1

2

1

2

WHAT IS CLAIMED IS:

- 1 1. A method of characterizing a sample surface having a surface anomaly
 2 region, the method comprising:
 3 profiling the sample surface to generate surface characteristic data;
 4 generating a histogram based on said profiling step; and
 5 measuring a surface anomaly in the surface anomaly region based on said
 6 generating step.
- 1 2. The method of Claim 1, further including the step of selecting a zone of interest from the surface characterization data.
 - 3. The method of Claim 2, wherein the zone of interest includes the surface anomaly region.
 - 4. The method of Claim 3, wherein the surface anomaly region includes one of erosion and dishing.
- The method of Claim 4, wherein the dishing is a single dishing.
- 1 6. The method of Claim 1, wherein the histogram includes a first peak 2 corresponding to a generally planar portion of the sample surface, and a second peak 3 corresponding to the surface anomaly.
- 7. The method of Claim 6, wherein said measuring step includes determining a distance between the first and second peaks.
- 1 8. The method of Claim 7, wherein the distance is indicative of the depth of 2 the surface anomaly.
- 9. The method of Claim 6, wherein the surface anomaly region includes a plurality of surface anomalies, and wherein the histogram includes a third peak

- 3 corresponding to a different surface anomaly, and wherein said measuring step includes
- 4 determining a distance between the second and third peaks.
- 1 10. The method of Claim 1, further including the step of smoothing the
- 2 histogram.
- 1 The method of Claim 10, wherein said smoothing step includes using a
- 2 Gaussian filter.
- 1 12. The method of Claim 1, further comprising the step of leveling the surface
- 2 characteristic data.
- 1 13. The method of Claim 1, wherein the histogram includes a first peak
- 2 corresponding to a first depth associated with the surface characterization data, and a
- second peak corresponding to a second depth associated with the surface characteristic
- 4 data.
- 1 14. The method of Claim 13, wherein the first depth corresponds to a
- 2 generally planar portion of the sample surface, and the second depth corresponds to the
- 3 surface anomaly.
- 1 15. The method of Claim 14, wherein the sample includes a metal-filled
- 2 trench and the surface anomaly is associated with the trench.
- The method of Claim 15, wherein the surface anomaly is negatively
- 4 eroded metal in the trench..

1

2

3

4

1

2

1

2

- 1 17. A method that measures dishing values and erosion values associated with 2 topography data generated by scanning a semiconductor surface to obtain surface profile 3 data comprises the steps of:
- 4 (A) generating a histogram of a portion of the surface profile data 5 corresponding to a first zone of interest; and
- 6 (B) smoothing the histogram of said generating step to produce a
 7 smoothed curve having a peak corresponding to one of a dishing value and an erosion
 8 value.
 - 18. The method of Claim 17, further including the step of repeating steps (A) and (B) relative to a plurality of additional zones of interest so as to produce smoothed curves including data relating to a corresponding dishing value or erosion value or both for each of the plurality of additional zones of interest.
 - 19. The method of Claim 17, further including the step of leveling the surface profile data prior to step (A).
 - 20. The method of Claim 17, further including the step of filtering the histogram after step (A) and prior to step (B).
- The method of Claim 17, wherein the first zone of interest includes dishing and erosion data, and wherein the smoothed histogram includes first, second and third peaks corresponding to a reference surface, an erosion value and a dishing value, respectively.
- The method of Claim 21, wherein a corresponding distance between select pairs of said first, second and third peaks is indicative of a corresponding one of the dishing value and the erosion value.
- 1 23. A method for measuring dishing values and erosion values of a 2 semiconductor surface by scanning the surface to obtain surface profile data that contains

13

3	either dishing data or erosion data or dishing and erosion data, all referenced to surface
4	data, wherein the improvement comprises the steps of:
5	(A) leveling the surface profile data;
6	(B) generating a histogram of a portion of the leveled surface profile data
7	corresponding to a first of a plurality of zones of interest;
8	(C) smoothing the histogram of said generating step to produce a
9	smoothed curve having a maximum value corresponding to an erosion value or a dishing
10	value; and
11	(D) repeating steps (B) and (C) relative to each of the remainder of the
12	plural zones of interest, to produce smoothed curves corresponding to an erosion value or

The improved method of Claim 23, wherein the first zone of interest 24. 1 includes dishing and erosion values such that said smoothing step produces a smoothed 2 curve having first and second maximum values corresponding to the dishing and erosion 3 values, respectively. 4

a dishing value or both for each of the remainder of the plural zones of interest.