

Chapter 8: Mining Data Streams

崔金华

电子邮箱: jhcui@hust.edu.cn

个人主页: https://csjhcui.github.io/

Data Streams

- □In many data mining situations, we do not know the entire data set in advance
- □Stream Management is important when the input rate is controlled externally:
 - ➤ Google queries
 - ➤ Twitter or Facebook status updates
- ■We can think of the **data** as **infinite** and **non-stationary** (the distribution changes over time)

```
... 1, 5, 2, 7, 0, 9, 3
... a, r, v, t, y, h, b
... 0, 0, 1, 0, 1, 1, 0
time
```

Applications

■Mining query streams

➤ Google wants to know what queries are more frequent today than yesterday

Mining click streams

Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

➤ E.g., look for trending topics on Weibo, Twitter, Facebook

The Stream Model

- □Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - >We call elements of the stream tuples
- ■The system cannot store the entire stream accessibly

□Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

General Stream Processing Model

□流处理的若干限制:

- ➤流元素的分发速度通常很快. 必须对元素进行实时处理, 否则可能永远失去处理它们的机会.
- ▶此外, 即使数据流很慢, 也可能存在多个这样的数据流. 所有数据流的内存需求加载一起可能超过内存的可用容量.

□流处理的一般化结论:

- ▶通常情况下, 获得问题的近似解比精确解要高效得多.
- ➤一系列与哈希相关的技术被证明十分有用. 一般而言, 为了产生与精确解相当接近的近似解, 上述技术将十分有用的随机性引入算法行为中.

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream
 - Select elements with property **x** from the stream
- >Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
- > Estimating moments
 - Estimate avg./std. dev. of last **k** elements
 - 矩估计是独立流元素技术推广为更一般的问题, 不同流元素出现频率分布的计算。
- > Finding frequent recent elements
 - · Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.1: Sampling from a Data Stream

Sampling from a Data Stream

□Since we can not store the entire stream, one obvious approach is to store a sample.

□Two different cases:

- >(1) Case 1: Sample a fixed proportion of elements in the stream (say 10 in 100)
 - As the stream grows the sample also gets bigger
- >(2)Case 2: Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k, we would like a random sample of s elements
 - Q: What is the property of the sample we want to maintain?
 - A: For all time steps k, each of elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

■Sampling case 1: Sampling fixed proportion

- Scenario: Search engine query stream
 - >Stream of tuples: (user, query, time)
 - ▶Answer questions such as: What fraction of the typical user's queries were repeated over the past month?(过去一个月中典型用户所提交的重复查询的比率是多少?)
 - ➤ Have space to store **1/10**th of query stream

■Naïve solution:

- ➤ Generate a random integer in [0...9] for each query
- >Store the query if the integer is **0**, otherwise discard

Problem with Naïve Approach

□Another simple question: 用户提交的平均重复查询的比例是多少?

- Suppose each user issues x queries once and d queries twice (total of x+2d queries).
- Then correct answer: d/(x+d)
- ➤ Naïve solution: we keep 10% of the queries
 - 抽样是对查询出现的抽样,而非按照查询本身抽样. 因此, 在原始x + 2d个查询出现中, 最终会抽样出(x + 2d)/10个查询出现样本.
 - 原来出现两次的查询仍然在样本中出现两次的概率为 $d \times 1/10 \times 1/10 = d/100$
 - 原来出现两次的查询, 在抽样样本中占据2d/10次出现, 因此原来d个出现两次的查询在样本中仅出现一次的概率为2d/10-2d/100=18d/100
 - 所以, 该方案下的答案是(d/100)/(x/10+d/100+18d/100)=d/(10x+19d)

Solution: Sample Users

□Solution:

- ➤ Pick 1/10th of users and take all their searches in the sample
- ➤ Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

■Stream of tuples with keys:

- >Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

□To get a sample of *a/b* fraction of the stream:

- ➤ Hash each tuple's key uniformly into **b** buckets
- ➤ Pick the tuple if its hash value is at most *a*

e.g., how to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Maintaining a Fixed-Size Sample

- **■Sampling case 2: Fixed-size sample**
 - >As the stream grows, the sample is of fixed size

- □Suppose we need to maintain a random sample *S* of size exactly *s* tuples
 - ➤ E.g., main memory size constraint

Maintaining a Fixed-Size Sample

- □Suppose at time n we have seen n items. Each item is in the sample S with equal prob. S/n
- ■How to think about the problem: say s = 2

Stream: axcyzkcdeg...

- ➤At n= 5, each of the first 5 tuples is included in the sample S with equal prob. 2/5
- ►At n= 7, each of the first 7 tuples is included in the sample S with equal prob. 2/7
- □Impractical naïve solution: Store all the n tuples seen so far and out of them pick s at random

Solution: Fixed Size Sample

□Algorithm (a.k.a. Reservoir Sampling, 蓄水池抽样算法)

- >Store all the first selements of the stream to S
- Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability **s/n**, keep the **n**th element, else discard it
 - If we picked the *n*th element, then it replaces one of the *s* elements in the sample *s*, picked uniformly at random

□Claim: This algorithm maintains a sample *S* with the desired property: After *n* elements, the sample contains each element seen so far with probability *s/n*.

Proof: By Induction

■We prove this by induction (数学归纳法):

- ightharpoonup Assume that after n elements, the sample contains each element seen so far with probability s/n
- We need to show that after seeing element n+1 the sample maintains the property: Sample contains each element seen so far with probability s/(n+1)

□Base case:

- \triangleright After we see n = s elements the sample s has the desired property
 - Each out of n = s elements is in the sample with probability s/s = 1

Proof: By Induction

- □Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- \square Now element n+1 arrives
- \square Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

- \square At time n, tuples in S were there with prob. s/n
- □ Time $n \rightarrow n + 1$, tuple stayed in S with prob. n/(n + 1)
- \square So prob. tuple is in S at time n+1 is $s/n \times n/(n+1) = \frac{s}{n+1}$

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows (e.g., DGIM)
 - Number of items of type x in the last k elements of the stream
- >Filtering a data stream
 - Select elements with property **x** from the stream
- >Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
- >Estimating moments
 - Estimate avg./std. dev. of last k elements
- >Finding frequent recent elements
 - Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.2: Queries over a (long) Sliding Window

Sliding Windows

- □ A useful model of stream processing is that queries are about a window of length N (the N most recent elements received)
 - >Alternative: elements received within a time interval T
- □Interesting case: *N* is so large that the data cannot be stored in memory, or even on disk. Or, there are so many streams that windows for all cannot be stored

□Amazon example:

- For every product **X** we keep 0/1 stream of whether that product was sold in the **n**-th transaction
- >We want answer queries, how many times have we sold **X** in the last **k** sales

Sliding Window: 1 Stream

□Sliding window on a single stream (N=6):

Counting Bits

□Problem:

- ➤ Given a stream of **0**s and **1**s
- ▶Be prepared to answer queries of the form: How many 1s are in the last k bits? where $k \le N$

■Obvious naïve solution:

Store the most recent **N** bits. When new bit comes in, discard the **N+1**st bit

➤ But, remember you can not get an exact answer without storing the entire window.

Counting Bits

- □ Real Problem: What if we cannot afford to store N bits?
 - ▶E.g., we are processing 1 billion(10亿) streams and N = 1 billion

But we are happy with an <u>approximate answer</u>

An attempt: Simple solution

Q: How many 1s are in the last *N* bits?

- □ A simple solution that does not really solve our problem: uniformity assumption
- **Maintain 2 counters:**
 - >s: number of 1s from the beginning of the stream
 - >Z: number of 0s from the beginning of the stream
- □ How many 1s are in the last N bits? $N \cdot S/(S + Z)$
- **■But, what if stream is non-uniform?**
 - ➤ What if distribution changes over time?

Idea: Exponential Windows

□A strawman algorithm (稻草人算法) that doesn't (quite) work:

- Summarize **exponentially increasing** regions of the stream, looking backward
- >Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6 1s** are included in the **N**

What's Good?

- ■What is good in the strawman algorithm?
- □1、Stores only O(log²N) bits
 Note: log²N means (log N)*(log N)

 → ↑region所需存储空间*region个数 = log N*2 log N (since 2个 2°, 2↑2¹,..., 2↑2^{log N})
- □2、Easy update as more bits enter

□3. Error in count no greater than the number of **1s** in the "unknown" area

What's Not So Good?

□ As long as the **1s** are fairly evenly distributed, the error due to the unknown region is small – **no more than 50%**

- ■But it could be that all the 1s are in the unknown area at the end
 - ➤In that case, the error is unbounded!

Fixup: DGIM method

- □DGIM(Datar, Gionis, Indyk, Motwani) solution: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block *sizes* (number of **1s**) increase exponentially

ullet DGIM solution that does <u>not</u> assume uniformity, and it stores $O(\log^2 N)$ bits per stream

DGIM Method

- □When there are few **1s** in the window, block sizes stay small, so errors are small
- □DGIM gives approximate answer, never off by more than 50%
 - ➤ Error factor can be reduced to any fraction > 0, but with more complicated algorithm and proportionally more stored bits

DGIM: Timestamps

- □Each bit in the stream has a *timestamp* (时间戳), starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- □A *bucket* (桶, 注意这儿不是哈希中的桶) in the DGIM method is a record consisting of:
 - >(A) The timestamp of its end [O(log M) bits]
 - ➤(B) The number of 1s (called size of the bucket, 桶的大小) between its beginning and end [O(log log M) bits]

□Constraint on buckets:

Number of **1s** must be a power of **2**. That explains the O(log log *N*) in (B) above.

DGIM: Buckets

□Constraint on buckets (续):

- ▶桶最右边的位置总是为1
- >每个1的位置都在某个桶中
- >一个位置只能属于一个桶
- Either one or two buckets with the same power-of-2 number of 1s.
- > Buckets do **not overlap** in timestamps.
- ➤ Buckets are **sorted** by **size** (Earlier buckets are not smaller than later buckets).
- \triangleright Buckets disappear when their end-time is $\gt N$ time units in the past.
- ▶桶之间存在一些0是允许的

Example: Bucketized Stream

Properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do **not overlap** in timestamps
- Buckets are **sorted** by **size**

Updating Buckets

- □When a new bit comes in (total 2 cases: the current arriving bit is 0 or 1), drop the last (oldest) bucket if its end-time is prior to *N* time units before the current time.
- □Case A: if the current bit is 0, no other changes are needed
- □Case B: if the current bit is 1:
 - ▶1) Create a new bucket of size 1, for just this bit. End timestamp = current time.
 - **>**2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2.
 - **>**3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4.
 - **>**4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two old blue buckets get merged into a yellow bucket

Next bit 1 arrives, new blue bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

- **■To estimate the number of 1s in the most recent N bits:**
 - >Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket).
 - >Add half the size of the last bucket (error at most 50%).
- □ Remember: We do not know how many 1s of the last bucket are still within the wanted window.

Proof: Error Bound

- ightharpoonup Suppose the last bucket b has size 2^r . 分两种情况讨论:
- **Case A**: 估计值大于真实值. 最坏情况下, 桶 *b*中只有最右边一位在查询范围内, 且所有比该桶小的桶都仅有一个桶. 那么, 预估值为 $2^{r-1}+2^{r-1}+2^{r-2}+...+4+2+1=2^r-1+2^{r-1}$, 真实值为 $1+2^{r-1}+2^{r-2}+...+4+2+1=2^r$. 那么估计值最多比真实值大50%.
- ightharpoonup Case B: 估计值小于真实值. 最坏情况下, 桶<math>b中所有的1都在查询范围内. 那么桶b的预估值根据要求为2 r /2, 桶b的真实值为2 r , 错误最多为真实值的50%.

Further Reducing the Error in DGIM

- □(扩展优化) Instead of maintaining 1 or 2 of each size bucket, we allow either *r*-1 or *r* buckets (*r* > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those

□ Error is at most O(1/r).

□By picking *r* appropriately, we can tradeoff between number of bits we store and the error.

Extensions (1)

- □另一种查询应答: Can we use the same trick to answer queries How many 1s in the last k? where k < N?
 - \triangleright A: Find earliest bucket B that at overlaps with k. Then, number of 1s is the sum of sizes of more recent buckets + $\frac{1}{2}$ size of B

2025-5-30 40

Extensions (2)

- □另一种流场景的处理: Can we handle the case where the stream is **not bits**, **but integers** (e.g., positive integers), and we want the **sum of the last** *k* **elements**?
 - **▶E.g.,** Amazon: Avg. price of last **k** sales

2025-5-30 41

Extensions (2)

■Solution 1: If you know all have at most *m* bits

- \triangleright Treat m bits of each integer as a separate stream.
- ➤ Use DGIM to count 1s in each integer.
- The sum is $=\sum_{i=0}^{m-1}c_i2^i$ c_i ...estimated count for **i-th** bit

Solution 2: Use buckets to keep partial sums

➤ Sum of elements in size b bucket is at most 2^b

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7	1 3 3 1 2 2 6
2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7	1 3 3 1 2 <mark>2</mark> 6 3
2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7	1 3 3 1 2 2 6 3 2
2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7	1 3 3 1 2 2 <mark>6 3 2 5</mark>

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer)

16 8 4 2 1

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream (e.g., Bloom filter)
 - Select elements with property **x** from the stream
- >Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
- >Estimating moments
 - Estimate avg./std. dev. of last k elements
- >Finding frequent recent elements
 - · Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.3: Filtering Data Streams

Filtering Data Streams

- □ Each element of data stream is a **tuple**
- □Given a list of keys **S**
- **■Determine which tuples of stream are in** *S*
- Obvious solution: Hash table
 - ➤ But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

□Example 1: Email spam filtering (垃圾邮件过滤)

- ➤ We know 1 billion "good" email addresses
- ➤ If an email comes from one of these, it is **NOT** spam

□Example 2: Publish-subscribe systems

- You are collecting lots of messages (news articles)
- ➤ People express interest in certain sets of keywords
- > Determine whether each message matches user's interest

□Example 3: Web crawler

- ➤ It keeps, centrally, a list of all the URL's it has found so far.
- It assigns these URL's to any of a number of parallel tasks; these tasks stream back the URL's they find in the links they discover on a page
- It needs to filter out those URL's it has seen before.

Bloom filter

- \square A Bloom filter (布隆过滤器) is an array of n bits (or called bitarray, 位数组), together with a number of k hash functions.
 - \triangleright Initially, all n bits are 0.
 - \blacktriangleright A collection of hash functions h_1, h_2, \ldots, h_k . Each hash function maps key values to n buckets (corresponding to the n bits of the bit-array).
 - ➤A set **S** of *m* key values (m个键值组成的集合S).

□The purpose of the Bloom filter is to allow through all stream elements whose keys are in **S**, while rejecting most of the stream elements whose keys are not in **S**.

2025-5-30 47

Bloom filter

- □ A Bloom filter for web crawler:
 - placed on the stream of URL's will declare that certain URL's have been seen before.
 - ➤Others will be declare new, and will be added to the list of URL's that need to be crawled.

2025-5-30 48

Example

□ Example: Use N=11 bits for our Bloom filter. Stream elements = integers. Use two hash functions:

$$\Box h_1(x) =$$

- ▶Take odd(奇数)-numbered bits from the right in the binary representation of x.
- ➤ Treat it as an integer i.
- ➤ Result is *i* modulo 11.

$$\Box h_2(x) =$$

➤Same, but takes even (偶数)-numbered bits.

Example –Continued

Stream element	h_1 奇数位置(从右边开始)组成的二进制数转换成十进制数据	h 2 偶数	Filter contents 000000000 N = 11 哈希值对应的位置修改为1(初始 全为0. 从左边数 0, 1, 2,, N-1)
25=1 <mark>100</mark> 1	5	2	00 <mark>1</mark> 00 <mark>1</mark> 00000
159=10011111	7	0	<mark>1</mark> 010010 <mark>1</mark> 000
585=100100100°	1 9	7	101001010 <mark>1</mark> 0

Bloom filter lookup

- \square Suppose element y appears in the stream, and we want to know if we have seen y before. How?
- \square Ans: Compute h(y) for each hash function:
 - \triangleright If all the resulting bit positions are 1, say we have seen y before.
 - \triangleright If at least one of these positions is 0, say we have not seen y before.

Drop the item.

It hashes to a bucket set to **0** so it is surely not in **S**.

Example

- **Example**: Suppose we have the same Bloom filter as before, and we have set the filter to 101001010. Lookup element y=118=1110110 (binary).
- \square Answer: Compute h(y) for each hash function y:
 - $h_1(y) = 14 \text{ modulo } 11 = 3.$
 - $h_2(y) = 5 \text{ modulo } 11 = 5.$
 - \triangleright As bit 5 is 1, but bit 3 is 0 (10100101010), so we are sure y is not in the set.

Performance of Bloom filters

- □Unfortunately, the Bloom filter can have false positives (伪正 例, 误判, 假阳).
 - It can declare a element has been seen before when it hasn't.
 - ▶如果某个元素的键值在S中出现, 那么该元素肯定能够通过布隆过滤器.
 - ➤If it say "never seen," then it is truly new.
- □Probability of a false positive (假阳率): Depends on the density of 1's in the array and the number of hash functions

 $=(fraction \ of \ 1's)^{\# \ of \ hash \ functions}$

Proof: Throwing darts

- □More accurate analysis for the probability of a false positive (假阳率) in Bloom filter, 使用throwing darts (飞镖投掷)飞镖投掷模型来模拟布隆过滤: Turning random bits from 0 to 1 is like throwing m darts(飞镖) at n targets (靶位), at random.
- □Q: How many targets are hit by at least one dart? Fraction of 1s in the bit array? (多少个靶位至少被投中一次?)
 - \triangleright Probability a given target is hit by a given dart= 1/n
 - robability none of m darts hit a given target = $(1 1/n)^m$. Rewrite as

$$(1 - 1/n)^{n(\frac{m}{n})} \cong \left(\frac{1}{e}\right)^{\frac{m}{n}} = e^{-m/n}$$

 \blacktriangleright So, probability that a target gets at least one dart= $1-e^{-m/n}$ Note:k 个哈希函数, k^* darts(飞镖个数, 插入元素个数. 其中m是集合S中元素个数), \diamondsuit targets (靶位, the array of \diamondsuit bits)

Example

Example: Suppose we use an array of 1 billion (10亿) bits, 5 hash functions, and we insert 500 million (5亿) elements. That is $n=10^9$, and $m=5*10^8$. What is probability of the false positive?

□Answer:

- ▶ Probability that a target gets at least one dart= $1-e^{-m/n}=1-0.607=0.393$
- Fraction of 1s in the bit array under 5 hash= $1-e^{-km/n}$ =1-0.082=0.918
- \triangleright Probability of the false positive = $(0.918)^5 = 0.652$.
- \square Summary: 假阳率= $(1-e^{-km/n})^k$

Note:k 个哈希函数, k*� darts(飞镖个数, 插入元素个数. 其中m是集合S中元素个数), � targets (靶位, the array of � bits)

Bloom Filter – Analysis

$$\square m = 1 \text{ billion}(10亿), n = 8 \text{ billion}(80亿)$$

$$> k = 1: (1 - e^{-1/8}) = 0.1175$$

假阳率=
$$(1-e^{-km/n})^k$$

$$> k = 2: (1 - e^{-1/4})^2 = 0.0493$$

□What happens as we keep increasing *k*?

- >In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6
 - Error at k = 6: $(1 e^{-3/4})^6 = 0.0216$

Bloom Filter: 小结

- □Bloom filters use an array of � bits, together with a number of � hash functions. Bloom filters use limited memory, guarantee no false negatives 伪反例 (but with false positives 伪正例)
 - ➤ Great for pre-processing before more expensive checks
- **■Suitable for hardware implementation**
 - > Hash function computations can be parallelized

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream
 - Select elements with property \boldsymbol{x} from the stream
- >Counting distinct elements (e.g., Flajolet-Martin, CMS)
 - Number of distinct elements in the last k elements of the stream
- >Estimating moments
 - Estimate avg./std. dev. of last k elements
- >Finding frequent recent elements
 - · Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.4: Counting Distinct Elements

Counting Distinct Elements

□Problem:

- ➤ Data stream consists of a universe of elements chosen from a set of size **N**
- > Maintain a count of the number of distinct elements seen so far

■Obvious approach:

➤ Maintain the set of elements seen so far. That is, keep a hash table of all the distinct elements seen so far

Applications

- Applications 1: How many different words are found among the Web pages being crawled at a site?
 - >Unusually low or high numbers could indicate artificial pages (spam?)
- ■Applications 2: How many different Web pages does each customer request in a week?
- Applications 3: How many distinct products have we sold in the last week?

Using Small Storage

□ Real problem: What if we do not have space to maintain the set of elements seen so far?

□Estimate the count in an unbiased way. Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- □将流元素哈希到一个足够长的位串,对独立元素个数进行预估.当位 串足够长,哈希函数(实际上会选择多个不同的哈希函数)的可能结果 数目大于全集中的元素个数.
- □哈希函数的性质: 相同元素的哈希值也相同.
- □Flajolet-Martin Approach (FM-sketch, FM算法)基本思想:
 - >流中看到的不同元素越多, 那么我们看到的不同哈希值也会越多.
 - ▶看到的不同哈希值越多的同时,也越可能看到其中有个值变得"异常".使用了一个具体的异常性质是该值后面会以多个0结束.

Flajolet-Martin Approach

□FM算法:

- □ Pick a hash function h that maps each of the N elements to at least $log_2 N$ bits.
- 口尾长: For each stream element a, let r(a) be the number of trailing $\mathbf{0s}$ in h(a) (流元素a的哈希值位串的尾部0数目叫做尾长)
 - $rac{r}{r}(a)$ = position of first 1 counting from the right
 - ► E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- \square Record R = the maximum r(a) seen
 - $R = \max_{a} r(a)$, over all the items a seen so far
- \square So, estimated number of distinct elements $N' = 2^R$

Flajolet-Martin Approach Example

□例: 给定流数据序列 $\{e_1, e_2, e_3, e_2\}$ (因此独立元素数目N=3). 假设给定哈希函数h(e): $h(e_1)=2=(0010)_2$; $h(e_2)=8=(1000)_2$; $h(e_3)=10=(1010)_2$. 根据FM算法, 预估流数据中独立元素数目N'为多少?

□解:

》将R初始化为0. 首先对流数据序列中第1项流元素 e_1 , $r(e_1) = 1 > R$,更新R = 1; 对于序列中第2项 e_2 , $r(e_2) = 3 > R$,更新R = 3; 对于序列中第3项 e_3 , $r(e_3) = 1 < R$,不更新R; 对于序列中第4项 e_2 , $r(e_2) = 3 < R$,不更新R. 估计独立元素数目为 $N' = 2^R = 2^3 = 8$.

在该例中实际值N=3,估计值N'=8,误差较大. 因此, 在实际应用中为了减小误差提高精度, 通常采用一系列的哈希函数 $h_1(a)$, $h_2(a)$, $h_3(a)$, …计算一系列的独立元素预估值 N_1' , N_2' , N_3' , …,最后进行特定综合统计得到最终的估计值.

Why It Works: Intuition

- ■Very very rough and heuristic intuition why Flajolet-Martin works:
 - > h(a) hashes a with equal prob. to any of N values
 - ➤ Then *h(a)* is a sequence of log₂ N bits, where 2-r fraction of all *a*s have a tail of *r* zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zerosuffix of length r

Why It Works: More formally

- **■Now we show why Flajolet-Martin works**
- □ Formally, we will show that probability of finding a tail of rzeros:
 - \triangleright Goes to 1 if $m \gg 2^r$
 - **▶Goes to 0 if** $m \ll 2^r$ where m is the number of distinct elements seen so far in the stream
- \square Thus, 2^R will almost always be around m!

Why It Works: More formally

- □What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - ▶h(a) hashes elements uniformly at random
 - \triangleright Probability that a random number ends in at least r zeros is 2^{-r}
- □Then, the probability of **NOT** seeing a tail of length *r* among *m* elements:

Why It Works: More formally

- □Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- □ Prob. of NOT finding a tail of length *r* is:
 - \rightarrow If $m << 2^r$, then prob. tends to 1
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - >If $m >> 2^r$, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1

□Thus, 2^R will almost always be around *m!*

Why It Doesn' t Work

- $\square E[2^R]$ is actually infinite
 - \triangleright Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - **Average?** What if one very large value 2^{R_i} ?
 - ➤ Median? All estimates are a power of 2
 - ➤Solution:将哈希函数分成多个小组;每个组内求平均值; 然后在所有平均值中 取中位数

Example

□例: 对于序列S, 使用3*4 = 12个互不相同的哈希函数h(e), 分成3组, 每组4个哈希函数, 使用12个h(e)估算出12个估计值N': 第1组的4个估计值为<2, 2, 4, 4>; 第2组的4个估计值为<8, 2, 2, 2>; 第3组的4个估计值为<2, 8, 8, 2>. 求最终的估计值.

□解:

- ▶第1组的4个估计值的算术平均值为(2+2+4+4)/4=3;
- ▶第2组的4个估计值的算术平均值为(8+2+2+2)/4=3.5;
- ▶第3组的4个估计值的算术平均值为(2+8+8+2)/4=5;
- ▶然后3个组的估计值分别为<3, 3.5, 5>, 那么中位数为3.5; 因此3.5 ≈ 4即为最终的估计值.

补充: Count-Min Sketch

□You want to count elements. But, you don't need exact results.

- □ Initial assumption: Create an integer array of length x initially filled with 0s. Each incoming element gets mapped to a number between 0 and x. The corresponding counter in the array gets incremented.
- □To query an element's count, simply return the integer value at it's position. You are completely right: There will be collisions!

Count-Min Sketch

- □解决方案: Use multiple arrays with different hash functions to compute the index.
- ■When queried, return the minimum of the numbers the arrays. → Count-Min Sketch算法 (简写CMS)
 - ➤It was first introduced in 2005 by Graham Cormode and S. Muthu Muthukrishnan, and has since become a popular algorithm for big data analytics.
 - ➤CMS用于大规模数据流中的频率估计问题, 如计算一个元素在数据集中出现的次数. 在数据大小非常大时, 通过牺牲准确性提高效率的算法.

2025-5-30 73

Count-Min Sketch

■Example:

Control plane

Query: 23.43.12.1

5 3 4

Pick min: 3

Count-Min Sketch

- Only over-estimates, never under-estimates the true count.
- 一优势: CMS has a constant memory and time consumption independent of the number of elements.
- □不足: The relative error may be high for low-frequent elements in CMS.

2025-5-30 75

Count-Mean-Min Sketch

□CMS算法对于低频的元素,结果不太准确,主要是因为哈希冲突比较严重,产生了噪音.例如当m=20时,有1000个数hash到这个20桶,平均每个桶会收到50个数,这50个数的频率重叠在一块.

□Count-Mean-Min Sketch算法(简称CMMS)做了如下改进:

- ▶新到达一个查询, 按照 Count-Min Sketch的流程取出它的d个sketch;
- ▶对于每个hash函数, 估算出一个噪音, 噪音等于该行所有整数(除了被查询的这个元素)的平均值;
- ▶用该行的sketch减去该行的噪音,作为真正的sketch;
- ➤返回d个真正的sketch中的那个中位数.
- ➤ Count-Mean-Min Sketch算法能够显著改善在长尾数据上的精确度.

Count-Mean-Min Sketch

■Example:

Control plane

Query: 23.43.12.1

e.g., 1.75=5-(3+0+1+9)/4, 其他类似

Pick median: 2.5

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream
 - Select elements with property **x** from the stream
- >Counting distinct elements
 - Number of distinct elements in the last **k** elements of the stream
- > Estimating moments (e.g., AMS method)
 - Estimate avg./std. dev. of last **k** elements
- >Finding frequent recent elements
 - Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.5: Computing Moments

Generalization: Moments

□Suppose a stream has elements chosen from a set A of N values

- \square Let m_i be the number of times value i occurs in the stream (该元素出现的次数)
- □The kth moment (kth-order moment, k阶矩) is $\sum_{(m_i)^k}$

Special Cases

□0th moment (0阶矩)= number of distinct elements

- The problem just considered, e.g., FM-sketch
- □1st moment (一阶矩) = count of the numbers of elements = length of the stream
 - ➤ Easy to compute
- □2nd moment (二阶矩) = *surprise number* (奇异数) *S* = a measure of how uneven the distribution is
 - Example: stream of length 100, where 11 distinct values
 - ► Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, Surprise $S = 10^2 + 10 * 9^2 = 910$
 - ► Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $\frac{1}{1}$, $\frac{1}{1}$,
 - >奇异数越小,说明分布越均衡.反之则越不均衡.

AMS Method

- □AMS method (Alon, Matias, and Szegedy Algorithm, AMS 算法) works for all moments, and it gives an unbiased estimate
 - ➤ Note: we will just concentrate on the **2nd moment** S
- □We pick and keep track of many variables X (一定数量的变量):
 - For each variable X, we store X.el and X.val
 - *X.el* corresponds to the item *i* (该变量的元素)
 - *X.val* corresponds to the **count** of item *i* (该变量的统计值)
 - ➤ Note this requires a count in main memory, so number of Xs is limited
 - \triangleright Our goal is to compute 奇异数 $S = \sum_i m_i^2$

AMS Method

- □ How to set *X.val* and *X.el*?
 - ➤ Assume stream has length *n* (we relax this later)
 - Pick some random time t(t < n) to start, so that any time is equally likely. Let at time t the stream have item i. We set t.
 - Then we maintain count c(X.val = c) of the number of is in the stream starting from the chosen time t(X.val = 1) 初始默认. 从当前t时刻开始在流读取过程中, 每当再次看到该元素i, 将其对应的X.val 加1)

□ Then the estimate of the 2nd moment $(\sum_i m_i^2)$ is:

$$S = f(X) = n (2 \cdot c - 1)$$

Note, we will keep track of multiple Xs, $(X_1, X_2, ..., X_k)$, and our final estimate will be $S = \frac{1}{k} * \sum_{j=1}^{k} f(X_j)$

Example


```
      Count:
      1
      1
      1
      2
      1
      2
      2
      2
      2
      3
      3
      3
      4
      5
      4

      Stream:

      a
      b
      c
      b
      d
      a
      c
      d
      a
      b
      d
      c
      a
      a
      b

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
```

- \square For AMS method, assume we keep track of 3 Xs (X_1, X_2, X_3)
 - ▶ Pick 3 random time, 3rd, 8th, and 13th, use these to define 3 Xs
 - For time 3^{rd} , X_1 , el = c, and X_1 , val = 1. At time 4^{th} , X_1 keeps the original value. The same for time 5^{th} , and 6^{th} . For time 7^{th} , X_1 , val = 2
 - For time 8th, X_2 , el = d, and X_2 , val = 1. at time 9th, 10^{th} , X_1 and X_2 keep old values. At time 11^{th} , X_2 , val = 2. at time 12^{th} , X_1 , val = 3
 - For time 13th, X_3 , el = a, and X_3 , val = 1. at time 14th, X_3 , val = 2. at time 15th, 3 X_5 unchanged.
 - >So, $S = \frac{1}{3}[15*(2*3-1)+15*(2*2-1)+15*(2*2-1)]=55.$
 - ►In this example, n=15, a count for 5, b count for 4, c count for 3, d count for 3, so 2nd moment $S = \sum_i m_i^2 = 5^2 + 4^2 + 3^2 + 3^2 = 59$

Combining Samples

□In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- ➤ Average them in groups
- ➤ Take median of averages

Problem: Streams never end

- ➤ We assumed there was a number *n*, the number of positions in the stream
- ➤ But real streams go on forever, so *n* is a variable the number of inputs seen so far

Streams Never End: Fixups

- \square (1) The variables X have n as a factor –keep n separately; just hold the count in X
- \square (2) Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **≻Objective:** Each starting time *t* is selected with probability *k*/*n*
 - **➤** Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Higher-Order Moments in AMS method

□For estimating kth moment we essentially use the same algorithm but change the estimate:

- For k=2 we used $n(2 \cdot c 1)$
- For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)

□Why?

For k=2: Remember we had $(1+3+5+...+2m_i-1)$ and we showed terms 2c-1 (for c=1,...,m) sum to m^2

•
$$\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c-1)^2 = m^2$$

- So: $2c 1 = c^2 (c 1)^2$
- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- **Generally estimating** *k***th moment:** Estimate = $n(c^k (c 1)^k)$

Problems on Data Streams

□Types of queries one wants on answer on a data stream:

- >Sampling data from a stream
 - Construct a random sample
- >Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream
 - Select elements with property **x** from the stream
- >Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
- > Estimating moments
 - Estimate avg./std. dev. of last **k** elements
- > Finding frequent recent elements (e.g. EDW)
 - Consider exponentially decaying windows, weighting the recent elements more heavily

Section 8.6: Counting frequent recent elements

Counting Itemsets

- □ Problem: Given a stream, which items appear more than s times in the window?
- □ Possible solution: Think of the stream of baskets as one binary stream per item
 - >1 = item present; 0 = not present
 - > Use **DGIM** to estimate counts of 1s for all items

Extensions

- ■In principle, you could count frequent pairs or even larger sets the same way
 - **≻One stream per itemset**
- **□**Drawbacks:
 - ➤Only approximate
 - Number of itemsets is way too big

Exponentially Decaying Windows

- □Exponentially decaying windows (E.D.W., 指数衰减窗口): A heuristic for selecting likely frequent item(sets)
 - >What are "currently" most popular movies?
 - Instead of computing the raw count in last **N** elements, compute a **smooth aggregation** over the whole stream
- □ If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be $=\sum_{i=1}^{t} a_i (1-c)^{t-i}$

c is a constant, presumably tiny, like 10-6 or 10-9

□When new a_{t+1} arrives: Multiply current sum by (1-c) and add a_{t+1}

Example: Counting Items

- □If each a_i is an "item" we can compute the **characteristic function** of each possible item x as an **Exponentially Decaying Window**
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where $\delta_i = 1$ if $a_i = x$, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears,
 0 if x does not appear)
 - New item x arrives: Multiply all counts by (1-c), add +1 to count for element x
- □Call this sum the "weight" of item x

Sliding Versus Decaying Windows

□Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1

Example: Counting Items

- **■What are "currently" most popular movies?**
- □可以使用指数衰减窗口来解决:
 - ▶c如果为10⁻⁹, 也就是大概给出能够容纳近10亿次的滑动窗口.
 - ➤每个电影想象有一个独立位流来表示其购买记录. 如果电影票数据流中的位置对应当前电影, 那么这个电影的独立位流中相应位置为1, 否则为0.
 - ▶那这个滑动窗口中所有1的衰减求和的结果值就度量了这个电影的热门程度.
- □由于流中电影数目非常大, 所以我们希望对于非热门电影的值不用记录.
- □ Suppose we want to find movies of weight $> \frac{1}{2}$
 - Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1-(1-c)] = 1/c

Example: Counting Items

- □Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1-c] (1 c)] = 1/c
- □Thus: There cannot be more than **2/c** movies with weight of **½** or more (否则所有的电影的得分之和会大于1/c)
- □So, **2/c** is a limit on the number of movies being counted at any time(任意时间进行计数的电影数目的上限是2/c)
- □由于任何电影票销售记录实际上只会关注一小部分电影, 所以真正 计算的电影数目还会远小于2/c

Extension to Itemsets

- □扩展: Count (some) itemsets in an E.D.W.
 - **▶**What are currently "hot" itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

■When a basket B comes in:

- ➤ Multiply all counts by (1-c)
- For uncounted items in **B**, create new count
- ➤ Add 1 to count of any item in B and to any itemset contained in B that is already being counted
- ▶Drop counts < ½</p>
- ➤ Initiate new counts (next slide)

Initiation of New Counts

- □Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket S
 - ➤Intuitively: If all subsets of **S** are being counted this means they are "frequent/hot" and thus **S** has a potential to be "hot"

□Example:

- \triangleright Start counting $S = \{i, j\}$ iff both i and j were counted prior to seeing B
- Start counting $S = \{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B

How many counts do we need?

- □Counts for single items < (2/c)·(avg. number of items in a basket)
- **□**Counts for larger itemsets = ??
- ■But we are conservative about starting counts of large sets
 - ▶If we counted every set we saw, one basket of 20 items would initiate 1M counts

Chapter 8 总结

□Types of queries on a data stream:

- **➤ Sampling data from a stream Sampling fixed proportion、Fixed-size sample, e.g., Reservoir Sampling**
 - Construct a random sample
- Queries over sliding windows DGIM
 - Number of items of type x in the last k elements of the stream
- > Filtering a data stream Bloom filter
 - Select elements with property **x** from the stream
- **≻Counting distinct elements FM, CMS**
 - Number of distinct elements in the last **k** elements of the stream
- > Estimating moments AMS
 - Estimate avg./std. dev. of last **k** elements
- Finding frequent recent elements EDW
 - Consider exponentially decaying windows, weighting the recent elements more heavily