METALLICITY

FEBRUARY 22, 2011

1. MIXTURE MODEL

Given n observed $(\frac{\alpha}{\text{Fe}}, \frac{\text{Fe}}{\text{H}})$ metallicities as $\{(x_i, y_i)\}_{i=1}^n$, or as (\mathbf{x}, \mathbf{y}) , each of which is drawn from one of m known model densities, we model the density of observations using the mixture model

(1)
$$f(x,y) = \sum_{j=1}^{m} \pi_j f_j(x,y)$$

where

$$\sum_{j=1}^{m} \pi_j = 1 \qquad \pi_j \ge 0, \quad j = 1, \dots, m$$

From the summation constraint, π has m-1 free parameters:

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_{m-1}, 1 - \pi_1 - \dots - \pi_{m-1})$$

Thus the likelihood of (??) is

$$L(\boldsymbol{\pi}) = \prod_{i=1}^{n} f(x_i, y_i)$$

$$= \prod_{i=1}^{n} \left\{ \sum_{j=1}^{m} \pi_j f_j(x_i, y_i) \right\}$$

$$\log L(\boldsymbol{\pi}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \pi_j f_j(x_i, y_i) \right)$$

Maximizing $\log L(\boldsymbol{\pi})$ with respect to $\boldsymbol{\pi}$ will yield $\hat{\boldsymbol{\pi}}_{\text{MLE}}$, but this arduous task can be avoided by adding a latent indicator, z, to the observed data (\mathbf{x}, \mathbf{y}) , representing the model group from which that observation was generated. Let G_j be the j^{th} model group, and let

$$z_{ij} = \mathbf{1}\{(x_i, y_i) \mapsto G_j\}$$

The complete data likelihood is defined over the complete data $\{(x_i, y_i, \mathbf{z}_i)\}_{i=1}^n$ as

$$L(\boldsymbol{\pi}) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ f_{j}(x_{i}, y_{i}) \right\}^{z_{ij}} \pi_{j}^{z_{ij}}$$

(2)
$$\ell(\pi) = \sum_{i=1}^{n} \sum_{j=1}^{m} z_{ij} \log \{\pi_j f_j(x_i, y_i)\}$$

2. Expectation Maximization

One way to estimate $\boldsymbol{\pi}$ is to use a maximum likelihood estimate, $\hat{\boldsymbol{\pi}}$, computed using expectation maximization. Starting from an initial set of guesses, $\boldsymbol{\pi}^{(0)}$, we iteratively find the expected value of the likelihood, (??), conditional on the data, and then find the $\operatorname{argmax}_{\boldsymbol{\pi}}$ of this expectation. The maximizing value the t^{th} iteration, $\hat{\boldsymbol{\pi}}^{(t)}$, is then used as the starting value for the next run, and we continue until the likelihood changes by less than 10^{-3} over twenty five iterations.

2.1. **Expectation step.** First we find the expected value of the log likelihood, (??), conditional on the data. Note that since z_{ij} is an indicator function, its expected value is equal to the probability that data point i comes from model j.

(3)
$$\operatorname{E}_{\boldsymbol{\pi}} \left[\ell(\boldsymbol{\pi}) \big| \mathbf{x}, \mathbf{y} \right] = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{E}_{\boldsymbol{\pi}} \left[z_{ij} | x_i, y_i \right] \left\{ \log f_j(x_i, y_i) + \log \pi_j \right\}$$

Since we're ultimately maximizing, the non-constant component is of primary interest, and can be analytically specified by applying Bayes' rule:

$$E_{\pi} \left[z_{ij} | x_i, y_i \right] = \text{Probability} \left((x_i, y_i) \mapsto G_j | x_i, y_i \right)$$
$$= \Pr_{\pi} (z_{ij} | x_i, y_i)$$
$$= \frac{p(x_i, y_i | z_{ij} = 1) p(z_{ij} = 1)}{p(x_i, y_i)}$$

Thus the expected value of the indicator variable, z_{ij} , given the data and the parameters, π , of the data's distribution defined by (??) is

(4)
$$E_{\pi} \left[z_{ij} | x_i, y_i \right] = \frac{\pi_j f_j(x_i, y_i)}{\sum_{j=1}^m \pi_j f_j(x_i, y_i)}$$

To iteratively evaluate this expectation, we let $w_{ij}^{(t)}$ be $(\ref{eq:thmodel})$ at the t^{th} step:

$$w_{ij}^{(t+1)} = \begin{cases} \frac{\pi_j^{(t)} f_j(x_i, y_i)}{m} & j = 1, \dots, m-1\\ \sum_{k=1}^m \pi_k^{(t)} f_k(x_i, y_i) & \\ 1 - w_{i1} - \dots - w_{i m-1} & j = m \end{cases}$$

Since π is not defined for the first evaluation, we use a random initialization to generate $\mathbf{w}_{j}^{(0)}$. Convergence is not sensitive to the choice of values in this case, but may be if the likelihood is riddled with local maxima.

2.2. **Maximization step.** We now have an explicit formulation for the expected log likelihood (??) given a single parameter π , plus the data. The argument of the maximum of (??) at each iteration t provides an estimate that approaches the MLE of π , and is given by:

(5)
$$\hat{\boldsymbol{\pi}}^{(t)} = \operatorname*{argmax}_{\boldsymbol{\pi}} \operatorname{E} \left[\ell(\boldsymbol{\pi}) \big| \mathbf{x}, \mathbf{y}, \hat{\boldsymbol{\pi}}^{(t-1)} \right]$$

Accounting for the m-1 free parameters of π , differentiation of (??) proceeds, for $k=1,\ldots,m-1$, as:

$$\frac{\partial}{\partial \pi_k} \mathbf{E} \Big[\ell(\boldsymbol{\pi}) \big| \mathbf{x}, \mathbf{y} \Big] = \sum_{i=1}^n \Big\{ w_{ik}^{(t-1)} \frac{1}{\pi_k} - w_{im}^{(t-1)} \frac{1}{1 - \pi_1 - \dots - \pi_{m-1}} \Big\}$$

$$\frac{1}{\pi_k} \sum_{i=1}^n w_{ik}^{(t-1)} = \frac{1}{1 - \pi_1 - \dots - \pi_{m-1}} \sum_{i=1}^n w_{im}^{(t-1)}$$

Consequently, using some constant, c, we must have

$$\frac{1}{\pi_k} \sum_{i=1}^n w_{ik}^{(t-1)} = \dots = \frac{1}{\pi_{m-1}} \sum_{i=1}^n w_{i,m-1}^{(t-1)} = c$$

$$\hat{\pi}_k^{(t)} = \frac{\sum_{i=1}^n w_{ik}^{(t-1)}}{c}$$

The unknown constant c appears problematic, but, because $\sum_{j=1}^{m} \pi_j = 1$, algebraic manipulation reveals that c = n, yielding a final solution that can be numerically evaluated:

$$\hat{\pi}_k^{(t)} = \frac{\sum_{i=1}^n w_{ij}^{(t-1)}}{n}$$

$$\hat{\pi}_m^{(t)} = 1 - \pi_1 - \dots - \pi_{m-1}$$

In our case, computation of $\hat{\pi}$ converges relatively quickly for all starting values: on the order of 600 iterations, or half a minute, for our stopping criteria. Large π_k values typically emerge after two or three iterations, and most change, absolutely speaking, occurs in the first fifty to one hundred iterations.

3. Covariance and correlation of $\hat{\pi}$

The asymptotic covariance matrix of $\hat{\pi}$ can be approximated by the inverse of the observed Fisher information matrix, I.

As $\pi_m = 1 - \sum_{j=1}^{m-1} \pi_j$, there are only m-1 free parameters. Thus let $\pi' = (\pi_1, \dots, \pi_{m-1})$. Using $f_{ij} = f_j(x_i, y_i)$ for brevity, the likelihood can then be expressed as:

(6)
$$\ell(\boldsymbol{\pi}') = \sum_{i=1}^{n} \log \left\{ \left(\sum_{j=1}^{m-1} \pi_j f_{ij} \right) + (1 - \pi_1, \dots, \pi_{m-1}) f_{im} \right\}$$

The observed information matrix, I, is the $m-1 \times m-1$ negative hessian of $(\ref{eq:m-1})$, evaluated at the observed data points:

$$I(\boldsymbol{\pi}'|\mathbf{x},\mathbf{y}) = -\frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \boldsymbol{\pi}' \partial \boldsymbol{\pi}'^T} = -\begin{bmatrix} \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial^2 \pi_1} & \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \pi_1 \partial \pi_2} & \dots & \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \pi_1 \partial \pi_{m-1}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \pi_{m-1} \partial \pi_1} & \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \pi_{m-1} \partial \pi_2} & \dots & \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial^2 \pi_{m-1}} \end{bmatrix}$$

where

$$\frac{\partial \ell(\boldsymbol{\pi}')}{\partial \pi_k} = \sum_{i=1}^n \frac{f_{ik} - f_{im}}{\sum_{j=1}^m \pi_j f_{ij}} \quad \text{and} \quad \frac{\partial^2 \ell(\boldsymbol{\pi}')}{\partial \pi_k \partial \pi_r} = -\sum_{i=1}^n \frac{(f_{ik} - f_{im})(f_{ir} - f_{im})}{(\sum_{j=1}^g \pi_j f_{ij})^2}$$

The observed information derived covariance matrix of π' yields the following estimates for covariance and correlation for all m estimated weights in $\hat{\pi}$:

$$\operatorname{Cov}(\hat{\pi}_{p}, \hat{\pi}_{q}) = \begin{cases} \left[I^{-1}(\hat{\boldsymbol{\pi}}')\right]_{pq} & p, q < m \\ -\sum_{j=1}^{m-1} \operatorname{Cov}(\hat{\pi}_{j}, \hat{\pi}_{q}) & p = m, q < m \end{cases}$$

$$\operatorname{Var}(\hat{\pi}_{j}) = \sum_{j=1}^{m-1} \sum_{k=1}^{m-1} \operatorname{Cov}(\hat{\pi}_{j}, \hat{\pi}_{q}) & p, q = m \end{cases}$$

$$\operatorname{Var}(\hat{\pi}_{j}) = \sigma_{j}^{2} = \left\{\operatorname{Cov}(\hat{\boldsymbol{\pi}}_{j})\right\}_{jj}$$

$$\operatorname{Corr}(\hat{\pi}_{p}, \hat{\pi}_{q}) = \frac{\operatorname{Cov}(\hat{\pi}_{p}, \hat{\pi}_{q})}{\sqrt{\sigma_{p}^{2} \sigma_{q}^{2}}}$$

$$\operatorname{Z-score} = \frac{\hat{\pi}_{j} - \pi}{\sigma_{\hat{\pi}_{j}}}$$

FIGURE 1. Left: correlation where size of sphere represents correlation value, and opacity of sphere represents $\pi_q + \pi_p$. Orange bubbles represent negative correlation, and blue positive. Right: Same graph, but without transparency.

Table 1. Correlation matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
1	1	-0.592	-0.026	-0.219	0.274	-0.101	0.005	-0.008	0.007	-0.004	-0.003	-0.006	0.003	0.008	-0.001	-0.002	
2	-0.592	1	-0.436	0.385	-0.685	0.378	-0.03	-0.006	-0.026	-0.003	0.002	0.002	0.003	-0.029	-0.004	0.006	
3	-0.026	-0.436	1	0.074	-0.008	-0.141	-0.036	0.008	-0.006	0.004	-0.006	0.004	-0.008	0.025	0.002	-0.009	
4	-0.219	0.385	0.074	1	-0.706	0.368	-0.173	-0.021	-0.045	0.013	-0.012	0.051	-0.022	-0.01	0.002	-0.003	
5	0.274	-0.685	-0.008	-0.706	1	-0.757	0.057	0.008	0.083	-0.002	0	-0.018	-0.006	0.051	0.002	-0.001	
6	-0.101	0.378	-0.141	0.368	-0.757	1	-0.012	-0.07	-0.264	-0.007	-0.01	0.027	0.02	-0.028	-0.009	0.01	
7	0.005	-0.03	-0.036	-0.173	0.057	-0.012	1	-0.602	0.129	-0.013	-0.065	-0.023	0.025	-0.109	0.021	-0.002	
8	-0.008	-0.006	0.008	-0.021	0.008	-0.07	-0.602	1	-0.29	-0.125	0.226	-0.381	0.173	0.232	-0.082	0.049	
9	0.007	-0.026	-0.006	-0.045	0.083	-0.264	0.129	-0.29	1	0.112	-0.072	0.111	-0.211	-0.751	0.095	-0.048	
10	-0.004	-0.003	0.004	0.013	-0.002	-0.007	-0.013	-0.125	0.112	1	-0.665	0.488	-0.567	0.091	0.439	-0.54	
11	-0.003	0.002	-0.006	-0.012	0	-0.01	-0.065	0.226	-0.072	-0.665	1	-0.62	0.502	-0.044	-0.542	0.326	
12	-0.006	0.002	0.004	0.051	-0.018	0.027	-0.023	-0.381	0.111	0.488	-0.62	1	-0.748	-0.006	0.376	-0.156	
13	0.003	0.003	-0.008	-0.022	-0.006	0.02	0.025	0.173	-0.211	-0.567	0.502	-0.748	1	0.015	-0.599	0.218	
14	0.008	-0.029	0.025	-0.01	0.051	-0.028	-0.109	0.232	-0.751	0.091	-0.044	-0.006	0.015	1	0.008	-0.248	
15	-0.001	-0.004	0.002	0.002	0.002	-0.009	0.021	-0.082	0.095	0.439	-0.542	0.376	-0.599	0.008	1	-0.382	
16	-0.002	0.006	-0.009	-0.003	-0.001	0.01	-0.002	0.049	-0.048	-0.54	0.326	-0.156	0.218	-0.248	-0.382	1	

METALLICITY 7

FIGURE 2. π plus information based error bars for $\pm \sigma$ (black), $\pm 2\sigma$ (green), and $\pm 3\sigma$ (cyan). A red \times represents the true value, and a black dot represents the estimated values, $\hat{\pi}$.

FIGURE 3. M-out-of n bootstrapped confidence intervals for π . A red \times represents the true value, and a black dot represents the estimated values, $\hat{\pi}$.

METALLICITY 9

FIGURE 4. Left: standard deviation of each π_j . Right: Z-score, with 1 and 2 standard deviations marked as dotted lines. Colors are same as EM diagnostic plots. Size represents the value of π_j .

	$\hat{\pi}_j$	π_j	Std. dev.	Z-score
1	16.04	14.47	0.0080	1.965
2	3.32	7.44	0.0206	-1.995
3	21.39	20.99	0.0110	0.363
4	8.85	9.23	0.0088	-0.439
5	36.44	33.66	0.0290	0.96
6	7.88	8.02	0.0154	-0.088
7	2.56	2.4	0.0037	0.428
8	2.24	2.57	0.0051	-0.655
9	0	0.12	0.0068	-0.174
10	0	0.08	0.0010	-0.706
11	0.42	0.36	0.0017	0.367
12	0.25	0.25	0.0038	-0.016
13	0.49	0.23	0.0037	0.694
14	0.01	0.05	0.0039	-0.103
15	0.03	0.02	0.0015	0.044
16	0.08	0.05	0.0013	0.27

FIGURE 5. Model 3 EM results

4. Likelihood ratio test

Given certain regularity conditions, let

$$H_0: \boldsymbol{\pi} = \boldsymbol{\pi}_{\mathrm{true}}$$

 $H_1: \boldsymbol{\pi} \neq \boldsymbol{\pi}_{\mathrm{true}}$

The likelihood ratio test is then

$$\Lambda = -2\log \frac{\sup_{\boldsymbol{\pi} = \boldsymbol{\pi}_{\text{true}}} \ell(\boldsymbol{\pi})}{\sup_{\boldsymbol{\pi}} \ell(\boldsymbol{\pi})} = -2\{l(\boldsymbol{\pi}_{\text{true}}) - l(\hat{\boldsymbol{\pi}})\} \sim \chi_{m-1}^2$$

For halo 3,

$$\begin{split} \Lambda_{\rm Halo~3} &= 25.025 \sim \chi^2_{15} \\ \text{p-value}~ 10 \text{k} &= 4.961\% \\ \text{p-value}~ 30 \text{k} &= 1.3 \times 10^{-5}\% \\ \text{p-value}~ 50 \text{k} &= 1.4 \times 10^{-12}\% \end{split}$$

Thus we accept H_0 when requiring 95% or less confidence; there is only a 4.961% chance we would see a value this extreme or more given H_0 is true. This holds for 400 to 1600 EM iterations.