Indian Institute of Science Education and Research Mohali

MTH101 : Linear Algebra (2023-24)

Tutorial 06 (November 02, 2023)

Recall the following four properties that a binary operation $*: G \times G \to G$ may have: (I). Associativity, (II). Existence of a neutral element, (III). Existence of an inverse for every element of G, and, (IV). Commutativity.

A pair (G, *), where G is a set and $*: G \times G \to G$ is a binary operation on the set G, is called a

- **semigroup**, if (I) holds.
- monoid, if (I) and (II) hold.
- group, if (I), (II) and (III) hold.
- **Abelian group**, if (I), (II), (III) and (IV) hold.
- 1. Determine which of the above four algebraic structure do the following binary operations from?
- (A). \mathbb{Z} , under the operation *, where * denotes the multiplication of integers.
- (B). \mathbb{R} , under the operation *, where * denotes the multiplication of real numbers.
- (C). The collection of irrational numbers under addition.
- (D). The set of clock hours $\{12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ under the addition of clock hours. (Therefore 10 + 3 = 1 under this operation).
- (E). The set {1, 3, 7, 9} under the operation "rightmost digit in the multiplication of numbers."
- (F). The collection $\{a, b, c\}$ of three alphabets with the operation given by the following composition table:

(G). The collection $\{\Box, \Diamond, \bullet, \circ\}$ of four symbols with the operation given by the following composition table:

		\bigcirc	•	0
	•		0	\bigcirc
\bigcirc		\bigcirc	•	0
•	0	•	\bigcirc	
0	\circ	0		•

(H). The collection of 2×2 matrices having nonzero determinant and entries in \mathbb{Z} , under the operation of matrix multiplication; i.e. $\{A \in M_2(\mathbb{Z}) : D(A) \neq 0\}$, under multiplication of matrices.

- (I). $GL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : D(A) \neq 0\}$, under multiplication of matrices. invertible matrices
- (J). $SL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : D(A) = 1\}$, under multiplication of matrices.
- (K). Sym₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = A$ }, under multiplication of matrices. symmetric matrices
- (L). Sym₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = A$ }, under addition of matrices.
- (M). Skew₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = -A$ }, under addition of matrices. skew-symmetric matrices
- (N). Sym₃(\mathbb{R}) \cap GL₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A \text{ is invertible and } A^t = A$ }, under multiplication of matrices.
- (O). $O_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A \text{ is invertible and } A^t = A^{-1} \}$, under multiplication of matrices.
- (P). $SO_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A \text{ is invertible, } A^t = A^{-1} \text{ and } D(A) = 1\}, \text{ under multiplication of matrices.}$
- (Q). The collection of 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix multiplication.
- (R). The collection of 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix addition.
- (S). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the addition of polynomials.
- (T). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the multiplication of polynomials.