

LIS3MDL

Технічний паспорт

Цифровий вихід магнітного датчика: високопродуктивний 3-осьовий магнітометр наднизької потужності

LGA-12L (2.0 x 2.0 x 1.0 mm)

особливості

- Широка напруга живлення, від 1,9 В до 3,6 В
- Незалежне джерело живлення IO (1,8 B)
- ±4/±8/±12/±16 гаусів, що вибираються магнітними повними шкалами
- Безперервний годнократний режими перетворення
- 16-бітний вихід даних
- Генератор переривань
- Самоперевірка
- I²C/SPI цифровий вихідний інтерфейс
- Режим вимкнення / режим низького енергоспоживання
- ЕКОПАК і відповідає RoHS

Додатки

- Магнітометри
- Компаси

опис

LIS3MDLце високопродуктивний 3-осьовий магнітний датчик із наднизьким енергоспоживанням із повними шкалами ±4/±8/±12/±16 гаусів, які можна вибрати користувачеві.

Можливість самоперевірки дозволяє користувачеві перевірити роботу датчика в кінцевому застосуванні.

Пристрій може бути налаштований на генерування сигналів переривання для виявлення магнітного поля.

LIS3MDL включає в себе інтерфейс послідовної шини I^2 С, який підтримує стандартний і швидкий режим (100 кГц і 400 кГц) і послідовний стандартний інтерфейс SPI.

Пристрій доступний у невеликому тонкому пластиковому корпусі з мережевим масивом (LGA) і гарантовано працює в розширеному діапазоні температур від -40°C до +85°C.

Посилання на статус товару

LIS3MDL

Короткий опис продукту						
Код замовлення	LIS3MDLTR					
Діапазон температур [°C]	від -40 до +85					
Пакет	LGA-12L					
Упаковка	Стрічка і котушка					

Продуктові ресурси

AN4602 (примітка до програми пристрою)

TN0018 (проектування та пайка)

Блок-схема та опис контактів

1.1 Блок-схема

Малюнок 1. Блок-схема

DS9463 - ред. 7 сторинка 2/32

1.2 Опис піна

Малюнок 2. Опис піна

Таблиця 1. Опис піна

Pin#	Ім'я	функція			
1	SCL	Послідовний годинник I ² C (SCL)			
<u>'</u>	SPC	Годинник послідовного порту SPI (SPC)			
2	Зарезервовано	Підключіться до GND			
3	GND	Підключіться до GND			
4	C1	Підключення конденсатора (С1 = 100 нФ)			
5	Vdd	Блок живлення			
6	Vdd_IO	Джерело живлення для контактв введення/виведення			
7	IHT	Переривати			
8	DRDY	Дані готові			
9	SDO	Послідовний вихід даних SPI (SDO)			
9	SA1	I ² C молодший біт адреси пристрою (SA1)			
		Увімкніть SPI			
10	CS	Вибір режиму І²С/SPI			
		(1: режим очікування SPI/зв'язок I²С увімкнено;			
		0: режим зв'язку SPI / I²C вимкнено)			
	ПДР	Послідовні дані I²C (SDA)			
11	SDI	Послідовний вхід даних SPI (SDI)			
	SDO	Послідовний вихід даних через 3-провідний інтерфейс (SDO)			
12	Зарезервовано	Підключіться до GND			

DS9463 – ред. 7 сторика 3/32

2 Магнітні та електричні характеристики

2.1 Магнітні характеристики

@Vdd = 2,5 B, T = 25°C, якщо не вказано інше. Продукт відкалібрований на заводі на 2,5 В. Робочий діапазон живлення від 1,9 В до 3,6 В.

Таблиця 2. Магнітні характеристики

символ	Параметр	Умови випробувань	Хв. Ти	п.(1) Макс.		одиниця
				±4		
				±8		
FS	Діапазон вимірювання			±12		гаус
				±16		
		FS = ±4 rayca		6842		
		FS = ±8 rayc		3421		LSB/
GN Чутлі	ивість	FS = ±12 rayc		2281		гаус
		FS = ±16 rayc		1711 рік		
Zgauss Hy	тьовий рівень гауса	FS = ±4 rayca		±1		гаус
		вісь X; FS = ±12 гаус; Режим надвисокої продуктивності		3.2		mgauss
RMS RMS	шум	вісь Y; FS = ±12 гаус Режим надвисокої продуктивності		3.2		mgauss
		вісь Z; FS = ±12 гаус Режим надвисокої продуктивності		4.1		mgauss
NL	Нелінійність	Найкраще підходить пряма лінія FS = ±12 гаус Виявлено = ±6 Гаус		±0,12		%FS
	Самоперевірка(2)	вісь X FS = ±12 гаус	1		3	
ST		Вісь Y FS = ±12 гаус	1		3	гаус
		Вісь Z FS = ±12 гаус	0,1		1	
DF	Магнітне поле збурень	Зсув нульового гауса починає погіршуватися			50	гаус
Топ	Діапазон робочих температур		-40		+85	°C

^{1.} Типові характеристики не гарантуються.

DS9463 - ред. 7 сторика 4/32

^{2.} Абсолютна величина

2.2 Характеристики датчика температури

@Vdd = 2,5 B, T = 25°C, якщо не вказано інше. Виріб відкалібрований на заводі на 2,5 В.

Таблиця 3. Характеристики датчика температури

символ	Параметр	Умови випробувань N	ін. Тип.(1) Макс.		одиниця
TSDr Змін	а вихідного сигналу датчика температури від температури	-		8		LSB/°C
TODR Част	ота оновлення температури (2)			ODR		Гц
Топ	Діапазон робочих температур		-40		+85	°C

^{1.} Типові характеристики не гарантуються.

2.3 Електричні характеристики

@Vdd = 2,5 B, T = 25°C, якщо не вказано інше. Продукт відкалібрований на заводі на 2,5 В. Робочий діапазон живлення від 1,9 В до 3,6 в

Таблиця 4. Електричні характеристики

символ	Параметр	Умови випробувань М	lıн. Тип.(1)	Макс.	одиниця
Vdd Напр	уга живлення		1.9		3.6	В
Vdd_IO Джерело	живлення для введення/виведення		1.71	1.8	Vdd+0,1	
Idd_HR Cno	живання струму в режимі надвисокої роздільної здатності	ODR = 20 Гц		270		мкА
Idd_LP Спох	кивання струму в режимі низького енергоспоживання	ODR = 20 Гц		40		мкА
Idd_PD Спо	живання струму при вимкненні живлення			1		мкА
Топ	Діапазон робочих температур		-40		+85	°C

^{1.} Типові характеристики не гарантуються.

D59463 – ред. 7 сторінка 5/32

^{2.} Якщо біт TEMP_EN у CTRL_REG1 (20h) встановлено на 1, дані про температуру збираються під час кожного циклу перетворення. Зверніться до Таблиця 21.

2.4 Характеристики комунікаційного інтерфейсу

2.4.1 SPI - послідовний периферійний інтерфейс Відповідно до загальних умов експлуатації для Vdd і Тор.

Таблиця 5. Значення синхронізації SPI slave

	Параметр	Знач	одиниця	
символ	Парашетр	Хв.	Макс.	одиниця
tc(SPC)	Тактовий цикл SPI	100		нс
fc (SPC)	Тактова частота SPI		10	МГц
цу (CS)	Час налаштування КС	5		
th(CS)	Час утримання CS	20		
цу (SI)	Час налаштування входу SDI	5		
th(SI)	Час утримання входу SDI	15		нс
телевзор (SO)	Дійсний час виведення SDO		50	
th(SO)	Час утримання виходу SDO	5		
tdis(SO)	Час вимкнення виходу SDO		50	

^{1.} Значення гарантуються на тактовій частоті 10 МГц для SPI як з 4, так і з 3 проводами, на основі результатів характеристик, а не перевірено на виробництві.

Малюнок 3. Тимчасова діаграма SPI slave

Примітка: Точки вимірювання виконуються при 0,3*Vdd_IO та 0,7*Vdd_IO для вхідних і вихідних портів.

DS9463 – ред. 7

2.4.2 I²C - інтерфейс управління між IC

Відповідно до загальних умов експлуатації для Vdd і Тор.

Таблиця 6. Значення синхронізації I^2C slave

	Параметр	Стандартни	1й режим I ² C (1)	Швидкий режим I ² C(1)		
символ	Параметр	Хв.	Макс.	Хв.	Макс.	одиниця
f(SCL)	Тактова частота SCL	0	100	0	400 кГ	ц
tw(SCLL) Низ	ький час годинника SCL	4.7		1.3		
tw(SCLH) Bep	хній час годинника SCL	4.0		0,6		МКС
tsu(SDA) Час	налаштування SDA	250		100		нс
th(SDA) Час	зберігання даних SDA	0	3.45	0	0,9	мкс
tr(SDA) tr(SCL)	Час наростання SDA та SCL		1000	20 + 0,1Cb (2) 30	0	
tf(SDA) tf(SCL) ¹	lac спаду SDA та SCL		300	20 + 0,1Cb (2) 30	0	нс
th(ST)	Час утримання умови START	4		0,6		
цу (SR)	Повторний час встановлення умови START	4.7		0,6		
tsu(SP) час в	становлення умови STOP	4		0,6		МКС
tw(SP:SR)	Вільний час автобуса між станом STOP і START	4.7		1.3		

^{1.} Дані базуються на вимогах стандартного протоколу ${\rm I}^2$ С, не перевірено у виробництві.

Малюнок 4. Часова діаграма I^2C slave

Примітка: Точки вим

Точки вимірювання виконуються при 0,3*Vdd_IO та 0,7*Vdd_IO для обох портів.

DS9463 - ред. 7 сторика 7/32

^{2.} Cb = загальна ємність однієї лінії шини, у пФ.

2.5 Абсолютний максимальний рейтинг

Навантаження, що перевищують абсолютні максимальні показники, можуть призвести до незворотного пошкодження пристрою. Це лише оцінка навантаження, і функціональна робота пристрою за цих умов не передбачається. Перебування в умовах максимального рейтингу протягом тривалого часу може вплинути на надійність пристрою.

Таблиця 7. Абсолютні максимальні оцінки

символ	Рейтинги	Максимальне значення	одиниця
Vdd Напр	уга живлення	від -0,3 до +4,8	В
Напруга живлен	ня контактів введення/виведення Vdd_IO	від -0,3 до +4,8	В
Vin	Вхідна напруга на будь-якому керуючому виводі (SCL/SPC, SDA/SDI/SDO, SDO/SA1, CS)	від -0,3 до Vdd_IO +0,3 В	
_			g
Прискорення AUNP (будь-яка вісь)	ння AUNP (будь-яка вісь)	10 000 за 0,1 мс	g
MEF Make	симальне відкрите поле	1000	гаус
ТОР Діапа	азон робочих температур	від -40 до +85	°C
TSTG Діап	азон температур зберігання	від -40 до +125	°C

Примітка:

Напруга живлення на будь-якому виводі ніколи не повинна перевищувати 4,8 В.

Цей пристрій чутливий до механічних ударів, неправильне поводження може призвести до незворотного пошкодження деталі.

Цей пристрій чутливий до електростатичного розряду (ESD), неправильне поводження може призвести до незворотного пошкодження деталі.

3 Термінологія та функціональність

3.1 Чутливість

Чутливість описує коефіцієнт посилення датчика і може бути визначена, наприклад, прикладаючи до нього магнітне поле в 1 гаус.

3.2 Нульовий рівень гауса

Зміщення рівня нульового гауса описує відхилення фактичного вихідного сигналу від ідеального вихідного сигналу, якщо немає магнітного поля.

3.3 Заводське калібрування

Інтерфейс IC відкалібрований на заводі для чутливості (So) і рівня нульового гауса (TyOff).

Значення підрізання зберігаються в пристрої в енергонезалежній пам'яті. При кожному включенні пристрою параметри підстроювання завантажуються в регістри, які будуть використовуватися під час активної роботи, що дозволяє використовувати пристрій без додаткового калібрування.

4 Підказки щодо застосування

Малюнок 5. Електричні підключення LIS3MDL

4.1 Зовнішні конденсатори

Для LIS3MDL потрібен один зовнішній конденсатор (С1 = 100 нФ), підключений між контактом 4 і GND.

Для основної лінії живлення пристрою (Vdd) потрібен один високочастотний розв'язувальний конденсатор (C3 = 100 нФ, керамічний) якомога ближче до контакту живлення та низькочастотний електролітичний конденсатор (C2 = 1 мкФ). Усі джерела напруги та заземлення мають бути присутні одночасно для належної роботи мікросхеми (див. рис. 5).

Функціональність пристрою та виміряні дані магнітного поля можна вибрати та отримати доступ через інтерфейси I^2C / SPI.

Функції, поріг і час контакту переривання (INT) можуть бути повністю запрограмовані користувачем через інтерфейси I^2C / SPI.

Якщо використовується I^2C або 3-провідний SPI, контакт SDO/SA1 має бути підключений до Vdd_IO або GND.

4.2 Інформація про пайку

Пакет LGA сумісний з ECOPACK і стандарт RoHS.

Він кваліфікований для термостійкості пайки відповідно до JEDEC J-STD-020.

Щоб отримати рекомендації щодо схеми контакту та пайки, зверніться до технічної примітки TN0018 доступний на www.st.com.

4.3 Сильнострумові ефекти проводки

Високий струм у проводці та друкованих схемах може спричинити помилки у вимірюваннях магнітного поля для компасу.

Магнітні поля, створені провідниками, посилюють магнітне поле Землі, спричиняючи помилки в обчисленні курсу за компасом.

Тримайте струми вище 10 мА на відстані кількох міліметрів від датчика ІС.

Цифрові інтерфейси

⁵ Цифрові інтерфейси

Доступ до регістрів, вбудованих у LIS3MDL, можна отримати як через послідовний інтерфейс I²C, так і через SPI. Останній може бути програмним забезпеченням, налаштованим на роботу в режимі 3-провідного або 4-провідного інтерфейсу.

Послідовні інтерфейси відображаються на ті самі контактні площадки. Щоб вибрати/використати інтерфейс I^2 С, лінія CS повинна бути підключена до високого рівня (тобто підключена до Vdd_IO).

Таблиця 8. Опис контактів послідовного інтерфейсу

Назва PIN-коду	Опис піна
CS	Увімкніть SPI Вибір режиму I²C/SPI (1: режим очікування SPI / зв'язок I²C увімкнено; 0: режим зв'язку SPI / I²C вимкнено)
SCL	Послідовний годинник I ² C (SCL)
SPC	Годинник послідовного порту SPI (SPC)
ПДР	Послідовні дані I²C (SDA)
SDI	Послідовний вхід даних SPI (SDI)
SDO	Послідовний вихід даних через 3-провідний інтерфейс (SDO)
SA1	I ² C молодший біт адреси пристрою (SA1)
SDO	Послідовний вихід даних SPI (SDO)

5.1 Послідовний інтерфейс І²С

LIS3MDL 1^2 С ε веденою шиною. 1^2 С використовується для запису даних у регістри, вміст яких також можна прочитати.

Відповідна термінологія I^2C наведена в таблиці нижче.

Таблиця 9. Термінологія І²С

термін	опис				
Передавач Прис	трій, який надсилає дані на шину				
Приймач	стрій, що приймає дані з шини				
майстер	Пристрій, який ініціює передачу, генерує тактові сигнали та завершує передачу				
Раб	Прилад звернувся до майстра				

Існує два сигнали, пов'язані з шиною І²С: послідовна лінія синхронізації (SCL) і послідовна лінія даних (SDA). Остання є двонаправленою лінією, яка використовується для надсилання та отримання даних до/з інтерфейсу. Обидві лінії повинні бути підключені до Vdd_IO через зовнішній підтягуючий резистор. Коли автобус вільний, обидві лінії стоять високо.

Інтерфейс I^2 С сумісний зі стандартами швидкого режиму (400 кГц) I^2 С, а також зі звичайним режимом.

Коли використовується інтерфейс I^2 С, контакт SDO/SA1 має бути підключений до Vdd_IO або GND.

DS9463 - ред. 7 сторика 11/32

5.1.1 Операція І²С

Транзакція на шині починається через сигнал START (ST). Умова START визначається як перехід від високого до низького на лінії даних, тоді як лінія SCL утримується на високому рівні. Після того, як це було передано головним, автобус вважається зайнятим. Наступний байт даних, переданий після умови запуску, містить адресу підлеглого пристрою в перших семи бітах, а восьмий біт повідомляє, чи головний пристрій отримує дані від підлеглого пристрою чи передає дані підлеглому. Коли надсилається адреса, кожен пристрій у системі порівнює перші сім бітів після умови запуску зі своєю адресою. Якщо вони збігаються, пристрій вважає себе адресованим головним.

Підпорядкована адреса (SAD), пов'язана з LIS3MDL, дорівнює 00111x0b, тоді як біт х модифікується виводом SDO/SA1, щоб змінити адресу пристрою. Якщо контакт SDO/SA1 підключено до джерела напруги, адреса 0011110b, інакше, якщо контакт SDO/SA1 підключено до землі, адреса 0011100b.

Передача даних із підтвердженням є обов'язковою. Передавач повинен звільнити лінію SDA під час імпульсу підтвердження. Потім приймач повинен перетягнути лінію даних на низький рівень, щоб він залишався стабільно низьким протягом періоду HIGH тактового імпульсу підтвердження. Одержувач, якому було адресовано, зобов'язаний генерувати підтвердження після кожного байта отриманих даних.

I²C, вбудований у LIS3MDL, поводиться як підлеглий пристрій, тому слід дотримуватися наступного протоколу. Після умови START (ST) надсилається адреса підпорядкованого пристрою, після повернення підтвердження підлеглого (SAK) передається 8-бітна підадреса (SUB): 7 LSb представляють фактичну адресу реєстру, тоді як MSb дозволяє автоїнкремент адреси. Якщо MSb поля SUB дорівнює 1, SUB (адреса реєстру) автоматично збільшується, щоб дозволити читання/запис кількох даних.

Підлегла адреса доповнюється бітом читання/запису. Якщо біт дорівнює 1 (читання), повторна умова START (SR) повинна бути видана після двох байтів підадреси; якщо біт дорівнює 0 (запис), головний передає на підлеглий без змін напрямок. У таблиці 10 пояснюється, як складається бітовий шаблон SAD+читання/запису, із переліком усіх можливих конфігурацій.

Таблиця 10. Шаблони SAD+читання/запису

Команда	сумно[6:2]	SAD[1] = SDO/SA1	сумний[0]	R/W	SAD+R/W
Прочитайте	00111	0	0	1	00111001 (39 год)
Напишіть	00111	0	0	0	00111000 (38 год)
Прочитайте	00111	1	0	1	00111101 (3Dh)
Напишіть	00111	1	0	0	00111100 (3Ch)

Таблиця 11. Передача, коли головний записує один байт на підлеглий

майстер	ST	SAD + W		SUB		ДАНІ		СП
Раб			SAK		SAK		SAK	

Таблиця 12. Передача, коли головний записує кілька байтів на підлеглий

майстер	ST SAD -	- W		SUB		ДАНІ		ДАНІ		СП
Раб			SAK		SAK		SAK		SAK	

Таблиця 13. Передача, коли провідний отримує (читає) один байт даних від веденого

Майстер ST SAD + W		SUB		SR SA	D + R		НМАК СП	
Раб	SAK		SAK			ДАНІ SAK		

Таблиця 14. Передача, коли головний пристрій отримує (читає) кілька байтів даних від підлеглого

Майстер CT	CAM+ B		SUB		SR	CAM+ P			MAK		MAK		HMAK CI	1
Раб		SAK		SAK			ДАНІ SA	ΑK		ДАНІ		ДАНІ		

DS9463 – ред. 7 сторинка 12/32

LIS3MDL

Цифрові інтерфейси

Дані передаються в байтовому форматі (DATA). Кожна передача даних містить 8 біт. Кількість байтів, що передаються за одну передачу, необмежена. Дані передаються зі старшим бітом (MSb) першим. Якщо приймач не може отримати ще один повний байт даних, доки він не виконає якусь іншу функцію, він може утримувати SCL тактової лінії на низькому рівні, щоб перевести передавач у стан очікування. Передача даних продовжується лише тоді, коли приймач готовий отримати ще один байт і звільнить лінію даних. Якщо підлеглий приймач не визнає адресу підлеглого (тобто він не може приймати, оскільки виконує певну функцію в реальному часі), підлеглий пристрій повинен залишити лінію даних високим. Тоді майстер може перервати передачу. Перехід від низького до високого на лінії SDA, тоді як лінія SCL є високою, визначається як стан STOP. Кожна передача даних повинна бути припинена генерацією умови STOP (SP). Щоб прочитати кілька байтів, необхідно встановити старший біт поля підадреси. Іншими словами, SUB(7) має дорівнювати 1, тоді як SUB(6-0) представляє адресу першого регістра, який потрібно прочитати.

У представленому форматі зв'язку МАК є головним підтвердженням, а NMAK не є головним підтвердженням.

5.2 Інтерфейс шини SPI

LIS3MDL SPI є веденою шиною. SPI дозволяє записувати та читати з регістрів пристрою.

Послідовний інтерфейс взаємодіє з програмою за допомогою чотирьох проводів: CS, SPC, SDI та SDO.

Рисунок 6. Протокол читання та запису

CS вмикає послідовний порт, і ним керує головний SPI. Він знижується на початку передачі і повертається до високого в кінці. SPC — це годинник послідовного порту, і ним керує головний пристрій SPI. Він зупиняється на високому рівні, коли CS є високим (немає передачі). SDI та SDO є відповідно вхідними та вихідними даними послідовного порту. Ці лінії проходять на спадному фронті SPC і повинні бути захоплені на наростаючому фронті SPC.

Обидві команди регістру читання та регістру запису виконуються за 16 тактових імпульсів або за кратні 8 у разі багатобайтового читання/запису. Тривалість біта — це час між двома спадаючими фронтами SPC. Перший біт (біт 0) починається з першого спадного фронту SPC після спадного фронту CS, а останній біт (біт 15, біт 23, ...) починається з останнього спадного фронту SPC безпосередньо перед наростаючим фронтом CS.

біт 0: біт $\overline{\text{RW}}$. Коли 0, дані DI(7:0) записуються в пристрій. Коли 1, дані DO(7:0) з пристрою зчитуються. В останньому випадку чіп керує SDO на початку біта 8.

біт 1: біт MS. Коли 0, адреса залишається незмінною в кількох командах читання/запису. Коли 1, адреса автоматично збільшується в кількох командах читання/запису.

біт 2-7: адреса AD(5:0). Це поле адреси індексованого реєстру.

біт 8-15: дані DI(7:0) (режим запису). Це дані, які записуються на пристрій (спочатку MSb).

біт 8-15: дані DO(7:0) (режим читання). Це дані, які зчитуються з пристрою (спочатку MSb).

У кількох командах читання/запису додаються додаткові блоки з 8 тактових періодів. Коли біт MS дорівнює 0, адреса, яка використовується для читання/запису даних, залишається незмінною для кожного блоку. Коли біт MS дорівнює 1, адреса, яка використовується для читання/запису даних, збільшується в кожному блоці.

Функції та поведінка SDI та SDO залишаються незмінними.

DS9463 – ред. 7

5.2.1 SPI читання

Команда читання SPI виконується за допомогою 16 тактових імпульсів. Багатобайтова команда читання виконується додаванням блоків з 8 тактових імпульсів до попередньої.

біт 0: біт READ. Значення дорівнює 1.

біт 1: біт MS. Коли 0, адреса не збільшується; коли 1, збільшує адресу під час кількох читань. біт 2-7: адреса AD(5:0). Це поле адреси індексованого реєстру. біт 8-15: дані DO(7:0) (режим читання). Це дані, які зчитуються з пристрою (спочатку MSb).

біт 16-... : дані DO(...-8). Подальші дані під час багатобайтового читання.

Рисунок 8. Багатобайтовий протокол читання SPI (2-байтовий приклад)

DS9463 - ред. 7 сторинка 15/32

5.2.2 SPI пишуть

Рисунок 9. Протокол запису SPI

Команда запису SPI виконується за допомогою 16 тактових імпульсів. Багатобайтова команда запису виконується додаванням блоків з 8 тактових імпульсів до попередньої.

біт 0: біт WRITE. Значення дорівнює 0.

записах.

CS

біт 1: біт MS. Коли 0, адреса не збільшується; коли 1, збільшує адресу під час кількох записів. біт 2 -7: адреса AD(5:0). Це поле адреси індексованого реєстру. біт 8-15: дані DI(7:0) (режим запису). Це дані, які записуються всередині пристрою (спочатку MSb). біт 16-... : дані DI(...-8). Подальші дані в багатобайтових

Малюнок 10. Багатобайтовий протокол запису SPI (2-байтовий приклад)

DS9463 – ред. 7 сторика 16/32

5.2.3 SPI зчитування в 3-провідному режимі

3-провідний режим вводиться шляхом встановлення біта SIM на 1 (вибір режиму послідовного інтерфейсу SPI) у CTRL_REG3 (22 години). Коли використовується 3-провідний режим, контакт SDO/SA1 має бути підключений до GND або Vdd_IO.

Рисунок 11. Протокол читання SPI в 3-провідному режимі

Команда читання SPI виконується за допомогою 16 тактових імпульсів: біт 0: біт READ. Значення дорівнює 1.

біт 1: біт МЅ. Коли 0, адреса не збільшується; коли 1, збільшує адресу під час кількох читань. біт 2-7: адреса AD(5:0). Це поле адреси індексованого реєстру. біт 8-15: дані DO(7:0) (режим читання). Це дані, які зчитуються з пристрою (спочатку MSb).

Команда багаторазового читання також доступна в 3-провідному режимі.

Реєстрове відображення

У таблиці нижче наведено список 8-розрядних регістрів, вбудованих у пристрій, і їхні відповідні адреси.

Таблиця 15. Карта адрес реєстру

7.1-		Адрес	а реєстрації		
Ім'я	Тип	Hex	Двійковий	За замовчуванням	коментар
Зарезервовано		00 - 04			Зарезервовано
OFFSET_X_REG_L_M	R/W	05	00000101	00000000	
OFFSET_X_REG_H_M	R/W	06	00000110	00000000	
OFFSET_Y_REG_L_M	R/W	07	00000111	00000000	
OFFSET_Y_REG_H_M	R/W	08	00001000	00000000	Залізні регістри
OFFSET_Z_REG_L_M	R/W	09	00001001	00000000	
OFFSET_Z_REG_H_M	R/W	0A	00001010	00000000	
Зарезервовано		0B - 0E			Зарезервовано
R_Э_OTX	Р	0F	0000 1111	00111101	Фіктивний реєстр
Зарезервовано		10 - 1F			Зарезервовано
CTRL_REG1	R/W	20	0010 0000	00010000	
CTRL_REG2	R/W	21	0010 0001	00000000	
CTRL_REG3	R/W	22	0010 0010	00000011	
CTRL_REG4	R/W	23	0010 0011	00000000	
CTRL_REG5	R/W	24	0010 0100	00000000	
Зарезервовано		25 - 26			Зарезервовано
STATUS_REG	Р	27	0010 0111	Вихід	
OUT_X_L	Р	28	0010 1000	Вихід	
OUT_X_H	Р	29	0010 1001	Вихід	
OUT_Y_L	Р	2A	0010 1010	Вихід	
OUT_Y_H	Р	2B	0010 1011	Вихід	
OUT_Z_L	Р	2C	0010 1100	Вихід	
OUT_Z_H	Р	2D	0010 1101	Вихід	
TEMP_OUT_L	Р	2E	0010 1110	Вихід	
TEMP_OUT_H	Р	2F	0010 1111	Вихід	
INT_CFG	R/W	30	00110000	11101000	
INT_SRC	Р	31	00110001	00000000	
INT_THS_L	R/W	32	00110010	00000000	
INT_THS_H	R/W	33	00110011	00000000	

Зарезервовані регістри або регістри, не зазначені у таблиці вище, не можна змінювати. Запис у ці регістри може призвести до незворотного пошкодження пристрою.

Вміст регістрів, які завантажуються під час завантаження, не слід змінювати. Вони містять значення заводського калібрування. Їх вміст автоматично відновлюється при включенні пристрою.

LIS3MDL

Опис регістрів

7 Опис регістрів

7.1 OFFSET_X_REG_L_M (05 год) і OFFSET_X_REG_H_M (06 год)

Ці регістри містять 16-розрядний регістр і представляють зміщення X, щоб компенсувати вплив навколишнього середовища (дані в двох доповненнях). Ці значення впливають на значення магнітних вихідних даних, щоб видалити зміщення навколишнього середовища.

7.2 OFFSET_Y_REG_L_M (07 год) і OFFSET_Y_REG_H_M (08 год)

Ці регістри містять 16-розрядний регістр і представляють зміщення Y, щоб компенсувати вплив навколишнього середовища (дані в двох доповненнях). Ці значення впливають на значення магнітних вихідних даних, щоб видалити зміщення навколишнього середовища.

7.3 OFFSET_Z_REG_L_M (09 год) і OFFSET_Z_REG_H_M (0 А год)

Ці регістри містять 16-розрядний регістр і представляють зсув Z, щоб компенсувати вплив навколишнього середовища (дані в двох доповненнях). Ці значення впливають на значення магнітних вихідних даних, щоб видалити зміщення навколишнього середовища.

7.4 WHO_AM_I (0Fh)

Реєстр ідентифікації пристрою

Таблиця 16. Реєстр WHO_AM_I

0 0 1 1 1 1 1 0 1	0	0	1	1	1	1	0	1
-------------------	---	---	---	---	---	---	---	---

DS9463 – ред. 7 сторинка 19/32

7.5 CTRL_REG1 (20 годин)

Таблиця 17. Perictp CTRL_REG1

TEMP_EN	OM1	ОМ0	DO2	DO1	DO0	FAST_ODR	ST
---------	-----	-----	-----	-----	-----	----------	----

Таблиця 18. Опис CTRL_REG1

TEMP_EN	Вмикає датчик температури. Значення за замовчуванням: 0 (0: датчик температури вимкнено; 1: датчик температури увімкнено)
OM[1:0]	Вибір режиму роботи осей X і Y (див. табл. 20). Значення за замовчуванням: 00
DO[2:0]	Вибір швидкості вихідних даних (див. таблицю 21). Значення за замовчуванням: 100
FAST_ODR	FAST_ODR забезпечує швидкість передачі даних вище 80 Гц (див. таблицю 19). Значення за замовчуванням: 0 (0: FAST_ODR вимкнено; 1: FAST_ODR увімкнено)
ST	Вмикає самоперевірку. Значення за замовчуванням: 0 (0: самотест вимкнено; 1: самотест увімкнено)

Таблиця 19. Конфігурація швидкості передачі даних

DO2	DO1	DO0	FAST_ODR	ODR [Гц]	ОМ
Х	Х	х	1	1000	LP
X	Х	Х	1	560	депутат
X	Х	Х	1	300	HP
X	Х	Х	1	155	УГП

Таблиця 20. Вибір режиму роботи осей Х і Ү

OM1	ОМ0	Режим роботи для осей X । Y			
0	0	Режим низької потужності			
0	1	ежим середньої продуктивності			
1	0	Режим високої продуктивності			
1	1	Режим надвисокої продуктивності			

Таблиця 21. Конфігурація швидкості вихідних даних

DO2	DO1	DO0	ODR [Гц]
0	0	0	0,625
0	0	1	1.25
0	1	0	2.5
0	1	1	5
1	0	0	10
1	0	1	20
1	1	0	40
1	1	1	80

DS9463 – ред. 7 сторинка 20/32

7.6 CTRL_REG2 (21 год)

Таблиця 22. Perictp CTRL_REG2

0 (1)	FS1	FS0	0 (1)	ПЕРЕЗАВАНТАЖИТИ SOFT_RST	0 (1)	0 (1)
-------	-----	-----	-------	--------------------------	-------	-------

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

Таблиця 23. Опис CTRL_REG2

FS[1:0]	Повномасштабна конфігурація (див. Таблицю 24). Значення за замовчуванням: 00
ПЕРЕЗАВАНТАЖЕННЯ	Перезавантажує вміст пам'яті. Значення за замовчуванням: 0
	(0: нормальний режим; 1: перезавантаження вмісту пам'яті)
SOFT RST	Регістри конфігурації та функція скидання реєстру користувача.
5611_161	(0: значення за замовчуванням; 1: операція скидання)

Таблиця 24. Натурний вибір

FS1	FS0	Повномасштабний
0	0	±4 гауса
0	1	±8 гаусів
1	0	±12 гаусів
1	1	±16 гаусів

7.7 CTRL_REG3 (22 години)

Таблиця 25. Perictp CTRL_REG3

0 (1)	0 (1)	LP	0 (1)	0 (1)	SIM	MD1	MD0	

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

Таблиця 26. Опис CTRL_REG3

LP	Конфігурація режиму низького енергоспоживання. Значення за замовчуванням: 0 Якщо цей біт дорівнює 1, DO[2:0] встановлюється на 0,625 Гц, і система виконує для кожного каналу мінімальну кількість середніх значень. Коли біт встановлено на 0, магнітна швидкість передачі даних налаштовується бітами DO в регістрі CTRL_REG1 (20h).
SIM	Вибір режиму послідовного інтерфейсу SPI. Значення за замовчуванням: 0
	(0: 4-провідний інтерфейс; 1: 3-провідний інтерфейс)
MD[1:0] Bı	ибір режиму роботи (див. табл. 27). Значення за замовчуванням: 11

Таблиця 27. Вибір режиму роботи системи

мд1 мд0		Режим					
0	0	D Режим безперервного перетворення					
0	1	Режим одиночного перетворення Необхідно використовувати режим одинарного перетворення з частотою дискретизації від 0,625 Гц до 80 Гц.					
1	0 Реж	м вимкнення					
1	1	Режим відключення					

D59463 - ред. 7 сторінка 21/32

LIS3MDL

Опис регістрів

7.8 CTRL_REG4 (23 години)

Таблиця 28. Perictp CTRL_REG4

0 (1)	0 (1)	0 (1)	0 (1)	OMZ1	OMZ0	BLE	0 (1)
-------	-------	-------	-------	------	------	-----	-------

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

Таблиця 29. Опис CTRL_REG4

OM3[1:0]	Вибір робочого режиму осі Z (див. Таблицю 30). Значення за замовчуванням: 00
BLE	Вибір даних великого/малого порядку байтів. Значення за замовчуванням: 0
	(0: дані LSb за нижчою адресою; 1: дані MSb за нижчою адресою)

Таблиця 30. Вибір режиму роботи осі Z

OMZ1	ОМZ0	Режим роботи для осі Z
0	0	Режим низької потужності
0	1	Режим середньої продуктивності
1	0	Режим високої продуктивності
1	1	Режим надвисокої продуктивності

7.9 CTRL_REG5 (24 години)

Таблиця 31. Perictp CTRL_REG5

FAST_READ БДУ 0 (1) 0 (1) 0 (1)	0 (1) 0 (1)
---------------------------------	-------------

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

Таблиця 32. Опис CTRL_REG5

FAST_READ	FAST READ дозволяє зчитувати лише верхню частину DATA OUT, щоб підвищити ефективність читання. Значення за замовчуванням: 0 (0: FAST_READ вимкнено; 1: FAST_READ увімкнено)
БДУ	Блокувати оновлення даних для магнітних даних. Значення за замовчуванням: 0 (0: постійне оновлення; 1: вихідні регістри не оновлюються, доки MSb і LSb не будуть прочитані)

D59463 - ред. 7 сторінка 22/32

7.10 STATUS_REG (27 годин)

Таблиця 33. Perictp STATUS_REG

ZYXOR	30P	YOR	XOR	ZYXDA	ЗДА	YDA	XDA

Таблиця 34. Опис STATUS_REG

	Перевищення даних по осях Х, Y і Z. Значення за замовчуванням: 0
ZYXOR	(0: перевищення не відбулося;
	1: новий набір даних перезаписав попередній набір)
	Перевищення даних осі Z. Значення за замовчуванням: 0
30P	(0: перевищення не відбулося;
	1: нові дані для осі Z перезаписали попередні дані)
	Перевищення даних по осі Ү. Значення за замовчуванням: 0
YOR	(0: перевищення не відбулося;
	1: нові дані для осі У перезаписали попередні дані)
	Перевищення даних по осі Х. Значення за замовчуванням: 0
XOR	(0: перевищення не відбулося;
	1: нові дані для осі Х перезаписали попередні дані)
	Доступні нові дані для осей X, Y та Z. Значення за замовчуванням: 0
ZYXDA	(0: новий набір даних ще недоступний;
	1: доступний новий набір даних)
	Доступні нові дані осі Z. Значення за замовчуванням: 0
ЗДА	(0: нові дані для осі Z ще не доступні;
	1: доступні нові дані для осі Z)
	Доступні нові дані по осі Ү. Значення за замовчуванням: 0
YDA	(0: нові дані для осі Y ще не доступні;
	1: доступні нові дані для осі Y)
	Доступні нові дані по осі Х. Значення за замовчуванням: 0
XDA	(0: нові дані для осі X ще недоступні;
	1: доступні нові дані для осі X)

7.11 OUT_X_L (28 год), OUT_X_H (29 год)

Виведення даних по осі Х. Величина напруженості магнітного поля виражається як доповнення до двох частин.

7.12 OUT_Y_L (2Ah), OUT_Y_H (2Bh)

Виведення даних по осі Ү. Величина напруженості магнітного поля виражається як доповнення до двох частин.

7.13 OUT_Z_L (2Ch), OUT_Z_H (2Dh)

Виведення даних по осі Z. Величина напруженості магнітного поля виражається як доповнення до двох частин.

7.14 TEMP_OUT_L (2Eh), TEMP_OUT_H (2Fh)

Дані датчика температури. Значення температури виражається як доповнення до двох.

7.15 INT_CFG (30 годин)

Таблиця 35. Регістр INT_CFG

VIENI	YIEN	ZIENI	0 (1)	- 1	NATA	LIR	TENI
XIEN	TIEIN	ZIEIN	0(1)	1	MEA	LIK	IEN

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

Таблиця 36. Опис INT_CFG

XIEN	Вмикає генерацію переривання на осі X. Значення за замовчуванням: 1 (0: вимкнути запит на переривання; 1: увімкнути запит на переривання)
YIEN	Вмикає генерацію переривання по осі Ү. Значення за замовчуванням: 1 (0: вимкнути запит на переривання; 1: увімкнути запит на переривання)
ZIEN	Вмикає генерацію переривання по осі Z. Значення за замовчуванням: 1 (0: вимкнути запит на переривання; 1: увімкнути запит на переривання)
MEA	Переривання активної конфігурації на INT. Значення за замовчуванням: 0 (0: низький; 1: високий)
LIR	Запит на переривання блокування. Значення за замовчуванням: 0 (0: запит на переривання зафіксовано; 1: запит на переривання не зафіксовано) Після фіксації висновок INT залишається в тому ж стані, доки не буде зчитано INT_SRC (31 год) .
IEN	Вмикає переривання на виводі INT. Значення за замовчуванням: 0 (0: вимкнено; 1: увімкнено)

7.16 INT_SRC (31 год)

Таблиця 37. Perictp INT_SRC

PTH_X	PTH_Y	PTH_Z	NTH_X	NTH_Y	NTH_Z	MROI	IHT	
-------	-------	-------	-------	-------	-------	------	-----	--

Таблиця 38. Опис INT_SRC

PTH_X	Значення на осі X перевищує порогове значення в позитивну сторону. Значення за замовчуванням: 0
PTH_Y	Значення на осі У перевищує порогове значення в позитивну сторону.
PTH_Z	Значення на осі Z перевищує порогове значення з позитивної сторони. Значення за замовчуванням: 0
NTH_X	Значення на осі X перевищує порогове значення на негативній стороні. Значення за замовчуванням: 0
NTH_Y	Значення на осі Y перевищує порогове значення на негативній стороні. Значення за замовчуванням: 0
NTH_Z	Значення на осі Z перевищує порогове значення на негативній стороні. Значення за замовчуванням: 0
MROI	Внутрішнє переповнення діапазону вимірювань на магнітне значення. Значення за замовнуванням: 0
IHT	Цей біт сигналізує про подію переривання.

DS9463 - ред. 7 сторинка 24/32

LIS3MDL

Опис регістрів

7.17 INT_THS_L(32 год), INT_THS_H(33 год)

Поріг переривання. Значення за замовчуванням: 0.

Значення виражається в 16-бітовому форматі без знаку.

Навіть якщо поріг виражений в абсолютному значенні, пристрій виявляє як позитивні, так і негативні пороги.

Таблиця 39. INT_THS_L_M

THS7	THS6	THS5	THS4	THS3	THS2	THS1	THS0	
Таблиця 40. INT_THS_H_M								
0 (1)	THS14	THS13	THS12	THS11	THS10	THS9	THS8	

^{1.} Цей біт має бути встановлений на 0 для коректної роботи пристрою.

D59463 - ред. 7 сторінка 25/32

8 Інформація про пакет

Щоб відповідати екологічним вимогам, ST пропонує ці пристрої в різних класах ЕСОРАСК пакетів залежно від рівня їх екологічної відповідності. Специфікації ЕСОРАСК, визначення сортів і статус продукту доступні на: www.st.com. ECOPACK є торговою маркою ST.

8.1 Інформація про корпус LGA-12L

Малюнок 12. Контур упаковки LGA-12 2,0 x 2,0 x 1,0 мм і механічні дані

Розміри вказано в міліметрах, якщо не вказано інше. Загальний допуск становить +/-0,1 мм, якщо не вказано інше

ЗОВНІШНІ РОЗМІРИ

ПУНКТ	РОЗМІРИ [мм] 2,00	ДОПУСК [мм]
Довжина [L]	2,00	±0,15
Ширина [W]	1,027	±0,15
Висота [Н]	_	MAKC

8365767_5

DS9463 – ред. 7

Історія переглядів

Таблиця 41. Історія перегляду документа

Дата	Версія	Зміни
01-лют-2013	1	Початковий випуск
22 квітня 2013 року	2	Оновлена примітка на сторінці 12 Статус продукту змінено з попередніх даних на дані виробництва
12 грудня 2014 року	3	Додано біт FAST_ODR до таблиці 18: регістр CTRL_REG1 і таблиці 19: Опис CTRL_REG1 Додано біт FAST_READ до таблиці 32: регістр CTRL_REG5 і таблиці 33: Опис CTRL_REG5 Оновлена таблиця 16: Карта адрес реєстру Незначні текстові оновлення в усьому документі
15-травня-2015	4	Додано Таблицю 20: Конфігурація швидкості передачі даних
28 жовтня 2015 року	5	Оновлені регістри 32h та 33h у таблиці 16: карта адрес реєстру
02-травня-2017	6	Оновлена таблиця 1: Зведення про пристрій Оновлені значення за замовчуванням INT_CFG (30 годин)
05 грудня 2023 року	7	Оновлені примітки нижче Малюнок З. Тимчасова діаграма підлеглого пристрою SPI та Малюнок 4. Тимчасова діаграма підлеглого пристрою I ² C Додано жорсткі офсетні регістри OFFSET_X_REG_L_M (05h) і OFFSET_X_REG_H_M (06 год) до OFFSET_Z_REG_L_M (09 год) і OFFSET_Z_REG_H_M (0Ah) Оновлено інформацію про пакет LGA-12L у розділі 8.1

Зміст

1.1 Блок-схема 2	
1.2 Опис піна	
2 Магнітні та електричні характеристики	4
2.1 Магнітні характеристики	
2.2 Характеристики датчика температури	5
2.3 Електричні характеристики 5	
2.4 Характеристики інтерфейсу зв'язку 6	
2.4.1 SPI - послідовний периферійний інтерфейс	. 6
2.4.2 I ² C - інтерфейс управління між IC	
2.5 Абсолютні максимальні рейтинги	8
З Термінологія та функціональність	9
3.1 Чутливість 9	
3.2 Рівень нульового гауса	
3.3 Заводське калібрування	
4 Підказки щодо застосування´	10
4.1 Зовнішні конденсатори	
4.2 Інформація про паяння10	
4.3 Сильнострумовий ефект електропроводки	10
5 Цифрові інтерфейси11	
5.1 Послідовний інтерфейс I ² C	
5.1.1 Функціонування І ² С	
5.2 Інтерфейс шини SPI	
5.2.1 Зчитування SPI 15	
5.2.2 Запис SPI	
5.2.3 Зчитування SPI в 3-провідному режимі	
6 Відображення реєстру18	
7 Опис регістрів19	
7.1 OFFSET_X_REG_L_M (05h) i OFFSET_X_REG_H_M (06h) 19	9
7.2 OFFSET_Y_REG_L_M (07h))
	9
7.3 OFFSET_Z_REG_L_M (09h) i OFFSET_Z_REG_H_M (0Ah)	
7.3 OFFSET_Z_REG_L_M (09h)	

7.7 CTRL_REG3 (22 години)	21 7.8 CTRL_REG4 (23
години)	22 7.9 CTRL_REG5 (24
години)	22
7.10 STATUS_REG (27 годин)	23
7.11 OUT_X_L (28 год), OUT_X_H (29 г	од) 23
7.12 OUT_Y_L (2Ah), OUT_Y_H (2Bh)	23
7.13 OUT_Z_L (2Ch), OUT_Z_H (2Dh)	23 7.14 TEMP_OUT_L (2Eh), TEMP_OUT_F
(2Fh) 23 7.15	INT_CFG (30 год)
7.16 INT_SRC (31 год)	24 7.17 INT_THS_L(32 год.),
INT_THS_H(33 год.)	25
8 Інформація про пакет	
8.1 Інформація про пакет LGA-12L	26
Історія версій	27
Перелік таблиць	30
Перелік малюнків	31

Список таблиць

Таблиця 1.	Опис штифтів	3 Таблиця 2. Магнітні характеристики	4 Таблиця 3.
Характеристи	ки датчика температури	5 Таблиця 4.	
	Електричні характери	стики 5 Таблиця 5. Значення синх	ронізації веденого SPI
6 Таблиця 6.			
	Значення синхронізац	ції підлеглого пристрою I ² C 7 Таблиця 7. Абс	олютні максимальні номінальні
значення		8 Таблиця 8.	
	Опис контактів послідо	овного інтерфейсу 11 Таблиця 9.	
	Термінологія І ² С		гання/запису 12
Таблиця 11. Пе	ередача, коли ведучий з	аписує один байт на підлеглий пристрій 12 Та	блиця 12. Передача, коли провідний записує кілька
байтів на підл	еглий пристрій	12 Таблиця 13. Передача, коли провідний пристрій отримує	: (читає) один байт даних від підлеглого
пристрою	12 Таблиі	ця 14. Передача, коли ведучий отримує (читає) кілька байтів даних від	підлеглого 12 Таблиця 15. Карта
адрес реєстру		18 Таблиця 16. Регістр WHO_AM_I	19 Таблиця 17. Регістр
CTRL_REG1		20 Таблиця 18. Опис CTRL_REG1	20 Таблиця 19. Конфігурація швидкості
передачі дани	1X	20 Таблиця 20. Вибір режиму роботи осей X та Y	20 Таблиця 21. Конфігурація
швидкості вих	кідних даних	20 Таблиця 22. Регістр CTRL_REG2	21 Таблиця 23. Опис
CTRL_REG2		21 Таблиця 24. Повномасштабний вибір	
CTRL_REG3		21 Таблиця 26. Опис CTRL_REG3	21 Таблиця 27. Вибір режиму роботи
системи		21 Таблиця 28. Регістр CTRL_REG4	22 Таблиця 29. Опис
CTRL_REG4		22 Таблиця 30. Вибір режиму роботи осі Z	22 Таблиця 31. Регістр
CTRL_REG5		22 Таблиця 32. Опис CTRL_REG5	22 Таблиця 33. Регістр
STATUS_REG		23 Таблиця 34. Опис STATUS_REG	23 Таблиця 35. Регістр
		24 Таблиця 36. Опис INT_CFG	The state of the s
INT_SRC		24 Таблиця 38. Опис INT_SRC	24 Таблиця 39.
INT_THS_L_M		25 Таблиця 40. INT_THS_H_M	25 Таблиця 41. Історія переглядів
документа		27	

D59463 – ред. 7 сторінка 30/32

Список фігур

малюнок 1.	ьлок-схема 2	
малюнок 2.	Опис піна 3	
малюнок 3.	Тимчасова діаграма веденого SPI 6	
малюнок 4.	Часова діаграма підлеглого пристрою I²С7	
Малюнок 5. І	Електричні з'єднання LIS3MDL10	
	ротокол читання та запису14	
Малюнок 7.	Читання SPI 15	
Малюнок 8.	Багатобайтовий протокол читання SPI (2-байтовий приклад)	15
Малюнок 9.	Протокол запису SPI16	
Малюнок 10.	. Багатобайтовий протокол запису SPI (2-байтовий приклад)	16
Малюнок 11.	. Протокол читання SPI в 3-провідному режимі 17	
Малюнок 12.	. Контур упаковки LGA-12 2,0 x 2,0 x 1,0 мм і механічні дані	

ВАЖЛИВА ПРИМІТКА – ПРОЧИТАЙТЕ УВАЖНО

STMicroelectronics NV та її дочірні компанії («ST») залишають за собою право вносити зміни, виправлення, покращення, модифікації та вдосконалення продуктів ST та/або цього документа в будь-який час без попереднього повідомлення. Покупці повинні отримати актуальну інформацію про продукти ST перед розміщенням замовлень. Продукти ST продаються відповідно до умов продажу ST, які діють на момент підтвердження замовлення.

Покупці несуть виключну відповідальність за вибір, вибір і використання продуктів ST, а ST не несе відповідальності за допомогу в застосуванні чи дизайн продуктів покупців.

Компанія ST не надає жодних ліцензій, явних чи неявних, на будь-які права інтелектуальної власності.

Перепродаж продуктів ST з положеннями, відмінними від інформації, викладеної в цьому документі, анулює будь-яку гарантію, надану ST на такий продукт.

ST і логотип ST є товарними знаками ST. Щоб отримати додаткову інформацію про торгові марки ST, зверніться до www.st.com/trademarks. Усі інші назви продуктів або послуг є власністю відповідних власників.

Інформація в цьому документі замінює інформацію, надану раніше в будь-яких попередніх версіях цього документа.

© 2023 STMicroelectronics – Уст права захищено