A PROOF OF THEOREM 5.1

PROOF. We apply Lagrangian multiplier method to derive maximal value of Euq. 9. Let

$$\mathcal{L} = \sum_{k=1}^{d} P_{x_k} ln \hat{x_k} + \sum_{j=d'/2+1}^{d'} P_{y_j} ln \hat{y_j} + \lambda_1 (\sum_{k=1}^{d} \hat{x_k} - 1 + \gamma_0) + \lambda_2 (\sum_{j=d'/2+1}^{d'} \hat{y_j} - \gamma_0),$$

where λ_1 and λ_2 are two constants and the first-order partial derivatives of \mathcal{L} w.r.t. $\hat{x_k}$ and $\hat{y_i}$ are

$$\frac{\partial \mathcal{L}}{\partial \hat{x_k}} = \frac{P_{x_k}}{\hat{x_k}} + \lambda_1, \ \frac{\partial \mathcal{L}}{\partial \hat{y_j}} = \frac{P_{y_j}}{\hat{y_j}} + \lambda_2.$$

Let $\frac{\partial l}{\partial \hat{x_k}}$ and $\frac{\partial l}{\partial \hat{y_i}}$ be zero, and we have

$$P_{X_k} + \lambda_1 \hat{x_k} = 0, \tag{10}$$

$$P_{y_i} + \lambda_2 \hat{y_i} = 0. \tag{11}$$

From the restrictions in Equ. 9, we can deduce that

$$\lambda_1 = \frac{\sum_{i=1}^d P_{x_i}}{\gamma_0 - 1}, \ \lambda_2 = \frac{\sum_{i=d'/2+1}^{d'} P_{y_i}}{-\gamma_0}.$$

Replacing them in Equ. 10 and Equ. 11, we can reach that

$$\hat{x_k} = (1 - \gamma_0) \frac{Px_k}{\sum_{i=1}^d P_{x_i}}, \ \hat{y_j} = \gamma_0 \frac{Py_j}{\sum_{i=d'/2+1}^{d'} P_{y_i}}.$$

B PROOF OF THEOREM 5.2

PROOF. Let $\mathcal{B} = \{B_{y_1},...,B_{y_t}\}$, and $\overline{\mathcal{B}} = \{B_{y_{t+1}},...,B_{y_{d'}}\}$. We start from the state where all buckets hold non-zero values, i.e., $B_{y_i} \neq 0, i \in \{1,...,d'\}$, and reconstruct the frequency histogram for poison values in [-C,C]. The likelihood estimator in Equ. 1 becomes

$$\begin{split} l(F) &= \sum_{i=1}^{N} ln(\sum_{k=1}^{d} \hat{x_k} Pr[v_i' | v_i \in B_{x_k}] + \sum_{j=1}^{d'} \hat{y_j} Pr[v_i' | v_i \in B_{y_j}]) \\ &= \sum_{t=1}^{d'} n_t ln(\sum_{k=1}^{d} \hat{x_k} M_{b_t x_k} + \sum_{i=1}^{d'} \hat{y_j} M_{b_t y_j}). \end{split}$$

Note that $\sum_{k=1}^{d} \hat{x_k} + \sum_{j=1}^{d'} \hat{y_j} = 1$, we employ the Lagrangian multiplier method to derive the extremum. The Lagrangian function can be written as:

$$L(F) = l(F) + \lambda (\sum_{k=1}^{d} \hat{x_k} + \sum_{i=1}^{d'} \hat{y_i} - 1).$$
 (12)

Let all first-order partial derivatives of L w.r.t. $\hat{x_k}$ and $\hat{y_j}$ equal zero

$$\begin{split} \frac{\partial L(F)}{\partial \hat{x_k}} &= \sum_{t=1}^{d'} n_t \frac{M_{b_t x_k}}{\sum_{k=1}^{d} \hat{x_k} M_{b_t x_k} + \hat{y_t}} + \lambda = 0, \; k \in \{1,...,d\} \\ \frac{\partial L(F)}{\partial \hat{y_j}} &= \sum_{t=1}^{d'} n_t \frac{M_{b_t y_j}}{\sum_{k=1}^{d} \hat{x_k} M_{b_t x_k} + \hat{y_t}} + \lambda = 0, \; j \in \{1,...,d'\}, \end{split}$$

we have

$$\hat{x_k} = 0, \; k \in \{1,...,d\}, \; \; \hat{y_j} = \frac{n_j}{N}, \; j \in \{1,...,d'\}, \; \lambda = -N.$$

This result shows all collected values converge to poison values if no bucket is suppressed, and we can obtain:

$$(\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j}) \bigg|_{y_i \neq 0, i \in \{1, \dots, d'\}} = \sum_{j=1}^t \frac{n_j}{N}.$$

When we suppress the bucket $B_{y_{d'}}$ (by setting $\hat{y_{d'}}=0$) and carry out EMF. The collected values in $B'_{b_{d'}}$ will converge to all buckets for normal users, because normal values from each $B_{x_k}(k \in \{1,...,d\})$ can be perturbed into $B'_{b_{d'}}$. Hence, every $\hat{x_k}$ will increase. However, normal values from buckets B_{x_k} can be perturbed into other buckets $B'_{b_i}(i \in \{1,...,d'-1\})$, so some collected data in $B'_{b_i}(i \in \{1,...,d'-1\})$ will also converge to normal values and those collected values converge to poison values decrease. Therefore, suppressing $B_{y_{d'}}$ leads to the increase of all $\hat{x_k}$, which in turn results in the decrease of all $\hat{y_j}$. However, since the decrease of $\hat{y_j}(j \in 1,...,t)$ is a part of increment of \hat{x} , we can figure out:

$$\left. (\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j}) \right|_{y_i \neq 0, i \in \{1, \dots, d'\}} \leq \left. (\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j}) \right|_{y_{d'} = 0}.$$

Then suppress the bucket $B_{\psi_{d'-1}}$, similarly, we have

$$\left(\sum_{k=1}^{d} \hat{x_k} + \sum_{j=1}^{t} \hat{y_j}\right)\Big|_{y_{d'}=0} \le \left(\sum_{k=1}^{d} \hat{x_k} + \sum_{j=1}^{t} \hat{y_j}\right)\Big|_{y_{d'}=0, y_{d'-1}=0}.$$
 (13)

Suppress all buckets in $\overline{\mathcal{B}}$, we have:

$$\begin{split} &(\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j})\bigg|_{y_i \neq 0, i \in \{1, \dots, d'\}} \leq (\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j})\bigg|_{y_{d'} = 0} \leq \\ &(\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j})\bigg|_{y_{d'} = 0, y_{d'-1} = 0} \leq \dots \leq (\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j})\bigg|_{y_{d'} = 0, \dots, y_{t+1} = 0}. \end{split}$$

When the number of suppressed buckets in $\overline{\mathcal{B}}$ increases, the corresponding interference of $\overline{\mathcal{B}}$ decreases. Therefore, the collected values more accurately converge to the buckets that they should belong to, and thus achieve a better convergence result.

After suppressing all buckets in $\overline{\mathcal{B}}$, all collected data will convergence to normal values and poison values in $B_{y_j} (j \in 1,...,t)$ and we can infer that:

$$\left. (\sum_{k=1}^d \hat{x_k} + \sum_{j=1}^t \hat{y_j}) \right|_{y_{d'} = 0, \dots, y_{t+1} = 0} = 1,$$

which is the optimal case where none of the collected values will converge to buckets in $\overline{\mathcal{B}}$.

C PROOF OF THEOREM 5.3

PROOF. Let v_{tj} denote the j-th value in group G_t , v'_{tj} denote the perturbed v_{tj} , and M_t denote the mean value of v'_{tj} . The variance of \tilde{M} , which is a linear combination of M_t , can be written as:

$$Var(\tilde{M}) = Var(\sum_{t=1}^{h} w_t M_t) = \sum_{t=1}^{h} w_t^2 Var(M_t)$$

$$= \sum_{t=1}^{h} w_t^2 Var(\frac{\sum_{j=1}^{n'} v_{tj}'}{n'}) = \sum_{t=1}^{h} \frac{w_t^2}{n'^2} \sum_{j=1}^{n'} Var(v_{tj}'),$$
(14)

where $\sum w_t = 1$, and n' is the number of normal users in each group.

Since $Var(v_{tj}')$ in Equ. 14 relies on the input of each user, we consider the worst-case at the maximum variance, i.e., all inputs v_{tj} are either 1 or -1. The worst-case variance $Var_{worst}(v_{tj}')$ can be expressed as:

$$\begin{split} Var_{worst}(v_{tj}') &= \frac{v_{tj}^2}{e^{\epsilon_t/2} - 1} + \frac{e^{\epsilon_t/2} + 3}{3(e^{\epsilon_t/2} - 1)^2} \bigg|_{v_{tj} = \pm 1} \\ &= \frac{1}{e^{\epsilon_t/2} - 1} + \frac{e^{\epsilon_t/2} + 3}{3(e^{\epsilon_t/2} - 1)^2}. \end{split}$$

Let $B_t = n' Var_{worst}(v'_{ti})$. Equ. 14 can be rewritten as:

$$Var(\tilde{M}) = \sum_{t=1}^{h} \frac{w_{\tilde{t}}^2}{n'^2} B_t.$$
 (15)

We regard the variance as a function of w_t , and the minimal variance is the extreme point of Equ. 15. By the Lagrangian method, we have:

$$\mathcal{L} = \sum_{t=1}^{h} \frac{w_t^2}{n'^2} B_t + C_0 (1 - \sum_{t=1}^{h} w_t).$$

The first partial derivatives of \mathcal{L} w.r.t. w_t is:

$$\frac{\partial \mathcal{L}}{\partial w_t} = \frac{2w_t}{n'^2} B_t - C_0.$$

Let $\frac{\partial \mathcal{L}}{\partial w_t} = 0$, then we have $wt = \frac{C_0 n'^2}{2B_t}$. Through the restriction $\sum_{t=1}^h w_t = 1$, we figure out

$$C_0 = \frac{2}{n'^2 \sum_{t=1}^h \frac{1}{B_t}}, \, w_t = \frac{1}{B_t \sum_{i=1}^h \frac{1}{B_i}}.$$

And the final minimal variance of \tilde{M} is:

$$Var(\tilde{M})_{min} = \left[\sum_{t=1}^{h} \frac{n'^2}{B_t}\right]^{-1}.$$