Vectors, Matricies, and Operations

Computational Mathematics and Statistics Camp

University of Chicago September 2018

1. Perform the following vector multiplication operations:

a.
$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a & b & c \end{bmatrix}'$$

b. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} a & b & c \end{bmatrix}$
c. $\begin{bmatrix} -1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 & 12 \end{bmatrix}'$
d. $\begin{bmatrix} -1 & 1 & -1 \end{bmatrix} \times \begin{bmatrix} 4 & 3 & 12 \end{bmatrix}$
e. $\begin{bmatrix} 0 & 9 & 0 & 11 \end{bmatrix} \cdot \begin{bmatrix} 123.98211 & 6 & -6392.38743 & -5 \end{bmatrix}'$
f. $\begin{bmatrix} 123.98211 & 6 & -6392.38743 & -5 \end{bmatrix} \cdot \begin{bmatrix} 0 & 9 & 0 & 11 \end{bmatrix}'$

2. Find the length of the following vectors:

a.
$$(3,4)$$

b. $(0,-3)$
c. $(1,1,1)$
d. $(3,3)$
e. $(-1,-1)$
f. $(1,2,3)$
g. $(2,0)$
h. $(1,2,3,4)$
i. $(3,0,0,0,0)$

3. Recall a property of the **law of cosines**:

$$\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

where θ is the angle from **w** to **v** measured in radians. Of importance, arccos() is the inverse of cos():

$$\theta = \arccos\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}\right)$$

For each of the following pairs of vectors, calculate the angle between them. Report your answers in both radians and degrees. To convert between radians and degrees:

$$Degrees = Radians \times \frac{180^o}{\pi}$$

a.
$$\mathbf{v} = (1,0), \quad \mathbf{w} = (2,2)$$

b. $\mathbf{v} = (4,1), \quad \mathbf{w} = (2,-8)$
c. $\mathbf{v} = (1,1,0), \quad \mathbf{w} = (1,2,1)$
d. $\mathbf{v} = (1,-1,0), \quad \mathbf{w} = (1,2,1)$
e. $\mathbf{v} = (1,0,0,0,0), \quad \mathbf{w} = (1,1,1,1,1)$

4. Using the matrices below, calculate the following. Some may not be defined; if that is the case, say so.

$$\mathbf{A} = \begin{bmatrix} 3 \\ -2 \\ 9 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 8 \\ 0 \\ -1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 7 & -1 & 5 \\ 0 & 2 & -4 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 3 & 1 \\ 3 & 4 \\ 3 & -7 \end{bmatrix} \quad \mathbf{E} = \begin{bmatrix} 5 & 2 & 3 \\ 1 & 0 & -4 \\ -2 & 1 & -6 \end{bmatrix}$$

1

$$\mathbf{F} = \begin{bmatrix} 4 & 1 & -5 \\ 0 & 7 & 7 \\ 2 & -3 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 2 & -8 & -5 \\ -3 & 7 & -4 \\ 1 & 0 & 3 \\ 1 & 2 & 6 \end{bmatrix} \quad \mathbf{K} = \begin{bmatrix} 9 \\ -2 \\ -1 \\ 0 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 5 & 0 & 3 & 1 \end{bmatrix}$$

- a. $\mathbf{A} + \mathbf{B}$
- b. $-\mathbf{G}$
- c. \mathbf{D}'
- d. $\mathbf{C} + \mathbf{D}$
- e. 3C 2D'
- f. $\mathbf{A}' \cdot \mathbf{B}$
- g. CB
- h. **BC**
- i. FB
- j. **EF**
- k. $\mathbf{K} \cdot \mathbf{L}'$
- l. ||**K**||
- m. **G**'
- n. $E 5I_3$
- 5. Prove the additive property of matrix transposition:

$$(\mathbf{X} + \mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$$

6. For two vectors in \mathfrak{R}^3 using

$$1 = \cos^2 \theta + \sin^2 \theta$$

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

show that the norm of the cross product between two vectors, \mathbf{u} and \mathbf{v} , is:

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta)$$