Master of Computer Applications MCAC 303: Automata Theory Unique Paper Code: 223401303

Semester III December-2021 Year of admission: 2020

Time: Three Hours Max. Marks: 70

Instructions:

- 1. Answer any 4 questions. All questions carry equal marks.
- 2. Notations have their usual meaning.
- 3. Assume $\Sigma = \{a, b\}$ as the underlying alphabet unless mentioned otherwise.

1.	• Construct a minimum state finite automaton equivalent to the following finite automaton:	7 marks
	 Construct regular expression and the corresponding finite automaton (FA) for the language: L = {w ∈ Σ* and w > 0: each 'b' is immediately preceded by 'a'}. Is the union of a family of regular languages necessarily regular? Justify your answer. 	7 marks 3.5 marks
2.	 Using pumping lemma, show that the language L: {a^{n+m}b^mcⁿ; m, n >= 1}, is not regular over the alphabet ∑ = {a, b, c}. For the above language L, do the following: Write a context free grammar (CFG) and construct parse tree for the 	6 marks 5.5 marks
	word aaabbc Build a pushdown automaton (PDA)	6 marks

3.	• Design a 2-tape Turing machine defined over the alphabet $\Sigma = \{0,1\}$ to perform the addition of two binary numbers. Trace the computation of the constructed Turing machine for the two binary strings 0110 and 0010 .	13 marks
	 Do the machines LR and RL always accomplish the same thing? Justify your answer. 	4.5 marks
4.	• Is the language $L = \{a^nb^na^nb^na^n \text{ where } n \ge 1\}$ context free? Justify your answer.	5.5 marks
	• Consider the following context free grammars (CFGs): $G1: S \rightarrow bS aX$ $G2: S \rightarrow XaX bX$ $X \rightarrow bS aY$ $X \rightarrow XaX XbX \in$ $Y \rightarrow aY bY a b$	12 marks
	G3: $S \rightarrow A AA$ G4: $S \rightarrow BABABA$ $A \rightarrow B BB$ $A \rightarrow a$ $A \rightarrow b$	
	Perform the following: Write a regular expression for the language represented by G1 Convert G2 into its equivalent CFG without null (€)-production Convert G3 into its equivalent CFG without unit-production Convert G4 to Chomsky Normal Form (CNF) 	
5.	 Show the step-wise construction of Non-deterministic Finite Automaton (NFA) for the regular expression ba + (a + bb)a*b. Also, convert the above NFA to corresponding Deterministic Finite Automaton (DFA). For languages L₁ and L₂ described by the corresponding regular expressions 	10.5 marks
	$(\mathbf{a} + \mathbf{b})^* \mathbf{a}$ and $(\mathbf{a} + \mathbf{b})^* \mathbf{b}$, construct the following a) DFA for \mathbf{L}_1 and \mathbf{L}_2 and b) DFA that defines $\mathbf{L}_1 \cap \mathbf{L}_2$.	7 marks
6.	• Consider the following two Deterministic Finite Automata FA ₁ and FA ₂ . FA1:	10 marks
	FA2:	
	 Perform the following: Give regular expressions corresponding to FA₁ and FA₂. Construct the DFA for FA₁.FA₂. 	
	• Design a deterministic pushdown automaton for the language $L: \{a^n c \ b^n: n \ge 1\}$	7.5 marks