Table S4.187 putative miRNA hairpins in ESTs.

	outative miRNA hairpins ir			
miRNA family	genus	ascencion number		end strand
156	Brassica	CD835236	102	122 +
156	6 Glycine	AW756919	150	170 +
156	3 Glycine	BE210632	207	227 +
156	6 Glycine	BE807821	163	183 +
156	6 Glycine	BG650023	237	257 +
	6 Helianthus	BQ916415	146	166 +
	6 Lotus	BP046017	414	433 -
	6 Medicago	AW696064	195	215 +
	6 Nicotiana	BP129308	301	320 +
	6 Oryza	AU091537	10	29 +
	6 Oryza	CB643501	259	279 +
	S Saccharum	CA294779	200	220 +
	Saccharum	CA294779 CA294779	499	519 +
	S Sesamum	BU667823	42	62 +
	Solanum	BF187371	137	157 +
	Solanum	BI432985	53	73 +
	Sorghum	CN132665	306	326 +
	6 Vitis	CF213216	613	632 -
	3 Zea	CF035522	274	294 +
	3 Zea	CF035885	87	107 +
156	3 Zea	CF036467	272	292 +
156	3 Zea	CF036852	224	244 +
156	3 Zea	CF039276	299	319 +
156	3 Zea	CF059465	221	241 +
159/JAW	Glycine	BE475558	364	383 +
159/JAW	Glycine	BG237979	294	313 +
159/JAW	Glycine	BM893181	275	295 +
159/JAW	Glycine	BQ453148	190	210 +
159/JAW	Glycine	BQ630503	315	334 +
159/JAW	Hordeum	BJ448559	376	395 +
159/JAW	Liriodendron	CK760683	210	229 +
159/JAW	Medicago	AW691937	476	496 +
159/JAW	Oryza	CF303003	369	389 +
159/JAW	=	CR289947	402	421 +
159/JAW	Oryza Pennisetum	CD725199	431	451 +
159/JAW	Physcomitrella	BJ191979	443	_
159/JAW	Saccharum	CA079434	213	233 +
159/JAW	Saccharum	CA148454	337	357 +
159/JAW	Saccharum	CA203816	443	463 +
159/JAW	Saccharum	CA229394	138	157 -
159/JAW	Saccharum	CA229394	293	313 +
159/JAW	Saccharum	CA238586	430	450 +
159/JAW	Schedonorus	CK801264	363	383 +
159/JAW	Sorghum	CD204047	464	484 +
159/JAW	Sorghum	CD213290	448	468 +
159/JAW	Sorghum	CD224004	449	469 +
159/JAW	Triticum	CA483944	96	115 -
159/JAW	Triticum	CA484819	460	480 +
159/JAW	Triticum	CA731881	411	431 +
159/JAW	Vitis	CF210361	463	483 +
159/JAW	Vitis	CF983804	125	145 +
	- : .		5	•

		0		
159/JAW	Vitis	CN007551	485	505 -
159/JAW	Zea	BM338067	314	334 -
159/JAW	Zea	BM338067	472	491 +
	160 Glycine	CA801322	23	43 +
	160 Oryza	CF327534	402	422 +
	160 Oryza	CF327976	254	274 +
	160 Triticum	BF293809	259	279 +
	160 Zea	CD445121	285	305 +
	162 Lupinus	BG149136	274	294 +
	162 Medicago	BF003769	221	241 +
	162 Oryza	CA764295	425	445 +
	162 Vitis	CF516290	368	388 +
	164 Populus	BU869001	16	35 +
	164 Populus	CK113235	159	178 +
	164 Triticum	CA704421	10	30 +
	166 Glycine	BG316028	238	258 +
	166 Glycine	BI893541	125	145 +
	166 Glycine	BI972515	306	326 +
	166 Glycine	BM308126	440	460 +
	166 Glycine	CA819984	241	261 +
	166 Hedyotis	CB086732	224	244 +
	166 Hordeum	BQ760548	137	156 +
	166 Ipomoea	BJ553847	310	329 +
	166 Medicago	AI737566	133	152 +
	166 Medicago	AJ502524	319	338 +
	166 Medicago	AW685461	220	240 +
	166 Medicago	AW694053	371	391 +
	<u> </u>	CA760464	442	462 -
	166 Oryza		157	402 - 177 +
	166 Sorghum	CN126049	163	
	166 Zea	CK369135		183 +
	167 Glycine	BG509097	227	247 +
	167 Glycine	BI095235	405	425 +
	167 Oryza	BX928793	277	296 +
	167 Oryza	CF309326	102	122 +
	167 Phaseolus	CA916400	135	155 +
	167 Saccharum	CA284319	123	143 +
	167 Saccharum	CA284394	629	649 -
	167 Saccharum	CA287325	136	156 +
	167 Zea	CF630597	365	385 -
	168 Arabidopsis	H77158	42	62 +
	168 Betula	CD271355	99	119 +
	168 Glycine	AW424354	20	40 +
	168 Hedyotis	CB076866	168	188 +
	168 Lycopersicon	BE461110	16	36 +
	168 Lycopersicon	BF097936	16	36 +
	168 Oryza	CA756101	118	138 +
	168 Populus	BU809183	109	129 +
	168 Populus	BU886509	70	90 +
	168 Saccharum	CA123434	184	204 +
	168 Saccharum	CF576659	193	213 +
	168 Solanum	CK243936	10	30 +
	168 Solanum	CK246126	12	32 +
	168 Solanum	CK254942	85	105 +

168	Sorghum	CD205059	182	202 +
	Vitis	CF604588	52	72 +
	Zea	BG842528	97	117 +
	Zea	BU099153	62	82 +
	Zea	CA826777	62	82 +
	Glycine	AW596073	26	46 +
	Glycine	BF598910	85	105 +
	Glycine	CA953278	90	110 +
169	Oryza	BQ906497	169	189 +
169	Oryza	BX899553	198	217 +
169	Oryza	CF196420	107	127 -
	Oryza	CF280503	141	161 +
	Oryza	CF305246	175	195 -
	Oryza	CF310317	155	174 -
	Oryza	CF336482	692	673 -
	-	BU862460	89	109 +
	Populus			
	Populus	BU865420	164	184 +
	Triticum	BJ225371	502	521 -
	Zea	CD960569	293	313 -
	Arabidopsis	BX838271	125	144 +
171	Glycine	CA937914	265	285 +
171	Hedyotis	CB087210	482	502 +
171	Hordeum	CA009309	394	414 +
171	Oryza	CA756196	210	230 +
	Oryza	CF329292	308	328 +
	Triticum	BJ275219	359	378 -
	Triticum	CD910903	165	185 +
	Zea	CD440809	221	241 +
	Zea	CD441617	530	550 -
	Citrus			
		CF506714	404	424 +
	Glycine	BI320499	384	404 +
	Glycine	BU084569	200	220 +
	Lycopersicon	Al484737	448	468 +
172	Solanum	BQ114970	492	512 -
393	Oryza	CA765497	55	75 +
393	Oryza	CB639509	137	157 +
393	Populus	CF231897	95	115 +
	Glycine	AW099182	37	56 +
	Glycine	BG653184	24	43 +
	Robinia	BI642560	222	241 +
	Glycine	AW596801	100	120 +
	Oryza	CA760441	112	132 -
	Oryza	CA760441	255	275 -
	-			
	Oryza	CA760441	398	418 -
	Oryza	CA764701	188	208 +
	Oryza	CA764701	348	368 +
	Oryza	CA764701	489	509 +
	Oryza	CA764701	627	647 +
395	Triticum	CK193704	347	366 -
395	Triticum	CK194045	375	395 +
396	Brassica	BQ704984	486	506 -
	Glycine	BG405077	196	216 +
	Glycine	CA784869	176	196 +
	•		-	

306	Mesembryanthemum	BM301359	134	154 +
	Mesembryanthemum	BM302146	159	179 +
	Mesembryanthemum	BM302151	159	179 +
	Mesembryanthemum	CA833245	158	178 -
	Oryza	CA765692	209	
	Populus	BU883864	195	215 +
	Populus	CK113079	195	215 +
	Prunus	BU039965	39	59 +
	Prunus	BU047426	189	209 +
	Saccharum	CA240723	81	101 +
	Solanum	BI178715	123	143 +
	Zea	BM350675	507	527 -
	Zea	CF349199	83	103 +
	Hordeum	BG415888	248	267 -
	Hordeum	BU966899	296	315 -
	Citrus	C24241	168	187 +
	Glycine	BM732696	138	
	Glycine	CA937628	127	
	Glycine	CB063312	77	97 +
	Helianthus	CD849864	175	195 -
	Lactuca	BQ988187	98	118 +
398	Lactuca	BU005500	95	115 +
	Lotus	CB829453	136	156 +
398	Medicago	AW584548	130	150 +
	Medicago	BE943500	89	109 +
	Nicotiana	CK289462	84	104 +
398	Oryza	CB673340	388	408 +
	Zea	CF064240	330	350 -
399	Medicago	AJ502674	100	119 +
	Populus	BI125288	135	155 +

Near matches to *Arabdiopsis* and *Oryza* miRNAs (19/20 nt matches) were found in no human, non-mouse ESTs in the April 5, 2004 release of dbEST from NCBI. Matches with potential miRNA-like hairpins were identified with MIRcheck. The 5' and 3' ends of the miRNAs are inferred from the ends of the *Arabdiopsis* or *Oryza* homolog. Because many plant miRNAs have heterogeneity at either the 5' or 3' end, the ends of the sequences listed should be considered to be aproximations. Hairpin length is defined as the minimal sequence length containing the miRNA, miRNA*, and intervening sequence

miRNA sequence	hairpin ahai	
UGACAGAAGAGUGAGCACA	5prime	81 CAUAGCAACUGACAG
UUGACAGAAGAUAGAGAGCAC	5prime	112 UUAAGGUUGUUGACA
UUGACAGAAGAUAGAGAGCAC	5prime	85 GUGAUGCUGUUGACA
UGACAGAAGAGAGUGAGCACA	5prime	83 GAGAGAGGCUGACAG
UGACAGAAGAGAGAGCACA	5prime	83 AUCUCAUGUUGACAG
UUGACAGAAGAUAGAGAGCAC	5prime	86 UGAUGGAUGUUGACA
UUGACAGAAGAGAGAGAGCAC	5prime	86 UUCAUGCAUGUUGAC
UUGACAGAAGAUAGAGGCAC	5prime	111 GUAAGGUUGUUGACA
UUGACAGAAGAUAGAGAGCAC	5prime	131 UGUGAGAUUGUUGAC
UGACAGAAGAGAGUGAGCACA	5prime	87 UGGGAGNUCUGACA
UGACAGAAGAGAGUGAGCACA	5prime	86 GCGAGAUUGUUGACA
UGACAGAAGAGAGUGAGCACA	5prime	98 GGUGGAGGCUGACA
UGACAGAAGAGAGUGAGCACA	5prime	84 UUUGAAGGUUUGACA
UUGACAGAAGAGAGAGAGCAC	5prime	83 AUUAAUUUGUUGACA
UUGACAGAAGAUAGAGAGCAC	5prime	91 UGAUAAUUGUUGACA
	•	
UGACAGAGAGAGUGAGCACA	5prime	86 AAUCAAGACUGACAG
UGACAGAGAGAGAGAGAGA	5prime	84 CUUGAGAGAUUGACA
UGACAGAAGAGAGAGCAUG	5prime	206 UGCCUCACAAUGACA
UGACAGAAGAGUGGGCACA	5prime	99 AGGUGAAAGCUGACA
UGACAGAAGAGAGUGAGCACA	5prime	84 UUGAAGGUUUGACAC
UGACAGAAGAGAGUGAGCACA	5prime	99 AGGUGAAAGCUGACA
UGACAGAAGAGAGUGAGCACA	5prime	84 UUGAAGGUUUGACAC
UGACAGAAGAGAGUGAGCACA	5prime	84 UUUGAAGGUUUGACA
UGACAGAAGAGAGUGAGCACA	5prime	84 UCGAGAGAUUGACAG
UUGGACUGAAGGGAGCUCCC	3prime	169 GCGACGGUAAGAGAC
UUGGACUGAAAGGAGCUCCU	3prime	182 AAGAGAGUGAAGGAG
UUUGGAUUGAAGGGAGCUCUA	3prime	175 AUUAUGAAGUGGAGO
AUUGGAGUGAAGGGAGCUCCA	3prime	166 AAACCCAACUUGGAG
UUGGACUGAAGGGAGCUCCC	3prime	168 CCUAAGGUAAGAGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	174 GUUUGGAGGUGGAG
UUGGACUGAAGGGAGCUCCC	3prime	167 GUUAUGGACUAAGGA
UUUGGAUUGAAGGGAGCUCUA	3prime	168 UUAAAGGGGUGGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	252 UUGUGGACGUUGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	249 UUGUGGACGUUGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	226 GAUUGGAAGCGGAG
UUGGACUGAAGGGAGCUCCA	3prime	169 ACCUUGAUUGUGGA
UUUGGAUUGAAGGGAGCUCUG	3prime	226 UUUGAAGCGGAGCU
UUUGGAUUGAAGGGAGCUCUG	3prime	226 GAUUUGAAGCGGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	227 GAUUUGAAGCGGAG
UUGGAUCGAAGGGAGCUCUU	3prime	176 GGAAAGAGAGAGAG
CUUGGAUUGAAGGGAGCUCCU	3prime	176 AAGUGAUCGAAGAG
UUUGGAUUGAAAGGAGCUCUU	3prime	225 GAUUUGAAGCGGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	175 GUUUUGAGGUGGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	222 GAUUCGAAGCGGAG
UUUGGAUUGAAGGAGCUCUG	3prime	222 GAUUCGAAGCGGAGG
UUUGGAUUGAAGGGAGCUCUG	3prime	222 GAUUCGAAGCGAGG
UUGGACUGAAGGGAGCUCCC	3prime	196 AGUUUGAGGAGCU
UUUGGAUUGAAGGGAGCUCUG	3prime	252 UUGUGGACGUUGAG
UUUGGAUUGAAGGGAGCUCUG	3prime	173 GUUUAGAGGUGGAG
UUUGGAUUGAAGGGAGCUCUA	3prime	172 GUUUUGGAGUGGAG
UUUGGACUGAAGGGAGCUCCU	3prime	87 CUGCAGAAAUGGGG

UUUGGAUUGAAGGGAGCUCUA	3prime	168 GGUUUGGAGUGAGCU(
CUUGGAUUGAAGGGAGCUCCU	3prime	178 AGGCGAUCGAAGAGCU
UUGGAUCGAAGGGAGCUCUU	3prime	178 ACAGACAGAGAGGAGC
UGCCUGGCUCCCUGUAUGCCA	5prime	80 AUGUGUAUGUGCCUGC
UGCCUGGCUCCCUGUAUGCCA	5prime	130 AAAGGGGAUAUGCCUG
UGCCUGGCUCCCUGUAUGCCA	5prime	82 CUUGAGAGCGUGCCU(
UGCCUGGCUCCCUGUAUGCCA	5prime	87 UGAUAUGAUGUGCCUG
UGCCUGGCUCCCUGUAUGCCA	5prime	81 GUGUCGUGUGUGCCU(
UCGAUAAACCUCUGCAUCCAG	3prime	80 GUGAAGUCACUGGAAG
UCGAUAAACCUCUGCAUCCAG	3prime	87 AAGUUCGUCACUGGAU
UCGAUAAGCCUCUGCAUCCAG	3prime	114 GGGUGAUGCCUGGGC
UCGAUAAACCUCUGCAUCCAG	3prime	85 UUGAAGUCACUGGAUG
UGGAGAAGCAGGGCACGUGCA	5prime	137 UGAGCAAGAUGGAGAA
UGGAGAAGCAGGGCACGUGCA	5prime	137 UGAGCAAGAUGGAGAA
UGGAGAAGCAGGGCACGUGCA	5prime	152 CGCGCGAGGUGGAGAA
UCGGACCAGGCUUCAUUCCCU	3prime	136 CACGUCUUGAGGGGAA
UCGGACCAGGCUUCAUUCCCC	3prime	107 UGUCUUUUGAGGGGAA
UCGGACCAGGCUUCAUUCCCG	3prime	156 UGGGGUUGAUGGGAAL
UCGGACCAGGCUUCAUUCCCC	3prime	86 AGGUGUUGAGGGAAL
UCGGACCAGGCUUCAUUCCCC	3prime	128 UGAGGUUGAGAGGAAL
		165 UAUCUUUUGAGGGGAA
UCGGACCAGGCUUCAUCCCCC	3prime	
UCGGACCAGGCUUCAUUCCCC	3prime	78 AUGGUUGUCGAGGGG/
UCGGACCAGGCUUCAUUCCUC	3prime	169 GGAGUUUGAGGGGGAL
UCGGACCAGGCUUCAUUCCCC	3prime	92 GUUAGGUUGAGAGGA/
UCGGACCAGGCUUCAUUCCCC	3prime	96 CUUAUUUGAGGGGAAU
UCGGACCAGGCUUCAUUCCCC	3prime	97 UAUUUUUUGAGGGGAA
UCGGACCAGGCUUCAUUCCUC	3prime	173 AGGAGGUGUUUGGAAL
UCGGACCAGGCUUCAAUCCCU	3prime	97 UUAGGUUAAGGGGAUU
UCGGACCAGGCUUCAUUCCCC	3prime	108 UUGCUUCUGAGUGGAA
UCGGACCAGGCUUCAUUCCCC	3prime	87 CUUACUUUGAGGGGAA
UGAAGCUGCCAGCAUGAUCUG	5prime	64 UGCAGCAGUUGAAGCL
UGAAGCUGCCAGCAUGAUCUA	5prime	82 AAGGAAAAAGUGAAGCI
UGAAGCUGCCAGCAUGAUCUG	5prime	90 CAUUAGGAGCUGAAGC
UGAAGCUGCCAGCAUGAUCUG	5prime	100 ACAAGUUGGUGAAGCU
UGAAGCUGCCAGCAUGAUCUU	5prime	69 ACUACCAGUUGAAGCU
UGAAGCUGCCAGCAUGAUCUG	5prime	149 ACAAGUUGGUGAAGCU
UGAAGCUGCCAGCAUGAUCUG	5prime	149 CACAAGUUGGUGAAGC
UGAAGCUGCCAGCAUGAUCUG	5prime	139 ACAAGUUGGUGAAGCU
UGAAGCUGCCAGCAUGAUCUG	5prime	80 CUCUAGUAGCUGAAGC
UCGCUUGGUGCAGGUCGGGAA	5prime	104 GGCUCGGAUUCGCUUC
UCGCUUGGUGCAGGUCGGGAA	5prime	166 GUCUCUAAUUCGCUUG
UCGCUUGGUGCAGGUCGGGAA	5prime	88 GUCUCUAAUUCGCUUC
UCGCUUGGUGCAGGUCGGGAA	5prime	140 GUCUCCGAUUCGCUUC
UCGCUUGGUGCAGGUCGGGAC	5prime	145 GCCUCUUAUUCGCUUC
UCGCUUGGUGCAGGUCGGAC	5prime	145 GCCUCUUAUUCGCUUG
UCGCUUGGUGCAGAUCGGGAC	5prime	67 GCCUCGGGCUCGCUU(
UCGCUUGGUGCAGGUCGGGAA	5prime	118 GUCUCUAAUUCGCUUG
UCGCUUGGUGCAGGUCGGGAA	5prime	140 GUCUCUGAUUCGCUUC
UCGCUUGGUGCAGAUCGGGAC	5prime	65 GCCUCGGGCUCGCUU(
UCGCUUGGUGCAGAUCGGGAC	5prime	65 GCCUCAGGCUCGCUUC
UCGCUUGGUGCAGGUCGGGAC	5prime	133 GCCUCUCAUUCGCUUG
UCGCUUGGUGCAGGUCGGGAC	5prime	134 GCCUCUCAUUCGCUUC
UCGCUUGGUGCAGGUCGGGAC	5prime	133 GCCUCUCAUUCGCUUG
		

UCGCUUGGUGCAGAUCGGGAC	5prime	67 GCCUCGGGCUCGCUU(
UCGCUUGGUGCAGGUCGGGAA	5prime	110 GUCUCUAAUUCGCUUG
UCGCUUGGUGCAGAUCGGGAC	5prime	65 GUCUCGGGCUCGCUU(
UCGCUUGGUGCAGAUCGGGAC	5prime	65 GCCUCGGGCUCGCUU(
UCGCUUGGUGCAGAUCGGGAC	5prime	65 GCCUCGGGCUCGCUU(
CAGCCAAGGAUGACUUGCCGG	5prime	111 AGUGUAGUGCAGCCAA
CAGCCAAGGAUGACUUGCCGG	5prime	103 AGUGUAGUGCAGCCAA
CAGCCAAGGAUGACUUGCCGG	5prime	84 AGAGUGAUGCAGCCAA
CAGCCAAGGAUGACUUGCCGA	5prime	95 GCCAUGGUGCAGCCAA
CAGCCAAGGAUGACUUGCCGG	5prime	92 AACGGGAUGCAGCCAA
UAGCCAAGGAGACUGCCUAUG	5prime	88 CGACUCAGACUAGCCA
CAGCCAAGGAUGACUUGCCGA	5prime	91 GCCAUGGUGCAGCCAA
UAGCCAAGGAGACUGCCCAUG	5prime	88 CCACUCAGGCUAGCCA
UAGCCAAGGAGACUGCCUAUC	5prime	105 CCACUCAGGCUAGCCA
UAGCCAAGAAUGGCUUGCCUA	5prime	107 UUGCCUCUGUUAGCCA
CAGCCAAGGAUGACUUGCCGA	5prime	101 AGAUUGAUGCAGCCAA
CAGCCAAGGAUGAUUUGCCGA	5prime	84 AGUUUGAUGCAGCCAA
UAGCCAAGGAUGAUUUGCCUG	5prime	99 CCAUCUUCGAUAGCCA
UAGCCAAGGACAGACUUGCCG	5prime	93 GAACUAGGUGUAGCCA
UGAUUGAGCCGCGCCAAUAUC	3prime	92 GAGUCCCUUUGAUAUU
UCAUUGAGCCGUGCCAAUAUC	3prime	79 GUUCAACGGGAUAUUG
CGAUUGAGCCGUGCCAAUAUC	3prime	79 CAUAAACGAGAUCUUG
UGAUUGAGCCGUGCCAAUAUC	3prime	78 GGUCACUAUGAUGUUG
UGAUUGAGCCGUGCCAAUAUC	3prime	107 GGGAGAGUGCGAUGUL
UGAUUGAGCCGUGCCAAUAUC	3prime	99 GGUAGCUAUGAUGUUC
CGAUUGAGCCGUGCCAAUAUC	3prime	80 AGUGAACGCGGUAUUG
UGAUUGAGCCGUGCCAAUAUC	3prime	94 UGGUCACUAUGAUGUU
UGAUUGAGCCGUGCCAAUAUC	3prime	113 GAGAGAGUGCGAUGUL
UGAUUGAGCCGUGCCAAUAUC	3prime	113 AGAGAGUGCGAUGUUG
AGAAUCUUGAUGAUGCUGCAA	3prime	107 UGCUCGCUGUAGCAGC
AGAAUCUUGAUGAUGCUGCAU	3prime	114 UGUUUGCGGAUGUAGC
AGAAUCUUGAUGAUGCUGCAU	3prime	120 UUAUUUGCGGAUGUAG
AGAAUCUUGAUGAUGCUGCAU	3prime	106 UGUUUGCAUAUGUGGC
AGAAUCUUGAUGAUGCUGCAU	3prime	93 UGCUUGCUAGUGCAGC
UCCAAAGGGAUCGCAUUGAUC	5prime	95 GGGGAAGCAUCCAAAG
UCCAAAGGGAUCGCAUUGAUC	5prime	95 GUGGAGGACUCCAAAG
UCCAAAGGGAUCGCAUUGAUC	5prime	89 UUGGAGUGUUCCAAAG
UUGGCAUUCUGUCCACCUCC	5prime	65 CAGAGUUUCUUGGCAU
UUGGCAUUCUGUCCACCUCC	5prime	79 CAGAGUUUAUUGGCAU
UUGGCAUUCUGUCCACCUCC	5prime	88 CAGAGUUUCUUGGCAU
UGAAGUGUUUGGGGGAACUCU	3prime	69 GUUGUCUCUUGGAGUL
GUGAAGUGUUUGGGGGAACUC	3prime	68 UAUUAUCGUGAGUUCC
GUGAAGUGUUUGGGGGAACUC	3prime	68 CAUUGUCGUGAGUUCC
AUGAAGUGUUUGGAGGAACUC	3prime	69 UAUUACUAUGAGUUCU
GUGAAGUGCUUGGGGGAACUC	3prime	122 UUGUCCACUGGAGUUC
GUGAAGUGCUUGGGGGAACUC	3prime	66 AGUCCCUAGGAGUUCC
	•	
GUGAAGUGUUUGGAGGAAGUC	3prime	69 UAUUAUCAAGAGUUCU
GUGAAGUGUUUGGGGGAACUC	3prime	68 UAUUGUCGUGAGUUCC
GUGAAGUGUUUGGAGGGACUC	3prime	62 GUCUUAGCAUGGGUUC
AUGAAGUGUUUGGGGGAACUC	3prime	66 UCUUACCAUGGGUUCC
UUCCACAGCUUUCUUGAACUU	5prime	117 GGUUAUAUUUUUCCAC
UUCCACAGCUUUCUUGAACUU	5prime	87 GUCAUGCUUUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	101 UUUGUAUUCUUCCACA

UUCCACAGCUUUCUUGAACUG	5prime	181 UUUGUAUUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	182 UUUGUAUUCUUCCACA
UUCCUCAGCUUUCUUGAACUG	5prime	183 UUUGUAUUCUUCCUCA
UCCCACAGCUUUCUUGAACUU	5prime	98 CGCCAUAUUUUCCCAC
UUCCACAGCUUUCUUGAACUG	5prime	134 UUUGUGAUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	114 UUUGUAUUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	114 UUUGUAUUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	113 UUUGUAUUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	113 UUUGUAUUCUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	95 UUUGUGAUCUUCCACA
UUCCACAGCUUUCUUGAACUU	5prime	103 GUCAUGCUUUUCCACA
UUCCACAGCUUUCUUGAACUG	5prime	97 CUUUGUGAUCUUCCAC
UUCCACAGCUUUCUUGAACUG	5prime	110 CCUGCCAUCUUCCACA
CGUUGAGUGCAGCGUUGAUG	5prime	87 GCAGAGGUGCCGUUG/
CGUUGAGUGCAGCGUUGAUG	5prime	87 GCAGAGGUGCCGUUGA
UGUGUUCUCAGGUCACCCCUU	3prime	133 GUGAACCCCAGAGGAG
UGUGUUCUCAGGUCGCCCCUG	3prime	98 AGGAAUUCUACAGGGU
UGUGUUCUCAGGUCACCCCUU	3prime	96 GUUUAUCUCAGAGGAG
UGUGUUCUCAGGUCACCCCUU	3prime	93 CUCGGAGGAGUGAAUC
CGUGUUCUCAGGUCGCCCCUG	3prime	66 GACAUCCAACAGGUGU
UGUGUUCUCAGGUCGCCCCUG	3prime	73 AGGCAUCCAACAGGUG
UGUGUUCUCAGGUCGCCCCUG	3prime	73 AGGCAUCCAACAGGUG
UGUGUUCUCAGGUCACCCCUU	3prime	113 GUCUAUCUCAAAGGAG
UGUGUUCUCAGGUCACCCCUU	3prime	88 UUCUAUCUCAGAGGAG
UGUGUUCUCAGGUCGCCCCUG	3prime	77 UGAUGUUCUACAGGGU
UGUGUUCUCAGGUCGCCCCUG	3prime	89 AAGUGUUCAACAGGGG
UGUGUUCUCAGGUCGCCCCUG	3prime	68 GAGUUCCUACAGGGGC
UGUGUUCUCAGGUCGCCCCG	3prime	108 CAGUUCCGGCGGGGG
UGCCAAAGGAGAGUUGCCCUG	3prime	74 AAAUCAGCUAUAGGGC
UGCCAAGGGAGAAUUGCCCUG	3prime	82 UAAAGAAUAACAGGGC
n-		

•

3 3.

ascencion numbers with redundant foldbacks

BJ456281

CUCUCUUCAGUCCAGUCCAAGAUAGUAUUAAGCCAAUCUCCGCUGCUGACUCGUUGGCUCAU JUCCUUUAGUCCAAAUAUGGAUCUUGCUAUGUUGAUAGAGCUGCUUAGCUAUGGGUCCCUCAA BI265403

JCCUUUCGGUCCAAAAAGGGGUGUUGCUGUGGGUCGAUUGAGCUGCUGGGUCAUGGAUCCC JCCUAUCAUUCCAAUGAAAGGUUGUUUUUGUGGGUUGGUACAGCUGCUCGUUCAUGGUUCCC, JUCCGUUUUCGGUCCAAUAGUGGCUGCGACGGAAGGUGGUCCCGCUGCCGAAUCACACGUCC CA236922,CA261537

JCCUAUCAUUCCAAUGAAGGGCCCUUUUCAUGGGUGGUUCCGCUGCUCGUUCAUGGUUCCCA(CD213304

CD224964,CF433018

ACUUCAGUCCACUCAUGGGAGGUAGCGGGGAUUGAACGAGCUGCCGACUCAUUCACUCGAGC/
JCCUUUCGGUCCAAAAAGGGGUGUUGCUGUGGGUCGAUUGAGCUGCUGGGUCAUGGAUCCC
JCCUAUCAUUCCAAUGAAGGGUCUACCGGAAGGGUUUGUGCAGCUGCUCGUUCAUGGUUCCC,
JCCUUGAAGUCCAAUAGAGGGUCUUACUGGGUAGAUUGAGCUGCUGACUUAUGGAUCCCACA(
JUCCUUUGCAGCCCAAAACAACUCCAUCGCUGAAGAAGAUGAUGAACUUCAUGCUCCUUGUUU

CCUUGAGUCCAAUAGAGGUCUUACUGGGUAGAUGAGCUGCUGACUUAUGGAUCCCACAGCCCI ICCCUUCGAUCCAAUCCAGGAGGGGAAGUGGUCGGUUGCAGCUGCCGGUUCAUGGAUACCUC IUCCCUUCAAUCCAAGCACGAGGGAAAGAUGAUGGCGGGCUCAUCUCCCGGGUCAUGCACACC 3CUCCCUGUAUGCCAUUUGUAGAGCUCAUCGAAGCAUCAAUGACCUUUGUGGAUGGCGUAUGACF327535

CF330305

UGCCAGCAUGAUCUAGCUUUGGUUAGUGGGAGCGAGAUAGUGCUAACCCUCACUAGGUCAUG ;UGCCAGCAUGAUCUGAUGAGUGCUUAUUAGGUGAGGGCAGAAUUGACUGCCAAAACAAAGAU CF322848

GCCAGCAUGAUCUUAACUUCCCUCACUUGGUUGAGGAGAGAUCAGAUCAUGUGGCAGUUUCA IGCCAGCAUGAUCUGAUGGUGGUAUAUAUGAAUAUAUGAUGUCUUUACCUCUGAUCUCUCCC ;UGCCAGCAUGAUCUGAUGGUGGUAUAUAUGAAUAUAUGAUGUCUUUACCUCUGAUCUCUCCC CF571260

;UGCCAGCAUGAUCUGAGGUGUCCACAGCAUAUAUAUGGAAGCAGCUAGCGAUCAGAUCAUGC 3GUGCAGGUCGGGAACCAAUUCGGCUGACACAGCCUCGUGACUUUUAAACCUUUAUUGGUUU(3GUGCAGGUCGGGAACUGCUUCGCUUUUGCCCUUAGAACACGCAUACAUGUUUGAGAGUACU(BE659175.BE661028

GUGCAGGUCGGGAACUGCUUCUUCACUCACGGAAAGAAAAUAUGUGCCUUUACAGAGAAGC BE461111

BU811772,BU871538,BU888204,BU889659,BU893331

3GUGCAGAUCGGGACCCGCCCGGCCGACGGACGGAUCCCGCCUUGCACCAAGUGAAUC 3GUGCAGGUCGGGACCUACCUCGCCGGCACAAUGGCGGUAGCUGACGGCGACGCCAGCGUAC CK249947

3GUGCAGGUCGGGACCUACCUCGCCGGCAACAAUGGCGGUAGCUGACGGCGACGGCAGCUUA

CD205823,CD209338,CD209437,CD210663,CD213423,CN133168,CN145907,CD207772
3GUGCAGGUCGGGAACCGACUUCGCCGCUCCGGCAGCGCCGGAGGCACGCGCGGCGCCUACG/

AGGAGACUGCCCAUGAACCAGCUUAAAGGAUCAUUAAAUUGCUAAUCCUUCAGGGAGGACAC/ AGGAGACUGCCUAUCUCGGCUCAUCUGAACCAGCCAGGCCACACUGAUCAUGGCACUGCAUC AGAAUGGCUUGCCUAUCUCCACUAUUUGGUUCAUCACUGGAACCCACUUGGGGUUCUCCGAL .GGAUGACUUGCCGACGACUCGCUUUUGCUUUUGCUUCCAUCAAUAUAGGCAUAAUCAAGAAG, GGAUGAUUUGCCGACGACUCAGUUUUUGCUUCCAUAUGGUAGGAGAGAUGAAGAGGUUGGC/ AGGAUGAUUUGCCUGUGAAACUCCCUUGGCAGCCGAGCUCUCUGCCACAGAGAGCGGCGUC(AGGACAGACUUGCCGACUGAGUUCUAAGCCUCAGCAGCAGCUGAGACGCCUCCAGGUUCCA IGGCCUGGUUCACUCAGAUCUUACCUGACCACACGUAGAUAUACAUUAUUCUCUCUAGAUU/ 3GUCCGGUUCAAUAAGAAAGCAAUGCUCAAAAUGUUUUUGGGUCCUGUUUUUUCAUUGAGCCG GUGCGGUUCAAUGGUAACGGUUGUGGUCGUAACAUUAAGACCCCAAUUUUUCGAUUGAGCCG 3GCUCGACUCACUCAGACCACGCCGGAGGGAGCCAUCUGCGGCGGCGGUUCUGAUUGAGCCG JGGCAUGGUUCAAUCAAACCGGGCAAACUUAUGCACUAGCUAAGCAAGAUGCAGGGAUCUGCA 3GUGCGGUUCAAUCAGAGAGCUGGCGCCCCAGGAGGCAAGGGGUUCCUCCCUUCGAUUGAGC JGGCUCGACUCACUCAGACCACGCCUGCCGGCCGGCCGUAGCCAUGCAUCUGCAUGCGGUGG JGGCAUGGCUCAAUCAACUCGCCGGCCGCGGGUGGCUUAGCUUAUUAAUUCUGCGUUUUUGA 3GCAUGGCUCAAUCAACUCGCCGGCCGCGGGUGGCUUAGCUUAUUAAUUCUGCGCGUUCGAU CAUCAUCAAGAUUCACAUGCAAAUGAAGGUGGGUGGGACUAUGAUGCAAUCCAAGUGCUCUGC 3CAUCAUCAAGAUUCACAUGCAAGCGCAGGUGGUGGGGGGCUUGAUGCAAUCUAAGUGCUC CAUAAUCAAGAUUCACGUGAAAAGUUGCAAAUUGGUUAUAUAAUUGAUGAAAUUAAUGGCUGG(CACCAUCAAGAUUCACAUAGAAAAUAUGGACUAUGAAAUGAAAUAUGCCCAAUUUUUGAAUACA iGGAUCGCAUUGAUCCUUCAUCGCUCGCUCGCUUCCAUGGCGGUCGUCGUCUACAAGCAG(3GGAUCGCAUUGAUCUAAUGACUUUCGAUGUCUAUAUGAUGUUAAUGUUUAGUCAUUUCAUUG JUCUGUCCACCUCCACUUCUUGGCCCUAUCUACGUACUCGGAGGUGGAUAUACUGCCAAUAGA BU082875

CA853579

AGCUUUCUUGAACUGCAUCUUUCAGAGGAGCGGCAGUUUCAACUCCUCCACCCGCAUCAGCA GCUUUCUUGAACUGCAUCAUGCAUGCAGCAGGCUGUGCUGUGGACCUGAUCGAGUUUCAAUL BQ461815.BU966762.CA014459.BM097863.BQ665274.BU966899

AGUGCAGCGUUGAUGAACCGUCCGGCCAUGGNCCGUCCGCCUCCACCGAGGCCGGAGCGGUL
BUGAACCUGAGAACAGAGGGUGGCGUUGGCUUAAAUUUGAUUUGCAUUGCUGCUGCUCCI
ICGUCCUGAGACCACAUGAAACAGAUUCAAAAUACAAGCAUAUUUGCUUGUGACCUUUUUGUGAC
BUGGAUCUGAGAACACAAGGCUGGUUUGCACUGCUAUAUUAUGAUCGAUUGGUAUAAAGGUGAA
BUGAGAACACAAGGCUGGUUUGCACUGCUAUAUCAUCUAUUGGUAUAAGGUGAAUUUACUUUG
IGACAUGAGAACACAUGAUGAUAUAUAGAUAUUUUCACGUGUUCUCAGGUCGCCCCUGCUG,
BCGACAUGGCAACACAUGUUAAAUGUGCAACAAAUCACAUUCCGCCAUGUGUUCUCAGGUCGCC
BUGAGCCUGAGAACACAAGCUGAAUUGGUUUGAAUUGCCAUAUCACAUACUGAUAUCUGGUAUA

JCGACAUGAGAGCACAUGAAGCUAUCAUGGUUGUCUAUGUUAUCCAACUCAUGUGUUCUCAGG 3CAACCUGAGAUCACAUAUUGUCAUUUUUCUUUAGUUGUUGAGUCUGGUUCAAUAUCUCACUAI 3CAGCUGGGAACACACGGUGAUGAGGCGGUCUGGUCUUUCGUGUGUUCUCAGGUCGCCCCUC 3CGACUGGGAACACAUGGGAAUGAGAUGAGAUCAUUGCUCGGUCGUGCUGGCCUGGGCCGUC 3CCC094874 CUCUUUCUGUCAGAUUCUAGU

\AUUGUGCAUCUUACUCCUUUGUGCUCUCUAUACUUCUGUCAUCACCUUCAG

UCUAGUCUUCUGUCAUCAUCCUUCU

CUUCUCUAUCUGUCAGCUUCCCAU

JCUCUUCCUCUGUCAUCAUCACAU

CUCUAUGCUUCUGUCAUUACCUAUUA

CUCUCCCUUCUUCUGUCAUCAUCACAUGA

AAUUGCAUUUCAUUUCCUUUGUGCUCUCUAGACUUCUGUCAUCACCUCAUC

\UCAAUUAAACUGCAGAGAAUAAAAGCAUCUCAAUUCAUUUGUGCUCUAUGCUUCCGUCAUCAC(
GCUCACUCUCUAUCUGUCAGCCCGUUCA

AGCUAUGCGUGCUCACUUCUCUCUCUGUCAGCCGUUAGA

UCACUCUCUAUCUGUCAGCCACUCAUC

JCUUGCUUCUGCCAACGACCGUCU

CACUUCUCAUUCUGUCAGCUCUCUCA

CACUUCUCUUUCGGUCAGCCUCUUCUG

3AAGCUAUGCGUGCUCACUUCUCUCUCUGUCAGCCAUUAGAA

CACUCUCUAUCUGUCAACCACUCAU

UCACUCUCUAUCUGUCAGCCACUCAUC

ACUUCUCUUUCUGUCAGCCUCUUUC

IGAACUCAUCCAACGGCUAGGAUUCCGAUGUGUUUUUGAUCCAACGAUGCGGGAGCCGUGUUUGGU \CUCUACCCAUCUUGUUCUUUGUGGUAGUUUUGUGGCUUCCAUAUCUAGGGAGCCUUAUCACCUUU

CUAUCCUAUCUCAUCAUGUAUCUGUGUAUGUACUCUAGAGGGCCGGAGAAGAGAUUCAUGUGGUCC

UAUCCCGUCAAUGGGGGGCAUUGGAUAGGCUUGUGGCUUGCAUAUCUCAGGAGCUGCAUUAUCCA/
UCUGGUGCAGCAAUGGCCGCUGCUCACCUCUGCACUUGCAUGGGUGUGCAUGACCCGGGAGAUGA
;CAUGCAAGUGCAGAGGUGAGCAGCGGCCAUUGCUGCACCAGAGAGGUAUCCAUGAACCGGCAGCU
AGGAGCCAAGCAUAUUUCAUA

3GCGUGCACGGAUCCAAGCAUAUCGAACCC

3CAAGGAGCCAAGCAUGCAUAACAG

JCUGCAUCCAGCGCUCACUU

:GAUAAACCUCUGCAUCCAGCGCUCACUUU

JUGAUAAUAUACAACGCAGGAAUCGAUCGAUAAGCCUCUGCAUCCAGAUCUCACUU

AAACCUCUGCAUCCAGCGUUCACUC

UAUGGGUUUCGAUCUCUUUGAUCCCUUGAAACAAGAAGCUUUAAAGGUUGGAUUUUGAGGCUUU GACCAGGCUUCAUUCCCCUCAAAAAU

CUUUUCUUUUGAAGGGUUUUGACCAUUUUGAUUUUGAUUUAAGGUUAAGAGGUGGAUCUUG() GCUUCAUUCCCAUGACUCCAUC

JAAGGCUUCGGACCAGGCUUCAUUCCCCUCAAAAUCU

AAAGUAUUCUCGGACCAGGCUUCAUUCCCCCCAAUUAUAU

UUCCUUGAAUCUAUGAGAUCUCGGACCAGGCUUCAUUCCCCUCAGCAAUAG

CGGACCAGGCUUCAUUCCCCUCAAGUGGAG

CUGUGCUAGCCUCACUCCUUCCUA

CAGAUCAUGCUGUGCAGUUUCAUCUGCUUGUG

CCUAGUUGU

UGUGCAGUUUCAUCUGCUCGUG

GUGAGCAGGGAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAUCC

>AACGUUUUUUAUUUUAUAUUUUUUGAACGACGUUUCUGGUGAAUUUAAGUUCAUGCCUUGCAUCA

JUAAUUCUACUAAAGCUGUCACCGACGGAUAGAUGUUUGAUUAGCGGCGAAAUUUGGGUCCUGCCU

GGAGCC

CGGUAAAAACUAAUUUUUUACAUGUUGUCUGUGGCGUAGUUUGGGUCCCGCCUUGCAUCAACUGA

«CCGGUAAAAACUUUUUUUUUUUACAUGUCUGUGGCGUAGUUUGGGUCCCGCCUUGCAUCAACUGA»

AUUGGUUGCUGAGCGAAUUCCGAUCCCGCCUUGCAUCAACUGAAUCGGAGAC

CGGAGCC

CGGAGCC

JAUAUAUGACUCAUGUUCUUGUCGGCAAGUUGGCCUUGGCUAUAUUGGACU

3UUGUGUUUGGCUAUGUUUUGCU

CAUCAAUUGGCAAGUUGUUCUUGGCUACAUCUUGGC

IAGCCGGCAAGUCUGUCCUUGGCUACACCUAGCU

AUUGGCAAGUUGUUCUUGGCUACAUCUUGGC

AGGCAAGUCAUCCUUGGCUAUCAGAGAUAA

;AUUCAGAAGAGCACAAUAGGCAAGUCAUCCUUGGCUACCAGAGGCAG

JGGUGGAUGAAAUAUGGAAGAUGGUGAGCCUUCAUGGCUAAGAGAGUGAU

AGAUGAAUCCGUUGGCAGGUUGUUCUUGGCUACAUUUUUCU

AGGUUUUCCUUGGCUACAUUUUCCU

CGGCGGUUCCAUGGGCAAGUCACCCUGGGCUACCCGAAGUAC

\GGAGCCGGCAAGUCAUCCUUGGCUGCAUCCCGUUC

AUCUGAUUGAGCCGCGCCAAUAUCUCAGUACUCU

JUGCCAAUAUCACGAACCAC

JUGCCAAUAUCACGUACUAU

JUGCCAAUAUCUUAGUGCUC

\GUAUGGUUUUGUUUGGUCUGAUUGAGCCGUGCCAAUAUCACAAGCUUGC

CUUGUGUUUCUGAUUGAGCCGUGCCAAUAUCUUAGUGCUC

CGUGCCAAUAUCACGCGGUUU

UGGCUCUGAUUGAGCCGUGCCAAUAUCUCAGUGCUCU

UCGAGGUGCGGGCGCAGUGUUUAAUUGAUUGAGCCGUGCCAAUAUCACAACCUUCU

CGAGGUGCGGCCAGUGUUUAAUUGAUUGAGCCGUGCCAAUAUCACAACCUUC

CUUGGUUUUUGUCAGUGAGAAUCUUGAUGAUGCUGCAACGGCGAUUA

CAAUCCAUCGGUCUUUUUGAUGUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAA

3UGCCAGCCAAGCCAUAGGUCUUUUGGAACUGAGAAUCUUGAUGAUGCUGCAUCAGCCAUAAA

CUAUUUGAAACUCACGAGAAUCUUGAUGAUGCUGCAUCAGCAAUAA

UGAGAAUCUUGAUGAUGCUGCAUUGGCAAAUU

CUUGACGGAUCAUGCGAUCCUUUUGGAGGCUUCCUC

GUGAUCGAUCAGUGCAAUCCCUUUGGAAUUUUCCUC

GAUCAUGCGAUCCCUUAGGAAUUUUCCAG

\GCUGU

GAGGUGGGCAUACUGCCAACAGAGCUGU

CUUAGGUUCAAC

IUGGUAUCG

JUGGCAUCC

UCAGUGCCA

UGUGAUCAUGGGGCCAAAAGCUAGCUAUGUACAGUGAAGUGCUUGGGGGAACUCCAGUUGACAC

\GUGUCG

UCAGUGUCA

JCGGUAUCA

3GCAU

3GUGAUG

UCUAACAUUUAACACUCUASAAAAAAAAAGCUCAASAAAGCUGUGGGAAAACAUGACA

;UCACUCUCUCUAACUGGCUUGCGGGUCAAUAAAGCUGUGGGAAGAUACAGA;AGGUGCAGUUCAAUAAAGCUGUGGGAAACUGCAGA

GGUGCAUGCAGUUCAAUAAAGCUGUGGGAAACUGGAAAG
JGAUCCAAGCAAGCAAGAGGGCAGUUCAAUAAAGCUGUGGGAAAUUGCAGA

JCACCGGCGCUGCACGCAAUGACGCCUCUGC
CUGCCAUACAUUAAAUCAAAAAGAUUGUAUGUGGCCAACGCACCUUGUGUUCUCAGGUCACCCCUUI
CUCAGUUCAUGUGUUCUCAGGUCACCCCUUUGAGCCAACC
;UGUUCUCAGGUCACCCCUUUGAGCCAACC
AAUUUU
CCCUGCAGGGUUUUU
CCCUGCAGGGUUUUU
AGGCUUUAUGUUGCUAAUUUAUUUUGUGUUCUCAGGUCACCCUUUGAGCUGACC

JUCGCCCUGCUGAAUUUUC UGUGUUCUCAGGUCGCCCUGUCGAAUUAUU JCCGGGACUC CGGCGCGCGUUGAUCUUGCAUGUGUUCUCAGGUCGCCCCGGAGGGCCUU

CUUCACC
AGUUCCUUCAGCUGAGUGCCUUUCCGGCUUGAGCCUUCUGCAUGAUCAGCUGAGUUCUUUCU
UUAAGUGUCCUGUACUUGGACUGAAGGGAGCUCCCUUUUUCUUUU JCUAUAUUGCAACCCUCUUUCUCUGUGCUUGGACUGAAAGGAGCUCCUUCUUUUUCUG ;CCUUUAUAGUAUUAACCUUCUUUGGAUUGAAGGGAGCUCUACACCCUUCU IGAUCUUUUGGUAUUGGAGGAGCUCCAGAGGGUAUUC
IUCUGUCUGUCUCGUCUUGGACUGAAGGGAGCUCCCUUCUGUUCCAC IAGUUUAAUCUUUCUUUGGAUUGAAGGGAGCUCUACAUCUUGCU GUAUGUGUGUAGAUAGGAAAAUGAUGGAGUACUCGUUGGGAUAGGCUUAUGGCUUGCAUGCCCCAI
CCUUCCGCCGGCGUCUCUUGGACUGAAGGGAGCUCCACUCUUGGCGU JGGGGGUCGUCUAUGAGAUACGCUUGUGGUUUGCAUGACCGAUGAGCUGCACCGUCCCCUUGCUGACGGUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGUCCCCUUGCUGACCGACC
CGUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAAGAGCUGCACCGUCCCCUUGCUGCUGGUCGUCUUUGAGAUAGGCUUGUGGUUUGCAUGACCGAGGAGCUGCACCGUCCCCUUGCUGGCCG

GAAUGCAGCGGAGAUUGUUCUCUUUUCCUCCUCCAUGCUUGGACUGAAGGGAGCUCCCUCAUCU GUAUGUGUGAGAAAAUGAUGGAGUACUCGUUGUUGGGAUAGGCUUAUGGCUUGCAUGCC 3AUCCCUCGCUGACCGCUGUUUGGAUUGAAGGGAGCUCUGCAUCUUGAU UCCAAGCUUAGAUCCUUGUUUGGAUUGAAGGGAGCUCUACACCUCUCU

CCAUCAUGAUCA
CCAUCAUGAUCA
UGCAUGUGCCUUUCUUCUCCACCGUGCACA
UUCAAUUACAG

CUCGGACCAGGCUUCAUUCCCGUAAACCUUA

CGUUAGUGUCGGACCAGGCUUCAUCCCCCCAAUUGUUU

JUGGAGUGAUGGCAUCGGACCAGGCUUCAUUCCUCCCAAAACAC

LUAUUGAGAGUGAUCUCGGACCAGGCUUCAUUCCUCAC

CAUGCUGUAGUUUCAUCUGCUGGU JCAUGCUGUAGUUUCAUCUGCUGGUG

JAGGGCGAAUUGGAUCCCGCCUUGCAUCAACUGAAUCGGAGAC

ACUGAAUUGGAUGA

UGCAUCAACUGAAUUGGAGAC

4ACUGAAUCGGAGGC

AUAGGAGAC

AUAGGAGAC

UGGAAAAUUUUAAUUUGUGGGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAAA
AUGGAAAAUUUUAAUUUGUGGGUUGCGGUUCAAUAAAGCUGUGGGAAGAUACAAAU
AAUUGCAGA

UGGGAAUUCA

CCUUUCAUUGUGUCCUG
GGAGCUGCAUCAACCCUACAUGGACCCUCUUUGGAUUGAAGGGAGCUCUGCAUCUUUGG GCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCUUGAU
GCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAU GGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAA
GCCGCUCUUUGGAUUGAAAGGAGCUCUUGCAUCUGAU
CUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAU
JCUCA CCAGGAGCUGCAUCAACCCUACAUGGACCCUCUUUGGAUUGAAGGGAGCUCUGCAUCUUUGG