

Unidad 2 / Escenario 4 Lectura Fundamental

Cálculo 1

Contenido

- 1 Introducción
- 2 Identidades trigonométricas
- 3 Identidades de adición y sustracción
- 4 Identidades para el ángulo doble y mitad de ángulos
- 5 Ecuaciones trigonométricas
- 6 Teorema del seno y teorema del coseno
- 7 Ejercicios

Palabras y frases claves: Identidades, ecuaciones, teorema del seno, teorema del coseno.

1. Introducción

En esta sección se estudiarán las identidades trigonométricas, se harán ejemplos que tratarán aspectos algebraicos como la factorización y simplificaciones de expresiones trigonométricas; además se resolverán ecuaciones trigonométricas mediante identidades y funciones trigonométricas. Finalmente se estudiará el teorema del seno y del coseno con el fin de poder resolver cualquier tipo de triángulo.

2. Identidades trigonométricas

Una identidad trigonométrica es una igualdad que contiene expresiones trigonométricas y que es válida para todos los valores que admita la variable o variables. El objetivo consiste en demostrar estas igualdades usando las definiciones de las funciones trigonométricas y realizando operaciones entre estas expresiones algebraicas.

A continuación se presentan algunas identidades trigonométricas fundamentales para la solución de ejercicios.

Identidades trigonométricas fundamentales Identidades recíprocas

$$\csc x = \frac{1}{\sin x}$$
 $\sec x = \frac{1}{\cos x}$ $\cot x = \frac{1}{\tan x}$
$$\tan x = \frac{\sin x}{\cos x}$$
 $\cot x = \frac{\cos x}{\sin x}$

Identidades pitagóricas

$$\sin^2 x + \cos^2 x = 1$$
 $\tan^2 x + 1 = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

Identidades pares-impares

$$\sin(-x) = -\sin x$$
 $\cos(-x) = \cos x$ $\tan x = -\tan x$

A continuación se expondrán algunos ejemplos que le permitirán visualizar los diferentes procedimientos que se utilizan en la demostración de estas identidades, con el objetivo de generar ideas sobre posible soluciones.

Ejemplo 1.

Verifique la identidad

$$\frac{\sin \theta}{\tan \theta} = \cos \theta$$

Solución

 $\frac{\sin\theta}{\tan\theta}$

Partiendo del lado izquierdo de la identidad.

 $\frac{\sin\theta}{\frac{\sin\theta}{\cos\theta}}$

Expresando $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

 $\frac{\sin \theta}{1}$ $\frac{\sin \theta}{\cos \theta}$

Haciendo producto de extremos y medios.

 $\frac{\sin\theta\cos\theta}{\sin\theta}$

Simplificando $\sin \theta$.

 $\cos \theta$

Tenga en cuenta que: cuando está demostrando una identidad, no debe realizar las mismas operaciones en ambos lados de la igualdad.

Ejemplo 2.

Verifique la identidad

$$\frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

Solución

$$\frac{1 - \cos x}{\sin x}$$

Partiendo del lado izquierdo de la identidad.

$$\frac{1-\cos x}{\sin x} \cdot \frac{1+\cos x}{1+\cos x}$$

$$\text{Multiplicamos por } \frac{1 + \cos x}{1 + \cos x}$$

$$\frac{1 - \cos^2 x}{\sin x (1 + \cos x)}$$

Usando la identidad pitagorica.

$$\frac{\sin^2 x}{\sin x (1 + \cos x)}$$

Simplificando $\sin x$.

$$\frac{\sin x}{1 + \cos x}$$

Se obtiene la expresión del lado derecho.

Para tener en cuenta:

- 1. Inicio la solución con un miembro de la igualdad:, su objetivo es transformar este miembro en el otro. Se sugiere iniciar por el lado que parezca más complejo.
- 2. Aplicar identidades conocidas: use identidades que conozca para iniciar la transformación del lado que escogió en el anterior paso; también use operaciones algebraicas como factorización, común denominador y simplificación de expresiones.
- 3. Convertir en senos y cosenos: si le es díficil continuar con el ejercicio, puede convertir todo a senos y cosenos.

Ejemplo 3.

Verifique la identidad

$$\frac{1 + \sec^2 x}{1 + \tan^2 x} = 1 + \cos^2 x$$

Solución

$$\frac{1+\sec^2 x}{1+\tan^2 x}$$
 Partiendo del lado izquierdo de la identidad.

$$\frac{1+\frac{1}{\cos^2 x}}{1+\frac{\sin^2 x}{\cos^2 x}}$$
 Escribiendo en términos de senos y cosenos.

$$\frac{\cos^2 x + 1}{\cos^2 x}$$
 Realizando las operaciones en numerador y denominador.

$$\frac{\cos^2 x(\cos^2 x + 1)}{\cos^2 x(\cos^2 x + \sin^2 x)}$$
Resolviendo la división.

$$\frac{\cos^2 x + 1}{\cos^2 x + \sin^2 x}$$
 Simplificando.

$$\frac{\cos^2 x + 1}{1} = \cos^2 x + 1$$
 Aplicando identidad pitagórica

3. Identidades de adición y sustracción

Identidades de adición y sustracción

1. Identidades para el seno

$$\sin(s+t) = \sin s \cos t + \cos s \sin t$$

$$\sin(s-t) = \sin s \cos t - \cos s \sin t$$

2. Identidades para el coseno

$$\cos(s+t) = \cos s \cos t - \sin s \sin t$$

$$\cos(s-t) = \cos s \cos t + \sin s \sin t$$

3. Identidades para la tangente

$$\tan(s+t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}$$

$$\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$$

Ejemplo 4.

Demuestre que

$$\cos(x+y) \cdot \cos(x-y) = \cos^2 x - \sin^2 y$$

Solución

$$\cos(x+y)\cdot\cos(x-y)$$

Partiendo del lado izquierdo de la identidad.

 $(\cos x \cos y - \sin x \sin y)(\cos x \cos y + \sin x \sin y)$

Aplicando la identidad de adición y sustracción correspondiente.

$$\cos^2 x \cos^2 y - \sin^2 x \sin^2 y$$

Realizando el producto y simplificando.

$$\cos^2 x (1 - \sin^2 y) - (1 - \cos^2 x) \sin^2 y$$

Aplicando identidad pitagórica.

$$\cos^2 x - \cos^2 x \sin^2 y - [\sin^2 y - \cos^2 x \sin^2 y]$$

Realizando los productos.

$$\cos^2 x - \cos^2 x \sin^2 y - \sin^2 y + \cos^2 x \sin^2 y$$

Simplificando.

$$\cos^2 x - \sin^2 y$$

Se obtiene la respuesta deseada.

Ejemplo 5.

Demuestre que

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y$$

Solución

$$\sin(x+y) - \sin(x-y)$$

Partiendo del lado izquierdo de la identidad.

 $\sin x \cos y + \cos x \sin y - [\sin x \cos y - \cos x \sin y]$

Aplicando la identidad de adición y sustracción correspondiente.

 $\sin x \cos y + \cos x \sin y - \sin x \cos y + \cos x \sin y$

Simplificando.

 $2\cos x\sin y$

Se obtiene la respuesta deseada.

4. Identidades para el ángulo doble y mitad de ángulos

Identidades para el ángulo doble

1. Identidad para el seno:

$$\sin(2x) = 2\sin x \cos x$$

2. Identidad para el coseno:

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\cos(2x) = 1 - 2\sin^2 x$$

$$\cos(2x) = 2\cos^2 x - 1$$

3. Identidad para la tangente

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

Ejemplo 6.

Si $\sin x = \frac{5}{13}$ en el primer cuadrante calcule $\sin 2x,\,\cos 2x$ y $\tan 2x$

Solución

Para hallar $\sin 2x$ se usará la identidad $\sin 2x = 2\sin x \cos x$; pero antes se debe hallar $\cos x$ así:

$$\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$$

Se toma la raíz positiva, pues en el primer cuadrante todas las funciones trigonométricas son positivas; ahora sí se puede calcular $\sin 2x$, así:

$$\sin 2x = 2\sin x \cos x = 2\left(\frac{5}{13}\right)\left(\frac{12}{13}\right) = \frac{120}{169}.$$

Para hallar $\cos 2x$ se puede usar cualquiera de las identidades, pues se conoce el valores de $\sin x$, en esta ocasión se va a usar $\cos 2x = \cos^2 x - \sin^2 x$, por lo tanto se tiene:

$$\cos 2x = \cos^2 x - \sin^2 x = \left(\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2 = \frac{144}{169} - \frac{25}{169} = \frac{119}{169}$$

Ahora, para calcular la tan 2x primero se calculará tan $x=\frac{\sin x}{\cos x}=\frac{5}{12}$ y ahora si reemplazamos en la identidad:

$$\tan(2x) = \frac{2\frac{5}{12}}{1 - (5/12)^2} = \frac{\frac{5}{6}}{\frac{119}{144}} = \frac{120}{119}$$

Identidades para reducir las potencias

$$\sin^{2} x = \frac{1 - \cos 2x}{2}$$

$$\cos^{2} x = \frac{1 + \cos 2x}{2}$$

$$\tan^{2} x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

Ejemplo 7.

Exprese $\sin^4 x$ en términos de la primera potencia del coseno Soluci'on

$$\sin^4 x = (\sin^2 x)(\sin^2 x)$$

Reescribiendo $\sin^4 x$.

$$= \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 - \cos 2x}{2}\right)$$

Aplicando la identidad para reducir la potencia.

$$= \frac{1}{4}(1 - 2\cos 2x + \cos^2 2x)$$

Realizando la operación indicada.

$$= \frac{1}{4} \left(1 - 2\cos 2x + \frac{(1 + \cos 4x)}{2} \right)$$

Aplicando nuevamente la identidad para reducir potencia.

$$= \frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

Realizando las operaciones se tiene.

Identidades para mitad de ángulo o semiángulo

$$\sin\frac{u}{2} = \pm\sqrt{\frac{1-\cos u}{2}} \qquad \cos\frac{u}{2} = \pm\sqrt{\frac{1+\cos u}{2}}$$
$$\tan\frac{u}{2} = \frac{1-\cos u}{\sin u} = \frac{\sin u}{1+\cos u}$$

La elección del signo + o - depende del cuadrante en el que se encuentre $\frac{u}{2}$

Ejemplo 8.

Calcule el valor exacto de tan $15^{\rm o}$

Solución

Como 15° es la mitad de 30° , se usará la fórmula del semiángulo; en este caso $u = 30^{\circ}$ por tanto, está en el primer cuadrante y el signo será +.

$$\tan \frac{30^{\circ}}{2} = \frac{\sin 30^{\circ}}{1 + \cos 30^{\circ}}$$
 Identidad del semiángulo.
$$= \frac{\frac{1}{2}}{1 + \frac{\sqrt{3}}{2}}$$

$$\sin 30^{\circ} = \frac{1}{2} \text{ y } \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$= \frac{\frac{1}{2}}{\frac{2 + \sqrt{3}}{2}}$$
 Realizando operaciones.
$$= \frac{1}{2 + \sqrt{3}}$$
 Simplificando.

Por lo tanto, el valor exacto de tan $15^{\circ} = \frac{1}{2 + \sqrt{3}} \approx 0,2679...$

5. Ecuaciones trigonométricas

Una ecuación trigonométrica es aquella ecuación que contiene expresiones trigonométricas, por ejemplo:

$$\cos x + 1 = 0 \qquad \qquad \sqrt{3}\tan x + 1 = 0$$

Para resolver este tipo de ecuaciones trigonométricas, se aplicarán las reglas del álgebra como factorización para despejar la variable a un lado del signo igual; después se usará lo estudiado de trigonometría (identidades) para hallar el valor o valores de la variable. A continuación se expondrán algunos ejemplos donde se evidencia lo anterior.

Ejemplo 9. Solución de una ecuación trigonométrica

Resolver la ecuación $\sqrt{3} \tan x + 1 = 0$

Solución

Se inicia despejando $\tan x$

$$\sqrt{3}\tan x + 1 = 0$$
$$\tan x = -\frac{1}{\sqrt{3}}$$

Ecuación dada.

Despejando $\tan x$.

Como la tangente tiene periodo π , primero se hallan las soluciones en el intervalo $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ que es $-\frac{\pi}{6}$. Para hallar las demás soluciones, se le debe sumar cualquier otro múltiplo de π ; por lo tanto la solución de esta ecuación será:

$$x = -\frac{\pi}{6} + k\pi$$

donde k es cualquier entero.

Ejemplo 10. Ecuación tipo cuadrática

Resolver la ecuación $\sin^2 x = 2\sin x + 3$

Solución

Primero se organizará la ecuación, igualandola a cero

$$\sin^2 x - 2\sin x - 3 = 0$$

Ecuación dada.

$$(\sin x - 3)(\sin x + 1) = 0$$

Factorización.

$$\sin x - 3 = 0 \qquad \text{o} \qquad \sin x + 1 = 0$$

Cada factor se iguala a 0.

$$\sin x = 3$$
 o $\sin x = -1$

Despejando $\sin x$.

Como el periodo de seno es 2π , primero se hallan las soluciones en este intervalo $[0,2\pi)$; por lo tanto para $\sin x = -1$ la solución es $x = \frac{3\pi}{2}$ y sumandole cualquier entero múltiplo de 2π se tiene que las soluciones están dadas por $x = \frac{3\pi}{2} + 2k\pi$ donde k es cualquer entero. Para la segunda opción $\sin x = 3$ no tiene soluciones puesto que el $\sin x$ nunca es mayor que 1.

Ejemplo 11. Solución de una ecuación trigonométrica mediante identidades

Resuelva la ecuación $\sec^2 x - 2 = 0$

Solución

Se iniciará reescribiendo la ecuación así:

$$\sec^2 x - 1 - 1 = 0$$

Reescribiendo la ecuación.

$$\sec^2 x - 1 = 1$$

Reescribiendo la ecuación para usar la identidad pitagórica.

$$\tan^2 x = 1$$

Usando la identidad $\sec^2 x - 1 = \tan^2 x$.

$$\tan x = \sqrt{1} = \pm 1$$

Obteniendo raíz a ambos lados.

$$\tan x = 1$$
 o

$$\tan = -1$$

Determinando $\tan x$.

$$x = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} \qquad o \qquad x = -\frac{\pi}{4}$$

Determinando $\tan x$.

Como la tangente tiene periodo π se le debe sumar cualquier múltiplo de π a las soluciones y se tiene:

$$x = \frac{\pi}{4} + k\pi \qquad \qquad x = -\frac{\pi}{4}$$

$$x = -\frac{\pi}{4}$$

donde k es cualquier entero

6. Teorema del seno y teorema del coseno

En las lecturas se han estudiado las razones y funciones trigonométricas en triángulos rectángulos; pero estas funciones trigonométricas se pueden usar en otro tipo de triángulos, es decir sin ángulos rectos; para esto en la presente sección se estudiará la ley del seno y la ley del coseno.

Para resolver un ejercicio o problema donde intervienen los triángulos, es necesario conocer alguna información sobre este, ya sean ángulos o lados y hacer una gráfica con estos datos, como un triángulo está determinado por tres de sus seis partes, siempre debe conocer por lo menos un lado para poder resolver el ejercicio; por tanto se tienen las siguientes posibilidades:

- Caso 1. Un lado y dos ángulos (ALA)
- Caso 2. Dos lados y el ángulo opuesto a uno de esos lados (LLA)
- Caso 3. Dos lados y el ángulo entre estos (LAL)
- Caso 4. Tres lados (LLL)

Sabías que: los casos 1 y 2 se resuelven por medio de la ley de senos y los casos 3 y 4 por la ley de cosenos. (Stewart, 2001).

6.1. Teorema del seno

En el triángulo ABC se tiene

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Ejemplo 12. Triángulo ALA

Resolver el triángulo de la figura

Figura 1: Teorema del seno ALA

Solución

Como se conocen dos ángulos, se puede obtener la medida del tercer ángulo porque la suma de los ángulos internos de un triángulo es 180° ; por tanto el ángulo $C = 180^{\circ} - (75^{\circ} + 60^{\circ}) = 45^{\circ}$, ahora aplicando el teorema del seno se tiene

$$\frac{\sin B}{b} = \frac{\sin C}{c}$$

Teorema del seno.

$$\frac{\sin 60^{\mathrm{o}}}{b} = \frac{\sin 45^{\mathrm{o}}}{340}$$

Reemplazando los datos.

$$b = \frac{340\sin 60^{\circ}}{\sin 45^{\circ}}$$

Despejando b.

$$b \approx 416$$

Respuesta.

Ahora se debe hallar el valor del lado a, para esto se aplica nuevamente el teorema del seno y se tiene

$$\frac{\sin A}{a} = \frac{\sin C}{c}$$
 Teorema del seno.
$$\frac{\sin 75^{\circ}}{a} = \frac{\sin 45^{\circ}}{340}$$
 Reemplazando los datos.
$$a = \frac{340 \sin 75^{\circ}}{\sin 45^{\circ}}$$
 Despejando a.

Respuesta.

Ejemplo 13. Triángulo LLA

 $a \approx 464$

Resolver el triángulo de la figura

Figura 2: Teorema del seno LLA

Solución

Primero se va a calcular la medida del ángulo B

$\frac{\sin A}{a} = \frac{\sin B}{b}$	Teorema del seno.
$\frac{\sin 80^{\circ}}{6.5} = \frac{\sin B}{3,4}$	Reemplazando los datos.
$\sin B = \frac{3,4\sin 80^{\circ}}{6.5}$	Despejando $\sin B$.
$\sin B pprox rac{1}{2}$	Respuesta.

Ahora, se deben buscar los ángulos B que tiene $\sin B = \frac{1}{2}$ y estos ángulos son $30^{\rm o}$ y $150^{\rm o}$, pero se descarta $150^{\rm o}$ porque la suma de los ángulos internos de un triángulo debe medir 180, por tanto, el ángulo $B = 30^{\rm o}$ y el ángulo

 $C = 180 - (80 + 30) = 70^{\circ}$, ahora hace falta calcular un lado c del triángulo, por lo tanto se tiene

$$\frac{\sin B}{b} = \frac{\sin C}{c}$$

Teorema del seno.

$$\frac{\sin 30^{\mathrm{o}}}{3.4} = \frac{\sin 70^{\mathrm{o}}}{c}$$

Reemplazando los datos.

$$c = \frac{3.4\sin 70^{\circ}}{\sin 30^{\circ}}$$

Despejando a.

$$c \approx 6, 4$$

Respuesta.

6.2. Teorema del coseno

En cualquier triángulo ABC (ver figura 3) se tiene:

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Figura 3: Teorema del coseno

Ejemplo 14. Triángulo LAL

Resolver el triángulo de la figura

Solución

Figura 4: Teorema del coseno LAL

Primero se va a calcular la medida del lado c usando el teorema del coseno así:

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(C)$$

Teorema del coseno.

$$c^2 = (18)^2 + (10)^2 - 2(18)(10)\cos(120^{\circ})$$

Reemplazando los datos.

$$c^2 = 604$$

Realizando las operaciones.

$$c\approx 24,576...$$

Respuesta.

Por medio del teorema de coseno, también se puede hallar el ángulo $\angle B$ y $\angle A$ así:

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{18^2 + 24.6^2 - 10^2}{2(18)(24.6)} \approx 0.94$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{10^2 + 24.6^2 - 18^2}{2(10)(24.6)} \approx 0.77$$

Ahora se hallan los ángulos y se tiene que $\angle B = 20.56^{\circ}$ y $\angle A = 39.44^{\circ}$

Ejemplo 15. Triángulo LLL

Resolver el triángulo de la figura

Solución

Primero se va a encontrar la medida del ángulo $\angle A$, por la ley del coseno se tiene $a^2 = b^2 + c^2 - 2bc\cos A$, y despejando $\cos A$ se obtiene

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{12^2 + 44^2 - 40^2}{2(12)(44)} = \frac{5}{11}$$

Ahora, despejando $\angle A \approx 63^{\circ}$. Análogamente se calculan los demás ángulos así:

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{40^2 + 44^2 - 12^2}{2(40)(44)} = \frac{53}{55}$$

Figura 5: Teorema del coseno LLL

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{40^2 + 12^2 - 44^2}{2(40)(12)} = -\frac{1}{5}$$

Cálculando los ángulos $\angle B$, y $\angle C$, se tiene: $\angle B \approx 15,5^{\rm o}$ y $\angle C \approx 101,5^{\rm o}$

7. Ejercicios

1. Demuestre las siguientes identidades. Estos ejercicios han sido tomados del libro de *Precálculo enfoque de resolución de problemas de la editorial Pearson*.

a)
$$\csc \theta - \cot \theta = \frac{\sin \theta}{1 + \cos \theta}$$

$$b) \sec x - \tan x = \frac{\cos x}{1 + \sin x}$$

c)
$$\frac{\cos^2 x - \sin^2 x}{1 - \tan^2 x} = \cos^2 x$$

$$d) \ \frac{\cos \alpha}{1 + \sin \alpha} = \frac{1 - \sin \alpha}{\cos \alpha}$$

e)
$$(1 + \sin \theta)(1 - \sin \theta) = \frac{1}{\sec^2 \theta}$$

$$f) \sec^2 \theta \csc^2 \theta = \sec^2 \theta + \csc^2 \theta$$

g)
$$(1 - \sin^2 \theta)(1 + \tan^2 \theta) = 1$$

$$h) \frac{\sin \theta + \cos \theta}{\cos \theta} = 1 + \tan \theta$$

i)
$$(\cot \theta + \csc \theta)(\tan \theta - \sin \theta) = \sec \theta - \cos \theta$$

$$j) \cot \theta + \tan \theta = \csc \theta \sec \theta$$

2. Resolver las siguientes ecuaciones trigonométricas

a)
$$\csc \theta = \frac{2\sqrt{3}}{3}$$

$$b) 1 + \cot \theta = 0$$

c)
$$\cos^2 - 1 = 0$$

$$d) \sec(2x) = 2$$

$$e) \sin x + \cos x = 0$$

$$f) \sin x + \sqrt{\sin x} = 0$$

3. Resolver las siguientes situaciones

- a) Un edificio proyecta una sombra de 20m de longitud. Si el ángulo de la punta de la sombra a un punto en la parte alta del edificio es de 69° ¿qué altura tiene el edificio?.
- b) Dos árboles están en la misma posición pero en las orillas opuestas de un río. A una distancia de 100 pies del árbol de la orilla 1, medidos sobre la misma orilla, se mide un ángulo de 29,7° al árbol en la orilla 2. Si la línea imaginaria que mide la distancia entre los árboles y la línea que mide los 100 pies son perpendiculares, determine la distancia entre los árboles.
- c) Un observador en la azotea de un edificio A mide un ángulo de depresión de 27° entre la horizontal y la base de un edificio B. El ángulo de elevación del mismo punto en la azotea a la azotea del segundo edificio es 41,42° ¿Cuál es la altura del edificio B, si la altura del A es de 150 pies? Suponga que los edificios A y B están sobre el mismo plano horizontal.
- 4. Resolver los siguientes triángulos, es decir, determine todos los valores de los lados y ángulos en cada triángulo, si es posible y en caso de no serlo explique por qué no es posible.

a.

b.

a

f.

Referencias

- [1] Zamora, H. (2010). Modelos funcionales: Las funciones trigonométricas-Cartilla. Bogotá, Colombia: Institución universitaria politécnico grancolombiano- Educación Virtual.
- [2] Stewart, J; Redlin, L & Watson, S. (2001). Precalculo. México. Thomson Learning.
- [3] Grupo de Modelamiento Matemático. (2017). Facultad de Ingeniería y Ciencias básicas Institución Universitaria Politécnico Grancolombiano.

INFORMACIÓN TÉCNICA

Módulo: Cálculo I

Unidad 2: Trigonometría

Escenario 4: Identidades y ecuaciones trigonométricas

Autor: Luisa Fernanda Martínez Rojas

Asesor Pedagógico: Diana Marcela Díaz Salcedo Diseñador Gráfico: Kevin Mauricio Ramírez Correa

Corrector de estilo:

Asistente: Leidy Alejandra Morales

Este material pertenece al Politécnico Grancolombiano. Por ende, son de uso exclusivo de las Instituciones adscritas a la Red Ilumno. Prohibida su reproducción total o parcial.