Large N POLI SCI 210

Introduction to Empirical Methods in Political Science

Be ready for next week!

NO EMPS CHAPTER ASSIGNED

Lecture reading

- Huntinton-Klein, Nick. 2022. *The Effect: An Introduction to Research Design and Causality*. Chapman & Hall. Chapter 18
- Cattaneo, Matias D., Nicolás Idrobo, and Rocío Titiunik. 2020. *A Practical Introduction to Regression Discontinuity Designs: Foundations*. Cambridge University Press. Chapters 1-4

Discussion section (read at least on very carefully)

- García-Montoya, Laura, Ana Arjona, and Matthew Lacombe. 2022. "Violence and Voting in the United States: How School Shootings Affect Elections." American Political Science Review 116 (3): 807-826
- Ademi, Ubeydullah and Firat Kimya. 2024. "Democratic transition and party polarization: A fuzzy regression discontinuity design approach." Party Politics 30 (4):736-749

Al Prompts

- (Linear) regression
- Bivariate vs. multivariate regression
- Ordinary least squares (OLS)
- OLS regression assumptions (ask me why I did not mention them in class)
- How to choose what variables to include
- Covariance vs. correlation vs. regression

Last week

- Experiments to learn about cause and effect
- **Broadly:** Summarizing relationships between two variables (difference in means between treatment and control)
- This week: A more general method to summarize relationships between two (or more) variables
- Tuesday: Bivariate relationships
- Thursday: Multivariate relationships

An experiment has two variables

- Y: Observed outcome
- **D:** Treatment assignment (0: control, 1: treatment)

Y can be any kind of variable (numerical, categorical)

D is categorical because it denotes group membership

More general names

Υ

Outcome variable

Response variable

Dependent variable

Thing you want to explain

More general names

Υ	X
Outcome variable	Explanatory variable
Response variable	Predictor variable
Dependent variable	Independent variable
Thing you <i>want</i> to explain	Thing you <i>use</i> to explain

X and Y can now be any type (numerical, categorical)
That means we can't just compare means

Example

How to summarize?

Connect with a line

Maybe smoother?

A straight line?

Straight lines are good

They can be written as a linear equation

$$y = mx + b$$

y	Outcome variable
\mathcal{X}	Explanatory variable
\overline{m}	Slope $(\frac{rise}{run})$
\overline{b}	y-intercept

This is the *smallest number of parameters* to draw a line

Slopes and intercepts

$$y = 2x - 1$$

Slopes and intercepts

$$y = 2x - 1$$

$$y = -0.5x + 6$$

We can think of *intercept* and *slope* as **estimands** or **inferential targets**

Drawing lines in statistics

$$y = mx + b$$

Drawing lines in statistics

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

У	ŷ	Outcome variable
X	x_1	Explanatory variable
m	$\hat{\beta}_1$	Slope
b	\widehat{eta}_0	y-intercept

You may see this equation with an extra error term arepsilon in some textbooks

What are we doing?

- **Before:** Assume there is a *true parameter* that we do not observe (e.g. population mean, ATE)
- Now: Assume there is a true line that best describes the relationship between X and Y
- There is a **best linear predictor** that we want to *estimate*

Which line is a better summary?

X

More formally

- The **best linear predictor** is the line that minimizes the distance of each observation to the line
- That distance is known as residual or error

Visualizing residuals

Visualizing residuals

More formally

- The best linear predictor is the line that minimizes the distance of each observation to to the line
- That distance is know as a residual or error

$$e_i = (y_i - \widehat{y}_i)$$

More formally

- The best linear predictor is the line that minimizes the distance of each observation to to the line
- That distance is know as a residual or error

$$e_i = (y_i - (b_0 + b_1 x_{1i}))$$

Minimizing residuals

We want to find a vector of coefficients $(\widehat{\beta}_0, \widehat{\beta}_1)$ that minimizes the sum of squared residuals

$$SSR = \sum_{i=1}^{n} e_i^2$$

We could try many lines until we find the the smallest SSR Or use a method called **Ordinary Least Squares** (OLS)

OLS regression

Estimand

$$\alpha = E[Y] - \frac{\text{Cov}[X,Y]}{V[X]} E[X]$$
 $\beta = \frac{\text{Cov}[X,Y]}{V[X]}$

Estimator

$$\widehat{\alpha} = \overline{Y} - \frac{\overline{XY} - \overline{X} \cdot \overline{Y}}{\overline{X^2} - \overline{X}^2} \overline{X} \qquad \widehat{\beta} = \frac{\overline{XY} - \overline{X} \cdot \overline{Y}}{\overline{X^2} - \overline{X}^2}$$

 $\widehat{\alpha}$: intercept; $\widehat{\beta}$: slope

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \text{cookies}$$

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \widehat{\text{cookies}}$$

happiness =
$$\beta_0 + \beta_1$$
 cookies

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \widehat{\text{cookies}}$$

	happinness
(Intercept)	1.100*
	(0.470)
cookies	0.164+
	(0.076)
Num.Obs.	10
R2	0.368
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001	

$$\widehat{\text{happiness}} = \beta_0 + \beta_1 \widehat{\text{cookies}}$$

	happinness
(Intercept)	1.100*
	(0.470)
cookies	0.164
	(0.076)
Num.Obs.	10
R2	0.368
* p < 0.05	

$$\widehat{\text{happiness}} = 1.10 + 0.16 \cdot \widehat{\text{cookies}}$$

	happinness
(Intercept)	1.100*
	(0.470)
cookies	0.164
	(0.076)
Num.Obs.	10
R2	0.368
* p < 0.05	

$$\widehat{\text{happiness}} = 1.10 + 0.16 \cdot \widehat{\text{cookies}}$$

	happinness
(Intercept)	1.100*
	(0.470)
cookies	0.164
	(0.076)
Num.Obs.	10
R2	0.368
* p < 0.05	

On average

$$\widehat{\text{happiness}} = 1.10 + 0.16 \cdot \widehat{\text{cookies}}$$

	happinness
(Intercept)	1.100*
	(0.470)
cookies	0.164
	(0.076)
Num.Obs.	10
R2	0.368
* p < 0.05	

On average, one additional cookie

$$\widehat{\text{happiness}} = 1.10 + 0.16 \cdot \widehat{\text{cookies}}$$

	nappinness
(Intercept)	1.100*
	(0.470)
cookies	0.164
	(0.076)
Num.Obs.	10
R2	0.368
* p < 0.05	

On average, one additional cookie increases happiness by 0.16 points

Regression and correlation

Informally, we use regression coefficients (slopes) to determine whether two variables are **correlated**

Technically, they are related but on a different scale

Regression coefficient:
$$\beta = \frac{\text{Cov}[X,Y]}{V[X]}$$

Correlation:
$$\rho = \frac{\text{Cov}[X,Y]}{SD[X]SD[Y]}$$

Regression and correlation

Informally, we use regression coefficients (slopes) to determine whether two variables are **correlated**

Technically, they are related but on a different scale

Regression coefficient: $\beta = \frac{\text{Cov}[X,Y]}{V[X]} \Rightarrow \text{ in units of Y}$ (happiness)

Correlation: $\rho = \frac{\text{Cov}[X,Y]}{SD[X]SD[Y]}$

Regression and correlation

Informally, we use regression coefficients (slopes) to determine whether two variables are **correlated**

Technically, they are related but on a different scale

Regression coefficient: $\beta = \frac{\text{Cov}[X,Y]}{V[X]} \Rightarrow \text{ in units of Y}$ (happiness)

Correlation: $\rho = \frac{\text{Cov}[X,Y]}{SD[X]SD[Y]} \Rightarrow [-1, 1]$ scale

With cookies again

$$\widehat{\text{happiness}} = 1.10 + 0.16 \cdot \widehat{\text{cookies}}$$

- On average, one additional cookie increases happiness by 0.16 points
- Corresponds to a correlation of 0.61

Helpful for comparison

Is 0.16 happiness points per cookie a lot? We cannot tell without a point of reference

But correlation is a reference on its own:

	Absolute magnitude	Effect
	0.1	Small
•	0.3	Moderate
•	0.5	Large

Summary

- Lines are a convenient way to summarize bivariate relationships
- We can treat line-fitting as an estimation problem
- OLS regression has good statistical properties (minimizes SSR)
- Regression and correlation are related but different
- Many different kinds of regression models!

Large N POLI SCI 210

Introduction to Empirical Methods in Political Science

Last time

- Bivariate regression as a method to understand relationship between X and Y
- Today: More variables! (and why you would want that)
- Multivariate regression

Running example: ANES 2016 data

Outcome variable

 ft_trump_post: Post-election feeling thermometer toward Trump

Running example: ANES 2016 data

Explanatory variables

- women_at_home: Believe women should stay home
- obamamus lim: Believe Obama is a Muslim
- age: Age in years
- age0: Age in years (starting with 18 = 0)
- educ_hs: Any kind of post-secondary education
- republican: Identifies with Republican party (including leaners)

Running example: ANES 2016 data

```
# A tibble: 4,270 \times 7
   ft trump post women at home obamamuslim age age0 educ hs republican
            <dbl>
                             <dbl>
                                          <dbl> <dbl> <dbl>
                                                                 <dbl>
                                                                              <dbl>
                85
                                                     29
                                                            11
                                                                      1
 1
                                 0
                                               0
                60
                                                     26
 2
                                 0
                                                             8
 3
                                                     23
                                                                      1
                70
                60
                                               0
                                                     58
                                                            40
 5
                15
                                                     38
                                                            20
                                                                      1
                65
                                                            42
                                                                      1
 6
                                                     60
                50
                                                     58
                                                            40
                                                                      0
                85
                                                     56
                                                            38
                                                                      1
                                                                                   0
 9
                70
                                                     45
                                                            27
                                                                      1
10
                60
                                               0
                                                     30
                                                            12
                                                                      1
                                                                                   0
# i 4,260 more rows
```

Main relationship

Regression as conditional means

 $ft_trump_post = \beta_0 + \beta_1 \cdot obamamuslim$

term	estimate	std.error	p.value
(Intercept)	32.17	0.61	0
obamamuslim	35.04	1.15	0

Regression as conditional means

$$ft_trump_post = 32.17 + 35.04 \cdot obamamuslim$$

term	estimate	std.error	p.value
(Intercept)	32.17	0.61	0
obamamuslim	35.04	1.15	0

- What is the average feeling thermometer for someone who does not believe Obama is a Muslim?
- What is the average feeling thermometer for someone who does believe Obama is a Muslim?

What can we say with regression?

- Level 1: Description of conditional means
- Level 2: Statistical inference (needs CIs or p-values)
- Level 3: Causal inference (needs assumptions)

What do we need to assume to make causal claims?

Berk, Richard. 2010. "What You Can and Can't Properly do with Regression." *Journal of Quantitative Criminology* 26: 481-487

Strategy 1: Random assignment

If treatment D is randomly assigned

- Potential outcomes are *independent* from treatment: $(Y(0), Y(1)) \perp D$
- ATE $E[\tau_i]$ is point-identified
- Estimate with difference in means between treatment and control
- Bivariate regression yields the same result

What if random assignment is not possible?

Return to ANES 2016

We **found** that those who believe Obama is a Muslim were, on average, 35 points more favorable toward Trump

We want to **claim** this is because:

Belief in conspiracies \Rightarrow Support for Trump

What prevents us from making such a claim?

- Reverse causation
- Omitted variable bias
- Selection bias

Strategy 2: Ignorability

We want to be able to **ignore** the role of *potential confounders*We usually do this by presenting a **controlled** comparison
So we can say that our *explanatory variable* is distributed in a way that is **conditionally independent**

Conditional independence: $(Y(0), Y(1)) \perp D \mid X$

We now distinguish between:

- Explanatory variable (D)
- Control variables or covariates (X)

There is strong and weak ignorability. For our purposes they are the same

Another way to think about it

There is a causal effect to be found in observational data

But without random assignment, the effect is *contaminated* by potential confounders

We want to **adjust** or **control** for these variables

Multivariate regression

The linear model setup is flexible

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_K x_K$$

You can technically put *whatever* you want in a regression as long as observations > variables

But for *statistical* or *causal inference*, anything with more than 2-3 control variables doesn't make much sense

Increasing dimensions

Increasing dimensions

More dimensions → more likely to see:

- Extrapolation: Fitting line beyond actual range
- Interpolation: Gaps within actual range

Illusion of learning from empty space!

Practice

We argue conspiracy beliefs ⇒ support Trump Some alternative explanations:

- Differences in education
- Differences in age
- Partisan motivated reasoning

Models

Estimate the following models:

```
\begin{split} &\text{ft\_trump\_post} = \beta_0 + \beta_1 \text{obamamuslim (Baseline)} \\ &\text{ft\_trump\_post} = \beta_0 + \beta_1 \text{obamamuslim} + \beta_2 \text{educ\_hs} \\ &\text{ft\_trump\_post} = \beta_0 + \beta_1 \text{obamamuslim} + \beta_2 \text{age} \\ &\text{ft\_trump\_post} = \beta_0 + \beta_1 \text{obamamuslim} + \beta_2 \text{republican} \\ &\text{ft\_trump\_post} = \beta_0 + \beta_1 \text{obamamuslim} + \beta_2 \text{educ\_hs} + \\ &\beta_3 \text{age} + \beta_4 \text{republican} \end{split}
```

	(1)	(2)	(3)	(4)	(5)
(Intercept)					
obamamuslim					
educ_hs					
age					
republican					
Num.Obs.					
R2					
* p < 0.05					

	(1)	(2)	(3)	(4)	(5)
(Intercept)	32.168*				
	(0.611)				
obamamuslim	35.037*				
	(1.147)				
educ_hs					
age					
republican					
Num.Obs.	3632				
R2	0.204				
* p < 0.05					

	(1)	(2)	(3)	(4)	(5)
(Intercept)	32.168*	32.763*			
	(0.611)	(2.104)			
obamamuslim	35.037*	34.852*			
	(1.147)	(1.154)			
educ_hs		-0.557			
		(2.135)			
age					
republican					
Num.Obs.	3632	3601			
R2	0.204	0.203			
* p < 0.05					

	(1)	(2)	(3)	(4)	(5)
(Intercept)	32.168*	32.763*	23.090*		
	(0.611)	(2.104)	(1.574)		
obamamuslim	35.037*	34.852*	34.715*		
	(1.147)	(1.154)	(1.162)		
educ_hs		-0.557			
		(2.135)			
age			0.185*		
			(0.030)		
republican					
Num.Obs.	3632	3601	3536		
R2	0.204	0.203	0.214		
* p < 0.05					

	(1)	(2)	(3)	(4)	(5)
(Intercept)	32.168*	32.763*	23.090*	20.367*	
	(0.611)	(2.104)	(1.574)	(0.581)	
obamamuslim	35.037*	34.852*	34.715*	22.742*	
	(1.147)	(1.154)	(1.162)	(0.996)	
educ_hs		-0.557			
		(2.135)			
age			0.185*		
			(0.030)		
republican				37.533*	
				(0.913)	
Num.Obs.	3632	3601	3536	3616	
R2	0.204	0.203	0.214	0.459	
* p < 0.05					

	(1)	(2)	(3)	(4)	(5)
(Intercept)	32.168*	32.763*	23.090*	20.367*	21.338*
	(0.611)	(2.104)	(1.574)	(0.581)	(2.157)
obamamuslim	35.037*	34.852*	34.715*	22.742*	22.225*
	(1.147)	(1.154)	(1.162)	(0.996)	(1.016)
educ_hs		-0.557			-6.216*
		(2.135)			(1.788)
age			0.185*		0.101*
			(0.030)		(0.025)
republican				37.533*	37.539*
				(0.913)	(0.933)
Num.Obs.	3632	3601	3536	3616	3496
R2	0.204	0.203	0.214	0.459	0.462
* p < 0.05					

Visualizing

Everything else constant

Plug-in coefficients in equations:

```
\begin{split} &\texttt{ft\_trump\_post} = 32.17 + 35.04 \cdot \texttt{obamamuslim} \\ &\texttt{ft\_trump\_post} = 32.76 + 34.85 \cdot \texttt{obamamuslim} - 0.56 \cdot \texttt{educ\_hs} \\ &\texttt{ft\_trump\_post} = 23.09 + 34.72 \cdot \texttt{obamamuslim} + 0.19 \cdot \texttt{age} \\ &\texttt{ft\_trump\_post} = 20.367 + 22.74 \cdot \texttt{obamamuslim} + 37.53 \cdot \texttt{republican} \\ &\texttt{ft\_trump\_post} = 21.34 + 22.23 \cdot \texttt{obamamuslim} - 6.22 \cdot \texttt{educ\_hs} + \\ &0.10 \cdot \texttt{age} + 37.54 \cdot \texttt{republican} \end{split}
```

Coefficients now need to be interpreted as marginal means or marginal slopes

These only make sense if you think at least one variable is a focal point

Interactions

What if we believed the effect of obamamus lim varies depending on attitudes about gender roles?

Model:

```
ft_trump_post = \beta_0 + \beta_1obamamuslim + \beta_2women_at_ho\beta_3obamamuslim × women_at_home
```

Interactions

Model:

 $ft_trump_post = \beta_0 + \beta_1 obamamuslim + \beta_2 women_at_ho$ $\beta_3 obamamuslim \times women_at_home$

term	estimate	std.error	p.value
(Intercept)	27.74	0.73	0.00
obamamuslim	34.95	1.51	0.00
women_at_home	14.17	1.30	0.00
interaction	-4.74	2.31	0.04

Summary

- Regression is a way to estimate conditional means
- Multivariate regression needs "everything else constant" interpretation
- Coefficients are now marginal means or marginal slopes
- Only makes sense from a causal inference perspective