

DADOS e APRENDIZAGEM AUTOMÁTICA

Data Exploration and Preparation

Fluxo Aprendizagem Automatica

Fluxo de um processo de Aprendizagem Automática

Departamento de Informática

Contents

- Feature Scaling
- Outlier Detection
- Feature Selection
- Missing Values Treatment
- Nominal Value Discretization
- Binning/Discretization
- Feature Engineering

Think clearly...

During WWII, the US Navy tried to determine where they needed to armor their aircraft to ensure they came back home. They ran an analysis of where planes had been shot up.

Everybody told that, obviously, the places that needed to be up-armored are the wingtips, the central body, and the elevators. That's where the planes were all getting shot up!

Abraham Wald, a statistician, disagreed.

Why?

Indeed... Cleaning and manipulating data may be considered as the:

- Most Time-Consuming task
- Least Enjoyable task (by some!)

A few problems... How to solve them?

Missing values

- Information that is not available because it wasn't collected or because it consisted of sensitive information
- Features that are not applicable in all cases

Duplicated Records

Same (or similar) data collected from different sources

	gation View										
ble "adult.csv"	-Rows: 32561	Spec - Columns:	15 Properties	Flow Variables	S						
Row ID	age	S workclass	fnlwgt	S education	educati	S marital	S occupa	S relation	S race	S sex	
Row30711	18	?	157131	HS-grad	9	Never-married	?	Own-child	White	Female	0
Row30712	27	Local-gov	255237	Bachelors	13	Never-married	Prof-specialty	Not-in-family	White	Female	0
Row30713	56	?	192325	Some-college	10	Divorced	?	Not-in-family	White	Female	0
Row30714	40	Private	163342	HS-grad	9	Never-married	Adm-clerical	Not-in-family	White	Female	0
Row30715	31	Private Miss	ing Value	Bachelors	13	Married-civ	Sales	Husband	White	Male	0
Row30716	18	Private	206008	Some-college	10	Never-married	Sales	Unmarried	White	Male	217
Row30717	25	Private	397317	Assoc-acdm	12	Never-married	Prof-specialty	Not-in-family	White	Female	0
Row30718	36	Private	745768	Some-college	10	Never-married	Protective-s	Unmarried	Black	Female	0
Row30719	38	Private	141550	10th	6	Divorced	Craft-repair	Not-in-family	White	Male	0
Row30720	52	Private	35576	HS-grad	9	Widowed	Craft-repair	Not-in-family	White	Male	0
Row30721	23	Private	376383	HS-grad	9	Never-married	Other-service	Unmarried	White	Male	0
Row30722	48	Self-emp-no	200825	Some-college	10	Married-civ	Exec-manag	Husband	White	Male	0
Row30723	34	?	362787	HS-grad	9	Never-married	?	Unmarried	Black	Female	0
Row30724	46	Private	116789	HS-grad	9	Married-civ	Adm-clerical	Husband	White	Male	0
Row30725	26	Private	160300	HS-grad	9	Married-spo	Protective-s	Not-in-family	White	Male	0
Row30726	47	Private	362654	HS-grad	9	Married-civ	Machine-op	Husband	White	Male	0
Row30727	21	?	107801	Some-college	10	Never-married	?	Own-child	White	Female	0
Row30728	65	Private	170939	Bachelors	13	Divorced	Prof-specialty	Not-in-family	White	Male	672
Row30729	31	Local-gov	224234	HS-grad	9	Married-civ	Transport-m	Husband	Black	Male	0
Row30730	38	Private	478346	HS-grad	9	Married-civ	Exec-manag	Wife	White	Female	768
Row30731	68	Private	211162	HS-grad	9	Married-civ	Exec-manag	Husband	White	Male	0
Row30732	26	Private	147638	Bachelors	13	Never-married	Adm-clerical	Other-relative	Asian-Pac-Is	Female	0
Row30733	42	Private	104647	HS-grad	9	Divorced	Other-service	Not-in-family	White	Male	0
Row30734	49	Private	67365	HS-grad	9	Married-civ	Craft-repair	Husband	White	Male	0

A few problems... How to solve them?

Noise

 Modifications to the original records (data that is corrupted or distorted) due to technological limitations, sensor error or even human error

Outliers

 A data point that differs significantly from other observations

Data Exploration

Why?

- Understand the data and its characteristics
- Evaluate its quality
- Find patterns and relevant information

Data Exploration

How?

- Central Tendency: average, mode, median...
- Statistical dispersion: variance, standard deviation, interquartile range...
- Probability distribution: Gaussian, Uniform, Exponential...
- Correlation/Dependence: between pairs of features, with the dependent feature...
- Data viz: tables, charts, boxplots, scatter plots, histograms, ...

Data Exploration

Data Exploration - Contingency Tables

Frequency	F	М	Total	✓ Frequency
Percent				Expected
Negative	1.585	1.537	3.122	Deviation
	10,4503%	10,1338%	20,5842%	6 Percent
Positive	941	1.019	1.960	Row Percent
	6,2043%	6,7185%	12,9228%	6 Column Percent
Slightly Negative	1.501	1.522	3.023	3 ☐ Cell Chi-Square
	9,8965%	10,0349%	19,9314%	
Slightly Positive	861	829	1.690	0 Max rows:
	5,6768%	5,4658%	11,1426%	6 10 🕏
Very Negative	2.054	2.119	4.173	
	13,5426%	13,9711%	27,5137%	6 10 🕏
Very Positive	639	560	1.199	9
	4,2131%	3,6922%	7,9053%	6
Total	7.581	7.586	15.167	7
	49,9835%	50,0165%	100%	6
atistics for Table of Sentimen	t Analysis by Gender			
Statistic	DF	Value	Prob	
Chi-Square		5	10.8099	0.0553

Data Exploration - Correlation Matrix

What doesn't make sense here?

e Hilite N	lavigation View	,							
	tion values" - Rov		olumns: 9 Prop	erties Flow Vari	ables				
Row ID	D Passeng	D Survived	D Pclass	D Name	D Sex	D SibSp	D Parch	D Fare	D Embarked
Passeng	1.0	-0.00174741	-0.07274348	-0.03142687	0.0404574	-0.02578774	0.009305237	0.019408214	0.0380052514
Survived	-0.00174741	1.0	-0.35175083	-0.06396644	-0.571791	0.113309900	0.169963720	0.350965386	-0.1699515717.
Pclass	-0.07274348	-0.35175083	1.0	0.063095975	0.1499334	-0.05215363	-0.035163461	-0.67404431	0.1039440255
Name	-0.03142687	-0.06396644	0.06309597	1.0	0.0211633	-0.06164769	-0.012894871	-0.03634128	-0.0135577924
Sex	0.040457449	-0.57179163	0.14993345	0.021163349	1.0	-0.21708710	-0.250155569	-0.28053568	0.1228843568
SibSp	-0.02578774	0.11330990	-0.05215363	-0.06164769	-0.217087	1.0	0.432451332	0.447081227	0.0122413820
Parch	0.009305237	0.16996372	-0.03516346	-0.01289487	-0.250155	0.432451332	1.0	0.416985332	0.0417986920
Fare	0.019408214	0.35096538	-0.67404431	-0.03634128	-0.280535	0.447081227	0.416985332	1.0	-0.0820274778.
Embarked	0.038005251	-0.16995157	0.10394402	-0.01355779	0.1228843	0.012241382	0.041798692	-0.08202747	1.0

File View									
A Rows contain	ning n	nissi	ing v	/alu	es a	are 1	filte	red.	Ple
corr = -1 corr = +1 corr = n/a	Passengerid	Survived	Pdass	Name	XeX	StoSp	Parch	Fare	Embarked
PassengerId									
Survived									
Pclass									
Name									
Sex									
SibSp									
Parch									
Fare									
Embarked									

- Do we want to keep highly-correlated features?
- Both positive and negatively correlated ones?
- What about the correlation between the dependent and the independent features?

•

Data Exploration - Features

Input Features/Input Vector (independent variables)

Target/Class/Label (dependent variable)

Data Viz. <- Often Neglected

Data Preparation - Basic Preparation

A Join is an operation that combines data from different tables

Data Preparation - Basic Preparation

A set of basic data preparation techniques can be used:

- Union/intersection of columns;
- Concatenation
- Sorters
- Filters (column, row, nominal, rule-based, ...)
- Basic aggregations (counts, unique, mean/sum, ...)

Data Preparation - Advanced Preparation

How?

- Feature scaling
- Outlier detection
- Feature selection
- Missing Values treatment
- Nominal value discretization
- Binning
- Feature Engineering

Data Preparation - Feature Scaling

1. Normalizing the range of the independent features

Rationale:

Many classifiers use distance metrics (ex.: Euclidean distance) and, if one feature has a broad range of values, the distance will be governed by this particular feature. Hence, the range should be normalized so that each feature may contribute proportionately to the final distance.

Data Preparation - Feature Scaling

- 1. Normalizing the range of the independent features
 - Normalization: Rescaling data so that all values fall within the range of 0 and 1, for example.

$$z = (b - a) \frac{x - \min(x)}{\max(x) - \min(x)} + a$$

- Standardization (or Z-score Normalization): Rescaling the distribution of values so that the mean of observed values is 0 and the standard deviation is 1. Assumes observations fit a Gaussian distribution with a well-behaved mean and standard deviation, which may not always be the case.

$$z = \frac{x_i - \mu}{\sigma}$$

Data Preparation - Outlier Detection

2. Outlier Detection:

- Statistical-based strategy: Z-Score, Box Plots, ...
- Knowledge-based strategy: Based on domain knowledge. For example, exclude everyone with a monthly salary higher than 1M € ...
- Model-based strategy: Using models such as one-class SVMs, isolation forests, clustering, ...

The Outlier Dilemma: Drop or Cap?

To keep the dataset size, we may want to cap outliers instead of dropping them. However, it can affect the distribution of data!

Data Preparation - Feature Selection

3. Feature Selection (or dimensionality reduction):

Rationale: which features should we use to create a predictive model? Select a sub-set of the most important features to reduce dimensionality.

The removal of unimportant features:

- May affect significantly the performance of a model
- Reduces overfitting (less opportunity to make decisions based on noise)
- Improves accuracy
- Helps reducing the complexity of a model (reduces training time)

What can we remove:

- Redundant features (duplicate)
- Irrelevant and unneeded features (non-useful)

Feature Selection Methods:

- Filter methods
- Wrapper methods
- Embedded methods

Data Preparation - Feature Selection

- 3. Feature Selection (or dimensionality reduction):
 - Remove a feature if the percentage of missing values is higher than a threshold;
 - Use the chi-square test to measure the degree of dependency between a feature and the target class;
 - Remove feature if low standard deviation;
 - Remove feature if data are highly skewed;
 - Remove features that are highly correlated between each other.

Data Preparation - Feature Selection

- 3. Feature Selection (or dimensionality reduction):
 - Principal Component Analysis (PCA): a technique to reduce the dimension of the feature space. The goal is to reduce the number of features without losing too much information. A popular application of PCA is for visualizing higher dimensional data.
 - Wrapper Methods: Use a ML algorithm to select the most important features! Select a set of features as a search problem, prepare different combinations, evaluate and compare them! Measure the "usefulness" of features based on the classifier performance

- Sequential Forward Selection

- Sequential Backward Selection

- Sequential Backward Selection

- Sequential Backward Selection

- Federal F

- Embedded Methods: Algorithms that already have built-in feature selection methods. Lasso, for example, has their own feature selection methods. For example, if a feature's weight is zero than it has no importance! Regularization - constrain/regularize or shrink the coefficient estimates towards zero!

Data Preparation - Missing Values

4. Missing Values Treatment:

First analyze each feature in regard to the number and percentage of missing values. Then decide what to do:

- Remove
- Mean
- Interpolation
- Mask
- ..

Data Preparation - Nominal Value Discretization

5. Nominal value discretization:

Rationale: categorical data often called nominal data, are variables that contain label values rather than numeric ones. Several methods may be applied:

- One-Hot Encoding
- Label Encoding
- Binary Encoding

Label Encoded

Movie	Genre	Category
Jumanji	Adventure	0
American Pie	Comedy	1
Braveheart	Drama	2

Integer values have a natural ordered relationship between each other. ML models may be able to understand such relationships.

Nominal value discretization:

Movie	Genre
Jumanji	Adventure
American Pie	Comedy
Braveheart	Drama

One-Hot Encoded

Movie	Adventure	Comedy	Drama
Jumanji	1	0	0
American Pie	0	1	0
Braveheart	0	0	1

Categorical features where no such ordinal relationship exists. However, for a huge number of categories...

Data Preparation – Binning/Discretization

6. Binning, i.e., group numeric data into intervals - called bins:
Rationale: make the model more robust and prevent overfitting. However, it penalizes the model's performance since every time you bin something, you sacrifice information.

Row ID	Custom	WebAc	S Sentiment	Sentim	S Marital	S Gender	Estimat	Number	S Age	Target	1
Row0_Row0	11000	0	Slightly Negative	2	М	М	90000	0	(39,	Show possible va	lues
Row0_Row86	11000	0	Slightly Negative	2	M	М	90000	0	(39,	Available Render	erc
Row1_Row1	11001	3	Slightly Positive	3	S	М	60000	1	(39,	-	
Row1_Row86	11001	3	Slightly Positive	3	S	М	60000	1	(39,46]	1	0
Row2_Row2	11002	3	Slightly Positive	Possible Va			×	1	(39,46]	1	1
Row2_Row86	11002	3	Slightly Positive	3 Possible va	iues		^	1	(39,46]	1	1
Row3_Row3	11003	0	Very Negative	0	20.201			1	(39,46]	1	0
Row3_Row86	11003	0	Very Negative	U () -	29,39]			1	(39,46]	1	0
Row4_Row4	11004	5	Very Positive	5 💚 (39,46]			4	(39,46]	1	1
Row4_Row86	11004	5	Very Positive	5 (46,55]			4	(39,46]	1	1
Row5_Row5	11005	0	Very Negative	o (55,100]			1	(39,46]	1	1
Row5_Row86	11005	0	Very Negative	o				1	(39,46]	1	1
Row6_Row6	11006	0	Very Negative	o	OK			1	(39,46]	1	1
Row6_Row86	11006	0	Very Negative	0				1	(39,46]	1	1
Row7_Row7	11007	3	Slightly Positive	3	M	M	60000	2	(39,46]	1	1
Row7_Row87	11007	3	Slightly Positive	3	M	М	60000	2	(39,46]	1	1
Row8_Row8	11008	4	Positive	4	S	F	60000	3	(39,46]	1	1
Row8_Row87	11008	4	Positive	4	S	F	60000	3	(39,46]	1	1
Row9_Row9	11009	0	Very Negative	0	S	М	70000	1	(39,46]	1	0
Row9_Row87	11009	0	Very Negative	0	S	М	70000	1	(39,46]	1	0
Row10_Row1	11010	0	Very Negative	0	S	F	70000	1	(39,46]	1	0
Row10_Row8	11010	0	Very Negative	0	S	F	70000	1	(39,46]	1	0
Row11_Row1	11011	4	Positive	4	М	М	60000	4	(39,46]	1	1
Row11_Row8	11011	4	Positive	4	М	М	60000	4	(39,46]	1	1
	<										>

Data Preparation - Feature Engineering

7. Feature Engineering:

Rationale: The process of creating new features! The goal is to improve the performance of ML models.

Example: from the creation date of an observation what can we extract?

2021-10-29 16h30

Data Preparation - Feature Engineering

7. Feature Engineering:

Rationale: The process of creating new features! The goal is to improve the performance of ML models.

Example: from the creation date of an observation what can we extract?

2021-10-29 16h30

We may extract new features such as:

- Year, month and day
- Hour and minutes
- Day of week (Thursday)
- Is Weekend? (No)
- Is Holiday? (No)
- •

DADOS e APRENDIZAGEM AUTOMÁTICA

Data Exploration and Preparation