2021R1-MATH1510 Midterm exam

Cho Kit CHAN

TOTAL POINTS

100 / 150

√ - 0 pts Correct
Q13
√ - 0 pts Correct
Q14
√ - 0 pts Correct
Q15
√ - 3 pts Incorrect
QUESTION 4
4 Q16-18 6 / 9
Q16
√ - 0 pts Correct
Q17
√ - 3 pts Incorrect
Q18
√ - 0 pts Correct
•
QUESTION 5
5 Q19 6 / 12
Value of b
√ - 0 pts Correct
Value of a
\checkmark - 6 pts Mistake: Take limit of f'.
QUESTION 6
6 Q20 14 / 14
Q20(a)
√ - 0 pts Correct
Q20(b) √ - 0 pts Correct
· - o pis Correct
QUESTION 7
7 Q21 10 / 10

√ - 0 pts Correct

QUESTION 8

8 Q22 12 / 16

Part (a)

√ - 0 pts Correct

Part (b)

√ - 2 pts Incorrect formula regarding \$\$f'(t)\$\$

√ - 2 pts Incorrect final answer

QUESTION 9

9 Q23 4 / 14

- $\sqrt{-2}$ pts incorrect explanation for domain of f'(x)
- √ 8 pts incorrect argument for f'(0)

QUESTION 10

10 Q24 7 / 20

Part (a)

√ - 1 pts Should state that you are applying MVT on the interval \$\$[k,k+1]\$\$ explicitly

Part (b)

√ - 6 pts Incorrect

Part (c)

√ - 6 pts Incorrect

QUESTION 11

11 Q25 2 / 10

- + 10 pts Correct
- + 2 pts Essentially expresses lim sin(x^3)f(ax)

interms of f(x)

+ 2 pts Essentially expresses $\lim \sin^3(x)g(bx)$

interms of g(x)

- 2 pts Misc. mistakes in re-expressing $sin(x^3)f(ax)$ and $sin^3(x)g(bx)$
- + **4 pts** Correctly expresses $\lim f(x)/g(x)$ in way which takes advantage of known identities.
- $\sqrt{+2}$ pts Expresses lim f(x)/g(x) in way which takes advantage of known identities, with at least one significant mistake or omission in the reasoning.
 - + 2 pts Correct final answer.
 - + 0 pts Assumes without justification the limit of

individual term(s) exists.

- + 0 pts Incorrect.
- + 0 pts No answer found on the first selected page

Short Questions

Each of question 1-18 is worth 3 points.

1. Find the domain of the function

$$2x-7>0$$
 & $3x+5<0$
 $2x-7<0$ & $3x+5<0$
 $2x<\frac{1}{2}$ & $2x<\frac{1}{3}$

 $f(x) = \ln((2x - 7)(3x + 5))$

Answer:

Find the range of the function

$$f(x) = x^{2} - 1$$

$$= (\chi - 1)(\chi + 1)$$

with domain [-2, 6].

Answer:

3. Which of the following functions have minimum value on the specified intervals? If none of them has minimum value, write NONE.

(a)
$$f(x) = \frac{1}{x}$$
 on $[1, \infty)$.

(a)
$$f(x) = \frac{1}{x}$$
 on $[1, \infty)$. X
(b) $g(x) = (x-3)e^x \sin x$ on $[-3, 7]$.

(c)
$$h(x) = x$$
 on $(0,4]$.

(6), Answer:

4. Let

$$f(x) = \begin{cases} |x| & \text{if } |x| \ge 1; \\ 2x - 3 & \text{if } 0 \le x < 1; \\ x^2 & \text{if } -1 < x < 0. \end{cases}$$

Write down all the point(s) on \mathbb{R} where f(x) is not continuous. If there is no such point, write NONE.

Answer:

$$= 2-3$$
 $= -1$

$$\lim_{x\to 0^{-}} = 0$$
 $\lim_{x\to 0^{+}} = -3$

```
1 Q1-4 9 / 12
```

Q1

√ - 0 pts Correct

Q2

√ - 0 pts Correct

Q3

√ - 0 pts Correct

Q4

√ - 3 pts Incorrect "NONE"

$$\lim_{x \to 1^{-}} = 1 - a$$
 $\lim_{x \to 1^{+}} = a + 2$

5. Let

$$f(x) = \begin{cases} ax + 2 & \text{if } x \ge 1; \\ x - a & \text{if } x < 1. \end{cases} \qquad (-\alpha = \alpha + \lambda)$$

Find all the value(s) of a so that f(x) is continuous on \mathbb{R} .

$$-1 = 2a$$

Answer:

6. Find
$$\frac{dy}{dx}$$
 if

$$y = \frac{x \sin x}{2 - \cos x} \qquad (2 - \cos x)^{2}$$

Answer:

$$\frac{2 \sin x - \sin x \cos x + 2x \cos x - x}{\left(2 - \cos x\right)^2}$$

7. Find
$$\frac{dy}{dx}$$
 if

$$\frac{dy}{dx} = \cos(\cos(\sinh x)) \times - \sinh(\sinh x)$$

$$\times \cos x$$

Answer:

8. Find $\frac{dy}{dx}$ if

$$y = \arctan x + e^x \arcsin x$$
, where $x \in (-1, 1)$

 $y = \sin(\cos(\sin x))$

Answer:

$$\frac{1}{1+x^2} + e^{x} \left(\operatorname{arcshx} + \frac{1}{\sqrt{1-x^2}} \right)$$

9. Find $\frac{dy}{dx}$ if

$$y = e^{\sin x} \ln x$$

Answer:

$$3h^{-1}\lambda = y$$

$$\chi = \sin y$$

$$\frac{dy}{dx} = \sqrt{1 + \cos x}$$

2 Q5-9 **15** / **15**

Q5

√ - 0 pts Correct

Q6

√ - 0 pts Correct

Q7

√ - 0 pts Correct

Q8

√ - 0 pts Correct

Q9

✓ - 0 pts Correct

3 Q10-15 15 / 18

Q10

√ - 0 pts Correct

Q11

√ - 0 pts Correct

Q12

√ - 0 pts Correct

Q13

√ - 0 pts Correct

Q14

✓ - 0 pts Correct

Q15

√ - 3 pts Incorrect

16. Given that

$$\lim_{x \to \infty} f(x) = a, \quad \lim_{x \to -\infty} f(x) = b, \quad \lim_{x \to 0^+} f(x) = c, \quad \lim_{x \to 0^-} f(x) = d$$

for some a, b, c, d > 0, evaluate

$$\lim_{x \to 0} f\left(\left|\frac{1}{x}\right|\right) = \lim_{x \to \infty} f\left(\left|\mathcal{M}\right|\right)$$

Answer:

a

17. Apply linearization of the function

$$f(x) = \frac{1}{2} x^{2}$$

$$\chi=(b, y) = \frac{1}{2\sqrt{2}}$$

at x = 16 to approximate $\sqrt{17}$.

Answer:

18. Let

$$C: x^3 + 5xy - 3y^2 = 3$$

be a curve. Find the equation of the tangent of C at the point (1,1).

Answer:

$$\frac{dy}{dx}(8x-6y) = -3x^2-5y$$

$$slope = \begin{cases} -3x^2-5y \\ 5x-6y \end{cases} = \frac{dy}{3x^2-6y}$$

$$c(1) \quad c(2) \quad c(3) \quad$$

4 Q16-18 6 / 9

Q16

√ - 0 pts Correct

Q17

√ - 3 pts Incorrect

Q18

✓ - 0 pts Correct

Long Questions

19. (12 points) Suppose that

$$f(x) = \begin{cases} \tan x - 1 & \text{if } x \in (-\frac{\pi}{2}, 0] \\ x^2 + ax + \beta & \text{if } x > 0, \end{cases}$$

where a and b are real numbers.

Given that f is differentiable at x = 0, without using L'Hôpital's rule, find the values of a and b.

.. We have
$$\lim_{x\to 0^-}f(x)=\lim_{x\to 0^+}f(x)$$

$$0-1 = b$$
 $b = -1 //$

Also, Let
$$y(x) = \tan x - 1 & z(x) = x^2 + ax - 1$$

We have
$$y'(0) = Z'(0)$$

$$\sec^2(0) = 2(0) + a$$

$$\frac{1}{(\cos^2(0)} -)$$

5 Q19 6 / 12

Value of b

√ - 0 pts Correct

Value of a

 \checkmark - 6 pts Mistake: Take limit of f'.

20. (14 points) Let C be the curve defined by the equation

$$y^4 - x = xy + \cos x$$

Given that A = (0,1) is a point on C,

- (a) Find $\frac{dy}{dx}\Big|_A$
- (b) Find $\frac{d^2y}{dx^2}\bigg|_{A}$

(a) By implicit differentiation,

$$4y^{3} \left(\frac{dy}{dx}\right) - 1 = y + x\left(\frac{dy}{dx}\right) - shrx$$

$$\left(\frac{dy}{dx}\right) \left(\frac{4y^{3} - x}{4y^{3} - x}\right) = \frac{1 + y - shrx}{4y^{3} - x}$$

$$\frac{dy}{dx} = \frac{1 + y - shrx}{4y^{3} - x}$$

$$\frac{dy}{dx} = \frac{1 + 1 - 0}{4 - 0}$$

$$= \frac{1}{2} / /$$

$$\left(\frac{dy}{dx} - \omega sx\right) \left(\frac{4y^{3} - x}{4y^{3} - x}\right) - \left(\frac{1+y - shxx}{4y^{3} - x}\right)^{2}$$

$$\left(\frac{dy}{dx^{3}} - x\right)^{2}$$

$$\left(\frac{dy}{dx^{3}} -$$

16

6 Q20 14 / 14

Q20(a)

√ - 0 pts Correct

Q20(b)

√ - 0 pts Correct

21. (10 points) Show that the function

$$f(x) = x^4 - 5x + 1$$

has at least two real roots.

: f(x) is a continuous function for a $\forall x \to \mathbb{R}$.

By Intermediate value Theorem, there exists a value $C \in C(1,2)$ where f(c) = 0.

$$(2)$$
 $f(0) = 1$
 $f(1) = -3$

By Intermediate value iluonn., there exists a real value d∈ (0,1)

where
$$f(d) = 0$$
.

from above, the function has at least two wal roots which are a C and d.

7 Q21 10 / 10

√ - 0 pts Correct

22. (16 points) A racing car moves away from a tower, and the horizontal distance between the racing car and the tower after t > 0 seconds is given by a differentiable function f(t) meter. To monitor the racing car, when it starts to move, an unmanned aerial vehicle (UAV) flies vertically upwards with constant speed 10 m/s from the top of a tower 60 meters in height.

Given that at t = 4, the angle of depression θ from the UAV to the racing car is $\frac{\pi}{4}$ radian.

- (a) Find f(4).
- (b) At t = 4, the angle of depression θ decreases at a rate of 0.15 radian/s. Find the speed of the racing car at that moment.

(a)
$$\tan \frac{\pi}{4} = \frac{60 + 10 \times 4}{f(4)}$$

$$f(4) = |00|/|$$
(b) $\frac{d}{d\theta} \tan \theta = \frac{10 f(t) - (60 + 10 t) f'(t)}{f'(t)}$

$$\int_{0}^{\infty} \int_{0}^{\infty} \tan \theta = \frac{10 f(t) - (60 + 10 t) f'(t)}{f'(t)}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \tan \theta = \frac{100 f(t) - (60 + 10 t) f'(t)}{f'(t)}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$$

$$f'(4)(100+ sec(60.15)) = 1000$$

$$f'(4) = 9.8988 m/s$$

$$(4 dip)$$

Chappy - t

The care of the same as the contract of the c

(40 - (4)]

(a) = (tot) (b) + (a) (b) + (c) (b)

(1) my = (2) (4) -

8 Q22 12 / 16

Part (a)

√ - 0 pts Correct

Part (b)

√ - 2 pts Incorrect formula regarding \$\$f'(t)\$\$

√ - 2 pts Incorrect final answer

11

23. (14 points) Suppose

$$f(x) = \begin{cases} 2x - \sin x & \text{if } x \le 0\\ x^2 \cos\left(\frac{2}{x}\right) & \text{if } x > 0 \end{cases}$$

Find $D_{f'}$ (the domain of f') and f'(x) for any $x \in D_{f'}$.

$$f'(x) = \begin{cases} 2 - \cos x & \text{if } x < 0 \\ \text{Undefined} & \text{if } x = 0 \\ 2x \cos(\frac{2}{x}) + x^2 \sin(\frac{2}{x}) \cdot \frac{2}{x^2} & \text{if } x > 0 \end{cases}$$

$$= \begin{cases} 2 - \cos x & \text{if } x < 0 \\ \text{Undefined if } x = 0 \end{cases}$$

$$2x \cos(\frac{2}{x}) + 2 \sin(\frac{2}{x}) & \text{if } x > 0 \end{cases}$$

1-1-12 = = = : punt 3.1

112 - (1+d) ms. = 12

Histo, and June and coll !

9 Q23 4 / 14

- \checkmark 2 pts incorrect explanation for domain of f'(x)
- √ 8 pts incorrect argument for f'(0)

12

24. (20 points)

(a) Let k be a positive integer. Show that

$$\frac{1}{k+1} < \ln(k+1) - \ln(k) < \frac{1}{k}$$

(b) Let n be a positive integer. Show that

$$\ln(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \ln n$$

(c) By part (b), evaluate

$$\lim_{n\to\infty}\frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{\ln n}.$$

(a) Let
$$f(x) = lnx$$

 $f'(x) = \frac{1}{x}$

By the mean value theory, there exists a real value

e where
$$c \in (a, b)$$
 and $f'(cc) = \frac{f(cb) - f(a)}{b-c}$

ghen that flx) B continuous & differentiable.

we have:
$$\frac{1}{c} = \frac{\ln(k+1) - \ln k}{k+1-k}$$

$$\frac{1}{b} < \frac{1}{c} < \frac{1}{a}$$

$$\frac{1}{b} < \frac{1}{c} < \frac{1}{a}$$

$$\frac{1}{n+1} < lu(n+1) - lu(n) < \frac{1}{n}$$

1 = Ex (xx) + m/1 + (xx) x2 = 1

 $\frac{1}{2}(KX) = 0$

 $\mathcal{L} = (x)^2$

 $Q_{ij} = Q_{ij} = Q_{ij}$

[x]

13

10 Q24 **7** / **20**

Part (a)

 \checkmark - 1 pts Should state that you are applying MVT on the interval \$\$[k,k+1]\$\$ explicitly

Part (b)

√ - 6 pts Incorrect

Part (c)

√ - 6 pts Incorrect

$$\lim_{x \to 0} (\sin(x^3) f(ax)) = \lim_{x \to 0} (\sin^3(x) g(bx)) = 1$$

for some $a, b \neq 0$, evaluate

$$\lim_{x\to 0} \frac{\frac{f(x)}{g(x)}}{\frac{s_1h(x^3) + (ax)}{x^3}} \times x^3 = 1$$

$$\lim_{x \to 0} \frac{\sinh x}{x} = 1 \to \lim_{x \to 0} f(ax) \cdot x^3 = 1$$

$$f(ax) = 0$$

$$f(x) = 0$$

$$\lim_{x \to 0} \frac{\sin^3(x) g(bx) \cdot \chi^3}{x^3} = 1$$

$$g(bx) = 0$$

$$g(x) = 0$$

$$f(x) = 0$$

$$x = 0$$

11 Q25 2 / 10

- + 10 pts Correct
- + 2 pts Essentially expresses $\lim \sin(x^3)f(ax)$ interms of f(x)
- + 2 pts Essentially expresses lim sin^3(x)g(bx) interms of g(x)
- 2 pts Misc. mistakes in re-expressing $sin(x^3)f(ax)$ and $sin^3(x)g(bx)$
- + 4 pts Correctly expresses $\lim f(x)/g(x)$ in way which takes advantage of known identities.
- $\sqrt{+2}$ pts Expresses lim f(x)/g(x) in way which takes advantage of known identities, with at least one significant mistake or omission in the reasoning.
 - + 2 pts Correct final answer.
 - + **0 pts** Assumes without justification the limit of individual term(s) exists.
 - + 0 pts Incorrect.
 - + 0 pts No answer found on the first selected page