Three-Axis Accelerometer Three-Axis Gyroscope

Dual-Axis Dynamic Inclinometer Datasheet

Specifications -	Electrical		
Power source	4.1 – 38 VDC		
Measuring range	Pitch: ±90°, Roll: ±180°		
Resolution	0.005° 0.1 mg (@ data rate ≤ 5)		
Accuracy	≤ 0.05° Static		
(typical)	≤ 0.75° Dynamic (RMS)		
Zero offset error [†]	< ±0.03° (@20°C) [‡]		
Temperature offset	±0.002°/°C (typical)		
drift	±0.004°/°C (maximum)		
Noise density	$0.002^{\circ}/\sqrt{Hz}$		
Accelerometer	±2 g/±4 g/±8 g selectable		
range	Default: ±4g		
Gyroscope range	±250/500/1000/2000°/s selectable		
	Default: ±500°/s		
Baud rate	2.4kbps – 921.6kbps selectable,		
	default: 115.2kbps		
Data format	ASCII, port settings: 1 start bit, 8		
	data bits, 1 stop bit, no parity		
Output data rate	1, 2, 5, 10, 20, 25, 40, 50, 100, 200		
	and 400 Hz selectable		
LED indicators	Green: CPU heartbeat		
	Flashing at 1 Hz		
	Red: Data transmission rate		
	Flashing at current data rate		
Power consumption	< 250 mW (< 50 mA @ 5V)		
GUI software	WinCTi-Tilt®		
Serial interface	RS232, RS422, RS485, USB, SSI,		
options	3.3V TTL UART, Wireless		
	(Bluetooth 4.2)		
	RS485 with multi-drop networking		
Temperature sensor	0.5°C		
resolution			

Features

- High accuracy dual-axis dynamic tilt sensor
 Measuring range: Pitch: ±90°, Roll: ±180°
- Static accuracy: 0.05°
- High resolution: 0.005° | 0.1 mg
- Ultra low noise: $0.002^{\circ}/\sqrt{Hz}$
- Very low temperature offset drift: ±0.002°/°C
- Three-axis accelerometer
- Three-axis gyroscope data
- Simple ASCII interface language
- IP 67 compliant connector, cable and housing
- Robust aluminum housing
- Low power consumption: < 250 mW (< 50 mA @ 5 V)

Applications

- Dynamic platform alignment, and stabilization
- Vehicle control, ship, robot, automotive
- Tilt sensing and leveling
- Automotive safety systems
- Motion and position measurement
- Navigation and GPS compensation
- Robotics position sensing and control
- Agricultural and industrial vehicle tilt monitoring

Specifications -	- Mechanical	
Protection	IP 67 (housing, connector and cable)	
Dimension	1.65" x 2.15" x 1.00"	
Material	Enclosure: anodized aluminum	
(cable is optional as	Connector: brass / nickel	
a third party	Cable molded head: TPU	
product)	Cable carrier: TPU or nylon	
	Conductor insulation: PVC	
Temperature range§	-40°C to +85°C (-40°F to +185°F)	
Connection	Cable gland	
	Connector M8, 6-contact (female)	

Terminal Assignment					
Connector	RS232/UART/USB**	RS422	RS485	Wire Color	
Pin 1	+Vin	+Vin	+Vin	Brown	
Pin 2	GND	GND	GND	White	
Pin 3	TX	TX+	D+	Blue	
Pin 4	-	TX-	D-	Black	
Pin 5	RX	RX+	D+	Gray	
Pin 6	-	RX-	D-	Pink	
1 6 Device:		С	able:	2 0 1	
5	M 8 – 6-contact	M 8	– 6-pin	(::)	
5 0 3	(female)	(r	nale)	3 4	

[†] Zero g offset can be easily corrected and saved by user.

[‡] Units can be calibrated between -40°C and 85°C on request.

 $^{^{\}S}$ Cable is a third-party product with temperature tolerance from -40°C to +105°C (-40°F to +221°F).

^{**} USB uses UART interface and a UART to USB cable.

Three-Axis Accelerometer Three-Axis Gyroscope

Dual-Axis Dynamic Inclinometer Datasheet

WinCTi-Tilt software

WinCTi-Tilt is a graphical user interface (GUI) software provided by CTi Sensor Inc. for visualization aide, device configuration, and data logging. WinCTi-Tilt is designed to be user-friendly and intuitive to users. The package can be downloaded from the CTi Sensors website.

Serial interface and data format

TILT-55A uses the following ASCII format, very similar to the widely used NMEA 0183 protocol, for data output:

- Inclinometer message (default): \$CSTLT, A_X, A_Y, A_Z, α_X, α_Y, T*CC<CR><LF>
- Sensor data message (optional): CSAGD, A_X , A_Y , A_Z , G_X , G_Y , G_Z , T*CC<CR><LF>

Which:

A_X, A_Y, A_Z: X, Y and Z accelerations in milli g (three-axis accelerometer data)

G_X, G_Y, G_Z: X, Y and Z angular velocities in deg/s (three-axis gyroscope data)

 α_X , α_Y : Roll & Pitch angles in degrees

T: Internal temperature in degree centigrade

CC: Checksum (Two ASCII characters)

<CR> <LF>: Carriage return, and line feed characters

Example:

• \$CSTLT,-0013.55,-0003.93,+0988.68,-000.785,-000.228,+032.0*53

Data rate < 10

• \$CSTLT, -0013.5, -0003.7, +0988.4, -000.790, -000.219, +032.0*67

10 ≤ Data rate < 100

• \$CSTLT,-0013,-0003,+0989,-000.79,-000.22,+032*6A

Data rate ≥ 100

8-bit Checksum

Checksum is calculated by XORing all characters between \$ and * (not including the \$ and the * characters) based on the NMEA standard. It results in two hexadecimal characters, which are sent in ASCII format.

Three-Axis Accelerometer Three-Axis Gyroscope

Dual-Axis Dynamic Inclinometer Datasheet

Configuration commands

TILT-55A uses a simple command format which allows user to change the device configuration and request specific information or data. All commands start with a '[' character, and end with a carriage return character. All responses end with a carriage return and newline character. Table I shows the list of the interface commands for TILT-55A series. Letter 'n' after '['character is the unit number which is set to n=1 by default, and can be set by user to any number from 1 to 9.

Table I: Interface commands for TILT-55A series

Command	Comments	Response	Comments
[n <cr></cr>	Ping unit number n	!n <cr><lf></lf></cr>	Acknowledge ping
[N? <cr></cr>	Request unit number	>Unit Number: n	Returns unit number, default: n=1
[n#m <cr></cr>	Change unit number n to (non- zero) unit number m, $1 \le m \le 9$	>New Unit Number: n	n=old unit number, m=new unit number, default: n=1
[n#FW <cr></cr>	Save unit number into flash memory	>Current Unit Number, n, was written into flash memory as the default Unit Number for this device!	Unit number will be changed permanently, and current unit number will be saved into the flash memory as the default unit number.
[nV <cr></cr>	Firmware Version	>Firmware Version:d.dd	Returns firmware version
[nS <cr></cr>	Serial Number	>Device n Serial Number:ddddddd	Returns 7-digit serial number
[nBnnn <cr></cr>	Baud rate setting: nnn= 2:2400, 4:4800, 9:9600, 19:19200, 38:38400, 57:57600, 115:115200, 230:230400, 460:460800, 921:921600 (bps)	>Change to new Baud Rate:dddddd	Selected baud rate should support current data rate. Otherwise, baud rate will not be changed.
[nBFW <cr></cr>	Save baud rate into flash memory	>Current Baud Rate, dddddd, was written into flash memory as the default Baud Rate!	Baud rate will be changed permanently, and current baud rate will be saved into the flash memory.
[nDnn <cr></cr>	Data rate setting: nn= 1, 2, 5, 10, 20, 25, 40, 50,100, 200, and 400 Hz	>New Output Data Rate: nnn	Default data rate is 2 Hz. New data rate will be saved into the flash memory.
[nARn <cr></cr>	Selecting accelerometer measurement range: n=2, 4, 8	> New Accelerometer Range: +/-ng	New accelerometer range will be saved into the flash memory (Default: ±4 g).
[nGRn <cr></cr>	Selecting gyroscope measurement range: n=0,1,2,3 0:2000, 1:1000, 2:500, 3:250 °/s	>New Gyroscope Range: ±nnnn°/s	New gyroscope range will be saved into the flash memory (Default: ±500°/s)
[nZA <cr></cr>	Zero g offset correction for X and Y axes	>Accelerometer Zero Offset Adjusted: X Offset: ddd.d, Y Offset: ddd.d	Current values of A _X and A _Y will be saved into the flash memory as the zero g offset.
[nMxy <cr></cr>	Output messages ON/OFF x= I: Inclinometer data S: Sensor data (accelerometer and gyroscope) y=S: single message C: Continuous message X: Message Off	Data message will be sent out once, continuously or will be turned off	Example for inclinometer data: $[1MIS: Sends out one data message [1MIC: Continuously sends out data message [1MIX: Stops sending out data message$
[nMICFW <cr></cr>	Save output message ON/OFF status into flash memory	>Current ON/OFF message status was written into flash memory as the default status!	Current message ON/OFF status will be saved into flash memory.
[nRFD <cr></cr>	Reset to factory default (Firmware version 1.19 and higher)	> Reset to factory default!	Resets the selectable parameters (except baud rate) to their default values.

Three-Axis Accelerometer Three-Axis Gyroscope

Dual-Axis Dynamic Inclinometer Datasheet

Dimensional drawing

Part number

TILT XX X X -XX Design model Α1 Interface 3 RS232 4 RS422 8 RS485 USB U S SSI W Wireless **Housing material** Aluminum ABS Plastic S Stainless Steel 316L O OEM (No Housing) **Family Series**

- 5 Small size board (1"x1")
- 10 Board with multiple interfaces
- 15 High accuracy analog inclinometer board
- 20 Low cost, ABS plastic enclosure
- 3x High accuracy, aluminum enclosure
- 5x Dynamic inclinometer, aluminum enclosure
- 70 Harsh environment, stainless steel enclosure

Horizontal installation position

Measuring range: ±90° (two-dimensional)

Default Y=0

Inclination Y=+30

Default X=0

Inclination X=+30

Warranty: This product has 18 months limited warranty. For more information, please visit:

www.CTiSensors.com/warranty

This product is fully designed and manufactured in the U.S.A.

CTi Sensor, INC.

30301 Emerald Valley Parkway, Unit B

Solon, OH 44139 Phone: (440) 264 - 2370

Email: Sales@CTiSensors.com

All contents of this document are subject to change without any notice.