## Tuesday Reading Assessment: Unit 1, Ohm's Law and Batteries, DC Circuits and Power

Prof. Jordan C. Hanson March 10, 2020

## 1 Memory Bank

- V = IR ... Ohm's Law
- $\bullet$  P = IV ... Relationship between power, voltage, and current
- $V_{\text{terminal}} = \epsilon Ir$  ... For a battery, the terminal voltage is the emf or ideal voltage, minus the current times the internal resistance.

## 2 Batteries and Power

- 1. (a) What is the power consumption of a 24 V system that draws 0.5 A of current? (b) If a different system operates at 12 V, and has a total resistance of  $50\Omega$ , what is the power consumption?
- 2. Suppose a a battery is connected in series with a resistor (Fig. 1). The  $\epsilon$ , or emf of the battery is 1.5 V. The resistor R is  $50\Omega$ . The current measured to be 0.0285 A. (b) What is r, the internal resistance? (c) If another  $50\Omega$  resistor was added in parallel, what would be the new current?



Figure 1: (Left) A battery is similar to a chemical capacitor, but keeps constant a constant voltage  $\epsilon$  called the emf. (Middle) However, a more accurate model is that the battery has some intrinsic or internal resistance r. (Right) Thus, the measured voltage  $V_{\text{terminal}}$  does not reach the idea emf for a given current I.