Statistics

Luc Veldhuis

November 2016

Specific tests

Test designed for specific situation/distribution

- t-test
- Gauss-test

The likelihood is known, then we may use this test.

Definition: Likelihood-ratio test

Suppose X distributed in accordance with density p_{θ} .

Then the likelihood ratio statistic for testing $H_0: \theta_0 \in \Theta_0$ versus $H_a: \Theta\Theta_0$ is:

$$\lambda(X) = \frac{\sup_{\theta \in \Theta} p_{\theta}(X)}{\sup_{\theta \in \Theta_0} p_{\theta}(X)} = \frac{p_{\hat{m}l}(x)}{p_{\hat{\theta}_0}}$$

Here $p_{\hat{ml}}(x)$ is the Maximum likelihood estimator, $p_{\hat{\theta_0}}$ is the constrained Maximum likelihood estimator.

In general
$$\lambda(X) \geq 1$$

 $\lambda(X) = 1$ if $\hat{\theta_{ml}} \in \Theta_0$
If $\lambda(X)$ is large, this points to H_a

Example

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$

 $H_0: \mu: \mu_0 \text{ vs } H_a: \mu \neq \mu_0$

Determine $\lambda_n(X)$ with n = sample size.

$$p_{\theta}(X) = \prod_{i=1}^{n} \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} exp(-\frac{1}{2}\sigma^{2}(X_{i} - \mu)^{2})$$

Example continued

 $\hat{\mu_{ml}} = \bar{x}, \hat{\mu_0} = \mu_0$ then:

$$\lambda_{\theta}(X) = \frac{\prod_{i=1}^{n} \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} exp(-\frac{1}{2}\sigma^{2}(X_{i} - \bar{X})^{2})}{\prod_{i=1}^{n} \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} exp(-\frac{1}{2}\sigma^{2}(X_{i} - \mu_{0})^{2})}$$

But take log + multiply by 2:

$$2\log(\lambda_{\theta}(X)) = \frac{n}{\sigma^2}(\bar{X} - \mu_0)^2 = (\sqrt{n}\frac{(\bar{X} - \mu_0)}{\sigma})^2 \sim N(0, 1)$$

Which follows a χ_1^2 distribution.

Hence,
$$K_T = \{X : 2log(\lambda_n(X) \ge \chi^2_{1;1-\alpha})\}$$

Notation

- $\Theta \theta_0 = \{\theta \theta_0 : \theta \in \Theta\}$ for all $\theta_0 \in \Theta_0$
- $\sqrt{n}(\Theta \theta_0) = {\sqrt{n}(\theta \theta_0) : \theta \in \Theta}$ for all $\theta_0 \in \Theta_0$

Example

$$\begin{array}{l} X_1,\ldots X_n\sim exp(1), \theta_{ml}=\bar{x}, \theta_0=1\\ H_0:\theta=1 \text{ vs } H_a:\theta\neq 1\\ \Theta=(0,\infty), \theta_0=1:\sqrt{n}(\Theta-\theta_0)=\sqrt{n}(-1,\infty)\to \mathbb{R} \text{ if } n\to\infty\\ \Theta_0=\{1\}:\sqrt{n}(\Theta_0-\theta_0)=\sqrt{n}\{0\}=\{0\} \text{ if } n\to\infty \text{ generates a } 0 \text{ dimentional set.} \end{array}$$

Theorem

Suppose $\theta \to p_{\theta}$ differentiable for all x and the sets $\sqrt{n}(\Theta - \theta_0)$ and $\sqrt{n}(\Theta_0 - \theta_0)$ converge for a given θ_0 to a k dimentional set and a k_0 dimentional set with $k > k_0$ for $n \to \infty$. Then, under certain conditions, and assuming $\theta = \theta_0$ (H_0 is true):

$$2log(\lambda_n(X))$$
 follows $\chi^2_{k=k_0}$

Then they converge in distribution

$$lim_{n\to\infty}F_n(X)=F(X)$$

Theorem continued

Often warranted by Central Limit Theorem:

$$X_i \sim \mathit{U}(-1,1)$$
 study $ar{X_n} = rac{1}{n} \sum_{i=1}^n x_i$

Then drawings

$$lim_{n\to\infty}F_n(\bar{X}_n)=N(0,\frac{1}{3})$$

Example

$$X_1, \dots, X_n \sim exp(\theta), \theta > 0$$

 $H_0: \theta = 1 \text{ vs } H_a: \theta \neq 1$

$$p_{\theta}(x) = \prod_{i=1}^{2} \theta \exp(-\theta x_{i})$$
$$= \theta^{n} \exp(-n\theta \bar{x})$$
$$\lambda_{n}(x) = \frac{\theta_{ml}^{\hat{n}} \exp(-n\theta_{ml}^{-}\bar{x})}{\exp(-n\bar{x})}$$

Apply theorem:

$$2log(\lambda_n(X)) \sim \chi_1^2 \text{ if } n \to \infty$$

 $2nlog(\bar{X}) - 2n(\bar{X}^2 - \bar{X})$

The critical region (approximately): $\{X : 2log(\lambda_n(X)) \ge \chi_{1,1-\alpha}^2\}$ So $K_T = (\chi_{1,1-\alpha}^2, \infty)$. This is always one sided, irrespective of H_0

Remark

If $H_0: \theta \leq \theta_0$, then convergence of $\sqrt{n}(\Theta_0 - \theta_0)$ does not go well for all $\theta_0 \in \Theta_0$, but not for a boundary point. Then, $2\log(\lambda_n(X))$ follows a mixture of χ^2

Regression models

Definition

Statistical methods to estimate the relationship among variables. E.g.:

$$Y = f(x_1, \ldots, x_n) + error$$

Y is the response, x's are covariates/explanatory variables and f is a function deemed appropriate. Commonly, f is linear in the parameters.

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon$$

Linearity: eases estimation.

May seem a limitation: broad class. E.g. 'hockey-stick' curve.

Regression models

Example

Y: income of former VU student

X: age of former VU student

In the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \epsilon_i \quad \forall i f(x_{1i}) = E(Y_i)$$

$$E(Y_i) = E(\beta_0 + \beta_1 x_{1i} + \epsilon_i)$$

$$= E(\beta_0) + E(\beta_1 x_{1i}) + E(\epsilon_i)$$

$$= \beta_0 + \beta_1 x_{1i}$$

When $\epsilon_i \sim \textit{N}(0, \sigma^2)$. Parameters $(\beta_0, \beta_1, \sigma^2)$

The close the points are to the line, the better the model. Is reflected in σ^2 (relative to scale of line).

$$Y_i \sim N(\beta_0 + \beta_1 x_{1i}, \sigma^2)$$

General model

Definition

$$Y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} \epsilon_i$$

with $\epsilon_i \sim N(0, \sigma^2)$

ML estimation

Definition

Likelihood of simple linear regression model:

$$L(\theta; Y_1, \dots Y_n) = \prod_{i=1}^n \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} exp(-\frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 x_{1i})^2)$$

Take logarithm:

$$-\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(Y_i - \beta_0 - \beta_1 x_{1i})^2$$

First maximize with respect to β_0 and β_1 using lease squares method:

$$min_{\beta_0,\beta_1} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_{1i})^2$$

ML estimation

Definition continued

Maximize the quadratic distance between line and observants. This gives: $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$ and $\hat{\beta}_1 = \frac{S_y}{S_x} r_{x,y}$ where

$$r_{x,y} = \frac{\frac{1}{n-1} \sum\limits_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{(S_x S_y)}$$
 which is the sample correlation coefficient (measure of linear relatedness).

The estimated line is $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i}$

Second, maximize log-likelihood with respect to σ^2 (after substitution of $\hat{\beta}_0$ and $\hat{\beta}_1$ for β_0 and β_1). Then

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\beta_0} - \hat{\beta_1} x_{1i})^2$$

Likelihood ratio statistic

Testing

Test $H_0: \beta-1=0$ and $H_aL\beta_0\neq 0$ in simple linear regression model. Using the likelihood ration statistic.

$$\lambda_n(Y_1,\ldots,Y_n) = \frac{L(\hat{\beta}_0,\hat{\beta}_1,\hat{\sigma}^2;y_1,\ldots,y_n)}{L(\tilde{\beta}_0,0,\tilde{\sigma}^2;y_1,\ldots,y_n)}$$

Theorem

$$2log(\lambda(Y_1, ..., Y_n)) \text{ follows } \chi_1^2$$

$$\Theta_0 - \theta_0 = \{\beta_0^{(0)} - \beta_0, \beta_1^{(0)} - 0, \sigma^{2(0)} - \sigma_0^2 : (\beta_0^{(0)}, \beta_1^{(0)}, \sigma^{2(0)}) \in \Theta_0\} \subset \mathbb{R} \ k_0 = 2$$

$$\Theta - \theta_0 \subset \mathbb{R}^3$$

$$H_0: \beta_0 = 0, \beta - 1 = 0$$

Usually intercept is not in H_0

