FIG. 1

FIG. 2

DATA IN	a out	b out	IS L	20
" <u>L</u> " ¹	1	0	1	
strong0	Х	0	0	
supply0	0	0	0	
any strength	1	1	0	
logic 1				
<=pullx	1	Х	0	
>=strongx	Х	Х	0	
Hi-Z	1	X	0	

¹"L" is defined as any logic 0 of the following strengths: pull0, large0, weak0, medium0, or small0

FIG. 3

30

Verilog HDL example code for "LDETECT" module

```
module LDETECT (IS_L, DATA_IN);
  output IS_L;
  input DATA_IN;

nmos  nm1 (a_out,DATA_IN,1'b1);
  buf  b1 (a_out,1'b1); //drive & compare with Strong1

buf  b2 (b_out,DATA_IN);

wire  preIS_L = ({a_out,b_out} === 2'b10);
  buf  b3 (IS_L, preIS_L);
```

endmodule

3/10

FIG. 4

FIG. 5

DATA_IN	a_out	b_out	IS_H	50
any strength logic 0	0	0	0	
"H" ¹	0	1	1	
strong1	X	1	0	
supply1	1	1	0	
<=pullx	0	X	0	
>=strongx	X	Х	0	
Hi-Z	0	X	0	

¹"H" is defined as any logic 1 of the following strengths: pull1, large1, weak1, medium1, or small1

FIG. 6

60

Verilog HDL example code for "HDETECT" module

```
module HDETECT (IS_H, DATA_IN);
  output IS_H;
  input DATA_IN;

nmos  nm1 (a_out,DATA_IN,1'b1);
  buf  b1 (a_out,1'b0); //drive & compare with Strong0

buf  b2 (b_out,DATA_IN);

wire  preIS_H = ({a_out,b_out} === 2'b01);
  buf  b3 (IS_H, preIS_H);
```

endmodule

5/10

FIG. 7

FIG. 8 80 DATA IN IS PULLO b out a out <=large0 0 0 1 pull0 Χ 0 1 >=strong0 0 0 0 any strength 1 1 0 logic 1 <=largex 1 X 0 X X 0 >=pullx X Hi-Z 0

FIG. 9

90

Verilog HDL example code for "PULL0DETECT" module

```
module PULL0DETECT (IS_PULL0, DATA_IN);
  output IS_PULL0;
  input DATA_IN;

nmos nm1 (a_out,DATA_IN,1'b1);
//drive & compare with pull1
  buf (highz0,pull1) b1 (a_out,1'b1);

buf b2 (b_out,DATA_IN);

wire preIS_PULL0 = ({a_out,b_out} === 2'bx0);
  buf b3 (IS_PULL0, preIS_PULL0);
endmodule
```

7/10

FIG. 10

FIG. 11

110

	,		
DATA_IN	a_out	b_out	IS_PULL1
any strength logic 0	0	0	0
<=large1	0	1	0
pull1	Х	1	1
>=strong1	1	1	0
<=largex	0	X	0
>=pullx	Х	X	0
Hi-Z	0	Х	0

FIG. 12

120

Verilog HDL example code for "PULL1DETECT" module

```
module PULL1DETECT (IS_PULL1, DATA_IN);
 output IS PULL1;
 input DATA IN;
 nmos nm1 (a_out,DATA_IN,1'b1);
 //drive & compare with pull0
 buf
        (pull0,highz1) b1 (a_out,1'b0);
 buf
        b2
             (b_out,DATA_IN);
 wire
        preIS_PULL1 = ({a_out,b_out} === 2'bx1);
            (IS_PULL1, preIS_PULL1);
 buf
        b3
endmodule
```

9/10

FIG. 13

Example IO: Driver Truth Table					130	
	Α	TS	DI	PAD	PADN	
а	-	0	-	L ¹	L ¹	
b	_	-	0	L	L ¹	
С	-	1	1	Α	not-A	

¹"L" in this example refers to a pull strength logic0. Also known as "pull0".

FIG. 14

Example IO: Receiver Truth Table 140 PAD PADN RG d 0 1 0 1 0 1 1 е 1 f 1 Χ 1 g 0 0 1 Χ h 1 0 Χ 0 1 1 1 Χ 0 X k 1 X 1 1 m

¹"L" in this example refers to pull strength logic 0. Also known as "pull0".

FIG. 15

Verilog HDL example code for modeling "Example IO" truth tables above

```
module Example IO (PAD, PADN, Z, A, TS, DI, RG);
                                                                           150
     inout PAD, PADN;
     output Z;
     input A, TS, DI, RG;
         outBuf, outBufN;
     wire bufCtrl, isPadPull0, isPadNPull0, muxSel1, muxOut1, muxOut2;
     //Driver section
     and a1 (bufCtrl,TS,DI);
     not n1 (A ,A);
     bufif1
              bf1
                    (outBuf, A, bufCtrl);
                    (outBufN, A_,bufCtrl);
     bufif1
              bf2
     pulldown d1
                    (outBuf);
     pulldown d2
                    (outBufN);
               nm1 (PAD, outBuf, 1'b1);
     nmos
               nm2 (PADN, outBufN, 1'b1);
     nmos
    //Receiver section
    PULLODETECT pd1 (isPadPull0, PAD);
                                            //Reference Fig. 9 for PULL0DETECT
                                               module definition
    PULL0DETECT pd2 (isPadNPull0,PADN); //Reference Fig. 9 for PULL0DETECT
                                               module definition
                  (muxSel1,PAD,PADN):
    xnor
             xn1
    //MUX21 port order: Mux_Out, Data_Sel, D0, D1
    MUX21* mx1 (muxOut1,muxSel1,PAD,1'bx);
    //MUX41 port order: Mux_Out, Data_Sel(MSB), Data-Sel(LSB), D00, D01, D10, D11
     MUX41* mx2 (muxOut2,isPadPull0,isPadNPull0,muxOut1,1'bx,1'bx,1'b0):
                  (Z,muxOut2,RG);
    and
             a2
    endmodule
```

*NOTE that the "MUX21" and "MUX41" instances in the Verilog code above are not shown modeled here for this example, but are industry standard 2:1 and 4:1 Multiplexers, respectively. They are not standard "built-in" Verilog primitives, but are easily implemented in Verilog either via behavioral code or by UDP primitive tables.