(1) Publication number:

0 290 153 Δ1

(2)

EUROPEAN PATENT APPLICATION

(1) Application number: 88303410.0

(5) Int. Cl.4: C07D 401/04 , C07D 471/04 , A61K 31/47

2 Date of filing: 15.04.88

Claims for the following Contracting States: ES + GR

- Priority: 21.04.87 GB 8709448
- Date of publication of application: 09.11.88 Bulletin 88/45
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- Applicant: Pfizer Limited
 Ramsgate Road
 Sandwich Kent CT13 9NJ(GB)
- ② Inventor: Campbell, Simon Frazer, Dr. Grey Friars Upper Street Kingsdown Deal Kent(GB) Inventor: Roberts, David Anthony, Dr. 8 Box Tree Mews Ivy Road Macclesfield Cheshire(GB) Inventor: Morris, David Stuart, Dr. 26 Wellesley Road Westgate-on-Sea Kent(GB)
- Representative: Graham, Philip Colin Christison et al Pfizer Limited Ramsgate Road Sandwich, Kent CT13 9NJ(GB)
- (S) Heterobicyclic quinolone derivatives.
- (5) Novel substituted quinolones of the formula:

where Het represents a heterobicyclic group having a 6-membered ring fused to a further 5-or 6-membered ring, containing 1 to 3 N-atoms in the non-fused positions, R is H or alkyl, and R¹ and R² are each H or alkyl, are force-selective cardiac stimulants.

Substituted Quinolones

The present invention relates to substituted quinolone cardiac stimulants which in general selectively increase the force of myocardial contraction without producing significant increases in the heart rate. The compounds are useful in the curative or prophylactic treatment of cardiac conditions, in particular heart failure.

Thus according to the present invention there are provided substituted quinolone compounds of the formula (I):

Het
$$\begin{bmatrix} 1 & R^{1} & R^{2} \\ 6 & 4 & 3 \\ 7 & 8 & 1 \\ 1 & 1 & 0 \\ R & H & 0 \end{bmatrix}$$

and their pharmaceutically acceptable salts,

wherein Het represents a heterobicyclic group having a 6-membered ring fused to a further 5 or 6 membered ring, containing from 1 to 3 N-atoms in the non-fused positions, attached by a nitrogen or carbon atom to the quinolone and optionally substituted in one or both of the rings with one or more C_{1-4} alkyl groups and/or an oxo group;

R is hydrogen or C₁₋₄ alkyl;

10

15

35

40

45

50

 R^1 and R^2 are each independently H or C_{1-4} alkyl and the dashed line between the 3-and 4-positions represents an optional bond in which case R^2 is absent.

Het is for example a group selected from indolinyl, phthalazinyl, benzimidazolyl, imidazopyridinyl, quinolinyl or isoquinolinyl groups.

The preferred substituents for Het are methyl and oxo.

Particularly preferred groups are benzimidazol-2-yl optionally substituted with up to 3 methyl groups, 2-oxo-benz-imidazol-1-yl, 2-methyl-benzimidazol-1-yl, 4-oxo-phthalazin-1-yl, 8-methyl-2-oxo-quinolin-6-yl, 3,3-dimethyl-2-oxo-indolin-5-yl, (1H)-imidazo[4,5-b]pyridin-6-yl, 2-oxo-imidazo[4,5-b]pyridin-6-yl or isoquinolin-4-yl.

The most preferred individual compound of the formula (I) has the formula:

i.e. R is methyl, Het is (1H)-imidazo[4,5-b]pyridin-6-yl, R¹ is H and there is a double bond between the 3-and 4-positions of the quinoline ring.

Although the compounds of the formula (I) are written as 2-(1H)-quinolones, it should be realised that the following tautomerism will occur:

5

10

15

20

25

30

However, as the keto-form is considered the more stable tautomer, the end products herein will be named and illustrated as quinolones although those skilled in the art will realise that both tautomers may be present or that any particular compound so named may exist predominantly as the hydroxy tautomer and the following disclosure is to be interpreted to incorporate all tautomeric forms.

Preferably there is a double bond in the 3,4-position. R, R₁ and R₂ are preferably H or CH₃. R is most preferably CH₃.

The pharmaceutically acceptable salts of the compounds of the formula (I) are either acid addition salts formed from acids which form non-toxic acid addition salts containing pharmaceutically acceptable anions, such as hydrochloride, hydrobromide, hydroiodide, sulphate or bisulphate, phosphate or hydrogen phosphate, acetate, maleate, fumarate, lactate, tartrate, citrate, gluconate, methanesulphonate and p-toluenesulphonate salts, or are metal salts, particularly the alkaline earth or alkali metal salts. The preferred metal salts are the sodium and potassium salts. All the salts are preparable by conventional techniques.

The cardiac stimulant activity of the compounds of the formula (I) is shown by their effectiveness in one or more of the following tests: (a) increasing the force of contraction in the "Starling" dog heart - lung preparation measured via a left ventricular catheter; (b) increasing myocardial contractility (left ventricular dp/dt max.) in the anaesthetised dog measured via a left ventricular catheter; (c) increasing myocardial contractility in the conscious dog with an implanted left ventricular transducer (dp/dt max.) or an exteriorised carotid artery loop (systolic time intervals).

In test (a), the positive inotropic effect of the test compound following bolus administration is measured in the "Starling" dog heart-lung preparation. The selectivity for increase in force versus frequency of contraction of the test compound is obtained.

In test (b), the positive inotropic action of the test compound following intravenous administration is measured in the anaesthetised dog. The magnitude and duration of this action, and the selectivity for increase in force versus frequency of contraction of the test compound are obtained, as are the peripheral effects, e.g. the effect on blood pressure.

In test (c) the positive inotropic action of the test compound following intravenous or oral administration to a conscious dog with an implanted left ventricular transducer (dp/dt max.) or an exteriorised carotid artery loop (systolic time intervals) is measured. The magnitude of the inotropic action, the selectively for increase in force versus frequency of contraction, and the duration of action of the inotropic effect or the test compound are all obtained.

The compounds of the formula (I) can be administered alone but will generally be administered in admixture with a pharmaceutical carrier selected with regard to the intended route of administration and standard pharmaceutical practice. For example they may be administered orally in the form of tablets containing such excipients as starch or lactose, or in capsules either alone or in admixture with excipients, or in the form of elixirs or suspensions containing flavouring or colouring agents. They may be injected parenterally, for example, intravenously, intramuscularly or subcutaneously. For parenteral administration, they are best used in the form of a sterile aqueous solution which may contain other solutes, for example, enough salts or glucose to make the solution isotonic.

For administration to man in the curative or prophylactic treatment of cardiac conditions such as congestive heart failure, it is expected that oral dosages of the compounds of the invention will be in the range from 10mg to 1g daily, taken in up to 4 divided doses per day, for an average adult patient (70kg). Dosages for intravenous administration would be expected to be within the range 0.5 to 100mg per single dose as required, for example in the treatment of acute heart failure. Thus for a typical adult patient, individual tablets or capsules might contain 2.5 to 250mg of active compound, in a suitable pharmaceutically acceptable vehicle or carrier. Variations may occur depending on the weight and condition of the subject being treated as will be known to medical practitioners.

Thus the present invention provides a pharmaceutical composition comprising a compound of the formula (I) as defined above or pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable diluent or carrier.

The invention also provides a method of stimulating the heart of a human being, which comprises

administering to said human a compound of formula (I) or pharmaceutically acceptable salt thereof, or a pharmaceutical composition as defined above, in an amount sufficient to stimulate the heart of said human.

The invention yet further provides a compound of the formula (I) or pharmaceutically acceptable salt thereof, for use in medicine, in particular for use in stimulating the heart of human being suffering from congestive heart failure.

The compounds of the formula (I) can be prepared by a number of routes, including the following:-

Route A:-

10

25

30

50

55

This route can be illustrated in general terms as follows:-

15
$$\mathbb{H}$$
 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^2

The demethylation is preferably carried out by heating the methoxyquinoline (II) in aqueous mineral acid, preferably aqueous HCl or HBr, and typically in 5M aqueous HCl or 48% aqueous HBr at up to reflux temperature, generally for 0.5-4 hours. Alternatively it is carried out by heating at up to reflux temperature in ethanol containing at least one equivalent (generally 5-15% by volume) of 48% aqueous HBr. The product can then be isolated and purified by conventional means.

A typical reaction using 5M HCl is illustrated as follows:

A typical reaction using 48% aqueous HBr is illustrated as follows:

A typical reaction using ethanol containing at least one equivalent of 48% HBr is illustrated as follows:

The starting materials of the formula (II) can be prepared by conventional procedures. Typical general routes to these materials, many of which are illustrated in detail in the following Preparations are as follows:-

l. nBuLi/THF/-50°C

$$\xrightarrow{\text{Het}}_{N} \xrightarrow{\text{OCH}_{3}}_{R}$$
/Pd(PPh₃)₄

Br R²

R

3. Het.Br

When it is required to prepare compounds wherein Het is substituted with an oxo group this may be achieved by use of a starting material containing a methoxy group which can subsequently be demethylated. Thus demethylation can be effected in both Het and the quinoline moiety simultaneously.

Route B:-

5

10

15

20

25

45

50

55

This route can be illustrated in general terms as follows:-

(III)

where Q is a leaving group such as C₁-C₄ alkoxy.

The cyclisation is preferably carried out by treating the propenamide (III) with concentrated, desirably substantially anhydrous (98%), sulphuric acid at room temperature until the reaction is complete, typically in 6-48 hours. If necessary, heating at up to 100°C can be carried out to speed up the reaction. The product can then be isolated and purified by conventional procedures. In the propenamide (III), Q is preferably ethoxy or methoxy.

The propenamide (III) can also be used in acid addition salt form.

A typical reaction is illustrated as follows:-

The starting materials of the formula (III) can be prepared by conventional procedures. A typical route to these materials, many of which are illustrated in detail in the following Preparations, is as follows:-

30 Route C:-

50

55

This route can be illustrated in general terms as follows:

where R3 is hydrogen or C1-C4 alkyl.

The reaction involves the condensation of a diaminobenzene of formula IV with a carboxylic acid to form the correspondingly substituted benzimidazole.

This reaction is typically carried out by heating the diaminobenzene of formula IV in the appropriate carboxyllc acid, desirably acetic acid, at a temperature up to reflux for 1-12 hours. The product can then be isolated and purified conventionally.

A typical reaction may be illustrated as follows:-

The starting materials of formula IV can be prepared by conventional procedures, typically as follows:-

Route D:-

5

20

25

40

45

50

55

This route may be illustrated in general terms as follows:-

This reaction involves the condensation of a diaminobenzene of formula IV with carbonyldiimidazole in a suitable solvent, typically tetrahydrofuran (THF) at temperatures ranging from 0°C up to reflux temperature for 0.5 to 4 hours. The product can be isolated and purified by conventional procedures.

A typical reaction may be illustrated as follows:-

Route E:-

Compounds of formula I, in which the optional double bond between the 3-and 4-positions of the quinoline ring is absent can be prepared by hydrogenation of compounds in which the double bond is present. This route can be illustrated in general terms as follows:-

The reaction is typically carried out by hydrogenation of the starting material (IB) in a suitable organic solvent (e.g. ethanol) over a transition metal catalyst (e.g. 5-10% palladium on charcoal or platinum oxide) at 1-330 atmospheres pressure and at up to 100°C.

Where the compounds of the invention contain one or more asymmetric centres, then the invention includes the separated enantiomers and diastereoisomers or mixtures thereof. The separated forms can be obtained by conventional means.

The following Examples illustrate the invention (all temperatures are in °C):

EXAMPLE 1

10

20

6-(1,5,6-Trimethylbenzimidazol-2-yl)-8-methyl-2-(1H)-quinolone, 0.25 H₂O

2-Methoxy-6-(1,5,6-trimethylbenzimidazol-2-yl)-8-methylquinoline (0.5 g) was added with stirring to hydrochloric acid (20 cm³ of a 5M aqueous solution) at room temperature (20°). The mixture was heated under reflux for 2 hours, cooled, poured into water (20 cm³), basified to pH9 with sodium carbonate solution, and extracted with methanol:dichloromethane (1:20 by volume, 2 x 100 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was recrystallised from ethyl acetate/methanol to afford the title compound, m.p. 314-6° (0.35 g).

Analysis %:

Found:

C,74.4; H,6.3; N,12.9; Calculated for C₂₀H₁₉N₃O,0.25 H₂O: C,74.6; H,6.1; N,13.0.

55

Examples 2-7

The following compounds (Formula IB) were prepared similarly to the procedure of Example 1 using the appropriate heterobicyclic substituted quinolone and hydrochloric acid as starting materials:-

Het
$$\begin{array}{c}
 & \text{HCl} \\
 & \text{HCl}
\end{array}$$

$$\begin{array}{c}
 & \text{Het} \\
 & \text{CH}_{3}
\end{array}$$
(IB)

				A "
5	rackets) N	13.9	<i>></i> 1	14.1
10	Analysis % (Theoretical in brackets) C H N	5.1	Characterised spectroscopically	5.2
	A (Theoret C	68.6	Characterised spectroscopic	74.0
15				
20	Form Isolated and m.p. (°C)	base 2 ⁰ -319°	base (d)	base H ₂ 0
25	Form and m	Free base 1,5 H ₂ 0 317.5-319°	Free base 322° (d)	Free base 0.25 H ₂ 0 266-8°
30		·		
35	llet	Z -=	= - Z Z	OH 3
40				
45				
50	Example No.	2	en .	4
55		<u> </u>	<u></u>	<u></u>

		-	į	"
5	Analysis % (Theoretical in brackets) C H N	13.1)	8.6	9.6
10	nalysis % ical in b H	4.4	5.1	5.8
	Al (Theoret: C	67.4 (67.3	74.3	74.1
15				
20	Form Isolated and m.p. (°C)	base	base H ₂ 0	base
25	Form and m	Free base H ₂ 0 >330°	Free base 0.33 H ₂ 0 >335°	Free base 0.33 H ₂ 0 >310°
30				/
35	Het	0=	₹	E - Z
40			T - Z	CH 3
45				
50	Example No.	٠	9	7
55	<u> </u>			

EXAMPLE 8

5

20

25

30

35

6-{(1H)-Imidazo(4,5-b)pyridin-6-yl)}-8-methyl-2-(1H)-quinolone, dihydrobromide, 2 H2O

2-Methoxy-6-(1H)-imidazo-[4,5-b]-pyridin-6-yl)-8-methylquinoline (0.13 g) was added with stirring to a solution of hydrobromic acid (1 cm³ of a 60% aqueous solution) in absolute ethanol (10 cm³) at room temperature (20°). The mixture was heated under reflux for 5 hours, cooled and filtered to give the title compound, m.p. >350° (0.07 g).

Analysis %:-

Found:

C,40.5; H,3.3; N,11.4;

Calculated for C₁₆H₁₂N₄O.2HBr.2H₂O:

C,40.5; H,3.8; N,11.8.

EXAMPLES 9-10

The following compounds (Formula IB) were prepared similarly to the procedure of Example 8 using the appropirate heterocyclic-substituted quinolone and hydrobromic acid as starting materials.

Het
$$OCH_3$$

Het OCH_3

Het OCH_3
 OCH_3

55

Í			
5	s % n brackets) N	11.3	15.0
10	Analysis % Analysis % (Theoretical in brackets)	56.4 3.9	51.6 3.5 (51.5 4.0
15	. 5	· ·	<u> </u>
20	Form Isolated and m.p. (°C)	Hydrobromide salt 0.25 H_20	Hydrobromide salt >350°
25	Form I and m.	Hydrobrom salt 0.25 H ₂ 0 >350°	Hydrob salt >350°
30			
35	Het		z
40		z > z =	= - Z Z - = O
45			
50	Example No.	6	100
55			

EXAMPLE 11

6-(Isoquinolin-4-yI)-2-(1H)-quinolone, 0.25 H2O

15 HBr NO-CH₃

2-Methoxy-6-(Isoquinolin-4-yI)-quinoline (0.5 g) was added with stirring to hydrobromic acid (5 cm³ of a 48% aqueous solution) at room temperature (20°C). The mixture was heated under reflux for 3 hours, cooled, poured into water (10 cm³), basified to pH 9 with sodium carbonate solution, and extracted with chloroform (4 x 50 cm³). The combined and dried (MgSO₄) extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:chloroform, 1:20 by volume. Collection and evaporation of appropriate fractions afforded a foam which on trituration with ethyl acetate gave the title compound, m.p. 248-51° (0.43 g).

Analysis %:-

Found:

20

30

55

C,77.9; H,4.5; N,9.9;

Calculated for C₁₈H₁₂N₂O, 0.25 H₂O:

C,78.1; H,4.6; N,10.1.

EXAMPLE 12

6-(2-Methylbenzimidazol-1-yl)-8-methyl-2-(1H)-quinolone

Trans-1-{4-[N-(3-ethoxypropenamido)]-3-methylphenyl}-2-methylbenzimidazole (1.45 g) was added with stirring to 98% w/w sulphuric acid (10 cm³) at 0°C. After 24 hours at room temperature (20°) the mixture was poured carefully onto ice (100 g) and the resulting solution was basified to pH9 with saturated sodium

carbonate solution. The mixture was then extracted with methanol:chloroform, 1:20 by volume (3 x 200 cm³), and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385: [Trade Mark]). Elution with methanol:dichloromethane, 1:50 by volume, followed by combination and evaporation of appropriate fractions gave a solid which was triturated with ethyl acetate to afford the title compound, m.p 307-313°, (0.42 g).

Analysis %:-

Found:

10

C,73.0; H,5.3; N,14.0; Calculated for C₁₈ H₁₅ N₃O: C,72.5; H,5.4; N,14.1.

15 EXAMPLE 13

3,4-Dihydro-4,8-dimethyl-6-(2-methylbenzimidazol-1-yl)-2-(1H)-quinolone

3,4-Dihydro-4,8-dimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone (0.39 g) was added with stirring to glacial acetic acid (3 cm³) and the mixture heated under reflux for 5 hours. Solvent was evaporated in vacuo and the residue partitioned between saturated sodium carbonate solution (40 cm³) and dichloromethane (50 cm³). The aqueous phase was separated and re-extracted with dichloromethane (2 x 50 cm³) and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with methanol:chloroform, 1:100 by volume followed by combination and evaporation at appropriate fractions gave a solid which was triturated with diethyl ether to afford the title compound, m.p. 248-252°, (0.11 g).

45 Analysis %:-

Found:

50

55

C,73.8; H,6.3; N,13.6; Calculated for C₁₉H₁₉N₃O: C,74.7; H,6.3; N,13.8.

EXAMPLE 14

3,4-Dihydro-4,4,8-trimethyl-6-(2-methylbenzimidazol-1-yl)-2-(1H)-quinolone, 0.25 H2O

This compound, m.p. 243-246°, was prepared similarly to Example 13 using 3,4-dihydro-4,8,8-trimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone and acetic acid as starting materials:-

10

15

5

Analysis %:-

Found:

C,73.8; H,6.7; N,12.7;

Calculated for C₂₀H₂₁N₃O,0.25 H₂O:

C,74.2; H,6.7; N,13.0.

EXAMPLE 15

3,4-Dihydro-4,8-dimethyl-6-(benzimidazol-1-yl)-2-(1H)-quinolone, 0.25 H2O

This compound, m.p. 198-203°, was prepared similarly to Example 13 using 3,4-dihydro-4,8-dimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone as one starting material and formic acid (rather than acetic acid) as the other starting material.

30

35

25

40

Analysis %:-

Found:

C,73.3; H,5.9; N,14.1;

5 Calculated for C₁₈H₁₇N₃O, 0.25 H₂O:

C,73.1; H,6.0; N,14.2.

EXAMPLE 16

50 .

55 .

3,4-Dihydro-4,8-dimethyl-6-(2-oxobenzimidazol-1-yl)-2-(1H)-quinolone

A solution of carbonyl diimidazole (0.33 g) in tetrahydrofuran (THF) (2 cm³) was added dropwise to a stirred solution of 3.4-dihydro-4.8-dimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone (0.24 g) in THF (2 cm³) at room temperature (20°). After 2 hours the solvent was evaporated in vacuo and the residue chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate. Collection and evaporation of appropriate fractions afforded a solid which was recrystallised from ethyl acetate to give the title compound, m.p. 250-254° (0.13 g).

25

30

15

Analysis %:-

Found:

C,69.7; H,5.7; N,13.6;

Calculated for C₁₈H₁₇N₃O₂:

C,70.3; H,5.6; N,13.7.

Preparation 1

2-Methoxy-6-{(1H)-imidazo-[4,5-b]pyridin-6-yl)}-8-methylquinoline

50

n-Butyllithium (5.5 cm³ of a 1.6 M solution in hexane) was added dropwise to a stirred solution of 2-methoxy-6-bromo-8-methylquinoline (2.04 g) in tetrahydrofuran (THF) (50 cm³) at -70° under nitrogen. After 1 hour a solution of anhydrous zinc chloride (4.9 g) in THF (50 cm³) was added and the mixture was allowed to warm to room temperature. 6-Bromo-(1H)-imidazo-[4,5-b]pyridine (0.32 g) and tetrakis (triphenylphosphine)-palladium (O) (0.1 g) were added and the mixture heated under reflux for 24 hours. Saturated ammonium chloride solution (10 cm³) was added to the cooled mixture followed by a solution of

ethylenediaminetetraacetic acid disodium salt (12.0 g) in water (200 cm³). Ethyl acetate (200 cm³) and methanol (60 cm³) were added and the phases separated. The aqueous layer was further extracted with methanol:chloroform, 1:10 by volume (2 x 200 cm³), and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to afford a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:10 by volume. Combination and evaporation of appropriate fractions gave the des-bromo quinoline starting material (0.92 g) and then the title compound (0.14 g) which was characterised spectroscopically and used without further purification in Example 8.

Preparations 2-7

The following compounds were prepared similarly to Preparation 1 using 2-methoxy-6-bromo-8-methyl-quinoline, n-butyllithium, zinc chloride and the appropriate bromo-heterobicyclic compound as starting materials:-

Γ			·	ă	-
5	rackets) N	13.2	8.0	17.4	8.0
10	Analysis % (Theoretical in brackets) C II N	5.1	5.9	4.5	6.1
15	A (Theoret C	70.8	76.4	63.9	75.0
20	lared (°C)	u	n ov	o .	9.
25	Form Isolated and m.p. (°C)	Free base H ₂ 0	Free base 205-207.5 ⁰	Free base 0.75 H ₂ 0 >350°	Free base 0.33 H ₂ 0 239-242 ⁰
30					
35	Het		#		
40	=	Z - E	OH OH	= - Z - = 0	CH3 CH3
45					
50	Preparation No.	2	er .	4	Ś
55		<u> </u>	1		<u></u>

À

5	% brackets) N	12.8	
10	Analysis % (Theoretical in brackets) C H N	7 4.9	Characterised spectroscopically
15 	(Theo	71.7	Cha
20	olated . (°C)	es o	
25	Form Isolated and m.p. (°C)	Free base 294-296 ⁰	·
30			
35	llet		z=
40			
45			
50	Preparation No.	9	7
55			

Preparation 8

2-Methoxy-6-(1-methylbenzimidazol-2-yl)-8-methyl-quinoline

n-Butyllithium (3.55 cm³ of a 1.55 M solution in hexane) was added dropwise to a stirred solution of 1-methyl-benzimidazole (0.6 g) in tetrahydrofuran (THF) (10 cm³) at -50° under nitrogen. After 1 hour a solution of anhydrous zinc chloride (1.5 g) in THF (10 cm³) was added and the mixture allowed to warm to room temeprature. 2-Methoxy-6-bromo-8-methylquinoline (1.25 g) and tetrakis (triphenylphosphine)-palladium (O) (0.05 g) were added and the mixture heated under reflux for 4 hours. Saturated ammonium chloride solution (10 cm³) was added to the cooled mixture, followed by a solution of ethylenediamine tetraacetic acid disodium salt (12.0 g) in water (200 cm³). Ethyl acetate (200 cm³ and methanol (20 cm³) were added and the phases separated. The aqueous layer was further extracted with methanol:dichloromethane; 1:20 by volume (2 x 200 cm³) and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to afford a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:100 by volume. Combination and evaporation of appropriate fractions gave the title compound (1.05 g) which was characterised spectroscopically and used in Example 4 without further purification.

Preparation 9

25

40

45

2-Methoxy-6-(1,5,6-trimethylbenzimidazol-2-yl)-8-methylquinoline, m.p. 167-168.5°, was prepared similarly to Preparation 8 using 2-methoxy-6-bromo-8-methylquinoline, n-butyllithium, zinc chloride and 1,5,6-trimethylbenzimidazole as starting materials:-

Analysis %:-

Found:

5

20

30

35

50

C,75.8; H,6.6; N,12.3;

Calculated for C₂₀H₁₉N₃O.0.25 H₂O:

C,76.1; H,6.4; N,12.7.

Preparation 10

1-Bromo-phthalazin-4-one

A mixture of phthalhydrazide (3.2 g) and phosphorus pentabromide (19.0 g) was heated with stirring in carbon tetrabromide (50 g) at 125° for 16 hours. The cooled mixture was poured into water (50 cm³) and the product collected by filtration. The solid product was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with diethyl ether:dichloromethane, 1:3 by volume. Combination and evaporation of appropriate fractions afforded the title compound, m.p. 268-271° (1.5 g).

Analysis %:-

Found:

C,42.1; H,2.2; N,12.2;

Calculated for C₈H₅N₂OBr:

C,42.7; H,2.2; N;12.4.

Preparation 11

3,3-Dimethyl-5-bromo-indol-2-one

A solution of bromine (1.98 g) in acetic acid (10 cm³) was added dropwise to a stirred solution of 3,3-dimethyl-indol-2-one (2.0 g) and sodium acetate (1.01 g) in acetic acid (10 cm³). The mixture was stirred at room temperature for 30 minutes, poured onto water (20 cm³), basified to pH9 with sodium carbonate, and extracted with ethyl acetate (3 x 50 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo and the residue chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:hexane:dichloromethane, 1:10:40 by volume. Combination and evaporation of the appropriate fractions gave the title compound, m.p. 166-166.5° (2.15 g).

Analysis %:-

Found:

C,49.9; H,4.2; N,5.9; Calculated for C₁₀H₁₀NOBr: C,50.0; H,4.2; N,5.8.

10 Preparation 12

Trans-1-{4-{ethoxypropenamido)} -3-methylphenyl]-2-methylbenzimidazole

Trans-3-ethoxypropenoyl chloride (1.15 g) was added dropwise to a stirred solution of 1-(3-methyl-4-aminophenyl)-2-methylbenzimidazole (2.0 g) in anhydrous pyridine (12 cm³), cooled to 0°C, and the mixture was warmed to room temperature (20°). After 1 hour saturated sodium carbonate solution (30 cm³) was added, and the mixture extracted with chloroform (3 x 100 cm³). The combined and dried (MgSO4) organic extracts were evaporated in vacuo, and the residue chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate. Combination and evaporation of appropriate fractions gave a solid which was recrystallised from ethyl acetate to give the title compound, m.p. 184-6° (0.25 g).

Analysis %:-

Found:

35

C,71.2; H,6,2; N,12.5; Calculated for C₂₀H₂₁N₃O₂: C,71.6; H,6.3; N,12.5.

5 Preparation 13

55

1-(3-Methyl-4-aminophenyl)-2-methylbenzimidazole

Stannous chloride dihydrate (45.9 g) was added portionwise to a stirred solution of 1-(3-methyl-4-nitrophenyl)-2-methylbenzimidazole (9.2 g) in absolute ethanol (200 cm³) under nitrogen. After heating under reflux for 1 hour, the cooled mixture was basified to pH 9 with aqueous 2.5 M sodium hydroxide and extracted with chloroform (3 x 200 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give the title compound (8.9 g) which was characterised spectroscopically then used directly in Preparation 12 without further purification.

Preparation 14

15

40

50

1-(3-Methyl-4-nitrophenyl)-2-methylbenzimidazole

A mixture of 5-fluoro-2-nitrotoluene (10.3 g), 2-methylbenzimidazole (8.7 g) and sodium carbonate (7.5 g) was heated with stirring in dimethylformamide (40 cm³) at 130° for 16 hours under nitrogen. The cooled mixture was evaporated in vacuo, water (50 cm³) added and the mixture extracted with methanol:chloroform, 1:10 by volume. The combined and dried (MgSO₄) organic extracts were evaporated in vacuoto give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate. Combination and evaporation of appropriate fractions afforded a solid which was recrystallised from hexane/acetone to give the title compound, m.p. 144-6°, (10.65 g).

Analysis %:-

Found:

C,67.5; H,4.7; N,15.6; Calculated for C₁₅H₁₃N₃O₂: C,67.4; H,4.9; N,15.7.

Preparation 15

5

20

2-Methoxy-6-(benzimidazol-2-yl)-8-methylquinoline

2-Methoxy-8-methylquinoline-6-carboxylic acid (1.09 g) was added in portions to a stirred mixture of ophenylene diamine (0.54 g) and phosphorus oxychloride (20 cm³) at room temperature (20°). The mixture was heated under reflux for 4 hours and then solvent was evaporated in vacuo. Ice (20 g) was added to the residue which was then basified to pH 9 with aqueous 2.5 M sodium hydroxide and filtered to yield a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanot:dichloromethane, 1:100 by volume. Combination and evaporation of appropriate fractions gave the title compound which was characterised spectroscopically and used directly in Example 2 without further purification.

Preparation 16

2-Methoxy-6-(2-oxobenzimidazol-1-yl)-8-methylquinoline

This compound, m.p. 280°, was prepared similarly to Example 16 using 2-methoxy-6-[(N-2-aminophenyl)-amino]-8-methylquinoline, and carbonyl diimidazole as starting materials. The product was characterised spectroscopically and used directly in Example 3 without further purification.

Preparation 17

55

40

2-Methoxy-6-[(N-2-aminophenyl)-amino]-8-methylquinoline

A solution of 2-methoxy-6[(N-2-nitrophenyl)-amino]-8-methylquinoline (0.2 g) in absolute ethanol (20 cm³) was hydrogenated at 60° p.s.i. (4.13 x 10⁵ Pa) pressure over 10% palladised charcoal (0.03 g) for 4 hours. The cooled solution was then filtered through "Solkafloc" (Trade Mark for a cellulose-based filtering aid), evaporated to dryness in vacuo, characterised spectroscopically and used directly in Preparation 16 without further purification.

Prepration 18

15

25

30

35

45

50

55

3.4-Dihydro-4,8-dimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone

This compound, m.p. 195-199°, was prepared similarly to Preparation 17 using 3,4-dihydro-4,8-dimethyl-6-[(N-2-nitrophenyl)-amino]-2-(1H)-quinolone, hydrogen and palladised charcoal as starting materials. The product was characterised spectroscopically and used directly in Examples 13, 15 and 16 without further purification.

Prepration 19

3,4-Dihydro-4,4,8-trimethyl-6-[(N-2-aminophenyl)-amino]-2-(1H)-quinolone

This compound, m.p. 90°, was prepared similarly to Prepration 17 using 3,4-dihydro-4,4,8-trimethyl-6-[-(N-2-nitrophenyl)-amino]-2-(1H)-quinolone, hydrogen and palladised charcoal as starting materials. The product was characterised spectroscopically and used directly in Example 14.

Prepration 20

3.4-Dihydro-4.8-dimethyl-6-{(N-2-nitrophenyl)-amino}-2-(1H)-quinolone, H2O

A mixture of 3,4-Dihydro-4,8-dimethyl-6-amino-2-(1H)-quinolone (2.13 g), 1-fluoro-2-nitrobenzene (1.72 g) and sodium carbonate (1.68 g) was heated with stirring in N-methyl-2-pyrrolidone (4 cm³) at 150° for 16 hours under nitrogen. The cooled mixture was partitioned between methanol:dichloromethane, 1:20 by volume (10 cm³) and saturated sodium carbonate solution (50 cm³). The aqueous phase was re-extracted with more methanol:dichloromethane, 1:20 by volume (2 x 100 cm³) and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate. Combination and evaporation of appropriate fractions afforded the title compound which was characterised spectroscopically and used directly in Preparation 18

Preparation 21

without further purification.

15

25

40

2-Methoxy-6-[(N-2-nitrophenyl)-amino]-8-methylquinoline

This compound, m.p. 185°, was prepared similarly to Preparation 20 using 2-methoxy-6-amino-8-methylquinoline, 1-fluoro-2-nitrobenzene, and sodium carbonate as starting materials. The product was characterised spectroscopically and used directly in Preparation 17 without further purification.

Preparation 22

3,4-Dihydro-4,8,8-trimethyl-6-[(N-2-nitrophenyl)-amino]-2-(1H)-quinolone

This compound, m.p. 205-211°, was prepared similarly to Preparation 20 using 3,4-dihydro-4,8,8-trimethyl-6-amino-2-(1H)-quinolone, 1-fluoro-2-nitrobenzene, and sodium carbonate as starting materials.

Analysis %:-

e Found:

C,65.5; H,6.0; N,13.0; Calculated for C₁₈H₁₉N₃O₃: C,65.5; H,6.0; N,12.7.

55 Preparation 23

3,4-Dihydro-4-methyl-6-amino-8-methyl-2-(1H)-quinolone

5

$$H_2^{N}$$
 H_2^{Pd-C}
 H_2^{Pd-C}
 H_2^{N}
 H_2^{N}

A suspension of 4-methyl-6-amino-8-methyl-2-(1H)-quinolone (0.38 g) in absolute ethanol (50 cm³) was hydrogenated at 100° and 2000 p.s.i. (13.7 x 10⁶ Pa) pressure over 10% palladised charcoal (0.05 g) for 72 hours. The cooled solution was then filtered through "Solkafloc" (Trade mark for a cellulose-base filtering aid) and evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:chloroform, 1:50 by volume. Combination and evaporation of appropriate fractions gave a residue which on trituration with ethyl acetate afforded the title compound, m.p. 207-10°, (0.22 g).

25 Analysis %-:

Found:

15

30

35

C,68.9; H,7.5; N,14.2; Calculated for $C_{11}H_{14}N_2O$:

C,69.4; H,7.4; N,14.7.

Preparation 24

3,4-Dihydro-4,4-dimethyl-6-amino-8-methyl-2-(1H)-quinolone

40
$$\begin{array}{c}
\text{NO}_2 \\
\text{CH}_3 \\
\text{NH}_2
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{NH}_2
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{EtoH}
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{EtoH}
\end{array}$$

A solution of 3,4-dihydro-4,4-dimethyl-6-nitro-8-methyl-2-(1H)-quinolone (9.46 g) in absolute ethanol (80 cm³) was hydrogenated at 60° and 60 p.s.i. (4.13 x 10⁵ Pa) pressure over Raney nickel (0.9 g) for 6 hours. The cooled solution was then filtered through "Solkafloc" (Trade mark for a cellulose based filtering aid) and evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:chloroform, 1:33 by volume. Combination and evaporation of appropriate fractions gave the title compound (3.17 g) which was characterised spectroscopically and used directly in Preparation 22 without further purification.

Preparation 25

3,4-Dihydro-4,4,8-trimethyl-6-nitro-2-(1H)-quinolone

A mixture of concentrated nitric acid (10 cm³, S.G. = 1.42) and 98% w/w sulphuric acid (25 cm³) was added dropwise to a stirred solution of 3,4-dihydro-4,4,8-trimethyl-2-(1H)-quinolone (6 g) in 98% w/w sulphuric acid (25 cm³) cooled to -10°. The temperature was maintained at -10° for a further 30 minutes, the mixture poured onto ice (200 g), basified to pH 9 with saturated sodium carbonate solution and extracted with methanol:chloroform, 1:20 by volume (2 x 300 cm³). The combined and dried (MgSO4) organic extracts were evaporated in vacuo to give the title compound (6.46 g) which was characterised spectroscopically and used directly in Preparation 24 without further purification.

Preparation 26

15

25

40

50

55

3,4-Dihydro-4,4,8-trimethyl-2-(1H)-quinolone

N-(1-oxo-3-methyl-but-2-en-yl)-2-methylaniline (0.5 g) was added with stirring to 98% w/w sulphuric acid (10 cm³) at 0°. After 2 hours at room temperature (20°) the mixture was poured carefully onto ice (30 g) and the resulting solution was basified to pH 9 with saturated sodium carbonate solution. The mixture was then extracted wilth dichloromethane (2 x 200 cm³), and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade mark]). Elution with dichloromethane, followed by combination and evaporation of appropriate fractions gave the title compound, m.p. 120° (0.21 g).

Analysis %:-

Found:

C,75.3; H,7.7; N,7.3; Calculated for C₁₂H₁₅NO:

C,75.1; H,7.7; N,7.4.

Preparation 27

N-(1-Oxo-3-methylbut-2-en-yl)-2-methylaniline

5
$$CH_3$$
 CH_3
 CH_3

3-Methylbut-2-en-oylchloride (24.2 g) was added dropwise to a stirred solution of 2-methylaniline (20 g) in anhydrous pyridine (200 cm³) cooled to 0°. After 1 hour solvent was evaporated in vacuo to yield a solid which was recrystallised from ether/petroleum ether (boiling range 40-60) to afford the title compound, m.p. 105 (29.5 g).

Analysis %:-

Found:

15

20

25

50

55

C,75.2; H,7.9; N,7.4;

Calculated for C₁₂H₁₅NO:

C,75.1; H,8.0; N,7.4.

30 Claims

1. A compound of the formula:

Het
$$\begin{array}{c|c}
R^1 & R^2 \\
\hline
6 & 5 & 4 & 3 \\
\hline
7 & 8 & 1 & 2 \\
\hline
N & H & O
\end{array}$$

or a pharmaceutically-acceptable salt thereof,

wherein Het represents a heterobicyclic group having a 6-membered ring fused to a further 5 or 6 membered ring, containing from 1 to 3 N-atoms in the non-fused positions, attached by a nitrogen or carbon atom to the quinolone and optionally substituted in one or both of the rings with one or more C_{1-4} alkyl groups and/or an oxo group;

R is hydrogen or C1-4 alkyl;

 R^1 and R^2 are each independently H or C_{1-4} alkyl and the dashed line between the 3-and 4-positions represents an optional bond in which case R^2 is absent.

- 2. A compound as claimed in claim 1, in which Het is an indolyl, phthalazinyl, benzimidazolyl, imidazopyridinyl, quinolinyl or isoquinolinyl group.
- 3. A compound as claimed in claim 1 or 2 in which Het is substituted by one or more methyl groups and/or an oxo group.

- 4. A compound as claimed in claim 1, 2 or 3 in which Het is benzimidazol-2-yl optionally substituted with up to 3 methyl groups, 2-oxo-benzimidazol-1-yl, 2-methyl-benzimidazol-1-yl, 4-oxo-phthalazin-1-yl, 8-methyl-2-oxo-quinolin-6-yl, 3,3-dimethyl-2-oxo-indolin-5-yl, (1H)-imidazo[4,5-b]pyridin-6-yl, 2-oxo-imidazo-[4,5-b]pyridin-6-yl or isoquinolin-4-yl.
 - 5. 6-{(1H)-lmidazo[4,5-b]pyridin-6-yl}-8-methyl-2-(1H)-quinolone.
- 6. A pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically-acceptable salt thereof, together with a pharmaceutically-acceptable diluent or carrier.
 - 7. A compound of formula (I) or a pharmaceutically-acceptable salt thereof for use in medicine.
- 70 Claims for the following contracting States: ES, GR

5

30

35

40

45

50

55

1. A process for preparing a compound of the formula:

wherein Het represents a heterobicyclic group having a 6-membered ring fused to a further 5 or 6 membered ring, containing from 1 to 3 N-atoms in the non-fused positions, attached by a nitrogen or carbon atom to the quinolone and optionally substituted in one or both of the rings with one or more C₁₋₄ alkyl groups and/or an oxo group;

R is hydrogen or C1-4 alkyl;

 R^1 and R^2 are each independently H or C_{1-4} alkyl and the dashed line between the 3-and 4-positions represents an optional bond in which case R^2 is absent; which comprises

(a) demethylating a compound of the formula:

wherein Het is as previously defined except that it may optionally be substituted with a methoxy group in place of an oxo group, and (if desired) hydrogenating a compound of formula (I) in which the optional double bond is present to give a compound of formula (I) in which the optional double bond is absent; or

(b) cyclising a compound of the formula:

Het
$$\mathbb{R}^{\mathbb{N}}$$
 $\mathbb{R}^{\mathbb{N}}$

(III)

wherein Q is a leaving group such as C₁-C₄ alkoxy, to give a compound in which there is double bond between the 3-and 4-positions of the quinoline ring system and R² is absent; or

(c) reacting a compound of the formula:

5

10

20

25

30

or

(IV)

with an acid of the formula R3CO₂H or carbonyldiimidazole to give a compound of the formula:

45 (V)

50 .

(VI)

15

20

5

10

respectively.

- 2. A process as claimed in claim 1(a) in which the compound of formula (II) is heated in aqueous mineral acid.
- 3. A process as claimed in claim 1(a) in which the compound of formula (II) is heated in ethanol containing at least one equivalent of 48% aqueous HBr.
- 4. A process as claimed in claim 1(b) in which the compound of formula (II) is treated with concentrated sulfuric acid at room temperature until reaction is complete.
- 5. A process as claimed in any preceding claim in which Het is an indolyl, phthalazinyl, benzimidazolyl, imidazopyridinyl, quinolinyl or isoquinolinyl group.
- 6. A process as claimed in any preceding claim in which Het in the compound of formula (II) is substituted by one or more methyl groups and/or a methoxy group to give a compound of formula (I) in which Het is substituted by one or more methyl groups and/or an oxo group.
- 7. A process as claimed in any preceding claim in which Het is benzimidazol-2-yl optionally substituted with up to 3 methyl groups, 2-oxo-benzimidazol-1-yl, 2-methyl-benzimidazol-1-yl, 4-oxo-phthalazin-1-yl, 8-methyl-2-oxo-quinolin-6-yl, 3,3-dimethyl-2-oxo-indolin-5-yl, (1H)-imidazo[4,5-b]pyridin-6-yl or isoquinolin-4-yl.
- 8. A process as claimed in any preceding claim in which R is methyl, Het is (1H)-imidazo[4,5b]pyridin-6-vl. R¹ is H and there is a double bond between the 3-and 4-positions of the quinoline ring.

35

40

45

50

EUROPEAN SEARCH REPORT

	DOCUMENTS CONSID	ERED TO BE RELEVAN	T	EP 88303410.0
Category		dication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI 4)
х	EP - A1 - 0 052 01	6 (OTSUKA)	1,6	C 07 D 401/04
^	* Formula I; at			C 07 D 471/04
	101111020 2,			A 61 K 31/47
A,P	EP - A1 - O 226 35	57 (PFIZER)	1,6	
А,Г	* Abstract *	<u> </u>		
		-		
X	CHEMICAL ABSTRACTS September 19, 198 USA	S, vol. 99, no. 1 3, Columbus, Ohio	2,1,6	
ı L	OTSUKA PHARMACEUT "Carbostyrils as page 353, column 93 757j	heart stimulants.	11	
•	& Jpn.Kokai Tokky [83-96 022]	o JP-58-96 022		
	_	-		TECHNICAL FIELDS SEARCHED (Int. CI 4)
A	CHEMICAL ABSTRACT January 31, 1983, USA	S, vol. 98, no. 5 Columbus, Ohio,	, 1,6	C 07 D 401/00
	OTSUKA PHARMACEUT "Carbostyril deri cardiotonic compo taining them." page 643, column 34 510e	vatives and a sition con-		C 07 D 471/00
	& Belg.BE 892 148	3		
İ		·		
		•		
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the sear	ch	Examiner
	VIENNA	17-06-1988		HAMMER
7 Y Y A A A A A A A A A A A A A A A A A	particularly relevant if taken alone particularly relevant if combined w document of the same category technological background non-written disclosure	E : earlier after ti rith another D : docum L : docum	patent docum ne filing date nent cited in th nent cited for o	nderlying the invention in the properties of the published on, or the application in their reasons.