Cookies 解説

解説: yuto115

問題概要

- ullet N 種類のクッキーがあり、i 種類目は A_i 枚ある
- 今から全てのクッキーを何箱かに分けて箱詰めするが、
 - 同じ箱の中に同じ種類のクッキーがあってはいけない
 - それぞれの箱に入れるクッキーの枚数は $B_1, B_2, ..., B_M$ のいずれか
- 箱詰めは可能か?可能な場合、使う箱の数が最小になる割り当てを1つ構築

例

$$A = (4,2,2,2,1), B = (1,3,4)$$

$$A = (4,2,2,2,1), B = (1,3,4)$$

小課題 1 ($N \leq 500$, $A_i = 1$)

• クッキーの種類の重複を考えなくていい

。必要十分条件は
$$\sum_i A_i = \sum_j B_j$$

ullet 部分和問題なので、DPで $O(N^2)$

ここまでで6点

小課題 2 $(N \le 500, M = 1)$

。以下、
$$S = \sum_i A_i$$
 とおく

- Sが B_1 で割り切れない場合、明らかに割り当て不可能
- そうでないならば、使う箱の数は一意に定まる

小課題 $2 (N \leq 500, M = 1)$

- どんな時に割り当て可能か考えよう
 - $\max A_i$ 箱以上あることは必要条件
 - ・ 逆にこれを満たせば...?

小課題 $2 (N \leq 500, M = 1)$

- よって、条件を O(1) で判定可能
- 構築はさっきの図のようにやればいい

ここまでで13点

考察

- 一般の場合で、**使う箱が既に決まっているとき、**割り当てを 1 つ構築する or 割り当て不可能と判定する方法を考えたい (箱の容量の和が S と一致していることは前提とする)
- ・次のような貪欲法を考える
 - i = 1, 2, ..., N について以下を行う
 - 残り容量(元々の容量 既に入れたクッキーの枚数)が大きい順に箱を A_i 個選んで、それぞれの箱に種類 i のクッキーを 1 枚ずつ入れる
 - ullet 残り容量が正の箱が A_i 箱未満なら、割り当て不可能と判定する

容量

$$A = (3,2,2,2)$$

1 2 3 4

考察

- この貪欲法は正しい(つまり、貪欲法で割り当てを構築できないならば、条件を満た す構築は存在しない)
- ・対偶を示す
 - 条件を満たす構築が存在 ⇒ 貪欲法で割り当てを構築できる

	•		
容量			
	i	•••	j

小課題 3 (S≤15)

• 総和がSになるような箱の選び方は高々 2^{S-1} 通り \rightarrow 全探索できる

• それぞれの場合について、割り当て可能かどうかを貪欲法で判定

ここまでで25点

- 割り当て可能ならば、実際の構築は貪欲法でできる
 - 「貪欲法を実際にやってみて構築できるかどうか」で割り当て可能かどうか判定 するのは間に合わない
 - ・もっと単純な条件を見つけたい

• 必要条件を列挙してみる 箱の容量を $C_1 \ge C_2 \ge ...$ として、

•
$$C_1 \leq N$$

•
$$C_1 + C_2 \le \sum_{i=1}^{N} \min(A_i, 2)$$

•
$$C_1 + C_2 + C_3 \le \sum_{i=1}^{N} \min(A_i, 3)$$

•

- ・実は十分条件
- ・ 証明は省略 (帰納法など)

- 条件が単純になったので、容量が大きい順に箱を選んでいく DP ができる
 - dp[i][j][k] = i 箱選んで、容量が全て j 以上で、容量の和が k の状態にできるか
- 遷移
 - $dp[i][j][k] \leftarrow dp[i][j][k] \text{ or } dp[i][j+1][k]$
 - $dp[i][j][k] \leftarrow dp[i][j][k]$ or dp[i-1][j][k-j] (容量 j の箱を使えるとき)
- 計算量: O(NS²)

ここまでで70点

小課題 5 (S≤3000)

- dp[i][j][k] = i 箱選んで、容量が全て j 以上で、容量の和が k の状態にできるか
- ij > S のとき、容量の和がS を超えてしまうので見ても無意味
- (i,j) のペアとして考えるべきものは $S \log S$ 通り (調和級数)
- 計算量: $O(S^2 \log S)$

ここまでで85点

小課題 6 ($S \leq 15000$)

- 遷移
 - $dp[i][j][k] \leftarrow dp[i][j][k] \text{ or } dp[i][j+1][k]$
 - $dp[i][j][k] \leftarrow dp[i][j][k]$ or dp[i-1][j][k-j] (容量 j の箱を使えるとき)
- dp[i][j] の値をまとめて bitset で持つと、
 - $dp[i][j] \leftarrow dp[i][j]$ or dp[i][j+1]
 - $dp[i][j] \leftarrow dp[i][j]$ or $dp[i-1][j] \ll j$
- 計算量: $O\left(\frac{S^2 \log S}{w}\right)$

ここまでで100点

得点分布

