Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Интернет-институт ТулГУ

КОНТРОЛЬНАЯ РАБОТА ЗА 1 СЕМЕСТР

по дисциплине

«Физика»

2 вариант

студент группы ИБ262521-ф
Артемов Александр Евгеньевич

Проверил:

Выполнил:

Ростовцев Роман Николаевич

1. Что представляет собой геометрическое место точек конца радиус — вектора \vec{r} , удовлетворяющего условию $\vec{r} \vec{a} = a^2/2$, где \vec{a} - постоянный вектор?

Решение.

Рассмотрим геометрическое место точек конца радиус-вектора \vec{r} , удовлетворяющего условию: $\vec{r} \cdot \vec{a} = \frac{a^2}{2}$, где \vec{a} — постоянный вектор, а $a = |\vec{a}|$ — его длина.

Разделим обе части уравнения на a (длину вектора \vec{a}): $\vec{r} \cdot \frac{\vec{a}}{a} = \frac{a}{2}$.

Здесь $\frac{\vec{a}}{a}$ — единичный вектор в направлении \vec{a} . Обозначим его как \vec{n} . Тогда уравнение принимает вид: $\vec{r} \cdot \vec{n} = \frac{a}{2}$. Это уравнение описывает плоскость, перпендикулярную вектору \vec{n} и находящуюся на расстоянии $\frac{a}{2}$ от начала координат в направлении \vec{a} .

Ответ: Геометрическое место точек конца радиус-вектора \vec{r} , удовлетворяющего условию $\vec{r} \cdot \vec{a} = \frac{a^2}{2}$, представляет собой плоскость, перпендикулярную вектору \vec{a} и находящуюся на расстоянии $\frac{a}{2}$ от начала координат в направлении \vec{a} .

2. Ускорение материальной точки изменяется по закону $\vec{a} = k t^2 \vec{e_x} - m \vec{e_y}$, где $k = 3 \, \text{м/c}^4$, $m = 3 \, \text{м/c}^2$. Найти, на каком расстоянии от начала координат она будет находиться в момент времени $t = 1 \, c$, если $\vec{V_0} = 0$ и $\vec{r_0} = 0$ при t = 0.

Решение:

Интегрируем ускорение по времени, чтобы найти скорость:

$$\vec{V}(t) = \int \vec{a} dt = \int (k t^2 \vec{e_x} - m \vec{e_y}) dt$$

Разделим интеграл на компоненты по координатам:

$$V_x(t) = \int k t^2 dt = \frac{kt^3}{3} + C_1, V_y(t) = \int (-m) dt = -mt + C_2.$$

Используем начальные условия \overrightarrow{V}_0 =0 при t=0:

$$V_x(0)=C_1=0$$
, $V_y(0)=C_2=0$, тогда $V_x(t)=\frac{kt^3}{3}$, а $V_y(t)=-mt$.

Скорость — это производная радиус-вектора по времени: $\vec{V} = \frac{d\vec{r}}{dt}$

Интегрируем скорость по времени, чтобы найти радиус-вектор:

$$\vec{r}(t) = \int \vec{V} dt = \int \left(\frac{kt^3}{3}\vec{e}_x - mt\vec{e}_y\right)dt.$$

Разделим интеграл на компоненты по координатам:

$$r_x(t) = \int \frac{kt^3}{3} dt = \frac{kt^4}{12} + C_3, r_y(t) = \int (-mt) dt = -\frac{mt^2}{2} + C_4.$$

Используем начальные условия $\vec{r_0} = 0$ при t = 0:

$$r_x(0)=C_3=0,\ r_y(0)=C_4=0,\ ext{тогда}\ r_x(t)=rac{kt^4}{12},\ ext{a}\ r_y(t)=-rac{mt^2}{2}.$$

Подставляем t = 1 c:

$$r_x(1) = \frac{k \cdot 1^4}{12} = \frac{k}{12}, r_y(1) = -\frac{m \cdot 1^2}{2} = -\frac{m}{2}.$$

Подставляем $k = 3 \, \text{м/c}^4$, $m = 3 \, \text{м/c}^2$:

$$r_x(1) = \frac{3}{12} = 0,25 \,\text{M}, \, r_y(1) = -\frac{3}{2} = -1,5 \,\text{M}.$$

Вычисляем расстояние по формуле $r = \sqrt{r_x^2 + r_y^2}$:

$$r = \sqrt{(0.25)^2 + (-1.5)^2} = \sqrt{0.0625 + 2.25} = \sqrt{2.3125} \approx 1.52 \,\text{m}.$$

Ответ: Материальная точка будет находиться на расстоянии приблизительно 1,52 м от начала координат в момент времени t=1 с.

3. Материальная точка начинает двигаться в момент времени $t_0=0$ из начала координат со скоростью изменяющейся со временем по закону $\vec{v}=\vec{i}\ A+\vec{j}\ Bt+\vec{k}\ Ct^2$, где $A=1\, m/c$, $B=2\, m/c^2$, $C=1,5\, m/c^3$. На каком расстоянии от начала координат окажется эта точка через $t=2\, c$ после начала движения.

Решение:

Скорость — это производная радиус-вектора по времени: $\vec{V} = \frac{d\vec{r}}{dt}$.

Интегрируем скорость по времени, чтобы найти радиус-вектор: $\vec{r}(t) = \int \vec{v} dt = \int (\vec{i} A + \vec{j} Bt + \vec{k} Ct^2) dt$.

Разделим интеграл на компоненты по координатам:

$$r_x(t) = \int A dt = At + C_1, r_y(t) = \int Bt dt = \frac{Bt^2}{2} + C_2, r_z(t) = \int Ct^2 dt = \frac{Ct^3}{3} + C_3...$$

Используем начальные условия \vec{r}_0 =0 при t=0:

$$r_x(0) = C_1 = 0$$
, $r_y(0) = C_2 = 0$, $r_y(0) = C_3 = 0$, тогда $r_x(t) = At$, $r_y(t) = \frac{Bt^2}{2}$, $r_z(t) = \frac{Ct^3}{3}$.

Подставляем t = 2 c:

$$r_{\scriptscriptstyle X}(2) = A \cdot t = 1 \cdot 2 = 2 \, \text{m}, \ r_{\scriptscriptstyle Y}(t) = \frac{B t^2}{2} = \frac{2 \cdot 2^2}{2} = 4 \, \text{m}, \ r_{\scriptscriptstyle Z}(t) = \frac{C t^3}{3} = \frac{1,5 \cdot 2^3}{3} = \frac{12}{3} = 4 \, \text{m}.$$

Вычисляем расстояние от начала координат по формуле $r=\sqrt{{r_x}^2+{r_y}^2+{r_z}^2}$: $r=\sqrt{2^2+4^2+4^2}=\sqrt{4+16+16}=\sqrt{36}=6$ м.

Ответ: Материальная точка окажется на расстоянии 6 м от начала координат в момент времени $t=2\,\mathrm{c}$.

4. В момент t_0 =0 частица массы m начинает двигаться под действием силы $\vec{F} = \vec{F_0} \cos \omega t$, где $\vec{F_0}$ и ω - постоянные. Сколько времени частица будет двигаться до первой остановки? Какой путь она пройдет за это время?

Решение:

Частица остановится, когда её скорость станет равной нулю: $\vec{v}(t)$ =0. Чтобы найти скорость интегрируем ускорение по времени: $\vec{v}(t)$ = $\int \vec{a} \, dt$.

По второму закону Ньютона $\vec{a} = \frac{\vec{F}}{m} = \frac{\vec{F}_0 \cos \omega t}{m}$. Обозначим $\vec{a}_0 = \frac{\vec{F}_0}{m}$, тогда $\vec{a} = \vec{a}_0 \cos \omega t$. Подставим ускорение в интеграл $\vec{v}(t) = \int \vec{a} \, dt = \int \vec{a}_0 \cos \omega t \, dt = \vec{a}_0 \frac{\sin \omega t}{\omega} + \vec{C}_1$

Используем начальные условия $\vec{v}(0)=0$:

$$\vec{v}(0) = \vec{a_0} \frac{\sin 0}{\omega} + \vec{C_1} = 0 \Rightarrow \vec{C_1} = 0$$
, тогда $\vec{v}(t) = \vec{a_0} \frac{\sin \omega t}{\omega}$.

При остановке частицы $\vec{v}(t)$ =0, значит $\sin \omega t = 0$, так как \vec{F}_0 и ω - постоянные. Первый корень уравнения $\sin \omega t = 0$ (кроме t = 0): $\omega t = \pi \Rightarrow t = \frac{\pi}{\omega}$. Значит, время до первой остановки $t_{ocm} = \frac{\pi}{\omega}$.

Скорость — это производная радиус-вектора по времени: $\vec{v} = \frac{d\vec{r}}{dt}$. Интегрируем скорость по времени, чтобы найти радиус-вектор: $\vec{r}(t) = \int \vec{v} \, dt = \int \vec{a_0} \frac{\sin \omega t}{\omega} \, dt$. Тогда $\vec{r}(t) = -\vec{a_0} \frac{\cos \omega t}{\omega^2} + \vec{C_2}$. Используем начальные условия $\vec{r}(0) = 0$:

$$\vec{r}(0) = -\vec{a}_0 \frac{\cos 0}{\omega^2} + \vec{C}_2 = 0 \ \Rightarrow \ \vec{C}_2 = \vec{a}_0 \frac{1}{\omega^2}, \text{ тогда } \vec{r}(t) = -\vec{a}_0 \frac{\cos \omega t}{\omega^2} + \vec{a}_0 \frac{1}{\omega^2} = \frac{\vec{a}_0}{\omega^2} \cdot (1 - \cos \omega t).$$

Подставим $t_{ocm} = \frac{\pi}{\omega}$ и получим пройденный путь: $s = \vec{r}(\frac{\pi}{\omega}) = \frac{\vec{a_0}}{\omega^2} \cdot (1 - \cos \pi) = \frac{2\vec{a_0}}{\omega^2}$.

Подставим
$$\vec{a}_0 = \frac{\vec{F}_0}{m}$$
 в путь: $s = \frac{2\vec{a}_0}{\omega^2} = \frac{2F_0}{m\omega^2}$.

Ответ: время до первой остановки $t_{ocm} = \frac{\pi}{\omega}$, пройденный путь за это время $s = \frac{2F_0}{m\omega^2}$.

5. Оценить отношение $n = \frac{V_M}{V}$ суммарного объема V_M молекул воздуха к объему V сосуда, в котором они находятся при нормальных условиях. Диаметр молекул воздуха d принять равным d = 3,7 A.

Решение:

Диаметр молекул воздуха $d=3.7\,\mathring{A}=3.7\times 10^{-10}\,M$. Нормальные условия - это давление $P=1am_M=1.013\times 10^5\,\Pi a$, температура $T=273\,K$. Молекулы воздуха можно считать сферами диаметром d.

Рассчитаем объем одной молекулы:
$$V_1 = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{3.7\cdot 10^{-10}}{2}\right)^3 = \frac{4}{3}\pi \left(1.85\cdot 10^{-10}\right)^3 \approx \frac{4}{3}\pi \cdot 1.85\cdot 10^{-30} \approx 2.65\cdot 10^{-29} \text{ m}^3.$$

Выразим количество молекул из уравнения состояния идеального газа:

$$PV = NkT \Rightarrow N = \frac{PV}{kT}$$
, где $k = 1,38 \cdot 10^{-23}$ Дж/К — постоянная Больцмана.

Подставим нормальные условия:

$$N = \frac{PV}{kT} = \frac{1,013 \cdot 10^5 \cdot V}{1,38 \cdot 10^{-23} \cdot 273} \approx \frac{1,013 \cdot 10^5 \cdot V}{3,77 \cdot 10^{-21}} \approx 2,69 \cdot 10^{25} \cdot V$$

Рассчитаем суммарный объем молекул воздуха:

$$V_M = N \cdot V_1 = 2,69 \cdot 10^{25} \cdot V \cdot 2,65 \cdot 10^{-29} \approx 7,13 \cdot 10^{-4} \cdot V.$$

Получим отношение
$$n = \frac{V_M}{V} = \frac{7,13 \cdot 10^{-4} \cdot V}{V} = 7,13 \cdot 10^{-4}$$
.

Ответ: Отношение $n = \frac{V_M}{V}$ суммарного объема V_M молекул воздуха к объему V сосуда при нормальных условиях равно $7,13\cdot 10^{-4}$.