Marine Hydrodynamics Assignment 1

Sebastian Gjertsen

14. september 2015

Sammendrag

For specified (see below) two-dimensional geometries, assuming potential theory in unbounded fluid, and use of Green's second identity, calculate the velocity potential along the body and the added mass forces, for a circle, an ellipse, a square and a rectangle, moving laterally, and with rotation. Find also the cross coupling added mass coefficients. For the circle, the reference solution is: $\phi = -a^2x/(^2)$ where a denotes the cylinder radius, $r^2 = x^2 + y^2$.

1 Teori

In this assignment we use the method of panels. By splitting the geometry into N equal parts, and assuming that ϕ , $\frac{\partial \phi}{\partial n}$ is constant every segment. From Newman chapter 4 we have (79):

$$\int \phi \frac{\partial G}{\partial n} - G \frac{\partial \phi}{\partial n} = -\pi \phi(x, y)$$

where G = ln(r), a source in 2D

$$-\pi\phi(x_0) + \int_C \phi \frac{\partial}{\partial n} ln(r) dl = \int ln(r) \frac{\partial \phi}{\partial n} dl$$

where x_0 states a point on our geometry.

We got a trick from the lectures, turning it into:

To calculate the ϕ values we created a fictional point between the x_N points, where we stand in this ghostpoint and calculate the $\Delta\theta$ to the x_N values. To evaluate the integrals we used the trapezoidal method.

2 Conclusion