파이썬을 이용한 머신러닝

2019 / 06 / 25 정 윤 주

○ 소프트웨어 중심대학 교육 설계

- 전공자 sw 교육 설계
- 비전공자 SW 교육 설계
- 지역민들을 위한 SW 교육 설계

● 파이썬을 이용한 머신러닝

- 선형 회귀와 학습
- 비용과 경사 하강
- 선형 회귀 인공지능(AI) 구현
- 요약

전공자 SW교육 설계

· SW중심대학

4차 산업혁명 이후 글로벌 소프트웨어 개발 핵심 인재의 양성

Open Source System(OSS)를 통한 협업학습 및 분산 버전 관리→우수한 SW개발자로 양성

전공자 SW교육 설계

· SW중심대학

4차 산업혁명 이후 글로벌 소프트웨어 개발 핵심 인재의 양성

Open Source System(OSS)를 통한 협업학습 및 분산 버전 관리→우수한 SW개발자로 양성

비전공자 SW교육 설계

· SW중심대학

전공별 특성에 맞는 다양한 프로그래밍언어를 교육

: 창의적 사고와 코딩을 통하여 "창의적·실제적" 문제 해결 역량 강화를 목표

인문 예술	생명	사범	사회	자연 체육	창의 (인문)	공과
App inventor						С
Entry						Javascript
Arduino						
		Python				
		R				
		SQL				
				IoT (Sensor bas	ed coding)	

지역민들을 위한 SW 교육 설계

· SW중심대학

파이썬을 이용한 머신러닝

· SW중심대학

학습 목표

- 선형 회귀를 이해할 수 있다.
- 머신러닝의 학습(Learning)을 이해할 수 있다.
- 비용함수를 이해할 수 있다.
- 최적의 학습 결과를 찾는 과정을 이해할 수 있다.
- 텐서플로우를 활용하여 머신러닝을 구현할 수 있다.

· SW중심대학

1. 공공 데이터 가져오기 https://www.data.go.kr/

파일데이터 1건을 찾았습니다.

· SW중심대학

1. 공공 데이터 가져오기

CSV 고속도로_상습정체구간(2015년11월	CSV 고속도로_노선별 월 변동계수(2015년
▲ 멀티다운로드	▲ 멀티다운로드 ◎ 상세정보 ● 오류신고 ★
CSV 고속도로_노선별 요일 변동계수(2015	CSV 고속도로_시정차로게시정현황(2015년)
♣ 다운로드 ④ 상세정보 ● 오류신고	♣ 다운로드 ○ 상세정보 ● 오류신고
CSV 고속도로_교통사고통계(2015년11월	CSV 고속도로 시공간 분산지수(2016년)
♣ 다운로드 ◎ 상세정보 ● 오류신고 ★	♣ 다운로드 ◎ 상세정보 ● 오류신고
	화 csv" 라느 이르ㅇㄹ 저장

· SW중심대학

2. 데이터 파일 읽기

```
import pandas as pd
import matplotlib.pyplot as plt

#df = pd.read_csv('고속도로교통사고현황.csv')
df = pd.read_csv('고속도로교통사고현황.csv', encoding='CP949')
df
```

	연도	사고	사망	부상
0	2000	3910	569	2845
1	2001	3638	456	2331
2	2002	3957	421	2115
3	2003	3585	348	1843
4	2004	3242	300	1555
5	2005	2880	249	1170
6	2006	2583	284	1131
7	2007	2550	283	1114
8	2008	2449	265	955
9	2009	2374	248	1031
10	2010	2368	353	983
11	2011	2640	265	1731
12	2012	2600	343	1619
13	2013	2496	264	1253
14	2014	2395	253	1148

· SW중심대학

3. 데이터의 일부를 이용하여 시각화하기

```
df1=df.loc[:,['연도','사망', '부상']]
ax=df1.plot(kind='line', x='연도')
ax.set_xlabel('Year')
ax.legend(['Dead', 'Injury'])
plt.show()
```


파이썬을 이용한 머신러닝

- 1. 선형 회귀(Linear Regression)와 학습(Learning)
- 2. 비용 (Cost)과 경사 하강(Gradient Descent)
- 3. 간단한 선형 회귀 인공지능 구현
- 4. 단원 요약

수업 자료는 https://github.com/Yunju-Jeong/software 에서 다운로드 받으세요.

· SW중심대학

기존 프로그램과 머신러닝의 차이

· SW중심대학

기존 프로그램과 머신러닝의 차이

SW중심대학

선형 회귀(Linear Regression)

: 변수 사이의 선형적인 관계를 모델링한 것

(예) 자영업자의 노동 시간과 하루 매출 데이터가 아래와 같다고 가정하자.

하루 노동 시간	하루 매출
1	25,000
2	55,000
3	75,000
4	110,000
5	128,000
6	155,000
7	180,000

· SW중심대학

선형 회귀와 학습

일상 생활의 많은 현상들은 선형적인 성격을 가진다.

■ 선형 회귀 : 선형적인 관계에 적용하는 대표적인 기계학습이론

학습을 시킨다 = 선형 회귀 모델을 구축한다

- 주어진 데이터를 학습시켜서 가장 합리적인 '직선'을 찾아낸다.
- 데이터는 3개 이상일 때 의미가 있다.

· SW중심대학

가장 합리적인 선은?

· SW중심대학

가장 합리적인 선은?

H(x) = W * x + b

- 일차 방정식을 이용하여 직선을 표현
- 가설을 수정해 나가면서 가장 합리적인 식을 탐색
- 선형 회귀란 주어진 데이터를 이용하여 일차 방정식을 수정해 나가는 것
 - 학습을 거쳐서 가장 합리적인 선을 찾아내는 것
 - 학습을 많이 해도 '완벽한' 식을 찾지 못할 수도 있다. 실제 사례에서는 근사값을 찾는 것 만으로도 충분할 때가 있다.

· SW중심대학

선형 회귀와 학습의 직관적인 이해

· SW중심대학

비용(Cost)

: 가설이 얼마나 정확한 지 판단하는 기준

SW중심대학

비용 함수(Cost Function)

(예측 값 – 실제 값)²의 평균

- 현재의 W, b 값과 데이터를 이용하면 비용함수를 구할 수 있다.
- 비용함수로 구한 비용이 적을 수록 좋다.

$$Cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

SW& YITH 34

경사 하강(Gradient Descent)

→ SW중심대학

미분과 기울기

· SW중심대학

· SW중심대학

(파이썬을 이용한 머신러닝) 선형회귀 AI 구현

SW& Little

1. 머신러닝을 이용한 교통 사고 수 예측

```
🕝 *ML usingPublicData.py - D:/iyi/2019강의관련/소프트웨어_강의전담/공개강의/ML usingPublicData.py (3.5.4rc1)*
                                                                                  \Box
                                                                                      ×
File Edit Format Run Options Window Help
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv('고속도로교통사고현황.csv', encoding='CP949')
ar = df.to numpy()
xData = ar[:, 0]-2000 # 연도에서 2000을 뺀다. (예) 2010 ==> 10
yData = ar[:, 1] # 사고 수
W = tf.Variable(tf.random uniform([1], -100, 100)) # W 변수 선언, 초기값을 랜덤 넘버로 설정
b = tf.Variable(tf.random uniform([1], -100, 100)) # b 변수 선언, 초기값을 랜덤 넘버로 설정
X = tf.placeholder(tf.float32)
                                      # X 변수 선언
                                              # Y 변수 선언
Y = tf.placeholder(tf.float32)
                                              # 선형 회귀 방정식 선언, 가설 정
H = W * X + b
                                              # 비용함수 정의
cost = tf.reduce mean(tf.square(H-Y))
a = tf.Variable(0.01)
                                              # Learning rate, 경사하강 점프 스템 초기화
optimizer = tf.train.GradientDescentOptimizer(a) # 경사하강 라이브러리를 이용하여 최적화
                                              # 비용이 최소화하는 방향으로 학습
train = optimizer.minimize(cost)
```


(파이썬을 이용한 머신러닝)선형회귀 AI 구현

SW& LH 34

1. 머신러닝을 이용한 교통 사고 수 예측

```
init = tf.global variables initializer()
                                               # 변수 초기화
                                                # 텐서플로우 객체에서 세션을 얻어온다.
sess = tf.Session()
                                                # 실제로 초기화를 실행
sess.run(init)
for i in range(5001):
   sess.run(train, feed dict={X : xData, Y : yData}) # 실제로 학습을 진행
   if i % 500 == 0:
       print(i, sess.run(cost, feed dict={X : xData, Y : yData}), sess.run(W), sess.run(b))
print(sess.run(H, feed dict={X : [16]}))
hY = sess.run([(W * x + b) for x in xData])
plt.plot(xData, yData)
plt.plot(xData, hY, 'red')
plt.show()
                                                                                    Ln: 6 Col: 10
```


(파이썬을 이용한 머신러닝)선형회귀 AI 구현

SW& MITHEL

2. 실험 결과와 시각화

오늘 배운 내용

- 일상 생활의 많은 현상들은 선형적인 성격을 가진다.
 - 선형 회귀: 선형적인 관계에 적용하는 대표적인 기계학습이론이다.
- 학습을 시킨다.
 - 주어진 데이터를 학습시켜서 가장 합리적인 '직선의 방정식'을 찾아낸다.
 - H(x) = W * x + b
- (예측 값 실제 값)²의 평균으로 비용을 계산한다.
 - 비용함수: $Cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) y_i)^2$
 - 학습은 경사 하강을 이용하여 비용을 최소화하는 방향으로 진행한다.
- 학습속도(Learning rate)는 프로그래머가 적절하게 정한다.

다음 시간에 할 일

· SW중심대학

