# FIT3158 Business Decision Modelling

SEMESTER 2, 2022

#### Lecture 4

Integer Linear Programming (ILP)

#### **Topics Covered:**





#### Introduction

- Integer Linear Programming (ILP)
  - When one or more variables in an LP problem must assume an integer value
- ILPs occur frequently...
  - Scheduling workers
  - Manufacturing products
- Integer variables also allow us to build more accurate models for a number of common business problems.
  - Quantity discounts
  - Setup and lump sum costs
  - Batch size restrictions



## **Integrality Conditions**

MAX: 
$$350X_1 + 300X_2$$
 } profit  
S.T.:  $1X_1 + 1X_2 <= 200$  } pumps  
 $9X_1 + 6X_2 <= 1566$  } labor  
 $12X_1 + 16X_2 <= 2880$  } tubing  
 $X_1, X_2 >= 0$  } non-negativity  
 $X_1, X_2$  must be integers } integrality

Integrality conditions are easy to state but make the problem much more difficult (and sometimes impossible) to solve.

#### Relaxation

Original ILP

MAX:  $2X_1 + 3X_2$ 

S.T.:  $X_1 + 3X_2 \le 8.25$ 

 $2.5X_1 + X_2 \le 8.75$ 

 $X_1, X_2 >= 0$ 

X<sub>1</sub>, X<sub>2</sub> must be integers

This constraint is dropped in LP Relaxation

LP Relaxation

MAX:  $2X_1 + 3X_2$ 

S.T.:  $X_1 + 3X_2 \le 8.25$ 

 $2.5X_1 + X_2 \le 8.75$ 

 $X_1, X_2 >= 0$ 

#### Integer Feasible vs. LP Feasible Region



## **Solving ILP Problems**

- When solving an LP relaxation, sometimes you "get lucky" and obtain an integer feasible solution.
- Example: Blue Ridge Hot Tubs

```
MAX: 350X_1 + 300X_2 } profit

S.T.: 1X_1 + 1X_2 <= 200 } pumps

9X_1 + 6X_2 <= 1566 } labor

12X_1 + 16X_2 <= 2880 } tubing

X_1, X_2 >= 0 } non-negativity

Optimal solution: X_1 = 122 and X_2 = 78
```



### **Solving ILP Problems**

- But what if we reduce the amount of labor available to 1520 hours and the amount of tubing to 2650 feet?
- See file <u>Lecture 4.xlsm</u> (Blue Ridge)

| _              |            |             |              |           |
|----------------|------------|-------------|--------------|-----------|
|                | Blue Ridg  | e Hot Tubs  |              |           |
|                | Aqua-Spas  | Hydro-Luxes |              |           |
| Number to Make | 116.944444 | 77.91666667 | Total Profit |           |
| Unit Profits   | \$350      | \$300       | \$64,306     |           |
| Constraints    |            |             | Used         | Available |
| Pumps Req'd    | 1          | 1           | 195          | 200       |
| Labor Req'd    | 9          | 6           | 1520         | 1520      |
| Tubing Req'd   | 12         | 16          | 2650         | 2650      |
|                |            |             |              |           |



|        |                | Blue Ridg   | e Hot Tubs  |              |           |
|--------|----------------|-------------|-------------|--------------|-----------|
|        |                | Aqua-Spas   | Hydro-Luxes |              |           |
|        | Number to Make | 116.9444444 | 77.91666667 | Total Profit |           |
| Daunda | Unit Profits   | \$350       | \$300       | \$64,306     |           |
| Bounds |                |             |             |              |           |
|        | Constraints    |             |             | Used         | Available |
|        | Pumps Req'd    | 1           | 1           | 195          | 200       |
|        | Labor Req'd    | 9           | 6           | 1520         | 1520      |
|        | Tubing Req'd   | 12          | 16          | 2650         | 2650      |
|        |                |             |             |              |           |

- The optimal solution to an LP relaxation of an ILP problem gives us a bound on the optimal objective function value.
- For maximization problems, the optimal relaxed objective function values is an <u>upper bound</u> on the optimal integer value.
- For minimization problems, the optimal relaxed objective function values is a <u>lower bound</u> on the optimal integer value.



### Rounding

- It is tempting to simply round a fractional solution to the closest integer solution.
- In general, this does not work reliably:
  - The rounded solution may be infeasible.
  - The rounded solution may be suboptimal.

# How Rounding Down Can Result in an Infeasible Solution



Rounding Up

LP

solution:

| Blue Ridge | e Hot Tubs                                 |                                                        |                                                                                                          |
|------------|--------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Aqua-Spas  | Hydro-Luxes                                |                                                        |                                                                                                          |
| 116.944444 | 77.91666667                                | Total Profit                                           |                                                                                                          |
| \$350      | \$300                                      | \$64,306                                               |                                                                                                          |
|            |                                            |                                                        |                                                                                                          |
|            |                                            | Used                                                   | Available                                                                                                |
| 1          | 1                                          | 195                                                    | 200                                                                                                      |
| 9          | 6                                          | 1520                                                   | 1520                                                                                                     |
| 12         | 16                                         | 2650                                                   | 2650                                                                                                     |
|            | Aqua-Spas<br>116.944444<br>\$350<br>1<br>9 | 116.9444444 77.91666667<br>\$350 \$300<br>1 1 1<br>9 6 | Aqua-Spas Hydro-Luxes 116.9444444 77.91666667 Total Profit \$350 \$300 \$64,306  Used 1 1 1 195 9 6 1520 |

Round up - Infeasible \

| _              |           |             |              |           |
|----------------|-----------|-------------|--------------|-----------|
|                | Blue Ridg |             |              |           |
|                | Aqua-Spas | Hydro-Luxes |              |           |
| Number to Make | 117       | 78          | Total Profit |           |
| Unit Profits   | \$350     | \$300       | \$64,350     |           |
|                |           |             |              |           |
| Constraints    |           |             | Used         | Available |
| Pumps Req'd    | 1         | 1           | 195          | 200       |
| Labor Req'd    | 9         | 6           | 1521         | 1520      |
| Tubing Req'd   | 12        | 16          | 2652         | 2650      |
|                |           |             |              |           |

**Rounding Down** 

LP

solution

|                | Blue Ridg  | e Hot Tubs  |              |           |
|----------------|------------|-------------|--------------|-----------|
|                | Aqua-Spas  | Hydro-Luxes |              |           |
| Number to Make | 116.944444 | 77.91666667 | Total Profit |           |
| Unit Profits   | \$350      | \$300       | \$64,306     |           |
|                |            |             |              |           |
| Constraints    |            |             | Used         | Available |
| Pumps Req'd    | 1          | 1           | 195          | 200       |
| Labor Req'd    | 9          | 6           | 1520         | 1520      |
| Tubing Req'd   | 12         | 16          | 2650         | 2650      |
|                |            |             |              |           |

Round down – Feasible …..but

|                | Blue Ridg | e Hot Tubs  |              |                   |
|----------------|-----------|-------------|--------------|-------------------|
|                | Aqua-Spas | Hydro-Luxes |              |                   |
| Number to Make | 116       | 77          | Total Profit |                   |
| Unit Profits   | \$350     | \$300       | \$63,700     |                   |
|                |           |             |              |                   |
| Constraints    |           |             | Used         | Available         |
| Pumps Req'd    | 1         | 1           | 193          | 200               |
| Labor Req'd    | 9         | 6           | 1506         | 1520              |
| Tubing Req'd   | 12        | 16          | 2624         | 26 <del>5</del> 0 |

# **Rounding Down Causes Sub-Optimality**

|                | Blue Ridg | e Hot Tubs  |              |           |
|----------------|-----------|-------------|--------------|-----------|
|                | Aqua-Spas | Hydro-Luxes | 5            |           |
| Number to Make | 116       | 77          | Total Profit |           |
| Unit Profits   | \$350     | \$300       | \$63,700     |           |
| Constraints    |           |             | Used         | Available |
| Pumps Req'd    | 1         | 1           | 193          | 200       |
| Labor Req'd    | 9         | 6           | 1506         | 1520      |
| Tubing Req'd   | 12        | 16          | 2624         | 2650      |

 A better integer solution exists (i.e. better than the above sub-optimal solution):

|                | Blue Ridg             | e Hot Tubs  |          |           |
|----------------|-----------------------|-------------|----------|-----------|
|                | A <del>qua-Spas</del> | Hydro-Luxes |          |           |
| Number to Make | 118                   | 76          | Total Pr | ofit      |
| Unit Profits   | \$350                 | \$300       | \$64,100 | 0         |
|                |                       |             |          |           |
| Constraints    |                       |             | Used     | Available |
| Pumps Req'd    | 1                     | 1           | 194      | 200       |
| Labor Req'd    | 9                     | 6           | 1518     | 1520      |
| Tubing Req'd   | 12                    | 16          | 2632     | 2650      |

#### **Branch-and-Bound**

- The Branch-and-Bound (B&B) algorithm can be used to solve ILP problems.
- Requires the solution of a series of LP problems termed "candidate problems".
- Theoretically, this can solve any ILP.
- Practically, it often takes LOTS of computational effort (and time).

### **Stopping Rules**

- Because B&B can take so long, most ILP packages allow you to specify a sub-optimality tolerance factor.
- This allows you to stop once an integer solution is found that is within some % of the global optimal solution.
- Bounds obtained from LP relaxations are helpful here.
  - Example
    - LP relaxation has an optimal obj. value of \$64,306.
    - 95% of \$64,306 is \$61,090.
    - Thus, an integer solution with obj. value of \$61,090 or better must be within 5% of the optimal solution.



## **Using Solver**

Let's see how to specify integrality conditions and sub-optimality tolerances using Solver...

See file Lecture 4.xlsm (Blue Ridge – ILP)



# An Employee Scheduling Problem: Air-Express

- An express shipping company guarantees o/night delivery
- Various hubs across the country shipments go to hubs, then on to their destination
- Manager of Baltimore hub is concerned about labour costs and wants to investigate the most effective way of scheduling of workers
- Hub open 7 days per week
- # packages varies from 1 day to the next
- An estimate of the number of workers needed on each day of the week has been calculated using historical data



# An Employee Scheduling Problem: Air-Express

| Day of Week | Workers Needed |
|-------------|----------------|
| Sunday      | 18             |
| Monday      | 27             |
| Tuesday     | 22             |
| Wednesday   | 26             |
| Thursday    | 25             |
| Friday      | 21             |
| Saturday    | 19             |

| Shift | Days Off  | Wage         |
|-------|-----------|--------------|
| 1     | Sun & Mon | \$680        |
| 2     | Mon & Tue | <b>\$705</b> |
| 3     | Tue & Wed | \$705        |
| 4     | Wed & Thr | \$705        |
| 5     | Thr & Fri | \$705        |
| 6     | Fri & Sat | \$680        |
| 7     | Sat & Sun | \$655        |



#### **Defining the Decision Variables**

 $X_1$  = the number of workers assigned to shift 1

 $X_2$  = the number of workers assigned to shift 2

 $X_3$  = the number of workers assigned to shift 3

 $X_4$  = the number of workers assigned to shift 4

 $X_5$  = the number of workers assigned to shift 5

 $X_6$  = the number of workers assigned to shift 6

 $X_7$  = the number of workers assigned to shift 7



### **Defining the Objective Function**

Minimize the total wage expense.



Wage per shift

| Shift | Days Off  | Wage  |
|-------|-----------|-------|
| 1     | Sun & Mon | \$680 |
| 2     | Mon & Tue | \$705 |
| 3     | Tue & Wed | \$705 |
| 4     | Wed & Thr | \$705 |
| 5     | Thr & Fri | \$705 |
| 6     | Fri & Sat | \$680 |
| 7     | Sat & Sun | \$655 |



#### **Defining the Constraints**

Workers required each day

$$0X_{1}+1X_{2}+1X_{3}+1X_{4}+1X_{5}+1X_{6}+0X_{7}>=18$$
 } Sunday  $0X_{1}+0X_{2}+1X_{3}+1X_{4}+1X_{5}+1X_{6}+1X_{7}>=27$  } Monday  $1X_{1}+0X_{2}+0X_{3}+1X_{4}+1X_{5}+1X_{6}+1X_{7}>=22$  } Tuesday  $1X_{1}+1X_{2}+0X_{3}+0X_{4}+1X_{5}+1X_{6}+1X_{7}>=26$  } Wednesday  $1X_{1}+1X_{2}+1X_{3}+0X_{4}+0X_{5}+1X_{6}+1X_{7}>=25$  } Thursday  $1X_{1}+1X_{2}+1X_{3}+1X_{4}+0X_{5}+0X_{6}+1X_{7}>=21$  } Friday  $1X_{1}+1X_{2}+1X_{3}+1X_{4}+0X_{5}+0X_{6}+0X_{7}>=19$  } Saturday

Non-negativity & integrality conditions

$$X_i >= 0$$
 and integer for all  $i$ 

#### Implementing the Model

#### See file <u>Lecture 4.xlsm</u> (*AirExpress*)

|     | Α           | В   | С   | D      | Е      | F       | G   | Н   |           | J         |
|-----|-------------|-----|-----|--------|--------|---------|-----|-----|-----------|-----------|
| 1   |             |     |     | Λ:     |        |         |     |     |           |           |
| 2   |             |     |     | AIF-   | Expres | SS      |     |     |           |           |
| 3   |             |     | D   | ays On | =1, Da | ys Off- | =0  |     | Workers   | Wages per |
| 4   | Shift       | Sun | Mon | Tues   | Wed    | Thur    | Fri | Sat | Scheduled | Worker    |
| 5   | 1           | 0   | 0   | 1      | 1      | 1       | 1   | 1   | 6         | \$680     |
| 6   | 2           | 1   | 0   | 0      | 1      | 1       | 1   | 1   | 0         | \$705     |
| - 7 | 3           | 1   | 1   | 0      | 0      | 1       | 1   | 1   | 5         | \$705     |
| 8   | 4           | 1   | 1   | 1      | 0      | 0       | 1   | 1   | 1         | \$705     |
| 9   | 5           | 1   | 1   | 1      | 1      | 0       | 0   | 1   | 7         | \$705     |
| 10  | 6           | 1   | 1   | 1      | 1      | 1       | 0   | 0   | 5         | \$680     |
| 11  | 7           | 0   | 1   | 1      | 1      | 1       | 1   | 0   | 9         | \$655     |
| 12  | Available < | 18  | 27  | 28     | 27     | 25      | 21  | 19  | > Total   | \$22,540  |
| 13  | Required    | 18  | 27  | 22     | 26     | 25      | 21  | 19  |           |           |
| 14  |             |     |     |        |        |         |     |     |           |           |

At least as many as required

#### **Binary Variables**

- Binary variables are integer variables that can assume only two values: 0 or 1.
- These variables can be useful in a number of practical modeling situations...

# A Capital Budgeting Problem: CRT Technologies

| Expected NPV |             | Capital (in \$000s) Required in |        |        |        |        |  |
|--------------|-------------|---------------------------------|--------|--------|--------|--------|--|
| Project      | (in \$000s) | Year 1                          | Year 2 | Year 3 | Year 4 | Year 5 |  |
| 1            | \$141       | \$75                            | \$25   | \$20   | \$15   | \$10   |  |
| 2            | \$187       | \$90                            | \$35   | \$0    | \$0    | \$30   |  |
| 3            | \$121       | \$60                            | \$15   | \$15   | \$15   | \$15   |  |
| 4            | \$83        | \$30                            | \$20   | \$10   | \$5    | \$5    |  |
| 5            | \$265       | \$100                           | \$25   | \$20   | \$20   | \$20   |  |
| 6            | \$127       | \$50                            | \$20   | \$10   | \$30   | \$40   |  |

- The company has \$250,000 available to invest in new projects. It has budgeted \$75,000 for continued support for these projects in year 2 and \$50,000 per year for years 3, 4, and 5.
- Unused funds in any year cannot be carried over.

#### **Defining Decision Variables & Objective Function**

$$\mathbf{X}_{i} = \begin{cases} 1, & \text{if project } i \text{ is selected} \\ 0, & \text{otherwise} \end{cases} i = 1, 2, \dots, 6$$

Maximize total NPV of selected projects

MAX: 
$$141X_1 + 187X_2 + 121X_3 + 83X_4 + 265X_5 + 127X_6$$

Expected NPV (\$000s)

#### **Expected NPV**

| Project yr | (in \$000s) | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
|------------|-------------|--------|--------|--------|--------|--------|
| 1          | \$141       | \$75   | \$25   | \$20   | \$15   | \$10   |
| 2          | \$187       | \$90   | \$35   | \$0    | \$0    | \$30   |
| 3          | \$121       | \$60   | \$15   | \$15   | \$15   | \$15   |
| 4          | \$83        | \$30   | \$20   | \$10   | \$5    | \$5    |
| 5          | \$265       | \$100  | \$25   | \$20   | \$20   | \$20   |
| 6          | \$127       | \$50   | \$20   | \$10   | \$30   | \$40   |

#### **Defining Constraints**

#### Capital Constraints

must ensure for each year that the selected projects do not require more capital than is available

e.g. year 2, \$75,000 is available, so:

$$25X_1 + 35X_2 + 15X_3 + 20X_4 + 25X_5 + 20X_6 \le 75$$

| E           | Expected NPV |        |        |        |             |        |
|-------------|--------------|--------|--------|--------|-------------|--------|
| Project yr  | (in \$000s)  | Year 1 | Year 2 | Year 3 | Year 4      | Year 5 |
| 1           | \$141        | \$75   | \$25   | \$20   | \$15        | \$10   |
| 2           | \$187        | \$90   | \$35   | \$0    | \$0         | \$30   |
| 3           | \$121        | \$60   | \$15   | \$15   | \$15        | \$15   |
| 4           | \$83         | \$30   | \$20   | \$10   | <b>\$</b> 5 | \$5    |
| 5           | \$265        | \$100  | \$25   | \$20   | \$20        | \$20   |
| MONASH Univ | ersity\$127  | \$50   | \$20   | \$10   | \$30        | \$40   |
|             |              |        |        |        |             |        |

## **Defining the Constraints**

Capital Constraints

$$75X_{1} + 90X_{2} + 60X_{3} + 30X_{4} + 100X_{5} + 50X_{6} <= 250$$
 } year 1 
$$25X_{1} + 35X_{2} + 15X_{3} + 20X_{4} + 25X_{5} + 20X_{6} <= 75$$
 } year 2 
$$20X_{1} + 0X_{2} + 15X_{3} + 10X_{4} + 20X_{5} + 10X_{6} <= 50$$
 } year 3 
$$15X_{1} + 0X_{2} + 15X_{3} + 5X_{4} + 20X_{5} + 30X_{6} <= 50$$
 } year 4 
$$10X_{1} + 30X_{2} + 15X_{3} + 5X_{4} + 20X_{5} + 40X_{6} <= 50$$
 } year 5

Binary Constraints

All X, must be binary

#### Implementing the Model

See file <u>Lecture 4.xlsm(CRT)</u>

|    | Α       | В             | С            | D              | Е      | F      | G      | Н      |  |  |
|----|---------|---------------|--------------|----------------|--------|--------|--------|--------|--|--|
| 1  |         |               |              |                |        |        |        |        |  |  |
| 2  |         |               | C            | RT Tech        |        |        |        |        |  |  |
| 3  |         |               |              |                |        |        |        |        |  |  |
| 4  |         | Select?       |              | Capital Requir |        |        |        | ed in  |  |  |
| 5  | Project | (0=no, 1=yes) | NPV          | Year 1         | Year 2 | Year 3 | Year 4 | Year 5 |  |  |
| 6  | 1       | 1             | \$141        | \$75           | \$25   | \$20   | \$15   | \$10   |  |  |
| 7  | 2       | 0             | \$187        | \$90           | \$35   | \$0    | \$0    | \$30   |  |  |
| 8  | 3       | 0             | \$121        | \$60           | \$15   | \$15   | \$15   | \$15   |  |  |
| 9  | 4       | 1             | \$83         | \$30           | \$20   | \$10   | \$5    | \$5    |  |  |
| 10 | 5       | 1             | \$265        | \$100          | \$25   | \$20   | \$20   | \$20   |  |  |
| 11 | 6       | 0             | \$127        | \$50           | \$20   | \$10   | \$30   | \$40   |  |  |
| 12 |         | Capita        | al Required  | \$205          | \$70   | \$50   | \$40   | \$35   |  |  |
| 13 |         | Capit         | al Available | \$250          | \$75   | \$50   | \$50   | \$50   |  |  |
| 14 |         |               |              |                |        |        |        |        |  |  |
| 15 |         | Total Net Pre | esent Value  | \$489          |        |        |        |        |  |  |
| 16 |         |               |              |                |        |        |        |        |  |  |



## **Binary Variables & Logical Conditions**

- Binary variables are also useful in modeling a number of logical conditions.
  - Of projects 1, 3 & 6, no more than one may be selected:  $X_1 + X_3 + X_6 \le 1$
  - Of projects 1, 3 & 6, exactly one must be selected:  $X_1 + X_3 + X_6 = 1$
  - Project 4 cannot be selected unless project 5 is also selected:  $X_4 X_5 \le 0$

#### The Fixed-Charge Problem

- Many decisions result in a fixed or lump-sum cost being incurred:
  - The cost to lease, rent, or purchase a piece of equipment or a vehicle that will be required if a particular action is taken.
  - The setup cost required to prepare a machine or to produce a different type of product.
  - The cost to construct a new production line that will be required if a particular decision is made.
  - The cost of hiring additional personnel that will be required if a particular decision is made.



# **Example Fixed-Charge Problem: Remington Manufacturing**

#### Hours Required By:

| Operation   | Prod. 1 | Prod. 2 | Prod. 3 | Hours Available |
|-------------|---------|---------|---------|-----------------|
| Machining   | 2       | 3       | 6       | 600             |
| Grinding    | 6       | 3       | 4       | 300             |
| Assembly    | 5       | 6       | 2       | 400             |
| Unit Profit | \$48    | \$55    | \$50    |                 |
| Setup Cost  | \$1000  | \$800   | \$900   |                 |

Fixed charge for making any quantity of prod 1, prod 2 or prod 3



#### **Defining Decision Variables**

 $X_i$  = the amount of product *i* to be produced, i = 1, 2, 3

$$Y_{i} = \begin{cases} 1, & \text{if } X_{i} > 0 \\ 0, & \text{if } X_{i} = 0 \end{cases} i = 1, 2, 3$$

Y<sub>i</sub> are binary variables that will be used to include the fixed charges

#### **Defining the Objective Function**

Maximize total profit.



### **Defining the Constraints**

Resource Constraints

$$2X_1 + 3X_2 + 6X_3 \le 600$$
 } machining  $6X_1 + 3X_2 + 4X_3 \le 300$  } grinding  $5X_1 + 6X_2 + 2X_3 \le 400$  } assembly

Non-negativity & integer conditions

$$X_i >= 0, i = 1, 2,...3$$
  
 $X_i$  integer, i=1,...3

Binary Constraints

All Y<sub>i</sub> must be binary

- Is there a missing link?
- Yes we need to ensure that  $Y_i = 1$  if  $X_i > 0$

#### **Linking Constraints**

Linking Constraints (with "Big M")

$$X_1 \le M_1 Y_1$$
 or  $X_1 - M_1 Y_1 \le 0$   
 $X_2 \le M_2 Y_2$  or  $X_2 - M_2 Y_2 \le 0$   
 $X_3 \le M_3 Y_3$  or  $X_3 - M_3 Y_3 \le 0$ 

- If X<sub>i</sub> > 0 these constraints force the associated Y<sub>i</sub> to equal 1.
- If X<sub>i</sub> = 0 these constraints allow Y<sub>i</sub> to equal 0 or 1, but the objective will cause Solver to choose 0.
- Note that M<sub>i</sub> imposes an upper bounds on X<sub>i</sub>.
- It helps to find reasonable values for the M<sub>i</sub>.

But we don't want to constrain X<sub>i</sub> any further

#### Finding Reasonable Values for M1

Consider the resource constraints

$$2X_1 + 3X_2 + 6X_3 \le 600$$
 } machining  $6X_1 + 3X_2 + 4X_3 \le 300$  } grinding  $5X_1 + 6X_2 + 2X_3 \le 400$  } assembly

■ What is the maximum value X₁ can assume?

Let 
$$X_2 = X_3 = 0$$
  
 $X_1 = MIN(600/2, 300/6, 400/5)$   
 $= MIN(300, 50, 80)$   
 $= 50$ 

So we can put M<sub>1</sub>

• Maximum values for  $X_2 \& X_3$  can be found =50

# **Summary of the Model**

MAX: 
$$48X_1 + 55X_2 + 50X_3 - 1000Y_1 - 800Y_2 - 900Y_3$$
  
S.T.:  $2X_1 + 3X_2 + 6X_3 <= 600$  } machining  $6X_1 + 3X_2 + 4X_3 <= 30$  } grinding  $5X_1 + 6X_2 + 2X_3 <= 400$  } assembly  $X_1 - 50Y_1 <= 0$   $X_2 - 67Y_2 <= 0$   $X_3 - 75Y_3 <= 0$  All  $Y_i$  must be binary  $X_i >= 0$ ,  $i = 1, 2, 3$  (= integer)

## Implementing Model

#### See file <u>Lecture 4.xlsm</u> (Remington)



#### **Potential Pitfall**

- Do not use IF() functions to model the relationship between the X<sub>i</sub> and Y<sub>i</sub>.
  - Suppose cell B5 represents X<sub>1</sub>
  - Suppose cell B15 represents Y<sub>1</sub>
  - You'll want to let B15 = IF(B5>0,1,0)
  - This will not work with Solver!
- Treat the Y<sub>i</sub> just like any other variable.
  - Make them changing cells.
  - Use the linking constraints to enforce the proper relationship between the X<sub>i</sub> and Y<sub>i</sub>.



#### **Minimum Order Size Restrictions**

Suppose Remington doesn't want to manufacture any units of product 3 unless it produces at least 40 units...

Consider,

 $X_3 \leq M_3 Y_3$ 

$$X_3 >= 40 Y_3$$

See <u>Lecture 4.xlsm</u> (*Remington – Min order*)

Use M3 = min(600/6,300/4,400/2)=75

#### **B&G – A Contract Award Problem**

B&G Construction has 4 building projects and can purchase cement from 3 companies for the following costs:

|        | Cost per Delivered Ton of Cement |           |           |           | Max.   |
|--------|----------------------------------|-----------|-----------|-----------|--------|
|        | Project 1                        | Project 2 | Project 3 | Project 4 | Supply |
| Co. 1  | \$120                            | \$115     | \$130     | \$125     | 525    |
| Co. 2  | \$100                            | \$150     | \$110     | \$105     | 450    |
| Co. 3  | \$140                            | \$95      | \$145     | \$165     | 550    |
| Needs  | 450                              | 275       | 300       | 350       |        |
| (tons) |                                  |           |           |           |        |



#### **Defining the Decision Variables**

 $X_{ij}$  = tons of cement purchased from company i for project j

#### **Defining the Objective Function**

Minimize total cost

MIN: 
$$120X_{11} + 115X_{12} + 130X_{13} + 125X_{14}$$
  
  $+ 100X_{21} + 150X_{22} + 110X_{23} + 105X_{24}$   
  $+ 140X_{31} + 95X_{32} + 145X_{33} + 165X_{34}$ 

#### **A Contract Award Problem**

#### Side constraints:

Co. 1 will not supply orders of less than 150 tons for any project

Co. 2 can supply more than 200 tons to no more than one of the projects

Co. 3 will accept only orders that total 200, 400, or 550 tons

## **Defining the Constraints**

Supply Constraints

$$X_{11} + X_{12} + X_{13} + X_{14} \le 525$$
 } company 1  
 $X_{21} + X_{22} + X_{23} + X_{24} \le 450$  } company 2  
 $X_{31} + X_{32} + X_{33} + X_{34} \le 550$  } company 3

Demand Constraints

$$X_{11} + X_{21} + X_{31} = 450$$
 } project 1  
 $X_{12} + X_{22} + X_{32} = 275$  } project 2  
 $X_{13} + X_{23} + X_{33} = 300$  } project 3  
 $X_{14} + X_{24} + X_{34} = 350$  } project 4

# **Defining the Constraints - I**

Company 1 Side Constraints

$$X_{11} < =525Y_{11}$$

$$X_{12} < =525Y_{12}$$

$$X_{13} < =525Y_{13}$$

$$X_{14} < = 525Y_{14}$$

$$X_{11} > = 150Y_{11}$$

$$X_{12} > = 150Y_{12}$$

$$X_{13} > = 150Y_{13}$$

$$X_{14} > = 150Y_{14}$$

 $Y_{ii}$  binary

## Defining the Constraints- II & III

Company 2 Side Constraints

$$X_{21} <= 200 + 250 Y_{21}$$
  
 $X_{22} <= 200 + 250 Y_{22}$   
 $X_{23} <= 200 + 250 Y_{23}$   
 $X_{24} <= 200 + 250 Y_{24}$   
 $Y_{21} + Y_{22} + Y_{23} + Y_{24} <= 1$   
 $Y_{ij}$  binary

Company 3 Side Constraints

$$X_{31} + X_{32} + X_{33} + X_{34} = 200Y_{31} + 400Y_{32} + 550Y_{33}$$
  
 $Y_{31} + Y_{32} + Y_{33} \le 1$ 

# Implementing the Transportation Constraints

See file <u>Lecture 4.xlsm(*B&G*</u>)



#### These are non-examinable but good to know ...

- ☐ Goal Programming
- ☐ Multiple Objective LP (MOLP)



#### **Multiple Objectives**

- Most optimisation problems considered to this point have had a single objective.
- Often, more than one objective can be identified for a given problem.
  - Maximize Return or Minimize Risk
  - Maximize Profit or Minimize Pollution
- These objectives often conflict with one another.
- How can such problems be dealt with?

# **Goal Programming (GP)**

- Most LP problems have <u>hard constraints</u> that cannot be violated...
  - There are 1,566 labor hours available.
  - There is \$850,000 available for projects.
- In some cases, hard constraints are too restrictive...
  - You have a maximum price in mind when buying a car (this is your "goal" or target price).
  - If you can't buy the car for this price you'll likely find a way to spend more.
- We use <u>soft constraints</u> to represent such goals or targets we'd like to achieve.



#### **GP Example: Beach Hotel Expansion**

- Davis McKeown wants to expand the convention center at his hotel in Myrtle Beach, SC.
- The types of conference rooms being considered are:

|        | Size (sq ft) | Unit Cost |
|--------|--------------|-----------|
| Small  | 400          | \$18,000  |
| Medium | 750          | \$33,000  |
| Large  | 1,050        | \$45,150  |

- Davis would like to add 5 small, 10 medium and 15 large conference rooms.
- He also wants the total expansion to be 25,000 square feet and to limit the cost to \$1,000,000.

## **Defining Goals**

- Goal 1: The expansion should include *approximately* 5 small conference rooms.
- Goal 2: The expansion should include *approximately* 10 medium conference rooms.
- Goal 3: The expansion should include *approximately* 15 large conference rooms.
- Goal 4: The expansion should consist of *approximately* 25,000 square feet.
- Goal 5: The expansion should cost *approximately* \$1,000,000.



#### **Defining Decision Variables**

 $X_1$  = number of small rooms to add

 $X_2$  = number of medium rooms to add

 $X_3$  = number of large rooms to add

#### **Deviational Variables:**

MONASH University

Amounts by which each goal deviates from its target value

$$d_i^-$$
 and  $d_i^+$ 

- (-) represents amount of underachievement of each goal's target value
- (+) represents amount of overachievement of each goal's target value

54

# **Defining the Goal Constraints-I**

Small Rooms

$$X_1 + d_1^- - d_1^+ = 5$$

Medium Rooms

$$X_2 + d_2^- - d_2^+ = 10$$

Large Rooms

$$X_3 + d_3^- - d_3^+ = 15$$

where

$$\mathbf{d}_{i}^{-},\mathbf{d}_{i}^{+}\geq0$$

If 
$$X_1 = 3$$
,

$$d1(-) = 2$$

$$d1(+) = 0$$

If 
$$X_2 = 13$$
,

$$d2(-) = 0$$

$$d2(+) = 3$$

## **Defining the Goal Constraints-II**

Total Expansion

$$400X_1 + 750X_2 + 1,050X_3 + d_4^- - d_4^+ = 25,000$$

Total Cost (in \$1,000s)

$$18X_1 + 33X_2 + 45.15X_3 + d_5^- - d_5^+ = 1,000$$

where

$$d_i^-, d_i^+ \ge 0$$

## **GP Objective Functions – Option 1**

- There are numerous objective functions we could formulate for a GP problem.
- Minimize the sum of the deviations:

$$\mathsf{MIN} \sum_{i} \left( d_i^- + d_i^+ \right)$$

- Problem: The deviations measure different things, so what does this objective represent?
- e.g. 7 rooms + 1500 \$ = 1507 of ?

# **GP Objective Functions – Option 2**

- Minimize the sum of percentage deviations
  - $MIN \sum_{i} \frac{1}{t_i} \left( d_i^- + d_i^+ \right)$
  - where ti represents the target value of goal i
- Problem: Suppose the first goal is underachieved by 1 small room and the fifth goal is overachieved by \$20,000.
  - We underachieve goal 1 by 1/5=20%
  - We overachieve goal 5 by 20,000/1,000,000= 2%
  - This implies being \$20,000 over budget is just as undesirable as having one too few small rooms.



# **GP Objective Functions – Option 3**

- Weights can be used in the previous objectives to allow the decision maker indicate
  - desirable vs. undesirable deviations
  - the relative importance of various goals
- Minimize the weighted sum of deviations

$$\min \left| \sum_{i} \left( w_i^- d_i^- + w_i^+ d_i^+ \right) \right|$$

Minimize the weighted sum of % deviations

$$\sum_{i} \frac{1}{t_i} \left( w_i^- d_i^- + w_i^+ d_i^+ \right)$$

# **Defining the Objective**

- Assume
  - It is undesirable to underachieve (-) any of the first three room goals
  - It is undesirable to overachieve (-, +) or underachieve the 25,000 sq ft expansion goal
  - It is undesirable to overachieve (+) the \$1,000,000 total cost goal

MIN: 
$$\frac{w_1^-}{5}d_1^- + \frac{w_2^-}{5}d_2^- + \frac{w_3^-}{5}d_3^- + \frac{w_4^-}{25,000}d_4^- + \frac{w_4^+}{25,000}d_4^+ + \frac{w_5^+}{1,000,000}d_5^+$$

Initially, we will assume all the above weights equal 1.

Implementation - Lecture 4\_GP.xlsm



#### **About GP**

- GP involves making trade-offs among the goals until the most satisfying solution is found.
- GP objective function values should not be compared because the weights are changed in each iteration.
   Compare the solutions!
- An arbitrarily large weight will effectively change a soft constraint to a hard constraint.
- Hard constraints can be place on deviational variables.



#### **Summary of GP**

- 1. Identify the decision variables in the problem.
- Identify any hard constraints in the problem and formulate them in the usual way.
- 3. State the goals of the problem along with their target values.
- 4. Create constraints using the decision variables that would achieve the goals exactly.
- Transform the above constraints into goal constraints by including deviational variables.
- 6. Determine which deviational variables represent undesirable deviations from the goals.
- 7. Formulate an objective that penalizes the undesirable deviations.
- 8. Identify appropriate weights for the objective.
- 9. Solve the problem.
- 10. Inspect the solution to the problem. If the solution is unacceptable, return to step 8 and revise the weights as needed.



# Multiple Objective Linear Programming (MOLP)

- An MOLP problem is an LP problem with more than one objective function.
- MOLP problems can be viewed as special types of GP problems where we must also determine target values for each goal or objective.
- Analyzing these problems effectively also requires that we use the MiniMax objective

#### **Summary of MOLP**

- 1. Identify the decision variables in the problem.
- 2. Identify the objectives in the problem and formulate them as usual.
- 3. Identify the constraints in the problem and formulate them as usual.
- 4. Solve the problem once for each of the objectives identified in step 2 to determine the optimal value of each objective.
- 5. Restate the objectives as goals using the optimal objective values identified in step 4 as the target values.
- 6. For each goal, create a deviation function that measures the amount by which any given solution fails to meet the goal (either as an absolute or a percentage).
- 7. For each of the functions identified in step 6, assign a weight to the function and create a constraint that requires the value of the weighted deviation function to be less than the MINIMAX variable Q.
- 8. Solve the resulting problem with the objective of minimizing Q.
- 9. Inspect the solution to the problem. If the solution is unacceptable, adjust the weights in step 7 and return to step 8.



#### **End of Lecture 4**

#### **Content References**:

Ragsdale, C. Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Business Analytics (8e/9e) Cengage Learning: Chapter 6 & 7



#### Homework

- Go through today's lecture examples and Ragsdale Chapter 6, to:
  - ✓ Familiarise yourself with the ILP formulation and models
  - ✓ Understand the use of "Big M" in linking constraints
- ➤ Concepts and modeling techniques used in GP and MOLP problems are non-examinable and there only for your reference with Ragsdale chapter 7.



#### Readings for next week Lecture:

Ragsdale, C. Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Business Analytics (8e/9e) Cengage Learning: Chapter 5



#### Tutorial 3 this week:

- Interpreting Solver reports
  - Answer Report
  - Sensitivity Report
  - Limits report

- Spider plot
- Solver tables

