ANSWERS TO PRACTICE PROBLEMS CHAPTER 5

Section 5.1:

A1. (a)
$$\mathbf{p} = \frac{5}{9}[2, -3, 1, 2]^T$$
 (b) $\mathbf{v} - \mathbf{p} = -\frac{1}{9}[1, 3, 5, 1]^T$ $[\mathbf{v} - \mathbf{p}]^T \mathbf{p} = 0$ thus $\mathbf{v} - \mathbf{p}$ is orthogonal to \mathbf{p} .

(c) distance =
$$||\mathbf{v} - \mathbf{p}|| = 2/3$$

A2.
$$\mathbf{p} = [0, 1/2, -1/2]^T$$

A3. Q =
$$(1/3, 1/3, -1/3)$$
.

Section 5.2:

B1:

Basis for $R(A^T)$: { $[1, 0]^T$, $[0, 1]^T$ }.

Basis for R(**A**): $\{[4, 1, 2, 3]^T, [-2, 3, 1, 4]^T\}.$

N(A) is comprised of the zero vector only, thus it has no basis.

Basis for N(A^T):
$$\left\{ \left[-\frac{5}{14}, -\frac{4}{7}, 1, 0 \right]^T, \left[-\frac{5}{14}, -\frac{11}{7}, 0, 1 \right]^T \right\}$$
.

B2.
$$\{[2, 1, 0]^T, [1, 0, 1,]^T\}.$$

B3.

- (a) W is a plane through the origin in \mathbb{R}^3 containing the two given vectors.
- **(b)** $\{[-5, 3, 1]^T\}.$
- (c) W^{\perp} is a line through the origin perpendicular to the plane W.

B4: No because the vectors are not orthogonal (their scalar product is not zero).

If [3, 1, 2] is in the row space of A, then $[3, 1, 2] \in R(A^T)$ and, by the Fundamental Subspaces Theorem, $N(A)^{\perp}=R(A^{T})$. Thus $[2, 1, 1] \in N(A)$ if and only if it is orthogonal to [3, 1, 2].

B5:
$$\{[1,-1/2, 1, 0]^T, [1,-1, 0, 1]^T\}.$$

Section 5.3:

C1: (a)
$$\mathbf{P} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$
 (b) $\mathbf{p} = [9/2, -3, 9/2]^T$. (c) distance $= \|\mathbf{v} - \mathbf{p}\| = \frac{\sqrt{2}}{2}$

C2. (a)
$$\{[-1,1,0]^T, [-1,0,1]^T\}$$
 is a possible basis (b) $\mathbf{p} = [-1/3, 2/3, -1/3]^T$.

C3.

(a)
$$\hat{\mathbf{x}} = [2, 1]^T$$
 (b) $\mathbf{p} = A \hat{\mathbf{x}} = [3, 1, 0]^T$

(c)
$$r(\hat{\mathbf{x}}) = \mathbf{b} - \mathbf{p} = [0, 0, 2]^T$$

(c) $r(\hat{\mathbf{x}}) = \mathbf{b} - \mathbf{p} = [0, 0, 2]^T$ (d) Since $A^T r(\hat{\mathbf{x}}) = [0, 0]^T$ we have that $r(\hat{\mathbf{x}}) \in N(A^T)$, that is, the residual $\mathbf{b} - \mathbf{p}$ is orthogonal to R(A).

C4.
$$y = 0.55 + 1.65 x + 1.25 x^2$$

C5.
$$f(x) = \frac{5}{4} + \frac{3}{2}\sin(x) - 6\cos(x)$$

Section 5.4:

D1.
$$\mathbf{x} = [1, 0]^T$$

D2. 1.92753 radians.

Section 5.5

E1. (a) Since the function $\cos x \sin x$ is odd, we have $\langle \cos x, \sin x \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos x \sin x \, dx = 0$ So the two vectors are orthogonal.

$$\|\cos x\|^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 x \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (1 + \cos(2x)) \, dx \quad \text{by the double angle formula}$$

$$= \frac{1}{2\pi} |x + \frac{\sin(2x)}{2}|^{\pi} = \frac{1}{2\pi} (\pi - (-\pi)) = 1$$

A similar calculation applies for $\sin x$ by using the identity $\sin^2 x = \frac{1}{2}(1-\cos(2x))$. Both vectors have norm 1 and therefore they form an orthonormal set.

- (b) Since $\cos x$ and $\sin x$ are orthogonal we can use the Pythagorean Law to find the distance between them: $\|\sin x \cos x\|^2 = \|\sin x\|^2 + \|\cos x\|^2 = 1 + 1 = 2$ which gives $\|\sin x \cos x\| = \sqrt{2}$.
- (c) (i) By Corollary 5.5.3, since $\cos x$ and $\sin x$ form an orthonormal set on C[- π , π], the inner product $\langle f, g \rangle$ can be found by taking the scalar product of the coordinate vector of f with the coordinate vector of g: $\langle f, g \rangle = 5(-1) + (-2)(3) = -11$
 - (ii) From Parseval's formula: $||f|| = \sqrt{5^2 + (-2)^2} = \sqrt{29}$ and $||g|| = \sqrt{(-1)^2 + (3)^2} = \sqrt{10}$

E2.

- (a) $\langle 1,2x-1\rangle = \int_0^1 (2x-1) dx = x^2 x|_0^1 = 0$ Hence 1 and 2x-1 are orthogonal relative to this inner product.
- (b) $||1|| = \langle 1, 1 \rangle^{1/2} = \left(\int_0^1 1^2 dx \right)^{1/2} = 1$ $||2x - 1|| = \langle 2x - 1, 2x - 1 \rangle^{1/2} = \left(\int_0^1 (2x - 1)^2 dx \right)^{1/2} = 1/\sqrt{3}$
- (c) $p = \frac{4}{5}x + \frac{4}{15}$.
- E3. (a) Note that the vectors \mathbf{u}_1 and \mathbf{u}_2 are orthogonal, but not orthonormal, thus an orthonormal basis is:

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \left[\frac{3}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right] \qquad \mathbf{u}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left[\frac{-2}{\sqrt{94}}, \frac{3}{\sqrt{94}}, \frac{9}{\sqrt{94}}\right]$$
(b)
$$\mathbf{p} = \left[\frac{518}{47}, -\frac{448}{47}, -\frac{968}{47}\right]^{T} \qquad \qquad \mathbf{(c)} \text{ distance} = \|\mathbf{b} - \mathbf{p}\| = \sqrt{\frac{352}{47}}$$

E4. (a)
$$\langle x, y \rangle = 0$$
. (b) $||x|| = 3$.

E5.
$$\mathbf{w} = \frac{2}{7} \mathbf{v}_1 + \frac{1}{5} \mathbf{v}_2 - 9 \mathbf{v}_3$$

Section 5.6

F1.

(a) Possible answer:
$$\mathbf{x}_1 = [1, 0, -2]^T$$
 and $\mathbf{x}_2 = [0, 1, 1)]^T$.
(b) $\mathbf{u}_1 = \left[\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}}\right]^T$ $\mathbf{u}_2 = \left[\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right]^T$

F2.
$$A^{T}A \mathbf{x} = A^{T} \mathbf{b}$$

$$(QR)^{T}(QR) \mathbf{x} = (QR)^{T} \mathbf{b}$$

$$R^{T}Q^{T}QR \mathbf{x} = R^{T}Q^{T} \mathbf{b}$$

$$R^{T}R \mathbf{x} = R^{T}Q^{T} \mathbf{b} \text{ since } Q^{T}Q = I$$

$$R\mathbf{x} = Q^{T} \mathbf{b} \text{ since } R^{T} \text{ is nonsingular}$$

F3. (a) The QR decomposition is
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2/3 & -\sqrt{2}/6 \\ 1/3 & 4\sqrt{2}/6 \\ 2/3 & -\sqrt{2}/6 \end{bmatrix} \begin{bmatrix} 3 & 5/3 \\ 0 & \sqrt{2}/3 \end{bmatrix}$$

(b) The least-squares solution of
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 is the solution of $\mathbf{R}\mathbf{x} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}$ (see problem F2). We have $Q^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} 22 \\ -\sqrt{2} \end{bmatrix}$ so the

 $3x_1 + \frac{5}{3}x_2 = 22$ $\frac{\sqrt{2}}{3}x_2 = -\sqrt{2}$ Using back substitution we find the solution $\hat{\mathbf{x}} = [9, -3]^T$. system $\mathbf{R}\mathbf{x} = \mathbf{Q}^{\mathrm{T}}\mathbf{b}$ reduces to

F4:
$$\mathbf{u_1} = \frac{1}{5} [4, 2, 2, 1]^T$$
 $\mathbf{u_2} = \frac{1}{5} [1, -2, -2, 4]^T$ $\mathbf{u_3} = \left[0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right]^T$

F5:
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
 $R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{18} \\ 0 & \sqrt{6} & -\sqrt{6} \\ 0 & 0 & \sqrt{3} \end{bmatrix}$