BLATT 10

DANIEL SCHMIDT & PAMELA FLEISCHMANN

Aufgabe 1. Um zu zeigen, dass sich für jede TRC-Anfrage zu einem DB-Schema σ eine äquivalente Anfrage des DRC zu σ finden lässt definieren wir uns einen Algorithmus, welcher TRC-Anfragen zu DRC-Anfragen umformt. Sei also eine allgemeine TRC-Anfrage $(x)/\theta(x)$, so lässt sich der Algorithmus wie folgt beschreiben:

Sei zunächst für jede Variable k in x mit dem Typen τ_1, \dots, τ_n neue Variablen k_1, \dots, k_n mit den entsprechenden Typen eingeführt. Nun gilt es die Variablen zu ersetzen um DRC-Anfragen zu erhalten, dies geschieht nach den folgenden Regeln:

Wenn $RT_i(k)$ gegeben ist, so muss dies durch $RT_i(k_1, \dots, k_n)$ ersetzt werden. Falls $k.B_j\theta c(c\theta k.B_j)$ gegeben ist, so muss dies durch $k_j\theta c(c\theta k_j)$ ersetzt werden. Wenn $k.B_j\theta z.C_h$ gegeben ist, so muss dies ersetzt werden durch $k_j\theta z_h$.

Falls $\exists k$ gegeben ist, so muss dies falls k gebunden ist durch $(\exists k_1), \dots, (\exists k_n)$ ersetzt werden. Falls k ungebunden ist, so ist dies nicht nötig, da das Ergbnis ohnehin nicht weiterverwendet wird. Analog lässt sich $\forall k$ umformen. Zuguterletzt muss die Zielfunktion noch angepasst werden, entprechend also $(x)/\cdots$ zu $(x_1, \dots, x_n)/\cdots$ umgeformt werden.

Aufgabe 2.