

Simulations and manuscripts

Mark Blyth

Week's activities

- **№** NODYCON paper
- Splines experiments

Last time...

Finite differences doesn't play nicely with splines

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model
 - Non-smooth map from perturbation to model somehow causes problems

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model
 - Non-smooth map from perturbation to model somehow causes problems
- K Spline model somehow ceases to be valid

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model
 - Non-smooth map from perturbation to model somehow causes problems
- ✓ Spline model somehow ceases to be valid
 - Probable cause: data exists where knots don't, or knots exist where data don't

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model
 - Non-smooth map from perturbation to model somehow causes problems
- ✓ Spline model somehow ceases to be valid
 - Probable cause: data exists where knots don't, or knots exist where data don't
 - Can't understand why either would happen

- Finite differences doesn't play nicely with splines
- Conjecture: smooth changes in the discretisation cause non-smooth changes in the model
 - Non-smooth map from perturbation to model somehow causes problems
- ✓ Spline model somehow ceases to be valid
 - Probable cause: data exists where knots don't, or knots exist where data don't
 - Can't understand why either would happen
 - Code errors aren't helpful

✓ Possible solution: fiddle with finite differences step size

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work
 - Spline model error occurs within the first Newton iteration

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work
 - Spline model error occurs within the first Newton iteration

Another idea: use evenly-spaced knots, instead of an optimized knot set

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work
 - Spline model error occurs within the first Newton iteration
- ★ Another idea: use evenly-spaced knots, instead of an optimized knot set
 - Choice of exterior knots becomes difficult

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work
 - ► Spline model error occurs within the first Newton iteration
- Another idea: use evenly-spaced knots, instead of an optimized knot set
 - Choice of exterior knots becomes difficult
 - More chance to cover entire data range with knots, to avoid invalid spline models

- ✓ Possible solution: fiddle with finite differences step size
 - Still doesn't work
 - Spline model error occurs within the first Newton iteration
- Another idea: use evenly-spaced knots, instead of an optimized knot set
 - Choice of exterior knots becomes difficult
 - More chance to cover entire data range with knots, to avoid invalid spline models
 - Some success

Evenly spaced knots, small finite-differences

Looks bad, but no issues from invalid splines models

Evenly spaced knots, larger finite-differences

Looks bad, but no issues from invalid splines models

I don't really understand what's going wrong in those plots

▶ Played with...

- Played with...
 - Number of knots

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance
 - Pseudo-arclength stepsize

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance
 - Pseudo-arclength stepsize
 - Finite differences perturbation size

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance
 - Pseudo-arclength stepsize
 - Finite differences perturbation size
- Never managed anything better than those plots

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance
 - Pseudo-arclength stepsize
 - Finite differences perturbation size
- Never managed anything better than those plots
- No understanding of why any given intervention has the effect it does

- Played with...
 - Number of knots
 - Evenly spaced vs. optimized knot positions
 - Newton iteration convergence tolerance
 - Pseudo-arclength stepsize
 - Finite differences perturbation size
- Never managed anything better than those plots
- ✓ No understanding of why any given intervention has the effect it does
- Finicky hyperparameters make the method impractical even if it did work

- Try interpolating splines instead of basis splines
 - Choose a set of points

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- $\normalfont{\begin{tabular}{l} \& \\ \end{tabular}}$ Discretisation becomes knot point (x,y) values

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- \bigvee Discretisation becomes knot point (x, y) values
 - \triangleright Or, set the x values of the knots, and let discretisation be the y values

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- - lacktriangle Or, set the x values of the knots, and let discretisation be the y values
 - Interesting aside: polynomial coeff's would also be a discretisation, but an inefficient one due to lots of redundancy; can we choose a discretisation to minimise redundant information? IO map unit eigenfunction?

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- - lacktriangle Or, set the x values of the knots, and let discretisation be the y values
 - Interesting aside: polynomial coeff's would also be a discretisation, but an inefficient one due to lots of redundancy; can we choose a discretisation to minimise redundant information? IO map unit eigenfunction?
- Result: smooth changes in the knot points cause smooth changes in the model

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- - lacktriangle Or, set the x values of the knots, and let discretisation be the y values
 - Interesting aside: polynomial coeff's would also be a discretisation, but an inefficient one due to lots of redundancy; can we choose a discretisation to minimise redundant information? IO map unit eigenfunction?
- Result: smooth changes in the knot points cause smooth changes in the model
 - Should make finite differences more robust

- Try interpolating splines instead of basis splines
 - Choose a set of points
 - Connect those points with polynomials
 - Choose polynomial coeff's for smoothness, periodicity
- $\normalfont{\begin{tabular}{ll} \verb& Discretisation becomes knot point (x,y) values $\normalfont{\ensuremath{\begin{tabular}{ll} \verb& Anti-point (x,y) values (x,y)
 - \triangleright Or, set the x values of the knots, and let discretisation be the y values
 - Interesting aside: polynomial coeff's would also be a discretisation, but an inefficient one due to lots of redundancy; can we choose a discretisation to minimise redundant information? IO map unit eigenfunction?
- Result: smooth changes in the knot points cause smooth changes in the model
 - Should make finite differences more robust
 - Also easier to understand, more explainable: no mysterious choice of exterior knots; more intuition about how discretisation changes the model......

Next steps

- Try interpolating splines discretisation
 - ► Start with simplest-possible (ie. non-Bayesian) approach, see what happens
- ₭ Edit continuation paper
- Write up extended conference paper
- K Choose paper and make slides for lab group meeting