封装测试工艺教育资料

封装形式

封装形式的发展

SGNEC现有封装形式

封装形式	管腿数量	封装尺寸	管腿间距	外形图	功能	PKG厚度	重量
SSIP	7p	-	2.54mm		线性 放大	2.80mm	0.51g
	8p	1	2.54mm				0.47g
	9p	1	2.54mm				0.59g
SOP	20p	375mil	1.27mm		遥控	2.50mm	0.48g
	20p	300mil	1.27mm			1.55mm	0.28g
SOJ	26p	300mil	1.27mm		存贮器	2.60mm	0.75g
(4M)	40p	400mil	1.27mm				1.6g
SOJ (16M)	26p	300mil	1.27mm	23.000°	存贮器	2.60mm	0.8g
	28p	400mil	1.27mm				1.1g
	42p	400mil	1.27mm				1.7g
TSOP (64M)	54p	400mil	0.8mm	· · · · · · · · · · · · · · · · · · ·	存贮器	1.00mm	0.54g
QFP	44p	10X10 (mm2)	0.8mm	MANAMA	计算机外 围电路	2.7mm	0.54g

SGNEC组立发展历程

组立流程

划片

粘片

键合

封入

QFP

_Qı

切筋

电镀

打印

分离

选别

成形

LD

SOP

切筋

电镀

打印

成形

选别

TSOP

切筋

电镀

成形

选别

打印

LD

SSIP

电镀

打印

成形

选别

划片工艺

划片工序是将已扩散完了形成芯片单元的大圆片进行分割分离。

从划片工艺上区分有: 全切和半切两种

全切:将大圆片划透。适用于比较大的芯片,是目前最流行的划片工艺。

半切: 在划片作业中,不将大圆片划透,留有120um~180um的余量,适用于较小的芯片。

从设备上区分有:金刚石划片刀划片,和激光划片两种。由于激光划片设备昂贵,金刚石划片刀划片是目前较光划片设备昂贵,金刚石划片刀划片是目前较为流行的。

半切作业流程

贴膜

将大圆片放置在膜上, 以利于拿取、大圆片的 固定、及粘片作业。

划片

利用金刚石划片刀将大 圆片划开。

裂片

在芯片的背面移动压力 辊, 使芯片受力未划部分 裂开。

PMM 对已划片完了的制品进 行外观检查,不良品进 行墨水打点。

全切作业流程

贴膜 将大圆片放置在UV膜 上,以利于拿取、大圆 片的固定、及粘片作业。

划片列用金刚石划片刀将大圆片划开。

通过UV灯对UV膜的作用,将UV膜与芯片间的粘度降低,以利于芯片的取下。

PMM 对已划片完了的制品进行外观检查,不良品进行墨水打点。

划片刀

划片刀的选择

根据制品划片槽的宽度、大圆片的厚度、划片槽的表面 状态选择不同的划片刀 划片刀参数:

刃长、刃宽、金刚石颗粒尺 寸、颗粒密度、接合剂种类

划片外观检查

划伤 划伤是由于芯片表面接触到异物如:镊子,造成芯片内部的AI布线受到损伤,造成短路或断路,而引起不良。

缺损 缺损是由于芯片的边缘受到异物、或芯片之间的撞击,造成芯片的边缘缺损,当缺损到达芯片内部时,就会破坏AL布线或活性区,引起不良。

崩齿 由于大圆片为Si单晶体,在划片时就不可避免的形成崩齿,崩齿的大小与划片 刀的种类有关,当崩齿很大时,就会成为缺损。

粘污 粘污就是异物附着在芯片表面,如:Si屑,会造成内部短路,或可靠性受到影响。

扩散 在扩散工序产生的不良,如:图形不完整、P/W针迹异常等不良,也要在PMM工序予以去除。

划片参数

- 1.划片刀型号:崩齿、划伤、裂纹、划片刀本身的寿命。
- 2.划片刀转速:崩齿、缺损。
- 3.划片速度:划片轨迹、崩齿、缺损。
- 4.划片方式:划片方式有向上、向下两种模式,对芯片表面及背面的崩齿(缺损)情况有影响。
- 5.划片刀高度: 芯片背面Si屑的发生、背面崩齿的情况有影响。
- 6.纯水流量:芯片表面Si屑粘污的发生情况有影响。

粘片工艺

粘片就是将芯片固定在某一载体上的过程。

共晶合金法: 芯片背面和载体之间在高温及压力的作用下形成共晶合金, 实现连接及固定的方法。

树脂粘接:芯片背面及载体之间,通过含有大量Ag颗粒的环氧树脂作为粘着剂,而达到固定的作用方法。

胶带粘接: 芯片表面与载体之间通过胶带的粘接, 达到固定的作业方法。

粘片的要求:一定的机械强度

良好的欧姆接触(共晶、银浆)

良好的散热性能

稳定的化学性能

粘片工艺的比较

工	艺	银浆粘片	共晶粘片	胶带粘片	
优	点	速度快 成本低 温度低 适合大生产	良好的欧姆、热阻接触 机械强度高	封装尺寸小	
缺	点	欧姆、热阻大	速度慢 成本高 温度高,需N2保护	速度慢 成本高 温度高 健合工序易发生 不良	

共晶合金法示意图

首先在L/F小岛上放置Au或其

他合金片, (或预先在小岛表

面、大圆片背面金型烝金处理。

然后在其上面放置芯片,在高

温及压力的作业下, 形成共

晶, 达到芯片固着的目的。

银浆粘片示意图

胶带粘片与传统粘片的比较

胶带粘片示意图

芯片的提取

优点:适应品种多

不会造成芯

片缺损

缺点: 芯片表面粘

污、划伤易

发生,

需定期更换

表面吸着型吸嘴提取示意图

芯片的提取

优点: 提取位置稳定

避免芯片表面粘污

使用寿命长

缺点: 芯片尺寸与吸嘴必

须一一对应

易发生芯片缺损

角锤型吸嘴提取示意图

粘片的工艺控制

- ①.粘片位置(X、Y、 θ):稳定的粘片位置,使键合识别稳定。
- ②.银浆的饱满度: 保证粘片的强度。
- ③.粘片的机械强度: 芯片的固着强度。
- ④.芯片外观基准: 粘污、划伤、缺损。
- ⑤.芯片的方向:必须与组装图一致。
- ⑥.密着性: 芯片与胶带的接着强度。

键合工艺

键合工序就是将芯片和内引线通过金属细线(金丝、铝丝、铜丝等)连接起来,实现电气上的连接的过程。

键合工艺的要求:

接合力强,接触电阻小。

稳定的化学性。

良好的导电性。

一定机械强度。

从键合工艺上区分: 热压键合、热压超声键合、超声键合。

键合工艺的比较

工艺	热压超声	热压	超声
优点	温度低(200℃) 速度快 可控制线形状 适用大生产	可控制线形状 对键合点要求不高	温度低(常温)速度快
缺点	适用于金丝(成本高)	适用金丝, 速度慢 键合温度高 (350℃)	不可控制线形状适用Al丝

键合工艺原理

金球到达键合点后在热、压力、及超声波的作用下,破坏Al电极的表面氧化层,接触到Al的新生面,达到接着的目的。

热压超声键合示意图

金线的制造示意图

金线高度与金线的关系

劈刀

劈刀参数:

H: 孔径,与金线直径相关

CD: 劈刀腔尺寸,与金球压

着径有关

FA:端面角度,与2nd强度

有关

CA: 腔体角度,与金球压着

径,压着强度有关

OR: 与2nd压着形状、压着

强度有关。

键合的发展趋势

Fine Pitch Bonding

Year of First Product Shipment Technology (nm)	1997 250	1999 180	2002 130	2005 100	2008 70	2011 50
Chip Interconnect Pitch (um)						
Wire Bond - Ball	70	50	45	40	40	40
Wire Bond - Wedge	60	45	40	35	35	35
TAB	50	50	50	50	50	50
Flip Chip (Area Array)	250	180	130	100	70	50

小间距与初始球径

金线形状

键合工艺控制

- ①.金球压着径
- ②.金球压着厚度
- ③.金线高度
- ④.金线拉断强度
- ⑤.金球剥离强度
- ⑥.键合外观

键合主要不良项目

- ①.A/B/C/D/E不良: 金线分别在A、B、C、D、E点断开
- ②.金线形状:金线间、金线与lead间, 金线与芯片之间的距离。
- ③.键合布线:必须与组装图一致。
- ④.Lead形状:引线腿间,引线腿与金线间的距离。
- ⑤.Lead镀层:镀层剥落等
- ⑥.AI触须: 易造成芯片内部短路。
- ⑦.芯片外观。

键合参数

- ①.温度:影响金球与键合点的密着性、2nd点的接着强度,即与A/E 不良有关。
- ②.压力:影响金球与键合点的密着性、2nd点的接着强度,即与A/E 不良有关。
- ③.超声功率:影响金球与键合点的密着性、2nd点的接着强度,即与A/E不良有关。
- ④.时间:影响金球与键合点的密着性、2nd点的接着强度,即与A/E 不良有关
- ⑤.弧度:控制金线的形状。
- ⑥.初期金球径:金球压着径、金球厚度、金球的密着性。

封入工艺

封入就是将键合后的制品与外界隔离开来,实现物理及化学上的保护,在量产性、均一性、成本上考虑,传递模法是现在比较流行的工艺。也就是将树脂压入加热到一定温度的金型内的方法。

封入的要求: 电性能(绝缘性,介电性)良好 吸水率、透湿率低 密着性好

一定的机械强度 热膨胀系数小 离子及放射性物质少 耐热性、阻燃性好

内应力小 成形性好,周期短

树脂注入示意图

予热后的树 脂经注塑口 投入, 在注 塑杆加压 后,流入并 充满模腔, 模腔内空气 经空气出口 溢出。

树脂难度与封入

树脂主要成分

成分	原材料	目的	配比 (wt%)
基本料	环养树脂(热塑性酚醛树脂/双酚A树脂)	交联反应, 硬化	12~20
硬化剂	苯酚/酸酐/芳香苯	同上	7~10
硬化促进剂	第3级苯类/磷化物	提高反应速度	~0.2
填充料	玻璃纤维/熔融硅氧化物/结晶硅氧化物/氧化铝	降低热膨胀、提高热传 导、提高机械强度	65~75
交联剂	环氧硅烷/氨基硅烷/烃基硅烷	基本料予填充料交联	~0.5
离型剂	天然石腊/合成石腊/硬脂酸	平衡离型与密着	~0.5
着色剂	炭黑/有机染料/金属氧化物	激光打印外观改善	~0.2
难燃剂	溴化环氧/三氧化锑/水和氧化铝	难燃剂	3~5
其他	硅酮系/橡胶系	低应力化	?

树脂的分类

种类		特征		
基本料	填充料	优点	缺点	用途
┲┲ ┲ ┲ ┲ ┲ ┲ ┲ ┲ ┲ ┲ ┲ ┲	熔融硅氧化物	(1).线膨胀率:小 (2).不纯物:少 (3).特性变化:小	(1).热传导率: 小	除下述IC
环氧树脂 	结晶硅氧化物	(1).热传导率: 大 (2).成本: 低	(1).线膨胀率:大 (2).不纯物:多 (3).特性变化:大	部分功率IC
硅酮树脂	玻璃纤维 结晶硅氧化物 熔融硅氧化物	(1).电器特性:好 (2).耐热性:高	(1).强度:低 (2).成本:高	部分功率IC

封入工序品质

(1).孔隙

原因: 树脂与料筒间的间隙、树脂中的水分、树脂浇道内空气卷入。

对策: 树脂料饼尺寸、提高注塑压力、降低金型温度、提高熔融粘度。

(2).未充填

原因: 树脂制造中硬化物堵塞空气出口、注塑中树脂硬化、注塑时有死角。

对策:减少丙酮不溶物、加大注塑口、改善流动性、降低树脂注入速度。

(3).金线变形

原因: 高粘度的树脂以高速进入膜腔、已经硬化的树脂进入膜腔

对策:降低树脂粘度、加大注塑口、降低注入速度、降低金型温度、降低压力

切筋工艺

树脂封入的半导体制品,在外管腿之间由连筋连接,其作用为防止内引线腿变形及封入时防止树脂流出。封入完了以后,连筋已无用处,将连筋去除的工序 称为连筋切断工序。

目的:将管腿、连筋与PKG三者包围的溢料去除,防止溢料对切筋冲头的破坏 将连筋切断,实现外引线腿间电气上的分离。

切筋后制品示意图

切断面

由于切筋过程是物理的机械冲断过程,因此断面是不规则的,如 左图所示。断面可分为:塌边、 剪断面、破断面、毛刺部分,各 部位的大小与冲头磨损情况及冲 头间隙有关。

塌边:与间隙成正比

剪断面:与间隙成反比

破断面:与间隙成反比

毛刺: 间隙到达一定程度以后,

毛刺会急剧增大。

成形工艺

切断L/F外框与IC相连接的吊筋、羽筋和管腿端部与L/F内框,同时将外引线腿弯成所需形状。制品被从L/F上分离,成为单个制品,这个过程称为管腿成形。

目的:将制品分离为个片状态、同时将外引线腿弯成所需形状。 成形原理:通过模具将管腿弯成所需形状,不同的PKG其过程也 不同。

LEAD成形过程

J形管腿成形过程入下图所示

成形工艺质量

(1).平坦性

平坦性是指将IC置于平台上,离开平台表面最远的距离。

影响平坦性的主要因素: PKG翘曲、连筋切断毛刺大、模具内异物、模具损坏

(2).PKG翘曲与平坦性

大型IC制品易发生PKG的翘曲,因此管腿加工时会有规律的上浮或下沉,解决方法为引线加工补偿。

(3).毛刺

在切筋、管腿尖端切断处会出现毛刺。

对策: 考虑冲头与模具间的间隙, 对冲头的磨耗进行管理。

(4).PKG裂纹

在PKG的合模线处、或表面有裂纹

对策: 封入错位监控、仕上模具清扫。

打印工艺

在制品上对制品的品名、批号、商标、制造厂家、生产国等进行标记的过程为打印工序。

目的: 明确制品的标志, 使制品的履历可查。

打印种类:一般有油墨打印及激光打印两种

	激光打印	油墨打印
优点	无前/后处理 条件设定容易,稳定性好 字迹牢固	打印错误可再工事字迹清晰
缺点	字迹不够清晰 打印不良无法修复 较小图形制作困难	需前/后处理(不利环保) 字迹可擦拭

激光打印工艺

打印原理:利用激光的能量将PKG表面刻出5~30um深度的沟槽,通过凹凸产生光线的漫反射,从而在制品表面得到视觉上光线反差,同时加工过程中产生的热量引起树脂变色,与未加工部分产生颜色上的区分,这样就可以看见打印图形。

激光打印方式

激光打印方式有3种

- 1.一括方式:打印图形制成模版,激光透过模版照在树脂表面。
- 2.抽出方式: 将各种文字制成模版, 打印时根据需要选择所要文字, 逐字打印在PKG表面。
- 3.一笔方式:不需要模版,激光束根据指令在PKG表面写出文字。

打印方式	优点	缺点
一括方式	速度快	无通用性
抽出方式	稍有通用性速度快	通用性差
一笔方式	通用性好	速度慢

激光打印质量

打印图形是商品的脸面,清楚正确美观无疑是重要的质量评价内容,通常激光打印的视认性、文字高度、文字深度是主要的评价项目。

1.文字发白

原因:激光发振功率低、激光通路受阻(保护玻璃)

对策:调整发射功率、清扫通道(保护玻璃)

2.文字欠缺

原因: 模版异常、制品上有异物附着、电磁镜动作不良、保护镜上异物附着

对策: 检查模版、去除制品表面异物、调整电磁镜、清扫激光通路。

3.打印文字变白、发黑、无法判读

原因: 打印面粘污

对策:擦拭打印面直到文字清晰为止。

4.打印位置

原因: PKG误检出

对策: 检修位置检出传感器

电镀工艺

在IC外引线腿表面形成平滑致密的铅锡合金层,作用是保护管腿和增加可焊性易于实装。

半导体电镀工艺可分为光泽电镀、无光泽电镀。

电镀方法上可分为: 挂镀、浸镀两种。

电镀的发展趋势,随着人们对环保的认识,半导体制品也面对着 无铅化的课题,欧美及日本已着手这方面的工作,有部分制品已 为无铅化,制品无铅化后,由于实装时的焊接温度需提高,对制 品的可靠性提出了更高的要求。但无铅化是未来电镀的发展方向。

制品表面

金属表面断面示意图

电镀流程

	步骤	内容
前处理	脱脂	在碱性溶液中电解
	去毛刺	利用高压水除去封入的溢料
	氧化层去除	用酸除去L/F表面的氧化层
	刻蚀	将L/F表面刻蚀数微米深度,使表面活化
电镀	电镀	制品置于阴极,利用电解原理析出金属附着在制品表面
后	中和	磷酸苏打溶液中和
 理 	水洗	
	热水洗	70℃左右
	干燥	

电镀工艺的控制

- 1.电镀层厚度
- 2.镀层的组成
- 3.耐湿性
- 4.耐热性
- 5.密着性
- 6.表面张力
- 7.不润湿性
- 8.电镀外观

选别工艺

选别工序是确保向客户提供产品的电气性能符合要求的关键工序。它利用与中测相类似的测试台以及自动分选器,测定IC的电气特性,把良品、不良品区分开来;对某些产品,还要根据测试结果进行良品的分级(分类)。

测试按功能可分为DC测试(直流特性)、AC测试(交流特性或timing特性)及FT测试(逻辑功能测试)三大类。同时还有一些辅助工序,如BT老化、插入、拔出、实装测试、电容充放电测试等。

选别流程

产品的类别或功能不同,所用测试流程及测试设备也不相同。 SGNEC典型产品的测试流程如下。

序号	Linear产品	Logic产品	Memory产品
1	1次DC	1次选别	1次选别
	(直流特性)	(Flash测试)	(直流特性)
2	1次实装	BT老化	BT老化
	(Noise检查)	(高温加电加速老化)	(高温加电加速老化)
3	再1次DC	2次选别	2次常温
	(Latchup破坏检查)	(Flash再测试)	(DC, FT)
4	AC测试	3次选别	2次高温
	(交流特性)	(DC, FT, AC, AD)	(AC、温度特性、分级)

选别工艺控制项目

测试生产与测试开发的关注点是不同的。生产中的测试要求既要可靠(Quality),又要高效(Delivery),还要低成本(Cost)。控制项目主要有:

- 1.良品率
- 2.不良再选良品率
- 3.IC外观
- 4.设备稼动率

LD管脚检查

对表面贴产品而言,随着Pin数的增多及管脚间距的缩小,IC的外观是否符合SPEC要求,一样会严重影响客户的使用。因此有必要象检查电气特性那样对IC的外观特性进行检查,LD就是进行此项工作的工序。

LD检查一般由自动管腿检查机来实现,它通过IC的图像二元化分析与测试。检查IC的管脚(如管脚形状、间距、平坦度、管脚间异物等)、树脂(异物附着、树脂欠缺)、打印(打印偏移、欠缺)、IC方向等项目,并分拣出外观不合格品。

入库检查

入库前的产品须按一定比例进行抽样外观及电特性检查,以作为衡量该批次产品质量是否合格的一种控制手段。一旦抽样产品不合格,则整批产品都被判为不合格。产品种类不同,入库检查的数量、项目、判定基准也不尽相同。

入库检查NG与客户索赔尽管严重程度不同,但性质一样。因此无 论是外观项目NG还是电特性项目NG,一般除需进行全数再检查 外,对不良发生的原因要进行认真的调查,并采取有效对策。

包装入库

包装的主要目的是保证运输过程中的产品安全,及长期存放时的产品可靠性。因此对包装材料的强度、重量、温湿度特性、抗静电性能都有一定的要求。

包装按容器形态可分为载带包装、托盘包装及料管包装;按干燥形态可分为简易干包、完全干包及通常包装;按端数形态又可分为满杯(满箱)包装与非满杯包装。

共通

1.问题意识

SGNEC作为集成电路的生产单位,作为技术人员要时刻存在问题意识,及时发现问题,避免生产中不良的发生。

2.集成电路生产的特点

集成电路生产中,选别以前的工序一般为不可再工事,出现不良就无法挽回。因此作业中必须严格按照规格书作业,认真确认,防止作业中的失误。 技术人员对所指定的事项要按照程序谨慎指定。