

BARBARA LEAL MARTINS HÉLEN CAROLINE MODESTO ARAUJO MAURICIO BRITO DE SANTANA

SISTEMAS DE MICROCONTROLADORES E MICROPROCESSADORES CONTROLADOR DE QUALIDADE DE PEÇAS

<u>INTRODUÇÃO</u>

O nosso trabalho, de Sistemas Microprocessador e Microcontrolados, consistem em verificar se os lotes de peças estão corretos.

Temos uma plataforma com sensor de cor; indutivo; e de presença, e um pequeno lote de peças, com materiais; cores e tamanhos diferentes.

Verificando os lotes com base em um determinado padrão de cor; tamanho e material. Com isso sabemos quantas peças temos corretas de cada lote, e quantas peças erradas e quais seus defeitos.

MATERIAIS ULTILIZADOS

✓ Sensor indutivo: é capaz de detectar a presença de elementos metálicos sem a necessidade e de contato direto com o material.

- ✓ Sensor Reflexivo Infravermelho de Distância Ajustável: ele funciona por reflexão, e possui uma distância de detecção ajustável.
- ✓ Sensor de cor: Sensor de Cor J34 TCS230 / TCS3200; alta resolução para conversão de intensidade de luz para frequência; frequência de saída programável; comunica-se diretamente com um microcontrolador; e sua tensão de operação é de 2,7V a 5,5V.

✓ 5 LEDs: sendo 1 azul, 1 amarelo, 1 vermelho, 1 verde e 1 laranja;

- Chapa de aço com formato em L, que será nossa plataforma;
- ✓ Caixinha de plástico preta sem tampa: para isolar e colocar nosso sensor de cor.

- ✓ 5 Resistores de 220 ohm;
- ✓ Protoboard;
- ✓ Arduino UNO;
- ✓ Jeampers.

FUNCIONAMENTO

Nosso projeto tem como objetivo automatizar o controle de qualidades físicas das peças A e B. O funcionamento dela parte de comparações físicas como tamanho, cor e tipo de material. Montamos uma plataforma em formato de L com chapa de aço onde posicionamos os sensores de presença, sensor de cor e sensor indutivo. O programa funciona por logicas de comparação entre os valores recebidos pelos sensores dos aspectos físicos dos materiais com os valores já estabelecidos no programa.

Ao iniciar o programa o LED vermelho recebe um sinal para acender indicando início da programação e ausência de peça na plataforma, ao posicionarmos uma peça na plataforma o Led vermelho deixa de receber o sinal e deve apagar e o Led verde passa a receber um sinal para acender e os sensores começam a receber as informações o sensor indutivo vai ler o sinal 1 para materiais de metal, o sensor de presença vai ler o sinal 1 para presença de material e o sensor de cor vai ler a cor do material. Após as leituras dos sensores o programa inicia a comparação por estruturas apresentada na tabela abaixo:

CARACTERISTICA	Α	В
COR	AZUL	VERDE
MATERIAL	METAL	PLÁSTICO
TAMANHO	50 mm	30 mm

Caso alguma das características não esteja de acordo com as características pré-estabelecidas o Led laranja deve receber um sinal para acender indicando peça REPROVADA e o programa deve apresentar na tela a frase "PEÇA REPROVADA" e caso as características físicas estejam de acordo com as estabelecidas o Led azul deve receber um sinal para acender indicando peça APROVADA e o programa deve apresentar na tela a frase "PEÇA APROVADA".

Algumas fotos de Projeto

Nomenclatura	Pino	Registrador
Sensor óptico baixo	3	PD3
Sensor óptico alto	4	PD4
Sensor indutivo	5	PD5
Sensor cor S0	6	PD6
Sensor cor S1	7	PD7
Sensor cor S2	8	РВО
Sensor cor S3	9	PB1
Saída sensor de cor	10	PB2
LED vermelho, plataforma vazia	11	PB3
LED laranja, peça reprovada	13	PB5
LED amarelo, peça na plataforma	12	PB4
LED verde, peça aprovada do lote B	Α0	PC0
LED azul, peça aprovada do lote A	A1	PC1

CONCLUSÃO

Com esse projeto, a empresa teria uma maior agilidade no processo de classificação da qualidade das suas peças, evitando assim a necessidade de trabalhos manuais que demanda um maior tempo, custo e treinamentos.