Exercise 2

Deadline: December 15, 2017

Please send your solutions to threedcv@dfki.uni-kl.de

Theory

1. Homography definition

In the lecture a planar homography was introduced as $h: \mathbb{P}^2 \to \mathbb{P}^2$. Define it for $h: \mathbb{P}^n \to \mathbb{P}^n$. How many degrees of freedom does it have?

2. Line preservation

Let $x_1, x_2, x_3 \in \mathbf{P}^2$ be three points on a line. Show that a homography H preserves this property. Hint: Use the implicit definition of a line ax + by + c = 0, thus $l^T x_i = 0$ with $l = (a, b, c)^T$.

Implementation

For the following tasks, you find the required intrinsic parameters of the camera $(\alpha_x, \alpha_y, x_0, y_0, s)$ and the homographies H_i in the file data/ex2.mat.

3. Relative rotation estimation from a homography

A homography between two images taken with the same camera can be used to compute the relative rotation R_{rel} when the camera has undergone a pure rotation, i.e. no translation between the shots. The relative rotation tells how the camera was placed between the two shots. Homography H_1 (from ex2.mat) was obtained after a pure rotation whereas H_2 was computed after manually rotating the camera. Write a function compute_relative_rotation that:

- 1. loads a homography from ex2.mat
- 2. computes R_{rel} and prints it to the console
- 3. checks wheter R_{rel} fulfills the properties of a rotation matrix
- 4. if necessary, corrects R_{rel} and prints the new rotation matrix to the console

Apply compute_relative_rotation to H_1 and H_2 . Why does the rotation matrix computed from H_2 need correction?

4. Camera pose estimation from a homography

- 1. A homography between a plane in the world coordinate system and a camera image can be used to compute rotation R and translation t of the camera. Homography H_3 was computed from the corners of a (fully visible) chessboard. The chessboard lies in the xy-plane of the world coordinate system centered around the origin. Write a function compute_pose to determine R and t from H_3 and print them to the console.
- 2. In your report, illustrate the meaning of t = -RC in a camera pose [R|t], i.e. from where to where does this vector point? Hint: What is linked by [R|t]? Try applying [R|t] to the origin of the world.

3. The third element of t in exercise 4.1 might be negative. What does this mean in this particular case (consider the location of the chessboard corners)? Why can this happen?

Remark:

1. Make sure your code executes the tasks above sequentially by simply calling python main.py (include ex2.mat alongside main.py in your .zip file).

Good Luck!