POLÍGONOS REGULARES

AULA 1 – DEFINIÇÃO

Polígono é a união de retas formadas por n pontos coplanares, com $n \geq 3$, sendo que quaisquer três pontos consecutivos não serão colineares.

Polígonos Simples

Quando **não** há intersecção entre os segmentos não consecutivos.

Polígonos Estrelados

Quando há intersecção entre os segmentos não consecutivos.

Polígonos Convexos

Quando todos os seus segmentos com extremidades no interior do polígono pertencem completamente a ele.

Polígonos Não-Convexos

Quando há segmento com extremidades no interior do polígono, mas que não pertence completamente a ele.

Polígono regular

- Convexo
- Equilátero
- Equiângulo

Exemplo:

AULA 2 - ELEMENTOS/NOMENCLATURA

Elementos

- Vértices: Pontos que determinam os segmentos.
- Lados: Segmentos com dois vértices consecutivos como extremidades.
- Ângulo interno: Ângulo que se localiza na parte interna do polígono e é formado por dois lados do mesmo.
- Ângulo externo: É o suplemento do ângulo interno.

Definição

Perímetro: Soma das medidas de todos os lados.

Nomenclatura

Número de	Nome do
Vértices	Polígono
3	Triângulo
4	Quadrilátero
5	Pentágono
6	Hexágono
7	Heptágono
8	Octógono
9	Eneágono
10	Decágono
11	Undecágono
12	Dodecágono
20	Icoságono

AULA 3 – NÚMERO DE DIAGONAIS

Diagonais de um polígono convexo

Sejam:

• d = número de diagonais

POLÍGONOS REGULARES

n = número de lados

Temos que:

$$d=\frac{n(n-3)}{2}$$

Diagonais que passam pelo centro do polígono Regular

Seja d_c o número de diagonais que passam pelo centro do polígono regular, temos que:

- $d_c = 0$, se n for impar $d_c = \frac{n}{2}$, se n for par

AULA 4 - SOMA DOS ÂNGULOS INTERNOS

Seja S_i a soma dos ângulos internos de um polígono.

$$S_i = (n-2).180^{\circ}$$

AULA 5 - SOMA DOS ÂNGULOS EXTERNOS

Seja S_e a soma dos ângulos externos de um polígono.

$$S_e = 360^{\circ}$$

AULA 6 – MEDIDAS DOS ÂNGULOS DE UM POLÍGONO REGULAR

Ângulo interno

$$a_i = \frac{(n-2).180^\circ}{n}$$

Ângulo Externo

$$a_e = \frac{360^\circ}{n}$$

Soma dos ângulos interno e externo

$$a_i + a_e = 180^{\circ}$$

AULA 7 – RELAÇÕES MÉTRICAS DO TRIÂNGULO EQUILÁTERO

Considere um triângulo equilátero inscrito em uma circunferência, e sejam:

- O = centro da circunferência
- R = raio
- L = lado do triângulo
- A = apótema.

Temos que:

- $L = R.\sqrt{3}$ $a = \frac{R}{2}$

AULA 8 - RELAÇÕES MÉTRICAS DO QUADRADO

Considere um quadrado inscrito em uma circunferência.

Temos que:

- $L = R.\sqrt{2}$ $a = \frac{R\sqrt{2}}{2}$

POLÍGONOS REGULARES

AULA 9 – RELAÇÕES MÉTRICAS DO HEXÁGONO

Considere um **hexágono regular** inscrito em uma circunferência.

Temos que:

- L = R
- $a = \frac{R\sqrt{3}}{2}$