Outline

Model comparison

Further methods

Further packages

1. Model comparison

DIC and Bayes Factor

- DIC is a popular and useful method for comparing models; it can be calculated form MCMC samples
- Bayes Factor takes into account more information, but can be harder to calculate

$$\frac{\Pr(D|M_1)}{\Pr(D|M_2)} = \frac{\int \Pr(\theta_1|M_1) \Pr(D|\theta_1, M_1) \ d\theta_1}{\int \Pr(\theta_2|M_2) \Pr(D|\theta_2, M_2) \ d\theta_2}$$

 Harmonic mean estimator (HME): take the inverse of the mean of the inverse likelihood (using MCMC samples) – heavily criticised (google "worst Monte Carlo ever"), but some claim it works (Rasmussen et al., 2014).

MCMC / ABC

Reversible-jump MCMC

extend MCMC to jump between models – take samples from

$$p(\text{Model } M|\text{Data}) \propto p(M)p(\text{Data}|M)$$

• First propose to jump between models, then jump between parameter spaces (possibly of different size)

ABC

 similar; but: a summary statistic which is sufficient for parameter estimation is not necessarily sufficient for model selection (Didelot et al., 2011)

2. Further methods

Sampling from the posterior

SMC vs MCMC

- Other forms of MCMC exist, e.g. Gibbs Sampler
- can use SMC for sampling from posterior, but must combat particle depletion

SMC²

- use N_{θ} particles for parameters, each with N_X particles for the trajectories
- each θ -particle has its own particle filter
- rejuvenation: after every step, propose a Metropolis-Hastings step

ABC-SMC

(Toni and Stumpf, 2009)

Iterated Filtering

- similar: particles take a random walk
- multiple iterations of SMC; at each iteration, make random walk step size smaller
- King et al., 2008

Gaussian Process Emulation

- Instead of defining an acceptance window (ABC), evaluate summary statistics at test points, and fit a Gaussian process to this
- can use this to define implausibility regions
- more later
- similar approach: Synthetic likelihoods (Wood, 2010)

3. Further packages

MCMC

- LaplacesDemon
 - > 20 MCMC algorithms (including Metropolis-Hastings)
- MHadaptive
 - · seems to incorrectly calculate DIC
- both are quite general, similar approach to our functions

ABC

EasyABC

- implements various ABC methods, including
 - ABC-MCMC (as used here)
 - improved ABC-MCMC (Wegmann et al., 2009)
 - ABC-SMC (Toni, Welch, et al., 2009)
- only uses Euclidean distance

• abc

package for analysing ABC output, similar to coda

libbi

- http://libbi.org/
- not an R package, written using a mixture of C and perl.
- very fast, very up-to-date; implements PMCMC and SMC².
- · uses its own syntax for model structure
- · doesn't easily run on Windows

SSM

- https://github.com/standard-analytics/ssm
- not an R package, written using a mixture of C and python.
- very fast, very up-to-date
- uses inference chains; start with simple methods, home in on parameter space of interest
- uses its own syntax for model structure
- · doesn't easily run on Windows

POMP

- R package install.packages("pomp")
- implements many up-to-date methods
- interfaces with C for speed