

United International **University**

School of Science and Engineering

Final Assessment Trimester: Fall-2020 Course Title: Probability and Statistics

Course Code: Stat 205 Marks: 25 Time: 1 Hour 15 Mins

There are 3 questions. Answer question no. 1 and any one from 2 and 3.

1. a) Consider the following frequency distribution table.

 Class
 61-65
 66-70
 71-75
 76-80

 Frequency
 9
 13
 21
 7

(i) Sketch the cumulative frequency polygon and find the median from it.

[10]

- (ii) Find mode and mean-deviation from mode.
- (iii) Find the first four raw moments about A = 75; convert them to the central moments. Also, find the co-efficient of skewness and kurtosis. Make comments about the distribution.

$$m_2 = m_2' - m_1'^2; \quad m_3 = m_3' - 3m_2'm_1' + 2m_1'^3; m_4 = m_4' - 4m_3'm_1' + 6m_2'm_1'^2 - 3m_1'^4$$

- b) If the correlation coefficient of two variables is 0.5 and regression coefficient of [5] x on y is 0.8. Also, $\overline{x} = 31.5$ and $\overline{y} = 42.75$. Find and sketch the regression line of y on x. Predict the value of y when x is 40 and verify it graphically.
- 2. a) Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of four independent observations [4] X_1, X_2, X_3, X_4 each from the distribution with $pdf \ f(x) = \frac{1}{4}x^3; \ 0 < x < 2$. Find $P\left(Y_3 \le \frac{3}{2}\right)$ and the pdf of the order statistics. Also, find $\mu_3(y)$.

$$\begin{split} G_r(y) &= \sum_{k=r}^n \binom{n}{r} [F(y)]^k [1 - F(y)]^{n-k} \\ g_r(y) &= \frac{n!}{(n-r)!(r-1)!} [F(y)]^{r-1} [1 - F(y)]^{n-r} f(y) \end{split}$$

b) Let X equal the daily sell of foods in kg by the super shops. Suppose the variance [2.5] of X is 25 kg. To estimate the mean μ of X, an agency took a random sample of 15 super shops and found they sold in a total of 750 kg of foods in a day. Find an approximate 80% confidence interval for μ .

- The breaking strengths of cables produced by a manufacturer have a mean of **2500** pounds and standard deviation of **100** pounds. By a new technique in the manufacturing process, it is claimed that the breaking strength can be increased. To test the claim, a sample of **100** cables is tested and it is found that the mean breaking strength is **2575** pounds. Construct a hypothesis test. Can we support the claim at the **0.1** significance level?
- 3. a) Consider 1009, 999, 1013, 998, 1001, 995, 1011, 1005, 993 & 1003 grams [4] are the weights of soap in a "1000-gram" bottle, defined by the random variable X. Order them increasingly and find the mode, median, D_9 , and P_{45} .
 - b) In a forest **100** crocodiles are infected by viral disease, **half** of the crocodiles are **[2.5]** brought to a zoo. If **30** of the crocodiles survived in the zoo, **find** the confidence interval of the proportion with **10**% significance level. Is the transfer process effective?
 - c) ABC company produces machineries with the average lifetime is **30** years and [3.5] the standard deviation **5** years. It is claimed that, in a new process the mean life time can be increased.
 - (i) If the estimated average life time for 40 samples is 31.5 years, find the p -value of the claim of the producer.
 - (ii) If the new process has increase the mean life time to 32 years. Find α and β for the estimated mean 31.25 years for 35 samples.

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997