单片机电源接入引脚 6、24、41、57 接 3.3V 电源,接地引脚 5、25、40、56 以及 MONEN (19) 与地相连。

模拟通道 1~5 依次输入 ADXL202 模拟信号 PITCH 和 ROLL,及角速率陀螺信号 GYRO-X、GYRO-Y 和 GYRO-Z, P3.0~P3.3 输入遥控信号,设定 P0.4~P0.7为 PWM 输出:

为方便调试,并为以后拓展考虑,预留 P0.0~P0.3 为串口 1、2; 为能方便了解单片机当前工作是否正常,设置 P1.7 与 LED 相连; P1.6、P1.5 输入 ADXL202 数字信号 XOUT 和 YOUT,以提高系统的灵活性;

#### 3.2.8 电路板设计

#### 3.2.8.1 电路板

考虑到安装方便,因此将电路板设计成上下两层板,上下板之间经两个 10Pin 的接插件相连接(下板的 JP7 与上板的 JP9 相连接,下板的 JP8 与上板的 JP10 相连接),其中 18 个引脚具有电气连接关系。电路板设计尺寸:下板 1600mil×2000mil(即 40.6×50.8mm),上板 2300mil×2300mil(即 58.4×58.4mm),板子厚度 1mm。上下两板的结构设计如图 3-24 与 3-25 所示。



3-24 下板结构设计

58. 4mm



3-25 上板结构设计

在布置元件时,按照如下考虑进行布置:

- 为了调试方便,将 JTAG 调试接口安装在上电路板;
- 考虑散热方便,将大功率元件布置在最上层;

图 3-26、3-27 是整个控制系统硬件电路及控制电路板与接收机的连线图。



3-26 控制系统电路板



3-27 控制系统与接收机连接图

### 3.2.8.2 接口设计

由于本系统分布在上下两块板,两板之间存在电气连接,因此需要设计电路板间接口,上下板之间各对应引脚之间的电气连接关系如表 3-3 所示:

| Pin | Definition | Pin | Definition |
|-----|------------|-----|------------|
| 1   | 7.5V 电源    | 11  | 右电机控制      |
| 2   | 3.3V 电源    | 12  | 前电机控制      |
| 3   | 5.0V 电源    | 13  | 后电机控制      |
| 4   | 单片机状态显示    | 14  | 左电机控制      |
| 5   | JTAG-TDI   | 15  | 空          |
| 6   | JTAG-TDO   | 16  |            |
| 7   | JTAG-TMS   | 17  |            |
| 8   | JTAG-TCK   | 18  | 接地         |
| 9   | GYRO-Z     | 19  | GYRO-X     |
| 10  | ZREF       | 20  | GYRO-Y     |

表 3-3 接口引脚的电气定义

# 3.3 软件设计[19][20][21][23][40]

## 3.3.1 总体设计

本控制系统的软件部分采用 C 语言编制, 主要功能是接收遥控指令, 对飞