Ansys Mechanical Beyond the Basics

Module 04 Workshop: Enhanced Mesh Techniques

Release 2021 R2

Use this guide to work on the Journal Bearing model.

- Open Archive: "Shaft_Bearings_WS04_Start.wbpz"
- Open Mechanical

Review the existing Mesh settings:

Defaults

- Physics Preference = Mechanical
- Element Size = 5.0 mm

Sizing Objects

- Body Sizing 1 (Housings): Element Size = 3 mm
- Body Sizing 2 Bearings: Element Size = 1.5 mm
- Body Sizing 3 Grounds: Element Size = 6 mm
- Body Sizing 4 Rings: Element Size = 1 mm
- Body Sizing 5 Pulley: Element Size = 2 mm

Generate the mesh on the model using the existing mesh settings, and note the mesh connectivity between the Pulleys and the Shaft resulting from the Shared Topology Shaft part:

Confirm sharing of topology on the Shaft part by using the Explode tool; note the Shaft body and Pulley bodies explode as 1 connected part:

Select the **Geometry** Branch

 Explode the assembly using the Explode slider in the Display tab

 You can also use the Edge Coloring tool to review geometry connections

() Reset

Edg ■□ By Body Color

■■ Black

By Connection

View bad quality elements:

- In details of Mesh: Quality—Mesh
 Metric = Element Quality
- Click Controls in Mesh Metrics window
- Set Y-Axis Max to 100
- Close the Y-Axis Option dialog to display the Mesh Quality histogram

View the locations of the bad quality elements:

- Select individual bars on the graph to display only elements of that Element Quality
- Set Mesh Metric = None when finished

We will refine or modify the mesh on the following bodies:

- BearingsHousingsBased on the review of bad quality elements
- Pulley → Based on the presence of wedges in the body
- Shaft This part is our primary interest, so we'll refine the mesh to produce at least a few elements along a diameter and (thus) more accurate results. This is particularly important because the shaft is subjected to bending, and we'll need several elements along a diameter to portray bending accurately and to resolve the variation of bending stress on a cross-section.

Define the following settings:

- 2 Body Sizings on the Housings. Use Spheres of Influence. Select each housing body shown below, right, and set Definition Type to Sphere of Influence. Use Radius and Element Size shown below.
- The definition of coordinate systems at each refinement location is required for sphere of influence controls; these are already defined as Coordinate Systems 3 and 4.

Define the following settings:

- A **Tetrahedrons, Patch Conforming** method on the Pulleys

Define the following settings:

- A **Body Sizing** of 4 mm on the Shaft

Generate Mesh

- Review the generated mesh
- Review the Mesh Quality Statistics and compare it to the previous generated mesh.

Interrogate the mesh for purposes of determining node count and approximating degrees of freedom and resulting memory requirements for the solution

- Mesh \rightarrow Statistics \rightarrow Nodes
- Node count \cong 430,000
- 3 DOF per node ≅ 1,320,000 DOF

- 10-20 GB RAM / 1 M DOF
- This model will require a minimum of 20 GB RAM to solve in-core

- The newly-generated mesh may alter contact detection, as contact detection is based on the mesh, not on the solid geometry
- Therefore, it is a good practice to regenerate the Initial Contact Results after mesh generation and before solution
- Are these results acceptable? Why or why not?
- The contact region highlighted in yellow is detected as open. This is not problematic for the re-solution since it is a nonlinear contact—its status can change during the re-solution.

Name	Contact Side	Type	Status	Number Contacting	Penetration (mm)	Gap (mm)	Geometric Penetration (mm)	Geometric Gap
Bonded - Bearing\Bearing To Housing\Housing	Contact	Bonded	Closed	1797.	3.7471e-014	0.	1.0872e-003	1.2832e-003
Bonded - Bearing\Bearing To Housing\Housing	Target	Bonded	Inactive	N/A	N/A	N/A	N/A	N/A
Frictional - Bearing \Bearing To Ring \Ring	Contact	Frictional	Inactive	N/A	N/A	N/A	N/A	N/A
Frictional - Bearing \Bearing To Ring \Ring	Target	Frictional	Closed	57.	3.5527e-015	0.	3.5527e-015	2.366e-030
Bonded - Bearing\Bearing To Shaft\Component4\Shaft	Contact	Bonded	Closed	795.	1.8869e-015	0.	0.	0.25883
Bonded - Bearing\Bearing To Shaft\Component4\Shaft	Target	Bonded	Inactive	N/A	N/A	N/A	N/A	N/A
Frictionless - Housing\Housing To Ground\Ground	Contact	Frictionless	Closed	448.	1.4211e-014	0.	1.4211e-014	1.0819e-029
Frictionless - Housing\Housing To Ground\Ground	Target	Frictionless	Inactive	N/A	N/A	N/A	N/A	N/A
Bonded - Housing\Housing To Bearing\Bearing	Contact	Bonded	Inactive	N/A	N/A	N/A	N/A	N/A
Bonded - Housing\Housing To Bearing\Bearing	Target	Bonded	Closed	1437.	7.5676e-014	0.	0.27126	0.13543
Frictionless - Housing\Housing To Ground\Ground	Contact	Frictionless	Closed	448.	1.4211e-014	0.	1.4211e-014	1.6394e-029
Frictionless - Housing\Housing To Ground\Ground	Target	Frictionless	Inactive	N/A	N/A	N/A	N/A	N/A
Bonded - Ring\Ring To Shaft\Component4\Shaft	Contact	Bonded	Closed	73.	3.5527e-015	0.	9.0441e-006	0.14
Bonded - Ring\Ring To Shaft\Component4\Shaft	Target	Bonded	Inactive	N/A	N/A	N/A	N/A	N/A
Frictional - Ring\Ring To Bearing\Bearing	Contact	Frictional	Closed	55.	5.6843e-014	0.	5.6843e-014	1.5558e-028
Frictional - Ring\Ring To Bearing\Bearing	Target	Frictional	Inactive	N/A	N/A	N/A	N/A	N/A
Bonded - Ring\Ring To Shaft\Component4\Shaft	Contact	Bonded	Closed	75.	2.8422e-014	0.	9.6032e-006	0.14

Save Project for use later if desired.

Ansys