Advanced Studies In Mathematics Exercise

Hwijae Son

November 14, 2024

- 1. Assume a linear model $y = \beta_1^T x + \beta_0 + \epsilon$. Suppose the error distribution follows the Laplace distribution Laplace(0, b). Derive the corresponding loss function.
- 2. Assume a linear model $y = \beta_1^T x + \beta_0 + \epsilon$. Suppose the error distribution follows the Gaussian distribution and set the Laplace prior on (β_1, β_0) . Derive the loss function to perform MAP estimation.
- 3. Derive the normal equation with L^2 regularization term. Does the equation attain a unique solution?
- 4. (Python) Write a python program that performs linear regression.
- (1) Define a target function $y = \beta_1^T x + \beta_0$, where $\beta_1, x \in \mathbb{R}^d, \beta_0 \in \mathbb{R}$ with arbitrary β_1, β_0 .
- (2) Make a dataset $\{(x_i, y_i)\}_{i=1}^N$, where $y_i = \beta_1^T x + \beta_0 + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.
- (3) Compute β_1, β_0 using normal equation.
- (4) Compute β_1, β_0 using gradient descent.
- (5) Compare the results of (3) and (4) with the true values in (1).
- (6) Add an L^2 -regularization term to the loss function and compare the convergence of the gradient descent.