functional analysis study note

Zehao Li

October 2025

Property 1. Let X, Y be normed spaces and $T \in B(X, Y)$ (i.e., a bounded linear operator). Then:

1. The kernel of T, defined by

$$\ker(T) := \{ x \in X : T(x) = 0 \},\$$

is a closed subspace of X.

2. There exists a unique $S \in B(X/\ker(T), Y)$ such that

$$T = S \circ \pi$$
,

where $\pi: X \to X/\ker(T)$ is the quotient map. Moreover, ||S|| = ||T||.

Proof. 1. We have

$$\ker(T) = T^{-1}(\{0\}),$$

which is closed since T is continuous.

2. Define

$$S: X/\ker(T) \to Y, \qquad S(x + \ker(T)) := T(x).$$

This is well-defined: if $x + \ker(T) = x' + \ker(T)$, then $x - x' \in \ker(T)$, hence T(x) = T(x'). Clearly, S is linear.

Since $T = S \circ \pi$, where $\pi: X \to X/\ker(T)$ is the quotient map, we have for any $x \in X$:

$$||T(x)|| = ||S(\pi(x))||.$$

Thus,

$$||T(x)|| = ||S(\pi(x))|| \le ||S|| \, ||\pi(x)|| \le ||S|| \, ||x||,$$

which shows $||T|| \leq ||S||$.

On the other hand, for any $x \in X$ and $y \in \ker(T)$,

$$||S(\pi(x))|| = ||T(x)|| = ||T(x+y)|| \le ||T|| \, ||x+y||.$$

Taking the infimum over $y \in \ker(T)$ gives

$$||S(\pi(x))|| \le ||T|| \, ||\pi(x)||.$$

Hence $||S|| \leq ||T||$.

Combining the two inequalities, we obtain ||S|| = ||T||.

Theorem 1. Hahn-banach theorem: The X be a real vector space $M \subset X$ a subspace $P: X \to R$ a minkowski functional and let $f: M \to R$ be a linear functional satisfying $f(x) \leq p(x)$ for any $x \in M$ then exists linear functional $F: X \to R$ such that $F|_M = f$, $F(x) \leq p(x)$ for any $x \in X$

example: $X = C^n$ some the linear functional on C^n : $f: C^n \to C$ there are $(a_1, a_2 \dots a_n)$ that $f(x) = (x|a)_{c^n} = \sum_{i=1}^n x_i a_i$

 $X^* = B(X, \mathbb{C})$, then $(X^*, ||||)$ is a banach space $(X^*)^* = B((X^*)^*, ||||)$ is also a banach space with respect to ||||

example 1. Let (X, Σ, μ) be a measure space and let 1 . Set <math>q by $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$(L^p(X,\Sigma,\mu))^* \cong L^q(X,\Sigma,\mu),$$

where the isometric isomorphism is given by

$$T: L^q \to (L^p)^*, \qquad T(g) = \Phi_g, \qquad \Phi_g(f) = \int_X fg \, d\mu \quad (f \in L^p).$$

Sketch of verification:

- By Hölder's inequality, $|\Phi_g(f)| \le ||g||_q ||f||_p$, so Φ_g is bounded and $||\Phi_g|| \le ||g||_q$.
- One can show equality $\|\Phi_g\| = \|g\|_q$ (take appropriate normalized approximating functions to attain the norm).
- Surjectivity: every bounded linear functional on L^p arises from a unique g ∈ L^q; this is the standard representation theorem for L^p spaces (proofs use the Hahn-Banach/Riesz representation ideas and Radon-Nikodým arguments).

For the endpoint p = 1: the map

$$L^{\infty}(X, \Sigma, \mu) \to (L^{1}(X, \Sigma, \mu))^{*}, \qquad g \mapsto \Phi_{g}(f) = \int_{Y} fg \, d\mu,$$

is an isometric embedding. Moreover, this map is surjective (hence an isometric isomorphism) provided the measure space (X, Σ, μ) is σ -finite. In general (without σ -finiteness) the dual $(L^1)^*$ may be strictly larger than L^{∞} .

example 2. Let X be a locally compact Hausdorff space and let $C_0(X)$ denote the Banach space of complex continuous functions vanishing at infinity equipped with the sup norm $\|\cdot\|_{\infty}$. Let M(X) denote the space of finite (signed or complex) regular Borel measures (Radon measures) on X, equipped with the total variation norm $\|\mu\| := |\mu|(X)$. Then the Riesz-Markov theorem states that

$$(C_0(X), \|\cdot\|_{\infty})^* \cong (M(X), \|\cdot\|),$$

via the isometric isomorphism

$$\mu \in M(X) \longmapsto \Phi_{\mu} \in C_0(X)^*, \qquad \Phi_{\mu}(f) = \int_X f \, d\mu \quad (f \in C_0(X)).$$

Here "regular" (Radon) means the measure is inner regular on open sets and outer regular on Borel sets, etc.; the Riesz-Markov correspondence identifies continuous linear functionals on $C_0(X)$ with regular Borel measures and preserves the norms.

Remark 1. If X is a second-countable locally compact Hausdorff space (for instance a separable metric locally compact space), then many measurability/regularity pathologies are avoided: finite Borel measures that are finite on compact sets are regular (Radon), so the above identification applies in the usual concrete sense.

Let X be a complex vector space and $f:X\to\mathbb{C}$ a complex linear functional. Define the real linear functional

$$u(x) := \operatorname{Re}(f(x)), \quad x \in X.$$

Proposition 1. We have the decomposition

$$f(x) = u(x) - i u(ix), \qquad x \in X.$$

Conversely, given any real linear functional u on X, the map

$$f(x) := u(x) - i u(ix), \qquad x \in X,$$

is complex linear. Moreover, if u is continuous, then f is continuous and

$$||f|| = ||u||.$$

Proof. If f is complex linear, then clearly f is also real linear. For $x \in X$,

$$f(ix) = if(x) \Rightarrow \operatorname{Im}(f(x)) = -u(ix).$$

Thus

$$f(x) = u(x) + i\operatorname{Im}(f(x)) = u(x) - iu(ix).$$

Conversely, suppose u is real linear and set f(x) := u(x) - i u(ix). For $x, y \in X$,

$$f(x + y) = u(x + y) - iu(i(x + y)) = f(x) + f(y).$$

For $a + ib \in \mathbb{C}$,

$$f((a+ib)x) = u(ax+ibx) - iu(i(ax+ibx)).$$

Using real linearity of u,

$$= au(x) + bu(ix) - i(au(ix) - bu(x)) = (a+ib)(u(x) - iu(ix)) = (a+ib)f(x).$$

So f is complex linear.

For the norms, note that

$$|u(x)| = |\operatorname{Re}(f(x))| \le |f(x)| \quad \Rightarrow \quad ||u|| \le ||f||.$$

On the other hand, for any $x \neq 0$, choose $\theta \in \mathbb{R}$ so that $e^{-i\theta}f(x) \in \mathbb{R}$. Then

$$|f(x)| = |e^{-i\theta}f(x)| = |u(e^{-i\theta}x)| < ||u|| ||e^{-i\theta}x|| = ||u|| ||x||.$$

So
$$||f|| \le ||u||$$
. Together, $||f|| = ||u||$.

Definition 1. Let X be a real vector space. A Minkowski functional on X is a function $p: X \to \mathbb{R}$ such that:

- 1. (Subadditivity) $p(x+y) \le p(x) + p(y), \quad \forall x, y \in X.$
- 2. (Positive homogeneity) $p(\lambda x) = \lambda p(x), \quad \forall x \in X, \lambda \geq 0.$

Remark 2. It follows immediately that p(0) = 0. Indeed,

$$0 = p(0) = p(x + (-x)) \le p(x) + p(-x).$$

By positive homogeneity, p(-x) = p((-1)x) = (-1)p(x) does not apply since $\lambda \ge 0$ is required. However, from subadditivity,

$$0 = p(0) \le p(x) + p(-x) \quad \Rightarrow \quad p(-x) \ge -p(x).$$

Combining this with subadditivity in the other direction yields

$$p(-x) \le p(x)$$
.

Hence $|p(-x)| \le p(x)$, so in particular $p(-x) \le 2p(x)$. This shows that p behaves like a seminorm, except that symmetry is not required.

Theorem 2. theorem: Norms and semi-norms are minkowski functional:

Proof. we use Zorn's lemma, let $M \subset X$ be a subspace and let fix $x \in \frac{X}{M}$. we extend f to M + Rx by functional g such that $g(z) \leq p(z)$ for any $z \in M + Rx$ (g(y) = f(y)) if $g \in M$

Since $z = y + \lambda x$ we want have $g(z) = f(y) + \lambda \alpha, \alpha \in \mathbb{R}$

$$f(y_1) + f(y_2) = f(y_1 + y_2) \le p(y_1 + y_2) \le p(y_1 - x) + p(x + y_2)$$

$$f(y_1) - p(y_1 - x) \le p(y_2 + x) - f(y_2)$$

Thus, $\sup\{f(y) - p(y-x)|y \in M\} \le \inf\{p(y+x) - f(y)|y \in M\}.$

suppose exists some α between them, then we set $g(y+\lambda x)=f(y)+\lambda x$ then $g|_M=f$. let $\lambda>0$

$$g(y+\lambda x)=g(\lambda(\frac{y}{\lambda}+x))=\lambda(f(\frac{y}{\lambda})+\alpha)\leq p(\frac{y}{\lambda}+\alpha)+f(\frac{y}{\lambda})\leq \lambda(p(\frac{y}{\lambda}+x)=p(y+\lambda x)$$

similar for $\lambda < 0$

Then consider $\mathbb{F}=\{(F,Y)|F$ is extension of f, i.e. $M\subset Y\&F|_{M}=f,F(z)\leq p(z)\}$

Then $(F_1, Y_1) \leq (F_2, Y_2)$ iff $Y_1 \subset Y_2$ and $F_2|_{Y_1} = F_1$

 $\mathbb{F} \neq \emptyset$ since $(f, M) \in \mathbb{F}$ if we have a linearly ordered subfamily of \mathbb{F} , say $\{F_{\alpha}\}$

by zorn lemma, exists maximal and Y = X, otherwise exists some $x \in X - Y$, then construct new Y including x, then new Y is larger contradiction to the Y is maximal

case if $p:X\to\mathbb{R}$ is a semi-norm, then condition $f\le p$ on M is equiped to the $|f|\le p$ on M

Theorem 3. Hahn Banach complex version: Let X be a complex vector space with $P: X \to \mathbb{R}$ a semi-norm, $M \subset X$ a subspace $f: M \to \mathbb{C}$ a complex linear functional such that $|f(x)| \le P(x)$ for any $x \in M$

then, exists $F: X \to \mathbb{C}$ complex linear functional such that $F|_M = f$, $|F(x)| \le P(x)$ for any $x \in X$

Proof. let u=Re(f), then u is $\mathbb R$ linear functional on $X, \, |u(x)| \leq |f(x)| \leq P(x)$ for any $x \in M$.

Thus, by Hahn Banach, there exists a real-linear functional $u: X \to \mathbb{R}$ such that $u(x) \leq P(x)$ for any $x \in X$.

Set F(x) = u(x) - iu(ix), then $F|_M = f$ and we want to show $F(x) = u(x) - iu(ix) \le P(x)$

Recall that $F(x) = e^{it}|F(x)|$, i.e.

$$|F(X)| = F(e^{it}x) = u(e^{-it}x) \le P(e^{-it}x) = |e^{-it}|P(x) = P(x)$$

Theorem 4. Let X be a normed space:

1. if $x \neq 0$, $x \in X$ then exists $f \in X^*$, ||f|| = 1 and f(x) = ||x||

2. The bounded linear functional of X separate the points of X

3.Let $M \subset X$ be a closed subspace, let $x \notin M$, then exists $f \in X^*$ such that $f(x) \neq 0$ $f|_M = 0$, Moreover, $\delta = dist(x, M)$, Then exists $f \in X^*$ $f(x) = \delta$, $f|_M = 0$, $||f|| \leq 1$

4.if $x \in M$, define $\hat{x}: X^* \to \mathbb{C}$ continuous linear functional by $\hat{x}(f) = f(x)$, $f \in X^*$ then $\hat{x} = (X^*)^*$ and $\|\hat{x}\| = \|x\|$, then map $x \in X \to \hat{x} \in (X^*)^*$ is an isometric isomorphism of normed space (may no be onto).

Proof. proof of 1: let $x \neq 0$, $x \in X$ $M = \mathbb{C}x$, P(x) = ||x||.

define $f(\lambda x) = \lambda ||x||, \lambda \in \mathbb{C}$. Note that $|f(\lambda x)| = |\lambda| ||x|| = ||\lambda x||$

By Hahn Banach, exists an $F: X \to \mathbb{C}$ linear functional such that $F|_M = f$ i.e. F(x) = f(x) = ||x|| and $|F(y)| \le ||y||$ for any $y \in X$

hence, F is continuous and $||F|| \le 1$

$$|F(x)| = ||x|| \le ||F|| ||x||$$
, so $||F|| \ge 1$ we have $||F|| = 1$

Proof. proof of 2: let $x, y \in X$ and $x \neq y$ then exists $f \in X^*$ such that f(x-y) = ||x-y|| by 1.

Proof. proof of 3:

$$\delta = dist(x, M) = \inf\{\|x - y\| | y \in M\}$$

Consider $M + \mathbb{C}x$ define $f(y + \lambda x) = \lambda \delta$ for any $y \in M, \lambda \in \mathbb{C}$

$$||y+\lambda x|| = ||\lambda(\frac{y}{\lambda}+x)|| = |\lambda|||\frac{y}{\lambda}+x|| \ge |\lambda|\inf\{||z+x|||z\in M\} = |\lambda|\delta = |f(y+\lambda x)|$$

by Hahn Banach, there exist $F: X \to \mathbb{C}$ linear functional such that $F|_M = f$ and $|F(Z)| \le ||z||$ for any $z \in X$.

Hence
$$||F|| \le 1$$
 and $F(y) = 0$ for any $y \in M$ and $F(x) = f(x) = \delta$

```
Proof. proof of 4: |\hat{x}(f)| = |f(x)| \le \|f\| \|x\| \text{ for any } f \in X^*. thus, \|\hat{x}\| = \sup_{\|f\|=1} |f(x)| \le \|x\| By 1, exists f \in X^* such that f(x) = \|x\|, \|f\| = 1 hence |\hat{x}(f)| = |f(x)| = \|x\| \le \|\hat{x}\| \|f\| = \|\hat{x}\| We have \|\hat{x}\| = \|x\| Then, x \in X \to \hat{x} \in \hat{X} \subset (X^*)^* is a isometric isomorphism onto. □
```

Remark 3. by the previous theorem, every normed space X is naturally isomorphic to subspace of $(X^*)^*$

Remark 4. if X is not a Banach Space, then $\hat{X} \subsetneq X^{**}$