EECE 598, Homework 04,

- 1. Consider a OTDR (Optical Time Domain Reflectormeter) trace below. Predict possible fiber optic network system which will results in below figure.
 - (a) Explain possible optical components at each point (or between two points)
 - (b) Indicate loss [dB], attenuation parameters [dB/km] for the components.

- 2. Assume you have a fiber optic communication system as shown below.
 - (a) Indicate "before" and "after" **Optical Power** for each fiber optic components using the attenuation (loss/gain) parameters shown in below table.

(indicate the power levels (numbers in "dBm") on the system diagram figure)

Opt Tx	Optical Transmitter	Tx Power = 1 mW	
Opt Conn	Optical Connector	Loss = 0.5 dB	
Opt Amp	Optical Amplifier	Gain = 15 dB	
SMF	Optical Fiber (Sgl Mode)	Attenuation Parameter = 0.3 dB/km	
DCF	Optical Fiber (Disp Comp)	Attenuation Parameter = 8 dB/km	
VOA	Variable Optical Attenuator	Loss = Adjustable	

- (b) Calculate **BER Power Penalty** if the fiber optic communication system has below BER performances.
 - a. Fill in the table below (Fill in "Optical Rx Power")
 - b. Plot BER curve on a semi-log paper.

VOA Attenuation [dB]	Optical Rx Power [dBm]	BER [Error Rate]
13.0		1.0 x 10 ⁻⁴
12.0		2.0×10^{-5}
11.0		4.0 x 10 ⁻⁶
10.0		9.0 x 10 ⁻⁷
9.0		2.0×10^{-7}
8.0		4.0 x 10 ⁻⁸
7.0		1.0 x 10 ⁻⁸

