Computational Microelectronics Lecture 17 Continuity Equation

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Continuity Equation

Jacobian

• From the following expression,

$$J_n(x_{i+0.5}) = \frac{qD_n}{x_{i+1} - x_i} \left[(n_{i+1} - n_i) - \frac{1}{V_T} \frac{n_{i+1} + n_i}{2} (\phi_{i+1} - \phi_i) \right]$$

- Components of Jacobian matrix are given as

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i+1}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[1 - \frac{\phi_{i+1} - \phi_{i}}{2V_{T}} \right]$$

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[-1 - \frac{\phi_{i+1} - \phi_{i}}{2V_{T}} \right]$$

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i+1}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[-\frac{n_{i+1} + n_{i}}{2V_{T}} \right]$$

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[\frac{n_{i+1} + n_{i}}{2V_{T}} \right]$$

Arranging variables & boundary condition

- Three variables $(\phi, n, and p)$ at each vertex
 - -3i for potential, 3i + 1 for electrons, 3i + 2 for holes
 - Carrier densities are fixed at two boundaries.

Poisson δn Electron continuity δp Hole continuity Poisson $\delta \phi$ **Electron continuity** Hole continuity

GIST Lecture

 r_n

Equilibrium

• $N_D = N_A = 10^{17}$ cm⁻³. 1-nm spacing

HW#14

- Due: AM08:00, November 13
- Problem#1
 - In the previous HW#13, three PN junctions were simulated with the nonlinear Poisson equation.
 - In this problem, using the drift-diffusion simulator you implemented, simulate the same devices.

GIST Lecture

Bias Ramping

Bias ramping

- We start from the equilibrium solution at 0 V
 - Increase the anode voltage (Forward)
 - Decrease the anode voltage (Reverse)
 - Boundary condition for the cathode contact

$$r_0 = \phi(x_0) - \phi_0 \left(N_{dop}^+(x_0) \right)$$

 $A_{0,0} = 1$

Boundary condition for the anode contact

$$r_{3N} = \phi(x_N) - \phi_0 \left(N_{dop}^+(x_N) \right) - V_{anode}$$

 $A_{3N,3N} = 1$

Equilibrium potential

GIST Lecture

Number of Newton iterations

- Convergence criterion of 10-10 V
 - -We need 4~5 iterations at each bias point.

Terminal current

In a steady-state,

$$I_{terminal} = -\int_{terminal\ area} (\mathbf{J}_p + \mathbf{J}_n) \cdot d\mathbf{a}$$

- In a 1D structure, it is very simple.
 - -Sum of current densities at the edge connected to the terminal

$$I_{anode} = -(J_p + J_n)A$$

Anode

GIST Lecture 10

Forward IV

 10^{-2}

Reverse IV

No current conduction

Thank you!