Package 'logitr'

May 25, 2017

May 23, 2017	
Type Package	
Title Penalized Logistic Regression	
Version 0.1.0	
Description This is an R package for linear and logistic regression with optional ridge and bridge regularization penalties.	<u>5</u> _
<pre>URL https://github.com/MGallow/logitr</pre>	
BugReports https://github.com/MGallow/logitr/issues	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
Imports Rcpp (>= 0.12.10), RcppArmadillo, dplyr	
LinkingTo Rcpp, RcppArmadillo	
RoxygenNote 6.0.1	
R topics documented: gradient_IRLS_logistic gradient_linear gradient_MM_logistic IRLS linearc linearr logisticr logitc MM predict_linearr	2 2 3 4 4 5 6 7 8 8
predict_logisticr	9
Index	10

2 gradient_linear

```
gradient_IRLS_logistic
```

Gradient of Logistic Regression (IRLS) (c++)

Description

Computes the gradient of logistic regression (optional ridge regularization term). We use this to determine if the KKT conditions are satisfied. This function is to be used with the 'IRLS' function.

Usage

```
gradient_IRLS_logistic(betas, X, y, lam = 0, vec = 0L)
```

Arguments

betas	beta estimates (includes intercept)
Χ	matrix or data frame
у	response vector of 0,1
lam	tuning parameter for ridge regularization ter

tuning parameter for ridge regularization term

vec vector to specify which coefficients will be penalized

Value

returns the gradient

Examples

```
gradient_IRLS_logistic(betas, X, y, lam = 0.1, penalty = 'ridge')
```

gradient_linear

Gradient of Linear Regression

Description

Computes the gradient of linear regression (optional ridge regularization term). This function is to be used with the 'Linearr' function.

Usage

```
gradient_linear(betas, X, y, lam = 0, weights = NULL, vec)
```

Arguments

betas	beta estimates (includes intercept)
X	matrix or data frame
у	response vector of 0,1
lam	tuning parameter for ridge regularization term
weights	option vector of weights for weighted least squares
vec	vector to specify which coefficients will be penalized

gradient_MM_logistic 3

Value

returns the gradient

Examples

```
gradient_linear(betas, X, y, lam = 0.1)
```

```
gradient\_MM\_logistic   Gradient \ of \ Logistic \ Regression \ (MM) \ (c++)
```

Description

Computes the gradient of logistic regression (optional ridge regularization term). We use this to determine if the KKT conditions are satisfied. This function is to be used with the 'MM' function.

Usage

```
gradient_MM_logistic(betas, X, y, lam = 0, alpha = 1.5, gamma = 1,
  vec = 0L)
```

Arguments

betas	beta estimates (includes intercept)
Χ	matrix or data frame
У	response vector of 0,1
lam	tuning parameter for ridge regularization term
alpha	optional tuning parameter for bridge regularization term. Defaults to 'alpha = 1.5 '
gamma	indicator function. 'gamma = 1' for ridge, 'gamma = 0' for bridge. Defaults to 'gamma = 1'
vec	vector to specify which coefficients will be penalized

Value

returns the gradient

Examples

```
gradient_MM_logistic(betas, X, y, lam = 0.1, alpha = 1.5, penalty = 'bridge')
```

4 linearc

IRLS

Iterative Re-Weighted Least Squares (c++)

Description

Computes the logistic regression coefficient estimates using the iterative re-weighted least squares (IRLS) algorithm. This function is to be used with the 'logisticr' function.

Usage

```
IRLS(X, y, lam = 0, intercept = TRUE, tol = 1e-05, maxit = 1e+05,
  vec = 0L)
```

Arguments

X matrix or data frame

y matrix or vector of response 0,1

lam tuning parameter for regularization term

intercept Defaults to TRUE

tol tolerance - used to determine algorithm convergence

maxit maximum iterations

vec optional vector to specify which coefficients will be penalized

betas beta estimates (includes intercept)

Value

returns beta estimates (includes intercept), total iterations, and gradients.

Examples

```
IRLSc(X, y, n.list = c(rep(1, n)), lam = 0.1, alpha = 1.5)
```

linearc

Linearc(c++)

Description

Computes the linear regression coefficient estimates (ridge-penalization and weights, optional)

Usage

```
linearc(X, y, lam = 0, weights = 0L, intercept = TRUE, kernel = FALSE)
```

linearr 5

Arguments

X	matrix
у	matrix

lam optional tuning parameter for ridge regularization term. Defaults to 'lam = 0'

weights optional vector of weights for weighted least squares

intercept add column of ones if not already present. Defaults to TRUE

kernel use linear kernel to compute ridge regression coefficeients. Defaults to true

when p » n

Value

returns the coefficient estimates

Examples

```
Weighted ridge regression
library(dplyr)
X = dplyr::select(iris, -c(Species, Sepal.Length))
y = dplyr::select(iris, Sepal.Length)
linearc(X, y, lam = 0.1, weights = rep(1:150))

Kernelized ridge regression
linearc(X, y, lam = 0.1, kernel = T)
```

linearr Linear

Description

Computes the linear regression coefficient estimates (ridge-penalization and weights, optional)

Usage

```
linearr(X, y, lam = 0, weights = NULL, intercept = TRUE, kernel = FALSE)
```

Arguments

X matrix or data frame

y matrix or data frame of response values

lam optional tuning parameter for ridge regularization term. Defaults to 'lam = 0'

weights optional vector of weights for weighted least squares

intercept add column of ones if not already present. Defaults to TRUE

kernel use linear kernel to compute ridge regression coefficeients. Defaults to TRUE

when p » n

Value

returns the coefficient estimates

6 logisticr

Examples

```
Weighted ridge regression
library(dplyr)
X = dplyr::select(iris, -c(Species, Sepal.Length))
y = dplyr::select(iris, Sepal.Length)
linearr(X, y, lam = 0.1, weights = rep(1:150))

Kernelized ridge regression
linearr(X, y, lam = 0.1, kernel = T)
```

logisticr

Logistic Regression

Description

Computes the coefficient estimates for logistic regression. ridge regularization and bridge regularization optional.

Usage

```
logisticr(X, y, lam = 0, alpha = 1.5, penalty = "none",
  intercept = TRUE, method = "IRLS", tol = 10^(-5), maxit = 10^(5),
  vec = NULL)
```

Arguments

matrix or data frame
matrix or vector of response values 0,1
optional tuning parameter for ridge regularization term. Defaults to 'lam = 0 '
optional tuning parameter for bridge regularization term. Defaults to 'alpha = 1.5'
choose from c('none', 'ridge', 'bridge'). Defaults to 'none'
Defaults to TRUE
optimization algorithm. Choose from 'IRLS' or 'MM'. Defaults to 'IRLS'
tolerance - used to determine algorithm convergence. Defaults to 10^-5
maximum iterations. Defaults to 10^5
optional vector to specify which coefficients will be penalized

Value

returns beta estimates (includes intercept), total iterations, and gradients.

logitc 7

Examples

```
Logistic Regression
library(dplyr)
X = dplyr::select(iris, -Species)
y = dplyr::select(iris, Species)
y$Species = ifelse(y$Species == 'setosa', 1, 0)
logisticr(X, y)

ridge Logistic Regression with IRLS
logistir(X, y, lam = 0.1, penalty = 'ridge')

ridge Logistic Regression with MM
logisticr(X, y, lam = 0.1, penalty = 'ridge', method = 'MM')

bridge Logistic Regression
(Defaults to MM -- IRLS will return error)
logisticr(X, y, lam = 0.1, alpha = 1.5, penalty = 'bridge')
```

logitc

Logitc (c++)

Description

Computes the logit for u

Usage

logitc(u)

Arguments

u

some number

Value

returns the logit of u

Examples

```
logit(X*beta)
```

8 predict_linearr

MM

Majorize-Minimization function (c++)

Description

This function utilizes the MM algorithm. It will be used to compute the logistic regression coefficient estimates. This function is to be used with the 'logisticr' function.

Usage

```
MM(X, y, lam = 0, alpha = 1.5, gamma = 1, intercept = TRUE,
tol = 1e-05, maxit = 1e+05, vec = 0L)
```

Arguments

Χ	matrix or data frame
у	matrix or vector of response 0,1
lam	optional tuning parameter for ridge regularization term. Defaults to 'lam = 0'
alpha	optional tuning parameter for bridge regularization term. Defaults to 'alpha = 1.5 '
gamma	gamma indicator function. 'gamma = 1' for ridge, 'gamma = 0' for bridge. Defaults to 'gamma = 1'
intercept	defaults to TRUE
tol	tolerance - used to determine algorithm convergence
maxit	maximum iterations
vec	optional vector to specify which coefficients will be penalized

Value

returns beta estimates (includes intercept), total iterations, and gradients.

Examples

```
MM(X, y)
```

<pre>predict_linear</pre>

Predict Linear Regression

Description

Generates prediction for linear regression. Note that one can either input a 'linearr' object or a matrix of beta coefficients.

Usage

```
predict_linearr(object, X, y = NULL)
```

predict_logisticr 9

Arguments

object	'linearr' object or matrix of betas

x matrix or data frame of (new) observationsy optional, matrix or vector of response values

Value

predictions and loss metrics

Examples

```
fitted = linearr(X, y, lam = 0.1)
predict_linearr(fitted, X)
```

predict_logisticr

Predict Logistic Regression

Description

Generates prediction for logistic regression. Note that one can either input a 'logisticr' object or a matrix of beta coefficients.

Usage

```
predict_logisticr(object, X, y = NULL)
```

Arguments

object 'logisticr' object or matrix of betas

X matrix or data frame of (new) observations

y optional, matrix or vector of response values 0,1

Value

predictions and loss metrics

Examples

```
fitted = logisticr(X, y, lam = 0.1, penalty = 'ridge', method = 'MM')
predict_logisticr(fitted, X)
```

Index

```
gradient_IRLS_logistic, 2
gradient_linear, 2
gradient_MM_logistic, 3

IRLS, 4

linearc, 4
linearr, 5
logisticr, 6
logitc, 7

MM, 8

predict_linearr, 8
predict_logisticr, 9
```