

What criteria shall we use for the selection?

- Error rate?
 - · That's what we want
 - · But how can we know before we do it?
- Metrics J_{ij} on separability of classes i and j with the features
 - They should be
 - Be correlated with error rate, e.g., $J_{ij} \uparrow \rightarrow P_e \downarrow$
 - $J_{ij} \ge 0$, $J_{ii} = 0$, $J_{ij} = J_{ji}$
 - · Addable for independent features
 - · Not decreasing when adding new features

⑩消華大学

8.1.1 Metrics based on distance

Average distance between classes

$$J_D = \frac{1}{2} \sum_{i=1}^{c} P_i \sum_{j=1}^{c} P_j \frac{1}{n_i n_j} \sum_{k=1}^{n_i} \sum_{l=1}^{n_j} \delta\left(\mathbf{x}_k^{(i)}, \mathbf{x}_l^{(j)}\right)$$

where $\boldsymbol{x}_k^{(i)} \in \omega_l$, $k = 1, \cdots, n_i, \ \boldsymbol{x}_l^{(j)} \in \omega_j$, $l = 1, \cdots, n_j, P_i$, P_j are the prior probability of the classes, and $\delta(\boldsymbol{x}_k^{(i)}, \boldsymbol{x}_l^{(j)})$ are the distance between two samples, e.g.,

$$\delta\left(x_{k}^{(i)}, x_{l}^{(j)}\right) = \left(x_{k}^{(i)} - x_{l}^{(j)}\right)^{T} \left(x_{k}^{(i)} - x_{l}^{(j)}\right).$$

Calculation using scatter matrixes

$$J_D = tr(\tilde{S}_w + \tilde{S}_b)$$

Between-class scatter matrix

$$\tilde{S}_b = \sum_{i=1}^{c} P_i(\boldsymbol{m}_i - \boldsymbol{m})(\boldsymbol{m}_i - \boldsymbol{m})^T$$

Within-class scatter matrix

$$\tilde{S}_{w} = \sum_{i=1}^{c} P_{i} \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} (x_{k}^{(i)} - m) (x_{i}^{(i)} - m)^{T}$$

Class mean $m_i = \frac{1}{n_i} \sum_{k=1}^{n_i} x_k^{(i)}$

Total mean $\boldsymbol{m} = \sum_{i=1}^{c} P_i \boldsymbol{m}_i$

ong Zhang

Ref. Fisher's criterion

$$J_F = \frac{(\widetilde{m}_1 - \widetilde{m}_2)^2}{\widetilde{S}_1^2 + \widetilde{S}_2^2}$$

Other types of distance-based criteria

$$J_1 = tr(S_w + S_b)$$
$$J_2 = tr(S_w^{-1}S_b)$$

$$J_3 = \ln \frac{|S_b|}{|S_w|}$$

$$J_4 = \frac{trS_b}{trS_w}$$

$$J_5 = \frac{|S_b - S_w|}{|S_w|}$$

Note:

- Intuitive and easy to compute
- No explicit relation with error rate
- Better when covariances are not very different between classes

Some popular distance measurements

- Minkovski Metric (of order s): $\delta(x_k, x_l) = \left[\sum_{i=1}^d |x_{ki} x_{li}|^s\right]^{\frac{1}{s}}$
- Euclidean Distance: $\delta_E(x_k, x_l) = [(x_k x_l)^T(x_k x_l)]^{\frac{1}{2}}$
- City-Block Distance: $\delta(x_k, x_l) = \sum_{i=1}^d |x_{ki} x_{li}|$
- Chobychev Distance: $\delta(x_k, x_l) = \max_i |x_{ki} x_{li}|$

- Squared Distance: $\delta(x_k, x_l) = (x_k x_l)^T Q(x_k x_l)$
- Nonlinear distances, e.g., $\delta(x_k, x_l) = \begin{cases} H & \text{if } \delta_E(x_k, x_l) \geq T \\ 0 & \text{if } \delta_E(x_k, x_l) < T \end{cases}$

8.1.2 Metrics based on distributions

◎消華大学

• To measure the overlapping of two distributions

$$J_p(\cdot) = \int g[p(x|\omega_1), p(x|\omega_2), P_1, P_2] dx$$

- Example:
 - · Bhattacharyya distance

$$J_B = -\ln \int [p(x|\omega_1)p(x|\omega_2)]^{\frac{1}{2}} dx$$

Chernoff distance

$$J_c = -\ln \int p^s(x|\omega_1)p^{1-s}(x|\omega_2) dx$$

Divergence

$$J_D = \int_x [p(x|\omega_1) - p(x|\omega_2)] \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} dx$$

- Similarly, we can consider difference between the density function of one class with that of the whole sample.
 - Since $p(x, \omega_i) = p(x|\omega_i)P(\omega_i)$, if $p(x) = p(x|\omega_i)$, feature x is independent with class ω_i and cannot provide information for the classification.
- Probabilistic correlation criterion:

ng Zhang

$$J_i = \int g(p(x|\omega_i), p(x), P(\omega_i)) dx$$

Some probability distance measures

Chernoff

$$I_c = -\ln \int p^s(x|\omega_1) p^{1-s}(x|\omega_2) dx$$
, $I_c = -\ln \int p^s(x|\omega_i) p^{1-s}(x) dx$

Bhattacharyya

$$J_B = -\ln \int \sqrt{p(x|\omega_1)p(x|\omega_2)} dx$$
, $I_B = -\ln \int \sqrt{p(x|\omega_i)p(x)} dx$

· Matusita

$$J_{M} = \left[\int \left(\sqrt{p(x|\omega_{1})} - \sqrt{p(x|\omega_{2})} \right)^{2} dx \right]^{\frac{1}{2}}, I_{M} = \left[\int \left(\sqrt{p(x|\omega_{i})} - \sqrt{p(x)} \right)^{2} dx \right]^{\frac{1}{2}}$$

· Divergence

$$J_{D} = \int [p(x|\omega_{1}) - p(x|\omega_{2})] \ln \frac{p(x|\omega_{1})}{p(x|\omega_{2})} dx , I_{D} = \int [p(x|\omega_{i}) - p(x)] \ln \frac{p(x|\omega_{i})}{p(x)} dx$$

· Patrick-Fisher

$$J_{P} = \left[\int (p(x|\omega_{1})P_{1} - p(x|\omega_{2})P_{2})^{2} dx \right]^{\frac{1}{2}}, I_{P} = \left[\int (p(x|\omega_{i})P_{i} - p(x))^{2} dx \right]^{\frac{1}{2}}$$

· Lissack-Fu

$$J_{L} = \int |p(x|\omega_{1})P_{1} - p(x|\omega_{2})P_{2}|^{\alpha}p(x)^{1-\alpha} dx$$

Kolmogorov

$$J_K = \int |p(x|\omega_1)P_1 - p(x|\omega_2)P_2| dx$$

8.1.3 Metrics based on information theory

- Entropy
 - -Information Entropy (Shannon, 1949)

$$I = -(P_1 \log_2 P_1 + P_2 \log_2 P_2 + \dots + P_k \log_2 P_k) = -\sum_{i=1}^k P_i \log_2 P_i$$

-Shannon Entropy for feature selection

$$H = -\sum_{i=1}^{c} P(\omega_i|x) \log_2 P(\omega_i|x)$$

Mutual Information (MI)

ng Zhang

$$I(X;Y) = \int_{Y} \int_{X} p_{(X,Y)}(x,y) \log \left(\frac{p_{(X,Y)}(x,y)}{p_{X}(x)p_{Y}(y)} \right) dxdy$$

8.1.4 Using statistical tests to measure separability • Hypothesis testing (Statistical Inference) • Null hypothesis vs. Alternative hypothesis • Basic idea - Using a test statistic to measure likelihood of observing the data under the null hypothesis More likely observed Less likely observed

圆浦羊大学

The t-test

sample 1: X_1, \dots, X_n $X \sim N(\mu_X, \sigma^2)$ sample 2: Y_1, \dots, Y_m $Y \sim N(\mu_Y, \sigma^2)$

· pooled sample variance

$$s_P^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n-2}$$

· the null hypothesis

$$H_0$$
: $\mu_X = \mu_Y$

• alternative hypotheses two-sided H_1 : $\mu_X \neq \mu_Y$ one-sided H_2 : $\mu_X > \mu_Y$

 H_3 : $\mu_X > \mu_Y$

· t-statistic

$$t = \frac{\bar{X} - \bar{Y}}{s_{\bar{X} - \bar{Y}}} = \frac{\bar{X} - \bar{Y}}{s_P \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

Permutation test for means

ng Zhang

- · No assumption for the underlying distribution
- Necessary when sample size small
- Idea
 - Q: Whether measurements in A and B are exchangeable?
 - 13+8=21 measurements, $\sim 2 \times 10^5$ ways of assigning the two classes
 - Is the observed assignment unusual, in the sense that the two means are significantly different?
 - A: Check distribution of difference under null hypothesis using permutation
 - Choose a random sample of all possible permutations (e.g, 1000)
 - Make a histogram of the resulting values $mean_A mean_B$
 - Check the position of the observed $mean_A mean_B$ in the histogram for a *p-value*

20

圆浦羊大学

圆浦羊大学

- Task: Finding the best d features from the total of D candidates
 - The space for searching

$$C_D^d = \frac{D!}{(D-d)!d!}$$

- · Challenge:
 - Optimal combination (not the best single features)
- Strategies
 - Enumerating (optimal), Heuristic (sub-optimal)
 - Bottom-up, top-down

23

8.2.1 Optimal searching

- Enumerating
 - · Enumerate all possible combinations to find the best
 - Suitable when d or D d is small

- Branch-and-Bound Algorithm
 - Organize all possible combinations as an ordered tree, in such a way that searching can be completed without browsing the whole tree.
 - Top-down searching with tracing back
 - Requirement: The criterion does not increase when reducing features.
 - J_1 , J_2 , J_3 , J_4 , J_5 , J_C , J_B , J_D

· Key rules of BB searching

- Root: level 0, all features included
- Drop 1 feature at each node. Leaf nodes are selected combinations
- Avoid identical combinations throughout the tree
- Keep record of the current max as the bound (B), B=0 at beginning
- Put features <u>least likely to be dropped</u> at the left most of each layer (e.g., dropping them resulting in smallest metric)
- Searching from the right-hand branch
- Features in the left nodes of the same layer will not be dropped at the current node or its downstream nodes
- Go back when meeting a node with I < B
- Update B when reaching a leaf node, then go back
- Put back the dropped features when going back
- When the searching stops at the root, the leaf node that last updated B is the optimal combination.

Xuegong Zhang

BB Searching

- Optimal when the criterion is monotonic
- Saving the most when $d \approx \frac{1}{2}D$
- Example

D	d	Enumerate	ВВ
12	4	$\binom{12}{4} = 495$	42
24	12	$\binom{24}{12}$ = 2,704,156	13,369

Xuegong Zhang

26

11年大学

8.2.2 Sub-optimal Searching Combination of top single features SFS (Sequential Forward Selection) Bottom-up, adding one feature in each step Generalized SFS Bottom-up, adding l features in one step SBS (Sequential Backward Selection) Top-down, eliminating one feature in each step Generalized SBS Top-down, eliminating r features in each step L-R Adding l features and then eliminating r features, ... ** <l>** ** ** ** ** ** <

@ / / 洋羊大学

8.2.3 Genetic Algorithm for Feature Selection

- GA (Genetic Algorithm)
 - · Stochastic Searching Algorithm
 - · Evolutionary Computing
 - "Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, solutions you might not otherwise find in a lifetime." ---- Salvatore Mangano
 - 1960-1970's, John H. Holland, a Ph.D. student in U. Michigan
 - "teaching computers how to have sex"
 - John Henry Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1975

W

Genetic Algorithm:

Using the mechanism of variation-selection for optimization.

Task: Selecting d features from D using GA

- Encoding the problem as a chromosome
 - E.g., (01001...0110101) of *D* binary elements
 - Searching space: C_D^d possible combinations
 - Task: finding the most fit "individual" from the "population"
- Fitness function *f* (*m*)
 - · Certain metrics of separability
- · Basic Operation: Inheritance, variation, selection
 - · Point mutation
 - · Recombination or crossover
 - · Reversion, transposition, duplication, ...
 - Selection: p(f(m))

31

(1) 1 苯大学

- Genetic Algorithm
- ① Initialization at t=0

Randomly generate a population M(0) of L chromosomes

- ② Compute the fitness $f(\mathbf{m})$ of each chromosome in the current population M(t)
- ③ Sample the population according to selection probability $p(f(\mathbf{m}))$, and use the selected population to reproduce (with probability of variation) the next generation of chromosomes M(t+1)
- 4 Return to ② until the stopping criterion met, then output the fittest chromosome as the optimal solution

Stopping criterion usually set as a threshold of the fitness.

Three strategies for feature selection

- <u>Filtering</u> methods (Two-Step Procedure)
 - Feature selection (with some stand-alone criteria or metrics)
 - Classification (using the selected features)
- <u>Wrapper</u> methods (Recursive Procedure)
 - Classification (with all features)
- Feature selection (according to classification performance)
 - Classification (using the selected features)

- Embedded methods
 - Feature selection is embedded in the classification algorithm, e.g., Lasso

$$\min_{\boldsymbol{\beta}} \frac{1}{l} \sum_{i=1}^{l} (y_j - \boldsymbol{\beta}^T \boldsymbol{x}_j)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

Xuegong Zhang

35

(100) 17 苯大学

R-SVM and SVM-RFE: Examples of wrapper methods

Further reading:

Xuegong Zhang, Xin Lu, Qian Shi, Xiu-qin Xu, Hon-chiu E Leung, Lyndsay N Harris, James D Iglehart, Alexander Miron, Jun S Liu and Wing H Wong, Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data, *BMC Bioinformatics*, **7**:197, 2006

(1) 清華大学 R-SVM: Recursive SVM for classification and gene selection

SVM training

Select a subset of genes that gives the best performance:

- · Minimal error ---- always zero on training set
- · Maximal separation:

$$S = \frac{1}{n_1} \sum_{x^+ \in class1} f(x^+) - \frac{1}{n_2} \sum_{x^- \in class2} f(x^-)$$

$$S = \sum_{i=1}^{d} w_i m_i^+ - \sum_{i=1}^{d} w_i m_i^- = \sum_{i=1}^{d} w_i (m_i^+ - m_i^-)$$
$$S_i = w_i (m_i^+ - m_i^-)$$

• Ranking genes according to their s_i

Loop (select a subset → redo SVM training and gene ranking)

SVM-RFE: SVM - Recursive Feature Elimination

I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Machine Learning, 46: 389-422, 2002

- SVM training
- Select a subset of genes that gives the best performance:
 - · Genes' contribution:

$$f(x) = \operatorname{sgn}(w \cdot x + b)$$

$$s_i^{SVM-RFE} = w_i^2$$

$$S_{SVM-RFE} = \mathbf{w} \cdot \left(\sum_{\mathbf{x}_{j}^{+}:SVs \ in \ class1} \alpha_{j} \mathbf{x}_{j}^{+} - \sum_{\mathbf{x}_{j}^{-}:SVs \ in \ class2} \alpha_{j} \mathbf{x}_{j}^{-} \right) = \mathbf{w} \cdot \mathbf{w}$$
king genes according to their signments.

- Ranking genes according to their $s_i^{\it SVM-RFE}$
- Loop (select a subset → redo SVM training and gene ranking)

R-SVM vs. SVM-RFE

◎消華大学

- Same recursive selection procedure, different ranking criteria
 - SVM-RFE:

$$S_{SVM-RFE} = \mathbf{w} \cdot \left(\sum_{\mathbf{x}_{j}^{+}:SVs \ in \ class1} \alpha_{j} \mathbf{x}_{j}^{+} - \sum_{\mathbf{x}_{j}^{-}:SVs \ in \ class2} \alpha_{j} \mathbf{x}_{j}^{-} \right) = \mathbf{w} \cdot \mathbf{w}$$

$$S_{i}^{SVM-RFE} = w_{i} (r_{i}^{+} - r_{i}^{-}) = w_{i}^{2}$$

• R-SVM:

$$S_{R-SVM} = \boldsymbol{w} \cdot \left(\frac{1}{n_i} \sum_{\boldsymbol{x}^+ \in class1} \boldsymbol{x}^+ - \frac{1}{n_2} \sum_{\boldsymbol{x}^- \in class2} \boldsymbol{x}^-\right) = \boldsymbol{w} \cdot (\boldsymbol{m}^+ - \boldsymbol{m}^-)$$

$$S_i^{R-SVM} = \boldsymbol{w}_i(\boldsymbol{m}_i^+ - \boldsymbol{m}_i^-)$$

• Experiments show that R-SVM is more robust to noise

--- X. Zhang et al, BMC Bioinformatics, 7: 197, 2006

43

Define a list of feature numbers in decreasing order: d_0, d_1, \ldots, d_k Resample sample set by LOO, M-fold or bootstrap Recursive feature selection at $d_0 \sim d_k$ levels, Record prediction errors at each level Finish? Calculate error rate at each d_i level Optimal feature number d^* : the minimal level with minimal CV2 error rate Selected top features: the top d^* highest-frequency features

Feature selection with R-SVM

 Vote for the most frequently selected genes in the LOOCV experiments

- A simpler strategy:
 - LOOCV to find feature selection level of minimal CV error
 - Redo R-SVM on the whole data to select that number of features

圆浦羊大学

Comparison on Simulated Data-G (with gene outliers)

Table 1. Comparison of R-SVM and SVM-RFE on Data-G (with gene outliers)

Levela	ReduceSV ^b	P(sv-diff) ^c	ReduceTest	P(test-diff) ^e	[ImproveRec ¹	P(rec-diff)g
800	4.01%	1.81E-42	-7.70%	4.72E-03	-3.90%	1.71E-39
600	5.77%	1.74E-49	-2.50%	4.64E-01	-1.70%	5.21E-15
500	6.83%	2.75E-51	-4.00%	1.62E-01	-0.30%	0.079189
400	8.35%	3.26E-60	2.80%	3.48E-01	1.10%	4.48E-06
300	9.33%	3.83E-58	7.40%	3.65E-02	3.70%	1.77E-31
200	8.22%	1.28E-48	19.20%	6.36E-09	6.30%	5.79E-44
150	8.55%	1.51E-53	19.50%	1.16E-08	7.10%	9.76E-46
100	4.97%	6.20E-22	11.90%	1.83E-04	6.00%	6.43E-40
90	5.84%	1.66E-27	13.70%	4.20E-06	4.60%	1.07E-30
80	5.17%	8.20E-29	12.40%	4.14E-06	4.50%	7.12E-29
70	4.14%	1.46E-27	8.50%	4.77E-04	3.80%	1.05E-24
60	3.10%	1.23E-20	10.20%	3.14E-05	3.40%	4.99E-24
50	2.27%	2.01E-15	10.20%	4.11E-06	2.90%	2.37E-21

Comparison on Simulated Data-S (with sample outliers)

圆浦羊大学

	Table 2. 0	Compariso	n of R-SVM a	and SVM-RF	E on Data-S	(with samp	ole outliers)	
Levela	ReduceSV ^b	P(sv-diff) ^c	ReduceTest ^d	P(test-diff) ^e	ImproveRec ^f	P(rec-diff) ^g	ReduceOSV ^h	P(osv-dift)
800	3.25%	4.49E-41	-65.19%	5.65E-36	-10.14%	3.36E-75	50.37%	5.97E-35
600	5.80%	1.90E-57	-70.27%	3.04E-35	-7.14%	5.18E-56	72.28%	1.10E-49
500	7.02%	8.20E-63	-59.63%	1.81E-37	-5.13%	3.37E-39	80.54%	1.17E-56
400	8.26%	1.68E-67	-41.43%	8.31E-25	-2.57%	4.53E-12	89.04%	2.51E-64
300	7.72%	1.20E-58	-19.14%	2.18E-13	0.75%	4.92E-02	93.44%	7.46E-65
200	7.21%	4.54E-51	-6.53%	2.56E-04	4.00%	7.15E-16	93.91%	1.47E-61
150	9.13%	1.29E-71	2.63%	1.20E-01	6.47%	8.41E-23	93.59%	6.27E-61
100	8.30%	1.42E-64	5.56%	8.04E-04	7.69%	3.50E-22	92.44%	1.33E-61
90	8.36%	2.01E-72	4.31%	1.15E-02	6.99%	8.74E-19	91.37%	2.60E-61
80	8.01%	6.63E-71	4.45%	1.99E-02	6.99%	9.33E-18	90.26%	2.65E-60
70	7.17%	1.29E-67	6.59%	3.78E-04	7.52%	2.80E-16	88.56%	7.55E-62
60	6.67%	2.65E-65	6.16%	2.32E-03	7.27%	5.72E-13	86.38%	2.60E-62
50	5.82%	1.08E-58	7.70%	1.34E-04	7.42%	3.71E-12	83.82%	1.23E-61
X	legong Zhang	N. William P.	Land of the second		THE RESERVE TO THE RE		41	46

Comparison on Simulated Data-R (generated from real data)

Table 3. Comparison of R-SVM and SVM-RFE on Data-R

Level ^a	ReduceSV ^b	P(sv-diff) ^c	ReduceTest ^d	P(test-diff)e	ImproveRec ^f	P(rec-diff)g
800	15.35%	1.24E-53	-3.59%	1.26E-05	-3.60%	1.50E-23
600	18.65%	3.14E-56	-7.06%	4.09E-04	2.69%	2.20E-09
500	19.58%	7.71E-58	-6.46%	1.79E-03	9.18%	1.24E-37
400	21.07%	1.80E-63	-2.74%	3.22E-05	17.32%	4.25E-59
300	22.51%	5.12E-67	-4.64%	1.26E-05	24.14%	5.43E-65
200	22.16%	9.38E-68	-0.93%	1.83E-04	30.64%	2.25E-71
150	21.78%	4.57E-64	-3.44%	8.74E-04	29.14%	5.86E-71
100	21.01%	3.21E-57	0.31%	3.22E-05	29.95%	7.74E-69
90	22.57%	1.88E-60	-2.52%	3.52E-03	27.51%	9.74E-66
80	22.88%	1.67E-65	1.84%	7.85E-05	27.92%	4.03E-62
70	21.42%	2.96E-59	0.59%	4.09E-04	27.16%	1.15E-58
60	20.20%	1.64E-55	6.16%	1.83E-04	26.83%	2.55E-60
50	18.67%	4.40E-52	4.23%	8.74E-04	25.89%	9.63E-53
40	15.37%	5.66E-46	8.99%	4.69E-06	25.39%	1.09E-55
30	11.85%	6.90E-33	9.61%	1.67E-06	24.19%	2.07E-45
20	7.87%	2.19E-18	11.43%	3.22E-05	20.86%	1.09E-34

Diagnosis of liver cirrhosis

- Biopsy: invasive, potential risk of internal bleeding
- CT scanning: not able to detect early cirrhosis accurately
- · At present, there are no sensitive and specific serum or plasma markers available
- · cDNA microarray: need liver tissue by an invasive procedure
- 2DE: not good for hydrophobic proteins, low abundant proteins and low molecular weight proteins
- · SELDI-TOF-MS: good resolution, surfaces for different proteins

Material:

- Normal rat (n=8)
- Liver cirrhosis rat (n=22)
- Liver fibrosis rat (n=5)

(a) Normal liver (x20

(b) Thioacetamide-induced cirrhosis (x20)

(c) Bile duct ligation (x40)

Molecular classification of liver cirrhosis in a rat model

Xiu-Qin Xu¹, Chon K. Leow^{1, 2}, Xin Lu³, Xuegong Zhang⁴, Jun S. Liu³, Wing-Arndt Asperger⁵, Sören Deininger⁵ and Hon-chiu Eastwood Leung¹

by proteomics and bioinformatics

Three ways of doing R-SVM on the SELDI data

- · Data range: 1-10kDa
- Biomarker Wizard: R-SVM on biomarkers detected with Ciphergen's software
 - 78 biomarkers → 6 important markers
 - 1743.12, 3515.68, 3537.26, 4186.07, 4902.63, 8201.04 Da
- Point-to-Point: R-SVM on all 4607 points resampled from 1-10kDa
 - 7 important regions selected, covering all the previous 6 markers, but centering at different points
 - 1744.56, 3513.31, 3515.07, 3518.60, 3520.36, 4187.13, 8209.99 Da
- · Sliding Window:
 - Scanning with a sliding window to pre-select some candidate regions (21 with MeanDist (Intra/Inter)<0.75), then select 6 markers by R-SVM:
 Table 1. Overall error rates of different statistical biomarkers selection approaches
 - 1743.12, 1787.89, 3515.68, 3537.26, 6207.55, 8201.04 Da

Statisical	CV2 (external CV)	errors	CV1 (internal CV)	CV1 (internal CV) errors		
Method	False positive (Type 1) count	False negative (Type 2) count	False positive (Type 1) count	False negative (Type 2) count		
Point-to-point RSVM	2	2	1	1		
Sliding window selection	2	0	2	0		
Biomarker Wizard RSVM	2	2	1	1		
Type Specific Error Rate	7.7%	0 to 2.9%	3.8 to 7.7%	0 to 1.4%		
Overall Error Rate	2.1 to	4.2%	2.1	%		
Overall sensitivity		97.	1 to 100%			
Overall specificity		92.	3%			

The 3495 Da protein

- The 1743, 3515 and 3537 Da peaks were selected as important markers by 3 tests, and they are mostly dicharged peptide or sodium adducts of the 3495 Da peak.
- Taken together, ... the 3495 Da peak was a fragment of some unknown histidine-rich glycoprotein.

Figure 7. Peptide sequencing of the 1001 Da peak using Ultra-flex MALDI TOF/TOF mass spectrometer. X-axis is the m/z value; the y-axis is the signal intensity.

Figure 6. On-chip digestion of the purified 3495 Da protein. (A) Mass spectrum before trypsin digestion on WCX chip. (B) Mass spectrum after 3 h of on-chip trypsin digestion at 37°C. (C) Mass spectrum of trypsin alone after 3 h of on-chip digestion on WCX chip. PMF of tryptic digest after transferring to an Anchor/Chip and analyzed using an Ultraflex MALDI TOF/TOF mass spectrometer.

Table 4. The CV results on the rat cirrhosis dat	Table 4.	The CV	results	on the	rat	cirrhosis	data
--	----------	--------	---------	--------	-----	-----------	------

Level a	R-	SVM	SVI	M-RFE
Level	CV2 b	AveSV c	CV2 b	AveSV c
93	4.2%	14.75	4.2%	14.75
80	4.2%	11.91	4.2%	14.74
70	4.2%	9.95	4.2%	14.73
60	3.2%	9.22	4.2%	13.91
50	3.2%	9.03	4.2%	13.82
40	3.2%	9.02	4.2%	14.65
30	3.2%	8.95	4.2%	13.65
20	3.2%	8.93	4.2%	9.98
18	4.2%	8.14	4.2%	9.97
16	4.2%	8.08	3.2%	7.26
15	4.2%	7.60	3.2%	7.15
14	4.2%	7.54	3.2%	7.94
13	6.3%	7.58	4.2%	7.98
12	6.3%	7.41	4.2%	8.05
11	6.3%	7.65	4.2%	8.02
10	6.3%	7.64	3.2%	9.83
9	5.3%	6.50	3.2%	8.83
8	4.2%	5.97	4.2%	7.01
7	4.2%	6.73	4.2%	6.05
6	4.2%	5.98	3.2%	5.97
5	5.3%	5.94	4.2%	5.05
		HILLSON AND COMPANY	BUCK BUCK	CONTRACTOR OF THE PARTY OF THE

The R-SVM LOOCV feature selection and classification results on the rat cirrhosis data

Table 6	. The C\	/ results or	the hur	nan breast	cancer dataset
Level a	R	-SVM	SV!	M-RFE	
	CV2 b	MeanSV c	CV2 b	MeanSV c	
98	28.7%	54.65	28.70%	54.65	
88	27.9%	50.10	29.40%	55.25	R
79	29.4%	49.28	30.10%	52.21	
71	29.4%	47.48	30.90%	50.88	
63	27.9%	44.65	27.90%	48.42	
56	27.2%	42.50	27.90%	46.02	
50	27.9%	40.04	26.50%	40.13	
45	25.7%	38.65	26.50%	40.25	
40	24.3%	37.04	27.90%	34.88	
36	23.5%	35.16	27.90%	34.51	
32	22.1%	33.26	27.90%	30.75	
28	22.8%	32.04	27.20%	27.77	
25	22.1%	31.24	30.90%	24.61	
22	22.1%	31.15	34.60%	23.93	
19	22.8%	32.10	30.10%	26.79	
17	25.7%	33.26	29.40%	31.28	
15	23.5%	35.68	25.70%	35.10	
13	19.9%	37.40	26.50%	42.15	
11	22.1%	37.83	25.00%	46.03	
9	21.3%	42.01	24.30%	50.18	
- 8	17.6%	44.07	22.10%	49.93	
7	23.5%	50.29	20.60%	51.43	
6	22.1%	54.73	20.60%	52.39	
5	22.1%	57.98	20.60%	52.18	
4	22.8%	59.75	25.00%	58.92	
3	27.2%	78.90	32.40%	77.46	

R-SVM to find proteomics markers for breast cancer

[Q. Shi et al, 2005]

Example:

Discrimination and feature selection of geographic origins of traditional Chinese medicine herbs with NIR spectroscopy

S. Liu, X. Zhang, S. Sun, Chinese Science Bulletin, 50(2): 179-184, 2005

Background:

- The efficiency of some traditional herbal medicines depends on the geographic origin and the growth condition of the herbs.
- · Herbs are mixtures of many unknown compounds
- Infrared spectrometry is a key technique in identifying medical compounds, but success have not been widely reported on TCM.

The NIR derivative spectrums of Baizhi from different origins (a. Henan, b. Hebei, c. Sichuan, d. Zhejiang)

Data and Method

- · Pre-processing
- · Re-sampling the spectrums
- Scanning for the effective frequency range according to CV performance on training set

One-vs-all scheme for multi-category classification

Test on independent data set

lable 1	The geogra	aphic origins	of Baizhi sam	iples	
Origin	Henan	Hebei	Sichuan	Zhejiang	Total
Number of samples in Set-A	64	60	75	70	269
Number of samples in Set-B	20	18	24	22	84
Total	84	78	99	92	353

Table 2 The geographic origins and growth conditions of the Danshen samples

	Growth			Geographi	c origin			Total
	Condition	Shandong	Shanxi	Henan	Sichuan	Zhejiang	Hebei	
Number of	Wild	50	30	30	0	0	0	110
samples in	Cultivated	70	40	25	30	35	40	240
Set-A	Total	120	70	55	30	35	40	350
Number of	Wild	14	9	10	0	0	0	33
samples in	Cultivated	22	13	9	9	10	13	76
Set-B	Total	36	22	19	9	10	13	109
Tot	al	156	92	74	39	45	53	459

							Resu		●
Table	e 4 The cla			recursive SV			of features,		
Number of	with	with	Accuracy for with	r Classification with	on of Origins with	with	Final	Accuracy for wild/cultivated	
features	classifier1	classifier2	classifier3	classifier4	classifier5	classifier6	accuracy	discrimination	$\langle R \rangle$
72	98.3%	88.6%	89.1%	100%	100%	97.5%	95.1%	95.1%	0.36
50	98.3%	90%	85.5%	100%	100%	100%	95.1%	95.7%	03
30	98.3%	88.6%	87.3%	100%	100%	100%	95.1%	95.1%	
20	98.3%	82.9%	81.8%	100%	100%	97.5%	92.9%	93.1%	MT
10	94.2%	74.3%	70.9%	100%	100%	97.5%	91.4%	91.1%	
5	95%	42.9%	63.6%	100%	94.3%	100%	80.6%	91.7%	0.05-
13- 0.26- 12- 4 0.15- 11- 0.05- 1860 7890 71	100 cm	580 480 480 and		300 9901 9901 5901 d'en	500 m²		discrii origir	0 features forminating the seas of Dansher miltiorrhization in the miltiorrhiz	9 6
13 - 0.25 - 12 - 4 - 15 - 15 - 15 - 15 - 15 - 15 - 15	100 600 500 500 500 500 500 500 500 500 5	0 950 470 480 cm ³		ao sau sau sau sau	disc orig	e 5 featu criminati ins of B gelicae d	ng the aizhi		035 121 036 107 037 038 038 038 038 038 038 038 038 038 038

• Eigenvector, characteristic vector (本征向量, eigen=own)

• Eigenvalue, characteristic value (本征值)

$$Av = \lambda v$$

In this shear mapping the red arrow changes direction but the blue arrow does not. The blue arrow is an eigenvector of this shear mapping because it doesn't change direction, and since its length is unchanged, its eigenvalue is 1.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$v_{\lambda=3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$v_{\lambda=1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

@ / / 样大学

Separability

$$J_1 = \operatorname{tr}(S_{w} + S_{h})$$

$$J_2 = \operatorname{tr} \left(S_w^{-1} S_b \right)$$

$$J_3 = \ln \frac{\left| S_b \right|}{\left| S_w \right|} \qquad \mathbf{x} = \mathbf{W}^T \mathbf{y} \qquad J_3(W) = \ln \frac{\left| W^T S_b W \right|}{\left| W^T S_w W \right|}$$

$$J_4 = \frac{\operatorname{tr}S_b}{\operatorname{tr}S_w}$$

$$J_5 = \frac{\left| S_b - S_w \right|}{\left| S_w \right|}$$

Separability

$$J_1(W) = \operatorname{tr}(W^T(S_w + S_b)W)$$

$$J_2(W) = \operatorname{tr}[(W^{\mathsf{T}} S_w W)^{-1} (W^T S_b W)]$$

$$J_3(W) = \ln \frac{|W^T S_b W|}{|W^T S_w W|}$$

$$J_4(W) = \frac{\operatorname{tr}(W^T S_b W)}{\operatorname{tr}(W^T S_w W)}$$

$$J_5(W) = \frac{|W^T \sum W|}{|W^T S_w W|}, \Sigma = S_w + S_b$$

To find W^T :

$$J(\boldsymbol{x}) = \max_{\{W\}} J(W^T \boldsymbol{y})$$

圆浦村学

- Find W^T so that $J(x) = \max_{\{W\}} J(W^T y)$
- Result:
 - If the eigenvalues of $S_w^{-1}S_h$ are

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$$

The best feature extraction matrix for J_1 , J_2 , J_3 , J_4 and J_5 should be $W = [\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_d]$

composed of the eigenvectors u_1, u_2, \cdots, u_d of $S_w^{-1}S_b$ corresponding to the first d largest eigenvalues.

61

8.6.2 Karhunen-Loève Transform (KLT)

Kari Karhunen (1915-1992), Loève (1907-1979)

- · Basic Idea: expansion of functions
 - Function expansion with an orthogonal or orthonormal basis
 - Using expansion coefficients to represent original functions
- Discrete K-L expansion:
 - Expansion of random vectors with a group of orthogonal basis vectors
 - Using expansion coefficients to represent original vectors
 - · New feature space: the space of spanned by the basis vectors
 - · New feature vector: the vector of the expansion coefficients

(18) / (18) / (18)

Discrete K-L Expansion

For random vector $x \in \mathbb{R}^D$, use a deterministic set of complete orthonormal vectors u_i , j = $1,2,\cdots,\infty$ as the basis to expand as

$$x = \sum_{j=1}^{\infty} c_j \mathbf{u}_j$$

where $\mathbf{u}_i^T \mathbf{u}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$. Multiply both side with \mathbf{u}_j^T , we get $c_j = \mathbf{u}_j^T \mathbf{x}$.

To use only d < D dimension to approximate x, we have

$$\widehat{\boldsymbol{x}} = \sum_{j=1}^d c_j \boldsymbol{u}_j \ .$$

The error is
$$\xi = E[(\boldsymbol{x} - \widehat{\boldsymbol{x}})^T (\boldsymbol{x} - \widehat{\boldsymbol{x}})] = E\left[\left(\sum_{j=d+1}^{\infty} c_j \boldsymbol{u}_j\right)^T \left(\sum_{j=d+1}^{\infty} c_j \boldsymbol{u}_j\right)\right] = E\left[\sum_{j=d+1}^{\infty} c_j^2\right]$$

$$= E\left[\sum_{j=d+1}^{\infty} \boldsymbol{u}_j^T \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{u}_j\right] = \sum_{j=d+1}^{\infty} \boldsymbol{u}_j^T E[\boldsymbol{x} \boldsymbol{x}^T] \ \boldsymbol{u}_j$$

11年大学

Denote $\psi = E[xx^T]$, we have

$$\xi = \sum_{j=d+1}^{\infty} \mathbf{u}_j^T E[\mathbf{x} \mathbf{x}^T] \ \mathbf{u}_j = \sum_{j=d+1}^{\infty} \mathbf{u}_j^T \psi \ \mathbf{u}_j$$

To find the orthonormal basis that minimizes the error

min
$$\xi$$

s.t.
$$\boldsymbol{u}_i^T \boldsymbol{u}_i = 1$$

we define the Lagrange function

$$g(\boldsymbol{u}) = \sum_{j=d+1}^{\infty} \boldsymbol{u}_{j}^{T} \psi \boldsymbol{u}_{j} - \sum_{j=d+1}^{\infty} \lambda_{j} [\boldsymbol{u}_{j}^{T} \boldsymbol{u}_{j} - 1]$$

Let
$$\frac{\partial}{\partial u_j}g(u)=0,\ j=d+1,\cdots,\infty,$$
 we get
$$\left(\psi-\lambda_jI\right)u_j=0,\qquad j=d+1,\cdots,\infty$$

$$(\psi - \lambda_j I) \mathbf{u}_j = 0, \quad j = d+1, \dots, \infty$$

Take d = 0, we have

$$\psi \mathbf{u}_j = \lambda_j \mathbf{u}_j, \qquad j = 1, 2, \cdots, \infty$$

Solution: eigenvectors of $\psi = E[\mathbf{x}\mathbf{x}^T]$

and

$$\xi = \sum_{j=d+1}^{\infty} \lambda_j$$

K-L Transform (KLT):

• Using the d eigenvectors of $\psi = E[xx^T]$ corresponding to the first d largest eigenvalues to express the original vectors x, so that the error is the smallest among all orthogonal vector expansions.

$$\psi \mathbf{u}_j = \lambda_j \mathbf{u}_j, \qquad j = 1, 2, \cdots, \infty$$

- u_j , $j = 1,2, \dots, d$ are the vectors that span the new feature space
- Coefficients $c_j = \boldsymbol{u}_i^T \boldsymbol{x}, j = 1, 2, \cdots, d$ compose the new d-dimensional feature

Kari Karhunen, 1947; Michel Loève, 1948 a.k.a. Hotelling transform (Harold Hotelling, discrete formulation 1933) a.k.a. PCA

65

Properties of K-L Transform

- 1. Best compressive representation of original data —— minimal squared error
 - Eigenvalue λ_j corresponding to each new feature u_j reflects its relative contribution in representing the original information (information magnitude), ordered as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$
- 2. The new features are uncorrelated:

$$E[c_i c_j] = E[\mathbf{u}_i^T \mathbf{x} \mathbf{x}^T \mathbf{u}_j] = \lambda_i \mathbf{u}_i^T \mathbf{u}_j = \lambda_i \delta_{ij}$$
$$E[\mathbf{c} \mathbf{c}^T] = U^T \psi U = \Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_J \end{bmatrix}$$

where $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_D], \, \psi = E[\boldsymbol{x}\boldsymbol{x}^T]$.

- 3. Minimal representation entropy $H_R = -\sum_{j=1}^D \tilde{\lambda}_j \log \tilde{\lambda}_j$ $\tilde{\lambda}_j$: normalized λ_j
 - · Best centralizes variances in original random vectors to the first few new features
- 4. Minimal total entropy $H_p = -E[\log p(x)]$
 - If select from the smallest eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_d \leq \cdots \leq \lambda_D$
 - Meaning: smallest variance → mean best representing the set

圆浦羊大学

KLT for pattern recognition

Do eigenvalue decomposition of the matrix

$$\psi = E[xx^T] \qquad (2^{\text{nd-order moment}})$$
 or
$$\sum = E[(x - \mu)(x - \mu)^T] \qquad (\text{covariance matrix})$$
 or
$$S_w = \sum_{i=1}^c P_i \Sigma_i \qquad (\text{within-class scatter matrix})$$
 where
$$\Sigma_i = E[(x - \mu_i)(x - \mu_i)^T]$$

 Select a subset of coordinates best for classification (according to some criteria or assumption for the classification)

67

Case 1: Extracting classification information in class means

- · Use KLT to remove correlation in features
- Choose KLT features with small variances and large differences in class means as extracted features
- Algorithm
 - Compute $S_w = \sum_{i=1}^{c} P_i \Sigma_i$
 - Do KLT on S_w to get λ_i , u_i , $i=1,\cdots,D$ and new features $y_i=u_i^Tx$, $i=1,\cdots,D$ with variances λ_i

• Compute
$$J(y_i) = \frac{u_j^T S_b u_j}{\lambda_i}$$
, $j = 1, \dots, D$

$$S_b = \sum_{i=1}^c P(\omega_i) (\mu_i - \mu) (\mu_i - \mu)^T$$

to assess the separability of each new feature and rank them as $J(y_1) \ge J(y_2) \ge \cdots \ge J(y_d) \ge \cdots \ge J(y_D)$

• Choose the first d new features $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_d]$ as the extracted features

Case 2: Optimal extraction of class-mean information

- · Make features uncorrelated, and
- Use the minimal dimensions to extract classification information in class means

Algorithm

• Use S_w to do KLT: $U^T S_w U = \Lambda$

Let $B = U\Lambda^{-\frac{1}{2}}$ so that $B^T S_w B = I$ (whitening transformation) Computer the between-class scatter matrix $S_b' = B^T S_b B$

- Do KLT again on S'_b , to compress the information in class means
- Since $rank(S_b) \le c 1$, there are at most d = c 1 non-zero eigenvalues, and there corresponding eigenvectors are

$$V' = [v_1, \cdots v_d]$$

• The overall transform is: $W = U\Lambda$

Case 3: Extracting classification information from de-centralized samples

- · Remove class means
- Only consider classification information in class covariances

Algorithm

- Do KLT on S_w , the variance of the jth new feature in class i is r_{ij}
- Normalize $\tilde{r}_{ij} = P_i \frac{r_{ij}}{\lambda_i}$, $i=1,\cdots,c,\ j=1,\cdots,D$

 λ_i : jth eigenvalue of S_w , i.e. total variance on jth feature $\lambda_i = \sum_i P_i r_{ij}$

$$\rightarrow \sum_{i=1}^{c} \tilde{r}_{ij} = 1$$
 (like a PDF)

- Use entropy $J(x_j) = -\sum_{i=1}^c \tilde{r}_{ij} \log \tilde{r}_{ij}$ or $J(x_j) = \prod_{i=1}^c \tilde{r}_{ij}$ to represent diversity on jth component
- Rank $J(x_1) \le J(x_2) \le \cdots \le J(x_d) \le \cdots \le J(x_d)$ and choose the first d

Artificial "Fake-class" Data

⑥消華大学

• Two fake "classes" of 20 cases each, generated from the same Gaussian model of 1000 simulated genes.

# selected genes	CV1 error	CV2 error
1000	0.5	0.5
500	0.275	0.5
200	0.1	0.575
100	0.025	0.475
50	0.025	0.5
30	0.025	0.475
20	0	0.475

Zhang et al, 2001, unpublished

Xuegong Zhang

About the mid-term test

圆浦鲜大学

• Nov. 4, 9:50-10:30

• Venue: I-205

- Open-book test
 - To check your understanding of the basic concepts and way of study
- TAs will work with each on-line student for the test
- Questions in English, answers in Chinese or English
- Suggestions for your review:
 - Look back on what we have learned so far, including the homework. Ask yourself on the basic principles and ideas behind the methods.

