CENTRO UNIVERSITÁRIO DA FEI

BRENNO TONDATO DE FARIA

ATIVIDADE 3 - PEL216

BRENNO TONDATO DE FARIA

ATIVIDADE 3 - PEL216

Realatório da Atividade proposta da disciplina Programação Científica (PEL216) ministrada pelo Prof. Dr. Reinaldo Bianchi

RESUMO

Algoritmos de inteligência artifícial são largamente utilizados para resolver os mais diversos problemas. Dentre estes problemas encontra-se os broblemas de busca como apresentado por (KANAL; KUMAR, 2012). Apesar da literatura apresentar diversosos algoritmos para relução de problemas de busca, e mais expecificamente problemas de busca que visam encontrar o melhor caminho para a solução; O presente trabalho apresenta quatro algoritmos de busca clássicos, sendo estes: Busca Em Profundidade (*Depth First Search (DFS)*), Busca Em Largura (*Breadth First Search* (BFS)), Subida da Encosta, e A*, afim de resolver o problema das oiro peças.

Keywords: Busca, Inteligência Atificial, BFS, DFS, Subida da Encosta, A*

ABSTRACT

Algorithms of artificial intelligence are widely used to solve the most diverse problems. Among these problems are the search problems as presented by (KANAL; KUMAR, 2012). Although the literature presents several algorithms to relieve search problems, and more specifically search problems that aim to find the best way to solve them; The present work presents four classic search algorithms: Depth First Search (DFS), Breadth First Search (BFS), Hill Climb, and A*, in order to solve the problem of eight puzzle.

Keywords: Search, Artificial Intelligence, BFS, DFS, Hill Climb, A*

LISTA DE ILUSTRAÇÕES

Ilustração 1 – Abertura de nós DFS	6
Ilustração 2 – Abertura de nós BFS	7
Ilustração 3 – Abertura de nós BFS	7
Ilustração 4 — Abertura de nós BFS	8
Ilustração 5 — Diagrma de Classes	9
Ilustração 6 — Menu de Escolha	g

1 CONCEITOS FUNDAMENTAIS

Neste capitulo é apresentado os conceitos fundamentais.

1.1 ALGORITMOS DE BUSCA

Alguns algoritmos de busca para encontrar a melhor solução para o problema das 8 peças são apresentados nesta seção.

1.1.1 Algoritmo de Busca em Profundidade

O algoritmo de busca em profundidade é classificado com um algoritmo de busca cega, pois não há informação sobre qual será o próximo nó que será aberto.

Este algoritmo pode ser visto como uma pilha, na qual cada nó filho que é empilhado é imediatamete aberto até que se chegue em uma solução. A Figura 2 ilustra a abertura de nós de acordo com oalgoritmo DFS.

1.1.2 Algoritmo de Busca em Largura

Analogo ao algoritmo DFS, o Algoritmo de busca em largura pode ser implementado como uma fila, na qual s e a medida em que cada filho é aberto os novos filhos são enfileirados. A Figura ?? a seguir ilustra a sequência de nós abertos.

1.1.3 Algoritmo de Busca Subida da Montanha

Este Algoritmo diferente dos métodos é classificado como um algoritmo de busca informada, na qual o algoritmo toma a decisão de qual o próximo nó será aberto, de acordo com uma heurística.

O algoritmo subida da encosta segue a mesma seuqncia de abertura que a busca em lagura, porém desta vez uma heurística diz ao algoritmo qual deve ser o próximo nó a ser visitado. A Figura 3 ilustra o processo de abertura de nós.

É importante ressaltar que este algoritmo pode cair em um máximo local o que pode levar o algoritmo a nçao encontrar a solução do broblema.

Figura 1 – Abertura de nós DFS

(Do Autor, 2019)

1.1.4 Algoritmo A*

Semelhante ao algoritmo Subida da encosta o Algoritmo A* é um algoritmo de busca informada que usa heurística para decidir qual o próximo nó será aberto, porém desta vez não há o problema de cair em um máximo local pois o algoritmo utiliza a soma da heurística junto à iteração na qual aquele nó está sendo aberto. A Figura 4 ilusta o processo de abertura de nós.

Figura 2 – Abertura de nós BFS

(Do Autor, 2019)

Figura 3 – Abertura de nós BFS

(Do Autor, 2019)

Figura 4 – Abertura de nós BFS

(Do Autor, 2019)

2 METODOLOGIA

Para a realização deste trabalho foi desenvolvido um *Software* em linguagem de programação *Swift*, seguindo os padrões de sistemas orientados a objetos.

A Figura 5 a seguir mostra o driagrama de classes elaborado para o projeto.

Figura 5 – Diagrma de Classes

(Do Autor, 2019)

O *software* elaborado permite que o usuário escolha o modelo de busca a partir de um menu inicial. A Figura 6 a seguir ilustra o menu de escolha do modelo.

Figura 6 – Menu de Escolha

(Do Autor, 2019)

Os Algotimos Subida da encosta e A* utilizam como heirística o método da distrância de Mahattan. O calculo da distância de Manhattan se da pela equação 1 a seguir.

$$(x_1 - x_2) + (y_1 - y_2) (1)$$

3 CONCLUSÃO

O presente trabalho se propós comparar os resultados de quatro algoritmos de buscas, sendo dois relacionados a busca cega e dois à busca informada, para seolver o problema das oito peças. De acordo com os testes elaborados o melhor algoritmo foi o A* que configurou a busca mais rápida para o problema testado. Em sugundo ficou o algoritmo Subida da Encosta, porém este testando em outros casos o algoritmo acaba entrando em máximos locais o que o deixa estagnado. Por fim encontran-se os algoritmos BFS e DFS como sendo os dois médotos de busca mais lentos. Por fim conclui-se que a o melhor algoritmo para este problema é o A*, porém ainda de faz necessário o teste deste algoritmo em outros contextos a fim de validar a sua acurácia.

REFERÊNCIAS

KANAL, L.; KUMAR, V. **Search in artificial intelligence**. [S.l.]: Springer Science & Business Media, 2012.