第3章 微分中值定理与导数应用 同步测试卷 A卷

一、选择题(1-6 小题,每小题 3 分,共 18 分)

(1) 若
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{c \ln(1-2x) + d(1-e^{-x^2})} = 2$$
,其中 $a^2 + c^2 \neq 0$,则必有().

- (A) b = 4d (B) b = -4d
- (C) a = 4c (D) a = -4c
- (2) 当x > 0时,曲线 $y = x \sin \frac{1}{x}$ ().
 - (A) 有且仅有水平渐近线

- (B) 有且仅有铅直渐近线
- (C) 既有水平渐近线又有铅直渐近线 (D) 既无水平渐近线又无铅直渐近线

(3) 极限
$$\lim_{x \to +\infty} \frac{x^2 + \sin x}{x^2} = \langle \rangle$$
.

- (A) -1 (B) 1 (C) 不存在 (D) 2

(4)已知函数
$$y = f(x)$$
 对一切 x 满足 $xf''(x) + 3x[f'(x)]^2 = 1 - e^x$,若 $f'(x_0) = 0(x_0 \neq 0)$,则().

- (A) $f(x_0)$ 是 f(x) 的极大值 (B) $f(x_0)$ 是 f(x) 的极小值
- (c) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点
- (D) $f(x_0)$ 不是 f(x) 的极值, $(x_0, f(x_0))$ 也不是曲线 y = f(x) 的拐点
- (5) 设当 $x \to 0$ 时, $e^x (ax^2 + bx + 1)$ 是比 x^2 高阶的无穷小,则().

(A)
$$a = \frac{1}{2}, b = 1$$
 (B) $a = 1, b = 1$

(B)
$$a=1,b=1$$

(C)
$$a = -\frac{1}{2}, b = -1$$
 (D) $a = -1, b = 1$

(D)
$$a = -1, b = 1$$

- (6) 方程 $xe^x = a(a > 0)$ 实根的个数是().

- (A) 3 (B) 4 (C) 5 (D) 1

二、填空题(7-12 小题,每小题 3 分,共 18 分)

(7)
$$\lim_{n\to\infty} n^3 (a^{\frac{1}{n}} - a^{\sin\frac{1}{n}})(a > 0) = \underline{\qquad}$$

(8) 曲线
$$y = \ln(x^2 + 1)$$
 的拐点为_____.

(9) 若
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
,则 $\lim_{x\to 0} \frac{6+f(x)}{x^2} = _____.$

(10) 函数
$$f(x) = (1 + \frac{1}{x})^x (x > 0)$$
 的单调增区间为_____.

(11)
$$y = x + 2\cos x$$
 在区间[0, $\frac{\pi}{2}$]上的最大值为_____.

(12) $\arcsin x + \arccos x = \underline{\qquad} (-1 \le x \le 1)$.

三、解答题(13-20小题,每小题8分,共64分)

(13) 设
$$f(x) = \begin{cases} \frac{\sin 2x + e^{2\alpha x} - 1}{x}, & x \neq 0, \\ a, & x = 0 \end{cases}$$
, 在 $(-\infty, +\infty)$ 上连续,求 a .

- (14) 假设函数 f(x) 在 [1,2] 上有二阶导数,且 f(1) = f(2) = 0,又 $F(x) = (x-1)^2 f(x)$. 证明在 (1,2) 内至少存在一点 ξ ,使得 $F''(\xi) = 0$.
- (15) 已知二次方程 $x^2 2ax + 10x + 2a^2 4a 2 = 0$ 有实根,试问 a 为何值时它是方程两根之积的极值点,并求极值。
- (16) 证明: $\exists x > 0$ 时, $(x^2 1) \ln x \ge (x 1)^2$.
- (17) 设函数 f(x) 在 x=0 的某邻域内具有一阶连续导数,且 $f(0) \neq 0$, $f'(0) \neq 0$,若 af(h)+bf(2h)-f(0) 在 $h\to 0$ 时是比 h 高阶的无穷小,试确定 a,b 的值.
- (18) 已知函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = 0, f(1) = 1. 证明:
- (I) 存在 ξ ∈ (0,1), 使得 f(ξ) = 1-ξ;
- (II) 存在两个不同的点 $\eta, \zeta \in (0,1)$,使得 $f'(\eta)f'(\zeta) = 1$.
- (19) 求函数 $f(x) = 2x^3 6x^2 18x 7$ 在[1,4]上的最大、最小值.
- (20) 设 $x_1x_2 > 0$,证明: $x_1e^{x_2} x_2e^{x_1} = (1 \xi)e^{\xi}(x_1 x_2)$,其中 ξ 在 $x_1 + x_2$ 之间.

第3章 微分中值定理与导数应用 同步测试卷 B卷

一 、选择题(1-6 小题,每小题 3 分,共 18 分) (1)以下四个命题中,正确的是().
(A) 若 $f'(x)$ 在(0,1)内连续,则 $f(x)$ 在(0,1)内有界
(B) 若 $f(x)$ 在(0,1)内连续,则 $f(x)$ 在(0,1)内有界
(c) 若 $f'(x)$ 在 (0,1) 内有界,则 $f(x)$ 在 (0,1) 内有界
(D) 若 $f(x)$ 在(0,1)内有界,则 $f'(x)$ 在(0,1)内有界
(2)设函数 $y=f(x)$ 具有二阶导数,且 $f'(x)>0$, $f''(x)>0$, Δx 为自变量 x 在点 x_0 处的增
量, Δy 与 Δy 分别为 $f(x)$ 在点 x_0 处相应的增量与微分,若 $\Delta x > 0$,则().
(A) $0 < dy < \Delta y$ (B) $0 < \Delta y < dy$
(C) $\Delta y < dy < 0$ (D) $dy < \Delta y < 0$
(3)若 $f(-x) = f(x)(-\infty < x < +\infty)$,在 $(-\infty,0)$ 内 $f'(x) > 0$,且 $f''(x) < 0$,则在 $(0,+\infty)$
内有().
(A) $f'(x) > 0, f''(x) < 0$ (B) $f'(x) > 0, f''(x) > 0$
(c) $f'(x) < 0, f''(x) < 0$ (p) $f'(x) < 0, f''(x) > 0$
(4) 已知函数 $y = f(x)$ 对一切 x 满足 $xf''(x) + 3x[f'(x)]^2 = 1 - e^{-x}$,若 $f'(x_0) = 0(x_0 \neq 0)$
则().
(A) $f(x_0)$ 是 $f(x)$ 的极大值 (B) $f(x_0)$ 是 $f(x)$ 的极小值
(C) $(x_0, f(x_0))$ 是曲线 $y = f(x)$ 的拐点
(D) $f(x_0)$ 不是 $f(x)$ 的极值, $(x_0,f(x_0))$ 也不是曲线 $y=f(x)$ 的拐点
(5) 曲线 $y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x - 1)(x + 2)}$ 的渐近线有()条.
(A) 1 (B) 2 (C) 3 (D) 4
(6) 设 $y = f(x)$ 是满足方程 $y'' + y' - e^{\sin x} = 0$ 的解,且 $f'(x_0) = 0$,则 $f(x)$ ().
(A) 在 x_0 的某邻域内单调增加 (B) 在 x_0 的某邻域内单调减少

(C) 在 x₆ 处取得极小值

(D)在 ϫ 处取得极大值

二、填空题(7-12小题,每小题3分,共18分)

- (7) 函数 $f(x) = \frac{1-x}{1+x}$ 在 x = 0 点处带拉格朗日余项的 n 阶泰勒展开式为_____.
- (8) 极限 $\lim_{x\to 0^+} (\cot x)^{\frac{1}{\ln x}} = ____.$
- (9) 曲线 $y = x \ln(e + \frac{1}{x})(x > 0)$ 的渐近线方程为_____.
- (10)函数 y = x⁵ −4x+2的拐点是_____.
- (11)设函数 y(x) 由参数方程 $\begin{cases} x = t^3 + 3t + 1 \\ y = t^3 3t + 1 \end{cases}$ 确定,则曲线 y = y(x) 为凸函数的 x 的取值范围是

(12) 曲线 $y = a \ln(1 - \frac{x^2}{a^2})(a > 0)$ 上曲率半径最小的点的坐标为_____.

三、解答题(13-20小题,每小题8分,共64分)

(13) 设函数 $f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ 其中 g(x) 可导,且在 x = 0 处二阶导数 g''(0) 存在,

且 g(0) = g'(0) = 0 , 试求 f'(x) , 并讨论 f'(x) 的连续性.

(14)设 f(x) 在 $[a,+\infty)$ 上连续, f''(x) 在 $(a,+\infty)$ 上存在且大于零,记 $F(x) = \frac{f(x) - f(a)}{x - a}$ (x > a) ,证明 F(x) 在 $(a,+\infty)$ 内单调增加.

(15)设f(x)在点x=1处取得极值,且点(2,4)是曲线y=f(x)的拐点,又若 $f'(x)=3x^2+2ax+b$,求f(x)及其极值.

(16) 求
$$\lim_{x \to \infty} \left[\frac{a_1^{\frac{1}{x}} + a_2^{\frac{1}{x}} + \dots + a_n^{\frac{1}{x}}}{n} \right]^{nx}$$
, 其中 $a_i > 0, i = 1, 2, \dots, n$.

(17) 设a>1, $f(t)=a^t-at$ 在 $(-\infty,+\infty)$ 内的驻点为t(a)。 问a为何值时,t(a) 最小?并求出最小值.

(18) 设函数 f(x) 在区间[0,1]上连续,在 (0,1) 内可导,且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$ 试证:

(I) 存在
$$\eta \in (\frac{1}{2},1)$$
, 使得 $f(\eta) = \eta$;

- (II) 对任意实数 λ , 必存在 $\xi \in (0, \eta)$, 使得 $f'(\xi) \lambda [f(\xi) \xi] = 1$.
- (19) 设 f(x) 在 [0,1] 上二阶可导,且 f(0)=f(1)=0 , f(x) 在 [0,1] 上的最小值等于 -1 . 试证至少存在一点 $\xi \in (0,1)$,使得 $f''(\xi) \geq 8$.
- (20) 设 $e < a < b < e^2$, 证明 $\ln^2 b \ln^2 a > \frac{4}{e^2} (b a)$.