Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

2ª Aula Teórica

Sumário:

- Cap. 1 Regressão Linear
- Cap. 2 Movimento a uma dimensão.
 - Observação de movimento linear
 - Definição de velocidade e aceleração instantânea.
 - Movimentos uniforme e uniformemente acelerado.
 - Queda de uma bola de ténis.
 - Queda de um volante de badmington.

Bibliografia:

Garcia, cap.5.

John V. Guttag, Introduction to Computation and Programming Using Python, 2013, 2ª edição, MIT Press, cap. 15.

Serway, cap. 2

Sørenssen, cap. 4

Villate, cap. 1

Análise de Dados experimentais (resultado de medições)

Apresentam-se numa tabela, ou em registo papel, ou ficheiro digital (que são tabelas)

Ex: Numa experiência de difração por uma dupla fenda de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

<i>L</i> (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

Que relação existe entre L e X?

Difícil de vislumbrar, se só olharmos para a tabela!

MSF 2022 - T 2

Análise de Dados experimentais (resultado de medições)

Ex: Numa experiência de difração por uma dupla fenda de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

Que relação existe entre L e X?

<i>L</i> (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

E se os dados forem apresentados num gráfico:

Parece haver uma relação linear.

Análise de Dados experimentais (resultado de medições)

Matematicamente como se extrai as caraterísticas de uma reta deste

gráfico?

Regressão linear pelo método dos mínimos quadráticos

Dados experimentais: (x_i, y_i)

Pontos da reta: (x_i, p_i) dados pela reta $p_i = mx_i + b$

não se conhece m e b

$$S(m,b) = \sum_{i=1}^{N} (y_i - p_i)^2$$

soma das diferenças (ao quadrado, para ser sempre positivas) entre o valor expeimental e o valor da reta do modelo teórico)

Condições:

$$\frac{\partial S(m,b)}{\partial m} = 0$$

$$\frac{\partial S(m,b)}{\partial h} = 0$$

Cap. 1 Física: Medição e Modelação

$$\begin{cases} \frac{\partial S(m,b)}{\partial m} = 0 \\ \frac{\partial S(m,b)}{\partial b} = 0 \end{cases} \implies \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \\ b = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases}$$

O coeficiente de determinação r^2 é tal que quando ~1 indica um ótimo ajuste, enquanto que ~ 0 indica que não o modelo não é linear

$$r^{2} = \frac{\left(N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}\right)^{2}}{\left[N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \left[N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}\right]}$$

Os erros associados são:

$$\begin{cases} \Delta m = |m| \sqrt{\frac{\frac{1}{r^2} - 1}{N - 2}} \\ \Delta b = \Delta m \sqrt{\frac{\sum_{i=1}^{N} x_i^2}{N}} \end{cases}$$

Cap. 1 Física: Medição e Modelação

m=0.010155051683894637+-0.00016296903598678832 b=0.05507544181393875 +- 0.02713076554383449 r^2 =0.9984571397353084

$$m = 0.0102 \pm 0.0002 \frac{\text{cm}}{\text{cm}} = 0.0102 \pm 0.0002$$

 $b = 0.06 \pm 0.03 \text{ cm}$

Cap. 1 Física: Medição e Modelação

$$r^2 = 0.993$$

 $\begin{cases} m = 0.0102 \pm 0.0002 \\ b = 0.06 \pm 0.03 \text{ cm} \end{cases}$

$$r^2 = 0.889$$
 Pior ajuste
$$\begin{cases} m = 0.0101 \pm 0.0004 \\ b = 0.08 \pm 0.06 \text{ cm} \end{cases}$$
 Os erros são maiores

Cap. 1 Física: Medição e Modelação

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Leis de potência $y = cx^n$

 $\log_b y = \log_b c + \underbrace{n} \cdot \log_b x \quad : \mathsf{RETA}$ $\mathsf{declive}$

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Lei exponencial $y = y_0 e^{\lambda t}$

 $\log_b y = \log_b y_0 + \underbrace{\lambda}_{} t \qquad : \mathsf{RETA}$ declive

 $y e y_0$ expressos nas mesmas unidades

Cap. 1 Física: Medição e Modelação

Linearização de uma expressão: $y^m = cx^n + b$

Se se fizer:
$$\begin{cases} y^m = Y \\ x^n = X \end{cases} \qquad Y = c X + b : RETA$$

m e n podem ser negativos

Cap. 1 Física: Medição e Modelação

Modelo Linear

O modelo linear entre as quantidades L e x permite realizar previsões:

Interpolação: para $L_{minimo} < L < L_{máximo}$, por exemplo para L=165.0 cm, obtêm-se o valor $x_{previsto}=1.7$ cm.

Extrapolação: para $L < L_{minimo}$ ou $L > L_{maximo}$, por exemplo L=25.0 cm, obtêm-se o valor de $x_{previsto}=0.3$ cm.

O valor interpolado deverá estar correto. O modelo linear é fiável para os valores entre os extremos das quantidades. Contudo não temos confiança no resultado extrapolado, pois não temos medições perto do valor considerado. Na realidade o modelo linear não está validado para valores de L pequenos.

MSF 2022 - T 2

Cap. 1 Física: Medição e Modelação

A amarelo:
$$y = m x + b$$
 $r^2 = 0.990$ A verde: $y = c_7 x^7 + c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + m x + b$

Qual a curva que reproduz melhor os dados experimentais?

E se fizermos com um polinómio do 7º grau?

A função polyfit(x,y,n) do pacote numpy de python faz a regressão linear como também o ajuste a um polinómio de grau n.

Qual se aceita como modelo? A reta ou o polinómio de 7º grau?

Um polinómio de grau n ajusta-se perfeitamente ao mesmos número n de dados experimentais.

É por isso que é um bom modelo?

Se a relação for mesmo linear, o afastamento dos dados experimentais da reta é devido a erros associados à medição.

- Interpolação 'parece' pior do que se usar o modelo linear. No gráfico pode ver a diferença de valores que para L=100 cm os dois modelos preveem,
- Extrapolação os resultados são muito diferentes do modelo linear e dos pontos experimentais mais próximos,

Cap. 1 Física: Medição e Modelação

Com um conjunto de medições é aconselhável fazer os 3 tipos de gráficos

 $(\log x, \log y)$

(x, log y)

Devido à digitalização dos dados , e ao software atual, é muito fácil e rápido obter sem demora os três gráficos

MSF 2022 - T 2

Cap. 1 Física: Medição e Modelação

Existem casos de dados experimentais que não se podem modelar por uma reta, lei de potência ou exponencial

Ex: dados a modelar por funções periódicas (a fazer mais tarde)

Dados a modelar por funções 'estranhas' Radiação do corpo negro

Expressão de Planck

$$\rho(f) = \frac{8\pi f^2}{c^3} \frac{hf}{e^{hf/kT} - 1}$$

$$h = 6.62607015 \times 10^{-34} \text{ J} \cdot 1\text{ s}$$

Vídeo de Usain Bolt https://www.youtube.com/watch?v=3nbjh

MSF 2022 - T 2 15

Cap. 2 Movimento a 1 dimensão

O estudo começa por construir um esquema:

- Escolha do eixo onde se desenvolve o movimento.
- Escolha do sentido positivo do eixo (costuma ser o do movimento)
- Escolha da origem desse eixo (costuma ser a posição inicial)
- Nesse eixo, colocar a aceleração e o seu sentido.
- Nesse eixo colocar a velocidade e a posição inicial.
- Escolha do instante zero, origem dos tempos (costuma ser o instante inicial).

MSF 2022 - T 2 16

A posição de Usain Bolt evolui no tempo.

Em cada instante a posição do atleta é diferente. A posição é uma quantidade instantânea.

Indica-se a posição por x e é referenciada no eixo OX. E sendo instantânea indica-se por x(t).

Neste caso é conveniente colocar a origem do eixo no ponto da partida dos atletas.

Pelas mesmas razões a velocidade também é uma quantidade instantânea. Indica-se por $v_x(t)$. O índice x é para indicar que é referenciado no eixo OX.

MSF 2022 - T2 A posição x(t) e a velocidade $v_x(t)$ podemos ser positivos e negativos!

Χ

O desempenho de Bolt nos 100m foram medidos.

```
# Tempos de Usain Bolt a correr os 100 m
```

ficheiro dataUsainBolt.txt

1º conjunto: final olimpica em Pequim, 2008

2º conjunto: record mundial, Berlim 2009

Medalha de ouro e record mundial

# x (m)	t1 (s)	t2 (s)
0	0	0
10	1.83	1.89
20	2.87	2.88
30	3.78	3.78
40	4.65	4.64
50	5.50	5.47
60	6.32	6.29
70	7.14	7.10
80	7.96	7.92
90	8.79	8.75
100	9.69	9.58

Pode-se analisar como foi o seu movimento. A lei do movimento x=x(t)

A velocidade de Usain Bolt evolui no tempo.

Começou com velocidade nula, mas rapidamente aumentou a sua velocidade.

Em cada instante está com uma velocidade diferente.

Que mais se pode afirmar sobre a velocidade de Usain Bolt?

Velocidade média:
$$\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{100 \text{ m}}{9.58 \text{ s}} = 10.4 \text{ m/s} = 37.6 \text{ km/h}$$

Qual a velocidade média nos primeiros e nos segundos 50 m? 9.14 m/s e 12.2 m/s, resp.

E em cada percurso de 10 m?
$$\overline{v_x} = \frac{x_{i+1} - x_i}{t_{i+1} - t_i}$$

x_i	x_{i+1}	v_x
0.0	10.0	5.3
10.0	20.0	10.1
20.0	30.0	11.1
30.0	40.0	11.6
40.0	50.0	12.0
50.0	60.0	12.2
60.0	70.0	12.3
70.0	80.0	12.2
80.0	90.0	12.0
90.0	100.0	12.0

COF WM09

Cap. 2 Movimento a 1 dimensão

Que mais se pode afirmar sobre a velocidade de Usain Bolt?

- Velocidade média: $\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{100 \text{ m}}{9.58 \text{ s}} = 10.4 \text{ m/s} = 37.6 \text{ km/h}$
- Qual a velocidade média nos primeiros e nos segundos 50 m? 9.14 m/s e 12.2 m/s, resp.
- E em cada percurso de 10 m? $\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{x_{i+1} x_i}{t_{i+1} t_i}$

$$x_i$$
 x_{i+1} $\overline{v_x}$ 0.0 10.0 5.3 10.0 20.0 10.1 20.0 30.0 11.1 30.0 40.0 11.6 40.0 50.0 12.0 50.0 60.0 12.2 60.0 70.0 12.3 70.0 80.0 12.2 80.0 90.0 12.0 90.0 100.0 12.0 Unidades SI

Para calcularmos a velocidade instantânea a partir da velocidade média, diminuímos o percurso em comprimentos muito pequenos (separados por um intervalo de tempo muito pequeno δt)

$$\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{x(t + \delta t) - x(t)}{(t + \delta t) - t}$$

E no limite quando
$$\delta t \rightarrow 0$$

$$\lim_{\delta t \to 0} \overline{v_{x}} = v_{x}(t)$$

$$\lim_{\delta t \to 0} \frac{x(t+\delta t)-x(t)}{(t+\delta t)-t} = v_{\chi}(t) \quad \text{ou} \quad \frac{dx(t)}{dt} = v_{\chi}(t)$$

x_i	x_{i+1}	$\overline{ u_{\chi}}$
0.0	10.0	5.3
10.0	20.0	10.1
20.0	30.0	11.1
30.0	40.0	11.6
40.0	50.0	12.0
50.0	60.0	12.2
60.0	70.0	12.3
70.0	80.0	12.2
80.0	90.0	12.0
90.0	100.0	12.0

Aceleração também varia com os percursos:

Nos instantes iniciais a velocidade altera-se muito (de zero até ~11 m/s).

Nos instantes médios até ao final a velocidade é ~12 m/s.

Para calcularmos a aceleração instantânea a partir da aceleração média, diminuímos o percurso em comprimentos muito pequenos (separados por um intervalo de tempo muito pequeno δt)

$$\overline{a_x} = \frac{\text{variação de velocidade}}{\text{tempo}} = \frac{v_x(t + \delta t) - v_x(t)}{(t + \delta t) - t}$$

E no limite quando
$$\delta t \to 0$$

$$\lim_{\delta t \to 0} \overline{a_\chi} = a_\chi(t)$$

$$\lim_{\delta t \to 0} \frac{v_\chi(t+\delta t) - v_\chi(t)}{(t+\delta t) - t} = a_\chi(t) \quad \text{ou} \quad \frac{dv_\chi(t)}{dt} = a_\chi(t)$$

$$a_x(t) = \frac{dv_x}{dt} = \frac{d}{dt}\frac{dx}{dt} = \frac{d^2x}{dt^2}$$

Relação entre as quantidade de interesse do movimento

Posição (instantânea): x(t)

Velocidade instantânea: $v_x(t) = v_x(t)$

Aceleração instantânea: $a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$

Se souber como a posição varia no tempo, x(t), saberei a velocidade e a aceleração.

Exemplo: Se

$$x(t) = \frac{1}{2}gt^2$$

$$\Rightarrow v_{\chi}(t) = gt \Rightarrow \begin{cases} v_{\chi}(t) = gt \\ a_{\chi}(t) = g \end{cases}$$

E se souber a aceleração instantânea?

Relação entre as quantidade de interesse do movimento

Posição (instantânea): x(t)

Velocidade instantânea: $v_x(t) = v_x(t)$

Aceleração instantânea: $a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$

Cálculo integral: $a_{\chi}(t)$

$$v_{x}(t) - v_{x}(t_0) = \int_{t_0}^{t} a_{x}(t) dt$$

$$x(t) - x(t_0) = \int_{t_0}^{t} v_x(t) dt$$

Já aprenderam? Em Cálculo I? Já!

E se souber a aceleração instantânea?

Exemplo: $a_x(t) = 0$ (e conhece-se $v_x(t_0)$ e $x(t_0)$) e usando por cálculo integral:

$$v_x(t) - v_x(t_0) = \int_{t_0}^t 0 dt = 0$$

$$x(t) - x(t_0) = \int_{t_0}^t v_x(t) dt = \int_{t_0}^t v_x(t_0) dt = v_x(t_0) t|_{t_0}^t = v_x(t_0)(t - t_0)$$

Se
$$t_0=0$$

$$v_\chi(t)-v_\chi(0)=0 \quad \Leftrightarrow \quad v_\chi(t)=v_\chi(0) \\ x(t)-x(0)=v_\chi(0) \ t \Leftrightarrow \quad x(t)=x(0)+v_\chi(0) \ t \qquad \text{Movimento uniforme}$$

E se souber a aceleração instantânea?

Exemplo: $a_x(t) = g$ (e conhece-se $v_x(t_0)$ e $x(t_0)$) e usando por cálculo integral:

$$v_{x}(t) - v_{x}(t_{0}) = \int_{t_{0}}^{t} g \ dt = g \ t|_{t_{0}}^{t} = g \ (t - t_{0})$$

$$x(t) - x(t_0) = \int_{t_0}^t v_x(t) dt = \int_{t_0}^t [v_x(t_0) + g(t - t_0)] dt = v_x(t_0) t|_{t_0}^t + \frac{1}{2}gt^2|_{t_0}^t - gt_0t|_{t_0}^t = v_x(t_0)(t - t_0) + \frac{1}{2}g(t^2 - t_0^2) - gt_0(t - t_0)$$

Se
$$t_0 = 0$$

 $v_x(t) - v_x(0) = g t$ $\Rightarrow v_x(t) = v_x(0) + g t$

$$x(t) - x(0) = v_x(0) t + \frac{1}{2}gt^2 \implies x(t) = x(0) + v_x(0) t + \frac{1}{2}gt^2$$
Movimento uniformemente acelerado

Queda de uma bola de ténis, quando é largada, $v_x(t_0)=0$. Efeito da resistência do ar é muito pequeno e estamos a considerar velocidade pequenas. Os valores registados de uma experiência estão no gráfico:

A dependência da velocidade no tempo parece linear.

Queda de uma bola de ténis quando é largada, $v_x(t_0) = 0$. Efeito da resistência do ar é muito pequeno e estamos a considerar velocidade pequenas.

 $m = 9.84 \pm 0.06 \text{ m/s}^2$ $b = -0.01 \pm 0.03 \text{ m/s}$ $v_x(t) = b + m t$ $r^2 = 0.9999$

Se compararmos com as leis do movimento uniformemente acelerado

$$\begin{cases} v_{x}(t) = v_{x}(0) + g t \\ x(t) = x(0) + v_{x}(0) t + \frac{1}{2}gt^{2} \end{cases}$$

tem-se

$$g=m=9.84\pm 0.06 \, {\rm m/s^2}$$
 $v_x(0)=b=-0.01\pm 0.03 \, {\rm m/s}$ O que é correto!

Caso oposto:

Queda de um volante de badmington, em que a resistência do ar é muito elevada e o movimento pode apresentar velocidade elevadas. Caso em que o volante é largado.

Por análise visual do gráfico da posição em função do tempo:

Para instantes t> 1.25 s o movimento parece ser uniforme.

Para instantes 0<t<1.00 s o movimento não parece uniforme .

Estamos na presença de um movimento com pelo menos 2 tipos de movimento.

De algum modo, temos de modelar a resistência do ar.

Para velocidades pequenas, a variação da velocidade com o tempo deve ser muito pequena.

Para velocidades maiores, deve depender da velocidade e retardar o movimento.

Ou seja deve originar uma aceleração negativa e vamos **supor que é proporcional ao quadrado da velocidade**

Nesta forma $a_y^{(res)} = -D \ v_y \big| v_y \big|$ é sempre oposta ao sentido do movimento. E,

$$a_{y}(t) = g - D v_{y} |v_{y}|$$

em que o parâmetro D é positivo e a determinar numa experiência.

Esta expressão leva a que como o termo da aceleração da resistência do ar se opõe ao movimento, a partir de algum instante esse termo anula a parte gravítica.

Se a aceleração for nula, temos movimento uniforme e a velocidade é constante $|v_y| = v_T$ e chamada de velocidade terminal

(também chamada de velocidade limite v_{lim})

$$0 = g - Dv_T|v_T|$$

$$D = \frac{g}{v_T |v_T|} = \frac{g}{v_T^2}$$

Nestes casos a velocidade limite é medida.

O volante de badmington (usada na experiência) possui $v_T=6.80~\mathrm{m/s}$

Cap. 2 Movimento a 1 dimensão

$$v_y(0)=0$$
 $a_y(t)=g-rac{g}{v_{lim}^2}v_yig|v_yig|$ Por integração analítica: (Python também tem um pacote para cálculo simbólico).

$$\Rightarrow y(t) = \frac{v_{lim}^2}{g} \ln(\cosh(\frac{gt}{v_{lim}}))$$

Acordo muito bom entre a lei do movimento com a aceleração $a_y(t)=g-Dv_y\big|v_y\big|$ BOM MODELO !

(se fizer aceleração devida à resistência do ar proporcional à velocidade não se obtem acordo)