

芯仑科技 SDK 使用说明

芯仑科技(上海)有限公司

目录

1	Cele	ex De	mo Kit 硬件3
2	Cele	ex De	mo Kit SKD 使用步骤4
	2.1	安装	Opal Kelly 驱动4
	2.1.	1	Windows4
	2.1.	2	Linux4
	2.2	运行	CeleX Demo GUI5
	2.2.	1	Windows5
	2.2.	2	Linux5
	2.3	编译	E CeleX SDK 的 Source Code
	2.3.1		Windows6
	2.3.2		Linux6
	2.4	编译	CeleX Demo GUI 的 Source Code
	2.5	生成	FPN 文件8
3	Cele	ex De	mo Kit GUI 的功能9
	3.1	切换	Sensor 工作模式9
	3.2	录制	Sensor 数据功能11
	3.3	播放	录制的 Bin 文件功能12
	3.4	生成	FPN 功能12
	3.5	各种	图像形式的展示14
	3.6	界面	上所有的按钮功能17
	3.7	界面	上所有的滑动条功能17

1 Celex Demo Kit 硬件

请按以下顺序安装 CeleX 芯片套件:

图 1-1 Celex 芯片套件

备注:请记得正确地放置适配器环,以保持良好的焦点。(如果没有适配环,请在安装时忽略它们)

(1) OpalKelly XEM6310 处理板的电源:

XEM6310 要求这个电源是干净的,过滤的,范围在 4.5v 到 5.5v 之间。 此电源必须通过两个设备的两个扩展连接器上的+VDC 引脚或直流电源连接器提供。XEM6310 上的直流电源连接器是 CUI,Inc 的部件号 PJ-102AH。它是标准的"canon-style"2.1mm/5.5mm 插孔,外环连接到 DGND,中心引脚连接到+VDC。

它也可以是 PC 上的 USB3.0 端口。

备注:请勿将处理板连接到产生高于 5V 输出电压的任何电源,这会损坏当前的电路板组件。

(2) 数据线必须连接 PC 上的 USB3.0 端口,因为 USB2.0 会降低传输数据的速度。

2 Celex Demo Kit SKD 使用步骤

2.1 安装 Opal Kelly 驱动

2.1.1 Windows

请从以下文件夹安装 Opal Kelly 驱动程序:

用户可以根据自己的系统(32-bit 或64-bit)选择相应的驱动来安装。

2.1.2 Linux

请从以下文件夹安装 Opal Kelly 驱动程序:

用户可以根据自己的系统选择相应的驱动来安装,例如,Ubuntu 16.04LTS-x64 的系统,则选择 FrontPanel-Ubuntu12.04LTS-x64-4.5.5.tar.gz,解压后会看到下面的文件:

打开终端,进入到 install.sh 所在的目录,执行以下命令安装驱动:

sudo sh ./install.sh

2.2 运行 CeleX Demo GUI

2.2.1 Windows

安装驱动程序后,用户可以从以下文件夹打开 Demo GUI:

双击"CeleXDemo.exe"即可正常打开Celex Demo GUI。打开后的界面如图 3-2 所示(第3章)。

Notes: 如果 CeleXDemo.exe 无法打开,且 Windows 消息框显示缺失某些 dll 文件,这可能是由于缺少 Visual C ++支持包所造成的。可以在 *Driver/Windows* 文件夹下安装 "vc redist.x86.exe"并再次尝试,则 CeleX Demo 应该可以正常工作。

2.2.2 Linux

安装驱动程序后,用户可以从以下文件夹打开 Demo GUI:

打开终端,进入 CeleXDemo.sh 所在的目录,输入以下命令即可打开 CeleX Demo GUI,打开后的界面如图 3-2 所示(第3章)。

\$ sh CeleXDemo.sh

2.3 编译 CeleX SDK 的 Source Code

本 SDK 中会使用 OpenCV 库(版本为 3.3.0),所以在编译源码之前请先安装 OPenCV 库并配置好其编译环境。

2.3.1 Windows

在 Window 平台上,我们提供了 VS2015 的工程直接编译该源码,可以按照以下图示进入 SDK 的 Source Code 目录:

备注:

- (1) 需要修改工程属性中关于 OpenCV 的 Include 和 Lib 的路径的设置, 否则会因为找不 到 OpenCV 的头文件和库而编译失败。
- (2) 编译完成后,会在工程所在的目录下自动创建一个 build/Windows 目录,编译生成的 库文件(CeleX.dll 和 CeleX.lib)会被自动导入到该目录下。

2.3.2 Linux

在 Linux 平台上,我们提供一个 Makefile 编译该代码,库文件(libCeleX.so)将生成在当前目录下。

2.4 编译 CeleX Demo GUI 的 Source Code

由于本 Demo 是用 Qt 开发的,所以在编译该代码之前要先安装 Qt(本 Demo 使用的 Qt 版本为: qt-opensource-windows-x86-msvc2015_64-5.6.3.exe)。由于 Qt 也是跨平台的,所以 Windows 和 Linux 平台上,都可以用 Qt Creator 打开 *CeleXDemo.pro* 即可编译。

需要注意的是,由于本 Demo 中也用到了 OpenCV 的一些接口,所以需要修改一下 *CeleXDemo.pro* 文件中关于 OpenCV 的路径设置,如下所示:

备注: Linux 下可能会遇到的编译错误

(1) OpenGL 错误

如果在编译的过程中,遇到以下错误,则需要安装 OpenGL 库(Qt 依赖 OpenGL 库),否则 跳过该步骤。在终端上输入命令: sudo apt-get install libgl1-mesa-dev

(2) udev 错误

如果在编译的过程中,遇到以下错误,这是因为 Opal Kelly 的驱动 FrontPanel SDK-v4.5.5 只提供了 Ubuntu12.04LTS 的版本,所以当我们在高版本的 Ubuntu 上使用时会遇到"libudev"版本不兼容的问题。

Issues 🚊 🗘 🛕 🔭	^		
libudev.so.0, needed by //usr/local/lib/libokFrontPanel.so, not found (try using -rpath or -rpath-link)			
	111 15 15 1		
undefined reference to `udev_monitor_unref'	libokFrontPanel.so		
undefined reference to `udev_enumerate_add_match_subsystem'	libokFrontPanel.so		
undefined reference to `udev_list_entry_get_by_name'	libokFrontPanel.so		
undefined reference to `udev_enumerate_get_list_entry'	libokFrontPanel.so		
undefined reference to `udev_list_entry_get_value'	libokFrontPanel.so		
undefined reference to `udev_monitor_receive_device'	libokFrontPanel.so		

用户可以从以下链接中下载兼容的 libudev, 也可以从我们的发布包(*Drivers/Linux/libudev.zip*)中直接获取。下载链接: https://ubuntu.pkgs.org/12.04/ubuntu-main-i386/libudev0 175-

Oubuntu9 i386.deb.html

解压 libudev.zip 后会看到以下内容:

 $libudev0_175-0ubuntu9_i386.deb$

libudev0 175-0ubuntu9 amd64.deb

安装命令:

sudo dpkg -i libudev0 175-0ubuntu9 i386.deb

sudo dpkg -i libudev0 175-0ubuntu9 amd64.deb

2.5 生成 FPN 文件

固定模式噪声(FPN, Fixed Pattern Noise)是数字图像传感器上的特定噪声模式的术语,在较长的曝光镜头中经常可见,其中特定像素易于在一般背景噪声之上提供较亮的强度。如果不从图像中减去 FPN,则图像可能显示出高水平的背景噪声,因此变得粗糙。为了解决该问题,我们需要为 CeleX Sensor 生成一个 FPN 文件,具体的操作步骤请参考 3.4 章节。

3 Celex Demo Kit GUI 的功能

打开 CeleXDemo.exe, 当没有连接 Sensor 设备时, 界面如图 3-1 所示; 当有 Sensor 设备连接时, 界面如图 3-2 所示。

图 3-1

图 3-2

3.1 切换 Sensor 工作模式

点击红色框标记的组合框按钮可以切换 Sensor 的工作模式,图 3-3 所示的是 Sensor 工作在 Event 模式下的画面展示,其中左边的图像显示是 Event 模式的累加的 Full Picture 图像,右边的图像显示的是动态图像。

图 3-3 Sensor 工作在 Event 模式

图 3-4 给出了 Sensor 工作在 Full-Picture 模式下的画面展示,其中左边的图像即是 Full Picture 图像,由于该模式下只有 Full Picture 图像,所以右边的图像为黑色,表示没有图像输出。

图 3-4 Sensor 工作在 Full-Picture 模式

图 3-5 给出了 Sensor 工作在 FullPic_Event 模式下的画面展示,其中左边的图像即是 Full Picture 图像,右边的图像是动态图像。

图 3-5 Sensor 工作在 FullPic_Event 模式

3.2 录制 Sensor 数据功能

点击图 3-6-1 中"Start Recording"按钮即可开始录制 bin 数据,开始录制数据后,按钮上的文字会变成图 3-6-2 所示的"Stop Recording",那点击"Stop Recording"按钮即停止录制 bin 数据。录制的 bin 文件就存在 CeleXDemo.exe 的同目录下,以Recording YYYYMMDD HHMMSSSSS SensorMode ClockRate.bin 的形式命名,如下所示:

- Recording_20180527_154146463_E_25MHz.bin
 Recording_20180527_154150534_F_25MHz.bin
 Recording_20180527_154153694_FE_25MHz.bin
- 其中, E 表示录制的是 Event 模式下的数据, F 是 FullPic 模式下的数据, FE 是 FullPic Event 模式下的数据。25MHz 表示录制数据是, Sensor 的工作频率为25MHz。

图 3-6-2

3.3 播放录制的 Bin 文件功能

点击"Playback"按钮,选择一个 bin 文件播放,Playback 时的界面展示如图 3-7 所示。 其中左右两边图像显示的内容,跟你录制 bin 数据时的 Sensor 模式有关。关于各种模式下有哪些图像输出,请参数 3.1 章节的描述。

在播放 bin 文件时,可以调节**滑动条 Time-Slice** 改变建帧的时间,也可以调节**滑动条 Display** 改变播放每一帧的时间间隔。

图 3-7

3.4 生成 FPN 功能

固定模式噪声(FPN, Fixed Pattern Noise)是数字图像传感器上的特定噪声模式的术语,在较长的曝光镜头中经常可见,其中特定像素易于在一般背景噪声之上提供较亮的强度。如果不从图像中减去 FPN,则图像可能显示出高水平的背景噪声,因此变得粗糙。为了解决该问题,我们需要为 CeleX Sensor 生成一个 FPN 文件,具体的操作步骤如下:

(1) 将 Sensor 的工作模式切换至 Full-Picture 模式。你将只会看到左边的屏幕显示图片, 右边的屏幕将被关闭。

(2) 由于 FPN 生成操作必须在光照均匀的环境下进行,所以我们可以通过取下光学镜头并用一张白纸(薄纸或 A4 打印纸)覆盖裸露的 Sensor 来实现这种情况。确保纸张均匀地完全覆盖传感器,并且纸张保持静止。 **备注:** 如果你是在阳光下而不是 LED 灯下操作,效果会更好。

(3) 执行 FPN 生成操作之前,请检查图像屏幕,确保其显示正常,不要太暗或太亮。只需在裸露的 Sensor 上放置更多或更少的纸张,或者在 GUI 窗口上打开或关闭"亮度"滑块,即可更改照明。备注:下图中的第 3 幅图就是正常亮度的图。

- (4) 点击 GUI 窗口中的"Generate FPN"按钮,当你在指定目录下看到 FPN.txt 文件时表明 FPN 文件成功生成了。
- (5) 重启应用程序后将使用新的 FPN 文件, 您应该能够看到图像质量的差异。

3.5 各种图像形式的展示

我们以 Event 模式为例,来说明各种图像形式的展示。可以通过点击下图中的组合框按钮来设置要显示的图像类型,具体如下:

Accumulated Pic

Binary Pic

Gray Pic

Superimposed Pic

Denoised Binary Pic

Denoised Gray Pic

Optical-Flow Pic

Optical-Flow Direction Pic

Optical-Flow Speed Pic

备注:关于 Optical-Flow 的功能介绍请参考我们 API 手册中的相关章节。

Optical-Flow Pic 中用了 5 中颜色(红,黄,绿,蓝绿,蓝)表示光流信息,从红色到蓝色表示时间上的信息是由新到旧,其中红色表示的是最新的信息(终点),蓝色表示的是最旧的信息(起点)。

Optical-Flow Direction Pic 中用了 4 种颜色(红,黄,绿,蓝)表示物体运动的方向,红色表示向右运动,绿色表示向左运动,黄色表示向上运动,蓝色表示向下运动。

Optical-Flow Speed Pic 中用了 5 种颜色(红,黄,绿,蓝绿,蓝)表示物体运动的速度,从红色到蓝色表示速度由慢变快,其中红色表示的速度最慢,蓝色表示的速度最快。

3.6 界面上所有的按钮功能

No.	名称	功能
1	Reset ALL	Reset Sensor 和 FPGA
2	Reset FPGA	Reset FPGA
3	Disable ADC	启用和禁用 Event 模式的下的灰度值数据功能
4	组合框 SensorMode - Event	切换 Sensor 的工作模式
5	Trig FullPic	触发生成一帧 Full Picture 图像
6	Start Recording	录制 Sensor 数据
7	Playback	播放录制的 Sensor 数据
8	Generate FPN	生成 FPN 文件
9	Rotate_LR	左右旋转显示的图像(同时控制左右两幅图像)
10	Rotate_UP	上下旋转显示的图像(同时控制左右两幅图像)

3.7 界面上所有的滑动条功能

No.	名称	功能
1	滑动条 Lower ADC	调节可变亮度范围的下限
2	滑动条 Upper ADC	调节可变亮度范围的上限
3	滑动条 Brightness	调节 Sensor 输出的图像亮度
4	滑动条 Contrast	调节 Sensor 输出的图像对比度
5	滑动条 Threshold	调节触发 Event 的阈值(当像素点的光强变化大于此阈值时, 该值越小,触发的 Event 数据越多,反之,则触发的 Event 数
		据越少)
6	滑动条 Frame-Time	当 Sensor 工作在 Event 模式下,调节该滑动条可以修改建立动态图像帧的时长(值越大,建帧的时间就越长;反之,建帧的时间就越短);当 Sensor 工作在 FullPic_Event 模式,调节该滑动条可以修改每一个 Frame Time 里面 Motion Event 的输出时间