Introduction to Neural Networks

Garrett M. Dancik, PhD

- Artifical neural networks (ANNs) are inspired by biological neural networks
- A neuron receives inputs, and *fires* if its inputs exceed a threshold

Perceptron

$$\begin{cases} 0 \text{ if } \sum w_i x_i < b \\ 1 \text{ if } \sum w_i x_i \ge b \end{cases}$$

$$\sum w_i x_i = w_1 x_1 + w_2 x_2 + w_3 x_3$$

A perceptron consists of a single neuron that "fires" if the sum of its weighted inputs exceeds a threshold (i.e., the bias term, b)

Perceptron

If we expect mammals to be warm-blooded and to either have fur *or* hair, then we might output "Yes" for mammal if, e.g. $x_1 + .5x_2 + .5x_3 > 1.3$

y

Mammal (Yes or No)

1.5

Yes (score is > 1.3)

•			
	Input	Score	Output (Mammal?)
	Warm-blooded, no fur, no hair	1	No (score is NOT > 1.3)
	Not warm-blooded, hair only	0.5	No (score is NOT > 1.3)

Warm-blooded, fur, no hair

(Y = 1, N = 0)

Multilayer perceptron

- Consists of an input layer, 1 or more hidden layers, and an output layer
- Is fully connected: each node in a a layer connects to all nodes in the next layer
- Each hidden node uses a non-linear activation function that outputs a value between 0 and 1 (rather than either a 0 or 1)
- Can learn non-linear relationships
- Is a type of feedforward artificial neural network (the signal only moves forward)

Training neural networks

- The weights and bias terms are updated during the training process in order to optimize a loss (or cost) function, which measures the performance of the fitted model (the goal is to minimize the loss)
- For classification, cross entropy loss is used.
- An epoch refers to one forward pass of each training sample in a batch, and one backward pass (to update the weights and bias terms)
- General overview: https://www.youtube.com/watch?v=sZAIS3 dnk0