Why Study the Theory of Computation?

Implementations come and go.

Chapter 1

IBM 7090 Programming in the 1950's

LDQ X

FMP A

FAD B

XCA

FMP X

FAD (

STO RESULT

RETURN TRA (

A BSS 1

B BSS 1

C BSS 1

X BSS 1

TEMP BSS 1

STORE BSS 1

END

Programming in the 1970's (IBM 360)

```
//MYJOB
          JOB (COMPRESS),
          'VOLKER BANDKE', CLASS=P, COND=(0, NE)
//BACKUP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR, DSN=MY.IMPORTNT.PDS
//SYSUT2 DD DISP=(,CATLG),
           DSN=MY.IMPORTNT.PDS.BACKUP,
//
           UNIT=3350, VOL=SER=DISK01,
//
           DCB=MY.IMPORTNT.PDS,
           SPACE = (CYL, (10, 10, 20))
//COMPRESS EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//MYPDS DD DISP=OLD, DSN=*.BACKUP.SYSUT1
//SYSIN
           DD
COPY INDD=MYPDS, OUTDD=MYPDS
//DELETE2 EXEC PGM=IEFBR14
//BACKPDS DD DISP=(OLD, DELETE, DELETE),
          DSN=MY.IMPORTNT.PDS.BACKUP
```

Guruhood

$$(\lceil / \lor) > (+ / \lor) - \lceil / \lor$$

Applications of the Theory

- FSMs for parity checkers, vending machines, communication protocols, and building security devices.
- Interactive games as nondeterministic FSMs.
- Programming languages, compilers, and context-free grammars.
- Natural languages are mostly context-free. Speech understanding systems use probabilistic FSMs.
- Computational biology: DNA and proteins are strings.
- The undecidability of a simple security model.
- Artificial intelligence: the undecidability of first-order logic.

Limitations of Mathematics

This sentence is false.

Limitations of Computing

Is my program correct?

Languages and Strings

Chapter 2

Let's Look at Some Problems

int alpha, beta; alpha = 3; beta = (2 + 5) / 10;

- (1) **Lexical analysis**: Scan the program and break it up into variable names, numbers, etc.
- (2) **Parsing**: Create a tree that corresponds to the sequence of operations that should be executed, e.g.,

2 5

- (3) **Optimization**: Realize that we can skip the first assignment since the value is never used and that we can precompute the arithmetic expression, since it contains only constants.
- (4) **Termination**: Decide whether the program is guaranteed to halt.
- (5) Interpretation: Figure out what (if anything) useful it does.

A Framework for Analyzing Problems

We need a single framework in which we can analyze a very diverse set of problems.

The framework we will use is

Language Recognition

A *language* is a (possibly infinite) set of finite length strings over a finite alphabet.

Strings

A **string** is a finite sequence, possibly empty, of symbols drawn from some alphabet Σ .

- ε is the empty string.
- Σ^* is the set of all possible strings over an alphabet Σ .

Alphabet name	Alphabet symbols	Example strings
The English alphabet	{a, b, c,, z}	ε, aabbcg, aaaaa
The binary alphabet	{0, 1}	ε, 0, 001100
A star alphabet	{★,�,★,★,☆,☆}	ε, ΟΟ, Ο★★☆★☆
A music alphabet	{」, ♪, ♬, ♬, ♭, ♯, ┃}	e, J , J and

Functions on Strings

Length: |s| is the number of symbols (characters, letters) in s.

$$|\epsilon| = 0$$

 $|1001101| = 7$

 $\#_c(s)$ is the number of times that c occurs in s.

$$\#_a$$
(abbaaa) = 4.

More Functions on Strings

Concatenation: st is the **concatenation** of s and t.

If
$$x = \text{good and } y = \text{bye}$$
, then $xy = \text{goodbye}$.

Note that |xy| = |x| + |y|.

 ϵ is the identity for concatenation of strings. So:

$$\forall x \ (x \ \epsilon = \epsilon \ x = x).$$

Concatenation is associative. So:

$$\forall s, t, w ((st)w = s(tw)).$$

More Functions on Strings

Repetition (or power): For each string w and each natural number i, the string wⁱ is:

$$W^0 = \varepsilon$$
$$W^{i+1} = W^i W$$

Examples:

$$a^3$$
 = aaa
(bye)² = byebye
 a^0b^3 = bbb

More Functions on Strings

Reverse: For each string w, w^R is defined as:

```
if |w| = 0 then w^R = w = \varepsilon
if |w| \ge 1 then:
\exists a \in \Sigma \ (\exists u \in \Sigma^* \ (w = ua)).
So define w^R = a u^R.
```

Concatenation and Reverse of Strings

Theorem: If w and x are strings, then $(w x)^R = x^R w^R$.

Example:

 $(nametag)^R = (tag)^R (name)^R = gateman$

Concatenation and Reverse of Strings

Proof: By induction on |x|:

$$|x| = 0$$
: Then $x = \varepsilon$, and $(wx)^R = (w \varepsilon)^R = (w)^R = \varepsilon w^R = \varepsilon^R w^R = x^R w^R$.

$$\forall n \geq 0 \ (((|x| = n) \rightarrow ((w \ x)^{R} = x^{R} \ w^{R})) \rightarrow ((|x| = n + 1) \rightarrow ((w \ x)^{R} = x^{R} \ w^{R}))):$$

Consider any string x, where |x| = n + 1. Then x = u a for some character a and |u| = n. So:

```
(w \ x)^R = (w \ (u \ a))^R rewrite x as ua

= ((w \ u) \ a)^R associativity of concatenation

= a \ (w \ u)^R definition of reversal

= a \ (u^R \ w^R) induction hypothesis

= (a \ u^R) \ w^R associativity of concatenation

= (ua)^R \ w^R definition of reversal

= x^R \ w^R rewrite ua as x
```

Relations on Strings

aaa is a *substring* of aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

Every string is a substring of itself.

 ϵ is a substring of every string.

The Prefix Relations

s is a *prefix* of t iff: $\exists x \in \Sigma^* (t = sx)$.

s is a proper prefix of t iff: s is a prefix of t and $s \neq t$.

Examples:

The *prefixes* of abba are: ϵ , a, ab, abb, abba. The *proper prefixes* of abba are: ϵ , a, ab, abb.

Every string is a prefix of itself.

 ϵ is a prefix of every string.

The Suffix Relations

s is a *suffix* of t iff: $\exists x \in \Sigma^* (t = xs)$.

s is a proper suffix of t iff: s is a suffix of t and $s \neq t$.

Examples:

The *suffixes* of abba are: ϵ , a, ba, bba, abba. The *proper suffixes* of abba are: ϵ , a, ba, bba.

Every string is a suffix of itself.

 ϵ is a suffix of every string.

Defining a Language

A *language* is a (finite or infinite) set of strings over a finite alphabet Σ .

Examples: Let $\Sigma = \{a, b\}$

Some languages over Σ :

```
∅,{ε},{a, b},{ε, a, aa, aaaa, aaaaa, aaaaa}
```

The language Σ^* contains an infinite number of strings, including: ϵ , a, b, ab, ababaa.

Example Language Definitions

 $L = \{x \in \{a, b\}^* : all a's precede all b's\}$

ab, aab, and aabbb are in L.

aba, ba, and abc are not in L.

What about: ε, a, aa, and bb?

Example Language Definitions

$$L = \{x : \exists y \in \{a, b\}^* : x = ya\}$$

Simple English description:

The Perils of Using English

 $L = \{x \# y : x, y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* \text{ and, when } x$ and y are viewed as the decimal representations of natural numbers, $square(x) = y\}$.

Examples:

```
3#9, 12#144
3#8, 12, 12#12#12
#
```

More Example Language Definitions

$$L = \{\} = \emptyset$$

$$L = \{\epsilon\}$$

English

 $L = \{w: w \text{ is a sentence in English}\}.$

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.

A Halting Problem Language

 $L = \{w: w \text{ is a C program that halts on all inputs}\}.$

- Well specified.
- Can we decide what strings it contains?

Prefixes

What are the following languages:

 $L = \{w \in \{a, b\}^*: \text{ no prefix of } w \text{ contains } b\}$

 $L = \{w \in \{a, b\}^*: \text{ no prefix of } w \text{ starts with } a\}$

 $L = \{w \in \{a, b\}^*: \text{ every prefix of } w \text{ starts with } a\}$

Using Repetition in a Language Definition

$$L = \{a^n : n \ge 0\}$$

Languages Are Sets

Computational definition:

- Generator (enumerator)
- Recognizer

Enumeration

Enumeration:

Arbitrary order

- More useful: *lexicographic order*
 - Shortest first
 - Within a length, dictionary order

The lexicographic enumeration of:

• $\{w \in \{a, b\}^* : |w| \text{ is even}\}$:

How Large is a Language?

The smallest language over any Σ is \emptyset , with cardinality 0.

The largest is Σ^* . How big is it?

How Large is a Language?

Theorem: If $\Sigma \neq \emptyset$ then Σ^* is countably infinite.

Proof: The elements of Σ^* can be lexicographically enumerated by the following procedure:

- Enumerate all strings of length 0, then length 1, then length 2, and so forth.
- Within the strings of a given length, enumerate them in dictionary order.

This enumeration is infinite since there is no longest string in Σ^* . Since there exists an infinite enumeration of Σ^* , it is countably infinite.

How Large is a Language?

So the smallest language has cardinality 0.

The largest is countably infinite.

So every language is either finite or countably infinite.

How Many Languages Are There?

Theorem: If $\Sigma \neq \emptyset$ then the set of languages over Σ is uncountably infinite.

Proof: The set of languages defined on Σ is $P(\Sigma^*)$. Σ^* is countably infinite. If S is a countably infinite set, P(S) is uncountably infinite. So $P(\Sigma^*)$ is uncountably infinite.

Diagonalization

- Integers countable
- Rational numbers countable
- Irrational numbers uncountable
 - Proof idea:
 - Assume they are countable: n₁, n₂, n₃, ...
 - Construct N as follows:
 - First decimal of N ≠ first decimal of n₁
 - Second decimal of N ≠ second decimal of n₂
 - and so on
 - N ≠ n_i for any i ≥ 1

Functions on Languages

- Set operations
 - Union
 - Intersection
 - Complement
- Language operations
 - Concatenation
 - Kleene star

Concatenation of Languages

If L_1 and L_2 are languages over Σ :

$$L_1L_2 = \{w \in \Sigma^* : \exists s \in L_1 \ (\exists t \in L_2 \ (w = st))\}$$

Examples:

$$L_1 = \{\text{cat}, \text{dog}\}$$
 $L_2 = \{\text{apple}, \text{pear}\}$
 $L_1 L_2 = \{\text{catapple}, \text{catpear}, \text{dogapple}, \text{dogpear}\}$

$$L_1 = a^*$$
 $L_2 = b^*$ $L_1 L_2 = b^*$

Concatenation of Languages

 $\{\epsilon\}$ is the identity for concatenation:

$$L\{\varepsilon\} = \{\varepsilon\}L = L$$

∅ is a zero for concatenation:

$$L \oslash = \oslash L = \oslash$$

Concatenating Languages Defined Using Variables

The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.

$$L_1 = \{a^n: n \ge 0\}$$

$$L_2 = \{b^n : n \geq 0\}$$

$$L_1 L_2 = \{a^n b^m : n, m \ge 0\}$$

$$L_1L_2 \neq \{a^nb^n : n \geq 0\}$$

Kleene Star

```
L^* = \{ \varepsilon \} \cup \{ w \in \Sigma^* : \exists k \ge 1 \\ (\exists w_1, w_2, \dots w_k \in L \ (w = w_1 \ w_2 \dots w_k)) \}
```

Example:

```
L = {dog, cat, fish}
L* = {ε, dog, cat, fish, dogdog,
  dogcat, fishcatfish,
  fishdogdogfishcat, ...}
```

The * Operator

$$L^+ = L L^*$$

$$L^+ = L^* - \{\epsilon\}$$
 iff $\epsilon \notin L$

 L^+ is the closure of L under concatenation.

Concatenation and Reverse of Languages

Theorem: $(L_1 L_2)^R = L_2^R L_1^R$.

Proof:

```
\forall x \ (\forall y \ ((xy)^R = y^R x^R))
(L_1 \ L_2)^R = \{(xy)^R : x \in L_1, \ y \in L_2\} \quad (\text{Def. of concat. and reverse})
= \{y^R x^R : x \in L_1, \ y \in L_2\} \quad (\text{Theorem 2.1})
= L_2^R \ L_1^R \qquad (\text{Def. of concat. and reverse})
```

What About Meaning?

$$A^nB^n = \{a^nb^n : n \ge 0\}.$$

Do these strings mean anything?

Syntax = form
Semantics = meaning

Semantic Interpretation Functions

For "natural" languages:

- English
- DNA

For formal languages:

- Programming languages
- Network protocol languages
- Database query languages
- HTML
- BNF

The Big Picture

Chapter 3

Decision Problems

A *decision problem* is simply a problem for which the answer is yes or no (True or False). A *decision procedure* answers a decision problem.

Examples:

- Given an integer n, does n have a pair of consecutive integers as factors?
- The *language recognition problem*: Given a language *L* and a string *w*, is *w* in *L*?

Everything is a string.

Problems that don't look like decision problems can be recast into new problems that do look like that.

Pattern matching:

- **Problem**: Given a search string *w* and a web document *d*, do they match? In other words, should a search engine, on input *w*, consider returning *d*?
- The language to be decided: {<w, d> : d is a candidate match for the query w}

Does a program always halt?

 Problem: Given a program p, written in some some standard programming language, is p guaranteed to halt on all inputs?

The language to be decided:

 $HP_{ALL} = \{p : p \text{ halts on all inputs}\}$

What If We're Not Working with Strings?

Anything can be encoded as a string.

- <*X*> is the string encoding of *X*.
- <*X*, *Y*> is the string encoding of the pair *X*, *Y*.

Primality Testing

- **Problem**: Given a nonnegative integer *n*, is it prime?
- An instance of the problem: Is 9 prime?
- To encode the problem we need a way to encode each instance: We encode each nonnegative integer as a binary string.
- The language to be decided:

PRIMES = $\{w : w \text{ is the binary encoding of a prime number}\}.$

- **Problem**: Given an undirected graph *G*, is it connected?
- Instance of the problem:

- Encoding of the problem: Let *V* be a set of binary numbers, one for each vertex in *G*. Then we construct <G> as follows:
 - Write |V| as a binary number,
 - Write a list of edges,
 - Separate all such binary numbers by "/".

101/1/10/10/11/1/100/10/101

• The language to be decided: CONNECTED = $\{w \in \{0, 1, /\}^* : w = n_1/n_2/...n_i, \text{ where each } n_i \text{ is a binary string and } w \text{ encodes a connected graph, as described above}.$

- Protein sequence alignment:
- **Problem**: Given a protein fragment *f* and a complete protein molecule *p*, could *f* be a fragment from *p*?
- Encoding of the problem: Represent each protein molecule or fragment as a sequence of amino acid residues. Assign a letter to each of the 20 possible amino acids. So a protein fragment might be represented as AGHTYWDNR.
- The language to be decided: {<f, p> : f could be a fragment from p}.

Turning Problems Into Decision Problems

Casting multiplication as decision:

- **Problem**: Given two nonnegative integers, compute their product.
- Encoding of the problem:
 - Transform computing into verification.
- The language to be decided:

```
L = \{w \text{ of the form:} \\ < integer_1 > x < integer_2 > = < integer_3 >, \text{ where:} \\ < integer_n > \text{ is any well formed integer, and} \\ integer_3 = integer_1 * integer_2 \} \\ 12x9=108, 12=12, 12x8=108
```

Turning Problems Into Decision Problems

Casting sorting as decision:

- Problem: Given a list of integers, sort it.
- Encoding of the problem: Transform the sorting problem into one of examining a pair of lists.
- The language to be decided:

```
L = \{w_1 \# w_2 : \exists n \geq 1 \}

(w_1 \text{ is of the form } < int_1, int_2, \dots int_n > ,

w_2 \text{ is of the form } < int_1, int_2, \dots int_n > , and

w_2 \text{ contains the same objects as } w_1 \text{ and}

w_2 \text{ is sorted})\}
```

```
1,5,3,9,6#1,3,5,6,9 \in L
1,5,3,9,6#1,2,3,4,5,6,7 \notin L
```

The Traditional Problems and their Language Formulations are Equivalent

By **equivalent** we mean that either problem can be **reduced** to the other.

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other functions that can be built using a machine of equal or lesser power.

An Example

Consider the multiplication example:

```
L = {w of the form:
	<integer_1>x<integer_2>=<integer_3>, where:
	<integer_n> is any well formed integer, and
	integer_3 = integer_1 * integer_2}
```

Given a multiplication machine, we can build the language recognition machine:

Given the language recognition machine, we can build a multiplication machine:

Languages and Machines

Finite State Machines

An FSM to accept a*b*:

An FSM to accept $A^nB^n = \{a^nb^n : n \ge 0\}$

Pushdown Automata

A PDA to accept $A^nB^n = \{a^nb^n : n \ge 0\}$

Example: aaabb

Stack:

Another Example

Bal, the language of balanced parentheses

Trying Another PDA

A PDA to accept strings of the form:

 $\mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}}=\{\mathsf{a}^{n}\mathsf{b}^{n}\mathsf{c}^{n}:n\geq0\}$

Turing Machines

A Turing Machine to accept AⁿBⁿCⁿ:

Turing Machines

A Turing machine to accept the language:

{p: p is a Java program that halts on input 0}

Languages and Machines

Rule of Least Power: "Use the least powerful language suitable for the given problem."

Grammars, Languages, and Machines

Three Computational Issues

Formal Modeling of Computation:

- Problems: languages to be decided
- Programs: state machines that accept languages

Central Concerns:

- 1. Decision procedures
- 2. Nondeterminism
- 3. Functions on languages