TP M3: Loi de force

Objectifs

Ce TP est consacré à l'étude mécanique d'un système. Dans un premier temps, on étudie la loi de force exercée par un ressort, de manière dynamique. On établit le portrait de phase et on s'intéresse à l'aspect énergétique du problème, en absence puis en présence de frottements. On étudie ensuite la loi de la force s'exerçant entre des aimants et on détermine l'énergie potentielle magnétique associée. À l'issue du TP, il s'agira de maîtriser la capacité suivante :

* Proposer un protocole expérimental permettant d'étudier une loi de force.

I. Présentation du matériel

Le matériel utilisé pour ce TP est :

- ★ une voiture CAPSTONE avec un support aimanté amovible pour frottement fluide;
- * un banc gradué métallique pour le mouvement de la voiture : repère angulaire, un support aimanté, deux supports pour fixer les aimants, et support pour inclinaison;
- * potence
- \star deux ressorts à fixer de part et d'autres de la voiture
- * une balance
- * un ordinateur muni du logiciel CAPSTONE et d'un adaptateur bluetooth.

II. Loi de force du ressort horizontal

II.1. Sans frottement

On utilise la voiture Capstone reliée à deux ressorts identiques fixés les deux supports. La position de la voiture est mesurée par le mouvement des roues (l'origine de la position étant fixée par le début de l'acquisition).

- Régler, la fréquence d'échantillonage pour le capteur de position et l'accéléromètre sur 50 Hz. Régler le déclenchement de l'acquisition lorsque la position augmente au dessus de +2mm en montant (voir fiche pratique). Ensuite déclencher l'acquisition, reculer la voiture d'environ 10 cm, et lâcher. Arrêter l'acquisition au bout de 3 secondes. On peut soit exporter les données en texte (Export Data ¹), soit les analyser directement avec le logiciel PASCO.
- \triangle Visualiser x(t), v(t) et a(t). Déterminer la période T des oscillations et évaluer l'incertitude. Mesurer la masse m de la voiture mobile et estimer la valeur de la constante de raideur k des ressorts ainsi que l'incertitude associée.

^{1.} Si on veut importer les données avec un autre logiciel, il faut modifier les premières lignes du fichier texte produit

 \triangle Superposer l'accélération $a_x(t)$ mesurée par l'accéléromètre de la voiture. Tracer la courbe $a_x(x)$. Commenter.

- △ Tracer le portrait de phase de l'oscillateur. Commenter.
- \mathcal{E}_{p} Tracer les courbes $\mathcal{E}_{p}(x)$, $\mathcal{E}_{c}(x)$ et $\mathcal{E}_{m}(x)$ (respectivement l'énergie potentielle élastique, l'énergie cinétique et l'énergie mécanique). Commenter.

Oscillations de grande amplitude

Se Comment pourrait-on tester l'éventuelle non-linéarité du système pour des oscillations de grande amplitude, à l'aide d'un tracé de spectre?

II.2. Avec des frottements fluides

- Fixer l'aimant amovible sur le chariot mobile afin de générer un freinage inductif qu'on modélisera par une force $\vec{f} = -\alpha \vec{v}$ (avec $\alpha > 0$).
- Lancer le mobile et réalisez l'acquisition du mouvement en choisissant un temps d'acquisition approprié.

III. Force magnétique entre aimants : détermination d'une loi de force inconnue.

III.1. Dispositif expérimental

- Enlever les ressorts et le support aimanté amovible.
- La voiture immobile, bien horizontale et loin de tout aimant, faire la mise à zéro du capteur de force.
- Placer sur le banc métallique le support pour potence et le support aimanté.

La potence sert à faire varier l'angle θ entre le banc et l'horizontale. On peut mesurer cet angle avec le fil à plomb fixé sur le banc.

III.2. Etude statique de la force F(x) de répulsion entre 2 aimants

Enlever la voiture du banc et incliné le rail d'un angle de 30°. Positionner la voiture sur le rail avec précaution, en plaçant les aimants fixés sur la voiture en regard des aimants fixés sur le banc. La voiture doit être immobile à sa position d'équilibre.

- \blacksquare Régler l'acquisition en mode « **Retenir sur commande** ». Préparer un tableau de 3 colonnes :
 - * Angle de la pente : « nouvelle donnée/ saisie par l'utilisateur » theta (en °)
 - * Distance entre les aimants : « nouvelle donnée/ saisie par l'utilisateur » d (en cm)
 - * Force mesurée par le capteur de force : Force (n)
- Lancer « **Prévisualiser** » puis faire varier θ par pas de -5° jusqu'à un angle de 5° . Pour chaque angle θ , s'assurer que la voiture est à sa position d'équilibre, mesurer d et θ sur le banc gradué et faire l'acquisition de la force F.
- \triangle Tracer ensuite la courbe $^2 \ln(-F)$ en fonction de $\ln d$ et en déduire que l'interaction entre les aimants est correctement modélisée par une fonction puissance 3 de la distance d.

III.3. Etude dynamique.

- Incliner le rail avec un angle θ quelconque compris entre 5° et 30°. Écarter la voiture de sa position d'équilibre et la lâcher sans vitesse initiale. Lancer l'acquisition temporelle.
- Tracer l'évolution de la position, de la vitesse et de l'accélération en fonction du temps.
- Tracer le portrait de phase de l'oscillateur.
- \triangle Établir l'expression théorique de l'énergie potentielle totale en fonction de la distance d entre les aimants et tracer son allure.
- ▲ Montrer que les oscillations à grande amplitude ne sont pas sinusoïdales ni symétriques par rapport à la position d'équilibre.

^{2.} Le capteur mesure la projection de la force sur son axe \vec{e}_x .

^{3.} L'exposant ainsi déterminé peut varier en fonction des aimants utilisés.

Loi de force pour un ressort vertical

Objectifs

I. Présentation du matériel

Le matériel utilisé pour ce TP est, par poste élève :

- * une webcam;
- * une potence avec noix et pince quatre doigts;
- * un chronomètre;
- ⋆ un grand réglet gradué vertical;
- * un chronomètre;
- ⋆ un ressort installé verticalement;
- \star un ensemble de plusieurs masses marquées sur une tige;
- * un écran;
- ⋆ un ordinateur muni des logiciels "Virtual Dub" et "Latis Pro" (on pourra aussi utiliser le logiciel tracker);

II. Etude statique

Vous disposez d'un axe vertical gradué sur lequel on peut fixer un ressort et d'un jeu de différentes masses.

- Proposer et mettre en œuvre un protocole expérimental permettant de vérifier la loi de force vue en cours.
- △ La loi de force est-elle linéaire par rapport à la déformation du ressort? Commenter.
- \triangle Estimer la constante de raideur k du ressort en précisant l'incertitude associée à la mesure. On identifiera les sources d'incertitudes.

III. Etude dynamique

- \blacksquare Proposer un protocole et mettre en œuvre un expérimental permettant de mesurer, sans analyse vidéo, la constante de raideur k lors d'une étude dynamique.
- △ Confronter les résultats expérimentaux à ceux de l'étude statique. Les deux mesures effectuées sont-elles compatibles?

IV. Acquisition du mouvement

De la même façon que dans la première partie du TP, vous allez acquérir une vidéo du mouvement d'une masse marquée au bout du ressort.

▲ La fréquence d'échantillonage de la caméra CCD est-elle suffisante pour acquérir correctement le mouvement souhaité?

- © Cadrer et éclairer convenablement l'ensemble masse ressort devant le réglet de manière à pouvoir mesurer correctement l'amplitude des oscillations.
- Démarrer l'acquisition. Décaler la masse marquée par rapport à la position d'équilibre d'une distance connue. Relâcher et arrêter l'acquisition après au moins 10 périodes (mesurées au paragraphe précédent). Si nécessaire augmenter le temps d'acquisition

V. Traitement de la vidéo

- △ Déterminer la position de la masse marquée en fonction du temps.
- 🙇 En déduire sa vitesse et son accélération en fonction du temps.
- △ Déterminer la périodes des oscillations.
- L'amplitude des oscillations a-t-elle un effet sur la période? Proposer et mettre en œuvre un protocole expérimental pour tester cette propriété du système masse-ressort.

VI. Ce qu'il faut retenir

Effectuer sur votre cahier de laboratoire un bilan de TP résumant :

- * les propriétés physiques qui ont été mises en évidence,
- * les lois physiques qui ont été démontrées ou utilisées,
- * les nouvelles fonctions des différents appareils auxquelles vous avez fait appel. Pour ces dernières, préciser leur rôle et les moyens de les activer.