第3节 诱导公式(★★)

内容提要

- 1. 诱导公式主要用于化掉 $\sin(\frac{k\pi}{2}\pm\alpha)$ 、 $\cos(\frac{k\pi}{2}\pm\alpha)$ 、 $\tan(\frac{k\pi}{2}\pm\alpha)$ 这类三角代数式中的 $\frac{k\pi}{2}$ 这个部分.
- 2. 诱导公式的口诀: 奇变偶不变,符号看象限;需要注意两点:
- ①奇变偶不变指要化掉的若是 $\frac{\pi}{2}$ 的奇数倍,则函数名正弦变余弦,余弦变正弦;偶数倍则不变;
- ②符号看象限,是看原来的三角函数名在对应象限的符号,例如,对 $\cos(\frac{\pi}{2} + \alpha)$ 化简时,符号看象限,看的是 $\frac{\pi}{2} + \alpha$ 这个第二象限的角的余弦值的符号,显然为负,所以添负号,得到 $\cos(\frac{\pi}{2} + \alpha) = -\sin\alpha$.

典型例题

【例 1】 $\sin 600^{\circ} = .$

【变式 1】设
$$\cos 29^\circ = m$$
 ,则 $\sin 241^\circ \tan 151^\circ = ($)
(A) $\sqrt{1+m^2}$ (B) $\sqrt{1-m^2}$ (C) $-\sqrt{1+m^2}$ (D) $-\sqrt{1-m^2}$

【变式 2】已知
$$f(x) = \frac{\sin(2\pi - x)\cos(\frac{3\pi}{2} + x)}{\cos(3\pi - x)\sin(\frac{11\pi}{2} - x)}$$
,则 $f(-\frac{21\pi}{4}) = .$

【变式 3】已知
$$A = \frac{\sin(k\pi + \alpha)}{\sin \alpha} + \frac{\cos(k\pi + \alpha)}{\cos \alpha} (k \in \mathbb{Z})$$
,则 A 的值构成的集合是.

【变式 4】 $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \cdots + \cos 180^{\circ} = .$

【例 2】已知
$$\cos(\frac{\pi}{2} + \alpha) = \frac{3}{5}$$
, $\alpha \in (\frac{\pi}{2}, \frac{3\pi}{2})$,则 $\tan \alpha = ($

(A)
$$\frac{4}{3}$$
 (B) $\frac{3}{4}$ (C) $-\frac{3}{4}$ (D) $\pm \frac{3}{4}$

【变式 1】已知 $\cos(\frac{\pi}{6}-\alpha)=\frac{2}{3}$,则 $\sin(\alpha-\frac{2\pi}{3})=$.

【变式 2】已知 $\sin(\frac{\pi}{6}+\alpha)=\frac{1}{3}$,且 $\alpha\in(\frac{\pi}{2},\pi)$,则 $\sin(\frac{2\pi}{3}+\alpha)=.$

强化训练

- 1. $(2022 \cdot 北京东城区模拟 \cdot ★★) 若 α 为任意角,则满足 <math>\cos(\alpha + k \cdot \frac{\pi}{4}) = -\cos\alpha$ 的一个 k 的值为()
- (A) 2 (B) 4 (C) 6 (D) 8
- 2. (2022・成都模拟・★★) 已知 $\tan\theta = 2$,则 $\frac{\sin(\frac{\pi}{2} + \theta) \cos(\pi \theta)}{\sin(\frac{\pi}{2} \theta) \sin(\pi \theta)} = .$
- 4. $(2021 \cdot 北京卷 \cdot \star \star \star)$ 若点 $A(\cos\theta,\sin\theta)$ 关于 y 轴的对称点为 $B(\cos(\theta + \frac{\pi}{6}),\sin(\theta + \frac{\pi}{6}))$,则 θ 的一个取值为.
- 5. (★★) 计算:
- $(1) \ \sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ =; \ (2) \ \frac{\lg(\tan 1^\circ) + \lg(\tan 2^\circ) + \dots + \lg(\tan 89^\circ)}{\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ} =.$
- 6. (2022・自贡期末・★★) 已知 $\sin(\frac{\pi}{5}-x) = \frac{3}{5}$,则 $\cos(\frac{7\pi}{10}-x) = .$

- 7. $(2022 \cdot 湖南模拟 \cdot \star \star)$ 已知 $\cos(\frac{5\pi}{12} + \alpha) = \frac{1}{3}$,且 $-\pi < \alpha < -\frac{\pi}{2}$,则 $\cos(\frac{\pi}{12} \alpha) = ($)
- (A) $\frac{2\sqrt{2}}{3}$ (B) $\frac{1}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2\sqrt{2}}{3}$
- 8. (2022・山西二模・ $\star\star$)若 $\sin 10^\circ = a \sin 100^\circ$,则 $\sin 20^\circ =$ ()
- (A) $\frac{a}{a^2+1}$ (B) $-\frac{a}{a^2+1}$ (C) $\frac{2a}{a^2+1}$ (D) $-\frac{2a}{a^2+1}$