Problem 8

Ha Vu Anh

Lemma: Let triangle ABC have arbitrary point D, E lies on AB, AC respectively. Construct diameter AA' of (ADE), let M be the midpoint of DE. The line from A perpendicular to DE cut (BC) at X such that X lies inside triangle ABC. Let Y be the isogonal conjugate of X wrt ABC. Prove that $XY \parallel A'M$.

Proof: Let H be the orthocenter of ADE we got H is the intersection of AX and A'M. Let T the intersection of tangents from B, C of (ABC). Let AB cut (T, TB) at L, K be the projection of B on AC we get $\angle BLC = \angle BTC/2 = 90^{\circ} - \angle BAC = \angle ABK$ therefore $BK \parallel CL$ therefore we get $\frac{AK}{AC} = \frac{AB}{AL}$ therefore AB.AC = AK.AL. Consider an inversion about a circle at A with radius

 $\sqrt{AB \cdot AC}$, followed by a reflection across the bisector of $\angle BAC$. It swaps B and C, K and L therefore it swaps (T, TB) with (BC) and therefore it swaps X with Z which is the intersection of AY and (T, TB).

Therefore $\triangle ABZ \sim \triangle AXC$ therefore $\angle AZB = \angle ACX = \angle YCB$ therefore Y lies on (T, TB).

We have
$$AX \cdot AZ = AB \cdot AC$$
 therefore $\frac{AX}{AY} = \frac{AX \cdot AZ}{AY \cdot AZ} = \frac{AB \cdot AC}{AB \cdot AL} = \frac{AC}{AL} = \cos \angle BAC$.

Since AA' is the diameter of (ADE), H is the orthocenter of ADE we have $\frac{AH}{AA'} = \cos \angle DAE = \frac{AX}{AY}$. Therefore $XY \parallel A'M$ hence the lemma is proved.

Back to the main problem,

Let W' be the isogonal conjugate of I wrt $\triangle LYZ$ we got

$$\angle W'YZ + \angle W'ZY = \angle IYA + \angle IZD = 90^{\circ} - \angle YAJ + 90^{\circ} - \angle ZDK = \frac{\angle BAD + \angle CDA}{2} = \angle 90^{\circ}$$

therefore W' lies on (YZ).

Let (L) which is the P-excenter of $\triangle PAD$ touches AD,AP at F,G respectively we got $\angle FLA = \angle PLD$ therefore W' lies on LF.

Let U be the incenter of PAD we get LU is the diameter of (PAD), M be the midpoint of AD. It is well known that $PF \parallel UM$.

Applying the lemma for triangle LYZ with A,D be arbitrary point lies on LY,LZ respectively, LU is the diameter of (PAD), M be the midpoint of AD, W' lies on (YZ) and the line from L perpendicular to AD, I be the isogonal conjugate of I wrt LYZ we get $W'I \parallel UM \parallel PF$ therefore $\frac{PI}{PL} = \frac{FW'}{FL}$

Let P-excenter of PAD touches PA at F, (I) touch PA at E we get

$$\frac{IE}{LG} = \frac{PI}{PL} = \frac{FW'}{FL}$$
 therefore $IE = FW'$ which is the inradius of PQR .

Therefore $W' \equiv W$ therefore W is the isogonal of I wrt LYZ therefore we get $\angle WYZ = \angle IYL = \frac{\angle BAD}{2}$ = $\angle XAD$ and similarly $\angle WZY = \angle XDA$ therefore two triangles WYZ and XAD are similar. Therefore, the problem is proved.