Tanzanian Waterpoint Status Prediction

Presenter: Melody Bass

Overview

- Tanzania is a developing country that struggles to provide access to safe drinking water for it's 59 million residents
- Build a predictive model and provide insight on water pump failure
 - o 60,000 waterpoints in Tanzania
 - Status of the waterpoints
 - o 39 independent variables

Background

- According to WHO, 1 in 6 people in Tanzania lack access to safe drinking water
- 29 million don't have access to improved sanitation
- Women walk 2 to 3 km per day carrying 20-25 liters on their head and sometimes wait hours at the water source

Business Problem

- The Tanzanian government has a severe water crisis on their hands
- They want to predict which pumps are functional, functional but need repairs, and non functional
- Taarifa and Tanzanian Ministry of Water have shared the dataset to aid understanding of pump failure
- I will build model to help the government improve maintenance operations and ensure clean drinking water is accessible to communities across Tanzania

Business Problem cont

Precision is our main metric of model selection

 A non functional well being predicted as a functional well is worse than the opposite case

Data

- Dataset contains information on 60,000 waterpoints in Tanzania
- 39 independent variables
- Pump Status
 - Functional
 - Functional needs repairs
 - Non functional
- Available for download on DrivenData
 - https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/page/23/

Distribution of Waterpoints

- 29,000 functional
- 21,000 non functional
- 3,500 functional needs repairs

Functionality of Wells

Construction Year of Waterpoint

- As expected, the older the pump installation year, the more non functional pumps there are.
- High rate of functioning pumps after 1988 peaking in 2000s

Well function by Region

- There are a high number of functional wells in Iringa, Shinyanga, Kilimanjaro, and Arusha.
- More non functional wells than functional in Mara, Mtwara, Lindi, and Rukwa

Insights

- High rate of non functional wells in southeast corner of Tanzania in Mtwara and Lindi, as well as Mara and Rukwa
- There is cluster of functional but needs repair wells in Kigoma

Water Quantity

- As expected, high number of non functional wells that are dry
- Over 8,000 waterpoints have enough water, but are non functional.
- 2,500 are functional but need repairs

Payment

Payment type at Wells

- Wells with no fee are more likely to be non functional
- Some form of payment increases functionality

Installer

The Government, District Council, and Fini Water all have a high rate of pump failure

Recommendations

- Location
 - Target repairs in areas like Lindi and Mtwara that have a high rate of non functional wells
 - Make repairs to functional wells in Kigoma to maximize cost effectiveness
- Repairs
 - Prioritize non functional and functional wells which need repair and have enough water
- Payment
 - Payment provides incentive and means to keep wells functional
- Installers
 - Avoid using installers with a high rate of pump failure

My model
has 81%
precision and
82%
accuracy

Future Improvements

- Improve Data
 - Better data will build a better model
- Monitor Wells
 - Update regularly with new data to continuously improve strategy

Thank You!

Email: meljoy1099@email.com

GitHub: https://github.com/meljoy1099/waterwell-status-prediction