Analog IC Design – Cadence Tools & SA Lab 06

Differential Amplifier

Part 1: Differential Amplifier Design

 $R_D = 30 K\Omega$

 $V^* = 0.1356$

Figure 1 the input pair sizing using SA

L=420n, W=15.88u

8) Give the above assumption, calculate the CM input level. Calculate the min and max CM input levels. Is the selected CM input level in the valid range?

 $ViCM = VDD - VSGdiff - VSDCS = 1.8 - 643.3m - 300m = 856.7 \ mV$

The Input Common Code Range:

ViCMmax = VDD - VSGdiff - V * = 1.0202 V

ViCMmin = VRD - VTH = 72.6 mV

Yes, the selected CM input level is in the valid range as *ViCMmin <ViCM < ViCMmax*

Figure 2 sizing with (1% , 2%) mismatchVS V^*

Part 2: Differential Amplifier Simulation

Figure 3 the schematic of a differential amplifier

Figure 4 symbol for the diff pair

Figure 5 the testbench schematic

1) OP simulation

Figure 6 DC OP point

all transistors operate in saturation, as Region = 2

Figure 7 the Bode plot of small signal diff gain

Simulation gain = $10^{\frac{17.86}{20}} = 7.82$

Name	Туре	Details	Value	Plot	Save	Spec
	expr	VF("/VODIFF")		V		
	expr	bandwidth(VF("/VODIFF") 3 "low")	5.697M	~		

Figure 8 BW_DIFF

BW (If we ignored the parasitic capacitance)= $\frac{1}{2\pi*30K*1p} = 5.305M$

The DC CM gain
$$\approx g_m * (R_D || r_o) = 7.8$$

	Simulation	Hand Analysis
BW	5.7M	5.305 <i>M</i>
The DC diff gain	7.8	7.8

Figure 9 the Bode plot of small signal CM gain

Figure 10 BW_CM

$$BW = \frac{1}{2\pi * 30K * 1p} = 5.305M$$

The DC CM gain (AvCM) =
$$-\frac{\mathrm{gm}\left(\mathrm{RD}//(r_o\left(1+(\mathrm{gm}+\mathrm{gmb})(2R_{SS})\right)\right)}{\left(1+(\mathrm{gm}+\mathrm{gmb})(2R_{SS})\right)}$$
 = $-0.072~\mathrm{m}$
$$R_{SS} = \frac{1}{g_{ds1,4}} = 120.3~K\Omega$$

$$r_o = \frac{1}{g_{ds2,3}} = 313.4~K\Omega$$

	Simulation	Hand Analysis
BW	5.388M	5.305 <i>M</i>
The DC diff gain	0.08	0.072

• Is it smaller than "1"? Why?

Yes, due to the degeneration of the output resistance of the current source.

• Justify the variation of Avcm vs frequency.

Avcm has a small value, as Rss has high value, and it attenuates, due to the poles (c=1p, parasitics).

• Plot Avd/Avcm in dB. Compare Avd/Avcm @ DC with hand analysis in a table.

Figure 11 CMRR dB

Analytically Avd/AvCM = 108.33 = 40.7 dB

• Justify the variation of Avd/Avcm with frequency

CMRR follow Avd as it has large variation from 20dB to -40dB but Avcm has little variation from -20dB to -40dB so the variation of Avd/Avcm with frequency will be like the variation of Avd with frequency.

4) Diff large signal ccs:

Figure 12 VODIFF vs VIDIFF

Analytically

The extreme values = $\pm IssRD$ = $\pm (40 uA)(30 k\Omega)$ = $\pm 1.2 V$

	Simulation	Hand Analysis
Extreme Values	±1.194 V	±1.2 V

5) CM large signal ccs (region vs VICM):

Figure 13 Region vs Vicm

• The CM input range (CMIR) is from -76.85 mV to 1.04 V

Hand Analysis

$$ViCMmax = VDD - VSGdiff - V * = 1.0202 V$$

$$ViCMmin = VRD - VTH = 72.6 mV$$

	simulation	Hand Analysis
ViCMmax	1.04 V	1.0202 <i>V</i>
ViCMmin	-76.85 mV	72.6 <i>m</i> V

6) CM large signal ccs (GBW vs Vicm):

MAX GAIN DIFF = 7.864 V

Figure 14 Avd vs Vicm

Figure 15 Region parameter & Avd vs Vicm

The CM input range = 28.6m : 1.1 V

	From	ТО
Avd 90%	28.6m	1.1
Region	-76.85m	1.04