WHAT IS CLAIMED IS:

1. A method of treating a pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand comprising a compound of the formula selected from the group consisting of Formulas 1, 2, 3 and 4

$$(R_3)_0$$
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 $(R_3)_0$
 $(R_4)_3$
 $(R_4)_3$
 $(R_2)_m$
 $(R_4)_3$
 $(R_5)_m$
 $(R_5)_m$
 $(R_7)_m$
 $(R_7$

wherein the dashed line represents a bond or absence of a bond;

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or

X is $(C(R_1)_2)_n$ where R_1 is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

 R_2 is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF₃, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C_1 - C_{12} -alkylbenzyloxy;

 R_3 is hydrogen, lower alkyl of 1 to 6 carbons or F; m is an integer having the value of 0 - 3 in Formulas (1) and (3) and 0 - 5 in Formulas (2) and (4);

o is an integer having the value of 0 - 4 when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

7 Ì

 \mathbf{R}_{3}^{1} is hydrogen, lower alkyl of 1 to 6 carbons, F or $(R_{15})_{r}$ -phenyl, $(R_{15})_{r}$ -naphthyl, or $(R_{15})_{r}$ -heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

 \mathbf{R}_4 is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R₂ groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is $(CH_2)_q$ where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent

alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said

- 2. A method in accordance with Claim 1 where X is $(C(R_1)_2)_n$ and n is 1.
- 3. A method in accordance with Claim 1 where X is S.
- 4. A method in accordance with Claim 1 where X is O.

73

nosyday, associ

- 5. A method in accordance with Claim 1 where X is NR.
- **6.** A method in accordance with Claim 1 where Y is phenyl.
- 7. A method in accordance with Claim 1 where Y is thienyl.
- 8. A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (1) and (2).
- 9. A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents absence of a bond.
- 10. A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents a bond.
- 11. A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (3) and (4).
- 12. A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents absence of a bond.
- 13. A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents a bond.
- 14. A method of treating a pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand comprising a compound of the formula

74

where $\mathbf{R_2}$ is H or methyl, $\mathbf{R_4}$ is lower alkyl of 1 to 8 carbons, Y is phenyl or thienyl and B is CH_2OH , or $COOR_8$ where $\mathbf{R_8}$ is H or ethyl.

15. A method in accordance with Claim 14 where \mathbb{R}_4 is methyl.

- 16. A method in accordance with Claim 15 where Y is phenyl.
- 17. A method in accordance with Claim 16 where R_2 is H.
- 18. A method in accordance with Claim 1/7 where B is CH_2OH .
- 19. A method in accordance with Claim 17 where B is COOR₈.
- **20.** A method in accordance with Claim 16 where \mathbb{R}_2 is \mathbb{CH}_3 .
- 21. A method in accordance with Claim 20 where **B** is CH₂OH.
- 22. A method in accordance with Claim 20 where B is COOR₈.
- 23. A method in accordance with Claim 15 where Y is thienyl.
- 24. A method in accordance with Claim 23 where R_2 is H.
- 25. A method in accordance with Claim 24 where B is CH₂OH.
- 26. A method in accordance with Claim 24 where B is COOR₈.
- 27. A method of treating a pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand comprising a compound of the formula:

$$R_2$$
 Si(R₄)₃

Docket 17302

where R_2 is H or methyl, R_4 is lower alkyl of 1 to 8 carbons and B is CH_2OH , or $COOR_8$ where R_8 is H or ethyl.

28. A method in accordance with Claim 27 where R_2 is H.

29. A method in accordance with Claim 28 where B is CH2OH.

30. A method in accordance with Claim 29 where B is COOR8.

31. A method of treating a hypercholesterolemic mammal comprising the steps: providing said mammal with a pharmaceutically acceptable composition comprising an FXR antagonist selected from Formulas 1, 2, 3, and 4

$$(R_3)_0$$
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1
 $(R_2)_m$
 R_1

wherein the dashed line represents a bond or absence of a bond;

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or X is $(C(R_1)_2)_n$ where R_1 is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

 R_2 is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF₃, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C_1 - C_{12} alkylbenzyloxy;

R₃ is hydrogen, lower alkyl of 1 to 6 carbons or F;

m is an integer having the value of 0 - 3 Formulas (1) and (3), and 0 - 5 Formulas (2) and (4);

o is an integer having the value of $0 \frac{1}{4}$ when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

10

15

Docket 17302 PATENT

 \mathbf{R}_{3} is hydrogen, lower alkyl of 1 to 6 carbons, F or $(R_{15})_{r}$ -phenyl, $(R_{15})_{r}$ -naphthyl, or $(R_{15})_{r}$ -heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

 $\mathbf{R_4}$ is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R₂ groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is $(CH_2)_q$ where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent

alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said

32. A method of treating a pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor.

- 33. The method of claim 3 wherein said pathological condition comprises hypercholesterolemia.
- 34. The method of claim 32 wherein said pathological condition comprises hypocholesterolemia.
- 35. The method of claim 32 wherein said pathological condition is characterized by the overproduction of bile acids.
- 36. The method of claim 32 wherein said pathological condition is characterized by the underproduction of bile acids.
- A method of treating a pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand having the formula

20

10

15

wherein $\mathbf{R_2}$ is H or lower alkyl, $\mathbf{R_4}$ is lower alkyl of 1 to 8 carbons and \mathbf{B} is $\mathbf{CH_2OH}$ or $\mathbf{COOR_8}$ where $\mathbf{R_8}$ is H or ethyl.

38.A method in accordance with Claim 31 where R_2 is H and R_4 is ethyl.

Sulte ont

- 39. A method in accordance with Claim 32 where **B** is CH₂OH.
- 40. A method in accordance with Claim 33 where B is COOR₈.