

PREVISIONS IMETEROLOGIQUES Control of States of Control of Contr

EN AUSTRALIE

Soutenance de Lise Aujoulat & Geoffrey Foulon-Pinto

Le 7 Janvier 2022

Supervision: Maxime Michel, Gaspard

Promotion DataScientest Bootcamp Octobre 2021

Parcours Data Scientist

Introduction

Thématique : prévisions météorologiques en Australie

- Météorologie : science antique, ayant évolué avec l'Homme
- Nombreux instruments de mesure

Compréhension et prédiction du climat

Apport de la data science

Objectifs & méthodes

Réalisation d'un modèle de prédiction de la présence ou non de pluie à J+1

- Étude descriptive des données
- Traitement des valeurs manquantes
- Préprocessing
- Détermination du modèle de machine learning le plus adapté
- Modélisation en machine learning
- Essai d'amélioration du modèle
- Modélisation en deep learning

Objectif secondaire : étude de séries temporelles

Base de données

Rain in Australia : predict next-day rain in Australia

Joe Young & Adam Young, www.kaggle.com

Origine des données : Bureau of Meteorology, Gouvernement Australien

- 145 460 entrées provenant de 49 stations
- 22 variables explicatives
 - Températures
 - Humidité et précipitations
 - o Ensoleillement, ennuagement
 - Pression atmosphérique
 - Direction et force du vent...

Variable à prédire : *RainTomorrow*, booléen

Étude des données

Saisonnalité

Influence géographique

Influence de la pluie

Modélisation machine learning

Plusieurs modèles testés après un cleaning simple :

Modèle Testé	Paramètres	Accuracy	Rappel (1 = jour de pluie)	Précision (1)	F1_score (1)
KNN	best param (<i>grid search</i> : k de 1 à 40, métriques 'minkowski', 'manhattan', 'chebyshev')	0.84	0.43	0.76	0.55
Decision Tree	criterion = 'entropy'	0.80	0.55	0.55	0.55
	criterion = 'gini	0.80	0.55	0.52	0.54
Random Forest	n_jobs = -1	0.86	0.54	0.77	0.63
Bagging	n_estimators = 10	0.85	0.52	0.74	0.61

Random Forest : meilleures performances, combine arbre + bagging, relativement rapide

Objectif: amélioration du RF avec focus sur la détection des jours de pluie Importance de la stratégie au niveau du preprocessing +++

- Amélioration du preprocessing :
 - → variables supprimées (*pression*, évaporation, nuages)
 - → suppression ou remplacement des NaN par moyenne par station/année/mois
 - → encoding des variables qualitatives
 - → pas de standardisation / normalisation (même ordre de grandeur)

Rééquilibrage des données : combinaison d'un oversampling suivi d'un undersampling

Accuracy	Rappel*	Précision*	f1-score*
0.83	0.63	0.61	0.62

^{*} pour la classe 1 (jour de pluie)

Pistes explorées : GridSearch (paramètres), Feature Importance, Analyses des FN / cf Streamlit...
VP (patterns, biais ?)

Objectif: amélioration du modèle en récupérant des variables Importance des connaissances métiers +++

Essai d'amélioration du modèle

Révision du préprocessing

- limiter le nombre de variables supprimées
- regrouper les stations suivant leur localisation géographique

Modélisation Random Forest

- réutilisation du code
- pas d'amélioration notoire

Modèle de deep learning

Modèle à 2 couches denses

- Couches à 25 et 50 neurones, activation ReLu
- Couche de sortie à 2 neurones, activation Softmax

Essai d'amélioration des performances

- nombre de neurones
- nombre d'épochs
- taille des batchs
- fonction d'activation
- nombre de couches

Étude de série temporelle: Température maximale

model= sm.tsa.SARIMAX(series_fin, order=(1,1,1),seasonal_order=(0,1,1,12))

Qualité du Modèle

Paramètres: pvalue < 0.05

Ljung-Box / Jarque - Bera (résidus): pvalue > 0.05

Démo Streamlit....

Introduction Objectifs Données Machine Deep Séries Démo Conclusion

Conclusion / perspectives

Données et modèles

Importance des connaissances métiers dans la gestion des données (preprocessing)

RF: relativement correct, pistes d'améliorations?

DL: moins performant (limite du modèle sur données

tabulaires)

ST: intéressant à exploiter

Applications métiers

Science / Société : études climatiques, préventions/stratégies

Applications touristiques

Perspectives

DL sur images satellites: prise en compte de phénomènes plus globaux (ex: *El Niño*)

source: meteo-sud-aveyron.over-blog.com