Graphs & Trees (Lecture – 5)

Dr. Nirnay Ghosh

Hamilton Paths & Circuits

• Definition:

A simple path in a graph G that passes through every vertex exactly once is called a *Hamilton path*, and a simple circuit in a graph G that passes through every vertex exactly once is called a *Hamilton circuit*. That is, the simple path $x_0, x_1, \ldots, x_{n-1}, x_n$ in the graph G = (V, E) is a Hamilton path if $V = \{x_0, x_1, \ldots, x_{n-1}, x_n\}$ and $x_i \neq x_j$ for $0 \leq i < j \leq n$, and the simple circuit $x_0, x_1, \ldots, x_{n-1}, x_n, x_0$ (with n > 0) is a Hamilton circuit if $x_0, x_1, \ldots, x_{n-1}, x_n$ is a Hamilton path.

• Which of the following simple graphs have a Hamilton circuit or, if not, a Hamilton path?

Hamilton Paths & Circuits (Contd...)

- Conditions for the existence of Hamilton circuits
 - There are no known simple necessary and sufficient criteria for the existence of Hamilton circuits.
- Certain properties can be used to show that a graph has no Hamilton circuit.
 - A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.
 - If a vertex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.
 - When a Hamilton circuit is being constructed and this circuit has passed through a vertex, then all remaining edges incident with this vertex, other than the two used in the circuit, can be removed from consideration.
 - A Hamilton circuit cannot contain a smaller circuit within it.
- Show that neither graph displayed below has a Hamilton circuit.

12/6/2020

Shortest Path Problems

- Weighted graphs: Graphs that have a number assigned to each edge.
- Used to model airline systems, computer networks, etc.
- Airline system models distance, fare, travel time
- Computer network models distance, response time, lease rate.
- Two problems involving weighted graphs:
 - Determining a path of least *length* (different from the number of edges in a path in a graph without weights) between two vertices in a network (E.g., what is a shortest path in air distance between Boston and Los Angeles? What is the cheapest fare between these two cities? Which set of telephone lines gives a fastest response time for communications between San Francisco and New York?)
 - Determining a circuit of shortest total length that visits every vertex of a complete graph exactly once (E.g., traveling salesman problem)

• What is the length of a shortest path between *a* and *z* in this weighted graph?

- Finding a shortest path from *a* to *z* could be done by a brute force approach by examining the length of every path from *a* to *z*.
- However, this is infeasible for graphs with a large number of edges.
- **Dijkstra's Algorithm**: greedily computes shortest length path between a pair of vertices in a weighted graph
- The algorithm iteratively finds the length of a shortest path from *a* to a first vertex, the length of a shortest path from *a* to a second vertex, and so on, until the length of a shortest path from *a* to *z* is found.
- It can be easily extended to find the length of the shortest path from a to all other vertices of the graph, and not just to z.

12/6/2020

- A distinguished set of vertices is constructed by adding one vertex at each iteration.
- A labeling procedure is carried out at each iteration by which a vertex *w* is labeled with the length of a shortest path from *a* to *w*.
- This path contains only vertices in the distinguished set as the intermediate vertices.
- The vertex added to the distinguished set is one with a minimal label among those vertices not already in the set.

```
ALGORITHM 1 Dijkstra's Algorithm.
procedure Dijkstra(G: weighted connected simple graph, with
     all weights positive)
{G has vertices a = v_0, v_1, \dots, v_n = z and lengths w(v_i, v_i)
     where w(v_i, v_i) = \infty if \{v_i, v_i\} is not an edge in G\}
for i := 1 to n
     L(v_i) := \infty
L(a) := 0
S := \emptyset
(the labels are now initialized so that the label of a is 0 and all
     other labels are \infty, and S is the empty set}
while z \notin S
     u := a \text{ vertex not in } S \text{ with } L(u) \text{ minimal}
     S := S \cup \{u\}
     for all vertices v not in S
           if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
           {this adds a vertex to S with minimal label and updates the
           labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}
```

• Use Dijkstra's algorithm to find the length of a shortest path between the vertices *a* and *z* in the following weighted graph.

- A traveling salesperson wants to visit each of n cities exactly once and return to his starting point.
- In which order should he visit these cities to travel the minimum total distance?
- Traveling Salesman Problem: finding a circuit of minimum total weight in a weighted, complete, undirected graph that visits each vertex exactly once and returns to its starting point.
- Similar to Hamilton circuit with minimum total weight in the complete graph.
- Simplest strategy: examine all possible Hamilton circuits and select one of minimum total length.

Planar Graphs

- Can a graph can be drawn in the plane without edges crossing?
- Planar graph:

A graph is called *planar* if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint). Such a drawing is called a *planar representation* of the graph.

• A graph may be planar even if it is usually drawn with crossings, because it may be possible to draw it in a different way without crossings.

FIGURE 2 The Graph K₄.

FIGURE 3 K₄ Drawn with No Crossings.

FIGURE 4 The Graph Q₃.

FIGURE 5 A Planar Representation of Q_3 .

Planar Graphs (Contd...)

- We can show that a graph is planar by displaying a planar representation.
- A planar representation of a graph splits the plane into **regions**, including an unbounded region.
- Is K_{3,3} planar?
- Applications of Planar graphs:
 - <u>Design of electronic circuits</u>: We can print a circuit on a single board with no connections crossing if the graph representing the circuit is planar.
 - <u>Design of road network</u>: Suppose we want to connect a group of cities by roads. We can built this road network without using underpasses or overpasses if the resulting graph is planar.

The regions of Planar Representation of a Graph

FIGURE 6 The Graph $K_{3,3}$.

Planar Graphs (Contd...)

- Degree of a region: Number of edges bordering a particular region.
- When an edge occurs twice on the boundary (so that it is traced out twice when the boundary is traced out), it contributes two to the degree.
- We denote the degree of a region R by deg(R).
- Find the regions and degree of each region for planar graphs given below.

• Since the graphs discussed are simple graphs, no multiple edges that could produce regions of degree two, or loops that could produce regions of degree one, are permitted.

Planar Graphs (Contd...)

EULER'S FORMULA Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r = e - v + 2.

- Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane?
- Corollary-1:

If G is a connected planar simple graph with e edges and v vertices, where $v \ge 3$, then $e \le 3v - 6$.

• Corollary-2:

If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

• Corollary-3:

If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length three, then $e \le 2v - 4$.