1 Pullback

Theorem 1.1. Suppose we have two joined commuting squares like:

Then:

- 1. The outer rectangle is a pullback square if two inner squares are pullback squares.
- 2. The inner-left square is a pullback square if the ouer rectangle and the inner-right square are pullback squares.

Proof.

1. For any (A, a, b) such that $j \circ h \circ a = n \circ b$, then there is a unique $u: A \to M$ such that $h \circ a = m \circ u$ and $b = g \circ u$. Then there is a unique $v: A \to L$ such that $l \circ a = v$ and $f \circ v = u$, which makes (A, a, b) against to the outer rectangle commutes.

2. For any (A, a, b) such that $h \circ a = m \circ b$, consider the inner-right pullback,

then we have a unique $u: A \to M$ such that the diagram commutes:

However, if we replace u with b, we have $g \circ b = g \circ b$ and $h \circ a = m \circ b$, that means b can do u's job, but we know u is unique, so b = u. Now consider the outer pullback, we have a unique $v : A \to L$ such that the diagram commutes:

That is, $l \circ v = a$ and $g \circ f \circ v = g \circ b$, we claim that v is the unique factorization from (A, a, u = b) to (L, l, f). It is obvious that $l \circ v = a$, we need to show $f \circ v = u = b$. We may use the trick we just used, we can see that $g \circ f \circ v = g \circ u$ and $m \circ f \circ v = h \circ l \circ v = h \circ a$. So $f \circ v$ can do b's job, so $f \circ v = b$.

For any arrow $w: A \to L$ such that $l \circ a = w$ and $f \circ w = b$, then we have also $g \circ f \circ w = g \circ b$, which implies w is the unique arrow from $A \to L$ such that the outer diagram commutes, so w = v.

Theorem 1.2. A pullback square for the corner $D_1 \to V \leftarrow D_2$ is a product of $D_1 \to V$ and $V \leftarrow D_2$ in the slice category C/V.

Proof. Suppose (L, f, g) is the pullback of such corner, then we first need to show that there is an arrow $l: L \to V$ such that $s \circ f = l$ (therefore a morphism from (L, l) to (D_1, s)) and $t \circ g = l$ (a morphism from (L, l) to (D_2, t)).

Since (L, f, g) makes the pullback square commutes, we know $s \circ f = t \circ g$, therefore we let $l = s \circ f$ (or equivalently $t \circ g$).

We need to show that ((L, l), f, g) forms a product of (D_1, s) and (D_2, t) , consider any ((A, a), b, c) where $a : A \to V$ such that $s \circ b = a$ and $t \circ c = a$. Just like l for L, a is redundant, so we may omit it. Now, the diagram looks like:

Since (L, f, g) is a pullback, we know there is a unique $u : A \to L$ such that two triangle commutes. However, we must first show that u is an arrow from (A, a) to (L, l), that is, $l \circ u = a$. It is easy to see that $l \circ u = s \circ f \circ u = s \circ b = a$.

Theorem 1.3. if a category has all binary products and all equalizers for every pair of parallel arrows, then it has a pullback for any corners.

Proof. Suppose $X \to Z \leftarrow Y$ a corner, then consider the product $X \times Y$:

$$\begin{array}{c|c}
X \times Y & \xrightarrow{\pi_1} & Y \\
\downarrow^{\pi_0} & & \downarrow^{t} \\
X & \xrightarrow{s} & Z
\end{array}$$

Now, consider the equalizer for the parallel arrows $t \circ \pi_1$ and $s \circ \pi_0$:

$$E \xrightarrow{e} X \times Y \xrightarrow{s \circ \pi_0} Z$$

We claim $(E, \pi_0 \circ e, \pi_1 \circ e)$ is a pullback of such corner. For any (F, f, g) such that the outer diagram commutes:

it is easy to see that there is a unique arrow $u: F \to X \times Y$ such that $\pi_0 \circ u = a$ and $\pi_1 \circ u = b$ since $X \times Y$ is a product. Then there is another unique arrow $v: F \to E$ such that $e \circ v = u$ since E is a equalizer.

Obviously, (commute) $\pi_0 \circ e \circ v = \pi_0 \circ u = a$ and $\pi_1 \circ e \circ v = \pi_1 \circ u = b$. (unique) If an arrow $w: F \to E$ can do the job, then $e \circ w: F \to X \times Y$ is another factorization from F to the product $X \times Y$, so $e \circ w = u$, but that means w is also a factorization from F to the equalizer E, which means v = w.

So
$$(E, \pi_0 \circ e, \pi_1 \circ e)$$
 is a pullback of such corner.

Theorem 1.4. If a category has a terminal object and has a pullback for every corner, then it has all binary product.

Theorem 1.5. If a category has a terminal object and has a pullback for every corner, then it has a equalizer for every parallel arrwos.

Proof. Suppose $s, t: X \to Y$ are parallel arrows, then the following diagram commutes:

Note that we have $Y \times Y$ since this category has all binary products. Then consider this corner:

$$X \xrightarrow{\langle 1_Y, 1_Y \rangle} X \xrightarrow{\langle s, t \rangle} Y \times Y$$

We have an object $E, e: E \to X$ and $f: E \to Y$ such that the square commutes:

$$E \xrightarrow{f} Y$$

$$\downarrow e \qquad \qquad \langle 1_{Y}, 1_{Y} \rangle \downarrow$$

$$X \xrightarrow{\langle s, t \rangle} Y \times Y$$

(Proof comes from textbook until here)

We can see that $\pi_0 \circ \langle s, t \rangle \circ e = s \circ e$ while $\pi_0 \circ \langle 1_Y, 1_Y \rangle \circ f = 1_Y \circ f = f$, therefore $s \circ e = f$, similarly $t \circ e = f$, so $s \circ e = t \circ e$. We claim E is the equalizer for the parallel arrows $s, t : X \to Y$. For any (F, e') such that $s \circ e' = t \circ e'$, then we have a unique arrow $u : F \to E$ such that this diagram

commutes:

where $e \circ u = e'$. Suppose $v: F \to E$ where $e \circ v = e'$, then $f \circ v = s \circ e \circ v = s \circ e'$.