Note: This is the summary note from Udacity Introduction to Deep Learning with PyTorch

Softmax

- Problem: multi-classification
- Solution: satisfy probability, here are two criterias
 - · Total sum of the scores need to be one
 - The higher the score the higher the probability
- How?
 - Use Softmax function: Turns $\frac{\text{score}}{\text{sum of all scores}}$ to positive number with exponential
 - Assume we have linear function score: $z_1+z_2+\ldots+z_n$ So the Softmax function for probability of class i is

$$P(class i) = \frac{e^{z_i}}{e^{z_1} + e^{z_2} + ... + e^{z_n}}$$

One Hot Encoding

- Input data will not always looks like number
- Solution: turn data to number, One Hot Encoding
- How:
 - To avoid dependencies between data we create table of data in which 1 represent correct data input while 0 for the rest of incorrect data

Maximum Likelihood

- Pick the model that give existing labels the highest probability
- The best model more likely be give highest probability to the event that happens to the true label (ground-truth)
- Maximize probability -> get best model
- How:
 - Start with bad model
 - Calculate probability of each point
 - P = Multiple (Product) the probability of each point
 - · Find way to maximize P

Maximizing Probabilities

- Probability is important
- Maximize probability --> minimized the error function
- Problem with product
 - Hard when have thousands data point
 - The number is small between 0 to 1
 - If change 1 data point => the whole product change drastically
- Solution
 - Do sum by using log

Cross Entropy

Resolve product problem above by using log

$$log(ab) = \log(a) + \log(b);$$

Note: if log(x) provide negative value, we need to take the

$$log(1) = \log(0)$$

Products

0.6 * 0.2 * 0.1 * 0.7 = 0.0084

$$\ln(0.6) + \ln(0.2) + \ln(0.1) + \ln(0.7)$$

 -0.51 -1.61 -2.3 -0.36
 $\ln(0.7) + \ln(0.9) + \ln(0.8) + \ln(0.6)$
 -0.36 -0.1 -.22 -0.51
 $\ln(0.7) - \ln(0.9) - \ln(0.8) - \ln(0.6) = 1.2$
0.51 1.61 2.3 0.36
0.36 0.1 .22 0.51

Cross Entropy

- The sum of negative of log of probability -> Cross Entropy
- The bad model give high cross entropy
- The good model give low cross entropy
- Goal is to minimize the cross entropy
- Connection between probability and error function:
 - Events
 - Probability
 - Cross Entropy

- How often the events happens based on probability
 - if it's likely --> small cross entropy
 - If it's unlikely --> large cross entropy
- Formula:

Cross Entropy =
$$-\sum_{i=1}^{m} y_i ln(p_i) + (1 - y_i) ln(1 - p_i)$$

Y label

P = probability that event occur

Multi class cross entropy

- Problem: what if we have multiple class?
- Cross Entropy = $-\sum_{i=1}^{n}\sum_{j=1}^{m}y_{ij}ln(p_{ij})$
 - m is number of classes

Mini summary:

- Softmax function used for multi-class
- One Hot encoding is used when input data is not numeric
- Maximized probability: pick the model that give existing labels the highest probability
- Cross Entropy is connection between probability and error function.
- How often the events happens based on probability
 - if it's likely --> small cross entropy
 - If it's unlikely --> large cross entropy