

DCF77 – Transmission de l'heure par ondes radio

DCF77 est un système de transmission de l'heure par ondes radio mis en service le 1 er janvier 1959. Son émetteur est situé en Allemagne. Il utilise une horloge atomique 🗹 et donne donc l'heure de façon très précise.

De nombreux dispositifs utilisent se signal pour se mettre à l'heure automatiquement. Ainsi certaines montres ou réveils peuvent se mettre à l'heure de façon autonome et passent automatiquement de l'heure d'hiver à l'heure d'été. On peut également régler la date et le jour de la semaine.

- 1. Protocole DCF77
- 2. Informations binaires
- 3. Analyse d'un signal pour déterminer la date et l'heure

Protocole DCF77

L'onde porteuse est modulée par des impulsions, au rythme d'une par seconde. Ces impulsions ce traduisent chaque seconde par une diminution de 25% de l'amplitude du signal reçu. La durée d'une impulsion, détermine le niveau du bit reçu :

- Une impulsion de 100 ms représente un bit à 0
- Une impulsion de 200 ms représente un bit à 1
- Seule la <u>60</u>e seconde n'est pas modulée et permet d'annoncer le début d'une nouvelle trame

Informations binaires

- 0 (M): Début de trame (bit à 0).
- 1 14 : Réservé pour une utilisation future.
- 15 (R) : L'émetteur de réserve est actif lorsque ce bit est à 1.
- 16 (A1): Annonce de l'heure d'hiver.
- 17, 18 (Z1, Z2): Ces deux bits codent le fuseau horaire actuel:

Analyse du protocole DCF77 – Horloge atomique : modulation/démodulation

Z1	Z 2	Fuseau horaire
0	1	CET (Central European Time) = UTC + 1h
1	0	CEST (Central European Summer Time) = UTC + 2h

CET correspond à l'heure d'hiver, et CEST correspond à l'heure d'été. Il s'agit de l'heure légale de la plupart des pays d'Europe.

- 19 (A2) : Indique qu'une seconde va être supprimée pour corriger les irrégularités de la rotation de la terre.
- 20 (S): Bit de début de codage des informations horaires (toujours à 1).
- 21 27 : Minutes codées en BCD, bit de poids faible en premier :

N° bit	21	22	23	24	25	26	27
Valeur	1	2	4	8	10	20	40

- 28 (P1) : Bit de parité (parité paire) des minutes (bits 21 à 27).
- 29 34 : Heures codées en BCD, bit de poids faible en premier :

N° bit	29	30	31	32	33	34
Valeur	1	2	4	8	10	20

- 35 (P2) : Bit de parité (parité paire) des heures (bits 29 à 34).
- 36 41 : Jour codé en BCD, bit de poids faible en premier :

N° bit	36	37	38	39	40	41
Valeur	1	2	4	8	10	20

■ 42 – 44 : Jour de la semaine codé en BCD, bit de poids faible en premier :

N° bit	42	43	44
Valeur	1	2	4

Analyse du protocole DCF77 – Horloge atomique : modulation/démodulation

■ 45 – 49 : Mois codé en BCD, bit de poids faible en premier :

N° bit	45	46	47	48	49
Valeur	1	2	4	8	10

■ 50 – 57 : Année (sur deux chiffres) codées en BCD, bit de poids faible en premier :

N° bit	50	51	52	53	54	55	56	57
Valeur	1	2	4	8	10	20	40	80

- 58 (P3) : Bit de parité (parité paire) de la date (bits 36 à 57).
- 59 : Pas d'impulsion

Analyse d'un signal pour déterminer la date et l'heure

- 1. Aller sur le site http://websdr.ewi.utwente.nl:8901/ http://websdr.ewi.utwente.nl:8901/
- 2. Régler la fréquence sur **77,5kHz** en choisissant une modulation **USB** (Modulation d'amplitude à porteuse supprimée)
- 3. Ajuster le filtre à **0,99kHz** et cocher *noise reduction*
- 4. Enregistrer 1min10s de signal transposé dans des fréquences audibles en cliquant sur *Audio recording*
- 5. Étudier le signal reçu (en l'ouvrant avec Audacity) pour en déduire la date et l'heure d'émission. Vous pouvez aussi utiliser la capture :

