

CHEMISTRY RETROALIMENTACIÓN

TOMO I y II

Propiedad del átomo de carbono de enlazarse a otros átomos de carbono para formar cadena carbona propiedades químicas del carbono

- A) Covalencia
- **B)**Tetravalencia
- (C) Concatenación
 - D) Hibridación

RESOLUCIÓN:

RECORDEMOS

Rpta: C

Tetravalencia

Covalencia

 $-\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} = C - - C \equiv C - C = C$

Enlace Doble No Saturado

Enlace Simple

Saturado

Enlace Triple No Saturado

Autosaturación CONCATENACIÓ

Hibridación

¿Cual es la fórmula molecular de la molécula mostrada?

RESOLUCIÓN:

RECORDEMOS

La fórmula molecular es la fórmula química que indica el número y tipo de átomos distintos presentes en la molécula. La fórmula molecular es la cantidad real de átomos que conforman una molécula.

Rpta: B

Escriba verdadero (V) o falso (F) según corresponda, luego marque la alternativa correcta.

- Un hidrocarburo saturado responde a la fórmula general C_nH_{2n+2} (\bigvee
- Los alcanos se denominan olefinas . (F)
- Las olefinas son hidrocarburos que se caracterizan poCH₃ C E C CH₂ CH₃ carbono-carbono (on hibrodación sp³ sp³ . (F)
 2- Pentino
- · El número de átomos de hidrógeno en el 2-pentino so

A) FFFV

B) FFVF

C) VFFV

D) VVVV

	\frown			S
			M	

		2	92	_
Hidrocarburo	Enlaces presentes	Fórmula General	Terminación	
Alcano	Todos sencillos	C _n H _{2n+2}	ano	Parafinas sp ³
Alqueno	Al menos uno doble	C _n H _{2n}	eno	Olefinas sp ²
Alquino	Al menos uno triple	C_nH_{2n-2}	ino	Acetilénicos sp
Cicloalcano	Todos sencillos	C _n H _{2n}	ano	

Rpta: C

Realice la nomenclatura IUPAC del siguiente hidrocarburo:

RECORDEMOS

- ✓ Identificamos la cadena principal.
- ✓ Si un compuesto tiene dos o más cadenas del mismo tamaño, el hidrocarburo base será la cadena con mayor número de sustituyentes.
- ✓ Identificamos los radicales alquil.

N° de C	Prefijo
1	Met
2	Et
3	Prop'
4	But

Relaciona las estructuras con su respectivo grupo funcional:

- A. Hidroxilo
- B. Alcoxi
- C. Carbonilo primario
- D. Carbonilo secundario
- E. Carboxilo
- F. Carboalcoxi

$$\begin{array}{c|c}
 & O \\
 & R \\$$

RECORDEMOS

Grupo funcional	Serie homóloga	Fórmula	Estructura	
Grupo hidroxilo	Alcohol	R-OH	R ^O \H	
Grupo alcoxi	Éter	R-O-R'	R R'	
Grupo carbonilo	Aldehído primario	R-C(=0)H	R H	
Grupo Carbonilo	Cetona secundario	R-C(=0)-R'	R^{1} $C \setminus R^{2}$	
Grupo carboxilo	Ácido carboxílico	R-COOH	R OH	
Grupo acilo	Éster	R-C00-R'	O OR'	

Rpta: CABD

Realiza la nomenclatura IUPAC del siguiente compuesto:

RECORDEMOS

Las reglas formales para nombrar alcoholes se resumen en los siguientes tres pasos:

- 1. Nombre la cadena más larga de carbonos que contenga al átomo de carbono que tenga al grupo -OH. Quite la -o al final del nombre del alcano y agregue el sufijo -ol al nombre raíz.
- 2. Numere la cadena más larga de carbonos, comenzado con el extremo más cercano al grupo hidroxilo, y utilice el número apropiado para indicar la posición del grupo -OH. (El grupo hidroxilo tiene preferencia sobre los enlaces dobles y triples).
- 3. Nombre todos los sustituyentes y dé sus números, como lo haría con un alcano o alqueno.

Rpta:5-bromo-4,5-dimetilhex an -3-ol

Determine la atomicidad del siguiente compuesto : dietilcetona

A) 12

B) 13

C) 15

D) 16

Fórmula global:

C5H10O

Atomicidad:

16

RECORDEMOS

La **atomicidad** indica el número total de átomos en una molécula

Rpta: D

Los ésteres se pueden sintetizar por reacción química de:

- a) 2 alcoholes (con pérdida de agua)
- b) 1 alcohol y un éter (con pérdida de agua)
- c) 2 ácidos orgánicos (con pérdida de agua)
- d) 1 alcohol y un ácido carboxílico (con pérdida de agua)

RECORDEMOS

Los **ésteres** se forman por reacción entre un ácido y un alcohol. La reacción se produce con pérdida de agua. Se ha determinado que el agua se forma a partir del OH del ácido y el H del alcohol. Este proceso se llama esterificación.

Rpta: D

Indique lo incorrecto con respecto a :

- A) Tiene 7 átomos de carbono con hibridación sp³
- B) Tiene 1 enlaces pi
- C) Su nombre es ácido 3-etil-4-metilpentanoico.
- D Tiene un carbono con hibridación sp
- E) Su fórmula global es C₈H₁₆O

Rpta: D

Los átomos de carbono se pueden clasificar como primarios, secundarios, terciarios y cuaternarios. Según esta clasificación, determine el número de átomos de carbonos secundarios presentes en la siguiente estructura:

$$CH_3 - CH - CH_2 - CH - CH_2 - CH - CH_3$$

$$CH_3 - CH - CH_2 - CH - CH_2 - CH - CH_3$$

RECORDEMOS

Se denomina carbono secundario, cuando un átomo de carbono está unido mediante enlaces simples a dos átomos de carbono, luego en la

estructura:
$$CH_{3}$$

$$CH_{3} - CH - CH_{2} - CH - CH_{2} - CH - CH_{3}$$

$$CH_{2} - CH_{2} - CH - CH_{2}$$

$$CH_{2} - CH_{2} - CH_{2}$$

A) 1

B) 2

C) 3

D(4)

E) 5

Rpta: E