Matemática Computacional

Trabalho Computacional - 2018 (MEEC)

Instituto Superior Técnico

(22 de Outubro de 2018)

O trabalho computacional deve ser entregue num relatório escrito até 15 páginas, incluindo os programas desenvolvidos. As repetições da matéria devem ser evitadas ao máximo. Concentrem-se na melhor justificação a cada pergunta. O prazo de entrega é o dia 21 de Dezembro de 2018.

Enunciado:

Figura: Quando o circuito é fechado, estudamos a corrente que irá oscilar até que seja atingido um equilíbrio.

Considere a segunda lei de Kirchoff aplicada a um circuito eléctrico com um condensador, um inductor e uma resistência, que é dada por:

$$L\frac{di}{dt}(t) + Ri(t) + \frac{q(t)}{C} = 0, \tag{1}$$

onde L é a inductância (em henrys), i é a corrente (em ampéres), R é a resistência (em ohms), q é a carga eléctrica (em coulombs), C é a capacitância (em farads), e t representa o tempo (em segundos). Além disso, sabemos que a corrente pode ser definida como a derivada da carga eléctrica em ordem ao tempo, ou seja

$$i(t) = \frac{dq}{dt}(t),\tag{2}$$

obtendo-se a solução (assumindo carga inicial G, em que G é o número do grupo):

$$q(t) = G \exp\left(-\frac{R}{2L}t\right) \cos\left(t\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}\right)$$
 (3)

Questões: Sendo G o número do grupo e $S=0.d_1d_2d_3d_4d_5d_6\times 10^6$ a soma dos números mecanográficos (dos vários elementos do grupo), considere de seguida:

$$L = 0.d_1 d_5 d_6 \times 10^1$$
, $R = 0.d_1 d_4 d_5 \times 10^2$, $C = 0.d_1 d_2 d_3 \times 10^{-3}$, (4)

 $\mathbf{1}_{\cdot[3.0]}$ Tendo em atenção (3) e (4):

- **1.a)** Apresente o gráfico de q(t) para $t \in [0, 1]$.
- 1.b) Assuma os valores de L e C em (4) considerando o cálculo de

$$f(r) = \sqrt{\frac{1}{LC} - \frac{r^2}{4L^2}},\tag{5}$$

para um $r=2\sqrt{\frac{L-C}{C}}$ (exacto) e apresente o gráfico da variação dos erros relativos $|\delta_{f(\tilde{r})}|$ (em percentagem) quando $\tilde{r} \in [r-10,r-1]$. Compare com $|\delta_{\tilde{r}}|$ e comente.

 $2._{[5,0]}$ Considere os valores de L, R, C em (4).

2.a) Pretende-se determinar o primeiro instante t em que a carga eléctrica é reduzida a metade do valor inicial, ou seja quando $q(t) = \frac{1}{2}G$.

Para esse efeito use o método da secante começando com $t_0 = 0, t_1 = 10^{-4}$.

Liste as iteradas, sob forma de tabela, até que $|e_n| < 10^{-8}$. Justifique e comente.

2.b) Encontre uma resistência R_m (diferente da original R) tal que $q(10^{-2}) = \frac{1}{2}G$, usando o método de Newton iniciado com R. Justifique e comente.

 $\mathbf{3}_{[6.0]}$ Para q(t) em (3), com as constantes de (4), apresente a tabela de valores com $t_k = k/100$,

Pretende-se simplificar o valor de i(t) = q'(t) em [0, 1], usando uma expressão da forma,

$$J(t) = (K_0 \cos(M t) + K_1 \sin(M t)) \exp(-P t), \tag{6}$$

onde $M = [\![f(R)]\!]$, $P = [\![\frac{R}{2L}]\!]$, com f definida por (5). NOTA: $[\![x]\!]$ é o arredondamento simétrico de x às unidades.

3.a) Calcule os parâmetros K_0, K_1 por mínimos quadrados.

Apresente os gráficos de J(t) e de J(t) - i(t) para $t \in [0, 1]$. Comente.

3.b) Pretende-se calcular

$$Q(t) = G + \int_0^t J(s)ds,$$

para $t \in [0,1]$, pela Regra dos Trapézios (Q_T) e pela Regra de Simpson (Q_S) , usando os valores $J(t_k)$. Apresente gráficos de $Q_T(t_k)$ e $Q_S(t_k)$.

Com $T = \frac{G+79}{179}$ calcule q(T) e compare com $Q_T(T)$ e $Q_S(T)$. Como $T \neq t_k$ use interpolação com 4 valores próximos. Comente, enumerando os diversos erros.

 $\mathbf{4}_{\cdot [6.0]}$ Usando os valores em (4), e com q(t) dado por (3), pretende-se resolver a equação diferencial

$$L\frac{dy}{dt}(t) + \mathcal{R}(y(t)) + \frac{q(t)}{C} = 0, \tag{7}$$

com $y(0) = \frac{-RG}{2L}$, admitindo que $\mathcal{R}(x) = Rx + GC\sin(x)$. [Observe a relação com a expressão (1)]

4.a) Aplicando o método de Euler, apresente gráficos de y(t) para $t \in [0,1]$ usando $h=10^{-2}, h=10^{-3}$ e $h = 10^{-4}$. Comente.

4.b) Graficamente compare i(t), definido por (2) e (3), com o resultado do método de Runge-Kutta do ponto médio de ordem 2 para $h = 10^{-4}$.

Com $T = \frac{G+27}{127}$, compare os valores de i(T), $y_E(T)$, $y_{RK}(T)$. Comente os resultados.

NOTA: y_E , y_{RK} referem-se aos valores obtidos com os métodos de Euler e Runge-Kutta com $h=10^{-4}$. Como não obteve valores para T, use interpolação com 4 valores próximos conhecidos.