Specific Heat Capacity Lab

Vincent Edwards, Ali Mortada

 M
t. San Antonio College, Physics 4B, CRN 42240 March 3, 2023

1. Purpose

The goal of the experiment was to determine the specific heat capacities of various substances based on measurements of mass, temperature, power, and/or time. For parts 1 and 2 the material was known, so the calculated specific heat capacities could be compared to the accepted values. For part 3 the material was unknown, so its identity was guessed based on the calculated specific heat capacity.

2. Results

All three parts of the experiment involved a calculation of the mass of a sample of DI water (m_w) . In the experiment, we measured the combined mass of the water and the foam calorimeter it was in (m_{c+w}) , as well as the mass of the dry calorimeter (m_c) . Thus, m_w could be calculated using equation 1.

$$m_w = m_{c+w} - m_c \tag{1}$$

The uncertainty of m_w is given by equation 2.

$$\Delta m_w = \sqrt{\left(\frac{\partial m_w}{\partial m_c} \Delta m_c\right)^2 + \left(\frac{\partial m_w}{\partial m_{c+w}} \Delta m_{c+w}\right)^2}$$

$$= \sqrt{(\Delta m_c)^2 + (\Delta m_{c+w})^2}$$
(2)

In part 1 of the experiment, a sample of DI water stored in a foam calorimeter was heated using an immersion heater for about 2 minutes, and the resulting change in temperature was measured. Table 1 contains the measured values. m_c is the mass of the dry calorimeter measured with an electronic balance. m_{c+w} is the combined mass of the water and calorimeter measured with an electronic balance. T_i is the initial temperature of the water measured with a temperature probe. H is the heat current delivered by the immersion heater measured with a Watt meter. t is the time the immersion heater was on measured using a stopwatch. T_f is the final temperature of the water measured using a temperature probe.

Note: explain how uncertainty was approximated.

Table 1. Part 1 Measurements

Quantity	Value
$\overline{m_c}$	$33.02 \pm 0.01 \text{ g}$
m_{c+w}	$439.19 \pm 0.01 \; \mathrm{g}$
T_i	$20.2\pm0.4~^{\circ}\mathrm{C}$
H	$293\pm1~\mathrm{W}$
t	$120.2\pm0.2~\mathrm{s}$
T_f	$38.5\pm0.4^{\circ}\mathrm{C}$

 Table 2. Uncertainty Trials

Labic	 One
Run	T °C
1	99.0
2	99.1
3	98.8
4	98.7
5	98.6
6	99.0
7	99.1
8	99.1
9	99.0
10	98.9
11	98.8
12	98.8
13	99.1
14	99.2
15	99.1
16	99.2
17	99.1
18	99.1
19	99.2
20	99.1
21	99.0
22	99.1
23	99.3
24	99.0
25	98.8