CURRICULUM VITAE

Inseung Kang

ikang7@gatech.edu | inseungkang.github.io 813 Ferst Drive NW, Atlanta, GA, 30332

EDUCATION

Georgia Institute of Technology

Ph.D. in Mechanical Engineering M.S. in Mechanical Engineering B.S. in Mechanical Engineering Aug 2021(expected) May 2018 May 2016

ACADEMIC POSITIONS

PhD Candidate

Exoskeleton and Prosthetic Intelligent Control Lab School of Mechanical Engineering Georgia Institute of Technology Advised by Aaron J. Young PhD Aug 2016 - Current

Dissertation Topic: Adaptive user state estimation for assisting human locomotion using robotic hip exoskeletons

- Incorporate real-time user state estimation/prediction utilizing sensor fusion-based machine learning algorithms
 - User intent recognition (e.g., climbing stairs and ramps) for continuous locomotion mode classification
 - Sensor fusion-based approach for robust user state estimation (e.g., walking speed) during ambulation
 - Online adaptation approach (transfer learning) to accommodate variations in different user's gait dynamics
- Implement dynamic controllers to accommodate different locomotion tasks and user's gait patterns for a robotic hip exoskeleton
 - Biological torque control
 - State machine-based impedance control
 - o Proportional myoelectric (EMG) control
- Design a robust mechatronic platform with capabilities in providing torques in wide ranges of locomotion tasks
 - Series elastic actuator: capability in high fidelity closed loop feedback control, additional compliance for mitigating disturbance
 - Quasi-direct drive actuator: high bandwidth, back-drivable, transparent actuator dynamics
- Understand human robot interaction through a formal biomechanical/biological analysis
 - o Standard biomechanics measurement using motion capture system
 - o Evaluation of user's biological measurement: metabolic cost, EMG signals

- Translate exoskeleton technology to understand the device efficacy in a clinical population (Elders and Stroke patients)
 - Understand the optimal assistance strategy for improving gait function in stroke populations
 - Explore different machine learning techniques to handle signal variations in stroke subjects

EMPLOYMENT AND EXPERIENCE

Graduate Teaching Assistant

School of Mechanical Engineering Georgia Institute of Technology *Aug 2016 – Aug 2018*

- Directed undergraduate students in 'Creative Decision and Design' course learning to build task driven robots for a competition
- Trained different machining techniques/design tools relating to manufacturability
- Instructed mechatronics/embedded programing using NI myRIO and LabVIEW

CAD/CAM Instructor

School of Biological Sciences Georgia Institute of Technology

Spring 2017, 2018

- Instructed CAD (Solidworks) software to students in Master of Science in Prosthetics and Orthotics program
- Taught design ideation, feature extraction, manufacturability etc.
- Utilized an industry grade 3D scanner and taught its application with CAD software

Research Assistant Summer 2017

Neuro-Robotic Rehabilitation Team | The Center for Bionics Korea Institute of Science and Technology

- Designed and fabricated a full lower limb exoskeleton rehabilitation robot (COWALK) for SCI patients
- Analyzed and optimized data via Simulink for synchronizing the exoskeleton movement with user's gait pattern
- Presented a full demo of the device to President of Republic of Korea (June, 2014)

PUBLICATIONS

Journal Articles

• J5: SE. Lee, C. Kilpatrick, **I. Kang**, H. Hsu, W. Childers, A. Young, Investigating the Impact of the User Interface for a Powered Hip Orthosis on Metabolic Cost and User Comfort: A Preliminary Study, *Journal of Prosthetics and Orthotics*, June 2020

- J4: G. Sawicki, O. Beck, I. Kang, A. Young, The Exoskeleton Expansion: Improving Walking and Running Economy, Journal of NeuroEngineering and Rehabilitation, February 2020
- J3: D. Lee, EC. Kwak, B. McLain, **I. Kang,** A. Young, Biomechanical Effects of a Robotic Knee Exoskeleton during Incline and Decline Walking, *IEEE Transactions on Neural Systems & Rehabilitation Engineering*, February 2020
- J2: **I. Kang**, P. Kunapuli, A. Young, Real-Time Neural Network-based Gait Phase Estimation using a Robotic Hip Exoskeleton, *IEEE Transactions on Medical Robotics and Bionics*, December 2019
- J1: **I. Kang**, H. Hsu, A. Young, The Effect of Hip Assistance Levels on Human Energetic Cost Using Robotic Hip Exoskeletons, *IEEE Robotics and Automations Letters*, April 2019

Refereed Conference Proceedings

- C7: **I. Kang**, D. Molinaro, G. Choi, A. Young, Continuous locomotion mode classification using a powered bilateral hip exoskeleton, *IEEE International Conference on Biomedical Robotics and Mechatronics (BioRob)*, June 2020
- C6: D. Molinaro, **I. Kang**, A. Young, Estimation of biological hip moment using a robotic hip exoskeleton, *IEEE International Conference on Biomedical Robotics and Mechatronics (BioRob)*, June 2020
- C5: **I. Kang**, P. Kunapuli, H. Hsu, A. Young, Electromyography (EMG) Signal Contributions in Speed and Slope Estimation Using Robotic Exoskeletons, *IEEE International Conference on Rehabilitation Robotics (ICORR*), June 2019
- C4: H. Zheng, T. Shen, R. Afsar, I. Kang, A. Young, X. Shen A Semi-Wearable Robotic Device for Sit-to-Stand Assistance, *IEEE International Conference on Rehabilitation Robotics (ICORR)*, June 2019
- C3: **I. Kang**, H. Hsu, A. Young, Design and Validation of a Torque Controllable Hip Exoskeleton for Walking Assistance, *ASME Dynamic Systems and Control Conference*, October 2018
- C2: H. Hsu, **I. Kang**, A. Young, Design and Evaluation of a Proportional Myoelectric Controller for Hip Exoskeleton During Normal Walking, *ASME Dynamic Systems and Control Conference*, October 2018
- C1: S. Kim, X. Chen, G. Dreifus, J. Lindahl, I. Kang, A. Kim, M. Selim, D. Nuttal, A. Messing, A. Nycz, R. Minneci, J. Bowers, B. Braswell, A. Hassan, B. Pipes, V. Kunc, An Integrated Design Approach for Infill Patterning of Fused Deposition Modeling and its Application to an Airfoil, SAMPE Conference, February 2017

Under Review

• J3: **I. Kang**, D. Molinaro, S. Duggal, Y. Chen, P. Kunapuli, A. Young, Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion, *IEEE*

- Robotics and Automation Letters / International Conference on Robotics and Automation (ICRA), May 2021
- J2: D. Lee, **I. Kang**, D. Molinaro, A. Yu, A. Young, Real-Time User-Independent Slope Prediction using Deep Learning for Modulation of Robotic Knee Exoskeleton Assistance, *IEEE Robotics and Automation Letters / International Conference on Robotics and Automation (ICRA)*, May 2021
- J1: D. Lee, B. McLain, **I. Kang**, A. Young, Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton, *IEEE Transactions on Biomedical Engineering*

PRESENTATION

Invited Seminar Talk

• T1: **I. Kang**, User State Adaptive Assistance Strategy to Enhance Human Locomotion Using a Robotic Hip Exoskeleton, *Georgia Tech IRIM RoboGrads Student Virtual Seminar Session*, August 2020

Conference Talk

- T5: **I. Kang**, D. Molinaro, G. Choi, A. Young, A biomechanical analysis of adaptive assistance strategy for uphill walking using a powered hip exoskeleton, *American Society of Biomechanics Annual Conference*, August 2020
- T4: D. Molinaro, **I. Kang**, J. Camargo, A. Young, Estimating biological hip torque during overground ambulation: A machine learning approach, *American Society of Biomechanics Annual Conference*, August 2020
- T3: Y. Pan, **I. Kang**, K. Herrin, A. Young, The Biomechanical Effect of Bilateral Assistance for Hemiparetic Gait Poststroke Using a Powered Hip Exoskeleton, *American Society of Biomechanics Annual Conference*, August 2020
- T2: C. Kilpatrick, SE. Lee, **I. Kang**, H. Hsu, L. Childers, A. Young, The Impact of Hip Exoskeleton User Interface on User Comfort and Metabolic Cost: A Pilot Study, *American Academy of Orthotists & Prosthetists Conference*, March 2019
- T1: **I. Kang**, H. Hsu, A. Young, Effects of Assistance Levels on Energetic Savings Using a Robotic Hip Exoskeleton, *Dynamic Walking Conference*, May 2018

Poster Presentation

 P7: B. McLain, D. Lee, I. Kang, A. Young, EMG-informed neuromusculoskeletal model for knee joint load estimation with a powered knee exoskeleton during inclined walking, American Society of Biomechanics Annual Conference, August 2020

- P6: A. Groff, S. Thai, I. Kang, H. Hsu, A. Young, Control Strategies of a Powered Assist Hip Exoskeleton in Subject with Stroke, American Academy of Orthotists & Prosthetists Conference, March 2019
- P5: **I. Kang**, A. Young, Understanding the Optimal Assistance Levels for Human Augmentation Using Robotic Hip Exoskeletons, *The Career, Research, and Innovation Development Conference*, February 2019
- P4: P. Kunapuli, **I. Kang**, A. Young, Neural Network Based Estimation of Gait Phase in a Powered Hip Exoskeleton, *Biomedical Engineering Society Conference*, October 2018
- P3: EC. Kwak, D. Lee, I. Kang, A. Young, The Effect of Powered Assistance on Uphill Human Walking Using a Robotic Knee Exoskeleton, Biomedical Engineering Society Conference, October 2018
- P2: C. Kilpatrick, SE. Lee, **I. Kang**, H. Hsu, L. Childers, A. Young, Investigating the Impact of Hip Exoskeleton User Interface on User Comfort and Metabolic Cost, *American Academy of Orthotists & Prosthetists Conference*, February 2018
- P1: **I. Kang**, H. Hsu, D. Lee, A. Young. Robotic Human Augmentation using Exoskeleton Devices, *NextFlex Workshop: Powering the Internet of Everything*, November 2017

PATENTS

• U.S. Patent 63,046,956: "Powered Bilateral Knee Exoskeleton" – Filed July 1, 2020

CONTRIBUTED RESEARCH FUNDING

- National Science Foundation: National Robotics Initiative Award
 Aug 2018
 - Title: Robotic Human Enhancement Enabled through Wearable Hip Exoskeletons Capable of Community Ambulation
- National Institute of Health: R03 New Investigator Award

 Apr 2019
 - Title: Improving Community Ambulation for Stroke Survivors using Powered Hip Exoskeletons with Adaptive Environmental Controllers

AWARDS AND HONORS

•	Outstanding Capstone Research Award, P&O Research Symposium	2018
•	Best Poster Award, AAOP Conference	2018
•	Highest honor upon graduation for bachelor's degree	2016
•	Georgia Tech Korean Student Association Scholarship	2015

OUTREACH PROGRAM

National Robotics Week, Georgia Tech

2017 - Present

MENTORING

• Reese Peterson, MSN		2020 - Present
 Julian Park, MSME, C 	Georgia Tech	2019 – Present
 Henry Luk, MSME, G 	eorgia Tech	2019 – 2020
• Srijan Duggal, PURA	Program, Georgia Tech	Fall 2020
• Emily Keller, NSF SU	IRE Program, NCSU	Summer 2019
• Dawit Lee, MSME, Go	eorgia Tech	2017 - 2018
 Hsiang Hsu, MSME, 0 	Georgia Tech	2017 - 2019
 Michael Groff, MSCS, 	, Georgia Tech	2019
• Bailey McLain, Petit	Scholar Program, Georgia Tech	2019
• Michelle Myrick, Pet	it Scholar Program, Georgia Tech	2017
 Harnjoo Kim, PURA 	Program, Georgia Tech	Spring 2019
 Pratik Kunapuli, PUI 	RA Program, Georgia Tech	Summer 2018
• Joonho Seo, PURA Pr	rogram, Georgia Tech (Now in NAVER Labs)	Spring 2017
• Alice Zou, NSF SURE	Program, Johns Hopkins University	Summer 2017

PROFESSIONAL MEMBERSHIPS AND SERVICES

•	Student Member, ASME	2013 – Present
	•	
•	Student Member, IEEE	2018 – Present
•	Member, Pi Tau Sigma	2014 – Present
•	Reviewer, IEEE Robotics and Automation Letters	2019 - Present
•	Reviewer, IEEE Transactions on Mechatronics	2018 - Present
•	Reviewer, IEEE Transactions on Robotics	2018 - Present
•	Reviewer, IEEE Transactions on Biomedical Engineering	2017 - Present
•	Reviewer, IEEE Transactions on Medical Robotics and Bionics	2019 - Present
•	Reviewer, IEEE Transactions on Neural Systems and Rehabilitation	on Engineering
		2020 - Present
•	Reviewer, Frontiers in Neurorobotics	2018 - Present
•	Reviewer, President's Undergraduate Research Award, Georgia T	ech 2017 - Present
•	Mentor, Petit Undergraduate Research Scholars Program	2017 - 2019
•	Member, Korean Scientist and Engineers Association	2014 - Present
•	Organizer, KSEA Ygnite Conference	2015, 2016, 2020, 2021