Rotazione del disco attaccato al motore: θ_m .

Raggio del disco attaccato al motore: R_d .

Posizione del carretto : x.

Tensione in ingresso al motore: V

Stiffness molla: K

Resistenza e induttanza del motore: R, L

Massa carretto+peso: M Costante torque/backemf: K_e

Essendo il gearbox fissato al carretto abbiamo:

$$\theta_m = \frac{x}{R_d} \Rightarrow \dot{\theta}_m = \frac{\ddot{x}}{R_d}$$

Funzione di trasferimento tra forza erogata e posizione del carretto:

$$\frac{X}{F}(s) = \frac{1}{M} \frac{1}{s^2 + \frac{K}{M}}$$

Funzione di trasferimento tra Tensione e corrente:

$$\frac{I}{V}(s) = \frac{s^2 + \frac{K}{M}}{(s^2 + \frac{K}{M})(2R + 2sL) + \gamma S}$$

$$\gamma = \frac{4K_e^2}{R_d^2 M}$$

Per $\gamma \ll 1$:

$$\frac{I}{V} \approx \frac{1}{2R + 2sL}$$