3 逻辑门电路

- 3.1、逻辑门电路概述及电气特性
- 3.2、CMOS逻辑门电路(三态门、OD门)
- 3.3、TTL逻辑门电路
- 3.4*、BICMOS逻辑门电路
- 3.5、CMOS与TTL电路之间的接口问题

高、低电平产生的原理

当S闭合, ν_0 =0V,低电平

当S断开, υ₀=+5 V, 高电平

$v_1 - \cdots - v_0$

理想的开关应具有两个工作状态:

接通状态:要求阻抗越小越好,相当于短路。

断开状态:要求阻抗越大越好,相当于开路。

工作在饱和区:输出低电平

工作在截止区:输出高电平

工作在可变电阻区:输出低电平

工作在截止区:输出高电平

绝缘栅型场效应管:由金属、氧化物和半导体制成,称为金属-氧化物-半导体场效应管,简称 MOS 场效应管。

特点:一种载流子参与导电;输入电阻可达 10°Ω以上;工艺简单,易集成,功耗低,体积小,成本低。

耗尽型场效应管: $V_{GS} = 0$ 时漏源间存在导电沟道的MOS管

增强型场效应管: $V_{GS} = 0$ 时漏源间不存在导电沟道的MOS管

3.2 CMOS逻辑门电路(增强型MOS管的特性曲线)

$$V_{\rm GS} > 0$$

P 沟道增强型 MOS 管:
$$V_{GS} < 0$$

$$V_{GS} > V_{TN}$$
 MOS管导通

$$V_{\rm GS} < V_{\rm TN}$$
 MOS管截止

$$|V_{\rm GS}| > |V_{\rm TP}|$$
 MOS管导通 $|V_{\rm GS}| < |V_{\rm TP}|$ MOS管截止

(a) N沟道增强型 MOS 管

(b)P沟道增强型MOS管

开启电压 $V_{TP} < 0$

3.2 CMOS逻辑门电路——反相器

1、工作原理

电路逻辑功能分析:

1、列出电路状态表;

(根据输入确定半导

体器件开关状态及输

出电平)

- 2、列出真值表;
- 3、确定逻辑功能。

$$\left(V_{\mathrm{DD}}>\left(V_{\mathrm{TN}}+\left|V_{TP}\right|\right)\right)$$

$$V_{\text{TN}} = 2 \text{ V}$$
 $V_{\text{TP}} = -2 \text{ V}$

$$V_{\rm TP} = -2 \text{ V}$$

$v_{\rm i}$	$v_{ m GSN}$	$v_{ m GSP}$	T_{N}	T_{P}	v_{O}
0 V	0V	-10V	截止	导通	10 V
10 V	10V	0V	导通	截止	0 V

逻辑真值表

$v_{i}(A)$	$v_{\rm O}(L)$
0	1
1	0

逻辑表达式

$$L = \overline{A}$$

$$v_{\rm O} = f(v_{\rm I})$$

AB 段: $V_{\rm I} < V_{\rm TN}$, $T_{\rm N}$ 截止、 $T_{\rm P}$ 导通

$$v_{\rm O} = V_{\rm DD}$$
 $i_{\rm D} \approx 0$, 功耗极小

$$v_{\rm O} = f(v_{\rm I})$$

BC 段: $v_{\rm I} > V_{\rm TN}$, $T_{\rm N}$ 导通(可变电阻区)、 $T_{\rm P}$ 导通 $v_{\rm O}$ 略下降、 $i_{\rm D}$ 增大 ,功耗将增大

$$v_{\rm O} = f(v_{\rm I})$$

CD 段: $V_{\rm I} = 0.5 V_{\rm DD}$, $T_{\rm N}$ 导通、 $T_{\rm P}$ 导通

$$v_{\rm O} \downarrow \downarrow \Rightarrow i_{\rm D} \uparrow = i_{\rm D(max)}$$
 , 功耗最大

$$v_{\rm O} = f(v_{\rm I})$$

DE、EF段:

T_N:导通 => 截止、T_P:截止=>导通

阈值电压:

$$V_{\rm TH} = 0.5 \ V_{\rm DD}$$

($V_{\rm DD} = 3 \sim 18 \ {\rm V}$)

3.2 CMOS逻辑门电路——反相器工作速度

带电容负载

输出从低电平 跳变为高电平

输出从高电平 跳变为低电平

在由于电路具有互补对称的性质,它的开通时间与关闭时间是相等的。

3.2 CMOS逻辑门电路——与非门

A	В	T_{N1} T_{P1} T_{N2} T_{P2}	L
0	0	截止 导通 截止导通	1
0	1	截止 导通 导通截止	1
1	0	导通 截止 截止 导通	1
1	1	导通 截止 导通 截止	0

n输入的与非门怎么实现??? 有何问题???

3.2 CMOS逻辑门电路——或非门

A	В	T_{N1} T_{P1} T_{N2} T_{P2} L	
0	0	截止 导通 截止 导通 1	
0	1	截止 导通 导通 截止 0)
1	0	导通 截止截止 导通 0)
1	1	导通 截止 导通 截止 0)

n输入的或非门怎么实现??? 有何问题???

3.2 CMOS逻辑门电路——缓冲电路与保护电路

缓冲电路:能**统一参数**,使不同内部逻辑集成逻辑门电路具有相同的输入和输出特性。

3.2 CMOS逻辑门电路——保护电路

二极管导通电压:

$$v_{\rm DF} = 0.5 \sim 0.7 \text{ V}$$

$$(1) - v_{DF} < v_{A} < V_{DD} + v_{DF}$$

$$(2) v_{A} > V_{DD} + v_{DF}$$

$$D_2$$
、 D_3 导通, $v_G = V_{DD} + v_{DF}$

(3)
$$v_{\rm A} < -v_{\rm DF}$$

$$D_1$$
导通, $v_G = -v_{DF}$

当输入电压不在正常范围时,二极管导通,限制了电容两端电压的增加,保护了输入电路。

Rs和MOS管的栅极电容组成积分网络,使输入信号的过冲电压延迟且衰减后再到栅极。

3.2 CMOS逻辑门电路——OD门

CMOS漏极开路门的提出

两个门电路的输出短接,会产生低阻通路,从而产生大电流。大电流有可能导致器件的损毁,并且无法确定输出电平的高低。

3.2 CMOS逻辑门电路——OD门

- (a)工作时必须外接电源和电阻
- (b)与非逻辑不变
- (c) 可以实现"线与"功能
- $V_{OH} = V'_{DD}$

使能EN	输入A	输出L
1	0	0
1	1	1
0	×	高阻 (Z)

ENI	数据	输入端	Т
EN	A	В	L
	0	0	1
0	0	1	1
U	1	0	1
	1	1	0
1	×	×	高阻
ENI	数据	输入端	
EN	数据 A	输入端 B	L
EN			
	A	В	L
EN 1	A 0	B 0	L 1
	A 0 0	B 0 1	L 1 1

En1	En2	L1	L2	L
0	0	Z	Z	Z

En1	En2	L1	L2	L
0	0	Z	Z	Z
0	1	Z	A2	A2

En1	En2	L1	L2	L
0	0	Z	Z	Z
0	1	Z	A2	A2
1	0	A1	Z	A1

En1	En2	L1	L2	L
0	0	Z	Z	Z
0	1	Z	A2	A2
1	0	A1	Z	A1
1	1	×	×	×

假设: A1=1, A2=0

多个三态门的输出端可以短接,但必须满足: 最多只有一个使能端为有效

3.2 三态门的应用

(1)构成总线转输结构 数据总线 ROMI/O *RAM* G_1 G_2 G_n EN EN_2 EN_n EN_1

问题:怎样保证同时最多只有一个使能信号有效呢???

(2)用于信号双向传输

$$\overline{EN} = 0$$
 时 信号输出

$$EN=1$$
 时 信号输入

inout D_io;

wire in_of_io;
wire out_of_io;

assign in_of_io = ~D_io; \\输入 assign D_io = (!en) ? (~out_of_io): 1'bz; \\输出 数据 总线

3.2 CMOS逻辑门电路——传输门

逻辑符号 电路 $T_{P} \\$ $v_{\rm I}/v_{\rm O}$ $v_{\rm O}/v_{\rm I}$ TG $v_{\rm I}/v_{\rm O}$ $v_{\rm O}/v_{\rm I}$ +5V T_N 等效电路 v_I/v_O v_o/v_I

3.2 CMOS逻辑门电路——传输门

设 T_P 的开启电压 $|V_{TP}|=2V$, T_N 的开启电压 $V_{TN}=2V$ 。 输入模拟信号的变化范围为 - 5V到+5V。

当c=0, c=1时

$$\upsilon_{\rm GSN}$$
= -5V - (-5V~+5V)=(0~ -10)V
$$\upsilon_{\rm GSN} < 0, T_{\rm N}$$
截止

$$\upsilon_{GSP}$$
=5V - (-5V~+5V)=(10~0)V υ_{GSP} > 0, T_P 截止

开关断开,不能传输信号

3.2 CMOS逻辑门电路——传输门

当c=1, c=0时

a, $v_I = -5V \sim 3V$

$$v_{GSN} = 5V - (-5V \sim +3V) = (10 \sim 2)V$$

$$b$$
, $v_I = -3V \sim 5V$

$$v_{\text{GSP}} = -5V - (-3V \sim +5V) = -2V \sim -10V$$
 $|v_{\text{GSP}}| > |V_{\text{T}}|, T_{\text{P}}$ 吳通

$$c$$
, $v_I = -3V \sim 3V$

3.2 CMOS逻辑门电路——特点

(1) 功耗极低

LSI: **Λ**↑ μW , MSI: 100 μW

(2) 电源电压范围宽

CC4000 系列: $V_{DD} = 3 \sim 18 \text{ V}$

(3) 抗干扰能力强

输入端噪声容限 = $0.3V_{\rm DD} \sim 0.45V_{\rm DD}$

(4) 逻辑摆幅大

 $V_{\rm OL} \approx 0 \, \mathrm{V} \,, \ V_{\rm OH} \approx V_{\rm DD}$

(5) 输入阻抗极高

 $\geq 10^8 \Omega$

(6) 扇出能力强

CC4000系列:≥50个

- (7) 集成度很高,温度稳定性好
- (8) 抗辐射能力强

3.2 CMOS逻辑门电路——注意事项

- 1. 注意输入端的静电防护
- 2. 注意电源电压极性
- 3. 输出端不能和电源、地短接
- 4. 多余的输入端不应悬空

与门、 与非门:接电源 或 与其他输入端并联

或门、 或非门:接地或 与其他输入端并联