O teorema 4.3.1-5 tem uso limitado na prática, dado que serão raras as situações em que conheceremos $f^{(n+1)}(c)$. O interesse teórico, é mais interessante.

Corolário 4.3.1.1.:
$$| E_n(x) | \le (x - x_0) (x - x_1) ... (x - x_n) . \frac{M}{(n+1)!}$$
 (4.3.1-12)

$$\mathbf{M} = \max_{x \in [a,b]} |f^{(n+1)}(x)|.$$

OBS : Se a função f(x) é dada na forma tabelar, o valor absoluto do erro $|E_n(x)|$ só pode ser estimado, isto é, dizemos

$$\mid E_n(x) \mid \approx \mid (x - x_0) (x - x_1) \dots (x - x_n) \mid \max \mid diferenças divididas de ordem n+1 \mid$$
.

Algoritmo: Newton-Raphson.

Para achar uma solução f(x) = 0 dado uma aproximação inicial p_0 :

Entrada aproximação inicial p_0 ; tolerância T; número máximo de iterações N_0 .

Saída solução aproximada p ou messagem de fracasso.

Passo 1 Set i = 1.

Passo 2 While $i \le N_0$ do Passos 3-6.

Passo 3 Set
$$p = p_0 - f(p_0) / f'(p_0)$$
. (Calcule p_i .)

Passo 4 If
$$|p - p_0| < T$$
 then

Saída (*p*); (Procedimento Completo Satisfatóriamente.) STOP.

Passo 5 Set i = i + 1.

Passo 6 Set $p_0 = p$. (Atualiar p_0 .)

Passo 7 Saída ('Método fracassa depois de N_0 interações, N_0 = ', N_0); (Procedimento completado insatisfatóriamente.) STOP.

Exemplo 1:
$$\begin{bmatrix} x & 0.2 & 0.34 & 0.4 & 0.52 & 0.6 & 0.72 \\ f(x) & 0.16 & 0.22 & 0.27 & 0.29 & 0.32 & 0.37 \end{bmatrix}$$

- a) Obter f(0.47) usando um polinômio de grau 2.
- b) Dar uma estimativa do erro.

Solução: Tabela de Diferenças Divididas.

х	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0.2	0.16			
		0.4216		
0.34	0.22		2.0235	
		0.8333		- 17.8963
0.4	0.27		- 3.7033	
		0.1667		18.2454
0.52	0.29		1.0415	
		0.375		- 2.6031
0.6	0.32		0.2085	
		0.4167		
0.72	0.37			

Deve-se escolher três pontos de interpolação. Como $0.47 \in (0.4;0.52)$ dois pontos devem ser 0.4 e 0.52. O outro pode ser 0.34 como 0.6.

Escolhemos $x_0 = 0.4$, $x_1 = 0.52$ e $x_2 = 0.6$.

$$f(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] =$$

$$= 0.27 + (x - 0.4) 0.1667 + (x - 0.4)(x - 0.52) (1.0415)$$

a)
$$P_2(0.47) = 0.2710 \approx f(0.47)$$

b)
$$\mid E(0.47) \mid \approx \mid (0.47 - 0.4) \mid (0.47 - 0.52) \mid (0.47 - 0.6) \mid (18.2492) \approx 8.303.10^{-3}$$

Exemplo 2: Calcular $\sqrt{1.035}$ por meio de um polinômio de interpolação adequado, conhecendo-se a tabela.

X_i	$f(x_i)$	$f[x_i, x_j]$
1	1	
		0.5
1.01	1.005	
		0.5
1.02	1.01	
		0.49
1.03	1.0149	
		0.42
1.04	1.0198	
		0.42
1.05	1.0247	

Como as diferenças divididas de primeira ordem são praticamente constantes, podemos adotar um polinômio do primeiro grau para interpolá-lo.

$$P_1(x) = f[x_0] + (x - x_0) f[x_0, x_1] = 1.0149 + (x - 1.03) (0.49) = 0.49 x + 0.5102$$

$$P_1(1.035) \cong \sqrt{1.035} = 1.01735$$

Observação final sobre polinômios:

4.3.2. Grau elevado do Polinômio Interpolador.

Fenômeno de Runge: Seja
$$y = f(x) = \frac{1}{1 + 25x^2}$$
 (4.3.2-1)

Se interpolarmos o seguinte conjunto de pontos {(-1.0,0.03246),(-0.8,0.05882), (-0.6,0.1), (-0.4,0.2), (-0.2,0.5), (0.4,0.2), (0.6,0.1), (-0.8,0.05882), (1.0,0.03846)} teremos um polinômio de grau 10; para o conjunto { (-1.0,0.03849), (-0.6,0.1), (-0.2,0.5), (-0.2,0.5), (0.6,0.1), (1.0,0.354)}, teremos o polinômio indicado pela curva tracejada, considerando os pontos - $1 \le x_i < 1.0$ e $f(x_i)$ onde $x_0 = -1.02$ e $x_{i+1} = x_i + i$ (0.1), teremos o polinômio de grau 20 dado pela curva pontilhada e, finalmente a curva

$$y = \frac{1}{1 + 25x^2}$$

é dada pela curva contínua.