Name: Sai Anish Garapati

UIN: 650208577

Assignment 10:

- 1) Given KB:
- -> Isaac is Roman: Roman(Isaac)
- -> Isaac does not hate Caesar: $\neg hate(Isaac, Caesar)$
- -> Paulus hates Mark: hate(Paulus, Mark)
- -> Isaac does not think Paulus is crazy: $\neg thinkcrazy(Isaac, Paulus)$

Given implication:

```
\forall x [Roman(x) \land know(x, Mark)] \implies [hate(x, Caesar) \lor (\forall y (\exists z hate(y, z)) \implies thinkcrazy(x, y))]
```

Simplifying the implication we get:

- Using implication elimination $(a \Longrightarrow b \equiv \neg a \lor b)$ on the second implies in the implication we get: $\forall x [Roman(x) \land know(x, Mark)] \Longrightarrow [hate(x, Caesar) \lor (\forall y (\neg \exists z hate(y, z)) \lor thinkcrazy(x, y))]$
- Using De Morgan rules for quantifiers we can write $\neg \exists z hate(y,z) \equiv \forall z \neg hate(y,z)$ $\forall x [Roman(x) \land know(x,Mark)] \implies [hate(x,Caesar) \lor (\forall y (\forall z \neg hate(y,z)) \lor thinkcrazy(x,y))]$
- Nesting both quantifiers $\forall y \text{ and } \forall z \text{ together}$: $\forall x [Roman(x) \land know(x, Mark)] \implies [hate(x, Caesar) \lor \forall y, z ((\neg hate(y, z)) \lor thinkcrazy(x, y))]$
- Using implication elimination $(a \implies b \equiv \neg a \lor b)$ on the first implies we get: $\forall x \neg [Roman(x) \land know(x, Mark)] \lor [hate(x, Caesar) \lor (\forall y, z(\neg hate(y, z)) \lor thinkcrazy(x, y))]$
- Using De Morgan rules we can write

```
\forall x [\neg Roman(x) \vee \neg know(x, Mark)] \vee [hate(x, Caesar) \vee (\forall y, z (\neg hate(y, z)) \vee thinkcrazy(x, y))]
```

Bringing out the universal quantifiers we get:

```
\forall x,y,z \, \neg Roman(x) \vee \neg know(x,Mark) \vee hate(x,Caesar) \vee \neg hate(y,z) \vee thinkcrazy(x,y)
```

Since the above implication is true for all x, y, z we can make the following substitution for x, y, z and the implication should still hold true. Thus by Universal elimination for the substitution $\{x/Isaac, y/Paulus, z/Mark\}$ we get the implication:

```
\neg Roman(Isaac) \lor \neg know(Isaac, Mark) \lor hate(Isaac, Caesar) \lor \neg hate(Paulus, Mark) \lor thinkcrazy(Isaac, Paulus)
```

We can infer the following from KB:

- From the KB Ask(Roman(Isaac)) returns True. $False \lor \neg know(Isaac, Mark) \lor hate(Isaac, Caesar) \lor \neg hate(Paulus, Mark) \lor thinkcrazy(Isaac, Paulus)$
- From the KB Ask(hate(Isaac, Caesar) returns False. $\neg know(Isaac, Mark) \lor False \lor \neg hate(Paulus, Mark) \lor thinkcrazy(Isaac, Paulus)$
- From the KB Ask(hate(Paulus, Mark) returns True. $\neg know(Isaac, Mark) \lor False \lor thinkcrazy(Isaac, Paulus)$
- From the KB Ask(thinkcrazy(Isaac, Paulus) returns False. $\neg know(Isaac, Mark) \lor False$

The implication left is $\neg know(Isaac, Mark)$ which must be True for the overall implication to be held True.

Therefore, $\neg know(Isaac, Mark) = True$ which infers that Isaac does not know Mark.