Un example par jour

4.5. nonorientable closed surfaces without boundary

$$\widetilde{\Sigma}_{l} := \underbrace{|R|P^{2} \# \cdots |R|P^{2}}_{l |R|P^{2}}$$

For a complete statement and proof for four versions of universal coefficiennt theorem, see Section 2.6 in Lecture Notes in Algebraic Topology: $https://www.maths.ed.ac.uk/{\sim}viranick/papers/davkir.pdf$

Today: X = IRIP?

nonorientable \Rightarrow Scannot be embedded in IR^3 can't be realized as a Lie group. Universal cover of degree $2 \pi : S^2 \rightarrow IRIP^2$

embedded in IR4

$$\Rightarrow \frac{n}{\pi_{n}(|R|P^{2})} \frac{1}{Z_{1/2}} \frac{2}{Z} \frac{3}{Z} \frac{4}{Z} \frac{5}{Z_{1/2}} \frac{6}{Z_{1/2}} \frac{n>1}{\pi_{n}(S^{2})}$$
cellular homology $0 \longrightarrow C_{1} \longrightarrow C_{1} \longrightarrow C_{0} \longrightarrow 0$

Ze2

$$0 \leftarrow Hom_{\mathbb{Z}}(C_{1}, \mathbb{Z}) \leftarrow Hom_{\mathbb{Z}}(C_{0}, \mathbb{Z}) \leftarrow 0$$

$$\mathbb{Z}^{n}e^{2t} \qquad \mathbb{Z}^{n}e^{t} \qquad \mathbb{Z}^{n}e^{t}$$

$$\Rightarrow H^*(RP^*) = \mathbb{Z}[x]/(2x, x^3)$$

$$deg = 2$$

Let X be a topo space.

Prop. Universal coefficient thm for cohomology (Z-coefficient) natural SES

(unnatural) splits

$$\Rightarrow H^{n}(X) \cong Hom_{\mathbb{Z}}(H_{n}(X),\mathbb{Z}) \oplus \operatorname{Ext}_{\mathbb{Z}}(H_{n-1}(X),\mathbb{Z})$$
Lemma 3.8. Let A be a K-algebra, and let $(M_{i})_{i\in I}$ be a family of A-modules.
There are natural isomorphisms

$$\operatorname{Ext}_{A}^{m}\left(\bigoplus_{i\in I}M_{i},-\right)\to\prod_{i\in I}\operatorname{Ext}_{A}^{m}(M_{i},-)$$

$$\operatorname{Ext}_A^m\left(-,\prod_{i\in I}M_i\right)\to\prod_{i\in I}\operatorname{Ext}_A^m(-,M_i)$$

for each $m \ge 0$.

Cor. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree

we have
$$H_n(X) \stackrel{\text{torsion shift}}{\longleftrightarrow} H^n(X)$$

e.g. $H_n(X) \cong \mathbb{Z}^{bn} \oplus \mathbb{T}_n \Rightarrow H^n(X) \cong \mathbb{Z}^{bn} \oplus \mathbb{T}_{n-1}$

$$\frac{Z_{12}}{Z_{12}} - \text{coefficient (co)homology}$$

$$0 \longrightarrow C_{1} \longrightarrow C_{1} \longrightarrow C_{1} \longrightarrow C_{2} \longrightarrow 0$$

$$Z_{12}^{"} e^{2} \longrightarrow Z_{12}^{"} e^{2} \longrightarrow Z_{12}^{"} e^{2}$$

$$0 \longrightarrow \frac{n}{H_{n}(\mathbb{RP}^{2}, \mathbb{Z}_{12}^{2})} \xrightarrow{\mathbb{Z}_{12}^{2}} \xrightarrow{$$

				0 ←		5	
n	O	1	2	n>2	- - → H*(IRIP*, Z/2Z)= Z	1/2 [a]/c
H,(RP2, 2/22)	2/17/	2/12	2/2/2	O	_ <u> </u>		deg a=1
					- ',	,	ng n

Verify a + o [Hatcher Ex.3.8]

Example 3.8. The closed nonorientable surface N of genus g can be treated in similar fashion if we use \mathbb{Z}_2 coefficients. Using the Δ -complex structure shown, the edges a_t give a basis for $H_1(N;\mathbb{Z}_2)$, and the dual basis elements $\alpha_t \in H^1(N;\mathbb{Z}_2)$ can be represented by cocycles with values given by counting intersections with the arcs labeled α_t in the figure. Then one computes that $\alpha_t \vee \alpha_t$ is the nonzero element of $H^2(N;\mathbb{Z}_2) \approx \mathbb{Z}_2$ and $\alpha_t \vee \alpha_f = 0$ for $t \neq j$. In particu-

lar, when g=1 we have $N=\mathbb{R}P^2$, and the cup product of a generator of $H^1(\mathbb{R}P^2;\mathbb{Z}_2)$ with itself is a generator of $H^2(\mathbb{R}P^2;\mathbb{Z}_2)$.

 \Rightarrow

Prop. Universal coefficient thm for homology

natural SES $0 \longrightarrow H_n(X) \otimes_{\mathbb{Z}} R \xrightarrow{M} H_n(X,R) \longrightarrow \text{Tor}_{n}^{\mathbb{Z}} (H_{n-1}(X),R) \longrightarrow 0$ (unnatural) splits $Tor_{n}^{\mathbb{Z}} (M,N) = H_n(M \otimes_{\mathbb{Z}} R)$

 \Rightarrow $H_n(X,R) \cong H_n(X) \otimes_{\mathbb{Z}} R \oplus Tor_i^{\mathbb{Z}}(H_{n-i}(X),R)$

E_{X} .	n	0	1	2	n>2
— / (.	Hn (IRIP')	7/	7/127/	0	0
	Ha (RIP', IR)	IR	0	0	0
	H, (IRIP2, C)	Э	0	0	0
	H, (IRIP2, 24,221)	72/274	2/22	2/27/	0
	H, (IRIP2, 242321)	Z/21/	7/27/	2/27/	υ
	H, (IRIP2,(24,226))	$(\mathbb{Z}/_{2\mathbb{Z}})^{\mathfrak{S}^3}$	(Z/2Z)**	(Z/27/83	0

Remark. $S^* \to \mathbb{R}^{\mathbb{P}^*}$ is cover, but $H_n(S^*, \mathbb{R}) \not\equiv H_n(\mathbb{R}^{\mathbb{P}^*}, \mathbb{R})$, so for every cover we need to recompute its (w)homology group.

X: topo spoce A: PID R: an A-module.

Prop. Universal coefficient thm for homology natural SES:

 $o \longrightarrow Ext'_{A}(H_{n-1}(X,A),R) \longrightarrow H'(X,R) \xrightarrow{h} Hom_{A}(H_{n}(X,A),R) \rightarrow o$ (unnotural) splits

 \Rightarrow $H^{n}(X,R) \cong Hom_{A}(H_{n}(X,A),R) \oplus Ext_{A}(H_{n-1}(X,A),R)$

e.p. when A=Z,

 $H^{n}(X,R) \cong Hom_{\mathbb{Z}}(H_{n}(X),R) \oplus Ext_{\mathbb{Z}}^{'}(H_{n-1}(X),R)$

when A=R is a field.

 $H^{n}(X,R) \cong Hom_{R}(H_{n}(X,R),R)$

Cor. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree.

we have $H_1(X,F) \cong H^n(X,F)$

Rmk F field,

 $b_i(F)_i = d_{im_F} H_i(x,F) = d_{im_F} H^i(x,F)$

b.(2/22) \$ b.(C) but \$\chi(2/22) = \chi(C) = V - e + f for swfaces.

Ex compute it twice!

n	0	1	2	N>2
Hn (IRIP')	7/	0	2/274	0
H"(RIP", IR)	IR	0	0	0
H"(IRIP2, C)	Ю	0	0	O
H"(IRIP2, 24,22)	72/274	2/2/2	2/27/	0
H^(IRIP2, 2432)	Z/23Z	21/2/2	71/271	0
H^(1RIP2,(21/20)8)	(Z/ _{2Z/}) ³³	(Z/ _{2Z/})33	(Z/27)°	0

Characteristic class I'm new in this field, so in the beginning we just pick up props special vector bundle S tautological line bundle S_2 on $IRIP^2$ and apply them. tangent bundle $T(IRIP^2) = TX$

Stiefel-Whitney class

$$\omega(\chi') = 1 + \alpha$$

Prop. for a real v.b. }, } is orientable (w.(\$)=0

 \S is spin $\iff \omega_1(\S) = 0, \omega_2(\S) = 0$

Cor For line bundle, orientable ⇒ spin ⇒ w(5)=0 ⇒ w(5)=1 ⇔ trivial

Cor. 82', TX is not orientable.

Thm (Pontryagin & Thom) fix a opt smooth mfld M (without boundary), then

∃ cpt smooth mfld N with boundary &N ≅M ⇒ all SW-numbers of Mare of Cor. IRP is not a boundary. || RP is not a boundary.

IRIP²ⁿ⁻¹ is a boundary.