

## MATRICES AND LINEAR TRANSFORMATIONS

## Why

All linear transformations are equivalent to multiplication by a matrix.

## Main Result

**Prop. 1.** Let  $(V_1, \mathsf{F}), (V_2, \mathsf{F})$  be two vector spaces and  $f: V_1 \to V_2$  be a transformation between them.

If f is linear, then there exists bases for the spaces and a matrix A in  $\mathsf{F}$  for which matrix multiplication is equivalent to applying f.

If A is a matrix in F f is linear if and only if there exists a matrix in  $\mathsf{F}$  whose coordinates in  $V_1$  to coordinates in  $V_2$ .

