Задание 6:

Построив соответствующую таблицу значений, выясните, равны ли следующие булевы функции

$$f(x,y,z) = xy' \lor x'y \lor x'z', \ g(x,y,z) = (x' \lor y')(x \lor y \lor z')$$

Решение:

Построим таблицы значений для функций f и g:

$$f(x, y, z) = xy' \lor x'y \lor x'z'$$

x	y	z	x'	y'	z'	xy'	x'y	x'z'	f(x,y,z)
0	0	0	1	1	1	0	0	1	1
0	0	1	1	1	0	0	0	0	0
0	1	0	1	0	1	0	1	1	1
0	1	1	1	0	0	0	1	0	1
1	0	0	0	1	1	1	0	0	1
1	0	1	0	1	0	1	0	0	1
1	1	0	0	0	1	0	0	0	0
1	1	1	0	0	0	0	0	0	0

$$g(x,y,z) = (x' \vee y')(x \vee y \vee z')$$

x	y	z	x'	y'	z'	$x' \lor y'$	$x \lor y \lor z'$	g(x,y,z)
0	0	0	1	1	1	1	1	1
0	0	1	1	1	0	1	0	0
0	1	0	1	0	1	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	1	1	1
1	0	1	0	1	0	1	1	1
1	1	0	0	0	1	0	1	0
1	1	1	0	0	0	0	1	0

Получили:

$$f(x, y, z) = g(x, y, z)$$

Задание 10.

Докажите, что одна из функций двойственна другой:

$$xy + yz + x + y + z + 1, xy + yz + y + 1$$

Решение:

Найдем двойственную функцию для данной функции $f(x,y,z)=xy+yz+x+y+z+1: f^*=(x'y'+y'z'+x'+y'+z'+1)'=\\=x'y'+y'z'+x'+y'+z'+1+1=x'y'+y'z'+x'+y'+z'=\\=(x+1)(y+1)+(y+1)(z+1)+(x+1)+(y+1)+(z+1)=\\=(xy+x+y+1)+(yz+y+z+1)+(x+1)+(y+1)+(z+1)=\\=1+y+xy+yz,$ что и требовалось доказать