0 Formalization of a CESK* machine with basic Scheme features.

Syntax:

$$\begin{split} e \in \mathsf{Exp} ::= x \mid & \otimes \mid lam \\ \mid & (\mathsf{if} \ e \ e \ e) \\ \mid & (\mathsf{let} \ (x \ e) \ e) \\ \mid & (\mathsf{prim} \ op \ e \ e...) \\ \mid & (e \ e \ ...) \end{split}$$

 $x \in AExp = Clo + Bool + Z$

This doesn't feel right ↑ Because Clo can't be constructed syntactically...

$$lam \in \mathsf{Lam} ::= (\lambda \ (x...) \ e)$$
 $x \in \mathsf{Var} \quad \mathsf{A} \ \mathsf{set} \ \mathsf{of} \ \mathsf{identifiers}$
 $\mathsf{Bool} ::= \mathsf{\#t} \mid \mathsf{\#f}$
 $done = \mathsf{AExp*}$
 $todo = \mathsf{Exp*}$

Semantics:

$$\varsigma \in \Sigma = \mathsf{Exp} \times \mathsf{Env} \times \mathsf{Kont}$$

$$op \in Primitive \qquad \text{The set of primitves}$$

$$clo \in Clo = lam \times \mathsf{Env}$$

$$\rho \in Env = \mathsf{Var} \rightharpoonup Addr$$

$$\sigma \in \mathsf{Store} = Addr \rightharpoonup \mathsf{AExp}$$

$$\kappa \in Kont = \mathbf{mt} \mid \mathbf{appk}(done, todo, \rho, a) \mid \mathbf{ifk}(e, e, \rho, a) \mid \mathbf{letk}(x, e, \rho, a)$$

 $alloc: \Sigma \to Addr$ $alloc(\varsigma) = \text{an unallocated address}$

Transition Function:

$$(\Sigma \times \mathsf{Store}) \to (\Sigma \times \mathsf{Store})$$

$(\varsigma \times \sigma) \to (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

proceed by matching on ζ	
$\langle x, \rho, a \rangle$	$\langle {f e}, ho, a angle$
	where $\mathfrak{X} = \sigma(\rho(x))$
$\langle lam, \rho, a \rangle$	$\frac{\langle \mathbf{clo}(lam, \rho), \rho, a \rangle}{\langle e_c, \rho, b \rangle}$
$\langle (\text{if } e_c \ e_t \ e_f), ho, a \rangle$	
	$\sigma[b \mapsto \mathbf{ifk}(e_t, e_f, \rho, a)]$
$\overline{\langle ({\sf let}\; (x\; e_x)\; e_b), ho, a \rangle}$	$\langle e_x, ho, b angle$
	$\sigma[b \mapsto \mathbf{letk}(x, e_b, \rho, a)]$
$\overline{\langle (\text{prim } op \ e_0 \ es), \rho, a \rangle}$	$\langle e_0, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([op], es, \rho, a)]$
$\overline{\langle (e_f \ es), \rho, a \rangle}$	$\langle e_f, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([], e_s, \rho, a)]$
$\overline{\langle \mathbf{x}, \rho, a \rangle}$	
match on κ below	
mt	$\langle \mathfrak{A}, \rho, a \rangle$ $\langle e_f, \rho', c \rangle$
$\mathbf{ifk}(e_t, e_f, \rho', c)$	$\langle e_f, ho', c angle$
where $æ = #f$	
$\mathbf{ifk}(e_t, e_f, \rho', c)$	$\langle e_t, ho', c angle$
where $x \neq \text{#f}$	
$\overline{\mathbf{letk}(x, e_b, \rho', c)}$	$\langle e_b, \rho'[x \mapsto b], c \rangle$
	$\sigma[b \mapsto v]$
$\overline{\mathbf{appk}(op :: \mathfrak{E}_s, [], \rho', c)}$	$\langle x', \rho', c \rangle$
	$\mathbf{e}' = op \text{ applied to } (\mathbf{e}_s + [\mathbf{e}])$
$\overline{\mathbf{appk}((\mathbf{clo}((\lambda\ (xs)\ e_b), \rho'') :: \mathfrak{A}_s),}$	$\langle e_b, \rho''[xs_0 \mapsto b_0xs_i \mapsto b_i], c \rangle$
$[\], ho',c)$	$\mathbf{w}_s = \mathbf{w}_s + \mathbf{w}_s$
	$\sigma[b_0 \mapsto \mathfrak{A}_{s0}b_i \mapsto \mathfrak{A}_{si}]$
$\mathbf{appk}(done, e_h :: e_t, \rho', c)$	$\langle e_h, \rho', b \rangle$
	$\sigma[b \mapsto \mathbf{appk}(done + [x], e_t, \rho', c)]$

 $\hat{\mathcal{A}}$

1 Formalization of an Abstract CESK* machine with basic Scheme features.