# TEORIA DE GRAFOS E COMPUTABILIDADE DEFINIÇÕES — PARTE 2

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

#### Grafo conexo

 Grafo em que existe pelo menos um caminho entre todos os pares de vértices de G



#### Uma dúvida

□ Estamos vendo um ou dois grafos?



#### Grafo desconexo

 Consiste de dois ou mais grafos conexos. Cada um dos subgrafos conexos é chamado de componente

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas









- Condições necessárias mas não suficientes para que
  G e H sejam isomorfos:
  - mesmo número de vértices
  - mesmo número de arestas
  - mesmo número de componentes
  - mesmo número de vértices com o mesmo grau

 Infelizmente, não existe um algoritmo eficiente para determinar o isomorfismo entre dois grafos

Considerando as estruturas estudadas, o que você proporia fazer para verificar o isomorfismo?

# Grafo bipartido / bipartite

Grafo não orientado em que o conjunto de vértices V pode ser particionado em 2 subconjuntos, V<sub>1</sub> e V<sub>2</sub>, tais que não existem arestas entre dois vértices de um mesmo subconjunto.



# Grafo bipartido / bipartite

Estes são grafos bipartidos?





Um grafo g é dito ser um subgrafo de um grafo G se todos os vértices e todas as arestas de g estão em G

- □ Todo grafo é subgrafo de si próprio
- □ O subgrafo de um subgrafo de G é subgrafo de G
- □ Um vértice simples de G é um subgrafo de G
- Uma aresta simples de G (com suas extremidades) é subgrafo de G

- Todo grafo é subgrafo de si próprio
- O subgrafo de um subgrafo de G é subgrafo de G
- Um vértice simples de G é um subgrafo de G
- Uma aresta simples de G
  (com suas extremidades) é
  subgrafo de G





- Todo grafo é subgrafo de si próprio
- O subgrafo de um subgrafo de G é subgrafo de G
- Um vértice simples de G é um subgrafo de G
- Uma aresta simples de G
  (com suas extremidades) é
  subgrafo de G



#### Exercício

□ Quais são todos os subgrafos de G abaixo?



### Subgrafos induzidos por arestas



## Subgrafos induzidos por vértices



## Subgrafos disjuntos de arestas

- Dois (ou mais) subgrafos g1 e g2 de um grafo G são disjuntos de arestas se g1 e g2 não tiverem arestas em comum
  - □ g1 e g2 podem ter vértices em comum?

### Subgrafos disjuntos de arestas







## Subgrafos disjuntos de vértices

- Dois (ou mais) subgrafos g1 e g2 de um grafo G são disjuntos de vértices se g1 e g2 não tiverem vértices em comum
  - □ g1 e g2 podem ter arestas em comum?

## Subgrafos disjuntos de vértices







# Operações com grafos

□ Sejam  $G_1 = (V_1, E_1)$  e  $G_2 = (V_2, E_2)$ , tem-se:

$$G_{uni\tilde{q}o} = G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

$$G_{interseção} = G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2)$$

#### União

□ Mostre o grafo resultante da união



#### União

□ Mostre o grafo resultante da união



## Interseção

■ Mostre o grafo resultante da interseção:



## Interseção

□ Mostre o grafo resultante da interseção:



## "Ring sum"

$$\Box G_{\text{ring sum}} = G_1 \oplus G_2 = (V_1 \oplus V_2, E_1 \oplus E_2)$$

 A operação ring sum consiste na união dos grafos G1 e G2, de modo que a interseção entre eles não seja incluída

# Ring sum

□ Mostre o grafo resultante da "ring sum":



# Ring sum

□ Mostre o grafo resultante da "ring sum":



# Propriedades das operações

- □ Propriedades:
- $\square G_1 \cup G_2 = G_2 \cup G_1$
- $\square G_1 \cap G_2 = G_2 \cap G_1$
- $\Box G_1 \oplus G_2 = G_2 \oplus G_1$
- $\Box$  G U G = G  $\cap$  G = G
- $\Box G \oplus G = \emptyset$