- 1. (1 Pkt) Welche energetische Bedingung gilt für den ß+-Zerfall?
- 2. (3 Pkte) Welche Arten von ß-Strahlung gibt es? Formulieren Sie die Reaktionsgleichungen, Angabe Edukte, Produkte, A und Z.

Beispiel ${}_{Z}^{A}X \rightarrow {}_{Z'}^{A'}Y +$

- 3. (1 Pkt) Was berücksichtigt die Fermi-Korrektur F(Z,W)?
- **4.** (2 Pkte) Weshalb gibt es für isobare Kerne mit geradem A als Funktion von Z zwei Bindungsenergiekurven? Welche Tendenz der HWZ existiert in Richtung Minimum der Parabel?
- **5.** (1 Pkt) Welcher Detektor hat die beste Auflösung für γ-Strahlung?
 - a.

 Reinst-Germanium-Detektor
 - b.

 GM-Detektor
 - **c.** \square Proportionalitätszählrohr
 - d.

 Nal-Detektor
- **6.** (3 Pkte) Welche Wechselwirkungsarten von γ -Strahlung in Materie gibt es? In welchem Energiebereich sind sie relevant?
- 7. (1 Pkt) Gamma-Strahlung wird am besten abgeschirmt durch
 - a.

 Blei
 - b.

 Wasser
 - **c.** □ Nickel
 - d.

 Wolfram-Legierung
 - e.

 Aluminium
 - f.

 Beton
- 8. (12 Pkte) Berechnen Sie mit Hilfe der Weizsäcker Massenformel welche Isotope des Elements Magnesium stabil sind (berücksichtigen Sie mögliche β + und β Zerfälle) Was ergibt sich für die Q β Werte der vier leichtesten β instabilen Mg Isotope? Vergleichen Sie mit den werten der Nuklidkarte. Wo könnten mögliche Unterschiede begründet liegen?

Zusatzaufgabe: Können Sie die Stabilität von Al-27 bestätigen?

Benutzen Sie die Konstanten:
$$a_V$$
 = 15,56 MeV, a_s = 17,23 MeV, a_C = 0,7 MeV, a_a = 23,285 MeV, δ = 11 MeV, m_p = 938,27231 MeV/ $_{C^2}$, m_n = 939,56563 MeV/ $_{C^2}$, c = 299 792 458 m/ $_{S}$, m_s = 1,6605402·10⁻²⁷ kg