

Exercise Session 1 IESM Fall 2024-2025

Yuri Cho, Salomé Guilbert, Sophia Johnson, Andrea Levy, Víctor Sabanza C

September 9, 2024

Introduction to Electronic Structure Methods

Welcome to the IESM course!

- Lecturer: Prof. Ursula Röthlisberger
- TAs:
 - Yuri Cho
 - Salomé Guilbert
 - Sophia Johnson
 - Andrea Levy
 - Víctor Sabanza Gil
 - Qihao Zhang
 - Different PostDocs from LCBC lab

Introduction to Electronic Structure Methods

- Mondays and Tuesdays from 10h15 to 12hoo
- Course schedule for the semester available on Moodle
- Tomorrow we'll have the first lecture (BCH3303) with more practical details on the course

Yuri Cho, Salomé Guilbert, Sophia Johnson, Andrea Levy, Víctor Saba

Exercise sessions

• Moodle page

Introduction to electronic structure methods

 ${\sf Dashboard} \rightarrow {\sf Courses} \rightarrow {\sf Chimie}, \ {\sf G\'enie} \ {\sf Chimique} \ ({\sf CGC}) \rightarrow {\sf CGC} - {\sf Bachelor} \rightarrow {\sf CH-353}$

Exercise sessions

• Exercise website: https://lcbc-epfl.github.io/iesm-public/

Exercise Session 1

Introduction to Electronic Structure Methods Q Search this book... Introduction to Electronic Structure Methods

Introduction to Electronic Structure Methods

This book contains the script and exercises for the course CHE-351

Introduction to Electronic Structure Methods (IESM) given at EPFL.

Exercise structure

Introduction

- Learning goals
- Chapter in script
- Resources

Exercise structure

Theory section

- Relevant theory for the exercise
- Theoretical exercises

Practical exercises

Yuri Cho, Salomé Guilbert, Sophia Johnson, Andrea Levy, Víctor Saba

- "Coding" exercises
- Interpretation of results

September 9, 2024

Exercise evaluation

Examples:

- Exercises contribute to 1/3 of final grade
- Submit report
 - pdf document answering the questions completely with relevant results
 - Handwritten portions ok (please verify legibility)
 - We provide report templates on Overleaf and Google Docs
 - Due date is usually the next exercise session (check Moodle!)
 - Interviews during next exercise session
 - Test your understanding and discuss your doubts/questions
 - Detailed feedback via Moodle after the interview
 - No grade, but comments and detailed corrections

Computer environment

- We will use a virtual environment that you can directly launch from the exercise website
- Click the rocket button on the top right of the code files and choose JupyterHub to launch noto.epfl.ch

- On noto.epfl.ch your work will be saved on your EPFL storage
- Make sure to always activate (top right) the Computational Chemistry kernel

Jupyter notebooks

- .iynb files organized in cells
 - Markdown (text)
 - Code
- Run a code cell by pressing Play button (or Ctrl+Enter)

Jupyter notebooks

- .iynb files organized in cells
 - Markdown (text)
 - Code
- Run a code cell by pressing :arrow_forward: (or Ctrl+Enter)

Text cell

```
[1]: x = 1
 y = 2
```

```
[3]: print(x+y)
```

Yuri Cho, Salomé Guilbert, Sophia Johnson, Andrea Levy, Víctor Saba

Saving Jupyter notebooks as PDFs

Run a code cell by pressing :arrow_forward: (or Ctrl+Enter)

Text cell

Exercise 1 - Overview

Linear Algebra in Quantum Mechanics - Exercise page

- Linear Algebra in Quantum Mechanics
- Basic Concepts in Quantum Mechanics
- Working with vectors using Numpy

Exercise 1 - Tips

Tips!

- Start from Section 1.3 Working with vectos using Numpy to get familiar with Noto environment and Jupyter Notebooks
- How to get the slides:
 - Download from the exercise page

Once you open Noto, in the exercise folder

• Will be uploaded on the Moodle page

Exercise 1 - Tips

 We provide templates for the exercise reports, you can access them from the exercise page

```
Report Template Google Docs

Report Template Overleaf
```