Calculus

Introduction to Computing Foundations

Foo Yong Qi

11 January 2024 | Day 1 AM Session 2

Department of Computer Science School of Computing National University of Singapore

Table of contents

1. Differentiation

2. Rules of Differentiation

3. Higher Order Derivatives

Calculus

Calculus of infinitesimals (a.k.a.) calculus is interested in rates of change and areas under functions

Key observations:

- Rate of change of $f(x) = e^x$ at point x is also e^x
- Area under $f(x) = e^x$ up to point x is also e^x
- Rate of change of $f(x) = \ln x$ at point x is 1/x

In general, given f(x), how do we find the rate of change and area under f?

Given a function f(x), the function describing its **rate of change** is **derivative** of f, written f'(x)

Process of finding derivative is differentiation

Rate of change of f at a can also be seen as the **gradient** or slope of f at x=a

3

How to find gradient of a function at a point? Estimate!

Figure 1: Graph of $y = x^2$ plotted showing intersections with line at x = 4 and x = 8.

Refine approximation by bring points closer together

Figure 2: Graph of $y = x^2$ plotted showing intersections with line at x = 4 and x = 6.

For an infinitesimally small change in x (temporarily written dx), the rate of change of f at x is

$$\frac{f(x+dx) - f(x)}{dx}$$

Example, if $f(x) = x^2$, rate of change is

$$\frac{f(x+dx) - f(x)}{dx} = \frac{(x+dx)^2 - x^2}{dx}$$

$$= \frac{x^2 + 2xdx + (dx)^2 - x^2}{dx}$$

$$= \frac{dx(2x+dx)}{dx}$$

$$= 2x + dx$$

Since dx is infinitesimally small, 2x + dx = 2x

Definition 2.1 (Derivative).

Assume that f is differentiable at x. Then, the derivative of f at x is given by

$$f'(x) = \frac{df}{dx}(x) = \lim_{n \to 0} \frac{f(x+n) - f(x)}{n}$$

If y = f(x) we may also write

$$\frac{dy}{dx} = f'(x)$$

Analysis on limits too laborious for every function; find rules of differentiation to simplify analysis!

7

Goal: recap some popular rules of differentiation and show

you how some are derived

Chain Rule

Proposition 2.1 (Derivative of composites).

$$(g \circ f)' = (g' \circ f) \times f'$$

Alternatively:

$$h(x) = g(f(x)) \Leftrightarrow h'(x) = g'(f(x)) \cdot f'(x)$$

Using $\frac{dy}{dx}$ notation, if we have y = f(x) and z = g(y) then

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

8

$$\frac{d}{dx}e^x = e^x \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$

Goal: find derivative of any exponential function $f(x) = a^x$ for positive a.

Recall:

$$a = e^{\ln a}$$

Therefore:

$$a^x = e^{\ln a^x} = e^{x \ln a}$$

Let $u = x \ln a$. By chain rule:

$$\frac{d}{dx}a^x = \frac{d}{du}e^u \times \frac{d}{dx}u = e^{x\ln a} \times \frac{d}{dx}x\ln a$$

Let $u = x \ln a$. By chain rule:

$$\frac{d}{dx}a^x = \frac{d}{du}e^u \times \frac{d}{dx}u = e^{x\ln a} \times \frac{d}{dx}x\ln a$$

Rate of change of linear function y = mx + c is just gradient m, therefore

$$\frac{d}{dx}x\ln a = \ln a$$

Thus,

$$\frac{d}{dx}a^x = e^{x\ln a} \times \ln a = a^x \ln a$$

Exerise 2.1.

Find the derivative of $f(x) = 4^{(2x+3)}$.

Exerise 2.1.

Find the derivative of $f(x) = 4^{(2x+3)}$.

Solution 2.1.

Let
$$g(x) = 2x + 3$$
 and $f(u) = 4^u$.

By the chain rule:

$$(f \circ g)'(x) = 4^{g(x)} \ln 4g'(x) = 2 \ln 4 \times 4^{(2x+3)}$$

Products

Goal: given h(x) = f(x)g(x), find h'(x).

$$h'(x) = \lim_{n \to 0} \frac{h(x+n) - h(x)}{n}$$

$$= \lim_{n \to 0} \frac{f(x+n)g(x+n) - f(x)g(x)}{n}$$

$$= \lim_{n \to 0} \frac{f(x+n)g(x+n) - f(x)g(x+n) + f(x)g(x+n) - f(x)g(x)}{n}$$

$$= \lim_{n \to 0} \frac{(f(x+n) - f(x))g(x+n) + f(x)(g(x+n) - g(x))}{n}$$

$$= \lim_{n \to 0} \left(\frac{f(x+n) - f(x)}{n}g(x+n) + f(x)\frac{g(x+n) - g(x)}{n}\right)$$

$$= \lim_{n \to 0} \left(\frac{f(x+n) - f(x)}{n} g(x+n) + f(x) \frac{g(x+n) - g(x)}{n} \right)$$

$$= \lim_{n \to 0} \frac{f(x+n) - f(x)}{n} \cdot \lim_{n \to 0} g(x+n) + \lim_{n \to 0} f(x) \cdot \lim_{n \to 0} \frac{g(x+n) - g(x)}{n}$$

$$= \lim_{n \to 0} \frac{f(x+n) - f(x)}{n} \cdot g(x) + f(x) \cdot \lim_{n \to 0} \frac{g(x+n) - g(x)}{n}$$

$$= f'(x)g(x) + f(x)g'(x)$$

Product rule: if h(x) = f(x)g(x), h'(x) = f'(x)g(x) + f(x)g'(x).

Quotients

Goal: given $h(x) = f(x) \div g(x)$, find h'(x).

By definition, f(x) = g(x)h(x), so by the product rule, f'(x) = g'(x)h(x) + g(x)h'(x).

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$
 \Rightarrow $g(x)h'(x) = f'(x) - g'(x)h(x)$ \Rightarrow rearranging terms
$$\Leftrightarrow g(x)h'(x) = f'(x) - g'(x)\frac{f(x)}{g(x)} \qquad \Rightarrow \text{by definition of } h(x)$$

$$\Leftrightarrow g(x)h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)}$$

$$\Leftrightarrow h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2} \qquad \Rightarrow \text{Quotient rule}$$

Powers

Goal: find derivative of $f(x) = x^n$.

Recall:

$$a = e^{\ln a}$$

Therefore:

$$x^n = e^{\ln x^n} = e^{n \ln x}$$

Thus, Let $f(x) = e^{n \ln x}$. Then,

$$f'(x) = e^{n \ln x} \cdot \frac{n}{x}$$
$$= x^n \frac{n}{x}$$
$$= nx^{n-1}$$

⊳ by chain rule and product rule

⊳ Power rule

Sums

Goal: find derivative of h(x) = f(x) + g(x).

$$h'(x) = \lim_{n \to 0} \frac{h(x+n) - h(x)}{n}$$

$$= \lim_{n \to 0} \frac{f(x+n) + g(x+n) - f(x) - g(x)}{n}$$

$$= \lim_{n \to 0} \frac{f(x+n) - f(x) + g(x+n) - g(x)}{n}$$

$$= \lim_{n \to 0} \left(\frac{f(x+n) - f(x)}{n} + \frac{g(x+n) - g(x)}{n} \right)$$

$$= \lim_{n \to 0} \frac{f(x+n) - f(x)}{n} + \lim_{n \to 0} \frac{g(x+n) - g(x)}{n}$$

$$= f'(x) + g'(x)$$

⊳ Sum rule

Polynomials

Suppose we have $y = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$. Then,

$$\frac{dy}{dx} = \frac{d}{dx}c_nx^n + \frac{d}{dx}c_{n-1}x^{n-1} + \dots + \frac{d}{dx}c_1x + \frac{d}{dx}c_0$$
 > sum rule
= $nc_nx^{n-1} + (n-1)c_{n-1}x^{n-2} + \dots + c_1$ > power rule

Chain Rule
$$h(x) = g(f(x)) \Rightarrow h'(x) = g'(f(x))f'(x)$$

Exponential Rule $f(x) = a^x \Rightarrow f'(x) = a^x \ln a$
Product Rule $f(x) = g(x)h(x) \Rightarrow f'(x) = g'(x)h(x) + h'(x)g(x)$
Quotient Rule $f(x) = g(x)/h(x) \Rightarrow f'(x) = (g'(x)h(x) - h'(x)g(x))/(h(x))^2$
Power Rule $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
Sum Rule $f(x) = g(x) + h(x) \Rightarrow f'(x) = g'(x) + h'(x)$

Example 2.2.

Find the derivative of $f(x) = (x^2 + 2x + 4)/(x - 5)$.

By definition f(x) = g(x)/h(x) where $g(x) = x^2 + 2x + 4$ and h(x) = x - 5.

First compute g' and h':

$$g'(x) = 2x + 2$$
$$h'(x) = 1$$

Using the quotient rule,

$$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

$$= \frac{(2x+2)(x-5) - (x^2+2x+4)(1)}{(x-5)^2}$$

$$= \frac{2x^2 - 10x + 2x - 10 - x^2 - 2x - 4}{x^2 - 10x + 25}$$

$$= 1 - \frac{39}{x^2 - 10x + 25}$$

Exercise 2.2.

Find the derivative of $f(x) = 4x^2e^{2x}$.

Exercise 2.2.

Find the derivative of $f(x) = 4x^2e^{2x}$.

Solution 2.2.

By the product rule,

$$f'(x) = \frac{d}{dx}(4x^2) \times e^{2x} + 4x^2 \times \frac{d}{dx}(e^{2x}) = 8xe^{2x} + 8x^2e^{2x} = (1+x)(8xe^{2x})$$

Use rules of differentiation to find other rules of

differentiation and to find the derivatives of complicated

functions easily

Higher Order Derivatives

Higher Order Derivatives

If we have function f(x):

- Differentiating once gives f'(x)
- Differentiating f'(x) gives f''(x)
- Differentiating f n times gives $f^{(n)}(x)$

Second derivatives can help us classify interesting points on a function

Given $f(x) = x^2 - 4x + 10$, x = 2 is a minimum point, rate of change at x = 2 is 0

Figure 3: Graph of $f(x) = x^2 - 4x + 10$.

Given $g(x) = -2x^2 + 5x + 7$, x = 5/4 is a maximum point, rate of change at x = 5/4 is 0

Figure 4: Graph of $g(x) = -2x^2 + 5x + 7$.

How to find stationary points?

Find the root of the derivative!

$$f(x) = x^{2} - 4x + 10 \Rightarrow f'(x) = 2x - 4 \Rightarrow f'(2) = 0$$
$$g(x) = -2x^{2} + 5x + 7 \Rightarrow g'(x) = -4x + 5 \Rightarrow g'\left(\frac{5}{4}\right) = 0$$

How do we know if a stationary point is a minimum or maximum point?

- 1. Observe derivatives to the left and right of stationary point
- 2. Find the rate of change of gradient at stationary point, i.e. second derivative!

$$f(x) = x^{2} - 4x + 10 \Rightarrow f'(x) = 2x - 4 \Rightarrow f''(x) = 2$$
$$g(x) = -2x^{2} + 5x + 7 \Rightarrow g'(x) = -4x + 5 \Rightarrow g''(x) = -4$$

Since f''(2) > 0 and g''(5/4) < 0, x = 2 is a minimum point of f, and x = 5/4 is a maximum point of g!

Find the roots of derivatives to obtain stationary points

Use higher derivatives to determine if those stationary points are maxima or minima

More Calculus?

Other topics you can explore:

- Partial derivatives: differentiating an *n*-nary function by fixing other variables as constants
- · Integration: the opposite of differentiation