Cryptosystèmes à clé publique

Plan

☐ Fonction à sens unique

☐ Brèche secrète

□ Cryptosystème RSA

Fonction à sens unique

- ☐ Définition : fonction facile à calculer, mais difficile à inverser
 - y=f(x) facile à calculer
 - x=f⁻¹(y) difficile à calculer
- □ Exemple :
 - Les Morceaux = Casser(Assiette) : facile
 - Assiette = Recoller(LesMorceaux) : très difficile
- ☐ Autre exemple :
 - $y = x^2$: facile
 - \blacksquare x = sqrt(y) : difficile

Fonction à sens unique

- ☐ En termes informatiques :
 - « facile » : calculable en temps polynomial
 - « difficile » : ne peut être calculé en temps polynomial
- ☐ De plus, si l'on connaît y et si l'on choisit x au hasard, la probabilité que y=f(x) doit être négligeable

Brèche secrète

- ☐ Fonction à sens unique à brèche secrète, ou fonction trappe
 - f(x) est facile à calculer
 - f⁻¹(x) est très difficile à calculer, sauf si l'on connaît un élément
- □ Exemple :
 - Démonter un mécanisme complexe : facile
 - Remonter le mécanisme :
 - > Facile si l'on dispose du plan de montage
 - > Difficile sinon

RSA

- □ Peu de fonctions mathématiques peuvent être considérées comme des fonctions à sens unique
- ☐ Les nombres premiers apportent des solutions
- ☐ Leur répartition n'a pas encore d'explication
 - On sait estimer le nombre de nombres premiers :

$$\sim \frac{N}{\ln(N)}$$

 Connaissant un nombre premier, on ne sait pas (efficacement) en déduire le suivant

RSA

- ☐ On sait facilement multiplier deux nombres entiers (même très grands)
- □ Connaissant un nombre entier (très grand), il est très difficile de le factoriser sous forme d'un produit de nombre premiers

- ☐ Principe : soit trois entiers n, e et d
 - Chiffrement grâce à la clé publique (e,n) :

$$E_K: C = P^e \mod n$$

Déchiffrement grâce à la clé privée (d,n) :

$$D_K: P = C^d \mod n$$

$$D_K: P = (P^d)^e \mod n$$

$$D_K: P = P^{de} \mod n$$

Comment construire e,d et n pour que **P**^{ed} **mod n** soit égal à **P** !!!

- □ Rivest, Shamir et Adleman (1977)
 - Ont imaginé ce système
 - Ont trouvé le moyen de construire e,d et n pour que E_K et D_K soient sûres

- \square Soit p et q deux nombres premiers
- \Box On calcule n = pq
 - L'indicatrice d'Euler donne $\phi(n) = (p-1)(q-1)$
- \square On choisit *e* premier avec $\phi(n)$
 - Donc e est inversible mod $\phi(n)$
- \square On calcule $d = e^{-1} \mod \phi(n)$
 - Donc ed = $1 \mod \phi(n)$

$$\square$$
 On vérifie que $P^{ed} \mod n = P$

$$ed = 1 \bmod \phi(n)$$

Donc
$$\exists k \in \mathbb{N} \quad ed = 1 + \phi(n) * k$$

C'est-à-dire
$$ed = 1 + (p-1)(q-1) * k$$

Donc
$$P^{ed} \mod n = P^{1+(p-1)(q-1)*k} \mod n$$

Ou encore

$$P^{ed} \ mod \ n = P * (P^{(p-1)(q-1)})^k \ mod \ n$$

- □ On connaît le petit théorème de Fermat :
 - Si p est premier, et si a est premier avec p $Alors \ a^{p-1} \equiv 1 \ mod \ p$
- ☐ Ce théorème a été généralisé par Euler :
 - Si a est premier avec $n \in \mathbb{N}$

Alors
$$a^{\phi(n)} \equiv 1 \mod p$$

☐ Or, dans RSA:

$$\phi(n) = (p-1)(q-1)$$

Donc $P^{ed} \mod n = P * (P^{\phi(n)})^k \mod n$ $P^{ed} \mod n = P * (1)^k \mod n$

Soit $P^{ed} \mod n = P * (P^{\phi(n)})^k \mod n$ par le théorème d'Euler

Finalement $P^{ed} \mod n = P \mod n$

- □ En résumé, e et d ne sont pas reliés par n (qui est connu) mais par $\phi(n)$ (qui est secret et qui dépend de p et q)
- □ Pour retrouver d à partir de e, il faut calculer son inverse par rapport à $\phi(n)$
- \square Pour obtenir $\phi(n)$, il faut pouvoir factoriser n en fonction de p et q (ce qui est très difficile pour des grands nombres

- □ RSA recommande des clés de 1024 bits à 2048 bits (soit des nombres décimaux ayant entre 340 et 680 chiffres)
- □ Pour implémenter RSA il faut :
 - Trouver des nombres premiers très grands
 - Pouvoir calculer l'exponentiation modulaire très efficacement avec un très grand exposant
 - Calculer l'inverse d'un nombre
 - > On sait faire grâce à l'algorithme d'Euclide étendu, qui marche aussi avec les grands nombres

- ☐ Algorithme d'exponentiation modulaire
 - \triangleright On souhaite calculer $c \equiv b^e \mod n$
 - lacktriangledown Algorithme intuitif : on calcule e multiplications puis on prend le modulo m
 - Complexité : O(e)
 - \triangleright Problème : $5^{19} \mod 9 = 5$
 - > 5^{19} = 19073486328125 n'est pas représentable avec un int, or 5^{19} mod 9 n'a qu'un seul chiffre!

L3 Génerale 2013/2014 RSA

- ☐ Algorithme d'exponentiation modulaire efficace
 - On considère la représentation binaire de l'exposant

$$e = \sum_{i=0}^{n-1} a_i 2^i$$

Donc
$$b^e = b^{(\sum_{i=0}^{n-1} a_i 2^i)} = \prod_{i=0}^{n-1} (b^{2^i})^{a_i}$$

Finalement
$$c \equiv \prod_{i=0}^{n-1} \left[(b^{2^i})^{a_i} \mod m \right]$$

- Par convention, a_{n-1} = 1
- Si $a_i = 0$ alors $(b^{2^i})^0 = 1$ (on ne fait rien)
- On sait également que $b^{2^{i}} = (b^{2^{i-1}})^{2} = b^{2^{i-1}} * b^{2^{i-1}}$
 - Pour calculer les $b^{2'}$ il suffira de faire une multiplication modulo m à chaque itération
- Complexité en O(log e)

D'où l'algorithme efficace :

calcul de ae mod n

- Basé sur la remarque suivante :
 - si e est pair, a^e = (a^{e/2})²
 - si e est impair $a^e = (a^{e/2})^2 \times a$
- Algorithme d'exponentiation rapide modulaire
 - 1. Décomposer e en binaire : $e = \sum_{i=0}^{k} e_i 2^i$
 - 2. Calcul de $\{a^{2^i} \mod n\}_{0 \le i \le k}$
 - ▶ Utiliser la relation : $a^{2^{i+1}} = (a^{2^i})^2 \mod n$
 - 3. En déduire $a^{e} = \prod_{i=0}^{k} (a^{2^{i}})^{e_{i}}$

Calcul de 51447²¹ mod 17

$$51447 = 3026 \times 17 + 5 \text{ donc } (E) \equiv 5^{21} \mod 17$$

- 1. Décomposition de 21 en binaire : $21 = 2^4 + 2^2 + 2^0$
- 2. Calcul de $\{5^{2^i} \mod 17\}_{0 \le i \le 4}$
 - $i = 0:5^{2^0} = 5 \mod 17$
 - $i = 1:5^{2^1} = 5^2 = 25 = 8 \mod 17$

 - $i = 2:5^{2^2} = 8^2 = 64 = 13 = -4 \mod 17$ $i = 3:5^{2^3} = (-4)^2 = 16 = -1 \mod 17$
 - $i = 4:5^{2^4} = (-1)^2 = 1 \mod 17$
- 3. On en déduit : $5^{21} = 5^{2^4} \times 5^{2^2} \times 5^{2^0} = 1 \times (-4) \times 5 = -20 = 14$ mod 17

Génération de clés

$$p = 11$$
 q = 3

$$\phi(n) = (p-1)(q-1) = 10 * 2 = 20$$

- $K_c = 3$ premier avec $\varphi(n)$
- Kd * Kc = 1 mod 20

Kd
$$\equiv$$
 Kc $^{-1}$ mod 20 = 7

« Kc publique et Kd secrète

- Ohiffrement: M = 9
 - C = M^{K₀} mod n = 9³ mod 33
 = 15
- Déchiffrement
 - ♠ C = 15
 - $M = C^{K_d} \mod n = 15^7 \mod 33$
 - = 9

Algorithme Euclide étendu(q,r) avec q<r</p>

- Q = (1,0)
- R = (0,1)
- Tant que r # 0 faire
 - t = q mod r
 - T = Q [q/r] R
 - (q,r) = (r,t)
 - -(Q,R) = (R,T)
- ftq
- Retourne (q,Q)
- Fin
- Où la valeur q retournée donne la valeur du pgcd(q,r) et Q les coefficients de Bezout.

Calcul de $37^{-1} \mod 108$

q	r	t=q mod r	Q	[q/r]	R	1
37	108	37	(1,0)	0	(0,1)	(1,0)
108	37	34	(0,1)	2	(1,0)	(-2,1)
37	34	3	(1,0)	1	(-2,1)	(3,-1)
34	3	1 -	(-2,1)	11	(3,-1)	(-35,12)
3	. 1	0	(3,-1)	3	(-35,12)	*
1	0	*	(-35,12)	*	*	*
-	1	12 3		_	102	_ 13