Matte

Jakob Tigerström/Eric Johansson

September 15, 2015

Contents

1	TODO
2	Föreläsning 1 2.1 Värdesiffror
3	Föreläsning 2
4	Föreläsning 3 4.1 Vektorer
5	Föreläsning 4 5.1 Grundläggande algebra och prioriteringsregler
	5.2 Bråkräkning

1 TODO

1. Skriv fler föreläsningar

2 Föreläsning 1

Värdesiffror 2.1

Ex1: Hur många vädresiffror har talen

- 1. 251 3 st
- 2. 0,251 3 st
- 3. 0,001 1 st
- 4. 250 2 eller 3 st
 - $2,5*10^2$ 2 st
 - $2,50*10^2$ 3 st
- 5. 2500 2,3 eller 4 st $2,5*10^3$
 - $2,50*10^3$
 - $2,500*10^3$
- 6. 250,0 4 st

Multiplikation och division: Svara med lika många värdesiffror som det värde som har minst värdesiffror.

$$5,22 *3.1 = 16,182 = 16.$$

2.2 Addition och Subtraktion

Minst antal decimaler avgör.

$$23,52+12,4=35,92\approx 35,9$$

$$23,56+12,4=35,96\approx 36,0$$

2.3Uppskatta storleksordning

 $\frac{2,8*10^5}{3,2*10^3}$

Storleksordningen på svaret är 10^2

3 Föreläsning 2

Omskrivning av formler

Densitet: $\rho = m/v$

 $\mathbf{EX:1}$ Beräkna densiteten för en sten som har volymen $12cm^3$ och väger 36g.

$$\rho = \frac{m}{v} = \frac{36}{12} = 3,0g/cm^3$$

 $\mathbf{EX:2}$ Beräkna volymen av ett okänt föremål med densiteten $0,8g/cm^3$ och väger 24g.

$$\rho = \frac{m}{v}$$

$$\rho * V \frac{m}{V} * V$$

$$\frac{\rho * V}{V} = m$$

$$V = \frac{m}{\rho}$$

$$V = m/\rho = 24/0, 8 = 30cm3$$
Hooke lag
$$F = k * \Delta l$$

F - kraft

k - fjäderkonstant

 Δl - fjäderns förlägning

EX:3 Bestäm konstanten för en fjäder som sträcks ut 18cm när den belastas med kraften 37N.

$$F = k * \Delta l$$

$$\frac{F}{\Delta l} = k$$

$$k = \frac{F}{\Delta l} = \frac{37}{0.18} = 205, 55... \approx 2, 1 * 10^2 N/m$$
Formel för rörelse energi: $w = \frac{mv^2}{2}$

$$w - \text{energi}(J)$$

$$m - \text{massa}(kg)$$

$$h - \text{höjd}(m)$$

$$g - \text{gravitationskonstant}.9,52m/s2$$

$$v - \text{hastighet}(m/s)$$

$$EX4:$$
Beräkna rörelseenergin för en bil som väger 1200kg och kör 90km/h
$$w = \frac{mv^2}{2} = \frac{1200*25^2}{2} = 375000 \approx 4 * 10^5 J = 400kJ = 0,4mJ$$

$$90km = 90000m$$

$$1h = 3600s$$

$$\frac{90000}{3600} = \frac{90}{3,6} = 25m/s$$

4 Föreläsning 3

4.1 Vektorer

Storhet som har både storlek och riktning.

Storheter där riktningen ej är relevant kallas skalärer.

Att skriva vektorer:

F, (f)

Att rita vektorer:

--->

Pilens riktning är vektorens riktning.

Pilens längd är vektorens storlek.

Att addera två vektorer:

 ${\bf Parallellogrammetoden.}$

Polygonmetoden

Att multiplicera/dividera en vektor med en skalär(ett tal):

Multiplicera vektorn v(med tak) med talet k, k > 0.

Sammar riktning "storleken påverkas av k, k < 0.

Motsatta riktningen storleken påverkas av k.

Komposanter(att dela upp en vektor)

(x1; y1) + (x2; y2) = (x1 + x2; y1 + y2)

Föreläsning 4 5

Grundläggande algebra och prioriteringsregler

När vi beräknar värdet av ett uttryck måste vi ta hänsyn tilll prioriterings reglerna.

- 1. Paranteser
- 2. Potenser
- 3. Multiplikation och division
- 4. Addition och division

EX:1
$$\underbrace{20/4}_{3} \underbrace{+8 - 6 * 2}_{4} = \underbrace{5 + 8}_{3} \underbrace{-12}_{3} = 1$$

EX:2
$$2* \underbrace{5^3}_{3} = \underbrace{2*125}_{3} = 250$$

EX:3
$$(8+5)$$
 $\underbrace{2}_{1}$ $\underbrace{(16+14)}_{1}$ = $\underbrace{13^{2}}_{2}$ $\underbrace{*30}_{3}$ = $\underbrace{169*30}_{3}$ = 5070

Bråkräkning

Multiplikation $\frac{3}{5}*\frac{8}{7}=\frac{24}{35}$ Täljare multipliceras till en täljare.

nämnare multipliceras till en nämnare.

Addition och subtraktion.

$$\frac{1}{3} + \frac{1}{8} = \frac{8*1}{8*3} + \frac{1*3}{8*3} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24}$$