#### LECTURE NO. 15

5.2 Infinite Series

Wright State University

### Sequence vs Series

- Recall that a sequence is a set of numbers listed in order.
- A sequence  $a_n = \frac{1}{n}, n \ge 1$ :

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$

- A series is the sum of all numbers in an infinite sequence.
- An example of series

• Recall that a sequence  $\{a_n\}$  is convergent if

$$\lim_{n\to\infty} a_n = a \text{ number}$$

• It is much harder to test if a series is convergent.



## Partial Sums and Convergence of a Series

- We cannot add infinitely many numbers; we need to use partial sums.
- Given

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + \cdots$$

- The partial sum  $S_n$  is the sum of the first n terms.
  - $S_1 = a_1;$
  - $S_2 = a_1 + a_2;$
  - $S_3 = a_1 + a_2 + a_3$ ;
  - $S_4 = a_1 + a_2 + a_3 + a_4;$
  - $S_n = a_1 + a_2 + a_3 + \cdots + a_n$

$$\sum_{n=1}^{\infty} a_n$$
 is convegent if  $\lim_{n \to \infty} S_n = a$  number.

# An example on Partial Sum

• Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$





• Let's compute some partial sums:

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

$$S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$$

The pattern suggests that  $S_n = \frac{2^n - 1}{2^n}$ .

$$\lim_{n \to \infty} \left(\frac{1}{2^n}\right) - \frac{1}{2^n} = \lim_{n \to \infty} \left(-\frac{1}{2^n}\right)$$

Since  $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{2^n-1}{2^n} = 1$ , the series  $\sum_{n=1}^{\infty} \frac{1}{2^n}$  is convergent to 1.

### More Examples on Partial Sums

$$\sum_{n=1}^{\infty} (-1)^{n+1} = 1 + (-1) + 1 + (-1) + \cdots$$

- $S_1 = 1$
- $S_2 = 1 + (-1) = 0$
- $S_3 = 1 + (-1) + 1 = 1$
- $S_4 = 1 + (-1) + 1 + (-1) = 0$

- Sn: 1,0,1,0,1,0, 1,0, ---
  - Lins Sn DNE N-780
- ▶ The pattern suggests that  $S_n = 1$  if n is odd;  $S_n = 0$  if n is even.

Since  $\lim_{n\to\infty} S_n$  does not exist, the series  $\sum_{n=1}^{\infty} (-1)^{n+1}$  is divergent.

## More Examples on Partial Sums

$$\sum_{n=1}^{\infty} \frac{n}{n+1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \cdots$$

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{2}{3} \ge \frac{1}{2} \cdot 2$$

$$S_3 = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} \ge \frac{1}{2} \cdot 3$$

$$S_4 = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} \ge \frac{1}{2} \cdot 4$$

The pattern suggests that  $S_n \geq \frac{1}{2} \cdot n$ .

Since 
$$\lim_{N\to\infty} \frac{1}{2}N = \infty$$
,

 $\lim_{N\to\infty} \frac{1}{2}N = \infty$ 
 $\lim_{N\to\infty} \frac{1}{2}N = \infty$ 

Since 
$$\lim_{n\to\infty} S_n = \infty$$
, the series  $\sum_{n=1}^{\infty} \frac{n}{n+1}$  is divergent.

#### Geometric Series

$$\sum_{n=1}^{\infty} ar^{n-1}$$

$$\sum_{n=1}^{\infty} ar^{n-1} = \alpha + \alpha r + \alpha r^2 + \alpha r^3 + \cdots$$

$$S_n = \alpha + \alpha r + \alpha r^2 + \alpha r^3 + \cdots + \alpha r^{n-1}$$

$$r_{nultuply} \text{ both sides by } r \text{ in } (1)$$

$$rS_n = \alpha r + \alpha r^2 + \alpha r^3 + \cdots + \alpha r^{n-1} + \alpha r^n (2)$$

$$(1-r)S_n = \alpha - \alpha r^n = \alpha (1-r^n)$$

$$S_n = \frac{\alpha(1-r^n)}{1-r}$$

for 
$$\sum_{n=1}^{\infty} \alpha r^{n-1}$$
  $(\alpha \neq 0)$   
 $= \alpha + \alpha r + \alpha r^2 + \alpha r^3 + \cdots$ 

$$=$$
  $ar^n = a + a + a + a + \cdots$  divergent if  $a \neq 0$ ,  $n=1$ 

Care 2. 
$$Y = -1$$
.

$$\gamma^{n} = (-1)$$

Care 2: 
$$r = -1$$
.  $r^n = (-1)^n$  lim  $S_n = \lim_{n \to \infty} \frac{G(1-r^n)}{1-r}$  Does not exist! divergent.

Case 3. 
$$|Y|>1$$
, (or  $|Y|>1$ , or  $|Y|<-1$ )  $\lim_{n\to\infty} S_n=\pm\infty$ ,

$$l'm Y^n = 0$$
 $n-1\infty$ 

$$J_{n}$$
  $S_{n} = J_{n}$ 

Case 3. In | 1, | 
$$l = 0$$
 |  $l = 0$  |  $l = 0$ 

if 
$$|r| < 1$$
. Tommon Ratho

# Writing Repeated Decimals as Fraction

• 3.5
$$\overline{26}$$
 = 3.52626262626... = 3.5 + 0.02626262626 ----

=  $\frac{7}{2}$  + (0.026 + 0.00026 + 0.0000026 + ---- Common Radio Too

Grandfile series with  $Y = \overline{100}$  converged to That term

 $\overline{1-annum}$  Ratio

=  $\frac{7}{2}$  +  $\frac{26}{\overline{1000}}$  ·  $\overline{1000}$  =  $\frac{7}{2}$  +  $\frac{26}{\overline{1000-10}}$  =  $\frac{7}{2}$  +  $\frac{26}{\overline{990}}$  ·  $\frac{2}{495}$ 

=  $\frac{3465}{\overline{990}}$  +  $\frac{26}{\overline{990}}$  =  $\frac{3.491}{\overline{990}}$  ANSWER!  $\frac{495}{3465}$ 

### A Telescope Sum

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
Where partial fractions,  $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ 

$$\frac{1}{n(n+1)} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\frac{1}{n(n+1)} = \frac{1}{n} \cdot \frac{1}{n(n+1)} = \frac{1}{n} \cdot \frac{1}{n+1} = \frac{1}{n} \cdot \frac{1}{n+1} = \frac{1}{n} \cdot \frac{1}{n+1} = \frac{1}{n} \cdot \frac{1}{n+1} = \frac{1}{n+1} =$$