d) Obliczyć gęstość δ elementu mierzonego oraz jej niepewność pomiarową uc(p)-tuleja			
Dane	Wartość	Tabela 2.2- Dane do	
m[g] V[mm3] u(V)[mm3] u(m)[g]	8.24 1425 75 0.0058	obliczenia gęstości tuleji i jej niepewności	

Obliczanie Gęstości

$$\delta = \frac{m}{v} = \frac{8.24}{1425} = 0.00578245614035087719298245614035 \approx 0.0058 \approx 0.006$$

Obliczanie Niepewności Gęstości

$$\frac{\partial \delta}{\partial m} = \frac{1}{v} = \frac{1}{1425} = 7.02E - 04$$

$$\frac{\partial \delta}{\partial v} = \frac{m}{v^2} = -\frac{8.24}{v^2} = -\frac{8.24}{2030625} = -4.05E - 06$$

$$\delta = \delta(m, v)$$

$$\begin{split} u_{c}(\delta) &= \sqrt{(\frac{\partial \delta}{\partial V} u(V))^{2} + (\frac{\partial \delta}{\partial m} u(m))^{2}} = \\ \sqrt{(-4.05\text{E}-06 \ *35)^{2} + (7.02\text{E}-04 \ *0.0058)^{2}} &= \sqrt{(-1.42\text{E}-04)^{2} + (4.07\text{E}-06)^{2}} = \\ \sqrt{2.01\text{E}-08 \ +1.65779\text{E}-11} &= \sqrt{2.01\text{E}-08} \ = 0.00014181 \ \approx 0.00015 \ \text{g/mm3} \end{split}$$