几何与代数(2)考试样题

一. 填空题 (每题 5 分, 合计 35 分)

1. 设 $f(x) = x^4 - 4x^3 - 1$, $g(x) = x^2 - 3x - 1$, 则 f(x) 被 g(x) 除所得的商式为 ______ , 余式为 ______ .

2. 设 $f(x) = x^2 + (k+6)x + 4k + 2$, $g(x) = x^2 + (k+2)x + 2k$, 当 k _______ 时, f(x) 与 g(x) 的最大公因式是一次的.

3. 设V 是R 上的线性空间, $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 是V 的一个基, σ 是V 上的线性变换,已

知 σ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的矩阵是 $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$,则 σ 的所有的 2 维不变子空

间为 ______

4. 设 σ 是V上的对称变换,满足 $\sigma^2 = \varepsilon$,其中 ε 是恒等变换,则 $\forall \alpha, \beta \in V$,

 $(\sigma(\alpha), \sigma(\beta)) = \underline{\hspace{1cm}}.$

5. 设 $\alpha_1,\alpha_2,\alpha_3$ 是3维欧氏空间V的一个基,这个基的度量矩阵是

$$G = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & 6 \end{pmatrix}$$

令 $\gamma = \alpha_1 + \alpha_2$,则参数k = 时 $\beta = \alpha_1 + \alpha_2 + k\alpha_3$ 与 γ 正交.

6. 设 $F^n = \{(x_1, x_2, \dots, x_n)^T | x_i \in F\}$ 是数域F上的线性空间,定义 $\sigma((x_1, x_2, \dots, x_n)^T) = (0, x_1, \dots, x_{n-1})^T$

则 ker σ = _______, Im σ 的维数为 ______.

7. 设A是一个6阶矩阵,其特征多项式为 $f(x) = (x+2)^2(x-1)^4$,若A的极小多项式为 $m_A(x) = (x+2)(x-1)^2$,A的 Jordan 标准形有_____种可能形式,

它们是 .

- 二. 解答题 (第8题20分, 其余每题15分, 合计65分)
- 8. 设 W_1 和 W_2 是 R^4 的两个子空间,

9. 求矩阵

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & a \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

的 Jordan 标准形 J , 并求可逆矩阵 P , 使得 $P^{-1}AP = J$.

- 10. 令 σ 是线性空间V上的线性变换,且满足 $\sigma^2 = \sigma$,证明
 - (1) $\ker \sigma = \{ \xi \sigma(\xi) | \xi \in V \};$
 - (2) $V = \ker \sigma \oplus \operatorname{Im} \sigma$;
 - (3) 如果 τ 是V的一个线性变换,那么 ker σ 和 Im σ 都是 τ 的不变子空间的充分必要条件是 $\sigma\tau = \tau\sigma$.
- 11. 已知欧氏空间V的一个标准正交基是 $\alpha_1,\alpha_2,\cdots,\alpha_n$,令 $\alpha_0=\alpha_1+2\alpha_2+\cdots+n\alpha_n$, $\forall \alpha\in V$,定义变换

$$\sigma(\alpha) = \alpha + k (\alpha, \alpha_0) \alpha_0$$

其中k为非零常数,

- (1) 证明 σ 是V上的线性变换;
- (2) 求 σ 在标准正交基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的矩阵;
- (3) 证明 σ 是正交变换的充分必要条件是 $k = -\frac{2}{1^2 + 2^2 + \dots + n^2}$.