Lecture 12: Deep Generative Models I: Overview, Latent Variable Models & EM

Lan Xu SIST, ShanghaiTech Fall, 2024

Outline

- Deep Generative Model Overview
- Unsupervised learning
 - Problem setup
- Latent variable model
 - EM algorithm and GMM
- Representation learning
 - AutoEncoder

Acknowledgement: Yingyu Liang@Princeton's & Feifei Li's cs231n notes

Taxonomy of Generative Models

Still happening

Which Face is Real?

- The new trends: big data/model/computing
- Inherent representation from data
- Enrich the data, accelerate content generation
- May help further AGI

 Debiasing: capable of uncovering underlying features in a dataset

Homogeneous skin color, pose

Diverse skin color, pose, illumination

Multi-modalities, deeply influence our life

- Huge success for text-2-image
- Midjourney, Stable Diffusion,

a teddy bear on a skateboard in times square

hyperdetailed photography, photorealistic. close look, on a Canon EOS 5D Mark IV camera

- Huge success for text-2-image
- A lot of variants

鹤立鸡群

熊熊烈火

驴肉火烧

唐伯虎点秋香

■ Goal: Take as input training samples from some distribution → learn a model to represent distribution

Density Estimation

Sample Generation

Generated Samples: P_model(x)

- Diffusion model
- Autoregressive: from text-gen to image-gen

https://openai.com/research/image-gpt

From Prof. Hung-yi Lee, Generative Al

From normal distribution to specific image distribution

Sprouts in the shape of text 'Imagen' Google: Imagen fairytale book.

OpenAI: DALL-E 2

Stability AI: Stable-Diffusion

Midjourney

Imagen (NeurIPS 2022)

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

Chitwan Saharia*, William Chan*, Saurabh Saxena†, Lala Li†, Jay Whang†, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho†, David J Fleet†, Mohammad Norouzi*

{sahariac,williamchan,mnorouzi}@google.com {srbs,lala,jwhang,jonathanho,davidfleet}@google.com

> Google Research, Brain Team Toronto, Ontario, Canada

4.1 Training details

Unless specified, we train a 2B parameter model for the 64×64 text-to-image synthesis, and 600M and 400M parameter models for $64 \times 64 \rightarrow 256 \times 256$ and $256 \times 256 \rightarrow 1024 \times 1024$ for superresolution respectively. We use a batch size of 2048 and 2.5M training steps for all models. We use 256 TPU-v4 chips for our base 64×64 model, and 128 TPU-v4 chips for both super-resolution

e input text × 64 image. the image,

DALL-E2 (OpenAI)

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen, "Hierarchical Text-Conditional Image Generation with CLIP Latents", Arxiv 2022

DALL-E2 training

Step-1: CLIP Training

"a corgi playing a flame throwing trumpet" text encoder

Step-2: Prior Training

Step-3: Decoder Training

Stable Diffusion model (CVPR2022)

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach¹* Andreas Blattmann¹* Dominik Lorenz¹ Patrick Esser Björn Ommer¹

Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany

BRunway ML

https://github.com/CompVis/latent-diffusion

- Stable Diffusion model (CVPR2022)
- Long story between Stability AI, Runway ML and LAION-5B
- Al paradigm: data + algorithm + computing resource

Computer Vision & Learning Group Ludwig Maximilian University of Munich (LMU)

~4000 A100 from Stability AI

Huge text-image dataset from LAION

A quick summary

A quick summary

24

- The multi-modality framework is important
- The trend continues: big data, big modal
- Enjoy better text-encoder and suitable generator

Stablity AI: DeepFloyd IF Model

T5-XXL as Text-encoder; pixel-level
Diffusion

- Enjoy cross-modality abilities
- Enjoy downstream conditioning abilities

Conditioning using ControlNet

Subject-Driven Generation using **DreamBooth**

Editing Instructions using InstructPix2Pix (based on GPT-3)

Use NeRF as inherent representation to bridge 2D-DM with 3D scene

More explicit disentanglement towards geometry, color,

lighting ...

3D Editing Instructions using InstructNeRF2NeRF

NVDIA Magic3D 18 Nov 2022

OpenAl **Point-E** 21 Dec 2022

Outline

- Deep Generative Model Overview
- Unsupervised learning
 - Problem setup
- Latent variable model
 - EM algorithm and GMM
- Representation learning
 - AutoEncoder

Acknowledgement: Yingyu Liang@Princeton's & Feifei Li's cs231n notes

Task formulation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Task formulation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

K-means clustering

Task formulation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Principal Component Analysis (Dimensionality reduction)

Task formulation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Autoencoders (Feature learning)

Task formulation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

2-d density estimation

Outline

- Unsupervised learning
 - □ Problem setup
- Latent variable model
 - □ EM algorithm and GMM
- Representation learning
 - AutoEncoder

Acknowledgement: Yingyu Liang@Princeton's & Feifei Li's cs231n notes

Latent variable model

- Data generation process
 - \square Latent variable \boldsymbol{z} $p(\boldsymbol{z}) = \text{something simple}$
 - \square A mapping from the latent space to observation $oldsymbol{x}$

$$p(x) = \int p(x, z) dz$$
 where $p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})$

For example, a Gaussian mixture model

$$p_{\theta}(x) = \sum_{k=1}^{K} p_{\theta}(z=k) p_{\theta}(x|z=k)$$

Latent variable model

- Myth of the Cave
- Learn the true explanatory factors

Review: Gaussian Mixture Model

Definition

A Gaussian mixture model represents a distribution as

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with π_k the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1 \quad \text{and} \quad \pi_k \ge 0 \quad \forall k$$

- GMM is a density estimator
- GMMs are universal approximators of densities (if you have enough Gaussians).

Review: 2D GMM example

Review: K-means

Hard-thresholding

Fitting GMMs: Maximum Likelihood

Maximum likelihood maximizes

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

w.r.t
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}$$

- Problems:
 - Singularities: Arbitrarily large likelihood when a Gaussian explains a single point
 - Identifiability: Solution is up to permutations
- How would you optimize this?
- Can we have a closed form update?
- Don't forget to satisfy the constraints on π_k

Fitting GMMs as an LVM

A latent variable model formulation

- Introduce a hidden variable such that its knowledge would simplify the maximization
- We could introduce a hidden (latent) variable z which would represent which Gaussian generated our observation x, with some probability
- Let $z \sim \text{Categorical}(\pi)$ (where $\pi_k \geq 0$, $\sum_k \pi_k = 1$)
- Then:

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(\mathbf{x}, z = k)$$

$$= \sum_{k=1}^{K} \underbrace{p(z = k)}_{\pi_k} \underbrace{p(\mathbf{x}|z = k)}_{\mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}$$

Fitting GMMs

A Gaussian mixture distribution:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

- We had: $z \sim \text{Categorical}(\pi)$ (where $\pi_k \geq 0$, $\sum_k \pi_k = 1$)
- Joint distribution: p(x, z) = p(z)p(x|z)
- Log-likelihood:

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln p(\mathbf{x}^{(n)}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{n=1}^{N} \ln \sum_{\boldsymbol{z}^{(n)}=1}^{K} p(\mathbf{x}^{(n)}|\boldsymbol{z}^{(n)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{z}^{(n)}|\boldsymbol{\pi})$$

- Note: We have a hidden variable $z^{(n)}$ for every observation
- General problem: sum inside the log
- How can we optimize this?

Expectation Maximization

- Optimization uses the Expectation Maximization algorithm, which alternates between two steps:
 - 1. E-step: Compute the posterior probability that each Gaussian generates each datapoint (as this is unknown to us)
 - M-step: Assuming that the data really was generated this way, change the parameters of each Gaussian to maximize the probability that it would generate the data it is currently responsible for.

Expectation Maximization

Expectation Maximization

 Elegant and powerful method for finding maximum likelihood solutions for models with latent variables

1. E-step:

- In order to adjust the parameters, we must first solve the inference problem: Which Gaussian generated each datapoint?
- We cannot be sure, so it's a distribution over all possibilities.

$$\gamma_k^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)}; \pi, \mu, \Sigma)$$

2. M-step:

- Each Gaussian gets a certain amount of posterior probability for each datapoint.
- At the optimum we shall satisfy

$$\frac{\partial \ln p(\mathbf{X}|\pi,\mu,\Sigma)}{\partial \Theta} = 0$$

We can derive closed form updates for all parameters

GMM: E-Step

Conditional probability (using Bayes rule) of z given x

$$\gamma_k = p(z = k | \mathbf{x}) = \frac{p(z = k)p(\mathbf{x}|z = k)}{p(\mathbf{x})}$$

$$= \frac{p(z = k)p(\mathbf{x}|z = k)}{\sum_{j=1}^{K} p(z = j)p(\mathbf{x}|z = j)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)}$$

 \bullet γ_k can be viewed as the responsibility

GMM: M-Step

Log-likelihood:

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k) \right)$$

Set derivatives to 0:

$$\frac{\partial \ln p(\mathbf{X}|\pi,\mu,\Sigma)}{\partial \mu_k} = 0 = \sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\mu_j,\Sigma_j)} \Sigma_k(\mathbf{x}^{(n)} - \mu_k)$$

We used:

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right)$$

and:

$$\frac{\partial(\mathbf{x}^T A \mathbf{x})}{\partial \mathbf{x}} = \mathbf{x}^T (A + A^T)$$

GMM: M-Step

$$\frac{\partial \ln p(\mathbf{X}|\pi, \mu, \Sigma)}{\partial \mu_k} = 0 = \sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)} \Sigma_k(\mathbf{x}^{(n)} - \mu_k)$$

This gives

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} \mathbf{x}^{(n)}$$

with N_k the effective number of points in cluster k

$$N_k = \sum_{n=1}^N \gamma_k^{(n)}$$

- We just take the center-of gravity of the data that the Gaussian is responsible for
- Just like in K-means, except the data is weighted by the posterior probability of the Gaussian.
- Guaranteed to lie in the convex hull of the data (Could be big initial jump)

GMM: M-Step

We can get similarly expression for the variance

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{k}^{(n)} (\mathbf{x}^{(n)} - \mu_{k}) (\mathbf{x}^{(n)} - \mu_{k})^{T}$$

We can also minimize w.r.t the mixing coefficients

$$\pi_k = \frac{N_k}{N}$$
, with $N_k = \sum_{n=1}^N \gamma_k^{(n)}$

- The optimal mixing proportion to use (given these posterior probabilities) is just the fraction of the data that the Gaussian gets responsibility for.
- Note that this is not a closed form solution of the parameters, as they depend on the responsibilities $\gamma_k^{(n)}$, which are complex functions of the parameters
- But we have a simple iterative scheme to optimize

Summary: EM Algorithm for GMM

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - ► E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(\mathbf{z}^{(n)}|\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

▶ M-step: Re-estimate the parameters given current responsibilities

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} \mathbf{x}^{(n)}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_k^{(n)} (\mathbf{x}^{(n)} - \mu_k) (\mathbf{x}^{(n)} - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^N \gamma_k^{(n)}$$

Evaluate log likelihood and check for convergence

$$\ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

An Alternative View of EM

- Hard to maximize (log-)likelihood of data directly
- General problem: sum inside the log

$$\ln p(\mathbf{x}|\Theta) = \ln \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\Theta)$$

- Complete data {x, z}, and x is the incomplete data
- If we knew z, then easy to maximize (replace sum over k with just the k where z = k)
- Unfortunately we are not given the complete data, but only the incomplete.

An Alternative View of EM

- Our knowledge about the latent variables is $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$
- In the E-step we compute p(Z|X, Θ^{old})
- In the M-step we maximize w.r.t Θ

$$Q(\Theta, \Theta^{old}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\Theta)$$

▶ E-step: Evaluate the responsibilities given current parameters

$$\gamma_k^{(n)} = p(z^{(n)}|\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(n)}|\mu_j, \Sigma_j)}$$

M-step: Re-estimate the parameters given current responsibilities

$$\max \sum_{n=1}^{N} \sum_{z^{(n)}=1}^{K} p(z^{(n)}|x^{(n)}) \ln[p(x^{(n)}|z^{(n)}; \mu_k, \Sigma_k) p(z^{(n)}|\pi_k)]$$

$$\iff \max \sum_{n=1}^{N} \sum_{z^{(n)}=1}^{K} \gamma_k^{(n)} \ln[\pi_k \mathcal{N}(x^{(n)}|\mu_k, \Sigma_k)] \qquad \mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_k^{(n)} \mathbf{x}^{(n)}$$

$$\Leftrightarrow \max_{\pi_k, \mu_k, \Sigma_k} \sum_{n=1}^{N} \gamma_k^{(n)} \ln[\pi_k \mathcal{N}(x^{(n)}|\mu_k, \Sigma_k)] \qquad \Longrightarrow \qquad \sum_{\pi_k} \sum_{n=1}^{N} \gamma_k^{(n)} (\mathbf{x}^{(n)} - \mu_k) (\mathbf{x}^{(n)} - \mu_k)^T$$

$$\Leftrightarrow \max_{\pi_k, \mu_k, \Sigma_k} \sum_{n=1}^{N} \gamma_k^{(n)} \ln[\pi_k \mathcal{N}(x^{(n)}|\mu_k, \Sigma_k)] \qquad \Longrightarrow \qquad \pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^{N} \gamma_k^{(n)}$$

General EM Algorithm

- 1. Initialize Θold
- 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$
- 3. M-step:

$$\Theta^{new} = \arg\max_{\Theta} Q(\Theta, \Theta^{old})$$

where

$$Q(\Theta, \Theta^{old}) = \sum_{z} p(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\Theta)$$

4. Evaluate log likelihood and check for convergence (or the parameters). If not converged, $\Theta^{old} = \Theta$, Go to step 2

Why it works?

- Updating each Gaussian definitely improves the probability of generating the data if we generate it from the same Gaussians after the parameter updates.
 - But we know that the posterior will change after updating the parameters.
- A good way to show that this is OK is to show that there is a single function that is improved by both the E-step and the M-step.
 - The function we need is called Free Energy.

Review: Jensen's Inequality

For concave function f, we have

$$f(\mathbb{E}[X]) \ge \mathbb{E}[f(X)]$$

Figure: Jensen's Inequality

A simple latent variable model

We assume that the data is generated i.i.d as

$$z \sim p(z)$$
 $x \sim p(x|z)$

- □ z is latent/hidden and x is observed
- Bounding the marginal likelihood

$$\begin{aligned} &\log p(x) = \log \int_z p(x,z) \text{ (Multiply and divide by } q(z)) \\ &= \log \int_z \frac{q(z)p(x,z)}{q(z)} = \log \mathbb{E}_{z \sim q(z)} \left[\frac{p(x,z)}{q(z)} \right] \text{ (By Jensen's Inequality)} \\ &\geq \int_z q(z) \log \frac{p(x,z)}{q(z)} = \mathcal{L}(x;\theta,\phi) \\ &= \underbrace{\mathbb{E}_{q(z)}[\log p(x,z)]}_{\text{Expectation of Joint distribution}} + \underbrace{\text{H}(q(z))}_{\text{Entropy}} \end{aligned}$$

Evidence Lower Bound (ELBO)

- When is the lower bound tight?
- Let's look at: objective function lower bound

$$\log p(x;\theta) - \mathcal{L}(x;\theta,\phi)$$

$$\begin{aligned} &\log p(x) - \int_z q(z) \log \frac{p(x,z)}{q(z)} \\ &= \int_z q(z) \log p(x) - \int_z q(z) \log \frac{p(x,z)}{q(z)} \\ &= \int_z q(z) \log \frac{q(z)p(x)}{p(x,z)} \\ &= \mathrm{KL}(q(z;\phi)||p(z|x)) \end{aligned}$$

Visualization of ELBO

$$\mathcal{L}(q,\Theta) \leq \ln p(\mathbf{X}|\Theta)$$

Key Point

The optimal $q(z;\phi)$ corresponds to the one that realizes $\mathrm{KL}(q(z;\phi)||p(z|x)) = 0 \iff q(z;\phi) = p(z|x)$

M

E-step and M-step

$$\ln p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p(\mathbf{Z}|\mathbf{X},\Theta))$$

- In the E-step we maximize w.r.t $q(\mathbf{Z})$ the lower bound $\mathcal{L}(q,\Theta)$
- Since $\ln p(\mathbf{X}|\theta)$ does not depend on $q(\mathbf{Z})$, the maximum \mathcal{L} is obtained when the KL is 0
- This is achieved when $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$
- The lower bound L is then

$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \ln p(\mathbf{X},\mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \ln p(\mathbf{Z}|\mathbf{X},\Theta^{old})$$

$$= Q(\Theta,\Theta^{old}) + \text{const}$$

with the content the entropy of the q distribution, which is independent of Θ

- In the M-step the quantity to be maximized is the expectation of the complete data log-likelihood
- Note that Θ is only inside the logarithm and optimizing the complete data likelihood is easier

• The q distribution equal to the posterior distribution for the current parameter values Θ^{old} , causing the lower bound to move up to the same value as the log likelihood function, with the KL divergence vanishing.

 The distribution q(Z) is held fixed and the lower bound L(q, Θ) is maximized with respect to the parameter vector Θ to give a revised value Θ^{new}. Because the KL divergence is nonnegative, this causes the log likelihood In p(X|Θ) to increase by at least as much as the lower bound does.

 The EM algorithm involves alternately computing a lower bound on the log likelihood for the current parameter values and then maximizing this bound to obtain the new parameter values.

Summary of EM algorithms

EM is coordinate ascent in ELBO

$$\int_{z} q(z) \log \frac{p(x,z)}{q(z)} = \mathcal{L}(x;\theta,\phi)$$

$$= \underbrace{\mathbb{E}_{q(z)}[\log p(x,z)]}_{\text{Expectation of Joint distribution}} + \underbrace{\mathbf{H}(q(z))}_{\text{Entropy}}$$

Or coordinate descent in Free Energy

$$\mathcal{F} = -\mathcal{L}(x; \theta, q) = \underbrace{E_q[-\log p(x, z)]}_{\text{Expected energy}} - \underbrace{H(q(z))}_{\text{Entropy}}$$

- The E-step minimizes F by finding the best distribution over hidden configurations for each data point.
- The M-step holds the distribution fixed and minimizes F by changing the parameters that determine the energy of a configuration.

Recall EM GMM

MLE: maximizing the log-likelihood

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x^{(i)}; \theta)$$

ELBO: Evidence Lower Bound

$$\begin{split} \log p(\mathbf{x}) &= \log \int_z p(\mathbf{x}, z) \\ &= \log \int_z p(\mathbf{x}, z) \frac{q(\mathbf{z})}{q(\mathbf{z})} \\ &= \log (E_q[\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}]) \\ &= \log (E_q[\log p(\mathbf{x}, \mathbf{z})] - E_q[\log q(\mathbf{z})] - E_q[\log p(\mathbf{z}, \mathbf{x})] + \log p(\mathbf{x}) \\ &= \log p(\mathbf{x}) - (E_q[\log p(\mathbf{z}, \mathbf{x})] - E_q[\log q(\mathbf{z})]) \\ &\geq E_q[\log p(\mathbf{x}, \mathbf{z})] - E_q[\log q(\mathbf{z})] \end{split}$$

= ELBO

$$egin{aligned} EBLO &= E_q[\log p(\mathbf{x}, \mathbf{z})] - E_q[\log q(\mathbf{z})] \ &= E_q[\log rac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{z})}] - E_q[\log rac{q(\mathbf{z})}{p(\mathbf{z})}] \ &= E_q[\log p(\mathbf{x}|\mathbf{z})] - KL(q(\mathbf{z})||p(\mathbf{z})) \end{aligned}$$

Outline

- Unsupervised learning
 - □ Problem setup
- Latent variable model
 - □ EM algorithm and GMM
- Representation learning
 - AutoEncoder

Acknowledgement: Yingyu Liang@Princeton's & Feifei Li's cs231n notes

Feature representation learning

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Feature representation learning

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Feature representation learning

How to learn this feature representation?

Feature representation learning

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Feature representation learning

Feature representation learning

Feature representation learning

Linear hidden layer example

- A single hidden unit
- Hidden unit has linear activation
- What will this learn?

73

Linear hidden layer example

Training: Learning W by minimizing L2 divergence

$$\hat{\mathbf{x}} = \mathbf{w}^T \mathbf{w} \mathbf{x}$$

$$div(\hat{\mathbf{x}}, \mathbf{x}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2$$

$$\hat{W} = \underset{w}{\operatorname{argmin}} E[div(\hat{\mathbf{x}}, \mathbf{x})]$$

$$\hat{W} = \underset{w}{\operatorname{argmin}} E[\|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2]$$

This is just PCA!

Nonlinear hidden layer

- With non-linearity
 - "Non linear" PCA
 - Deeper networks can capture more complicated manifolds
 - "Deep" autoencoders

Binary input example

$$l(f(\mathbf{x})) = -\sum_{k} \left(x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k) \right)$$

- cross-entropy (more precisely: sum of Bernoulli cross-entropies)

- Regularized autoencoders: add regularization term that encourages the model to have other properties
 - Sparsity of the representation (sparse autoencoder)
 - Robustness to noise or to the missing inputs (denoising autoencoder)
 - Smallness of the derivative of the representation (contracitve autoencoder)

Undercomplete representation

- Hidden layer is undercomplete if smaller than the input layer
 - hidden layer "compresses" the input
 - will compress well only for the training distribution
- Hidden units will be
 - good features for the training distribution
 - but bad for other types of input

$$L_R = L(x, g(f(x))) + R(h)$$

x

- Sparse autoencoder
 - Constrain the code to have sparsity
 - □ Training: minimize a loss function

$$L_R = L(x, g(f(x))) + \lambda |h|_1$$

Denoising autoencoder

- Idea: representation should be robust to introduction of noise:
 - ightharpoonup random assignment of subset of inputs to 0, with probability u
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares $\widehat{\mathbf{x}}$ reconstruction with the
 - noiseless input X

Denoising autoencoder

Summary

- Four typical problems in unsupervised learning:
 - □ Clustering, dimensionality reduction, representation learning, density estimation
- Latent variable model and EM algorithm:
 - ELBO and free energy
- Representation learning with AutoEncoder:
 - Reconstructing data with constraints
- Reading material
 - http://cs229.stanford.edu/notes2020spring/cs229-notes7a.pdf
 - http://cs229.stanford.edu/notes2020spring/cs229-notes7b.pdf
 - http://cs229.stanford.edu/notes2020spring/cs229-notes8.pdf

Acknowledgement: Yingyu Liang@Princeton's & Feifei Li's cs231n notes