응용데이터애널릭틱스 프로젝트 발표

Team1 김수빈 김주환 박주연 이채희

Contents

- Executive Summary
- Feature Engineering
- Algorithm
- Result & Discussions
- Conclusion

01 Executive Summary

- 얻을 수 있는 Domain 정보를 최대한 활용함.
- Visualization을 통해 얻은 데이터 내부의 정보를 이용.
- 각 모델마다 최적의 parameter를 찾기 위해 Grid search 활용.
- 모델 성능 Metric 을 검토하며 파생변수 생성을 다양하게 시도함.
- Decision Tree, Random Forest, AdaBoost를 전부 사용해보고 결과를 분석함.

O1 Executive Summary

Results

Custom Testset	DT	RF	AF
MSE	2,533,982,395,323	927,412,197,156	780,692,867,541
MAE	1,032,578	632,290	591,752
R^2 (adjusted X)	0.9410	0.9784	0.9818
Error rate	14.87%	9.76%	8.92%

P1_sample	DT	RF	AF
MSE	3,023,895,000,000	2,330,743,430,222	901,920,000,000
MAE	1,318,500	1,239,853	822,000
R^2 (adjusted X)	0.8968	0.9204	0.9692
Error rate	19.51%	25.63%	15.08%

$$Error\ rate = \frac{|Ground\ Truth - Prediction|}{Ground\ Truth} * 100\ (\%)$$

O2 Feature Engineering

Missing Values in Discrete Variables

Missing Values in Discrete Variables

*나머지 USEUSENM의 NA값들은 '기타' 로 처리

Missing Values in Continuous Variables

- 5개 연속형 변수들을 PCA 한 결과 4개로 축소됨.
- NEWCARPRIC가 1000 미만일 경우 NA로 판단. -> 24개 NaN 추가.
- 전체 중앙값으로 결측치 대체 or 각 모델별 중앙값으로 결측치 대체.

```
df 1['NEWCARPRIC'] = df 1['NEWCARPRIC'].replace(0, np.nan)
  df 1['NEWCARPRIC'] = df_1['NEWCARPRIC'].replace(1, np.nan)
  df 1['NEWCARPRIC'] = df 1['NEWCARPRIC'].apply(lambda x: np.nan if x < 1000 else x)
✓ 0.0s
```

	MJ_MODEL_KEY	DT_MODEL_KEY	MODEL
30557	46	1053	46-1053
22878	46	210	46-210
8898	46	210	46-210
31614	39	537	39-537
6258	46	210	46-210
16850	46	210	46-210
6265	38	166	38-166
11284	39	145	39-145
860	42	233	42-233
15795	71	93	71-93

```
dict(price model)
✓ 0.0s
{'1160-2597': 49500000.0,
'37-1588': 18380000.0,
'37-2646': 25850000.0,
'37-295': 16422277.0,
'37-938': 19960000.0,
'38-1560': 22080000.0,
'38-1592': 30270000.0,
'38-166': 18831000.0,
'38-223': 29270000.0,
'38-2635': 32640000.0,
'38-2672': 36230000.0,
'38-935': 17530000.0,
'39-145': 31375403.0,
'39-1598': 32770200.0,
 '39-2570': 41905000.0,
```

02 Feature Engineering

Dealing With Outliers

Making Derived Variables

```
# SUCCYMD(낙찰일자) - CARREGIYMD(차량등록일) 을 새로운 변수 Days로 저장

df_3['SUCCYMD'] = pd.to_datetime(df_3['SUCCYMD'], format='%Y%m%d')

df_3['CARREGIYMD'] = pd.to_datetime(df_3['CARREGIYMD'], format='%Y%m%d')

df_3['Days'] = (df_3['SUCCYMD'] - df_3['CARREGIYMD']).dt.days.astype(int)

$\square$ 0.0s
```

	SUCCYMD	CARREGIYMD	Days
30557	2018-10-16	2015-07-06	1198
22878	2018-02-27	2012-03-20	2170
8898	2016-11-03	2014-06-20	867
31614	2018-11-13	2015-11-06	1103
6258	2016-08-05	2011-08-24	1808
16850	2017-07-21	2011-02-07	2356
6265	2016-08-05	2013-06-18	1144
11284	2017-01-12	2010-06-29	2389
860	2016-02-05	2013-01-28	1103
15795	2017-06-13	2010-10-06	2442

제8조(사용년 계수) 차량의 사용연수에 따른 계수는 아래[표]와 같고, 사용연수 산출은 연도만으로 계산한다.

(예) 최초등록일이 2014.12.15이고, 평가일이 2020.07.12.인 경우,

① 사용연수: 2020년 - 2014년 = 6년

② 사용월수: (6년 × 12개월) - 5개월 = 67개월

한국자동차진단보증협회 가격조사산정기준서 → 사용연수가 중고차량의 가격에 영향을 줌.

02 Feature Engineering

Making Derived Variables

- 3. 자동차성능・상태점검자가 거짓으로 자동차성능・상태 점검을 하거나 실제 점검한 내용과 다른 내용을 제공한 경우 「자동 차관리법」 제80조제9호의2에 따라 2년 이하의 징역 또는 2천만원 이하의 벌금에 처하며, 「자동차관리법 제21조제2항 등 의 규정에 따른 행정처분의 기준과 절차에 관한 규칙」 제5조제1항에 따라 1차 사업정지 30일, 2차 사업정지 90일, 3차 사업장 폐쇄의 행정처분을 받습니다.
- 4. ⑫ 사고이력 인정은 사고로 자동차 주요 골격 부위의 판금, 용접수리 및 교환이 있는 경우로 한정합니다. 단, 쿼터패널, 루프패널, 사이드실패널 부위는 절단, 용접 시에만 사고로 표기합니다. (후드, 프론트펜더, 도어, 트렁크리드 등 외판 부위 및 범퍼에 대한 판금, 용접수리 및 교환은 단순수리로서 사고에 포함되지 않습니다)
- 자동차성능・상태점검은 국토교통부장관이 정하는 자동차성능・상태점검 방법에 따라야 합니다.
- 「자동차관리법 시행규칙」 제120조제2항에 따라 자동차성능・상태점검기록부는 해당 기록부의 발급일을 기준으로 120 일 이내에 이루어진 자동차 성능・상태점검으로 한정합니다
- 7. 체크항목 판단기준(예시)
 - ㅇ 미세누유(미세누수): 해당부위에 오일(냉각수)이 비치는 정도로서 부품 노후로 인한 현상
 - 누유(누수): 해당부위에서 오일(냉각수)이 맺혀서 떨어지는 상태

02 Feature Engineering

Making Derived Variables

```
# Outer_frame에 해당하는 값이 1이 하나라도 있으면 1, 없으면 0으로 설정 df_3['Accident'] = df_3[outer_frame].max(axis=1)
```


Making Derived Variables

3. 사고이력에 따른 랭크 분류

랭크분류	적용 부위	평가기준
	1. 후드	
	2. 프런트 펜더	- 교환여부(X)
1랭크	3. 도어	- 볼트가 전부 풀렸거나, 해당부품 색 차이 a 부(X)
	4. 트렁크 리드	- 판금, 용접수리 여부(W)
	5. 라디에이터 서포트(볼트체결)	CB, 88164 11(W)
	6. 쿼터 패널(리어펜더)	- 교환여부(X)
2랭크	7. 루프 패널	- 용접수리 여부(W) - 해당 부품이 구겨진 흔적이나 망치로 핀 자국
	8. 사이드 실 패널	이 있는 경우(W)
	9. 프런트 패널	- 교환여부 (X)
	10. 크로스 멤버(용접부품)	- 요전역구 (A) - 용접수리 여부(W)
A랭크	11. 인사이드 패널	- 해당 부품이 구겨진 흔적이나 망치로 핀 자
	17. 트렁크 플로어 패널	이 있는 경우(W)
	18. 리어 패널	I ME OIN!
	12. 사이드 멤버	- 교환여부 (X)
D=1) -1	13. 휠 하우스	- 용접수리 여부(W)
B랭크	14. 필러 패널	- 해당 부품이 구겨진 흔적이나 망치로 핀 자극
	19. 패키지 트레이	이 있는 경우(W)
C랭크	15. 대쉬 패널	- 교환여부 (X) - 용접수리 여부(W)
	16. 플로어 패널	- 해당 부품이 구겨진 흔적이나 망치로 핀 자들이 있는 경우(W)

```
# 외판, 골격 세분화

df_3['outer_1'] = df_3[outer_panels_rank1].sum(axis=1)

df_3['outer_2'] = df_3[outer_panels_rank2].sum(axis=1)

df_3['main_A'] = df_3[main_frame_rankA].sum(axis=1)

df_3['main_B'] = df_3[main_frame_rankB].sum(axis=1)

df_3['main_C'] = df_3[main_frame_rankC].sum(axis=1)
```

Making Derived Variables

	MJ_GRADE_KEY	DT_GRADE_KEY	NC_GRADE_KEY	SUCCPRIC	SUCCPRIC_MEAN_MJ_GRADE_KEY	SUCCPRIC_MEAN_DT_GRADE_KEY	SUCCPRIC_MEAN_NC_GRADE_KEY
0	10,912	24,318	21,215	4,770,000	6,315,437	5,327,506	5,327,506
1	9,101	20,963	8,599	5,610,000	4,900,656	4,775,172	4,619,680
2	9,100	20,959	9,861	6,040,000	3,591,906	3,624,607	3,584,820
3	2,532	22,345	15,617	18,150,000	16,385,068	16,330,661	16,330,661
4	9,101	20,966	8,600	5,500,000	4,900,656	5,937,889	5,221,726
5	8,728	0	0	4,980,000	4,640,000	2,118,818	4,110,643
6	1,168	21,419	13,110	14,600,000	22,809,105	20,230,357	20,230,357
7	9,159	21,243	9,326	5,210,000	5,926,138	5,097,935	5,097,935
8	17,276	33,596	34,716	6,000,000	6,492,391	6,492,391	6,492,391
9	5,782	20,504	10,891	6,950,000	6,396,387	6,978,568	7,052,961

- *MJ GRADE KEY, DT GRADE KEY, NC GRADE KEY에 따른 평균 SUCCPRIC 계산
- → 새 column으로 추가
- → 모델별 평균 SUCCPRIC 순서대로 구간화(binning)하려 했으나 실수로 인해 이 부분이 반영되지

```
# 구간을 정의하고 각 카테고리를 구간에 따라 인코딩
```

02 Feature Engineering

Encoding Categorical Variables

*Label Encoding -> FUELNM, USEUSENM, OWNECLASNM

- N개의 범주형 데이터를 0~n-1의 연속적인 정수로 표현
- 두 개의 범주일 때 독립적인 의미로 사용 가능
- DecisionTree 분류 모델에서는 범주가 3개 이상이어도 사용 가능

*OneHot Encoding -> YEARCHK(Y/N), INNEEXPOCLASCD_YN(O/X)

- N개의 범주형 데이터를 n개의 (0,1)벡터로 표현함
- 서로 다른 범주에 대해서는 벡터 내적을 취했을 때 내적 값 0
- 서로 다른 범주 데이터를 독립적인 의미로 사용 가능
- 여러 범주형 변수를 한 번에 인코딩 가능

O2 Feature Engineering

Encoding Categorical Variables

```
MISSNM
M/T 3216799
CVT 6936938
A/T 8907228
Name: SUCCPRIC, dtype: int32
```

```
missnm_order = ['M/T', 'CVT', 'A/T']
encoder = OrdinalEncoder(categories=[missnm_order])
df_4['MISSNM'] = encoder.fit_transform(df_4[['MISSNM']])
```

*MISSNM의 평균 SUCCPRIC 순위에 따른 Ordinal Encoding

A/T: 자동변속기 CVT: 무단변속기 M/T: 수동변속기

Encoding Categorical Variables

*COLOR의 SUCCPRIC(boxplot)에 따른 Ordinal Encoding

```
color_order = ['B', 'C', 'A', 'D', 'F']
encoder = OrdinalEncoder(categories=[color_order])
df_4['COLOR'] = encoder.fit_transform(df_4[['COLOR']])
```

Encoding Categorical Variables

```
for item in new one hot list:
      left col = f'LEFT {item}'
      right col = f'RIGHT {item}'
      new col name = item
      df 4[new col name] = df 4[left col] + df 4[right col]
      df 4 = df 4.drop([left col, right col], axis=1)
  df_4[new_one_hot_list][df_4[new_one_hot_list]==2]=1

√ 0.4s
```


*Dimension reduction

03 Algorithm

*Hyperparmeter

DecisionTree

- $Max_depth = [30, 40, 50]$
- $Max_features = [0.3, 0.5, 0.7]$

- RandomForest

- $Max_depth = [50, 75, 100]$
- N_estimator = [50, 100, 150]

- AdaBoost

- $Max_depth = [5, 10, 30]$
- N_estimator = [50, 100, 150]

1. Best Hyperparameter

'max_depth': 40, 'max_features': 0.7

Actual Values

• Best MSE: 1,677,614,953,271.028

'n_estimators': 150, 'max_depth': 50

Actual Values

• Best MSE: 790,743,764,764.6559

'n_estimators': 150, 'max_depth': 30

Actual Values

Best MSE: 733,739,605,132.7374

2. Residual Distribution

3. Feature Importance

3. Feature Importance

Feature Importance

- 모델별로 변수 중요도는 다름.
- Days, SHIPPING_PRICE, TRAVDIST 는 모든 세 모델에서 비슷하게 비슷한 중요도를 가짐.

4. System implementation 결과

Custom Testset	DT	RF	AF
MSE	2,533,982,395,323	927,412,197,156	780,692,867,541
MAE	1,032,578	632,290	591,752
R^2 (adjusted X)	0.9410	0.9784	0.9818
Error rate	14.87%	9.76%	8.92%

P1_sample	DT	RF	AF
MSE	3,023,895,000,000	2,330,743,430,222	901,920,000,000
MAE	1,318,500	1,239,853	822,000
R^2 (adjusted X)	0.8968	0.9204	0.9692
Error rate	19.51%	25.63%	15.08%

System implementation 결과

- 모델별 예측 성능 : Decision Tree < Random Forest < Ada Boost
- Custom Test/P1_Sample 결과와 비교했을 때 성능이 저하됨.
- Ada Boost는 두 데이터 세트 모두에서 지속적으로 비슷한 성능을 보임.
- P1_dataset_sample은 크기가 작아 실제 데이터 분포를 정확하게 반영하지 못할 수 있음.
- 모델들이 과적합되었을 가능성이 있음.

4. 원래 의도대로 했을 때 결과

Custom Testset	DT	RF	AF
MSE	1,666,291,394,779	763,079,765,611	737,414,165,081
MAE	850,623	579,384	569,462
R^2 (adjusted X)	0.9612	0.9822	0.9828
Error rate	12.80%	9.07%	8.70%

P1_sample	DT	RF	AF
MSE	1,804,125,000,000	2,249,654,180,444	1,674,350,000,000
MAE	816,500	971,646	1,016,000
R^2 (adjusted X)	0.9384	0.9232	0.9428
Error rate	9.94%	12.27%	15.78%

System implementation 결과

- 모델별 예측 성능 : Decision Tree < Ada Boost < Random Forest
- Custom Test/P1_Sample 결과와 비교했을 때 성능이 저하됨.
- P1_dataset_sample은 크기가 작아 실제 데이터 분포를 정확하게 반영하지 못할 수 있음.
- 원래 의도대로 파생변수 생성시 결과가 바뀌나, 비슷하다고 해석하는 것이 타당해 보임.

05 Conclusions

1. 전체 소결

프로젝트 목적

Decision Tree, Random Forest, 그리고 AdaBoost 를 이용한 중고차 시세 예측

결과 요약

- AdaBoost가 전반적으로 가장 뛰어난 성능을 보임.
- Train/Test 데이터에서는 Decision Tree와 Random Forest가 좋은 성능을 보였지만, System implementation 결과에서는 높은 MAE 값을 보임.

추가 개선 방안

- 의도와 다르게 들어간 파생변수 수정.
- 변수들의 상관관계를 고려한 변수의 수 축소.
- 추가한 파생변수들 사이에서 강한 상관관계가 나타남. -> 대표등급키에 대해서만 파생변수 생성.
- 과적합 가능성을 고려한 모델 학습.

감사합니다