Misallocation in the Market for Inputs: Enforcement and the Organization of Production

Johannes Boehm Ezra Oberfield

Sciences Po

Princeton

University of Toronto

13 March 2019

► How important are distortions for productivity/income?

- ► How important are distortions for productivity/income?
- Our focus: Distortions in use of intermediate inputs
 - ▶ Role of courts & contract enforcement
 - Distinguish heterogeneity in technology/organization from misallocation

- How important are distortions for productivity/income?
- Our focus: Distortions in use of intermediate inputs
 - Role of courts & contract enforcement
 - Distinguish heterogeneity in technology/organization from misallocation
- Manufacturing Plants in India
 - In states with worse enforcement... input bundles are systematically different

- ► How important are distortions for productivity/income?
- Our focus: Distortions in use of intermediate inputs
 - Role of courts & contract enforcement
 - Distinguish heterogeneity in technology/organization from misallocation
- Manufacturing Plants in India
 - In states with worse enforcement... input bundles are systematically different
- Quantitative structural model:
 - ▶ Imperfect enforcement may distort technology & organization choice
 - ⇒ Might have wrong producers doing wrong tasks
 - But firms may overcome hold-up problems with some suppliers through informal means
 - ⇒ Distortions may not show up as a wedge

- How important are distortions for productivity/income?
- Our focus: Distortions in use of intermediate inputs
 - Role of courts & contract enforcement
 - Distinguish heterogeneity in technology/organization from misallocation
- Manufacturing Plants in India
 - In states with worse enforcement... input bundles are systematically different
- Quantitative structural model:
 - ▶ Imperfect enforcement may distort technology & organization choice
 - ⇒ Might have wrong producers doing wrong tasks
 - But firms may overcome hold-up problems with some suppliers through informal means
 - ⇒ Distortions may not show up as a wedge
- ▶ Counterfactual: improving courts \Rightarrow \nearrow TFP up to 10%

Literature

- ► Factor Misallocation: Restuccia & Rogerson (2008), Hsieh & Klenow (2009, 2014), Midrigan & Xu (2013), Hsieh Hurst Jones Klenow (2016), Garcia-Santana & Pijoan-Mas (2014)
 - Multi-sector models with linkages: Jones (2011a,b), Bartelme and Gorodnichenko (2016), Boehm (2017), Ciccone and Caprettini (2016), Liu (2016), Bigio and Lao (2016), Caliendo, Parro, Tsyvinski (2017), Tang and Krishna (2017)
- Firm heterogeneity and linkages in GE: Oberfield (2018), Eaton, Kortum, and Kramarz (2016), Lim (2016), Lu Mariscal Mejia (2016), Chaney (2015), Kikkawa, Mogstad, Dhyne, Tintelnot (2017), Acemoglu & Azar (2018), Kikkawa (2017)
 - Sourcing patterns: Costinot Vogel Wang (2012), Fally Hillberry (2017), Antras de Gortari (2017), Antras Fort Tintelnot (2017)
- Aggregation properties of production functions: Houthakker (1955), Jones (2005), Lagos (2006), Mangin (2015)
- Courts and economic performance: Johnson, McMillan, Woodruff (2002), Chemin (2012), Acemoglu and Johnson (2005), Nunn (2007), Levchenko (2007), Antras Acemoglu Helpman (2007) Laeven and Woodruff (2007), Ponticelli and Alencar (2016), Amirapu (2017)

Data & Reduced-form Regressions

Data

- Indian Annual Survey of Industries (ASI), 2001-2013
 - ▶ All manufacturing plants with > 100 employees, 1/5 of plants between 20(10) 100
 - ▶ Drop plants without inputs, not operating, extreme materials share
 - $ightharpoonup \sim 25,000$ plants per year

Data

- ▶ Indian Annual Survey of Industries (ASI), 2001-2013
 - All manufacturing plants with > 100 employees, 1/5 of plants between 20(10) 100
 - Drop plants without inputs, not operating, extreme materials share
 - $ightharpoonup \sim 25,000$ plants per year

(c) Input mixes for Bleached Cotton Cloth (63303)

(d) Input mixes for Polished Diamonds (92104)

Data

- ► Court Quality: Average age of pending cases Correlation with GDP/capita
 - Calculated from microdata of pending high court cases
 - Best states: 1 year, worst states: 4.5 years
- Standardized vs. Relationship-specific (Rauch)
 - Standardized ≈ sold on an organized exchange, ref. price in trade pub.
 - ▶ Relationship-specific ≈ everything else
 - ▶ Standardized: 30.1% of input products, 50.0% of spending on intermediates
- We exclude energy, services (treat those as primary inputs)
- ► For reduced form evidence, use single-product plants

Slower courts + Industry depends on Rel.spec. Inputs ⇒ Lower Materials Cost Share

	Dependent variable: Materials Expenditure in Total Co					Cost
	(1)	(2)	(3)	(4)	(5)	(6)
Avg Age Of Civil Cases * Rel. Spec.	-0.0167** (0.0046)	-0.0155* (0.0066)	-0.0165* (0.0069)			
LogGDPC * Rel. Spec.		-0.00159 (0.012)	-0.0130 (0.015)			
Rel. Spec. × State Controls			Yes			Yes
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
R^2 Observations	0.480 208527	0.482 199544	0.484 196748			

Standard errors in parentheses, clustered at the state \times industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Endogeneity: IV

- ► Since independence: # judges based on state population
- ⇒ backlogs have accumulated over time
- ▶ But: new states have been created, with new high courts and clean slate

Slower courts + Industry depends on Rel.spec. Inputs ⇒ Lower Materials Cost Share

	Dependent variable: Materials Expenditure in Total Cost						
	(1)	(2)	(3)	(4)	(5)	(6)	
Avg Age Of Civil Cases * Rel. Spec.	-0.0167** (0.0046)	-0.0155* (0.0066)	-0.0165* (0.0069)	-0.0156 ⁺ (0.0085)	-0.0206* (0.0098)	-0.0237* (0.0094)	
LogGDPC * Rel. Spec.		-0.00159 (0.012)	-0.0130 (0.015)		-0.00836 (0.016)	-0.0230 (0.018)	
Rel. Spec. × State Controls			Yes			Yes	
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
Estimator	OLS	OLS	OLS	IV	IV	IV	
R ² Observations	0.480 208527	0.482 199544	0.484 196748	0.480 208527	0.482 199544	0.484 196748	

Standard errors in parentheses, clustered at the state \times industry level.

▶ Moving from avg age of 1 year to 4 years: \Rightarrow M-share $\downarrow 4.7 - 6.2pp$ more in industries that rely on relationship goods than in industries that rely on standardized inputs

 $^{^{+}}$ p < 0.10. * p < 0.05. ** p < 0.01

Slow courts ⇒ tilt input mix towards homogeneous inputs

		Dependent variable: $X_j^R/(X_j^R+X_j^H)$						
	(1)	(2)	(3)	(4)	(5)	(6)		
Avg age of Civil HC cases	-0.00547* (0.0022)	-0.00621** (0.0023)	-0.00530* (0.0024)	-0.0144** (0.0044)	-0.0146** (0.0044)	-0.0167* (0.0045)		
Log district GDP/capita		-0.00389 (0.0045)	-0.00384 (0.0046)		$-0.00912^{+} \ (0.0051)$	-0.00980 (0.0051)		
State Controls			Yes			Yes		
5-digit Industry FE	Yes	Yes	Yes	Yes	Yes	Yes		
Estimator	OLS	OLS	OLS	IV	IV	IV		
R ² Observations	0.441 225590	0.446 204031	0.449 199339	0.441 225590	0.446 204031	0.449 199339		

Standard errors in parentheses, clustered at the state \times industry level.

Full set of controls

Time Variation

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Vertical Distance Between Goods

- 1. For a given product ω , construct the materials cost shares of industry ω on each input
- 2. Recursively construct the cost shares of the input industries (and inputs' inputs, etc...), excluding all products that are further downstream.
- 3. Vertical distance between ω and ω' is the average number of steps between ω and ω' , weighted by the product of the cost shares.

 \Rightarrow Shirts \leftarrow Cloth: 1; Shirts \leftarrow Yarn: $0.3 \times 1 + 0.7 \times 1.0 \times 2 = 1.7$

Vertical Distance Between Goods – Examples

Table: Vertical distance examples for 63428: Cotton Shirts

Input group	Average vertical distance
Fabrics Or Cloths	1.67
Yarns	2.78
Raw Cotton	3.55

Table: Vertical distance examples for 73107: Aluminium Ingots

ASIC code	Input description	Vertical distance
73105	Aluminium Casting	1.23
73104	Aluminium Alloys	1.46
73103	Aluminium	1.92
22301	Alumina (Aluminium Oxide)	2.92
31301	Caustic Soda (Sodium Hydroxide)	3.81
23107	Coal	3.85
22304	Bauxite, raw	3.93

Courts slow + Industry depends on Rel.spec. Inputs ⇒ Plants more vertically integrated

	Dependent variable: Vertical Distance of Inputs from Out					Output
	(1)	(2)	(3)	(4)	(5)	(6)
Avg Age Of Civil Cases * Rel. Spec.	0.0195 ⁺ (0.011)	0.0341* (0.014)	0.0320* (0.014)	0.0292 (0.019)	0.0414 ⁺ (0.022)	0.0437* (0.021)
LogGDPC * Rel. Spec.		$0.0517^{+}\ (0.029)$	0.0309 (0.034)		$0.0613^{+}\ (0.037)$	0.0471 (0.040)
Rel. Spec. × State Controls			Yes			Yes
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
R ² Observations	0.443 163334	0.451 156191	0.453 154021	0.443 163334	0.451 156191	0.453 154021

Standard errors in parentheses, clustered at the state × industry level.

State characteristics controls Industry characteristics controls

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Model

Goals

- Weak contract enforcement like tax on certain inputs
 - Main identifying assumption: slow courts do not distort use of homog. inputs
- But many ways to avoid problem...
 - Informal enforcement, relatives
 - Long term relationship
 - ► Switch to different mode of production
 - ⇒ ...so distortion might not show up as a wedge
- Our approach: Model these choices
 - Multiple ways of producing using different suppliers
 - Distortions differ across suppliers
 - Use structure to back out distortions from observed input use
- Things we don't want to attribute to misallocation
 - Heterogeneity in production technology across plants
 - Heterogeneity across locations in
 - Preferences over goods
 - Prevalence of various industries
 - Measurement error

Model

- ▶ Many industries indexed by $\omega \in \Omega$
 - Differ by suitability for consumption vs. intermediate use
 - Rubber useful as input for tires, not textiles
- Mass of measure J_{ω} of firms (varieties) in industry ω
- ► Household has nested CES preferences

$$U = \left[\sum_{\omega} v_{\omega}^{\frac{1}{\eta}} U_{\omega}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \qquad U_{\omega} = \left[\int_{0}^{J_{\omega}} u_{\omega j}^{\frac{\varepsilon_{\omega}-1}{\varepsilon_{\omega}}} dj \right]^{\frac{\varepsilon_{\omega}}{\varepsilon_{\omega}-1}}$$

Production

Firms can use different production functions ("recipes") to produce output ω :

Recipe $\rho \in \varrho(\omega)$: production function $G_{\omega\rho}(\cdot)$

- uses labor, set of intermediate inputs $\hat{\Omega}^{\rho} = \{\hat{\omega}_1, ..., \hat{\omega}_n\}$
- $G_{\omega\rho}(\cdot)$ is CRS, inputs are complements

Production

Firms can use different production functions ("recipes") to produce output ω :

Recipe $\rho \in \varrho(\omega)$: production function $G_{\omega\rho}(\cdot)$

- uses labor, set of intermediate inputs $\hat{\Omega}^{\rho} = \{\hat{\omega}_1, ..., \hat{\omega}_n\}$
- $ightharpoonup G_{\omega\rho}(\cdot)$ is CRS, inputs are complements

Techniques: sets of productivity and supplier draws, specific to a recipe ρ . Each of them contains

- ightharpoonup a set of potential suppliers $S_{\hat{\omega}}(\phi)$
- ▶ for each supplier:
 - ▶ an input-augmenting productivity draw: common component $b_{\hat{\omega}}(\phi)$, supplier-specific component z_s
 - ightharpoonup a distortion t_{\times} (see next slide)

$$y_b = G_{\omega\rho}\bigg(b_l l, b_{\hat{\omega}_1} z_{s_1} x_{\hat{\omega}_1}, ..., b_{\hat{\omega}_n} z_{s_n} x_{\hat{\omega}_n}\bigg)$$

Firms minimize cost over all techniques (from all recipes)

Distortions

- ▶ If input $\hat{\omega}$ is relationship-specific: distortion $t_x \in [1, \infty)$, CDF $T(t_x)$
- lf input $\hat{\omega}$ is homogeneous: no distortion

Weak Enforcement:

- Equivalent to tax (paid with labor) that is thrown in ocean Why?
- ► One Microfoundation Details
 - ► Goods can be customized, but holdup problem
 - Court quality determines size of loss before contract is enforced
- Interpretation: $t_x = \min \{t_x^{formal}, t_x^{informal}\}$
- ightharpoonup Labor wedge: t_l , common to all firms
 - Workers can steal, but stealing effort is wasteful

Functional Form Assumptions

 \blacktriangleright # suppliers for input $\hat{\omega}$ with match specific productivity > z is Poisson with mean

$$z^{-\zeta_{\hat{\omega}}}, \qquad \zeta_{\hat{\omega}} \in \{\zeta_R, \zeta_H\}$$

Among those of type ω , # techniques for recipe ρ with each productivity better than $\{b_l, b_{\hat{\omega}_1}, ..., b_{\hat{\omega}_n}\}$ is \sim Poisson with mean

$$B_{\omega\rho}b_l^{-\beta_l^\rho}b_{\hat{\omega}_1}^{-\beta_{\hat{\omega}_1}^\rho}...b_{\hat{\omega}_n}^{-\beta_{\hat{\omega}_n}^\rho}, \qquad \qquad \beta_l^\rho+\beta_{\hat{\omega}_1}^\rho+...+\beta_{\hat{\omega}_n}^\rho=\gamma$$

Define normalized tail exponents

$$\alpha_L^{\rho} \equiv \frac{\beta_I^{\rho}}{\gamma}, \qquad \qquad \alpha_{\hat{\omega}_i}^{\rho} \equiv \frac{\beta_{\hat{\omega}_i}^{\rho}}{\gamma} \qquad \Rightarrow \qquad \alpha_L^{\rho} + \sum_i \alpha_{\hat{\omega}_i}^{\rho} = 1$$

$$\alpha_R^\rho \equiv \sum_{\hat{\omega} \in \hat{\Omega}_P^\rho} \alpha_{\hat{\omega}}^\rho \qquad \qquad \alpha_H^\rho \equiv \sum_{\hat{\omega} \in \hat{\Omega}_H^\rho} \alpha_{\hat{\omega}}^\rho \qquad \Rightarrow \qquad \alpha_L^\rho + \alpha_H^\rho + \alpha_R^\rho = 1$$

Aggregation

Proposition: Among firms that produce ω , the fraction of firms with unit cost $\geq c$ is

$$e^{-(c/C_{\omega})^{\gamma}}$$

where

$$C_{\omega} = \left\{ \sum_{\rho \in \varrho(\omega)} \kappa_{\omega\rho} B_{\omega\rho} \left((t_{x}^{*})^{\alpha_{R}^{\rho}} (t_{l})^{\alpha_{L}^{\rho}} \prod_{\hat{\omega} \in \hat{\Omega}^{\rho}} C_{\hat{\omega}}^{\alpha_{\hat{\omega}}^{\rho}} \right)^{-\gamma} \right\}^{-1/\gamma}$$

$$t^{*} = \left\{ \int t_{x}^{-\zeta_{R}} dT(x) \right\}^{-1/\zeta_{R}}$$

$$\kappa_{\omega\rho} = \text{constant}$$

Proposition: Among firms in ω using recipe ρ , share of total exp. on:

$$\mathsf{Labor} \colon \frac{\alpha_{\mathsf{L}}^{\rho} + \left(1 - \frac{1}{\overline{t}_{\mathsf{x}}}\right) \alpha_{\mathsf{R}}^{\rho}, \quad \hat{\omega} \in \hat{\Omega}_{\rho}^{R} \colon \frac{\alpha_{\hat{\omega}}^{\rho}}{\overline{t}_{\mathsf{x}}}, \quad \hat{\omega} \in \hat{\Omega}_{\rho}^{H} \colon \alpha_{\hat{\omega}}^{\rho},$$

where
$$ar{t}_{\scriptscriptstyle X} \equiv \left[\int t_{\scriptscriptstyle X}^{-1} d ilde{T}(t_{\scriptscriptstyle X})
ight]^{-1}$$

Counterfactual?

Question:

▶ Change wedge distribution from T to T', what is impact on agg. output?

From data, need two sets of shares

- ▶ HH_{ω} : share of the household's spending on good ω
- ▶ Among those of type ω , let $R_{\omega\rho}$ be the share of total revenue of those that use recipe ρ .

$$\begin{split} \frac{U'}{U} &= \left(\sum_{\omega} H H_{\omega} \left(\frac{C'_{\omega}}{C_{\omega}}\right)^{\eta - 1}\right)^{\frac{1}{\eta - 1}} \\ \left(\frac{C'_{\omega}}{C_{\omega}}\right)^{-\gamma} &= \sum_{\rho \in \varrho(\omega)} R_{\omega\rho} \left[\left(\frac{t_{x}^{*'}}{t_{x}^{*}}\right)^{\alpha_{R}^{\rho}} \prod_{\hat{\omega} \in \Omega^{\rho}} \left(\frac{C'_{\hat{\omega}}}{C_{\hat{\omega}}}\right)^{\alpha_{\hat{\omega}}^{\rho}}\right]^{-\gamma} \end{split}$$

Identification

- Same across states: Recipe technology
 - Production function (G_{ρ})
 - Shape of technology draws $(\beta_I^{\rho}, \{\beta_{\hat{\omega}}^{\rho}\})$
 - Shape of match-specific productivity draws, (ζ)
- Different across states:
 - ▶ Measure of producers of each type (J_{ω})
 - Household tastes (v_{ω})
 - ightharpoonup Comparative/absolute advantage: (recipe productivity, $B_{\omega\rho}$)
 - Distribution of wedges (T)
- Main identifying assump.: Slow courts do not distort use of homog. inputs
- Other Assumptions:
 - No trade across states
 - L is labor equipped with other primary inputs (capital, energy, services)

Identifying Recipes in the Data

Cluster analysis uncovers different ways to produce a product Example: cloth, bleached, cotton (code 63303)

Recipe	Description	Value, %	Ν	Recipe	Description	Value, %	Ν
# 1	Yarn bleached, cotton	98	50	# 3	Yarn unbleached, cotton	> 99	19
	Grey cloth (bleached / unbleached)	2			Colour, chemicals	< 1	
	Thread, others, cotton	< 1			Gen. purpose machinery, n.e.c	< 1	
	Colour (r.c) special blue	< 1			Dye, vat	< 1	
# 2	Yarn dyed, cotton	41	21	# 4	Grey cloth	42	16
	Yarn, finished / processed (knitted)	23			Colour, chemicals	10	
	Yarn bleached, cotton	16			Yarn dyed, synthetic	10	
	Yarn, grey-cotton	3			Kapas (cotton raw)	5	
	Chemical & allied substances, n.e.c	3			Grey cotton - others	5	
	Fabrics, cotton	3			Fabrics, cotton	4	
	Thread, others, cotton	2			Cotton raw, ginned & pressed	4	
	Colour, chemicals	2			Colour, ink, n.e.c	4	
	Dye stuff	2			Other	16	
	Other	5					

Algorithm

Moments for GMM

Proposition: Let s_{Rj} , s_{Hj} , s_{Lj} be firm j's revenue shares.

 \blacktriangleright The first moments of revenue shares among firms that use recipe ρ satisfy:

$$\mathbb{E}\left[\overline{t}_{x}^{d}\frac{s_{Rj}}{\alpha_{R}^{\rho}} - \frac{s_{Hj}}{\alpha_{H}^{\rho}}\right] = 0$$

$$\mathbb{E}\left[\frac{s_{Lj} + s_{Rj}}{\alpha_{L}^{\rho} + \alpha_{R}^{\rho}} - \frac{s_{Hj}}{\alpha_{H}^{\rho}}\right] = 0$$

- ⇒ Identification of wedges
 - from within-recipes variation instead of within-industries
 - from first moments only

Moments for GMM

Proposition: Let s_{Rj} , s_{Hj} , s_{Lj} be firm j's revenue shares.

 \blacktriangleright The first moments of revenue shares among firms that use recipe ρ satisfy:

$$\mathbb{E}\left[\overline{t}_{x}^{d}\frac{s_{Rj}}{\alpha_{R}^{\rho}} - \frac{s_{Hj}}{\alpha_{H}^{\rho}}\right] = 0$$

$$\mathbb{E}\left[\frac{s_{Lj} + s_{Rj}}{\alpha_{L}^{\rho} + \alpha_{R}^{\rho}} - \frac{s_{Hj}}{\alpha_{H}^{\rho}}\right] = 0$$

- ⇒ Identification of wedges
 - ▶ from within-recipes variation instead of within-industries
 - from first moments only

lacktriangle Assume: Wedges drawn from inverse Pareto distribution $T_d(t_x)=t_x^{ au_d}$

$$\bar{t}_{x}^{d} = 1 + \frac{1}{\zeta_{R} + \tau_{x}^{d}}$$

To back out τ_{x}^d , need ζ_{R}

$$\log(X_{i\omega}^{DOM}/X_{i\omega}^{IMP}) = \zeta \log(1 + \mathsf{tariff}_{i\omega t}) + \lambda_t + \lambda_{i\omega} + \eta_{i\omega t}$$

	Depender	Dependent variable: $\log(X_{\omega\hat{\omega}t}^{DOM}/X_{i\omega\hat{\omega}t}^{IMP})$					
	(1)	(2)	(3)				
$\log(1+\iota_{\hat{\omega}t})$	0.617 (0.44)	0.218 (0.77)	1.209* (0.52)				
$\begin{array}{c} \text{Industry} \times \text{Input FE} \\ \text{Year FE} \end{array}$	Yes Yes	Yes Yes	Yes Yes				
Level	5-digit	5-digit	5-digit				
Sample	All inputs	R only	H only				
R ² Observations	0.601 23692	0.580 12002	0.623 11690				

Robust errors in parentheses, clustered at the state \times industry level. Sample $\,$

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Intermediate input wedges are correlated with court quality

Gains From Improving Courts

Counterfactual sets court quality to 1. Impose $\gamma = 1$ (or first-order approx).

1 year faster $\Rightarrow \approx 2.5\%$ higher income per capita

Conclusion

- Huge amount of heterogeneity in intermediate input use, even within narrow industries
 - Some of it is due to differences in organization
 - ▶ ⇒ Recipes
 - Some of it is due to differences in location
 - ▶ ⇒ Identify this as wedges (if asymmetric in intermediate inputs)
- Framework for studying stochastic frictions in an economy with input-output linkages
- Applied to the formal Indian manufacturing sector, suggests that courts are important

Slow Courts

- Contract disputes between buyers and sellers
- District courts can de-facto be bypassed, cases would be filed in high courts
- Court quality measure: average age of pending civil cases in high court

Measurement: Quality of Closest Court, OLS

	Depen	dent variable: 1	Materials Expenditu	ıre in Total Cost
	(1)	(2)	(3)	(4)
Avg age of Civil HC cases	0.00991** (0.0035)			
Avg Age Of Civil Cases * Rel. Spec.	-0.0151** (0.0055)	-0.0155* (0.0066)		
Avg age of Civil HC cases (adj.)			0.0172** (0.0037)	
Adjusted Court Quality * Rel. Spec.			-0.0328** (0.0064)	-0.0282** (0.0064)
Log district GDP/capita	0.00694 ⁺ (0.0038)		0.00578 (0.0038)	
LogGDPC * Rel. Spec.		-0.00159 (0.012)		0.00390 (0.0093)
5-digit Industry FE District FE	Yes	Yes Yes	Yes	Yes Yes
Estimator	OLS	OLS	OLS	OLS
R ² Observations	0.461 201505	0.482 199544	0.461 201505	0.482 199544

Standard errors in parentheses, clustered at the state \times industry level. + p < 0.10, * p < 0.05, ** p < 0.01

(Note: 'adjusted' court quality is the minimum avg. age in the state's own HC and a neighboring HC, if that neighboring HC has a bench that is closer than the closest of your own HC's benches.)

Measurement: Quality of Closest Court, IV

	Depen	dent variable:	Materials Expendit	ure in Total Cost
	(1)	(2)	(3)	(4)
Avg age of Civil HC cases	-0.00381 (0.0060)			
Avg Age Of Civil Cases * Rel. Spec.	-0.0283** (0.010)	-0.0206* (0.0098)		
Avg age of Civil HC cases (adj.)			-0.00972 (0.013)	
Adjusted Court Quality * Rel. Spec.			-0.0482* (0.021)	-0.0373* (0.018)
Log district GDP/capita	-0.00535 (0.0039)		-0.00616 (0.0040)	
LogGDPC * Rel. Spec.		-0.00836 (0.016)		-0.000887 (0.013)
5-digit Industry FE District FE	Yes	Yes Yes	Yes	Yes Yes
Estimator	IV	IV	IV	IV
R ² Observations	0.457 201505	0.482 199544	0.453 201505	0.482 199544

Standard errors in parentheses, clustered at the state \times industry level. + p < 0.10, * p < 0.05, ** p < 0.01

Substituting with imports when courts are bad

	R-Imports	s in Total R	H-Imports	s in Total H
	(1)	(2)	(3)	(4)
Avg age of Civil HC cases	0.0193** (0.0023)	0.00925** (0.0018)	0.0112** (0.0016)	0.00440** (0.0013)
Log district GDP/capita		0.0224** (0.0027)		0.0180** (0.0019)
Trust in other people (WVS)		0.110** (0.012)		0.0564** (0.011)
Language Herfindahl		0.0162 (0.019)		-0.0292** (0.0093)
Caste Herfindahl		0.0584* (0.028)		0.0171 (0.013)
Corruption		0.0315 (0.028)		-0.0912** (0.022)
5-digit Industry FE	Yes	Yes	Yes	Yes
Estimator	IV	IV	IV	IV
R ² Observations	0.227 168120	0.251 148165	0.180 168953	0.197 149623

Standard errors in parentheses, clustered at the state \times industry level.

Note: sample is smaller because some plants don't use relspec. or homog. inputs.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Materials Share: state characteristics controls

	Dependent	variable: Mat	terials Expend	iture in Total Cost
	(1)	(2)	(3)	(4)
Avg Age Of Civil Cases * Rel. Spec.	-0.0167** (0.0046)	-0.0165* (0.0069)	-0.0156 ⁺ (0.0085)	-0.0237* (0.0094)
LogGDPC * Rel. Spec.		-0.0130 (0.015)		-0.0230 (0.018)
Trust * Rel. Spec.		0.0295 (0.038)		0.0323 (0.038)
Language HHI * Rel. Spec.		0.0601 (0.040)		0.0625 (0.039)
Caste HHI * Rel. Spec.		0.126* (0.053)		0.133* (0.053)
Corruption * Rel. Spec.		0.117 (0.11)		0.129 (0.11)
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	IV	IV
R ² Observations	0.480 208527	0.484 196748	0.480 208527	0.484 196748

Standard errors in parentheses, clustered at the state \times industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Composition of the Input Mix: full set of controls

	Dependent variable: $X_j^R/(X_j^R+X_j^H)$					
	(1)	(2)	(3)	(4)		
Avg age of Civil HC cases	-0.00547* (0.0022)	-0.00530* (0.0024)	-0.0144** (0.0044)	-0.0167** (0.0045)		
Log district GDP/capita		-0.00384 (0.0046)		-0.00980 ⁺ (0.0051)		
Trust		-0.00740 (0.018)		-0.00160 (0.019)		
Language HHI		-0.0553** (0.021)		-0.0567** (0.022)		
Caste HHI		-0.0428 (0.028)		-0.0525 ⁺ (0.029)		
Corruption		-0.0676 (0.044)		-0.0844 ⁺ (0.045)		
5-digit Industry FE	Yes	Yes	Yes	Yes		
Estimator	OLS	OLS	IV	IV		
R ² Observations	0.441 225590	0.449 199339	0.441 225590	0.449 199339		

Standard errors in parentheses, clustered at the state \times industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Vertical Distance: state characteristics controls

	Depend	lent variable:	: Vertical [Distance of I	Inputs from	Output
	(1)	(2)	(3)	(4)	(5)	(6)
Avg age of Civil HC cases	0.00144 (0.0070)	-0.0103 (0.0076)		-0.00490 (0.011)	-0.00168 (0.011)	
Avg Age Of Civil Cases * Rel. Spec.	0.0230 ⁺ (0.012)	0.0387** (0.013)	0.0320* (0.014)	0.0294 (0.020)	0.0459* (0.020)	0.0437* (0.021)
Log district GDP/capita		-0.0350** (0.0072)			-0.0361** (0.0073)	
LogGDPC * Rel. Spec.		0.0328 ⁺ (0.017)	0.0309 (0.034)		0.0625** (0.020)	0.0471 (0.040)
Trust		0.0401 (0.055)			0.0357 (0.056)	
Language Herfindahl		0.0559 (0.054)			0.0563 (0.054)	
Caste Herfindahl		0.0511 (0.069)			0.0541 (0.068)	
Corruption		-0.324* (0.16)			-0.295 ⁺ (0.16)	
Trust * Rel. Spec.		-0.160 ⁺ (0.091)	-0.0941 (0.090)		-0.159 ⁺ (0.092)	-0.0979 (0.091)
Language HHI * Rel. Spec.		-0.120 (0.095)	-0.0885 (0.092)		-0.131 (0.095)	-0.0928 (0.093)
Caste HHI * Rel. Spec.		-0.133 (0.13)	-0.202 ⁺ (0.12)		-0.155 (0.13)	-0.213 ⁺ (0.12)
Corruption * Rel. Spec.		0.570* (0.26)	0.463 ⁺ (0.25)		0.476 ⁺ (0.26)	0.442 ⁺ (0.25)
5-digit Industry FE District FE	Yes	Yes	Yes Yes	Yes	Yes	Yes Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
R ² Observations	0.432 163344	0.443 154028	0.453 154021	0.432 163344	0.443 154028	0.453 154021

Standard errors in parentheses, clustered at the state \times industry level.

 $^{^{+}}$ $\rho < 0.10$, $^{+}$ $\rho < 0.05$, ** $\rho < 0.01$

Materials Share: industry characteristics controls

	Deper	ndent variable:	Materials Expe	nditure in Total Cost
	(1)	(2)	(3)	(4)
Avg Age Of Civil Cases * Rel. Spec.	-0.0165* (0.0069)	-0.0137* (0.0064)	-0.0237* (0.0094)	-0.0162 ⁺ (0.0092)
Capital Intensity * Avg. age of cases		-0.103** (0.037)		0.0139 (0.064)
Industry Wage Premium * Avg. age of cases		-0.00139 ⁺ (0.00084)		-0.00349* (0.0015)
Industry Contract Worker Share * Avg. age of cases		-0.0105 (0.029)		0.0192 (0.039)
Upstreamness * Avg. age of cases		0.00222 (0.0015)		0.00657* (0.0032)
Method	OLS	OLS	IV	IV
State × Rel. Spec. Controls	Yes	Yes	Yes	Yes
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes
R ² Observations	0.484 196748	0.484 196748	0.484 196748	0.484 196748

Standard errors in parentheses, clustered at the state × industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

[&]quot;State × Rel. Spec. controls" are interactions of GDP/capita, trust, language herfindahl, caste herfindahl, and corruption with relationship-specificity.

Vertical Distance: industry characteristics controls

	Depende	nt variable:	Vertical Dist	tance of Inputs from Output
	(1)	(2)	(3)	(4)
Avg Age Of Civil Cases * Rel. Spec.	0.0320* (0.014)	0.0261 ⁺ (0.014)	0.0437* (0.021)	0.0253 (0.022)
Capital Intensity * Avg. age of cases		-0.00400 (0.073)		0.213 (0.15)
Industry Wage Premium * Avg. age of cases		0.00329 (0.0021)		0.0106* (0.0043)
Industry Contract Worker Share * Avg. age of cases		-0.0151 (0.025)		0.00351 (0.048)
Upstreamness * Avg. age of cases		-0.00436 (0.0036)		-0.00169 (0.0070)
Method	OLS	OLS	IV	IV
State \times Rel. Spec. Controls	Yes	Yes	Yes	Yes
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes
R ² Observations	0.453 154021	0.453 154021	0.453 154021	0.453 154021

Standard errors in parentheses, clustered at the state \times industry level.

[&]quot;State \times Rel. Spec. controls" are interactions of GDP/capita, trust, language herfindahl, caste herfindahl, and corruption with relationship-specificity.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Summary Stats, Recipe Classification

	Count
Products (5-digit ASIC)	4,530
Products with \geq 3 plants	3,573
Products with ≥ 5 plants	3,034
Recipes	18,838
Recipes with \geq 3 plants	10,985
Recipes with \geq 5 plants	7,894
Avg. plants per recipe	11.8
SD plants per recipe	41.3

[&]quot;Products" are the 5-digit product codes in our data, "Recipes" are the output from our clustering procedure. Plant counts include only single-product plants.

Wedges and Enforcement

- ► Three ways weak enforcement might alter shares
 - 1. Wasted resources
 - 2. Quantity restrictions
 - 3. Higher effective input price
- Common feature: Wedge between shadow values of buyer and supplier
- Prediction of quantity restriction:
 - Larger wedges imply larger "markups"
 - But we do not see this

$$\frac{\text{revenue}}{\text{cost}} = \underbrace{\beta}_{<0} \text{Court Quality} \times \text{specificity } + \epsilon$$

Sales/Cost Ratio

Table: Sales over Total Cost

	Dependent variable: Sales/Total Cost				
	(1)	(2)	(3)		
Avg Age Of Civil Cases * Rel. Spec.	-0.0353** (0.0097)	-0.0347** (0.0094)	-0.0345** (0.0093)		
Plant Age		0.000574** (0.00014)	$ 0.000258^+ \\ (0.00014) $		
Log Employment			0.0314** (0.0016)		
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes		
Estimator	OLS	OLS	OLS		
R ² Observations	0.114 208527	0.110 205109	0.115 204767		

Standard errors in parentheses $^+$ p < 0.10, * p < 0.05, ** p < 0.01

Sales/Cost Ratio, IV

Table: Sales over Total Cost

	Dependen	Dependent variable: Sales/Total Cos				
	(1)	(2)	(3)			
Avg Age Of Civil Cases * Rel. Spec.	-0.0494* (0.022)	-0.0496* (0.022)	-0.0508* (0.022)			
Plant Age		0.000575** (0.00014)	$ 0.000259^+ \\ (0.00014) $			
Log Employment			0.0314** (0.0016)			
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes			
Estimator	IV	IV	IV			
R ² Observations	0.114 208527	0.110 205109	0.115 204767			

Standard errors in parentheses $^+$ p < 0.10, * p < 0.05, ** p < 0.01

Higher Price?

- $lackbox{ Our baseline finding: distortion } \uparrow \qquad \Rightarrow \qquad \mathsf{materials share} \downarrow$
- If wedge acts like higher price, requires materials, primary inputs be substitutes
- Outside evidence: Close to Cobb Douglas, maybe complements
 - Oberfield-Raval (2018)
 - ► Atalay (2018)
- Can check with Indian Data
 - ▶ If cost of materials ↑, what happens to materials share?
 - ▶ If complements, ↑
 - ▶ If substitutes, ↓
 - What if suppliers rely more on rel. spec. inputs?

Elasticity of substitution at plant level

Dependence on R inputs of input industries as cost shifter

	Dependen	t variable: N	Naterials Expe	enditure in Total Cost
	(1)	(2)	(3)	(4)
Avg Age Of Civil Cases * Rel. Spec.	-0.0147 ⁺ (0.0080)	-0.0174 ⁺ (0.0098)	-0.0397** (0.013)	-0.0421** (0.014)
LogGDPC * Rel. Spec.		-0.00849 (0.013)		-0.0178 (0.017)
Avg Age Of Civ. Cases * Rel. Spec. of Upstream Sector	-0.00360 (0.011)	0.00265 (0.012)	0.0450* (0.019)	0.0345 ⁺ (0.019)
Trust * Rel. Spec.		0.0250 (0.038)		0.0287 (0.038)
Language HHI * Rel. Spec.		0.0346 (0.033)		0.0349 (0.033)
Caste HHI * Rel. Spec.		0.109* (0.050)		0.110* (0.050)
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Estimator	OLS	OLS	IV	IV
R ² Observations	0.480 208527	0.484 196748	0.480 208527	0.484 196748

Standard errors in parentheses, clustered at the state × industry level.

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Size and Age

Table: Plant Age and Size

	Dependent variable: Mat. Exp in Total Cost				
	(1)	(2)	(3)		
Plant Age	-0.000733** (0.000063)		-0.000718** (0.000061)		
Log Employment		-0.00255** (0.00085)	-0.00171* (0.00082)		
5-digit Industry FE District FE	Yes Yes	Yes Yes	Yes Yes		
Estimator					
R ² Observations	0.488 211228	0.487 215688	0.489 210876		

Standard errors in parentheses

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Wedges and Plant Characteristics

Table: Wedges and Plant Characteristics

	Age	Size	Multiproduct	# Products
	(1)	(2)	(3)	(4)
Avg Age Of Civil Cases * Rel. Spec.	0.620 ⁺	-0.0253	-0.0121	-0.0580
	(0.32)	(0.040)	(0.0076)	(0.037)
5-digit Industry FE	Yes	Yes	Yes	Yes
District FE	Yes	Yes	Yes	Yes
R ²	0.214	0.339	0.301	0.295
Observations	353392	359820	360316	360316

Wedges and Enforcement

Market wage: w wage in excess of stealing

- If worker steals ψ' units of output, needs to be paid $g'(\psi')w$
- ▶ If supplier customizes incompletely by ψ^{x} , needs to be paid $g^{x}(\psi^{x})\lambda_{s}$
- ▶ Contract specifies ψ^I , ψ^X . Workers choose ψ^I , supplier chooses ψ^X

Buyer minimizes cost:

$$\min g_l(\psi_l)wl + g_x(\psi_x)\lambda_s x$$

subject to

$$G\left(z_{l}\min\left\{l,\frac{\tilde{y}_{l}}{\psi_{l}}\right\},z_{x}\min\left\{x,\frac{\tilde{y}_{x}}{\psi_{x}}\right\}\right)-\tilde{y}_{l}-\tilde{y}_{x}\geq y_{b}$$

- Weak enforcement: court only enforces claims in which damage is greater than a multiple $\tau-1$ of transaction.
- ▶ Recover functional form if $g_l(\psi_l), g_x(\psi_x) \rightarrow 1$

Vertical Distance

- 1. For a given product ω , construct the materials cost shares of industry ω on each input
- Recursively construct the cost shares of the input industries (and inputs' inputs, etc...), excluding all products that are further downstream.
- 3. Vertical distance between ω and ω' is the average number of steps between ω and ω' , weighted by the product of the cost shares.

 \Rightarrow Shirts \leftarrow Cloth: 1; Shirts \leftarrow Yarn: $0.3 \times 1 + 0.7 \times 1.0 \times 2 = 1.7$

Identifying Recipes in the Data: Cluster Analysis

Use clustering algorithm to group plants that use similar input bundles.

Ward's method:

- 1. Start with the finest partition, i.e. the set of singletons $(\{j\})_{j\in J_{\omega}}$
- 2. In each step, merge two groups to minimize the sum of within-group distances from the mean:

$$\min_{\rho_n \geq \rho_{n-1}} \sum_{\rho \in \rho_n} \sum_{j \in \rho} \sum_{\omega} \left(m_{j\omega} - \overline{m}_{\rho\omega} \right)^2$$

This creates a hierarchy of partitions.

Choose a partition (set of clusters) based on how many clusters you want.

Our implementation: cluster based on 3-digit and 5-digit input shares, pick # clusters based on # observations. Summary stats Back

Time variation: new benches

Two new high court benches during our sample period:

- Dharwad, Gulbarga (Karnataka, July 2008)
- Madurai (Tamil Nadu, July 2004)

	$X^R/Sales$ $s_R - s_H$		${\sf Materials/TotalCost}$	Vert. Distance
	(1)	(2)	(3)	(4)
(New Bench in District) $_d \times (Post)_t$	0.0126**	0.00960	-0.00305	0.00678
	(0.0043)	(0.0076)	(0.0033)	(0.010)
$(New\;Bench\;in\;District)_d \times (Post)_t \times (Rel.Spec)_\omega$			0.0142 (0.010)	-0.0764* (0.031)
$\begin{array}{l} Plant \times Product FE \\ Year FE \end{array}$	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
R ²	0.832	0.824	0.906	0.813
Observations	80427	74696	78462	77995

Time variation: new benches

Figure: Expenditure on rel.spec. inputs in sales

Treated districts vs. non-treated districts. Regression includes firm × product and year FE.

Time variation: new benches

Treated districts vs. non-treated districts. Regression includes firm \times product and year FE.

Robustness: How Finely to Define Recipes

Figure: Regression coefficients for different levels of recipe fineness