2	0	0				
_))				

题号	1	2	3	4.1	4.2	4.3	4.4	Σ
得分								

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Fib(n)	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584
2^n	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192					

第1题 正误判断 2×8

- 1. **T F** 在对二进制串做匹配时,采用 next[]表比采用 BC[]表通常效率更高。
- 2. **T F** 所有叶节点深度一致的有根二叉树,必为满树。
- 3. **T F** 完全二叉树的子树,也一定是完全二叉树。
- 4. **T F** 由合法的先序遍历序列和中序遍历序列,可以唯一确定一棵二叉树。
- 5. T F 在 Huffman 算法过程中,权重小的内部节点必然早于权重大的内部节点被创建。
- 6. **T F** 由同一组互异关键码,按不同次序逐个插入而生成的BST必互异。
- 7. **T BST** 中新插入的节点,必是叶节点。
- 8. T F 在 AVL 树中删除节点之后若树高降低,则必然做过旋转调整。

第2题 多重选择 4×5

1. 【 】在()中,越深的节点必然越多。

A. 二叉树 B. AVL 树

C. 满二叉树

D. 完全二叉树 E.

E. 以上皆非

2. 【 】在包含 2010 个节点的 AVL 树中,最高与最低叶节点之间的深度差最大可达()。

A. 8

B. 9

C. 10

D. 11

E. 以上皆非

3. 【 】由6个节点组成的二叉树,若中序遍历序列为 ABCDEF,则不可能的后序遍历序列是(

A. CBEADF

B. ADFECB

C. ABDECF

D. BDACFE

E. 以上皆非

4. 【 】右图有可能是一棵刚做过 BST 的()操作,但尚未旋转调整的 AVL 树。

A. delete(2)

B. insert(3)

C. detele(4)

D. insert(5)

E. insert(8)

5. 【 】设 x 为某伸展树中的最大关键码,则在 find(x)过程中不可能实施()调整。

A. zig-zig(CW+CW)

B. zig-zag

C. zag-zig

D. zag-zag

E. 以上皆非

30240184, 2010年5月21日 姓名:

第3题 填空 4×6

- 1. 由 2010 个节点组成的完全二叉树,共有()个叶节点。
- 2. 由 5 个互异节点组成、先序遍历序列与层次遍历序列相同的 BST, 共有 () 棵。
- 3. 在由 2010 个节点组成的二叉树中,若单分支节点不超过 10 个,则对其做迭代式中序遍历时辅助栈的容量为()即足够。
- 4. 由 2010 节点组成的 AVL 树,最大高度可达()。
- 5. 在高度为 2010 的 AVL 树中删除一节点,至多可能造成 () 个节点失衡,至多需做 () 次 旋转调整。
- 6. 高度为 3 的 5 阶 B-树, 至多可存放() 个关键码, 至少需存放() 个。

第4题 计算、理解与分析

10 ×4

1. 分别计算以下模式串的 next[]表、改进的 next[]表以及 BC[]表

j	0	1	2	3	4	5	6
Pattern[]	В	A	R	В	A	R	A
next[]	-1	0	0	0	1	2	3
改进的 next[]	-1	0	0	-1	0	0	3
BC[]				В		R	A

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pattern[]	1	A	R	S	0	М	E	_	Т	А	Т	A	R	S	U	S
next[]	-1	0	0	0	0	0	0	0	0	1	2	1	2	3	4	0
改进的 next[]	-1	0	0	0	0	0	0	0	-1	0	2	0	0	0	4	0
BC[]					0	M	E	_			Т	A	R		U	S

2. 某二叉树有 A~G 共 7 个节点, 其先序遍历、后序遍历序列的部分内容如下, 试将其补全

先序遍历	E	С	В	D		F
后序遍历	В	A			G	

2 0 0		
-------	--	--

3. 按如下算法遍历二叉树 T, 试给出每次执行 PrintStack(S)的输出结果


```
StatusTraversal(Bintree T, Status (*Visit)(TElemType e)) {
   Stack* S = StackInit(-1);
   while (true) {
      GoAlongLeftBranch(S, T); if (StackEmpty(S)) break;
      PrintStack(S); //输出栈S中的内容
      T = (Bintree) Pop(S); Visit(T->data); T = RChild(T);
   }
   StackDestroy(S); return OK;
}
```

#	栈底 <> PrintStack()输出的栈 S 内容>	栈顶
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

4. 节点 x 的父节点和祖父节点分别记作 p 和 g。试在下图中补充 尽可能少的节点以构造一棵 AVL 树, 使得: 1) 在摘除 x 之后, p 失衡; 2) 经局部 双旋 调整之后, g 因失衡需再次实施 双旋 调整。请同时在右侧画出最终恢复平衡的树形。

