BLG311E - FORMAL LANGUAGES AND AUTOMATA

2013 SPRING

RECITEMENT 2

1) Transform the Moore machine defined below into the Mealy model and reduce the states of the transformed machine.

	0	1	Output
So	S ₄	S ₂	1
S ₁	S ₄	S ₂	1
S ₂	S ₅	S_0	0
S ₃	S ₇	S_6	0
S ₄	S_1	S ₄	0
S ₅	S_0	S ₄	0
S ₆	S ₃	S ₂	1
S ₇	S_1	S ₅	0

2) Reduce the states of the incompletely specified Mealy machine below using complete cover and draw the state transition table of the reduced machine in Moore model.

	00	01	11	10
а	a/0	b/0	c/0	d/1
b	b/0	-/-	c/0	-/-
С	a/0	f/0	c/0	-/-
d	d/0	-/-	e/0	a/0
е	e/0	g/0	d/0	b/0
f	-/-	f/0	-/-	a/0
g	-/-	g/0	e / 0	c/0

SOLUTIONS

1)

	0	1	Output			
So	S_4	S_2	1			
S ₁	S ₄	S ₂	1			
S ₂	S ₅	S_0	0			
S ₃	S ₇	S ₆	0			
S ₄	S_1	S ₄	0			
S ₅	S_0	S ₄	0			
S ₆	S ₃	S_2	1			
S ₇	S_1	S ₅	0			

Moore

	0	1			
So	S ₄ /0	S ₂ /0			
S ₁	S ₄ /0	S ₂ /0			
S ₂	S ₅ /0	S ₀ /1			
S ₃	S ₇ /0	S ₆ /1			
S ₄	S ₁ /1	S ₄ /0			
S ₅	$S_0/1$	S ₄ /0			
S ₆	S ₃ /0	S ₂ /0			
S ₇	S ₁ /1	S ₅ /0			
Mealy					

Mealy

S_0							
OK	S ₁						
Χ	Х	S ₂					
Χ	Х	(5,7) (0,6)	S ₃				
		X					
Χ	Х	Х	Х	S ₄			
Χ	Х	Х	Х	(0,1) OK	S ₅		
(3,4) X	(3,4) X	Х	Х	Х	Х	S ₆	
Χ	Х	Х	Х	(4,5) OK	(0,1)	Х	S ₇
					(4,5) OK		

	0	1
Α	D/0	B/0
В	D/0	A/1
С	D/0	E/1
D	A/1	D/0
E	C/0	B/0

 $A=\{S_0,S_1\}$ $B=\{S_2\}$ $C=\{S_3\}$ $D=\{S_4,S_5,S_7\}$ $E=\{S_6\}$

2) Mealy → Moore:

	00	01	11	10	Output
а	a	b	С	d_1	0
b	b	-	С	-	0
С	а	f	С	-	0
d ₀	d_0	-	е	а	0
е	е	g	d_0	b	0
f	-	f	-	а	0
g	-	g	е	С	0
d_1	d_0	-	е	а	1

a						
٧	b					
(b,f) √	(a,b) √	С	_			
(c,e), (a,d ₁) X	(c,e) X	(a,d ₀), (c,e) X	d _o			
(b,g), (c,d ₀), X (b,d ₁)	(c,d ₀) X	(a,e), (f,g), X (c,d ₀)	(a,b) √	e		
$(b,f),$ (a,d_1) X	٧	٧	٧	(a,b), (g,f) √	f	
(b,g), (c,e), X (c,d ₁)	(c,e) X	(c,e), (f,g) X	(a,c) √	(b,c), (d ₀ ,e) v	(a,c) √	g
Х	Х	Х	Х	Х	Х	Х

Dependency graph:

Complete cover:

Reduced State Transition Table:

	00	01	11	10	Output
S1	S1	S3	S1,S3	S4	0
S2	S2	S2	S2	S1	0
S3	S1	S2,S3	S1,S3	S1	0
S4	S2	-	S2	S1	1

 $\mathbf{d_1}$