

IN THE CLAIMS

1. (Currently Amended) A method of conducting R chemical reactions, where R is a positive integer ≥ 1 , in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species xB and resulting in a reaction product xD which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the xB 's which are transformed into δ in xD , each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionalities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising

- i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities $^N\beta$ of chemical species $^N B$ into $^N\delta$ in a product $^N D$ under the influence of one or more chemical substances $^N A$, such chemical substance(s) each including a chemical functionality $^N\alpha$ being involved in the transformation of the functionality $^N\beta$ to the functionality $^N\delta$; and
- ii) functional or structural information about the chemical species $^N B$;

the method comprising that

- * the user provides information to the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species $^x B$;
- * the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;

* the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities $^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in $^X B$ and the functionality $^N\delta$ is essentially identical to δ in the product $^X D$, in order to obtain the R sets of reaction parameters ($^X \Sigma_R$), said R sets of reaction parameters ($^X \Sigma_R$) being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;

* an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species $^X B$ and any additional constituents required is prepared according to the sets of reaction parameters;

* each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.

2. (Original) A method according to claim 1, wherein the array of R reaction mixtures is provided from $^X B$ stock solution(s) and a kit comprising stock solutions of the chemical substance(s) A_R and any additional constituents required.

3. (Original) A method according to claim 1, wherein the R sets of reaction parameters involves the use of more than one chemical substance A_R .

4. (Original) A method according to claim 1, wherein the R sets of reaction parameters involves the use of R chemical substances A_R .

5. (Original) A method according to claim 1, in which the array of R reaction mixtures is prepared by combining the chemical species ${}^X B$ with the content of one or more of P containers each comprising a chemical substance A_R including a chemical functionality α_R which is intended to facilitate the transformation of a functionality β to a functionality δ in a chemical reaction involving a chemical species ${}^X B$.

6. (Original) A method according to claim 1, wherein the R sets of reaction parameters are provided in the form of control parameters for the apparatus.

7. (Original) A method according to claim 1, wherein treatment of the R reactions is performed substantially simultaneously.

8. (Original) A method according to claim 1, wherein treatment of the R reactions is performed sequentially.

9. (Original) A method according to claim 1, wherein the treatment includes heating.

10. (Original) A method according to claim 1, wherein the reaction is a microwave facilitated chemical reaction.

11. (Original) A method according to claim 1, wherein the apparatus comprises a microwave reaction cavity.

12. (Original) A kit for use in the method defined in claim 1, said kit comprising P containers each comprising a chemical substance A_R including a chemical functionality α_R which is intended to facilitate the transformation of one or more functionalities β to a functionality δ in a chemical reaction involving one or more chemical species $^X B$, said chemical reaction being intended to result in a reaction product $^X D$ which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the $^X B$'s which are transformed into δ in $^X D$.

13. (Original) A kit according to claim 12, which further comprises additional constituents required for the transformation.

14-16 (cancelled)

17. (Currently Amended) A kit comprising P containers each comprising a chemical substance A_R including a chemical functionality α_R which is intended to facilitate the transformation of one or more functionalities β to a functionality δ in a chemical reaction involving one or more chemical species $^X B$, said chemical reaction being intended to result in a reaction product $^X D$ which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the $^X B$'s which are transformed into δ in $^X D$, said kit usable to conduct R chemical reactions, where R is a positive integer ≥ 1 , in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species $^X B$ and resulting in a reaction product $^X D$ which

includes a functionality δ , where the chemical reaction involves one or more functionalities β in the ${}^X\!B$'s which are transformed into δ in ${}^X\!D$, each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionabilities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising

i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities ${}^N\!\beta$ of chemical species ${}^N\!B$ into ${}^N\!\delta$ in a product ${}^N\!D$ under the influence of one or more chemical substances ${}^N\!A$, such chemical substance(s) each including a chemical functionality ${}^N\!\alpha$ being involved in the transformation of the functionality ${}^N\!\beta$ to the functionality ${}^N\!\delta$; and

ii) functional or structural information about the chemical species ${}^N\!B$;

the method comprising that

* the user provides information to the user interface of the parameter selection unit about the functionality/functionabilities β in the chemical species ${}^X\!B$;

* the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;

* the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionabilities ${}^N\!\beta$ in each set of associated data is/are essentially identical to the functionality/functionabilities β in ${}^X\!B$ and the functionality ${}^{MN}\!\delta$ is essentially identical to δ in the product ${}^X\!D$, in order to obtain the R sets of reaction parameters (${}^X\!\Sigma_R$), said R sets of reaction parameters (${}^X\!\Sigma_R$) being accompanied by

corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;

- * an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species ${}^X B$ and any additional constituents required is prepared according to the sets of reaction parameters;
- * each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.

18. (Previously Presented) A kit according to claim 17, which further comprises additional constituents required for the transformation.

19. (Currently Amended) A computer readable data carrier loaded with a computer program system, said computer program system

- * retrieving information via the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ${}^X B$;
- * retrieving information via the user interface of the parameter selection unit about the desired transformation of β to δ ;
- * retrieving, via the parameter selection unit, R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities ${}^N \beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in ${}^X B$ and the functionality ${}^{MN} \delta$ is essentially identical to δ in the product ${}^X D$, in order to obtain the R sets of

reaction parameters ($^X\Sigma_R$), said R sets of reaction parameters ($^X\Sigma_R$) being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;

* providing instructions to the liquid handler about the preparation of an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species X_B and any additional constituents required according to the sets of reaction parameters;

* providing instructions to the reaction cavity about treatment of each of the R reaction mixtures in the apparatus in accordance with the corresponding set of reaction parameters in order to conduct R chemical reactions, where R is a positive integer $\Rightarrow 1$, in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species X_B and resulting in a reaction product X_D which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the X_B 's which are transformed into δ in X_D , each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionabilities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising

i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities $^N\beta$ of chemical species N_B into $^N\delta$ in a product N_D under the influence of one or more chemical substances N_A , such chemical

substance(s) each including a chemical functionality ${}^N\alpha$ being involved in the transformation of the functionality ${}^N\beta$ to the functionality ${}^N\delta$; and

ii) functional or structural information about the chemical species ${}^N\text{B}$;

the method comprising that

* the user provides information to the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ${}^X\text{B}$;

* the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;

* the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities ${}^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in ${}^X\text{B}$ and the functionality ${}^{MN}\delta$ is essentially identical to δ in the product ${}^X\text{D}$, in order to obtain the R sets of reaction parameters (${}^X\Sigma_R$), said R sets of reaction parameters (${}^X\Sigma_R$) being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;

* an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species ${}^X\text{B}$ and any additional constituents required is prepared according to the sets of reaction parameters;

* each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.