20. Typy a charakteris. rozhrání (Konstrukční uspořádání PC)

- **O1** Rozhraní EIDE
 - **a)** Vznik, Složení, Komunikační módy, Principy zapojování
- **Q2** Rozhraní Seriál ATA
 - **a)** Typy, Charakteristika, Rychlosti
- NCQ, Staggered Spin-Up, Port multiplier, Port selektor, Hot swap
- **04** eSATA, mSATA, M.2
 - a) porovnání o přenosové rychlosti o konektory
- **05** Technologie AHCI a NVMe
- **06** Rozhraní USB
 - **a)** Verze, Konektory, Přenosové rychlosti, Kompatibilita

Rozhraní a jejich role

Rozhraní slouží k zajištění **přenosu dat a komunikace mezi zařízeními v počítači**. Mezi hlavní rozhraní pro připojení úložišť patří **PATA** (*IDE*) a **EIDE**, které byly později **nahrazeny SATA**.

Rozhraní PATA (IDE)

PATA (Parallel ATA, původně označováno jako IDE – Integrated Drive Electronics) je paralelní 16bitové rozhraní pro připojení pevných disků a optických mechanik k základní desce.

- Používá **40žilový plochý kabel** (tzv. "kšanda").
- Maximálně dvě zařízení na jednom kabelu (Master/Slave).
- Pro připojení se využívají napájecí konektory Molex.
- Přenosová rychlost závisí na použité verzi ATA.
- Výpočet přenosové rychlosti (příklad pro ATA 100):
 - Datová šířka: 16 bitů = 2 bajty
 - Efektivní frekvence: 25 MHz (DDR zdvojený přenos) → 50 MHz
 - Výpočet: 50 MHz × 2 B = 100 MB/s
- Nevýhody PATA:
 - Paralelní přenos dat způsobuje rušení a interferenci na vysokých frekvencích.
 - o Omezená délka kabelů (max. 46 cm).
 - Nutnost jumperů pro manuální nastavení master/slave.

Verze ATA	Max. kapacita	Přenosová rychlost	Další vlastnosti
ATA 1	512 MB	PIO 0-2, DMA 0-2	První standard
ATA 2 (EIDE)	8 GB	PIO 0-4, DMA 0-2	Rozšíření kapacity
ATA 3	128 GB	PIO 0-4, DMA 0-2	Podpora SMART (Self-Monitoring)
ATA 4	128 GB	UDMA 0-2 Podpora ATAPI CD-ROM	
ATA 5	128 GB	UDMA 0-4 (66 MB/s) 80žilový kabel pro UDMA 4+	
ATA 6	144 PB	UDMA 0-5 (100 MB/s)	LBA 48bit addressing
ATA 7	144 PB	UDMA 0-6 (133 MB/s)	SATA 1.0 jako součást standardu

Rozhraní EIDE (Enhanced IDE)

EIDE (Enhanced Integrated Drive Electronics) je **rozšířená verze IDE** (ATA-2) vyvinutá firmou **Western Digital**, která:

- Zvyšuje přenosové rychlosti oproti standardnímu IDE.
- Přidává podporu **DMA a ATAPI** zařízení (např. CD-ROM mechaniky).
- Rozšiřuje maximální kapacitu disků.

Komunikační módy EIDE:

- 1. PIO (Programmed Input/Output) Přenos dat přes procesor, vysoké zatížení CPU.
- 2. DMA (Direct Memory Access) Přímý přenos dat do paměti, nižší zatížení CPU.

IDE kabely a připojení:

- 40žilový kabel starší standard, přenosová rychlost do 33 MB/s.
- **80žilový kabel** nutný pro **UDMA 4** a vyšší, **snižuje** elektromagnetické **rušení** (každý druhý vodič je zemnící).
- IDE konektory:
 - Napájecí konektor (Molex).
 - Jumpery určují, zda je disk Master/Slave.
- Master-Slave Cable Select:
 - BIOS určuje hlavní a podřízené zařízení podle pozice na kabelu:
 - Černý konektor → Master
 - Šedý konektor → Slave
 - Modrý konektor → Připojení na základní desku

Rozhraní FDD (Floppy Disk Drive)

FDD je **rozhraní pro připojení disketových mechanik** (floppy disků) k počítači. Dříve bylo široce používáno pro **ukládání malého množství dat**, ale dnes je **již zastaralé**.

- Používá **34pinový kabel** pro přenos dat mezi počítačem a disketovou mechanikou.
- Přenosová rychlost: Velmi nízká, obvykle 500 KB/s.
- Disketové mechaniky byly používány především k zálohám a instalacím software před nástupem CD/DVD a USB médií.

Rozhraní SCSI (Small Computer System Interface)

SCSI je vysokorychlostní paralelní rozhraní, které se používá především pro připojení disků, tiskáren a dalších periferií ve serverech a pracovních stanicích. Podporuje až 15 zařízení na jednom rozhraní.

- Typy a verze SCSI:
 - o SCSI je známé pro svou vysokou flexibilitu a rozšiřitelnost.
 - Ultra320 SCSI přenosová rychlost až 320 MB/s.
 - Ultra640 SCSI přenosová rychlost až 640 MB/s.
 - (Číslo ve verzi udává maximální přenosovou rychlost v MB/s.)
- Přednosti SCSI:
 - Podpora více zařízení na jednom kabelu.
 - o Nízká latence a vysoká stabilita přenosu.
 - o Rozšířený adresovací prostor, což je ideální pro datová centra.
- Nevýhody SCSI:
 - Vyšší cena oproti alternativám jako IDE nebo SATA.
 - o Komplexita konfigurace a zapojení

Rozhraní SATA (Serial ATA)

SATA je moderní sériové rozhraní pro připojení pevného disku, SSD nebo optických mechanik. V porovnání s PATA přináší významné výhody v podobě vyšší přenosové rychlosti, nižšího elektromagnetického rušení a tenčích kabelů.

• Výhody SATA:

- Používá 1bitovou datovou šířku, což snižuje šířku kabelu a umožňuje vyšší frekvence přenosu.
- o Větší flexibilita a jednoduchost v zapojení, než u paralelního PATA.
- Možnost zvýšit frekvenci rozhraní, což dovoluje přenášet vyšší množství dat sériovým způsobem.

• Verze SATA:

- SATA I (SATA/150)
 - Maximální rychlost: **150 MB/s** (1,5 Gb/s)
 - Používá 10bitové kódování pro přenos dat.
 - Frekvence rozhraní: **1500 MHz** (1 bit na takt).

SATA II (SATA/300)

- Maximální rychlost: 300 MB/s
- Vylepšená verze SATA I, s nižšími latencemi a lepšími vlastnostmi pro dohled nad přenosem dat.

SATA III (SATA/600)

- Maximální rychlost: 600 MB/s
- Nejnovější verze, která podporuje SSD disky a jejich vysoké přenosové rychlosti.

Rozhraní eSATA (External SATA)

eSATA je verze SATA určená pro **externí zařízení**, která nabízí **plnou kompatibilitu** s **interními SATA disky** a poskytuje jejich plný výkon i v externím prostředí.

• Charakteristika eSATA:

- Nízké zatížení CPU během přenosu dat (na rozdíl od USB 2.0).
- Podpora SMART pro sledování zdraví disků.
- Konektor eSATA je robustnější než interní SATA, což umožňuje časté připojování a odpojování.
- Zarovnání konektoru je optimalizováno pro více zasunutí (až 500 zasunutí oproti běžnému SATA s 50 zasunutí).
- Maximální délka kabelu: Až 2 metry.

• Výhody eSATA:

- Poskytuje výkon SATA pro externí disky, což je výhodné pro velkokapacitní přenosy.
- Vyšší spolehlivost než u USB nebo IEEE1394 (FireWire).

Rozhraní mSATA (Mini SATA)

mSATA je **miniaturizovaná verze SATA**, která byla oznámena v roce 2009. Používá se hlavně pro **malé zařízení jako jsou laptopy**, **tablety** nebo **ultratenké PC**.

Charakteristika mSATA:

- Stejný výkon jako SATA (přenosové rychlosti jsou 300 MB/s pro mSATA II a 600 MB/s pro mSATA III).
- Rozdíl spočívá v **menší velikosti konektoru**, což je ideální pro kompaktní zařízení.

SATA Express

- Kombinuje výhody SATA a PCI Express do jednoho rozhraní.
- Teoretická rychlost 1 GB/s jedním směrem díky PCIe linkám.
- Každý konektor SATA Express obsahuje:
 - **Dva SATA** 6 Gb/s porty
 - Dvě linky PCI Express
- Pro **komunikaci disku se systémem** je nutný speciální **SATA Express kabel**, který umožňuje připojení buď přes SATA, nebo PCIe.
- Technologie se neuchytila a je dnes považována za mrtvou, protože ji plně nahradil slot M.2.

SATA M.2

- Moderní a univerzální **rozhraní pro SSD disky**, které se postupně stalo standardem.
- Podporuje čtveřici PCIe linek, dvojici SATA 6 Gb/s kanálů, USB a PCM audio.
- K rozpoznání konkrétních funkcí je nutné klíčování konektoru (různé typy klíčů B, M apod.).
- Významně vyšší rychlosti než SATA Express, především díky přímému propojení s PCIe sběrnicí.

Druh	Maximální rychlost	
SATA I (včetně eSATA)	1,5 Gb/s (150 MB/s)	
SATA 3 (včetně eSATA)	3,0 Gb/s (300 MB/s)	
SATA 6 (včetně eSATA)	6,0 Gb/s (600 MB/s)	
M.2 SATA a mSATA	Stejná jako SATA 3 & 6	
M.2 PCIe (přes SATA)	1,5 Gb/s (150 MB/s)	
M.2 PCIe (přes NVMe)	3,5 Gb/s (3500 MB/s)	

Technologie SATA II a SATA III

SATA II a SATA III přinesly významné technologické pokroky, které zvyšují výkon, efektivitu a spolehlivost. NCQ zlepšuje práci s daty, Hot Swap umožňuje snadnou výměnu disků, Staggered Spin-Up chrání napájecí zdroj, Port Selector zajišťuje redundanci a Port Multiplier umožňuje rozšíření úložiště.

- Native Command Queuing (NCQ)
 - o Optimalizace řazení požadavků na čtení/zápis dat.
 - o Nechává řadič disku rozhodnout o nejefektivnějším pořadí operací.
 - Minimalizuje počet otáček ploten a přesunů hlaviček, čímž zvyšuje rychlost a snižuje opotřebení.
 - Výrazné zlepšení výkonu při náhodném čtení/zápisu oproti starším SATA technologiím.
 - Použitelné pouze u pevných disků (HDD), u SSD nemá smysl kvůli rozdílnému způsobu práce s daty.

Hot Swap

- Umožňuje připojit nebo odpojit disk za chodu počítače, aniž by bylo nutné jej restartovat.
- o Operační systém disk rozpozná automaticky a může s ním ihned pracovat.
- o Vyžaduje podporu ze strany základní desky a řadiče.
- Důležité pro servery a datová úložiště, kde je třeba rychle vyměňovat disky bez výpadku systému.

Staggered Spin-Up

- Postupné rozběhnutí disků po startu počítače.
- o Minimalizuje okamžité zatížení napájecího zdroje, když se rozbíhá více HDD současně.
- Snižuje riziko přetížení zdroje při startu, což je klíčové v serverových řešeních s více disky.

Port Selector

- o Umožňuje připojit jeden disk ke dvěma řadičům.
- Zajišťuje redundanci pokud jeden řadič selže, druhý převezme kontrolu a zajistí dostupnost dat.
- o Klíčová funkce pro datová centra a servery, kde je třeba minimalizovat riziko výpadku.

Port Multiplier

- Umožňuje připojit více disků k jednomu řadiči SATA.
- Řadič dokáže obsloužit **několik disků najednou**, což zlepšuje rozšiřitelnost úložného systému.
- Efektivní v NAS systémech nebo jiných úložištích s omezeným počtem SATA portů.

Technologie AHCI (Advanced Host Controller Interface)

AHCI je hardwarové rozhraní, které umožňuje moderní komunikaci mezi softwarem a SATA zařízeními.

• Funkce AHCI:

- Je to mezivrstva mezi čipsetem a SATA diskem, která řídí operace disků na úrovni, kterou starší PATA řadiče nedokázaly.
- Podporuje pokročilé funkce SATA, jako NCQ a Hot Swap, což umožňuje vyšší výkon a flexibilitu při práci s disky.
- o Nejde o součást standardu SATA, ale často je s ním používán pro zlepšení výkonu.

• Režimy a zpětná kompatibilita:

- SATA řadiče mohou pracovat ve třech režimech:
 - IDE režim → emuluje starší rozhraní PATA (omezená podpora, max. 4 zařízení).
 - AHCI režim → plná podpora moderních funkcí SATA.
 - RAID režim → umožňuje spojení více disků do pole pro vyšší výkon či redundanci.
- o PCI IDE podporuje hlavní a vedlejší kanál s maximálně dvěma zařízeními na kanál.

Technologie NVMe (Non-Volatile Memory Express)

NVMe je **moderní rozhraní pro SSD disky**, které využívají **flash paměť**. Bylo navrženo speciálně pro **SSD**, aby odstranilo omezení starých protokolů, jako je AHCI.

• Hlavní výhody NVMe oproti SATA/AHCI:

- Vyšší přenosová rychlost 7× vyšší propustnost než SATA SSD.
- Nižší latence až 3× menší zpoždění díky přímé komunikaci mezi SSD a CPU.
- Odstranění zpoždění řadiče SSD komunikuje přímo s procesorem přes PCIe sběrnici.
- Vysoká paralelizace umožňuje zpracování více požadavků současně, což vede k
 rychlejším operacím čtení/zápisu.
- NVMe je tedy přímo optimalizované pro moderní SSD, zatímco AHCI bylo původně vyvinuto pro starší mechanické disky a proto ho NVMe výrazně překonává.

SAS (Serial Attached SCSI)

SAS je **sériová verze staršího paralelního rozhraní SCSI**, které je určeno pro výkonné serverové disky.

- Vysoká spolehlivost a rychlost navrženo pro nepřetržitý provoz v datových centrech.
- Datová propustnost až 4,8 GB/s.
- Maximální rychlost 12 Gb/s.
- Podobný konektor jako SATA, ale SAS zařízení nejsou kompatibilní se SATA řadiči.
- SAS disky jsou určené pro **servery a podnikové nasazení**, kde je kladen důraz na **spolehlivost a vysokou propustnost.**

FireWire (IEEE 1394)

FireWire je **vysokorychlostní sériová sběrnice**, kterou vyvinula společnost **Apple pro připojení externích zařízení.**

- Používal se pro externí pevné disky, kamery a profesionální audio zařízení.
- Maximální přenosová rychlost 800 Mb/s (FireWire 800).
- Většinou nahrazen USB 3.0 a Thunderbolt, které nabízejí vyšší rychlosti a širší kompatibilitu.

FireWire byl kdysi konkurencí USB, ale postupně vymizel kvůli nižší adopci a vyšším nákladům na implementaci.

USB - Universal Serial Bus

USB je univerzální sériové rozhraní určené pro přenos dat, napájení zařízení a komunikaci mezi periferiemi a počítačem.

- Obecné vlastnosti USB
 - Sériové rozhraní data se přenáší bit po bitu po jednom vodiči.
 - Platformově nezávislé podporováno v různých operačních systémech a zařízeních.
 - o Přenos dat v reálném čase využívá synchronní i asynchronní režimy.
 - Napájení přes USB některá zařízení mohou být napájena přímo z USB konektoru (např. flash disky, myši, klávesnice).
 - Komunikační vzdálenost do 5 metrů využívá kroucenou dvojlinku k eliminaci rušení.
 - Možnost připojení až 127 zařízení s využitím maximálně 7 HUBů.

Architektura USB

- Vrstvená hvězdicová architektura
 - Komunikace je řízena přes **USB rozbočovače** (HUBy).
 - HUBy fungují i jako repeatery, zesilují signál.
- Řízená sběrnice
 - Hostitelský řadič (PC) inicializuje všechny přenosy.
 - USB zařízení mezi sebou přímo nekomunikují, vždy přes hostitele.
- o Plug & Play
 - USB zařízení lze připojit za chodu bez restartu systému.
 - Pokud je ovladač dostupný, instaluje se automaticky.

Konektory USB

- Typ A standardní konektor pro připojení periferií.
- Typ B běžně se používá u tiskáren a některých skenerů.
- Mini USB dříve u fotoaparátů, některých telefonů a přenosných disků.
- Micro USB využíván u mobilních zařízení, dnes nahrazen USB-C.
- USB-C oboustranný konektor s vyšší přenosovou rychlostí a větším výkonem.

Pin	Barva	Funkce	
1	Červená	ervená +5V (napájení)	
2	Bílá	Bílá Data-	
3	Zelená Data+		
4	Černá GND (zem)		

Verze USB

- USB 1.x (1996)
 - Rychlosti:

■ Low Speed: 1,5 Mb/s ■ Full Speed: 12 Mb/s

Konektory: USB-A, USB-B

• Rychlost až **480 Mb/s** (reálně max. 280 Mb/s).

• **Zpětná kompatibilita** s USB 1.x.

• Nové konektory: Mini USB, Micro USB.

- USB 3.0 (2008)
 - Teoretická propustnost až **4,8 Gb/s** (reálně max 2–3 Gb/s).
 - Full duplex současné odesílání i příjem dat.
 - 8 vodičů:
 - 6 datových
 - 2 napájecí
 - o **Zpětná kompatibilita s USB 2.0** (starší zařízení fungují v pomalejším režimu).
 - Maximální proud: 900 mA.

Napájení USB

- Hub dodává napětí v rozsahu 4,75 5,25 V.
- Standardní zařízení USB odebírá max. 100 mA, ale některá (např. pevné disky) vyžadují více.

Organizace USB sběrnice

- Jeden **hlavní řadič** (master) PC řídí veškerou komunikaci.
- Zařízení může zahájit přenos jen **po vyzvání hostitele**.
- USB 1.0 a 2.0 jsou half duplex (nelze přenášet současně).
- USB 3.0 je full duplex (současné odesílání a přijímání).

Kompatibilita USB

- USB 2.0 zařízení fungují v USB 3.0 konektorech (ale nevyužijí vyšší rychlost).
- USB 3.0 konektory nelze vždy zapojit do USB 2.0 portů, záleží na typu konektoru.
- Zpětná kompatibilita je zajištěna tím, že USB 3.0 konektory obsahují piny pro starší verze.

Thunderbolt – vysokorychlostní rozhraní pro připojení periferií

- Vyvinuto společností Intel ve spolupráci s Apple.
- Spojuje PCI Express a DisplayPort do jednoho sériového rozhraní.
- Umožňuje připojení externích grafických karet, monitorů, disků a dalších zařízení.
- Podporuje **přenos dat, videa i napájení** přes jeden kabel.

Specifikace Thunderbolt

- Thunderbolt 1 (2011)
 - Propustnost: **10 Gb/s na kanál** (celkem 20 Gb/s).
 - o Používá konektor Mini DisplayPort.
 - o Podporuje řetězení až 6 zařízení.
- Thunderbolt 2 (2013)
 - Propustnost: 20 Gb/s (sloučením dvou kanálů 10 Gb/s).
 - o Používá stejný konektor jako Thunderbolt 1.
 - Podpora 4K monitorů.
- Thunderbolt 3 (2015)
 - o Propustnost až 40 Gb/s.
 - o Přechod na USB-C konektor (zpětně kompatibilní s USB 3.1/3.2).
 - Napájení až **100 W** (přes USB Power Delivery).
 - Možnost připojení externích GPU (eGPU).
- Thunderbolt 4 (2020)
 - Zajišťuje minimální propustnost 40 Gb/s (stejně jako TB3, ale bez kompromisů).
 - o Plná podpora **USB4** (Thunderbolt 3 byl volitelně kompatibilní).
 - o Podpora dvou 4K monitorů nebo jednoho 8K monitoru.
 - Vyšší bezpečnost díky ochranným funkcím DMA.

Další vlastnosti Thunderboltu

- Možnost řetězení až 7 zařízení na jeden port.
- Nízká latence odezva pouze 8 ns.
- Maximální napájení 10 W (u TB3 a TB4 až 100 W přes USB PD).
- Maximální délka kabelu 3 m pro měděné kabely, delší s optickými.
- Podpora přenosu obrazu, audia a dat současně.

Vlastnost	Thunderbolt 3/4	USB 3.2	USB4
Rychlost	40 Gb/s	20 Gb/s	40 Gb/s
Konektor	USB-C	USB-C	USB-C
Podpora videa	Ano (DP 1.4)	Omezená	Ano
Podpora řetězení	Ano	Ne	Ano
Napájení	Až 100 W	Až 100 W	Až 100 W