HLMA101 - Partie A : Généralités

Chapitre 4
Ensembles de Nombres

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

Sommaire

- 1. Zoologie des ensembles \mathbb{D} e Nombres \mathbb{Q} u'on \mathbb{R} encontre \mathbb{C} ouramment
- 1.1 Ensembles
- 1.2 ℕ
- 13 7
- 1.4 Q
- 1.5 D
- 1.6 ℝ
- 2. Propriétés des Réels

Définition et construction des ensembles de nombres

À l'école et au collège

- ♦ Les entiers naturels, pour compter, dénombrer
- Les rationnels positifs, pour mesurer des grandeurs et les comparer (rapports)
- ♦ Les décimaux positifs, pour mesurer des grandeurs
- $\diamond~$ Les entiers relatifs, pour se repérer, calculer, \dots
- Les décimaux et rationnels, positifs et négatifs, pour calculer et résoudre des problèmes
- ♦ Les nombres réels : les points de la droite

Axiomes de N (Peano)

On peut définir les entiers naturels de façon axiomatique :

- 1) Il existe un élément noté 0 dans \mathbb{N} .
- 2) Tout élément de $\mathbb N$ admet un unique successeur, noté S(n).
- 3) Aucun entier naturel n'admet 0 pour successeur.
- 4) Deux entiers naturels ayant le même successeur sont égaux.
- 5) (Schéma de récurrence) Si E est un sous-ensemble de $\mathbb N$ tel que
 - i) $0 \in E$ et
 - ii) pour tout $n \in \mathbb{N}$, $n \in E$ implique $S(n) \in E$ alors $E = \mathbb{N}$.

Remarque : Il faudrait encore définir les opérations sur \mathbb{N} . Ex : pour deux entiers p et n, comment définir p+n? et p < n?

- 1. \mathbb{Z} oologie des ensembles \mathbb{D} e \mathbb{N} ombres \mathbb{Q} u'on \mathbb{R} encontre \mathbb{C} ouramment
- 1.1 Ensembles
- 1.2 ℕ
- 1.3 Z
- 1.4 Q 1.5 D
- 1.6 ℝ
- 2. Propriétés des Réels
- 2.1 Ordre
- 2.2 Majorants, minorants, bornes

Qu'est-ce qu'un ensemble de nombres?

Généralement, on parle d'ensemble de nombres quand on a un ensemble qu'on peut munir d'opérations arithmétiques (qui restent dans cet ensemble) :

Addition, Soustraction (pas sur ℕ),

Multiplication, Division (pas dans \mathbb{N} et \mathbb{Z} , jamais par 0)

Ensembles de nombres usuels

 $\mathbb N$ (entiers naturels), $\ \mathbb Z$ (entiers relatifs), $\ \mathbb D$ (nombres décimaux), $\ \mathbb Q$ (nombres rationnels), $\ \mathbb R$ (nombres réels), $\ \mathbb C$ (nombres complexes).

Et leurs sous-ensembles classiques

 \mathbb{N}^* \mathbb{R}^* \mathbb{R}^+ $\mathbb{R}^ \mathbb{R}^*_+$ $\mathbb{R}^*_ \mathbb{C}^*$

Définition et construction des ensembles de nombres

Construction de Z

Intuition de la construction de $\ensuremath{\mathbb{Z}}$

Idée : on veut "symétriser" $\ensuremath{\mathbb{N}}$ pour pouvoir faire toute des soustractions.

On va alors considérer 2-5, 3-6, 10-13, 654-657 etc comme correspondant à un unique nombre qu'on note -3.

Un peu plus formellement

Pour deux couples d'entiers naturels (a,b) et (a',b'), on considère qu'ils représentent un même entier relatif si a+b'=a'+b.

Pour chaque entier relatif ainsi identifié, il existe un unique représentant de la forme (p,0), noté p, ou (0,p) noté -p.

Remarque: La difficulté est de définir toutes les opérations et de vérifier qu'elles sont compatibles avec cette définition.

Construction de Q

Un rationnel est défini par un couple (p,q) dans $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ et noté $\frac{p}{}$

Deux couples (p,q) et (p',q') représentent le même rationnel si p.q' = p'.q.

Remarque : Il faut construire toutes les opérations est s'assurer qu'elles sont compatibles avec cette définition.

Représentation En pratique $\frac{n.a}{n.b} = \frac{a}{b}$ et pour tout rationnel r il existe une écriture unique $r = \frac{p}{q}$ telle que $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et p et q premiers

Construction de D

Définition

$$\mathbb{D} = \left\{ r \in \mathbb{Q}, \ / \ \exists \ell \in \mathbb{N}, \ 10^{\ell} \ r \in \mathbb{Z} \right\}$$

Important

Parmi les rationnels, il y a des nombres dont l'écriture décimale comprend un nombre infini de chiffres non nuls après la virgule.

Reformulation

Les décimaux sont les nombres rationnels dont l'écriture décimale "s'arrête" au bout d'un moment.

Théorème

Tout rationnel a une écriture décimale périodique à partir d'un certain rang

Exemples

 $\diamond \ \frac{2}{17} = 0, \frac{11764705882352941176470588235294117...$ $\Rightarrow \frac{\frac{17}{50617}}{499500} = 0,101335335335335...$

Formellement

 $\forall r \in \mathbb{Q}, \ \exists N \in \mathbb{N}^*, \ \exists L \in \mathbb{N}^*, \ \forall n \geq N, \ a_{-n-L} = a_{-n}$ (où les a_i sont les coefficients de l'écriture décimale de r).

Intuitivement : à partir du Nème chiffre après la virgule, il y a un motif de longueur L qui se répète.

Construction de D

Développement décimal

Tout entier naturel n peut s'écrire sous la forme

$$n = a_0 + 10.a_1 + 10^2.a_2 + \dots + 10^k.a_k$$

pour un certain $k \in \mathbb{N}$ et les $a_0, ..., a_k$ des nombres entre 0 et 9

Quels sont les rationnels qu'on peut écrire sous la forme

$$\pm \left(\frac{a_{-\ell}}{10^{\ell}} + \frac{a_{-\ell+1}}{10^{\ell-1}} + \dots + a_0 + 10.a_1 + \dots + 10^k.a_k \right)$$

avec $k \in \mathbb{N}$ et $\ell \in \mathbb{N}^*$ et les $a_{-\ell}, ..., a_0, ..., a_k$ entre 0 et 9?

Pour certains rationnels, ça ne marche pas!

Construction de D

Exemples

Et les réels?

Avec les rationnels, on ne couvre pas toutes les écritures décimales possibles de la forme $a_k a_{k-1} \dots a_0 a_{-1} a_{-2} \dots a_{-\ell} \dots$ (développement avec une infinité de chiffres)

Les décimaux ont deux écritures possibles!

Soit r un nombre décimal (positif) dont l'écriture finie est r= « $a_ka_{k-1}\dots a_0$, $a_{-1}a_{-2}\dots a_{-\ell}$ » $\left(a_\ell\neq 0\right)$. C'est-à-dire :

$$r = 10^k . a_k + 10^{k-1} . a_{k-1} + \dots + a_0 + \frac{a_{-1}}{10} + \frac{a_{-2}}{100} + \dots \frac{a_{-\ell}}{10\ell}$$

Alors on peut aussi l'écrire

$$r = \langle a_k a_{k-1} ... a_0, a_{-1} a_{-2} ... (a_{-\ell} - 1) 9999999... \rangle$$

(avec une infinité de 9).

Définition : L'écriture avec une infinité de 9 est appelée écriture impropre.

Exemples

- ♦ 0,123456789101112131415161718192021222324 · · · ∉ ①
- ⋄ 0,101001000100001000001 · · · ∉
 ℚ

Définition

L'ensemble des nombres réels $\mathbb R$ est l'ensemble formé par toutes les écritures décimales possibles (sauf les écritures décimales impropres des décimaux).

Décimaux, rationnels et réels

Parmi les réels, les décimaux sont ceux qui admettent une écriture décimale finie,

et les rationnels ceux qui admettent une écriture périodique à partir d'un certain rang.

On perçoit que les réels "bouchent les trous" de $\mathbb D$ ou de $\mathbb Q$.

Encadrement de $\sqrt{2}$ dans \mathbb{Q} - Méthode de Héron

Principe: si $a < \sqrt{2} < b$ et ab = 2alors $a < \frac{4}{a+b} < \sqrt{2} < \frac{a+b}{2} < b$

$$1 < \sqrt{2} < 2$$

$$\frac{4}{3} = \frac{4}{1+2} < \sqrt{2} < \frac{1+2}{2} = \frac{3}{2}$$

$$\frac{24}{17} = \frac{4}{\frac{4}{3} + \frac{3}{2}} < \sqrt{2} < \frac{\frac{4}{3} + \frac{3}{2}}{2} = \frac{17}{12}$$

$$\frac{816}{577} = \frac{4}{\frac{24}{17} + \frac{17}{12}} < \sqrt{2} < \frac{\frac{24}{17} + \frac{17}{12}}{2} = \frac{577}{408}$$

Encadrement de $\sqrt{2}$ dans \mathbb{D}

 $\substack{1,1^2=1,21;\,1,2^2=1,44;\,1,3^2=1,69;\,1,4^2=1,96;\,1,5^2=2,25;\,1,6^2=2,56;\,1,7^2=2,89;\,1,8^2=3,24;\,1,9^2=3,61\\1,4<\sqrt{2}<1,5}$

 $1,41^2 = 1,9881$; $1,42^2 = 2,0164$; $1,43^2 = 2,0449$; $1,44^2 = 2,0736$; $1,45^2 = 2,1025$; ...

 $1,41 < \sqrt{2} < 1,42$ $1,414^2 = 1,999396; 1,415^2 = 2,002225$

 $1,414 < \sqrt{2} < 1,415$ $1,4142^2 = 1,99996164 : 1,4143^2 = 2,00024449$

 $1,4142 < \sqrt{2} < 1,4143$

Densité de $\mathbb D$ et $\mathbb Q$ dans $\mathbb R$

- $\diamond \ \forall \big(a,b\big) \in \mathbb{R}^2, \ a < b \Longrightarrow \big(\exists d \in \mathbb{D}, \ a < d < b\big)$
- $\diamond \ \forall (a,b) \in \mathbb{R}^2, \ a < b \Longrightarrow (\exists q \in \mathbb{Q}, \ a < q < b)$

On dit que $\mathbb D$ (respectivement $\mathbb Q$) est dense dans $\mathbb R$.

Remarque: $\mathbb{R} \setminus \mathbb{Q}$ est lui aussi dense dans \mathbb{R} .

Ordre dans R

Sur \mathbb{R} , on a une relation d'ordre " \leq " qui permet de comparer les nombres, ayant les propriétés suivantes :

- $\diamond \ \forall a \in \mathbb{R}, \ a \leq a$
- $\diamond \ \forall a, b, c \in \mathbb{R}, (a \le b \text{ et } b \le c) \Longrightarrow (a \le c)$
- $\diamond \forall a, b \in \mathbb{R}, (a \le b \text{ et } b \le a) \Longrightarrow a = b$
- $\diamond \ \forall a, b \in \mathbb{R}, \ a \leq b \ \text{ou} \ b \leq a$

On note a < b pour $(a \le b \text{ et } a \ne b)$.

Compatibilité avec + et ×

L'ordre de $\mathbb R$ est compatible avec les opérations + et \times : $\forall a,b,c \in \mathbb R$, $a \le b \Longrightarrow a+c \le b+c$ $\forall a,b,c \in \mathbb R$, $(a \le b \text{ et } c \ge 0) \Longrightarrow a \times c \le b \times c$

Intervalles

Un intervalle de $\mathbb R$ est une partie de $\mathbb R$ de l'une des forme suivantes :

- ٥ Ø
- $\diamond \mathbb{R}$
- $\diamond [a, b] = \{x \in \mathbb{R} / a \le x \le b\}$ (intervalle fermé)
- $\diamond [a, b[=\{x \in \mathbb{R}/a \le x < b\}]$
- $\diamond \ [a,+\infty[=\{x\in\mathbb{R}\big/a\leq x\}$
- $\diamond \]a,b] = \{x \in \mathbb{R} / a < x \le b\}$
- $\diamond \]a,b[=\{x\in \mathbb{R}/a < x < b\} \quad \text{(intervalle ouvert)}$
- $\diamond]a, +\infty[=\{x \in \mathbb{R}/a < x\}$
- $\diamond]-\infty, b] = \{x \in \mathbb{R}/x \le b\}$
- $\diamond] \infty, b[= \{x \in \mathbb{R}/x < b\}$

Sommaire

- Zoologie des ensembles De Nombres Qu'on Rencontre Couramment
- 2. Propriétés des Réels
- 2.1 Ordre
- 2.2 Majorants, minorants, bornes

R est archimédien

 $\forall a \in \mathbb{R}_+^*, \forall b \in \mathbb{R}, \exists n \in \mathbb{N}, b \leq na$

Propriété (admise)

Soit A une partie de \mathbb{R} .

A est un intervalle si et seulement si A est connexe, c'est-à-dire si et seulement si $\forall \alpha \in A, \ \forall \beta \in A, \ [\alpha, \beta] \subset A$

Valeur absolue

Soit $x \in \mathbb{R}$.

On note $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

et on l'appelle valeur absolue de x.

Remarques

- \diamond |a| est la distance entre a et 0.
- ♦ Dans les deux cas on a

$$-|x| \le x \le |x|$$
 et $-|x| \le -x \le |x|$.

Inégalité et valeurs absolues

 $\forall (a,b) \in \mathbb{R}^2, \ \forall d > 0, \quad |a-b| \le c \iff a-d \le b \le a+d$

 $\forall (a,b) \in \mathbb{R}^2, \forall d > 0, |a-b| < c \iff a-d < b < a+d$

Distance et intervalles ouverts et fermés Soient a et b des réels tels que $a \le b$ et $r \in \mathbb{R}^+$.

- $\diamond [b-r,b+r] = \{x \in \mathbb{R}/|b-x| \le r\}$
- $\diamond \ \big]b-r,b+r\big[=\{x\in \mathbb{R}/|b-x|< r\}$
- $\diamond [a,b] = \left\{ x \in \mathbb{R} / \left| \frac{b+a}{2} x \right| \le \frac{b-a}{2} \right\}$
- $\diamond]a,b[=\left\{x \in \mathbb{R} / \left| \frac{b+a}{2} x \right| < \frac{b-a}{2} \right\}$

Preuve d'égalités et d'inégalités dans $\mathbb R$

Théorème

Soit $x \in \mathbb{R}$.

Si $\forall \varepsilon > 0, x \leq \varepsilon$ alors $x \leq 0$.

Preuv

Raisonnons par l'absurde : supposons qu'il existe $x \in \mathbb{R}$ tel que $\forall \varepsilon > 0, \, x \leqslant \varepsilon$ et x > 0.

Posons alors $\varepsilon = \frac{x}{2}$.

Alors $\varepsilon > 0$ et donc $x \le \frac{x}{2}$. Contradiction!

Corollaire

Soient $(a, b) \in \mathbb{R}^2$. Si $(\forall \varepsilon > 0, |b - a| \le \varepsilon)$ alors a = b.

Définition

Soit A une partie de \mathbb{R} .

- ♦ On dit que A a un plus grand élément (p.g.é.) si $\exists x \in A$, $\forall a \in A$, $a \le x$
- ♦ On dit que A a un plus petit élément (p.p.é.) si $\exists x \in A$, $\forall a \in A$, $x \in A$

Attention:

- \diamond m majore A : $\forall a \in A, a \leqslant m$
- ♦ m p.g.é. de A: $\forall a \in A$, $a \le m$ et $m \in A$. Un p.g.é. est un majorant qui est dans A.

Distance

Soient a et b des réels.

|b-a| représente la distance entre a et b.

Inégalités triangulaires

Théorème

 $\forall (a,b) \in \mathbb{R}^2, \quad ||a| - |b|| \le |a+b| \le |a| + |b|$

Corollaire

 $\forall (a,b) \in \mathbb{R}^2, \, ||a| - |b|| \le |a - b|$

Preuves

Ces inégalités sont très importantes!

Exercice : Dans quels cas y a-t-il égalité?

Définition

Soit A une partie de \mathbb{R} .

- ♦ On dit que A est majorée si $\exists m \in \mathbb{R}$, $\forall a \in A$, $a \leq m$
- ♦ On dit que A est minorée si $\exists m \in \mathbb{R}$, $\forall a \in A$, $m \leq a$
- ♦ On dit que A est bornée si elle est majorée et minorée.

Remarque : m n'appartient pas forcément à A : par exemple [0,1[est majorée.

Vocabulaire

- Un élément m tel que $\forall a \in A$, $a \le m$ est un majorant de A.
- Un élément m tel que $\forall a \in A$, $m \le a$ est un minorant de A.

Notation:

Si A admet un p.g.é., on le note max(A).

Si A admet un p.p.é., on le note min(A)

Justification (unicité)

Si x_1 et x_2 sont deux p.g.é. de A, alors $x_1 \in A$ et donc $x_1 \le x_2$, et $x_2 \in A$ donc $x_2 \le x_1$.

Donc $x_1 = x_2$.

Exemples

- ♦ Une partie finie non-vide a toujours un p.g.é. et un p.p.é.
- ♦ Toute partie non vide de N admet un p.p.é.
- ♦ Toute partie minorée non-vide de Z admet un p.p.é.
- Toute partie majorée non-vide de ℤ admet un p.g.é.
 Application directe : Partie entière d'un réel x, notée E(x).

 $\forall x \in \mathbb{R}, \ \exists ! n \in \mathbb{Z}, \ n \leq x < n+1$

Il existe des parties de $\mathbb Q$ et $\mathbb R$ qui n'ont pas de p.p.é / p.g.é

- $A = \{ x \in \mathbb{Q} / x^2 \le 2 \} \subset \mathbb{Q}$
- $B = \{ x \in \mathbb{R} / x^2 \le 2 \} \subset \mathbb{R}$
- $C = \{ x \in \mathbb{R} / x^2 < 2 \} \subset \mathbb{R}$

B a un p.p.é. et un p.g.é. A et C n'ont ni p.p.é. ni p.g.é.

Théorème (admis)

Soit A une partie non vide de \mathbb{R} . Alors :

- ♦ ou bien A n'est pas majorée
- \diamond ou bien l'ensemble des majorants de A est un intervalle de la forme $[m,+\infty[$ pour un certain $m\in\mathbb{R}.$

Définition

Soit A une partie non vide et majorée de \mathbb{R} . Le plus petit des majorants de A est appelé borne supérieure de A et noté $\sup(A)$.

Intérêt : Si A n'a pas de p.g.é., on peut quand même avoir un sup.

Caractérisation de la borne sup

Soit $A \subset \mathbb{R}$ non-vide et majorée, et soit $m \in \mathbb{R}$.

Il y a équivalence entre :

- (i) $m = \sup(A)$
- (ii) m est un majorant de A et $\forall \varepsilon > 0$, $\exists a \in A$, $m \varepsilon < a$

Preuve.

Exemples

Les sous-ensembles de $\mathbb R$ suivants ont-ils un max, un min, un sup, un inf ?

- $\diamond A = [0, 1]$
- $\Rightarrow B = [0, 1[$
- $\diamond C =]-1,1[$
- $D = \{ x \in \mathbb{Q} / -\pi \le x < \pi \}$
- $\diamond \ E = \{ x \in \mathbb{R} / -\pi \le x < \pi \}$
- $\Rightarrow F = \{\frac{1}{n}, n \in \mathbb{N}^*\}$
- $\Leftrightarrow G = \{x^2 + 2x + 2/x \in \mathbb{R}\}\$

Spécificité de ℝ

$$E = \{x \in \mathbb{Q} / x^2 < 2\}$$

Dans 0

 ${\it E}$ n'a pas de plus grand élément.

Il n'y a pas de plus petit majorant.

Dans ℝ

E n'a pas de plus grand élément.

L'ensemble des majorants de E est $[\sqrt{2},+\infty[$ et admet un plus petit élément.

Important

Dans \mathbb{R} , la borne sup existe toujours si A est non-vide et majorée.

Si de plus A admet un plus grand élément, alors max(A) = sup(A)

Preuve

Soit A une partie de \mathbb{R} admettant un max et un sup.

- ϕ max(A) est dans A, et sup(A) est un majorant. Donc max(A) \leqslant sup(A).
- \Rightarrow max(A) est un majorant de A et sup(A) est le plus petit des majorants. Donc sup(A) \le max(A)

Donc sup(A) = max(A)

Borne inférieure

Définition et propriétés

On définit la borne inférieure d'une partie A de $\mathbb R$ de façon similaire à la borne supérieure :

Si A est non-vide minorée, il existe un plus grand minorant noté $\inf(A)$.

Et si A admet un plus petit élément, alors $\inf(A) = \min(A)$.

Exercice: réécrire pour la borne inf la définition, les théorèmes et les énoncés vus pour la borne sup.