FMI, Info, Anul I

Logică matematică și computațională

Seminar 1

(S1.1) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1$$
;

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$$
.

Demonstrație:

(ii) Notăm $f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1

Fie φ , $\psi \in Form$.

Pentru orice $e: V \to \{0, 1\}$, notăm cu $e \vDash \varphi$ (şi spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi) = 1$. Notăm cu $\vDash \varphi$ (şi spunem că φ este tautologie) dacă pentru orice $e: V \to \{0, 1\}$ avem că $e \vDash \varphi$. Spunem că φ este satisfiabilă dacă există $e: V \to \{0, 1\}$

cu $e \vDash \varphi$ și **nesatisfiabilă** în caz contrar, când nu există $e: V \to \{0,1\}$ cu $e \vDash \varphi$, i.e. pentru orice $e: V \to \{0,1\}$ avem că $e \nvDash \varphi$. Notăm $\varphi \vDash \psi$ (și spunem că **din** φ **se deduce semantic** ψ sau că ψ **este consecință semantică a lui** φ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \varphi$ avem $e \vDash \psi$. Notăm cu $\varphi \sim \psi$ dacă pentru orice $e: V \to \{0,1\}$ avem $e \vDash \varphi$ dacă și numai dacă $e \vDash \psi$, i.e. pentru orice $e: V \to \{0,1\}$ avem $e^+(\varphi) = e^+(\psi)$.

(S1.2) Să se arate că pentru orice $e: V \to \{0,1\}$ și pentru orice formule φ, ψ avem:

$$e^+(\varphi \lor \psi) = e^+(\varphi) \lor e^+(\psi)$$

Demonstraţie:

$$e^+(\varphi \lor \psi) = e^+(\neg \varphi \to \psi) = e^+(\neg \varphi) \to e^+(\psi) = \neg e^+(\varphi) \to e^+(\psi) \stackrel{(*)}{=} e^+(\varphi) \lor e^+(\psi).$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $\neg x \rightarrow y = x \lor y$:

\boldsymbol{x}	y	$\neg x$	$\neg x \to y$	$x \vee y$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	1	0	0

(S1.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

Demonstrație:

(i) Fie funcția $e: V \to \{0, 1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_2 \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1.$$

(ii) Fie funcția $e: V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_3 \\ 0, & \text{dacă } x = v_4 \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1.$$

(S1.4) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \rightarrow \psi)$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \lor (\varphi \land \psi) \sim \varphi;$
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$\begin{aligned} a &\rightarrow b = 1 &\iff a \leq b, \\ 1 &\rightarrow a = a, & a &\rightarrow 1 = 1 \\ 0 &\rightarrow a = 1, & a &\rightarrow 0 = \neg a \\ 1 &\land a = a, & 0 &\land a = 0, \\ 1 &\lor a = 1, & 0 &\lor a = a. \end{aligned}$$

(i) Fie $e:V \to \{0,1\}$ cu $e^+(\psi)=1$. Vrem să arătăm că $e^+(\varphi \to \psi)=1$. Dar:

$$e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$$

(ii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi) = 1 \text{ dacă și numai dacă } e^+(\varphi \land \psi \to \chi) = 1,$$

ceea ce este echivalent cu a arăta că $e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi)$.

Metoda 1: Ne folosim de următorul tabel:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi \to \chi)$	$e^+(\varphi \to (\psi \to \chi))$	$e^+(\varphi \wedge \psi)$	$e^+(\varphi \wedge \psi \to \chi)$
1	1	1	1	1	1	1
1	1	0	0	0	1	0
1	0	1	1	1	0	1
1	0	0	1	1	0	1
0	1	1	1	1	0	1
0	1	0	0	1	0	1
0	0	1	1	1	0	1
0	0	0	1	1	0	1

Metoda 2: Raționăm direct. Observăm că

$$e^{+}(\varphi \to (\psi \to \chi)) = e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)),$$

$$e^{+}(\varphi \land \psi \to \chi) = e^{+}(\varphi) \land e^{+}(\psi) \to e^{+}(\chi).$$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b) $e^+(\varphi) = 1$. Atunci

$$\begin{array}{lcl} e^+(\varphi) \to (e^+(\psi) \to e^+(\chi)) & = & 1 \to (e^+(\psi) \to e^+(\chi)) = e^+(\psi) \to e^+(\chi), \\ e^+(\varphi) \wedge e^+(\psi) \to e^+(\chi) & = & 1 \wedge e^+(\psi) \to e^+(\chi) = e^+(\psi) \to e^+(\chi). \end{array}$$

(iii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \vee (\varphi \wedge \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = e^+(\varphi).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 1 \vee (1 \wedge e^+(\psi)) = 1 \vee e^+(\psi) = 1.$$

(b)
$$e^+(\varphi) = 0$$
. Atunci

$$e^{+}(\varphi) \vee (e^{+}(\varphi) \wedge e^{+}(\psi)) = 0 \vee (0 \wedge e^{+}(\psi)) = 0 \vee 0 = 0.$$

(iv) Fie $e:V \to \{0,1\}$ o evaluare arbitrară.

$$e^{+}(\neg\varphi\to(\neg\psi\leftrightarrow(\psi\to\varphi)))=\neg e^{+}(\varphi)\to(\neg e^{+}(\psi)\leftrightarrow(e^{+}(\psi)\to e^{+}(\varphi))).$$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare,

$$\neg e^+(\varphi) \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi))) = 0 \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi)))$$
$$= 1.$$

(b)
$$e^+(\varphi) = 0$$
. Atunci

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = \neg 0 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))
= 1 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))
= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0)
= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)
= 1.$$

(S1.5) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.

Demonstrație:

Avem:

 $\varphi \text{ este tautologie } \iff \text{ pentru orice } e: V \to \{0,1\}, \ e^+(\varphi) = 1$ $\iff \text{ pentru orice } e: V \to \{0,1\}, \ \neg e^+(\varphi) = 0$ $\iff \text{ pentru orice } e: V \to \{0,1\}, \ e^+(\neg \varphi) = 0$ $\iff \text{ pentru orice } e: V \to \{0,1\}, \ \text{nu avem că } e^+(\neg \varphi) = 1$ $\iff \text{ nu avem că există } e: V \to \{0,1\} \ \text{cu } e^+(\neg \varphi) = 1$ $\iff \text{ nu avem că } \neg \varphi \text{ e satisfiabilă}$ $\iff \neg \varphi \text{ nu e satisfiabilă}.$