Theory of Computing

5. Regular Languages

Professor Imed Bouchrika

National Higher School of Artificial Intelligence imed.bouchrika@ensia.edu.dz

Outline:

- Regular Languages:
 - Finite Automata : DFA/NFA
 - Regular Expressions
- Operations on Regular Languages
- Pumping Lemma
- Distinguishable Strings and Fooling

Sets

- Deterministic Finite Automata : DFA
 - A language which is represented by a DFA is a regular language

- Deterministic Finite Automata : DFA
 - o A language which is represented by a DFA is a regular language
 - Example :
 - L = { w | w contains an odd number of os }, Σ = { o ,1}
 - Is a regular?

- Deterministic Finite Automata : DFA
 - A language which is represented by a DFA is a regular language
 - Example:
 - L = { w | w contains an odd number of 0s }, Σ = { 0 ,1}
 - Is a regular?

- Deterministic Finite Automata : DFA
 - A language which is represented by a DFA is a regular language
 - Example :
 - L = { w | w contains an odd number of os }, Σ = { o ,1}
 - Is a regular?

It is a regular language because there is a DFA to represent the language

- Nondeterministic Finite Automata: NFA
 - A language which can be represented by a nondeterministic finite automaton is a regular language

- Nondeterministic Finite Automata: NFA
 - A language which can be represented by a nondeterministic finite automaton is a regular language
 - Example:
 - L = { w | w contains an even number of 1s }, Σ = { 0 ,1}
 - Is a regular?

- Nondeterministic Finite Automata: NFA
 - A language which can be represented by a nondeterministic finite automaton is a regular language
 - Example:
 - L = { w | w contains an even number of 1s }, Σ = { 0 ,1 }
 - Is a regular?

- Nondeterministic Finite Automata: NFA
 - A language which can be represented by a nondeterministic finite automaton is a regular language
 - Example:
 - L = { w | w contains an even number of 1s }, Σ = { 0 ,1 }
 - Is a regular?

It is a regular language because there is NFA to represent the language

Regular Expression

 A language which can be represented by a regular expression is a regular language. Remember the formal definition.

- A language which can be represented by a regular expression is a regular language.
- Example :
 - L = { w | w contains exactly two o's.}, Σ = { o ,1}

- A language which can be represented by a regular expression is a regular language.
- Example:
 - L = { w | w contains exactly two o's.}, Σ = { o ,1}
 - 1*01*01*

- A language which can be represented by a regular expression is a regular language.
- Example :
 - L = { w | w contains 11 as a substring.}, Σ = { 0 ,1 }

- A language which can be represented by a regular expression is a regular language.
- Example:
 - L = { w | w contains 11 as a substring.}, Σ = { 0 ,1}
 - \blacksquare {0,1}*11{0,1}*
 - Is it regular? It is.

- A language which can be represented by a regular expression is a regular language.
- Example:
 - L = { w | w does not contain 11 as a substring.}, Σ = { 0 ,1 }

- A language which can be represented by a regular expression is a regular language.
- Example :
 - L = { w | w does not contain 11 as a substring.}, Σ = { 0 ,1 }

 - Is it regular? Yes, it is.

Closure Properties

- \circ Let $L_{_{\! 1}}$ and $L_{_{\! 2}}$ be regular languages. Then, the following languages are regular.
 - Complement: $L'_1 = \{x \mid x \in \Sigma * \text{ and } x \notin L_1 \}.$
 - Union: $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2 \}$.
 - Intersection: $L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2 \}$.
 - Concatenation: $L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2 \}$.
 - Star: $L_1^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in L_1^* \}.$

	Operation						
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	$ar{L}$	$L_1 \circ L_2$	L^*		
DFA	Easy	Easy	Easy	Hard	Hard		
Regex	Easy	Hard	Hard	Easy	Easy		
NFA	Easy	Hard	Hard	Easy	Easy		

- $L_1 \cup L_2 = \mathsf{Union} \ \mathsf{of} \ L_1 \ \mathsf{and} \ L_2$
- $L_1 \cap L_2 =$ Intersection of L_1 and L_2
- ullet $\bar{L}=$ Complement of L
- $L_1 \circ L_2 = \text{Concatenation of } L_1 \text{ and } L_2$
- $L^* =$ Powers of L

Example

- \circ L₁ = { w | w contains an even number of 1s }, Σ = { 0 ,1 }
- \circ L₂ = { w | w contains an odd number of os }, Σ = { 0 ,1}

- Union
 - O NFA:
 - L = { w | w contains an even number of 1s **or** an odd number of 0s }
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of 0s } \}, \Sigma = \{ 0, 1 \}$

- Union
 - o NFA:
 - L = { w | w contains an even number of 1s **or** an odd number of 0s }
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of 0s } \}, \Sigma = \{ 0, 1 \}$

- Union
 - o NFA:
 - $L = \{ w \mid w \text{ contains an even number of 1s } \mathbf{or} \text{ an odd number of 0s } \}$
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of os } \}, \Sigma = \{ 0, 1 \}$

- Union
 - O NFA:
 - Steps
 - Create a new initial start state
 - Link it to both start states with Epsilon

Union

o NFA:

- Union
 - o DFA:
 - $L = \{ w \mid w \text{ contains an even number of 1s } \mathbf{or} \text{ an odd number of 0s } \}$
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of os } \}, \Sigma = \{ 0, 1 \}$

- Union
 - o DFA:
 - Steps:
 - Create new states represented by $Q_1 \times Q_2$
 - Accepting State: any pair/tuple containing an original accept state
 - Start State: is the pair/tuple containing both start states.
 - Transitions: for a pair of states (q0, q1) upon reading a, see where to move for q0 and q1, the results would be the pair of states.

Union

o DFA:

Union

o DFA:

Union

- Regular Expressions :
 - $L = \{ w \mid w \text{ contains an even number of 1s } \mathbf{or} \text{ an odd number of 0s } \}$
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of 0s } \}, \Sigma = \{ 0, 1 \}$
 - \blacksquare $RE(L_1) = (0* 1 (0)* 1 (0)*)*$
 - \blacksquare RE(L₂) = 1* 0 (1)* (1* 0 1* 0 1*)*

Union

- Regular Expressions :
 - \bot L = { w | w contains an even number of 1s **or** an odd number of 0s }
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of os } \}, \Sigma = \{ 0, 1 \}$
 - \blacksquare $RE(L_1) = (0 * 1 (0) * 1 (0) *) *$
 - \blacksquare RE(L₂) = 1* 0 (1)* (1* 0 1* 0 1*)*
 - \bullet RE(L) = (1 (0) * 1 (0) *) * | 1* 0 (1) * (1* 0 1* 0 1*) *

	Operation						
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	$ar{L}$	$L_1 \circ L_2$	L^*		
DFA	Easy	Easy	Easy	Hard	Hard		
Regex	Easy	Hard	Hard	Easy	Easy		
NFA	Easy	Hard	Hard	Easy	Easy		

- $L_1 \cup L_2 =$ Union of L_1 and L_2
- $L_1 \cap L_2 =$ Intersection of L_1 and L_2
- ullet $\bar{L}=$ Complement of L
- $L_1 \circ L_2 = \text{Concatenation of } L_1 \text{ and } L_2$
- $L^* =$ Powers of L

- Intersection
 - o DFA:
 - L = { w | w contains an even number of 1s **and** an odd number of 0s }
 - $L_1 = \{ w \mid w \text{ contains an even number of 1s } \}, \Sigma = \{ 0, 1 \}$
 - $L_2 = \{ w \mid w \text{ contains an odd number of 0s } \}, \Sigma = \{ 0, 1 \}$

- Intersection
 - O DFA:
 - Steps:
 - Create new states represented by Q₁ x Q₂
 - Accepting State: pairs/tuples containing both original accept states
 - Start State: is the pair/tuple containing both start states.
 - Transitions: for a pair of states (q0, q1) upon reading a, see where to move for q0 and q1, the results would be the pair of states.

Intersection

o DFA:

Intersection

o DFA:

Intersection

- NFA
 - You can convert the NFA to DFA and do the intersection
 - Or:
 - Do it the same way in addition to adding also ε-transition when relevant
- Regular Expressions:
 - Very hard to do it directly. A naive approach is to convert to DFAs...

Complement

- DFA
 - Inverse Accepting to Non-Accepting states and vice versa
 - **■** Example:
 - M is the automaton for the language L = { w | the length of w is divisible by 3 }
 - Alphabet is { a }
 - Language L: {, aaa, aaaaaa, aaaaaaaaa, . . .}

Complement

- o DFA
 - Inverse Accepting to Non-Accepting states and vice versa
 - **■** Example:
 - M is the automaton for the language L = { w | the length of w is divisible by 3 }

start

- Alphabet is { a }
- Language L: {, aaa, aaaaaa, aaaaaaaaa, . . .}

Complement

- DFA
 - What's the automaton for the complement
 - L' = { w | the length of w is **not** divisible by 3 }
 - Alphabet is { a }
 - Language L = { a, aa, aaaaaaa, aaaaaaaaa, . . .}

- Complement
 - o DFA
 - What's the automaton for the Complement
 - L' = { w | the length of w is **not** divisible by 3 }
 - Alphabet is { a }
 - Language L = { a, aa, aaaaaaa, aaaaaaaaa, . . .}

Complement

- NFA
 - The method described for DFA does not always work
 - For example: language represented by b(a|b)*

Complement

- NFA
 - The method described for DFA does not always work
 - For example : language represented by b(a|b)*
 - The complement for the NFA is not correct because?

Complement

- NFA
 - The met Missing Transitions/Trap states are
 - For exar
 - not considered for NFA.

The lecause ?

Complement

- Regular Expressions:
 - You have to design it from scratch. (Of course, there is the **not** operator in the regular expressions being used for text processing)

- Concatenation
 - NFA
 - Seen in the previous lecture
 - Link Accepting States of A to Start state of B with epsilon transition
 - Convert all Accepting states of A to non-accepting

- Concatenation
 - NFA

Concatenation

- Regular Expressions :
 - Easy, as it is part of it.
- o DFA:
 - Extremely difficult, need to do it as NFA instead.
 - How to concatenate the following two DFAs

- Are all languages regular?
- Can we create DFA/NFA/Regular Expression for any Language
- Remember:
 - Finite state machines have a limited amount of memory
 - Why it is called : finite state?

- Are all languages regular?
 - There are other languages that we call them non-regular languages
- Can we create DFA/NFA/Regular Expression for any Language
 - No, there are other languages that may require more memory.
- Finite States :
 - Remember: DFA or NFA cannot have infinite number of states

- Is the language for all English union French words regular over the latin alphabet?
- Is the language containing odd 1s and even 0s regular over alphabet {0,1}?
- o Is the language in the form : wordword regular over any alphabet ?
- Is the language in the form: wordword regular over { 0, 1 } such that |word|=1
- Is the language of alternating 0 and 1 in a word regular (01, 010,1010,...)?

- Is the language for all English union French words regular over the latin alphabet?
 - Yes, Because we can build NFA for each word -> do the union for all words.
- Is the language containing odd 1s and even 0s regular over alphabet {0,1}?
 - Yes, we have designed the DFA for it.

- o Is the language of alternating 0 and 1 in a word regular (01, 010,1010,...)?
 - It is, because we can have the regular expression:
 - (01)* | (10)*
- o Is the language in the form : wordword regular over any alphabet ?
 - No, because we need to remember the sequence of symbols for the first word (need extra memory) so that we repeat it in the next word.

Pumping Words

- Given a finite state machine of N states (suppose N=5):
 - Finite number of states
 - 2 Questions:
 - Max length of strings?
 - Max number of strings?

Pumping Words

- Given a finite state machine of N states (suppose N=5):
 - Finite number of states
 - 2 Questions:
 - Max length of strings ? 4
 - Max number of strings ? 1

- Pumping Words
 - Given a finite state machine of N states
 - Finite number of states
 - 2 Questions:
 - When a state machine accepts Strings with length > The number of states ?
 - Number of states is finite: How to create a language with infinite words?

Pumping Words

Given a finite state machine of N states (suppose N=5):

Pumping Words

- Given a finite state machine of N states (suppose N=5):
 - We can generate:
 - bbaa
 - bba**ba**aa
 - bba**baba**aa
 - bbababaaa
 - Bba**bababa**aa
 - bba**babababa....**aa**a...**
 - Infinite number + infinite length

Pumping Words

- Given a finite state machin
 - We can generate:
 - bbaa
 - bbabaaa
 - bba**baba**aa
 - bbababaaa
 - Bbabababaaa
 - bbabababababa

It means:

For any language, there should be some number N (

Assume the number of states)

If a string with length > N,

There must be some pumping for a given

symbol or substring? so that we have a

bigger string?

Infinite number + infinite length

Pumping Words

- Given a finite state machin
 - We can generate:
 - bbaa
 - bba**ba**aa
 - bba**baba**aa
 - bba**baba**aa
 - bbabababaaa
 - bba**babababa....**.aa**a...**
 - Infinite number + infinite length

It means formally:

There is string s: can be written into three parts:

S= XYZ

which is in L

At the same time:

xy²z , xy³z , xy⁴z ,... are in the language L

y =ba y² =baba y³ =bababa

Languages _emma

Given a finite state machin

- We can generate:
 - bbaa
 - bba**ba**aa
 - bba**baba**aa
 - bba**bababa**aa
 - bba**bababa**aa

 - bba**bababababa....**.aa**a..**.

It means formally:

The big string s: can be split into three parts:

S= XYZ

which is in L

At the same time:

xy²z, xy³z, xy⁴z,... are in the language L

Infinite number + infinite length

Question:

What if you have an infinite language L

You are given the string (Example bbabaaa) in L

But

You cannot find some part (let's call it Y) from that string so that regardless of how you pump Y (repeat), the newly generated string is not in the language?

*The example need to be taken consider traversing a loop with a single iteration

- bba**babababa....**.aa**a...**
- Infinite number + infinite length

Theorem

- Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:
 - for each $i \ge 0$, $xy^i z \subseteq A$,
 - |y| > 0, and
 - $|xy| \le p$.
- P is called the pumping length

Theorem

- Pumping lemma If A is a regulation pumping length) where if s is a may be divided into three piectonditions:
 - for each $i \ge 0$, $xy^i z \in A$,
 - |y| > 0, and
 - |xy| ≤ p.
- P is called the pumping length

P can be considered as the number of states to travel from Q1 to Q9 and **travel only once y path** .

Pumping property

- If a language is regular, then it must have the pumping property.
- If a language does not have the pumping property, then the language is not regular.

How to prove languages non-regular using pumping lemma?

- Proof by contradiction.
- Assume that the language is regular.
- Show that the language does not have the pumping property.
- Contradiction: Hence, the language has to be non-regular.

- Example: B = { oⁿ: n ≥ o }
 - o Is this language regular?

- Example: B = { oⁿ1ⁿ: n ≥ o }
 - o Is this regular?

- Example: B = { 0ⁿ1ⁿ: n ≥ 0 }
 - Prove that the language B is non-regular
 - We assume B is regular and is accepted by DFA with N states.
 - Let's Consider the specific string $s = \mathbf{0}^{\mathbf{P}} \mathbf{1}^{\mathbf{P}}$ from the language B
 - Split s =x**y**z according to Pumping Lemma.
 - Examples:
 - 000111
 - O 0000011111

- Example : B = { oⁿ1ⁿ : n ≥ o }
 - Prove that the language B is non-regular
 - Remember our string s= xyz = O^P 1^P
 - Since |xy| ≤ P, it follows that y is composed entirely of o's.
 - For instance if P=4: s=00001111, as |xy|<4 then xy must be a substring in 0000 (Fixing a value of P is only for explanation, don't ever fix a value for P)
 - xy?y what it can be?: provided that |y|>0
 - If we pump for y² or y³....: we obtain

- Example: B = { oⁿ1ⁿ: n ≥ o }
 - Prove that the language B is non-regular
 - Remember our string s= xyz = 0^P1^P
 - Since $|xy| \le P$, it follows that y is composed entirely of 0's.
 - Let's assume that **|y|=k**
 - If we pump for y^2 or y^3 ...: we obtain
 - We just repeat zeros without repeating the 1, Therefore,
 - xy²z =xyyz=**0**^{P+k} **1**^P does not belong to B because the number of zeros is not equal to the number of 1s, you may do it for i=3,4....
 - This contradicts the Pumping Lemma. Therefore B is not regular

- Example : B = { 0ⁿ1ⁿ : n ≥ 0 }
 - O Prove that the language Die non-regular

We cannot find a way to pump/generate more strings which must be in the same language,

of

zeros is not equal to the number of 1s

This contradicts the Pumping Lemma. Therefore B is not regular

- Example: B = { 0ⁿ1ⁿ: n ≥ 0 }
 - O Prove that the language Die non regular

To efficiently use the pumping lemma:

Find a string that's in the language but you cannot generate more strings from it in the language

of

zeros is not equal to the number of 1s

This contradicts the Pumping Lemma. Therefore B is not regular

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - Can we design an NFA/DFA for it ?

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - Can we design an NFA/DFA for it ?

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - Can we design an NFA/DFA for it ?
 - What about the following words:
 - bbbaaa
 - bbaaba
 - Can we try a regular expression instead?

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - We use the pumping lemma:
 - Suppose L is regular. Then it must satisfy pumping property.
 - We observe that L is infinite.
 - We consider the pumping length P

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - We use the pumping lemma:
 - Suppose L is regular. Then it must satisfy
 - We observe that L is infinite.
 - We consider the pumping length P
 - Let's take the string s =(ab)^P from L (abababab.... ab is repeated P times)

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - We use the pumping lemma:
 - Let's take the string **s** =(**ab**)^P from L (abababab..... ab is repeated **P times**)
 - If s is split into xyz such that |xy| <= P</p>
 - xy should be (ab)^M such that M<=P/2 (a, ab, abab, ababa ...)
 - Then, y can be ab or multiple of ab
 - Let's try to pump y

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - We use the pumping lemma:
 - Let's take the string **s** =(**ab**)^P from L (abababab.... ab is repeated **P times**)
 - If s is split into xyz such that |xy| <= P</p>
 - xy should be (ab)^M such that M<=P/2 (a, ab, abab, ababa ...)
 - Then, y can be ab or multiple of ab,
 - By pumping y or repeating y: xy²z, xy³z ...
 - We will have the same number of a and b. Therefore, the new generated strings would be part of the language L

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - We use the pumping lemma:
 - No contraction here?

 Does it mean the language is regular?
 - We will have the same number of a and b. Therefore, the new
 - generated strings would be part of the language L

• Example 1 (w) a (w) is the same barreform of the same barreform

It means you picked a bad string .
(ab)*

Pumping lemma can never be used to prove that a language is regular

We will have the same number of a and b. Therefore, the new

generated strings would be part of the language L

es)

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - If there is no Contradiction, it means you chose a bad string ,
 - Other string to take ?

- Example: L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - Prove that the language L is non-regular or Regular
 - Other string to take ?
 - = s=a^Pb^P
 - Solved using the same example.

- Prove that $\{ww \mid w \in \Sigma *\}$ is a non-regular language?
 - Use Pumping lemma (not the intuition that we need more memory)
 - What string you would take to arrive to a contradiction
 - Regardless of how you repeat the y it won't be part of the language

- Using property of Regular Languages:
 - \circ L = { w | n₀ (w) = n₁ (w), n₁(w) is the number of occurrences of 1 in w}
 - \circ B = { $o^{n}1^{n} : n \ge 0$ }
 - B is non-regular
 - B is a subset of L
 - Therefore: can we deduce that L is non-regular

- Using property of Regular Languages:
 - \circ L = { w | n₀ (w) = n₁ (w), n₁(w) is the number of occurrences of 1 in w}
 - \circ B = { $o^{n}1^{n} : n \ge 0$ }
 - B is non-regular
 - B is a subset of L
 - Therefore: can we deduce that L is non-regular
 - No, because the superset Σ* of all languages is regular

Non-Regular Languages

Remember: Closure Rules apply only for : Regular Operation Regular ⇒ Regular

Non-regular Operation Non-Regular ⇒ We don't know (They may give regular, or even non-regular)

Operations of complement Union Concet Star

Operations : { complement, Union, Concat, Star, Intersection }

- Using Closure property of Regular Languages:
 - \circ L = { w | n₀ (w) = n₁ (w), n₁(w) is the number of occurrences of 1 in w}
 - o B = { $a^nb^n : n ≥ o$ }
 - C is a language represented by a*b*
 - C is regular
 - L ∩ C = B

- Using Closure property of Regular Languages:
 - L = { w | n_a (w) = n_b (w), n_a(w) is the number of occurrences of a in w}
 - \circ B = { $a^nb^n : n \ge 0$ }
 - C is a language represented by a*b*
 - C is regular
 - B is already proved as non-regular
 - We assume that L is **regular**
 - Lnc = B: But B is non-regular, which is a contradiction since the intersection of two regulars must give a regular.
 - Therefore L is non-regular

- Using property of Regular Languages:
 - What about the language :
 - $D = \{w \mid w = a^m b^n, m \neq n\}$
 - Prove using the closure property of regular languages

- Using property of Regular Languages:
 - What about the language :
 - $D = \{w \mid w = a^m b^n, m \neq n\}$
 - Prove using the closure property of regular languages
 - B = { $a^nb^n : n \ge 0$ }
 - C is a language represented by a*b*
 - C is regular considered as the universal set.
 - B is already proved as non-regular
 - We assume that D is regular
 - Complement (D) over C is B
 - If D is regular therefore, B must be regular! contradiction

- Using property of Regular Languages:
 - Closure Property for Non-regular Languages :

 - B = { $a^nb^n : n \ge 0$ } (Non-regular)
 - $M = \{a^nb^{2n} : n \ge 0\}$ (Non-regular)
 - DUB = a^*b^* (Regular)
 - Regular U Regular ⇒ Must be regular :
 - Non-regular U Regular \Rightarrow We don't know ({ a^nb^n : n ≥ 0 } U (a|b)*?)
 - Non-regular U Non-regular ⇒ We don't know
 - $\{w \mid w = a^m b^n, m \neq n\} \cup \{a^n b^n : n \geq 0\} = a^* b^* \Rightarrow Regular$
 - $\{a^nb^n: n \ge 0\} \cup \{a^nb^{2n}: n \ge 0\} \Rightarrow Non-Regular$

Simplification

- Given the following **DFA** machine:
- o Example:
 - Let's compute the transitions for two strings:
 - X=ab
 - y=ba
 - We observe that they end up at the same state
 - $\delta^*(q0, x) = \delta^*(q0, y) = q2$

Simplification

- Give What happens if we add/append any string z to x and y?
- Exa
- x=ab**ababa**
- y=ba**ababa**
- Will they lead to the same state?
 - It is a must YES for DFA
- $\delta^*(q0, x) = \delta^*(q0, y) = q2$

• Simplification

- Given the following **DFA** machine:
- o Example:
 - Let's take two different strings
 - X=a
 - y=ba
 - We observe that they end up at **different states**
 - $\bullet \quad \boldsymbol{\delta}^*(qo, x) = q3$
 - $\delta^*(q0, y) = q2$

Simplification

- Give What happens if we add/append any string z to x and y?
- Exam
 - $X=ababa \rightarrow q2 \rightarrow Accepted$
 - y=bababa → qo → Not accepted
 - y=pa
 - We observe that they end up at **different states**
 - $\bullet \quad \boldsymbol{\delta}^*(qo, x) = q3$
 - $\delta^*(q0, y) = q2$

Definition

- ο Given a language L over a finite alphabet Σ , two strings x, y ∈ Σ * are **suffix distinguishable** with respect to L if **there is** a string **z** ∈ Σ * such that
 - Exactly one of xz, yz is in L.
 - $xz \in L$ and $yz \notin L$ **Or**
 - xz ∉ L and yz ∈ L
 - We say that z is a distinguishing suffix for x, y in L

Definition

- ο Given a language L over a finite alphabet Σ , two strings x, y ∈ Σ * are **suffix distinguishable** with respect to L if **there is** a string **z** ∈ Σ * such that
 - Exactly one of vz vz is in l
 - They are different or separate states
 - xz ∉ L and yz ∈ L
 - We say that z is a distinguishing suffix for x, y in L

• Lemma:

- o If L has a distinguishable strings x, y and M = (Q, Σ , δ , s, A) is any DFA that recognizes L
 - then δ * (s, x) \neq δ * (s, y)

• Example:

- o Given the following DFA machine, give the possible distinguishable strings
 - What's the language for this DFA?

• Example:

- Given the following DFA machine, give the possible distinguishable strings
 - L = { w | w is divisible by 5 } over Σ ={0.1}
 - Possible strings:
 - C
 - 1
 - 11
 - 10
 - 100

• Example:

- o Given the following DFA machine, give the possible distinguishable strings
 - L = { w | w is divisible by 5 } over Σ ={0.1}
 - Possible strings:
 - 0 (qo)
 - 1 (q1)
 - 11 (q3)
 - 10 (q2)
 - 100 **(q4**

From the set F, let take any pair of two strings, for example :

- X=1
- *y*=10

If we add the string z=01

- $x=101 \rightarrow 5 \rightarrow divisible by 5$
- y=1001 → 9 → not divisible by 5
 - 0 (qo)
 - 1 (q1)
 - 11 (q3)
 - 10 (q2)
 - 100 (q4

• Example:

- o Given the following DFA machine, give the possible distinguishable strings
 - Possible strings:

•

• Example:

- o Given the following DFA machine, give the possible distinguishable strings
 - Possible strings:
 - 0
 - 1

Good Example given by Abdelhakim G5

• Example:

- o Given the following DFA machine, give the possible distinguishable strings
 - Possible strings: Append oo
 - 000→ F
 - 100 → F

Good Example given by Abdelhakim G5

Non-Regular Languages Fooling Sets

Fooling Set :

- Definition:
 - Let L be a language. A set of strings **F** is a fooling set for L if every pair of distinct strings in F **is distinguishable with respect to L**

Simplification:

- If F = { x, y, c}
 - x and y must be distinguishable with respect to L
 - There is a string z such that strictly either xz or yz belong to L
 - y and c
 - x and c ...

Non-Regular Languages Fooling Sets

• Theorem:

- Let L be a language and let F be a fooling set for L. No DFA M can recognize L if it has less than |F|
 states.
- If |F | is infinite then L cannot be regular = is a

non-regular language

- Myhill-Nerode Theorem :
 - Let L be any language. Then
 - If L is not regular then there is an infinite fooling set for L.
 - If L is regular then there is a fooling set F of size k where k is the smallest number of states of a DFA that accepts L.

- Example : B = { oⁿ1ⁿ : n ≥ o }
 - Prove that the language B is non-regular

- Example: B = { oⁿ1ⁿ: n ≥ o }
 - Prove that the language B is non-regular
 - Let's assume that F = { o* } as the Fooling set of B
 - If we consider two strings s_1, s_2 as 0^i and 0^j respectively from the the set **F** such that $i \neq j$
 - If we consider the string **z=1**ⁱ then (111..... i times):
 - \circ s₁z=0ⁱ1ⁱ which is from language B
 - o s₂z=0^j1ⁱ does not belong to language B because i ≠ j

- Example : B = { oⁿ1ⁿ : n ≥ o }
 - Prove that the language B is non-regular
 - Let's assume that $F = \{ o^* \}$ as the fooling set of B
 - For any two different values i and j (infinite possibilities)
 - Whilst s_i and s_i are **distinguishable**, they lead to **different states**
 - How many states do we need ? Infinite number
 - Therefore: we cannot have a finite automaton for this language

Next?

Automaton

- Machine that would accept the language aⁿbⁿ
- Time to create a machine with some memory?

Course Content

Introduction

o Complexity theory, Computability theory, Mathematical notions, Types of Proofs

Automata theory

5 weeks

- o Regular Languages : Finite Automata, Non-determinism, Regular Expressions, nonregular languages.
- Context-free languages : Grammars, Pushdown automata

Computability theory

- Turing machines, recursively enumerable and recursive languages
- Church-Turing thesis
- Decidability
- Reducibility

Complexity Theory

- Complexity of algorithms and of problems
- o Complexity classes P, NP, PSPACE
- o Polynomial-time reduction
- NP-Completeness and Cook's theorem + PSPACE-Completeness

• Ex 1

- 1. The language {0} with two states
- 2. The language {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)} with five states
- 3. The language {w| w contains an even number of os, or contains exactly two 1s} with six states
- 4. The language o* with one state
- 5. The language 0* 1* 0* with three states
- 6. Let Σ = {a, b, c} and let L = { $w \in \Sigma^*$ | some character in Σ appears at most twice in w }

• Ex 1

- 1. The language (0) with two states
- 2. The language {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)} with five states
- 3. The language {w| w contains an even number of 0s, or contains exactly two 1s} with six states
- 4. The language 0* with one state
- 5. The language 0* 1* 0* with three states
- 6. Let $\Sigma = \{a, b, c\}$ and let $L = \{w \in \Sigma^* \mid \text{ some character in } \Sigma \}$ appears at most twice in W

Ex 2 : Convert NFA to DFA

• Ex 3 : Minimize DFA

Two sets:

- Set 1: {p,q,r,t}
- Set 2: { s } (no splitting needed)

Checking Set 1 for the Equivalence:

(p **vs.** q):

- $a \rightarrow (r, s) \rightarrow (Set 1, Set 2) (not equivalent)$
- b (no need as they are not equivalent

(p **vs.** r)

- $a \rightarrow (r, s) \rightarrow (Set 1, Set 2) (not equivalent)$
- b (no need as they are not equivalent

(p **vs.** t)

- $a \rightarrow (r, t) \rightarrow (Set 1, Set 1) (Equivalent for a)$
 - $b \rightarrow (q, t) \rightarrow (Set 1, Set 1) (Equivalent for b)$

P and T are equivalent

(q vs. t) no need as they are not equivalent (since p== t whilst q not equivalent to p

(q **vs.** r)

- $a \rightarrow (s, s) \rightarrow (Set 2, Set 2) (Equivalent for a)$
- b \rightarrow (t, t) \rightarrow (Set 1, Set 1) (Equivalent for b)

Q and R are equivalent

Ex 3: Minimize DFA

Two sets:

- Set 1: {p, q, r, t}
- Set 2: { s } (no splitting needed)

Newer Sets

- Set 1: {p, t}
- Set 2:{q,r}
- Set 3: { s } (no splitting needed)

Checking Set 1 for the Equivalence:

(p **vs.** t):

We did before? but on different sets we have to do it again on the newer sets

Ex 3 : Minimize DFA

Two sets:

- Set 1: {p,q,r,t}
- Set 2: { s } (no splitting needed)

Newer Sets

- Set 1:{p,t}
- Set 2: {q,r}
- Set 3:{ s } (no splitting needed)

Checking Set 1 for the Equivalence: (p vs. t):

- $a \rightarrow q$, $t \rightarrow set 2$, Set 1 : Not equivalent (q **vs.** r):
 - a \rightarrow s, s \rightarrow set 3, Set 3: Equivalent
 - b \rightarrow t, t \rightarrow set 1, Set 1 : Equivalent

Q and R are equivalent

Ex 3 : Minimize DFA

Two sets:

- Set 1: {p,q,r,t}
- Set 2: { s } (no splitting needed)

ThreeSets

- Set 1:{p,t}
- Set 2: {q, r}
- Set 3: { s } (no splitting needed)

Newer Sets

- Set 1:{p}
- Set 1:{t}
- Set 2:{q,r}
- Set 3:{s} (no splitting needed)

Ex 3 : Minimiz

Two sets:

- Set 1: {p, q}
- Set 2: { s } (

ThreeSets

- Set 1: {p, t}
- Set 2: {q, r}
- Set 3:{s}(

Newer Sets

- Set 1:{p}
- Set 1:{t}
- Set 2: {q, r}
- Set 3:{s} (no splitting needed)

Accepting states, all subsets originating from the the set of original accepting states.

Palindromes

The sentence:

WAS IT A CAT I SAW

How many possible ways to read this sentence We can read at any direction : UP, LEFT, RIGHT, DOWN.

