

CARACTERIZACIONES DE MESURABILIDAD

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 09) 13.FEBRERO.2023

Recordemos la definición de mesurabilidad en \mathbb{R}^n :

$$E \subseteq \mathbb{R}^n$$
 es mesurable $\iff \forall \varepsilon > 0, \exists G \subseteq \mathbb{R}^n$ abierto, con $E \subseteq G$ y $|G - E|_e < \varepsilon$.

La definición anterior, caracteriza a un conjunto mesurable *E* en función de la existencia de ciertos conjuntos abiertos (aquellos que en medida son muy similares a *E*).

Proposición

$$\mathsf{E}\subseteq\mathbb{R}^n$$
 es mesurable $\iff orall arepsilon > \mathsf{o}$, existe $\mathsf{F}\subseteq\mathbb{R}^n$ cerrado, tal que $\mathsf{F}\subseteq\mathsf{E}$ y $|\mathsf{E}-\mathsf{F}|_e < arepsilon$.

Prueba:

$$E$$
 es mesurable \iff E^c es mesurable \iff $\forall \varepsilon > 0, \exists G$ abierto, con $E^c \subseteq G$ y $|G - E^c|_e < \varepsilon$ \iff $\forall \varepsilon > 0, \exists F = G^c$ cerrado, con $E \supseteq F$ y $|E - F|_e = |E - G^c|_e = |E \cap G|_e = |G \cap (E^c)^c|_e = |G - E^c|_e < \varepsilon$. \square

Teorema

- i) $\mathsf{E}\subseteq\mathbb{R}^n$ es mesurable $\Longleftrightarrow \mathsf{E}=\mathsf{H}-\mathsf{Z}$, donde H es de tipo G_δ y $|\mathsf{Z}|=\mathsf{o}$.
- ii) $\mathsf{E}\subseteq\mathbb{R}^n$ es mesurable $\Longleftrightarrow \mathsf{E}=\mathsf{K}\cup\mathsf{Z}$, donde K es de tipo F_σ y $|\mathsf{Z}|=\mathsf{o}$.

Prueba: (\Leftarrow) Observe que si E admite alguna de las representaciones en (i) o (ii), entonces E es mesurable, pues los G_{δ} y los F_{σ} son mesurables, y los conjuntos de medida nula también son mesurables. Además, la mesurabilidad se preserva bajo uniones y diferencias.

(\Rightarrow) (i) Suponga que $E \subseteq \mathbb{R}^n$ es mesurable. Para cada $k = 1, 2, 3, \ldots$, elija G_k abierto tal que $E \subseteq G_k$ y $|G_k - E|_e < \frac{1}{k}$. Tomamos $H = \bigcap_k G_k$.

Entonces H es un conjunto de tipo G_δ y $E\subseteq H$. Además, haciendo Z=H-E, tenemos que $H\subseteq G_k \ \forall k \ \Rightarrow \ H-E\subseteq G_k-E \ \forall k$, de modo que $|H-E|_e\le |G_k-E|<\frac{1}{k}$, $\forall k$. Portanto, $|H-E|_e=0$.

Finalmente, $H-Z=H-(H-E)=H\cap (H\cap E^c)^c=H\cap (H^c\cup E)=H\cap E=E$.

(\Rightarrow) (ii) De nuevo, suponga que $E \subseteq \mathbb{R}^n$ es mesurable, por lo que E^c también es mesurable. De la parte (i), podemos escribir

$$E^{c} = H - Z = H \cap Z^{c}$$
, donde H es de tipo G_{δ} y $|Z| = 0$.

En particular, siendo $H=\bigcap_k G_k$ una intersección de abiertos, su complemento $K=H^c=\bigcup_k G_k^c$ es una unión de cerrados, y portanto un conjunto F_σ . con $E^c\subseteq H \Rightarrow K\subseteq E^c$, y

$$E = (E^c)^c = (H - Z)^c = (H \cap Z^c)^c = H^c \cup Z = K \cup Z.$$

Teorema

Suponga que $E \subseteq \mathbb{R}^n$ es tal que $|E|_e < \infty$. Entonces, E es mesurable \iff dado $\varepsilon > 0$, E puede representarse como $E = (S \cup N_1) - N_2$, donde

- S es una unión enumerable de intervalos no traslapados.
- N_1, N_2 satisfacen $|N_1|_e, |N_2|_e < \varepsilon$.

Prueba: Ejercicio!

Nuestra última caracterización para la mensurabilidad de conjuntos establece que los conjuntos mesurables son aquellos que dividen cada conjunto (medible o no) en partes que son aditivas con respecto a la medida exterior.

Esta caracterización será utilizada más adelante para construir medidas en espacios abstractos.

Teorema (Carathéodory)

 $E \subseteq \mathbb{R}^n$ es mesurable \iff para todo conjunto $A \subseteq \mathbb{R}^n$ vale

$$|A|_e = |A \cap E|_e + |A - E|_e.$$

Prueba: (\Rightarrow) Suponga que $E \subseteq \mathbb{R}^n$ es mesurable. Dado $A \subseteq \mathbb{R}^n$, se H un conjunto de tipo G_δ tal que $A \subseteq H$ y $|A|_e = |H|_e$.

Como $H = (H \cap E) \cup (H - E)$ es una unión disjunta, entonces $|H| = |H \cap E| + |H - E|$. Luego, como $A \subseteq H$

$$|A|_e=|H|_e=|H|=|H\cap E|+|H-E|\geq |A\cap E|_e+|A-E|_e.$$

Por otro lado, de la unión $A \subseteq (A \cap E) \cup (A - E)$, tenemos

$$|A|_e \leq |(A \cap E) \cup (A - E)|_e = |A \cap E|_e + |A - E|_e$$

lo que muestra la igualdad.

(⇐) Suponga ahora que $|A|_e = |A \cap E|_e + |A - E|_e$, para todo conjunto $A \subseteq \mathbb{R}^n$.

• En el caso que $|E|_e < \infty$, elijamos $H \subseteq \mathbb{R}^n$ un conjunto de tipo G_δ tal que $E \subseteq H$ y $|H| = |H|_e = |E|_e$. Luego,

$$|H| = |H \cap E|_e + |H - E|_e = |E|_e + |H - E|_e,$$

(por la hipótesis). Esto implica que $|H - E|_e = 0$, de modo que H - E es mesurable, y E = H - (H - E) es mesurable, ya que es diferencia de mesurables.

• En el caso $|E|_e=\infty$, consideremos las intersercciones $E_k=\overline{\mathbb{D}}_k(\mathsf{o})\cap E$, para cada $k=1,2,\ldots$. Estos son limitados (\Rightarrow medida finita). Ya hemos visto que $E=\bigcup_k E_k$. Para cada $k\geq 1$, sea H_k de tipo G_δ tal que $E_k\subseteq H_k$ y $|H_k|=|E_k|_e$. Por la hipótesis,

$$|H_k| = |H_k|_e = |H_k \cap E|_e + |H_k - E|_e \ge |E_k|_e + |H_k - E|_e, \quad \forall k$$

De ahí que $|H_k - E|_e = 0$ y todos los $H_k - E$ son mesurables. También la unión $H = \bigcup_k H_k$ es mesurable, y $E = \bigcup E_k \subseteq H_k = H$. Además,

$$H-E=(\cup_k H_k)-E=\cup_k (H_k-E)$$

es también mesurable, ya que es unión enumerable de mesurables. Finalmente, E=H-(H-E) es mesurable. \square

Corolario

Si $E \subseteq \mathbb{R}^n$ es mesurable y $E \subseteq A$, entonces $|A|_e = |E| + |A - E|_e$. En particular, si $|E| < \infty$, entonces $|A - E|_e = |A|_e - |E|$.

Prueba: Suponga que $E \subseteq \mathbb{R}^n$ es mesurable, y sea $A \subseteq \mathbb{R}^n$ con $E \subseteq A$. Entonces, elijamos un conjunto $H \subseteq \mathbb{R}^n$ de tipo G_δ tal que $A \subseteq H$ y $|H| = |H|_e = |A|_e$. Siendo H mesurable, y como $H = (H \cap E) \cup (H - E)$, entonces

$$|A|_e| = |H| = |H \cap E| + |H - E| = |H \cap E|_e + |H - E|_e \ge |A \cap E|_e + |A - E|_e.$$

Por otro lado, de la inclusión $A \subseteq (A \cap E) \cup (A - E)$, tenemos

$$|A|_{e} \leq |A \cap E|_{e} + |A - E|_{e},$$

lo que muestra la igualdad. \Box

Nos interesa identificar mapas $T: \mathbb{R}^n \to \mathbb{R}^n$ que preservan la mesurabilidad:

E es Lebesgue-mesurable \implies T(E) es Lebesgue-mesurable.

Recordemos que

Definición

Un mapa $T: \mathbb{R}^n \to \mathbb{R}^n$ es una **transformación Lipschitz**, si existe una constante C > 0 tal que

$$|T(\mathbf{x}) - T(\mathbf{y})| \le C|\mathbf{x} - \mathbf{y}|, \qquad para todo \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

A la constante

$$C_T = \sup_{\mathbf{x} \neq \mathbf{y}} \frac{|T(\mathbf{x}) - T(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|},$$

se le llama la **constante de Lispchitz** de T.

Ejemplo: Toda aplicación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es Lipschitz (ejercicio!).

Teorema (Conservación de la mesurabilidad)

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación Lipschitz. Entonces, T mapea conjuntos Lebesgue-mesurables en conjuntos Lebesgue-mesurables.

Prueba: 1. Mostramos primero que toda transformación continua mapea conjuntos F_{σ} en conjuntos F_{σ} .

Sabemos que una transformación continua mapea compactos en compactos. Como todo cerrado puede escribirse como una unión enumerable de compactos ($F = \bigcup_k F_k$, con $F_k = \overline{\mathbb{D}}_k(O) \cap F$), entonces

$$T(F) = T\Big(\bigcup_{k\geq 1} F_k\Big) = \bigcup_{k\geq 1} T(F_k),$$

es unión enumerable de compactos (poratnto de cerrados). En particular, T(F) es de tipo F_{σ} .

Así, T mapea cerrados en F, y en particular T mapea conjuntos F_{σ} en conjuntos F_{σ} .

2. Mostramos ahora que una transformación Lipschitz mapea conjuntos de media nula en conjuntos de medida nula.

De la desigualdad $|T(\mathbf{x}) - T(\mathbf{y})| \le C|\mathbf{x} - \mathbf{y}|$, tabemos que si $A \subseteq \mathbb{R}^n$ tiene diámetro diam(A) = d, entonces vale

$$\operatorname{diam} T(A) = \sup_{\mathbf{x},\mathbf{y} \in A} |T(\mathbf{x}) - T(\mathbf{y})| \leq C \cdot \sup_{\mathbf{x},\mathbf{y} \in A} |\mathbf{x} - \mathbf{y}| = Cd.$$

En particular, en el caso de intervalos *n*-dimensionales *I*, tenemos que

$$v(TI) = v(T(\prod(b_i - a_i))) \le \prod C(b_i - a_i) = \widetilde{C}v(I),$$

Sea $Z \subseteq \mathbb{R}^k$ un conjutno de medida nula |Z| = 0. Dado $\varepsilon > 0$, elegimos una cobertura $\{I_k\}_k$ de Z por intervalos tales que $\sum_k v(I_k) < \varepsilon$. Luego, $\{T(I_k)\}$ es una cobertura de T(Z), y de lo anterior

$$|TZ|_e \leq \sum_k |T(I_k)| \leq \sum_k \widetilde{C}v(I_k) = \widetilde{C}\sum_k v(I_k) < \widetilde{C} \varepsilon.$$

Esto muestra que T(Z) tiene medida nula.

3. Finalmente, si $E \subseteq \mathbb{R}^n$ es Lebesgue-mesurable, E admite una representación de la forma $E = K \cup Z$, con K un conjunto de tipo F_{σ} , y Z de medida nula. Entonces, $T(E) = T(K \cup Z) = T(K) \cup T(Z)$, con T(K) de tipo F_{σ} y T(Z) de medida nula. De la caracterización de conjuntos mesurables, T(E) es Lebesgue-mesurable. \square

En el caso particular en que $T:\mathbb{R}^n o\mathbb{R}^n$ es una transformación lineal, tenemos

Teorema

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal. Entonces, para cualquier conjunto mesurable $E \subseteq \mathbb{R}^n$, vale

$$|T(E)| = \delta |E|,$$
 donde $\delta = |\det T|.$

Prueba: Ejercicio!

Lema

Sea $E \subseteq \mathbb{R}$ un conjunto Lebesgue-mesurable, con |E| > 0. Entonces, el conjunto de diferencias $\{d = \mathbf{x} - \mathbf{y} : \mathbf{x}, \mathbf{y} \in \}$ contiene un intervalo abierto centrado en o.

Prueba: Sea $\varepsilon > 0$. Como |E| > 0, existe un abierto $G \subseteq \mathbb{R}$ tal que $E \subseteq G$ y $|G| \le (1 + \varepsilon)|E|$. Siendo G abierto, G puede escribirse como unión enumerable de intervalos no traslapados, $G = \bigcup_{b} I_{b}$ (Teorema de caracterización de los abiertos en \mathbb{R}).

Para cada $k \ge 1$, tome $E_k = E \cap I_k$. Se sigue que $E = E \cap G = E \cap \bigcup_k I_k = \bigcup_k (E \cap I_k) = \bigcup_k E_k$, que los E_k son mesurables, y que para índices distintos $j \ne k$, los conjuntos E_j y E_k poseen a lo sumo un punto en común. Así

$$|G| = \sum_{k} |I_k|$$
 y $|E| = \sum_{k} |E_k|$.

Como $|G| \le (1+\varepsilon)|E|$, entonces existe $k_0 \in \text{tal que } |I_{k_0}| \le (1+\varepsilon)|E_{k_0}|$.

Tome $\varepsilon=\frac{1}{3}$. Entonces $E_{k_0}\subseteq I_{k_0}$ y $|E_{k_0}|\geq \frac{3}{4}|I_{k_0}|$. Afirmamos que si trasladamos E_{k_0} por cualquier número d con $d<\frac{1}{2}|I_{k_0}|$, entonces el conjunto trasladado $E_d=E_{k_0}+d$ interseca a E_{k_0} .

Suponga que no vale la afirmación. Entonces $E_{k_0} \cup E_d$ debe contener un intervalo de longitud $|I_{k_0}| + |d|$, lo que implica que

$$|E_{k_o}| + |E_d| \le |I_{k_o}| + |d|$$
 ó $2|E_{k_o}| \le \frac{3}{2}|I_{k_o}|$.

Pero esta última desigualdad es falsa si $|d| \leq \frac{1}{2} |I_{k_0}|$, pues entonces $2|E_{k_0}| \leq \frac{3}{2} |I_{k_0}|$, y $|E_{k_0}| < \frac{3}{4} |I_{k_0}|$ ($\rightarrow \leftarrow$).

Esto muestra la afirmación y el lema. 🗆

Teorema (de Vitali)

Existen conjuntos no Lebesgue-mesurables.

Prueba: Definimos una relación de equivalencia en \mathbb{R} , diciendo que

$$\mathbf{x}$$
 es equivalente a $\mathbf{y} \iff \mathbf{x} - \mathbf{y} \in \mathbb{Q}$.

El conjunto cociente es \mathbb{R}/\mathbb{Q} . Las clases de equivalencia son de la forma $E_{\mathbf{x}}=\mathbf{x}+\mathbb{Q}=\{\mathbf{x}+q:\ q\in\mathbb{Q}\}$, y sabemos que dos clases son disjuntas o son iguales. Así, una clase consiste de los números racionales ($E_{0}=\mathbb{Q}$). Las otras consisten de clases disjuntas de números irracionales.

Por el Axioma de Zermelo, sea $E\subseteq\mathbb{R}$ el conjunto formado exactamente por un representante de cada clase de equivalencia.

Como cualesquiera dos puntos de E deben diferir por un irracional, entonces $\{d = \mathbf{x} - \mathbf{y} : \mathbf{x}, \mathbf{y} \in E\}$, no puede contener un intervalo alrededor de o.

Luego, E no es Lebesgue-mesurable, ó tenemos $|E|_e = o$.

Ahora, como $\mathbb R$ se cocienta por sus clases de equivalencia, tenemos que $\mathbb R=\bigcup_{{\bf x}\in\mathbb Q}({\it E}+{\bf x})$. Luego

$$|\textbf{\textit{E}}| = \textbf{\textit{O}} \implies |\mathbb{R}| = \Big|\bigcup_{\textbf{\textit{x}} \in \mathbb{Q}} (\textbf{\textit{E}} + \textbf{\textit{x}})\Big| = \sum_{\textbf{\textit{x}} \in \mathbb{Q}} |\textbf{\textit{E}} + \textbf{\textit{x}}| = \sum_{\textbf{\textit{x}} \in \mathbb{Q}} |\textbf{\textit{E}}| = \sum_{\textbf{\textit{x}} \in \mathbb{Q}} \textbf{\textit{o}} = \textbf{\textit{o}},$$

un absurdo. Esto muestra que $|E|_e>$ o y portanto E no es Lebesgue-mesurable. \Box

Corolario

Cualquier subconjunto $A \subseteq \mathbb{R}$ con medida exterior positiva, contiene un conjunto no-mesurable.

Prueba: Basta tomar $A = \bigcup (A \cap E_x)$, donde los $E_x = E + x$ y E son los conjuntos y traslaciones usadas en el Teorema de Vitali.