

Disciplina: INFERÊNCIA ESTATÍSTICA

Curso: Graduação em Estatística

Código: EST0035 Semestre: 2025.1

Professor: Frederico Machado Almeida

LISTA DE EXERCÍCIOS #02

Observações:

• Questões para entregar: 1, 2, 5, 8 e 10

• Demais questões são apenas para estudar.

• Prazo de entrega: 30/04/2025

Q1. Considere a distribuição de Pareto com função densidade de probabilidade (fdp) dada por:

$$f(x, \theta, \alpha) = \frac{\theta \alpha^{\theta}}{x^{(\theta+1)}}, \text{ para } x \ge \alpha, \theta > 1,$$

onde α e θ são parâmetros da distribuição. Assuma $\alpha = 2$ e que X_1, X_2, \dots, X_n é uma amostra aleatória de tamanho n. A média para a distribuição de Pareto é dada por $E(X) = \frac{\theta^{\alpha}}{\theta - 1}$.

(a) Encontre o estimador dos momentos para a média.

Resposta: Segue do enunciado que o parâmetro α é conhecido, e igual a 2. Nisso, a esperança matemática (ou primeiro momento populacional), será dada por: $\mu_1 = \mathbb{E}\left(X\right) = \frac{2\theta}{\theta-1}$. Entretanto, o estimador dos momentos para a média, digamos $\hat{\theta}_n^*$ será obtido igualando o momento populacional, μ_1 com seu correspondente amostral, $m_1 = \bar{X}_n = \sum\limits_{i=1}^n X_i/n$. Desta forma, $\mu_1 = \bar{X}_n \Longleftrightarrow \frac{2\theta}{\theta-1} = \bar{X}_n \Longleftrightarrow 2\theta = \theta \bar{X}_n - \bar{X}_n \Longleftrightarrow \theta \left(\bar{X}_n - 2\right) = \bar{X}_n \Longleftrightarrow \hat{\theta}_n^* = \frac{\bar{X}_n}{\bar{X}_n-2}$ denota o estimador dos momentos para θ .

(b) Encontre o EMV para θ . Este estimador é diferente daquele obtido no item (a)?

Resposta: Observe que, como $\alpha = 2$, a fdp associada a va~X será dada por: $f(x, \theta, \alpha = 2) = \theta 2^{\theta} x^{-(\theta+1)}$, com $x \ge 2$ e $\theta > 0$. Portanto, a densidade conjunta (ou função de verossimilhança) associada a $aa~X_1, X_2, \cdots, X_n$ é dada por:

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta) = \prod_{i=1}^{n} \theta 2^{\theta} x_i^{-(\theta+1)} = (\theta 2^{\theta})^n \prod_{i=1}^{n} x_i^{-(\theta+1)}.$$

Assim, aplicando o logaritmo da função de verossimilhança acima, obtemos o seguinte resultado,

$$\ell(\theta) = \log L(\theta) = n \log(\theta) + n\theta \log(2) - (\theta + 1) \sum_{i=1}^{n} \log(x_i),$$

que resulta na seguinte função de verossimilhança:

$$\ell'(\theta) = \frac{\partial \ell(\theta)}{\partial \theta} = n \log(2) + \frac{n}{\theta} - \sum_{i=1}^{n} \log(x_i).$$

Igualando a 0 a função escore, e resolvendo a equação resultante, obtemos o seguinte resultado: $\frac{\partial \ell(\theta)}{\partial \theta} = 0 \iff n \log{(2)} + \frac{n}{\theta} - \sum_{i=1}^{n} \log{(x_i)} = 0$, resultando em $\hat{\theta}_n = \frac{n}{\sum\limits_{i=1}^{n} \log(x_i) - n \log(2)}$, que denota o candidato a estimador de máxima

verossimilhança para θ . Portanto, vamos verificar se $\hat{\theta}_n$ é um máximo global, ou local. Para tal, vamos calcular a derivada de segunda ordem,

 $\ell''(\theta) = \frac{\partial^2 \ell(\theta)}{\partial \theta^2} = -\frac{n}{\theta^2} \Big|_{\theta = \hat{\theta}_n} < 0$, para todo $n \in \mathbb{N}$. E portanto, $\hat{\theta}_n$ é um máximo global, e como pode ser observado, o estimador de máxima verossimilhança é diferente daquele obtido por meio do método dos momentos, item (a).

(c) Considere os dados observados para a amostra aleatória: 3, 5, 2, 3, 4, 1, 4, 3, 3, 3. Obtenha a estimativa para θ usando os estimadores obtidos nos itens (a) e (b). Resposta: Observe que, com base nos dados observados da va X, as seguintes estimativas podem ser obtidas: $\bar{X} = \frac{\sum\limits_{i=1}^{n} X_i}{n} = \frac{31}{10} = 3, 1$ e $\sum\limits_{i=1}^{n} \log{(X_i)} = 10, 57$.

$$\hat{\theta}^* = \frac{\bar{X}_n}{\bar{X}_n - 2} = \frac{3, 1}{3, 1 - 2} \approx 2,82$$

$$\hat{\theta} = \frac{n}{\sum_{i=1}^n \log(x_i) - n \log(2)} = \frac{10}{10,57 - 10 \log(2)} \approx 2,75$$

que denotam as estimativas dos momentos, e de máxima verossimilhança, respectivamente.

Q2. Seja X_1, \dots, X_n uma amostra aleatória da variável aleatória X com distribuição exponencial com parâmetro θ . Encontre o estimador de máxima verossimilhança para a função $g(\theta) = P(X > 1)$ e sua distribuição aproximada quando n for grande.

Resposta: A função densidade de probabilidade da distribuição exponencial é dada por:

$$f_X(x,\theta) = \theta e^{-\theta x}, \quad x \ge 0, \quad \theta > 0$$

Queremos estimar $g(\theta) = P(X > 1)$. Usando a definição de probabilidade acumulada:

$$P(X > 1) = 1 - P(X \le 1) = 1 - F_X(1),$$

em que $F_X(x)$ é a função de distribuição acumulada. Para a distribuição exponencial:

$$F_X(x) = \int_0^x f_X(t) dt = \int_0^x \theta e^{-\theta t} dt = 1 - e^{-\theta x}.$$

Então:

$$P(X > 1) = 1 - (1 - e^{-\theta \cdot 1}) = e^{-\theta} = g(\theta),$$

Uma vez desenvolvido o $g(\theta)$, passaremos para a etapa da estimação de θ pelo método da máxima verossimilhança. A função verossimilhança para uma amostra $X_1, ..., X_n$ é dada por:

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta) = \prod_{i=1}^{n} \theta e^{-\theta x_i},$$

Assim, aplicando o logaritmo da função de verossimilhança acima, obtemos o seguinte resultado,

$$\ell'(\theta) = \log L(\theta) = n \log(\theta) - \theta \sum_{i=1}^{n} x_i,$$

que resulta na seguinte função de verossimilhança:

$$\ell'(\theta) = \frac{\partial l(\theta)}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^{n} x_i = 0 \quad \Rightarrow \quad \hat{\theta}_n = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\bar{X}}.$$

que denota o candidato a estimador de máxima verossimilhança para θ . Portanto, vamos verificar se $\hat{\theta}_n$ é um máximo global ou local. Para tal, vamos calcular a derivada de segunda ordem.

$$\ell''(\theta) = \frac{\partial^2 \ell(\theta)}{\partial \theta^2} = -\frac{n}{\theta^2} \bigg|_{\theta = \hat{\theta}_n} < 0,$$

para todo $n \in \mathbb{N}$. E portanto, $\hat{\theta}_n$ é um máximo global, e como pode ser observado, o estimador de máxima verossimilhança Logo:

$$g(\hat{\theta}) = e^{-\hat{\theta}} = e^{-\frac{1}{\bar{X}}}.$$

Ou seja, $e^{-\frac{1}{X}}$ é o estimador de máxima verossimilhança de $g(\theta)=P(X>1)$.

Para calcular sua distribuição aproximada quando n grande, temos que, como X_1, X_2, \ldots, X_n são amostras de uma exponencial e pelo TLC, considerando n suficientemente grande, temos que:

$$\bar{X} \sim \mathcal{N}\left(\frac{1}{\theta}, \frac{1}{n\theta^2}\right), n \to \infty$$

pois

$$\mathbb{E}[X] = \frac{1}{\theta}$$
 e $\operatorname{Var}(X) = \frac{1}{\theta^2}$

Desse modo, utilizaremos o método delta para encontrar a distribuição de $\hat{\theta}$. Temos que:

$$\hat{\theta} = g(\bar{X}) = \frac{1}{\bar{X}}$$

Ou seja, usando a fórmula dos slides:

$$g(\bar{X}) \sim \mathcal{N}\left(g(\mu), (g'(\mu))^2 \operatorname{Var}(\bar{X})\right)$$

Substituindo μ pelo valor da média:

$$g(\bar{X}) \sim \mathcal{N}\left(g\left(\frac{1}{\theta}\right), \left(g'\left(\frac{1}{\theta}\right)\right)^2 \operatorname{Var}(\bar{X})\right)$$

Sendo assim, temos que:

$$g(\mu) = g\left(\frac{1}{\theta}\right) = \theta,$$

Derivando, temos:

$$g'(\mu) = g'\left(\frac{1}{\theta}\right) = -\left(\frac{1}{\left(\frac{1}{\theta}\right)^2}\right) = -\theta^2.$$

Logo, calculando a variância:

$$Var(\hat{\theta}) = (g'(\mu))^2 Var(\bar{X})$$
(1)

$$= (-\theta^2)^2 \frac{1}{n} \operatorname{Var}(X) \tag{2}$$

$$=\theta^4 \frac{1}{n\theta^2} \tag{3}$$

$$= \theta^4 \frac{1}{n\theta^2}$$

$$= \frac{\theta^2}{n}.$$
(3)

Logo, para n suficientemente grande, a distribuição aproximada de $\frac{1}{X}$ é:

$$\frac{1}{\bar{X}} = \hat{\theta} \sim \mathcal{N}\left(\theta, \frac{\theta^2}{n}\right).$$

Q3. Suponha que em um experimento de Bernoulli, envolvendo 24 repetições independentes resultou em 15 sucessos. Encontre a estimativa de máxima verossimilhança para a probabilidade de sucesso θ , se é do conhecimento do pesquisador que $\theta \leq 1/2$.

Resposta: Queremos encontrar a estimativa de máxima verossimilhança para θ , considerando a restrição. Para um experimento de Bernoulli repetido n vezes (modelo binomial):

$$L(\theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}$$

Tomando o logaritmo:

$$\ell(\theta) = \log\left(\binom{n}{x}\right) + x\log(\theta) + (n-x)\log(1-\theta)$$

Derivamos a log-verossimilhança:

$$\frac{d}{d\theta}\ell(\theta) = \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0$$

Multiplicamos cruzado e isolamos θ de forma que: $x(1-\theta)=(n-x)\theta \Rightarrow x-x\theta=n\theta-x\theta \Rightarrow x=n\theta$. Desse modo, temos que $\hat{\theta}=\frac{x}{n}$

Substituindo os valores:

$$\hat{\theta} = \frac{15}{24} = 0,625$$

Entretanto, como $\hat{\theta} = 0,625 > \frac{1}{2}$, ele não satisfaz a restrição.

Portanto, para maximizar a verossimilhança dentro do intervalo permitido, a EMV será $\hat{\theta} = \frac{1}{2}$.

Q4. Seja X_1, \dots, X_n uma amostra aleatória de tamanho n da variável aleatória X com função de densidade de probabilidade,

$$f(x|\theta) = \frac{\theta}{(1+x)^{1+\theta}}, \ x > 0, \ \theta > 0.$$

(a) Encontre, caso exista, uma forma analítica para o estimador de máxima verossimilhança de θ .

Resposta: Primeiramente encontraremos a função de verossimilhança, sendo:

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \prod_{i=1}^{n} \frac{\theta}{(1+x_i)^{1+\theta}} = \theta^n \prod_{i=1}^{n} \frac{1}{(1+x_i)^{1+\theta}} = \theta^n \prod_{i=1}^{n} (1+x_i)^{-(1+\theta)}.$$

Calculamos o logaritmo da função de verossimilhança:

$$\ell(\theta) = \log L(\theta) = \log(\theta^n) - (1+\theta) \sum_{i=1}^n \ln(1+x_i) = n \ln \theta - (1+\theta) \sum_{i=1}^n \ln(1+x_i).$$

Para obter o estimador, derivamos $\ell(\theta)$ em relação a θ e igualamos a zero:

$$\frac{d}{d\theta}\ell(\theta) = \frac{n}{\theta} - \sum_{i=1}^{n} \ln(1+x_i) = 0.$$

Da equação acima, temos:

$$\frac{n}{\theta} = \sum_{i=1}^{n} \ln(1+x_i) \quad \Longrightarrow \quad \hat{\theta}_n = \frac{n}{\sum_{i=1}^{n} \ln(1+x_i)}.$$

Para confirmar que este ponto é de máximo, verificamos a segunda derivada:

$$\frac{d^2}{d\theta^2}\ell(\theta) = -\frac{n}{\theta^2},$$

a qual é negativa para $\theta > 0$. Portanto, o estimador de máxima verossimilhança é:

$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} \ln(1+x_i)}.$$

(b) Obtenha a informação de Fisher e sua distribuição aproximada em grandes amostras.

Resposta:

A informação de Fisher é definida por:

$$I(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2} \ln \ell(\theta)\right].$$

Como já foi calculado no item anterior, temos que

$$I_n(\theta) = \mathbb{E}\left[\frac{n}{\theta^2}\right] = \frac{n}{\theta^2}.$$

Sabe-se pelas propriedades dos estimadores de máxima verossimilhança que eles são assintoticamente normais, ou seja, considerando n suficientemente grande temos que:

$$\hat{\theta} \overset{a}{\sim} N\left(\theta, \frac{1}{I_n(\theta)}\right) = N\left(\theta, \frac{\theta^2}{n}\right).$$

- **Q5.** Seja X_1, X_2, \dots, X_n cópias iid's de uma va $X \sim U(a, b)$, com $a \in b$ denotando parâmetros desconhecidos e a < b.
 - (a) Encontre o estimador dos momentos para $a \in b$.
 - (b) Encontre o EMV para a e b.
 - (c) Usando a propriedade de invariância dos EMV, encontre o EMV para $g(a,b) = E(X^2)$.
 - (d) Os EMV obtidos em (b) são consistentes para a e b? Justifique a sua resposta.
- **Q6.** Seja X_1, \dots, X_n uma amostra aleatória de tamanho n da variável aleatória X com função de densidade de probabilidade dada por,

$$f(x|\theta) = \theta(\theta+1) x^{\theta-1} (1-x), \ 0 \le x \le 1, \ \theta > 0.$$

(a) Encontre, usando o método dos momentos, um estimador para θ .

Resposta: Tal como no caso anterior, o estimador dos momentos de um parâmetro θ é obtido igualando o momento populacional, $\mu_1 = \mathbb{E}(X)$ com o correspondente momento amostral, $m_1 = \bar{X}_n$. Desta forma, sabe-se que,

$$\mathbb{E}(X) = \int_{0}^{1} x f(x|\theta) dx = \int_{0}^{1} x \theta(\theta+1) x^{\theta-1} (1-x) dx = \int_{0}^{1} \theta(\theta+1) x^{\theta} (1-x) dx$$
$$= \theta \int_{0}^{1} (1-x) d(x^{\theta+1}) = \frac{\theta}{\theta+2}.$$

Portanto, igualando o momento populacional, com o amostral, obtemos o seguinte resultado, $\mu_1 = m_1 \iff \frac{\theta}{\theta+2} = \bar{X}_n \iff \theta = \theta \bar{X}_n + 2\bar{X}_n \iff \hat{\theta}_n^* = \frac{2\bar{X}_n}{1-\bar{X}_n}$, que denota o estimador dos momentos para θ .

(b) Encontre o estimador de máxima verossimilhança de θ e sua distribuição aproximada em grandes amostras.

Resposta: Com base na função densidade de probabilidade $f(x|\theta)$, podemos obter facilmente a função de verossimilhança (ou densidade conjunta), da seguinte forma,

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta) = \prod_{i=1}^{n} \theta(\theta+1) x_i^{\theta-1} (1-x_i) = \theta^n (\theta+1)^n \prod_{i=1}^{n} x_i^{\theta-1} (1-x_i),$$

resultando na seguinte função log-verossimilhança,

$$\ell(\theta) = \log L(\theta) = n \log(\theta) + n \log(\theta + 1) + (\theta - 1) \sum_{i=1}^{n} \log(x_i) + \sum_{i=1}^{n} (1 - x_i).$$

Ademais, a função escore (primeira derivada da função de verossimilhança), é dada por:

$$\ell'(\theta) = \frac{n}{\theta} + \frac{n}{\theta+1} + \sum_{i=1}^{n} \log(x_i) = \frac{2n\theta+\theta}{\theta(\theta+1)} + \sum_{i=1}^{n} \log(x_i),$$

que igualando a zero, $\ell'(\theta) = 0 \iff \frac{2n\theta+n}{\theta(\theta+1)} + \sum_{i=1}^n \log\left(x_i\right) = 0$, que permite encontrar uma forma fechada para o estimador de máxima verossimilhança para θ , e portanto, métodos numéricos devem ser considerados para computar $\hat{\theta}_n$. Ademais, segue do Teorema Central do Limite (TCL) que, se $\hat{\theta}_n$ denota o estimador de máxima verossimilhança para θ , e $I_n(\theta_0)$ denota a informação de Fisher, então, $\hat{\theta}_n \sim \mathcal{N}\left(\theta_0, I_n^{-1}\left(\theta_0\right)\right)$, quando $n \to +\infty$. Note que, $I_n(\theta) = \mathbb{E}\left[-\ell''(\theta)\right]$, com $\ell''(\theta) = -\frac{n}{\theta^2} - \frac{n}{(\theta+1)^2}$.

- (c) É correto afirmar que $\hat{\theta}_n$ é um estimador eficiente? Resposta: Observe que, por conta da impossibilidade de obter um estimador de máxima verossimilhança na sua forma fechada, a consistência de $\hat{\theta}_n$ pode ser avaliada usando igualmente os métodos numéricos.
- (d) Obtenha o estimador de máxima verossimilhança para θ , supondo que uma restrição do suporte de θ , isto é, se $0 \le \theta \le 3$. Resposta: Supondo que $\hat{\theta}_n$ denota o estimador (estimativa) de máxima verossimilhança para θ , então, $\tilde{\theta}_n = min\{\hat{\theta}_n, 3\}$, denota o estimador/estimativa de máxima verossimilhança, para θ , no caso em que o suporte de θ apresenta alguma restrição.
- **Q7.** Seja X_1, X_2, \dots, X_n uma aa retirada de uma população com média β e variância σ^2 . Seja $\hat{\beta}$ um estimador para β dado por $\hat{\beta} = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n i}$.
 - (a) Verifique se $\hat{\beta}$ é um estimador não-viesado para β . Resposta: Para checar se um estimador é não-viesado precisamos calcular sua esperança.

$$E(\hat{\beta}) = E\left(\frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} i}\right) = \frac{1}{\sum_{i=1}^{n} i} E\left(\sum_{i=1}^{n} i X_i\right) = \frac{1}{\sum_{i=1}^{n} i} \sum_{i=1}^{n} i E(X_i).$$

Como $E(X_i) = \beta$ para todo i, segue que:

$$E\left(\hat{\beta}\right) = \frac{1}{\sum_{i=1}^{n} i} \beta \sum_{i=1}^{n} i = \beta.$$

Portanto, o estimador $\hat{\beta}$ é não-viesado para β .

(b) Mostre que $\hat{\beta}$ é um estimador consistente para β (dica: assuma que, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ e $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$).

Resposta: Um estimador é consistente se:

- $\lim_{n\to\infty} E_{\beta}(\hat{\beta}) = \beta$
- $\lim_{n\to\infty} Var_{\theta}(\hat{\beta}) = 0$

Já vimos no item (a) que o estimador $\hat{\beta}$ atende ao primeiro ponto. Agora temos que calcular a variância do estimador. Como o estimador é uma combinação linear dos X_i , temos:

$$\operatorname{Var}\left(\hat{\beta}\right) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} i \, X_i}{\sum_{i=1}^{n} i}\right) = \frac{1}{\left(\sum_{i=1}^{n} i\right)^2} \operatorname{Var}\left(\sum_{i=1}^{n} i \, X_i\right).$$

Assumindo independência dos X_i , temos:

$$\operatorname{Var}\left(\sum_{i=1}^{n} i X_{i}\right) = \sum_{i=1}^{n} i^{2} \operatorname{Var}(X_{i}) = \sigma^{2} \sum_{i=1}^{n} i^{2}.$$

Logo,

$$\operatorname{Var}\left(\hat{\beta}\right) = \frac{\sigma^2 \sum_{i=1}^n i^2}{\left(\sum_{i=1}^n i\right)^2}.$$

Substituindo as somas conhecidas utilizando a dica:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad e \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Dessa forma, a variância fica:

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2 \cdot \frac{n(n+1)(2n+1)}{6}}{\left(\frac{n(n+1)}{2}\right)^2}$$

$$= \sigma^2 \cdot \frac{n(n+1)(2n+1)/6}{n^2(n+1)^2/4}$$

$$= \sigma^2 \cdot \frac{n(n+1)(2n+1)}{6} \cdot \frac{4}{n^2(n+1)^2}$$

$$= \frac{4\sigma^2(2n+1)}{6n(n+1)}$$

$$= \frac{2\sigma^2(2n+1)}{3n(n+1)}$$

$$= \frac{\sigma^2(4n+2)}{3n^2+3n}$$

Portanto, calcularemos o limite dessa variância quando n tende ao infinito. Para isso, dividiremos cada termo da nossa fração por n. Aplicando no limite teremos:

$$\lim_{n \to \infty} \frac{\sigma^2(\frac{4}{n} + \frac{2}{n^2})}{3 + \frac{3}{n}} = \frac{\sigma^2(0+0)}{3+0} = 0$$

Por conseguinte, vimos que $\hat{\beta}$ satisfaz os critérios de consistência para β .

Q8. Se X_1, X_2, \dots, X_n uma amostra aleatória proveniente de uma distribuição com função densidade de probabilidade,

$$f(x|\theta) = \begin{cases} \frac{3\theta^3}{(x+\theta)^4} & x > 0, \ \theta > 0\\ 0 & \text{caso contrário.} \end{cases}$$

Mostre que $T_n = 2\bar{X}_n$ é um estimador não-viesado para θ , e obtenha a sua eficiência. Resposta: Primeiramente, verificaremos se o estimador é não-viesado:

$$\mathbb{E}[T_n] = \mathbb{E}[2\bar{X}n] = \frac{2}{n} \sum_{i=1}^n \mathbb{E}[x_i] = 2\mathbb{E}[X],$$

Desse modo, calcularemos a esperança por meio da integral a seguir:

$$\mathbb{E}[X] = \int_0^\infty x f(x|\theta) \, dx = \int_0^\infty x \frac{3\theta^3}{(x+\theta)^4} \, dx$$

Faremos a mudança de variável substituindo: $x + \theta = u \Rightarrow x = u - \theta$. Quando $x = 0 \Rightarrow u = 0$, e quando $x \to \infty \Rightarrow u \to \infty$. Desse modo, substituindo:

$$E[X] = \int_{\theta}^{\infty} (u - \theta) \frac{3\theta^3}{u^4} du$$

$$= 3\theta^3 \left[\int_{\theta}^{\infty} \frac{u}{u^4} du - \theta \int_{\theta}^{\infty} \frac{1}{u^4} du \right]$$

$$= 3\theta^3 \left(\int_{\theta}^{\infty} \frac{1}{u^3} du - \theta \int_{\theta}^{\infty} \frac{1}{u^4} du \right)$$

$$= 3\theta^3 \left(\left[-\frac{1}{2u^2} \Big|_{\theta}^{\infty} \right] - \theta \left[-\frac{1}{3u^3} \Big|_{\theta}^{\infty} \right] \right)$$

$$= 3\theta^3 \left(\frac{1}{2\theta^2} - \frac{\theta}{3\theta^3} \right)$$

$$= \frac{3}{2}\theta - \theta$$

$$= \frac{\theta}{2}$$

Substituindo para encontrarmos a esperança de T_n .

$$\mathbb{E}[T_n] = 2\mathbb{E}[X] = \theta$$

Ou seja, o estimador T_n é não-viesado para θ . Para se calcular a eficiência é necessário encontrar a variância do estimador, assim como seu limite inferior de Cramer-Rao. Começando pela variância:

$$Var(T_n) = Var(2\bar{X}_n) = \frac{4}{n}Var(X) = \frac{4}{n} \left(\mathbb{E}[X^2] - \mathbb{E}[X]^2 \right)$$

Já temos $\mathbb{E}[X]$, então agora calcularemos $\mathbb{E}[X^2]$.

$$\mathbb{E}[X^{2}] = \int_{0}^{\infty} x^{2} f(x|\theta) dx = \int_{0}^{\infty} \frac{x^{2} 3\theta^{3}}{(x+\theta)^{4}} dx$$

Faremos a mesma mudança de variável da integral anterior: $x + \theta = u \Rightarrow x = u - \theta$. Quando $x = 0 \Rightarrow u = 0$, e quando $x \to \infty \Rightarrow u \to \infty$. Desse modo, substituindo:

$$\mathbb{E}[X] = \int_{\theta}^{\infty} (u - \theta)^2 \frac{3\theta^3}{u^4} du$$

$$= 3\theta^3 \int_{\theta}^{\infty} \frac{(u - \theta)^2}{u^4} du$$

$$= 3\theta^3 \left[\int_{\theta}^{\infty} \frac{1}{u^2} du - 2\theta \int_{\theta}^{\infty} \frac{1}{u^3} du + \theta^2 \int_{\theta}^{\infty} \frac{1}{u^4} du \right]$$

$$= 3\theta^3 \left(\left[-\frac{1}{u} \right]_{\theta}^{\infty} \right] - 2\theta \left[-\frac{1}{2u^2} \right]_{\theta}^{\infty} \right] + \theta^2 \left[-\frac{1}{3u^3} \right]_{\theta}^{\infty} \right]$$

$$= 3\theta^3 \left[\frac{1}{\theta} - \frac{1}{\theta} + \frac{1}{3\theta} \right]$$

$$= 3\theta^3 \cdot \frac{1}{3\theta}$$

$$= \theta^2$$

Portanto:

$$Var(T_n) = \frac{4}{n} \left(\theta^2 - \left(\frac{\theta}{2} \right)^2 \right)$$
$$= \frac{4}{n} \left(\theta^2 - \frac{\theta^2}{4} \right)$$
$$= \frac{3\theta^2}{n}.$$

Para o cálculo do LICR é necessário encontrar a informação de Fisher, que é definida como:

$$I_1(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2}\log(f(x|\theta))\right]$$

Desse modo, aplicando o logaritmo na densidade:

$$\log f(x|\theta) = \log(3) + 3\log(\theta) - 4\log(x+\theta)$$

Calculando sua primeira derivada:

$$\frac{\partial \log(f(x|\theta))}{\partial \theta} = \frac{3}{\theta} - \frac{4}{x+\theta}$$

Agora a segunda derivada:

$$\frac{\partial^2 \log(f(x|\theta))}{\partial \theta^2} = \frac{-3}{\theta^2} + \frac{4}{(x+\theta)^2}$$

Dessa forma, a informação de Fisher se dá por:

$$I(\theta) = E\left[-\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right]$$
$$= E\left[\frac{3}{\theta^2} - \frac{4}{(x+\theta)^2}\right]$$
$$= \frac{3}{\theta^2} - 4E\left[\frac{1}{(x+\theta)^2}\right]$$

Calcularemos a esperança necessária para a informação de Fisher usando integral.

$$E\left[\frac{1}{(x+\theta)^2}\right] = \int_0^\infty \frac{1}{(x+\theta)^2} f(x|\theta) dx$$
$$= \int_0^\infty \frac{1}{(x+\theta)^2} \cdot \frac{3\theta^3}{(x+\theta)^4} dx$$
$$= 3\theta^3 \int_0^\infty \frac{1}{(x+\theta)^6} dx$$

Faremos a mesma mudança de variável das integrais anteriores: $x + \theta = u \Rightarrow x = u - \theta$. Quando $x = 0 \Rightarrow u = 0$, e quando $x \to \infty \Rightarrow u \to \infty$. Desse modo, substituindo:

$$E\left[\frac{1}{(x+\theta)^2}\right] = 3\theta^3 \int_{\theta}^{\infty} \frac{1}{u^6} du$$
$$= 3\theta^3 \left[\frac{-1}{5u^5}\Big|_{\theta}^{\infty}\right]$$
$$= \frac{3\theta^3}{5\theta^5}$$
$$= \frac{3}{5\theta^2}$$

Desse modo, a informação de Fisher se derá por:

$$I_1(\theta) = \frac{3}{\theta^2} - 4 \cdot \frac{3}{5\theta^2} = \frac{3}{\theta^2} - \frac{12}{5\theta^2} = \frac{15 - 12}{5\theta^2} = \frac{3}{5\theta^2}$$

Portanto,

$$I_n(\theta) = nI_1(\theta) = \frac{3n}{5\theta^2}$$

Sendo que vimos que $E[T_n] = \theta = m(\theta)$, ou seja, $m'(\theta) = 1$. Portanto:

LIRC =
$$\frac{[m'(\theta)]^2}{I_n(\theta)} = \frac{1}{\frac{3n}{5\theta^2}} = \frac{5\theta^2}{3n}$$

Desse modo, teremos que:

$$eff(T_n) = \frac{\text{LIRC}(T_n)}{Var(T_n)} = \frac{5\theta^2}{3n} \frac{n}{3\theta^2} = \frac{5}{9} \neq 1$$

Portanto, como $eff(T_n) \neq 1$, diz-se que T_n não é um estimador eficiente

- **Q9.** Seja X uma variável aleatória, tal que, $X \sim \mathcal{N}(0, \theta)$, com $\theta > 0$.
 - (a) Se X_1, \dots, X_n é uma amostra aleatória extraída da população supracitada, mostre que o estimador de máxima verossimilhança $\hat{\theta}_n$ é eficiente para θ .

Resposta: Segue do enunciado que, sendo $X \sim \mathcal{N}(0,\theta)$, sua fdp é dada por: $f(x|\theta) = (2\pi\theta)^{-1/2} \exp\left(-\frac{x^2}{2\theta}\right)$. Portanto, a função de verossimilhança correspondente, é dada por:

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta) = \prod_{i=1}^{n} (2\pi\theta)^{-1/2} \exp\left(-\frac{x_i^2}{2\theta}\right) = (2\pi\theta)^{-n/2} \exp\left(-\frac{1}{2\theta} \sum_{i=1}^{n} x_i^2\right).$$

Aplicando o logaritmo na expressão anterior, obtemos o seguinte expressão para a função log-verossimilhança:

$$\ell(\theta) = -\frac{n}{2} \left[\log(2\pi) + \log(\theta) \right] - \frac{1}{2\theta} \sum_{i=1}^{n} x_i^2.$$

Assim, a derivada da primeira ordem da log-verossimilhança, e igualando a zero, obtemos o seguinte resultado,

$$\ell'(\theta) = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^{n} x_i^2 = 0,$$

resultando imediatamente em, $-\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^n x_i^2 = 0 \iff \frac{n}{2\theta} = \frac{1}{2\theta^2} \sum_{i=1}^n x_i^2 \iff \hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n x_i^2$, que é um candidato a estimador de máxima verossimilhança para θ . Ademais, a segunda derivada da log-verossimilhança será dada por, $\ell''(\theta) = \frac{\partial^2 \ell(\theta)}{\partial \theta^2} \Big|_{\theta = \hat{\theta}_n} = \frac{n}{2\hat{\theta}^2} - \frac{1}{\hat{\theta}^3} \sum_{i=1}^n x_i^2 < 0$.

Bom, com base no resultado anterior, segue que

$$I_{n}(\theta) = \mathbb{E}_{\theta}(-\ell''(\theta)) = -\mathbb{E}_{\theta}\left[\frac{n}{2\theta^{2}} - \frac{1}{\theta^{3}}\sum_{i=1}^{n}X_{i}^{2}\right]$$

$$= \frac{1}{\theta^{3}}\sum_{i=1}\mathbb{E}_{\theta}(X_{i}^{2}) - \frac{n}{2\theta^{2}} = \frac{1}{\theta^{3}}\sum_{i=1}Var(X_{i}) - \frac{n}{2\theta^{2}}$$

$$= \frac{n\theta}{\theta^{3}} - \frac{n}{2\theta^{2}} = \frac{n}{\theta^{2}} - \frac{n}{2\theta^{2}} = \frac{n}{2\theta^{2}}.$$

Observe que a variância de $\hat{\theta}_n$ será computada usando a distribuição amostral de $\hat{\theta}_n$, conforme o resultado anterior, segue que, como $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ é o estimador de máxima verossimilhança para θ , então, $\mathbb{E}_{\theta}\left(\hat{\theta}_n\right) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\theta}\left(X_i^2\right) = \frac{n\theta}{n} = \theta$. Ou seja, com $\mu = 0$ concluímos que o estimador de máxima verossimilhança para θ é não-viesado. Portanto, uma forma simples de obter a variância de $\hat{\theta}_n$ seria usando a distribuição da variância amostral, conforme apresentado em sala de aula (segue dos slides de aula, INF02-GRAD) que, sendo $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2 \Longleftrightarrow n\hat{\theta}_n = \sum_{i=1}^n X_i^2$. Dividindo os dois membros por θ (variância populacional), obte-

mos o seguinte resultado, $\frac{n\hat{\theta}_n}{\theta} = \frac{\sum\limits_{i=1}^n X_i^2}{\theta} \sim \chi_{(n)}^2$. Ou seja, que a quantidade $U = \frac{n\hat{\theta}_n}{\theta}$ segue uma distribuição Qui-Quadrado com n graus de liberdade. Nisso, conforme apresentando em sala de aula, $\mathbb{E}(U) = n$ e Var(U) = 2n. Assim, $\mathbb{E}(U) = \mathbb{E}\left(\frac{n\hat{\theta}_n}{\theta}\right) = n \iff \frac{n}{\theta}\mathbb{E}\left(\hat{\theta}_n\right) = n \iff \mathbb{E}\left(\hat{\theta}_n\right) = \frac{\theta n}{n} = \theta$ (que é a mesma conclusão que chegamos anteriormente). De igual forma, sabe-se que, $Var(U) = 2n \iff Var\left(\frac{n\hat{\theta}_n}{\theta}\right) = 2n \iff \left(\frac{n}{\theta}\right)^2 Var\left(\hat{\theta}_n\right) = 2n \iff Var\left(\hat{\theta}_n\right) = \frac{2n\theta^2}{n^2} = \frac{2\theta^2}{n}$.

Ademais, como $\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right) = m\left(\theta\right) = \theta$, então, $m'\left(\theta\right) = 1$. Logo, $LIRC\left(\hat{\theta}_{n}\right) = \frac{\left[m'\left(\theta\right)\right]^{2}}{I_{n}\left(\theta\right)} = \frac{1}{I_{n}\left(\theta\right)} = I_{n}^{-1}\left(\theta\right) = \frac{2\theta}{n}$. Consequentemente,

$$eff\left(\hat{\theta}_{n}\right) = \frac{LIRC\left(\hat{\theta}_{n}\right)}{Var\left(\hat{\theta}_{n}\right)} = \frac{2\theta^{2}}{n}\frac{n}{2\theta} = 1.$$

Portanto, $\hat{\theta}_n$ é um estimador eficiente.

- (b) Qual é a distribuição assintótica de $\sqrt{n} \left(\hat{\theta}_n \theta \right)$?

 Resposta: Como $\mathbb{E} \left(\hat{\theta}_n \right) = \theta$, e $Var \left(\hat{\theta}_n \right) = I_n^{-1} \left(\theta \right) = \frac{2\theta^2}{n}$, segue imediatamente do TCL que, $\hat{\theta}_n \mathcal{N} \left(\theta, \frac{2\theta^2}{n} \right)$, quando $n \to \infty$. Ou de forma análoga, $\frac{\left(\hat{\theta}_n \theta \right)}{\sqrt{\frac{2\theta^2}{n}}} \stackrel{a}{\sim} \mathcal{N} \left(0, 1 \right)$.
- (c) Obtenha o estimador de máxima verossimilhança para a função $g\left(\theta\right)=\sqrt{\theta}$. Resposta: Segue da propriedade de invariância que, como $\hat{\theta}_n$ é um estimador de máxima verossimilhança para θ , então, o EMV para $g\left(\theta\right)=\sqrt{\theta}$ é dado por, $g\left(\hat{\theta}_n\right)=\sqrt{\hat{\theta}_n}$.

(d) Supondo que o suporte de θ está restrito no intervalo de $0 < \theta \le 5$, obtenha o EMV para θ .

Resposta: Considerando o EMV obtido nos itens anteriores, digamos, $\hat{\theta}_n > 0$, então, como o suporte de θ agora é de $0 < \theta \le 5$, segue que, o novo EMV será tal que, $\tilde{\theta} = \min\{5; \hat{\theta}_n\}$. Sendo $\hat{\theta}_n = \sum_{i=1}^n X_i^2/n$.

Q10. Assuma que X_1, X_2, \ldots, X_n denotam cópias iid's de uma v.a. X proveniente de uma população caracterizada por uma função densidade de probabilidade dada por:

$$f(x|\theta) = \frac{2x}{\theta^2}, \quad 0 \le x \le \theta, \quad \theta \ge 0.$$

(a) Construa o intervalo de máxima verossimilhança para θ .

Resposta: Segue do enunciado que $X_i \stackrel{iid}{\sim} f(x_i|\theta) = 2x_i/\theta^2 \mathbb{1}_{0 \leq x_i \leq \theta} + 0 \mathbb{1}_{x_i > \theta}$. Portanto, para todo valor de $x_i > \theta$, $L(\theta) = 0$ e para todo $0 < x_i \leq \theta$ temos que,

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta) = \prod_{i=1}^{n} 2X_i / \theta^2 \, \mathbb{1}_{\{0 < X_i \le \theta\}}$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^{n} X_i\right) \prod_{i=1}^{n} \mathbb{1}_{\{0 < X_i \le \theta\}}$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^{n} X_{(i)}\right) \mathbb{1}_{\{0 \le X_{(1)} \le X_{(2)} < \dots < X_{(n)} \le \theta\}}$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^{n} X_{(i)}\right) \mathbb{1}_{(0,X_{(n)})}(X_{(1)}) \mathbb{1}_{(X_{(1)},\theta]}(X_{(n)}).$$

Sem perda de generalidade, como θ limita a parte superior do suporte de X_i , vamos obter o EMV para θ por meio da avaliação da função de verossimilhança. Assim, podemos simplificar a expressão anterior da seguinte forma,

$$L(\theta) = \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n X_{(i)}\right) \mathbb{1}_{(0,\theta)}(X_{(n)})$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n X_{(i)}\right) \mathbb{1}_{(0,1]}(X_{(n)}/\theta)$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n X_{(i)}\right) \mathbb{1}_{[1,\infty)}(\theta/X_{(n)})$$

$$= \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n X_{(i)}\right) \mathbb{1}_{[X_{(n)},\infty)}(\infty).$$

Portanto, depois das rearranjos concluímos que $L(\theta) = \left(\frac{2}{\theta^2}\right)^n \left(\prod_{i=1}^n X_{(i)}\right)$ se $\theta \geq X_{(n)}$ e 0 caso contrário. Desta forma, $L(\theta)$ atinge o seu máximo no ponto $\hat{\theta}_n = X_{(n)}$

(b) È correto afirmar que o estimador construído em (a) é não-viesado para θ ? Justifique a sua resposta.

Resposta: Para avaliar se o estimador $X_{(n)}$ é não-viesado vamos denotar $T_n = X_{(n)}$. Assim, para obtermos a esperança de T_n precisamos obter sua fdp. Ou seja, como $F_X(x|\theta) = \int\limits_0^x f(y|\theta)dy = \int\limits_0^x (2y/\theta^2)dy = 0 \, \mathbbm{1}_{\{x \leq 0\}} + \left(\frac{x}{\theta}\right)^2 \, \mathbbm{1}_{\{0 < x < \theta\}} + \mathbbm{1}_{\{x \geq \theta\}}$, Desta forma, a fda do máximo é dada por:

$$F_{T_n}(t) = \mathbb{P}(T_n \le t) = \mathbb{P}(X_{(n)} \le t)$$
$$= \prod_{i=1}^n \mathbb{P}(X_i \le t) \stackrel{iid's}{=} {\{\mathbb{P}(X_1 \le t)\}}^n = \left(\frac{t}{\theta}\right)^{2n}.$$

Segue então que, a fdp de T_n é dada por, $f_{T_n}(t) = \frac{\partial}{\partial t} F_{T_n}(t) = \frac{2n}{\theta^2} t^{2n-1}$, para todo $0 < t \le \theta$. Feito isso, podemos então computar a esperança da distribuição de T_n .

$$\mathbb{E}_{\theta}(T_n) = \int_{0}^{\theta} t f_{T_n}(t) dt = \frac{2n}{\theta^2} \int_{0}^{\theta} t^{2n} dt = \frac{2n\theta}{2n+1} \neq \theta.$$

Portanto, como $\mathbb{E}_{\theta}(T_n) \neq \theta$, vê-se que o estimador construído em (a) é viesado. Entretanto, vê-se que:

$$\lim_{n \to \infty} \frac{2n\theta}{2n+1} = \theta.$$

Ou seja, por mais que o estimador seja viesado, ele é assintoticamente nãoviesado, pois para n suficientemente grande, sua esperança é θ .