ЛАБОРАТОРНАЯ РАБОТА 5.11.8

ЗАКОН ВИДЕМАНА-ФРАНЦА

Цель работы: Экспериментальное определение постоянной Лоренца

ТЕОРИЯ

Постоянная Лоренца:

$$L = \frac{\kappa}{\sigma T}$$

Для определения проводимости измеряется сопротивление образца с помощью четырехконтактной схемы – проспускается известный ток и измеряется напряжение на образце. Учитывая что:

$$R = \frac{l}{\sigma S} \qquad \frac{P}{S} = \kappa \frac{\Delta T}{l}$$

Следует

$$L = \frac{PR}{\Delta T} \times \frac{1}{T}$$

УСТАНОВКА

Рисунок 1: Эскиз экспериментальной ячейки и схема электрических цепей экспериментальной ячейки. На схеме переключатели Вк1 и Вк2 показаны в положении измерения сопротивления.

ХОД РАБОТЫ

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ОБРАЗЦА

Измерим ВАХ и построим график.

Ток, A, ±0.001	Напряжение, +полярность, мВ, ±0.001	Напряжение, -полярность, мВ, ±0.001		
0.1	0.001	0.007		
0.2	0.005	0.012		
0.3	0.010	0.016		
0.4	0.015	0.021		
0.5	0.020	0.026		
0.6	0.025	0.031		
0.7	0.030	0.036		
0.8	0.034	0.040		
0.9	0.040	0.044		
1.0	0.044	0.050		

ТЕПЛОПРОВОДНОСТЬ ОБРАЗЦА

Проведем измерения разности температур на концах образца в зависимости от пропускаемой мощности, и найдем услоный «коэффициент теплопроводности», учитывающий размеры образца $A=\frac{\Delta T}{P}$. Тогда, $L=\frac{R}{A}\times\frac{1}{T}$

Время релаксации, мин	Ток на нагревателе образца, А, ±0.001	Напряжение на нагревателе образца, В, ±0.005	Напряжение на тремопаре образца, мВ	Ток через нагревате ль экрана, A, ±0.001	Напряжени е на термопаре м/д образцом и экраном, мВ ±0.001	Разность температур , К	Мощность , Вт	Ошибка Мощности, Вт
10	0.20	2.493	0.124	0.287	0.001	2.884	0.496	0.013
8	0.30	3.770	0.268	0.452	-0.001	6.233	1.131	0.019
6	0.40	5.015	0.495	0.603	0.000	11.512	2.006	0.026
5	0.50	6.278	0.766	0.783	0.001	17.814	3.139	0.032
15	0.35	4.400	0.396	0.532	0.001	9.209	1.540	0.022
10	0.25	3.141	0.203	0.369	0.001	4.721	0.785	0.016

Откуда, экспериментальное и табличное значения

$$L_{\mbox{\tiny 2KCII}} = (2.8 \pm 0.2) \times 10^{-8} \frac{\mbox{\footnotesize BT} \times \mbox{\footnotesize OM}}{\mbox{\footnotesize K}^2} \qquad \qquad L_{\mbox{\tiny Teop}} = 2.3 \times 10^{-8} \frac{\mbox{\footnotesize BT} \times \mbox{\footnotesize OM}}{\mbox{\footnotesize K}^2}$$