EE 323: Introduction to Digital Signal Processing

Aleksandar Dogandžić

Office: 3119 Coover ald@iastate.edu

http://home.eng.iastate.edu/~ald/

Prerequisite: EE 224 (Signals and Systems I).

Lab: R 3:10-6 in 2011 Coover.

Lab TA: TBA.

Textbook: Manolakis and Ingle 2011.

Grading (tentative)

40% Weekly homework assignments and labs (15% + 25%)

30% Midterm exams

15% Project

15% Final exam.

Outline

- · Sampling and reconstruction.
- · Time-domain representation of discrete-time (DT) signals
 - complex and real sinusoids and exponential signals,
 - impulse, step, and ramp signals,
 - signal energy and power.
- · Time-domain analysis of DT systems
 - system difference equations and their solution,
 - system impulse response,
 - obtaining zero-state system response using the convolution sum,
 - computing DT convolution sums,
 - system frequency response.
- · Frequency-domain representation of DT signals
 - discrete-time Fourier series (DTFs) of periodic signals,
 - discrete-time Fourier transform (DTFT)
 - * DTFT of finite-energy signals,

- * properties,
- * DTFT of sampled continuous-time (CT) signals.
- relationships between Fourier representations of CT and DT signals
 - * continuous-time Fourier series (CTFS), continuous-time Fourier transform (CTFT), DTFS, DTFT,
 - * continuous versus discrete, periodic versus aperiodic,
 - * duality.
- · More on the analysis of DT systems
 - properties of the system frequency response,
 - examples of DT systems,
 - ideal filters: lowpass, highpass, and bandpass,
 - correlators and matched filters.
- · review of DT system analysis using z-transforms
 - bilateral *z*-transform.
- · DT filter design
 - infinite impulse response (IIR)
 - * time-response matching (time-invariant design),
 - * frequency-response matching (bilinear transformation design),
 - finite impulse response (FIR)
 - * time-response matching,
 - * frequency-response matching (Fourier series design), use of windows,
 - examples of DT filter design.
- · implementation of DT linear time-invariant (LTI) systems
 - FIR and IIR systems,
 - direct form type I.
- · discrete Fourier transform (DFT) and applications
 - DFT and inverse DFT
 - * relationship with DTFS,
 - properties,
 - DT convolution using DFT,
 - spectral analysis of sampled CT signals using DFT,
 - * controlling artifacts: use of windows and zero padding,
 - efficient DFT computation
 - * decimation-in-time fast Fourier transform (FFT) algorithm.
- · Introduction to multirate signal processing (time permitting).

References

Manolakis, Dimitris G. and Vinay K. Ingle (2011). *Applied Digital Signal Processing*. New York: Cambridge Univ. Press. ISBN: 0521110025.