Lecture 1(p2): Recurrent Nets

CSE599G1: Spring 2017

Recurrent Nets for Sequence Data

Why Recurrent Structure

- Solve problems of sequence data: speeches, languages
- Captures sequence dependencies

Recurrent Structure: Folded and Unrolled View

Folded View

outputs y_t states s_t inputs x_t

Unrolled View

Simple Recurrent Net

transition
$$s_t = \sigma(W_1 s_{t-1} + W_2 x_t)$$
 emission
$$y_t = \sigma(W_3 s_t)$$

$$x_t$$

Hard to capture long term dependency, exponential multiplication effect

LSTM: Update with Moving Average

How to set the forget rate and remembering rate?

Use another neural net module

One variant of LSTM

Many other variant exists with similar spirit

Unrolled Stacked Recurrent Nets

- Provide Hierarchical representation about sequence
- Feed output of one sequence to another RNN

LSTM as Compositional Building Block

Sequence Encoder sequence to vector

Sequence Decoder vector to sequence

Seq2Seq: Machine Translation Model

source sequence

Image2Seq: Image Caption Model

It is all about Composability!

Topics not Covered Today

- More complicated memory structures
 - Memory networks
- Objective derivation for generative models
 - Generative adversarial nets
 - Variational methods
- Gradient estimation with hard decision and interactions
 - Q learning, Policy gradient