FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

27.06.2022 - 03.07.2022

Tutorium 10

Aufgabe 1: Abschlusseigenschaften regulärer Sprachen

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b \}$ die DFAs $M_1 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma, \delta_1, q_0, \{ q_1 \})$ und $M_2 \triangleq (\{ q_3, q_4 \}, \Sigma, \delta_2, q_3, \{ q_4 \})$, wobei δ_1 und δ_2 durch die folgenden Graphen gegeben sind:

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $\{a^nb^n\mid n\in \mathbb{N}\}$ und $\{a^nb^n\mid n\in \mathbb{N}^+\}$ nicht regulär aber kontextfrei sind. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

1.a) *Beweise*: $A_1 \triangleq \{ w \in \{ a, b \}^* \mid ab \text{ ist kein Teilwort von } w \}$ ist regulär.

-----(Lösung)-----

 $A_1 = L((a+b)^*) \setminus L((a+b)^*ab(a+b)^*)$. Nach Theorem 2.4.4 sind reguläre Sprachen unter Differenz (\) abgeschlossen. Damit ist A_1 regulär.

/Lösung

 $\text{1.b)} \ \ \textit{Beweise:} \ A_2 \triangleq \{ \ \alpha^n x^n \mid x \in \{ \ \alpha, \ b \ \} \land n \in \underline{\mathbb{N}} \ \} \ \text{ist nicht regulär}.$

Lösung

Angenommen, A_2 sei regulär. Dann ist auch $A_2 \setminus L((\mathfrak{a}\mathfrak{a})^*) = \{ \mathfrak{a}^n\mathfrak{b}^n \mid n \in \mathbb{N}^+ \}$ regulär, weil nach Theorem 2.4.4 reguläre Sprachen abgeschlossen bezüglich Differenz (\) sind. Das ist ein Widerspruch. Damit ist A_2 nicht regulär.

/Lösung

1.c) Berechne: Konstruiere den Produktautomaten $M_{1\otimes 2}$ für die Sprache $L(M_1)\cap L(M_2)$ aus den Automaten M_1 und M_2 .

Automaten \mathcal{M}_1 und \mathcal{M}_2 .

Lösung ------

 $M_{1\otimes 2} = (Q_{1\otimes 2}, \Sigma, \delta_{1\otimes 2}, s_{1\otimes 2}, F_{1\otimes 2})$ mit:

 $Q_{1\otimes 2} = \{\; (q_0,\;q_3),\; (q_0,\;q_4),\; (q_1,\;q_3),\; (q_1,\;q_4),\; (q_2,\;q_3),\; (q_2,\;q_4)\; \}$

 $s_{1\otimes 2} = (q_0, q_3)$

 $F_{1\otimes 2} = \{ (q_1, q_4) \}$

 $\delta_{1\otimes 2}$:

Aufgabe 2: Syntaxbäume und Normalformen

Gegeben sei ein Alphabet $\Sigma \triangleq \{ a, b \}$ und eine Grammatik $G \triangleq (\{ S, A, B \}, \Sigma, P, S)$ mit

 $\begin{array}{ccc} P_3: & S & \rightarrow & \alpha \mid b \mid \alpha \alpha B \mid Abb \\ & A & \rightarrow & S\alpha \\ & B & \rightarrow & bS \end{array}$

und die Ableitung σ mit

 $\sigma \stackrel{\triangle}{=} S \Rightarrow_G aab \Rightarrow_G aab S \Rightarrow_G aab Abb \Rightarrow_G aab Sabb \Rightarrow_G aabaabb$

2.a) Gegeben sei eine Menge K aller Knotenmarkierungen, eine Menge L \triangleq { 1, 2, 3, + }, ein geordneter Baum B \subset K mit B \triangleq { $\langle \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 1$, 1 \rangle , $\langle 1$, 2 \rangle } und eine Abbildung f : B \rightarrow L mit f \triangleq { $(\langle \rangle$, +), $(\langle 1 \rangle$, +), $(\langle 2 \rangle$, 3), $(\langle 1, 1 \rangle$, 2), $(\langle 1, 2 \rangle$, 1) }.

Gib den L-beschrifteten Baum (B, f) grafisch an.

L-beschrifteter Baum (B, f)

(/Lösung

2.b) Gib den zu σ gehörigen Syntaxbaum grafisch an.

Syntaxbaum (B, syn)

/Lösung

2.c) Beweise oder widerlege: G ist eindeutig.

------Lösung

Wir widerlegen die Aussage indem wir einen weiteren Syntaxbaum für das Wort $aabaabb \in L(G)$ angeben.

Syntaxbaum (B, syn)

/Lösung

Aufgabe 3: Chomsky-Normalform

3.a) Gib eine Beweisskizze für die Proposition 3.1.11 der Formelsammlung im Fall der Chomsky-Normalform an. Hinweis: Es genügt an dieser Stelle ein Verfahren zur Konstruktion einer Grammatik G' in CNF für eine beliebige Grammatik G vom Typ 2. Weiterhin darf vorausgesetzt werden, dass G keine Kettenregeln und keine nutzlosen Nichtterminale beinhaltet.

Sei $G=(V,\Sigma,P,S)$ eine Typ 2 Grammatik ohne Kettenregeln und ohne nutzlose Nichtterminale. Wir konstruieren die Grammatik $G'=(V',\Sigma,P',S)$ wie folgt:

Sei zunächst V' = V und $P' = \emptyset$.

Füge für alle $\alpha \in \Sigma$ die Regel $N_{\alpha} \to \alpha$ zu P' hinzu und ersetze jedes Vorkommen von α in π' der Produktionen $\pi \to \pi' \in P$ und $|\pi'| \geqslant 2$ durch das Nichtterminalsymbol N_{α} . Jede auf diese Weise modifizierte Produktion $\pi \to \pi' \in P$ hat nun die Form $A \to B_1 \dots B_j$ mit $A, B_1, \dots, B_j \in V$. Füge alle Produktionen mit $\pi' \leqslant 2$ zu P' hinzu. Für alle Produktionen mit $j \geqslant 3$ verfahre wie folgt:

Füge Nichtterminale C_1, \ldots, C_{j-2} zu V' hinzu. Weiterhin füge die folgenden Produktionen zu P' hinzu:

$$A \rightarrow B_1C_1$$

$$C_1 \rightarrow B_2C_2$$

$$\vdots$$

$$C_{k-3} \rightarrow B_{k-2}C_{k-2}$$

$$C_{k-2} \rightarrow B_{k-1}B_k$$

/Lösung

3.b) Gib eine Grammatik G' in CNF an mit L(G) = L(G') für G aus Aufgabe 2.

------Lösung

Eine Möglichkeit für eine solche Grammatik ist $G' \triangleq (\{ S, N_a, N_b, A, B, A_1, B_1 \}, \Sigma, P', S)$ mit

$$P': S \rightarrow a \mid b \mid N_{\alpha}A_{1} \mid AB_{1}$$

$$N_{\alpha} \rightarrow a$$

$$N_{b} \rightarrow b$$

$$A \rightarrow SN_{\alpha}$$

$$B \rightarrow N_{b}S$$

$$A_{1} \rightarrow N_{a}B$$

 $B_1 \rightarrow N_b N_b$

/Lösung