

Today's Class

- o Bernoulli Random Variable
- Binomial Distribution
 - pmf
 - cdf
 - Expected values
 - Variance
- Hypergeometric Distribution
- Negative Binomial Distribution

Bernoulli Random Variable

- o Bernoulli RV:
 - Any random variable X whose only possible values are 0 and 1

$$x = \begin{cases} 1 & \text{if success} \\ 0 & \text{if failure} \end{cases}$$

Bernoulli Trial

- o Each trial has only two outcomes
 - dichotomous trials
- The trials are independent
 - the outcome on any particular trial does not influence the outcome on any other trial
- o The probability of success, p, is constant

Bernoulli Distribution

o Bernoulli Probability Distribution

$$\mu = E[X] = ?$$
 $\sigma^2 = Var[X] = ?$

Bernoulli Example

- Suppose that we sample the temperature of a manufacturing process
 - Each of the sample can be categorized as:

$$x = \begin{cases} 1 & temp \ge 212^{\circ} \\ 0 & temp < 212^{\circ} \end{cases}$$

- Note here the sample space is the real numbers and the random variable maps from the real numbers into the integers
- \bullet p = probability that the temp $\geq 212^\circ$

Binomial Distribution

- If a total of n Bernoulli trials are conducted, the trials are independent
- Each trial has the same success probability p,
 X is the number of successes in the n trials
- Then X has the binomial distribution with parameters n and p

 $X \sim Bin(n, p)$

More Examples

o# of defects out of 100 inspected partso# of people with corona virus out of 1000o# of working bulldozers after 6 months

 # of years in which river flow is above a flood level

Binomial Distributions Example

 A biased coin has probability 0.6 of coming up heads. The coin is tossed 3 times. Let X be the number of heads.
 What is the probability of 2 heads in three tosses of a coin?

Binomial Distributions

$$b(x;n,p) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 0, 1, 2,...,n \\ 0 & \text{otherwise} \end{cases}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Binomial Example

- The probability that a river flow exceeds the annual maximum flood of 12 ft in any year is 0.10.
 - What is the probability that the flood level will exceed exactly once in the next 5 years?
 - What is the probability that it will not exceed in next 5 years?

Binomial Example

Suppose you toss a fair coin 8 times.
 Find the probability that no more than 2 heads come up.

Binomial Cumulative Distributions

$$B(x:n,p) = \begin{cases} \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i} & x = 0, 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

$$B(x:n,p) = P[X \le x|n,p]$$

See Appendix A.1

Binomial Cumulative Table

```
        x
        0.05
        0.1
        0.15
        0.2
        0.25
        0.3
        0.35
        0.4
        0.45
        0.5

        0
        0.663
        0.430
        0.272
        0.168
        0.100
        0.058
        0.032
        0.017
        0.008
        0.004

        1
        0.943
        0.813
        0.657
        0.503
        0.367
        0.255
        0.169
        0.106
        0.063
        0.035

        2
        0.994
        0.962
        0.895
        0.797
        0.679
        0.552
        0.428
        0.315
        0.220
        0.145

        3
        1.000
        0.995
        0.979
        0.944
        0.886
        0.806
        0.706
        0.594
        0.477
        0.363

        4
        1.000
        1.000
        0.997
        0.990
        0.973
        0.942
        0.894
        0.826
        0.740
        0.637

        5
        1.000
        1.000
        1.000
        1.000
        0.999
        0.996
        0.989
        0.975
        0.950
        0.912
        0.855

        6
        1.000
        1.000
        1.000
        1.000
        1.000
        1.000
```


Binomial Distributions Expected Values & Variance

Expected value and Variance of X

$$X \sim Bin(n,p)$$

$$E[X] = np$$

$$Var[X] = np(1-p)$$

The Hypergeometric Box

- There is a box containing 5 red balls and
 5 blue balls.
- Take one ball out of box, record color, and put away.
- If you draw 3 balls and what is the probability distribution of the number of blue balls?

• • •

Hypergeometric Experiment

- Similar to binomial, but...
- Choosing objects from a *finite* population (*N*)
- Each trial has only two outcomes
 - S or F: *M* successes in the *N* population
- A sample of size n is selected without replacement
- Equal probability to pick any individual outcome
- oSimilar to binomial, but the population is finite, so the probability of picking a 2nd outcome is different than the first
- oM/N plays a similar role to p

• • •

Hypergeometric Distribution

o If X is the number of S's in a completely random sample of size n drawn from a population consisting of M S's and (N–M) Fs.

$$P(X = x) = h(x; n, M, N) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

Expected Value and Variance

Expected value of X

$$E(X) = n\frac{M}{N}$$

Variance of X

$$V(X) = \left(\frac{N-n}{N-1}\right) n \frac{M}{N} \left(1 - \frac{M}{N}\right)$$

The Negative Binomial Box

• Consider a box with red and blue balls:

- replace each ball after inspecting it, and
 - sample until you got 2 red balls
- Let X equal the number of blue balls chosen
- If you repeated this experiment a great many times, the distribution of *X* would be negative binomial

Negative Binomial Experiment

- The experiment consists of a sequence of independent trials
- Each trial has two outcomes: S or F
- The probability of success is constant from trial to trial: P(X=S) = p for i = 1,2,3,...
- The experiment continues until a total of r successes have been observed, where r is a specified positive integer
 - The r.v. of interest is *X* = the number of failures that precede the *r*th success
 - X is called a negative binomial random variable because, in contrast to the binomial r.v., the number of successes is fixed and the number of trials is random

Negative Binomial Distribution

 The probability that takes X=x failures to get r successes, with probability of success p is:

$$nb(x;r,p) = {x+r-1 \choose r-1} p^r (1-p)^x, \quad x = 0,1,2,...$$

Expected Value and Variance

• Expected value of X
$$E(X) = \frac{r(1-p)}{p}$$

Variance of X

$$V(X) = \frac{r(1-p)}{p^2}$$