

Contribuições da Análise Fatorial Confirmatória Multigrupo (AFCMG) na avaliação de invariância de instrumentos psicométricos

Bruno Figueiredo Damásio – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

Resumo

A Análise Fatorial Confirmatória Multigrupo (AFCMG) é uma técnica da modelagem de equações estruturais que avalia em que medida a configuração e os parâmetros de determinado instrumento psicométrico são invariantes (equivalentes) para diferentes grupos. Tal técnica tem se apresentado como um importante recurso no desenvolvimento, no uso, na avaliação e no refinamento de instrumentos psicométricos. Entretanto, no Brasil há enorme escassez de publicações sobre o tema. Assim, o presente estudo discute a AFCMG, apresentando suas potencialidades. Ao longo do artigo três grandes tópicos são abordados: os diferentes modelos a serem testados, a invariância completa *versus* a invariância parcial, e os métodos de avaliação de invariância dos modelos. Espera-se que esta leitura auxilie pesquisadores na compreensão, na interpretação e no uso da AFCMG.

Palavras-chave: Análise Fatorial Confirmatória Multigrupo, Invariância de medida, Equivalência de medida, Psicometria, Modelagem de equações estruturais.

Contributions of the Multigroup Confirmatory Factor Analysis in the invariance evaluation of psychometric tests

- Técnica de Modelagem de Equações Estruturais que tem por objetivo avaliar se os parâmetros psicométricos de determinado instrumento são invariantes (ou equivalentes) para diferentes grupos;
- ✓ Avaliar diferentes grupos em uma pesquisa transversal (e.g., gênero; idade; etc.);
- ✓ Pesquisas transculturais (e.g., comparação das propriedades psicométricas de um instrumento em uma amostra de russos e brasileiros);
- ✓ Estudos longitudinais (avaliar a invariância de medida através do tempo).

> Porque uma AFCMG e não outras técnicas exploratórias e confirmatórias simples?

- Exemplo Básico: Análise Fatorial Exploratória
- ✓ Avaliar as propriedades psicométricas da Escala de Resiliência (Resilience Scales, RS-13).
 - ✓ Participantes: 1160 respondentes (62,9% mulheres).

Análise Fatorial Exploratória para homens e mulheres

Eigenvalues (Masculino)			
Fator	Total	Variance (%)	Cumulative %
1	5,106	39,281	39,281
2	0,954	7,340	46, 621
3	0,914	6,697	53,654
4	0,891	6,401	60,511
13	0,416	2,938	100,00

Eigenvalues (Feminino)			
Fator	Total	Variance (%)	Cumulative %
1	4,141	31,851	31,851
2	1,518	7,832	39,683
3	0,979	7,527	47,210
4	0,920	7,080	54,290
13	0,457	3,515	100,00

Masculino		
Itens	Cargas Fatoriais	
01.	,469	
02.	,663	
04.	,656	
05.	,531	
06.	,688	
07 .	,470	
08.	,498	
09.	,655	
10.	,540	
11.	,554	
12.	,576	
13.	,619	
14.	,642	

Var. Explicada = 39,28% Fidedignidade = 0,82

OU

	Feminino
Itens	Cargas Fatoriais
01.	,544
02.	,551
04.	,497
05.	,481
06.	,591
07.	,437
08.	,497
09.	,601
10.	,382
11.	,490
12.	,476
13.	,544
14.	,531

Eominino

Var. Explicada = 31,85% Fidedignidade = 0,86

• Análise Fatorial Confirmatória (RS-13) para homens e mulheres

Modelo	Índices de Adequação de Ajuste				
	χ^2/df	SRMR	RMSEA [90% IC]	TLI	CFI
Total	4,813	0,038	0,058 [.052064]	0,911	0,926
Homens	2,373	0,041	0,057 [.045069]	0,931	0,942
Mulheres	2,852	0,045	0,065 [.057073]	0,923	0,929

- Questões que uma AFCMG responde:
- A estrutura fatorial de determinado instrumento é igual entre os grupos (mesmos itens avaliando o mesmo construto)?
- Os itens que compõem determinado fator apresentam a mesma importância (mesma carga fatorial) nos diferentes subgrupos ou apresenta diferenças que impossibilitam a comparação das diferentes populações?
- O instrumento apresenta itens que s\(\tilde{a}\)o enviesados para um subgrupo em particular?

- Exemplo depressão
 - Choro frequente

- Lógica por trás da AFCMG
- Avalia, simultaneamente em diversos grupos, os parâmetros estruturais de um instrumento;
- É ordenada através de passos hierárquicos;
- Cada modelo é mais restritivo que o outro.

Modelo 1: Equivalência Estrutural

Modelo 2: Equivalência Métrica

Modelo 3: Equivalência de Interceptos (ou thresholds)

Modelo 4: Equivalência de resíduos

Modelo 5: Equivalência da variância fatorial

Modelo 6: Equivalência da covariância

Modelo 7: Igualdade de médias

Necessários para comparação de grupos

Modelo 1 (Equivalência Estrutural)

- ✓ Unconstrained Model;
- ✓ Equal Form
- √ Equal number of Factors;
- √ Configural Invariance;
- ✓ Configural Equivalence;

Nenhuma imposição de equivalência de parâmetros é estabelecida

Avalia a plausibilidade da estrutura fatorial para vários grupos simultaneamente;

Modelo 2 (Equivalência Métrica)

- √ Equal Factors Loadings;
- ✓ Metric Equivalence;
- ✓ Metric Invariance;
- √Os pesos de regressão dos itens são estipulados para serem iguais entre os grupos;
- ✓ Avalia se os itens possuem a mesma importância para os diferentes grupos;
- ✓ Avalia possíveis vieses de itens;

Modelo 3 (Equivalência Escalar)

- ✓ Equal Intercepts;
- ✓ Scalar Invariance;

✓A constante (ponto de partida) dos sujeitos é equivalente?

$$y = a + \beta x$$

 α se refere a uma constante, denominada intercepto que é o valor de y quando x=0.

B é a carga fatorial do item x se refere à resposta do sujeito dada ao item;

Para se testar se as médias dos diferentes grupos são equivalentes (μ y1 = μ y2 = ... = μ y3) é preciso garantir, α (intercepto) e β (cargas fatoriais) sejam equivalentes, variando apenas a resposta do sujeito ao item (x).

Quando a nossa variável é categórica, a interpretação muda um pouco

Modelo 3 (Equivalência de Thresholds)

- ✓ Equal thresholds;
- ✓ Scalar Invariance;

✓ O nível de traço latente necessário para endossar as categorias do instrumento é o mesmo?

- Os thresholds são:
 - Nível de theta necessário para ter 50% de chance de endossar ambas as categorias

Nomenclaturas

Modelo	Imposição
M1. Configural	-
M2. Weak	Cargas fatoriais (metric)
M3. Strong	Cargas fatoriais + interceptos (metric + scalar)
M4. Strict	Cargas fatoriais + interceptos + resíduos (metric + scalar + residual)
M5. Strict	Cargas fatoriais + interceptos + resíduos (metric + scalar + residual + factor variance / covariance)

- √ Modelos são estipulados de maneira hierárquica;
- √Só se passa para um modelo seguinte, se o modelo prévio esteve OK

Como Avaliar:

Modelo 1 - Observar se os índices de ajuste estão adequados;

Modelo 2 - Comparar os índices de Ajuste do Modelo 2, com o Modelo 1;

Modelo 3 - Comparar os índices de Ajuste do Modelo 3, com o Modelo 2

(Vandemberg & Lance, 2000)

Ou

Comparar todos os modelos com o modelo 1;

Atenção:

Para a AFCMG, apenas alguns índices são plausíveis de comparação:

- Δχ2 (gl); ΔCFI; ΔGamma-Hat; McDonald Non-Centrality Fit Index (ΔMcDonald's NCI);
 ΔRMSEA*
- $\Delta \chi 2$ (gl) = p > 0,05
- ΔCFI < 0,01 (Cheung & Rensvold) < 0,002 (Meady et al., 2008);
- ΔGamma-Hat < 0,001
- AMcDonald's NCI < 0,02

(Cheung & Rensvold, 2002; Meady, Johnson, & Braddy, 2008)

ΔRMSEA < 0,005; ΔSRMR < 0,025 / 0,030

