POLSKO-JAPOŃSKA WYŻSZA SZKOŁA TECHNIK KOMPUTEROWYCH			LABORATORIUM PODSTAW ELEKTRONIKI	
Ćw. 6	ZASILANIE UKŁADÓW ELEKTRONICZNYCH Rok akad.			
lmię i Nazwisko		Ocena	Data wykonania ćwiczenia	
			Prowadzący z	ajęcia

6.3.1. Badanie niestabilizowanego zasilacza sieciowego

6.3.1.1. Obserwacja sygnałów wyjściowych z prostowników

Prostownik jedno-połówkowy

Prostownik dwu-połówkowy

Wyjaśnienia

Oszacowanie amplitud napięcia na wtórnych uzwojeniach transformatora:

 $U_{transf} =$

6.3.1.2. Pomiary charakterystyk wyjściowych zasilaczy niestabilizowanych

Lp.	I _{obc}	U _{1poł.}	а	C _{ya}	U _{t1poł.}	U _{2poł.}	b	C _{yb}	U _{t2poł.}
	mA	٧	dz	V/dz	V_{pp}	٧	dz	V/dz	V_{pp}
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
		Prost	ownik jed	no-połów	kowy	Pros	townik dv	wu-połówl	kowy

<u>Uwaga:</u> a, b – długości odcinków zmierzone na ekranie oscyloskopu odpowiadające wartości międzyszczytowej tętnień (należy tak ustawić czułość odchylania pionowego, aby te długości były możliwie duże)

Charakterystyki wyjściowe U=f(I) prostowników

Wzory i obliczenia

Dla oscyloskopu: $U_{osc} = a \cdot C_y$ gdzie: C_y – czułość odchylania pionowego oscyloskopu

Obliczona wartość rezystancji wyjściowej prostowników

jedno-połówkowego: $R_{wy1} =$

dwu-połówkowego: $R_{wv2} =$

6.3.2. Badanie kompensacyjnego stabilizatora napięcia stałego o regulacji ciągłej

Obliczona wartość rezystancji wyjściowej zasilacza stabilizowanego: $R_{wy} =$

Zmierzona maksymalna wartość napięcia tętnień: U_{tmax} =

Wnioski

6.3.3. Badanie konwertera dc-dc

6.3.3.1. Obserwacja sygnałów występujących w konwerterze dc-dc

Opis procedury wyznaczania wartości krytycznej prądu obciążenia

Sygnały w konwerterze dc-dc

Wyznaczona wartość krytyczna prądu obciążenia: lobc kryt. =

Wnioski

6.3.3.2. Pomiar charakterystyki wyjściowej konwertera dla w=0.5

		Tab.3.
Ln	l _{obc}	U
Lp.	mA	V
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

<u>Wnioski</u>

6.3.3.3. Pomiar charakterystyki regulacji konwertera

		Tab.3.
Lp.	ε	U
	-	V
1		
2		
3		
4		
5		

6.3.3.4. Współpraca konwertera z niestabilizowanym zasilaczem sieciowym

Napięcie wyjściowe: $U_{wy}(I_{obc}=50mA) =$ Napięcie tętnień: $U_t(I_{obc}=50mA) =$

<u>Wnioski</u>