JP7222202

Publication Title:					
STEREOSCOPIC VISION CAMERA					
Abstract:					
Courtesy of http://v3.espacenet.com					

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-222202

(43)公開日 平成7年(1995)8月18日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示	箇所
H 0 4 N 13/02					
G 0 1 B 11/24	Z				
G 0 6 T 15/00					
		9071-5L	G 0 6 F	15/62 350 V	
				4 1 5	
		審査請求	未請求 請求項	頁の数1 OL (全 4 頁) 最終頁に	続く
(21)出願番号	特願平6-10749		(71)出願人	000116024	
				ローム株式会社	
(22)出願日	平成6年(1994)2月2日			京都府京都市右京区西院溝崎町21番地	
			(72)発明者	久賀 佳衣子	
			(12/78/71	京都市右京区西院溝崎町21番地 ロー	ん株
				式会社内	
			(79) 2 ×111 ±		
			(72) 宠明有	上村中三	s 14.
				京都市右京区西院溝崎町21番地 ロー。	ム株
				式会社内	
			(74)代理人	弁理士 佐野 静夫	

(54) 【発明の名称】 立体ビジョンカメラ

(57)【要約】

【目的】 1つの光学系で立体画像信号を得ることを可 能とし、さらに安価でかつ完全なX、Y、Z軸のベクト ルをもつ立体画像信号が得られる立体ビジョンカメラの 提供。

【構成】 被写体をレンズ10を介してCCD等の撮像 素子2で撮影した後、学習機能をもつニューラルネット ワーク12が撮影された画像データからメモリ11に記 録された過去の画像データを類推し、画像シンセサイザ 13で立体画像を作成した後、3D画像コンバータ14 でX、Y、Z軸のベクトルをもつ立体画像信号に変換 し、出力する構成。

1

【特許請求の範囲】

【請求項1】 X、Y、Z軸のベクトルをもつ立体画像 信号を出力する立体ビジョンカメラにおいて、

CCD等の撮像素子と、

前記撮像素子に焦点を結ぶ光学系と、

撮像画像を随時記録、再生するメモリと、

学習機能をもつニューラルネットワークと、

各部の制御を行う制御部とを有し、

前記ニューラルネットワークが撮像画像から前記メモリ に記録された画像データを類推することにより、X、 Y、Z軸のベクトルをもつ立体画像信号を出力すること を特徴とする立体ビジョンカメラ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マルチメディア等の立 体ビジョンカメラに関する。

[0002]

【従来の技術】従来、立体ビジョンカメラは、2つの独 立した光学系により映像信号をとらえて立体映像信号と していた。即ち、CCD等からなる撮像部の光学系と、 LED等の発光素子及びフォトダイオードアレイ等の受 光素子からなる距離計測部の光学系とで構成され、それ ぞれの信号を合成して立体画像信号を得ていた。

【0003】図6に従来例の構成を示す。1はCCD等 の撮像素子2と撮像用レンズ3からなる撮像部で、4は LED等の発光素子5及びフォトダイオードアレイ等の 受光素子6及び距離計測用レンズ7からなる距離計測部 である。また、8は撮影される物体で、9は撮像部1と 距離計測部4の信号を合成する合成器である。撮像部1 によって得られた画像信号と距離計測部4によって得ら 30 れた距離信号は、合成器9で合成され立体画像信号とな る。

[0004]

【発明が解決しようとする課題】しかしながら、上記従 来例では、少なくとも2個の独立した光学系が必要で装 置が高価になることや、撮像部1と距離計測部4が離れ ているため完全なX、Y、Z軸のベクトルを持った立体 画像信号の作成が困難であるという問題があった。

【0005】本発明は、かかる点に鑑み、1つの光学系 で立体画像信号を得ることを可能とし、さらに安価でか 40 後、出力される。ユニットの出力値yは、以下に示す式 つ完全なX、Y、Z軸のベクトルをもつ立体画像信号が 得られる立体ビジョンカメラの提供を目的とする。

[0006]

【課題を解決するための手段】上記目的を達成するため に、本発明では、X、Y、Z軸のベクトルをもつ立体画 像信号を出力する立体ビジョンカメラにおいて、CCD 等の撮像素子と、前記撮像素子に焦点を結ぶ光学系と、 撮像画像を随時記録、再生するメモリと、学習機能をも つニューラルネットワークと、各部の制御を行う制御部 2

前記メモリに記録された画像データを類推することによ り、X、Y、Z軸のベクトルをもつ立体画像信号を出力 する。

[0007]

【作用】上記構成によれば、被写体をレンズを介してC CD等の撮像素子で撮影した後、学習機能をもつニュー ラルネットワークが撮影された画像データからメモリに 記録された過去の画像データを類推し、画像シンセサイ ザで立体画像を作成した後、3D画像コンバータでX、 10 Y、 Z軸のベクトルをもつ立体画像信号に変換し、出力 する。

[0008]

【実施例】本発明の実施例について図面に基づいて説明 する。図1は本発明の立体ビジョンカメラの略構成図で ある。2は物体8を撮像するCCD等の撮像素子で、1 1はCCD等の撮像素子2の画像信号を記録するメモリ (FRAM、FLASH、EEPROM等) で、12は 学習機能を有するニューラルネットワークで、13はニ ューラルネットワーク12からの画像信号を合成する画 像シンセサイザで、14は画像シンセサイザ13からの 立体画像信号をX、Y、Z軸をもった立体画像信号に変 換する3D画像コンバータである。また、15は各部を 制御するシステムコントローラであり、10はレンズ で、X、Y、Z軸は3次元空間の各ベクトル軸を示して いる。

【0009】次に、本発明に用いる階層型ニューラルネ ットワーク(神経回路網)について説明する。ニューラ ルネットワークは、人間の神経ネットワークをまねた情 報処理システムである。ニューラルネットワークにおい て、神経細胞に相当する工学的なニューロンのモデルを ユニットと呼ぶ。

【0010】ユニットには、図2に示すような多入力、 1出力の素子が通常用いられている。信号は一方向にだ け伝わり、ある重み(結合荷重:wi)がつけられてユ ニットに入力される。この重みによって、ユニット間の 結合の強さが表される。ユニット間の結合の強さは、学 習によって変化させることができる。重みがつけられた それぞれの入力値(w_i 、 x_i)の総和からしきい値 θ を 引いた値Xが、応答関数f(X)による変形を受けた (1) のようになる。

 $[0\ 0\ 1\ 1]\ y = f(X) \cdots (1)$

ここで、X=Σ ($w_i x_i - \theta$) である。

【0012】ユニットへ入力されたXは、ユニットの応 答特性 f (X) に従って変形されるが、応答関数として よく用いられるのが図3に示すシグモイド関数である。

【0013】階層型ニューラルネットワークでは、図4 に示すように各ユニット(同図中の丸印)が、入力層L 1、中間層(1層又は複数の層から成る) L2及び出力層 とを有し、前記ニューラルネットワークが撮像画像から 50 L3に階層化されている。ユニット間の接続は各層間で 3

の接続であり、同一の層内での接続はなく、また、信号 は入力から出力への一方向にしか伝わらない。通常、入 カ層L₁のユニットはシグモイド特性やしきい値をもた ず、入力値がそのまま出力に現れる。ニューラルネット ワークの出力値は、以下の式(2)に示すような非常に 簡単な形で表される。

 $[0\ 0\ 1\ 4]\ 0=f\ (\Sigma V_i\cdot H_i-\gamma) \cdot \cdot \cdot (2)$ ここで、

 $H_i = f \left(\sum W_{i|i} \cdot I_i - \theta_i \right)$

 I_{i} ($i=1\sim M$):入力層 L_{1} のユニットiの入力 H_i (j=1~N):中間層 L_2 のユニットjの出力 :出力層し:のユニットの出力

Wii :入力層し1のユニット 1から中間層し2のユニ ットjへの結合荷重

:中間層し2のユニット」から出力層し3のユニ ットへの結合荷重

:中間層し2のユニット」のしきい値 heta j

γ :出力層し3のしきい値 M :入力層し1のユニットの数 N :中間層し2のユニットの数 である。

【0015】上記階層型ニューラルネットワークの学習 アルゴリズムとしては、教師信号と出力信号の2乗誤差 が最小となるように、最急降下法を用いて中間層L2-出力層し3、入力層し1-中間層し2間の結合荷重及びし きい値を順次変化させていく誤差逆伝播学習則(バック プロパゲーション)がよく用いられている。この誤差逆 伝播学習則 (バックプロパゲーション) なる学習アルゴ リズムを用いることによって高い認識率を実現できるニ ューラルネットワークが容易に形成されるようになっ 30 た。

【0016】次に、動作を説明する。まず、CCD等の 撮像素子2により被写体である物体8がレンズ10を介 して撮影され、2次元の画像信号がCCD等の撮像素子 2から出力され、ニューラルネットワーク12に入力さ れる。ニューラルネットワーク12へは、この2次元の 画像信号の他にメモリ11から過去の画像データが取り 込まれる。ニューラルネットワーク12はいくつかの入 カパターンをネットワークの系の安定状態として記憶 し、未知の入力パターンを与えると記憶された中から近 40 3 撮像部のレンズ いパターンに対応(類推)する安定状態にやがて落ち着 くように働く。

【0017】即ち、学習アルゴリズムをもつニューラル ネットワーク12は、上記の画像データから立体画像の 作成に必要な情報を過去の学習から類推し、画像シンセ サイザ13へ信号を送り出す。そして、画像シンセサイ ザ13は類推された画像信号を合成し、立体画像に必要 な立体画像信号を出力する。出力された立体画像信号は 3 D画像コンバータ14でX、Y、Z軸のベクトルをも った立体画像信号に変換され、出力される。

【0018】図5に人形 a の立体画像の作成の様子を示 す。まず、教師データとして人形aの正面画像b、側面 画像c、背面画像d、側面画像eが与えられる。そし て、これらのデータはメモリ11に記録される。次に、 CCD等の撮像素子2から人形aの2次元の画像が撮像 されると、ニューラルネットワーク12は、この人形 a の2次元の画像から自動的に類推し、メモリ11に記録 された人形aのデータを画像シンセサイザ13に送り込 む。これらのデータに基づいて画像シンセサイザ13は 10 人形 a の立体画像を作成する。このようにして本発明の 立体ビジョンカメラは立体画像を作成することができ

[0019]

【発明の効果】以上のように本発明によれば、CCD等 の撮像素子と、撮像素子に焦点を結ぶ光学系と、撮像画 像を随時記録、再生するメモリと、学習機能をもつニュ ーラルネットワークと、各部の制御を行う制御部とを有 し、ニューラルネットワークが撮像画像から前記メモリ に記録された画像データを類推することにより、X、

20 Y、Z軸のベクトルをもつ立体画像信号を出力するの で、1つの光学系で立体画像信号を得ることを可能と し、さらに安価でかつ完全なX、Y、Z軸のベクトルを もつ立体画像信号が得られる立体ビジョンカメラを提供 できる。

【図面の簡単な説明】

【図1】 本発明の立体ビジョンカメラの略構成図。

【図2】 本発明の実施例に用いられているニユーラル ネットワークを構成するニユーロンの工学的モデルを示 す模式図。

【図3】 本発明の実施例に用いられているニユーラル ネットワークを構成するニユーロンの入出力特性を表す グラフ。

【図4】 本発明の実施例に用いられている階層型ニユ ーラルネットワークの構造を示す模式図。

【図5】 人形の立体画像を作成する様子を示す図。

【図6】 従来の立体ビジョンカメラの略構成図。

【符号の説明】

- 1 撮像部
- 2 CCD等の撮像素子
- - 4 距離計測部
 - 5 LED等の発光素子
 - 6 フォトダイオードアレイ等の受光素子
 - 7 距離計測部のレンズ
 - 8 物体
 - 9 合成器
 - 10 レンズ
 - 11 メモリ
 - 12 ニユーラルネットワーク
- 50 13 画像シンセサイザ

フロントページの続き

 (51) Int. Cl. 5
 識別記号
 庁内整理番号
 F I
 技術表示箇所

 G 0 6 T
 7/00

立体面像信号