MAT458 Solution Set

A.N.

August 9, 2023

Problem 1. Folland 5.3.42

(a) Let $f \in E_n$. That is for some $x_0 \in [0,1]$ we have that $|f(x_0) - f(x)| \le n|x_0 - x|$. By Stone-Weierstrass, we can uniformly approximate f with some piecewise linear function h with slope $\pm 2n$. Thus for any $\varepsilon > 0$ we have an h so that $||f - h||_u < \varepsilon$. We claim that $h \notin E_n$. For any $x \in [0,1]$,

$$\frac{|h(x_0)-h(x)|}{|x-x_0|}\geqslant 2n \implies |h(x_0)-h(x)|\geqslant 2n|x-n_0|>n|x-x_0|.$$

Therefore h is not in E_n , and so E_n is nowhere dense in C^0 .

(b) The countable union $E = \bigcup_{n=1}^{\infty} E_n$ is nowhere dense in C^0 . It follows that the set $C^0 \setminus E$ is residual, and nonempty. Since E is the set of all somewhere differentiable functions, the compliment must be set of nowhere differentiable functions.

Problem 2. Folland 5.3.27

Let x_n be an enumeration of the rationals. Define:

$$\mathsf{E}_{\mathfrak{n}} = \bigcup_{k=1}^{\infty} \left(x_k - \frac{1}{2^{k-1} \mathfrak{n}}, x_k - \frac{1}{2^{k-1} \mathfrak{n}} \right).$$

We have that $\mathfrak{m}(E_n) = \frac{1}{n}$. It follows from measure continuity that $\mathfrak{m}(\cap_{n=1}^{\infty}E_n) = 0$. Since each E_n is dense in \mathbb{R} , so is E by Baire Category theorem. The compliment is nowhere dense. Take the compliment of E as our desired set.

Problem 3. Extra Credit:

Problem 4. Folland 5.3.32

Consider the identity mapping $I:(\mathfrak{X},\|\cdot\|_1)\to (\mathfrak{X},\|\cdot\|_2)$. I is bijective, and continuous by assumption. It follows that the inverse is bounded by Folland Cor 5.11. So there exists some constant C so that $\|\cdot\|_2\leqslant C\,\|\cdot\|_1$.

Problem 5. (Extra Credit) Folland 5.3.33

Suppose that there exists a sequence $\{a_n\}$, $a_i \geqslant 0$ so that $\sum_n a_n |c_n| < \infty$ if and only if $\{c_n\}$ is bounded. Define $T: B(\mathbb{N}) \to L^1(\mu)$ as $Tf(n) = a_n f(n)$. We first claim that $\{g_n\}$ so that g_n is nonzero for finitely many n is dense in $L^1(\mu)$. Given some $h(n) \in L^1(\mu)$, for any $\epsilon > 0$ there is some N so that $\sum_{n \geqslant N} |h(n)| < \epsilon$. Define

$$g = \begin{cases} h(n) & n < N \\ 0 & n \geqslant N \end{cases}.$$

Then, $\sum_{n\in\mathbb{N}}|h(n)-g(n)|=\sum_{n\geqslant N}|h(n)|<\epsilon$. Note however this family of functions is not dense in $B(\mathbb{N})$, since if we take a constant sequence of 1, then $|f(n)-1|_1=\infty$. By the uniform boundedness principle, we have that $\|Tf(n)\|<\infty$ for all n, so $\sup_n\|Tf(n)\|<\infty$. There exists some c so that $a_nf(n)=Tf(n)\leqslant C$. Clearly, we can modify f(n) so that this inequality breaks however.

Problem 6. Folland 5.3.37

Let $\{x_n\}$ be a sequence converging to x. Let $\lim_{n\to\infty} Tx_n = y$. By continuity of linear functionals, we have that $f(Tx_n) \to f(Tx)$. We also have that $f(Tx_n) \to f(y)$. Since continuous linear functionals separate points, we have y = Tx. By the closed graph theorem T is bounded.

Problem 7. Folland 5.3.38

Note that T is linear. It remains to show that it is continuous. By the uniform boundedness principle, we there exists some constant C so that $\sup_n \|T_n\| \leq C$. Note that the following chain of inequalities holds:

$$\|Tx\|\leqslant \sup_n\|T_nx\|\leqslant C\,\|x\|\,.$$

Therefore T is bounded and thus continuous.

Problem 8. Folland 5.3.39

Let $B: \mathfrak{X} \times \mathfrak{Y} \to \mathfrak{Z}$ be a separately continuous linear map. By bilinearity, it is enough to show that there exists a constant C so that $\|B(x,y)\| \leqslant C \|x\| \cdot \|y\|$. Let $B_x(y) = B(x,y), B_y(x) = B(x,y)$. Since B is separately continuous, we have that there exists some C_x, D_y so that $\|B_x(y)\| \leqslant C_x \|y\|, \|B_y(x)\| \leqslant D_y \|x\|$. By uniform boundedness principle, there exist C, D so that $\|B_y(x)\| \leqslant C \|x\|$ and $\|B_x(y)\| \leqslant D \|y\|$ for all x,y respectively. Thus we have that $\sup_{\|x\|,\|y\|=1} \|B(x,y)\| \leqslant \max{(C,D)}$. Thus B is continuous.

Problem 9. Folland 5.3.40 (Principle of Condensation of Singularities)

Suppose not. Then $\sup_{k} \{ \|T_{jk}x\| : j \in \mathbb{N} \} < \infty$ for all $x \in \mathfrak{X}$. By uniform boundedness we have that $\sup_{k} \{ \|T_{jk}\| : j \in \mathbb{N} \} < \infty$. This contradicts the assumption.

Problem 10. Folland 5.4.47

(a) Suppose that $T_n \to T$ weakly. That is for all $f \in \mathfrak{D}^*$, we have $fT_n x \to fTx$. Therefore $\sup_n \|fT_n x\| < \infty$ for all f. By hahn banach, take g so that |g| = 1, so

$$\|T_nx\|=|g(T_nx)|\leqslant \sup_{f\in \mathfrak{Y}^*,\|f\|=1}|f(T_nx)|=\sup_{f\in \mathfrak{Y}^*,\|f\|=1}|\hat{x}\circ (T_n^*\circ f)|\leqslant \sup_{f\in \mathfrak{Y}^*,\|f\|=1}|\hat{x}\circ T_n^*|\leqslant \|\hat{x}\circ T_n^*\|<\infty.$$

By uniform boundedness princple, we have that $\sup_n \|\hat{x} \circ T_n^*\| < \infty$. Since if $T_n \to T$ strongly implies weakly, we are done.

(b) Let $\{x_n\}$ be a weakly convergent sequence in \mathfrak{X} . That is for all $f \in \mathfrak{X}^*$, $f(x_n) \to f(x)$. Therefore $\|f(x_n)\| \to \|f(x)\|$. We also have that $\hat{x}_n(f) \to \hat{x}(f)$, with norms converging to $\|f(x)\|$. Thus we have that $\sup_n \|\hat{x}_n(f)\| < \infty$. Therefore $\|\hat{x}\| = \|x\| < \infty$. Now let $\{f_n\}$ be a sequence in \mathfrak{X} converging to f in the weark star topology i.e. $f_n(x) \to f(x)$ for all x. Thus we have that

$$\sup_{n} \|f_n(x)\| = \sup_{n} \|\hat{x}(f_n)\| < \infty,$$

by convergence. Therefore taking $\|\hat{\mathbf{x}}\| = 1$ we have that f_n is bounded.

Problem 11. Folland 5.4.48

- (a) Let $\{x_n\}$ be a sequence in B converging to some $x \in B$. For any $f \in \mathfrak{X}$, $||f(x_n)|| = ||\hat{x}_n(f)|| \le ||\hat{x}_n|| \le 1$ by theorem 5.8d. Therefore $||\hat{x}(f)|| = ||f(x)|| \le 1$.
- (b) Let E be a bounded set in \mathfrak{X} . Let $\langle x_{\alpha} \rangle$ be a net in E converging to x , and for $f \in \mathfrak{X}$, $f(x_{\alpha}) \to f(x)$. We have that

$$\sup_{\alpha} \|f(x_{\alpha})\| = \sup_{\alpha} \|\hat{x}_{\alpha}(f)\| = \sup_{\alpha} \|\hat{x}_{\alpha}\| = \sup_{\alpha} \|x_{\alpha}\| < \infty.$$

(c) Let F be a bounded subset of \mathfrak{X}^* . Let $\langle f_{\alpha} \rangle$ be a net in F converging to f. Then for all ||x|| = 1 we have

$$\sup_{\alpha} \|f_{\alpha}(x)\| < C \implies \lim_{\alpha \to \infty} \|f_{\alpha}\| < \infty.$$

(d) Let $\langle f_{\alpha} \rangle$ be a net so that $\langle f_i - f_j \rangle \to 0$. Then for sufficiently large n, m we have $\|f_n(x) - f_m(x)\| \to 0$. So $\{f_n(x)\}$ is a cauchy sequence. It converges to some f by 5.3.38.

Problem 12. Folland 5.4.49

(a) It is sufficient to show that any element of the basis is unbounded. Elements of the basis take the form

$$U_{f,\varepsilon}(x) = \{ y \in \mathfrak{X} : |f(x) - f(y)| < \varepsilon \}.$$

Taking any $\nu \in f^{-1}(0)$, we have that $x + \alpha \nu \in U_{f,\epsilon}(x)$ for all scalars α . Thus this set is unbounded. For the weak * topology, the basis elements take the form

$$V_{f,\epsilon} = \{g \in \mathfrak{X} : \|f - g\| < \epsilon\}.$$

It is sufficient to show that these sets are unbounded. For all $f \in V_{f,\varepsilon}$,

$$\sup_{\|x\|=1} \|f(x) - g(x)\| = \sup_{\|x\|=1} \hat{x}(f - g) < \epsilon.$$

Takeing any l so that $\hat{x}(l) = 0$ we have that $f + \alpha l \in V_{f,\epsilon}$ for all α . Thus this set is unbounded.

- (b) If E is a bounded subset of \mathfrak{X} , then so is its weak closure by 5.4.48b. By part a we have that the interiour must be empty. The same result follows for $F \subset \mathfrak{X}^*$ bounded by 5.4.48c and a.
- (c) Let $E_n = \{x \in \mathfrak{X} : ||x|| \le n\}$. Each E_n is nowhere dense in weak topology, and $\mathfrak{X} = \bigcup_n E_n$. So \mathfrak{X} is meager in the weak topology. The result for \mathfrak{X}^* is obtained in the exact same way.
- (d) IDK ask rob

Problem 13. Folland 5.4.50

Let $\{x_n\}, \{q_n\}$ be enumerations of the dense subsets of B, \mathbb{Q} respectively. Take $f_n \in \mathfrak{X}$ so that $f_x(x_n) = q_n$. Let $\epsilon > 0$. Take $V_{f_n,\epsilon}$ as defined earlier. We claim that $\{V_{f_n,\epsilon}\}$ is a covering of B*. Let $\|g\| \leqslant 1$. Then at some $x \in B$, g attains a maximum since g bounded. Then,

$$\|g(x) - f(x)\| \le \|g(x_n) - g(x)\| + \|f(x_n) - f(x)\| + \|f(x_m) - f(x_n)\| + \|f(x_m) - f(x)\|.$$

Since the norms of all the operators are 1, taking m, n sufficiently large we can make each term less than $\frac{\varepsilon}{4}$. Therefore we have a countable covering of B* by basis elements. Hence it is second countable. Since it is compact and Hausdorff, it must be metrizable by topology results.

Problem 14. Folland 5.4.51

Let $\mathfrak{Y} \subset \mathfrak{X}$ be a vector subspace. Let $\{x_n\}$ be a sequence in \mathfrak{Y} so that $\|x_n - x\| \to 0$ implies $x \in \mathfrak{Y}$. Let $f \in \mathfrak{X}$. Then we have that $\|f(x_n) - f(x)\| \leqslant C_f \|x_n - x\| \to 0$. Conversely suppose that for all $f \in \mathfrak{X}^*$, $f(x_n) \to f(x)$, for $\{x_n\} \subset \mathfrak{Y}$ and $\|x_n - x\| \to 0$. We claim that $x \in \mathfrak{Y}$. By theorem 5.8 we can take f so that $f|_{\mathfrak{Y}} = 0$. We have that f(x) = 0 and so we are done.

Problem 15. Folland 5.4.52

(a)

Problem 16. Folland 5.5.56

The smallest closed subspace that contains E is by definition $\overline{span}(E)$. We claim that $\overline{span}(E) = E^{\perp \perp}$. First suppose that $\nu \in \overline{span}(E)$. Then there exists some sequence $\{\nu_n\}$ converging to ν . For all $u \in E^{\perp}$, we have that

$$\langle v_n, \mathfrak{u} \rangle = 0$$
,

so $\nu_n \in E^{\perp \perp}$, and by continuity of the inner product, $\nu \in E^{\perp \perp}$. Now suppose that $\{\nu_n\}$ is a sequence in $E^{\perp \perp}$ converging to some ν . Then for all $u \in \overline{\text{span}(E)}$ we have that

$$\langle \mathfrak{u}, \mathfrak{v}_{\mathfrak{n}} \rangle = 0$$

and so $\{v_n\} \subset \overline{span}(E)$. By contiuity we have that $v \in \overline{span}(E)$.

Problem 17. Folland 5.5.57

(a) We claim that $T^* = V^{-1}T^{\dagger}V$. We see that it satisfies

$$\langle x, \mathsf{T}^* y \rangle = \langle x, \mathsf{V}^{-1} \mathsf{T}^\dagger \mathsf{V} y \rangle = \left(\mathsf{V} \mathsf{V}^{-1} \mathsf{T}^\dagger \mathsf{V} y \right) (x) = (\mathsf{T}^\dagger \mathsf{V} y) (x) = (\mathsf{V} y) (\mathsf{T} x) = \langle \mathsf{T} x, y \rangle.$$

We now claim uniqueness holds. If S^* , T^* both satisfy the equality, then we have that

$$\langle \mathsf{T} x, y \rangle = \langle x, \mathsf{T}^* y \rangle = \langle x, \mathsf{S}^* y \rangle \implies \langle x, \mathsf{T}^* - \mathsf{S}^* y \rangle = 0, \forall x, y \implies \mathsf{T}^* = \mathsf{S}^*.$$

(b) We first claim that $T^{**} = T$. Notice that if T^* satisfies $\langle Tx, y \rangle = \langle x, T^*y \rangle$, then we must have that

$$\langle \mathsf{T}^* \mathsf{x}, \mathsf{y} \rangle = \overline{\langle \mathsf{y}, \mathsf{T}^* \mathsf{x} \rangle} = \overline{\langle \mathsf{T} \mathsf{y}, \mathsf{x} \rangle} = \langle \mathsf{x}, \mathsf{T} \mathsf{y} \rangle.$$

We now claim that

$$||T^*|| = ||T||$$
.

Observe that for any x,

$$\|T^*\| = \sup_{\|y\|=1} \|T^*y\| = \sup_{\|y\|=\|x\|=1} |\langle x, T^*y \rangle| = \sup_{\|y\|=\|x\|=1} |\langle Tx, y \rangle| = \|T\| \,.$$

Next, we have that

$$\langle (aS+bT)x,y\rangle = \langle aSx,y\rangle + \langle bTx,y\rangle = \langle x,\overline{a}S^*y\rangle + \langle x,\overline{b}T^*y\rangle = \langle x,\overline{a}S^* + \overline{b}T^*y\rangle.$$

Finally,

$$\langle STx, y \rangle = \langle Tx, S^*y \rangle = \langle x, T^*S^*y \rangle.$$

(c) We first show that $R(T)^{\perp} = N(T^*)$. Let $y \in R(T)^{\perp}$. Then for all $x \in \mathcal{H}$, we have

$$0 = \langle \mathsf{T} x, y \rangle = \langle x, \mathsf{T}^* y \rangle \implies \mathsf{T}^* y = 0.$$

Conversely, if $y \in N(T^*)$, we have that for all $x \in \mathcal{H}$,

$$0 = \langle x, T^*y \rangle = \langle Tx, y \rangle \implies y \in R(T)^{\perp}.$$

Next we claim that $N(T)^{\perp} = \overline{R(T^*)}$. Suppose for some $x \in N(T)$, and for all $y \in \mathcal{H}$, we have that

$$0 = \langle \mathsf{T} x, y \rangle = \langle x, \mathsf{T}^* y \rangle \implies \overline{\mathsf{R}(\mathsf{T}^*)} \subset \mathsf{N}(\mathsf{T})^{\perp}.$$

Conversely, let $x \in N(T)^{\perp}$. Then we have that

$$0 = \langle \mathsf{T} \mathsf{x}, \mathsf{y} \rangle = \langle \mathsf{x}, \mathsf{T}^* \mathsf{y} \rangle \implies \mathsf{x} \in \overline{\mathsf{R}(\mathsf{T})}.$$

(d) Suppose that T is unitary. Then it must also be invertible. We claim that $T^* = T^{-1}$. We have that

$$\langle x,y\rangle = \langle \mathsf{T} x,\mathsf{T} y\rangle = \langle x,\mathsf{T}^*\mathsf{T} y\rangle \implies 0 = \langle x,(\mathsf{T}^*\mathsf{T}-\mathsf{I})y\rangle \implies \mathsf{T}^*\mathsf{T} = \mathsf{I}.$$

Therefore we have that $T^{-1} = T^*$. Conversely suppose that T is invertible with $T^{-1} = T^*$. Then we have that

$$\langle x, x \rangle = \langle x, T^*Tx \rangle = \langle Tx, Tx \rangle.$$

By the polarization identity we have that

$$\langle \mathsf{T} \mathsf{x}, \mathsf{T} \mathsf{y} \rangle = \langle \mathsf{x}, \mathsf{y} \rangle.$$

Problem 18. Folland 5.5.58

(a) First note that by definition of P, we have that $\langle Px - x, Px \rangle = 0$. This implies that $\langle Px, Px \rangle = \langle x, Px \rangle$. By Cauchy-Schwartz's inequality, we have that

$$\|Px\|^2 = \langle x, Px \rangle \leqslant \|x\| \cdot \|Px\| \implies \|Px\| \leqslant \|x\|.$$

Therefore $\|P\| \le 1$, so $P \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. We now claim that $P^* = P$. Note that $\langle Px - x, Px \rangle = 0 = \langle Px, Px - x \rangle$ which implies that $\langle Px, x \rangle = \langle x, Px \rangle$. Therefore we have

$$\langle \mathsf{P}^* \mathsf{x} - \mathsf{P} \mathsf{x}, \mathsf{x} \rangle = \langle \mathsf{P}^* \mathsf{x}, \mathsf{x} \rangle - \langle \mathsf{P} \mathsf{x}, \mathsf{x} \rangle = \langle \mathsf{x}, \mathsf{P} \mathsf{x} \rangle - \langle \mathsf{P} \mathsf{x}, \mathsf{x} \rangle = 0.$$

Since this holds for all x we have that $P^* = P$. Finally, we have that

$$\langle Px, Px \rangle = \langle x, P^2x \rangle = \langle x, Px \rangle \implies P^2 = P.$$

We next claim that $N(P) = M^{\perp}$ and R(P) = M. Note that by definition, $Px \in M$. Now if $y \in M$, since $y - Py \in M^{\perp} \cap M$ we have that Py = y. Therefore R(P) = M and so by 57c) we must have $N(P) = M^{\perp}$.

(b) First suppose that $\{x_n\} \subset R(P)$ with limit x and that P satisfies the definition of a projection. We will have that $x \in R(P)$ if Px = x. We have that

$$\lim_{n\to\infty} \langle Px_n - x_n, x_n \rangle = 0, \forall n \implies \langle Px - x, x \rangle = 0$$

Therefore R(P) is closed. We now claim that for all x, $\langle Px - x, Px \rangle = 0$. Using the properties of P, we see that

$$\langle Px - x, Px \rangle = \langle P^2x - Px, x \rangle = 0 \forall x.$$

Therefore such P must be a projection.

(c) We claim that $Px = \sum_{\alpha} \langle x, u_{\alpha} \rangle u_{\alpha}$ satisfies $\langle Px - x, Px \rangle = 0$. This is clearly a continuous operator, so by the previous result we can conclude that P is indeed a projection.

$$\begin{split} \langle \mathsf{P} \mathsf{x} - \mathsf{x}, \mathsf{P} \mathsf{x} \rangle &= \langle \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle \mathsf{u}_{\alpha} - \mathsf{x}, \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle \mathsf{u}_{\alpha} \rangle \\ &= \langle \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle \mathsf{u}_{\alpha}, \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle \mathsf{u}_{\alpha} \rangle - \langle \mathsf{x}, \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle \mathsf{u}_{\alpha} \rangle \\ &= \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle^2 - \sum_{\alpha} \langle \mathsf{x}, \mathsf{u}_{\alpha} \rangle^2 \\ &= 0 \end{split}$$

As desired.

Problem 19. Folland 5.5.59

Assume that $0 \notin K$. Let $\delta = \inf_{\nu \in K} \|\nu\|$. Let $\{\nu_n\}$ be a sequence so that $\|\nu_n\| \to \delta$. By closedness of K, we have that the limit $\nu \in K$. We now claim uniqueness of ν . Suppose that u is another vector that attains minimal norm. Test.