CV5100 – MUDE

Modeling, Uncertainty, and Data for Engineers Ch3 – Numerical Modelling

Course instructors:

Prof. Phanisri Pradeep Pratapa Prof. Prakash Singh Badal Prof. Sudheendra Herkal

Department of Civil Engineering

Indian Institute of Technology Madras

5 August 2025

Numerical Modelling, Linear Algebra, Optimization

Week	Lecture/ Practical	Topic
1	1	Course overview and Introduction to modelling - classification
	2	Modelling concepts – Choosing a model, validation, performance
	3	Numerical Modelling – DE, FDM, Taylor series
	4	Practical
2	5	Numerical Modelling – Numerical integration
	6	Numerical Modelling – IVP/BVP for ODE
	7	Numerical Modelling – BVP for ODE numerical methods (accuracy, stability)
	8	Practical
3	9	Numerical Modelling – PDE basics and PDE types, Nabla and Laplacian operations
	10	Numerical Modelling – FEM
	11	Linear Algebra – Vector spaces, span, linear dependence
	12	Practical
4	13	Linear Algebra – Basis, dimension, examples, tensor vs. matrix
	14	Linear Algebra – System of linear equations, matrix form, solution approach - direct
	15	Linear Algebra – Matrix equations, solution approach - iterative
	16	Practical
5	17	Linear Algebra – Eigenvalue problem, solution approaches
	18	Linear Algebra – Complexity and scaling
	19	Optimization – Classification and types of problems
	20	Practical
6	21	Optimization – Mathematical formulations and key concepts
	22	Optimization – Gradient and non-gradient approaches
	23	Optimization – Gradient and non-gradient approaches
	24	Practical

Outline

- DEs in structural engineering
- ODE types
- Analytical vs. Numerical solutions

https://mude.citg.tudelft.nl/book/2024/modelling/overview.html

Differential Eqs in Struct Engg

 DEs are mathematical models of a physical phenomenon

Examples:

- 1. Beam Bending (Euler-Bernoulli Beam Theory)
 - Equation:

$$EIrac{d^4y}{dx^4}=q(x)$$

• Description: Models the deflection y(x) of a beam under a distributed load q(x), where E is the modulus of elasticity and I is the moment of inertia.

2. Vibration of Structures

· Equation:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$

• **Description**: Represents the dynamic response of a single-degree-of-freedom system (mass-spring-damper), where m is mass, c is damping, k is stiffness, and F(t) is external force.

Differential Eqs in Struct Engg

- DEs are mathematical models of a physical phenomenon
- Examples:
- 3. Stability of Columns (Buckling)
- Equation:

$$EIrac{d^2y}{dx^2} + Py = 0$$

• **Description**: Describes the buckling behavior of a column under axial load P.

4. Divergence Equation of Structural Mechanics (Equilibrium Equation)

· Equation:

$$\nabla \cdot \boldsymbol{\sigma} + \mathbf{b} = \rho \ddot{\mathbf{u}}$$

- Purpose: Represents the conservation of linear momentum in a deformable solid.
- · Parameters:
 - σ: Stress tensor
 - · b: Body force per unit volume
 - ρ: Density
 - ü: Acceleration of the displacement field
- Application: Fundamental in continuum mechanics and finite element analysis (FEA) for stress-strain modeling.

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + b_x = \rho \frac{\partial^2 u}{\partial t^2}$$

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + b_y = \rho \frac{\partial^2 v}{\partial t^2}$$

$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + b_z = \rho \frac{\partial^2 w}{\partial t^2}$$

ODE vs. PDE

Identify and characterize the following DEs

$$rac{dx(t)}{dt} = \cos t$$
 $rac{\partial c(x,t)}{\partial t} + u rac{\partial c(x,t)}{\partial x} = 0$

$$rac{d^3y}{dx^3} - xrac{d^2y}{dx^2} + y = 0$$
 third-order linear ODE

$$rac{dy}{dx} = y^2 + x$$
 first-order non-linear ODE

$$rac{d^2y}{dx^2} + yigg(rac{dy}{dx}igg)^2 = \sin(y)$$
 second-order non-linear ODE

Analytical vs. Numerical Solutions

Let us use the teachbook & live code

https://mude.citg.tudelft.nl/book/2024/numerical_methods/1-revision-of-concepts.html