## Introducción a Big Data



### Agenda

- Introducción a Big Data
- Datos estructurados y no estructurados
- Hadoop
- Ecosistema Hadoop
- Casos de Estudio



### Definiciones de Big Data

- Un conjunto de tecnologías relacionadas y no relacionadas para analítica a gran escala
- Gran volumen, alta velocidad y gran variedad de información que demanda un procesado poco costoso para obtener conocimiento y tomar decisiones.



### Las V's de Big Data

- Volumen: Terabytes, Petabytes, Exabytes
- Velocidad: hora, segundos, milisegundos
- Variedad: 5 formatos, 10 formatos, 20+ formatos

 Variabilidad: formatos cambian en el tiempo

No todas las V's tienen que estar presentes



### ROI probado

- Google AdWords: Predicción de click through rates (CTR)
- Netflix: 75% del streaming de video viene de recomendaciones
- Amazon: 35% de las ventas de producto vienen de recomendaciones de producto



### Nada nuevo, excepto las V's



**Increasing Data Variety and Complexity** 



## Correlación de Búsquedas







### ¿Sólo correlaciones?

# US spending on science, space, and technology correlates with Suicides by hanging, strangulation and suffocation



|                                                                                      | <u>1999</u> | <u>2000</u> | <u>2001</u> | <u>2002</u> | <u>2003</u> | <u>2004</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> |
|--------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| US spending on science, space, and technology<br>Millions of todays dollars (US OMB) | 18,079      | 18,594      | 19,753      | 20,734      | 20,831      | 23,029      | 23,597      | 23,584      | 25,525      | 27,731      | 29,449      |
| Suicides by hanging, strangulation and suffocation<br>Deaths (US) (CDC)              | 5,427       | 5,688       | 6,198       | 6,462       | 6,635       | 7,336       | 7,248       | 7,491       | 8,161       | 8,578       | 9,000       |

Correlation: 0.992082



### Big Data ≠ BI Tradicional con más datos

- Big Data está redefiniendo los procesos de gestión de datos maestros, calidad de datos y gestión del ciclo de vida de la información
- Big Data NO reemplaza EDW y OLAP, suplementa esas inversiones
- El ecosistema Big Data incluye una gran variedad de tecnologías analíticas
- Bases de datos columnares, JSON y almacenes de ficheros no estructurados



### Enfoque evolutivo





### Cambios en patrones DW

El almacenamiento Big Data (hoy en día Data Lake) se caracteriza por tres atributos clave:

- Recoge todo
- Explótalo desde cualquier sitio
- Acceso Flexible



### Cambios en patrones DW

Cambiar de Esquema primero a Esquema más tarde

- 1. Llegan los datos
- 2. Se deriva el esquema
- 3. Limpieza de Datos
- 4. Transformación
- 5. Carga en EDW
- 6. Análisis

  Valor de

  los datos

  LENTO



- 1. Llegan los datos
- Se cargan en Hadoop
- 3. Análisis
- 4. Subconjuntos cargados en EDW

Rápido valor de los datos



### Cambios en Patrones

### Básicamente construir un "puente" hacia Big Data





### Componentes de una Arquitectura Big Data





### Tipos de Carga de Trabajo

- Procesado batch de grandes orígenes de datos
- Procesado de grandes cantidades de datos en tiempo real
- Exploración interactiva de grandes cantidades de datos
- Analítica predictiva y Machine Learning
- Considerar big data cuando:
  - Se almacenan y procesan grandes cantidades de datos demasiado grandes para una base de datos tradicional
  - Transformar datos no estructurados para análisis y Reporting
  - Capturar, procesar y analizar grandes cantidades de datos en streaming en tiempo real o con muy baja latencia



### Agenda

- Introducción a Big Data
- Datos estructurados y no estructurados
- Hadoop
- Ecosistema Hadoop
- Casos de Estudio



# Datos no estructurados no se están analizando



- Datos estructurados
  - BBDD Relacionales
  - BBDD Analíticas



# Datos no estructurados no se están analizando



- Datos estructurados
  - BBDD Relacionales
  - BBDD Analíticas
- Datos Menos estructurados
  - Crear ETL para transformar en Relacional
    - Mucho tiempo desarrollo
    - Susceptible cambio estructura
  - Archivado o borrado
  - Acceso caro



## Datos en las organizaciones

#### Tipos de datos





## Ejemplos de datos no estructurados





### Agenda

- Introducción a Big Data
- Datos estructurados y no estructurados
- Hadoop
- Ecosistema Hadoop
- Casos de Estudio



### Hadoop

- Open Source ☺
- Plataforma de almacenamiento y procesado para Big
   Data
- Optimizado para manejar
  - Datos de forma masiva utilizando paralelismo
  - Variedad de datos (Estructurado, No estructurado, Menos estructurado)
  - Uso de hardware barato
- No para OLTP / OLAP
- Mover el cómputo hacia el dato



### Hadoop

- Componentes core de Hadoop: HDFS & MapReduce
- Hadoop Distribution File System
  - Distribuido, tolerante a fallos, redundante, autorecuperable
- Map Reduce
  - Procesamiento distribuido, tolerante a fallos, procesa donde está el dato. Lectura y procesado distribuido.



# Un cliente escribiendo datos en HDFS





### Hadoop

- Escalable
  - Escala linealmente en capacidad de almacenamiento y procesado.
- Tolerante a Fallos
  - Matrimonio entre un Sistema de ficheros distribuido y un framework tolerante a fallos utilizado para leer datos
- Procesamiento distribuido
  - Sigue la estrategia de divide y vencerás.



### RDBMS vs Hadoop

| Característica                | RDBMS                       | Hadoop                                        |
|-------------------------------|-----------------------------|-----------------------------------------------|
| Tamaño de Datos               | Gigabytes (Terabytes)       | Petabytes (Hexabytes)                         |
| Acceso                        | Interactivo y Batch         | Batch – NO Interactivo                        |
| Actualizaciones               | Leer/ Escribir varias veces | Escribir una vez, leer varias veces           |
| Estructura                    | Esquema estático            | Esquema dinámico                              |
| Integridad                    | Alta (ACID)                 | Baja                                          |
| Escalado                      | No lineal                   | Lineal                                        |
| Tiempo de respuesta consultas | Puede ser casi inmediato    | Tiene latencia (debido a procesamiento batch) |



### Historia Hadoop

2002: Nutch open source motor de búsqueda por Doug Cutting

2003: Google publica un documento sobre GFS (Google Distribute File System)

2004: Nutch Distributed Files System (NDFS)

2004: Google publica un documento sobre MapReduce

2005: MapReduce se implementa en NDFS

2006: Doug Cutting se une a Yahoo! & inician Apache Hadoop Subproject

2008: Hadoop se convierte en un Proyecto top de Apache
El índice de Yahoo's se ejecuta en un cluster de 10.000 nodos
Hadoop rompe el record de 1TB en ordenación: 209s en 910 nodos
New York Times convierte 4TB de archivos en PDF en 24h en 100 nodos

2011: Yahoo crea HortonWorks, una compañía dedicada a Hadoop

2011: HortonWorks y Microsoft anuncian un acuerdo

2011: Microsoft libera la primera preview de Isotop/HDInsight

2018: Cloudera compra Horthonworks



### El Zoo de Big Data

- El objetivo de Hadoop es crear un framework unificado para procesar big data
- Tres requisitos principales:
  - Escalabilidad
  - Eficiencia

#### **Hadoop Core**





### Ecosistema Hadoop





### Hive

- Sistema Data Warehouse para Hadoop
- Facilita las sumarizaciones de datos
- Consultas Ad-hoc
- Lenguaje consulta similar SQL: HiveQL
- Análisis de grandes conjuntos de datos almacenados en Hadoop
- · Por detrás ejecuta
  - Trabajos MapReduce
  - Stinger / Tez
  - LLAP (Long Live and Process)



### Pig

- Lenguaje scripting de Alto nivel
- Capa de procesamiento de Alto Nivel que se ejecuta en Hadoop
  - Usa ambos HDFS y Map Reduce
- Facilidad de programación
  - El Usuario se enfoca en semántica en lugar de eficiencia. Map Reduce es como lenguaje de ensamblador
- Extensibilidad



### Flume & Sqoop

- Flume
  - Recolectar y mover grandes cantidades de datos
  - Ejecución distribuida
- Sqoop
  - Import y Export: RDBMS ←→ HDFS, Hive..
  - SQL Server, MySQL, Oracle
  - Ejecución distribuida



### Mahout & Pegasus

- Mahout
  - Machine learning y data mining a gran escala
  - clusterización, recomendaciones, clasificación, y más.
- Pegasus
  - Page Rank y Graph Mining
  - Network Analysis.

• Por detrás se ejecutan Trabajos MapRec





### Agenda

- Introducción a Big Data
- Datos estructurados y no estructurados
- Hadoop
- Ecosistema Hadoop
- Casos de Estudio



### Almacena ahora, averigua más tarde

- Hadoop facilita almacenamiento y procesado
- Fácil de desarrollar programas que obtienen conocimiento de datos no estructurados
- Framework para almacenar y procesar subconjunto de los datos a demanda



### Datos en Tiempo Real

- Utilizar almacenes de datos operacionales en tiempo real (RT ODSs)
- Utilizar DW en Tiempo real
- Implementar CDC
- Presentar datos en tiempo real y datos históricos
- Definir umbrales aceptables y reglas de negocio para todas las entidades del tiempo real



### Datos en Tiempo Real

- Flujo de datos continuo
- Manejar el stream como si fuese una cola
- Ventanas de tiempo
- Arquitectura de datos Hadoop y Lambda
- Enriquecer datos de streaming con datos de la organización
- Almacenar los datos de stream para construir la historia



### Arquitectura Lambda





## Casos de estudio Hadoop (I)

- Modelado de Riesgos
  - Banca y seguros,
- Análisis de rotación
  - Consultar logs y datos complejos desde múltiples orígenes
- Motor de recomendaciones



## Casos de Estudio Hadoop (II)

- Ad Targeting
  - CTR, placement, auction
- Análisis de transacción en punto de venta
  - Análisis cesta de la compra, mejora de márgenes
- Datos de Redes
  - Predicción de fallos, ratios de transmission, protocolos de transmisión



## Casos de Estudio Hadoop (III)

- Detección de fraude
  - En transacciones
- Calidad búsquedas
  - Resultados relevantes, utilidad de búsquedas
- Data sandbox
  - Almacenado ahora y analizado después
- Análisis de Sentimiento
  - Twitter



### Caso de Éxito: Mood Index





### **MIDAMO**







## **Opciones**





### Datalakehouse



