UNIVERSIDAD SURCOLOMBIANA

INGENIERÍA ELECTRÓNICA ELECTRÓNICA DIGITAL 1

Practica de laboratorio

APLICACIÓN DE LAS COMPUERTAS UNIVERSALES PRACTICA 1°

Juan Esteban Diaz Delgado-20212201615 Dumar Alexander Delgado-20221206321

Subgrupo 01-N°2 23/09/2024

A) Para la función lógica dada obtener el respectivo circuito digital con la compuerta universal indicada y escribir la tabla de verdad lógica y de tensiones para dicho circuito.

$$x = (\overline{A + B})$$
 con NAND

d) Dibujo del circuito lógico completo.

TTL

CMOS

b) Cálculo de los valores de las resistencias (R B , R C , R L, R H y las resistencias que se conectan en las entradas de las compuertas).

Se procede a calcular Rb, para este cálculo, necesitamos la corriente de saturación del transistor, que es de 20 mA, junto con un hfe de 100, esto quiere decir que se necesita un hfe mínimo de 100.

$$I_B = \frac{I_C}{hfe} = \frac{20x10^{-3}}{100} = 200\mu A$$

Ahora que se calculó I_B se procede a calcular R_b

 $R_b = \frac{V_{OH} - V_{BESAT}}{I_B}$ $R_b = \frac{3.6v - 0.8v}{200x10^{-6}} = 14k\Omega$

Asimismo, se procedió a calcular R_C .

$$-V_{CE} - V_{LED} - V_{RC} + V_{CC} = 0$$

$$-0.2v - 2.2v - (R_C * I_C) + 5v = 0$$

$$5v - 0.2v - 2.2v = (R_C * I_C)$$

$$5v - 0.2v - 2.2v = (R_C * I_C)$$

$$2.6v = (R_C * I_C)$$

$$\frac{2.6v}{I_C} = R_C , I_C = 20mA$$

$$\frac{2.6v}{20x10^{-3}} = R_C$$

$$R_C = 130\Omega$$

Análisis teórico para circuito CMOS

Se procede a calcular Rb, y para ello necesitamos la corriente de saturación del transistor, que es de 20 mA, y un hfe de 100, lo que indica que se requiere un hfe mínimo de 100. En el caso de CMOS, como se emplea el mismo transistor, lo único que cambiará será el VOH.

$$I_B = \frac{I_C}{hfe} = \frac{20x10^{-3}}{100} = 200\mu A$$

Ahora que se calculó I_B se procede a calcular R_b

$$R_b = \frac{V_{OH} - V_{BESAT}}{I_B}$$

$$R_b = \frac{5v - 0.8v}{200x10^{-6}} = 20.75k\Omega \approx 21k\Omega$$

Para el caso de R_C es el mismo calculo.

$$R_C = 130\Omega$$

Cálculos Circuito C

En el circuito C, se procederá a calcular Rh, para encontrar el valor de Rh, usamos las leyes de los voltajes de Kirchhoff de la cual se despeja esta ecuación.

Análisis teórico para circuito TTL

$$R_h = \frac{V_{OH} - V_{LED}}{I_{LED}}$$

$$R_h = \frac{3.6v - 2.2v}{20x10^{-3}}$$
$$R_h = 70\Omega$$

Análisis teórico para circuito CMOS

$$R_{h} = \frac{V_{OH} - V_{LED}}{I_{LED}}$$

$$R_{h} = \frac{5 - 2.2v}{20x10^{-3}}$$

$$R_{h} = 140\Omega$$

Cálculos Circuito D

Por último, se procede a calcular la resistencia RL del último circuito. **Análisis teórico para circuito TTL**

$$R_{L} = \frac{V_{CC} - V_{LED} - V_{OL}}{I_{LED}}$$

$$R_{L} = \frac{5v - 2.2V - 0.4V}{20x10^{-3}}$$

$$R_{L} = 120\Omega$$

Análisis teórico para circuito CMOS

$$R_{L} = \frac{V_{OH} - V_{LED}}{I_{LED}}$$

$$R_{L} = \frac{5 - 2.2v}{20x10^{-3}}$$

$$R_{L} = 140\Omega$$

c) datos técnicos solo eléctricos del transistor y del LED.

LED

	Información diodo led										
Color	Tensión (V)	Tensión Máxima (V)	Corriente (mA)								
Rojo	1.8	2.2	20								
Verde	2	3.5	20								
Azul	2.5	3.5	20								
Amarillo	2	3.5	20								

Transistor 2N3904

ELECTRICAL CHARACTERISTICS (Ta=25 °C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Collector Cut-off Current	I _{CEX}	V _{CE} =30V, V _{EB} =3V	-	-	50	nA	
Base Cut-off Current	I_{BL}	V _{CE} =30V, V _{EB} =3V	-	-	50	nA	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_C=10\mu A, I_E=0$	60	-	-	V	
Collector-Emitter Breakdown Voltage *	V _{(BR)CEO}	I _C =1mA, I _E =0	40	-	-	V	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E =10μA, I _C =0	6.0	-	-	V	
	h _{FE} (1)	V _{CE} =1V, I _C =0.1mA	40	-	-		
	h _{FE} (2)	V _{CE} =1V, I _C =1mA	70	-	-		
DC Current Gain *	h _{FE} (3)	h _{FE} (3) V _{CE} =1V, I _C =10mA 1		-	300		
	h _{FE} (4)	V _{CE} =1V, I _C =50mA	60	-	-		
	h _{FE} (5)	V _{CE} =1V, I _C =100mA	30	-	-		
Collector-Emitter Saturation Voltage *	V _{CE(sat)} 1	I _C =10mA, I _B =1mA	-	-	0.2	v	
Conecior-Emitter Saturation Voltage	V _{CE(sat)} 2	I _C =50mA, I _B =5mA	-	-	0.3	`	
Page Emitter Seturation Voltage *	V _{BE(sat)} 1	I _C =10mA, I _B =1mA	0.65	-	0.85	v	
Base-Emitter Saturation Voltage *	V _{BE(sat)} 2	I _C =50mA, I _B =5mA	-	-	0.95	"	
Transition Frequency	f_T	V _{CE} =20V, I _C =10mA, f=100MHz	300	-	-	MHz	
Collector Output Capacitance	Cob	V _{CB} =5V, I _E =0, f=1MHz	-	-	4.0	pF	
Input Capacitance	Cib	V _{BE} =0.5V, I _C =0, f=1MHz	-	-	8.0	pF	
Input Impedance	h _{ie}		1.0	-	10	kΩ	
Voltage Feedback Ratio	h _{re}	V _{CE} =10V, I _C =1mA, f=1kHz	0.5	-	8.0	x10⁴	
Small-Signal Current Gain	h _{fe} V _{CE} =10V, 1 _C =1mA, i=1kHz		100	-	400		
Collector Output Admittance	h _{oe}			-	40	μΰ	
Noise Figure	NF	V _{CE} =5V, I _C =0.1mA Rg=1kΩ, f=10Hz ~15.7kHz	-	-	5.0	dB	

ENTR	ADAS	SALIDAS PARCIALES	SALIDA FINAL		
A	В	(A+B)	$\overline{(A+B)}$		
0	0	0	1		
0	1	1	0		
1	0	1	0		
1	1	1	0		

Tabla 1. Tabla de verdad del circuito

ENTR	ADAS	SALIDAS PARCIALES	SALIDA FINAL
A	В	(A+B)	$\overline{(A+B)}$
0.8	0.8	0.5	2.7
0.8	2	2.7	0.5
2	0.8	2.7	0.5
2	2	2.7	0.5

Tabla 2. Tabla de tensiones TTL

ENTR	ADAS	SALIDAS PARCIALES	SALIDA FINAL
A	В	(A+B)	$\overline{(A+B)}$
1.5	1.5	0.05	4.95
1.5	3.5	4.95	0.05
3.5	1.5	4.95	0.05
3.5	3.5	4.95	0.05

Tabla 3. Tabla de tensiones CMOS

Circuito	Vx (V)		Vt	o(V)	Vo	c(V)	Vo	l(V)
Circuito	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS
Circuito a en alto	2.7	4.95						
Circuito a en bajo	0.4	0.05						
Circuito b en alto	2.7	4.95	0.758	0.756	0.170	0.2	1.83	1.83
Circuito b en bajo	0.4	0.05	0	0	4.25	4.22	0.746	0.750
Circuito c en alto	2.7	4.95					1.87	1.83
Circuito c en bajo	0.4	0.05					0	0
Circuito d en alto	2.7	4.95					0	0
Circuito d en bajo	0.4	0.05					1.83	1.84

Circuito	I _B (μΑ)	IC	(mA)	ЮН	(μA)	IOL	(mA)	VLED (V)		VCE (SAT) (V)	
	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS
Circuito b en alto	3.499uA	4.999uA	23.1	22.8					1.83	1.83	0.170	0.2
Circuito c en alto					400	400			1.87	1.87		
Circuito d en bajo							8	0.04	1.83	1.83		

Tablas practica.

1. Medidas salidas parciales de compuertas lógicas.

	ENTR	ADAS			SALIDAS PARCIALES						SALIDA FINAL	
I	A]	В	X	(1	X	2	X	3	X		
CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	

2. Voltajes de cada circuito.

G: '	Vx (V)		Vb	(V)	Vc	(V)	Vd	(V)
Circuito	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS
Circuito a en alto								
Circuito a en bajo								
Circuito a en alto								
Circuito a en bajo								
Circuito a en alto								
Circuito a en bajo								
Circuito a en alto								
Circuito a en bajo								

3. Corrientes calculadas y voltajes

Circuito	I _B (μA)		IC (mA)	IOH	(μΑ)	IOL	(mA)	VLE	D (V)	VCE (S	AT) (V)
Circuito	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS	TTL	CMOS
Circuito b												
en alto												
Circuito c												
en alto												
Circuito d												
en bajo												

4. Medidas de resistencias.

Resistor	Rb	Rc	Rh	Rl
Valor(TTL)				
Valor(CMOS)				