Introduction Logistic regression Performance metrics Area under curve

Introduction

Probability of default ROC curve and AUC

Warsaw, March 2023

Logistic regression

Real-life examples:

- Predict whether or not a customer will default on a loan
- Predict whether or not a patient will have a heart attack
- Predict whether or not an email is a spam
- Predict whether or not a student will pass/fail an exam
- Predict whether the patient has covid

Classical formula:

$$p_i = \frac{1}{1 + e^{-(\beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots \beta_k x_{k,i})}} \in (0,1)$$

Performance metrics

Prediction	11.2%	21.3%	32.1%	44.3%	52.4%	61.7%	70.9%	81.9%	94.0%	99.9%
Actual output	0	0	1	0	0	1	1	0	1	0

How to measure whether the model is "good"?

Checks whether the model predictions accurately reflects the true (unknown) probabilities (~for how many units the actual output will be "one")

Predictive power

- binomial test
- Hosmer-Lemeshow test
- Spiegelhalter test
- Jeffrey's test

Discriminatory power

- ROC curve
- AUC statistic
- c-index

Check whether the model is able to "catch" cases with highest (lowest) probabilities (~for **which units** the actual output will be "one")

Confusion matrix:

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	True positive	False negative	
condition	Negative (0)	False positive	True negative	

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	3	1	
condition	Negative (0)	3	3	

Confusion matrix:

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	True positive	False negative	
condition	Negative (0)	False positive	True negative	

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	2	2	
condition	Negative (0)	2	4	

Confusion matrix:

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	[P]ositive (1)	True positive (TP)	False negative (FN)	
condition	[N]egative (0)	False positive (FP)	True negative (TN)	

Covid example:

		Test prediction		
		Positive (1)	Negative (0)	
Actual	[P]ositive (1)	Patients with COVID for which test result was positive	Patients with COVID for which test result was negative	
Condition	[N]egative (0)	Patients without COVID for which test result was positive	Patients without COVID for which test result was negative	

Metrics:

• Accuracy: $\frac{TP+TN}{ALL}$

rediction was correct?

Recall:

 $\frac{TP}{P}$

(P), how many of them received positive test results?

• Precision: $\frac{TP}{TP+FP}$

Among all patient test results (TP + of them have ac

Specificity: $\frac{T_{\Lambda}}{\Lambda}$

Among all patients without COVID, how many of them didn't actually have it?

Confusion matrix:

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	True positive	False negative	
condition	Negative (0)	False positive	True negative	

- Recall: $\frac{TI}{P}$
- Specificity: $\frac{Th}{h}$

Actual value	Prediction
0	11.2%
0	21.3%
0	32.1%
0	44.3%
1	52.4%
0	61.7%
1	70.9%
0	81.9%
1	94.0%
0	99.9%

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	True positive	False negative	
condition	Negative (0)	False positive	True negative	

		Predicted condition		
		Positive (1)	Negative (0)	
Actual	Positive (1)	3	0	
condition	Negative (0)	7	0	

Metrics:

•	Recall:	TI
	recan.	P

• False positive rate:
$$\frac{FF}{N}$$

• False positive rate:
$$\frac{7}{7}$$

Actual value	Prediction
0	11.2%
0	21.3%
0	32.1%
0	44.3%
1	52.4%
0	61.7%
1	70.9%
0	81.9%
1	94.0%
0	99.9%

		Predicted condition	
		Positive (1)	Negative (0)
Actual condition	Positive (1)	True positive	False negative
	Negative (0)	False positive	True negative

		Predicted condition	
		Positive (1)	Negative (0)
Actual	Positive (1)	3	0
condition	Negative (0)	6	1

Metrics:

•	Recall:	TP
-	Necall.	\overline{P}

• False positive rate:
$$\frac{FI}{N}$$

• Recall:
$$\frac{3}{3}$$

• False positive rate:
$$\frac{6}{7}$$

Actual value	Prediction
0	11.2%
0	21.3%
0	32.1%
0	44.3%
1	52.4%
0	61.7%
1	70.9%
0	81.9%
1	94.0%
0	99.9%

		Predicted condition	
		Positive (1)	Negative (0)
Actual condition	Positive (1)	True positive	False negative
	Negative (0)	False positive	True negative

		Predicted condition	
		Positive (1)	Negative (0)
Actual	Positive (1)	3	0
condition	Negative (0)	5	2

Metrics:

•	Recall:	TI
	recan.	P

• False positive rate:
$$\frac{FI}{N}$$

• False positive rate:
$$\frac{5}{7}$$

Actual value	Prediction	
0	11.2%	
0	21.3%	
0	32.1%	
0	44.3%	
1	52.4%	
0	61.7%	
1	70.9%	
0	81.9%	
1	94.0%	
0	99.9%	

0

		Predicted condition	
		Positive (1)	Negative (0)
Actual	Positive (1)	True positive	False negative
condition	Negative (0)	False positive	True negative

		Predicted condition	
		Positive (1)	Negative (0)
Actual	Positive (1)	2	1
condition	Negative (0)	2	5

Metrics:

•	Recall:	TF
	nccan.	P

• False positive rate:
$$\frac{FI}{N}$$

• Recall:
$$\frac{2}{3}$$

• False positive rate:
$$\frac{2}{7}$$

Actual value	Prediction
0	11.2%
0	21.3%
0	32.1%
0	44.3%
1	52.4%
0	61.7%
1	70.9%
0	81.9%
1	94.0%
0	99.9%

		Predicted condition			
		Positive (1)	Negative (0)		
Actual condition	Positive (1)	True positive	False negative		
	Negative (0)	False positive	True negative		

		Predicted condition			
		Positive (1)	Negative (0)		
Actual condition	Positive (1)	0	3		
	Negative (0)	0	7		

Metrics:

•	Recall:	TP
-	Necall.	\overline{P}

• False positive rate:
$$\frac{FI}{N}$$

• Recall:
$$\frac{0}{3}$$

• False positive rate:
$$\frac{0}{7}$$

ROC curve

Actual value	Prediction
7 0.7 0. 0	
0	11.2%
0	21.3%
0	32.1%
0	44.3%
1	52.4%
0	61.7%
1	70.9%
0	81.9%
1	94.0%
0	99.9%

Recall	False Positive Rate
3/3	7/7
3/3	6/7
3/3	5/7
3/3	4/7
3/3	3/7
2/3	3/7
2/3	2/7
1/3	2/7
1/3	1/7
0/3	1/7
0/3	0/7

AUC's properties

0 < AUC < 1

0.5 < AUC: model better than random sampling

0.5 = AUC: model does not have any discriminatory

power (is "as good" as random sampling)

AUC < 0.5: it is better not to have this model (or is it?)

ROC – Receiver Operating Characteristic

AUC – **A**rea **U**nder **C**urve

AUC's properties

- $0 \le AUC \le 1$ by definition
- AUC of perfect model = 1
- AUC of worst model = 0
- AUC of "random" ~ 0.5
- $AUC(\hat{y}, y) = 1 AUC(1 \hat{y}, y)$
- Monotonic transformation of \hat{y} does not change AUC, e.g.

$$AUC(\hat{y}, y) = AUC(\ln(2 * \hat{y} + 20), y)$$

- Even AUC ~ 1 does not ensure the proper performance
- Has the probability interpretation
- Can be perceived as special case of c-index statistics

0.5 < AUC: model better than random sampling

model does not have any discriminatory 0.5 = AUC:

power (is "as good" as random sampling)

AUC < 0.5: it is better not to have this model (or is it?)

- Vector of probabilites* (e.g. [0.1, 0.15, 0.54, 0.39])
- Vector of actual binary output (e.g. [1, 0, 1, 1]) y

AUC – probabilistic interpretation

Predictions	$\widehat{p_i}$	11.2%	21.3%	32.1%	44.3%	52.5%	60%
Actual output	y_i	0	0	1	0	1	0

What is a probability that $P(\widehat{p_i} > \widehat{p_j} \mid (y_i = 1 \text{ AND } y_j = 0))$? P(...) = 5 / 8

i	j	$\widehat{p_i} > \widehat{p_j}$	i	j	$\widehat{p}_i > \widehat{p}_j$
1	3	TRUE	4	3	FALSE
1	5	TRUE	4	5	TRUE
2	3	TRUE	6	3	FALSE
2	5	TRUE	6	5	FALSE

$$AUC = P(\widehat{p_i} > \widehat{p_j} \mid (y_i = 1 \text{ AND } y_j = 0)) + \frac{1}{2} \cdot P(\widehat{p_i} = \widehat{p_j} \mid (y_i = 1 \text{ AND } y_j = 0))$$

AUC – special case of concordance index (c-index / Harrell's c-index)

Predictions	$\widehat{p_i}$	11.2%	21.3%	32.1%	44.3%	52.5%	60%
Actual output	y_i	0.1	0.13	0.44	0.24	0.59	0.46

What is a probability that $P(\widehat{p_i} > \widehat{p_i} \mid (y_i > y_i))$?

$$c-index = P(\widehat{p_i} > \widehat{p_j} \mid y_i > y_j)) + \frac{1}{2} \cdot P(\widehat{p_i} = \widehat{p_j} \mid (y_i > y_j))$$

https://statisticaloddsandends.wordpress.com/2019/10/26/what-is-harrells-c-index/

Introduction Logistic regression Performance metrics Area under curve

Questions

Introduction
Types of sampling
Splitting dataset
Cross validaiton

Introduction

Sampling
Development and validation samples
Out-of-sample and out-of-time
Cross-validation

Warsaw, March 2023

Introduction to Probability of Default modeling

Types of sampling

Splitting dataset

Splitting dataset

Development sample = training dataset + validation dataset

~ model development perspective

Validation samples = Dataset 1, Dataset 2, Dataset 3, Test dataset Out-of-time = Dataset 1, Dataset 2, Dataset 3, ...

~ model validation perspective

Cross-validation

Introduction
Types of sampling
Splitting dataset
Cross validaiton

Questions

