SHIFT-AND I KMR

HUWr. II rok informatyki

1 Algorytm Shift-AND

IDEA ALGORYTMU:

- W trakcie czytania tekstu pamiętamy informację o wszystkich prefiksach wzorca, które są sufiksami przeczytanego fragmentu tekstu.
- Algorytm ten przeznaczony jest do wyszukiwania krótkich wzorców, więc powyższa informacja może być przechowywana w jednym słowie maszynowym i w prosty sposób, kilkoma rozkazami, uaktualniana po wczytania kolejnego znaku.

Niech $C_j[0..m]$ będzie wektorem charakterystycznym zbioru prefiksów wzorca, które są sufiksami $t_1...t_j$, tj. $C_j[k] \equiv (P_k \supset T_j)$.

Obserwacje:

O1. Wektor C_j można w prosty sposób wyznaczyć na podstawie wektora C_{j-1} , wzorca oraz j-tego znaku tekstu.

Mamy bowiem:

$$C_j[k] = \left\{ \begin{array}{ll} true & \text{dla } k = 0 \\ C_{j-1}[k-1] \wedge (p_k = t_j) & \text{dla } k > 0 \end{array} \right.$$

O2. Wzorzec występuje z przesunięciem j-m wtedy i tylko wtedy, gdy $C_j[m]=true$.

UWAGI IMPLEMENTACYJNE:

• Jeśli wzorzec jest krótki (m < długość słowa maszynowego), do uaktualnienia wektora charakterystycznego możemy wykorzystać długie operacje logiczne. W tym celu dla każdej litery d alfabetu tworzymy wektor R_d taki, że $R_d[i] \equiv (p_i = d)$. Wówczas

$$C_j = Shift(C_{j-1}) \ AND \ R_{p_j},$$

gdzie operacja Shift oznacza przesunięcie w prawo o jeden bit z ustawieniem skrajnie lewego bitu na 1.

• Wystarczy pamiętać jeden (bieżący) wektor charakterystyczny zbioru prefiksów i uaktualniać go po każdym przeczytanym znaku.

2 Algorytm Karpa-Millera-Rosenberga (KMR)

IDEA ALGORYTMU:

- \bullet Niech w=PT,a więcwjest konkatenacją wzorca Pi tekstu T.
- ullet Numerujemy wszystkie podsłowa słowa w o długości m w jednoznaczny sposób, tj. taki, że takie same podsłowa otrzymują ten sam numer, a różne podsłowa różne numery.
- Wypisujemy wszystkie pozycje większe od m, na których zaczynają się podsłowa o takim samym numerze co podsłowo zaczynające się na pozycji 1 (a więc wzorzec).

Numerowanie podsłów

- Do numerowania wykorzystujemy kolejne liczby naturalne. W ten sposób zawsze będziemy mieli do czynienia z numerami nie większymi od n (bo różnych podsłów danej długości jest nie więcej niż pozycji, na których mogą się one zaczynać).
- Startujemy od ponumerowania podsłów długości 1. W tym celu sortujemy w czasie liniowym litery występujące w słowie.
- Jeśli mamy ustaloną numerację słów długości k, możemy w prosty sposób znaleźć numerację podsłów długości k' dla dowolnego $k' \in \{k+1, \ldots, 2k\}$:
 - Dla każdego i = 1, ..., |PT| k' tworzymy parę $\langle nr_k(i), nr_k(i+k'-k) \rangle$, gdzie $nr_s(j)$ jest numerem s-literowego podsłowa zaczynającego się od pozycji j (w obliczonej przez nas numeracji podsłów s-literowych).
 - Sortujemy leksykograficznie utworzone pary. Przeglądając ciąg par z lewa na prawo nadajemy im numery = " liczba różnych par na lewo".

Przykład

Załóżmy, że ponumerowaliśmy podsłowa 2 literowe w słowie w=bbaabbaaaabbaa w następujący sposób:

Pozycja	1	2	3	4	5	6	7	8	9	10	11	12	13
Podsłowo	bb	ba	aa	ab	bb	ba	aa	aa	aa	ab	bb	ba	aa
Numer	4	3	1	2	4	3	1	1	1	2	4	3	1

Tworząc numerację podsłów 4 literowych przypisujemy kolejnym pozycjom słowa w następujące pary:

Pozycja	1	2	3	4	5	6	7	8	9	10	11
Podsłowo	bbaa	baab	aabb	abba	bbaa	baaa	aaaa	aaab	aabb	abba	bbaa
Para	4,1	3,2	1,4	2,3	$4,\!1$	3,1	1,1	1,2	1,4	2,3	4,1

Po posortowaniu par otrzymujemy ciąg:

$$(1,1), (1,2), (1,4), (1,4), (2,3), (2,3), (3,1), (3,2), (4,1), (4,1), (4,1),$$

co umożliwia nam łatwe nadanie numerów parom:

Para	(1,1)	(1,2)	(1,4)	(2,3)	(3,1)	(3,2)	(4,1)
Numer	1	2	3	4	5	6	7

i przypisanie ich podsłowom z kolejnym pozycji słowa w:

Pozycja	1	2	3	4	5	6	7	8	9	10	11
Podsłowo	bbaa	baab	aabb	abba	bbaa	baaa	aaaa	aaab	aabb	abba	bbaa
Numer	7	6	3	4	7	5	1	2	3	4	3

Fakt 1 Algorytm KMR działa w czasie $O(n \log n)$.

Dowód: Chcąc znaleźć numerację słów m literowych wystarczy obliczyć numerację dla $\lceil \log m \rceil$ różnych długości. Obliczenie numeracji dla każdej z długości może być wykonane w czasie liniowym.

Uwaga: Algorytm KMR może być zastosowany do wielu problemów związanych z wyszukiwaniem takich samych podsłów, w szczególności do problemu znajdowania najdłuższego powtarzającego się podsłowa.