Аналитика в Яндекс. Афише

Описание проекта

Вас пригласили на стажировку в отдел аналитики Яндекс. Афиши. Первое задание: помочь маркетологам оптимизировать маркетинговые затраты. У вас в распоряжении есть данные от Яндекс. Афиши с июня 2017 по конец мая 2018 года: лог сервера с данными о посещениях сайта Яндекс. Афиши,

- выгрузка всех заказов за этот период,
- статистика рекламных расходов.

Инструкция по выполнению проекта:

Шаг 1. Загрузите данные и подготовьте их к анализу

Загрузите данные о визитах, заказах и расходах в переменные. Оптимизируйте данные для анализа. Убедитесь, что тип данных в каждой колонке — правильный. Путь к файлам:

- /datasets/visits_log.csv.
- /datasets/orders_log.csv.
- /datasets/costs.csv.

Шаг 2. Постройте отчёты и посчитайте метрики

- Продукт
 - Сколько людей пользуются в день, неделю, месяц?
 - Сколько сессий в день?
 - Сколько длится одна сессия?
 - Как часто люди возвращаются?
- Продажи
 - Когда люди начинают покупать?
 - Сколько раз покупают за период?
 - Какой средний чек?
 - Сколько денег приносят? (LTV)
- Маркетинг
 - Сколько денег потратили? Всего / на каждый источник / по времени
 - Сколько стоило привлечение одного покупателя из каждого источника?
 - На сколько окупились расходы? (ROI)

Отобразите на графиках, как эти метрики отличаются по устройствам и по рекламным источникам? Как они меняются во времени?

Шаг 3. Напишите вывод: порекомендуйте маркетологам, куда и сколько им стоит вкладывать денег?

Какие источники/платформы вы бы порекомендовали? Объясните свой выбор: на какие метрики вы ориентируетесь? Почему? Какие выводы вы сделали, узнав значение метрик?

Оформление: Задание выполните в Jupyter Notebook. Программный код заполните в ячейках типа code, текстовые пояснения — в ячейках типа markdown. Примените форматирование и заголовки.

Описание данных

- Таблица visits (лог сервера с информацией о посещениях сайта):
- Uid уникальный идентификатор пользователя
- Device категория устройства пользователя
- Start Ts дата и время начала сессии
- End Ts дата и время окончания сессии
- Source Id идентификатор рекламного источника, из которого пришел пользователь
- Таблица orders (информация о заказах):
- Uid уникальный id пользователя, который сделал заказ
- Buy Ts дата и время заказа
- Revenue выручка Яндекс. Афиши с этого заказа
- Таблица costs (информация о затратах на маркетинг):

- source_ia идентификатор рекламного источника
- dt дата
- costs затраты на этот рекламный источник в этот день

In [1]:

import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt import plotly.graph_objects as go import plotly.express as px from termcolor import colored from IPython.display import Image from IPython.core.display import HTML from pathlib import Path import matplotlib.dates as mdates

Шаг 1. Загрузите данные и подготовьте их к анализу

visits

In [2]:

```
visits = pd.read_csv('/datasets/visits_log.csv')
orders = pd.read_csv('/datasets/orders_log.csv')
costs = pd.read_csv('/datasets/costs.csv')
```

смотрим на данные и при необходимости будем менять типы и названия столбцов

In [3]:

visits.head()

Out[3]:

	Device	End Ts	Source Id	Start Ts	Uid
0	touch	2017-12-20 17:38:00	4	2017-12-20 17:20:00	16879256277535980062
1	desktop	2018-02-19 17:21:00	2	2018-02-19 16:53:00	104060357244891740
2	touch	2017-07-01 01:54:00	5	2017-07-01 01:54:00	7459035603376831527
3	desktop	2018-05-20 11:23:00	9	2018-05-20 10:59:00	16174680259334210214
4	desktop	2017-12-27 14:06:00	3	2017-12-27 14:06:00	9969694820036681168

In [4]:

visits.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 359400 entries, 0 to 359399 Data columns (total 5 columns):

Device 359400 non-null object
End Ts 359400 non-null object
Source Id 359400 non-null int64
Start Ts 359400 non-null object
Uid 359400 non-null uint64
dtypes: int64(1), object(3), uint64(1)
memory usage: 13.7+ MB

In [5]:

```
visits.columns = ['device', 'end_ts','source_id','start_ts','uid']
visits['end_ts'] = visits['end_ts'].astype('datetime64')
visits['start_ts'] = visits['start_ts'].astype('datetime64')
visits.head()
```

Out[5]:

device end_ts source_id start_ts uid

0	device	2017-12-20 17:38:00 end_ts	source_id	2017-12-20 17:20:00 start_ts	16879256277535980062 uid
_	desktop	2018-02-19 17:21:00	2	2018-02-19 16:53:00	104060357244891740
2	touch	2017-07-01 01:54:00	5	2017-07-01 01:54:00	7459035603376831527
3	desktop	2018-05-20 11:23:00	9	2018-05-20 10:59:00	16174680259334210214
4	desktop	2017-12-27 14:06:00	3	2017-12-27 14:06:00	9969694820036681168

In [6]:

```
visits.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 359400 entries, 0 to 359399
Data columns (total 5 columns):
device 359400 non-null object
end_ts 359400 non-null datetime64[ns]

source_id 359400 non-null int64 start_ts 359400 non-null datetime64[ns]

uid 359400 non-null uint64

dtypes: datetime64[ns](2), int64(1), object(1), uint64(1)

memory usage: 13.7+ MB

orders

In [7]:

orders.sample(5)

Out[7]:

	Buy Ts	Revenue	Uid
30364	2018-01-21 18:58:00	2.14	7397557001469671030
35104	2018-02-15 21:29:00	4.43	7781780505070829705
20873	2017-11-29 10:48:00	6.11	9762375740284072194
47809	2018-05-18 10:02:00	0.61	17462164678248837909
9947	2017-10-01 13:04:00	1.47	4470413981559720404

In [8]:

orders.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50415 entries, 0 to 50414
Data columns (total 3 columns):
Buy Ts 50415 non-null object
Revenue 50415 non-null float64
Uid 50415 non-null uint64
dtypes: float64(1), object(1), uint64(1)
memory usage: 1.2+ MB

In [9]:

```
orders.columns = ['buy_ts', 'revenue', 'uid']
orders['buy_ts'] = orders['buy_ts'].astype('datetime64')
```

In [10]:

orders.head()

Out[10]:

uid	revenue	buy_ts	
10329302124590727494	17.00	2017-06-01 00:10:00	0
11627257723692907447	0.55	2017-06-01 00:25:00	1
17903680561304213844	0.37	2017-06-01 00:27:00	2
16109239769442553005	0.55	2017-06-01 00:29:00	3

4 2017-06-01 07:58:00 revenue 14200605875248379450

In [11]:

orders.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50415 entries, 0 to 50414 Data columns (total 3 columns): buy_ts 50415 non-null datetime64[ns]

revenue 50415 non-null datetime64 uid 50415 non-null uint64

dtypes: datetime64[ns](1), float64(1), uint64(1)

memory usage: 1.2 MB

costs

In [12]:

costs.head()

Out[12]:

	source_id	dt	costs
0	1	2017-06-01	75.20
1	1	2017-06-02	62.25
2	1	2017-06-03	36.53
3	1	2017-06-04	55.00
4	1	2017-06-05	57.08

In [13]:

costs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2542 entries, 0 to 2541
Data columns (total 3 columns):
source_id 2542 non-null int64
dt 2542 non-null object
costs 2542 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 59.7+ KB

In [14]:

costs['dt'] = costs['dt'].astype('datetime64')

In [15]:

costs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2542 entries, 0 to 2541
Data columns (total 3 columns):
source_id 2542 non-null int64
dt 2542 non-null datetime64[ns]
costs 2542 non-null float64

dtypes: datetime64[ns](1), float64(1), int64(1)

memory usage: 59.7 KB

Посмотрим более детально

In [16]:

visits.describe()

Out[16]:

uid	source_id				
3.594000e+05	359400.000000	count			
9.202557e+18	3.750515	mean			
5.298433e+18	1.917116	std			
1.186350e+13	1.000000	min			
4.613407e+18	3.000000	25%			
9.227413e+18	4.000000	50%			
1.372824e+19	5.000000	75%			
1.844668e+19	10.000000	max			

In [17]:

orders.describe()

Out[17]:

uid	revenue	
5.041500e+04	50415.000000	count
9.098161e+18	4.999647	mean
5.285742e+18	21.818359	std
3.135781e+14	0.000000	min
4.533567e+18	1.220000	25%
9.102274e+18	2.500000	50%
1.368290e+19	4.890000	75%
1.844617e+19	2633.280000	max

In [18]:

costs.describe()

Out[18]:

	source_id	costs
count	2542.000000	2542.000000
mean	4.857199	129.477427
std	3.181581	156.296628
min	1.000000	0.540000
25%	2.000000	21.945000
50%	4.000000	77.295000
75%	9.000000	170.065000
max	10.000000	1788.280000

На первый взгляд все хорошо

In [19]:

 $visits.duplicated ().value_counts ()\\$

Out[19]:

False 359400 dtype: int64

In [20]:

orders.duplicated().value_counts()

Out[20]:

False 50415 dtype: int64

In [21]:

```
costs.duplicated().value_counts()
```

Out[21]:

False 2542 dtype: int64

In [22]:

```
v = visits.copy()
o = orders.copy()
```

Все норм

Комментарии от ревьюера: Здесь всё хорошо. Ты корректно выгрузил данные и посмотрел их содержимое. Провел первичную проверку на дубликаты и пропуски. Теперь можно приступать к анализу

Шаг 2. Постройте отчёты и посчитайте метрики

- Продукт
 - Сколько людей пользуются в день, неделю, месяц?
 - Сколько сессий в день?
 - Сколько длится одна сессия?
 - Как часто люди возвращаются?

Сколько людей пользуются в день, неделю, месяц?

In [23]:

```
visits['session_year'] = visits['start_ts'].dt.year
visits['session_month'] = visits['start_ts'].dt.month
visits['session_week'] = visits['start_ts'].dt.week
visits['session_date'] = visits['start_ts'].dt.date
```

In [24]:

```
dau_total = visits.groupby('session_date').agg({'uid': 'nunique'}).mean()
wau_total = visits.groupby(['session_year', 'session_week']).agg({'uid': 'nunique'}).mean()
mau_total = visits.groupby(['session_year', 'session_month']).agg({'uid': 'nunique'}).mean()
```

In [25]:

```
print('в день пользуются {} людей '.format(int(dau_total)))
print('в неделю пользуются {} людей '.format(int(wau_total)))
print('в месяц пользуются {} людей '.format(int(mau_total)))
```

в день пользуются 907 людей в неделю пользуются 5716 людей в месяц пользуются 23228 людей

In [26]:

```
dau_total_gr = visits.groupby('session_date').agg({'uid': 'nunique'})
wau_total_gr = visits.groupby(['session_year', 'session_week']).agg({'uid': 'nunique'})
mau_total_gr = visits.groupby(['session_year', 'session_month']).agg({'uid': 'nunique'})
```

In [27]:

```
ax_dau = dau_total_gr.plot()
ax_dau.set_title('Зависимость посещения по дням')
ax_dau.set_xlabel('Дата')
ax_dau.set_ylabel('Посещения')
```

Out[27]:

Text(0, 0.5, 'Посещения')

In [28]:

```
ax_wau = wau_total_gr.plot()
ax_wau.set_title('Зависимость посещения по неделям')
ax_wau.set_xlabel('Дата')
ax_wau.set_ylabel('Посещения')
```

Out[28]:

Text(0, 0.5, 'Посещения')

In [29]:

```
ax_mau = mau_total_gr.plot()
ax_mau.set_title('Зависимость посещения по месяцам')
ax_mau.set_xlabel('Дата')
ax_mau.set_ylabel('Посещения')
```

Out[29]:

Text(0, 0.5, 'Посещения')

Сколько сессий в день?

In [30]:

```
day_visits = visits.groupby(['start_ts']).agg({'uid':'count'})
print('В день в среднем проходит {} сессий'.format(int(day_visits.mean()[0])))
```

В день в среднем проходит 1 сессий

Комментарии от ревьюера: Да, примерно где то так. То что ты рассчитал количество сессий на уникального пользователя - верное решение

Сколько длится одна сессия?

In [31]:

```
visits['duration'] = (visits['end_ts'] - visits['start_ts']).dt.seconds sns.set() visits['duration'].hist(bins= 100, range = [0,6000],figsize = (15,5)).set_title('Длительность сессии', color = 'blue');
```


In [32]:

visits['duration'].mode()

Out[32]:

0 60 dtype: int64

In [33]:

visits['duration'].describe()

Out[33]:

count 359400.000000 643.506489 mean 1016.334786 std 0.000000 min 25% 120.000000 300.000000 50% 840.000000 75% 84480.000000 Name: duration, dtype: float64 Комментарии от ревьюера: Всё верно. Мода в данном случае наиболее корреткная метрика среднего

Как часто люди возвращаются?

смотрим на активность пользователей

сгруппируем данные пользователей по первой сессии и добавим в таблицу

In [34]:

```
first_activity = visits.groupby('uid').agg({'start_ts':'min'})
first_activity.columns = ['first_activity']
visits = visits.join(first_activity, on='uid')
```

введем дополнительные столбцы для расчета Retention Rate и посмотрим на "время жизни" когорты

In [35]:

```
visits['first_month'] = visits['first_activity'].astype('datetime64[M]')
visits['session_month'] = visits['session_date'].astype('datetime64[M]')
```

In [36]:

In [37]:

```
cohorts = visits.groupby(['first_month','cohort_lifetime'])['uid'].nunique().reset_index()
```

добавим количество пользователей в когортах

In [38]:

```
cohorts_users_count = cohorts['cohort_lifetime'] == 0][['first_month','uid']]
cohorts_users_count = cohorts_users_count.rename(columns={'uid':'cohort_users'})
cohorts_users_count.head()
```

Out[38]:

first_month cohort_users 0 2017-06 13259 12 2017-07 13140 23 2017-08 10181 2017-09 16704 33 42 2017-10 25977

присоединим к датафрейму

In [39]:

```
cohorts = cohorts.merge(cohorts_users_count,on='first_month')
```

User Retention

In [40]:

```
cohorts['retention'] = cohorts['uid'] / cohorts['cohort_users']
```

In [41]:

```
retention_pivot = cohorts.pivot_table( index='first_month'.
```

```
columns='cohort_lifetime',
values='retention',
aggfunc='sum')

sns.set(style = 'white')
plt.figure(figsize=(17, 9))
plt.title('Удержание пользователей')
sns.heatmap(retention_pivot, annot=True, fmt='.1%',vmax=0.10,cmap="PuBuGn");
plt.ylabel('Начало первой активности')
plt.xlabel('Активность по месяцам')
```

Out[41]:

Text(0.5, 57.5, 'Активность по месяцам')

Кофициент удержание значительно мал, пользователи возвращаются редко

Самая высокая активность в сентебре

Комментарии от ревьюера v2: Отлично. Совсем другое дело

- Продажи
 - Когда люди начинают покупать?
 - Сколько раз покупают за период?
 - Какой средний чек?
 - Сколько денег приносят? (LTV)

Когда люди начинают покупать?

In [42]:

```
first_activity = visits[['uid','first_activity']]
buy = orders.merge(first_activity, on='uid')
buy.head()
```

Out[42]:

	buy_ts	revenue	uid	first_activity
Λ	2017 06 01 00:10:00	17.00	10320302124500727404	2017 06 01 00:00:00

1	2017-06-01 00:25:00	revenue 0.55	11627257723692907 44 7	2017-06-01-00-14:00
2	2017-06-01 00:27:00	0.37	17903680561304213844	2017-06-01 00:25:00
3	2017-06-01 00:29:00	0.55	16109239769442553005	2017-06-01 00:14:00
4	2017-06-01 07:58:00	0.37	14200605875248379450	2017-06-01 07:31:00

проверим дубли

In [43]:

buy.duplicated().value_counts()

Out[43]:

True 711392 False 50415 dtype: int64

In [44]:

buy = buy.drop_duplicates().reset_index(drop=**True**)

In [45]:

buy.duplicated().value_counts()

Out[45]:

False 50415 dtype: int64

Произведем вывод первых покупок

In [46]:

first_buy = buy.groupby('uid')['buy_ts'].min()
first_buy.name = 'first_buy'
buy = pd.merge(buy,first_buy,on='uid')
buy.head()

Out[46]:

	buy_ts	revenue	uid	first_activity	first_buy
0	2017-06-01 00:10:00	17.00	10329302124590727494	2017-06-01 00:09:00	2017-06-01 00:10:00
1	2017-06-01 00:25:00	0.55	11627257723692907447	2017-06-01 00:14:00	2017-06-01 00:25:00
2	2017-06-01 00:27:00	0.37	17903680561304213844	2017-06-01 00:25:00	2017-06-01 00:27:00
3	2017-06-01 00:29:00	0.55	16109239769442553005	2017-06-01 00:14:00	2017-06-01 00:29:00
4	2017-06-01 07:58:00	0.37	14200605875248379450	2017-06-01 07:31:00	2017-06-01 07:58:00

Вычислим время от первой сессии, до первой покупки

In [47]:

 $\label{eq:buy'} buy[\mbox{'seconds_to_buy'}] = (buy[\mbox{'first_buy'}] - buy[\mbox{'first_activity'}]).dt.seconds \\ buy.head()$

Out[47]:

	buy_ts	revenue	uid	first_activity	first_buy	seconds_to_buy
0	2017-06-01 00:10:00	17.00	10329302124590727494	2017-06-01 00:09:00	2017-06-01 00:10:00	60
1	2017-06-01 00:25:00	0.55	11627257723692907447	2017-06-01 00:14:00	2017-06-01 00:25:00	660
2	2017-06-01 00:27:00	0.37	17903680561304213844	2017-06-01 00:25:00	2017-06-01 00:27:00	120
3	2017-06-01 00:29:00	0.55	16109239769442553005	2017-06-01 00:14:00	2017-06-01 00:29:00	900
4	2017-06-01 07:58:00	0.37	14200605875248379450	2017-06-01 07:31:00	2017-06-01 07:58:00	1620

In [48]:

```
def category_time(row):
    seconds = row['seconds_to_buy']
    if seconds < 600:
        return '0 - 10 минут'
    if seconds <= 1200:
        return '10 - 30 минут'
    if seconds <= 12600:
        return '30 минут - 4 часа'
    else:
        return 'больше 4 часов'

buy['category'] = buy.apply(category_time, axis = 1)
```

In [49]:

```
pie = buy.groupby('category')['uid'].count().reset_index()

labels = pie.category
values = pie.uid

fig = go.Figure(data=[go.Pie(labels=labels, values=values,hole=0.3)])
fig.update_traces(hoverinfo='label+percent', textinfo='label+value+percent')
fig.update_layout(
    title_text="Время покупки")
fig.show()
```

- 1.Большая конверсия наблюдается в промежутке от 0 до 10 минут
- 2.30% заказов в промежутке от 10 минут до 4х часов
- 3. И 30% с течением большего времени

В принципе все логично - клиент делает покупку сразу, это скорее прописная истина

Комментарии от ревьюера: Хороший подход. Ты создал категории и верно рассчитал показатели

In [50]:

```
buy['first_buy_month'] = buy['first_buy'].astype('datetime64[M]')
buy['buy_month'] = buy['buy_ts'].astype('datetime64[M]')
```

In [51]:

```
fig = px.line(buy.groupby('buy_month')['revenue'].count().reset_index(), x='buy_month', y='revenue')
fig.update_layout(
    title_text="Заказы в месяц")
fig.show()
```

In [52]:

buy.groupby('buy_month')['revenue'].count().mean()

Out[52]:

3878.076923076923

In [53]:

```
orders['buy_date'] = orders['buy_ts'].dt.date
orders['buy_week'] = orders['buy_ts'].dt.week
orders['buy_month'] = orders['buy_ts'].dt.month
day_buy = orders.groupby(['buy_date', 'uid']).agg({'buy_ts':'count'}).mean()[0]
week_buy = orders.groupby(['buy_week', 'uid']).agg({'buy_ts':'count'}).mean()[0]
month_buy = orders.groupby(['buy_month', 'uid']).agg({'buy_ts':'count'}).mean()[0]
```

In [54]:

```
print("В среднем на одного пользователя покупок:
В день - {:.2f},
В неделю - {:.2f},
В месяц - {:.2f},".format(day_buy, week_buy, month_buy))
```

В среднем на одного пользователя покупок:

```
В день - 1.08,
В неделю - 1.16,
```

В месяц - 1.23,

- 1. Наблюдаем рост с августа по декабрь, максимальное количество заказов = 6218
- 2. С декабря по май идет спад, спад по 4346
- 3. Видно что летом ситуация стабильно низкая

Комментарии от ревьюера v3: Отлично. Это именно то, что нужно

Какой средний чек?

построим диаграмму размаха

In [55]:

```
sns.set()
a= sns.boxplot(x=orders.revenue)
a.set_xlim([-2, 15]);
print('Средний чек = {}'.format(orders.revenue.median()))
```

Средний чек = 2.5

Комментарии от ревьюера: Здесь всё верно. Ты взял медиану, но можно было бы вывести describe с другими показателями, хотя boxplot тоже довольно информативный инструмент. Молодец

Сколько денег приносят? (LTV)

создадим таблицы с группировкой по месяцу покупки и когортам и количеством покупателей соответственно и соединим их

In [56]:

```
cohort_clients = buy.groupby('first_buy_month').agg({'uid': 'nunique'}).reset_index()
cohort_clients.columns = ['first_buy_month', 'n_clients']
cohorts1 = buy.groupby(['first_buy_month','buy_month']).agg({'revenue': 'sum'}).reset_index()
result = pd.merge(cohort_clients, cohorts1, on='first_buy_month')
result.head()
```

Out[56]:

	first_buy_month	n_clients	buy_month	revenue
0	2017-06-01	2023	2017-06-01	9557.49
1	2017-06-01	2023	2017-07-01	981.82
2	2017-06-01	2023	2017-08-01	885.34
3	2017-06-01	2023	2017-09-01	1931.30
4	2017-06-01	2023	2017-10-01	2068.58

```
result['age_cohorts'] = (result['buy_month'] - result['first_buy_month']) / np.timedelta64(1, 'M') result['age_cohorts'] = result['age_cohorts'].round().astype('int')
```

Расчет LTV

Формула маржинальности: $M = (B - 3)/B \times 100\%$, где. M -маржа (в процентах); B -валовая выручка (предприятия или отдельно взятого подразделения); 3 -затраты (себестоимость продукции, аренда, зарплаты, налоги).

нет данных по маржинальности, исходя из данных проекта думаю что LTV предлагают посчитать по другой формуле (представлена ниже), но думаю лучше представить маржинальность как 1 и сделать сноску в выводах на этот показатель

Комментарии от ревьюера: Всё правильно. В данном случае маржинальность стоит принять за 1

- AOV (Average Order Value) средний чек;
- RPR (Repeat Purchase Rates) частота повторных покупок;
- Lifetime длительность взаимодействия с клиентом;

LTV = Lifetime x AOV x RPR

In [58]:

```
marginality = 1
```

In [59]:

```
result['gp'] = result['revenue'] * marginality
result['ltv'] = result['gp'] / result['n_clients']
```

In [60]:

marginality = 1

In [61]:

```
output = result.pivot_table(
index='first_buy_month',
columns='age_cohorts',
values='ltv',
aggfunc='mean').round(3)
```

In [62]:

output.head()

Out[62]:

age_cohorts 0 1 2 3 4 5 6 7 8 9 10 11

first buy month

```
0.438
                                   0.955
                                                0.736 0.950 0.582 0.553 0.606
                      0.485
                                         1.023
first_buy_month
                                         0.177
                                                0.156
                                                      0.120 0.142
                                                                   0.161
                                                                         0.147
                                                                                0.156
                                                                                       NaN
    2017-08-01
               5.277
                      0.472 0.458
                                   0.391
                                         0.494
                                                0.284
                                                      0.211
                                                            0.405
                                                                   0.292
                                                                         0.188
                                                                                 NaN
                                                                                       NaN
    2017-09-01 5.645
                      1.118 0.521
                                   3.976
                                        0.401
                                                0.647
                                                      0.702
                                                            0.243
                                                                   0.184
                                                                           NaN
                                                                                 NaN
                                                                                       NaN
    2017-10-01 5.004 0.536 0.191 0.157 0.152 0.120 0.085 0.115
                                                                    NaN
                                                                           NaN
                                                                                 NaN
                                                                                       NaN
```

In [63]:

```
sns.set(style='white')
plt.figure(figsize=(17, 9))
plt.title('LTV')
output = output.cumsum(axis=1)
output['total'] = output.sum(axis=1).round(2)
sns.heatmap(output, annot=True, fmt='.3f',vmax=15,cmap="PuBuGn");
```


Извиняюсь, случайно пролистал это замечание(добавил cumsum

Комментарии от ревьюера v3: Здорово. Теперь тепловая карта корректна!

In [64]:

```
output = result.pivot_table(
index='first_buy_month',
columns='age_cohorts',
values='ltv',
aggfunc='mean').round(3)
```

In [65]:

```
output = output[[0,1,2,3,4]]
sns.set(style='white')
plt.figure(figsize=(17, 9))
plt.title('LTV средняя')
output['total'] = output.sum(axis=1).round(2)
sns.heatmap(output, annot=True, fmt='.3f',vmax=10,cmap="PuBuGn");
```

		LTV средняя						
2017-06-01T00:00:00.000000000	4.724	0.485	0.438	0.955	1.023	7.620		
2017-07-01T00:00:00.0000000000	6.010	0.335	0.624	0.359	0.177	7.500		
2017-08-01T00:00:00.000000000	5.277	0.472	0.458	0.391	0.494	7.090		

2017-09-01T00:00:00.000000000	5.645	1.118	0.521	3.976	0.401	11.660	
2017-10-01T00:00:00.000000000	5.004	0.536	0.191	0.157	0.152	6.040	
\$\frac{1}{2}\cdot 2017-11-01T00:00:00.000.0000000000	5.155	0.399	0.200	0.325	0.148	6.230	- 6
된 것 2017-12-01T00:00:00.0000000000		0.260	0.925	1.065	0.313	7.300	
2018-01-01T00:00:00.0000000000	4.136	0.295	0.304	0.143	0.063	4.940	- 4
2018-02-01T00:00:00.0000000000	4.157	0.278	0.079	0.074		4.590	
2018-03-01T00:00:00.000000000	4.839	0.301	0.316			5.460	
2018-04-01T00:00:00.000000000	4.658	0.532				5.190	- 2
2018-05-01T00:00:00.000000000	4.661					4.660	
2018-06-01T00:00:00.000000000	3.420					3.420	
	0	1	2 age c	3 ohorts	4	total	

In [66]:

print('LTV за 5 месяцев = {}'.format(output['total'].mean()))

LTV за 5 месяцев = 6.284615384615384

- 1.Клиент тратит деньги в первый месяц и возвращается редко (подвердилось малое удержание пользователей)
- 2. Сентябрь выделяется с LTV = 3.976
- 3. Больше всего денег принесла сентябрьская когорта, вторая в июне
- 4. Продажи начали падать с января по май и колебляться примерно на одном уровне
- 5. Минимальная когорта в январе видимо связанная с новогодними праздниками

Маркетинг

- Сколько денег потратили? Всего / на каждый источник / по времени
- Сколько стоило привлечение одного покупателя из каждого источника?
- На сколько окупились расходы? (ROI)

Сколько денег потратили? Всего / на каждый источник / по времени

для начала найдем затраты на привлечения нового клиента (САС)

In [67]:

costs.head()

Out[67]:

	source_i	b	dt	costs
()	1	2017-06-01	75.20
1		1	2017-06-02	62.25
2	2	1	2017-06-03	36.53
3	3	1	2017-06-04	55.00
4	1	1	2017-06-05	57.08

In [68]:

```
costs['month'] = costs['dt'].astype('datetime64[M]')
```

Общая картина есть, группируем по месяцам

In [69]:

month_costs = costs.groupby('month')['costs'].sum().reset_index()
month_costs.head()

Out[69]:

	month	costs
0	2017-06-01	18015.00
1	2017-07-01	18240.59
2	2017-08-01	14790.54
3	2017-09-01	24368.91
4	2017-10-01	36322.88

добавим данные в к конечной таблице

In [70]:

result.head()

Out[70]:

	first_buy_month	n_clients	buy_month	revenue	age_cohorts	gp	ltv
0	2017-06-01	2023	2017-06-01	9557.49	0	9557.49	4.724414
1	2017-06-01	2023	2017-07-01	981.82	1	981.82	0.485329
2	2017-06-01	2023	2017-08-01	885.34	2	885.34	0.437637
3	2017-06-01	2023	2017-09-01	1931.30	3	1931.30	0.954671
4	2017-06-01	2023	2017-10-01	2068.58	4	2068.58	1.022531

In [71]:

month_costs.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 12 entries, 0 to 11 Data columns (total 2 columns):

month 12 non-null datetime64[ns] costs 12 non-null float64

dtypes: datetime64[ns](1), float64(1)

memory usage: 320.0 bytes

In [72]:

result1 = pd.merge(result, month_costs, left_on='first_buy_month', right_on='month')
result1['cac'] = result1['cac'] = result1['n cliente']

result1.sample(5)

Out[72]:

	first_buy_month	n_clients	buy_month	revenue	age_cohorts	gp	ltv	month	costs	cac
38	2017-09-01	2581	2018-02-01	1670.08	5	1670.08	0.647067	2017-09-01	24368.91	9.441654
71	2018-02-01	3651	2018-05-01	270.70	3	270.70	0.074144	2018-02-01	32723.03	8.962758
53	2017-11-01	4081	2018-02-01	1326.13	3	1326.13	0.324952	2017-11-01	37907.88	9.288870
24	2017-08-01	1370	2017-09-01	646.63	1	646.63	0.471993	2017-08-01	14790.54	10.796015
28	2017-08-01	1370	2018-01-01	388.45	5	388.45	0.283540	2017-08-01	14790.54	10.796015

Вычислим ROMI

In [73]:

```
result1['romi'] = result1['ltv'] / result1['cac']
romi = result1.pivot_table(
    index='first_buy_month',
    columns='age_cohorts',
    values='romi',
    aggfunc='mean').cumsum(axis=1).round(2)

sns.set(style='white')
plt.figure(figsize=(17, 9))
plt.title('ROMI')
sns.heatmap(romi, annot=True, fmt='.0%',cmap="PuBuGn");
```


Сколько денег потратили?

Расчитаем сколько всего денег потратили, для этого сгруппируем данные по uid и revenue

In [74]:

```
orders.head()
orders1 = orders.groupby('uid')['revenue'].sum().reset_index()
orders1['revenue'].sum()
```

Out[74]:

252057.2

In [75]:

```
Out[75]:

0 False
1 False
2 False
3 False
4 False
...
36518 False
```

на каждый источник/по времени

Length: 36523, dtype: bool

объединим visits и orders по часу заказа для определения заказа в источнике, в котором была данная сессия

In [76]:

36519 False 36520 False 36521 False 36522 False

```
v['start_ts'] = v['start_ts'].dt.strftime('%Y-%m-%d %H')
o['buy_ts'] = o['buy_ts'].dt.strftime('%Y-%m-%d %H')
v.drop(['end_ts','device'],axis=1,inplace=True)
v.rename(columns={'start_ts': 'buy_ts'}, inplace=True)
orders_visists = o.merge(v, on = ['buy_ts','uid'], how = 'inner')
orders_visists['buy_month'] = orders_visists['buy_ts'].astype('datetime64[M]')
```

посторим график для наглядности

In [77]:

```
fig = px.bar(
  orders_visists.groupby(['source_id','buy_month'])['revenue'].sum().reset_index(),
  x='buy_month', y='revenue')
fig.show()
```

```
fig.update_layout(
title_text="Выручка по месяцам")
fig.show()
```

*Схожий график с данными по заказам в месяц

- 1. Максимальный доход в декабре, минимальный в августе
- 2. Большие источники: В декабре 2ой источник, в октябре 5ый
- 3. Минимальный источник 2ой канал в августе

Комментарии от ревьюера: Ок. С продажами ты справился успешно. Идем дальше

Сколько стоило привлечение одного покупателя из каждого источника?

Создадим таблицу где будут:

- * затраты
- * количество покупателей
- * стоимость привлечения покупателя
- * выручка

In [79]:

```
o1 = orders.groupby('uid')['revenue'].sum().reset_index()
o2 = visits.copy()

# Добавим общую сумму их покупок
o2 = o2.merge(o1, on ='uid')

# Сгруппируем o2 по иіd и выведем первую сессию
o3 = o2.groupby('uid')['start_ts'].min().reset_index()

# Соеденим o2 и o3 по иіd и мин.сессии мет одом inner
o4 = o2.merge(o3, on = ['uid','start_ts'], how = 'inner')
```

In [80]:

revenue_group = o4.groupby('source_id')['revenue'].sum().reset_index()

```
costs_group = costs.groupby('source_id')['costs'].sum().reset_index()
source_group = o4.groupby('source_id')['uid'].nunique().reset_index()
costs_group = costs_group.merge(source_group,on = 'source_id')
costs_group['cost_per_user'] = costs_group['costs'] / costs_group['uid']
costs_group = costs_group.merge(revenue_group,on = 'source_id')
costs_group
```

Out[80]:

	source_id	costs	uid	cost_per_user	revenue
0	1	20833.27	2899	7.186364	31090.55
1	2	42806.04	3506	12.209367	46923.61
2	3	141321.63	10473	13.493901	54511.24
3	4	61073.60	10296	5.931779	56696.83
4	5	51757.10	6931	7.467479	52624.02
5	9	5517.49	1088	5.071222	5759.40
6	10	5822.49	1329	4.381106	4450.33

Комментарии от ревьюера: Отлично. САС рассчитан верно

добавим ltv и roi в таблицу

In [81]:

```
costs_group['gp'] = costs_group['revenue'] * marginality
costs_group['ltv'] = costs_group['gp'] / costs_group['uid']
costs_group['roi'] = costs_group['ltv'] / costs_group['cost_per_user'] *100
costs_group
```

Out[81]:

	source_id	costs	uid	cost_per_user	revenue	gp	ltv	roi
0	1	20833.27	2899	7.186364	31090.55	31090.55	10.724577	149.235094
1	2	42806.04	3506	12.209367	46923.61	46923.61	13.383802	109.619133
2	3	141321.63	10473	13.493901	54511.24	54511.24	5.204931	38.572468
3	4	61073.60	10296	5.931779	56696.83	56696.83	5.506685	92.833614
4	5	51757.10	6931	7.467479	52624.02	52624.02	7.592558	101.674978
5	9	5517.49	1088	5.071222	5759.40	5759.40	5.293566	104.384421
6	10	5822.49	1329	4.381106	4450.33	4450.33	3.348631	76.433450

На сколько окупились расходы? (ROI)

In [82]:

costs_group.style.bar(subset=['roi', 'uid'], color='lightblue')

Out[82]:

	source_id	costs	uid	cost_per_user	revenue	gp	ltv	roi
0	1	20833.3	2899	7.18636	31090.5	31090.5	10.7246	149.235
1	2	42806	3506	12.2094	46923.6	46923.6	13.3838	109.619
2	3	141322	10473	13.4939	54511.2	54511.2	5.20493	38.5725
3	4	61073.6	10296	5.93178	56696.8	56696.8	5.50669	92.8336
4	5	51757.1	6931	7.46748	52624	52624	7.59256	101.675
5	9	5517.49	1088	5.07122	5759.4	5759.4	5.29357	104.384
6	10	5822.49	1329	4.38111	4450.33	4450.33	3.34863	76.4335

Выводы по таблице

- 1. Прибыльный источник, ROI 149%, исходя из того что привлечено достаточно малое количество клиентов (2899) рекомендуется вкладывать больше денег в маркетинг для того чтобы клиенты
- 2. ROI положительный, не так много клиентов рекомендовано вкладывать деньги на привлечение
- 3. Не рекомендованный источник, ROI маленький, клиентов при этом много
- 4. ROI небольшой, но имеет самую большую доходность
- 5. ROI положительный, имеет доходность на 20м месте, привлекательный источник
- 6. ROI положительный, имеет самое низкое количество клиентов
- 7. Не слишком привлекательный источник

Комментарии от ревьюера: И на этом пункте замечаний нет. Ты хорошо интерпретируешь полученные данные - это хорошее качество дла аналитика. Развивай его и дальше

ОБЩИЙ ВЫВОД

• расчеты производились при маржинальности - 100%

Показатели

DAU, MAU, WAU

• DAU = 907, WAU = 5716, MAU = 23228

Количество сессий в день

• В среднем пользователи совершают 1 сессию в день

Retention Rate

- Кофициент удержание значительно мал, пользователи возвращаются редко
- Самая высокая активность в сентебре

*Необходимо проанализировать сентябрьскую когорту и выяснить с чем связан высокий коэфициент удержания в этом месяце и распространить ту же метрику на другие месяца

*Необходимо увеличить коэфициент удержания

Продажи

Когда люди начинают покупать?

- 1. Большая конверсия наблюдается в промежутке от 0 до 10 минут
- 2. 30% заказов в промежутке от 10 минут до 4х часов
- 3. И 30% с течением времени больше 4х часов

Сколько раз покупают за период?

- 1. Наблюдаем рост с августа по декабрь, максимальное количество заказов = 6218
- 2. С декабря по май идет спад, спад по 4346
- 3. Видно что летом ситуация стабильно низкая

Какой средний чек?

Средний чек = 2.5

Сколько денег приносят? (LTV)

- 1. Клиент тратит деньги в первый месяц и возвращается редко (подвердилось малое удержание пользователей)
- 2. Сентябрь выделяется с LTV = 3.976
- 3. Больше всего денег принесла сентябрьская когорта, вторая в июне
- 4. Продажи начали падать с января по май и колебляться примерно на одном уровне
- 5. Минимальная когорта в январе видимо связанная с новогодними праздниками

Маркетинг

Сколько всего потратили денег?

Всего потрачено 252057.2

ROMI

- 1. Максимальный доход в декабре, минимальный в августе
- 2. Большие источники: В декабре 2ой источник, в октябре 5ый
- 3. Минимальный источник 2ой канал в августе

Рекомендации

- 1. Прибыльный источник, ROI 149%, исходя из того что привлечено достаточно малое количество клиентов (2899) рекомендуется вкладывать больше денег в маркетинг для того чтобы клиенты
- 2. ROI положительный, не так много клиентов рекомендовано вкладывать деньги на привлечение
- 3. Не рекомендованный источник, ROI маленький, клиентов при этом много
- 4. ROI небольшой, но имеет самую большую доходность
- 5. ROI положительный, имеет доходность на 2ом месте, привлекательный источник
- 6. ROI положительный, имеет самое низкое количество клиентов
- 7. Не слишком привлекательный источник

Комментарии от ревьюера: Итоговый вывод завершает твое исследование. Ты вывел основные результаты и самое главное - дал рекомендации бизнесу. Это важный пункт и ты его не забыл. Так держать!