tree from s.

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

Final Exam, Spring 2020 Student's name:		Thursday April 30th,	Exam time: 09:00-12:00	
		ID:		Section:
Pro	oblem 1 (6 points)			
For e	ach of the question be	low, circle either T (for Tru	ue) or F (for False). I	No explanations are needed.
Incorrect a	nswers or unanswered	questions are worth zero poi	nts.	
T F	Consider a commu	nication network of nodes w	here node v needs to	broadcast a single message
to all the of	ther nodes efficiently.	The message should be sent	to the shortest paths to	ree from v.
T F	Prim's algorithm is	a greedy solution of the Mi	nimum Spanning Tree	e problem.
T F	Kruskal algorithm	solves the Minimum Spani	ning Tree problem.	
T F		num spanning tree of a connum then $T \cup \{e\}$ contains a cyc		d weighted graph $G = (V, E)$.
T F	_			l let T be a shortest path tree ge in G. T remains a shortest
T F			-	uing tree of G . The path in M
Detwe	een any pair of vertices	v_1 and v_2 must be a shortes	a paul in G	
T F	Bellman-Ford algo	orithm works on all graphs w	ith negative-cost edge	es.
T F	Dijkstra's algorith	m works on graphs with neg	ative-cost edges.	
T F	Let G be an edge-v	veighted directed graph with	source vertex s, and	let T be a shortest path tree
from s. If v	ve add a positive consta	ant p to the cost of every edg	ge incident on s in G.	Γ remains a shortest path

 ${f T}$ ${f F}$ If someone was able to give an exponential time lower bound for a problem that is *NP-complete*. Then this would imply that *P* is not equal to *NP*.

- **T F** There exist a polynomial time algorithm to determine whether an undirected graph contains a clique of size 3.
- **T F** Suppose problem P_1 can be reduced to problem P_2 in linear time (i.e., $P_1 \propto O(n)$ P_2). Then, if there exists a polynomial time algorithm for P_1 , there exists a polynomial time algorithm for P_2 .

Problem 2 (7 points)

For each of the algorithm below, list the edges of the Minimum Spanning Tree for the graph in the order selected by the algorithm. Then, draw the obtained MST.

a- Prim's algorithm

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

L	17 m x a 1 x a 1	a1 a a mi4la
b-	Nruskai	algorithm

Problem 3 (3 points)

Apply Bellman Ford algorithm on the graph below to solve the single source shortest path starting from vertex S. You need to show the results of each step with all details (hint: use a table as we did in class). Also, you need to show the final results.

King Saud University

College of computer and Information Sciences

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

Problem 4 (4 points)

A tow truck is moving through a straight one-way highway from location **A** to location **B**. The driver has received many requests from customers who need to tow their cars along this highway. Each customer **C** is defined by two numbers **C.from** and **C.to**. The customer **C** is located along the highway at position **C.from** units away from **A**, and wants to tow his car along the highway to the location that is **C.to** units away from **A** (**C.from** < **C.to**). Customers are charged a fixed amount (100 SR) regardless of the distance. The tow truck cannot carry more than one car at the same time. Also, the driver cannot drive back.

Assume that the customer information are available in an array C, i.e., C[i].from and C[i].to are the pickup and the destination of the i^{th} customer, respectively.

a- Describe an algorithm that assists the tow truck driver to maximize his profit. The algorithm should print the **.from** and **.to** properties of customer cars that should be towed.

جامعة الملك سعود كلية علوم الحاسب والمعلومات 311 عال _

b-	What is the time	complexity of	your algorithm?	Which programming	design	technique did	you use?
----	------------------	---------------	-----------------	-------------------	--------	---------------	----------