Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 7. Konvergencija nizova i granična vrijednost niza

Preostali zadaci sa Vježbi br. 6. vezani za ograničenost nizova

Granična vrijednost (limes): opći koncept, pojam ε -okoline, konvergencija i divergencija

- Za niz $\{a_n\}_{n\in\mathbb{N}}$ kažemo da **konvergira** akko $\exists a\in\mathbb{R}: (\forall \epsilon>0)(\exists n_0(\epsilon)\in\mathbb{N}): (\forall n\geq n_0, n\in\mathbb{N}) \ |a_n-a|<\epsilon.$ U tom slučaju broj a nazivamo **graničnom vrijednosti** ili **limesom** niza a_n i pišemo $\lim_{n\to\infty}a_n=a$ ili $a_n\to a\ (n\to\infty).$
- Za $a \in \mathbb{R}$, $\epsilon > 0$ interval $(a \epsilon, a + \epsilon)$ nazivamo ϵ -okolinom broja a.
- Ako niz $\{a_n\}_{n\in\mathbb{N}}$ nije konvergentan, kažemo da je **divergentan (ili da divergira)**.
- $\lim_{n\to\infty} a_n = +\infty$ ili $-\infty$ (određena divergencija)
- Za niz $\{a_n\}_{n\in\mathbb{N}}$ kažemo da teži u $+\infty$ i pišemo $\lim_{n\to\infty}a_n=+\infty$ ako vrijedi $(\forall M>0)(\exists n_0(M)\in\mathbb{N}): (\forall n\geq n_0, n\in\mathbb{N})\ a_n>M.$
- Za niz $\{a_n\}_{n\in\mathbb{N}}$ kažemo da teži u $-\infty$ i pišemo $\lim_{n\to\infty}a_n=-\infty$ ako vrijedi $(\forall M>0)(\exists n_0(M)\in\mathbb{N}): (\forall n\geq n_0, n\in\mathbb{N})\ a_n<-M.$
- [1] Dokazati po definiciji da je $\lim_{n\to\infty} \frac{1}{n} = 0$.
- [2] Dokazati po definiciji da je $\lim_{n\to\infty} x_n = 1$ za $x_n = \frac{n}{n+1}$.
- [3] Dokazati po definiciji da je $\lim_{n\to\infty}\frac{2n+2}{7n+4}=\frac{2}{7}$. Naći $n_0(\varepsilon)$ ako je $\varepsilon=0.00001$.
- [4] Dokazati po definiciji da je $\lim_{n\to\infty} 3^{\sqrt{n}} = +\infty$.
- [5] Dokazati da niz $(-1)^n$, $n \in \mathbb{N}$ divergira.
 - Beskonačno velik niz: ako $|a_n| \to \infty$
 - Beskonačno mal niz: ako : ako $a_n \to 0$

[6] Dokazati da niz x_n zadan sa $x_n = n^{(-1)^n}$ nije ograničen, a ipak nije beskonačno veliki kad $n \to \infty$.

Zadaci za samostalan rad

[1] Dokazati po definiciji da je
$$\lim_{n\to\infty}\frac{1}{n!}=0.$$

[2] Dokazati po definiciji da je
$$\lim_{n\to\infty} \frac{2n^2+3}{3n^2+2n+1} = \frac{2}{3}$$
.

[3] Dokazati po definiciji da je
$$\lim_{n\to\infty} \frac{-n^2-1}{n} = -\infty$$
.

[4] Dokazati da niz
$$x_n=n\,\cdot (-1)^n$$
 , $n\in \mathbb{N}$ divergira.

[5] Dokzati po definiciji da je niz
$$x_n=rac{(-1)^{n+1}}{n}$$
, $n\in\mathbb{N}$ beskonačno mal.