Scaling Deterministic Numerical Solutions of the Boltzmann Transport Equation on Heterogeneous Computing Platforms

Karl Rupp^{1,2}, Andreas Morhammer¹, Tibor Grasser¹, Ansgar Jüngel²

 Institute for Microelectronics
 Institute for Analysis and Scientific Computing TU Wien. Austria

Scalable Methods for Kinetic Equations Oak Ridge National Laboratory October 20th, 2015

Contents

The Spherical Harmonics Expansion Method

Unstructured grids

Adaptive variable-order expansions

Parallelization

Solution on Distributed Memory Machines

Preconditioner blueprints

Node-level parallel ILU

Alternatives

Semiconductor Devices in 3D: FinFET

Intel Trigate transistors

Semiconductor Devices in 3D: FinFET

Electron Density in a FinFET

Electron Energy Distribution?

Electron Energy Distribution?

Macroscopic Transport Models

Invalid in deca-nanometer regime
"Fitting" only treats the symptoms, not the cause
Only averaged quantities of the carrier ensemble modeled

Boltzmann Transport Equation (BTE)

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{k}) \cdot \nabla_{\mathbf{x}} f + \mathbf{F}(\mathbf{x}) \cdot \nabla_{\mathbf{k}} f = Q\{f\}$$

Best semi-classical description of carrier transport Posed in a seven-dimensional $(\mathbf{x}, \mathbf{k}, t)$ space Most popular solution method: Monte Carlo

Electron Energy Distribution?

Spherical Harmonics Expansion Method

Spherical Symmetries

Maxwell distribution of carriers at equilibrium Dispersion relation (Herring-Vogt transform, approx.)

Spherical Harmonics Expansion (SHE)

$$f(\mathbf{x}, \mathbf{k}, t) \simeq \sum_{l=0}^{L} \sum_{m=-l}^{l} f_{l,m}(\mathbf{x}, E, t) Y_{l,m}(\theta, \varphi)$$

New unknowns: $f_{l,m}(\mathbf{x}, E, t)$

Solution in five-dimensional (\mathbf{x}, E, t) -space

S.-M. Hong and C. Jungemann, *J Comput Electron* (2009): Fifth-order, three-dim. (\mathbf{x}, E) -space, 26 GB memory, 12 hours

Unstructured Grids

Unstructured Grids

State-of-the-art in modern TCAD

Only structured grids in publications on higher-order SHE in 2D [S.-M. Hong and C. Jungemann (2008), S.-M. Hong and C. Jungemann (2009)]

Extension of discretization proposed by Hong and Jungemann

Summary

Spherical Harmonics Expansion

$$f(\mathbf{x}, \mathbf{k}, t) \simeq \sum_{l=0}^{L} \sum_{m=-l}^{l} f_{l,m}(\mathbf{x}, E, t) Y_{l,m}(\theta, \varphi)$$

 $(L+1)^2$ unknown functions $f_{l,m}(\mathbf{x}, E, t)$

L=0 sufficient in equilibrium

Higher-order expansions in active regions

Therefore: Variable-order SHE:

$$f(\mathbf{x}_i, \mathbf{k}_n, t) \simeq \sum_{l=0}^{L(\mathbf{x}_i, E_n)} \sum_{m=-l}^{l} f_{l,m}(\mathbf{x}_i, E_n, t) Y_{l,m}(\theta, \varphi)$$

How to choose $L(\mathbf{x}_i, E_n)$ in the simulation domain?

Motivation from Fourier series

L = 3:306261 instead of 476061 unknowns (factor 1.5)

L = 5: 606 671 instead of 1 146 120 unknowns (factor 1.9)

Summary

Preconditioner for Iterative Linear Solvers

No fast general-purpose parallel preconditioner available Physics-based parallel block preconditioner developed

Scaling of Solution Variables

Exponential decay with energy: $f(E_i) \sim \exp(-\frac{E_i}{k_B T})$

Rescale unknowns: $\tilde{f}(E_i) = \exp(\frac{E_i}{k_{\rm B}T})f(E_i)$

New system: $\tilde{\mathbf{A}}\tilde{\mathbf{x}} = \mathbf{A}\mathbf{D}\mathbf{D}^{-1}\mathbf{x} = \mathbf{b}$

Row normalization: $\hat{A}\tilde{x} = P\tilde{A}\tilde{x} = Pb$

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Results

Results

Summary for Shared Memory Machines

Part 2

Current Work:
Development of a Parallel Preconditioner
for (Heterogeneous) Distributed Memory Machines

Distributed SHE

Blueprint

Keep block-Jacobi based on total energies Map total energies to MPI ranks

Requires fine-grained parallel preconditioner per block

Parallel ILU

General

Approximate factorization $A \approx LU$ Proposed by Chow and Patel (SISC, vol. 37(2)) for CPUs and MICs

Available in ViennaCL for CUDA, OpenCL, OpenMP

Preconditioner Setup

Nonlinear parallel sweeps to obtain l_{ij} and u_{ij} Massively parallel (one thread per row)

Preconditioner Application

Truncated Neumann series:

$$\mathbf{L}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{L})^k, \quad \mathbf{U}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{U})^k$$

Exact triangular solves not necessary

Parallel ILU

Preconditioner Evaluation

Resolution

Total energy spacing: approx. 10 meV

Thus: Hundred MPI ranks per eV (slight load imbalance)

Typical minimum range: 3-5 eV

Granularity

Fine-grained: One thread per matrix row on each MPI rank

Coarse-grained: One run per voltage bias

Evaluation

Preconditioner sufficient for typical TCAD workloads

Ready for upcoming HPC hardware

Spatial domain decomposition required for strong scaling limit

Preconditioner Alternatives

Other Shared Memory Preconditioners

Algebraic multigrid?

Polynomial preconditioners?

Block-Diagonal Inversion

Additive Schwarz (no overlap)

Sparse direct solver for each block?

Parallel AMG

Conclusion

SHE Method

Viable alternative to Monte Carlo

Full 3D device simulations possible

Convergence behavior similar to drift-diffusion model

Free open-source simulator: ViennaSHE

Large-Scale Solution

Physics-based block-Jacobi preconditioner

Replication of spatial mesh on all MPI ranks

Fine-grained parallel ILU

Combine functionality in PETSc and ViennaCL libraries

