Практическое занятие 3. Повторение независимых испытаний. Схема Бернулли

Схема Бернулли – схема повторения одинаковых опытов, в каждом из которых вероятность появления некоторого события A не зависит от исходов предыдущих опытов, причем в каждом из опытов вероятность появления A постоянна и равна $\ p$.

1. Число опытов $n \leq 100$.

Вероятность того, что в серии независимых опытах **событие** A **появится ровно** m **раз**

$$P_n(m) = C_n^m \cdot p^m \cdot q^{n-m} = \frac{n!}{m! \cdot (n-m)!} \cdot p^m \cdot q^{n-m}$$
, где $q = 1-p$. (формула Бернулли)

Вероятность того, что в серии независимых опытах событие A появится не менее m_1 , но не более чем m_2 раз:

$$P_n(m_1 \le m \le m_2) = \sum_{m=m_1}^{m_2} C_n^m \cdot p^m \cdot q^{n-m}$$

2. Число опытов n > 50.

Вероятность того, что в серии независимых опытах **событие** A **появится ровно** m **раз**

<i>npq</i> ≥ 9	<i>npq</i> < 9
локальная теорема Лапласа	формула Пуассона
$P_n(m) \approx \frac{1}{\sqrt{npq}} \cdot \varphi(x)$	$P_n(m) \approx \frac{a^m}{m!} \cdot e^{-a}$
$x = \frac{m - np}{\sqrt{npq}}, \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$	где $a = np$.

Вероятность того, что в n независимых испытаниях событие A появится не менее m_1 , но не более чем m_2 раз

npq > 9	npq < 9 $p < 0.1$					
интегральная теорема Лапласа	формула Пуассона					
$P_n(m_1 \le m \le m_2) = \mathcal{O}\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \mathcal{O}\left(\frac{m_1 - np}{\sqrt{npq}}\right)$	$P_n(m_1 \le m \le m_2) = \sum_{m=m_1}^{m_2} \frac{a^m}{m!} \cdot e^{-a}$					
$\Phi(x) = \frac{1}{2\pi} \int_{0}^{x} e^{-\frac{x^{2}}{2}} dx$	где $a = np$.					

Для функций
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 и $\Phi(x) = \frac{1}{2\pi} \int_0^x e^{-\frac{x^2}{2}} dx$ составлены таблицы (см. таб.1, таб.2).

Значение $m = m_0$, при котором вероятность $P_n(m)$ принимает наибольшее значение, называется наивероятнейшим числом успехов: $m_0 = [np - q; np + p]$.

Пример 3.1. Вероятность попадания в мишень при каждом выстреле равна 0,75. Какова вероятность того, что при пяти выстрелах будет ровно три попадания

Воспользуемся формулой Бернулли. n = 5, m = 3, p = 0.75, q = 1 - 0.75 = 0.25.

$$P_5(3) = C_5^3 \cdot 0.75^3 \cdot 0.25^2 = \frac{135}{512} \approx 0.26.$$

Пример 3.2. Вероятность попадания в объект равна 0,75. Для разрушения объекта необходимо не менее трех попаданий. Произведено пять выстрелов. Какова вероятность того, что объект будет разрушен?

Вероятность события А, состоящего в том, что объект будет разрушен, равна

$$P(A) = P_5(3 \le m \le 5) = \sum_{m=3}^{5} C_5^m \cdot 0.75^m \cdot 0.25^{5-m} = C_5^3 \cdot 0.75^3 \cdot 0.25^2 + C_5^4 \cdot 0.75^4 \cdot 0.25^1 + C_5^5 \cdot 0.75^5 \cdot 0.25^0 = \frac{459}{512} \approx 0.9.$$

Пример 3.3. Вероятность сбоя в работе телефонной станции при каждом вызове равна 0,012. Поступило 1000 вызовов. Какова вероятность 9 сбоев?

Решение. Так как число опытов n = 1000 велико, то воспользуемся локальной теоремой

Лапласа
$$P_{1000}(9) \approx \frac{1}{\sqrt{1000 \cdot 0,012 \cdot 0,988}} \cdot \varphi \left(\frac{9 - 1000 \cdot 0,012}{\sqrt{1000 \cdot 0,012 \cdot 0,988}} \right) \approx \frac{1}{3,43} \cdot \varphi (-0,875).$$

По таблице находим $\varphi(-0.875) = \varphi(0.875) = 0.2732$.

Окончательно
$$P_{1000}(9) \approx \frac{0,2732}{3,43} \approx 0,07965.$$

Пример 3.4. Телефонная станция обслуживает 1000 абонентов. В течение часа любой абонент независимо от остальных может сделать вызов с вероятностью 0,005. Требуется найти вероятность того, что в течение часа было не более 7 вызовов.

Решение. Здесь a = np = 5. m = 0,1...,7.

$$P(0) = \frac{5^0}{0!}e^{-5}; P(1) = \frac{5}{1!}e^{-1}; \dots P(7) = \frac{5^7}{7!}e^{-7}$$

$$P(0 \le x \le 7) = e^{-5} \left(1 + 5 + \frac{5^2}{2} + \frac{5^3}{6} + \frac{5^4}{24} + \frac{5^5}{120} + \frac{5^6}{720} + \frac{5^7}{5040} \right) \approx 0,867$$

Пример 3.5. Игральную кость бросают 800 раз. Какова вероятность того, что число очков, кратное 3, выпадает не менее 280 и не более 294 раз?

Решение. Здесь n = 800, p = 1/3, q = 2/3.

$$P_{300}\left(280 \le x \le 294\right) = \Phi\left(\frac{294 - 800 \cdot \frac{1}{3}}{\sqrt{800 \cdot \frac{1}{3} \cdot \frac{2}{3}}}\right) - \Phi\left(\frac{280 - 800 \cdot \frac{1}{3}}{\sqrt{800 \cdot \frac{1}{3} \cdot \frac{2}{3}}}\right) = \Phi(2,05) - \Phi(1) = 0,47982 - 0,34134 \approx 0,14$$

Пример 3.6. Вероятность того, что деталь не стандартна, p=0.1. Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности по абсолютной величине не более, чем на 0,03.

Решение. Здесь
$$n=400, p=0.1, q=0.9$$
. $\varepsilon=0.03$.
$$P(m/n-p|\leq \varepsilon) \approx 2\Phi\left(\frac{\varepsilon\sqrt{n}}{\sqrt{pq}}\right) = 2\Phi\left(\frac{0.03\sqrt{400}}{\sqrt{0.1\cdot0.9}}\right) = 2\Phi(2) = 2\cdot0.4722 = 0.9544$$

Пример 3.6. Производится 400 выстрелов по мишени. Вероятность попадания при одном выстреле равна 0,8. Найти: а) наивероятнейшее число попаданий; б) вероятность 320 попаданий в мишень; в) вероятность того, что число попаданий в мишень будет не менее 300 и не более 350.

Решение: а) найдем наивероятнейшее число m_0 попаданий в мишень из неравенства $np-q \le m_0 \le np+p$. По условию задачи n=400, p=0, 8, q=1-p=0, 2. Тогда получим $400\cdot 0, 8-0, 2 \le m_0 \le 400\cdot 0, 8+0, 8$, значит, $m_0=320$.

б) (локальная теорема Лапласа):
$$P_{400}\left(320\right) = \frac{1}{\sqrt{400\cdot0,8\cdot0,2}}\varphi\left(\frac{320-400\cdot0,8}{\sqrt{400\cdot0,8\cdot0,2}}\right) = \frac{1}{8}\varphi\left(0\right) = \frac{0,3989}{8} \approx 0,05\cdot0$$

в) (интегральная теорема Лапласа):
$$P_n(300 \le m \le 350) = \Phi\left(\frac{350 - 400 \cdot 0, 8}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}}\right) - \Phi\left(\frac{300 - 400 \cdot 0, 8}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}}\right) = \Phi(3, 75) - \Phi(-2, 5) = \Phi(3, 75) + \Phi(2, 5) = 0,9936$$
.

Задачи для самостоятельного решения:

- 3.1. Вероятность выхода из строя за время T одного конденсатора равна 0,2. Определить вероятность того, что за время T из 100 конденсаторов выйдут из строя от 14 до 26 конденсаторов. 0,866.
- 3.2. Монету бросают пять раз. Найти вероятность, что орел выпадет: 1) менее двух раз; 2) не менее двух раз. 3/16; 13/16.
- 3.3. Вероятность появления события в каждом из 2100 независимых испытаний равна 0,7. Найти вероятность, что событие появится: 1) не менее 1470 и не более 1500 раз; 2) не более 1469 раз. 0,4236; 0,5.
- 3.4. Вероятность рождения мальчика равна 0,51. Найти вероятность, что среди 100 новорожденных окажется 50 мальчиков. 0,00782
- 3.5. Два равносильных противника играют в шахматы. Что вероятнее: выиграть одну партию из двух или две партии из четырех? Ничьи не учитываются. Одну из двух.
- 3.6. Найти вероятность, что событие наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25. 0,0231
- 3.7. Отрезок AB разделен точкой C в отношении 2:1. На него брошены случайно четыре точки. Найти вероятность, что две из них окажутся левее, две правее точки C. Вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. 8/27.

- 3.8. Батарея произвела шесть выстрелов по объекту. Вероятность попадания при одном выстреле 0,3. Найти: 1) наивероятнейшее число попаданий; 2) вероятность наивероятнейшего числа попаданий; 3) вероятность того, что объект будет разрушен, если для этого достаточно хотя бы двух попаданий. 2; 0,324; 0,58
- 3.9. Станок-автомат штампует детали. Вероятность, что изготовленная деталь будет бракованной, равна 0,01. Найти вероятность, что среди 200 деталей окажется ровно 4 бракованных. 0,09
- 3.10. Вероятность появления события в каждом из независимых испытаний равна 0,3. Найти число испытаний, при котором наивероятнейшее число появлений события будет равно 30. От 100 до 102.
- 3.11. Чему равна вероятность наступления события в каждом из 39 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 25? 0,625<р≤ 0.65
- 3.12. ОТК проверяет на стандартность 900 деталей. Вероятность, что деталь стандартна, равна 0,9. Найти с вероятностью 0,95 границы, в которых будет заключено число стандартных деталей среди проверенных. $792 \le m \le 828$
- 3.13. ОТК проверяет 475 изделий на брак. Вероятность, что изделие бракованное, равна 0,05. Найти с вероятностью 0,95 границы, в которых будет заключено число бракованных изделий среди проверенных. $15 \le m \le 33$
- 3.14. Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более, чем на 0,02. 0.7698
- 3.15. Учебник издан тиражом $100\ 000\$ экземпляров. Вероятность, что учебник сброшюрован неправильно, равна 0,0001. Найти вероятность того, что тираж содержит ровно 5 бракованных книг. 0,0375.
- 3.16. Завод отправил на базу 500 изделий. Вероятность повреждения детали в пути равна 0,002. Найти вероятность, что в пути будет повреждено: 1) 3 изделия; 2) менее трех; 3) хотя бы одно. 0,0613; 0,9197; 0,632.
- 3.17. На факультете обучаются 500 студентов. Найти вероятность того, что x студентов (x = 0, 1, 2, 3) имеют день рождения 1-го сентября. 0,254, 0,3481, 0,2384, 0,1088
- 3.18. В супермаркете примерно 1% единиц товара оказывается без маркировки. Каждая единица немаркированного товара задерживает покупателя при оплате на 3 минуты. Покупатель выбрал 30 единиц товара. Найти вероятность того, что он будет задержан при оплате не более чем на 3 минуты. 0,963
- 3.19. Корректура в 500 страниц содержит 1300 опечаток. Найти а) вероятность того, что на выбранной странице нет опечаток. Найти б) наиболее вероятное число опечаток на одной странице текста и в) вероятность этого числа. а) 0,074, б) 2, в) 0,251.
- 3.20. С вероятностью 0,65 орудие при выстреле поражает цель. Произведено 400 выстрелов;
- а) найти вероятность того, что при этом произошло не менее 200 и не более 250 попаданий;
- б) найти вероятность того, что число попаданий не меньше 265;
- в) найти вероятность того, что число попаданий не больше 240. a) $\cong 0,147$, б) $\cong 0,3$, в) 0,018.
- 3.21. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти, какое отклонение относительной частоты появления события от его вероятности можно ожидать с вероятностью 0,9128 при 5000 испытаниях. 0,00967

Таблица 1. Значения функции $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

	Сотые доли <i>х</i>									
x	0	0,01	0,02	0,03		0,05	0,06	0,07	0,08	0,09
0		0,39892			0,39862		•	0,39797		0,39733
0,1	0,39695	0,39654	0,39608	0,39559	0,39505	0,39448	0,39387	0,39322	0,39253	0,39181
0,2	0,39104	0,39024	0,38940	0,38853	0,38762	0,38667	0,38568	0,38466		0,38251
0,3	0,38139	0,38023	0,37903	0,37780	0,37654	0,37524	0,37391	0,37255	0,37115	0,36973
0,4	0,36827	0,36678	0,36526	0,36371	0,36213	0,36053	0,35889	0,35723	0,35553	0,35381
0,5	0,35207	0,35029	0,34849	0,34667	0,34482	0,34294	0,34105	0,33912	0,33718	0,33521
0,6	0,33322	0,33121	0,32918	0,32713	0,32506	0,32297	0,32086	0,31874	0,31659	0,31443
0,7	0,31225	0,31006	0,30785	0,30563	0,30339	0,30114	0,29887	0,29659	0,29431	0,29200
0,8	0,28969	0,28737	0,28504	0,28269	0,28034	0,27798	0,27562	0,27324	0,27086	0,26848
0,9	0,26609	0,26369	0,26129	0,25888	0,25647	0,25406	0,25164	0,24923	0,24681	0,24439
1	0,24197	0,23955	0,23713	0,23471	0,23230	0,22988	0,22747	0,22506	0,22265	0,22025
1,1	0,21785	0,21546	0,21307	0,21069	0,20831	0,20594	0,20357	0,20121	0,19886	0,19652
1,2	0,19419	0,19186	0,18954	0,18724	0,18494	0,18265	0,18037	0,17810	0,17585	0,17360
1,3	0,17137	0,16915	0,16694	0,16474	0,16256	0,16038	0,15822	0,15608	0,15395	0,15183
1,4	0,14973	0,14764	0,14556	0,14350	0,14146	0,13943	0,13742	0,13542	0,13344	0,13147
1,5	0,12952	0,12758	0,12566	0,12376	0,12188	0,12001	0,11816	0,11632	0,11450	0,11270
1,6	0,11092	0,10915	0,10741	0,10567	0,10396	0,10226	0,10059	0,09893	0,09728	0,09566
1,7	0,09405	0,09246	0,09089	0,08933	0,08780	0,08628	0,08478	0,08329	0,08183	0,08038
1,8	0,07895	0,07754	0,07614	0,07477	0,07341	0,07206	0,07074	0,06943	0,06814	0,06687
1,9	0,06562	0,06438	0,06316	0,06195	0,06077	0,05959	0,05844	0,05730	0,05618	0,05508
2	0,05399	0,05292	0,05186	0,05082	0,04980	0,04879	0,04780	0,04682	0,04586	0,04491
2,1	0,04398	0,04307	0,04217	0,04128	0,04041	0,03955	0,03871	0,03788	0,03706	0,03626
2,2	0,03547	0,03470	0,03394	0,03319	0,03246	0,03174	0,03103	0,03034	0,02965	0,02898
2,3	0,02833	0,02768	0,02705	0,02643	0,02582	0,02522	0,02463	0,02406	0,02349	0,02294
2,4	0,02239	0,02186	0,02134	0,02083	0,02033	0,01984	0,01936	0,01888	0,01842	0,01797
2,5	0,01753	0,01709	0,01667	0,01625	0,01585	0,01545	0,01506	0,01468	0,01431	0,01394
2,6	0,01358	0,01323	0,01289	0,01256	0,01223	0,01191	0,01160	0,01130	0,01100	0,01071
2,7	0,01042	0,01014	0,00987	0,00961	0,00935	0,00909	0,00885	0,00861	0,00837	0,00814
2,8	0,00792	0,00770	0,00748	0,00727	0,00707	0,00687	0,00668	0,00649	0,00631	0,00613
2,9	0,00595	0,00578	0,00562	0,00545	0,00530	0,00514	0,00499	0,00485	0,00470	0,00457
3	0,00443	0,00430	0,00417	0,00405	0,00393	0,00381	0,00370	0,00358	0,00348	0,00337
3,1	0,00327	0,00317	0,00307	0,00298	0,00288	0,00279	0,00271	0,00262	0,00254	0,00246
3,2	0,00238	0,00231	0,00224	0,00216		0,00203	0,00196	0,00190	0,00184	0,00178
3,3	0,00172	0,00167	0,00161	0,00156		0,00146		0,00136	0,00132	0,00127
3,4	0,00123	0,00119	0,00115	0,00111	0,00107	0,00104	0,00100	0,00097	0,00094	0,00090
3,5	0,00087	0,00084	0,00081	0,00079	0,00076	0,00073	0,00071	0,00068	0,00066	0,00063
3,6	0,00061	0,00059	0,00057	0,00055	0,00053	0,00051	0,00049	0,00047	0,00046	0,00044
3,7	0,00042	0,00041	0,00039			0,00035	0,00034	0,00033	0,00031	0,00030
3,8	0,00029	0,00028	0,00027	0,00026	0,00025	0,00024	0,00023	0,00022	0,00021	0,00021
3,9	0,00020	0,00019	0,00018	0,00018	0,00017	0,00016	0,00016	0,00015	0,00014	0,00014

Таблица 2. Значения интеграла Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^2/2} dt$

	$\sqrt{2\pi}_0$									
X	Сотые доли х									
0	0,00000	0,01	0,02 0,00798	0,03 0,01197	0,04 0,01595	0,05 0,01994	0,06 0,02392	0,07 0,02790	0,08	0,09
0,1	0,03983		0,04776	0,05172						
0,2		0,08317	0,08706						0,11026	· ·
0,3		0,12172	0,12552	0,12930						
0,4	0,15542		0,16276							
0,5	0,19146	· ·	0,19847	0,20194		0,20884	-		0,21904	· ·
0,6		0,22907	0,23237	0,23565						0,25490
0,7	0,25804		0,26424					0,27935		0,28524
0,8			0,29389	0,29673						
0,9	0,31594	0,31859		0,32381	0,32639	0,32894	0,33147		0,33646	
1	0,34134	0,34375	0,34614	0,34849	0,35083	0,35314	0,35543	0,35769	0,35993	0,36214
1,1	0,36433	0,36650	0,36864	0,37076	0,37286	0,37493	0,37698	0,37900	0,38100	0,38298
1,2	0,38493	0,38686	0,38877	0,39065	0,39251	0,39435	0,39617	0,39796	0,39973	0,40147
1,3	0,40320	0,40490	0,40658	0,40824	0,40988	0,41149	0,41308	0,41466	0,41621	0,41774
1,4	0,41924	0,42073	0,42220	0,42364	0,42507	0,42647	0,42785	0,42922	0,43056	0,43189
1,5	0,43319	0,43448	0,43574	0,43699	0,43822	0,43943	0,44062	0,44179	0,44295	0,44408
1,6	0,44520	0,44630	0,44738	0,44845	0,44950	0,45053	0,45154	0,45254	0,45352	0,45449
1,7	0,45543	0,45637	0,45728	0,45818	0,45907	0,45994	0,46080	0,46164	0,46246	0,46327
1,8	0,46407	0,46485	0,46562	0,46638	0,46712	0,46784	0,46856	0,46926	0,46995	0,47062
1,9	0,47128	0,47193	0,47257	0,47320	0,47381	0,47441	0,47500	0,47558	0,47615	0,47670
2	0,47725	0,47778	0,47831	0,47882				0,48077	0,48124	0,48169
2,1	0,48214	0,48257	0,48300	0,48341	0,48382	0,48422	0,48461	0,48500	0,48537	0,48574
2,2	0,48610		0,48679	0,48713					0,48870	
2,3	0,48928					0,49061			0,49134	
2,4	-	0,49202	0,49224						0,49343	
2,5		· ·	, , , , , , , , , , , , , , , , , , ,		0,49446			,	0,49506	· ·
2,6		0,49547								
2,7	0,49653	-		0,49683				0,49720	•	· ·
2,8	0,49744		0,49760	0,49767	0,49774		0,49788			0,49807
2,9	0,49813			0,49831	0,49836		0,49846		0,49856	
3	0,49865		0,49874	0,49878				0,49893		0,49900
3,1	0,49903		0,49910	0,49913		·		0,49924		,
3,2	0,49931	0,49934	0,49936	0,49938				0,49946		· ·
3,3				0,49957						
3,4			0,49969	0,49970	· ·	0,49972		0,49974		0,49976
3,5		0,49978	0,49978	0,49979			0,49981	0,49982		0,49983
3,6			0,49985	0,49986				0,49988		
3,7	0,49989		0,49990	0,49990		0,49991	0,49992	0,49992		0,49992
3,8			0,49993	0,49994						0,49995
3,9	0,49995	0,49995	0,49996	0,49996	0,49996	0,49996	0,49996	0,49996	0,49997	0,49997