Laboratório 5:

Análise e síntese de circuitos sequenciais assíncronos no modo assíncrono

Professor: Osamu Saotome

Alunos:

Rodrigo Alves de Almeida

(rodrigoalalmeida@gmail.com)

Eduardo Menezes Moraes

(<u>eduardomenezesm@msn.com</u>)

Comp 22

4.2) Montagem no protoboard

A montagem do circuito no protoboard fica da seguinte maneira:

Do estado 00 ($X_0X_1=00$), podemos ligar X0 e continuar em 00, ligar X1 e ir para 11 ou ligar X0 depois X1 e ir para 01:

Do estado 01 ($X_0X_1=11$), podemos desligar X0 e ir para 11, desligar X1 e continuar em 01 ou desligar X1 depois desligar X0 e voltar para 00:

Do estado 11 ($X_0X_1=01$), podemos desligar X1 e voltar para 00, ligar X0 e continuar em 11 ou ligar X0 depois desligar X1 e ir para o estado 01:

5.1) Projeto e simulação de um Flip-Flop tipo D

a) Mostre a tabela primitiva de estados (Modelo Moore):

Analisando o tabela de operações fornecida para o Flip-Flop, obteve-se a tabela primitiva de estados para o modelo de Moore.

Estado \ CLK D	00	01	11	10	Z
а	а	d	-	b	0
b	а	-	С	b	0
С	-	d	С	b	0
d	а	d	е	•	0
е	ı	g	е	f	1
f	h	1	е	f	1
g	h	g	е	-	1
h	h	g	-	b	1

b) Mostre a tabela de estados minimizados, com assinalamento de variáveis de estado livre de corrida.

Através dessa tabela foi realizada a sua minimização. Primeiramente segue a tabela de pares de estados compatíveis parcial (TPEC parcial).

b	V						
С	V	V					
d	V	с-е	с-е				
е	X	X	X	X			
f	X	X	X	X	V		
g	X	X	X	X	V	V	
h	X	X	X	X	f-b	f-b	V

а	b	С	d	е	f	q
u u		•	4		•	9

Após isso, obtém-se a tabela de pares de estados compatíveis final (TPEC final).

b	V						
С	V	V					
d	V	Х	X				
е	X	X	X	X			
f	Х	Х	X	X	V		
g	Х	Х	X	X	V	V	
h	Х	Х	X	X	Х	X	V
	а	b	С	d	е	f	g

Com isso, encontra-se a tabela de classes de estados de máxima compatibilidade (TECMC).

Estados	Estados Compatíveis	Classes de máxima compatibilidade
g	h	(g, h)
f	g	(f,g) (g,h)
е	g, f	(e, f, g) (g, h)
b	С	(b, c) (e, f, g) (g, h)
а	d, c, b	(a, d) (a, b, c) (e, f, g) (g, h)

Desse modo, escolheu-se as classes, para a cobertura mínima.

Estados	Classes
А	(a, b, c)
В	d
С	(f, g, e)

D	h	
---	---	--

Com isso, temos a tabela de fluxo de estados minimizada:

Estado \setminus CLK D	00	01	11	10	Z
Α	Α	В	Α	Α	0
В	А	В	С	-	0
С	В	С	С	D	1
D	В	С	-	А	1

Assim, chega-se ao assinalamento livre de corrida crítica, aonde vamos utilizar a variável Q_n para ser variável de estado, e a P_n para também codificar os estados. Note que a convenção a seguir e as adjacências observadas na tabela acima fazem com que estejamos livre de corrida crítica.

$Q_n \setminus P_n$	0	1
0	А	В
1	С	D

Finalmente, chega-se a tabela de fluxo de estados minimizada com assinalamento livre de corrida crítica.

$Q_n P_n \setminus CLK D$	00	01	11	10
00	00	01	00	00
01	00	01	11	-
11	10	11	11	11
10	10	11	-	00

c) Mostre o diagrama de estados.

Finalmente, chegamos ao diagrama de transição de estados.

d) Verifique se há Hazard essencial do tipo estável.

De acordo com a regra de *Unger*, pode haver hazard estável na transição entre alguns estados. Como, por exemplo, do estado *00* para *01*, o qual pode ir erroneamente para o estado *11*.

e) Verifique se há Hazard essencial do tipo transiente.

Não há. Nota-se, da tabela de fluxo de estados, que todos os estados estáveis adjacentes a dois determinados estados totais possuem a mesma saída.

f) Obtenha as funções minimizadas de próximo estado e de saída que estejam livres de Hazard lógico combinacional (estático e dinâmico), considerando SIC (single input change).

Segue as tabelas minimizadas, respectivamente, para o próximo estado e para o estado de saída, conforme pedido.

$Q_n P_n \setminus CLK D$	00	01	11	10
00	0	0	0	0
01	0	0	1	-
11	1	1	1	1
10	1	1	-	0

$Q_n P_n \setminus CLK D$	00	01	11	10
00	0	1	0	0
01	0	1	1	-
11	0	1	1	1
10	0	1	-	0

Desse modo, chegamos às funções minimizadas do próximo estado e da saída, conforme pedido:

$$Q_{n+1} = Q_n(P_n'CLK)' + P_n(Q_n'(CLK)')'$$

 $P_{n+1} = P_n(D'(CLK)')' + D(P_n'CLK)'$

g) Obtenha o diagrama esquemático.

Através das funções mínimas, obteve-se o diagrama esquemático por meio do software *Quartus*.

h) Obtenha o diagrama de temporização, testando todas as mudanças de estado.

5.2) Projeto e simulação de um Flip-Flop tipo JK

a) Mostre a tabela primitiva de estados (Modelo Moore):

Analisando o tabela de operações fornecida para o Flip-Flop, obteve-se a tabela primitiva de estados para o modelo de Moore.

		CLK =	: 0						
$Estado \setminus JK$	00	01	11	10	00	01	11	10	Q_n
а	а	b	-	С	d	-	-	-	0
b	а	b	е	-	-	f	-	-	0
С	а	ı	е	C	ı	ı	ı	g	0
d	а	ı	ı	ı	d	f	ı	n	0
е	ı	b	е	С	ı	ı	h	-	0
f	ı	b	ı	1	d	f	i	-	0
g	-	-	-	- j		-	h	g	1
h	-	-	m	-	-	1	h	g	1
i	-	-	е	-	-	f	i	n	0
j	0	ı	m	j	1	1	ı	g	1
k	0	-	-	-	k	1	-	g	1
I	ı	р	ı	1	k	_	h	-	1
m	ı	р	m	j	1	1	i	-	1
n	ı	-	-	С	d	-	i	n	0
0	0	р	-	j	k	-	-	-	1
р	0	р	m	ı	ı	f	-	-	1

b) Mostre a tabela de estados minimizados, com assinalamento de variáveis de estado livre de corrida.

Através dessa tabela foi realizada a sua minimização. Primeiramente segue a tabela de pares de estados compatíveis (TPEC).

b	V														
С	٧	٧													
d	V	٧	Х												
е	V	٧	V	V											
f	V	٧	V	V	Х										
g	Х	Х	Х	Х	Х	Х									
h	Х	Х	Х	Х	Х	Х	V								
i	V	٧	Х	V	Х	V	Х	Х							
j	Х	Х	Х	Х	Х	Х	V	V	Х						
k	Х	Х	X	Х	Х	Х	V	V	Х	V					
I	Х	Х	X	Х	Х	Х	V	V	Х	V	V				
m	V	Х	X	Х	Х	Х	Х	Х	Х	V	V	Х			
n	Х	٧	X	V	Х	V	Х	Х	Х	Х	Х	Х	Х		
0	Х	Х	Х	Х	Х	Х	V	V	Х	V	V	V	V	Х	
p	0	Х	Х	Х	Х	Х	V	Х	Х	V	Х	Х	V	Х	٧
	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0

Similarmente ao item 5.1, foi feita a tabela de classes de estados de máxima compatibilidade (TECMC), através dela, para a cobertura mínima escolheu-se as classes:

Estados	Classes
А	(a, b, d, f, i, n)
В	(c, e)
С	(m, p)
D	(g, h, j, k, l, o)

	1	CL	K = 0		-	•			
$Estado \setminus JK$	00	01	11	10	00	01	11	10	Q_n
Α	A	Α	В	В	Α	Α	Α	Α	0
В	Α	Α	В	В	-	-	D	D	0
С	D	С	C	D	-	Α	Α	ı	1
D	D	С	С	D	D	D	D	D	1

Utilizando da mesma convenção da questão 5.1,

$Q_n \setminus P_n$	0	1
0	А	В
1	С	D

Chega-se a tabela de fluxo de estados minimizada com assinalamento livre de corrida crítica.

	i	CL	K = 0						
$Estado \setminus JK$	00	01	11	10	00	01	11	10	Q_n
00	00	00	01	01	00	00	00	00	0
01	00	00	01	01	-	-	11	11	0
11	11	10	10	11	11	11	11	11	1
10	11	10	10	11	-	00	00	-	1

c) Mostre o diagrama de estados.

Segue o esboço para o diagrama de estados com base no obtido anteriormente.

d) Verifique se há Hazard essencial do tipo estado estável.

De acordo com a regra de Unger, há hazard essencial do tipo estável. Basta observar que há várias sequências de transições que confirmam, conforme a regra, a presença do hazard essencial de estado estável.

e) Verifique se há Hazard essencial do tipo transiente.

Não há hazard essencial do tipo transiente. Isso porque, segundo a regra de Unger, ele só ocorre quando o circuito sofre trocas durante o caminho até seu estado de destino final correto, o que não é o caso, como pode-se observar na tabela de fluxo de estados do Flip Flop JK.

f) Obtenha as funções minimizadas de próximo estado e de saída que estejam livres de Hazard lógico combinacional (estático e dinâmico), considerando SIC (single input change).

Através das tabelas obtidas anteriormente, e com a utilização dos mapas de Karnaugh, obteve-se as funções mínimas. Vale ressaltar que o desenvolvimento foi muito parecido com o da questão 5.1, por isso, não achou-se necessário demonstrar o mesmo procedimento aqui no relatório.

Vale lembrar, no entanto, que devido aos hazards presentes, foi dificultoso para nós acharmos qual era a função mínima, visto que, nas primeiras tentativas, através da simulação foi verificado que elas não estavam funcionando adequadamente.

Após algumas tentativas, conseguiu-se encontrar as seguintes funções minimizadas:

$$\begin{split} Q_{n+1} &= Q_n(P_n'CLK)' + P_n(Q_n'CLK')' \\ P_{n+1} &= K'(CLK)'(Q_n'J')' + Q_nCLK(P_n'K)' + JCLK'(Q_nK)' + P_nJ(Q_nCLK')' \end{split}$$

As quais foram verificadas na simulação via Quartus.

g) Obtenha o diagrama esquemático.

h) Obtenha o diagrama de temporização, testando todas as mudanças de estado.

5.3) Simulação de uma ULA de 8 bits

Para montar a unidade básica da ULA, considera-se a seguinte tabela de operações:

• Para F_i

$M \setminus S_1 S_0$	00	01	11	10
0	A_i	$\overline{A_i}$	$\overline{A_i \oplus B_i}$	$A_i \oplus B_i$
1	$A_i \oplus C_{in}$	$\overline{A_i \oplus C_{in}}$	$\overline{A_i \oplus B_i \oplus C_{in}}$	$A_i \oplus B_i \oplus C_{in}$

• Para C_{out}

$M \setminus S_1 S_0$	00	01	11	10
0	X	X	X	X
1	A_iC_{in}	$\overline{A_i}C_{in}$	$\overline{A_i}B_i + C_{in}(\overline{A_i \oplus B_i})$	$A_i B_i + C_{in} (A_i \oplus B_i)$

Assim, as equações booleanas da unidade básica:

$$F_{i} = \overline{M} S_{1}(A_{i} \oplus S_{0}) + \overline{M} S_{1}(A_{i} \oplus B_{i} \oplus S_{0}) + \overline{M} \overline{S_{1}}(A_{i} \oplus C_{in} \oplus S_{0}) + \overline{M} S_{1}(A_{i} \oplus B_{i} \oplus C_{in} \oplus S_{0})$$

$$C_{out} = \overline{S_{1}} C_{in}(A_{i} \oplus S_{0}) + S_{1}(B_{i}(A_{i} \oplus S_{0}) + C_{in}(A_{i} \oplus S_{0} \oplus B_{i}))$$

Faz-se então o diagrama esquemático utilizando MUXs:

Assim, é possível realizar o diagrama de temporização a partir da simulação proposta no enunciado:

Name	Value at 0 ps	0 ps 500.0 ns 0 ps	1.0 us	1.5 us	2.0 us	2.5 us	3.0 us	3.5 us	4.0 us	4.5 us	s 5.0 us	5.5 us	6.0 us	6.5 us	7.0 us	7.5 us	8.0 us	8.5 us
inM	вх	****		1			1										X	****
<u>'</u> > s	B XX	XX	10			01			00			10			11			XX
in_ Cin	вх	XXXX																
<u>'</u> > B	UX	X X 3	39 90	ع کر			X				60	130	254 1	100	1 1	.88	0	X
<u>i</u> → A	UX	X 1	100 210	10 60	130	199	99 \ 13	0 14	45 2	255	121	170	3	1	100 1	.88 2	240	X
out Cout	вх	*****					1										XX	****
₩ > F	UX	X 6	67 136	36 195	125	57	7 12	.6 14	46	0	181	44	1	99 \ 1	157	0	16	X

Pelos valores de *output* de F, verifica-se a realização das operações:

- Nas operações lógicas, é realizada a operação bit a bit
- A operação de complemento de 2 é utilizada para obter a representação do número negativo (no diagrama isso não fica evidente pois não há bit de sinal)
- A operação de incremento de A excede os 8 bits quando A = 255, fazendo com que Cout seja 1
- A operação de soma de A com B também mostra Cout = 1 quando o resultado excede o limite de 8 bits
- Por fim, o resultado de B menos A (realizado por complemento de 2) mostra Cout = 0 quando A é maior que B