Lógica digital

Organización de computadoras

Universidad Nacional de Quilmes

20 de agosto de 2013

Fechas Importantes

- Primer parcial Sábado 5 de octubre, 9:30 hs
- Segundo parcial Martes 19 de noviembre, 19 hs
- Recuperatorio de ambos parciales Sábado 10 de noviembre,
 9:30 hs
- Integrador Viernes 13 de diciembre

Repaso

- Evolución de la computación
- O Instrucciones y Programa
- Ejecución de Instrucciones (ciclo)
- Sistema de numeración Binario
 - Interpretar
 - Representar
 - Sumar
 - Restar
- Sistema de numeración hexadecimal
 - Interpretar
 - Q Representar
- Conversión de cadenas binarias a hexadecimales

Lógica Proposicional

Componentes de la lógica proposicional

Lógica Proposicional

Componentes de la lógica proposicional

Variables proposicionales: Enunciados que pueden ser verdaderos o falsos

Operadores: Conjunción, disyunción, negación, etc.

Lógica Proposicional

Componentes de la lógica proposicional

Variables proposicionales: Enunciados que pueden ser verdaderos o falsos

Operadores: Conjunción, disyunción, negación, etc.

Lógica Proposicional cómo expresión de situaciones

Lógica Proposicional

Lógica Proposicional cómo expresión de situaciones

Lógica Proposicional

Permite expresar situaciones formalmente

Lógica Proposicional cómo expresión de situaciones

Lógica Proposicional

Permite expresar situaciones formalmente

A El tanque está lleno

B La llave de paso está cerrada

$$A \rightarrow B$$

Motivación Compuertas lógicas Circuitos Circuitos aritméticos

La operación de la computadora está basada en el almacenamiento y procesamiento de datos binarios

La operación de la computadora está basada en el almacenamiento y procesamiento de datos binarios

Se utilizan circuitos

- para operar sobre datos binarios
- bajo el control de señales de control
- causan el efecto que se necesita en las instrucciones de los programas

La operación de la computadora está basada en el almacenamiento y procesamiento de datos binarios

Se utilizan circuitos

Los circuitos se construyen mediante lógica digital

Lógica digital

Álgebra de boole

El **Álgebra de Boole** (basada en la lógica proposicional) permite diseñar y analizar el comportamiento de los circuitos digitales.

Niveles de abstracción

Lógica proposicional para resolver problemas

Niveles de abstracción

Lógica proposicional para resolver problemas

Lógica digital para automatizar soluciones de problemas

Lógica Digital

Compuertas lógicas

Compuertas lógicas

Compuerta lógica

es un dispositivo que implementa una función lógica simple. Traduce un conjunto de entradas (una o más) en **una sola** salida

Compuertas lógicas: AND

Compuertas lógicas: AND

Casos:

А	B	$A \cap B$
0	0	0
0	$\mid 1 \mid$	0
1	0	0
1	$\mid 1 \mid$	1

 $A \mid D \mid A \land D$

Compuertas lógicas: OR

Compuertas lógicas: OR

Α	В	$A^{\vee}B$
0	0	0
0	1	1
1	0	1
1	1	1

Compuertas lógicas: NOT

Compuertas lógicas: NOT

Compuertas lógicas adicionales

Compuerta NAND

Compuerta NOR

Compuerta XOR

¿Qué son los circuitos?

Compuertas y circuitos lógicos

Circuito lógico

- Composición de compuertas
- Traduce un conjunto de entradas en un conjunto de salidas de acuerdo a una o mas funciones lógicas
- Cada salida es estrictamente una función de las entradas
- Las salidas se actualizan de inmediato luego de que cambien las entradas

Ejemplo: ¿Cómo es el circuito de $A^{\wedge}B^{\vee}C$?

Ejemplo: ¿Cómo es el circuito de $A^{\wedge}B^{\vee}C$?

Ejercicio: ¿Cómo es el circuito de $(A^{\wedge}\overline{B})$?

Ejercicio: ¿Cómo es el circuito de $(A^{\wedge}\overline{B})^{\vee}(\overline{A}^{\wedge}B)$?

¿Cómo se construye un circuito?

¿Cómo se construye un circuito?

A partir de su fórmula de verdad

Los circuitos se construyen a partir de...

- a Una tabla de verdad
- b Un enunciado en lenguaje natural
- c Una fórmula

Los circuitos se construyen a partir de...

- a Una tabla de verdad •••• fórmula
- b Un enunciado en lenguaje natural
- c Una fórmula

Los circuitos se construyen a partir de...

- a Una tabla de verdad •••• fórmula
- b Un enunciado en lenguaje natural *** tabla****fórmula
- c Una fórmula

Circuitos lógicos

Los circuitos se construyen a partir de...

- a Una tabla de verdad •••• fórmula
- b Un enunciado en lenguaje natural *** tabla****fórmula
- c Una fórmula

Hagamos un circuito

Realizar un circuito de 3 entradas que calcule la función mayoría:

- si dos o mas entradas valen 1: se obtiene un 1
- caso contrario: se obtiene un 0

Realizar un circuito de 3 entradas que calcule la función mayoría:

- si dos o mas entradas valen 1: se obtiene un 1
- caso contrario: se obtiene un 0

Lenguaje natural --- Tabla de verdad --- Fórmula booleana (SOP)

Lenguaje natural --- Tabla de verdad --- Fórmula booleana (SOP)

Realizar un circuito de 3 entradas que calcule la función mayoría:

- si dos o mas entradas valen 1: se obtiene un 1
- caso contrario: se obtiene un 0

E_1	E_2	<i>E</i> ₃	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Lenguaje natural --- Tabla de verdad --- Fórmula booleana (SOP)

Tabla de verdad Fórmula booleana (SOP)

- O Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Tabla de verdad — Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1 (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)$
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
←□ → ←□ → ← □ → ← □ → □ ≥			

Tabla de verdad — Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	$1 (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)$
1	1	0	1
1	1	1	1

Tabla de verdad ---- Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	$1 (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)$
1	1	1	1

Tabla de verdad — Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	$1 (E_1^{\wedge} E_2^{\wedge} E_3)$

Tabla de verdad ---- Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3)$$

Tabla de verdad ---- Fórmula booleana (SOP)

- Construir la tabla de verdad
- Plantear la fórmula que describe cada caso donde la salida vale 1
- Unir los casos con disyunción

E_1	E_2	E_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1 (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)$
1	0	0	0
1	0	1	$1 (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)$
1	1	0	$1 (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)$
1	1	1	$1 (E_1^{\wedge} E_2^{\wedge} E_3)$

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3)$$

Suma de Productos

Obtener la Suma de Productos

Suma de Productos

Obtener la Suma de Productos

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee}$$
$$^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3)$$

SOP

(Suma de productos) Fórmula booleana compuesta por disyunciones ($^{\vee}$) entre términos que son conjunciones ($^{\wedge}$) de literales (a ó \overline{a})

Suma de Productos

Obtener la Suma de Productos

$$s = \frac{\left(\overline{E}_1^{\wedge} E_2^{\wedge} E_3\right)^{\vee}}{\text{término}}^{\vee} \frac{\left(E_1^{\wedge} \overline{E}_2^{\wedge} E_3\right)^{\vee}}{\text{término}}^{\vee}$$

$$\sqrt{\frac{(E_1^{\wedge} E_2^{\wedge} \overline{E}_3)}{\text{término}}} \sqrt{\frac{(E_1^{\wedge} E_2^{\wedge} E_3)}{\text{término}}}$$

SOP

(Suma de productos) Fórmula booleana compuesta por disyunciones ($^{\lor}$) entre términos que son conjunciones ($^{\land}$) de literales (a ó \overline{a})

¿Es posible simplificar?

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3) =$$

¿Es posible simplificar?

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3) =$$

Por propiedad distributiva:

$$=((\overline{E}_1^{\wedge}E_2)^{\vee}(E_1^{\wedge}\overline{E}_2))^{\wedge}E_3^{\vee}(E_1^{\wedge}E_2)^{\wedge}(E_3^{\vee}\overline{E}_3)$$

¿Es posible simplificar?

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3) =$$

Por propiedad distributiva:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)^{\wedge} (E_3^{\vee} \overline{E}_3)$$

Por complemento en V:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)^{\wedge} 1$$

¿Es posible simplificar?

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3) =$$

Por propiedad distributiva:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)^{\wedge} (E_3^{\vee} \overline{E}_3)$$

Por complemento en \lor :

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)^{\wedge} 1$$

Por neutro de $^{\wedge}$:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)$$

¿Es posible simplificar?

$$s = (\overline{E}_1^{\wedge} E_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} \overline{E}_2^{\wedge} E_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} \overline{E}_3)^{\vee} (E_1^{\wedge} E_2^{\wedge} E_3) =$$

Por propiedad distributiva:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)^{\wedge} (E_3^{\vee} \overline{E}_3)$$

Por complemento en \lor :

$$=((\overline{E}_1^{\wedge}E_2)^{\vee}(E_1^{\wedge}\overline{E}_2))^{\wedge}E_3^{\vee}(E_1^{\wedge}E_2)^{\wedge}1$$

Por neutro de $^{\wedge}$:

$$= ((\overline{E}_1^{\wedge} E_2)^{\vee} (E_1^{\wedge} \overline{E}_2))^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)$$

Por definición de ::

$$= (E_1 \oplus E_2)^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)$$

$$(E_1 \oplus E_2)^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)$$

$$(E_1 \oplus E_2)^{\wedge} E_3^{\vee} (E_1^{\wedge} E_2)$$

Circuitos mas usados

Objetivo Proyectar una de las entradas en la salida, a partir la configuración del control

Entradas 2 entradas, una línea de control

Salida 1 salida

Multiplexor simple: La idea

Multiplexor simple: La idea

Lenguaje natural --- Tabla de verdad --- Fórmula booleana

Lenguaje natural --- Tabla de verdad

Tabla abreviada:
$$\begin{array}{c|c}
C & S \\
\hline
0 & e_1 \\
1 & e_2
\end{array}$$

Lenguaje natural --- Tabla de verdad

Tabla abreviada: $0 e_1$

Lenguaje natural --- Tabla de verdad --- Fórmula booleana

Tabla de verdad — Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tabla de verdad Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	$1 (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)$
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tabla de verdad Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	$1 (\overline{C}^{\wedge} E_1^{\wedge} E_2)$
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tabla de verdad — Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	$1 (C^{\wedge} \overline{E}_1^{\wedge} E_2)$
1	1	0	0
1	1	1	1

Tabla de verdad Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	$1 (C^{\wedge}E_1^{\wedge}E_2)$

Tabla de verdad — Fórmula booleana

C	E_1	E_2	S
0	0	0	0
0	0	1	0
0	1	0	$1 (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)$
0	1	1	$1 (\overline{C}^{\wedge} E_1^{\wedge} E_2)$
1	0	0	0
1	0	1	$1 (C^{\wedge} \overline{E}_1^{\wedge} E_2)$
1	1	0	0
1	1	1	$1 (C^{\wedge} E_1^{\wedge} E_2)$

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee}$$

$${^{\vee}(C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee}} (C^{\wedge} E_1^{\wedge} E_2)$$

¡Simplificar!

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee} (C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee} (C^{\wedge} E_1^{\wedge} E_2)$$

¡Simplificar!

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee} (C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee} (C^{\wedge} E_1^{\wedge} E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}\overline{E}_1^{\wedge}E_2)^{\vee}(C^{\wedge}E_1^{\wedge}E_2)$$

¡Simplificar!

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee} (C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee} (C^{\wedge} E_1^{\wedge} E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}\overline{E}_1^{\wedge}E_2)^{\vee}(C^{\wedge}E_1^{\wedge}E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}E_2)^{\wedge}(\overline{E}_1^{\vee}E_1)$$

¡Simplificar!

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee} (C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee} (C^{\wedge} E_1^{\wedge} E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}\overline{E}_1^{\wedge}E_2)^{\vee}(C^{\wedge}E_1^{\wedge}E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}E_2)^{\wedge}(\overline{E}_1^{\vee}E_1)$$

Por complemento de la V:

$$(\overline{C}^{\wedge}E_1)^{\wedge}1^{\vee}(C^{\wedge}E_2)^{\wedge}1$$

¡Simplificar!

$$s = (\overline{C}^{\wedge} E_1^{\wedge} \overline{E}_2)^{\vee} (\overline{C}^{\wedge} E_1^{\wedge} E_2)^{\vee} (C^{\wedge} \overline{E}_1^{\wedge} E_2)^{\vee} (C^{\wedge} E_1^{\wedge} E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}\overline{E}_1^{\wedge}E_2)^{\vee}(C^{\wedge}E_1^{\wedge}E_2)$$

Por distributiva:

$$(\overline{C}^{\wedge}E_1)^{\wedge}(\overline{E}_2^{\vee}E_2)^{\vee}(C^{\wedge}E_2)^{\wedge}(\overline{E}_1^{\vee}E_1)$$

Por complemento de la V:

$$(\overline{C}^{\wedge}E_1)^{\wedge}1^{\vee}(C^{\wedge}E_2)^{\wedge}1$$

Por neutro de la ^:

$$(\overline{C}^{\wedge}E_1)^{\vee}(C^{\wedge}E_2)$$

$$(\overline{C}^{\wedge}E_1)^{\vee}(C^{\wedge}E_2)$$

$$(\overline{C}^{\wedge}E_1)^{\vee}(C^{\wedge}E_2)$$

Multiplexor complejo

Objetivo Proyectar una de las entradas en la salida, a partir la configuración del control

Entradas 4 entradas

Salida 1 salida

Multiplexor complejo

Tabla abreviada:

Tabla abreviada							
C_1	C_2	S					
0	0	e_1					
0	1	e_2					
1	0	<i>e</i> ₃					
1	1	<i>e</i> ₄					

Multiplexor complejo

Tabla abreviada:

C_1	C_2	S
0	0	e_1
0	1	e_2
1	0	<i>e</i> ₃
1	1	<i>e</i> ₄

Tabla de verdad:

C_1		E_1		E_3	E ₄	S
0	0	0	0	0	0	0

¡Completar de Tarea!

Decodificador

Objetivo Traduce un código de 2 bits en uno de 4 valores

Entrada 2 bits de la cadena de entrada (2 entradas)

Salida 4 líneas de salida

Decodificador

$$E_1 \mid E_2 \mid S_1 \mid S_2 \mid S_3 \mid S_4$$

Tabla de verdad:

Decodificador

	E_1	$\mid E_2 \mid$	S_1	S_2	S_3	S_4
	0	0	1	0	0	0
Tabla de verdad:	0	1	0	1	0	0
	1	0	0	0	1	0
	1	1 1	0	0	0	1

Objetivo Permite configurar por qué salida se proyecta la entrada.

Entrada 1 línea de entrada, y dos líneas de control

Salida 4 líneas de salida

$$E \mid C_1 \mid C_2 \parallel S_1 \mid S_2 \mid S_3 \mid S_4$$

Tabla de verdad:

	Ε	C_1	C_2	S_1	S_2	S_3	S_4
	0	0	0	0	0	0	0
	0	0	1	0	0	0	0
	0	1	0	0	0	0	0
Tabla de verdad:	0	1	1	0	0	0	0
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1

	Ε	C_1	$\mid C_2 \mid$	S_1	S_2	S_3	S_4
	0	0	0	0	0	0	0
	0	0	1	0	0	0	0
	0	1	0	0	0	0	0
Tabla de verdad:	0	1	1	0	0	0	0
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1

¿Cómo se contruye el circuito?

Circuitos aritméticos

Circuitos aritméticos

- La ALU se puede implementar mediante circuitos
- Cada operación aritmética podría resolverse con un circuito

```
Objetivo Suma 2 bits
```

Entradas Los bits a sumar

Salida El bit resultado y el acarreo o carry (C)

_ <i>A</i>	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$+\frac{0}{0}$$

$$+\frac{1}{0}$$

_A	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$+\frac{0}{1}$$

_A	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Fórmula del Half adder

Fórmula para el resultado:

A	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

_	Α	В	R	C
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

Fórmula del Half adder

Fórmula para el resultado:

A	В	R	С
0	0	0	0
0	1	$1 \overline{A}^{\wedge} B$	0
1	0	$1 A^{\wedge} \overline{B}$	0
1	1	0	1

Α	В	R	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Fórmula del Half adder

Fórmula para el resultado:

_ <i>A</i>	В	R	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$R = (\overline{A}^{\wedge}B)^{\vee}(A^{\wedge}\overline{B})$$

Α	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Fórmula del Half adder

Fórmula para el resultado:

Α	В	R	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\overline{R = (\overline{A}^{\wedge}B)^{\vee}(A^{\wedge}\overline{B})}$$

	Α	В	R	C
	0	0	0	0
	0	1	1	0
	1	0	1	0
•	1	1	0	1 <i>A</i> ^ <i>B</i>

Fórmula del Half adder

Fórmula para el resultado:

A	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$R = (\overline{A}^{\wedge}B)^{\vee}(A^{\wedge}\overline{B})$$

Α	В	R	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$C = (A^{\wedge}B)$$

Circuitos aritméticos: Full Adder

Objetivo Suma 2 bits, considerando el carry anterior

Entradas Los bits a sumar, carry anterior

Salida El bit resultado y el bit de carry

Circuitos aritméticos: Full Adder

Tabla de verdad del Full adder

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

CAnt	A	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{0}_{0}^{C \text{ anterior}=0}$$

$$+ \underbrace{\frac{1}{0}}_{\text{C=0}}^{\text{C anterior=0}}$$

$$+ \underbrace{\frac{0}{1}}_{\text{C=0}}^{\text{C anterior=0}}$$

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{0}_{0}^{C \text{ anterior}=0}$$

$$+ \underbrace{\frac{1}{0}}_{\text{C=0}}^{\text{C anterior=0}}$$

$$+ \underbrace{\frac{0}{1}}_{\text{C=0}}^{\text{C anterior=0}}$$

$$+ \underbrace{\frac{1}{1}}_{\text{C = 1}}^{\text{C anterior}=0}$$

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{0}_{0}^{C \text{ anterior}=0}$$

$$+ \underbrace{ \begin{matrix} 1 \\ 0 \\ \hline 1 \end{matrix}_{C=0}}^{C \text{ anterior}=0}$$

$$+ \underbrace{\frac{0}{1}}_{C=0}^{C \text{ anterior}=0}$$

$$+ \frac{1}{1} \frac{\text{C anterior}=0}{\text{C}=1}$$

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{0}_{0}^{C \text{ anterior}=0}$$

$$+ \frac{1}{1} \frac{\text{C anterior}=0}{\text{C}=1}$$

CAnt	A	В	R	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{\frac{1}{0}}_{\text{C=1}}^{\text{C anterior}=1}$$

$$+ \underbrace{\frac{1}{1}}_{\text{C=1}}^{\text{C anterior}=1}$$

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{\frac{0}{1}}_{\text{O C=1}}^{\text{C anterior}=1} + \underbrace{\frac{1}{1}}_{\text{C=1}}^{\text{C anterior}=1}$$

CAnt	A	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{\frac{0}{1}}_{0 \text{ C=1}}^{\text{C anterior}=1} + \underbrace{\frac{1}{1}}_{1 \text{ C=1}}^{\text{C anterior}=1}$$

CAnt	A	В	R	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$+ \underbrace{0 \atop 0}_{\text{C-anterior}=1} + \underbrace{0 \atop 0}_{\text{C-anterior}=1}$$

$$+ \underbrace{\frac{0}{1}}_{\text{OC}=1}^{\text{C anterior}=1} + \underbrace{\frac{1}{1}}_{\text{C}=1}^{\text{C anterior}=1}$$

Fórmulas del Full adder

Fórmula para el resultado:

CAnt	A	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Fórmula para el carry:

CAnt	A	В	R	<i>C</i>
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Fórmulas del Full adder

Fórmula para el resultado:					Fórmula	par	a el d	carry:	
CAnt	Α	В	R	С	CAnt	A	В	Ŕ	C
0	0	0	0	0	0	0	0	0	0
0	0	1	$1 \overline{CAnt}^{\wedge} \overline{A}^{\wedge} B$	0	0	0	1	1	0
0	1	0	$1 \overline{CAnt}^{\wedge} A^{\wedge} \overline{B}$	0	0	1	0	1	0
0	1	1	0	1	0	1	1	0	1
1	0	0	1 $CAnt^{\overline{A}}\overline{B}$	0	1	0	0	1	0
1	0	1	0	1	1	0	1	0	1
1	1	0	0	1	1	1	0	0	1
1	1	1	1 CAnt^A^B	1	1	1	1	1	1

Fórmulas del Full adder

Fórmula para el resultado:

	I					
CAnt	A	В	R	C		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Fórmula para el carry:

CAnt	A	В	R	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	$1 \overline{CAnt}^{\wedge} A^{\wedge} B$
1	0	0	1	0
1	0	1	0	$1 CAnt^{\overline{A}}B$
1	1	0	0	$1 CAnt^{\wedge}A^{\wedge}\overline{B}$
1	1	1	1	1 CAnt^A^B

¿Cómo se suman cadenas de mas de un bit?

Usando múltiples Full Adders

Completar la tabla de verdad

$$A \mid B \parallel R \mid C$$

Completar la tabla de verdad

Α	В	R	С	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Completar la tabla de verdad

_A	В	R	C	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Completar las SOP

Restador de un bit: con carry anterior

Restador de un bit: con carry anterior

CAnt	A	$\mid B \mid$	R	C
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Restador de un bit: con carry anterior

CAnt	Α	В	R	C
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Completar las SOP

Redondeando...

- Motivación
- 2 Compuertas lógicas
- Circuitos
 - Construcción de circuitos
 - SOP
 - Circuitos mas usados
 - Multiplexor
 - Decodificador
 - Demultiplexor
- 4 Circuitos aritméticos
 - Sumador
 - Restador

Trabajo de investigación

Trabajo de investigación

¿Qué son los circuitos secuenciales flip flop S-R y flip flop J-K?

Trabajo de investigación

¿Qué son los circuitos secuenciales flip flop S-R y flip flop J-K?

Entrega el martes 27/8

¿Preguntas?