MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency information for a general graph topology. The returned count and array of neighbors for the queried rank will both include *all* neighbors and reflect the same edge ordering as was specified by the original call to MPI_GRAPH_CREATE. Specifically,

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS will return values based on the original index and edges array passed to MPI_GRAPH_CREATE (assuming that index[-1] effectively equals zero):

- The count returned from MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank] index[rank-1]).
- The neighbors array returned from MPI_GRAPH_NEIGHBORS will be edges[index[rank-1]] through edges[index[rank]-1].

Example 7.3 Assume there are four processes 0, 1, 2, 3 with the following adjacency matrix (note that some neighbors are listed multiple times):

process	neighbors
0	1, 1, 3
1	0, 0
2	3
3	0, 2, 2

Thus, the input arguments to MPI_GRAPH_CREATE are:

```
\begin{array}{ll} \text{nnodes} = & 4 \\ \text{index} = & 3, 5, 6, 9 \\ \text{edges} = & 1, 1, 3, 0, 0, 3, 0, 2, 2 \end{array}
```

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS for each of the 4 processes will return:

Input rank	Count	Neighbors
0	3	1, 1, 3
1	2	0, 0
2	1	3
3	3	0, 2, 2

Example 7.4 Suppose that comm is a communicator with a shuffle-exchange topology. The group has 2^n members. Each process is labeled by a_1, \ldots, a_n with $a_i \in \{0, 1\}$, and has three neighbors: exchange $(a_1, \ldots, a_n) = a_1, \ldots, a_{n-1}, \bar{a}_n$ ($\bar{a} = 1 - a$), shuffle $(a_1, \ldots, a_n) = a_2, \ldots, a_n, a_1$, and unshuffle $(a_1, \ldots, a_n) = a_n, a_1, \ldots, a_{n-1}$. The graph adjacency list is illustrated below for n = 3.