Table listing opsonic and non-opsonic receptors found on various phagocytic cells in humans*

1.	Opsonic Receptors	Ligand	Receptor Expression profile(human)	Other Remarks	Ref
1.1	Fc receptors (FcRs)				1
	FcγRI (CD64)	IgG1, IgG3, IgG4	monocytes, macrophages, dendritic cells (DCs), inducible expression in neutrophils and mast cells	Signalling: Immunoreceptor tyrosine-based activation motif (ITAM) Pathway	2,3
	FcγRIIA (CD32)	IgG1, IgG2, IgG3, IgG4	Neutrophils, monocytes, macrophage, dendritic cells, mast cells, eosinophils, basophils	Signalling: ITAM Pathway	2
	FcγRIIC (CD32)	IgG1, IgG2, IgG3, IgG4	Monocytes, neutrophils, CD19+ B cells, NK cells (expression subject to polymorphism)		
	FcγRIIIA	IgG1, IgG2, IgG3, IgG4	Monocytes, macrophages, NK cells		2
	FcγRIIIB	IgG1, IgG3, IgG4	Neutrophils, basophils		
	FcεRI	IgE	Mast cells, Basophils		4
	FcαRI (CD89)	IgA1, IgA2	Eosinophils, neutrophils		3
1.2	Complement receptors (CRs)				5
	CRIg	C3b, iC3b and C3c	Kupffer cells, subset of tissue resident macrophages		6,7
	CR-1 (CD35)	C3b, soluble C1q, C4b	Neutrophils, monocytes, macrophages, B cells, a subpopulation of T cells, erythrocytes, eosinophils, basophils, follicular dendritic cells, Langerhans cells		8,9

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

	CR-2 (CD21)	C3dg, iC3b, Epstein Bar Virus	B cells, follicular DCs, peripheral and thymic T cells		10
	CR-3 (CDllb/CD18)	iC3b, β-glucan and ICAM-1, C3dg	Monocytes, macrophages, neutrophils, NK cells, dendritic cells, eosinophils, basophils, platelets and activated T and B lymphocytes		11–13
	CR-4 (p150/95, CD11c/CD18, αx/β2, ITGAX/ITGB2)	iC3b, ICAM-1, Fibrinogen, VCAM-1	Monocytes, macrophages, neutrophils, NK cells, dendritic cells, eosinophils, basophils, platelets and activated T and B lymphocytes		14
	cC1qR (calreticulin)	C1q and MBL	Monocytes, macrophages, dendritic cells, neutrophils, mast cells, basophils, B cells		15
2.	Non-opsonic receptors	Ligand			
	• •	Liganu			
2.1	C-type Lectin Receptors (CLRs)	Liganu			
	C-type Lectin Receptors	CpG oligonucleotides, Apoptotic cells	Dendritic cells, B cells, T cells		16–18
	C-type Lectin Receptors (CLRs) Type I DEC-205 Macrophage Mannose Receptor (MMR)	CpG oligonucleotides,	· · ·		16–18
	C-type Lectin Receptors (CLRs) Type I DEC-205 Macrophage Mannose Receptor	CpG oligonucleotides, Apoptotic cells terminal mannose, N- acetylglucosamine and fucose	cells Tissue macrophages,	hemITAM-based	

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

	Dectin-II	α-mannans	Monocytes, macrophages, dendritic cells, Langerhans cells		23,24
	Macrophage-Inducible C-type lectin (Mincle)	Glycolipids such as mycobacterial cord factor and trehalose-6,6'-dimycolate (TDM)	Macrophages, neutrophils, dendritic cells and B cells		25–27
	dendritic cell-specific ICAM3- grabbing nonintegrin (DC- SIGN)	Mannose, ICAM-3	Macrophages and dendritic cells		28
	(DC NK lectin group receptor- 1) DNGR-I	F-actin (exposed during necrosis)	Type 1 conventional dendritic cells (cDC1s)		29,30
2.2	Scavenger Receptors (SRs)				
	SR-A1	β-amyloid, heat shock proteins, LPS of gram-positive and LTA of gram-negative bacteria, bacterial CpG DNA, hepatitis C virus, acetylated LDL, oxidized LDL, fucoidan	macrophages, monocytes, mast cells, and dendritic cells	binding to apoptotic bodies promotes phagocytosis and clearance	31
	SR-A1.1 (alternatively spliced form of SR-A1)	Polyanionic ligands			
	SR-A3 (MSLR-1/APC-7)		epithelial cells epithelial cells within the testis, airway, thymus, and the adrenal gland, and cells of the placenta, lungs, heart, and small intestine	Protects cells against reactive oxygen species by binding and internalizing oxidative molecules	32,33
	SR-A4 (SRCL/CL-P1)	Lipoproteins	epithelial cells within the testis, airway, thymus, and the adrenal gland, , and cells	mediates the recognition, internalization, and degradation of	34,35

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

		of the placenta, lungs, heart, and small intestine	oxidatively modified LDL by vascular endothelial cells	
SR-A5 (TESR)	Gram positive and gram negative bacteria	epithelial cells within the testis, airway, thymus, and the adrenal gland, and cells of the placenta, lungs, heart, and small intestine	Binds bacteria	36
SR-A6 (MARCO)	Polyanionic ligands including nucleic acids, LPS of grampositive and LTA of gramnegative bacteria, CpG DNA, oxidized and acetylated LDL, environmental particles	Macrophages in the lymph nodes and marginal zone of the spleen	Clear bacteria from bloodstream and lungs	37,38
SRCL-I/II (collectin)	Asialoglycoproteins, oxidized LDLs, gram-negative bacteria	Endothelial cells of human umbilical veins and arteries, vascular endothelial cells of heart	Contains carbohydrate recognition domain	39,40
SR-BI	Acetylated LDL, oxidized LDL, viruses (hepatitis C virus capsid) and bacteria, collagen	monocytes, macrophages and dendritic cells, and is also found on hepatocytes, steroidogenic tissue and adrenal glands	binding to apoptotic bodies promotes phagocytosis and clearance	41
CD-36	binds erythrocytes infected with the malaria parasite, collagen, PfEMP1 protein of Plasmodium falciparum, polyanionic ligands such as hLDL, phosphatidylinositol, phosphatidylserine, thrombospondin-1, fungi and bacteria, apoptotic cells, amyloid proteins	Platelets, monocytes, macrophages, adipocytes, epithelial cells in the breasts and eye, insulin responsive cells	Plays a role in regulating the host malarial response, promote foam cell formation, platelet activation/aggregation, apoptosis, angiogenesis, inflammation	41,42

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

LIMP-2	Phospholipids, enterovirus 71 and coxsackieviruses	Localized in the late endosomes of plasmacytoid dendritic cells (pDCs), macrophages		43
SR-D1 (CD-68)	Oxidized LDL, polyanionic ligands, lectins, selectins apoptotic cells	late endosomal compartment in Monocytes and tissue macrophages, dendritic cells, osteoclasts	differentiation marker of hematopoietic cells of the monocyte/macrophage lineage.	44,45
SR-E1 (LOX-1)	OxLDL, phosphatidylserine, PAMPs from gram negative and gram positive bacteria	Dendritic cells, macrophages, platelets, vascular endothelial cells, adipocytes	linked to apoptosis in the endothelium, VSMCs, macrophages, epithelial cells and neurons.	46,47
SR-E2	Protein is currently known as dectin-1 (mentioned above)			
SR-E3 (CD206) (currently known as mannose receptor 1, CD206)	mannosylated protein antigens, glycans on surface of pathogens	Immature dendritic cells,	SR-E3 is a differentiation marker of immature monocyte-derived dendritic cells	48,49
SR-E4 (currently known as ASGPR1)				
SR-F1	carbamylated LDL (cLDL), AcLDL or OxLDL, Fungal pathogens, heat shock protein 90	neuronal and endothelial cells in heart, lung, ovary and placenta;	Involved in clearance of apoptotic cells	50
SR-F2	C1q, fungal pathogens, heat shock proteins and apoptotic cells.		lacks SR activity but preferentially forms heterodimers with SR- F1 ,clearance of	51

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

			apoptotic cells b binding to C1q protein	
SR-G1 (CXCL16)	OxLDL, phosphatidylserine,	vascular	Only receptor with a	52,53
SK-GI (CACLIO)			chemokine activity.	,
	bacteria and CpG-rich DNA	smooth muscle cells,		
		endothelial cells, monocytes,	Mice lacking SR-G	
		macrophages, kidney	produced lowered	
		podocytes and in	cytokines and liver	
	A TDT 1 1 1 1	atherosclerotic lesions	natural killer cells	54
SR-H1(FEEL-1) and SR-H2	AcLDL, advanced glycation	macrophages, mononuclear	Involved in clearance	34
(FEEL-2)	end-products (AGE) and	cells, hematopoietic stem	of aged RBC's and	
	bacteria	cells, and endothelial cells	apoptotic cells	55 57
SR-I1	clearance of plasma	monocytes and macrophages	also known as	55–57
	hemoglobin, Gram-negative		"hemoglobin	
	and Gram-positive bacteria,		scavenger receptor"	
			because of its role in	
			mediating Hb	
			recognition and	
			clearance in tissue	
			macrophages	
SR-J1	advanced glycation end	endothelial cells,	The receptor belongs	58,59
	products, high mobility group	hepatocytes, smooth muscle	to a class of	
	protein box-1 (HMGB1), S-100	cells and monocytes	immunoglobulin	
	protein, β-amyloid,		superfamily. Involved	
	S100/calgranulin,		in recognition of	
	phosphatidylserine		molecules released	
	FF		during chronic	
			inflammation/infection	
			1	

The above information has been compiled using these references. ^{60–63}

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

References:

- 1 Z. K. Indik, J. G. Park, S. Hunter and A. D. Schreiber, *Blood*, 1995, **86**, 4389–4399.
- 2 J. Exp. Med., 1990, 171, 1333–1345.
- 3 A. B. van Spriel, I. E. van den Herik-Oudijk, N. M. van Sorge, H. A. Vilé, J. A. G. van Strijp and J. G. J. van de Winkel, *J. Infect. Dis.*, 1999, **179**, 661–669.
- 4 M. Daëron, O. Malbec, C. Bonnerot, S. Latour, D. M. Segal and W. H. Fridman, J. Immunol., 1994, 152, 783–792.
- 5 E. J. Brown, Curr. Opin. Immunol., 1991, **3**, 76–82.
- 6 K. Y. Helmy, K. J. Katschke, N. N. Gorgani, N. M. Kljavin, J. M. Elliott, L. Diehl, S. J. Scales, N. Ghilardi and M. van L. Campagne, *Cell*, 2006, **124**, 915–927.
- 7 M. van Lookeren Campagne and A. Verschoor, Semin. Immunol., 2018, 37, 4–11.
- 8 I. Ghiran, S. F. Barbashov, L. B. Klickstein, S. W. Tas, J. C. Jensenius and A. Nicholson-Weller, *J. Exp. Med.*, 2000, **192**, 1797–1808.
- 9 L. B. Klickstein, S. F. Barbashov, T. Liu, R. M. Jack and A. Nicholson-Weller, *Immunity*, 1997, 7, 345–355.
- 10J. J. Weis, T. F. Tedder and D. T. Fearon, *Proc. Natl. Acad. Sci. U. S. A.*, 1984, **81**, 881–885.
- 11 A. G. Ehlenberger and V. Nussenzweig, J. Exp. Med., 1977, **145**, 357–371.
- 12T. Springer, G. Galfré, D. S. Secher and C. Milstein, Eur. J. Immunol., 1979, 9, 301–306.
- 13G. D. Ross and V. Větvicka, Clin. Exp. Immunol., 1993, 92, 181–184.
- 14B. L. Myones, J. G. Dalzell, N. Hogg and G. D. Ross, J. Clin. Invest., 1988, 82, 640–651.
- 15R. R. Nepomuceno and A. J. Tenner, *J. Immunol.*, 1998, **160**, 1929–1935.
- 16W. Jiang, W. J. Swiggard, C. Heufler, M. Peng, A. Mirza, R. M. Steinman and M. C. Nussenzweig, *Nature*, 1995, 375, 151–155.
- 17M. Kato, T. K. Neil, G. J. Clark, C. M. Morris, R. V. Sorg and D. N. Hart, *Immunogenetics*, 1998, 47, 442–450.
- 18M. H. Lahoud, F. Ahmet, J.-G. Zhang, S. Meuter, A. N. Policheni, S. Kitsoulis, C.-N. Lee, M. O'Keeffe, L. C. Sullivan, A. G. Brooks, R. Berry, J. Rossjohn, J. D. Mintern, J. Vega-Ramos, J. A. Villadangos, N. A. Nicola, M. C. Nussenzweig, K. J. Stacey, K. Shortman, W. R. Heath and I. Caminschi, *Proc. Natl. Acad. Sci.*, 2012, **109**, 16270–16275.
- 19 J. Exp. Med., 1990, 172, 1785–1794.
- 20 K. Ariizumi, G. L. Shen, S. Shikano, S. Xu, R. Ritter, T. Kumamoto, D. Edelbaum, A. Morita, P. R. Bergstresser and A. Takashima, *J. Biol. Chem.*, 2000, **275**, 20157–20167.
- 21 G. D. Brown, J. Herre, D. L. Williams, J. A. Willment, A. S. J. Marshall and S. Gordon, *J. Exp. Med.*, 2003, **197**, 1119–1124.
- 22 K. M. Dennehy and G. D. Brown, J. Leukoc. Biol., 2007, 82, 253–258.
- 23 K. Sato, X. Yang, T. Yudate, J.-S. Chung, J. Wu, K. Luby-Phelps, R. P. Kimberly, D. Underhill, P. D. Cruz and K. Ariizumi, *J. Biol. Chem.*, 2006, **281**, 38854–38866.
- 24 P. R. Taylor, D. M. Reid, S. E. M. Heinsbroek, G. D. Brown, S. Gordon and S. Y. C. Wong, *Eur. J. Immunol.*, 2005, **35**, 2163–2174.

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

- 25 M. Matsumoto, T. Tanaka, T. Kaisho, H. Sanjo, N. G. Copeland, D. J. Gilbert, N. A. Jenkins and S. Akira, *J. Immunol.*, 1999, **163**, 5039–5048.
- 26E. C. Patin, S. J. Orr and U. E. Schaible, *Front. Immunol.*, DOI:10.3389/fimmu.2017.00861.
- 27 S. J. Williams, Front. Immunol., , DOI:10.3389/fimmu.2017.01662.
- 28T. B. H. Geijtenbeek, R. Torensma, S. J. van Vliet, G. C. F. van Duijnhoven, G. J. Adema, Y. van Kooyk and C. G. Figdor, *Cell*, 2000, **100**, 575–585.
- 29 D. Sancho, O. P. Joffre, A. M. Keller, N. C. Rogers, D. Martínez, P. Hernanz-Falcón, I. Rosewell and C. R. e Sousa, *Nature*, 2009, **458**, 899–903.
- 30J.-G. Zhang, P. E. Czabotar, A. N. Policheni, I. Caminschi, S. San Wan, S. Kitsoulis, K. M. Tullett, A. Y. Robin, R. Brammananth, M. F. van Delft, J. Lu, L. A. O'Reilly, E. C. Josefsson, B. T. Kile, W. J. Chin, J. D. Mintern, M. A. Olshina, W. Wong, J. Baum, M. D. Wright, D. C. S. Huang, N. Mohandas, R. L. Coppel, P. M. Colman, N. A. Nicola, K. Shortman and M. H. Lahoud, *Immunity*, 2012, 36, 646–657.
- 31 M. A. Ingersoll, R. Spanbroek, C. Lottaz, E. L. Gautier, M. Frankenberger, R. Hoffmann, R. Lang, M. Haniffa, M. Collin, F. Tacke, A. J. R. Habenicht, L. Ziegler-Heitbrock and G. J. Randolph, *Blood*, 2010, **115**, e10–e19.
- 32H. J. Han, T. Tokino and Y. Nakamura, *Hum. Mol. Genet.*, 1998, **7**, 1039–1046.
- 33 P. J. Gough, D. R. Greaves and S. Gordon, J. Lipid Res., 1998, 39, 531–543.
- 34L. Selman, K. Skjodt, O. Nielsen, C. Floridon, U. Holmskov and S. Hansen, Mol. Immunol., 2008, 45, 3278–3288.
- 35 S. Jang, K. Ohtani, A. Fukuoh, T. Yoshizaki, M. Fukuda, W. Motomura, K. Mori, J. Fukuzawa, N. Kitamoto, I. Yoshida, Y. Suzuki and N. Wakamiya, *J. Biol. Chem.*, 2009, **284**, 3956–3965.
- 36 Y. Jiang, P. Oliver, K. E. Davies and N. Platt, J. Biol. Chem., 2006, 281, 11834–11845.
- 37G. Kraal, L. J. W. van der Laan, O. Elomaa and K. Tryggvason, *Microbes Infect.*, 2000, 2, 313–316.
- 38M. Arredouani, Z. Yang, Y. Ning, G. Qin, R. Soininen, K. Tryggvason and L. Kobzik, J. Exp. Med., 2004, 200, 267–272.
- 39 K. Nakamura, H. Funakoshi, K. Miyamoto, F. Tokunaga and T. Nakamura, *Biochem. Biophys. Res. Commun.*, 2001, **280**, 1028–1035.
- 40 P. J. Coombs, S. A. Graham, K. Drickamer and M. E. Taylor, *J. Biol. Chem.*, 2005, **280**, 22993–22999.
- 41 A. Rigotti, S. L. Acton and M. Krieger, J. Biol. Chem., 1995, 270, 16221–16224.
- 42T. K. Means, E. Mylonakis, E. Tampakakis, R. A. Colvin, E. Seung, L. Puckett, M. F. Tai, C. R. Stewart, R. Pukkila-Worley, S. E. Hickman, K. J. Moore, S. B. Calderwood, N. Hacohen, A. D. Luster and J. El Khoury, *J. Exp. Med.*, 2009, **206**, 637–653.
- 43 H. Guo, J. Zhang, X. Zhang, Y. Wang, H. Yu, X. Yin, J. Li, P. Du, J. Plumas, L. Chaperot, J. Chen, L. Su, Y. Liu and L. Zhang, *J. Immunol. Baltim. Md* 1950, 2015, **194**, 4737–4749.
- 44Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein | PNAS, https://www.pnas.org/content/93/25/14833, (accessed August 7, 2020).
- 45L. Song, C. Lee and C. Schindler, *J. Lipid Res.*, 2011, **52**, 1542–1550.

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India

- 46T. Shimaoka, N. Kume, M. Minami, K. Hayashida, T. Sawamura, T. Kita and S. Yonehara, J. Immunol., 2001, 166, 5108–5114.
- 47 M. Chen, T. Masaki and T. Sawamura, *Pharmacol. Ther.*, 2002, **95**, 89–100.
- 48 M. C. Tan, A. M. Mommaas, J. W. Drijfhout, R. Jordens, J. J. Onderwater, D. Verwoerd, A. A. Mulder, A. N. van der Heiden, D. Scheidegger, L. C. Oomen, T. H. Ottenhoff, A. Tulp, J. J. Neefjes and F. Koning, *Eur. J. Immunol.*, 1997, **27**, 2426–2435.
- 49 A. Wollenberg, M. Mommaas, T. Oppel, E.-M. Schottdorf, S. Günther and M. Moderer, J. Invest. Dermatol., 2002, 118, 327–334.
- 50H. Adachi and M. Tsujimoto, J. Biol. Chem., 2002, 277, 24014–24021.
- 51 J. Ishii, H. Adachi, J. Aoki, H. Koizumi, S. Tomita, T. Suzuki, M. Tsujimoto, K. Inoue and H. Arai, *J. Biol. Chem.*, 2002, 277, 39696–39702.
- 52M. Gursel, I. Gursel, H. S. Mostowski and D. M. Klinman, J. Immunol. Baltim. Md 1950, 2006, 177, 1575–1580.
- 53CXCL16 Is Expressed in Podocytes and Acts as a Scavenger Receptor for Oxidized Low-Density Lipoprotein The American Journal of Pathology, https://ajp.amjpathol.org/article/S0002-9440(10)61066-8/abstract, (accessed August 8, 2020).
- 54H. Adachi and M. Tsujimoto, J. Biol. Chem., 2002, 277, 34264–34270.
- 55 M. Kristiansen, J. H. Graversen, C. Jacobsen, O. Sonne, H. J. Hoffman, S. K. Law and S. K. Moestrup, *Nature*, 2001, **409**, 198–201.
- 56M. J. Nielsen, M. Madsen, H. J. Møller and S. K. Moestrup, *J. Leukoc. Biol.*, 2006, **79**, 837–845.
- 57 A. Etzerodt and S. K. Moestrup, Antioxid. Redox Signal., 2013, 18, 2352–2363.
- 58R. Ramasamy, S. F. Yan and A. M. Schmidt, J. Leukoc. Biol., 2009, 86, 505-512.
- 59 M. He, H. Kubo, K. Morimoto, N. Fujino, T. Suzuki, T. Takahasi, M. Yamada, M. Yamaya, T. Maekawa, Y. Yamamoto and H. Yamamoto, *EMBO Rep.*, 2011, **12**, 358–364.
- 60M. R. PrabhuDas, C. L. Baldwin, P. L. Bollyky, D. M. E. Bowdish, K. Drickamer, M. Febbraio, J. Herz, L. Kobzik, M. Krieger, J. Loike, B. McVicker, T. K. Means, S. K. Moestrup, S. R. Post, T. Sawamura, S. Silverstein, R. C. Speth, J. C. Telfer, G. M. Thiele, X.-Y. Wang, S. D. Wright and J. E. Khoury, *J. Immunol.*, 2017, **198**, 3775–3789.
- 61 C. Rosales, Front. Immunol., DOI:10.3389/fimmu.2017.00280.
- 62J. C. Anania, A. M. Chenoweth, B. D. Wines and P. M. Hogarth, Front. Immunol., , DOI:10.3389/fimmu.2019.00464.
- 63 S. Lukácsi, B. Mácsik-Valent, Z. Nagy-Baló, K. G. Kovács, K. Kliment, Z. Bajtay and A. Erdei, *FEBS Lett.*, , DOI:10.1002/1873-3468.13743.

^{*} This table is part of Preeti Sharma's PhD thesis submitted to Indian Institute of Science, Bengaluru, India