machine learning(732A99) lab1 Block2

Anubhav Dikshit(anudi287), Lennart Schilling(lensc874), Thijs Quast(thiqu264)
04 December 2018

Contents

Assignment 1 1. Ensemble Methods		 	 . 2						
2. Mixture Models Using loops		 	 3						
Function for EM Algor	ithm	 	 . 195						
Appendix									324

Contributions

During the lab, Lenart focused on assignment 2 using loops, Thijs focused on assignment 1 and Anuhav focused on assignment 2 using matrix. All codes and analysis was indepedently done and is also reflected in the individual reports.

Assignment 1

1. Ensemble Methods

```
# Loading packages and importing files ####
sp <- read.csv2("spambase.data", header = FALSE, sep = ",", stringsAsFactors = FALSE)</pre>
num_sp <- data.frame(data.matrix(sp))</pre>
num_sp$V58 <- factor(num_sp$V58)</pre>
# shuffling data and dividing into train and test ####
n <- dim(num_sp)[1]</pre>
ncol <- dim(num sp)[2]</pre>
set.seed(1234567890)
id \leftarrow sample(1:n, floor(n*(2/3)))
train <- num_sp[id,]</pre>
test <- num_sp[-id,]</pre>
# Adaboost
ntree <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error <- c()
for (i in seq(from = 10, to = 100, by = 10)){
bb <- blackboost(V58 ~., data = train, control = boost_control(mstop = i), family = AdaExp())
bb_predict <- predict(bb, newdata = test, type = c("class"))</pre>
confusion_bb <- table(test$V58, bb_predict)</pre>
miss_class_bb <- (confusion_bb[1,2] + confusion_bb[2,1])/nrow(test)</pre>
error[(i/10)] <- miss_class_bb
}
error_df <- data.frame(cbind(ntree, error))</pre>
# Random forest ####
ntree_rf <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error_rf <- c()
for (i in seq(from = 10, to = 100, by = 10)){
rf <- randomForest(V58 ~., data = train, ntree= 10)</pre>
rf_predict <- predict(rf, newdata = test, type = c("class"))</pre>
confusion_rf <- table(test$V58, rf_predict)</pre>
miss_class_rf <- (confusion_rf[1,2] + confusion_rf[2,1])/nrow(test)
error_rf[i/10] <- miss_class_rf</pre>
}
error_df_rf <- data.frame(cbind(ntree_rf, error_rf))</pre>
df <- cbind(error_df, error_df_rf)</pre>
df \leftarrow df[, -3]
plot_final <- ggplot(df, aes(ntree)) +</pre>
  geom_line(aes(y=error, color = "Adaboost")) +
  geom_line(aes(y=error_rf, color = "Random forest"))
plot_final <- plot_final + ggtitle("Error rate vs number of trees")</pre>
plot_final
```

Error rate vs number of trees

The error rate for the AdaBoost model are clearly going down when the number of trees increases. Finally the model arrives at an error rate below 7% when 100 trees are included in the model. For the randomforest the pattern is less obvious, the error rate seems to go up and down as the number of trees in the model increases. 50 trees result in the lowest error rate. This error rate is also lower than the error rate produced by the best Adaboost model (100 trees). Therefore, for this spam classification, a randomforest with 50 trees seems to be most suitable.

2. Mixture Models

Using loops

To compare the results for K = 2,3,4, the em-function provides a graphical analysis for every iteration. The function includes comments which explain what I did at which step to create the EM algorithm. The function will be finally run with K = 2,3,4.

```
em_loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
D = 10 # number of dimensions
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true_mu = matrix(nrow = K, ncol = D) # true conditional distributions
```

```
true_pi = c(rep(1/K, K))
if (K == 2) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
vlim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
}
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
}
#EM algorithm
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
```

```
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_x_given_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x/k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x|all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
\#Calculating\ z\ for\ n\ and\ all\ k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
}
#Log likelihood computation
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
\log_{\text{term}} = \log_{\text{term}} + x[n,d] * \log(mu[k,d]) + (1-x[n,d]) * \log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
}
}
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
break
}
#M-step: ML parameter estimation from the data and fractional component assignments
```

```
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
}
#Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
}
\#Printing\ pi, mu and development\ of\ log\ likelihood\ at\ the\ end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
```

2. K=2

```
em_loop(2)
```

True

iteration: 1 log likelihood: -7623.897

iteration: 2 log likelihood: -7610.745

iteration: 3 log likelihood: -7463.445

iteration: 4 log likelihood: -6575.121

iteration: 5 log likelihood: -5731.559

iteration: 6 log likelihood: -5656.174

iteration: 7 log likelihood: -5648.904

iteration: 8 log likelihood: -5646.139

iteration: 9 log likelihood: -5644.608

iteration: 10 log likelihood: -5643.615

iteration: 11 log likelihood: -5642.913

iteration: 12 log likelihood: -5642.386

iteration: 13 log likelihood: -5641.977

iteration: 14 log likelihood: -5641.649

iteration: 15 log likelihood: -5641.382

iteration: 16 log likelihood: -5641.161

iteration: 17 log likelihood: -5640.975

iteration: 18 log likelihood: -5640.819

iteration: 19 log likelihood: -5640.685

iteration: 20 log likelihood: -5640.571

iteration: 21 log likelihood: -5640.473

Development of the log likelihood


```
## $pi
## [1] 0.5110531 0.4889469
##
## $mu
                       [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
             [,1]
                                                                 [,6]
##
## [1,] 0.4931735 0.3974606 0.5967811 0.2785480 0.6927917 0.2184957 0.8018491
## [2,] 0.4989543 0.6255823 0.3804363 0.7171478 0.3230343 0.7778699 0.2049559
             [,8]
                        [,9]
                                    [,10]
## [1,] 0.1116477 0.88054439 0.004290353
## [2,] 0.9140913 0.08997919 0.999714736
## $logLikelihoodDevelopment
## NULL
```

3. K=3

```
em_loop(3)
```

True

iteration: 1 log likelihood: -8029.723

iteration: 2 log likelihood: -8027.183

iteration: 3 log likelihood: -8024.696

iteration: 4 log likelihood: -8005.631

iteration: 5 log likelihood: -7877.606

iteration: 6 log likelihood: -7403.513

iteration: 7 log likelihood: -6936.919

iteration: 8 log likelihood: -6818.582

iteration: 9 log likelihood: -6791.377

iteration: 10 log likelihood: -6780.713

iteration: 11 log likelihood: -6774.958

iteration: 12 log likelihood: -6771.261

iteration: 13 log likelihood: -6768.606

iteration: 14 log likelihood: -6766.535

iteration: 15 log likelihood: -6764.815

iteration: 16 log likelihood: -6763.316

iteration: 17 log likelihood: -6761.967

iteration: 18 log likelihood: -6760.727

iteration: 19 log likelihood: -6759.572

iteration: 20 log likelihood: -6758.491

iteration: 21 log likelihood: -6757.475

iteration: 22 log likelihood: -6756.521

iteration: 23 log likelihood: -6755.625

iteration: 24 log likelihood: -6754.784

iteration: 25 log likelihood: -6753.996

iteration: 26 log likelihood: -6753.26

iteration: 27 log likelihood: -6752.571

iteration: 28 log likelihood: -6751.928

iteration: 29 log likelihood: -6751.328

iteration: 30 log likelihood: -6750.768

iteration: 31 log likelihood: -6750.246

iteration: 32 log likelihood: -6749.758

iteration: 33 log likelihood: -6749.304

iteration: 34 log likelihood: -6748.88

iteration: 35 log likelihood: -6748.484

iteration: 36 log likelihood: -6748.114

iteration: 37 log likelihood: -6747.767

iteration: 38 log likelihood: -6747.444

iteration: 39 log likelihood: -6747.14

iteration: 40 log likelihood: -6746.856

iteration: 41 log likelihood: -6746.589

iteration: 42 log likelihood: -6746.338

iteration: 43 log likelihood: -6746.102

iteration: 44 log likelihood: -6745.88

iteration: 45 log likelihood: -6745.67

iteration: 46 log likelihood: -6745.472

iteration: 47 log likelihood: -6745.285

iteration: 48 log likelihood: -6745.108

iteration: 49 log likelihood: -6744.939

iteration: 50 log likelihood: -6744.78

iteration: 51 log likelihood: -6744.627

iteration: 52 log likelihood: -6744.483

iteration: 53 log likelihood: -6744.344

iteration: 54 log likelihood: -6744.212

iteration: 55 log likelihood: -6744.086

iteration: 56 log likelihood: -6743.964

iteration: 57 log likelihood: -6743.848

iteration: 58 log likelihood: -6743.736

iteration: 59 log likelihood: -6743.628

iteration: 60 log likelihood: -6743.524

iteration: 61 log likelihood: -6743.423

iteration: 62 log likelihood: -6743.326

Development of the log likelihood


```
## $pi
## [1] 0.3259592 0.3044579 0.3695828
##
## $mu
                                  [,3]
                        [,2]
                                            [,4]
                                                       [,5]
                                                                 [,6]
##
             [,1]
## [1,] 0.4737193 0.3817120 0.6288021 0.3086143 0.6943731 0.1980896 0.7879447
  [2,] 0.4909874 0.4793213 0.4691560 0.4791793 0.5329895 0.4928830 0.4643990
  [3,] 0.5089571 0.5834802 0.4199272 0.7157107 0.2905703 0.7667258 0.2320784
             [,8]
                        [,9]
                                  [,10]
##
## [1,] 0.1349651 0.8912534 0.01937869
## [2,] 0.4902682 0.4922194 0.39798407
## [3,] 0.8516111 0.1072226 0.99981353
##
## $logLikelihoodDevelopment
## NULL
```

4. K=4

```
em_loop(4)
```

True

iteration: 1 log likelihood: -8316.904

iteration: 2 log likelihood: -8291.114

iteration: 3 log likelihood: -8286.966

iteration: 4 log likelihood: -8264.806

iteration: 5 log likelihood: -8161.19

iteration: 6 log likelihood: -7868.89

iteration: 7 log likelihood: -7570.873

iteration: 8 log likelihood: -7445.719

iteration: 9 log likelihood: -7389.741

iteration: 10 log likelihood: -7356.803

iteration: 11 log likelihood: -7337.208

iteration: 12 log likelihood: -7326.118

iteration: 13 log likelihood: -7319.998

iteration: 14 log likelihood: -7316.6

iteration: 15 log likelihood: -7314.666

iteration: 16 log likelihood: -7313.528

iteration: 17 log likelihood: -7312.829

iteration: 18 log likelihood: -7312.367

iteration: 19 log likelihood: -7312.024

iteration: 20 log likelihood: -7311.723

iteration: 21 log likelihood: -7311.407

iteration: 22 log likelihood: -7311.036

iteration: 23 log likelihood: -7310.574

iteration: 24 log likelihood: -7309.988

iteration: 25 log likelihood: -7309.248

iteration: 26 log likelihood: -7308.322

iteration: 27 log likelihood: -7307.185

iteration: 28 log likelihood: -7305.809

iteration: 29 log likelihood: -7304.176

iteration: 30 log likelihood: -7302.273

iteration: 31 log likelihood: -7300.1

iteration: 32 log likelihood: -7297.671

iteration: 33 log likelihood: -7295.014

iteration: 34 log likelihood: -7292.171

iteration: 35 log likelihood: -7289.196

iteration: 36 log likelihood: -7286.15

iteration: 37 log likelihood: -7283.093

iteration: 38 log likelihood: -7280.079

iteration: 39 log likelihood: -7277.151

iteration: 40 log likelihood: -7274.34

iteration: 41 log likelihood: -7271.66

iteration: 42 log likelihood: -7269.116

iteration: 43 log likelihood: -7266.7

iteration: 44 log likelihood: -7264.398

iteration: 45 log likelihood: -7262.189

iteration: 46 log likelihood: -7260.051

iteration: 47 log likelihood: -7257.96

iteration: 48 log likelihood: -7255.892

iteration: 49 log likelihood: -7253.824

iteration: 50 log likelihood: -7251.733

iteration: 51 log likelihood: -7249.603

iteration: 52 log likelihood: -7247.419

iteration: 53 log likelihood: -7245.17

iteration: 54 log likelihood: -7242.853

iteration: 55 log likelihood: -7240.472

iteration: 56 log likelihood: -7238.038

iteration: 57 log likelihood: -7235.571

iteration: 58 log likelihood: -7233.095

iteration: 59 log likelihood: -7230.64

iteration: 60 log likelihood: -7228.239

iteration: 61 log likelihood: -7225.925

iteration: 62 log likelihood: -7223.725

iteration: 63 log likelihood: -7221.663

iteration: 64 log likelihood: -7219.755

iteration: 65 log likelihood: -7218.01

iteration: 66 log likelihood: -7216.431

iteration: 67 log likelihood: -7215.013

iteration: 68 log likelihood: -7213.748

iteration: 69 log likelihood: -7212.621

iteration: 70 log likelihood: -7211.62

iteration: 71 log likelihood: -7210.727

iteration: 72 log likelihood: -7209.929

iteration: 73 log likelihood: -7209.208

iteration: $74 \log likelihood$: -7208.552

iteration: 75 log likelihood: -7207.946

iteration: 76 log likelihood: -7207.38

iteration: 77 log likelihood: -7206.844

iteration: 78 log likelihood: -7206.327

iteration: 79 log likelihood: -7205.824

iteration: 80 log likelihood: -7205.326

iteration: 81 log likelihood: -7204.829

iteration: 82 log likelihood: -7204.327

iteration: 83 log likelihood: -7203.816

iteration: 84 log likelihood: -7203.294

iteration: 85 log likelihood: -7202.756

iteration: 86 log likelihood: -7202.201

iteration: 87 log likelihood: -7201.627

iteration: 88 log likelihood: -7201.032

iteration: 89 log likelihood: -7200.414

iteration: 90 log likelihood: -7199.773

iteration: 91 log likelihood: -7199.107

iteration: 92 log likelihood: -7198.416

iteration: 93 log likelihood: -7197.7

iteration: 94 log likelihood: -7196.957

iteration: 95 log likelihood: -7196.188

iteration: 96 log likelihood: -7195.392

iteration: 97 log likelihood: -7194.57

iteration: 98 log likelihood: -7193.722

iteration: 99 log likelihood: -7192.847

iteration: 100 log likelihood: -7191.946

Development of the log likelihood


```
## $pi
## [1] 0.2880470 0.2533761 0.2933710 0.1652060
##
## $mu
                       [,2]
                                  [,3]
                                            [,4]
                                                      [,5]
             [,1]
                                                                 [,6]
##
## [1,] 0.3714855 0.3899958 0.4790260 0.5731886 0.5022651 0.5108478 0.2835691
  [2,] 0.5199997 0.6135841 0.3891214 0.7132736 0.2722448 0.7785461 0.2168891
  [3,] 0.4383456 0.4042497 0.5489526 0.3298363 0.6578057 0.2049012 0.7825505
   [4,] 0.3428531 0.7784238 0.5591637 0.6319621 0.5167044 0.4629058 0.7311279
             [,8]
                         [,9]
##
                                   [,10]
## [1,] 0.3519184 0.36924863 0.48252239
## [2,] 0.9337959 0.08504806 0.99916297
## [3,] 0.1703330 0.80517853 0.04500171
## [4,] 0.6601375 0.46532151 0.48814639
## $logLikelihoodDevelopment
## NULL
```

Function for EM Algorithm

```
myem <- function(K){
   set.seed(1234567890)

max_it <- 100 # max number of EM iterations
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations</pre>
```

```
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true pi <- vector(length = K) # true mixing coefficients</pre>
true mu <- matrix(nrow=K, ncol=D) # true conditional distributions
true_pi=c(rep(1/3, K))
if(K == 2){
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
}else if(K == 3){
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
    points(true_mu[4,], type="o", col="yellow")
    true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
    true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
    true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
    true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
k <- sample(1:K,1,prob=true_pi)</pre>
for(d in 1:D) {
x[n,d] <- rbinom(1,1,true_mu[k,d])
}
}
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi \leftarrow runif(K, 0.49, 0.51)
pi <- pi / sum(pi)
for(k in 1:K) {
mu[k,] \leftarrow runif(D,0.49,0.51)
}
```

```
for(it in 1:max_it) {
if(K == 2){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
else if(K == 3){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
  points(mu[3,], type="o", col="green")
}else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for(k in 1:K)
prod <- \exp(x \% \log(t(mu))) * \exp((1-x) \% t(1-mu))
num = matrix(rep(pi,N), ncol = K, byrow = TRUE) * prod
dem = rowSums(num)
poster = num/dem
#Log likelihood computation.
llik[it] = sum(log(dem))
# Your code here
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if( it != 1){
if(abs(llik[it] - llik[it-1]) < min_change){break}</pre>
}
#M-step: ML parameter estimation from the data and fractional component assignments
# Your code here
num_pi = colSums(poster)
pi = num_pi/N
mu = (t(poster) %*% x)/num_pi
#Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
```


iteration: 1 log likelihood: -954.7133

iteration: 2 log likelihood: -957.1002

iteration: 3 log likelihood: -944.9229

iteration: 4 log likelihood: -857.3443

iteration: 5 log likelihood: -464.0063

iteration: 6 log likelihood: 50.2616

iteration: 7 log likelihood: 177.0235

iteration: 8 log likelihood: 189.1059

iteration: 9 log likelihood: 190.0362

iteration: 10 log likelihood: 189.9033

iteration: 11 log likelihood: 189.7476

iteration: 12 log likelihood: 189.6572

Development of the log likelihood


```
## $pi
## [1] 0.4829313 0.5170687
##
## $mu
                       [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
             [,1]
                                                                 [,6]
##
## [1,] 0.4900797 0.3933282 0.5979243 0.2718254 0.7017861 0.1987762 0.8108854
  [2,] 0.5015295 0.6170350 0.3911350 0.6995725 0.3347438 0.7658649 0.2289793
              [,8]
                         [,9]
                                      [,10]
## [1,] 0.08857256 0.9067548 0.00008952955
## [2,] 0.89200055 0.1084956 0.94950012035
## $logLikelihoodDevelopment
## NULL
```

3. K = 3

```
myem(K=3)
```


iteration: 1 log likelihood: -912.7567

iteration: 2 log likelihood: -932.1921

iteration: 3 log likelihood: -932.0234

iteration: 4 log likelihood: -931.2587

iteration: 5 log likelihood: -927.8881

iteration: 6 log likelihood: -913.454

iteration: 7 log likelihood: -858.0583

iteration: 8 log likelihood: -709.6665

iteration: 9 log likelihood: -524.1097

iteration: 10 log likelihood: -433.1614

iteration: 11 log likelihood: -409.3331

iteration: 12 log likelihood: -405.2132

iteration: 13 log likelihood: -405.7233

iteration: 14 log likelihood: -407.1621

iteration: 15 log likelihood: -408.6475

iteration: 16 log likelihood: -409.9879

iteration: 17 log likelihood: -411.1645

iteration: 18 log likelihood: -412.1979

iteration: 19 log likelihood: -413.1139

iteration: 20 log likelihood: -413.934

iteration: 21 log likelihood: -414.675

iteration: 22 log likelihood: -415.3492

iteration: 23 log likelihood: -415.9659

iteration: 24 log likelihood: -416.532

iteration: 25 log likelihood: -417.0528

iteration: 26 log likelihood: -417.5328

iteration: 27 log likelihood: -417.9753

iteration: 28 log likelihood: -418.3836

iteration: 29 log likelihood: -418.7601

iteration: 30 log likelihood: -419.1074

iteration: 31 log likelihood: -419.4277

iteration: 32 log likelihood: -419.7229

iteration: 33 log likelihood: -419.995

iteration: 34 log likelihood: -420.2457

iteration: 35 log likelihood: -420.4767

iteration: 36 log likelihood: -420.6895

iteration: 37 log likelihood: -420.8856

iteration: 38 log likelihood: -421.0663

iteration: 39 log likelihood: -421.2329

iteration: 40 log likelihood: -421.3865

iteration: 41 log likelihood: -421.5282

iteration: 42 log likelihood: -421.659

iteration: 43 log likelihood: -421.7797

iteration: 44 log likelihood: -421.8913

iteration: 45 log likelihood: -421.9945

iteration: 46 log likelihood: -422.09

Development of the log likelihood


```
## $pi
## [1] 0.1679717 0.2034249 0.6286034
##
## $mu
                        [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
                                                                 [,6]
##
             [,1]
## [1,] 0.4808697 0.3505033 0.6091318 0.3556548 0.7016525 0.1914725 0.7465112
  [2,] 0.4735293 0.4223595 0.6067582 0.2768902 0.6775124 0.2364292 0.7631736
  [3,] 0.5009515 0.5428016 0.4410625 0.6282717 0.3823068 0.6645565 0.3235088
              [,8]
                         [,9]
                                     [,10]
##
## [1,] 0.05638549 0.8485479 0.0005534402
## [2,] 0.22264183 0.8448195 0.0190935069
## [3,] 0.72102367 0.2634581 0.7843147843
##
## $logLikelihoodDevelopment
## NULL
4. K = 4
```

myem(K=4)

iteration: 1 log likelihood: -800.5436

iteration: 2 log likelihood: -842.949

iteration: 3 log likelihood: -842.6806

iteration: 4 log likelihood: -841.7499

iteration: 5 log likelihood: -838.7414

iteration: 6 log likelihood: -829.4624

iteration: 7 log likelihood: -803.3592

iteration: 8 log likelihood: -744.3623

iteration: 9 log likelihood: -658.0191

iteration: 10 log likelihood: -588.2999

iteration: 11 log likelihood: -553.5615

iteration: 12 log likelihood: -538.8823

iteration: 13 log likelihood: -531.9182

iteration: 14 log likelihood: -527.7567

iteration: 15 log likelihood: -524.8526

iteration: 16 log likelihood: -522.7751

iteration: 17 log likelihood: -521.3929

iteration: 18 log likelihood: -520.6263

iteration: 19 log likelihood: -520.391

iteration: 20 log likelihood: -520.5983

iteration: 21 log likelihood: -521.1652

iteration: 22 log likelihood: -522.0204

iteration: 23 log likelihood: -523.1059

iteration: 24 log likelihood: -524.3754

iteration: 25 log likelihood: -525.7912

iteration: 26 log likelihood: -527.3207

iteration: 27 log likelihood: -528.9346

iteration: 28 log likelihood: -530.6046

iteration: 29 log likelihood: -532.304

iteration: 30 log likelihood: -534.0069

iteration: 31 log likelihood: -535.6895

iteration: 32 log likelihood: -537.3305

iteration: 33 log likelihood: -538.912

iteration: 34 log likelihood: -540.4198

iteration: 35 log likelihood: -541.8433

iteration: 36 log likelihood: -543.1756

iteration: 37 log likelihood: -544.4133

iteration: 38 log likelihood: -545.5555

iteration: 39 log likelihood: -546.6036

iteration: 40 log likelihood: -547.5609

iteration: 41 log likelihood: -548.4315

iteration: 42 log likelihood: -549.2208

iteration: 43 log likelihood: -549.9344

iteration: 44 log likelihood: -550.5781

iteration: 45 log likelihood: -551.1577

iteration: 46 log likelihood: -551.6789

iteration: 47 log likelihood: -552.1471

iteration: 48 log likelihood: -552.5674

iteration: 49 log likelihood: -552.9443

iteration: 50 log likelihood: -553.2824

iteration: 51 log likelihood: -553.5855

iteration: 52 log likelihood: -553.8573

iteration: 53 log likelihood: -554.101

iteration: 54 log likelihood: -554.3194

iteration: 55 log likelihood: -554.5153

iteration: 56 log likelihood: -554.691

iteration: 57 log likelihood: -554.8485

iteration: 58 log likelihood: -554.9898

iteration: 59 log likelihood: -555.1165

iteration: 60 log likelihood: -555.2301

iteration: 61 log likelihood: -555.3319

iteration: 62 log likelihood: -555.4231

Development of the log likelihood


```
## $pi
   [1] 0.06812071 0.72393758 0.11442851 0.09351320
##
##
## $mu
                                    [,3]
                                               [,4]
                                                          [,5]
              [,1]
                         [,2]
                                                                     [,6]
##
   [1,] 0.3956838 0.4162506 0.5420280 0.3444983 0.6696118 0.2251983 0.7389032
   [2,] 0.4293539 0.5547107 0.4599340 0.6261408 0.4227076 0.5941305 0.3920563
   \hbox{\tt [3,]} \ \ 0.4323433 \ \ 0.4023143 \ \ 0.6093482 \ \ 0.3315033 \ \ 0.6799272 \ \ 0.1244291 \ \ 0.7312642 \\
   [4,] 0.3929703 0.4174015 0.5388154 0.3455370 0.6690888 0.2278577 0.7396138
##
               [,8]
                          [,9]
##
   [1,] 0.19895705 0.7733978 0.0036278205
   [2,] 0.63760909 0.3148516 0.6703401502
## [3,] 0.02206754 0.7696255 0.0000374818
  [4,] 0.20673621 0.7733195 0.0049635197
##
## $logLikelihoodDevelopment
## NULL
```

Analysis:

EM is an iterative expectation maximumation technique. The way this works is for a given mixed distribution we guess the components of the data. This is done by first guessing the number of components and then randomly initializing the parameters of the said distribution (Mean, Varience).

Sometimes the data do not follow any known probability distribution but a mixture of known distributions such as:

$$p(x) = \sum_{k=1}^{K} p(k).p(x|k)$$

where p(x|k) are called mixture components and p(k) are called mixing coefficients: where p(k) is denoted by

 π_k

With the following conditions

$$0 \le \pi_k \le 1$$

and

$$\sum_{k} \pi_k = 1$$

We are also given that the mixture model follows a Bernoulli distribution, for bernoulli we know that

$$Bern(x|\mu_k) = \prod_i \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1-x_i)}$$

The EM algorithm for an Bernoulli mixed model is:

Set pi and mu to some initial values Repeat until pi and mu do not change E-step: Compute p(z|x) for all k and n M-step: Set pi^k to pi^k(ML) from likehood estimate, do the same to mu

M step:

$$p(z_{nk}|x_n, \mu, \pi) = Z = \frac{\pi_k p(x_n|\mu_k)}{\sum_k p(x_n|\mu_k)}$$

E step:

$$\pi_k^{ML} = \frac{\sum_N p(z_{nk}|x_n, \mu, \pi)}{N}$$

$$\mu_{ki}^{ML} = \frac{\sum_{n} x_{ni} p(z_{nk} | x_n, \mu, \pi)}{\sum_{n} p(z_{nk} | x_n, \mu, \pi)}$$

The maximum likehood of E step is:

$$\log_e p(X|\mu, \pi) = \sum_{n=1}^{N} \log_e \sum_{k=1}^{K} .\pi_k . p(x_n|\mu_k)$$

Summarising:

When K becomes too less or too many, our model starts to overfit the distribution and

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
if (!require("pacman")) install.packages("pacman")
pacman::p_load(mboost, randomForest, ggplot2)

options("jtools-digits" = 2, scipen = 999)
```

```
# Loading packages and importing files ####
sp <- read.csv2("spambase.data", header = FALSE, sep = ",", stringsAsFactors = FALSE)</pre>
num_sp <- data.frame(data.matrix(sp))</pre>
num sp$V58 <- factor(num sp$V58)</pre>
# shuffling data and dividing into train and test ####
n <- dim(num sp)[1]</pre>
ncol <- dim(num_sp)[2]</pre>
set.seed(1234567890)
id <- sample(1:n, floor(n*(2/3)))
train <- num_sp[id,]</pre>
test <- num_sp[-id,]</pre>
# Adaboost
ntree <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error <- c()
for (i in seq(from = 10, to = 100, by = 10)){
bb <- blackboost(V58 ~., data = train, control = boost_control(mstop = i), family = AdaExp())
bb_predict <- predict(bb, newdata = test, type = c("class"))</pre>
confusion_bb <- table(test$V58, bb_predict)</pre>
miss_class_bb <- (confusion_bb[1,2] + confusion_bb[2,1])/nrow(test)
error[(i/10)] <- miss_class_bb
}
error_df <- data.frame(cbind(ntree, error))</pre>
# Random forest ####
ntree_rf <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error_rf <- c()
for (i in seq(from = 10, to = 100, by = 10)){
rf <- randomForest(V58 ~., data = train, ntree= 10)</pre>
rf_predict <- predict(rf, newdata = test, type = c("class"))</pre>
confusion_rf <- table(test$V58, rf_predict)</pre>
miss_class_rf <- (confusion_rf[1,2] + confusion_rf[2,1])/nrow(test)
error_rf[i/10] <- miss_class_rf
}
error df rf <- data.frame(cbind(ntree rf, error rf))</pre>
df <- cbind(error_df, error_df_rf)</pre>
df \leftarrow df[, -3]
plot_final <- ggplot(df, aes(ntree)) +</pre>
  geom_line(aes(y=error, color = "Adaboost")) +
  geom_line(aes(y=error_rf, color = "Random forest"))
plot_final <- plot_final + ggtitle("Error rate vs number of trees")</pre>
plot_final
em_loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
```

```
D = 10 # number of dimensions
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true mu = matrix(nrow = K, ncol = D) # true conditional distributions
true pi = c(rep(1/K, K))
if (K == 2) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
}
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
}
```

```
#EM algorithm
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_x_given_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x/k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x|all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
\#Calculating \ z \ for \ n \ and \ all \ k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
#Log likelihood computation
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
\log_{\text{term}} = \log_{\text{term}} + x[n,d] * \log(mu[k,d]) + (1-x[n,d]) * \log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
}
}
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
```

```
break
}
}
#M-step: ML parameter estimation from the data and fractional component assignments
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
}
#Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
}
#Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
em_loop(2)
em_loop(3)
em_loop(4)
myem <- function(K){</pre>
  set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if(K == 2){
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
}else if(K == 3){
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
```

```
points(true_mu[3,], type="o", col="green")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
    points(true mu[4,], type="o", col="yellow")
    true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
    true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
    true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
    true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
k <- sample(1:K,1,prob=true_pi)</pre>
for(d in 1:D) {
x[n,d] \leftarrow rbinom(1,1,true_mu[k,d])
}
}
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi <- runif(K,0.49,0.51)
pi <- pi / sum(pi)
for(k in 1:K) {
mu[k,] <- runif(D,0.49,0.51)
}
for(it in 1:max_it) {
if(K == 2){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
}else if(K == 3){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
  points(mu[3,], type="o", col="green")
}else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")}
```

```
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for(k in 1:K)
prod <- \exp(x %*% \log(t(mu))) * \exp((1-x) %*% t(1-mu))
num = matrix(rep(pi,N), ncol = K, byrow = TRUE) * prod
dem = rowSums(num)
poster = num/dem
#Log likelihood computation.
llik[it] = sum(log(dem))
# Your code here
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if( it != 1){
if(abs(llik[it] - llik[it-1]) < min_change){break}</pre>
#M-step: ML parameter estimation from the data and fractional component assignments
# Your code here
num_pi = colSums(poster)
pi = num_pi/N
mu = (t(poster) %*% x)/num_pi
#Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
myem(K=2)
myem(K=3)
myem(K=4)
```