In this Appendix we will be interested in theories with $\mathcal{N}=(2,0)$ supersymmetry in six dimensions. These theories (at the level of the local operator spectrum) are in one to one correspondence with the finite subgroups of SU(2) [?, ?]. It is therefore common to label them of type $\mathfrak{g}=ADE$. Compactification of the theory of type \mathfrak{g} on a circle with radius $\beta \to 0$ gives rise to the 5d $\mathcal{N}=2$ SYM theory with gauge algebra \mathfrak{g} . It is conjectured that (atleast at the level of the BPS spectrum) that the 6d $\mathcal{N}=(2,0)$ theory of type \mathfrak{g} on $\mathbb{S}^1_{\beta} \times \mathcal{M}_5$ is equivalent to the 5d $\mathcal{N}=2$ theory with gauge algebra \mathfrak{g} and gauge coupling $g_{\rm YM}^2=2\pi\beta$ on the compact 5-manifold \mathcal{M}_5 . It is therefore believed that the \mathcal{M}_5 partition function for the 5d theory should reproduce the $\mathbb{S}^1_{\beta} \times \mathcal{M}_5$ partition function for the $\mathcal{N}=(2,0)$ theory. For the case $\mathcal{M}_5=\mathbb{S}^5$ with $\mathfrak{g}=\mathfrak{u}(1),\mathfrak{u}(\infty)$, this conjecture has been supported for [?,?] by matching the \mathbb{S}^5 partition functions to the superconformal index computations known from free field theory and AdS/CFT, respectively. There are also conjectures stating that a similar correspondence also holds between 6d $\mathcal{N}=(1,0)$ theories and 5d $\mathcal{N}=1$ theories. For instance the (1,0) theory on N M5-branes on transverse ADE singularities and 5d $\mathcal{N}=1$ affine ADE shaped quivers with U(N) gauge groups.

0.1 Superconformal Index