Empirical means to validate skills models and assess the fit of a student model

Behzad Beheshti

Supervisor: Michel C. Desmarais

Génie Informatique Et Génie Logiciel École Polytechnique de Montréal

29 février 2016

• Student skills assessment models

Student skills assessment models

• How to decide which are the most representative of the

underlying ground truth? NMF Conjunctive

- Student skills assessment models
- How to decide which are the most representative of the underlying ground truth?
- Static Vs. Dynamic

- Student skills assessment models
- How to decide which are the most representative of the underlying ground truth?
- Static Vs. Dynamic
- Model selection and goodness of fit
- A general answer : best performer

- Student skills assessment models
- How to decide which are the most representative of the underlying ground truth?
- Static Vs. Dynamic
- Model selection and goodness of fit
- A general answer : best performer
- Our contribution
 - To make a comprehensive comparison of educational data model performances
 - To propose a new approach to assessing model fit

- Student skills assessment models
- How to decide which are the most representative of the underlying ground truth?
- Static Vs. Dynamic
- Model selection and goodness of fit
- A general answer : best performer
- Our contribution
 - To make a comprehensive comparison of educational data model performances
 - To propose a new approach to assessing model fit
- The proposed approach :
 - Assessing the fit of the model to the underlying ground truth using a methodology based on synthetic data

Number of Skills

Conjunctive

DINA

Conjunctive

NMF Conj.

Disjunctive

DINO

- Number of Skills
- Q-matrix

s₁: fraction multiplication

: fraction addition

s3: fraction reduction

$$i_1 \qquad \frac{4}{\frac{12}{3}} + \frac{3}{5} = \frac{8}{5}$$

$$i_2$$
 $\frac{4}{\frac{12}{3}} = \frac{4 \times 3}{12} = \frac{12}{12} = 1$

Additive

NMF Add.

$$2 \times \frac{1}{2} = 1$$

- Number of Skills
- Q-matrix
- Slip and Guess

- Number of Skills
- Q-matrices (types)
- Slip and Guess

- Conjunctive
- Additive
- Oisjunctive

$$\begin{array}{c} \text{Skills} \\ \begin{array}{c} s_1 & s_2 & s_3 \\ \vdots & \vdots & \vdots \\ s_1 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ i_4 & \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \end{array}$$

• Performance of a model over a data set

- Performance of a model over a data set
- Model parameters

			Parameters estimated from			
	Ski	lls Model	Tra	ining set	Observed items	
Contributed skills	Multiple	NMF Conj. NMF Add. DINA DINO	• Slip • Guess		• Students skills mastery matrix	
	Single	IRT Expected	• Item di • Item di • Item O	scrimination	• Student Ability • Student Odds	
පි	Zero	POKS	Initial 0Odds raPartial			

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature

Model	Performace		
Expected	0.72%		
POKS	0.80%		
IRT	0.74%		
NMF.Conj	0.94%		
Dina	0.99%		
NMF.Add	0.60%		
Dino	0.65%		

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature
- Performance prototype

The *performance vector* associated with the synthetic data of a model class.

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature
- Performance prototype
- Target performance vector

The performance vector of the real data set to classify.

 $\ \ \, \textbf{Experiment} \,\, 1: \,\, \textbf{Predictive performance} \\$

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive *performance vector* of models over real and synthetic data sets

Experiment 2 : Sensitivity of the Model performance Experiment 3 : Signature Approach Experiment 4 : Signature vs. best performer

Datasets

Data set	Skills	Number Items	Mean Score	Q-matrix				
Synthetic								
1.Random	7	30	700	0.75	\mathbf{Q}_{01}			
2.POKS	7	20	500	0.50	Q_{02}			
3.IRT-2PL	5	20	600	0.50	Q_{03}			
4.DINA	7	28	500	0.31	\mathbf{Q}_5			
5.DINO	7	28	500	0.69	\mathbf{Q}_6			
Linear (Mati	Linear (Matrix factorization)							
6. Conj.	8	20	500	0.24	\mathbf{Q}_1			
7. Comp.	8	20	500	0.57	\mathbf{Q}_1			
Real								
8.Fraction	8	20	536	0.53	\mathbf{Q}_1			
9.Vomlel	6	20	149	0.61	\mathbf{Q}_4			
10.ECPE	3	28	2922	0.71	Q ₃			
Fraction subsets and variants of \mathbf{Q}_1								
11. 1	5	15	536	0.53	\mathbf{Q}_{10}			
12. 2/1	3	11	536	0.51	\mathbf{Q}_{11}			
13. 2/2	5	11	536	0.51	Q ₁₂			
14. 2/3	3	11	536	0.51	Q ₁₃			

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The random data set has a flat performance across techniques

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The highest performance is for the generative model behind the dataset

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

Data sets have unique pattern of performance vector across models

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The capacity of recognizing a data set's true model relies on this uniqueness characteristic

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over real datasets

In most cases, the best performer is close to the baseline

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over real datasets

The pattern of the Fraction performance data set repeats over its subsets

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over real datasets

None of the real data sets show the large variance and the differences found in the synthetic data sets models

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Vector space of accuracy performances

 Performance vectors of datasets in columns(Data points in the performance space)

Model	Synthetic data set						
Widdei	Random	POKS	IRT	DINA	DINO	Linear .Conj	Linear .Comp
Expected	0.75	0.91	0.90	0.72	0.72	0.78	0.93
POKS	0.75	0.94	0.94	0.81	0.81	0.90	0.94
IRT	0.75	0.91	0.95	0.73	0.73	0.79	0.89
DINA	0.75	0.77	0.81	1.00	0.65	0.98	0.89
DINO	0.75	0.63	0.56	0.66	1.00	0.68	0.91
NMF.Conj	0.75	0.59	0.53	0.95	0.65	0.97	0.58
NMF.Comp	0.75	0.76	0.79	0.59	0.93	0.70	0.98

The diagonal generally displays the best performance

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters

Are they stable in addition to be unique?

Experiment 1: Predictive performance
Experiment 2: Sensitivity of the Model performance
Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Variation of sample size over synthetic data sets

Obviously, the signature pattern did not change significantly for some parameters such as **Sample size**.

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach

Experiment 4 : Signature vs. best performer

Variation of number of items over synthetic data sets

Even for synthetic data the performance of the ground truth model should not necessarily be close to 100%.

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Variation of number of items over synthetic data sets

The Performance signature shifts down once the number of items degrades.

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Data specific parameters

- Sample size (Number of students)
- Number of items
- Number of latent skills
- Item score variance
- Student score variance
- O Average success rate

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Data specific parameters

- Sample size (Number of students)
- Number of items
- Number of latent skills
- Item score variance
- Student score variance
- 6 Average success rate

Conclusion:

- Data specific parameters can potentially influence the performance of a model
- For better comparison of the results, we can also consider data specific parameters of the real data in the generation process

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
- Oan the performance vector be used to define a method to reliably identify the ground truth behind the synthetic data?
 - Experiment 3 : Model selection based on performance vector classification

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

This approach relies on generating synthetic datasets

eriment $1: \mathsf{Predictive}$ performand

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

This approach relies on generating synthetic datasets

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Signature framework

This approach relies on generating synthetic datasets

 ${\sf nent} \; 1: \; {\sf Predictive} \; {\sf perfor}$

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Signature framework

This approach relies on generating synthetic datasets

periment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models

Experiment 1 : Predictive performance
Experiment 2 : Sensitivity of the Model performance
Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters

eriment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance Experiment 3 : Signature Approach

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters X 4 values

periment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance Experiment 3 : Signature Approach

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters X 4 values X 10 samples = 1440 samples in the pool

xperiment 1 : Predictive perform

Experiment 2: Sensitivity of the Model performance Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic datasets based on the correlation

Synthetic Datasets

POKS	IRT	NMF Conj.	DINA	NMF Add.	DINO
0.96					
0.86	0.96]			
j. 0.22	-0.20	0.96			
0.02	-0.40	0.94	0.96		
1. 0.44	0.75	-0.62	-0.73	0.93	
-0.15	0.20	-0.70	-0.69	0.63	0.95
	0.96 0.86 j. 0.22 0.02 d. 0.44	0.96 0.86 0.96 j. 0.22 -0.20 0.02 -0.40 d. 0.44 0.75	0.96 0.86 0.96 j. 0.22 -0.20 0.96 0.02 -0.40 0.94 d. 0.44 0.75 -0.62	0.96 0.86 0.96 j. 0.22 -0.20 0.02 -0.40 d. 0.44 0.75 -0.62 -0.73	0.96 0.86 0.96 j. 0.22 -0.20 0.02 -0.40 d. 0.44 0.75 -0.62 -0.73 0.93

- he diagonal shows high correlations because it compares the same model generated datasets.
- Datasets with similar ground truth also show a high correlation.

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic datasets based on the correlation

Synthetic Datasets

	POKS	IRT	NMF Conj.	DINA	NMF Add.	DINO
POKS	0.96					
IRT	0.86	0.96				
NMF Conj.	0.22	-0.20	0.96			
DINA	0.02	-0.40	0.94	0.96		
NMF Add.	0.44	0.75	-0.62	-0.73	0.93	
DINO	-0.15	0.20	-0.70	-0.69	0.63	0.95
	IRT NMF Conj. DINA NMF Add.	POKS 0.96 IRT 0.86 NMF Conj. 0.22 DINA 0.02 NMF Add. 0.44	POKS 0.96 IRT 0.86 0.96 NMF Conj. 0.22 -0.20 DINA 0.02 -0.40 NMF Add. 0.44 0.75	POKS 0.96 IRT 0.86 0.96 NMF Conj. 0.22 -0.20 0.96 DINA 0.02 -0.40 0.94 NMF Add. 0.44 0.75 -0.62	POKS 0.96 IRT 0.86 0.96 NMF Conj. 0.22 -0.20 0.96 DINA 0.02 -0.40 0.94 0.96 NMF Add. 0.44 0.75 -0.62 -0.73	POKS

In general, correlation similarity provides a very good measure of model fit.

Experiment 3 : Signature Approach

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Degree of similarity between six synthetic datasets and the ground truth based on the correlation

Real Datasets

					I	Fraction	subsets	i
		Vomlel	ECPE	Fraction	1	21	22	23
Datasets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
_	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
het	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
Synthetic	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
ĺ,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

Vomlel dataset shows a high correlation with IRT model

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic datasets and the ground truth based on the correlation

Real Datasets

					I	raction	subsets	;
		Vomlel	ECPE	Fraction	1	21	22	23
Datasets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
Dat	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
het	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
Synthetic	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
Ω,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

Fraction with its subset datasets show similarity with POKS model.

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic datasets and the ground truth based on the correlation

Real Datasets

					I	Fraction	subsets	,
		Vomlel	ECPE	Fraction	1	21	22	23
Datasets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
Synthetic	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
/nt	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
ĺ,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

As expected, ECPE has the highest correlation with random generated dataset.

Experiment 4 : Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
- Solution Series Ser
 - Experiment 3 : Model selection based on performance vector classification
- How does the method compare with the standard practice of using the model with the best performance?
 - Experiment 4 : Signature vs. best performer classification

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Problem specification

 Evaluating the ability of the Signature approach to identify the ground truth model over datasets with different data specific parameters

Experiment 4 : Signature vs. best performer

Problem specification

- Evaluating the ability of the Signature approach to identify the ground truth model over datasets with different data specific parameters
- Comparing the results with the best performer approach.

Experiment 4 : Signature vs. best performer

Problem specification

- Evaluating the ability of the Signature approach to identify the ground truth model over datasets with different data specific parameters
- Comparing the results with the best performer approach.
- Reporting the accuracy of these classification in terms of precision, recall, F1 measure

		Prediction outcome					
		Positive Negative					
Actual	Positive	TP	FN				
value	Negative	FP	TN				

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$

$$egin{aligned} \textit{Accuracy} &= rac{\textit{TP} + \textit{TN}}{\textit{TP} + \textit{TN} + \textit{FP} + \textit{FN}} \ \\ F_{eta} &= (1 + eta^2). rac{\textit{Precision.Recall}}{eta^2.\textit{Precision} + \textit{Recall}} \end{aligned}$$

speriment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance

Experiment 4: Signature vs. best performer

Results of signature vs. best performer classification

Performance

			Best F	Performer			Nearest	Neighbor	
		Precision	Recall	F-Measure	Accuracy	Precision	Recall	F-Measure	Accuracy
	POKS	0.564	0.992	0.719	0.871	0.793	0.908	0.847	0.945
Models	IRT	0.982	0.458	0.625	0.908	0.846	0.867	0.856	0.951
	NMF Conj.	0.943	0.342	0.502	0.887	0.711	0.750	0.730	0.907
Σ	DINA	0.617	0.921	0.739	0.891	0.777	0.696	0.734	0.916
	NMF Add.	0.938	0.875	0.905	0.969	0.946	0.879	0.911	0.971
	DINO	1	0.929	0.963	0.988	0.996	0.946	0.970	0.990
Total accuracy		0.75%					0.	84%	

• The F-measure increases when the signature approach is used for classification.

periment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Results of signature vs. best performer classification

Performance

			Best F	Performer			Nearest	Neighbor	
		Precision	Recall	F-Measure	Accuracy	Precision	Recall	F-Measure	Accuracy
	POKS	0.564	0.992	0.719	0.871	0.793	0.908	0.847	0.945
Models	IRT	0.982	0.458	0.625	0.908	0.846	0.867	0.856	0.951
	NMF Conj.	0.943	0.342	0.502	0.887	0.711	0.750	0.730	0.907
Σ	DINA	0.617	0.921	0.739	0.891	0.777	0.696	0.734	0.916
	NMF Add.	0.938	0.875	0.905	0.969	0.946	0.879	0.911	0.971
	DINO	1	0.929	0.963	0.988	0.996	0.946	0.970	0.990
To	tal accuracy	0.75%					0.	84%	

- The F-measure increases when the signature approach is used for classification.
- In terms of individual scores per method, the accuracy increases when signature approach is used.

periment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance

Experiment 3: Signature Approach

Experiment 4: Signature vs. best performer

Results of signature vs. best performer classification

			Best F	Performer		Nearest Neighbor				
		Precision	Recall	F-Measure	Accuracy	Precision	Recall	F-Measure	Accuracy	
odels	POKS	0.564	0.992	0.719	0.871	0.793	0.908	0.847	0.945	
	IRT	0.982	0.458	0.625	0.908	0.846	0.867	0.856	0.951	
	NMF Conj.	0.943	0.342	0.502	0.887	0.711	0.750	0.730	0.907	
Š	DINA	0.617	0.921	0.739	0.891	0.777	0.696	0.734	0.916	
	NMF Add.	0.938	0.875	0.905	0.969	0.946	0.879	0.911	0.971	
	DINO	1	0.929	0.963	0.988	0.996	0.946	0.970	0.990	
То	tal accuracy		0.	.75%			0.	84%		

- The F-measure increases when the signature approach is used for classification.
- In terms of individual scores per method, the accuracy increases when signature approach is used.
- The total accuracy considers true positive numbers over number of datasets regardless of individual models

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
- Solution Series Ser
 - Experiment 3: Model selection based on performance vector classification
- ◆ How does the method compare with the standard practice of using the model with the best performance?
 - Experiment 4 : Signature vs. best performer classification

 Model fit of a data set is defined as the similarity between prototype and target performance vector

- Model fit of a data set is defined as the similarity between prototype and target performance vector
- The generative model does not always correspond to the best performer and our approach provides a more reliable means

- Model fit of a data set is defined as the similarity between prototype and target performance vector
- The generative model does not always correspond to the best performer and our approach provides a more reliable means
- Datasets that share a common source have correlated performance vectors.

- Model fit of a data set is defined as the similarity between prototype and target performance vector
- The generative model does not always correspond to the best performer and our approach provides a more reliable means
- Datasets that share a common source have correlated performance vectors.
- It does not seem to substantially extend to data that shares the same domain

• For real data sets, the performances are not better than the expected performance

- For real data sets, the performances are not better than the expected performance
- For synthetic data, datasets with different ground truths that share some concepts, show a high correlation.

- For real data sets, the performances are not better than the expected performance
- For synthetic data, datasets with different ground truths that share some concepts, show a high correlation.
- performance vector changes for some data specific parameters but it still shows a high correlation with datasets with the same ground truth.

- For real data sets, the performances are not better than the expected performance
- For synthetic data, datasets with different ground truths that share some concepts, show a high correlation.
- performance vector changes for some data specific parameters but it still shows a high correlation with datasets with the same ground truth.
- Best performer may not be the model that is most representative of the ground truth.

Introduction Main contributions Conclusion Conclusion and discussion Future works Questions

Future works

• Further studies with real and simulated data

Future works

- Further studies with real and simulated data
- generalize to dynamic data and skills assessment models

Future works

- Further studies with real and simulated data
- generalize to dynamic data and skills assessment models
- Candidate models and their complexity

Future works

- Further studies with real and simulated data
- generalize to dynamic data and skills assessment models
- Candidate models and their complexity
- Application in other fields of study

Thank you

