Big Picture

Table of Contents

1. DevOps / Agile / Test / Requirements	1
1.1. Example of approach (RE'18 tutorial)	2
1.2. Requirements Engineering Process	2
1.3. Requirements in industry = ALM	4
1.4. Problems	4
2. Situation overview	4
2.1. Typical situation	4
2.2. Who will use the product?	5
2.3. Writing Epics & Stories	5
2.4. Specifying with Stories	5
3. Testing	6
3.1. Test-Driven Development	6
3.2. Behavior-Driven Development	6
3.3. Quality Assesment	7
3.4. Automation (and CI).	7
4. Who are your clients?	8
4.1. Your client(s)	8
4.2. Your teacher(s)	8
4.3. At the same time!	9
4.4. Minimal Viable Product (usual)	10
4.5. Minimal Viable Product (improved)	11
4.6. MVP & EPICS	11
5. Back to the requirements	12
6. Stakeholders Value Networks	13
Appendix A: Useful links	13
Appendix B: Credits	13

1. DevOps / Agile / Test / Requirements

- Plan, Test, OK
- But towards WHAT?

Figure 1. Tests in DevOps

1.1. Example of approach (RE'18 tutorial)

- Express requirements through User Stories
- Formally express US acceptance tests (BDD/TDD)
- Use CI/CD to ensure feature availability

1.2. Requirements Engineering Process

- Requirements Elicitation
- Requirements Analysis & Negotiation
- Requirements Validation
- Requirements Documentation
- Requirements Management

Figure 2. Requirements Engineering Process (source [Sommerville & Sawyer 1997])

Expected properties vs. description

Figure 3. Expected properties vs. description (source CESAM)

1.3. Requirements in industry = ALM

(source here) image::alm.jpg[ALM, link="https://visuresolutions.com/application-lifecycle-management-alm-tool"]

1.4. Problems...

- Readability?
- Compliance with the specs?
- Maintainability?
- Extension to fulfill the specs?
- Testability?

2. Situation overview

2.1. Typical situation

Figure 4. DevOps Quality Assessment

2.2. Who will use the product?

Persona = Name + Bio + Objectives

2.3. Writing Epics & Stories

Specifying in an agile way

2.4. Specifying with Stories

EPIC = Persona + Action + Benefits

Story = Epic + Acceptance criteria + Tests (+ Estimations)

3. Testing

Figure 5. Tests in DevOps

3.1. Test-Driven Development

- 1. (Write an issue about the bug, with details)
- 2. Write a failing test (reproduce the bug)
- 3. Correct the bug
- 4. Make the test pass
- 5. (close the issue)

3.2. Behavior-Driven Development

Figure 6. BDD vs TDD

3.3. Quality Assesment

3.4. Automation (and CI)

Running 0	Finished (327)	All (327)					
List of finished builds from this project							
Status	Build ID	Commit	Ref	Runner	Name	Duration	Finished at
✓ success	Build #351965	23b89d99	artifacts	golang-cross#1059	Bleeding Edge	6 minutes 4 seconds	about 19 hours ago
✓ success	Build #351548	634b6f5e	artifacts	golang-cross#1059	Bleeding Edge	5 minutes 43 seconds	about 22 hours ago
✓ success	Build #349948	56329a8e	artifacts	golang-cross#1059	Bleeding Edge	6 minutes 2 seconds	1 day ago
✓ success	Build #349883	c01876c1	master	golang-cross#1059	Bleeding Edge	5 minutes 39 seconds	1 day ago
≭ failed	Build #349807	623f3f5a	master	golang-cross#1059	Bleeding Edge	1 minute 50 seconds	1 day ago
x failed	Build #349804	338d0a8b	artifacts	golang-cross#1059	Bleeding Edge	1 minute 35 seconds	1 day ago

4. Who are your clients?

4.1. Your client(s)

4.2. Your teacher(s)

4.3. At the same time!

4.4. Minimal Viable Product (usual)

Not like this....

Like this!

Figure 7. Minimal Viable Product (by Henrik Kniberg)

4.5. Minimal Viable Product (improved)

[minimum viable product] | minimum-viable-product.png

Figure 8. A more accurate representation (source https://altkomsoftware.pl/en/blog/mvp-insurance/)

4.6. MVP & EPICS

5. Back to the requirements

MOA

Req = *Stakeholders Needs*

MOE

6. Stakeholders Value Networks

Appendix A: Useful links

Gail Murphy's keynote at RE'2018

https://www2.slideshare.net/murphygc/beyond-devops-finding-value-through-requirements

Appendix B: Credits

Images taken from:

- https://abstracta.us/blog/devops/testing-driver-devops-culture/
- http://meshfields.de/continuous-integration-testing-delivery-ionic2-hybrid-mobile-apps-buddybuild/
- https://altkomsoftware.pl/en/blog/mvp-insurance/
- http://www.cesames.net/wp-content/uploads/2017/05/CESAM-guide.pdf