Faculté des Sciences

Date: 02/10/2017

 $3^{\grave{e}me}$ Année Mathématiques

Département de mathématiques et Informatique

Module : Mesure et intégration

Série N°1 : Rappels et Tribus

Exercise 1 Soit $f: E \to F$ une application.

1) Montrer que pour toute famille $(B_j)_{j\in J}$ de parties de F

$$f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j), \ f^{-1}\left(\bigcap_{j\in J} B_j\right) = \bigcap_{j\in J} f^{-1}(B_j) \ et \ f^{-1}\left(\mathbb{C}_F B_j\right) = \mathbb{C}_E f^{-1}\left(B_j\right).$$

2) Montrer que pour toute famille $(A_i)_{i\in I}$ de parties de E

$$f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f(A_i)$$
 et $f\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}f(A_i)$.

3) Montrer que si f est injective, alors $f\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}f(A_i)$.

Exercice 2 Soit E un ensemble et $(A_n)_{n\in\mathbb{N}}$ une suite d'ensemble de $\mathcal{P}(E)$. On pose

$$B_n = A_n \cap \left(\bigcup_{k=0}^{n-1} A_k\right)^C \text{ avec } B_0 = A_0.$$

Montrer que

$$\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}B_n$$

et que les B_n sont deux à deux disjoints. (Cela signifie que toute réunion dénombrable d'éléments de $\mathcal{P}(E)$ peut s'écrire comme réunion dénombrable de parties deux à deux disjointes).

Exercice 3 Soit E un ensemble. Lorsque A est une partie de E, on définit $\mathbb{1}_A:E\to\mathbb{R}$ par

$$\mathbb{I}_A(x) = \begin{cases} 1 & si \quad x \in A \\ 0 & si \quad x \notin A \end{cases}$$

- 1) Montrer que si A et B sont deux sous-ensembles disjoints de E, alors $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B$.
- 2) En déduire que si $(A_n)_{n\in\mathbb{N}}$ est une suite de sous-ensembles de E deux à deux disjoints, on a $\mathbb{1}_{\substack{n\in\mathbb{N}\\n\in\mathbb{N}}}A_n=\sum_{n\in\mathbb{N}}\mathbb{1}_{A_n}$ (On précisera aussi le sens donné à $\sum_{n\in\mathbb{N}}\mathbb{1}_{A_n}$).
- 3) Montrer que si $B \subset A \subset E$, on a $\mathbb{1}_{A \setminus B} = \mathbb{1}_A \mathbb{1}_B$.
- 4) Montrer que, pour A et B sous-ensembles de E, on a $\mathbbm{1}_{A\cap B}=\mathbbm{1}_A\mathbbm{1}_B.$
- 5) Soit $f: E \to \mathbb{R}$ une fonction ne prenant qu'un nombre fini de valeurs. Montrer que f s'écrit comme combinaison linéaire de fonctions caractéristiques.

Exercice 4 Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties d'un ensemble E. On note

$$\liminf_{n \to +\infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{p \ge n} A_p \ et \ \limsup_{n \to +\infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{p \ge n} A_p.$$

- 1) On suppose la suite $(A_n)_{n\in\mathbb{N}}$ est monotone, c'est-à-dire que $A_n\subseteq A_{n+1}$, pour tout $n\in\mathbb{N}$, ou que $A_{n+1}\subseteq A_n$, pour tout $n\in\mathbb{N}$. Exprimer $\liminf_{n\to+\infty}A_n$ et $\limsup_{n\to+\infty}A_n$ en fonction de $\bigcup_{n\in\mathbb{N}}A_n$ et $\bigcap_{n\in\mathbb{N}}A_n$.
- 2) Même question que précédemment si la suite est définie par : $A_{2p}=A$ et $A_{2p+1}=B$, $p\in\mathbb{N}$, A et B étant deux parties données de E.
- 3) Montrer que

$$\begin{split} \mathbb{1}_{\limsup_{n \to +\infty} A_n} &= \limsup_{n \to +\infty} \mathbb{1}_{A_n}, \ \mathbb{1}_{\liminf_{n \to +\infty} A_n} &= \liminf_{n \to +\infty} \mathbb{1}_{A_n} \ \text{et } \liminf_{n \to +\infty} A_n \subseteq \limsup_{n \to +\infty} A_n. \\ \liminf_{n \to +\infty} A_n &= \left\{ x \in E; \ \sum_{n=0}^{+\infty} \mathbb{1}_{A_n^c}(x) < \infty \right\} \\ &= \left\{ x \in E; \ x \ \text{appartient à } A_n \ \text{pour tout } n \ \text{sauf au plus un nombre fini} \right\} \\ \limsup_{n \to +\infty} A_n &= \left\{ x \in E; \ \sum_{n=0}^{+\infty} \mathbb{1}_{A_n}(x) = +\infty \right\} \\ &= \left\{ x \in E; \ x \ \text{appartient à } A_n \ \text{pour une infinité d'indices } n \right\} \end{split}$$

Exercice 5 Soient E et F deux ensembles et $f: E \to F$ une application

1) Soit B une tribu sur F. On note:

$$T = f^{-1}(B) = \{ f^{-1}(B), B \in B \}.$$

Montrer que $\mathcal T$ est une tribu sur E (appelée image réciproque de la tribu $\mathcal B$).

- 2) Dans le cas où $E \subseteq F$ et f définie par f(x) = x pour tout x, montrer que $\mathcal{T} = \{E \cap B, B \in \mathcal{B}\}$ et on dit que \mathcal{T} est la tribu trace de \mathcal{B} sur E.
- 3) Determiner $f^{-1}(\mathcal{B})$ si $E = \{-1, 0, 1, 2\}, F = \{0, 1, 4\}, \mathcal{B} = \mathcal{P}(F)$ et $f(x) = x^2$.
- 4) Montrer avec un exemple que si A une tribu sur E, alors $f(A) = \{f(A), A \in A\}$ en général n'est pas une tribu sur F.

Exercice 6 Soient E et F deux ensembles et $f: E \to F$ une application et C une partie de $\mathcal{P}(E)$. On veut montrer que l'image réciproque de la tribu engendrée par C est la tribu \mathcal{T} engendrée par l'image réciproque de C.

1) Montrer que

$$f^{-1}(\mathcal{C}) \subseteq f^{-1}(\sigma(\mathcal{C}))$$
 et $\mathcal{T} = \sigma\left(f^{-1}(\mathcal{C})\right) \subseteq f^{-1}(\sigma(\mathcal{C}))$.

- 2) On note $\mathcal{T}' = \{B \subseteq F, f^{-1}(B) \in \mathcal{T}\}$. Montrer que \mathcal{T}' est une tribu sur F contenant C.
- 3) En déduire que $f^{-1}(\sigma(\mathcal{C}))$ est inclus dans $f^{-1}(\mathcal{T}')$ et conclure.
- 4) Vérifier que $f^{-1}(\sigma(\mathcal{C})) = \sigma\left(f^{-1}(\mathcal{C})\right)$ si $E = \{-1,0,1\}, F = \{0,1,2,3,4\}, \mathcal{C} = \{\{1\},\{0,1\}\}$ et $f(x) = x^2$.

Faculté des Sciences

Département de mathématiques et Informatique

Date: 22/10/2016

3ème Année Mathématiques

Module : Mesure et intégration

Série $N^{\circ}2$: Tribus et Mesures

Exercice 1 On définit sur $P(\mathbb{R})$ l'application

$$\delta(A) = \begin{cases} 1, & 0 \in A \\ 0, & 0 \notin A \end{cases}$$

Montrer que δ est une mesure positive sur $(\mathbb{R}, P(\mathbb{R}))$.

Exercice 2 On définit l'application $\mu: P(\mathbb{N}) \to \overline{\mathbb{R}}_+$ par

$$\begin{cases} \mu(\emptyset) = 0, & \mu(E) = +\infty \text{ si } card(E) = +\infty \\ \mu(E) = \sum_{n \in E} \frac{1}{n^2} \text{ si } card(E) < +\infty \end{cases}$$

Montrer que μ n'est une mesure positive sur $(\mathbb{N}, P(\mathbb{N}))$.

Exercice 3 Soit X un ensemble, et $a \in X$. Soit l'application

$$\begin{cases} \mu: P(X) \to \overline{\mathbb{R}}_+ \\ \mu(A) = \mathbb{1}_A(a) \end{cases}$$

- 1) Vérifier que μ est une mesure positive sur (X, P(X)).
- 2) Déterminer les parties négligeables pour μ.
- 3) Soit f et g deux fonctions définies sur X telles que :

$$f(a) = g(a)$$
 et $\forall x \in X \setminus \{a\} : f(x) \neq g(x)$.

quelle est la proprétie vraie $P: f=g \ \mu \ p.p$ ou $Q: f \neq g \ \mu \ p.p$. Justifier!

Exercice 4 Soit (X, \mathcal{M}, μ) un espace probabilisé, on définit

$$\mathcal{T} = \{ A \in \mathcal{M}, \ \mu(A) = 1 \ ou \ \mu(A) = 0 \}.$$

Montrer que \mathcal{T} est une tribu sur X.

Exercice 5 Soit X une ensemble non vide et soit \mathcal{M} une tribu engendrée par les singletons $\{x\}$ de X.

- 1) Montrer que $A \in \mathcal{M}$ si seulement A ou A^c est dénombrable.
- 2) On suppose que X est non dénombable et on définit pour $A \in \mathcal{M}$

$$\mu(A) = \begin{cases} 0, & si \ A \ est \ d\'{e}nombrable} \\ 1, & si \ A \ est \ non \ d\'{e}nombrable} \end{cases}$$

Montrer que μ est une mesure positive sur \mathcal{M} .

Exercice 6 Montrer que les deux ensembles suivants sont boréliens et calculer leurs mesure de Lebesgue

$$\bigcup_{k=1}^{\infty} \left] \frac{1}{k+1}; \frac{1}{k} \left[, \quad \bigcup_{k=1}^{\infty} \right] \frac{1}{2k}; \frac{1}{2k-1} \left[. \right.$$

Exercice 7 Soit (X, \mathcal{M}, μ) un espace mesuré et soit $(A_n)_{n \in \mathbb{N}} \subset \mathcal{M}$. Montrer que

$$\mu\left(\liminf_{n\to+\infty}(A_n)\right) \le \liminf_{n\to+\infty}\mu(A_n).$$

et lorsque μ est finie, on a aussi

$$\limsup_{n \to +\infty} \mu(A_n) \le \mu \left(\limsup_{n \to +\infty} (A_n) \right).$$

et si $\sum_{n\in\mathbb{N}}\mu(A_n)<+\infty$ on a (Lemme Borel-cantelli)

$$\mu\left(\limsup_{n\to+\infty}(A_n)\right)=0.$$

Exercice 8 Soit $\mathscr{B}(\mathbb{R})$ la tribu Borélienne, et soit μ une mesure positive sur $\mathscr{B}(\mathbb{R})$ telle que $\mu(I) < \infty$ pourtout intervalle borné $I \subset \mathbb{R}$. Soits $a \in \mathbb{R}$, la fonction φ_a définie par :

$$\varphi_a(x) = \begin{cases} \mu(]a, x], & x > a \\ 0, & x = a \\ -\mu(]x, a], & x < a \end{cases}$$

- 1) Montrer que φ_a est croissante.
- 2) Montrer que φ_a est continue à droite en tout point.

Exercice 9 Soit X une ensemble et soit μ^* une mesure extérieure sur P(X) et A, B deux parties de X.

1) Montrer que si $\mu^*(B) = 0$ on

$$\mu^*(A \cup B) = \mu^*(A) = \mu^*(A \cap B^c).$$

2) Montrer que si $\mu^*(A)$ et $\mu^*(B)$ sont fini alors

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A\Delta B).$$

3) Calculer en utilisant la définition de la mesure de Lebesgue extérieure $\lambda^*(\mathbb{N})$.

Exercice 10 Soit μ^* une mesure extérieure sur X et soit A et B deux parties de X. Montrer que

- 1) $\mu^*(A) = 0$ alors A est mesurable $(A \in \mathcal{M}_{\mu^*})$.
- 2) Pour tout $B \subset X$ et $A \in \mathcal{M}_{\mu^*}$ on a

$$\mu^*(A \cup B) + \mu^*(A \cap B) = \mu^*(A) + \mu^*(B)$$

3) Si $B \notin \mathcal{M}_{\mu^*}$ et $A \in \mathcal{M}_{\mu^*}$ avec $B \subseteq A$, alors $\mu^*(A \setminus B) > 0$.

Exercice 11 Soit λ^* la mesure extérieure de Lebesgue sur \mathbb{R}^N et soit $a \in \mathbb{R}^n$.

- 1) Que peut-on dire sur $\lambda^*(\emptyset)$ et $\lambda^*(\{a\})$?
- 2) Calculer $\lambda^*(\mathbb{N}^N)$, $\lambda^*(\mathbb{Z}^N)$, $\lambda^*(\mathbb{Q}^N)$.
- 3) Montrer que \emptyset , $\{a\}$, \mathbb{N}^N , \mathbb{Z}^N , \mathbb{Q}^N sont mesurable.

Exercice 12 Soit (X,T) un espace mesurable, $(\mu_i)_{1 \leq i \leq n}$, n mesures sur (Ω,T) et $(a_i)_{1 \leq i \leq n}$, des nombres réels positifs. Pour A dans T on pose :

$$\mu(A) = \sum_{i=1}^{n} a_i \mu_i(A),$$

Montrer que μ est une mesure sur (X,T) notée $\mu = \sum_{i=1}^{n} a_i \mu_i$.

Exercice 13 On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, $(\lambda \text{ mesure de Lebasgue})$; pour $A \in \mathcal{P}(\mathbb{R})$ et $a \in \mathbb{R}$ on note $:A + a = \{x + a, \ x \in A\}$. Soit $a \in \mathbb{R}$ fixé.

1) Montrer que:

$$\mathscr{T}_a = \{ A \in \mathscr{P}(\mathbb{R}) \backslash A + a \in \mathscr{B}(\mathbb{R}) \}$$

est une tribu sur \mathbb{R} .

- 2) Montrer que $\mathscr{B}(\mathbb{R})\subset\mathscr{T}_a$ puis que $\mathscr{B}(\mathbb{R})=\mathscr{T}_a$
- 3) Pour $A \in \mathcal{B}(\mathbb{R})$ on pose $\mu(A) = \lambda(A+a)$. Montrer que μ est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 4) En déduire que pour tout $A \in \mathcal{B}(\mathbb{R})$, on a $\lambda(A+a) = \lambda(A)$ (invariance de la mesure de Lebesgue par translation).

Exercice 14 On suppose que $A \subseteq \mathbb{R}$ est un un ensemble Lebesgue-mesurable et $\lambda(A) < +\infty$. Soit λ la mesure de Lebesgue sur \mathbb{R} .

Montrer que la fonction $\varphi: \mathbb{R} \to [0, +\infty)$ definie par $\varphi(x) = \varphi(A \cap (-\infty, x])$ est continue.

Exercice 15 On suppose que μ est une mesure de Borel sur $\mathbb R$ telque

- $\mu([0,1]) = 1$; et
- $\mu(A) = \mu(A+x)$ pour tout $A \in \mathcal{B}(\mathbb{R})$ et pour tout $x \in \mathbb{R}$.

Montrer que $\mu = \lambda$ (λ est la mesure de Lebesgue sur $\mathbb R$).

Faculté des Sciences

Département de mathématiques et Informatique

Date: 14/11/2017

3ème Année Mathématiques

Module : Mesure et intégration

Série N°3: Mesures Positives

Exercice 1 On définit sur $P(\mathbb{R})$ l'application

$$\delta(A) = \begin{cases} 1, & 0 \in A \\ 0, & 0 \notin A \end{cases}$$

Montrer que δ est une mesure positive sur $(\mathbb{R}, P(\mathbb{R}))$.

Exercice 2 On définit l'application $\mu: P(\mathbb{N}) \to \overline{\mathbb{R}}_+$ par

$$\left\{ \begin{array}{l} \mu(\emptyset)=0, \quad \mu(E)=+\infty \quad si \ card(E)=+\infty \\ \mu(E)=\sum\limits_{n\in E}\frac{1}{n^2} \quad si \ card(E)<+\infty \end{array} \right.$$

Montrer que μ n'est une mesure positive sur $(\mathbb{N}, P(\mathbb{N}))$.

Exercice 3 Soit X une partie non vide $\mathbb R$ et soit $a\in X$. On considère l'application

$$\mu: \mathcal{B}(X) \to \overline{\mathbb{R}}_+$$

$$\mu(A) = \mathbb{1}_A(a)$$

- 1) Vérifier que μ est une mesure positive sur $(X,\mathcal{B}(X))$.
- 2) Déterminer les parties négligeables pour μ .
- 3) Soit f et g deux fonctions définies sur X telles que :

$$f(a) = g(a)$$
 et $\forall x \in X \setminus \{a\} : f(x) \neq g(x)$.

quelle est la proprétie vraie $P: f = g \mu p.p$ ou $Q: f \neq g \mu p.p$. Justifier!

4) Reprendre la question (3) en remplaç $cant \mu$ par la mesure de Lebesgue λ .

 $\underline{\mathbf{Exercice}}\ \mathbf{4}\ \mathit{Soit}\ (X,\mathcal{M},\mu)\ \mathit{un}\ \mathit{espace\ probabilis\acute{e}},\ \mathit{on}\ \mathit{d\acute{e}finit}$

$$\mathcal{T} = \{ A \in \mathcal{M}, \ \mu(A) = 1 \ ou \ \mu(A) = 0 \}.$$

Montrer que T est une tribu sur X.

 $\underline{\textbf{Exercice}} \ \ \textbf{5} \ \ \textit{Soit} \ X \ \ \textit{une ensemble non vide et soit} \ \mathcal{M} \ \textit{une tribu engendrée par les singletons} \ \{x\} \ \textit{de} \ X.$

1) Montrer que $A \in \mathcal{M}$ si seulement A ou A^c est dénombrable.

2) On suppose que X est non dénombable et on définit pour $A \in \mathcal{M}$

$$\mu(A) = \begin{cases} 0, & si \ A \ est \ d\'{e}nombrable} \\ 1, & si \ A \ est \ non \ d\'{e}nombrable} \end{cases}$$

Montrer que μ est une mesure positive sur (X, \mathcal{M}) .

Exercice 6 Montrer que les deux ensembles suivants sont boréliens et calculer leurs mesure de Lebesgue

$$\bigcup_{k=1}^{\infty} \left] \frac{1}{k+1}; \frac{1}{k} \left[, \quad \bigcup_{k=1}^{\infty} \right] \frac{1}{2k}; \frac{1}{2k-1} \left[. \right]$$

Exercice 7 Soit (X, \mathcal{M}, μ) un espace mesuré et soit $(A_n)_{n \in \mathbb{N}} \subset \mathcal{M}$. Montrer que

$$\mu\left(\liminf_{n\to+\infty}(A_n)\right) \le \liminf_{n\to+\infty}\mu(A_n).$$

et lorsque μ est finie, on a aussi

$$\limsup_{n \to +\infty} \mu(A_n) \le \mu \left(\limsup_{n \to +\infty} (A_n) \right).$$

et si $\sum_{n\in\mathbb{N}}\mu(A_n)<+\infty$ on a (Lemme Borel-cantelli)

$$\mu\left(\limsup_{n\to+\infty}(A_n)\right)=0.$$

Exercice 8 Soit $\mathcal{B}(\mathbb{R})$ la tribu Borélienne, et soit μ une mesure positive sur $\mathcal{B}(\mathbb{R})$ telle que $\mu(I) < \infty$ pourtout intervalle borné $I \subset \mathbb{R}$. Pour $a \in \mathbb{R}$, on définit la fonction φ_a par :

$$\varphi_a(x) = \begin{cases} \mu(]a, x], & x > a \\ 0, & x = a \\ -\mu(]x, a], & x < a \end{cases}$$

- 1) Montrer que φ_a est croissante.
- 2) Montrer que φ_a est continue à droite en tout point.

Exercice 9 Soit X un ensemble non vide. Sur $\mathcal{P}(X)$, on définit l'application

$$\mu^*(A) = \begin{cases} 0, & A = \emptyset \\ 1, & A \neq \emptyset \end{cases}$$

- 1) Montrer que μ^* est une mesure extérieure mais n'est pas une mesure positive si X contient plus d'un élément.
- 2) On suppose que X contient plus d'un élément. Déterminer la tribu \mathcal{M}_{μ^*} et la mesure positive $\mu = \mu^*_{|\mathcal{M}_{\mu^*}}$.

Exercice 10 Soit X une ensemble et soit μ^* une mesure extérieure sur P(X) et A, B deux parties de X.

1) Montrer que si $\mu^*(B) = 0$ on

$$\mu^*(A \cup B) = \mu^*(A) = \mu^*(A \cap B^c).$$

2) Montrer que si $\mu^*(A)$ et $\mu^*(B)$ sont fini alors

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A\Delta B).$$

3) Calculer en utilisant la définition de la mesure de Lebesgue extérieure $\lambda^*(\mathbb{N})$.

Exercice 11 Soit μ^* une mesure extérieure sur X et soit A et B deux parties de X. Montrer que

- 1) $\mu^*(A) = 0$ alors A est mesurable $(A \in \mathcal{M}_{\mu^*})$.
- 2) Pour tout $B \subset X$ et $A \in \mathcal{M}_{\mu^*}$ on a

$$\mu^*(A \cup B) + \mu^*(A \cap B) = \mu^*(A) + \mu^*(B)$$

3) Si $B \notin \mathcal{M}_{\mu^*}$ et $A \in \mathcal{M}_{\mu^*}$ avec $B \subseteq A$, alors $\mu^*(A \setminus B) > 0$.

Exercice 12 Soit (X, \mathcal{T}) un espace mesurable, $(\mu_i)_{1 \leq i \leq p}$, p mesures positives sur (X, \mathcal{T}) et $(a_i)_{1 \leq i \leq p}$, des nombres réels positifs. Pour A dans \mathcal{T} on pose :

$$\mu(A) = \sum_{i=1}^{p} a_i \mu_i(A),$$

Montrer que μ est une mesure sur (X,T) notée $\mu = \sum_{i=1}^{p} a_i \mu_i$.

Exercice 13 On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, $(\lambda \text{ mesure de Lebasgue})$; pour $A \in \mathcal{P}(\mathbb{R})$ et $a \in \mathbb{R}$ on note $A + a = \{x + a, x \in A\}$. Soit $a \in \mathbb{R}$ fixé.

1) Montrer que:

$$\mathcal{T}_a = \{ A \in \mathcal{P}(\mathbb{R}) \backslash A + a \in \mathcal{B}(\mathbb{R}) \}$$

est une tribu sur \mathbb{R} .

- 2) Montrer que $\mathcal{B}(\mathbb{R})\subset\mathcal{T}_a$ puis que $\mathcal{B}(\mathbb{R})=\mathcal{T}_a$
- 3) Pour $A \in \mathcal{B}(\mathbb{R})$ on pose $\mu(A) = \lambda(A+a)$. Montrer que μ est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 4) En déduire que pour tout $A \in \mathcal{B}(\mathbb{R})$, on a $\lambda(A+a) = \lambda(A)$ (invariance de la mesure de Lebesgue par translation).

Faculté des Sciences

Département de mathématiques et Informatique

Date: 26/11/2016

3ème Année Mathématiques

Module : Mesure et intégration

Série $N^{\circ}4$: Convergence presque partout et en mesure

Dans la suite \mathbb{R} nuni de la tribu borélien et $(X; \mathcal{B}; \mu)$ un espace mesuré, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{R} et $f: X \to \mathbb{R}$.

♂Définition(Convergence presque partout)

On dit que (f_n) converge μ -presque partout vers f $(f_n \to f \mu$ -p.p.) si

$$\exists A \in \mathcal{N}_{\mu}, \ \forall x \in A^c : \lim_{n \to +\infty} f_n(x) = f(x).$$

Autrement dit $\exists A \in \mathscr{N}_{\mu}, \ f_n \xrightarrow{c.s} f \text{ sur } A^c. \text{ On note } f_n \xrightarrow{\mu-p.p} f.$

Remarquant que la convergence simple imlique la convergence μ -presque partout.

- Exercice 1 1) Soit l'espace mesuré ([0,1], $\mathcal{B}([0,1]), \lambda$). Montrer que $f_n = x^n$ et $g_n(x) = n\mathbb{1}_{\left[\frac{1}{n},\frac{2}{n}\right]}$ convergent λ -p.p vers la fonction nulle.
 - 2) Soit l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Montrer que $f_n(x) = \mathbb{1}_{[n,n+1]}$, $g_n = (\cos x)^n$ et $h_n(x) = \frac{1}{n} \mathbb{1}_{[0,n]}$ convergent λ -p.p vers la fonction nulle.
 - 3) Prouver que si une suite (f_n) converge μ -p.p. vers f et si (f_n) converge μ -p.p. vers g, alors f = g μ -p.p.

♂Définition(Convergence en mesure)

Soit (f_n) une suite des fonction mesurables, f une fonction mesureable. On dit que (f_n) converge en mesure vers f si

$$\forall \epsilon > 0: \lim_{n \to +\infty} \mu\left(\left\{x \in X, |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0.$$

On écrit $f_n \xrightarrow{\mu} f$.

- Exercice 2 1) Soit l'espace mesuré $([0,1], \mathcal{B}([0,1]), \lambda)$ et soit $f_n(x) = n\mathbb{1}_{[0,\frac{1}{n}]}$. Montrer que $f_n \xrightarrow{\lambda} 0$.
 - 2) Soit l'espace mesuré $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \lambda)$ et soit $f_n(x) = e^{-x} \mathbb{1}_{[n, +\infty[}$. Montrer que $f_n \xrightarrow{\lambda} 0$.

- 3) Prouver que si une suite (f_n) converge en mesure vers f et si (f_n) converge en mesure vers g, alors $f = g \mu p.p.$
- Exercice 3 1) Démontrer le théorème de Lebesgue suivant. Si $\mu(X) < +\infty$ et (f_n) converge vers f μ -p.p. alors (f_n) converge en mesure vers f.
 - 2) Montrer sur un exemple que l'hypothèse $\mu(X) < +\infty$ est essentielle dans le théorème de Lebesgue énoncé precédemment.
 - 3) Donner un exemple d'une suite de fonctions mesurables sur l'intervalle [0,1] convergente en mesure sur [0,1] mais qui ne converge en aucun point de cet intervalle.