Praktikum Deep Learning CV+NLP SoSe 2023

Denis Lukovnikov, Asja Fischer

Praktikum Deep Learning

Goal: develop Deep Learning systems to solve real tasks

understand and implement research papers

What: multiple programming projects in groups

Setup: Python, Pytorch, Huggingface

Minimum requirements:

- Deep Learning
- Basics of Machine Learning
- Python

Timeline

1. First basic project: detecting generated images

Goal: get used to Pytorch and ecosystem (1-2 weeks)

implement and train a basic image classifier and test alternatives (2 weeks)

Duration: 4 weeks starting today

Points: 25% (+best group gets a bonus point)

2. Second basic project: something with text retrieval

Goal: same

Duration: 3 weeks, starting immediately after 1st basic project

Points: 25% (+best group gets a bonus point)

3. Interesting project

o Goal: do something more interesting, (maybe) building on top of a previous project

Duration: the rest of the semester

o Points: 50%

 Topics: robust generated image detection, deep image watermarking, semantic parsing with ChatGPT?...

Grading

- Reports
- Presentations + questions
- Code:
 - Should be commented, well-organized and easily runnable
 - Results should be reproducible
- Criteria:
 - Understanding of concepts
 - Ability to implement them
 - Ability to choose interesting experiments and questions
 - Interpreting results
 - Teamwork

Development environment

- Python
- PyTorch:
 - Go over ALL basics first: (starts here: https://pytorch.org/tutorials/beginner/basics/intro.html)
 - And try them out
- Huggingface
 - Pre-trained models
 - Datasets
 - Code (diffusers, transformers)
- Git
- Reports: Latex (check out Overleaf ← free online collaborative latex)

Environment: Python and PyTorch

- Use conda (or virtualenv):
 https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
- Make a Github(/GitLab) project and use git
 - commit and push all your work under your name
 - Tips:
 - Create new branches for new things or changes and merge
 - Check out Git's cherry-pick
- Pytorch:
 - Installation: https://pytorch.org/
 - Tutorials: https://pytorch.org/tutorials/
 - (Course: https://www.coursera.org/learn/deep-neural-networks-with-pytorch (?))

Environment: Hugging Face

- https://huggingface.co/
- Datasets: https://huggingface.co/datasets
- Models: https://huggingface.co/models
- Really easy to use

Practical

- Use Google Colab for the top-level script
 - Easy to analyze things and collaborate live
 - Extremely easy to reproduce
 - FREE compute!
 - Keep Colab script as short as possible!
 - Works with external code:
 - Even private repo: https://felixbmuller.medium.com/connect-a-private-github-repository-with-google-colab-via-a-deploy-key-cca8ad13007
- ⇒ use repo to write code
- ⇒ import this code in Colab for training and plotting
- Whenever using anything, make sure you can explain what it does and how to reasonable level of detail

First project: detecting generated images

Goal: given some image, determine whether it's real or generated using

Stable Diffusion

Timeline: 1. Go over pytorch basics (1 week)

2. Implement baseline binary image classifier (1 week)

- starting dataset: DiffusionDB subset for fake, Imagenette for real

- starting model: Resnet50

- 3. Run experiments + write report (1 week)
 - remember to use train/valid/test split
- 4. Try improve (1 week):
 - more data (OpenImages?)
 - other models (Vision transformer?)
 - perturbations (blur, JPEG, crop, zoom, ...)

First project: continued

- After four weeks (after 9 May):
 - Short report (~2 pages)
 - What and why
 - Results
 - Short presentation (~5min): explain report, answer questions, go over code
 - Code:
 - Github + Colab notebook + pre-trained model
 - At least one notebook for just prediction (keep training code separate)
 - Notebook must load a model you trained and easily run on new Dataset
 - (more specs later)
- Leaderboard:
 - o I'll run your notebooks on my dataset
 - Leading group: bonus point
- We'll try to meet weekly

Next week

- Send me email with teams (or if you need one) before Friday
 - We will change teams for every project
 - o 3-4 per team
- Go over pytorch basics, set up environment

Questions