Course:

Introduction to Blockchain: Technologies, Approaches and Applications

Lecture 2 Blockchain – Technical Details

Sanjay Chaudhary

School of Engineering and Applied Science
Ahmedabad University
Ahmedabad, Gujarat, India

Let's Test Understanding

Definition

- a digital ledger in which
 - transactions made in bitcoin or another cryptocurrency
 - are recorded chronologically
 - and publicly.

Continuing..

Scenario 2 - Medical Services

Scenario 2 - Medical Services

6

Scenario 2 - Medical Services

Realizing Desired Capabilities

Realizing Desired Capability - 1

- Engineering Decisions
 - Transaction Information
 - Which details of transactions should be captured?
 - Involved entities
 - Transaction Specification
 - Business process details
 - Time of Transaction
 - How to make sure, only authorized stakeholder can post transaction?
 - How to ascertain validity of the transactions?
 - How to handle continuous stream of transactions?

Realizing Desired Capability - 2

- Engineering Decisions
 - Block
 - Block Structure
 - What information should be included in the block
 - When the block was created?
 - How it is linked to other blocks?
 - How many transactions should be included in one block?
 - Which transactions?
 - How to ensure sequence of transactions?
 - How to the block formation process should be defined
 - How to determine the block is ready to be formed?
 - Who (Which node) will create the block?
 - How to ensure that only one instance block will be accepted?
 - How to ensure block is propagated to remining nodes?

Realizing Desired Capability - 3

- Engineering Decisions
 - Blockchain
 - How to determine, all the nodes has right version of blockchain?
 - How to handle
 - Failures
 - Attacks
 - Conflicts
 - Change in block structure, or protocol
 - Change in policies/governance

Plausible Solutions

- Strategy for Capturing Information
 - Consistent for multiple
 - types of transactions
 - types of stakeholders
 - types of domains
 - Deterministic Reproducible
 - Protecting the Information
 - Hiding
 - Tamper-proof
 - Unique (Fingerprint)

Solution

- Cryptographic Hash Function
 - Generates Fixed Length Message Digest
 - Avalanche Effect
 - Fast
 - One-way
 - Deterministic
 - Hiding
 - Collision Free

Hash Function

- A cryptography tool that
 - turns any input into
 - a string of characters
 - that serves as a virtually unforgeable digital fingerprint of the data, called a **hash**.
- The values returned by a hash function are called
 - hash values,
 - hash codes,
 - digests, or simply
 - hashes.

Hash Pointers

- a combination of
 - a regular pointer structure with
 - the hash value of the data fragment it points to
- produces an inbuilt data integrity mechanism
 - location evidence
 - tamper evidence

Summary

- This Lecture
 - Requirements for handling
 - Transactions
 - Blocks
 - Blockchain
 - Introduction to Hash
- Next Lecture
 - Structure of Block
 - Mining
 - Consensus Protocols
 - Additional Technical Details

Additional Reading

- Primer on Blockchain
 - How to assess the relevance of distributed ledger technology to international development
 - By USAID
 - https://www.usaid.gov/digital-development/digitalfinance/blockchain-primer