Supplementary Material: A Survey on Time-Series Pre-Trained Models

Qianli Ma[†], *Member, IEEE*, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T. Kwok, *Fellow, IEEE*

APPENDIX A RELATED SURVEY ANALYSIS

Among the six surveys focus on time series pre-training, the first web online time of [1] predates ours by three months, while [2]–[6] appeared later. Table I details the differences between these surveys: [1]–[3] focus on obtaining feature representations of time series through label-efficient, self-supervised, and unsupervised scenarios in the pre-training phase, while [4]–[6] explore transferring knowledge from pre-trained natural language models to the time series domain via fine-tuning. Our survey comprehensively analyzes pre-training methods for six tasks: classification, forecasting, clustering, anomaly detection, imputation, and extrinsic regression from supervised, unsupervised, and self-supervised learning perspectives. It also examines the effects of various transfer strategies during fine-tuning and measures the performance of different pre-training methods through extensive experiments.

Table II presents comprehensive statistics on the experimental scope, encompassing 27 distinct models (with a total of 35 models, adjusted by removing duplicates across different downstream tasks), 434 datasets (comprised of 166, 9, and 259 datasets), and 679 transfer learning experiments (calculated as 15 source datasets multiplied by 45 target datasets, plus an additional 4 independent time series scenarios for transfer learning) focused on classification tasks. By reproducing experiments under consistent conditions across many datasets, we offer a more objective evaluation of the performance of various TS-PTMs. These experiments provide guidance for readers in selecting suitable deep learning models or pretraining techniques for the design of pre-training models.

In summarizing the existing literature, Eldele et al. [1] systematically reviewed and analyzed work on learning time series representations in both in-domain and cross-domain settings under label-efficient scenarios with few labeled data and only unlabeled data. Although [1] focuses on pre-training and fine-tuning techniques for time series, it mainly emphasizes RNN- and CNN-based pre-training in label-efficient scenarios.

† Corresponding author: Qianli Ma.

Qianli Ma and Zhen Liu are co-first authors.

Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, and Zhongzhong Yu are with the School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China. E-mail: qianlima@scut.edu.cn; cszhenliu@mail.scut.edu.cn; 982360227@qq.com; stevenhuang12@outlook.com; 489531037@qq.com; yuzzhong2020@foxmail.com.

James T. Kwok is with the Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China. E-mail: jamesk@cse.ust.hk.

In contrast, our survey systematically summarizes pre-training methods based on five deep neural network architectures (RNN, CNN, TCN, Transformer, and GNN) from a transfer learning perspective. Zhang et al. [2] and Meng et al. [3] discuss obtaining time series feature representations through self-supervised or unsupervised learning in the pre-training stage but neglect other pre-training methods and the finetuning process within the transfer learning framework. Jin et al. [4] and Liang et al. [6] reviewed techniques for pretraining Large Language Models (LLMs) for fine-tuning on time series downstream tasks. However, the rationale behind the successful application of LLMs for downstream task finetuning in time series remains to be fully explored. Jin et al. [5] focused on transferring knowledge gained from pretraining LLMs to time series downstream tasks but overlooked leveraging domain-specific knowledge during the pre-training process to obtain appropriate time series feature representations. In contrast to [4]-[6], our survey focuses on the existing time series domain. We validate the importance of maintaining consistency between source and target datasets in time series transfer learning through extensive experiments. This demonstrates that the design of TS-PTMs, utilizing time series domain datasets for pre-training and fine-tuning paradigms, holds significant developmental potential.

APPENDIX B EXPERIMENTAL DETAILS AND RESOURCES

A. Source Datasets, Code and TS-PTMs

In time series domain, the statistics of publicly available benchmark datasets are shown in Table III. Also, the statistics of existing TS-PTMs containing open-source code and the summary of TS-PTMs are shown in Table IV and Table V.

B. Experimental Datasets

In the time series domain, 128 univariate UCR time series datasets [82] and 30 multivariate UEA time series datasets [83] are commonly utilized in time-series classification studies. However, each dataset in the UCR and UEA archives does not contain the validation set employed for hyperparameter selection. For a fair analysis, we first combine the training and test sets for each dataset in UCR and UEA archives. Then, we adopt the five-fold cross-validation strategy to divide the training, validation, and test sets according to a ratio of 60%, 20%, and 20%, respectively. Finally, these repartitioned datasets are used to evaluate the time-series classification task performance. Unlike the time series forecasting task,

TABLE I

COMPARISON OF OUR WORK WITH OTHER RELATED SURVEYS. "✓" INDICATES THAT THE CORRESPONDING SURVEY COVERS A SPECIFIC POINT. A "1" MEANS THE SURVEY FULLY COVERS THE MODEL WITH DETAILED DISCUSSION (FULLY COVERED), WHILE A "0.5" INDICATES PARTIAL COVERAGE (PARTIALLY COVERED) WITH SOME ARTICLES USING THE MODEL. SURVEYS MARKED WITH AN ASTERISK (*) IN THE EXPERIMENTS COLLECTED EXISTING EXPERIMENTAL RESULTS FROM THE LITERATURE BUT DID NOT CONDUCT UNIFORM CODE REPLICATION EXPERIMENTS.

Survey	First Online	Focus	Topic	F	re-training Techn	niques		M	lodel Arc	hitecture		Experiments
	Time	Pre-training	Fine-tuning	Supervised	Unsupervised	Self-supervised	RNN	CNN	TCN	Transformer	GNN	1
Eldele et al. [1]	Feb 2023	✓	✓	 	✓	✓	1	1	0.5	0.5		
Zhang et al. [2]	Jun 2023	✓				✓	1	1		0.5		*
Meng et al. [3]	Aug 2023	✓			✓	✓	1	1		0.5		✓
Jin et al. [4]	Oct 2023	✓	✓				0.5			1	1	
Jin et al. [5]	Feb 2024		✓							1		✓
Liang et al. [6]	Mar 2024	✓	✓	√		✓		1	1	1		
Our Survey	May 2023	√	✓	√	✓	✓	1	1	1	1	1	√

TABLE II

EXPERIMENTAL COMPARISON OF OUR WORK WITH OTHER RELATED SURVEYS. "DATASETS" REFERS TO THE NUMBER OF DATASETS USED IN THE EXPERIMENT. "METHODS" INDICATES THE NUMBER OF COMPARISON METHODS EMPLOYED FOR THE CORRESPONDING TASK. "TRANSFER SETS" REPRESENTS THE NUMBER OF GROUPS UNDERGOING SOURCE DOMAIN-TARGET DOMAIN MIGRATION IN THE TRANSFER LEARNING EXPERIMENT.

Survey	Classification		Forecasting		Anomaly Detection		Transfer Learning		
	Datasets	Methods	Datasets	Methods	Datasets	Methods	Datasets	Methods	Transfer Sets
Meng et al. [3]	15	17	0	0	0	0	0	0	0
Jin et al. [5]	1	1	0	0	0	0	0	0	0
Our Survey	166	13	9	12	259	10	53	4	679

TABLE III Benchmark Datasets in Time-Series Domain

Resource	Description	URL
UCR	128 univariate UCR time series classification datasets	https://www.cs.ucr.edu/ eamonn/time_series_data_2018/
UEA	30 multivariate UEA time series classification datasets	http://www.timeseriesclassification.com/
IHEPC	Individual Household Electric Power Consumption (IHEPC) dataset	https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
XJTU-SU	Run-to-failure data of 15 rolling element bearings	http://biaowang.tech/xjtu-sy-bearing-datasets
MFPT	Bearing Fault Dataset	https://www.mfpt.org/fault-data-sets/
ECG Waveform	Long-term Electrocardiogram (ECG) recordings	https://archive.physionet.org/cgi-bin/atm/ATM
HAR	Human Activity Recognition Using Smartphones Data Set	https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
Sleep-EDF	Sleep Stage Classification	https://github.com/emadeldeen24/TS-TCC
Epilepsy	Epilepsy Seizure Prediction	https://github.com/emadeldeen24/TS-TCC
FD	Fault Diagnosis	https://github.com/emadeldeen24/TS-TCC
EMG	Electromyograms (EMG) measures muscle responses as electrical activity	https://github.com/mims-harvard/TFC-pretraining
ETT	A crucial indicator in the electric power long-term deployment	https://github.com/zhouhaoyi/ETDataset
Electricity	The electricity consumption (Kwh) of 321 clients	https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Traffic	A collection of hourly data from the California Department of Transportation for forecasting	http://pems.dot.ca.gov
Weather	Recorded every 10 minutes, the dataset includes 21 meteorological indicators for forecasting	https://www.bgc-jena.mpg.de/wetter/
Exchange	Records the daily exchange rates of eight different countries from 1990 to 2016	https://github.com/laiguokun/multivariate-time-series-data
ILI	The weekly recorded data of influenza-like illness (ILI) patients for forecasting	https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
TSER	19 time series extrinsic regression datasets	http://tseregression.org/
Yahoo	367 hourly sampled time series with tagged anomaly points	https://webscope.sandbox.yahoo.com/
KPI	Multiple minutely sampled real KPI curves from many internet companies	https://github.com/NetManAIOps/donut/tree/master/sample_data
UCR-AT	250 univariate UCR time series anomaly detection datasets	https://wu.renjie.im/research/anomaly-benchmarks-are-flawed/#ucr-time-series-anomaly-archiv
MSL	Collected by NASA, the dataset reveals the condition of sensors and actuator data	https://github.com/khundman/telemanom
SMAP	Collected by NASA, the dataset presents soil samples and telemetry information	https://github.com/eBay/RANSynCoders
PSM	A public dataset from eBay Server Machines with 25 dimensions	https://github.com/khundman/telemanom
SMD	A five-week-long dataset collected from an internet company compute cluster	https://github.com/NetManAIOps/OmniAnomaly
SWaT	A 51-dimension sensor-based dataset collected from critical infrastructure systems	https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#swat
NIPS-TS-SWAN	A multivariate time series dataset extracted from solar photospheric vector magnetograms	https://github.com/datamllab/tods/tree/benchmark/benchmark
NIPS-TS-GECCO	A drinking water quality dataset for the 'internet of things'	https://github.com/datamllab/tods/tree/benchmark/benchmark

time series classification does not require predicting past and future values of individual series. Further, each dataset in UCR and UEA archives contains several independent time series. Therefore, we can reasonably use a five-fold cross-validation strategy for time series classification. For the time-series forecasting task, like [15], [84], we utilize ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Traffic, Weather, Exchange, and national illness (ILI) datasets for the experimental analysis. In addition, following [15], [22], we employ the Yahoo, KPI, UCR anomaly detection archive, seven multivariate datasets (SMD, MSL, SMAP, PSM, SWAT, NIPS_TS_Swan, and NIPS_TS_Water) for the time-series anomaly detection task.

C. Baselines

Transfer learning has been a significant success in the study of PTMs. Fawaz et al. [7] utilized 85 UCR datasets for time series transfer learning. Firstly, a randomly selected dataset is used as the source dataset to pre-train the Fully Convolutional Networks (FCN) [85] model via the supervised classification task. Then a randomly selected target UCR dataset is fine-tuned on the pre-trained FCN model. Meanwhile, Malhotra et al. [37] employed a symmetric RNN-based encoder-decoder architecture as the backbone. The encoder is first pre-trained using the unsupervised reconstruction task on various UCR datasets as source datasets. Then, the target dataset is fine-tuned on the pre-trained RNN-based encoder. Therefore, in terms of employing transfer learning for time series pre-

TABLE IV
THE OPEN-SOURCE IMPLEMENTATIONS OF TS-PTMS.

Resource	Description	URL				
TL-FCN [7]	Framework: Keras (2018 Big Data)	https://github.com/hfawaz/bigdata18				
CPC [8]	Framework: PyTorch (2018 arXiv)	https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch				
T-Loss [9]	Framework: PyTorch (2019 NeurIPS)	https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries				
SelfTime [10]	Framework: PyTorch (2020 arXiv)	https://github.com/haoyfan/SelfTime				
TNC [11]	Framework: PyTorch (2021 ICLR)	https://github.com/sanatonek/TNC_representation_learning				
Voice2Series [12]	Framework: Tensorflow (2021 ICML)	https://github.com/huckiyang/Voice2Series-Reprogramming				
TS-TCC [13]	Framework: PyTorch (2021 IJCAI)	https://github.com/emadeldeen24/TS-TCC				
TST [14]	Framework: PyTorch (2021 KDD)	https://github.com/gzerveas/mvts_transformer				
TS2Vec [15]	Framework: PyTorch (2022 AAAI)	https://github.com/yuezhihan/ts2vec				
CoST [16]	Framework: PyTorch (2022 ICLR)	https://github.com/salesforce/CoST				
ExpCLR [17]	Framework: PyTorch (2022 ICML)	https://github.com/boschresearch/expclr				
TF-C [18] Framework: PyTorch (2022 NeurIPS)		https://github.com/mims-harvard/TFC-pretraining				
SLVM [19]	Framework: PyTorch (2023 ICLR)	https://github.com/john-x-jiang/meta_ssm				
CLUDA [20]	Framework: PyTorch (2023 ICLR)	https://github.com/oezyurty/CLUDA				
PatchTST [21]	Framework: PyTorch (2023 ICLR)	https://github.com/yuqinie98/PatchTST				
DCdetector [22]	Framework: PyTorch (2023 KDD)	https://github.com/DAMO-DI-ML/KDD2023-DCdetector				
SimMTM [23]	Framework: PyTorch (2023 NeurIPS)	https://github.com/thuml/SimMTM				
STPT [24]	Framework: PyTorch (2023 ICDM)	https://github.com/mhu3/STPT				
TimesURL [25]	Framework: PyTorch (2024 AAAI)	https://github.com/Alrash/TimesURL				
TimeSiam [26]	Framework: PyTorch (2024 ICML)	https://github.com/thuml/TimeSiam				
UP2ME [27]	Framework: PyTorch (2024 ICML)	https://github.com/Thinklab-SJTU/UP2ME				
TSLANet: [28]	Framework: PyTorch (2024 ICML)	https://github.com/emadeldeen24/TSLANet				
MOMENT [29]	Framework: PyTorch (2024 ICML)	https://github.com/moment-timeseries-foundation-model/moment				
Timer [30]	Framework: PyTorch (2024 ICML)	https://github.com/thuml/Large-Time-Series-Model				
MOIRAI [31]	Framework: PyTorch (2024 ICML)	https://github.com/SalesforceAIResearch/uni2ts				
TimesFM [32]	Framework: PyTorch (2024 ICML)	https://github.com/google-research/timesfm				

training, we perform a comparative analysis utilizing a supervised classification transfer strategy and an unsupervised reconstruction transfer strategy.

Recently, TS-PTMs have achieved good performance in TSM tasks. For the time-series classification task, we select T-Loss [9], SelfTime [10], TS-TCC [13], TST [14], TS2Vec [15], and GPT4TS [86] to analyze the performance of TS-PTMs and compare them with the supervised FCN [85], PatchTST [21], and TimesNet [84] model. Meanwhile, we select TS2Vec [15] and CoST [16] as benchmark TS-PTMs methods for the time-series forecasting task. Also, we compare them with supervised benchmark methods in time-series forecasting, including LogTrans [87], TCN [88], Informer [89], and Autoformer [90], where LogTrans, Informer, and Autoformer are end-to-end models based on the Transformer. For the timeseries anomaly detection task, we select TS2Vec [15] as the benchmark TS-PTM method. We compare it with the benchmark methods SPOT [91], DSPOT [91], LSTM-VAE [92], DONUT [93], Spectral Residual (SR) [94], and Anomaly Transformer (AT) [95] in time-series anomaly detection, where AT is a model based on the Transformer.

1) Time-Series Classification: In the time-series classification task, we first compare the performance of FCN, TCN, and Transformer for direct classification on 128 UCR time series datasets. Then, we analyze the classification performance of T-Loss, SelfTime, TS-TCC, TST, and TS2Vec after pre-training on 128 UCR and 30 UEA time series datasets. In addition, for the datasets containing missing values in the UCR and UEA archives, we use the mean-imputation method to fill the divided training, validation, and test sets, respectively. In this work, the classification accuracy of the test set is employed to evaluate classification performance. Experiments are performed on eight 1080Ti GPUs and two 3090 GPUs.

For the running time of the corresponding method, we use the test results on the 3090 GPU.

The specific methods used in this study are described as follows:

FCN: Based on literature [85], we build the model using a three-layer one-dimensional Fully Convolutional Network (FCN) and a one-layer global average pooling layer. We set the FCN structure and parameters based on the open source code from https://github.com/cauchyturing/UCR_Time Series Classification Deep Learning Baseline.

TCN: Based on the open source code of literature [9], we build the Temporal Convolutional Network (TCN) using Pytorch. The original TCN contains ten layers of residual blocks. To compare and analyze the three-layer structure of FCN, we employ a three-layer TCN for comparison experiments. We use the open source code from https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries for TCN structure and parameter setting.

Transformer: Zerveas et al. [14] proposed a Transformer-based model for unsupervised time series representation learning. We use the **Transformer** model in open source code from https://github.com/gzerveas/mvts_transformer for direct classification experiments on 128 UCR time series datasets.

T-Loss: Franceschi et al. [9] proposed an unsupervised time series representation learning method using TCN and a novel Triplet Loss (T-Loss). We use the open source code from https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries for experimental analysis.

SelfTime: Fan et al. [10] proposed a self-supervised time series representation learning framework called **SelfTime**, exploring the inter-sample and intra-temporal relation of time se-

 $\label{table v} TABLE\ V$ The summary of Time-Series Pre-Trained Models (TS-PTMs).

Year	Method	Superv	iesed PTMs FORE	Unsupervised PTMs REC	Self-super CONSIS	vised PTMs PSEUDO	Architecture
2016	Audio Word2Vec [33]			√			RNN
2016	DCFT [34]	✓			,		CNN&RNN
2016 2016	TCL [35]				√		MLP
2016	SHL-DNN [36] TimeNet [37]			√			MLP RNN
2017	VRADA [38]	√		•			RNN
2018	CPC [8]		\checkmark		✓		CNN&RNN
2018	TL-FCN [7]	✓					CNN
2018	Encoder [39]	✓					CNN
2018	TL-CTSAD [40]		✓			,	RNN
2018 2018	Speech2Vec [41] TL-LSTM [42]		./	./		\checkmark	RNN RNN
2018	HDCNN [43]	√	•	•			CNN
2018	STL [44]	√ ·					CNN
2019	vq-wav2vec [45]				✓		Transformer Enc
2019	FRTL [46]	√					CNN&RNN
2019	ConvTimeNet [47]	√	,		,		CNN
2019 2019	wav2vec [48] T-Loss [9]		\checkmark		\ \frac{}{}		CNN TCN
2020	SMS [49]	√			•		CNN
2020	SelfTime [10]				✓		CNN
2020	InceptionTime [50]	✓					CNN
2020	Mockingjay [51]			✓			Transformer Enc
2020	ML-TSC [52]	√	,				CNN
2020 2020	ML-TSF [53] DTL-TS [54]	√	✓				RNN CNN
2020	LSTM-DANN [55]	√					RNN
2020	CoDATS [56]	√ ·					CNN
2021	TL-DCRNN [57]		\checkmark				CNN&RNN&GNN
2021	SASA [58]	√					RNN
2021	SLARDA [59]	√					Transformer&CNN
2021 2021	GCA [60] AdvSKM [61]	√					RNN CNN
2021	CALDA [62]	√					CNN
2021	CMTN [63]	√					RNN
2021	TSAD-TL [64]		\checkmark				RNN
2021	TNC [11]				✓		RNN/TCN
2021 2021	Voice2Series [12] SleepPriorCL [65]	✓				\checkmark	Trans&CNN&RNN CNN
2021	TS-TCC [13]		1		V	•	CNN/Transformer
2021	TS-Transformer [14]		•	✓	·		Transformer Enc
2021	SSL-TS [66]			✓	✓		Transformer Enc
2021	InfoTS [67]				✓		TCN
2021	TabBERT [68]			√			Transformer Enc
2021 2021	TabAConvBERT [69] TERA [70]			V			Transformer Enc Transformer Enc
2021	AdaRNN [71]		✓	•			RNN
2022	TSSN [72]			✓			Transformer Enc
2022	ST-GSP [73]			✓			Transformer Enc
2022	CoST [16]				√		TCN
2022 2022	TS2Vec [15] BTSF [74]				√		TCN TCN
2022	STEP [75]			_	v		Transformer&GNN
2022	TARNet [76]			√ √			Transformer
2022	ST-GFSL [77]		\checkmark				RNN
2022	ExpCLR [17]				✓		TCN
2022	TimeHetNet [78]	,	\checkmark				CNN&RNN
2022 2022	CRT [79] SPGN [80]	√					Transformer Enc CNN
2022	TF-C [18]	`			√		CNN
2023	SLVM [19]		\checkmark				RNN
2023	CLUDA [20]				✓		TCN
2023	PatchTST [21]			✓			Transformer Enc
2023	DCdetector [22] SimMTM [23]				√		Transformer Enc Transformer&CNN
2023 2023	STPT [24]			√	/		Transformer Enc
2023	TriD-MAE [81]			√	•		TCN
2024	TimesURL [25]				✓		TCN
2024	TimeSiam [26]			✓			Transformer&TCN
2024	UP2ME [27]			√			Transformer
2024 2024	TSLANet [28]			√			CNN Transformer Enc
2024	MOMENT [29] Timer [30]		✓	'			Transformer Enc Transformer
2024	MOIRAI [31]		√				Transformer
2024	TimesFM [32]		✓				Transformer

5

ries for learning representations on unlabeled data. We use the open source code from https://github.com/haoyfan/SelfTime for experimental analysis.

TS-TCC: Eldele et al. [13] proposed an unsupervised Time Series representation learning framework via Temporal and Contextual Contrasting (TS-TCC), thus learning feature representations of unlabeled time series. We use the open source code from https://github.com/emadeldeen24/TS-TCC for experimental analysis.

TST: Zerveas et al. [14] first proposed a multivariate time series unsupervised representation learning framework called Time Series Transformer (TST). We use the open source code from https://github.com/gzerveas/mvts_transformer for experimental analysis.

TS2Vec: Yue et al. [15] proposed a general framework for time series representation learning in an arbitrary semantic level called **TS2Vec**. For the time series classification task, the authors employed TCN as the backbone and the low-dimensional feature representation obtained from TCN to input into an SVM classifier with RBF kernel for classification. We use the open source code from https://github.com/yuezhihan/ts2vec for experimental analysis.

TimesNet: Wu et al. [84] propose TimesNet with Times-Block to identify multiple periods and capture temporal 2D-variations from transformed 2D tensors using a parameter-efficient inception block. For the classification task, we employ TimesNet as a backbone for fully supervised training to analyze the potential in time series pre-training. We use the open source code from https://github.com/thuml/TimesNet for experimental analysis.

PatchTST: Nie et al. [21] segment time series into patches and assume channels are independent for multivariate time series forecasting and self-supervised representation learning via a reconstruction-based pre-training strategy. Given that GPT4TS [86] has employed similar patch and channel-independent strategies for fine-tuning, to reduce training time in the classification experiments, we utilize only the patches strategy and channel-independent strategy by combining a transformer for fully supervised training. We use the open source code from https://github.com/yuqinie98/PatchTST for experimental analysis.

GPT4TS: Zhou et al. [86] present a unified framework for time-series modeling using pre-trained Large Language Models (LLMs). Specifically, GPT4TS employs the same patch and channel-independent strategies in PatchTST [21] for LLMs fine-tuning for time series downstream tasks. We use the open source code from https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All for experimental analysis.

2) Time-Series Forecasting: TS2Vec: Yue et al. [15] employed TCN as the backbone and the data from the last T observations to predict the observations for the next H timestamps for the time series forecasting task. We use the open source code from https://github.com/yuezhihan/ts2vec for experimental analysis.

CoST: Woo et al. [16] proposed a representation learning framework for long time series forecasting, called **CoST**, which utilizes contrastive learning to learn time series disentangled seasonal-trend representations. We use the open source

code from https://github.com/salesforce/CoST for experimental analysis.

LongTrans: Li et al. [87] proposed a Transformer-based model for **Long** time series forecasting with convolutional self-attention and LogSparse **Trans**former (**LongTrans**) to capture the time series' local context and long-term dependencies information. We use the open source code from https://github.com/AIStream-Peelout/flow-forecast for experimental analysis.

TCN: Bai et al. [88]'s extensive experiments on the sequence modeling problem indicated that a simple convolutional architecture consisting of Temporal Convolutional Networks (TCN) outperformed canonical recurrent networks such as LSTMs for time series forecasting on different datasets. We use the open source code from https://github.com/locuslab/TCN for experimental analysis.

Informer: Zhou et al. [89] designed an efficient transformer-based model called **Informer** for long time series forecasting. We use the open source code from https://github.com/zhouhaoyi/Informer2020 for experimental analysis.

Autoformer: Wu et al. [90] designed **Autoformer** as a novel decomposition architecture with an Auto-Correlation mechanism for long time series forecasting. We use the open source code from https://github.com/thuml/autoformer for experimental analysis.

TimesNet: Wu et al. [84] propose TimesNet with Times-Block to identify multiple periods and capture temporal 2D-variations from transformed 2D tensors using a parameter-efficient inception block. For the forecasting task, we employ TimesNet as a backbone for fully supervised training to analyze the potential in time series pre-training. We use the open source code from https://github.com/thuml/TimesNet for experimental analysis.

PatchTST: Nie et al. [21] propose an efficient design of Transformer-based models for multivariate time series fore-casting and self-supervised representation learning. Given that GPT4TS [86] has employed similar patch and channel-independent strategies for fine-tuning, to reduce training time in the forecasting experiments, we utilize only the patches strategy and channel-independent strategy by combining a transformer for fully supervised training. We use the open source code from https://github.com/yuqinie98/PatchTST for experimental analysis.

DLinear: Zeng et al. [96] introduce a set of embarrassingly simple one-layer linear models named DLinear for long-term time series forecasting. Given that DLinear runs faster and achieves good performance in the forecasting task, we select it as a supervised baseline for experimental analysis. We use the open source code from https://github.com/vivva/DLinear for experimental analysis.

GPT4TS: Zhou et al. [86] introduce a unified framework for time series modeling utilizing pre-trained Large Language Models (LLMs). Specifically, GPT4TS employs the patch and channel-independent strategies from PatchTST [21] for fine-tuning LLMs on time series downstream tasks. We use the open source code from https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All for experimental analysis.

iTransformer: Liu et al. [97] propose to investigate why Transformer-based models do not seem to be as efficient as Linear-based models [96] for multivariate time series forecasting. Consequently, we select it as a supervised baseline for experimental analysis. We use the open source code from https://github.com/thuml/iTransformer for experimental analysis.

TEMPO: Cao et al. [98] propose TEMPO, which leverages a pre-trained language model for time-series forecasting tasks. The two main components of the proposed approach: the decomposition of time series into trend, seasonality, and residuals, as well as the prompt learning—effectively enhance the forecasting performance. We use the open source code from https://github.com/DC-research/TEMPO for experimental analysis.

3) Time-Series Anomaly Detection: TS2Vec: For the timeseries anomaly detection task, Yue et al. [15] followed a streaming evaluation protocol [94] to perform point anomaly detection of time series. We use the open source code from https://github.com/yuezhihan/ts2vec for experimental analysis.

SPOT and DSPOT: Siffer et al. [91] proposed a time series anomaly detection method based on extreme value theory. The authors divided the proposed approach into two algorithms: SPOT for streaming data having any stationary distribution, and DSPOT for streaming data that can be subject to concept drift. We use the open source code from https://github.com/Amossys-team/SPOT for experimental analysis.

LSTM-VAE: Park et al. [92] proposed a Long Short-Term Memory-based Variational autoEncoder (LSTM-VAE) model for outlier detection of multimodal sensory signals. We use the open source code from https://github.com/SchindlerLiang/VAE-for-Anomaly-Detection for experimental analysis.

DONUT: Xu et al. [93] proposed an unsupervised anomaly detection algorithm based on a variational autoencoder called **DONUT**. We use the open source code from https://github.com/NetManAIOps/donut for experimental analysis.

SR: Ren et al. [94] proposed an algorithm based on Spectral Residual (SR) and CNN for anomaly detection of time series. Since the authors do not provide the open source code, we use the experimental results on Yahoo and KPI datasets in the original paper for comparative analysis.

AT: Xu et al. [95] proposed Anomaly Transformer (AT) with a new anomaly-attention mechanism for unsupervised detection of anomaly points in time series. We use the open source code from https://github.com/spencerbraun/anomaly_transformer_pytorch for experimental analysis.

TimesNet: Wu et al. [84] propose TimesNet, which incorporates TimesBlock to identify multiple periods and capture temporal 2D variations from transformed 2D tensors using a parameter-efficient inception block. For the anomaly detection task, we utilize TimesNet as a backbone to directly train and analyze its potential in time series pre-training. We use the open source code from https://github.com/thuml/TimesNet for experimental analysis.

GPT4TS: Zhou et al. [86] introduce a unified framework for time series modeling using pre-trained Large Language Models (LLMs). Specifically, GPT4TS applies the patch and channel-independent strategies from PatchTST [21] to finetune LLMs for time series anomaly detection. We use the open source code from https://github.com/DAMO-DI-ML/ NeurIPS2023-One-Fits-All for experimental analysis.

DCdetector: Yang et al. [22] propose DCdetector, a multiscale dual attention self-supervised contrastive representation learning model for time series anomaly detection. Specifically, DCdetector employs the patch strategy similar to PatchTST [21] to process raw time series data. We use the open source code from https://github.com/DAMO-DI-ML/KDD2023-DCdetector for experimental analysis.

For the above baselines in three major time-series mining tasks (classification, forecasting, and anomaly detection), we use uniform random seeds for the model's training. In addition, the dataset partitioning used by all baselines is kept consistent. Further, the hyperparameter settings of all baselines are set according to the parameters provided by the original authors, and the details can be found in our open-source code https://github.com/qianlima-lab/time-series-ptms.

D. Implementation Details

PTMs are usually trained in two stages. Firstly, supervised, unsupervised or self-supervised techniques are used to pretrain the base model on the source dataset. Then, the base model is fine-tuned using the training set of the target dataset. Finally, the base model is evaluated on the target test set to obtain the test results. However, there is no available benchmark large-scale well-labelled time series dataset. In other words, selecting a suitable source dataset to pre-train the encoder to obtain a positive transfer performance on the target dataset is difficult. To address the above issues, existing studies (e.g., TS2Vec [15], TST [14], TS-TCC [13], and CoST [16]) utilize self-supervised or unsupervised learning strategies to pre-train the base model using the target dataset and then fine-tune it on the target dataset. We conducted extensive experiments on two fronts to evaluate the effectiveness of existing TS-PTMs. On the one hand, we selected the UCR archive and four scenarios time series datasets for transfer learning using the selected source and target datasets, thus analyzing the performance of different pre-training techniques on the downstream classification task. On the other hand, following the strategy of studies in TS2Vec [15] and CoST [16], we compare and analyze the strategy (using the target dataset to pretrain the base model) on time-series downstream classification, forecasting, and anomaly detection tasks. Through extensive experiments, we aim to provide guidance for the study of pre-training paradigms, techniques for TS-PTMs on different downstream tasks.

For the time-series classification task, we normalize each series of the UCR and UEA datasets via z-score [99], and build FCN and TCN models using Pytorch according to the settings of [9], [99]. Adam is adopted as the optimizer with a learning rate of 0.001 and a maximum batch size of 128. The maximum epoch of the source UCR times series dataset for transfer learning is 2000, while the maximum epoch of the target UCR times series dataset is 1000. Also, a uniform early stopping rule is used for all baselines in training. The

Fig. 1. Classification comparison results based on transfer learning. The values indicate the difference in classification accuracy on the FCN encoder with and without transfer learning. A value greater than zero indicates positive transfer, while a value less than zero indicates negative transfer. Red background is for positive values and blue for negative, with larger magnitude values more saturated.

maximum epoch of the source dataset of four independent time series scenarios (refer to Table VIII) is 40, while the maximum epoch of the corresponding target dataset is 100. For the classification accuracy of the target UCR time series, we use the average test accuracy on five-fold test sets by running one seed. For the classification accuracy of the target datasets on four independent time series scenarios, we use the average test accuracy on the test set by running ten different seeds. For the time-series forecasting and anomaly detection tasks, we follow the way of [15] to preprocess the datasets and set the hyperparameters. In addition, the comparative benchmark methods for time-series classification, forecasting, and anomaly detection tasks are reproduced and analyzed using the open-source codes provided by the original authors. To ensure the reproducibility of the experimental results, we use a uniform random seed for all baselines. Finally, all experiments are done on eight 1080Ti GPUs and two 3090 GPUs with Ubuntu 18.04 system. Also, the training times in the main experimental results are all run on 3090 GPUs.

APPENDIX C FULL RESULTS

A. Comparison of Transfer Learning PTMs based on Supervised Classification and Unsupervised Reconstruction

Advanced time series classification methods (i.e., TS-CHIEF [100], miniRocket [101], and OS-CNN [102]) methods

TABLE VI
DETAILS OF THE SOURCE UCR TIME SERIES DATASETS USED FOR
TRANSFER LEARNING.

ID	Dataset Name	Total Sample Size	Length	Class
1	Crop	24000	46	24
2	ElectricDevices	16637	96	7
3	StarLightCurves	9236	1024	3
4	Wafer	7164	152	2
5	ECG5000	5000	140	5
6	TwoPatterns	5000	128	4
7	FordA	4921	500	2
8	UWaveGestureLibraryAll	4478	945	8
9	UWaveGestureLibraryX	4478	315	8
10	UWaveGestureLibraryY	4478	315	8
11	UWaveGestureLibraryZ	4478	315	8
12	FordB	4446	500	2
13	ChlorineConcentration	4307	166	3
14	NonInvasiveFetalECGThorax1	3765	750	42
15	Non Invasive Fetal ECGTh or ax 2	3765	750	42

either integrate multiple techniques or require finding the optimal hyperparameters in training and are not suitable as the backbone of PTMs. In recent years, related scholars have employed FCN [7], TCN [15], and Transformer [14] as the backbone for studying TS-PTMs. The test supervised classification accuracy of FCN, TCN, and Transformer on 128 UCR time series datasets is given in Table IX. To facilitate the layout and reading of the test classification results, the standard

TABLE VII
DETAILS OF THE TARGET UCR TIME SERIES DATASETS USED FOR
TRANSFER LEARNING.

	15 Minmum Sample	e Size Target Datasets		
ID	Dataset Name	Total Sample Size	Length	Class
1	BirdChicken	40	512	2
2	BeetleFly	40	512	2
3	Coffee	56	286	2
4	OliveOil	60	570	4
5	Beef	60	470	5
6	Rock	70	2844	4
7	ShakeGestureWiimoteZ	100	385	10
8	PickupGestureWiimoteZ	100	361	10
9	Wine	111	234	2
10	FaceFour	112	350	4
11	Meat	120	448	3
12	Car	120	577	4
13	Lightning2	121	637	2
14	Herring	128	512	2
15	Lightning7	143	319	7

	To Machine Sumple Size Tunger Dumbers									
ID	Dataset Name	Total Sample Size	Length	Class						
1	Earthquakes	461	512	2						
2	Haptics	463	1092	5						
3	Computers	500	720	2						
4	DistalPhalanxTW	539	80	6						
5	DistalPhalanxOutlineAgeGroup	539	80	3						
6	MiddlePhalanxTW	553	80	6						
7	MiddlePhalanxOutlineAgeGroup	554	80	3						
8	SyntheticControl	600	60	6						
9	ProximalPhalanxTW	605	80	6						
10	ProximalPhalanxOutlineAgeGroup	605	80	3						
11	SonyAIBORobotSurface1	621	70	2						
12	InlineSkate	650	1882	7						
13	EOGHorizontalSignal	724	1250	12						
14	EOGVerticalSignal	724	1250	12						
15	SmallKitchenAppliances	750	720	3						

15 Medium Sample Size Target Datasets

ID	Dataset Name	Total Sample Size	Length	Class
1	MoteStrain	1272	84	2
2	HandOutlines	1370	2709	2
3	CinCECGTorso	1420	1639	4
4	Phoneme	2110	1024	39
5	InsectWingbeatSound	2200	256	11
6	FacesUCR	2250	131	14
7	FaceAll	2250	131	14
8	Mallat	2400	1024	8
9	MixedShapesSmallTrain	2525	1024	5
10	PhalangesOutlinesCorrect	2658	80	2
11	FreezerSmallTrain	2878	301	2
12	MixedShapesRegularTrain	2925	1024	5
13	FreezerRegularTrain	3000	301	2
14	Yoga	3300	426	2
15	MelbournePedestrian	3633	24	10

deviation of the classification accuracy for each dataset is not given in Table IX. Considering the training time and classification performance on 128 UCR time series datasets of the models (please refer to Table IX), we choose FCN for transfer learning. From the 128 UCR datasets, the 15 datasets with the largest numbers of samples are employed as source datasets. The FCN encoder is pre-trained using the supervised classification task or unsupervised reconstruction task combined with a decoder (symmetric FCN decoder or asymmetric RNN decoder). From the remaining 113 UCR datasets, we select a total of 45 time series datasets as target datasets for downstream classification task fine-tuning. 15 of them have the smallest numbers of samples, 15 of them have the largest numbers of samples, and 15 of them have the medium numbers of samples. For the datasets used in transfer

learning PTMs, please refer to Tables VI, VII, and VIII. For the source dataset, we employ all samples to pre-train the FCN encoder. Using the five-fold cross-validation strategy, each target dataset contains five different training sets, and so we performed five fine-tunings for analysis. For each transfer strategy, $15 \times 15 = 225$ sets of transfer results (15 source datasets, 15 target datasets) are obtained for each target dataset sample size (minimum, medium, and maximum). The detailed transfer learning results are shown in Fig. 1.

B. Comparison of TS-PTMs on Classification

The pre-training test classification accuracy using transformer-based and contrastive learning on 128 UCR and 30 UEA time series datasets are shown in Tables X and XI. Also, for the convenience of layout and reading of the test classification results, the standard deviations of the classification performance evaluated for each dataset are not given in Tables X and XI.

1) Visualization on the classification task: In this section, we use the Class Activation Map (CAM) [103] and heatmap [15] for visualization of the time series classification models. CAM is a way to visualize CNNs and analyze which regions of the input data the CNN-based model focuses on. The heatmap is used in [15] to analyze the heat distribution of the 16-dimensional variables with the largest variance among the feature variables, thus assisting to analyze the trend of the time series. Hence, the ability of the model to capture the change in time series distributions can be measured based on the heat distribution. We employ the validation sets from the five-fold cross-validation strategy to select models for all comparison settings. Among the five models for analysis, we choose the one with the most significant visualization difference to highlight the visualization.

The Gunpoint dataset in the UCR archive contains two types of series, representing a male or female performing two actions (using a replica gun or finger to point to the target) [104]. Fawaz et al. [99] employed the Gunpoint dataset for CAM visualization due to its 100% classification accuracy on FCN, low noise, and containing only two types of data. Therefore, we perform a CAM visualization on the Gunpoint dataset, as shown in Fig. 2.

We select the sample with the smallest variance in each class of series in the Gunpoint dataset for the CAM visualization. As shown in Fig. 2, the above two series are discriminative between the two fragments at [45, 60] and [90, 105]. The direct classification using FCN can learn the discriminative subseries information between the two class of series well. However, when the TCN is utilized for direct classification, only one class of series is marked in red (on the fragment [90, 105]), while the other class is marked in blue, resulting in low classification performance. Meanwhile, we select UWaveGestureLibraryX as the source dataset for transfer learning of the Gunpoint dataset. Regarding the supervised classificationbased transfer strategy, the FCN model can simultaneously make the two classes of series marked in red for the [90, 105] fragment. For the unsupervised transfer strategy, the FCN model can make one class of series marked in dark red on the

TABLE VIII

THE DETAILED INFORMATION OF FOUR INDEPENDENT TIME SERIES SCENARIOS DATASETS. FOR COLUMN Samples, Train is the training set, Val is the validation set, and Test is the test set.

Scenario	Transfer Learning	Dataset	# Samples	# Channels	# Classes	# Length
Navealaciaal Stage Detection	Pre-training (Source)	SleepEEG	Train (371055)	1	5	200
Neurological Stage Detection	Fine-turning (Target)	Epilepsy	Train (60), Val (20), Test (11420)	1	2	178
Mechanical Device Diagnosis	Pre-training (Source)	FD-A	Train (8184)	1	3	5120
Wechanical Device Diagnosis	Fine-turning (Target)	FD-B	Train (60), Val (21), Test (13559)	1	3	5120
Activity Recognition	Pre-training (Source)	HAR	Train (10299)	9	6	128
Activity Recognition	Fine-turning (Target)	Gesture	Train (320), Val (120), Test (120)	3	8	315
Physical Status Monitoring	Pre-training (Source)	ECG	Train (43673)	1	4	1500
Filysical Status Monitoring	Fine-turning (Target)	EMG	Train (122), Val (41), Test (41)	1	3	1500

Fig. 2. Visualization of the Gunpoint dataset using CAM. For the discriminative features learned by the CNN-based model, red represents high contribution, blue indicates almost no contribution, and yellow is medium contribution (each subplot title gives the accuracy).

[45, 60] and [90, 105] fragments, and another class of series marked in yellow on the [45, 60] and [90, 105] fragments.

The MixedShapesSmallTrain and Wine datasets from the UCR archive are selected as the target datasets to analyze the learning of positive and negative transfer on time-series classification. Based on the classification results of transfer learning in Fig. 1 in the Appendix, we select the source datasets with the best accuracy for positive transfer and the worst accuracy for negative transfer. From Fig. 3, the heat distribution of the variable with the largest 16-dimensional variance obtained by direct classification and positive transfer is more similar to the trend of the original time series, while the negative transfer is difficult to present a heat distribution that matches the trend of the original time series. The heatmap visualization indicates that negative transfer may make it difficult for the model to capture the dynamic change information of the original time series, leading to degraded classification performance.

C. Details of Results on Time-Series Forecasting

The detailed test results of prediction lengths on time series forecasting tasks are presented in Table XII. For the ETTh1,

Fig. 3. Comparison of positive and negative transfer based on supervised classification using the MixedShapesSmallTrain and Wine dataset.

(b) Wine

100

200

100

200

100

200

ETTh2, ETTm1, and Electricity datasets, we selected the prediction lengths and train-val-test set configurations based on the experimental settings of TSVec [15] and CoST [16]. For the ETTm2, Traffic, Weather, Exchange, and National Illness (ILI) datasets, we followed the experimental settings of TimesNet [84] to determine the appropriate prediction lengths and train-val-test set configurations for analysis. In addition, for the LogTrans, TCN, Informer, Autformer, PatchTST, DLin-

TABLE IX
TEST CLASSIFICATION ACCURACY USING FCN, TCN, AND
TRANSFORMER FOR DIRECTLY SUPERVISED CLASSIFICATION TRAINING
ON 128 UCR DATASETS.

ID	Dataset	FCN	TCN (three layers)	TCN (ten layers)	Transform
1 2	ACSF1 Adiac	$\frac{0.6250}{0.6492}$	0.3950 0.2549	0.5400 0.2894	0.3450 0.6415
3	AllGestureWiimoteX	0.7110	0.2370	0.6630	0.3720
4 5	AllGestureWiimoteY AllGestureWiimoteZ	0.6740 0.7200	0.4980 0.7050	0.6960 0.6300	0.4950 0.3380
6	ArrowHead	0.8958	0.3838	0.3838	0.8676
7	Beef BeetleFly	0.6000	0.3167 0.6500	0.4167 0.7000	$\frac{0.6500}{0.8500}$
9 10	BirdChicken BME	0.9250 0.7833	0.6250 0.9944	0.8500 1.0000	0.9944
11	Car	0.9417	0.8750	0.9417	1.0000
12 13	CBF Chinatown	1.0000 0.9753	1.0000 0.9808	$\frac{1.0000}{0.9836}$	0.7250 0.9836
14 15	ChlorineConcentration CinCECGTorso	$\frac{0.9984}{0.9986}$	0.5356 0.9915	0.5407 0.9500	0.9970
16	Coffee	1.0000	1.0000	1.0000	1.0000
17 18	Computers CricketX	$\frac{0.8800}{0.9064}$	0.8740 0.7615	0.5000 0.6974	0.6680 0.5513
19	CricketY	0.9000	0.6551	0.7013	0.5526
20 21	CricketZ Crop	0.8833	0.8026 0.0417	0.7679 0.0417	0.5641 0.7239
22	DiatomSizeReduction DistalPhalanxOutlineAgeGroup	0.9969	0.8913 0.5974	0.6569 0.8032	0.9969
24	DistalPhalanxOutlineCorrect	0.8917	0.9020	0.8962	0.8185
25 26	DistalPhalanxTW DodgerLoopDay	0.8423 0.7486	0.4731 0.7990	0.4731 0.2833	0.7792 0.4869
27 28	DodgerLoopGame	0.8167	0.5190	0.5190	0.8798
28 29	DodgerLoopWeekend Earthquakes	0.9812	0.7089 0.7983	0.7089 0.7983	0.5995
30 31	ECG200 ECG5000	0.9350 0.9258	0.9400 0.5838	0.6650 0.5380	0.7374 0.8750
32	ECGFiveDays	1.0000	1.0000	1.0000	0.9494
33 34	ElectricDevices EOGHorizontalSignal	0.6731	0.1845 0.5347	0.2633 0.7336	0.5428 1.0000
35 36	EOGVerticalSignal	0.6519	0.7003 0.3717	0.7514 0.9154	0.8053
37	EthanolLevel FaceAll	0.9462	0.9911	0.9711	0.9556
38 39	FaceFour FacesUCR	0.9557 0.9969	0.9913	0.9648 0.9876	0.9296
40	FiftyWords	0.5072	0.2155	0.4243	0.6740
11 12	Fish FordA	$\frac{0.9686}{0.9734}$	0.4086 0.9651	0.9400 0.9705	0.8086 0.5237
13 14	FordB FreezerRegularTrain	0.9312	0.9517 0.5000	0.9559	0.5461
15	FreezerSmallTrain	0.8359	0.5000	0.5000	0.9997
16 17	Fungi GestureMidAirD1	0.9118 0.6954	0.3987 0.2781	0.0980 0.4621	0.5087
18	GestureMidAirD2	0.5860	0.2930	0.4650	0.4972
19 50	GestureMidAirD3 GesturePebbleZ1	0.3819	0.2486 0.5330	0.3407 0.8852	0.2694 0.6875
51 52	GesturePebbleZ2 GunPoint	0.9343 1.0000	0.3584 0.9950	0.3185 0.5900	0.6615
53	GunPointAgeSpan	0.9956	0.9956	0.9956	0.9822
54 55	GunPointMaleVersusFemale GunPointOldVersusYoung	0.9978 0.9934	0.9956 0.9823	0.9978	1.0000 0.9756
56	Ham	0.6632	0.8828	0.9442	0.8750
57 58	HandOutlines Haptics	0.8956 0.6158	0.6752 0.5623	0.6387 0.7261	0.8757 0.4083
59 50	Herring HouseTwenty	$\frac{0.6406}{0.9875}$	0.5938 0.5597	0.6092 0.5597	0.6243
51	InlineSkate	0.7046	0.4923	0.8169	0.3369
52 53	InsectEPGRegularTrain InsectEPGSmallTrain	$\frac{0.9935}{0.8761}$	0.8232 0.8270	0.9457 0.6836	0.7651 0.7971
54 55	InsectWingbeatSound ItalyPowerDemand	0.7309 0.9891	0.7527 0.9781	0.7364 0.9754	0.6691 0.9735
56	LargeKitchenAppliances	0.9507	0.7680	0.8707	0.5187
57 58	Lightning2 Lightning7	0.7940 0.8406	0.6113 0.2655	0.8843 0.8123	0.7593 0.6352
59 70	Mallat Meat	0.9975	0.9858 0.4417	0.8213	0.9800 0.9917
71	MedicalImages	0.8397	0.5206	0.5206	0.7388
72 73	MelbournePedestrian MiddlePhalanxOutlineAgeGroup	0.8145	0.8748 0.7635	0.9219 0.7274	0.8792
74	MiddlePhalanxOutlineCorrect	0.8834	0.9372	0.9092	0.8451
75 76	MiddlePhalanxTW MixedShapesRegularTrain	0.7463	0.5967 0.2010	0.5967 0.1908	0.6184 0.8732
77 78	MixedShapesSmallTrain MoteStrain	0.7339 0.9819	0.1893 0.9811	0.1893 0.9772	0.8745
79	NonInvasiveFetalECGThorax1	0.8542	0.3057	0.4167	0.8510
30 31	NonInvasiveFetalECGThorax2 OliveOil	0.8093 0.7000	0.5216 0.5000	0.4733 0.4667	0.8951
82	OSULeaf	0.9887	0.6668	0.9167	0.8667
83 84	PhalangesOutlinesCorrect Phoneme	0.8691 0.3019	0.9079 0.1128	0.9090 0.1128	0.1469 0.5600
35 36	PickupGestureWiimoteZ PigAirwayPressure	0.7800	0.6300 0.0706	0.6700 0.0351	0.0352 0.1345
37	PigArtPressure	0.5164	0.1251	0.0446	0.0607
38 39	PigCVP PLAID	0.4822	0.1764 0.4004	0.0446 0.4321	0.5708 0.8295
90	Plane	1.0000	1.0000	0.6524	0.9857
92	PowerCons ProximalPhalanxOutlineAgeGroup	0.9139 0.8727	0.9222 0.7818	0.9694 0.7884	0.9528 0.8496
93 94	ProximalPhalanxOutlineCorrect ProximalPhalanxTW	0.9214 0.8083	0.9181 0.7074	0.9237 0.4165	0.8833 0.8182
)5	RefrigerationDevices	0.5747	0.7307	0.7640	0.4013
96 97	Rock ScreenType	0.6429 0.6093	0.7000 0.7573	0.3714 0.7240	0.6571 0.4373
98	SemgHandGenderCh2	$\frac{0.9378}{0.7156}$	0.6111	0.6000 0.5711	0.8422 0.4122
00	SemgHandMovementCh2 SemgHandSubjectCh2	0.6922	0.3889	0.7744	0.7567
01 02	ShakeGestureWiimoteZ ShapeletSim	$\frac{0.9200}{0.9700}$	0.3700 0.5000	0.6600	0.5300 0.4550
03	ShapesAll	0.7267	0.2750	0.5250	0.6675
04 05	SmallKitchenAppliances SmoothSubspace	0.7987 0.9467	0.3480 0.9433	0.3333 0.9600	0.5320 0.9800
06 07	SonyAIBORobotSurface1 SonyAIBORobotSurface2	0.9984 0.9990	0.9952 0.9980	0.9888 0.9908	0.9952 0.9643
08	StarLightCurves	0.9803	0.8555	0.6883	0.9153
09 10	Strawberry SwedishLeaf	$\frac{0.9756}{0.9929}$	0.9705 0.9040	0.9654 0.7884	0.9613 0.8880
11	Symbols	0.9961	0.8206	0.9843	0.9529
12 13	SyntheticControl ToeSegmentation1	0.9700 0.9664	0.5000 0.9518	0.8283 0.5628	0.9700 0.6864
14 15	ToeSegmentation2 Trace	0.9282 1.0000	0.7471 1.0000	0.7471 1.0000	0.8316 1.0000
16	TwoLeadECG	1.0000	0.9991	0.9991	1.0000
17 18	TwoPatterns UMD	0.9454	0.6958 0.3333	0.5568 0.9944	0.9862 1.0000
19	UWaveGestureLibraryAll	0.9245	0.9359	0.9884	0.8957
20 21	UWaveGestureLibraryX UWaveGestureLibraryY	0.8665	0.8761 0.8091	0.9134 0.8627	0.7347 0.6876
22	UWaveGestureLibraryZ	0.8484	0.8569	0.8629	0.6648
23 24	Wafer Wine	1.0000 0.5411	0.8936 0.5316	0.8936 0.5229	0.9987 0.7012
25 26	WordSynonyms Worms	0.5967 0.7906	0.2210 0.4225	0.2210 0.4225	0.6243
27	WormsTwoClass	0.8025	0.8528	0.5968	0.5504
28	Yoga Avg Acc	0.9718 0.8296	0.9645 0.6610	0.9788 0.6835	0.8906
	Avg Rank	1.68	2.74	2.64	2.56
	P-value		1.38E-16	1.44E-13	5.41E-07

ear, GPT4TS, TEMPO, and iTransformer models, we adhere to the unified settings for the maximum number of epochs as used in TimesNet for our experimental analysis. For other parameters, we follow the default settings of the respective models to ensure consistency in our experimental analysis.

D. Details of Results on Time-Series Anomaly Detection

We select SPOT, DSPOT, LSTM-VAE, DOUNT, AI, TS2Vec, TimesNet, GPT4TS, and DCdetector for time series anomaly detection analysis. Due to memory or training errors, TimesNet, GPT4TS, and DCdetector could not obtain results on the Yahoo and KPI datasets; therefore, we provide the test results for the remaining six methods on these datasets. The detailed test results for time series anomaly detection on the UCR anomaly detection archive are presented in the following tables: Table XIII (F1-score), Table XIV (Precision), Table XV (Recall), Table XVI (Aff-P), Table XVII (Aff-R), Table XVIII (R A R), Table XIX (R A P), Table XX (V ROC), Table XXI (V_PR), Table XXII (F1-PA-10), Table XXIII (F1-PA-50), and Table XXIV (F1-PA-90). The UCR ID column in these tables refers to the dataset IDs in the UCR anomaly detection archive. In addition, for the four datasets with IDs [79, 108, 187, 203] in the UCR anomaly detection archive, we uniformly set their experimental results to zero because their true labels contain no anomalous data points. This absence leads to errors in calculating nine assessment metrics, aside from F1, P, and R metrics, by the relevant methods. To reasonably analyze the performance of different methods on the UCR anomaly detection archive, we use the number of the most recent performance datasets (Win) for statistical analysis to avoid errors introduced by the large discrepancies in assessment indicator values across different datasets. Also, detailed test results for time series anomaly detection on seven multivariate datasets are presented in Table XXV.

TABLE X Test classification accuracy using different time series PTMs on 128 UCR datasets. The best results are in bold.

No.	ID	Dataset	Supervised (FCN)	T-Loss	Selftime	TS-TCC	TST	TS2Vec	TimesNet	PatchTST	GPT4TS
All All Content			0.6250								0.6200
1. Marche	3	AllGestureWiimoteX	0.7110	0.7170	0.6461	0.7201	0.5280	0.7820	0.5120	0.5730	0.7220
Second	5	AllGestureWiimoteZ	0.7200	0.7470	0.6485	0.6567	0.4780	0.7730	0.6620	0.5890	0.7300
10 Machical	8	Beef	0.8250	0.8750	0.5167	0.6333		0.6833	0.8000	0.4167	
12 Cur											
10 Company		BME	0.6000	0.5333		0.9889			0.9778	0.9500	
1. Control Conference Control Co	11	CBF	0.9417	0.8250	0.9936	0.9967	0.9946	1.0000	1.0000	1.0000	0.9978
100 100	14	ChlorineConcentration	0.9984	0.9988	0.6116	0.8424	0.9974	0.9998	0.9993	0.9995	0.9998
15 Companism											
10 1.											
12 10	19	CricketY	0.9000	0.7487	0.6904	0.7161	0.6962	0.8256	0.7808	0.7821	0.8026
	21	Crop	0.1312	0.7063	0.6634	0.7801	0.7709	0.7448	0.8503	0.1193	0.8764
25 Post-Principal Principal Prin	23	DistalPhalanxOutlineAgeGroup	0.9091	0.8274	0.7959	0.8200	0.8404	0.8125	0.8590	0.8779	0.8890
20	24 25										
28	26		0.7486	0.4819	0.4742	0.5885	0.5377	0.6391	0.7107	0.6694	0.7403
19	28	DodgerLoopWeekend	0.9812	0.9677	0.9681	0.9742	0.9679	0.9812	0.9688	0.9492	0.9165
13 S. C.	29	ECG200	0.8482	0.7983	0.7900	0.7950	0.8600	0.8800	0.9100	0.8763	0.8951
18 18 18 18 18 18 18 18	31		0.9258	0.9478	0.9873		0.9977	1.0000	1.0000	1.0000	
13 15 15 15 15 15 15 15											
See Peacl See S	33	EOGVerticalSignal	0.6731	0.8736	0.6774	0.6190	0.4806	0.6519	0.6369	0.8013	0.7804
19 Exect CIC 1999 1979 1972 19892 19902 19924 19794	37	FaceAll	0.9462	0.9720	0.9552	0.9914	0.9720	0.9871	0.9733	0.8057	0.9877
14 Fish	39	FacesUCR	0.9969	0.9729	0.9544	0.9899	0.9702	0.9902	0.9800	0.9824	0.9796
14 Fernil 14 15 15 15 15 15 15 15											
A	42	FordA	0.9734	0.9114	0.8787	0.9342	0.8990	0.9303	0.9348	0.9500	0.9403
Fame	44	FreezerRegularTrain	0.9790	0.9980	0.9974	0.9969	0.9987	0.9977	0.9990	0.9393	0.9987
18 Gesure-MidAuPD2	46	Fungi	0.9118	1.0000	0.9316	0.9557	0.9902	1.0000	0.8337	0.7276	0.9049
Seminary											
Secure Control Contr											
155 GambientAgeSpam 0.9956 0.9956 0.9957 0.9978 0.9787 0.9887 0.9823 0.9823 0.9828 0.9823 0.9826 0.9866 0.9956 0.9	51	GesturePebbleZ2	0.9343	0.6614	0.8817	0.8914	0.8159	0.9473	0.8850	0.7800	0.9382
Semiple	53	GunPointAgeSpan	0.9956	0.9756	0.9800	0.9578	0.9778	0.9889	0.9823	0.9889	0.9890
57 HandOutlines	55	GunPointOldVersusYoung	0.9934	0.9468	0.9490	0.9512	0.9667	0.9956	0.9800	0.9912	0.9691
Section											
60 HouseTwenty		Haptics									
Color InsectEPK/RegularTrain	60	HouseTwenty	0.9875	0.8935	0.9746	0.8244	0.7673	0.9496	0.8615	0.8617	0.8683
64 InsereWingheanSound	62	InsectEPGRegularTrain	0.9935	0.9839	0.9616	0.8554	0.8327	0.9807	0.8267	0.9617	0.8307
66 LageKitchenAppliances 0.5967 0.5907 0.9401 0.5903 0.9147 0.7520 0.8253 0.6747 Clightning? 0.5406 0.5896 0.7149 0.7759 0.7850 0.7159 0.8383 0.8264 0.7025 0.8378 Maltat 0.9975 0.8378 0.9911 0.9875 0.9953 0.9954 0.9952 0.9954 0.7956 0.7819 Maltat 0.9975 0.8378 0.9911 0.9875 0.9953 0.9952 0.9954 0.9956 0.9936 Maltat 0.9975 0.8378 0.9911 0.9875 0.9953 0.9952 0.9954 0.9956 0.9936 Maltat 0.9975 0.8378 0.9951 0.9957 0.9953 0.9951 0.9951 Maltat 0.9975 0.8378 0.9951 0.9951 0.9951 0.9951 Maltat 0.9975 0.8378 0.9951 0.9951 0.9951 0.9951 Maltat 0.9975 0.8378 0.9951 0.9951 0.9951 0.9951 0.9951 Maltat 0.9975 0.8378 0.9951 0.9951 0.9951 0.9951 0.9951 Maltat 0.9975 0.8378 0.9951	64	InsectWingbeatSound	0.7309	0.6673	0.6092	0.7119	0.6982	0.7077	0.7355	0.8609	0.8518
68 Lightning? 0.8466 0.84596 0.7419 0.7059 0.8389 0.8264 0.7025 0.8378 0.8411 0.9576 0.8378 0.8411 0.9576 0.9878 0.9991 0.9878 0.9992 0.9996 0.9993 0.9881 0.8411 0.8411 0.9576 0.9996 0.9993 0.9991 0.9811 0.8411 0.8411 0.8577 0.8323 0.8772 0.8781 0.8411 0.8411 0.8577 0.8323 0.8772 0.8781 0.8411 0.8577 0.8323 0.8772 0.8781					0.9674 0.9403						
Mailar		Lightning2 Lightning7									
71 MedicalImages	69	Mallat	0.9975	0.9875	0.9901	0.9857	0.9954	0.9962	0.9954	0.9996	0.9983
73 MiddlePhalamCuttlineAgeGroup 0.8177 0.7544 0.7527 0.7563 0.7600 0.7347 0.8140 0.8992 0.7692 0.7592 0.8507 0.8508	71	MedicalImages	0.8397	0.8291	0.7530	0.8175	0.8010	0.8431	0.8677	0.8823	0.8772
75	73		0.8177	0.7544	0.7527	0.7563	0.7600	0.7347	0.8140	0.8092	0.7692
76 MixedShapes-RegularTrain 0.7463 0.9586 0.9580 0.9310 0.9295 0.9450 0.9053 0.7318 0.0465 77 MixedShapes-SmallTrain 0.7339 0.9511 0.9530 0.9255 0.9275 0.9410 0.9038 0.6924 0.9545 78 MoteStrain 0.8812 0.9846 0.9950 0.9435 0.9777 0.9717 0.9623 0.9757 0.9610 78 MoteStrain 0.8842 0.9848 0.8799 0.9255 0.9129 0.3932 0.9349 0.9504 0.9639 80 NonlivasiveFetalECGThorax2 0.8093 0.9461 0.9012 0.9400 0.9256 0.4940 0.9575 0.9451 0.9639 81 OSULcar 0.7019 0.8833 0.8370 0.6933 0.4000 0.3334 0.8500 0.6590 0.9635 0.9435 0.8580 0.8590 0.9635 0.9436 0.8590 0.9636 0.963											
78 MondeStrain 0.981 0.9970 0.9435 0.9717 0.9034 0.9757 0.9034 0.9759 0.9183 0.9799 0.9253 0.9340 0.9354 0.9369 80 NoninvasiveFetalECGThorax2 0.8093 0.9461 0.9012 0.9926 0.9490 0.9255 0.9451 0.9667 0.900 81 OSULeaf 0.7000 0.8833 0.8370 0.6111 0.8937 0.8127 0.8799 0.8055 84 PhalangesOutinesCorrect 0.3019 0.3664 0.7466 0.7800 0.8243 0.8339 0.9316 0.8619 0.8558 85 Phoneme 0.7800 0.7200 0.4144 0.3557 0.1292 0.4204 0.9316 0.8619 0.848 85 PigAlrwayPressure 0.5164 0.646 0.2182 0.0575 0.0353 0.4038 0.2446 0.3521 0.9442 0.3212 0.9424 0.3212 0.9424 0.3212 0.9424 0.3252 0.0533 0.4038 0.24		MixedShapesRegularTrain			0.9580						
NonInvasiveFetalECGThorax2	78	MoteStrain	0.9819	0.9670	0.9505	0.9435		0.9717		0.9757	0.9694
SULCaf	80	NonInvasiveFetalECGThorax2	0.8093	0.9461	0.9012	0.9400	0.9286	0.9490	0.9575	0.9451	0.9657
85 Phoneme 0.7800 0.7200 0.4144 0.3587 0.1929 0.4294 0.1981 0.2781 0.5569 86 PickupGestureWiimoteZ 0.1091 1.0700 0.8000 0.7800 0.6200 0.8400 0.7200 0.6300 0.7000 0.6300 0.7000 0.6300 0.7000 0.6300 0.7000 0.6200 0.8404 0.3210 0.9224 0.3826 0.5300 0.7020 0.6300 0.7000 0.00	81	OSULeaf	0.7000		0.8370	0.6493		0.8937	0.8127	0.8799	0.8085
87 PigAfrressure 0.5164 0.6446 0.2182 0.0757 0.0353 0.4388 0.2446 0.3500 0.4280 88 PigArressure 0.4822 0.6731 0.9486 0.0299 0.1312 0.9425 0.3260 0.05308 0.9760 89 PigCVP 0.4348 0.5121 0.7083 0.4811 0.5250 0.6079 90 Plane 1.0000 1.0000 0.9762 0.9714 0.9381 0.9055 0.9810 0.9952 0.9810 91 PowerCons 0.0199 0.8889 0.8383 0.9471 0.9810 0.9952 0.9810 0.9952 0.9810 92 ProximalPhalanxCuttineCorrect 0.214 0.8889 0.8383 0.8303 0.8215 0.8600 0.7653 0.8349 0.8346 0.8277 0.8793 94 ProximalPhalanxCuttineCorrect 0.0429 0.7143 0.6857 0.8000 0.7653 0.8347 0.8510 0.8525 0.8350 0.8383 0.8330 0.80		PhalangesOutlinesCorrect Phoneme									
88 PigArtPressure 0.4822 0.6731 0.9456 0.0929 0.1312 0.0382 0.0320 0.8735 0.4818 0.5259 0.64893 89 PigCVP 0.3438 0.5121 7.0783 0.0449 0.3221 0.8735 0.4181 0.5259 0.6793 90 Plane 1.0000 1.0962 0.9714 0.9881 0.9951 0.9910 0.9381 0.9905 0.9810 0.9922 0.9313 91 PowerCons 0.9139 0.9194 0.8889 0.9444 0.9722 0.9861 0.9722 0.9333 0.9831 92 ProximalPhalanx Dutline-Correct 0.9214 0.8889 0.9444 0.9722 0.9861 0.9727 0.9333 95 RefrigerationDevices 0.5747 0.7773 0.7193 0.5170 0.5146 0.7627 0.5693 0.6400 0.9214 97 ScreenType 0.6093 0.5480 0.6882 0.4805 0.8547 0.8281 0.8779 0.6480 98 SemgHandGenderCh2 0.9378 0.7456 0.8745 0											
83 PÄAID 0.8691 0.8424 0.3912 0.4832 0.7421 0.5503 0.5911 0.4107 0.5867 91 Plane 1.0000 1.0900 0.9726 0.9714 0.9781 0.9952 0.9810 0.9952 0.9810 91 PowerCons 0.9139 0.9194 0.8889 0.8446 0.8231 0.9861 0.9272 0.9333 0.833 92 ProximalPhalanxCuttineCorrect 0.9214 0.8889 0.8383 0.8799 0.8833 0.9406 0.9170 0.8945 95 RefrigerationDevices 0.5747 0.7773 0.7193 0.5170 0.5146 0.7627 0.5693 0.6400 0.7267 96 Rock 0.6429 0.7143 0.8857 0.8810 0.7714 0.8268 0.8404 0.9514 0.7657 0.5693 0.6400 0.7267 97 ScreenType 0.6093 0.5480 0.6852 0.4805 0.5769 0.6980 0.4670 0.9341 0.9341 0.		PigArtPressure									
91 PowerCons 92 ProximalPhalanxCuttineAgeGroup 93 ProximalPhalanxCuttineCorrect 9214 0.8889 0.8383 0.8303 0.8799 0.8833 0.9406 0.9170 0.8945 94 ProximalPhalanxCuttineCorrect 9214 0.8889 0.8383 0.8303 0.8799 0.8833 0.9406 0.9170 0.8945 95 RefrigerationDevices 95 RefrigerationDevices 95 RefrigerationDevices 96 Rock 97 ScreenType 97 ScreenType 98 SemgHandGonderCh2 99378 0.7456 0.8757 0.7857 0.7857 0.7857 0.7857 0.7857 0.8550 0.6347 0.9037 0.9	83	PLAID	0.8691	0.8424	0.3912	0.4832	0.7421	0.5503	0.5951	0.4107	0.5867
93 ProximalPhalanxCuttineCorrect 0.9214 0.8889 0.8383 0.8799 0.8833 0.9406 0.9170 0.8945 94 ProximalPhalanxTW 0.8083 0.8215 0.8090 0.7653 0.8347 0.8281 0.8798 0.8645 95 RefrigerationDevices 0.5747 0.7773 0.7193 0.8140 0.7027 0.5146 0.7027 0.503 0.6400 0.7267 96 Rock 0.6429 0.7143 0.6857 0.7857 0.7857 0.7857 0.5146 0.7027 0.5933 0.6400 0.7267 97 ScreenType 0.6093 0.5480 0.6852 0.4805 0.4827 0.5520 0.6347 0.5093 0.6480 98 SemgHandGonderCh2 0.9378 0.7456 0.8755 0.9516 0.9111 0.9544 0.90367 0.9378 0.9389 99 SemgHandGownenCh2 0.7156 0.4056 0.5769 0.6980 0.4667 0.7767 0.7800 0.6311 0.7989 101 ShakeGestureWimoteZ 0.9200 0.9100 0.8900 0.8800 0.8600 0.9300 0.9000 0.6900 0.7200 102 ShapecEstim 0.9700 0.9010 0.8900 0.8500 0.6800 0.9300 0.5000 0.6900 0.7200 103 ShapecAll 0.7267 0.8925 0.8835 0.7777 0.7292 0.9133 0.8325 0.8833 0.8500 104 SmallKitchenAppliances 0.7987 0.7227 0.8256 0.7095 0.5747 0.7374 0.7840 0.6387 0.7213	91	PowerCons	0.9139	0.9194	0.8889	0.9444	0.9722	0.9861	0.9722	0.9333	0.9833
95 RefrigerationDevices 0.5747 0.7773 0.7193 0.5170 0.5146 0.6727 0.5693 0.6400 0.7287 96 Rock 0.6429 0.7143 0.6857 0.7857 0.7857 0.7857 0.5250 0.6343 0.6904 0.9143 97 ScreenType 0.6093 0.5480 0.6852 0.6850 0.4805 0.4827 0.5520 0.6347 0.5993 0.6480 98 SemgHandGouderCh2 0.9378 0.7456 0.8745 0.9516 0.4860 0.7767 0.7800 0.6311 0.7989 99 SemgHandGouderCh2 0.9200 0.9100 0.8900 0.8600 0.4667 0.7767 0.7800 0.6311 0.7989 101 ShakeGestureWimoteZ 0.9200 0.9100 0.8900 0.8500 0.8600 0.8900 0.5900 0.9500 0.5900 0.9500 0.5900 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.95	93	ProximalPhalanxOutlineCorrect	0.9214	0.8889	0.8383	0.8303	0.8799	0.8833	0.9406	0.9170	0.8945
96 Rock 0.6439 0.7143 0.6857 0.7857 0.7714 0.8286 0.8143 0.6940 0.9143 97 ScreenType 0.6093 0.5480 0.6852 0.4852 0.4852 0.5250 0.6347 0.5939 0.6480 98 SempHandGenderCh2 0.9378 0.7456 0.8745 0.9516 0.9111 0.9544 0.9367 0.9378 0.9389 100 SempHandSubjecc(Th2 0.6922 0.6356 0.8286 0.9310 0.8467 0.9740 0.9401 0.900 0.90	94	ProximalPhalanxTW	0.8083		0.8000 0.7193	0.7653	0.8347		0.8512 0.5693	0.8798 0.6400	0.8645 0.7267
98 Semgl-famiGendech2h 0.9378 0.7456 0.8745 0.9116 0.9514 0.9364 0.9378 0.9389 99 Semgl-famidNownenCh2 0.156 0.4056 0.5790 0.6980 0.6811 0.7980 0.6311 0.7989 100 Semgl-famidSubjectCh2 0.6922 0.6556 0.8286 0.9310 0.8467 0.9344 0.9411 0.8278 0.9089 101 ShakeGestur-WiimoteZ 0.9200 0.9100 0.8900 0.8500 0.5000 0.9900 0.7200 102 ShapeleStim 0.9700 0.9200 0.9455 0.8550 0.6500 0.9500 0.9500 0.6300 103 ShapesAll 0.7267 0.8225 0.8835 0.7777 0.7247 0.7347 0.7840 0.6387 0.7213 105 SmonthSubspace 0.9467 0.9233 0.9367 0.9439 0.9999 0.9938 0.9376 0.9481 0.990 0.9988 0.9881 105 SmonthSubspace 0.9467	96 97	Rock	0.6429	0.7143	0.6857	0.7857	0.7714				0.9143
100 SemgltandSubjecc(Th2 0.6922 0.6356 0.8286 0.9310 0.8467 0.9344 0.9411 0.8278 0.9089 101 ShakeGestur-WimoreZ 0.9200 0.9100 0.8900 0.8500 0.8500 0.8500 0.9500 0.6900 0.7200 102 ShapeletSim 0.9700 0.9200 0.9450 0.6500 0.5600 0.9850 0.5500 0.9150 0.6300 103 ShapesAll 0.7267 0.8925 0.8855 0.7777 0.7292 0.9133 0.3530 0.8333 0.8500 104 SmallKitchenAppliances 0.7987 0.7227 0.8256 0.7095 0.5747 0.7347 0.7840 0.6387 0.7213 105 SmoothSubspace 0.9467 0.9233 0.9367 0.9433 0.9500 0.9363 0.9133 106 SonyAlBORehotSurfacel 0.9984 0.9920 0.9726 0.9775 0.9823 0.9952 0.9988 0.9888 107 SonyAlBORehotSurfacel 0.9999 0.9978 0.9776 0.9847 0.9949 0.9999 0.9999 108 Starl-ightCurves 0.9803 0.9783 0.9778 0.9847 0.9940 0.9961 0.9467 0.9467 107 SwedishLeaf 0.9929 0.9404 0.9158 0.9423 0.9253 0.9502 0.9449 0.9778 0.9611 110 SwedishLeaf 0.9929 0.9940 0.9188 0.9433 0.9253 0.9502 0.9449 0.9778 0.9671 111 Symbols 0.9961 0.9824 0.9798 0.9733 0.9850 0.9349 0.9767 0.9671 0.9611 0.9450 0.9111 0.9530 0.9494 0.9778 0.9711 0.9530 0.9494 0.9717 0.9717 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9717 0.9500 0.9718 0.9500 0.9918 0.9939 0.9991 0.9993 0.9991 0.9948 0.9718 0.9500 0.9150 0.9918 0.9918 0.9918 0.9919 0.9980 0.9910 0.9948 0.9018 0.90	98	SemgHandGenderCh2	0.9378	0.7456	0.8745	0.9516	0.9111	0.9544	0.9367	0.9378	0.9389
102 ShapeletSim 0.9700 0.9200 0.9450 0.0500 0.9580 0.5500 0.9150 0.6300 38 ShapesAll 0.7267 0.8925 0.8835 0.7777 0.7292 0.9183 0.8325 0.8833 0.8500 48 SmallKitchenAppliances 0.7987 0.7227 0.8226 0.7095 0.5747 0.7347 0.7840 0.6387 0.7213 50 SmoothSubspace 0.9467 0.9233 0.9367 0.9433 0.9500 0.9363 0.9131 510 SmoothSubspace 0.9467 0.9233 0.9367 0.9433 0.9500 0.9363 0.9131 510 SmoothSubspace 0.9984 0.9920 0.9726 0.9775 0.9823 0.9952 0.9982 0.9888 0.9888 510 SonyAlBORbootSurface1 0.9994 0.9998 0.9978 0.9776 0.9847 0.9990 0.9999 0.9998 510 SaratighCurves 0.9803 0.9783 0.9786 0.9447 0.9901 0.9616 0.9912 0.9818 511 SwedishLeaf 0.9929 0.9404 0.9158 0.9423 0.9253 0.9502 0.9449 0.9778 0.9611 110 SwedishLeaf 0.9929 0.9404 0.9158 0.9423 0.9253 0.9502 0.9449 0.9778 0.9671 111 Symbols 0.9961 0.9824 0.9798 0.9733 0.9765 0.9849 0.9778 0.9671 112 SymbeticControl 0.9700 0.9883 0.9683 0.9950 0.9767 0.9883 0.9611 0.9711 113 TocSegmentation2 0.9252 0.9219 0.9283 0.9850 0.9150 0.9940 0.9090 0.9911 115 Trace 1.0000 0.9983 0.9932 0.9994 0.9991 0.9983 0.9911 0.9948 0.9171 0.9040 1.0000 0.9881 0.9911 0.9940 0.9910 0.9983 0.9911 0.9948 0.9040 0.0000 0.9171 0.9040 0.0000 0.9180 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0.9000 0.9151 0.9141 0	100	SemgHandSubjectCh2	0.6922	0.6356	0.8286	0.9310	0.8467	0.9344	0.9411	0.8278	0.9089
104 SmallKitchenAppliances 0.7987 0.7227 0.8256 0.7095 0.5747 0.7347 0.7840 0.6387 0.7213 105 SmoothSubspace 0.9467 0.9233 0.9367 0.9433 0.9980 0.9633 0.9133 106 SonyAlBORehotsurfacel 0.9984 0.9920 0.9726 0.9775 0.9823 0.9952 0.9982 0.9888 0.9888 107 SonyAlBORehotsurfacel 0.9994 0.9978 0.9786 0.9847 0.9949 0.9999 0.9999 108 StarlightCurves 0.9803 0.9783 0.9769 0.9847 0.9940 0.9910 0.9910 0.9910 109 Strawberry 0.9756 0.9614 0.9426 0.9414 0.9931 0.9956 0.9644 0.9716 110 SwedishLeaf 0.9929 0.9404 0.9158 0.9423 0.9253 0.9502 0.9449 0.9778 0.9671 111 Symbols 0.9961 0.9824 0.9798 0.9733 0.9502 0.9449 0.9778 0.9671 112 SymbeticControl 0.9700 0.9883 0.9683 0.9950 0.9765 0.9863 0.9618 0.9922 0.9667 113 TocSegmentationl 0.9760 0.9851 0.9143 0.9181 0.9181 0.9181 114 TocSegmentationl 0.9702 0.9282 0.9219 0.9283 0.8435 0.9517 0.8316 0.8510 0.8143 115 Trac 1.0000 0.9983 0.9932 0.9994 0.0991 0.9983 0.9991 0.9948 116 TwoLcadECG 1.0000 0.9983 0.9932 0.9994 0.0994 0.0000 0.9980 117 TwoPatterns 0.9454 0.0000 0.9183 0.9995 0.9914 0.9993 0.9990 0.9942 118 UMaveGestureLibraryAll 0.9245 0.9488 0.9383 0.8901 0.9778 0.9944 0.9013 0.9788 120 UWaveGestureLibraryY 0.7966 0.7887 0.5426 0.7572 0.7573 0.8994 0.9994 0.9006 0.8535 121 UWaveGestureLibraryZ 0.8484 0.8021 0.6676 0.7620 0.9992 0.9996 0.9996 0.9996 0.9996 122 UWaveGestureLibraryZ 0.8484 0.8021 0.6676 0.7620 0.7688 0.9844 0.9833 0.9909 0.9996		ShakeGestureWiimoteZ ShapeletSim									
107 Som'AlBORdobsfurface2 0.9990 0.9878 0.9937 0.9949 0.9949 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9938 0.9939	105	SmoothSubspace	0.9467	0.9233	0.9367	0.9433	0.9800	0.9633	0.9767	0.9633	0.9133
109 Strawberry 0.9756 0.9614 0.9426 0.9414 0.9735 0.9685 0.9766 0.9624 0.9736 0.9681 0.9484 0.9738 0.9491 0.9778 0.9671 0.9846 0.9824 0.9788 0.9492 0.9494 0.9778 0.9671 0.9846 0.9824 0.9788 0.9838 0.9838 0.9838 0.9838 0.9858 0.9868 0.9868 0.9686 0.9667 0.9824 0.9667 0.9824 0.9667 0.9824 0.9824 0.9838 0.9938 0.9338 0.9938 0.9938 0.9338	107	SonyAIBORobotSurface2	0.9990	0.9878	0.9376	0.9849	0.9847	0.9949	0.9939	0.9939	0.9949
111 Symbols 0.9961 0.9824 0.9798 0.973 0.9765 0.9863 0.9618 0.9622 0.9667 112 Symbols:Control 0.9700 0.9883 0.9683 0.9950 0.9767 0.9983 0.9686 0.9950 0.9767 0.9983 113 TeoSegmentation1 0.9664 0.9551 0.9143 0.9181 0.6903 0.9588 0.8514 0.9219 0.8846 114 TeoSegmentation2 0.9322 0.9219 0.9283 0.8259 0.8455 0.8514 0.9219 0.8846 115 Trace 1.0000 0.9983 0.9932 0.9150 0.9700 0.9400 1.0000 0.9400 116 Two-LeadECG 1.0000 0.9983 0.9932 0.9955 0.9790 0.9944 0.9981 0.9993 0.9994 117 Two-Tatterns 0.9454 1.0000 0.9313 0.9995 0.9994 0.9994 0.9983 0.9991 0.9948 118 UMD 0.3778 0.9944 0.9383 0.9611 0.9778 0.9944 0.9833 1.0000 0.9778 119 UWav-GestureLibraryAll 0.9245 0.9318 0.8959 0.9759 0.9962 0.9562 0.9562 0.9562 0.9562 120 UWav-GestureLibraryX 0.3665 0.8457 0.6680 0.8855 0.8991 0.8813 0.8914 0.9832 0.9912 121 UWav-GestureLibraryX 0.3665 0.8457 0.6680 0.8855 0.8991 0.8913 0.8968 0.9998 0.9992 122 UWav-GestureLibraryX 0.3484 0.8021 0.6076 0.7762 0.4790 0.8024 0.8669 0.9006 0.8535 123 Wafer 1.0000 0.9989 0.9878 0.9982 0.9992 0.9992 0.9992 124 Wine 0.5411 0.9553 0.6743 0.5251 0.5854 0.9648 0.8289 0.5135 0.8561 125 WordSynonyms 0.5967 0.6821 0.6860 0.4243 0.4148 0.7210 0.7446 0.8072 0.7097 126 Worms 0.7906 0.6821 0.6660 0.7699 0.9907 0.9997 0.9991 0.9939 0.9373 0.9476 126 Warg-Causter 0.9718 0.9661 0.7664 0.7575 0.6898 0.6424 0.7716 0.7463 0.9373 0.9373 0.9374 127 Worms WoClass 0.9718 0.9661 0.7690 0.7957 0.6898 0.6424 0.7716 0.7463 0.9373 0.9375 0.9476 0.9718 0.9718 0.9610 0.7755 0.6898 0.9610 0.8367 0.8355 0.8375 0.9759 0.9759 0.9759 0.9759 0.9759 0.9759 0.9759 0.9759 0.	109	Strawberry	0.9756	0.9614	0.9426	0.9414	0.9735	0.9685	0.9766	0.9624	0.9736
112 Symbetic Control 0.9700 0.9883 0.9683 0.9707 0.9983 0.9707 0.9700 0.9717 113 To-Segmentation1 0.9664 0.9551 0.9183 0.9180 0.9080 0.9938 0.9767 0.9700 0.9719 0.8846 114 Toc-Segmentation2 0.9282 0.9219 0.9283 0.8250 0.8435 0.9517 0.8316 0.8130 0.8143 115 Trace 1.0000 0.9908 0.9905 0.9190 0.9904 0.9000 0.9908 0.9909 0.9962 116 Two-LeadECG 1.0000 0.9983 0.9994 0.9991 0.9983 0.9991 0.9983 0.9991 0.9980 0.9990 0.9962 118 UMD 0.8778 0.9944 0.983 0.9904 0.900 0.9953 0.9991 0.9962 119 UWaveGestureLibraryAll 0.9245 0.9918 0.8955 0.9590 0.9962 0.9954 0.9004 0.9013 0.9718				0.9824		0.9733	0.9765	0.9863			
114 TocSegmentation2 0.9282 0.9219 0.9283 0.8250 0.8435 0.9517 0.8316 0.8100 0.8143 115 Trace 1.0000 0.9900 0.9160 0.9100 1.0000 0.9901 0.9901 0.9940 1.0000 0.9910 116 TwoLcadECG 1.0000 0.9983 0.9995 0.9940 0.9990 0.9962 117 TwoPatterns 0.9454 1.0000 0.9318 0.9991 0.9994 1.0009 0.9994 1.000 0.9913 0.9990 0.9962 0.9914 0.991 0.9983 0.9991 0.9962 0.9951 0.9994 1.000 0.9913 0.9996 0.9996 0.9996 0.9996 0.9996 0.9991 0.9998 0.9913 0.9978 0.9911 0.9778 0.9914 0.9002 0.9604 0.9833 1.0000 0.9778 0.982 0.9805 0.8990 0.8961 0.9718 0.982 0.9878 0.8991 0.9878 0.9824 0.9601 0.9824 <	112	SyntheticControl	0.9700	0.9883	0.9683	0.9950	0.9767	0.9983	0.9767	0.9700	0.9717
116 TwoLeadECG 1,000 0,983 0,9932 0,995 0,9914 0,991 0,9983 0,9991 0,9948 1,000 0,9484 1,000 0,9481 0,9994 1,000 0,9980 0,9996 0,9962 1,000 0,9484 1,000 0,9481 0,9895 0,9996 0,9962 0,9624 0,9481	114	ToeSegmentation2	0.9282	0.9219	0.9283	0.8250	0.8435	0.9517	0.8316	0.8510	0.8143
118 UMD 0.8778 0.9944 0.9389 0.9611 0.9778 0.9944 0.9333 1.0000 0.9778 119 UWaveGestureLibraryAII 0.9245 0.9518 0.8595 0.9759 0.99602 0.9624 0.9914 0.9913 0.9798 120 UWaveGestureLibraryX 0.8665 0.8457 0.6680 0.8385 0.8091 0.8913 0.9902 0.9902 0.9924 0.9214 0.9002 121 UWaveGestureLibraryX 0.8484 0.8021 0.6076 0.7762 0.4790 0.8669 0.8985 0.8999 0.8972 123 Wafer 1.0000 0.9989 0.9587 0.9982 0.9992 0.9992 0.9996 0.8992 0.9992 0.9998 0.8575 0.9982 0.9587 0.9982 0.9587 0.9982 0.9587 0.9982 0.9587 0.9982 0.9587 0.9982 0.9587 0.9982 0.9587 0.9824 0.9682 0.5181 0.08621 0.7188 0.9488 0.8289	116	TwoLeadECG	1.0000	0.9983	0.9932	0.9965	0.9914	0.9991	0.9983	0.9991	0.9948
119 UwaveGestureLibraryXI 0.9245 0.9518 0.8595 0.9708 0.9602 0.9502 0.9913 0.9708	118	UMD	0.8778	0.9944	0.9389	0.9611	0.9778	0.9944	0.9833	1.0000	0.9778
121 UWaveGestureLibraryY 0.7906 0.7887 0.5342 0.7573 0.7300 0.7874 0.8455 0.8955 0.8399 122 UWaveGestureLibraryZ 0.8484 0.8021 0.6076 0.7162 0.4790 0.8021 0.6069 0.8753 123 Wafer 1.0000 0.9989 0.9587 0.9982 0.9992 0.9990 0.9986 0.9992 0.9992 124 Wine 0.5411 0.9553 0.6743 0.5221 0.8584 0.8648 0.8289 0.5135 0.8561 125 WordSynonyms 0.5967 0.8022 0.5718 0.7444 0.7083 0.7989 0.8424 0.8690 0.7823 126 Worms 0.7906 0.6821 0.6860 0.6242 0.716 0.716 0.7464 0.8072 0.7097 127 WormStvClass 0.9718 0.961 0.7694 0.7597 0.6989 0.9470 0.9755 0.8691 0.8361 128 Yoga 0.9718 0.961 0.7699 0.9207 0.9497 0.9709 0.9399 0.9739 0.9476 129 Ay, Acc 0.8296 0.8325 0.8170 0.7875 0.8691 0.8367 0.8256 0.8393 120 0.8325 0.8170 0.7875 0.8691 0.8367 0.8256 0.8393 120 0.8325 0.8170 0.8787 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8170 0.8785 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8785 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8785 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8785 0.8785 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8785 0.8785 0.8785 0.8785 0.8785 0.8785 120 0.8325 0.8785	119	UWaveGestureLibraryAll	0.9245	0.9518	0.8595	0.9750	0.9602	0.9652	0.9504	0.9913	0.9708
123 Wafer 1,000 0,9989 0,9982 0,9992 0,9990 0,9986 0,9992 0,9992 124 Wine 0,5411 0,9553 0,673 0,5221 0,5284 0,9482 0,8289 0,5155 0,8561 125 WordSynonyms 0,5967 0,8022 0,5718 0,7444 0,7083 0,7823 0,7823 126 Worms 0,7906 0,6821 0,6860 0,5423 0,414 0,7210 0,7446 0,8072 0,7097 127 WormStvoClass 0,8025 0,7634 0,7557 0,6898 0,6240 0,7146 0,8072 0,9373 0,8221 128 yoga 0,9718 0,961 0,7699 0,9207 0,9497 0,9709 0,9239 0,9379 0,9379 0,9476 Avg. Acc 0,8296 0,8325 0,817 0,7853 0,9075 0,9876 0,8367 0,8256 0,8325	121	UWaveGestureLibraryY	0.7906	0.7887	0.5342	0.7573	0.7300	0.7874	0.8455	0.8955	0.8399
125 WordSynonyms 0.5967 0.8022 0.5718 0.7444 0.7083 0.7899 0.8442 0.8690 0.7823 126 Worms 0.7906 0.6821 0.6860 0.5423 0.4148 0.7210 0.7446 0.8072 0.7097 127 WormSTwClass 0.8025 0.7634 0.7557 0.6898 0.6240 0.7116 0.7833 0.9037 0.8212 128 Yoga 0.9718 0.9661 0.7699 0.9207 0.9497 0.9709 0.9399 0.9739 0.9476 Avg. Acc 0.8296 0.8325 0.8017 0.7850 0.7852 0.8795 0.7853 0.8961 0.7755 0.8691 0.8367 0.8256 0.8532	123	Wafer	1.0000	0.9989	0.9587	0.9982	0.9992	0.9990	0.9986	0.9992	0.9992
126 Worms 0.7906 0.6821 0.6860 0.5423 0.4148 0.7210 0.7446 0.8072 0.7097 127 Worms TwoClass 0.8025 0.7634 0.7557 0.6898 0.6240 0.7716 0.7833 0.9937 0.8221 128 Yoga 0.9718 0.9661 0.7699 0.9207 0.9497 0.9709 0.9539 0.9379 0.9476 Avg. Acc 0.8296 0.8325 0.8197 0.7895 0.7575 0.8691 0.3676 0.8256 0.8393	125	WordSynonyms	0.5967	0.8022	0.5718	0.7444	0.7083	0.7989	0.8442	0.8690	0.7823
128 Yoga 0.9718 0.9661 0.7699 0.9207 0.9497 0.9709 0.9539 0.9739 0.9476 Avg. Acc 0.8296 0.8325 0.8017 0.7807 0.7755 0.8691 0.8367 0.8265 0.8593	127	WormsTwoClass	0.8025	0.7634	0.7557	0.6898	0.6240	0.7716	0.7833	0.9037	0.8221
	128	Yoga Avg. Acc									
		Avg. Rank									

TABLE XI Test classification accuracy using time series PTMs on 30 UEA datasets. The best results are in **bold**.

ID	Dataset	Supervised (FCN)	T-Loss	TS-TCC	TST	TS2Vec	TimesNet	PatchTST	GPT4TS
1	ArticularyWordRecognition	0.9983	0.8974	0.9757	0.9826	0.9913	0.9739	0.9513	0.9739
2	AtrialFibrillation	0.3667	0.4000	0.3667	0.5667	0.1667	0.5667	0.5333	0.7667
3	BasicMotions	1.0000	0.6375	0.9625	0.9000	0.9500	0.8500	0.8000	0.8750
4	CharacterTrajectories	0.9738	0.9598	0.9882	0.9815	0.9941	0.9843	0.8982	0.9916
5	Cricket	0.9500	0.6778	0.9278	0.9611	0.9889	0.9111	0.9778	0.9111
6	DuckDuckGeese	0.7200	0.2500	0.2800	0.5100	0.4000	0.5500	0.5000	0.6200
7	EigenWorms	0.8839	0.5056	0.7476	0.5791	0.8996	0.7265	0.8153	0.7574
8	Epilepsy	0.9855	0.5600	0.9236	0.7018	0.9818	0.5564	0.9891	0.8109
9	ERing	0.9867	0.9200	0.9667	0.9533	0.9600	0.9500	0.9700	0.9800
10	EthanolConcentration	0.3321	0.2500	0.2633	0.2596	0.2157	0.5807	0.4568	0.5235
11	FaceDetection	0.7987	0.5255	0.6973	0.6935	0.5228	0.9028	0.8506	0.8628
12	FingerMovements	0.6638	0.5145	0.5047	0.5265	0.5239	0.7073	0.6783	0.7024
13	HandMovementDirection	0.6550	0.2992	0.4144	0.4660	0.3079	0.5862	0.6245	0.7744
14	Handwriting	0.9520	0.3480	0.7266	0.3080	0.8740	0.8280	0.6470	0.8580
15	Heartbeat	0.8363	0.7213	0.7066	0.7164	0.7115	0.6995	0.7335	0.7167
16	InsectWingbeat	0.1503	0.2676	0.6004	0.6253	0.2805	0.1771	0.4594	0.7628
17	JapaneseVowels	0.9937	0.7406	0.9594	0.9609	0.9656	0.9609	0.9781	0.9844
18	Libras	0.9250	0.7306	0.7444	0.7972	0.8500	0.7833	0.8389	0.7917
19	LSST	0.6016	0.3155	0.5682	0.5127	0.6268	0.5978	0.4357	0.8258
20	MotorImagery	0.7572	0.5025	0.5318	0.5157	0.5267	0.7520	0.7862	0.8076
21	NATOPS	0.9278	0.5944	0.7806	0.8722	0.8417	0.8139	0.8250	0.8444
22	PEMS-SF	0.9318	0.6864	0.8159	0.8068	0.8682	0.9341	0.8659	0.9773
23	PenDigits	0.9979	0.9933	0.9932	0.9895	0.9953	0.9986	0.9974	0.9976
24	PhonemeSpectra	0.1570	0.0964	0.2356	0.0562	0.2478	0.4309	0.1101	0.7010
25	RacketSports	0.9408	0.6169	0.8317	0.8181	0.8709	0.9277	0.8683	0.8683
26	SelfRegulationSCP1	0.8486	0.8128	0.8288	0.7968	0.7736	0.8040	0.9163	0.9093
27	SelfRegulationSCP2	0.6395	0.5000	0.5105	0.4868	0.5132	0.7684	0.6737	0.6605
28	SpokenArabicDigits	0.8131	0.9519	0.9960	0.9849	0.9975	0.9953	0.8454	0.9932
29	StandWalkJump	0.4067	0.4533	0.4000	0.5133	0.5067	0.5333	0.5200	0.8600
30	UWaveGestureLibrary	0.9614	0.8591	0.9273	0.9205	0.9500	0.8591	0.9659	0.9568
	Avg. Acc	0.7718	0.5863	0.7059	0.6921	0.7101	0.7570	0.7504	0.8355
	Avg. Rank	3.07	7.07	5.27	5.37	4.27	4.13	3.9	2.7

TABLE XII

COMPARISON OF TEST RESULTS FOR TIME-SERIES FORECASTING. "-" INDICATES THAT THE RESULTS COULD NOT BE OBTAINED DUE TO MEMORY ERRORS OR EXCESSIVE TRAINING TIME. THE BEST RESULTS ARE IN <u>UNDERLINE</u> AND **BOLD**.

Mode	els	Log	Frans	T	CN	Info	rmer	Autoi	former	TS2	2Vec	Co	ST	Time	esNet	Patcl	hTST	DLi	near	GPT	'4TS	TEM	ИРО	iTransf	ormer
Metr	ic	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	24	0.6149	0.5823	0.6476	0.5765	0.5972	0.5680	0.3729	0.4176	0.5952	0.5313	0.3861	0.4289	0.3485	0.3873	0.3890	0.4128	0.3885	0.4105	0.3102	0.3626	0.4262	0.4264	0.3065	0.3589
	48	0.8360	0.7075	0.7417	0.6292	0.7344	0.6460	0.4296	0.4419	0.6316	0.5566	0.4358	0.4634	0.3991	0.4169	0.4362	0.4379	0.4111	0.4232	0.3529	0.3904	0.4677	0.4518	0.3451	0.3818
ETTh1	168	1.0119	0.8084	0.9388	0.7324	0.9414	0.7480	0.4796	0.4687	0.7669	0.6405	0.6415	0.5817	0.4846	0.4670	0.5304	0.4879	0.4762	0.4613	0.4600	0.4661	0.5128	0.4857	0.4307	0.4304
Liiii	336	1.0821	0.8458	1.1151	0.8305	1.1217	0.8375	0.4939	0.4815	0.9419	0.7334	0.8099	0.6776	0.5583	0.5175	0.5928	0.5193	0.5243	0.4903	0.5167	0.4960	0.6184	0.5496	0.4889	0.4602
	720	1.0381	0.8167	0.9641	0.7802	1.1921	0.8591	0.5112	0.5100	1.0948	0.8098	0.9678	0.7700	0.5886	0.5287	0.6123	0.5442	0.5483	0.5310	0.6878	0.5858	0.6454	0.5724	0.5184	0.4982
	Avg.	0.9166	0.7521	0.8815	0.7098	0.9174	0.7317	0.4574	0.4639	0.8061	0.6543	0.6482	0.5843	0.4758	0.4635	0.5121	0.4804	0.4697	0.4633	0.4655	0.4602	0.5341	0.4972	0.4179	0.4259
	24 48	0.7676 1.2485	0.6854	0.9376	0.7760 0.9183	1.2772	0.9142	0.2933	0.3689	0.4478	0.5032 0.6184	0.4463	0.5032	0.2129	0.2929	0.2176 0.2722	0.3043	0.2332	0.3289	0.2009	0.2917	0.2507	0.3258	0.1831	0.2719
	168	5.4984	1.8806	4.0537	1.6939	5.6799	1.9599	0.3349	0.3922	1.7771	1.0569	1.5428	0.0397	0.2824	0.3429	0.4092	0.3388	0.4807	0.3677	0.4436	0.3443	0.3078	0.3639	0.3725	0.3940
ETTh2	336	4.4323	1.6926	5.3142	2.0093	4.6730	1.8000	0.4027	0.4794	2.1157	1.1759	1.7560	1.0478	0.4875	0.4561	0.4670	0.4610	0.6314	0.5638	0.5011	0.4876	0.5549	0.5214	0.4368	0.4433
	720	3.1966	1.4905	9.1991	2.2230	3.6218	1.5993	0.4970	0.5015	2.5823	1.3521	1.9716	1.0938	0.5193	0.4893	0.4721	0.4734	0.8289	0.6648	0.5389	0.5146	0.6687	0.5851	0.4479	0.4585
	Avg.	3.0287	1.3299	4.1595	1.5241	3.3405	1.4479	0.4126	0.4412	1.5138	0.9413	1.2838	0.8533	0.3896	0.4060	0.3676	0.3989	0.4929	0.4816	0.3917	0.4172	0.4542	0.4544	0.3363	0.3759
	24	0.1576	0.2780	0.2003	0.3345	0.2123	0.3418	0.1473	0.2610	0.1970	0.3179	0.1331	0.2589	0.2416	0.3115	0.2522	0.3186	0.2777	0.3328	0.2004	0.2769	0.2324	0.3011	0.2251	0.2967
	48	0.2533	0.3658	0.2432	0.3641	0.3220	0.4262	0.1897	0.2898	0.2682	0.3784	0.1959	0.3192	0.3194	0.3637	0.3202	0.3593	0.3302	0.3643	0.3006	0.3344	0.3026	0.3472	0.3019	0.3474
ETTm1	96	0.4699	0.5022	0.3856	0.4599	0.4427	0.5227	0.3424	0.3546	0.3735	0.4496	0.3043	0.4034	0.3558	0.3864	0.3553	0.3793	0.3543	0.3785	0.3008	0.3519	0.3683	0.3889	0.3393	0.3740
Ellini	288	1.2230	0.8335	0.8695	0.7408	1.1282	0.8074	0.3264	0.3663	0.7566	0.6672	0.7554	0.6609	0.4411	0.4304	0.4207	0.4162	0.4117	0.4131	0.3712	0.3989	0.4491	0.4441	0.4147	0.4163
	672	3.0955	1.3050	1.9628	1.1394	3.0900	1.3206	0.4497	0.4357	1.8217	1.0452	1.5897	0.9840	0.6567	0.5324	0.4878	0.4527	0.4725	0.4496	0.4570	0.4483	0.4964	0.4723	0.4880	0.4577
	Avg.	1.0399	0.6569	0.7323	0.6077	1.0390	0.6837	0.2911	0.3415	0.6834	0.5717	0.5957	0.5253	0.4029	0.4049	0.3672	0.3852	0.3693	0.3876	0.3260	0.3621	0.3698	0.3907	0.3538	0.3784
	96	0.4411	0.5149	0.3053	0.4097	0.3951	0.4839	0.2220	0.3040	0.3502	0.4381	0.2958	0.3955	0.1877	0.2678	0.1876	0.2728	0.2015	0.3025	0.1861	0.2781	0.2031	0.2830	0.1830	0.2652
EFFE 2	192	0.7027	0.6550	0.5954	0.5979	0.7435	0.6675	0.2763	0.3342	0.5684	0.5732	0.5266	0.5391	0.2748	0.3220	0.2544	0.3140	0.2878	0.3650	0.2624	0.3271	0.2653	0.3206	0.2507	0.3101
ETTm2	336 720	1.0915 2.7116	0.8209 1.4048	1.1618	0.8573 1.0495	1.2908 3.3230	0.8660 1.3981	0.3308	0.3676 0.4203	0.9589 2.5705	0.7532 1.2483	0.8752 1.9638	0.7091 1.0948	0.3922	0.3830	0.3173	0.3527 0.4075	0.3833	0.4285	0.3164	0.3650 0.4331	0.3214	0.3646	0.3179 0.4161	0.3524
	Avg.	1.2367	0.8489	0.9831	0.7286	1.4381	0.8539	0.4236	0.4203	1.1120	0.7532	0.9154	0.6846	0.3256	0.4244	0.4179	0.3367	0.3472	0.3202	0.4246	0.4551	0.4232	0.4280	0.2919	0.3342
-	24	0.3667	0.4054	0.4616	0.4673	0.5750	0.5159	0.1888	0.3031	0.3038	0.3836	0.1438	0.2471	0.1612	0.2630	0.1681	0.2502	0.2443	0.3408	0.1019	0.1970	0.5052	0.5472	0.1434	0.2336
	48	0.3842	0.4182	0.4581	0.4694	0.5808	0.5281	0.2043	0.3148	0.3311	0.4014	0.1602	0.2611	0.1692	0.2704	0.2017	0.2765	0.2687	0.3565	0.1166	0.2108			0.1774	0.2603
***	168	0.3911	0.4206	0.5079	0.4938	0.5486	0.5220	0.2446	0.3401	0.3581	0.4195	0.1776	0.2739	0.1936	0.2907	0.2019	0.2839	0.2628	0.3576	0.1459	0.2376	_	_	0.1930	0.2754
Electricity	336	0.4065	0.4300	0.5209	0.5024	0.6021	0.5571	0.2551	0.3464	0.3865	0.4367	0.2134	0.3018	0.2081	0.3034	0.2260	0.3063	0.2823	0.3746	0.1721	0.2649	-	-	0.2203	0.3014
	720	0.4118	0.4308	0.5505	0.5116	0.7690	0.6517	0.3075	0.3808	0.4313	0.4618	0.2629	0.3384	0.2257	0.3183	0.2704	0.3397	0.3170	0.4009	0.2118	0.2942	-	-	0.2682	0.3385
	Avg.	0.3921	0.4210	0.4998	0.4889	0.6151	0.5550	0.2401	0.3370	0.3622	0.4206	0.1916	0.2845	0.1915	0.2891	0.2136	0.2913	0.2750	0.3661	0.1497	0.2409	-	-	0.2005	0.2818
	96	0.9029	0.5171	0.8102	0.4755	0.6845	0.3824	0.6348	0.3876	-	-	-	-	0.6087	0.3164	0.6389	0.3960	0.8068	0.4901	0.3725	0.2571	0.4036	0.2966	0.4185	0.2845
	192	0.9389	0.5377	0.7557	0.4582	0.6899	0.3879	0.6329	0.3935	-	-	-	-	0.6264	0.3314	0.6053	0.3817	0.7679	0.4747	0.3848	0.2612	0.4125	0.3027	0.4394	0.2921
Traffic	336	0.9559	0.5441	0.6804	0.4326	0.7360	0.4147	0.6349	0.3930	-	-	-	-	0.6548	0.3462	0.6173	0.3874	0.7768	0.4773	0.3924	0.2647	0.4231	0.3056	0.4578	0.3016
	720	1.0025 0.9500	0.5596	0.5696	0.3777	0.8059	0.4507	0.6566	0.4028	-	-	- 1	- 1	0.6770 0.6417	0.3506	0.6617	0.4097	0.8157	0.4917 0.4835	0.4316	0.2879	0.4383	0.3091	0.4917	0.3226
	Avg.	0.9300	0.3360	0.7040	0.4360	0.7291	0.4089	0.0398	0.3942	0.1858	0.2668	0.1590	0.2389	0.0417	0.3362	0.0308	0.3937	0.7918	0.4833	0.3933	0.2079	0.4194	0.3033	0.4518	0.3002
	192	0.2476	0.3527	0.1899	0.2872	0.3036	0.3073	0.2936	0.3491	0.1838	0.2008	0.1390	0.2804	0.1817	0.2291	0.2466	0.2400	0.1980	0.2002	0.1534	0.2532	0.1373	0.2139	0.1792	0.2191
Weather	336	0.2755	0.3327	0.2171	0.2372	0.4882	0.5359	0.3222	0.3707	0.2252	0.3466	0.2557	0.2804	0.2423	0.3099	0.2984	0.3129	0.2378	0.2373	0.2613	0.2980	0.2029	0.2976	0.2278	0.3002
Weather	720	0.3926	0.4230	0.3365	0.3819	1.5827	0.9240	0.4268	0.4286	0.3565	0.3984	0.3203	0.3691	0.3975	0.3784	0.2704	0.3586	0.3463	0.3831	0.3269	0.3428	0.3493	0.3549	0.3596	0.3505
	Avg.	0.3074	0.3730	0.2543	0.3169	0.7977	0.6144	0.3508	0.3853	0.2620	0.3288	0.2347	0.3026	0.2777	0.2992	0.2791	0.2973	0.2662	0.3184	0.2353	0.2755	0.2453	0.2802	0.2625	0.2825
	96	1.3842	0.9759	0.6826	0.5662	0.8626	0.7415	0.1551	0.2850	0.2186	0.3501	0.3092	0.4261	0.1289	0.2537	0.1049	0.2301	0.1168	0.2594	0.1067	0.2346	-	-	0.0899	0.2113
	192	1.4420	1.0010	0.5730	0.5741	1.3249	0.9216	0.2944	0.3954	0.4687	0.5080	0.4843	0.5387	0.2479	0.3510	0.1983	0.3205	0.2049	0.3458	0.2008	0.3242	-	-	0.1848	0.3088
Exchange	336	1.5682	1.0433	0.7006	0.6566	1.2885	0.9438	0.4476	0.4967	0.7984	0.6789	0.8584	0.7139	0.4307	0.4832	0.3517	0.4316	0.3261	0.4442	0.4064	0.4729	-	-	0.3388	0.4222
_	720	1.9746	1.1628	2.0907	1.1803	1.5762	1.0094	1.1311	0.8274	1.2703	0.8875	1.3870	0.9669	1.3950	0.8633	0.8876	0.7148	0.5293	0.5717	1.0583	0.7784	-	-	0.8761	0.7120
	Avg.	1.5922	1.0458	1.0117	0.7443	1.2631	0.9041	0.5071	0.5011	0.6890	0.6061	0.7597	0.6614	0.5506	0.4878	0.3856	0.4242	0.2943	0.4053	0.4430	0.4525	-	-	0.3724	0.4136
-	24	7.0450	1.8932	7.0507	1.8967	5.2708	1.5313	3.4776	1.3505	3.2963	1.1271	1.7753	0.8399	2.4637	1.0337	3.6716	1.3056	3.9658	1.4726	2.9939	1.2228	4.1965	1.5388	2.3113	1.0427
	36	7.0539	1.8949	7.1350	1.9084	5.1110	1.5148	3.3136	1.3154	3.2484	1.1215	2.0151	0.8936	2.2281	0.9843	2.7695	1.1426	3.8974	1.4451	3.4103	1.3562	4.2705	1.5554	2.1656	1.0194
ILI	48	7.2207	1.9205	7.2418	1.9256	5.2915	1.5469	3.3103	1.2902	3.2821	1.1190	2.2033	0.9327	2.1243	0.9546	2.2878	0.9802	3.9395	1.4410	2.7575	1.2639	4.4945	1.5472	2.0375	0.9793
	60	7.4870	1.9667	7.4951	1.9698	5.6127	1.6050	3.3582	1.2956	3.1346	1.0879	2.3573	0.9627	2.1243	0.9672	2.1775	0.9778	4.1150	1.4639	2.8209	1.2752	4.5043	1.5694	2.0194	0.9991
	Avg.	7.2016	1.9188	7.2306	1.9251	5.3215	1.5495	3.3649	1.3129	3.2403	1.1139	2.0877	0.9073	2.2351	0.9849	2.7266	1.1015	3.9794	1.4557	2.9957	1.2795	4.3664	1.5527	2.1335	1.0102

 $TABLE\ XIII$ The test F1-score of time series anomaly detection in UCR 250 sub-datasets. The best results are in **bold**.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.0000	0.0000	0.7456 0.5725	0.7529 0.5769	0.6978 0.4893	0.8569 0.0000	0.7588 0.0001	0.7652 0.0287	0.8593 0.7472	126	0.0000	0.0000	0.0000 0.5535	0.4717 0.0000	0.4776 0.0000	0.6024	0.0000	0.4989	0.6849 0.0000
3	0.0000	0.0000	0.5720 0.0000	0.5720 0.8247	0.4979 0.6839	0.7444 0.9732	0.6083 0.7758	0.5613	0.7500 0.9091	128 129	0.0000	0.0000	0.8537 0.0000	0.8623	0.7007	0.0000	0.6403 0.1485	0.7744	0.9301 0.7500
5 6	0.0000	0.0000	0.0000 0.5106	0.0000 0.4898	0.0000	0.0000	0.0000	0.0009 0.0320	0.0000	130 131	0.0000	0.0000	0.0000	0.7638 0.7376	0.4980 0.5053	0.0000	0.3415 0.0961	0.6202 0.5880	0.8645 0.8851
7 8	0.0000	0.0000	0.0000	0.4486 0.0000	0.0950 0.1509	0.0000 0.8889	0.0883 0.8404	0.0279 0.2863	0.0000	132 133	0.0000	0.0000	0.0000	0.0000	0.2782 0.0106	0.0000	0.0000 0.1089	0.0508 0.2439	0.8333 0.0000
9 10	0.0000	0.0000	0.0000 0.6857	0.0000 0.6857	0.1043 0.0195	0.0000	0.0811 0.7533	0.0585 0.2832	0.8727 0.8205	134 135	0.0000	0.0000	0.0000	0.8564 0.0000	0.7219 0.1509	0.0000	0.5851 0.0222	0.5383 0.0047	0.9315 0.0000
11 12	0.0000	0.0000	0.7435 0.6192	0.7722 0.5797	0.7588 0.6146	0.7371 0.5698	0.7940 0.5721	0.7922 0.5713	0.8785 0.7663	136 137	0.0000	0.0000	0.8162 0.0000	0.7929 0.0000	0.5522 0.5001	0.0000	0.3084 0.1292	0.5533 0.4974	0.9024 0.9148
13 14	0.0000	0.0000	0.6079 0.5495	0.6289 0.4695	0.3653 0.3681	0.0000 0.6024	0.0000	0.1146 0.0867	0.7435 0.6944	138 139	0.0000	0.0000	0.3448 0.8767	0.0000 0.8743	0.0431 0.7295	0.0000	0.0242 0.6521	0.1963 0.6143	0.5263 0.9384
15 16	0.0000	0.0000	0.2379 0.6154	0.2353 0.6070	0.2960 0.6569	0.0000 0.7273	0.3624 0.5646	0.3308 0.5682	0.0000	140 141	0.0000	1.0000 0.0000	0.9409 0.0000	0.9144 0.9392	0.8563 0.8233	0.0000	0.8260 0.6668	0.8366 0.8347	0.9585 0.9687
17 18	0.0000	0.0000	0.4762 0.5155	0.4505 0.4640	0.5004 0.0898	0.5747 0.6024	0.4917 0.0000	0.4979 0.4933	0.6024 0.7246	142 143	0.0000	0.0000	0.8732 0.0000	0.8447 0.8583	0.6600 0.6620	0.0000	0.5211 0.1082	0.4788 0.0023	0.9038 0.0000
19 20	0.0000	0.0000	0.0000 0.8730	0.5789 0.8537	0.0504 0.7498	0.0000	0.0951 0.6414	0.0000 0.7714	0.0000 0.9404	144 145	0.0000	0.0000	0.8241 0.2841	0.0000 0.2618	0.6405 0.4257	0.0000 0.5319	0.0460 0.4406	0.0483 0.4556	0.0000
21 22	0.0000	0.0000	0.0000 0.7738	0.0000	0.1588	0.0000	0.1166 0.4399	0.2925	0.7317 0.8676	146 147	0.0000 0.8108	0.0000	0.3211 0.0000	0.3675 0.1863	0.2434 0.1508	0.0000	0.0723	0.2214	0.0000
23 24	0.0000	0.0000	0.7536 0.5607	0.7619	0.5075 0.4818	0.0000	0.1773	0.5986 0.0378	0.8927 0.0000	148 149	0.0000	0.0000	0.5108	0.0000	0.3665	0.0000	0.2688	0.3378	0.7008 0.6952
25 26	0.0000	0.0000	0.5567 0.8786	0.0000	0.0000	0.0000	0.1625	0.2112 0.5358	0.0000	150 151	0.0000	0.0000	0.6845 0.6375	0.6755	0.6346	0.0000	0.0000	0.0000	0.0000 0.8101
27 28 29	0.0000	0.0000	0.0000 0.8102	0.0000	0.0046	0.0000 1.0000	0.0000	0.0157 0.6034	0.0000	152 153	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.7619 0.7991 0.5035	0.7483	0.7372	0.0000	0.7706 0.8364	0.0000	0.0000 0.9195
30 31	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.8160 0.0000 0.8767	0.8193 0.0000 0.0000	0.5050 0.0019 0.7598	0.0000 0.0000 0.0000	0.1390 0.0759 0.5731	0.4585 0.1809 0.6020	0.9027 0.4651 0.9412	154 155 156	0.0000	0.0000	0.0000 0.6736	0.0000 0.0000 0.0000	0.3436 0.6895 0.4725	0.0000 0.0000 0.0000	0.1618 0.7458 0.1380	0.0959 0.2196 0.1162	0.0000 0.8372 0.8584
32 33	0.0000	0.8742 0.0000	0.9227 0.9264	0.9509 0.9115	0.8405 0.8248	0.0000	0.8603 0.5808	0.8372 0.8145	0.9676 0.9366	157	0.0000	0.0000	0.0000 0.7376	0.0000 0.0000 0.7405	0.4723	0.0000	0.0000 0.0965	0.1162 0.0348 0.2654	0.0000
34 35	0.0000	0.0000	0.8659 0.8015	0.0000	0.5402 0.7265	0.0000	0.4893 0.2676	0.4874 0.0032	0.8934 0.8862	159 160	0.0000	0.0000	0.1739 0.7481	0.0000 0.6975	0.3262 0.4098	0.0000	0.3093 0.6050	0.1331 0.3196	0.0000 0.8596
36 37	0.0000	0.0000	0.0000 0.2941	0.8410 0.2646	0.5289 0.4192	0.0000 0.6250	0.0418 0.4427	0.0481 0.4548	0.0000 0.4444	161 162	0.0000	0.0000	0.8701 0.0000	0.9041 0.0000	0.8043 0.1008	0.9296 0.7516	0.6797 0.7389	0.6948 0.5610	0.0000
38 39	0.0000	0.0000	0.3406 0.1911	0.0000	0.3740 0.2113	0.4590 0.0000	0.0294 0.3354	0.1573	0.0000	163 164	0.0000	0.0000	0.5300 0.3992	0.5329	0.5164 0.2654	0.5607	0.5019	0.5132 0.0323	0.0000 0.5195
40 41	0.0000	0.0000	0.5159 0.5263	0.5019 0.5579	0.5143 0.3112	0.0000	0.2748 0.5099	0.3284 0.5931	0.7008 0.6650	165 166	0.0000	0.0000	0.4082 0.3350	0.0000	0.1065 0.1883	0.0000 0.0000 0.3588	0.0000 0.0000 0.0065	0.0000 0.4320	0.0000 0.4964
42 43	0.0000	0.0000	0.0000 0.7064	0.6775 0.6838	0.6419 0.6541	0.0000 0.7692	0.0000 0.7360	0.5604 0.7280	0.8056 0.8000	167 168	0.0000	0.0000	0.5650 0.5906	0.6154 0.6186	0.6844	0.0000 0.8108	0.5665 0.5758	0.6281 0.6152	0.7634 0.7326
44 45	0.0000	0.0000	0.7568 0.8304	0.7878 0.8401	0.7286 0.7812	0.0000	0.7731 0.8180	0.7038 0.7784	0.0000 0.9102	169 170	0.0000	0.0000	0.7500 0.3338	0.7747 0.3577	0.8197 0.1599	0.8863 0.8594	0.7802 0.0774	0.7923 0.2617	0.8596 0.0000
46 47	0.0000	0.0000	0.0000 0.5783	0.5692 0.5830	0.2705 0.6930	0.0000	0.1330 0.7295	0.0890 0.2206	0.0000	171 172	0.0000	0.0000	0.7733 0.7996	0.7593 0.8260	0.7823 0.8694	0.9946 1.0000	0.7741 0.8319	0.7832 0.8637	0.8547 0.8934
48 49	0.0000	0.0000	0.6855 0.0000	0.0000	0.6376 0.0000	0.0000	0.1308 0.0000	0.1388 0.0347	0.8398 0.0000	173 174	0.0000	0.0000	0.0000	0.5455 0.0000	0.0694 0.5756	0.0000	0.0269 0.5942	0.0544 0.0031	0.6122 0.6024
50 51	0.0000	0.0000	0.7185 0.0000	0.0000	0.0885 0.3296	0.0000	0.0942 0.2685	0.1738 0.1358	0.8509 0.0000	175 176	0.0000	0.0000	0.0000	0.6803	0.4948 0.2882	0.9524 0.0000	0.2471 0.0374	0.1906 0.0159	0.0000 0.7246
52 53	0.0000	0.0000	0.7313 0.0000	0.6735 0.8540	0.4174 0.7347	0.0000 0.9203	0.5080 0.0001	0.2750 0.6932	0.8376 0.9371	177 178	0.0000	0.0000	0.0000 0.5450	0.0000 0.5682	0.0000 0.5543	0.0000 0.7092	0.0019 0.5975	0.0000 0.6070	0.0000
54 55	0.0000	0.0000	0.0000 0.5181	0.0000	0.3106 0.3871	0.7815 0.5445	0.7471 0.5025	0.5743 0.5098	0.0000	179 180	0.0000	0.0000	0.5706 0.5413	0.5935 0.0000	0.6359 0.5954	0.7463 0.0000	0.6712 0.0000	0.6601 0.4281	0.0000
56 57	0.0000	0.0000	0.3704 0.3906	0.4202 0.3663	0.1255 0.1576	0.0000	0.0000	0.0323	0.5333 0.0000	181 182	0.0000	0.0000	0.7106 0.7214	0.7034 0.7729	0.7125 0.7619	0.0000 0.8290	0.6666 0.6945	0.7003 0.7008	0.8384 0.8230
58 59	0.0000	0.0000	0.3523 0.5797	0.0000 0.6141	0.4413 0.6060	0.3309 0.8811	0.0000 0.5588	0.4296 0.6224	0.4892 0.0000	183 184	0.0000	0.0000	0.8122 0.6184	0.7790 0.6193	0.7647 0.7484	0.8574 0.9966	0.7526 0.7493	0.7446 0.7462	0.8658 0.7867
60 61	0.0000	0.0000	0.5952 0.7547	0.6231 0.7737	0.6537 0.8057	0.9063 0.9554	0.5835 0.7804	0.6152 0.7932	0.7782 0.8639	185 186	0.0000	0.0000	0.0000 0.2340	0.0000	0.0004 0.2755	0.0000	0.0030 0.0037	0.0005 0.0006	0.0000 0.4270
62 63	0.0000	0.0000	0.3226 0.7391	0.3543 0.7598	0.2169 0.8087	0.8730 0.0000	0.0775 0.7745	0.2428 0.7910	0.0000 0.8707	187 188	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	2.0000 0.0000	0.0000 0.0000	2.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
64 65	0.0000	0.9406	0.7756 0.4918	0.8138	0.8466	0.9804	0.8295 0.0356	0.8542	0.8984	189 190	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
66 67	0.0000	0.0000	0.0000 0.6494	0.0000	0.4327 0.7438	0.0000	0.4686	0.0000	0.6944 0.0000	191 192	0.0000	0.0000	0.0000 0.5181	0.0000	0.1309 0.4528	0.9615 0.4435	0.2052 0.5406	0.2032 0.5785	0.2220 0.5510
68 69	0.0000	0.0000	0.0000	0.0000	0.3287	0.0000	0.0319 0.0020	0.0159	0.0000	193 194	0.0000	0.0000	0.4386 0.4682	0.4444	0.5175	0.5602 0.9542	0.4526	0.4735	0.0000
70 71 72	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.5006 0.5540 0.5420	0.5435 0.5450 0.5533	0.5250 0.6246 0.5144	0.7080 0.7463 0.0000	0.5942 0.6695 0.0000	0.6084 0.6602 0.4273	0.6826 0.0000 0.0000	195 196 197	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.6740 0.6903 0.3004	0.6396 0.6631 0.0000	0.6580 0.7344 0.1341	0.6981 0.7923 0.0000	0.7027 0.6787 0.2739	0.6821 0.6886 0.1417	0.7543 0.0000 0.0000
73 74	0.0000	0.0000	0.5420 0.6956 0.7401	0.7256 0.7456	0.5144 0.6940 0.7724	0.9163 0.8316	0.6770 0.6948	0.7050 0.7004	0.8679	197 198 199	0.0000	0.0000	0.6906 0.4660	0.6921 0.5055	0.7673 0.5344	0.0000	0.2739 0.7581 0.0107	0.1417 0.7606 0.4833	0.0000 0.7942 0.0000
75 76	0.0000	0.0000	0.7944 0.6152	0.7436 0.8032 0.6194	0.7999 0.7369	0.8574 0.9899	0.7493 0.7453	0.7424 0.7406	0.8639 0.7593	200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0107 0.0038 0.1486	0.4833 0.0005 0.0042	0.0000
77 78	0.0000	0.0000	0.0000 0.2338	0.0000 0.2434	0.0006 0.2853	0.0000	0.0027 0.0015	0.0005 0.0011	0.0000 0.4252	201 202 203	0.0000	0.0000	0.0000	0.0000 3.0000 3.0000	0.0256 0.0000	0.0000 3.0000	0.0946 0.0000	0.0042 0.0271 0.0000	0.0000
79 80	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	204 205	0.0000	0.0000	0.0000	0.3509 0.4444	0.1232 0.1420	0.0000	0.4953 0.0234	0.1319 0.1079	0.0000 0.4569
81 82	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	206 207	0.0000	0.0000	0.0000	0.4167	0.1963	0.0000 0.4444	0.6011 0.2947	0.0956	0.5854 0.3810
83 84	0.0000	0.0000	0.1130 0.4505	0.0000	0.0785 0.2430	0.0000 0.4425	0.2053 0.5432	0.2030 0.5790	0.0000 0.5988	208 209	0.0000	0.0000	0.0000 0.4914	0.0000	0.2703 0.5874	0.1487 0.6857	0.2148 0.6293	0.0769	0.2797 0.0000
85 86	0.0000	0.0000	0.4202 0.0000	0.3984 0.4405	0.4701 0.4798	0.7042 0.8711	0.4415 0.5290	0.4744 0.5315	0.0000	210 211	0.0000	0.0000	0.0000	0.1994 0.2051	0.0621 0.1436	0.0000 0.8101	0.0390 0.0534	0.1177 0.1104	0.3221 0.0000
87 88	0.0000	0.0000	0.6514 0.6942	0.6379 0.6789	0.6548 0.6971	0.6981 0.7914	0.7030 0.6786	0.6754 0.6915	0.7490 0.0000	212 213	0.0000	0.0000	0.0000 0.2574	0.2069 0.2563	0.0159 0.3505	0.0000 0.4749	0.0043 0.3674	0.0082 0.3651	0.0000 0.4100
89 90	0.0000	0.0000	0.0000 0.6973	0.2952 0.6901	0.1374 0.7729	0.0000	0.2790 0.7627	0.1256 0.7694	0.0000 0.8082	214 215	0.0000	0.0000	0.3400 0.3328	0.3629 0.3177	0.4373 0.4458	0.6112 0.6106	0.4443 0.4386	0.4386 0.4362	0.5068 0.4930
91 92	0.0000	0.0000	0.0000	0.4728 0.0000	0.5329 0.0003	0.0000	0.5032 0.0038	0.4869 0.0005	0.0000	216 217	0.0000	0.0000	0.3399 0.3456	0.3239 0.3661	0.4717 0.4396	0.5572 0.0000	0.4431 0.4400	0.4393 0.4409	0.5023 0.5149
93 94	0.0000	0.0000	0.7465 0.8386	0.7439 0.9091	0.7759 0.7262	0.8581 0.9756	0.7915 0.7770	0.7652 0.6905	0.8552 0.9029	218 219	0.0000	0.0000	0.3453 0.0000	0.3367 0.1451	0.4736 0.2252	0.5811 0.3231	0.4433 0.1893	0.4424 0.1746	0.4956 0.0000
95 96	0.0000	0.0000	0.0000 0.6525	0.7111 0.6339	0.0977 0.6908	0.9897 0.7273	0.8539 0.5629	0.2955 0.5704	0.8807 0.7634	220 221	0.0000	0.0000	0.3355 0.4844	0.3370 0.4868	0.4812 0.6366	0.6549 0.7381	0.4516 0.6213	0.4545 0.6201	0.4799 0.6501
97 98	0.0000	0.0000	0.0000	0.5325 0.0000	0.2940 0.0682	0.0000	0.1566 0.0441	0.3323	0.0000	222 223	0.0000	0.0000	0.4193 0.5105	0.4290 0.4897	0.5028 0.5504	0.3812	0.4754 0.4868	0.4743 0.5111	0.4325 0.5501
99 100	0.0000	0.0000	0.8401 0.2833	0.8031	0.6375	0.9627 0.5587	0.5309	0.4880	0.0000	224 225	0.0000	0.0000	0.4733 0.3661	0.4798	0.5589	0.4492	0.5251	0.5746 0.4118	0.2691 0.4338
101 102	0.0000	0.0000	0.0000 0.7048	0.0000	0.4867 0.7244	0.0000 0.7862	0.2788	0.1350 0.7255	0.0000	226 227	0.0000	0.0000	0.4515 0.0000	0.4228 0.3150	0.5257 0.0417	0.3911	0.6263	0.6160	0.6356
103 104	0.0000	0.0000	0.7000 0.4107	0.0000 0.4237	0.0790	0.0000	0.5889	0.2824	0.0000 0.5391	228 229	0.0000 0.3774	0.0000	0.0000	0.0000	0.0440	0.0000	0.0000	0.0516	0.0000
105 106	0.0000	0.0000	0.7757 0.7345	0.7910	0.8036	0.9252	0.7739	0.7929	0.8664	230 231	0.0000	0.0000	0.3311 0.5434 0.5429	0.3328	0.2195 0.5732	0.4132 0.0000 0.5646	0.3745	0.3815	0.0000 0.5963
107 108	0.0000	0.0000	0.0000	0.0000 1.0000	0.2974	0.0000 1.0000	0.1053	0.1625 0.0000 0.7654	0.0000	232	0.0000	0.0000	0.5428	0.5295	0.5972	0.5646	0.4988	0.4926 0.0031	0.0000
109 110	0.0000	0.0000	0.7612 0.5814	0.7617 0.5714	0.7771	0.8575	0.7793	0.7654 0.5679	0.8653 0.7353	234 235	0.0000	0.0000	0.0028 0.0000	0.0000	0.0000	0.0000	0.0000 0.0051	0.0001	0.0000 0.0000
111 112 113	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.5780 0.8264 0.0000	0.5877 0.8299 0.0000	0.5936 0.7042 0.0000	0.7417 0.9852 0.0000	0.6776 0.7750 0.0509	0.5617 0.7464 0.0009	0.7547 0.9070 0.0000	236 237 238	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.6926 0.2988	0.0000 0.6888 0.3523	0.0482 0.7925 0.3576	0.0000 0.7053 0.3636	0.0039 0.7694 0.4216	0.0023 0.7802 0.4438	0.1852 0.7891 0.5255
113 114 115	0.0000	0.0000	0.0000 0.0000 0.5161	0.0000	0.0000 0.0000 0.0211	0.0000	0.0509 0.2025 0.0821	0.0009 0.0319 0.0279	0.0000 0.7164 0.0000	238 239 240	0.0000	0.0000	0.2988 0.0000 0.0000	0.3523 0.0000 0.0000	0.3576 0.0013 0.0401	0.3636	0.4216 0.0077 0.0108	0.4438 0.0164 0.0090	0.5255 0.0000 0.0000
116 117	0.0000	0.0000	0.6857 0.0000	0.7385 0.0000	0.0211 0.0891 0.1245	0.0000 0.9412 0.0000	0.8530 0.5932	0.0279 0.3251 0.0686	0.0000 0.0000 0.8727	240 241 242	0.0000	0.0000	0.3534 0.2179	0.3615 0.2194	0.7810 0.2847	0.0000 0.7991 0.0000	0.4872 0.2784	0.4919 0.2774	0.6454 0.4422
117 118 119	0.0000	0.0000	0.0000 0.0000 0.7528	0.0000 0.0000 0.7481	0.1245 0.0000 0.7843	0.0000 0.0000 0.7362	0.5932 0.6773 0.7884	0.2900 0.7892	0.8727 0.8889 0.8658	242 243 244	0.0000	0.0000	0.2179 0.0564 0.2064	0.2194 0.0602 0.2139	0.2847 0.0164 0.2354	0.0000	0.2784 0.0243 0.2441	0.2774 0.0567 0.2478	0.4422 0.1124 0.3013
120 121	0.0000	0.0000	0.5362 0.5780	0.0000	0.5800 0.5983	0.5556	0.5847	0.7892 0.5751 0.1246	0.7843 0.6757	245 246	0.0000	0.0000	0.2131 0.2134	0.2275 0.2206	0.2810 0.2722	0.5023 0.3362	0.3061 0.2455	0.3266 0.3044	0.3013 0.3010 0.3275
122 123	0.0000	0.0000	0.4684 0.2272	0.0000 0.2593	0.2056 0.3390	0.0000 0.0000 0.9231	0.0000 0.0000 0.3249	0.0869 0.3497	0.6826 0.0000	247 248	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0871 0.0000	0.0000 0.0000	0.0000 0.0144	0.0502	0.1704 0.0000
124 125	0.0000	0.0000	0.6279 0.4796	0.6768 0.4587	0.6176 0.5999	0.7273 0.5714	0.5641 0.4892	0.5698	0.7648 0.6135	249 250	0.0000	0.0000	0.4878 0.0000	0.0000	0.2953 0.0168	0.0000	0.0049	0.0153 0.0272	0.0000

 $TABLE\ XIV \\ The\ test\ precision\ of\ time\ series\ anomaly\ detection\ in\ UCR\ 250\ sub-datasets.\ The\ best\ results\ are\ in\ \mathbf{BOLD}.$

UCR ID	SPOT 0.0000	DSPOT 0.0000	0.5944	DONUT 0.6037	AT 0.5813	TS2Vec 0.7497	TimesNet 0.6896	GPT4TS 0.6949	DCdetector 0.7533	UCR ID	SPOT 0.0000	DSPOT 0.0000	0.0000	DONUT 0.3086	AT 0.3748	TS2Vec 0.4310	TimesNet 0.0000	GPT4TS 0.3915	DCdetector 0.5208
2	0.0000	0.0000	0.4011	0.4054	0.3613	0.0000	0.0001	0.0322	0.5964	127	0.0000	0.0000	0.3826	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.4005 0.0000	0.4005 0.7018	0.3680 0.7543	0.5929 0.9479	0.4990 0.7952	0.4719 0.7564	0.6000 0.8333	128 129	0.0000	0.0000	0.7448 0.0000	0.7580 0.4455	0.8004 0.3283	0.0000	0.7743 0.1559	0.8231 0.3420	0.8694 0.6000
5 6	0.0000	0.0000	0.0000 0.3429	0.0000 0.3243	0.0000	0.0000	0.0000	0.0005 0.0342	0.0000	130 131	0.0000	0.0000	0.0000	0.6178 0.5843	0.5789 0.5787	0.0000	0.4531 0.1689	0.6501 0.6287	0.7613 0.7939
7 8	0.0000	0.0000	0.0000	0.2892 0.0000	0.0995 0.2032	0.0000 0.8000	0.1026 0.7861	0.0298 0.3599	0.0000	132 133	0.0000	0.0000	0.0000	0.0000	0.2794 0.0113	0.0000	0.0000 0.1094	0.0593 0.2335	0.7143 0.0000
9 10	0.0000	0.0000	0.0000 0.5217	0.0000 0.5217	0.1498 0.0304	0.0000	0.1542 0.7330	0.0920 0.3598	0.7742 0.6957	134 135	0.0000	0.0000	0.0000	0.7489	0.8022 0.1020	0.0000	0.7513 0.0154	0.7216 0.0032	0.8718 0.0000
11 12	0.0000	0.0000	0.5917 0.4484	0.6289 0.4082	0.7148 0.5293	0.5837 0.3984	0.7185 0.4598	0.7311 0.4793	0.7833 0.6211	136 137	0.0000	0.0000	0.6894 0.0000	0.6568 0.0000	0.6510 0.6308	0.0000	0.4673 0.2574	0.6553 0.6317	0.8222 0.8430
13 14	0.0000	0.0000	0.4367 0.3788	0.4587 0.3067	0.3488 0.3007	0.0000 0.4310	0.0000	0.1282 0.0802	0.5917 0.5319	138 139	0.0000	0.0000	0.2083 0.7805	0.0000 0.7767	0.0311 0.8210	0.0000	0.0176 0.7942	0.1381 0.7804	0.3571 0.8840
15 16	0.0000	0.0000	0.1350 0.4444	0.1333 0.4357	0.1852 0.5617	0.0000 0.5714	0.2248 0.5117	0.2062 0.5153	0.0000	140 141	0.0000	1.0000 0.0000	0.8883	0.8424 0.8854	0.9077 0.8985	0.0000	0.9035 0.8565	0.9153 0.9019	0.9203 0.9392
17 18	0.0000	0.0000	0.3125 0.3472	0.2907 0.3021	0.3749 0.0815	0.4032 0.4310	0.3749 0.0000	0.3788 0.3874	0.4310 0.5682	142 143	0.0000	0.0000	0.7750 0.0000	0.7311 0.7517	0.7550 0.7423	0.0000	0.6947 0.2423	0.6651 0.0062	0.8245 0.0000
19 20	0.0000	0.0000	0.0000 0.7745	0.4074 0.7448	0.0563 0.8137	0.0000	0.1010 0.7802	0.0000 0.8218	0.0000 0.8875	144 145	0.0000	0.0000	0.7009 0.1656	0.0000 0.1506	0.7510 0.2742	0.0000 0.3623	0.1249 0.2849	0.1306 0.2971	0.0000
21 22	0.0000	0.0000	0.0000 0.6310	0.0000 0.6178	0.1663 0.6564	0.0000	0.1261 0.5325	0.2840 0.6411	0.5769 0.7662	146 147	0.0000 0.6818	0.0000	0.1913	0.2251 0.1027	0.1778 0.0921	0.0000	0.0547 0.1994	0.1639 0.1125	0.0000
23 24	0.0000	0.0000	0.6047 0.3896	0.6154	0.5797 0.4364	0.0000	0.2794	0.6386	0.8062 0.0000	148 149	0.0000	0.0000	0.3430 0.0000	0.0000	0.3197	0.0000	0.2445	0.3000	0.5394 0.5328
25 26	0.0000	0.0000	0.3857 0.7834	0.0000 0.7727	0.0000 0.7765	0.0000	0.1591 0.7475	0.2049 0.7126	0.0000	150 151	0.0000	0.0000	0.5204 0.4678	0.5100 0.5229	0.5813 0.6698	0.0000 0.6452	0.0000 0.6221	0.0000	0.0000 0.6809
27 28	0.0000	0.0000	0.0000 0.6810	0.0000	0.0032 0.7385	0.0000 1.0000	0.0000 0.4949	0.0108 0.6786	0.0000 0.8346	152 153	0.0000	0.0000	0.6154 0.6654	0.5979	0.7109 0.7861	0.0000	0.7391 0.8250	0.0000 0.7813	0.0000 0.8511
29 30	0.0000	0.0000	0.6892 0.0000	0.6939	0.6349	0.0000	0.2682	0.6028 0.1305	0.8226 0.3030	154 155	0.0000	0.0000	0.3364 0.0000	0.0000	0.3037 0.5490	0.0000	0.1619 0.6010	0.0923	0.0000 0.7200
31	0.0000	0.0000	0.7805	0.0000	0.8345	0.0000	0.7557	0.7713	0.8889 0.9372	156	0.0000	0.0000	0.5079	0.0000	0.5141	0.0000	0.3048	0.1855	0.7519
32 33	0.0000	0.7766	0.8565 0.8629	0.9063	0.9052	0.0000	0.9218	0.9161 0.9026	0.8808	157 158	0.0000	0.0000	0.0000 0.5843	0.0000 0.5879	0.0000	0.0000	0.0000	0.0244	0.0000
34 35	0.0000	0.0000	0.7635 0.6687	0.0000	0.6921	0.0000	0.7071 0.4617	0.6751	0.8073 0.7956	159 160	0.0000	0.0000	0.0952 0.5976	0.0000	0.1966 0.4679	0.0000	0.2138 0.7152	0.0834	0.0000 0.7538
36 37	0.0000	0.0000	0.0000 0.1724	0.7257 0.1524	0.6941	0.0000 0.4545	0.1136 0.2867	0.1274 0.2963	0.0000 0.2857	161 162	0.0000	0.0000	0.7700 0.0000	0.8250	0.8795 0.1643	0.8684	0.8208 0.6465	0.8447	0.0000
38 39	0.0000	0.0000	0.2053 0.1056	0.0000	0.2642 0.1286	0.2979 0.0000	0.0226 0.2016	0.1185 0.1127	0.0000	163 164	0.0000	0.0000	0.3606 0.2494	0.3632 0.0000	0.4145 0.1970	0.3896 0.0000	0.4110 0.0000	0.4198 0.0253	0.0000 0.3509
40 41	0.0000	0.0000	0.3476 0.3571	0.3351 0.3869	0.4227 0.2847	0.0000	0.2517 0.4279	0.2930 0.4800	0.5394 0.4981	165 166	0.0000	0.0000	0.2564 0.2012	0.0000	0.0835 0.1320	0.0000 0.2186	0.0000 0.0048	0.0000 0.2893	0.0000 0.3301
42 43	0.0000	0.0000	0.0000 0.5461	0.5122 0.5195	0.5907 0.6129	0.0000 0.6250	0.0000 0.6198	0.5436 0.6105	0.6745 0.6667	167 168	0.0000	0.0000	0.3937 0.4190	0.4444 0.4478	0.5451 0.5427	0.0000 0.6818	0.4726 0.4846	0.5091 0.5086	0.6173 0.5780
44 45	0.0000	0.0000	0.6087 0.7101	0.6499 0.7243	0.7124 0.7800	0.0000	0.7353 0.8189	0.6965 0.7847	0.0000 0.8353	169 170	0.0000	0.0000	0.6000 0.2004	0.6322 0.2178	0.7369 0.1141	0.7958 0.7534	0.7106 0.0556	0.7154 0.1797	0.7538 0.0000
46 47	0.0000	0.0000	0.0000 0.4068	0.3978 0.4114	0.2443 0.5479	0.0000	0.1365 0.5794	0.0860 0.2192	0.0000	171 172	0.0000	0.0000	0.6305 0.6661	0.6121 0.7036	0.7151 0.7974	0.9893 1.0000	0.7033 0.7732	0.7056 0.7860	0.7463 0.8073
48 49	0.0000	0.0000	0.5215 0.0000	0.0000	0.6205 0.0000	0.0000	0.2458 0.0000	0.2137 0.0243	0.7239 0.0000	173 174	0.0000	0.0000	0.0000	0.3750 0.0000	0.0627 0.4263	0.0000	0.0244 0.4331	0.0485 0.0027	0.4412 0.4310
50 51	0.0000	0.0000	0.5607 0.0000	0.0000	0.1491 0.2014	0.0000	0.1973 0.1789	0.2599 0.0849	0.7405 0.0000	175 176	0.0000	0.0000	0.0000	0.5155 0.0000	0.5229 0.2690	0.9091 0.0000	0.2913 0.0395	0.2388 0.0170	0.0000 0.5682
52 53	0.0000	0.0000	0.5765 0.0000	0.5078 0.7452	0.4910 0.8600	0.0000 0.8524	0.6192 0.0003	0.3694 0.8438	0.7206 0.8817	177 178	0.0000	0.0000	0.0000 0.3745	0.0000 0.3968	0.0000 0.4401	0.0000 0.5495	0.0010 0.4703	0.0000 0.4752	0.0000
54 55	0.0000	0.0000	0.0000 0.3497	0.0000	0.4183 0.3317	0.6413 0.3741	0.6528 0.4106	0.5955 0.4174	0.0000	179 180	0.0000	0.0000	0.3992 0.3711	0.4219 0.0000	0.5130 0.4772	0.5952 0.0000	0.5602 0.0000	0.5387 0.3624	0.0000
56 57	0.0000	0.0000	0.2273 0.2427	0.2660 0.2242	0.0960 0.1214	0.0000	0.0000	0.0253 0.0000	0.3636 0.0000	181 182	0.0000	0.0000	0.5511 0.5642	0.5425 0.6299	0.6387 0.6807	0.0000 0.7080	0.6035 0.6412	0.6281 0.6492	0.7218 0.6993
58 59	0.0000	0.0000	0.2138 0.4082	0.0000 0.4431	0.2972 0.5020	0.1983 0.7874	0.0000 0.4678	0.2878 0.5054	0.3238 0.0000	183 184	0.0000	0.0000	0.6838 0.4476	0.6380 0.4485	0.7174 0.6142	0.7505 0.9933	0.7082 0.6225	0.7068 0.6114	0.7634 0.6484
60 61	0.0000	0.0000	0.4237 0.6061	0.4525 0.6309	0.5433 0.7261	0.8287 0.9146	0.4911 0.7118	0.5086 0.7167	0.6369 0.7605	185 186	0.0000	0.0000	0.0000 0.1325	0.0000	0.0002 0.1729	0.0000	0.0015 0.0026	0.0003 0.0004	0.0000 0.2714
62 63	0.0000	0.0000	0.1923 0.5861	0.2153 0.6126	0.1530 0.7262	0.7746 0.0000	0.0557 0.7037	0.1673 0.7087	0.0000 0.7711	187 188	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
64 65	0.0000	0.8879	0.6334 0.3261	0.6861	0.7869 0.0353	0.9615 0.0000	0.7728 0.0323	0.7816 0.0584	0.8155 0.0000	189 190	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000 0.0000
66 67	0.0000	0.0000	0.0000 0.4808	0.0000	0.3310 0.6540	0.0000	0.3519 0.3926	0.0000 0.2239	0.5319 0.0000	191 192	0.0000	0.0000	0.0000 0.3497	0.0000 0.2985	0.0733 0.3327	0.9259 0.2849	0.1144 0.4058	0.1133 0.4263	0.1248 0.3802
68 69	0.0000	0.0000	0.0000	0.0000	0.2989 0.0000	0.0000	0.0338 0.0010	0.0170 0.0000	0.0000	193 194	0.0000	0.0000	0.2809 0.3056	0.2857 0.2665	0.3726 0.3590	0.3891 0.9124	0.3232 0.4133	0.3444 0.4117	0.0000
70 71	0.0000	0.0000	0.3339 0.3831	0.3731 0.3745	0.4224 0.5046	0.5479 0.5952	0.4675 0.5583	0.4761 0.5387	0.5181 0.0000	195 196	0.0000	0.0000	0.5082 0.5271	0.4701 0.4960	0.5650 0.6370	0.5362 0.6560	0.5899 0.6280	0.5798 0.6317	0.6056 0.0000
72 73	0.0000	0.0000	0.3717 0.5332	0.3824 0.5693	0.4263 0.6364	0.0000 0.8456	0.0000	0.3612 0.6342	0.0000 0.7667	197 198	0.0000	0.0000	0.1768 0.5275	0.0000 0.5291	0.0932 0.6450	0.0000	0.1835 0.6383	0.0895 0.6328	0.0000 0.6587
74 75	0.0000	0.0000	0.5874 0.6590	0.5944 0.6711	0.6891	0.7117 0.7505	0.6418 0.7069	0.6489	0.0000 0.7605	199 200	0.0000	0.0000	0.3038	0.3382	0.3911 0.0000	0.0000	0.0095 0.0019	0.3594	0.0000
76 77	0.0000	0.0000	0.4443 0.0000	0.4487	0.6062	0.9801 0.0000	0.6200 0.0014	0.6076 0.0003	0.6120 0.0000	201 202	0.0000	0.0000	0.0000	0.0000	0.0000 0.0150	0.0000	0.0803 0.0565	0.0023 0.0164	0.0000
78 79	0.0000	0.0000	0.1324	0.1386	0.1793	0.0000	0.0010	0.0007	0.2700 0.0000	203	0.0000	0.0000	0.0000 0.0000	0.0000 0.2128	0.0000 0.0887	0.0000	0.0000 0.3292	0.0000 0.0973	0.0000 0.0000
80 81	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	205 206	0.0000	0.0000	0.0000	0.2857 0.2632	0.1091 0.1642	0.0000	0.0187 0.5252	0.0863 0.0862	0.2961 0.4138
82 83	0.0000	0.0000	0.0000 0.0599	0.0000	0.0000 0.0441	0.0000	0.0000 0.1145	0.0000 0.1131	0.0000 0.0000	207 208	0.0000	0.0000	0.0000	0.1285	0.1219 0.1733	0.2857 0.0803	0.1863 0.1381	0.0343 0.0506	0.2353 0.1626
84 85	0.0000	0.0000	0.2907 0.2660	0.2890 0.2488	0.1906	0.2841 0.5435	0.4088	0.4269 0.3453	0.4274 0.0000	209 210	0.0000	0.0000	0.3257 0.0000	0.3261	0.4326 0.0380	0.5217	0.4612 0.0239	0.4706 0.0715	0.0000 0.1920
86 87	0.0000	0.0000	0.0000 0.4830	0.2825 0.4684	0.3705 0.5713	0.7716 0.5362	0.4068 0.5904	0.4122 0.5764	0.0000 0.5987	211 212	0.0000	0.0000	0.0000	0.1143 0.1154	0.0873 0.0098	0.6809 0.0000	0.0329 0.0027	0.0675 0.0050	0.0000 0.0000
88 89	0.0000	0.0000	0.5316 0.0000	0.5139 0.1731	0.6188 0.0952	0.6549 0.0000	0.6279 0.1863	0.6362 0.0805	0.0000	213 214	0.0000	0.0000	0.1477 0.2049	0.1154 0.1470 0.2217	0.2221 0.2922	0.3114 0.4401	0.2316 0.2988	0.2302 0.2953	0.2579 0.3394
90 91	0.0000	0.0000	0.5353 0.0000	0.5268	0.6582 0.3892	0.0000	0.6475	0.6410 0.3618	0.6782 0.0000	215	0.0000	0.0000	0.1996 0.2047	0.1888 0.1932	0.3015 0.3165	0.4395	0.2950	0.2933 0.2931	0.3394 0.3271 0.3354
91 92 93	0.0000	0.0000	0.0000 0.0000 0.5956	0.3096 0.0000 0.5922	0.3892 0.0002 0.7104	0.0000 0.0000 0.7515	0.3808 0.0019 0.7123	0.3618 0.0002 0.6949	0.0000 0.0000 0.7470	217 218	0.0000	0.0000	0.2047 0.2089 0.2087	0.1932 0.2241 0.2024	0.3165 0.2951 0.3188	0.3862 0.0000 0.4096	0.2968 0.2967	0.2961 0.2976 0.2990	0.3354 0.3467 0.3294
94 95	0.0000	0.0000	0.7220 0.0000	0.8333 0.5517	0.7653 0.1464	0.7515 0.9524 0.9796	0.7123 0.7970 0.7529	0.7544 0.3727	0.8230 0.7869	219 220	0.0000	0.0000	0.2087 0.0000 0.2016	0.2024 0.0782 0.2026	0.1299 0.3244	0.4996 0.1926 0.4869	0.1091 0.3060	0.1007 0.3064	0.0000 0.3157
95 96 97	0.0000	0.0000	0.4843 0.0000	0.4640	0.1464 0.5824 0.2848	0.5714 0.0000	0.5089	0.5172	0.7869 0.6173 0.0000	221 222	0.0000	0.0000	0.3196	0.2026 0.3217 0.2731	0.3244 0.4814 0.3478	0.4869 0.5849 0.2355	0.3060 0.4689 0.3215	0.3064 0.4675 0.3284	0.4816
97 98 99	0.0000	0.0000	0.0000 0.0000 0.7243	0.3629 0.0000 0.6710	0.2848 0.0467 0.7463	0.0000 0.0000 0.9281	0.1638 0.0305 0.6972	0.3158 0.0069 0.6701	0.0000	222 223 224	0.0000	0.0000	0.2653 0.3427 0.3100	0.2731 0.3243 0.3157	0.4111 0.4132	0.2355 0.0000 0.2897	0.3215 0.3487 0.3725	0.3284 0.3742 0.4184	0.2759 0.3794 0.1555
100 101	0.0000	0.0000	0.1650 0.0000	0.1742 0.0000	0.2783 0.4024	0.3876 0.0000	0.2846 0.2544	0.2962 0.1324	0.0000	225 226	0.0000	0.0000	0.2240 0.2915	0.2180 0.2681	0.3076 0.3780	0.2897 0.1893 0.2431	0.2638 0.4690	0.2692 0.4582	0.1333 0.2770 0.4658
102	0.0000	0.0000	0.5442	0.5016	0.6455	0.6478	0.6203	0.6086	0.0000	227	0.0000	0.0000	0.0000	0.1869	0.0294	0.0000	0.0056	0.0400	0.0000
103 104	0.0000	0.0000	0.5385 0.2584	0.0000 0.2688	0.1280 0.0822	0.0000	0.6554	0.3783	0.0000 0.3690	228 229	0.0000 0.2326	0.0000	0.0000	0.0000	0.0238 0.0013	0.0000	0.0000 0.0002	0.0280 0.0125	0.0000
105 106	0.0000	0.0000	0.6336 0.5804	0.6543	0.7273	0.8608	0.7082	0.7165	0.7643 0.7629	230 231	0.0000	0.0000	0.1984 0.3730	0.1996	0.1583 0.4500	0.2604	0.2541 0.0064	0.2599	0.0000 0.4248
107 108	0.0000 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.3619	0.0000 0.0000	0.1378 0.0000	0.2093 0.0000	0.0000 0.0000	232 233	0.0000	0.0000	0.3725 0.0000	0.3601	0.4684	0.3933	0.4137	0.4036 0.0016	0.0000
109 110	0.0000	0.0000	0.6145 0.4098	0.6151 0.4000	0.7148 0.0297	0.7506	0.7073 0.0000	0.6943 0.4743	0.7626 0.5814	234 235	0.0000	0.0000	0.0014 0.0000	0.0000	0.0000 0.0005	0.0000	0.0000 0.0026	0.0000 0.0020	0.0000
111 112	0.0000	0.0000	0.4065 0.7042	0.4161 0.7092	0.4990	0.5894 0.9709	0.5458	0.4711	0.6061 0.8299	236 237	0.0000	0.0000	0.0000 0.5298	0.0000	0.0265 0.6750	0.0000	0.0021	0.0013	0.1020 0.6516
113 114	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0267 0.2033	0.0005 0.0340	0.0000 0.5581	238 239	0.0000	0.0000	0.1756 0.0000	0.2138 0.0000	0.2430 0.0007	0.2222	0.2769 0.0039	0.2913 0.0084	0.3564 0.0000
115 116	0.0000	0.0000	0.3478 0.5217	0.0000 0.5854	0.0224 0.1318	0.0000 0.8889	0.0839 0.7507	0.0299 0.3984	0.0000	240 241	0.0000	0.0000	0.0000 0.2146	0.0000 0.2206	0.0207 0.6665	0.0000 0.6654	0.0056 0.3284	0.0046 0.3327	0.0000 0.4765
117 118	0.0000	0.0000	0.0000	0.0000	0.1800 0.0000	0.0000	0.5847 0.6016	0.1066 0.3648	0.7742 0.8000	242 243	0.0000	0.0000	0.1223 0.0290	0.1232 0.0310	0.1750 0.0087	0.0000	0.1753 0.0130	0.1729 0.0301	0.2838 0.0595
119 120	0.0000	0.0000	0.6036 0.3663	0.5976 0.0000	0.7226 0.4781	0.5825 0.3846	0.7094 0.4747	0.7292 0.4834	0.7634 0.6452	244 245	0.0000	0.0000	0.1151 0.1193	0.1198 0.1283	0.1445 0.1721	0.0000 0.3354	0.1516 0.1903	0.1526 0.2010	0.1774 0.1772
121 122	0.0000	0.0000	0.4065 0.3058	0.4367 0.0000	0.5054 0.1795	0.0000	0.0000	0.1385 0.0806	0.5102 0.5181	246 247	0.0000	0.0030	0.1195 0.0000	0.1240 0.0000	0.1653 0.0478	0.2021 0.0000	0.1466 0.0000	0.1835 0.0278	0.1958 0.0931
123 124	0.0000	0.0000	0.1282 0.4577	0.1490 0.5115	0.2108 0.5407	0.8571 0.5714	0.2025 0.5109	0.2173 0.5170	0.0000 0.6192	248 249	0.0000	0.0000	0.0000 0.3226	0.0000	0.0000 0.2424	0.0000	0.0180 0.0133	0.0000 0.0155	0.0000
125	0.0000	0.0000	0.3155	0.2976	0.4398	0.4000	0.3719	0.3793	0.4425	250	0.0000	0.0000	0.0000	0.0000	0.0097	0.0000	0.0000	0.0163	0.0000

TABLE XV The test recall of time series anomaly detection in UCR 250 sub-datasets. The best results are in **bold**.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8727 0.7577	1.0000 0.0000	0.8435 0.0001	0.8513 0.0258	1.0000 1.0000	126 127	0.0000	0.0000	0.0000 1.0000	1.0000 0.0000	0.6580	1.0000 0.0000	0.0000	0.6875 0.0000	1.0000 0.0000
3 4	0.0000	0.0000	1.0000 0.0000	1.0000 1.0000	0.7695 0.6255	1.0000 1.0000	0.7790 0.7574	0.6923 0.6601	1.0000 1.0000	128 129	0.0000	0.0000	1.0000 0.0000	1.0000 1.0000	0.6230 0.3704	0.0000	0.5458 0.1418	0.7311 0.3931	1.0000 1.0000
5 6	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.0000	0.0000	0.0000	0.0100 0.0300	0.0000	130 131	0.0000	0.0000	0.0000	1.0000 1.0000	0.4369 0.4485	0.0000	0.2741 0.0671	0.5929 0.5522	1.0000 1.0000
7	0.0000	0.0000	0.0000	1.0000 0.0000	0.0908 0.1200	0.0000 1.0000	0.0775 0.9027	0.0263 0.2377	0.0000	132 133	0.0000	0.0000	0.0000	0.0000	0.2770 0.0100	0.0000	0.0000 0.1085	0.0443 0.2552	1.0000 0.0000
9 10	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.0800 0.0144	0.0000	0.0550 0.7748	0.0429 0.2335	1.0000 1.0000	134 135	0.0000	0.0000	0.0000	1.0000 0.0000	0.6562 0.2900	0.0000	0.4791 0.0400	0.4293 0.0083	1.0000 0.0000
11 12	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8086 0.7327	1.0000 1.0000	0.8872 0.7569	0.8645 0.7070	1.0000 1.0000	136 137	0.0000	0.0000	1.0000 0.0000	1.0000 0.0000	0.4794 0.4143	0.0000	0.2302 0.0863	0.4788 0.4102	1.0000 1.0000
13 14	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.3833 0.4746	0.0000 1.0000	0.0000	0.1036 0.0944	1.0000 1.0000	138 139	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000	0.0700 0.6564	0.0000	0.0390 0.5532	0.3390 0.5064	1.0000 1.0000
15 16	0.0000	0.0000	1.0000 1.0000	1.0000	0.7368	0.0000 1.0000	0.9342 0.6297	0.8358	0.0000	140 141	0.0000	0.0000	1.0000 0.0000	1.0000	0.8103	0.0000	0.7607	0.7703	1.0000 1.0000
17 18	0.0000	0.0000	1.0000 1.0000	1.0000	0.7524	1.0000	0.7144	0.7262	1.0000 1.0000	142 143	0.0000	0.0000	1.0000 0.0000	1.0000	0.5863	0.0000	0.4169	0.3741	1.0000 0.0000
19 20	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000 0.0000	0.0457	0.0000	0.0898	0.0000	0.0000 1.0000 1.0000	144 145	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000 1.0000	0.5583 0.9518	0.0000 1.0000	0.0282	0.0296	0.0000
21 22 23	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 1.0000 1.0000	1.0000 1.0000	0.1520 0.6072 0.4513	0.0000 0.0000 0.0000	0.1084 0.3747 0.1299	0.3016 0.5543 0.5634	1.0000 1.0000 1.0000	146 147 148	0.0000 1.0000	0.0000 0.0000 0.0000	1.0000 0.0000 1.0000	1.0000 1.0000 0.0000	0.3857 0.4157 0.4294	0.0000 1.0000 0.0000	0.1066 0.9980 0.2984	0.3410 0.5137 0.3865	0.0000 0.0000 1.0000
24 25	0.0000	0.0000	1.0000	0.0000	0.5377	0.0000	0.0000	0.0323	0.0000	149	0.0000	0.0000	0.0000	1.0000	0.4008	0.0000	0.6750	0.7755	1.0000
26 27	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	1.0000 1.0000 0.0000	0.0000 1.0000 0.0000	0.0000 0.5742 0.0083	0.0000 0.0000 0.0000	0.1659 0.4874 0.0000	0.2178 0.4293 0.0283	0.0000 0.0000 0.0000	150 151	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	0.6987 0.7918 0.7655	0.0000 1.0000 0.0000	0.0000 0.9115 0.8048	0.0000 0.9117 0.0000	0.0000 1.0000 0.0000
28 29	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.7120 0.4193	1.0000 0.0000	0.2753 0.0938	0.5432 0.3699	1.0000 1.0000	152 153 154	0.0000	0.0000	1.0000 1.0000 1.0000	1.0000 1.0000 0.0000	0.7633 0.8146 0.3956	0.0000	0.8482 0.1617	0.7586 0.0999	1.0000 0.0000
30 31	0.0000	0.0000	0.0000 1.0000	0.0000	0.0030 0.6974	0.0000	0.1190 0.4616	0.2950 0.4936	1.0000 1.0000	155 156	0.0000	0.0000	0.0000 1.0000	0.0000	0.9267 0.4371	0.0000	0.9826 0.0892	0.2208	1.0000 1.0000
32 33	0.0000	1.0000 0.0000	1.0000 1.0000	1.0000	0.7845	0.0000	0.8065 0.4438	0.7708 0.7421	1.0000	157 158	0.0000	0.0000	0.0000 1.0000	0.0000	0.0000	0.0000	0.0000 0.0616	0.0607 0.2092	0.0000
34 35	0.0000	0.0000	1.0000 1.0000 1.0000	0.0000 1.0000	0.4430 0.6904	0.0000	0.3741 0.1884	0.3814	1.0000	159	0.0000	0.0000	1.0000 1.0000 1.0000	0.0000 1.0000	0.9580 0.3645	0.0000	0.5590 0.5242	0.3300 0.2598	0.0000 1.0000
36 37	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000	0.4272 0.9352	0.0000 1.0000	0.0256	0.0296 0.9770	0.0000 1.000	161 162	0.0000	0.0000	1.0000 0.0000	1.0000 0.0000	0.7410 0.0727	1.0000 1.0000	0.5800 0.8620	0.5901 0.5346	0.0000
38 39	0.0000	0.0000	1.0000 1.0000	0.0000	0.6399	1.0000 0.0000	0.0421 0.9980	0.2337 0.5137	0.0000	163 164	0.0000	0.0000	1.0000 1.0000	1.0000 0.0000	0.6849	1.0000	0.6443	0.6601 0.0445	0.0000 1.0000
40 41	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.6566	0.0000	0.3025	0.3737	1.0000 1.0000	165 166	0.0000	0.0000	1.0000 1.0000	0.0000	0.1470 0.3287	0.0000 1.0000	0.0000 0.0101	0.0000 0.8528	0.0000 1.0000
42 43	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000	0.7029 0.7013	0.0000 1.0000	0.0000 0.9058	0.5782 0.9016	1.0000 1.0000	167 168	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.9195 0.8284	0.0000 1.0000	0.7069 0.7093	0.8198 0.7783	1.0000 1.0000
44 45	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.7454 0.7823	0.0000	0.8150 0.8171	0.7113 0.7721	0.0000 1.000	169 170	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.9233 0.2672	1.0000 1.0000	0.8648 0.1275	0.8877 0.4809	1.0000 0.0000
46 47	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000	0.3029 0.9429	0.0000	0.1297 0.9844	0.0922 0.2221	0.0000	171 172	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8633 0.9556	1.0000 1.0000	0.8608 0.9003	0.8800 0.9585	1.0000 1.0000
48 49	0.0000	0.0000	1.0000 0.0000	0.0000	0.6556 0.0000	0.0000	0.0891	0.1028 0.0607	1.0000 0.0000	173 174	0.0000	0.0000	0.0000	1.0000 0.0000	0.0777 0.8856	0.0000	0.0300 0.9464	0.0620 0.0036	1.0000 1.0000
50 51	0.0000	0.0000	1.0000 0.0000	0.0000	0.0629 0.9070	0.0000	0.0619 0.5380	0.1305 0.3400	1.0000 0.0000	175 176	0.0000	0.0000	0.0000	1.0000 0.0000	0.4696 0.3102	1.0000 0.0000	0.2146 0.0356	0.1586 0.0150	0.0000 1.0000
52 53	0.0000	0.0000	1.0000 0.0000	1.0000 1.0000	0.3630 0.6413	0.0000 1.0000	0.4306 0.0000	0.2190 0.5882	1.0000 1.0000	177 178	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.0000 0.7485	0.0000 1.0000	0.0400 0.8191	0.0000 0.8402	0.0000
54 55	0.0000	0.0000	0.0000 1.0000	0.0000	0.2469 0.4647	1.0000 1.0000	0.8732 0.6473	0.5546 0.6549	0.0000	179 180	0.0000	0.0000	1.0000 1.0000	1.0000 0.0000	0.8364 0.7915	1.0000 0.0000	0.8372 0.0000	0.8523 0.5230	0.0000
56 57	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.1811 0.2244	0.0000	0.0000	0.0445 0.0000	1.0000 0.0000	181 182	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8056 0.8651	0.0000 1.0000	0.7445 0.7575	0.7914 0.7614	1.0000 1.0000
58 59	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000	0.8562 0.7643	1.0000 1.0000	0.0000 0.6938	0.8472 0.8100	1.0000 0.0000	183 184	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8187 0.9577	1.0000 1.0000	0.8031 0.9411	0.7866 0.9572	1.0000 1.0000
60 61	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8203 0.9048	1.0000 1.0000	0.7188 0.8636	0.7783 0.8881	1.0000 1.0000	185 186	0.0000	0.0000	0.0000 1.0000	0.0000	0.1200 0.6771	0.0000	0.9000 0.0069	0.1700 0.0014	0.0000 1.0000
62 63	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.3724 0.9124	1.0000 0.0000	0.1269 0.8613	0.4423 0.8949	0.0000 1.0000	187 188	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
64 65	0.0000	1.0000 0.0000	1.0000 1.0000	1.0000 0.0000	0.9162 0.0423	1.0000 0.0000	0.8952 0.0397	0.9417 0.0753	1.0000 0.0000	189 190	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0100 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
66 67	0.0000	0.0000	0.0000 1.0000	0.0000	0.6248 0.8622	0.0000	0.7008 0.3354	0.0000 0.1456	1.0000 0.0000	191 192	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.6121 0.7088	1.0000 1.0000	0.9912 0.8093	0.9874 0.8999	1.0000 1.0000
68 69	0.0000	0.0000	0.0000	0.0000	0.3650	0.0000	0.0302 0.0400	0.0150	0.0000	193 194	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8467 0.6507	1.0000 1.0000	0.7543 0.7684	0.7575 0.7510	0.0000
70 71	0.0000	0.0000	1.0000 1.0000	1.0000	0.6934	1.0000 1.0000	0.8151	0.8426 0.8523	1.0000 0.0000	195 196	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.7877	1.0000	0.8688	0.8281	1.0000 0.0000
72 73	0.0000	0.0000	1.0000 1.0000	1.0000	0.6482	0.0000 1.0000	0.0000 0.7606	0.5230	0.0000 1.0000	197 198	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000	0.2388	0.0000	0.5397 0.9332	0.3400	0.0000 1.0000
74 75	0.0000	0.0000	1.0000 1.0000	1.0000	0.8786 0.8827	1.0000	0.7575 0.7973	0.7608 0.7826	0.0000 1.0000	199 200	0.0000	0.0000	1.0000 0.0000	0.0000	0.8431	0.0000	0.0123 1.0000	0.7378	0.0000
76 77	0.0000	0.0000	1.0000 0.0000	0.0000	0.9396	0.0000	0.9339 0.8500	0.9480	1.0000 0.0000	201 202	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9893	0.0233	0.0000
78 79 80	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	1.0000 0.0000 0.0000	1.0000 0.0000 0.0000	0.6976 0.0000 0.0100	0.0000 0.0000 0.0000	0.0028 0.0000 0.0000	0.0024 0.0000 0.0000	1.0000 0.0000 0.0000	203 204 205	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	1.0000	0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000 0.0000 1.0000
81 82	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	205 206 207	0.0000 0.0000 0.0000	0.0000	0.0000	1.0000 1.0000 1.0000	0.2036 0.2440 0.4195	0.0000 0.0000 1.0000	0.0312 0.7027 0.7047	0.1437 0.1072 0.1082	1.0000 1.0000 1.0000
83 84	0.0000	0.0000	1.0000 1.0000	0.0000 0.0000 1.0000	0.3571 0.3350	0.0000 0.0000 1.0000	0.9909 0.8093	0.9893 0.8999	0.0000 0.0000 1.0000	207 208 209	0.0000	0.0000	0.0000 0.0000 1.0000	0.0000 1.0000	0.4193 0.6137 0.9149	1.0000 1.0000 1.0000	0.4830 0.9902	0.1602 0.9903	1.0000 1.0000 0.0000
85 86	0.0000	0.0000	1.0000 0.0000	1.0000 1.0000	0.7477	1.0000	0.7183 0.7560	0.7580	0.0000	210	0.0000	0.0000	0.0000	1.0000	0.1696	0.0000 1.0000	0.1046 0.1402	0.3326	1.0000 0.0000
87 88	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000 1.0000	0.7668 0.7982	1.0000 1.0000 1.0000	0.8688 0.7383	0.7478 0.8156 0.7573	1.0000 0.0000	212 213	0.0000	0.0000	0.0000 0.0000 1.0000	1.0000	0.4032 0.0433 0.8308	0.0000 1.0000	0.0108 0.8889	0.0221 0.8822	0.0000 0.0000 1.0000
89 90	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000	0.2466 0.9360	0.0000	0.5557 0.9278	0.2864 0.9622	0.0000 1.0000	214 215	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8685 0.8552	1.0000 1.0000	0.8663 0.8552	0.8522 0.8522	1.0000 1.0000
91 92	0.0000	0.0000	0.0000	1.0000 0.0000	0.8446 0.0900	0.0000	0.7414 1.0000	0.7444 0.1300	0.0000	216 217	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.9258 0.8620	1.0000 1.0000 0.0000	0.8522 0.8507	0.8507 0.8507	1.0000 1.0000
93 94	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8548	1.0000 1.0000	0.8903 0.7579	0.8512 0.6367	1.0000 1.0000	218 219	0.0000	0.0000	1.0000 0.0000	1.0000	0.9206 0.8482	1.0000	0.8507 0.7169	0.8507 0.6580	1.0000 0.0000
95 96	0.0000	0.0000	0.0000 1.0000	1.0000 1.0000	0.0733 0.8489	1.0000 1.0000	0.9860 0.6297	0.2448	1.0000 1.0000	220 221	0.0000	0.0000	1.0000 1.0000	1.0000	0.9313	1.0000	0.8612 0.9205	0.8794	1.0000 1.0000
97 98	0.0000	0.0000	0.0000	1.0000 0.0000	0.3038 0.1267	0.0000	0.1500 0.0800	0.3507 0.0175	0.0000	222 223	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.9072 0.8324	1.0000 0.0000	0.9115 0.8060	0.8533 0.8060	1.0000 1.0000
99 100	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.5565 0.9578	1.0000 1.0000	0.4286 0.9708	0.3837 0.9770	0.0000	224 225	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8633 0.7333	1.0000 1.0000	0.8895 0.8964	0.9170 0.8756	1.0000 1.0000
101 102	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.6158 0.8253	0.0000 1.0000	0.3084 0.9044	0.1378 0.8979	0.0000	226 227	0.0000	0.0000	1.0000 0.0000	1.0000 1.0000	0.8629 0.0713	1.0000 0.0000	0.9425 0.0123	0.9398 0.0935	1.0000 0.0000
103 104	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000	0.0571 0.1461	0.0000	0.5347 0.0000	0.2253 0.0000	0.0000 1.0000	228 229	0.0000 1.0000	0.0000	0.0000	0.0000	0.2865 0.0290	0.0000	0.0000 0.0050	0.3260 0.2790	0.0000
105 106	0.0000 0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8977 0.8922	1.0000 1.0000	0.8531 0.8582	0.8875 0.8732	1.0000 1.0000	230 231	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.3581 0.7893	1.0000 0.0000	0.7120 0.0057	0.7168 0.6401	0.0000 1.0000
107 108	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.2524 0.0000	0.0000 0.0000	0.0852 0.0000	0.1328 0.0000	0.0000 0.0000	232 233	0.0000	0.0000	1.0000 0.0000	1.0000 0.0000	0.8239 0.0100	1.0000 0.0000	0.6279 0.3100	0.6319 0.6200	0.0000
109 110	0.0000 0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.8514 0.0216	1.0000 0.0000	0.8677 0.0000	0.8528 0.7075	1.0000 1.0000	234 235	0.0000	0.0000	1.0000 0.0000	0.0000	0.0000 0.1900	0.0000	0.0100 0.9900	0.0100 0.7900	0.0000
111 112	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.7324 0.6569	1.0000 1.0000	0.8934 0.7542	0.6954 0.7205	1.0000 1.0000	236 237	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.2648 0.9595	0.0000 1.0000	0.0210 0.9254	0.0125 0.9465	1.0000 1.0000
113 114	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5400 0.2017	0.0100 0.0300	0.0000 1.0000	238 239	0.0000	0.0000	1.0000 0.0000	1.0000 0.0000	0.6766 0.0373	1.0000 0.0000	0.8825 0.2183	0.9313 0.4741	1.0000 0.0000
115 116	0.0000	0.0000	1.0000 1.0000	0.0000 1.0000	0.0200 0.0673	0.0000 1.0000	0.0804 0.9875	0.0263 0.2746	0.0000	240 241	0.0000	0.0000	0.0000 1.0000	0.0000 1.0000	0.6025 0.9429	0.0000 1.0000	0.1861 0.9429	0.1554 0.9429	0.0000 1.0000
117 118	0.0000	0.0000	0.0000	0.0000	0.0952	0.0000	0.6019	0.0506	1.0000 1.0000	242 243	0.0000	0.0000	1.0000 1.0000	1.0000 1.0000	0.7635	0.0000	0.6761	0.7009 0.4893	1.0000 1.0000
119 120	0.0000	0.0000	1.0000 1.0000	1.0000 0.0000	0.8576	1.0000	0.8872 0.7612	0.8601	1.0000 1.0000	244 245	0.0000	0.0000	1.0000 1.0000	1.0000	0.6332	0.0000 1.0000	0.6268	0.6594 0.8712	1.0000 1.0000
121 122	0.0000	0.0000	1.0000 1.0000	1.0000 0.0000	0.7330	0.0000	0.0000	0.1132	1.0000 1.0000	246 247	0.0000	0.0000	1.0000 0.0000	0.0000	0.7703 0.4878	0.0000	0.7543	0.8904	1.0000 1.0000
123 124	0.0000	0.0000	1.0000 1.0000	1.0000	0.8655	1.0000	0.8217 0.6297	0.8944	0.0000 1.0000	248 249	0.0000	0.0000	0.0000 1.0000	0.0000	0.0000	0.0000	0.0120 0.0030	0.0000	0.0000
125	0.0000	0.0000	1.0000	1.0000	0.9429	1.0000	0.7144	0.7292	1.0000	250	0.0000	0.0000	0.0000	0.0000	0.0617	0.0000	0.0000	0.0817	0.0000

TABLE XVI
THE TEST PRECISION OF AFFILIATION OF TIME SERIES ANOMALY DETECTION IN UCR 250 SUB-DATASETS. THE BEST RESULTS ARE IN BOLD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.4090	0.4340	0.7925	0.7973	0.5759	0.8733	0.6697	0.8979	0.4961	126	0.0000	0.0000	0.4992	0.5000	0.9586	0.4992	0.8155	0.9857	0.5040
5 6 7 8 9 10 11 12 13 14 15 16 17	0.4730 0.4291	0.5176 0.4200	0.6823 0.6981	0.7018 0.7136	0.6484 0.5393	0.4983 0.7986	0.1161 0.8196	0.3632 0.4588	0.5071 0.5051	127 128	0.2293 0.2293	0.2600 0.2600	0.5169 0.4437	0.5348 0.5113	0.3807 0.8652	0.0000	0.1867 0.8869	0.3611 0.9056	0.5395 0.5862
7 8 9 10 11 12 13 14 15 16 17	0.4679 0.0000	0.6378 0.0000	0.4833 0.4387	0.8511 0.4426	0.4663 0.4021	0.9712 0.6587	0.9668 0.8404	0.8493 0.6251	0.4469 0.4833	129 130	0.2293 0.2646	0.2600 0.2275	0.4410 0.4891	0.5015 0.4888	0.7551 0.9753	0.0000	0.7144 0.5775	0.6575 0.9131	0.5017 0.5506
9 10 11 12 13 14 15 16 17	0.0000	0.0000	0.7010 0.5382	0.6349 0.6364	0.4571 0.6201	0.5504 0.8482	0.2876 0.7904	0.6208 0.6689	0.4422 0.5536	131 132	0.5054	0.5703 0.0000	0.5058 0.5076	0.4966 0.5183	0.6409 0.6503	0.0000	0.3799 0.6090	0.7442 0.6015	0.6075 0.5117
11 12 13 14 15 16 17	0.6262 0.7261	0.0000	0.5179 0.5304	0.4954	0.4352 0.2892	0.9116 0.5197	0.9854 0.4992	0.8970 0.5213	0.4993 0.5336	133 134	0.0000	0.2061 0.0000	0.5108 0.5069	0.4819 0.5256	0.7030 0.9487	0.0000 0.4852	0.7215 0.3271	0.7792 0.6699	0.4760 0.5188
12 13 14 15 16 17	0.6526 0.4779	0.0000 0.6753	0.7434 0.7894	0.7140 0.8087	0.5885 0.5209	0.9123 0.7902	0.7026 0.8195	0.6453 0.7516	0.4855 0.5296	135 136	0.0000	0.0071 0.0000	0.5321 0.5088	0.4862 0.5289	0.5915	0.0000	0.6074 0.6958	0.4460 0.9702	0.5877 0.5360
14 15 16 17	0.4344	0.5121	0.7054	0.6807	0.6772	0.6963	0.6144 0.8053	0.7968	0.4894 0.4839	137	0.0000	0.0087	0.4947 0.4191	0.4424	0.9770	0.0000	0.5219	0.9048	0.4902
16 17	0.0000	0.0000	0.7022 0.6938	0.7228 0.6504	0.9250 0.9390	0.4935 0.7129	0.8161	0.9297 0.9234	0.4660	138 139	0.0000	0.0100	0.4543	0.4475 0.4584	0.5145	0.0000	0.6177	0.6414	0.5014 0.4835
	0.6844	0.6748	0.5649 0.5119	0.5714 0.4999	0.6458 0.9172	0.7063 0.5000	0.7973 0.4574	0.5234 0.5545	0.5038 0.4930	140 141	0.0000	1.0000 0.0000	0.5125 0.5067	0.5335 0.5413	0.7924 0.9781	0.0000 0.6648	0.9625 0.9771	0.6768 0.8911	0.5179 0.6654
18	0.0000	0.0000	0.4914 0.5326	0.4886 0.4949	0.9158 0.9528	0.5036 0.4992	0.9889 0.8234	0.9906 0.9865	0.4791 0.5114	142 143	0.0000	0.0000 0.7069	0.4196 0.4859	0.5124 0.5221	0.6888 0.8850	0.0000 0.5871	0.4036 0.7575	0.8662 0.5010	0.5172 0.4933
19 20	0.1908 0.3901	0.1626 0.0000	0.4943 0.4632	0.4950 0.5129	0.4826 0.7538	0.0000 0.4182	0.3853 0.1775	0.3579 0.9643	0.4995 0.5249	144 145	0.0000 0.4586	0.0000 0.5061	0.4353 0.4984	0.5029 0.4786	0.6865 0.9546	0.0000 0.5545	0.6442 0.9704	0.4005 0.9518	0.5139 0.4867
21 22	0.0000 0.2165	0.2134 0.9405	0.4667 0.4605	0.5073 0.5017	0.6822 0.9282	0.2769 0.0000	0.5285 0.6275	0.6454 0.9063	0.4847 0.5015	146 147	0.4455 0.8268	0.7358 0.4426	0.4877 0.5046	0.4783 0.4825	0.7359 0.7909	0.4253 0.5442	0.5940 0.9669	0.8209 0.8668	0.0000 0.4550
23 24	0.6619 0.0143	0.0000 0.5877	0.5021 0.5070	0.4676 0.4907	0.5980 0.9039	0.0000	0.6807 0.4380	0.7541 0.5629	0.5346 0.5112	148 149	0.5049 0.4526	0.4998 0.4936	0.5202 0.4842	0.4881 0.5210	0.4061 0.6934	0.4866 0.5119	0.3951 0.9292	0.7532 0.9053	0.5208 0.4670
25 26	0.5895	0.8517 0.3944	0.5004 0.4824	0.5198 0.5030	0.6258 0.7922	0.5368 0.4822	0.6222 0.9598	0.7623 0.6638	0.5162 0.5352	150 151	0.4034 0.4822	0.2884	0.4838 0.5244	0.4889 0.4921	0.4717 0.9104	0.5780 0.5207	0.2167 0.9529	0.5702 0.9674	0.4984 0.5001
27 28	0.4727	0.5683 0.8727	0.4312 0.5086	0.4845 0.5122	0.5898 0.9582	0.0000	0.4788 0.9840	0.4988 0.9869	0.5593 0.4601	152 153	0.2768	0.0000	0.4968 0.5211	0.4871 0.5384	0.5547 0.8302	0.4196 0.4811	0.5242 0.7076	0.5334 0.7430	0.4799 0.5376
29	0.0000	0.7844	0.5004	0.5021	0.9651	1.0000 0.3984	0.9514	0.9034	0.5670	154	0.6213	0.0000	0.4542	0.5065	0.7663	0.4949	0.7417	0.6720	0.5179
30 31	0.5074	0.0000 0.4394	0.5029 0.4046	0.4614 0.4734	0.4162 0.8321	0.0000 0.3744	0.4679 0.5779	0.6087 0.9672	0.5388 0.5054	155 156	0.6584 0.8445	0.0000 0.4079	0.5361 0.4700	0.5085 0.5067	0.9646 0.8567	0.5256 0.0000	0.9675 0.3316	0.7510 0.5184	0.5599 0.5451
32 33	0.6730	0.8425 0.0000	0.5044 0.5246	0.4987 0.5620	0.6328 0.9634	0.0000	0.8470 0.9355	0.6438 0.8628	0.4582 0.5264	157 158	0.6595 0.8507	0.0000	0.5146 0.4783	0.4836 0.5454	0.4788 0.9076	0.0000	0.5033 0.5334	0.7280 0.7140	0.4654 0.5221
34 35	0.0000	0.0000	0.5288 0.5205	0.4444 0.5191	0.4724 0.8913	0.0000 0.6949	0.6774 0.8273	0.9020 0.5143	0.5317 0.4107	159 160	0.3955 0.6005	0.0000 0.4330	0.5337 0.5001	0.4874 0.4866	0.9716 0.7874	0.0000	0.9635 0.7659	0.8019 0.6782	0.5169 0.5013
36 37	0.0000 0.4200	0.5359 0.1991	0.4940 0.4888	0.4370 0.4504	0.6749 0.9360	0.0000 0.4652	0.6078 0.9768	0.3859 0.9498	0.3942 0.4751	161 162	0.6560 0.2332	0.0000	0.4482 0.5189	0.4572 0.4870	0.6404 0.5058	0.4740 0.4909	0.4230 0.7324	0.4332 0.8019	0.4952 0.0000
38 39	0.4111	0.0000 0.4426	0.5165 0.5317	0.4709	0.9105 0.9441	0.4624 0.5421	0.4753 0.9652	0.8027 0.8765	0.0000 0.4889	163 164	0.0000	0.0000	0.4990 0.4822	0.5095 0.5139	0.6063 0.8649	0.4864 0.5006	0.9714 0.4684	0.9626 0.8473	0.5067 0.4815
40 41	0.5762 0.5221	0.7005 0.4936	0.4955 0.4854	0.4788 0.4892	0.8234 0.6294	0.5067 0.4854	0.6610 0.9439	0.7423 0.9012	0.5073 0.4926	165 166	0.0000	0.0000	0.4822 0.5120 0.4948	0.4892 0.4893	0.4280 0.7737	0.4969 0.4958	0.4943 0.7606	0.3353 0.9774	0.4827 0.4426
41 42 43	0.5221 0.4134 0.4781	0.4936 0.4360 0.5999	0.4854 0.4885 0.4684	0.4892 0.4962 0.5191	0.6294 0.4889 0.8685	0.4854 0.3974 0.5105	0.9439 0.1913 0.9516	0.6485 0.9664	0.4926 0.4972 0.5361	167 168	0.4158 0.5258	0.3852 0.5547	0.4948 0.5098 0.5295	0.4893 0.4976 0.4975	0.7737 0.8979 0.6544	0.4958 0.5875 0.5164	0.7606 0.6155 0.5953	0.8889 0.6796	0.5208 0.5342
44	0.6683	0.0000	0.5140	0.4996	0.2938	0.5047	0.5308	0.5405	0.4450	169	0.5439	0.5011	0.4937	0.4862	0.8264	0.4926	0.7881	0.8478	0.5326
45 46	0.6939 0.5436	0.0000	0.5304 0.4959	0.5158 0.4957	0.3719 0.6887	0.4979 0.4940	0.6952 0.7577	0.7714 0.6393	0.5352 0.5767	170 171	0.3518 0.3772	0.5921 0.5900	0.4941 0.5163	0.5271 0.4896	0.6987 0.5778	0.4977 0.5497	0.3312 0.9098	0.8203 0.9677	0.4857 0.5036
47 48	0.6773	0.0000	0.4773 0.5404	0.5012 0.4446	0.9815 0.9428	0.6063	0.9736 0.2819	0.7593 0.5323	0.5443 0.5571	172 173	0.3010 0.7701	0.5988 0.8053	0.4965 0.4313	0.5229 0.4654	0.9641 0.5941	1.0000 0.8850	0.8594 0.5032	0.8987 0.6067	0.4792 0.5289
49 50	0.0000 0.8199	0.0000	0.4384 0.5335	0.5036 0.4719	0.3587 0.7320	0.0000	0.4996 0.5307	0.7203 0.6391	0.5369 0.5037	174 175	0.5766	0.4668 0.7118	0.4570 0.5206	0.5849 0.5100	0.9358 0.8719	0.5300 0.7451	0.9122 0.8001	0.4489 0.6601	0.4766 0.4589
51 52	0.0000 0.6574	0.0000 0.7546	0.5226 0.5203	0.5044 0.4710	0.9634 0.7472	0.0000	0.9596 0.7612	0.8260 0.7084	0.5283 0.5213	176 177	0.8324 0.5395	0.9541 0.9470	0.5029 0.5201	0.4688 0.4828	0.6040 0.3968	0.6535 0.5376	0.4389 0.6433	0.5023 0.4591	0.5451 0.4970
53 54	0.6560 0.1833	0.8681 0.0000	0.4509 0.4858	0.5425 0.5287	0.5982 0.6585	0.4595 0.5194	0.3792 0.7293	0.4323 0.8145	0.5115 0.0000	178 179	0.0000 0.1933	0.0000	0.5071 0.4838	0.5012 0.5004	0.7631 0.8836	0.5050 0.5052	0.9077 0.9223	0.9780 0.9798	0.5149
55 56	0.0000	0.0000	0.4785 0.4869	0.5072 0.5120	0.3700 0.5509	0.4970 0.4959	0.9718 0.4683	0.9620 0.8474	0.4869 0.4947	180 181	0.5364 0.4276	0.4119	0.4974 0.5120	0.4937 0.5157	0.9443 0.6008	0.5027 0.4795	0.8315 0.6821	0.8768 0.6908	0.0000 0.5322
57 58	0.0000	0.0000	0.5047 0.4978	0.5120 0.5045 0.5185	0.3864 0.8926	0.4934 0.4940	0.4943 0.5251	0.3394 0.9772	0.5011 0.4672	182	0.5755	0.0000	0.5033 0.5231	0.4887 0.4851	0.7029 0.8771	0.4981 0.5036	0.6495 0.7103	0.4526 0.5267	0.5088
59	0.5339	0.0000	0.5033	0.4988	0.7011	0.5132	0.5828	0.8865	0.4930	184	0.0000	0.5549	0.4956	0.4992	0.9651	0.4086	0.8423	0.9829	0.4839
60 61	0.5195 0.2186	0.4222 0.5567	0.4990 0.4882	0.4924 0.4991	0.8825 0.7483	0.5328 0.5157	0.6217 0.7963	0.6982 0.8582	0.5099 0.5167	185 186	0.0000	0.0000	0.5026 0.5037	0.5029 0.5010	0.9624 0.8374	0.5474 0.0000	0.9219 0.4138	0.7226 0.4258	0.5246 0.5493
62 63	0.4631 0.7064	0.5151 0.6624	0.5014 0.4937	0.5181 0.4967	0.7087 0.9306	0.4717 0.4745	0.2772 0.9099	0.7738 0.9428	0.5282 0.5086	187 188	0.0000 0.0000	0.0000 0.4360	0.0000 0.4977	0.0000 0.5096	0.0000 0.7675	0.0000 0.1637	0.0000 0.5039	0.0000 0.5011	0.0000 0.4742
64 65	0.6446 0.5930	0.9698 0.0000	0.4949 0.4775	0.4901 0.5517	0.8399 0.4440	0.5076 0.8850	0.8389 0.5544	0.8854 0.6341	0.5138 0.5364	189 190	0.0000 0.0000	0.4104 0.0000	0.5055 0.5025	0.4989 0.5115	0.6607 0.7739	0.2405 0.7447	0.5015 0.5366	0.5038 0.7622	0.4885 0.5018
66 67	0.4987 0.5356	0.6659 0.7255	0.5358 0.4808	0.5086 0.5420	0.8540 0.9535	0.0000 0.5844	0.7929 0.8390	0.4097 0.6626	0.4726 0.4449	191 192	0.0000	0.5513	0.5075 0.4760	0.5057 0.4955	0.9601 0.8514	0.2591 0.4946	0.9820 0.7989	0.9534 0.9093	0.4839 0.4751
68 69	0.5759	0.4420 0.9853	0.4978 0.5091	0.4955 0.5428	0.6722 0.2606	0.3676 0.6008	0.4191 0.6543	0.5090 0.4671	0.5155 0.4940	193 194	0.2186 0.5224	0.1120 0.6026	0.4704 0.4874	0.5144 0.4876	0.9332 0.4224	0.4829 0.5473	0.7937 0.6490	0.8731 0.6591	0.0000 0.4454
70 71	0.0000 0.1933	0.0000	0.5022 0.5092	0.5188 0.5004	0.6289 0.7971	0.5078 0.5052	0.9144 0.9278	0.9774 0.9798	0.4988 0.0000	195 196	0.7749 0.6549	0.0000 0.6015	0.5170 0.4946	0.4945 0.5128	0.5410 0.6940	0.4998 0.4897	0.6552 0.5178	0.6213 0.3982	0.4765 0.0000
72 73	0.5822 0.4122	0.5573	0.5117 0.4949	0.4741 0.4963	0.7503 0.6351	0.4971 0.4774	0.8302 0.7114	0.8773 0.6817	0.0000 0.5026	197 198	0.0000	0.0000	0.4784 0.5042	0.5129 0.4997	0.6329 0.8717	0.2389	0.7889 0.8682	0.6069 0.8174	0.5376 0.5440
74 75	0.5755	0.0000	0.4909 0.5092	0.4846 0.4750	0.7644 0.9918	0.4936 0.5036	0.6653 0.7264	0.4699	0.5022 0.5035	199	0.0000	0.0000	0.4854 0.4987	0.4923 0.4891	0.7947 0.7915	0.3238	0.6631 0.8991	0.5462 0.9005	0.5727 0.4355
76 77	0.7596 0.3286	0.4042	0.5004 0.4917	0.5021 0.5014	0.8151 0.9690	0.4605 0.6314	0.7413 0.9337	0.9638 0.7512	0.5040 0.5401	201 202	0.0000	0.0000	0.4879 0.4856	0.4990 0.5131	0.6423 0.5803	0.0000	0.9277 0.6303	0.5607 0.5485	0.4451 0.4793
78	0.6531	0.6538	0.4953	0.5079	0.8425	0.5452	0.4661	0.4620	0.5472	203	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
79 80	0.0000 0.2359	0.0000 0.3255	0.0000 0.5028	0.0000 0.5008	0.0000 0.4916	0.0000 0.2702	0.0000 0.4988	0.0000 0.4985	0.0000 0.4836	204 205	0.0000	0.0000	0.5106 0.5036	0.5162 0.5080	0.7758 0.5700	0.0000	0.6486 0.5154	0.7409 0.7049	0.4725 0.5431
81 82	0.2928 0.8599	0.0457 0.0000	0.4991 0.4966	0.5045 0.4991	0.5825 0.3642	0.3949 0.6227	0.4988 0.5272	0.5042 0.7452	0.4703 0.5164	206 207	0.0000 0.3067	0.0000 0.5079	0.4733 0.4948	0.5180 0.5022	0.6328 0.8520	0.0000 0.3034	0.9341 0.7088	0.6576 0.6328	0.4440 0.5253
83 84	0.2399 0.0000	0.3385	0.4950 0.4932	0.4889 0.4897	0.8242 0.7231	0.2674 0.4961	0.9855 0.8000	0.9482 0.9112	0.4931 0.4715	208 209	0.0000	0.0000	0.5148 0.4843	0.5150 0.4778	0.8190 0.9399	0.5166 0.5018	0.7677 0.9944	0.6691 0.9849	0.5256 0.5195
85 86	0.2648 0.0000	0.1120 0.6026	0.4920 0.5089	0.4877 0.4907	0.8342 0.4522	0.3781 0.5772	0.7868 0.7001	0.8804 0.6817	0.0000 0.4844	210 211	0.3520 0.2385	0.3719 0.2281	0.4888 0.4863	0.4961 0.5127	0.6086 0.8891	0.3646 0.4008	0.7185 0.6980	0.7546 0.7116	0.5004 0.5024
87 88	0.7726 0.6636	0.0000 0.5273	0.5005 0.4790	0.4959 0.4816	0.5572 0.7469	0.5062 0.4932	0.6640 0.5675	0.5853 0.3788	0.4853 0.0000	212 213	0.8235 0.3824	0.0000	0.4942 0.4979	0.5120 0.4982	0.6473 0.6892	0.4581 0.5017	0.5174 0.9695	0.5100 0.9867	0.0000 0.5063
89 90	0.0000	0.0000 0.2014	0.5025 0.5040	0.4952 0.4974	0.7109 0.8578	0.0367 0.4353	0.8318 0.8789	0.6472 0.8387	0.5100 0.4897	214 215	0.0000 0.3596	0.0000	0.4947 0.5019	0.5047 0.5021	0.5392 0.2652	0.4846 0.4938	0.7529 0.7325	0.7505 0.6685	0.5163 0.5146
91 92	0.0000	0.0000	0.4994 0.4932	0.5177 0.4854	0.8598 0.9531	0.6709	0.6232 0.9236	0.5837 0.8856	0.4992 0.5016	216 217	0.2538	0.0000	0.5015 0.5054	0.5009 0.5167	0.8448 0.6586	0.5000 0.4909	0.7504 0.6684	0.6660 0.6696	0.4983 0.4993
93 94	0.3979 0.4818	0.4356 0.6114	0.4932 0.4985 0.5604	0.5013 0.5420	0.4765 0.5440	0.4958 0.5554	0.7348 0.7075	0.7831 0.8507	0.5030 0.5221	218 219	0.0161 0.8486	0.0000	0.5025 0.5003	0.4959 0.5007	0.9746 0.9106	0.5014 0.4963	0.6651 0.9742	0.5019 0.9657	0.4983 0.5137
95	0.7103	0.0000	0.5969	0.5420 0.5360 0.4924	0.5440 0.4877 0.8389	0.8981	0.9655	0.9247	0.5221 0.4035 0.4684	220	0.8291	0.5692	0.5064	0.5050	0.8947	0.4963 0.4914 0.4993	0.4805	0.8259	0.4855
96 97	0.2279	0.0000	0.4921 0.4928	0.4842	0.7318	0.4999	0.6752 0.7711	0.5807	0.5002	222	0.4453	0.0000	0.5028 0.5037	0.5049	0.7315 0.6806	0.5047	0.6644 0.6900	0.6655	0.4919 0.5849
98 99	0.1193	0.3287	0.4625 0.5308	0.4822 0.5036	0.6650	0.0000 0.4634	0.6355	0.4688 0.8798	0.5715 0.5589	223 224	0.4168	0.3068	0.4702 0.4944	0.4901	0.3513	0.4821 0.4998	0.3819	0.3409 0.7581	0.4477
100 101	0.4900 0.5421	0.3244 0.7005	0.5059 0.4941	0.4968 0.4941	0.9728 0.6167	0.4855 0.4978	0.9769 0.5958	0.9552 0.7251	0.4921 0.4854	225 226	0.2987 0.1899	0.2164 0.0000	0.4984 0.5132	0.4879 0.4904	0.5322 0.7048	0.4891 0.5034	0.8650 0.8493	0.9032 0.9429	0.4266 0.4824
102 103	0.4886 0.0000	0.5941 0.0000	0.5280 0.4729	0.4831 0.4852	0.8810 0.4029	0.5264 0.0000	0.9507 0.7932	0.9682 0.6753	0.4648 0.4609	227 228	0.3243 0.7742	0.0000	0.4965 0.5014	0.5108 0.5062	0.9132 0.7900	0.4950 0.5141	0.8873 0.4999	0.9702 0.7985	0.4716 0.4818
104 105	0.0000 0.5628	0.0000 0.3172	0.5223 0.5090	0.4972 0.4701	0.4115 0.8531	0.5001 0.5119	0.4948 0.7037	0.3361 0.8460	0.5043 0.4992	229 230	0.5641 0.5307	0.0000 0.4506	0.4891 0.4999	0.4986 0.5077	0.8083 0.7018	0.5058 0.5293	0.6579 0.7908	0.8256 0.8208	0.0000 0.4154
106 107	0.4707 0.7156	0.4988 0.6298	0.5021 0.5115	0.4963 0.4631	0.8057 0.6400	0.5077 0.7474	0.8900 0.7350	0.8990 0.6464	0.5057 0.4087	231 232	0.0000	0.0000	0.4921 0.4944	0.4928 0.4961	0.5239 0.8692	0.5105 0.5069	0.3801 0.4017	0.5613 0.4584	0.5261 0.0000
108 109	0.0000 0.4122	0.0000 0.4414	0.0000 0.4734	0.0000	0.0000 0.4744	0.0000 0.4974	0.0000 0.5643	0.0000 0.9065	0.0000 0.5037	233 234	0.7963 0.4772	0.0000	0.5064 0.5028	0.4996 0.5014	0.9524 0.3495	0.4951 0.4917	0.9156 0.3248	0.8734 0.6025	0.4776 0.4662
110 111	0.4661 0.4118	0.5117	0.4930 0.4955	0.5198 0.5101	0.4715 0.5216	0.4980 0.5024	0.0718 0.8845	0.4087 0.5057	0.5006 0.4941	235	0.7982 0.8113	0.0000	0.5065 0.4916	0.5029	0.9710 0.7422	0.4950 0.4968	0.9539 0.6374	0.8038 0.6681	0.5350 0.4796
112	0.4407	0.6619	0.4784	0.4683	0.4655	0.6070	0.7291	0.8659	0.5393	237	0.1063	0.0000	0.4883	0.5046	0.7666	0.4996	0.6779	0.8336	0.5065
113 114	0.5877 0.7424	0.0000	0.4576 0.5389	0.4836	0.2418	0.4577	0.7811	0.6511	0.5313 0.4877	238 239	0.4157	0.0000	0.5018 0.4965	0.5011	0.8688	0.4965 0.4988	0.9638	0.9735 0.7237	0.4690
115 116	0.8671 0.6745	0.0000	0.5060 0.4814	0.5020 0.5325	0.6207 0.2954	0.5887 0.7158	0.6805 0.9619	0.6878 0.9042	0.6112 0.4380	240 241	0.0000	0.0000	0.4947 0.5058	0.4989 0.4984	0.8144 0.6620	0.5089 0.5098	0.7226 0.6732	0.6089 0.6705	0.5087 0.5064
117 118	0.4613 0.8929	0.0000	0.4588 0.5124	0.5067 0.4469	0.3386 0.5296	0.5143 0.7120	0.6741 0.4410	0.5388 0.6437	0.4136 0.4947	242 243	0.6634 0.1965	0.5290 0.5566	0.4991 0.5015	0.5017 0.4906	0.6655 0.5382	0.6438 0.4023	0.9442 0.9068	0.8600 0.8258	0.5037 0.5182
119 120	0.4360 0.5053	0.0000 0.4951	0.5205 0.5373	0.5009 0.5223	0.4610 0.6379	0.5039 0.5015	0.9425 0.8377	0.7480 0.8055	0.5058 0.5141	244 245	0.8036 0.1902	0.5446 0.4514	0.4965 0.5065	0.5107 0.4936	0.4625 0.6503	0.7754 0.2269	0.8203 0.8681	0.7208 0.7888	0.4630 0.5473
121 122	0.0000	0.0000	0.4953 0.5039	0.4621	0.9598 0.9763	0.4935 0.4954	0.8020 0.8155	0.9322 0.9235	0.5073 0.5155	246 247	0.3196 0.6972	0.7582 0.8161	0.5004 0.5067	0.5027 0.5049	0.6764 0.6950	0.4558 0.6059	0.8129 0.5637	0.8437 0.9242	0.5064 0.5532
123 124	0.7213	0.6561	0.4992 0.5136	0.5064 0.4837	0.8187 0.5538	0.8018 0.5000	0.6336 0.6534	0.5989 0.5774	0.5260 0.5031	248 249	0.0000	0.0000	0.5327 0.5083	0.4956 0.4822	0.1969 0.6812	0.1695	0.5317 0.5325	0.5233 0.5657	0.4921 0.5393
125	0.0000	0.0000	0.5142	0.4789	0.9816	0.5000	0.9884	0.9889	0.4887	250	0.0000	0.0000	0.4909	0.4960	0.7844	0.0000	0.5168	0.5935	0.4819

TABLE XVII
THE TEST RECALL OF AFFILIATION OF TIME SERIES ANOMALY DETECTION IN UCR 250 sub-datasets. The best results are in **bold**.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.8970	0.8970 0.9741	1.0000 1.0000	1.0000 1.0000	0.4844 0.3930	1.0000 0.9944	0.0149 0.0642	0.0369 0.1064	0.9939 0.9986	126 127	0.0000	0.0000 0.3397	0.9955 0.9963	0.9982 0.9614	0.4275 0.1373	0.9969 0.0000	0.0344 0.0680	0.3782 0.2334	0.9979 0.9838
3 4	0.9547	0.9547	1.0000 1.0000 0.9642	1.0000	0.4170 0.2022	1.0000	0.2048 0.4152	0.1430 0.3633	0.9984 0.9876	128 129	0.3393	0.3437 0.3397	0.9894 0.9759	0.9871	0.1569 0.4392	0.0000	0.0436 0.3926	0.2462 0.5553	0.9903 0.9966
5	0.0000	0.0000	0.9940 1.0000	0.9888	0.1028 0.3136	0.7813 0.7887	0.4673 0.0766	0.0849 0.2455	0.9622 0.9925	130	0.4515 0.7254	0.2973 0.7263	0.9862 0.9722	0.9958 0.9889	0.4332 0.2235 0.4038	0.0000	0.1778 0.0604	0.3196 0.4965	0.9954 0.9948
7 8	0.0000	0.0000	0.9895	1.0000	0.3308	0.8676	0.2035	0.1199	0.9897	132	0.0000	0.0000	0.9888	0.9823	0.2302	0.0000	0.2587	0.2113	0.9924
9	0.6272 0.9034	0.0000	0.9282 0.9737	0.9893	0.3647	0.9039	0.7218 0.2983	0.2516	0.9844 0.9911	133 134	0.0000	0.4008	0.9926 0.9835	0.9917 0.9828	0.3180 0.2561	0.0000	0.4164 0.1129	0.3986	0.9897 0.9896
10 11	0.9044	0.0000	1.0000 1.0000	1.0000 1.0000	0.2563	0.9388 1.0000	0.5237 0.2739	0.3208	0.9879 0.9955	135 136	0.0000	0.0089	0.9879 0.9912	0.9854 0.9902	0.4875 0.3427	0.0000	0.3353 0.0794	0.2606 0.2122	0.9847 0.9902
12 13	0.9874 0.0000	0.9400 0.0000	1.0000 1.0000	1.0000 1.0000	0.3858 0.2685	1.0000 0.9819	0.3971 0.0295	0.3781 0.0919	0.9935 0.9954	137 138	0.0000	0.0108 0.0122	0.9612 0.9982	0.9753 0.9844	0.3795 0.1955	0.0000	0.1235 0.3966	0.1773 0.6013	0.9883 0.9983
14 15	0.0000 0.9718	0.0000 0.9725	1.0000 1.0000	1.0000 1.0000	0.3357 0.4101	1.0000 0.9816	0.0344 0.5142	0.0713 0.5101	0.9957 0.9979	139 140	0.0000	0.0000 1.0000	0.9842 0.9752	0.9892 0.9937	0.3146 0.2292	0.0000	0.2445 0.0984	0.0945 0.1739	0.9909 0.9824
16 17	0.0000	0.0000	0.9973 0.9974	0.9981 0.9972	0.3315 0.4765	0.9965 0.9974	0.1713 0.3684	0.1879 0.3824	0.9824 0.9969	141 142	0.0000	0.0000	0.9468 0.9932	0.9831 0.9883	0.3505 0.3675	0.8694 0.0000	0.1245 0.1188	0.4958 0.0611	0.9859 0.9892
18 19	0.0000 0.2140	0.0000 0.2146	0.9971 0.9906	0.9977 0.9964	0.1045 0.2407	0.9969 0.0000	0.0344 0.1438	0.3720 0.2310	0.9951 0.9900	143 144	0.0000	0.7075 0.0000	0.9778 0.9831	0.9946 0.9415	0.3637 0.3075	0.9082 0.0000	0.2038 0.3195	0.0826 0.1837	0.9423 0.8875
20 21	0.7956	0.0000 0.2141	0.9936 0.9701	0.9952 0.9859	0.1949 0.3286	0.7927 0.3399	0.0335 0.2844	0.2196 0.4946	0.9836 0.9955	145 146	0.9401 0.9229	0.5061 0.7358	0.9989 0.9986	0.9989 0.9989	0.7218 0.4151	0.9891	0.7899 0.2298	0.7974 0.3575	0.9961 0.0000
22 23	0.5685 0.7249	0.9423 0.0000	0.9880 0.9909	0.9928 0.9964	0.3573 0.3773	0.0000	0.2964 0.1222	0.2985 0.4845	0.9918 0.9927	147 148	1.0000 0.9181	0.4426 0.4998	0.9988 0.9968	0.9992 0.9939	0.7003 0.2140	0.9995 0.9013	0.9884 0.0916	0.5562 0.2060	0.9944 0.9960
24 25	0.0149 0.8568	0.5973 0.8615	0.9967 0.9971	0.9884 0.9815	0.4172 0.2270	0.0000 0.8530	0.1317 0.4871	0.1820 0.3499	0.9906 0.9891	149 150	0.9169 0.5837	0.4936 0.2884	0.9912 0.9953	0.9946 0.9959	0.2595 0.4245	0.9248 0.9754	0.3437 0.0826	0.4046 0.0815	0.9962 0.9740
26 27	0.8668 0.9914	0.5167 0.9352	0.9930 0.9943	0.9848 0.9797	0.2519 0.4089	0.8688	0.0747 0.1218	0.0134 0.2717	0.9767 0.9960	151 152	0.9759 0.3664	0.9824	0.9979 0.9971	0.9968 0.9898	0.4363 0.1356	0.9971 0.9709	0.5928 0.4185	0.5717 0.1586	0.9963 0.9668
28 29	0.0000	0.8764 0.7888	0.9872 0.9957	0.9950 0.9921	0.4767 0.2989	0.9902 0.8531	0.1919 0.0790	0.2415 0.1544	0.9907 0.9890	153 154	0.7807 0.7354	0.0000	0.9963 0.9989	0.9947 0.9912	0.1495 0.4002	0.7807 0.8066	0.2754 0.2429	0.1098 0.1463	0.9950 0.9637
30 31	0.6080 0.6842	0.0000 0.6854	0.9831 0.9823	0.9596 0.9623	0.1180 0.3863	0.0000 0.6813	0.3046 0.1665	0.5327 0.0840	0.9987 0.9721	155 156	0.7916 0.8447	0.0000 0.9774	0.9757 0.9965	0.9892 0.9896	0.5961 0.2747	0.7918 0.0000	0.8120 0.0801	0.2927 0.1331	0.9945 0.9889
32 33	0.6747 0.0000	1.0000 0.0000	0.9928 0.9832	0.9851 0.9899	0.2093 0.4005	0.0000	0.3083 0.0663	0.1913 0.4621	0.9812 0.9852	157 158	0.6596 0.8508	0.0000	0.9946 0.9922	0.9956 0.9935	0.1549 0.2405	0.0000	0.1341 0.3299	0.3229 0.2655	0.9883 0.9810
34 35	0.0000	0.0000	0.9907 0.9917	0.9733 0.9945	0.3542 0.3949	0.0000 0.6951	0.0133 0.1900	0.0668 0.0830	0.9903 0.9844	159 160	0.3955 0.6005	0.0000 0.9854	0.9992 0.9889	0.9731 0.9880	0.9182 0.3526	0.0000	0.5967 0.3302	0.4487 0.2134	0.9900 0.9893
36 37	0.0000 0.9881	0.5486 0.5061	0.9540 0.9989	0.9854 0.9989	0.2524 0.7039	0.0000 0.9995	0.2390 0.7858	0.1499 0.7965	0.8700 0.9987	161 162	0.8686 0.3471	0.0000	0.9899 0.9847	0.9899 0.9852	0.3246 0.3621	0.9781 0.9875	0.0535 0.5869	0.0866 0.3518	0.9292 0.0000
38 39	0.9449 0.9523	0.0000 0.4426	0.9986 0.9990	0.9919 0.9986	0.3970 0.4994	0.9976 0.9988	0.2053 0.9875	0.3158 0.5496	0.0000 0.9944	163 164	0.0000	0.0000	0.9989 0.9983	0.9979 0.9924	0.3253 0.2853	0.9984 0.9911	0.2042 0.0096	0.2307 0.0183	0.9933 0.9986
40 41	0.9208 0.9169	0.9013 0.4936	0.9974 0.9963	0.9968 0.9962	0.2865 0.2258	0.9297 0.9469	0.0863 0.3310	0.1962 0.3994	0.9967 0.9971	165 166	0.0000	0.0000	0.9989 0.9989	0.9936 0.9933	0.2334 0.3782	0.9960 0.9988	0.0099 0.0195	0.0159 0.4815	0.9930 0.9975
42 43	0.6423 0.9759	0.5836 0.9824	0.9923 0.9980	0.9931 0.9984	0.3763 0.4063	0.7186 0.9971	0.0832 0.5785	0.0812 0.5528	0.9947 0.9965	167 168	0.9484 0.9873	0.9486 0.9907	0.9991 0.9991	0.9978 0.9971	0.4069 0.3009	0.9484 0.9966	0.1966 0.3218	0.2983 0.2199	0.9980 0.9985
44 45	0.9718 0.7807	0.0000	0.9973 0.9958	0.9973 0.9978	0.2733 0.2481	0.9868 0.7808	0.4655 0.2146	0.1626 0.1329	0.9286 0.9953	169 170	0.9722 0.9861	0.8489 0.9146	0.9984	0.9989	0.3361 0.4410	0.9959 0.9992	0.2849 0.1488	0.3094 0.3272	0.9984 0.9975
46 47	0.5887 0.7916	0.0000	0.9790 0.9954	0.9986	0.2198 0.6880	0.8066 0.8708	0.2119 0.8204	0.1258 0.2866	0.9938 0.9878	171 172	0.9439 0.9083	0.8574 0.9095	0.9986 0.9981	0.9965 0.9986	0.3517 0.3362	0.9925 0.9900	0.0296 0.2129	0.1463 0.4264	0.9982 0.9971
48 49	0.0000	0.0000	0.9960 0.9948	0.9828 0.9968	0.3615 0.2121	0.0000	0.0794 0.0647	0.1855 0.3132	0.9942 0.9898	173 174	0.9691 0.9490	0.8055 0.4670	0.9911 0.9894	0.9988 0.9954	0.3106 0.7314	0.8852 0.6486	0.1758 0.8778	0.2418	0.9978 0.9974
50 51	0.8206 0.0000	0.0000	0.9975 0.9802	0.9896 0.9850	0.0985 0.8514	0.0000	0.3301 0.5851	0.2340 0.4438	0.9922 0.9934	175 176	0.9508 0.9784	0.7120 0.9542	0.8970 0.9800	0.9932 0.9792	0.3575 0.3364	0.9937 0.9602	0.1840 0.2332	0.3205 0.1481	0.9731 0.9967
52 53	0.7249	0.7789 0.8686	0.9950 0.9502	0.9939	0.3195	0.0000 0.9781	0.1916 0.0758	0.1706	0.9934 0.9730	177 178	0.8100	0.9890 0.0000	0.9644 0.9988	0.9717 0.9981	0.2931	0.6864 0.9964	0.8743 0.3866	0.2876 0.3945	0.9727 0.9942
54 55	0.3469	0.0000	0.9847 0.9978	0.9852 0.9942	0.3457	0.9880 0.9984	0.5930 0.2077	0.3616 0.2277	0.0000 0.9931	179 180	0.1933 0.9906	0.0000 0.9501	0.9989 0.9972	0.9970 0.9900	0.4953 0.4304	0.9955 0.9906	0.4246 0.0479	0.4625 0.0675	0.0000
56 57	0.0000	0.0000	0.9989	0.9972	0.1413	0.9911	0.0101 0.0099	0.0183 0.0159	0.9988 0.9910	181 182	0.9788 0.7551	0.2676	0.9968 0.9952	0.9985 0.9938	0.3681 0.4288	0.9883 0.9967	0.1506 0.1287	0.2911 0.1475	0.9951 0.9978
58 59	0.0000 0.9622	0.0000 0.5661	0.9985 0.9990	0.9912 0.9985	0.6052 0.3046	0.9988 0.9957	0.0114	0.4774 0.2863	0.9986 0.9855	183 184	0.0000	0.0000 0.9555	0.9973 0.9990	0.9970 0.9995	0.1774 0.1971	0.9960 0.9961	0.2650	0.2167 0.1545	0.9947 0.9990
60 61	0.9545 0.6904	0.8606 0.8554	0.9990 0.9984	0.9986 0.9969	0.3548 0.3518	0.9965 0.9868	0.3348 0.2525	0.2131 0.3183	0.9978 0.9981	185 186	0.0000	0.0000	1.0000 0.9997	0.9991 0.9972	0.9717 0.4244	0.7807 0.0000	0.9991 0.2970	0.9917 0.1535	0.9992 0.9990
62 63	0.9572 0.9682	0.9884	0.9991 0.9984	0.9988 0.9961	0.3691 0.2792	0.9980 0.9175	0.1136 0.0286	0.3390 0.1752	0.9971 0.9968	187 188	0.0000	0.0000 0.6540	0.0000 1.0000	0.0000 0.9997	0.0000 0.0877	0.0000 0.6535	0.0000 0.0200	0.0000	0.0000 0.9994
64 65	0.8442 0.8132	1.0000 0.0000	0.9990 0.9960	0.9985 0.9777	0.2407 0.1468	0.9910 0.8852	0.1953 0.1613	0.3939 0.2549	0.9943 0.9909	189 190	0.0000	0.6751 0.0000	0.9996 0.9979	0.9993 0.9993	0.2110 0.0883	0.6739 0.8988	0.0200 0.0200 0.0199	0.0200 0.0200 0.0484	0.9994 0.9998
66 67	0.9227 0.9829	0.6661 0.9504	0.9954 0.9950	0.9865 0.9882	0.5409 0.5612	0.0000 0.9504	0.6865 0.2246	0.2349 0.1121 0.3161	0.9965 0.9425	191 192	0.0000	0.8881	0.9985 0.9983	0.9994 0.9990	0.3441	0.9996 0.9982	0.0199 0.9196 0.5221	0.9089 0.6560	0.9997 0.9983
68 69	0.9616	0.9542 0.9890	0.9890 0.9782	0.9934 0.9996	0.3228	0.7845	0.2191	0.1516	0.9423 0.9838 0.9992	192 193 194	0.8409 0.5224	0.1366 0.6028	0.9983 0.9992	0.9990 0.9977 0.9993	0.4442 0.2501	0.9982 0.9983 0.9980	0.4074 0.1626	0.4494 0.2272	0.0000 0.9945
70	0.6571	0.0000	0.9991 0.9979	0.9996 0.9981 0.9965	0.1021	0.8675 0.9964	0.8274	0.2704 0.4035	0.9952	195	0.9821	0.0000	0.9986 0.9987	0.9988	0.4262 0.5397	0.9978 0.9972	0.4871	0.4264	0.9983
71 72	0.1933 0.9885 0.9286	0.0000 0.9501 0.3370	0.9958 0.9963	0.9965 0.9978 0.9961	0.4982 0.3495	0.9955 0.9906 0.9901	0.4146	0.4618	0.0000	196 197 198	0.7712 0.0000 0.0000	0.7712 0.0000 0.0000	0.9987 0.9993 0.9982	0.9982 0.9964 0.9992	0.3362	0.7525 0.9482	0.0597 0.5212 0.3398	0.1972 0.4129	0.0000 0.9835 0.9993
73 74 75	0.7551	0.0000	0.9958 0.9933	0.9963 0.9974	0.1766 0.5282	0.9967 0.9960	0.1946 0.1588 0.2369	0.3424 0.1576 0.1945	0.9930 0.9919 0.9976	198 199 200	0.0000	0.0000	0.9982 0.9994 0.9999	0.9992 0.9995 0.9999	0.4612	0.7222	0.0758	0.4470 0.1946 0.9915	0.9993 0.9912 0.9997
76 77	0.8980 0.3287	0.9556 0.0000	0.9993 1.0000	0.9993 0.9993	0.4821 0.1975 0.8898	0.9956 0.9521	0.0720 0.9986	0.1265 0.9919	0.9984 0.9993	201 202	0.0000	0.0000	0.9995 0.9973	0.9963 0.9976	0.4810 0.1688 0.1625	0.9146 0.0000 0.0000	1.0000 0.9392 0.3452	0.2786 0.2868	0.9973 0.9980
78 79	0.6788	0.6544	0.9992 0.0000	0.9993 0.9997 0.0000	0.3792	0.7792 0.0000	0.2736 0.0000	0.1502 0.0000	0.9993 0.9990 0.0000	202 203 204	0.0000 0.0000	0.0000 0.0000	0.9973 0.0000 0.9957	0.0000	0.1623 0.0000 0.2638	0.0000 0.0000	0.0000 0.8647	0.2808 0.0000 0.3198	0.0000 0.9979
80 81	0.6798 0.6340	0.6540 0.0460	0.9998 0.9989	0.9995 0.9997	0.4915 0.1402	0.9631 0.9936	0.0200 0.0200	0.0200 0.0200 0.0303	0.9996 0.9999	204 205 206	0.0000	0.0000	0.9970 0.9957	0.9984 0.9981	0.2604	0.0000	0.3060 0.4294	0.3198 0.2506 0.1961	0.9979 0.9986 0.9967
82 83	0.8974	0.0000	0.9997 0.9994	0.9998 0.9986	0.1333 0.3251	0.8986	0.0199	0.1533	0.9991 0.9995	207 208	0.8512 0.0000	0.9984	0.9983 0.9971	0.9996 0.9962	0.3458	0.9991 0.9991	0.5120 0.3882	0.2745 0.2555	0.9988 0.9988
84	0.8873	0.8882	0.9982	0.9989	0.2998	0.8870 0.9982	0.9185 0.5217	0.8881 0.6471	0.9980	209	0.0000	0.0000	0.9990	0.9988	0.3731	0.9984	0.5885	0.6303	0.9956
85 86 87	0.6995 0.0000 0.9821	0.1366 0.6026 0.0000	0.9984 0.9954 0.9990	0.9978 0.9989 0.9986	0.4733 0.1654 0.3304	0.9983 0.9980 0.9978	0.3867 0.1459 0.5208	0.4409 0.2135 0.4067	0.0000 0.9953 0.9985	210 211 212	0.8861 0.6344 0.8582	0.3719 0.2281 0.0000	0.9983 0.9993 0.9931	0.9991 0.9995 0.9994	0.2023 0.3233 0.1262	0.9627 0.9994 0.9599	0.1678 0.1869 0.1480	0.3570 0.3621 0.1362	0.9992 0.9987 0.0000
87 88 89	0.9821 0.7712 0.0000	0.0000 0.7712 0.0000	0.9990 0.9960 0.9962	0.9986 0.9978 0.9979	0.3304 0.2679 0.3362	0.9978 0.9972 0.1803	0.5208 0.0486 0.5402	0.4067 0.1954 0.4434	0.9985 0.0000 0.9886	212 213 214	0.8582 0.3921 0.0000	0.0000	0.9931 0.9998 0.9998	0.9994 0.9992 0.9997	0.1262 0.2802 0.1872	0.9599 0.9987 0.9984	0.1480 0.3584 0.0540	0.1362 0.3362 0.0159	0.0000 0.9987 0.9988
90 91	0.0000	0.2178	0.9962 0.9994 0.9968	0.9979 0.9987 0.9996	0.3362 0.4332 0.1970	0.1803	0.3402 0.3031 0.0679	0.4434 0.4533 0.2275	0.9886 0.9991 0.9961	214 215 216	0.9568	0.0000	0.9998 0.9998 0.9998	0.9997 0.9999 0.9998	0.1872 0.0823 0.2970	0.9984 0.9984 0.9986	0.0540 0.0190 0.0147	0.0139 0.0132 0.0133	0.9988 0.9995 0.9976
91 92 93	0.0000	0.3958 0.8970	0.9968 0.9999 0.9988	0.9996 0.9990 0.9953	0.1970 0.9627 0.3133	0.9862 0.9750 0.9931	1.0000 0.1085	0.2275 0.9913 0.0395	0.9961 0.9998 0.9939	216 217 218	0.0000 0.0188	0.0000	0.9998 0.9997 0.9996	0.9998 0.9997 0.9995	0.2970 0.0902 0.2000	0.9986 0.9950 0.9985	0.0147 0.0145 0.0134	0.0133 0.0136 0.0148	0.9976 0.9997 0.9989
94	0.8108	0.7139	0.9973	0.9953 0.9941 0.9924	0.3137	0.9802	0.4598	0.0395 0.3282 0.2395	0.9939 0.9851 0.9927	218 219 220	0.8540	0.0000	0.9996 0.9991 0.9995	0.9998	0.3905	0.9985 0.9996 0.9991	0.1595	0.0877	0.9978
95 96	0.7758	0.0000	0.9801 0.9976	0.9979	0.2094 0.3673	0.9973 0.9965	0.8640 0.1440	0.1949	0.9974	221	0.9686	0.9870	0.9998	0.9998	0.4233	0.9987	0.2094 0.0142	0.1824	0.9993 0.9995 0.0006
97 98 99	0.3396	0.4644	0.9871	0.9955	0.3759 0.3728	0.9544	0.3857	0.5324 0.2744	0.9780 0.9840	222 223 224	0.0000	0.0000	0.9985 0.9991	0.9989	0.5082	0.9988 0.9915	0.2856 0.0213	0.2160 0.0439	0.9996 0.9980
100	0.2681	0.0000	0.9908 0.9990 0.9048	0.9885	0.2968	0.9874 0.9995	0.1184 0.7845	0.0673 0.7941	0.9759	224 225 226	0.0000	0.0000	0.9994 0.9994 0.0005	0.9993	0.2408 0.1849	0.9997 0.9996 0.9994	0.2252 0.3070	0.2815 0.2823	0.9994 0.9995 0.0084
101 102	0.9208 0.9759 0.0000	0.9013 0.9824 0.0000	0.9948 0.9928	0.9918 0.9969	0.4167 0.4567	0.9181 0.9971	0.0851	0.2021	0.9731 0.9767 0.9883	226 227 228	0.5680 0.3411 0.8315	0.0000	0.9995 0.9948	0.9991	0.3415	0.9994 0.9875 0.9992	0.4794	0.4518	0.9984
103 104	0.0000	0.0000	0.9959 0.9983	0.9817 0.9988	0.2424 0.2702	0.0000	0.3300	0.1943	0.9982	229	1.0000	0.0000	0.9965	0.9991	0.4521 0.2175	0.9996	0.0168	0.4097	0.9988
105 106	0.9727	0.7514	0.9985 0.9959	0.9972 0.9986 0.9883	0.3449 0.3549	0.9948 0.9939	0.1748	0.3168 0.1222	0.9974 0.9970	230 231 232	0.6227	0.5040	0.9989 0.9978	0.9985	0.2795 0.2483	0.9986 0.9958 0.9978	0.3909	0.4404	0.9951 0.9972
107 108	0.9504 0.0000	0.7028 0.0000	0.9787 0.0000 0.9962	0.0000	0.3953	0.9504	0.1107 0.0000	0.2951 0.0000	0.9519 0.0000	233	0.0000	0.0000	0.9978 0.9999	0.9987	0.3715	0.9977	0.2599	0.1024 0.9761 0.3065	0.0000
109 110	0.8970	0.8970	0.9962 0.9985	0.9981	0.2777	0.9931 0.9944	0.0991	0.0385	0.9898	234 235	0.6177	0.0000	1.0000 0.9973	0.9989	0.2176 0.9912	0.9972	0.0234 1.0000	0.3065 0.9427	0.9996
111 112	0.9547	0.9547	0.9981 0.9937	0.9985	0.2277	0.9974 0.9802	0.4171 0.4418	0.1414 0.4177	0.9985	236 237	0.8696	0.0000	0.9984 0.9989	0.9994 0.9990	0.3603 0.3549	0.9994 0.9989	0.5083	0.1603 0.3663	0.9996 0.9989
113 114	0.5882 0.7428	0.0000	0.9926 0.9895	0.9902	0.2041	0.5992	0.9955 0.4713	0.0946	0.9622 0.9955	238 239	0.7278	0.0000	0.9989 0.9999	0.9994	0.2996	0.9986	0.4471	0.5256	0.9988
115 116	0.8676 0.6750	0.0000	0.9968 0.9973	0.9594 0.9926	0.5152	0.8786 0.9973	0.7947 0.8711	0.1170	0.9913	240 241	0.0000	0.0000	0.9995 0.9999	0.9998	0.4202	0.9991 0.9988	0.2608 0.0143	0.2941 0.0146	0.9998 0.9995
117 118	0.4615 0.8934	0.0000	0.9842 0.9784	0.9837	0.3011	0.9728	0.6447 0.5819	0.2742	0.9923 0.9879	242 243	0.8137	0.5323	0.9998 0.9998	0.9998	0.4369	0.9896	0.0569	0.1755	0.9994 0.9998
119 120	0.9733	0.0000	0.9967 0.9972	0.9966	0.3531	0.9974	0.2590	0.2672	0.9965 0.9964	244 245	0.8057	0.5479	0.9996 0.9998	0.9994	0.2054	0.9963 0.9997	0.0383	0.1531	0.9989
121 122	0.0000	0.0000	0.9986 0.9980	0.9969	0.4756 0.1875	0.9819	0.0295	0.0948	0.9953	246 247	0.7260	1.0000 0.8353	0.9997 0.9994	0.9998	0.2581	0.9997 0.9902	0.1255	0.4240	0.9995 0.9996
123 124	0.9719	0.9985	0.9996 0.9980	0.9996	0.5010 0.4157	0.9990	0.4995 0.1486	0.5652	0.9990 0.9966	248 249	0.0000	0.0000	0.9768 0.9976	0.9986 0.9897	0.1386 0.4235	0.1696	0.0570 0.0498	0.1435 0.1251	0.9942 0.9950
125	0.0000	0.0000	0.9995	0.9975	0.6142	0.9975	0.3775	0.3984	0.9981	250	0.0000	0.0000	0.9872	0.9984	0.4321	0.0000	0.0498	0.2461	0.9875

 $TABLE\ XVIII$ The test Range-AUC-ROC of time series anomaly detection in UCR 250 sub-datasets. The best results are in **bold**.

	1	0.5064 0.5054 0.5054 0.5100 0.5090 0.5000 0.5090 0.4923 0.49070 0.0000 0.0000 0.0000 0.0000 0.0000 0.5035 0.525 0.4523 0.5225 0.5237 0.5237 0.5237 0.5024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5036 0.5038 0.0000 0.0000 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5036 0.5038 0.5038 0.5038	0.7237 0.7267 0.7360 0.7546 0.6867 0.7506 0.6686 0.7841 0.7260 0.7719 0.6941 0.7018 0.6798 0.7202	0.7096 0.7291 0.7328 0.7332 0.7148 0.7948 0.8350 0.8058 0.7042 0.7578 0.7196	0.9023 0.8248 0.8306 0.7536 0.5048 0.5084 0.5224 0.5387 0.5279 0.5098	0.6215 0.6142 0.6225 0.5445 0.5174 0.5396 0.5080	0.8896 0.4988 0.8352 0.8064 0.5101	0.8933 0.5096 0.7978 0.7671	0.9671 0.9352 0.9353	126 127 128	0.0000 0.5061	0.0000 0.5030	0.6970 0.7394 0.7357	0.7334 0.6811 0.7017	0.7229 0.5032 0.7549	0.6734 0.0000	0.4991 0.5026 0.7232	0.7326 0.5053 0.7991	0.8520 0.5105
1	3	0.5100 0.5090 0.4923 0.4900 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5045 0.0000 0.5088 0.0000 0.5225 0.4967 0.5237 0.5027 0.5237 0.5020 0.0000 0.0000 0.0000 0.5030 0.5034 0.0000 0.0000 0.4998	0.7360 0.7546 0.6867 0.7339 0.7506 0.6686 0.7841 0.7260 0.7719 0.6941 0.7018 0.6798 0.7202	0.7328 0.7332 0.7148 0.7948 0.8350 0.8058 0.7042 0.7578 0.7196 0.7384	0.8306 0.7536 0.5048 0.5084 0.5224 0.5387 0.5279 0.5098	0.6225 0.5445 0.5174 0.5396 0.5080	0.8352 0.8064 0.5101	0.7978 0.7671	0.9353	128			0.7357	0.7017	0.7549				0.5105
1	4	0.4923	0.7546 0.6867 0.7339 0.7506 0.6686 0.7841 0.7260 0.7719 0.6941 0.7018 0.6798 0.7202	0.7332 0.7148 0.7948 0.8350 0.8058 0.7042 0.7578 0.7196 0.7384	0.7536 0.5048 0.5084 0.5224 0.5387 0.5279 0.5098	0.5445 0.5174 0.5396 0.5080	0.8064 0.5101	0.7671	0.9101										0.9162
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7 7 8 0 0 8 9 0 0 10 0 11 1 0 0 11 1 0 0 11 1 0 1 1 1 1 0 1	0.0000 0.0000 0.4993 0.0000 0.4993 0.0000 0.5945 0.0000 0.5525 0.4967 0.0000 0.0525 0.4967 0.0000 0.5038 0.5038	0.7339 0.7506 0.6686 0.7841 0.7260 0.7719 0.6941 0.7018 0.6798 0.7202 0.7422	0.7948 0.8350 0.8058 0.7042 0.7578 0.7196 0.7384	0.5084 0.5224 0.5387 0.5279 0.5098	0.5396 0.5080			0.5042								0.5383 0.5991	0.6022 0.7119	0.7611 0.8657
1	99	0.5045 0.0000 0.5088 0.0000 0.5225 0.4967 0.52237 0.5024 0.0000 0.0000 0.0000 0.0000 0.5039 0.5028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.5038 0.5034 0.5039 0.5038 0.4953 0.5038 0.4953	0.7841 0.7260 0.7719 0.6941 0.7018 0.6798 0.7202 0.7422	0.7042 0.7578 0.7196 0.7384	0.5279 0.5098	0.5651											0.5246 0.5069	0.6940 0.5146	0.8535 0.7087
100	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5088 0.0000 0.5225 0.4967 0.5237 0.5024 0.0000 0.0000 0.0009 0.5028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.5030 0.5042 0.0000 0.0000 0.4998 0.5038 0.4953	0.7260 0.7719 0.6941 0.7018 0.6798 0.7202 0.7422	0.7578 0.7196 0.7384	0.5098		0.7309	0.5640	0.5100	133	0.0000	0.5071	0.7316	0.6951	0.5079	0.0000	0.5293 0.6904	0.5534 0.6686	0.5118 0.8983
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	12	0.5237 0.5024 0.0000 0.0000 0.0000 0.5009 0.5009 0.5028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.5030 0.5042 0.0000 0.0000 0.4998 0.5038 0.4953 0.4953 0.4953	0.6941 0.7018 0.6798 0.7202 0.7422	0.7384		0.5051	0.7106	0.5660	0.7648	135	0.0000	0.5020	0.7552	0.6919	0.5364	0.0000	0.5173 0.5822	0.5122 0.6687	0.5077 0.8631
14 16 16 16 16 16 16 16	144 0.155 0.166 0.177 0.188 0.199 0.200 0.201 0.202 0.202 0.203 0.202 0.	0.0000 0.0000 0.5009 0.5028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.5030 0.5042 0.0000 0.0000 0.4998 0.5038 0.4953	0.6798 0.7202 0.7422		0.7503	0.8586	0.7583	0.7405	0.8487	137	0.0000	0.4937	0.6921	0.6939	0.6434	0.0000	0.5326 0.5154	0.6418 0.5421	0.8520 0.5977
1.00 1.00	16 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.5030 0.5042 0.0000 0.0000 0.4998 0.5038 0.4953	0.7422		0.6606	0.6756	0.4989	0.5309	0.8487	139	0.0000	0.0000	0.7138	0.7321	0.7548	0.0000	0.7151 0.8352	0.6968 0.8407	0.8936 0.9445
18	18 0. 19 0. 20 0. 21 0. 222 0. 223 0. 224 0. 225 0. 226 0. 227 0. 228 0.	0.0000 0.0000 0.5030 0.5030 0.5042 0.0000 0.0000 0.4998 0.5038 0.4953		0.7391	0.8186	0.6716	0.7545	0.7561	0.4980	141	0.0000	0.0000	0.7119	0.6497	0.7988	0.5013	0.7159	0.8069 0.6444	0.9012 0.8967
1.0 1.0	20 0.0 21 0.0 222 0.0 223 0.0 224 0.0 225 0.0 227 0.0 228 0.0	0.5042 0.0000 0.0000 0.4998 0.5038 0.4953	0.7076	0.7519	0.5325	0.6734	0.4990	0.7296	0.8490	143	0.0000	0.4933	0.7085	0.6614	0.7104	0.5325	0.6621	0.5045	0.5019
2.00 0.000	22 0. 23 0. 24 0. 25 0. 26 0. 27 0. 28 0.	0.5038 0.4953	0.6989	0.7448	0.7844	0.5081	0.7230	0.7970	0.9151	145	0.5078	0.4999	0.7299	0.7609	0.7449	0.5764	0.5167 0.7505	0.5175 0.7543	0.5048 0.5031
1.00	24 0. 25 0. 26 0. 27 0. 28 0.		0.6850	0.6973	0.7172	0.0000	0.6356	0.6982	0.8658	147	0.5129	0.5003	0.7338	0.7404	0.5850	0.5526	0.5327 0.7021	0.6029 0.6034	0.0000 0.4980
1.0 1.0	26 0. 27 0. 28 0.									149							0.6091 0.7470	0.6414 0.7847	0.8743 0.8743
28	28 0.																0.4993 0.8521	0.4990 0.8510	0.4984 0.8923
1.000 0.000 0.4942 0.2796							0.5080 0.5974										0.8537 0.8743	0.4996	0.4993 0.9467
1.0 1.0					0.6451		0.5340	0.6281		154				0.6921	0.6205		0.5505 0.7979	0.5302 0.5680	0.4996 0.8132
33 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000	31 0.	0.5053 0.4910	0.7024	0.6901	0.7708	0.5073	0.6804	0.6916	0.8937	156	0.4965	0.5862	0.7695	0.7427	0.6475	0.0000	0.5338 0.5043	0.5309 0.5122	0.8459 0.5140
150	33 0.	0.0000 0.0000	0.6862	0.7497	0.7997	0.0000	0.6766	0.7938	0.9010	158	0.4965	0.0000	0.6943	0.7233	0.6333	0.0000	0.5275 0.5545	0.5727 0.5353	0.5044 0.5091
1.0 1.0	35 0.	0.0000 0.0000	0.7369	0.7527	0.7427	0.4933	0.5682	0.5043	0.8578	160	0.4964	0.6754	0.6856	0.7534	0.6245	0.0000	0.6817	0.5898	0.8470
1.500 1.5003 1.5003 1.5004 1.5005 1.	37 0.	0.5160 0.5016	0.7176	0.7603	0.7408	0.5512	0.7501	0.7542	0.7715	162	0.5134	0.0000	0.7580	0.7885	0.5274	0.7785	0.7410 0.7516	0.7461 0.6545	0.5013 0.0000
42 0.958 0.4988 0.7218 0.7256 0.6291 0.7599 0.7396 0.7848 0.8776 166 0.0000 0.0000 0.7346 0.7257 0.7889 0.7394 0.8987 0.7889 0.7896 0.7898 0.7	39 0.	0.5073 0.5003	0.7414	0.7461	0.6161	0.5249		0.6030	0.4984			0.0000	0.7221	0.7245	0.6372		0.7436 0.4981	0.7497 0.5133	0.5007 0.8511
2					0.6261			0.7848	0.8766				0.7368	0.7255	0.5975		0.4982 0.5013	0.4984 0.7509	0.4979 0.8050
																	0.8040 0.8053	0.8528 0.8353	0.9355 0.9390
6.5026 0.5026 0.5000 0.7237 0.6798 0.5916 0.5946 0.5278 0.5038 0.717 0.6994 0.4951 0.4961 0.6886 0.9090 0.5129 0.5001 0.5000 0.5000 0.5000 0.5000 0.7500 0.5000 0.	14 0.	0.4962 0.0000	0.7381	0.7005	0.8270	0.5187	0.8583	0.8111	0.4991	169	0.5023	0.4994	0.7191	0.6910	0.9261	0.5747	0.8989 0.5446	0.9095 0.6675	0.9643 0.5009
18	16 0.	0.5026 0.0000	0.7237	0.6798	0.5919	0.5301	0.5404	0.5278	0.5038	171	0.4994	0.4951	0.6961	0.6886	0.9009	0.5129	0.8990 0.9232	0.9079 0.9506	0.9674 0.9728
1.0 1.0	18 0.	0.0000 0.0000	0.7756	0.7251	0.7207	0.0000	0.5338	0.5374	0.8455	173	0.5360	0.5009	0.6568	0.6648	0.5197	0.5009	0.5094	0.5170	0.7056
52 0.5919 0.4992 0.7286 0.8035 0.6744 0.0000 0.4689 0.7755 0.8590 177 0.5392 0.5898 0.6780 0.7016 0.7016 0.6913 0.8023 0.6780 0.7761 0.5106 0.8000 0.0000 0.0000 0.7006 0.6913 0.8023 0.8023 0.8023 0.7761 0.7455 0.0000 0.0000 0.0000 0.7169 0.7006 0.6913 0.8023 0	50 0.	0.4965 0.0000	0.7382	0.7656	0.5224	0.0000	0.5281	0.5464	0.8491	175	0.5467	0.4992	0.7003	0.7199	0.6239	0.5587	0.6717 0.5580	0.5042	0.6915 0.5089
55 0.000 0.0000 0.7480 0.7373 0.7419 0.7585 0.6591 0.0000 179 0.4975 0.0000 0.7169 0.6995 0.8377 0.6110 0.475 0.0000 0.0000 0.7480 0.7487 0.7350 0.6787 0.7476 0.4983 0.5112 0.5481 0.5995 0.7481 0.7476 0.4983 0.5783 0.7893 0.4883 0.4981 0.5133 0.8581 0.8995 0.7481 0.7476 0.4983 0.4983 0.4981 0.5133 0.8781 0.4981 0.5133 0.8781 0.4983 0.4981 0.5133 0.4981 0.5133 0.4981 0.5133 0.4981 0.4	52 0.	0.5019 0.4992	0.7286	0.8035	0.6244	0.0000	0.6480	0.5756	0.8500	177	0.5392	0.5089	0.6780	0.7011	0.5074	0.5106	0.5138 0.6493	0.5078 0.5133	0.7688 0.5001
57 0.0000 0.0000 0.0000 0.7734 0.7313 0.5751 0.0000 0.0000 0.7143 0.7313 0.7314 0.7331 0.7343 0.7313 0.7343 0.7313 0.7343 0.7331 0.7343 0.7331 0.7343 0.7343 0.0000	54 0.	0.5134 0.0000	0.7486	0.7840	0.5737	0.7419	0.7555	0.6591	0.0000	179	0.4975	0.0000	0.7169	0.6995	0.8377	0.6100	0.8342 0.8407	0.8387 0.8437	0.5014 0.0000
58 0.0000 0.0000 0.0000 0.0762 0.7165 0.7533 0.7985 0.4866 0.4980 1.81 0.0000 0.0000 0.6746 0.7055 0.8463 0.0392 60 0.5007 0.7164 0.6888 0.8292 0.5325 0.7995 0.8486 0.4990 0.7164 0.6888 0.8292 0.5237 0.8094 0.9587 185 0.0000 0.0000 0.7325 0.7119 0.5044 0.5000 0.0000 0.0000 0.7322 0.0799 0.7737 0.0000 0							0.4981								0.8532		0.4983 0.8257	0.7100 0.8468	0.0000 0.9449
																	0.8370 0.8579	0.8394 0.8509	0.9502 0.9506
61 0.4948 0.4947 0.7206 0.6994 0.9176 0.5207 0.8983 0.9996 0.9651 186 0.0000 0.	59 0.	0.5042 0.4985	0.7166	0.6885	0.8292	0.5325	0.7985	0.8486					0.7194	0.7163	0.9582	0.5954	0.9504 0.5514	0.9579 0.5346	0.9810 0.4977
0.4974 0.4961 0.7272 0.6993 0.9233 0.5019 0.8992 0.9149 0.9689 188 0.0000 0.5003 0.7201 0.6957 0.4986 0.5018	51 0.	0.4948 0.4947	0.7206	0.6994	0.9176	0.5207	0.8983	0.9096	0.9651	186	0.0000	0.0000	0.7222	0.6997	0.7573	0.0000	0.5103	0.4995	0.8883
65 0.5135 0.0000 0.7007 0.6903 0.5112 0.5009 0.5107 0.5066 9.599 0.5014 0.7116 0.7327 0.6119 0.0000 0.5008 0.9252 191 0.0000	53 0.	0.4974 0.4961	0.7272	0.6993	0.9233	0.5019	0.8992	0.9149	0.9689	188	0.0000	0.5003	0.7201	0.6957	0.4986	0.5018	0.4976 0.4977	0.4976 0.4977	0.5063 0.5151
67 0.5668 0.5239 0.7761 0.6440 0.7237 0.5291 0.5889 0.5427 0.5004 1912 0.0000 0.0000 0.0000 0.0000 0.0000 0.6892 0.7222 0.7408 0.8149 0.6681 0.5037 0.5012 0.5106 0.5100 0.5100 0.6491 0.66813 0.5037 0.5417 0.6222 0.5114 0.5124 194 0.4983 0.4981 0.7185 0.7476 0.7735 0.5096 0.0000 0.0000 0.7361 0.6983 0.7805 0.6111 0.8321 0.8396 0.9999 195 0.5012 0.0000 0.0074 0.0000 0.0000 0.7361 0.6983 0.7805 0.6111 0.8321 0.8396 0.9999 195 0.5012 0.0000 0.00797 0.7197 0.8488 0.6610 0.8400 0.8437 0.0000 0.9000 0.0000 0.7360 0.7333 0.5717 0.5125 0.5006 0.0000 0.0000 0.0000 0.7360 0.7333 0.5717 0.5125 0.5006 0.0000 0	55 0.	0.5135 0.0000	0.7007	0.6903	0.5112	0.5009	0.5107	0.5196	0.5066	190	0.0000	0.0000	0.7282	0.7245	0.4986	0.5012	0.4981	0.4980	0.5085
69	57 0.	0.5668 0.5239	0.7761	0.6440	0.7237	0.5291	0.5889	0.5427	0.5044	192	0.0000	0.0000	0.6892	0.7222	0.7408	0.8149	0.8367 0.7762	0.8368 0.8060	0.8514 0.8543
71 0.4975 0.0000 0.7408 0.7379 0.8315 0.6100 0.8400 0.8437 0.0000 196 0.4971 0.4967 0.7085 0.7260 0.8836 0.6425 0.720 0.7106 0.7617 0.6137 0.4983 0.7099 0.0000 197 0.0000 0.0000 0.7360 0.7335 0.5717 0.5125 0.720 0.7106 0.7617 0.6137 0.4983 0.7099 0.0000 197 0.0000 0.0000 0.7360 0.7335 0.5717 0.5125 0.720 0.7106 0.7085 0.8341 0.8371 0.8391 0.4989 199 0.0000 0.0000 0.7129 0.7144 0.9455 0.5108 0.7091 0.0000 0.0000 0.7089 0.6859 0.8818 0.6314 0.8371 0.8391 0.4989 199 0.0000 0.0000 0.7192 0.6181 0.7014 0.9465 0.5017 0.5012 0.0000 0.0000 0.0000 0.7089 0.6859 0.8928 0.6375 0.8522 0.8490 0.9495 200 0.0000 0.0000 0.7181 0.7011 0.5042 0.5021 0.7014 0.9489 0.9495 0.0000 0.0000 0.7247 0.6526 0.5163 0.0000 0.0000 0.0000 0.7247 0.6526 0.5163 0.0000 0.0000 0.0000 0.0000 0.7247 0.6526 0.5163 0.0000 0.0000 0.0000 0.0000 0.0000 0.7247 0.6526 0.5163 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	59 0.	0.5160 0.5100	0.6491	0.6813	0.5037	0.5417	0.6222	0.5114	0.5124	194	0.4983	0.4981	0.7185	0.7476	0.7735	0.5096	0.7562 0.8226	0.7580 0.8153	0.0000 0.4995
73	71 0.	0.4975 0.0000	0.7408	0.7379	0.8315	0.6100	0.8400	0.8437	0.0000	196	0.4971	0.4967	0.7055	0.7260	0.8836	0.6425	0.8856 0.8259	0.8667 0.8349	0.9453 0.0000
75 0.0000 0.0000 0.0918 0.6795 0.8928 0.6375 0.8552 0.8390 0.9495 200 0.0000 0.0000 0.0000 0.7296 0.6955 0.5002 0.0000 0.0000 0.0000 0.7296 0.6955 0.5002 0.0000 0	73 0.				0.8342	0.5396		0.8478		198					0.9455		0.6626 0.9391	0.6012 0.9489	0.4985 0.9727
77																	0.5038 0.5400	0.8258 0.5210	0.4972 0.5076
No.																	0.6297 0.5610	0.5052 0.5174	0.5113 0.5028
80	78 0.	0.5000 0.4995	0.7261	0.7078	0.7654	0.5039	0.5060	0.4998	0.8883	203	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.8601	0.0000 0.5621	0.0000 0.5044
82 0.5004 0.0000 0.7323 0.7165 0.5014 0.4980 0.4996 0.4977 207 0.5235 0.5156 0.7312 0.7430 0.6167 0.5590 84 0.0000 0.0000 0.0000 0.7603 0.7293 0.6136 0.8375 0.5041 208 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.517 0.7440 0.858 0.5180 86 0.0000 0.4981 0.7224 0.7417 0.7852 0.5885 0.8170 0.8189 0.5002 0.4997 0.7144 0.7043 0.5664 0.81870 86 0.5022 0.0000 0.72214 0.7442 0.5885 0.8612 0.9497 212 0.5000 0.7977 0.7049 0.6440 0.5188 80 0.4696 0.4967 0.7051 0.7083 0.8244 </td <td>30 0.</td> <td>0.5010 0.5004</td> <td></td> <td>0.7233</td> <td>0.6587</td> <td>0.5675</td> <td></td> <td>0.5126 0.6978</td> <td>0.5473 0.5309</td> <td>0.8390 0.7941</td>	30 0.	0.5010 0.5004											0.7233	0.6587	0.5675		0.5126 0.6978	0.5473 0.5309	0.8390 0.7941
84 0,0000 0,0000 0,7693 0,7293 0,6136 0,8170 0,7762 0,8061 0,8483 209 0,0000 0,0000 0,6995 0,6964 0,8935 0,5984 86 0,1510 0,5052 0,7114 0,7342 0,5685 0,7440 0,7580 0,0000 210 0,5017 0,4997 0,7144 0,7434 0,5684 0,5180 86 0,0000 0,4981 0,7224 0,7417 0,7852 0,5246 0,8170 0,8187 0,9497 212 0,5040 0,0000 0,7022 0,7049 0,6440 0,5188 87 0,5022 0,0000 0,2947 0,7251 0,7883 0,8610 0,8852 0,8952 0,9997 212 0,5040 0,0000 0,0003 0,8784 0,5385 0,6404 0,984 214 0,0000 0,0006 0,7166 0,6879 0,9039 0,5318 0,916 0,8793 0,8784 0,5385 0,4994 0,0000 0,0000 0,7166 0,6879<	32 0.	0.5004 0.0000	0.7323	0.7165	0.5010	0.5014	0.4980	0.4996	0.4977	207	0.5235	0.5156	0.7312	0.7430	0.6167	0.5509	0.7107 0.6353	0.5309 0.5448	0.7936 0.7883
86 0.0000 0.4981 0.7224 0.7417 0.7852 0.5246 0.8170 0.8170 0.8180 0.5002 0.0000 0.4997 0.7077 0.7049 0.6340 0.5128 87 0.5022 0.0000 0.7261 0.7288 0.8389 0.6100 0.8858 0.8102 0.9497 212 0.5040 0.0000 0.7052 0.6935 0.5707 0.5297 88 0.0000 0.0000 0.7461 0.7464 0.7333 0.5344 0.6462 0.8854 0.4984 214 0.0000 0.0000 0.7166 0.6879 0.9093 0.5318 90 0.0000 0.0003 0.7462 0.7115 0.9407 0.5052 0.9366 0.9531 0.9735 215 0.5044 0.0000 0.0000 0.7218 0.9407 0.5052 0.9366 0.9531 0.9735 215 0.5040 0.0000 0.7218 0.9738 0.514 0.7167 0.6984 0.6884 0.5089 0.5354 0.7167 0.6	34 0.	0.0000 0.0000	0.7693	0.7293	0.6136	0.8170	0.7762	0.8061	0.8483	209	0.0000	0.0000	0.6995	0.6964	0.8935	0.5954	0.9260	0.9262	0.5009
88 0.4969 0.4967 0.7051 0.7083 0.8524 0.6424 0.8258 0.8352 0.0000 213 0.4994 0.0000 0.7248 0.7226 0.8745 0.8332 90 0.0000 0.4993 0.7042 0.7115 0.9407 0.5052 0.9366 0.9531 0.9735 215 0.5040 0.0000 0.2066 0.7880 0.8969 0.5318 91 0.0000 0.0000 0.7167 0.6884 0.5046 0.8273 0.8289 0.8318 0.4999 0.0000 0.7188 0.7313 0.9366 0.5354 92 0.0000 0.5004 0.7167 0.6984 0.5085 0.5030 0.5388 0.5131 0.5086 0.4999 0.0000 0.7188 0.7313 0.9266 0.5354 93 0.5054 0.7167 0.6984 0.5085 0.6128 0.7517 0.8933 0.5666 0.4989 0.0000 0.7194 0.7222 0.9269 0.5327 94 0.5090	36 0.	0.0000 0.4981	0.7224	0.7417	0.7852	0.5246	0.8170	0.8139	0.5008	211	0.5020	0.4997	0.7077	0.7049	0.6340	0.5128	0.5342 0.5465	0.6116 0.6015	0.8438 0.5014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 0.	0.4969 0.4967	0.7051	0.7083	0.8524	0.6442	0.8258	0.8352	0.0000	213	0.4994	0.0000	0.7248	0.7226	0.8745	0.5332	0.5027	0.5041 0.8971	0.0000 0.9542
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 0.	0.0000 0.4953	0.7042	0.7115	0.9407	0.5052	0.9366	0.9531	0.9735	215	0.5040	0.0000	0.7266	0.7380	0.8969	0.5332	0.9017 0.8964	0.8950 0.8943	0.9673 0.9666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92 0.	0.0000 0.5004	0.7167	0.6984	0.5088	0.5020	0.5388	0.5213	0.5087	217	0.0000	0.0000	0.7137	0.6899	0.8996	0.5313	0.8951 0.8943	0.8943 0.8943	0.9667 0.9669
96 0,0000 0,0000 0,7003 0,7101 0,8425 0,6716 0,7539 0,7572 0,9096 221 0,5028 0,0000 0,7329 0,7294 0,9501 0,5314 0,5103 0,5056 0,7570 0,7588 0,5756 0,5471 0,5400 0,5912 0,5057 222 0,0000 0,0000 0,7337 0,7220 0,9131 0,8685 0,5133 0,5220 0,7674 0,7209 0,5185 0,0000 0,5204 0,5131 0,5081 223 0,5385 0,5054 0,7508 0,7522 0,8794 0,8711 0,999 0,4942 0,0000 0,6935 0,7841 0,7149 0,5462 0,6665 0,6481 0,5065 224 0,0000 0,0000 0,7415 0,7234 0,8931 0,8485 0,8910 0,7514 0,7209 0,7249 0,7249 0,7509 0,7540 0,7508 0,7508 0,7514 0,7249 0,8931 0,8480 0,8150 0,7514 0,7514 0,7249 0,8711 0,7249 0,8711 0,7499 0,7540 0,7540 0,7540 0,7540 0,7540 0,7544 0,7508 0,8150 0,8810 0,7540 0,7540 0,7540 0,7540 0,7540 0,7540 0,8810 0,8810 0,754																	0.8943 0.7932	0.8943 0.7689	0.9667 0.4976
97	95 0.	0.5115 0.0000	0.6807	0.7039	0.5245	0.6278	0.7547	0.5655	0.7660	220	0.4993	0.5041	0.7279	0.7232	0.9321	0.5344	0.8996 0.9407	0.9078 0.9407	0.9676 0.9811
99 0.4942 0.0000 0.6935 0.7841 0.7149 0.5462 0.6665 0.6481 0.5065 224 0.0000 0.0000 0.7415 0.7234 0.8931 0.8480 100 0.5124 0.5016 0.7371 0.7229 0.7459 0.5660 0.7500 0.7540 0.4982 225 0.5308 0.5037 0.7544 0.7268 0.8159 0.8810	97 0.	0.5103 0.5066	0.7570	0.7888	0.5766	0.5471	0.5400	0.5912	0.5057	222	0.0000	0.0000	0.7337	0.7220	0.9131	0.8685	0.9150 0.8650	0.8884 0.8655	0.9581 0.9585
	99 0.	0.4942 0.0000	0.6935	0.7841	0.7149	0.5462	0.6665	0.6481	0.5065	224	0.0000	0.0000	0.7415	0.7234	0.8931	0.8480	0.9043 0.8849	0.9173 0.8760	0.9228 0.9344
	01 0.	0.5044 0.4991	0.7426	0.6838	0.7269	0.5497	0.6124	0.5501	0.4981	226	0.5001	0.0000	0.6888	0.7125	0.8718	0.8485	0.9103	0.9052 0.5300	0.9359 0.4978
103 0.0000 0.0000 0.7563 0.7548 0.5232 0.0000 0.6846 0.5780 0.5075 228 0.5007 0.0000 0.7220 0.7212 0.5443 0.6669	03 0.	0.0000 0.0000	0.7563	0.7548	0.5232	0.0000	0.6846	0.5780	0.5075	228	0.5007	0.0000	0.7220	0.7212	0.5443	0.6669	0.5024 0.4980 0.4984	0.5521	0.4978 0.5049 0.0000
105 0.5286 0.5001 0.6971 0.6670 0.9143 0.5467 0.8934 0.9095 0.9644 230 0.5056 0.5011 0.7460 0.7295 0.6216 0.7136	05 0.	0.5286 0.5001	0.6971	0.6670	0.9143	0.5467	0.8934	0.9095	0.9644	230	0.5056	0.5011	0.7460	0.7295	0.6216	0.7136	0.4984	0.5295 0.7445	0.5007
106 0.5227 0.4977 0.7235 0.6982 0.9142 0.5551 0.8977 0.9048 0.9675 231 0.0000 0.0000 0.7274 0.7458 0.8334 0.7644 107 0.5348 0.5037 0.6828 0.6206 0.5701 0.5200 0.5246 0.5388 0.5041 232 0.0000 0.0000 0.7261 0.7415 0.8473 0.7590	07 0.	0.5348 0.5037	0.6828	0.6206	0.5701	0.5200	0.5246	0.5388	0.5041	232	0.0000	0.0000	0.7261	0.7415	0.8473	0.7590	0.5007 0.7660	0.7694 0.7663	0.9285 0.0000
108 0.0000 <td>09 0.</td> <td>0.5064 0.5054</td> <td>0.7005</td> <td>0.6951</td> <td>0.8942</td> <td>0.6141</td> <td>0.9012</td> <td>0.8940</td> <td>0.9659</td> <td>234</td> <td>0.5087</td> <td>0.0000</td> <td>0.7144</td> <td>0.7050</td> <td>0.5033</td> <td>0.8019</td> <td>0.5155 0.4980</td> <td>0.5288 0.5033</td> <td>0.5050 0.5081</td>	09 0.	0.5064 0.5054	0.7005	0.6951	0.8942	0.6141	0.9012	0.8940	0.9659	234	0.5087	0.0000	0.7144	0.7050	0.5033	0.8019	0.5155 0.4980	0.5288 0.5033	0.5050 0.5081
110 0.5100 0.5090 0.7230 0.7308 0.5085 0.6186 0.4996 0.8042 0.9374 235 0.5005 0.0000 0.7356 0.7338 0.5105 0.7884 111 0.5100 0.5090 0.7238 0.7185 0.8157 0.6202 0.8851 0.7990 0.9353 236 0.5006 0.0000 0.7559 0.7132 0.5618 0.7953						0.6186							0.7356	0.7338			0.5639 0.5142	0.5405 0.5026	0.5083 0.7400
112 0.4999 0.6029 0.7430 0.7086 0.7665 0.5246 0.8079 0.7917 0.9119 237 0.4956 0.0000 0.7198 0.7323 0.9515 0.7958 113 0.5050 0.0000 0.7514 0.7676 0.5099 0.5119 0.5464 0.5040 0.5045 238 0.5008 0.0000 0.7641 0.7097 0.7668 0.7640	12 0.	0.4999 0.6029	0.7430	0.7086	0.7665	0.5246	0.8079	0.7917	0.9119	237	0.4956	0.0000	0.7198	0.7323	0.9515	0.7958	0.9353 0.8482	0.9453 0.8675	0.9727 0.9023
114 0.5022 0.0000 0.7657 0.7198 0.5098 0.5395 0.5446 0.5109 0.6815 239 0.0000 0.0000 0.7302 0.6997 0.5132 0.5175 115 0.5022 0.0000 0.7390 0.7243 0.5133 0.5137 0.5459 0.5084 0.5115 240 0.0000 0.0000 0.7245 0.6983 0.7052 0.5175	14 0.	0.5022 0.0000	0.7657	0.7198	0.5098	0.5395	0.5446	0.5109	0.6815	239	0.0000	0.0000	0.7302	0.6997	0.5132	0.5175	0.5823 0.5630	0.6470 0.5544	0.5023 0.5019
116 0.4993 0.0000 0.7464 0.6804 0.5240 0.5508 0.7561 0.5733 0.5092 241 0.0000 0.0000 0.7149 0.6952 0.9582 0.5161	16 0.	0.4993 0.0000	0.7464	0.6804	0.5240	0.5508	0.7561	0.5733	0.5092	241	0.0000	0.0000	0.7149	0.6952	0.9582	0.5161	0.9563	0.9564	0.9863
117		0.4993 0.0000	0.6878	0.7819	0.5049	0.5229	0.7606	0.5683	0.7662	243	0.5013	0.5006	0.7299	0.7148	0.5368	0.5147	0.7845 0.5473	0.7952 0.6216	0.9278 0.7626
119 0.5274 0.0000 0.7786 0.7487 0.8705 0.8957 0.8814 0.8704 0.9370 244 0.4997 0.4999 0.7258 0.7157 0.7669 0.5455 120 0.5333 0.5024 0.7744 0.7826 0.7517 0.8927 0.7581 0.7414 0.8523 245 0.4996 0.4999 0.7250 0.7122 0.8249 0.5456	18 0.	0.5333 0.5024	0.7744	0.7826	0.7517	0.8927	0.7581	0.7414	0.8523	245	0.4996	0.4999	0.7250	0.7122	0.8249	0.5456	0.7635 0.8317	0.7777 0.8703	0.9279 0.9309
121 0.0000 0.0000 0.7200 0.6961 0.7488 0.6679 0.4998 0.5380 0.8474 246 0.5020 0.5021 0.7241 0.7174 0.8265 0.5813 122 0.0000 0.0000 0.7397 0.7360 0.5805 0.6697 0.4991 0.5310 0.8485 247 0.5136 0.5005 0.7321 0.7143 0.6542 0.5760	18 0. 19 0. 20 0.		0.7397	0.7360	0.5805	0.6697	0.4991	0.5310	0.8485	247	0.5136	0.5005	0.7321	0.7143	0.6542	0.5760	0.8190 0.4978	0.8777 0.5816	0.9305 0.8236
123	18 0. 19 0. 20 0. 21 0. 22 0.					0.6716	0.7540	0.7568	0.9096	249	0.0000	0.0000		0.7041	0.5773		0.5043 0.5036	0.5049 0.5055	0.5118 0.5091
125 0.0000 0.0000 0.7058 0.7248 0.8196 0.6735 0.7417 0.7466 0.8516 250 0.0000 0.0000 0.6692 0.6893 0.5092 0.0000	18 0. 19 0. 20 0. 21 0. 22 0. 23 0. 24 0.	0.5016 0.5022 0.0000 0.0000								250	0.0000						0.5031	0.5103	0.5108

 $TABLE\ XIX \\ THE\ TEST\ RANGE-AUC-PR\ OF\ TIME\ SERIES\ ANOMALY\ DETECTION\ IN\ UCR\ 250\ SUB-DATASETS.\ THE\ BEST\ RESULTS\ ARE\ IN\ BOLD.$

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.0278	0.0259 0.0258	0.8135 0.8151	0.8001 0.8173	0.6994 0.5120	0.7010 0.2433	0.7387 0.0068	0.7450 0.0329	0.8485 0.7367	126 127	0.0000	0.0000 0.0141	0.4779 0.8026	0.7780 0.2723	0.4152 0.0183	0.5666 0.0000	0.0052 0.0159	0.4328 0.0257	0.6184 0.0453
3 4	0.0277	0.0258	0.8236 0.3549	0.8207 0.8241	0.5215 0.6422	0.7002 0.5817	0.5890 0.7129	0.5385 0.6560	0.7385 0.8320	128 129	0.0194	0.0141	0.6531 0.3065	0.5518 0.7143	0.6670 0.2692	0.0000	0.6232 0.1314	0.7212 0.2905	0.8582 0.5724
5	0.0000	0.0000	0.7399 0.8217	0.8024 0.8731	0.0422 0.0170 0.0369	0.0343 0.0796	0.0395 0.0255	0.0142 0.0478	0.0135 0.0695	130	0.0194 0.0230 0.0194	0.0123 0.0140	0.5119 0.3263	0.7987 0.6173	0.4559 0.4608	0.0000	0.3388 0.1243	0.5457 0.5239	0.7514 0.7560
7 8	0.0000	0.0000	0.7758	0.9031	0.0942	0.0218	0.0255 0.0869 0.6325	0.0375	0.0818	132	0.0000	0.0000	0.7774	0.6899	0.2128	0.0000	0.0320	0.0653	0.5743
9	0.0210	0.0000	0.2626 0.5495	0.8759	0.1723	0.6203	0.1427	0.2600	0.0590 0.6618	133 134	0.0000	0.0276	0.8093 0.5721	0.7389 0.5544	0.0349 0.6699	0.0000	0.1130	0.1896	0.0620 0.8403
10 11	0.0302	0.0000	0.8153 0.8559	0.8436 0.8097	0.0516 0.7123	0.0217 0.9450	0.6083 0.7459	0.2708	0.6225 0.8329	135 136	0.0000	0.0076	0.8190 0.6774	0.5579 0.6873	0.1018 0.5080	0.0000	0.0534	0.0393 0.5079	0.0260 0.7832
12 13	0.0700 0.0000	0.0115	0.7828 0.7907	0.8257 0.7755	0.5218 0.3112	0.9190 0.2579	0.4958 0.0072	0.4867 0.1064	0.6634 0.6546	137 138	0.0000	0.0092 0.0105	0.2937 0.7710	0.4101 0.6507	0.4727 0.0416	0.0000	0.1824 0.0550	0.4712 0.1376	0.7799 0.2857
14 15	0.0000 0.0039	0.0000 0.0147	0.7673 0.8079	0.8362 0.8059	0.3163 0.4133	0.7625 0.0151	0.0050 0.5261	0.0770 0.4846	0.6180 0.0010	139 140	0.0000	0.0000 0.9506	0.5939 0.3790	0.7189 0.7618	0.6799 0.8232	0.0000	0.6285 0.8001	0.6034 0.8121	0.8422 0.9109
16 17	0.0000	0.0000	0.6460 0.6413	0.7322 0.6153	0.6039 0.4472	0.4923 0.5763	0.5165 0.4331	0.5201 0.4389	0.0064 0.5730	141 142	0.0000	0.0000	0.3818 0.7003	0.6067 0.5994	0.7638 0.6186	0.0529 0.0000	0.6652 0.5264	0.7750 0.4919	0.8810 0.8221
18 19	0.0000 0.0130	0.0000 0.0141	0.6175 0.6659	0.7324 0.7759	0.0791 0.0596	0.5621 0.0000	0.0050 0.1038	0.4278 0.0258	0.6362 0.0293	143 144	0.0000	0.0088	0.4980 0.6963	0.7446 0.2636	0.5946 0.5759	0.0825	0.1688 0.1204	0.0358 0.1261	0.0202 0.0261
20 21	0.0419	0.0000	0.7055 0.3444	0.8153 0.5216	0.7025 0.1391	0.0466 0.0123	0.6263 0.1085	0.7180 0.2371	0.8643 0.5595	145 146	0.0176 0.0189	0.0017 0.0017	0.7779 0.8334	0.8057 0.7827	0.3860 0.2115	0.5948 0.1112	0.3973 0.0669	0.4083 0.1910	0.0115 0.0000
22 23	0.0235 0.0125	0.0062	0.5092 0.6049	0.6765 0.8157	0.5545 0.4633	0.0000	0.4153 0.1995	0.5278 0.5319	0.7539 0.7685	147 148	0.5235 0.0161	0.0017 0.0018	0.7796 0.5929	0.8241 0.4537	0.1375 0.3253	0.5962 0.0579	0.3090 0.2379	0.1655 0.2975	0.0026 0.6475
24 25	0.0105 0.0309	0.0149 0.0140	0.8218 0.7891	0.7446 0.6206	0.3375 0.0251	0.0000 0.0310	0.0245 0.1452	0.0526 0.1686	0.0773 0.0618	149 150	0.0095 0.0095	0.0019 0.0019	0.4007 0.5081	0.4618 0.5956	0.3110 0.5893	0.0977 0.1279	0.4732 0.0097	0.5294 0.0086	0.6442 0.0070
26 27	0.0152 0.4626	0.0157 0.0428	0.7641 0.7661	0.5581 0.3428	0.6273 0.0275	0.0306 0.0000	0.5789 0.0273	0.5397 0.0459	0.1019 0.0534	151 152	0.1167 0.0094	0.1496 0.0000	0.8630 0.6659	0.7377 0.5048	0.6464 0.6958	0.6451 0.0542	0.6700 0.7307	0.6631 0.0149	0.7373 0.0110
28 29	0.0000	0.0091	0.5813 0.8135	0.7418 0.7476	0.6303 0.4764	0.8619 0.0430	0.3585 0.1843	0.5413 0.4433	0.7952 0.7697	153 154	0.0124	0.0000	0.7099 0.8211	0.5700 0.4185	0.7579 0.2801	0.0243	0.7928 0.1410	0.7314	0.8782 0.0061
30 31	0.0191 0.0470	0.0000	0.7201 0.5488	0.2208 0.3956	0.0189	0.0000	0.0767 0.5773	0.1260 0.5934	0.2586 0.8447	155 156	0.0129	0.0000 0.3735	0.3343 0.8284	0.4456 0.6057	0.5593 0.4145	0.0303	0.6037 0.2067	0.1868 0.1407	0.6787 0.7277
32	0.0076	0.6255 0.0000	0.7515 0.6443	0.4692 0.8202	0.7652 0.7652	0.0000	0.8287	0.8131 0.7634	0.9216 0.8551	157 158	0.0055	0.0000	0.7787 0.6233	0.7421 0.7368	0.4143 0.0126 0.4039	0.0000	0.0173	0.0371 0.2691	0.0429 0.0333
33 34	0.0000	0.0000	0.6326 0.7900	0.8202 0.3477 0.8353	0.5383	0.0000	0.6201	0.4994	0.8094	159 160	0.0055	0.0000 0.0000 0.5982	0.8557	0.3388 0.5719	0.1937 0.3709	0.0000	0.1737 0.1690 0.5538	0.0886	0.0295
35 36	0.0000	0.0000	0.3553	0.7667	0.6380 0.5083	0.0086	0.3171	0.0345	0.7630 0.0261	161	0.0237	0.0000	0.5265 0.7876	0.7161	0.7629	0.4797	0.6690	0.3113	0.7298 0.0329
37 38	0.0335 0.0238	0.0052	0.7661 0.7987	0.8051 0.2734	0.3800 0.3273	0.5938 0.5611	0.3975 0.0324	0.4078 0.1366	0.4202 0.0000	162 163	0.0418	0.0000	0.7315 0.7906	0.7283 0.6853	0.1416 0.4736	0.8041 0.7422	0.6004 0.4534	0.4693 0.4637	0.0000 0.0106
39 40	0.0159 0.0225	0.0017 0.0036	0.8205 0.6340	0.7824 0.5914	0.1846 0.4562	0.5067 0.0602	0.3103 0.2415	0.1651 0.2894	0.0026 0.6475	164 165	0.0000	0.0000	0.6904 0.7667	0.3137 0.3451	0.2402 0.1003	0.1819	0.0029 0.0030	0.0307 0.0033	0.5316 0.0029
41 42	0.0174 0.0173	0.0019 0.0038	0.5862 0.4063	0.5604 0.4515	0.2756 0.5951	0.1441 0.0264	0.4495 0.0098	0.5300 0.5166	0.6313 0.7602	166 167	0.0000	0.0000 0.0337	0.7952 0.7528	0.3143 0.5424	0.1692 0.6719	0.7775 0.0048	0.0082 0.5450	0.3992 0.6117	0.4736 0.7471
43 44	0.1270 0.0087	0.1386	0.7775 0.7108	0.8216 0.6674	0.5840 0.6909	0.6496 0.1131	0.6670 0.7336	0.6585 0.6664	0.7302 0.0110	168 169	0.0291 0.0223	0.0266 0.0228	0.7699 0.6618	0.4801 0.6961	0.6324 0.7984	0.3014 0.2585	0.5525 0.7588	0.5943 0.7714	0.7340 0.8443
45 46	0.0128 0.0105	0.0000	0.6687 0.3146	0.7690 0.7586	0.7434 0.2216	0.0271 0.0624	0.7762 0.1175	0.7390 0.0787	0.8687 0.0192	170 171	0.0126 0.0148	0.0077 0.0077	0.7007 0.6363	0.6764 0.4465	0.1568 0.7629	0.4952 0.0891	0.0778 0.7548	0.2618 0.7648	0.0073 0.8439
47 48	0.0298 0.0000	0.0000	0.6587 0.8569	0.7848 0.4472	0.5638 0.5392	0.0525 0.0000	0.5926 0.1774	0.1874 0.1623	0.0287 0.7137	172 173	0.0120 0.0730	0.0070 0.0062	0.6566 0.6541	0.6688 0.7497	0.8513 0.0664	0.5539 0.0062	0.8144 0.0354	0.8475 0.0576	0.8799 0.4325
49 50	0.0000 0.0058	0.0000	0.7295 0.8244	0.7521 0.6333	0.0188	0.0000	0.0105 0.1642	0.0370 0.1927	0.0268 0.7288	174 175	0.0806	0.0068	0.7166 0.2954	0.7410 0.7953	0.3777 0.3976	0.0160 0.5344	0.4006 0.2178	0.0191 0.1859	0.4230 0.0508
51 52	0.0000 0.0168	0.0000 0.0110	0.3128 0.7756	0.3230 0.8128	0.1911 0.3826	0.0000	0.1495 0.4698	0.0874 0.2736	0.0280 0.7199	176 177	0.0588	0.0050 0.4106	0.2868 0.2645	0.3195 0.2887	0.2291 0.0217	0.0364 0.0211	0.0509 0.3147	0.0326 0.0344	0.5580 0.0067
53 54	0.0237 0.0419	0.0085	0.3653 0.7211	0.9009 0.7576	0.7133 0.3034	0.5046 0.7768	0.0373 0.6081	0.6856 0.4747	0.8681 0.0000	178 179	0.0000 0.0013	0.0000	0.7108 0.7704	0.5903 0.5231	0.5270 0.5986	0.3856 0.3808	0.5759 0.6267	0.5800 0.6169	0.0114 0.0000
55 56	0.0000	0.0000	0.7019 0.8273	0.4269 0.5236	0.3525 0.1142	0.7500 0.1830	0.4543 0.0029	0.4605 0.0308	0.0104 0.5383	180 181	0.0704	0.0037 0.0032	0.5138 0.6214	0.2862 0.7188	0.5614 0.6778	0.1882 0.1882	0.0050 0.6330	0.3961 0.6663	0.0000 0.8110
57 58	0.0000	0.0000	0.7701 0.7168	0.6154 0.3056	0.1484 0.4063	0.4204 0.8218	0.0030 0.0028	0.0033 0.3968	0.0029 0.4754	182 183	0.0068	0.0000	0.4644 0.5775	0.4471 0.6051	0.7311 0.7279	0.4343	0.6629 0.7178	0.6697 0.7105	0.8039 0.8365
59 60	0.0167 0.0091	0.0060 0.0076	0.7317 0.7324	0.6210 0.6374	0.5847 0.6283	0.2370 0.2005	0.5372 0.5597	0.6057 0.5940	0.0050 0.7569	184 185	0.0000	0.0003 0.0000	0.5290 0.8193	0.6398 0.2995	0.7680 0.0128	0.1727 0.0012	0.7644 0.0576	0.7664 0.0396	0.8081 0.0003
61 62	0.0045	0.0059	0.6464 0.7826	0.5031	0.7849 0.2130	0.0987 0.2671	0.7587 0.0772	0.7723 0.2428	0.8490 0.0130	186	0.0000	0.0000	0.8040 0.0000	0.2884 0.0000	0.3469	0.0000	0.0191	0.0037	0.5266
63 64	0.0101	0.0102 0.0106 0.7106	0.6343 0.7952	0.4304 0.6465	0.7902 0.8280	0.0182 0.0826	0.7552 0.8120	0.7732 0.8376	0.8584 0.8840	188 189	0.0000	0.0012 0.0013	0.8076 0.7443	0.7076 0.2935	0.0013 0.0035	0.0036 0.0017	0.0003 0.0003	0.0003 0.0003	0.0093 0.0188
65	0.0309	0.0000	0.7503	0.2808	0.0412	0.0062	0.0394	0.0650	0.0268	190	0.0000	0.0000	0.3153	0.6792	0.0013	0.0024	0.0003	0.0007	0.0119
66 67	0.0622	0.0068	0.7599 0.8563	0.6146 0.6712	0.2864	0.0000	0.3186	0.0166	0.4751 0.0211	191 192	0.0000	0.0012	0.3048 0.7060	0.5304 0.7828	0.2459 0.4120	0.3208	0.3968 0.4840	0.3965 0.5233	0.4167 0.5520
68 69	0.0768 0.0319	0.0298 0.4084	0.5417 0.2316	0.7060 0.7681	0.2556 0.0134	0.0165 0.0779	0.0464 0.2622	0.0324	0.0202 0.0355	193 194	0.0263 0.0007	0.0159 0.0004	0.6863 0.7113	0.5881 0.7944	0.4769 0.4575	0.6287 0.2221	0.4226 0.5331	0.4351 0.5251	0.0000
70 71	0.0000 0.0013	0.0000	0.8058 0.6381	0.5993 0.5082	0.4968 0.5888	0.3892 0.3808	0.5721 0.6249	0.5814 0.6169	0.6719 0.0000	195 196	0.0110 0.0044	0.0000 0.0035	0.6477 0.6950	0.7041 0.6436	0.6366 0.7068	0.5165 0.4552	0.6861 0.6442	0.6617 0.6557	0.7518 0.0000
72 73	0.0743 0.0165	0.0062 0.0023	0.4801 0.5194	0.6123 0.4572	0.4801 0.6576	0.1915 0.1802	0.0051 0.6434	0.3955 0.6703	0.0000 0.8293	197 198	0.0000	0.0000	0.8119 0.4999	0.4650 0.6780	0.1247 0.7715	0.0270 0.0317	0.2617 0.7618	0.1533 0.7693	0.0030 0.8051
74 75	0.0068	0.0000	0.5005 0.4468	0.4481 0.5933	0.7412 0.7628	0.4303 0.4369	0.6635 0.7144	0.6692 0.7082	0.0112 0.8330	199 200	0.0000	0.0000	0.6994 0.8056	0.7036 0.7887	0.5712 0.0075	0.0183 0.0040	0.0142 0.0461	0.5095 0.0256	0.0030 0.0116
76 77	0.0011 0.0004	0.0020 0.0000	0.5679 0.8237	0.5289 0.2928	0.7556 0.0122	0.0525 0.0040	0.7596 0.0468	0.7601 0.0673	0.7888 0.0179	201 202	0.0000	0.0000	0.7934 0.5994	0.2833 0.6621	0.0046 0.0283	0.0000	0.1757 0.0953	0.0112 0.0309	0.0204 0.0107
78 79	0.0018 0.0000	0.0010 0.0000	0.5972 0.0000	0.7784 0.0000	0.3583 0.0000	0.0094 0.0000	0.0128 0.0000	0.0041 0.0000	0.5258 0.0000	203 204	0.0000	0.0000	0.0000 0.3893	0.0000 0.7151	0.0000 0.1098	0.0000	0.0000 0.5618	0.0000 0.1165	0.0000 0.0152
80 81	0.0023 0.0008	0.0017 0.0005	0.8148 0.3194	0.6888 0.7456	0.0103 0.0026	0.0116 0.0083	0.0003 0.0003	0.0003 0.0005	0.0105 0.0120	205 206	0.0000	0.0000	0.5487 0.6566	0.6483 0.7750	0.1283 0.1596	0.0000	0.0302 0.4643	0.0963 0.0812	0.4936 0.5090
82 83	0.0010 0.0016	0.0000 0.0026	0.8191 0.5543	0.7758 0.3060	0.0037 0.1460	0.0028 0.0089	0.0003 0.3961	0.0024 0.3971	0.0004 0.0082	207 208	0.0497 0.0000	0.3888	0.6990 0.5632	0.8290 0.3079	0.1817 0.2621	0.5767 0.9570	0.3141 0.2088	0.0533 0.0750	0.4161 0.3746
84 85	0.0000	0.0000	0.7573 0.7157	0.7919 0.6478	0.2147 0.4302	0.7949 0.5239	0.4855 0.4081	0.5236 0.4354	0.5654 0.0000	209 210	0.0000	0.0000	0.6088 0.4094	0.5988 0.5682	0.6129 0.0791	0.3659 0.0364	0.6593 0.0498	0.6642 0.1511	0.0084 0.4427
86 87	0.0000 0.0130	0.0004 0.0000	0.3214 0.7524	0.6848 0.6643	0.4746 0.6294	0.2550 0.5165	0.5241 0.6867	0.5238 0.6545	0.0095 0.7558	211 212	0.0055 0.0094	0.0005 0.0000	0.6991 0.2937	0.7175 0.7809	0.1810 0.0166	0.4660 0.0578	0.0668 0.0094	0.1392 0.0118	0.0061 0.0000
88 89	0.0046 0.0000	0.0035	0.4709 0.4824	0.5943 0.7009	0.6663 0.1269	0.4573 0.0092	0.6440 0.2682	0.6583 0.1329	0.0000 0.0030	213 214	0.0005 0.0000	0.0000	0.6622 0.7384	0.4246 0.5997	0.4884 0.5520	0.1766 0.1467	0.5189 0.5538	0.5149 0.5455	0.5858 0.6398
90 91	0.0000	0.0012 0.0000	0.7178 0.3520	0.5683 0.7563	0.7732 0.5705	0.0209 0.0133	0.7638 0.5213	0.7775 0.5139	0.8158 0.0051	215 216	0.0108 0.0023	0.0000	0.7374 0.7381	0.7814 0.6992	0.5505 0.5906	0.1492 0.1580	0.5467 0.5475	0.5438 0.5451	0.6329 0.6370
92 93	0.0000	0.0009	0.8043 0.7017	0.2860 0.4327	0.0125 0.7556	0.0040 0.2647	0.0448 0.7718	0.0259 0.7450	0.0122 0.8442	217 218	0.0000 0.0004	0.0000	0.5808 0.5873	0.5934 0.5222	0.5500 0.5890	0.0625 0.1531	0.5455 0.5470	0.5459 0.5466	0.6427 0.6341
94 95	0.0428 0.0341	0.0190	0.7895 0.5363	0.6066 0.7483	0.6740 0.1221	0.2239 0.6368	0.7195 0.6447	0.6456 0.2669	0.8269 0.6681	219 220	0.0004 0.0011	0.0000 0.0110	0.3188 0.5087	0.7360 0.6907	0.4153 0.5970	0.3427 0.2172	0.3504 0.5555	0.3220 0.5638	0.0006 0.6286
96 97	0.0000	0.0000	0.6465 0.5832	0.6951 0.8311	0.6383 0.2303	0.4942 0.0929	0.5139 0.1360	0.5220 0.2657	0.7220 0.0297	221 222	0.0107	0.0000	0.6750 0.4295	0.6448 0.4801	0.6937 0.5905	0.1535 0.5500	0.6780 0.5797	0.6773 0.5562	0.7251 0.6010
98 99	0.0283	0.0466	0.3514 0.6611	0.6940 0.6710	0.0557 0.6023	0.0000 0.3691	0.0618 0.5320	0.0419 0.4982	0.0279 0.0692	223 224	0.0795	0.0159	0.5759 0.6552	0.4588 0.6152	0.5892 0.6031	0.4296 0.8802	0.5437	0.5566 0.6297	0.6531 0.5035
100 101	0.0266	0.0052 0.0036	0.8181 0.4444	0.8041 0.3209	0.3888 0.4348	0.6178 0.0964	0.3964 0.2457	0.4074 0.1234	0.0030 0.0048	225 226	0.0623 0.0035	0.0101	0.6461 0.7049	0.7484 0.5903	0.4727 0.5640	0.8531 0.8035	0.5204 0.6493	0.5141 0.6367	0.5765 0.6710
102 103	0.1216	0.1542	0.5044 0.8252	0.7705 0.4425	0.6469 0.1097	0.6460 0.0000	0.6663 0.5261	0.6565 0.2812	0.0048 0.0096 0.0497	227 228	0.0033	0.0000	0.3192 0.3096	0.6906 0.7483	0.0414	0.3039 0.7029	0.0090 0.0012	0.0538 0.0703	0.0021 0.0102
103 104 105	0.0000	0.0000 0.0000 0.0157	0.6825 0.6361	0.7155 0.4880	0.1097 0.1003 0.7821	0.4341 0.2108	0.0030 0.7520	0.2812 0.0033 0.7720	0.5360 0.8496	229 230	0.5285 0.0141	0.0000 0.0000 0.0050	0.7788 0.7850	0.7716 0.6666	0.0000 0.0072 0.2056	0.7029 0.8161 0.6656	0.0012 0.0017 0.3731	0.0403 0.3794	0.0000 0.0070
106 107	0.0583 0.0762	0.0137 0.0100 0.0180	0.4705 0.4623	0.6414 0.5970	0.7786 0.2703	0.2237 0.0491	0.7527 0.1083	0.7720 0.7618 0.1630	0.8522 0.0211	231 232	0.0000	0.0000	0.5107 0.5421	0.5422 0.6799	0.5628 0.5851	0.3789 0.5656	0.0094 0.4781	0.4765 0.4724	0.6463 0.0000
108 109	0.0762 0.0000 0.0276	0.0180 0.0000 0.0260	0.4623 0.0000 0.4579	0.0000 0.5782	0.0000	0.0000	0.0000	0.0000	0.0000 0.8508	232 233 234	0.0053 0.0174	0.0000	0.8388 0.8019	0.8284	0.0126 0.0067	0.3826 0.8726	0.0205	0.0352 0.0066	0.0000 0.0101 0.0122
110	0.0275	0.0258	0.6221	0.7413	0.7561 0.0312	0.2665 0.2475	0.7589	0.7453 0.5459	0.7330	235	0.0011	0.0000	0.3221	0.6600 0.6843	0.0147	0.3669	0.0740	0.0479	0.0126
111 112	0.0275	0.0259	0.5985 0.7203	0.6513 0.4818	0.5699	0.3588	0.6620 0.7187	0.5392 0.6889	0.7415 0.8337	236 237	0.0017	0.0000	0.3405 0.5723	0.7338 0.6253	0.0786 0.7921	0.8057 0.6389	0.0209	0.0067 0.7805	0.2936 0.8020
113 114	0.0104 0.0104	0.0000	0.7947 0.8486	0.7949	0.0326	0.0238	0.1467 0.1767	0.0146	0.0135 0.4702	238 239	0.0039	0.0000	0.6429 0.5868	0.7282	0.3917	0.5556	0.4899	0.5163 0.1542	0.5829 0.0048
115 116	0.0104 0.0104	0.0000	0.8253 0.8319	0.3156 0.7668	0.0572	0.0659 0.5810	0.1855 0.6463	0.0370	0.0532 0.0515	240 241	0.0000	0.0000	0.3119 0.5975	0.4816 0.5374	0.2179 0.7922	0.0346 0.0645	0.0684 0.6232	0.0595 0.6253	0.0038 0.7260
117 118	0.0104 0.0104	0.0000	0.6263 0.4933	0.6905 0.6270	0.1588	0.1881	0.5256 0.6653	0.1049	0.6618 0.6747	242 243	0.0030	0.0026	0.7417 0.7785	0.7701 0.8024	0.4130	0.0224	0.3747 0.0565	0.3845	0.5717 0.2960
119 120	0.0672 0.0874	0.0000 0.0115	0.7110 0.8259	0.6595 0.4332	0.7382 0.4982	0.8580 0.8909	0.7410 0.5014	0.7402 0.4896	0.8234 0.6817	244 245	0.0007	0.0026 0.0026	0.6083 0.7328	0.4696 0.6763	0.3422 0.4141	0.0856 0.5017	0.3420 0.4295	0.3569 0.4737	0.5202 0.5233
121 122	0.0000	0.0000	0.7976 0.7892	0.7308 0.3257	0.5070 0.1757	0.2579 0.2583	0.0074 0.0052	0.1149 0.0772	0.6079 0.6111	246 247	0.0057 0.0294	0.7302 0.0105	0.6869 0.5386	0.7149 0.3023	0.4123 0.1815	0.5583 0.1343	0.3957 0.0006	0.4725 0.0984	0.5318 0.3730
123 124	0.0064 0.0000	0.0819	0.6387 0.7475	0.6003 0.4898	0.4809 0.5683	0.2006 0.4942	0.4657 0.5151	0.5155 0.5216	0.0045 0.7229	248 249	0.0000	0.0000	0.2179 0.7602	0.8021 0.6202	0.0204 0.2093	0.0057 0.0000	0.0244 0.0207	0.0177 0.0237	0.0469 0.0511
125	0.0000	0.0000	0.7934	0.6369	0.5433	0.5841	0.4318	0.4403	0.5787	250	0.0000	0.0000	0.4967	0.7598	0.0264	0.0000	0.0111	0.0311	0.0589

 $TABLE~XX \\ The~test~V_ROC~of~time~series~anomaly~detection~in~UCR~250~sub-datasets.~The~best~results~are~in~bold.$

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.5062	0.5054 0.5090	0.7106 0.7120	0.7015 0.7173	0.8519 0.7759	0.6337 0.6258	0.6990 0.4983	0.7163 0.5045	0.9673 0.9382	126	0.0000	0.0000 0.5030	0.7001 0.7238	0.7241 0.6695	0.6815 0.5018	0.6949 0.0000	0.4987 0.5011	0.6709 0.5030	0.8637 0.5068
3 4	0.5099 0.4923	0.5090 0.4907	0.7196 0.7306	0.7171 0.7185	0.7835 0.6616	0.6350 0.5459	0.7088 0.7331	0.6754 0.7192	0.9379 0.9150	128 129	0.4938 0.5061	0.4907 0.5029	0.7198 0.7021	0.6897 0.6804	0.6561 0.5789	0.0000	0.6278 0.5324	0.7011 0.5932	0.9203 0.7850
5 6	0.0000	0.0000	0.6794 0.7154	0.7043 0.7601	0.5028 0.5059	0.5175 0.5384	0.5095 0.5038	0.5023 0.5075	0.5077 0.5137	130 131	0.5034 0.5018	0.4979 0.4986	0.7240 0.7176	0.6990 0.7240	0.6123 0.6327	0.0000	0.5618 0.5133	0.6480 0.6813	0.8756 0.8652
7 8	0.0000 0.4993	0.0000	0.7258 0.6591	0.7877 0.7769	0.5166 0.5303	0.5071 0.5675	0.5124 0.7161	0.5053 0.5452	0.5161 0.5115	132 133	0.0000	0.0000 0.5072	0.7320 0.7189	0.6793 0.6825	0.5393 0.5055	0.0000	0.5045 0.5240	0.5095 0.5441	0.7413 0.5121
9 10	0.5046 0.5088	0.0000	0.7624 0.7180	0.6905 0.7368	0.5191 0.5068	0.5325 0.5042	0.5163 0.6872	0.5133 0.5495	0.7904 0.7898	134 135	0.0000	0.0000 0.5018	0.7382 0.7383	0.7160 0.6876	0.6711 0.5322	0.5078 0.0000	0.6037 0.5122	0.5862 0.5075	0.9045 0.5064
11 12	0.5228 0.5242	0.4967 0.5024	0.7499 0.6829	0.7019 0.7222	0.7452 0.6730	0.8207 0.7981	0.7388 0.6872	0.7232 0.6655	0.9392 0.8617	136 137	0.0000	0.0000 0.4934	0.6757 0.6848	0.7226 0.6843	0.6339 0.6224	0.0000	0.5447 0.5190	0.6036 0.5851	0.8741 0.8645
13 14	0.0000	0.0000	0.6921 0.6755	0.6802 0.7389	0.5973 0.6304	0.6882 0.6968	0.4993 0.4986	0.5201 0.5172	0.8631 0.8606	138 139	0.0000	0.5027 0.0000	0.6865 0.6998	0.6586 0.7104	0.5073 0.6797	0.0000	0.5114 0.6552	0.5410 0.6096	0.6410 0.9003
15 16	0.5009	0.5028	0.7070 0.7325	0.7078 0.7274	0.7783 0.7484	0.5067 0.6934	0.8431 0.6632	0.8112 0.6505	0.4980 0.4980	140 141	0.0000	0.9493 0.0000	0.6362 0.7001	0.7257 0.6522	0.7332 0.7179	0.0000 0.5016	0.6932 0.6297	0.7070 0.7712	0.9470 0.9067
17 18	0.0000	0.0000	0.7069 0.6996	0.7289 0.7368	0.7160 0.5197	0.6907 0.6948	0.6651 0.4987	0.6675 0.6672	0.8633 0.8613	142 143	0.0000	0.0000 0.4933	0.6604 0.6984	0.6981 0.6538	0.6810 0.6639	0.0000 0.5330	0.5975 0.5197	0.5861 0.5028	0.9021 0.5022
19 20	0.5030 0.5044	0.5030 0.0000	0.6944 0.6809	0.7020 0.7247	0.5101 0.6819	0.0000 0.5084	0.5162 0.6146	0.5029 0.6951	0.5054 0.9200	144 145	0.0000 0.5078	0.0000 0.4998	0.7277 0.7105	0.6498 0.7419	0.6268 0.7535	0.0000 0.5758	0.5138 0.7390	0.5121 0.7491	0.5048 0.5029
21 22	0.0000 0.5038	0.4998 0.4952	0.7347 0.6791	0.7158 0.6899	0.5318 0.6580	0.5029 0.0000	0.5207 0.5959	0.5685 0.6363	0.7837 0.8757	146 147	0.5080 0.5143	0.4994 0.5002	0.7473 0.7181	0.7078 0.7199	0.6038 0.5932	0.5599 0.5522	0.5220 0.7473	0.5811 0.5993	0.0000 0.5015
23 24	0.4986 0.5011	0.0000 0.5022	0.6872 0.7229	0.7106 0.6864	0.6279 0.5893	0.0000	0.5280 0.5033	0.6818 0.5073	0.8676 0.5139	148 149	0.5052 0.5018	0.4982 0.4981	0.7330 0.7491	0.7187 0.6928	0.6014 0.6078	0.5274 0.5504	0.5633 0.6662	0.5928 0.7011	0.8833 0.8829
25 26	0.5108 0.4927	0.5017 0.4927	0.7096 0.6947	0.6799 0.6968	0.5035 0.6599	0.5125 0.5008	0.5334 0.6065	0.5364 0.5861	0.5119 0.5079	150 151	0.4996 0.5607	0.4959 0.5850	0.7010 0.7648	0.7074 0.7326	0.7473 0.7464	0.5655 0.6394	0.4987 0.8171	0.4986 0.7991	0.4984 0.8989
27 28	0.5184	0.5163	0.7089 0.6898	0.7390	0.5056 0.7110	0.0000 0.9964	0.5043 0.5605	0.5095 0.6185	0.5133 0.8750	152 153	0.4965	0.0000	0.7116 0.7308	0.7249 0.6903	0.6929 0.7088	0.5198	0.7662 0.7434	0.4991	0.4993 0.9481
29 30	0.0000 0.5078	0.4942	0.7153 0.7235	0.6790 0.6321	0.6105 0.5028	0.5122	0.5193 0.5145	0.5752 0.5334	0.8650 0.6375	154 155	0.5028 0.5033	0.0000	0.7186 0.7230	0.6847 0.7358	0.5961 0.7503	0.5258 0.5121	0.5365 0.7891	0.5186 0.5528	0.4995 0.8306
31 32	0.5052 0.4748	0.4908 0.5857	0.6916 0.7272	0.6830 0.6250	0.7099	0.5070	0.6102 0.7583	0.6055 0.7117	0.9004 0.9482	156 157	0.4965	0.5798	0.7441 0.7348	0.7254 0.6874	0.6019	0.0000	0.5188	0.5201 0.5089	0.8584 0.5075
33 34	0.0000	0.0000	0.6813 0.6715	0.7321 0.6848	0.7335	0.0000	0.6004	0.7503 0.5881	0.9057	158 159	0.4965	0.0000	0.6812 0.7505	0.7111 0.7297	0.5871 0.6276	0.0000	0.5228 0.5593	0.5558	0.5041 0.5062
35 36	0.0000	0.0000	0.7157 0.6810	0.7373 0.7203	0.6858	0.4933	0.5490	0.5027	0.8688 0.5048	160 161	0.4964 0.4883	0.6602	0.6753 0.7632	0.7376 0.7259	0.5988	0.0000 0.6811	0.6425	0.5631	0.8595 0.5013
37 38	0.5158	0.5016	0.7036 0.7203	0.7410 0.6762	0.7479 0.6586	0.5503	0.7370 0.5082	0.7491	0.7929 0.0000	162 163	0.5127	0.0000	0.7390 0.7130	0.7600 0.7086	0.5224 0.6849	0.7598	0.7634	0.6182 0.6443	0.0000
39 40 41	0.5073 0.5086 0.5058	0.5002	0.7231 0.6961 0.7074	0.7261 0.7230	0.6100 0.6535	0.5248	0.7475 0.5610	0.5981	0.5019 0.8840	164 165	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.7065 0.7084	0.7101 0.7368	0.5996 0.5398 0.5837	0.6028 0.6931 0.7185	0.4980	0.5060 0.4982 0.6884	0.8622 0.4984 0.8230
42 43	0.5036 0.5678	0.4981 0.4968 0.5767	0.7164 0.6896	0.7019 0.7006 0.7238	0.5952 0.7411 0.7221	0.5787 0.5083 0.6433	0.6542 0.4987 0.8100	0.6994 0.6406 0.7885	0.8848 0.9234 0.8999	166 167 168	0.5103 0.5092	0.5070 0.5049	0.7186 0.7197 0.7068	0.7099 0.6768 0.6793	0.3837 0.8124 0.7475	0.4990 0.5754	0.4997 0.7158 0.7386	0.7767 0.7255	0.9383 0.9410
44 45	0.4961 0.4949	0.0000	0.7224 0.7103	0.6864 0.6891	0.7438	0.5188	0.7791	0.7059 0.7122	0.4991 0.9474	169 170	0.5021 0.5045	0.4994	0.7054 0.7087	0.6828 0.6858	0.7473 0.8057 0.5911	0.5798 0.5174	0.7956 0.5250	0.7255 0.7994 0.6318	0.9410 0.9654 0.5019
46	0.5026	0.0000	0.7082	0.6750	0.7486	0.5020	0.7296 0.5282	0.5166	0.5036 0.5044	171	0.4994	0.5011	0.6882	0.6805	0.8240	0.5126	0.7056	0.7487	0.9680
47 48 49	0.5109 0.0000 0.0000	0.0000 0.0000 0.0000	0.7001 0.7528 0.6885	0.6975 0.7073 0.6883	0.7848 0.6736 0.5030	0.5234 0.0000 0.0000	0.7898 0.5179 0.5014	0.5518 0.5261 0.5088	0.8580 0.5083	172 173 174	0.4953 0.5337 0.5376	0.4922 0.5009 0.5014	0.7044 0.6502 0.7099	0.6852 0.6582 0.6806	0.8495 0.5143 0.6715	0.9912 0.5009 0.5060	0.8014 0.5056 0.7036	0.8377 0.5115 0.5021	0.9732 0.7381 0.7267
50 51	0.4965 0.0000	0.0000	0.7204 0.7085	0.7408 0.7163	0.5132 0.6134	0.0000	0.5233 0.5563	0.5348 0.5312	0.8610 0.5074	175 176	0.5434 0.5259	0.4992 0.4996	0.6854 0.6839	0.7050 0.7153	0.5935 0.5668	0.5515 0.5156	0.5379 0.5086	0.5021 0.5350 0.5046	0.7267 0.5083 0.7925
52 53	0.5020 0.4883	0.4992 0.4817	0.7142 0.6820	0.7756 0.8026	0.5913 0.6739	0.0000 0.0000 0.7031	0.5944 0.5013	0.5502 0.6479	0.8619 0.9235	177 177 178	0.5369	0.4996 0.5081 0.0000	0.6699 0.6912	0.6947 0.6845	0.5044 0.7570	0.5136 0.5106 0.6204	0.6453 0.7358	0.5078 0.7473	0.5006 0.5005
54 55	0.5127	0.0000	0.7383 0.7244	0.7590 0.7160	0.5588 0.6445	0.7306 0.7286	0.7686 0.6399	0.6234 0.6429	0.0000 0.5002	179 180	0.4975 0.5351	0.0000 0.0000 0.4990	0.7045 0.7011	0.6870 0.6861	0.7570 0.8018 0.7581	0.6202 0.6220	0.7435 0.4980	0.7567 0.6246	0.0000
56 57	0.0000	0.0000	0.7366 0.7174	0.6903 0.7316	0.5377 0.5634	0.6044 0.7101	0.4980 0.4981	0.5060 0.4982	0.8628 0.4981	181 182	0.5058	0.4949 0.0000	0.7059 0.7156	0.7064 0.6616	0.7763 0.8242	0.5674 0.6546	0.7079 0.7194	0.7508 0.7144	0.9465 0.9515
58 59	0.0000 0.5042	0.0000	0.6914 0.7018	0.7004 0.6803	0.7316 0.7536	0.7565 0.5332	0.4982	0.6864 0.7707	0.8245 0.4980	183 184	0.0000	0.0000	0.6795 0.7051	0.6986 0.7042	0.7329 0.7763	0.6550 0.5896	0.7704 0.7365	0.7413 0.7646	0.9522 0.9812
60 61	0.5007 0.4948	0.4990	0.7028 0.7082	0.6794 0.6896	0.7375 0.8388	0.5277 0.5212	0.7449 0.7812	0.7212 0.8027	0.9385 0.9659	185 186	0.0000	0.0000	0.7169 0.7081	0.7020 0.6902	0.5202 0.7175	0.5006	0.6024 0.5068	0.5528 0.4988	0.5006 0.8953
62 63	0.5020 0.4974	0.5016 0.4961	0.7172 0.7143	0.6866 0.6888	0.6090 0.8174	0.5138 0.5019	0.5234 0.7053	0.6230 0.7604	0.5034 0.9690	187 188	0.0000	0.0000 0.5003	0.0000 0.7066	0.0000 0.6870	0.0000 0.4981	0.0000 0.5018	0.0000 0.4976	0.0000 0.4976	0.0000 0.5015
64 65	0.4936 0.5133	0.7040 0.0000	0.7456 0.6904	0.6890 0.6777	0.8048	0.5062 0.5009	0.7956 0.5063	0.8350 0.5136	0.9733 0.5054	189 190	0.0000	0.5003 0.0000	0.7134 0.7117	0.6965 0.7133	0.4995 0.4981	0.5008 0.5012	0.4977 0.4981	0.4976 0.4978	0.5057 0.5082
66 67	0.5289 0.5641	0.5014 0.5234	0.7005 0.7509	0.7115 0.6404	0.6021 0.6933	0.0000 0.5287	0.6342 0.5606	0.5016 0.5325	0.7271 0.5054	191 192	0.0000	0.5000	0.7038 0.6784	0.7051 0.7091	0.6622 0.6972	0.5146 0.7843	0.8413 0.7454	0.8505 0.7592	0.8623 0.8653
68 69	0.5362 0.5160	0.5118 0.5074	0.7236 0.6459	0.6646 0.6714	0.5724 0.5018	0.5054 0.5418	0.5077 0.6171	0.5046 0.5066	0.5019 0.5204	193 194	0.5106 0.4983	0.5054 0.4981	0.6859 0.7074	0.6883 0.7272	0.7117 0.7019	0.6400 0.5095	0.6871 0.6846	0.6944 0.6939	0.0000 0.4992
70 71	0.0000 0.4975	0.0000	0.7194 0.7240	0.6902 0.7253	0.7162 0.8021	0.6215 0.6202	0.7341 0.7393	0.7503 0.7567	0.9147 0.0000	195 196	0.5012 0.4971	0.0000 0.4967	0.6956 0.6965	0.7102 0.7143	0.8035 0.8687	0.6825 0.6600	0.8233 0.6851	0.8116 0.7243	0.9478 0.0000
72 73	0.5374 0.5017	0.5002 0.4949	0.7037 0.7068	0.7013 0.6708	0.6991 0.7169	0.6249 0.5407	0.4980 0.7249	0.6246 0.7746	0.0000 0.9453	197 198	0.0000	0.0000	0.7215 0.6983	0.7171 0.7001	0.5546 0.8771	0.5126 0.5109	0.6497 0.8128	0.5828 0.8624	0.4985 0.9732
74 75	0.4971 0.0000	0.0000	0.7034 0.6916	0.6805 0.6762	0.8709 0.8710	0.6504 0.6551	0.7294 0.7627	0.7183 0.7353	0.4991 0.9513	199 200	0.0000	0.0000	0.7073 0.7043	0.6741 0.6912	0.7446 0.5043	0.5071 0.5020	0.5011 0.5830	0.7353 0.5391	0.4972 0.5063
76 77	0.4965 0.5002	0.4964 0.0000	0.7146 0.7210	0.7035 0.6954	0.7891 0.5190	0.5021 0.5019	0.7341 0.5856	0.7526 0.5842	0.9805 0.5043	201 202	0.0000	0.0000	0.7158 0.7120	0.6857 0.6436	0.4993 0.5097	0.0000	0.6756 0.5469	0.5030 0.5118	0.5066 0.5019
78 79	0.5000 0.0000	0.4995 0.0000	0.7118 0.0000	0.6977 0.0000	0.7043 0.0000	0.5039 0.0000	0.5037 0.0000	0.4990 0.0000	0.8954 0.0000	203 204	0.0000	0.0000	0.0000 0.6714	0.0000 0.6770	0.0000 0.5440	0.0000	0.0000 0.8840	0.0000 0.5474	0.0000 0.5032
80 81	0.5010 0.5003	0.5004 0.5001	0.7135 0.7158	0.7008 0.7034	0.5045 0.4988	0.5057 0.5041	0.4976 0.4977	0.4976 0.4977	0.5036 0.5107	205 206	0.0000	0.0000	0.7068 0.7305	0.6497 0.7029	0.5472 0.5502	0.0000	0.5093 0.6460	0.5352 0.5194	0.8520 0.8131
82 83	0.5004 0.5004	0.0000 0.5002	0.7173 0.7084	0.7060 0.7084	0.4996 0.5975	0.5014 0.5041	0.4980 0.8442	0.4988 0.8581	0.5022 0.5029	207 208	0.5223 0.0000	0.5153 0.0000	0.7155 0.7769	0.7248 0.6875	0.5878 0.6285	0.5473 0.8603	0.6856 0.6065	0.5225 0.5326	0.8130 0.8089
84 85	0.0000 0.5138	0.0000 0.5054	0.7460 0.7000	0.7133 0.7233	0.5853 0.7101	0.7858 0.5653	0.7454 0.6758	0.7575 0.6917	0.8602 0.0000	209 210	0.0000 0.5017	0.0000 0.4997	0.6920 0.7017	0.6897 0.6918	0.8099 0.5383	0.6027 0.5162	0.8400 0.5222	0.8430 0.5954	0.5001 0.8562
86 87	0.0000 0.5022	0.4981	0.7075 0.7119	0.7222 0.7214	0.6742 0.7709	0.5249 0.6825	0.6784 0.8343	0.6901 0.8018	0.5000 0.9508	211 212	0.5020 0.5040	0.4997 0.0000	0.6952 0.6941	0.6935 0.6835	0.6011 0.5035	0.5116 0.5298	0.5324 0.5010	0.5881 0.5017	0.5014
88 89	0.4969	0.4967	0.7002 0.7263	0.6965	0.7667	0.6622	0.6808 0.6601	0.7229	0.0000 0.4984	213 214	0.4994	0.0000	0.7113 0.7025	0.7096 0.6769	0.7647 0.7562	0.5337	0.7702 0.7125	0.7679 0.7018	0.9559 0.9678
90 91	0.0000	0.4953	0.6904 0.7062	0.6999	0.8499 0.7331	0.5052	0.8051 0.6807	0.8645 0.7461	0.9739 0.4986	215 216	0.5040	0.0000	0.7125 0.7031	0.7204	0.7125 0.7903	0.5337	0.7026 0.7018	0.7013	0.9676 0.9675
92 93	0.0000	0.5004	0.7029 0.7087	0.6877 0.6990	0.5205 0.7907	0.5020 0.6249	0.5824 0.7312	0.5386 0.7144	0.5088 0.9672	217 218	0.0000	0.0000	0.7009 0.7059	0.6789 0.7084	0.7271 0.7703	0.5318 0.5332	0.7014	0.7014 0.7014	0.9677 0.9675
94 95	0.5092	0.4973	0.6916 0.6741	0.6107 0.6878	0.7136	0.5276 0.6600	0.7653 0.7684	0.7006 0.5455	0.9148 0.7922	219 220	0.4998	0.0000	0.7106 0.7130	0.7138 0.7096	0.7728	0.5340 0.5347	0.6606 0.7683	0.6403	0.4976 0.9679
96 97	0.0000	0.0000	0.7095 0.7339	0.7011	0.7607 0.5619	0.6934	0.6618 0.5332	0.6535	0.9147 0.5034	221 222	0.5028	0.0000	0.7171 0.7140	0.7150 0.7050	0.8902 0.8864	0.5320 0.8037	0.7254 0.7860	0.7254	0.9813 0.9590
98 99	0.5129	0.5218	0.7418 0.6839	0.6993	0.5141 0.6577	0.0000 0.5470	0.5150	0.5082 0.5886	0.5044	223 224	0.5384	0.5051	0.7248 0.7203	0.7299 0.7078	0.7926 0.7634	0.8035 0.7927	0.6865	0.6908 0.7637	0.9594 0.9263
100 101	0.5123	0.5016	0.7212 0.7281	0.7081 0.6751	0.7386 0.6827	0.5654	0.7369	0.7489	0.4986	225 226	0.5307	0.5035	0.7286 0.6773	0.7113 0.6959	0.7144 0.7505	0.8130 0.7931	0.7290 0.7754	0.7217 0.7888	0.9370 0.9385
102 103 104	0.5643 0.0000 0.0000	0.5886 0.0000 0.0000	0.6920 0.7369 0.7061	0.7274 0.7348 0.6832	0.7481 0.5170 0.5390	0.6402 0.0000 0.7231	0.8087 0.6460 0.4981	0.7869 0.5540 0.4982	0.4998 0.5064 0.8610	227 228 229	0.4998 0.5007 0.5147	0.0000 0.0000 0.0000	0.7174 0.7107 0.7213	0.7144 0.7116	0.5122 0.5373 0.5011	0.7085 0.6705 0.7301	0.5003 0.4979 0.4980	0.5185 0.5418 0.5260	0.4978 0.5033 0.0000
104 105 106	0.0000 0.5286 0.5231	0.0000 0.5001 0.4977	0.7061 0.6859 0.7085	0.6832 0.6593 0.6882	0.5390 0.8220 0.8468	0.7231 0.5470 0.5565	0.4981 0.7497 0.7046	0.4982 0.8069 0.7409	0.8610 0.9655 0.9681	229 230 231	0.5147 0.5054 0.0000	0.0000 0.5010 0.0000	0.7213 0.7269 0.7160	0.7072 0.7133 0.7290	0.5011 0.5875 0.7154	0.7301 0.7111 0.7551	0.4980 0.6822 0.4994	0.5260 0.6907 0.6581	0.0000 0.4995 0.9310
106 107 108	0.5231 0.5335 0.0000	0.4977 0.5038 0.0000	0.7085 0.6795 0.0000	0.6882 0.6155 0.0000	0.8468 0.5549 0.0000	0.5565 0.5192 0.0000	0.7046 0.5145 0.0000	0.7409 0.5288 0.0000	0.9681 0.5058 0.0000	231 232 233	0.0000 0.0000 0.5024	0.0000	0.7160 0.7133 0.7337	0.7290 0.7251 0.7333	0.7154 0.7592 0.5182	0.7505 0.7792	0.4994 0.7170 0.5347	0.6581 0.6658 0.5577	0.9310 0.0000 0.5005
108 109 110	0.0000 0.5062 0.5099	0.5054 0.5090	0.6895 0.7094	0.0000 0.6867 0.7159	0.7859 0.5050	0.0000 0.6265 0.6312	0.0000 0.7226 0.4987	0.0000 0.7168 0.6743	0.0000 0.9665 0.9391	233 234 235	0.5024 0.5080 0.5005	0.0000	0.7337 0.7019 0.7172	0.7333 0.6937 0.7184	0.5182 0.5012 0.5227	0.7792 0.7766 0.7697	0.5347 0.4978 0.6249	0.5577 0.5016 0.5672	0.5005 0.5068 0.5098
111	0.5099	0.5090	0.7101	0.7097	0.7282	0.6331	0.7640	0.6756	0.9379	236 237	0.5005	0.0000	0.7364	0.7007	0.5497	0.7745	0.5127	0.5008	0.7674
112 113	0.4999 0.5050 0.5022	0.5936	0.7217 0.7315 0.7461	0.6995 0.7454	0.6742 0.5061 0.5070	0.5269 0.5119 0.5384	0.7646 0.5667 0.5370	0.7467 0.5024 0.5074	0.9162 0.5083 0.7173	238	0.4956	0.0000	0.7052 0.7416 0.7148	0.7152 0.6973	0.8182 0.6898	0.7686 0.7474	0.7899 0.7629 0.5643	0.8372 0.7877 0.6187	0.9733 0.9080 0.5019
114 115 116	0.5022 0.5022 0.4993	0.0000	0.7461 0.7263 0.7259	0.7169 0.7085 0.6732	0.5070 0.5109 0.5164	0.5384 0.5308	0.5370 0.5479 0.7695	0.5074 0.5051 0.5528	0.7173 0.5154 0.5095	239 240 241	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.7148 0.7103 0.7020	0.6854 0.6836 0.6823	0.5110 0.6806 0.7354	0.5176 0.5177 0.5163	0.5643 0.5471 0.7335	0.6187 0.5432 0.7336	0.5019 0.5017 0.9865
116 117 118	0.4993 0.4993 0.4993	0.0000 0.0000 0.0000	0.7259 0.6718 0.6799	0.6732 0.7250 0.7571	0.5164 0.5250 0.5032	0.5550 0.5277 0.5219	0.7695 0.6666 0.7353	0.5528 0.5145 0.5512	0.5095 0.7904 0.7907	241 242 243	0.5000 0.5007 0.5013	0.4999 0.5005	0.7094 0.7156	0.6823 0.7128 0.7025	0.7354 0.7694 0.5273	0.5106 0.5148	0.7335 0.6592 0.5336	0.7336 0.6922 0.6308	0.9865 0.9310 0.7835
118 119 120	0.4993 0.5281 0.5345	0.0000 0.0000 0.5024	0.6799 0.7465 0.7493	0.7571 0.7278 0.7497	0.5032 0.7754 0.6893	0.5219 0.8173 0.8161	0.7353 0.7198 0.6758	0.5512 0.7218 0.6653	0.7907 0.9395 0.8639	243 244 245	0.5013 0.4997 0.4996	0.5005 0.4999 0.4998	0.7156 0.7120 0.7110	0.7025 0.7038 0.7004	0.52/3 0.6882 0.7415	0.5148 0.5442 0.5442	0.5336 0.6460 0.7065	0.6308 0.6839 0.7668	0.7835 0.9308 0.9329
120 121 122	0.5345 0.0000 0.0000	0.5024 0.0000 0.0000	0.7493 0.7132 0.7267	0.7497 0.6880 0.7234	0.6893 0.7175 0.5546	0.8161 0.6882 0.6904	0.6758 0.4994 0.4987	0.5653 0.5225 0.5172	0.8639 0.8597 0.8608	245 246 247	0.4996 0.5020 0.5136	0.4998 0.5021 0.5005	0.7110 0.7100 0.7151	0.7004 0.7036 0.7017	0.7415 0.7148 0.6305	0.5442 0.5842 0.5791	0.7065 0.6751 0.4978	0.7668 0.7928 0.5636	0.9329 0.9334 0.8398
122 123 124	0.5016 0.0000	0.5021 0.0000	0.7267 0.7183 0.7249	0.6862 0.6830	0.8447 0.7392	0.6904 0.5053 0.6934	0.4987 0.8087 0.6627	0.8368 0.6565	0.4996 0.9144	247 248 249	0.0000	0.0000	0.6327 0.6913	0.7001 0.6945	0.5035 0.5666	0.5022 0.0000	0.4978 0.5031 0.5026	0.5029 0.5032	0.5100 0.5101
125	0.0000	0.0000	0.6990	0.7146	0.7864	0.6948	0.6706	0.6363	0.8634	250	0.0000	0.0000	0.6596	0.6845	0.5077	0.0000	0.5022	0.5067	0.5068

TABLE XXI The test V_PR of time series anomaly detection in UCR 250 sub-datasets. The best results are in bold.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	AT	TS2Vec	TimesNet	GPT4TS	DCdetector
1 2	0.0273	0.0256 0.0255	0.7813 0.7815	0.7726 0.7852	0.6497 0.4635	0.7001 0.2439	0.5508 0.0061	0.5705 0.0277	0.8483 0.7398	126	0.0000	0.0000 0.0140	0.4773 0.7012	0.6601 0.2440	0.3739 0.0153	0.5440 0.0000	0.0047 0.0129	0.3714 0.0211	0.6299
3 4	0.0271	0.0255	0.7879 0.3121	0.7855	0.4745	0.6993 0.5818	0.4635 0.6415	0.4169	0.7411 0.8369	128 129	0.0193	0.0140	0.5770 0.3330	0.5093	0.5714 0.2540	0.0000	0.5308 0.1242	0.6264 0.2800	0.8620 0.5949
5	0.0000	0.0000	0.6472 0.7866	0.6370 0.8230	0.0131	0.0341	0.0364 0.0199	0.0113 0.0421	0.0324 0.0698	130	0.0230	0.0123 0.0140	0.4936 0.3378	0.6705 0.5814	0.4123 0.4359	0.0000	0.3017 0.1127	0.4828 0.5106	0.7613 0.7677
7 8	0.0000 0.0106	0.0000	0.6491 0.2359	0.8454 0.7038	0.0861 0.1597	0.0199 0.6167	0.0793 0.6176	0.0329 0.2405	0.0733 0.0697	132 133	0.0000	0.0000 0.0276	0.6366 0.6734	0.5472 0.6238	0.1917 0.0310	0.0000	0.0275 0.1050	0.0573 0.1781	0.6069 0.0602
9 10	0.0209 0.0300	0.0000	0.5402 0.7876	0.2690 0.8034	0.1202 0.0471	0.0711 0.0199	0.1328 0.5816	0.0888	0.6862 0.6484	134 135	0.0000	0.0000	0.5280 0.5959	0.5081 0.4717	0.5866 0.0952	0.0436	0.5001 0.0453	0.4642	0.8464 0.0258
11 12	0.0577	0.0086 0.0114	0.8126 0.7541	0.7736 0.7888	0.6101 0.4444	0.8601 0.8436	0.6053 0.4245	0.5962 0.4120	0.8348 0.6773	136 137	0.0000	0.0000	0.5878 0.3111	0.4717 0.4074	0.4727 0.4516	0.0000	0.2935 0.1683	0.4439 0.4153	0.7948 0.7933
13 14	0.0000	0.0000	0.7630 0.7453	0.7508 0.8015	0.2786 0.2861	0.2531 0.7566	0.0065 0.0045	0.0916 0.0632	0.6657 0.6300	138 139	0.0000	0.0098	0.7168 0.5491	0.5020 0.6261	0.0353 0.6071	0.0000	0.0470 0.5704	0.1321 0.5189	0.3357 0.8489
15 16	0.0038	0.0146	0.7759 0.5979	0.7763 0.6433	0.3742 0.5343	0.0150 0.4948	0.4602 0.4256	0.4210 0.4151	0.0017	140	0.0000	0.9526 0.0000	0.3666 0.3647	0.6764 0.5582	0.7067	0.0000	0.6667 0.5836	0.6863 0.7410	0.9139 0.8857
17	0.0000	0.0000	0.5994	0.5808	0.4081	0.5487	0.3569	0.3612	0.5847	142	0.0000	0.0000	0.5975	0.5589	0.6874	0.0000	0.4633	0.4349	0.8263
18 19	0.0000	0.0000	0.5862 0.5602	0.6455	0.0662	0.5411	0.0045	0.3656 0.0211	0.6488 0.0267	143 144	0.0000	0.0088	0.4662 0.6186	0.6421	0.5488 0.5212	0.0811	0.1607	0.0323	0.0226 0.0261
20 21	0.0417	0.0000	0.6213 0.3178	0.6878	0.6032 0.1289	0.0465	0.5214	0.6195 0.2255	0.8698 0.5811	145 146	0.0175	0.0017	0.6723 0.7017	0.6975 0.6826	0.3945 0.1987	0.5196 0.1070	0.3857 0.0560	0.4028 0.1691	0.0116
22 23	0.0234 0.0124	0.0062 0.0000	0.4812 0.5683	0.5839 0.6974	0.4961 0.4322	0.0000	0.3759 0.1814	0.4667 0.5157	0.7637 0.7786	147 148	0.5246 0.0157	0.0017 0.0018	0.6777 0.5678	0.7181 0.4191	0.1454 0.2682	0.5503 0.0568	0.3539 0.1920	0.1611 0.2492	0.0087 0.6567
24 25	0.0097 0.0301	0.0150 0.0139	0.7383 0.7170	0.6083 0.5122	0.3176 0.0214	0.0000 0.0303	0.0203 0.1362	0.0463 0.1561	0.0665 0.0594	149 150	0.0094 0.0094	0.0019 0.0019	0.3774 0.4730	0.4309 0.5262	0.2719 0.5458	0.0948 0.1217	0.3929 0.0088	0.4463 0.0081	0.6528 0.0070
26 27	0.0151 0.3464	0.0156 0.0422	0.6351 0.6454	0.5106 0.4641	0.5635 0.0228	0.0305	0.4967 0.0208	0.4597 0.0365	0.0833 0.0431	151 152	0.1161 0.0094	0.1512 0.0000	0.7284 0.6007	0.6479 0.4458	0.5877 0.5568	0.5673 0.0531	0.6353 0.6446	0.6118 0.0140	0.7439 0.0110
28 29	0.0000	0.0091 0.0104	0.5376 0.7111	0.6527 0.6271	0.5912 0.4421	0.8116 0.0428	0.3220 0.1692	0.4701 0.3913	0.8026 0.7848	153 154	0.0123	0.0000	0.6238 0.7326	0.5223 0.4182	0.6118 0.2554	0.0238 0.0538	0.6651 0.1267	0.6056 0.0725	0.8790 0.0061
30 31	0.0182 0.0462	0.0000 0.0217	0.5690 0.5205	0.2334 0.3703	0.0150 0.6431	0.0000 0.0467	0.0647 0.5093	0.1184 0.5103	0.2992 0.8514	155 156	0.0129 0.0055	0.0000 0.4017	0.2952 0.7191	0.4587 0.5539	0.5299 0.3691	0.0296 0.0000	0.5947 0.1912	0.1714 0.1293	0.6967 0.7402
32 33	0.0076 0.0000	0.6274 0.0000	0.6623 0.5909	0.4388 0.6976	0.7078 0.7025	0.0000	0.7369 0.5477	0.6913 0.7219	0.9233 0.8583	157 158	0.0054	0.0000	0.6479 0.5711	0.6338 0.6223	0.0099 0.3580	0.0000	0.0136 0.1700	0.0326 0.2518	0.0287 0.0320
34 35	0.0000	0.0000	0.5751 0.6601	0.3524 0.7157	0.5077 0.5822	0.0000	0.4431 0.2977	0.4416 0.0315	0.8145 0.7739	159 160	0.0054	0.0000 0.5919	0.7807 0.4961	0.2971 0.5326	0.2315 0.3450	0.0000	0.1732 0.5147	0.0834 0.2845	0.0229 0.7426
36 37	0.0000 0.0328	0.0192 0.0052	0.3614 0.6726	0.6418 0.7041	0.4650 0.3871	0.0000 0.5448	0.1002 0.3844	0.1099 0.4024	0.0261 0.4407	161 162	0.0224 0.0401	0.0000	0.6765 0.6378	0.6388 0.6361	0.6915 0.1336	0.4510 0.6775	0.5626 0.6105	0.5870 0.4326	0.0329 0.0000
38 39	0.0234 0.0157	0.0000 0.0017	0.6742 0.7094	0.2701 0.6587	0.2952 0.1784	0.5133 0.4370	0.0266 0.3552	0.1199 0.1598	0.0000 0.0089	163 164	0.0000	0.0000	0.6795 0.5995	0.5917 0.2792	0.3979 0.2026	0.6462 0.1669	0.3490 0.0027	0.3589 0.0233	0.0098 0.5424
40 41	0.0224 0.0173	0.0036 0.0019	0.5734 0.5496	0.5605 0.5190	0.3700 0.2445	0.0590 0.1371	0.1927 0.3735	0.2411 0.4451	0.6579 0.6392	165 166	0.0000	0.0000	0.6671 0.6825	0.3404 0.3211	0.0883 0.1551	0.4024 0.6578	0.0028 0.0065	0.0030 0.3369	0.0038 0.4916
42 43	0.0173 0.1263	0.0038 0.1402	0.3846 0.6661	0.4157 0.7150	0.5440 0.5358	0.0263 0.5715	0.0089 0.6272	0.4195 0.6006	0.7641 0.7391	167 168	0.0305 0.0285	0.0336 0.0420	0.6671 0.6534	0.4897 0.4342	0.5891 0.5237	0.0048 0.2981	0.4573 0.4862	0.5360 0.4852	0.7502 0.7356
44 45	0.0085 0.0126	0.0000	0.6202 0.5971	0.5916 0.6560	0.6086 0.6485	0.1123 0.0265	0.6557 0.6485	0.5630 0.6143	0.0110 0.8704	169 170	0.0218 0.0126	0.0228	0.5887 0.6079	0.6140 0.5778	0.6799 0.1536	0.2638 0.4195	0.6570 0.0582	0.6630 0.2261	0.8457 0.0090
46 47	0.0104	0.0000	0.2802 0.5894	0.6768 0.6997	0.1878 0.5636	0.0600 0.0506	0.1051 0.5844	0.0673 0.1706	0.0184 0.0279	171 172	0.0147 0.0119	0.0077 0.0070	0.5802 0.5824	0.4079 0.5893	0.6871 0.7537	0.0885 0.5537	0.5643 0.6951	0.6079 0.7369	0.8445 0.8802
48 49	0.0000	0.0000	0.7189 0.6082	0.4202 0.6582	0.4925 0.0145	0.0000	0.1610 0.0084	0.1500 0.0324	0.7262 0.0306	173 174	0.0700 0.0743	0.0061 0.0068	0.5151 0.5758	0.6962 0.6447	0.0594 0.3913	0.0061 0.0159	0.0301 0.4306	0.0503 0.0154	0.4649 0.4576
50 51	0.0058 0.0000	0.0000	0.7229 0.3600	0.5851 0.4689	0.1002 0.2194	0.0000	0.1584 0.1527	0.1806 0.0825	0.7402 0.0242	175 176	0.0914	0.0089 0.0049	0.2623 0.3132	0.6725 0.3202	0.3667 0.2120	0.4554 0.0358	0.1970 0.0442	0.1735 0.0276	0.0491 0.5818
52 53	0.0167 0.0224	0.0110 0.0085	0.6582 0.3398	0.6691 0.7761	0.3494	0.0000 0.4708	0.4166 0.0354	0.2481	0.7315 0.8722	177 178	0.0696	0.2991 0.0000	0.2400 0.6241	0.2747 0.5395	0.0163 0.4819	0.0210 0.3746	0.2832 0.4779	0.0248 0.4892	0.0082 0.0098
54 55	0.0401	0.0000	0.6316 0.6063	0.6557 0.3917	0.2871	0.6569 0.6508	0.6195 0.3501	0.4388 0.3564	0.0000 0.0095	179 180	0.0013	0.0000 0.0037	0.6576 0.4858	0.4939 0.2590	0.5629 0.5010	0.3711 0.1875	0.5301 0.0046	0.5304 0.3113	0.0000
56 57	0.0000	0.0000	0.6869 0.6384	0.4956 0.5828	0.0908	0.1689	0.0027 0.0028	0.0233 0.0030	0.5495 0.0030	181 182	0.0260	0.0031	0.5464 0.4312	0.6410 0.4083	0.6018 0.6702	0.1877 0.4288	0.5166 0.5469	0.5714 0.5463	0.8123 0.8051
58 59	0.0000 0.0167	0.0000	0.6122 0.6295	0.2719 0.5636	0.3845	0.6892	0.0026 0.4573	0.3342 0.5282	0.4909 0.0050	183 184	0.0000	0.0000 0.0000	0.5355 0.4830	0.5445 0.5678	0.5987 0.5877	0.4314 0.1666	0.6316 0.5523	0.6026 0.5747	0.8380 0.8082
60 61	0.0091	0.0076 0.0059	0.6419 0.5862	0.5704 0.4621	0.5138 0.7073	0.1982 0.0976	0.4957 0.6434	0.4808 0.6670	0.7600 0.8497	185 186	0.0000	0.0000	0.7716 0.6887	0.4236 0.2610	0.0235 0.3072	0.0012	0.1084 0.0154	0.0575	0.0036 0.5336
62 63	0.0068	0.0101	0.6664 0.5740	0.5753 0.3966	0.1908 0.6858	0.2634 0.0181	0.0564 0.5642	0.2114 0.6210	0.0113 0.8582	187 188	0.0000	0.0000 0.0012	0.0000 0.7446	0.0000 0.5801	0.0000	0.0000 0.0036	0.0000 0.0002	0.0000 0.0002	0.0000 0.0042
64 65	0.0075	0.7112 0.0000	0.6853 0.6512	0.5836 0.3340	0.7048	0.0820	0.6892	0.7321 0.0573	0.8843 0.0238	189 190	0.0000	0.0012 0.0013 0.0000	0.6107 0.2801	0.5119 0.5390	0.0023 0.0008	0.0017 0.0024	0.0002 0.0003	0.0002 0.0005	0.0090 0.0116
66 67	0.0597 0.3647	0.0068 0.0574	0.6579 0.7352	0.5407 0.5453	0.2757 0.5294	0.0001	0.3221 0.2695	0.0373 0.0131 0.1641	0.5085 0.0300	191 192	0.0000	0.0012 0.0000	0.2772 0.5954	0.5078 0.6805	0.2017 0.3685	0.3039 0.6691	0.4013 0.4531	0.4102 0.4766	0.4275 0.5625
68 69	0.0737	0.0289 0.2944	0.5049 0.3066	0.5631 0.7244	0.2314 0.0099	0.0164 0.0761	0.0403 0.2344	0.0275	0.0160 0.0448	193 194	0.0244	0.0141 0.0004	0.5866 0.6307	0.5436 0.6611	0.4020 0.3862	0.5412 0.2213	0.3536 0.3957	0.3717 0.4041	0.0000 0.0060
70	0.0000	0.0000	0.6812	0.5451	0.4328 0.5595	0.3775	0.4746 0.5248	0.4926	0.6767	195	0.0007 0.0110 0.0044	0.0000	0.5819	0.6183	0.5917 0.6919	0.4950	0.6242	0.6070	0.7547
71 72	0.0013 0.0740 0.0164	0.0000	0.5855 0.4373	0.4842	0.4178	0.3711 0.1909	0.0047	0.5304	0.0000	196 197 198	0.0000	0.0035 0.0000 0.0000	0.6216 0.7182	0.5883	0.1074	0.4434 0.0268 0.0316	0.5049 0.2486	0.5462	0.0000
73 74	0.0068	0.0023	0.4881 0.4623 0.4184	0.4325 0.4329 0.5428	0.5416 0.7204	0.1746 0.4248	0.5367 0.5571	0.5979	0.8317	199	0.0000	0.0000	0.4582 0.6149	0.5971 0.6015	0.7039	0.0316	0.6370	0.6837 0.4193 0.0435	0.8056 0.0030
75 76	0.0011	0.0000	0.5216	0.4857	0.7413	0.4316	0.6233	0.5962 0.5610	0.8351 0.7895	200	0.0000	0.0000	0.7245 0.7075	0.7133	0.0075	0.0000	0.0889	0.0087	0.0102 0.0150
77 78	0.0004	0.0000	0.7740 0.5494	0.4593 0.6711	0.0223	0.0039	0.0909 0.0102	0.0904	0.0077 0.5330	202 203	0.0000	0.0000 0.0000	0.5167 0.0000	0.5049	0.0214	0.0000	0.0805	0.0250 0.0000	0.0095 0.0000
79 80	0.0000	0.0000	0.0000 0.6692	0.0000	0.0000	0.0000	0.0000 0.0002 0.0002	0.0000	0.0000 0.0067	204 205	0.0000	0.0000	0.3905 0.5226	0.6075 0.5713	0.0935 0.1079	0.0000	0.5813 0.0267	0.1017 0.0841	0.0135 0.5063
81 82	0.0008	0.0005	0.3560 0.6658	0.6276	0.0016	0.0083	0.0003	0.0003	0.0140 0.0054	206	0.0000	0.0000	0.5849 0.6089	0.6641	0.1395 0.1527	0.0000 0.4819	0.4126 0.2874	0.0694	0.5274 0.4355
83 84	0.0016	0.0026	0.5239 0.6430	0.3051 0.6840	0.1226 0.1862	0.0089 0.6703	0.4042 0.4545	0.4178 0.4752	0.0068 0.5773	208 209	0.0000	0.0000	0.5278 0.5622	0.3813 0.5309	0.2191 0.5296	0.7960 0.3583	0.1799 0.5737	0.0626 0.5814	0.3954 0.0068
85 86	0.0304	0.0141	0.6154 0.3044	0.5916	0.3861	0.4482 0.2542	0.3400 0.3862	0.3693 0.4006	0.0000	210	0.0047	0.0005	0.3940 0.5911	0.5299 0.6362	0.0610 0.1481	0.0326 0.3731	0.0378	0.1349	0.4552 0.0060
87 88	0.0130	0.0000	0.6461 0.4354	0.5980	0.5619 0.5814	0.4950 0.4454	0.6356	0.5956	0.7565	212 213 214	0.0094	0.0000	0.3745 0.5929	0.7120 0.3856	0.0128	0.0569 0.1718	0.0073	0.0091 0.3859	0.0000 0.5875
89 90	0.0000	0.0000	0.4646 0.6285	0.6245	0.1116	0.0091	0.2605	0.1221	0.0030 0.8162	214 215	0.0000	0.0000	0.6440 0.6433	0.5223	0.4057	0.1459 0.1485	0.3652 0.3534	0.3527	0.6402 0.6340
91 92	0.0000	0.0000	0.3206 0.7097	0.6406	0.4318	0.0132	0.3754 0.0883	0.4314	0.0046	216 217	0.0023	0.0000	0.6423 0.5291	0.6202	0.4516 0.3780	0.1571 0.0623	0.3547	0.3527 0.3534	0.6378 0.6435
93 94	0.0275	0.0257	0.6245 0.6905	0.4008	0.6520	0.2637	0.5939	0.5686	0.8451 0.8317	218 219	0.0004	0.0000	0.5288 0.3122	0.4690	0.4327	0.1524	0.3545 0.2180	0.3541	0.6350 0.0006
95 96	0.0339	0.0000	0.5113 0.5944	0.6442	0.1115 0.5570	0.6272 0.4958	0.6573	0.2462	0.6973 0.7273	220 221	0.0011	0.0109	0.4629 0.6038	0.6075 0.5762	0.5267	0.2114	0.4245	0.4325	0.6288 0.7253
97 98	0.0271 0.0275	0.0198 0.0456	0.5500 0.3968	0.7110 0.5360	0.2147 0.0497	0.0921	0.1283 0.0535	0.2551 0.0326	0.0208 0.0193	222 223	0.0000 0.0774	0.0000 0.0154	0.3811 0.5181	0.4321 0.4036	0.5638 0.5028	0.4701 0.3499	0.4511 0.3660	0.4165 0.3827	0.6018 0.6540
99 100	0.0139 0.0261	0.0000 0.0052	0.5904 0.7074	0.6160 0.6917	0.5462 0.3815	0.3527 0.5670	0.4670 0.3832	0.4400 0.4020	0.0557 0.0038	224 225	0.0000	0.0000 0.0098	0.5661 0.5652	0.5464 0.6526	0.4738 0.3714	0.7224 0.7007	0.4207 0.3649	0.4768 0.3602	0.5070 0.5791
101 102	0.0143 0.1210	0.0036 0.1558	0.4510 0.4687	0.3146 0.6554	0.3904 0.5775	0.0926 0.5682	0.1959 0.6260	0.1053 0.5982	0.0048 0.0119	226 227	0.0034 0.0018	0.0000	0.6065 0.2949	0.5241 0.6101	0.4430 0.0310	0.6792 0.2720	0.5145 0.0069	0.5206 0.0422	0.6736 0.0021
103 104	0.0000	0.0000	0.6995 0.6040	0.4167 0.6292	0.1015 0.0873	0.0000 0.4283	0.4877 0.0028	0.2570 0.0030	0.0441 0.5495	228 229	0.0018 0.5285	0.0000	0.3376 0.6665	0.6173 0.6647	0.0528 0.0054	0.5990 0.7291	0.0010 0.0013	0.0598 0.0366	0.0082 0.0000
105 106	0.0675 0.0579	0.0157 0.0099	0.5780 0.4318	0.4551 0.5759	0.6912 0.7122	0.2076 0.2170	0.6105 0.5624	0.6710 0.6003	0.8508 0.8525	230 231	0.0135 0.0000	0.0049 0.0000	0.6531 0.4756	0.5974 0.4863	0.1713 0.4453	0.5945 0.3636	0.3135 0.0080	0.3255 0.3658	0.0049 0.6484
107 108	0.0734 0.0000	0.0179 0.0000	0.4596 0.0000	0.4973 0.0000	0.2534 0.0000	0.0479 0.0000	0.0972 0.0000	0.1517 0.0000	0.0337 0.0000	232 233	0.0000 0.0049	0.0000	0.4868 0.7700	0.5879 0.7571	0.4975 0.0221	0.5089 0.3750	0.4291 0.0395	0.3725 0.0639	0.0000 0.0054
109 110	0.0271 0.0270	0.0257 0.0256	0.4191 0.5699	0.5238 0.6464	0.6493 0.0275	0.2654 0.2483	0.5829 0.0074	0.5707 0.4169	0.8512 0.7342	234 235	0.0160 0.0011	0.0000	0.7700 0.2847	0.4954 0.5009	0.0044 0.0268	0.7995 0.3182	0.0006 0.1347	0.0047 0.0742	0.0107 0.0139
111 112	0.0270 0.0249	0.0256 0.2143	0.5356 0.6274	0.5819 0.4655	0.4830 0.5671	0.3692 0.2122	0.5418 0.6755	0.4167 0.6448	0.7441 0.8377	236 237	0.0016 0.0017	0.0000	0.4653 0.5262	0.6051 0.5524	0.0665 0.6603	0.6595 0.5696	0.0193 0.6241	0.0049 0.6735	0.3210 0.8027
113 114	0.0104 0.0104	0.0000	0.6778 0.6840	0.6635 0.4460	0.0238	0.0237	0.1554 0.1651	0.0116 0.0416	0.0360 0.5059	238 239	0.0039	0.0000	0.5791 0.5417	0.6193 0.3306	0.3149	0.4983 0.0344	0.4049	0.4368 0.1258	0.5887 0.0043
115 116	0.0104 0.0104	0.0000	0.7425 0.7518	0.3357 0.6480	0.0517 0.1066	0.0632 0.5416	0.1784 0.6586	0.0324 0.2672	0.0729 0.0559	240 241	0.0000	0.0000	0.2785 0.5394	0.4603 0.4859	0.1933 0.5700	0.0345 0.0642	0.0526 0.4010	0.0483	0.0036 0.7262
117 118	0.0104 0.0104	0.0000	0.5317 0.4953	0.5994 0.5743	0.1450 0.0227	0.2219 0.0529	0.5087 0.6181	0.0964 0.2573	0.6862 0.6991	242 243	0.0030 0.0030	0.0026 0.0030	0.6499 0.6793	0.6467 0.6971	0.3601	0.0223	0.2497 0.0427	0.2816 0.1488	0.5749 0.3165
119 120	0.0670 0.1276	0.0000	0.6267 0.6841	0.5876 0.4489	0.6442	0.7014 0.7084	0.5821	0.5939 0.4138	0.8259 0.6929	244	0.0007	0.0036 0.0025 0.0026	0.5479 0.6306	0.4421 0.6189	0.2636	0.0292 0.0815 0.4231	0.2247	0.2632	0.5229 0.5251
121 122	0.0000	0.0000	0.7108 0.6611	0.6313 0.3221	0.4758 0.1498	0.2531	0.0067 0.0047	0.0992 0.0634	0.6205 0.6236	246 247	0.0057 0.0292	0.0026 0.7302 0.0105	0.6135 0.5038	0.6214 0.2710	0.3007 0.1577	0.4842 0.1327	0.2520 0.0005	0.3878 0.0804	0.5346 0.3894
123 124	0.0064 0.0000	0.0000	0.5776 0.6469	0.5643 0.4856	0.4531 0.5159	0.1828 0.4956	0.4145 0.4244	0.4522 0.4221	0.0036 0.7277	248 249	0.0000	0.0000	0.2934 0.6833	0.7297 0.5131	0.0151 0.1973	0.0053 0.0000	0.0003 0.0205 0.0183	0.0135 0.0202	0.0394 0.0545
125	0.0000	0.0000	0.7221	0.5817	0.5102	0.5546	0.3610	0.3655	0.5905	250	0.0000	0.0000	0.4372	0.6965	0.0238	0.0000	0.0087	0.0254	0.0401

TABLE XXII THE TEST F1-PA-10 OF TIME SERIES ANOMALY DETECTION IN UCR 250 SUB-DATASETS. THE BEST RESULTS ARE IN BOLD.

1.	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector
1.00												0.0789		
1.00	3	0.3396	0.1791	0.1233	0.1153	0.1774	0.0816	128	0.3641	0.3405	0.3447	0.4189	0.3845	0.0361
1962	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	130	0.4591	0.2391	0.2220	0.2810	0.3220	0.3089
1.0	7	0.0726	0.1408	0.0734	0.1360	0.0520	0.0000	132	0.0534	0.0405	0.0929	0.0942	0.0284	0.2765
1.0 1.0			0.8889 0.0757										0.8182 0.4398	0.0000 0.4935
14					0.2177 0.2195									
14		0.1101			0.1017	0.1364				0.2494	0.3208	0.3333	0.2500	0.0173
1.0 1.0	14	0.0367	0.0304	0.0619	0.1036	0.0523	0.0182	139	0.4005	0.2536	0.4051	0.3575	0.2768	0.0495
Section Column	16	0.2043	0.2201	0.1653	0.1245	0.1478	0.1106	141	0.5144	0.5954	0.4533	0.4802	0.6939	0.0598
20.000 0.3590 0.3590 0.3444	18	0.0282	0.0281	0.0630	0.0957	0.0370	0.0350	143	0.1190	0.0990	0.3049	0.2742	0.2337	0.3556
2.20														
1.6 1.6														
2.5	23	0.7939	0.3377	0.2577	0.2755	0.8560	0.0272	148	0.1079	0.1051	0.0775	0.1025	0.0782	0.0874
2.00 0.0019	25	0.2477	0.0421	0.0871	0.1337	0.4286	0.0000	150	0.0406	0.0666	0.1481	0.1735	0.0910	0.0221
2-16	27	0.0169	0.0047	0.0232	0.0154	0.0062	0.0000	152	0.1151	0.0990	0.2565	0.2677	0.0946	0.2603
0.0000														
33														
Quest Q														
1.00	34	0.9451	0.2876	0.2958	0.3319	0.3804	0.0231	159	0.0043	0.0084	0.1235	0.0115	0.0183	0.0105
March Marc	36	0.1217	0.0782	0.3886	0.3368	0.1114	0.0469	161	0.3343	0.2781	0.4425	0.4334	0.2967	0.4695
A	38	0.0584	0.0566	0.0459	0.0515	0.0505	0.0000	163	0.4587	0.2545	0.1038	0.0920	0.2836	0.0095
24 0.1396 0.0396 0.0364 0.1318 0.1317 0.1892 0.1786 1.079 0.1239 0.1239 0.1233 0.1135 0.1324 0.1324 0.1327 0.1325	40	0.1286	0.1048	0.0840	0.0945	0.0724	0.0097	165	0.0276	0.0238	0.0539	0.0512	0.0355	0.0094
14	42	0.0390	0.0684	0.1318	0.1407	0.0892	0.1718		0.1439	0.1027	0.1009	0.1108	0.1631	0.1854
1.6	43	0.1347	0.4451	0.1628	0.2122	0.3995	0.2235	168	0.2240	0.1185	0.1285	0.1233	0.1112	0.1322
140 10	45	0.1157	0.2195	0.3357	0.3117	0.1631	0.3543	170	0.9205	0.0598	0.0504	0.0510	0.1561	0.0025
0.0156 0.0079 0.0158 0.0754 0.0166 0.0000 174 0.0155 0.0153 0.0159 0.0750 0.0000 0.00	47	0.0941	0.1177	0.1257	0.1169	0.1330	0.0184	172	0.6135	0.2384	0.2600	0.2934	0.3170	0.0255
1.00055	49	0.0186	0.0070	0.0148	0.0754	0.0116	0.0000	174	0.0135	0.0138	0.0360	0.0780	0.0347	0.1701
53 0.3732 0.3947 0.4583 0.4208 0.2888 0.5946 178 0.0949 0.5809 0.1173 0.1168 0.2564 0.0357	51	0.0055	0.0099	0.0173	0.0097	0.0163	0.0000	176	0.0535	0.0565	0.0692	0.1053	0.0465	0.0817
Section Sect														
50 0.698 0.0855 0.0956 0.0857 0.0825 0.0165 1.81 0.0223 0.1665 0.1729 0.1795 0.1841 0.0203 0.0214 0.0203 0.0214 0.0203 0.0214 0.0203 0.0214 0.0203 0.0214 0.0204 0.0205	54 55													
Section Sect	56	0.0498	0.0855	0.0436	0.0597	0.0825	0.0168	181	0.0623	0.1665	0.1729	0.1995	0.1841	0.0202
60 0.1399 0.1380 0.1189 0.1361 0.1419 0.0149 185 0.0000 0	58	0.0786	0.0769	0.0593	0.0361	0.0340	0.0256	183	0.1154	0.1454	0.2121	0.2219	0.1910	0.3497
Color	60	0.1399	0.1380	0.1189	0.1361	0.1419	0.0149	185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
64 0.5364 0.259 0.2738 0.3902 0.2633 0.3932 189 0.0000 0.0	62	0.0690	0.0616	0.0376	0.0494	0.0564	0.0327	187	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
65 0.0955 0.1367 0.0984 0.0988 0.0986 0.0900 190 0.0000 0.					0.2261 0.3022									
67 0.3584 0.1538 0.0475 0.0796 0.0262 0.0576 0.0000 194 0.0411 0.0505 0.0598 0.0650 0.0399 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 194 0.1514 0.4995 0.0779 0.0861 0.1312 0.0106 0.0000 0.000														
	67	0.3584	0.1538	0.1366	0.1299	0.3205	0.0576		0.2291	0.2281	0.1043	0.0956	0.2079	0.0276
172 0.0238	69	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	194	0.1514	0.4995	0.0779	0.0861	0.1312	0.0106
73	71	0.9238	0.9926	0.1536	0.1548	0.3268	0.0000	196	0.0553	0.0751	0.1372	0.1638	0.1083	0.0000
75	73	0.0878	0.1858	0.1836	0.2005	0.3033	0.0321	198	0.1835	0.1711	0.1806	0.1829	0.2541	0.0989
77														
No.										0.0138 0.0142				
80														
82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0264 0.0264 0.0253 0.0217 0.0315 0.0213 0.0205 0.0199 0.0853 0.0076 0.0213 0.0213 0.0205 0.0199 0.0853 0.0076 0.0213 0.0213 0.0205 0.0199 0.0853 0.0076 0.0213 0.0213 0.0205 0.0199 0.0853 0.0027 0.0213 0.0213 0.0213 0.0205 0.0199 0.0853 0.0027 0.0213 0.0213 0.0213 0.0213 0.0213 0.0213 0.0205 0.0199 0.0853 0.0027 0.0000 0.0005 0.0005 0.0005 0.0000	80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	205	0.0658	0.0256	0.0521	0.0463	0.0186	0.0768
84	82	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	207	0.0086	0.0264	0.0198	0.0200	0.0498	0.0618
86 0.1596 0.4936 0.0830 0.0761 0.1480 0.0111 211 0.1090 0.0720 0.0205 0.0199 0.0853 0.0007 87 0.1235 0.1431 0.1368 0.1381 0.0935 212 0.0127 0.0148 0.0301 0.0446 0.0512 0.0407 0.0428 0.0370 214 0.0138 0.0330 0.0477 0.0496 0.0377 0.0438 0.0377 0.0493 216 0.0357 0.0377 0.0496 0.0377 0.0493 216 0.0419 0.0605 0.0477 0.0496 0.0377 0.0549 90 0.0183 0.1744 0.1757 0.02249 0.0419 0.0605 0.0473 0.0584 0.0421 91 0.0617 0.0645 0.0755 0.0755 0.0584 0.0493 216 0.0449 0.0605 0.0473 0.0584 0.0421 92 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	84	0.2268	0.2227	0.0866	0.0843	0.1992	0.0634	209	0.1017	0.0738	0.0754	0.0999	0.1130	0.0636
87 0.1235 0.1431 0.1369 0.1508 0.1381 0.0935 212 0.0127 0.0148 0.0301 0.0476 0.0091 0.0000 88 0.0771 0.0765 0.1632 0.1681 0.1257 0.0000 213 0.3879 0.0653 0.0360 0.0340 0.0612 0.0691 89 0.1064 0.0512 0.0407 0.0428 0.0954 0.0376 214 0.0138 0.0533 0.0477 0.0496 0.0377 0.0629 90 0.1838 0.1744 0.1729 0.1757 0.2249 0.1346 215 0.0357 0.6879 0.0411 0.0430 0.0232 0.0281 91 0.0617 0.0645 0.0755 0.0755 0.0755 0.0584 0.0493 216 0.0493 0.0650 0.0473 0.0584 0.0474 0.0361 92 0.0000 0.0	86	0.1596	0.4936	0.0830	0.0761	0.1480	0.0111	211	0.1090	0.0720	0.0205	0.0199	0.0853	0.0027
89 0.1064 0.0512 0.0407 0.0428 0.0934 0.0376 214 0.0138 0.0337 0.0496 0.0237 0.0629 90 0.1888 0.1744 0.1729 0.01346 215 0.0357 0.08281 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0814 0.043 216 0.0449 0.0605 0.0445 0.0434 0.0492 93 0.0809 0.2155 0.0875 0.0832 0.1252 218 0.0165 0.0619 0.0496 0.0493 0.0499 0.4515 0.5038 0.3487 0.3210 0.4415 0.4566 219 0.0653 0.0591 0.0222 0.0174 0.0619 94 0.4515 0.5038 0.3487 0.3210 0.4415 0.4566 219 0.06239 0.0672 0.0400 0.0474 0.0892 95 0.5517 0.8571 0.1823 0.2235 0.2235 0.2235 0.2235 0.2235 0.2246 0.1234	88	0.0771	0.0765	0.1632	0.1681	0.1257	0.0000	213	0.3879	0.0653	0.0360	0.0340	0.0612	0.0691
91 0.0617 0.0645 0.0755 0.0755 0.0584 0.0493 216 0.0449 0.0605 0.0473 0.0584 0.0474 0.0361 92 0.0000	89 90		0.0512	0.0407 0.1729	0.0428 0.1757		0.0376	214 215	0.0138 0.0357	0.0533 0.0579	0.0477 0.0411	0.0496	0.0377 0.0232	0.0629
93	91	0.0617	0.0645	0.0755	0.0755	0.0584	0.0493	216	0.0449	0.0605	0.0473	0.0584	0.0474	0.0361
95	93	0.0809	0.2155	0.1879	0.1853	0.3326	0.1252	218	0.0165	0.0619	0.0496	0.0493	0.0691	0.0349
97 0.1765 0.0916 0.1463 0.1863 0.2426 0.1325 222 0.1348 0.0961 0.0540 0.0612 0.0675 0.0137 98 0.0148 0.0046 0.0079 0.0145 0.0048 0.00900 223 0.0474 0.0592 0.0788 0.0805 0.0376 0.0221 99 0.9588 0.3804 0.3638 0.3246 0.5345 0.4777 224 0.0505 0.0453 0.0667 0.0486 0.0561 0.0146 100 0.9709 0.9901 0.0303 0.0360 0.05102 0.06068 225 0.0592 0.0329 0.0567 0.0486 0.0954 101 0.1507 0.1227 0.0971 0.0885 0.0751 0.0692 226 0.5204 0.5629 0.0933 0.0660 0.1913 0.0150 102 0.1349 0.4056 0.2339 0.1921 0.3756 0.0165 227 0.1178 0.1047 0.0447 0.0444 0.0681 0.0108 103 0.1048 1.0000 0.1872 0.1444 0.1167 0.0316 228 0.1064 0.0611 0.0108 0.0887 0.0266 0.0001 104 0.0347 0.0267 0.0461 0.0376 0.0364 0.0088 229 0.1143 0.0692 0.0050 0.0040 0.0187 0.0000 105 0.0266 0.2497 0.2328 0.2244 0.2422 0.0252 230 0.1281 0.1290 0.0665 0.0422 0.1038 0.0027 106 0.3158 0.1999 0.2217 0.2259 0.2402 0.1727 231 0.0568 0.0516 0.0560 0.0402 0.1887 0.0001 108 0.0000 0.	95	0.5517	0.8571	0.1825	0.2735	0.7273	0.3735	220	0.6229	0.0672	0.0400	0.0474	0.0895	0.0540
99	97	0.1765	0.0916	0.1463	0.1863	0.2426	0.1325	222	0.1348	0.0961	0.0540	0.0612	0.0675	0.0137
100	99	0.9598	0.3804	0.3638	0.3246	0.5345	0.4777	224	0.0505	0.0453	0.0697	0.0656	0.0561	0.0146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0303 0.0971			0.0608		0.0592					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102	0.1349	0.4056	0.2339	0.1921	0.3756	0.0165	227		0.1047	0.0437	0.0444	0.0681	0.0108
106	104	0.0347	0.0267	0.0461	0.0576	0.0364	0.0088	229	0.1143	0.0692	0.0050	0.0040	0.0187	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	0.3158	0.1959	0.2217	0.2259	0.2402	0.1727	231	0.0568	0.0514	0.1072	0.0887	0.0482	0.0445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	233	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	0.0271	0.0758	0.1113	0.0964	0.0269	0.0188	235	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
113 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0084 0.0007 114 0.0796 0.0879 0.0732 0.0923 0.0923 0.0933 0.0006 0.0051 0.0021 0.0014 0.0164 0.0006 115 0.0710 0.1360 0.0751 0.1543 0.0544 0.1784 240 0.0000 0.0056 0.0622 0.029 0.0033 0.0658 116 0.4683 0.8276 0.1905 0.2388 0.6154 0.2243 241 0.0000 0.0056 0.0466 0.0496 0.05808 0.0391 117 0.2202 0.0763 0.1765 0.1667 0.1067 0.0923 0.3660 242 0.0211 0.0255 0.0288 0.0311 0.0318 0.0922 118 0.1206 0.1758 0.1996 0.1893 0.1277 0.3692 243 0.0245 0.0087 0.0154 0.0444 0.0602	112	0.3925	0.4635	0.3711	0.3549	0.5348	0.4751	237	0.2322	0.2296	0.1795	0.1772	0.1817	0.1488
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	0.0000	0.0000	0.0000 0.0732	0.0000 0.0923	0.0000 0.0884	0.0000	238	0.0886	0.0955	0.0547	0.0515	0.0684	0.0067 0.0006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115	0.0710	0.1360	0.0751	0.1543	0.0544	0.1784	240	0.0000	0.0003	0.0022	0.0029	0.0033	0.0065
119 0.1974 0.3173 0.2449 0.2310 0.3264 0.1266 244 0.0318 0.0209 0.0275 0.0215 0.0217 0.0508 120 0.0910 0.1476 0.09989 0.1587 0.1591 0.0228 245 0.0525 0.0274 0.0277 0.0200 0.0356 0.0109 121 0.0220 0.0365 0.1046 0.1173 0.0646 0.0169 246 0.0478 0.0972 0.0338 0.0282 0.0500 0.0122 122 0.0136 0.0259 0.0790 0.0704 0.0459 0.0178 247 0.0017 0.0076 0.0101 0.0146 0.0329 123 0.0724 0.0308 0.0260 0.0225 0.2552 0.0042 248 0.0001 0.0364 0.0139 0.0134 0.0020 124 0.1669 0.2382 0.1445 0.1399 0.1210 0.0167 249 0.0471 0.0485 0.1145 0.0547 0.0930	117	0.2202	0.0763	0.1765	0.1067	0.0923	0.3650	242	0.0211	0.0255	0.0288	0.0311	0.0318	0.0092
121 0.0220 0.0365 0.1046 0.1173 0.0646 0.0169 246 0.0478 0.0972 0.0338 0.0282 0.0500 0.0122 122 0.0136 0.0259 0.0790 0.0704 0.0459 0.0178 247 0.00017 0.0076 0.0076 0.0101 0.0146 0.0329 123 0.0724 0.0308 0.0260 0.0225 0.0042 248 0.0000 0.0017 0.0364 0.0139 0.0134 0.0000 124 0.1669 0.2382 0.1445 0.1399 0.1210 0.0167 249 0.0471 0.0485 0.1145 0.0547 0.0930 0.0684	119	0.1974	0.3173	0.2449	0.2310	0.3264	0.1266	244	0.0318	0.0209	0.0275	0.0215	0.0217	0.0508
123 0.0724 0.0308 0.0260 0.0225 0.2552 0.0042 248 0.0000 0.0017 0.0364 0.0139 0.0134 0.0000 0.0169 0.2382 0.1445 0.1399 0.1210 0.0167 249 0.0471 0.0485 0.1145 0.0547 0.0930 0.0684	121	0.0220	0.0365	0.1046	0.1173	0.0646	0.0169	246	0.0478	0.0972	0.0338	0.0282	0.0500	0.0122
	123	0.0724	0.0308	0.0260	0.0225	0.2552	0.0042	248	0.0000	0.0017	0.0364	0.0139	0.0134	0.0000

TABLE XXIII
THE TEST F1-PA-50 OF TIME SERIES ANOMALY DETECTION IN UCR 250 SUB-DATASETS. THE BEST RESULTS ARE IN BOLD.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector
1 2	0.0307 0.0256	0.0616 0.0349	0.0529 0.0250	0.0563 0.0255	0.0676 0.0244	0.0285 0.0252	126 127	0.0139 0.0253	0.0149 0.0156	0.0184 0.0273	0.0168 0.0195	0.0193 0.0340	0.0183 0.0000
3	0.0524 0.1410	0.0333 0.1373	0.0239 0.0962	0.0256 0.0945	0.0290 0.1086	0.0191 0.0552	128 129	0.1124 0.0925	0.1677 0.0572	0.1049 0.0280	0.1033 0.0312	0.1059 0.0833	0.0361 0.0460
5 6	0.0000 0.0812	0.0000 0.0696	0.0000 0.0516	0.0000 0.0755	0.0000 0.0406	0.0000 0.0483	130 131	0.1056 0.1351	0.1297 0.0514	0.0637 0.0574	0.0597 0.0576	0.0579 0.2378	0.0481 0.0583
7 8	0.0345 0.0837	0.0457 0.1538	0.0199 0.0496	0.0323 0.0551	0.0324 0.0870	0.0000 0.0068	132 133	0.0419 0.1298	0.0387 0.0384	0.0210 0.0255	0.0250 0.0252	0.0185 0.2273	0.0976 0.0000
9 10	0.1007 0.0646	0.0389 0.0848	0.0371 0.0381	0.0419 0.0600	0.0343 0.0541	0.0467 0.0408	134 135	0.1763 0.0115	0.1479 0.0039	0.1190 0.0114	0.1067 0.0108	0.0830 0.0041	0.1242 0.0000
11 12	0.0824 0.0508	0.0800 0.0526	0.0586 0.0264	0.0639 0.0263	0.0495 0.0513	0.0466 0.0169	136 137	0.1060 0.1127	0.1136 0.1216	0.0660 0.0663	0.0697 0.0708	0.0550 0.0529	0.0195 0.0173
13 14	0.0276 0.0142	0.0300 0.0256	0.0273 0.0201	0.0275 0.0167	0.0298 0.0221	0.0179 0.0182	138 139	0.0217 0.1528	0.0058 0.2028	0.0513 0.1223	0.0101 0.1151	0.0059 0.1420	0.0870 0.0495
15 16	0.0071 0.0413	0.0129 0.0400	0.0063 0.0305	0.0067 0.0294	0.0138 0.0461	0.0045 0.0200	140 141	0.2065	0.3272 0.1906	0.1906 0.1963	0.2125 0.1635	0.1954 0.1470	0.0606 0.0598
17 18	0.0349 0.0143	0.0409 0.0147	0.0162 0.0172	0.0156 0.0159	0.0901 0.0204	0.0131 0.0331	142 143	0.3456 0.0593	0.1385 0.0683	0.0935 0.0787	0.0914 0.0838	0.0841 0.0905	0.0240 0.0597
19 20	0.0200 0.1181	0.0147 0.1267	0.0255 0.1150	0.0313 0.1104	0.0243 0.1060	0.0000 0.0840	144 145	0.0865 0.1957	0.0620 0.3288	0.0860 0.0426	0.0854 0.0460	0.0740 0.1017	0.3710 0.0058
21 22	0.0884 0.1034	0.0573 0.1220	0.0246 0.0554	0.0253 0.0574	0.0697 0.0723	0.0368 0.0741	146 147	0.0086 0.0833	0.0132 0.1132	0.0118 0.0051	0.0117 0.0101	0.0129 0.0435	0.0000 0.0024
23 24	0.1341 0.0380	0.0496 0.0372	0.0588 0.0313	0.0580 0.0273	0.1780 0.0186	0.0272 0.0533	148 149	0.0257 0.0144	0.0184 0.0339	0.0231 0.0245	0.0198 0.0249	0.0308 0.0203	0.0122 0.0138
25 26	0.1132 0.1804	0.0380 0.1204	0.0303 0.1022	0.0293 0.1042	0.1271 0.0941	0.0000 0.1377	150 151	0.0252 0.0374	0.0343 0.0737	0.0411	0.0404 0.0417	0.0607 0.0837	0.0221 0.0630
27 28	0.0139 0.1066	0.0041	0.0093 0.0725	0.0053	0.0041 0.0879	0.0000 0.0193	152 153	0.0791	0.0622	0.0577 0.0877	0.0606 0.0815	0.0737 0.0971	0.0363 0.0625
29 30	0.1095 0.0219	0.1214 0.0058	0.0703 0.0076	0.0717 0.0066	0.0574 0.0055	0.0359 0.1053	154 155	0.0169 0.0244	0.0188 0.0225	0.0263 0.0235	0.0226 0.0229	0.0230 0.0258	0.0197 0.0244
31 32	0.1549	0.2036 0.2732	0.1278 0.1878	0.1169	0.1155	0.0485 0.0426	156 157	0.2779 0.0126	0.0467	0.0530 0.0058	0.0405	0.0483	0.3094
33 34	0.1995 0.2855	0.1686	0.1798 0.0935	0.1575	0.1427	0.0599	158 159	0.3660	0.9327	0.0443 0.0315	0.0484	0.0504	0.0126
35 36	0.0612	0.0623	0.0790 0.1109	0.0786	0.0830	0.0402	160 161	0.0402	0.0389	0.0531 0.1570	0.0459	0.0664 0.1882	0.0266 0.0620
37 38	0.2500 0.0145	0.3429 0.0159	0.0417 0.0126	0.0163	0.1290	0.0227	162 163	0.0297 0.1351	0.0318	0.0807 0.0219	0.0811	0.1146	0.0000
39 40 41	0.1176 0.0237	0.1224 0.0182 0.0283	0.0117	0.0059	0.0247 0.0289	0.0000 0.0097 0.0104	164 165	0.0100	0.0217	0.0106 0.0127	0.0123	0.0132	0.0175
42 43	0.0144 0.0247 0.0369	0.0283 0.0342 0.0680	0.0234 0.0443 0.0431	0.0219 0.0445 0.0490	0.0213 0.0598 0.0754	0.0104 0.0290 0.0334	166 167 168	0.0143 0.0228 0.0360	0.0131 0.0202 0.0211	0.0233 0.0276 0.0263	0.0085	0.0115 0.0379 0.0355	0.0238 0.0222 0.0180
43 44 45	0.0369 0.0790 0.0736	0.0611	0.0641 0.0800	0.0490 0.0582 0.0841	0.0715	0.0348 0.0490	169 170	0.1447 0.3462	0.0211 0.1016 0.0334	0.0263 0.0554 0.0092	0.0276	0.0592 0.0433	0.0596 0.0025
46 47	0.0175	0.0183	0.0206	0.0367	0.1021	0.0000	171 172	0.0952	0.0746	0.0535	0.0098	0.0573 0.0731	0.0431
48 49	0.0244 0.1891 0.0107	0.0230 0.0474 0.0065	0.0244 0.0456 0.0071	0.0290 0.0506 0.0104	0.0229 0.0388 0.0079	0.0184 0.0387 0.0000	173 174	0.1351 0.0162 0.0131	0.0977 0.0211 0.0135	0.0754 0.0189 0.0171	0.0724 0.0506 0.0183	0.0172 0.0184	0.0255 0.0358 0.0482
50 51	0.1453 0.0028	0.0063 0.1058 0.0040	0.0564 0.0051	0.0104 0.0491 0.0034	0.0750 0.0053	0.0000 0.0258 0.0000	175 176	0.0600 0.0210	0.0476 0.0212	0.0453 0.0255	0.0438 0.0193	0.0184 0.0941 0.0216	0.0000 0.0313
52 53	0.0462 0.1746	0.4636 0.1484	0.0563 0.1658	0.0034 0.0430 0.1601	0.0560 0.1895	0.0207 0.1045	177 178	0.0000 0.0481	0.0000 0.0757	0.0233 0.0000 0.0206	0.0193 0.0000 0.0221	0.0210 0.0000 0.0566	0.0000 0.0077
54 55	0.0297 0.0967	0.0322	0.0695 0.0210	0.0793 0.0191	0.0831 0.0347	0.0000 0.0127	179 180	0.1673 0.0130	0.0757 0.2846 0.0158	0.0266 0.0215	0.0266	0.0366 0.0796 0.0266	0.0000
56 57	0.0096 0.0121	0.0130 0.0126	0.0114 0.0125	0.0119	0.0102 0.0143	0.0168 0.0097	181	0.0411	0.0518 0.0451	0.0462 0.0493	0.0461 0.0504	0.0562 0.0550	0.0202 0.0211
58 59	0.0113 0.0227	0.0126 0.0135 0.0286	0.0104 0.0253	0.0090 0.0240	0.0120 0.0318	0.0256 0.0240	183 184	0.0645 0.0505	0.0608 0.1079	0.0575 0.0313	0.0582	0.0660 0.0645	0.0855 0.0278
60 61	0.0249 0.0781	0.0258 0.0621	0.0268 0.0563	0.0246 0.0266 0.0576	0.0228 0.0611	0.0149 0.0473	185 186	0.0000 0.0100	0.0000 0.0064	0.0000 0.0065	0.0000 0.0065	0.0000 0.0066	0.0000 0.0067
62 63	0.0287 0.0488	0.0320	0.0118 0.0549	0.0115 0.0547	0.0450 0.0552	0.0054 0.0221	187 188	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
64 65	0.0752 0.0170	0.0933 0.0237	0.0723 0.0455	0.0739	0.0741	0.0785	189 190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
66 67	0.0133 0.0511	0.0137	0.0131 0.0341	0.0260 0.0433	0.0147 0.0476	0.0526 0.0576	191 192	0.0035 0.0380	0.0015 0.0583	0.0026 0.0188	0.0024	0.0149	0.0180 0.0157
68 69	0.0223 0.0000	0.0212 0.0000	0.0214 0.0000	0.0185 0.0000	0.0296 0.0000	0.0000 0.0000	193 194	0.0342 0.0360	0.0357 0.0952	0.0186 0.0165	0.0130 0.0156	0.0294 0.0640	0.0000 0.0106
70 71	0.0630 0.1667	0.0748 0.2857	0.0235 0.0289	0.0215 0.0252	0.0525 0.0735	0.0123 0.0000	195 196	0.0192 0.0212	0.0413 0.0440	0.0317 0.0374	0.0324 0.0377	0.0298 0.0357	0.0210 0.0000
72 73	0.0158 0.0488	0.0175 0.0540	0.0217 0.0457	0.0218 0.0435	0.0227 0.0680	0.0000 0.0321	197 198	0.0217 0.0320	0.0104 0.0628	0.0190 0.0397	0.0112 0.0404	0.0179 0.0330	0.0223 0.0243
74 75	0.0335 0.0524	0.0459 0.0576	0.0514 0.0586	0.0496 0.0576	0.0536 0.0615	0.0249 0.0229	199 200	0.0218 0.0000	0.0209 0.0000	0.0157 0.0000	0.0158 0.0000	0.0155 0.0000	0.0134 0.0000
76 77	0.0421 0.0000	0.0780 0.0000	0.0323 0.0000	0.0315 0.0000	0.0325 0.0000	0.0169 0.0000	201 202	0.1290 0.0166	0.0051 0.0073	0.0019 0.0041	0.0032 0.0062	0.0060 0.0025	0.0000 0.0098
78 79	0.0092 0.0000	0.0072 0.0000	0.0086 0.0000	0.0074 0.0000	0.0062 0.0000	0.0171 0.0000	203 204	0.0000 0.1250	0.0000 0.2118	0.0000 0.0083	0.0000 0.0154	0.0000 0.0089	0.0000
80 81	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	205 206	0.0289 0.0158	0.0118 0.0215	0.0126 0.0142	0.0106 0.0142	0.0130 0.0111	0.0154 0.0244
82 83	0.0000 0.0036	0.0000 0.0015	0.0000 0.0025	0.0000 0.0022	0.0000 0.0046	0.0000 0.0005	207 208	0.0051 0.0085	0.0137 0.0087	0.0060 0.0067	0.0200 0.0060	0.0096 0.0062	0.0278 0.0213
84 85	0.0384 0.0339	0.0590 0.0354	0.0136 0.0280	0.0165 0.0129	0.0696 0.0336	0.0175 0.0000	209 210	0.0170 0.0114	0.0155 0.0074	0.0155 0.0045	0.0162 0.0069	0.0192 0.0070	0.0091 0.0218
86 87	0.0359 0.0256	0.0811 0.0429	0.0174 0.0331	0.0160 0.0322	0.0386 0.0340	0.0111 0.0244	211 212	0.0151 0.0054	0.0078 0.0052	0.0045 0.0042	0.0052 0.0476	0.0278 0.0062	0.0027 0.0000
88 89	0.0243 0.0188	0.0407	0.0425 0.0104	0.0394	0.0394	0.0000 0.0279	213 214	0.0701 0.0126	0.0609 0.0130	0.0060 0.0096	0.0070 0.0096	0.0257 0.0120	0.0167 0.0072
90 91	0.0322 0.0208	0.0613	0.0410 0.0173	0.0407	0.0378	0.0173 0.0088	215 216	0.0120	0.0112 0.0556	0.0102	0.0098	0.0088	0.0059
92 93	0.0000	0.0000 0.0595	0.0000 0.0524	0.0000	0.0000	0.0000 0.0306	217 218	0.0062	0.0098	0.0097 0.0105	0.0103	0.0095 0.0097	0.0075
94 95	0.1233	0.1447 0.2022	0.0889 0.0546	0.0936	0.0984	0.1083 0.0467	219 220	0.0653 0.1038	0.0074	0.0034 0.0108	0.0070 0.0103	0.0080	0.0023
96 97	0.0452 0.0907	0.0374	0.0309 0.0269	0.0292	0.0467	0.0161 0.0156	221 222	0.0156 0.0169	0.0200	0.0193 0.0148	0.0194	0.0185	0.0102
98 99	0.0118	0.0040	0.0056 0.0891	0.0064	0.0042	0.0000 0.0741	223 224	0.0183 0.0171	0.0156	0.0192 0.0156	0.0190 0.0156	0.0227	0.0164
100 101	0.2034 0.0260	0.3000	0.0303 0.0231	0.0323	0.1111 0.0272	0.0148 0.0145	225 226	0.0162	0.0211	0.0095 0.0192	0.0096 0.0132	0.0109	0.0122 0.0150
102 103	0.0389	0.0734	0.0369 0.0570	0.0421	0.0803	0.0165 0.0316	227 228	0.0233	0.0217	0.0092 0.0018	0.0086	0.0134	0.0093
104 105	0.0157 0.0632	0.0109 0.0637	0.0124 0.0557	0.0165	0.0154	0.0088	229 230	0.0800	0.0267 0.0171	0.0010 0.0093	0.0009	0.0038	0.0000
106 107	0.0492	0.0668	0.0533 0.0456	0.0542	0.0532	0.0231	231 232	0.0318	0.0336	0.0205 0.0200	0.0214	0.0209 0.0241	0.0189
108 109	0.0000	0.0000 0.0574	0.0000 0.0552	0.0000 0.0584	0.0000	0.0000	233 234 235	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
110 111	0.0267 0.0566	0.0344 0.0524 0.1373	0.0248 0.0255	0.0244	0.0232	0.0188	235 236 237	0.0000	0.0000 0.0014 0.0523	0.0000 0.0019	0.0000 0.0022	0.0000	0.0000 0.0385
112 113	0.1261 0.0000	0.1373	0.0844 0.0000	0.0935 0.0000	0.0927 0.0000	0.0722 0.0000	237 238	0.0504	0.0523 0.0156	0.0410 0.0157	0.0416	0.0398	0.0175
114 115	0.0744 0.0370 0.0865	0.0669 0.0539 0.1622	0.0249 0.0526 0.0452	0.0230 0.0309 0.0506	0.0469 0.0248 0.0976	0.0594 0.0575	239 240 241	0.0000	0.0033 0.0003 0.0056	0.0004 0.0006 0.0103	0.0005 0.0006 0.0102	0.0024 0.0007 0.0205	0.0001 0.0009
116 117 118	0.0865 0.1111 0.0508	0.1622 0.0407 0.0743	0.0452 0.0349 0.0390	0.0506 0.0436 0.0493	0.0976 0.0321 0.0530	0.0480 0.0455 0.0490	241 242 243	0.0000 0.0041 0.0060	0.0056 0.0083 0.0042	0.0103 0.0058 0.0154	0.0102 0.0056 0.0144	0.0205 0.0052 0.0071	0.0055 0.0086
119	0.0508 0.0609 0.0361	0.0743 0.0722 0.0504	0.0390 0.0561 0.0266	0.0493 0.0603 0.0299	0.0530 0.0502 0.0508	0.0490 0.0435 0.0177	243 244 245	0.0060 0.0065 0.0234	0.0042 0.0097 0.0158	0.0154 0.0061 0.0051	0.0144 0.0051 0.0077	0.0071 0.0044 0.0287	0.0059 0.0096 0.0109
120 121 122	0.0361 0.0220 0.0136	0.0504 0.0319 0.0227	0.0266 0.0299 0.0189	0.0299 0.0256 0.0192	0.0308 0.0322 0.0202	0.0177 0.0169 0.0178	245 246 247	0.0234 0.0078 0.0011	0.0158 0.0152 0.0036	0.0051 0.0052 0.0022	0.0077 0.0053 0.0023	0.0287 0.0184 0.0029	0.0109 0.0122 0.0320
122 123 124	0.0136 0.0090 0.0402	0.0227 0.0142 0.0376	0.0189 0.0064 0.0260	0.0192 0.0066 0.0322	0.0202 0.1160 0.0463	0.0178 0.0042 0.0167	247 248 249	0.0011 0.0000 0.0164	0.0036 0.0017 0.0268	0.0022 0.0117 0.0345	0.0023 0.0036 0.0155	0.0029 0.0118 0.0212	0.0000 0.0233
125	0.0402	0.0376	0.0253	0.0322	0.0463	0.0167	250	0.0164	0.0268	0.0040	0.0030	0.0212	0.0233

TABLE XXIV THE TEST F1-PA-90 OF TIME SERIES ANOMALY DETECTION IN UCR 250 SUB-DATASETS. THE BEST RESULTS ARE IN BOLD.

UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector	UCR ID	SPOT	DSPOT	LSTM-VAE	DONUT	TS2Vec	DCdetector
1 2	0.0277	0.0374 0.0247	0.0297 0.0147	0.0316 0.0143	0.0676 0.0186	0.0285 0.0252	126	0.0127	0.0130 0.0129	0.0100 0.0267	0.0157 0.0178	0.0102 0.0232	0.0183 0.0000
3	0.0431 0.1410	0.0333 0.1373	0.0149 0.0522	0.0145	0.0290	0.0191 0.0552	128 129	0.0703 0.0504	0.1282 0.0318	0.0643 0.0154	0.0644 0.0244	0.0679 0.0833	0.0361 0.0460
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	130	0.0657	0.0716	0.0341	0.0345	0.0579	0.0481
	0.0556	0.0385	0.0516	0.0755	0.0259	0.0483	131	0.1351	0.0463	0.0326	0.0358	0.2378	0.0583
7	0.0212	0.0320	0.0130	0.0323	0.0198	0.0000	132	0.0315	0.0278	0.0154	0.0250	0.0165	0.0976
	0.0684	0.1538	0.0496	0.0311	0.0870	0.0068	133	0.0921	0.0304	0.0219	0.0221	0.2273	0.0000
9	0.0564	0.0238	0.0239	0.0250	0.0255	0.0467	134	0.0957	0.0815	0.0642	0.0605	0.0628 0.0039	0.1242
10	0.0360	0.0453	0.0313	0.0329	0.0329	0.0408	135	0.0090	0.0038	0.0114	0.0108		0.0000
11 12	0.0491 0.0508	0.0707 0.0526	0.0324 0.0206	0.0334 0.0157	0.0491 0.0513	0.0466 0.0169	136 137	0.0566	0.0769 0.0644	0.0428 0.0441	0.0425 0.0446	0.0550 0.0428	0.0195 0.0173
13	0.0196	0.0188	0.0204	0.0160	0.0155	0.0179	138	0.0144	0.0044	0.0513	0.0092	0.0045	0.0870
14	0.0122	0.0150	0.0108	0.0126	0.0128	0.0182	139	0.0837	0.1114	0.0712	0.0684	0.0922	0.0495
15	0.0066	0.0074	0.0054	0.0060	0.0096	0.0045	140	0.1244	0.3272	0.1175	0.1188	0.1954	0.0606
16	0.0413	0.0400	0.0187	0.0212	0.0461	0.0200	141	0.1176	0.1383	0.1075	0.1042	0.1470	0.0598
17	0.0335	0.0409	0.0145	0.0145	0.0901	0.0131	142	0.2353	0.0916	0.0521	0.0539	0.0625	0.0240
18	0.0132	0.0134	0.0172	0.0151	0.0150	0.0266	143	0.0440	0.0493	0.0473	0.0490	0.0578	0.0597
19	0.0163	0.0127	0.0145	0.0313	0.0159	0.0000	144	0.0651	0.0514	0.0557	0.0630	0.0532	0.3710
20	0.0648	0.0773	0.0643	0.0647	0.0656	0.0840	145	0.1957	0.3288	0.0426	0.0460	0.1017	0.0058
21	0.0481	0.0306	0.0182	0.0155	0.0604	0.0368	146	0.0063	0.0080	0.0064	0.0081	0.0129	0.0000
22	0.0787	0.0708	0.0386	0.0385	0.0622	0.0741	147	0.0833	0.1132	0.0034	0.0101	0.0435	0.0024
23	0.1341	0.0495	0.0324	0.0362	0.1780	0.0272	148	0.0169	0.0156	0.0142	0.0132	0.0166	0.0122
24	0.0284	0.0212	0.0313	0.0159	0.0153	0.0533	149	0.0120	0.0339	0.0134	0.0134	0.0149	0.0138
25	0.0656	0.0310	0.0303	0.0222	0.0879	0.0000	150	0.0229	0.0245	0.0218	0.0229	0.0405	0.0221
26	0.1024	0.0686	0.0644	0.0643	0.0641	0.1377	151	0.0277	0.0737	0.0420	0.0230	0.0826	0.0630
27	0.0111	0.0038	0.0056	0.0039	0.0039	0.0000	152	0.0552	0.0450	0.0339	0.0357	0.0588	0.0363
28	0.0563	0.0658	0.0418	0.0408	0.0879	0.0193	153	0.0482	0.0539	0.0497	0.0487	0.0676	0.0625
29	0.0604	0.0650	0.0496	0.0441	0.0501	0.0359	154	0.0113	0.0126	0.0263	0.0159	0.0125	0.0197
30	0.0146	0.0043	0.0069	0.0050	0.0045	0.1053	155	0.0131	0.0167	0.0140	0.0205	0.0192	0.0244
31	0.0846	0.1098	0.0716	0.0706	0.0882	0.0485	156	0.1612	0.0378	0.0286	0.0321	0.0325	0.1950
32	0.1224	0.2732	0.1176	0.1200	0.1975	0.0426	157	0.0126	0.0051	0.0045	0.0062	0.0110	0.0000
33	0.1144	0.1400	0.0999	0.1017	0.1427	0.0599	158	0.2290	0.6707 0.0040	0.0281	0.0324	0.0390	0.0126
34	0.2731	0.0849	0.0536	0.0558	0.0680	0.0231	159	0.0023		0.0315	0.0040	0.0061	0.0031
35	0.0448	0.0497	0.0539	0.0468	0.0805	0.0402	160	0.0275	0.0270	0.0319	0.0286	0.0522	0.0266
36	0.0640	0.0532	0.0584	0.0530	0.0521	0.0469	161	0.1151	0.1077	0.0941	0.0964	0.1132	0.0620
37	0.2500	0.3429	0.0417	0.0163	0.1290	0.0227	162	0.0294	0.0298	0.0473	0.0463	0.1022	0.0000
38	0.0131	0.0092	0.0126	0.0077	0.0100	0.0000	163	0.0833	0.0478	0.0219	0.0153	0.0392	0.0095
39	0.1176	0.1224	0.0117	0.0056	0.0247	0.0000	164	0.0100	0.0217	0.0079	0.0071	0.0132	0.0175
40	0.0156	0.0158	0.0122	0.0132	0.0165	0.0097	165	0.0094	0.0076	0.0096	0.0078	0.0095	0.0094
41 42	0.0121	0.0283	0.0150 0.0229 0.0238	0.0153 0.0228 0.0490	0.0174 0.0363	0.0104 0.0290	166 167	0.0143 0.0198 0.0360	0.0131 0.0149 0.0158	0.0233	0.0067	0.0115 0.0379	0.0238
43 44	0.0262 0.0586	0.0680	0.0346	0.0356	0.0734	0.0334 0.0348	168 169	0.1447	0.1016	0.0159 0.0325	0.0152	0.0355	0.0180
45 46	0.0489	0.0533	0.0474 0.0113	0.0476 0.0367	0.0659	0.0490 0.0000	170 171	0.3462 0.0952	0.0191	0.0076 0.0311	0.0098	0.0433	0.0025 0.0431
47 48	0.0131 0.1208	0.0211	0.0244 0.0270	0.0290 0.0268	0.0167	0.0184 0.0387	172 173	0.1351	0.0526	0.0434	0.0423 0.0506	0.0607	0.0255 0.0358
49 50	0.0078	0.0058 0.1058	0.0040 0.0386	0.0104	0.0061	0.0000 0.0258	174 175	0.0087	0.0115	0.0105 0.0268	0.0183	0.0121 0.0941	0.0482
51 52	0.0023	0.0040 0.4636	0.0039 0.0423	0.0025 0.0284 0.0950	0.0053	0.0000 0.0207	176 177	0.0155 0.0000	0.0159 0.0000	0.0145 0.0000	0.0157	0.0162 0.0000	0.0313
53 54 55	0.1110 0.0294 0.0780	0.1079 0.0298 0.0381	0.0950 0.0364 0.0141	0.0436 0.0183	0.1243 0.0633 0.0347	0.1045 0.0000 0.0127	178 179 180	0.0467 0.1673 0.0120	0.0757 0.2846 0.0121	0.0177 0.0266 0.0137	0.0152 0.0227 0.0140	0.0566 0.0796 0.0139	0.0077 0.0000 0.0000
56 57	0.0063 0.0078	0.0381 0.0130 0.0075	0.0141 0.0104 0.0071	0.0087 0.0094	0.0102 0.0092	0.0127 0.0168 0.0097	181 182	0.0120 0.0227 0.0263	0.0121 0.0380 0.0290	0.0137 0.0247 0.0283	0.0256 0.0270	0.0289 0.0298	0.0202 0.0211
58 59	0.0113 0.0143	0.0135 0.0151	0.0088 0.0190	0.0057 0.0147	0.0032 0.0077 0.0318	0.0057 0.0256 0.0240	183 184	0.0391 0.0505	0.0290 0.0377 0.1079	0.0283 0.0336 0.0175	0.0270 0.0334 0.0178	0.0298 0.0340 0.0645	0.0211 0.0855 0.0278
60	0.0154 0.0781	0.0151 0.0163 0.0353	0.0194 0.0323	0.0147 0.0156 0.0325	0.0318 0.0190 0.0324	0.0149 0.0473	185 186	0.0000 0.0100	0.0000 0.0064	0.0000 0.0065	0.0000 0.0037	0.0043 0.0000 0.0054	0.0000 0.0067
62 63	0.0287 0.0368	0.0203 0.0328	0.0323 0.0118 0.0315	0.0323 0.0115 0.0310	0.0324 0.0450 0.0338	0.0054 0.0221	187 188	0.0000	0.0004	0.0000	0.0000 0.0000	0.0000	0.0007
64 65	0.0752 0.0170	0.0704 0.0237	0.0426 0.0455	0.0427 0.0136	0.0458 0.0145	0.0785 0.0000	189 190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
66 67	0.0110 0.0511	0.0118	0.0108 0.0283	0.0260	0.0138	0.0526 0.0576	191	0.0026 0.0380	0.0013 0.0583	0.0017 0.0188	0.0014	0.0149	0.0180 0.0157
68 69	0.0164 0.0000	0.0159 0.0000	0.0130 0.0000	0.0121 0.0000	0.0165	0.0000	193 194	0.0342 0.0295	0.0357 0.0952	0.0186 0.0134	0.0101 0.0096	0.0294	0.0000 0.0106
70	0.0472	0.0748	0.0235	0.0133	0.0525	0.0123	195	0.0178	0.0212	0.0201	0.0185	0.0194	0.0210
71	0.1667	0.2857	0.0234	0.0215	0.0735	0.0000	196	0.0212	0.0256	0.0218	0.0219	0.0235	0.0000
72	0.0120	0.0122	0.0134	0.0131	0.0132	0.0000	197	0.0171	0.0104	0.0190	0.0071	0.0179	0.0223
73	0.0251	0.0372	0.0254	0.0253	0.0382	0.0321	198	0.0229	0.0329	0.0233	0.0231	0.0305	0.0243
74	0.0266	0.0271	0.0275	0.0276	0.0296	0.0249	199	0.0138	0.0114	0.0109	0.0093	0.0101	0.0134
75	0.0412	0.0351	0.0333	0.0336	0.0335	0.0229	200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
76	0.0313	0.0780	0.0175	0.0178	0.0176	0.0169	201	0.1290	0.0027	0.0012	0.0027	0.0040	0.0000
77	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	202	0.0095	0.0039	0.0022	0.0062	0.0021	0.0098
78	0.0087	0.0058	0.0086	0.0074	0.0038	0.0171	203	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
79	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	204	0.1250	0.2118	0.0073	0.0154	0.0064	
80 81	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	205 206	0.0171 0.0099	0.0073 0.0215	0.0075 0.0109	0.0093 0.0142	0.0104 0.0094	0.0154 0.0244
82	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	207	0.0033	0.0137	0.0054	0.0200	0.0096	0.0278
83	0.0028	0.0013	0.0025	0.0015	0.0046	0.0005	208	0.0085	0.0087	0.0060	0.0046	0.0051	0.0213
84	0.0384	0.0590	0.0131	0.0165	0.0696	0.0175	209	0.0142	0.0143	0.0097	0.0123 0.0069	0.0192	0.0091
85	0.0339	0.0354	0.0280	0.0077	0.0336	0.0000	210	0.0067	0.0074	0.0026		0.0070	0.0139
86	0.0286	0.0811	0.0107	0.0091	0.0386	0.0111	211	0.0151	0.0078	0.0043	0.0049	0.0278	0.0027
87	0.0183	0.0227	0.0189	0.0187	0.0192	0.0244	212	0.0031	0.0032	0.0042	0.0476	0.0042	0.0000
88	0.0216	0.0236	0.0219	0.0221	0.0223	0.0000	213	0.0701	0.0609	0.0050	0.0045	0.0257	0.0167
89	0.0155	0.0109	0.0060	0.0122	0.0150	0.0208	214	0.0126	0.0130	0.0085	0.0057	0.0071	0.0072
90	0.0226	0.0326	0.0231	0.0230	0.0257	0.0173	215	0.0077	0.0066	0.0058	0.0074	0.0064	0.0059
91	0.0121	0.0103	0.0091	0.0098	0.0097	0.0088	216	0.0449	0.0556	0.0075	0.0067	0.0474	0.0063
92	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	217	0.0055	0.0056	0.0055	0.0055	0.0058	0.0075
93	0.0276	0.0374	0.0306	0.0314	0.0698	0.0306	218	0.0054	0.0079	0.0056	0.0057	0.0092	0.0065
94	0.1233	0.1447	0.0498	0.0521	0.0891	0.1083	219	0.0653	0.0074	0.0025	0.0070	0.0080	0.0023
95	0.0993	0.2022	0.0294	0.0377	0.1124	0.0467	220	0.1038	0.0511	0.0058	0.0065	0.0254	0.0177
96	0.0452	0.0338	0.0176	0.0247	0.0467	0.0161	221	0.0103	0.0124	0.0106	0.0108	0.0122	0.0102
97	0.0485	0.0314	0.0196	0.0280	0.0461	0.0156	222	0.0169	0.0163	0.0076	0.0070	0.0091	0.0137
98	0.0090	0.0038	0.0043	0.0042	0.0039	0.0000	223	0.0119	0.0112	0.0105	0.0106	0.0147	0.0164
99	0.2308		0.0528	0.0563	0.0863	0.0741	224	0.0104	0.0104	0.0095	0.0089	0.0135	0.0146
100	0.2034	0.3000	0.0303	0.0323	0.1111	0.0148	225	0.0162	0.0211	0.0069	0.0069	0.0109	0.0122
101	0.0185	0.0149	0.0125	0.0129	0.0151	0.0145	226	0.0991	0.1085	0.0192	0.0106	0.0473	0.0150
102 103	0.0267 0.0271	0.0734 0.5935	0.0331	0.0241	0.0803	0.0165 0.0316	227 228	0.0233 0.0400	0.0217	0.0065 0.0018	0.0061	0.0119	0.0093
104 105	0.0083 0.0376	0.0076 0.0336	0.0072 0.0328	0.0165	0.0093	0.0088 0.0252	229 230	0.0800	0.0267 0.0171	0.0010 0.0091	0.0008	0.0038	0.0000 0.0027
106 107	0.0410 0.0458	0.0344	0.0306 0.0248	0.0313	0.0297	0.0231 0.0301	231 232	0.0182	0.0178 0.0178	0.0119 0.0115	0.0116	0.0136 0.0129	0.0189
108 109	0.0000	0.0000 0.0374	0.0000 0.0305	0.0000	0.0000 0.0812	0.0000 0.0281	233 234	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
110 111	0.0265 0.0566	0.0340 0.0524	0.0149 0.0145	0.0164	0.0185	0.0188 0.0208	235 236	0.0000	0.0000	0.0000 0.0012	0.0000	0.0000	0.0000 0.0385
112 113	0.1261 0.0000	0.1373	0.0514 0.0000	0.0518 0.0000	0.0927	0.0722 0.0000	237 238	0.0467	0.0523	0.0228 0.0157	0.0231	0.0245	0.0175
114 115	0.0529	0.0391	0.0140 0.0526	0.0183	0.0277	0.0594 0.0575	239 240	0.0000	0.0021	0.0004 0.0003	0.0003	0.0024 0.0007	0.0001 0.0008
116 117	0.0748 0.0699	0.1622	0.0440 0.0259	0.0506	0.0976	0.0480 0.0455	241 242	0.0000	0.0056	0.0058 0.0055	0.0058	0.0140 0.0035	0.0055 0.0086
118 119	0.0301	0.0394	0.0313 0.0326	0.0276	0.0365 0.0502	0.0490 0.0435	243 244	0.0039	0.0023 0.0059	0.0154 0.0061	0.0144	0.0071	0.0059 0.0096
120 121	0.0361	0.0504	0.0219 0.0294	0.0188 0.0256	0.0508	0.0177	245 246	0.0034	0.0158 0.0127	0.0038	0.0077	0.0287	0.0109
122 123	0.0127	0.0140 0.0074	0.0111 0.0037	0.0104	0.0122 0.1160 0.0463	0.0178 0.0042	247 248	0.0011	0.0021	0.0012 0.0117	0.0017	0.0029 0.0086	0.0320
124	0.0402	0.0370	0.0190	0.0204	0.0463	0.0167	249	0.0123	0.0150	0.0345	0.0088	0.0212	0.0233
125	0.0311	0.0384	0.0253	0.0163	0.0917	0.0168	250	0.0833	0.0741	0.0038	0.0021	0.0513	0.0000

TABLE XXV

THE TEST RESULTS OF TIME SERIES ANOMALY DETECTION ON SEVEN REAL-WORLD MULTIVARIATE DATASETS. THE BEST RESULTS ARE IN BOLD. THE BEST MODEL IN THE CORRESPONDING DATASET IS IN <u>UNDERLINE</u> AND **BOLD**. "-" INDICATES THAT THE METRIC COULD NOT BE OBTAINED DUE TO THE EXCESSIVE TIME REQUIRED TO COMPUTE IT FROM THE MODEL'S OUTPUT. IN ADDITION, LSTM-VAE, DOUNT, AND TS2VEC ARE UNABLE TO PRODUCE TEST RESULTS ON THE PSM AND SWAT DATASETS DUE TO MEMORY ERRORS. FURTHERMORE, SPOT AND DSPOT CAN NOT OBTAIN TEST RESULTS ON MULTIVARIATE DATASETS BECAUSE THE ORIGINAL CODE PROVIDED BY THE AUTHORS DOES NOT INCLUDE SETTINGS FOR MULTIVARIATE SCENARIOS.

					The SI	MD Dataset						
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P	Aff-R	R_A_R	R_A_P	V_ROC	V_PR
LSTM-VAE	0.5002	0.9964	0.3339	0.4244	0.1040	0.0911	0.8785	0.2177	0.7460	0.3208	0.7484	0.3188
DONUT	0.4965	0.9964	0.3306	0.4247	0.1043	0.0915	0.8763	0.2143	0.7405	0.3136	0.7440	0.3130
AT	0.8259	0.8694	0.7864	-	-	-	-	-	-	-	-	-
TS2Vec	0.8571	0.9447	0.7843	0.4477	0.1149	0.1128	0.7972	0.6678	0.5579	0.2971	0.5546	0.2740
TimesNet	0.8031	0.8577	0.7551	-	-	-	-	-	-	-	-	-
GPT4TS	0.8421	0.8731	0.8133	-	-	-	-	-	-	-	-	
<u>DCdetector</u>	0.8453	0.7971	0.8997	0.3086	0.1073	0.0735	0.5096	0.9480	0.7989	0.7186	0.7547	0.6767
					The M	SL Dataset						
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P	Aff-R	R_A_R	R_A_P	V_ROC	V_PR
LSTM-VAE	0.3936	0.9643	0.2472	0.5800	0.2383	0.1915	0.5296	0.4924	0.5060	0.1361	0.5054	0.1279
DONUT	0.3936	0.9648	0.2472	0.5907	0.2373	0.1913	0.5310	0.4924	0.5056	0.1354	0.5054	0.1278
AT	0.8683	0.9083	0.8318	-			0.6569	0.5020	0.8436	0.8246	0.8010	0.7860
TS2Vec	0.8748	0.9473	0.8126	0.5852	0.2192	0.1907	0.5402	0.8830	0.5860	0.3798	0.5808	0.3504
TimesNet	0.8014	0.8834	0.7334	-	-	-	0.6764	0.3371	0.7691	0.7590	0.7004	0.6952
GPT4TS DCdetector	0.8114 0.9563	0.8865 0.9256	0.7480 0.9892	0.6719	0.1608	0.1596	0.6820 0.5177	0.3752 0.9738	0.7786 0.9224	0.7628 0.9012	0.7154 0.9150	0.7050 0.8949
Deuetector	0.9303	0.9230	0.9692	0.0719			0.3177	0.9736	0.9224	0.9012	0.9130	0.0747
	F.		-	E1 E: 10		IAP Dataset	100 =	1.00 =		B : 5	W BOG	11.55
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90 0.2433	Aff-P 0.4700	Aff-R 0.5768	R_A_R	R_A_P	V_ROC	V_PR
LSTM-VAE	0.6863	0.9896	0.5253	0.7123	0.3311				0.4659	0.0679	0.4648	0.0657
DONUT AT	0.6864 0.9435	0.9899 0.9451	0.5253 0.9420	0.7059	0.3347	0.2439	0.4804 0.6920	0.5745	0.4660 0.9424	0.0677 0.9266	0.4650 0.8713	0.0655 0.8648
TS2Vec	0.9433	0.9431	0.5569	0.5450	0.3114	0.2433	0.6920	0.4431 0.6587	0.5280	0.9200	0.8713	0.8048
TimesNet	0.7013	0.9407	0.5271	0.5450	0.3114	0.2433	0.4024	0.0387	0.5280	0.2378	0.6016	0.6234
GPT4TS	0.6750	0.9117	0.5359	_	_	-	0.7844	0.1099	0.6697	0.6747	0.6200	0.6311
DCdetector	0.9606	0.9367	0.9857	0.6729	0.1701	0.1701	0.5109	0.9886	0.9645	0.9424	0.9517	0.9313
						SM Dataset						
Madala	E1	P	D	E1 DA 10			A ff D	A ff D	D A D	D A D	V DOC	V DD
Models AT	F1 0.9632	0.9687	R 0.9577	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P 0.6776	Aff-R 0.4548	R_A_R 0.9338	R_A_P 0.9434	V_ROC 0.8651	V_PR 0.8942
TimesNet	0.9032	0.9850	0.9377	-	-	-	0.8416	0.4348	0.9338	0.9434	0.8631	0.8406
GPT4TS	0.9706	0.9860	0.8666	-	-	_	0.8361	0.5706	0.8102	0.8704	0.8575	0.8963
DCdetector	0.9744	0.9699	0.9789	0.8144	0.2443	0.2442	0.5244	0.8173	0.9292	0.9385	0.8739	0.8974
					The SV	VAT Dataset						
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P	Aff-R	R_A_R	R_A_P	V_ROC	V_PR
AT	0.9466	0.9219	0.9726	-	-	-	0.6967	0.5510	0.9674	0.9378	0.9398	0.9135
TimesNet	0.9265	0.9201	0.9330	_	_	_	0.6646	0.4193	0.8999	0.8834	0.8101	0.8037
GPT4TS	0.9284	0.9218	0.9352	_	_	_	0.6579	0.4320	0.9108	0.8902	0.8278	0.8170
DCdetector	0.9588	0.9325	0.9867	0.6906	0.3289	0.2364	0.5352	0.9622	0.9758	0.9497	0.9677	0.9426
					The NIPS_7	S_Swan Dat	aset					
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P	Aff-R	R_A_R	R_A_P	V_ROC	V_PR
LSTM-VAE	0.7387	0.9997	0.5857	0.7833	0.6286	0.4992	0.8722	0.0020	0.8282	0.5284	0.8266	0.5239
DONUT	0.7387	0.9997	0.5857	0.7820	0.6308	0.4995	0.8722	0.0020	0.8298	0.5315	0.8281	0.5269
AT	0.7346	0.9701	0.5911	-	-	-	-	-	-	-	-	-
TS2Vec	0.7545	0.9938	0.6081	0.7650	0.6441	0.4991	0.9159	0.0604	0.7654	0.5930	0.7485	0.5623
TimesNet	0.7438	0.9930	0.5945	-	-	-	-	-	-	-	-	-
GPT4TS	0.7389	0.9956	0.5874	-	-	-	-	-	-	-	-	-
DCdetector	0.4009	0.8824	0.2594	0.3879	0.3015	0.2990	0.4751	0.0386	0.8416	0.9124	0.8259	0.8981
					The NIPS_7	S_Water Dat	aset					
Models	F1	P	R	F1-PA-10	F1-PA-50	F1-PA-90	Aff-P	Aff-R	R_A_R	R_A_P	V_ROC	V_PR
LSTM-VAE	0.5155	0.9625	0.3521	0.4053	0.1321	0.1136	0.6465	0.2356	0.5575	0.1587	0.5461	0.1403
DONUT	0.5150	0.9590	0.3521	0.3779	0.1062	0.1062	0.6458	0.2948	0.5489	0.1505	0.5394	0.1339
AT	0.1821	0.1504	0.2307	-	-	-	0.5199	0.4796	0.5556	0.1603	0.5476	0.1492
TS2Vec	0.7736	0.9206	0.6671	0.9035	0.6459	0.5086	0.7530	0.6161	0.5428	0.3035	0.5433	0.2817
TimesNet	0.7048	0.6079	0.8385	-	-	-	0.8654	0.7332	0.7261	0.6211	0.7276	0.6080
	0.7844	0.6994	0.8928	-	-	-	0.8372	0.8647	0.7264	0.6513	0.7505	0.6657
GPT4TS DCdetector	0.3694	0.3277	0.4233	0.1086	0.0166	0.0166	0.5124	0.8886	0.5954	0.2852	0.5873	0.2774

REFERENCES

- [1] E. Eldele, M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, and X. Li, "Label-efficient time series representation learning: A review," *IEEE Transactions on Artificial Intelligence*, pp. 1–16, 2024.
- [2] K. Zhang, Q. Wen, C. Zhang, R. Cai, M. Jin, Y. Liu, J. Y. Zhang, Y. Liang, G. Pang, D. Song, and S. Pan, "Self-supervised learning for time series analysis: Taxonomy, progress, and prospects," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 46, no. 10, pp. 6775–6794, 2024.
- [3] Q. Meng, H. Qian, Y. Liu, Y. Xu, Z. Shen, and L. Cui, "Unsupervised representation learning for time series: A review," *arXiv preprint arXiv:2308.01578*, 2023.
- [4] M. Jin, Q. Wen, Y. Liang, C. Zhang, S. Xue, X. Wang, J. Zhang, Y. Wang, H. Chen, X. Li et al., "Large models for time series and spatio-temporal data: A survey and outlook," arXiv preprint arXiv:2310.10196, 2023.
- [5] M. Jin, Y. Zhang, W. Chen, K. Zhang, Y. Liang, B. Yang, J. Wang, S. Pan, and Q. Wen, "Position paper: What can large language models tell us about time series analysis," in *In Forty-first International Conference on Machine Learning*, 2024, pp. 1–17.
- [6] Y. Liang, H. Wen, Y. Nie, Y. Jiang, M. Jin, D. Song, S. Pan, and Q. Wen, "Foundation models for time series analysis: A tutorial and survey," in *In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2024, p. 6555–6565.
- [7] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, "Transfer learning for time series classification," in 2018 IEEE International Conference on Big Data, 2018, pp. 1367–1376.
- [8] A. v. d. Oord, Y. Li, and O. Vinyals, "Representation learning with contrastive predictive coding," arXiv preprint arXiv:1807.03748, 2018.
- [9] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, "Unsupervised scalable representation learning for multivariate time series," *Advances in Neu*ral Information Processing Systems, vol. 32, pp. 1–12, 2019.
- [10] H. Fan, F. Zhang, and Y. Gao, "Self-supervised time series representation learning by inter-intra relational reasoning," arXiv preprint arXiv:2011.13548, 2020.
- [11] S. Tonekaboni, D. Eytan, and A. Goldenberg, "Unsupervised representation learning for time series with temporal neighborhood coding," in *International Conference on Learning Representations*, 2021, pp. 1–17.
- [12] C.-H. H. Yang, Y.-Y. Tsai, and P.-Y. Chen, "Voice2series: Reprogramming acoustic models for time series classification," in *Proceedings of the 38th International Conference on Machine Learning*, vol. 139. PMLR, 2021, pp. 11808–11819.
- [13] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan, "Time-series representation learning via temporal and contextual contrasting," in *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, 2021, pp. 2352–2359.
- [14] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, "A transformer-based framework for multivariate time series representation learning," in *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, 2021, pp. 2114–2124.
- [15] Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu, "Ts2vec: Towards universal representation of time series," *Proceedings of Advancement of Artificial Intelligence Conference on Artificial Intelligence*, vol. 36, no. 8, pp. 8980–8987, 2022.
- [16] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, "CoST: Contrastive learning of disentangled seasonal-trend representations for time series forecasting," in *International Conference on Learning Representations*, 2022, pp. 1–18.
- [17] M. T. Nonnenmacher, L. Oldenburg, I. Steinwart, and D. Reeb, "Utilizing expert features for contrastive learning of time-series representations," in *International Conference on Machine Learning*. PMLR, 2022, pp. 16969–16989.
- [18] X. Zhang, Z. Zhao, T. Tsiligkaridis, and M. Zitnik, "Self-supervised contrastive pre-training for time series via time-frequency consistency," in Advances in neural information processing systems, 2022, pp. 1–16.
- [19] X. Jiang, R. Missel, Z. Li, and L. Wang, "Sequential latent variable models for few-shot high-dimensional time-series forecasting," in *The Eleventh International Conference on Learning Representations*, 2023, pp. 1–21.
- [20] Y. Ozyurt, S. Feuerriegel, and C. Zhang, "Contrastive learning for unsupervised domain adaptation of time series," in *The Eleventh International Conference on Learning Representations*, 2023, pp. 1–40.
- [21] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, "A time series is worth 64 words: Long-term forecasting with transformers," in *The*

- Eleventh International Conference on Learning Representations, 2023, pp. 1–24.
- [22] Y. Yang, C. Zhang, T. Zhou, Q. Wen, and L. Sun, "Dcdetector: Dual attention contrastive representation learning for time series anomaly detection," in *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2023, pp. 3033–3045.
- [23] J. Dong, H. Wu, H. Zhang, L. Zhang, J. Wang, and M. Long, "Simmtm: A simple pre-training framework for masked time-series modeling," *Advances in Neural Information Processing Systems*, vol. 36, pp. 29 996–30 025, 2023.
- [24] M. Hu, Z. Zhong, X. Zhang, Y. Li, Y. Xie, X. Jia, X. Zhou, and J. Luo, "Self-supervised pre-training for robust and generic spatialtemporal representations," in 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023, pp. 150–159.
- [25] J. Liu and S. Chen, "Timesurl: Self-supervised contrastive learning for universal time series representation learning," in *Proceedings of the* AAAI Conference on Artificial Intelligence, vol. 38, no. 12, 2024, pp. 13 918–13 926.
- [26] J. Dong, H. Wu, Y. Wang, Y. Qiu, L. Zhang, J. Wang, and M. Long, "Timesiam: A pre-training framework for siamese time-series modeling," in *Forty-first International Conference on Machine Learning*, 2024, pp. 1–25.
- [27] Y. Zhang, M. Liu, S. Zhou, and J. Yan, "Up2me: Univariate pre-training to multivariate fine-tuning as a general-purpose framework for multivariate time series analysis," in *Forty-first International Conference on Machine Learning*, 2024, pp. 1–24.
- [28] E. Eldele, M. Ragab, Z. Chen, M. Wu, and X. Li, "Tslanet: Rethinking transformers for time series representation learning," in Forty-first International Conference on Machine Learning, 2024, pp. 1–20.
- [29] M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, and A. Dubrawski, "Moment: A family of open time-series foundation models," in *Forty-first International Conference on Machine Learning*, 2024, pp. 1–38.
- [30] Y. Liu, H. Zhang, C. Li, X. Huang, J. Wang, and M. Long, "Timer: Generative pre-trained transformers are large time series models," in Forty-first International Conference on Machine Learning, 2024, pp. 1–31.
- [31] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo, "Unified training of universal time series forecasting transformers," in Forty-first International Conference on Machine Learning, 2024, pp. 1–25.
- [32] A. Das, W. Kong, R. Sen, and Y. Zhou, "A decoder-only foundation model for time-series forecasting," in *Forty-first International Conference on Machine Learning*, 2024, pp. 1–21.
- [33] Y.-A. Chung, C.-C. Wu, C.-H. Shen, H.-Y. Lee, and L.-S. Lee, "Audio word2vec: Unsupervised learning of audio segment representations using sequence-to-sequence autoencoder," arXiv preprint arXiv:1603.00982, 2016.
- [34] F. J. O. Morales and D. Roggen, "Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations," in *Proceedings of the 2016 ACM International Symposium* on Wearable Computers, 2016, pp. 92–99.
- [35] A. Hyvarinen and H. Morioka, "Unsupervised feature extraction by time-contrastive learning and nonlinear ica," Advances in Neural Information Processing Systems, vol. 29, pp. 1–9, 2016.
- [36] Q. Hu, R. Zhang, and Y. Zhou, "Transfer learning for short-term wind speed prediction with deep neural networks," *Renewable Energy*, vol. 85, pp. 83–95, 2016.
- [37] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, "Timenet: Pretrained deep recurrent neural network for time series classification," arXiv preprint arXiv:1706.08838, 2017.
- [38] S. Purushotham, W. Carvalho, T. Nilanon, and Y. Liu, "Variational recurrent adversarial deep domain adaptation," in *International Con*ference on Learning Representations, 2017, pp. 1–15.
- [39] J. Serrà, S. Pascual, and A. Karatzoglou, "Towards a universal neural network encoder for time series." in *Artificial Intelligence Research* and Development, 2018, pp. 120–129.
- [40] P. Xiong, Y. Zhu, Z. Sun, Z. Cao, M. Wang, Y. Zheng, J. Hou, T. Huang, and Z. Que, "Application of transfer learning in continuous time series for anomaly detection in commercial aircraft flight data," in 2018 IEEE International Conference on Smart Cloud (SmartCloud). IEEE, 2018, pp. 13–18.
- [41] Y.-A. Chung and J. Glass, "Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech," arXiv preprint arXiv:1803.08976, 2018.
- [42] N. Laptev, J. Yu, and R. Rajagopal, "Reconstruction and regression loss for time-series transfer learning," in *Proceedings of the Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD)*

- and the 4th Workshop on the Mining and LEarning from Time Series (MiLeTS), 2018, pp. 1–8.
- [43] M. A. A. H. Khan, N. Roy, and A. Misra, "Scaling human activity recognition via deep learning-based domain adaptation," in 2018 IEEE international conference on pervasive computing and communications (PerCom), 2018, pp. 1–9.
- [44] J. Wang, Y. Chen, L. Hu, X. Peng, and S. Y. Philip, "Stratified transfer learning for cross-domain activity recognition," in 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2018, pp. 1–10.
- [45] A. Baevski, S. Schneider, and M. Auli, "vq-wav2vec: Self-supervised learning of discrete speech representations," arXiv preprint arXiv:1910.05453, 2019.
- [46] R. Mutegeki and D. S. Han, "Feature-representation transfer learning for human activity recognition," in 2019 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2019, pp. 18–20.
- [47] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff, "Convtimenet: A pre-trained deep convolutional neural network for time series classification," in 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.
- [48] S. Schneider, A. Baevski, R. Collobert, and M. Auli, "wav2vec: Unsupervised pre-training for speech recognition," *Proc. Interspeech* 2019, pp. 3465–3469, 2019.
- [49] A. Meiseles and L. Rokach, "Source model selection for deep learning in the time series domain," *IEEE Access*, vol. 8, pp. 6190–6200, 2020.
- [50] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, "Inceptiontime: Finding alexnet for time series classification," *Data Mining and Knowledge Discovery*, vol. 34, no. 6, pp. 1936–1962, 2020.
- [51] A. T. Liu, S.-w. Yang, P.-H. Chi, P.-c. Hsu, and H.-y. Lee, "Mockingjay: Unsupervised speech representation learning with deep bidirectional transformer encoders," in *IEEE International Conference on Acoustics*, Speech and Signal Processing, 2020, pp. 6419–6423.
- [52] J. Narwariya, P. Malhotra, L. Vig, G. Shroff, and T. Vishnu, "Meta-learning for few-shot time series classification," in *Proceedings of the 7th ACM IKDD CoDS and 25th COMAD*, 2020, pp. 28–36.
- [53] T. Iwata and A. Kumagai, "Few-shot learning for time-series forecasting," arXiv preprint arXiv:2009.14379, 2020.
- [54] F. Li, K. Shirahama, M. A. Nisar, X. Huang, and M. Grzegorzek, "Deep transfer learning for time series data based on sensor modality classification," *Sensors*, vol. 20, no. 15, p. 4271, 2020.
- [55] P. R. d. O. da Costa, A. Akçay, Y. Zhang, and U. Kaymak, "Remaining useful lifetime prediction via deep domain adaptation," *Reliability Engineering & System Safety*, vol. 195, p. 106682, 2020.
- [56] G. Wilson, J. R. Doppa, and D. J. Cook, "Multi-source deep domain adaptation with weak supervision for time-series sensor data," in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1768–1778.
- [57] T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, "Transfer learning with graph neural networks for short-term highway traffic forecasting," in 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 10 367–10 374.
- [58] R. Cai, J. Chen, Z. Li, W. Chen, K. Zhang, J. Ye, Z. Li, X. Yang, and Z. Zhang, "Time series domain adaptation via sparse associative structure alignment," in *Proceedings of the Advancement of Artificial Intelligence Conference on Artificial Intelligence*, vol. 35, no. 8, 2021, pp. 6859–6867.
- [59] M. Ragab, E. Eldele, Z. Chen, M. Wu, C.-K. Kwoh, and X. Li, "Self-supervised autoregressive domain adaptation for time series data," arXiv preprint arXiv:2111.14834, 2021.
- [60] Z. Li, R. Cai, T. Z. Fu, and K. Zhang, "Transferable timeseries forecasting under causal conditional shift," arXiv preprint arXiv:2111.03422, 2021.
- [61] Q. Liu and H. Xue, "Adversarial spectral kernel matching for unsupervised time series domain adaptation," in *International Joint Conference* on *Artificial Intelligence*, 2021, pp. 2744–2750.
- [62] W. Garrett, R. D. Janardhan, and J. C. Diane, "Calda: Improving multi-source time series domain adaptation with contrastive adversarial learning," arXiv preprint arXiv:2109.14778, 2021.
- [63] Z. Li, R. Cai, H. W. Ng, M. Winslett, T. Z. Fu, B. Xu, X. Yang, and Z. Zhang, "Causal mechanism transfer network for time series domain adaptation in mechanical systems," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 12, no. 2, pp. 1–21, 2021.
- [64] S. Baireddy, S. R. Desai, J. L. Mathieson, R. H. Foster, M. W. Chan, M. L. Comer, and E. J. Delp, "Spacecraft time-series anomaly detection

- using transfer learning," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021, pp. 1951–1960.
- [65] H. Zhang, J. Wang, Q. Xiao, J. Deng, and Y. Lin, "Sleeppriorcl/: Contrastive representation learning with prior knowledge-based positive mining and adaptive temperature for sleep staging," arXiv preprint arXiv:2110.09966, 2021.
- [66] P. Shi, W. Ye, and Z. Qin, "Self-supervised pre-training for time series classification," in 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.
- [67] D. Luo, W. Cheng, Y. Wang, D. Xu, J. Ni, W. Yu, X. Zhang, Y. Liu, H. Chen, and X. Zhang, "Information-aware time series meta-contrastive learning," Submitted to International Conference on Learning Representations, pp. 1–23, 2022.
- [68] I. Padhi, Y. Schiff, I. Melnyk, M. Rigotti, Y. Mroueh, P. Dognin, J. Ross, R. Nair, and E. Altman, "Tabular transformers for modeling multivariate time series," in *IEEE International Conference on Acous*tics, Speech and Signal Processing. IEEE, 2021, pp. 3565–3569.
- [69] S. M. Shankaranarayana and D. Runje, "Attention augmented convolutional transformer for tabular time-series," in 2021 International Conference on Data Mining Workshops (ICDMW). IEEE, 2021, pp. 537–541.
- [70] A. T. Liu, S.-W. Li, and H.-y. Lee, "TERA: Self-supervised learning of transformer encoder representation for speech," *IEEE/ACM Transac*tions on Audio, Speech, and Language Processing, vol. 29, pp. 2351– 2366, 2021.
- [71] Y. Du, J. Wang, W. Feng, S. Pan, T. Qin, R. Xu, and C. Wang, "Adarnn: Adaptive learning and forecasting of time series," in *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, 2021, pp. 402–411.
- [72] L. Hou, Y. Geng, L. Han, H. Yang, K. Zheng, and X. Wang, "Masked token enabled pre-training: A task-agnostic approach for understanding complex traffic flow," *IEEE Transactions on Mobile Computing*, pp. 1– 12, 2024.
- [73] L. Zhao, M. Gao, and Z. Wang, "St-gsp: Spatial-temporal global semantic representation learning for urban flow prediction," in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1443–1451.
- [74] L. Yang, S. Hong, and L. Zhang, "Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion," arXiv preprint arXiv:2202.04770, 2022.
- [75] Z. Shao, Z. Zhang, F. Wang, and Y. Xu, "Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting," in *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2022, pp. 1567–1577.
- [76] R. R. Chowdhury, X. Zhang, J. Shang, R. K. Gupta, and D. Hong, "Tarnet: Task-aware reconstruction for time-series transformer," in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 2022, pp. 14–18.
- [77] B. Lu, X. Gan, W. Zhang, H. Yao, L. Fu, and X. Wang, "Spatio-temporal graph few-shot learning with cross-city knowledge transfer," in *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2022, pp. 1162–1172.
- [78] L. Brinkmeyer, R. R. Drumond, J. Burchert, and L. Schmidt-Thieme, "Few-shot forecasting of time-series with heterogeneous channels," arXiv preprint arXiv:2204.03456, 2022.
- [79] W. Zhang, L. Yang, S. Geng, and S. Hong, "Cross reconstruction transformer for self-supervised time series representation learning," arXiv preprint arXiv:2205.09928, 2022.
- [80] L. Yang, S. Hong, and L. Zhang, "Spectral propagation graph network for few-shot time series classification," arXiv preprint arXiv:2202.04769, 2022.
- [81] K. Zhang, C. Li, and Q. Yang, "Trid-mae: A generic pre-trained model for multivariate time series with missing values," in *Proceedings of the* 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 3164–3173.
- [82] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, and E. Keogh, "The ucr time series archive," *IEEE/CAA Journal of Automatica Sinica*, vol. 6, no. 6, pp. 1293–1305, 2019.
- [83] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and E. Keogh, "The uea multivariate time series classification archive 2018," arXiv preprint arXiv:1811.00075, 2018.
- [84] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, "Timesnet: Temporal 2d-variation modeling for general time series analysis," in The Eleventh International Conference on Learning Representations, 2023, pp. 1–23.

- [85] Z. Wang, W. Yan, and T. Oates, "Time series classification from scratch with deep neural networks: A strong baseline," in 2017 International joint conference on neural networks (IJCNN), 2017, pp. 1578–1585.
- [86] T. Zhou, P. Niu, L. Sun, R. Jin et al., "One fits all: Power general time series analysis by pretrained lm," Advances in neural information processing systems, vol. 36, pp. 43 322–43 355, 2023.
- [87] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, "Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting," *Advances in Neural Information Processing Systems*, vol. 32, pp. 1–11, 2019.
- [88] S. Bai, J. Z. Kolter, and V. Koltun, "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling," arXiv preprint arXiv:1803.01271, 2018.
- [89] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, "Informer: Beyond efficient transformer for long sequence time-series forecasting," in *Proceedings of AAAI Conference on Artificial Intelli*gence, vol. 35, no. 12, 2021, pp. 11106–11115.
- [90] J. Xu, J. Wang, M. Long et al., "Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting," Advances in Neural Information Processing Systems, vol. 34, pp. 1–12, 2021.
- [91] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, "Anomaly detection in streams with extreme value theory," in *Proceedings of the* 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1067–1075.
- [92] D. Park, Y. Hoshi, and C. C. Kemp, "A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder," *IEEE Robotics and Automation Letters*, vol. 3, no. 3, pp. 1544– 1551, 2018.
- [93] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng et al., "Unsupervised anomaly detection via variational autoencoder for seasonal kpis in web applications," in *Proceedings of the* 2018 world wide web conference, 2018, pp. 187–196.
- [94] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and Q. Zhang, "Time-series anomaly detection service at microsoft," in *Proceedings of the 25th ACM SIGKDD international* conference on knowledge discovery & data mining, 2019, pp. 3009– 3017.
- [95] J. Xu, H. Wu, J. Wang, and M. Long, "Anomaly transformer: Time series anomaly detection with association discrepancy," in *International Conference on Learning Representations*, 2022, pp. 1–20.
- [96] A. Zeng, M. Chen, L. Zhang, and Q. Xu, "Are transformers effective for time series forecasting?" in *Proceedings of the AAAI conference on artificial intelligence*, vol. 37, no. 9, 2023, pp. 11121–11128.
- [97] Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, "itransformer: Inverted transformers are effective for time series forecasting," in *The Twelfth International Conference on Learning Representations*, 2024, pp. 1–25.
- [98] D. Cao, F. Jia, S. O. Arik, T. Pfister, Y. Zheng, W. Ye, and Y. Liu, "Tempo: Prompt-based generative pre-trained transformer for time series forecasting," in *The Twelfth International Conference on Learning Representations*, 2024, pp. 1–33.
- [99] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, "Deep learning for time series classification: a review," *Data mining and knowledge discovery*, vol. 33, no. 4, pp. 917–963, 2019.
- [100] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, "Ts-chief: a scalable and accurate forest algorithm for time series classification," *Data Mining and Knowledge Discovery*, vol. 34, no. 3, pp. 742–775, 2020.
- [101] A. Dempster, D. F. Schmidt, and G. I. Webb, "Minirocket: A very fast (almost) deterministic transform for time series classification," in *Proceedings of the 27th ACM SIGKDD conference on knowledge* discovery & data mining, 2021, pp. 248–257.
- [102] W. Tang, G. Long, L. Liu, T. Zhou, M. Blumenstein, and J. Jiang, "Omni-scale cnns: a simple and effective kernel size configuration for time series classification," in *International Conference on Learning Representations*, 2022, pp. 1–17.
- [103] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 2921–2929.
- [104] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, "A shapelet transform for time series classification," in *Proceedings of the 18th ACM SIGKDD* international conference on Knowledge discovery and data mining, 2012, pp. 289–297.