Plotly 기본

학습 내용

• 반응형 브라우저 기반 시각화 라이브러리(plotly)를 소개하고 실습해 본다.

plotly로 시각화하기

- cufflinks와 iplot()을 활용. pandas.plot()와 같이 판다스 데이터 시각화
- plotly.express 라이브러리 활용
- cufflinks 는 무엇인가?
 - 판다스 데이터 프레임과 Plotly를 연결하여 사용자가 판다스로부터 직접 시각화를 할 수 있는 라이브러 리

01 시작하기 - 설치(Plotly and Cufflinks)

- · pip install plotly
- · pip install cufflinks
- 자료 실행 버전
 - plotly 5.6.0
 - cufflinks 0.17.3
 - python 3.9.12
- 버전 지정 설치 시,
 - pip install plotly==4.10.0
 - conda install -c plotly plotly==4.1.0

In [1]:

```
import plotly
import cufflinks as cf
import pandas as pd
import numpy as np
import sys
```

프로그램 버전 확인

```
In [3]:
```

```
print(sys.version)
print(plotly.__version__)
print(cf.__version__)
print(pd.__version__)
print(np.__version__)

3.9.12 (main, Apr 4 2022, 05:22:27) [MSC v.1916 64 bit (AMD64)]
5.6.0
0.17.3
1.4.2
1.21.5
```

In [4]:

```
# 오프라인 모드에서도 인터렉티브한 그래픽을 가능하도록 하기
# Enabling the offline mode for interactive plotting locally
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
init_notebook_mode(connected=True)
cf.go_offline()
```

데이터 생성 및 plot

In [36]:

```
# 데이터 만들기
dat = np.random.randn(50,4) # 50개 4개 컬럼
df = pd.DataFrame(dat, columns='A B C D'.split())
print(df.shape)
df.head()
```

(50, 4)

Out [36]:

	Α	В	С	D
0	1.795314	0.354644	0.208492	-0.853836
1	1.144684	0.661491	-1.096486	0.157183
2	-1.331844	-1.121284	0.004359	-1.015948
3	2.342148	1.195937	-0.743732	-0.580941
4	0.647516	-0.469113	1.490221	-0.584984

02 Line Plot 그려보기

df[['A', 'B']].iplot(kind='line')

Export to plot ly

df.iplot(kind='line', xTitle="x축", yTitle="y축", title="데이터 제목")

데이터 제목

Export to plot ly

df.iplot(kind='scatter', x='A',y='B',mode='markers',size=20)

Export to plot ly

Scatter Plot

- scatter Plot을 위한 mode
 - lines
 - markers
 - lines+markers
 - lines+text
 - markers+text
 - lines+markers+text

In [43]:

Export to plot ly

In [44]:

Out [44]:

	items	Values
0	bag	32
1	apple	43
2	cap	50

Bar Plot

In [45]:

df2

Out[45]:

	items	Values
0	bag	32
1	apple	43
2	cap	50

In [46]:

df2.iplot(kind='bar',x='items',y='Values')

In [47]:

Out [47]:

	Α	В	С
0	0.789214	0.188631	0.558508
1	0.087561	0.376575	0.144793
2	0.434154	0.358793	0.722729
3	0.901232	0.570671	0.526448
4	0.720390	0.154980	0.847210

In [48]:

```
# 0,1,2,3,4에 대한 A,B,C의 값
df.iplot(kind='bar')
```


In [49]:

df['A'].iplot(kind='bar')

Export to plot ly

Stack plot

In [50]:

df.iplot(kind='bar', barmode='stack')

Export to plot ly

수평 막대 그래프

In [52]:

df.iplot(kind='barh', barmode='stack')

Export to plot ly

Boxplot

In [53]:

```
df.iplot(kind='box')
```


Export to plot ly

3D Surface Plot

In [54]:

Out [54]:

	X	У	Z
0	1	10	5
1	2	20	4
2	3	30	3
3	4	40	2
4	5	60	1

In [55]:

```
df3.iplot(kind='surface',colorscale='rdylbu')
```


Export to plot ly

cufflinks.datagen module

- ref : https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)

 (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)
- datagen.lines : scatter(lines) plot을 위한 데이터 프레임 반환
- cufflinks.datagen.lines(n_traces=5, n=100, ...)
 - n_traces:int -> tracds의 수
 - n: 각각의 점의 수

Line Charts

In [56]:

```
df = cf.datagen.lines()
df.shape
```

Out [56]:

(100, 5)

In [57]:

df.head(13)

Out[57]:

	XYU.TT	CIX.NU	JBA.NI	MLO.BS	XHT.PN
2015-01-01	0.184927	2.171877	0.964836	0.470304	-0.655137
2015-01-02	0.689656	1.479998	1.206208	0.499690	-0.020399
2015-01-03	0.649151	1.582318	1.235998	0.971387	0.475011
2015-01-04	-0.029342	1.714909	1.639274	1.691653	1.336021
2015-01-05	0.075288	1.429631	3.053898	2.331488	2.750114
2015-01-06	0.170091	0.152632	3.314450	1.480077	1.732689
2015-01-07	0.544495	0.710863	4.471726	-0.238790	0.461243
2015-01-08	1.312028	-0.088384	3.482218	1.203644	0.990346
2015-01-09	0.018649	-0.573471	3.206584	1.058521	2.023526
2015-01-10	0.308142	0.097888	2.642304	3.135890	1.931340
2015-01-11	2.460953	-0.551436	1.893967	4.630392	1.629478
2015-01-12	3.275820	-0.642213	0.742785	2.274207	1.300788
2015-01-13	3.948288	-0.578341	1.094794	2.862953	0.520975

df.iplot(kind='line')

Export to plot ly

In [59]:

print(df.shape)
df.head(10)

(100, 5)

Out[59]:

	XYU.TT	CIX.NU	JBA.NI	MLO.BS	XHT.PN
2015-01-01	0.184927	2.171877	0.964836	0.470304	-0.655137
2015-01-02	0.689656	1.479998	1.206208	0.499690	-0.020399
2015-01-03	0.649151	1.582318	1.235998	0.971387	0.475011
2015-01-04	-0.029342	1.714909	1.639274	1.691653	1.336021
2015-01-05	0.075288	1.429631	3.053898	2.331488	2.750114
2015-01-06	0.170091	0.152632	3.314450	1.480077	1.732689
2015-01-07	0.544495	0.710863	4.471726	-0.238790	0.461243
2015-01-08	1.312028	-0.088384	3.482218	1.203644	0.990346
2015-01-09	0.018649	-0.573471	3.206584	1.058521	2.023526
2015-01-10	0.308142	0.097888	2.642304	3.135890	1.931340

테마설정

In [60]:

```
themes = cf.getThemes()
themes
```

Out[60]:

```
['ggplot', 'pearl', 'solar', 'space', 'white', 'polar', 'henanigans']
```

In [61]:

```
data = pd.Series(range(10))
for theme in themes:
    data.iplot(kind='bar', theme=theme, title=theme)
```

ggplot

In [62]:

```
data.iplot(kind='bar', theme="ggplot", title="ggplot")
```

ggplot

In [63]:

```
data.iplot(kind='bar', theme="pearl", title="pearl")
```

pearl

In [64]:

```
data.iplot(kind='bar', theme="solar", title="solar")
```

solar

In [65]:

```
data.iplot(kind='bar', theme="space", title="space")
```

space

In [66]:

```
data.iplot(kind='bar', theme="white", title="white")
```

white

In [67]:

```
data.iplot(kind='bar', theme="polar", title="polar")
```

polar


```
data.iplot(kind='bar', theme="henanigans", title="henanigans")
```

henanigans

Export to plot ly

REF

- cufflinks.datagen module
- https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)
 (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)
 (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html))