Лабораторная работа №5

Работа с матрицами

Демидова Екатерина Алексеевна

Содержание

Список литературы		15
5	Выводы	14
4	Выполнение лабораторной работы	7
3	Теоретическое введение	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

4.1	График точек, заданных матрицей D	8
4.2	Построение матрицы коэффициентов	9
4.3	Нахождение коэффициентов	10
4.4	Построение графика параболы	10
4.5	Построение графика исходных и подгоночных даннных	11
4.6	Граф-домик	11
4.7	Построение повёрнутого графика дома	12
4.8	График домика, отраженный относительно прямой $y=x \dots$	12
4.9	Увеличинный в 2 раза график домика	13

1 Цель работы

Научиться подгонять полиномиальные кривые и выполнять различные матричные преобразования с помощью системы для математических вычислений Octave.

2 Задание

- Выполнить подгонку полиномиальной кривой с помощью Octave.
- Представить изображение с помощью матрицы.
- Перевернуть изображение на определённый угол.
- Отразить изображение относительно прямой.
- Выполнить преобразование делитации.

3 Теоретическое введение

Подгонка кривой — это процесс построения кривой или математической функции, которая наилучшим образом соответствует ряду точек данных, возможно, с учетом ограничений[1]. Подгонка кривой может включать либо интерполяцию, где требуется точная подгонка к данным, либо сглаживание, при котором строится «гладкая» функция, которая приблизительно соответствует данные.

Если l – прямая, проходящая через начало координат, то **отражение** точки (x,y) относительно прямой l определяется как [2]

$$\begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{pmatrix}$$

Дилатация (то есть расширение или сжатие) также может быть выполнено путём умножения матриц. Матричное произведение TD будет преобразованием дилатации D с коэффициентом k, где

$$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

4 Выполнение лабораторной работы

Решим более общую проблему подгонки полинома к множеству точек. Пусть нам нужно найти параболу по методу наименьших квадратов для набора точек, заданных матрицей

$$D = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 5 \\ 4 & 4 \\ 5 & 2 \\ 6 & -3 \end{pmatrix}$$

В матрице заданы значения x в столбце 1 и значения y в столбце 2. Введём матрицу данных в Осtave и извлечём вектора x и y. Нарисуем точки на графике.(рис. [4.1])

Рис. 4.1: График точек, заданных матрицей D

Построим уравнение вида $y=ax^2+bx+c$. Для построения матрицы коэффициентов используем команду ones для создания матрицы единиц соответствующего размера, а затем перезапишем первый и второй столбцы необходимыми данными. (рис. [4.2])

Рис. 4.2: Построение матрицы коэффициентов

Решение по методу наименьших квадратов получается из решения уравнения $A^TAb=A^Ty$, где b – вектор коэффициентов полинома. Используем Осtave для построения уравнений. Решим задачу методом Гаусса. Запишем расширенную матрицу B. Таким образом, искомое квадратное уравнение имеет вид

$$y = -0.89286x^2 + 5.65x - 4.4$$

(рис. [4.3])

Рис. 4.3: Нахождение коэффициентов

Построим соответствующий график параболы (рис. [4.4])

Рис. 4.4: Построение графика параболы

Процесс подгонки может быть автоматизирован встроенными функциями Octave. Для этого мы можем использовать встроенную функцию для подгонки полинома polyfit. Синтаксис: polyfit (x, y, order), где order – это степень

полинома. Значения полинома P в точках, задаваемых вектором-строкой х можно получить с помощью функции polyval. Синтаксис: polyval (P, x). Получим подгоночный полином. Рассчитаем значения полинома в точках, построим исходные и подгоночные данные(рис. [4.5])

Рис. 4.5: Построение графика исходных и подгоночных даннных

Попробуем закодировать граф-домик. Есть много способов закодировать это как матрицу. Эффективный метод состоит в том, чтобы выбрать путь, который проходит по каждому ребру ровно один раз (цикл Эйлера). (рис. [4.6])

Рис. 4.6: Граф-домик

Повернём граф дома на 90 и 225 градусов. Вначале переведём угол в радианы, а затем воспользовавшись матрицей поворота повернём домик. (рис. [4.7])

Рис. 4.7: Построение повёрнутого графика дома

Отразим граф дома относительно прямой y=x. Зададим матрицу отражения, подставив угол 45 градусов, так как именно под таким углом относительно оси абсцисс проходит прямая y=x. (рис. [4.8])

Рис. 4.8: График домика, отраженный относительно прямой y=x

Увеличим граф дома в 2 раза, используя матрицу для делитации (рис. [4.9])

Рис. 4.9: Увеличинный в 2 раза график домика

5 Выводы

В результате выполнения работы научились подгонять полиномиальные кривые и выполнять различные матричные преобразования с помощью системы для математических вычислений Octave.

Список литературы

- 1. Подгонка кривой [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://wikipredia.net/ru/Model_fitting#cite_note-3.
- 2. Умнов А.Е. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ И ЛИНЕЙНАЯ АЛГЕБРА. МФТИ, 2011. 544 с.