

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE

DEVELOPMENT

Title: Exe20 - Decision Tree Exercise 2

Name: Chong Mun Chen

IC Number: 960327-07-5097

Date: 18/7/2023

Introduction: Practising on supervised machine learning with decision tree classification.

Conclusion: Found the accuracy score for both decision trees using either entropy or gini with the same training and testing sets.

Decision Tree

```
In [1]: from sklearn.datasets import load_iris
    from sklearn.tree import DecisionTreeClassifier
    import pandas as pd

iris = load_iris()
    X = iris.data[:, 2:] # petal length and width
    y = iris.target

df = pd.DataFrame(data = iris.data, columns = iris.feature_names)

df
```

Out[1]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

DecisionTree Modeling

```
In [2]: from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import metrics, tree

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random)
```

Build decision tree in both entropy and GINI

Convert to Decision Tree Diagram

```
In [5]: import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
    tree.plot_tree(clf, filled=True)
    plt.show()

plt.figure(figsize=(10, 6))
    tree.plot_tree(clf_entropy, filled=True)
    plt.show()
```


