

DAY 3: PRECISION IMPOSSIBLE

MUSIC: THE NUMBER THEORY OF SOUND J-LO MC2023

1. RECAP AND SETUP

Yesterday we defined a scale as just being a set of *pitches*. Equivalently, we can describe a scale using a base frequency f and a set of *intervals* r (so the scale is the set of all pitches of the form fr). But there is really one extra condition that all scales should have.¹

Definition. A scale S satisfies the "next note" property if for any $f \in S$, there exists a pitch next $(f) \in S$ such that next(f) > f and there are no elements $g \in S$ with f < g < next(f).

Yesterday we began to discover a tension underlying scales. Roughly speaking, there are two kinds of properties that you might want a scale to have:

- (A) "Mildness" properties: you should be able to play ratios of small whole numbers.
- (B) "Well-spaced" properties: you should be able to move up and down the scale in steps.

Octave equivalence is a property of type (A), and so is "contains two notes in an interval of $\frac{3}{2}$." Being closed under combining and inverting intervals is type (B).

(1) Suppose a scale S satisfies octave equivalence and the next note property, and is closed under combining and inverting intervals. Prove that the only rational numbers in S are powers of 2.

In other words, a scale satisfying strong conditions of type (B) will fail most conditions of type (A), and a scale satisfying strong conditions of type (A) will fail most conditions of type (B)! So we're going to have to compromise. There are two major approaches to doing this:

- Just intonation: keep (A), mess up (B). Design a scale using rational numbers. Allow composing and inverting intervals as much as possible, but accept the fact that it doesn't always work.
- Equal temperament: keep (B), mess up (A). Design a scale using powers of a root of 2, to ensure composing and inverting intervals is always possible. Approximate some rational numbers as closely as possible.

¹As far as I'm aware, every scale in history has this property. The only exception would be music which allows *all* frequencies in a certain range, for example in glissandos or vibrato. But I think it's better to think of these examples as happening *outside* of the framework of scales; scales are not the right tool to describe these musical effects.

Equal temperament is the most common solution used today, but wasn't widely adopted until the late 18th century.² Before then, just intonation was the common approach to music.

2. CHOOSE YOUR OWN ADVENTURE

We'll only consider scales with octave equivalence and next notes — but now you get to choose whether to build a scale with just intonation or equal temperament! In both cases we'll ask the same question: how many pitch classes should you include in your scale? It turns out that the answer depends on how strongly you want both (A) and (B) to hold.

Just intonation

Fix some positive integer n and let S contain the intervals $1, 3, 3^2, \ldots, 3^{n-1}$.

(2) Prove that inverting and composing intervals (as on page 3 of the day 2 handout) always yields a pitch that is either 1, 3^n , or $\frac{1}{3^n}$ times a pitch in S. If 3^n is very close to 2^m for some integer m, conclude that inverting and composing intervals in S always yields a pitch very close to an element of S.

(If you have music theory background: how does this relate to the circle of fifths?)

Equal temperament

Let $f \in S$ be the base frequency, and $b = \frac{\text{next}(f)}{f}$ the smallest interval greater than 1 that our scale can play.

(2) Prove that every interval in S is a power of b.

In particular, $b^n = 2$ for some positive integer n by octave equivalence. If we want our scale to be able to play an interval close to 3, we also need some integer m with b^m close to 3.

(3) Regardless of which scale type you chose, show that you get a good scale if you can find a rational number close to $\log_2 3$ (and the closer it is, the better the scale). What do the numerator and denominator of this rational number each correspond to in the resulting scale?

Definition. Given a real number α , a rational number $\frac{p}{q}$ with q > 0 is a best rational approximation for α if $|\alpha - \frac{p}{q}| \le |\alpha - \frac{a}{b}|$ for all rationals $\frac{a}{b}$ with $0 < b \le q$.

- (4) The first two best rational approximations for $\log_2 3$ are $\frac{2}{1}$ and $\frac{3}{2}$. What are the next five? What scales can you produce using each of these rational numbers?
- (5) Suppose that instead of wanting to include 3 in our scale, we wanted to include 5. How do your answers to questions (2)–(4) change?
- (6) Suppose you want a scale to contain both 3 AND 5 (either exactly if you're using just intonation, or approximately if you're using equal temperament). How would you look for scales that are decent at satisfying both (A) and (B)?

²See https://www.britannica.com/art/equal-temperament for more on the history of equal temperament.

3. Crash course in continued fractions

Best rational approximations to α can be found by brute force: for each $q = 1, 2, 3, \ldots$, let p denote the closest integer to $q\alpha$ (we can take $p = \lfloor q\alpha + \frac{1}{2} \rfloor$), and check if the result is closer to α than anything you've found previously. But there is a much faster algorithm for finding best rational approximations using *continued fractions*.

To compute the continued fraction of a number α , you perform the following steps. Set $\alpha_0 := \alpha$. For each $k = 0, 1, 2, \ldots$ do the following:

- a. Write $\alpha_k = a_k + r_k$, where $a_k = \lfloor \alpha_k \rfloor$ and $r_k \in [0, 1)$.
- b. If $r_k = 0$, halt, otherwise, set $\alpha_{k+1} = \frac{1}{r_k}$ and repeat.

Then we write

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \dots}}},$$

which we write as $\alpha = [a_0; a_1, a_2, a_3, \ldots]$. For example, $\frac{5}{3} = [1; 1, 2]$, and $\pi = [3; 7, 15, 1, 292, 1, \ldots]$. The algorithm halts (the continued fraction expansion is finite) if and only if α is a rational number.

(7) Compute the continued fraction expansion of $\log_2 3$ up through a_{10} .

Here is one fact from the theory of continued fractions that will be helpful to us.

Theorem. Let $\alpha = [a_0; a_1, a_2, \ldots]$. If $\frac{p}{q}$ is a best rational approximation to α with q > 1, then for some $k \geq 1$ and some integer b with $\frac{a_k}{2} \leq b \leq a_k$, we have $\frac{p}{q} = [a_0; a_1, a_2, \ldots, a_{k-1}, b]$. Conversely, for any $k \geq 1$ and any integer b with $\frac{a_k}{2} < b \leq a_k$, the rational number $[a_0; a_1, a_2, \ldots, a_{k-1}, b]$ is a best rational approximation.

(Notice that the statement isn't quite an if-and-only-if: if $b = \frac{a_k}{2}$, then $[a_0; a_1, a_2, \dots, a_{k-1}, b]$ is sometimes a best rational approximation, but sometimes it isn't.)

For an example of this result in action, see the next page for a list of the best rational approximations of π . Want to understand the theory behind continued fractions and figure out how to prove this? Go to Ben's week 4 class on continued fractions!

- (8) Use the theorem above to compute the first few best rational approximations of $\log_2 3$.
- (9) You get extremely good rational approximations if you cut off the continued fraction expansion right before a large term (for example, $\frac{355}{113} = [3; 7, 15, 1]$ is closer to π than any other rational number with denominator smaller than 15000). Use this to explain why dividing the octave into 12 is a particularly good choice. What are some other good options for the number of steps in an octave?

Here is an ordered list of the first 15 best rational approximations to π .

```
[3] =
                          =\pi-0.1415926536...
          [3; 4] =
                          =\pi+0.1084073464\dots
          [3; 5] =
                          =\pi+0.0584073464\dots
          [3; 6] =
                          =\pi+0.0250740131\dots
          [3;7] =
                          =\pi+0.0012644893...
        [3; 7, 8] =
                          =\pi-0.0012417764\dots
       [3; 7, 9] =
                          =\pi-0.0009676536\dots
      [3; 7, 10] =
                          =\pi-0.0007475832...
      [3; 7, 11] =
                          =\pi-0.0005670126...
      [3; 7, 12] =
                          =\pi-0.0004161830\dots
      [3; 7, 13] =
                          =\pi-0.0002883058\dots
      [3; 7, 14] =
                          =\pi-0.0001785122...
      [3; 7, 15] =
                          =\pi-0.0000832196...
    [3; 7, 15, 1] =
                          =\pi+0.0000002667\dots
[3; 7, 15, 1, 146] =
                          =\pi-0.0000002662\dots
```