拉撒路 UTC V0.1

目录

1,	·史	4
2 :	: 1/2	5

1 历史

本节记录本文档的修改历史

版本 v0.1	日期	作者	内容
v0.1	2020年4月23日	时空大神	初版本

2 测试目标

测试过程:

启动头部节点和 10 个投票节点,头部节点启动服务接收交易、验证交易签名、处理交易、账本维护、向全网节点广播交易; 投票节点启动服务接收交易、对交易进行投票;

客户端创建测试账户,创建交易在测试账户间来回进行转账,客户端使用多线程向头部节点发送交易。

客户端多线程计算 tps: 每秒向头部节点发送获取被正确处理交易的数量,计算这一秒内的 tps, 记录这一次的 tps 到集合中。测试结束后计算集合中的最大 tps 数,打印到屏幕。

3 测试过程

序号	动作	内容	细分
1	创建测试账户用于转账交易。		
2	启动头部节点	启动交易处理服务	1. 启动线程接收交易信息 2. 启动线程进行交易签名验证 3. 启动线程处理交易 4. 启动线程进行账本维护
		启动广播交易服务	向投票节点广播交易信息
3	启动多个投票节点	投票节点启动投票服务	1. 启动线程接收交易信息 2. 启动线程处理交易 3. 启动线程对交易进行投票
4	启动客户端	客户端不断创建交易,在两个 测试账户间来回转账 客户端向头部节点发送交易	多线程向头部节点发送签名的 交易。

测试结束,统计最高 tps	计算最大 tps 并打印显示。	易数量。 2. 计算这一秒内的 tps. 3. 记录这一秒内的 tps。
		秒内被头部节点正确处理的交
	启用多线程计算 tps	1. 向头部节点发送请求获取一

4 测试用例

详细描述测试用例。

序号	模块	标题	步骤	期望结果	实际结果
UTC01	交易签名验证	对交易进行签名,防止 他人伪造交易。	1. 创建交易发起方公私钥、接收方公		
		,_,,,, _,,,,	钥。		
			2. 创建转账交易,	签名验证成功,	
			发起方向接收方转	交易未被伪造。	
			账 100 个代币。		
			3. 使用交易发起方		
			私钥对交易签名。		
			4. 发送交易至头部		
			节点,使用发起方		
			公钥对签名进行验		
			证。	&& 선 기사 가 나 되나	
UTC02	交易签名验证	伪造交易签名,从他人	1. 创建交易发起方	签名验证失败,	
		账户转出代币。	公 钥 、 接 收 方 公 钥。	交易被伪造。	
			50。 2 . 创建伪造交易方		
			公私钥。		
			3. 创建转账交易,		
			伪造交易方伪使用		
			交易发起方公钥地		
			址向接收方公钥地		
			址转账 100 个代		
			币。		
			4. 使用伪造交易方		
			的私钥对交易签		
			名。		

			F 42 24 元 日 元		
			5. 发送交易至		
			Nexus/核心节点,		
			使用伪造交易中的		
			发起方公钥对签名		
			进行验证。		
UTC03	账户余额验证	观察交易前后账户余额	1. 交易真实性验证	合约被正确执	
		的变化。	成功后,通过交易	行。	
			双方的公钥地址获		
			取账户余额,是计		
			算余额总量。		
			2. 交易预处理。		
			3. 通过交易双方的		
			公钥地址获取账户		
			余额,计算余额总		
			量。		
UTC04	合约验证	创建转账交易,执行转	1. 创建一个转账交	合约被正确执	
		账智能合约。	易。	行。	
		, , , , , , , , , , , , , , , , , , ,	2. 交易添加转账指	,,	
			令。		
			3. 指令执行转账合		
			约。		
UTC05	交易队列	待处理交易进入交易队	1. 创建长度为 100	队列溢出,超出	
	224,004	列排队等待处理,队列	的交易队列。	长度交易被丢	
		溢出,丢弃交易。	2. 按顺序依次向队	弃。	
			列插入交易。	71 -	
			3. 插入交易数量大		
			于 100 个。		
UTC06	节点通信地址验证	检测节点 IP 地址、端口	1. 输入节点 IP 地址	输入正确 IP 地址	
3.000	1. W. C. H. C. T. AZ GT.	是否正确。	和端口号。	和端口,验证通	
		/C H 115/110	7 · 1 · · · · · · · · · · · · · · · · ·	过。	
				~`	

			2. 检测端口号是否	
			不为 0 。	
			3. 检测 IP 地址是否	
			是有效。	
UTC07	节点信息维护	节点向头部节点发送获	1. 节点向头部节点	节点发送请求
		取所有在线节点请求,	发送更新在线节点	后, 收到头部节
		头部节点发送所有在线	请求。	点发送的在线节
		节点信息。	2. 头部节点接收到	点信息。
			到请求,重新获取	
			所有现在节点信	
			息。	
			3. 头部节点更新在	
			线节点集合列表,	
			向发送请求节点发	
			送在线节点信息。	
UTC08	节点信息维护	头部节点向全网节点发	1. 头部节点向全网	所有在线节点信
		送心跳数据包,更新在	所有节点发送一个	息 记 录 在 列 表
		线节点列表。	心跳包。	中。
			2. 头部节点等待响	
			应消息。	
			3. 头部节点记录有	
			响应的节点。	
			4. 更新在线节点列	
			表。	
UTC09	数据编码	对交易信息进行编码,	1. 创建一个交易。	交易信息序列化
		以便交易信息通过网络	2. 对交易进行序列	正确。
		在节点间传输。	化。	
			3. 观察交易序列化	
			后数据是否正确。	

UTC010	数据解码	对节点接收到交易信息	1. 接收序列化交易	反序列化后和序	
		进行解码。	信息。	列 化 前 信 息 一	
			2. 对交易信息反序	致。	
			列化。		
			3. 观察反序列化后		
			的数据是否和序列		
			化前的一致。		
UTC011	广播交易	头部节点会将交易信息	1. 头部节点向全网	IP 地址和头部节	
		及时广播到所有投票节	节点广播交易信	点 IP 地址一致。	
		点。	息。		
			2. 节点收到交易信		
			息,打印发送方的		
			IP 地址。		
			3. 检测发送方 IP 地		
			址和头部节点 IP 地		
			址是否一致。		
UTC012	节点数据传输	发送方向接收方发送数	1. 接收方绑定 UDP	接收方收到数据	
		据包,接收方接收到完	接收端口	大小长度和发送	
		整长度的数据包。	"127.0.0.1:0"	方发送的一致。	
			2. 发送方绑定 UDP		
			发 送 端 口		
			"127.0.0.1:0"		
			3.创建数据包。		
			4. 发送方向接收方		
			发送数据包。		
			5. 接收方接收数据		
			包。		
			6. 接收方查看数据		
			包大小长度是否和		

			发送方发送数据包 的一致。		
UTC013	账本同步	投票节点会及时更新本地账本状态。	1. 投票节点接收头部节点交易信息,获取交易ID。 2. 更新投票节点状态为交易ID。 3. 打印投票节点账本状态,验证是否和头部节点账本状态,。	账本状态和头部 节点账本状态保 持一致。	
UTC014	投票验证	验证一个成功的投票过程,投票数大于投票节点数 2/3,头部节点采纳交易。	1. 头部节点向 10 个 投票节点发送。 2. 10 个投票节点收到交易信息。 4. 头部节点发展,个投票节点数量的 2/3.	投票数量> 投票节点数量的2/3,交易有效。	
UTC015	投票验证	验证一个失败的投票过程,投票数小于投票节点数的 2/3,头部节点丢弃交易。	1. 头部节点向 10 个 投票节点发送交易 信息。	投票数量<投票 节 点 数 量 的 2/3,交易无效。	

UTC016	交易安全验证	避免交易过程遭到双花攻击。	2. 10 对票票。 2. 10 交随节。这头信头数量点先和交个算 交进希交序得 易行值易,为一计 对 a 到调后哈克克,个易 节送 算投投. 个 A 行希 哈计 B 新希点,个易 节送 算投投. 个 A 行希 哈计 B 新希点,个易 节送 算投投. 个 A 行希 哈计 B 新希伯易,到 B 哈 b。 B 新希伯勒,到 B 哈 b。 B 新希伯勒, B 新希伯勒, B 新希伯勒, B 由 B 由 B 和 B 的 B 的 B 和 B 的 B 和 B 和 B 和 B 和 B 和	哈希验证成功, 交易未遭到双花 攻击。	
UTC017	交易安全验证	对交易进行双花攻击。	1. 先后创建两个交易A和B。 2. 对交易A和A的上一个交易进行哈	哈希验证失败, 交易遭到双花攻 击。	

			希计算得到哈希值		
			a o		
			3. 对交易 B 和哈希		
			值 a 进行哈希计算		
			得到哈希值b。		
UTC018	交易信息同步	头部节点将投票验证过	1. 头部节点将交易	交易信息同步到	
		的交易信息写入账本	信息写入账本。	所有节点。	
		中,将交易信息广播全	2. 头部节点将交易		
		网节点, 节点收到交易	信息广播全网节		
		信息后写入账本。	点。		
			3. 节点收到交易信		
			息,写入账本。		
			4. 打印节点账本信		
			息,验证交易信息		
			是否写入账本。		
UTC019	请求处理	客户端向节点发送	1. 客户端创建	客户端成功接收	
		jsonrpc 请求, 节点接收处	jsonrpc 请求。	响应消息。	
		理请求,向客户端发送	2. 客户端向节点发		
		响应消息。	送 post 请求。		
			3. 客户端接收到节		
			点响应消息。		
UTC020	交易状态	通过交易签名获取最新	1. 创建一个交易。	获取交易最新状	
		交易状态。	2. 发送交易到节	态信息。	
			点, 节点返回交易		
			签名。		
			3. 发送获取交易状		
			态 jsonrpc 请求。		

1. 如何确定本次交易确实是交易发起方发起的而不是其他人伪造?

测试方法:

发起人创建交易时,使用发起人的秘钥对交易数据信息采用"TBK25519"加密算法进行签名,将签名信息和交易发起人、接收人的公钥连同交易信息发送到 Nexus/核心节点,Nexus/核心节点接收到交易后使用发起人的公钥对签名信息进行验证,验证结果返回 true 说明本次交易确实是交易发起人发起的。

```
use ring::{
    rand,
    signature::{self, KeyPair},
};

// Generate a key pair in PKCS#8 (v2) format.
let rng = rand::SystemRandom::new();
let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng)?;

// Normally the application would store the PKCS#8 file persistently. Later
// it would read the PKCS#8 file from persistent storage to use it.
```

```
let key pair =
  signature::Ed25519KeyPair::from_pkcs8(untrusted::Input::from(pkcs8_bytes.as_ref()))?;
// Sign the message "hello, world".
const MESSAGE: &[u8] = b"hello, world";
let sig = key_pair.sign(MESSAGE);
// Normally an application would extract the bytes of the signature and
// send them in a protocol message to the peer(s). Here we just get the
// public key key directly from the key pair.
let peer_public_key_bytes = key_pair.public_key().as_ref();
let sig_bytes = sig.as_ref();
// Verify the signature of the message using the public key. Normally the
// verifier of the message would parse the inputs to `signature::verify`
// out of the protocol message(s) sent by the signer.
let peer_public_key = untrusted::Input::from(peer_public_key_bytes);
let msg = untrusted::Input::from(MESSAGE);
```

let sig = untrusted::Input::from(sig_bytes);
signature::verify(&signature::ED25519, peer_public_key, msg, sig)?;