UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE FILOSOFÍA DE LAS MATEMÁTICAS Ejemplo: La naturaleza y los fundamentos de la matemática según Hilbert

SEMESTRE: Séptimo u octavo

CLAVE: **0750**

HORAS A LA SEMANA/SEMESTRE		
TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna I, Análisis Matemáti-

co II, Ecuaciones Diferenciales I, Variable Compleja I. SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): El alumno distinguirá la manera en que la matemática fue pensada desde la antigüedad hasta principios del siglo XIX y los cambios ocurridos tras la aparición de las geometrías no euclidianas, el álgebra abstracta y la teoría cantoriana de conjuntos. El alumno conocerá las distintas concepciones de la matemática que se desarrollaron a raíz de estos cambios, con especial énfasis en el formalismo de Hilbert. El alumno estudiará en detalle el llamado Programa de Hilbert, sobre todo en relación a la filosofía y fundamentos de la matemática, y conocerá el efecto que tuvieron sobre él los llamados teoremas limitativos de Gödel.

NUM. HORAS	UNIDADES TEMÁTICAS	
10	1. El desarrollo del método axiomático	
	1.1 La axiomática en la antigua Grecia.	
	1.2 Las geometrías no euclidianas.	
	1.3 Un cambio en el concepto: la axiomática formal.	
	1.4 El problema de la consistencia de la geometría euclidiana.	
	1.5 Hilbert y el pensamiento axiomático.	
10	2. La matemática moderna y la teoría de conjuntos	
	2.1 La matemática moderna .	
	2.2 La liberación del álgebra.	
	2.3 La teoría de grupos y el programa de Erlangen.	
	2.4 La matemática moderna en la física .	
	2.5 La aritmetización del análisis.	
	2.6 La teoría de conjuntos.	

25	3. El programa de Hilbert
	3.1 El problema de los fundamentos.
	3.2 El logicismo de Russell y Whitehead.
	3.3 El intuicionismo de Brouwer.
	3.4 La naturaleza de la matemática clásica según Hilbert.
	3.5 La intuición del signo.
	3.6 El programa de Hilbert.
25	4. Los teoremas de Gödel
	4.1 El espíritu de una época: verdad y demostrabilidad.
	4.2 Los teoremas de Gödel.
	4.3 Consecuencias para el programa.
	4.4 Significado de los teoremas de Gödel para la filosofía de las ma-
	temáticas.
10	5. Conclusiones
	5.1 Hilbert: un balance.
	5.2 La cuestión de los fundamentos.
	5.3 Conclusiones generales.

BIBLIOGRAFÍA BÁSICA:

- 1. Benacerraf, P., Putnam, H., *Philosophy of Mathematics, Selected Readings*, Cambridge: Cambridge University Press, 2^a edición, 1991.
- 2. Brouwer, L.E.Jan, "Intuitionism and Formalism", en [Benacerraf y Putnam, 1991], pp. 77-89.
- 3. Brouwer, L.E.J., "Intuitionistic reflections on formalism", en [Heijenoort, 1967] pp. 490-492.
- 4. Gödel, K., "On undecidable sentences, (1931?)", "What is Cantor's continuun problem?", "Some basic theorems on the foundations of mathematics and their implications", "Is mathematics syntax of languaje?" versiones III y V. Todas estas obras aparecen en *Gödel: Collected Works*, vols. II y III, Oxford: Oxford University Press.
- 5. Heijenoort, J. van, From Frege to Gödel, a Source Book in Mathematical Logic, 1879-1931, Harvard: Harvard University Press, 1967.

- 6. Hilbert, D., Foundations of Geometry. London: Open Court Publishing Co., 1962.
- 7. Hilbert, D., "Mathematical Problems", en *Proceedings of Symposia in Pure Mathematics*, Vol. 28, American Mathematical Society, 1976: 1–34.
- 8. Hilbert, D., Fundamentos de las Matemáticas (recopilación de ensayos), México: Colección MATHEMA, Facultad de Ciencias, UNAM, 1993.
- 9. Russell, B., Los Principios de las Matemáticas, Argentina: Espasa Calpe S. A., 1967.
- 10. Russell, B., *Introduction to Mathematical Philosophy*., London: George Allen and Unwin Ltd, décima edición, 1960.
- 11. Russell, B., Whitehead, A., *Principia Mathematica (To *56)*, Cambridge: Cambridge University Press, 4^a ed. 1967.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Euclides, Elementos de Geometría I-II, México: UNAM, 1992.
- 2. Weyl, H., Filosofía de las Matemáticas y de la Ciencia Natural, México: Universidad Nacional Autónoma de México, 1965.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.