1

COMSC230 - FINAL PRESENTATION

Made By Brian Brimner, Cam Sjostedt, and Alexander Oliveira

DATASET

- Weekly Sales Transactions

Contains weekly purchased quantities of 800 over products over 52 weeks. *The data was reduced to 100 products for easier viewing.*

__

GitHub Account Details:

https://github.com/bbrims/COMSC230-Presentation

Contains:

- Jupyter Notebook file
- Final Report Document
- Powerpoint Presentation
- README

Version Control:

- Continuous updates and collaboration
- Frequent commits
- Mergin for collaborative changes

Hypotheses

 Research Hypothesis: Certain products show seasonality, with higher sales during specific weeks or periods.

Statistical Hypothesis:

Null Hypothesis (H₀):

There is no significant difference in weekly sales across different weeks or periods (no seasonality).

2. Alternative Hypothesis (H₁):

There is a significant difference in weekly sales across different weeks or periods, indicating seasonality.

Dataset Overview & Structure:

Dataset Overview:

- The dataset contains 819 rows of weekly sales data across multiple products for 52 weeks.
- For this analysis, the dataset was **slimmed down to 100 products** for more focused visualization and analysis.
- Custom product names were assigned to replace generic labels (P1, P2, etc.), making the dataset more realistic.

Data Structure:

- Product Codes: Unique identifiers for each product (e.g., EcoTherm Bottle, SmartHome Speaker).
- Weekly Sales: Number of items sold per product each week. The key variable used to identify
 patterns and trends in product performance.
- Week: Week number (W0-W51) tracking sales trends across time.

Dataset features:

- Product names (Fictitious)
- Weeks of the year
- Number of sales transactions per week

	Product_Code	W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12
0	UltraSoft Towels	11	12	10	8	13	12	14	21	6	14	11	14	16
1	SmartHome Speaker	7	6	3	2	7	1	6	3	3	3	2	2	6
2	EcoTherm Bottle	7	11	8	9	10	8	7	13	12	6	14	9	4
3	PowerMax Charger	12	8	13	5	9	6	9	13	13	11	8	4	5
4	ComfySole Sneakers	8	5	13	11	6	7	9	14	9	9	11	18	8
5	FlexiGrip Hammer	3	3	2	7	6	3	8	6	6	3	1	1	5

Potential Sales Trends & Seasonality

Sales Trends Exploration:

- Weekly sales data shows variation across products:
 - Some products display consistent sales, while others show sporadic fluctuations in sales volume.

Potential Seasonal Patterns:

- At a glance, sales data may appear relatively stable, but closer inspection reveals potential spikes during specific weeks.
 - These fluctuations could be influenced by seasonal factors, such as holidays, paydays, or other events that cause a surge in spending

Initial Observations:

- Certain products might exhibit sales surges during specific weeks, possibly due to seasonal influences.
- There may be seasonal shifts in the sales data that are influenced by external factors like holidays or promotions, which could lead to specific peaks and dips in sales across the year.

CONCLUSIONS

QUESTIONS?