

Многозначни зависимости

- 2 атрибута или множество атрибути са независими помежду си
- Обобщение на FDs
- Наличие на ситуации, при които независимостта на атрибутите не се изразява чрез FDs

Многозначни зависимост

Мотивация

 Съществуват схеми в BCNF, които съдържат излишни данни

Stare

name	street	city	title	year
C. Fisher	123 Maple Str.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
C. Fisher	123 Maple Str.	Hollywood	Empire Strikes Back	1980
C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
C. Fisher	123 Maple Str.	Hollywood	Return of the Jedi	1983
C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

Многозначни зависимост

Независимост на атрибути

- Няма основание да свържем адреса с 1 филм и да не го свържем с друг
- При повторенията на адресите и фактите за филмите във всички техни комбинации получаваме излишество на данни
- Няма нарушение на BCNF
 - Не съществуват не-тривиални FD's- 5-те атрибута формират 1! суперключ
 - Защо?

Многозначни зависимост

Дефиниция на MVD

■ Multivalued dependency (MVD) $X \to Y$ утвърждава, че ако 2 кортежа в една релация съвпадат по всички атрибути на X, техните компоненти от множеството атрибути Y могат да бъдат разменени и резултатът ще даде 2 нови кортежа, които също принадлежат на релацията

Многозначни зависимости

Multivalued dependency - дефиниция

<u>Дефиниция:</u> Многозначна зависимост (MVD):

 $A_1A_2...A_n \to \to B_1B_2...B_m$ е многозначна зависимост в R ако: за всяка двойка кортежи $\emph{\textbf{t}}, \emph{\textbf{u}}$ от R, за които

 $t[A_1A_2...A_n] = u[A_1A_2...A_n],$

съществува кортеж **у** от R за който:

(1) $v[A_1A_2...A_n] = t[A_1A_2...A_n] = u[A_1A_2...A_n]$

(2) $v[B_1B_2...B_m] = t[B_1B_2...B_m]$

(3) $v[C_1C_2...C_k] = u[C_1C_2...C_k]$,

където $C_1C_2...C_k$ са всички атрибути от R, с изключение на $(A_1A_2...A_n \cup B_1B_2...B_m)$

Многозначни зависимости

Пример: **name** $\rightarrow \rightarrow$ **street city**

Stars

	name	street	city	title	year
t	C. Fisher	123 Maple Str.	Hollywood	Star Wars	1977
	C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
V	C. Fisher	123 Maple Str.	Hollywood	Empire Strikes Back	1980
u	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
	C. Fisher	123 Maple Str.	Hollywood	Return of the Jedi	1983
	C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

Многозначни зависимости

Stars

	name	street	city	title	year
u	C. Fisher	123 Maple Str.	Hollywood	Star Wars	1977
w	C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
٧	C. Fisher	123 Maple Str.	Hollywood	Empire Strikes Back	1980
t	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
	C. Fisher	123 Maple Str.	Hollywood	Return of the Jedi	1983
	C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

Многозначни зависимост

Използване на MVDs

- Тривиални зависимости
- Правило за транзитивност
- Правило за попълнение
- Правило за обединение

Многозначни зависимости

Тривиални MVDs

■ Тривиална MVD

 $A_1A_2...A_n \mathop{\rightarrow}\rightarrow B_1B_2...B_m$

- когато $B_1B_2...B_m$ е подмножество на $A_1A_2...A_n$ или $(A_1A_2...A_n \cup B_1B_2...B_m)$ съдържа всички атрибути на R
- Нетривиална MVD

 $A_1A_2...A_n \mathop{\longrightarrow}\limits \to B_1B_2...B_m$

- когато нито един от атрибутите $B_1B_2...B_m$ не съвпада с $A_1A_2...A_n$
- Не всички атрибути на R принадлежат на $(A_1A_2...A_n \cup B_1B_2...B_m$)

Многозначни зависимости

Правила за MVDs

Транзитивно правило

 $\begin{array}{c} \text{Ako } A_1A_2...A_n \longrightarrow B_1B_2...B_m \text{ in } B_1B_2...B_m \longrightarrow \\ C_1C_2...C_k, \text{ to } A_1A_2...A_n \longrightarrow C_1C_2...C_k \end{array}$

■ Правило на допълнението

Ако $A_1A_2...A_n \to B_1B_2...B_m$, то $A_1A_2...A_n \to C_1C_2...C_k$, където $C_1C_2...C_k$ е м-то от всички атрибути на R с изключение на $(A_1A_2...A_n \cup B_1B_2...B_m)$

■ Правило на обединението

Ako $X_1X_2...X_n \rightarrow Y_1Y_2...Y_m$ in $X_1X_2...X_n \rightarrow Z_1Z_2...Z_k$, to $X_1X_2...X_n \rightarrow (Y_1Y_2...Y_m \cup Z_1Z_2...Z_k)$

Многозначни зависимости

Свойства на MVDs

- Подобно на FD's, не можем да разделяме лявата част на MVD.
- За разлика от FD's, не можем да разделяме и дясната част --- понякога се налага да оставяме няколко атрибута в дясната част

Многозначни зависимости

14

- Stars: name →→ street city
- name $\rightarrow \rightarrow$ street ?

name	street	city	title	year
C. Fisher	5 Locust Ln.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977

Многозначни зависимост

Всяка FDs e MVDs

- FD-IS-AN-MVD правило Ако $A_1A_2...A_n \rightarrow B_1B_2...B_m$ то $A_1A_2...A_n \rightarrow B_1B_2...B_m$
 - Докажете чрез (1), (2), (3) от MVD дефиницията

Многозначни зависимост

16

Правило на допълнението

Stars:

name $\rightarrow \rightarrow$ street city

• Съгласно правилото на допълнението

name $\rightarrow \rightarrow$ title year

Многозначни зависимости

Четвърта нормална форма – 4NF

- Излишеството на данни, което произтича от MVD's не може да се отстрани чрез привеждане в BCNF.
- Необходима е по-строга нормална форма, наречена 4NF, която третира MVD's като FD's по отношение на декомпозицията, но не и по отношение на ключовете.

Иногозначни зависимости

18

4NF- дефиниция

- Релацията R удовлетворява 4NF, ако за всяка нетривиална MVD $A_1A_2...A_n{\longrightarrow} \to B_1B_2...B_m$,
 - $A_1A_2...A_n$ е суперключ.
 - Понятието ключ се основава на дефиницията на FD
- 4NF е обобщение на BCNF
 - тъй като FD e MVD, 4NF → BCNF

Многозначни зависимость

BCNF и 4NF

- Всяка FD X->Y е също така и MVD, X->->Y.
- Ако R удовлетворява 4NF, тя очевидно удовлетворява и BCNF.
 - Всяко нарушение на BCNF е нарушение и на 4NF.
- Но R може да бъде в BCNF и да не бъде в 4NF, защото MVD's са "неуловими" от BCNF.

Многозначни зависимост

Декомпозиция и 4NF

- Ако X->-> У нарушава 4NF за релацията R, извършваме декомпозиция на R, използвайки същата техника както при BCNF.
 - *х х у* е едната от декомпозираните релации.
 - $_{2}$. Всички атрибути, без $Y \cup X$ другата.

Многозначни зависимост

Пример: Stars не е в 4NF

- name→→street city
 - Нетривиална MVD
 - Name не е суперключ
- Прилагаме декомпозиция:

R(name, street, city)

S(name, title, year)

- name→→street city in R?
- name $\rightarrow \rightarrow$ title year in S?

Многозначни зависимости

22

Своиства на нормалните форми

ЗНФ	BCNF	4НФ
В повечето случаи	Да	Да
Не	Не	Да
Да	Не винаги	Не винаги
Не винаги	Не винаги	Не винаги
	В повечето случаи Не	В повечето Да случаи Не Не Не