Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 04/20/22 Course: Math 101 A04 Spring 2022 Sections 11.4 & 11.5 [Not f

Graph the lemniscate $r^2 = 81 \cos 2\theta$. What symmetries does the curve have?

To sketch the curve $r^2 = 81 \cos 2\theta$ it is useful to identify the range of θ values that will give the whole graph. The equation requires $\cos 2\theta \ge 0$. The maximum value must be $\cos 2\theta = 1$.

What is the full range of θ values that will supply all of the values between 0 and 1?

$$-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}.$$

This range is appropriate, since plotting from 0 to $\frac{\pi}{4}$ will give only half the graph, with points in the first and third quadrant plotted. To obtain the reflection of this, plot from $-\frac{\pi}{4}$ to 0 also.

Since $r^2 = 81 \cos 2\theta$, there are two values for r, one positive and one negative, for each value of theta. Use $\theta = 0$ $r = \pm 9 \sqrt{\cos 2\theta}$ the range $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ to identify some of the values for $r = \pm 9 \sqrt{\cos 2\theta}$. Use the θ in the equation for r to find the corresponding values for r. All values are rounded to the nearest hundredth. $\theta = \frac{\pi}{8} \qquad r = \pm 7.57$ $\theta = \frac{\pi}{16} \qquad r = \pm 5.57$ $\theta = \frac{\pi}{4} \qquad r = \pm 0$

Using the values for r and θ it is possible to construct a sketch of r^2 = 81 **cos** 2 θ . It can be seen that the curve is symmetric about the x-axis, about the y-axis and about the origin.

