CONTENTS

-0-	
	PAGE
Dr. Eugene Woldemar Hilgard, 1833-1916	1
Introductory. Jacob G. Lipman	3
C. B. Lipman and D. D. Waynick	5
and F. E. Allison	49
with Lime, Ammonium Sulfate and Sodium Nitrate. R. S. Potter and	me.
R. S. Snyder	76 95
The Actinomyces of the Soil. Selman A. Waksman and Roland E. Curtis	99
Studies on Soil Protozoa. Selman A. Waksman	135
Quantitative Media for the Estimation of Bacteria in Soils. R. C. Cook	153
The Influence of Various Salts on the Growth of Soybeans. John W. Shive.	163
Factors Influencing the Protein Content of Soybeans. Jacob G. Lipman and	
A. W. Blair	171
Diastase Activity and Invertase Activity of Bacteria. George P. Koch The Loess Soils of the Nebraska Portion of the Transition Region: I, Hygroscopicity, Nitrogen and Organic Carbon. Frederick J. Alway and	179
Guy R. McDole	197
The Loess Soils of the Nebraska Portion of the Transition Region: II. Humus, Humus-Nitrogen and Color. Frederick J. Alway and Morris	
J. Blish	239
Can Soil be Sterilized without Radical Alteration? David A. Coleman, H.	
Clay Lint and Nicholas Kopeloff	259
Incubation Studies with Soil Fungi. S. A. Waksman and R. C. Cook A Preliminary Statement of the Present Status of the Humus Nitrogen	275
Problem in Arid Soils. Chas. B. Lipman	285
Preliminary Experiments on Some Effects of Leaching on the Soil Flora.	201
Chas. B. Lipman and L. W. Fowler	291
Potash, Soda, and Phosphoric Acid. F. J. Alway and R. M. Isham	299
Some Factors that Influence Nitrate Formation in Acid Soils E. B. Fred	218
and E. J. Graul.	317
Studies in Sulfofication. P. E. Brown and H. W. Johnson	339

of the Year. Selman A. Waksman

The Inoculation and Incubation of Soil Fungi. Nicholas Kopeloff......

363

381

SOIL SCIENCE

	PAGE
The Loess Soils of the Nebraska Portion of the Transition Region: IV. Mechanical Composition and Iuorganic Constituents. F. J. Alway and	
C. O. Rost	405
Studies on the Decomposition of Cellulose in Soils. I. G. McBeth	437
Blair and H. C. McLean.	489
A Rapid Method for the Estimation of Calcium Oxide in Peat Soils, R. A.	102
Goriner	505
Protein Decomposition in Soils. Elbert C. Lathrop	509
The Oxidation of Sulfur in Soils as a Means of Increasing the Availability of Mineral Phosphates. Jacob G. Lipman, Harry C. McLean and H.	
Clay Lint,	533
The Effect of Soil Reaction on Ammonification by Certain Soil Fungi.	
Nicholas Kopeloff.	541
Accumulation of Salts in Ohio Soils. J. W. Ames and C. J. Schollenberger.	575
The Yield and Nitrogen Content of Soybeans as Affected by Inoculation,	
J. G. Lipman and A. W. Blair	579
Studies on Soil Colloids: I. Flocculation of Colloidal Solutions. M. I.	
Wolkoff.	585
Index	603

ILLUSTRATIONS

PLATES

T.	WOLDENAR	TY

	PAGE
Eugene Woldemar Hilgard, Ph.D., LL.D., Late Director Emeritus of the Agricultural Experiment Station of California, and Professor Emeritus of the University of California.	1
A DETAILED STUDY OF THE EFFECTS OF CLIMATE ON IMPORTANT PROPERTIES OF SOILS	
PLATE I. Figs. 1, 2 and 3, show cellulose destruction by 1st, 2nd and 3rd foot of California soil (undisturbed) at California. Figs. 4, 5 and 6—Same for same soil disturbed	48
PLATE II. Figs. 1, 2 and 3, show cellulose destruction by 1st, 2nd and 3rd foot of California soil at Maryland. Figs. 4, 5 and 6—Same for California	
PLATE III. Figs. 1, 2 and 3, show cellulose destruction by 1st, 2nd and 3rd foot of Kansas soil at California. Figs. 4, 5 and 6—Same for Kansas	48
soil at Kansas PLATE IV. Figs. 1, 2 and 3, show cellulose destruction by 1st, 2nd and 3rd foot foot of Maryland soil at California, Figs. 4, 5 and 6—Same for Kansas	48
soil at Maryland	48
of Maryland soil at Maryland. Figs. 4, 5 and 6—Same for Maryland soil at Kansas	48
CARBON AND NITROGEN CHANGES IN THE SOIL VARIOUSLY TREATED: SOIL TREATED WITH LIME, AMMONIUM SULFATE AND SODIUM NITRATE PLATE I. Apparatus used in determining carbon and nitrogen changes in soil variously treated	94
THE ACTINOMYCES OF THE SOIL	
PLATE I. Fig. 1.—Act. violaceus-ruber. Fig. 2.—Act. violaceus-Caeseri. Fig. 3.—Act. chromogenus, strain 22. Fig. 4.—Act. virido-chromogenus. Fig. 5.—Act. diastato-chromogenus. Fig. 6.—Act. erithro-chromogenus. Fig.	
7.—Act. purpeo-chromogenus. Fig. 8.—Act. chromogenus, strain 40 PLATE II. Fig. 1.—Act. albus. Fig. 2.—Act. alboatrus. Fig. 3.—Act. reti-	134
culi. Fig. 4.—Act. alboflavus. Fig. 5.—Act. albosporeus. Fig. 6.— Act. Verne. Fig. 7.—Act. griseus. Fig. 8.—Act. Californicus Plate III. Fig. 1.—Act. citreus. Fig. 2.—Act. Bobili. Fig. 3.—Act. purpuro-	134
genus. Fig. 4.—Act. Lipmanii. Fig. 5.—Act. diastaticus. Fig. 6.—Act. Fradii. Fig. 7.—Act. exfoliatus. Fig. 8.—Act. flavus. Fig. 9.—Act. Rut-	134

THE LOESS SOILS OF THE NEBRASKA PORTION OF THE TRANSITION REGION:	PAGE
I. HYGROSCOPICITY, NITROGEN AND ORGANIC CARBON	
PLATE I. Fig. 1.—Field II at Wauneta showing very level character of fields in this area. A young orchard is shown in the foreground. Fig. 2.—Field III at McCook. Planted trees about the farmstead. Canyons in the loess at the right. Fig. 3.—Field V at Holdrege, showing level topography. Planted trees in the distance.	238
PLATE II. Fig. 1.—Field IV at Hastings showing very level topography. Planted trees in the distance. Fig. 2.—Field IV at Lincoln, showing rolling topography and, in the distance, native trees along water-courses. Fig. 3.—Field V at Weeping Water showing orchard and shade trees about a farmstead. This was one of the very few comparatively level	-
tracts that had not been brought under the plow	238
ward from Field IV at Wauneta, showing the lower-lying plain of Tertiary rocks covered with residual soil. The loess extends about 300 yards beyond the immediate foreground. Fig. 2.—A canyon in the loess between Fields II and IV at Wauneta, showing contact of loess with underlying unaltered Tertiary rock. The man is shown standing on a slight projection of the latter. The photograph was taken from the opposite	
side of the canyon	238
Some Factors that Influence Nitrate Formation in Acid Soils	
PLATE I. Colonies of bacteria on Heyden agar plates in nitrification studies in Colby silt loam, Fig. 1.—Control, Fig. 2.—Control plus CaCO ₃ . Fig. 3.—Small amount of gelatin. Fig. 4.—Small amount of gelatin plus CaCO ₃ . Fig. 5.—Large amount of gelatin. Fig. 6.—Large amount of gelatin plus CaCO ₃ . Fig. 7.—Gelatin plus Ca(NO ₃) ₂ . Fig. 8.—Gelatin plus Ca(NO ₃) ₂ plus CaCO ₃ .	338
THE EFFECT OF SOIL REACTION ON AMMONIFICATION BY CERTAIN SOIL FUNGI	
PLATE I. The effect of soil reaction on the mycelial growth of <i>Rhizopus nigricans</i> using dried blood as the source of organic matter. HCl(N/1) added in amounts equivalent to: 1. Check, 2. Original soil acid ≈ 400 lbs. CaO per acre. 4. Acid ≈ 1000 lbs. 5. Acid ≈ 2000 lbs. 6. Acid ≈	
3000 lbs. 7. Acid ≈ 4000 lbs	574
PLATE II. The effect of soil reaction on mycelial growth of Rhizopus nigricans using dried blood as the source of organic matter. NaOH(N/1) added in amounts equivalent to: 1. Check. 2. Neutral. 8. Alk ≈ 1000 lbs. CaO per acre. 9. Alk. ≈ 2000 lbs. 10. Alk. ≈ 3000 lbs. 11. Alk. ≈	
4000 lbs.	574
PLATE III. The effect of soil reaction on mycelial growth of Rhizopus nigricans using cottonseed meal as the source of organic matter. HCl(N/1) added in ammounts equivalent to: 1. Check. 2. Original soil acid ≈ 400 lbs. CaO per acre. 4. Acid ≈ 1000 lbs. 5. Acid ≈ 2000 lbs. 6. Acid ≈ 3000 lbs. 7. Acid ≈ 4000 lbs.	574
PLATE IV. The effect of soil reaction on mycelial growth of Rhisopus nigri-	3/4
cons using cottonseed meal as the source of organic matter. NaOH (N/1) added in amounts equivalent to: 1. Check. 3. Neutral. 8. Alk. ≈ 1000 lbs. CaO per acre. 9. Alk. ≈ 2000 lbs. 10. Alk. ≈ 3000 lbs. 11. Alk. ≈ 4000 lbs.	574
	3/4

TEXT FIGURES

		PAGE
CA	RBON AND NITROGEN CHANGES IN THE SOIL VARIOUSLY TREATED: SOIL	
The .	TREATED WITH LIME, AMMONIUM SULFATE AND SODIUM NITRATE	
Fig.	Diagram of apparatus used in determining carbon and nitrogen changes in soil variously treated	81
	2. Diagram showing the average amount of carbon dioxide given off	
	per day in soil variously treated	87
	THE ACTINOMYCES OF THE SOIL	
Fig.	1. Relative percentages of bacteria and actinomyces at different soil	
	depths	106
	INFLUENCE OF SALTS ON THE GROWTH OF SOYBEANS	
Fig.	1. Graphs showing the relative dry-weight values of soybeans grown	
1.10.	in various cultures containing different salts	168
	· DIASTASE ACTIVITY AND INVERTASE ACTIVITY OF BACTERIA	
Fig.	1. The variation in the hydrolytic processes and the protein decompo-	
	sition by Bacterium mycoides at different periods	186
	 The variation in the hydrolytic processes and the protein decom- position by Bacillus subtilis at different periods 	186
	3. Studies on the enzyme activity of Bacillus coli for a period of	100
	eight days	190
	4. Studies on the enzyme activity of Bacterium mycoides for a period	
	of eight days	190
TH	IE LOESS SOILS OF THE NEBRASKA PORTION OF THE TRANSITION REGION:	
	I. HYGROSCOPICITY, NITROGEN AND ORGANIC CARBON.	
Fig.	1. Map showing distribution of loess in the United States and also	
	the annual precipitation and evaporation of the loess region	198
	Map of Nebraska showing distribution of the loess, precipitation- belts, the altitude and the location of fields sampled	203
		203
TE	IE LOESS SOILS OF THE NEBRASKA PORTION OF THE TRANSITION REGION:	
•	II. HUMUS, HUMUS-NITROGEN AND COLOR.	
Fig.	1. Map of Nebraska showing distribution of the loess (shaded),	240
	annual precipitation and location of fields sampled	240
	methods in the different areas.	245
	3. Diagram showing the distribution of humus, as determined colori-	
	metrically, in the different fields	246
	4. Diagram showing the distribution of humus in the surface foot	247
	CAN SOIL BE STERILIZED WITHOUT RADICAL ALTERATION?	
Fig.	1. Diagram showing the effect of intermittent heat for 5 days at	
	82°C. upon the numbers of bacteria in moist soil and in air-dry	0.10
	soils.	263
	2. Diagram of apparatus used in experiment on sterilizing soil with various antiseptics	266

		DACE
	INCUBATION STUDIES WITH SOIL FUNGI	PAGE
Fig.	1. Daily ammonia accumulation by (1) Mucor plumbeus, (2) Monilia sitophila, and (3) Penicillium sp	282
T	HE LOESS SOILS OF THE NEBRASKA PORTION OF THE TRANSITION REGION: III, POTASH, SODA AND PHOSPHORIC ACID	
Fig.	1. Map of Nebraska showing distribution of the loess (shaded), an-	
	nual precipitation and location of the fields sampled	300 309
B	ACTERIAL NUMBERS IN SOILS, AT DIFFERENT DEPTHS, AND IN DIFFERENT SEASONS OF THE YEAR	007
Fig.	1-4. Moisture Content of Nitrogen, carbon, lime and in the four	
L'1G.	types of soil used	375
	5. Numbers of bacteria at the depth of 1 inch throughout the year	376
	6. Numbers of bacteria in different depths of soil: average for whole	
	year.	377
	THE INOCULATION AND INCUBATION OF SOIL FUNGI	
Fig.	1. Inoculation of <i>Penicillium</i> sp. 10. Increase over check of ammonia	
2.10,	in mg, N	384
	in mg. N. 3. Inoculation of Zygorrhyncus Vuilleminii. Increase over check of	386
	ammonia in mg. N. 4. Inoculation of Rhisopus Orysae in dried blood. Increase over	388
	check of ammonia in mg. N	390
	check of ammonia in mg. N	395
	ammonia in mg. N	396
	in mg. N. 8. Incubation period of Rhisopus nigricans. Daily increase in am-	399 400
	monia in mg. N.	400
TI	IE LOESS SOILS OF THE NEBRASKA PORTION OF THE TRANSITION REGION:	
	IV. MECHANICAL COMPOSITION AND INORGANIC CONSTITUENTS	
Fig.	1. Map of Nebraska showing distribution of the loess (shaded), annual precipitation and location of fields sampled	406
	2. Diagram showing the mechanical composition of the composite samples from the different areas	408
TE	IE INFLUENCE OF LIME ON THE YIELD AND NITROGEN CONTENT OF CORN	
Fig.	 Lime requirement of soil from unlimed and limed plots The influence of lime on the yield of corn, 1913. (Calculated to 	495
	acre basis.) 3. Percentage of nitrogen recovered from limed and unlimed plots:	498
	corn, 1913	502

ILLUSTRATIONS

T	HE]	EFFECT OF SOIL REACTION ON AMMONIFICATION BY CERTAIN SOIL FUNGI	PAGE
Fig.	1.	The effect of reaction on Rhisopus nigricans in Penn clay loam (HCl-NaOH).	547
	2.	The effect of reaction on Zygorrhyncus Vuilleminii in Norfolk sandy loam (HCl-NaOH)	549
	3.	The effect of reaction on Zygorrhyncus Vuilleminii in Penn clay loam (HCl-NaOH).	551
	4.	The effect of reaction on Penicillium sp. in Norfolk sandy loam (HCl-NaOH).	553
	5.	The effect of reaction on <i>Penicillium</i> sp. in Penn clay loam (HCl-NaOH).	555
	6.	The effect of reaction on <i>Penicillium</i> sp. in Norfolk sandy loam (H ₂ SO ₄ —CaCO ₃).	558
-	7.	The effect of reaction on <i>Penicillium</i> sp. in Penn clay loam (H ₂ SO ₄ —CaCO ₈)	561
	8.	The effect of reaction on Zygorrhyncus Vuilleminii in Norfolk sandy loam (H ₂ SO ₄ —CaCO ₃)	563
	9.	The effect of reaction on Zygorrhyncus Vuilleminii in Penn clay loam (H ₂ SO ₄ —CaCO ₃).	565
	10.	The effect of reaction on Rhisopus nigricans in Norfolk sandy loam (H ₂ SO ₄ —CaCO ₃)	567
	11.	The effect of reaction on Rhizopus nigricans in Penn clay loam (H ₂ SO ₄ —CaCO ₃).	569
S	TUDI	IES ON SOIL COLLOIDS: I, FLOCCULATION OF COLLOIDAL SOLUTIONS	
Fig.	1.	The minimum electrolyte requirement for coagulation of soil col-	
	2	loidal solutions	592
	2.	clay colloidal solution	597
	3.	The relation between the Mass Action Law and flocculation of muck	

colloidal solution.

598

ERRATA

Page 17, line 8 from bottom, "nittrate" should read "nitrate."

Page 48, 3rd page following, legend opposite Plate II, last line, "as" should read "at."

Page 94, reference (10), title of article should read "Untersuchungen über das Verhalten des Ammoniakstickstoff in gekalkten und ungekalkten Boden."

Pages 104, 108, 109-128, "Czapeck" and "Czapeck's" should read "Czapek" and "Czapek's," respectively.

Page 110, line 17 from bottom, "violaceus" should read "violaceus-ruber."

Page 125, line 11, omit "33."

Page 129, line 21, "albotratus" should read "alboatrus."

Page 131, Table V, "violaceons-ruber" should read "violaceus-ruber," and "violaceons-Caeseri" should read "violaceus-Caeseri."

Page 134, 3rd page following, legend opposite Plate II, "Act. albotratus" should read "Act. alboatrus."

Page 151, reference (9) should read "Koch, G. P. 1915. Activity of soil protozoa. In Jour. Agr. Research, v. 5, no. 11, p. 477-488."

Page 180, line 14, "bacillus fluoresens liquifi" should read "Bacillus fluorescens liquefaciens."

Page 188, line 4, "bacillus fluorescens liqui" should read "Bacillus fluorescens liquefaciens."

Page 232, line 1, "Table XXXXIV" should read "Table XXXIV."

Page 274, reference (7), "Lyon, T. A." should read "Lyon, T. L.," and references (11) and (12), "Russell, E. H." should read "Russell, E. J."

Page 325, Table VII, "January 17-February 20" should read "January 17-January 20." Also, insert "November 24-January 7" under line reading "Group B.-Formation of Nitrates."

Page 386, legend of figure 2, "or" should read "of."

Page 392, Table VI, heading of 1st column under "Dried Blood Series" should read "Incr. 1 c.c. over 0.2 c.c.", of 2nd column, "Incr. 5 c.c. over 1.0 c.c.", and heading of 1st column under "Cottonseed Meal Series" should read "Incr. 1 e.c. over 0.2 c.c."

Pages 381-403, "The Inoculation and Incubation of Soil Fungi," by N. Kopeloff. Throughout this article, "Zygorrhyncus" should read "Zygorhynchus" (preferable form).

