Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Ciencias Segundo Semestre del 2022 Seminario de Sistemas 2 Profesor: Ing. Lui Alberto Vettorazzi España

Auxiliares: Sergio Lennin Gonzalez Solis Edi Yovani Tomas Reynoso 201503783

Practica 2

Pasos para hadoop

```
//--- we are going to run the container
sudo docker run --rm
                             -it -v Practica2:/source -p 50070-50080:50070-50080
sequenceig/hadoop-docker /etc/bootstrap.sh -bash
//--- checkout the file
ls
// we are going to create a folder
mkdir Practica2
// checkout the file
// let's copy the command in other console.
sudo
        docker
                          "/home/tomas/Documentos/Curso Semi2/Practica2/Correos.txt"
epic nobel:/Practica2
                       "/home/tomas/Documentos/Curso Semi2/Practica2/Puntuacion.txt"
       docker
                 ср
epic_nobel:/Practica2
                     "/home/tomas/Documentos/Curso Semi2/Practica2/WordCount.java"
      docker cp
sudo
epic nobel:/Practica2
// we go back to previous console.
// let's on folder Practica 2
cd Practica2
// we check the folder
// we go back to previous folder
cd ../
// Command to initialize the HADOOP_HOME variable
export HADOOP_HOME=/usr/local/hadoop
// we check the folder
```

Is \${HADOOP_HOME}

// Command to initialize the CLASSPATH variable

export

CLASSPATH="\$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core -2.7.0.jar:\$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.7.0.jar:\$HADOOP_HOME/share/hadoop/common/hadoop-common-2.7.0.jar:/Practica2/*:\$HADOOP_HOME/lib*"

// let's on folder Practica 2

cd Practica2

// we check the folder

Is

// Command to compile

javac -d . WordCount.java

// we are going to create a file manifest.

cat > manifest.txt

Main-class: WordCount //Saved with ctrl+d //verify the content of file cat manifest.txt //we create a file jar jar cfm WordCount.jar manifest.txt *.class // Verify ls // we create a folder with name input mkdir ~/input mkdir ~/output // let's copy the file at the folder. cp Correos.txt ~/input cp Puntuacion.txt ~/input Is ~/input // command to copy the files of input in the system of files of hadoop \${HADOOP HOME}/bin/hdfs dfs -copyFromLocal ~/input / // comand to verify the files let us copy at the sistem of hadoop \${HADOOP_HOME}/bin/hdfs dfs -ls /input // command to make the count of word \${HADOOP_HOME}/bin/hadoop jar WordCount.jar /input /output // command of output \${HADOOP_HOME}/bin/hdfs dfs -ls /output // comand to see the file of output \${HADOOP_HOME}/bin/hdfs dfs -cat /output/part-r-00000 // command to rename the file \${HADOOP HOME}/bin/hdfs dfs -mv /output/part-r-00000 /output/Resultado.txt // Command to see the file of output rename \${HADOOP HOME}/bin/hdfs dfs -cat /output/Resultado.txt //Command to copy the file of output to folder of output from root user home \${HADOOP_HOME}/bin/hdfs dfs -copyToLocal /output/Resultado.txt ~/output //Command to move the output file to Practica2 folder from container cp ~/output/Resultado.txt /Practica2 // Command to copy the output file from container to PC (use new console) docker epic_nobel:/Practica2/Resultado.txt sudo ср

/home/tomas/Documentos/Curso Semi2/Practica2

Capturas del Procedimiento

Descripción

En las imágenes se muestra todo el proceso que se realizó con los comandos, además se muestra una página web con los detalles de los archivos de salida y los archivos de entrada.

```
Starting sshd:

Starting namenodes on [05d61382700a]

Starting namenodes on [05d61382700a]

Starting namenodes on [05d61382700a]

Starting namenodes on [05d61382700a]

Starting starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-05d61382700a.out

Starting secondary namenodes [0.0.0.0]

.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-root-secondarynamenode-05d61382700a.out

starting yarn daemons

starting resourcemanager, logging to /usr/local/hadoop/logs/yarn--resourcemanager-05d61382700a.out

localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-05d61382700a.out

bash-4.1# Is

sont dev home lib64 mnt proc sbin source sys usr

soot etc lib media opt root selinux srv tmp var

bash-4.1# mkdir Practica2

bash-4.1# ls
        ash-4.1# MkOli Proctica2
ash-4.1# ls
ractica2 boot etc lib media opt root selinux srv tmp var
in dev home lib64 mnt proc sbin source sys usr
ash-4.1# cd Practica2
     ash-4.1# cd Practica2
ash-4.1# ls
ash-4.1# ls
ash-4.1# ls
ash-4.1# ls
ash-4.1# cd ../
ash-4.1# cd ../
ash-4.1# cd ../
ash-4.1# ls
ractica2 bin boot dev etc home lib lib64 media mnt opt proc root sbin selinux source srv sys tmp usr var
ash-4.1# cd Practica2
ash-4.1# cd Practica2
ash-4.1# ls
ash-4.1# ls
ash-4.1# ls
      orreos.txt Puntuacion.txt WordCount.java
ash-4.1# cd ../
ash-4.1# cd ../
ash-4.1# export HADOOP_HOME=/usr/local/hadoop
ash-4.1# ls
ractica2 bin boot dev etc home lib lib64 media mnt opt proc root sbin selinux source srv sys tmp usr var
ash-4.1# is ${HADOOP_HOME}
ICENSE.txt NOTICE.txt README.txt bin etc include input lib libexec logs sbin share
ash-4.1# export CLASSPATH="$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.0.jar:$HADOOP_HOME/share/hadoop/mapreduce/had
   oop-mapreduce-client-common-2.7.0.jar:SHADOOP_HOME/share/hadoop/common/hadoop-common-2.7.0.jar:/Practica2/*:SHADOOP_HOME/lib*"
bash-4.1# cd Practica2
bash-4.1# ls
lorreos.txt Puntuacion.txt WordCount.java
bash-4.1# javac -d . WordCount.javac -d . WordCount.java
     usrytocat/maddey,

' in type 'LimitedPrivate':

warning

wash-4.1# cat > manifest.txt

wash-4.1# cat manifest.txt
      pash-4.1# jar cfm WordCount.jar manifest.txt *.class
pash-4.1# ls
Correos.txt WordCount$IntSumReducer.class WordCount.jar manifest.txt
pash-4.1# ls
Puntuacion.txt WordCount$TokentzerMapper.class WordCount.jar manifest.txt
pash-4.1# cp Correo.txt ~/input
pash-4.1# cp Correo.txt ~/input
pash-4.1# cp Correo.txt -/input
pash-4.1# cp Correo.txt -/input
pash-4.1# ls ~/input
pash-4.1# ls ~/input
pash-4.1# ls ~/input
pash-4.1# ls ~/input
pash-4.1# s ~/input
pash-4.1# s
```

```
HDFS: Number of write operations—2

Job Counters

Launched map tasks=2

Launched reduce tasks=1

Data-local map tasks=2

Total time spent by all maps in occupied slots (ms)=19445

Total time spent by all reduces in occupied slots (ms)=5130

Total time spent by all map tasks (ms)=19445

Total time spent by all map tasks (ms)=5130

Total time spent by all reduce tasks (ms)=5130

Total time spent by all reduce tasks (ms)=5130

Total tocore-seconds taken by all map tasks=19445
                                             File System Counters

FILE: Number of bytes read=26299

FILE: Number of bytes written=397267

FILE: Number of read operations=0

FILE: Number of large read operations=0

HDFS: Number of write operations=0

HDFS: Number of bytes read=50000

HDFS: Number of bytes written=18637

HDFS: Number of read operations=9

HDFS: Number of large read operations=0

HDFS: Number of write operations=2

Job Counters
                                         HDFS: Number of large read operations=0
HDFS: Number of write operations=2

Job Counters

Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=19445
Total time spent by all reduces in occupied slots (ms)=5130
Total time spent by all reduce tasks (ms)=19445
Total time spent by all reduce tasks (ms)=5130
Total time spent by all reduce tasks =19445
Total vcore-seconds taken by all map tasks=19445
Total vcore-seconds taken by all reduce tasks=5130
Total megabyte-seconds taken by all reduce tasks=5130
Total megabyte-seconds taken by all reduce tasks=5130
Map-Reduce Framework
Map input records=13709
Map output bytes=104523
Map output materialized bytes=26305
Input split bytes=217
Combine input records=13709
Combine output records=1928
Reduce input groups=1923
Reduce input groups=1923
Reduce input records=1928
Reduce output records=1928
Reduce output records=1928
Reduce output records=1923
Spilled Records=3856
```

```
Total vcore-seconds taken by all reduce tasks=5130
Total negabyte-seconds taken by all nap tasks=19911680
Total negabyte-seconds taken by all reduce tasks=5253120

Map-Reduce Framework

Map input records=137

Map output petcrofs=13799

Map output bytes=104523

Map output bytes=104523

Map output naterialized bytes=26305
Input split bytes=217
Combine output records=13789
Reduce input groups=1923
Reduce shuffle bytes=26305
Reduce shuffle bytes=26305
Reduce output records=1928
Reduce output records=1928
Reduce output records=1923
Splied Records=3856
Shuffled Maps =2
Falled Shuffles=0
Merged Map outputs=2
Gotine elapsed (ns)=237
CPU time spent (ns)=4490
Physical nemory (bytes) snapshot=663838720
Virtual nemory (bytes) snapshot=2216423424
Total committed heap usage (bytes)=559939584

Shuffle Frors

Shuffle Frors
Rob. 10=0
CONNECTION=0
IN STORD-0
IN ST
```



```
Total vcore-seconds taken by all reduce tasks=5130
Total megabyte-seconds taken by all map tasks=19911680
Total megabyte-seconds taken by all reduce tasks=5253120
Map-Reduce Framework
Map input records=11
Map output records=13709
Map output materialized bytes=26305
Input split bytes=104523
Map output records=13709
Combine input records=13709
Combine output records=1928
Reduce input groups=1923
Reduce input groups=1923
Reduce input records=1928
Reduce output records=1928
Reduce output records=1923
Spilled Records=3856
Shuffled Maps = 2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=237
CPU time spent (ms)=4490
Physical memory (bytes) snapshot=663838720
Virtual memory (bytes) snapshot=216423424
Total committed heap usage (bytes)=559939584
Shuffle Errors
BAD ID=0
             Shuffle Errors

BAD_ID=0

CONNECTION=0

IO_ERROR=0

WRONG_LENGTH=0

WRONG_MEDUCE=0

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=49783

File Output Format Counters

Bytes Written=18637
bash-4.1#
rw-r--r-- 1 root supergroup
                                                                                                                18637 2022-10-04 21:56 /output/part-r-00000
pash-4.1# ${HADOOP_HOME}/bin/hdfs dfs -cat /output/part-r-00000
                         1386
L,000
                         1
1/2
                         1
LO
                         3
100-
                         1
L0am
                         2
L0am,
                         1
L0th
                         1
11
                         1
12
                         2
l2/1a
.
                         1
L2th
                         1
L50
L75.
L7th
L8
                         1
L8-19
                         1
L970
                         1
L:30
                         1
lst
                        2
Lst,
                        1084
2.5
20
                         3
200/night
                                                    1
2005.
                    1
2007.
                         1
2007my 1
2008.
                         1
20th
                         2
21
                         1
```

1

21/day 1

```
1084
2.5
                  1
                   3
200/night
2005. 1
                                      1
                  1
1
 2007.
2007my
                   1
2
1
 2008.
2008. 1
20th 2
21 1
21, 1
21/day 1
24 1
25 1
25. 1
250+/night,
28 1
29/night,
2nd 2
2x, 1
3 1255
                                      1
                                      1
2x,
3
                  3
1
1
1
1
 30.the
300+
38
38.
Bpm
Brd
                   2558
1* 2
1/23-5/1,
10 1
                                      1
 <del>1</del>5
                   1
1pm
1th
                   1
                   4
```


Browse Directory

Hadoop, 2014.

Browse Directory

Hadoop, 2014.

Browse Directory

Hadoop, 2014.

Conclusiones archivo	acerca	de los	resultados	de cada
Muestra el resultado o palabras que se repiten				

Conclusiones acerca del uso de Hadoop en BigData.

para simples solicitudes de información y problemas que se pueden dividir en unidades independientes, pero no es eficiente para realizar tareas analíticas iterativas e interactivas. MapReduce trabaja con muchos archivos. Como los nodos no se intercomunican salvo a través de procesos de clasificación y mezcla, los algoritmos iterativos requieren múltiples fases de mapeo-mezcla/clasificación-reducción para completarse. Esto da origen a múltiples archivos entre fases de MapReduce y no es eficiente para el cómputo analítico avanzado.