With over 50,000 publications and research papers on the corona-virus family till date, it has become difficult to search across and get useful insights for medical practitioners.

As a *DataScientist* at Google, you are tasked with solving this problem with the help of Machine Learning.

<u>Efficient Estimation of Word Representations in Vector Space</u> (https://arxiv.org/pdf/1301.3781.pdf)

GloVe: Global Vectors for Word Representation (https://nlp.stanford.edu/pubs/glove.pdf)

How can we solve for this problem?

- Can we match keywords from user queries that are present in abstract?
- If we do keyword matching, will we be able to understand the user's intent? For e.g: 'origin' and 'discovery'
- Should we consider the context of the words, then?

Let us build a search engine using Word Embeddings

Datset

- COVID-19 Open Research Dataset, consisting of all publications/research papers related to Covid-19.
- Dataset contains Title, Abstract, Dol among other identifiers.
- To download https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge)

Let us explore the dataset ¶

Importing Necessary Libraries

```
In [ ]: !pip install -q langdetect
!gdown 1VkNpuudQnlj7g5uUCNPJ4MKxFdDdh7bZ
```

```
| 981 kB 15.6 MB/s eta 0:00:01 Building wheel for langdetect (setup.py) ... done Downloading...
```

From: https://drive.google.com/uc?id=1VkNpuudQnlj7g5uUCNPJ4MKxFdDdh7bZ (ht
tps://drive.google.com/uc?id=1VkNpuudQnlj7g5uUCNPJ4MKxFdDdh7bZ)

To: /content/metadata.csv

100% 1.65G/1.65G [00:15<00:00, 107MB/s]

```
In [ ]:
        import spacy
        import string
        import warnings
        import numpy as np
        import pandas as pd
        from pprint import pprint
        from IPython.utils import io
        from tqdm.notebook import tqdm
        from gensim.models import Word2Vec
        from langdetect import DetectorFactory, detect
        from IPython.core.display import HTML, display
        from IPython.display import Image
        from spacy.lang.en.stop_words import STOP_WORDS
        warnings.filterwarnings('ignore')
        tqdm.pandas()
```

Loading the dataset

```
In [ ]: DATA = pd.read_csv("metadata.csv").sample(100000) # taking only 100000 resed
         DATA.reset_index(inplace=True, drop=True)
         print(DATA.columns)
         DATA.head(2)
         Index(['cord_uid', 'sha', 'source_x', 'title', 'doi', 'pmcid', 'pubmed_i
         d',
                 'license', 'abstract', 'publish_time', 'authors', 'journal', 'mag_i
         d',
                 'who_covidence_id', 'arxiv_id', 'pdf_json_files', 'pmc_json_files',
                 'url', 's2_id'],
                dtype='object')
Out[3]:
             cord_uid
                                                          sha source_x
                                                                             title
                                                                        'I Get High
                                                                           With a
                                                                        Little Help 10.3389/fpsyg.
              gnh51fzr
                       fe177de29f14dd45747a3d17c2468300245b0fb4
                                                                  PMC
                                                                         From My
                                                                         Friends...
                                                                        Arenavirus
                                                                           Stable
                                                                           Signal
          1 wbh06gzb ab312eb3286e189488707ea7ac8551401a178940
                                                                  PMC
                                                                                     10.1128/m
                                                                        Peptide Is
                                                                             the
                                                                         Keysto...
```

Among all the features available, we can drill down to using 'Abstract' to create the search engine. Why?

 Abstract gives a complete, yet concise, understanding of the publication's research and findings.

```
In [ ]: DATA.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 19 columns):

# Column Non-Null Count Dtype
--- ---- 0 cord_uid 100000 non-null object
1 sha 35242 non-null object
2 source_x 100000 non-null object
3 title 99946 non-null object
4 doi 62094 non-null object
5 pmcid 36827 non-null object
6 pubmed_id 47157 non-null object
7 license 100000 non-null object
8 abstract 77551 non-null object
9 publish_time 99844 non-null object
10 authors 97680 non-null object
11 journal 91699 non-null object
12 mag_id 0 non-null object
13 who_covidence_id 45679 non-null object
14 arxiv_id 1420 non-null object
15 pdf_json_files 35242 non-null object
16 pmc_json_files 29756 non-null object
17 url 64995 non-null object
18 s2_id 92350 non-null float64
dtypes: float64(2), object(17)
memory usage: 14.5+ MB
```

Approach

For each incoming query, **calculate semantic similarity** with all documents in the dataset and **pick top N publications** from the dataset.

But, before we start building this out, we will have to process the abstract and represent them as contextual word embeddings.

What is the need for representing words as texts?

 Machine Learning algorithms and Deep Learning Architectures are capable of processing only numbers.

But, we have already learnt to represent words as discrete representations, why learn another technique?

- Discrete representations treat words as completely **independent entities**.
- Cannot capture relationship between words, thus providing **no context**.

So how do we capture contexts?

- Using Continous word representations.
- Capable of capturing context of a word, based on syntactic and semantic similarity.
- · Capture word to word relationships.
- Techniques for representations:
 - Singular Value Decomposition (SVD) based methods
 - Iteration based methods

What are SVD based methods and how are embeddings generated?

- · Key Concepts:
 - SVD theorem says its always possible to decompose a matrix A_{m*n} as a product of U_{m*m} , $\Sigma m*n$, V_{n*n} , where U^TU = I and V^TV = I.
 - We loop over the corpus and accumulate word co-occurence counts in the form of a matrix called 'X'.
 - Perform **SVD** on **X** to get $U\Sigma V^T$ decomposition.
 - Use rows of U as the word embeddings for all words in our dictionary.

Let us discuss few choices of generating "X":

{A} Word-Document Matrix:

- Assumption Words that are related will often appear in the same documents and vice versa.
- Loop over the corpus and for each time word i appears in document j, we add one to entry X_{ii} .
- The X generated is of the size $\{R^{|V|\times M}\}$ and it scales with the number of documents.

{B} Co-Occurence Matrix:

- Similar to Word-Document Matrix, however, the **matrix X contains co-occurrences of words** thereby becoming an **affinity matrix**.
- X is generating by counting the **number of times each word appears inside a window** of a particular size **around the word of interest**.
- · Calculate this count across all the words in the corpus.

SVD with an example:

Corpus contains 3 sentences:

- 1. "I enjoy flying."
- 2. "I like NLP."
- 3. "I like deep learning."

Based on window size of 1, the count matrix will be:

SVD Count Matrix

$$X = \begin{bmatrix} I & like & enjoy & deep & learning & NLP & flying \\ like & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ like & 2 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ enjoy & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ learning & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ learning & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ NLP & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ flying & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ . & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Performing SVD on the Co-Occurence Matrix

Pick an index k from U matrix that will capture variance based on desired percentage using

$$\frac{\sum_{i=1}^{k} \sigma_i}{\sum_{i=1}^{|V|} \sigma_i}$$

Finally, the submatrix $U_{1:|V|,1:k}$ will form our word embedding matrix.

$$|V| \begin{bmatrix} \hat{X} \end{bmatrix} = |V| \begin{bmatrix} 1 & 1 & 1 & 1 \\ u_1 & u_2 & \dots & 1 \end{bmatrix} k \begin{bmatrix} \sigma_1 & 0 & \dots & \sigma_2 & \dots \\ 0 & \sigma_2 & \dots & \vdots & \vdots & \ddots \end{bmatrix} k \begin{bmatrix} - & v_1 & - \\ - & v_2 & - & \vdots & \vdots & \ddots \end{bmatrix}$$

Word embedding matrix

Can we use SVD for building for our search engine?

No. While SVD based methods give us word vectors that are more than sufficient to encode semantic and syntactic information they are associated with many **dis-advantages**:

- SVD based methods do not scale well for large matrices. Given the size of our data, it will be **computationally expensive** to perform.
- The matrix can become extremely sparse since most words do not co-occur.

How do we circumvent the drawbacks of SVD based methods?

- Instead of computing and storing global information about some huge data, we can build
 a model that can encode contextual information and produce word vectors.
- One such architecture called the Word2Vec, an iterative method, to generate word embeddings.

What is Word2Vec?

Word2Vec works with the idea that two words are similar if they share or occur in similar context.

- Word2vec is a shallow neural network that is trained to reconstruct linguistic contexts of words.
- Word2vec takes in large corpus of text as input and produces a vector of several hundred dimensions.
- Each unique word in the corpus is assigned a corresponding vector in the space.
- Word vectors are positioned in the vector space such that words that share common contexts in the corpus are located close to one another in the space.

- Another training method to overcome the computation expense of softmax.
- Uses binary tree to construct vocabulary and leaves are the words.
- Each node of the graph is associated to a vector, which the model will have to learn.
- The probability of a word 'w' is equal to the probability of a random walk starting in the root and ending in leaf node corresponding to 'w'.
- With a goal to maximize likelihood (or minimize negative log-likelihood), in hierarchical softmax, the vectors of the nodes in the tree are updated that are in path from root to leaf node.

2. How are the weights adjusted in Word2Vec?:

Adjusting Weight Parameters (https://thinkinfi.com/continuous-bag-of-words-cbow-single-word-model-how-it-works/)

3. Enhancements over Word2Vec

- <u>Introduction to GloVe (https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010)</u>
- Introduction to FastText (https://amitness.com/2020/06/fasttext-embeddings/)