DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Análisis de Variable Real. Curso 20-21.

Los números reales y la propiedad de supremo. Hoja 3

- **47** Probar que si $A \subset \mathbb{R}$ es acotado superiormente, entonces $\alpha = \sup(A)$ se caracteriza por que i) α es una cota superior de A
 - ii) Para todo $\varepsilon > 0$ existe $x \in A$ tal que $\alpha \varepsilon < x \le \alpha$.

Enunciar y demostrar una propiedad análoga para el infimo de un conjunto.

- 48 Encuentra, en caso de que existan, el ínfimo y el supremo de los siguientes conjuntos:

- $\begin{array}{l} i) \ A = \{x \in I\!\!R : 2x + 5 < 0\} & ii) \ B = \{x \in I\!\!R : x + 2 \geq x^2\} \\ iii) \ C = \{x \in I\!\!R : x < 1/x\} \\ iv) \ D = \{x \in I\!\!R : x^2 2x 5 < 0\} \\ vi) \ \{\frac{1}{n}, \ n \in I\!\!Z \setminus \{0\}\}, \\ vii) \ \{x \in I\!\!R, \ x^2 + x + 1 \geq 0\}, \\ vii) \ \{x \in I\!\!R, \ x^2 + x 1 < 0\}, \\ \end{array} \\ vi) \ \{x \in I\!\!R, \ x < 0, \ x^2 + x + 1 \geq 0\}, \\ \end{array}$
- $xi) \{ \frac{1}{n} + (-1)^n, n \in \mathbb{N} \}.$
- **49** Supongamos que $E \subset F \subset \mathbb{R}$ y $E \neq \emptyset$.
- i) Probar que si F es acotado superiormente, entonces E tambien lo es y que $\sup(E) \leq \sup(F)$.
- ii) Probar que si F es acotado inferiormente, entonces E tambien lo es y que $\inf(F) \leq \inf(E)$.
- 50 i) Usando el Problema 35, probar que todo conjunto finito de IR contiene a su supremo y a su ínfimo.
- ii) Probar que si una cota superior pertenece al conjunto entonces esa cota es el supremo. Demostrar algo semejante para el ínfimo.

Notación: Cuando el supremo (o el ínfimo) de un conjunto, pertenece al conjunto, se llama máximo del conjunto (respectivamente, **mínimo**).

51 Sean $A, B \subset \mathbb{R}$ y no vacios y acotados superiormente. Probar que

$$\sup(A \cup B) = \sup\{\sup(A), \sup(B)\}\$$

$$\sup(A\cap B) \leq \inf\{\sup(A), \sup(B)\}$$

y con un ejemplo muestra que en general no se da "=". Demostrar algo semejante para el ínfimo.

- **52** Demostrar que si $\mathbb{R}^+ = (0, \infty) = \{x \in \mathbb{R}, x > 0\}$ entonces el ínfimo de este conjunto es 0 y deducir que si $|a-b| < \varepsilon$ para todo $\varepsilon > 0$, entonces a = b.
- **53** i) Probar que $\inf\{\frac{1}{n}, n \in \mathbb{N}\} = 0$ y que por tanto para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$,

$$\frac{1}{n} \in (0, \varepsilon).$$

Indicación: Usar que $\frac{1}{n+1} < \frac{1}{n}$ para todo $n \in \mathbb{N}$.

ii) Probar que para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$,

$$\frac{(-1)^n}{n} \in (-\varepsilon, \varepsilon).$$

54 Demostrar que si $a, x, y \in \mathbb{R}, y > 0$, verifican

$$a \le x \le a + \frac{y}{n}$$

para todo $n \in \mathbb{N}$, entonces x = a.

55 Probar que $\sup\{1-\frac{1}{n}:n\in\mathbb{N}\}=1$

56 Si $S = \{\frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}\}, calcular \text{ inf } S \text{ } y \text{ sup } S.$

57 Sean x e y números reales tales que x > 1, y > 0.

i) Demostrar que existe un numero $n \in \mathbb{N}$ tal que

$$y < x^n$$

Indicación: Para y < 1 o y = 1 es fácil. Si y > 1 argumentar por reducción al absurdo. En este caso utiliza que si $0 < \varepsilon < x - 1$ entonces para todo $m \in \mathbb{N}$, entonces $x^m + \varepsilon < x^{m+1}$.

ii) Concluye la Propiedad Arquimediana del producto: existe un único $p \in \mathbb{Z}$ tal que

$$x^{p-1} \le y < x^p \qquad (\acute{o} \quad x^{p-1} < y \le x^p)$$

Indicación: Para y = 1 es fácil. Para y > 1, usando i), considera el conjunto $A = \{n \in \mathbb{N}, y < x^n\}$ y usa el Buen Orden de \mathbb{N} . Para 0 < y < 1 reducelo al caso anterior.

iii) Concluye que

$$\mathbb{R}^+ = (0, \infty) = \bigcup_{p \in \mathbb{Z}} \left[x^{p-1}, x^p \right)$$

(unión disjunta dos a dos).

Modifica ligeramente los argumentos anteriores para probar que

$$\mathbb{R}^+ = (0, \infty) = \bigcup_{p \in \mathbb{Z}} (x^{p-1}, x^p]$$

(unión disjunta dos a dos).

58 Probar que si $\varepsilon > 0$ entonces existe $n_0 \in \mathbb{N}$ tal que $1/2^{n_0} < \varepsilon$. Concluye que para todo $n \ge n_0$ tambien se tiene que $0 < 1/2^n < \varepsilon$.

59 Si $x \in \mathbb{R}$, probar que para todo $\varepsilon > 0$ existen $r_1, r_2 \in \mathbb{Q}$ tales que

$$r_1 \in (x - \varepsilon, x), \quad r_2 \in (x, x + \varepsilon).$$

Concluir que de hecho hay infinitos números como r_1 y r_2 . Hacer lo mismo para números irracionales.

60 *Sea* $n \in \mathbb{N}$.

- i) Si n es par y a>0 probar que entonces a tiene exactamente dos raices n-ésismas reales, una opuesta de la otra, que representamos por $\pm \sqrt[n]{a}$. Si además $0 \le a_1 < a_2$ entonces $\sqrt[n]{a_1} < \sqrt[n]{a_2}$. Si a<0 entonces no tiene raices n-ésismas reales.
- ii) Si n es impar y $a \in \mathbb{R}$ probar que a tiene exactamente una raiz n-ésisma real, con el mismo signo que a. Si además $a_1 < a_2$ entonces $\sqrt[n]{a_1} < \sqrt[n]{a_2}$.
- iii) Probar que si a > 1 entonces inf $\{\sqrt[n]{a}, n \in \mathbb{N}\} = 1$ y si a < 1 entonces sup $\{\sqrt[n]{a}, n \in \mathbb{N}\} = 1$.
- iv) Probar que si a, b > 0, $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$.
- v) Probar que $\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$.

61 Exponentes enteros y racionales

i) Si $a \in \mathbb{R}$, $a \neq 0$, $y \in \mathbb{N}$ definitions

$$a^{m} = \overbrace{a \cdots a}^{m}, \quad a^{0} = 1, \quad a^{-m} = \frac{1}{a^{m}} = (\frac{1}{a})^{m}.$$

Probar que $a^n a^m = a^{n+m}$ para todos $n, m \in \mathbb{Z}$. Probar que $(a^n)^m = a^{nm}$ para todos $n, m \in \mathbb{Z}$. Probar que $(ab)^m = a^m b^m$ para todos $a, b \neq 0$ y $m \in \mathbb{Z}$.

Probar que si a > 1 y n < m entonces $a^n < a^m$ mientras que si 0 < a < 1 y n < m entonces $a^n > a^m$ para todos $n, m \in \mathbb{Z}$.

ii) Si a > 0 y $n \in \mathbb{N}$, definimos

$$a^{\frac{1}{n}} = \sqrt[n]{a}, \quad a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$

con $m \in \mathbb{Z}$. Probar que $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$ y que la definición de $a^{\frac{m}{n}}$ es consistente para todas las fracciones que representan al mismo número racional y por tanto a^r está bien definido para $r \in \mathbb{Q}$.

Probar que $a^ra^s = a^{r+s}$ para todos $r, s \in \mathbb{Q}$ y $a^0 = 1$. Probar que $(a^r)^s = a^{rs}$ para todos $r, s \in \mathbb{Q}$. Probar que $(ab)^r = a^rb^r$ para todos a, b > 0 y $r \in \mathbb{Q}$.

- iii) Si a > 1 y r < s entonces $a^r < a^s$ mientras que si 0 < a < 1 y r < s entonces $a^r > a^s$ para todos $r, s \in \mathbb{Q}$.
- iv) Demuestra que si 0 < a < b y $r \in \mathbb{Q}$ y r > 0 entonces $a^r < b^r$ mientras que si r < 0 entonces $a^r > b^r$.

62 La exponencial real

i) Probar que si $x \in \mathbb{R}$ y llamamos $I_x = \{r \in \mathbb{Q}, r < x\}$ y $S_x = \{r \in \mathbb{Q}, r > x\}$ entonces estos conjuntos son no vacios y

$$x = \sup I_x = \inf S_x$$
.

ii) Concluir que si a > 1 y definimos para $x \in \mathbb{R}$

$$a^x = \sup\{a^r, r \in I_x\}$$

entonces $a^x = \inf\{a^r, r \in S_x\}$ y que si $x \in \mathbb{Q}$ esta definición coincide con la de la exponencial en el Problema 61.

Probar que se tiene $a^x a^y = a^{x+y}$ para todos $x, y \in \mathbb{R}$, $a^0 = 1$ y si x < y entonces $a^x < a^y$.

iii) Si 0 < a < 1 definimos

$$a^x = \inf\{a^r, r \in I_x\}.$$

Prueba que $a^x = \frac{1}{(a^{-1})^x}$ y $a^{-1} > 1$. Obtén con esto que $a^x a^y = a^{x+y}$ para todos $x, y \in \mathbb{R}$, $a^0 = 1$ y si x < y entonces $a^x > a^y$.

Si a = 1 definimos $1^x = 1$ para todo $x \in \mathbb{R}$.

iv) Probar que si a > 0 y $x \in \mathbb{R}$ entonces

$$a^{-x} = \frac{1}{a^x}, \quad a^x = \frac{1}{(a^{-1})^x}.$$

v) Probar que $(a^x)^y = a^{xy}$ para todos $x, y \in \mathbb{R}$.

Indicación: Prueba primero el caso x, y > 0 y los demás redúcelos a este. A s vez, distingue los casos a > 1 y 0 < a < 1.

vi) Probar que $(ab)^x = a^x b^x$ para todo a, b > 0 y $x \in \mathbb{R}$.

Indicación: Prueba primero el caso a, b > 1. Reduce el caso 0 < a, b < 1 a este. Para el caso a > 1 y 0 < b < 1 distingue los casos ab > 1 y ab < 1.

vii) Probar que si 0 < a < b y $x \in \mathbb{R}$, x > 0 entonces $a^x < b^x$ mientras que si x < 0 entonces $a^x > b^x$.

63 Determinar los conjuntos

i)
$$\bigcap_{n=1}^{\infty} (1 + \frac{1}{n}, 2 + \frac{1}{n})$$
, ii) $\bigcup_{n=1}^{\infty} (1 + \frac{1}{n}, 2 + \frac{1}{n})$ iii) $\bigcap_{n=1}^{\infty} [1 + \frac{1}{n}, 2 - \frac{1}{n}]$, iv) $\bigcap_{n=1}^{\infty} [2 - \frac{1}{n}, 2 + \frac{1}{n}]$, v) $\bigcap_{n=1}^{\infty} (2 - \frac{1}{n}, 2 + \frac{1}{n})$, vi) $\bigcap_{n=1}^{\infty} (-n, n)$

- **64** Sea $\{(a_n, b_n), n \in \mathbb{N}\}$ una familia de intervalos en \mathbb{R} y sea $a = \inf_n a_n, b = \sup_n b_n$.
- i) Demostrar que $\bigcup_n (a_n, b_n) \subset (a, b)$
- ii) Demostrar que si $(a_{n+1}, b_{n+1}) \supset (a_n, b_n)$ entonces $\bigcup_n (a_n, b_n) = (a, b)$
- iii) Probar con un ejemplo que si $\alpha = \sup_n a_n$, $\beta = \inf_n b_n$, en general no es cierto que $\bigcap_n (a_n, b_n) = (\alpha, \beta)$ aunque $(a_{n+1}, b_{n+1}) \subset (a_n, b_n)$.