





















# ADS AD VIDEO COSOUN





www.aduni.edu.pe

















## QUÍMICA

# ESTEQUIOMETRÍA II Semana 25

www.aduni.edu.pe

### ADUNI



#### I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

1. Reconocer el reactivo limitante (RL) y el reactivo en exceso (RE) en algunos procesos químicos.

 Entender el rendimiento real y rendimiento teórico para determinar el porcentaje de rendimiento.















#### II. INTRODUCCIÓN

La leyes estequiométricas precisan que las sustancias se combinan o consumen completamente al participar en cantidades que cumplan una proporción definida o fija.

**Ejemplo:** oxidación del magnesio

| Ecuación<br>química  |       | ol $\overline{M}$ =32 g/m $+ O_{2(g)}$ | ol<br>→ | $\overline{M}$ = 40 g/mol $2MgO_{(s)}$ |  |
|----------------------|-------|----------------------------------------|---------|----------------------------------------|--|
| Relación<br>de masas | 48 g  | 32 g                                   |         | 80 g                                   |  |
| Ejemplos             | 3 g   | 2 g                                    |         | 5 g                                    |  |
|                      | 15 kg | 10 kg                                  |         | 25 kg                                  |  |
|                      |       |                                        |         | ?                                      |  |
| 30 Kg de<br>magnesio |       | 30 Kg de<br>oxígeno                    |         |                                        |  |



- ¿Cuántos kg de óxido de magnesio (MgO) como máximo se podrán obtener?
- Al final del proceso, ¿todos los reactantes se consumirán?
- Si sobra un reactante ¿ cuántos kg quedará sin reaccionar?

Estas preguntas se analizarán seguidamente.

#### III. REACTIVO LIMITANTE Y REACTIVO EN EXCESO





#### **REACTIVO LIMITANTE (RL)**

Es aquella sustancia química ( elemento o compuesto) que se encuentra en menor proporción estequiométrica y que al agotarse (consumirse completamente) limita la cantidad del producto formado. Por ello, todo calculo estequiométrico se realiza con este reactivo.

#### **REACTIVO EN EXCESO (RE)**

Es aquella sustancia química que se encuentra en mayor proporción estequiométrica respecto al reactivo limitante; por ello, una parte de su cantidad inicial sobra al finalizar la reacción química.

#### **EJEMPLO**



#### **EJERCICIO**

Calcule la masa de amoniaco ( $NH_3$ ) que se forma a partir de combinar 60 g de  $H_2$  y 308 g de  $N_2$ .

$$3H_{2(g)} + N_{2(g)} \rightarrow 2NH_{3(g)}$$

Masa molar(g/mol):  $H_2$ = 2;  $N_2$ = 28;  $NH_3$ = 17

#### **RESOLUCIÓN**

| <b>M</b>             | $=2\frac{g}{mol}$ $\bar{N}$ | $\bar{M} = 28 \; rac{g}{mol}$ | $\overline{M} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 $\frac{g}{mol}$ |  |
|----------------------|-----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                      | $3H_{2(g)}$                 | $+ 1N_{2(g)}$                  | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2NH_{3(g)}$       |  |
| Relación<br>de moles | 3 mol                       | 1 mol                          | 'NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 mol              |  |
| Relación<br>de masas | 6 <i>g</i>                  | 28 <i>g</i>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 <i>g</i>        |  |
| Datos del problema   | 60 <i>g</i>                 | 308 g                          | MINING THE STATE OF THE STATE O | m =??              |  |

#### **REGLA PRÁCTICA**





Se plantea la siguiente relación.

$$relación(R) = rac{Cantidad\ dato\ del\ problema}{Cantidad\ obtenida\ de\ la} \ reacción\ balanceada$$

$$R(H_2) = \frac{60 g}{3x2 g} = 10$$
 <  $R(N_2) = \frac{308 g}{1x28 g} = 11$ 

**Entonces:** RL (H<sub>2</sub>) y RE (N<sub>2</sub>)

Aplicamos la ley de Proust:

$$6 \cancel{g} H_2 \longrightarrow 34 \cancel{g} NH_3$$

$$60 \cancel{g} H_2 \longrightarrow m_{NH_3}$$

$$m_{NH_3} = \frac{60x34 \cancel{g}}{60x34 \cancel{g}} = 340 \cancel{g}$$

#### **EJERCICIO**

En un motor de combustión se desarrolla el siguiente proceso químico exotérmico:

$$CH_{4(g)}+O_{2(g)}\to CO_{2(g)}+H_2O_{(\ell)}$$

Determine el volumen de gas carbónico (CO<sub>2</sub>) formado si se combinan 20 L de metano (CH<sub>4</sub>) con 150 L de aire en las mismas condiciones de presión y temperatura.

Considere que la composición volumétrica del aire es  $O_2$ = 20 % y  $N_2$ = 80 %

#### **RESOLUCIÓN**

Primero determinemos el volumen de oxígeno  $(O_2)$  presente en el aire:

$$V_{aire}$$
  $\begin{cases} \bullet & O_2 = 20 \% \\ \bullet & N_2 = 80 \% \end{cases}$ 





#### **Entonces:**

$$V_{(O_2)} = 20 \% (150 L) = 30 L$$

Reacción química balanceada:

$$1CH_{4(g)} + 2O_{2(g)} \rightarrow 1CO_{2(g)} + 2H_2O_{(\ell)}$$

**Datos** 20 *L* **30** *L* 

Aplicamos la ley volumétrica:

$$1 L CH_4 \longrightarrow 2 L O_2$$

$$V = ?? \longrightarrow 30 \ \lambda O_2$$

$$V_{CH_4} = 15 L$$

(VOLUMEN NECESARIO)

Entonces: RL (O<sub>2</sub>) y RE (CH<sub>4</sub>)

Aplicamos la ley volumétrica:

$$2LO_2 \longrightarrow 1LCO_2$$

$$30 \ \ O_2 \longrightarrow V = ??$$

$$V_{CO_2} = 15 L$$

#### **EJERCICIO**

Manteniendo la presión y temperatura constan tes se hace reaccionar 120 L de CO con 50 L de  $O_2$  según.

$$CO_{(g)}+O_{2(g)}\rightarrow CO_{2(g)}$$

Determine el volumen total de la mezcla gaseosa que se obtendrá al final de la reacción.

- A) 60 L
- B) 40 L
- C) 65 L
- D) 120 L

#### **RESOLUCIÓN**

• Piden el volumen total de la mezcla

Datos 
$$\begin{cases} V_{CO} = 120 \text{ L} \\ V_{O_2} = 50 \text{ L} \end{cases}$$





 Balanceamos la ecuación química. A presión y temperatura constantes, el volumen de los gases es proporcional al numero de moles respectivos.

- Se concluye:
  - 1)  $RL(O_2)$  y RE(CO)
  - 2) sobra CO = 120 100 = 20 L
  - 3) se produce 100 L de CO<sub>2</sub>(g)
- Calculamos el volumen total de la mezcla gaseosa al finalizar la reacción.

$$V_{total} = V_{CO(sobra)} + V_{CO_2}$$
  
 $V_{total} = 20 + 100 = 120 L$ 

**CLAVE: D** 





#### IV. PORCENTAJE DE PUREZA DE UNA MUESTRA QUÍMICA (%P)

En una reacción química solo intervienen sustancias químicamente puras, pues las impurezas no reaccionan; por ello, para cálculos solo usaremos la parte pura de una muestra química.

$$\%P = \frac{cantidad\ pura}{cantidad\ de\ muestra\ impura} x 100\%$$

#### **EJERCICIO**

Se someten a combustión 200 g de lignito (carbón con 75 % de pureza). Calcule la masa de CO<sub>2</sub> que se obtiene. Considere la siguiente ecuación química:

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

PA(uma): C=12; O=16

#### **RESOLUCIÓN**

Primero se debe determinar la masa pura de carbón.

impurezas 75% pureza 
$$m_{muestra} = 200 \ g$$

$$m(C) = 75\%(200 g) = 150 g$$

$$\overline{M} = 12 \frac{g}{mol}$$
  $\overline{M} = 44 \frac{g}{mol}$   $1C_{(s)} + 1O_{2(g)} \rightarrow 1CO_{2(g)}$ 

Relación de masas

12 g

44 g

**Dato** 

150 g

m = ??

Aplicamos la ley de Proust:

$$12 \, \text{OC} \longrightarrow 44 \, g \, CO_2$$

 $150 g C \longrightarrow$ 

 $m_{CO_2} = \frac{150x44 \ g}{12}$ 

= 550 g

#### **EJERCICIO**

Un muestra de sodio (Na) con 20 % de impurezas reacciona con el agua según:

 $2Na_{(s)} + 2H_2O_{(\ell)} \rightarrow 2NaOH_{(ac)} + 1H_{2(g)}$ Calcule la masa de hidrógeno (H<sub>2</sub>) producido a partir de 200 g de muestra de sodio.

PA(uma): H=1; O=16; Na=23

#### **RESOLUCIÓN**



m = 200 g





$$\Rightarrow m(Na) = 80 \%(200 g) = 160 g$$

$$\overline{M} = 23 \, g/m \, ol$$
  $\overline{M} = 2 \, g/m \, ol$  
$$2Na_{(s)} + 2H_2O_{(\ell)} \rightarrow 2NaOH_{(ac)} + 1H_{2(g)}$$

Relación de masas

46 *g* 

2 *g* 

**Dato** 160 *g* 

m = ??

Aplicamos la ley de Proust:

$$m = \frac{160x(2\ g)}{46} = 6,95\ g$$

## V. RENDIMIENTO PORCENTUAL O PORCENTAJE DE RENDIMIENTO (%R)



Es la comparación porcentual entre la cantidad real y la cantidad teórica obtenida de un producto determinado.

#### **VEAMOS:**

Para la fiesta de la clase de química, usted prepara masa para galletas con una receta que rinde 5 docenas de galletas (60 galletas). Coloca la masa de 12 galletas en una charola para hornear y la mete al horno. Pero entonces suena el teléfono y usted atiende la llamada. Mientras habla, las galletas de la charola se queman y tiene que tirarlas. Procede a preparar cuatro charolas más con 12 galletas cada una. Si el resto de las galletas son comestibles, ¿cuál es el rendimiento porcentual de galletas que usted lleva a la fiesta de química?

#### **INTERPRETACIÓN**

Rendimiento teórico: 60 galletas posibles

Rendimiento real: 48 galletas comestibles

Rendimiento porcentual (%R) = 
$$\frac{48 \text{ galletas (reales)}}{60 \text{ galletas (teóricas)}} x 100\% = 80\%$$



#### **RENDIMIENTO TEÓRICO**





Es la máxima cantidad de producto que se puede obtener en una reacción química si reacciona todo el reactivo limitante, y se calcula a partir de la ecuación balanceada.

#### **RENDIMIENTO REAL**

Es la cantidad de producto que se obtiene al culminar la reacción, casi siempre es menor que el rendimiento teórico.

rendimiento real < rendimiento teórico

#### **EJEMPLO**

A partir de 280 g de nitrógeno (N<sub>2</sub>) se obtuvo 306 g de amoniaco (NH<sub>3</sub>). Calcule el rendimiento de la reacción.

$$1N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

PA(uma): H=1; N=14

#### **RESOLUCIÓN**

$$\overline{M} = 28 \ g/m \ ol$$
  $\overline{M} = 17 \ g/m \ ol$   $1N_2 + 3H_2 \rightarrow 2NH_3$  Dato:  $280 \ g$   $m_{real} = 306 \ g$   $m_{teórica} = ??$ 

• Aplicamos la ley de Proust:

$$\Rightarrow m_{te\'orica} = 340 g$$

$$\%R = \frac{306 \text{ y}}{340 \text{ y}} x100\% = 90 \text{ }\%$$

#### **EJERCICIO**

Se hace reaccionar 0.8 moles de  $NH_3$  con 1.5 moles de  $O_2$  según la siguiente ecuación química.

$$NH_{3(g)}+O_{2(g)} \rightarrow NO_{(g)}+H_2O_{(g)}$$

Si se obtienen 0,6 moles de NO, ¿cuál es el rendimiento de la reacción?

- A) 80% B) 50% C) 90%
- D) 75% E) 95%

#### **RESOLUCIÓN**

• Piden el rendimiento porcentual de la reacción.

• Dato 
$$\begin{cases} n_{NH_3} = 0.8 \text{ moles} \\ n_{O_2} = 1.5 \text{ moles} \\ n_{NO} = 0.6 \text{ moles (real)} \end{cases}$$





 Balanceamos la ecuación química y comparamos las moles de los reactantes dados en el problema y las moles de la ecuación balanceada.

Relación de moles 
$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$
 $4 \text{ moles} 5 \text{ moles} 4 \text{ moles}$ 
 $x0,2 \ x0,2 \ 0,8 \text{ mol} 1 \text{ mol} n_{teóricos} = ??$ 

- RE  $(O_2) \Rightarrow$  sobra 0,5 moles y RL(NH<sub>3</sub>)
- Luego con el reactivo limitante se calcula los moles teórico de NO.

$$4 \text{ moles } NH_3 \longrightarrow 4 \text{ moles } NO$$

$$0.8 \text{ moles } NH_3 \longrightarrow n_{te\acute{o}ricos}$$

$$\Rightarrow n_{te\acute{o}ricos} = 0.8 \text{ moles}$$

$$\%R = \frac{0.6 \text{ moles}}{0.8 \text{ moles}} x 100\% = 75 \%$$

$$\text{CLAVE: D}$$









**Q**uímica





- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

