New Scheme to Generate a Multi-Terawatt & Attosecond X-ray Pulse in XFELs

Takashi TANAKA RIKEN SPring-8 Center

Laser Pulse Compression

- Pulse compression is a normal technique in optical lasers (T³ laser)
 - Ultra-short pulse (a few cycles)
 - High peak power (TW level)
- How about in XFELs?
 - A number of techniques for "pulse shortening", but not "pulse compression"
 - Traditional scheme with optics seems challenging

New Scheme for Pulse Compression*

Example

 Performance of the proposed scheme when applied to SACLA facility

Relevant parameters assumed in the calculation

Electron Beam		Undulator	
Electron Energy	8 GeV	Period	18 mm
Slice Emittance	0.7 μm	Length/Segment	5 m
Energy Spread	10-4	K Value	2.18
Peak Current	3.5 kA	SASE Radiation	
Bunch Length	*40 fsec (FWHM)	Photon Energy	10 keV
Bunch Charge	*0.15 nC	Sat. Power	~ 20 GW
*needs to be improved, under discussion		Pulse Length	~ 20 fsec

Layout of Undulator Section

- In SACLA BL3, 26 segments of undulators can be installed in total.
- Among them, two optical-delay chicanes are assumed to be installed, resulting in 24 segments.

Power Growth & Pulse Shortening

Effect of the "Fringe Width"

Numerical Study

- Estimate the impact of σ_f with simulations.
- Δt of 1.3 fsec is feasible with the slotted foil scheme [1], corresponding to σ_f of 0.17 μm

Space Charge Effects (preliminary)

Toward Realization

- Optimization of beam parameters
 - @Bunch compressor (twiss, R₅₆, ···)
 - @ESASE section (λ_F , location, ...)
- Hardware development
 - Optical-delay chicane (mirror system)
 - Compact electron-delay chicane (PM)
- Diagnostics (ultra-short pulse)
- Exploration of a better solution
 - Elimination of satellite peaks
 - Others ideas?

Thank you for your attention!