Learning High-Order Word Representations

Konstantinos Kogkalidis June 12, 2018

LoLa Fan Club

Motivation

Distributional Compositional Semantics

Idea: structure-preserving map ${\mathcal F}$

$$\mathcal{F}:\mathcal{G} o extbf{FdVect}$$

- Atomic types translated to vectors (order-one tensors)
- Complex types translated to (multi-)linear maps (higher order tensors)

Example

Word Type	\mathcal{G} Type	${\cal F}$ Translation
Noun	NP	\mathbb{R}^{NP}
Adjective	NP/NP	$\mathbb{R}^{NP\times NP} \equiv \mathbb{R}^{NP} \to \mathbb{R}^{NP}$

$$\textit{cat} \in \mathbb{R}^\textit{NP}$$

$$\textit{black}, \ \textit{stray} \in \mathbb{R}^\textit{NP} \times \textit{NP}$$

$$\textit{black stray cat} \in \mathbb{R}^\textit{NP}$$

- · Bridging of formal & distributional semantics
- · Syntax-informed meaning derivations
- Modeling of functional words
- · Formal treatment of ambiguous derivations
- Contextual Disambiguation
- Richer representations

:

- √ Great properties
- ? How to obtain word representations?

Possible options:

- √ Great properties
- ? How to obtain word representations?

Possible options:

1. Co-occurrence statistics

- √ Great properties
- ? How to obtain word representations?

Possible options:

- 1. Co-occurrence statistics X
- 2. Unsupervised techniques (a la word2vec)

- √ Great properties
- ? How to obtain word representations?

Possible options:

- 1. Co-occurrence statistics X
- 2. Unsupervised techniques (a la word2vec) X
- 3. Supervised learning?

Problem Statement

Examine whether supervised learning can be used to find higher-order word representations (transitive verbs)

Supervised Learning

Overview

- Search over set of functions $A \rightarrow B$ parameterized over P
- Find optimal approximation \hat{f}_P to $f: A \to B$
- Use samples $(a, f(a)) \in A \times B$ to update P

Supervised Learning

Dataset

Finding Data

Sample space must be:

- · labeled
- · constrained
- · of large size
- · of high quality

Paraphrase Database

Raw text paraphrase pairs

Example pair

proposed by the president \sim suggested by the chairman

- labeled √
- constrained X (different syntactic types)
- of large size √
- · of high quality?

Dataset: Preprocessing

- 1. **Parse and filter by type** (transitive verb case)
 - labeled √
 - constrained √
 - of large size ✗ (>95% loss)
 - of high quality X (parser-induced errors)

Dataset: Preprocessing

2. Back-translation

- Labeled ✓
- constrained √
- of large size √
- of high quality X (translation-induced errors)

Dataset: Preprocessing

3. Filter by co-occurrence / mutual information

- Labeled ✓
- constrained √
- · of large size \checkmark
- of high quality?

Dataset: End Result

Verb / object dictionaries:

$$V: \{v_1: 1, v_2: 2, ..., v_N: N\}$$

 $\mathcal{O}: \{o_1: 1, o_2: 2, ..., o_M: M\}$

Paraphrase relation:

$$\mathcal{P}: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \{0,1\} \qquad \text{(binary classification)}$$

$$\mathcal{P}(i,j,k,l) = \mathcal{P}(k,l,i,j) = \begin{cases} 1 & v_i o_j \sim v_k o_l \\ 0 & \text{otherwise} \end{cases}$$

Supervised Learning

Formulating the Network

Training Objective

Our semantic interpretations are:

- Actions: $[a] = \mathbb{R}^A$
- Objects: $\lceil np \rceil = \mathbb{R}^{NP}$
- Transitive Verbs: $\lceil a/np \rceil = \mathbb{R}^{A \times NP}$

And our objective is to learn a verb embedding function ε_{verb} :

$$\varepsilon_{\mathit{verb}}: \mathbb{N} \to \mathbb{R}^{\mathsf{A} \times \mathit{NP}}$$

But instead we have samples from some $f: \mathbb{N}^4 \to \{0,1\}$

Intermediate Representations

Solution

Formulate f_P to incorporate ε_{verb} .

$$f_p = f_1 \circ f_2 \circ \cdots \circ \varepsilon_{verb} \circ \ldots$$

Intermediate Representations

Solution

Formulate f_P to incorporate ε_{verb} .

$$f_p = f_1 \circ f_2 \circ \cdots \circ \varepsilon_{verb} \circ \ldots$$

Simplification (1)

Assume pre-trained object embedding function ε_{object} .

$$\varepsilon_{object}: \mathbb{N} \to \mathbb{R}^{300}$$

$$i \in \mathbb{N}$$
 $j \in \mathbb{N}$ $k \in \mathbb{N}$ $l \in \mathbb{N}$

$$\in \mathbb{N}$$

$$k \in \mathbb{N}$$

$$\in \mathbb{N}$$

$$\in \mathbb{R}$$

Objective Function

$$cos(\textbf{V}_i(\textbf{j}),\textbf{V}_k(\textbf{l})) \rightsquigarrow \mathcal{P}(i,j,k,l) \quad \forall \ (i,j,k,l) \in \mathcal{V} \times \mathcal{O} \times \mathcal{V} \times \mathcal{O}$$

Objective Function

$$cos(V_i(j), V_k(l)) \rightsquigarrow \mathcal{P}(i, j, k, l) \quad \forall \ (i, j, k, l) \in \mathcal{V} \times \mathcal{O} \times \mathcal{V} \times \mathcal{O}$$

Considerations:

- 1. Network Size
 - · 1.000 verbs
 - $100 \times 300 = 30.000$ parameters per verb
 - \Rightarrow 30.000.000 parameters for ε_{verb} to learn

Objective Function

$$cos(V_i(j), V_k(l)) \rightsquigarrow \mathcal{P}(i, j, k, l) \quad \forall \ (i, j, k, l) \in \mathcal{V} \times \mathcal{O} \times \mathcal{V} \times \mathcal{O}$$

Considerations:

- 1. Network Size
 - · 1.000 verbs
 - $100 \times 300 = 30.000$ parameters per verb
 - \Rightarrow 30.000.000 parameters for ε_{verb} to learn
- 2. Quantifying over two spaces ...

Objective Function

$$cos(V_i(j), V_k(l)) \rightsquigarrow \mathcal{P}(i, j, k, l) \quad \forall \ (i, j, k, l) \in \mathcal{V} \times \mathcal{O} \times \mathcal{V} \times \mathcal{O}$$

Considerations:

- 1. Network Size
 - · 1.000 verbs
 - $100 \times 300 = 30.000$ parameters per verb
 - \Rightarrow 30.000.000 parameters for ε_{verb} to learn
- 2. Quantifying over two spaces ...
- 3. ... both of which are non-convex

... A "beast" to train 😊

Supervised Learning

Transferring Knowledge

Finding an Oracle

Dataception: use our labeled dataset to create a new dataset

Finding an Oracle

Dataception: use our labeled dataset to create a new dataset

Simplification (2)

Assume another pre-trained verb embedding function ε'_{verb} .

$$\varepsilon'_{\mathit{verb}}: \mathbb{N} \to \mathbb{R}^{300}$$

Finding an Oracle

Dataception: use our labeled dataset to create a new dataset

Simplification (2)

Assume another pre-trained verb embedding function ε'_{verb} .

$$\varepsilon'_{\mathit{verb}}: \mathbb{N} \to \mathbb{R}^{300}$$

Oracle

We can now train a paraphrase embedding function ε_{par} .

$$\varepsilon_{par}: \mathbb{R}^{300} \times \mathbb{R}^{300} \to \mathbb{R}^{100}$$

$$i \in \mathbb{N}$$
 $j \in \mathbb{N}$ $k \in \mathbb{N}$ $l \in \mathbb{N}$

$$j \in \mathbb{N}$$

$$k \in \mathbb{N}$$

$$\in \mathbb{N}$$

Training the Oracle

Utilizing the Oracle

New Objective Function

$$cos(V_i(j), \varepsilon_{par}(v_i, j)) \rightsquigarrow 1 \quad \forall (i, j) \in \mathcal{V} \times \mathcal{O}$$

- \cdot ε_{par} gives us paraphrase embeddings 'for free'
- · We can use them to facilitate training
- Much smaller problem space

Composing Networks

Training the Original

The beast has been tamed! ©

Microstructure

Task-specific performance relates to the small-scale structure of the learned space:

	Prediction	Oracle		Final	
Ground Truth		Т	\perp	Т	
Т		0.92	0.08	0.88	0.02
\perp		0.08	0.92	0.12	0.98

Macrostructure

3D PCA on paraphrase embeddings

Conclusion

Critique

- 1. Metric reliability
- 2. Uninformative error signal
- 3. Over-parameterization
 - a) Linearity constraint
 - b) Chasing after an oracle
 - c) Bad scaling

Next Steps

- 1. Directly evaluate verb matrices
- 2. More structural constraints (activity regularization)
- 3. Iterative learning
- 4. Other data formats:
 - Different syntactic types
 - Different labels / samples altogether
- 5. Different oracle architectures
- 6. Different embedder architectures (encoder/decoder)

Bag of Tricks

Negative Sampling

Let $L : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the loss function.

Objective translates to:

$$\min_{P} L[\mathcal{P}(i,j,k,l), \hat{y}_{P}] \quad \forall (i,j,k,l)$$
 (Intractable)

Randomly generate and select negative samples (different every epoch).

Curriculum Learning

"Two phrases are not similar unless they are"

- Class imbalance ⇒ bad predictions
- Treat negative samples as noise
- · Learn positive examples then increase noise

Loss Mixing

Cross-entropy vs. MSE vs. Categorical Hinge

- · Different assumptions, none correct.
- Many falsities \Rightarrow Truth ?