MTL100 - Introduction to Real Number System

$$\sum_{k=0}^{\infty} a_k x^k = 0$$

$$\sum_{k=0}^{\infty} a_k (P/q)^k = 0$$

$$k = 0$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

$$\{P/q \text{ is a robition, where } P = q$$

Multiplying throughout by 2,

$$\sum_{k=0}^{\infty} a_k b^k q^{n-k} = 0 \qquad \longrightarrow (*)$$

$$= \sum_{k=0}^{\infty} a_k b^k q^{n-k} = 0$$

$$= - \left(\frac{\sum_{k=0}^{n-1} a_k b^k q^{n-k}}{\sum_{k=0}^{n-1} a_k b^2 q^{n-k-1}} \right)$$

$$= - q \left(\frac{\sum_{k=0}^{n-1} a_k b^2 q^{n-k-1}}{\sum_{k=0}^{n-1} a_k b^2 q^{n-k-1}} \right)$$

3 no national n s.t. $n^2 = 2$. $5c^2 - 2 = 0$

 $a_2 = 1$, $a_1 = 0$ & $a_0 = -2$

If Pla is a robition to $5c^2-2=0$, then a divides 1 & p divides -2.

: The possibilities for 9 one 1 & -1

117 by the possibilities for p one 1, -1, 2 & -2

But 1, -1, 2 & -2 are not the solutions.

. He equation doesn't have any sational solution.

NEZEQ

Red numbers (R).

IR 2 Q

- · (IR, +, ·) is an ordered field
- . Extra property: "Completeneus assion on LUB assion".

Let A be a non empty bubble of IR.

- · We say that M is a maximal element of A if
 MEA & DE EM + DEG A
- · We key that NGIR is an upper bound of A if
 - · We say that LEIR is a least upper bound (LUB)
 on supremum if
 - i) I is an upper bound for A
 - ii) if l' is any other replex bound for A, then $l \in l'$.
 - · We boy that A is bounded above if A has an

upper bound.

Escample

i) A = [0, 1]

Upper bound = m, any thing greater than Ox sand to 1

2) $A = [0, 1) = \{x \in \mathbb{R} : 0 \le x < 1\}$

Masumum = doesn't exuit

Upper bound = m, any number greater than or equalter 1.

rab = 7 (mph;)

3) A = [0,0) A is unbounded.

Kemark. Let A be a non empty subset of 1R & let l be a LUB fon A. Then, for any given E>O l-E is not an ubber bound and therefore there exists are A

Such that 1-E= x = 1-

Exercise. Define the terms, minimum, lower bound, & quatest hower bound (GLB) or infimum and illustrate them through examples.

... ...

Exercise. Show that $Sup(-A) = -\inf(A)$ for any non-empty subset A of IR, where $-A = \{-\infty: \infty \in \mathbb{R}^3\}$.

Escample A= {1-1/n: m & IN}

Minimum = 0

Masimum = doesn't escist LUB = 1 (why?) Completeness ascion on LUB asciom. Every non empty subset of IR that is bounded above has a least upper bound.

Remark. Completeness assion doesn't hold fon Q. Fon example, let

A= { re Q: 222 } = Q

Show that A how no LUB in Q.

Anchimedean property. For any xer JNEIN such that xXN

Proof. Suppose that this is false. Then 3 ocers such that x>n for all neW.

=) or is an upper bound for IN

As IN is mon-empty, by LUB assism, IN has a LUB, Say dell. Then, d-1 is not an upper bound for IN => there exists neIN such that d-1 < n

- =) XXm+1 EIN
- => a is not an upper bound for IN, which is a contradiction.

<u>Notations</u>

- · J there esciste
- · + for all
- . 3 Such that