Page : 1	Statique des solides	PSI	TP
	Barrière automatique Sympact		

Problème technique:

Prévoir puis vérifier les performances du système en termes d'actions mécaniques transmissibles.

Compétence visée :

- Acquérir des signaux expérimentaux.
- Modéliser les actions mécaniques.
- **Résoudre** un problème de statique pour déterminer une loi entrée sortie.
- Analyser les écarts entre performances attendues et mesurées.

Pré-requis:

• Programme de statique de première année.

Matériel utilisé :

- Barrière Sympact
- Ordinateur avec logiciel de commande et d'acquisition

<u>Déroulement du TP</u>:

- Observation générale de la barrière automatique.
- Analyse structurelle de la chaine d'énergie.
- Etude expérimentale concernant la mesure du couple de la pompe et des efforts transmissible par le vérin hydraulique.
- Modéliser les actions mécaniques mise en jeu dans la pompe hydraulique.
- Résoudre un problème de statique pour déterminer une loi entrée sortie.
- Analyser les écarts.

I. Présentation du système

1. Présentation du contexte

On appelle « lisse » la barre de la barrière. Sur cette lisse est montée une masse mobile qui permet, suivant sa position, de simuler des longueurs différentes (masse différentes).

Page : 2	Statique des solides	PSI	TP
Barrière automatique Sympact			

2. Mise en route du système

1	Sur l'ordinateur, ouvrir une session avec « elev5 » comme utilisateur et « @e5 » comme mot de passe, puis « sympact » comme modèle.
2	Mettre sous tension le système : basculer le disjoncteur sur « ON »
3	Tourner le bouton rouge sur « ON »
4	Tourner le bouton « Automatisation commande » sur « 1 ».
5	Lancer le logiciel à partir de l'icône « Barrière Sympact » placé sur le bureau
4	Visionner la vidéo « Utilisation Parc Privé » présentée dans la zone « LE CONTEXTE »
5	 Etablir la connexion en plaçant l'interrupteur sur « ON » (interrupteur virtuel à gauche de la fenêtre). Cliquer sur le bouton « Etalonnage capteur position lisse » (un des trois boutons en bas de la fenêtre) Charger les paramètres par défaut
	2 3 4 5

II. Analyse fonctionnelle globale et structurelle de la pilote automatique hydraulique

Question 1. En consultant le site internet ERO dans le « CONTEXTE » repérer d'autres caractéristiques externes du fonctionnement de la barrière « SYMPACT ».

Question 2.

Après avoir consulté **l'annexe 1** (document annexe) proposer les modifications à apporter aux diagrammes pour chacun des trois cas d'utilisation :

Utilisation en parc privé:

• Remplacer l'élément du milieu environnant « superviseur » par :

Utilisation autoroutière avec péage :

• Préciser l'exigence 7.5.3 :

Utilisation autoroutière avec télépéage :

- Redéfinir le titre de l'exigence 7.0 :
- Préciser l'exigence 7.5.3 :

Page : 3	Statique des solides	PSI	TP
	Barrière automatique Sympact		

III. Analyse expérimentale : mesure du couple de rappel du ressort

1. Objectif de l'expérimentation

L'objectif de l'expérimentation est ici de quantifier le couple de rappel du ressort et de vérifier les performances attendues et les confronter au cahier des charges.

2. Manipulations:

a) Tarage du ressort

Sur la lisse réduite du laboratoire on place une masse m correspondant à la charge mobile. On note Y_m la position de cette masse par rapport à l'axe de rotation.

- Mettre la maquette hors énergie. Placer la masse mobile en position minimale : Y_{mlisse} = 0,170 m.
- Manipuler la lisse, observer l'implantation du ressort et constater qu'il exerce un couple de rappel .
- Recommencer la manipulation en plaçant la masse à 0,75m puis à 0,5m.
 - **Question 3.** Que constate t-on?
 - **Question 4.** Conclure vis-à-vis du cahier des charges (Dans EMP/LE CONTEXTE consulter la description des deux cas d'utilisation des barrières SYMPACT dans les situations « Hors énergie »).
 - **Question 5.** Avec le tarage du ressort installé quelle configuration peut-on simuler ?

b) Couple de rappel

- Mettre la maquette hors énergie. Démonter le galet d'entraînement de la bielle.
- Remettre la maquette sous tension. Dans l'« EMP » choisir « LE MECANISME », « MODELISATION DU MECANISME » et demander une vue suivant x. On appelle θ l'angle d'inclinaison de la lisse par rapport à l'horizontale.
- Ouvrir le fichier barriere.xls situé dans « Z:\\public\PSI\cycle1\2-barriere_sympact ». Choisir la feuille « Raideur ».
- Pour différentes valeurs de θ (0°, 10°, 20°, ..., 90°), relever la position de la masse mobile permettant de maintenir la barrière en équilibre.
- Exprimer le couple de rappel C_r exercé par le ressort en fonction de Y_m et de l'angle θ .
- Utiliser le tableur Excel pour tracer la courbe $C_r = C_0 k(\theta_{31} 45^\circ)$ et déterminer le paramètre C_0 et la raideur k (en Nm/°).

IV. Modélisation des actions mécaniques mises en jeu

Les longueurs des lisses qui équipent les barrières SYMPACT peuvent être comprises entre 2,5 m et 3 m. Pour réduire l'encombrement et simuler différentes longueurs, la barrière SYMPACT de laboratoire est équipée d'une lisse de longueur réduite associée à une masse mobile.

1. Modélisation de la lisse équivalente

On note L la longueur de la lisse réelle, Lr la longueur de la lisse réduite du laboratoire, m la masse de la charge mobile, Ym la position de cette masse par rapport à l'axe de rotation et la masse linéique du tube de lisse. La masse du lest d'extrémité présent uniquement sur la lisse du laboratoire est identique à la masse de la charge mobile et son centre de gravité se trouve à une distance Lm de l'axe de rotation.

Question 6. Déterminer la relation qui lie L et Ym en écrivant, pour les deux lisses, que l'action de la pesanteur crée des moments identiques par rapport à l'axe de rotation.

Le constructeur donne $L = \sqrt{5.3 + 5.6Y_m}$ en m.

Question 7. Vérifier la formule trouvée en faisant l'application numérique avec : Lr = 0.84 m, $\,\mu$ = 1 kg/m , m = 2.8 kg , L_m = 0.825 m , g = 10 m/s²

Question 8. Quelles longueurs de lisse peut-on simuler en faisant varier la position de la masse mobile ?

2. Expression du coupe moteur

On utilisera le paramétrage donné sur la figure en annexe. On note :

- C_m le couple en sortie du motoréducteur.
- $\vec{R}_{2\rightarrow 3} = Z_{23}\vec{z}_3$ l'action du galet sur la bielle (3)
 - **Question 9.** Déterminer l'expression de C_m en fonction de Z_{23} , de θ_{31} et θ_{21} .
 - **Question 10.** Déterminer l'expression du couple en sortie du motoréducteur en fonction de θ_{31} et θ_{21}

Question 11. Tracer les courbes avec et sans ressort en utilisant Excel et vérifier avec l'EMP. Conclure sur l'intérêt d'utiliser un ressort.

(Remarque : La fermeture géométrique de la chaîne de solides a permis d'exprimer θ_{21} et y_{23} en fonction de θ_{31})

Page : 5	Statique des solides	PSI	TP
Barrière automatique Sympact			

ANNEXE

Page : 6	Statique des solides	PSI	TP
	Barrière automatique Sympact		

ANNEXE 1 : DIAGRAMMES DE CONTEXTE ET DES EXIGENCES EXTERNES

DIAGRAMME DE CONTEXTE

DIAGRAMME DES EXIGENCES EXTERNES

Page : 7	Statique des solides	PSI	TP
	Barrière automatique Sympact		

a. Exigence AUTORISER LE PASSAGE

b. Exigence INTERDIRE LES MOUVEMENTS NON AUTORISES

c. Exigence FONCTIONNEMENT HARMONIEUX

Page : 8	Statique des solides	PSI	TP
	Barrière automatique Sympact		

d. Exigence RECEVOIR DES ORDRES ET EMETTRE DES INFORMATIONS

e. Exigence LIMITER LA CONSOMMATION D'ENERGIE

Page : 9	Statique des solides	PSI	TP
	Barrière automatique Sympact		

Annexe 2: Diagramme de blocs et Exigence fonction deplacer la lisse

DIAGRAMME DE BLOCS COMPOSANTS DE LA BARRIERE SYMPACT

FONCTION DEPLACER LA LISSE

Page : 10 Statique des solides PSI TP

Barrière automatique Sympact

f. Exigence OUVRIR/FERMER

g. Exigence LIMITER LE COUPLE

h. Exigence CONTROLER LE MOUVEMENT

Page : 11	Statique des solides	PSI	TP
	Barrière automatique Sympact		

i. Exigence AMENER EN POSITION DE REPOS

j. Exigence CONFIGURER EN REVERSIBLE

ANNEXE 3 : Synoptique de la commande de la barrière.

