Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 13. Januar 2013

Inhaltsverzeichnis

Ei	nleitu	ıng	iii			
1	Mat	chematische Grundlagen	1			
	1.1	Einige Ergebnise aus der Kommutativen Algebra	1			
	1.2	Weyl-Algebra und der Ring $\mathcal D$	3			
		1.2.1 Weyl Algebra als Graduierter Ring	6			
2	Links \mathcal{D} -Moduln					
	2.1	Lokalisierung eines $\mathbb{C}\{x\}$ -Moduls	7			
	2.2	Lokalisierung eines holonomen \mathcal{D} -Moduls	7			
3	Der Meromorpher Zusammenhang					
	3.1	Definition	8			
	3.2	Eigenschaften	9			
	3.3	Newton Polygon	12			
	3.4	pull-back und push-forward	13			
	3.5	Elementare Meromorphe Zusammenhänge	18			
4	Levelt-Turrittin-Theorem					
	4.1	Klassische Definition	19			
	4.2	Sabbah's Refined version	20			
Ar	nhang	g	24			
Α	Aufteilung von					
В	Wie	ich Newton Polygone zeichne	27			

Einleitung

1 Mathematische Grundlagen

Hier werde ich mich auf [Sab90] und [Cou95] beziehen.

1.1 Einige Ergebnise aus der Kommutativen Algebra

In dieser Arbeit spielen die folgenden Ringe eine Große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$
- $\hat{K} := \mathbb{C}((x)) := \mathbb{C}[x][x^{-1}]$

Wobei offensichtlich gilt $\mathbb{C}[x] \subset \mathbb{C}\{x\} \subset \mathbb{C}[x]$.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

Lemma 1.1 (Seite 2). ein paar eigenschaften

1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x - a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term $\neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$

und es gilt $gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$

Definition 1.2 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 1.3 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Faserprodukt: [Sta12, 4(Categories).6.1]

1.2 Weyl-Algebra und der Ring \mathcal{D}

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Sei $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man:

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g$$

Definition 1.4 (Weyl Algebra). Definiere nun die Weyl Algebra $A_1(\mathbb{C})$ (bzw. die Algebra \mathcal{D} von linearen Operatoren mit Koeffizienten in $\mathbb{C}\{x\}$ bzw. die Algebra $\hat{\mathcal{D}}$ (Koeffizienten in $\mathbb{C}[x]$)) als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.1).

Wir werden die Notation $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{(bzw. } \mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{bzw. } \hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{)}$ verwenden.

Beispiele und Alternative Definition:

Sergey-Arkhipov-MAT1191_Lecture_Notes.pdf Chapter 2.1

Lemma 1.5. Sei A einer der 3 soeben eingeführten Objekten, so definieren die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

 $eine\ Ringstruktur\ auf\ A.$

Bemerkung 1.6. $A_1(\mathbb{C})$, \mathcal{D} und $\hat{\mathcal{D}}$ sind nicht kommutative Algebren.

Definition 1.7 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

der Kommutator von a und b genannt.

Proposition 1.8. 1. Es gilt

$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. Sei $f \in \mathbb{C}[x]$, so gilt:

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

Denn für $g \in \mathbb{C}[x]$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f\partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= k x^{k-1} \\ [\partial_x^j, x] &= j \partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \geq 1} \frac{k(k-1) \cdots (k-i+1) \cdot j(j-1) \cdots (j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. [AV09]

Proposition 1.9. Jedes Element in $A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$) kann auf eindeutige weiße als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$), geschrieben werden.

Beweis. [Sab90, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Definition 1.10. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

In natürlicher Weise erhält man $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ sowie die entsprechende aufsteigende Filtrierung

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte
$$gr_k^F \mathcal{D} = F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.11. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$\underbrace{isomorph \ als}_{\cong} \operatorname{grad}. \ \operatorname{Ringe}$$

also

$$gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$
.

Beweis. TODO

Treffen?

1.2.1 Weyl Algebra als Graduierter Ring

Sei A nun einer der drei Koeffizienten Ringe, welche zuvor behandelt wurden. Der Ring $A < \partial_x >$ kommt zusammen mit einer aufsteigenden Filtrierung, welche wir mit $F(A < \partial_x)$ bezeichen werden. Sei P ein bzgl. 1.9 minimal geschriebener Operator, so ist P in F_k falls der maximale Grad von ∂_x in P kleiner oder gleich k. So definiere den Grad degP von P als die Eindeutige ganze Zahl k mit $P \in F_k A < \partial_x > /F_{k-1} < \partial_x >$

Unabhängigkeit von Schreibung wird in Sabbah Script behauptet

2 Links \mathcal{D} -Moduln

Beispiel 2.1 (Einfachste links \mathcal{D} -Moduln). Sei $X=\mathbb{A}^1$ und $\mathscr{O}_X=\mathbb{C}[t]$.

- 1. \mathcal{D} ist ein \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathscr{O}_X$ mit $\partial(f(t)) = \frac{\partial f}{\partial t}$ und $t \cdot f(t) = tf$.
- 3. $\mathcal{M} = \mathscr{O}_X \exp(\lambda t) \text{ mit } \partial(f(t) \exp(t)) = \frac{\partial f}{\partial t} \exp(t) + f \exp(t)$
- 4. $\mathcal{M} = \mathbb{C}[t, t^{-1}]$ mit $t \cdot t^m = t^{m+1}$ und $\partial(t^m) = mt^{m-1}$

2.1 Lokalisierung eines $\mathbb{C}\{x\}$ -Moduls

Definition 2.2. Sei M ein $\mathbb{C}\{x\}$ -Modul und $K = \mathbb{C}\{x\}[x^{-1}]$, dann ist die Lokalisierung $M[x^{-1}] := M \otimes_{\mathbb{C}\{x\}} K.$

2.2 Lokalisierung eines holonomen \mathcal{D} -Moduls

3 Der Meromorpher Zusammenhang

- wofür sind die gut?
- wieso kommt man ursprünglich dazu

3.1 Definition

Definition 3.1 (Meromorpher Zusammenhang). Ein (Keim eines) Meromorpher Zusammenhang (an x = 0) (\mathcal{M}_K, ∂) besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vr
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt *Derivation*, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die *Leibnitzregel*

$$\partial(fu) = f'u + f\partial u \tag{3.1}$$

erfüllen soll.

Definition 3.2 (Meromorpher Zusammenhang über k). Ein (Keim eines) Meromorpher Zusammenhang über k (\mathcal{M}_k, ∂) besteht aus folgenden Daten:

- \mathcal{M}_k , ein endlich dimensionaler k-Vektor Raum
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_k \to \mathcal{M}_k$, genannt Derivation oder Zusammenhang, welche für alle $f \in k$ und $u \in \mathcal{M}_k$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{3.2}$$

erfüllen soll.

Falls $k = K = \mathbb{C}(\{x\})$ reden wir von einem (konvergentem) Meromorphen Zusammenhang und falls $k = \hat{K} = \mathbb{C}(\{u\})$ reden wir von einem formalen Meromorphen Zusammenhang.

Bemerkung 3.3. Ist \mathcal{M}_K ein Meromorphen Zusammenhang, so erhalte einen formalen Meromorphen Zusammenhang durch

$$\mathcal{M}_K \otimes_K \hat{K} =: \mathcal{M}_{\hat{K}}$$
.

Bemerkung 3.4. 1. Später wird man auf die Angabe von ∂ verichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen.

2. Wir betrachten hier Meromorphe Zusammenhänge an x=0 als Singularität.

Definition 3.5. [Sab07, 1.a] Sei $\varphi \in \mathbb{C}((u))$. Wir schreiben \mathscr{E}^{φ} für den (formalen) Rang 1 Vektorraum $\mathbb{C}((u))$ ausgestattet mit dem Zusammenhang $\nabla = \partial_u + \partial_u \varphi$, im speziellen also $\nabla_{\partial_u} 1 = \partial_u 1 = \varphi'$.

Also
$$\mathcal{E}^{\varphi} = \mathbb{C}((u)) \xrightarrow{\partial_u} \mathbb{C}((u))$$

$$1 \mapsto \varphi'(u)$$

$$f(u) \mapsto f'(u) + f(u)\varphi'(u)$$

Bemerkung 3.6. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![u]\!]$.

3.2 Eigenschaften

[Sab90, 4.2] Let \mathcal{M} be a left \mathcal{D} -module. First we consider it only as a $\mathbb{C}\{x\}$ -module and let $\mathcal{M}[x^{-1}]$ be the localized module.

Lemma 3.7 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_t m, \ldots, \partial_t^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8]

Satz 3.8. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein D-Modul und andersherum.

Beweis. [Sab90, Thm 4.3.2]

Lemma 3.9. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. [AV09, Satz 4.12]

Bemerkung 3.10. [Sab90, Proof of Theorem 5.4.7]

$$\dim_{\hat{K}} \mathcal{M}_{\hat{K}} = \deg P \text{ wenn } \mathcal{M}_{\hat{K}} = \mathcal{D}/\mathcal{D} \cdot P$$

Lemma 3.11. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\begin{array}{ccc} \mathcal{M}_{K} & \stackrel{\partial}{\longrightarrow} \mathcal{M}_{K} \\ \uparrow & & \uparrow \\ \cong \varphi & & \varphi \cong \\ \mid & & \mid \\ K^{r} & \stackrel{\varphi^{-1}\partial \varphi}{\longrightarrow} K^{r} \end{array}$$

gilt: $(K^r, \varphi^{-1}\partial\varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Lemma 3.12. Sei $\mathcal{M}_K \cong K^r$ ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

11

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 3.13. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 3.14 (Transformationsformel). In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 3.15 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ($A \sim B$) genau dann, wenn es ein $T \in GL(r, K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

$$1 = TT^{-1} \rightsquigarrow T'T^{-1} + T(T^{-1})' = 0$$
$$1 = T^{-1}T \rightsquigarrow (T^{-1})'T + T^{-1}T' = 0$$

TODO: Ab hier formal????

13. Januar 2013

3.3 Newton Polygon

Jedes $P \in \mathcal{D}$ lässt sich eindeutig schreiben als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit $\alpha_{kl} \in \mathbb{C}$ schreiben und betrachte das zu P dazugehörige

$$H(P) := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \left((k,l-k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Bei Sabbah: $H \subset \mathbb{N} \times \mathbb{Z}$ und dann konvexe Hülle davon in \mathbb{R}^2

Definition 3.16. Das Randpolygon von conv(H(P)) heißt das Newton Polygon von P und wird geschrieben als N(P).

Definition 3.17. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- P heißt $regulär \ singulär :\Leftrightarrow slopes(P) = \{0\}$, sonst $irregulär \ singulär$.
- Schreibe $\mathcal{P}(\mathcal{M}_K)$ für die Menge der zu \mathcal{M}_K gehörigen slopes
- Ein meromorpher Zusammenhang \mathcal{M}_K heißt regulär singulär, falls es ein regulär singuläres P gibt, mit $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$

Beispiel 3.18. 1. Ein besonders einfaches Beispiel ist $P_1 = t^1 \partial_t^2$. Es ist leicht abzulesen, dass

$$k=2$$
 $l=1$

so dass

$$H(P_1) = ((2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1 \}.$$

In Abbildung 3.2a ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$ so kann man daraus das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 3.2b visualisiert.

Abbildung 3.1: Zu Beispiel 3.18

Lemma 3.19. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

3.4 pull-back und push-forward

[HTT07, 1.3]

Nach [Sab07, 1.a]. Sei $\rho \in u\mathbb{C}[\![u]\!]$ mit Bewertung $p \geq 1$ und sei \mathcal{M} ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 3.20 (pull-back). [Sab07, 1.a] Der pull-back (Inverses Bild) $\rho^+\mathcal{M}$ ist der Vektorraum $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch $\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m$.

Beispiel 3.21. Beginne mit

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$

und gehe von τ über zu t via $\tau \to \frac{1}{t}$:

• was passiert mit der Ableitung ∂_{τ} ? Es gilt:

$$\partial_{\tau}(f(\frac{1}{\tau})) = \partial_{t}(f) \cdot (-\frac{1}{\tau^{2}}) = -\partial_{t}(f) \cdot t^{2} = -t^{2} \cdot \partial_{t}(f)$$

also:

$$\partial_{\tau} = -t^2 \partial_t$$

• was ist $\partial_t(t^2\partial_t)$?

$$\begin{split} \partial_t t^2 \partial_t &= (\partial_t t) t \partial_t \\ &= (t \partial_t - 1) t \partial_t \\ &= t (\partial_t t) \partial_t - t \partial_t \\ &= t (t \partial_t - 1) \partial_t - t \partial_t \\ &= t^2 \partial_t^2 - 2t \partial_t \end{split}$$

• was passiert mit $\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$?

$$\tilde{P} = \tau \partial_{\tau}^{2} + 2\partial_{\tau} - 1$$

$$\stackrel{\tau \to \frac{1}{t}}{\to} \frac{1}{t} (-t^{2}\partial_{t})^{2} + 2(-t^{2}\partial_{t}) - 1$$

$$= \frac{1}{t} t^{2} (\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(t^{2}\partial_{t}^{2} - 2t\partial_{t}) - 2t^{2}\partial_{t} - 1$$

$$= t^3 \partial_t^2 - 4t^2 \partial_t - 1 =: P$$

Wir wollen $\mathcal{D}/\mathcal{D}\cdot P$ bzgl. $P=t^3\partial_t^2-4t^2\partial_t-1$ betrachten. Unser Ziel ist es hier ganzzahlige slopes erhalte Es gilt slopes $(P)=\{\frac{1}{2}\}$ (siehe Abbildung 3.3a) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back $\rho:t\to u^2$, welcher alle slopes mit 2 Multipliziert, an. Zunächst ein paar Nebenrechnungen:

$$\partial_t = \frac{1}{\rho'} \partial_u = \frac{1}{2u} \partial_u$$

$$\partial_t^2 = (\frac{1}{2u} \partial_u)^2$$

$$= \frac{1}{2u} (-\frac{1}{2u^2} \partial_u + \frac{1}{2u} \partial_u^2)$$

$$= \frac{1}{4u^2} \partial_u^2 - \frac{1}{4u^3} \partial_u$$

also ergibt einsetzen

$$\rho^{+}P = u^{6}(\frac{1}{4u^{2}}\partial_{u}^{2} - \frac{1}{4u^{3}}\partial_{u}) - 4u^{4}\frac{1}{2u}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - u^{3}\frac{1}{4u^{3}}\partial_{u} - 4u^{3}\frac{1}{2}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - 2\frac{1}{4}u^{3}\partial_{u} - 1$$

Also ist $\rho^+ P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$ mit slopes $(\rho^+ P) = \{1\}$ (siehe Abbildung 3.3b).

Sei \mathcal{N} ein $\mathbb{C}((u))$ -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 3.22 (push-forward). [Sab07, 1.a] Der push-forward (Direktes Bild) $\rho_+\mathcal{N}$ ist

- der $\mathbb{C}((t))$ -VR $\rho_*\mathcal{N}$ ist der \mathbb{C} -Vektor Raum \mathcal{N} mit der $\mathbb{C}((t))$ -Vektor Raum Struktur durch $f(t) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_t beschrieben durch $\rho'(u)^{-1}\partial_u$.

Bemerkung 3.23. Wieso sieht die Wirkung auf dem push-forward Zusammenhang so aus? Betrachte ein Element der Form $f(t)m = f(\rho(u))m \in \rho_+ \mathcal{N}$.

$$\partial_t(f(t)m) = \partial_{\rho(u)}(f(\rho(u))m)$$

Abbildung 3.2: Zu Beispiel 3.21

$$= f'(\rho(u)) \cdot \underbrace{\frac{\partial (f(u))}{\partial (f(u))}}_{-1} m + f(\rho(u)) \underbrace{\partial_{\rho(u)} m}_{=\partial_t} = (\star)$$

$$\rho'(u)^{-1}\partial_u(f(t)m) = \frac{1}{pu^{p-1}}\partial_u(f(u^p)m)$$
$$= f'(u^p)m + f(u^p)\frac{1}{pu^{p-1}}\partial_u m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit ist die Wirkung von ∂_t gleich der Wirkung von $\rho'(u)^{-1}\partial_u$.

Beispiel 3.24 (push-forward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte

$$\mathcal{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_u + \partial_t \frac{1}{u^2})$$
$$= \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}})$$
$$= :P$$

mit slopes $(P) = \{2\}$ (siehe Abbildung 3.4a). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$

$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 3.4b)

Abbildung 3.3: Zu Beispiel 3.24

(a) Newton Polygon zu P — (b) Newton Polygon zu $\rho_+ P$

Satz 3.25. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}.$$
(3.3)

Beweis.

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+}\mathcal{M}) = \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} (\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}))$$

$$\cong \rho_{+}((\mathcal{N} \otimes_{\mathbb{C}((u))} \mathbb{C}((u))) \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$\cong \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$= \rho_{+}\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}$$

Sei
$$\rho(u) = u^p = t$$
 und $\varphi(t)$ gegeben.
$$\rho^+ \mathscr{E}^{\varphi(t)} = \mathscr{E}^{\varphi(\rho(u))} = \mathscr{E}^{\varphi(u^p)}$$

$$\rho^+ \rho_+ \mathscr{E}^{\varphi(u)} = \bigoplus_{\zeta \in \mu_p} \mathscr{E}^{\varphi(\zeta \cdot u)}$$

3.5 Elementare Meromorphe Zusammenhänge

Definition 3.26 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}(\!(u)\!)$ und einem endlich dimensionalen $\mathbb{C}(\!(u)\!)$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}(\!(t)\!)$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

4 Levelt-Turrittin-Theorem

Quellen:

sabbah_cimpa90 seite 28 / 30

Ab hier werden wir nur noch formale Meromorphe Zusammenhänge betrachten. Alle bisher getroffenen Aussagen gelten für diese aber analog.

Sei $M_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$ und nehme an, dass N(P) zumindes 2 nichttriviale Steigungen hat. Spalte $N(P) = N_1 \dot{\cup} N_2$ in 2 Teile. Dann gilt:

Lemma 4.1. Es existiert eine Aufteilung $P = P_1P_2$ mit:

- $N(P_1) \subset N_1 \ und \ N(P_2) \subset N_2$
- A ist eine kante von ...

4.1 Klassische Definition

Satz 4.2. [Sab90, Thm 5.3.1] Sei $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\hat{K}}) = \{L^{(1)}, \ldots, L^{(r)}\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindutige Aufteilung $\mathcal{M}_{\hat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\hat{K}}^{(i)}$ in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\hat{K}}^{(i)}) = \{L^{(i)}\}.$

Beweis. [Sab90, Thm 5.3.1]

Aussagen, die aus dem Beweis entstehen:

Wir erhalten die Exacte Sequenz

$$0 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_1 \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P \to \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P_2 \to 0$$

Korollar 4.3. [Sab90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

[Sab90, Page 34] Sei $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\hat{K}}$ als den Vektor Raum über $\hat{L}: \pi^*\mathcal{M}_{\hat{K}} = \hat{L} \otimes_{\hat{K}} \mathcal{M}_{\hat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Satz 4.4. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl q so dass der Zusammenhang $\pi^*\mathcal{M}_{\hat{K}} = \mathcal{M}_{\hat{L}}$ isomorph zu einer direkten Summe von elementaren Meromorphen Zusammenhänge ist.

Beispiel 4.5. Sei hier $P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$, wie in Beispiel ??. Wir wollen $\mathcal{D}/\mathcal{D} \cdot P$ mittels des Levelt-Turrittin-Theorems Zerlegen.

4.2 Sabbah's Refined version

sabbah Fourier-local.pdf lemma 2.4

Sei $\rho: u \mapsto u^p$ und $\mu_{\xi}: u \mapsto \xi u$.

Lemma 4.6. [Sab07, Lem 2.4] Für alle $\varphi \in \mathbb{C}((u))$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}} .$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$ [1].

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

$$\overline{[1]}\mathscr{E}^{\varphi} = \mathscr{E}^{\psi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[u]]$$

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}_{e}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= \underbrace{u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1}\varphi'(u)e}_{=0}$$

$$= \underbrace{u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\underbrace{\psi_{i}(u^{p})e}_{\in\mathbb{C}((t))}}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^{i}\psi_{i}(u^{p})(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= \sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=n-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, ..., u\partial_{u}e_{p-1})$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ & \ddots & \ddots \\ & & 1 & 0 \end{bmatrix}$$

$$= \left(\sum_{i=0}^{p-1-k} u^{i} \psi_{i}(u^{p}) e_{k+1} + \sum_{i=p-k}^{p-1} u^{i} \psi_{i}(u^{p}) e_{k+i-p}\right)_{k \in \{0, \dots, p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1} \psi_{p-1}(u^{p}) & \cdots & u^{3} \psi_{3}(u^{p}) & u^{2} \psi_{2}(u^{p}) & u^{1} \psi_{1}(u^{p}) \\ u^{1} \psi_{1}(u^{p}) & u^{p-1} \psi_{p-1}(u^{p}) & \ddots & u^{2} \psi_{2}(u^{p}) \\ u^{2} \psi_{2}(u^{p}) & u^{1} \psi_{1}(u^{p}) & \ddots & & u^{3} \psi_{3}(u^{p}) \\ u^{3} \psi_{3}(u^{p}) & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & u^{1} \psi_{1}(u^{p}) & u^{p-1} \psi_{p-1}(u^{p}) \\ u^{p-2} \psi_{p-2}(u^{p}) & \cdots & u^{3} \psi_{3}(u^{p}) & u^{2} \psi_{2}(u^{p}) & u^{1} \psi_{1}(u^{p}) & u^{p-1} \psi_{p-1}(u^{p}) \end{pmatrix}$$

$$= \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j} \psi_{j}(u^{p}) P^{j}\right]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}, \text{ mit } \xi^p=1 \text{ und } T\in Gl_p(\mathbb{C}).$$

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) P^j] T^{-1} = [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) (TPT^{-1})^j]$$

$$= [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) D^j]$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_j \\ & \sum_{j=0}^{p-1} u^{j-1} \psi_j (\xi^1)^j \\ & & \ddots \\ & & \sum_{j=0}^{p-1} u^{j-1} \psi_j (\xi^{p-1})^j \end{pmatrix}$$

^[3] Klar, da mipo $X^p - 1$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1} \psi_{j} \xi^{1} & & & \\ & & \ddots & & \\ & & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} \varphi'(u) & & & & \\ & \varphi'(\xi u) \xi^{1} & & & \\ & & \ddots & & \\ & & \varphi'(\xi^{p-1} u) \xi^{p-1} \end{pmatrix}$$

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi\circ\mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_{u} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\cong}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{\Phi}{\longrightarrow} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\cong}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longrightarrow} \bigoplus_{\Xi} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Proposition 4.7. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in u^{-1}\mathbb{C}[u^-1]$, $\rho:u\mapsto t=u^p$ mit grad $p\geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und L ist ein Rang 1 $\mathbb{C}((u))$ -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

Satz 4.8 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{=}{=} \rho_{+}(\mathscr{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathscr{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathscr{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

13. Januar 2013

B Wie ich Newton Polygone zeichne

```
Ich benutze tikz
     \usepackage{tikz}
     \usetikzlibrary{matrix, arrows, decorations.pathmorphing}
und ein eigenes Kommando
     \newcommand{\myNewtonPlot}[6]{
       \draw[color=black,thick] #2;
       \foreach \pos in #1 { \fill[blue,opacity=.2] (-.5,#5)
          rectangle \pos; }
       \draw[->] (-.5,0) -- (#3+.7,0);
       \draw[->] (0,#4-.2) -- (0,#5+.2);
       \draw (1,0) -- (1,-.1);
       \draw (0,1) -- (-.1,1);
       \foreach \pos in #1 { \node[draw,circle,inner sep=1.5pt,
          fill=white] at \pos {}; }
       \node [below right] at (#3,#5/2) {#6};
    }
welche 6 Parameter verlangt:
  1. ein array der Punkte
  2. einen Pfad, der das Newton Polygon beschreibt
  3. den maximalen x Wert
  4. den minimalen v Wert
  5. den maximalen y Wert
```

Ein Aufruf

```
\begin{tikzpicture}[scale=1.5]
\def\myPoints{{(0,0)}, {(1,-2)}, {(2,-1)}, {(4,0)}}
\def\myPath{(-.5,-2) -- (1,-2) -- (4,0) -- (4,2)}
\myNewtonPlot{\myPoints}{\myPath}{4}{-2}{2}{$N(P)$}
\end{tikzpicture}
```

ergibt dann

Literaturverzeichnis

- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [MR89] H. Matsumura and M. Reid, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] ______, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.