Optimization Model for a SCRUM-Based Software Development Project

AI Analyst

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	5

1 Sets (Entities)

- Project = $\{p|p \text{ is a project}\}$, with attributes: id, name, project_start, project_end, description, but
- Team = $\{t|t \text{ is a team}\}$, with attributes: id, name, team_size, team_start, team_status, location,
- Worker = $\{w|w \text{ is a worker}\}$, with attributes: id, name, first_name, email, start_date, status, avail
- ullet Feature = $\{f|f \text{ is a feature}\}$, with attributes: id, title, description, status, priority, estimated _effort
- Skill = $\{s|s \text{ is a skill}\}$, with attributes: id, label, description, level, certified, category
- Role = $\{r|r \text{ is a role}\}$, with attributes: id, role_name, description, area_of_responsibility
- ProductOwner, ScrumMaster, ProductBacklog, Sprint, SprintPlanning, DailyScrum, SprintReview (Defined analogously)

2 Indices

- $p \in \text{Project}$
- $t \in \text{Team}$
- $w \in Worker$
- $f \in \text{Feature}$
- $s \in Skill$
- $us \in UserStory$
- $tsk \in Task$
- $bl \in Blocker$
- $sg \in SprintGoal$
- $vel \in Velocity$
- $sh \in Stakeholder$

3 Goals

• G0: maximize_team_availability - Maximize the overall availability of team members for the project.

Maximize
$$\sum_{w \in \text{Worker}} \text{availability}(w)$$

• G1: minimize_project_budget - Minimize the total budget spent on the project.

Minimize
$$budget(p) \quad \forall p \in Project$$

• **G2:** maximize_feature_priority - Maximize the number of high-priority features delivered.

Maximize
$$\sum_{f \in \text{Feature}} \text{priority}(f)$$

• **G3:** minimize _blocker _severity - Minimize the impact of blockers by focusing on high severity ones.

$$Minimize \sum_{bl \in Blocker} severity(bl)$$

• G4: maximize sprint goal achievement - Maximize the rate of successfully achieved sprint goals.

Maximize
$$\sum_{sg \in \text{SprintGoal}} \text{achievement_status}(sg)$$

• **G5:** maximize_velocity - Maximize the team's average velocity to improve throughput.

Maximize avg_story_points(
$$vel$$
) $\forall vel \in Velocity$

• **G6:** minimize_task_effort - Minimize the total effort required to complete all tasks.

$$\text{Minimize } \sum_{tsk \in \text{Task}} \text{effort}(tsk)$$

• G7: maximize_stakeholder_influence - Prioritize features for stakeholders with high influence.

• **G8:** minimize _sprint _duration - Minimize the duration of sprints to increase feedback frequency.

Minimize
$$(\text{end_date}(sp) - \text{start_date}(sp)) \quad \forall sp \in \text{Sprint}$$

4 Conditions

• C0: condition_team_cross_functional - Ensure the team possesses a diverse set of skills (cross-functional).

$$\sum_{s \in \text{Skill}} \text{level}(s) \ge \text{Threshold}_{\text{skills}} \quad \forall t \in \text{Team}$$

• C1: condition_scrum_master_experience - The assigned Scrum Master must have sufficient experience.

$$experience(sm) \ge Threshold_{exp} \quad \forall sm \in ScrumMaster$$

• C2: condition_user_story_acceptance - All user stories must meet their acceptance criteria before completion.

$$\operatorname{status}(us) = "Done" \implies \operatorname{acceptance} \operatorname{criteria}(us) = \operatorname{True} \quad \forall us \in \operatorname{UserStory}$$

• C3: condition_snapshot_test_status - The development snapshot must pass testing before release.

test status
$$(dev) = "Pass" \quad \forall dev \in DevelopmentSnapshot$$

• C4: condition_project_on_time - The project must not exceed its planned end date.

actual end date
$$(p) \leq \text{project}$$
 end $(p) \forall p \in \text{Project}$

• C5: condition_worker_certified - Critical tasks require workers with certified skills.

task type
$$(tsk)$$
 = "Critical" $\Longrightarrow \exists w \in \text{Worker}, s \in \text{Skill} : \text{certified}(s) = \text{True}$

• C6: condition_feature_audience_match - Features must be developed for the project's target audience.

```
target\_audience(f) \subseteq target\_audience(p) \quad \forall f \in Feature, p \in Project
```

• C7: condition_backlog_prioritized - The product backlog must be ordered by priority.

```
priority(item_i) \ge priority(item_{i+1}) \quad \forall i \in \{1, ..., number\_of\_entries-1\}
```

• C8: condition_retrospective_actions - Improvement actions from retrospectives must be documented.

improvement $actions(sre) \neq \emptyset \quad \forall sre \in SprintRetrospective$

5 Decision Variables

- DV0: $x_{w,tsk} \in \{0,1\}$ Binary decision to assign worker w to task tsk.
- DV1: $d_{sp} \in \mathbb{Z}^+$ The length of sprint sp in days, $d_{sp} \in [7, 30]$.
- DV2: $n_t \in \mathbb{Z}^+$ The number of workers assigned to team $t, n_t \in [3, 9]$.
- DV3: $pts_{us} \in Z^+$ The number of story points assigned to user story us, $pts_{us} \in [1, 20]$.
- DV4: $e_{tsk} \in Z^+$ The estimated effort for task tsk in hours, $e_{tsk} \in [1, 40]$.
- DV5: $pr_f \in Z^+$ The priority level of feature $f, pr_f \in [1, 5]$.
- DV6: $a_w \in R$ The percentage of time worker w is available for project work, $a_w \in [0.0, 1.0]$.
- DV7: $b_f \in \mathbb{R}^+$ The amount of budget allocated to feature $f, b_f \in [0.0, 1, 000, 000.0]$.
- DV8: $g_{sp} \in \{0,1\}$ Binary status indicating if the goal for sprint sp was met.
- DV9: $r_{bl} \in \{0,1\}$ Binary decision to allocate resources to resolve blocker bl.