

수학I

삼각함수

- 05. 삼각함수
- 06. 삼각함수의 그래프
- 07. 삼각방정식과 삼각부등식
- 08. 사인법칙과 코사인법칙

Ⅱ. 삼각함수

05.

삼각함수

이 단원에서는 호도법에 의한 각의 표현을 이해하고, 일반각과 삼각함수를 정의한다. 또, 그와 관련된 여러 가지 성질을 알아본다.

- 삼각함수의 그래프
 - 삼각함수의 그래프
 여러 가지 삼각함수의 그래프
 삼각함수의 여러 가지 공식
- 삼각방정식과 삼각부등식
 - 삼각방정식
 - 사각부등식
- 사인법칙과 코사인법칙
 - ------ 사인법칙 ------- 코사인법칙
 - ----- 삼각형의 넓이

■삼각함수

• 1. 일반각과 호도법 (호와 도의 비례)

■ 2.삼각함수의 정의

····• 3.삼각함수의 상호 관계

"좌표평면 위의 60분법에 의한 각의 표현과 호도법에 의한 각의 표현의 관계를 살펴본다. 또, 호도법을 이용하여 부채꼴의 호의 길이와 넓이를

표현해 보고 그와 관련된 여러 가지 문제를 해결하여 본다"

034

각의 표시 방법

평면 위의 두 반직선 OX, OP에 의하여 \angle XOP가 정해질 때, \angle XOP의 크기는 반직선 OP가 고정된 반직선 OX의 위치에서 점 O를 중심으로 반직선 OP의 위치까지 회전한 양이다. 이때, 반직선 OX를 \angle XOP의 시초선, OP를 \angle XOP의 동경

이라 한다. 또, 동경 OP를 시계 반대 방향으로 회전시켜 얻어지는 각을 양의 각, 시계 방향으로 회전시켜 얻어지는 각을 음의 각이라고 한다.

그리고, 시초선 OX와 동경 OP가 나타내는 양의 최소각을 α 라 하면

 θ =360°×n+ α (단, n은 정수, 0° $\leq \alpha <$ 360°) 를 만족시키는 모든 각은 동경 OP의 위치가 같은 각이다.

이때, θ 를 α 의 일반각이라고 한다.

또한, 오른쪽 그림과 같이 각 α 의 동경이 좌표평면 위에 존재하는 위치에 따라 제1사분면의 각, 제2사분면의 각, 제3사분면의 각, 제4사분면의 각이라고 한다. 이때, x축, y축 위의 각, 즉 90°, 180°, 270°, 360°, \cdots 등은 어느 사분면에도 속하지 않는 것으로 생각한다.

호도법과 60분법의 관계

반지름의 길이와 호의 길이가 같을 때, 즉 오른쪽 그림과 같은 부채꼴의 중심각의 크기를 1라디안 (radian)이라 하고, 줄여서 rad라고도 한다. 이것을 단위로 각을 나타내는 방법을 호도법이라 한다. 호의 길이를 반지름으로 나눈 값이 radian이므로

중심각이 360° 일 때의 호의 길이는 $2\pi r$, 즉 $360^{\circ} = 2\pi ({\rm radian})$ 이므로 다음이 성립한다.

핵심 로도법과 60분법의 관계

$$1 \text{rad} = \frac{180^{\circ}}{\pi}, 1^{\circ} = \frac{\pi}{180} \text{rad}$$

참고 │ 1. 특수각에 대한 호도법과 60분법의 관계는 다음과 같다.

60분법	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
호도법	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π

- 2. 60분법은 1°, 18°, 30°, 90°, ··· 등과 같이 도(°)를 써서 각을 나타내는 각의 표시 방법이다.
- 3. 보통 1radian은 1. πradian은 π등과 같이 radian은 생략하고 쓴다.

부채꼴의 호의 길이와 넓이

반지름의 길이가 r, 중심각의 크기가 $\theta(\text{rad})$ 인 부채꼴의 호의 길이를 l, 넓이를 S라 하면 이들 사이에는 다음이 성립한다.

핵심 부채꼴의 호의 길이와 넓이

(1)
$$l = r\theta$$

(2)
$$S = \frac{1}{2} r^2 \theta = \frac{1}{2} r l$$

해설

(1) 호의 길이 l은 중심각의 크기에 비례하므로

$$2\pi r: l=2\pi:\theta$$
 $\therefore l=\frac{2\pi r\theta}{2\pi}=r\theta$

(2) 부채꼴의 넓이 S는 중심각의 크기에 비례하므로 $\pi r^2: S = 2\pi: \theta, \ 2\pi S = \pi r^2 \theta$

$$\therefore S = \frac{1}{2}r^2\theta = \frac{1}{2}rl \quad (\because l = r\theta)$$

 $ightharpoonup^{\circ}$ 반지름의 길이가 r, 중심각의 크기가 a° (60분법)인 부채꼴의 넓이 S는

$$\Rightarrow$$
 $S=(원의 넓이) \times \frac{(중심각)}{360^{\circ}} = \pi r^2 \times \frac{\alpha^{\circ}}{360^{\circ}}$

다음 중 옳은 것을 모두 골라라.

$$-.45^{\circ} = \frac{\pi}{4}$$

$$\sqsubseteq .2\pi = 180^{\circ}$$

$$= \frac{2}{3}\pi = 150^\circ$$

ਦ.
$$\frac{2}{3}\pi = 150^{\circ}$$
 $\qquad \qquad \Box. \frac{11}{6}\pi = 330^{\circ}$ $\qquad \qquad \Box. \frac{3}{2}\pi = 540^{\circ}$

$$\exists \frac{3}{2}\pi = 540^\circ$$

풀이

ㄱ. ㄴ. ㅁ은 모두 옳다.

 $\Box 2\pi = 2 \times 180^{\circ} = 360^{\circ}$

$$= \frac{2}{3}\pi = \frac{2}{3} \times 180^{\circ} = 120^{\circ}$$

$$\mathrm{H.}\frac{3}{2}\pi = \frac{3}{2} \times 180^{\circ} = 270^{\circ}$$

확인문제 다음 각을 60분법은 호도법으로, 호도법은 60분법으로 나타내어라.

050-1 (1) 225°

 $(2) - 75^{\circ}$

(3) 300°

 $(4) 4\pi$

- $(5)\frac{15}{8}\pi$ $(6)-\frac{8}{3}\pi$

다음 [보기]에서 각에 대한 동경의 위치가 제 2사분면에 있는 것을 모두 찾아라. (단. *n*은 정수)

ᅴ 보기 ├─

¬. 240°

$$\vdash \cdot \frac{2}{3}\pi$$

ㄹ. 150°

$$\Box . 2n\pi + \frac{3}{4}\pi$$
 $\Box . -45^{\circ}$

풀이

ㄱ. ㄴ. ㄷ. ㄹ. ㅁ. ㅂ의 각의 동경을 좌표평면 위에 나타내 면 오른쪽과 같다.

따라서. 제 2사분면에 있는 것은

다. ㄹ. ㅁ

[□ □ □ □

확인문제 다음 각을 $360^{\circ} \times n + \alpha$ (n은 정수, $0^{\circ} \le \alpha < 360^{\circ})$ 의 꼴로 나타내어라.

051-1 (1) 1000°

 $(2) 4230^{\circ}$

 $(3) - 2540^{\circ}$

확인문제

다음 각의 동경이 나타내는 일반각을 $2n\pi + \theta$ 꼴로 나타내어라.

051-2

(단. n은 정수이고. $0 \le \theta < 2\pi$)

(1) $\frac{\pi}{4}$ (2) $\frac{11}{8}\pi$ (3) $\frac{4}{3}\pi$ (4) $\frac{3}{2}\pi$

기본문제 **052**

 θ 가 제 1사분면의 각일 때, $\frac{\theta}{3}$ 는 제 몇 사분면의 각인가?

① 제 1, 2, 3사분면

② 제 1, 2, 4사분면

③ 제 1. 3. 4사분면

- ④ 제 2, 3, 4사분면
- ⑤ 제 1, 2, 3, 4사분면
- **풀이** θ 가 제 1사분면의 각이므로 $2n\pi < \theta < 2n\pi + \frac{\pi}{2}$ (단, n은 정수)

$$\leq \frac{2}{3}n\pi < \frac{\theta}{3} < \frac{2}{3}n\pi + \frac{\pi}{6}$$

(i) n = 3k(k)는 정수)일 때.

$$2k\pi < \frac{\theta}{3} < 2k\pi + \frac{\pi}{6}$$
 ... 제 1사분면

(ii) n = 3k + 1(k는 정수)일 때.

$$2k\pi + \frac{2}{3}\pi < \frac{\theta}{3} < 2k\pi + \frac{5}{6}\pi$$
 . . 제 2사분면

(iii) n = 3k + 2(k는 정수) 일 때.

$$2k\pi + \frac{4}{3}\pi < \frac{\theta}{3} < 2k\pi + \frac{3}{2}\pi$$
 . . 제 3사분면

따라서, $\frac{\theta}{3}$ 는 **제 1, 2, 3사분면**의 각이다.

1

확인문제 θ 가 제 2사분면의 각일 때, $\frac{\theta}{2}$ 는 제 몇 사분면의 각인지 조사하여라. **052-**1

확인문제 θ 가 제 3사분면의 각일 때, $\frac{\theta}{3}$ 는 제 몇 사분면의 각인지 조사하여라. **052-**2

기본문제

반지름의 길이가 r, 중심각의 크기가 $\theta(\text{rad})$, 호의 길이가 l인 부채꼴의 넓이를 S라 하자. 이때. 다음을 구하여라.

- (1) r = 2, l = 6일 때. θ 와 S의 값
- $(2)\theta=2$, S=9일 때 <math>r와 l의 값

풀이

 $(1) l = r\theta$ 에서 $6 = 2\theta$ $\therefore \theta = 3 (rad)$

$$\mathbb{E}, S = \frac{1}{2} r l = \frac{1}{2} \cdot 2 \cdot 6 = 6$$

$$(2) S = \frac{1}{2} r^2 \theta \circ ||A| \ 9 = \frac{1}{2} r^2 \cdot 2 \quad \therefore r = 3 \ (\because r > 0)$$

$$±. l = rθ = 3 \cdot 2 = 6$$

$$(1)\theta = 3$$
, $S = 6(2)r = 3$, $l = 6$

확인문제

반지름의 길이 r와 중심각의 크기 θ 가 다음과 같을 때. 부채꼴의 호의 길이 l과 넓이 S**053-**1 를 구하여라.

(1)
$$r=3$$
, $\theta=\frac{\pi}{5}$ (2) $r=10$, $\theta=120^{\circ}$

(2)
$$r = 10$$
, $\theta = 120^{\circ}$

삼각함수의 정의

P.J

■삼각함수

- ····• 1. 일반각과 호도법
- 2. 삼각함수의 정의 (삼각비의 확장)
- 3. 삼각함수의 상호 관계

"좌표평면 위의 점이 나타내는 동경을 이해하고, 그와 관련된 일반각의 삼각함수를 정의해 본다. 또, 사분면에서의 삼각함수의 부호를 살펴본다."

037.

삼각비의 정의

오른쪽 그림과 같이 주어진 직각삼각형 ABC 에서 $\angle A = \theta$ 로 정해지면 $\triangle ABC$ 의 크기에 상관없이 빗변의 길이와 높이의 길이의 비율, 빗변의 길이와 밑변의 길이의 비율, 밑변의 길이와 높이의 길이의 비율은 일정하다. 이때, 이세 가지 일정한 비율을 삼각비라 정의하고, 각각의 삼각비를 다음과 같이 정의한다.

$$\sin \theta = \frac{a}{c}$$
, $\cos \theta = \frac{b}{c}$, $\tan \theta = \frac{a}{b}$

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

삼각함수의 정의

오른쪽 그림과 같이 원점을 중심으로 하고. 반지름 의 길이가 γ 인 원 위의 임의의 점 P(x, y)에 대하여 x축의 양의 부분을 시초선으로 하고 반직선 OP를 동경으로 하는 일반각을 θ 라 할 때.

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x} (x \neq 0)$

로 정의하고. 이 함수들을 차례대로 θ 의 사인함수, 코사인함수, 탄젠트 함수라 한다. 또. 위의 함수들을 모두 통틀어 θ 에 대한 삼각함수라 한다.

위의 삼각함수의 정의에서 다음 관계가 성립함을 알 수 있다.

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

사분면에서의 삼각함수의 부호

사분면에 대한 삼각함수의 부호는 다음과 같다.

	$\sin \theta$	$\cos \theta$	$\tan \theta$
제1사분면	+	+	+
제2사분면	+	_	_
제3사분면	_	_	+
제4사분면	_	+	_

제2사분면 제1사분면 $\sin \theta > 0$ $\sin \theta > 0$ $\cos \theta > 0$ $\cos \theta < 0$ $\tan \theta > 0$ $\tan \theta < 0$ $\sin \theta < 0$ $\cos \theta < 0$ $\cos \theta > 0$ $\tan \theta > 0$ $\tan \theta < 0$ 제3사분면 제4사분면

예 제2사분면의 경우 위에서와 같이 x < 0, y > 0. r > 0이므로

$$\sin\theta = \frac{r}{x} > 0$$
, $\cos\theta = \frac{x}{r} < 0$, $\tan\theta = \frac{y}{x} < 0$ 이 된다.

038

다음 삼각함수의 값을 구하여라.

- (1) sin 405°
- (2) $\cos(-1200^{\circ})$ (3) $\tan\frac{4}{3}\pi$

풀이

- (1) 〈그림 1〉에서 알 수 있듯이 (405°의 동경) = (45°의 동경)
 - $\therefore \sin 405^\circ = \sin 45^\circ = \frac{\sqrt{2}}{2}$
- (2) 〈그림 2〉에서 알 수 있듯이 (-1200°의 동경)=(240°의 동경)
 - $\cos(-1200^\circ) = \cos 240^\circ = -\frac{1}{2}$
- (3) 〈그림 3〉에서 알 수 있듯이 $\tan \frac{4}{3}\pi = \sqrt{3}$

$$(1)$$
 $\frac{\sqrt{2}}{2}$ (2) $-\frac{1}{2}$ (3) $\sqrt{3}$

확인문제

 θ 가 다음 각과 같을 때, $\sin \theta$, $\cos \theta$, $\tan \theta$ 의 값을 각각 구하여라.

054-1

$$(1)\frac{5}{4}\pi$$

(2)
$$-\frac{5}{6}\pi$$

확인문제

다음 삼각함수의 값을 구하여라.

054-2

- (1) sin 870°
- $(2)\cos 390^{\circ}$
- (3) $\tan (-1125^{\circ})$

기본문제 **055**

원점 O와 점 P(-3, -4)를 지나는 동경 OP가 나타내는 각을 θ 라고 할 때, $\sin \theta \times \cos \theta \times \tan \theta$ 의 값을 구하여라.

풀이 오른쪽 그림을 이용하여 구하면

$$\sin \theta = -\frac{4}{5}, \cos \theta = -\frac{3}{5}, \tan \theta = \frac{4}{3}$$

 $\therefore \sin \theta \times \cos \theta \times \tan \theta$

$$= \left(-\frac{4}{5}\right) \times \left(-\frac{3}{5}\right) \times \frac{4}{3} = \frac{16}{25}$$

 $\frac{16}{25}$

확인문제 원점과 점 P(-12, 5)를 이은 반직선을 동경으로 하는 각의 크기를 θ 라고 할 때, $\sin \theta$, $\cos \theta$, $\tan \theta$ 의 값을 각각 구하여라.

확인문제

055-2

원점과 점 P(5, 12)를 이은 반직선을 동경으로 하는 각의 크기를 θ 라고 할 때, $\cos \theta \cdot \tan \theta$ 의 값을 구하여라.

기본문제 056

사분면과 삼각함수의 부호 중

 $\frac{\pi}{2}$ < θ < π 일 때, $\sqrt{\sin^2\theta}$ - $\sqrt{\tan^2\theta}$ 를 간단히 하여라.

$\frac{\pi}{2}$ < θ < π , 즉 θ 는 제 2사분면의 각이므로 풀이

 $\sin \theta > 0$, $\tan \theta < 0$ $\therefore \sqrt{\sin^2 \theta} - \sqrt{\tan^2 \theta}$ $=\sin\theta - (-\tan\theta)$ $=\sin\theta + \tan\theta$

 $\exists \sin \theta + \tan \theta$

확인문제 $180^{\circ} < \theta < 270^{\circ}$ 일 때,

056-1

 $\cos \theta + \sin \theta + \tan \theta + |\cos \theta| + |\sin \theta| + |\tan \theta|$ 를 간단히 하여라.

사분면의 삼각함수의 부호 중

기본문제

다음 I. II를 만족시키는 θ 는 각각 제 몇 사분면의 각인가?

- I. $\sin \theta < 0$, $\cos \theta > 0$
- \mathbb{I} . $\cos \theta < 0$, $\tan \theta > 0$
- ① 제 1사분면, 제 2사분면
- ② 제 4사분면, 제 3사분면
- ③ 제 2사분면. 제 4사분면
- ④ 제 4사분면. 제 4사분면
- ⑤ 제 1사분면, 제 3사분면

풀이

오른쪽 그림을 보면

- Ⅰ. 제4사분면
- Ⅱ. 제3사분면

$M2$ 사분면 $\sin \theta > 0$ $\cos \theta < 0$ $\tan \theta < 0$	제1사분면 $\sin \theta > 0$ $\cos \theta > 0$ $\tan \theta > 0$
$ \sin \theta < 0 \\ \cos \theta < 0 \\ \tan \theta > 0 $	$ \sin \theta < 0 \cos \theta > 0 \tan \theta < 0 $
제3사분면	제4사분면

2

확인문제

 $\sin \theta \cos \theta < 0$ 일 때, θ 는 제 몇 사분면의 각인가?

057-1

- ① 제 1. 2 사분면 ② 제 2. 3 사분면
- ③ 제 2, 4 사분면
- ④ 제 3, 4 사분면 ⑤ 제 1, 2, 3 사분면

확인문제

 $\cos \theta \tan \theta > 0$, $\tan \theta < 0$ 일 때, θ 는 제 몇 사분면의 각인지 조사하여라.

057-2

삼각함수의 상호 관계

Pi

■삼각함수

····• 1. 일반각과 호도법

• 2 삼각함수의 정의

3. 삼각함수의 상호 관계 (피타고라스의 정리)

"삼각함수 $y = \sin x$. $y = \cos x$. $y = \tan x$ 사이의 관계를 이해하고, 그를 이용하여 여러 가지 문제를 해결하여 본다"

040.

삼각함수의 상호 관계

일반적으로 삼각함수 사이에는 다음 관계가 성립한다.

삼각함수의 상호 관계

$$(1) \tan \theta = \frac{\sin \theta}{\cos \theta}$$

 $(2)\sin^2\theta+\cos^2\theta=1$

해설 오른쪽 그림과 같이 동경 OP가 나타내는 각을 θ라 하면

$$(1) \frac{\sin \theta}{\cos \theta} = \frac{y}{r} \div \frac{x}{r} = \frac{y}{x} = \tan \theta$$

$$(2)\sin^2\theta + \cos^2\theta = \left(\frac{y}{r}\right)^2 + \left(\frac{x}{r}\right)^2$$

$$= \frac{y^2 + x^2}{r^2} \leftarrow x^2 + y^2 = r^2$$

$$= \frac{r^2}{r^2} = 1$$

에 $90^{\circ}<\theta<180^{\circ}$ 이고 $\sin\theta=\frac{\sqrt{3}}{3}$ 일 때, $\cos\theta$ 의 값을 구하여 보자.

 $\sin^2\theta + \cos^2\theta = 10$ | $\sin^2\theta = 1 - \sin^2\theta = 1 - \frac{1}{3} = \frac{2}{3}$

$$\therefore \cos\theta = \pm \sqrt{\frac{2}{3}} = \pm \frac{\sqrt{6}}{3}$$

이때, $90^{\circ} < \theta < 180^{\circ}$ 에서 $\cos \theta < 0$ 이므로 $\cos \theta = -\frac{\sqrt{6}}{3}$

 $\sin \theta + \cos \theta = \frac{1}{2}$ 일 때, 다음 식의 값을 구하여라.

- (1) $\sin \theta \cos \theta$ (2) $\sin^3 \theta + \cos^3 \theta$ (3) $\tan \theta + \frac{1}{\tan \theta}$

풀이

 $(1)\sin\theta + \cos\theta = \frac{1}{2}$ 의 양변을 제곱하면

$$(\sin\theta + \cos\theta)^2 = \frac{1}{4}$$

 $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = \frac{1}{4}$

 $\sin^2\theta + \cos^2\theta = 1$ 이므로 $1+2\sin\theta\cos\theta = \frac{1}{4}$

$$\therefore \sin \theta \cos \theta = -\frac{3}{8}$$

$$(2) \sin^3 \theta + \cos^3 \theta$$

 $=(\sin\theta+\cos\theta)^3-3\sin\theta\cos\theta(\sin\theta+\cos\theta)$

$$=\left(\frac{1}{2}\right)^3 - 3\cdot\left(-\frac{3}{8}\right)\cdot\frac{1}{2} = \frac{11}{16}$$

(3) $\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$

$$= \frac{1}{\sin\theta\cos\theta} = -\frac{8}{3}$$

$$(1) - \frac{3}{8} (2) \frac{11}{16} (3) - \frac{8}{3}$$

확인문제 다음을 구하여라.

058-1

- $(1) \sin \theta + \cos \theta = \sqrt{2}$ 일 때, $\sin \theta \cos \theta$ 의 값
- $(2) \sin \theta \cos \theta = \frac{1}{2}$ 일 때, $\sin^3 \theta \cos^3 \theta$ 의 값

확인문제

 $0<\theta<\pi$ 이고 $\sin\theta+\cos\theta=rac{\sqrt{7}}{4}$ 일 때, $\sin\theta-\cos\theta$ 의 값을 구하여라.

058-2

다음 식을 가단히 하여라

(1)
$$\frac{\cos^2 \theta}{1 + \sin \theta} + \frac{\cos^2 \theta}{1 - \sin \theta}$$
 (2)
$$\frac{\sin \theta}{1 - \cos \theta} - \frac{1}{\tan \theta}$$

(2)
$$\frac{\sin \theta}{1-\cos \theta} - \frac{1}{\tan \theta}$$

 $(1)\cos^2\theta=1-\sin^2\theta=(1+\sin\theta)(1-\sin\theta)$ 이므로

(주어진 식)=
$$\begin{split} &(\tilde{\rightarrow} \text{어진 심}) = \frac{1-\sin^2\theta}{1+\sin\theta} + \frac{1-\sin^2\theta}{1-\sin\theta} \\ &= (1-\sin\theta) + (1+\sin\theta) = \mathbf{2} \end{split}$$

(2) (주어진 식) =
$$\frac{\sin \theta}{1 - \cos \theta} - \frac{\cos \theta}{\sin \theta}$$

$$= \frac{\sin^2 \theta - \cos \theta + \cos^2 \theta}{(1 - \cos \theta)\sin \theta}$$

$$= \frac{1 - \cos \theta}{(1 - \cos \theta)\sin \theta} = \frac{1}{\sin \theta}$$

$$(1) 2 (2) \frac{1}{\sin \theta}$$

확인문제

 $(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2$ 을 간단히 하여라.

059-1

확인문제 다음 식을 간단히 하여라.

059-2

$$(1) \tan^2 \theta + (1 - \tan^4 \theta) \cos^2 \theta$$

(1)
$$\tan^2\theta + (1-\tan^4\theta)\cos^2\theta$$
 (2) $\frac{\cos\theta}{1-\tan\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta} - \cos\theta$

부록

상용로그표 (1)

														비	례부	분			
수	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1.0 1.1 1.2 1.3 1.4	0.0000 0.0414 0.0792 0.1139 0.1461	0.0043 0.0453 0.0828 0.1173 0.1492	0.0086 0.0492 0.0864 0.1206 0.1523	0.0128 0.0531 0.0899 0.1239 0.1553	0.0170 0.0569 0.0934 0.1271 0.1584	0.0212 0.0607 0.0969 0.1303 0.1614	0.0253 0.0645 0.1004 0.1335 0.1644	0.0294 0.0682 0.1038 0.1367 0.1673	0.0334 0.0719 0.1072 0.1399 0.1703	0.0374 0.0755 0.1106 0.1430 0.1732	4 4 3 3 3	8 8 7 6 6	12 11 10 10 9	17 15 14 13 12	21 19 17 16 15	25 23 21 19 18	29 26 24 23 21	33 30 28 26 24	37 34 31 29 27
1.5 1.6 1.7 1.8 1.9	0.1761 0.2041 0.2304 0.2553 0.2788	0.1790 0.2068 0.2330 0.2577 0.2810	0.1818 0.2095 0.2355 0.2601 0.2833	0.1847 0.2122 0.2380 0.2625 0.2856	0.1875 0.2148 0.2405 0.2648 0.2878	0.1903 0.2175 0.2430 0.2672 0.2900	0.1931 0.2201 0.2455 0.2695 0.2923	0.1959 0.2227 0.2480 0.2718 0.2945	0.1987 0.2253 0.2504 0.2742 0.2967	0.2014 0.2279 0.2529 0.2765 0.2989	3 3 2 2 2	6 5 5 5 4	8 8 7 7 7	11 11 10 9 9	14 13 12 12 11	17 16 15 14 13	20 18 17 16 16	22 21 20 19 18	25 24 22 21 20
2.0 2.1 2.2 2.3 2.4	0.3010 0.3222 0.3424 0.3617 0.3802	0.3032 0.3243 0.3444 0.3636 0.3820	0.3054 0.3263 0.3464 0.3655 0.3838	0.3075 0.3284 0.3483 0.3674 0.3856	0.3096 0.3304 0.3502 0.3692 0.3874	0.3118 0.3324 0.3522 0.3711 0.3892	0.3139 0.3345 0.3541 0.3729 0.3909	0.3160 0.3365 0.3560 0.3747 0.3927	0.3181 0.3385 0.3579 0.3766 0.3945	0.3201 0.3404 0.3598 0.3784 0.3962	2 2 2 2 1	4 4 4 4	6 6 6 6 5	8 8 8 7 7	11 10 10 9 9	13 12 12 11 11	15 14 14 13 12	17 16 15 15 14	19 18 17 17 16
2.5 2.6 2.7 2.8 2.9	0.3979 0.4150 0.4314 0.4472 0.4624	0.3997 0.4166 0.4330 0.4487 0.4639	0.4014 0.4183 0.4346 0.4502 0.4654	0.4031 0.4200 0.4362 0.4518 0.4669	0.4048 0.4216 0.4378 0.4533 0.4683	0.4065 0.4232 0.4393 0.4548 0.4698	0.4082 0.4249 0.4409 0.4564 0.4713	0.4099 0.4265 0.4425 0.4579 0.4728	0.4116 0.4281 0.4440 0.4594 0.4742	0.4133 0.4298 0.4456 0.4609 0.4757	1 1 1 1	3 3 3 3	5 5 5 5 4	7 7 6 6 6	9 8 8 8 7	10 10 9 9	12 11 11 11 10	14 13 13 12 12	15 15 14 14 13
3.0 3.1 3.2 3.3 3.4	0.4771 0.4914 0.5051 0.5185 0.5315	0.4786 0.4928 0.5065 0.5198 0.5328	0.4800 0.4942 0.5079 0.5211 0.5340	0.4814 0.4955 0.5092 0.5224 0.5353	0.4829 0.4969 0.5105 0.5237 0.5366	0.4843 0.4983 0.5119 0.5250 0.5378	0.4857 0.4997 0.5132 0.5263 0.5391	0.4871 0.5011 0.5145 0.5276 0.5403	0.4886 0.5024 0.5159 0.5289 0.5416	0.4900 0.5038 0.5172 0.5302 0.5428	1 1 1 1	3 3 3 3	4 4 4 4	6 6 5 5 5	7 7 7 6 6	9 8 8 8	10 10 9 9	11 11 11 10 10	13 12 12 12 12
3.5 3.6 3.7 3.8 3.9	0.5441 0.5563 0.5682 0.5798 0.5911	0.5453 0.5575 0.5694 0.5809 0.5922	0.5465 0.5587 0.5705 0.5821 0.5933	0.5478 0.5599 0.5717 0.5832 0.5944	0.5490 0.5611 0.5729 0.5843 0.5955	0.5502 0.5623 0.5740 0.5855 0.5966	0.5514 0.5635 0.5752 0.5866 0.5977	0.5527 0.5647 0.5763 0.5877 0.5988	0.5539 0.5658 0.5775 0.5888 0.5999	0.5551 0.5670 0.5786 0.5899 0.6010	1 1 1 1	2 2 2 2 2	4 4 3 3 3	5 5 5 5 4	6 6 6 6 5	7 7 7 7	9 8 8 8	10 10 9 9	11 11 10 10 10
4.0 4.1 4.2 4.3 4.4	0.6021 0.6128 0.6232 0.6335 0.6435	0.6031 0.6138 0.6243 0.6345 0.6444	0.6042 0.6149 0.6253 0.6355 0.6454	0.6053 0.6160 0.6263 0.6365 0.6464	0.6064 0.6170 0.6274 0.6375 0.6474	0.6075 0.6180 0.6284 0.6385 0.6484	0.6085 0.6191 0.6294 0.6395 0.6493	0.6096 0.6201 0.6304 0.6405 0.6503	0.6107 0.6212 0.6314 0.6415 0.6513	0.6117 0.6222 0.6325 0.6425 0.6522	1 1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5 5	7 6 6 6 6	8 7 7 7	9 8 8 8	10 9 9 9
4.5 4.6 4.7 4.8 4.9	0.6532 0.6628 0.6721 0.6812 0.6902	0.6637 0.6730 0.6821	0.6646 0.6739 0.6830	0.6656 0.6749 0.6839		0.6580 0.6675 0.6767 0.6857 0.6946	0.6684 0.6776 0.6866		0.6702 0.6794 0.6884	0.6618 0.6712 0.6803 0.6893 0.6981	1 1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 4 4	6 6 5 5 5	7 7 6 6 6	8 7 7 7	9 8 8 8
5.0 5.1 5.2 5.3 5.4	0.6990 0.7076 0.7160 0.7243 0.7324	0.7084 0.7168 0.7251	0.7093 0.7177 0.7259	0.7185	0.7110 0.7193 0.7275	0.7118 0.7202	0.7210 0.7292	0.7135 0.7218 0.7300		0.7067 0.7152 0.7235 0.7316 0.7396	1 1 1 1	2 2 2 2 2	3 3 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5 5	6 6 6 6	7 7 7 6 6	8 8 7 7 7

상용로그표 (2)

	•		•			-	,	-						비	례부	분			
수	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
5.5	0.7404	0.7412	0.7419	0.7427	0.7435	0.7443	0.7451	0.7459	0.7466	0.7474	1	2	2	3	4	5	5	6	7
5.6	0.7482	0.7490	0.7497	0.7505	0.7513	0.7520	0.7528	0.7536	0.7543	0.7551	1	2	2	3	4	5	5	6	7
5.7	0.7559	0.7566	0.7574	0.7582	0.7589	0.7597	0.7604	0.7612	0.7619	0.7627	1	2	2	3	4	5	5	6	7
5.8	0.7634	0.7642	0.7649	0.7657	0.7664	0.7672	0.7679	0.7686	0.7694	0.7701	1	1	2	3	4	4	5	6	7
5.9	0.7709	0.7716	0.7723	0.7731	0.7738	0.7745	0.7752	0.7760	0.7767	0.7774	1	1	2	3	4	4	5	6	7
6.0	0.7782	0.7789	0.7796	0.7803	0.7810	0.7818	0.7825	0.7832	0.7839	0.7846	1	1	2	3	4	4	5	6	6
6.1	0.7853	0.7860	0.7868	0.7875	0.7882	0.7889	0.7896	0.7903	0.7910	0.7917	1	1	2	3	4	4	5	6	6
6.2	0.7924	0.7931	0.7938	0.7945	0.7952	0.7959	0.7966	0.7973	0.7980	0.7987	1	1	2	3	3	4	5	6	6
6.3	0.7993	0.8000	0.8007	0.8014	0.8021	0.8028	0.8035	0.8041	0.8048	0.8055	1	1	2 2	3	3	4	5	5	6
6.4	0.8062	0.8069	0.8075	0.8082	0.8089	0.8096	0.8102	0.8109	0.8116	0.8122	1	1	2	3	3	4	5	5	6
6.5	0.8129	0.8136	0.8142	0.8149	0.8156	0.8162	0.8169	0.8176	0.8182	0.8189	1	1	2	3	3	4	5	5	6
6.6	0.8195	0.8202	0.8209	0.8215	0.8222	0.8228	0.8235	0.8241	0.8248	0.8254	1	1	2	3	3	4	5	5	6
6.7	0.8261	0.8267	0.8274	0.8280	0.8287	0.8293	0.8299	0.8306	0.8312	0.8319	1	1	2	3	3	4	5	5	6
6.8	0.8325	0.8331	0.8338	0.8344	0.8351	0.8357	0.8363	0.8370	0.8376	0.8382	1	1	2	3	3	4	4	5	6
6.9	0.8388	0.8395	0.8401	0.8407	0.8414	0.8420	0.8426	0.8432	0.8439	0.8445	1	1	2	2	3	4	4	5	6
7.0	0.8451	0.8457	0.8463	0.8470	0.8476	0,8482	0.8488	0.8494	0.8500	0.8506	1	1	2	2	3	4	4	5	6
<i>7</i> .1	0.8513	0.8519	0.8525	0.8531	0.8537	0.8543	0.8549	0.8555	0.8561	0.8567	1	1	2	2	3	4	4	5	5
7.2	0.8573	0.8579	0.8585	0.8591	0.8597	0.8603	0.8609	0.8615	0.8621	0.8627	1	1	2	2	3	4	4	5	5
7.3	0.8633	0.8639	0.8645	0.8651	0.8657	0.8663	0.8669	0.8675	0.8681	0.8686	1	1	2	2	3	4	4	5	5
7.4	0.8692	0.8698	0.8704	0.8710	0.8716	0.8722	0.8727	0.8733	0.8739	0.8745	1	1	2	2	3	4	4	5	5
7.5	0.8751	0.8756	0.8762	0.8768	0.8774	0.8779	0.8785	0.8791	0.8797	0.8802	1	1	2	2	3	3	4	5	5
7.6	0.8808	0.8814	0.8820	0.8825	0.8831	0.8837	0.8842	0.8848	0.8854	0.8859	1	1	2	2	3	3	4	5	5
7.7	0.8865	0.8871	0.8876	0.8882	0.8887	0.8893	0.8899	0.8904	0.8910	0.8915	1	1	2	2	3	3	4	4	5
7.8	0.8921	0.8927	0.8932	0.8938	0.8943	0.8949	0.8954	0.8960	0.8965	0.8971	1	1	2	2	3	3	4	4	5
7.9	0.8976	0.8982	0.8987	0.8993	0.8998	0.9004	0.9009	0.9015	0.9020	0.9025	1	1	2	2	3	3	4	4	5
8.0	0.9031	0,9036	0.9042	0.9047	0.9053	0,9058	0,9063	0.9069	0.9074	0.9079	1	1	2	2	3	3	4	4	5
8.1	0.9085	0,9090	0.9096	0.9101	0.9106	0.9112	0.9117	0.9122	0.9128	0.9133	1	1	2	2	3	3	4	4	5
8.2	0.9138	0.9143	0.9149	0.9154	0.9159	0.9165	0.9170	0.9175	0.9180	0.9186	1	1	2	2	3	3	4	4	5
8.3	0.9191	0.9196	0.9201	0.9206	0.9212	0.9217	0.9222	0.9227	0.9232	0.9238	1	1	2	2	3	3	4	4	5
8.4	0.9243	0.9248	0.9253	0.9258	0.9263	0.9269	0.9274	0.9279	0.9284	0.9289	1	1	2	2	3	3	4	4	5
8.5	0.9294	0.9299	0.9304	0.9309	0.9315	0.9320	0.9325	0.9330	0.9335	0.9340	1	1	2	2	3	3	4	4	5
8.6	0.9345	0.9350	0.9355	0.9360	0.9365	0.9370	0.9375	0.9380	0.9385	0.9390	1	1	2	2	3	3	4	4	5
8.7	0.9395	0.9400	0.9405	0.9410	0.9415	0.9420	0.9425	0.9430	0.9435	0.9440	0	1	1	2	2	3	3	4	4
8.8	0.9445	0.9450	0.9455	0.9460	0.9465	0.9469	0.9474	0.9479	0.9484	0.9489	0	1	1	2	2	3	3	4	4
8.9	0.9494	0.9499	0.9504	0.9509	0.9513	0.9518	0.9523	0.9528	0.9533	0.9538	0	1	1	2	2	3	3	4	4
9.0	0.9542	0.9547	0.9552	0.9557	0.9562	0.9566	0.9571	0.9576	0.9581	0.9586	0	1	1	2	2	3	3	4	4
9.1		0.9595	0.9600		0.9609	0.9614		0.9624	0.9628	0.9633	0	1	1	2	2	3	3	4	4
9.2	0.9638	0.9643	0.9647		0.9657	0.9661	0.9666	0.9671	0.9675	0.9680	0	1	1	2	2	3	3	4	4
9.3	0.9685	0.9689	0.9694	0.9699	0.9703	0.9708	0.9713	0.9717	0.9722	0.9727	0	1	1	2	2	3	3	4	4
9.4	0.9731	0.9736	0.9741	0.9745	0.9750	0.9754	0.9759	0.9763	0.9768	0.9773	0	1	1	2	2	3	3	4	4
9.5	0.9777	0.9782	0.9786	0.9791	0.9795	0.9800	0.9805	0.9809	0.9814	0.9818	0	1	1	2	2	3	3	4	4
9.6	0.9823	0.9827	0.9832		0.9841	0.9845	0.9850	0.9854	0.9859	0.9863	0	1	1	2	2	3	3	4	4
9.7	0.9868	0.9872	0.9877		0.9886	0.9890	0.9894	0.9899	0.9903	0.9908	0	1	1	2	2	3	3	4	4
9.8	0.9912	0.9917	0.9921	0.9926	0.9930	0.9934	0.9939	0.9943	0.9948	0.9952	0	1	1	2	2	3	3	4	4
9.9	0.9956	0.9961	0.9965	0.9969	0.9974	0.9978	0.9983	0.9987	0.9991	0.9996	0	1	1	2	2	3	3	4	4

삼각함수표

θ	$\sin heta$	$\cos \theta$	an heta	θ	$\sin heta$	$\cos \theta$	an heta
0°	0.0000	1.0000	0.0000	45°	0.7071	0.7071	1.0000
1°	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355
2°	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724
3°	0.0523	0.9986	0.0524	48°	0.7431	0.6691	1,1106
4 °	0.0698	0.9976	0.0699	49°	0.7547	0.6561	1.1504
5°	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918
6°	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799
8°	0.1392	0.9903	0.1405	53°	0.7986	0.6018	1.3270
9°	0.1564	0.9877	0.1584	54°	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399
13°	0.2250	0.9744	0.2309	58°	0.8480	0.5299	1.6003
14°	0.2419	0.9703	0.2493	59°	0.8572	0.5150	1.6643
15°	0.2588	0.9659	0.2679	60°	0.8660	0.5000	1.7321
16°	0.2756	0.9613	0.2867	61°	0.8746	0.4848	1.8040
1 <i>7</i> °	0.2924	0.9563	0.3057	62°	0.8829	0.4695	1.8807
18°	0.3090	0.9511	0.3249	63°	0.8910	0.4540	1.9626
19°	0.3256	0.9455	0.3443	64°	0.8988	0.4384	2.0503
20°	0.3420	0,9397	0.3640	65°	0.9063	0.4226	2,1445
21°	0.3584	0,9336	0.3839	66°	0.9135	0.4067	2.2460
22°	0.3746	0.9272	0.4040	67°	0.9205	0.3907	2,3559
23°	0.3907	0.9205	0.4245	68°	0.9272	0.3746	2.4751
24°	0.4067	0.9135	0.4452	69°	0.9336	0.3584	2.6051
25°	0.4226	0.9063	0.4663	70°	0.9397	0.3420	2,7475
26°	0.4384	0.8988	0.4877	71°	0,9455	0.3256	2,9042
27°	0.4540	0.8910	0.5095	72°	0.9511	0.3230	3.0777
28°	0.4695	0.8829	0.5317	73°	0.9563	0.3090	3.2709
29°				74°	0.9613	0.2324	3.4874
30°	0.4848 0.5000	0.8746 0.8660	0.5543 0.5774	75°	0.9659	0.2730	3.7321
31°	0.5150	0,8572	0.6009	76°	0.9703	0.2419	4.0108
32°	0.5299	0.8480	0.6249	77°	0.9744	0.2250	4.3315
33°	0.5446	0.8387	0.6494	78°	0.9744	0.2230	4.7046
34°	0.5592	0.8290	0.6745	79°	0.9816	0.1908	5.1446
35°	0.5736	0.8192	0.7002	80°	0.9848	0.1736	5.6713
36°	0.5878	0.8090	0.7265	81°	0.9877	0.1564	6,3138
37°	0.6018	0.7986	0.7536	82°	0.9903	0.1392	7.1154
38°	0.6157	0.7880	0.7813	83°	0.9925	0.1219	8.1443
39°	0.6293	0.7771	0.8098	84°	0.9945	0.1045	9.5144
40°	0.6428	0.7660	0.8391	85°	0.9962	0.0872	11.4301
41°	0.6561	0.7547	0.8693	86°	0.9976	0.0698	14.3007
42°	0.6691	0.7431	0.9004	87°	0.9986	0.0523	19.0811
43°	0.6820	0.7314	0.9325	88°	0.9994	0.0349	28.6363
44°	0.6947	0.7193	0.9657	89°	0.9998	0.0175	57.2900
45°	0.7071	0.7071	1.0000	90°	1.0000	0.0000	∞

확인문제하는

Ⅱ. 삼각함수

05. 삼각함수

확인문제 [p. 92~104]

- **050-1.** 정답 (1) $\frac{5}{4}\pi$ (2) $-\frac{5}{12}\pi$ (3) $\frac{5}{3}\pi$
 - (4) 720° (5) 337.5° (6) -480°
- $(1)\,225^{\circ} = \frac{\pi}{180} \times 225 = \frac{5}{4}\pi \qquad \quad (2)\,-75^{\circ} = -\frac{\pi}{180} \times 75 = -\frac{5}{12}\pi$
- (3) $300^{\circ} = \frac{\pi}{180} \times 300 = \frac{5}{3}\pi$ (4) $4\pi = \frac{180^{\circ}}{\pi} \times 4\pi = 720^{\circ}$
- $(5)\frac{15}{8}\pi = \frac{180^{\circ}}{\pi} \times \frac{15}{8}\pi = \frac{675^{\circ}}{2} = 337.5^{\circ}$
- $(6) \frac{8}{3}\pi = -\frac{180^{\circ}}{\pi} \times \frac{8}{3}\pi = -480^{\circ}$

육십분법과 호도법의 관계

(1) 도 \Rightarrow 호도 : $\frac{\pi}{180^{\circ}} \times ($ 알고 있는 도)

(2) 호도 ➡ 도 : $\frac{180^{\circ}}{\pi}$ × (알고 있는 호도)

051-1. 정답 풀이 참조

- (1) $1000^{\circ} = 360^{\circ} \times 2 + 280^{\circ}$
- (2) $4230^{\circ} = 360^{\circ} \times 11 + 270^{\circ}$
- $(3) -2540^{\circ} = 360^{\circ} \times (-8) + 340^{\circ}$

- (1) $2n\pi + \frac{\pi}{4}$
- (2) $2n\pi + \frac{11}{8}\pi$
- (3) $2n\pi + \frac{4}{3}\pi$ (4) $2n\pi + \frac{3}{2}\pi$

052-1. 정답 제 1. 3사분면

$$\theta$$
가 제 2사분면의 각이므로 $2n\pi + \frac{\pi}{2} < \theta < 2n\pi + \pi(n)$ 은 정수)

$$\stackrel{\mathbf{Z}}{=}$$
, $n\pi + \frac{\pi}{4} < \frac{\theta}{2} < n\pi + \frac{\pi}{2}$

(i)
$$n = 2k(k$$
는 정수)일 때

$$2k\pi + \frac{\pi}{4} < \frac{\theta}{2} < 2k\pi + \frac{\pi}{2}$$
 \Longrightarrow 제 1사분면

(ii)
$$n = 2k + 1(k$$
는 정수)일 때.

$$2k\pi + \frac{5}{4}\pi < \frac{\theta}{2} < 2k\pi + \frac{3}{2}\pi$$
 ➡ 제 3사분면

따라서,
$$\frac{\theta}{2}$$
는 제 1, 3사분면의 각이다.

052-2. 정답 제 1, 3, 4사분면

$$\theta$$
가 제 3사분면의 각이면 $2n\pi+\pi<\theta<2n\pi+\frac{3}{2}\pi$ $(n$ 은 정수)

$$\therefore \frac{2}{3}n\pi + \frac{\pi}{3} < \frac{\theta}{3} < \frac{2}{3}n\pi + \frac{\pi}{2}$$

$$2k\pi + \frac{\pi}{3} < \frac{\theta}{3} < 2k\pi + \frac{\pi}{2}$$
 : 제 1사분면

$$(ii)$$
 $n=3k+1$ $(k$ 는 정수)꼴일 때,

$$2k\pi + \pi < \frac{\theta}{3} < 2k\pi + \frac{7}{6}\pi$$
 . . 제 3사분면

(iii)
$$n = 3k + 2$$
 (k 는 정수)꼴일 때,

$$2k\pi + \frac{5}{3}\pi < \frac{\theta}{3} < 2k\pi + \frac{11}{6}\pi$$
 ... 제 4사분면

053-1. 정답 풀이 참조

(1)
$$l = r\theta$$
에서 $l = 3 \times \frac{\pi}{5} = \frac{3}{5}\pi$
또, $S = \frac{1}{2}rl$ 이므로 $S = \frac{1}{2} \times 3 \times \frac{3}{5}\pi = \frac{9}{10}\pi$

(2)
$$l = r\theta$$
에서 $\theta = 120^{\circ} = \frac{2}{3}\pi$ 이므로 $l = 10 \times \frac{2}{3}\pi = \frac{20}{3}\pi$

또,
$$S = \frac{1}{2} r l$$
이므로 $S = \frac{1}{2} \times 10 \times \frac{20}{3} \pi = \frac{100}{3} \pi$

(1) 오른쪽 그림에서
$$\sin \frac{5}{4}\pi = -\frac{\sqrt{2}}{2}$$

$$\cos\frac{5}{4}\pi = -\frac{\sqrt{2}}{2}$$

$$\tan\frac{5}{4}\pi=1$$

(2) 오른쪽 그림에서
$$\sin\left(-\frac{5}{6}\pi\right) = -\frac{1}{2}$$

$$\cos\left(-\frac{5}{6}\pi\right) = -\frac{\sqrt{3}}{2}$$

$$\tan\left(-\frac{5}{6}\pi\right) = \frac{\sqrt{3}}{3}$$

054-2. 정답 (1)
$$\frac{1}{2}$$
 (2) $\frac{\sqrt{3}}{2}$ (3) -1

$$\therefore \sin 870^{\circ} = \sin 150^{\circ} = \frac{1}{2}$$

$$\therefore \cos 390^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$(3) -1125^{\circ} = 360^{\circ} \times (-4) + 315^{\circ}$$
이므로

참고	특수각의 삼	각비				
	θ	0°	30°	45°	60°	90°
	$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos\theta$	1	<u>√3</u>	$\frac{\sqrt{2}}{2}$	1	0

055-1. 정답 풀이 참조

$$\overline{PQ}$$
=5, \overline{OQ} =12

이므로

$$\overline{PO} = \sqrt{5^2 + 12^2} = 13$$

이때, 부호에 주의하면서 삼각함수의 값을 구하면 $\sin \theta = \frac{5}{13}$, $\cos \theta = -\frac{12}{13}$, $\tan \theta = -\frac{5}{12}$

055-2. 정답 $\frac{12}{13}$

$$\overline{OP} = \sqrt{5^2 + 12^2} = 13$$

이므로
$$\cos \theta = \frac{5}{13}, \tan \theta = \frac{12}{5}$$

$$\therefore \cos \theta \cdot \tan \theta = \frac{5}{13} \cdot \frac{12}{5} = \frac{12}{13}$$

056-1. 정답 $2 \tan \theta$

180°<*θ*<270°일 때,

 $\sin \theta < 0$, $\cos \theta < 0$, $\tan \theta > 0$ 이므로

 $\begin{aligned} &\cos\theta + \sin\theta + \tan\theta + |\cos\theta| + |\sin\theta| + |\tan\theta| \\ &= &\cos\theta + \sin\theta + \tan\theta - \cos\theta - \sin\theta + \tan\theta \end{aligned}$

 $=2 \tan \theta$

057-1. 정답 ③

 $\sin \theta \cos \theta < 0$ 에서

 $(i) \sin \theta > 0$ 이고 $\cos \theta < 0$ 일 때 $\Rightarrow \theta$ 는 제 2사분면의 각

(ii) $\sin\theta$ <0이고 $\cos\theta$ >0일 때 \rightarrow θ 는 제 4사분면의 각 따라서, θ 는 제 2, 4사분면의 각이다.

057-2. 정답 제 2사분면

 $\cos \theta \tan \theta > 0$ 에서

$$\cos\theta \cdot \frac{\sin\theta}{\cos\theta} = \sin\theta > 0$$

즉, θ 는 제1사분면 또는 제2사분면의 각이다.

..... 🗇

또, $\frac{\sin \theta}{\cos \theta} < 0$ 에서 $\cos \theta < 0$

즉, θ 는 제2사분면 또는 제3사분면의 각이다.

····· 🗅

①. Û에서 θ는 제2사분면의 각이다.

- 4		
/	-1	
	싐	
А	_	
		-

사분면에 대한 삼각함수의 부호

	$\sin \theta$	$\cos \theta$	$\tan \theta$
제 1사분면	+	+	+
제 2사분면	+	_	_
제 3사분면	_	_	+
제 4사분면	_	+	_

058-1. 정답 (1) $\frac{1}{2}$ (2) $\frac{11}{16}$

(1) $\sin\theta + \cos\theta = \sqrt{2}$ 의 양변을 제곱하면 $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = 2$

이때, $\sin^2 \theta + \cos^2 \theta = 1$ 이므로 $1+2 \sin \theta \cos \theta = 2$

 $\therefore \sin \theta \cos \theta = \frac{1}{2}$

(2) $\sin \theta - \cos \theta = \frac{1}{2}$ 의 양변을 제곱하면 $\sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{4}$

 $1 - 2\sin\theta\cos\theta = \frac{1}{4}$

 $\sin\theta\cos\theta = \frac{3}{8}$

 $\therefore \sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)^3$ $+ 3 \sin \theta \cos \theta (\sin \theta - \cos \theta)$

$$= \left(\frac{1}{2}\right)^3 + 3 \times \frac{3}{8} \times \frac{1}{2} = \frac{1}{8} + \frac{9}{16}$$
$$-\frac{11}{8} + \frac{9}{16} + \frac{11}{16} + \frac{1$$

058-2. 정답
$$\frac{5}{4}$$

$$(\sin\theta + \cos\theta)^2 = 1 + 2\sin\theta\cos\theta$$

$$\frac{7}{16}$$
=1+2 sin θ cos θ

$$\therefore 2 \sin \theta \cos \theta = -\frac{9}{16}$$

$$\stackrel{\leq}{\Rightarrow}, (\sin \theta - \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta - 2\sin \theta \cos \theta$$
$$= 1 - \left(-\frac{9}{16}\right) = \frac{25}{16}$$

$$\therefore \sin \theta - \cos \theta = \pm \frac{5}{4}$$

그런데 조건에서
$$0\!<\! heta\!<\!\pi$$
이고 \bigcirc 에서 $\sin heta\cos heta\!<\!0$ 이므로 $heta$ 는 제

2사분면의 각이다. 즉,
$$\sin \theta > 0$$
, $\cos \theta < 0$ 에서 $\sin \theta - \cos \theta > 0$ $\therefore \sin \theta - \cos \theta = \frac{5}{4}$

$$(\sin\theta + \cos\theta)^2 + (\sin\theta - \cos\theta)^2$$

$$= (\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta)$$

$$+(\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta)$$

$$=2(\sin^2\theta+\cos^2\theta)=2$$

059-2. 정답 (1) 1 (2) $\sin \theta$

$$(1)$$
 1+tan² $\theta = \frac{1}{\cos^2 \theta}$ 이므로

$$\tan^2\theta + (1-\tan^4\theta)\cos^2\theta$$

$$= \tan^2 \theta + (1 + \tan^2 \theta)(1 - \tan^2 \theta)\cos^2 \theta$$

$$= \tan^{2} \theta + (1 - \tan^{2} \theta) = 1$$
(2)
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin^{2} \theta}{\sin \theta - \cos \theta} - \cos \theta$$

$$= \frac{\cos \theta}{1 - \frac{\sin \theta}{\cos \theta}} + \frac{\sin^2 \theta}{\sin \theta - \cos \theta} - \cos \theta$$

$$= \frac{\cos^2 \theta}{\cos \theta - \sin \theta} + \frac{\sin^2 \theta}{\sin \theta - \cos \theta} - \cos \theta$$

$$=\frac{\sin^2\theta-\cos^2\theta}{\sin\theta-\cos\theta}-\cos\theta$$

$$= \frac{(\sin \theta + \cos \theta)(\sin \theta - \cos \theta)}{\sin \theta - \cos \theta} - \cos \theta$$

$$=\sin\theta + \cos\theta - \cos\theta$$

$$=\sin\theta$$

참고
$$1+\tan^2\theta=1+\frac{\sin^2\theta}{\cos^2\theta}$$

$$=\frac{\cos^2\theta+\sin^2\theta}{\cos^2\theta}$$
이므로 $1+\tan^2\theta=\frac{1}{\cos^2\theta}$

06. 삼각함수의 그래프

확인문제 [p. 108~114]

060-1. 정답 ②

 $y{=}\sin x$ 의 그래프를 x축 방향으로 $\frac{\pi}{2}$ 만큼 평행이동시킨 그래프의

식은

 $y = \sin\left(x - \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2} - x\right) = -\cos x$

이것을 x축에 대하여 대칭이동시키면 $-y = -\cos x$ $\therefore y = \cos x$

참고

평행이동과 대칭이동 (1) x축으로 a만큼, y축으로 b만큼 평행이동시키면 $y=f(x) \implies y-b=f(x-a)$ (2) y=f(x)를 점 또는 직선에 대칭이동시키면

 $x \stackrel{>}{\Rightarrow} : y = f(x) \implies -y = f(x)$ $y \stackrel{>}{\Rightarrow} : y = f(x) \implies y = f(-x)$

원점 : $y=f(x) \Rightarrow -y=f(-x)$ 직선 $y=x:y=f(x) \Rightarrow x=f(y)$

(1) $y=\sin 2x$ 의 그래프를 x축 방향으로 $\frac{\pi}{6}$ 만 큼 평행이동시킨 것이다.

따라서, 최댓값:1 최솟값:-1

주기 : $\frac{2\pi}{2}$ = π

