Сборник практических заданий к учебному пособию "Введение в лямбда-исчисление" Кравчук Иван 5302

Оглавление

Введение	3
Расстановка скобок	
Свободные и связанные переменные	
Комбинаторы	
Подстановки	
Редукция	
Нормальная форма	
Редукционные графы	
Ответы для самопроверки	

Введение

Данный сборник практических заданий является дополнением учебного пособия "Введение в лямбда-исчисление" и служит для практического закрепления изученного материала. Сноска у каждой темы указывает на страницу учебного пособия, на которой находится необходимая информация, однако предпочтительно, чтобы данные задания выполнялись самостоятельно, после изучения определенного раздела.

Расстановка скобок¹

Раскройте скобки, где это необходимо

- 1. M(N(K(P)))
- 2. ((M(KN)P)(L))
- 3. P(N)((MN)(L))
- 4. (MP)(L(N(K)))
- 5. M(NK)P(NL)
- 6. (M((PN)K))
- 7. (K(P(L)M)N(B))

4

¹ Стр. 4

Свободные и связанные переменные²

Определить для данного лямбда-терма множество свободных (FV) и связанных переменных (BV). Определить, является ли этот терм комбинатором.

- 1. $\lambda x. axy$
- 2. $\lambda xy.xzx$
- 3. $\lambda xyz.xzyx$
- 4. $\lambda x. yz$
- 5. λaxy.zxayxz
- 6. $\lambda f. fxx$
- 7. $\lambda px.axpzp$

² Стр. 5

Комбинаторы³

Дано определение комбинатора. Записать соответствующий лямбда-терм

- $1. \quad Ix = x$
- $2. \quad Sxyz = xz(yz)$
- 3. Kxy = x
- $4. \quad K^*xy = y$
- 5. $\omega x = xx$
- 6. Nxyz = yxzzy
- 7. Mx = x(xx)

³ Стр. 6

Подстановки4

Произвести указанные подстановки. Там, где это необходимо, выполнить α-конверсию.

- 1. (abx)[x = y]
- 2. $(\lambda x. y)[y = z]$
- 3. $(\lambda x. yz)[z := x]$
- 4. $(\lambda xy. yzxa)[z := a][a := x]$
- 5. (axy)[x = y]
- 6. $(\lambda xy. N)[x := P]$
- 7. (xab)[y = z]

⁴ CTp. 8, 9

Редукция⁵

Дан лямбда-терм. Произвести редукцию (один раз).

- 1. $\lambda x.xy$
- 2. $(\lambda x. xy) z$
- 3. $\lambda x. xx \lambda x. xx$
- 4. $\lambda xy. y x z$
- 5. $\lambda xy. Mx N$
- 6. $(\lambda xy. x(yx))y$
- 7. $(\lambda f g x. f x(g x)) \lambda x. x x \lambda x. x \lambda x. x \lambda x. x x$ (применить нормальную стратегию редукции)⁶

⁵ Стр. 10 ⁶ Стр. 14

Нормальная форма⁷

Привести лямбда-терм к нормальной форме.

- 1. $\lambda x. xx \lambda y. y \lambda xy. yz$
- 2. $(\lambda x. xy) z$
- 3. $\lambda xy. x(yx) y$
- 4. $\lambda xy. x \lambda x. x$
- 5. $(\lambda xy. yxy) \lambda xy. y \lambda xy. x$
- 6. $(\lambda xy.x)(\lambda z.z)(\lambda x.(xx)\lambda x.(xx))$
- 7. $\lambda f g x. f(g x) \lambda x y. x \lambda x. x x \lambda x. x$

⁷ Стр. 12

Редукционные графы⁸

Дан лямбда-терм. Построить для него редукционный граф.

- 1. $\lambda xy. x(yx) y$
- 2. $\lambda x.(xx) \lambda x.(xx)$
- 3. $\lambda x.(xx)(\lambda x.(xx)\lambda x.(xx))$
- 4. $(\lambda x.(\lambda y.y))(\lambda x.(xx)\lambda x.(xx))$
- 5. $(\lambda x.(\lambda y.y))(\lambda x.(xx)(\lambda x.(xx)\lambda x.(xx)))$
- 6. $\lambda x. x \lambda z. z \lambda xy. x$
- 7. $(\lambda xy. yxy) \lambda xy. y \lambda xy. x$

10

⁸ Стр. 15

Ответы для самопроверки

Раскрытие скобок

- 1. M(N(KP))
- 2. M(KN)PL
- 3. PN(MNL)
- 4. MP(L(NK))
- 5. M(NK)P(NL)
- 6. M(PNK)
- 7.K(PLM)NB

Свободные и связанные переменные

- 1. $FV = \{a, y\} BV = \{x\}$, не является комбинатором
- 2. $FV = \{z\} BV = \{x, y\}$, не является комбинатором
- 3. $FV = \{\emptyset\} BV = \{x, y, z\}$, является комбинатором
- 4. $FV = \{y, z\} BV = \{x\}$, не является комбинатором
- 5. $FV = \{z\} BV = \{a, x, y\}$, не является комбинатором
- 6. $FV = \{x\} BV = \{f\}$, не является комбинатором
- 7. $FV = \{a, z\} BV = \{p, x\}$, не является комбинатором

Комбинаторы

- $1. \lambda x. x$
- 2. $\lambda xyz. xz(yz)$
- 3. $\lambda xy.x$
- $4. \lambda xy. y$
- 5. λx . xx
- 6. λxyz . yxzzy
- 7. $\lambda x. x(xx)$

Подстановки

- 1. *aby*
- $2. \lambda x. z$
- 3. $\lambda x. yx'$
- 4. λxy . yx'xx'
- 5. *ayy*

- 6. λ*xy*. *N*
- 7. *xab*

Редукция

- 1. *y*
- 2. *zy*
- 3. $\lambda x. xx \lambda x. xx$
- 4. z
- 5. λ*y*. *MN*
- 6. $\lambda y. y'(yy')$
- 7. $\lambda x. xx \lambda x. xx (\lambda x. x \lambda x. xx)$

Нормальная форма

- 1. λxy . yz
- 2. *zy*
- 3. $\lambda y. y'yy'$
- $4. \lambda yx.x$
- 5. $\lambda xy. y$
- 6. λz. z
- 7. λx . x

Редукционные графы

1

2.

3.

4.

5.

