Learning and Forgetting: The Dynamics of Aircraft Production

C. Lanier Benkard

Overview

Learning and Forgetting: The Dynamics of Aircraft Production

- Research Question: Explore the role of organizational forgetting and incomplete spillover on learning curve.
- Model organizational forgetting and incomplete spillover through learning.
- Estimate the model using 2SLS and GMM.
- Why is this interesting?:
 - Macroeconomics: economic scarring
 - Incomplete Spillover: Infant industry and optimal number of product
 - Human Capital and Organizational Structure

Data

Production of L-1011

- 1. L-1011 production (1970-1984): No subcontracted data.
- 2. **Jet Airline Production List Volume 2:** Model, Serial Number, Ownership history, date of completion
- Type of Aircraft: fuselage
 - Type 1 (L1011-1): -1, -100, -200
 - Type 2 (L1011-500): -500 with shorter fuselage
- Mechanisms: (1) Learning, (2) Forgetting, (3) Spillover

Aircraft Industry: Data

Unit labor requirement and output

Model of Commercial Aircraft Production

Learning

• Wright (1936): 20% Learning curve

• Leontief production function with fixed capital (\bar{K})

Adjust variable inputs at unit level (L,E,S) - Cobb Douglas efficient frontier

$$\ln L_i = \ln A(\bar{K}) + \theta \ln E_i + \gamma_0 \ln S_i + \varepsilon_i$$

Production Timeline:

Model of Commercial Aircraft Production

Forgetting and Spillover

Traditional Learning Model:

•
$$E_i = E_{i-1} + 1$$

General Learning Model

• Forgetting: Depreciation of Experience - Job turnover

Spillover: Optimal number of products

$$\mathsf{Experience}_i = \mathsf{Un-depreciated} \ \mathsf{Experience}_{i,t-1} \ + \ \mathsf{Production}_{i,t-1} \ - \ \lambda \mathsf{Production}_{-i,t-1}$$

Estimation

Instrumental Variable for Experience and Linespeed

Cobb Douglas Efficient Frontier

$$\ln L_i = \ln A(\bar{K}) + \theta \ln E_i + \gamma_0 \ln S_i + \varepsilon_i$$

- Instrument for Linespeed and Experience
 - Demand shifters: GDP, price of oil and time trend
 - Cost shifters: aluminum price, wage
- Estimate 2SLS for traditional learning model
- Estimate GMM (Hansen, 1982) for general learning model

Result: Traditional Learning Model

Table 1—Traditional Learning Model Regressions

	$\ln A$	θ	γ_0	γ_1	Time	Adj.+	Adj	SSR	ρ_e	L.R.
Basic regressions									=	danas adalam danas
1. Units 1-112	7.90	-0.51	_	_	_	_	—	1.36	0.73	30%
	(0.06)	(0.01)							(0.04)	والمتعاون والمتعاول
2. Units 1-238	7.16	-0.29	_	_	_	_		15.0	0.97	18%
	(0.08)	(0.02)							(0.02)	
Line speed					3					
3.	6.51	-0.35	0.95	-0.20		_		11.0	0.92	21%
	(0.21)	(0.02)	(0.17)	0.03					(0.03)	

Table 2—Traditional Learning Model Regressions: Input Prices and Diseconomies of Scope

	$\ln A$	θ	γ_0	γ_1	Wage	P_{AL}	P_{oil}	Scope	SSR	ρ_e	L.R.
Diseconomies of scope 6.	7.35 (0.10)	-0.49 (0.01)	0.49 (0.08)	-0.10 (0.02)	_	_		0.55 (0.02)	2.4	0.70 (0.04)	29%
Oil price 7.	5.88 (0.21)	-0.54 (0.03)	1.36 (0.17)	-0.27 (0.03)			0.27 (0.04)		9.3	0.83 (0.04)	32%
Input prices 8.	-15.9 (3.37)	-0.52 (0.03)	0.45 (0.18)	-0.09 (0.03)	8.68 (1.32)	0.50 (0.09)	_		10.0	0.81 (0.04)	30%
N = 238	TSS = 33.7							1			

Notes: All regressions are 2SLS. Instruments (Z_i) are present and lagged demand shifters (various world GDP measures, the price of oil, and a time trend; see text) and present and lagged cost shifters (U.S. wage rate, aluminum price). L.R. is the implied learning rate.

Result: General Learning Model

TABLE 3—GENERAL LEARNING MODEL REGRESSIONS

TABLE 3 GENERAL LEARNING MODEL REGRESSIONS													
	ln 2	4	θ	γ	0	δ	λ	S	SR	GMM	(p)	ρ_e	L.R.
OF only 9. $[S_N^* = 9.3]$	7.6 (0.0		-0.65 (0.02)		.	0.952 (0.003)	_		2.9	0.60		.51 .05)	36%
Spillovers 10. $[S_N^* = 6.9]$	7.7		-0.63 (0.03)			0.960 (0.003)	0.7 (0.0	<u> </u>	2.3	0.62		.45 .05)	36%
N = 238	TSS =	33.7			. Section 1		RESURES AND ADDRESS OF THE PARTY OF THE PART						
Table 4—Alternative Hypotheses													
	ln A	θ	γ ₀	δ	λ	Wage	P_{AL}	P_{oit}	Scope	SSR	GMM(p)	$\rho_{\scriptscriptstyle E}$	L.R.
Scope 11. $[S_N^* = 7.7]$	7.91 (0.01)	-0.71 (0.02)	0.13 (0.10)	0.954 (0.004)	0.73 (0.17)	_	_	—	-0.03 (1.92)	3.1	0.62	0.45 (0.05)	39%
Oil price 12. $[S_N^* = 9.0]$	7.72 (0.01)	-0.72 (0.02)	0.17 (0.05)	0.946 (0.002)	0.79 (0.05)			-0.003 (1.13)		3.3	0.89	0.51 (0.05)	39%
Input prices 13. $[S_N^* = 7.9]$	7.63 (0.13)	-0.70 (0.01)	0.14 (0.08)	0.952 (0.003)	0.77 (0.04)	0.06 (6.36)	0.009 (2.96)			2.9	0.78	0.46 (0.05)	38%
N = 238	TSS = 33.7												

Notes: All regressions in this table use the HAC-IV method described in the text. Instruments (Z_i) are present and lagged demand shifters (various world GDP measures, the price of oil, and a time trend; see text) and present and lagged cost shifters (U.S. wage rate, aluminum price). S_N^* is the optimal bandwidth used in estimating the GMM covariance and optimal weight matrices. L.R. is the implied learning rate.

Conclusion

Contribution

- Role of organizational forgetting to model learning
- Implication and Possible Extensions:
 - Macroeconomic implication of forgetting
 - Experience rate is a choice variable for firms.
 - Stochastic learning
 - Internalization of business stealing effects of product differentiation.