1 Infinite Words

Theorem 1.1. Every non-empty ω -regular language contains an ultimately periodic word.

Theorem 1.2. For a Kripke structure K with initial state s and $\varphi \in LTL$, the model checking problem $L(K, s) \subseteq L(\varphi)$? is PSPACE-complete.

Proof. **PSPACE** Compute the intersection automaton for $L(\mathcal{K}, s) \cap L(\neg \varphi)$ and test it for emptiness. **PSPACE-hard** Encode a poly.-length Turing tape as a Kripke structure and its correct behavior in LTL.

Theorem 1.3 (Büchi). The MSO theory of $(\mathbb{N}, +1, <, 0)$ is decidable.

Proof. Corresponds to S1S formula. Can be checked with NBA emptiness test.

Theorem 1.4. The FO theory of $(\mathbb{R}, +, <, 0)$ is decidable.

Proof. Encode real numbers x by triples of sets (X_s, X_i, X_f) with the number's sign $(X_s = \emptyset)$ or $\{0\}$, the positive decimal digits in binary encoding, and the positive fractional digits in binary encoding. Then an FO sentence can be transformed to an equi-satisfiable MSO sentence over $(\mathbb{N}, +1, <, 0)$.

Theorem 1.5. Subset-construction does not suffice to determinize NBAs.

Theorem 1.6. For every n, there is $L_n \subseteq \Sigma^{\omega}$ s.t. there is an NBA that recognizes L_n with n+2 states, but every det. Rabin automaton that recognizes L_n has at least n! states.

Theorem 1.7. There is a DBA-recog. language which does not have a unique minimal DBA. DBAs minimized with the DFA minimization algorithm can be arbitrarily bad compared to a minimal DBA.

Theorem 1.8. Weak DBAs can be minimized uniquely in polynomial time.

Theorem 1.9. Given an ABA A, the dual \tilde{A} is an alternating co-Büchi automaton which accepts $\overline{L(A)}$, with $\tilde{F} = Q \setminus F$ and $\tilde{\delta}$ exchanging true/false and \wedge/\vee .

2 Finite Trees

Theorem 2.1 (Pumping Principle). Let $T \subseteq T_{\Sigma}$ be a regular ranked tree language. There is a $n \in \mathbb{N}$ such that for all trees $t \in T$, all m > n, and all paths $\pi_1 \dots \pi_m$, there are $1 \le i < j \le m$ such that for all $k \in \mathbb{N}$:

$$t[\circ/u] \cdot (t[\circ/v]|_u)^k \cdot t|_v \in T$$

where $u = \pi_1 \dots \pi_i$ and $v = \pi_1 \dots \pi_j$.

Definition 1. Let $T \subseteq T_{\Sigma}$. The Myhill-Nerode equivalence is $\sim_T \subseteq T_{\Sigma} \times T_{\Sigma}$ with

$$t_1 \sim_T t_2 \Leftrightarrow \forall s \in S_\Sigma : s \cdot t_1 \in T \leftrightarrow s \cdot t_2 \in T$$

The index of T is $Index(\sim_T) := |T/\sim_T|$.

Theorem 2.2. Let $T \subseteq T_{\Sigma}$. T is regular iff $Index(\sim_T)$ is finite. If T is regular, \mathcal{A}_{\sim_T} is the minimal DTA.

Theorem 2.3. The emptiness problem for NTAs can be reduced to HORN-SAT in linear time.