APPENDIX I Aptitude variables (n=34), indicating the layer type and the digital source. It also indicates the reason for their inclusion, their impact area, their condition to be fulfilled to obtain the maximum, minimum and exclusion threshold values, and the references supporting this data. Variables are classified according to their relationship with: (a) wind (no. 1 to 5), (b) natural spaces and biodiversity (no. 6 to 18) and (c) current land uses, historical-cultural sites and infrastructures (no. 19 to 34).

No.	Aptitude variable/layer	Layer type	Download or digitisation sources (library)	Reason for inclusion	Condition for Maximum Aptitude value	Condition for Minimum Aptitude value	Condition for Exclusion threshold	References
1	Distance to already installed wind turbines	Vectorial, point	FDJCC, 2021b	Turbulence generation in the vicinity of its blades	> 1200 m	200 m	Presence and buffer ≤ 200 m	Baban & Parry, 2001; Manwell et al., 2010; Díaz-Cuevas et al., 2017; McKenna et al., 2022; Martínez-Martínez et al., 2023
2	Fraction of tree canopy cover in forest environments	Vectorial, polygon	MITERD, 2023b	Increased irregular wind turbulence. Poorer access for maintenance. Periodic renewal of forest tracks required	< 20 %	80 %	≥ 80 %	Baban & Parry, 2001; Mentis et al., 2015
3	Altitude	Raster, 5 x 5 m	JCYL, 2023b	Very high elevations are associated with higher transport and fuel costs and insufficient air density, pressure and temperature (inefficiency). Generally associated with greater runway opening required. Sometimes higher elevations have islands of threatened vegetation	< 1500 m	2000 m	≥ 2000 m	Baban & Parry, 2001; Gass et al., 2013; Atici et al., 2015; Noorollahi et al., 2016; Martínez-Martínez et al., 2022; McKenna et al., 2022; Zahedi et al., 2022
4	Slope	Raster, 5 x 5 m	JCYL, 2023b	Related to the surface turbulence of the blades. Also with the construction of tracks to transport the wind turbines	< 3° (5%)	20° (36%)	≥ 20° (36%)	Baban & Parry, 2001; Molina-Ruiz & Tudela-Serrano, 2008; Van- Haaren & Fthenakis, 2011; Al-Yahyai et al., 2012; Latinopoulos & Kechagia, 2015; Höfer et al., 2016; Rezaian & Jozi, 2016; Martínez-Martínez et al., 2022; McKenna et al., 2022; Asadi et al., 2023; Yildiz, 2024
5	Average annual wind speed at hub height (100 m)	Raster, 50 x 50 m	Lorente-Plazas et al., 2012; Aymamí et al., 2016; CENER, 2023; Global Wind Atlas, 2023	Related to producible energy	> 7 m/s	3 m/s	≤ 3 m/s	Krewitt & Nitsch, 2003; Ramachandra & Shruthi, 2005; Aymamí et al., 2011; Kishore & Priya, 2013; Latinopoulos & Kechagia, 2015; Mentis et al., 2015; Cristea & Jocea, 2016; Höfer et al., 2016; Dhunny et al., 2019; Zahedi et al., 2022; Yildiz, 2024

6	Distance to singular trees	Vectorial, point	JCYL, 2023b	Conservation of emblematic or singular trees	> 300 m	50 m	Presence and buffer ≤ 50 m	Jasone & Iriarte, 2018
7	Distance from critical conservation areas of the Cantabrian Capercaillie Recovery Plan	Vectorial, polygon	JCYL, 2023b	Protection of the Cantabrian capercaillie (<i>Tetrao urogallus cantabricus</i>), the study area being its southernmost spur	> 100 m	0 m	Presence	MITERD, 2020; Castilla y León, 2022
8	Distance to Important Bird and Biodiversity Conservation Areas of Spain	Vectorial, polygon	Infante et al., 2011; MITERD, 2023a	Ecosystem protection. Sensitivity of avifauna to noise and collisions. Consideration of birds as an 'umbrella' indicator for many species and habitats	> 100 m	0 m	Presence	Sliz-Szkliniarz & Vogt, 2011; Díaz-Cuevas et al., 2017; MITERD, 2020; Pérez-García, 2021; SEO/BirdLife, 2023
9	Distance to the Cantabrian Ecological Corridor	Vectorial, line	WWF/Adena Spain, 2018	Protection of the territorial interconnection of fauna between Natura 2000 sites and noise protection	> 1000 m	500 m	Presence and buffer ≤ 500 m	Yue & Wang, 2006; Ramírez-Rosado et al., 2008; Sliz-Szkliniarz & Vogt, 2011; WWF/Adena Spain, 2018; MITERD, 2020; MITERD, 2021; SEO/BirdLife, 2023
10	Presence of endangered and/or protected flora of Castilla y León	Vectorial, polygon (UTM 1 x 1 km grids)	Moreno-Saiz et al., 2019; JCYL, 2023b	Protection of Critically Endangered (CR), Endangered (EN) or Vulnerable (VU) plant taxa. For example, <i>Gyrocaryum oppositifolium</i> Valdés (CR), endemic to the study area	-	-	Presence on UTM grid	Alfaro-Saiz et al., 2022; 2023
11	Distance to natural and artificial water bodies	Vectorial, polygon	JCYL, 2023b	Obstacle to construction and transport. Preservation of access to wildlife. Ecosystem importance	> 600 m	200 m	Presence and buffer ≤ 200 m	Baban & Parry, 2001; Hansen, 2005; Sliz-Szkliniarz & Vogt, 2011; McKenna et al., 2022; SEO/BirdLife, 2023; Yildiz, 2024
12	Distance to the National Network of Protected Natural Spaces	Vectorial, polygon	JCYL, 2023b	Ecosystem protection (fragmentation), flora, fauna, ecosystem services, recreation, culture. Noise sensitivity	> 5000 m	1000 m	Presence and buffer ≤ 1000 m	Baban & Parry, 2001; Krewitt & Nitsch, 2003; Hoogwijk et al., 2004; Lejeune & Feltz, 2008; Aydin et al., 2010; Aymamí et al., 2011; Sliz-Szkliniarz y Vogt, 2011; Díaz-Cuevas, 2018; MITERD, 2020; Gharaibeh et al., 2021; Castilla y León, 2022; McKenna et al., 2022; Asadi et al., 2023; SEO/BirdLife, 2023

13	Distance to the river network and the public water domain	Vectorial, line	JCYL, 2023b	Obstacle to construction and transport. Preservation of access to wildlife. Ecosystem importance. Riparian flora. Public water legislation (police zone at 100 m from the river)	> 600 m	120 m	Presence and buffer ≤ 120 m	Baban & Parry, 2001; Spain, 2008; Sliz-Szkliniarz & Vogt, 2011; Höfer et al., 2016; Acedo, 2017; Díaz-Cuevas et al., 2017; Sadeghi & Karimi, 2017; Díaz-Cuevas, 2018; MITERD, 2020
14	Distance to Biosphere Reserves	Vectorial, polygon	MITERD, 2023a	Ecosystem protection, flora, fauna, ecosystem services, recreation and recreation, culture and tradition of local populations	> 5000 m	1000 m	Presence and buffer ≤ 1000 m	Baban & Parry, 2001; Krewitt & Nitsch, 2003; Hoogwijk et al., 2004; Lejeune & Feltz, 2008; Aydin et al., 2010; Díaz-Cuevas, 2018; MITERD, 2020; SEO/BirdLife, 2023
15	Distance to areas of high sensitivity in cantabrian capercaillie and cantabrian brown bear recovery plans in Castilla y León regarding wind energy complexes	Vectorial, polygon	JCYL, 2023b	Protection of the Cantabrian capercaillie (<i>Tetrao urogallus cantabricus</i>) and the Cantabrian brown bear (<i>Ursus arctos pyrenaicus</i>), the study area being its southernmost spur	> 100 m	0 m	Presence	MITERD, 2020
16	Distance to SAC/SCI - Natura 2000 Network-	Vectorial, polygon	JCYL, 2023b	Ecosystem protection, flora, fauna and ecosystem services. Sensitivity to noise. Sensitivity to habitat fragmentation	> 5000 m	1000 m	Presence and buffer ≤ 1000 m	Baban & Parry, 2001; Krewitt & Nitsch, 2003; Hoogwijk et al., 2004; Lejeune & Feltz, 2008; Aydin et al., 2010; Aymamí et al., 2011; Sliz-Szkliniarz & Vogt, 2011; Latinopoulos & Kechagia, 2015; Díaz-Cuevas, 2018; MITERD, 2020; SEO/BirdLife, 2023
17	Distance to SPA -Natura 2000 Network-	Vectorial, polygon	JCYL, 2023b	Ecosystem protection. Sensitivity of avifauna to noise and collisions	> 5000 m	1000 m	Presence and buffer ≤ 1000 m	Hoogwijk et al., 2004; Yue & Wang, 2006; Lejeune & Feltz, 2008; Aydin et al., 2010; Aymamí et al., 2011; Sliz-Szkliniarz & Vogt, 2011; Latinopoulos & Kechagia, 2015; Díaz-Cuevas et al., 2017; Díaz-Cuevas, 2018; SEO/BirdLife, 2023
18	Distance to Scheduled Wetland Areas	Vectorial, polygon	JCYL, 2023b	Ecosystem protection	> 600 m	400 m	Presence and buffer ≤ 400 m	Baban & Parry, 2001; Hansen, 2005; Hötker et al., 2006; Sliz- Szkliniarz & Vogt, 2011

19	Distance to arable areas in irrigated areas	Vectorial, polygon	JCYL, 2023b	Crop potential, local self-economy, prior deployment of irrigation infrastructure	> 150 m	0 m	Presence	Sliz-Szkliniarz & Vogt, 2011; Concepción & Díaz, 2013; Mentis et al., 2015; Díaz-Cuevas, 2018; Castilla y León, 2022; Valera et al., 2022
20	Distance to the road network	Vectorial, line	JCYL, 2023b	Safety distance from breakage accidents and legislated strips. However, their proximity is also valued in order to avoid the construction of new roads	200 - 10000 m	> 10000 m	Presence and buffer ≤ 200 m	Krewitt y Nitsch, 2003; Hansen, 2005; Sliz-Szkliniarz & Vogt, 2011; Atici et al., 2015; Spain, 2015a; Latinopoulos & Kechagia, 2015; Noorollahi et al., 2016; Díaz-Cuevas et al., 2017; Ryberg et al., 2017; Díaz-Cuevas, 2018; Lundquist et al., 2018; McKenna et al., 2022; Asadi et al., 2023; Yildiz, 2024
21	Distance to Archaeological Sites	Vectorial, polygon	JCYL, 2023b	Cultural, scientific and historical protection. High concentration of Roman gold mining remains such as the alluvial exploitation of the Médulas, the castros, the remains of camps or the petroglyphs	> 600 m	200 m	Presence and buffer ≤ 200 m	Molina-Ruiz & Tudela-Serrano, 2008; Latinopoulos & Kechagia, 2015; Pérez-García, 2021
22	Distance to Cultural Heritage Sites	Vectorial, polygon	JCYL, 2023b	Cultural, scientific and historical protection. Public use (visits), safety in the event of shovel breakage, sensitivity to road construction and heavy traffic nearby	> 600 m	150 m	Presence and buffer ≤ 150 m	Baban & Parry, 2001; Lejeune & Feltz, 2008; Molina-Ruiz & Tudela-Serrano, 2008; Sliz-Szkliniarz & Vogt, 2011; Atici et al., 2015; Fernández-Núñez et al., 2015; Díaz-Cuevas et al., 2017; Díaz-Cuevas, 2018; MITERD, 2020; Castilla y León, 2022a
23	Distance to UNESCO World Heritage Sites	Vectorial, polygon	JCYL, 2023b	Cultural, scientific and historical protection	> 600 m	0 m	Presence	Latinopoulos & Kechagia, 2015; MITERD, 2020
24	Distance to the Pilgrims' Routes to Santiago	Vectorial, line	López-Palacios, 2022; CNIG, 2023	Safety for foot traffic. Cultural, tourist and landscape protection. The French route recognised by UNESCO and the local routes recognised by the JCYL	> 500 m	150 m	Presencia y buffer de ≤ 150 m	MITERD, 2020; Pérez-García, 2021
25	Distance to the centre of medium-sized cities	Vectorial, point	JCYL, 2023b	Incompatibility due to residential or public use areas (noise sensitivity, interference from non-satellite AM and FM radio waves, visual impact, occupation of peri-urban recreational area)	> 5000 m	2500 m	Presence and buffer ≤ 2500 m	Baban & Parry, 2001; Lejeune & Feltz, 2008; Fernández-Núñez et al., 2015; Latinopoulos & Kechagia, 2015; International Energy Agency, 2023

26	Presence of areas restricted by current regional and national legislation in relation to wind farms	Vectorial, polygon	JCYL, 2023b	Restrictions declared in regional laws		-	Presence	JCYL, 2023b
27	Distance to faults and tectonic contacts	Vectorial,	JCYL, 2023b	Instability on the construction site	> 500 m	20 m	Presence and buffer ≤ 20 m	Atici et al., 2015; Noorollahi et al., 2016; Díaz-Cuevas, 2018
28	Distance to Sites of Geological Interest	Vectorial, polygon	IGME, 2023	Cultural, scientific and historical protection. Areas with features of importance within the local geological or palaeontological history	> 100 m	0 m	Presence	MITERD, 2020; Pérez-García, 2021
29	Distance to railway lines	Vectorial, line	JCYL, 2023b	Safety distance from accidents and legislated buffer strips. Protection of rehabilitable historic railway tracks (Ponfeblino)	> 500 m	200 m	Presence and buffer ≤ 200 m	Krewitt & Nitsch, 2003; Sliz-Szkliniarz & Vogt, 2011; Atici et al., 2015; Spain, 2015b; Ryberg et al., 2017; Díaz-Cuevas, 2018; McKenna et al., 2022
30	Distance to the National Network of Nature Trails	Vectorial, line	MAPA, 2023	Safety for foot traffic. Cultural, tourist and landscape protection	> 300 m	150 m	Presence and buffer ≤ 150 m	Pérez-García, 2021
31	Distance to regional nature trails	Vectorial, line	JCYL, 2023b	Safety for foot traffic. Promotion of tourism, visitation and the economy of rural areas linked to footpaths	> 200 m	75 m	Presence and buffer ≤ 75 m	Pérez-García, 2021
32	Presence of incompatible non-urban uses (watercourse, reservoir, mining, industrial, waste infrastructure, supply infrastructure, agricultural and/or livestock facility, greenhouse, lake or	Vectorial, polygon	CNIG, 2023	Incompatibility due to already developed land, residential areas (noise sensitivity), constructions, non-developable land	-		Presence	Hoogwijk et al., 2004; Sliz-Szkliniarz & Vogt, 2011; Al-Yahyai et al., 2012; Latinopoulos & Kechagia, 2015; Díaz-Cuevas, 2018; McKenna et al., 2022

Ī

	pond, artificial water body, road or rail network)							
33	Distance to areas with incompatible urban, rural and residential uses (inner city, urban expansion, urban green zone)	Vectorial, polygon	CNIG, 2023	Incompatibility for residential or public use areas (noise sensitivity, non-satellite AM and FM radio wave interference, shadow-flicker, visual impact)	> 3000 m	500 m	Presence and buffer ≤ 500 m	Krewitt & Nitsch, 2003; Hoogwijk et al., 2004; Hansen, 2005; Yue & Wang, 2006; Nguyen, 2007; Lejeune & Feltz, 2008; Ramírez-Rosado et al., 2008; Aydin et al., 2010; Sliz-Szkliniarz & Vogt, 2011; Al-Yahyai et al., 2012; Ranaboldo et al., 2014; Fernández-Núñez et al., 2015; Latinopoulos & Kechagia, 2015; Díaz-Cuevas, 2018; MITERD, 2020; Castilla y León, 2022; Asadi et al., 2023; International Energy Agency, 2023; Yildiz, 2024
34	Distance to livestock trails	Vectorial, line	JCYL, 2023b	Security for foot traffic	> 200 m	75 m	Presence and buffer ≤ 75 m	Spain, 1995; MITERD, 2020

, u / LI	impact variables		rating the tayer type and	r the digital source. It also indicates the reason for their inclusion, their impact area, the	ien impact type	., and the refer	chees supporting this data.
No.	Impact variable/layer	Layer type	Download or digitisation sources (library)	Reason for inclusion	Impact area	Impact type (by value)	References
1	Presence of the projected area in view of the possible declaration of the Médulas- Teleno Geopark	Vectorial, polygon	IEC, 2020	Protection of cultural and archaeological property	Presence	Negative	Sliz-Szkliniarz & Vogt, 2011; Pérez- García, 2021
2	Presence of SEO/BirdLife's sensitive bird areas related to wind energy plants	Vectorial, polygon	SEO/BirdLife, 2023	Protection of birds: large gliders or birds sensitive to habitat alteration (Golden eagle, Montagu's harrier, Hen harrier, Egyptian vulture, Cantabrian capercaillie)	Presence	Negative	SEO/BirdLife, 2023
3	Presence of Very Important Plant Areas	Vectorial, polygon (UTM 10 x 10 km grids)	Alfaro-Saiz et al., 2023	Protection of threatened habitats, vascular vegetation and bryophytes	Presence	Negative	Álvarez et al., 2015; Alfaro-Saiz et al., 2022; Alfaro-Saiz et al., 2023
4	Presence of the total scope of the Cantabrian brown bear and Cantabrian capercaillie recovery plans	Vectorial, polygon	JCYL, 2023b	Protection of the Cantabrian capercaillie (<i>Tetrao urogallus cantabricus</i>) and the Cantabrian brown bear (<i>Ursus arctos pyrenaicus</i>), the study area being its southernmost spur	Presence	Negative	MITERD, 2020
5	Presence of hunting reserves associated with the presence of the Iberian wolf	Vectorial, polygon	JCYL, 2023b	Protection of the Iberian wolf. The reserves indicate their presence, since until 2021 they were a hunting species present in them, so they are potential areas for projected expansion given their specific resilience	Presence	Negative	Cortés et al., 2021; Spain, 2021
6	Presence of visual catchments (visible territories) from key points of population centres and roads with a visual range of 10 km and taking an	Vectorial, polygon	Radial visibility RLOS from MDE (JCYL, 2023b)	Visual impact, denaturalisation of the environment, consideration of the landscape as a pleasing visual, quality of life	Presence	Negative, neutral	Sevilla-Martínez, 2008; Frolova, 2010; Gómez-Villarino, 2011; Latinopoulos & Kechagia, 2015; MITERD, 2020

	imaginary wind turbine height of 100 m above the surface of the digital elevation model and taking into account the viewing height of 1.70 m						
7	Erosive state value	Vectorial, polygon	MITERD, 2023a	Soil protection	Presence	Negative, neutral	Armstrong et al., 2014
8	Presence of the IUCN Grand Ecological Connector	Vectorial, polygon	IUCN, 2013	Protection of the territorial interconnection of fauna	Presence	Negative	Pérez-García, 2021
9	Presence of current and potential expansion habitat of the Cantabrian brown bear -Ursus arctos pyrenaicus-	Vectorial, polygon (UTM 5 x 5 km grids)	Martin et al., 2012; Ezquerra-Boticario & Pinto, 2020	Protection of the Cantabrian brown bear (<i>Ursus arctos pyrenaicus</i>), the study area being its southernmost spur	Presence	Negative	Pérez-García, 2021
10	Presence of current habitat, connectivity and areas of potential expansion of the Cantabrian capercaillie - Tetrao urogallus cantabricus-	Vectorial, polygon (UTM 5 x 5 km grids)	Quevedo-de-Anta & Bañuelos-Martínez, 2008; Ezquerra- Boticario & Pinto, 2020; González et al., 2021; Pérez-García, 2021	Protection of the Cantabrian capercaillie (<i>Tetrao urogallus cantabricus</i>), the study area being its southernmost spur	Presence	Negative	González & Ena, 2011; González et al., 2021; Pérez-García, 2021
11	Presence of Habitats of Community Interest (Habitats Directive 92/43/EEC)	Vectorial, polygon	MITERD, 2023a	Protection of natural or semi-natural areas with a reduced natural distribution, at risk of disappearing or representative of an EU biogeographical region	Presence	Negative	Molina-Ruiz & Tudela-Serrano, 2008; Pérez-García, 2021
12	Probability of landslides on slopes	Raster, 20 x 20 m	JCYL, 2023a	Potential structural damage	Presence	Negative	Armstrong et al., 2014

13	Distance to mountain passes	Vectorial, point	JCYL, 2023b	Presence of transhumant cattle and sheep, a socio-economic driving force. Conservation of biodiversity resulting from grazing	Presence and buffer of 300 m	Negative	Ordaz et al., 2022
14	Distance to the electricity grid	Vectorial, line	CNIG, 2023	Increased profitability of the project the closer it is to the site as no new facilities are required. However, various sources point to a minimum distance, as this could hinder the implementation of the project	Presence and buffers of 0 to 100, 100 to 250, 250 to 1000 and 1000 to 10000 m	Negative, neutral, positive	Hansen, 2005; Sliz-Szkliniarz & Vogt, 2011; Atici et al., 2015; Höfer et al., 2016; Noorollahi et al., 2016; Díaz-Cuevas et al., 2017; Villacreses et al., 2017; Lundquist et al., 2018; Ayodele et al., 2018; Zahedi et al., 2022; Asadi et al., 2023; Yildiz, 2024
15	Value of sensitivity of Gliding Birds of Castilla y León to wind installations	Vectorial, polygon	JCYL, 2023b	Protection of sensitive birdlife	Presence	Negative, neutral	JCYL, 2023b
16	Value of sensitivity of Public Utility Mounts in Castilla y León with respect to wind energy installations	Vectorial, polygon	JCYL, 2023b	Protection of sensitive forests	Presence	Negative	Sliz-Szkliniarz & Vogt, 2011; JCYL, 2023b
17	Wind speed considered by the international standard UNE-EN IEC 61400-1:2020	Raster, 50 x 50 m	CENER, 2023	The available wind turbines allow the use of low wind speeds, but those for which they are prepared according to the standard mean that the performance is assured	> 6 m/s	Positive	Aymamí et al., 2011; Zahedi et al., 2022
18	Presence of High Fire Hazard Zones	Vectorial, polygon	JCYL, 2023b	Potential structural damage	Presence	Negative	Firetrace, 2021
19	Presence of Birdlife Protection Zones against collision and electrocution on high-voltage power lines	Vectorial, polygon	MITERD, 2023a	Collision risks for avifauna. The distribution of high-voltage power lines is related to the installation of wind power plants and must be taken into account in accordance with the precautionary principle	Presence	Negative	MITERD, 2020; Pérez-García, 2021

20 Presence of Important Mammal Areas in Spain	Vectorial, polygon	SECEM, 2016	Protection of passage areas for emblematic or endangered mammals	Presence	Negative	Pérez-García, 2021; SEO/BirdLife, 2023
21 Presence of Low or Exceptional Probability Flood Zones (Return Period T = 500 years)	Vectorial, polygon	MITERD, 2023b	Potential structural damage	Presence	Negative	MITERD, 2020; SEO/BirdLife, 2023

APPENDIX III Hierarchical aptitude matrix. It presents the range of conditions to be fulfilled for each variable to obtain each possible aptitude value. The range of conditions for each variable was discretised into the number of possible aptitude values, between the maximum and the minimum value.

APTITUDE	+31	+30	+29	+28	+27	+26	+25	+24	+23	+22	+21	+20	+19	+18	+17	+16	+15	+14	+13	+12	+11	+10	+9	+8	+7	+6	+5	+4	+3	+2	+1	0	-∞ (- 100 0)
Distance (m) to the National Network of Protected Natural Spaces	> 500 0	487 0- 500 0	474 1- 487 0	461 2- 474 1	448 3- 461 2	435 4- 448 3	422 5- 435 4	409 6- 422 5	396 7- 409 6	383 8- 396 7	370 9- 383 8	358 0- 370 9	345 1- 358 0	332 2- 345 1	319 3- 332 2	306 4- 319 3	293 5- 306 4	280 6- 293 5	267 7- 280 6	254 8- 267 7	241 9- 254 8	229 0- 241 9	216 1- 229 0	203 2- 216 1	190 3- 203 2	177 4- 190 3	164 5- 177 4	151 6- 164 5	138 7- 151 6	125 8- 138 7	112 9- 125 8	100 0- 112 9	≤ 100 0
Distance (m) to SPA - Natura 2000 Network-		> 500 0	486 7- 500 0	473 3- 486 7	460 0- 473 3	446 7- 460 0	433 3- 446 7	420 0- 433 3	406 7- 420 0	393 3- 406 7	380 0- 393 3	366 7- 380 0	353 3- 366 7	340 0- 353 3	326 7- 340 0	313 3- 326 7	300 0- 313 3	286 7- 300 0	273 3- 286 7	260 0- 273 3	246 7- 260 0	233 3- 246 7	220 0- 233 3	206 7- 220 0	193 3- 206 7	180 0- 193 3	166 7- 180 0	153 3- 166 7	140 0- 153 3	126 7- 140 0	113 3- 126 7	100 0- 113 3	≤ 100 0
Distance (m) from critical conservation areas of the Cantabrian Capercaillie Recovery Plan			> 100	97- 100	93- 97	90- 93	86- 90	83- 86	79- 83	76- 79	72- 76	69- 72	66- 69	62- 66	59- 62	55- 59	52- 55	48- 52	45- 48	41- 45	38- 41	34- 38	31- 34	28- 31	24- 28	21- 24	17- 21	14- 17	10- 14	7-10	3-7	0-3	≤ 0
Distance (m) to SAC/SCI - Natura 2000 Network-				> 500 0	485 7- 500 0	471 4- 485 7	457 1- 471 4	442 9- 457 1	428 6- 442 9	414 3- 428 6	400 0- 414 3	385 7- 400 0	371 4- 385 7	357 1- 371 4	342 9- 357 1	328 6- 342 9	314 3- 328 6	300 0- 314 3	285 7- 300 0	271 4- 285 7	257 1- 271 4	242 9- 257 1	228 6- 242 9	214 3- 228 6	200 0- 214 3	185 7- 200 0	171 4- 185 7	157 1- 171 4	142 9- 157 1	128 6- 142 9	114 3- 128 6	100 0- 114 3	≤ 100 0
Distance (m) to Important Bird and Biodiversity Conservation Areas of Spain					> 100	96- 100	93- 96	89- 93	85- 89	81- 85	78- 81	74- 78	70- 74	67- 70	63- 67	59- 63	56- 59	52- 56	48- 52	44- 48	41- 44	37- 41	33- 37	30- 33	26- 30	22- 26	19- 22	15- 19	11- 15	7-11	4-7	0-4	≤ 0
Distance (m) to the Cantabrian Ecological Corridor						> 100 0	981- 100 0	962- 981	942- 962	923- 942	904- 923	885- 904	865- 885	846- 865	827- 846	808- 827	788- 808	769- 788	750- 769	731- 750	712- 731	692- 712	673- 692	654- 673	635- 654	615- 635	596- 615	577- 596	558- 577	538- 558	519- 538	500- 519	≤ 500
Distance (m) to areas of high sensitivity in cantabrian capercaillie and cantabrian brown bear recovery							> 100	96- 100	92- 96	88- 92	84- 88	80- 84	76- 80	72- 76	68- 72	64- 68	60- 64	56- 60	52- 56	48- 52	44- 48	40- 44	36- 40	32- 36	28- 32	24- 28	20- 24	16- 20	12- 16	8-12	4-8	0-4	≤ 0

plans in																													
Castilla y																													
León																													
regarding																													
wind energy																													
complexes																													
Distance (m)					502	E02	C7C	E/7	550	EEO	E 42	E22	E2E	E47	E00	E00	402	402	475	467	450	450	442	422	425	417	400	400	
to Scheduled				600	592- 600	583- 592	575- 583	567- 575	558- 567	550- 558	542- 550	533- 542	525- 533	517- 525	508- 517	500- 508	492- 500	483- 492	475- 483	467- 475	458- 467	450- 458	442- 450	433- 442	425- 433	417- 425	408- 417	400-	≤ 400
Wetland Areas				600	600	392	303	3/3	367	336	330	342	333	323	317	306	300	472	403	4/3	407	430	430	442	433	423	417	408	400
Aleas						482	465	447	430	413	395	378	360	343	326	308	291	273	256	239	221	204	187	169	152	134	117	100	
Distance (m)					>	6-	2-	8-	4-	0-	7-	3-	9-	5-	1-	7-	3-	9-	5-	1-	7-	3-	0-	6-	2-	8-	4-	0-	≤10
to Biosphere					500	500	482	465	447	430	413	395	378	360	343	326	308	291	273	256	239	221	204	187	169	152	134	117	00
Reserves					0	0	6	2	8	4	0	7	3	9	5	1	7	3	9	5	1	7	3	0	6	2	8	4	00
Distance (m)																													
to UNESCO																													
World						>	573-	545-	518-	491-	464-	436-	409-	382-	355-	327-	300-	273-	245-	218-	191-	164-	136-	109-	82-	55-	27-	0-27	≤ 0
Heritage						600	600	573	545	518	491	464	436	409	382	355	327	300	273	245	218	191	164	136	109	82	55		
Sites																													
Distance (m)																													
to Sites of							>	95-	90-	86-	81-	76-	71-	67-	62-	57-	52-	48-	43-	38-	33-	29-	24-	19-	14-	10-	E 40	0.5	- 0
Geological							100	100	95	90	86	81	76	71	67	62	57	52	48	43	38	33	29	24	19	14	5-10	0-5	≤ 0
Interest																													
Distance (m)								>	576-	552-	528-	504-	480-	456-	432-	408-	384-	360-	336-	312-	288-	264-	240-	216-	192-	168-	144-	120-	≤
to the river								600	600	576	552	528	504	480	456	432	408	384	360	336	312	288	264	240	216	192	168	144	120
network								000	000	370	JJZ	320	J04	400	430	432	400	304	300	330	312	200	204	240	210	172	100	144	120
Distance (m)									>	287-	274-	261-	247-	234-	221-	208-	195-	182-	168-	155-	142-	129-	116-	103-	89-	76-	63-	50-	
to singular									300	300	287	274	261	247	234	221	208	195	182	168	155	142	129	116	103	89	76	63	≤ 50
trees									500	500	20.	-, .	20.	2.,	25.		200	.,,,	.02		.55		.27		103	0,		03	
Distance (m)																													
to natural										>	578-	556-	533-	511-	489-	467-	444-	422-	400-	378-	356-	333-	311-	289-	267-	244-	222-	200-	≤20
and artificial										600	600	578	556	533	511	489	467	444	422	400	378	356	333	311	289	267	244	222	0
water bodies																													
Distance (m)												F7.4	F 47	F24	40.4	440	444	445	200	2/2	225	200	202	257	220	202	47/	450	
to Cultural Heritage											> 600	574- 600	547- 574	521- 547	494- 521	468- 494	441- 468	415- 441	388- 415	362- 388	335- 362	309- 335	282- 309	256- 282	229- 256	203- 229	176- 203	150- 176	≤ 150
Sites											600	600	3/4	347	321	474	400	441	413	300	302	333	309	202	230	229	203	170	150
Distance (m)																													
to												>	575-	550-	525-	500-	475-	450-	425-	400-	375-	350-	325-	300-	275-	250-	225-	200-	≤
Archaeologic												600	600	575	550	525	500	475	450	425	400	375	350	325	300	275	250	225	200
al Sites												000	000	5.5	550	525	500	., 5	.50		.00	3.3	330	323	500	2.5	250	223	200
Distance (m)																													
to the																													
National trail																													
Network in													>	290-	280-	270-	260-	250-	240-	230-	220-	210-	200-	190-	180-	170-	160-	150-	≤
Protected													300	300	290	280	270	260	250	240	230	220	210	200	190	180	170	160	150
Natural																													
Spaces																													

<u> </u>																									
Distance (m)										>	191-	182-	173-	164-	155-	146-	138-	129-	120-	111-	102-	93-	84-	75-	4
to regional										200	200	191	182	173	164	155	146	138	129	120	111	102	93	84	≤ 75
nature trails																									·
Distance (m)																									4
to the											>	473-	446-	419-	392-	365-	338-	312-	285-	258-	231-	204-	177-	150-	≤
Pilgrims'											500	500	473	446	419	392	365	338	312	285	258	231	204	177	150
Routes to																									
Santiago													450	45.4	450	1/2	.,,	170	175	170	402	107	404	105	·
ı												<	150	154	158	162 5-	166	170	175	179	183	187	191 7-	195	≥
Altitude (m)												150	0- 154	2- 158	3- 162	5- 166	7- 170	8- 175	0- 179	2- 183	3- 187	5- 191	7- 195	8- 200	200
1												0	2	3	5	7	8	0	2	3	5	7	8	0	0
Distance (m)													-	,	,	,	Ü	Ü	-	,	,		U		
to areas with																									
incompatible													>	277	254	231	209	186	163	140	118	955-			
urban, rural													300	3-	5-	8-	1-	4-	6-	9-	2-	118	727-	500-	≤ 500
and													0	300	277	254	231	209	186	163	140	2	955	727	500
residential														0	3	5	8	1	4	6	9				
uses																									
Clone (°)														< 3	3-5	5.6	4-8	9-10	10-	12-	13-	15-	17-	18-	≥ 20
Slope (°)															3-5	5-6	6-8	8-10	12	13	15	17	18	20	≥ 20
Average																									
annual wind															>	6,6-	6,1-	5,7-	5,2-	4,8-	4,3-	3,9-	3,4-	3-	≤
speed (m/s)															7,0	7,0	6,6	6,1	5,7	5,2	4,8	4,3	3,4-	3,4	3,0
at hub height															,,,,	7,0	0,0	٠, .	٥,.	5,_	.,-	.,.	٥,٠		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(100 m)																									·
Distance (m)																>	468	437	406	375	343	312	281	250	≤
to the centre																500	8-	5-	3-	0-	8-	5-	3-	0-	250
of medium-																0	500	468	437	406	375	343	312	281	0
sized cities)																	0	8	5	3	0	8	5	3	
Distance (m)																	>	182-	164-	146-	129-	111-	93-	75-	- 75
to livestock trails																	200	200	182	164	146	129	111	93	≤ 75
Distance (m)																									
to arable																									
areas in																		>	125-	100-	75-	50-	25-	0-25	≤ 0
irrigated																		150	150	125	100	75	50		
areas																									
Distance (m)																									
to already																			>	100	800-	420	100	200	
installed																			120	0-	100	600-	400-	200-	≤
wind																			0	120	0	800	600	400	200
turbines																				0					
Fraction of																									
tree canopy																									
cover in																				< 20	20-	35-	50-	65-	≥ 80
forest																				` 20	35	50	65	80	2 00
environment																									
s (%)																									
1																									

Distance (m)					
to faults and	>	340-	180-	20-	≤ 20
tectonic	500	500	340	180	
contacts					
Distance (m)		200-		>	≤
to the road		100	-	100	200
network		00		00	
Distance (m)			>	200-	≤
to railway			500	500	200
lines					
Distance (m)					
to areas restricted by					
current					
regional and				> 0	≤ 0
national					_0
legislation in					
relation to					
wind farms					
Distance (m)					
to					
endangered					
and/or					
protected				> 0	≤ 0
flora of					
Castilla y					
León					
Distance (m)					
to					
incompatible				> 0	≤ 0
non-urban					
uses					

				•	•						
IMPACT	Very high -18	High -14	Medium -11	Low -7	Very low -4	0	Very low +4	Low +7	Medium +11	High +14	Very high +18
Distance (m) to the projected area in view of the possible declaration of the Médulas-Teleno Geopark		-	-	-	≤ 0	> 0		-		-	-
Sensitivity value of SEO/BirdLife's sensitive bird areas related to wind complexes	≥ 6	4; 5	1; 2; 3	-	-	0	-		-	-	-
Sensitivity value of Very Important Plant Areas	4; 5	2; 3	1	-	-	0		-	-	-	-
Distance (m) to Cantabrian brown bear and Cantabrian capercaillie recovery plans extension	≤ 0	-	-	-	-	> 0		-	-	-	-
Distance (m) to hunting reserves associated with the presence of the Iberian wolf	-	-	-	-	≤ 0	> 0		-	-	-	-
No. of viewers in visual catchments	-	-	-	≥ 11	1-10	0	-	-	-	-	-
Value of the erosive state	7	6	5	4	3	1; 2; 8	-	-	-	-	-
Distance (m) to the IUCN Grand Ecological Connector	-	≤ 0	-	-	-	> 0	-	-	-	-	-
Distance (m) to the current and potential expansion habitat of the Cantabrian brown bear -Ursus arctos pyrenaicus-	≤ 0	-	-	-	-	> 0		-	-	-	-
Distance (m) to the current habitat, connectivity and areas of potential expansion of the Cantabrian capercaillie -Tetrao urogallus cantabricus-	≤ 0	-		-	-	> 0	-	-	-	-	-
Type of Habitat of Community Interest (Habitats Directive 92/43/EEC)	Prioritary	-	Non-priority	-	-	Neutral	-	-	-	-	-
Value of probability of landslides on slopes	5	4	3	2	-	1	-	-	-	-	-
Distance (m) to mountain passes		-	-	≤ 300	-	> 300	-	-	-		-
Distance (m) to the electricity grid		-	≤ 100	-	-	100- 250; > 10000		1000-10000	250-1000	-	-
Value of sensitivity of Gliding Birds of Castilla y León to wind installations	High	-	Medium	-	-	Low		-	-	-	-
Value of sensitivity of Public Utility Mounts in Castilla y León with respect to wind energy installations		-	High	Medium	-	Neutral	-	-	-	-	-
Wind speed (m/s) considered by the international standard UNE-EN IEC 61400-1:2020		-	-	-	-	< 6		≥ 6	-		-
Distance (m) to High Fire Hazard Zones		-		-	≤ 0	> 0	-	-	-	-	-
Distance (m) to Birdlife Protection Zones against collision and electrocution on high-voltage power lines		-	≤ 0	-		> 0		-	-		-
Distance (m) to Important Mammal Areas in Spain		≤ 0				> 0	-	-	-		-
Distance (m) to Low or Exceptional Probability Flood Zones (Return Period T = 500 years)	-	-	-	-	≤ 0	> 0	-	-	-	-	-

10

20

30

PROJECTED WIND TURBINES: ABSOLUTE CARRYING CAPACITY CLASS AND PROJECTION PHASE 700000 675000 725000 750000 Subregional division 4750000 4750000 Los Ancares El Bierzo La Cabrera La Cepeda ACARIO TURENO ECO **Municipal division** ECO CARIO TURENO ACARIO Municipalities ALTO BIERZO SIL **Projected wind turbines** 4725000 (projection phase and absolute class) **MBRÍO** RALEA Authorised -Excluding UCEDO UCEDO Authorised - Medium TRABADELO **UCEDO** SANTA CRUZ RALEA RALEA Denied - Excluding OENCIA **DENCIA** Denied - Medium ABECÉ ABECÉ-ALTO DE LAS ERAS In process - Excluding ABECE ABE CE 4700000 4700000 In process - Medium LARDEIRAS ANÉMIDE ANÉMIDE LARDEIRAS CORPORALES ANÉMIDE LARDEIRAS CORPORALES TORNEROS CABRERA 4675000 4675000 CABRERA CABRERA KELETA VELETA **VELETA** 675000 700000 725000 750000 ⊐km Spatial reference - EPSG 25829

- 1. Acedo, C. (2017). Áreas frágiles de interés para la biodiversidad. In Jordán-Benavente, F. M., Martínez-Álvarez, C. y García-Guerrero, J. (Eds.). El monte como aventura, XII Encuentro del Día Internacional de los Bosques 2017 (pp. 26-39). Ponferrada, Spain: Ayuntamiento de Ponferrada Concejalía de Medio Ambiente.
- 2. Al-Yahyai, S., Charabi, Y., Gastli, A., & Al-Badi, A. (2012). Wind farm land suitability indexing using multi-criteria analysis. Renewable Energy, 44, 80-87.
- 3. Alfaro-Saiz, E., Alonso-Villadangos, Y. & Acedo, C. (2022). El futuro es hoy: el reto de una transición energética compatible con la conservación vegetal. Conservación Vegetal, (26), 17-21.
- 4. Alfaro-Saiz, E., Fernández-Salegui, A. B. & Acedo, C. (2023). Plant Conservation in the Midst of Energy Transition: Can Regional Governments Rise to the Challenge? Land, 12(11), 2003-2024.
- 5. Armstrong, A., Waldron, S., Whitaker, J., & Ostle, N. J. (2014). Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate. *Global change biology*, 20(6), 1699-1706.
- 6. Asadi, M., Pourhossein, K. & Mohammadi-Ivatloo, B. (2023). GIS-assisted modeling of wind farm site selection based on support vector regression. Journal of Cleaner Production, 390, 135993.
- 7. Atici, K. B., Simsek, A. B., Ulucan, A. & Tosun, M. U. (2015). A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection. Utilities Policy, 37, 86-96.
- 8. Aydin, N. Y., Kentel, E. & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. *Renewable and Sustainable Energy Reviews*, 14(1), 364-373.
- 9. Aymamí J., García A., Lacave O., Lledó, LL., Mayo M. & Parés S. (2011). Análisis del recurso eólico. Atlas eólico de España IDAE. Estudio técnico PER 2011-2020. Meteosim Truewind, 1-200.
- 10. Aymamí J., García A., Lacave O., Lledó, LL., Mayo M. & Parés S. (2016). Atlas eólico de España IDAE 2016, AWS Truepower. Retrieved from https://web.archive.org/web/20180525002209/http://atlaseolico.idae.es/index.php?pag=descarga mapas
- 11. Ayodele, T. R., Ogunjuyigbe, A. S. O., Odigie, O. & Munda, J. L. (2018). A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy, 228, 1853-1869.
- 12. Baban, S. M. J. & Parry, T. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy, 24(1), 59-71.
- 13. Castilla y León. (2022). Decreto-ley 2/2022, de 23 de junio, por el que se adoptan medidas urgentes para la agilización de la gestión de los fondos europeos y el impulso de la actividad económica. Boletín Oficial de Castilla y León, 24 de junio de 2022, (121), 31864-31901.
- 14. CENER (Centro Nacional de Energías Renovables). (2023). Mapa eólico ibérico de alta resolución. Retrieved from https://www.mapaeolicoiberico.com/
- 15. CNIG (Centro Nacional de Información Geográfica). (2023). Centro de descargas del CNIG. Retrieved from https://centrodedescargas.cnig.es/CentroDescargas
- 16. Concepción, E. D. & Díaz, M. (2013). Medidas agroambientales y conservación de la biodiversidad: Limitaciones y perspectivas de futuro. Ecosistemas, 22(1), 44-49.
- 17. Cortés, Y., Suárez L., Berzosa, B. & Rodríguez, G. (2021). Por el fin de la caza deportiva del lobo ibérico. WWF España pide su inclusión en el Listado de Especies Silvestres en Régimen de Protección Especial. Madrid, Spain: WWF Spain.
- 18. Cristea, C. & Jocea, A. F. (2016). GIS Application for Wind Energy. Energy Procedia, 85, 32-140.
- 19. Dhunny, A. Z., Doorga, J. R. S., Allam, Z., Lollchund, M. R., & Boojhawon, R. (2019). Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling. *Energy, 188*, 116056.
- 20. Díaz-Cuevas, P., López, M. F. P., Tabales, A. F. & Rodríguez, N. L. (2017). Energía eólica y territorio en Andalucía: diseño y aplicación de un modelo de potencialidad para la implantación de parques eólicos. *Investigaciones Geográficas*, (67), 9-29.
- 21. Díaz-Cuevas, P. (2018). GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain). Energies, 11(10)(2789), 1-16.
- 22. FDJCC. (2021b). Mapa de proyectos eólicos sometidos a información pública en distinto estado de tramitación. Retrieved from https://fdjcc.org/proyectos-eolicos/mapa-de-instalaciones/
- 23. Fernández-Núñez, M., Díaz-Cuevas, P., Ojeda, J., Prieto, A. & Sánchez-Carnero, N. (2015). Multipurpose line for mapping coastal information using a data model: the Andalusian coast (Spain). *Journal of Coastal Conservation*, 19(4), 461-474.
- 24. Firetrace. (2021). The complete guide to wind turbine fire protection. Firetrace, 1-14.
- 25. Frolova, M. (2010). Los paisajes de la energía eólica: Su percepción social y gestión en España. Nimbus: Revista de climatología, meteorología y paisaje, (25), 93-110.
- 26. Gass, V., Schmidt, J., Strauss, F. & Schmid, E. (2013). Assessing the economic wind power potential in Austria. Energy Policy, 53, 323-330.
- 27. Gharaibeh, A. A., Al-Shboul, D. A., Al-Rawabdeh, A. M. & Jaradat, R. A. (2021). Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization. Land, 10(5), 442.
- 28. Global Wind Atlas. (2023). Atlas Eólico Mundial. Retrieved from https://globalwindatlas.info/es/
- 29. Gómez-Villarino, A. (2011). Integración paisajística de los parques eólicos. Metodología para localizar y gestionar el impacto paisajístico de los parques eólicos. Tecno ambiente: Revista profesional de tecnología y equipamiento de ingeniería ambiental, 21(222), 13-20.
- 30. González, M. A., Purroy, F. J., Ena, V., de-Garnica, R., de-la-Calzada, E., Fernández, L., Purroy, J., Fuertes, B., Quevedo, M., Bañuelos, M. J., Costa, L., Cano, M., Morán-Luis, M., Blanco-Fontao, B., Rodríguez-Muñoz, R., Fernández-Gil, A. & Laborda, A. (2021). *El último urogallo*. León, Spain: University of León.
- 31. González, M. A. & Ena, V. (2011). Cantabrian Capercaillie signs dissapeared after a wind farm construction. Chioglossa, 3, 65-74.
- 32. Hansen, H. (2005). GIS-based Multi-Criteria Analysis of Wind Farm Development. In the 10th Scandinavian Research Conference on geographical information Science (ScanGIS). Conference in Stockholm, Sweden.
- 33. Höfer, T., Sunak, Y., Siddique, H. & Madlener, R. (2016). Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Applied Energy, 163, 222-243.
- 34. Hoogwijk, M., de Vries, B. & Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Economics, 26(5), 889-919.
- 35. IEC (Instituto de Estudios Cabreireses). (2020). El Geoparque Médulas-Teleno. Retrieved from http://estudioscabreireses.es/el-geoparque-medulas-teleno-sera-una-realidad-en-cabrera-gracias-a-la-diputacion-provincial-y-al-iec

- 36. IGME (Instituto Geológico y Minero de España). (2023). InfoIGME servicios de mapas y descargas. Retrieved from https://mapas.igme.es/Servicios/default.aspx
- 37. Infante, O., Fuente, U. & Atienza, J. C. (2011). Las Áreas Importantes para la Conservación de las Aves en España. Madrid, Spain: SEO/BirdLife.
- 38. International Energy Agency. (2023). Renewables. Retrieved from https://www.iea.org/energy-system/renewables
- 39. Jasone, M. & Iriarte, U. (2018), Una panorámica de la protección autonómica singular del patrimonio arbóreo, RIIPAC: Revista sobre Patrimonio Cultural. (10), 89-131.
- 40. JCYL (Junta de Castilla y León). (2023a). Geoportal de Protección Civil de Castilla y León, JCYL. Retrieved from https://geoportalpc.jcyl.es/
- 41. JCYL (Junta de Castilla y León). (2023b). Infraestructura de datos espaciales de Castilla y León, JCYL. Retrieved from https://cartografia.jcyl.es/web/es/datos-servicios/serviciodescargas.html
- 42. Kishore, R. A. & Priya, S. (2013). Design and experimental verification of a high efficiency small wind energy portable turbine (SWEPT). *Journal of Wind Engineering and Industrial Aerodynamics*, 118, 12-19.
- 43. Krewitt, W. & Nitsch, J. (2003). The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany. *Renewable Energy*, 28(10), 1645-1655.
- 44. Latinopoulos, D. & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550-560.
- 45. Lejeune, P. & Feltz, C. (2008). Development of a decision support system for setting up a wind energy policy across the Walloon Region (southern Belgium). Renewable Energy, 33(11), 2416-2422.
- 46. López-Palacios, A. (2022). Mapa del Camino de Santiago por Manzanal. León, Spain: Vía Nova.
- 47. Lorente-Plazas, R., Montávez, J. P., Jerez, S., Gómez-Navarro, J. J., Jiménez-Guerrero, P., Jiménez, P. A., García-Valero, J. A., Gomáriz-Castillo, F. & Alonso-Sarría, F. (2012). EOLMAP: A web tool to assess the wind resource over Spain. *Renewable Energy and Power Quality Journal*, 1(10), 1264-1269.
- 48. Lundquist, J. K., DuVivier, K. K., Kaffine, D. & Tomaszewski, J. M. (2018). Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. *Nature Energy*, 4(1), 26-34.
- 49. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). Wind energy explained: theory, design, and application. United States: John Wiley & Sons.
- 50. MAPA (Ministerio de Agricultura, Pesca y Alimentación). (2023). IDE de descargas del MAPA. Retrieved from https://www.mapa.gob.es/es/cartografia-y-sig/ide/descargas/default.aspx
- 51. Martin, J., Revilla, E., Quenette, P. Y., Naves, J., Allainé, D. & Swenson, J. E. (2012). Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. *Journal of Applied Ecology*, 49(3), 621-631.
- 52. Martínez-Martínez, Y., Dewulf, J. & Casas-Ledón, Y. (2022). GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile. Renewable Energy, 182, 363-376.
- 53. Martínez-Martínez, Y., Dewulf, J., Aguayo, M. & Casas-Ledón, Y. (2023). Sustainable wind energy planning through ecosystem service impact valuation and exergy: A study case in south-central Chile. Renewable and Sustainable Energy Reviews, 178, 113252.
- 54. McKenna, R., Pfenninger, S., Heinrichs, H., Schmidt, J., Staffell, I., Bauer, C., Gruber, K., Hahmann, A. N., Jansen, M., Klingler, M., Landwehr, N., Larsén, X. G., Lilliestam, J., Pickering, B., Robinius, M., Tröndle, T., Turkovska, O., Wehrle, S., Weinand, J. M. & Wohland, J. (2022). High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. *Renewable Energy*, 182, 659-684.
- 55. Mentis, D., Hermann, S., Howells, M., Welsch, M. & Siyal, S. H. (2015). Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy, 83, 110-125.
- 56. MITERD (Ministerio para la Transición Ecológica y el Reto Demográfico). (2020). Zonificación ambiental para la implantación de energías renovables: eólica y fotovoltaica. Sensibilidad ambiental y clasificación del territorio. Mapa, Memoria y otros documentos. Retrieved from https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/evaluacion-ambiental/zonificacion ambiental energias renovables.html
- 57. MITERD (Ministerio para la Transición Ecológica y el Reto Demográfico) (2021). Estrategia Nacional de Infraestructura Verde y de la Conectividad y Restauración Ecológicas". MITERD, 1-256.
- 58. MITERD (Ministerio para la Transición Ecológica y el Reto Demográfico). (2023a). Banco de Datos de la Naturaleza (BDN). Retrieved from https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/cartografia informacion disp.html
- 59. MITERD (Ministerio para la Transición Ecológica y el Reto Demográfico). (2023b). Infraestructura de datos espaciales IDE Descargas. Retrieved from https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas.html
- 60. Molina-Ruiz, J. & Tudela-Serrano, M. L. (2008). Elección de criterios y valoración de impactos ambientales para la implantación de energía eólica. Papeles de geografía, (47), 171-184.
- 61. Nguyen, K. Q. (2007). Wind energy in Vietnam: Resource assessment, development status and future implications. *Energy Policy*, 35(2), 1405-1413.
- 62. Noorollahi, Y., Yousefi, H. & Mohammadi, M. (2016). Multi-criteria decision support system for wind farm site selection using GIS. Sustainable Energy Technologies and Assessments, 13, 38-50.
- 63. Ordaz, L. R., Galván, M. L. C. & Fernández-García, V. (2022), Importancia del pastoreo en la conservación del paisaie tradicional de los puertos de merinas de la Cordillera Cantábrica, Pirineos, 177, 74,
- 64. Pérez-García, I. (2021). Impactos agregados de los parques eólicos del suroeste de León (cabinet work). Colegio Español de Ingenieros de Montes.
- 65. Quevedo-de-Anta, M. & Bañuelos-Martínez, M. J. (2008). El hábitat del urogallo en la Cornisa Cantábrica, o la importancia de conservar ecosistemas funcionales. Locustella: Anuario de la Naturaleza de Cantabria, (5), 10-27.
- 66. Ramírez-Rosado, I. J., García-Garrido, E., Fernández-Jiménez, L. A., Zorzano-Santamaría, P. J., Monteiro, C. & Miranda, V. (2008). Promotion of new wind farms based on a decision support system. Renewable Energy, 33(4), 558-566.
- 67. Ramachandra, T. V. & Shruthi, B. V. (2005). Wind energy potential mapping in Karnataka, India, using GIS. Energy Conversion and Management, 46(9-10), 1561-1578.
- 68. Ranaboldo, M., Lega, B. D., Ferrenbach, D. V., Ferrer-Martí, L., Moreno, R. P. & García-Villoria, A. (2014). Renewable energy projects to electrify rural communities in Cape Verde. *Applied Energy*, 118, 280-291.
- 69. Rezaian, S. & Jozi, S. A. (2016). Application of Multi Criteria Decision-Making Technique in Site Selection of Wind Farm- a Case Study of Northwestern Iran. *Journal of the Indian Society of Remote Sensing*, 44(5), 803-809.

- 70. Ryberg, D. S., Robinius, M. & Stolten, D. (2017). Methodological framework for determining the land eligibility of renewable energy sources. arXiv, 1-35.
- 71. Sadeghi, M. & Karimi, M. (2017). GIS-based solar and wind turbine site selection using multi-criteria analysis: Case study Tehran, Iran. International Archives of the Photogrammetry, 42(4W4), 469-476.
- 72. SECEM (Sociedad Española para la Conservación y Estudio de los Mamíferos). (2016). Cartografía de zonas importantes para los mamíferos (ZIM) de España. Retrieved from https://web.archive.org/web/20230403054139/http://www.secem.es/zonas-importantes-para-los-mamiferos-zim/
- 73. SEO/BirdLife. (2023). Mapas de compatibilidad con las energías renovables. Retrieved from https://seo.org/mapaswebdecompatibilidadrenovablesresponsables/
- 74. Sevilla-Martínez, F. (2008). Una teoría ecológica para los montes ibéricos. León, Spain: Instituto de Restauración y Medio Ambiente.
- 75. Sliz-Szkliniarz, B. & Vogt, J. (2011). GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko–Pomorskie Voivodeship. Renewable and Sustainable Energy Reviews, 15(3), 1696-1707.
- 76. Spain. (1995). Ley 3/1995, de 23 de marzo, de Vías Pecuarias. Boletín Oficial del Estado (Jefatura del Estado), 24 de marzo de 1995, 71(7241), 1-14.
- 77. Spain. (2008). Real Decreto 9/2008, de 11 de enero, por el que se modifica el Reglamento del Dominio Público Hidráulico, aprobado por el Real Decreto 849/1986, de 11 de abril. Boletín Oficial del Estado (Ministerio de la Presidencia), 16 de enero de 2008, 14(755), 3141-3149.
- 78. Spain. (2015a). Ley 37/2015, de 29 de septiembre, de carreteras. Boletín Oficial del Estado (Jefatura del Estado), 30 de septiembre de 2015, 234(10439), 1-54.
- 79. Spain. (2015b). Ley 38/2015, de 29 de septiembre, del sector ferroviario. Boletín Oficial del Estado (Jefatura del Estado), 30 de septiembre de 2015, 234(10440), 1-111.
- 80. Spain. (2021). Orden TED/980/2021, de 20 de septiembre, por la que se modifica el Anexo del Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Boletín Oficial del Estado (MITERD), 21 de septiembre de 2021, 226(15244), 1-5.
- 81. IUCN (International Union for Conservation of Nature and Natural Resources). (2013). Directrices. Gran conector ecológico: Sierras del Norte de Portugal Cordillera Cantábrica Pirineos Macizo Central Alpes Occidentales. Spain: IUCN Spanish committee with Fundación de Biodiversidad.
- 82. Valera, F., Bolonio, L., La Calle, A. & Moreno, E. (2022). Deployment of solar energy at the expense of conservation sensitive areas precludes its classification as an environmentally sustainable activity. Land, 11(12), 2330.
- 83. Van-Haaren, R. & Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews, 15(7), 3332-3340.
- 84. Villacreses, G., Gaona, G., Martínez-Gómez, J. & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275-286.
- 85. WWF/Adena Spain. (2018). Conectividad y adaptación al cambio climático. Informe Autopistas Salvajes. Retrieved from https://www.wwf.es/nuestro_trabajo/especies_y_habitats/conectividad_y_adaptacion_al_cambio_climatico/informe_autopistas_salvajes/
- 86. Yildiz, S. S. (2024). Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey. Renewable and Sustainable Energy Reviews, 192, 114158.
- 87. Yue, C. D. & Wang, S. S. (2006). GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chiqu area of southwestern Taiwan", *Energy Policy*, 34(6), 730-742.
- 88. Zahedi, R., Ghorbani, M., Daneshgar, S., Gitifar, S. & Qezelbigloo, S. (2022). Potential measurement of Iran's western regional wind energy using GIS. Journal of Cleaner Production, 330, 550-560.