

CONCOURS D'ENTREE EN 1ère ANNEE – SESSION AVRIL 2020

EPREUVE DE MATHEMATIQUES

Deux exercices au choix - Durée 1h30

EXERCICE 1 5 pts

1- On considère la suite (u_n) définie par : $u_0=0$, $\ u_1=1$ et pour tout entier naturel n,

$$u_{n+2} = 5u_{n+1} - 4u_n$$

Calculer u_2 , u_3 , u_4 de la suite (u_n) .

0.25*3=0.75 pt

- 2- a) A l'aide d'un raisonnement par récurrence, montrer que pour tout entier naturel n, $u_{n+1}=4u_n+1$. 0.75 pt
- b) Montrer que pour tout entier naturel n, u_n est un entier naturel. 0.5 pt
- c) Déduire des questions précédentes, pour tout entier naturel n, le PGCD de $u_n\ et\ u_{n+1}$.
- 3- Soit (V_n) la suite définie pour tout entier naturel n par : $V_n = u_n + \frac{1}{3}$
- a) Montrer que (V_n) est une suite géométrique dont on déterminera le premier terme V_0 et la raison. 0.75 pt
- b) Exprimer V_n puis u_n en fonction de n.

0.25*2 pt

- c) Déterminer pour tout entier naturel, le PGCD de $4^n 1$ et $4^{n+1} 1$. 0.5 pt
- 4- En calculant la différence $(4^{n+1}-1)-(4^n-1)$, retrouver le résultat obtenu au 3.c. 0.75 pt

EXERCICE 2 5points

Soient les matrices
$$A=\begin{pmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{pmatrix}$$
 $P=\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ et $D=P^{-1}\times A\times P$

1- Calculer P^{-1} et D.

0.5*2 pt

Démontrer que pour tout entier naturel n, $A^n = P \times D^n \times P^{-1}$.

1.5pt

2- En déduire l'expression de A^n en fonction de n.

1 pt

3- calculer A^2 et A^3 .

0.75*2

EXERCICE 3 5 pts

PARTIE A 1.5 pts

Soit la fonction V definie sur]0; $+\infty$ [$par : V(x) = \frac{2lnx}{x^2+x}$

1-) Montrer que pour tout x supérieur ou égal à 1, $\frac{\ln x}{x^2} \le V(x) \le \frac{\ln x}{x}$. 0.5pt

2-) Calculer $I = \int_{1}^{\frac{3}{2}} \frac{\ln x}{x^2} dx$ et $J = \int_{1}^{\frac{3}{2}} \frac{\ln x}{x} dx$; 0.5pt

3-) En déduire un encadrement de $K = \int_{1}^{\frac{3}{2}} V(x) dx$. 0.5pt

PARTIE B 3.5 pts

f désigne la fonction numérique de la variable réelle x définie par : $f(x) = x - \frac{e^{x}-1}{e^{x}+1}$ et (C) sa courbe représentative dans un repère orthonormé. Unités sur les axes : 2cm.

1- Etudier les variations de f puis dresser son tableau de variation. 0.75pt

2- a-) Montrer que pour tout réel x, on a : $f(x) - (x - 1) = \frac{2}{e^x + 1} = \frac{2e^{-x}}{1 + e^{-x}}$ 0.25ptb-) Montrer que les droites (D) et (D') d'équations respectives : y = x-1 et y = x+1 sont asymptotes a la courbe (C) de f.

c-) Tracer les droites (D); (D') et la courbe (C) de f dans le même repère. 0.5pt

3- a-) Montrer que f admet sur \mathbb{R} une reciproque f^{-1} dont on donnera le tableau de variation. 0.5pt

b-) Tracer la courbe (C') de f^{-1} dans le même repère que (C). 0.25pt

4-Soit a un réel supérieur ou égal à 1. $\mathcal{A}(\alpha)$ L'aire en cm^2 de la partie du plan délimitée par la courbe (C), la droite (D) et les droites d'équations x=1 et x=a.

a-) Calculer $\mathcal{A}(a)$ et preciser $\mathcal{A}(2)$ a 10^{-2} pres. 0.5pt

b-) Calculer la limite de $\mathcal{A}(a)$ quand a tend vers $+\infty$. 0.25pt

0.5pt

EXERCICE 4 5 pts

Un sac contient 8 boules indiscernables au toucher dont 5 boules de couleur noire. On tire simultanément 6 boules du sac.

- **1-** Calculer la probabilité d'obtenir exactement trois boules noires. 0.5 pt
- **2-** On répète 10 fois de suite de façons identiques et indépendantes le tirage simultané et au hasard de 6 boules du sac.

Calculer la probabilité d'obtenir exactement 6 fois, 3 boules noires à l'issu de l'épreuve. 1.5 pt

- 3- On tire n fois de suite et de façons identiques et indépendantes 6 boules de l'urne.
- Calculer la probabilité P_n de l'évènement E : « obtenir au moins une fois trois boules de couleur noire ».
- **4-** Déterminons le nombre minimum de fois qu'on peut répéter l'épreuve pour que la probabilité de E soit au moins égale à 0.95.