Chapter 1 Section 2 Exercises

1. How many substrings aab are in ww^Rw , where w=aabbab.

Solution. Because

$$w^R = babbaa, \qquad ww^R w = aabbabbabbaaaabbab,$$

there are two substrings aab in ww^Rw .

2. Use induction on n to show that $|u^n| = n|u|$ for all strings u and all n.

Proof.

1. Basis

If n = 0, then

$$|u^1| = |u|, \qquad 1 \cdot |u| = |u|.$$

Therefore,

$$|u^1| = 1 \cdot |u|.$$

2. Inductive Assumption

Assume that for $i = 0, 1, 2, \dots, n$

$$|u^i| = i \cdot |u|.$$

3. Inductive Step

For i = n + 1,

$$|u^{n+1}| = |u^n u| = |u^n| + |u| = n \cdot |u| + |u| = (n+1)|u|.$$

Thus, $|u^n| = n|u|$ for all strings u and all n.

3. The reverse of a string, introduced informally above, can be defined more precisely by the recursive rules

$$a^R = a,$$

$$(wa)^R = aw^R,$$

for all $a \in \Sigma, w \in \Sigma^*$. Use this to prove that

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

Proof.

1. Basis

For |v|=1, suppose that $v=a, a \in \Sigma$

$$(uv)^R = (ua)^R = au^R = v^R u^R.$$

2. Inductive Assumption

Suppose that for $|v| = 1, 2, \dots, n$

$$(uv)^R = v^R u^R.$$

3. Inductive Step

For i = n + 1, suppose that $v = wa, a \in \Sigma$

$$(uv)^R = (uwa)^R = a(uw)^R = aw^R u^R = v^R u^R.$$

Thus,

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

4. Prove that $(w^R)^R = w$ for all $w \in \Sigma^*$.

Proof.

1. Basis

For |w| = 0, which means that $w = \lambda$,

$$(\lambda^R)^R = (\lambda)^R = \lambda = w.$$

2. Inductive Assumption

Suppose that for $|w| = 1, 2, \dots, n$

$$(w^R)^R = w.$$

3. Inductive Step

For i = n + 1, suppose that $w = va, a \in \Sigma$

$$(w^R)^R = ((va)^R)^R = (av^R)^R = (v^R)^R a = va = w.$$

Thus, $(w^R)^R = w$ for all $w \in \Sigma^*$.

5. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaaa? Which strings are in L^4 ?

Solution.

$$abaabaaabaa = ab|aa|baa|ab|aa \in L^5;$$
 $aaaabaaaa = aa|aa|baa|aa \in L^4;$ $baaaaabaaaab \notin L^*;$ $baaaaabaa = baa|aa|ab|aa \in L^4.$

6. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describle \overline{L} .

Solution.

$$\overline{L} = \{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^+ : |w| \ge 3\}.$$

7. Let L be any language on a nonempty alphabet. Show that L and \overline{L} cannot both be finite. **Proof.** Suppose that both L and \overline{L} are finite. Therefore, $L \cup \overline{L}$ is also finite. However, $L \cup \overline{L} = \Sigma^*$ is an infinite set, which leads to a contradiction. Thus, L and \overline{L} cannot both be finite. **8.** Are there languages for which $\overline{L^*} = (\overline{L})^*$?

Solution. No, because

$$\overline{L^*} = \Sigma^* - (L^0 \cup L^1 \cup L^2 \cup \cdots),$$
$$(\overline{L})^* = (\Sigma^* - L)^0 \cup (\Sigma^* - L)^1 \cup (\Sigma^* - L)^2 \cup \cdots.$$

Thus, $\lambda \notin \overline{L^*}$ and $\lambda \in (\overline{L})^*$. There is no language for which $\overline{L^*} = (\overline{L})^*$.

9. Prove that

$$(L_1L_2)^R = L_2^R L_1^R$$

for all languages L_1 and L_2 .

Proof. $\forall u \in L_1 \text{ and } \forall v \in L_2, \text{ then }$

$$uv \in L_1L_2 \quad \Rightarrow \quad (uv)^R \in (L_1L_2)^R.$$

In addition,

$$(uv)^R = v^R u^R, \quad u^R \in L_1^R, \quad v^R \in L_2^R \quad \Rightarrow \quad v^R u^R \in L_2^R L_1^R.$$

Therefore,

$$(L_1L_2)^R = L_2^R L_1^R$$

for all languages L_1 and L_2 .

10. Show that $(L^*)^* = L^*$ for all languages.

Proof. It is obvious that

$$(L^*)^n = \{w_1 w_2 \cdots w_n : w_1, w_2, \cdots, w_n \in L^*\},\$$

where $n \in \mathbb{N}$. Because

$$L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Suppose that $w_1 \in L^{m_1}, w_2 \in L^{m_2}, \cdots, w_2 \in L^{m_n}$ where $0 \leq m_1, m_2, \cdots, m_n \leq n$ and $m_1, m_2, \cdots, m_n \in \mathbb{N}$. Therefore,

$$w_1 w_2 \cdots w_n \in L^{m_1 + m_2 + \cdots + m_n}.$$

However,

$$L^{m_1+m_2+\cdots+m_n} \in L^*.$$

Thus, $(L^*)^* = L^*$ for all languages.

11. Prove or disprove the following claims.

- (a) $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$ for all languages L_1 and L_2 .
- (b) $(L^R)^* = (L^*)^R$ for all languages L.

Proof.

(a)

$$L_1 \cup L_2 = \{w : w \in L_1 \text{ or } w \in L_2\},$$

$$(L_1 \cup L_2)^R = \{w^R : w \in L_1 \text{ or } w \in L_2\},$$

$$L_1^R \cup L_2^R = \{w^R : w \in L_1 \text{ or } w \in L_2\}.$$

Thus,

$$(L_1 \cup L_2)^R = L_1^R \cup L_2^R.$$

(b) It is obvious that

$$(L^R)^0 = \lambda = (\lambda)^R = (L^0)^R.$$

 $\forall n \in \mathbb{N}^+$

$$(L^n)^R = \{ (w_1 w_2 \cdots w_n)^R : w_1, w_2, \cdots, w_n \in L \}$$

$$= \{ w_n^R \cdots w_2^R w_1^R : w_1, w_2, \cdots, w_n \in L \}$$

$$= \{ w_n^R \cdots w_2^R w_1^R : w_1^R, w_2^R, \cdots, w_n^R \in L^R \}$$

$$= (L^R)^n.$$

Thus,

$$(L^{R})^{*} = (L^{R})^{0} \cup (L^{R})^{1} \cup (L^{R})^{2} \cup \cdots$$
$$= (L^{0})^{R} \cup (L^{1})^{R} \cup (L^{2})^{R} \cup \cdots$$
$$= (L^{*})^{R}.$$

12. Find a grammar for the language $L = \{a^n, \text{ where } n \text{ is even}\}.$

Solution. The grammar is $G = (\{S\}, \{a\}, S, P)$ with P given by

$$S \to aaS|\lambda$$
.

13. Find a grammar for the language $L = \{a^n, \text{ where } n \text{ is even and } n > 3\}.$

Solution. The grammar is $G = (\{S, A\}, \{a\}, S, P)$ with P given by

$$S \to aaaaA$$
,

$$A \to aaA|\lambda$$
.

- **14.** Find grammars for $\Sigma = \{a, b\}$ that generate the sets of
 - (a) all strings with exactly two a's.
 - (b) all strings with at least two a's.
 - (c) all strings with no more than three a's.
 - (d) all strings with at least three a's.
 - (e) all strings that start with a and end with b.
 - (f) all strings with an even number of b's.

In each case, give convincing arguments that the grammar you give does indeed generate the indicated language.

Solution.

(a) The grammar is $G = (\{S,A\},\{a,b\},S,P)$ with P given by

$$S \to AaAaA$$
,

$$A \to bA|\lambda$$
.

(b) The grammar is $G = (\{S, A\}, \{a, b\}, S, P)$ with P given by

$$S \to AaAaA$$
,

$$A \to aA|bA|\lambda$$
.

(c) The grammar is $G = (\{S,A,B,C\},\{a,b\},S,P)$ with P given by

$$S \to aA|bS|\lambda$$
,

$$A \to aB|bA|\lambda$$
,

$$B \to aC|bB|\lambda$$
,

$$C \to bC|\lambda$$
.

(d) The grammar is $G=(\{S,A\},\{a,b\},S,P)$ with P given by

$$S \to AaAaAaA$$
,

$$A \to aA|bA|\lambda$$
.

(e) The grammar is $G = (\{S,A\},\{a,b\},S,P)$ with P given by

$$S \to aAb$$
,

$$A \to aA|bA|\lambda$$
.

(f) The grammar is $G = (\{S, A\}, \{a, b\}, S, P)$ with P given by

$$S \to SbSbS|A|\lambda$$
,

$$A \to aA|\lambda$$
.

15. Give a simple description of the language generated by the grammar with productions

$$S \to aaA$$
,

$$A \to bS$$
,

$$S \to \lambda$$
.

Solution. The language generated by this grammar is

$$L = \{(aab)^n : n \ge 0\}.$$

16. What language does the grammar with these productions generate?

$$S \to Aa$$
,

$$A \to B$$
,

$$B \to Aa$$
.

Solution. The language generated by this grammar is

$$L = \{Aa^n : n \ge 1\}.$$

17. Let $\Sigma = \{a, b\}$. For each of the following languages, find a grammar that generates it.

- (a) $L_1 = \{a^n b^m : n \ge 0, m < n\}.$
- (b) $L_2 = \{a^{3n}b^{2n} : n \ge 2\}.$
- (c) $L_3 = \{a^{n+3}b^n : n \ge 2\}.$

Solution.

(a) The grammar is $G = (\{S, A\}, \{a, b\}, S, P)$ with P given by

$$S \to aA$$
,

$$A \to aA|aAb|\lambda$$
.

(b) The grammar is $G = (\{S,A\},\{a,b\},S,P)$ with P given by

$$S \rightarrow aaaaaaAbbbb,$$

$$A \rightarrow aaaAbb|\lambda$$
.

(c) The grammar is $G=(\{S,A\},\{a,b\},S,P)$ with P given by

$$S \rightarrow aaaaaAbb$$
,

$$A \to aAb|\lambda$$
.