Deadlock Avoidance (Banker's Algorithm)

 $initial\ instances\ of\ resources-total\ allocated=Available$

 $Need_{i,j} = Max_{i,j} - Allocation_{i,j}$

 $forall \ p_i : if \ (Need_{p_i} \leq Available)$

 $Available = Available + Allocation_{p_i}$

Are all the Pi used to update Available in the last step Yes, safestate No sale state

if there is a request from process pi, following conditions and updates must

be considered before using the algorithm:

 $Request_{p_i} \leq Need_{p_i}$ else, evrov $Request_{p_i} \leq Avaiable$ else, evrov P_i must wait check these conditions

apply $Allocation_{p_i} = Allocation_{p_i} + Request_{p_i}$ updates

 $Need_{p_i} = Need_{p_i} - Request_{p_i}$

 $Available = Available - Request_{pi}$

And then use Banker's Algorithm!

Banker's Algo	orithm ex	ample		
MA 5 oxuse	28 · Z Vas	ource types		
(VI) Spiscesse	$es_j = 1es_0$	suice Lypes		
		lo instances)		
		5 instances)		
	<u> </u>	7 instances)		
_ Snapshoo	t at curre	ent time:		
		Allocation	Max	
		ABC	ABC	
	T_0	010	753	
	T_1	200	322	
	T_2	302	902	
	$-T_3$	211	222	
	T_4	0,02	433	
	2+3+2	e 725		
13 this syste			Yes	
Al) Solution:		A B	<u> </u>	• • • • • • • • • • • • • • • • • • • •
Tot	tal allocate	ed = (7, 2)	5)	Available
		6,7) - (7,2,5		1
	1 .	411 1	Need	_
Need	l = Max.	_ Allocation =	ABO	EXA. 1
			$-\begin{array}{cccc} T_0 & 743 \\ T_1 & 122 \end{array}$	<u> </u>
			$T_2 = 600$	
O Aprilable)		$T_3 = 0.1.1$	
if (Need : Available :	- Amilable+	Allocation	T_4 431	
Availabe	Z Marcos day	Ti		
Available	T3 (7.4	$(7, \frac{1}{4}) < (7, \frac{1}{4}, \frac{5}{5}) - \frac{1}{4}$	<u> </u>	> (b, 5, 7)
		(6,3,2)+(2,1,1)	llocation T3	(0,10,1) < (5,3,2)
(T1, T3, T4)	12,10>	is a sate se	querce.	Need 3 & Available

Q2) In Q1, T3 requests two more instances of resource B. Does the system go to safe state if we grant the request of T3? N_C	IC

A2) The Need matrix shows that T3 can request just 1 more instance of resource B. So the algorithm raises an error condition.

(0,2,0) (0,1,1) T3 request

$$(3,3,0) < (4,3,1) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,0) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) \\ (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3,2) < (3,3$$

undates:

	Allocation	Max	<u>Available</u>		Need
	ABC	ABC	ABC		ABC
T_0	010	753	332	T_0	743
T_1	200	322	0 0	T_1	122
T_2	302	902		T_2	600
T_3	211	222		T_3	011
T_4	3882	433		T_4	1 # 3 1

Bankers Algorithm:

Available (0,0,2) ->

None of the rows of Need is less than Available, so the state will be not-safe and we don't grant the request.

In Q1, T1 requests one instance of A, two instances of B and two instances of C. Does the system go to safe state if we grant this request? Yes

111	
A4)	71 regvest (1,2,2) < (1,2,2)
	(1,2,2) < (3,3,2)

step1) updates

	Allocation	Max	<u>Available</u>		Need
	ABC	ABC	ABC		ABC
T_0	010	753	332	 T_0	743。 0122
T_1	320202	322	210	T_1	0122
T_2	302	902		T_2	600
T_3	211	222		T_3	011
T_4	002	433		T_4	431

step 2) check with Banker's Algorithm:

Available
$$(2,1,0) \xrightarrow{T_1} (5,3,2) \xrightarrow{T_3} (7,4,3) \xrightarrow{T_4} (7,4,5)$$

$$(10,5,7) \xleftarrow{T_2} (7,5,5) \xleftarrow{T_3} (7,5,5)$$

So, the sequence <T1, T3, T4,T0, T2> is a safe sequence, and if we grant T1's request, we are sure the system will stay in safe state.

Deadlock Detection

We can detect deadlocks by a similar algorithm to Banker's, with just minor changes:

- 2- Exactly the same steps as Banker's algorithm but replace the Need matrix with the Request matrix
- 3- In case of any request from a Thread in the question, there are no conditions to check. Likewise, there is no update on Allocation matrix. Just update the Request matrix:

$$Request_{p_i} = Request_{p_i} + NEWRequest_{p_i}$$

4-we don't have Max and hence Need cannot be computed.

Ì	Α	'B	_	A	B	C	
To	0	1	0	0	0	0	
TO TI TO TO 14	2	0	0	2	0	2	
72	3	0	3	 0	0	0	
T3	2	1	1	 1	0	0	
T4	0	0	2	 0	0	2	

is the system deadlocked 9 No

Allocation Request

Available
$$(0,0,0)$$
 $\xrightarrow{T_0}$ $(0,0,0)$ $\xrightarrow{T_2}$ $(3,1,3)$ $\xrightarrow{T_3}$ $(5,2,4)$ $\xrightarrow{T_1}$ $(7,1,3)$ $\xrightarrow{T_4}$ $(7,1,5)$