6.	[15 points] Use Shannon's expansion theorem around a and b forthe function
	Y = ab'cdef + a'b'c'd'e + b'c'ef' + abcde'f
	so that it can be implemented using only four-variable function
	generators (4 variable LUT). Draw a block diagram to indicate
	how Y can be implemented using only four-variable function
	generators. Indicate the function realized by each four-
	variable function generator.

6.16	Decompose the following function using Shannon's decomposition around the variable <i>X6</i> . Do not simplify the function.
	$F = X_{1}'X_{2}X_{3}'X_{4}X_{6} + X_{2}'X_{3}'X_{4}X_{6}' + X_{2}'X_{4}' + X_{3}X_{4}X_{5}X_{6} + X_{3}'X_{4}X_{6}' + X_{1}X_{3}$
	Write an expression for F in terms of the decomposed functions and X_6 .

6.17	Use Shannon's expansion theorem around a and b for the function
	Y = abcde + cde'f + a'b'c'def + bcdef' + ab'cd'ef' + a'bc'de'f + abcd'e'f
	so that it can be implemented using only 4-variable function generators. Draw a block diagram to indicate how Y can be implemented using only 4-variable function generators. Indicate the function realized by each 4-variable function generator.

6.18 Use Shannon's expansion theorem around e and f for the function	
Y = ab'cdef + a'bc'd'e + b'c'ef' + abcde'f	
so that it can be implemented using a minimum number of 4-variable function Rewrite Y to indicate how it will be implemented using 4-variable function generators and draw a block diagram. Indicate the function generated by each function generator.	r-

6.19	(a)	Use Shannon's expansion theorem around a for the function
		Y = ab'cd'e + a'bc'd'e + b'c'e + abcde
		so that it can be implemented using 4-variable functions.
	(b)	Use the expanded function to show how Y can be implemented using one
	(0)	Figure 6-3 logic block. Mark (highlight) the input signals and the activated
		paths on a copy of Figure 6-3.
	(c)	Give the contents of the three LUTs.

6.20	(b)	If logic blocks of Figure 6-1(a) are used, how many LUTs are required to build a 4-bit adder with accumulator? If an FPGA with built-in carry-chain logic as shown in Figure 6-11 is used, how many 4-input LUTs are required? Design a 4-bit adder-subtracter with accumulator using an FPGA with carry-chain logic and 4-input LUTs. Assume a control signal Su which is 0 for addition and 1 for subtraction. Show the required connections on a diagram similar to that shown in Figure 6-11 and give the function realized by each LUT.

6.22 (a) Use Shann and then ex	Use Shannon's expansion theorem to expand the following function around A and then expand each sub-function around D :				
Z = AB'	CD'E'F + A'BC'D'EF' + B'	C'E'F + A'BC'E'F' + ABC'	CDE		

6.36	Consider the Verilog code	
	<pre>module example(a,b);</pre>	
	input[1:0] a;	
	output[1:0] b; reg[1:0] b;	
	always @(a) begin	
	case(a)	
	0: b = 2'd3; 1: b = 2'd2;	
	2: $b = 2 d2$; 2: $b = 2 d1$;	
	3: b = 2'd1;	
	endcase end	
	endmodule	
	(a) Show the hardware you would obtain if you synthesize the foregoing Verilog	
	code without any optimizations. Explain your reasoning. (b) Show optimized hardware emphasizing minimum area. Show the steps and the	
	reasoning by which you obtained the optimized hardware.	

7.2 Convert the following decimal numbers in the IEEE single precision format: (i) 25.25, (ii) 2000.22, (iii) 1, (iv) 0, (v) 1000, (vi) 8000, (vii) 10 ⁶ , (viii) -5.4, (ix) 1.0 × 2 ⁻¹⁴⁰ , (x) 1.5 × 10 ⁹

7.3	Convert the following decimal numbers to IEEE double precision format: (i) 25.25, (ii) 2000.22, (iii) 1, (iv) 0, (v) 1000, (vi) 8000, (vii) 10^6 , (viii) -5 . (ix) 1.0×2^{-140} , (x) 1.5×10^9

7.4	What do the following hex representations mean if they are in IEEE single precision format?					
	(i) ABABABAB, (ii) (vi) 01010101	45454545,	(iii) FFFFFFF,	(iv) 00000000, (v	y) 111111111,	

module, use the	g model for an N-bit comparator using an iterative circuit. In the parameter N to define the length of the input bit vectors A and B. The outputs should be $EQ = 1$ if $A = B$, and $GT = 1$ if $A > B$. Use a
Topics in Verilog	
for loop to do the co	omparison on a bit-by-bit basis, starting with the high-order bits. mparison is done on a bit-by-bit basis, the final values of EQ and B as a whole.

Exercise 1 – 2b shifter

- This is the same logic block as in Q2a of HW #2, but with bus notation for the inputs and outputs. This is a purely combinational logic block. The logic equations are:
 - out[0] = $s' \bullet in[0]$
 - out[1] = $s' \bullet in[1] + s \bullet in[0]$

Ex 1 Solution

Ex 2 - 3:8 row decoder with enable

• This decoder has inputs addr [2:0] and an active low enable nen. It drives 8 active high output lines row_sel[7:0], one of which is driven when nen is asserted.

Ex 2 Solution

```
module row decoder(row sel, addr, nen);
   input [\overline{2}:0] addr;
   input
         nen;
   output [7:0] row sel;
   wire [2:0] addr;
   wire nen;
   reg [7:0] row sel;
   // Use a case statement
   always @(addr or nen)
    begin
    if (nen)
      row sel = 8'h0;
    else
      case (addr)
        3'h0: row sel = 8'b0000 0001; // The is just for readability
        3'h1: row_sel = 8'b0000_0010;
        3'h2: row_sel = 8'b0000_0100;
        3'h3: row_sel = 8'b0000_1000;
        3'h4: row_sel = 8'b0001_0000;
        3'h5: row sel = 8'b0010 0000;
        3'h6: row sel = 8'b0100 0000;
        3'h7: row_sel = 8'b1000_0000;
      endcase // case (addr)
     end // always @ (addr or nen)
endmodule // row decoder
```

Ex 3 – 8b register with load and synchronous reset

 This block implements an 8b wide register from DFFs. All flops are driven by a common clock and have a common reset rst. An input mux allows new data to be loaded into the register when ld is high; otherwise, the old data is recirculated.

Ex 3 Solution

```
module ld reg8(din, clk, rst, ld, q);
   input [7:0] din;
   input clk, rst, ld;
   output [7:0] q;
  wire [7:0] din, q nxt;
   wire clk, rst, ld;
   reg [7:0] q;
  //Logic on register inputs
   assign q nxt = ld ? din : q;
   // Update register
   always @(posedge clk)
    q <= rst ? 8'h0 : q nxt;</pre>
endmodule // row decoder
```