Algebraic structures

1 | Groups

Groups and subgroups

Definition 1.1 (Group). A *group* is a non-empty set G together with a binary operation

$$\cdot: G \times G \longrightarrow G$$

 $(g_1, g_2) \longmapsto g_1 \cdot g_2$

satisfying the following properties:

1. Associativity:

$$(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3) \quad \forall g_1, g_2, g_3 \in G$$

2. Identity element:

$$\exists e \in G : e \cdot q = q \cdot e = q \quad \forall q \in G^1$$

3. Inverse element:

$$\forall g \in G, \exists h \in G : g \cdot h = h \cdot g = e$$

We denote h by q^{-1} .

In this context we say $(G \cdot)$ is a group. If, moreover, we have $g_1 \cdot g_2 = g_2 \cdot g_1 \ \forall g_1, g_2 \in G$, we say that the group (G, \cdot) is *commutative* or *abelian*².

Lemma 1.2. Let (G,\cdot) be a group. Then:

- 1. The identity element is unique.
- 2. Given an element $g \in G$, $\exists ! h \in G$ such that $g \cdot h = h \cdot g = e$.
- 3. Given $g, h \in G$ such that $g \cdot h = e$, we have $h = g^{-1}$.

Definition 1.3 (Subgroup). Let (G, \cdot) be a group and H be a subset of G. (H, \cdot) is called a *subgroup* of $(G, \cdot)^3$ if satisfies:

- 1. If $h_1, h_2 \in H$, then $h_1 \cdot h_2 \in H$.
- $e \in H$.
- 3. If $h \in H$, then $h^{-1} \in H$.

Proposition 1.4. Let (G, \cdot) be a group and $H \neq \emptyset$ be a subset of G. Then:

$$(H,\cdot)$$
 is a subgroup $\iff h_1 \cdot h_2^{-1} \in H \quad \forall h_1, h_2 \in H$

Proposition 1.5. If (H, +) is a subgroup of $(\mathbb{Z}, +)$, then $\exists n \in \mathbb{Z}$ such that $H = n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}.$

Proposition 1.6. Let $(G_i, *_i)$, i = 1, ..., n, be groups. Then the product

$$(G_1, *_1) \times \cdots \times (G_n, *_n)$$

induces a group with the operation \cdot defined as

$$(g_1,\ldots,g_n)\cdot(g_1',\ldots,g_n')=(g_1*_1g_1',\ldots,g_n*_ng_n'),$$

where $g_i, g_i' \in G_i$.

Definition 1.7. The order of a group (G, \cdot) is the number of elements in its set, that is, |G|.

Lemma 1.8. Let (G, \cdot) be a group and $\{(H_i, \cdot) : i \in I\}$ be a set of subgroups of (G, \cdot) . Then if

$$H = \bigcap_{i \in I} H_i,$$

we have that (H, \cdot) is also a subgroup of (G, \cdot) .

Definition 1.9. Let (G, \cdot) be a group and $X \subseteq G$ be a subset of G. The *subgroup of* (G, \cdot) *generated by* X, $(\langle X \rangle, \cdot)$, is the smallest subgroup of (G, \cdot) containing X, that is,

$$\langle X \rangle = \bigcap_{X \subseteq H \le G} H$$

Definition 1.10. Let (G, *) be a group, $g \in G$ and $n \in \mathbb{Z}$. We define g^n as:

$$g^{n} = \begin{cases} g * \cdots * g & \text{if } n > 0 \\ 1 & \text{if } n = 0 \\ (g^{-1}) * \cdots * (g^{-1}) & \text{if } n < 0 \end{cases}$$

Lemma 1.11. Let (G, \cdot) be a group and $g \in G$. Then for all $n, m \in \mathbb{Z}$ we have:

1.
$$g^n \cdot g^m = g^{n+m} = g^m \cdot g^n$$
.

2.
$$(q^n)^m = q^{nm} = (q^m)^n$$
.

Proposition 1.12. Let (G, *) be a group and $X \subseteq G$ be a subset of G. Then:

$$\langle X \rangle = \{e\} \cup \{g_1^{\alpha_1} * \dots * g_n^{\alpha_n} : n \in \mathbb{N}, \alpha_i \in \mathbb{Z}, g_i \in X\}$$

Corollary 1.13. Let (G, \cdot) be a group and $g \in G$. Then:

$$\langle q \rangle = \{ q^i : i \in \mathbb{Z} \}$$

Definition 1.14. Let (G, \cdot) be a group and $g \in G$. A subgroup $(\langle g \rangle, \cdot)$ of (G, \cdot) generated by a single element g is called a *cyclic group*.

Definition 1.15. Let (G, \cdot) be a group and $g \in G$. The order of g is $\operatorname{ord}(g) := |\langle g \rangle|$.

Proposition 1.16. Let (G,\cdot) be a group and $g\in G$. Then:

$$\operatorname{ord}(g) = \min\{i \in \mathbb{N} : g^i = e\}$$

If no such i exists, we say $\operatorname{ord}(q) = \infty$.

Corollary 1.17. Let $n \in \mathbb{N}$ such that n > 1 and $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$. Then:

$$\operatorname{ord}(\bar{a}) = \frac{n}{\gcd(a, n)}$$

¹From now on, we will denote e or e_G the identity element of the group (G,\cdot) .

²Sometimes to simplify the notation and if the context is clear, we will refer to G directly as the group as well as the set.

³Sometimes we will denote that (H,\cdot) is a subgroup of (G,\cdot) by $H \leq G$.

Lemma 1.18. Let (G, \cdot) be a group and $g \in G$ such that **Proposition 1.26.** Let $(G_1, \cdot_1), (G_2, \cdot_2), (G_3, \cdot_3)$ be three ord(g) = n. Then: groups and $\phi : G_1 \to G_2, \psi : G_2 \to G_3$ be two group

- 1. $q^m = e \iff n \mid m$.
- 2. $g^m = g^{m'} \iff m = m' \mod n$.
- 3. If $0 \le i \le n$, then $g^{-i} = (g^i)^{-1} = g^{n-i}$.

Corollary 1.19. Let $(G_i, *_i)$, i = 1, ..., n, be groups. For i = 1, ..., n, let $g_i \in G_i$ and consider the element $g = (g_1, ..., g_n) \in (G_1, *_1) \times \cdots \times (G_n, *_n)$. Then:

$$\operatorname{ord}(g) = \operatorname{lcm}(\operatorname{ord}(g_1), \dots, \operatorname{ord}(g_n))$$

Group morphisms

Definition 1.20 (Group morphism). Let $(G,*), (H,\cdot)$ be two groups. A *group morphism from* (G,*) *to* (H,\cdot) is a function $\phi: G \to H$ such that:

$$\phi(g_1 * g_2) = \phi(g_1) \cdot \phi(g_2) \quad \forall g_1, g_2 \in G$$

Lemma 1.21. Let $\phi: G_1 \to G_2$ be a morphism between $(G_1, *)$ and (G_2, \cdot) . Then,

- 1. $\phi(e_1) = e_2$.
- 2. $\phi(g^{-1}) = \phi(g)^{-1} \quad \forall g \in G_1$.
- 3. $\phi(g^n) = \phi(g)^n \quad \forall g \in G_1 \text{ and } \forall n \in \mathbb{Z}.$

Definition 1.22. We say a subgroup (H, \cdot) of a group (G, \cdot) is *normal*, $H \triangleleft G$, if and only if $\forall h \in H$ and $\forall g \in G$, we have $g \cdot h \cdot g^{-1} \in H$.

Definition 1.23. Let $(G_1, *)$, (G_2, \cdot) be two groups and $\phi: G_1 \to G_2$ be a group morphism. The *kernel of* ϕ is:

$$\ker \phi = \{ g \in G_1 : \phi(g) = e_2 \}$$

The image of ϕ is:

$$\operatorname{im} \phi = \{ h \in G_2 : \phi(g) = h \text{ for some } g \in G_1 \}$$

Proposition 1.24. Let $(G_1, *), (G_2, \cdot)$ be two groups and $\phi: G_1 \to G_2$ be a group morphism. Then:

- 1. $(\ker \phi, *)$ is a normal subgroup of $(G_1, *)$ and $(\operatorname{im} \phi, \cdot)$ is a subgroup of (G_2, \cdot) .
- 2. Let $g, g' \in G_1$. The following statements are equivalent:
 - i) $\phi(g) = \phi(g')$.
 - ii) $g * g'^{-1} \in \ker \phi$.
 - iii) $g'^{-1} * g \in \ker \phi$.
- 3. ϕ is injective if and only if $\ker \phi = \{e_1\}$.
- 4. ϕ is surjective if and only if im $\phi = G_2$.

Definition 1.25. Let (G,*), (H,\cdot) be two groups. An isomorphism between (G,*) and (H,\cdot) is a bijective morphism between these groups. In this case, we say that (G,*), (H,\cdot) are isomorphic: $G \cong H$.

Proposition 1.26. Let (G_1, \cdot_1) , (G_2, \cdot_2) , (G_3, \cdot_3) be three groups and $\phi: G_1 \to G_2, \ \psi: G_2 \to G_3$ be two group morphisms. Then the composition $\psi \circ \phi$ is also a group morphism.

Proposition 1.27. Let $(G_1, *)$, (G_2, \cdot) be groups and let $\phi: G_1 \to G_2$ be an isomorphism. Then $\phi^{-1}: G_2 \to G_1$ is also an isomorphism.

Theorem 1.28 (Classification of cyclic groups). Let (G,\cdot) be a group and $g \in G$ be an element such that $\langle g \rangle = G$.

• If $|G| = \infty$, then $G \cong \mathbb{Z}$. We can define the isomorphism as follows:

$$\phi: \mathbb{Z} \longrightarrow G$$
$$k \longmapsto g^k$$

• If |G|=n, then $G\cong \mathbb{Z}/n\mathbb{Z}$. We can define the isomorphism as follows:

$$\phi: \mathbb{Z}/n\mathbb{Z} \longrightarrow G$$

$$\bar{k} \longmapsto q^k$$

Corollary 1.29. Let (G, \cdot) be a group and $g \in G$ be such that $\langle g \rangle = G$. Then all subgroups of G are cyclic. Moreover:

- If $|G| = \infty$, subgroups of (G, \cdot) are of the form $\langle g^n \rangle$, $n \in \mathbb{N} \cup \{0\}$.
- If |G| = n, then there is a unique subgroup (H, \cdot) of (G, \cdot) for every divisor d > 0 of n. In fact, if n = dq, then $H = \langle g^q \rangle$ and |H| = d.

Definition 1.30. Let X be a set. We define the *symmetric group* $(S(X), \circ)$ as:

$$S(X) = \{f: X \to X: f \text{ is bijective}\}^4$$

Definition 1.31. Let (G, \cdot) be a group. We define the functions:

$$\ell_g: G \longrightarrow G$$
 $r_g: G \longrightarrow G$ $x \longmapsto g \cdot x$ $x \mapsto x \cdot g$

Lemma 1.32. Let (G,\cdot) be a group. The functions ℓ_g , r_g are bijective and its inverses are $\ell_{g^{-1}}$, $r_{g^{-1}}$, respectively.

Proposition 1.33. Let (G, \cdot) be a group. We define the functions:

$$\begin{array}{ccc} \phi: G \longrightarrow S(G) & \psi: G \longrightarrow S(G) \\ & g \longmapsto \ell_g & g \longmapsto r_{g^{-1}} \end{array}$$

Then, ϕ and ψ are injective group morphisms.

Theorem 1.34 (Cayley's theorem). Let (G, \cdot) be a group. Then, there is an injective morphism:

$$\phi: G \longrightarrow S(G)$$

Corollary 1.35. If (G, \cdot) is a group with |G| = n, then (G, \cdot) is isomorphic to a subgroup of (S_n, \circ) .

⁴Observe that if $X = \{1, ..., n\}$, then $S(X) = S_n$.

Cosets

Definition 1.36. Let (G, \cdot) be a finite group, (H, \cdot) be a subgroup of (G, \cdot) and $g_1, g_2 \in G$.

- We say $g_1 \sim g_2 \iff g_1 \cdot g_2^{-1} \in H$.
- We say $g_1 \approx g_2 \iff g_2^{-1} \cdot g_1 \in H$.

Lemma 1.37. Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) . Then:

- 1. \sim and \approx are equivalence relations.
- 2. If $g \in G$, then:

$$[g]_{\sim} = H \cdot g = \{h \cdot g : h \in H\}$$
$$[g]_{\approx} = g \cdot H = \{g \cdot h' : h' \in H\}$$

Usually we say that $H \cdot g$ are the right cosets in G and $g \cdot H$, the left cosets in G.

Definition 1.38. Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) . We define the *set of right cosets* and the *set of left cosets*, respectively, as follows:

$$G/_{\sim} = \{H \cdot g : g \in G\}$$
 $G/_{\approx} = \{g \cdot H : g \in G\}$

Proposition 1.39. Let (G, \cdot) be a group and (H, \cdot) be a subgroup of (G, \cdot) . The following statements are equivalent:

- 1. $H \triangleleft G$.
- $2. \ g \cdot H = H \cdot g \quad \forall g \in G.$

Theorem 1.40 (Lagrange's theorem). Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) . Then:

Definition 1.41. Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) . We define the *index of* (H, \cdot) *in* (G, \cdot) as:

$$[G:H]:=\frac{|G|}{|H|}$$

Corollary 1.42. Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) . Then:

$$[G:H] = \left| \frac{G}{\sim} \right| = \left| \frac{G}{\approx} \right|$$

Corollary 1.43. Let (G, \cdot) be a finite group.

- 1. If $g \in G$, then $\operatorname{ord}(g) \mid |G|$.
- 2. If |G| is prime, then (G, \cdot) is cyclic.
- 3. If (H, \cdot) and (K, \cdot) are subgroups of (G, \cdot) and $\gcd(|H|, |K|) = 1$, then $H \cap K = \{e\}$.

Definition 1.44 (Quotient group). Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) such that $H \triangleleft G$. We define the *quotient group* (G/H, *) as

$$G/_{H} = G/_{\sim} = G/_{\approx}$$

and

$$*: {}^{G}/_{H} \times {}^{G}/_{H} \longrightarrow {}^{G}/_{H}$$
$$(g_{1} \cdot H, g_{2} \cdot H) \longmapsto (g_{1} \cdot g_{2}) \cdot H$$

Lemma 1.45. Let (G, \cdot) be a finite group and (H, \cdot) be a subgroup of (G, \cdot) such that $H \triangleleft G$. The projection

$$\pi: G \longrightarrow {}^G \! \big/_{\! H}$$

$$g \longmapsto [g] = g \cdot H$$

is a group morphism.

Isomorphism theorems

Theorem 1.46 (First isomorphism theorem). Let $(G_1,*), (G_2,\cdot)$ be groups, $\phi: G_1 \to G_2$ be a group morphism and (H,*) be a subgroup of $(G_1,*)$ such that $H \lhd G_1$. If (H,*) is a subgroup of $(\ker \phi,*)$, then there exists a unique group morphism $\psi: G_1/H \to G_2$ such that the diagram of figure 1 is commutative, that is, $\phi = \psi \circ \pi$.

Figure 1

The definition of ψ is $\psi([g]) = \phi(g) \ \forall g \in G_1$. In particular, if $H = \ker \phi$, then ψ is injective and therefore there is an isomorphism $\psi: G_1/\ker \phi \to \operatorname{im} \phi$.

Theorem 1.47. Let

$$\phi: \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

$$1 \longmapsto (\bar{1}, \bar{1})$$

be a group morphism. Then, ϕ induces a morphism $\psi: \mathbb{Z}/nm\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$. Moreover, ψ is injective if and only if $\gcd(n,m)=1$ and in this case ψ is an isomorphism.

Corollary 1.48. Let $n, m \in \mathbb{Z}$ be two coprime integers and $a, b \in \mathbb{Z}$. The system of congruences

$$\left\{ \begin{array}{ll} x \equiv a \mod n \\ x \equiv b \mod m \end{array} \right.$$

has solutions and these are of the form $x \equiv c \mod nm$, where $c \equiv a \mod n$ and $c \equiv b \mod m$.

Definition 1.49. Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) be subgroups of (G,\cdot) . We define the *products of group subsets* K, H as the sets:

$$H \cdot K = \{h \cdot k : h \in H, k \in K\}$$

$$K \cdot H = \{k \cdot h : k \in K, h \in H\}$$

Proposition 1.50. Let (G, \cdot) be a group and (H, \cdot) , (K, \cdot) be subgroups of (G, \cdot) such that $H \triangleleft G$. Then, $(H \cdot K, \cdot)$ is a subgroup of (G, \cdot) and $H \cdot K = K \cdot H$.

Proposition 1.51. Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) Lemma 1.58. Let (G,\cdot) be a group and X be a G-set. be subgroups of (G,\cdot) such that $H\cap K=\{e\}$. If $H,K\triangleleft G$, For all $g\in G$ the function then the function

$$\phi: H \times K \longrightarrow H \cdot K$$
$$(h, k) \longmapsto h \cdot k$$

is an isomorphism. In particular, $\forall h \in H$ and $\forall k \in K$, $h \cdot k = k \cdot h$.

Theorem 1.52 (Second isomorphism theorem). Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) be subgroups of (G,\cdot) such that $H \triangleleft G$. Then $H \cap K \triangleleft K$ and

$$K/_{H\cap K}\cong {}^{H\cdot K}/_{H}$$

Corollary 1.53. Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) be subgroups of (G,\cdot) . Then:

$$|H||K| = |H \cap K||H \cdot K|$$

Lemma 1.54. Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) be subgroups of (G,\cdot) such that $H \triangleleft G$ and $H \subseteq K$. Then $H \triangleleft K$, (K/H, *) is a subgroup of (G/H, *) and moreover

$$K/_{H} \triangleleft G/_{H} \iff K \triangleleft G$$

Theorem 1.55 (Correspondence theorem). Let (G,\cdot) be a group and (H,\cdot) be a subgroup of (G,\cdot) such that $H \triangleleft G$. Then, there is a bijection ϕ from the set \mathcal{G} of all subgroups (K,\cdot) of (G,\cdot) such that $H\subseteq K$ onto the set \mathcal{H} of all subgroups (K/H, *) of (G/H, *). More precisely, the bijection is:

$$\phi: \mathcal{G} \longrightarrow \mathcal{H}$$
$$K \longmapsto K/H$$

Theorem 1.56 (Third isomorphism theorem). Let (G,\cdot) be a group and (H,\cdot) , (K,\cdot) be subgroups of (G,\cdot) such that $H, K \triangleleft G$ and $H \subseteq K$. Then $K/H \triangleleft G/H$ and

$$\binom{G/H}{/\binom{K/H}} \cong \binom{G/K}{K}$$

Group actions

Definition 1.57. Let X be a set and (G,\cdot) be a group. A (left) group action of (G,\cdot) on X is a function

$$*: G \times X \longrightarrow X$$

$$(g, x) \longmapsto g * x$$

satisfying the following properties:

1.
$$e * x = x, \forall x \in X$$
.

2.
$$(g_1 \cdot g_2) * x = g_1 * (g_2 * x), \forall x \in X \text{ and } \forall g_1, g_2 \in G.$$

a (left) G-set.

$$\ell_g: X \longrightarrow X$$
$$x \longmapsto g * x$$

is bijective an its inverse is $\ell_{q^{-1}}$.

Definition 1.59. Let (G, \cdot) be a group and X be a G-set. For all $x, y \in X$, we say $x \backsim y \iff \exists q \in G : y = q * x$.

Lemma 1.60. The relation \sim is an equivalence relation.

Definition 1.61. Let (G, \cdot) be a group and X be a G-set. If $x \in X$, we define the *orbit of* x as:

$$\mathcal{O}_x = [x]_{\backsim} = \{g * x : g \in G\}$$

Definition 1.62. Let (G, \cdot) be a group and X be a G-set. For $x \in X$, we define the stabilizer of (G, \cdot) with respect to x as the set:

$$G_x = \{g \in G : g * x = x\}$$

Proposition 1.63. Let (G,\cdot) be a group and X be a Gset. For all $x \in X$, (G_x, \cdot) is a subgroup of (G, \cdot) .

Theorem 1.64 (Orbit-stabilizer theorem). Let (G, \cdot) be a group, X be a G-set and $x \in X$. The surjective function

$$\phi: G \longrightarrow \mathcal{O}_x$$
$$g \longmapsto g * x$$

induces a bijective function $\psi: G/\approx \to \mathcal{O}_x$, where \approx is the equivalence relation $g_1\approx g_2 \iff g_2^{-1}\cdot g_1\in G_x$ $\forall g_1, g_2 \in G^5$. In particular, if G is finite:

$$|\mathcal{O}_x| = |[G:G_x]|$$

Corollary 1.65 (Orbits formula). Let (G,\cdot) be a finite group and X be a finite G-set. If x_1, \ldots, x_m are the elements of X and $|\mathcal{O}_{x_i}| = 1$ for $i = 1, \ldots, r$, then:

$$|X| = r + \sum_{i=r+1}^{m} |\mathcal{O}_{x_i}| = r + \sum_{i=r+1}^{m} |[G : G_{x_i}]|$$
 (1)

Applications of orbits formula

Theorem 1.66 (Cauchy's theorem). Let (G,\cdot) be a finite group of order n and $p \in \mathbb{P}$. If $p \mid n$, then (G, \cdot) has an element of order p.

Corollary 1.67. Let p be an odd prime number. Then groups of order 2p are isomorphic to $(\mathbb{Z}/2p\mathbb{Z},+)$ or $(D_{2p}, \circ)^{6}$.

Proposition 1.68. Let (G,\cdot) be a group. The function

$$G\times G\longrightarrow G$$
$$(g,x)\longmapsto g\cdot x\cdot g^{-1}$$

A set X together with an action * of (G, \cdot) is usually called is an action of (G, \cdot) over itself. It is called the *conjugation* action

⁵Note that the notation \approx for the equivalence relation correspond with the one defined in definition 1.36.

 $^{^6}$ See section 1.

group. We define the center of (G,\cdot) as:

$$Z(G) = \{ z \in G : z \cdot g = g \cdot z \ \forall g \in G \}^7$$

Proposition 1.70. Let $p \in \mathbb{P}$ and (G, \cdot) be a finite group of order p^n for some $n \geq 1$. Then, |Z(G)| > 1.

Lemma 1.71. Let (G,\cdot) be a group and (H,\cdot) be a subgroup of (G, \cdot) . Consider the application

$$H \times \frac{G}{\approx} \longrightarrow \frac{G}{\approx}$$
$$(h, g \cdot H) \longmapsto (h \cdot g) \cdot H$$

This application defines an action of the subgroup (H, \cdot) over the set G/\approx .

Definition 1.72. Let (G,\cdot) be a group and (H,\cdot) be a subgroup of (G,\cdot) . The normalizer of (H,\cdot) in (G,\cdot) is

$$N_G(H) = \{ g \in G : g \cdot h \cdot g^{-1} \in H \ \forall h \in H \}$$

Lemma 1.73. Let (G,\cdot) be a group and (H,\cdot) be a subgroup of (G,\cdot) . Then, $(N_G(H),\cdot)$ is a subgroup of (G,\cdot) containing H and, moreover, $H \triangleleft N_G(H)$.

Corollary 1.74. Let (G,\cdot) be a finite group and (H,\cdot) be a subgroup of (G,\cdot) . Then, by orbits formula applied to action defined on lemma 1.71, we have:

$$[G:H] = [N_G(H):H] + \sum_{|\mathcal{O}_x|>1} |\mathcal{O}_x|$$

Proposition 1.75. Let (G,\cdot) be a group of order $n \in \mathbb{N}$, $p \in \mathbb{P}$ such that $p \mid n$ and (H, \cdot) be a subgroup of (G,\cdot) of order p^i , $i\geq 1$. Suppose $p\mid [G:H]$. Then, $p \mid [N_G(H) : H].$

Sylow's theorems

Corollary 1.76. Let (G,\cdot) be a group of order $n \in \mathbb{N}$, $p \in \mathbb{P}$ and (H, \cdot) be a subgroup of (G, \cdot) such that $|H| = p^i$, $i \geq 0$. Suppose $p \mid [G:H]$. Then, there is a subgroup (H',\cdot) of (G,\cdot) such that $H\subset H'$ and $|H'|=p^{i+1}$. Moreover, $H \triangleleft H'$ and $H'/H \cong \mathbb{Z}/p\mathbb{Z}$.

Theorem 1.77 (First Sylow theorem). Let (G,\cdot) be a finite group and $p \in \mathbb{P}$. Suppose $|G| = p^r m$, where $r \geq 0$ and gcd(p, m) = 1. Then, there is a subgroup (K, \cdot) of (G,\cdot) of order p^r . Moreover there is a chain of subgroups (H_i, \cdot) satisfying:

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_r = K,$$

such that $H_{i+1}/H_i \cong \mathbb{Z}/p\mathbb{Z}$ for $0 \leq i < r$.

Definition 1.78. Let $p \in \mathbb{P}$. A group (G, \cdot) is a *p-group* if $|G| = p^r$, for some $r \in \mathbb{N}$.

Definition 1.79. Let $p \in \mathbb{P}$ and (G, \cdot) be a group. A Sylow p-subgroup is a p-subgroup of (G,\cdot) of maximum

Definition 1.69 (Center of a group). Let (G, \cdot) be a **Definition 1.80.** Let (G, \cdot) be a finite group. We say (G,\cdot) is soluble if there is a chain of subgroups (H_i,\cdot) of (G, \cdot) satisfying:

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_r = K,$$

and such that the subgroups $(H_{i+1}/H_i, *)$, $0 \le i < r$, are cyclic.

Theorem 1.81 (Second Sylow theorem). Let (G, \cdot) be a finite group and $p \in \mathbb{P}$. Suppose $|G| = p^r m$, where $r \geq 0$ and gcd(p, m) = 1. Let (K, \cdot) be a Sylow p-subgroup of (G,\cdot) . Then, if (H,\cdot) is a subgroup of (G,\cdot) of order $p^i, \exists g \in G \text{ such that } g \cdot H \cdot g^{-1} \subseteq K.$ In particular two different Sylow p-subgroups (K_1,\cdot) and (K_2,\cdot) are conjugate, that is, there exists an element $g \in G$ such that $g \cdot K_1 \cdot g^{-1} = K_2.$

Theorem 1.82 (Third Sylow theorem). Let (G,\cdot) be a finite group and $p \in \mathbb{P}$. Suppose $|G| = p^r m$, where $r \geq 0$ and gcd(p,m) = 1. Let (K,\cdot) be a Sylow p-subgroup of (G,\cdot) and n_p be the number of different Sylow p-subgroups of (G,\cdot) . Then, $n_p = [G:N_G(K)], n_p \mid m \text{ and } n_p \equiv 1$

Corollary 1.83. Let $p, q \in \mathbb{P}$ be such that p < q and $q \not\equiv 1$ mod p. If (G, \cdot) is a group of order pq, then $G \cong \mathbb{Z}/pq\mathbb{Z}$.

Examples of groups

Let $n \in \mathbb{N}$ and $p \in \mathbb{P}$.

- $(\mathbb{Z},+)$, $(\mathbb{Z}/n\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$
- $((\mathbb{Z}/p\mathbb{Z})^*, \cdot), (\mathbb{Q}^*, \cdot), (\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot)$
- (S_n, \circ)
- (A_n, \circ) , where $A_n = \{\sigma \in S_n : \varepsilon(\sigma) = 1\}$. Note that $|A_n| = \frac{S_n}{2} = \frac{n!}{2}$.
- $(GL_n(\mathbb{A}), \cdot)$, where $GL_n(\mathbb{A}) = \{ \mathbf{M} \in \mathcal{M}_n(\mathbb{A}) :$ **M** is invertible and $A = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} or \mathbb{C} .
- $(SL_n(\mathbb{A}), \cdot)$, where $SL_n(\mathbb{A}) = \{ \mathbf{M} \in GL_n(\mathbb{A}) :$ $\det \mathbf{M} = 1$ and $\mathbb{A} = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} or \mathbb{C} .
- (D_{2n}, \circ) , where D_{2n} is the set of rotations and reflections that leave invariant the regular polygon of n vertices centered at origin. It can be seen that $D_{2n} = \langle r, s : \operatorname{ord}(r) = n, \operatorname{ord}(s) = 2, r \circ s = s \circ r^{-1} \rangle.$ This group is called the dihedral group. Note that $|D_{2n}| = 2n$.
- (Q_8, \cdot) , where $Q_8 = \langle a, b : \operatorname{ord}(a) = \operatorname{ord}(b) = 4, b \cdot a =$ $a^{-1} \cdot b$. This group is called the quaternion group. Note that $|Q_8| = 8$.
- (Dic_n, ·), where Dic_n = $\langle a, b : \operatorname{ord}(a) = 2n, b^2 =$ $a^n, b^{-1} \cdot a \cdot b = a^{-1}$. This group is called the dicyclic group. Note that $|\mathrm{Dic}_n| = 4n$.

$$|G| = |Z(G)| + \sum_{|\mathcal{O}_x| > 1} |\mathcal{O}_x|$$

⁷Note that, by orbits formula (1), if we consider the conjugation action we have:

Classification of groups of small order

G	Non-isomorphic groups
1	$\{e\}$
2	$\mathbb{Z}/2\mathbb{Z}$
3	$\mathbb{Z}/3\mathbb{Z}$
4	$\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$
5	$\mathbb{Z}/5\mathbb{Z}$
6	$\mathbb{Z}/6\mathbb{Z}, S_3$
7	$\mathbb{Z}/7\mathbb{Z}$
8	$\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^3, \mathrm{D}_{2\cdot 4}, \mathrm{Q}_8$
9	$\mathbb{Z}/9\mathbb{Z},\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$
10	$\mathbb{Z}/10\mathbb{Z}, \mathrm{D}_{2\cdot 5}$
11	$\mathbb{Z}/11\mathbb{Z}$
12	$\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $D_{2\cdot 6}$, A_4 , Dic_3
13	$\mathbb{Z}/13\mathbb{Z}$
14	$\mathbb{Z}/14\mathbb{Z}, \mathrm{D}_{2\cdot7}$
15	$\mathbb{Z}/15\mathbb{Z}$

2 | Rings and fields

Rings, subrings and ring morphisms

Definition 1.84 (Ring). A ring is a set R equipped with two binary operations (called addition and multiplication):

$$+: R \times R \longrightarrow R$$
 $\cdot: R \times R \longrightarrow R$ $(r_1, r_2) \longmapsto r_1 + r_2$ $(r_1, r_2) \longmapsto r_1 \cdot r_2$

satisfying the following properties:

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) satisfies⁸:
 - i) Associativity:

$$(r_1 \cdot r_2) \cdot r_3 = r_1 \cdot (r_2 \cdot r_3) \quad \forall r_1, r_2, r_3 \in R.$$

ii) Identity element⁹:

$$\exists 1 \in R : 1 \cdot r = r \cdot 1 = r \quad \forall r \in R.$$

iii) Commutativity:

$$r_1 \cdot r_2 = r_2 \cdot r_1 \quad \forall r_1, r_2 \in R.$$

Multiplication is distributive with respect to addition:

$$(r_1 + r_2) \cdot r_3 = r_1 \cdot r_3 + r_2 \cdot r_3 \quad \forall r_1, r_2, r_3 \in R.$$

In this context we say $(R, +, \cdot)$ is a ring.

Definition 1.85. A *noncommutative ring* is a ring whose multiplication is not commutative.

Definition 1.86 (Field). Let $(R, +, \cdot)$ be a ring. If every nonzero element of R has a multiplicative inverse (that is, (R, \cdot) is an abelian group), we say that R is a *field*.

Proposition 1.87. Let $(R_i, +_i, \cdot_i)$, i = 1, ..., n, be rings. Then the product

$$(R_1, +_1, \cdot_1) \times \cdots \times (R_n, +_n, \cdot_n)$$

induces a ring with operations + and \cdot defined as

$$(r_1, \ldots, r_n) + (r'_1, \ldots, r'_n) = (r_1 +_1 r'_1, \ldots, r_n +_n r'_n),$$

 $(r_1, \ldots, r_n) \cdot (r'_1, \ldots, r'_n) = (r_1 \cdot_1 r'_1, \ldots, r_n \cdot_n r'_n),$

where $r_i, r'_i \in R_i$.

Proposition 1.88. Let $(R, +, \cdot)$ be a ring. We define the set of polynomials over the ring $(R, +, \cdot)$ as:

$$R[x] := \{r_0 + r_1 \cdot x + \dots + r_n \cdot x^n : r_i \in R \ \forall i \text{ and } n \ge 0\}.$$

Moreover, $(R[x], +, \cdot)$ is a ring.

Definition 1.89. A ring $(R, +, \cdot)$ is a *Boolean ring* if $r^2 = r \ \forall r \in R$.

Lemma 1.90. Let $(R, +, \cdot)$ be a ring. Then:

- 1. The multiplicative identity element is unique.
- $2. \ \forall r \in R, \ 0 \cdot r = 0.$
- 3. $\forall r \in R, (-1) \cdot r = -r, \text{ where } -1 \text{ is the additive inverse of } 1.$
- 4. $\forall r, s \in R, (-r) \cdot s = -(r \cdot s) \text{ and } (-r) \cdot (-s) = r \cdot s.$

Definition 1.91 (Subring). Let $(R, +, \cdot)$ be a ring and $S \subseteq R$ be a subset of R. $(S, +, \cdot)$ is called a *subring* of $(R, +, \cdot)$ if satisfies:

- 1. (S, +) is a subgroup of (R, +).
- 2. $\forall s_1, s_2 \in S, s_1 \cdot s_2 \in S$.
- 3. $1 \in S$.

Definition 1.92 (Ring morphism). Let $(R, +, \cdot)$, (S, \oplus, \odot) be two rings. A *ring morphism from* $(R, +, \cdot)$ to (S, \oplus, \odot) is a function $\phi: R \to S$ such that:

- 1. $\phi(r_1 + r_2) = \phi(r_1) \oplus \phi(r_2) \quad \forall r_1, r_2 \in \mathbb{R}^{10}$.
- 2. $\phi(r_1 \cdot r_2) = \phi(r_1) \odot \phi(r_2) \quad \forall r_1, r_2 \in R$.
- 3. $\phi(1_R) = 1_S$.

Lemma 1.93. Let $(R, +, \cdot)$, (S, \oplus, \odot) be two rings and $\phi : R \to S$ be a ring morphism. Then, knowing that $\ker \phi = \{r \in R : f(r) = 0\}$, then:

- 1. $(\ker \phi, +)$ is a subgroup of (R, +).
- 2. $\forall k \in \ker \phi \text{ and } \forall r \in R, k \cdot r \in \ker \phi$.

Proposition 1.94. Let $(R,+,\cdot), (S,\oplus,\odot)$ be two rings and $\phi: R \to S$ be a ring morphism. Then:

1. f(0) = 0.

⁸Some definitions state that the commutative property is not necessary to define a ring. However, in these notes we will take the definition given.

⁹It is common to denote the additive identity element as 0 and the multiplicative identity element as 1.

 $^{^{10}\}text{That}$ is, ϕ is a group morphism between groups (R,+) and $(S,\oplus).$

- 2. $f(-r) = -f(r) \ \forall r \in R$.
- 3. If $r \in R$ has a multiplicative inverse, then f(r) so it has and, moreover, $f(r^{-1}) = f(r)^{-1}$.

Proposition 1.95. Let $(R_1, +_1, \cdot_1)$, $(R_2, +_2, \cdot_2)$ and $(R_3, +_3, \cdot_3)$ be rings and $\phi: R_1 \to R_2, \ \psi: R_2 \to R_3$ be two ring morphisms. Then, the composition $\psi \circ \phi$ is also a ring morphism.

Proposition 1.96. Let $(R,+,\cdot)$, (S,\oplus,\odot) be rings and let $\phi:R\to S$ be a bijective ring morphism. Then $\phi^{-1}:S\to R$ is also a bijective ring morphism.

Ideals

Definition 1.97 (Ideal). Let $(R, +, \cdot)$ be a ring. A subgroup (I, +) of (R, +) is an *ideal* if $\forall x \in I$ and $\forall r \in R$, $x \cdot r \in I$.

Lemma 1.98 (Principal ideal). Let $(R, +, \cdot)$ be a ring and $a \in R$. The set

$$(a) := a \cdot R = \{a \cdot r : r \in R\}$$

is an ideal of $(R, +, \cdot)$ and it is called *principal ideal generated by a*.

Proposition 1.99. Let $(R, +, \cdot)$ be a nonzero ring. R is a field if and only if $(R, +, \cdot)$ has only two ideals: $\{0\}$ and R.

Definition 1.100. Let $(R, +, \cdot)$ be a ring. An element $r \in R$ is a *unit* if it has a multiplicative inverse. The set of units in $(R, +, \cdot)$ is denoted by R^* or U(R). Moreover, (R^*, \cdot) is a group called *multiplicative group of* $(R, +, \cdot)$.

Lemma 1.101. Let $(R, +, \cdot)$, (S, \oplus, \odot) be rings and $u \in R^*$. Then:

- 1. If $r \in R$, then $r \cdot R = r \cdot u \cdot R$.
- 2. If $f: R \to S$ is a ring morphism, then $f: R^* \to S^*$ is a group morphism.

Proposition 1.102. Let K be a field. Then, all ideals of K[x] are principal. Moreover if $I \neq \{0\}$ is an ideal of K[x], there exists a monic polynomial $p(x) \in K[x]$ such that $I = p(x) \cdot K[x]$.

Proposition 1.103. Let $(R, +, \cdot)$ be a ring and I, J be a ideals of $(R, +, \cdot)$. Then the sets

$$I \cap J := \{x : x \in I, \ x \in J\}$$

$$I + J := \{x + y : x \in I, \ y \in J\}$$

$$I \cdot J := \left\{ \sum_{i=1}^{n} x_i y_i : n \ge 0, \ x_i \in I, \ y_i \in J \right\}$$

are all ideals. In particular $I \cap J$ is the largest ideal contained in I and J, and I+J is the smallest ideal containing I and J.

Definition 1.104. Let $(R, +, \cdot)$ be a ring and I, J be a ideals of $(R, +, \cdot)$. If I = (a) and J = (b) for some $a, b \in R$, then we define (a, b) as:

$$(a,b) = (a) + (b)$$

Proposition 1.105. Let $a,b \in \mathbb{Z}, d = \gcd(a,b)$ and $m = \operatorname{lcm}(a,b)$. Then:

$$(a) + (b) = (d)$$
 $(a) \cap (b) = (m)$

Definition 1.106. A ring is *Noetherian* if all its ideals are finitely generated.

Theorem 1.107 (Hilbert's basis theorem). If $(R, +, \cdot)$ is a Noetherian ring, then $(R[x_1, \ldots, x_n], +, \cdot)$ is a Noetherian ring.

Lemma 1.108. Let $(R, +, \cdot)$, (S, \oplus, \odot) be two rings and $\phi: R \to S$ be a ring morphism. Then:

- 1. $\ker \phi$ is an ideal of $(R, +, \cdot)$.
- 2. im ϕ is a subring of (S, \oplus, \odot) .

Ideal quotient

Definition 1.109. Let $(R, +, \cdot)$ be a ring and I be an ideal of $(R, +, \cdot)$. For all $r_1, r_2 \in R$, we say $r_1 \sim r_2 \iff r_1 - r_2 \in I$. Since (I, +) is a subgroup of (R, +), \sim is an equivalence relation and we denote by

$$R/_{I} := \{x + I : x \in R\}$$

the set of equivalence classes.

Proposition 1.110. Let $(R, +, \cdot)$ be a ring and I be an ideal of $(R, +, \cdot)$. Then R/I is a ring with operations defined as:

- $\forall r_1, r_2 \in R$, $\overline{r_1} + \overline{r_2} = \overline{r_1 + r_2}$. $\overline{0}$ is the identity element with respect to this operation.
- $\forall r_1, r_2 \in R, \ \overline{r_1} \cdot \overline{r_2} = \overline{r_1} \cdot \overline{r_2}. \ \overline{1}$ is the identity element with respect to this operation.

Moreover the projection:

$$\pi:R\longrightarrow {R/I}$$

$$r\longmapsto \overline{r}$$

is a surjective ring morphism with $\ker \pi = I$.

Corollary 1.111. Let $(R, +, \cdot)$ be a ring and I be an ideal of $(R, +, \cdot)$. Ideals of R/I are of the form J/I, where J is an ideal of $(R, +, \cdot)$ containing I.

Isomorphism theorems

Theorem 1.112 (First isomorphism theorem). Let $(R,+,\cdot), (S,\oplus,\odot)$ be two rings, $\phi:R\to S$ be a ring morphism and I be an ideal such that I is a subgroup of $(\ker\phi,+)$. Then there exists a unique ring morphism $\psi:R/I\to S$ such that the diagram of figure 2 is commutative, that is, $\phi=\psi\circ\pi$.

Figure 2

The definition of ψ is $\psi([r]) = \phi(r) \ \forall r \in R$. In particular, if $I = \ker \phi$, then ψ is injective and therefore there is an isomorphism $\psi : R/\ker \phi \to \operatorname{im} \phi$.

Theorem 1.113 (Second isomorphism theorem). Let $(R, +, \cdot)$ be a ring and I, J be ideals of $(R, +, \cdot)$. Then, (I+J)/I is an ideal of R/I and there is a group isomorphism

$$\phi: (I+J)/I \longrightarrow J/(I\cap J),$$

such that $\phi(a \cdot b) = \phi(a) \cdot \phi(b) \ \forall a, b \in J$.

Theorem 1.114 (Third isomorphism theorem). Let $(R, +, \cdot)$ be a ring and I, J be ideals of $(R, +, \cdot)$ such that $I \subseteq J$. Then, there is a ring isomorphism:

$$\binom{R/I}{I}/\binom{J/I}{I} \cong \binom{R/J}{I}$$

Theorem 1.115 (Correspondence theorem). Let $(R,+,\cdot)$ be ring and I be an ideal of $(R,+,\cdot)$. Then there is a bijection ϕ from the set $\mathcal R$ of all ideals J of $(R,+,\cdot)$ such that $I\subseteq J$ onto the set $\mathcal I$ of all ideals J/I of R/I. More precisely, the bijection is:

$$\phi: \mathcal{R} \longrightarrow \mathcal{I}$$

$$J \longmapsto J/I$$

Special rings and ideals

Definition 1.116. A ring $R \neq \{0\}^{11}$ is an *integral domain* if the product of any two nonzero elements is nonzero.

Definition 1.117. Let R be a ring. We say $r \in R$ is a zero divisor if $\exists s \in R \setminus \{0\}$ such that $r \cdot s = 0$. We say $r \in R$ is not a zero divisor if $r \cdot s = 0 \implies s = 0$.

Definition 1.118. Let R be an integral domain. We say R is a *principal ideal domain* (PID) if every ideal of R is principal.

Definition 1.119. Let R be a ring and $P \neq R$ be an ideal of R. We say P is *prime* if $\forall a, b \in R$, we have $a \cdot b \in P \iff a \in P$ or $b \in P$.

Definition 1.120. Let R be a ring and $M \neq R$ be an ideal of R. We say M is *maximal* if for any ideal I of R with $M \subseteq I$, either I = R or I = M.

Proposition 1.121. Let R be a ring. Then:

- 1. An ideal P of R is prime if and only if R/P is an integral domain.
- 2. An ideal M of R is maximal if and only if R/M is a field.

In particular, all maximal ideals are prime.

Definition 1.122. Let R be an integral domain and $a \in R \setminus \{0\}$ be a non-unit element. We say a is *irreducible* if every factorization of a contains at least one unit.

Definition 1.123. Let R be an integral domain and $a \in R \setminus \{0\}$ be a non-unit element. We say a is *prime* if and only if (a) is a prime ideal or, equivalently, if $b, c \in R$ are such that $a \mid b \cdot c$, then $a \mid b$ or $a \mid c$.

Proposition 1.124. Let R be an integral domain and $a \in R \setminus \{0\}$ be a non-unit element.

- 1. If a is prime, then a is irreducible.
- If R is a PID, the following statements are equivalent:
 - i) a is irreducible.
 - ii) (a) is maximal.
 - iii) a is prime.

Theorem 1.125. Let R be a ring. All ideals $I \neq R$ are contained in a maximal ideal.

Polynomial ring

Definition 1.126. Let R be a ring and $p(x) \in R[x]$. If $p(x) = a_0 + a_1x + \cdots + a_nx^n$ with $a_n \neq 0$, we define the degree of p(x) as:

$$\deg p(x) = \begin{cases} n & \text{if } p(x) \neq 0 \\ -\infty & \text{if } p(x) = 0 \end{cases}$$

Proposition 1.127. Let R be a ring and $p(x), q(x) \in R[x]$ be polynomials with leading coefficients p_n and q_n respectively. Then:

- 1. $\deg(p(x) + q(x)) \le \max\{\deg p(x), \deg q(x)\}\$ and the equality holds when $\deg p(x) \ne \deg q(x)$.
- 2. $\deg(p(x) \cdot q(x)) \leq \deg p(x) + \deg q(x)$ and the equality holds when either p_n or q_n is not a zero divisor.

Proposition 1.128. Let R be a ring and $b(x), a(x) \in R[x]$ such that the leading coefficient of b(x) is a unit. Then, $\exists ! q(x), r(x) \in R[x]$ such that a(x) = b(x)q(x) + r(x) with $\deg r(x) < \deg b(x)$.

Proposition 1.129 (Universal property of polynomials). Let R, S be two rings, $\phi: R \to S$ be a ring morphism and $s \in S$. Then $\exists ! \psi: R[x] \to S$ such that ψ is a ring morphism, $\psi(r) = \phi(r) \ \forall r \in R$ and $\psi(x) = s$. That is, the diagram of figure 3 is commutative and $\psi(x) = s$.

Figure 3

Proposition 1.130 (Universal property of polynomials in several variables). Let R, S be two rings, $\phi: R \to S$ be a ring morphism and $s_1, \ldots, s_n \in S$ be not necessarily distinct elements of S. Then $\exists ! \psi: R[x_1, \ldots, x_n] \to S$ such that ψ is a ring morphism, $\psi(r) = \phi(r) \ \forall r \in R$ and $\psi(x_i) = s_i$ for $i = 1, \ldots, n$.

¹¹From now on, for simplicity, we will denote the ring $(R, +, \cdot)$ as R.

Corollary 1.131. Let R be a ring and $r \in R$. Then, the Unique factorization domains function

$$\phi_r: R[x] \longrightarrow R$$

$$p(x) \longmapsto p(r)$$

is a ring morphism. Moreover $\ker \phi_r = (x - r) \cdot R[x]$ and for all $p(x) \in R[x] \exists q(x) \in R[x]$ such that:

$$p(x) = (x - r) \cdot q(x) + p(r)$$

Corollary 1.132. Let R be a ring and $r_1, \ldots, r_n \in R$. Then, the function

$$\phi: R[x_1, \dots, x_n] \longrightarrow R$$

 $p(x_1, \dots, x_n) \longmapsto p(r_1, \dots, r_n)$

is a ring morphism. Moreover for all $p(x_1, \ldots, x_n) \in$ $R[x_1,\ldots,x_n] \exists q_i(x_1,\ldots,x_n) \in R[x] \text{ for } i=1,\ldots,n \text{ such }$ that:

$$p(x_1, \dots, x_n) = p(r_1, \dots, r_n) + \sum_{i=1}^n (x_i - r_i) \cdot q_i(x_1, \dots, x_n)$$

Therefore, $\ker \phi = (x_1 - r_1, \dots, x_n - r_n)$ and consequently:

$$R[x_1,\ldots,x_n]/(x_1-r_1,\ldots,x_n-r_n)\cong R$$

Corollary 1.133. Let K be a field and $r_1, \ldots, r_n \in K$. Then, the ideal $(x_1 - r_1, \dots, x_n - r_n)$ is maximal in

$$K[x_1,\ldots,x_n]/(x_1-r_1,\ldots,x_n-r_n)\cong K$$

Theorem 1.134 (Fundamental theorem of algebra). Ideals of $\mathbb{C}[x]$ are of the form (x-z), where $z \in \mathbb{C}$. That is, irreducible polynomials in $\mathbb{C}[x]$ have degree 1.

Theorem 1.135 (Hilbert's Nullstellensatz). Maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ are of the form (x_1-z_1,\ldots,x_n-z_n) z_n), where $z_1, \ldots, z_n \in \mathbb{C}$.

Theorem 1.136 (Eisenstein's criterion). Let $a(x) \in$ $\mathbb{Z}[x] \setminus \{0\}$ be such that $a(x) = \sum_{i=0}^{n} a_i x^i$ with $gcd(a_0,\ldots,a_n)=1$. If $\exists p\in\mathbb{P}$ such that:

- $p \mid a_i, i = 0, 1, \dots, n-1,$
- $p \nmid a_n$,
- $p^2 \nmid a_0$.

then a(x) is irreducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$.

Theorem 1.137 (General Eisenstein's criterion). Let R be an integral domain, $a(x) = \sum_{i=0}^n a_i x^i \in R[x] \setminus$ $\{0\}$ and p be a prime element in R such that:

- $p \mid a_i, i = 0, 1, \dots, n-1,$
- $p \nmid a_n$,
- $p^2 \nmid a_0$.

Then, if $a(x) = b(x) \cdot c(x)$, either deg b(x) = 0 or deg c(x) = 0

Definition 1.138. Let R be an integral domain. We say that two elements $a, b \in R \setminus \{0\}$ are associated if $\exists u \in R^*$ such that $a = b \cdot u$.

Definition 1.139. Let R be an integral domain. We say that R is a unique factorization domain (UFD) if $\forall a \in R \setminus \{0\}$:

1.

$$a = up_1^{\alpha_1} \cdots p_r^{\alpha_r},$$

where $u \in R^*$, p_i are irreducible elements of R and

2. Such representation is unique in the sense that if $a = vq_1^{\beta_1} \cdots q_s^{\beta_s}$, where $v \in \mathbb{R}^*$, q_i are irreducible elements of R and $\beta_i \in \mathbb{N} \ \forall i$, then r = s and $\exists \sigma \in S_n$ such that p_i and $q_{\sigma(i)}$ are associated and $\alpha_i = \beta_{\sigma(i)}$ for $i = 1, \dots, r^{12}$.

Definition 1.140. Let R be an integral domain and $a,b \in R$ be such that at least one of them is nonzero. A greatest common divisor of a and b is an element $d \in R$ such that:

- 1. $d \mid a$ and $d \mid b$.
- 2. If d' is a common divisor of a and b, then $d' \mid d$.

Proposition 1.141. Let R be a UFD. Then, $\forall a, b \in$ $R \setminus \{0\}$ there exists a greatest common divisor of a and b. Moreover such element is unique.

Proposition 1.142. Let R be an integral domain. Then:

- 1. If R is a UFD, all irreducible elements are prime.
- 2. If

$$up_1 \cdots p_r = vq_1 \cdots q_s,$$

where $u, v \in \mathbb{R}^*$ and both p_i and q_i are prime elements $\forall i$, then r = s and $\exists \sigma \in S_r$ such that p_i is associated with $q_{\sigma(i)}$ for $i = 1, \ldots, r$.

Proposition 1.143. Let R be an integral domain.

1. If R is a UFD, then R satisfies the ascending chain condition on principal ideals (ACCP):

If

$$a_1 \cdot R \subseteq \cdots \subseteq a_n \cdot R$$

is an ascending chain of principal ideals, then $\exists n_0 \in$ \mathbb{N} such that $a_{n_0} \cdot R = a_i \cdot R$ for $i \geq n_0$.

2. If R satisfies the ACCP, then all elements in R are product of irreducible factors.

Theorem 1.144. Let R be an integral domain. Then, Ris UFD if and only if:

- 1. All irreducible elements in R are prime.
- 2. ACCP is satisfied.

¹²Equivalently, such representation is unique in the sense that if $a = up_1 \cdots p_r = vq_1 \cdots q_s$, where $u, v \in \mathbb{R}^*$ and p_i, q_i are irreducible elements of $R \, \forall i$, then r = s and $\exists \sigma \in S_n$ such that p_i and $q_{\sigma(i)}$ are associated for $i = 1, \ldots, r$.

Lemma 1.145. Let R be an integral domain. Let

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

be a chain of ideals of R. Then,

$$\bigcup_{n\in\mathbb{N}}I_n$$

is an ideal of R.

Theorem 1.146. Let R be a PID. Then, R is a UFD.

Corollary 1.147. Let $d \in \mathbb{Z} \setminus \{0\}$ such that d is square-free. Then, $\mathbb{Z}[\sqrt{d}]$ satisfies the ACCP.

Proposition 1.148. Let R be a integral domain. If R satisfies the ACCP, then R[x] also satisfies the ACCP.

Corollary 1.149. Let R be a UFD. Then, $\forall n \geq 0$, all nonzero elements of $R[x_1, \ldots, x_n]$ are product of irreducible elements.

Field of fractions

Definition 1.150. Let R be an integral domain. Consider the set:

$$R \times (R \setminus \{0\}) = \{(a, b) : a, b \in R, b \neq 0\}$$

We define the relation \sim in the following way:

$$(a_1, b_1) \sim (a_2, b_2) \iff a_1 b_2 = a_2 b_1,$$

for all $(a_1, b_1), (a_2, b_2) \in R \times (R \setminus \{0\}).$

Lemma 1.151. The relation \sim is an equivalence relation. We denote by $\operatorname{Frac}(R)$ the set of equivalence classes $R \times (R \setminus \{0\}) / \sim$ and by $\frac{a}{b}$ the equivalence class $\overline{(a,b)} \in \operatorname{Frac}(R)$. Frac(R) is called *field of fractions of* R.

Definition 1.152. Let R be an integral domain. We define the sum and multiplication in Frac(R) as follows:

1.
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}, \forall \frac{a_1}{b_1}, \frac{a_2}{b_2} \in Frac(R)$$

2.
$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1 a_2}{b_1 b_2}, \forall \frac{a_1}{b_1}, \frac{a_2}{b_2} \in \operatorname{Frac}(R)$$

Theorem 1.153. Let R be an integral domain and consider $(\operatorname{Frac}(R),+,\cdot)$ with the operations + and \cdot defined above. Then:

- 1. $(\operatorname{Frac}(R), +, \cdot)$ is a field.
- 2. The function

$$i: R \longrightarrow \operatorname{Frac}(R)$$

$$r \longmapsto \frac{r}{1}$$

is an injective ring morphism and satisfies the following property: If K is a field and $\phi: R \to K$ is an injective ring morphism, then $\exists ! \psi : \operatorname{Frac}(R) \to K$ such that ψ is a ring morphism, and the diagram of figure 4 is commutative.

Figure 4

Irreducible and prime elements in R[X]

Proposition 1.154. Let R be a UFD and $p \in R$. The following statements are equivalent:

- 1. p is irreducible in R.
- 2. p is irreducible in R[x].
- 3. p is prime in R.
- 4. p is prime in R[x].

Definition 1.155. Let R be a UFD and $a(x) = \sum_{i=0}^{n} a_i x^i \in R[x] \setminus \{0\}$. We say p(x) is a primitive polynomial if 1 is a greatest common divisor of a_0, \ldots, a_n .

Lemma 1.156 (Gauß' lemma). Let R be a UFD and $a(x), b(x) \in R[x] \setminus \{0\}$ be primitive polynomials. Then, $a(x) \cdot b(x)$ is primitive.

Lemma 1.157. Let R be a UFD. Then:

- 1. If $c_1 \cdot a(x) = c_2 \cdot b(x)$, where $c_1, c_2 \in R$, $a(x), b(x) \in R[x]$ and b(x) is primitive, then $c_1 \mid c_2$.
- 2. If moreover a(x) is also primitive, then $\exists u \in R^*$ such that $c_1 = u \cdot c_2$.

Proposition 1.158. Let R be a UFD and $p(x) \in R[x]$ be a primitive polynomial. The following statements are equivalent:

- 1. p(x) is irreducible in R[x].
- 2. p(x) is irreducible in Frac(R[x]).
- 3. p(x) is prime in R[x].
- 4. p(x) is prime in Frac(R[x]).

Theorem 1.159. Let R be a UFD. Then, R[x] is a UFD.

Corollary 1.160. $\mathbb{Z}[x_1,\ldots,x_n]$ and $K[x_1,\ldots,x_n]$, where K is a field, are both UFD.

Examples of rings

Let $n \in \mathbb{N}$ and $d \in \mathbb{Z}$ such that d is square-free.

- \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C}
- R[x], where R is a ring¹³.
- $\mathcal{M}_n(K)$, where K is a field. Note that this is a non-commutative ring.

¹³Note that if R = R[y], then R[x] = (R[y])[x] = R[x, y]. So the set of polynomials with several variables over a ring R is also a ring with the same operations as R.

• $\mathbb{Z}[\sqrt{d}]$, where $Z[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$. In particular, the set $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i]$ is called the set of Gaußian integers.

• $\mathbb{Q}(\sqrt{d})$, where $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}.$

Figure 5: Inclusions of algebraic structures. Here R and S are nonzero rings, T is a UFD, K is a field, $d \in \mathbb{Z}$ such that d is square-free, $n \in \mathbb{N}$ and $p \in \mathbb{P}$.