B.E. I Semester Examination

BE-I/11(A)

229868

Engineering Mathematics

Course Code: BSC-101

Time Allowed: Three Hours

Maximum Marks - 100

Note:

- Attempt Q.No. 1, which is compulsory and it consists of short (i) answer questions of total 10 marks.
- From each unit, attempt one question of 15 marks each (Total (ii) marks: 15×6=90)
 - Verify whether the following statements are true or false. $1 \times 10 = 10$
 - (i) The curve $y^2 = x^3$ has a node at the origin.
 - The curve $r = a\cos 2\theta$ has two leaves. (ii)
 - (iii) $\sin z = \sin x$. $\cosh y + i\cos x$. $\sinh y$.
 - (iv) $\sin x$ and $\sin 2x$ are independent solutions of $(D^2 + 1)y = 0$
 - (v) $(x^2 + y^2 + 2x) dx + 2y dy = 0$ is an exact differential equation.
 - (vi) The function $z = x.\sin^{-1}\left(\frac{y}{x}\right)$ is homogeneous of degree 2.
 - (vii) The volume of a sphere of radius 'a' is $\frac{4}{3}\pi a^3$.

Turn Over

(viii) The value of
$$\int_{0}^{\pi/2} \sin^{7}x dx \text{ is } \frac{16}{35}.$$

- (ix) $\cosh(x+y) = \cosh x \cdot \cosh y \sinh x \cdot \sinh y$.
- (x) The angle between the vectors

$$4\hat{i} - 2\hat{j} + \hat{k}$$
 and $i + j - 2\hat{k}$ is $\frac{\pi}{2}$

(xi) div $\vec{r} = 3$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

UNIT-I

- 2. (a) Find all the asymptotes of $x^3 + 3x^2y xy^2 3y^3 + \chi^2 2\chi y$ $-3y^2 + 4x + 5 = 0$.
 - (b) Trace the curve: $r = a \sin 2\theta$.

(8,7) 6.

(b)

OR

- 3. (a) Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, where $u = \tan^{-1} \left(\frac{y}{x} \right)$
 - (b) Find the position and nature of double point on $a^2y^2 = a^2x^2 4x^3$.
 - (c) Find the radius of curvature at any point of the cardioidr $= a(1-\cos\theta)$. (5,5,5)

UNIT-II

(a) Verify Rolle's theorem for

$$f(x) = e^{x} (\sin x - \cos x) \text{ in } \left[\frac{\pi}{4}, \frac{5\pi}{4}\right].$$

(b) Examine the function f = xy (a - x - y) for extreme values. (8.7)

OR

- 5. (a) Determine $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2}$
 - (b) Expand f(x, y) = e^x log (1 + y) as a series in powers of x and y upto third degree terms.
 - (c) State and prove mean value theorem. (5,5,5)

UNIT - III

- 6. (a) Find the length of the loop of the curve: $3ay^2 = x(x-a)^2$
 - (b) Evaluate $\iint_{\mathbb{R}} (x^2 + y^2) dxdy$ over the annular region R lying between $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. (8,7)

OR

- 7. (a) Find the volume of the solid generated by revolving area about the x-axis, of the area included between $y^2 = x^3$ and $x^2 = y^3$.
 - (b) Evaluate $\int_0^\infty x^3 \cdot e^{-\sqrt{x}} dx$.
 - (c) Evaluate $\int_{-1}^{1} (1+x)^{3/2} (1-x)^{7/2} dx$ by using beta/gamma functions.

(5,5,5)

- Verify Green's theorem in the xy-plane for $\oint (2xy)$ (a) $dx + (x^2 + y^2)$ dy where C is the boundary of the region $x = y^2$.
 - (b) Evaluate ∮ F.dr around a triangle in the xy-plane with vertices at (0, 0), (3, 0) and (3, 2) taken in county

$$\overline{F} = (2x - y + 4)\hat{i} + (5y + 3x - 6)\hat{j}.$$

OR

(8,7)

- Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 9$ 9. (a) $+y^2-z=3$ at the point (2,-1,2).
 - (b) Show that $\operatorname{div}(\operatorname{curl} \vec{F}) = 0$.
 - Show that $\iint_{S} \nabla r^{2} . dS = 6V$, where $r = 1\vec{r} 1$, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and S is a closed surface enclosing a volume V. (5,5,5)

UNIT-V

- 10. Express tan Z into real and imaginary parts. (a)
 - If $e^{i\theta} = \sinh(x + iy)$, show that (b) $\sinh^4 x = \cos^2 \theta = \cos^4 y.$ (8,7)

(a) Show that
$$\tan \left[i \log \left(\frac{a-ib}{a+ib}\right)\right] = \frac{2ab}{a^2-b^2}$$
(4)

- (b) Show that $\sin(\log i^i) = -1$.
- (c) Sum the series to infinity.

$$1 + x \cos\theta + \frac{x^2}{2!} \cos 2\theta + \frac{x^4}{3!} \cos 3\theta + \dots$$

UNIT - VI

12. (a) Solve:

$$x^{2}y^{11} + 7xy^{1} + 5y = 4(x^{-1} + x^{-2})$$

(b) Solve:

$$y^{11} - y = \frac{2}{1 + e^x} \tag{8.7}$$

OR

13. Solve:

- (a) $(D^3-D^2-6D)y=x^2$.
- (b) $y(e^x + 2xy) dx e^x dy = 0$

(c)
$$\frac{dy}{dx} + 4xy + xy^3 = 0$$
 (5,5,5)
