Aplicación de Metaheurísticas Cuánticas para la Optimización de Cadenas de Servicios en un Modelo de Red 5G

Mario Guisado García

Universidad de Granada Grado en Ingeniería Informática

Tutores:

Antonio Miguel Mora García Alejandro Borrallo Rentero

Convocatoria Ordinaria junio 2024

Mario Guisado García 1 de 24

Índice

Definición del Problema

Definición del Problema

Computación Cuántica

Formulación Matemática

Resultados

Conclusión

Índice

•000

Definición del Problema

Definición del Problema

Computación Cuántica

Formulación Matemática

Resultados

Conclusión

Con las redes 5G surge la posibilidad de desacoplar funciones de red del hardware y servir estas mismas mediante software, en lo que se conoce como Funciones Virtuales de Red (VNFs), aumentando la conectividad y escalabilidad.

Definición del Problema

El objetivo será establecer la ruta óptima entre un nodo inicial y final que sea capaz de obtener las Funciones Virtuales de Red solicitadas.

Definición del Problema

El objetivo será establecer la ruta óptima entre un nodo inicial y final que sea capaz de obtener las Funciones Virtuales de Red solicitadas. Para ello se deberá tener en cuenta:

La **función de coste** a minimizar, en este caso el número de saltos.

El objetivo será establecer la ruta óptima entre un nodo inicial y final que sea capaz de obtener las Funciones Virtuales de Red solicitadas. Para ello se deberá tener en cuenta:

- La función de coste a minimizar, en este caso el número de saltos.
- Los recursos de cada nodo.

Definición del Problema

El objetivo será establecer la ruta óptima entre un nodo inicial y final que sea capaz de obtener las Funciones Virtuales de Red solicitadas. Para ello se deberá tener en cuenta:

- La función de coste a minimizar, en este caso el número de saltos.
- Los recursos de cada nodo.
- El **ancho de banda** disponible de cada enlace.

El objetivo será establecer la ruta óptima entre un nodo inicial y final que sea capaz de obtener las Funciones Virtuales de Red solicitadas. Para ello se deberá tener en cuenta:

- La función de coste a minimizar, en este caso el número de saltos.
- Los recursos de cada nodo.
- El ancho de banda disponible de cada enlace.
- Las funciones solicitadas.

Definición del Problema

Definición del Problema

0000

Figura: Representación gráfica de una red de 6 nodos.

Mario Guisado García 6 de 24

Computación Cuántica

Computación Cuántica

La computación cuántica es un nuevo paradigma de la computación que hace uso de la mecánica cuántica para resolver problemas extremadamente complejos y costosos para el enfoque clásico.

Computación Cuántica

Definición del Problema

Las principales características de esta tecnología son:

Conclusión

000000

Las principales características de esta tecnología son:

El qubit: Equivalentes al bit, es una superposición de 1 y O en proporción variable. Es posible gracias a la superposición cuántica.

Las principales características de esta tecnología son:

- El qubit: Equivalentes al bit, es una superposición de 1 y O en proporción variable. Es posible gracias a la <u>superposición</u> cuántica.
- ► El **entrelazamiento cuántico**: Propiedad que permite relacionar varios qubits entre sí.

Las principales características de esta tecnología son:

- El qubit: Equivalentes al bit, es una superposición de 1 y 0 en proporción variable. Es posible gracias a la <u>superposición</u> cuántica.
- ► El **entrelazamiento cuántico**: Propiedad que permite relacionar varios qubits entre sí.

La capacidad de manejar información y procesarla es altísima.

Es una vertiente de la computación cuántica en la que las soluciones generadas son valoradas por su energía ¹. Se fundamenta en el teorema adiabático de la mecánica cuántica.

ario Guisado García 10 de 24

¹Rajak, A., Suzuki, S., Dutta, A. and Chakrabarti, B. K. (2023). Quantum annealing: An overview. Philosophical Transactions of the Royal Society A, 381(2241), 20210417.

Es una vertiente de la computación cuántica en la que las soluciones generadas son valoradas por su energía ¹. Se fundamenta en el teorema adiabático de la mecánica cuántica.

▶ (1) Se codifica el problema en un sistema cuántico.

10 de .

¹Rajak, A., Suzuki, S., Dutta, A. and Chakrabarti, B. K. (2023). Quantum annealing: An overview. Philosophical Transactions of the Royal Society A, 381(2241), 20210417.

Es una vertiente de la computación cuántica en la que las soluciones generadas son valoradas por su energía ¹. Se fundamenta en el teorema adiabático de la mecánica cuántica.

- ▶ (1) Se codifica el problema en un sistema cuántico.
- ▶ (2) Se transforma el sistema lentamente hasta llegar al nivel de energía mínimo (solución óptima).

lario Guisado García 10 de 24

¹Rajak, A., Suzuki, S., Dutta, A. and Chakrabarti, B. K. (2023). Quantum annealing: An overview. Philosophical Transactions of the Royal Society A, 381(2241), 20210417.

De forma simplificada, se traduce el problema a un sistema al cual se le aplicarán una serie de transformaciones y se medirá su energía.

De forma simplificada, se traduce el problema a un sistema al cual se le aplicarán una serie de transformaciones y se medirá su energía.

Menor energía -> Mejor solución

Esta será la tecnología aplicada para resolver el problema en cuestión gracias a la plataforma D-Wave Leap ².

Figura: Computadores cuánticos adiabáticos de D-Wave.

²D-Wave System Documentation. https://docs.dwavesys.com/docs/latest/index. html

12 de :

Índice

Definición del Problema

Definición del Problema

Computación Cuántica

Formulación Matemática

Resultados

Conclusión

Formular el problema y sus restricciones a un modelo QUBO³.

³Glover, F., Kochenberger, G., Hennig, R. and Du, Y. (2022). Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Annals of Operations Research, 314(1), 141-183. 4 D > 4 B > 4 B > 4 B >

Formular el problema y sus restricciones a un modelo QUBO³.

Quadratic Unconstrained Binary Optimization

³Glover, F., Kochenberger, G., Hennig, R. and Du, Y. (2022). Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Annals of Operations Research, 314(1), 141-183. 4 D > 4 B > 4 B > 4 B >

Formulación Matemática

Formular el problema y sus restricciones a un modelo QUBO³.

Quadratic Unconstrained Binary Optimization

Esta expresión tendrá la forma:

$$\textit{QUBO} = \alpha_1 * \textit{CostFunction} + \alpha_2 * \textit{Constrain}_1 + \alpha_3 * \textit{Constrain}_2 ...$$

³Glover, F., Kochenberger, G., Hennig, R. and Du, Y. (2022). Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Annals of Operations Research, 314(1), 141-183. 4 D > 4 B > 4 B > 4 B >

La función de coste será el número de saltos posibles.

$$CostFunction = \sum_{a=1}^{A} \sum_{i=1}^{N} \sum_{i=1}^{N} x_{i,j,a}$$

Construyendo un QUBO

La función de coste será el número de saltos posibles.

$$CostFunction = \sum_{a=1}^{A} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i,j,a}$$

Donde i,j,a corresponderá al nodo inicial, final y agente respectivamente. Restricción para asegurar que del nodo inicial solo se sale. Matemáticamente:

$$orall oldsymbol{a} \in \{ extstyle \{ extstyle 1, 2, \ldots, A\}, \sum_{i=1}^{N} x_{InitialNode, j, a} = 1$$

Restricción para asegurar que del nodo inicial solo se sale. Matemáticamente:

$$orall oldsymbol{a} \in \{ exttt{1,2,.....,} oldsymbol{A}\}, \sum_{j=1}^{N} oldsymbol{x_{InitialNode,j,a}} = exttt{1}$$

0000

Luego:

Definición del Problema

$$Constrain_{1} = \sum_{a=1}^{A} \left(\sum_{j=1}^{N} x_{InitialNode,j,a} - 1
ight)^{2}$$

Índice

Resultados

Resultados

Definición del Problema

Con el polinomio creado, ejecutaremos en primera instancia el simulador y después el solver híbrido.

Resultados

Definición del Problema

Con el polinomio creado, ejecutaremos en primera instancia el simulador y después el solver híbrido.

► El simulador será una librería que emula el comportamiento de un computador cuántico. Se utilizará en la fase inicial del desarrollo.

Resultados

Definición del Problema

Con el polinomio creado, ejecutaremos en primera instancia el simulador y después el solver híbrido.

- ► El simulador será una librería que emula el comportamiento de un computador cuántico. Se utilizará en la fase inicial del desarrollo.
- ► El solver híbrido es una implementación de un algoritmo especialmente diseñado para trabajar con una unidad de procesamiento cuántico en las partes más complejas del problema, y un ordenador clásico a modo de postprocesado.

La solución se expresará gráficamente en forma de matriz:

Figura: Solución para un agente.

Definición del Problema

Interpretando los resultados

Definición del Problema

La solución se expresará gráficamente en forma de matriz:

Figura: Solución para un agente.

Los tiempos empleados son consultables desde la plataforma:

QPU_ACCESS_TIME

00 h:00 m:00.584 s

CHARGE_TIME

00 h:00 m:09.994 s

RUN_TIME

00 h: 00 m: 09.994 s

Figura: Distribución del tiempo empleado.

Interpretando los resultados

Los tiempos de ejecución crecen de forma polinómica, no exponencial. Además, si el polinomio inicial y sus ponderaciones son correctas, la solución obtenida siempre será la óptima.

Índice

Definición del Problema

Definición del Problema

Computación Cuántica

Formulación Matemática

Resultados

Conclusión

Conclusión

La computación cuántica se posiciona como una de las tecnologías más prometedoras para resolver problemas de optimización.

Conclusión

Definición del Problema

La computación cuántica se posiciona como una de las tecnologías más prometedoras para resolver problemas de optimización. Destaca su eficiencia en problemas de gran escala y complejidad, y su habilidad para escapar mínimos locales.

Trabajo Futuro

Definición del Problema

Como propuestas para mejorar la calidad de las soluciones:

Conclusión

Como propuestas para mejorar la calidad de las soluciones:

Cálculo de constantes. Mejorar la ponderación de cada elemento del QUBO.

Trabajo Futuro

Como propuestas para mejorar la calidad de las soluciones:

- Cálculo de constantes. Mejorar la ponderación de cada elemento del QUBO.
- ▶ **Postprocesados**. Analizar el resultado obtenido en busca de posibles modificaciones a la formulación.

Como propuestas para mejorar la calidad de las soluciones:

- Cálculo de constantes. Mejorar la ponderación de cada elemento del QUBO.
- Postprocesados. Analizar el resultado obtenido en busca de posibles modificaciones a la formulación.
- División del problema. Emplear la unidad cuántica al completo para la resolución del problema.

Mario Guisado García

Universidad de Granada Grado en Ingeniería Informática

Tutores:

Antonio Miguel Mora García Alejandro Borrallo Rentero

Convocatoria Ordinaria junio 2024

Definición del Problema