

Production of Acrylonitrile from Ammonia

Vrushabh Mahavir Doshi MIT World Peace University Pune

Background & Description:

Acrylonitrile is a highly reactive monomer and unsaturated hydrocarbon. It is used as a raw material in the production of fibres, dyes; anti-oxidants. Industrial production of acrylonitrile is done by Sohio process. Worldwide production of acrylonitrile is through Sohio process that is vapour phase ammoxidation of propene. The advantage of the process is the high conversion of reactants with minimum residence time. Air, Nitrogen, Hydrogen and propene are fed into the reactor operating at 7-8 bar pressure and 350 K-510 K with Mass flow of 3000 kg/hr for nitrogen & 9000 kg/hr for hydrogen & property package is taken as Peng Robinson, UNIFAC & NRTL, Ammonia and air should be supplied to the reactor in excess of stoichiometric proportions as excess air is needed for the regeneration of the catalyst and excess ammonia drives the reaction closer to the completion. Reaction is highly exothermic. The gaseous phase product stream is quashed in liquid phase through counter current water absorber to remove inert gases and recover reaction products. Mixtures of acrylonitrile, acetonitrile, carbon oxides and hydrogen cyanide are formed. Product surge is sent to the fractionator to remove hydrogen cyanide. Acrylonitrile is separated from acetonitrile by extractive distillation. Acrylonitrile obtained after extractive distillation is subjected for drying. Acetonitrile and hydrogen cyanide which are the primary by-products of the process are subjected to incineration. Incineration leads to the formation -nitrogen oxides, carbon oxides which are the primary pollutants.

Results:

Feed Stream Nitrogen in Results:

Temperature	25 C
Pressure	8 Bar
Mass Flow	3000 Kg/hr
Molar Flow	107.092 Kmol/hr
Volumetric Flow	331.19 m ³ /hr
Mixture Molar Enthalpy	-60.8065 KJ/Kmol
Mixture Molar Entropy	-17.3537 KJ/(Kmol.K)
Vapour Phase Molar Fraction	1
Phases	Vapour
Energy Flow	-1.80885 KW

Feed Stream Hydrogen in Results:

Temperature	25 C
Pressure	8 Bar
Mass Flow	9000 Kg/hr
Molar Flow	4464.55 Kmol/hr
Volumetric Flow	13864.9 m ³ /hr
Mixture Molar Enthalpy	-2.6161 KJ/Kmol
Mixture Molar Entropy	-17.2064 KJ/(Kmol.K)
Vapour Phase Molar Fraction	1
Phases	Vapour
Energy Flow	-3.24437 KW

Nitrogen to Recycle Stream Results:

The ogen to necycle of cam results.	
Temperature	110 C
Pressure	100 Bar
Mass Flow	92.781 Kg/hr
Molar Flow	3.3102 Kmol/hr
Volumetric Flow	1.09347 m ³ /hr
Mixture Molar Enthalpy	2136.12 KJ/Kmol
Mixture Molar Entropy	-31.884 KJ/(Kmol.K)
Vapour Phase Molar Fraction	1
Phases	Vapour
Energy Flow	1.96524 KW

Product Formed Acrylonitrile Results:

Temperature	110 C
Pressure	100 Bar
Mass Flow	3647.55 Kg/hr
Molar Flow	214.177 Kmol/hr
Volumetric Flow	8.42106 m ³ /hr
Mixture Molar Enthalpy	-12372.4 KJ/Kmol
Mixture Molar Entropy	-64.6181 KJ/(Kmol.K)
Vapour Phase Molar Fraction	0
Phases	Liquid
Energy Flow	-736.081 KW