Cordlary:

Let (X, 11 11) be a nonned space with dim X = +00. Then, if KCX is campact, YE>O 3 × vector subspace with dim X < +00 s.t. $dist(x, Y) < \varepsilon \ \forall x \in \mathcal{X}$.

Proof:

By total boundedness $\exists x_1,...,x_n \in X$ s.t. $\bigcup_{k=1}^{N} B_{\varepsilon}(x_k) \supset K$. It is enough to choose $Y = \langle x_1,...,x_n \rangle$

Let (A,d), (B,d) be compact metric spaces, and let C°(A; B) = { f: A → B: f is continuous }. Then we can define $d_{\infty}(f,g) := \sup\{d(f(x),g(x)) : x \in A\}$. This is a metric and it is also complete.

Thu (Ascali - Arrela):

Given (A,dA), (B,dB) compact metric spaces, { fk}_KEINC C°(A;B), assure that { Lu} is equicantinuous:

 $\forall \mathcal{E} > 0 \quad \exists \mathcal{E} > 0 \quad \text{s.t.} \quad \forall x_1, x_2 \in A \text{ with } d_A(x_1, x_2) < \mathcal{E} \text{ we have}$ $d_{B}(f_{K}(x_{1}), f_{K}(x_{2})) < \varepsilon \quad \forall K \in IN$

Then, I subsequence {fxh}, f E C°(A; B) s.t. fxh do

to be not only equicontinuous if B = IR, we require $\{f_k\}_{k}$ but also equilounded !!!

Proof:

It is enough to prove that A = { In: KEIN} is totally bounded in (C(A; B), d∞). Let E>O, then we can cover B with a finite number of balls B1,..., BN of radius E. Let 5>0 be the corresponding constant in the equicontinuity hypothesis. Then $\exists B_s(x_1),...,B_s(x_H)$ s.t. $A = \bigcup B_s(x_i)$ Consider a multiindex (51,..., 5H) E { 1,..., N} (each index 5i is a number between 1 and N, there is a finite number of these) and the family of functions $W_{(s_1,...,s_n)} = \{f \in A : f(x_i) \in B_{s_i}\}$. We home that $UW_{(s_1,...,s_n)} = A$.

Let f, g E W(ss,...,sn): we show that do (f, g) < 5E. Let x EA, ∃i∈{1,..., H} s.t. ×∈Bs(×=). Theu: $d_{\mathcal{B}}(f(x), g(x)) \leqslant d_{\mathcal{B}}(f(x), f(x_{\overline{\iota}})) + d_{\mathcal{B}}(f(x_{\overline{\iota}}), g(x_{\overline{\iota}})) + d_{\mathcal{B}}(g(x_{\overline{\iota}}), g(x))$ $f(x_{\overline{i}}), g(x_{\overline{i}}) \in \mathcal{B}_{S_{\overline{i}}}$ $\Rightarrow d_{B}(f(x), g(x)) < 4E \Rightarrow d_{\infty}(f, g) \leq 4E$ Application of Ascoli-Arrela to 1R" valued functions: Given C°(A, IR") with A usually a compact subset of IR", we have $\|f\|_{\infty} = \sup\{|f(x)| : x \in A\}. \ \|f\{f_{\kappa}\}_{\kappa \in \mathbb{N}} \in C^{\circ}(A; \mathbb{R}^{m}) \$ is equicontinuous: $\forall \varepsilon > 0 \exists S > 0 \text{ s.t. } \forall x_1, x_2 \in A \ d(x_1, x_2) < S \Rightarrow \|f(x_1) - f(x_2)\|_{\infty} < \varepsilon \ \forall \kappa \in \mathbb{N}$ equibounded: ∃M>0 s.t. If (x) | ≤M YKEIN YXEA Then we can apply Ascoli-Asrela Thur. to {fx}kein. WEAK CONVERGENCE - BANACH ALAGGLU THEOREM <u>Def</u> (Weak Couvergence): Given $(X, ||\cdot||)$ a normed space, $\{X_K\}_K \subset X, \overline{X} \in X$, we say that $\{X_K\}_K \subset X$ CONVERGES WEAKLY to \overline{X} iff $T(X_K) \longrightarrow T(\overline{X})$ $\forall T \in X'$. lu this case we write $\times_{\kappa} \longrightarrow \overline{\times}$ <u>Kework</u>: $1) \times_{\mathsf{K}} \longrightarrow \overline{\times} \quad \left(\| \times_{\mathsf{K}} - \overline{\times} \|_{\overrightarrow{\mathsf{K}} \to +\infty} \circ \right) \Longrightarrow \times_{\mathsf{K}} \longrightarrow \overline{\times}$ 2) If $\dim X < +\infty$ then $\times_{k} \longrightarrow \overline{X} \iff \times_{k} \longrightarrow \overline{X}$ 3) Even if dim X = +∞ it could still happen that ×_k → x ⇔ $\times_{k} \longrightarrow \overline{\times} \left(e.g. \times = \ell^{1} \right)$ 4) If X is reflexive, then ×_k → x ≠ ×_k → x Thu. (Banach - Alaszlu): Let (X, II. II) be a reflexive Banach space. Then B1(0) is sequentially weakly compact: $\forall \{x_{k}\}_{k} \in \overline{B_{1}(0)} \exists \text{ subsequence } \{x_{kh}\}_{k}, \overline{x} \in \overline{B_{1}(0)} \text{ s.t. } x_{kh} \longrightarrow \overline{x}$

Remark: 1) If $x_{K} \longrightarrow \overline{x}$, then $\{x_{K}\}_{K}$ is bounded in norm. Indeed: $T(x_{K}) \longrightarrow T(\overline{x}) \ \forall T \in X' \Rightarrow \{T(x_{K})\}_{K}$ is bounded in IR $\forall T \in X'$ \Rightarrow by Banach-Steinhaus, $\{x_{K}\}$ is bounded

 $2)\times_{\mathsf{K}}\longrightarrow \overline{\times} \Rightarrow \lim_{\mathsf{K}\to +\infty}\|\times_{\mathsf{K}}\|\gg\|\overline{\times}\|$

Proposition: Let $(X, ||\cdot||)$ be a normed space, $C \neq \emptyset$ convex and closed. Then C is sequentially weakly, closed: if $\{x_k\} \subset C$ is s.t. $\times_k \longrightarrow \mathbb{R}$, then $\mathbb{R} \in C$.

Proof:

By contradiction, suppose $\exists \bar{x} \in X \setminus C$ s.t. $\exists \{x_{\kappa}\}_{\kappa} \in C$ with $x_{\kappa} \longrightarrow \bar{x}$. Then $C, \{\bar{x}\}_{\kappa}$ are convex, closed and dissoint, $\{\bar{x}\}_{\kappa}$ is compact sor by $\exists x_{\kappa} \in C$. $\exists \{x_{\kappa}\}_{\kappa} \in C$.