Procesy stochastyczne Zestaw zadań nr 6

9 stycznia 2019

Wszędzie dalej $\{W_t\}_{t\in T}$ jest procesem Wienera.

Zadanie 1. Pokaż, że następujące procesy są martyngałami

- W_t ,
- $W_t^2 t$,
- $\exp\left(\sigma W_t \frac{\sigma^2 t}{2}\right), \ \sigma > 0.$

Zadanie 2. Oblicz

- $\mathbb{P}(W_s < W_t)$,
- $\mathbb{P}(0 < W_2 < W_3)$
- \bullet $\mathbb{E}W_1W_2^2$
- $\mathbb{E}(W_2^2(W_3-W_1)).$

Zadanie 3. Oblicz $\mathbb{E}(W_sW_t^2|\mathcal{F}_{\alpha})$ dla $0 \leq \alpha \leq \beta$ i $s, t \in [\alpha, \beta]$.

Zadanie 4. Określmy następujący proces (most Browna)

$$B_t = W_t - tW_1, \ t \in [0, 1].$$

Sprawdź, czy jest on martyngałem i znajdź jego funkcję kowariancji.

Zadanie 5. Udowodnij, że zachodzi

$$\lim_{t \to \infty} \frac{W_t}{t} = 0 \ p.n.$$

Zadanie 6. Niech $W_t = (W_t^1, W_t^2)$, $gdzie \{W_t^1\}$, $\{W_t^2\}$ są niezależnymi procesami Wienera. Dla R > 0 i t > 0 znajdź $\mathbb{P}(||W_t|| < R)$, $gdzie || \cdot ||$ jest normą euklidesową $w \mathbb{R}^2$. Oblicz $\lim_{t\to\infty} \mathbb{P}(||W_t|| < R)$.

Zadanie 7. Sprawdź, czy następujące procesy są procesami Wienera:

- \bullet $-W_t$,
- $c^{-1/2}W_{ct}$, c > 0,
- $Y_t = tW_{1/t}, \ t > 0 \ i \ Y_0 = 0,$
- $W_{T+t} W_T$, T > 0.

Zadanie 8. Niech $\{L_n\}$ będzie ciągiem niezależnych zmiennych losowych takich, że $\mathbb{P}(L_n=1)=\mathbb{P}(L_n=-1)$ dla każdego $n\in\mathbb{N}$. Określmy $h=\frac{1}{N}$ oraz proces $X_n=h^\alpha L_n$. Pokaż, że dla $\alpha\in(0,1/2)\sum_{k=1}^N X_k\to 0$ w L_2 , natomiast dla $\alpha\in(1/2,\infty)\sum_{k=1}^N X_k\to\infty$ w L_2 . Co dostajemy dla $\alpha=1/2$?

Zadanie 9. Pokaż, że proces Wienera jako funkcja $W: [0, \infty) \to {}_2(\Omega)$ jest funkcją ciągłą i nigdzie nieróżniczkowalną.

Zadanie 10. Pokaż, że proces określony jako $Z_t = \sqrt{t}N(0,1)$ nie jest procesem Wienera.

Zadanie 11. Udowodnij, że dla prawie wszystkich trajektorii procesu Wienera, zachodzi

$$\sup_{t} W_t = +\infty \inf_{t} W_t = -\infty.$$