Apellidos:

Examen E1 (temas 2 y 3)

- Duración del examen: 1:15 horas.
- La solución de cada ejercicio se tiene que escribir en el espacio reservado para ello en el propio enunciado.
- N o podéis utilizar calculadora, móvil, apuntes, etc.
- La solución del examen se publicará en Atenea mañana y las notas antes del 8 de marzo a la noche.

Pregunta 1) (Objetivos 2.4) (1.5 punto)

Cada fila de la tabla tiene 3 columnas con: el vector X de 8 bits, X expresado en hexadecimal y el valor en decimal, X_u, que representa X interpretado como un número natural codificado en binario. Completa todas las casillas vacías.

X	X (hexa)	X_{u}
10010101	95	149
01001111	4F	79
11001001	C9	201
00111100	3C	60

Criterio de valoración: -0.5 puntos por cada fila con algún error. (tres o más filas mal es un 0)

Pregunta 2) (*Objetivos 3.5 y 3.17*) (*1 punto*)

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque C1) completad la tabla de verdad de la salida W y escribid la expresión lógica en suma de minterms.

Х	Y	Z	W
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Tabla de verdad de W:

Tabla de verdad de C1

a	b	С	d	е
0	0	0	1	0
0	1	1	0	0
1	0	1	0	1
1	1	1	1	0

Expresión en suma de minterms de W:

$ X \cdot Y \cdot Z + X \cdot Y \cdot Z + X \cdot Y \cdot Z $	
---	--

IC-12-13-Q2

Criterio de valoración: +0.5 puntos: Tabla de verdad correcta. Binario. Si algún error en la tabla un 0 en todo el ejercicio. +0.5 puntos: Expresión en suma de minterms correcta. Binario

Pregunta 3) (Objetivo 3.13) (1 punto)

Dado el esquema del circuito de la pregunta anterior, escribid el camino crítico (todos si hay varios) y el tiempo de propagación del circuito. Los tiempos de propagación del bloque C1 (en la tabla) y de las puertas son: Tp_(Not) = 10, Tp_(And-2) = 20, $Tp_{(Or-2)} = 30$ y $Tp_{(Xor-2)} = 40$ u.t. Por ejemplo, si el camino que va de Y a W y pasa por el bloque C1 y por la puerta OR fuese un camino crítico, se especificaría de la siguiente forma: $Y \rightarrow C1_{a-e} \rightarrow OR-2 \rightarrow W$.

Tiempos de propagación de C1

_		Ĭ	
Ιр	С	a	е
а	15	30	60
b	20	50	70

Caminos Críticos =

 $X \rightarrow C1b-d \rightarrow NOT \rightarrow AND-2 \rightarrow OR-2 \rightarrow W$ $X \rightarrow C1b-c \rightarrow XOR-2 \rightarrow AND-2 \rightarrow OR-2 \rightarrow W$

Criterio de valoración: +0.25 puntos: por cada camino correcto.

+0.5 si Tp es correcto, pero sólo si todos los caminos son correctos si no 0.

Pregunta 4) (Objetivos 2.1 y 2.2) (1 punto)

a) Escribid la fórmula que da el valor de un número natural en función de los 5 dígitos que lo representan en el sistema convencional en base 3.

$$X_u = \sum_{i=0}^4 X_i * 3^i$$

Criterio de valoración: +0.5 puntos si es correcto. Con cualquier error 0 puntos.

b) Expresad el rango de los números naturales que se pueden representar en el sistema convencional en base 2 para el caso de un vector X de 70 bits.

$$0 \le X_u \le 2^{70} - 1$$

 $0 \le X_u \le 2^{70} - 1$ Criterio de valoración: +0.5 puntos si es correcto. Con cualquier error 0 puntos.

Pregunta 5) (*Objetivos 3.6* y *3.10*) (*1 punto*)

a) ¿Cuantas puertas And y Or y de cuantas entradas cada una hacen falta para implementar directamente la expresión en suma de minterms de la función w de la siguiente tabla de verdad

a	b	C	w
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Número puertas AND = entradas.

Número puertas OR = 1 entradas.

Criterio de valoración: +0.25 puntos por cada fila de puertas correcta.

b) Especificar el tamaño mínimo de la ROM para sintetizar un circuito de 6 entradas y 5 salidas.

Número de palabras = $2^6 = 64$

Bits por palabra =

Criterio de valoración: +0.25 puntos por cada respuesta (caja) correcta.

Pregunta 6) (*Objetivo 3.12*) (*1.5 puntos*)

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ u.t. Debéis operar adecuadamente con las zonas sombreadas (no se sabe el valor que tienen) y dibujar la señal sombreada cuando no se pueda saber si vale 0 o 1.

Criterio de valoración: -0.5 puntos por la primera fila mal. Binario

-1 punto por la segunda fila mal. Binario.

(2 filas o más mal es un 0)

Apellidos: Nombre: DNI:

Pregunta 7) (*Objetivos 3.5* y *3.17*) (*1.5 puntos*)

Dibujad el mapa de Karnaugh con las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función w de un circuito al que le correspondería la siguiente tabla de verdad.

а	b	С	đ	w
0	0	0	0	1
0	0	0	1	х
0	0	1	0	1
0	0	1	1	x
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1 1 1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1 0
1 1	0	1	0	1
1	0	1	1	x
1	1	0	0	0
1	1	0	1	x
1	1	1	0	1 0
1	1	1	1	0

a) Dibuja el Mapa de Karnaugh donde se vea claramente los grupos que has escogido

b) Indica la expresión mínima de w

$$w = | !a + c \cdot !d + !b \cdot !d$$

Criterio de valoración: Si grupos de unos óptimos y expresión coherente: 1,5 puntos en total Si grupos de unos óptimos pero error en la expresión de un grupo: 1 puntos en total

Si grupos de unos correctos pero no óptimos y expresión coherente: 0.5 puntos en total

Más errores de los indicados o el mapa mal creado: un 0 en total

Pregunta 8) (*Objetivos 3.2 y 3.11*) (*1.5 puntos*)

Implementad con una ROM el circuito que calcule las siguientes operaciones aritméticas. Cada una de las entradas (a y b) es un vector de 2 bits que representa un número natural. Cada salida (z y w) es un vector de 3 bits que codifica un valor natural. Nota: el asterisco es la operación de multiplicación, la admiración es el factorial y las barras verticales representa el truncamiento del valor por defecto.

$$w = \left\lfloor \frac{a * 2}{3!} \right\rfloor + \left\lfloor \frac{b^2 + 7}{5} \right\rfloor$$

Dibujad la implementación del circuito usando únicamente una ROM e indicando claramente su contenido.

Criterio de valoración:

-0.5 puntos por cada fila incorrecta. Cada fila binario. (3 o más filas mal es un 0).

Si faltan las indicaciones del orden de las filas de la rom: -0.25 puntos. Si faltan las indicaciones del peso de las entradas: 0 puntos de la pregunta.