CSE 015: Discrete Mathematics Fall 2020 Homework #07 Solution

Tony Doan Lab CSE-015-11L

November 28, 2020

1. Question 1: Asymptotic Notation

$$g(n) = O(n^2)$$

(a) f(n) = 178n + 45

The largest term is 178n

Using the rule for O(n) that states f(n) must be less than or equal to g(n) $[f(n) \le g(n)]$, we see in this problem that $O(n) \le O(n^2)$ is true.

Therefore, the answer would be yes, because n increases slower than n^2 .

(b) f(n) = nlogn + 12

The largest term is nlogn

Using the rule for O(n) that states f(n) must be less than or equal to g(n) $[f(n) \le g(n)]$, we see in this problem that $O(\log n) \le O(n^2)$ is true.

Therefore, the answer would be yes, because logn increases slower than n^2 .

(c) $f(n) = 34n^2 + 34n + 34$

The largest term is $34n^2$

Using the rule for O(n) that states f(n) must be less than or equal to g(n) $[f(n) \le g(n)]$, we see in this problem that $O(n^2) \le O(n^2)$ is true.

Therefore, the answer would be yes, because n^2 increases at the same rate as n^2 .

(d) $f(n) = \sqrt{n} + 2$

The largest term is \sqrt{n} , or $n^{\frac{1}{2}}$

Using the rule for O(n) that states f(n) must be less than or equal to g(n) $[f(n) \le g(n)]$, we see in this problem that $O(n^{\frac{1}{2}}) \le O(n^2)$ is true.

Therefore, the answer would be yes, because $n^{\frac{1}{2}}$ increases slower than n^2 .

(e) $f(n) = 0.001n^3 + 72n$

The largest term is $0.001n^3$

Using the rule for O(n) that states f(n) must be less than or equal to g(n) $[f(n) \leq g(n)],$ we see

in this problem that $O(n^3) \leq O(n^2)$ is false.

Therefore, the answer would be no, because n^3 increases faster than n^2 .

2. Question 2: Asymptotic Notation

In order from the top being number 1, or increasing fastest, to bottom being number 9, or increasing slowest.

- logn
- \sqrt{n}
- \bullet nlogn
- \bullet n
- $n^2 \log n$
- \bullet n^2
- n^4
- \bullet 2^n
- 3ⁿ

3. Question 3: Asymptotic Growth

- $f_1(n) = 5n^2 + 34n + 12$
- $f_2(n) = 10n + 4$
- $f_3(n) = 2^n$

Computer A:

Converting 10^6 operations per second to operations per hour: 10^9

$$f_1(n) = 5n^2 + 34n + 12 \le 3.6 * 10^9$$

Solving for n:

n = 26829.42

Computer A can perform 26829.42 operations per hour for f_1 .

$$f_2(n) = 10n + 4 \le 3.6 * 10^9$$

Solving for n:

n = 359999999.6

Computer A can perform 359999999.6 operations per hour for f_2 .

$$f_3(n) = 2^n \le 3.6 * 10^9$$

Solving for n:

n = 31.75

Computer A can perform 31.75 operations per hour for f_3 .

Computer B:

Converting 10^8 operations per second to operations per hour: 10^{11}

 $f_1(n) = 5n^2 + 34n + 12 \le 3.6 * 10^{11}$

Solving for n:

n = 268324.76

Computer B can perform 268324.76 operations per hour for f_1 .

$$f_2(n) = 10n + 4 \le 3.6 * 10^{11}$$

Solving for n:

n=35999999999.6

Computer B can perform 35999999999.6 operations per hour for f_2 .

$$f_3(\mathbf{n}) = 2^n \le 3.6 * 10^{11}$$

Solving for n:

n = 38.39

Computer B can perform 38.39 operations per hour for f_3 .