COMP245: Probability and Statistics 2016 - Problem Sheet 6

Continuous Random Variables

Q1) Suppose X is a continuous random variable with density function f which is symmetric around zero, so $\forall x \in \mathbb{R}, f(-x) = f(x)$.

Show that the cdf satisfies F(-x) = 1 - F(x).

- Q2) Electrons hit a circular plate with unit radius. Let X be the random variable representing the distance of a particle strike from the centre of the plate. Assuming that a particle is equally likely to strike anywhere on the plate,
 - (a) for 0 < r < 1 find P(X < r), and hence write down the full the cumulative distribution function of X, F_X ;
 - (b) find P(r < X < s), where r < s;
 - (c) find the probability density function for X, f_X .
 - (d) calculate the mean distance of a particle strike from the origin.
- Q3) Prove that the mean and variance of an $\text{Exp}(\lambda)$ random variable are $\frac{1}{\lambda}$ and $\frac{1}{\lambda^2}$ respectively.
- Q4) Let $X \sim \mathrm{U}(0,1)$. Find the cdf and hence the pdf of the transformed variable $Y = e^X$.
- Q5) Let $X \sim N(\mu, \sigma^2)$, and let $Y = \frac{X \mu}{\sigma}$. Using the results on transformations of variables, validate the claim in lectures that $Y \sim N(0, 1)$.
- Q6) Let X be a continuous random variable, with cdf $F_X(x)$ and pdf $f_X(x)$. Let Y = aX + b, where $a \neq 0, b \in \mathbb{R}$ are constants.
 - (a) Considering in turn the two cases a > 0 and a < 0, use the definition of a cdf to find expressions for the cdf of Y, $F_Y(y)$, in terms of F_X .
 - (b) Using the relationship between a pdf and its cdf, show that the pdf for Y is given by

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right).$$

- Q7) If 'area' refers to the area under the curve of the standard normal probability density function ϕ , find the value or values of z such that
 - (a) the area between 0 and z is 0.3770;
 - (b) the area to the left of z is 0.8621;
 - (c) the area between -1.5 and z is 0.0217.
- Q8) Find the area under the standard normal curve
 - (a) between z = 0 and z = 1.2;
 - (b) between z = -0.68 and z = 0;
 - (c) between z = -0.46 and z = 2.21;
 - (d) between z = 0.81 and z = 1.94;
 - (e) to the right of z = -1.28.