Egzamin z matematyki 1 (WIŚGiE/IŚ/N, sesja poprawkowa), 12/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{1}{x^3} - \frac{1}{\sqrt{x}}\right)'$, $\left(\frac{\arctan x}{\sin x}\right)'$, $\left(x^2 e^{\cos x}\right)'$. Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $y = \sqrt[3]{x}$ w okolicy $x_0 = 8$ z dokładnością do wyrazów drugiego rzędu. Oblicz za pomocą tego wzoru przybliżoną wartość $\sqrt[3]{7,9}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 6x^4 + 8x^3 3x^2 - 6x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x-4}{x^2-4x+4} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx$, $\int_{1}^{2} \frac{xdx}{\sqrt{3x^2 + 13}}$.

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = 4 - x^2$, y = 3. Wykonaj rysunek! **Zadanie 7 (0-10 pkt.)** W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 4x^2 - 7x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-10 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y = x, y = 2x, x = 4 (pole obszaru wyznacz w oparciu o wzór na pole trójkata).

Egzamin z matematyki 1 (WIŚGiE/IŚ/N, sesja poprawkowa), 12/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{1}{x^3} - \frac{1}{\sqrt{x}}\right)'$, $\left(\frac{\arctan x}{\sin x}\right)'$, $\left(x^2 e^{\cos x}\right)'$. Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $y = \sqrt[3]{x}$ w okolicy $x_0 = 8$ z dokładnością do wyrazów drugiego rzędu. Oblicz za pomocą tego wzoru przybliżoną wartość $\sqrt[3]{7,9}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 6x^4 + 8x^3 - 6x^4 + 6x^4 +$ $3x^2 - 6x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x-4}{x^2-4x+4} dx$. Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx$, $\int_{1}^{2} \frac{xdx}{\sqrt{3x^2+13}}$.

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = 4 - x^2$, y = 3. Wykonaj rysunek! **Zadanie 7 (0-10 pkt.)** W oparciu o definicje oblicz pochodna podanej funkcji $f(x) = 4x^2 - 7x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-10 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y = x, y = 2x, x = 4 (pole obszaru wyznacz w oparciu o wzór na pole trójkata).

Egzamin z matematyki 1 (WIŚGiE/IŚ/N, sesja poprawkowa), 12/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{1}{x^3} - \frac{1}{\sqrt{x}}\right)'$, $\left(\frac{\arctan x}{\sin x}\right)'$, $\left(x^2 e^{\cos x}\right)'$.

Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $y = \sqrt[3]{x}$ w okolicy $x_0 = 8$ z dokładnością do wyrazów drugiego rzędu. Oblicz za pomocą tego wzoru przybliżoną wartość $\sqrt[3]{7,9}$.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = 6x^4 + 8x^3 3x^2 - 6x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{3x-4}{x^2-4x+4} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{x^2}\right) dx$, $\int_{1}^{2} \frac{xdx}{\sqrt{3x^2+13}}$.

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = 4 - x^2$, y = 3. Wykonaj rysunek! **Zadanie 7 (0-10 pkt.)** W oparciu o definicje oblicz pochodna podanej funkcji $f(x) = 4x^2 - 7x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-10 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y = x, y = 2x, x = 4 (pole obszaru wyznacz w oparciu o wzór na pole trójkata).