	(7/20 ×
	a) because lithium has 3 electrons and 7 wedeens
	the spins from the nucleus always form an
a Produce	even angular momentum som with the electrons
	(Inviters = 1/2, 3/2, 52, 01 7/2 I don't linew which
	Lesections = 1/2 01 3/2
	and the yphenical tensors available to these to add typether
<u> </u>	with a (odd half integer) & (odd bulfintager)
S. C.	= odd - odd + 1111 + 1 och + odd
	Maldel and all odd todd = even,
	Since & Simil = even we have

8	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
$\frac{1}{2} \left[\frac{1}{2} \left$	E(a) = 1c/2, 4Tr. (3 terms)
letting 441 = C.e - 1202 - 120 = 2411 Save 16, 2	(1) [widre - 1/20 - 1/20 = - 1/2 drn2 - 1/20 dr + 24) [- 2v - 1/20]
Now the fundamental question integral is Jok & -ax =	2m - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
then (-4) (dx 8 = (dx x 8 = 1) then (-4) 1	$= -b^{2} \int_{0} d\nu \left(-\frac{3\nu^{2} - \nu^{2}}{a^{2}} e^{-\nu} + \frac{\nu^{4} - \nu^{2}}{a^{4}} e^{-\nu} \right)$
$S_{O}[c] \int_{0}^{2\pi} dx \times^{2} e^{-X_{0}^{2}} = [c-1] \cdot \frac{d}{d(V_{0})} \int_{0}^{\pi} \frac{1}{ V_{0} ^{2}}$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$= u' - I \xrightarrow{\frac{1}{2}} x^{-1/2} \xrightarrow{\gamma} y $ $= u' ^{\frac{1}{2}} \cdot x^{-3/2} \xrightarrow{\gamma} z $	$\frac{1}{2 \ln a} = -\frac{4^2}{4} = \sqrt{17} = \frac{3}{2} \left(\frac{1}{2} \right)^{-5/2}$
Then the numerator 19 12 May 12 Th	(1) = 3427 a = 3427 a = 3427 a
$\int_{-a}^{a} \int_{-a}^{b} \int_{-a}^{b$	(π c ² factor wanter this x 4πlc1² = α3 42π π, 2 2m πa

131+ (17.2 1 (37 m w 2 a + 2 1 Ng a 7 + 161	Very = 8.07 (3 57 mw 2 2 + 2 N 1 2) + 34 7 2 mar 2 mar 2 mar 3 + 34 2 mar 3 + 34 2 mar 3 mar 4 = 34 2 m 4 2 mar 3 mar 4 = 34 2 m 4 2 mar 4 2 ma	2m =(c) = 6π mω ² α ² + J2π Mg, τρΕ τ3με λη (σπ Mg) 3 46 ² π	$\begin{cases} \begin{cases} \begin{cases} \frac{N}{2} \end{cases} \end{cases} & \begin{cases} \frac{N}{2} \end{cases} & \begin{cases} \frac{N}{2} \end{cases} \end{cases} & \begin{cases} \frac{N}{2} \end{cases} & \\ \frac{N}{2} \end{cases} & \begin{cases} \frac{N}{2} \end{cases} & \\ \frac{N}{2} \end{cases} $	12 mw a = 3 mm 1 1 mm a = 3 mm 1 1 mm 2 4 m mw 2
2 = 5 vdr. = mw2 r2 = = = = = = = = = = = = = = = = = =	PE (2) = $\frac{1}{2} m \omega^2$. $\frac{3}{2} \pi \Omega$ = $\frac{1}{2} \pi \Omega$ = $\frac{3}{2} \pi \Omega$ = $\frac{3}{2} \pi \Omega$	Intruction (3) = \(M_9 \\ \rac{1}{2} 1		о = KE+ = mw = 2 m a + Ng cl - a U 2 ym c

	Mays 00 7ge V/Ce
Ed amin 20 NV5	then W=-03, 02 6 mm 2 - 34 th and 1 gm 127 19
and Hain = 67 mu ² a ² + Ju Ng/a3 VIII	52 Ng 15
X W + W X X X X X X X X X X X X X X X X	2 - 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	29 (1 + 6) + 34 Th (129) 18
8) For anin = (45 mag) 115	N4 (5/2) 5 = (-36 2 T) 5 2 9
N= amin 45 mar .	1. 97,656 = - (37) 5 ms 47 mw
number of new	6
agin part () as the Number of partiles	m = -0.048 . th
Potential everyy (IRE = 0), else the	
"KETPE =-Int E That to Think a = -JET My	

d) We solve for the Womber which yields the critical BEC density on Hutis,	N/03 = -65th , (2th) 2145/2 760 V/22 Q2
What number/as yields us a BEC.	- 35 1 there I = 35 d 1978 Umm.c
the HIRE + HOE terms, Good 1	= 0.000 de or 2/m² + 0.0001511 m²/a²
H(N/a3) cnitical = 0	
3 (6 :-)2TT 9(N) = 6TW nat + 34 th 1	$M_{a^3} \approx 0.00015 \left(\frac{m^2}{a^2}\right)$
Hen Was = - 6 JF Wind - 342 JF	N x a N = 0,00015 a m2
M= 76eV/c2	(hm)3
9 = 10(hc) 1-11/am) = 10 (c) (-1.5) MC ² 76eV hm)	MU
8 = 2T × 145 Hz 11 - 0,105 eV/m 3	So the exact womber depends on the
	Trap gize or waybe I left out
	an additional constraint or this problem,