5.3-Handling outliers and Data Encoding

July 16, 2025

0.1 Outlier Handling

→1.0])

0.1.1 5 Number Summary And Box Plot for the Outlier Handling

Here 5 number summary means

- 1) Maximum
- 2) Q1(First Quartile) or 25%(percentile)
- 3) Median
- 4) Q3(Third Quartile) or 75%(percentile)
- 5) Minimum

```
[1]: import numpy as np

[2]: lst_marks = [45, 32, 56, 75, 89, 54, 32, 89, 90, 87, 67, 54, 45, 98, 99, 67, 474] # This is not containing any outliers

minimum, Q1, median, Q3, maximum = np.quantile(lst_marks, [0, 0.25, 0.50, 0.75, 47])
```

```
[3]: print(f"Minimum value of data is: {minimum}")
print(f"Q1 of data is: {Q1}")
print(f"Q3 of data is: {Q3}")
print(f"Median of data is: {median}")
print(f"Maximum value of data is: {maximum}")
```

Minimum value of data is: 32.0 Q1 of data is: 54.0 Q3 of data is: 89.0 Median of data is: 67.0 Maximum value of data is: 99.0

[4]: IQR = Q3-Q1
print(f"Inter Quartile Range is: {IQR}")

Inter Quartile Range is: 35.0

```
[5]: lower_fence = Q1-1.5*(IQR)
higher_fence = Q3+1.5*(IQR)
```

[6]: print(f"Lower value considered as an outlier is: {lower_fence}")
print(f"Highest value considered as an outlier is: {higher_fence}")

Lower value considered as an outlier is: 1.5 Highest value considered as an outlier is: 141.5

[7]: import seaborn as sns

[8]: sns.boxplot(lst_marks)

[8]: <Axes: >

When we are plotting the boxplot it is automatically detect the outliers and shows the outliers as points

```
[9]: lst_marks = [-50, -10, -45, 1, 45, 32, 56, 75, 89, 54, 32, 89, 90, 87, 67, 54, 45, 98, 99, 67, 74, 100,150, 210, 190, 180]
```

[10]: # plotting the boxplot for the lst_marks
sns.boxplot(lst_marks)

[10]: <Axes: >

Here you can see that the dots are the outliers that is automatically detected by the boxplot we are not calculating the IQR, lower_fence or higher_fence

0.2 Data Encoding

- 1. Nominal/OHE Encoding
- 2. Label and Ordinal Encoding
- 3. Target Guided Ordinal Encoding

0.2.1 Nominal/OHE Encoding

One hot encoding, also known as nominal encoding, is a technique used to represent categorical data as numerical data, which is more suitable for machine learning algorithms. In this technique, each category is represented as a binary vector where each bit corresponds to a unique category. For example, if we have a categorical variable variable "color" with three possible values (red, green, blue), we can represent it one hot encoding as follows

- 1. Red:[1, 0, 0] 2. Green:[0, 1, 0] 3. Blue:[0, 0, 1]
- [11]: import pandas as pd from sklearn.preprocessing import OneHotEncoder

```
[12]: ## Creating a simple DataFrame
      df = pd.DataFrame({
              'color':['red', 'blue', 'green', 'green', 'red', 'blue']
      })
[13]: df
[13]:
         color
           red
      1
         blue
      2
        green
      3 green
      4
           red
      5
          blue
[14]: ## Create an instance of OneHotEncoder
      encoder = OneHotEncoder()
[15]: ## Perform fit and transform
      encoded = encoder.fit_transform(df[['color']]).toarray()
[16]: encoder_df = pd.DataFrame(encoded, columns=encoder.get_feature_names_out())
[17]: encoder_df
[17]:
         color_blue color_green color_red
                             0.0
                                        1.0
      0
                0.0
                1.0
                             0.0
                                        0.0
      1
                0.0
                             1.0
                                        0.0
      2
                0.0
      3
                             1.0
                                        0.0
      4
                0.0
                             0.0
                                        1.0
      5
                1.0
                             0.0
                                        0.0
[18]: ## concat with your original dataset
      df2 = pd.concat([df, encoder_df], axis=1)
[19]: df2
[19]:
         color color_blue color_green color_red
                       0.0
                                               1.0
      0
           red
                                    0.0
      1
         blue
                       1.0
                                    0.0
                                               0.0
                       0.0
                                    1.0
                                               0.0
      2 green
      3 green
                       0.0
                                    1.0
                                               0.0
                       0.0
                                    0.0
                                               1.0
           red
```

5 blue 1.0 0.0 0.0

0.2.2 Example For Practice

```
[20]: import seaborn as sns
      df1 =sns.load dataset('tips')
[21]: encode = OneHotEncoder()
[22]: encoded = encode.fit_transform(df1[['sex', 'smoker', 'day', 'time']]).toarray()
[23]:
      encoded
[23]: array([[1., 0., 1., ..., 0., 1., 0.],
             [0., 1., 1., ..., 0., 1., 0.],
             [0., 1., 1., ..., 0., 1., 0.],
             [0., 1., 0., ..., 0., 1., 0.],
             [0., 1., 1., ..., 0., 1., 0.],
             [1., 0., 1., ..., 1., 1., 0.]])
      encoded_df1 = pd.DataFrame(encoded, columns=encode.get_feature_names_out())
[25]: encoded_df1.head()
         sex_Female
[25]:
                     sex_Male smoker_No
                                           smoker_Yes day_Fri day_Sat day_Sun \
      0
                1.0
                           0.0
                                      1.0
                                                   0.0
                                                             0.0
                                                                      0.0
                                                                                1.0
                0.0
                           1.0
                                      1.0
                                                   0.0
                                                             0.0
                                                                      0.0
      1
                                                                                1.0
      2
                0.0
                           1.0
                                      1.0
                                                   0.0
                                                             0.0
                                                                      0.0
                                                                                1.0
                0.0
      3
                           1.0
                                      1.0
                                                   0.0
                                                             0.0
                                                                      0.0
                                                                                1.0
                1.0
                           0.0
                                      1.0
                                                   0.0
                                                             0.0
                                                                      0.0
                                                                                1.0
         day_Thur time_Dinner time_Lunch
      0
              0.0
                            1.0
                                         0.0
      1
              0.0
                            1.0
                                         0.0
              0.0
                            1.0
                                         0.0
      3
              0.0
                            1.0
                                         0.0
      4
              0.0
                            1.0
                                         0.0
[26]: df1 = pd.concat([df1, encoded_df1], axis=1)
      df1.head()
[26]:
         total_bill
                      tip
                               sex smoker
                                            day
                                                   time
                                                         size
                                                                sex_Female
                                                                            sex_Male \
                                                 Dinner
      0
              16.99
                     1.01
                            Female
                                        No
                                            Sun
                                                             2
                                                                       1.0
                                                                                  0.0
              10.34
                     1.66
                                            Sun
                                                 Dinner
                                                             3
                                                                       0.0
                                                                                  1.0
      1
                              Male
                                       No
      2
              21.01
                     3.50
                              Male
                                        No
                                            Sun
                                                 Dinner
                                                             3
                                                                       0.0
                                                                                  1.0
                                                             2
      3
              23.68 3.31
                                                 Dinner
                                                                       0.0
                                                                                  1.0
                              Male
                                        No
                                            Sun
              24.59 3.61 Female
                                                             4
                                            Sun
                                                 Dinner
                                                                       1.0
                                                                                  0.0
                                       No
```

```
smoker No
               smoker_Yes
                             day_Fri
                                       day_Sat
                                                 day_Sun
                                                            day_Thur
                                                                       time_Dinner
0
          1.0
                       0.0
                                  0.0
                                            0.0
                                                      1.0
                                                                 0.0
                                                                                1.0
          1.0
                       0.0
                                  0.0
                                            0.0
                                                                 0.0
                                                                                1.0
1
                                                      1.0
2
          1.0
                       0.0
                                  0.0
                                            0.0
                                                      1.0
                                                                 0.0
                                                                                1.0
                                  0.0
3
          1.0
                       0.0
                                            0.0
                                                      1.0
                                                                 0.0
                                                                                1.0
4
          1.0
                       0.0
                                 0.0
                                            0.0
                                                      1.0
                                                                 0.0
                                                                                1.0
   time_Lunch
           0.0
0
           0.0
1
2
           0.0
3
           0.0
```

0.2.3 Label Encoding

1. Red: 1

[30]: array([2])

0.0

4

Label encoding and ordinal encoding are two techniques used to encode categorical data as numerical data

Label encoding involves assigning a unique numerical label to each category in the variable. The labels are usually assigned in alphabetical order or based on the frequency of the categories. For example, if we have a categorical variable "color" with three possible values (red, green, blue), we can represent it using label encoding as follows:

```
2. Green: 2
         3. Blue: 3
[27]:
      df
[27]:
         color
      0
           red
      1
          blue
      2
         green
      3
         green
      4
           red
      5
          blue
[28]: from sklearn.preprocessing import LabelEncoder
      lbl encoder= LabelEncoder()
[29]: lbl_encoder.fit_transform(df['color'])
[29]: array([2, 0, 1, 1, 2, 0])
[30]: lbl_encoder.transform(['red'])
```

```
[31]: lbl_encoder.transform(['blue'])
```

[31]: array([0])

The problem with that the red value is higher value as compared to the blue so model get confused

0.2.4 Ordinal Encoding

It is used to encode categorical data that have an intrinsic order or ranking. In this technique, each category is assigned a n numerical value based on its position in the order. For example, if we have a categorical variable "education level" with four possible values (high school, college, graduate, post-graduate), we can represent ordinal encoding as follows:

```
1. High school: 1
         2. College: 2
         3. Graduate: 3
         4. Post-graduate: 4
[32]: from sklearn.preprocessing import OrdinalEncoder
[33]: df3 = pd.DataFrame({
              'size': ['small', 'medium', 'large', 'medium', 'small', 'large']
      })
     df3
[34]:
[34]:
           size
          small
      1 medium
      2
          large
      3 medium
      4
          small
      5
          large
[35]: | ## create an instance of OrdinalEncoder and then fit transform
      encoder = OrdinalEncoder(categories=[['small', 'medium', 'large']])
[36]: encoder.fit_transform(df3[['size']]) ## here the large assigned with larger_
       yalue
[36]: array([[0.],
             [1.],
             [2.],
             [1.],
             [0.],
             [2.11)
```

0.2.5 Target Guided Ordinal Encoding

It is a techniques used to encode categorical variables based on their relationship with the target variable. This encoding technique is useful when we have a categorical variable with a large number of unique categories, and we want to use this variable as a feature in our machine learning model.

In target Guided Ordinal Encoding, we replace each category in the categorical variable with a numerical values based on the mean or median of the target variable for that category. This creates a monotonic relationship between teh categorical variable and the target variable, which can improve the predictive power of our model.

```
[37]: df4 = pd.DataFrame({
               'city': ['New York', 'London', 'Paris', 'Tokyo', 'New York', 'Paris'],
               'price': [200, 150, 300, 250, 180, 320]
      })
[38]:
     df4
[38]:
             city
                   price
         New York
                      200
      0
      1
           London
                      150
      2
            Paris
                      300
      3
                      250
            Tokyo
      4
         New York
                      180
      5
            Paris
                      320
[39]:
                     df4.groupby('city')['price'].mean().to_dict()
     mean price =
[40]:
     mean_price
[40]: {'London': 150.0, 'New York': 190.0, 'Paris': 310.0, 'Tokyo': 250.0}
[41]: df4['city_encoded'] = df4['city'].map(mean_price)
[42]:
      df4
[42]:
             city price
                           city_encoded
      0
         New York
                      200
                                   190.0
      1
           London
                      150
                                   150.0
      2
            Paris
                      300
                                   310.0
      3
                      250
                                   250.0
            Tokyo
      4
         New York
                      180
                                   190.0
      5
            Paris
                      320
                                   310.0
[43]:
     df4[['price', 'city_encoded']] ## this is used for our model training
[43]:
         price
                 city_encoded
                        190.0
      0
           200
      1
           150
                        150.0
```

```
4
           180
                        190.0
      5
           320
                        310.0
     Example For Practice
[44]: df5 =sns.load_dataset('tips')
[45]: df5
[45]:
           total_bill
                         tip
                                 sex smoker
                                               day
                                                      time
                                                             size
                16.99 1.01
                             Female
                                               Sun
                                                                2
      0
                                          No
                                                    Dinner
      1
                10.34
                       1.66
                                                    Dinner
                                                                3
                                Male
                                          No
                                               Sun
                                                                3
      2
                21.01 3.50
                                Male
                                          No
                                               Sun
                                                    Dinner
      3
                23.68 3.31
                                Male
                                          No
                                               Sun
                                                    Dinner
                                                                2
      4
                24.59 3.61 Female
                                                    Dinner
                                                                4
                                          No
                                               Sun
      239
                29.03 5.92
                                                    Dinner
                                                                3
                                Male
                                          No
                                               Sat
      240
                27.18 2.00
                             Female
                                               Sat
                                                    Dinner
                                                                2
                                         Yes
      241
                22.67 2.00
                                Male
                                         Yes
                                               Sat
                                                    Dinner
                                                                2
      242
                17.82 1.75
                                                                2
                                Male
                                          No
                                               Sat
                                                    Dinner
      243
                18.78 3.00 Female
                                          No
                                              Thur
                                                    Dinner
                                                                2
      [244 rows x 7 columns]
[46]: mean_total_bill = df5.groupby('time', observed=True)['total_bill'].mean().
       →to_dict()
[47]: mean_total_bill
[47]: {'Lunch': 17.168676470588235, 'Dinner': 20.79715909090909}
      df5['time_encoded'] = df5['time'].map(mean_total_bill)
[49]:
      df5
[49]:
           total_bill
                         tip
                                 sex smoker
                                               day
                                                      time
                                                             size time_encoded
      0
                16.99
                       1.01
                              Female
                                          No
                                               Sun
                                                    Dinner
                                                                2
                                                                     20.797159
      1
                10.34
                       1.66
                                                    Dinner
                                                                3
                                Male
                                          No
                                               Sun
                                                                     20.797159
      2
                21.01
                       3.50
                                                                3
                                Male
                                          No
                                               Sun
                                                    Dinner
                                                                     20.797159
      3
                23.68 3.31
                                Male
                                          No
                                               Sun
                                                    Dinner
                                                                2
                                                                     20.797159
      4
                24.59 3.61
                             Female
                                          No
                                               Sun
                                                    Dinner
                                                                4
                                                                     20.797159
      239
                29.03 5.92
                                Male
                                               Sat
                                                    Dinner
                                                                3
                                          No
                                                                     20.797159
      240
                27.18 2.00
                              Female
                                                    Dinner
                                                                2
                                         Yes
                                               Sat
                                                                     20.797159
      241
                22.67
                        2.00
                                Male
                                         Yes
                                               Sat
                                                    Dinner
                                                                2
                                                                     20.797159
                17.82 1.75
                                                                2
      242
                                Male
                                          No
                                               Sat
                                                    Dinner
                                                                     20.797159
```

2

3

300

250

310.0

250.0

243 18.78 3.00 Female No Thur Dinner 2 20.797159

[244 rows x 8 columns]

[50]: df5[['time', 'time_encoded']].head() ## this is used for our model training

[50]: time time_encoded

- 0 Dinner 20.797159
- 1 Dinner 20.797159
- 2 Dinner 20.797159
- 3 Dinner 20.797159
- 4 Dinner 20.797159