KA Contact Tracing

```
dat <- read_csv("KAtrace.csv", skip = 19)
dat$Date <- as.Date(dat$Date, "%d-%b")</pre>
```

Cleaning & summarizing Clusters variable

```
dat <- dat %>% group by(Cluster) %>% mutate(n cluster = n()) #Variable for number of
 cases in each cluster
cases_per_cluster <- dat %>% group_by(Cluster) %>% summarize(n_cluster = n()) %>% arr
ange(-n cluster) #Table for number of cases in each cluster
dat$origin <- ifelse(dat$n cluster < 20, "Under 20 cases", ifelse(dat$Cluster == "Inf</pre>
luenza like illness", "ILI", ifelse(dat$Cluster == "Severe Acute Respiratory Infectio
n", "SARI", ifelse(dat$Cluster == "TJ Congregation from 13th to 18th March in Delhi",
"TJ Congregation", ifelse(dat$Cluster == "Pharmaceutical Company in Nanjangud", "Phar
ma Co, Nanjangud", as.character(dat$Cluster))))))
dat$origin <- ifelse(dat$Cluster == "From Gujarat", "Domestic Travel", ifelse(dat$Clu</pre>
ster == "From Rajasthan", "Domestic Travel", ifelse(dat$Cluster == "From the Southern
States", "Domestic Travel", ifelse(dat$Cluster == "From Middle East", "International
 Travel",ifelse(dat$Cluster == "From United Kingdom", "International Travel",ifelse(d
at$Cluster == "From the rest of Europe", "International Travel", ifelse(dat$Cluster =
= "From USA", "International Travel", ifelse(dat$Cluster == "From South America", "In
ternational Travel", ifelse(dat$Cluster == "Second Generation Contact", "Others", as.c
haracter(dat$origin)))))))))
#Creating a cleaned up variable with information from `Clusters' for diagramming
```

Superspreading behaviour

How many cases confirmed and contact traced till July 7 caused secondary infections within the next two weeks (till July 21)

```
july7\_parent\_c \leftarrow dat %>% filter(Case \leftarrow 26815 & C == 1) # Collapsing C variable nrow(<math>july7\_parent\_c)
```

```
## [1] 1677
```

```
## [1] 1684
```

· Looking at cases that do not overlap in the two approaches

```
setdiff(july7_parent_c$Case, july7_parent_p$P)
```

```
## [1] 133 300 502 503 2091 2092 18248
```

```
setdiff(july7_parent_p$P, july7_parent_c$Case)
```

```
## [1] 124 421 423 424 426 427 536 848 1724 1852 3857 5823
## [13] 14329 25338
```

· Collapsing on P seems to work better

```
## Joining, by = "P"
```

[1] "1684 cases diagnosed and contact traced till July 7 caused secondary infections by July 21, 2020"

How many secondary infections did these 1684 cases cause

```
sum(july7_parent_p$secondary)
```

```
## [1] 5031
```

How many cases confirmed and contact traced till July 7 did NOT cause secondary infections within the next two weeks (till July 21)

Subset the data to approximate proportion who were contact traced

I assume that cases fulfilling all of the following criteria were *NOT* contact traced at all: * Cluster is Unknown * Reason is NA * C = 0 * P = 0

```
july21_traced <- dat %>% filter(Cluster != "Unknown" | !is.na(Reason) | C != 0 | P !=
0)
```

```
\#\# [1] "38077 out of 71068 cases were contact traced till July 21"
```

 Checking if this makes sense by recalculating number of parents that caused infections by July 5, should be same as above (a lower figure would indicate that I oversubsetted)

```
temp <- july21_traced %>% group_by(P) %>% summarize(secondary = n()) %>% filter(P <= 26815 & P != 0) # Collapsing P variable nrow(temp) #seems right
```

[1] 1684

Number of cases confirmed and traced by July 7 that did not cause other infections

```
july7_traced <- july21_traced %>% filter(Case <= 26815) # Number of cases confirmed a
nd traced by July 7
nrow(july7_traced)-nrow(july7_parent_p) # Number of cases confirmed and traced by Jul
y 7 that did not cause other infections</pre>
```

```
## [1] 16211
```

[1] "Of the 17895 cases that were confirmed by July 7 and contact traced 1684 caus ed secondary infections, while 16211 did not cause any secondary infections at all"

Average number of secondary infections caused by cases that do cause infections

mean_infections <- as.numeric(july7_parent_p %>% summarise(mean = mean(secondary)))
july7_parent_p %>% summarize(avg = mean(secondary), med = median(secondary))

```
## # A tibble: 1 x 2

## avg med

## <dbl> <dbl>

## 1 2.99 2
```

july7_parent_p %>% ggplot(aes(secondary)) + geom_histogram() + geom_vline(aes(xinterc
ept = mean_infections, color = "Mean"), linetype="dashed") + theme_classic() + xlab(
"Number of infections caused by each patient") + ylab("No. of COVID-19 patients that
 cause a secondary infection") + ggtitle("Distribution of number of infections cause
d")

```
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

28/07/2020 KA Contact Tracing


```
ggsave("secondary_hist.png")
```

```
## Saving 7 x 5 in image
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Number of cases that caused more than 10 secondary infections

```
x <- july7_parent_p %>% filter(secondary > 10)
paste(nrow(x), "cases caused 10 or more secondary infections")
```

[1] "69 cases caused 10 or more secondary infections"

% of cases with unknown P

March 9 - June 1

```
p <- dat %>% filter(Date < "2020-05-01") %>% group_by(P) %>% summarize(secondary = n
()) # number of secondary infections
x <- dat %>% filter(Date < "2020-05-01") %>% ungroup() %>% summarize(n = n()) # total
cases
```

[1] "Out of 563 cases confirmed by June 1, 219 (38.898756660746) had no contact history"

July 1 - July 21

```
p <- dat %>% group_by(P) %>% summarize(secondary = n()) # number of secondary infecti
ons
x <- dat %>% ungroup() %>% summarize(n = n()) # total cases
```

[1] "Out of 71068 cases confirmed by June 1, 65977 (92.8364383407441) had no contact history"

Visualization of change in cluster size over time

dat %>% filter(Cluster != "29-June Trace History Absent" & Cluster != "28-June Trace History Absent" & Cluster != "Second Gen eration Contact Absent" & Cluster != "Domestic Travel History Absent" & Cluster != "International Travel History Absent") %>% ggplot(aes(Date)) + geom_bar(position = "fil 1", aes(fill=origin), alpha = 0.8, color = "black", size = 0.1) + scale_fill_brewer (palette = "Spectral") + theme_classic() + theme(legend.position="bottom", legend.spacing = unit(0.4, "points"), legend.text = element_text(size = 6)) + ggtitle("Distrib ution of case origins in Karnataka, March 9 - July 21, 2020") + ylab("Proportion of cases confirmed daily")

Warning: Removed 2 rows containing non-finite values (stat_count).

28/07/2020 KA Contact Tracing

ggsave("clusters_stacked.png")

Saving 7 x 5 in image

Warning: Removed 2 rows containing non-finite values (stat_count).