SoC Design Laboratory, 2023 Fall

Report of Lab3

R11942072 陳俊宇

Overview

本次 Lab 中,需要人工撰寫 RTL,完成具有 AXI Lite, AXI Stream interface 的 FIR (Finite impulse response) filter module。

Block Diagram

FIR Filter Computation without Shift Register

本次 Lab 要求 data 和 tap 必須存在 BRAM 裡面,由於 BRAM 難以進行 shift 的動作,因此必須重新設計 data 和 tap 的存取控制,我的構思如下圖所示:

從中我們可以觀察到 FIR filter 運算的規律:每次需要讀入一筆新的 data,而這筆 data 需要與 coef[0]相乘(上圖紅色標註),而上次讀入的 data 則是與 coef[1]相乘,以此類推,直到計算完 11 個相乘。

假如 data 是依照讀入順序存在各個 address,我們就只需要用一個 pointer 指向最新的 data address,從此 pointer 開始依序 accesses data BRAM,將讀出的 data 依序與 coef[0], coef[1]..., coef[11]相乘累加,即可完成 FIR filter 運算。

Resource usage

29	28 1. Slice Logic								
30 31 +	_								
31	!								
Site Type									
33	1								
34 Slice LUTs* 212 0 0 53200 0.40 35 LUT as Logic 212 0 0 53200 0.40 36 LUT as Memory 0 0 0 17400 0.00 37 Slice Registers 118 0 0 106400 0.11 38 Register as Flip Flop 115 0 0 106400 0.11 39 Register as Latch 3 0 0 106400 <0.01									
35 LUT as Logic 212 0 0 53200 0.40 36 LUT as Memory 0 0 0 17400 0.00 37 Slice Registers 118 0 0 106400 0.11 38 Register as Flip Flop 115 0 0 106400 0.11 39 Register as Latch 3 0 0 106400 <0.01									
36 LUT as Memory 0 0 0 17400 0.00 37 Slice Registers 118 0 0 0 106400 0.11 38 Register as Flip Flop 115 0 0 106400 0.11 39 Register as Latch 3 0 0 106400 <0.01			212	1 0	ı	0	5320	0 1	0.40
37 Slice Registers 118 0 0 106400 0.11 38 Register as Flip Flop 115 0 0 106400 0.11 39 Register as Latch 3 0 0 106400 <0.01	35 LUT as Logic	I	212	I 0	I	0	5320	0 1	0.40
38 Register as Flip Flop 115 0 0 106400 0.11 39 Register as Latch 3 0 0 106400 <0.01 40 F7 Muxes 0 0 0 26600 0.00	36 LUT as Memory	-1	0	I 0	1	0	1740	0 1	0.00
39 Register as Latch 3 0 0 106400 <0.01 40 1 F7 Muxes 0 0 0 26600 0.00	37	-1	118	I 0	1	0	10640	0 1	0.11
40 1 F7 Muxes 0 0 0 26600 0.00	88 Register as Flip Flop	1	115	1 0	1	0	10640	0 1	0.11
40 1 F7 Muxes 0 0 0 26600 0.00	9 Register as Latch	1	3	1 0	ı	0	10640	0 1	<0.01
					ı	0	2660	0 1	0.00
		ı	0	1 0	ī	0	1330	0 1	0.00

		В	Block]	RAM		
65 2. Memory						
66						
67						
68 +	+		·	+	++	
69 Site Type	l Us	sed l	Fixed	Prohibited	Available	Util%
70 +	+		·	+	++	
71 Block RAM Tile	1	0 1	I 0	I 0	l 140 l	0.00
72 RAMB36/FIFO*	1	0 1	I 0	I 0	l 140 l	0.00
73 I RAMB18	I	0 1	0	I 0	I 280 I	0.00
74 +	+			+	++	

Timing Report

首次嘗試合成時, cycle time 設為 10ns, timing report 顯示 setup slack 約為 6ns,故第二次合成設定 cycle time 為 4ns, timing report 如下:

觀察 Max Delay Path 的 Source 與 Destination,可知電路的 critical path 在於計算 data, coefficient 相乘並與累加的部分。 Setup slack 為 0.103ns。

Simulation Waveform

Coefficient 由 AXI lite interface 輸入, fir 接收後直接寫入 Tap BRAM。從波形可以看到,每當 wready=1 時,下個 cycle 就會有一筆 coefficient 寫入 Tap BRAM。

將 coefficient 從 Tap BRAM 讀出,並且從 AXI lite interface 輸出。從波形可以看到,當 rvalid=1 時,代表讀出的 coefficient 已經放在 rdata 上,準備好被讀出。

需要進行 FIR filter 計算的 input data 是由 AXI stream slave interface 輸入,每當 fir 準備好接收下一筆 data 時 (前一筆 data 已經存入 Data BRAM),就把 ss_tready 拉到 1,當 testbench 看到 ss tready=1 就會輸入下一筆 data。

運算完成的 output data 由 AXI stream slave interface 輸出,每當 fir 算完一筆 data 的結果,並且已經將結果放到 sm_tdata 上時,就可以把 sm_tvalid 拉到 1,當 testbench 看到 sm_tvalid=1 就會讀出 data 並且與 golden value 進行比對。