Negative electrode aging in bulk

- Aging/degradation occurs inside negative-electrode particles
- Dis/charging causes (anisotropic) particle volume changes (usually less than 10 %)
 - Strain can lead to cracking of particles, more SEI formation on exposed graphite
 - Cracking of SEI itself, and more SEI formation on exposed graphite

- Graphite exfoliation (layers flaking off) due to solvent cointercalation with lithium is considered to have a bigger impact
- Solvent reacting with graphite inside particles releases gasses, accelerates cracking

Dr. Gregory I. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade?

1 of 4

4.1.4: Negative-electrode aging processes in bulk and composite electrode

Negative electrode aging in composite electrode

Active materials

Binder -

Conductive additive :::

- Stresses and strains within electrodes can cause mechanical and electronic contact loss:
 - Between graphite particles
 - Between current collector and particles
 - □ Between binder and particles
 - Between binder and current collector
- Results in higher impedance and can result in capacity loss if particles become electrically disconnected from current collector
- Porosity of electrode can be reduced by volume changes and growth of SEI, impeding movement of lithium ions in electrolyte, increasing resistance

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade?

2 of

4.1.4: Negative-electrode aging processes in bulk and composite electrode

Current-collector corrosion

- At low voltages (near 1.5 V) copper current collector can corrode, releasing Cu²⁺ into electrolyte:
 - □ Reduced current-collector/particle contact, higher cell resistance
 - Corrosion products that deposit on electrode particles have poor electronic conductivity, giving higher film resistance
- Leads to nonuniform current and potential distributions across cell plate area, accelerates aging in parts of the cell, gives preference toward lithium plating
 - Copper also makes a metallic annealing site that can accelerate lithium plating, dendrite growth, and hence short circuits

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade?

Summary of aging in bulk, composite electrode

■ Table summarizes bulk/composite effects (bold = more severe)

Cause	Effect	Leads to	Enhanced by
Solvent cointercalation, gas evolution, graphite exfoliation	Loss of active material, Li loss	Capacity fade	Overcharge
Contact loss b/w particles due to volume changes	Loss of active material	Capacity fade	High rate, low cell SOC
Decomposition of binder	Li loss, loss of mechanical stability	Capacity fade	High SOC, high temperature
Current collector corrosion	Impedance rise; nonuniform current and potentials	Pwr. fade; accelerates aging	Overdischarge, low cell SOC

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | **How does lithium-ion cell health degrade?** 4 of 4