

# Algorithms and Data Structures 2 CS 1501



Spring 2023

**Sherif Khattab** 

ksm73@pitt.edu

### Announcements

- Upcoming Deadlines
  - Homework 8: this Friday @ 11:59 pm
  - Assignment 2: this Friday @ 11:59 pm
    - Support video and slides on Canvas
  - Lab 7: Tuesday 3/21 @ 11:59 pm

### Previous lecture

- LZW example and corner case
- Shannon's Entropy
- LZW vs. Huffman
- Burrows-Wheeler Compression Algorithm

### This Lecture

- Burrows-Wheeler Compression Algorithm
- ADT Priority Queue (PQ)
  - Heap implementation
  - Heap Sort
  - Indexable PQ
- ADT Graph
  - definitions
  - representations

#### Burrows-Wheeler Data Compression Algorithm

- **Best** compression algorithm (in terms of compression ratio) **for text**
- The basis for UNIX's **bzip2** tool

Adapted from: https://www.cs.princeton.edu/courses/archive/spr03/cos226/assignments/burrows.html

### **BWT: Compression Algorithm**

- Three steps
  - Burrows-Wheeler Transform
    - Cluster same letters as close to each other as possible
  - Move-To-Front Encoding
    - Convert output of previous step into an integer file with large frequency differences
  - Huffman Compression
    - Compress the file of integers using Huffman Compression

### BWT: Expansion Algorithm

- Apply the inverse of compression steps in reverse order
  - Huffman decoding
  - Move-To-Front decoding
  - Inverse Burrows-Wheeler Transform

- Initialize an ordered list of the 256 ASCII characters
  - character *i* appears *i*th in the list
- For each character c from input
  - output the index in the list where c appears
  - move c to the front of the list (i.e., index 0)

















Output:

4





Output: 4 1









In the output of MTF Encoding, smaller integers have higher frequencies than larger integers

- Initialize an ordered list of 256 characters
  - o same as encoding
- For each integer *i* (*i* is between 0 and 255)
  - o print the *i*th character in the list
  - o move that character to the front of the list



























#### **BWT: Compression Algorithm**

#### Compression

- O Burrows-Wheeler Transform
- Move-To-Front Encoding ✓
- Huffman Compression

#### Expansion

- O Huffman decoding **V**
- Move-To-Front decoding
- Inverse Burrows-Wheeler Transform

### Burrows-Wheeler Transform

- Rearranges the characters in the input
  - lots of clusters with repeated characters
  - still possible to recover the original input
- Intuition: Consider the string hen in English text
  - most of the time the letter preceding it is t or w
  - group all such preceding letters together (mostly t's and some w's)

### Burrows-Wheeler Transform

- For each block of length N characters
  - generate N strings by cycling the characters of the block one step at a time
  - o sort the strings
  - O output is the **last column** in the sorted table and the **index** of the original block in the sorted array

### **Burrows-Wheeler Transform**

- Example: Let's transform "ABRACADABRA"
- N = 11

**AABRACADABR** 

Cyclic Versions of the string: After Sorting **ABRACADABRA**  AABRACADABR BRACADABRAA ABRAABRACAD RACADABRAAB ABRACADABRA **ACADABRAABR** ACADABRAABR CADABRAABRA ADABRAABRAC ADABRAABRAC BRACADA **RDARCAAABB** DABRAABRACA ABRAABRACAD CADABRAABRA BRAABRACADA DABRAABRACA RAABRACADAB RAABRACADAB

RACADABRAAB

#### Burrows-Wheeler Transform Example 2

Input: ABABABA

Step 1: Build an array of 7 strings, each a circular rotation of the original original array sorted array

**ΔRΔRΔRΔ** 

by one character



BABABAA



- **Notice that** the first column of the sorted array has the same characters as the last column
  - all columns have the same set of letters
- Step 3: Output the last column of the sorted array and the index of the input string in the sorted array

AARARAR

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 1: Sort the encoded string
  - BBBAAAA → AAAABBB
  - The first column of the sorted array has the same characters as the last column
    - but in sorted order



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 1: Sort the encoded string
  - BBBAAAA → AAAABBB
  - This gives us the first column of the sorted array



32

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - holds the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column original array

**ABABABA** 

**BABABAA** 

**ABABAAB** 

**BABAABA** 

**ABAABAB** 

**BAABABA** 

**AABABAB** 



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column



next

\_

\_

-

\_

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column



next

3

\_

\_

\_

\_

-

\_

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column



next

3

4

\_

\_

\_

-

\_

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row *i* holding character *c*
    - next[i] = first unassigned index of c in the last column



next

3

4

\_

\_

\_

\_

\_

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row *i* holding character *c*
    - next[i] = first unassigned index of c in the last column



next

3

4

5

\_

\_

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column



next

3

4

5

6

-

-

-

- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row *i* holding character *c*
    - next[i] = first unassigned index of c in the last column



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row *i* holding character *c*
    - next[i] = first unassigned index of c in the last column



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 2: Fill an array next[]
  - defined for each entry in the sorted array
  - tells us the index in sorted array of the next string in the original array
  - Scan through the first column
    - for each row i holding character c
    - next[i] = first unassigned index of c in the last column
- Why does that work?
  - first character of a string becomes the last character in the next string in the original order



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?

A??????



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?
- The next character is the first character of the next string in the original order
  - first character in string at next[3]

AB?????



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?
- The next character is the first character of the next string in the original order
  - first character in string at next[6]

**ABA????** 



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?
- The next character is the first character of the next string in the original order
  - first character in string at next[2]

ABAB???



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?
- The next character is the first character of the next string in the original order
  - first character in string at next[5]

ABABA??



- Output of BWT:
  - BBBAAAA and 3
- How can we recover ABABABA?
- Step 3: Recover the input string using the next[] array
- We can conclude that A is the first character in the input string
  - why?
- The next character is the first character of the next string in the original order
  - first character in string at next[5]

ABABABA



# Downsides of Burrows-Wheeler Algorithm

- process blocks of input file
  - O Compared to LZW, which processes the input one character at time
- The larger the block size, the better the compression
  - O But the **longer** the sorting time

# Repetitive Minimum Problem

- Input:
  - a (large) dynamic set of data items
- Output:
  - repeatedly find a minimum item
- You are implementing an algorithm that repetitively solve this problem
  - examples of such an algorithm?
    - Selection sort and Huffman tree construction
- What we cover today applies to the repetitive maximum problem as well

# Let's create an ADT!

# The Priority Queue ADT

- Let's generalize min and max to highest priority
- Primary operations of the PQ:
  - O Insert
  - Find item with highest priority
    - e.g., findMin() or findMax()
  - Remove an item with highest priority
    - e.g., removeMin() or removeMax()
- We mentioned priority queues in building Huffman tries
  - How do we implement these operations?
    - Simplest approach: arrays

## **Unsorted array PQ**

- Insert:
  - Add new item to the end of the array
  - $\circ$   $\Theta(1)$
- Find:
  - Search for the highest priority item (e.g., min or max)
  - $\circ$   $\Theta(n)$
- Remove:
  - Search for the highest priority item and delete
  - $\circ$   $\Theta(n)$

## **Sorted array PQ**

- Insert:
  - Add new item in appropriate sorted order
  - $\circ$   $\Theta(n)$
- Find:
  - Return the item at the end of the array
  - $\circ$   $\Theta(1)$
- Remove:
  - Return and delete the item at the end of the array
  - $\circ$   $\Theta(1)$

## So what other options do we have?

- What about a balanced binary search tree?
  - Insert
    - **■** Θ(lg n)
  - Find
    - **■** Θ(lg n)
  - Remove
    - Θ(lg n)
- OK, all operations are Θ(lg n)
  - No constant time operations

#### Which implementation should we choose?

- Depends on the application
- We can compare the *amortized runtime* of each implementation
- Given a set of operations performed by the application:

Amostized = Total runtime of asymme of operations runtime #operations

#### **Example: Huffman Trie Construction**

- K-1 iterations
  - O K is the # unique characters in the file to be compressed
- Fach iteration:
  - O 2 removeMin calls
  - O 1 insert call
- Unsorted Array: Total time Huffman Trie Construction =(K-1)\*[2 \* K + 1 \* 1] = O(K<sup>2</sup>)
- Sorted Array: Total time Huffman Trie Construction =(K-1)\*[2 \* 1 + 1 \* K] = O(K²)
- Balanced BST: Total time Huffman Trie Construction =(K-1)\*[2 \* log K + 1 \* log K] =
   O(K log K)

# Repetitive Highest Priority Problem

#### Input:

- a (large) dynamic set of data items
  - · each item has a priority
  - e.g., highest priority is minimum item
  - e.g., highest priority is maximum item
- a stream of zero or more of each of the following operations
  - Find a highest priority item in the set
  - Insert an item to the set
  - Remove a highest priority item from the set

#### Examples

- Selection sort
  - Repeatedly, remove a minimum item from the array and insert it in its correct position in the sorted array
- Huffman trie construction
  - Each iteration: remove a minimum tree from the forest (twice) and insert a new tree

# Let's create an ADT!

- The ADT Priority Queue (PQ)
  - Primary operations of the PQ:
    - Insert
    - Find item with highest priority
      - e.g., findMin() or findMax()
    - Remove an item with highest priority
      - e.g., removeMin() or removeMax()

# What are possible implementations of the PQ ADT?

|                | findMin  | removeMin | insert   |
|----------------|----------|-----------|----------|
| Unsorted Array | O(n)     | O(n)      | O(1)     |
| Sorted Array   | O(1)     | O(1)      | O(n)     |
| Red-Black BST  | O(log n) | O(log n)  | O(log n) |

## Is a BST overkill to implement ADT PQ?

- Balanced BST (e.g., RB-BST) provides log n runntime time for all operations
- Our find and remove operations only need the highest priority item, not to find/remove any item
  - Can we take advantage of this to improve our runtime?
    - Yes!

#### The heap

- A heap is complete binary tree such that for each node T in the tree:
  - T.item is of a higher priority than T.right\_child.item
  - T.item is of a higher priority than T.left\_child.item

- It does not matter how T.left\_child.item relates to T.right\_child.item
  - This is a relaxation of the approach needed by a BST

#### The *heap property*

## Min Heap Example

• In a Min Heap, a highest priority item is a minimum item



### **Heap PQ runtimes**

- Find is easy
  - Simply the root of the tree
    - $\Theta(1)$
- Remove and insert are not quite so trivial
  - O The tree is modified and the heap property must be maintained

## **Heap insert**

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property

# Min heap insert



#### **Heap remove**

- Tricky to delete root...
  - O So let's simply overwrite the root with the item from the last leaf and delete the last leaf
    - But then the root is violating the heap property...
      - So we push the root down the tree until it is supporting the heap property

# Min heap removal



## **Heap runtimes**

- Find
  - Ο Θ(1)
- Insert and remove
  - O Height of a complete binary tree is Ig n
  - At most, upheap and downheap operations traverse the height of the tree
  - $\bigcirc$  Hence, insert and remove are  $\Theta(\lg n)$

#### **Heap implementation**

- Simply implement tree nodes like for BST
  - This requires overhead for dynamic node allocation
  - O Also must follow chains of parent/child relations to traverse the tree
- Note that a heap will be a complete binary tree...
  - O We can easily represent a complete binary tree using an array

#### **Storing a heap in an array**

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
  - $\bigcirc$  parent(i) = [(i 1) / 2]
  - left\_child(i) = 2i + 1
  - O right\_child(i) = 2i + 2

For arrays indexed from 0



#### Can we turn any array into a heap?

- Yes!
- Any array can be thought of as a complete tree!
- We can change it into a heap using the following algorithm
- Scan through the array right to left starting from the rightmost non-leaf
  - $\bigcirc$  the largest index *i* such that left\_child(i) is a valid index (i.e., < n)
  - $\bigcirc$  2i+1 < n  $\rightarrow$  i < (n-1)/2
  - O push the node down the tree until it is supporting the heap property
- This is called the **Heapify** operation



























### **Heapify Running time**

- Upper bound analysis:
  - O We make about n/2 downheap operations
    - log n each
  - O So, O(n log n)

### **Heapify Running time**

- A tighter analysis
  - O for each node that we start from, we make at most *height[node]* swaps



### **Heapify Running time: A tighter analysis**

- Runtime =  $\sum_{i=1}^{n} height[n]$
- =  $\sum_{i=0}^{\log n} number\ of\ nodes\ with\ height\ i$
- Assume a full tree
  - $\bigcirc$  A node with height *i* has  $2^i$  nodes in its subtree including itself
  - O Assume k nodes with height i:
  - O they will have  $k2^i$  nodes in their subtrees
  - $\bigcirc$   $k2^i <= n \rightarrow k <= n/2^i$
- So, at most n/2<sup>i</sup> nodes exist with height I
- =  $\theta(largest term) = \theta(n)$

### **Heap Sort**

- Heapify the numbers
  - MAX heap to sort ascending
  - MIN heap to sort descending
- "Remove" the root
  - O Don't actually delete the leaf node
- Consider the heap to be from 0 .. length 1
- Repeat

# **Heap sort analysis**

- Runtime:
  - O Worst case:
    - n log n
- In-place?
  - O Yes
- Stable?
  - O No

### **Storing Objects in PQ**

- What if we want to **update** an Object in the heap?
  - O What is the runtime to find an arbitrary item in a heap?
    - **■** Θ(n)
    - $\blacksquare$  Hence, updating an item in the heap is Θ(n)
  - O Can we improve of this?
    - Back the PQ with something other than a heap?
    - Develop a clever workaround?

### **Indirection**

- Maintain a second data structure that maps item IDs to each item's current position in the heap
- This creates an indexable PQ

### **Indirection example setup**

- Let's say I'm shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.
- Keep objects of the following type in the heap:

```
class CardPrice implements Comparable<CardPrice>{
      public String store;
      public double price;
      public CardPrice(String s, double p) { ... }
      public int compareTo(CardPrice o) {
            if (price < o.price) { return -1; }</pre>
            else if (price > o.price) { return 1; }
            else { return 0; }
```

### **Indirection example**

- n = new CardPrice("NE", 333.98);
- a = new CardPrice("AMZN", 339.99);
- x = new CardPrice("NCIX", 338.00);
- b = new CardPrice("BB", 349.99);
- Update price for NE: 340.00
- Update price for NCIX: 345.00
- Update price for BB: 200.00

#### Indirection

"NE":2

"AMZN":1

"NCIX":3

"BB":0



### **Indexable PQ Discussion**

- How are our runtimes affected?
- space utilization?
- how should we implement the indirection?
- what are the tradeoffs?

# A new problem!!

- Input: A file containing LinkedIn (LI) accounts and their connections
  - Account1: Connection1, Connection2, ...
  - Account2: Connection1, Connection2, ...

•



CS 1501 – Algorithms & Data Structures 2 – Sherif Khattab

# Problem of the Day

- Output: Answer the following questions:
  - Given two LI accounts, how "far" are they from each other?
    - e.g., 1<sup>st</sup> connection?, 2<sup>nd</sup> connection?, etc.
  - Are the accounts in the file all connected?
    - If not, how many connected components are there?
  - For each connected component, are there certain accounts that if removed, the remaining accounts become partitioned?



# Which Data Type to use?

- Let's think first about how to organize the data that we have in memory
- Note that the operations are different from what we have been used to (search, sort, min, max, add, delete, ...)

- Account1: Connection1, Connection2, ...
- Account2: Connection1, Connection2, ...
- ...

# **Graphs!**



## Graphs

- A graph G = (V, E)
  - O where V is a set of vertices
  - O E is a set of edges connecting vertex pairs
- Example:
  - $\bigcirc$  V = {0, 1, 2, 3, 4, 5}
  - $\bigcirc$  E = {(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)}



# Why?

• Can be used to model many different scenarios



#### **Some definitions**

- Undirected graph
  - $\bigcirc$  Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
  - O Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, or neighbors
  - O Vertices connected by an edge

### **Graph sizes**

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
  - O Minimum value of e?
    - Definition doesn't necessitate that there are any edges...
    - **So**, 0
  - O Maximum of e?
    - Depends...
      - Are self edges allowed?
      - Directed graph or undirected graph?
    - In this class, we'll assume directed graphs have self edges while undirected graphs do not

### **Maximum value of e (MAX)**

- Undirected graph
  - O no self edges
  - $\circ$  v\*(v-1)?
  - O But, A->B is the same edge as B-> A
  - O Are we counting each twice?
  - $\circ$  v\*(v-1)/2
- Directed graph
  - O self edges allowed
  - O v\*v?
  - A -> B is a different edge thanB -> A
  - $Ov^2$





### **More definitions**

• A graph is considered *sparse* if:

$$\bigcirc$$
 e <= v lg v

• A graph is considered *dense* as it approaches  $\mathcal{A}\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{C}$ the maximum number of edges

$$\bigcirc$$
 I.e.,  $e == MAX - \epsilon$ 

- A complete graph has the maximum number of edges
- Have we seen "sparse" and dense before?





# **Sparse graphs**



# **Question:**

• Is



### Representing graphs

- Trivially, graphs can be represented as:
  - List of vertices
  - List of edges
- Performance?
  - O Assume we're going to be analyzing static graphs
    - I.e., no insert and remove
  - O So what operations should we consider?

### **Graph operations**

- Static graphs
  - O check if two vertices are neighbors
  - O find the list of neighbors of a given vertex
    - for directed graphs, in-neighbors and out-neighbors
- Dynamic graphs
  - O add/remove edges
  - Not our focus in this class

### Representing graphs

- Trivially, graphs can be represented as:
  - List of vertices
  - List of edges
- Performance?
  - Check if two vertices are neighbors
    - **■** O(e)
  - O Find the list of neighbors of a given vertex
    - O(e)
- Space?
  - $\bigcirc$   $\Theta(v + e)$  memory

### **Using an adjacency matrix**

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j)  $\in$  E

$$\bigcirc$$
 M[i][j] = 0 if (i, j)  $\notin$  E

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | ~ | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 | 0 | 1 | 1 |
| 4 | 1 | 1 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |



### **Using an adjacency matrix**

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j)  $\in$  E

$$\bigcirc$$
 M[i][j] = 0 if (i, j)  $\notin$  E

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 | 0 | 1 | 1 |
| 4 | 1 | 1 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |



### **Adjacency matrix analysis**

- Runtime?
  - O Check if two vertices are neighbors
    - **■** Θ(1)
  - O Find the list of neighbors of a vertex
    - **■** O(v)
  - $\bigcirc$  O(v<sup>2</sup>) time to initialize
- Space?
  - $O(v^2)$

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 | 0 | 1 | 1 |
| 4 | 1 | 1 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |

## **Adjacency lists**

Array of neighbor lists

O A[i] contains a list of the neighbors of vertex i



### **Adjacency list analysis**



- Check if two vertices are neighbors
- O Find the list of neighbors of a vertex
  - **■** Θ(d)
  - d is the degree of a vertex (# of neighbors)
  - **■** O(v)

#### • Space?

- $\bigcirc$   $\Theta(v + e)$  memory
- O overhead of node use
- $\bigcirc$  Could be much less than  $v^2$



### **Comparison**

 Where would we want to use adjacency lists vs adjacency matrices?

- Dense graphs?
- Sparse graphs?
- What about the list of vertices/list of edges approach?