Pattern Analysis and Recognition

Lecture 2: polynomial regression, logistic regression, multi-class classification

Last time on Pattern Analysis and Recognition

RECAP

House price prediction

Supervised Learning "right answers" given

Regression: Predict continuous valued output (price)

Gradient Descent for Linear Regression

Simple Linear Regression

MULTIPLE REGRESSION

One Feature Scenario

_	Price (\$) in 1000's (y)	Size in feet ² (x)
_	460	2104
	232	1416
$\vdash m$	315	1534
	178	852
	•••	•••

m	number of training examples
X	Input variable / features
У	Output variable / target variable
(x, y)	one training example
$(x^{(i)}, y^{(i)})$	<i>ith</i> training example

Multiple Feature Scenario

Size (feet²) (x ₁)	Number of bedrooms (x ₂)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$1000) (y)	
2104	5	1	45	460	
1416	3	2	40	232	100
1534	3	2	30	315	$\vdash m$
•••	•••	•••		•••	

 $egin{aligned} m{m} \ m{n} \ x_j^{(i)} \ m{v}^{(i)} \end{aligned}$

number of training examples number of features Value of feature *j* in *i*th training example Output variable / target variable

Hypothesis Representation

We represent *h* as a linear function of **multiple** variables:

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 + \mathcal{G}_1 x_1$$

For convenience of notation we introduce $x_0 = 1$:

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 x_0 + \mathcal{G}_1 x_1 + \mathcal{G}_2 x_2 + \ldots + \mathcal{G}_n x_n$$

Multiple Variables Hypothesis

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 x_0 + \mathcal{G}_1 x_1 + \mathcal{G}_2 x_2 + \ldots + \mathcal{G}_n x_n = \mathbf{\Theta}^T X$$

where:

$$\Theta = \begin{bmatrix} \mathcal{G}_0 \\ \mathcal{G}_1 \\ \mathcal{G}_2 \\ \cdots \\ \mathcal{G}_n \end{bmatrix} - n+1 \qquad X = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix} - n+1$$

Linear Regression Revisited n=1 n≥1

Hypothesis:

$$\overline{h_{\mathcal{G}}(x) = \mathcal{G}_0 + \mathcal{G}_1 x}$$

$$h_{\mathcal{A}}(x) = \mathcal{S}_0 x_0 + \mathcal{S}_1 x_1 + \ldots + \mathcal{S}_n x_n$$

Parameters:
$$\theta_0, \theta_1$$

$$\theta_0, \theta_1, \dots, \theta_n$$

Cost Function:

$$\mathcal{G}_{0}, \mathcal{G}_{1} = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\mathcal{G}}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$J(\mathcal{S}_{0}, \mathcal{S}_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\mathcal{S}}(x^{(i)}) - y^{(i)} \right)^{2} \qquad J(\mathcal{S}_{0}, \mathcal{S}_{1}, \dots, \mathcal{S}_{n}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\mathcal{S}}(x^{(i)}) - y^{(i)} \right)^{2}$$

Goal:

Goal:
$$\operatorname{minimise}(J(\mathcal{S}_0,\mathcal{S}_1))$$

 $\underset{\theta_0,\theta_1,\ldots,\theta_n}{\text{minimise}} (J(\theta_0,\theta_1,\ldots,\theta_n))$

Linear Regression Revisited n=1n≥1

Hypothesis:

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 + \mathcal{G}_1 x$$

$$h_{\mathcal{G}}(x) = \Theta^T X$$

Parameters:

$$\mathcal{G}_0,\mathcal{G}_1$$

Θ

Cost Function:

$$J(\mathcal{S}_0, \mathcal{S}_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\mathcal{S}}(x^{(i)}) - y^{(i)})^2$$

$$J(\Theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{g}(x^{(i)}) - y^{(i)})^{2}$$

Goal: minimise
$$(J(\mathcal{G}_0,\mathcal{G}_1))$$

$$\underset{\Theta}{\operatorname{minimise}}(J(\Theta))$$

Gradient Descent Revisited

n≥1

Repeat until convergence $\{ \\ \mathcal{G}_j \coloneqq \mathcal{G}_j - \alpha \, \frac{\partial}{\partial \mathcal{G}_i} J \big(\mathcal{G}_0, \mathcal{G}_1 \big)$

(simultaneously for j=0 and j=1)

Repeat until convergence

 $\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\Theta)$

(simultaneously for all j)

Gradient Descent Revisited

n=1

Repeat until convergence

$$\mathcal{S}_0 := \mathcal{S}_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\mathcal{S}} \left(x^{(i)} \right) - y^{(i)} \right)$$

$$\mathcal{G}_1 := \mathcal{G}_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\mathcal{G}} \left(x^{(i)} \right) - y^{(i)} \right) x_{\boldsymbol{I}}^{(i)}$$

n≥1

Repeat until convergence

$$\mathcal{S}_{0} := \mathcal{S}_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\mathcal{S}} \left(x^{(i)} \right) - y^{(i)} \right) x_{0}^{(i)}$$

$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)}$$

•

$$\mathcal{S}_n := \mathcal{S}_n - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\mathcal{S}} \left(x^{(i)} \right) - y^{(i)} \right) x_n^{(i)}$$

(simultaneously for j=0 and j=1)

(simultaneously for all j)

FEATURE NORMALISATION

Feature ranges – the problem

Feature ranges – the problem

Aim: get every feature x_j into approximately a $-1 \le x_j \le 1$ range Mean normalization:

- Subtract from each feature x_j the feature mean (μ_j) to make features have approximately zero mean
- Divide by the feature range or the standard deviation (s_i)
- Do not apply to x_0 !!!

$$x_{j}^{(i)} = \frac{x_{j}^{(i)} - \mu_{j}}{s_{j}}$$

$$\mu_j = \frac{1}{x_j} = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$S_{j} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(x_{j}^{(i)} - \mu_{j} \right)^{2}}$$

house size (feet²) [800, 5000] \longrightarrow [-1.44, 3.12]

$$x_1^{(i)} = \frac{x_1^{(i)} - \mu_1}{s_1} = \frac{x_1^{(i)} - 2000.68}{794.7}$$

of bedrooms [1-5] ——— [-2.85, 2.40]

$$x_2^{(i)} = \frac{x_2^{(i)} - \mu_2}{s_2} = \frac{x_2^{(i)} - 3.17}{0.76}$$

POLYNOMIAL REGRESSION

Creating new features

 x_1 = Frontage

 $x_2 = Depth$

 x_3 = Area = Frontage x Depth = x_1x_2

Polynomial models for house prices

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 + \mathcal{G}_1(size) + \mathcal{G}_2(size^2) + \mathcal{G}_3(size^3)$$

$$x_1 = size$$

$$h_9(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \qquad , x_2 = size^2$$

$$x_3 = size^3$$

NORMAL EQUATION

Normal Equation

$$h_{\mathcal{G}}(x) = \mathcal{G}_0 + \mathcal{G}_1 x_1 + \mathcal{G}_2 x_2 + \ldots + \mathcal{G}_n x_n$$

$$J(\mathcal{S}_0, \mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\mathcal{S}}(x^{(i)}) - y^{(i)} \right)^2$$

It is possible to solve for the parameters ϑ_j analytically by setting:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} = 0 \quad \text{, for every } j$$

and solving for: $\theta_0, \theta_1, ..., \theta_n$

The Generic Case – multiple features

(x ₀)	Size (feet ²) (x ₁)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$1000) (y)	
1	2104	5	1	45	460	
1	1416	3	2	40	232	$\rightarrow m$
1	1534	3	2	30	315	
•••		•••				

Normal Equation

What if X^TX is non-invertible?

- Redundant features (linearly dependent).
- Too many features (e.g. $m \le n$).

Solution: delete some features, or use regularization

You can still calculate the pseudo-inverse matrix $(X^TX)^+$ numpy.linalg.pinv()

When to use

Gradient Descent

- Need to choose α
- Needs many iterations
- Works well even when
 n is large
- Needs feature normalization

Normal Equation

- No need to choose α
- No need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large, complexity $O(n^3)$

LOGISTIC REGRESSION

Classification

$$Class = 1$$

$$y \in \{0,1\}$$

Classification

$$y \in \{0,1,2,3,\ldots\}$$

Classification

Classification: Predict discrete valued output (e.g. 0 or 1)

Idea: do linear regression and then threshold the prediction at 0.5 so that:

- − if $h_{\vartheta}(x) \ge 0.5$, then class = 1
- $\text{ if } h_{\mathcal{P}}(x) < 0.5$, then class = 0

Logistic Regression Model

Logistic Regression Model

Interpretation of hypothesis output

 $h_{\vartheta}(x)$ can be interpreted as the **estimated probability** that y = 1 given input x

So in the tumor example $h_{\vartheta}(x) = 0.8$ would mean that the patient has 80% chance of tumor being malignant (y = 1)

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

$$P(y=0|x;\theta)=1-P(y=1|x;\theta)$$

The Decision Boundary

Suppose we predict "y=1" if $h_{\vartheta}(x) \ge 0.5$ predict "y=0" if $h_{\vartheta}(x) < 0.5$

Decision Boundary

Non linear decision boundaries

Cost Function

$$J(\mathcal{G}_0, \mathcal{G}_1) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\mathcal{G}}(x^{(i)}), y^{(i)})$$

Cost function for logistic regression

$$Cost(h_g(x), y) = \begin{cases} -\log(h_g(x)) & \text{, if } y = 1\\ -\log(1 - h_g(x)) & \text{, if } y = 0 \end{cases}$$

If y=1 AND $h_{\vartheta}(x)=1$ (real data and our prediction agree) then the Cost = 0

If y=1 BUT $h_{\vartheta}(x) \rightarrow 0$ (real data and our prediction disagree) then the $Cost \rightarrow \infty$

This captures the intuition that if $h_{\vartheta}(x)=0$ (our algorithm predicts that $P(y=1|x,\vartheta)=0$) but y=1 we will penalise the learning algorithm by a very large cost

Cost function for logistic regression

$$Cost(h_{g}(x), y) = \begin{cases} -\log(h_{g}(x)) & \text{, if } y = 1\\ -\log(1 - h_{g}(x)) & \text{, if } y = 0 \end{cases}$$

If y=0 AND $h_{\vartheta}(x)=0$ (real data and our prediction agree) then the Cost=0

If y=0 BUT $h_{\vartheta}(x) \rightarrow 1$ (real data and our prediction disagree) then the $Cost \rightarrow \infty$

This captures the intuition that if $h_{\vartheta}(x)=1$ (our algorithm predicts that $P(y=1|x,\vartheta)=1$) but y=0 we will penalise the learning algorithm by a very large cost

Simplified cost function

$$J(\mathcal{G}) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\mathcal{G}}(x^{(i)}), y^{(i)})$$

$$Cost(h_{g}(x), y) = \begin{cases} -\log(h_{g}(x)) & \text{,if } y = 1\\ -\log(1 - h_{g}(x)) & \text{,if } y = 0 \end{cases}$$

(Note that y is always either 0 or 1)

$$Cost(h_{g}(x), y) = -y \log(h_{g}(x)) - (1-y) \log(1-h_{g}(x))$$

If
$$y = 1 : Cost(h_{g}(x), y) = -\log(h_{g}(x))$$

If
$$y = 0: Cost(h_g(x), y) = -\log(1 - h_g(x))$$

Gradient Descent

$$J(\mathcal{G}) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\mathcal{G}}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h_{\mathcal{G}}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\mathcal{G}}(x^{(i)})) \right]$$

To fit parameters θ we want to minimise the cost function J(θ): $\underset{g}{\arg\min} J(g)$

```
Repeat \{ \\ \vartheta_j \coloneqq \vartheta_j - \alpha \, \frac{\partial}{\partial \vartheta_j} \, J(\vartheta) \\ (simultaneously for all \vartheta_i)
```

Gradient Descent

$$J(\mathcal{G}) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\mathcal{G}}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h_{\mathcal{G}}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\mathcal{G}}(x^{(i)})) \right]$$

To fit parameters θ we want to minimise the cost function J(θ): $\underset{g}{\arg\min} J(g)$

```
Repeat \mathcal{G}_j \coloneqq \mathcal{G}_j - \alpha \sum_{i=1}^m \left(h_{\mathcal{G}} \left(x^{(i)}\right) - y^{(i)}\right) x_j^{(i)}
```

(simultaneously for all ϑ_i)

}

MULTICLASS CLASSIFICATION

Binary vs Multi-class classification

Binary: $y = \{0, 1\}$

Multi-class: $y = \{0, 1, ..., n\}$

One vs all (one vs rest)

One vs All Classification

Train a (logistic regression) classifier $h_g^{(c)}(x)$ for each class c to predict the probability that y = c

On a new input x, to make a prediction, pick the class c that maximizes the probability $h_g^{(c)}(x)$

$$\underset{c}{\operatorname{arg max}} \ h_{\mathcal{G}}^{(c)}(x) \Leftrightarrow \underset{c}{\operatorname{arg max}} \ P(y = c \big| x, \mathcal{G})$$

What's Next

	M	Т	w	Т	F	Lectures
Feb	8	9	10	11	12	Introduction and Linear Regression
	15	16	17	18	19	Logistic Regression, Normalization
	22	23	24	25	26	Regularization, Bias-variance decomposition
Mar	29	1	2	3	4	Normalization and subspace methods (dimensionality reduction)
	7	8	9	10	11	Probabilities, Bayesian inference
	14	15	16	17	18	Parameter Estimation, Bayesian Classification
	21	22	23	24	25	Easter Week
Apr	28	29	30	31	1	Clustering, Gausian Mixture Models, Expectation Maximisation
	4	5	6	7	8	Nearest Neighbour Classification
	11	12	13	14	15	
	18	19	20	21	22	Kernel methods
	25	26	27	28	29	Support Vector Machines, Support Vector Regression
May	2	3	4	5	6	Neural Networks
	9	10	11	12	13	Advanced Topics: Metric Learning, Preference Learning
	16	17	18	19	20	Advanced Topics: Deep Nets
	23	24	25	26	27	Advanced Topics: Structural Pattern Recognition
Jun	30	31	1	2	3	Revision
	Mar Apr May	Feb 8 15 22 Mar 29 7 14 21 Apr 28 4 11 18 25 May 2 9 16 23	Feb 8 9 15 16 22 23 Mar 29 1 7 8 14 15 21 22 Apr 28 29 4 5 11 12 18 19 25 26 May 2 3 9 10 16 17 23 24	Feb 8 9 10 15 16 17 22 23 24 Mar 29 1 2 7 8 9 14 15 16 16 21 22 23 Apr 28 29 30 4 5 6 11 12 13 18 19 20 25 26 27 May 2 3 4 9 10 11 16 17 18 23 24 25	Feb 8 9 10 11 15 16 17 18 22 23 24 25 Mar 29 1 2 3 7 8 9 10 14 15 16 17 21 22 23 24 Apr 28 29 30 31 4 5 6 7 11 12 13 14 18 19 20 21 25 26 27 28 May 2 3 4 5 9 10 11 12 16 17 18 19 23 24 25 26	Feb 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 Mar 29 1 2 3 4 7 8 9 10 11 14 15 16 17 18 21 22 23 24 25 Apr 28 29 30 31 1 4 5 6 7 8 11 12 13 14 15 18 19 20 21 22 25 26 27 28 29 May 2 3 4 5 6 9 10 11 12 13 16 17 18 19 20 23 24 25 26 27

LEGEND						
	Project Follow Up					
	Project presentations					
	Lectures					
	Project Deliverable due date					
	Vacation / No Class					