1 Полугруппы и моноиды. Идемпотенты, сократимые и обратимые элементы.

Определение 1.1 (Полугруппа). Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Пример 1.1 (Примеры полугрупп).

Теорема 1.1. Значение терма не зависит от расстановки скобок (*Acco-* циативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n = 1, нет скобок

Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n$$

Так как длина $(a_1a_2...a_m)(a_{m+1}...a_{n-1})$ равна n-1 то выполняется индукционное предположение и

$$(a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1}) = (a_1 a_2 ... a_{n-1})$$

соотвественно

$$(a_1a_2...a_m)(a_{m+1}...a_{n-1})a_n = (a_1a_2...a_{n-1})a_n = a_1a_2...a_n$$

 \Box

Определение 1.2 (Нейтральный элемент). e_l называется нейтральным слева в полугруппе, если $e_l*a=a$ для всех $a,\ e_r$ называется нейтральным справа в полугруппе, если $a*e_r=a$ для всех $a,\ e$ нейтральный слева и справа

Пример 1.2 (Примеры нейтрального элемента). $(\omega, +)$ - 0, (ω, \cdot) - 1, (ω, max) - 0, (ω, min) - нет нейтрального

Teopema 1.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие 1.1. *Если* нейтральный элемент существует, то он единственный.

Определение 1.3 (Моноид). Моноид - полугруппа с нейтральным элементом ИЛИ

Моноид - это элементы многообразия, которые определяются равенствами

$$\begin{cases} x * (y * z) = (x * y) * z \\ x * e = x \\ e * x = x \end{cases}$$

Пример 1.3 (Примеры моноидов). $(\omega, +, 0), (\omega, \cdot, 1), (\omega, max, 0)$

 A^A - множество одноместных функций из A в A $h=f\circ g,$ если h(a)=g(f(a)) для любого $a\in A$

Доказать что (A^A, \circ) - моноид

Доказательство. e(a) = a для всех a, тогда

$$\begin{cases}
(e \circ f)(a) &= f(e(a)) = f(a) \\
(f \circ e)(a) &= e(f(a)) = f(a)
\end{cases} e \circ f = f \circ e = f$$

e - нейтральный элемент

$$((f \circ g)h)(a) = h(f \circ g)(a) = h(g(f(a)))$$

$$(f(g \circ h))(a) = (g \circ h)(f(a)) = h(g(f(a)))$$

$$((f \circ g)h)(a) = (f(g \circ h))(a)$$

Выполняется ассоциативность, соответственно (A^A, \circ, e) - моноид

Определение 1.4 (Идемпотент). Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 1.4 (Примеры идемпотентов). $(\omega; +)$ - 0

Определение 1.5 (Обратный элемент).

 b_l - левый обратный для элемента a, если $b_l * a = e$,

 b_r - правый обратный для элемента a, если $a*b_l=e,$

b - обратный для элемента a, если b*a=a*b=e

Определение 1.6 (Обратимый элемент). Элемент, для которого существует обратный

Пример 1.5. Пример чего-то: Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & \text{при } x < b \\ ab & \text{при } x \ge b \end{cases}$$

Доказательство.

Пример 1.6 (Пример изоморфизма). Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$

$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 1.7 (Пример полугруппы). Является ли $(\omega, \text{HOД}())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$HOД(HOД(x,y),z) = HOД(x,HOД(y,z))$$

1. \Rightarrow Пусть d:d| НОД(x,y),d|zНадо доказать d| НОД(y,z),d|x

$$d \mid \text{HOД}(x, y) \Rightarrow d \mid x$$

 $d \mid \text{HOД}(x, y) \Rightarrow d \mid y$
 $d \mid x, d \mid y \Rightarrow d \mid \text{HOД}(y, z)$

 $2. \Leftarrow$ также

Пример 1.8 (Построение моноидов). Построить все моноиды из двух элементов $\{e, x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Таблица умножения (*1)

		e	x
((0	e	x
(r	x	e

Доказать их ассоциативность: a * (b * c) = (a * b) * c

1. a = e

$$e * (b * c) = b * c = (e * b) * c$$

2. b = e также

Таблица умножения $(*_2)$

	e	x
e	e	x
x	x	x

- 3. c = e также
- 4. a = b = c = x

$$x * (x * x) = x * e = e * x = (x * x) * x$$

Все остальные моноиды или изоморфны или тривиальны

Теорема 1.3. *Если в конечном моноиде каждый элемент имеет левый обратный, то существует правый обратный*

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет левый обратный, то хотя бы для одного не существует правый обратный: $ab_r \neq e$ для всех b_r

Определение 1.7 (Сократимый элемент). Сократимый слева (справа) - такой элемент моноида, что из $ax = ay \ (xa = ya)$ следует x = y

Пример 1.9 (Пример сократимого элемента). ($\mathbb{Z}, +, 0$), $x + a = y + a \Rightarrow x = y$

Теорема 1.4. Неединичные идемпотенты несократимы

ДОКАЗАТЕЛЬСТВО. $a \cdot a = a = e \cdot a$ но $a \neq e$, соответственно a несократим справа, $a \cdot a = a = a \cdot e$ но $a \neq e$, соответственно a несократим слева a несократим

Теорема 1.5. Все обратимые слева(справа) элементы сократимы слева(справа)

Доказательство. Пусть a - обратимый слева, тогда $ax = ay \Rightarrow b_l ax = b_l ay \Rightarrow ex = ey \Rightarrow x = y$, следовательно a - сократимый слева

Пример 1.10 (Пример обратимого элемента). (\mathbb{Z}^+ , ·, 1), обратимый только 1, сократимы все. (Какой к половым органам это пример?)