$\mathbf{1}$ 연쇄법칙을 이용하여 w'(t)를 구하시오.

(a)
$$w = xe^y$$
, $x = t^3$, $y = t^2$

(b)
$$w = xy + yz + zx$$
, $x = e^t$, $y = \cos t$, $z = \sin t$

 $\mathbf{2}$ 연쇄법칙을 이용하여 $\frac{\partial w}{\partial u}(u,v)$ 와 $\frac{\partial w}{\partial v}(u,v)$ 를 각각 구하시오.

(a)
$$w = \frac{x}{y} + \frac{y}{x}$$
, $x = u^2 + v^2$, $y = uv$

(b)
$$w = x^2 - y^2$$
, $x = e^u \cos v$, $y = e^u \sin v$

(c)
$$w = xe^z \cos y$$
, $x = 2u + v$, $y = u - v$, $z = u + 3v$

_____3 이변수 함수 f = f(x,y), x = x(u,v), y = y(u,v)가 모두 C^1 함수이고, 다음 정보를 만족한다.

(a,b)	f(a,b)	x(a,b)	y(a,b)	$x_u(a,b)$	$x_v(a,b)$	$y_u(a,b)$	$y_v(a,b)$
(0,1)	1	-1	2	-1	0	1	2
(1, 1)	2	0	1	1	-1	2	1

이변수 함수 *a*가 다음과 같이 주어지고

$$g(u, v) = (3u + v)f(x(u, v), y(u, v))$$

 $g_u(1,1) = 7$, $g_v(1,1) = 5$ 를 만족할 때, $f_x(0,1)$ 과 $f_v(0,1)$ 의 값을 각각 구하시오.

______4 등식 $xy^5+x^2y=6$ 을 만족하는 $(x,y)\in\mathbb{R}^2$ 의 집합이 점 P(2,1)의 근방에서 y=f(x)의 형태로 표현된다고 한다. 이 때 f'(2)의 값을 구하시오.

$$xy^2 + yz^2 + zx^2 = 3$$

_____6 1사분면에서 정의된 이변수 C^1 함수 f에 대해 $z=f(r\cos\theta,\,r\sin\theta)$ 라 하자. 다음 등식을 증명하시오.

$$\left[\left(z_r \right)^2 + \frac{1}{r^2} \left(z_\theta \right)^2 \right] (r, \theta) = \| \nabla f(r \cos \theta, r \sin \theta) \|^2.$$