Compiler Construction Optimizations

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

University of Freiburg

16. Juli 2024

Outline

- 1 Introduction
- 2 Peephole Optimizations
- 3 Nonlocal Transformations
- 4 Common Subexpression Elimination (CSE)

- Objective: Transform the code to improve its run time, memory use, energy efficiency, etc.
- The transformation must preserve the semantics!
- Each optimization has two aspects
 - 1 a condition under which the optimization is applicable
 - 2 the actual program transformation
- An optimization can happen at any level
- Two examples of optimization
 - peephole optimization
 - common subexpression elimination

Outline

- 1 Introduction
- 2 Peephole Optimizations
- 3 Nonlocal Transformations
- 4 Common Subexpression Elimination (CSE)

Folding expressions

If $c=c_1\odot c_2$ for a binary operation \odot , then

$$I: x \leftarrow c_1 \odot c_2 \} \longrightarrow \{ I: x \leftarrow c \}$$

Folding expressions

If $c = c_1 \odot c_2$ for a binary operation \odot , then

$$I: x \leftarrow c_1 \odot c_2 \} \longrightarrow \{ I: x \leftarrow c \}$$

Folding conditionals

Let $c_1?c_2$ be a comparison.

 $I: \text{ if } c_1?c_2 \text{ then } I_1 \text{ else } I_2$ \longrightarrow $\{I: \text{ goto } I_1$ if c_1 ? c_2 is true

 $I: \text{ if } c_1?c_2 \text{ then } l_1 \text{ else } l_2 \} \longrightarrow \{ I: \text{ goto } l_2 \}$ if c_1 ? c_2 is false

Folding across multiple instructions

Suppose \oplus is associative and $c=c_1\oplus c_2$

$$\begin{array}{ll} I_1: & y \leftarrow x \oplus c_1 \\ I_2: & z \leftarrow y \oplus c_2 \end{array} \right\} \longrightarrow \left\{ \begin{array}{ll} I_1: & y \leftarrow x \oplus c_1 \\ I_2: & z \leftarrow x \oplus c \end{array} \right.$$

 \blacksquare sometimes y becomes dead and l_1 can be eliminated

Folding across multiple instructions

Suppose \oplus is associative and $c=c_1\oplus c_2$

$$\begin{vmatrix}
l_1: & y \leftarrow x \oplus c_1 \\
l_2: & z \leftarrow y \oplus c_2
\end{vmatrix} \longrightarrow \begin{cases}
l_1: & y \leftarrow x \oplus c_1 \\
l_2: & z \leftarrow x \oplus c
\end{cases}$$

 \blacksquare sometimes y becomes dead and l_1 can be eliminated

Folding summary

- Very simple
- Classical peephole optimization: can be performed locally

4□ ト 4団 ト 4 豆 ト 4 豆 ・ り Q ○

- Replace an expensive instruction by a cheaper one.
- Usually: exploit arithmetic laws

$$x + 0 = x$$

$$x - 0 = x$$

$$x * 0 = 0$$

$$x * 1 = x$$

$$x * 2^{n} = x << n$$

(more interesting in connection with loops)

Peter Thiemann Compiler Construction 16. Juli 2024 7 / 20

These instruction sequences look unnatural, but they do arise after register allocation.

$$I: x \leftarrow x$$
 \longrightarrow $\{ I: nop$

$$\begin{array}{ccc} I_1: & x \leftarrow y \\ I_2: & y \leftarrow x \end{array} \right\} \longrightarrow \left\{ \begin{array}{ccc} I_1: & x \leftarrow y \\ I_2: & \mathsf{nop} \end{array} \right.$$

Outline

- 1 Introduction
- 2 Peephole Optimizations
- 3 Nonlocal Transformations
- 4 Common Subexpression Elimination (CSE)

Mission

- **Explore** the consequences of a constant assignment $x \leftarrow c$.
- Thus enable constant folding.

Transformation rule

Let a stand for an arbitrary argument. If it is known that x=c at label I, then

$$l: y \leftarrow x \odot a \} \longrightarrow \{ l: y \leftarrow c \odot a \}$$

$$I: y \leftarrow a \odot x \} \longrightarrow \{ I: y \leftarrow a \odot c \}$$

Constant Propagation (2)

Applicability

- dataflow analysis (working on CFG)
- lacktriangle recall structure: program point o variable o domain
- domain for liveness: bool (ordered by false < true)</p>
- lacktriangle domain for CP: V_{\perp}^{\top} where V is the set of constants

Constant Propagation (2)

Applicability

- dataflow analysis (working on CFG)
- lacktriangledown recall structure: program point ightarrow variable ightarrow domain
- domain for liveness: bool (ordered by false < true)</p>
- domain for CP: V_{\perp}^{\top} where V is the set of constants

Domain construction: CP lattice

Let ⊎ denote disjoint union.

$$V_{\perp}^{\top} := V \uplus \{\bot\} \uplus \{\top\}$$

Define a partial order on V_{\perp}^{\top} by

- for all \hat{v} : $\bot < \hat{v}$ and $\hat{v} < \top$
- for all $v, w \in V$: $v \le w$ iff v = w

Constant Propagation (3)

Lattice

- V_{\perp}^{\top} is a *complete lattice* because every subset of elements has a least upper bound \square and a greatest lower bound \square .
- (Knaster Tarski Theorem) Every monotone function on V_{\perp}^{\top} has a fixed point.

Constant Propagation (3)

Lattice

- V_{\perp}^{\top} is a *complete lattice* because every subset of elements has a least upper bound \square and a greatest lower bound \square .
- (Knaster Tarski Theorem) Every monotone function on V_{\perp}^{\top} has a fixed point.

Structure of the Analysis

- lacksquare for each label, we have a preCP and a postCP : var $ightarrow V_{ot}^{ op}$.
- Initially, every variable is mapped to ⊥ everywhere (unassigned).
- For each instruction *I*, we define a monotone *transfer* function that maps preCP(*I*) to postCP(*I*).
- Moreover, $preCP(I) = \bigsqcup_{p \in pred(I)} postCP(p)$
- ⇒ a forward analysis!

Constant Propagation (4)

Abstract evaluation

eval :
$$(\text{var} \to V_{\perp}^{\top}) \times \text{expression} \to V_{\perp}^{\top}$$

$$\text{eval}(\rho, x) = \rho(x)$$

$$\text{eval}(\rho, e_1 \oplus e_2) = \text{eval}(\rho, e_1) \, \hat{\oplus} \, \text{eval}(\rho, e_2)$$

- If one argument of $\hat{\oplus}$ is \bot , then the result is \bot .
- Otherwise, if both arguments $v, w \in V$, $v \oplus w = v \oplus w$.
- lacksquare Otherwise, if one argument is \top , then the result is \top .
- (⊕ can be any binary operator including conditional)
- (unary operators are analogous)

Transfer functions

Let $\rho = \text{preCP}(I)$ and $\rho' = \text{postCP}(I)$.

- $I: x \leftarrow e$, then $\rho' = \rho[x := eval(\rho, e)]$
- $l: \mathbf{if} \ x = e \mathbf{then} \ l_1 \mathbf{else} \ l_2$, then let $\hat{e} = \mathrm{eval}(\rho, e)$ and
 - $ho_1' =
 ho[x := \hat{e} \sqcap
 ho(x)]$ and
 - $\rho_2' = \rho \text{ if } \hat{e} = \rho(x) \supseteq \text{false}$
 - $\rho_2' = \bot$ otherwise
- l : **if** e **then** l_1 **else** l_2 , then let $\hat{e} = \text{eval}(\rho, e)$
 - $ho_1' =
 ho$ if $\hat{e} \supseteq \mathbf{true}$; otherwise \bot
 - $\rho'_2 = \rho$ if $\hat{e} \supseteq$ **false**; otherwise \bot

Constant Propagation (6)

```
z = 3
x = 1
while (x > 0) {
   if (x = 1) then
      y = 7
   else
      y = z + 4
   x = 3
   print y
```

Outline

- 1 Introduction
- 2 Peephole Optimizations
- 3 Nonlocal Transformations
- 4 Common Subexpression Elimination (CSE)

Avoid recomputation of the same expression

Transformation

$$\begin{vmatrix}
l_1: & y \leftarrow a_1 \oplus a_2 \\
& \dots \\
l_2: & z \leftarrow a_1 \oplus a_2
\end{vmatrix} \longrightarrow \begin{cases}
l_1: & y \leftarrow a_1 \oplus a_2 \\
& \dots \\
l_2: & z \leftarrow y
\end{cases}$$

Conditions

- y should not be updated on any path from l_1 to l_2
- No variable occurring in $a_1 \oplus a_2$ should be changed on any path from l_1 to l_2
- Implemented with domain available expressions (AE)
- Enabled by $(y, a_1 \oplus a_2) \in AE(I_2)$

Domain construction: AE lattice

 $AE = \{(y, e) \mid y \in var, e \in expression\}$

- powerset lattice (a complete lattice)
- finite for every program instance because each program contains finitely many variables and finitely many expressions
- ⇒ effective computation of the least fixed point

Transfer Functions

Let $\alpha = \text{preAE}(I)$ and $\alpha' = \text{postAE}(I)$.

- $l: x \leftarrow e$, then $\alpha' = (\alpha \setminus \{(y, e') \mid y = x \lor x \in e'\}) \cup \{(x, e)\}$
 - \blacksquare remove prior assignments to x
 - remove expressions that (may have) changed due to assignment to *x*

CSE(2)

Transfer Functions

Let $\alpha = \text{preAE}(I)$ and $\alpha' = \text{postAE}(I)$.

- $l: x \leftarrow e$, then $\alpha' = (\alpha \setminus \{(y, e') \mid y = x \lor x \in e'\}) \cup \{(x, e)\}$
 - \blacksquare remove prior assignments to x
 - remove expressions that (may have) changed due to assignment to x

Style of analysis

- Forward analysis
- At joins of the control flow we only keep expressions available in all predecessors
- \Rightarrow preAE(I) = $\bigcap_{p \in \text{pred}(I)} \text{postAE}(p)$

Special case

If $(x, y) \in \text{preAE}(I)$, then we could replace uses of x by uses of y in instruction I.

- Advantage: might be able to eliminate x and thus the assignment(s) $x \leftarrow y$
- Disadvantage: the life range of y gets extended \Rightarrow increased register pressure