Cours de Maths Spé

Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Paris 2024

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu

Chapitres

1 Suites et séries

2

Chapitre 1

Suites et séries

Contenu			
1.1	Norme		
	1.1.1	Généralités	2
	1.1.2	Normes euclidiennes	3
	1.1.3	Exemple de normes	4
		Norme N_{∞} :	4
		Norme N_1 :	4
		Norme N_2 :	4
1.2	Suite	s	4
1.3	Normes équivalentes		
	1.3.1	Définition	5
	1.3.2	Cas de espaces de dimension finie	6
1.4	Notations o , \mathcal{O} , \sim		7
1.5	Séries dans un K espace vectoriel de dimen-		
	sion finie		
		Sommes partielles	7
1.6	Complément sur les séries numériques		8
	1.6.1	Règle de <i>Dalembert</i>	8
	1.6.2	Séries alternées	9
	1.6.3	Sommation des relations de comparaisons	9
1.7	Produit de séries		
1.8	Dualité série-suite		

1.1 Norme

1.1.1 Généralités

Definition 1.1.1. Une *norme* sur E est une application $N:E\to R$ vérifiant :

- $\forall x \in E, \ \forall \lambda \in K, \ N(\lambda \cdot x) = |\lambda| \ N(x)$
- $-- \forall x, y \in E, \ N(x+y) \leq N(x) + N(y)$

1.1. NORME 3

Definition 1.1.2. Une *distance* sur X est une application $d: X^2 \to \mathbb{R}$ vérifiant :

- $\forall x, y \in E, d(x, y) = d(y, x)$
- $\forall x, y, z \in E, d(x, z) \leq d(x, y) + d(y, z)$

Lemme 1.1.1. Soit (E, N) un espace vectoriel normé, Alors $\forall N \geq 0$ (i.e. $\forall x \in E, N(x) \geq 0$)

Lemme 1.1.2. Soit (E, N) un espace vectoriel normé. Si $\forall (x, y) \in E^2$, d(x, y) = N(x - y) alors d est une distance sur E.

Definition 1.1.3. Soient $a \in E$, $r \in R$ on définit

- $--- B(a, r) = \{x \in E \mid d(x, a) < r\}$
- $-B_f(a,r) = \{x \in E \mid d(x,a) \leq r\}$

Les boules ouverte et fermée de centre a et de rayon r.

Definition 1.1.4. Soit E un K espace vectoriel quelconque

- -> Une partie $C \subset E$ est dite convexe si $\forall (a, b) \in C^2$, $[a, b] \subset C$
- -> Pour $(a, b) \in E^2$ on définit le segment :

$$[a, b] = \{(1-t)a + tb \mid t \in [0, 1]\}$$

Lemme 1.1.3. Dans E un EVN quelconque toutes les boules sont convexes.

1.1.2 Normes euclidiennes

Ici E est un R espace vectoriel muni d'un produit scalaire 1

$$\Phi: \left(\begin{array}{ccc} E^2 & \longrightarrow & \mathbf{R} \\ x, y & \longmapsto & \langle x, y \rangle \end{array} \right)$$

On a alors par théorème $^2, \ x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E. On note alors

$$\|x\|_2 = N_2(x) = \sqrt{\langle x, x \rangle}$$

 NB : L'inégalité triangulaire pour $\left\|.\right\|_2$ est dite inégalité de Minkovsky

Lemme 1.1.4. Si $E = \mathbb{C}^n$, $z = (z_1, \dots, z_n)$, $N(z) = \sqrt{\sum_{k=1}^n |z_k|^2}$ est une norme.

Lemme 1.1.5. L'espace $(C^{\circ}([a,b],C))$, N) est un EVN avec

$$N(f) = \sqrt{\int_a^b |f(x)|^2 dx}$$

- 1. Un produit scalaire est une forme bilinéaire symétrique définie positive
- 2. Voir cours de sup.

1.1.3 Exemple de normes

Norme N_{∞} :

— Dans
$$E=\mathbf{K}^n$$
 soit $x=(x_1,\ldots,x_n),\ \mathcal{N}_\infty(x)=\max_{i\in\llbracket 1,n
rbracket}|x_i|$

— Dans
$$E = \mathcal{C}^{\circ}([a,b],\mathbf{K})$$
 soit $f \in E$, $N_{\infty}(f) = \sup_{x \in [a,b]} |f(x)|$

Norme N_1 :

— Dans
$$E=\mathbf{K}^n$$
 soit $x=(x_1,\ldots,x_n),\ \mathcal{N}_1(x)=\sum_{i=1}^n|x_i|$

— Dans
$$E = \mathcal{C}^0([a,b], \mathbb{K})$$
 soit $f \in E$, $N_1(f) = \int_a^b |f(x)| \, \mathrm{d}x$

Norme N_2 :

— Dans
$$E=\mathsf{K}^n$$
 soit $x=(x_1,\ldots,x_n),\ \mathsf{N}_2(x)=\sqrt{\sum_{i=1}^n {x_i}^2}$

— Dans
$$E = C^0([a, b], K)$$
 soit $f \in E$, $N_2(f) = \sqrt{\int_a^b (f(x))^2 dx}$

1.2 Suites

Definition 1.2.1. Soit $u=(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ et $\ell\in E$. On dit que u converge vers ℓ dans (E,d) et on note $u_n\underset{n\to+\infty}{\longrightarrow}\ell$ si

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N} : \forall n \geq n_0$, $d(u_n, \ell) < \varepsilon$

Lemme : Unicité de la limite. Soit (u_n) une suite de E telle que

$$u_n \underset{n}{\rightarrow} \ell_1 \in \mathsf{E} \ \mathit{et} \ u_n \underset{n}{\rightarrow} \ell_2 \in \mathsf{E}$$

Alors $\ell_1 = \ell_2$

Démonstration. Supposons $\ell_1 \neq \ell_2$.

Soit $\varepsilon = \frac{1}{2}d(\ell_1, \ell_2) > 0$ On a alors $d(u_n, \ell_1) < \varepsilon$ et $d(u_n, \ell_2) < \varepsilon$ à partir d'un certain rang $n_0 \in \mathbb{N}$ -> impossible

Lemme 1.2.1. Soit $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$, $\ell\in E$ Alors $u_n\underset{n}{\to}\ell \Leftrightarrow \|u_n-\ell\|\underset{n}{\to} \mathsf{o}$

Lemme 1.2.2. Soient u_n , $v_n \in E^N$ et $\lambda \in K$ si on a $u_n \xrightarrow[n]{} \alpha$ et $v_n \xrightarrow[n]{} \beta$ alors $\lambda u_n + v_n \xrightarrow[n]{} \lambda \alpha + \beta$

Lemme : Inégalité triangulaire renversée. Soit $x, y \in E$ alors

$$|N(x) - N(y)| \le N(x - y)$$

$$\textit{D\'{e}monstration. } \textit{N}(x) \leq \textit{N}(x-y) + \textit{N}(y) \Rightarrow \underbrace{\textit{N}(x) - \textit{N}(y)}_{t \in \mathbf{R}} \leq \textit{N}(x-y)$$

Puis on conclut avec la symétrie de la norme.

Lemme 1.2.3. Soit $u_n \in E^N$, $\alpha \in K$ on a $u_n \underset{n}{\to} \alpha \Rightarrow ||u_n|| \underset{n}{\to} ||\alpha||$

Attention! La réciproque est fausse!

Definition 1.2.2. Une suite $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ est bornée si $\forall n, \|u_n\|\leq M$ pour un certain $M\in\mathbb{R}$.

Lemme 1.2.4. Toute suite convergente est bornée.

Lemme 1.2.5. Si
$$\lambda_n \underset{n}{\rightarrow} \mu \in K$$
 et $u_n \underset{n}{\rightarrow} v \in E$ alors $\lambda_n u_n \underset{n}{\rightarrow} \mu v$

Definition 1.2.3. Soit $u \in E^{\mathbf{N}}$ on appelle <u>suite extraite</u> (ou soussuite) de u toute suite $(u_{\varphi(n)})_{n\in \mathbf{N}}$ où $\varphi: \mathbf{N} \to \mathbf{N}$ est une extractrice (injection croissante)

Note. en fait
$$\left(v_n
ight)_{_{n\geq \mathtt{o}}} = \left(u_{arphi(n)}
ight)_{_{n\geq \mathtt{o}}} \;\Leftrightarrow\; v=u\circarphi$$

Definition 1.2.4. $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Lemme 1.2.6. Soit $u \in E^N$ si u converge vers $\ell \in K$ alors toute suite extraite de u converge vers ℓ

Démonstration. Soit $arphi: \mathbf{N} \to \mathbf{N}$ une extractrice et $(v_n)_{n \geq 0} = (u_{arphi(n)})_{n \geq 0}$

Soit
$$\varepsilon > 0$$
 et $n_0 \in \mathbf{N}$: $\forall n \geq n_0$, $d(u_n, \ell) < \varepsilon$ donc $\varphi(n) \geq n_0$ et ainsi $d(u_{\varphi(n)}, \ell) < \varepsilon$ et $v_n \to \ell$

Corollaire. Toute suite admettant au moins 2 valeurs d'adhérence est divergente

1.3 Normes équivalentes

1.3.1 Définition

Definition 1.3.1. Soit E un K espace vectoriel, N et N' deux normes sur E. N et N' sont dites équivalentes $(N \sim N')$ si $\exists \alpha, \beta \in R$ tels que $\alpha N \leq N' \leq \beta N$

On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha} N'$

Lemme 1.3.1. Soit N, N' des normes équivalentes sur E, $u \in E^{\rm N}$, $\ell \in E$ alors

- $u_n \underset{n}{\rightarrow} \ell$ dans $(E, N) \Leftrightarrow u_n \underset{n}{\rightarrow} \ell$ dans (E, N')
- -u est bornée dans $(E, N) \Leftrightarrow u$ est bornée dans (E, N')

Lemme 1.3.2. Sur \mathbf{K}^n , N_1 , N_2 et N_∞ sont équivalentes et plus précisément

$$N_{\infty} \leq N_1 \leq \sqrt{n} N_2 \leq n N_{\infty}$$

1.3.2 Cas de espaces de dimension finie

Rappel. Un espace vectoriel E est de dimension finie s'il existe une famille d'éléments de E libre et génératrice, c'est alors une base de E.

Théorème 1.3.3. Sur un **K**-ev de dimension finie, toutes les normes sont équivalentes.

Note. Sera démontré ultérieurement.

Corollaire. Dans un K espace vectoriel de dimension finie, la notion de convergence ne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Lemme 1.3.4. Soit E de dimension finie, $e=(e_1,\ldots,e_p)$ une base de E, $(x_n)_{n\geq 0}\in E^N$ et $\alpha\in E$. On écrit $\left\{ \begin{array}{l} x_n=x_{1,n}e_1+\cdots+x_{p,n}e_p\\ \alpha=\alpha_1e_1+\cdots+\alpha_pe_p \end{array} \right.$ On a alors $x_n\underset{n}{\to}\alpha \ \Leftrightarrow \ \forall k\in \llbracket 1,p \rrbracket,\ x_{k,n}\underset{n}{\to}\alpha_k \right.$

Théorème 1.3.5. Soient $p,q,r \in \mathbb{N}^*$ et deux suites de matrices $(A_n) \in \mathcal{M}_{p,q}(\mathbb{R})$, $(B_n) \in \mathcal{M}_{q,r}(\mathbb{R})$ telles que $A_n \xrightarrow[n]{} A$ dans $\mathcal{M}_{p,q}(\mathbb{R})$ et $B_n \xrightarrow[n]{} B$ dans $\mathcal{M}_{q,r}(\mathbb{R})$. Alors $A_n B_n \xrightarrow[n]{} AB$

$$\begin{array}{ll} \textit{D\'{e}monstration.} \; \mathsf{Soit} \; (i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,r \rrbracket \\ (A_nB_n)_{i,j} \; = \; \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \; \xrightarrow{n} \; \sum_{k=1}^q a_{i,k}b_{k,j} \; = \; (AB)_{i,j} \; \text{ainsi} \\ A_nB_n \underset{n}{\rightarrow} AB \end{array}$$

1.4 Notations o, \mathcal{O} , \sim

Soient
$$\left(u_{n}\right)_{_{n\geq n_{0}}}$$
 , $\left(v_{n}\right)_{_{n\geq n_{0}}}\in\mathsf{C}^{\mathsf{N}}$

Definition 1.4.1. On dit que u_n est négligeable devant v_n quand $n \to +\infty$ noté $u_n = o(v_n)$ s'il existe $n_0 \in \mathbf{N}$ et $(\delta_n)_{n \geq n_0}$ tel que

—
$$orall n$$
o, $u_n = \delta_n v_n$

$$--\delta_n \underset{n \to +\infty}{\longrightarrow} \mathsf{o}$$

Definition 1.4.2. On dit que u_n est dominée par v_n quand $n \to +\infty$ noté $u_n = \mathcal{O}(v_n)$ s'il existe $n_0 \in \mathbb{N}$ et $(B_n)_{n \geq n_0}$ tel que

- $\forall n \geq n_{\text{o}}, \ u_n = B_n v_n$
- $(B_n)_{n>n_0}$ est bornée.

Definition 1.4.3. On dit que u_n est équivalent à v_n quand $n \to +\infty$ noté $u_n \sim v_n$ si $u_n - v_n = o(v_n)$

Note. $u_n \sim v_n \;\Leftrightarrow\; u_n = v_n + \circ (v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

- On note par abus "dim $E < \infty$
- Le cas scalaire est traité en première année

Soit $u \in E^{\mathbf{N}}$; pour $n \in \mathbf{N}$ on pose $U_n = \sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des *sommes partielles* associée à u.

Definition 1.5.1. On dit que la série de terme général u_n converge si (U_n) converge.

Dans ce cas on pose $\sum_{n=0}^{\infty}u_n=\lim_{n o +\infty}U_n\in E$

Lemme 1.5.1. $(\sum u_n \ converge) \ \Rightarrow \ (u_n o \mathsf{o})$

Attention! La réciproque est fausse! (ex : (H_n))

Definition 1.5.2. Lorsque $u_n \xrightarrow[n]{} o$, la série $\sum u_n$ est dite *grossièrement divergente*, noté " $\sum u_n$ DVG". On a alors logiquement ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente. On suppose $\sum u_n$ converge et on note $S = \sum_{n=0}^{\infty} u_n$ la "limite de la somme". Pour $n \in \mathbf{N}$ on pose $R_n = \sum_{k=n+1}^{+\infty} u_k$ le "reste d'ordre n". $\forall n \in \mathbf{N}$, $S = U_n + R_n$ et $R_n \to \mathbf{0}$

Démonstration. Soit $n \in \mathbb{N}$ pour $m \ge n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \underset{m}{\rightarrow} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S = U_n + R_n$ puis $R_n = S - U_n \rightarrow S - S = 0$

Lemme 1.5.2. Soit (u_n) , $(v_n) \in E^{\mathbb{N}}$ et $\lambda \in K$. On suppose que $\sum u_n$ et $\sum v_n$ convergent alors

$$rac{-\sum \lambda u_n + v_n}{\sum_{n=0}^\infty \lambda u_n + v_n}$$
 converge $\sum_{n=0}^\infty \lambda u_n + v_n = \lambda \sum_{n=0}^\infty u_n + \sum_{n=0}^\infty v_n$

Definition 1.5.3. Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ converge absolument si $\sum \|u_n\|$ converge.

Note. Vu dim $E < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3. Dans un K espace vectoriel de dimension finie, toute série absolument convergente est convergente " CVA ⇒ CV "

Attention! Faux dans un EVN quelconque!

Lemme 1.5.4. Soit (E, N) un K espace vectoriel normé de dimension finie

On supposons que $\sum u_n$ CVA. Alors $\left\|\sum_{n=0}^{\infty} u_n\right\| \leq \sum_{n=0}^{\infty} \|u_n\|$

1.6 Complément sur les séries numériques

Rappel. Soit $z \in \mathbb{C}$ alors $\sum z^n \ \mathsf{CV} \Rightarrow |z| < 1$

- Lorsque $|z| < \mathtt{1}$ on a $\sum_{n=0}^\infty z^n = \frac{\mathtt{1}}{\mathtt{1}-z}$
- On définie $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

1.6.1 Règle de Dalembert

Théorème : Règle de *Dalembert*. Soit $(u_n) \in (\mathbb{C}^*)^N$ On suppose l'existence de $\ell \in \mathsf{R} \cup \{+\infty\}$ tel que $|u_{u+1}/u_n| o \ell$

1) $\ell < 1 \Rightarrow \sum u_n \ \text{CVA}$ 2) $\ell > 1 \Rightarrow \sum u_n \ \text{DVG}$ Alors:

Démonstration.

1) On suppose $\ell <$ 1 et on note $r_n = \left| rac{u_{u+1}}{u_n}
ight|$. On pose $heta \in [\ell, 1]$ et $arepsilon = heta - oldsymbol{\ell}$ On a alors

 $\exists n_{ extsf{0}} \in \mathbf{N} \; : \; orall n_{ extsf{0}}, \; |r_{n} - \pmb{\ell}| < arepsilon \; ext{soit en particulier} \; r_{n} < \pmb{\ell} + arepsilon = heta$

Ainsi $\forall n \geq n_0$, $|u_{n+1}| < \theta |u_n|$ et $|u_n| \leq \theta^{n-n_0} |u_{n_0}|$ (REC) On a alors $\forall n \geq n_0$, $|u_n| \leq \underline{\theta^{-n_0} |u_{n_0}|} \theta^n$

or $\sum \theta^n$ converge car $\theta \in]0,1[$

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose $\ell > 1$ et on fixe $\theta \in \mathbb{R}$ tel que $1 < \theta < \ell$, on a alors $\exists n_0 \in \mathbb{N} : \forall n \geq n_0, r_n > \theta \ldots$ on obtient $|u_n| o +\infty$ donc $u_n woheadrightarrow 0$ donc $\sum u_n$ DVG

1.6.2 Séries alternées

Definition 1.6.1. La série réelle $\sum u_n$ est dite <u>alternée</u> si $\forall n \in \mathbb{N}$, $u_n=(-1)^n\left|u_n
ight|$ ou $orall n\in \mathbb{N}$, $u_n=(-1)^{n+1}\left|u_n
ight|$

Théorème : Critère spécial des série alternées. Soit (u_n) une suite telle que

- $--\left(|u_n|
 ight)_{\scriptscriptstyle n>_0}$ décroit

alors $\sum u_n$ converge $\$ et on a de plus, $orall n \in \mathbf{N}$

- $|R_n| \le |u_{n+1}|$
- R_n et u_{n+1} ont le même signe
- S est compris entre U_n et U_{n+1}

1.6.3 Sommation des relations de comparaisons

Théorème 1.6.1. Soit (u_n) , $(v_n) \in \mathbb{R}^{\mathbb{N}}$ et $v_n \geq 0$, $\forall n \geq n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge. Soit les restes $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $R_n' = \sum_{k=n+1}^{+\infty} v_k$ alors

$$egin{array}{lll} egin{array}{lll} -u_n &= o_{n
ightarrow+\infty}(v_n) &\Rightarrow R_n &= o_{n
ightarrow+\infty}(R_n') \ -u_n &= \mathcal{O}_{n
ightarrow+\infty}(v_n) &\Rightarrow R_n &= \mathcal{O}_{n
ightarrow+\infty}(R_n') \ -u_n & igcap_{n
ightarrow+\infty} v_n &\Rightarrow R_n & igcap_{n
ightarrow+\infty} R_n' \end{array}$$

Théorème 1.6.2. Soit (u_n) , $(v_n) \in \mathbb{R}^N$ et $v_n \geq 0$, $\forall n \geq n_0$ On suppose que $\sum u_n$ et $\sum v_n$ diverge. Soit les sommes partielles $U_n = \sum_{k=0}^n u_n$ et $V_n = \sum_{k=0}^n v_n$ alors $u_n = \circ_{n \to +\infty}(v_n) \Rightarrow U_n = \circ_{n \to +\infty}(V_n)$

$$u_n = \circ_{n o +\infty}(v_n) \Rightarrow U_n = \circ_{n o +\infty}(v_n)$$

$$egin{aligned} & - u_n = \mathcal{O}_{n
ightarrow + \infty}(v_n) \ \Rightarrow \ U_n = \mathcal{O}_{n
ightarrow + \infty}(V_n) \end{aligned}$$

$$-u_n {\scriptstyle \stackrel{\sim}{_{n o +\infty}}} v_n \; \Rightarrow \; U_n {\scriptstyle \stackrel{\sim}{_{n o +\infty}}} V_n$$

Théorème de *Cesàro*. Soit $(u_n) \in \mathbb{R}^N$

— Si
$$u_n o \lambda$$
 avec $\lambda \in \mathbf{R}$, alors $rac{1}{n+1} \sum_{k=0}^n u_k o \lambda$

— Si $u_n o +\infty$ alors $rac{1}{n+1}\sum_{k=0}^n u_k \stackrel{n+1}{ o} +\infty$

Démonstration. 1) Supposons $u_n o \lambda$ alors $u_n - \lambda = \mathrm{o}(\mathtt{1})$, on pose ensuite v_n = 1 alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent

$$\sum_{k=0}^n u_k - \lambda = \mathsf{o}(\sum_{k=0}^n \mathtt{1}) \;\; \Rightarrow \;\; rac{\mathtt{1}}{n+\mathtt{1}}(\sum_{k=0}^n u_k) - \lambda o \mathsf{0}$$

 $\sum_{k=0}^n u_k - \lambda = \mathrm{o}(\sum_{k=0}^n \mathbf{1}) \Rightarrow \frac{1}{n+1}(\sum_{k=0}^n u_k) - \lambda \to 0$ 2) Supposons $u_n \to +\infty$ et posons $a_n = \frac{1}{n+1}\sum_{k=0}^n u_k$ Soit $A \in \mathbf{R}$ et A' = A + 1

Soit
$$n_0\in \mathbf{N}: \forall n\geq n_0,\ u_n>A'$$
, puis pour $n\geq n_0:$ $a_n=\frac{1}{n+1}(\sum_{k=0}^{n_0-1}u_k+\sum_{k=0}^nu_k)$ donc $a_n>\frac{C}{n+1}+A'\frac{n+1-n_0}{n+1}=A'+\frac{C-n_0A'}{n+1}$ Soit $n_1\geq n_0$ tel que $\forall n\geq n_1,\ \left|\frac{C-A'n_0}{n+1}\right|<1$ alors $\forall n\geq n_1,\ a_n>A$ d'où $a_n\to +\infty$

1.7 Produit de séries

Definition 1.7.1. Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (convergentes ou non) de nombres complexes.

On pose $\forall n \in \mathbb{N}$: $w_n = \sum_{i+j=n} u_i v_j = \sum_{k=0}^n u_k v_{n-k}$ (somme finie!) La série $\sum w_n$ est appelée *produit de Cauchy* de $\sum u_n$ et $\sum v_n$.

Attention!

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément

$$\left(\sum u_n
ight) imes \left(\sum v_n
ight)=\sum w_n$$

Théorème 1.7.1. Si
$$\sum u_n$$
 et $\sum v_n$ convergent absolument alors : 1) $\sum w_n$ CVA 2) $\left(\sum_{n=0}^{\infty} u_n\right) \times \left(\sum_{n=0}^{\infty} u_n\right) = \sum_{n=0}^{\infty} w_n$

Signalé:

Théorème de Mertens. Si $\sum u_n$ CVA et $\sum v_n$ converge alors $\sum w_n$ converge et $(\sum_{n=0}^\infty u_n) \times (\sum_{n=0}^\infty u_n) = \sum_{n=0}^\infty w_n$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série

Ici (E, N) est un EVN de dimension finie.

On définit les suites (a_n) et (b_n) par $\forall n \in \mathbb{N}^*$, $b_0 = a_0$ et $b_n = a_n - a_{n-1}$. On a alors pour $n \in \mathbb{N}$,

$$\sum_{k=0}^n b_k = b_{ exttt{O}} + \sum_{k=1}^n (a_k - a_{k-1}) = a_{ exttt{O}} + a_n - a_{ exttt{O}} = a_n ext{ soit } a_n = \sum_{k=0}^n b_k$$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge \Leftrightarrow $\sum a_n - a_{n-1}$ converge

* * *

Table des Matières - Première année

Table des Matières - Deuxième année