《数字信号处理》

办公室 工学1号馆701

邮箱 fengwang13@gdut.edu.cn

电话 15112136335

本课程主要内容总结

- 熟悉时域离散信号及系统
- 时域离散信号及系统的频域分析
 - ① 傅里叶变换 (DTFT)
 - ② 周期序列的离散傅里叶级数 (DFS) 及傅里叶变换
 - ③ 序列的Z变换
- 离散傅里叶变换 (DFT)
- 快速傅里叶变换 (FFT)
- 系统的基本网络结构
- 数字滤波器设计
 - ① IIR滤波器设计: 间接法
 - ② 利用窗函数设计FIR滤波器

第一章: 序列与系统

- 典型序列

单位脉冲序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦序列、周期序列、主值序列、因果序列

▶ 序列的运算

■ 加法、乘法、移位、翻褶、尺度变化、卷积和

■ 时域离散系统

- 线性、时(移)不变、因果性、稳定性
- 线性时不变系统:
 - 输入与输出之间的关系
 - 因果性的充分必要条件: h(n)=0, n<0</p>
 - 稳定性的充分必要条件: $\sum_{n=0}^{\infty} |h(n)| < \infty$
 - 输入输出描述法:线性常系数差分方程

采样定理

- 模拟信号的最高截止频率
- 采样时间、采样频率、折叠频率、周期延拓
- 采样信号不失真地恢复原模拟信号的条件

第二章 频域分析 (1/2)

- 时域离散傅里叶变换 (DTFT)
 - 正变换及反变换的数学表达式: X (e^{jw}) =? x (n) =?
 - 存在的充分条件: 序列x(n)绝对可和
 - 性质(表2.3):周期性(2π)、线性、时移与频移性质、时域/频域卷积定理、帕斯瓦尔定理
 - 对称性(共轭对称与共轭反对称)
 - 序列分解定理
 - 序列分为实部和虚部,实部对应的傅里叶变换具有共轭对称性,虚部和j一起对应的傅里叶变换具有共轭反对称性
 - 序列的共轭对称分量对应于该序列傅里叶变换的实部,序列的共轭 反对称分量对应该序列傅里叶变换的虚部(包括i)
 - 常用序列傅里叶变换对 (表2.4)
 - 周期序列
 - 离散傅里叶级数 (DFS)
 - 变换表达式
 - 冲激函数δ(t)

第二章 频域分析 (2/2)

- 序列的傅里叶变换与模拟信号的傅里叶变换的关系
 - 数字域频率与模拟域频率的转换: ω=ΩT
 - 离散信号的频谱是模拟信号频谱的周期延拓,周期为 $\Omega_s = 2\pi F_s = 2\pi/T$
- 序列的Z变换
 - 双边Z变换、单边Z变换
 - 正变换及反变换的数学表达式
 - 收敛域ROC: 圆内(左)、圆外(右)、圆环(双边)
 - 常用Z变换及收敛域(表2.1)
 - 围线积分法(留数法)、部分分式法
 - Z变换的性质 (表2.2)
 - 单位圆上的Z变换就是序列的傅里叶变换=收敛域中包含单位圆
 - 系统频率响应函数H(ejw)与系统函数H(z)
 - 系统的因果性: H(z)的收敛域包含∞
 - 系统的稳定性: H(z)的收敛域包含单位圆
 - 利用H(z)的零极点分布来分析H(eiw): 单位圆几何分析法

第三章 离散傅里叶变换 (1/2)

- N点离散傅里叶变换DFT
 - N点DFT正变换与IDFT反变换的数学表达式
 - X(k) = ? x(n) = ?
 - DFT与Z变换的关系
 - X(k)是x(n)的Z变换在单位圆上的N点等间隔采样
 - DFT的隐含周期性N
 - DFT的基本性质 (表3.3)
 - 线性
 - 时域/频域循环(圆周)移位定理
 - 圆环(圆周)卷积定理
 - 对称性:x(n)的实部和虚部乘以j的DFT分别是X(k)的共轭对称分量和共轭反对称分量,x(n)的共轭对称分量和共轭反对称分量的DFT分别是X(k)的实部和虚部乘以j
- 频域采样定理
 - 频域采样X(k)恢复原序列x(n)的条件
 - 频域采样点数N ≥ 序列x(n)的长度M

第三章 离散傅里叶变换 (2/2)

- DFT的应用
 - 计算线性卷积
 - 线性卷积与L点循环卷积的相等条件: L≥N+M-1
 - 原理框图: 补零+L点DFT+相乘+L点IDFT+取前N+M-1个序列值

- 对连续信号进行谱分析: 计算信号的傅里叶变换
 - 连续信号的持续(记录)时间T_p、最高频率fc
 - 采样间隔T、采样频率Fs、采样点数N= Tp/T
 - 得到长度为N的x(n)序列,进行N点的DFT
 - 模拟信号频谱的频域采样间隔F(频率分辨率):F=1/Tp=1/NT=Fs/N
 - 重要公式: Fs>2fc、N>2fc/F、Tp≥1/F

第四章 快速傅里叶变换(FFT)

- 直接计算DFT的运算量:
 - N²次复数乘法次数 + N*(N-1)复数加法次数
- N点FFT算法
 - 时域抽取法基2FFT: DIT-FFT
 - 蝶形(Bufferfly)运算符号及运算量: 1次复数乘法+2次复数加法
 - log₂(N)次分解、每次分解有N/2个蝶形运算
 - 运算量: 复数乘法次数N/2log₂(N)+复数加法次数Nlog₂(N)
 - 画出8点DIT-FFT的运算流图: x(n) → X(k)
 - 输入倒位输出顺位
 - 使用树状图来确定倒位序号
 - 频域抽取法基2FFT: DIF-FFT
 - 蝶形(Bufferfly)运算符号及运算量:1次复数乘法+2次复数加法
 - log₂(N)次分解、每次分解有N/2个蝶形运算
 - 运算量: 复数乘法次数N/2log₂(N)+复数加法次数Nlog₂(N)
 - 画出8点DIF-FFT的运算流图:x(n) → X(k)
 - 输入顺位输出倒位

第五章 系统的网络结构

- 时域离散系统的描述方法
 - 差分方程
 - 单位脉冲响应h(n)
 - 系统函数H(z)
- 信号流图表示网络结构
 - 基本运算: 乘法、加法、单位延迟
 - 基本信号流图
- IIR系统的基本网络结构
 - 直接型 (I型、II型典范型) 、级联型 (相乘) 、并联型 (相加)
- FIR系统的基本网络结构
 - 直接型、级联型

第六章 无限脉冲响应IIR数字滤波器 (1/2)

- 数字滤波器
 - 什么是数字滤波器?
 - 技术指标:通带边界频率ω_p、阻带截止频率ω_s、通带衰减α_p、 阻带衰减α_s
 - 设计方法: 间接法、直接法
- 模拟滤波器的设计
 - 巴特沃斯(Butterworth)低通滤波器设计步骤:
 - ① 根据技术指标 Ω p、 Ω s、 α _p、 α _s,求出滤波器阶数N
 - ② 求出归一化极点pk,得到归一化低通原型系统函数Ga(p)
 - ③ 将 $G_a(p)$ 去归一化。将 $p=s/\Omega_c$ 带入 $G_a(p)$,得到实际的滤波器系统函数
 - 例题6.4

第六章 无限脉冲响应IIR数字滤波器 (2/2)

- 脉冲响应不变法设计IIR数字滤波器
 - 设计的基本步骤
 - ① 将数字滤波器设计指标转换为相应的模拟滤波器指标。设采样周期为T,则 $\Omega_p = \omega_p/T$ 、 $\Omega_s = \omega_s/T$
 - ② 设计相应的巴特沃斯低通模拟滤波器,得到模拟系统函数Ha(s)
 - ③ 将模拟滤波器系统函数H_a(s)转换为数字滤波器系统函数H(z)
- · 双线性变换法设计IIR数字滤波器
 - 设计的基本步骤
 - ① 预畸变校正计算相应模拟滤波器的技术指标 $\Omega_p = 2/T*tan(\omega_p/2)$ 、 $\Omega_s = 2/T*tan(\omega_s/2)$ 。 (若无给出,可取T=1)
 - ② 设计巴特沃斯低通模拟滤波器Ha(s)
 - ③ 令s=2*(1-z⁻¹)/(1+z⁻¹),用双线性变换法将H_a(s)转换为数字滤波器 H(z)

第七章 有限脉冲响应FIR数字滤波器 (2/2)

FIR线性相位结构

- h(n)=±h(N-n-1) 奇/偶对称
- 第一类 $\theta(\omega)$ =-τω、第二类 $\theta(\omega)$ = θ_0 -τω, τ为常数, θ_0 是初始相位

利用窗函数法设计FIR滤波器

- 设计步骤
 - ① 根据指标要求,选择窗函数的类型,并估计窗口长度N
 - ② 构造希望逼近的频率响应函数H_d(e^{jw})
 - ③ 计算h_d(n)
 - 4 加窗得到设计结果: h(n)=h_d(n)w(n)

-祝同学们考试顺利!

