ISYS3401 IT Evaluation

Week 10: Measurement of Constructs
Scale Reliability

Vincent.Pang@sydney.edu.au

Agenda

- Recap on what we have done so far...
- Extra Information On Measurement
- Scale Reliability
 - Excel
 - SPSS
- Final Model (Using Regression)

So what have we done so far...

Now look at the photo you took in Week 1

So what have we done so far...

Model and Questions

- Learn about TAM model, and how it can be used to evaluate a system
- 2. Examine some of questions used in TAM model (plus reading of Chapter 6)
- Learn about Qualitative Research how not to ask a question, and the use of NVivo to analyse text
- 4. Understand the needs of Pilot Testing

Data Analysis

- 1. Assuming you have collected data, you use Factor Analysis to check the constructs/factors using
- 2. Check Convergent (\geq =0.60) and Discriminant Validity (\leq =0.30)
- Internal Consistency Reliability (Today)
- Create your Final Model (next week)

Extra Information on Measurements

Rating Scales (Level of Measurement)

- The relationship among the values that are assigned to the attributes of a variable
 - The value that an indicator can take
- General Rating Scales
 - 1. Nominal
 - Numerical values just "name" the attributes uniquely
 - Attributes cannot be rank-ordered
 - 2. Ordinal
 - Attributes can be rank-ordered
 - Distance between attributes does not have any meaning
 - 3. Interval
 - Attributes can be rank-ordered
 - Distance between attributes is meaningful (equidistant between adjacent attributes)
 - 4. Ratio
 - All the qualities of nominal, ordinal, and interval scales
 - "True zero" point (absolute zero)
 - Ratio (or fraction) is meaningful

Specific Rating Scales

- 1. Binary: "Yes" or No", or "True" or "False"
- 2. Likert: A Likert scale is a <u>psychometric</u> scale commonly involved in research that employs <u>questionnaires</u>. It is the most widely used approach to scaling responses in survey research, such that the term (or more accurately the Likert-type scale) is often used interchangeably with <u>rating</u> <u>scale</u>, even though the two are not synonymous.
- 3. Guttman: A set of items if they can be ordered in a reproducible hierarchy. For example, a series of items could be (1) "I am willing to be near ice cream"; (2) "I am willing to smell ice cream"; (3) "I am willing to eat ice cream"; and (4) "I love to eat ice cream"
- 4. Semantic Differential is a scale used for measuring the meaning of things and concepts. There are two aspects of meaning: denotative and connotative. The semantic differential measures connotative meaning.
 - *Denotation* what a name or concept refers to (*denote* to mark out plainly, to indicate)
 - *Connotation* the suggestive significance of a word, apart from its explicit and recognized meaning

1. Specific Rating Scales: Binary Scale

 Nominal scale consisting of binary items that assume one of two possible values (e.g., yes or no, true or false, etc.)

Have you ever written a letter to a public official	Yes	No
Have you ever signed a political petition	Yes	No
Have you ever donated money to a political cause	Yes	No
Have you ever donated money to a candidate running for public office	Yes	No
Have you ever written a political letter to the editor of a newspaper or magazine	Yes	No
Have you ever persuaded someone to change his/her voting plans	Yes	No

Table 6.2. A six-item binary scale for measuring political activism

2. Specific Rating Scales: Likert Scale

- Includes simply-worded statements to which respondents can indicate their extent of agreement or disagreement on a multiple-point scale ranging from "strongly disagree" to "strongly agree"
- Number of values
 - Odd number allows for a "neutral anchor"
 - Even number forces respondents to agree or disagree
- Ordinal scale in theory (anchors not necessarily equidistant), treated like interval scale in practice (anchors are assumed equidistant)

	Strongly Disagree	Somewhat Disagree	Neutral	Somewhat Agree	Strongly Agree
I feel good about my job	1	2	3	4	5
I get along well with others at work	1	2	3	4	5
I'm proud of my relationship with my supervisor at work	1	2	3	4	5
I can tell that other people at work are glad to have me there	1	2	3	4	5
I can tell that my coworkers respect me	1	2	3	4	5
I feel like I make a useful contribution at work	1	2	3	4	5

3. Specific Rating Scales: Guttman Scale

 A composite scale uses a series of items arranged in increasing order of intensity of the construct of interest, from least intense to most intense.

How will you rate your opinions on the following statements about immigrants?							
Do you mind immigrants being citizens of your country Yes No							
Do you mind immigrants living in your own neighborhood	Yes	No					
Would you mind living next door to an immigrant	Yes	No					
Would you mind having an immigrant as your close friend	Yes	No					
Would you mind if someone in your family married an immigrant	Yes	No					

Table 6.5. A five-item Guttman scale for measuring attitude toward immigrants

4. Specific Rating Scales: Semantic Differential Scale

 A composite (multi-item) scale where respondents are asked to indicate their opinions or feelings toward a single statement using different pairs of adjectives framed as polar opposites

How would y	How would you rate your opinions on national health insurance?											
	Very much Somewhat Neither Somewhat Very much											
Good						Bad						
Useful						Useless						
Caring						Uncaring						
Interesting						Boring						

Table 6.4. A semantic differential scale for measuring attitude toward national health insurance

Topic: Scale Reliability

Reference:

http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article =1002&context=oa_textbooks (Chapter 6 and 7)

Recap: Psychometric Properties of Measurement Scales

- Reliability (correlation & variance!!)
 - The degree to which the measure of a construct is consistent or dependable
 - Sources of unreliable measurements
 - Observer's (researcher's) subjectivity
 - Imprecise or ambiguous questions
 - Questions about issues that respondents are not very familiar about or care about
- Construct Validity
 - The extent to which a measure adequately represents the underlying construct that it is supposed to measure
 - Validity of the measurement procedures
 - Distinct from the validity of hypotheses testing procedures
 - Internal validity
 - External validity

Recall: Use Factor analysis to heck if the variables belong to the same Factor/Construct.

Recap: Convergent and Discriminant Validity

- Convergent validity
 - Comparing the observed values of one indicator of one construct with that of other indicators of the same construct
 - Demonstrating similarity (or high correlation) between values of these indicators
 - Same-factor loadings ≥ 0.60
- Discriminant validity
 - Demonstrating that indicators of one construct are dissimilar from (i.e., have low correlation with) other constructs

 Rotated Component Matrix^a
 - Cross-factor loadings ≤ 0.30

		KL1	KL2	KL3	PF1	PF2	PF3			
	KL1	1.00	0.83	0.79	0.23	0.21	0.19			
	KL2		1.00	0.75	0.11	0.20	0.03			
	KL3			1.00	0.03	-0.11	0.17	\		
	PF1				1.00	0.84	0.91	\		
	PF2					1.00	_≫ 0.77	\		
	PF3						1.00	\		
High correlations between Low correlations be items of the same construct items of different co (convergent validity) (discriminant valid										

Rota	ted Comp	Rotated Component Matrix ^a									
	(Component									
	1	2	3								
PU1		.938									
PU2		.913									
PU3		.896									
PEOU1	.964										
PEOU2	.970										
PEOU3	.968										
PEOU4	.720		.389								
ATT1			.849								
ATT2			.926								
ATT3			.882								
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.											
a. Rota	ation converg	ed in 5 iterat	tions.								

Reliability

- Inter-Rater Reliability
 - A measure of consistency between two or more independent rater (observers) of the same construct
- Test-Retest Reliability
 - A measure of consistency between two measurements (tests) of the same construct administered to the same sample at two different points in time

Internal Consistency Reliability (main focus)

 A measure of consistency between different items of the same construct

- Methods
 - 1. Average inter-item correlation
 - 2. Average item-to-total correlation
 - 3. Split-half reliability
 - 4. Cronbach's alpha (α)

Internal Consistency Reliability

- 1. After Factor Analysis (last week), we got the constructs/factors and the variables associated with each construct.
- 2. We now want to check if the variables for a selected construct is reliable, i.e. we are performing internal consistency reliability test. For instance, you can either take a sample of your data (sample) or you can use the whole set of data (population)

Demonstration for Consistency Reliability Test

Response	Q1	Q2	Q3	Q4	Q1+Q2	Q3+Q4	Q1toQ4
1	1	4	2	2	5	4	9
2	2	4	5	4	6	9	15
3	3	5	4	4	8	8	16
4	4	5	4	3	9	7	16
5	5	3	5	5	8	10	18
Variance	2.5	0.7	1.5	1.3	2.7	5.3	11.7
	4.75	-0.2	3.75	3.4	4.55	7.15	11.7
COV	0.8783	-0.2	0.8951	0.8718	4.33	7.13	11./
cor	0.0703	-0.0099	0.8931	0.0710			
	Q1	Q2	Q3	Q4	<i>Q1+Q2</i>	Q3+Q4	Q1toQ4
Q1	1						~ ~
Q2	- 0.1890	1					
Q3	0.6455	-0.2440	1				
Q4	0.6934	-0.4193	0.8951	1			
Q1&2	0.8660	0.3273	0.4969	0.4537	1		
Q3&4	0.6868	-0.3375	0.9753	0.9715	0.4890	1	
Q1to4	0.8783	-0.0699	0.8951	0.8718	0.8095	0.9080	1
Average inter-item correlation:	0.230						
Average item-to-total correlation:	0.644						
Split-Half Correlation (Q1+Q2) vs (Q3+Q4):	0.489						
Split-Half Reliability (Q1+Q2) vs (Q3+Q4):	0.657						
Alpha (Unstandardised) (Q1toQ4):	0.650						
Standardised Cronbach's alpha (Q1toQ4):	0.545	Poor					

Formulae

$$\sigma^{2} = \frac{\sum (X - \mu)^{2}}{N} = \frac{\sum X^{2}}{N} - \mu^{2}$$

$$r = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{[N \sum x^{2} - (\sum x)^{2}][N \sum y^{2} - (\sum y)^{2}]}}$$

$$r_{xx} = \frac{2r_{hh}}{1 + r_{hh}}$$

$$\alpha = \frac{K}{K - 1} \left(1 - \frac{\sum_{i=1}^{K} \sigma_{Yi}^{2}}{\sigma_{X}^{2}}\right)$$

$$\alpha_{standardized} = \frac{K\bar{r}}{1 + (K - 1)\bar{r}}$$

Average Inter-Item Correlation

1. Compute the correlation between each pair of items

```
N\Sigma xy - (\Sigma x)(\Sigma y)
r = \sqrt{[N\Sigma x^2 - (\Sigma x)^2][N\Sigma y^2 - (\Sigma y)^2]}
Where:
N = \text{number of pairs of scores}
\Sigma xy = \text{sum of the products of paired scores}
\Sigma x = \text{sum of x scores}
\Sigma y = \text{sum of y scores}
\Sigma x^2 = \text{sum of squared x scores}
\Sigma y^2 = \text{sum of squared y scores}
```

2. Computer the average of all the correlations

Average Item-to-Total Correlaton

- Compute the total score for the items
- Compute the correlation between each item and the total

3. Compute the average of the item-to-total correlations

Split-Half Reliability - Spearman-Brown Formula

- 1. Randomly divide all items into two halves
- 2. Compute the total score for each half
- 3. Compute the correlation (r_{hh}) between the two halves

4. Step up the split-half correlation using the Spearman-Brown formula:

$$r_{xx} = \frac{2r_{hh}}{1 + r_{hh}}$$

Split-Half Reliability - Spearman-Brown Formula

Example

- A construct (e.g., Satisfaction) is measured using 10 items (survey questions) from 15 respondents
- Calculate the split-half reliability using the Spearman-Brown Formula
 - 1. Randomly divide the 10 items into two halves (e.g., Q1-Q5 and Q6-Q10)
 - 2. Compute the total score for each half (H1 and H2)
 - 3. Compute the correlation (r_{hh}) between the two halves (0.47581)
 - 4. Step up the split-half correlation using the SB formula:

$$r_{\chi\chi} = \frac{2(0.475481)}{1+0.475481} = 0.645$$

	Α	В	С	D	E	F	(i l	Н	- 1	J	K
3		Q1	Q2	Q3	Q4	Q5	Q	6	Q7	Q8	Q9	Q10
4	1	3	2	4	1	4	5	5	1	4	3	2
5	2	5	4	6	3	5	1		2	5	5	5
6	3	7	3	5	5	6	4	1	3	3	6	5
7	4	2	4	3	3	2	2	2	2	6	6	3
8	5	6	5	6	5	4	4	1	4	6	7	5
9	6	1	2	3	4	2	5	5	2	3	5	2
10	7	4	3	5	3	5	2	2	1	2	4	3
11	8	2	4	4	3	7	2	2	2	4	6	5
12	9	6	5	5	5	1	6	i	5	2	3	2
13	10	5	4	6	4	3	5	5	3	1	7	2
14	11	4	3	5	2	5	3	3	2	3	4	1
15	12	4	2	3	2	5	3	3	4	2	3	4
16	13	5	5	6	2	3	3	3	2	4	4	5
17	14	6	5	5	4	2	2	2	1	4	6	5
18	15	4	3	5	5	3	1		3	2	3	4
												-
	Α		В	С	D		E		F	(ì	Н

	A	Α	В	С	D	Е	F	G	Н
	22		H1	H2					
	23	1	14	15		Correlation	coefficient		0.475481
	24	2	23	18		Spearman	-Brown co	rrection	0.64451
	25	3	26	21					
١.	26	4	14	19					
•	27	5	26	26					
	28	6	12	17					
	29	7	20	12					
	30	8	20	19					
	31	9	22	18					
	32	10	22	18					
	33	11	19	13					
	34	12	16	16					
	35	13	21	18					
	36	14	22	18					
	37	15	20	13					

Cronbach's Alpha (Coefficient Alpha) (α)

Alpha (Unstandardized)

$$\alpha = \frac{K}{K - 1} \left(1 - \frac{\sum_{i=1}^{K} \sigma_{Yi}^2}{\sigma_X^2} \right)$$

K: number of items

 σ_{Yi}^2 : variance of item i

 σ_X^2 : variance of total score

- Standardized Alpha
 - When item variances are all equal
 - Mathematically equivalent to the average of all possible split-half correlations

$$\alpha_{standardized} = \frac{K\bar{r}}{1 + (K-1)\bar{r}}$$

 \bar{r} : average correlation among the k items

Cronbach's alpha	Internal consistency
$\alpha \ge 0.9$	Excellent
$0.9 > \alpha \geq 0.8$	Good
$0.8>\alpha\geq0.7$	Acceptable
$0.7 > \alpha \ge 0.6$	Questionable
0.6 > α ≥ 0.5	Poor
0.5 > α	Unacceptable

Cronbach's Alpha (Coefficient Alpha) (α)

Example

- A construct (e.g., Satisfaction) is measured using 10 items (survey questions) from 15 respondents
- Calculate the Cronbach's alpha

$$\alpha = \frac{10}{10 - 1} \left(1 - \frac{2.72889 + 1.17333 + \dots + 1.9822}{40.6933} \right)$$

$$= \frac{10}{10 - 1} \left(1 - \frac{19.0222}{40.6933} \right)$$

$$= 0.592$$

- Comment on the reliability of the scale given the Cronbach's alpha
 - Given the alpha value of 0.592, which is between 0.5 and 0.6, the reliability of the scale is considered poor
- Suppose the average correlation among the 10 items is 0.14783.
 Calculate the standardized alpha

$$\alpha_{standardized} = \frac{10(0.14783)}{1 + (10 - 1)(0.14783)} = 0.634$$

A	Α	В	С	D	E	F	G	Н	1	J	K	L
1	Cronbac	h's Alpha	1									
2												
3		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total
4	1	3	2	4	1	4	5	1	4	3	2	29
5	2	5	4	6	3	5	1	2	5	5	5	41
6	3	7	3	5	5	6	4	3	3	6	5	47
7	4	2	4	3	3	2	2	2	6	6	3	33
8	5	6	5	6	5	4	4	4	6	7	5	52
9	6	1	2	3	4	2	5	2	3	5	2	29
10	7	4	3	5	3	5	2	1	2	4	3	32
11	8	2	4	4	3	7	2	2	4	6	5	39
12	9	6	5	5	5	1	6	5	2	3	2	40
13	10	5	4	6	4	3	5	3	1	7	2	40
14	11	4	3	5	2	5	3	2	3	4	1	32
15	12	4	2	3	2	5	3	4	2	3	4	32
16	13	5	5	6	2	3	3	2	4	4	5	39
17	14	6	5	5	4	2	2	1	4	6	5	40
18	15	4	3	5	5	3	1	3	2	3	4	33
19	Total	64	54	71	51	57	48	37	51	72	53	558
20	Var	2.72889	1.17333	1.12889	1.57333	2.69333	2.29333	1.31556	2.10667	2.02667	1.98222	19.0222
21												
22	k	10										
23	Σvar	19.0222										
24	var	40.6933										
25	α	0.59172										

Class Activities on Reliability

Download Week 10 Lecture Reliability.xlsx from Canvas

Try "TamData Sample" yourself.

In Excel...

Response	Q1	Q2	Q3	Q4	Q1+Q2	Q3+Q4	Q1toQ4
1	1	4	2	2	5	4	9
2	2	4	5	4	6	9	15
3	3	5	4	4	8	8	16
4	4	5	4	3	9	7	16
5	5	3	5	5	8	10	18
Variance	2.5	0.7	1.5	1.3	2.7	5.3	11.7
cov	4.75	-0.2	3.75	3.4	4.55	7.15	11.7
cor	0.8783	-0.0699	0.8951	0.8718			
	Q1	Q2	Q3	Q4	Q1+Q2	<i>Q3+Q4</i>	Q1toQ4
Q1	1						
Q2	- 0.1890	1					
Q3	0.6455	-0.2440	1				
Q4	0.6934	-0.4193	0.8951	1			
Q1&2	0.8660	0.3273	0.4969	0.4537	1		
Q3&4	0.6868	-0.3375	0.9753	0.9715	0.4890	1	
Q1to4	0.8783	-0.0699	0.8951	0.8718	0.8095	0.9080	1
Average inter-item correlation:	0.230						
Average item-to-total correlation:	0.644						
Split-Half Correlation (Q1+Q2) vs (Q3+Q4):	0.489						
Split-Half Reliability (Q1+Q2) vs (Q3+Q4):	0.657						
Alpha (Unstandardised) (Q1toQ4):	0.650						
Standardised Cronbach's alpha (Q1toQ4):	0.545	Poor					

SPSS - under Analyze > Scale > Reliability Analysis

Reliability Statistics					
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items			
.650	.545	4			

Inter-Item Correlation Matrix								
	Q1	Q2	Q3	Q4				
Q1	1.000	189	.645	.693				
Q2	189	1.000	244	419				
Q3	.645	244	1.000	.895				
Q4	.693	419	.895	1.000				

Summary Item Statistics									
	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items		
Item Means	3.700	3.000	4.200	1.200	1.400	.280	4		
Item Variances	1.500	.700	2.500	1.800	3.571	.560	4		
Inter-Item Covariances	.475	400	1.250	1.650	-3.125	.658	4		
Inter-Item Correlations	.230	419	.895	1.314	-2.135	.300	4		