Séquence 08 - TP01 - Îlot 04

Lycée Dorian Renaud Costadoat Françoise Puig

Les efforts mécaniques

Référence S08 - TP01 - I04

Compétences

Description Principe Fondamental de la Statique. Modélisation des actions méca-

niques.

Système Capsuleuse

1 Activité 1 : Modélisation

1.1 Présentation des composants

Question 1 : Inscrire sur la figure 1 le nom technique de chaque solide et mettre ces résultats sous la forme d'un graphe des liaisons.

FIGURE 1 - Système Maxpid

Question 2 : Proposer et justifier une modélisation plane à ce problème avec un schéma cinématique. Mesurer directement sur le système les dimensions utiles du mécanisme.

1.2 Modélisation des actions et des liaisons mécaniques

Question 3 : Identifier et déterminer les torseur des actions mécaniques **extérieures** qui s'exercent sur les pièces du système. Vous proposerez un moyen de déterminer la masse équivalente de la barrière.

Question 4 : Déterminer le torseur des actions mécaniques transmissibles par **chacune des liaisons** du système.

1.3 Résolution à l'aide du P.F.S.

Pour chaque solide du système :

- 1. Isoler la pièce,
- 2. Faire le Bilan des Action Mécaniques,

- 3. Écrire les torseurs correspondant au même point,
- 4. **Résoudre** le système d'équations.

Question 5 : Déterminer le système d'équations issu du P.F.S.

La résolution du système d'équations devra être codée en Python.

Question 6 : Conclure quant à la valeur du couple moteur pour plusieurs positions angulaires de la croix de Malte.

θ	C_m
0 °	
15 °	
30 °	
45 °	
60°	
75 °	
90°	

2 Activité 2 : Simulation numérique

Cette partie sera effectuée à partir d'une simulation sur le logiciel Meca3D.

Question 1 : En utilisant le mode d'Analyse Mécanique « Statique ». Compléter le tableau suivant.

θ	C_m (1 bocal)	C_m (2 bocaux)
0 °		
15 °		
30 °		
45 °		
60 °		
75 °		
90 °		

Question 2 : Comparer ces résultats avec les résultats issus de la modélisation analytique effectuée dans la partie 1 ainsi qu'avec les résultats de l'expérimentation 3.

3 Correction

Question 2:

$$\begin{aligned} \textbf{Question 3:} \quad & \{T_{Bo\rightarrow 1}\} = \left\{ \begin{array}{c} -F_B & \sim \\ 0 & \sim \\ \sim & 0 \end{array} \right\}_{A_2,R_1} + \left\{ \begin{array}{c} 0 & \sim \\ F_B & \sim \\ \sim & 0 \end{array} \right\}_{A_1,R_1} \\ & \{T_{Bo\rightarrow 1}\} = \left\{ \begin{array}{c} -F_B & \sim \\ F_B & \sim \\ \sim & -F_B.(2.R_c + l.(cos\alpha + sin\alpha)) \end{array} \right\}_{B,R_1} \\ & \{T_{Bo\rightarrow 1}\} = \left\{ \begin{array}{c} -F_B.(cos\theta_1 + sin\theta_1) & \sim \\ -F_B.(sin\theta_1 - cos\theta_1) & \sim \\ \sim & -F_B.(2.R_c + l.(cos\alpha + sin\alpha)) \end{array} \right\}_{B,R} \\ & \{T_{C_m\rightarrow 2}\} = \left\{ \begin{array}{c} 0 & \sim \\ 0 & \sim \\ \sim & C_m \end{array} \right\}_{B} \end{aligned}$$

$$\begin{aligned} \textbf{Question 4:} \quad & \{T_{0 \to 1}\} = \left\{ \begin{array}{l} X_{01} & \sim \\ Y_{01} & \sim \\ \sim & 0 \end{array} \right\}_A = \left\{ \begin{array}{l} X_{01} & \sim \\ Y_{01} & \sim \\ \sim & -l.cos(\alpha + \theta_1).Y_{01} + l.sin(\alpha + \theta_1).X_{01} \end{array} \right\}_B \\ & \{T_{0 \to 2}\} = \left\{ \begin{array}{l} X_{02} & \sim \\ Y_{02} & \sim \\ \sim & 0 \end{array} \right\}_C = \left\{ \begin{array}{l} X_{02} & \sim \\ Y_{02} & \sim \\ \sim & -R.cos(\theta_2).Y_{02} + R.sin(\theta_2).X_{02} \end{array} \right\}_B \end{aligned}$$

$$\{T_{1\to 2}\} = \left\{ \begin{array}{cc} 0 & \sim \\ Y_{12} & \sim \\ \sim & 0 \end{array} \right\}_{B,R_1^*} = \left\{ \begin{array}{cc} -\sin(\alpha + \theta_1).Y_{12} & \sim \\ \cos(\alpha + \theta_1).Y_{12} & \sim \\ \sim & 0 \end{array} \right\}_{B,R_0}$$

Question 5: Isoler 1

$$\begin{cases} -F_B.(\cos\theta_1 + \sin\theta_1) + X_{01} + \sin(\alpha + \theta_1).Y_{12} = 0 \\ -F_B.(\sin\theta_1 - \cos\theta_1) + Y_{01} - \cos(\alpha + \theta_1).Y_{12} = 0 \\ -F_B.(2.R_c + l.(\cos\alpha + \sin\alpha)) - l.\cos(\alpha + \theta_1).Y_{01} + l.\sin(\alpha + \theta_1).X_{01} = 0 \end{cases}$$
 | Isoler 2
$$\begin{cases} X_{02} - \sin(\alpha + \theta_1).Y_{12} = 0 \\ Y_{02} + \cos(\alpha + \theta_1).Y_{12} = 0 \\ C_m - R.\cos\theta_2.Y_{02} + R.\sin\theta_2.X_{02} = 0 \end{cases}$$
 | Donc, $Y_{12} = -\frac{F_B.2.R_c}{l}$ | Donc $C_m = R.\frac{F_B.2.R_c}{l}.\cos(\theta_1 - \theta_2 + \alpha)$

