm{t}}$	$3.01550071913(94)\times 10^{-3}$	kg mol ⁻¹	3.1×10^{-10}
triton magnetic moment	$\mu_{ m t}$	$1.5046095178(30) \times 10^{-26}$	$ m J~T^{-1}$	2.0×10^{-9}
to Bohr magneton ratio	$\mu_{ m t}/\mu_{ m B}$	$1.6223936648(32) \times 10^{-3}$		2.0×10^{-9} 2.0×10^{-9}
to nuclear magneton ratio triton g -factor $2\mu_{\rm t}/\mu_{\rm N}$	$\mu_{ m t}/\mu_{ m N}$	2.978 962 4650(59) 5.957 924 930(12)		2.0×10^{-9} 2.0×10^{-9}
Throng-racion $2\mu_{\mathrm{t}}/\mu_{\mathrm{N}}$	$g_{ m t}$	0.301 924 930(12)		2.0 × 10
helion mass	$m_{ m h}$	$5.0064127862(16) \times 10^{-27}$ 3.014932246932(74)	kg u	3.1×10^{-10} 2.5×10^{-11}
energy equivalent	$m_{ m h}c^2$	$4.4995394185(14) \times 10^{-10}$ 2808.39161112(88)	J MeV	$3.1 \times 10^{-10} \\ 3.1 \times 10^{-10}$
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.88527984(16)		2.9×10^{-11}
helion-proton mass ratio	$m_{\rm h}/m_{\rm p}$	2.993152671552(70)	1	2.4×10^{-11}
helion molar mass $N_{\rm A}m_{\rm h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.01493225010(94)\times 10^{-3}$	kg mol ⁻¹	3.1×10^{-10}
helion magnetic moment	$\mu_{ m h}$	$-1.07461755198(93) \times 10^{-26}$	$ m J~T^{-1}$	8.7×10^{-10}
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.15874098083(94) \times 10^{-3}$		8.1×10^{-10}
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.1276253498(17)		$8.1 \times 10^{-10} \\ 8.1 \times 10^{-10}$
helion g -factor $2\mu_{\rm h}/\mu_{\rm N}$ shielded helion magnetic moment	$g_{ m h}$	$-4.2552506995(34) -1.07455311035(93) \times 10^{-26}$	$ m JT^{-1}$	8.7×10^{-10} 8.7×10^{-10}
(gas, sphere, 25 °C)	$\mu_{ m h}'$	$-1.07455511055(95) \times 10$	JI	6.7 × 10
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.15867149457(94) \times 10^{-3}$		8.1×10^{-10}
to nuclear magneton ratio	$\mu_{ m h}^{\prime}/\mu_{ m N}$	-2.1274977624(17)		8.1×10^{-10}
shielded helion to proton magnetic	~n/ ~1N			0.1 /\ 10
moment ratio (gas, sphere, 25 °C) shielded helion to shielded proton magnetic	$\mu_{ m h}'/\mu_{ m p}$	-0.76176657721(66)		8.6×10^{-10}
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861334(31)		4.0×10^{-9}

shielded helion gyromagnetic ratio $2 \mu_{\rm h}' /\hbar \;\; ({\rm gas, sphere, 25 ^\circ C})$	$\gamma_{ m h}'$	$2.0378946078(18) \times 10^{8}$ $32.434100033(28)$	$ m s^{-1} \ T^{-1} \ MHz \ T^{-1}$	$8.7 \times 10^{-10} \\ 8.7 \times 10^{-10}$
alpha particle mass	$m_{oldsymbol{lpha}}$	$6.6446573450(21) \times 10^{-27}$	kg	3.1×10^{-10}
energy equivalent	$m_{\alpha}c^2$	4.001506179129(62) $5.9719201997(19) \times 10^{-10}$ 3727.3794118(12)	u J MeV	$ \begin{array}{c} 1.6 \times 10^{-11} \\ 3.1 \times 10^{-10} \\ 3.1 \times 10^{-10} \end{array} $
alpha particle to electron mass ratio	$m_{f lpha}/m_{ m e}$	7294.299 541 71(17)	IVIE V	2.4×10^{-11}
alpha particle to proton mass ratio	$m_{f lpha}/m_{f p}$	3.972 599 690 252(70)		1.8×10^{-11}
alpha particle rms charge radius	$r_{oldsymbol{lpha}}$	$1.6785(21) \times 10^{-15}$	m	1.2×10^{-3}
alpha particle molar mass $N_{ m A} m_{ m lpha}$	$M(\alpha), M_{\alpha}$	$4.001\overline{506}\overline{1833}(12)\times10^{-3}$	kg mol ⁻¹	3.1×10^{-10}
Avogadro constant	$N_{ m A}$	6.02214076×10^{23}	mol^{-1}	exact
Boltzmann constant	k	1.380649×10^{-23}	$ m J~K^{-1}$	exact
		$8.617333262\ldots \times 10^{-5}$	${ m eV}~{ m K}^{-1}$	exact
	k/h	$2.083661912\ldots \times 10^{10}$	$\mathrm{Hz}\ \mathrm{K}^{-1}$	exact
_	k/hc	$69.50348004\dots$	$[{\rm m}^{-1}~{\rm K}^{-1}]^{\dagger}$	exact
atomic mass constant				10
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 2hc R_{\infty}/\alpha^2 c^2 A_{\rm r}({\rm e})$	$m_{ m u}$	$1.66053906892(52) \times 10^{-27}$	kg	3.1×10^{-10}
energy equivalent	$m_{ m u}c^2$	$1.49241808768(46) \times 10^{-10}$	J	3.1×10^{-10}
	M	931.49410372(29)	MeV	$3.1 \times 10^{-10} \\ 3.1 \times 10^{-10}$
molar mass constant molar mass of carbon-12 $A_{\rm r}(^{12}{ m C})M_{ m u}$	$M_{\rm u} M(^{12}{ m C})$	$1.00000000105(31) \times 10^{-3}$ $12.0000000126(37) \times 10^{-3}$	$kg mol^{-1}$ $kg mol^{-1}$	3.1×10^{-10} 3.1×10^{-10}
molar Planck constant	$N_{\rm A}h$	$3.990312712\times10^{-10}$	J Hz $^{-1}$ mol $^{-1}$	exact
molar gas constant $N_{\rm A} k$	R	8.314 462 618	J mol $^{-1}$ K $^{-1}$	exact
Faraday constant $N_A e$	F	96 485.332 12	$C \text{ mol}^{-1}$	exact
standard-state pressure	_	100 000	Pa	exact
standard atmosphere		101 325	Pa	exact
molar volume of ideal gas RT/p				
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.71095464\ldots \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	exact
or standard-state pressure		0.5	0	
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.651645804\ldots\times10^{25}$	m^{-3}	exact
molar volume of ideal gas RT/p	T.7	22 412 222 74 12-3	3 1-1	
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.41396954\ldots\times10^{-3}$	$\mathrm{m}^3 \; \mathrm{mol}^{-1}$	exact
or standard atmosphere Loschmidt constant $N_{ m A}/V_{ m m}$		$2.686780111 \times 10^{25}$	m^{-3}	aveat
Sackur-Tetrode (absolute entropy) constant**	n_0	2.000 / 80 111 × 10	111	exact
$\frac{5}{2} + \ln[(m_u k T_1/2\pi\hbar^2)^{3/2} k T_1/p_0]$				
$\frac{1}{2} + \text{III}[(m_0 k T_1/2ktt) + k T_1/p_0]$ $T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.15170753496(47)		4.1×10^{-10}
or standard-state pressure	20/10	1.131 (01 30100(11)		1.1 // 10
$T_1 = 1 \text{ K}, \ p_0 = 101.325 \text{ kPa}$		-1.16487052149(47)		4.0×10^{-10}
or standard atmosphere		` '		
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670374419\ldots \times 10^{-8}$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{K}^{-4}$	exact

first radiation constant for spectral

radiance $2hc^2 \mathrm{sr}^{-1}$	$c_{1 m L}$	$1.191042972\ldots \times 10^{-16}$	$[\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}]^\dagger$	exact
first radiation constant $2\pi hc^2 = \pi \operatorname{sr} c_{1L}$	c_1	$3.741771852 \times 10^{-16}$	$[\mathrm{W}~\mathrm{m}^2]^\dagger$	exact
second radiation constant hc/k	c_2	$1.438776877 \times 10^{-2}$	[m K] [†]	exact
Wien displacement law constants				
$b = \lambda_{\text{max}} T = c_2/4.965114231$	b	$2.897771955 \times 10^{-3}$	[m K] [†]	exact
$b' = \nu_{\text{max}}/T = 2.821439372c/c_2$	b'	$5.878925757 \times 10^{10}$	$\mathrm{Hz}\mathrm{K}^{-1}$	exact