Sprawozdanie z laboratorium nr 10 Problem Plecakowy

1. Wprowadzenie

Problem plecakowy jest to często poruszany problem optymalizacyjny. Jego idea polega na tym, by dobrać elementy tak, aby zmieścić do "plecakać jak największej wartości sumarycznej. Elementy należy dobrać tak, by suma ich wartości była możliwie jak największa, a ich masa była niewiększa niż zadana pojemność "plecaka". Zastosowany algorytm sortuje elementy w kolejności malejącej porównując stosunek wartości do wagi elementu $h_j = \frac{c_j}{w_j}$. Następnie wstawia je kolejno zaczynając od przedmiotu o największym ilorazie do plecaka. Jeśli jakiś element nie mieści się w plecaku to jest omijany, a algorytm przechodzi do następnego. W algorytmie wybierany jest maksymalny wynik z tak obliczonego upakowania plecaka oraz plecaka z elementem o największej wartości.

2. Przykład nr 1

Użytkownik planuje się wybrać w podróż samolotem. Chciałby zabrać jak najwięcej przedmiotów z listy 1, aby je później sprzedać. Liczy się dla niego by ich wartość była jak największa. Podróżny może zabrać 22 kg bagażu z czego 2 kg waży walizka. Algorytm wybiera dla niego przedmioty, których stosunek wartości do wagi jest największy i pakuje je do walizki aż do zapełnienia.

Nazwa	Waga (g)	Wartość (\$)
${ m Objekt1}$	10	100
${ m Objekt2}$	6187	45
${ m Objekt3}$	7499	495
${ m Objekt4}$	10084	95
${ m Objekt5}$	9361	407
${ m Objekt6}$	1066	491
${ m Objekt}7$	1088	274
Objekt8	8105	165
${ m Objekt9}$	3255	441
Objekt10	2222	69
Objekt11	8417	431
${ m Objekt}12$	4904	176
Objekt13	10744	99
Objekt14	11219	206
Objekt15	4990	399
Objekt16	843	153
${ m Objekt 17}$	7892	475
Objekt18	10221	422
Objekt19	9213	458
${ m Objekt}20$	5629	197

Tablica 1. Lista przedmiotów

- Wynik działania algorytmu:
- Wykorzystana masa: 19,889 z 20 kg (99,4%)
- Wartość wstawionych przedmiotów: 1280\$ (wartość wszystkich przedmiotów to 5245 \$, czyli 24,4%
- Wstawiono 5 z 20 przedmiotów.

3. Przykład nr 2

Drugi przykład nie jest dostosowany do każdego problemu, służy jedynie pokazaniu skuteczności działania algorytmu w przypadku dużej ilości danych. Pojemność "walizki" wynosi w tym przypadku 6404180, a dane zostały przedstawione w tabeli 2.

Nazwa	Waga	Wartość
Objekt1	382745	825594
${ m Objekt2}$	799601	1677009
Objekt3	909247	1676628
${ m Objekt4}$	729069	1523970
Objekt5	467902	943972
Objekt6	44328	97426
Objekt7	34610	69666
Objekt8	698150	1296457
Objekt9	823460	1679693
Objekt10	903959	1902996
Objekt11	853665	1844992
Objekt12	551830	1049289
Objekt13	610856	1252836
Objekt14	670702	1319836
Objekt15	488960	953277
Objekt16	951111	2067538
Objekt17	323046	675367
Objekt18	446298	853655
Objekt19	931161	1826027
Objekt20	31385	65731
Obiekt21	496951	901489
$\mathrm{Obiekt}22$	264724	577243
$\mathrm{Obiekt}23$	224916	466257
$\mathrm{Obiekt}24$	169684	369261

Tablica 2. Lista przedmiotów

- Wynik działania algorytmu:
- Wykorzystana masa: 6086391 z 6404180 (95%)
- Wartość wstawionych przedmiotów: 12838572\$ (wartość wszystkich przedmiotów to 25916209 \$, czyli 49,5%
- Wstawiono 14 z 24 przedmiotów.
- Optymalny zysk dla takiej pojemności to 13549094, jest on zaledwie o 5,5% wyższy od otrzymanego

4. Podsumowanie i wnioski

- Zastosowany algorytm działa prawidłowo z założeniami do "plecaka"pakowane są rzeczy od najbardziej wartościowych do tych o najmniejszej wartości, dopóki przestrzeń nie zostanie maksymalnie wykorzystana.
- Działanie algorytmu jest bliskie optymalnemu rozwiązaniu (odbiega od niego zaledwie o 5,5 %).