2005—2006 学年第二学期 《模拟电子技术》试卷 A 卷

(信息学院 2004级)

授课班号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学号 $_{214301-214305}$ 学员 $_{214301-214305}$ 学习 $_{214301-21430$

二、 $(12\,
m 分)$ 图示电路,已知负载电压的直流成分 $V_o=18V$,1. 求变压器 副边电压 V_2 (有效值); 2. 若二极管 D_1 开路, V_o 为多大? 3. D_1 极性接反, V_o 又为何值? 4. D_1 和 D_2 极性同时接反, V_o 又等于多少? 5. 若希望负载得到 15V 稳定的直流电压,请在图中补画上滤波和稳压部分。

- 三、 $(18 \, \text{分})$ 放大电路如图所示,设各电容对交流可视为短路。已知 BJT 的 V_{BE} =0.6V, β =50,
- 1. 试估算各静态值 I_B 、 I_C 和 V_{CE} ; 2. 求晶体管的输入电阻 r_{he} ;
- 3. 画出小信号等效电路; 4. 求电压放大倍数 $\stackrel{\bullet}{Av}=\stackrel{\bullet}{V}o/\stackrel{\bullet}{V}i$
- 5. 求该放大电路的输入电阻 R_i 和输出电阻 R₀;
- 6. 若该放大电路出现饱和失真,应该改变哪个电阻,怎么改变(增大、减小)?

四、 $(10\,
m f)$ 电路如图所示,已知 R_L =8 Ω ,设 v_i 为正弦波,BJT 的饱和压降 V_{CES} 可以忽略不计,电源电压 V_{CC} =12 V_{SC} 0(1)画出电解电容 C 的极性;

(2) 电容耐压至少应为多少? (3) 每只 BJT 的 I_{CM} 至少应为多少? (4) 试求最大输出功率 P_{om} 。

五、 $(5\, \beta)$ 图示电路中,已知输入电压 v_i = $10sin\,\omega\,t$ V,E=5V,请画出输出电压 v_o 的波形。

六、(15 分) 下图是一个双端输出的差动放大电路。已知 Vcc=10V, - $V_{EE}=-10V$, $R_{c1}=R_{c2}=5k\Omega$, $R_L=10k\Omega$, T_1 和 T_2 的 $\beta=60$, $V_{BE}=0.6V$ 。 $I_O=2mA$,

 r_{O} =100 $k\,\Omega$.

- 1. 求 Q 点 (I_{B1}、I_{C1}、V_{CE1});
- 2. 若 v_{i1} =10sin ω t mV, v_{i2} =5sin ω t mV, 求电路的差模输入电压、共模输入电压和输出电压 v_o ;
- 3. 求电路的差模输入电阻 R_{id} 、共模输入电阻 R_{ic} 和输出电阻 R_0 。

七、(12分)图示电路中的A1、A2为理想的集成运放。

1. 试说明级间反馈元件及引入的反馈是正反馈还是负反馈、是串连反馈还是并联反馈、是电压反馈还是电流反馈; 2. 求深负反馈条件下的闭环电压

八、 $(10\,
m 分)$ 由运放组成的 BJT 电流放大系数 $m \beta$ 的测试电路如图所示,设 BJT 的 V_{BE} =0. $7V_{\circ}$ (1) 求出 BJT 的 $\rm e$ 、 $\rm b$ 、 $\rm c$ 各极的电位值;(2)若电压表 读数为 120mV,试求 BJT 的 $\rm \beta$ 值。

九、 $(10\,
m 分)$ 电路如图所示,设运放是理想的。已知 R=10k Ω , C=0.01 μ F, R_1 =5.1k Ω (1) 为满足振荡条件,试在图中用+、-标出运放 A 的同相端和反相端;(2)为能起振, R₂应大于何值?(3)此电路的振荡频率

