Ebben a fejezetben megismerkedünk a determinánsokkal, mint négyzetes mátrixokhoz rendelt számokkal. A determináns ismeretében pedig visszatérünk a mátrixokhoz, s vizsgáljuk az inverz mátrix létezését, meghatározását.

13.1. Az elméleti anyag

Korábbi megállapodásunknak megfelelően, \mathbb{K} jelöli a valós számok halmazának (\mathbb{R}) és a komplex számok halmazának (\mathbb{C}) egyikét, azaz $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

13.1.1. Determináns fogalma

A determináns értelmezéséhez szükség lesz az egy sor és egy oszlop törlésével kapott részmátrixokra:

13.1. Definíció. Legyen $n \geq 2$ és $A \in \mathbb{K}^{n \times n}$ egy négyzetes mátrix, továbbá (i, j) egy sor-oszlop indexpár $(i, j \in \{1, \ldots, n\})$. Töröljük A-ból az i-edik sort és a j-edik oszlopot. A visszamaradó $(n-1) \times (n-1)$ -es mátrixot az A mátrix (i, j) indexpárjához tartozó részmátrixának nevezzük, és A_{ij} -vel jelöljük.

Ezek után rekurzív módon értelmezzük a det : $\mathbb{K}^{n\times n} \to \mathbb{K}$ függvényt:

- **13.2.** Definíció. 1. Ha $A = [a_{11}] \in \mathbb{K}^{1 \times 1}$, akkor $\det(A) := a_{11}$.
 - 2. Ha $A \in \mathbb{K}^{n \times n}$, akkor:

$$\det(A) := \sum_{j=1}^{n} a_{1j} \cdot (-1)^{1+j} \cdot \det(A_{1j}) = \sum_{j=1}^{n} a_{1j} \cdot a'_{1j},$$

ahol az $a'_{ij} := (-1)^{i+j} \cdot \det(A_{ij})$ neve: előjelezett aldetermináns (kofaktor).

A fenti definícióban a determinánst az első sor szerinti kifejtéssel értelmeztük.

13.3. Példák.

1. Egy 2×2 -es mátrix determinánsa a következőképpen számítható:

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot (-1)^{1+1} \cdot \det([d]) + b \cdot (-1)^{1+2} \cdot \det([c]) = ad - bc,$$

tehát egy 2×2 -es mátrix determinánsát megkapjuk, ha a főátlóbeli elemeinek szorzatából levonjuk a mellékátlóbeli elemeinek szorzatát.

2. A definícióból következik, hogy egy alsó háromszögmátrix (speciálisan egy diagonálmátrix) determinánsa a főátlóbeli elemeinek szorzata. Így tehát az egységmátrix determinánsa 1.

A továbbiakban a determinánsra a det(A) helyett használni fogjuk az

$$\begin{vmatrix} a_{11} \dots a_{1n} \\ a_{21} \dots a_{2n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{vmatrix}$$

jelölést is. Ennek értelmében beszélhetünk a determináns sorairól, oszlopairól, elemeiről, stb.

A fentiek alapján tehát:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Az alábbiakban – bizonyítás nélkül – összefoglaljuk a determináns néhány fontos és hasznos tulajdonságát. Ezek között vannak könnyebben és nehezebben bizonyíthatók is.

1. A determináns bármelyik sora és bármelyik oszlopa szerint kifejthető, azaz minden $r, s \in \{1, \dots, n\}$ esetén:

$$\det(A) = \sum_{i=1}^{n} a_{rj} \cdot a'_{rj} = \sum_{i=1}^{n} a_{is} \cdot a'_{is}.$$

- 2. Az előző pont következménye, hogy $\det(A) = \det(A^T)$. Ebből azonnal adódik, hogy felső háromszögmátrix determinánsa a főátlóbeli elemek szorzata.
- 3. Ha egy determináns valamely sorában (vagy valamelyik oszlopában) csupa 0 áll, akkor a determináns értéke 0.
- 4. Ha egy determináns két sorát (vagy két oszlopát) felcseréljük, akkor a determináns előjelet vált, azaz értéke a (-1)-szeresére változik.
- 5. Ha egy determinánsban két sor azonos (vagy két oszlop azonos), akkor értéke 0.
- 6. Ha egy determináns valamely sorának (vagy valamely oszlopának) minden elemét megszorozzuk egy c számmal, akkor a determináns értéke a c-szeresére változik.
- 7. Ha $\mathbf{A} \in \mathbb{K}^{n \times n}$ és $c \in \mathbb{K}$, akkor $\det(c \cdot A) = c^n \cdot \det(A)$.
- 8. Ha egy determináns két sora (vagy két oszlopa) arányos, akkor értéke 0.

9. A determináns sorai (oszlopai) szerint additív, amin a következőt értjük: Ha

$$(A)_{ij} := \begin{cases} \alpha_j & \text{ha} \quad i = r \\ \\ a_{ij} & \text{ha} \quad i \neq r, \end{cases}$$

$$(B)_{ij} := \begin{cases} \beta_j & \text{ha} \quad i = r \\ \\ a_{ij} & \text{ha} \quad i \neq r, \end{cases}$$

$$(C)_{ij} := \begin{cases} \alpha_j + \beta_j & \text{ha} \quad i = r \\ \\ a_{ij} & \text{ha} \quad i \neq r. \end{cases}$$

Ekkor $\det C = \det A + \det B$.

- 10. Ha egy determináns valamely sorához hozzáadjuk egy másik sorának valahányszorosát (vagy valamely oszlopához egy másik oszlop valahányszorosát), akkor a determináns értéke változatlan marad.
- 11. Két mátrix szorzatának determinánsa egyenlő determinánsuk szorzatával:

$$\det(A \cdot B) = \det(A) \cdot \det(B).$$

A determináns szoros kapcsolatban áll a hosszúság-, terület-, térfogatszámítással. Erről részletesebben a függelékben írunk "A determináns geometriai jelentése" címmel.

13.1.2. Inverz mátrix

Ebben a szakaszban részletesebben megvizsgáljuk az inverz mátrix (a definíciót és az egyértelműséget illetően ld. 12.12 definíciót és az azt követő tételt) létezésének feltételeit. Ehhez a determinánst használjuk fel.

13.4. Tétel. [jobbinverz létezése]

 $Az \ A \in \mathbb{K}^{n \times n}$ mátrixhoz akkor és csak akkor létezik olyan $C \in \mathbb{K}^{n \times n}$ mátrix, melyre AC = I, ha $\det(A) \neq 0$. Egy ilyen C mátrixot az A jobbinverzének nevezünk.

Bizonyítás. Tegyük fel először, hogy létezik ilyen tulajdonságú C mátrix. Ekkor:

$$1 = \det(I) = \det(A \cdot C) = \det(A) \cdot \det(C),$$

amiből azonnal adódik, hogy $\det(A) \neq 0$.

Megfordítva, tegyük fel, hogy $det(A) \neq 0$, és értelmezzük az alábbi mátrixot:

$$C := \frac{1}{\det(A)} \cdot \tilde{A} , \quad \text{ahol} \quad (\tilde{A})_{ij} := a'_{ji} .$$

Megmutatjuk, hogy ezzel a C mátrixszal fennáll, hogy AC = I. Valóban:

$$(AC)_{ij} = \left(A \cdot \frac{1}{\det(A)} \cdot \tilde{A}\right)_{ij} = \frac{1}{\det(A)} \cdot (A \cdot \tilde{A})_{ij} =$$

$$= \frac{1}{\det(A)} \cdot \sum_{k=1}^{n} (A)_{ik} \cdot (\tilde{A})_{kj} = \frac{1}{\det(A)} \cdot \sum_{k=1}^{n} a_{ik} \cdot a'_{jk}.$$

Az utóbbi összeg i=j esetén 1, mivel ekkor - felhasználva a determináns i-edik sor szerinti kifejtését:

$$\frac{1}{\det(A)} \cdot \sum_{k=1}^{n} a_{ik} \cdot a'_{ik} = \frac{1}{\det(A)} \cdot \det(A) = 1.$$

 $i \neq j$ esetén az említett összeg azon determináns j-edik sora szerinti kifejtése, melyet úgy kapunk, hogy $\det(A)$ j-edik sorát kicseréljük az i-edik sorára. Ez viszont egy olyan determináns, melyben két azonos sor van (az i-edik és a j-edik), tehát értéke 0.

Ezzel beláttuk, hogy $(AC)_{ij}=(I)_{ij}$, tehát az AC szorzat valóban egyenlő az egységmátrixszal.

13.5. Tétel. Legyen $A \in \mathbb{K}^{n \times n}$. Ekkor

$$\exists A^{-1} \iff \det(A) \neq 0$$
,

azaz az A mátrix akkor és csak akkor reguláris, ha $\det(A) \neq 0$. Következésképpen: az A mátrix akkor és csak akkor szinguláris, ha $\det(A) = 0$.

Bizonyítás. Tegyük fel először, hogy A reguláris, azaz, hogy $\exists A^{-1}$. Ekkor, $C = A^{-1}$ választással megismételve az előző tétel első felének bizonyítását:

$$1 = \det(I) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}),$$

amiből azonnal adódik, hogy $\det(A) \neq 0$. Mellesleg az is kiadódott, hogy

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Megfordítva, tegyük fel, hogy $\det(A) \neq 0$. Ekkor – az előző tétel második fele alapján – létezik olyan $C \in \mathbb{K}^{n \times n}$ mátrix, melyre fennáll: AC = I. Megmutatjuk, hogy ez a C mátrix lesz az A inverze. Ehhez már csak azt kell igazolni, hogy CA = I.

Ezt a következőképpen igazoljuk. Mivel $\det(A^T) = \det(A) \neq 0$, ezért az előző tétel második felét az A^T mátrixra alkalmazva azt kapjuk, hogy

$$\exists D \in \mathbb{K}^{n \times n} : A^T D = I.$$

Az egyenlőség mindkét oldalát transzponáljuk:

$$(A^T D)^T = I^T \,,$$

ahonnan $D^TA=I$ következik. Ennek segítségéval igazolhatjuk a CA=Iegyenlőséget:

$$CA = ICA = D^TACA = D^T(AC)A = D^TIA = D^TA = I$$
.

1. Még egyszer kiemeljük, hogy egy $A \in \mathbb{K}^{n \times n}$ mátrix regularitása ekvivalens azzal, hogy determinánsa nem 0. A reguláris esetben pedig explicit képletet is levezettünk az inverzre:

$$A^{-1} = \frac{1}{\det(A)} \cdot \tilde{A}$$
, ahol $(\tilde{A})_{ij} := a'_{ji}$.

2. Az előző eredményt az

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

 2×2 -es mátrixra alkalmazva kapjuk, hogy A akkor és csak akkor reguláris, ha $ad - bc \neq 0$, s ez esetben az inverz mátrix:

$$A^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} .$$

Szavakban:

egy 2 × 2-es reguláris mátrix inverzét megkapjuk, ha a főátlójában álló elemeket felcseréljük, a mellékátlójában lévő elemek előjelét ellenkezőjére változtatjuk, majd a kapott mátrixot megszorozzuk az eredeti mátrix determinánsának reciprokával.

3. Meggondolásainkból az is következik, hogy ahhoz, hogy igazoljuk egy $C \in \mathbb{K}^{n \times n}$ mátrixról, hogy az $A \in \mathbb{K}^{n \times n}$ inverze, elegendő az AC = I és a CA = I egyenlőségek közül az egyiket igazolni, a másik automatikusan teljesül.

13.1.3. Ellenőrző kérdések az elmélethez

- 1. Definiálja az $m \times n$ mátrixnak egy (i, j) indexpárhoz tartozó részmátrixát, és adjon rá egy példát.
- 2. Definiálja a determinánst
- 3. Definiálja az előjelezett aldetermináns (kofaktor) fogalmát
- 4. Hogyan számítjuk ki a 2×2 -es determinánst?
- 5. Hogyan számítjuk ki egy háromszögmátrix determinánsát?
- 6. Írja fel a determináns alábbi tulajdonságát:
 - tetszőleges sor/oszlop szerinti kifejtés
 - transzponált-tulajdonság
 - 0 sor/oszlop
 - sor/oszlop felcserélés

- két sor/két oszlop megegyezik
- sor/oszlop homogén
- λA determinánsa
- arányos sorok/oszlopok
- sor/oszlop additív
- szorzat determinánsa
- 7. Mondja ki a jobbinverz létezéséről szóló tételt
- 8. Mondja ki az inverz létezéséről szóló tételt
- 9. Milyen képletet tanultunk reguláris mátrix inverzére, determinánsokkal kifejezve?
- 10. Írja fel a 2×2 -es mátrix inverzének képletét

13.1.4. Bizonyítandó tételek

- 1. A 2×2 -es determináns kiszámításának képlete
- 2. A jobbinverz létezéséről szóló tétel
- 3. Az inverz létezéséről szóló tétel
- 4. A 2×2 -es mátrix inverzének képlete

13.2. Feladatok

13.2.1. Órai feladatok

1. Legyen

a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
 b) $A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

a) Számítsuk ki det A-t, különféle módokon.

13.2. Feladatok

b) Reguláris vagy szinguláris az A mátrix? Reguláris esetben határozzuk meg az A inverzét az előjelezett aldeterminánsok (kofaktorok) felhasználásával.

- c) Ellenőrizzük, hogy valóban $A \cdot A^{-1} = I$.
- 2. Az alábbi mátrixok regulárisak, vagy szingulárisak? Reguláris esetben határozzuk meg az inverz mátrixot.

$$A = \begin{bmatrix} -2 & 5 \\ -3 & 1 \end{bmatrix} \; ; \qquad B = \begin{bmatrix} -2 & 3 \\ -4 & 6 \end{bmatrix} \; ;$$

3. Szemléltessük a determináns 3. – 11. tulajdonságait konkrét mátrixokon (ami órán nem fér bele, az HF).

13.2.2. További feladatok

1. Számítsuk ki a determinánsokat:

a)
$$\begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix}$$
 b)
$$\begin{vmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{vmatrix}$$

2. Határozuk meg az inverz mátrixot:

a)
$$\begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$

majd ellenőrizzük az eredményt az inverz mátrix definíciója alapján.

- 3. Szemléltessük a determináns 3. 11. tulajdonságait konkrét mátrixokon.
- 4. Legyen $A \in \mathbb{K}^{n \times n}$ egy diagonálmátrix (azaz: $a_{ij} = 0$ ha $i \neq j$). Igazoljuk, hogy A akkor és csak akkor reguláris (invertálható), ha egyetlen diagonális eleme sem 0. Igazoljuk, hogy ez esetben A^{-1} is egy diagonálmátrix, az

$$\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots \frac{1}{a_{nn}}$$

diagonális elemekkel.