MIRROJECT PRESENTATION

Sustania: Digital Farming Solutions

Project Guide:

Dr. Divya James

HoD

Department of Computer Science and Business

Systems

RSET

Submitted By:

Amisha Angel Pius - U2209010

Emmanuel Santhosh - U2209020

Rohith MP - U2209057

Ronn Mathew Sino - U2209058

Problem Statement

Develop a Smart
Irrigation System
integrated with a
Farmer Dashboard

Optimize irrigation using real-time data and machine learning

Improve water
efficiency and crop
yields for small and
medium-sized farmers

Project Objectives

- Develop cost-effective smart irrigation system: Creating an affordable solution without compromising on functionality
- Implement ML-based prediction system: Using machine learning to predict optimal irrigation timing and quantity
- Create user-friendly dashboard: Building an intuitive interface that farmers can easily understand and use
- Enable real-time monitoring: Providing instant access to field conditions and system status
- Reduce water waste: Optimizing water usage through precise irrigation control
- Improve crop yields: Enhancing production through optimal water management

Challenges in Development

Integration of diverse sensor technologies

Developing accurate machine learning models for irrigation optimization

Ensuring userfriendly interface for farmers with varying tech literacy

Real-time data processing and alert system implementation

Scalability and adaptability to different crop types and environmental conditions

Digital Farming - IoT Solution

Farm View

MODULES/ PHASES

HARDWARE INTEGRATION

- DHT22 sensor setup and testing
- Soil moisture sensor calibration Arduino Nano configuration
- Basic sensor reading functionality
- Initial data validation
- API integration
- Real-time data streaming setup

MACHINE LEARNING

- Data preprocessing pipeline
- Feature engineering
- Model development
- Performance validation
- Prediction system
- Error handling
- Real-time integration
- Performance optimization

FRONTEND

- User authentication
- Dashboard layout
- Data visualization
- Weather integration
- Community forum
- Support system
- User profiles
- Advanced analytics dashboard
- Real-time updates
- Final UI polish

BACKEND

- FAST API development
- Data validation
- Error handling
- Initial testing
- Hardware integration
- Performance optimization
- Final security review

INTEGRATION

- Data flow design
- Basic integration testing
- Error handling
- Full system integration
- Performance testing

Key Algorithms

ML Model API Flowchart

Key Algorithms

Random Forest

Results and Analysis

Model Performance:

- Achieved 94% overall accuracy in irrigation predictions
- Precision: 1.00 (100% accuracy in positive predictions)
- Recall: 0.88 (88% of actual irrigation needs correctly identified)
- False Positive Rate: 0%
- False Negative Rate: 12.12%

Confusion Matrix

True Negatives
403
False Positives
30
False Negatives
True Positives
506

Model Insights

- Soil moisture is the most important feature (21% importance)
- High model accuracy with AUC-ROC of 0.98
- Strong performance in both irrigation and no-irrigation cases

Recommendations

- Focus on moisture sensor calibration for optimal results
- Consider temperature interactions for better predictions
- Monitor false positives in edge cases

Results and Analysis

Technical Implementation:

- Successfully integrated IoT sensors with real-time data processing
- Implemented comprehensive dashboard with dark mode support
- Created robust ML pipeline with feature engineering and model optimization
- Developed scalable architecture supporting future expansions

n Dashboard

♦ Irrigation

Weather

II Analytics

☐ Forum

Support

O Profile

ML Model Predictions

TIME	RECOMMENDATION	CONFIDENCE
Nov 8, 2024, 12:11 AM	Skip	100%
Nov 7, 2024, 9:37 PM	Skip	98%
Nov 7, 2024, 9:37 PM	Skip	62%
Nov 7, 2024, 7:43 PM	Skip	98%
Nov 7, 2024, 7:43 PM	Skip	97%

Average Confidence: 73.6%

CONCLUSION

Achievements:

- Successfully implemented ML-based irrigation system: Functional intelligent irrigation control
- Achieved high prediction accuracy: Reliable automated decision making
- Created user-friendly interface: Accessible system control for all users
- Enabled real-time monitoring: Immediate access to field conditions

• Impact:

- Improved water usage efficiency: Significant reduction in water waste
- Enhanced crop yield potential: Better growth conditions through optimal irrigation
- Cost-effective solution: Affordable implementation for small farmers
- Accessible to small farmers: User-friendly design for varied technical expertise

UI Design

n Dashboard

- ♦ Irrigation
- Weather
- II Analytics
- ☐ Forum
- Support
- Profile

- n Dashboard
- ♦ Irrigation
- Weather
- II Analytics
- P Forum
- Support
- Profile

♦ Irrigation

○ Weather

il Analytics

☐ Forum

Support

8 Profile

Profile Settings

Account Status

Member Since: Jan 2023

Plan: Professional

Next Billing: Jan 1, 2024

Testing

```
(irrigation_env) D:\GitHub\Sustania-Dev\src\model\irrigation_project>python test_service.py
Testing Wheat Irrigation Prediction Service...
1. Testing health endpoint...

√ Health check successful

Response: {'status': 'healthy', 'timestamp': '2024-11-15T13:43:02.722026'}
2. Testing model info endpoint...
/ Model info retrieved successfully
Response: {'model_type': 'Random Forest Classifier', 'features_required': ['moisture', 'temperature'], 'version': '1.0'}
3. Testing prediction endpoint...
Sending test data: {
  "moisture": 645.1134129652032,
  "temperature": 37.001891540730945

√ Prediction successful

Need irrigation: False
```

