

RD-A152 234

AN EVALUATION OF THE PERFORMANCE OF A NEW STORM
TRACKING METHODOLOGY(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA T JAYACHANDRAN SEP 84 NPS-53-84-0007

1/1

UNCLASSIFIED

F/G 4/2

NL

END

END

DTIC

MICROCOPY RESOLUTION TEST CHART
MURRAY INSTRUMENTS CORPORATION, NEW YORK

AD-A152 234

DTIC FILE COPY

NPS-53-84-0007

NAVAL POSTGRADUATE SCHOOL
Monterey, California

(2)

DTIC
ELECTED
APR 9 1985
S D
B

AN EVALUATION OF THE PERFORMANCE OF
A NEW STORM TRACKING METHODOLOGY

by

Toke Jayachandran

September 1984

Technical Report For Period
October 1983 - September 1984

Approved for public release; distribution unlimited

Prepared for:

Naval Environmental Prediction Research Facility
Monterey, CA 93943

84 10 15 033

NAVAL POSTGRADUATE SCHOOL
MONTEREY CALIFORNIA 93943

R. H. Shumaker
Commodore, U. S. Navy
Superintendent

D. A. Schrady
Provost

This work was funded by the Naval Environmental Prediction Research Facility, Monterey, CA under Program Element 63207N, Project 7W0513, "OPERATIONAL APPL OF FCST MODEL VERIFICATION STAT."

Reproduction of all or part of this report is authorized.

Toke Jayachandran

Toke Jayachandran
Professor of Mathematics

Reviewed by:

Gordon E. Latta
Gordon E. Latta, Chairman
Department of Mathematics

Kneale T. Marshall
Kneale T. Marshall
Dean of Information &
Policy Sciences

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE
G-4 1473-1 AF-014-5601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AN EVALUATION OF THE PERFORMANCE OF A
NEW STORM TRACKING METHODOLOGY

ABSTRACT

This report contains the results of an exploratory statistical analysis to evaluate the performance of the Systematic Error Identification System (SEIS) and the Vortex Tracking Program (VTP), when tracking weather systems.

Classification	Top Secret
Declassify	None
Approved	None
Comments	None
Classification	None
Avail Date/By Codes	None
Avail End/or	None
Avail Special	None

A-1

AN EVALUATION OF THE PERFORMANCE OF A NEW STORM TRACKING METHODOLOGY

1. Introduction

Weather forecasts made by the Fleet Numerical Oceanography Center (FNOC) are based on a numerical weather prediction model called the Naval Operational Global Atmospheric Prediction System (NOGAPS). Until 1983 the only available measures of model performance were of a global nature (aggregated over all the weather systems monitored), such as means, variances and root mean square errors. The operational field forecasters, on the other hand, prefer error statistics relevant at the synoptic level, i.e., measures pertaining to forecasts of individual storms and troughs. Such measures would enable these forecasters to provide better subjective forecasts at the regional level. In 1982, the Naval Environmental Prediction Research Facility (NEPRF) began the development of the Systematic Error Identification System (SEIS); the primary data reduction methodology within SEIS is the Vortex Tracking Program (VTP). In the VTP, an atmospheric low/high pressure system is mathematically represented as a generalized six parameter elliptic function. The six parameters correspond with the primary features of a storm, viz., the amplitude A , R the semi-major of the elliptic representation of the storm, ϵ the eccentricity or the ratio of the semi-major to the semi-minor, α the orientation of the ellipse and X_o , Y_o the coordinates of the center of the storm. The units of measurement are millibars (mb) for A , and degrees with respect to the North for α while R , X_o , Y_o are measured in terms of a 63x63 FNOC hemispheric grid units. For each valid storm, the VTP uses an iterated non-linear least squares scheme to estimate A , R , ϵ , α , X_o , Y_o within the sea level pressure field for the analysis at time t as well as for the associated 12, 24, 36, 48 and 60 hour forecasts produced by NOGAPS. The iteration scheme requires a set of initial guess values for the parameters to produce the estimates for the analysis field at time t . These estimates are in turn used as guess values to produce the 12 hour forecasts; the 12 hour parameter

forecasts are used to generate the 24 hour forecasts and so on. The estimated parameter values for the analysis field at time t are also used as the first guesses for the analysis field at $t + 12$ hours. The estimates for the analysis field are usually referred to as verification values. Corresponding to each set of forecasted parameter values there will be a verification set obtained using the current (for the forecasted time) sea level pressure data. The difference between a forecasted value and its verification value is called the forecast error. SEIS, thus, provides the capability to track individual weather systems (by tracking the movement of the elliptic representation) and also a means to measure and analyze the tracking errors.

The modified NOGAPS model has been running on a real time basis since mid 1983. During the life cycle of each valid storm, twice each day (at noon and at midnight GMT), the elliptic parameter estimates are produced for the analysis field and the associated 12, 24, 36, 48 and 60 hour forecast fields. References [1], [2] and [3] discuss the VTP and SEIS models in more detail.

The objective of this project is the exploratory statistical analysis of the forecast errors to assess the performance of the SEIS/VTP model. Data on 80 storms, covering the North Pacific Ocean Basin, observed during the period January-May 1984 has been used in this study. The results of the analysis are described in the following sections. Section 2 contains overall measures of performance of SEIS/VTP, primarily summary statistics of forecast errors pooled over all the 80 storms. Error statistics pertaining to the tracking of individual storms are presented in Section 3. Conclusions and topics for further research are discussed in Section 4.

2. Analysis of Forecast Errors

A forecast error is defined as the difference between a forecasted parameter value and its verification value; an absolute forecast error is the absolute value of a forecast error. For each of the five forecasting periods (12, 24, 36, 48 and 60 hours) the forecast and the absolute forecast errors were subjected to various statistical analyses. Tables 1 and 2 contain the means (\bar{X}) and standard deviations (S) for these errors.

TABLE 1
SUMMARY STATISTICS OF FORECAST ERRORS

Forecast Period	Number of Samples	A		ϵ		R		α		x_0		y_0
		\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}
12	487	-1.53	5.20	-0.05	1.49	0.21	1.27	4.75	49.83	-0.06	0.77	0.13
24	429	-2.67	6.69	-0.07	1.47	0.19	1.38	4.60	52.14	-0.08	1.01	0.10
36	371	-4.11	7.68	-0.13	1.86	0.27	1.73	4.83	56.10	-0.14	1.22	-0.04
48	329	-5.14	8.50	-0.18	1.84	0.28	1.76	5.51	53.95	-0.11	1.34	-0.01
60	288	-5.08	9.61	-0.30	2.03	0.21	1.85	5.10	50.85	-0.09	1.45	-0.14

TABLE 2
SUMMARY STATISTICS OF ABSOLUTE FORECAST ERRORS

Forecast Period	Number of Samples	A		ϵ		R		α		x_0		y_0
		\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}
12	487	3.37	3.79	0.35	1.23	0.85	0.98	28.79	40.93	0.50	0.59	0.55
24	429	5.56	4.57	0.92	1.15	1.00	0.98	32.65	40.89	0.69	0.73	0.78
36	371	6.34	5.39	1.07	1.52	1.13	1.28	37.26	42.18	0.87	0.86	1.02
48	329	7.65	5.32	1.07	1.51	1.19	1.32	36.65	39.92	0.97	0.93	1.23
60	288	3.33	6.92	1.20	1.67	1.20	1.42	35.20	36.99	1.04	1.01	1.36

The following general conclusions appear warranted. The NOGAPS forecasting methodology does forecast the parameters A , R , ϵ , X_0 , Y_0 quite well. With regards to the forecasting of the orientation α , although the mean errors are not excessive, the standard deviations are somewhat high. In many cases the forecast errors are negative indicating a negative bias, i.e., the forecasted values tend to be on the low side of the verification values. With a few exceptions, the means and standard deviations increase with an increase in the forecasting period; this is to be expected in view of the higher levels of uncertainty involved.

The autocorrelations for lags 1 to 5 between the forecast errors are presented in Table 3. Except for the lag-one autocorrelations of about .30 for the forecast errors of A , X_O , Y_O the rest of the autocorrelations are quite negligible. This implies that a large error in forecasting a parameter at a given time will not have a lasting effect on future forecast errors. Also, the correlation matrices (correlations between the errors in forecasting A , α , R , ϵ , X_O , Y_O) in Table 4 show that these correlations are negligible with one exception -- the correlation between the errors in forecasting R and ϵ is around .5. This may be interpreted to mean (with the one exception) that a large forecast error for one parameter will not have a detrimental effect on the estimates of the other parameters.

In an attempt to model the statistical behavior, gamma distribution were fit to the 12, 24, 36 and 48 hour absolute forecast errors. The histograms with the fitted gamma distribution superimposed are in Figures 1-18. Gamma distributions appear to serve as good statistical models of the absolute forecast errors for A and R . In the other cases, the lack of fit may be attributed to a higher peakedness in the data; a Weibull distribution may provide a better fit. Although no graphs are presented, gamma distributions did not provide a good fit to the forecast errors (appropriately translated/shifted to make them positive) also. Further work will be necessary to determine the most appropriate statistical distributions to model the probabilistic behavior of the forecast errors. Proper statistical modeling of the error data could be useful for exploring the development of uncertainty contours (confidence regions) for the movements of weather systems.

TABLE 3

AUTOCORRELATIONS BETWEEN THE FORECAST ERRORS

Parameters	12 hr Forecasts				24 hr Forecasts				36 hr Forecasts				48 hr Forecasts				60 hr Forecasts								
	Lag 1	2	3	4	5																				
α	.22	.24	-.25	-.02	.04	.33	.11	-.06	-.09	-.10	.35	.02	-.07	-.05	-.05	.31	-.04	-.04	-.03	-.07	.28	.02	.01	.01	-.02
ϵ	.04	.07	-.10	-.01	.14	-.12	-.06	.03	-.01	.04	0	-.01	-.06	0	-.14	-.07	-.02	-.04	-.01	.16	-.03	.07	.11	.05	
γ	.02	.10	-.08	.05	0	.21	0	.03	.08	-.05	.29	.06	0	.03	.02	.31	.03	-.03	-.05	.13	-.03	0	-.03	.04	
β	-.05	-.01	.05	-.01	.02	-.04	.03	0	-.07	.02	-.03	.04	-.02	-.03	-.02	.06	.04	.01	.06	.04	.10	.06	.05	.02	-.08
X_0	.05	.05	0	-.04	-.06	.25	.05	-.07	-.01	-.03	.34	.06	.03	-.05	-.05	.41	.07	-.05	-.04	-.03	.29	.07	-.05	-.02	0
X_1	.22	.11	.10	-.02	-.07	.28	.08	-.02	.04	.07	.29	.11	.08	0	.06	.36	.06	0	-.04	.07	.36	.06	.02	-.09	-.09

TABLE 4

CORRELATION MATRICES FOR FORECAST ERRORS

Para-meters	12 hr Forecasts				24 hr Forecasts				36 hr Forecasts				48 hr Forecasts				60 hr Forecasts													
	A	ϵ	R	γ	X_0	X_1	X_2	X_3	A	ϵ	R	γ	X_0	X_1	X_2	X_3	A	ϵ	R	γ	X_0	X_1								
α	1	.08	-.03	.09	.14	.02	1	.18	.07	.10	.03	1	-.10	.04	.10	1	.23	.03	.04	-.04	.15	1	.19	.01	.04	-.04	.12			
ϵ	.08	1	.48	.11	.06	-.08	.18	1	.55	.02	.15	0	.10	1	.48	.02	.17	-.05	.23	1	.54	.04	.12	.05	.19	1	.57	.05	.08	-.08
γ	-.03	.48	1	.09	-.19	.01	.07	.55	1	-.04	-.13	.05	0	.48	1	-.04	-.11	.07	.03	.54	1	0	-.09	.12	.01	.57	1	.05	-.05	-.06
X_0	.09	.11	.09	1	.04	0	.07	.02	-.04	1	.01	-.01	.10	.02	.05	1	-.04	-.08	.04	0	1	-.02	-.10	.15	.05	1	.05	-.15	1	.05
X_1	-.14	.06	-.19	.04	1	-.11	.10	.15	-.13	.01	1	-.22	.04	.17	-.11	-.04	1	-.20	-.04	.12	.09	-.02	1	-.22	-.04	.08	-.05	.05	1	-.16
X_2	.02	.08	.01	.00	-.11	1	.03	0	.05	.01	-.22	1	.10	.05	.07	-.08	-.20	1	.15	.05	.12	-.10	.22	1	.12	-.08	-.06	-.15	-.16	1

3. Statistics of Individual Weather Systems

To evaluate the performances of SEIS, in tracking individual weather systems, and the NOGAPS model in forecasting weather systems, data on 20 storms with at least 10 records per storm (i.e., 10 sets of forecasted and verification values per storm) were examined. The means (\bar{X}) and standard deviations (S) of the forecast errors for these 20 storms are in Table 5.

The trends in the forecast errors are similar to the global trends observed in the previous section; with the exception of the forecasting of α , the forecast errors are very small even at the individual storm level. The iterated non-linear least square procedure in VTP requires initial guess values for each of the parameters A , ε , R , α , X_0 , Y_0 ; the initial guess for α is always specified as zero. We conjecture that this may be the cause of the somewhat erratic forecasts of α . A better initial guess, closer to the true value, may result in a better forecast of α . The SEIS/VTP appears to be exceptionally good in forecasting the center of a storm.

For each of the 20 storms the forecasted values of A , X_0 and Y_0 were plotted against their respective verification values. In several cases, the scatter plots indicated an approximate linear relationship between the forecasted and verification values. A few of these scatter plots are shown in Figures 19-30. A linear regression analysis was, therefore, performed with the forecasted value as the independent variable and the verification value as the dependent variable. The least squares estimates of the intercept and slope of the fitted line and also the estimated coefficient of correlation (a measure of goodness of the fitted line) are in Table 6.

TABLE 5

SUMMARY STATISTICS OF FORECAST ERRORS FOR INDIVIDUAL STORMS

Storm Number	Number of Records	A		ϵ		R		α		x_o		x_{o_o}	
		\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s	\bar{x}	s
1	19	-9.9	5.2	0.6	1.3	0.8	1.5	4.4	99.0	5.3	0.8	0.1	0.3
2	18	-10.3	5.1	0.5	1.2	0.7	1.5	4.0	101.7	0.1	0.8	-0.1	0.3
3	34	-1.2	4.9	-0.6	1.5	-0.3	1.9	9.3	24.5	-5.2	0.7	-1.1	1.4
4	18	-6.4	5.1	-0.7	2.8	0.5	2.8	-3.3	20.3	1.1	1.4	-0.8	1.3
5	60	-5.6	10.1	0.1	0.9	0.6	1.4	-5.0	35.5	0.4	1.1	-0.5	1.8
6	19	-1.3	3.9	-0.2	1.0	1.4	1.7	6.9	31.3	-1.7	1.3	3.2	1.8
7	27	1.3	3.9	0.1	0.4	0.5	0.9	34.9	32.5	0.1	0.8	-0.9	1.4
8	41	-8.0	9.3	-1.3	3.3	0.7	2.3	3.5	47.2	-0.7	1.3	0.7	1.4
9	25	-3.2	16.0	-2.6	4.0	-0.5	1.4	11.0	74.8	-1.1	1.6	0.5	0.8
10	26	4.8	7.2	-0.1	2.4	0.4	1.1	-13.4	86.2	0.8	1.6	-0.4	0.5
11	23	-6.5	12.8	0.4	0.6	0.7	1.6	9.3	55.5	0.1	1.3	0.0	0.5
12	13	0.4	5.5	1.5	2.3	0.2	0.7	-10.7	29.2	0.1	0.9	0.0	0.5
13	63	-2.4	3.3	-0.1	1.7	-0.3	1.1	-6.9	54.4	0.5	1.1	0.8	0.6
14	10	-11.5	9.6	-0.1	0.3	-0.8	1.1	22.1	66.6	1.0	1.0	-0.2	0.5
15	20	-0.7	6.3	0.9	1.4	0.9	2.1	-7.3	36.7	1.2	2.0	-0.9	2.0
16	27	-2.0	6.7	-1.1	1.2	-0.9	2.0	7.5	33.0	-0.1	1.3	0.1	1.2
17	11	-6.6	4.2	-0.3	0.7	-0.7	0.8	-17.6	17.2	0.0	0.5	0.3	0.5
18	25	-3.4	6.7	-0.2	1.1	0.2	1.5	12.9	52.0	0.2	1.1	0.9	2.2
19	12	-5.1	9.4	0.3	1.4	-0.1	1.1	-11.0	54.8	0.1	1.0	0.1	1.9
20	51	-3.8	6.5	-0.5	2.7	-1.3	2.9	-20.1	36.8	-0.4	0.5	0.7	0.7

CAMBODIA

30

GAMMA DENSITY FUNCTION, N=439

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=439

GAMMA PROBABILITIES P_{i,j}

CUMULATIVE DISTRIBUTION

Y SECTION		MOD (12(.6))	
LARC	MOD E[12(.6)]	ALPHA	BETA
SAMPLE SIZE	439	0.015451	0.007751
MINIMUM	100	0.005451	0.007751
MAXIMUM	5,300	0.007751	0.0013513
CHIPPING	NONE		
EST. METHOD	WEIGHTED LEAST SQUARES		

COEFFICIENT MATRIX OF	
PARABOLA (ESTIMATES)	
ALPHA	0.000114
BETA	0.00013513

COEFFICIENTS OF FIT	
SAMPLE	FITTED
MEAN	0.01544
STD DEV	0.00477
STDEV SS	2.0459
INTERQS	15.344
INTERQS	15.344

PERCENTILES SAMPLE	
5	0.1
10	0.1
20	0.2
30	0.4
40	0.6
50	0.8
60	1.0
70	1.2
80	1.4
90	1.6
95	1.8
99	2.0

FITTED	
0.1	0.05075
0.2	0.08720
0.4	0.21470
0.6	0.46000
0.8	0.71300
1.0	0.96500
1.2	1.21700
1.4	1.46900
1.6	1.72100
1.8	1.97300
2.0	2.22500

AS AND CV SIGNIF. LEVELS NOT EQUAL WITH COMPUTED PARAMETERS

PARABOLA ESTIMATE (0.000114) USED
ALPHA 1.2001 0.0011
BETA 0.49016 0.49723

Fig. 6

12-hour Absolute Forecast Errors for γ_0

12-hour Absolute Forecast Errors for No.

41

四

2-hour Absolute Forecast Errors for 1

GAMMA DENSITY FUNCTION, N=436

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=436

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

SELECTION	MOD F(2[.5])	
LIMIT	ALL	
SAMPLE SIZE	436	
MINIMUM	100	
MAXIMUM	6700	
CENSORED	None	
EST. METHOD	MAXIMUM LIKELIHOOD	
Sample	FITTED	
MEAN	0.8451	
ST. DEV.	0.8447	
BEST SS	2.9700	
RSS	0.5439	
AD	0.0166	
CV	0.0000	
Probabilities Sample	FITTED	
5	0.1	0.072988
10	0.1	0.13474
15	0.1	0.21346
20	0.1	0.30097
25	0.2	0.38355
30	0.2	0.46498
35	0.3	0.53603
40	0.3	0.59701
45	0.3	0.64793
50	0.3	0.68875
55	0.3	0.72046
60	0.3	0.74808
65	0.3	0.76959
70	0.3	0.78406
75	0.3	0.79151
80	0.3	0.79151
85	0.3	0.78406
90	0.3	0.76959
95	0.3	0.74808
100	0.3	0.72046
110	0.3	0.68875
120	0.3	0.64793
130	0.3	0.59701
140	0.3	0.53603
150	0.3	0.46498
160	0.3	0.38355
170	0.3	0.30097
180	0.3	0.21346
190	0.3	0.13474
200	0.3	0.072988
210	0.3	0.00000
220	0.3	-0.072988
230	0.3	-0.13474
240	0.3	-0.21346
250	0.3	-0.30097
260	0.3	-0.38355
270	0.3	-0.46498
280	0.3	-0.53603
290	0.3	-0.60701
300	0.3	-0.64793
310	0.3	-0.68875
320	0.3	-0.72046
330	0.3	-0.74808
340	0.3	-0.76959
350	0.3	-0.78406
360	0.3	-0.79151
370	0.3	-0.79151
380	0.3	-0.78406
390	0.3	-0.76959
400	0.3	-0.74808
410	0.3	-0.72046
420	0.3	-0.68875
430	0.3	-0.64793
440	0.3	-0.60701
450	0.3	-0.53603
460	0.3	-0.46498
470	0.3	-0.38355
480	0.3	-0.30097
490	0.3	-0.21346
500	0.3	-0.13474
510	0.3	-0.072988
520	0.3	0.00000
530	0.3	0.072988
540	0.3	0.13474
550	0.3	0.21346
560	0.3	0.30097
570	0.3	0.38355
580	0.3	0.46498
590	0.3	0.53603
600	0.3	0.60701
610	0.3	0.64793
620	0.3	0.68875
630	0.3	0.72046
640	0.3	0.74808
650	0.3	0.76959
660	0.3	0.78406
670	0.3	0.79151

COVARIANCE MATRIX OF
PARAMETER ESTIMATES

ALPHA	0.000000
BETA	0.000000
DELTA	0.000000
SIGMA	0.000000

DEGREES OF FREEDOM

DELTA	4
SIGMA	0.020003
KOLMAGEN	0.000074
SIGMA ²	0.0000027
CHI-SQUARE	0.000000
SIGMA ³	0.000000
ANDREW	0.000000
SIGMA ⁴	0.000000
WILKS	0.000000

45, AD AND SIGMA LEVELS NOT REACHED WITH ESTIMATED PARAMETER

PARAMETER	ESTIMATE	LOWER CONFIDENCE INTERVAL	UPPER CONFIDENCE INTERVAL
ALPHA	0.100000	0.099999	0.100001
BETA	0.000000	0.000000	0.000000

Fig. 3

12-HOUR ABSOLUTE FORECAST ERRORS FOR R

GAMMA DENSITY FUNCTION, N=443

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=443

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

SAMPLE	MOD [12]	CUMULATIVE PROBABILITY
ALL	ALL	0.8500
LABEL	MOD [12]	0.8500
SAMPLE SIZE	443	443
ESTIMATE	1.000	1.000
SEEDS	10,700	10,700
CHI-SQ	0.000	0.000
EST. SE (MOD)	0.000	0.000

COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA	BETA
0.003113	0.003748
0.003748	0.003113

TESTS TO DETERMINE IF FIT IS GOOD

TEST	STATISTIC	P-VALUE
CHI-SQ TEST	0.000	1.000
KOLMOGOROV-SMIRNOV TEST	0.000	1.000
SHAPIRO-WILK TEST	0.000	1.000
ANDERSON-DARLING TEST	0.000	1.000

VS. AD AND CV SIGNIF. LEVELS NOT EXACT IN THE ESTIMATED STANDARD ERRORS

TEST	CRITICAL VALUE	TEST STATISTIC	P-VALUE
CHI-SQ TEST	0.8500	0.0000	1.0000
ALPHA	0.04703	0.0000	1.0000
BETA	0.00279	0.0000	1.0000

Fig. 2

12-hour Absolute Forecast Errors for

GAMMA DENSITY FUNCTION, N=482

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=482

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

SELECTION		MOD F[12[1,1]]	
		ALL	WITH F[12[1,1]]
DATA		482	
SAMPLE	N=12		
MINIMUM	.100		
MAXIMUM	.51200		
ESTIMATING	HOME		
EST. METHOD	WEIGHTED LEAST SQUARES		
PARAMETERS	SAMPLE	FITTED	
	MEAN	3.9179	
	STDEV	3.7054	
	SKEWNESS	2.1835	1.8812
	KURTOSIS	11.3008	8.3871
PARAMETERS	SAMPLE	FITTED	
	5.	0.1	0.22976
	10.	0.4	0.46822
	25.	1.1	1.2601
	50.	2.6	2.8265
	75.	5.3	5.4187
	90.	8.7	8.7117
	95.	11.1	11.282
PERCENTILES	5%	0.11100	
	10%	0.22976	
	25%	0.46822	
	50%	1.2601	
	75%	2.8265	
	90%	5.4187	
	95%	8.7117	
TESTS	AD	0.1168	0.0896
	KS	1.3616	1.2011
	MG	3.0163	4.0235

Fig. 1

12-hour absolute forecast errors for 5.

REFERENCES

- [1] Tsui, T. L. and Brody, L. R., "Objective Storm Tracking System", Preprint: Proceedings of the 9th Conference on Weather Forecasting & Analysis, Seattle, WA, June 28-July 1, 1982.
- [2] Harr, P. A., Brody, L. R. and Tsui, T. L., "Verification Statistics of the Naval Operational Global Atmospheric Prediction System Tailored For The Field Forecaster", Extended Abstracts: Sixth Conference on Numerical Weather Prediction, Omaha, NE, June 6-9, 1983.
- [3] Harr, P. A., Tsui, T. L. and Brody, L. R., "Model Verification Statistics Tailored For The Field Forecaster", Preprints: 8th Conference on Probability and Statistics in Atmospheric Sciences, Hot Spring, Arkansas, 1983.

The overall conclusion is that the incorporation of the SEIS and VTP methodology within the NOGAPS model has improved the storm tracking capability of NOGAPS and the elliptic representation of storms provides a good means of providing synoptic level error statistics to the field forecasters.

We propose the following topics for further study and research:

1. Determine the most appropriate probability distributions to describe the probabilistic behavior of the forecast errors. The indications are that the Weibull family may provide a good fit to the absolute error data.
2. Develop procedures to generate uncertainty contours/confidence regions around the forecasted elliptic representations of a storm based on the probability distributions of the forecast errors.
3. Examine more data to determine the functional relationship (if it exists) between the forecasted and verification values of the elliptic parameters. Different stratification schemes for the storm data such as by geographic regions and by climatic seasons could lead to the identification of sources of systematic errors and the means of remediation.

4. Conclusions and Recommendations

This study has demonstrated that the NOGAPS model performs exceedingly well in forecasting five of the six parameters of the elliptic representation of a storm. The maximum mean absolute error in forecasting the amplitude A is 8.38 (Table 2) which is less than 1% of the verification values that range between 900 and 1,000; the maximum standard deviation of these errors is 6.92. Similar positive statements apply to the errors in forecasting ϵ , R, X_o , Y_o as can be seen from Tables 1 and 2 and the single high mode close to zero in the histograms (Figure's 1-18) of absolute errors.

The autocorrelations (Table 3) between the errors in successive forecasts of any of the six parameters indicate that these errors may, for all practical purposes, be treated as independent. Similarly, for each forecast period, the errors in forecasting the parameters A, ϵ , R, α , X_o , Y_o appear to be independent (Table 4). What this implies is that a large error in forecasting a parameter may not have a lasting effect on other forecasts nor will it have a carry over effect on forecasting the other parameters.

Even at the individual storm level, the mean forecast errors and their standard deviations are quite small; once again the exception is the parameter α . Scatter plots of the forecasted values versus the verification values indicated a linear relationship between the two sets, in several cases. Regression analyses to fit straight lines to the data confirmed this observation (Table 6 and Figures 19-30). When the data was stratified according to the forecasts period, e.g., all 12 hour forecasts are treated as one group, and a separate regression analysis performed for each group the linear relationship was accentuated (Table 7).

TABLE 7
ESTIMATED REGRESSION PARAMETERS FOR INDIVIDUAL FORECAST PERIOD

Storm No.	Forecast Period	A			X _o			Y _o		
		Intercept	Slope	Correlation	Intercept	Slope	Correlation	Intercept	Slope	Correlation
5	12	275.3	0.72	0.77	3.4	0.81	0.80	10.6	0.68	0.83
	24	476.2	0.52	0.72	7.4	0.56	0.78	6.0	0.83	0.96
	36	748.6	0.24	0.37	10.1	0.40	0.82	12.6	0.64	0.85
	48	1062.5	-0.08	-0.09	12.7	0.26	0.66	19.0	0.45	0.60
	60	1235.6	-0.25	-0.24	13.4	0.23	0.72	22.5	0.34	0.61
13	12	454.6	0.54	0.55	-2.0	1.11	0.96	-0.1	0.99	0.99
	24	572.5	0.43	0.52	3.3	0.81	0.94	-0.1	0.98	0.99
	36	740.7	0.26	0.39	6.4	0.63	0.78	0.1	0.97	0.99
	48	751.3	0.25	0.54	4.4	0.78	0.80	-1.4	1.01	0.99
	60	762.9	0.27	0.74	-1.0	0.99	0.78	-1.0	0.99	0.99
18	12	256.9	0.74	0.77	2.2	0.90	0.92	0.1	1.00	0.96
	24	489.0	0.50	0.49	3.7	0.81	0.81	2.8	0.93	0.93
	36	454.4	0.54	0.60	6.4	0.67	0.60	8.1	0.78	0.81
	48	616.6	0.37	0.45	14.9	0.25	0.22	14.8	0.57	0.66
	60	437.2	0.56	0.61	14.3	0.27	0.28	16.8	0.51	0.60
19	12	277.6	0.72	0.92	0.8	0.96	0.99	-0.7	1.02	0.99
	24	488.8	0.51	0.78	-0.8	1.05	0.99	-2.3	1.06	0.99
	36	646.1	0.35	0.54	-1.6	1.08	0.96	-1.9	1.06	0.94
	48	701.0	0.30	0.50	-4.3	1.20	0.94	-1.2	1.04	0.91
	60	819.9	0.18	0.38	-3.9	1.17	0.89	3.5	0.90	0.86

that can be made from the correlations in Table 7 is that the 12 and 24 hour forecasts, and to a lesser extent the 36 hour forecasts correspond well with the verification values; the efficiency of the forecasting scheme appears to drop after the 36 hour forecasts.

The regression analyses confirmed what was observed from the scatter plots, namely, a linear fit in many cases. If the functional relationship between the forecasted and verification values can be determined with good precision, corrective action can be taken to remove this source of systematic error in the forecasting scheme. However, the results in Table 6 do not lend themselves to the determination of the functional relationship. More data needs to be examined and different ways of stratifying the data such as by geographic regions and/or climatic seasons may prove to be profitable. Another possibility is to group the available records for a storm according to the forecast periods, i.e., all 12 hour forecasts as one group, all 24 hour forecasts as another group, etc. Of course, this scheme can only be applied to storms with large numbers of records. We tried this approach on 4 out of the 20 storms (storms 5, 13, 18 and 19, each with 60 or more records). The records for each storm were formed into five groups, one for each of the forecast periods and a separate regression analysis was performed for each group.

The estimated regression parameters in Table 7 reveal a much stronger linear relationship when the data is stratified according to the forecast period. Also, one can discern a definite pattern in the relationship between the forecasted and verification values of the storm's amplitude A. For the 12 hour forecasts, the relationship is linear with an intercept value of about 260 and slope .7; the intercept and slope values for the 48 hour forecasts are around 475 and .5 respectively. This is only an empirical observation and a more extensive study will be necessary to confirm this. Even though there is a strong correlation between the forecasted and verification values of X_o and Y_o , no pattern is evident in the estimates of the intercepts and slopes of the fitted lines. Another observation

TABLE 6
ESTIMATED REGRESSION PARAMETERS

Storm No.	A			X_0			Y_0		
	Intercept	Slope	Correlation	Intercept	Slope	Correlation	Intercept	Slope	Correlation
1	212.9	0.79	0.91	12.1	0.45	0.55	28.8	0.25	0.51
2	630.2	0.37	0.90	15.5	0.25	0.64	38.9	-0.05	0.45
3	984.9	0.003	0.00	2.7	0.84	0.92	22.9	0.29	0.30
4	495.8	0.50	0.37	20.9	0.09	0.16	23.9	0.09	0.10
5	732.7	0.26	0.33	11.3	0.35	0.70	13.1	0.62	0.82
6	962.7	0.04	0.05	11.3	0.45	0.14	-7.3	1.12	0.73
7	589.3	0.41	0.75	2.0	0.88	0.75	15.5	0.61	0.95
8	357.8	0.64	0.64	7.5	0.68	0.87	12.4	0.57	0.86
9	1066.7	-0.08	0.09	8.5	0.63	0.85	8.7	0.69	0.91
10	714.8	0.28	0.28	-0.7	0.99	0.82	15.1	0.46	0.47
11	626.6	0.37	0.29	25.9	-0.20	-0.29	4.6	0.88	0.85
12	143.1	0.86	0.47	6.1	0.73	0.80	6.8	0.75	0.82
13	745.0	0.25	0.47	2.0	0.87	0.86	-0.2	0.98	0.99
14	-133.0	1.14	0.33	-4.0	1.19	0.48	10.7	0.59	0.89
15	446.2	0.55	0.67	7.9	0.60	-0.03	8.8	0.75	-0.29
16	640.4	0.35	0.79	-1.6	1.07	0.80	-0.6	1.01	0.60
17	349.5	0.65	0.09	4.1	0.81	0.32	0.4	0.97	0.38
18	812.9	0.13	0.59	8.4	0.52	0.60	0.3	0.99	0.81
19	261.3	0.74	0.57	22.5	-0.02	0.95	30.1	-0.09	0.93
20	959.5	0.04	0.31	10.1	0.50	0.91	27.9	0.24	0.97

GAMMA DENSITY FUNCTION, N=396

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=396

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

	MOD E24[.2]
ALPHA	4.00
SAMPLE SIZE	396
MINIMUM	100
MAXIMUM	1000
CENSURING	NONE
LST METHOD	MAXIMUM LIKELIHOOD
COEFFICIENTS OF VARIATION OF PARAMETERS	
ALPHA	0.000000000000000
BETA	0.000000000000000
ALPHA	0.000000000000000
BETA	0.000000000000000
COEFFICIENTS OF VARIATION OF ESTIMATES	
ALPHA	0.000000000000000
BETA	0.000000000000000
ALPHA	0.000000000000000
BETA	0.000000000000000
COEFFICIENTS OF VARIATION OF ESTIMATED PARAMETERS	
ALPHA	0.000000000000000
BETA	0.000000000000000
PERCENTILES SAMPLE	ESTIMATED
5	0.1
10	0.1
20	0.3
50	0.9
70	1.2
80	1.4
90	1.5
95	1.5
CHI SQUARED	7.44
RELATIVE ERROR	4
SIGMA	0.11348
NON-SIGMA	0.10100
SIGMA	0.0000134
NON-SIGMA	0.74871
SIGMA	0.019
NON-SIGMA	<0.01

FIG. 8
24-hour Absolute Forecast Errors for σ

Fig. 8
24-hour Absolute Forecast Errors for σ

FIG. 8
24-hour Absolute Forecast Errors for σ

GAMMA DENSITY FUNCTION, N=398

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=398

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

SELECTION	
ALG	ALG, L24[.3]
ALG	ALG, L24[.3]
SAMPLE SIZE	398
AVAILABLE	100
DATA	5200
CHARTING	None
TEST METHOD	Maximum Likelihood
SAMPLE	11110
MEAN	0.074
STD DEV	0.070
STDEV SS	0.070
SAMPLE CV	0.94
SAMPLE STDEV	0.074
PARAMETERS	Estimated
3	0.1
10	0.7
20	0.4
50	0.1
75	1.5
80	2.4
85	3.3
90	2.8
95	3.9
100	4.4
110	4.8
120	5.2
130	5.6
140	6.0
150	6.4
160	6.8
170	7.2
180	7.6
190	8.0
200	8.4
210	8.8
220	9.2
230	9.6
240	10.0
250	10.4
260	10.8
270	11.2
280	11.6
290	12.0
300	12.4
310	12.8
320	13.2
330	13.6
340	14.0
350	14.4
360	14.8
370	15.2
380	15.6
390	16.0
400	16.4
410	16.8
420	17.2
430	17.6
440	18.0
450	18.4
460	18.8
470	19.2
480	19.6
490	20.0
500	20.4
510	20.8
520	21.2
530	21.6
540	22.0
550	22.4
560	22.8
570	23.2
580	23.6
590	24.0
600	24.4
610	24.8
620	25.2
630	25.6
640	26.0
650	26.4
660	26.8
670	27.2
680	27.6
690	28.0
700	28.4
710	28.8
720	29.2
730	29.6
740	30.0
750	30.4
760	30.8
770	31.2
780	31.6
790	32.0
800	32.4
810	32.8
820	33.2
830	33.6
840	34.0
850	34.4
860	34.8
870	35.2
880	35.6
890	36.0
900	36.4
910	36.8
920	37.2
930	37.6
940	38.0
950	38.4
960	38.8
970	39.2
980	39.6
990	40.0
1000	40.4

CV, AL, AND CV SIGNIF. LEVELS NOT FOUND WITH ESTIMATED PARAMETERS
PARAMETER ESTIMATE LOWER UPPER
ALG 1.38E3 1.21 1.55E3
CV 0.77E0 0.69E0 0.89E3

Fig. 6
MOD E24[.3]

24-hour Absolute Forecast Errors for R

Fig. 9

GAMMA DENSITY FUNCTION, N=411

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=411

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

ESTIMATION		COVARIANCE MATRIX OF PARAMETER ESTIMATES	
ALPHA	0.072439	0.1A	
SAMPLE SIZE	411	ALPHA	0.007439
MINIMUM	100	BETA	0.174009
MAXIMUM	177,000		
CENSORING	none		
EST. METHOD	ENTROPY (INFORMATION)		
SAMPLE	FITTED	OUTLINE OF FIT	
MEAN	34.078	1.000	CHI-SQUARE
STD. DEV.	4.130	2.300	0.002111
STDEV.SQ	17.080	3.810	7. ORDER
STDEV.SQ	17.080	2.100	0.000000
NAPOTSIS	5.634	10.13	STUDENT'S T
			3.1300
PERCENTILES SAMPLE	FITTED		0.000000
5	1.5	1.000	0.000000
10	2	2.300	0.000000
25	7.0	3.810	0.000000
50	17.0	2.100	0.000000
75	41.3	0.130	0.000000
90	67.4	0.400	0.000000
95	157.7	10.13	0.000000
			0.000000
5%, 10% AND CV SIGNIF. LEVELS NOT FNUCT WITH ESTIMATED PARAMETERS			
PARAMETER ESTIMATE	0.072439	0.007439	0.000000
ALPHA	0.072439	0.007439	0.000000
BETA	0.174009	0.174009	0.000000

Fig. 10

24-hour Absolute Forecast Errors for

Fig. 11

24-hour Absolute Forecast Errors for No.

27-

Fig. 12

24-hour Absolute Forecast Errors for V_C

GAMMA DENSITY FUNCTION, N=369

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=369

GAMMA PROBABILITY PLOT

36-hour ABSOLUTE FORECAST ERRORS FOR MOD E 36[1]

Fig. 13

36-hour Absolute Forecast Errors for MOD E 36[1]

COVARIANCE MATRIX OF PARAMETER ESTIMATES		
ALPHA	0.0000	0.0000
BETA	0.0000	0.0000
ALPHA BETA	0.0000	0.0000
ALPHA BETA	0.0000	0.0000

GOODNESS OF FIT		
CHI-SQUARE	0.0000	0.0000
DE FERRE	0.0000	0.0000
HILLIER	0.0000	0.0000
HODGSON	0.0000	0.0000
SLOANE	0.0000	0.0000
CRAVEN & ALLEN	0.0000	0.0000
SHEARER	0.0000	0.0000
ANDERSON	0.0000	0.0000
SIGMAR	0.0000	0.0000
SHIRK	0.0000	0.0000
ANDERSON-SIGMAR	0.0000	0.0000
SIGMAR-SHIRK	0.0000	0.0000
ANDERSON-SIGMAR-SHIRK	0.0000	0.0000

TESTS FOR EQUIVALENCE		
TEST FOR EQUIVALENCE	0.0000	0.0000
TEST FOR EQUIVALENCE	0.0000	0.0000
TEST FOR EQUIVALENCE	0.0000	0.0000

GAMMA DENSITY FUNCTION, N=344

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=344

GAMMA PROBABILITY PLOT

CUMULATIVE DISTRIBUTION

	MOD E36[:2]	ALL CDF[:2]
LEVEL:	0.05	0.05
SAMPLE SIZE:	344	344
ESTIMATE:	1.00	1.00
CHISQ:	16.200	16.200
TEST METHOD:	MAXIMUM LIKELIHOOD	MAXIMUM LIKELIHOOD
PERCENTILES SAMPLE		FITTED
5:	0.1	0.100
10:	0.2	0.118
20:	0.3	0.136
50:	0.5	0.177
75:	0.75	0.241
80:	0.8	0.261
90:	1.0	0.341
95:	1.25	0.417
99:	2.0	0.517
99.9:	4.0	0.700

PERCENTILE LEVELS OF
CONFIDENCE OF 95%
CONFIDENCE OF 99%
CONFIDENCE OF 99.9%
CONFIDENCE OF 99.99%

95%, 99%, AND 99.9% LEVELS NOT EXACT IN THE ESTIMATED PERCENTILES

PERCENTILE	ESTIMATE	LIMIT	LIMIT
5:	0.100	0.087	0.113
10:	0.118	0.105	0.131
20:	0.136	0.122	0.149

Fig. 14
36-hour Absolute Forecast Errors

GAMMA DENSITY FUNCTION, N=342

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=342

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

X SELECTION	MOD E36[3]
LEVEL	ALL
SAMPLE SIZE	342
MINIMUM	1.000
MAXIMUM	7.800
CHARACTER	WEIBULL
EST. METHOD	MAXIMUM LIKELIHOOD

COVARIANCE MATRIX OF PARAMETER ESTIMATES	
ALPHA	BETA
ALPHA	0.000000000000000
BETA	0.000000000000000

NUMBER OF ITY: 7.8373
 OPT-FUNCTN: 0.18750
 OPT-METHOD: STOCH
 NUMBER OF ITERATIONS: 0.18644
 NUMBER OF STEPS: 0.07000
 NUMBER OF CHANGES IN STEP: 0.00000
 NUMBER OF SIGNIF: 0.11
 NUMBER OF SIGNIF-ONE: 0.00000
 NUMBER OF SIGNIF-TWO: 0.15
 NOTE: ALPH AND BETA IS SIGNIF. LEVELS NOT EXACT WITH ESTIMATED PARAMETERS

PARAMETER	ESTIMATE	LIMIT
ALPHA	1.7000	1.7000
BETA	1.0700	1.0700

Fig. 15

26-hour Absolute Forecast Errors for R

GAMMA DENSITY FUNCTION, N=356

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=356

GAMMA PROBABILITY PLOT

GAMMA DISTRIBUTION

X	MOD E36[:4]	SAMPLE	FITTED	GOODNESS OF FIT
SELECTION	ALL			
LEVEL	MOD E36[:4]			
SAMPLE SIZE	356			
ESTIMATES	1.100			
DATAFILE	175.000			
OPTIONS	NONE			
EST. METHOD:	WILMOTT & REED			
PERCENTILES SAMPLE				
5:	1.6	1.318	1.311	CHI-SQUARE
10:	2.6	3.072	3.070	WEIGHTED
25:	6.7	9.450	9.450	SKEWNESS
50:	12	15.184	15.184	MOLLAHAN
75:	17.9	22.770	22.770	SIGMAR
80:	19.0	22.837	22.837	CHI-SQUARE
90:	22.45	22.45	22.45	SKEWNESS
95:	24.75	22.45	22.45	MOLLAHAN
				SIGMAR

NO. 40. AND CV STAND. LEVELS NOT CRITICAL WITH ESTIMATED POWER TESTS
PARAMETER ESTIMATE LOWER UPPER
ALPHA 0.65774 0.74877 0.85725
BETA 40.300 37.976 42.942

MOD E36[:4]

Fig. 16

36-hour Absolute Forecast Errors for

GAMMA DENSITY FUNCTION, N=352

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=352

GAMMA PROBABILITY PLOT

CUMULATIVE DISTRIBUTION

```
X      MOD E36[:5]
SELECTION: ALL
LABEL: MOD E36[:5]
SAMPLE SIZE: 352
MINIMUM: 1.000
MAXIMUM: 4.880
GRADING: 100
EST. METHOD: MAXIMUM LIKELIHOOD
```

PROBABILITIES	SAMPLE	FITTED
.01	0.0147	0.01234
.10	0.121	0.12722
.25	0.233	0.24545
.50	0.466	0.51674
.75	1.124	1.00000
.90	2.13	1.80000
.95	2.77	2.4171

COEFFICIENTS OF FITTING ESTIMATES FOR PARAMETERS
 α ALPHAS: 0.48011 1.267 1.666
 β BETAS: 0.43118 0.32029 0.72510

NOTES: AD AND CV SIGNIFICANCE LEVELS NOT EXACT WITH ESTIMATED PARAMETER'S

Fig. 17

36-hour Absolute Forecast Errors for N_O

GAMMA CUMULATIVE DISTRIBUTION FUNCTION, N=349

GAMMA PROBABILITY PLOT

CUMULATIVE DISTRIBUTION

```
X MOD E36[.6]
SELECTION ALL
LABEL MOD E36[.6]
SAMPLE SITE 300
MINIMUM 100
MAXIMUM 1000
RESPONSE MODE
EST. METHOD: MARSHALL LINDBERG
```

SAMPLE	FITTED	CONFIDENCE INTERVAL OF PARAMETER ESTIMATES
AVERAGE	1.007	ALPHA = 0.000311 TO 0.000320 BETA = 0.000320 TO 0.000327
STD. DEV.	1.170	
STDEV.S.	1.140	
MAXIMUM	7.407	
MINIMUM	0.200	

PERCENTILES SAMPLE	FITTED	CONFIDENCE INTERVAL OF FIT
0.1	0.0740	0.0740 TO 0.0740
0.2	0.1	0.1421 TO 0.1421
0.3	0.2	0.3214 TO 0.3214
0.4	0.3	0.4007 TO 0.4007
0.5	0.7	0.6773 TO 0.6773
0.6	1.3	1.3117 TO 1.3117
0.7	2.4	2.4134 TO 2.4134
0.8	3.7	3.7000 TO 3.7000

NOTE: AD. AND CV SIGNIF. LEVELS NOT EXACT WITH ESTIMATED PARAMETER
ESTIMATE: ESTIMATE 0.000311
ALPHA: 0.000311
BETA: 0.000320

Fig. 18

36-hour Absolute Forecast Errors for \bar{Y}_0

SCATTER PLOT, SSZ=19

FIGURE 19
FORECASTED VALUES OF AMPLITUDE - STORM 2

SCATTER PLOT, SSZ=27

FIGURE 20
FORECASTED VALUES OF AMPLITUDE - STORM 10

SCATTER PLOT, SSZ=41

FIGURE 21
FORECASTED VALUES OF AMPLITUDE - STORM 11

FIGURE 22
FORECASTED VALUES OF AMPLITUDE - STORM 20

SCATTER PLOT, SSZ=34

FIGURE 23

FORECASTED VALUE OF X_0 - STORM 4

SCATTER PLOT, SSZ=41

FIGURE 24

FORECASTED VALUE OF X_O - STORM 11

SCATTER PLOT, SSZ=25

SCATTER PLOT, SSZ=63

FIGURE 26
FORECASTED VALUE OF X_O - STORM 16

SCATTER PLOT, SSZ=27

FIGURE 27
FORECASTED VALUES OF Y_O - STORM 10

SCATTER PLOT, SSZ=41

FIGURE 28
FORECASTED VALUES OF Y_O - STORM 11

SCATTER PLOT, SSZ=25

FIGURE 29

FORECASTED VALUES OF Y_O - STORM 12

SCATTER PLOT, SSZ=63

FIGURE 30
FORECASTED VALUES OF Y_O - STORM 16

DISTRIBUTION LIST

DEFENSE TECHNICAL INFORMATION CENTER (2)
CAMERON STATION
ALEXANDRIA, VIRGINIA 22214

NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY (5)
MONTEREY, CALIFORNIA 93943
ATTN: Dr. Tsui

LIBRARY, Code 0142 (2)
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

RESEARCH ADMINISTRATION (1)
Code 012
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

DEPARTMENT OF MATHEMATICS (1)
Code 53
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

PROFESSOR TOKE JAYACHANDRAN (10)
Code 53Jy
DEPARTMENT OF MATHEMATICS
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

END

FILMED

5-85

DTIC