View on GitHub

Circuitos Digitais

Repo of Digital Circuits course - CRT0384

PRÁTICA 05 - CIRCUITOS ARITMÉTICOS

Voltar à home

OBJETIVOS

- Verificar o funcionamento de um circuito somador e de um circuito comparador;
- Fixar conceitos de operações com números binários, carry in, carry out e overflow;

Material Necessário:

- · Kit Digital;
- 01 TTL 74LS243;
- 01 TTL 74L85

Exercícios pré-laboratório:

1. Determine o significado dos conceitos de carry in, carry out e

overflow, mostrando exemplos com números binários.

PARTE 1 - CIRCUITO SOMADOR

Um circuito combinacional aritmético implementa operações aritméticas como adição, subtração, multiplicação e divisão com números binários. Quando há uma soma binária em onde ambos os operandos são iguais a 1, são necessários dois dígitos para expressar seu resultado. Neste caso, o transporte (vai - um ou carry, em inglês) é somado ao próximo par mais significativo de bits. Um circuito combinacional que implementa a adição de dois bits é chamado meio-somador (half adder, em inglês). Um circuito que implementa a adição de três bits (dois bits significativos e um carry) é chamado de somador completo (full adder, em inglês). Estes nomes decorrem do fato de que com dois meio-somadores pode-se implementar um somador completo. O somador completo é um circuito aritmético básico a partir do qual todos os outros circuitos aritméticos são construídos.

Nesta prática será utilizado o meio somador de 4 bits com carry in e carry out do circuito 74LS283.

Prática

Implemente um circuito somador de duas entradas de 4 bits $A\sim3\sim A\sim2\sim A\sim1\sim A\sim0\sim e$ $B\sim3\sim B\sim2\sim B\sim1\sim B\sim0\sim c$ cuja saída seja uma palavra binária $\Sigma\sim3\sim\Sigma\sim2\sim\Sigma\sim1\sim\Sigma\sim0\sim e$ um bit de *carry out* $C\sim1\sim$. A entrada de carry in $C\sim0\sim$ deve receber valor 0. Represente a saída binária nos leds do kit utilizando a sequência de exibição horizontal $C\sim1\sim\Sigma\sim3\sim\Sigma\sim2\sim\Sigma\sim1\sim\Sigma\sim0\sim$. Escolha 16 pares de valores em 4 bits para as variáveis A e B e apresente uma tabela com a saída do somador.

DIAGRAMA 74LS283

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

 $\begin{array}{lll} A_1-A_4 & & \text{Operand A Inputs} \\ B_1-B_4 & & \text{Operand B Inputs} \\ C_0 & & \text{Carry Input} \\ \Sigma_1-\Sigma_4 & & \text{Sum Outputs (Note b)} \\ C_4 & & \text{Carry Output (Note b)} \end{array}$

LOGIC SYMBOL

Example:

	င	A ₁	A ₂	А3	Α4	B ₁	B ₂	Вз	В4	$\Sigma_{\pmb{1}}$	Σ_2	Σ_3	Σ4	C ₄
logic levels	١	L	Н	L	Н	Η	L	L	Н	Ι	Н	L	L	I
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

(10+9=19) (carry+5+6=12)

Interchanging inputs of equal weight does not affect the operation, thus Co, A1, B1, can be arbitrarily assigned to pins 7,5 or 3.

PARTE 2 - CIRCUITO COMPARADOR

Um comparador é um circuito combinatório que permite comparar o valor absoluto de dois inteiros A e B representados em binário com n-bits. Tem três saídas que indicam respectivamente se A<B, A=B ou A>B.

O circuito comparador da prática é implementado pelo CI 74LS85, que dispõe de duas entradas de 4 bits, 3 pinos de entrada e 3 pinos de saída de comparação. Os pinos de entrada podem ser utilizados para utilização de múltiplos circuitos.

Implemente no Kit um circuito comparador utilizando o CI CI 74LS85 de duas entradas de 4 bits A~3~A~2~A~1~A~0~e B~3~B~2~B~1~B~0~. Ligue as entradas I~A=B~, I~A>B~ e I~A<B~ em três chaves ligadas com níveis lógicos HLL, respectivamente.

Escolha um conjunto de 16 pares de entrada e escreva a tabela de saída das portas O~A=B~, O~A>B~ e O~A<B~

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

$A_0 - A_3, B_0 - B_3$	Parallel Inputs
I _{A=B}	A = B Expander Inputs
$I_{A < B}, I_{A > B}$	A < B, A > B, Expander Inputs
O _{A>B}	A Greater Than B Output (Note b)
OA <b< th=""><th>B Greater Than A Output (Note b)</th></b<>	B Greater Than A Output (Note b)
O _{A=B}	A Equal to B Output (Note b)

LOGIC SYMBOL

TRUTH TABLE

COMPARING INPUTS					SCADII INPUTS		OUTPUTS			
A3,B3	A2,B2	A ₁ ,B ₁	A ₀ ,B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	O _{A<b< sub=""></b<>}	O _{A=B}	
A3>B3	Х	Х	Х	Х	Х	Х	Н	L	L	
A3 <b3< td=""><td>X</td><td>Х</td><td>X</td><td>X</td><td>Х</td><td>Х</td><td>L</td><td>Н</td><td>L</td></b3<>	X	Х	X	X	Х	Х	L	Н	L	
A3=B3	$A_2 > B_2$	X	X	X	X	X	Н	L	L	
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b2<>	X	X	X	X	X	L	Н	L	
A3=B3	$A_2 = B_2$	$A_1>B_1$	X	X	X	X	Н	L	L	
A ₃ =B ₃	$A_2 = B_2$	A ₁ < B ₁	X	X	X	X	L	Н	L	
A3=B3	A2=B2	A ₁ =B1	A ₀ >B ₀	X	X	X	Н	L	L	
Аз=Вз	A2=B2	A ₁ =B ₁	A ₀ <b<sub>0</b<sub>	X	X	Х	L	Н	L	
A3=B3	A2=B2	A1=B1	$A_0 = B_0$	Н	L	L	Н	L	L	
A ₃ =B ₃	$A_2 = B_2$	$A_1=B_1$	$A_0 = B_0$	L	Н	L	L	Н	L	
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	X	X	Н	L	L	Н	
A3=B3	A ₂ =B ₂	$A_1=B_1$	$A_0 = B_0$	Н	Н	L	L	L	L	
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	L	L	L	Н	Н	L	

H = HIGH Level L = LOW Level X = IMMATERIAL

PÓS LABORATÓRIO - RELATÓRIO

1. Descreva os procedimentos de montagem realizados na prática. Comente

o significado dos pinos $C\sim0\sim$ e $C\sim1\sim$ do circuito somador e sobre as entradas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e $I\sim A<B\sim$ e saídas $I\sim A=B\sim$, $I\sim A>B\sim$ e saídas $I\sim A=B\sim$, $I\sim A\sim$ e saídas $I\sim A\sim$ e saídas $I\sim A=B\sim$, $I\sim A\sim$ e saídas $I\sim A=B\sim$, $I\sim A\sim$ e saídas $I\sim A\sim$ e saídas e saídas e saídas e saídas e saídas e saídas e s

2. Elabore um circuito portas lógicas básicas (AND, OR e NOT)

comparador de dois bits que receba duas entradas lógicas de dois bits A~1~A~0~ e B~1~B~0~ e os três bits de entrada I~A=B~, I~A>B~ e I~A<B~ e retorne o resultado da comparação na forma O~A=B~, O~A>B~ e O~A<B~. Representar a tabela verdade do circuito.

3. Construa um circuito que receba uma entrada de dois bits A~1~A~0~ e

um bit de sinal S^0 e retorne uma saída de três bits $B^2 - B^2 - B^2$ que equivale à entrada em formato complemento de dois. Se a entrada for positiva, é mantida na saída da forma $B^2 - B^2 - B^2$ e $A^2 - A^0$ e, caso seja negativa, $B^2 - B^2$ e comp $A^2 -$

4. Elabore um circuito utilizando portas lógicas básicas (AND, OR e

NOT) **somador em complemento de dois** que receba duas entradas lógicas de três bits $A\sim2\sim A\sim1\sim A\sim0\sim e$ $B\sim2\sim B\sim1\sim B\sim0\sim r$ etorne a soma em de A e B na forma $\Sigma\sim2\sim\Sigma\sim1\sim\Sigma\sim0\sim e$ um bit de carry out $C\sim1\sim e$ um bit de overflow $O\sim1\sim$. O circuito deve ser capaz de somar números positivos e negativos representados conforme representação a seguir:

-3 -2 -1 0 1 2 3 4

101 110 111 000 001 010 011 100

Representar a tabela verdade do circuito.

Circuitos Digitais maintained by marcielbp

Published with GitHub Pages