

Turma: EM IME-ITA 1 Unidade: Tijuca II Professor: Gabriel Braun Data: Abril de 2023 Instruções: Nota: • Faça sua avaliação à caneta. • Resoluções a lápis não serão corrigidas. • Questões discursivas sem desenvolvimento não serão consideradas. • Não serão fornecidas folhas para rascunho.

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \,\mathrm{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$

- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

1	3	4	6	7	8	9	11	12	16	17	52	53	83
Н	Li	Be	C	N	0	F	Na	Mg	S	Cl	Te	ı	Bi
1,01	6,94	9,01	12,01	14,01	16,00	19,00	22,99	24,31	32,06	35,45	127,60	126,90	208,98

Um sinal de trânsito emite luz verde com frequência $5,7\cdot 10^{14}\,\mathrm{Hz}.$

Determine o comprimento de onda da luz emitida pelo sinal.

Questão 2

Um átomo de hidrogênio emite radiação com $n_1=1$ e $n_2=3$.

 ${\bf Determine}$ o comprimento de onda da radiação emitida.

V) . . .

Questão 3

Apresente a configuração eletrônica do estado fundamental e os números quânticos do orbital atômico mais energético o átomo de bismuto.

Questão 4

Considere os íons: Na^+ , Mg^{2+} , F^- .

 ${\bf Ordene}$ os í
ons em função de seu raio iônico.

Considere os pares de elementos

- 1. Telúrio e iodo.
- 2. Berílio e magnésio.

Compare a afinidade eletrônica dos elementos de cada par.

Questão 6

Considere as equações simplificadas.

1.
$$NaBH_4(s) + H_2O(l) \longrightarrow NaBO_2(aq) + H_2(g)$$

2.
$$Mg(N_3)_2(s) + H_2O(l) \longrightarrow Mg(OH)_2(aq) + HN_3(aq)$$

3.
$$NaCl(aq) + SO_3(g) + H_2O(l) \longrightarrow Na_2SO_4(aq) + HCl(aq)$$

4.
$$\operatorname{Fe_2P}(s) + \operatorname{S}(s) \longrightarrow \operatorname{P_4S_{10}}(s) + \operatorname{FeS}(s)$$

 ${\bf Apresente}$ a equação química balanceada para cada equação simplificada.

Compostos que possam ser usados para acumular hidrogênio em veículos estão sendo ativamente procurados. Uma das reações estudadas para a armazenarem do hidrogênio é

$$\mathrm{Li}_3\mathrm{N}(\mathrm{s}) + 2\,\mathrm{H}_2(\mathrm{g}) \longrightarrow \mathrm{Li}\mathrm{NH}_2(\mathrm{s}) + 2\,\mathrm{Li}\mathrm{H}(\mathrm{s})$$

Determine a massa de Li $_3$ N necessária para produzir $5,2\,\mathrm{g}$ de LiH.

Questão 8

Quando $0.53\,\mathrm{g}$ de sacarose (um composto de carbono, hidrogênio e oxigênio) é queimado, formam-se $0.31\,\mathrm{g}$ de água e $0.82\,\mathrm{g}$ de dióxido de carbono.

Determine a fórmula empírica da sacarose.

Um bebê, acometido de infecção brônquica severa, está com problemas respiratórios. O anestesista administra uma mistura de hélio e oxigênio, com 92,3% de O_2 em massa. A pressão atmosférica é $730\,\mathrm{Torr}$.

Determine a pressão parcial do oxigênio na mistura que está sendo administrada no bebê.

Questão 10

Os airbags de automóveis contém cristais de azida de sódio, NaN3, que, durante uma colisão, decompõem-se rapidamente para dar gás nitrogênio e o metal sódio:

$$2 \operatorname{NaN}_3(s) \longrightarrow 2 \operatorname{Na}(s) + 3 \operatorname{N}_2(g)$$

O gás nitrogênio liberado no processo infla instantaneamente o airbag.

Determine a massa de azida de sódio necessária para gerar gás nitrogênio suficiente para encher um airbag de $57\,\mathrm{L}$, em $1.37\,\mathrm{atm}$ e $25\,^{\circ}\mathrm{C}$.