Test Lossless Join property

This previous test works on binary decompositions, below is the general solution to testing lossless join property

- 1. Create a **matrix** S, each element $s_{j_i} \in S$ corresponds the relation R_i and the attribute A_{j_i} such that: $s_{j_i} = a$ if $A_i \in R_{j_i}$, otherwise $s_{j_i} = b$.

 2. Repeat the following process until (1) S has no change OR (2) one row is made up entirely of "a" symbols.
- For each $X \to Y$, choose the rows where the elements corresponding to X take the value a. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y. ._ :≓

Verdict: Decomposition is lossless if one row is entirely made up by "a" values.

27

Testing lossless join property(cont)

Example 1: R = (A,B,C,D), $F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$. Let $R_1 = (A,B,C), R_2 = (C,D)$.

	<	٥	,	-
	ζ	ם	,	ב
R ₇	а	а	a	q
R_2	q	p	а	а

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \rightarrow D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

3	l
Algorithm TEST	
H	
Ē	
lo c	
ĕ	
CHEAT SHEET:	
뽔	
5	
¥	
Ö	

- 1. Create a matrix S, each element $s_{ij} \in S$ corresponds the relation R, and the attribute A_{ji}
 - change or one row is made up entirely of "a" such that: $s_{j,l} = a$ if $A_j \in R_{j_l}$ otherwise $s_{j,l} = b$. 2. Repeat the following process till S has no
- For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value
- rows), the elements corresponding to Y also take the value a if one of the chosen rows In those chosen rows (must be at least two take the value a on Y.

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 1: R = (A,B,C,D), $F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}.$ I of $R_* = (A,B,C), R_* = (C,D).$

	ပ	а	
= (C,D).	В	а	
(A,B,C), R ₂ =	∢	а	
11		쪼	
e F			

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \! \to \! D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

Now row 1 is entirely a's, so the decomposition is lossless.

△	Þа	В
ပ	a	а
В	a	q
⋖	а	q
	Α,	R_2

Create a matrix S, each element $s_{ij} {\in} S$ corresponds the relation R_i and the attribute A_{j_i} such that: $s_{j,i}=$ a if $A_j\in R_j$, otherwise $s_{j,i}=$ b. Repeat the following process till S has no

change or one row is made up entirely of "a" symbols

For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value

rows), the elements corresponding to Y also take the value a if one of the chosen rows In those chosen rows (must be at least two

the value a on Y.

CHEAT SHEET: Algorithm TEST LJ

Testing lossless join property(cont)

1. Create a matrix S, each element $s_{ij} \in S$ corresponds the relation R_i and the attribute A_{ji} such that: $s_{j,l}=a$ if $A_j\in R_j$, otherwise $s_{j,l}=b$. 2. Repeat the following process till S has no

 \rightarrow E, C \rightarrow D}.

Example 2: R = (A,B,C,D,E), $F = \{AB \rightarrow CD,A - B,C,B \}$

Let $R_1 = (A,B,C)$, $R_2 = (B,C,D)$ and $R_3 = (C,D,E)$.

В

For each $X \rightarrow Y$, choose the rows where the change or one row is made up entirely of "a"

elements corresponding to X take the value

rows), the elements corresponding to Y also take the value a if one of the chosen rows In those chosen rows (must be at least two ake the value a on Y.

Testing lossless join property(cont)

. ↑ Ö Example 2: R = (A,B,C,D,E), $F = \{AB \rightarrow CD,A - A - B\}$

, É, (Let $R_1 = (A,B,C)$, $R_2 = (B,C,D)$ and $R_3 = (C,D,E)$.

حَة الا

Not lossless join

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element $s_{ij} \in S$ corresponds the relation R_{i} and the attribute A_{j} such that: $s_{j,l} = a$ if $A_j \in R_p$, otherwise $s_{j,l} = b$. Repeat the following process till S has no

change or one row is made up entirely of "a" symbols.

For each X→Y, choose the rows where the elements corresponding to X take the value

rows), the elements corresponding to Y also take the value a if one of the chosen rows In those chosen rows (must be at least two take the value a on Y. 7

Testing lossless join property(cont)

Example 3:

 $\begin{array}{l} R = (A,B,C,D,E,G), \\ F = \{C \to DE,A \to B,AB \to G\}, \\ \text{Let } R_1 = (A,B), R_2 = (C,D,E) \text{ and} \\ R_3 = (A,C,G). \end{array}$

C D E GВ

R₁ a a R₂ b b R₃ a b

CHEAT SHEET: Algorithm TEST_LJ

- Create a matrix S, each element s_{ij}∈S corresponds the relation R, and the attribute A_{ji} such that: $s_{j,l} = a$ if $A_j \in R_j$, otherwise $s_{j,l} = b$.
 - change or one row is made up entirely of "a" 2. Repeat the following process till S has
- For each X→Y, choose the rows where the elements corresponding to X take the value
- rows), the elements corresponding to Y also take the value a if one of the chosen rows In those chosen rows (must be at least two take the value a on-Y

Testing lossless join property(cont)

Create a matrix S, each element $s_{ij} \in \mathbb{S}$ corresponds the relation \mathbb{R}_i and the attribute A_{ji} For each $X \rightarrow Y$, choose the rows where the rows), the elements corresponding to Y also take the value a if one of the chosen rows elements corresponding to X take the value In those chosen rows (must be at least two change or one row is made up entirely of "a" symbols. such that: $s_{j,l} = a$ if $A_j \in R_j$, otherwise $s_{j,l} = b$. Repeat the following process till S has no CHEAT SHEET: Algorithm TEST_LJ take the value a on Y 2 → G}. E) and <u>~</u> ~ R = (A,B,C,D,E,G), $F = \{C \rightarrow DE, A \rightarrow B, AB \rightarrow$ $Let R_1 = (A,B), R_2 = (C,D,E)$ $R_3 = (A,C,G)$ b D E Example 3: C м R, a

Testing lossless join property(cont)

CHEAT SHEET, Algorithm TEST_LJ 1. Create a matrix S, each element $s_j \in S$ corresponds the relation R, and the attribute A_p such that: $s_j = a$ if $A \in R_p$, otherwise $s_j = b$. 2. Repeat the following process till S has no	change or one row is made up entirely of "a"	symbols.	 For each X→ Y , choose the rows where the 	elements corresponding to X take the value	ર્ષ	. In those chosen rows (must be at least two	rows), the elements corresponding to Y also	take the value a if one of the chosen rows	take the value a on Y . 34
01 + 4			ľ			2.			
			•	٥	, es			. Ę .	
	ш	د ا	5	es	es			Lossless join	
	C D E	د ا	5	æ	ಣ			ssle	
	C		5	es	æ			S	
	В	,	73	٩	4	ಡ			
→ G}.	<		# -	R ₂ b	R ₃ a				
Example 3: $\begin{split} R = (A,B,C,D,E,G), \\ F = \{C \rightarrow DE,A \rightarrow B,AB \rightarrow G\}. \\ EtR, &= \{A,B,B,AB \rightarrow G\}. \\ R_3 = (A,C,B,B) \text{ and } \end{split}$	₀		0	١	e				
, A (ш		٥	e	4 ←	- rs			
3: C,D DE, G,B	Ω		5	es	4←	- rs			
B B C C C C C C C C C C C C C C C C C C	Ü	-	a	в	es				
Example 3: R = (A, B, C, D, E, G), $F = \{C \rightarrow DE, A \rightarrow I$ Let $R_1 = (A, B), R_2 = R_3 = (A, C, G)$.	BCDEG		75	9	٩				
Z E E E	<		ns Z	R ₂ b	R ₃ a				
		F	£	×	×				

Checkpoint

Previous:

- The test for lossless join property
 The dependency preservation property

Next:

- The method to decompose to BCNF and 3NF
 Minimal Cover and Equivalence
 The method to decompose to 3NF

Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be simplified in some cases (but not all cases):

- that it includes all attributes of R; that is, it is a superkey for R. To check if a nontrivial dependency $\alpha \to \beta$ causes a violation of BCNF, compute $\alpha +$ (the attribute closure of $\alpha),$ and verify
- To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than check all dependencies in F+.

Testing for BCNF

NOTE: We cannot use F to test relations $R_{\rm i}$ (decomposed from R) for violation of BCNF. It may not suffice.

Consider R(A, B, C, D, E) with F = {A -> B, BC -> D}.

Suppose R is decomposed into R1 = (A, B) and R2 = (A, C, D, E).

Neither of the dependencies in F contains only attributes from R2. So R2 is in BCNF? No, AC -> D is in F+.

Example above : X \to Y violating BCNF is not always in F. It passing with respect to the projection of F on R,

Testing Decomposition for BCNF

To check if a relation schema R_i in a decomposition of R is truly in BCNF, we apply this test: An alternative BCNF test is sometimes easier than computing every dependency in F+. For each subset X of R_i , computer X^* .

- > $X \rightarrow (X^*|_{\mathbb{R}^1} X)$ violates BCNF, if $X^*|_{\mathbb{R}^1} X \neq \emptyset$ and $R_1 X^* \neq \emptyset$.
- \nearrow This will show if $R_{\rm i}$ violates BCNF.

Explanation:

- $X^+|_{R^1}-X=\emptyset$ means each F.D with X as the left-hand side is trivial;
- $P R_i X^* = \emptyset$ means X is a superkey of R_i

Lossless Decomposition into BCNF

Algorithm TO_BCNF

- $\triangleright D := \{R_1, R_2, ...R_n\}$
- ▶ **While** (there exists a R_i ∈ D and R_i is not in BCNF) **Do**
- 1 . find a X \rightarrow Y in R_i that violates BCNF;
- 2. replace R_i in D by ($R_i Y$) and ($X \cup Y$);

Lossless Decomposition into BCNF

Example:

Find a BCNF decomposition of the relation scheme below: SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of:

Ship → Capacity

{Cargo , Capacity} → Value {Ship , Date} → Cargo

We know this relation is not in BCNF

While (there exists a $R_i \in D$ and R_i is not in $\mathsf{D} := \{R_{\tau}, R_{2}, \, ... R_{n}\}$ Algorithm TO_BCNF BCNF) Do

2. replace R_i in D by ($R_i - Y$) and (X \cup Y); →Y in R_i that violates BCNF;

1. find a X

Lossless Decomposition into BCNF (V1)

From *Ship→ Capacity*, we decompose *SHIPPING* into R_{1A} and R _{2A}

R1A(Ship, Date, Cargo, Value) with Key: {Ship, Date}

A nontrivial FD in F⁺ violates BCNF: {Ship , Cargo} → Value

R_{2A}(Ship, Capacity) with Key: {Ship}

Only one nontrivial FD in F⁺: Ship → Capacity

SHIPPING (Ship , Capacity , Date , Cargo , Value) F consists of: Ship \rightarrow Capacity, $\{Ship$, $Date\} \rightarrow Cargo$, $\{Cargo$, $Capacity\} \rightarrow Value$

Lossless Decomposition into BCNF (V1)

 $R_{\scriptscriptstyle 1}$ is not in BCNF so we must decompose it further into $R_{\scriptscriptstyle 11A}$ and $R_{\scriptscriptstyle 12A}$

R_{11A} (*Ship* , *Date* , *Cargo*) with Key: {*Ship,Date*}

Only one nontrivial FD in F* with single attribute on the right side: {Ship , Date} →Cargo and

R_{12A} (*Ship , Cargo , Value*) with Key: {*Ship,Cargo*}

Only one nontrivial FD in F * with single attribute on the right side: $\{Ship,Cargo\} o Value$ This is in BCNF, and the decomposition is lossless but not dependency preserving (the FD $\{Capacity, Cargo\} \rightarrow Value\}$) has been lost.

SHIPPING (Ship , Capacity , Date , Cargo , Value) F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→

Lossless Decomposition into BCNF (V2)

Or we could have chosen {Cargo , Capacity} \rightarrow Value, which would give us:

 R_1B (Ship , Capacity , Date , Cargo) with Key: $\{\mathit{Ship}, \mathit{Date}\}$

A nontrivial FD in F* violates BCNF: Ship → Capacity

R_{2B} (Cargo, Capacity, Value) with Key: {Cargo, Capacity}

Only one nontrivial FD in F * with single attribute on the right side: {Cargo , Capacity} \rightarrow Value

Once again, R_{1B} is not in BCNF so we must decompose it further...

SHIPPING (Ship , Capacity , Date , Cargo , Value) F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}⊶ Va

Lossless Decomposition into BCNF (V2)

 $R_{\scriptscriptstyle 1}$ is not in BCNF so we must decompose it further into $R_{\scriptscriptstyle 11B}$ and $R_{\scriptscriptstyle 12B}$

R_{11B} (*Ship,Date,Cargo*) with Key: {*Ship,Date*}

Only one nontrivial FD in F⁺ with single attribute on the right side: {Ship , Date} → Cargo

R_{12B} (Ship , Capacity) with Key: {Ship}

Only one nontrivial FD in F^+ : Ship o Capacity

This is in BCNF, and the decomposition is both lossless and dependency

SHIPPING (Ship , Capacity , Date , Cargo , Value) F consists of: Ship → Capacity {Ship , Date}→ Cargo , {Cargo , Capacity} ≺

Lossless Decomposition into BCNF

With this algorithm from the previous slide.

We get a decomposition D of R that does the following:

- May not preserves dependencies
- ۲ Has the lossless join property
- > Is such that each resulting relation schema in the decomposition

Lossless decomposition into BCNF

Review: Algorithm TO_BCNF

 $\mathsf{D} := \{R_\tau, R_2, \dots R_n\}$

While \exists a $R_i \in D$ and R_i is not in BCNF **Do**

{ find a X \rightarrow Y in R_i that violates BCNF; replace R_i in D by (R_i – Y) and (X \cup Y); }

Since a $X \to Y$ violating BCNF is not always in E_i , the main difficulty is to verify if R_i is in BCNF

Computing a Minimal Cover (Step 1)

Step 1: Reduce Right: For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, ..., A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \le i \le k$) to replace $X \rightarrow Y$

Practice:

= {A->BCD, B-> CDE, AC-> E} R = (A, B, C, D, E, G)

Θ Ç At the end of step 1 we have : F' = {A -> B, A -> C, A -> D, B -> D, B -> E, AC -> E}

Computing a Minimal Cover (Step 2)

Step 2: Reduce Left: For each $X \to \{A\} \in F$ where $X = \{A_i : 1 \le i \le k\}$, do the following. For i = 1 to k, replace X with $X - \{A_j\}$ if $A \in (X - \{A_j\})^+$.

From Step 1, we had: F' = {A -> B, A -> C, A -> D, B -> C, B -> D, B -> E, AC -> E}

AC → E

 $C^{+} = \{C\}; \text{ thus } C \rightarrow E \text{ is not inferred by } F'.$ Hence, $AC \rightarrow E$ cannot be replaced by $C \rightarrow E$. $A^{+} = \{A, B, C, D, E\}; \text{ thus, } A \rightarrow E \text{ is inferred by } F'.$ Hence, $AC \rightarrow E$ can be replaced by $A \rightarrow E$. We now have $F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$

Computing a Minimal Cover (Step 3)

Step 3: Reduce_redundancy: For each FD $X \rightarrow \{A\} \in \mathcal{F}$, remove it from F if: $A \in X^*$ with respect to $F = \{X \rightarrow \{A\}\}$.

'n From Step 2, we had: $F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, A \rightarrow C, B \rightarrow C, B \rightarrow D, A \rightarrow C, B \rightarrow C, C \rightarrow C,$

 $A+|_{F^{-}(A>B)}=\{A,C,D,E\}; \ thus \ A\rightarrow B \ is \ not \ inferred \ by \ F''-\{A\rightarrow B\}.$ That is, $A\rightarrow B$ is not redundant. $A+|_{F^{-}(A>C)}=\{A,B,C,D,E\}; \ thus, A\rightarrow C \ is \ redundant.$ Thus, we can remove $A\rightarrow C$ from F'' to obtain F'''.

We find that we can remove A -> D and A -> E but not the others. Thus, F_{min} ={A -> B, B -> C, B -> D, B -> E}.

Decomposition Algorithm 3NF

Algorithm 3NF decomposition

- Find a minimal cover G for F.
- , X-> A_k are For each left-hand-side X of a functional dependency that appears in ${\sf G}$, create a relation the only dependencies in G with X as left-hand-side (X is the key to this relation). schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} \dots \cup \{A_k\}\}$, where $X \rightarrow A_1, X \rightarrow A_2$,
- If none of the relation schemas in ${\cal D}$ contains a key of ${\cal R}$, then create one more relation schema in D that contains attributes that form a key of R. e.
- Eliminate redundant relations from the resulting set of relations in the relational database schema. A relation R is considered redundant if R is a projection of another relation S in the schema; alternately, R is subsumed by S. 4.

3NF Decomposition Algorithm

With this algorithm from the previous slide.

We get a decomposition D of R that does the following:

- Preserves dependencies
- ا Has the nonadditive (lossless) join property الم
- > Is such that each resulting relation schema in the decomposition is in

3NF Decomposition Algorithm

Example ONE:

R = (A, B, C, D, E, G)

F_{min}={A->B, B->C, B->D, B->E}.

Candidate key: (A, G)

 $R_1 = (A, B), R_2 = (B, C, D, E)$

 $R_3 = (A, G)$

3NF Decomposition Algorithm

Example TWO:

Following from the SHIPPING relation. The functional dependencies already form a canonical cover.

- From Ship→Capacity, derive R₁(Ship, Capacity),
- Cargo), From $\{Ship, Date\} \rightarrow Cargo$, derive $R_2(\underline{Ship}, \underline{Date})$
- From {Capacity, Cargo} \rightarrow Value, derive $R_3(\underline{Capacity}, \underline{Cargo})$ Value).
- There are no attributes not yet included and the original key $\{Ship,Date\}$ is included in R_2 .

SHIPPING (Ship , Capacity , Date , Cargo , Value) F consists of: Ship → Capacity, {Ship , Date}→ Cargo , Cargo , Capacity}

3NF Decomposition Algorithm

Example THREE: Apply the algorithm to the LOTS example given earlier.

One possible minimal cover is

{ Property_Id→Lot_No,

 $Property_Id \rightarrow Area, \{City, Lot_No\} \rightarrow Property_Id,$

Area → Price, Area → City, City → Tax_Rate }.

This gives the decomposition:

R₁ (<u>Property Id</u>, Lot_No , Area)
R₂ (<u>City. Lot_No</u>, Property_Id)
R₃ (<u>Area</u>, Price , City)
R₄ (<u>City</u>, Tax_Rate)