Топ-5 теорем, которые не помогут построить дом

Направление точных наук

Лунёв Егор (@egorrshuk)

Место под соснами Лето, 2024

Аннотация

Доказательство перпендикулярности – это очень частое явление в задачах. Поэтому на этом факультативе мы будем учиться проверять перпендикулярность прямых разными способами: счет углов, поиск ортоцентра, свойства ортоцентра, прямая Симсона, задача 255, ортодиагональные четырехугольники, радикальные оси, ортологичные треугольники и другие..

Чтобы понять каждую тему, нужно лишь владеть знаниями о вписанных четырехугольниках, т.е. после окончания восьмого класса вы сможете понять данный материал, если изучили эту тему. В каждой главе есть секция с задачами на эту тему. Сложность задач примерно (\approx) возрастает (\uparrow). Задачи, разделенные горизонтальной коричневозеленой чертой, относятся к разным темам. Все хорошие, всех люблю, приходите! \heartsuit

Содержание

1	Счет углов	2
	Задачи	3
2	Свойства ортоцентра	7
	2.1 Симметрии ортоцентра	7
	2.2 Остальные свойства ортоцентра	9
	2.3 Окружность Эйлера	10
	Задачи	10
3	Ортодиагональные четырёхугольники	16
	Задачи	17
4	Радикальная ось и линия центров	18
	4.1 Степень точки	18
	4.2 Радикальная ось	19
	Задачи	20
5	Известные конструкции	23
	5.1 Прямая Симсона	23
	5.2 Задача №255	23
	Задачи	24
A	Анкета	i
В	Заметки	ii

1 Счет углов

скажи им, что нужно быть счастливыми и что главное стать хорошим человеком

дед всегда прав

Это самое базовое, что можно сделать, чтобы доказать перпендикулярность: просто посчитать углы, и из этого сделать вывод (какой-то угол будет равен 90°).

Теорема 1.1. Высоты треугольника конкурентны 1 .

Лемма 1.2. Четырехугольник ABCD является вписанным, если $\angle ABC$ равен смежному углу $\angle ADC$.

¹Пересекаются в одной точке.

Задачи

Было тяжело подобрать задачи, в которых требуется исключительно доказательство перпендикулярности; поэтому тут задачи, которые в целом хорошо делаются счетом углов, а не только на ортогональность.

1. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.

```
Решение: По лемме 1.2 \angle B_1A_1A = \angle ABB_2 = 180^\circ - \angle B_2A_2A \Rightarrow \angle B_1A_1A_2 + \angle B_2A_2A_1 = 180^\circ \Rightarrow A_1B_1 \parallel A_2B_2.
```

2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что $EF \parallel BC$.

Решение: По задаче ${f 1}$ E и F – вторые точки пересечения окружности (BDE) с прямыми AD и AB соответственно. Тогда прямая EF параллельна касательной к (ABC) в точке A. И уже эта касательная параллельна BC, тогда и EF тоже.

3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности. \square

Решение: $AD \parallel BC$, тогда по обратной задаче **1** NBCM – вписанный. Тогда $\angle BNC = \angle BMC$.

По обратной лемме 1.2 для четырехугольников ANPD и $APMD \ \angle BNC = \ \angle PDA$ и $\ \angle BMC = \ \angle PAD$. Отсюда следует, что треугольник APD – равнобедренный, а значит P равноудалена от A и D.

- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_1 и C_1 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки B, C, B_1, C_1 концикличны.

Решение: Пусть точка D – основания высоты из вершины A. Тогда $BDPC_1$ и AC_1PB_1 – вписаные четырехугольники. По лемме $1.2 \angle ABC = \angle APC_1$ и $\angle APC_1 = \angle AB_1C_1$. Тогда по обратной лемме $1.2 \ BCC_1B_1$ – вписанный четырехугольник.

(b) Докажите, что отрезок, соединяющий проекции точек B_1 и C_1 , на прямые AB и AC соответственно, параллелен стороне BC.

```
Решение: По задаче 4а BCC_1B_1 – вписанный, а также B_1C_1C_2B_2 (B_1C_1 – диаметр). Тогда по лемме 1.2 \angle ABC = \angle AB_1C_1 = \angle AC_2B_2 \Rightarrow B_2C_2 \parallel BC.
```

5. В остроугольном треугольнике ABC проведена высота AD. Пусть точки K и L – проекции точки D на стороны AB и AC соответственно. Известно, что $\angle BAC = 72^{\circ}$, $\angle ABL = 30^{\circ}$. Чему равен угол $\angle DKC$?

```
Решение: По задаче 4а BCLK – вписанный, тогда \angle ABL = \angle LCK. \angle DKC = \angle BDK - \angle DCK. \angle BDK = \angle BAD (углы при высоте прямоугольного треугольника). \angle DCK = \angle ACD - \angle LCK = 90^{\circ} - \angle CAD - \angle LCK = 90^{\circ} - \angle CAD - \angle ABL. \angle DKC = \angle BAD - 90^{\circ} + \angle CAD + \angle ABL = \angle BAC + \angle ABL - 90^{\circ} = 72^{\circ} + 30^{\circ} - 90^{\circ} = 12^{\circ}.
```

6. (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.

```
Решение: Пусть точки H_a, H_b и H_c – основания высот из соответствующих вершин треугольника ABC. Пусть B_a и C_a – проекции точки H_a на прямые AB и AC соответственно. Точки A_b, C_b, A_c и B_c определяются аналогично. Тогда по задаче 4а BCB_AC_A – вписанный. Тогда по лемме 1.2 \angle ACB = \angle AC_aB_a. По задаче 4b AB \parallel A_bB_a \Rightarrow \angle AC_aB_a = \angle A_bB_aC_a, и AC \parallel A_cC_a \Rightarrow \angle ACB = \angle A_cC_aB. Тогда по обратной лемме 1.2 A_cA_bB_aC_a – вписанный. Аналогично B_aB_cC_bA_b и C_bC_aA_cB_c – вписанные. Тогда и A_cA_bB_aB_cC_bC_a – вписанный, т.к. точки лежат на сторонах треугольника (строго позже).
```

7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.

Решение: Пусть $(AB_1C_1)\cap (A_1BC_1)=P$. Будем доказывать, что $P\in (A_1B_1C)$. По лемме $1.2\,\angle BC_1P=\angle CA_1P=\angle AB_1P$. Отсюда по обратной лемме 1.2 точки A_1,B_1,C и P концикличны.

(b) (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.

Решение: Пусть на первой прямой лежат точки A, F и B, на второй B, D и C, на третьей C, A и E и на четвертой E, D и F. Тогда по задаче 7а для $\triangle ABC$ и точек F, D и E

$$(AFE) \cap (BFD) \cap (CDE) = M. \tag{1}$$

По задаче 7а для $\triangle AFE$ и точек B, D и C

$$(ABC) \cap (FBD) \cap (EDC) = G. \tag{2}$$

Но по утверждениям (1) и (2) $G\equiv M.$ Отсюда следует, что все нужные окружности пересекаются в одной точке.

8. В треугольнике ABC точки B_1 и C_1 – основания высот, проведенных из вершин B и C соответственно. Точка D – проекция точки B_1 на сторону AB, точка E – пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$.

Решение: Нужно доказать, что DC_1EB_1 – вписанный, тогда утверждение верно. B_1EFC – вписанный, тогда по лемме $\mathbf{1.2} \angle B_1CF = \angle B_1ED$. Также BCC_1B_1 – вписанный, тогда, опять же, по лемме $\mathbf{1.2} \angle BCB_1 = \angle B_1C_1D$. Тогда, раз $\angle B_1ED = \angle B_1ED = \angle B_1C_1D$, то DC_1EB_1 – вписанный.

9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO – биссектриса угла ABC.

Решение:

Лемма 1.3. Если в четырехугольнике ABCD, AC – биссектриса угла A и BC = CD, то этот четырехугольник либо вписанный, либо дельтойд.

ABCO – вписанный, т.к. $\angle B=\angle O=90^\circ.$ AO=OC, т.к. это половины диагоналей квадрата. Тогда BO – биссектриса угла ABC.

10. В треугольнике ABC угол A равен 60° . Биссектрисы треугольника BB_1 и CC_1 пересекаются в точке I. Докажите, что $IB_1 = IC_1$.

Решение:

Лемма 1.4. Если в треугольнике ABC, точка I – инцентр, то

$$\angle AIC = 90^{\circ} + \frac{1}{2} \angle ABC$$

По лемме 1.4 $\angle BIC=90^\circ+\frac{1}{2}\angle BAC=90^\circ+30^\circ=120^\circ$. Тогда AB_1IC_1 – вписанный. AI – биссектриса, поэтому $IB_1=IC_1$.

11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 – проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.

Решение:

Лемма 1.5. Угол между касательной и хордой окружности, равен половине градусной меры дуги, стягиваемой данной хордой.

Следствие 1.5.1. Если к окружности (ABC) провели касательную BK, то: $\angle BAC = \angle CBK$.

По следствию 1.5.1 $\angle PBA_1 = \angle BAC$. PC_1BA_1 – вписанный, поэтому $\angle PC_1A_1 = \angle PBA_1$.

 $\angle PC_1A_1 + \angle A_1C_1B = 90^\circ = \angle BAC + \angle (AB, A_1C_1) \Rightarrow AC \perp A_1C_1.$

12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке T. Докажите, что AQ – биссектриса угла $\angle PAT$.

Решение: По следствию 1.5.1 для прямой PQ и окружностей ω_1 и $\omega_2 \angle BPQ = \angle BAP$ и $\angle BQP = \angle BAQ$. Тогда угол $TBQ = \angle BAQ + \angle BAP = \angle PAQ$ (внешний в треугольнике BPQ).

Так как BQTA – вписанный, то $\angle TBQ = \angle TAQ = \angle PAQ$. Тогда и получается, что AQ – биссектриса угла PAT.

13. Пусть AA_1 , BB_1 и CC_1 – высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.

 $^{^1}$ Точка B называется точкой Шалтая треугольника APQ.

Решение: Докажем, что проекции на AB, BB_1 и CC_1 коллинеарны. Аналогично будет следовать, что и проекция на AC лежит на этой прямой. Пусть X,Y и Z – проекции на AB, BB_1 и CC_1 соответственно, а H – ортоцентр. Тогда по задаче AB и лемме AB0. AB1 и AB2 и AB3 и AB4 и лемме AB4 и лемме AB4 и лемме AB6 и AB7 и AB8 и AB9 и AB9

14. В треугольнике ABC точки D и E – основания биссектрис из углов A и C соответственно, а точка I – центр вписанной в треугольник ABC окружности. Точки P и Q – пересечения прямой DE с (AIE) и (CID) соответственно, причем $P \neq E, Q \neq D$. Докажите, что $\angle EIP = \angle DIQ$.

Решение: Т.к. AEPI и CQDI – вписанные, то $\angle PIE = \angle PAE$ и $\angle DIQ = \angle DCQ$. Пусть точка T – пересечение прямых AP и CQ. Тогда нужно доказывать, что APTC – вписанный.

Пусть $\angle ABC=2\beta$, тогда по лемме 1.4 $\angle AIC=90^\circ+\frac{1}{2}\angle ABC=90^\circ+\beta$, тогда внешние углы PIA и DIA равны $90^\circ-\beta$.

По лемме 1.2 для четырехугольников AEPI и CQDI $\angle PIA = \angle TPQ$ и $\angle DIA = TQP$. Тогда $\angle PTQ = 180^\circ - 2(90^\circ - \beta) = 2\beta = \angle ABC$. Тогда APTC – вписанный.

2 Свойства ортоцентра

Опеределение 2.1. Ортоцентр **H** – это точка пересечения высот треугольника.

Я буду ортоцентр всегда обозначать **боль- шой синей точкой** (просто я так решил), а центр описанной окружности как выколотую (так уже более принято).

2.1 Симметрии ортоцентра

Ортоцентр – это такая особенная точка: конструкции, в которых используются его **симметрии** относительно чего-либо, **замечательно** связанны с описанной окружностью, и наоборот!

Теорема 2.1. Если отразить ортоцентр относительно стороны, то он попадет на описанную окружность.

Теорема 2.2. Если ортоцентр отразить относительно середины стороны, то он попадет на описанную окружность.

Следствие 2.2.1. Точка из теоремы 2.2 диаметрально противоположна противолежащей стороне вершине.

Следствие 2.2.2. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружности до противолежащей стороны.

Лемма 2.3 (Окружность Джонсона). (ABC) = (ABH), т.е. окружности, описанные вокруг $\triangle ABC$ и $\triangle ABH$ равны.

Опеределение 2.2 (Изогональное сопряжение 1). Точки P, Q называются изогонально сопряженными, если $\angle PAB = \angle QAC$, $\angle PBC = \angle QBA$, $\angle PCB = \angle QCA$.

Теорема 2.4. Ортоцентр и центр описанной окружности изогонально сопряжены.

2.2 Остальные свойства ортоцентра

Опеределение 2.3. Инцетр – это центр, вписанной в многоугольник окружности.

Опеределение 2.4. Ортотреугольник – это треугольник, вершины которого являются основаниями высот исходного треугольник.

Лемма 2.5. Ортоцентр является инцентром для ортотреугольника.

Следствие 2.5.1. Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

¹Можно думать об изогональном сопряжении, как о симметрии относительно биссектрисы.

Лемма 2.6. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.

Лемма 2.7. Если AA_1 и BB_1 – высотив треугольника ABC, то $\triangle ABC$ \sim $\triangle A_1B_1C$, $k=\cos \angle C$.

2.3 Окружность Эйлера

Давайте соединим пару свойств, которые мы уже знаем (а именно по теоремам 2.1 и 2.2) и сделаем парочку незамысловатых размышлений. Получим окружность Эйлера или окружность девяти точек.

Опеределение 2.5 (Окружность Эйлера). Окружностью Эйлера называют окружность, проходящую через основания высот, середины сторон и середины отрезков, соединяющих вершины с ортоцентром треугольника.

Опеределение 2.6 (Прямая Эйлера). Точки O, O_9, H, M лежат на одной прямой, называемой прямой Эйлера.

Теорема 2.8. Отрезки на прямой Эйлера хорошо относятся.

$$\overrightarrow{O_9M}: \overrightarrow{MO}: \overrightarrow{OH} = 1:2:(-3)$$

Задачи

15. В треугольнике ABC проведены высоты BB_1 и CC_1 , а также отмечена точка M – середина стороны BC. Точка H – его ортоцентр, а точка P – пересече-

Рис. 1: Окружность Эйлера и прямая Эйлера.

ния луча (!) MH с окружностью (ABC). Докажите, что точки P,A,B_1,C_1 концикличны.

Решение: Отметим вторую точку пересечения Q окружности (ABC) с прямой MH. Тогда по следствию 2.2.1 AQ – диаметр, а значит $\angle APQ=90^\circ$. Тогда P,A, C_1,B_1,H концикличны, т.к. лежат на окружности с диаметром AH.

16. Во вписанном четырехугольнике ABCD точка P – точка пересечения диагоналей AC и BD. Точка O – центр окружности (ABP). Докажите, что $OP \perp CD$.

Решение: Т.к. ABCD – вписанный, то $\triangle BAP \sim \triangle CPD$ (по двум углам). Тогда если O_1 – центр окружности (CPD), то $\angle APO = \angle DPO_1$. По теореме **2.4** в треугольнике CPD, если H_1 – его ортоцентр, $\angle DPO_1 = \angle CPH_1$. Тогда точки O, P, H – коллинеарны, т.к. $\angle CPH = \angle APO$ (вертикальные). А значит $OP \equiv PH \perp CD$.

17.	(Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C ле-
	жат на полуокружности с диаметром AD . Точка M – середина отрезка BC .
	Точка N такова, что точка M – середина отрезка AN , докажите что $BC \perp$
	ND.

Решение: ABNC – параллелограмм. Тогда раз AD – диаметр, то $AB \perp BD$ и $AC \perp CD$. Но $AB \parallel CN$ и $AC \parallel BN$. Тогда $BD \perp CN$ и $CD \perp BN$. Значит C – ортоцентр треугольника BND, а значит $BC \perp ND$.

18. В треугольнике ABC проведена высота AD и отмечен центр описанной окружности – O. Пусть точки E и F – проекции точек B и C на прямую AO. N – точка пересечения прямых AC и DE, а M – точка пересечения прямых AB и DF. Докажите, что точки A, D, N, M концикличны.

Решение: Пусть точка A' – диаметрально противоположна A. Тогда $ACA'=\angle ABA'=90^\circ$, отсюда $\angle CA'A=\angle ACF$ и $\angle BA'A=\angle ABE$. Т.к. ABDE и ADFC – вписанные и по лемме 1.2 $\angle ABE=\angle ADN$ и $\angle ACF=\angle ADM$. Тогда $\angle NDM=\angle BA'C$, а значит ADNM – вписанный, раз ABA'C был вписанным.

19. (Baltic Way, 2019, problem 12) Let ABC be a triangle and H its orthocenter. Let D be a point lying on the segment AC and let E be the point on the line BC such that $BC \perp DE$. Prove that $EH \perp BD$ if and only if BD bisects AE.

Решение: Докажем в одну сторону, что если BD разделила AE пополам, то $EH \perp BD$. Пусть X – точка пересечения AH и DE Тогда раз $AH \equiv AX \perp BC \wedge DE \perp BC \Rightarrow AH \parallel DE$ и $BD \equiv XB$ делит AE пополам, то значит AXED – параллелограмм, отсюда $XE \parallel AD$. А раз $XE \parallel AD \wedge AD \perp BH$, значит X – ортоцентр треугольника BHE, а значит $BX \equiv BD \perp EH$.

20. Докажите теорему об окружности девяти точек с помощью леммы о трезубце и внешней леммы о трезубце.

Решение:

Лемма 2.9 (Лемма о трезубце). В треугольнике ABC точка I – инцетр, I_a – эскцентр точки A, L – пересечение отрезка II_a с окружностью (ABC). Тогда L равноудалена от B, C, I, I_a .

Лемма 2.10 (Внешняя лемма о трезубце). В треугольнике ABC точка I_b – эксцентр точки B, I_c – эксцентр точки C, L – пересечение отрезка I_bI_c с окружностью (ABC). Тогда L равноудалена от B, C, I_b , I_c .

Вспомним, что по лемме 2.5 H – инцентр ортотреугольника. Также заметим что $A,\,B,\,C$ – эсцентры ортотреугольника. Тогда по лемме 2.9 середины отрезков, соединяющим ортоцентр с вершинами лежат на описанной окружности ортотреугольника.

По лемме 2.10 середины сторон треугольника лежат на описанной окружности ортотреугольника.

21. (а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.

Решение: Для треугольников, содержащих ортоцентр исходного как вершину, стороны – отрезки от ортоцентр до вершин исходного.

(b) Докажите, что прямые Эйлера треугольников ABC, HBC, AHC и ABH пересекаются в одной точке.

Решение: Да, каждая прямая Эйлера содержит в себе центр окружности девяти точек.

(c) Докажите, что центры описанных окружностей треугольников ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC.

Решение: По теореме 2.8 $O_9H = HO$. Тогда можно сделать центральную симметрию $\mathcal S$ с центром в точке O_9 .

$$S: \begin{cases} H \leftrightarrow O \\ A \leftrightarrow O_a \\ B \leftrightarrow O_b \\ C \leftrightarrow O_c \end{cases} \Rightarrow S: HABC \leftrightarrow OO_aO_bO_c. \tag{1}$$

22. Высоты BD и CE треугольника ABC пересекаются в точке H. Продолжения сторон AB и AC пересекают окружность BHC в точках P и Q. Докажите, что отрезок PQ в два раза больше отрезка DE.

Решение:

Опеределение 2.7. Гомотетией \mathcal{H}_O^k с центром в точке O и коэффициентом $k \neq 0$ называется преобразование плоскости или пространства. Переводящее точку P в точку P', так что $\overrightarrow{OP'} = k\overrightarrow{OP}$. Свойства гомотетии:

- (а) Это конформное преобразование. (сохраняющие углы между кривыми).
- (b) Параллельные прямые переходят в параллельные.
- (с) Фигуры переходят в подобные.

Сделаем гомотетию $\mathcal{H}_A^{1/2}$.

$$\mathcal{H}_{A}^{1/2}: \begin{cases} B \mapsto M_{c} \\ C \mapsto M_{b} \\ H \mapsto T_{a} \end{cases} \Rightarrow (BHC) \mapsto (M_{c}M_{b}T_{a}). \tag{1}$$

 $(M_c M_b T_a)$ – окружность Эйлера $\triangle ABC$. Тогда по определению 2.5 $D, E \in (M_c M_b T_a)$. Образами этих точек были вторые точки пересечения (BHC) с прямыми AC и AB, т.е. точки P и Q. А значит $PQ \parallel DE$ и PQ = 2DE.

23. (Заключительный этап ВСОШ, 2015, 9.7) Остроугольный треугольник ABC (AB < AC) вписан в окружность ω . Пусть M – его центроид 1 , а D – основании высоты, опущенной из вершины A. Луч MD пересекает ω в точке E. Докажите, что окружность (BDE) касается AB.

Решение: Пусть ω_9 – окружность Эйлера треугольника ABC, тогда сделаем гомотетию \mathcal{H}_M^{-2} . Очевидно, что ω_9 перейдет в ω , точка $D\in\omega_9$ перейдет в точку F – пересечение луча DM и ω . По задаче 22b прямая BC перейдет в прямую AF, параллельную исходной. Тогда четырехугольник BAFC – равнобокая трапеция, в которой $\angle ABC = \angle FCB$. А также, т.к. $E\in(BAFC)$, то $\angle FCB = \angle FEB$, тогда по обратному следствию 1.5.1 (BDE) касается AB.

24. (Высшая проба, 2013, 9.5) Пусть AA_1, BB_1 и CC_1 – высоты остроугольного треугольника ABC. На стороне AB выбрана точка P так, что окружность (PA_1B_1) касается стороны AB. Найдите PC_1 , если PA=30 и PB=10.

¹Точка пересечения медиан.

Решение: Пусть точка D – пересечение прямых AB и A_1B_1 . Точки A,B,A_1,B_1 лежат на одной окружности с диаметром AB. Тогда по теореме **4.3** $BD \cdot AD = DA_1 \cdot DA_2$, а также $DP^2 = DA_1 \cdot DB_1$, отсюда

$$\begin{cases}
BD \cdot AD = DP^{2} \\
BD = x \\
AD = x + 40 \\
DP = x + 10
\end{cases}
\Rightarrow x(x + 40) = (x + 10)^{2} \Rightarrow x = 5.$$
(1)

Также через точки A_1 и B_1 проходит окружность Эйлера треугольника ABC, которая содержит точку M (середину отрезка AB). Можно сказать, что прямая A_1B_1 является радикальной осью окружностей (PA_1B_1) , (ABA_1B_1) и окружности Эйлера треугольника ABC. Опять же по теореме 4.3

$$DM \cdot DC_1 = DA_1 \cdot DB_1 = DA \cdot DB = 45 \cdot 5.$$

$$DC_1 = \frac{45 \cdot 5}{5 + \frac{10 + 30}{2}} = 9, \quad PC_1 = DP - DC_1 = 15 - 9 = 6.$$
(2)

25. Треугольник высекает на своей окружности Эйлера три туги. Докажите, что одна из этих дуг равна сумме двух других. \Box

Решение:

Лемма 2.11. Если $\stackrel{\frown}{AB}$ и $\stackrel{\frown}{CD}$ – меньшие дуги окружности ω , тогда если P – точка пересечения AC и BD, то

$$\angle APB = \frac{\widehat{AB} + \widehat{CD}}{2}.$$

Пусть в треугольнике ABC сторона BC наибольшая. Пусть M_a, M_b, M_c – середины сторон BC, AC, AB треугольника ABC, а H_a, H_b, H_c – основания высот из соответствующих вершин, все эти точки лежат на окружности Эйлера тре-

угольника ABC. По лемме 2.11 $\angle(M_bM_c, H_bH_c) = \frac{\widehat{M_bH_b} + \widehat{M_cH_c}}{2}$.

Тогда можно доказывать, что угол $\angle(M_bM_c,H_bH_c)$ равен углу $M_aM_bH_a=\frac{H_aM_a}{2}$.

$$\angle(M_b M_c, H_b H_c) = \angle(BC, H_b H_c)$$

$$\angle M_a M_b H_a = \angle(AB, H_a M_b).$$
(1)

Пусть D – точка пересечения H_cH_b и BC, а E – точка пересечения AB и M_bH_a . По задаче 4а BCH_BH_C – вписанный, тогда по лемме 1.2 $\varphi = \angle ABC = \angle AH_cH_b = \angle DH_cB$.

Также в прямоугольном треугольнике AH_aC отрезок H_aM_b – медиана, тогда $\angle M_bH_aC=\angle BH_aE=\varphi$. Отсюда следует, что угол $\angle DH_cE=\angle DH_aE$, значит DH_cH_aE – вписанный, и углы H_cDB и H_aEB равны, отсюда все следует.

3 Ортодиагональные четырёхугольники

Рис. 2: Ортодиагональные четырёхугольники (выпуклый и невыпуклый).

Теорема 3.1. Диагонали AC и BD четырехугольника ABCD (выпуклого или не выпуклого) перпендикулярны тогда и только тогда, когда

$$AB^2 + CD^2 = BC^2 + AD^2.$$

Задачи

26. Докажите, что высоты треугольника конкурентны. ;)

Решение: Пусть H – точка пересечения высот BH_B и CH_C , тогда будем доказывать, что $AH \perp BC$.

В четырехугольнике $ABCH\ BH\ \bot\ AC$, значит

$$AB^2 + CH^2 = BC^2 + AH^2. (1)$$

Также в этом четырехугольнике $CH \perp AB$, значит

$$AC^2 + BH^2 = BC^2 + AH^2.$$
 (2)

По утверждениям (1) и (2)

$$AC^{2} + BH^{2} = AB^{2} + CH^{2} \Leftrightarrow AH \perp BC.$$
 (3)

- 27. (Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD. Точка M середина отрезка BC. Точка N такова, что точка M середина отрезка AN, докажите что $BC \perp ND$.
- 28. (Baltic Way, 2019, problem 13) Let ABCDEF be a convex hexagon in which AB = AF, BC = CD, DE = EF and $\angle ABC = \angle EFA = 90^{\circ}$. Prove that $AD \perp CE$.
- 29. (а) (Теорема Штейнера) Пусть ABC и $A_1B_1C_1$ невырожденные треугольники. Докажите, что перпендикуляры, опущенные из точек A_1 , B_1 , C_1 на прямые BC, AC, AB пересекаются в одной точке тогда и только тогда, когда

$$C_1A^2 + A_1B^2 + B_1C^2 = C_1B^2 + B_1A^2 + A_1C^2$$
.

(b) Докажите, что если перпендикуляры, опущенные из точек A_1 , B_1 , C_1 на прямые BC, AC, AB пересекаются в одной точке, то и перпендику-

ляры, опущенные из точек A,B,C на прямые B_1C_1,A_1C_1,A_1B_1 тоже. \square

- 30. (Теорема об изогональном сопряжении) Чевианы AA_1, BB_1, CC_1 треугольника ABC пересекаются в одной точке. Докажите, что чевианы, симметричные им относительно биссектрис соответствующих углов, тоже пересекаются в одной точке. 2
- 31. Пусть точки P и Q изогонально сопряженные точки треугольника ABC. B_1 , C_1 и B_2 , C_2 перпендикуляры из P и Q на прямые AC и AB соответственно.
 - (a) Докажите, что треугольники $P_1B_1C_1$ и $P_2B_2C_2$ подобны.
 - (b) Докажите, что вершины педальных треугольников изогонально сопряженных точек лежат на одной окружности. Найдите её центр. \Box
- 32. Углы A и C четырехугольника ABCD равны. Докажите, что середина отрезка AC и проекции D на прямые AB, BC и AC концикличны.

4 Радикальная ось и линия центров

Не всегда удается "счетом углов" доказать принадлежность четверки точек одной окружности. Часто нужно использовать "счет в отрезках". С этим нам помогает степень точки. А чтобы доказать, что три прямые пересекаются в одной точке, можно сказать что это радикальный центр какой-то тройки окружностей.

4.1 Степень точки

Опеределение 4.1 (Степень точки). Степень точки P, находящейся на расстоянии d от центра окружности ω радиусом r, относительно этой же окружности:

$$pow(P, \omega) = d^2 - r^2.$$

Теорема 4.1. Если прямая $\ell \ni P$ касается окружность в точке K, то

$$pow(P, \omega) = PK^2$$
.

 $^{^1}$ Треугольники ABC и $A_1B_1C_1$ из задачи называют ортологичными. Пишут $\triangle ABC$ \bot $\triangle A_1B_1C_1$. При этом точки пересечения соответствующих перпендикуляров называют центрами ортологии.

²Рассмотрите педальный треугольник этой точки.

Теорема 4.2. Если прямая $\ell \ni P$ пересекает окружность ω в точках A и B, тогда $\mathrm{pow}(P,\omega) = \overrightarrow{PA} \cdot \overrightarrow{PB}.$

Следствие 4.2.1 (Теорема о касательной и секущей). *Если из точки P, проведена касательная PK к окружности \omega и прямая (\ell \ni P) пересекает окружность \omega в точках A и B, тогда*

$$PK^2 = PA \cdot PB.$$

Теорема 4.3 (Главная теорема о степени точки). *Если через точку* P проходят две прямые, которые пересекают окружность ω в точках A_1,A_2 и B_1,B_2 соответственно, то

$$\mathrm{pow}(P,\omega) = \overrightarrow{PA_1} \cdot \overrightarrow{PA_2} = \overrightarrow{PB_1} \cdot \overrightarrow{PB_2}.$$

4.2 Радикальная ось

Теорема 4.4. Геометрическое место точек (ГМТ), степени которых относительно двух неконцентрических окружностей равны, есть прямая, перпендикулярная линии центров этих окружностей.

Опеределение 4.2 (Радикальная ось). Прямая, состоящая из точек, степени которых относительно двух данных окружностей равны, называется радикальной осью этих окружностей.

Теорема 4.5 (Радикальный центр). *Радикальные оси трех окружностей либо конкурентны, либо параллельны.*

Рис. 3: Радикальная ось двух окружностей.

Теорема 4.6. $AC \perp BD^{1}$, если

$$pow(B, \omega_a) - pow(B, \omega_c) = pow(D, \omega_a) - pow(D, \omega_c)$$

Задачи

Судя по карте, дорога здесь одна. Трясет на ухабах — мы переносим с одобреньем.

Александр Башлачёв

Простите меня заранее за такие трудные задачи. Если вы отвалитесь довольно рано – не горюйте. Я вам всегда помогу! Удачи \heartsuit

- 33. Докажите, что высоты треугольника конкурентны. 0_0
- 34. Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник − равносторонний. □

¹Типа крутая теореме 3.1

Рис. 4: Радикальный центр трех окружностей.

- 35. Окружности ψ и ω вписаны в вертикальный угол $\angle nm$, ψ касается прямой n в точке N, а ω касается прямой m в точке M. Докажите, что ψ и ω высекают на NM равные отрезки.
- 36. (ММО, 2013, 11.3) Четырёхугольник ABCD такой, что AB=BC и AD=DC. Точки K, L и M середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведённый из точки A к прямой BC, пересекается с перпендикуляром, проведённым из точки C к прямой AD, в точке T. Докажите, что прямые $KL \perp TM$.
- 37. Точка D основание биссектрисы из точки A треугольника ABC. Окружность (ABD) повторно пересекает прямую AC в точке E, а окружность (ACD)

повторно пересекает прямую BC в точке F . Докажите,	что $BF = CE$.	
---	-----------------	--

- 38. Окружность ω проходит через вершины A и D равнобокой трапеции ABCD так, что пересекает диагональ BD и боковую сторону CD в точках P и Q соответственно. Точки P' и Q' симметричны точкам P и Q относительно середин отрезков BD и CD соответственно. Докажите, что B, C, P' и Q' концикличны. \square
- 39. (JBMO Shortlist, 2022, G6) Пусть Ω описанная окружность треугольника ABC. Взяты точки P и Q, так что P равноудалена от A и B, а Q равноудалена от A и C и углы PBC и QCB равны. Докажите, что касательная к Ω в точке A, прямая PQ и BC пересекаются в одной точке.
- 40. Вневписанные окружности ω_b и ω_c треугольника ABC касаются сторон AC и AB соответственно в точках E и F. Прямая EF повторно пересекает окружности ω_b и ω_c в точках X и Y соответственно. Касательные в точках X и Y проведенные к окружностям ω_b и ω_c пересекают прямые AC и AB в точках K и L соответственно. Докажите, что середина отрезка KL равноудалена от точек E и F.
- 41. (а) Пусть C_1 и B_1 точки на сторонах AB и AC треугольника ABC соответственно. Докажите что, радикальная ось окружностей, построенных на BB_1 и CC_1 как на диаметре, проходит через ортоцентр треугольника ABC.
 - (b) (Ось Обера) Докажите, что четыре ортоцентра четырёх треугольников, образованных четырьмя попарно пересекающимися прямыми, никакие три из которых не проходят через одну точку¹, коллинеарны.
 - (c) (Теорема Гаусса-Боденмиллера) Докажите, что прямая Гаусса² перпендикулярна оси Обера.
- 42. Чевианы AD, BE и CF треугольника ABC конкурентны. Прямая EF пересекает окружность (ABC) в точках P и Q. Докажите, что P, Q, D и середина отрезка BC концикличны.
- 43. (Устная олимпиада по геометрии, 2014, 10–11.4) Медианы AM_a , BM_b и CM_c остроугольного треугольника ABC пересекаются в точке G, а высоты AH_a , BH_b и CH_c в точке H. Касательная к окружности девяти точек треугольника ABC а в точке H_c пересекает прямую M_aM_b в точке C'. Точки A'

¹Такие прямые образуют фигуру, называемую полным четырёхсторонником.

²Прямой Гаусса полного четырёхсторонника называется прямая, проходящая через середины трех его диагоналей.

- и B' определяются аналогично. Докажите, что A', B' и C' лежат на одной прямой, перпендикулярной прямой GH.
- 44. В треугольнике ABC высоты AD, BE, CF пересекаются в точке H. Прямые DE, EF и DF пересекаются прямые AB, BC и AC. В точках A_1 , B_1 , C_1 соответственно. Докажите, что точки A_1 , B_1 , C_1 лежат на прямой перпендикулярной прямой Эйлера треугольник ABC.

5 Известные конструкции

Этот раздел посвящен тому, чтобы при доказательстве перпендикулярности использовать какие-то известные вам конструкции (прямая Симсона, задача №255, или что вы там знаете..). Таких очень много, и это то, что по-сути и остается только изучать. Да и все, что мы до этого с вами проходили, можно тоже называть известными конструкциями.

5.1 Прямая Симсона

Теорема 5.1 (Прямая Симсона). Проекции точки P на прямые, содержащие стороны треугольника ABC, коллинеарны, тогда и только тогда, когда точка P лежит на описанной окружности треугольника ABC.

5.2 Задача №255

Наверное, каждая содержательная геометрическая задача может быть источником целого ряда новых. Для этого с ней надо некоторое время «повозиться», посмотреть с разных сторон, попробовать перефразировать, обобщить. В результате удивительным образом может возникнуть новая, совершенно не похожая на «родителя» задача. Например, возьмём ту же задачу №255...

И. Ф. Шарыгин. Геометрия. Задачник 9-11

Теорема 5.2 (Лемма 255, Iran Lemma). Пусть M и N – точки касания вписанной окружности со сторонами AB и BC треугольника ABC, P – точка пересечения биссектрисы угла A с прямой MN. Докажите, что $\angle APC = 90^\circ$. Докажите, что точка P лежит на средней линии треугольника ABC, параллельной стороне AB.

 $^{^{1}}$ Такая прямая называется трилинейной полярой ортоцентра, или ортоцентрической осью, или центральной линией центра описанной окружности.

Рис. 5: Педальные треугольники двух точек. Прямая Симсона.

Задачи

- 45. Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая продолжение стороны CD в точке L. F точка пересечения KL и AC. Докажите, что $BF \perp KL$.
- 46. Пусть AA_1 , BB_1 , CC_1 высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.
- 47. (Обобщённая прямая Симсона) P произвольная точка описанной окружности треугольника ABC. Докажите, что точки A_1, B_1, C_1 на прямых AC,

Рис. 6: Лемма 255.

BC, AB коллинеарны, когда выполняется равенство:

$$\angle(AB, PC_1) = \angle(BC, PA_1) = \angle(AC, PB_1).$$

- 48. Точки P и Q лежат на описанной окружности треугольника ABC. На прямой AB выбрана точка C_1 так, что $\angle(AB,PC_1)=\angle(QC_1,AB)$. Аналогично выбраны точки B_1 и C_1 на прямых AC и BC соответственно. Докажите, что точки A_1,B_1,C_1 коллинеарны.
- 49. Вписанная в треугольник ABC окружность касается сторон AB, BC, CA в точках C_1 , B_1 , A_1 соответственно. Пусть прямая C_1I пересекает прямую A_1B_1 в точке P. Тогда прямая CP содержит медиану треугольника ABC. \square
- 50. (a) Хорда PQ описанной окружности треугольника ABC и сторона BC перпендикулярны. Докажите, что прямая Симсона точки P относительно треугольника ABC параллельна прямой AQ.

- (b) (Закл. этап ВСОШ, 2009—2010 гг., 10.6) Пусть H ортоцентр треугольника ABC. Точки X и Y проекции точки P, лежащей на описанной окружности треугольника ABC на стороны AB и BC. Докажите, что середина отрезка HP и точки X и Y коллинеарны.
- 51. (Прямая Штейнера) Пусть P произвольная точка на описанной окружности треугольника ABC. Точки P_a , P_b , P_c симметричны P относительно прямых BC, AC и AB соответственно. Докажите что, точки P_a , P_b , P_c , H коллинеарны.
- 52. Пусть ℓ прямая Штейнера точки R на описанной окружности ABC. Докажите, что если прямую ℓ отразить относительно стороны треугольника ABC, то полученная прямая пройдет через точку R.
- 53. (Л. А. Попов, Ф. Л. Бахарев) Точки A_1, B_1, C_1 основания высот остроугольного треугольника ABC из точек A, B, C соответственно. Точки A_1, B_1, C_1 отразили относительно средних линий треугольника, параллельных AB, BC, CA соответственно, получились точки A_2, B_2, C_2 соответственно. Докажите, что прямые AA_2, BB_2, CC_2 пересекаются в одной точке.
- 54. (Теорема Дроз-Фарни) Обозначим точкой H ортоцентр треугольника ABC. Прямые ℓ и t проходят через H и $\ell \perp t$. Пусть L_a, L_b, L_c пересечение ℓ с прямыми BC, AC и AB соответственно, точки T_a, T_b и T_c определяются аналогично. Докажите, что середины отрезков T_aL_a, T_bL_b, T_cL_c коллинеарны.
- 55. (Олимпиада им. И.Ф. Шарыгина, 2021, 8–9.6, устный тур) В треугольнике ABC, точка M середина стороны BC, точка H ортоцентр. Биссектриса угла A пересекает отрезок HM в точке T. Окружность построенная на отрезке AT, как на диаметре, пересекает стороны AB и AC в точках X и Y. Докажите, что точки X, Y и H коллинеарны.

Эта серия задач довольно простая, потому что у нас последнее (!) занятие. Ну и вы, кажется, должны были устать от "Симсона" и "степени точки". Поэтому отдыхайте и наслаждайтесь задачами! \heartsuit

56.	(MMO,	1994) В треугольнике ABC точки M и N – проекции вершины B бис-
	сектри	ясы углов A и C , а P и Q – проекции на внешние биссектрисы этих же
	углов.	

((a)	Локажите, ч	что точки	M. N.	P и Q	коллинеарны.	٦
1	(a)	докажите,	TIO IOTKI	<i>111</i> , <i>1</i> , <i>1</i> ,	I M	KOMMUNICAPITEI.	_

 $^{^{1}}$ Подсказка в том, что эта задача – пункт (b). Ну и симметрии ортоцентра.

- (b) Докажите, что длина отрезка PQ равна полупериметру треугольника ABC.
- 57. В трапецию ABCD вписанная окружность с центром I. Окружность вписанная в треугольник ACD касается сторон AD и AC в точках E и F. Докажите, что точки E, F и I коллинеарны.
- 58. (Ф. Л. Бахарев, Санкт-Петербургская олимпиада, 1999) В неравнобедренном треугольнике ABC проведены биссектрисы AA_1 и CC_1 и отмечены точки K и L середины сторон AB и BC соответственно. AP и CQ перпендикуляры, опущенные на CC_1 и AA_1 соответственно. Докажите, что прямые PK и QL пересекаются на стороне AC.
- 59. В равнобедренном треугольнике $ABC\ (AB=BC)$ средняя линия, параллельная стороне BC пересекается со вписанной окружностью в точке D, не лежащей на AC. Докажите, что касательная к окружности в точке D пересекается с биссектрисой угла C на стороне AB.
- 60. (а) (Первая внешняя Лемма 255) Пусть M и N точки касания вневписанной окружности ω_a треугольника ABC со стороной BC и продолжением стороны AC, а P точка пересечения биссектрисы угла A с прямой MN. Докажите, что $\angle APB = 90^\circ$.
 - (b) (Вторая внешняя Лемма 255) Пусть M и N точки касания вневписанной окружности ω_a треугольника ABC со продолжениями сторон AB и AC, а P точка пересечения биссектрисы внешнего угла B с прямой MN. Докажите, что $\angle BPC = 90^\circ$.
- 61. В треугольнике ABC точки A_c , B_c , C_c точки касания прямых BC, AC и AB с вневписанной окружностью ω_c (с центром в I_c). Точки A_b , B_b , C_b определяются аналогично.

$$\begin{cases} B_1 \equiv A_c C_c \cap A_b C_b \\ C_1 \equiv A_b B_b \cap A_c B_c \\ A_1 \equiv A_b B_b \cap A_c C_c \\ A_2 \equiv A_c B_c \cap A_b C_B \end{cases}.$$

- (a) Докажите, что точки A, B_1, C_1, I_b, I_c коллинеарны.
- (b) Докажите, что $A_1A_2 \perp BC$.

А Анкета

Фамилия Имя, класс:			
Команда:		Знак зодиака:	
Хобби:		Сколько дней в году:	
Любимая музыкальная груп	па:		
Любимый фильм:			
Любимая футбольная комаг	нда:		
Нарисуйте лошадь:			

i

В Заметки

Награда	Доля от количества	Количество 🗆
Конфета	33%	14
Дошик	50%	21
Шоколадка	70%	29
Значок	90%	38
Отсос;)	100%	42

Таблица 1: Таблица ништяков.

True Love Waits (Live in Oslo)

Intro: $C Em6^{\flat} Am E^{\flat}6$

C Em6^b
I'll drown my beliefs

Am $E^{\flat}6$ To have your babies

C Em6^b I'll dress like your niece

Am And wash your swollen feet

C Fmaj7/C G6(11) don't

C Fmaj7/C leave

G6(11) Am G6(11) Don't leave

C Em6^b I'm not living

Am $E^{\flat}6$ I'm just killing time

C Em6^b Your tiny hands

Am Your crazy kitten smile

C Fmaj7/C G6(11) C Fmaj7/C leave

G6(11) Am G6(11) Don't leave

Bridge: $C Em6^{\flat} Am G6(11) E^{\flat} 6$

Fmaj7/C

C $Em6^{\flat}$ And true love waits

 $Am \qquad E^{\flat}6$ In haunted attics

C $Em6^{\flat}$ And true love lives

Am $E^{\flat}6$ On lollipops and crisps

:C Fmaj7/C G6(11)

C Fmaj7/C leave

G6(11) Am G6(11) Eleave

Sex	In Raindows by Radiohead
0 (zero) Grammys	One award and four other Grammy nominations (including Album of the year)
lasts about 3 minutes	42 minutes, perfect album length
often shallow and meanungless	Thoms, deep lyrics about love desperation, lust and more connect with you on a personal level
Likely does not have Ed O'Brien	Ed O'Brien on almost every track
Invokes acc being naked, which is gross	Contains the song "Nude" which is beautiful and unique, which you can experience in comfort of civilized clothing
Hard to get	Accessible while still maintaining artistic integrity. Was also released for free
Leads to the spred of diseases and heartbreak	Does not give icky diseases, helps cure heartbreak
"OOHHH GOD", - ecnourages dangerous theocracy	"EEEEEEEEEDDDDDDD"
Women often have trouble cumming	Every song is perfectly structured to reach an amazing orgasmic climax
Your partner is probably a light 7	Always a perfect 10