

Задача с проверкой. Умножение матриц 1

Пусть определены два линейных отображения: $f:\mathbb{R}^n o\mathbb{R}^m$ и $g:\mathbb{R}^m o\mathbb{R}^k$.

Их композицией называется отображение из \mathbb{R}^n в \mathbb{R}^k и обозначается $g\circ f$. Действует $g\circ f$ на любом векторе $ec{x}\in\mathbb{R}^n$ так:

- 1. сначала применяем f к x и получаем вектор $f(ec{x}) \in \mathbb{R}^m$
- 2. затем применяем к полученному вектору g и получаем вектор $g(f(ec{x})) \in \mathbb{R}^k$

Вектор $g(f(ec{x})) \in \mathbb{R}^k$ и называется результатом действия $g \circ f$ на $ec{x}$.

Докажите, что композиция двух линейных преобразований линейна. Другими словами, докажите, что для преобразования $g\circ f$ выполнены два условия линейности.

Подсказка. Воспользуйтесь условиями линейности для f и g.

Комментарий. Мы пользуемся тем, что пространство, в которое бьёт f, совпадает с пространством, из которого бьёт g. Если бы это было не так, то композиция была бы не определена – мы бы просто не смогли применить g к вектору $f(\vec{x})$.

Выберите все подходящие ответы из списка

```
Пусть f:\mathbb{R}^6 \to \mathbb{R}^5, \ g:\mathbb{R}^7 \to \mathbb{R}^6 — линейные отображения, тогда g\circ f —линейное отображение из \mathbb{R}^5 в \mathbb{R}^7. Пусть f:\mathbb{R}^5 \to \mathbb{R}^3, \ g:\mathbb{R}^3 \to \mathbb{R}^5 — линейные отображения, тогда f\circ g — линейное отображение из \mathbb{R}^3 в \mathbb{R}^3. Пусть f:\mathbb{R}^2 \to \mathbb{R}^4, \ g:\mathbb{R}^4 \to \mathbb{R}^2 — линейные отображения, тогда g\circ f — линейное отображение из \mathbb{R}^2 в \mathbb{R}^2. Пусть f:\mathbb{R} \to \mathbb{R}^2, \ g:\mathbb{R} \to \mathbb{R}^4 — линейные отображения, тогда f\circ g — линейное отображение из \mathbb{R} в \mathbb{R}.
```

Что называть произведением двух матриц?

Пусть определены два линейных отображения: $f:\mathbb{R}^n o \mathbb{R}^m$ и $g:\mathbb{R}^m o \mathbb{R}^k$. Пусть отображение f задано матрицей A, а отображение g задано матрицей B.

Посмотрим на отображение $g\circ f:\mathbb{R}^n o\mathbb{R}^k.$

- 1. Во-первых, $(g \circ f)(\vec{x}) = g(f(\vec{x})) = g(A(\vec{x})) = B(A(\vec{x})).$
- 2. Во-вторых, на прошлом шаге мы доказали, что отображение $g\circ f$ линейно. А значит, как и любое линейное преобразование, $g\circ f$ задаётся какой-то матрицей.

Из пункта 1 видно, что матрицу преобразования $g\circ f$ естественно обозначать парой символов BA. Называть эту матрицу мы будем произведением матрицы B и матрицы A.

На следующих шагах мы научимся вычислять коэффициенты матрицы BA по коэффициентам матриц A и B

Размер

Для начала давайте определимся с размером матрицы BA.

 $f:\mathbb{R}^n o\mathbb{R}^m$, поэтому у A будет m строк и n столбцов. Будем писать это короче: A имеет размер (m,n).

 $g:\mathbb{R}^m o\mathbb{R}^k$, поэтому B имеет размер (k,m) (k строк, m столбцов)

Чему равен размер матрицы BA? Напишите ответ внутри скобок: сначала количество строк матрицы BA, после этого запятая, затем количество столбцов. Например, ответ может выглядеть так: (n,m). Число пробелов роли не играет.

Подсказка. Посмотрите, из какого пространства в какое бьёт отображение, задаваемое матрицей BA.

Напишите текст

Первый столбец матрицы BA

Зададим матрицу A размера m на n и матрицу B размера k на m. Вот так:

$$A:=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \ B:=egin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \ b_{21} & b_{22} & \dots & b_{2m} \ dots & dots & \ddots & dots \ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

На этом шаге мы найдём все коэффициенты первого столбца матрицы BA из коэффициентов матриц A и B. Вспомним этот шаг: j-ый столбец матрицы есть результат действия этой матрицы на вектор \vec{e}_j . Давайте смотреть на случай j=1. То есть найдём первый столбец матрицы BA, подействовав матрицей BA на \vec{e}_1 .

Как мы помним, $(BA)\vec{e}_1=B(A(\vec{e}_1))$ – так мы определяли действие матрицы BA на векторе. Поэтому для начала мы найдём $A(\vec{e}_1)$. Вспомнив и применив правило "строка на столбец", вот что мы получим:

$$A(\vec{e}_1) = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix} = egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix}$$

Комментарий. Мы получили первый столбец матрицы A, что неудивительно.

Теперь найдём $(BA)(\vec{e}_1)$, опять же применив правило "строка на столбец":

$$(BA)(\vec{e}_1) := B(A(\vec{e}_1)) = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} = \begin{pmatrix} b_{11}a_{11} + b_{12}a_{21} + \dots + b_{1m}a_{m1} \\ b_{21}a_{11} + b_{22}a_{21} + \dots + b_{2m}a_{m1} \\ \vdots \\ b_{k1}a_{11} + b_{k2}a_{21} + \dots + b_{km}a_{m1} \end{pmatrix}$$

Советуем задержаться на этой формуле на минуту-другую, самостоятельно убедившись, что мы нигде в ней не ошиблись.

Как мы помним, полученный вектор $(BA)(\vec{e}_1)$ – это первый столбец матрицы BA. Тем самым

- ullet на 1-ом месте в 1-ом столбце матрицы BA стоит произведение 1-ой строки B и 1-ого столбца A
- ullet на 2-ом месте 1-ого столбца матрицы BA стоит произведение 2-ой строки B и 1-ого столбца A

_ :

ullet на k-ом месте 1-ого столбца матрицы BA стоит произведение k-ой строки B и 1-ого столбца A

Записав произведения строк на столбцы в виде сумм, мы можем переформулировать наш ответ так:

$$(BA)(ec{e}_1) = egin{pmatrix} \sum\limits_{i=1}^m \ b_{1i}a_{i1} \ \sum\limits_{i=1}^m \ b_{2i}a_{i1} \ dots \ \sum\limits_{i=1}^m \ b_{ki}a_{i1} \end{pmatrix}$$

Ответ запишите в виде ((1), (2), (3), (4)).

Напишите текст

Задача. Умножение матриц 2

На этом шаге мы просим вас провести аналогичные рассуждения уже для произвольного j, а не для j=1:

- ullet Найдите j-ый столбец матрицы BA
- ullet Покажите, что на i-ом месте в j-ом столбце матрицы BA стоит произведение i-ой строки B и j-ого столбца A.
- ullet Запишите это произведение строки на столбец при помощи знака суммы \sum .

Подсказка. Аналогично предыдущему шагу посмотрите, куда BA отправляет вектор $ec{e}_j$.

Комментарий. Да, это муторные вычисления с кучей индексов, но один раз их сделать стоит. После этого возникает понимание, почему матрицы умножают "строка на столбец". Это гораздо полезнее, чем просто заученная формула.

Ответ запишите в виде ((1), (2), (3), (4)).

Напишите текст

Умножение матриц

Итак, на i-ом месте в j-ом столбце произведения двух матриц стоит произведение i-ой строки первой матрицы и j-ого столбца второй матрицы. Можно использовать формулировку с немного другими словами:

на пересечении i-ой строки и j-ого столбца произведения двух матриц стоит произведение i-ой строки первой матрицы и j-ого столбца второй матрицы

Пример 1

Давайте вычислим произведение матриц $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ и $\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Обе матрицы имеют размер 2 на 2, поэтому и их произведение имеет размер 2 на 2. Обозначим их произведение за $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

- На 1-ом месте в 1-ом столбце произведения стоит произведение 1-ой строки первой матрицы и 1-ого столбца второй матрицы, то есть $c_{11} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \end{pmatrix} = 1 \cdot 5 + 2 \cdot 7 = 19$.
- На 2-ом месте в 1-ом столбце произведения стоит произведение 2-ой строки первой матрицы и 1-ого столбца второй матрицы, то есть $c_{21}=\ (3\ 4) {5 \choose 7}=3\cdot 5+4\cdot 7=43.$
- На 1-ом месте во 2-ом столбце произведения стоит произведение 1-ой строки первой матрицы и 2-ого столбца второй матрицы, то есть $c_{12}=\ \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \end{pmatrix} = 1 \cdot 6 + 2 \cdot 8 = 22.$
- На 2-ом месте во 2-ом столбце произведения стоит произведение 2-ой строки первой матрицы и 2-ого столбца второй матрицы, то есть $c_{22}=\begin{pmatrix} 3 & 4 \end{pmatrix}\begin{pmatrix} 6 \\ 8 \end{pmatrix}=3\cdot 6+4\cdot 8=50.$

Тем самым:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

Пример 2

Давайте умножим матрицу размера 3 на 4 на матрицу размера 4 на 2:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 3 & 0 & -4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix}$$

Напомним, что если мы умножаем матрицу размера k на m на матрицу размера m на n, то получится матрица размера k на n. То есть в нашем случае получится матрица k на k (так как k=3, m=4, n=2). Мы не будем выписывать вычисления для всех k коэффициентов полученной матрицы, ограничившись одним.

• На 3-ем месте во 2-ом столбце произведения стоит произведение 3-ой строки первой матрицы и 2-ого столбца второй матрицы,

то есть
$$\begin{pmatrix} 0 & 3 & 0 & -4 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \\ 10 \\ 12 \end{pmatrix} = 0 \cdot 6 + 3 \, \cdot 8 + 0 \cdot 10 - 4 \cdot 12 = -24.$$

Вот ответ:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 3 & 0 & -4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 11 & 12 \\ -23 & -24 \end{pmatrix}$$

$$\begin{pmatrix}2&1\\0&1\end{pmatrix}\begin{pmatrix}4&-7\\7&57\end{pmatrix}=\begin{pmatrix}c_{11}&c_{12}\\c_{21}&c_{22}\end{pmatrix}$$

Найдите числа c_{11} , c_{12} , c_{21} и c_{22} .

Сопоставьте значения из двух списков

Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2)— строка вашей матрицы. Число пробелов роли не играет.

Напишите текст

Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2)— строка вашей матрицы. Число пробелов роли не играет.

Напишите текст

Вычислите матрицу произведения $\begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$ $\begin{pmatrix} -3 & 2 & -3 \end{pmatrix}$.

Пример 1. $\begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ — композиция отображения из $\mathbb R$ в $\mathbb R^2$ и отображения из $\mathbb R^2$ в $\mathbb R$. Следовательно, это отображение из $\mathbb R$ в $\mathbb R$, задаваемое матрицей $\begin{pmatrix} 13 \end{pmatrix}$, то есть просто числом 13.

Пример 2. $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 1 \end{pmatrix}$ — композиция отображения из \mathbb{R}^2 в \mathbb{R} и отображения из \mathbb{R} в \mathbb{R}^2 . Следовательно, это отображение из \mathbb{R}^2 в \mathbb{R}^2 , задаваемое квадратной матрицей $\begin{pmatrix} 12 & 4 \\ 3 & 1 \end{pmatrix}$ размера 2 на 2.

Ответ запишите в виде ((1, 2), (3, 4)), где (1, 2) – строка вашей матрицы. Число пробелов роли не играет.

Напишите текст

Вспомним примеры матриц со второго шага предыдущего урока. Мы поняли, что матрица $A=\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ задаёт линейное отображение, которое растягивает все векторы в 3 раза, а матрица $B=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ задаёт линейное отображение, которое проецирует все векторы на ось OX. Посчитайте, как будет выглядеть матрица BA, и подумайте, как геометрически описать соответствующее отображение.

Проверка. Введите матрицу BA в поле ответа, в виде ((1, 2), (3, 4))

Напишите текст