

FCC PART 15.247 TEST REPORT

For

Feitian Technologies Co., Ltd.

Floor 17th, Tower B, Huizhi Mansion, No.9 Xueqing Road, Haidian District, Beijing, China

FCC ID: ZD3FTJC6JUBLD1

Report Type:		Product Type:
Original Report		JuBiter Blade
Test Engineer:	Max Min	Max Min
Report Number:	RKSA18081300)1-00A
Report Date:	2018-08-23	
Reviewed By:	Oscar Ye RF Leader	Gscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	4
TEST METHODOLOGY	
Measurement Uncertainty	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
External I/O Cable	7
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
MEASUREMENT RESULT	11
FCC §15.203 - ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	14
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER SETUP.	
TEST PROCEDURE	18
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	30
APPLICABLE STANDARD	30
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – BAND EDGE	
Applicable Standard	
TEST PROCEDURE TEST DATA	

Bay Area Compliance Laboratories (Corp. (Kunshan)
------------------------------------	-----------------

Report No.: RKSA180813001-00A

FCC §15.247(e) - POWER SPECTRAL DENSITY	36
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC Part 15.247 Page 3 of 38

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Feitian Technologies Co., Ltd.	
Tested Model:	JuBiter Wallet JC6	
Product Type:	JuBiter Blade	
Dimension:	64mm(L)*38 mm(W)*2.3 mm(H)	
Power Supply:	DC 3.7V supplied by Li-ion rechargeable battery	

Report No.: RKSA180813001-00A

Objective

This report is prepared on behalf of Feitian Technologies Co., Ltd. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB558074 D01 DTS Meas Guidance v04.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 38

^{*}All measurement and test data in this report was gathered from production sample serial number: 20180813001. (Assigned by BACL, Kunshan). The EUT was received on 2018-08-13.

Measurement Uncertainty

Item		Uncertainty
AC Power Lin	es Conducted Emissions	3.19 dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
D. F. d. L. minimin	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Оссиј	pied Bandwidth	0.5kHz
Temperature		1.0℃
Humidity		6%

Report No.: RKSA180813001-00A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 38

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel List for BLE mode:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	20	2442	
1	2404			
•••				
•••				
18	2438	38	2478	
19	2440	39	2480	

Report No.: RKSA180813001-00A

EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

No software was used during the test.

Duty Cycle:

Middle Channel

Date: 13 AUG .2018 11:42:14

FCC Part 15.247 Page 6 of 38

Mode	Duty Cycle (%)	T(ms)	1/T(kHz)	10log(1/x)
BLE	77.8	0.487	2.05	1.09

Note: "x" means the Duty Cycle.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
DELL	Notebook	GX620	D65874152	
DELL	Adapter	LA65NS0-00	DF263	

External I/O Cable

Cable Description	Length (m)	From Port	То
USB Cable	0.3	Notebook	EUT

Block Diagram of Test Setup

For Conducted Emissions:

FCC Part 15.247 Page 7 of 38

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.247 Page 8 of 38

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (I), §1.1310 & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.247(d)	Spurious Emissions at Antenna Port	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	Band Edge	Compliant
§15.247(e)	Power Spectral Density Complia	

FCC Part 15.247 Page 9 of 38

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emission Test (Chamber 1#)							
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-25	2018-11-24		
Sunol Sciences	Broadband Antenna	JB3	A040914-2	2016-01-09	2019-01-08		
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14		
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/		
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14		
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14		
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14		
	Radiate	ed Emission Test (Chan	nber 2#)		1		
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2017-08-27	2018-08-26		
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10		
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17		
Mini-Circuits	Amplifier	ZVA-183W-S+	220701818	2018-05-20	2019-05-19		
EM Electronics Corporation	Amplifier	EM18G40G	060726	2018-03-22	2019-03-21		
MICRO- TRONICS	Notch filter	BRM50702	/	2018-08-05	2019-08-04		
Narda	Attenuator/10dB	10dB	/	2017-08-15	2018-08-14		
Narda	Attenuator/10dB	10dB	/	2018-08-15	2019-08-14		
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/		
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14		
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14		
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14		
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14		
		RF Conducted Test					
Rohde & Schwarz	FSV40 Signal Analyzer	FSV40	101116	2018-07-23	2019-07-22		
Narda	Attenuator/2dB	2dB	/	2017-08-15	2018-08-14		
Feitian Technologies	RF Cable	/	/	Each Time	/		
	Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-25	2018-11-24		
Rohde & Schwarz	LISN	ENV216	3560655016	2017-11-12	2018-11-11		
BACL	Auto test Software	BACL-EMC	CE001	/	/		
Narda	Attenuator/6dB	10690812-2	26850-6	2018-01-10	2019-01-09		
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14		

Report No.: RKSA180813001-00A

FCC Part 15.247 Page 10 of 38

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1310 &§2.1093 –RF EXPOSURE

Applicable Standard

According to §2.1093 and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RKSA180813001-00A

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Mode Frequency Range (MHz) Max Tune-up Conducted Power			Calculated Distance (mm)	Calculated Value	Threshold (1-g SAR)	SAR Test Exclusion
		(dBm)	(mW)	()			
BLE	2402-2480	-1.00	0.79	5.0	0.2	3.0	Yes

Result: No SAR test is required.

FCC Part 15.247 Page 11 of 38

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RKSA180813001-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a PCB antenna for BLE, which the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC Part 15.247 Page 12 of 38

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 38

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

Report No.: RKSA180813001-00A

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	25.0℃
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

The testing was performed by Max Min on 2018-08-17

Test Result: Compliant.

EUT operation mode: Transmitting in high channel. (Worst case)

FCC Part 15.247 Page 14 of 38

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.150	44.38	QP	9.000	L1	16.06	66.00	21.62	Compliant
0.150	22.16	AV	9.000	L1	16.06	56.00	33.84	Compliant
0.415	28.90	QP	9.000	L1	16.06	58.43	29.53	Compliant
0.415	26.20	AV	9.000	L1	16.06	48.43	22.23	Compliant
1.750	24.19	QP	9.000	L1	15.86	56.00	31.81	Compliant
1.750	19.57	AV	9.000	L1	15.86	46.00	26.43	Compliant
3.750	18.84	QP	9.000	L1	15.85	56.00	37.16	Compliant
3.750	13.81	AV	9.000	L1	15.85	46.00	32.19	Compliant
5.400	18.39	QP	9.000	L1	15.88	60.00	41.61	Compliant
5.400	13.74	AV	9.000	L1	15.88	50.00	36.26	Compliant
18.200	20.14	QP	9.000	L1	16.36	60.00	39.86	Compliant
18.200	15.93	AV	9.000	L1	16.36	50.00	34.07	Compliant

FCC Part 15.247 Page 15 of 38

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.150	44.47	QP	9.000	N	16.06	66.00	21.53	Compliant
0.150	23.87	AV	9.000	N	16.06	56.00	32.13	Compliant
0.445	25.60	QP	9.000	N	16.10	57.57	31.97	Compliant
0.450	18.51	AV	9.000	N	16.10	47.43	28.92	Compliant
1.450	25.64	QP	9.000	N	15.93	56.00	30.36	Compliant
1.450	21.23	AV	9.000	N	15.93	46.00	24.77	Compliant
2.900	23.92	QP	9.000	N	15.90	56.00	32.08	Compliant
2.900	18.49	AV	9.000	N	15.90	46.00	27.51	Compliant
4.950	20.82	QP	9.000	N	15.87	56.00	35.18	Compliant
4.950	17.27	AV	9.000	N	15.87	46.00	28.73	Compliant
18.350	21.01	QP	9.000	N	16.11	60.00	38.99	Compliant
18.250	16.57	AV	9.000	N	16.11	50.00	33.43	Compliant

Note:

- 1) Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)
- 2) Margin (dB) = Limit (dB μ V) Corrected Amplitude (dB μ V)

FCC Part 15.247 Page 16 of 38

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 38

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Report No.: RKSA180813001-00A

Frequency Range RBW		Video B/W	IF B/W	Detector
30 MHz - 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1CHz	1MHz	3 MHz	/	PK
Above 1GHz	1MHz	3 MHz	/	Ave

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude (dB μ V /m) = Meter Reading (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 18 of 38

Test Data

Environmental Conditions

Temperature:	23.5℃~24.2℃
Relative Humidity:	51 %~52.1%
ATM Pressure:	101.2 kPa~102.4 kPa

The testing was performed by Max Min from 2018-08-11 to 2018-09-02.

Test Result: Compliant.

EUT operation mode: Transmitting

Spurious Emission Test:

30MHz-1GHz

(Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case **low** channel of operation in X-axis of orientation was recorded)

Report No.: RKSA180813001-00A

Frequency	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin	
(MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)	
99.590550	27.02	199.0	Н	93.0	-15.0	43.50	16.48	
146.412500	21.71	199.0	Н	349.0	-12.2	43.50	21.79	
215.985150	29.30	101.0	Н	137.0	-12.3	43.50	14.20	
298.689100	30.63	101.0	Н	122.0	-10.5	46.00	15.37	
599.991150	32.23	101.0	V	208.0	-5.2	46.00	13.77	
927.680350	22.48	101.0	V	193.0	0.7	46.00	23.52	

FCC Part 15.247 Page 19 of 38

1GHz-18GHz:

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V /m)

Low Channel: 2402MHz

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1890.800000	42.00		200.0	V	225.0	1.4	74.00	32.00
1890.800000		33.52	200.0	V	225.0	1.4	54.00	20.48
3070.600000	44.47		150.0	V	155.0	6.2	74.00	29.53
3070.600000		36.33	150.0	V	155.0	6.2	54.00	17.67
4804.000000	49.12		150.0	Н	117.0	10.7	74.00	24.88
4804.000000		40.22	150.0	Н	117.0	10.7	54.00	13.78
7206.000000	51.19		200.0	Н	251.0	15.2	74.00	22.81
7206.000000		43.30	200.0	Н	251.0	15.2	54.00	10.70
11213.600000	53.31		200.0	V	0.0	18.8	74.00	20.69
11213.600000		46.81	200.0	V	0.0	18.8	54.00	7.19
17721.200000	53.73		200.0	V	339.0	18.8	74.00	20.27
17721.200000		46.49	200.0	V	339.0	18.8	54.00	7.51

FCC Part 15.247 Page 20 of 38

Middle Channel: 2440MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1550.800000	40.18		200.0	V	186.0	-0.9	74.00	33.82
1550.800000		30.00	200.0	V	186.0	-0.9	54.00	24.00
3458.200000	46.75		150.0	V	348.0	7.1	74.00	27.25
3458.200000		37.34	150.0	V	348.0	7.1	54.00	16.66
4880.000000	49.61		200.0	Н	251.0	11.1	74.00	24.39
4880.000000		41.70	200.0	Н	251.0	11.1	54.00	12.30
7320.000000	53.02		200.0	Н	161.0	15.4	74.00	20.98
7320.000000		44.00	200.0	Н	161.0	15.4	54.00	10.00
10883.800000	54.92		200.0	V	213.0	18.8	74.00	19.08
10883.800000		46.83	200.0	V	213.0	18.8	54.00	7.17
17867.400000	53.16		100.0	V	238.0	19.0	74.00	20.84
17867.400000		46.95	100.0	V	238.0	19.0	54.00	7.05

FCC Part 15.247 Page 21 of 38

High Channel: 2480MHz

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Turntable Corrected Limit		Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1751.400000	40.45		150.0	V	356.0	0.5	74.00	33.55
1751.400000		31.20	150.0	V	356.0	0.5	54.00	22.80
3284.800000	46.27		200.0	V	8.0	6.7	74.00	27.73
3284.800000		35.91	200.0	V	8.0	6.7	54.00	18.09
4960.000000		42.35	200.0	Н	199.0	11.5	54.00	11.65
4960.000000	51.41		200.0	Н	199.0	11.5	74.00	22.59
7440.000000	52.08		200.0	Н	244.0	15.6	74.00	21.92
7440.000000		44.59	200.0	Н	244.0	15.6	54.00	9.41
11006.200000	54.29		200.0	V	78.0	19.1	74.00	19.71
11006.200000		46.93	200.0	V	78.0	19.1	54.00	7.07
17938.800000	53.80		200.0	Н	237.0	19.1	74.00	20.20
17938.800000		47.01	200.0	Н	237.0	19.1	54.00	6.99

FCC Part 15.247 Page 22 of 38

18GHz-25GHz

(Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case **low** channel of operation in X-axis of orientation was recorded)

Horizontal

Date: 2.SEP.2018 11:40:16

Vertical

Date: 2.SEP.2018 11:58:38

FCC Part 15.247 Page 23 of 38

Fundamental Test & Restricted Bands Emissions Test:

(Pre-scan in the X, Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded.)

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

	Corrected	l Amplitude	Rx A	ntenna		Corrected				
Frequency (MHz)	MaxPeak (dBμV /m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBμV/m)	Margin (dB)		
	Low Channel: 2402MHz									
2402.000000		85.58	150.0	Н	344.0	2.8	/	/		
2402.000000	93.39		150.0	Н	344.0	2.8	/	/		
2402.000000		83.37	200.0	V	296.0	2.8	/	/		
2402.000000	91.25		200.0	V	296.0	2.8	/	/		
2390.000000	44.36		150.0	V	95.0	2.8	74.00	29.64		
2390.000000		37.25	150.0	V	95.0	2.8	54.00	16.75		
		N	Middle Ch	annel: 2440	MHz					
2440.000000		83.96	250.0	Н	91.0	2.9	/	/		
2440.000000	92.90		250.0	Н	91.0	2.9	/	/		
2440.000000		83.11	200.0	Н	290.0	2.9	/	/		
2440.000000	90.59		200.0	Н	290.0	2.9	/	/		
			High Cha	nnel: 2480N	ИНz					
2480.000000		83.70	150.0	Н	353.0	3.0	/	/		
2480.000000	93.19		150.0	Н	353.0	3.0	/	/		
2480.000000		82.82	200.0	Н	250.0	3.0	/	/		
2480.000000	90.49		200.0	Н	250.0	3.0	/	/		
2483.500000	45.85		200.0	V	229.0	3.0	74.00	28.15		
2483.500000		37.17	200.0	V	229.0	3.0	54.00	16.83		

FCC Part 15.247 Page 24 of 38

Conducted Spurious Emissions at Antenna Port:

Low Channel

Date:13.AUG .2018 11:47:29

Middle Channel

Date:13 AUG 2018 11:50:29

FCC Part 15.247 Page 25 of 38

High Channel

Date:13 AUG 2018 11:35:19

FCC Part 15.247 Page 26 of 38

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

According to KDB558074 D01 DTS Meas Guidance v04 sub-clause 8.1

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3xRBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2018-08-13.

Test Result: Compliant.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
Low	2402	0.699	≥ 0.5
Middle	2440	0.703	≥ 0.5
High	2480	0.690	≥ 0.5

FCC Part 15.247 Page 27 of 38

Low Channel

Date:13 AUG .2018 11:44:01

Middle Channel

Date: 13 AUG .2018 11:38:50

FCC Part 15.247 Page 28 of 38

High Channel

Date:13 AUG .2018 11:31:22

FCC Part 15.247 Page 29 of 38

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RKSA180813001-00A

Test Procedure

According to KDB558074 D01 DTS Meas Guidance v04

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set $VBW \ge 3 \times RBW$.
- 3. Set span \geq 3 x RBW
- 4. Sweep time = auto couple.
- 5. Detector = peak.
- 6. Trace mode = \max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

Signal Analyzer Attenuator EUT

FCC Part 15.247 Page 30 of 38

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure: 101.2 kPa		

The testing was performed by Max Min on 2018-08-13.

Test Result: Compliant.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low	2402	-1.43	≤ 30	Pass
Middle	2440	-1.56	≤ 30	Pass
High	2480	-1.90	≤ 30	Pass

Report No.: RKSA180813001-00A

FCC Part 15.247 Page 31 of 38

Low Channel

Date:13 AUG 2018 11:43:10

Middle Channel

Date:13 AUG .2018 11:39:48

FCC Part 15.247 Page 32 of 38

High Channel

Date:13 AUG .2018 11:29:56

FCC Part 15.247 Page 33 of 38

FCC §15.247(d) – BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RKSA180813001-00A

Test Procedure

According to KDB558074 D01 DTS Meas Guidance v04 sub-clause 13.2 and ANSI C63.10-2013 clause 6.10.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2018-08-13.

Test Result: Compliant.

EUT operation mode: Transmitting

FCC Part 15.247 Page 34 of 38

Left Side

Date:13 AUG 2018 11:45:10

Right Side

Date:13 AUG .2018 11:32:47

FCC Part 15.247 Page 35 of 38

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RKSA180813001-00A

Test Procedure

According to KDB558074 D01 DTS Meas Guidance v04 sub-clause 10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz < RBW < 100 kHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2018-08-13.

Test Result: Compliant.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-15.08	≤ 8
Middle	2440	-15.16	≤ 8
High	2480	-15.67	≤ 8

FCC Part 15.247 Page 36 of 38

Low Channel

Date:13 AUG .2018 11:46:10

Middle Channel

Date:13 AUG .2018 11:37:39

FCC Part 15.247 Page 37 of 38

High Channel

Date:13.AUG 2018 11:36:48

***** END OF REPORT *****

FCC Part 15.247 Page 38 of 38