Basic Concepts and Tools for Cyber Security

Kehuan Zhang
© All Rights Reserved

IERG4130 2022

Basic Concepts

What is Information Security?

From NIST Special Publication 800-12):

- Information Security is:
 - The protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to ensure confidentiality, integrity, and availability.
- CIA Triad

The CIA Triad

- Confidentiality
 - Preventing unauthorized access or disclosure of sensitive information
- Integrity
 - Defending against improper information modification or fabrification
 - ► Authenticity: no un-authorized modification
 - ▶ Non-repudiation: non-deniable of certain operation
- Availability
 - Ensure a timely and reliable access to information and systems
 - ▶ The information or system is always available when needed

Examples of CIA in our daily life

- Confidentiality
 - Password, student grade, disease, etc.
 - business plan, core technology
 - Military intelligence
- Integrity
 - ► For Emails: is it really sent by someone? (fake or not)
 - Can someone deny if she or he had sent a specific email
 - Whether an email had been modified during transmission?
- Availability
 - Server is too slow to respond
 - A system was crash
 - Whether a network link is free from congestion

Additional Concepts related to CIA

- Authenticity
 - Being genuine and being able to be verified
 - Related to Integrity, but emphasize more on trusty
- Authenticate
 - ▶ To verify the true identity of a given user or machine
- Authorization
 - ▶ To assign certain permissions or privileges to an authenticated party
- Accountability
 - Actions of an entity can be traced uniquely to that entity
 - Related to integrity, but focus more on non-repudiation

A model for Computer Security

- Terms used in this model
 - Attack: an act to break security goals
 - Adversary (Threat agent): an entity to attack
 - Vulnerability: a weakness that can be exploited
 - Risk: potential loss due to attacks
 - Threat: a potential for violation of system security goals
 - Countermeasure: defense measures
 - Security Policy: a set of rules on how to defense
 - System Resource (Asset): data or service to be protected

The model

More on the Terms

- Assets Types
 - Not only the data and services
 - ▶ But also hardware, software, OS, network, etc.
- Vulnerability Types
 - Corrupted: integrity problem, different from expected
 - Leaky: confidentiality problem, lose access control
 - ▶ Unavailable: data inaccessible, service unusable
- Attack
 - Active vs. Passive attacks
 - Insider vs. Outsider
- Countermeasure
 - Preventive vs. Detective vs. Recovery

More on the Threats

- Unauthorized disclosure
 - Exposure: unauthorized release
 - Interception: unauthorized access during transmission
 - ▶ Inference: indirect access (e.g., via side-channel)
 - ▶ Intrusion: gain access with a successful attack
- Deception
 - Masquerade: pretending to be someone else
 - Falsification: deceiving with false data
 - Repudiation: denying certain actions
- Disruption
 - Incapacitation: make system mal- or non-function
 - Corruption: modify system data or functions
 - Obstruction: to interrupt normal operation
- Usurpation: misuse or take-over the control

Computer Security Scope

Adversary Model

- Define the adversary
 - Who would like to attack (e.g., inside or outside)?
 - Why do they want to attack?
 - What are they going after?
 - ▶ How capable are they to launch the attack?
- Identify the Attack Surface
 - What are your asset to protect?
 - How adversaries can access the asset?
 - (Network? Software? Data or PDF Documents?)
- Discover potential vulnerabilities
 - Patching and upgrading
 - Penetration testing (simulated attack)
 - Systematic analysis
- The concept of Attack Tree

Example of Attack Tree

To depict all potential attacks (if possible)

Security Design Principles

Security Design Principles

- Complete mediation
- 2 Layering
- Fail-safe defaults
- Economy of mechanism
- Open design
- Separation of privilege
- Isolation
- Least privilege
- Least common mechanism
- Usability

1. Complete mediation

- Why do we need to do complete mediation?
- Security of a system actually depends on weakest link
 - Cryptographic algorithm: perfect theory, poor coding
 - Any other example? (Consider human being's role)
- Thus it is necessary to take a wholistic approach

2. Layering

- It is also called defense-in-depth
- To to avoid any single-failing point
 - What is single-failing point?
 - E.g., authentication server
- Defending in multiple layers
 - If one layer fails, there is another layer
 - Examples?
 - Considering the firewalls
 - External firewall, secondary firewall, host firewall

3. Fail-safe defaults

- the default configuration should be safe
- E.g., FTP server configuration: disable anonymous account by default
- E.g., Operating system: disable unnecessary services
- Any other example? (Hints: networked program listening on network ports: local vs. non-local)

4. Economy of mechanism (simplicity)

- Keep the design and implementation as simple as possible
 - ▶ To minimize the complexity, thus easier to perform security analysis

5. Open design

- Use open algorithms rather than secret one
- Why?
 - Open algorithms are relatively secure with many security analysis
 - Secret ones may not be the case
 - Secret ones may give you a false sense of security
- Discussion: how about military systems?
 - Do they open their algorithms?
 - ► Why?

6. Separation of Privilege

- It means to grant different permissions for different roles
 - E.g., admin vs. normal user vs. guest user
- Other related principles
 - Isolation (also called compartmentalization)
 - ★ To isolate the data, functions and permissions
 - ★ To minimize interferences and control the damage
 - ★ Example: Sandbox in Browsers, dedicated server for authentication
 - B Least privilege
 - ★ Operate with minimum set of privileges necessary to perform a task
 - ★ To control the damage
 - ★ E.g., normal user may not be able to change security policies
 - ★ Any other examples? (Hint: which account to run a web server?)
 - Q Least common mechanism
 - ★ If common part is compromised, huge impacts
 - ★ Considering the SDK, or libraries vulnerability
 - ★ Common parts among users may also be used for attack
 - ★ E.g., side-channel attack through procfs on Linux

10. Usability

- Do NOT rely on user to make right decision to achieve security
- Even users with little or even no background can do thing right
- E.g.,
 - Bad Practice:
 - ★ On Android, asking user to accept or reject permission request when installing a new App
 - Good Practice:
 - ★ By default disallow user to access Web site with insecure SSL certificate

Basic Cryptographic Tools

Recall the concept of CIA

- What is Confidentiality?
- What is Integrity?
- What is Availability?
- Question: How to achieve those security goals?
 - Cryptographic tools can help (partially)
 - A high overview here only
 - More details will be given in following weeks

Use encryption to achieve Confidentiality

- What is cryptography (or encryption)?
 - "Crypto" comes from Greek, means hidden or secret
 - "Graph"'s original Greek meaning is "write"
 - ▶ So, cryptography is to write some secret
- How it works?
 - To scramble the message controlled by a secret key
 - ► For example, rearrange the position, substitution
 - Only when the secret is known can the scrambled message be converted back to original form
- Convert the message confidentiality problem to the confidentiality problem of encryption key

Typical Encryption Process

Encryption Algorithms

- Symmetric Encryption
 - ► Encryption and Decryption will use the same key
 - Current standard: AES(Advanced Encryption Standard)
 - ► Obsolete standard: DES
 - Many other algorithms exists
 - ▶ Warning: do not invent your own (before you become a Master)
- Asymmetric Encryption
 - Encryption and Decryption will use different keys
 - One key is secret, just like Symmetric encryptions
 - The other key is public, known to every body
 - Current standard: RSA, ECC

Model of Public Key Encryption

- Note the difference when using different keys for encryption
- Both of keys can be used to encrypt and decrypt message, as long as they are used in pairs
- But for confidentiality, the public key has to be used
- Private key is used for digital signature (later slides)

Use Message Authentication Code to Achieve Integrity

- How to verify the integrity a given message?
 - ▶ Can we verify it by encrypt it?
 - What is potential limitations of this method?
- Hash Function
 - Generate a digest with fixed length for arbitrary length
 - Security requirement for Hash function?
 - Reversible?
 - Collisions?
- Message Authentication Code (MAC)
 - ► MAC = Hash + Encryption

A Typical Model of MAC

Use Digital Signature to Achieve Non-repudiation

- Digital signature is built on public-key encryptions
- Pay attention to the encryption key
- As mentioned earlier, private key is used to encrypt (sign) documents, while public is used to verify

About Random Numbers

- Why do we need to care about random numbers?
- Random numbers have huge impacts on security
 - Remember encryption? Problem was converted to confidentiality of encryption keys.
 - But how to ensure the secrecy of encryption key?
 - Randomness! (besides other protection measures)
- How to evaluation randomness?
 - There are some math criteria
 - ▶ E.g., uniform distribution: chance of each number is equal
 - Independence: cannot use known sequence to infer
- True Random vs. Pseudorandom
 - True random numbers rely on certain physical process
 - \star can not be re-generated, and generation speed may be slow
 - ★ Perfect in terms of randomness
 - ★ Often used as pre-shared master keys
 - Pseudorandom numbers are generated with certain algorithms
 - ★ Can be re-generated given the same seed
 - ★ Used for tokens, session keys, or keys in steaming cipher