Mid-term Exam Sample Questions & Solutions

Release date: 2015-07-03

Exam date: 2015-07-10, 6-8pm

Problem 1) Python programming (20 pts.)

a) What is the output of the following Python code?

```
from numpy import array a = array([0,1,2,3,4,5,6]) [4,5] print a[-3:-1]
```

b) What is the output of the following Python code?

```
names = ['Adam', 'Bravo', 'Charlie', 'Delta']
print names[-1][-2]
```

c) What is the output of the following Python code?

```
counter = 0
list = [6, 2, 4]
list1 = [1, 3, 5, 7, 9]

def doStuff(list):
    global counter
    for i in list
        counter += i
        counter /= (len(list)+1)

doStuff(list1)
    print counter

\begin{array}{c}
1 & 3t & 5r7+9 \\
6 & 37 & 4
\end{array}

Integer
```

d) What is the output of the following Python code?

Answers:

- a) [4, 5]
- b) t
- c) 4
- d) 12

Problem 2) Bayes Rule (10 pts.)

You are given three boxes, one Red, one Blue and one Green.

- The Red box contains 1 Orange, 4 Apples and 5 Cherries.
- The Green box contains 3 Orange, 4 Apples and 3 Cherries.
- The Blue box contains 7 Orange, 2 Apples and 1 Cherries.

Assume a prior distribution of [Red Green Blue] = $[0.2 \ 0.5 \ 0.3]$. What are probabilities that a Cherry was drawn from a Red, Green, and Blue box?

Solution:

given a Cherry

	Orange	Apple	Cherry	Sum
Red	1	4	5	10
Green	3	4	3	10
Blue	7	2	1	10
Sum	11	10	9	

 $P(Cherry) = P(Cherry \mid Red) * P(Red) + P(Cherry \mid Green) * P(Green) + P(Cherry \mid Blue) * P(Blue) = 5/10 * 1/5 + 3/10 * 1/2 + 1/10 * 3/10 = 1/10 + 3/20 + 3/100 = (10+15+3)/100 = 28/100 = 7/25$

$$P(\text{Red} \mid \text{Cherry}) = P(\text{Cherry} \mid \text{Red}) * P(\text{Red}) / P(\text{Cherry}) = 5/10 * 1/5 / (7/25) = 25/70 = 5/14$$

$$P(\text{Green} \mid \text{Cherry}) = P(\text{Cherry} \mid \text{Green}) * P(\text{Green}) / P(\text{Cherry}) = 3/10 * 1/2 / (7/25) = 15/28$$

$$P(\text{Blue} \mid \text{Cherry}) = P(\text{Cherry} \mid \text{Blue}) * P(\text{Blue}) / P(\text{Cherry}) = 1/10 * 3/10 / (7/25) = 3/28$$

Problem 3) Naïve Bayes Classifier (20 pts.)

You are given the following customers summary table from *MicroShop* as training data:

200	income	student	huve computer
age			buys computer
<=30	high	no	n∕o
<=30	medium	yes	yes
<=30	high	no	no
3140	high	no	yes
>40	medium	no	yes
>40	low	yes	yes
>40	low	yes	no
3140	medium	no	yes
3140	low	yes	yes
<=30	medium	no	no
<=30	low	yes	yes
>40	high	yes	yes
<=30	medium	no	no
<=30	medium	yes	yes
3140	medium	no	yes
3140	high	yes	yes
>40	medium	no	no
> 40	low	no	no
3140	low	yes	no
>40	high	no	yes

Please answer the following questions by using Naïve Bayes classifier and Laplace smoothing if necessary.

- a) Derive the conditional probabilities of P(<=30 | buys_computer), P(31...40 | buys_computer) and P(not_student | buys_computer)
- b) What is the probability of a customer with the following profile (>40, medium_income, student) buying a computer from *MicroShop*?

Answers:

 $P(\text{not_student} \mid \text{buys_computer}) = 5/12$

b) P(medium_income | buys_computer) = 5/12
P(>40, medium_income, student | buys_computer) = 4/12 * 5/12 * 7/12 = 35/432 = 0.081
P(>40, medium_income, student | not_buys_computer) = 3/8 * 3/8 * 2/8 = 9/128 = 0.07
P(buys_computer | >40, medium_income, student) = 0.08/(0.07+0.08) = 8/15

 $P(B|X) = \frac{P(X|B)P(B)}{P(X)} = \frac{3P(X|B)P(B)}{P(X|B)P(B) + P(X|AB)P(AB)}$

Problem 4) Decision Tree (20 pts.)

We are given the following training data set from *MicroShop* customers. Assuming Maximum Information gain is employed as the criterion to select features, which feature will be used to split the <u>first level</u> and what is the resulting information gain using the best split? Information is defined as:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

age	income	buys computer
<=30	high	no
<=30	medium	yes
<=30	high	no
3140	high	yes
>40	medium	yes
>40	low	yes
>40	low	no
3140	medium	yes
3140	low	yes
<=30	medium	no
<=30	low	yes
>40	high	yes
<=30	medium	no
<=30	medium	yes
3140	medium	yes

Answers:

Calculate the information gains as follows.

p(buy)	0.33		
p(not_buy)	0.67		
info(D)	0.92		
p(<=30)	0.47	p(high)	0.27
p(buy <=30)	0.57	p(buy high)	0.50
p(not_buy <=30)	0.43	p(not_buy high)	0.50
info(D(<=30))	0.99	info(D(high))	1.00
p(>40)	0.27	p(low)	0.27

p(buy >40)	0.75	p(buy low)	0.75
p(not_buy >40)	0.25	p(not_buy low)	0.25
info(D(>40))	0.81	info(D(low))	0.81
p(3140)	0.27	p(medium)	0.47
p(buy 3140)	1.00	p(buy medium)	0.71
p(not_buy 3140)	0.00	p(not_buy lmedium)	0.29
info(D(3140))	0.00	info(D(medium))	0.86
info(age)	0.68	info(income)	0.89
info_gain(age)	0.24	info_gain(income)	0.03

Therefore, use age for the first split for the decision tree,

and the resulting **information_gain** = 0.24

Euclidean distance = $(x_1-x_2)^2 + (y_1-y_1)^2$ Manhattan distance = $|x_1-x_2| + |y_1-y_2|$

Problem 5) k-Nearest Neighbors (10 pts.)

We have the following training data for height/weight vs gender:

r:	76,180	65,200	72,165	ES, 150	0,40	48'128
68,155	23	48	14.	8	23.	(3)
72,160	24.	47				

Height	76	65	72	65	60	68
Weight	180	200	165	150	140	158
Gender	0	0	0	1	1	1

Gender=0 is male and Gender=1 is female. Now we have 2 test cases: (h=68, w=155) and (h=72, w=160). Predict the gender for both cases using the kNN classifier with the following properties: k=1, distance = Manhattan, weight = uniform

Answers:

ties:
$$k=1$$
, distance = Manhattan, weight = uniform

ors:

$$(h=68, w=155) \text{ is closest to } (68,158) \Rightarrow \text{gender=1}$$

$$(h=72, w=160) \text{ is closest to } (72,165) \Rightarrow \text{gender=0}$$

Problem 6) K-means clustering (10 pts.)

You are given the following 10 data points of height & weight:

ID	1	2	3	4
Height	76	73	62	60
Weight	180	200	150	140

Manually apply k-means algorithms to get 2 clusters with the following parameters:

- a) Initialize with ID=1 and ID=2 = should start with at least data
- b) Assume Euclidean distance

What are the final groupings and the cluster means?

Answer:

step-0: [([76, 180], [1, 3, 4]), ([73, 200], [2])]

step-1: [([66.0, 156.666666666666], [1, 2]), ([73.0, 200.0], [3, 4])]

step-2: [([74.5, 190.0], [1, 2]), ([61.0, 145.0], [3, 4])]

Problem 7) Model Evaluation (10 pts.)

We are given the following classification results for a cancer screening test. Please derive the evaluation parameters:

- a) Accuracy
- b) Specificity
- c) Precision
- d) Recall
- e) F1

Actual / Prediction	test = positive	test = negative	Total
cancer = yes	150	210	360
cancer = no	80	9560	9640
Total	230	9770	10000

Answer:

- a) Accuracy = (150+9560) / 10000 = 0.971
- b) Specificity = 9560 / 9640 = 0.992
- c) Precision = 150 / 230 = 0.652
- d) Recall = 150 / 360 = 0.417
- e) F1 = 2*P*R / (P+R) = 0.508