WORKSHEET: SECTION 2.2 DAY TWO

1. Determine the infinite limit. Explain your reasoning.

(b)
$$\lim_{x \to 3^+} \frac{\sqrt{x}}{x - 3} = \frac{\sqrt{3}}{2}$$

(c)
$$\lim_{x \to 3^+} \frac{2 - 10x}{x - 3} = \frac{2}{2}$$

(d)
$$\lim_{x\to 3^+} \ln(x-3) = -\infty$$

(e) Why didn't we ask you to find $\lim_{x\to 3^-} \ln(x-3)$?

$$y = \ln(x-3)$$
 is not defined for $x \le 3$.
The Ω om($\ln(x-3)$) = $(3,\infty)$.

2. Let $f(x) = 8 - x^2$ have domain $(-\infty, 1) \cup (1, \infty)$. Sketch f(x) and explain why f(x) has a limit as x approaches 1 even though f(x) is undefined at x = 1.

$$\lim_{x\to 1} (8-x^2) = 7$$

 $f(1)$ DNE

The limit exists since for its definition the function f(x)= 8-x2 has to be

3. Find the vertical asymptotes of the function $y = \frac{x^2 + 1}{3x - 2x^2}$. define depends one x = 1, but x = 1.

$$\frac{x=0 \text{ or } 3-2x=0}{x=\frac{3}{2}}$$

Then

UAF Calculus I Spring 2021

Hence, Vertical asymptotes are
$$x=0$$
, $x=3$ / $x=3$

The denominator converts to 0 at