B-Tag 2015

Thomas, Josua, Niclas, Andreas

November 20, 2015

Contents

1	Aufgaben											1								
	1.1	Aufgabe 1:	Dreiecksgeometrie															_		1

1 Aufgaben

1.1 Aufgabe 1: Dreiecksgeometrie

Diagramm:

Wir wollen eine Funktion $\overline{FE}(\theta)$ aufstellen, und zeigen, dass diese immer größer als CA ist.

1. Wie lang ist die Strecke \overline{FM} ?

$$\overline{FM}(\theta) = \frac{M_y}{\sin(\theta)}$$

2. Wie lang ist die Strecke \overline{ME} ?

$$\overline{ME}(\theta) = \frac{M_x}{\sin((\pi/2) - \theta)}$$

3. Die Strecke \overline{FE} ist also $\overline{FM} + \overline{ME}$ (natürlich alles im Definitionsbereich $0 < \theta < \frac{\pi}{2}$:

$$\overline{FE}(\theta) = \frac{M_y}{\sin(\theta)} + \frac{M_x}{\sin((\pi/2) - \theta)}$$

Jetzt muss gezeigt werden, dass der Tiefpunkt von $\overline{FE}(\theta)$ den Wert \overline{AC} hat. Dazu wird $\overline{FE}(\theta)$ zuerst abgeleitet, um den TP zu finden:

$$\overline{FE}'(\theta) = \frac{M_x(\sin(\theta))^3 - M_y(\cos(\theta))^3}{(\sin(\theta))^2(\cos(\theta))^2}$$

Jetzt setzen wir $\overline{FE}'=0$, um den Tiefpunkt von $\overline{FE}(\theta)$ bei $\theta=\frac{\pi}{4}$ zu finden, und sehen, dass $FE(\frac{\pi}{4})=CA$ ist. Daher ist \overline{FE} immer länger als \overline{CA} (außer bei $\theta=\frac{\pi}{2}$).