Übungen zur Vorlesung Differentialgeometrie I

Blatt 6

Aufgabe 20. (4 Punkte)

Zeige, dass kein ganzer Graph einer Funktion $u \in C^2(\mathbb{R}^n)$ existiert, dessen Hauptkrümmungen überall $\lambda_i \geq \varepsilon$ für ein $\varepsilon > 0$ erfüllen.

Hinweis: Berühre graph u mit einer großen Sphäre von oben.

Aufgabe 21. (Ennepersche Fläche) (4 Punkte)

Definiere $u, v, w : \mathbb{R}^2 \to \mathbb{R}$ durch

$$u(x,y) = \frac{x}{3} \left(1 - \frac{x^2}{3} + y^2 \right) \,, \quad v(x,y) = -\frac{y}{3} \left(1 - \frac{y^2}{3} + x^2 \right) \,, \quad w(x,y) = \frac{1}{3} \left(x^2 - y^2 \right) \,.$$

Bestimme für X(x,y) := (u(x,y), v(x,y), w(x,y)) die Normale ν , die Metrik g_{ij} und ihre Inverse g^{ij} , die zweite Fundamentalform h_{ij} , die mittlere Krümmung H und die Gaußkrümmung K.

Aufgabe 22. (4+2 Punkte)

Sei $\alpha: I \to \mathbb{R}^2$ durch $\alpha(t) = (x(t), y(t)), t \in I$ mit y(t) > 0 und $(x')^2(t) + (y')^2(t) > 0$ für alle $t \in I$ gegeben. Sei $X: I \times \mathbb{R} \to \mathbb{R}^3$ die Parametrisierung der Fläche, welche man durch Rotation dieser Kurve um die x_1 -Achse erhält, d.h. $X(t, \vartheta) = (x(t), y(t) \cos \vartheta, y(t) \sin \vartheta)$ für $t \in I$ und $\vartheta \in \mathbb{R}$.

(i) Zeige: Die Gaußkrümmung im Punkte $X(t,\vartheta)$ ist durch

$$K(t,\vartheta) = \frac{x'(x''y'-x'y'')}{y((x')^2+(y')^2)^2}(t)$$

gegeben.

(ii) Zeige: Wenn $(x')^2(t) + (y')^2(t) = 1$ für alle $t \in I$, dann gilt

$$K(t,\vartheta) = -\frac{y''}{y}(t)$$
.

(iii) Sei

$$x(t) = \int_0^t \sqrt{1 - e^{-2\tau}} d\tau, \qquad y(t) = e^{-t}$$

für t > 0.

Zeige: $K(t, \vartheta) = -1$ für alle $(t, \vartheta), t > 0$. Diese Fläche nennt man die Pseudosphäre.

Zusatz: Sei $X: I \times \mathbb{R}^{n-1} \to \mathbb{R}^n$ durch $X(t, \vartheta) = (x(t), y(t)Y(\vartheta))$ gegeben, wobei $Y(\vartheta)$ eine Immersion der \mathbb{S}^{n-1} ist. Berechne die Gaußkrümmung K.

Aufgabe 23. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen. Sei $X: \Omega \times (-\varepsilon, \varepsilon) \to \mathbb{R}^{n+1}$ eine C^2 -Abbildung. Sei $X(\cdot, 0)$ eine Immersion.

(i) Sei $\Omega' \in \Omega$ offen. Zeige, dass es ein $\delta > 0$ gibt, sodass $X(\cdot,t): \Omega' \to \mathbb{R}^{n+1}$ für alle $|t| < \delta$ ebenfalls eine Immersion ist.

(ii) Sei nun $X(\cdot,t)$ für alle $t\in(-\varepsilon,\varepsilon)$ eine Immersion. Nehme an, dass es ein $F:\Omega\times(-\varepsilon,\varepsilon)\to\mathbb{R}$ mit

$$\frac{\partial X}{\partial t} = -F\nu$$

gibt. Zeige, dass dann

$$\frac{\partial g_{ij}}{\partial t} = -2Fh_{ij}$$

gilt.

 $\bf Abgabe:$ Bis Donnerstag, 07.12.2017, 10.00 Uhr, in die Mappe vor Büro F402.