실력 완성 | 수학 I

1-2-2.상용로그

수학 계산력 강화

(1)상용로그의 값과 실생활에의 활용

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 상용로그의 값

- (1) 상용로그 : $N\!>\!0$ 에 대하여 $\log_{10}N$ 과 같이 10을 밑으로 하는 로그를 말한다.
- (2) 상용로그의 표현
 - : 임의의 양수 N에 대하여 상용로그 $\log_{10}\!N$ 은 10을 생략하여 $\log N = n + \log a$ (n은 정수, $0 \le \log a < 1$)과 같이 나타낼 수 있다. . .

☑ 다음 상용로그의 값을 구하여라.

- **1.** log 10
- 2. log 100
- 3. log 1000
- 4. $\log 10^{-5}$
- $\log \frac{1}{1000}$ 5.
- 6. log 0.1
- 7. log 0.01
- 8. $\log 0.001$
- 9. $\log \sqrt[4]{1000}$

- **10.** $\log 100 \sqrt{10}$
- **11.** $\log 10 \sqrt{10}$
- **12.** $\log \sqrt[3]{10^5}$
- **13.** $\log \frac{1}{100\sqrt[3]{100}}$
- \square log 2 = 0.3010, log 3 = 0.4771일 때, 다음 상용로그의 값을 구하여라.
- **14.** $\log \frac{5}{2}$
- **15.** $\log \frac{3}{5}$
- **16.** $\log \frac{5}{6}$
- 17. $\log \frac{4}{5}$
- **18.** log 9

19. log 8	□ log 3.14 = 0.4969일 때, 다음 상용로그의 값을 구하여라.
	29. log 0.0314
20. log 4	30. log 0.314
21. log 6	31. log 3140
22. log 5	32. log 31.4
74 1 cm 2 45 — 0 2000 01 MW FLO ALO = 701 710 7 ₹101 = 1	74 log (22 _ 0 712(0) MU FLO ALORDO 712 TELODEL
■ log 2.46 = 0.3909일 때, 다음 상용로그의 값을 구하여라.23. log 0.000246	✓ log 5.23 = 0.7185일 때, 다음 상용로그의 값을 구하여라.33. log 0.0523
23. log 0.000246	33. 10g 0.0523
24. log 0.0246	34. log 5230
25. log 246	35. log 0.000523
26. log 24.6	☑ 다음 물음에 답하여라.
■ log2.43 = 0.3856일 때, 다음 상용로그의 값을 구하여라.	36. log8.71 = 0.94로 계산할 때, log8710+log0.871의
27. log0.00243	값을 구하여라.
28. log24.3	37. log40.8 = 1.6107로 계산할 때, log4080+log0.408 의 값을 구하여라.

- **38.** log3.14 = 0.4969일 때, log314+log0.314의 값을 구하여라.
- **39.** $\log 5.87 = 0.7686$, $\log 58700 = a$, $\log b = -1.23140$ 다. a+b의 값을 구하여라.
- **40.** log2.86 = 0.4564일 때, $\log \sqrt[4]{286} = a,$ $\log b = -1.5436$ 이다. a+b의 값을 구하여라.
- **41.** log4.73 = 0.6749 **2** 때, log473 = A $\log B = -1.3251$ 일 때, 상수 A,B의 합 A+B의 값을 구하여라.

상용로그표

- (1) **상용로그표** : 0.01의 간격으로 1.00에서 9.99까지의 수에 대한 상용로그의 값을 반올림하여 소수점 아래 넷째 자리까지 나타낸 표이다.
- 참고 상용로그표에 있는 상용로그의 값은 어림한 값이지 만 편의상 등호를 사용하여 나타낸다.
- ☑ 다음 상용로그표를 이용하여 다음 상용로그의 값을 구하 여라.

수		4	5	6	7	8	9
						•••	
4.0		.6064	.6075	.6085	.6096	.6107	.6117
4.1		.6170	.6180	.6191	.6201	.6212	.6222
4.2		.6274	.6284	.6294	.6304	.6314	.6325
4.3		.6375	.6385	.6395	.6405	.6415	.6425
4.4		.6474	.6484	.6493	.6503	.6513	.6522
•••	•••		•••	•••	•••	•••	•••

- **42.** log436
- **43.** log 0.0445
- **44.** log4190

☑ 다음 상용로그표를 이용하여 다음 상용로그의 값을 구하 여라.

수	•••	2	3	4	5	6	•••
:	:		::			:	:
4.1	•••	.6149	.6160	.6170	.6180	.6191	•••
4.2	•••	.6253	.6263	.6274	.6284	.6294	•••
4.3	• • • •	.6355	.6365	.6375	.6385	.6395	•••

- **45.** log 0.00435
- **46.** log 0.415
- **47.** log 43200
- **48.** log 41.6
- **49.** log 4.24

☑ 상용로그표를 이용하여 다음 값을 구하시오.

수	0	1	2	3	4
5.0	.6990	.6998	.7007	.7016	.7024
5.1	.7076	.7084	.7093	.7101	.7110
5.2	.7160	.7168	.7177	.7185	.7193
5.3	.7243	.7251	.7259	.7267	.7275
5.4	.7324	.7332	.7340	.7348	.7356

- **50.** log 0.0534
- **51.** log 534
- **52.** log 5.02
- **53.** log 5.13

☑ 주어진 상용로그표를 이용하여 알맞은 값을 구하여라.

54. log(149×0.0158)의 값

수	0	1	 8	9
1.4	0.1461	0.1492	 0.1703	0.1732
1.5	0.1761	0.1790	 0.1987	0.2014

55. log8760+log0.0876의 값

수	4	5	6	7	8
8.6	0.9365	0.9370	0.9375	0.9380	0.9385
8.7	0.9415	0.9420	0.9425	0.9430	0.9435
8.8	0.9465	0.9469	0.9474	0.9479	0.9484

56. log3220+log0.0345의 값

수	0	1	2	3	4	5
3.1	.4914	.4928	.4942	.4955	.4969	.4983
3.2	.5051	.5065	.5079	.5092	.5105	.5119
3.3	.5185	.5198	.5211	.5224	.5237	.5250
3.4	.5315	.5328	.5340	.5353	.5366	.5378

57. log(0.00461×4830)의 값

수	0	1	2	3	4
:	•••	•••	•••	•••	•••
4.6	.6628	.6637	.6646	.6656	
4.7	.6721	.6730	.6739	.6749	
4.8	.6812	.6821	.6830	.6839	
÷	•••	•••	•••	•••	•••

58. log214+log0.235의 값

수	2	3	4	5	6
2.1	.3263	.3284	.3304	.3324	.3345
2.2	.3464	.3483	.3502	.3522	.3541
2.3	.3655	.3674	.3692	.3711	.3729

59. log223+log0.8의 값

수	0	1	2	3	4
2.0	.3010	.3032	.3054	.3075	.3096
2.1	.3222	.3243	.3263	.3284	.3304
2.2	.3424	.3444	.3464	.3483	.3502
2.3	.3617	.3636	.3655	.3674	.3692

60. $\log 0.132 + \log 101 + \log \sqrt{1.21}$ **2** \therefore

수	0	1	2
1.0	.0000	.0043	.0086
1.1	.0414	.0453	.0492
1.2	.0792	.0828	.0864
1.3	.1139	.1173	.1206

실생활에의 활용

- (1) 주어진 관계식에 문자 또는 적당한 값을 대입하여 로그 의 여러 가지 성질을 이용하여 계산한다.
- (2) 일정한 비율로 변화되는 경우
 - : 현재의 양이 T이고, 한 번 시행에서 그 양이 a%씩 증 가할 때 n번 시행 후의 양은 $T\left(1+\frac{a}{100}\right)^k$,

양이 a%씩 감소할 때, n번 시행 후의 양은 $T igg(1-rac{a}{100}igg)^k$

☑ 다음 물음에 답하여라.

61. 화재가 발생한 화재실의 온도는 시간에 따라 변한 다. 어떤 화재실의 초기 온도를 $T_0(\mathbb{C})$, 화재가 발 생한 지 t분 후의 온도를 $T(\mathbb{C})$ 라고 할 때, 다음 식이 성립한다고 한다.

 $T = T_0 + k \log (8t + 1)$ (단, k는 상수)

초기 온도가 20℃인 화재실에서 화재가 발생한 지 $\frac{9}{8}$ 분 후의 온도는 365 $^{\circ}$ 이었고, 화재가 발생한 지 a분 후의 온도는 710 $^{\circ}$ 이었다. 이때, a의 값을 구하 여라.

- (1) 주어진 식을 이용하여 k의 값 구하기
- (2) a에 대한 식을 세워 a의 값 구하기

62. 기어가 있는 자전거를 평지에서 매분 일정한 회전 수로 페달을 돌릴 때, 기어를 1단 높일 때마다 속력 은 15%씩 증가한다고 한다. 평지에서 매분 일정한 회전수로 페달을 돌릴 때, 6단 기어일 때의 속력은 1단 기어일 때의 속력의 x배라고 한다. x의 값을 구하여라.

(단, $\log 2 = 0.3$, $\log 1.15 = 0.06$ 으로 계산한다.)

- (1) 주어진 조건을 이용하여 x에 대한 식 세우기
- (2) x의 값 구하기
- 63. 어떤 유리판 한 장을 통과할 때마다 빛의 밝기가 10%씩 감소한다고 한다. 빛의 밝기를 처음 밝기의 50% 이하로 약화시키려면 최소한 몇 장의 유리판을 통과시켜야 하는지 구하여라.

(단, $\log 2 = 0.3$, $\log 3 = 0.48$ 로 계산한다.)

- (1) 처음 빛의 밝기를 A라 하고, n장의 유리판을 통과 한 빛의 밝기 구하기
- (2) *n*의 최<u>솟</u>값 구하기
- 64. 어느 지역에서 1년 동안 발생한 규모 M 이상인 지진의 평균 발생 횟수 N은 다음 식을 만족시킨다 고 한다.

 $\log N = a - 0.9M$ (단, a는 양의 상수)

- 이 지역에서 규모 4이상인 지진이 1년에 평균 64번 발생할 때, 규모 x 이상인 지진은 1년에 평균 한 번 발생한다. x의 값을 구하여라. (단, $\log 2 = 0.3$ 으로 계산한다.)
- (1) M=4, N=64임을 이용하여 a의 값 구하기
- (2) x에 대한 식을 세워 x의 값 구하기

- 65. 올해의 매출액이 A인 회사에서 매년 일정한 비율 로 매출액을 늘려 10년 후에는 올해 매출액의 2배 가 되도록 하려고 한다. 매출액을 매년 몇 %씩 늘려 구하여라. 하는지 (단, $\log 2 = 0.3$ $\log 1.072 = 0.03$ 으로 계산한다.)
- (1) 매출액이 매년 a%씩 늘어날 때, 10년 후의 매출액 구하기
- (2) 매출액이 2배가 될 때, a의 값 구하기
- **66.** A회사의 매출액이 매년 20%씩 일정하게 증가 한 다고 할 때, 다음 물음에 답하시오.
- (1) A회사의 처음 매출액을 M이라 할 때, 15년 후의 매출액을 M에 관한 식으로 나타내시오.
- (2) (1)에서 구한 식의 값과 다음의 <상용로그표>를 이 용하여 A회사의 매출은 처음의 몇 배가 되었는지 구 하시오.

<상용로그표>

수	0	1	2	3	4	5	6	7	8	9
:	:	:	:	:	:	:	:	:	:	:
1.2	.079	.083	.086	.090	.093	.097	.100	.104	.107	.111
1.3	.114	.117	.121	.124	.127	.130	.134	.137	.140	.143
1.4	.147	.149	.152	.155	.158	.161	.164	.167	.170	.173
1.5	.176	.179	.182	.185	.188	.190	.193	.196	.199	.201
÷	:	:	:	:	:	:	÷	:	:	:

- 67. 어떤 조사에서 의하면 오존층의 오존의 양이 매년 전년도에 비하여 3%씩 감소하고 있다고 한다. 이러 한 오존의 감소는 여러 가지 피해를 낳고 있는데 예를 들면, 오존이 1% 감소하면 자외선의 증가로 피부암의 발병률이 0.5% 증가하는 것으로 추정되고 있다. 이런 오존의 감소추세가 계속된다고 할 때, 다음 물음에 따라 답하여라.
- (1) 현재의 오존의 양을 A라고 할 때, 10년 후 오존의 양을 주어진 로그표를 이용하여 구하여라.

수	0	1	•••	3	4	•••	8
1.0	0.0000	0.0043	•••	0.0128	0.0170	•••	0.0334
•••	•••	•••	•••	•••	•••	•••	•••
7.3	0.8633	0.8639	•••	0.8651	0.8657	•••	0.8680
•••	•••	•••	•••	•••	•••	•••	•••
9.7	0.9868	0.9872	•••	0.9881	0.9886	•••	0.9903

- (2) (1)에 의하여 10년 후 오존의 양은 현재에 비하여 몇 % 감소하는지 구하여라.
- (3) 10년 후 피부암의 발병률은 현재에 비하여 몇 % 증가하는지 구하여라.
- 68. 가구 수에 대한 주택 수를 주택보급률이라 하고,

(주택보급률) =
$$\frac{(주택 수)}{(가구 수)} \times 100(\%)$$

와 같이 계산한다. 어느 도시의 2018년 1월의 주택보급률이 80%인데, 가구 수는 해마다 전년도의 3% 씩 증가하고, 주택 수는 전년도의 5%씩 증가할 것으로 예측되었다. 예측이 맞아떨어졌다고 할 때, 이도시의 1월의 주택보급률이 처음으로 90% 이상이되는 해는 언제인지 구하여라. (단, $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 1.03 = 0.0128$, $\log 1.05 = 0.0212$ 로 계산한다.)

- (1) 2018년 1월의 가구 수를 100a로 놓고, n년 후 1월 의 가구 수와 주택 수 구하기
- (2) 주택보급률이 90% 이상이 되도록 식 세우기
- (3) 주택보급률이 90% 이상이 되는 해 구하기

- 69. 물이 필터를 1겹 통과할 때마다 물에 포함된 불순물의 40%가 걸러지는 정수기가 있다. 처음 물에 포함된 불순물의 양을 100g이라고 했을 때, 총 10겹의 필터를 통과한 불순물의 양을 구하여라. (단, log6=0.7782, log6.05=0.782으로 계산한다.)
- **70.** 어느 도시의 t년도 인구수를 $P_t imes 10^6 (명)$ 이라 하면

$$P_t = 4 \times 3^{\frac{t - 2001}{15}}$$

인 관계가 성립한다고 한다. 이 도시의 인구수가 2016년 인구수의 2배가 되는 해를 구하여라. (단, $\log 2 = 0.3$, $\log 3 = 0.5$ 로 계산한다.)

정답 및 해설

- 1) 1
- 2) 2
- 3) 3
- 4) -5
- $\Rightarrow \log 10^{-5} = -5$
- 5) -3
- $\Rightarrow \log \frac{1}{1000} = \log 10^{-3} = -3$
- 6) -1
- 7) -2
- 8) -3
- $\Rightarrow \log \sqrt[4]{1000} = \log 10^{\frac{3}{4}} = \frac{3}{4}$
- 10) $\frac{5}{2}$
- $\Rightarrow \log 100 \sqrt{10} = \log (10^2 \times 10^{\frac{1}{2}}) = \log 10^{\frac{5}{2}} = \frac{5}{2}$
- 11) $\frac{3}{2}$
- $\Rightarrow \log 10 \sqrt{10} = \log 10^{\frac{3}{2}} = \frac{3}{2}$
- 12) $\frac{5}{2}$
- $\Rightarrow \log \sqrt[3]{10^5} = \log 10^{\frac{5}{3}} = \frac{5}{3}$
- 13) $-\frac{8}{3}$
- $\Rightarrow \log \frac{1}{100\sqrt[3]{100}} = \log \frac{1}{100\sqrt[2+\frac{2}{3}]} = \log 10^{-\frac{8}{3}} = -\frac{8}{3}$
- 14) 0.3980
- $\Rightarrow \log \frac{5}{2} = \log \frac{10}{4} = \log 10 2 \log 2$ $=1-2\times0.3010=1-0.6020=0.3980$
- 15) -0.2219
- $\Rightarrow \log \frac{3}{5} = \log \frac{2 \times 3}{10} = \log 2 + \log 3 \log 10$ = 0.3010 + 0.4771 - 1 = -0.2219

- 16) -0.0791
- $\Rightarrow \log \frac{5}{6} = \log \frac{10}{2^2 \times 3} = \log 10 (2 \log 2 + \log 3)$ $=1-(2\times0.3010+0.4771)=-0.0791$
- 17) -0.0970
- $\Rightarrow \log \frac{4}{5} = \log \frac{8}{10} = \log 8 \log 10 = 3 \log 2 1$ $= 3 \times 0.3010 - 1 = 0.9030 - 1 = -0.0970$
- 18) 0.9542
- $\Rightarrow \log 9 = \log 3^2 = 2 \log 3 = 2 \times 0.4771 = 0.9542$
- 19) 0.9030
- $\Rightarrow \log 8 = \log 2^3 = 3 \log 2 = 3 \times 0.3010 = 0.9030$
- 20) 0.6020
- $\Rightarrow \log 4 = \log 2^2 = 2 \log 2 = 2 \times 0.3010 = 0.6020$
- 21) 0.7781
- $\Rightarrow \log 6 = \log (2 \times 3) = \log 2 + \log 3$ = 0.3010 + 0.4771 = 0.7781
- 22) 0.6990
- $\Rightarrow \log 5 = \log \frac{10}{2} = 1 0.3010 = 0.6990$
- 23) -3.6091
- $\Rightarrow \log 0.000246 = \log (2.46 \times 10^{-4})$ $= \log 2.46 + \log 10^{-4} = 0.3909 - 4 = -3.6091$
- 24) -1.6091
- $\Rightarrow \log 0.0246 = \log (2.46 \times 10^{-2})$ $= \log 2.46 + \log 10^{-2} = 0.3909 - 2 = -1.6091$
- 25) 2.3909
- $\Rightarrow \log 246 = \log (2.46 \times 100)$ $= \log 2.46 + \log 100 = 0.3909 + 2 = 2.3909$
- 26) 1.3909
- $\Rightarrow \log 24.6 = \log (2.46 \times 10) = \log 2.46 + \log 10$ =0.3909+1=1.3909
- 27) -2.6144
- $\Rightarrow \log 0.00243 = \log \left(2.43 \times \frac{1}{1000} \right)$ $=\log 2.43 + \log \frac{1}{1000} = 0.3856 - 3 = -2.6144$
- 28) 1.3856
- $\Rightarrow \log 24.3 = \log(2.43 \times 10)$ $= \log 2.43 + 1 = 0.3856 + 1 = 1.3856$
- 29) -1.5031
- $\Rightarrow \log 0.0314 = \log (3.14 \times 10^{-2}) = \log 3.14 + \log 10^{-2}$ =0.4969-2=-1.5031

- 30) -0.5031
- $\Rightarrow \log 0.314 = \log (3.14 \times 10^{-1}) = \log 3.14 + \log 10^{-1}$ = 0.4969 1 = -0.5031
- 31) 3.4969
- $\Rightarrow \log 3140 = \log (3.14 \times 1000) = \log 3.14 + \log 1000$ = 0.4969 + 3 = 3.4969
- 32) 1.4969
- $\Rightarrow \log 31.4 = \log (3.14 \times 10) = \log 3.14 + \log 10$ = 0.4969 + 1 = 1.4969
- 33) -1.2815
- $\Rightarrow \log 0.0523 = \log 5.23 + \log 10^{-2}$ = 0.7185 2 = -1.2815
- 34) 3.7185
- $\Rightarrow \log 5230 = \log 5.23 + \log 10^3 = 0.7185 + 3 = 3.7185$
- 35) -3.2815
- $\Rightarrow \log 0.000523 = \log (5.23 \times 10^{-4})$ = 0.7185 - 4 = -3.2815
- 36) 3.88
- $\begin{array}{l} \Leftrightarrow \ \log 8710 + \log 0.871 \\ = \log \left(8.71 \times 10^{3} \right) + \log \left(8.71 \times 10^{-1} \right) \\ = 3 + \log 8.71 1 + \log 8.71 = 2 + 2 \times 0.94 = 3.88 \end{array}$
- 37) 3.2214
- $\begin{array}{l} \Leftrightarrow \ \log 4080 + \log 0.408 \\ = \log \left(40.8 \times 10^2 \right) + \log \left(40.8 \times 10^{-2} \right) \\ = 2 + \log 40.8 2 + \log 40.8 = 2 \times 1.6107 = 3.2214 \end{array}$
- 38) 1.9938
- $\Rightarrow \log 314 + \log 0.314$ $= \log (3.14 \times 10^{2}) + \log (3.14 \times 10^{-1})$ $= 2 + \log 3.14 1 + \log 3.14$ $= 1 + 2 \times 0.4969 = 1.9938$
- 39) 4.8273
- $\Rightarrow a = \log 58700 = \log (10^4 \times 5.87) = 4 + \log 5.87$ = 4 + 0.7686 = 4.7686 $\log b = -1.2314 = -2 + 0.7686 = -2 + \log 5.87$ $= \log (10^{-2} \times 5.87) = \log 0.0587 \quad \therefore b = 0.0587$ $\therefore a + b = 4.7686 + 0.0587 = 4.8273$
- 40) 0.6427
- $\Rightarrow a = \log \sqrt[4]{286} = \frac{1}{4} \log 286 = \frac{1}{4} \log (2.86 \times 10^2)$ $= \frac{1}{4} (2 + \log 2.86) = \frac{1}{4} (2 + 0.4564) = 0.6141$ $\log b = -1.5436 = -2 + 0.4564 = -2 + \log 2.86$ $= \log 0.0286$ $\therefore b = 0.0286$

- a + b = 0.6427
- 41) 2.7222
- $\Rightarrow A = \log 473 = \log (4.73 \times 10^2) = 2 + \log 4.73$ = 2 + 0.6749 = 2.6749 $\log B = -1.3251 = -2 + 0.6749 = \log (4.73 \times 10^{-2})$ $= \log 0.0473$ $\therefore B = 0.0473$ $\therefore A + B = 2.7222$
- 42) 2.6395
- $\Rightarrow \log 436 = \log(4.36 \times 100) = \log 4.36 + \log 100$ = 0.6395 + 2 = 2.6395
- 43) -1.3516
- $\Rightarrow \log 0.0445 = \log (4.45 \times 10^{-2}) = \log 4.45 + \log 10^{-2}$ = 0.6484 2 = -1.3516
- 44) 3.6222
- $\Rightarrow \log 4190 = \log(4.19 \times 1000) = \log 4.19 + \log 1000$ = 0.6222 + 3 = 3.6222
- 45) -2.3615
- $\Rightarrow \log 0.00435 = \log (4.35 \times 10^{-3}) = \log 4.35 + \log 10^{-3}$ = 0.6385 3 = -2.3615
- 46) -0.3820
- $\Rightarrow \log 0.415 = \log (4.15 \times 10^{-1}) = \log 4.15 + \log 10^{-1}$ = 0.6180 1 = -0.3820
- 47) 4.6355
- $\Rightarrow \log 43200 = \log (4.32 \times 10^4) = \log 4.32 + \log 10^4$ = 0.6355 + 4 = 4.6355
- 48) 1.6191
- $\Rightarrow \log 41.6 = \log (4.16 \times 10) = \log 4.16 + \log 10$ = 0.6191 + 1 = 1.6191
- 49) 0.6274
- 50) -1.2725
- $\begin{array}{l} \Leftrightarrow \ \log 0.0534 \!=\! \log \left(5.34 \!\times\! 10^{-2}\right) \!=\! \log 5.34 \!+\! \log 10^{-2} \\ = \! 0.7275 \!-\! 2 \!=\! -1.2725 \end{array}$
- 51) 2.7275
- $\Rightarrow \log 534 = \log (5.34 \times 10^2) = \log 5.34 + \log 10^2$ = 0.7275 + 2 = 2.7275
- 52) 0.7007
- 53) 0.7101
- 54) 0.3719
- $\Rightarrow \log(149 \times 0.0158) = \log 149 + \log 0.0158$ $= \log(1.49 \times 100) + \log\left(1.58 \times \frac{1}{100}\right)$

$$= \log 1.49 + \log 100 + \log 1.58 + \log \frac{1}{100}$$

$$=0.1732+2+0.1987-2$$

=0.3719

55) 2.8850

$$\Rightarrow$$
 log 8760 + log 0.0876

$$= \log (10^3 \times 8.76) + \log (10^{-2} \times 8.76)$$

$$=3 + \log 8.76 - 2 + \log 8.76$$

 $=1+2\times0.9425=2.8850$

56) 2.0457

$$\Rightarrow \log 3220 + \log 0.0345$$

$$=\log(10^3\times3.22) + \log(10^{-2}\times3.45)$$

$$=3 + \log 3.22 + (-2) + \log 3.45$$

=1+0.5079+0.5378=2.0457

57) 1.3476

 $\Rightarrow \log(0.00461 \times 4830)$

$$= \log 0.00461 + \log 4830$$

$$=\!\log\!\frac{4.61}{1000}\!+\!\log(4.830\!\times\!1000)$$

$$= \log 4.61 - \log 1000 + \log 4.830 + \log 1000$$

= 0.6637 - 3 + 0.6839 + 3 = 1.3476

58) 1.7015

⇒ log 214 + log0.235

$$= \log(2.14 \times 100) + \log\left(2.35 \times \frac{1}{10}\right)$$

$$= \log_2 .14 + 2 + \log_2 .35 - 1$$

= 1 + 0.3304 + 0.3711 = 1.7015

59) 2.2513

$$\Rightarrow \log_{223} + \log_{0.8} = 2 + \log_{2.23} + 3\log_{2} - 1$$
$$= 1 + 0.3483 + 0.9030 = 2.2513$$

60) 1.1663

$$\Rightarrow \log 0.132 + \log 101 + \log \sqrt{1.21}$$

$$=\log \frac{1.32}{10} + \log (1.01 \times 10^2) + \log 1.1$$

$$= \log 1.32 - 1 + 2 + \log 1.01 + \log 1.1$$

= 0.1206 + 1 + 0.0043 + 0.0414 = 1.1663

(2)
$$\frac{99}{8}$$

$$\Rightarrow$$
 (1) $T_0 = 20$, $t = \frac{9}{8}$ 일 때, $T = 365$ 이므로

$$365 = 20 + k \log \left(8 \cdot \frac{9}{8} + 1 \right)$$

$$k \log 10 = 345$$
 : $k = 345$

(2)
$$T = 20 + 345 \log (8t + 1)$$
 에서 $t = a$, $T = 710$ 이

므로
$$710 = 20 + 345 \log (8a + 1)$$

$$345 \log (8a+1) = 690$$
 : $\log (8a+1) = 2$

즉,
$$8a+1=10^2=100$$
이므로 $8a=99$

$$\therefore a = \frac{99}{8}$$

62) (1)
$$x = 1.15^5$$
 (2) 2

□ (1) 기어를 1단 높일 때마다 속력은 15%씩 증가 하므로 6단 기어일 때의 속력은 1단 기어일 때의 속력의 1.15⁵배이다.

$$\therefore x = 1.15^5 \quad \cdots \quad \bigcirc$$

(2) ⊙의 양변에 상용로그를 취하면

$$\log x = \log 1.15^5 = 5 \log 1.15 = 5 \times 0.06 = 0.3$$

이때,
$$\log 2 = 0.3$$
이므로

$$\log x = \log 2$$
 $\therefore x = 2$

63) (1)
$$A\left(1-\frac{1}{10}\right)^n$$
 (2) 8

 \Rightarrow (1) 처음 빛의 밝기를 A라 하면 n장의 유리판을 통과한 빛의 밝기는 $A\left(1-\frac{1}{10}\right)^n$

(2) 빛의 밝기가 처음 밝기의 50% 이하가 되므로

$$A\left(1 - \frac{1}{10}\right)^n \le \frac{A}{2} \qquad \therefore \left(\frac{9}{10}\right)^n \le \frac{1}{2}$$

$$n\log\frac{9}{10} \le \log\frac{1}{2}, \ n(2\log 3 - 1) \le -\log 2$$

$$-0.04n \le -0.3$$
 $\therefore n \ge \frac{30}{4} = 7.5$

따라서 최소 8장의 유리판을 통과시켜야 한다.

64) (1) 5.4 (2) 6

⇨ (1) 규모 4이상인 지진이 1년에 평균 64번 발생하

$$\log 64 = a - 0.9 \times 4$$
, $6 \log 2 = a - 3.6$

$$6 \times 0.3 = a - 3.6$$

$$\therefore a = 5.4$$

(2) 규모 x 이상인 지진이 1년에 평균 한 번 발생하므로

$$\log 1 = 5.4 - 0.9x$$
, $0.9x = 5.4$ $\therefore x = 6$

따라서 규모 6이상인 지진이 1년에 평균 한 번 발생한다.

65) (1)
$$A\left(1 + \frac{a}{100}\right)^{10}$$
 (2) 7.2

⇒ (1) 매출액이 매년 a%씩 늘어날 때

$$10$$
년 후의 매출액이 $A\left(1+\frac{a}{100}\right)^{10}$

(2)
$$A\left(1 + \frac{a}{100}\right)^{10} = 2A$$
 $\therefore \left(1 + \frac{a}{100}\right)^{10} = 2$

양변에 상용로그를 취하면

$$10\log\left(1+\frac{a}{100}\right) = \log 2$$

$$\log\left(1 + \frac{a}{100}\right) = \frac{\log 2}{10} = 0.03 = \log 1.072$$

$$1 + \frac{a}{100} = 1.072, \ \frac{a}{100} = 0.072$$
 $\therefore a = 7.2$

따라서 매출액을 매년 7.2%씩 늘려야 한다.

- 66) (1) M (1.2)¹⁵ (2) 15.3 배
- ⇒ (1) A회사의 매출액이 매년 20%씩 일정하게 증가 하므로 A회사의 처음 매출액을 M이라 하면, 15년 후의 매출액은 $M \cdot (1.2)^{15}$
 - (2) $M \cdot (1.2)^{15}$ 의 값은 M의 $(1.2)^{15}$ 배 이다.
 - 이때 $(1.2)^{15} = k$ 라고 하고, 양변에 상용로그를 취

 $\log(1.2)^{15} = \log k$

 $15\log(1.2) = \log k$

 $15 \times 0.079 = \log k$

 $\log k = 1.185$

주어진 상용로그표에서 log1.53 = 0.185 이므로 log15.3=1.185 이다.

 $\therefore k = 15.3$

따라서 A회사의 15년 후의 매출액은 처음의 15.3 배다.

- 67) (1)0.738A (2)26.2% (3)13.1%
- \Rightarrow (1)10년 후 오존의 양은 $(1-0.03)^{10}A = 0.97^{10}A$

$$\log 0.97^{10} = 10\log 0.97 = 10 \cdot \log \frac{9.7}{10}$$

$$=10(\log 9.7-1)=10(0.9868-1)$$

$$=-10+9.868=-1+0.868=-1+\log 7.38$$

 $= \log 0.738$

따라서 $0.97^{10} = 0.738$ 이므로 10년 후 오존의 양은 0.738A이다.

- $(3) 26.2 \times 0.5 = 13.1\%$
- 68) (1) 가구 수 : $100a \times 1.03^n$,

주택 수 : $80a \times 1.05^n$

- (2) $8 \times 1.05^n \ge 9 \times 1.03^n$
- (3) 2025년
- ⇨ (1) 2018년 1월의 주택보급률이 80%이므로 2018 년 1월의 가구 수를 100a라 하면 2018년 1월의 주택 수는 80a이다.

n년 후 1월의 이 도시의 가구 수와 주택 수는 각

각 $100a \times 1.03^n$, $80a \times 1.05^n$

(2) 주택보급률이90% 이상이 되려면

$$\frac{80a \times 1.05^n}{100a \times 1.03^n} \times 100 \ge 90$$

 $\therefore 8 \times 1.05^n \ge 9 \times 1.03^n$

····· 🗇

(3) ⊙의 양변에 상용로그를 취하면

 $\log (8 \times 1.05^n) \ge \log (9 \times 1.03^n)$

 $\log 8 + \log 1.05^n \ge \log 9 + \log 1.03^n$

 $3 \log 2 + n \log 1.05 \ge 2 \log 3 + n \log 1.03$

 $n(\log 1.05 - \log 1.03) \ge 2 \log 3 - 3 \log 2$

$$n \geq \frac{2\log 3 - 3\log 2}{\log 1.05 - \log 1.03}$$

$$=\frac{2\times0.4771-3\times0.3010}{0.0212-0.0128}=\frac{0.0512}{0.0084}=6.09\cdots$$

따라서 1월의 주택보급률이 처음으로 90% 이상이

되는 해는 7년 후인 2025년이다.

- 69) 0.605g
- ⇒ 문제에서 주어진 조건에 의하여 10겹의 필터를 통 과한 불순물의 양을 a라고 한다면 아래와 같은 식 이 성립한다.

 $100 \times (0.6)^{10} = a$

위 식에 상용로그를 취하면 $\log a = 2 + 10 \log 0.6$ 이

고 log0.6 = log6 - 1 = -0.2218이므로

 $\log a = 2 - 2.218 = -0.218 = -1 + 0.782 = \log 0.605 \circ$ 므로 a = 0.605라고 할 수 있다.

70) 2025년

$$\Rightarrow 4 \times 3^{\frac{t - 2001}{15}} = 2 \times 4 \times 3^{\frac{2016 - 2001}{15}}$$

3 15 = 2·3의 양변에 상용로그를 취하면

$$\frac{t - 2001}{15} \log 3 = \log 2 + \log 3$$

$$\frac{t - 2001}{15} = \frac{0.3 + 0.5}{0.5}, \ t - 2001 = 24 \quad \therefore t = 2025$$