

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001

Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C § 15.209 and RSS-210 issue 8 section 2.5.1

FOR:

Visonic Ltd.

RFID tag reader of Remote keypad

Model: KP-141 PG2

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: VISRAD_FCC.21632_15.209.doc

Date of Issue: July 2011

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in the EUT	5
6.4	EUT positions during testing	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements	8
7.1	Field strength of emissions	8
7.2	Antenna requirements	17
7.3	Occupied bandwidth test	18
8	APPENDIX A Test equipment and ancillaries used for tests	20
9	APPENDIX B Measurement uncertainties	21
10	APPENDIX C Test laboratory description	22
11	APPENDIX D Specification references	22
12	APPENDIX E Test equipment correction factors	23
13	APPENDIX F Abbreviations and acronyms	26

1 Applicant information

Client name: Visonic Ltd.

Address: Habarzel street 24, Tel Aviv 69710, Israel

 Telephone:
 +972 3645 6714

 Fax:
 +972 3645 6788

 E-mail:
 aelshtein@visonic.com

 Contact name:
 Mr. Arick Elshtein

2 Equipment under test attributes

Product name: RFID tag reader of Remote keypad

Product type: Transmitter

Model(s): KP-141 PG2

Hardware version: 90-204024

Software release: JS-701195, version 1.0.09

Receipt date 6/28/2011

3 Manufacturer information

Manufacturer name: Visonic Ltd.

Address: Habarzel street 24, Tel Aviv 69710, Israel

 Telephone:
 +972 3645 6714

 Fax:
 +972 3645 6788

 E-Mail:
 aelshtein@visonic.com

 Contact name:
 Mr. Arick Elshtein

4 Test details

Project ID: 21632

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started: 6/28/2011 **Test completed:** 6/28/2011

Test specification(s): FCC 47CFR part 15, subpart C, §15.209;

RSS-210 issue 8 section 2.5.1, RSS-Gen issue 3 Table 6

5 Tests summary

Test	Status
Transmitter characteristics	
FCC section 15.209, RSS-Gen section 7.2.5, Field strength of emissions	Pass
FCC section 15.203, RSS-Gen section 7.1.2, Antenna requirement	Pass
RSS-Gen, Section 4.6.1, Occupied bandwidth	Tested

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. S. Samokha, test engineer	June 28, 2011	Can
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	July 4, 2011	Chu
Approved by: Mr. M. Nikishin, EMC and radio group manager		July 5, 2011	ff

- 6 EUT description
- 6.1 General information

The EUT, RFID tag reader, operating at 120 kHz, is included in KP-141 PG2 remote keypad.

6.2 Test configuration

6.3 Changes made in the EUT

No changes were implemented in the EUT.

6.4 EUT positions during testing

Photograph 6.4.2 EUT in Y-axis orthogonal position

Photograph 6.4.3 EUT in Z-axis orthogonal position

Test specification:	Section 15.209, RSS-Gen	Section 15.209, RSS-Gen section 7.2.5, Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date:	6/28/2011	verdict.	FAGG				
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery				
Remarks:							

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements

7.1 Field strength of emissions

7.1.1 General

This test was performed to measure field strength of fundamental and spurious emissions from the EUT. Specification test limits are given Table 7.1.1 and Table 7.1.2.

Table 7.1.1 Radiated fundamental emission limits

Fundamental frequency, kHz	Field strength at 3 m, dB(μV/m)
r unuamentai frequency, kriz	Average
120.4	106

Table 7.1.2 Radiated spurious emissions limits

		Field strength at 3 m, o	dB(μV/m)			
Frequency, MHz	Within restricted bands					
	Peak	Quasi Peak	Average			
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**			
0.090 - 0.110	NA	108.5 – 106.8**	NA			
0.110 - 0.490	126.8 – 113.8	NA	106.8 – 93.8**			
0.490 - 1.705		73.8 – 63.0**				
1.705 - 30.0*		69.5				
30 – 88	NA	40.0	NA NA			
88 – 216	INA	43.5	INA INA			
216 – 960		46.0]			
960 - 1000		54.0]			
Above 1000	74.0	NA	54.0			

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2)$.

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.1.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.
- **7.1.2.2** The EUT was tested in 3 orthogonal positions.
- **7.1.2.3** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis. The measuring antenna polarization was switched from vertical to horizontal.
- 7.1.2.4 The worst test results (the lowest margins) were recorded in Table 7.1.3 and shown in the associated plots.

^{**-} The limit decreases linearly with the logarithm of frequency.

Test specification:	Section 15.209, RSS-Gen	Section 15.209, RSS-Gen section 7.2.5, Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date:	6/28/2011	verdict.	FAGG				
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery				
Remarks:							

Figure 7.1.1 Setup for spurious emission field strength measurements below 30 MHz

Test specification:	Section 15.209, RSS-Gen	Section 15.209, RSS-Gen section 7.2.5, Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4						
Test mode:	Compliance	Verdict:	PASS				
Date:	6/28/2011	verdict.	FAGG				
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery				
Remarks:							

Table 7.1.3 Field strength of fundamental emission

TEST DISTANCE: 3 m

TEST SITE:

EUT POSITION:

MODULATION:

TRANSMITTER OUTPUT POWER SETTINGS:

INVESTIGATED FREQUENCY RANGE:

Anechoic chamber

Typical (Vertical)

Unmodulated

Maximum

0.009 – 30 MHz

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1 kHz (9 kHz - 150 kHz) 9.0 kHz (150 kHz - 30 MHz) VIDEO BANDWIDTH: \geq Resolution bandwidth

TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)

	Ant	enna	Azimuth.	Pea	k field stren	gth	Avera	age field strei	ngth	
F, kHz	Pol.	łeight, n	degrees*	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
120.4	Vert	1.0	0	66.58	126.0	-59.42	66.58	106.0	-39.42	Pass

Maximum peak output power was obtained in the EUT Z-axis orthogonal position.

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin (dB) = measured result - specification limit.

Test specification:	Section 15.209, RSS-Gen	Section 15.209, RSS-Gen section 7.2.5, Field strength of emissions					
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date:	6/28/2011	verdict.	FAGG				
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery				
Remarks:							

Table 7.1.4 Field strength of spurious emissions

TEST DISTANCE: 3 m

TEST SITE:

EUT POSITION:

MODULATION:

TYPICAL (Vertical)

Unmodulated

TRANSMITTER OUTPUT POWER SETTINGS:

INVESTIGATED FREQUENCY RANGE:

Anechoic chamber

Typical (Vertical)

Unmodulated

Maximum

0.009 – 30 MHz

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1 kHz (9 kHz - 150 kHz) 9.0 kHz (150 kHz - 30 MHz) VIDEO BANDWIDTH: \geq Resolution bandwidth

TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)

	Ant	enna	Azimuth.	Pea	k field stren	gth	Average field strength			V!:1
F, MHz	Pol.	łeight, n	degrees*	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
No emissions were found								Pass		

^{*-} EUT front panel refers to 0 degrees position of turntable.

Table 7.1.5 Restricted bands

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 36.0

Reference numbers of test equipment used

		• •			
HL 0446	HL 0521	HL 2871	HL 3623		

Full description is given in Appendix A.

^{**-} Margin (dB) = measured result - specification limit.

Test specification:	Section 15.209, RSS-Gen	section 7.2.5, Field strengt	h of emissions
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FASS
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Plot 7.1.1 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: X-axis orthogonal

(B)

Plot 7.1.2 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: X-axis orthogonal

Test specification:	Section 15.209, RSS-Gen	section 7.2.5, Field strengt	h of emissions
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FASS
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Plot 7.1.3 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Y-axis orthogonal

Plot 7.1.4 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Y-axis orthogonal

Test specification:	Section 15.209, RSS-Gen	section 7.2.5, Field strengt	h of emissions
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FAGG
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Plot 7.1.5 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Z-axis orthogonal

Plot 7.1.6 Radiated emission measurements at the fundamental frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
EUT POSITION: Z-axis orthogonal

Test specification:	Section 15.209, RSS-Gen	section 7.2.5, Field strengt	h of emissions
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FASS
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Plot 7.1.7 Radiated emission measurements from 9 to 150 kHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Z-axis orthogonal (worst case)

(4)

Plot 7.1.8 Radiated emission measurements from 0.15 to 30 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

EUT POSITION: Z-axis orthogonal (worst case)

(B)

Test specification:	Section 15.209, RSS-Gen	section 7.2.5, Field strengt	h of emissions
Test procedure:	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FAGG
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Plot 7.1.9 Transmission pulse duration

Test specification:	Section 15.203, RSS-Gen	section 7.1.2, Antenna requ	uirement
Test procedure:	Visual inspection / supplier de	claration	
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FASS
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

7.2 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.2.1.

Table 7.2.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.2.1 Antenna assembly

RFID reader antenna

Test specification:	RSS-Gen, Section 4.6.1, 0	Occupied bandwidth	
Test procedure:	ANSI C63.4, Section 13.1.7		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	PASS
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:		-	

7.3 Occupied bandwidth test

7.3.1 General

This test was performed to measure transmitter occupied bandwidth not specified by the standard.

7.3.2 Test procedure

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The EUT was set to transmit modulated carrier at maximum data rate.
- **7.3.2.3** The transmitter bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.3.1 and the associated plot.

Figure 7.3.1 Occupied bandwidth test setup

Test specification:	RSS-Gen, Section 4.6.1, 0	Occupied bandwidth	
Test procedure:	ANSI C63.4, Section 13.1.7		
Test mode:	Compliance	Verdict:	PASS
Date:	6/28/2011	verdict.	FAGG
Temperature: 22.3 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 3 V battery
Remarks:			

Table 7.3.1 Occupied bandwidth test results

DETECTOR USED: Peak SWEEP TIME: Auto

RESOLUTION BANDWIDTH: ≥ 1% of the 20 dB bandwidth

VIDEO BANDWIDTH: ≥ RBW MODULATION ENVELOPE REFERENCE POINTS: 20.0 dBc

Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
120.45	0.475	NA	NA	Tested

Reference numbers of test equipment used

HL 0446 HL 0521 HL 2871 HL 3623

Full description is given in Appendix A.

Plot 7.3.1 Occupied bandwidth test result

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	3-July-11	3-July-12
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	25-Aug-10	25-Aug-11
2871	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-8155- 00	2871	14-Sep-10	14-Sep-11
3623	Cable RF, 6.0 m, N type-N type, DC-6.5 GHz	Belden	MIL C-17	3623	19-May-11	19-May-12

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001
Fax: +972 4628 8277
e-mail: mail@hermonlabs.com
website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2010 Radio Frequency Devices

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

RSS-210 Issue 8: 2010 Low Power Licence- Exempt Radiocommunication Devices

RSS-Gen Issue 3: 2010 General Requirements and Information for the Certification of Radiocommunication

Equipment

12 APPENDIX E Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB	
0.009	-32.8	18.7	
0.010	-33.8	17.7	
0.020	-38.3	13.2	
0.050	-41.1	10.4	
0.075	-41.3	10.2	
0.100	-41.6	9.9	
0.150	-41.7	9.8	
0.250	-41.6	9.9	
0.500	-41.8	9.8	
0.750	-41.9	9.7	
1.000	-41.4	10.1	
2.000	-41.5	10.0	
3.000	-41.4	10.2	
4.000	-41.4	10.1	
5.000	-41.5	10.1	
10.000	-41.9	9.6	
15.000	-41.9	9.6	
20.000	-42.2	9.3	
25.000	-42.8	8.7	
30.000	-44.0	7.5	

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Cable loss Cable coaxial, Huber-Suhner, 18 GHz, 6.4 m, SMA - SMA, model 198-8155-00, HL 2871

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.12	5750	2.34	12000	3.55
30	0.14	6000	2.39	12250	3.61
100	0.27	6250	2.46	12500	3.67
250	0.45	6500	2.52	12750	3.74
500	0.63	6750	2.58	13000	3.79
750	0.76	7000	2.64	13250	3.82
1000	0.89	7250	2.68	13500	3.83
1250	1.01	7500	2.73	13750	3.83
1500	1.12	7750	2.78	14000	3.88
1750	1.23	8000	2.83	14250	3.93
2000	1.32	8250	2.88	14500	3.96
2250	1.41	8500	2.94	14750	4.01
2500	1.49	8750	2.97	15000	4.00
2750	1.58	9000	3.02	15250	4.01
3000	1.66	9250	3.07	15500	4.00
3250	1.73	9500	3.13	15750	4.13
3500	1.80	9750	3.18	16000	4.22
3750	1.87	10000	3.21	16250	4.29
4000	1.93	10250	3.26	16500	4.29
4250	2.01	10500	3.30	16750	4.32
4500	2.06	10750	3.36	17000	4.37
4750	2.12	11000	3.39	17250	4.45
5000	2.17	11250	3.44	17500	4.49
5250	2.24	11500	3.48	17750	4.53
5500	2.29	11750	3.52	18000	4.55

Cable loss Cable coaxial, MIL C-17, N type-N type, 6 m Belden, HL 3623

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.13	2600	4.38	5400	7.76
30	0.25	2700	4.53	5500	7.79
50	0.33	2800	4.64	5600	7.88
100	0.49	2900	4.79	5700	7.93
200	0.76	3000	4.93	5800	8.05
300	0.97	3100	5.02	5900	8.03
400	1.18	3200	5.18	6000	8.07
500	1.38	3300	5.27	6100	8.14
600	1.54	3400	5.41	6200	8.21
700	1.71	3500	5.57	6300	8.28
800	1.88	3600	5.65	6400	8.35
900	2.04	3700	5.82	6500	8.43
1000	2.19	3800	5.89		
1100	2.38	3900	6.02		
1200	2.61	4000	6.15		
1300	2.63	4100	6.26		
1400	2.79	4200	6.37		
1500	2.90	4300	6.52		
1600	3.08	4400	6.63		
1700	3.21	4500	6.74		
1800	3.31	4600	6.86		
1900	3.47	4700	6.98		
2000	3.59	4800	7.09		
2100	3.74	4900	7.17		
2200	3.86	5000	7.30		
2300	3.98	5100	7.41		
2400	4.12	5200	7.59		
2500	4.24	5300	7.71		

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $\begin{array}{ll} dB(\mu V/m) & \qquad decibel \ referred \ to \ one \ microvolt \ per \ meter \\ dB(\mu A) & \qquad decibel \ referred \ to \ one \ microampere \end{array}$

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz k kilo kHz kilohertz LO local oscillator meter m MHz megahertz minute min millimeter mm ms millisecond μS microsecond ΝA not applicable NB narrow band OATS open area test site

 Ω Ohm

PM pulse modulation PS power supply ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

END OF DOCUMENT