Avaliação do Desempenho dos Sistemas de Computação

António de Brito Ferrari

ABF - AC I Desempenho

1

Critérios de seleção de um Reportório de Instruções (ISA)

- simplicidade do equipamento exigido para execução das instruções,
- clareza da sua aplicação aos problemas realmente importantes
- velocidade de resolução desses problemas

(Burks, Goldstine e von Neumann, 1947)

A regularidade favorece a simplicidade

- todas as instruções do instruction set codificadas com o mesmo número de bits
- instruções aritméticas operam sempre sobre registos e colocam o resultado também num registo

O mais comum deve ser mais rápido

 Ex: quando o operando é uma constante esta deve fazer parte da instrução (é usual mais de 50% das instruções que utilizam a ALU envolverem constantes)

ABF - AC I MIPS IS_1

Como medir o desempenho?

- Duas perspetivas:
 - Utilizador: tempo de execução dos programas execution time
 - Gestor de um datacenter: número de tarefas executadas por dia; Sistema do Multibanco: número de transações possíveis de efetuar por minuto – throughput
- Perspetiva em AC 1 execution time
- Em Sistemas de Operação abordam-se as duas perspetivas

ABF - AC I Desempenho

3

Tempo de Execução

- Tempo de Execução tem vários significados:
 - Tempo decorrido entre entre o início e o fim da execução da tarefa – response time ou elapsed time – inclui entrada e saída de dados (I/O), acessos ao disco, tempo gasto pelo sistema de operação, ... - System Performance
 - 2. Tempo que o processador gasta a executar o programa do utilizador (excluindo tempo de espera por I/O, etc.) *CPU time*

CPU time = user CPU time + system CPU time user CPU time - CPU Performance

ABF - AC I Desempenho

CPU Performance

CPU time = № de ciclos de relógio do CPU * Tempo de ciclo

= Nº de ciclos de relógio / Frequência do relógio

Nº de ciclos de relógio =

Nº de instruções do programa * № médio de ciclos por instrução

>> CPI - Clocks Per Instruction

CPU time = Nº de instruções * CPI / Frequência de relógio

> Melhorar desempenho implica:

➤ Diminuir nº de instruções → Definição do Instruction Set

ou:

➢ Diminuir CPI

ou:

Aumentar frequência do relógio

ABF - AC I Desempenho

CPI

• O número de ciclos de relógio por instrução depende do tipo de instrução:

$$\begin{aligned} \mathsf{CPI}_{\mathsf{m\acute{e}dio}} &= \Sigma_{\mathsf{instru}\varsigma \widetilde{\mathsf{o}}\mathsf{e}\mathsf{s}} (\mathsf{CPI}_{\mathsf{instru}\varsigma \widetilde{\mathsf{a}}\mathsf{o}} * \mathsf{f}_{\mathsf{instru}\varsigma \widetilde{\mathsf{a}}\mathsf{o}}) \\ &\qquad \qquad \mathsf{frequ\^{e}ncia} \; \mathsf{da} \; \mathsf{instru}\varsigma \widetilde{\mathsf{a}}\mathsf{o} \end{aligned}$$

➤ O CPI de um processador é sempre um valor médio do nº de ciclos de relógio em que cada instrução é executada. Essa média é pesada pela frequência de execução de cada instrução (i.e. o CPI varia com o(s) programa(s) usados para o medir)

ABF - AC I Desempenho

Desempenho Relativo

Performance = 1 / Tempo de execução

Performance_A / Performance_B =

 $(1 / Tempo de execução_A) / (1 / Tempo de execução_B)$

= Tempo de execução_B / Tempo de execução_A

ABF - AC I Desempenho

7

Evolução do desempenho dos processadores (relativamente ao VAX-11/780) Intel Xeon, 3.6 GHz 64-bit Intel Xeon, 3.6 GHz AMD Opteron, 2.2 GHz 5564 5764 AMD Athlon, 1.6 GHz 4195 entium III, 1.0 GHz 2584 10.000 Intel Pentium III, 1.0 GHz 472 Alpha 21264A, 0.7 GHz 1779 Alpha 21264, 0.6 GHz 1267 ha 21164, 0.6 GHz 993 1000 Alpha 21164, 0.6 GHz Alpha 21164, 0.5 GHz Performance (vs.VAX-11/780) Alpha 21164, 0.3 GHz Alpha 21064A, 0.3 GHz PowerPC 604, 0.1GHz 52%/year MIPS M2000 MIPS M/120 25%/year 1.5, VAX-11/785 1986 1990 1992 1994 1996 1998 2000 2002 2004 2006 ABF - AC I Desempenho

Medidas de desempenho

CPU time = Nº de instruções * CPI / Frequência de relógio

- Que programa(s) escolher para medir o desempenho?
 - Escolher um conjunto de programas que seja representativo do tipo de utilização dos computadores – SPEC program suite SPEC program suite: SPECint + SPECfp
 - Usar um programa em que cada tipo de instrução aparece com a mesma frequência com que aparece no conjunto de programas de representativo benchmarks sintéticos – Dhrystone, Whetstone, ...
- MIPS = Frequência de relógio (MHz) / CPI
 - só tem significado para comparar processadores com a mesma arquitetura

Millions of Instructions Per Second

ABF - AC I Desempenho

9

Frequência das instruções do MIPS no SPEC2006

Core MIPS	Name	Integer	Fl. pt.	Arithmetic core + MIPS-32	Name	Inte	eger	Fl. pi
add	add	0.0%	0.0%	FP add double	add.d	0.	0%	10.6%
add immediate	addi	0.0%	0.0%	FP subtract double	sub.d	0.	0%	4.9%
add unsigned	addu	5.2%	3.5%	FP multiply double	mul.d	0.	0%	15.0%
add immediate unsigned	addiu	9.0%	7.2%	FP divide double	div.d	0.	0%	0.2%
subtract unsigned	subu	2.2%	0.6%	FP add single	add.s	0.	0%	1.5%
AND	AND	0.2%	0.1%	FP subtract single	sub.s	0.	0%	1.8%
AND immediate	ANDi	0.7%	0.2%	FP multiply single	mul.s	0.	0%	2.4%
OR	OR	4.0%	1.2%	FP divide single	div.s	0.	0%	0.2%
OR immediate	ORi	1.0%	0.2%	load word to FP double	1.d	0.	0%	17.5%
NOR	NOR	0.4%	0.2%	store word to FP double	s.d	0.	0%	4.9%
shift left logical	s11	4.4%	1.9%	load word to FP single	1.s	0.	0%	4.2%
shift right logical	srl	1.1%	0.5%	store word to FP single	S.S	0.	0%	1.1%
load upper immediate	lui	3.3%	0.5%	branch on floating-point true	bc1t	0.	0%	0.2%
load word	1 w	18.6%	5.8%	branch on floating-point false	bc1f	0.	0%	0.2%
store word	SW	7.6%	2.0%	floating-point compare double	c.x.d	0.	0%	0.6%
load byte	1bu	3.7%	0.1%	multiply	mu1	0.	0%	0.2%
store byte	sb	0.6%	0.0%	shift right arithmetic	sra	0.	5%	0.3%
branch on equal (zero)	beq	8.6%	2.2%	load half	1hu	1.	3%	0.0%
branch on not equal (zero)	bne	8.4%	1.4%	store half	sh	0.	1%	0.0%
jump and link	jal	0.7%	0.2%					
jump register	jr	1.1%	0.2%	Instruction Subset	Int	teger	Fl.P	
set less than	slt	9.9%	2.3%	MIPS core	98	%	31%	4
set less than immediate	slti	3.1%	0.3%	IVIIF3 COIE	90	70	317	0
set less than unsigned	sltu	3.4%	0.8%	MIPS Arith. Core	2%	6	66%	6
set less than imm. uns.	sltiu	1.1%	0.1%	Daniel and MAIDS	00	,	20/	
			ABF - AG	Remaining MIPS	0%	0	3%	10

SPECint2006 no Opteron X4

Desc ription	Nam e	Inst ruction Count × 10 °	СРІ	Cloc k cy clet ime (seco nds ×10 °)	Execut ion Time (seco nds)	Reference Time (seco nds)	SPE Crat io
Interpreted string proces sing	perl	2,11 8	0.75	0.4	637	9,770	15.3
Block-sor ting compression	bzip2	2,389	0.85	0.4	817	9,650	11.8
GNU C compile r	gcc	1,050	1.72	0.4	724	8,050	11.1
Combinatorial optimization	mcf	336	10.00	0.4	1,345	9,120	6.8
Go game (AI)	go	1,658	1.09	0.4	721	10,490	14.6
Search gene sequence	hmmer	2,783	0.80	0.4	890	9,330	10.5
Chess game (AI)	sjeng	2,176	0.96	0.4	837	12,100	14.5
Quantum computer simulati on	libquantum	1,623	1.61	0.4	1,047	20,720	19.8
Video compressio n	h264a vc	3,102	0.80	0.4	993	22,130	22.3
Discre te e vent simulati on library	omnetpp	587	2.94	0.4	690	6,250	9.1
Games/path finding	astar	1,082	1.79	0.4	773	7,020	9.1
XML parsing	xalancbmk	1,058	2.70	0.4	1,1 43	6,900	6.0
Geometric Mean							11.7

Nota: CPI altamente variável com o programa executado (parte dessa variabilidade é devida à complexidade de algumas das instruções Do ISA x86 – no MIPS a variabilidade do CPI será menor)

ABF - AC I Desempenho

11

Outro critério: Potência consumida

- Potência consumida:
 - fator crítico em sistemas portáteis autonomia da bateria
 - Capacidade de dissipação do calor produzido num chip é limitada
 - Depende da frequência de relógio
- Processadores *multi-core* para idêntico desempenho menor frequência de relógio

ABF - AC I Desempenho

Caraterização do Consumo de Potência **SPECPower**

Target Loa d %	Pe rfor man ce (ssj_op s)	Averag e Power (Watts)
100 %	231,86 7	295
90%	211 ,282	286
80%	185,80 3	275
70%	163,42 7	265
60%	140,16 0	256
50%	118,32 4	246
40%	92,03 5	233
30%	70,50 0	222
20%	47,12 6	206
10%	23,06 6	180
0%	0	141
Overall Sum	1,283, 590	2,605
Σ ssj_ops / Σ power =		493

 $2.3~\mathrm{GHz}$ AMD Opteron X4 com 16 GB de DDR2-667 DRAM e um disco de $500~\mathrm{GB}$

Copyright © 2009 Elsevier, Inc.

ABF - AC I Desempenho