

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 Theory (Core)

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) A list of formulae is shown.

 $CaCO_3$ CaO Cl_2 CH_4 C_2H_5OH C_2H_6 $CuSO_4$ H_2 H_2O MgO NaCl SO_2

Answer the following questions using these formulae. Each formula may be used once, more than once or not at all.

State which formula represents:

(1)	a compound that is the main constituent of natural gas	
		[1]
(ii)	an element that is used in water treatment	
		[1]
iii)	an element that bleaches damp litmus paper	
		[1]
iv)	a compound that contains an ion with a single negative charge	
		[1]
(v)	a hydrocarbon that is formed by the decomposition of vegetation.	
		[1]

(b) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of water.

[2]

(c)	State whether calcium oxide is a basic oxide or an acidic oxide. Give a reason for your answer.	
		[1]

[Total: 8]

2 The table shows the masses of some of the ions in 1000 cm³ of water taken from a lake.

name of ion	formula of ion	mass of ion in 1000 cm ³ of lake water/mg
calcium	Ca ²⁺	0.41
chloride	Cl⁻	4.40
magnesium	Mg ²⁺	0.39
	NO ₃ -	0.03
potassium	K ⁺	0.30
silicate	SiO ₃ ²⁻	0.02
	Na⁺	2.90
sulfate	SO ₄ ²⁻	2.80

(a)	Ans	swer these questions using only the information in the table.
	(i)	State which of the negative ions has the lowest concentration.
		[1]
	(ii)	Name the compound containing Na ⁺ and NO ₃ ⁻ ions.
		[1]
((iii)	Calculate the mass of chloride ions in 250 cm³ of lake water.
		mass = mg [1]
(b)	Des	scribe a test for sulfate ions.
		test
		observations

[2]

(c) Citric acid is also present in the lake water.

The structure of citric acid is shown.

(i) Deduce the number of carboxylic acid groups in one molecule of citric acid.

......[1]

(ii) The formula of citric acid is $C_6H_8O_7$.

Complete the table to calculate the relative molecular mass of citric acid.

type of atom	number of atoms	relative atomic mass	
carbon	6	12	6 × 12 = 72
hydrogen		1	
oxygen		16	

relative molecular mass =[2]

[Total: 8]

Iror	n is extra	acted from iron ore in a blast furnace.	
(a)	Name	an ore of iron.	[1
(b)	(i) Co	omplete the chemical equation for the reduction of iron(III) oxide in the blast furnace	e.
		Fe_2O_3 + $CO \rightarrow$ Fe + $3CO_2$	[2
	(ii) St	ate the meaning of the term <i>reduction</i> .	
	•••		[1]
(c)		m carbonate (limestone) is added to the blast furnace. alcium carbonate undergoes thermal decomposition.	
	State t	he meaning of the term thermal decomposition.	
			[2]
(d)	Iron ca	an be made into stainless steel.	
	(i) Gi	ve one use of stainless steel.	
	 (ii) De	escribe one advantage of stainless steel compared with pure iron.	[1]
	•••		
			[1]
(e)	The sy	mbol for an isotope of iron is shown.	
		⁵⁷ ₂₆ Fe	
	Deduc	e the number of electrons, neutrons and protons in one atom of this isotope of iron.	
	numbe	er of electrons	
	numbe	er of neutrons	
	numbe	er of protons	
			[3]

(f)	Iron is a good conductor of heat and electricity.	
	Give two other physical properties of iron that are characteristic of all metals.	
	1	
	2	
		[2
(g)	Iron rusts.	
	Name the two substances needed for iron to rust.	
	1	
	2	
		[2

[Total: 15]

4 The table shows some properties of the Group I elements.

element	melting point /°C	density in g/cm³	observations during reaction with water
lithium	181	0.53	
sodium	98		rapid bubbling no flame
potassium		0.86	rapid bubbling lilac flame
rubidium	39	1.53	very rapid bubbling red flame
caesium	29	1.88	explodes
francium	27		

(a)	(i)	Complete	the	table	by	predicting:
-----	-----	----------	-----	-------	----	-------------

	the metting point of potassium the density of francium.	[2]
(ii)	Describe the observations when lithium reacts with water.	
		[1]
(b) (i)	Deduce the electronic structure of sodium. Use the Periodic Table to help you.	
		[1]
(ii)	Explain why a potassium ion has a single positive charge.	

- **(c)** Sodium reacts with water to produce aqueous sodium hydroxide and a gas which 'pops' with a lighted splint.
 - (i) Complete the chemical equation for this reaction.

$$2Na + 2H_2O \rightarrowNaOH +$$
 [2]

(ii) Choose one value from the list that best describes the pH of aqueous sodium hydroxide.

Draw a circle around the correct answer.

pH 1 pH 4 pH 7 pH 14 [1]

[Total: 8]

5 The table shows the structures of some organic compounds.

compound	structure of compound	homologous series
G	H H H H—C—C—C—H H H H	alkane
Н	H H H	
J	H H H H H H H H H H H H H H H H H	

(a)	Complete the table by naming the homologous series.	
	The first one has been done for you.	[2]

(b) Draw the structure of a compound containing two carbon atoms which belongs to the same homologous series as compound H. Show all of the atoms and all of the bonds.

(c)	Describe the colour change when an excess of compound ${f J}$ is added to aqueous bromine.	i
	from to	[2]

[1]

(d)	(i)	Compound	J can	be obtained by cr	rackin	g petroleum	fraction	S.				
		State the co	nditior	ns needed for cra	cking							
										[2]		
	(ii)	Complete th	nis sen	tence about crac	king u	sing a word	from the	e lis	t.			
		bit	tumen	hydrogen		oxygen	petro	oleu	m			
		The chemic	als ma	nufactured by cra	acking	j include alka	anes, al	kene	es and	[1]		
(e)	Compound G is propane. Complete the word equation for the complete combustion of propane.											
	Cor	nplete the wo	ord eq	uation for the con	nplete	combustion	of prop	ane				
	1	oropane	+	oxygen	\rightarrow			+				
(5)			ا ا							[2]		
(f)		npound J ca										
	(i)	State the m	eaning	of the term <i>polyi</i>	mer.							
										[2]		
	(ii)	Nylon is als	о а ро	lymer.						[4]		
		Give one us	se of n	ylon.								
										[1]		
	(iii)	Describe or	ie poll	ution problem cau								
										tal: 141		

6 The diagrams show part of the structures of potassium iodide and bromine at room temperature and pressure.

(a) Describe the physical properties of these substances in terms of:

• volatility	y
potassium i	odide
bromine	
solubilit	ty in water
potassium i	odide
bromine	
• electric	al conductivity when molten (liquid).
potassium i	odide
bromine	
	[5

(b) Molten potassium iodide is electrolysed using carbon (graphite) electrodes.

(i)	Name the substance produced at the positive electrode.	
		[1]

(ii) Aqueous potassium iodide reacts with aqueous bromine.

Complete the word equation for this reaction.

[2]

	(iii)	explain in terms of the reactivity of the halogens why aqueous potassium chloride does not react with aqueous bromine.
		[1]
(c)	Nar	me the change of state when liquid bromine changes to solid bromine.
		[1]
		[Total: 10]

	se the kinetic particle theory to describe the differences between sulfur gas and solid terms of:	sulfu
•	the arrangement of the particles	
•	the separation of the particles.	
••••		[4
(b) Gi	ive the major use of sulfur in industry.	
		[1]
(c) Su	ulfur dioxide is a pollutant in the air that contributes to acid rain.	
(c) Su		-
(i)	State one adverse effect of sulfur dioxide on health.	
	State one adverse effect of sulfur dioxide on health.	[1]
(i)	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain.	[1
(i) (ii)	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain. Sulfur dioxide reacts with water to produce sulfurous acid.	[1
(i) (ii)	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain. Sulfur dioxide reacts with water to produce sulfurous acid. The reaction is reversible.	[1
(i) (ii)	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain. Sulfur dioxide reacts with water to produce sulfurous acid. The reaction is reversible. Draw the symbol for a reversible reaction in the box.	[1]
(i) (ii)	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain. Sulfur dioxide reacts with water to produce sulfurous acid. The reaction is reversible. Draw the symbol for a reversible reaction in the box. $SO_2 + H_2O H_2SO_3$	[1]
(i) (ii) (d) Th	State one adverse effect of sulfur dioxide on health. Name one other oxide that contributes to acid rain. Sulfur dioxide reacts with water to produce sulfurous acid. The reaction is reversible. Draw the symbol for a reversible reaction in the box. $SO_2 + H_2O H_2SO_3$ The equation for the reaction of sodium sulfite with zinc is shown.	[1]

8 A student investigated the reaction of small pieces of calcium carbonate with dilute hydrochloric acid. The hydrochloric acid was in excess.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

The rate of reaction is found by measuring the decrease in the mass of the reaction mixture with time.

The results are shown on the graph.

(a) Deduce the time taken from the beginning of the experiment for the mass of the reaction mixture to decrease by 1.0 g.

(b) The experiment was repeated using dilute hydrochloric acid of a higher concentration.

All other conditions stayed the same.

Draw a line **on the grid** to show how the mass of the reaction mixture changes with time using acid of a higher concentration. [2]

(c)		scribe the efforce		llowing has on the rate of reaction	of calcium carbonate with
	All	other condition	ons stay the same	e .	
	•	The reaction	n is carried out at	a higher temperature.	
	•	The reaction of calcium of		ing large pieces of calcium carbona	ate instead of small pieces
					[2]
(d)	Wh	en 0.44 g of o	calcium carbonate	e is used, 100 cm³ of carbon dioxid	e gas is formed.
	Cal	culate the ma	ass of calcium car	rbonate needed to produce 25 cm ³	of carbon dioxide gas.
				mass of calcium carbonate =	= g [1]
(e)	The	table compa	ares the reaction of	of four metals with dilute hydrochlo	ric acid.
			metal	observations	
			iron	bubbles produced slowly	
			magnesium	bubbles produced very rapidly	
			nickel	bubbles produced very slowly	
			silver	no bubbles produced	
			als in order of the active metal first.	ir reactivity.	
	lea	st reactive		-	most reactive
					[2]
					[Total: 8]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

							Gro	Group								
											≡	≥	>	>	=	\equiv
						~ I										₂ He
			Key			hydrogen 1										helium 4
	at		atomic number								2	9	7	8	6	10
	ato		atomic symbo	loc							М	ပ	z	0	Щ	Ne
beryllium 9 rela	rek	77	name relative atomic mass	ISS ISS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
											13	14	15	16	17	18
											Αſ	S	۵	ഗ	Cl	Ā
											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	22	<u> </u>	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	j		>	ပ်	Mn	Fe	ပိ	z	Cn	Zu	Ga	Ge	As	Se	ģ	궃
scandium titanium 45 48	titanium 48		vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
39	40	-	14	42	43	44	45	46	47	48	49	20	51	52	53	54
>	Zr		q	Mo	ပ	Ru	格	Pd	Ag	ပ	In	Sn	Sp	Тe	П	Xe
strontium yttrium zirconium 88 89 91	zirconium 91		niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
57–71	72	_	73	74	75	92	77	78	62	80	81	82	83	84	85	98
	Ξ		Б	>	Re	Os	'n	풉	Αn	£	lΤ	Pp	Bi	Ъ	Αŧ	Ru
hafhium 178	hafnium 178		tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon
89–103 104	104	_	105	106	107	108	109	110	111	112		114		116		
actinoids	¥		g O	Sg	Bh	Hs	¥	Ds	Rg	ű		F1				
rutherfordium	rutherfordium		dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
	ı	-	ı	-		ı	ı	-	ı	ı		I		I		

rı Lu	lutetium 175	103	۲	lawrencium	ı
vo Yb	ytterbium 173	102	8	nobelium	ı
mL Tm	thulium 169	101	Md	mendelevium	I
68 Er	erbium 167	100	Fm	fermium	ı
67 Ho	holmium 165	66	Es	einsteinium	ı
°° Dy	dysprosium 163	86	ŭ	californium	ı
e5 Tb	terbium 159	26	BK	berkelium	ı
² Gd	gadolinium 157	96	Cm	curium	I
e3 Eu	europium 152	92	Am	americium	ı
62 Sm	samarium 150	94	Pn	plutonium	ı
e1 Pm	promethium -	93	ď	neptunium	ı
°° PN	neodymium 144	92	\supset	uranium	738
59 Pr	praseodymium 141	91	Ра	protactinium	731
Se Ce	cerium 140	06	┖	thorium	727
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).