CS699 Lecture 10 Clustering

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- The definitions of distance functions are usually different for interval-scaled, Boolean, categorical, ordinal, and vector variables
- Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches

- Model-based
- Grid-based
- Frequent pattern-based
- User-guided or constraint-based
- Link-based clustering

Partitioning Algorithms: Basic Concept

Partitioning method: Partitions a database **D** of **n** objects into a set of **k** clusters, such that the sum of squared distances is minimized (where *p* is an object and c_i is the centroid or medoid of cluster C_i).

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

 This is also called within-cluster variation or SSE (sum of squared errors).

Partitioning Algorithms: Basic Concept

More about SSE:

Partitioning Algorithms: Basic Concept

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm works as follows:
 - 1. Arbitrarily choose *k* points as initial centroids (the centroid is the center, i.e., *mean point*, of the cluster). Each centroid represents a cluster.
 - 2. Assign each object to the cluster with the nearest centroid.
 - 3. Compute new centroids.
 - 4. Go back to Step 2. Stop when the membership assignment does not change or other criterion is met.

The K-Means Clustering Method

- Other stopping criteria
 - After each reassignment, E is computed and if E falls below a predefined threshold.
 - If the decrease in E, between two consecutive iterations, falls below a predefined threshold.
 - Run for a predetermined number of iterations (e.g., run 20 iterations).

Outline of *K-Means*

Initial dataset, $D = \{(1,3), (3,5), (4,1), (5,3), (5,4), (7,2), (7,4)\}$

Initial dataset

Two objects are randomly chosen as initial centroids

Objects are assigned to the cluster with the closest centroid

New centroids are computed.

$$C1.x = (1+3+5)/3 = 3$$

$$C1.y = (3+4+5)/3 = 4$$

$$C2.x = (4+5+7+7)/4 = 5.75$$

$$C2.y = (1+2+3+4)/4 = 2.5$$

Objects are reassigned based on the distances to new centroids. Note that object (5,4) moved to cluster of C2.

New centroids are computed.

$$C1.x = (1+3)/2 = 2$$

$$C1.y = (3+5)/2 = 4$$

$$C2.x = (4+5+5+7+7)/5 = 5.6$$

$$C2.y = (1+2+3+4+4)/5 = 2.8$$

Objects are reassigned based on the distances to new centroids.

There is no membership change.

So, stop here.

- Strength: Efficient.
- Weakness
 - Initial random selection of centroids affects the results (i.e., may not converge or may end up with a local optimum)
 - Run k-means multiple times with different initial centroids
 - Applicable only when the mean of objects can be defined
 - Use the k-modes method for categorical data
 - Need to specify k, the number of clusters, in advance
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with arbitrary shapes

- Weakness (continued)
 - Selection of initial centroids (good choice)

- Weakness (continued)
 - Selection of initial centroids (bad choice)

- Weakness (continued)
 - Sensitive to noisy data and outliers
 - Consider one-dimensional objects: {1, 2, 3, 8, 9, 10, 25}
 - Reasonable clustering:

Two clusters {1, 2, 3,} and {8, 9, 10}, and an outlier 25.

outlier

• Run k-means with k = 2:

Two clusters {1, 2, 3, 8} and {9, 10, 25}

K-medoids method is more robust in the presence of noise/outliers

- Weakness (continued)
 - Not suitable to discover clusters with arbitrary shapes

Variations of the K-Means Method

- Most of the variants of the k-means differ in
 - Selection of the initial centroids
 - Dissimilarity calculations
 - Strategies to calculate cluster means

Variations of the *K-Means* Method

- Bisecting k-means
 - Initially a single cluster includes all objects.
 - The cluster is partitioned into two clusters using K-means (This can be repeated multiple times and the one with the smallest SSE can be chosen)
 - 3. A cluster is selected (based on certain criterion), and go to step 2
 - 4. Stop when we have k clusters(becomes a hierarchical clustering refer to later slides)

Variations of the K-Means Method

Bisecting k-means illustration

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Weakness of Agglomerative Clustering

- Can never undo what was done previously
- Do not scale well: time complexity of at least O(n²), where
 n is the number of total objects

Dendrogram: Shows How Clusters are Merged

- Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

Dendrogram: Shows How Clusters are Merged

Example (agglomerative)

	A1	A2	
1	2	6	
2	3	4	
3	3	8	
4	4	5	
5	4	7	
6	6	2	
7	7	2	
8	7	4	
9	8	4	

SPSS hierarchical clustering output

Average Linkage (Between Groups)

Agglomeration Schedule

	Cluster Combined			Stage Cluster First Appears		
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	8	9	1.000	0	0	6
2	6	7	1.000	0	0	6
3	3	5	2.000	0	0	5
4	2	4	2.000	0	0	7
5	1	3	5.000	0	3	7
6	6	8	5.500	2	1	8
7	1	2	8.333	5	4	8
8	1	6	27.500	7	6	0

SPSS hierarchical clustering output

Hierarchical Clustering

Hierarchical Clustering

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

- Minimum distance (single link)
- Maximum distance (complete link)
- Average distance
- Mean distance

Minimum distance (single link): smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{jq})

minimum distance = 3 (using Manhattan distance)

Maximum distance (complete link): largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max(t_{ip}, t_{jq})

maximum distance = 10 (using Manhattan distance)

 Average distance: average of distances between all pairs of elements, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})

$$d(a,e) = 6$$
 $d(b,e) = 6$
 $d(a,f) = 7$ $d(b,f) = 5$
 $d(a,g) = 8$ $d(b,g) = 8$

$$d(c,e) = 7$$
 $d(d,e) = 3$
 $d(c,f) = 10$ $d(d,f) = 6$
 $d(c,g) = 7$ $d(d,g) = 5$

average distance
= average of all the above
= 78 / 12
= 6.5

Mean distance: distance between the centroids of two clusters,
 i.e., dist(K_i, K_j) = dist(C_i, C_j)

$$C1 = (1.75, 4.25)$$

 $C2 = (6.67, 4.33)$

mean distance = 5.0 (using Manhattan distance)

- Assessing clustering tendency
 - See whether there are non-random structures in the dataset (i.e., whether there are natural clusters in the dataset)
 - Measure the probability that the dataset was generated by a uniform data distribution. If so, there may not be any natural clusters at all.

- Determining the number of clusters
 - Not trivial because, in part, we don't know "right" number of clusters
 - A simple method: $k = \frac{\sqrt{n}}{2}$
 - Elbow method: as we increase k, find the point where the marginal benefit in regard to SSE does not increase significantly (typically a turning point in a graph)
 - Cross-validation method: While changing the value of k, perform cross-validation and select k that gives the best result.

Cross-validation

- Repeat this m times and get the average of SSE's
- Do this for k = 2, 3, 4, ... and select the k with the smallest average SSE.

- Measuring clustering quality
 - Extrinsic method
 - When ground truth is available
 - BCubed precision, BCubed recall
 - Intrinsic method
 - When ground truth is not available
 - Measures how well clusters are separated and how compact each cluster is
 - Silhouette coefficient

- Silhouette coefficient of an object o
 - Measures how well clusters are separated and how compact each cluster is.
 - Assume objects are partitioned into k clusters, C₁, C₂, ..., C_k.
 - Silhoutte coefficient is calculated as:

$$s(o) = \frac{b(o) - a(o)}{\max\{a(o), b(o)\}}$$

- a(o)
 - Represents compactness of the cluster o belongs to.
 - Calculates the average distance between an object o and all other objects in the same cluster.
 - Smaller values are better

$$a(o) = \frac{\sum_{o' \in C_i, o \neq o'} dist(o, o')}{|C_i - 1|}$$

- b(o)
 - Represents how far o is from other clusters
 - Calculates the minimum average distance between an object o in a cluster to all other clusters.
 - Larger values are better.

$$b(o) = \min_{C_j: 1 \leq j \leq k, \, j \neq i} \left\{ \frac{\sum_{o' \in C_j} dist(o,o')}{\left|C_j\right|} \right\}$$
 avg. of two red distances take the smallest avg. of two green distances

$$s(o) = \frac{b(o) - a(o)}{\max\{a(o), b(o)\}}$$

- s(o) is between -1 and 1
- Closer to 1 means it is better
- Negative: not good; o is closer to objects in other clusters than to objects in its own cluster.
- Overall cluster quality:
 - Compute average silhouette coefficient of all objects
 - Use the average to evaluate the quality of clustering

References

- Han, J., Kamber, M., Pei, J., "Data mining: concepts and techniques," 3rd Ed., Morgan Kaufmann, 2012
- http://www.cs.illinois.edu/~hanj/bk3/
- P. Tan, M. Steinbach, V. Kumar, "Introduction to Data Mining," Addison Wesley, 2006.
- The SPSS TwoStep Cluster Component, Technical Report, SPSS