Bevezetés a számításelméletbe

10. előadás

Időbonyolultsági osztályok, P = NP

Definíció

- ► TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időkorlátos determinisztikus TG-pel}\}$
- ► NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időkorlátos NTG-pel}\}$
- ightharpoonup P= $\bigcup_{k>1}$ TIME (n^k) .
- ▶ NP= $\bigcup_{k>1}$ NTIME (n^k) .

Észrevétel: P⊆NP, mivel minden determinisztikus TG tekinthető nemdeterminisztikusnak.

Sejtés: $P \neq NP$ (sejtjük, hogy igaz, de bizonyítani nem tudjuk).

A Clay Matematikai Intézet 2000-ben 7 probléma megoldására egyenként 1M\$-t tűzött ki (Milleniumi problémák), ezek egyike a $P\stackrel{?}{=} NP$ probléma.

BONYOLULTSÁGELMÉLET

A továbbiakban eldönthető problémákkal foglalkozunk, ilyenkor a kérdés az, hogy milyen idő illetve tár tekintetében milyen hatékonyan dönthető el az adott probléma.

A bonyolultságelmélet (angolul: complexity theory) az egyes idő- és tárbonyolultsági osztályok egymáshoz való viszonyával foglalkozik.

NP

P-re úgy gondolunk, hogy ez tartalmazza a gyakorlatban is hatékonyan megoldható problémákat. (Nem teljesen igaz.)

Milyen problémákat tartalmaz NP?

Egy L NP-beli problémához definíció szerint létezik őt polinom időben eldöntő NTG ami gyakran a következőképpen működik: a probléma minden I bemenetére polinom időben "megsejti" (azaz nemdeterminisztikusan generálja) I egy lehetséges m megoldását és polinom időben leellenőrzi (már determinisztikusan), hogy m alapján $I \in L$ teljesül-e. A NTG definíciója szerint elég egyetlen ilyen megoldást, "tanút" megsejteni.

Precíz tétellé is tehető, miszerint akkor és csak akkor NP-beli egy eldöntési probléma, ha minden igen-inputhoz megadható polinom méretű és polinom időben ellenőrizhető tanú (azaz, ami igazolja, hogy ő valóban igen-input).

A következőkben a P és NP bonyolultsági osztályok közötti kapcsolatot vizsgáljuk.

Polinom idejű visszavezetés

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **polinom időben kiszámítható**, ha van olyan polinom időkorlátos Turing gép, amelyik kiszámítja.

Definíció

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq_p L_2$.

Megjegyzés: A polinom idejű visszavezetést Richard Karpról elnevezve Karp-visszavezetésnek vagy Karp-redukciónak is nevezik. Angolul: polynomial-time many-one reduction vagy Karp reduction.

Polinom idejű visszavezetés

Bizonyítás:

Az elsőt bizonyítjuk, a második analóg.

Legyen $L_2 \in P$ és tegyük fel, hogy $L_1 \leq_p L_2$.

Legyen M_2 az L_2 -t eldöntő, míg M a visszavezetést kiszámító TG.

Feltehetjük, hogy M p(n) és M_2 $p_2(n)$ polinom idejű TG-ek.

Konstruáljuk meg M_1 -et:

- $ightharpoonup M_1$ eldönti az L_1 nyelvet
- ha w n hosszú, akkor f(w) legfeljebb n + p(n) hosszú lehet (M minden lépése legfeljebb 1-gyel növelheti a hosszt.)
- $ightharpoonup M_1$ tehát $p_2(n+p(n))$ időkorlátos, ami szintén polinom

Polinom idejű visszavezetés

$$L_1 \leq_p L_2$$

f polinom időben kiszámítható, az egész Σ^* -on értelmezett, $f(L_1)\subseteq L_2$ valamint $f(\overline{L_1})\subseteq \overline{L_2}$.

f nem kell hogy injektív legyen és az se, hogy szürjektív.

Tétel

- ▶ Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$.
- ▶ Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

C-teljesség

Intuitíve, ha egy problémára visszavezetünk egy másikat, az azt jelenti, hogy az a probléma legalább olyan nehéz, mint amit visszavezettünk rá. Azaz ebben az értelemben a legnehezebb problémák azok, melyekre minden probléma visszavezethető.

Definíció

Legyen $\mathcal C$ egy bonyolultsági osztály. Egy L nyelv $\mathcal C$ -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathcal C$ esetén $L' \leq_p L$.

Definíció

Legyen $\mathcal C$ egy bonyolultsági osztály. Egy L nyelv $\mathcal C$ -teljes, ha $L\in\mathcal C$ és L $\mathcal C$ -nehéz.

Ilyen bonyolultsági osztályok pédául, P, NP, EXP (exponenciális időben eldönthető problémák osztálya), vagy a későbbiekben tanult tárbonyolultsági osztályok.

NP-teljesség

Ha speciálisan C=NP:

NP-telies nyelv

Egy L nyelv NP-teljes (a polinom idejű visszavezetésre nézve), ha

- ▶ *I* ∈ NP
- ▶ L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

Megjegyzés: Néha úgy fogalmazunk, hogy az L (eldöntési) probléma NP-teljes...

Tétel

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

Bizonyítás: Elég megmutatni, hogy NP ⊂ P.

Legyen $L' \in NP$ egy tetszőleges probléma.

Ekkor $L' \leq_{p} L$, hiszen L NP-teljes.

Mivel $L \in P$, ezért az előző tétel alapján $L' \in P$.

Ez minden $L' \in NP$ -re elmondható, ezért $NP \subseteq P$.

A Cook-Levin tétel bizonyítása

Bizonyítás:

- ightharpoonup SAT \in NP: Adott egy φ input. Egy NTG egy számítási ágán polinom időben előállít egy / interpretációt. Majd szintén polinom időben ellenőrzi, hogy ez kielégíti-e φ -t.
- ▶ SAT NP-nehéz: ehhez kell, $L \leq_p$ SAT, minden $L \in$ NP-re.
 - Legyen $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy L-et eldöntő p(n)polinom időkorlátos NTG. (Feltehető, hogy p(n) > n.)
 - Legyen továbbá $w = a_1 \cdots a_n \in \Sigma^*$ egy szó.
 - M segítségével megadunk egy polinom időben előállítható φ_w nulladrendű KNF formulát, melyre $w \in L \Leftrightarrow \langle \varphi_w \rangle \in SAT$.
 - M egy számítása w-n leírható egy T táblázattal, melynek
 - első sora $\# \sqcup^{p(n)} C_0 \sqcup^{p(n)-n} \#$, ahol $C_0 = q_0 w M$ kezdőkonfigurációja w-n
 - T egymást követő két sora M egymást követő két konfigurációja (elegendő ⊔-el kiegészítve, elején és a végén egy #-el). Minden sor 2p(n) + 3 hosszú.

Egy NP-telies nyelv

Ha $L \leq_{p} L'$, akkor intuitíve L' legalább olyan nehéz, mint L. Így az NP-teljes problémák (ha vannak) az NP-beli problémák legnehezebbjei.

Az előző tétel szerint tehát, ha valaki talál egy NP-teljes problémára polinom idejű determinisztikus algoritmust, azzal bizonyítja, hogy P=NP.

Ezért nyilván egyetlen NP-teljes problémára sem ismeretes jelenleg polinomiális idejű determinisztikus algoritmus és nem túl valószínű, hogy valaha is fogunk ilyet találni. Így a gyakorlatban az NP-teljes problémákra úgy is tekinthetünk, mint bár eldönthető, de hatékonyan nem eldönthető problémákra.

Definíció

 $SAT := \{ \langle \varphi \rangle \mid \varphi \text{ kielégíthető nulladrendű KNF} \}$

Cook-Levin tétel

SAT NP-telies.

A Cook-Levin tétel bizonyítása

-p(n)+1 sor van. Ha hamarabb jut elfogadó konfigurációba,

akkor onnant	ól kezve ismételj	jük meg az eltogadó l	konfigurációt.
kezdőkonf.	#	」	<mark>an</mark> □ □ □ □ #
 konf. 	#		#
2. konf.	#		# p
	#		# # # # # # # # # # # # # # # # # # #
	#		# +
:	#		# # 1 SON
	#		11
()	#		#
p(n). konf.	#		#
		0 () . 0 . 1	

$$2p(n) + 3$$
 oszlop

- a konfigurációátmenet definíciója miatt bármely két sor közötti különbség belefér egy 2x3-as "ablakba"
- -T magassága akkora, hogy minden, < p(n) lépéses átmenetet tartalmazhasson. A \sqcup -ek számát ($\Rightarrow T$ szélességét) pedig úgy, hogy az ablakok biztosan "ne eshessenek le" egyik oldalon se.

A Cook-Levin tétel bizonyítása

 $-\varphi_{w}$ ítéletváltozói $x_{i,j,s}$ alakúak, melynek jelentése: T i-ik sorának j-ik cellájában az s szimbólum van, ahol $s \in \Delta = Q \cup \Gamma \cup \{\#\}$. $-\varphi_{w}$ a w bemenetre M minden lehetséges legfeljebb p(n) lépésű működését leírja. Felépítése: $\varphi_{w} = \varphi_{0} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{move}} \wedge \varphi_{\text{accept}}$. $-\varphi_{0}$ akkor és csak akkor legyen igaz, ha minden cellában pontosan 1 betű van:

$$\varphi_0 := \bigwedge_{\substack{1 \leq i \leq p(n)+1\\1 < j < 2p(n)+3}} \left(\left(\bigvee_{s \in \Delta} x_{i,j,s} \right) \land \bigwedge_{s,t \in \Delta, s \neq t} \left(\neg x_{i,j,s} \lor \neg x_{i,j,t} \right) \right)$$

 $-\varphi_{\rm start}$ akkor és csak akkor legyen igaz, ha T első sora a \sqcup -ekkel és #-ekkel a fent említett módon adott hosszúságúra kiegészített kezdőkonfiguráció.

$$\varphi_{\mathsf{start}} := \mathsf{x}_{1,1,\#} \wedge \mathsf{x}_{1,2,\sqcup} \wedge \cdots \wedge \mathsf{x}_{1,2p(n)+2,\sqcup} \wedge \mathsf{x}_{1,2p(n)+3,\#}$$

A Cook-Levin tétel bizonyítása

– végezetül: φ_{accept} akkor és csak akkor legyen igaz, ha az utolsó sorban van q_i :

$$arphi_{\mathsf{accept}} = \bigvee_{j=2}^{2p(n)+2} \mathsf{x}_{p(n)+1,j,q_i}$$

• $w \in L \Leftrightarrow az \ M \ NTG$ -nek van w-t elfogadó számítása $\Leftrightarrow T$ kitölthető úgy, hogy φ_w igaz $\Leftrightarrow \varphi_w$ kielégíthető $\Leftrightarrow \langle \varphi_w \rangle \in SAT$,

• hány literált tartalmaz a φ_w formula? Legyen $k = |\Delta|$.

 $\varphi_0: (p(n)+1)(2p(n)+3)(k+k(k-1)) = O(p^2(n)),$

 $\varphi_{\mathsf{start}}: \ 2p(n) + 3 = O(p(n)),$

 $\varphi_{\text{move}}: \leq p(n)(2p(n)+1)k^6 \cdot 6 = O(p^2(n)),$

 $\varphi_{\mathsf{accept}}: \ 2p(n) + 1 = O(p(n)),$

azaz $\varphi_w \ O(p^2(n))$ méretű, így polinom időben megkonstruálható

- tehát $w \mapsto \langle \varphi_w \rangle$ pol. idejű visszavezetés, így $L \leq_p \mathsf{SAT}$.
- ullet Ez tetszőleges $L\in {\sf NP}$ nyelvre elmondható. Így SAT NP-nehéz. Mivel NP-beli, ezért NP-teljes is.

A Cook-Levin tétel bizonyítása

 $-\varphi_{\text{move}}$ akkor és csak akkor legyen igaz, ha minden ablak legális, azaz δ szerinti átmenetet ír le:

$$\varphi_{\mathsf{move}} := \bigwedge_{\substack{1 \le i \le p(n) \\ 2 \le j \le 2p(n) + 2}} \psi_{i,j},$$

ahol
$$\psi_{i,j} \sim \bigvee_{\substack{(b_1,\ldots,b_6)\\ \text{legális ablak}}} x_{i,j-1,b_1} \wedge x_{i,j,b_2} \wedge x_{i,j+1,b_3} \wedge x_{i+1,j-1,b_4} \wedge x_{i+1,j,b_5} \wedge x_{i+1,j+1,b_6}$$

b_1	<i>b</i> ₂	<i>b</i> ₃
<i>b</i> ₄	b_5	<i>b</i> ₆

De: $\psi_{i,j}$ sajnos nem KNF alakú!!! Ezért e helyett:

$$\psi_{i,j} := \bigwedge_{\substack{(b_1,\dots,b_6)\\\text{illegális ablak}}} \left(\neg x_{i,j-1,b_1} \lor \neg x_{i,j,b_2} \lor \neg x_{i,j+1,b_3} \lor \neg x_{i+1,j-1,b_4} \lor \neg x_{i+1,j,b_5} \lor \neg x_{i+1,j+1,b_6}\right)$$

Polinom idejű visszavezetés tranzitivitása

Állítás: $L_1 \leq_p L_2$, $L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3$.

Bizonyítás:

Tartozzon az első visszavezetéshez egy f szófüggvény és legyen M_1 egy $p_1(n)$ idejű TG ami ezt kiszámítja. A másodikhoz tartozzon egy g függvény, melyet egy M_2 TG kiszámít $p_2(n)$ időben $(p_1(n)$ és $p_2(n)$ polinomok).

 $w \in L_1 \Leftrightarrow f(w) \in L_2 \Leftrightarrow g(f(w)) \in L_3$, tehát $g \circ f$ visszavezetés.

 $|f(w)| \le n + p_1(n)$, ha |w| = n, ugyanis M_1 legfeljebb $p_1(n)$ darab lépést lesz, lépésenként ≤ 1 -gyel nőhet a hossz.

Így $M_2 \circ M_1$ legfeljebb $h(n) := p_2(n + p_1(n))$ időben kiszámítja az $L_1 < L_3$ -t bizonvító $g \circ f$ -et.

Mivel h(n) polinom, ezért $L_1 \leq_p L_3$.

További NP-teljes problémák

Az alábbi tétel alapján toovábbi nyelvek NP-teljességének bizonyítására nyílik lehetőség.

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in NP$, akkor L' NP-teljes.

Bizonyítás:

Legyen $L'' \in \mathsf{NP}$ tetszőleges. Mivel L NP-teljes, ezért $L'' \leq_p L$. Mivel a feltételek szerint $L \leq_p L'$, ezért a polinom idejű visszavezetések tranzitivitása miatt L' NP-nehéz. Ebből és a 3. feltételből kövezkezik az állítás.

3SAT NP-teljessége

Tétel

3SAT NP-teljes.

Bizonyítás:

- ▶ 3SAT NP-beli. Lásd az érvelést SAT-nál.
- ▶ SAT \leq_p 3SAT Kell $f: \varphi \mapsto \varphi'$, φ KNF, φ' 3KNF, φ' kielégíthető $\Leftrightarrow \varphi$ kielégíthető, f polinom időben kiszámolható.

 $\varphi \mapsto \varphi'$:

T 'T'	
ℓ	$\ell \lor x \lor y, \ \ell \lor x \lor \neg y, \ \ell \lor \neg x \lor y, \ \ell \lor \neg x \lor \neg y$
$\ell_1 \lor \ell_2$	$\ell_1 \lor \ell_2 \lor x, \ell_1 \lor \ell_2 \lor \neg x$
$\ell_1 \lor \ell_2 \lor \ell_3$	$\ell_1 \lor \ell_2 \lor \ell_3$
$\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$	$\ell_1 \lor \ell_2 \lor x, \ \neg x \lor \ell_3 \lor \ell_4$
$\ell_1 \lor \cdots \lor \ell_n \ (n \ge 5)$	$\ell_1 \vee \ell_2 \vee x_1, \neg x_1 \vee \ell_3 \vee x_2, \dots, \neg x_{n-3} \vee \ell_{n-1} \vee \ell_n$

 $x, y, x_1, \dots, x_{n-3}$ új ítéletváltozók.

Minden tagra elvégezzük a fenti helyettesítést. φ' ezek konjunkciója.

kSAT

Tehát a polinom idejű visszavezetés fogalmának segítségével további NP-beli nyelvek NP-teljessége bizonyítható. Erre nézzünk példákat.

KNF: konjuktív normálformájú nulladrendű formula

Volt: SAT= $\{\langle \varphi \rangle \mid \varphi \text{ kielégíthető KNF} \}$ NP-teljes.

Definíció

kKNF-nek nevezünk egy olyan KNF-t, ahol minden klóz pontosan k darab páronként különböző alapú literál diszjunkciója.

Példák 4KNF:

$$(\neg x_1 \lor x_3 \lor x_5 \lor \neg x_6) \land (\neg x_1 \lor \neg x_3 \lor x_4 \lor \neg x_6) \land (x_1 \lor x_2 \lor \neg x_4 \lor \neg x_6).$$
2KNF: $(\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_2 \lor x_3).$

Definíció:

 $kSAT = \{ \langle \varphi \rangle \mid \varphi \text{ kielégíthető } kKNF \}$

3SAT NP-teljessége

ℓ	$\ell \lor x \lor y, \ \ell \lor x \lor \neg y, \ \ell \lor \neg x \lor y, \ \ell \lor \neg x \lor \neg y$
$\ell_1 \lor \ell_2$	$\ell_1 \lor \ell_2 \lor x, \ell_1 \lor \ell_2 \lor \neg x$
$\ell_1 \lor \ell_2 \lor \ell_3$	$\ell_1 \lor \ell_2 \lor \ell_3$
$\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$	$\ell_1 \lor \ell_2 \lor x, \ \neg x \lor \ell_3 \lor \ell_4$
$\ell_1 \lor \cdots \lor \ell_n \ (n \ge 5)$	$\ell_1 \vee \ell_2 \vee x_1, \neg x_1 \vee \ell_3 \vee x_2, \dots, \neg x_{n-3} \vee \ell_{n-1} \vee \ell_n$

Belátjuk, hogy ha egy I interpretáció kielégíti φ -t, akkor az új változók megfelelő kiértékelésével megadható egy I' φ' -t kielégítő interpretáció.

És fordítva, ha adott egy I' φ' -t kielégítő interpretáció, akkor ennek a régi változókra való I megszorítása kielégíti φ -t.

Az állításokat tagonként gondoljuk meg. Tekintsük φ egy n literálból álló tagját.

n = 3: nincs bizonyítani való

n=2: (\Rightarrow): ha legalább az egyik literál igaz, nyilván mindkét jobboldali tag igaz (\Leftarrow): x és $\neg x$ közül az egyik hamis, így ha mindkét jobboldali tag igaz, akkor ℓ_1 vagy ℓ_2 igaz.

3SAT NP-teljessége

ℓ	$\ell \lor x \lor y, \ \ell \lor x \lor \neg y, \ \ell \lor \neg x \lor y, \ \ell \lor \neg x \lor \neg y$
$\ell_1 \lor \ell_2$	$\ell_1 \lor \ell_2 \lor x, \ell_1 \lor \ell_2 \lor \neg x$
$\ell_1 \lor \ell_2 \lor \ell_3$	$\ell_1 \lor \ell_2 \lor \ell_3$
$\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$	$\ell_1 \lor \ell_2 \lor x, \ \neg x \lor \ell_3 \lor \ell_4$
$\ell_1 \lor \cdots \lor \ell_n \ (n \ge 5)$	$\ell_1 \vee \ell_2 \vee x_1, \neg x_1 \vee \ell_3 \vee x_2, \dots, \neg x_{n-3} \vee \ell_{n-1} \vee \ell_n$

n=1: (\Rightarrow) : ha ℓ igaz, nyilván minden jobboldali tag igaz (\Leftarrow) : " $\ell \lor$ " nélkül nem lehet mindegyik egyszerre igaz. Így ha minden jobboldali tag igaz, akkor ℓ igaz.

n=4: (\Rightarrow): ha a 4 közül valamelyik literál igaz, akkor igaz az egyik jobboldali tag. x igazságértékét válasszuk úgy, hogy a másik tag is igaz legyen. (\Leftarrow): x és $\neg x$ közül az egyik hamis, így ha mindkét jobboldali tag igaz, akkor $\ell_1,\ell_2,\ell_3,\ell_4$ közül legalább egy igaz.

 $n \geq 5$: (\Rightarrow): Tegyük fel, hogy ℓ_i igaz. Ekkor legyen x_1,\ldots,x_{i-2} igaz x_{i-1},\ldots,x_{n-3} hamis. Átgondolható, hogy minden tagban lesz igaz literál.

2SAT P-beli

Tétel

 $2SAT \in P$.

Bizonyítás Legyen φ egy x_1, \ldots, x_n változókat tartalmazó 2KNF formula m klózzal.

Konstruálunk egy G_{φ} 2n csúcsú irányított gráfot. G_{φ} csúcsai legyenek a 2n literál és minden $\ell_i \vee \ell_j$ klóz esetén adjuk hozzá a $(\neg \ell_i, \ell_j)$ és a $(\neg \ell_j, \ell_i)$ irányított éleket a gráf élhalmazához. Ezt az motiválja, hogy $\ell_i \vee \ell_j \sim_0 \neg \ell_i \rightarrow \ell_i \sim_0 \neg \ell_i \rightarrow \ell_i$.

Be fogjuk látni a következő állítást:

Állítás: φ akkor és csak akkor kielégíthető, ha G_{φ} egyetlen erősen összefüggő komponense se tartalmaz komplemens literálpárt.

(Emlékeztető: egy irányított gráf erősen összefüggő, ha bármely két csúcsa között van mindkét irányban irányított út. Minden irányított gráf csúcshalmaza erősen összefüggő komponensekre particionálható.)

3SAT NP-teljessége

ℓ	$\ell \lor x \lor y, \ \ell \lor x \lor \neg y, \ \ell \lor \neg x \lor y, \ \ell \lor \neg x \lor \neg y$
$\ell_1 \lor \ell_2$	$\ell_1 \lor \ell_2 \lor x, \ell_1 \lor \ell_2 \lor \neg x$
$\ell_1 \lor \ell_2 \lor \ell_3$	$\ell_1 \lor \ell_2 \lor \ell_3$
$\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$	$\ell_1 \lor \ell_2 \lor x, \ \neg x \lor \ell_3 \lor \ell_4$
$\ell_1 \lor \cdots \lor \ell_n \ (n \ge 5)$	$\ell_1 \vee \ell_2 \vee x_1, \neg x_1 \vee \ell_3 \vee x_2, \dots, \neg x_{n-3} \vee \ell_{n-1} \vee \ell_n$

 $n \geq 5$: (\Leftarrow): Tegyük fel, hogy jobboldalon minden tag igaz és indirekt tegyük fel, hogy ℓ_1, \ldots, ℓ_n hamis. Ekkor az új tagokon balról jobbra végighaladva sorra kapjuk, hogy $x_1, \ldots x_{n-3}$ igaz kell legyen, de ekkor az uolsó tag mégiscsak hamis, ellentmondás.

Tehát φ kielégíthető $\Leftrightarrow \varphi'$ kielégíthető. φ' φ -ből polinom időben elkészíthető és mérete az eredeti méret polinomja, tehát $SAT \leq_p$ 3SAT.

2SAT P-beli

Az állításból következik a tétel, hiszen ismeretes (lásd pl. Algoritmusok és Adatszerkezetek II.), hogy egy G=(V,E) gráf erősen összefüggő komponensei O(|V|+|E|) időben meghatározhatóak, és most |V|=2n, |E|=2m, azaz az algoritmus $\max\{n,m\}$ -ben polinomiális.

Az állítás bizonyítása: Vegyük észre, hogy ha egy I interpretáció kielégíti φ -t, akkor ha egy literál igaz I-ben, akkor minden belőle kiinduló él végpontja is igaz. Így az erősen összefüggő komponensek literáljainak ugyanaz az igazságértéke.

Ebből azonnal következik az állítás egyik iránya, hiszen ha G_{φ} valamelyik erősen összefüggő komponense tartalmaz komplemens literálpárt, akkor ezen literálpárnak ugyanaz lenne az igazságértéke, ami lehetetlen. Így φ kielégíthetetlen.

2SAT P-beli

Az állítás másik irányához meg kell adnunk egy φ -t kielégítő I interpretációt ha G_{φ} erősen összefüggő komponensei nem tartalmaznak komplemens literálpárt.

Legyen x_i tetszőleges ítéletváltozó. A feltétel szerint vagy x_i -ből $\neg x_i$ -be vagy $\neg x_i$ -ből x_i -be nincs irányított út. Ha egyik sincs, akkor adjuk hozzá G_{φ} -hez az $e=(x_i,\neg x_i)$ élt.

Ettől nem sérül a feltétel, hiszen ha ezzel valamely j-re x_j és $\neg x_j$ egy komponensbe kerülne, akkor ide kerülne az e él is és így x_i és $\neg x_i$ is. Azonban ez nem lehet, hiszen nincs $\neg x_i$ -ből x_i -be út.

Ezt addig folytatjuk, amíg nem lesz G_{φ} -ben minden komplemens literálpár között pontosan az egyik irányba út. Minden i-re

$$I(x_i) := \begin{cases} i, & \text{ha } G_{\varphi}\text{-ben van } \neg x_i\text{-ből } x_i\text{-be irányított út} \\ h & \text{ha } G_{\varphi}\text{-ben van } x_i\text{-ből } \neg x_i\text{-be irányított út} \end{cases}$$

Így minden hamis literálból van a komplemens párjába irányított út.

HORNSAT P-beli

Definíció

Horn formula: olyan KNF, amelynek minden tagja legfeljebb egy pozitív (azaz negálatlan) literált tartalmaz.

Példa:
$$(\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4 \lor \neg x_6) \land (\neg x_2 \lor \neg x_4 \lor \neg x_6)$$

HORNSAT= $\{\langle \varphi \rangle \mid \varphi \text{ kielégíthető Horn formula}\}$

Tétel

 $HORNSAT \in P$.

Nem bizonyítjuk.

2SAT P-beli

Ez az / interpretáció minden klózt igazra értékel.

Ugyanis indirekt tegyük fel, hogy φ -nek az $\ell_i \vee \ell_j$ klóza *I*-ben hamis. Ekkor ℓ_i és ℓ_i is hamis. Tehát az *I* definíciója utáni észrevétel miatt

(1) van irányított út ℓ_i -ből $\neg \ell_i$ -be és ℓ_i -ből $\neg \ell_i$ -be.

Másrészt G_{φ} definíciója miatt

- (2) $(\neg \ell_i, \ell_i)$ és $(\neg \ell_i, \ell_i)$ éle G_{φ} -nek.
- (1)-ből és (2)-ből következik, hogy ℓ_i és $\neg \ell_i$ G_{φ} -nek ugyanabban az erősen összefüggő komponensében van, ami feltételünk szerint nem lehet.

Ezzel az állítás és így a tétel bizonyítását is befejeztük.