- 1. Calcule $\oint_{\gamma} (2xy-x^2) dx + (x+y^2) dy$ sendo γ a curva fechada do domínio limitado entre $y=x^2$ e $y^2=x$, percorrida no sentido anti-horário.
- 2. Calcule $\oint_{\mathcal{V}} \vec{F} \cdot d\vec{r}$ onde γ é a curva cujo traço é a fronteira de D.
 - 1. $\vec{F}(x,y) = xy\vec{i} 2xy\vec{j}$, D é o retângulo $1 \le x \le 2$, $0 \le y \le 3$
 - 2. $\vec{F}(x,y) = e^x \operatorname{sen} y\vec{i} + e^x \cos y\vec{j}$, D é $0 \le x \le 1$, $0 \le y \le \pi/2$
 - 3. $\vec{F}(x,y) = (\frac{2}{3}xy^3 x^2y)\vec{i} + x^2y^2\vec{j}$, D é o triângulo de vértices (0,0), (1,0), (1,1).
- 3. Usando o Teorema de Green, calcule $\oint_{\mathcal{C}} 2x^2y^3 dx + 3xy dy$ onde γ é o círculo $x^2 + y^2 = 1$.
- 4. Usando integral de linha, calcule a área da região delimitada pelas curvas y = x + 2 e $y = x^2$.
- 5. Usando integral de linha, calcule a área da região no primeiro quadrante delimitada pelas curvas 4y = x, y = 4x e xy = 4.
- 6. Calcule $\int_{\gamma} \frac{x \, dx + y \, dy}{x^2 + y^2}$, onde γ é o arco de parábola $y = x^2 1$, $-1 \le x \le 2$, seguido pelo segmento de (2,3) a (-1,0).
- 7. Calcule o fluxo de \vec{F} através de γ na direção de \vec{n} .
 - (a) $\vec{F}(x,y) = x\vec{i} + y\vec{j}$, γ é a circunferência centrada na origem de raio 1, \vec{n} e a normal unitário exterior.
 - (b) $\vec{F}(x,y) = y\vec{j}$, γ é a lateral do quadrado de vértices (0,0), (1,0), (1,1) e (0,1), \vec{n} é normal unitário exterior.
 - (c) $\vec{F}(x,y) = x^2 \vec{i}$, γ é a elipse $x^2/4 + y^2 = 1$, \vec{n} é normal unitário exterior.
 - (d) $\vec{F}(x,y) = x\vec{i} + y\vec{j}$, $\gamma(t) = (t,t^2)$, $0 \le t \le 1$, \vec{n} é normal unitário apontando para baixo.
- 8. Sejam $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ uma função suave tal que $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ em Ω , um aberto simplesmente conexo. Mostre que o fluxo do campo gradiente de f através de uma curva fechada simples contida em Ω , na direção de sua normal exterior, é zero.

Respostas

- 1. $\frac{1}{30}$
- 2. 1) $-\frac{27}{2}$ 2) 0 3) $\frac{1}{4}$
- 3. $-\frac{\pi}{4}$
- 4. $\frac{9}{2}$
- 5 8ln 2
- 6. 0, mas não é pelo Teorema de Green. Na verdade, é possível usar o Teorema de Green para resolver este exercício, mas é preciso usar uma região apropriada que não contenha a origem.
- 7. (a) 2π
 - (b) 1
 - (c) 0
 - (d) $\frac{1}{3}$
- 8. Utilize o teorema da divergência no plano.