Capítulo 4: O Corpo Rígido

H. Terças

Instituto Superior Técnico (Departamento de Física)

4.1 Ligações e transformações

4.2 Ângulos de Euler

4.3 Tensor momento de inércia

4.4 O pião simétrico

Um corpo rígido é um sistema caracterizado N partículas vinculadas por ligações fixas no tempo, $r_i - r_j = c_{ij}$, correspondente à ligação holónoma do tipo

$$f(r_1, r_2, ..., r_n) = r_{ij} - c_{ij} = 0.$$

Isto constitui N(N-1)/2 restrições sobre 3N coordenadas. No final, importa-nos os 6 graus de liberdade efectivos

- Translações, $\vec{r_i} \rightarrow \vec{r_i} + \vec{c}$ (3 graus)
- Rotações em torno de um ponto fixo (3 graus)

A translação estuda-se usando um ponto representativo do corpo, $\vec{R}(t)$, (em geral, o centro de massa). Contudo, necessitamos de um referencial inercial.

- Base das coordenadas do corpo rígido, $\vec{e_i}'$ ($i = \{1, 2, 3\}$)
- Base do referencial de inércia, $\vec{e_i}$ ($i = \{1, 2, 3\}$)

Uma partícula α do corpo tem de coordenada $\vec{r_{\alpha}} = \vec{R} + (\sum_{i}) b'_{\alpha i} \vec{e_{i}}'$.

Transformação de coordenadas: $\vec{e_i}' = A_{ii}\vec{e_i}$

$$\vec{r_{\alpha}} = \vec{R} + b'_{\alpha i} A_{ij} \vec{e_j} \quad (r_{\alpha,j} = R_j + b'_{\alpha,i} A_{ij}).$$

A condição de ortogonalidade implica

$$\vec{e_i}' \cdot \vec{e_j}' = \delta_{ij} = A_{ik} A_{j\ell} \underbrace{\vec{e_k} \cdot \vec{e_\ell}}_{\delta_{k\ell}} = A_{ik} A_{jk}$$

Transformação ortogonal

$$A_{ik}A_{jk} = \delta_{ij} \qquad (AA^T = \mathbb{I})$$

Os nove elementos da matrix A_{ij} representam ângulos ($A_{ij} = \cos \theta_{ij}$).

Sejam x'_i (i=1,2,3) as coordenadas no referencial do corpo rígido (x_i no referencial de inércia).

$$x_i' = A_{ij}x_j.$$

Exemplo: Rotação no plano.

$$\vec{e_1}' = \cos\theta \vec{e_1} + \sin\theta \vec{e_2}, \qquad \vec{e_2}' = -\sin\theta \vec{e_1} + \cos\theta \vec{e_2}$$

$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

O conjunto de matrizes reais ortogonais de dimensão 2 forma o grupo O(2). Ao subgrupo de matrizes que consistem em rotações designa-se por SO(2).

0000

Em três dimensões, as rotações devem ser feitas com algum cuidado. Primeiro, necessitamos de definir um eixo e um ângulo de rotação em relação a esse eixo. Além disso, podemos querer estabelecer uma sucessão de rotações. $x_i'' \xrightarrow{A} x_i' \xrightarrow{B} x_i$

$$x_i'' = A_{ik} B_{k\ell} x_\ell \equiv C_{i\ell} x_\ell \qquad (\vec{x}'' = C \cdot \vec{x})$$

Em geral, $AB \neq BA$ (A e B não comutam): a ordem é importante.

A transformação inversa também pode ser feita $x_i = A_{ij}^{-1} x_i'$. Usando a condição de ortogonalidade, vem $AA^{-1} = \mathbb{I}$.

Transformação unitária

$$A^T = A^{-1}$$

Podemos demonstrar que C=AB também é unitária. As matrizes A e B pertencem ao subgrupo SO(N) (N=3 no caso de interesse). Como A é uma transformação unitária, det(A) = 1,

$$\det(A - \mathbb{I}) = 0.$$

Existe, então, um vector $\vec{\omega}$ (eixo) tal que $A \cdot \vec{\omega} = \vec{\omega}$. A este facto dá-se o nome de teorema de Euler: para cada rotação, existe um eixo para o qual ela é invariante.

• Exemplo: Rotação no eixo zz. A matriz A deixa invariante o eixo dos zz

$$A = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Por outras palavras, isto quer dizer que o movimento mais geral de um corpo rígido mantendo um dos pontos fixos é uma rotação (é intuitivo).

Sejam A, B e C as matrizes correspondentes às rotações (a), (b) e (c)

$$A = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sejam A, B e C as matrizes correspondentes às rotações (a), (b) e (c)

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

Sejam A, B e C as matrizes correspondentes às rotações (a), (b) e (c)

$$C = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & -0 & 1 \end{bmatrix}$$

A rotação total $\mathcal{A} = CBA$ (atenção à ordem!) é então

$$\mathcal{A} = \begin{bmatrix} \cos\psi\cos\phi - \cos\theta\sin\phi\sin\psi & -\sin\psi\cos\phi - \cos\theta\sin\phi\cos\psi \\ \cos\psi\sin\phi + \cos\theta\cos\phi\sin\psi & -\sin\psi\sin\phi + \cos\theta\cos\phi\cos\psi \\ \sin\theta\sin\psi & \sin\theta\cos\psi \end{bmatrix}$$

Existem importantes conseguências na cinemática dos sistemas físicos devido às rotações, $\dot{\phi} \neq 0$

Exemplo: rotação da terra. Devido às forças não inerciais (fictícias), existem movimentos de precessão e nutação (devido ao efeito combinado de $\dot{\theta}$ e $\dot{\psi}$ - voltaremos a este assunto com mais detalhe.)

Seia $\vec{\omega}=\dot{\phi}\vec{e}_z$ a velocidade de angular de rotação em relação ao eixo zz. Seja x_i' uma coordenada em relação ao referencial em rotação (x_i em relação ao referencial em rotação). Então, $x_i' = A_{ij}x_j$, onde

$$A = \left[\begin{array}{cc} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{array} \right].$$

Tomando a derivada temporal.

$$\dot{x}_i' = A_{ij}\dot{x}_j + \frac{d}{dt}(A_{ij})x_j = \dot{x}_i + \epsilon_{ikj}\omega_k x_j \qquad (\vec{v}' = \vec{v} + \vec{\omega} \times \vec{r})$$

Para a aceleração, temos

$$\vec{a}' = \vec{a} + \underbrace{2\vec{\omega} \times \vec{v}}_{\text{Coriolis}} + \underbrace{\vec{\omega} \times (\vec{\omega} \times \vec{v})}_{\text{Centr.}} + \dot{\vec{\omega}} \times \vec{v}$$

De uma forma geral, podemos escrever a derivada de uma quantidade genérica \vec{f} no referencial em rotação na forma

4.3 Tensor momento de inércia. •00000000000

$$\frac{d\vec{f}}{dt} = \left(\frac{d\vec{f}}{dt}\right)_c + \vec{\omega} \times \vec{f}.$$

Assim, para uma partícula α de um corpo rígido com coordenada $\vec{r_{\alpha}}$ (em relação ao referencial laboratório),

$$\vec{v_{\alpha}} = \vec{V} + \vec{\omega} \times \vec{r_{\alpha}}.$$

Então, o momento linear total vem

$$\vec{p} = M\vec{V} + \sum_{\alpha} \vec{\omega} \times (m_{\alpha} \vec{r_{\alpha}}).$$

Uma vez que \vec{R} é a posição do centro de massa, o último termo cancela-se dois a dois.

Quanto ao momento angular,

$$\vec{L} = \sum_{\alpha} m_{\alpha} (\vec{r_{\alpha}} \times \vec{v_{\alpha}}) = \sum_{\alpha} \left(\vec{r_{\alpha}} \times m_{\alpha} \vec{V} \right) + \sum_{\alpha} m_{\alpha} \left[\vec{r_{\alpha}} \times (\vec{\omega} \times \vec{r_{\alpha}}) \right].$$

Consideremos o caso em que \vec{R} está fixo ($\vec{V}=0$). Usando a identidade $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B}),$

$$\vec{L} = \sum_{\alpha} m_{\alpha} \left[\vec{\omega} r_{\alpha}^2 - \vec{r_{\alpha}} (\vec{r_{\alpha}} \cdot \vec{\omega}) \right]$$

Em componentes (convenção da soma!)

$$L_{i} = \underbrace{\omega_{i} \sum_{\alpha} m_{\alpha} r_{\alpha}^{2} - \sum_{\alpha} r_{\alpha i} r_{j} \omega_{j}}_{m_{\alpha} \left(r_{\alpha}^{2} \delta_{i j} - r_{i} r_{j}\right) \omega_{j}}$$

De forma vectorial $\vec{L} = I \cdot \vec{\omega}$

$$I = \left[\begin{array}{ccc} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{array} \right] = \sum_{\alpha} m_{\alpha} \left[\begin{array}{ccc} r_{\alpha}^2 - x_{\alpha}^2 & -x_{\alpha}y_{\alpha} & -x_{\alpha}z_{\alpha} \\ -y_{\alpha}x_{\alpha} & r_{\alpha}^2 - y_{\alpha}^2 & -y_{\alpha}z_{\alpha} \\ -z_{\alpha}x_{\alpha} & -z_{\alpha}y_{\alpha} & r_{\alpha}^2 - z_{\alpha}^2 \end{array} \right]$$

Tensor simétrico: $I_{ij} = I_{ji}$. No caso contínuo, o somatório de massas para a um integral,

$$I_{ij} = \int_{V} \rho(\vec{r}) \left(r^2 \delta_{ij} - r_i r_j \right) dV.$$

Quanto à energia cinética de rotação,

$$T_{\rm rot} = \frac{1}{2} \sum_{\alpha} m_{\alpha} \vec{v_{\alpha}}^2 = \frac{1}{2} \sum_{\alpha} m_{\alpha} \left(\vec{\omega} \times \vec{r_{\alpha}} \right)^2.$$

Com a identidade $(\vec{A} \times \vec{B})(\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{D})$

$$T_{\rm rot} = \frac{1}{2} \sum_{\alpha} m_{\alpha} \left(\omega^2 r_{\alpha}^2 - (\vec{\omega} \cdot \vec{r_{\alpha}})^2 \right)$$

Por componentes (convenção da soma!)

$$T_{\text{rot}} = \frac{1}{2} \sum_{\alpha} m_{\alpha} \left(\omega_{i} \omega_{i} r_{\alpha}^{2} - r_{\alpha i} r_{\alpha j} \omega_{i} \omega_{j} \right)$$
$$= \frac{1}{2} \sum_{\alpha} m_{\alpha} \omega_{i} \left(r_{\alpha}^{2} \delta_{ij} - r_{\alpha i} r_{\alpha j} \right) \omega_{j}$$
$$= \frac{1}{2} \omega_{i} I_{ij} \omega_{j} = \frac{1}{2} L_{i} \omega_{i}$$

4.3 Tensor momento de inércia. 00000000000

Se o corpo tiver movimento de translação,

$$T = \frac{1}{2} M \vec{V}^2 + \frac{1}{2} \vec{L} \cdot \vec{\omega}.$$

Por fim, o Lagrangeano pode então escrever-se

$$\boxed{L = T - V = \frac{1}{2}M\vec{V}^2 + \frac{1}{2}\vec{L}\cdot\vec{\omega} - V}$$

4.3 Tensor momento de inércia. 000000000000

$$L = T - V = \frac{1}{2}M(R+r)^2\dot{\theta}^2 + \frac{1}{5}Mr^2\dot{\varphi}^2 - Mg(R+r)\cos\theta$$

Condição de não-deslizamento, $v=(R+r)\dot{\theta}=r\dot{\varphi}$

$$L(\theta, \dot{\theta}) = \frac{7}{10}M(R+r)^2\dot{\theta}^2 - Mg(R+r)\cos\theta$$

• Exemplo 1: Rolamento sobre calote. Considere uma esfera de raio r a rolar, sem deslizar, sobre uma calote esférica (fixa ao solo) de raio R.

Para determinarmos o ângulo de abandono, θ_c , fazemos uso das duas ligações relevantes $f_1(\theta,\varphi)=(R+r)\theta-r\varphi-c=0$ e $f_2(\rho)=\rho-(R+r)=0$.

$$L^{\lambda}(\theta,\dot{\theta},\varphi,\dot{\varphi},\rho,\dot{\rho}) = \frac{1}{2}M\left(\rho^2\dot{\theta}^2 + \dot{\rho}^2\right) + \frac{1}{5}Mr^2\dot{\varphi}^2 - Mg\rho\cos\theta + \sum_k \lambda_k f_k$$

Temos três equações do movimento, $q_i = (\rho, \theta, \varphi)$

$$\frac{d}{dt}\frac{\partial L^{\lambda}}{\partial q_i} - \frac{\partial L^{\lambda}}{\partial \dot{q}_i} = 0$$

4.3 Tensor momento de inércia 000000000000

$$\begin{split} \varphi: & \quad \frac{2}{5}Mr^2\ddot{\varphi} - \underbrace{\lambda_1\frac{\partial f_1}{\partial \varphi}}_{Q_{\varphi}^{\lambda_1}} = 0 \\ \theta: & \quad M\rho^2\ddot{\theta} - Mg\rho\sin\theta - \underbrace{\lambda_1\frac{\partial f_1}{\partial \theta}}_{Q_{\theta}^{\lambda_1}} = 0 \\ \rho: & \quad M\ddot{\rho} - M\rho\dot{\theta}^2 + Mg\cos\theta - \underbrace{\lambda_2\frac{\partial f}{\partial r}}_{Q_{\rho}^{\lambda_2}} = 0 \end{split}$$

ullet Exemplo 1: Rolamento sobre calote. Considere uma esfera de raio ra rolar, sem deslizar, sobre uma calote esférica (fixa ao solo) de raio R.

Eliminamos λ_1 na equação para θ aplicando as ligações

$$\theta: \qquad \ddot{\theta} - \frac{5}{7} \frac{g}{R+r} \sin \theta = 0$$

$$\rho: \qquad \mathcal{M} \ddot{\rho} - M \rho \dot{\theta}^2 + M g \cos \theta = \underbrace{\lambda_2 \frac{\partial f}{\partial r}}_{Q^{\lambda_2}}$$

Na situação de abandono, $\lambda_2=0$. Integrando, $\frac{\dot{ heta}_c^2}{2}+\frac{5g}{7(R+r)}\cos{ heta_c}=$

$$\frac{5g}{7(R+r)}$$

$$\cos \theta_c = \frac{10}{17} \Rightarrow \theta_c \simeq 54.0^{\circ}$$
 (> 47.9° particula)

 Exemplo 2: Rolamento com e sem deslizamento. Considere uma esfera de raio R a rolar que é lançada horizontalmente num solo com atrito cinético.

4.3 Tensor momento de inércia. 000000000000

Usamos o potencial de Rayleigh para descrever o atrito, $\mathcal{F} = \mu M g(\dot{X} - r\dot{\varphi})$ (construído por forma a ser nulo para a ligação $f(x,\varphi) = X - R\varphi = 0$)

$$L(X,\dot{X},\varphi,\dot{\varphi}) = \frac{1}{2}M\dot{X}^2 + \frac{1}{5}MR^2\dot{\varphi}^2$$

 Exemplo 2: Rolamento com e sem deslizamento. Considere uma esfera de raio R a rolar que é lançada horizontalmente num solo com atrito cinético.

4.3 Tensor momento de inércia 000000000000

Para as coordenadas $q_i = (X, \varphi)$, temos então

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} + \frac{\partial \mathcal{F}}{\partial \dot{q}_i} = 0$$

4.3 Tensor momento de inércia 000000000000

esfera de raio R a rolar que é lançada horizontalmente num solo com atrito cinético.

$$\left\{ \begin{array}{ll} X: & \ddot{X} + \mu g = 0 \Rightarrow \dot{X}(t) = v_0 - \mu gt \\ \\ \varphi: & \frac{2}{5}R\ddot{\varphi} - \mu g = 0 \Rightarrow \dot{\varphi} = \omega_0 + \frac{5}{2}\frac{\mu g}{R}t \end{array} \right.$$

com atrito cinético.

4.3 Tensor momento de inércia 00000000000

A condição de não deslizamento é satisfeita para o instante t_c tal que $\dot{X}(t_c) = R\dot{\varphi}(t_c)$

$$t_c = \frac{2}{7} \frac{v_0}{\mu g} \Rightarrow \dot{X}(t_c) = \frac{5}{7} v_0$$

O momento angular de um sistema obedece à equação

$$\frac{d\vec{L}}{dt} = \left(\frac{d\vec{L}}{dt}\right)_c + \vec{\omega} \times \vec{L} = \vec{N},$$

onde $ec{N}$ é o momento das força aplicadas (torque). Em componentes,

$$\dot{L}_i + \epsilon_{ijk}\omega_j L_k = N_i.$$

Escolhemos um eixo de rotação, $L_i = I_i \omega_i$ (or termos cruzados anulamse). Assim (sem soma nos índices i)

$$I_i \dot{\omega}_i + \sum_{jk} \epsilon_{ijk} \omega_j \omega_k = N_i.$$

Explicitamente,

$$\begin{split} I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) &= N_1 \\ I_2 \dot{\omega}_2 - \omega_1 \omega_3 (I_3 - I_1) &= N_2 \\ I_3 \dot{\omega}_3 - \omega_1 \omega_2 (I_1 - I_2) &= N_3. \end{split}$$

Consideremos o caso do pião simétrico $I_1 = I_2 \neq I_3$ ($I_3 = I_{zz}$).

- ψ : rotação em torno do eixo principal, z'
 - ϕ : rotação do eixo principal em torno do eixo vertical z (precessão)
 - $\dot{\theta}$: oscilação do eixo z' em relação ao z (nutação).

Equações de Euler (decomposição nos eixos, não de Euler-Lagrange)

$$I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) = N_1 I_2 \dot{\omega}_2 - \omega_1 \omega_3 (I_3 - I_1) = N_2 I_3 \dot{\omega}_3 = N_3.$$

No referencial laboratório, consideremos a situação $N_3 = N_2 = 0 \neq N_1$

- $\omega_3 = \text{constante}$
- N_1 obriga ω_1 a variar
- ω_2 também varia porque está acoplado a ω_1

A situação é complicada de visualizar em termos de $\dot{\omega}_i$. Vamos aos **ângulos** de Euler,

$$\omega_{i} = \mathcal{B}_{ij}\zeta_{j}, \quad \zeta_{j} = \{ \begin{array}{c} \text{inercia} \\ e_{z} \end{array}, \begin{array}{c} \text{corpo} \\ e'_{x}, e'_{z} \} \end{array}$$
$$\mathcal{B}_{ij} = \begin{pmatrix} \dot{\phi} & 0 & 0 \\ 0 & \dot{\theta} & 0 \\ 0 & 0 & \dot{\psi} \end{pmatrix}$$

Usamos as rotações $\mathcal{R} = \{A, B, C\}$ para transformar os e_i na base do corpo rígido (sistema em rotação)

- $e_z = e_3 = A_{i3}e_i = (\sin\theta\sin\psi, \sin\theta\cos\psi, \cos\theta)$
- $e'_{x} = e'_{1} = C_{i1}e_{i} = (\cos\psi, -\sin\psi, 0)$
- $e'_{2} = e'_{3} = (0, 0, 1)$

$$\vec{\omega} = (\dot{\phi}\sin\theta\sin\psi + \dot{\theta}\cos\psi, \dot{\phi}\sin\theta\cos\psi - \dot{\theta}\sin\psi, \dot{\phi}\cos\theta + \dot{\psi})$$

$$T = \frac{1}{2}I_1(\omega_1^2 + \omega_2^2) + \frac{1}{2}I_3\omega_3^2$$

Em termos dos ângulos de Euler,

$$T = \frac{1}{2}I_1\left(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta\right) + \frac{1}{2}I_2\left(\dot{\psi} + \dot{\phi}\cos\theta\right)^2$$
$$V = Mgl\cos\theta$$

$$L = \frac{1}{2}I_1\left(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta\right) + \frac{1}{2}I_2\left(\dot{\psi} + \dot{\phi}\cos\theta\right)^2 - Mgl\cos\theta$$

Duas coordenadas cíclicas: ψ e ϕ (conservação de momentos)

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = I_3(\dot{\psi} + \dot{\phi}\cos\theta) = I_3\omega_3 \equiv I_1a$$

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = (I_1 \sin^2 \theta + I_3 \cos^2 \theta) \dot{\phi} + I_3 \dot{\psi} \cos \theta \equiv I_1 b$$

- $p_{\psi} = \frac{\partial L}{\partial a\dot{b}} = I_3(\dot{\psi} + \dot{\phi}\cos\theta) = I_3\omega_3 \equiv I_1a$
- $p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = (I_1 \sin^2 \theta + I_3 \cos^2 \theta) \dot{\phi} + I_3 \dot{\psi} \cos \theta \equiv I_1 b$

Outra quantidade conservada é a energia

$$E=T+V=L=\frac{1}{2}I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2}\sin^{2}\theta\right)+\frac{1}{2}I_{2}\left(\dot{\psi}+\dot{\phi}\cos\theta\right)^{2}-Mgl\cos\theta.$$

Usando p_{ψ} para eliminar ϕ

$$I_3\dot{\psi} = I_1 a - I_3\dot{\phi}\cos\theta.$$

Inserindo na expressão para p_{ϕ}

$$\dot{\phi} = \frac{b - a\cos\theta}{2a}$$

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} \qquad \dot{\psi} = \frac{I_1 a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta}$$

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$$
 $\dot{\psi} = \frac{I_1a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta}$

Finalmente, pela equação da energia,

$$\underbrace{E - \frac{I_3 \omega_3^2}{2}}_{E'} = \frac{I_1}{2} \dot{\theta}^2 + \underbrace{\frac{I_1}{2} \frac{(b - a \cos \theta)^2}{\sin^2 \theta} + Mgl \cos \theta}_{V_{\text{ef.}}(\theta)}.$$

Definindo constantes, $\alpha=(2E-I_3\omega_3^2)/I_1$, $\beta=2Mgl/I_1$, $a=p_{vb}/I_1$ e $b=p_{\phi}/I_{1}$

$$\alpha = \dot{\theta}^2 + \frac{(b - a\cos\theta)^2}{\sin^2\theta} + \beta\cos\theta$$

• Mudança de variável: $u = \cos \theta$

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

• Equações relevantes do problema:

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$$

$$\dot{\psi} = \frac{I_1 a}{I_3} - \cos \theta \frac{b - a \cos \theta}{\sin^2 \theta}$$

$$\dot{u}^2 = \underbrace{(1 - u^2)(\alpha - \beta u) - (b - au)^2}_{f(u)}$$

$$\dot{u}^2 = \underbrace{(1 - u^2)(\alpha - \beta u) - (b - au)^2}_{f(u)}$$

Significa que $u_1 \le u \le u_2$ (órbitas limitadas)

Qualitativamente: que tipo de trajectórias temos?

• Caso 1: $b/a > u_2$. Da equação de precessão,

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta},$$

vemos que $\dot{\phi}$ não muda de sinal no intervalo $[\arccos(u_2), \arccos(u_1)]$.

$$\ddot{\phi}|_{u_1} = 0 = \ddot{\phi}|_{u_2} = 0$$

O pião **precessa** da mesma forma nos pontos θ_1 e θ_2 , O pião **nuta** no intervalo $[\arccos(u_2), \arccos(u_1)]$.

• Caso 2: $u_1 < b/a < u_2$. Da equação de precessão

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta},$$

vemos que $\dot{\phi}$ muda de sinal no intervalo $[\arccos(u_2),\arccos(u_1)]$.

$$\ddot{\phi}|_{u_1} \neq \ddot{\phi}|_{u_2}$$

O pião **precessa** com sinais opostos θ_1 e θ_2

O pião **nuta** no intervalo $[\arccos(u_2), \arccos(u_1)]$.

• Caso 3: $b/a = u_1$ ou $b/a = u_2$. Das equações

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} \quad \dot{\psi} = \frac{I_1 a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta},$$

vemos que $\dot{\phi}$ e $\dot{\psi}$ se anulam num dos pontos u_1 ou u_2 .

$$\ddot{\phi}|_{u_1} = 0 \vee \ddot{\phi}|_{u_2} = 0$$

O pião **precessa** com cúspides em θ_1 ou θ_2

O pião **nuta** no intervalo $[\arccos(u_2), \arccos(u_1)]$.

• **Pião rápido**: Energia inicial de rotação $\gg \Delta V_{\rm max}$

$$\frac{1}{2}I_3\omega_3^2 \gg 2Mgl$$

 $|\dot{ heta}|,|\dot{\phi}|\ll|\dot{\psi}|$ (rotação domina sobre a precessão e a nutação). Da conservação de energia

$$E' = Mql\cos\theta_0 \Rightarrow \alpha = \beta u_0.$$

$$\dot{\theta}^2 = f(u) \text{, onde } f(u) \simeq (u_0 - u) \left[\beta(1 - u^2) - a^2(u_0 - u)\right].$$

Raízes:
$$u = u_0$$
 e $u = u_1$,

com u_1 satisfazendo $(1-u_1^2)-\frac{a^2}{\beta}(u_0-u_1)=0$. Intervalo de nutação:

$$\Delta = u_0 - u_1 \simeq \frac{\beta \sin^2 \theta_0}{a^2} = \frac{I_1}{I_2} \frac{2Mgl}{I_2\omega_0^2} \sin^2 \theta_0.$$

$$\Delta_{
m nut} \sim rac{1}{\omega_3^2}$$

• $\dot{\Delta} = f(u) \simeq a^2 \Delta(\Delta_1 - x) \quad (\Delta = u_0 - u, \ \Delta_1 = u_0 - u_1).$ Defina-se $y = \Delta - x_1/2$.

$$\dot{y}^2 = a^2 \left(\frac{x_1^2}{4} - y^2 \right) \Rightarrow \boxed{\ddot{y} + a^2 y = 0},$$

onde $a = \frac{I_3}{I_1}\omega_3$ é a frequência de **nutação**

•
$$\dot{\phi}=rac{a(u_0-u)}{\sin^2{\theta}}\simeqrac{a\Delta}{\sin^2{\theta_0}}.$$
 Neste caso,

$$\dot{\phi} = \frac{\beta}{2a} \left[1 - \cos(at) \right].$$

Tomando médias, obtemos a frequência de precessão

$$\bar{\dot{\phi}} = \frac{\beta}{2a} = \frac{Mgl}{I_3\omega_3}$$

regular), i.e. sem **nutação**, $\dot{\theta} = 0$.

$$\dot{u}^2 = f(u) = 0 \Rightarrow u = u_0$$

Isto implica que

$$Mgl = \dot{\phi}(I_3\omega_3 - I_1\dot{\phi}\cos\theta_0).$$

Para que $\dot{\phi}$ seja real, um pião no plano superior ($\theta_0 < \pi/2$) requer

$$\omega_3 > \frac{2}{I_3} \sqrt{MglI_1 \cos \theta_0}$$

Finalmente, podemos estudar as condições para a precessão simples (ou regular), i.e. sem **nutação**, $\dot{\theta} = 0$.

$$Mgl = \dot{\phi}(I_3\omega_3 - I_1\dot{\phi}\cos\theta_0).$$

• Precessão **lenta**: Desprezar termos $\sim \dot{\phi}^2$

$$\dot{\phi} \simeq \frac{Mgl}{I_3\omega_3} = \bar{\phi}$$

Não depende de θ_0 !

• Precessão **rápida**: Desprezar Mql perante ϕ

$$\dot{\phi} = \frac{I_3 \omega_3}{I_1 \cos \theta_0}$$

Podíamos chegar a resultados mais precisos resolvendo a equação quadrática para ϕ . Contudo, os resultados qualitativos são satisfatórios.

