Теорема 0.1. Язык записей несамоприменимых НА неперечислим.

Доказательство. Пусть указанный язык $L = \{\mathcal{E} \mathscr{A}3 : \neg ! \mathscr{A}(\mathcal{E} \mathscr{A}3)\}$ перечислим. Тогда L есть область применимости относительно алфавита V_0 некоторого НА \mathscr{B} , то есть

$$!\mathscr{B}(\mathcal{E}\mathscr{A}3) \Longleftrightarrow \neg !\mathscr{A}(\mathcal{E}\mathscr{A}3),$$

что невозможно!

Один вспомогательный НА. Нам нужен такой НА:

$$Double^{\$}(x) = x\$x, \quad x \in V^*, \quad \$ \notin V$$

Его схема:

$$Double^{\$}: \begin{cases} \alpha\xi \to \xi\beta\xi\alpha \\ \beta\xi\eta \to \eta\beta\xi \\ \alpha \to \$ \\ \beta\xi\$ \to \$\xi \\ \$ \to \bullet\$ \\ \to \alpha \end{cases}$$

причем $\alpha, \beta, \# \notin V$; $\xi, \eta \in V$

Пример его работы. Несколько примеров.

$$\textcircled{1}\lambda \vdash \alpha \vdash \$ \vdash \bullet \$$$

 \bigcirc a $\vdash \alpha a \vdash a \beta a \alpha \vdash a \beta a \$ \vdash a \$ a \vdash \cdot a \$ a$

 $abc \vdash$

 $\vdash \alpha abc \vdash a\beta a\alpha bc \vdash a\beta ab\beta b\alpha c \vdash$

 $\vdash \ldots \vdash abc\abc

 $\vdash \cdot abc\$abc$

Теорема 0.2. Может быть построен $HA \mathscr{A}$ в алфавите V_2 так, что невозможен $HA \mathscr{B}$ над алфавитом V_2 , для которого выполнялось бы

$$!\mathscr{B}(y) \Longleftrightarrow \neg !\mathscr{A}(y), y \in V_2^*$$

Доказательство. По теореме об универсальном НА построим НА U над алфавитом V_2 так, что для любых НА D в алфавите V_2 и слово $y \in V_2^*$ выполняется

$$U(\mathcal{E}D3\$y) \simeq D(y).$$

Определим НА U_1 так, что

$$(\forall y \in V_2^*)(U_1(y) \simeq U(y \$ y)),$$

то есть $U_1 = U \circ Double^{\$}$.

Тонкий момент здесь! Алгорифм U_1 будучи НА над алфавитом V_2 тем самым является и НА над алфавитом V_0 (V_2 - расширение V_0). По теореме о переводе он может быть заменен вполне эквивалентным ему относительно алфавита V_0 НА U_2 в алфавите V_2 (то есть в двухбуквенном расширении V_0).

$$U_2(x) \simeq U_1(x)$$
, где $x \in V_0^*, U_2$ - НА в $V_2 = V_0 \cup \{\alpha, \beta\}$

Предположим, что такой НА ${\cal B}$ нашелся.

$$!\mathcal{B}(\mathcal{E}D3) \iff \neg !U_2(\mathcal{E}D3) \iff \neg !U_1(\mathcal{E}D3) \iff \neg !U(\mathcal{E}D3\mathcal{E}D3) \iff \neg !D(\mathcal{E}D3)$$

Он будет полуразразрешающим НА для несамоприменимых НА в языке V_2 , что невозможно.

Следствие. Может быть построен НА с неразрешимой частной проблемой применимости, следовательно его область применимости будет перечислимая, но неразрешимая (множество?).

Примеры неразрешимых проблем. Проблема соответствия Поста.

$$ho = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subseteq V^{+^2}$$

Существует ли

$$(x_{i1}, y_{i1}), (x_{i2}, y_{i2}), \dots, (x_{im}, y_{im}) : x_{i1}x_{i2} \dots x_{im} = y_{i1}y_{i2} \dots y_{im}?$$

0.1 Порождающие грамматики

Определение 1. $\mathcal{J} = (V, N, S \in N, \Phi), V \cap N = \emptyset$

Правило вывода: $\alpha \to \beta, \quad \to \notin V \cup N$ Левая часть $\alpha \in (V \cup N)^* N (V \cup N)^*, N$ - детерминал.

Пусть $\gamma, \delta \in (V \cup N)^*$. Тогда

 $\gamma \vdash_{\mathcal{J}} \delta \leftrightharpoons$ сущ правило вывода $\alpha \to \beta$ в системе Φ и $\gamma = \gamma_1 \alpha \gamma_2, \delta = \gamma_1 \beta \gamma_2$

Определение 2. Вывод в порождающей грамматике \mathcal{J} - это последовательность $\alpha_0, \alpha_1, \ldots, \alpha_n, \ldots$, где $(\forall i \geq 0)(\alpha_i \in (V \cup N)^*)$ и $(\forall i \geq 0)(\alpha_i \vdash \alpha_{i+1})$, если α_{i+1} определен в последовательности.

Определение 3. $\gamma \vdash_{\mathcal{J}}^* \delta \leftrightharpoons \text{существует вывод}$ $\gamma = \alpha_0 \vdash \alpha_1 \vdash \ldots \vdash \alpha_n = \delta, n \geq 0$ - длина вывода (к-рая конечна).

Определение 4. $L(\mathcal{J}) \leftrightharpoons \{x : x \in V^*, S \vdash_{\mathcal{J}}^* x\}$

Примеры грамматик.

1) $S \to aSb | \lambda$ $S \vdash aSb \vdash aaSbb \vdash \dots \vdash a^nSb^n \vdash a^nb^n$ $\mathcal{J}_1 = (\{a, b\}, \{S\}, S, \Phi_1)$

Тогда язык, порожденный такой грамматикой $L(\mathcal{J}_1) = \{a^nb^n : n \geq 0\}$

- 2) $\Phi_2: S \to aSa|bSb|aa|bb|a|b|\lambda$ $S \vdash aSa \vdash aba$ $S \vdash aSa \vdash abSba \vdash abbSbba \vdash abbbba$ $L(\mathcal{J}_2) = \{x: x = x^R, x \in \{a,b\}^*\}$ палиндром
- 3) $S \to () \big| (S) \big| SS$ правильная скобочная структура

4)
$$\mathcal{J}_4 = (\{a,b\}, \{S,A,B,C,D\}, S, \Phi_4)$$

$$\Phi_{4}: \begin{cases} S \to CD \\ c \to aCA \big| bcD \big| \lambda \\ AD \to aD \\ BD \to bD \\ Aa \to aA \\ Ab \to bA \\ Ba \to aB \\ Bb \to bB \\ D \to \end{cases}$$

 $S \vdash CD \vdash \lambda D \vdash \lambda \lambda = \lambda$

 $S \vdash CD \vdash aCAD \vdash abbCBAD \vdash abbCBBAD \vdash abbBBAD \vdash abbBBAD \vdash abbBBAD \vdash abbaBBD \vdash abbabBD$

 $L(\mathcal{J}_4)\supseteq\{\omega\omega:\omega\in\{a,b\}^*\}$. Можно доказать, что такой язык будет состоять только из двойных слов.

$$L(\mathcal{J}_4) = \{\omega\omega : \omega \in \{a, b\}^*\}$$