

Dipartimento di Elettronica e Informazione

POLITECNICO DI MILANO

Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale

Luigi Piroddi piroddi@elet.polimi.it

Analisi strutturale

Un'alternativa all'analisi esaustiva basata sul grafo di raggiungibilità, con tutti i suoi limiti (dimensione del grafo, dipendenza dalla condizione iniziale, scarsa interpretabilità) è l'analisi strutturale.

Essa si basa solo su informazioni contenute nella matrice di incidenza, che:

- dipendono dalla topologia della rete
- ► *non* dipendono dalla marcatura della rete (e in particolare da quella iniziale)

e pertanto possono rivelare delle caratteristiche strutturali della rete.

L'individuazione di strutture particolari in una rete di Petri,

- fornisce un modo per analizzarne il comportamento
- 2 ne rappresenta una chiave di lettura e interpretazione fondamentale, al punto che spesso si imposta il progetto di un modello a reti di Petri forzando direttamente la presenza di strutture di questo genere

Strutture fondamentali:

- invarianti
 - ▼ invarianti di posto o *P-invarianti*
 - ▼ invarianti di transizione o *T-invarianti*
- ► sifoni e trappole

Gli invarianti rappresentano generalmente proprietà che si conservano durante l'evoluzione della rete, da cui il nome:

- ▶ P-invarianti ↔ limitatezza
- ► T-invarianti ↔ reversibilità

I sifoni e le trappole hanno un ruolo centrale per l'analisi di vivezza della rete e, in particolare, per l'individuazione di eventuali stati di blocco della rete (deadlock)

▶ sifoni e trappole ↔ vivezza e deadlock freeness

P-invarianti

Gli invarianti di tipo posto, o P-invarianti, sono associati ad insiemi di posti in cui la somma pesata dei gettoni rimane costante per tutte le marcature raggiungibili dalla rete.

Un P-invariante è individuato da un vettore colonna di numeri interi delle stesse dimensioni del vettore marcatura, i cui elementi sono i "pesi" della somma pesata.

Più precisamente, si definisce P-invariante di una rete N un vettore colonna x di dimensione |P| tale che:

$$x^{T}M = x^{T}M_{0}, \forall M \in R(N,M_{0})$$

Formula di calcolo dei P-invarianti

Si consideri prima l'equazione di stato:

$$M = M_0 + Cs$$

dove s è il vettore delle occorrenze associato ad una sequenza di scatti di transizioni ammissibile. Moltiplicando a sinistra per x^T , si ottiene:

$$x^T M = x^T M_0 + x^T C s$$

Se x è un P-invariante si ha che $x^TM = x^TM_0$, quindi x soddisfa l'equazione:

$$x^T C s = 0, \quad \forall s \neq 0.$$

In conclusione, i P-invarianti si trovano cercando le soluzioni intere dell'equazione:

$$x^T C = 0$$
 oppure $C^T x = 0$.

Questa equazione matriciale è equivalente ad un sistema di equazioni lineari omogeneo.

Esempi di P-invarianti

A prescindere dalla marcatura iniziale, lo scatto di t_1 elimina un gettone da p_2 e ne genera uno in p_1 .

Analogamente, lo scatto di t_2 elimina un gettone da p_1 e ne genera uno in p_2 .

Inoltre, la marcatura di p_1 e p_2 non può variare se non per effetto dello scatto di t_1 o t_2 .

Allora, qualunque sia la marcatura iniziale, la somma dei gettoni in p_1 e p_2 rimane costante, pari al valore che assume inizialmente, per ogni stato raggiungibile.

Ciò è rappresentato dal P-invariante $x = [1 \ 1]^T$. Infatti,

$$x^{T}M = x^{T}M_{0} \implies \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} m_{01} \\ m_{02} \end{bmatrix} \implies m_{1} + m_{2} = m_{01} + m_{02} = \text{costante}$$

Calcolo:

$$x^{T}C = [x_{1} \ x_{2}]\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = [(x_{1}-x_{2}) \ (-x_{1}+x_{2})] = [0 \ 0] \implies x_{1} = x_{2} \implies x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

In questa rete di Petri (illimitata),

$$x = [1 -1]^T$$

è un P-invariante.

Infatti, qualunque sia la marcatura iniziale, la differenza dei gettoni in p_1 e p_2 rimane costante.

Verifica:

$$x^{T}M = x^{T}M_{0} \implies \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} m_{01} \\ m_{02} \end{bmatrix}$$

$$\Rightarrow m_1 - m_2 = m_{01} - m_{02} = \text{costante}$$

Calcolo:

$$x^{T}C = [x_{1} \ x_{2}] \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = [(x_{1}+x_{2}) \ (-x_{1}-x_{2})] = [0 \ 0]$$

$$\Rightarrow x_1 = -x_2 \Rightarrow x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

P-invarianti positivi

Un P-invariante si dice *positivo* se tutti i suoi elementi sono non negativi.

L'utilità pratica del concetto di P-invariante è quella di identificare, quando è positivo, un insieme di posti in cui si conserva la somma dei gettoni o comunque una loro combinazione lineare a coefficienti positivi.

Un P-invariante positivo costituisce una componente conservativa della rete.

Ciò permette di stabilire, tra le altre cose, l'intervallo di valori entro cui può variare il numero complessivo di gettoni nell'insieme, da un minimo ad un massimo.

In un insieme di posti corrispondente al supporto di un P-invariante con componenti sia positive che negative, invece, il numero di gettoni può crescere indefinitamente.

Nel seguito si farà riferimento solo ai P-invarianti positivi.

Proprietà:

- ▶ una rete si dice *coperta da P-invarianti* se ogni posto della rete appartiene al supporto di almeno un P-invariante
- ▶ una rete coperta da P-invarianti positivi, cioè tale che:

 $\forall p \in P, \exists \text{ un P-invariante } x \ge 0 \text{ tale che } p \in ||x||$ è conservativa

- ▼ infatti, facendo un'opportuna combinazione lineare di tali invarianti si ottiene un P-invariante positivo il cui supporto è l'intero insieme di posti e i cui elementi sono i coefficienti di una combinazione lineare delle marcature di tutti i posti della rete che rimane costante
- ▼ tale P-invariante coincide con il vettore di pesi W della definizione di conservatività
- quindi, le due affermazioni seguenti sono equivalenti:
 - ▼ la rete di Petri è conservativa
 - ▼ la rete di Petri ammette un P-invariante positivo (non necessariamente minimo) con supporto pari all'intero insieme di posti
- ▶ poiché una rete conservativa è limitata (ma non vale il viceversa), condizione sufficiente per la limitatezza è che la rete sia coperta da P-invarianti positivi

Esempi di reti conservative

Rete coperta da un unico P-invariante: $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

Qualunque sia la marcatura iniziale della rete, il numero di gettoni si mantiene costante.

Rete coperta da un unico P-invariante:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

(v. quella dell'esempio precedente).

Questa rete, al contrario della precedente, è viva.

Rete coperta da due P-invarianti:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$$

 $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$

Ciascuno dei due P-invarianti è interpretabile come la componente conservativa associata ad uno dei due processi.

Questo esempio rappresenta in modo schematico la sincronizzazione tra due processi.

- infatti, un processo ha 2 stati (con solo p_1 o solo p_2 marcato), e l'altro, in modo simmetrico può trovarsi con un gettone in p_3 oppure con un gettone in p_4
- ▶ ma l'evoluzione dei due processi non è arbitraria: la transizione t_2 non può scattare se p_1 e p_4 non sono contemporaneamente marcati (\Rightarrow *sincronizzazione*)

T-invarianti

I T-invarianti sono associati a possibili sequenze di scatti che riportano la rete nella marcatura iniziale.

Un T-invariante è

- ▶ un vettore colonna di numeri interi, omogeneo con un vettore delle occorrenze (ha tanti elementi quante sono le transizioni)
- ▶ i cui elementi rappresentano il numero di volte in cui ogni transizione deve scattare per ottenere una variazione complessiva *nulla* della marcatura, ovvero per riportare la rete nella marcatura iniziale

In altre parole, se $y = [y_1 \ y_2 \ ... \ y_{|T|}]^T$ è un T-invariante, una sequenza di scatti in cui la k-esima transizione scatti esattamente y_k volte riporterebbe la rete nella marcatura di partenza.

Si noti che, mentre si può attribuire un significato alla presenza di elementi negativi in un P-invariante, un T-invariante può avere solo elementi non negativi (una transizione può scattare solo un numero non negativo di volte).

Un T-invariante di una rete N è un vettore colonna y di dimensione |T| tale che:

$$Cy = 0$$

Infatti, se y è un vettore delle occorrenze coincidente con un T-invariante allora:

$$M = M_0 + Cy = M_0$$

E' importante osservare che l'esistenza di un T-invariante non implica l'esistenza di una sequenza ammissibile tale che il vettore delle occorrenze associato coincida con il T-invariante.

Infatti, l'esistenza di una (o più) di tali sequenze dipende da M_0 .

Tuttavia, se tale sequenza esiste, il suo effetto complessivo è di riportare la rete nella marcatura iniziale.

Se la rete di Petri non ammette nessun T-invariante, allora (escludendo il caso degenere in cui l'insieme di raggiungibilità contiene solo M_0) è sicuramente non reversibile.

Esempio di T-invariante

$$y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
è un T-invariante

Infatti, una qualunque sequenza di scatti che facesse scattare una volta ciascuna transizione della rete riporterebbe la marcatura alla marcatura iniziale.

Calcolo degli invarianti

La formula di calcolo degli invarianti dei due tipi è analoga:

- ▶ P-invarianti $\rightarrow C^T x = 0 \ (x^T C = 0)$
- ► T-invarianti $\rightarrow Cy = 0$

I T-invarianti di una rete con matrice di incidenza C coincidono con i P-invarianti di una rete con matrice di incidenza C^T , e viceversa.

Soluzioni dell'equazione $x^TC = 0$:

- soluzione nulla
 - → non interessa
- infinite soluzioni siano x_1 e x_2 due P-invarianti della rete di Petri; la loro combinazione lineare $x = k_1x_1 + k_2x_2$ è ancora un P-invariante; infatti, se $x_1^T C = x_2^T C = 0$, si ha anche $x^T C = (k_1x_1 + k_2x_2)^T C = k_1(x_1^T C) + k_2(x_2^T C) = 0$

P-invarianti canonici e a supporto minimo

Qual è il più piccolo insieme di P-invarianti, da cui si possano generare tutte le soluzioni?

Per rispondere a questa domanda occorre prima introdurre alcuni concetti nuovi:

- ▶ un P-invariante è detto *canonico* se il massimo comune divisore dei suoi elementi non nulli è pari a 1, ovvero se non esiste un altro P-invariante sottomultiplo di quello considerato
- ▶ il *supporto* di un P-invariante x è l'insieme, denotato con ||x||, dei posti corrispondenti ad elementi non nulli di x, ovvero $||x|| = \{p \in P \mid x_p \neq 0\}$
- ▶ un P-invariante è detto a *supporto minimo* se il suo supporto non contiene quello di nessun altro P-invariante della rete

Esempio

$$C^{T}x = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 1 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{vmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{vmatrix} = \begin{bmatrix} x_{1} - x_{3} \\ -x_{1} + x_{2} + x_{3} - x_{4} \\ -x_{2} + x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Il generico P-invariante è $x = [a \ b \ a \ b]^T$, con $a \ e \ b$ qualsiasi.

 $x_A = [1 \ 0 \ 1 \ 0]^T$ è un P-invariante (supporto: $||x_A|| = \{p_1, p_3\}$).

 $x_B = [0 \ 1 \ 0 \ 1]^T$ è un P-invariante (supporto: $||x_B|| = \{p_2, p_4\}$).

 $x_C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ è un P-invariante (pari alla somma di x_A e x_B).

 $x_D = [3 \ 0 \ 3 \ 0]^T$ è un P-invariante (coincide con $3x_A$).

Commenti:

- $ightharpoonup x_A$ e x_B sono P-invarianti a supporto minimo e canonici
- $ightharpoonup x_C$ un P-invariante canonico, ma non a supporto minimo
- \triangleright x_D è un P-invariante a supporto minimo, ma non canonico

Insieme generatore di P-invarianti positivi

L'insieme generatore di P-invarianti positivi è il più piccolo insieme di P-invarianti positivi PI_k , $1 \le k \le q$, tali che ogni altro P-invariante della rete è ottenibile tramite combinazione lineare degli invarianti PI_k .

Gli elementi dell'insieme generatore sono detti *P-invarianti minimi*.

Proprietà (servono per il calcolo dell'insieme generatore):

- ▶ un P-invariante è minimo, cioè appartiene all'insieme generatore di P-invarianti, se e solo se è canonico e a supporto minimo
- ▶ l'insieme generatore di P-invarianti è finito e unico

Invarianti e autoanelli

Si consideri una rete contenente un autoanello (rete *impura*) e la si confronti con la rete di Petri pura ottenuta eliminando l'autoanello.

Si può verificare che i P-invarianti e i T-invarianti della rete RP_I sono gli stessi della rete RP_P.

Complessivamente, è possibile quindi calcolare gli invarianti di una rete impura utilizzando la matrice di incidenza e le equazioni $x^TC = 0$ e Cy = 0, senza perdere informazione.

Infatti, l'effetto dello scatto della transizione *t* sulla marcatura delle due reti è identico, poiché la marcatura di *p* non varia per effetto dell'autoanello.

La differenza sta nell'abilitazione di t (in RP_P non è richiesto che p sia marcato). Quindi:

- ▶ poiché, per definizione, un P-invariante individua un insieme di posti in cui una combinazione lineare dei gettoni rimane costante, a prescindere dall'effettiva abilitazione delle transizioni coinvolte, l'aggiunta dell'autoanello risulta ininfluente; in altre parole, un P-invariante per RP_I lo è anche per RP_P, e viceversa
- ▶ analogamente, un T-invariante individua una possibile sequenza di scatti che riporta la rete nella marcatura iniziale; ora, poiché lo scatto della transizione *t* non muta la marcatura della rete in modo diverso tra RP_I e RP_P, le sequenze di scatti hanno lo stesso effetto nelle due reti (anche se una sequenza abilitata in RP_I potrebbe non esserlo per RP_P); in altre parole, un T-invariante per RP_I lo è anche per RP_P, e viceversa

Si verificano dei casi speciali quando la rete comprende dei posti o delle transizioni collegati al resto della rete solo attraverso un autoanello.

In questi casi, tali posti e tali transizioni costituiscono i supporti di altrettanti P-invarianti e T-invarianti, rispettivamente.

p è il supporto di un P-invariante Se una riga di C risulta tutta nulla (posto senza archi entranti o uscenti nella rete pura associata a C), il posto corrispondente è il supporto di un P-invariante.

t è il supporto di un T-invariante Se una colonna di C risulta tutta nulla (transizione senza archi entranti o uscenti nella rete pura associata a C), la transizione corrispondente è il supporto di un T-invariante.