MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2010 SOLUTION KEY

Team Round - continued

D) Suppose the original pane had *R* rows and *C* columns. Then:

$$RC = (R+3)(C-5) + 48 \Rightarrow 0 = 3C - 5R + 33 \Rightarrow C = \frac{5R-33}{3} = R-11 + \frac{2R}{3}$$

The smallest value of R that returns a positive integer value for C is 9. [(R, C) = (9, 4)] Using slope, we create a table of values until the product RC is a perfect square.

R	9	12	15	18	21	24	27	30	33	36
С	4	9	14	19	24	29	34	39	44	49

Using this lookup table, the last ordered pair gives us $RC = (36)(49) = (6.7)^2 = 42^2 \implies N = \underline{42}$ The values satisfying this relationship get quite large very quickly.

The next three values satisfying $RC = N^2$ may be determined with a calculator or spreadsheet. They are: $(324)(529) = 18^2 \cdot 23^2 = (414)^2$ $(2025)(3364) = 45^2 \cdot 58^2 = (2610)^2$ and $(19881)(33124) = 141^2 \cdot 182^2 = (25662)^2$

E) Since $\triangle BAK$, $\triangle BKF$ and $\triangle BFC$ have a common altitude (from B), their areas are in the same ratio as their bases, namely AK : KF : FC. Let AK = 2x, KF = 7x and FC = y. Let DE = 2a and CE = a. Since $\triangle ABF \sim \triangle CEF$, their areas are in a 9 : 1 ratio and

$$\frac{CF}{AF} = \frac{CE}{AB} \Rightarrow \frac{y}{9x} = \frac{1a}{3a} \Rightarrow y = 3x.$$

Let area(ΔBAK) = 2N, area(ΔBKF) = 7N and area(ΔBFC) = 3N. Then area(ΔCEF) = N and area (ΔADC) = 12N.

Thus,
$$\frac{area(FADE)}{area(ABCD)} = \frac{12N - N}{24N} = \frac{11}{24}$$