

Crystal Oscillator

The MC12061 is for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and TTL outputs.

- Frequency Range = 2.0 to 20 MHz
- Temperature Range = 0 to + 70°C
- Single Supply Operation: +5.0 Vdc or -5.2 Vdc
- Three Outputs Available:
 - 1. Complementary Sine Wave (600 mVpp typ)
 - 2. Complementary MECL
 - 3. Single Ended TTL

Figure 1. Block Diagram

Note: 0.1 µF power supply pin bypass capacitors not shown.

MC12061

CRYSTAL OSCILLATOR

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12061P	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	Plastic

TYPICAL CIRCUIT CONFIGURATIONS

Note: 0.1 µF power supply pin bypass capacitors not shown.

Figure 2. Sine Wave Output

Figure 3. MTTL Output

Figure 4. MECL Output (+5.0 V Supply)

Figure 5. MECL Output (-5.2 V Supply)

CRYSTAL REQUIREMENTS

Note: Start-up stabilization time is a function of crystal series resistance. The lower the resistance, the faster the circuit stabilizes.

Characteristic	MC12061
Mode of Operation	Fundamental Series Resonance
Frequency Range	2.0 MHz — 20 MHz
Series Resistance, R1	Minimum at Fundamental
Maximum Effective Resistance R _{E(max)}	155 ohms

ELECTRICAL CHARACTERISTICS

			Test Limits										
		Pin Under	0,	°C		+25°C		+75	5°C	1			
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit			
Power Supply Drain Current	Icc	1	-	-	13	16	19	-	_	mAdc			
		1 11 16	- - -	- - -	18 - 13	23 3.0 16	28 4.0 19	- - -	- - -				
Input Current	linH	14 15	_ _	_ _	_ _	_ _	250 250	_ _	_ _	μAdc			
	linL	14 15	_ _	_ _	_ _	_ _	1.0 1.0	_ _	_ _	μAdc			
Differential Offset Voltage	ΔV	4 to 7 2 to 3	_ _	_ _	40 -200	_ 0	325 +200	_ _	_ _	mAdc			
Output Voltage Level	V _{out}	2 3	_ _	_ _	_ _	3.5 3.5	_ _	_ _		Vdc			
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	4.0 4.0	4.16 4.16	4.04 4.04	_ _	4.19 4.19	4.1 4.1	4.28 4.28	Vdc			
	V _{OH2}	10	2.4	_	2.4	_	_	2.4	_				
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	2.98 2.98	3.43 3.43	3.0 3.0	_ _	3.44 3.44	3.02 3.02	3.47 3.47	Vdc			
	V _{OL2}	10 10	_ _	0.5 0.5	_ _	_ _	0.5 0.5	_ _	0.5 0.5				
Logic '1' Threshold Voltage	VOHA	12 13	3.98 3.98	- -	4.02 4.02	_ _	_ _	4.08 4.08		Vdc			
Logic '0' Threshold Voltage	VOLA	12 13	_ _	3.45 3.45	- -	_ _	3.46 3.46	- -	3.49 3.49	Vdc			
Output Short Circuit Current	los	10	20	60	20	_	60	20	60	mAdc			

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2 \text{ Vdc}$ and $V_{CC} = 0$.

ELECTRICAL CHARACTERISTICS (continued)

	TEST VOLTAGE/CURRENT VALUES								
					Volt	s			
	@ Test Temp	st Temperature V _{IHmax} V _{ILmin} V _{IHAmin} V _{ILAmax} V _{IHT} V _{CC}							
		0°C	4.16	3.19	3.86	3.51	4.0	4.75	
		+25°C	4.19	3.21	3.90	3.52	4.0	4.75	
		+75°C	4.28	3.23	3.96	3.55	4.0	4.75	
		Pin Under	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BELC	w	
Characteristic	Symbol	Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IHT}	V _{CCL}	Gnd
Power Supply Drain Current	ICC	1	-	-	_	-	-	-	8
		1 11 16	- 14 -	– 15 –	- - -	- - -	- - -	- - -	8 8,9 8
Input Current	linH	14 15	14 15	15 14	_ _	- -	_ _	_ _	8 8
	l _{inL}	14 15	15 14	_ _	_ _	-	_ _	_ _	8,14 8,15
Differential Offset Voltage	ΔV	4 to 7 2 to 3	-	_ _	_ _	-	5,6 4	_ _	8 -
Output Voltage Level	Vout	2 3	-	_ _	_ _	-	4 4	_ _	8 8
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	14 15	15 14	_ _	-	- -	_ _	8 8
	V _{OH2}	10	15	14	_	-	-	11,16	8,9
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	15 14	14 15	_ _	-	_ _	_ _	8 8
	V _{OL2}	10 10	14 14	15 15	_ _	- -	_ _	11,16 -	8,9 8,9
Logic '1' Threshold Voltage	VOHA	12 13	- -	<u>-</u>	14 15	15 14	<u>-</u> -	_ _	8 8
Logic '0' Threshold Voltage	VOLA	12 13	- -	- -	15 14	14 15	- -	_ _	8 8
Output Short Circuit Current	los	10	15	14	-	_	_	11,16	8,9,10

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2 \text{Vdc}$ and $V_{CC} = 0$.

ELECTRICAL CHARACTERISTICS (continued)

			TEST VOLTAGE/CURRENT VALUES							
			٧	olts		mA				
	@ Test Tem	perature	VCC	VCCH	loL	Іон	կլ			
		0°C	5.0	5.25	16	-0.4	-2.5			
		+25°C	5.0	5.25	16	-0.4	-2.5			
		+75°C	5.0	5.25	16	-0.4	-2.5			
		Pin Under	TEST	VOLTAGE API	PLIED TO PIN	S LISTED BE	LOW			
Characteristic	Symbol	Test	Vcс	v _{ссн}	l _{OL}	Іон	I _Ι L	Gnd		
Power Supply Drain Current	Icc	1	1	-	-	-	-	8		
		1 11 16	1 11,16 16	- - -	- - -	- - -	- - -	8 8,9 8		
Input Current	linH	14 15	16 16	- -	- -	<u>-</u> -	- -	8 8		
	linL	14 15	16 16	- -	- -	- -	_ _	8,14 8,15		
Differential Offset Voltage	ΔV	4 to 7 2 to 3	1 -	_ _	- -	- -	_ _	8 –		
Output Voltage Level	V _{out}	2 3	1 1	_ _	- -	- -	_ _	8 8		
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	16 16	_ _	- -	- -	12 13	8 8		
	V _{OH2}	10	-	-	_	10	_	8,9		
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	16 16	_ _	- -	- -	12 13	8 8		
	V _{OL2}	10 10	-	_ 11,16	10 10	-	_ _	8,9 8,9		
Logic '1' Threshold Voltage	VOHA	12 13	16 16	- -	- -	<u>-</u> -	12 13	8 8		
Logic '0' Threshold Voltage	VOLA	12 13	16 16	- -	- -	- -	12 13	8 8		
Output Short Circuit Current	los	10	-	-	-	-	-	8,9,10		

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2 \text{Vdc}$ and $V_{CC} = 0$.

Figure 6. AC Characteristics - MECL and TTL Outputs

		Test Limits							TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:						
		Pin Under	0	·C	-	+ 25°C	;	+7	5°C						
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	Pulse In	Pulse Out	+2.0 Vdc	-3.0 Vdc	Gnd
Propagation Delay	t15+10+ t15-10- t15+12- t15-12+ t15+13+ t15-13-	10 10 12 12 13 13	_ _ _ _ _ _	22 19 5.2 5.0 4.8 5.0	_ _ _ _ _	17 12 4.3 3.7 4.0 4.0	25 18 5.5 5.2 5.0 5.0	_ _ _ _ _ _	27 18 5.8 5.2 5.2 5.2	ns	15	10 10 12 12 13 13	11,16	8,9	14
Rise Time	t ₁₂₊ t ₁₃₊	12 13	_ _	4.0 4.0	_	3.0 3.0	4.0 4.0	_	4.4 4.4	ns ns	15 15	12 13	11,16 11,16	8,9 8,9	14 14
Fall Time	t ₁₂₋ t ₁₃₋	12 13	_	4.0 4.0	_	3.0 3.0	4.0 4.0	_	4.0 4.0	ns ns	15 15	12 13	11,16 11,16	8,9 8,9	14 14

	Pin Under	+25°C TO PINS LIST		_		
Characteristic	Test	Min	Тур	Unit	+2.0 Vdc	-3.0 Vdc
Sine Wave Amplitude						
	2	650	750	mVp-p	1	8,9
	3	650	750			

Figure 7. AC Test Circuit - Sine Wave Output

All output cables to the scope are equal lengths of 50 Ω coaxial cable. All unused cables must be terminated with a 50 Ω \pm 1% resistor to ground.

 $450\,\Omega$ resistor and the scope termination impedance constitute a 10:1 attenuator probe.

Crystal — Reeves Hoffman Series Mode,

Series Resistance Minimum at Fundamental

f = 10 MHz

 $R_E = 5 \Omega$

*RS = 15 k Ω is inserted only for test purposes. When used with the above specified crystal, it guarantees oscillation with any crystal which has an equivalent series resistance \leq 155 Ω

 $R_{\rm D}$: will improve start up problems value: 200–500 Ω

MC12061 OPERATING CHARACTERISTICS

The MC12061 consists of three basic sections: an oscillator with AGC and two translators (NO TAG). Buffered complementary sine wave outputs are available from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL and/or TTL.

Series mode crystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive element can be inserted in series with the crystal — an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the crystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming components then affects overall oscillator performance.

The MC12061 is designed to operate from a single supply — either +5.0 Vdc or -5.2 Vdc. Although each translator has separate V_{CC} and V_{EE} supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate V_{EE} pin from the TTL translator helps minimize transient disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to V_{EE} (pin 8). With the translators not powered, supply current drain is typically reduced from 42 mA to 23 mA for the MC12061.

Frequency Stability

Output frequency of different oscillator circuits (of a given device type number) will vary somewhat when used with a given test setup. However, the variation should be within approximately ±0.001% from unit to unit.

Frequency variations with temperature (independent of the crystal, which is held at 25°C) are small — about – 0.08 ppm/°C for MC12061 operating at 8.0 MHz (see NO TAG).

Signal Characteristics

The sine wave outputs at either pin 2 or pin 3 will typically range from 800 mV_{p-p} (no load) to 500 mV_{p-p} (120 ohm ac load). Approximately 500 mV_{p-p} can be provided across 50 ohms by slightly increasing the dc current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than 0.0003% when going from a high-impedance load (1 megohm, 15 pF) to the 50 ohm load of Figure 9. The dc voltage level at pin 2 or 3 is nominally 3.5 Vdc with $V_{CC} = +5.0 \text{ Vdc}$.

Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The harmonic content is approximately load independent except that the higher harmonic levels

(greater than the fifth) are increased when the MECL translator is being driven.

Typically, the MECL outputs (pins 12 and 13) will drive up to five gates, as defined in NO TAG, and the TTL output (pin 10) will drive up to ten gates, as defined in NO TAG.

Noise Characteristics

Noise level evaluation of the sine wave outputs using the circuit of NO TAG, with operation at or 9.0 MHz, indicates the following characteristics:

- Noise floor (200 kHz from oscillator center frequency) is approximately -122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions and/or translator operation.
- Close-in noise (100 Hz from oscillator center frequency) is approximately –88 dB when referenced to a 1.0 Hz bandwidth.

Figure 8. Frequency Variation Due to Temperature

Figure 9. Driving Low Impedance Loads

^{*} See text under signal characteristics.

Figure 10. MECL Translator Load Capability

Figure 11. TTL Translator Load Capability

Figure 12. Noise Measurement Test Circuit

ANALYZER SETTING									
Measurement	Sweep	Bandwidth	Video Filter						
Noise Floor	50 kHz/div	10 kHz	10 Hz						
Close-In Noise	20 kHz/div	10 Hz	10 Hz						

Figure 13. Circuit Schematic

			1000 TTL Output
RESISTOR	MC12061		_ Ĕ
R1 (2 Places)	200 Ω	_	
R2 (2 Places)	400 Ω	ıslato	
R3 (2 Places)	2 kΩ	MECL to TTL Translator	
		to T	⁴ / ₄ 1 / ₄
		MECL	
			-
			MECL 120 Output 150 Ou
			20 Output
		5	
		nslatc	
		Sine to MECL Translator	
		o MEC	
		Sine t	
			4 5 4 5 4
			• • • • • • • • • • • • • • • • • • • •
			Sine Wave Output
			Sine Wave Ou
			ž , ŭ
		O	
		Amplifier / AGC	
		nplifie	
		Ā	
			\$\frac{\tilde{k}}{\tilde{k}} \\ \tilde{k} \
	- -		A
		Ď	
		Oscillator	Orystal Coystal
		O	
		to	
		Voltage Regulator	
		tage F	
		<u> </u> 0	

OUTLINE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R SEATING PLANE _T_ \oplus 0.25 (0.010) M T A M

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	A 0.740 0.7		18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015 0.021		0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola specificarly discretized in radius and an inability, including without ilmitation consequential or incidental damages. Typical parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 - US & Canada ONLY 1-800-774-1848 Motorola Fax Back System - http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: http://motorola.com/sps/

MC12061/D

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.