سوال ۱. با استفاده از روش دوبخشی 1 به سوالات زیر پاسخ دهید.

الف. ریشه تابع ۱۰
$$f(x)=x^{\mathtt{r}}+\mathtt{f} x^{\mathtt{r}}-\mathtt{l}$$
 در ۷ گام بیابید.

ب. ریشه تابع
$$g(x) = x - e^{-x}$$
 به دست آورید.

سوال ۲. اگر تابع f(x) را به شکل زیر تعریف کنیم،:

$$f(x) = \begin{cases} e^{-\frac{1}{x^{\mathsf{Y}}}} & x \neq \mathbf{\cdot} \\ \mathbf{\cdot} & x = \mathbf{\cdot} \end{cases}$$

نشان دهید در روش نیوتن ^۲، اگر x، x, x, x, باشد، آنگاه به بیش از ۱۰۰ میلیون گام برای رسیدن به مقدار کمتر از x, x, نیازمندیم. تابع را پیوسته و مشتق پذیر در نظر بگیرید. همچنین x تنها پاسخ تابع است.

پاسخ:

Solution: The differentiation (for $x \neq 0$) is straightforward. (Showing that f'(0) = 0 is more delicate, but we don't need that here.) By the Chain Rule,

$$f'(x) = \frac{2e^{-1/x^2}}{x^3}.$$

Write down the standard Newton Method iteration. The e^{-1/x_n^2} terms cancel, and we get

$$x_{n+1} = x_n - \frac{x_n^3}{2}$$
 or equivalently $x_n - x_{n+1} = \frac{x_n^3}{2}$.

Now the analysis is somewhat delicate. It hinges on the fact that if x_n is close to 0, then x_{n+1} is very near to x_n , meaning that each iteration gains us very little additional accuracy.

Start with $x_0 = 0.0001$. It is fairly easy to see that $x_n > 0$ for all n. For $x_1 = x_0(1 - x_0^2/2)$, and in particular $0 < x_1 < x_0$. The same idea shows that $0 < x_2 < x_1$, but then $0 < x_3 < x_2$, and so on forever.

 $^{^{1}}$ Bisection Method

²Newton Raphson

Thus if we start with $x_0 = 0.0001$, the difference $x_n - x_{n+1}$ will always be positive and equal to $x_n^3/2$, and in particular less than or equal to $(0.0001)^3/2$. So with each iteration there is a shrinkage of at most 5×10^{-13} . But to get from 0.0001 to 0.00005 we must shrink by more than 5×10^{-5} . Thus we will need more than $(5 \times 10^{-5})/(5 \times 10^{-13})$, that is, 10^8 iterations. (More, because as we get closer to 0.00005, the shrinkage per iteration is less than what we estimated.)

سوال ۳. مقدار $\sqrt[7]{6}$ را با استفاده از روش نیوتن و نقطه ثابت $\sqrt[8]{6}$ بیابید و با هم مقایسه کنید.

سوال ۴. فرض کنید $f(x) = x^{\gamma} - a$ با روش نیوتن عبارت زیر را اثبات کنید. همچنین تحقیق کنید این عبارت در کدام روش مشهور ریشه یابی به کار میرود.

$$x_{n+1} = \frac{1}{Y} \left(x_n + \frac{a}{x_n} \right) \tag{1}$$

سوال ۵. دستگاه معادلات خطی زیر را با استفاده از روش گاوس_سیدل و روش ژاکوبی تا حداکثر ۵ مرحله یا خطای $1 \cdot - 1$ حل کنید.

$$\begin{cases} \Delta/\Delta \ln x_1 + \cdot/\Lambda \beta x_1 + \cdot/\Upsilon \Upsilon x_2 = \Upsilon \cdot \\ \cdot/\Upsilon \beta x_1 + \Lambda/\Lambda \beta x_1 + 1/\Upsilon \Upsilon x_2 = \Upsilon 9/\Upsilon \cdot \\ \cdot/\Upsilon x_1 + \cdot/\Delta \Lambda x_1 + \Delta/\Lambda \Upsilon x_2 = \Upsilon \Upsilon \end{cases}$$

سوال ۶. دترمینان و وارون ماتریس زیر را با استفاده از روش حدف گاوسی بدست آورید:

موفق باشيد.

 $^{^3}$ Fixed point