50.007 Machine Learning

Lecture 4 Regression

Recap

Loss Functions

• Empirical risk: $R_n(\theta) = \frac{1}{n} \sum_{\text{data }(x,y)} \text{Loss}(y(\theta^T x))$

Hinge loss:

$$Loss_h(z) = \max\{1 - z, 0\}$$

CONVEX!

Penalize larger mistakes more. Penalize near-mistakes, i.e. $0 \le z \le 1$.

Stochastic Gradient Descent

- 1. Initialize the **weight** $(\theta^{(0)} = 0)$.
- 2. Select $t \in \{1, ..., n\}$ at random
- If $(\theta^{(k)} \cdot x^{(t)}) \le 1$, then update the weight

$$\theta^{(k+1)} = \theta^{(k)} + \eta_k y^{(t)} x^{(t)}$$

MOLX (1-2,0)

3. Repeat Step (2) until stopping criterion is met. (e.g. when improvement in $R_n(\theta)$ is small enough)

Machine Learning

Algorithms that improve their **performance** at some **task** with **experience** – Tom Mitchell (1998)

Machine Learning

- > Supervised Learning
 - > Classification
 - > Regression
- Task. Find function $f: \mathbb{R}^d \to \mathbb{R}$ such that $y \approx f(x; \theta)$
- Experience. Training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$
- **Performance.** Prediction error $(y f(x; \theta))$ on test data

Training data

$$\mathcal{S}_n = \left\{ \left(x^{(t)} y^{(t)} \right) \mid t = 1, \dots, n \right\}$$

- Features/Inputs $\underline{x^{(t)} = \left(x_1^{(t)}, \dots, x_d^{(t)}\right)^{\mathsf{T}}}$ Response/Output $y^{(t)} \in \mathbb{R}$

Model (or Hypothesis Class)(F)

Each f is a predictor or hypothesis

Set of *linear* functions f: $\mathbb{R}^d \to \mathbb{R}$

$$f(x; \theta, \theta_0) = \theta \cdot x = \theta_d x_d + \dots + \theta_1 x_1 + \theta_0 = \theta^{\mathsf{T}} x + \theta_0$$

Model Parameters

$$\theta \in \mathbb{R}^d$$
, $\theta_0 \in \mathbb{R}$

Least Square Loss

Loss Function Loss
$$(z) = \frac{1}{2}z^2 + \frac{1}{2}(y^{(t)} - (\theta \cdot x^{(t)}))^2$$
 Squared error. Penalize big error CONVEX!!

Penalize big errors more heavily.

Empirical Risk

$$R_{1}(\theta; x, y) = \operatorname{Loss}\left(y^{(t)} - (\theta. x^{(t)})\right)$$

$$R_{n}(\theta; S_{n}) = \frac{1}{n} \sigma_{(x,y) \in S_{n}} R_{1}(\theta; x, y)$$

$$= \frac{1}{n} \sigma_{(x,y) \in S_{n}} \left(\frac{1}{2} \left(y^{(t)} - (\theta. x^{(t)})\right)^{2}\right)$$

Point loss

Average loss

The training loss is the average of the point losses.

Risk = "Expected Loss" Empirical = "of the Data"

Empirical Risk and Least Squares Criterion

Training Loss/Objective
$$R_n(\theta) = \frac{1}{n} \sum_{t=1}^n \text{Loss}(y^{(t)} - \theta \cdot x^{(t)}) = \frac{1}{n} \sum_{t=1}^n (y^{(t)} - \theta \cdot x^{(t)})^2 / 2$$

Training Algorithm

Find predictor $f \in F$ that minimizes

The test loss and training loss can be different.

Empirical Risk and Least Squares Criterion

Test Loss/Objective

$$R_{n'}^{test}(\theta) = \frac{1}{|Sn'|} \sum_{t=n+1}^{n+n'} (y^{(t)} - \theta \cdot x^{(t)})^2 / 2$$

Given a predictor f, we use the test loss to measure how well it generalizes to new data.

Training and prediction

Assumption. Test data and training data are identically distributed.

Generalization

The goal of machine learning is to find a predictor $f \in F$ that generalizes well, i.e. that predicts well on test data $S_{n'}$.

Types of errors

OVER fit • Estimation error (variance):

Caused due to small/noisy dataset

- Structural error (bias): White it
 Caused due to small set of predictors, F
- The two errors are cyclic, e.g. attempting to reduce structural errors with noisy data can lead to high estimation error.
- We need to find a balance between the two errors.

Under and Overfitting

Model Selection

Overfitting. If model F is too big, then $F \in F$ performs

• well on training data, but poorly on test data.

Underfitting. If model F is too small, then $f \in F$ performs

poorly on training data, and poorly on test data.

Finding a model with the right size is called model selection.

Optimization

Gradient Descent

• Use gradient descent to minimize $R_n(\theta)$

$$\nabla_{\theta} R_n(\theta) = \left[\frac{\partial R_n(\theta)}{\partial \theta_1}, \dots, \frac{\partial R_n(\theta)}{\partial \theta_d} \right]^T$$

- Positive gradient points in the direction where $R_n(\theta)$ increases.
- Need to update the weight in the opposite direction.

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k \nabla_{\theta} R_n(\theta)_{\theta = \theta^{(k)}}$$

Gradient Descent

Empirical Risk

$$R_n(\theta) = \frac{1}{n} \sum_{t=1}^n \text{Loss}(\underline{y^{(t)} - \theta \cdot x^{(t)}}) = \frac{1}{n} \sum_{t=1}^n (y^{(t)} - \theta \cdot x^{(t)})^2 / 2$$

Partial Derivative

$$\nabla \theta(y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = (y^{(t)} - \theta \cdot x^{(t)}) \nabla_{\theta}(y^{(t)} - \theta \cdot x^{(t)}) = (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 = ($$

Update of weight

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k \nabla_{\theta} R_n(\theta)_{\theta = \theta^{(k)}}$$

$$\theta^{(k+1)} = \theta^{(k)} + (\eta_k) y^{(t)} - \theta \cdot x^{(t)} x^{(t)}$$

Update rule for batch gradient descent

Update rule for stochastic gradient descent

Stochastic Gradient Descent

- 1. Initialize the **weight** $(\theta^{(0)} = 0)$.
- 2. Select $t \in \{1, ..., n\}$ at random

$$\theta^{(k+1)} = \theta^{(k)} + \eta_k (y^{(t)} - \theta \cdot x^{(t)}) x^{(t)}$$

3.Repeat Step (2) until stopping criterion is met. (e.g. when improvement in $R_n(\theta)$ is small enough)

Closed Form Solution

Minimize empirical risk directly by setting gradient to zero.

$$\nabla R_n(\theta)_{\theta=\hat{\theta}} = \frac{1}{n} \sum_{t=1}^n \nabla_{\theta} \left\{ (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 \right\}_{|\theta=\hat{\theta}}$$

$$= \frac{1}{n} \sum_{t=1}^n \left\{ -(y^{(t)} - \hat{\theta} \cdot x^{(t)}) x^{(t)} \right\}$$

$$= -\frac{1}{n} \sum_{t=1}^n y^{(t)} x^{(t)} + \frac{1}{n} \sum_{t=1}^n (\hat{\theta} \cdot x^{(t)}) x^{(t)}$$

$$= -\frac{1}{n} \sum_{t=1}^n y^{(t)} x^{(t)} + \frac{1}{n} \sum_{t=1}^n x^{(t)} (x^{(t)})^T \hat{\theta}$$

$$= -b + A \hat{\theta} = 0$$

Closed Form Solution

• If A is invertible $(n \ge d)$, we can find the weight as below

Regularization

Ridge Regression

How do we ensure that $\theta_i = 0$ when feature x_i is irrelevant? Pick simplest model that explains data \rightarrow generalization

Ridge Regression

Pressure to simplify model

Pressure to fit data

Ridge Regression

Training Algorithms

Ridge Regression

$$J_{n,\lambda}(\theta) = \frac{1}{n} \sigma_{(x,y) \in \mathcal{S}_n} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2 + \frac{\lambda}{2} \|\theta\|^2$$

Gradient

$$\nabla J_{n,\lambda}(\theta) = \nabla_{\theta} \left\{ \frac{\lambda}{2} \|\theta\|^{2} + (y^{(t)} - \theta \cdot x^{(t)})^{2} / 2 \right\}_{|\theta = \theta^{(k)}|}$$

$$\nabla J_{n,\lambda}(\theta) = \lambda \theta^{(k)} - (y^{(t)} - \theta^{(k)} \cdot x^{(t)}) x^{(t)}$$

$$\theta^{(k+1)} = \theta^{k} - \eta_{k} \nabla J_{n,\lambda}(\theta)$$

$$\theta^{(k+1)} = (1 - \lambda \eta_{k}) \theta^{(k)} + \eta_{k} (y^{(t)} - \theta \cdot x^{(t)}) x^{(t)}$$

$$\nabla J_{n,\lambda}(\theta) = \lambda \theta^{(k)} - (y^{(t)} - \theta^{(k)} \cdot x^{(t)}) x^{(t)}$$

Gradient Descent

$$\theta^{(k+1)} = \theta^k - \eta_k V_{J_{n,\lambda}}(\theta)$$

$$\theta^{(k+1)} = (1 - \lambda \eta_k)\theta^{(k)} + \eta_k(y^{(t)} - \theta \cdot x^{(t)})x^{(t)}$$

Without regulation, e.g., $\lambda = 0$, this shrinkage factor equals 1

Training Algorithms

Ridge Regression

$$J_{n,\lambda}(\theta) = \frac{1}{n} \sigma_{(x,y) \in S_n} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2 + \frac{\lambda}{2} ||\theta||^2$$

Gradient

$$\nabla J_{n,\lambda}(\theta) = \lambda \theta + \frac{1}{n} (X^{\mathsf{T}} X) \theta - \frac{1}{n} X^{\mathsf{T}} Y$$

Exact Solution

$$\nabla J_{n,\lambda}(\hat{\theta}) = 0 \qquad \Leftrightarrow \qquad \lambda \hat{\theta} + \frac{1}{n}(X^{\top}X) \hat{\theta} = \frac{1}{n}X^{\top}Y$$

$$\Leftrightarrow \qquad \hat{\theta} = (n\lambda I) + X^{\top}X)^{-1}X^{\top}Y$$

This matrix is always invertible when $\lambda > 0$.

Training Loss vs Test Loss

Training Loss

$$J_{n,\lambda}(\theta; \mathcal{S}_n) = \frac{1}{n} \sigma_{(x,y) \in \mathcal{S}_n} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2 + \left[\frac{\lambda}{2} \|\theta\|^2 \right]$$

Test Loss/Error

$$\mathcal{R}(\hat{\theta}; \mathcal{S}_{n'}) = \frac{1}{|s_{n'}|} \sum_{(x,y) \in \mathcal{S}_{n'}} \frac{1}{2} (y - \hat{\theta}^{\mathsf{T}} x)^2$$

Training Error

$$\mathcal{R}(\hat{\theta}; \mathcal{S}_n) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \frac{1}{2} (y - \hat{\theta}^{\mathsf{T}} x)^2$$

The *training error* is the test loss applied to the training set, and it may be different from the training loss.

Effect of Regularization

Picking Hyperparameters

- The regularization parameter λ is an example of a *hyperparameter*, which affects the model complexity.
- We don't usually have access to the test data. How do we know if the value of λ minimizes the test loss?
- The solution is to create a *validation* data set, as a proxy to the test data, and to compute the *validation loss*.

Validation Set

Split the data into

- Test set $S_{n'}$ For evaluating, reporting performance at the end
- Training set S_n For training optimal parameters in a model
- Validation set \mathcal{S}_{val} For model selection, e.g. picking λ in ridge regression. Acts as a proxy for test set.

Validation Loss

The validation loss is the test loss applied to the validation set.

Example. Ridge Regression

$$\mathcal{R}(\theta; \mathcal{S}_{n'}) = \frac{1}{|\mathcal{S}_{n'}|} \sigma_{(x,y) \in \mathcal{S}_{n'}} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2$$

$$\mathcal{R}(\theta; \mathcal{S}_{\text{val}}) = \frac{1}{|s_{val}|} \sigma_{(x,y) \in \mathcal{S}_{\text{val}}} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^{2}$$

Model Selection

