目次

- 8 周期結晶における電子
 - 8.3 半導体材料の概要
 - ・8.4 準粒子としての電子・正孔

価電子帯、伝導体

HOMO

 価電子帯(VB)のうち、最上部にあるもの the Highest Occupied Molecular Orbital

LUMO

伝導帯(CB)のうち、最下部にあるもの
 the Lowest Unoccupied Molecular Orbital

・以後、特に言及のない場合、価電子帯、伝導体という言葉は それぞれHOMO、LUMOを指す

IV族半導体

- ・半導体分野では(I~VⅢ)
 - 現在のナンバリングとは異なる

- 元素半導体(C,Si,Ge...):IV族
 - 完全な共有結合
 - 点群 O_h (ダイヤモンド型構造)
 - C:C₆₀(フラーレン)
 - Ti:αスズ

Ⅲ-V族半導体

- ・ 点群 O_h :2つの副格子からなる →片方をIII、もう片方をVに
- →Ⅲ-Ⅴ族半導体
 - ・ 共有結合(支配的)+イオン結合
- 点群 T_d (閃亜鉛鉱型)
 - この手順ではこの半導体が得られる
- 点群C_{6V}(ウルツ鉱型)
 - ・ Ⅲ族の窒化物はよくこの形をとる

Ⅱ-Ⅵ族半導体

- ・Ⅲ-V族半導体に同じ操作を行う
 - II ^B VI^A:半導体(Hg化合物は半金属)
 - II ^A VI^A:絶縁体

- 点群 T_d (閃亜鉛鉱型)
- 点群C_{6V}(ウルツ鉱型)
 - 両方の構造を取るものがある(ZnO)
- I WI化合物は付録参照

合金化

• ダイヤモンド型、閃亜鉛鉱型結晶構造は2つの副格子からなる

→副格子が異なる原子(イオン)に占められたら?

- 合金化
 - 原子 $:Si_{1-x}Ge_x$
 - •陽イオン: $CdS_{1-x}Se_x$
 - 陰イオン:Ga_{1-y}Al_yAs
- CuPt構造:組成(xやy)が0.5に近い秩序構造をとる場合
- 両方の副格子の合金化も可能($Ga_{1-y}Al_yN_xAs_{1-x}$)

バンドギャップ**E**gの変化

- E_g は周期表の下に行くほど狭くなる
- E_g は温度依存性を持つ
 - →Varshniの公式

$$\Delta E_{\rm g}(T) = \frac{\alpha T^2}{\beta + \gamma T}$$

→別の公式

$$\Delta E_{g}(T) = \frac{\alpha \theta_{P}}{2} \begin{bmatrix} P \sqrt{\alpha + \frac{2T}{\Theta_{P}}} - 1 \end{bmatrix} \begin{cases} \Theta_{P}: 効果的なフォノン温度 \\ \alpha: エントロピーの高温限界 \\ P: 物質固有のパラメータ \end{cases}$$

半導体中の電子と正孔

- VBが満たされていて、CBが空の状態
 - 電子が1個増える
 - →その電子は伝導帯に位置する
 - 電子が1個減る
 - →その電子は価電子帯から来た
 - ・多数の電子を考える代わりに 僅かな空洞の特性を考える
 - →"欠陥電子"あるいは"正孔"

電子と正孔の特性

- 正孔と電子の関係
 - 正孔は、取り除かれた電子と比べて 電荷、波数ベクトル、スピン、有効質量 が逆

Property	Hole	Removed electron						
Electric charge q	$q_{\rm h}$	$= -q_{re}, q_{re} \approx -1.6 \times 10^{-19} \text{ As}$						
Wave vector	$\boldsymbol{k}_{\mathrm{h}}$	$=-k_{re}$						
Spin	$\sigma_{\rm h}$	$= -\sigma_{re}$						
Eff. mass	$m_{\rm h} > 0$	$=-m_{re}, m_{re} < 0$						

付録1:元素半導体、二元半導体

Group IV			Group III-V			Group II–VI				Group I-VII					
SC	Sy	$E_{\rm g}$ (eV)	dir/indir	SC	Sy	E_g (eV)	dir/indir	SC	Sy	E_g (eV)	dir/indir	SC	Sy	E_{g} (eV)	dir/indi
С	O_h	5.48	i	AlN	$C_{6\nu}$	6.28	d	ZnO	$C_{6\nu}$	3.437	d	CuCl	T_d	3.395	d
Si	O_h	1.17	i	AlP	T_d	2.53	i	ZnS	C_{6v}	3.91	d	CuBr	T_d	3.077	d
Ge	O_h	0.744	i	AlAs	T_d	2.228	i	ZnS	T_d	3.78	d	CuI	T_d	3.115	d
Grey Sn	O_h	0	Semimetal	AlSb	T_d	1.696	i	ZnSe	T_d	2.82	d	AgCl	T_d	3.249	i
				GaN	C_{6v}	3.503	d	ZnTe	T_d	2.391	d	AgBr	T_d	2.684	i
				GaP	T_d	2.350	i	CdO	O_h	0.8	i	AgI	C_{6v}	3.024	d
				GaAs	T_d	1.518	d	CdS	$C_{6\nu}$	2.583	d				
				GaSb	T_d	0.812	d	CdSe	$C_{6\nu}$	1.841	d				
				InN	$C_{6\nu}$	0.67^{a}	d	CdTe	T_d	1.60	d				
				InP	T_d	1.424	d	HgS	T_d	0	d				
				InAs	T_d	0.418	d	HgSe	T_d	0	d				
				InSb	T_d	0.237	d	HgTe	T_d	0	d				

^aNew data, see [02D1,02K2]

付録2:様々な半導体

- IV VI化合物(鉛塩):Pb,SnとS,Se,Teの化合物→IRレーザー
- 元素半導体:P,I(As,Sbは半金属)
- 酸化物半導体:GeO₂などのII^B酸化物(SiO₂は絶縁体)
 CuO₂、TiO₂(変形が多数:鋭錘石、金紅石、板チタン石)

TIハロゲン化物半導体

• 有機半導体:アントラセン($C_{14}H_{10}$)、ペンタセン($C_{22}H_{14}$)、 ジベンゾチオフェン($C_{12}H_8S$)、ヘキサチオフェン