

# 机器学习概述

乐·教育 | 智·全球 Embrace education | Enlighten horizon

2021年12月



### 机器学习

- 维基百科:
- 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、 **凸分析、算法复杂度理论**等多门学科。机器学习理论主要是设计和分析一些让计算 机可以自动"学习"的算法。机器学习算法是一类从数据中自动分析获得规律,并利 用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机 器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器 学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难 度,所以部分的机器学习研究是开发容易处理的近似算法。



### 网络教学信息

- 斯坦福机器学习
  - http://v.163.com/special/opencourse/machinelearning.html
- CMU 机器学习课程
  - http://www.cs.cmu.edu/~epxing/Class/10715/
  - http://www.cs.cmu.edu/~epxing/Class/10708/ 视频
  - http://www.cs.cmu.edu/~epxing/Class/10701
  - https://sites.google.com/site/10601a14spring/syllabus
- http://wenku.baidu.com/course/view/49e8b8f67c1cfad6195fa705



### 相关学术文章下载资源

- COLT和ICML(每年度的官网): http://www.cs.mcgill.ca/~colt2009/proceedings.html
- CV:http://www.cvpapers.com/index.html;
- NIPS: <a href="http://books.nips.cc/">http://books.nips.cc/</a>;
- JMLR(期刊): <a href="http://jmlr.csail.mit.edu/papers/;">http://jmlr.csail.mit.edu/papers/;</a>



### 机器学习

### •维基百科:

- 机器学习有下面几种定义:
  - "机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能"。
  - "机器学习是对能通过经验自动改进的计算机算法的研究"。
  - "机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。"
  - 英文定义: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.



### 机器学习应用

- 数据挖掘
- 计算机视觉
- 自然语言处理
- 生物特征识别
- 搜索引擎
- 医学诊断
- 检测信用卡欺诈
- 证券市场分析
- DNA序列测序
- 语音和手写识别
- 战略游戏
- 机器人



### 机器学习的发展历程





### 机器学习的发展历程

- •新的方向:
  - 集成学习
  - 可扩展机器学习(对大数据集、高维数据的学习等)
  - 强化学习
  - 迁移学习
  - 概率网络
  - 深度学习



## 国内外的研究者

- M. I. Jordan
  - Andrew Ng
  - Tommi Jaakkola
  - David Blei
  - Eric Xing。。。
- D.Koller
  - 2001年IJCAI计算机与思维奖:Terry Winograd、David Marr、Tom Mitchell、Rodney Brooks等人之后的第18位获奖者
- Peter L. Bartlett
- J. D. Lafferty
- 国内: 李航,周志华,王晓刚,唐晓鸥,唐杰,刘铁岩,何晓飞,朱筠,吴军, 张栋,戴文渊,余凯,邓力,孙健



### 机器学习和数据挖掘的关系

- 机器学习是数据挖掘的重要工具。
- 数据挖掘不仅仅要研究、拓展、应用一些机器学习方法,还要通过许多非机器学习技术解决数据仓储、大规模数据、数据噪音等等更为实际的问题。
- 机器学习的涉及面更宽,常用在数据挖掘上的方法通常只是"从数据学习",然则机器学习不仅仅可以用在数据挖掘上,一些机器学习的子领域甚至与数据挖掘关系不大,例如增强学习与自动控制等等。
- 数据挖掘试图从海量数据中找出有用的知识。
- 大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。



### 机器学习和数据挖掘的关系



数据分析技术

数据管理技术

机器学习

数据库



# 机器学习的一个形象描述





### 机器学习相关学术期刊和会议

- 机器学习
  - 学术会议: NIPS、ICML、ECML和COLT,
  - 学术期刊: 《Machine Learning》和《Journal of Machine Learning Research》
- 数据挖掘
  - 学术会议: SIGKDD、ICDM、SDM、PKDD和PAKDD
  - 学术期刊: 《Data Mining and Knowledge Discovery》和《IEEE Transactions on Knowledge and Data Engineering》
- 人工智能
  - 学术会议: IJCAI和AAAI、
- 数据库
  - 学术会议: SIGMOD、VLDB、ICDE,
- 其它一些顶级期刊如
  - 《Artificial Intelligence》、
  - 《Journal of Artificial Intelligence Research》、
  - 《IEEE Transactions on Pattern Analysis and Machine Intelligence》
  - 《Neural Computation》等也经常发表机器学习和数据挖掘方面的论文



### 机器学习相关学术期刊和会议

# 中国计算机学会推荐国际学术刊物 (人工智能)

### A类

| 序 | 号 刊物名称 | 刊物全称                                                    | 出版社       | 地址                                         |
|---|--------|---------------------------------------------------------|-----------|--------------------------------------------|
| 1 | Al     | Artificial Intelligence                                 | Elsevier  | http://dblp.uni-trier.de/db/journals/ai/   |
| 2 | TPAMI  | IEEE Trans on Pattern Analysis and Machine Intelligence | IEEE      | http://dblp.uni-trier.de/db/journals/pami/ |
| 3 | IJCV   | International Journal of Computer Vision                | Springer  | http://dblp.uni-trier.de/db/journals/ijcv/ |
| 4 | JMLR   | Journal of Machine Learning Research                    | MIT Press | http://dblp.uni-trier.de/db/journals/jmlr/ |

### B类

| 序号 | 号 刊物名称 | 刊物全称                                                        | 出版社       | 地址                                                  |
|----|--------|-------------------------------------------------------------|-----------|-----------------------------------------------------|
| 1  | TAP    | ACM Transactions on Applied Perception                      | ACM       | http://dblp.uni-trier.de/db/journals/tap/           |
| 2  | TSLP   | ACM Transactions on Speech and Language Processing          | ACM       | http://dblp.uni-trier.de/db/journals/tslp/          |
| 3  | AAMAS  | Autonomous Agents and Multi-Agent Systems                   | Springer  | http://dblp.uni-trier.de/db/journals/aamas/         |
| 4  |        | Computational Linguistics                                   | MIT Press | http://dblp.uni-trier.de/db/journals/coling/        |
| 5  | CVIU   | Computer Vision and Image Understanding                     | Elsevier  | http://dblp.uni-trier.de/db/journals/cviu/          |
| 6  | DKE    | Data and Knowledge Engineering                              | Elsevier  | http://dblp.uni-trier.de/db/journals/dke/index.html |
| 7  |        | Evolutionary Computation                                    | MIT Press | http://dblp.uni-trier.de/db/journals/ec/            |
| 8  | TAC    | IEEE Transactions on Affective Computing                    | IEEE      | http://dblp.uni-trier.de/db/journals/taffco/        |
| 9  | TASLP  | IEEE Transactions on Audio, Speech, and Language Processing | IEEE      | http://dblp.uni-trier.de/db/journals/taslp/         |
| 10 |        | IEEE Transactions on Cybernetics                            | IEEE      | http://dblp.uni-trier.de/db/journals/tcyb/          |
| 11 | TEC    | IEEE Transactions on Evolutionary Computation               | IEEE      | http://dblp.uni-trier.de/db/journals/tec/           |
| 12 | TFS    | IEEE Transactions on Fuzzy Systems                          | IEEE      | http://dblp.uni-trier.de/db/journals/tfs/           |
| 13 | TNNLS  | IEEE Transactions on Neural Networks and learning systems   | IEEE      | http://dblp.uni-trier.de/db/journals/tnn/           |
| 14 | IJAR   | International Journal of Approximate Reasoning              | Elsevier  | http://dblp.uni-trier.de/db/journals/ijar/          |



| 15 JAIR  | Journal of Artificial Intelligence Research       | AAAI        | http://dblp.uni-trier.de/db/journals/jair/index.html |
|----------|---------------------------------------------------|-------------|------------------------------------------------------|
| 16       | Journal of Automated Reasoning                    | Springer    | http://dblp.uni-trier.de/db/journals/jar/            |
| 17 JSLHR | Journal of Speech, Language, and Hearing Research | American    | http://jslhr.pubs.asha.org/                          |
|          |                                                   | Speech-     |                                                      |
|          |                                                   | Language    |                                                      |
|          |                                                   | Hearing     |                                                      |
|          |                                                   | Association |                                                      |
| 18       | Machine Learning                                  | Springer    | http://dblp.uni-trier.de/db/journals/ml/             |
| 19       | Neural Computation                                | MIT Press   | http://dblp.uni-trier.de/db/journals/neco/           |
| 20       | Neural Networks                                   | Elsevier    | http://dblp.uni-trier.de/db/journals/nn/             |
| 21       | Pattern Recognition                               | Elsevier    | http://dblp.uni-trier.de/db/conf/par/                |
|          |                                                   |             |                                                      |



# 中国计算机学会推荐国际学术会议 (人工智能)

### A类

| 序号 刊物名称   | 刊物全称                                                            | 出版社       | 地址                                      |
|-----------|-----------------------------------------------------------------|-----------|-----------------------------------------|
| 1 AAAI    | AAAI Conference on Artificial Intelligence                      | AAAI      | http://dblp.uni-trier.de/db/conf/aaai/  |
| 2 NeurlPS | Annual Conference on Neural Information Processing Systems      | MIT Press | http://dblp.uni-trier.de/db/conf/nips/  |
| 3 ACL     | Annual Meeting of the Association for Computational Linguistics | ACL       | http://dblp.uni-trier.de/db/conf/acl/   |
| 4 CVPR    | IEEE Conference on Computer Vision and Pattern Recognition      | IEEE      | http://dblp.uni-trier.de/db/conf/cvpr/  |
| 5 ICCV    | International Conference on Computer Vision                     | IEEE      | http://dblp.uni-trier.de/db/conf/iccv/  |
| 6 ICML    | International Conference on Machine Learning                    | ACM       | http://dblp.uni-trier.de/db/conf/icml/  |
| 7 IJCAI   | International Joint Conference on Artificial Intelligence       | Morgan    | http://dblp.uni-trier.de/db/conf/ijcai/ |
|           |                                                                 | Kaufmann  |                                         |

### B类

| 序号 | 引物名称   | 刊物全称                                                                  | 出版社       | 地址                                               |
|----|--------|-----------------------------------------------------------------------|-----------|--------------------------------------------------|
| 1  | COLT   | Annual Conference on Computational Learning Theory                    | Springer  | http://dblp.uni-trier.de/db/conf/colt/           |
| 2  | EMNLP  | Conference on Empirical Methods in Natural Language Processing        | ACL       | http://dblp.uni-trier.de/db/conf/emnlp/          |
| 3  | ECAI   | European Conference on Artificial Intelligence                        | IOS Press | http://dblp.uni-trier.de/db/conf/ecai/           |
| 4  | ECCV   | European Conference on Computer Vision                                | Springer  | http://dblp.uni-trier.de/db/conf/eccv/           |
| 5  | ICRA   | IEEE International Conference on Robotics and Automation              | IEEE      | http://dblp.uni-trier.de/db/conf/icra/           |
| 6  | ICAPS  | International Conference on Automated Planning and Scheduling         | AAAI      | http://dblp.uni-trier.de/db/conf/aips/           |
| 7  | ICCBR  | International Conference on Case-Based Reasoning and Development      | Springer  | http://dblp.uni-trier.de/db/conf/iccbr/          |
| 8  | COLING | International Conference on Computational Linguistics                 | ACM       | http://dblp.uni-trier.de/db/conf/coling/         |
| 9  | KR     | International Conference on Principles of Knowledge Representation an | dMorgan   | http://dblp.uni-trier.de/db/conf/kr/             |
|    |        | Reasoning                                                             | Kaufmann  |                                                  |
| 10 | UAI    | International Conference on Uncertainty in Artificial Intelligence    | AUAI      | http://dblp.uni-trier.de/db/conf/uai/            |
| 11 | AAMAS  | International Joint Conference on Autonomous Agents and Multi-agent   | Springer  | http://dblp.uni-trier.de/db/conf/atal/index.html |
|    |        | Systems                                                               |           |                                                  |
| 12 | PPSN   | Parallel Problem Solving from Nature                                  | Springer  | http://dblp.uni-trier.de/db/conf/ppsn/           |



### 机器学习和统计学习

#### • 维基百科:

 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法 复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动"学习"的算法。 机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为 学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习 理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。



### 统计学习和机器学习

• Brendan O'Connor的博文Statistics vs. Machine Learning, fight!,初稿是08年写的,或许和作者的机器学习背景有关,他在初稿中主要是贬低了统计学,思想和[1]有点类似,认为机器学习比统计学多了些Algorithm Modeling方面内容,比如SVM的Max-margin,决策树等,此外他认为机器学习更偏实际。但09年十月的时候他转而放弃自己原来的观点,认为统计才是real deal: Statistics, not machine learning, is the real deal, but unfortunately suffers from bad marketing.



## 统计学习和机器学习

| Glossary (Robert Tibshiriani)                                |                                                      |  |  |
|--------------------------------------------------------------|------------------------------------------------------|--|--|
| Machine learning                                             | Statistics                                           |  |  |
| network, graphs                                              | model                                                |  |  |
| weights                                                      | parameters                                           |  |  |
| learning                                                     | fitting                                              |  |  |
| generalization                                               | test set performance                                 |  |  |
| supervised learning                                          | regression/classification                            |  |  |
| unsupervised learning                                        | density estimation, clustering                       |  |  |
| large grant = \$1,000,000                                    | large grant = \$50,000                               |  |  |
| nice place to have a meeting:<br>Snowbird, Utah, French Alps | nice place to have a meeting:<br>Las Vegas in August |  |  |



### 统计学习和机器学习

- 研究方法差异
  - 统计学研究形式化和推导
  - 机器学习更容忍一些新方法
- 维度差异
  - 统计学强调低维空间问题的统计推导(confidence intervals, hypothesis tests, optimal estimators)
  - 机器学习强调高维预测问题
- 统计学和机器学习各自更关心的领域:
  - 统计学: survival analysis, spatial analysis, multiple testing, minimax theory, deconvolution, semiparametric inference, bootstrapping, time series.
  - 机器学习: online learning, semisupervised learning, manifold learning, active learning, boosting.



### 统计学习和机器学习(专业术语)

• 统计学 机器学习

\_\_\_\_\_\_\_

Estimation Learning

Classifier Hypothesis

Data point Example/Instance

Regression Supervised Learning

Classification Supervised Learning

Covariate Feature

Response Label



- 统计学习的对象
  - data: 计算机及互联网上的各种数字、文字、图像、视频、音频数据以及它们的组合。
  - 数据的基本假设是同类数据具有一定的统计规律性。
- 统计学习的目的
  - 用于对数据(特别是未知数据)进行预测和分析。



- 统计学习的方法
  - 分类:
    - Supervised learning
    - Unsupervised learning
    - Semi-supervised learning
    - Reinforcement learning
  - 监督学习:
    - 训练数据 training data
    - 模型 model ------ 假设空间 hypothesis
    - 评价准则 evaluation criterion ------ 策略 strategy
    - 算法 algorithm



- 统计学习的研究:
  - 统计学习方法
  - 统计学习理论(统计学习方法的有效性和效率和基本理论)
  - 统计学习应用



### 监督学习

- Instance, feature vector, feature space
- 输入实例x的特征向量:

$$x = (x^{(1)}, x^{(2)}, \dots, x^{(i)}, \dots, x^{(n)})^{\mathrm{T}}$$

• x<sup>(i)</sup>与x<sub>i</sub>不同,后者表示多个输入变量中的第i个

$$x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(n)})^{\mathrm{T}}$$

• 训练集:

$$T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

- 输入变量和输出变量:
  - 分类问题、回归问题、标注问题



### 监督学习

- 联合概率分布
  - 假设输入与输出的随机变量X和Y遵循联合概率分布P(X,Y)
  - P(X,Y)为分布函数或分布密度函数
  - 对于学习系统来说, 联合概率分布是未知的,
  - 训练数据和测试数据被看作是依联合概率分布P(X,Y)独立同分布产生的。
- 假设空间
  - 监督学习目的是学习一个由输入到输出的映射, 称为模型
  - 模式的集合就是假设空间(hypothesis space)
  - 概率模型:条件概率分布P(Y|X), 决策函数: Y=f(X)



### 监督学习

• 问题的形式化



$$y_{N+1} = \arg \max_{y_{N+1}} \hat{P}(y_{N+1} \mid x_{N+1})$$
$$y_{N+1} = \hat{f}(x_{N+1})$$



### 无监督学习

• 训练集:

$$U = \{x_1, x_2, \cdots, x_N\}$$

• 模型函数:

$$z = g(x)$$

• 条件概率分布:





### 强化学习

强化学习的马尔可夫决策过程是状态、奖励、动作序列上的随机过程,由五元组 $\langle S, A, P, r, \gamma \rangle$ 组成。

- S 是有限状态 (state) 的集合
- *A* 是有限动作 (action) 的集合
- P 是状态转移概率 (transition probability) 函数:

$$P(s'|s, a) = P(s_{t+1} = s'|s_t = s, a_t = a)$$



- r 是奖励函数 (reward function):  $r(s,a) = E(r_{t+1}|s_t = s, a_t = a)$
- $\gamma$  是衰减系数 (discount factor):  $\gamma \in [0,1]$



### 强化学习

- 状态转移概率函数: P(s'|s,a)
- 奖励函数: r(s,a)
- 策略 $\pi$ : 给定状态下动作的函数 a = f(s) 或者条件概率分布 P(a|s)
- 状态价值函数:  $v_{\pi}(s) = E_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s]$
- 动作价值函数:  $q_{\pi}(s,a) = E_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s, a_t = a]$



### 强化学习方法

- 无模型 (model-free)
  - 基于策略 (policy-based) : 求解最优策略π\*
  - 基于价值(value-based): 求解最优价值函数
- 有模型 (model-based)
  - 通过学习马尔可夫决策过程的模型,包括转移概率函数和奖励函数
  - 通过模型对环境的反馈进行预测
  - 求解价值函数最大的策略π\*



### 半监督学习

- 少量标注数据, 大量未标注数据
- 利用未标注数据的信息,辅助标注数据,进行监督学习
- 较低成本

### 主动学习

- 机器主动给出实例, 教师进行标注
- 利用标注数据学习预测模型



• 按算法分类:

• 在线学习 (online learning)



• 批量学习 (batch learning)



- 按技巧分类:
  - 贝叶斯学习(Bayesian learning)

模型估计时,估计整个后验概率分布  $P(\theta|D)$ 。如果需要给出一个模型,通常取后验概率最大的模型。

预测时, 计算数据对后验概率分布的期望值:

$$P(x|D) = \int P(x|\theta, D)P(\theta|D)d\theta$$

这里 x 是新样本。



## 统计学习

- 按技巧分类:
  - 贝叶斯学习(Bayesian learning)





## 统计学习

- 按技巧分类:
  - 核方法(Kernel method)
    - 使用核函数表示和学习非线性模型,将线性模型学习方法扩展到非线性模型的学习
    - 不显式地定义输入空间到特征空间的映射,而是直接定义核函数,即映射之后在特征空间的内积
    - 假设 $x_1$ ,  $x_2$ 是输入空间的任意两个实例,内积为 $<x_1$ ,  $x_2>$ ,输入空间到特征空间的映射为 $\phi$ ,核方法在输入空间中定义核函数  $K(x_1, x_2)$ ,使其满足  $K(x_1, x_2) = < \phi(x_1)$ ,  $\phi(x_2)>$



#### 方法=模型+策略+算法

- 模型:
  - 决策函数的集合:  $\mathcal{F} = \{f \mid Y = f(X)\}$
  - 参数空间  $\mathcal{F} = \{f \mid Y = f_{\theta}(X), \theta \in \mathbb{R}^n\}$
  - 条件概率的集合:  $\mathcal{F} = \{P \mid P(Y \mid X)\}$
  - 参数空间  $\mathcal{F} = \{P \mid P_{\theta}(Y \mid X), \theta \in \mathbf{R}^n\}$



#### • 策略

- 损失函数: 一次预测的好坏
- 风险函数: 平均意义下模型预测的好坏
- 0-1损失函数 0-1 loss function

$$L(Y, f(X)) = \begin{cases} 1, & Y \neq f(X) \\ 0, & Y = f(X) \end{cases}$$

• 平方损失函数 quadratic loss function

$$L(Y, f(X)) = (Y - f(X))^2$$

• 绝对损失函数 absolute loss function

$$L(Y, f(X)) = |Y - f(X)|$$



- 策略
  - 对数损失函数 logarithmic loss function 或对数似然损失函数 loglikelihood loss function  $L(Y, P(Y|X)) = -\log P(Y|X)$
  - 损失函数的期望  $R_{\exp}(f) = E_P[L(Y, f(X))] = \int_{X \times Y} L(y, f(x)) P(x, y) dxdy$
  - 风险函数 risk function 期望损失 expected loss
  - 由P(x,y)可以直接求出P(x|y),但不知道,  $T = \{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$
  - 经验风险 empirical risk , 经验损失 empirical loss  $R_{emp}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$



- 策略: 经验风险最小化与结构风险最小化
  - 经验风险最小化最优模型

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$

- 当样本容量很小时,经验风险最小化学习的效果未必很好,会产生"过拟合over-fitting"
- 结构风险最小化 structure risk minimization,为防止过拟合提出的策略,等价于正则化(regularization),加入正则化项regularizer,或罚项 penalty term:

$$R_{\text{nem}}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$



• 求最优模型就是求解最优化问题:

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$



- 算法:
  - 如果最优化问题有显式的解析式, 算法比较简单
  - 但通常解析式不存在, 就需要数值计算的方法



• 训练误差, 训练数据集的平均损失

•测试误差,测试数据集的平均损失

• 损失函数是0-1 损失时:

• 测试数据集的准确率:

$$R_{\text{emp}}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

$$e_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} L(y_i, \hat{f}(x_i))$$

$$e_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} I(y_i \neq \hat{f}(x_i))$$

$$r_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} I(y_i = \hat{f}(x_i))$$



- 过拟合与模型选择
- 假设给定训练数据集  $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

$$f_M(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

• 经验风险最小:

经验风险最小:
$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 \qquad L(w) = \frac{1}{2} \sum_{i=1}^{N} \left( \sum_{j=0}^{M} w_j x_i^{j} - y_i \right)^2 \qquad w_j = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^{j+1}}, \quad j = 0, 1, 2, \dots, M$$











#### 正则化与交叉验证

• 正则化一般形式:

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$

• 回归问题中:

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i; w) - y_i)^2 + \frac{\lambda}{2} ||w||^2$$

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i; w) - y_i)^2 + \lambda ||w||_1$$



#### 正则化与交叉验证

- 交叉验证:
  - 训练集 training set: 用于训练模型
  - 验证集 validation set: 用于模型选择
  - 测试集 test set: 用于最终对学习方法的评估
  - 简单交叉验证
  - S折交叉验证
  - 留一交叉验证



#### 泛化能力 generalization ability

- 泛化误差 generalization error  $R_{exp}(\hat{f}) = E_p[L(Y, \hat{f}(X))] = \int_{x > y} L(y, \hat{f}(x)) P(x, y) dxdy$
- 泛化误差上界
  - 比较学习方法的泛化能力-----比较泛化误差上界
  - 性质: 样本容量增加, 泛化误差趋于0, 假设空间容量越大, 泛化误差越大
- •二分类问题  $X \in \mathbb{R}^n$ ,  $Y \in \{-1,+1\}$
- 期望风险和经验风险 R(f) = E[L(Y, f(X))]  $\hat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$



#### 泛化能力 generalization ability

• 经验风险最小化函数:  $f_N = \arg\min_{f \in \mathcal{F}} \hat{R}(f)$ 

• 泛化能力:  $R(f_N) = E[L(Y, f_N(X))]$ 

 $R(f) \leq \hat{R}(f) + \varepsilon(d, N, \delta)$ 

• 定理: 泛化误差上界, 二分类问题, 当假设空间是有限个函数的结合  $\mathcal{F} = \{f_1, f_2, \dots, f_d\}$ , 对任意一个函数f, 至少以概率1-δ, 以下不等式成立:  $\varepsilon(d, N, \delta) = \sqrt{\frac{1}{2N}} \left( \log d + \log \frac{1}{\delta} \right)$ 



#### 生成模型与判别模型

• 监督学习的目的就是学习一个模型:

• 决策函数: 
$$Y = f(X)$$

• 条件概率分布: P(Y|X)

• 生成方法Generative approach 对应生成模型:generative model,

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

• 朴素贝叶斯法和隐马尔科夫模型



#### 生成模型与判别模型

- 判别方法由数据直接学习决策函数f(X)或条件概率分布P(Y|X)作为预测的模型, 即判别模型
- Discriminative approach对应discriminative model

$$Y = f(X)$$

• K近邻法、感知机、决策树、logistic回归模型、最大熵模型、支持向量机、提升方法和条件随机场。



#### 生成模型与判别模型

#### • 各自优缺点:

- 生成方法:可还原出联合概率分布P(X,Y),而判别方法不能。生成方法的收敛速度更快,当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;当存在隐变量时,仍可以使用生成方法,而判别方法则不能用。
- 判别方法:直接学习到条件概率或决策函数,直接进行预测,往往学习的准确率 更高;由于直接学习Y=f(X)或P(Y|X),可对数据进行各种程度上的抽象、定义特征 并使用特征,因此可以简化学习过程。



#### 分类问题





#### 分类问题

- 二分类评价指标
  - TP true positive
  - FN false negative
  - FP false positive
  - TN true negative

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$\frac{2}{F_1} = \frac{1}{P} + \frac{1}{R}$$

$$F_1 = \frac{2TP}{2TP + FP + FN}$$



#### 标注问题

- 标注: tagging, 结构预测: structure prediction
- 输入: 观测序列, 输出: 标记序列或状态序列
- 学习和标注两个过程
- 训练集:  $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- 观测序列:  $x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(n)})^T$ ,  $i = 1, 2, \dots, N$
- 输出标记序列:  $y_i = (y_i^{(1)}, y_i^{(2)}, \dots, y_i^{(n)})^T$
- 模型: 条件概率分布  $P(Y^{(1)},Y^{(2)},...,Y^{(n)}|X^{(1)},X^{(2)},...,X^{(n)})$



#### 标注问题

- 例子:
- •标记表示名词短语的"开始"、"结束"或"其他"(分别以B, E, O表示)
- 输入: At Microsoft Research, we have an insatiable curiosity and the desire to create new technology that will help define the computing experience.
- 输出: At/O Microsoft/B Research/E, we/O have/O an/O insatiable/6 curiosity/E and/O the/O desire/BE to/O create/O new/B technology/E that/O will/O help/O define/O the/O computing/B experience/E.



#### 回归问题

- 回归模型是表示从输入变量到输出变量之间映射的函数.回归问题的学习等价于函数拟合。
- 学习和预测两个阶段
- 训练集:

$$T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$





#### 回归问题

• 回归学习最常用的损失函数是平方损失函数,在此情况下,回归问题可以由 著名的最小二乘法(least squares)求解。

• 股价预测