Hidden Markov Models

He He

New York University

2021-10-13

Table of Contents

Sequence labeling: inference

Bi-LSTM CRF

HMM (fully observable case)

Expectation Maximization

EM for HMN

Viterbi decoding: setup

Goal: find the highest-scoring sequence under the pairwise scoring function

Application: inference in structured prediction (e.g., POS tagging)

Challenge: exponential time complexity using brute force

$$\max_{y \in \mathcal{Y}^m} \sum_{i=1}^m s(y_i, y_{i-1})$$

Key idea: dynamic programming

Viterbi decoding: algorithm

Exponential to polynomial time with exact inference!

Why are we able to do this?

Viterbi decoding: derivation

$$\pi[j, t] \stackrel{\text{def}}{=} \max_{y \in \mathcal{Y}^{j}, y_{j} = t} \sum_{i=1}^{j} s(y_{i}, y_{i-1})$$

$$= \max_{y \in \mathcal{Y}^{j-1}} \sum_{i=1}^{j-1} s(y_{i}, y_{i-1}) + s(y_{j} = t, y_{j-1})$$

$$= \max_{t' \in \mathcal{Y}} \max_{y \in \mathcal{Y}^{j-2}, y_{j-1} = t'} \sum_{i=1}^{j-1} s(y_{i}, y_{i-1}) + s(y_{j} = t, y_{j-1} = t')$$

$$\max_{a \in \mathcal{A}} (a + c) = c + \max_{a \in \mathcal{A}} a$$

$$= \max_{t' \in \mathcal{Y}} s(y_{j} = t, y_{j-1} = t') + \max_{y \in \mathcal{Y}^{j-2}, y_{j-1} = t'} \sum_{i=1}^{j-1} s(y_{i}, y_{i-1})$$

$$= \max_{t' \in \mathcal{Y}} s(y_{j} = t, y_{j-1} = t') + \pi[j-1, t']$$

Forward algorithm: setup

CRF learning objective (MLE):

$$\ell(\theta) = \sum_{(x,y)\in\mathcal{D}} \log p(y \mid x; \theta)$$

$$= \sum_{(x,y)\in\mathcal{D}} \log \frac{\exp(\theta \cdot \Phi(x,y))}{\sum_{y'\in\mathcal{Y}^m} \exp(\theta \cdot \Phi(x,y))}$$

Goal: compute $\ell(\theta)$ (the forward pass) so that we can do backpropogation

Challenge: exponential time complexity using brute force

If we can compute $\ell(\theta)$ efficiently, computing $\nabla_{\theta}\ell(\theta)$ will also be efficient. (backpropogation)

Forward decoding: algorithm

▶ Log of the sum of exponentiated (logsumexp) scores of length-j sequences that end at tag t

$$\pi[j, t] \stackrel{\text{def}}{=} \log \operatorname{sum} \exp \sum_{i=1}^{j} s(y_i, y_{i-1})$$

▶ Fill in the chart π recursively

$$\pi[j, t] = \log \sup_{t' \in \mathcal{Y}} \exp \pi[j - 1, t'] + s(y_j = t, y_{j-1} = t')$$

Exponential to polynomial time with exact inference!

Replace max in Viterbi decoding by log sum exp.

Forward decoding: derivation

$$\pi[j, t] \stackrel{\text{def}}{=} \log \operatorname{sum} \exp \sum_{i=1}^{j} s(y_i, y_{i-1})$$

$$= \log \operatorname{sum} \exp \sum_{j=1}^{j-1} s(y_i, y_{i-1}) + s(y_j = t, y_{j-1})$$

$$= \log \operatorname{sum} \exp (a + b) = \log \operatorname{sum} \exp \left[\log \operatorname{sum} \exp(a + b)\right]$$

$$= \log \operatorname{sum} \exp \log \operatorname{sum} \exp \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} s(y_i, y_{i-1}) + s(y_j = t, y_{j-1} = t')$$

$$= \log \operatorname{sum} \exp \log \operatorname{sum} \exp \sum_{a \in \mathcal{A}} \sum_{j=1}^{j-1} s(y_i, y_{i-1}) + s(y_j = t, y_{j-1} = t')$$

$$= \log \operatorname{sum} \exp (a + c) = c + \log \operatorname{sum} \exp a$$

$$= \log \operatorname{sum} \exp s(y_j = t, y_{j-1} = t') + \log \operatorname{sum} \exp \sum_{i=1}^{j-1} s(y_i, y_{i-1})$$

$$= \log \operatorname{sum} \exp s(y_i = t, y_{i-1} = t') + \pi[j-1, t']$$

Table of Contents

Sequence labeling: inference

Bi-LSTM CRF

HMM (fully observable case)

Expectation Maximization

EM for HMN

Bi-LSTM CRF for sequence labeling

Bi-LSTM tagger: use LSTM as feature extractor

$$p(y_i \mid x) \propto \exp(s_{\text{unigram}}(x, y_i, i))$$

 $s_{\text{unigram}}(x, y_i, i) = \theta_{y_i} \cdot \text{Bi-LSTM}(x, i)$

Learning and inference are similar to MEMM.

Add CRF layer: introduce dependence between neighboring labels

$$p(y \mid x) \propto \exp\left(\sum_{i=1}^{n} s(x, y_i, y_{i-1}, i)\right)$$
$$s(x, y_i, y_{i-1}, i) = s_{\text{unigram}}(x, y_i, i) + s_{\text{bigram}}(y_i, y_{i-1})$$

Learning and inference: forward and viterbi algorithms

Does it worth it?

Typical neural sequence models:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y_i \mid x, y_{i-1}, \theta)$$

Exposure bias: a learning problem

- ▶ Conditions on gold y_{i-1} during training but predicted \hat{y}_{i-1} during test
- Solution: search-aware training

Label bias: a model problem

- Locally normalized models are strictly less expressive than globally normalized given partial inputs [Andor+ 16]
- Solution: globally normalized models or better encoder

Does it worth it?

Empirical results from [Goyal+ 19]

	Unidirectional	Bidirectional
pretrain-greedy	76.54	92.59
pretrain-beam	77.76	93.29
locally normalized	83.9	93.76
globally normalized	83.93	93.73

Table 2: Accuracy results on CCG supertagging when initialized with a regular teacher-forcing model. Reported using *Unidirectional* and *Bidirectional* encoders respectively with fixed attention tagging decoder. *pretrain-greedy* and *pretrain-beam* refer to the output of decoding the initializer model. *locally normalized* and *globally normalized* refer to search-aware soft-beam models

- Partial inputs (unidirectional) + MLE results in poor performance
- Using bidirectional encoder significantly improves results

Table of Contents

Sequence labeling: inference

Bi-LSTM CRF

HMM (fully observable case)

Expectation Maximization

EM for HMN

Generative vs discriminative models

Generative modeling: p(x, y)Discriminative modeling: $p(y \mid x)$

Figure from "An Introduction to Conditional Random Fields for Relational Learning"

Generative modeling for sequence labeling

Task: given
$$x = (x_1, \dots, x_m) \in \mathcal{X}^m$$
, predict $y = (y_1, \dots, y_m) \in \mathcal{Y}^m$

Three questions:

- ▶ Modeling: how to define a parametric joint distribution $p(x, y; \theta)$?
- ightharpoonup Learning: how to estimate the parameters θ given observed data?
- Inference: how to efficiently find the mostly likely sequence $\arg\max_{y\in\mathcal{Y}^m}p(x,y;\theta)$ given x?

Decompose the joint probability

$$p(x,y) = p(x \mid y)p(y)$$

$$= p(x_1, ..., x_m \mid y)p(y)$$

$$= \prod_{i=1}^{m} p(x_i \mid y)p(y) \quad \text{Naive Bayes assumption}$$

$$= \prod_{i=1}^{m} p(x_i \mid y_i)p(y_1, ..., y_m) \quad \text{a word only depends its own tag}$$

$$= \prod_{i=1}^{m} p(x_i \mid y_i) \prod_{i=1}^{m} p(y_i \mid y_{i-1}) \quad \text{Markov assumption}$$

Hidden Markov models

Hidden Markov models (HMM):

- Discrete-time, discrete-state Markov chain
- \blacktriangleright Hidden states $z_i \in \mathcal{Y}$ (e.g. POS tags)
- ▶ Observations $x_i \in \mathcal{X}$ (e.g. words)

Model parameters:

- ▶ Emission probabilities: $p(x_i = w \mid y_i = t) = \gamma_{w \mid t}$ (# params: $|\mathcal{X}| \times |\mathcal{Y}|$)
- $V_0 = *, y_m = STOP$

Learning: MLE

Data: $\mathcal{D} = \{(x, y)\} (x \in \mathcal{X}^m, y \in \mathcal{Y}^m)$ (labeled dataset)

Task: estimate transition probabilities $\theta_{t|t'}$ and emission probabilities $\gamma_{w|t}$

$$\begin{aligned} \text{Likelihood:} \qquad & \ell(\theta, \gamma) = \sum_{(x,y) \in \mathcal{D}} \left(\sum_{i=1}^m \log p(x_i \mid y_i) + \sum_{i=1}^m \log p(y_i \mid y_{i-1}) \right) \\ & \max_{\theta, \gamma} \sum_{(x,y) \in \mathcal{D}} \left(\sum_{i=1}^m \log \gamma_{x_i \mid y_i} + \sum_{i=1}^m \log \theta_{y_i \mid y_{i-1}} \right) \\ & \text{s.t.} \quad \sum_{w \in \mathcal{X}} \gamma_{w \mid t} = 1 \quad \forall w \in \mathcal{X} \\ & \sum_{t \in \mathcal{Y} \cup \{ \texttt{STOP} \}} \theta_{t \mid t'} = 1 \quad \forall t' \in \mathcal{Y} \cup \{ * \} \end{aligned}$$

Count the occurrence of certain transitions and emissions in the labeled data.

Transition probabilities:

$$heta_{t|t'} = rac{\mathsf{count}(t' o t)}{\sum_{a \in \mathcal{Y} \cup \{\mathsf{STOP}\}} \mathsf{count}(t' o a)}$$

Emission probabilities:

$$\gamma_{w|t} = \frac{\mathsf{count}(w, t)}{\sum_{w' \in \mathcal{X}} \mathsf{count}(w', t)}$$

Example:
$$\theta_{\text{NN}|\text{DT}} = \frac{2}{7} = 1$$
 $\gamma_{\text{fox}|\text{NN}} = \frac{1}{2}$

Inference

Task: given model parameters, observe $x \in \mathcal{X}^m$, find the most likely $y \in \mathcal{Y}^m$

$$\begin{aligned} & \underset{y \in \mathcal{Y}^m}{\text{arg max}} \log p(x, y) \\ &= \underset{y \in \mathcal{Y}^m}{\text{arg max}} \sum_{i=1}^m \log p(x_i \mid y_i) + \sum_{i=1}^m \log p(y_i \mid y_{i-1}) \\ &+ \sum_{i=1}^m \log p(x_i \mid y_i) + \sum_{i=1}^m \log p(x_i \mid y_$$

Viterbi + backtracking:

$$s(y) = \sum_{i=1}^{m} s(y_i, y_{i-1}) = \sum_{i=1}^{m} \log p(x_i \mid y_i) + \log p(y_i \mid y_{i-1})$$

$$\pi[j, t] = \max_{t' \in \mathcal{Y}} \underbrace{\log p(x_j \mid t) + \log p(t \mid t')}_{s(y_i, y_{i-1})} + \pi[j - 1, t']$$

Table of Contents

Sequence labeling: inference

Bi-LSTM CRF

HMM (fully observable case)

Expectation Maximization

EM for HMN

Naive Bayes with missing labels

Task:

- Assume data is generated from a Naive Bayes model.
- ► Observe $\{x^{(i)}\}_{i=1}^{N}$ without labels.
- Estimate model parameters and the most likely labels.

ID US		government	gene	lab	label
1	1	1	0	0	?
2	0	1	0	0	?
3	0	0	1	1	?
4	0	1	1	1	?
5	1	1	0	0	?

A chicken and egg problem

If we know the model parameters, we can predict labels easily. If we know the labels, we can estiamte the model parameters easily. Idea: start with guesses of labels, then iteratively refine it.

ID	US	government	gene	lab	label
1	1	1	0	0	
2	0	1	0	0	
3	0	0	1	1	
4 5	0	1	1	1	
5	1	1	0	0	

(US	government	gene	lab
$egin{array}{c c} p(\cdot \mid 0) & \\ p(\cdot \mid 1) & \end{array}$				

$$p(y=0) = , p(y=1) =$$

Iteration 0

Randomly label the data, then estimate parameters given the pseudolabels.

ID	US	gove	rnment	gene	lab	la	abel			
1	1		1	0	0		0	_		
2	0		1	0	0		0			
3	0		0 1 1 0		0	random				
4	0		1	1	1		1			
5	0 0 0 1		1	0	0		1			
	١									
		US	govern	ment	gene	١	ab			
<i>p</i> (·	0)	1/3	2/3	3	1/3	1	 L/3			
$p(\cdot$	1)	1/2	2/3 1		1/2	1	1/2			
p(y=0)=3/5, p(y=1)=2/5										

Iteration 1

Given parameters from the last iteration, update the pseudolabels.

	ID	US	governme	ent gene	e lab		lab		
						<i>y</i> =	= 0	y = 1	•
Loc \	1	1.	1	0	0	2/	' 5	3/5	soft comments
P(y=0(x1)	2	0	1	0	0				•
× P(x, 14=) PC	4-3)	0	0	1	1				
	4	0	1	1	1				
= pcus (3=0)	5	1	1	0	0				
x P (gov 1 4 207									
y P (y=0)	T		US	governn	nent	gene	lab)	
_		$p(\cdot \mid$	0) 1/3	2/3		1/3	1/3	 3	
b(2=+1x1)			1) 1/2	1		1/2	1/2	2	
•		p	p(y = 0) =	= 3/5, p	(y = 1)	1) = 2	/5		

Algorithm: EM for NB

- 1. Initialization: $\theta \leftarrow \text{random parameters}$
- 2. Repeat until convergence:
 - (i) Inference:

$$q(y \mid x^{(i)}) = p(y \mid x^{(i)}; \theta)$$

(ii) Update parameters:

$$\theta_{w|y} = \frac{\sum_{i=1}^{N} q(y \mid x^{(i)}) \mathbb{I}\left[w \text{ in } x^{i}\right]}{\sum_{i=1}^{N} q(y \mid x^{(i)})}$$

- ▶ With fully observed data, $q(y \mid x^{(i)}) = 1$ if $y^{(i)} = y$.
- Similar to the MLE solution except that we're using "soft counts".
- What is the algorithm optimizing?

Objective: maximize marginal likelihood

Likelihood:
$$L(\theta; \mathcal{D}) = \prod_{x \in \mathcal{D}} p(x; \theta)$$

Marginal likelihood:
$$L(\theta; \mathcal{D}) = \prod_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} p(x, z; \theta)$$

- Introducing latent variables allows us to better model the true generative process
- ▶ Marginalize over the (discrete) latent variable $z \in \mathcal{Z}$ (e.g. missing labels)

Maximum marginal log-likelihood estimator:

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{x \in \mathcal{D}} \log \sum_{z \in \mathcal{Z}} p(x, z; \theta)$$

Goal: maximize $\log p(x; \theta)$

Challenge: in general not concave, hard to optimize

Intuition

Problem: marginal log-likelihood is hard to optimize (only observing the words)

Observation: **complete data log-likelihood** is easy to optimize (observing both words and tags)

$$\max_{\theta} \log p(x, z; \theta)$$

Idea: guess a distribution of the latent variables q(z) (soft tags)

Maximize the *expected* complete data log-likelihood:

$$\max_{\theta} \sum_{z \in \mathcal{Z}} q(z) \log p(x, z; \theta)$$

Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta) \quad \text{marginal log-L} \quad \text{log-L} \quad \text{log-L$$

- **Evidence**: $\log p(x; \theta)$
- **Evidence lower bound (ELBO)**: $\mathcal{L}(q, \theta)$
- q: chosen to be a family of tractable distributions
- ▶ Idea: Can we maximize the lowerbound instead?

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on \mathcal{X} .
- ► How can we measure how "different" *p* and *q* are?
- ► The Kullback-Leibler or "KL" Divergence is defined by

$$\mathsf{KL}\left(p\|q\right) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$
 (Assumes $q(x) = 0$ implies $p(x) = 0$.)

Can also write this as

$$\mathsf{KL}(p\|q) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}.$$

Gibbs Inequality $(\mathsf{KL}\,(p\|q) \geq 0 \text{ and } \mathsf{KL}\,(p\|q) = 0)$

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathcal{X} . Then

$$KL(p||q) \geq 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

- ▶ KL divergence measures the "distance" between distributions.
- ► Note:
 - KL divergence not a metric.
 - ► KL divergence is **not symmetric**.

Gibbs Inequality: Proof

$$\begin{aligned} \mathsf{KL}\left(\rho\|q\right) &= \mathbb{E}_{p}\left[-\log\left(\frac{q(x)}{p(x)}\right)\right] \\ &\geq -\log\left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \quad \text{(Jensen's)} \\ &= -\log\left[\sum_{\{x|p(x)>0\}} p(x)\frac{q(x)}{p(x)}\right] \\ &= -\log\left[\sum_{x\in\mathcal{X}} q(x)\right] \\ &= -\log 1 = 0. \end{aligned}$$

Since – log is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which implies q = p.

Justification for maximizing ELBO

$$\mathcal{L}(q,\theta) \stackrel{\text{def}}{=} \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

$$= \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(z \mid x;\theta)p(x;\theta)}{q(z)}$$

$$= -\sum_{z \in \mathcal{Z}} q(z) \log \frac{q(z)}{p(z \mid x;\theta)} + \sum_{z \in \mathcal{Z}} q(z) \log p(x;\theta)$$

$$= -\text{KL}(q(z) || p(z \mid x;\theta)) + \log p(x;\theta)$$
evidence

- ▶ KL divergence: measures "distance" between two distributions (not symmetric!)
- ► $KL(q||p) \ge 0$ with equality iff $q(z) = p(z \mid x)$.
- ▶ ELBO = evidence $KL \le evidence (KL \ge 0)$

Justification for maximizing ELBO

$$\mathcal{L}(q,\theta) = -\mathsf{KL}\left(q(z)\|p(z\mid x;\theta)\right) + \log p(x;\theta)$$

Let θ^*, q^* be the global optimizer of $\mathcal{L}(q, \theta)$, then θ^* is the global optimizer of $\log p(x; \theta)$.

Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood () = [() = [() = []] [() = []]

Challenge: directly maximize the evidence $\log p(x; \theta)$ is hard

Solution: maximize the evidence lower bound:

$$\mathsf{ELBO} = \mathcal{L}(q, \theta) = -\mathsf{KL}\left(q(z) \| p(z \mid x; \theta)\right) + \log p(x; \theta)$$

Why does it work?

$$q^*(z) = p(z \mid x; \theta) \quad \forall \theta \in \Theta$$

 $\mathcal{L}(q^*, \theta^*) = \max_{\theta} \log p(x; \theta)$

EM algorithm

`Coordinate ascent on $\mathcal{L}(q, \theta)$

- 1. Random initialization: $\theta^{\text{old}} \leftarrow \theta_0$
- 2. Repeat until convergence

(i)
$$q(z) \leftarrow \arg\max_{q} \mathcal{L}(q, \theta^{\text{old}})$$

(ii)
$$\theta^{\mathsf{new}} \leftarrow \operatorname{arg\,max}_{\theta} \mathcal{L}(q^*, \theta)$$

Maximization (the M-step):
$$\theta^{\text{new}} \leftarrow \arg\max_{\theta} J(\theta)$$

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both steps can be hard.

Monotonically increasing likelihood

HW3: prove that EM increases the marginal likelihood monotonically

$$\log p(x;\theta^{\mathsf{new}}) \ge \log p(x;\theta^{\mathsf{old}}) .$$

Does EM converge to a global maximum?

EM for multinomial naive Bayes

Setting:
$$x = (x_1, ..., x_m) \in \mathcal{V}^m, z \in \{1, ..., K\}, \mathcal{D} = \{x^{(i)}\}_{i=1}^N$$

E-step:
$$q^*(z) = p(z \mid x; \theta^{\text{old}}) = \frac{\prod_{i=1}^m p(x_i \mid z; \theta^{\text{old}}) p(z; \theta^{\text{old}})}{\sum_{z' \in \mathcal{Z}} \prod_{i=1}^m p(x_i \mid z'; \theta^{\text{old}}) p(z'; \theta^{\text{old}})}$$

$$J(\theta) = \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \log p(x, z; \theta) = \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \log \prod_{i=1}^m p(x_i \mid z; \theta) p(z; \theta)$$

M-step:

$$\begin{split} & \max_{\theta} \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \left(\sum_{w \in \mathcal{V}} \log \theta_{w|z}^{\text{count}(w|x)} + \log \theta_z \right) \\ & \text{s.t.} \quad \sum_{w \in \mathcal{V}} \theta_{w|z} = 1 \quad \forall w \in \mathcal{V}, \quad \sum_{z \in \mathcal{Z}} \theta_z = 1 \;, \end{split}$$

where count $(w \mid x) \stackrel{\text{def}}{=} \#$ occurrence of w in x

EM for multinomial naive Bayes

M-step has closed-form solution:

$$\theta_{z} = \frac{\sum_{x \in \mathcal{D}} q_{x}^{*}(z)}{\sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{D}} q_{x}^{*}(z)}$$
soft label count
$$\theta_{w|z} = \frac{\sum_{x \in \mathcal{D}} q_{x}^{*}(z) \text{count}(w \mid x)}{\sum_{w \in \mathcal{V}} \sum_{x \in \mathcal{D}} q_{x}^{*}(z) \text{count}(w \mid x)}$$
soft word count

Similar to the MLE solution except that we're using soft counts.

Summary

Expectation maximization (EM) algorithm: maximizing ELBO $\mathcal{L}(q,\theta)$ by coordinate ascent

E-step: Compute the expected complete data log-likelihood $J(\theta)$ using $q^*(z) = p(z \mid x; \theta^{\text{old}})$

M-step: Maximize $J(\theta)$ to obtain θ^{new}

Assumptions: E-step and M-step are easy to compute

Properties: Monotonically improve the likelihood and converge to a stationary point

Table of Contents

Sequence labeling: inference

Bi-LSTM CRF

HMM (fully observable case)

Expectation Maximization

EM for HMM

HMM recap

Setting:

▶ Hidden states $z_i \in \mathcal{Y}$ (e.g. POS tags)

Observations
$$x_i \in \mathcal{X}$$
 (e.g. words)
$$p(x_{1:m}, y_{1:m}) = \prod_{i=1}^{m} \underbrace{p(x_i \mid y_i)}_{\text{emission probability}} \prod_{i=1}^{m} \underbrace{p(y_i \mid y_{i-1})}_{\text{transition probability}}$$

Parameters:

- ▶ Transition probabilities: $p(y_i = t \mid y_{i-1} = t') = \theta_{t|t'}$
- ▶ Emission probabilities: $p(x_i = w \mid y_i = t) = \gamma_{w|t}$
- $y_0 = *, y_m = STOP$

Task: estimate parameters given incomplete observations

E-step for HMM

E-step:

$$\begin{aligned} q^*(z) &= p(z \mid x; \theta, \gamma) \\ \mathcal{L}(q^*, \theta, \gamma) &= \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \log p(x, z; \theta, \gamma) \\ &= \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \log \prod_{i=1}^m p(x_i \mid z_i) p(z_i \mid z_{i-1}) \\ &= \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \sum_{i=1}^m \left(\log \underbrace{p(x_i \mid z_i; \gamma)}_{\gamma_{x_i \mid z_i}} + \log \underbrace{p(z_i \mid z_{i-1}; \theta)}_{\theta_{z_i \mid z_{i-1}}} \right) \end{aligned}$$

M-step for HMM

M-step (similar to the NB solution):

$$\max_{ heta, \gamma} \mathcal{L}(q^*, heta, \gamma) = \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \sum_{i=1}^m \left(\log \gamma_{x_i|z_i} + \log \theta_{z_i|z_{i-1}} \right)$$

Emission probabilities:

$$\gamma_{w|t} = \frac{\sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(w, t \mid x, z)}{\sum_{w' \in \mathcal{X}} \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(w', t \mid x, z)}$$

$$count(w, t \mid x, z) \stackrel{\text{def}}{=} \# \text{ word-tag pairs } (w, t) \text{ in } (x, z)$$

Transition probabilities:

$$\theta_{t\mid t'} = \frac{\sum_{x\in\mathcal{D}}\sum_{z\in\mathcal{Z}}q_x^*(z)\mathsf{count}(t'\to t\mid z)}{\sum_{a\in\mathcal{Y}}\sum_{x\in\mathcal{D}}\sum_{z\in\mathcal{Z}}q_x^*(z)\mathsf{count}(t'\to a\mid z)}$$

$$\mathsf{count}(t'\to t\mid z) \stackrel{\mathrm{def}}{=} \# \mathsf{tag} \mathsf{ bigrams} (t',t) \mathsf{ in } z$$

M-step for HMM

Challenge: $\sum_{z \in \mathcal{V}^m} q_x^*(z) \operatorname{count}(w, t \mid x, z)$

Group sequences where $z_i = t$:

$$\sum_{z \in \mathcal{Y}^m} q_{\scriptscriptstyle X}^*(z) {\sf count}(w,t \mid x,z) = \sum_{i=1}^m \mu_{\scriptscriptstyle X}(z_i=t) \mathbb{I}\left[x_i=w\right]$$

$$\mu_{\scriptscriptstyle X}(z_i=t) = \sum_{\{z \in \mathcal{Y}^m \mid z_i=t\}} q_{\scriptscriptstyle X}^*(z)$$

M-step for HMM

Challenge:
$$\sum_{z \in \mathcal{Y}^m} q_x^*(z) \operatorname{count}(t' \to t \mid z)$$

Group sequences where $z_i = t, z_{i-1} = t'$:

$$\sum_{z \in \mathcal{Y}^m} q_x^*(z) \operatorname{count}(t' \to t \mid z) = \sum_{i=1}^m \mu_x(z_i = t, z_{i-1} = t')$$

$$\mu_x(z_i = t, z_{i-1} = t') = \sum_{\{z \in \mathcal{Y}^m \mid z_i = t, z_{i-1} = t'\}} q_x^*(z)$$

$$\bigcap_{z \in \mathcal{Z}} \{z \in \mathcal{Y}^m \mid z_i = t, z_{i-1} = t'\}$$

Compute tag marginals

 $\mu_x(z_i = t)$: probability of the *i*-th tag being t given observed words x

$$\mu_{x}(z_{i} = t) = \sum_{z:z_{i} = t} q_{x}^{*}(z) \propto \sum_{z:z_{i} = t} \prod_{j=1}^{m} \underbrace{q(x_{i} \mid z_{i})q(z_{i} \mid z_{i-1})}_{\psi(z_{i},z_{i-1})}$$

$$= \sum_{z:z_{i} = t} \prod_{j=1}^{i-1} \psi(z_{j},z_{j-1}) \prod_{j=i}^{m} \psi(z_{j},z_{j-1})$$

$$= \sum_{t'} \sum_{z:z_{i} = t,z_{i-1} = t'} \prod_{j=1}^{i-1} \psi(z_{j},z_{j-1}) \prod_{j=i}^{m} \psi(z_{j},z_{j-1})$$

$$= \sum_{t'} \left(\sum_{\substack{z_{1:i-1} \\ z_{i-1} = t'}} \prod_{j=1}^{i-1} \psi(z_{j},z_{j-1}) \right) \psi(t,t') \left(\sum_{\substack{z_{i+1:m} \\ z_{i} = t}} \prod_{j=i+1}^{m} \psi(z_{j},z_{j-1}) \right)$$

$$= \sum_{t'} \alpha[i-1,t] \psi(t,t') \beta[i,t] = \alpha[i,t] \beta[i,t]$$

Compute tag marginals

Forward probabilities: probability of tag sequence prefix ending at $z_i = t$.

$$\alpha[i,t] \stackrel{\text{def}}{=} q(x_1,\ldots,x_i,z_i=t)$$

$$\alpha[i,t] = \sum_{t' \in \mathcal{Y}} \alpha[i-1,t'] \psi(t',t)$$

Backward probabilities: probability of tag sequence suffix starting from z_{i+1} give $z_i = t$.

$$\beta[i,t] \stackrel{\text{def}}{=} q(x_{i+1},\ldots,x_m \mid z_i = t)$$
$$\beta[i,t] = \sum_{t' \in \mathcal{V}} \beta[i+1,t'] \psi(t,t')$$

Compute tag marginals

1. Compute forward and backward probabilities

$$lpha[i,t] \quad \forall i \in \{1,\ldots,m\}, t \in \mathcal{Y} \cup \{\mathtt{STOP}\}$$
 $eta[i,t] \quad \forall i \in \{m,\ldots,1\}, t \in \mathcal{Y} \cup \{*\}$

2. Comptute the tag unigram and bigram marginals

$$\mu_{x}(z_{i} = t) \stackrel{\text{def}}{=} q(z_{i} = t \mid x)$$

$$= \frac{\alpha[i, t]\beta[i, t]}{q(x)} = \frac{\alpha[i, t]\beta[i, t]}{\alpha[m, STOP]}$$

$$\mu_{x}(z_{i-1} = t', z_{i} = t) \stackrel{\text{def}}{=} q(z_{i-1} = t', z_{i} = t \mid x)$$

$$= \frac{\alpha[i - 1, t']\psi(t', t)\beta[i, t]}{q(x)}$$
where the log space

In practice, compute in the *log space*.

Updated parameters

Emission probabilities:

$$\gamma_{w|t} = \frac{\sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(w, t \mid x, z)}{\sum_{w' \in \mathcal{X}} \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(w', t \mid x, z)}$$

$$= \frac{\sum_{x \in \mathcal{D}} \sum_{i=1}^m \mu_x(z_i = t) \mathbb{I}[x_i = w]}{\sum_{w' \in \mathcal{X}} \sum_{x \in \mathcal{D}} \sum_{i=1}^m \mu_x(z_i = t) \mathbb{I}[x_i = w']}$$

Transition probabilities:

$$\theta_{t|t'} = \frac{\sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(t' \to t \mid z)}{\sum_{a \in \mathcal{Y}} \sum_{x \in \mathcal{D}} \sum_{z \in \mathcal{Z}} q_x^*(z) \operatorname{count}(t' \to a \mid z)}$$

$$= \frac{\sum_{x \in \mathcal{D}} \sum_{i=1}^m \mu_x(z_{i-1} = t', z_i = t)}{\sum_{a \in \mathcal{Y}} \sum_{x \in \mathcal{D}} \sum_{i=1}^m \mu_x(z_{i-1} = t', z_i = a)}$$

Summary

EM for HMM:

- 1. Randomly initialize the emission and transition probabilities
- 2. Repeat until convergence
 - (i) Compute forward and backward probabilities
 - (ii) Update the emission and transition probabilities using expected counts
- 3. If the solution is bad, re-run EM with a different random seed.

General EM:

- ightharpoonup One example of variational methods (use a tractable q to approximate p)
- May need approximation in both the E-step and the M-step