Example from Nautical Almanav 1993 (only to check altitude reductions, not for fix computation)

Date = 1993.06.28

ic = 0

Height of eye = 5.4 m

Temperature = -3 °C

Pressure = 982 mb

Moon sights are assumed to be taken at 10:00 UT (plugin changes time automatically; this prevents to make time corrections).

	Sun LL	Sun UL	Moon LL	Moon UL	Venus	Polaris
H sextant	21.3283°	3.3367°	33.4600°	26.1117°	4.5433°	49.6083°
Dip	0.0681°	0.0681°	0.0681°	0.0681°	0.0681°	0.0681°
H apparent	21.2602°	3.2686°	33.3919°	26.0436°	4.4752°	49.5402°
H app plugin	21.2602°	3.2686°	33.3919°	26.0436°	4.4752°	49.5402°
diff H app in '	0.00'	0.00'	0.00'	0.00'	0.00'	0.00'
Refraction	0.0431°	0.2304°	0.0256°	0.0344°	0.1834°	0.0144°
Parallax	0.0024°	0.0024°	0.9850°	0.9850°	0.0033°	0.0000°
Par. in Alt.	0.0022°	0.0024°	0.8224°	0.8850°	0.0033°	0.0000°
SD	0.2633°	0.2633°	0.2683°	0.2683°	0.0000°	0.0000°
H observed	21.4827°	2.7773°	34.4570°	26.6258°	4.2952°	49.5258°
H obs plugin	21.4834°	2.7677°	34.4155°	26.6050°	4.2878°	49.5265°
diff H obs in '	0.04'	-0.58'	-2.49'	-1.25'	-0.44'	0.04'

Almanac Data For Polaris

Geographical Position (lat, lon) = 89.2642 -39.5152

GHAAST = 77 28.1'

SHA = 322 2.8'

 $GHA = 39\ 30.9'$

Dec = N 89 15.9'

SD = 0.0'

HP = 0.0'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters

Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0

Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection

ApparentAltitude = 49.6083 - 0.0000 - 0.0681

ApparentAltitude = 49.5402

Refraction Correction

x = tan(Pi/180*ApparentAltitude + 4.848e-2*(Pi/180) / (tan(Pi/180*ApparentAltitude) + .028))

x = tan(Pi/180*49.5402 + 4.848e-2*(Pi/180) / (tan(Pi/180*49.5402) + .028))

x = 1.1742

RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0

RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0

RefractionCorrection = 0.0138

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 49.5402 - 0.0138 - 0.0000

CorrectedAltitude = 49.5265

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 49.5265 - 0.0000

ObservedAltitude = 49.5265

Almanac Data For Venus

Geographical Position (lat, lon) = 15.5212 -26.8466

GHAAST = 77 7.8'

 $SHA = 309 \ 43.0'$

GHA = 2650.8'

Dec = N 15 31.3'

SD = 0.0'

HP = 0.0'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters

Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0

Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection

ApparentAltitude = 4.5433 - 0.0000 - 0.0681

ApparentAltitude = 4.4752

Refraction Correction

x = tan(Pi/180*ApparentAltitude + 4.848e-2*(Pi/180) / (tan(Pi/180*ApparentAltitude) + .028))

x = tan(Pi/180*4.4752 + 4.848e-2*(Pi/180) / (tan(Pi/180*4.4752) + .028))

x = 0.0863

RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0

RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0

RefractionCorrection = 0.1875

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 4.4752 - 0.1875 - 0.0000

CorrectedAltitude = 4.2878

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 4.2878 - 0.0000

ObservedAltitude = 4.2878

```
Almanac Data For Moon (UL)
```

Geographical Position (lat, lon) = -13.7173 126.3537 GHAAST = 76 51.5'

SHA = 156 47.3'

 $GHA = 233\ 38.8'$

Dec = S 13 43.0'

SD = 15.5'

HP = 56.9'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters

Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0

Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection

ApparentAltitude = 26.1117 - 0.0000 - 0.0681

ApparentAltitude = 26.0436

Refraction Correction

x = tan(Pi/180*ApparentAltitude + 4.848e-2*(Pi/180) / (tan(Pi/180*ApparentAltitude) + .028))

x = tan(Pi/180*26.0436 + 4.848e-2*(Pi/180) / (tan(Pi/180*26.0436) + .028))

x = 0.4907

RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0

RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0

RefractionCorrection = 0.0330

Moon selected, Limb Correction

SD = 0.2591

Ic = 180/Pi * asin(Pi/180*SD)

lc = 0.2591

Upper Limb

LimbCorrection = 0.2591

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 26.0436 - 0.0330 - 0.2591

CorrectedAltitude = 25.7516

Moon selected, parallax correction

HP = 0.9475

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * HP) * cos(Pi/180 * CorrectedAltitude))

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * 0.9475) * cos(Pi/180 * 25.7516))

ParallaxCorrection = -0.8534

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 25.7516 - -0.8534

ObservedAltitude = 26.6050

```
Almanac Data For Moon (LL)
```

Geographical Position (lat, lon) = -13.7140 126.6149 GHAAST = 76 35.2' SHA = 156 47.9' GHA = 233 23.1' Dec = S 13 42.8' SD = 15.5' HP = 56.9'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters

Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0

Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection

ApparentAltitude = 33.4600 - 0.0000 - 0.0681

ApparentAltitude = 33.3919

Refraction Correction

x = tan(Pi/180*ApparentAltitude + 4.848e-2*(Pi/180) / (tan(Pi/180*ApparentAltitude) + .028)) x = tan(Pi/180*33.3919 + 4.848e-2*(Pi/180) / (tan(Pi/180*33.3919) + .028))x = 0.6609

 $RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0 \\ RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0 \\$

RefractionCorrection = 0.0245

Moon selected, Limb Correction

SD = 0.2591

Ic = 180/Pi * asin(Pi/180*SD)

lc = 0.2591

Lower Limb

LimbCorrection = -0.2591

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 33.3919 - 0.0245 - -0.2591

CorrectedAltitude = 33.6265

Moon selected, parallax correction

HP = 0.9475

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * HP) * cos(Pi/180 * CorrectedAltitude))

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * 0.9475) * cos(Pi/180 * 33.6265))

ParallaxCorrection = -0.7890

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 33.6265 - -0.7890

ObservedAltitude = 34.4155

```
Almanac Data For Sun (UL)
```

Geographical Position (lat, lon) = 23.2672 21.0291 GHAAST = 76 18.9' SHA = 262 39.4' GHA = 338 58.3' Dec = N 23 16.0' SD = 15.7' HP = 0.1'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters

Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0

Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection ApparentAltitude = 3.3367 - 0.0000 - 0.0681

ApparentAltitude = 3.2686

Refraction Correction

 $\begin{aligned} x &= \tan(\text{Pi}/180^*\text{ApparentAltitude} + 4.848\text{e-}2^*(\text{Pi}/180) \ / \ (\tan(\text{Pi}/180^*\text{ApparentAltitude}) + .028)) \\ x &= \tan(\text{Pi}/180^*3.2686 + 4.848\text{e-}2^*(\text{Pi}/180) \ / \ (\tan(\text{Pi}/180^*3.2686) + .028)) \end{aligned}$

x = 0.0671

 $RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0 \\ RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0 \\$

RefractionCorrection = 0.2411

Sun selected, Limb Correction

ra = 1.0166, lc = 0.266564/ra = 0.2622

Upper Limb

LimbCorrection = 0.2622

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 3.2686 - 0.2411 - 0.2622

CorrectedAltitude = 2.7653

Sun selected, parallax correction

rad = 1.0166, HP = 0.002442/rad = 0.0024

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * HP) * cos(Pi/180 * CorrectedAltitude))

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * 0.0024) * cos(Pi/180 * 2.7653))

ParallaxCorrection = -0.0024

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 2.7653 - -0.0024

ObservedAltitude = 2.7677

```
Almanac Data For Sun (LL)
```

Geographical Position (lat, lon) = 23.2673 21.2957 GHAAST = 76 2.9' SHA = 262 39.4' GHA = 338 42.3' Dec = N 23 16.0' SD = 15.7' HP = 0.1'

Formulas used to calculate sight

Index Error is 0.0000 degrees

Eye Height is 5.4000 meters Height Correction Degrees = 1.758*sqrt(5.4000) / 60.0 Height Correction Degrees = 0.0681

Apparent Altitude (Ha)

ApparentAltitude = Measurement - IndexCorrection - EyeHeightCorrection ApparentAltitude = 21.3283 - 0.0000 - 0.0681

ApparentAltitude = 21.2602

Refraction Correction

 $\begin{aligned} x &= \tan(\text{Pi}/180^*\text{ApparentAltitude} + 4.848\text{e}-2^*(\text{Pi}/180) \ / \ (\tan(\text{Pi}/180^*\text{ApparentAltitude}) + .028)) \\ x &= \tan(\text{Pi}/180^*21.2602 + 4.848\text{e}-2^*(\text{Pi}/180) \ / \ (\tan(\text{Pi}/180^*21.2602) + .028)) \end{aligned}$

x = 0.3914

 $RefractionCorrection = .267 * Pressure / (x*(Temperature + 273.15)) / 60.0 \\ RefractionCorrection = .267 * 982.0000 / (x*(-3.0000 + 273.15)) / 60.0 \\$

RefractionCorrection = 0.0413

Sun selected, Limb Correction

ra = 1.0166, lc = 0.266564/ra = 0.2622

Lower Limb

LimbCorrection = -0.2622

Corrected Altitude

CorrectedAltitude = ApparentAltitude - RefractionCorrection - LimbCorrection

CorrectedAltitude = 21.2602 - 0.0413 - -0.2622

CorrectedAltitude = 21.4811

Sun selected, parallax correction

rad = 1.0166, HP = 0.002442/rad = 0.0024

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * HP) * cos(Pi/180 * CorrectedAltitude))

ParallaxCorrection = -180/Pi * asin(sin(Pi/180 * 0.0024) * cos(Pi/180 * 21.4811))

ParallaxCorrection = -0.0022

Observed Altitude (Ho)

ObservedAltitude = CorrectedAltitude - ParallaxCorrection

ObservedAltitude = 21.4811 - -0.0022

ObservedAltitude = 21.4834