Modelling Social Processes

Dynamic Modelling for Humancentered Systems

lecture 3

Individual behaviour and global perspective

- Up to now:
 - modelling individual entities
 - physiological aspects
 - useful, gives detailed information

- This lecture:
 - global perspective: processes that occur in groups
 - of individuals
 - collective perspective

Course outline

First lecture: what is dynamic modelling?

Previous lecture: creating models of

physiological processes

This lecture: creating models of social

processes

Next lecture: modelling behaviour

Even later: embedding models within

intelligent systems...

domain models

Relation between individual behaviour and global patterns

- Decisions of individual persons...
 - e.g. choosing time to go home
- …affect global patterns
 - e.g. traffic jams
- Relations in two directions:
 - upward interaction
 - e.g. washing hands causes less virus spread
 - downward interaction
 - e.g. high oil prices causes energy saving behaviours of individuals

Collective pattern and individual behaviour

level	interlevel relations	content sciences		
external collective societal level	collective processes emerging	Social		
external individual behavioural level	individual behaviours emerging from	perspective		
internal cognitive level	cognitive processes emerging from	narenactiva		
internal physiological level	physiological processes			

Outline of this lecture

- Illustration of modelling social process based on individual behaviours (Ch. 5)
 - honeybee task distribution
- Another example modelling social process based on individual behaviour (Ch. 6)
 - virus spread
- Same example, but now without modelling individual behaviour (Ch. 6)

Syllabus: Chapter 5

SELFORGANISATION IN HONEYBEE SOCIETIES

Questions?

Individual decisions influence global processes

 Simple internal process based on observations of external world is sufficient to model complex behaviors

Honeybee Colony

- A Society Based on Decentralised Decision Making
 - individual decisions influence global processes

- Within honeybee colonies:
 - every worker bee has the same skills
 - there are a number of roles
 - taking up a role is triggered by environmental cues

The Forager

Tasks

- Get food from outside
- Store the food in the hive

Triggers to perform role

Amount of food present

The Brood Carer

Tasks

- Get food available in the hive
- Feed hungry larvae with the food

Triggers to perform role

 Pheromones emitted by larvae

The Undertaker

Tasks

Remove corpses from the hive

Triggers to perform role

Amount of corpses in the hive

The Patroller

Tasks

- Patrols the hive
- Fights enemies it encounters in and around the hive

Triggers to perform role

Enemies observed

Global aspects influencing individual behavior

- Food availability
- Larvae strength
 - pheromone rate
- Cleanness
 - dead bodies
- Safety
 - enemies

Observations in honeybee colony

- Different bees take on different roles
- All together, the work is distributed in such a way that the most pressing tasks are performed by most bees
 - doesn't run "out of hand"
- Some bees are taking up specific roles more often
 - bees specialize

Expected patterns of model

- Environmental parameters are kept between certain bounds by the individual decision making processes
 - larvae strength, safety, food storage, and cleanness
- Bees tend to keep their roles over longer periods
 - specialisation of individuals is emerging in the process.

Possible research question

- How long does it take to address sudden threats of the society's parameters:
 - in how far are fast changing environments a problem.

process

Cognitive Level Decision Model

- Each individual maintains norms for each of the aspects.
- For each aspect, the individual determines in how far the current state is unsatisfactory, expressed in a degree of urgency for that aspect.
- For each aspect the relative urgency is determined: the degree of urgency divided by the norm for that aspect.
- The most urgent aspect is the one with highest relative urgency; the role is taken that relates to this aspect.
- Norms are adapted: if an individual is in a role addressing a certain aspect, then the norm for that aspect is slowly decreased over time.

enemies deaths larvae Relations larvae food safety cleanness strength collective process observed observed world world individual behaviour and effort effort allocation of allocation of decision individual 1 individual n process Concepts norms of norms of individual 1 individual n norm norm adaptation adaptation factor of factor of individuañ n individual 1

Formalization

forager, carer, undertaker, and patroller role	1, 2, 3, 4				
individuals	Bee1, Bee2,				
role allocations between individuals and roles	Bee1Role, Bee2Role,				
for each individual: norms used as thresholds for carer, forager, patroller, and undertaker role	Bee1ForagerNorm, Bee1CarerNorm, Bee1UndertakerNorm, Bee1PatrollerNorm,				
maximal urgency for each individual	Bee1MaxUrgency, Bee2MaxUrgency,				
norm adaptation factor for individuals	Bee1AdapFactor, Bee2AdapFactor,				
effort per individual	Effort				
food need, larvae weakness, uncleanness, unsafety	FoodNeed, LarvaeWeakness, Uncleanness, Unsafety				
contributed work	ForagingWork, CaringWork, PatrollingWork, CleaningWork				
number of (new) enemies	NewEnemies				
number of (new) deaths	NewDeaths				
the number of larvae	Larvae				

Formalization (2)


```
If Bee1Role(t) = 1

Bee1ForageNorm(t + \Delta t) = c^* Bee1AdapFactor^*

Bee1ForagerNorm(t)

Bee1CarerNorm(t + \Delta t) = c^* Bee1CarerNorm(t)

Bee1UndertakeNorm(t + \Delta t) = c^* Bee1UndertakerNorm(t)

Bee1PatrolNorm(t + \Delta t) = c^* Bee1PatrollerNorm(t)
```

where c is a factor that takes care that the sum of the new norms becomes 1 again:

 $c = 1 / (1 - (1 - Bee1AdapFactor)^* Bee1ForageNorm(t)))$

Formalization (3)

 $FoodNeed(t+\Delta t) = FoodNeed(t) + FoodneedAddition(t) - ForagingWork(t)$

with

ForagingWork(t) = Effort* number of individuals with role allocation Forager

FoodneedAddition(t) = Larvae(t) + number of individuals

Implementation

t	food need	larvae weak ness	unclean ness	unsafety	alloc ation	forager norm	carer norm	under taker norm	patroller norm
0	4	2	3	4	1	0.30	0.25	0.20	0.25
1	0	10		4	4	0.29	0.25	0.20	0.25
2	0	18	1	0	2	0.29	0.26	0.21	0.24
3	14	0	1	0	2	0.30	0.25	0.21	0.25
4	28	0	1	0	1	0.30	0.24	0.21	0.25
5	0	8	1	0	1	0.29	0.24	0.21	0.25

Simulation Experiment

Validation of expected patterns:

- Are the aspects kept between bounds?
- Does specialisation take place?

Norms of Bee 1 over Time

Norms of Bee 2 over Time

Simulation Experiment

Validation of expected patterns:

- Are the aspects kept between bounds?
- Does specialisation take place?

Syllabus: Chapter 6

MODELLING EPIDEMICS FROM CONTACT BEHAVIOUR

Modelling virus spread in society

http://www.youtube.com/watch?v=3QM055uW43I

Use of virus simulation

- Understand the process of virus spread
- Predict future scenarios
 - burden on hospitals
- Compare different intervention strategies
- ...

Our aim

- Create a model that can predict how virus spreads through society
- Possible research questions:
 - When infections transmit easily, will the whole population become infected?
 - Is it possible to adapt contact behaviour to avoid propagation through the whole population?
 - Is there a threshold for the amount of interaction such that the infection dies out?

Expected patterns?

- In the first phase, the amount of infected people increases almost exponentially
- At some point in time, the infection rate decreases
- Eventually, the number of recovered people is large enough to stop the spread

Modeling epidemics

- Two approaches:
 - Modeling individuals
 - individual-based
 - Modeling groups
 - population-based (collective)
 - abstracted

Individual approach

Principle of individual approach

- Individuals can be in different states:
 - susceptible (not infected yet),
 - infective, or
 - recovered (immune and not infectious)
- Transmission of infection by contacts
 - when an infected and susceptible person meet
 - contact frequency
 - contact intensity

Concepts

- infection state of a person
 - susceptible
 - infective
 - recovered
- location of a person
- contact frequency per day
- contact intensity
- recovery rate
 - chance per day for infective to recover

Individual Level - Formalisation

susceptible infective recovered	InfectionStateA1 = 0, InfectionStateA2 = 0, InfectionStateA1 = 1 , InfectionStateA1 = 2 ,
location of individuals	LocationA1 = 1, LocationA1 = 2, LocationA2 = 1, LocationA2 = 2,
contact frequency per day (for one individual)	ContactFrequency
contact intensity	ContactIntensity
recovery rate (chance per day for infective to recover)	RecoveryRate

Individual Level Model (1)

Per individual:

```
LocationA1(t) = 
RandBetween(1, NumberOfLocations)
```

Individual Level Model (2)

Per individual:

```
InfectionStateA1(t+\Delta t)=1
 InfectionStateA1(t) = 0 and
 r1 < ContactIntensity and
 for some k,
   LocationA1 = LocationAk and InfectionStateAk(t) = 1
or
 InfectionStateA1(t) = 1 \ and \ r2 \ge RecoveryRate
(where r1 and r2 are random numbers between 0 and 1)
```

Individual Level Model (3)

Per individual:

```
InfectionStateA1(t+\Delta t) = 2
if

InfectionStateA1(t) = 1 and
r2 < RecoveryRate

or

InfectionStateA1(t) = 2
```

In all other cases:

$$InfectionStateA1(t+\Delta t) = 0$$

Per individual:

ContactFrequency =
$$N/L - 1$$

(L = #locations, N #individuals)

And thus:

$$L = N/(ContactFrequency + 1)$$

Use this to calculate next location:

```
LocationA1(t) = RandBetween(1, N/ContactFrequency + 1))
```

Individual Level Model (5)

Susceptibles(t) = Σk if(InfectionStateAk(t) = 0, 1, 0)

Infectives(t) = Σk if(InfectionStateAk(t) = 1, 1, 0)

 $Recovered(t) = \Sigma k \ if(InfectionStateAk(t) = 2, 1, 0)$

Format: if (condition, value if true, value iffalse)

Individual Level Simulation

ContactFrequency 0.8 ContactIntensity 0.5 RecoveryRate 0.05

Individual Level Simulation

ContactFrequency 0.6 ContactIntensity 0.2 RecoveryRate 0.1

Frequency of number of recovered persons at time point 30

What are the limitations of our model?

Concepts collective approach

- Same, but no individual infection state
- Instead: different concepts for total number of people in a specific state
 - (the group of) Susceptibles
 - (the group of) Infected
 - (the group of) Recovered

Collective approach: concepts and relations

Collective level – Formalisation

number of susceptible individuals (non-infected)	Susceptibles
number of infective individuals	Infectives
number of recovered individuals (immune or dead, non-infective)	Recovered
number of relevant contacts per day (infective with susceptible)	RelevantContacts
number of infections taking place per day	Infections
contact frequency per person per day	ContactFrequency
contact intensity	ContactIntensity
recovery rate (fraction of infectives recovering per day)	RecoveryRate

Per susceptible:

ContactFrequency

number of contacts per day

Infectives(t)/N

fraction of risky contacts

N =total number of population

```
RelevantContacts(t) = 
ContactFrequency*Susceptibles(t)*Infectives(t)/N
```

From this a fraction *ContactIntensity* provides new infections

Infections(t) = ContactIntensity*RelevantContacts(t)

Collective Level Model (2)


```
Susceptibles(t+\Delta t) = \\ Susceptibles(t) - Infections(t)*\Delta t
```

```
Infectives(t+\Delta t) = \\ Infectives(t) + Infections(t) *\Delta t
```

- RecoveryRate* Infectives(t)*∆t

Collective Level Model (3)


```
Recovered(t+\Delta t) = RecoveryRate*Infectives(t)*\Delta t
```


ContactFrequency 0.8 ContactIntensity 0.5 RecoveryRate 0.05

```
120,00 -
100,00 - susceptible
 80,00 -
 60,00 -
 40,00 -
 20,00 -
    infective
          recovered
        0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
```

Simulation Experiment 2: 35% Infected

ContactFrequency 0.6 ContactIntensity 0.2 RecoveryRate 0.1

Collective vs. Individual Level

- Collective Level:
 - Sub-groups represented by numbers
 - Abstraction from reality
 - Computationally efficient
- Individual Level:
 - Each individual represented separately
 - More faithful
 - Computationally complex
 - Probabilistic element needed

Further Explorations

- Compare the results of simulations by the model at the individual level and the model at the collective level.
- Incorporate individual differences in contact behaviour.
 - For example, consider a (core) population that has higher contact frequencies or intensities than other individuals.
- Consider the case that recovered individuals become susceptible again:
 - no immunity after some time.
- Consider the typical children's diseases, where all the time new births are adding individuals to the population.
- Explore what can be done by vaccination programs.

Further Explorations

- Incorporate change of contact behaviour of individuals depending on the number of infectives.
 - For example, if the number of infectives becomes higher, the contact frequency and/or contact intensity become lower.
- Develop a model for transmission of an influenza infection from birds to humans.
- Incorporate internal cognitive models for decision making about contact behaviour; for example, based on beliefs, desires and intentions.