

Факультет компьютерных наук ФКН ВШЭ

мНОД ТМСС

Москва, 2023

Выпускная квалификационная работа Формат работы: исследовательский

Разработка программной модели канала неортогонального множественного доступа для систем беспроводной оптической связи

Development of a software model of a non-orthogonal multiple access (NOMA) channel for wireless communication systems

Выполнил студент группы ТМСС образовательной программы 01.04.03 «ПМИ» Жорниченко Илья Алексеевич Научный руководитель: Осипов Дмитрий Сергеевич, к. т. н.

Описание предметной области

Оптические каналы связи встречаются в медицине, в оборонной промышленности, в коммерческих фирмах и многих других научных областях.

Системы (OWC) - вид оптической связи, использующий электромагнитные волны оптического диапазона (как правило, инфракрасные), передаваемые через атмосферу

Проектирование и реализация таких FSO – based каналов является перспективным вариантом передачи информации как с точки зрения **экономической** составляющей, так и с точки зрения **безопасности**, что зачастую является первопричиной выбора таких систем связи

Fig 1. Range of free space optics usage

Актуальность, цели и задачи работы

Актуальность

В связи с возросшим числом систем связи, информации и облачных технологии появились и требования по хранению и быстрой передаче информации, а также сложился ряд требований к способам передачи информации. Задача разработки (OWC – optical wireless channels) видится актуальной для многих областей: здравоохранение, военная промышленность, - также разработка таких систем очень важна для сфер, где использование других видов связи недоступно

Цель работы

Разработать программную модель, которая включает разработку и создание программы в среде разработки MATLAB, имитирующей физический уровень системы (OWC).

Задачи

- Построить программную модель оптического канала связи, а также разработать программу, имитирующую физический уровень такой системы
- Провести качественное и количественное сравнение параметров оптического канала с уже имеющимися видами связи, проверка робастности (устойчивости) модели.

Fig 2. How does VLC technology work

Оптический канал связи (OWC)

Оптические каналы связи встречаются в медицине, в оборонной промышленности, в коммерческих фирмах и многих других научных областях.

- **1. Высокая скорость передачи** данных по сравнению с радиочастотным диапазоном. В сравнении (OWC) может потенциально допускать полосу пропускания до 2000 ТГц, что в выше, чем (RF) диапазон
- 2. Спектр пропускания. Не требует никаких лицензий на (FSO) спектр
- **3.** Потребляемая мощность на 24 % ниже, чем у имеющихся аналогов.
- **4. Низкая стоимость**. Данные системы намного более выгодны с экономической точки зрения (Рис.3). На графике представлена более низкая стоимость эксплуатации оптического канала с увеличением полосы пропускания.
- **5. Безопасность**. FSO based каналы хорошо защищены и безопасны благодаря узкому, направленному профилю луча.(Фактически такой сигнал невозможно перехватить, так как физически нужно находится в профиле такого канала)

Fig 3. Dependence of the cost operation and total cost via data transition

Модель простейшего оптического канала связи (OWC)

Fig 4. Schematic system diagram of the connection. LD and PD are laser diode and photodetector respectively

Устройство оптического канала связи:

- Передатчик Тх (LED источник)
- PPM модулятор (pulse position modulation)
- Приемника Rx (фотоприемник)
- Модель канала подразумевает модель шума (AWGN Add white gaussian noise)

Результат моделирования простейшей модели однопользовательского FSO — based канала

На рис 4. представлен результат моделирования системы с жестким и мягким приемом (HDD и SDD).

В результате программного моделирования получена зависимость величины битовой ошибки от величины отношения (ОСШ).

Полученная вероятность битовой ошибки в ситуации с жестким приемом (HDD), величина (BER) значительно выше, чем в случае с (SDD)

Fig 4. Dependence of BER vs SNR

Разработка ортогонального оптического канала связи

Москва,2023

7

Модель канала неортогонального множественного доступа NOMA/FSO

Оптические каналы связи встречаются в медицине, в оборонной промышленности, в коммерческих фирмах и многих других научных областях. Моделирование канала предполагается со слабой атмосферной турбулентностью, которая описывается лог-нормальной моделью с длиной волны λ = 1550 (нм).

В качестве МДР кода используется код Рида-Соломона $\mathsf{C}_{2^4}(\mathbf{14},\mathbf{2},\mathbf{13})$, полученный выкалыванием $\mathsf{C}_{2^4}(\mathbf{15},\mathbf{2},\mathbf{14})$ в систематической форме

Параметр α — приемника выбирается таким образом, что вероятность отказа минимальна. Приемник часто принимает решение об отказе от декодирования для сравнения используется вероятность того, приводит к неверному декодированию или же отказу.

Программная реализация модели канала множественного доступа

Имитация физического уровня однопользовательского канала

- **awgn.m** Моделирование гауссовского белого шума.
- **bi2de.m** генератор двоичной последовательности конечного переданного конечного алфавита.
- generate_PPM.m блок PPM модуляции
- **slot_error_rate.m** блок вычислений величины битовой ошибки в зависимости от ОСШ (построение зависимости)

Имитация физического уровня канала NOMA/FSO

- alpha_func.m Программа, имитирующая альфа приемник
- **channel_model.m** моделирование канала с заданными **параметрами**
- **makrRSgm.m** Генерация МДР кода
- **tranmsmit.m** блок вычислений величины символьной ошибки на блок

Результаты моделирования канала множественного доступа

ФКН ВШЭ

мНОД ТМСС

Fig 5. Dependence of P_{ex} vs SNR (K = 50 (number of users))

Fig 6. Dependence of P_{ex} vs SNR (K = 25 (number of users))

Результаты моделирования канала множественного доступа

Fig 7. Dependence of P_{ex} vs SNR (K = 25 (number of users))

users))

Разработка ортогонального оптического канала связи

Москва,2023

10

Результаты моделирования канала множественного доступа

Основные результаты:

- 1. В результате моделирования можно заметить, что обычный приемник по сумме энергий обеспечивает лучшие вероятностные характеристики нежели альфа-приемник.
- 2. Сравнивая графики 5 и 6 можно заметить, что с увеличением числа активных пользователей различие между вероятностными характеристиками уменьшается.

3. Как видно из графиков 7 и 8 в исследуемом случае вероятностные характеристики приемника по сумме энергий практически не зависят от отношения сигнал/шум и не удовлетворяют требованиям современных систем, поэтому преимущество α детектора совершенно очевидно

Москва,2023

11

Заключение

В ходе работы:

- Изучена предметная область
- Реализована программная модель оптического канала связи
- Реализована программная модель имитирующая физический уровень канала связи неортогонального множественного доступа
- Предложена модель α приемника с оптимальными параметрами зависимости величины символьной ошибки на блок от величины (ОСШ)
- На основе вычислительных экспериментов сделан вывод о робастности такой модели приема, построены графики функции

Основные выводы

- Изучена варьирование параметра α в канале с предобработкой дает значительное снижение вероятности ошибки на блок
- Результаты моделирования свидетельствуют о том, что при наличии идеального контроля мощности выбор между приемником по сумме энергий и альфа приемником должен осуществляться с учетом необходимости использования внешнего кода.

Пути дальнейшей работы

Результаты моделирования свидетельствуют о том, что при наличии идеального

В будущих версиях программы также могут быть реализованы другие модели программы беспроводного оптического канала, более сложные модели фоновых шумов, ошибки позиционирования луча и другие модификации, которые помогут приблизить модель к реальным оптическим каналам, что в свою очередь позволит эффективно использовать ее для моделирования и проектирования систем связи, использующих беспроводной оптический канал.

Список использованных источников

- 1. H. Chun et al., "LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications," J. Light. Technol., vol. 34, no. 13, pp. 3047–3052, 2016.
- 2. 20. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. New York: JZ.Ding,Z.Yang,P.Fan,H.V.Poor,Ontheperformanceofnon-orthogonalmultipleaccessin 5G systems with randomly deployed users. IEEE Sig. Process. Lett. 21(12), 1501–1505 (2014)
- 3. John Wiley, 1995. Express, vol. 23, no. 1, p. 492, 2015.
- 4. Z. Ghassemlooy, W Popoola, S. Rajbhandari Optical Wireless Communications: System and Channel Modelling with MATLAB
- 5. M. D. Audeh and J. M. Kahn, "Performance Evaluation of L-Pulse-Position Modulation on Non Directed Indoor Infrared Channels," in Communications, 1994. ICC '94, SUPERCOMM/ICC '94, Conference Record, "Serving Humanity Through Communications." IEEE International Conference on, 1994, vol. 2. pp. 660–664.
- 6. J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2004.
- 7. Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System level performance evaluation of downlink non-orthogonal multiple access (NOMA), in *Proceedings of IEEE 24th PIMRC* (2013), pp. 611–615
- 8. L. Dai, B. Wang, Y. Yuan, S. Han, C.I, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)
- 9. J. M. Kahn and J. R. Barry, "Wireless Infrared Communications," *Proc. IEEE*, vol. 85, no. 2, pp. 265–298, 1997.

Список использованных источников

- 10. T. Lueftner, C. Kroepl, M. Huemer, J. Hausner, R. Hagelauer, and R. Weigel, "Edge-Position Modulation for High-Speed Wireless Infrared Communications," *IEE Proc. Optoelectron.*, vol. 150, no. 5, pp. 427–437, 2003.
- 11. N. Hayasaka and T. Ito, "Channel Modeling of Nondirected Wireless Infrared Indoor Diffuse Link," *Electron. Commun. Japan*, vol. 90, no. 6, pp. 9–19, 2007.
- 12. R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent Developments in Indoor Optical
- 13. Wireless Systems," IET Commun., vol. 2, no. 1, pp. 3–10, 2008.
- 14. J.J.O'Reilly,P.M.Lane,andM.H.Capstick,"OpticalGenerationandDeliveryofModulatedmm-Waves for Mobile Communications," in *Analogue Optical Fiber Communications*, B. Wilson, Z. Ghassemlooy, and I. Darwazeh, eds. London: The Institute of Electrical Engineers, 1995.
- 15. H. Willebrand and B. S. Ghuman, "Free space optics: enabling optical connectivity in today's networks," Sams Publishing, London, 2002.
- 16. A. Sikora and V. F. Groza, "Coexistence of IEEE802. 15.4 with other Systems in the 2.4 GHz-ISM-Band," in Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, 2005, pp. 1786-1791.

Разработка ортогонального оптического канала связи

Москва,2023

14

Список использованных источников

- 17. A. Sikora and V. F. Groza, "Coexistence of IEEE802. 15.4 with other Systems in the 2.4 GHz-ISM-Band," in Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, 2005, pp. 1786-1791.
- 18. M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. Le Minh, and E. Bentley, "Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions," J. Lightw. Technol., vol. 31, pp. 1720-1726, 2013.
- 19. Y. Fan, C. Julian, and T. A. Tsiftsis, "Free-space optical communication with nonzero boresight pointing errors," IEEE Trans. Commun., vol. 62, pp. 700-725, 2014.
- 20. Y. Fan, C. Julian, and T. A. Tsiftsis, "Free-space optical communication with nonzero boresight pointing errors," IEEE Trans. Commun., vol. 62, pp. 713-725, 2014.
- 21. Fu H, Wang P, Liu T, Cao T, Guo L, Qin J. Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging. Appl Opt. 2017 Aug 10;56(23):6432-6439
- 22. D. Osipov, "Novel order statistics-based detector and coded modulation for a DHA FH OFDMA system", 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY), pp. 11-16, 2021

