

Integrated Step-Selecion approach (iSSA): combining movement and habitat selection

Bernardo Brandão Niebuhr Swedish University of Agricultural Sciences

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2016, 7, 619-630

doi: 10.1111/2041-210X.12528

Integrated step selection analysis: bridging the gap between resource selection and animal movement

Tal Avgar^{1*}, Jonathan R. Potts², Mark A. Lewis^{1,3} and Mark S. Boyce¹

Discrete
Step length ℓ
Turning angle θ

Discrete
Step length ℓ
Turning angle θ

Discrete
Step length ℓ
Turning angle θ

Morales et al. 2004 Ecol.

- How the animal's movement rate changes in different habitats or conditions?
- How does step length changes when close to wind farms or roads?
- How movement rate or directionality changes during different behaviors?

We are generally interested in the conditions at the **start point** of the step

How do thrushes move in a fragmented tropical forest landscape?

Turdus rufiventris

How do thrushes move in a fragmented tropical forest landscape?

How do thrushes move in a fragmented tropical forest landscape?

How do elks move in different behavioral states?

Cervus elaphus

How do reindeer movement rate changes with distance to wind farms, before and during their construction?

Resource selection functions (RSF)

use-availability design

Resource selection functions (RSF)

Calving	Second-order			Third-order	Calvin —	
	Estimate	SE	Pr(> z) ^a	Estimate	:	1
Barren ground	-0.271	0.157	0.083	0.728	(Z
Heath	1.427	0.101	0.000	1.227	0.102	0.000
Broad leaved forest	0.267	0.165	0.106	-0.077	0.155	0.617
Coniferous forest	-0.130	0.067	0.051	-0.007	0.075	0.923
Mixed forest	-0.370	0.096	0.000	-0.436	0.101	0.000
Clear cuts	0.757	0.069	0.000	0.924	0.076	0.000
Young forest	0.080	0.067	0.232	0.150	0.075	0.044
Mires	0.167	0.064	0.009	0.110	0.074	0.138
Slope (degrees)	-0.106	0.006	0.000	-0.030	0.007	0.000
Distance to water (log)	0.056	0.008	0.000	-0.007	0.002	0.000
Distance to power lines (sqrt)	-0.003	0.001	0.000	-0.005	0.001	0.000
Distance to large road (sqrt)	0.017	0.001	0.000	0.008	0.001	0.000
Distance to small road (sqrt) ^b	_	_	-	-0.004	0.001	0.001
Distance to wind park (sqrt)	-0.009	0.001	0.000	-0.002	0.001	0.002
Distance to wind park (sqrt): construction phase	0.001	0.001	0.003	0.003	0.001	0.000

Selection before construction

Resource selection functions (RSF)

Calving	Second-order			Third-order	Calvin.	Cai	
	Estimate	SE	Pr(> z) ^a	Estimate	:	1	
Barren ground	-0.271	0.157	0.083	0.728	(Z.	
Heath	1.427	0.101	0.000	1.227	0.102	0.000	
Broad leaved forest	0.267	0.165	0.106	-0.077	0.155	0.617	
Coniferous forest	-0.130	0.067	0.051	-0.007	0.075	0.923	
Mixed forest	-0.370	0.096	0.000	-0.436	0.101	0.000	
Clear cuts	0.757	0.069	0.000	0.924	0.076	0.000	
Young forest	0.080	0.067	0.232	0.150	0.075	0.044	
Mires	0.167	0.064	0.009	0.110	0.074	0.138	
Slope (degrees)	-0.106	0.006	0.000	-0.030	0.007	0.000	
Distance to water (log)	0.056	0.008	0.000	-0.007	0.002	0.000	
Distance to power lines (sqrt)	-0.003	0.001	0.000	-0.005	0.001	0.000	
Distance to large road (sqrt)	0.017	0.001	0.000	0.008	0.001	0.000	
Distance to small road (sqrt) ^b	_	_	-	-0.004	0.001	0.001	
Distance to wind park (sqrt)	-0.009	0.001	0.000	-0.002	0.001	0.002	
Distance to wind park (sqrt): construction phase	0.001	0.001	0.003	0.003	0.001	0.000	

Avoidance during construction

Resource selection functions (RSF)

It is difficult to define availability!

It is difficult to define availability!

Step selection functions (SSF)

Step selection functions (SSF)

Step selection functions (SSF)

We are generally interested in the conditions at the **end point** of the step

Step selection functions (SSF)

The issue: movement and resource selection are not independent

i-Step selection functions (iSSF)

mechanistic habitat-mediated movement model

habitat-independent distributions of step lengths and turning angles

- Long- and short- term target prioritization
- Barrier crossing and avoidance behaviour
- Interactions with conspecifics and intraspecifics

An example

We are modelling the movement and habitat selection according to habitat quality and time of the day:

- *h* is habitat quality covariate (continuous)
- D is the time of the day (day/night)

Response variable:

Use-availability (binary, 1/0) set

An example

(use-ava)
$$\prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha_t) + b_6 \cdot l_t + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

An example

selection for habitat

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha_t) + b_6 \cdot l_t + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

An example

selection for habitat

Effects on movement

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + (b_4 + b_5 \cdot y(x_{t-1}))] \cdot \cos(\alpha_{t-1} - \alpha_t) + b_6 \cdot l_t + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

An example

selection for habitat

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha_t) + b_6 \cdot l_t + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

von Mises(μ, κ)

gamma (shape, scale)

An example

selection for habitat

habitat-independent directional persistence

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + (b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha_t) + b_6 \cdot l_t + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

von Mises(μ, κ)

gamma (shape, scale)

An example

selection for habitat

habitat-independent directional persistence habitat-independent step length

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + (b_4 + b_5 \cdot y(x_{t-1}))] \cdot \cos(\alpha_{t-1} - \alpha_t) + (b_6 \cdot l_t) + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$

von Mises(μ, κ)

gamma (shape, scale)

An example

selection for habitat

habitat-independent directional persistence

habitat-independent step length

$$y \sim \prod_{t=3}^{T} \frac{\exp[b_3 \cdot h(x_t) + (b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha_t) + (b_6 \cdot l_t) + (b_7 + b_8 \cdot D_t) \cdot \ln(l_t)]}{\sum_{i=0}^{s} \exp[b_3 \cdot h(x'_{t,i}) + [b_4 + b_5 \cdot y(x_{t-1})] \cdot \cos(\alpha_{t-1} - \alpha'_{t,i}) + b_6 \cdot l'_{t,i} + (b_7 + b_8 \cdot D_t) \cdot \ln(l'_{t,i})]}$$
step length

120 90 60 150 30 180 0 210 330

von Mises(μ, κ)

gamma (shape, scale)

varies along

the day

A real example

Journal of Applied Ecology

BRITISH
ECOLOGICAL
SOCIETY

Journal of Applied Ecology 2017, 54, 470–479

doi: 10.1111/1365-2664.12768

Characterizing wildlife behavioural responses to roads using integrated step selection analysis

Christina M. Prokopenko*, Mark S. Boyce and Tal Avgar

Cervus elaphus

Core model

Habitat selection terms

y ~ elevation (end point) + NDVI (end point): TimeofDay + NDVI² +

TimeofDay:InStepLength (start point) +

SnowDepth:InStep Length (start point) +

Movement parameters

cos *TurnAngle* (start point)

Hypotheses

Model	Road covariates	Minimum AIC tally	
1. Influence of road proximity on selection	Core Model + ln RoadDist (end point): TimeOfDay	63	direct
2. Influence of road crossing on movement	Core Model + RoadCros: TimeOfDay	25	effects
3. Influence of road proximity on cover selection and movement	Core Model + lnRoadDist (start point): NDVI (end point) + lnRoadDist (start point): lnStepLength	15	indirect
4. Influence of road crossing on cover selection and movement	Core Model + RoadCros: NDVI (end point) + RoadCros: lnStepLength	30	effects

"RSS of location x_1 over x_2 (NDVI x_2 = 20%, NDVI x_1 = 50%) "

1 km from road

1 m from road

For reindeer...

SSA or iSSA are interesting approaches

For reindeer... in winter:

- Reindeer prefer lichen areas, forested areas
- Reindeer avoid wind farms and roads
- Reindeer avoid less WF in bad winter conditions
- Reindeer avoid less WF and roads when predators are abundant
- Reindeer move faster and closer to WF and roads with predators
- Reindeer cross roads more often with predators
- Reindeer cross roads more after the construction of the wind farm
- Reindeer move slower with snow

For reindeer... in snow-free season:

- Calving: Reindeer avoid wind farms and roads
- Calving: Reindeer move faster close to and in sight of WF and close to roads
- Calving: Reindeer move faster and avoid less WF and roads when the abundance of predators (bears?) is high
- Summer: Reindeer avoid less WF and roads because of insect harassment in forested areas
- Summer: Reindeer move faster close to and in sight of WF and close to roads (may less fast than during calving?)
- Autumn: ... ?

Thank you for you attention! Tack så mycket! Obrigado!

BERNARDO BRANDÃO NIEBUHR Swedish University of Agricultural Sciences bernardo.brandao@slu.se

