ISITCom Hammam Sousse

Examen A. U.: 2021/2022

Niveau: 1^{ére} année LM | Date : 29 / 01 /2022

Module : Logique Formelle Durée : 1h30

Enseignant: Haykal Tej Session: Principale

CORRECTION

Exercice 1: (8 pts) (correction)

En associant les énoncés élémentaires « Béchir est étudiant », « Kamel est étudiant », « Ridha est étudiant » aux propositions **B, K, R**, respectivement ; associer à chacun des énoncés suivants la formule propositionnelle qui semble lui correspondre sémantiquement :

1) Un seul parmi Béchir et Kamel est étudiant

$$(\mathbf{B} \wedge \neg \mathbf{K}) \vee (\neg \mathbf{B} \wedge \mathbf{K})$$
 ou $(\mathbf{B} \leftrightarrow \neg \mathbf{K})$ ou $\neg (\mathbf{B} \leftrightarrow \mathbf{K})$

Ridha n'est étudiant que si un seul parmi les deux autres est un étudiant.

$$R \rightarrow ((\mathbf{B} \wedge \neg \mathbf{K}) \vee (\neg \mathbf{B} \wedge \mathbf{K}))$$

3) Au moins l'un des trois n'est pas étudiant.

$$(\neg B \lor \neg K \lor \neg R) \text{ ou}$$

$$\neg (B \land K \land R) \text{ ou}$$

$$(\neg B \land K \land R) \lor (B \land \neg K \land R) \lor (B \land K \land \neg R) \lor (\neg B \land \neg K \land R) \lor (\neg B \land K \land \neg R) \lor (\neg B \land \neg K \land \neg R)$$

$$(\neg B \land K \land \neg R) \lor (B \land \neg K \land \neg R) \lor (\neg B \land \neg K \land \neg R)$$

4) Au plus l'un des trois est étudiant.

$$\neg (B \lor K \lor R) \lor (\neg B \land K \land R) \lor (B \land \neg K \land R) \lor (B \land K \land \neg R)$$
 ou $(\neg B \land \neg K \land \neg R) \lor (\neg B \land K \land R) \lor (B \land \neg K \land R) \lor (B \land K \land \neg R)$

5) Aucun parmi les trois n'est étudiant.

$$\neg (B \lor K \lor R)$$
 ou $(\neg B \land \neg K \land \neg R)$

Si Béchir est étudiant, alors Kamel est un étudiant ; sinon Kamel n'est pas un étudiant.

$$B \leftrightarrow K$$
 ou $(B \to K) \land (\neg B \to \neg K)$ ou $(B \to K) \land (K \to B)$

7) Béchir est étudiant à condition que Ridha soit un étudiant.

8) Si Béchir est étudiant alors au moins l'un des deux autres n'est pas un étudiant.

$$B \rightarrow (\neg R \lor \neg K)$$
 ou $B \rightarrow \neg (R \land K)$

Exercice 2: (5 pts) (correction)

Utiliser les tables de vérité pour classer les formules qui suivent en « valide », « contingente», « contradictoire ». *Justifier vos réponses*

Donner pour chaque formule, si c'est possible, un modèle et un contre modèle.

1.
$$F1 = (A \lor B) \land (A \rightarrow B) \land \neg B$$

A	В	$A \vee B$	$A \rightarrow B$	$\neg B$	$(A \vee B) \wedge (A \to B)$	$(A \lor B) \land (A \to B) \land \neg B$
1	1	1	1	0	1	0
1	0	1	0	1	0	0
0	1	1	1	0	1	0
0	0	0	1	1	0	0

- F1 est une formule *contradictoire* puisqu'elle n'admet aucun modèle.
- Modèle pour F1: F1 n'admet aucun modèle
- Contre-modèle pour F1: l'interpretation I telle que I(A) = 1 et I(B) = 1 puisque I(F1) = 0

2.
$$F2 = (\neg (A \leftrightarrow B)) \rightarrow (\neg A \leftrightarrow B)$$

A	В	$A \leftrightarrow B$	$\neg (A \leftrightarrow B)$	¬A	$\neg A \leftrightarrow B$	$(\neg (A \leftrightarrow B)) \rightarrow (\neg A \leftrightarrow B)$
1	1	1	0	0	0	1
1	0	0	1	0	1	1
0	1	0	1	1	1	1
0	0	1	0	1	0	1

- F2 est une formule *valide* puisqu'elle n'admet que des modèle.
- **Modèle pour F2**: l'interpretation I telle que I(A) = 1 et I(B) = 1 puisque I(F2) = 1
- Contre-modèle pour F2: F2 n'admet aucun contre -modèle

3. $F3 = ((A \lor B) \land (\neg A \lor B)) \lor \neg B$

A	В	$A \vee B$	$\neg A$	$\neg A \lor B$	$\neg B$	$(A \vee B) \wedge (\neg A \vee B)$	$((A \lor B) \land (\neg A \lor B)) \lor \neg B$
			_		_		
1	1	1	0	1	0	1	1
4	0	1	0	0	1	0	4
1	0	1	0	0	1	0	1
0	1	1	1	1	0	1	1
0	0	0	1	1	1	0	1

- F3 est une formule *valide* puisqu'elle n'admet que des modèle.
- **Modèle pour F3**: l'interpretation I telle que I(A) = 1 et I(B) = 1 puisque I(F3) = 1
- Contre-modèle pour F3: F3 n'admet aucun contre-modèle
- 4. $F4 = (A \lor B) \land (A \rightarrow B)$

A	В	$A \vee B$	$A \rightarrow B$	$(A \vee B) \wedge (A \to B)$
1	1	1	1	1
1	0	1	0	0
0	1	1	1	1
0	0	0	1	0

- F4 est une formule *contingente* puisqu'elle admet des modèles et des contre-modèles.
- **Modèle pour F4**: l'interpretation I telle que I(A) = 1 et I(B) = 1 puisque I(F4) = 1
- Contre-modèle pour F4: l'interpretation I telle que I(A) = 1 et I(B) = 0 puisque I(F4) = 0

Exercice 3: (5 pts) (correction)

- 1) Démontrer les conséquences logiques suivantes :
 - a. $\neg Q, (P \rightarrow Q) \models \neg P$ (utiliser le théorème de déduction et table de vérité)

D'après le théorème de déduction il suffit de démontrer que : $\neg Q \land (P \rightarrow Q) \rightarrow \neg P$ est valide.

P	Q	$\neg Q$	$P \rightarrow Q$	$\neg \ Q \land (P \to Q)$	¬P	$\neg Q \land (P \to Q) \to \neg P$
1	1	0	1	0	0	1
1	0	1	0	0	0	1
0	1	0	1	0	1	1
0	0	1	1	1	1	1

Puisque $\neg Q \land (P \rightarrow Q) \rightarrow \neg P$ est valide, donc d'après le théorème de déduction on a : $\neg Q$, $(P \rightarrow Q) \models \neg P$

b. $Q \models P \rightarrow Q$ (utiliser le théorème de réfutation et table de vérité)

D'après le théorème de réfutation il suffit de démontrer que : $Q \land \neg (P \rightarrow Q)$ est un contradiction.

P	Q	$P \rightarrow Q$	$\neg (P \rightarrow Q)$	$Q \land \neg (P \to Q)$
1	1	1	0	0
1	0	0	1	0
0	1	1	0	0
0	0	1	0	0

Puisque $Q \land \neg (P \rightarrow Q)$ est un contradiction, donc d'après le théorème de réfutation on a : $Q \models (P \rightarrow Q)$

c.
$$\neg Q$$
, $(\neg P \lor Q) \models \neg P$ (utiliser la définition de \models et table de vérité)

P	Q	$\neg P$	$\neg P \lor Q$	$\neg Q$	¬P
1	1	0	1	0	0
1	0	0	0	1	0
0	1	1	1	0	1
0	0	1	1	1	1

donc on a :
$$\neg Q$$
, $(\neg P \lor Q) \models \neg P$

2) Démontrer que la conséquence logique suivante n'est pas correcte :

$$a - \neg P$$
, $(\neg P \lor Q) \models \neg Q$ (utiliser la définition de \models et table de vérité)

P	Q	$\neg P$	$\neg P \lor Q$	$\neg Q$
1	1	0	1	0
1	0	0	0	1
0	1	1	1	0
0	0	1	1	1

Puisque pour l'interprétation I telle que I(P) = 0 et I(Q) = 1 on a $I(\neg P) = 1$ et $I(\neg P \lor Q) = 1$ mais $I(\neg Q) = 0$, on a donc : $\neg P$, $(\neg P \lor Q) \models \neg Q$ n'est pas correcte.

b-
$$\neg P$$
, $(\neg P \lor Q) \models \neg Q$ (utiliser théorème de déduction et table de vérité)

d'après le théorème de déduction il suffit de démontrer que : $\neg P \land (\neg P \lor Q) \rightarrow \neg Q$ n'est pas valide (c'est-à-dire falsifiable)

P	Q	$\neg P$	$\neg P \lor Q$	$\neg Q$	$\neg P \land (\neg P \lor Q)$	$\neg P \land (\neg P \lor Q) \rightarrow \neg Q$
1	1	0	1	0	0	1
1	0	0	0	1	0	1
0	1	1	1	0	1	0
0	0	1	1	1	1	1

Puisque $\neg P \land (\neg P \lor Q) \rightarrow \neg Q$ n'est pas valide, donc d'après le théorème de déduction on a : $\neg P, (\neg P \lor Q) \models \neg Q$ n'est pas correcte

$$c - \neg P$$
, $(\neg P \lor Q) = \neg Q$ (utiliser théorème de réfutation et table de vérité)

d'après le théorème de réfutation il suffit de démontrer que : $\neg P \land (\neg P \lor Q) \land Q$ n'est pas contradictoire (c'est-à-dire satisfiable)

P	Q	¬P	$\neg P \lor Q$	$\neg P \land (\neg P \lor Q)$	$\neg P \land (\neg P \lor Q) \land Q$
1	1	0	1	0	0
1	0	0	0	0	0
0	1	1	1	1	1
0	0	1	1	1	0

Puisque $\neg P \land (\neg P \lor Q) \land Q$ n'est pas contradictoire, donc d'après le théorème de réfutation on a : $\neg P, (\neg P \lor Q) \models \neg Q$ n'est pas correcte

Exercice 4: (2 points) (correction)

Déterminer pour chacun des cas suivants les valeurs de n (n entier naturel) pour lesquelles la formule est vraie :

1-
$$(n=1) \rightarrow (n=2)$$

$$(n=1) \rightarrow (n=2)$$
 est fausse $\langle == \rangle$ $(n=1)$ et $(n \neq 2)$ $\langle == \rangle$ $(n=1)$

Ce qui implique

$$(n=1) \rightarrow (n=2)$$
 est vrai $\langle == \rangle$ $(n \neq 1)$ ssi $n \in IN \setminus \{1\}$

Donc pour
$$n \in IN \setminus \{1\}$$
, la formule $(n=1) \rightarrow (n=2)$ est vrai

$$2-(n=1) \leftrightarrow (n=2)$$

$$(n=1) \leftrightarrow (n=2)$$
 est vrai $<==>$

$$((n = 1) \text{ et } (n = 2)) \text{ ou } ((n \neq 1) \text{ et } (n \neq 2)) \iff$$

$$((n \neq 1) \text{ et } (n \neq 2)) \iff$$

$$n \in IN \setminus \{1, 2\}$$

Donc pour $n \in IN \setminus \{1, 2\}$, la formule $(n=1) \leftrightarrow (n=2)$ est vrai