The IF-THEN Machine

A skeptic's guide to simulations

Benjamin Metha

What even ARE simulations?

- Are they inductive logic (like an experiment)?
- Deductive (like a mathematical proof)?
- Or something else?

Main source: Frank Varenne, What does a computer simulation prove? (2001).

Goals of this talk:

- Present three different viewpoints
- Stimulate discussion among new students
- Get opinions from simulation experts
- Figure out how much we can trust the results of simulation

Some definitions:

- Inductive reasoning: using observations and inference from data to generate new knowledge.
- Deductive reasoning: using prior knowledge, definitions and logic to generate new knowledge.
- Simulation: A mathematical model that describes or creates computationally a system process.
 (Other definitions may insist that simulations are discretised/ have no analytic solution/involve stochastic elements)

Simulations... as real experiments

- Things are more than we can observe! (Durkheim, 1895)
 - Eg. What is an atom?
 - We can talk about the properties it has, but not what it **is**.
 - So doing experiments on synthetic things with these properties is as good as doing them in reality.

Simulations... as real experiments

The First Monte Carlo Simulation

 Invented by Ulam and von Neumann to study nuclear disintegration during WWII.

 Objects studied are discrete and stochastic - so the simulation is a true experiment on discrete, stochastic

things!

Simulations... as real experiments

Artificial life

- Definition of life: something that eats, evolves, reproduces...
- Different opinions about whether creatures in sim are alive.
- Researchers study life as a process

Simulations... as tools for reasoning

- Thought experiments are a valid form of deductive reasoning
- A simulation is a thought experiment, but with a computer doing the "thinking"
- "Computers are like a bicycle for our minds" Steve Jobs

Simulations... as tools for reasoning

The IF-THEN Machine

Simulations... as tools for reasoning

The IF-THEN Machine

- Simulations belong in between theory and experimentation
- They can falsify a theory, but not an observation
- "Trading zone" between theory and experiment
 - Theory → observable predictions
 - Observations → new theory

The IF-THEN-BUT SINCE Machine

The IF-THEN-BUT SINCE Machine

The IF-THEN-BUT SINCE Machine

Simulations... as pure fiction

- There is no reason to believe that our models correspond to reality.
- When constructing a simulation, we construct a hypothetical reality that is only similar to our own.
- An experiment on the model, and not on the thing itself!
- Still, fictions can teach us important lessons.

Conclusions - a simulation is...

- A real experiment on the objects in your simulation, which are equivalent to the things that you are studying.
- A **deductive tool** like a thought experiment that does not suffer from the limitations of the human mind.
- A **trading zone** that allows new predictions to be made from theory, and inspire new theory from observations.
- Different simulations may be better described by different interpretations.

Conclusions - Know your "IF"s!

- Understand the assumptions that your simulation is making.
- Know what approximations are made, and how they may introduce uncertainties into your results.
- Other numerical issues resolution, convergence...