Reed-Muller Error-Correcting Codes

Prateek Sharma

April 30, 2010

Reed-Muller codes

Definition

The Reed-Muller codes are the second oldest codes known after hamming and the golay codes.

In this talk: Code properties Decoding Algorithms Some applications

Mariner-9

Construction

$$\mathbf{x} \equiv (x_1, x_2, \dots, x_m) \in \mathbb{F}^m$$

<i>x</i> ₁	0	0	0	0	1	1	1	1
<i>x</i> ₂	0	0	1	1	0	0	1	1
<i>x</i> ₃	0	1	0	1	0	1	0	1
f	0	1	0	1	0	1	1	0

Disjunctive Normal Form $f = x_3 + x_1x_2$.

Since $(x_1, x_2, ..., x_m)$ can take 2^m values, \mathbf{f} is a $n = 2^m$ length vector over F_2 . Since there are 2^{2^m} such Boolean functions possible, this gives us a collection of 2^{2^m} vectors, each of length 2^m .

Boolean Monomials

$$M = \{1, x_1, x_2, \dots, x_m, x_1x_2, \dots, x_{m-1}x_m, x_1x_2x_3, \dots, x_1x_2 \dots x_m\}$$

$$f = 1 + a_1 x_1 + a_2 x_2 + \ldots + a_m x_m + a_{12} x_1 x_2 + \ldots + a_{12 \dots r} x_1 x_2 \dots x_r + \ldots$$

Since **f** is a linear combination, it follows that the length of x_1, x_2, \ldots, x_m is 2^m .

$$1 + \binom{m}{1} + \binom{m}{2} + \ldots + \binom{m}{m} = 2^m$$

First-order codes

The Reed-Muller codes of order r and length $n=2^m$, $0 \le r \le m$ is the set of all vectors \mathbf{f} , where $f(x_1, \ldots, x_m)$ is a Boolean function which is a polynomial of degree at most r.

$$1 + a_1 x_1 + a_2 x_2 + \ldots + a_m x_m \tag{1}$$

Linearity

Lemma (Linearity)

 $\mathcal{R}(r,m)$ is a linear code.

The monomials of degree $\leq r$ form a basis for $\mathcal{R}(r, m)$. Generator matrix

$$G(r,m) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \\ x_1 x_2 \\ \vdots \\ x_1 x_2 \dots x_r \end{pmatrix}$$

$$(2)$$

The dimension (k) of $\mathcal{R}(r, m)$ is equal to the number of monomials of degree $\leq r$.

$$k = 1 + {m \choose 1} + {m \choose 2} + \ldots + {m \choose r}$$
(3)

From what we have seen so far, we observe that $\mathcal{R}(0,m)$ is the repetition code (2^m repetition) . At the other extreme $\mathcal{R}(m,m)$ is a code consisting of all possible binary sequences of length 2^m . A summary of the properties of $\mathcal{R}(r,m)$:

Length	$n=2^m$			
Minimum Distance	$d=2^{m-r}$			
Dimension	$k = 1 + {m \choose 1} + {m \choose 2} + \ldots + {m \choose r}$			

Thus, $\mathcal{R}(r,m)$ is an $[2^m, 1+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{r}, 2^{m-r}]$ linear code.

$$G(2,3) = \begin{bmatrix} 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ x_1 & & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ x_2 & & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ x_3 & & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ x_1 \cdot x_2 & & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ x_1 \cdot x_3 & & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ x_2 \cdot x_3 & & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5)

Recursive formulation

Theorem

$$\mathcal{R}(r+1, m+1) = \{ \mathbf{u} | \mathbf{u} + \mathbf{v} : \mathbf{u} \in \mathcal{R}(r+1, m), \mathbf{v} \in \mathcal{R}(r, m) \}$$

$$G(r+1, m+1) = \begin{pmatrix} G(r+1, m) & G(r+1, m) \\ 0 & G(r, m) \end{pmatrix}$$
 (6)

$$G(1, m+1) = \begin{pmatrix} G(1, m) & G(1, m) \\ 0 & 1 \end{pmatrix}$$
 (7)

where

$$G(0,m)=(\overbrace{1111}^{2^m})$$

Theorem

$$\mathcal{R}(r,m) \subseteq \mathcal{R}(t,m)$$
 if $0 \le r \le t \le m$

Theorem

 C_i : $[n, k_i, d_i]$ code. The concatenated code

$$C = \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) | \mathbf{u} \in C_1, \mathbf{v} \in C_2\}$$

has the parameters $[2n, k_1 + k_2, min\{2d_1, d_2\}]$.

$$dim(\mathcal{R}(r,m)) = dim(\mathcal{R}(r,m-1)) + dim(\mathcal{R}(r-1,m-1))$$

Distance properties

Theorem

Minimum distance, $d = 2^{m-r}$

Every codeword in $\mathcal{R}(1,m)$ (except $\mathbf{1},\mathbf{0}$) has weight 2^{m-1}

Dual and Orthogonal of RM codes

Theorem

$$\mathcal{R}(m-r-1,m)=\mathcal{R}(r,m)^{\perp}$$

Theorem

The dual code $\mathcal{R}(1,m)^{\perp}$ is the extended binary Hamming code $\mathcal{H}(m)$

The orthogonal code \mathcal{O}_m to be the $[2^m, m, 2^{m-1}]$ code consisting of the vectors $\sum_{i=1}^m u_i \mathbf{v_i}$

Theorem

$$\mathcal{R}(1,m) = \mathcal{O}_m \cup (\mathbf{1} + \mathcal{O}_m)$$

uniqueness

Theorem

Any linear code with parameters $[2^m, m+1, 2^{m-1}]$ is equivalent to the first order Reed-Muller code.

Proof in [?].

Plotkin Bound

Theorem (Plotkin Bound)

If
$$C = [n, k, d]$$
 code,

$$d \leq \frac{n2^{k-1}}{2^k - 1}$$

Proof.

Counting in two ways:

Decoding

Majority logic decoding. Step Decoding Hadamard Transofrm List Decoding And a lot more soft/hard decoding algorithms

Majority-Logic Decoding

Message bit parities voted by multiple bits in the received vector.

Example

$$\mathbf{x} = 00110110 \in \mathcal{R}(2,3)$$

Orthogonal checksums

Finding 'good' checksum equations is hard. Ideally, want orthogonal sums each coordinate.

$$x_0 + x_1 + x + 3 = 0$$
 $x_0 + x_4 + x_5 = 0$ $x_0 + x_2 + x_6 = 0$

J parity checks on every co-ordinate can correct $\lfloor \frac{J}{2} \rfloor$ errors. Finding orthogonal checksums is assisted by finite geometries

List Decoding

Algorithm