

Applied Analytics Capstone – Final Project

Agenda

Background

1

Nuveen, formerly Nuveen Investments, a subsidiary of TIAA, is an American global investment manager. 2

Nuveen is one of the largest investment managers in the world with \$1.1 trillion in assets under management. 3

Nuveen offers a range of investment capabilities across income, equities, alternatives and multi-asset solutions.

Objectives

Goal: Analyze response data set, to optimize & predict an Advisor's likelihood to increase sales.

Data Provided: An array of advisor sales activity, web activity, and 2018 transactions with clients.

50% was used to train the model 50% was used to test the model

Methodology

EDA: Data cleaning (Eliminated errors and outliers) Created new dependent and independent variables.

Analyze Data: Developed multiple machine learning models, and selected the one with the best performance.

Analysis of the Results: Validated the model and provided recommendations.

Solution:

Produced a creative solution that allows
NEUVEEN to capitalize on model to
identify potential targets for
development.

Dependent Variables Selected

- Sales Transactions > \$10K, 2018
- Redemptions > \$10K,2018
- Redemptions 2018
- Sales 2018
- 2018, Funds Sold > \$10K
- Asset Rank
- Sales Rank

Target Variable = Sales Change as a Binary Variable (1 = Increase, 0= Decrease)

Positive & Negative Influencers

Positive	Negative
Redemptions Rank	Redemptions > 10K, 2018
Sales Rank	Sales 2018
demptions < 10K, 2018	
Sales < 10K, 2018	
ransactions > 10K, 2018	
Open	
emptions >10K, 2018	
Clickstream	
Meetings	
ds Sold > 10K, 2018	An advisor's likelihood to generate increas YOY is highly influenced by their Redempti
ds Sold < 10K, 2018	Sales Rank, and Number of Redemptions u

Logistic Regression

Results show that we have a model that is very accurate

ROC Curve & AUC

Our Model works well throughout the curve and deteriorates slowly

ROC Curve shows model distinguishes well between Positive/Negative Sales

Our model performs better than just randomly selecting Advisors to focus on.

The model is most effective. around the 40% point (greatest linear distance from random classifier)

Variables

Advisors with Transactions Lower 10K+ Transactions are more likely to see an increase in sales

Advisors with Lower Redemptions are more likely to see an increase in sales in 2019

Variables (Cont.)

Advisors with lower total sales are more likely to achieve higher sales for 2019

Advisors with lower sales rank are more likely to see an increase in sales

Lift Chart

	Number of	Increase in Sales	Lift Over	Cumulative	Cumulative Sales Incr.	Cumulative
Decile	Advisors	No. Advisors	Average	No. of Advisors	No. Advisors	Lift
1	199	194	27%	199	194	27%
2	199	193	26%	398	194	26%
3	199	183	20%	597	190	24%
4	199	170	11%	796	185	21%
5	199	167	9%	995	181	19%
6	199	152	-1%	1,194	177	15%
7	199	157	3%	1,393	174	14%
8	199	140	-8%	1,592	170	11%
9	199	120	-22%	1,791	164	7 %
10	199	49	-68%	1,990	153	0%
Total	1,990	153	0%			

The advisors from deciles 1-5 are more likely to increase sales than the average.

Most advisors are increasing sales in 6-9, but less than the average. Decile 10 advisors are unlikely to increase sales.

Key Takeaways & Suggestions

- Introduce a Development Strategy that focuses on increasing sales at the lower deciles (Decile 6-9).
- Introduce a Retention Strategy for advisors in the top deciles (1-5), they are a fundamental part of the business.
- Give special attention to Advisors in the 10th decile, as these are less likely to increase sales – they have very valuable clients!

Questions?

Appendix

Additional Information

Independent Variables

- Total Sales 2018
- Net Sales 2018 (Total Sales 2018-Total Redemptions 2018)
- Total Redemptions 2018
- Sales Transactions at \$1+
- Sales Transactions at \$10k+
- Redemption Transactions at \$1+
- Redemption Transactions at \$10k+

Independent Variables

- Number of Funds Sold at \$1+
- Number of Funds Sold at \$10k+
- Meetings
- Completed Connects
- Overall Connects
- Email Opens
- Email Click Throughs
- Click Stream

Variable Selection

- 1. "Voting" Variables Based on Supervised Machine Learning Attributes
- 2. Variables that Scored the Highest were kept in the model
- 3. Variables that Scored the Lowest were dropped from the model
- 4. Total of 23 Variables:
 - a. Highest Score = 6
 - b. Lowest Score = 1

Variable	IV	RF	Extratrees	Chi Square	RFE	L1	Final Score
Sales Transactions > 10K, 2018	1	1	1	1	1	1	6
Redemptions > 10K, 2018	1	1	1	1	1	0	5
Redemtions 2018	1	1	1	1	1	0	5
Sales 2018	1	1	1	1	1	0	5
2018, Funds Sold >10K	1	0	0	0	1	1	3
Asset Rank	0	0	0	1	1	1	3
Sales Rank	0	1	0	0	1	1	3

Full - Score Table

Variable	IV	RF	Extratrees	Chi Square	RFE	L1	Final Score
Sales Transactions > 10K, 2018	1	1	1	1	1	1	6
Redemptions > 10K, 2018	1	1	1	1	1	0	5
Redemtions 2018	1	1	1	1	1	0	5
Sales 2018	1	1	1	1	1	0	5
2018, Funds Sold >10K	1	0	0	0	1	1	3
Asset Rank	0	0	0	1	1	1	3
Sales Rank	0	1	0	0	1	1	3
2018, Funds Redeemed >10K	0	0	1	0	1	0	2
2018, Funds Sold <10K	0	0	0	0	1	1	2
Open	0	0	0	0	1	1	2
Clickstream	0	0	0	0	1	1	2
Meetings	0	0	0	0	1	1	2
Redemptions <10K, 2018	0	0	0	0	1	1	2
Sales <10K, 2018	0	0	0	0	1	1	2
Clickthrough & ClickStream Rate	0	0	0	0	1	0	1
2018, Funds Redeemed <10K	0	0	0	0	1	0	1
Clickthrough	0	0	0	0	1	0	1
Completed Connects	0	0	0	0	1	0	1
Ratio of Completed Connects to Overall Connects	0	0	0	0	1	0	1
Ratio of Meetings to Overall Connects	0	0	0	0	1	0	1
Open Meetings	0	0	0	0	1	0	1
Overall Connects	0	0	0	0	1	0	1
Redemtions Rank	0	0	0	0	1	0	1

Multicollinearity

- Dropped All Variables that Had VIF Scores > 10
- A total of 13 Variables were Selected for Predictive Modeling

Features	VIF
Funds Sold >10K, 2018	9.34
Sales Transactions >10K, 2018	7.82
Redeptions >10K, 2018	4.98
Sales <10K, 2018	4.67
Redemptions <10K, 2018	4.31
Sales Rank	2.86
Funds Sold <10K, 2018	2.66
Assets Rank	2.59
Sales 2018	1.57
Clickstream	1.49
Redemptions 2018	1.49
Open	1.22
Meetings	1.13

Logistic Regression - Equation

Linear Model

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_n X_n$$

Logistic Regression Formula

$$P = \frac{e^{Y_i}}{1 + e^{Y_i}}$$

 $\beta_0 = 0.0000004374$ (Intercept)

Coefficients For Logistic Model

β1	0.000785	redemtions_rank
β2	0.0007219	sales_rank
β3	0.000008	redemptions_less_10K_2018
β4	0.0000076	sales_less_10K_2018
β5	0.0000032	sales_transactions_10K_2018
β6	0.000003	OPEN
β7	0.0000027	redemption_10K_2018
β8	0.0000022	clickstream
β9	0.0000022	meetings
β10	0.0000015	10K_funds_sold_2018
β11	0.0000007	Less_than_10K_funds_sold_2018
β12	-0.0000001	redemptions_2018
β13	-0.0000004	sales_2018

Lift Chart

A lift chart graphically represents the improvement that a mining model provides when compared against a random guess and measures the change in terms of a lift score.

Lift Charts

Model can closely, relatively, and accurately predict the outcome, based on the test data.

Application of Model

Advisor Example:	Features
Redmption Rank	800
Sales Rank	1,607
Redemptions < 10K	8
Sales Transactions <10 K	28
Sales Transactions >10 K	20
Open	2
Redemption > 10 K	29
Clickstream	24
Meetings	0
Funds Sold > 10 K	6
Funds Sold < 10 K	0
Redemptions	-2,668,320
Sales	3,125,265

The lower the Sales & Redemption Rank - The greater the probability

Probability of Increasing Sales: **70**%

Low Sales = Higher Probability
Higher Redemption = Higher Probability

Logistic Regression – Confusion Matrix

Naïve Bayes Model

Naïve Bayes Model

Naïve Bayes Confusion Matrix

Naïve Bayes Code

```
from sklearn.naive bayes import GaussianNB
   clf = GaussianNB()
   clf.fit(features_train,label_train)
   pred train = clf.predict(features train)
   pred_test = clf.predict(features_test)
   from sklearn.metrics import accuracy score
   accuracy_train = accuracy_score(pred_train,label_train)
   accuracy_test = accuracy_score(pred_test,label_test)
12
  from sklearn import metrics
   fpr, tpr, _ = metrics.roc_curve(np.array(label_train), clf.predict_proba(features_train)[:,1])
   auc train = metrics.auc(fpr,tpr)
16
   fpr, tpr, _ = metrics.roc_curve(np.array(label_test), clf.predict_proba(features_test)[:,1])
   auc_test = metrics.auc(fpr,tpr)
19
   print(accuracy train,accuracy test,auc train,auc test)
```


Neural Network Model

Neural Network Model

Neural Network Model

Neural Network - Code

```
from sklearn.neural_network import MLPClassifier
   clf = MLPClassifier()
   clf.fit(features train,label train)
   pred_train = clf.predict(features_train)
   pred test = clf.predict(features test)
   from sklearn.metrics import accuracy score
   accuracy_train = accuracy_score(pred_train,label_train)
   accuracy test = accuracy score(pred test,label test)
11
12
   from sklearn import metrics
13
   fpr, tpr, _ = metrics.roc_curve(np.array(label_train), clf.predict_proba(features_train)[:,1])
   auc train = metrics.auc(fpr,tpr)
15
16
   fpr, tpr, _ = metrics.roc_curve(np.array(label_test), clf.predict_proba(features_test)[:,1])
   auc_test = metrics.auc(fpr,tpr)
19
   print(accuracy_train,accuracy_test,auc_train,auc_test)
```

0.8095477386934673 0.8185929648241206 0.7436197728761254 0.7425213675213674

Random Forrest – Hyper Tuning Model

Hyper Tuning – Random Forrest Model

Confusion Matrix – Hyper Tuning RF

Hyper Tuning Random Forrest -Code

```
1 from sklearn.model selection import RandomizedSearchCV
 2 from sklearn.ensemble import RandomForestClassifier
 4 n_estimators = [int(x) for x in np.linspace(start = 10, stop = 500, num = 10)]
 5 max features = ['auto', 'sqrt']
 6 max_depth = [int(x) for x in np.linspace(3, 10, num = 1)]
 7 max_depth.append(None)
 8 min_samples_split = [2, 5, 10]
 9 min_samples_leaf = [1, 2, 4]
10 bootstrap = [True, False]
12 random_grid = {'n_estimators': n_estimators,
                   'max_features': max_features,
14
                   'max_depth': max_depth,
15
                   'min_samples_split': min_samples_split,
                  'min_samples_leaf': min_samples_leaf,
17
                  'bootstrap': bootstrap}
19 rf = RandomForestClassifier()
21 rf random = RandomizedSearchCV(estimator = rf, param distributions = random grid, n iter = 10, cv = 2, verbose=2, random
22 rf_random.fit(features_train, label_train)
24 print(rf_random.best_params_)
27 from sklearn.ensemble import RandomForestClassifier
28 clf = RandomForestClassifier(**rf_random.best_params_)
30 clf.fit(features train, label train)
32 pred train = clf.predict(features train)
33 pred test = clf.predict(features test)
35 from sklearn.metrics import accuracy_score
36 accuracy train = accuracy score(pred train, label train)
37 accuracy_test = accuracy_score(pred_test,label_test)
39 from sklearn import metrics
40 fpr, tpr, _ = metrics.roc_curve(np.array(label_train), clf.predict_proba(features_train)[:,1])
41 auc train = metrics.auc(fpr,tpr)
43 fpr, tpr, = metrics.roc curve(np.array(label test), clf.predict proba(features test)[:,1])
44 auc_test = metrics.auc(fpr,tpr)
46 print(accuracy_train,accuracy_test,auc_train,auc_test)
```


A TIAA Company

Full Tree Random Forrest – Hyper Tuning

Small Tree

Random Forest Variable Importance

Bivariate Bins

