Crime Rate Analysis For New York and Los Angeles

Ariana Nettevillle

Table of contents

- Introduction
- Primary Data
- Secondary Data
- Attributes
- Data Cleaning
- Homicides in Los Angeles from 1991 to 2003
- Top 5 crimes in each city
- Rates of Crimes
- Most crime
- Conclusion
- Sources

Introduction

This project contains information about crime in two distinct cities, New York City and Los Angeles. Both these cities receive high levels of crime on yearly basis. We will dive further into this topic by exploring and analyzing data obtained from an official government website to see how we can measure these levels of crime to answer our research questions. We will explore the following topics using data wrangling techniques and analysis:

• What are the leading crimes in these cities? (Crime occurs more often in cities with high populations like New York, Los Angeles, etc. Finding out what is the most common crime)

- Which city has the most crime? (This gives us a look into why a certain city has more crime than the other. Does the city with the highest population have more crime due to the fact that there's more people or does it have to do with the police system?)
- What does the progression (rate) of the top crime look like between certain years by city? Is it decreasing, increasing, constant, etc.?

Primary Data

The LAPD crime data from the years 2000 to 2025 was found the data.gov website. This data set was collected by the Los Angeles Police Department's Records Management System. Each case in this data set are crimes reported in the city.

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

Secondary Data

NYPD Data Set

• The NYPD contains crime information in New York City from 2006 to 2024. This data set was found on data.gov and the data was collected by the New York Police Department's Office of Management Analysis and Planning. Each case in this data set are crimes reported in the city.

Los Angeles Homicides per year

• Homicides in Los Angeles was found on Wikipedia. This data set contains number of homicides in the city from 1991 to 2023.

Attributes

For each data set, our main focus will be on the year and crime description.

Data Cleaning

Both NYPD and LAPD data sets format their dates as follows: mm/dd/yyyy. Los Angeles also includes time stamps along with the dates. To fix this, the functions substr and as numeric will be used to only show the years these crimes occurred.

New York:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_I	DESC KY	_CD	OI	FNS_DESC	
1	279197226	2023	105 STRA	NGULATION	1ST	106	FELONY	ASSAULT	
2	278761840	2023	105 STRA	NGULATION	1ST	106	FELONY	ASSAULT	
3	278506761	2023	153	RAI	PE 3	104		RAPE	
	LAW_CODE	LAW_CAT_CD	ARREST_BORO	ARREST_PI	RECINCT	JUF	RISDICT	CODE CODE	AGE_GROUP
1	PL 1211200	F	М		18	3		0	25-44
2	PL 1211300	F	K		67	•		0	25-44
3	PL 1302503	F	K		77	•		0	25-44
	PERP_SEX P	ERP_RACE X_CO	OORD_CD Y_C	OORD_CD La	atitude	Lor	ngitude		
1	M	WHITE	988210	218129 40	0.76539	-73	3.98570		
2	M	BLACK	997897	175676 40	0.64886	-73	3.95082		
3	M	BLACK	1003509	185018 40	0.67450	-73	3.93057		
				Lon_Lat					
1		POINT (-73.985702	40.76539)					
2		POINT (-	-73.95082 4	0.648859)					
3	POINT (-73	.930571325596	61 40.67449	56865259)					

Los Angeles:

	DR_NO	Date.Rptd	DATE.OCC	TIME.OCC	AREA A	AREA.NAME
1	211507896 04/11/2021	12:00:00 AM	2020	845	15 N H	Hollywood
2	201516622 10/21/2020	12:00:00 AM	2020	1845	15 N H	Hollywood
3	240913563 12/10/2024	12:00:00 AM	2020	1240	9	Van Nuys
	<pre>Rpt.Dist.No Part.1.2</pre>	Crm.Cd				Crm.Cd.Desc
1	1502 2	354			TH	HEFT OF IDENTITY
2	1521 1	230 ASSAU	JLT WITH I	DEADLY WEA	APON, AGO	GRAVATED ASSAULT
3	933 2	354			TH	HEFT OF IDENTITY
	Mocodes Vict.Age Vict.Sex Vict.Descent					
1			0377	31	М	H
2	0416 0334 2004 1822 3	1414 0305 031	19 0400	32	M	H
3			0377	30	M	W
	Premis.Cd	${\tt Premis.Desc}$	Weapon.Us	sed.Cd		
1	501 SINGLE FAM	ILY DWELLING		NA		

2	102	Š	SIDEWALK		200)				
3	501 SINGLE	FAMILY I	OWELLING		NA	1				
		Weap	on.Desc	Status	Status.	Desc	${\tt Crm.Cd.}$	1 C	rm.(Cd.2
1				IC	Invest	${\tt Cont}$	35	4		NA
2	KNIFE WITH BLADE	6INCHES	OR LESS	IC	${\tt Invest}$	${\tt Cont}$	23	0		NA
3				IC	${\tt Invest}$	${\tt Cont}$	35	4		NA
	Crm.Cd.3 Crm.Cd.4					L(CATION	Cro	ss.S	Street
1	NA NA	7800	BEEMAN	Г			AV			
2	NA NA		ATOLL				AV		N	GAULT
3	NA NA	14600	SYLVAN	Г			ST			
	LAT LON									
1	34.2124 -118.4092									
2	34.1993 -118.4203									
3	34.1847 -118.4509									

As we can see from the two tables above, both data sets now only contain the year rather than the full date. This will allow for easier data wrangling and analysis.

The Homicide data, obtained from Wikipedia contains footnotes for each of the murder counts. Similarly to the previous data set, substr and as numeric will be used to only show the numbers without footnotes.

#	A	tibbl	e: 13	x 2
		Year	Murdei	îs.
		<int></int>	<db]< td=""><td>L></td></db]<>	L>
1	L	1991	102	25
2	2	1992	109	92
3	3	1993	107	77
4	1	1994	85	50
5	5	1995	83	38
6	3	1996	70	9
7	7	1997	57	76
8	3	1998	42	26
Ş)	1999	42	25
10)	2000	55	50
11	L	2001	58	38
12	2	2002	65	54
13	3	2003	51	L5

Homicides in Los Angeles from 1991 to 2003

Using the homicide data from Wikipedia, we can determine the rate of murders in Los Angeles through 1991 to 2003 using a simple line plot.

Figure 1: Homicide Rates

Using our homicide data, we can in Figure 1 a steady decline in homicides from 1992 to 1999 with a small increase from 2000 to 2002. Overall, the number of homicides has decreased significantly from the year 1991.

Top 5 crimes in each city

To determine the top crimes in both New York and Los Angeles, we can apply data wrangling techniques to group each crime and count the total number of times that specific crime appears throughout the entire data set. For this project, we will only look at the top 5 crimes.

#	A tibble: 5 x 2	
	Crm.Cd.Desc	Total
	<chr></chr>	<int></int>
1	VEHICLE - STOLEN	115190
2	BATTERY - SIMPLE ASSAULT	74839
3	BURGLARY FROM VEHICLE	63517
4	THEFT OF IDENTITY	62538
5	VANDALISM - FELONY (\$400 & OVER, ALL CHURCH VANDALISMS)	61092

According the table, The Los Angeles police department reports that top 5 crimes in the city from the years 2020 to 2023 are Vehicle robberies, Battery, Burglary, Identity theft and vandalism.

#	A tibble: 5 x 2	
	OFNS_DESC	Total
	<chr></chr>	<int></int>
1	DANGEROUS DRUGS	1144059
2	ASSAULT 3 & RELATED OFFENSES	645227
3	OTHER OFFENSES RELATED TO THEFT	316812
4	PETIT LARCENY	306203
5	FELONY ASSAULT	288434

According to the table, The New York Police department reports that the top 5 crimes in the city from the years 2021 to 2023 are Drugs, Assault, Other offenses related to theft, Petit Larceny and Felony Assault.

We can see that both cities have some form of assault and theft as some of their top leading crimes.

Rates of Crimes

To determine the rate of crime over the years 2020 to 2024 we will first have to create a new data frame for each state with the same column names and same years. Since New York includes data dating back to 2006, we must filter out the years that are not included in the Los Angeles data set. Furthermore, we can reduce the columns of each data set by only selecting the years and the crime description columns. We will eventually have to combine the two data sets together so it is necessary to include a column with the name of the states so it will be easier to differentiate each state in the plot.

```
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
```

According to the graph in Figure 2, The rates of crime in Los Angeles starts a steady decrease in 2022 and then rapidly decreases from 2023 to 2024. Meanwhile, New York increases through 2020 to 2024. Additionally, we can notice that Los Angeles has a higher crime count from 2020 to 2023. Does this mean that Los Angeles might have the most crime? We can investigate this further by looking at a side by side bar plot.

Figure 2: State Crime rates per year

Most crime

We can determine which state has more crime by counting the total number of crimes reported in each state. Since both cities have a large population of people it is expected to have similar crimes numbers in each city.

As we can see from the bar graph in Figure 3, Los Angeles appears to have slightly more crime than New York.

A tibble: 2 x 2 state Total <chr> <int>
1 Los Angeles 1004892
2 New York 973069

This table confirms that Los Angeles has 31,823 more reported crimes than New York.

Conclusion

After analyzing and comparing crime rates in both New York and Los Angeles, we have discovered several key conclusions. Theft and assault are among the most common crimes in

Figure 3: Total crimes by state

both cities, indicating a higher need for prevention against those crimes. This project has also revealed that the city with the most reported crimes is Los Angeles as shown in Figure 3. However, Figure 2 shows that Los Angeles has had a decreasing rate in crime over 2 years while New York crime levels has continue to rise over the past 4 years. We can also see this decreasing pattern in homicide rates in Los Angeles, as seen in Figure 1. In recent years, the homicide rates have almost halved the rates in the early 90's.

Sources

```
\label{lem:nypd-arrest-data-year-to-date} NYPD source -> https://catalog.data.gov/dataset/crime-data-from-2020-to-present\\ LA Homicide Source -> https://en.wikipedia.org/wiki/Crime_in_Los_Angeles\\ Basic bar plot with ggplot2 source -> https://r-graph-gallery.com/218-basic-barplots-with-ggplot2.html
```

```
#google's R style
library(tidyr)
library(dplyr)
library(rvest)
```

```
library(ggplot2)
NYPD_data <- read.csv("~/Downloads/NYPD_Arrests_Data__Historic_.csv")
LAPD data <- read.csv("~/Downloads/Crime Data from 2020 to Present (1).csv")
URL <- "https://en.wikipedia.org/wiki/Crime_in_Los_Angeles"</pre>
ListOfTables <- URL %>%
  read html() %>%
 html_nodes(css = "table") %>%
  html table(fill = TRUE)
Homicide_data <- ListOfTables[[4]]</pre>
dates <- NYPD_data$ARREST_DATE</pre>
NYPD_data$ARREST_DATE <- as.numeric(substr(dates, nchar(dates) - 4 + 1, nchar(dates)))
NYPD_data %>%
 head(3)
dates_la <- LAPD_data$DATE.OCC
LAPD_data$DATE.OCC <- as.numeric(substr(dates_la, 7, 10))
LAPD_data %>%
  head(3)
murders <- Homicide_data$Murders</pre>
Homicide_data$Murders <- as.numeric(substr(murders, 1 , nchar(murders)-4))</pre>
Homicide data
#Homicides per year in Los Angeles
ggplot(data = Homicide_data, aes(x= Year, y = Murders)) +
  geom_line()
LAPD_data_totalCrimes <- LAPD_data %>%
  group_by(Crm.Cd.Desc)%>%
  summarise(Total = n())%>%
  arrange(desc(Total))
LAPD_data_totalCrimes %>%
  head(5)
NYPD_data_totalCrimes <- NYPD_data %>%
  group_by(OFNS_DESC) %>%
  summarise(Total= n())%>%
  arrange(desc(Total))
NYPD_data_totalCrimes %>%
  head(5)
new_NYPD <- NYPD_data %>%
  select(ARREST_DATE, OFNS_DESC)%>%
  filter(ARREST_DATE > 2019) %>%
  mutate(state = "New York")%>%
  rename(year = ARREST_DATE, crime = OFNS_DESC)
new_LAPD <- LAPD_data %>%
```

```
select(DATE.OCC, Crm.Cd.Desc) %>%
 filter(DATE.OCC < 2025) %>%
 mutate(state = "Los Angeles") %>%
 rename(year = DATE.OCC, crime = Crm.Cd.Desc)
state_crimes <- bind_rows(new_LAPD, new_NYPD)</pre>
state_crimes_perYear <- state_crimes %>%
  group_by(year, state) %>%
 summarise(count = n())
ggplot(data = state_crimes_perYear, aes(x=year, y =count, color = state)) +
  geom_line()
state_crimes_grouped <- state_crimes %>%
 group_by(state)%>%
 summarise(Total = n())
ggplot(data = state_crimes_grouped, aes(x= state, y=Total)) +
 geom_bar(stat = "identity")
state_crimes_grouped
```