

Микропроцессорные устройства обработки сигналов

Лекция L04 «Представление дробных чисел»

http://vykhovanets.ru/course67/

Форматы представления чисел

- Натуральные числа: N8, N16, N32, N64.
- Целые числа: Z8, Z16, Z32, Z64.
- Числа с фиксированной запятой: Q4.12, Q1.15, Q1.31.
- Числа с плавающей запятой: F32, F64, F80.
- Рациональные числа <u>числитель</u> : R8, R16, R32, R64.
- Логарифмические форматы (логарифм значения и знак).
- Символьные форматы.

Целочисленные форматы

N16 [0, 65 535], $\varepsilon = 1$

 $2^{15} 2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Разряд Бит

Z16 [-32 768, 32 767], $\varepsilon = 1$

 $-2^{15} 2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N32 [0, 4 929 967 295], $\varepsilon = 1$

Bec

 2^{31} 2^{30} 2^{29} 2^{28} 2^{27} 2^{26} 2^{25} 2^{24} 2^{23} 2^{22} 2^{21} 2^{20} 2^{19} 2^{18} 2^{17} 2^{16} 2^{15} 2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^{9} 2^{8} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{10} $2^$ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 $x \mid x \mid$ $x \mid x \mid x \mid$ X

Z32 [-2 147 483 648, 2 147 483 647], $\varepsilon = 1$

 $-2^{31} \ 2^{30} \ 2^{29} \ 2^{28} \ 2^{27} \ 2^{26} \ 2^{25} \ 2^{24} \ 2^{23} \ 2^{22} \ 2^{21} \ 2^{20} \ 2^{19} \ 2^{18} \ 2^{17} \ 2^{16} \ 2^{15} \ 2^{14} \ 2^{13} \ 2^{12} \ 2^{11} \ 2^{10} \ 2^{9} \ 2^{8} \ 2^{7} \ 2^{6} \ 2^{5} \ 2^{4} \ 2^{3} \ 2^{2} \ 2^{1} \ 2^{0} \ 2^{10} \ 2$ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

$$X_{N16} = \sum_{i=0}^{15} x_i \cdot 2^i$$

$$X_{N32} = \sum_{i=0}^{31} x_i \cdot 2^i$$

$$X_{Z16} = -s \cdot 2^{15} + \sum_{i=0}^{14} x_i \cdot 2^i$$

$$X_{Z32} = -s \cdot 2^{31} + \sum_{i=0}^{30} x_i \cdot 2^i$$

Дробные форматы

Q4.12 [-8, 8),
$$\varepsilon = 2^{-12} = 2,44 \times 10^{-4}$$

-2³ 2² 2¹ 2⁻⁰ 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷ 2⁻⁸ 2⁻⁹ 2⁻¹⁰2⁻¹¹2⁻¹² 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 s x x x x x x x x x x x x x x x

Q1.15 [-1, 1),
$$\varepsilon = 2^{-15} = 3,05 \times 10^{-5}$$

Q1.31 [-1, 1),
$$\varepsilon = 2^{-31} = 4,66 \times 10^{-10}$$

$$X_{Q4.12} = -s \cdot 2^{3} + \sum_{i=0}^{14} x_{i} \cdot 2^{-12+i} = 2^{-12} \left(-s \cdot 2^{15} + \sum_{i=0}^{14} x_{i} \cdot 2^{i} \right) = 2^{-12} \cdot X_{Z16}$$

$$X_{Q1.15} = -s + \sum_{i=0}^{14} x_{i} \cdot 2^{-15+i} = 2^{-15} \left(-s \cdot 2^{15} + \sum_{i=0}^{14} x_{i} \cdot 2^{i} \right) = 2^{-16} \cdot X_{Z16}$$

$$X_{Q1.31} = -s + \sum_{i=0}^{30} x_i \cdot 2^{-31+i} = 2^{-31} \left(-s \cdot 2^{31} + \sum_{i=0}^{30} x_i \cdot 2^i \right) = 2^{-31} \cdot X_{Z32}$$

Фиксированная запятая

$$0000,0001_2 = \frac{1}{16} = 0,625$$

 $0001,1000_2 = \frac{24}{16} = 1,5$

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \qquad \frac{a}{c} * \frac{b}{c} = \frac{(a*b)/c}{c}$$

$$1,5 * 2,5 = 3,75$$

 $0001,1000_2 * 0010,1000_2 =$
 $= 0011,1100 \mid 0000_2$

Внутренний формат Q9.31

Q9.31 [-256, 256), $\varepsilon = 2^{-31} = 4,66 \times 10^{-10}$

$$X_{N40} = \sum_{i=0}^{39} x_i \cdot 2^i$$

$$X_{Z40} = -s \cdot 2^{39} + \sum_{i=0}^{38} x_i \cdot 2^i$$

$$X_{Q9.31} = -s \cdot 2^8 + 2^{-31} \sum_{i=0}^{38} x_i \cdot 2^i$$

$$X_{Q9.31} = 2^{-31} \left(-s \cdot 2^{39} + \sum_{i=0}^{38} x_i \cdot 2^i \right) = 2^{-31} \cdot X_{Z40}$$
$$X_{Q1.31} \pm Y_{Q1.31} = 2^{-31} \left(X_{Z40} \pm Y_{Z40} \right)$$

Преобразование дробных

Q9.31

Q1.31 -2⁰ 2⁻¹ 2⁻² 2⁻³ 2⁻¹³ 2⁻¹⁴ 2⁻¹⁵ 2⁻¹⁶ 2⁻¹⁷ 2⁻¹⁸ 2⁻²⁹ 2⁻²⁰ 2⁻²¹ 2⁻²² 2⁻²³ 2⁻²⁴ 2⁻²⁵ 2⁻²⁶ 2⁻²⁷ 2⁻²⁸ 2⁻²⁹ 2⁻³⁰ 2⁻³¹ 2⁻¹⁸ 2⁻¹⁸

$$X_{Q9.31} = -s \cdot 2^8 + 2^{-31} \sum_{i=0}^{38} x_i \cdot 2^i$$

$$X_{Q1.31} = -s + 2^{-31} \sum_{i=0}^{30} x_i \cdot 2^i$$

$$\sum_{i=0}^{n-1} aq^i = a \frac{q^n - 1}{q - 1}$$

$$2^{8} - \sum_{i=0}^{7} 2^{i} = 2^{8} - \frac{2^{8} - 1}{2 - 1} = 2^{0}$$

$$X_{Q1.31} = -s \cdot 2^{0} + 2^{-31} \sum_{i=0}^{30} x_{i} \cdot 2^{i} =$$

$$= -s \left(2^{8} - \sum_{i=0}^{7} 2^{i}\right) + 2^{-31} \sum_{i=0}^{30} x_{i} \cdot 2^{i} =$$

$$= -s \cdot 2^{8} + 2^{-31} \sum_{i=0}^{38} x_{i} \cdot 2^{i} \begin{vmatrix} x_{38} = s \\ x_{37} = s \\ \dots \\ x_{31} = s \end{vmatrix}$$

Насыщение

```
Q9.31
```

Q9.31 Q1.31

FE80000009h ≠ 80000009h 018000009h ≠ 80000009h

Q9.31 Q9.31 Q1.31

 $FE80000009h \approx FF80000000h = 800000000h (-1)$

 $0180000009h \approx 007FFFFFFFh = 7FFFFFFFh (+1-2^{-31})$

FF80000000h — минимальное число в Q1.31 007FFFFFFh — максимальное число в Q1.31

Насыщение (saturation)

Умножение дробных

$$\begin{split} X_{Q1.15} &= -s_x + 2^{-15} \sum_{i=0}^{14} x_i \cdot 2^i, \quad Y_{Q1.15} = -s_y + 2^{-15} \sum_{i=0}^{14} y_i \cdot 2^i. \\ Z &= 2^{-30} \bigg(-s_x \cdot 2^{15} + \sum_{i=0}^{14} x_i \cdot 2^i \bigg) \bigg(-s_y \cdot 2^{15} + \sum_{i=0}^{14} y_i \cdot 2^i \bigg) \\ Z &= 2^{-30} \bigg(X_{Z16} \cdot Y_{Z16} \bigg) = 2^{-30} Z_{Z32}, \quad Z_{Q1.31} = 2 \cdot Z. \end{split}$$

Z32

Q1.31

$$Z_{Q1.31} = Z_{Z32} << 1$$

int x, y; long z; x = 0xFDE3, y = 0x71A4; z = ((long)x*y)<<1;

$$Z_{Q1.15} = Z_{Z32} >> 15$$

int x, y, z; x = 0xFDE3, y = 0x71A4; z = ((long)x*y)>>15;

Деление дробных

$$f(x) = \frac{1}{x} - c \qquad f(x) = 0 \to x = \frac{1}{c}$$

$$f(x) = 0 \qquad x_{m+1} = x_m - \frac{f(x_m)}{f'(x_m)}$$

$$x_{m+1} = 2x_m - x_m^2 c \ (|x_{m+1} - x_m| < \varepsilon)$$

$$c = M \cdot 2^E, \qquad |M| \in [\frac{1}{2}, 1)$$

$$M = 01XX \dots Xb, \quad E = 0YYY \dots Yb$$

$$x_{m+1} = 2x_m - x_m^2 M \ (m = 0, 1, 2, 3)$$

 $x_0 = (M \ll 1)^0 \times 1$ FFF

 $E_0 = E - 1$

Метод Ньютона (метод касательных)

void Idiv16(LDATA *x, DATA *y, DATA *z, DATA *zexp, ushort nx);

Форматы с плавающей запятой

IEEE 754

F32
$$(-1)^S 2^{(E-127)} (1+M/2^{23})$$

$$F64 (-1)^S 2^{(E-1023)} (1+M/2^{52})$$

S – **S**ign (знак числа)

E – Exponent (8 или 11 бит смещенного на 127 или 1023 порядка числа)

M – Mantissa (23 или 52 бита мантиссы, дробная часть числа)

Числа с плавающей запятой

- нулевые числа

денормализованные числа

нормализованные числа
 бесконечность

- не числа (NANs)

Нормализованные числа

F32 $(-1)^S 2^{(E-127)} (1+M/2^{23})$

 $F64 (-1)^S 2^{(E-1023)} (1+M/2^{52})$

Денормализованные числа

 $F32 (-1)^S 2^{-127} M/2^{23}$

F64 (-1)^S 2⁻¹⁰²³ M/2⁵²

Денормализованные числа

Пример вычислений

Методы округления

- Round To Nearest, Ties to Even округление в сторону ближайшего, к чётному в случае конфликтов.
 - Режим по умолчанию в IEEE 754.

$$01{,}10{\color{red}1}_2 \rightarrow 01{,}1{\color{gray}2},01{,}110{\color{gray}1}_2 \rightarrow 10{,}0{\color{gray}2},01{,}111{\color{gray}1}_2 \rightarrow 10{,}0{\color{gray}2},-01{,}101{\color{gray}2} \rightarrow -01{,}1{\color{gray}2}$$

Round Up - округление в сторону +∞;

$$01,101_2 \rightarrow 10,0_2,01,110_2 \rightarrow 10,0_2,01,111_2 \rightarrow 10,0_2,-01,101_2 \rightarrow -01,1_2$$

Round Down – округление в сторону –∞;

$$01,101_2 \rightarrow 01,1_2,01,110_2 \rightarrow 01,1_2,01,111_2 \rightarrow 01,1_2,-01,101_2 \rightarrow -10,0_2$$

- Round Towards Zero округление в сторону 0;
 - Для реализации достаточно отбросить «лишние» биты.

$$01,101_2 \rightarrow 01,1_2,01,110_2 \rightarrow 01,1_2,01,111_2 \rightarrow 01,1_2,-01,101_2 \rightarrow -01,1_2$$

Арифметические проблемы

- Не все числа имеют представление.
- Преобразование в целые: 63,0/9,0→7, 0,63/0,09→6.
- Преобразование в символьные форматы и обратно, многие числа нельзя ввести или вывести точно: 0,2→ 0,20000000003.
- Порядок вычисления может влиять на результат и его точность: не выполняются законы ассоциативности и дистрибутивности.
- Проблемы сравнения: x==y.

Рекомендации

- Выполнять вычисления в одном формате чисел.
- Избегать лишних преобразований форматов.
- При сравнении чисел F32, F64 использовать $abs(x-y) \le \epsilon$.
- Избегать сложений чисел, экспоненты которых сильно отличаются.
- Избегать вычитания близких чисел.
- Функции exp, log, sin и т.д. не вычисляются точно.

Goldberg D. What Every Computer Scientist Should Know About Floating-Point Arithmetic // Computing Surveys. 1991.