Exam for Vega-Prep

Contents

Cost-of-carry from forward and maturity	1
Forward curve for exchange rate	2
The Svensson yield curve	2
Implied volatility curve for the Black model	3
Forward LIBORs	3
Forward curve obtained by linear interpolation of cost-of-carry rates	4
While implementing the functions below, you need to account for t	he
singularities of the type $0/0$.	

Cost-of-carry from forward and maturity

Input:

 $S(t_0)$: the spot price.

 t_0 : the initial time given as year fraction.

Output:

 $q = (q(F(t), t))_{t>t_0}$: the continuously compounded surface of *cost-of-carry* rates.

We recall that the relation between the forward price and the cost-of-carry rate:

$$F(t) = S(t_0) \exp(q(F(t), t)(t - t_0)), \quad t > t_0.$$

Forward curve for exchange rate

Input:

 $S(t_0)$: the spot exchange rate (the number of units of domestic currency per one unit of foreign currency).

 $D^d = (D^d(t))_{t \ge t_0}$: the discount curve in domestic currency.

 $D^f = (D^f(t))_{t \ge t_0}$: the discount curve in foreign currency.

Output:

 $F = (F(t))_{t \ge t_0}$: the forward FX rates. Here t is the maturity of the contract and t_0 is the issue time.

The Svensson yield curve

Input:

 $(c_i)_{i=0,1,2,3}$: the constant coefficients of the Svensson model of interest rates.

 $(\lambda_i)_{i=1,2}$: the strictly positive mean-reversion rates, $\lambda_1 \neq \lambda_2$.

 t_0 : the initial time given as year fraction.

Output: the Svensson yield curve $\gamma = (\gamma(t))_{t \geq t_0}$. It has the form:

$$\gamma(t) = c_0 + c_1 \frac{1 - e^{-\lambda_1(t - t_0)}}{\lambda_1(t - t_0)} + c_2 \left(\frac{1 - e^{-\lambda_1(t - t_0)}}{\lambda_1(t - t_0)} - e^{-\lambda_1(t - t_0)} \right) + c_3 \left(\frac{1 - e^{-\lambda_2(t - t_0)}}{\lambda_2(t - t_0)} - e^{-\lambda_2(t - t_0)} \right), \quad t \ge t_0.$$

Implied volatility curve for the Black model

Input:

 $\lambda \geq 0$: the mean-reversion rate.

 $\sigma > 0$: the short-term volatility.

 t_0 : the initial time given as year fraction.

Output: the stationary implied volatility curve for the Black model. It has the form:

$$\Sigma(t) = \sigma \sqrt{\frac{1 - \exp(-2\lambda(t - t_0))}{2\lambda(t - t_0)}}, \quad t \ge t_0.$$

Forward LIBORs

Input:

 δt : the time interval for LIBOR.

 $(B(t_0,t))_{t\geq t_0}$: the discount curve; t_0 is the initial time.

Output:

 $(L^f(t,t+\delta t)=L^f(t,t+\delta t;t_0))_{t\geq t_0}$: the forward LIBORs for period δt computed at t_0 .

It costs nothing to enter the forward rate agreement (FRA) with maturity t and period δt as either a borrower or a lender. Forward LIBOR $L^f(t, t + \delta t)$ is set at issue time t_0 . In the contract,

- 1. At maturity t, the borrower receives notional N.
- 2. At time $t+\delta t$, the borrower pays the notional plus the interest computed at the forward LIBOR:

$$N(1 + L^f(t, t + \delta t)\delta t).$$

Forward curve obtained by linear interpolation of costof-carry rates

Input:

 S_0 : the current spot price.

 $(t_i)_{i=1,\dots,M}$: the maturities of forward contracts, $t_0 < t_1$.

 $(F_i)_{i=1,\dots,M}$: the market forward prices.

 t_0 : the initial time given as year fraction.

Output: the forward curve

$$F(t) = S_0 \exp(q(t)(t - t_0)), \quad t \in [t_0, t_M],$$

where cost-of-carry curve $q=(q(t))_{t\in[t_0,t_M]}$ is obtained by the linear interpolation of market cost-of-carry rates $(q_i)_{i=1,\dots,M}$. We recall that

$$F_i = S_0 \exp(q_i(t_i - t_0)), \quad i = 1, \dots, M.$$

We assume that on $[t_0,t_1]$ the cost-of-carry rate is constant:

$$q(t) = q_1, \quad t \in [t_0, t_1].$$