

«Анализ и прогнозирование параметров лазерной фрезеровки нержавеющей стали»

Штамм Елена Васильевна

Содержание

□О технологии
□Данные
• •
П Анализ
□Предобработка данных
□Разработка и обучение
модели
□Тестирование модели
П Нейросеть
□Разработка приложения
□Выводы

О технологии

Лазерная фрезеровка – новый и перспективный способ обработки металла

Достоинства:

- □ точность («инструмент» 25-30 мкм)
- простота (3D-модель процесс результат)

Недостатки:

- высокие требования к поддержанию технологических параметров
- низкая скорость процесса
- □ сложный подбор режима требуется большое количество экспериментов

Данные

Отделом разработки лазерных технологий были предоставлены режимы и результаты технологических экспериментов:

Входные данные

Заданные:

- Мощность Р, Вт
- Скорость, мм/с
- Длительность импульса, нс
- Количество проходов, шт

Рассчитанные:

- Импульсная мощность, Вт
- Частота, кГц

Выходные данные

Измеренные:

- Глубина, мкм
- Ra, мкм
- Rz, mkm

Рассчитанные:

- Время выполнения, с
- Скорость фрезеровки, нм/с

Анализ

Основные этапы:

- Предобработка данных
 - StandardScaller
 - РСА (при необходимости)
- Разработка и обучение модели
 - Ансамблевый метод суммарное обобщение StackingRegressor
 - линейная регрессия
 - К-ближайших соседей
 - метод опорных векторов
 - случайный лес
 - многослойный перцептрон

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 1.4 GitHub

- Тестирование модели
 - MAE
 - **R2**

Предобработка данных

StandardSkeller из библиотеки Scikit-learn

Распределение данных до стандартизации

Распределение данных после стандартизации

Разработка и обучение модели

Pipeline машинного обучения:

Проведена настройка гиперпараметров

Положительной динамики в работе алгоритма не выявлено

Каждый алгоритм из StackingRegressor

Тестирование модели

Значения метрик качества моделей на тестовых данных

Нейронная сеть

Перед загрузкой в нейронную сеть, необходимо нормализовать данные. На неромализованных данных сеть выдаст непредсказуемо низкий результат. Применяем MinMaxScaller

Строение нейронной сети

1 слой – входной –

20 нейронов – гиперболический тангенс

2 слой – скрытый –

20 нейронов – SoftMax

3 слой – скрытый –

20 нейронов – SoftMax

4 слой – выходной –

1 нейрон – линейная

График ошибки нейронной сети

МАЕ на тестовых данных = 0,0494

Разработка приложения

Выводы

- Ни одна из выбранных моделей не дала хороших результатов.
- Лучше всех справилась модель RandomForestRegressor. R2 = 0,3967

Предполагаемые причины:

- Недостаточно данных в выборке
- Неверно выбраны алгоритмы обучения
- Неверно произведен отбор признаков

Необходимо провести работу еще раз на этой же выборке, отсеяв все вычисляемые параметры

do.bmstu.ru

