Администрирование локальных сетей

Лабораторная работа 9

Скандарова Полина Юрьевна

Содержание

<u> </u>	1
•	
Выполнение лабораторной работы	1
Зыводы	

Цель работы

Изучение возможностей протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

Выполнение лабораторной работы

Формирую резервное соединение между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-3 (рис. [-@fig:001]). Для этого: – заменяю соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2); – делаю порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым: msk –donskaya –sw –3(config)# int g0 /2 msk –donskaya –sw –3(config –if)# switchport mode trunk – соединение между коммутаторами msk-donskaya-sw-1 и msk-donskaya- sw-4 делаю через интерфейсы Fa0/23, не забыв активировать их в транковом режиме.

Логическая схема локальной сети с резервным соединением

С оконечного устройства dk-donskaya-1 пингую серверы mail и web. В режиме симуляции прослеживаю движение пакетов ICMP. Убеждаюсь, что движение пакетов происходит через коммутатор msk-donskaya-sw-2. На коммутаторе msk-donskaya-sw-2 смотрю состояние протокола STP для vlan 3: msk –donskaya –sw –2# show spanning –tree vlan 3 В результате будет выведена следующая информация, связанная с протоколом STP(рис. [-@fig:002]).

VLAN0003	r 1				
Spanning t	ree enabled p	rotocol iee	ee		
Root ID	Priority				
	Address				
	This bridge is the root				
	Hello Time	2 sec Max	Age 20 se	ec Forward Delay 15 sec	
Bridge ID Priority 32771 (priority 32768 sys-id-ext 3) Address 0001.C954.0C3E					
	Hello Time 2 Aging Time 2		Age 20 se	ec Forward Delay 15 sec	
Interface	Role Sts	Cost	Prio.Nbr	Type	
Fa0/1	Desg FWD	19	128.1	P2p	
Fa0/2	Desg FWD	19	128.2	P2p	
Gi0/1	Desg FWD	4	128.25	P2p	
Gi0/2	Desg FWD	4	128.26	P2p	

Информация, связанная с протоколом STP

Здесь, в частности, указывается, что данное устройство является корневым (строка This bridge is the root). В качестве корневого коммутатора STP настраиваю коммутатор msk-donskaya-sw-1: msk –donskaya –sw –1# configure terminal msk –donskaya –sw –1 (config)#spanning –tree vlan 3 root primary Используя режим симуляции, убеждаюсь, что пакеты ICMP пойдут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2. Настраиваю режим

Portfast на тех интерфейсах коммутаторов, к которым подключены серверы: msk -donskaya -sw -2(config)# interface f0 /1 msk -donskaya -sw -2(config -if)#spanning -tree portfast msk -donskaya -sw -2(config)# interface f0 /2 msk -donskaya -sw -2(config -if)#spanning -tree portfast msk -donskaya -sw -3(config)# interface f0 /1 msk -donskaya -sw -3(config -if)#spanning -tree portfast msk -donskaya -sw -3(config)# interface f0 /2 msk -donskaya -sw -3(config -if)#spanning -tree portfast Изучаю отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого использую команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1, а разрыв соединения обеспечиваю переводом соответствующего интерфейса коммутатора в состояние shutdown. Переключаю коммутаторы режим работы по протоколу Rapid PVST+: msk -donskaya -sw -1(config)#spanning -tree mode rapid -pvst msk -donskaya -sw -2(config)#spanning -tree mode rapid -pvst msk -donskaya -sw -3(config)#spanning -tree mode rapid -pvst msk -donskaya -sw -4(config)#spanning -tree mode rapid -pvst msk pavlovskaya –sw –1(config)#spanning –tree mode rapid –pvst Изучаю отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение. Сформировываю агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4 (рис. [-@fig:003]).

Логическая схема локальной сети с агрегированным соединением

Настраиваю агрегирование каналов (режим EtherChannel): msk -donskaya -sw -1 (config)# interface range f0 /20 - 23 msk -donskaya -sw -1 (config -if - range)#channel - group 1 mode on msk -donskaya -sw -1 (config -if - range)#exit msk -donskaya -sw -1 (config)# interface port - channel 1 msk -donskaya -sw -1 (config -if)# switchport mode trunk msk -donskaya -sw -4 (config)# int range f0 /20 - 23 msk -donskaya -sw -4 (config -if - range)#no switchport access vlan 104 msk -donskaya -sw -4 (config -if - range)#exit msk -donskaya -sw -4 (config)# interface range f0 /20 - 23 msk -donskaya

-sw -4(config -if - range)#channel - group 1 mode on msk -donskaya -sw -4(config -if - range)#exit msk -donskaya -sw -4(config)# interface port - channel 1 msk -donskaya -sw -4(config -if)# switchport mode trunk Здесь использована следующая терминология Cisco: - EtherChannel — технология агрегирования каналов; - port-channel — логический интерфейс, который объединяет физиче- ские интерфейсы; - channel-group — команда, которая указывает, какому логическому интерфейсу принадлежит физический интерфейс и какой режим используется для агрегирования; - возможные параметры channel-group: - active — включить LACP; - рassive — включить LACP, только если придёт сообщение LACP; - desirable — включить PAgP; - auto — включить PAgP, только если придёт сообщение PAgP; - on — включить только EtherChannel.

Выводы

Изучены возможности протокола STP и его модификации по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.