Análise de Circuitos I

8. Série Eléctrica e Paralelo Eléctrico

Dois componentes estão em série quando são atravessados pela mesma corrente.

 $R_1,\ R_2,\ R_3,\ R_4$ e R_5 estão em série, relativamente aos terminais A e B.

R_{AB} (resistência medida entre os terminais A e B) é superior à maior das resistências, e <u>aumenta</u> se se colocar mais alguma resistência em série com as outras.

$$R_{AB} = R_1 + R_2 + R_3 + R_4 + R_5 = \sum_{i=1}^{5} R_i$$

Dois componentes estão em paralelo quando estão submetidos à mesma tensão.

R₁, R₂, R₃ e R₄ estão em paralelo, relativamente aos terminais A e B.

R_{AB} (resistência medida entre os terminais A e B) é inferior à menor das resistências, e diminui se se colocar mais alguma resistência em paralelo com as outras.

$$R_{AB} = R_1 // R_2 // R_3 // R_4$$

$$\frac{1}{R_{AB}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \sum_{i=1}^4 \frac{1}{R_i}$$

• Dois componentes em série podem não ter nenhum terminal comum.

 R_1 e R_4 estão em série, relativamente aos terminais A e B, mas não possuem nenhum terminal comum.

$$R_{AB} = R_1 + R_2 + R_3 + R_4$$

Universidade do Minho João Sena Esteves

Análise de Circuitos I

• Dois componentes com um terminal comum podem não estar em paralelo e também não estar em série.

Relativamente aos terminais A e B:

- R₁ está em série com R₂
- R₃ está em série com R₄ e com R₆
- R₂ não está nem em série nem em paralelo com R₃
- R₂ não está nem em série nem em paralelo com R₅
- R₅ não está nem em série nem em paralelo com R₆
- R₅ está em paralelo com a série formada por R₁ e R₂
- O paralelo de R₅ com a série formada por R₁ e R₂ está em série com R₃, R₄ e R₅.

$$R_{AB} = [(R_1 + R_2) // R_5] + R_3 + R_4 + R_6$$

A associação existente entre dois ou mais componentes de um circuito depende dos terminais considerados.

 \mathbf{R}_{AB} é a resistência medida entre os terminais A e B quando todos os outros terminais estão em aberto.

 $\mathbf{R}_{\mathbf{CD}}$ é a resistência medida entre os terminais C e D quando todos os outros terminais estão em aberto.

 $\mathbf{R}_{\mathbf{A}\mathbf{D}}$ é a resistência medida entre os terminais A e D quando todos os outros terminais estão em aberto.

 \mathbf{R}_{BC} é a resistência medida entre os terminais B e C quando todos os outros terminais estão em aberto.

Relativamente aos terminais A e B (terminais C e D em aberto), todas as resistências estão em série.

$$R_{AB} = R_1 + R_2 + R_3 + R_4 + R_5$$

Relativamente aos terminais C e D (terminais A e B em aberto), R₁, R₂, R₄ e R₅ estão em série com um circuito aberto, logo não são atravessadas por nenhuma corrente. Uma corrente que entre pelo terminal C e saia pelo terminal D só passa por R₃.

$$R_{CD} = R_3$$

Relativamente aos terminais A e D (terminais B e C em aberto):

- R₄ está em série com R₅.
- R₁, R₂ e R₃ estão em série com um circuito aberto, logo não são atravessadas por nenhuma corrente.

$$R_{AD} = R_4 + R_5$$

Relativamente aos terminais B e C (terminais A e D em aberto):

- R₁ está em série com R₂.
- R₃, R₄ e R₅ estão em série com um circuito aberto, logo não são atravessadas por nenhuma corrente.

$$R_{BC} = R_1 + R_2$$

João Sena Esteves

Universidade do Minho

14 Análise de Circuitos I

Uma fonte ideal de tensão:

 pode estar em vazio (ou seja, colocada em série com um circuito aberto), sendo atravessada por uma corrente nula;

- não pode ser curto-circuitada com um condutor ideal (ou seja, colocada em paralelo com um condutor ideal);
- pode ser colocada em série com uma ou mais fontes ideais de tensão, independentemente dos valores das tensões das outras fontes;
- <u>só</u> pode ser colocada em paralelo com outra fonte ideal de tensão que possua uma tensão de igual valor entre os seus terminais.

Uma fonte ideal de corrente:

- pode ser curto-circuitada com um condutor ideal, possuindo uma tensão nula entre os seus terminais;
- não pode estar em vazio;
- pode ser colocada em paralelo com uma ou mais fontes ideais de corrente,
 independentemente dos valores das correntes das outras fontes;
- <u>só</u> pode ser colocada em série com outra fonte ideal de corrente que debite uma corrente de igual valor;
- apresenta entre os seus terminais uma tensão cujos sentido e valor dependem do circuito alimentado pela fonte.

Dualidade...

Tensão	Série	Em vazio
Corrente	Paralelo	Em curto-circuito

Universidade do Minho João Sena Esteves