

METODE GAUSS SIEDEL

Metode Gauss Seidel adalah **metode iteratif**. **Metode iteratif** digunakan untuk mengatasi kesalahan dalam pembulatan.

Pada metode iteratif, kesalahan pembulatan dapat diperkecil, karena iterasi dapat terus dilakukan sampai memperoleh solusi seteliti mungkin, sesuai dengan batas kesalahan yang diperbolehkan.

Algoritma Metode Gauss Siedel

Tinjau kembali SPL berikut :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$
(1)

2. Dengan syarat $a_{kk} \neq 0, k = 1, ..., n, maka$ persamaan iterasinya dapat ditulis sebagai :

$$x_{1}^{(k+1)} = \frac{b_{1} - a_{12} x_{2}^{(k)} - a_{13} x_{3}^{(k)} - \dots - a_{1n} x_{n}^{(k)}}{a_{11}}$$

$$x_{2}^{(k+1)} = \frac{b_{2} - a_{21} x_{1}^{(k)} - a_{23} x_{3}^{(k)} - \dots - a_{2n} x_{n}^{(k)}}{a_{22}}$$

$$\vdots$$

$$x_{n}^{(k+1)} = \frac{b_{n} - a_{n1} x_{1}^{(k)} - a_{n2} x_{2}^{(k)} - \dots - a_{nn-1} x_{n-1}^{(k)}}{a_{nn}}, \qquad k = 0,1,2 \dots$$

3. Lelaran dimulai dengan memberikan tebakan awal untuk x,

$$x_0 = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix}$$

Iterasi pertama:

$$x_1^{(1)} = \frac{b_1 - a_{12}x_2^{(0)} - a_{13}x_3^{(0)} - a_{14}x_4^{(0)}}{a_{11}}$$

$$x_2^{(1)} = \frac{b_1 - a_{21}x_1^{(1)} - a_{23}x_3^{(0)} - a_{24}x_4^{(0)}}{a_{22}}$$

$$x_3^{(1)} = \frac{b_3 - a_{31}x_1^{(1)} - a_{32}x_2^{(1)} - a_{34}x_4^{(0)}}{a_{33}}$$

$$x_4^{(1)} = \frac{b_4 - a_{41}x_1^{(1)} - a_{42}x_2^{(1)} - a_{43}x_3^{(1)}}{a_{44}}$$

Iterasi kedua:

$$x_1^{(2)} = \frac{b_1 - a_{12}x_2^{(1)} - a_{13}x_3^{(1)} - a_{14}x_4^{(1)}}{a_{11}}$$

$$x_2^{(2)} = \frac{b_1 - a_{21}x_1^{(2)} - a_{23}x_3^{(1)} - a_{24}x_4^{(1)}}{a_{22}}$$

$$x_3^{(2)} = \frac{b_3 - a_{31}x_1^{(2)} - a_{32}x_2^{(2)} - a_{34}x_4^{(1)}}{a_{33}}$$

$$x_4^{(2)} = \frac{b_4 - a_{41} x_1^{(2)} - a_{42} x_2^{(2)} - a_{43} x_3^{(2)}}{a_{44}}$$

Secara umum persamaan x_i dapat ditulis:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^n a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}}{a_{ii}}, k = 0, 1, ..., n$$

4. Iterasi akan berhenti jika

$$|\varepsilon_{RA}|_i = \left|\frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k+1)}}\right| \times 100\%,$$
 untuk semua $i = 1, 2, 3, ..., n$

Kurang dari atau sama dengan batas toleransi yang ditentukan.

Note:

- \triangleright ε (batas toleransi) adalah nilai yang sangat kecil, nilai ini ditetapkan.
- \triangleright Masukan nilai atau tebakan awal untuk x_0 .
- \succ Iterasi berhenti atau penyelesaian SPL berhenti jika (lebih kecil sama dengan) $\leq \varepsilon$

Ilustrasi

$$4x_1 + x_2 + x_3 = 9$$
$$6x_2 + 2x_3 = 18$$
$$x_1 + 2x_2 + 8x_3 = 29$$

Tentukan solusi SPL diatas, dengan solusi awal diketahuinya adalah $(x_1^{(0)}, x_2^{(0)}, x_3^0 = (0,0,0)$ dan batas toleransi yang ditentukan adalah 0.3.

Jawab:

1. Persamaan iterasinya x, sebagai berikut

$$x_1^{(k+1)} = \frac{1}{4}(9 - x_2 - x_3)$$

$$x_2^{(k+1)} = \frac{1}{6}(18 - 2x_3)$$

$$x_3^{(k+1)} = \frac{1}{8}(29 - x_1 - 2x_2)$$

Iterasi k = 0, dengan nilai awal :
$$x_1 = 0$$
, $x_2 = 0$, dan $x_3 = 0$

$$x_1^{(0+1)} = \frac{1}{4}(9 - x_2 - x_3) = \frac{1}{4}(9 - 0 - 0) = 2.25$$

$$x_2^{(0+1)} = \frac{1}{6}(18 - 2x_3) = \frac{1}{6}(18 - 2(0)) = 3.00$$

$$x_3^{(0+1)} = \frac{1}{8}(29 - x_1 - 2x_2) = \frac{1}{8}(29 - 2.25 - 2(3.00)) = 2.59$$

Diperoleh solusi $\left[x_1^{(1)}, x_2^{(1)}, x_3^{(1)}\right]$, hitung galat relatifnya yaitu:

$$|\varepsilon_a|_1 = \left|\frac{2.25 - 0}{2.25}\right| \times 100\% = 1.00$$
 $|\varepsilon_a|_2 = \left|\frac{3.00 - 0}{3.00}\right| \times 100\% = 1.00$
 $|\varepsilon_a|_3 = \left|\frac{2.59 - 0}{2.59}\right| \times 100\% = 1.00$

Karena galat relatif lebih besar dari batas toleransinya yaitu 0.3 maka dilakukan iterasi kembali dengan solusi $\left[x_1^{(1)}, x_2^{(1)}, x_3^{(1)}\right]$, yaitu [2.25, 3.00, 2.59].

Iterasi 2,k=1, dengan nilai
$$\left[x_1^{(1)}, x_2^{(1)}, x_3^{(1)}\right]$$
, yaitu $[2.25, 3.00, 2.59]$

$$x_1^{(1+1)} = \frac{1}{4}(9 - x_2 - x_3) = \frac{1}{4}(9 - 3.00 - 2.59) = 0.85$$

$$x_2^{(1+1)} = \frac{1}{6}(18 - 2x_3) = \frac{1}{6}(18 - 2(2.59)) = 2.14$$

$$x_3^{(1+1)} = \frac{1}{8}(29 - x_1 - 2x_2) = \frac{1}{8}(29 - 0.85 - 2(2.14)) = 2.98$$

Diperoleh solusi $\left[x_1^{(2)}, x_2^{(2)}, x_3^{(2)}\right]$, hitung galat relatifnya yaitu:

$$|\varepsilon_a|_1 = \left| \frac{0.85 - 2.25}{0.85} \right| \times 100\% = 1.65$$
 $|\varepsilon_a|_2 = \left| \frac{2.14 - 3.00}{2.14} \right| \times 100\% = 0.40$
 $|\varepsilon_a|_3 = \left| \frac{2.98 - 2.59}{2.98} \right| \times 100\% = 0.13$

Karena galat relatif lebih besar dari batas toleransinya yaitu 0.3 maka dilakukan iterasi kembali dengan solusi $\left[x_1^{(2)}, x_2^{(2)}, x_3^{(2)}\right]$, yaitu $\left[0.85, 2.14, 2.98\right]$.

Iterasi 3, k=2, dengan nilai
$$\left[x_1^{(2)}, x_2^{(2)}, x_3^{(2)}\right]$$
, yaitu $\left[0.85, 2.14, 2.98\right]$
$$x_1^{(2+1)} = \frac{1}{4}(9 - x_2 - x_3) = \frac{1}{4}(9 - 2.14 - 2.98) = 0.97$$

$$x_2^{(2+1)} = \frac{1}{6}(18 - 2x_3) = \frac{1}{6}\left(18 - 2(2.98)\right) = 2.01$$

$$x_3^{(2+1)} = \frac{1}{8}(29 - x_1 - 2x_2) = \frac{1}{8}\left(29 - 0.97 - 2(2.01)\right) = 3.00$$
 Diperoleh solusi $\left[x_1^{(3)}, x_2^{(3)}, x_3^{(3)}\right]$, hitung galat relatifnya yaitu:
$$|\varepsilon_a|_1 = \left|\frac{0.97 - 0.85}{0.97}\right| \times 100\% = 0.12$$

$$|\varepsilon_a|_2 = \left|\frac{2.01 - 2.14}{2.01}\right| \times 100\% = 0.06$$

$$|\varepsilon_a|_3 = \left|\frac{3.00 - 2.98}{2.00}\right| \times 100\% = 0.006$$

karena galat relatifnya kurang dari batas tolerasi yang ditentukan dan diperoleh penyelesaian:

$$\left[x_1^{(3)}, x_2^{(3)}, x_3^{(3)}\right] = [0.97, 2.01, 3.00],$$

dengan galat relatifnya yaitu:

$$\begin{aligned} |\varepsilon_a|_1 &= 0.12 \\ |\varepsilon_a|_2 &= 0.06 \\ |\varepsilon_a|_3 &= 0.006 \end{aligned}$$

Latihan

$$4x_1 - x_2 + x_3 = 7$$

$$4x_1 - 8x_2 + x_3 = -21$$

$$-2x_1 + x_2 + 5x_3 = 15$$

Tentukan solusi SPL diatas dengan menggunakan metode Gauss Seidel, dengan solusi awal diketahuinya adalah $(x_1, x_2, x_3) = (1,2,2)$ dan batas toleransi yang ditentukan adalah 0,3.

TERIMA KASIH