WHAT IS CLAIMED IS:

2 1. A compound of the formula

3

5.

- where a wavy line represents a bond in the up or in the down
- 7 configuration,
- 8 a dashed arrow represents a bond in the down configuration,
- a solid arrow represents a bond in the up configuration,
- 10 R₁ is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-
- 11 substituted ethyl;
- 12 R₂ is *normal* alkyl of 1 to 4 carbons, fluoro-substituted *normal* alkyl
- of 1 to 4 carbons, CH₂OCH₃, CH₂-O-CH₂-CH₃, CH₂-O-CH₂-OCH₃, CH₂-O-CH₂-O-CH₃, CH₂-O-CH₂-O-CH₃, CH₂-O-CH₃, CH₂-O-
- 14 CH₂-O-CH₃, CH₂SCH₃, CH₂-S-CH₂-CH₃, CH₂-S-CH₂-OCH₃, CH₂-
- 15 CH₂-S-CH₃, CH₂-S-CH₂-S-CH₃, CH₂-O-CH₂-S-CH₃, CH₂NHCH₃, CH₂-
- 16 NH-CH₂-CH₃, CH₂-NH-CH₂-OCH₃, CH₂-CH₂-NH-CH₃, CH₂-
- 17 O-CH₂-NHCH₃;
- 18 \mathbf{R}_3 is H or F;
- 19 R₄ is H, alkyl of 1 to 3 carbons;

- 1 \mathbf{R}_5 is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ where \mathbf{R}_6
- 2 is alkyl of 1 to 3 carbons, and
- R is selected from the groups consisting of the radicals defined by
- 4 formulas (a) through (f)

$$(R_7)_m$$

$$(R_7)_m$$

$$(R_8)_n$$

$$(R_8)_n$$

$$(R_8)_n$$

$$(R_7)_m$$

$$(R_7)_m$$

$$(R_7)_m$$

$$(R_7)_m$$

$$(R_8)_n$$

$$(R_7)_m$$

$$(R_8)_n$$

- where the dashed line in a ring represents a bond, or absence of a
- 8 bond,
- 9 a * denotes a ring carbon to which the pentadienoyl-cyclopropyl
- group is attached, with the proviso that the pentadienoyl-cyclopropyl group
- is attached to only one carbon on the ring;
- X_1 is O or S attached to the adjacent carbon with a double bond, or X_1
- 13 represents two hydrogens or R₇ groups attached to the adjacent carbon;
- X_2 is O or S;
- m is an integer having the values 0 to 6;
- n is an integer having the values 0 to 3;
- o is an integer having the values 0 or 1;
- 18 R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I;

600 65 PA

1 F	R ₈ is	independently	H, alkyl of 1 to	6 carbons, F, Cl	, Br, I, OC ₁₋₆ alkyl
•		-			

- 2 or SC₁₋₆alkyl,
- R₉ is H or alkyl of 1 to 6 carbons, or a pharmaceutically acceptable
- 4 salt of said compound.
- 2. A compound in accordance with Claim 1 where \mathbb{R}_2 is $\mathrm{CH}_2\mathrm{OCH}_3$
- 6 or CH₂OCH₂CH₃.
- 7 3. A compound in accordance with Claim 1 where \mathbb{R}_7 is alkyl of 1
- 8 to 6 carbons.
- 9 4. A compound in accordance with Claim 1 where \mathbf{R}_8 is H or alkyl
- of 1 to 6 carbons.
- 5. A compound in accordance with Claim 1 where R is represented
- 12 by formula (a).
- 6. A compound in accordance with Claim 5 where the dashed line
- in formula (a) represents absence of a bond, and where o is one (1).
- 7. A compound in accordance with Claim 6 where \mathbf{R}_2 is $\mathbf{CH}_2\mathbf{OCH}_3$
- or CH₂OCH₂CH₃.
- 17 8. A compound in accordance with Claim 6 where \mathbb{R}_7 is alkyl of 1 to
- 18 6 carbons.
- 9. A compound in accordance with Claim 6 where \mathbf{R}_8 is H or alkyl
- of 1 to 6 carbons.
- 21 10. A compound in accordance with Claim 1 where R is
- 22 represented by formula (b).
- 11. A compound in accordance with Claim 10 where \mathbf{R}_2 is
- 24 CH₂OCH₃ or CH₂OCH₂CH₃.
- 12. A compound in accordance with Claim 10 where \mathbf{R}_7 is alkyl of 1
- 26 to 6 carbons.

- 1 13. A compound in accordance with Claim 10 where \mathbb{R}_8 is H or
- 2 alkyl of 1 to 6 carbons.
- 3 14. A compound in accordance with Claim 1 where R is represented
- 4 by formula (c).
- 5 15. A compound in accordance with Claim 1 where R is represented
- 6 by formula (d).
- 7 16. A compound in accordance with Claim 1 where R is represented
- 8 by formula (e).
- 9 17. A compound in accordance with Claim 1 where R is represented
- 10 by formula (f).
 - 18. A compound of the formula

11

where a wavy line represents a bond in the up or in the down

- 14 configuration,
- a dashed arrow represents a bond in the down configuration,
- a solid arrow represents a bond in the up configuration,
- R_1 is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-
- 18 substituted ethyl;
- \mathbf{R}_{10} is \mathbf{CH}_3 , \mathbf{CH}_2 - \mathbf{CH}_3 , or \mathbf{CH}_2 - \mathbf{OCH}_3 ,

600 65 PA 17591

 \mathbf{R}_3 is H or F;

- \mathbf{R}_4 is H, alkyl of 1 to 3 carbons;
- R_5 is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ where R_6
- 4 is alkyl of 1 to 3 carbons, and
- R is selected from the groups consisting of the radicals defined by
- formulas (g) and (h)

$$(R_7)_m$$
 $*$
 $(R_8)_n$
 $*$
 $(R_8)_n$

formula (g) formula (h)

- 8 where a * denotes a ring carbon to which the pentadienoyl-
- 9 cyclopropyl group is attached, with the proviso that the pentadienoyl-
- 10 cyclopropyl group is attached to only one carbon on the ring;
- m is an integer having the values 0 to 8;
- n is an integer having the values 0 to 3;
- 13 R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I;
- 14 R₈ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, OC₁₋₆alkyl
- or SC₁₋₆alkyl, or a pharmaceutically acceptable salt of said compound.
- 16 19. A compound in accordance with Claim 18 where R is represented
- 17 by formula (g).
- 20. A compound in accordance with Claim 19 where R is represented
- 19 by the formula

ļ

- where the * denotes a ring carbon to which the pentadienoyl-
- 3 cyclopropyl group is attached.
- 21. A compound in accordance with Claim 18 where R is represented
- 5 by the formula

6

- 7 where the * denotes a ring carbon to which the pentadienoyl-
- 8 cyclopropyl group is attached.
- 22. A compound of the formula

L

where a wavy line represents a bond in the up or in the down

- 3 configuration,
- a dashed arrow represents a bond in the down configuration,
- a solid arrow represents a bond in the up configuration,
- \mathbf{R}_{10} is methyl or ethyl, and
- R_5 is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ where R_6
- 8 is alkyl of 1 to 3 carbons, or a pharmaceutically acceptable salt of said
- 9 compound.
- 23. A compound in accordance with Claim 22 where the wavy line
- 11 represents a bond in the up configuration.
- 12 **24.** A compound in accordance with Claim 23 where \mathbf{R}_{10} is methyl.
- 13 **25.** A compound in accordance with Claim 24 where R_5 is H, ethyl, or
- 14 a pharmaceutically acceptable salt of said compound.
- 15 **26.** A compound in accordance with Claim 23 where \mathbf{R}_{10} is ethyl.
- 16 27. A compound in accordance with Claim 26 where R_5 is H, ethyl, or
- 17 a pharmaceutically acceptable salt of said compound.
- 28. A compound in accordance with Claim 22 where the wavy line
- represents a bond in the down configuration.

600 65 PA

- 1 29. A compound in accordance with Claim 28 where \mathbf{R}_{10} is methyl.
- 30. A compound in accordance with Claim 29 where R₅ is H, ethyl, or
- 3 a pharmaceutically acceptable salt of said compound.
- 4 31. A compound in accordance with Claim 28 where \mathbf{R}_{10} is ethyl.
- 32. A compound in accordance with Claim 31 where \mathbb{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 33. A compound of the formula

10

where a wavy line represents a bond in the up or in the down configuration,

- a dashed arrow represents a bond in the down configuration,
- a solid arrow represents a bond in the up configuration,
- \mathbf{R}_{10} is methyl or ethyl, and
- R_5 is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ where R_6
- is alkyl of 1 to 3 carbons, or a pharmaceutically acceptable salt of said
- 16 compound.
- 34. A compound in accordance with Claim 33 where the wavy line
- 18 represents a bond in the up configuration.
- 19 35. A compound in accordance with Claim 34 where \mathbf{R}_{10} is methyl.

- 1 36. A compound in accordance with Claim 35 where R_5 is H, ethyl,
- 2 or a pharmaceutically acceptable salt of said compound.
- 37. A compound in accordance with Claim 34 where \mathbf{R}_{10} is ethyl.
- 38. A compound in accordance with Claim 37 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 39. A compound in accordance with Claim 33 where the wavy line
 represents a bond in the down configuration.
- 8 40. A compound in accordance with Claim 39 where \mathbf{R}_{10} is methyl.
- 9 41. A compound in accordance with Claim 40 where \mathbf{R}_5 is H, ethyl, or a pharmaceutically acceptable salt of said compound.
- 11 **42.** A process for administering to a diabetic mammal to reduce the serum glucose level of said mammal a compound of the formula

 R_1 R_3 R_3 R_4 R_4 R_4 R_4 R_5

13

14

15

where a wavy line represents a bond in the up or in the down configuration,

a dashed arrow represents a bond in the down configuration, a solid arrow represents a bond in the up configuration,

600 65 PA 17591

- \mathbf{R}_1 is H, methyl, or ethyl, fluoro-substituted methyl or fluoro-
- 2 substituted ethyl;
- R₂ is normal alkyl of 1 to 4 carbons, fluoro-substituted normal alkyl
- 4 of 1 to 4 carbons, CH₂OCH₃, CH₂-O-CH₂-CH₃, CH₂-O-CH₂-O-CH₃, CH₂-
- 5 CH₂-O-CH₃, CH₂SCH₃, CH₂-S-CH₂-CH₃, CH₂-S-CH₂-OCH₃, CH₂-
- 6 CH₂-S-CH₃, CH₂-S-CH₂-S-CH₃, CH₂-O-CH₂-S-CH₃, CH₂NHCH₃, CH₂-
- 7 NH-CH₂-CH₃, CH₂-NH-CH₂-OCH₃, CH₂-CH₂-NH-CH₃, CH₂-
- 8 O-CH₂-NHCH₃;
- 9 \mathbb{R}_3 is H or F;
- 10 \mathbb{R}_4 is H, alkyl of 1 to 3 carbons;
- 11 R₅ is H, alkyl of 1 to 6 carbons, OCH₂OR₆ or OCH₂OCOR₆ where R₆
- is alkyl of 1 to 3 carbons, and
- R is selected from the groups consisting of the radicals defined by
- 14 formulas (a) through (f)

$$(R_7)_m$$
 $(R_8)_n$
 $(R_8)_n$
 $(R_8)_n$
 $(R_8)_n$

Formula (a)

Formula (b)

Formula (c)

$$(R_7)_m$$
 $(R_7)_m$
 $(R_8)_n$
 $(R_8)_n$
 $(R_8)_n$
 $(R_8)_n$
Formula (d)
Formula (e)
Formula (f)

16

15

where the dashed line in a ring represents a bond, or absence of a

18 bond,

a * denotes a ring carbon to which the pentadienoyl-cyclopropyl

2 group is attached, with the proviso that the pentadienoyl-cyclopropyl group

3 is attached to only one carbon on the ring;

 X_1 is O attached to the adjacent carbon with a double bond, or X_1

5 represents two hydrogens, or \mathbf{R}_7 groups attached to the adjacent carbon;

 X_2 is O or S;

m is an integer having the values 0 to 6;

n is an integer having the values 0 to 3;

o is an integer having the values 0 or 1;

10 R₇ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br or I;

11 R₈ is independently H, alkyl of 1 to 6 carbons, F, Cl, Br, I, OC₁₋₆alkyl

12 or SC_{1-6} alkyl,

13 R₉ is H or alkyl of 1 to 6 carbons, or a pharmaceutically acceptable

14 salt of said compound.

43. A process in accordance with Claim 42 where the compound used

in the process is in accordance with the formula

7

8

9

18

1 where \mathbf{R}_{10} is methyl or ethyl.

- 44. A process in accordance with Claim 42 where the compound used
- 3 in the process is in accordance with the formula

6 where \mathbf{R}_{10} is methyl or ethyl.