AD			

Award Number: DAMD17-00-1-0354

TITLE: Folate Intake, Genetic Susceptibility and Risk of Breast

Cancer

PRINCIPAL INVESTIGATOR: Jia Chen, Ph.D.

CONTRACTING ORGANIZATION: Mount Sinai School of Medicine

New York, New York 10029

REPORT DATE: October 2003

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

Management and Bodget, Faperwork Reduction Fre	CCC (0104-0100), Vidshington, DO 20000			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE October 2003	3. REPORT TYPE AND Annual (1 Sep		
4. TITLE AND SUBTITLE Folate Intake, Genetic Cancer 6. AUTHOR(S) Jia Chen, Ph.D.	Susceptibility and Ris	sk of Breast	5. FUNDING N DAMD17-00	,
7. PERFORMING ORGANIZATION NA Mount Sinai School of Mo New York, New York 100. E-Mail: jia.chen@mssm.edu	edicine 29		8. PERFORMIN REPORT NU	G ORGANIZATION MBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRES	S/FS)			NG / MONITORING EPORT NUMBER
U.S. Army Medical Reseat Fort Detrick, Maryland		and	,	
11. SUPPLEMENTARY NOTES		•		
12a. DISTRIBUTION / AVAILABILITY Approved for Public Rele		imited		12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 Word Breast cancer is thought modifications. Diets his of breast cancer in many micronutrients including is not know which micronuto rationally design and a B vitamin mostly found diet. It is a crucial coare important processes processes differ from or population with inherite be at increased risk of approach to study both.	to be largely prevent to be largely prevent the in vegetables and for epidemiologic studies with the state of	ruits have been s. Minor components. Minor components in mediation or how they acceptate the strategy ruits, may be a stion as well a cancer. Certain Therefore, a possible to metabolism alon cer. We plan to	associated ents of die on these as a such know against brown the protective as DNA synthm genes in the protection of the	d with reduced risk et such as sociations, but it owledge is critical east cancer. Folate, micronutrient in hesis, both of which volved in these he general folate intake may ti-disciplinary

to risk of breast cancer 15. NUMBER OF PAGES 14. SUBJECT TERMS No Subject Terms Provided. 20 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

investigate: (1) whether dietary folate is a micronutrient that is protective against breast cancer; (2) whether a proportion of the population with inherited sub-optimal folate metabolism is at increased risk of breast cancer; (3) whether such inherited variability modifies the association of folate intake and risk of breast cancer; and (4) whether folate may interact with alcohol that interrupts folate metabolism in contributing

OF REPORT Unclassified OF THIS PAGE Unclassified

OF ABSTRACT Unclassified

Unlimited

Table of Contents

Cover	1
SF 298	2
Table of Contents	3
Introduction	4
Body	4
Key Research Accomplishments	6
Reportable Outcomes	6
Conclusions	6
References	7
Appendices	7

INTRODUCTION

Breast cancer is thought to be largely preventable through dietary and lifestyle modifications. Low levels of folate and related B vitamins both in diet and in circulating have been associated with risk of breast cancer in several prospective epidemiologic studies. Folate, a B vitamin mostly found in vegetables and fruits, is a crucial component in DNA methylation as well as DNA synthesis, both of which are important processes in etiology of breast cancer. Certain genes involved in these processes differ from on person to another. Therefore, a portion of the general population with inherited suboptimal folate metabolism along with low folate intake may be at increased risk of developing breast cancer. We plan to utilize resource of the Long Island Breast Cancer Project, a large population-based case-control study, to study both nutritional and genetic aspects of the disease. We will investigate: (1) whether dietary folate is a micronutrient that is protective against breast cancer; (2) whether a proportion of the population with inherited sub-optimal folate metabolism is at increased risk of breast cancer; (3) whether such inherited variability modifies the association of folate intake and risk of breast cancer; and (4) whether folate may interact with alcohol that interrupts folate metabolism in contributing to risk of breast cancer. The significance of this research lies in its potential not only to clarify etiology of breast cancer but also to guide the prevention of breast cancer through dietary modification. Furthermore, because a high proportion of the general population may inherit sub-optimal folate metabolism, attributable risk associated with these genetic factors may be quite significant. Associations between such susceptibility and risk of breast cancer will provide an extremely valuable guide to preventive dietary and other lifestyle modifications in individuals and in the population at large.

BODY

Task 1: To investigate the association of folate intake with risk of breast cancer in the Long Island Breast Cancer Study Project (Month 1-12).

We have computed dietary levels of B vitamins from the dietary questionnaire of the LIBSCP. These micronutrients, folate, vitamin B1, B2, B6, and Niacin, are highly correlated with Pearson Coefficient > 0.8. We have built logistic regression models to assess risk of breast cancer associated B vitamins. Our findings are summarized below:

A. Overall association of dietary B vitamins and risk of breast cancer (Table 1).

Overall, increased dietary intake of B vitamins was associated with reduced risk of breast cancer with ORs < 1; however, the reduction is very modest. For example, compared to those in the lowest quintile of dietary folate intake, individuals in the highest quintile of folate intake had a 12% reduction in breast cancer risk (OR 0.88, 95%CI 0.68-1.14). Similar relations were also observed with other B vitamins.

B. Associations of B vitamins and breast cancer stratified multivitamin use (Table 2).

The most interesting findings so far is that there is a significant dose-relationship between dietary B vitamin intake and breast cancer only among non-multivitamin users (p, trend = 0.01). Among non-multivitamin users, individuals with high dietary B vitamin intakes had significantly reduced risk of breast cancer compared to those with low intakes. The ORs (5th vs. 1st quintile) were 0.57 (95%CI 0.39-0.84), 0.62 (95%CI 0.42-0.90), 0.59 (95%CI 0.41-0.86), 0.65 (95%CI 0.39-0.94) for folate, niacin, B1 and B2, respectively. Multivitamin use was not associated with breast cancer risk (OR=0.96, 95%CI 0.82-1.13). Among the users (~50%), dietary folate was not related to breast cancer risk (p, trend = 0.90).

C. Associations of B vitamins and breast cancer stratified by menopausal status and tumor characteristics (Table 3a, b).

We examined whether the associations of B vitamins and breast cancer were different with menopausal status (pre- vs. post-) and tumor characteristics (invasive vs. *in situ*) by stratified analyses. It appears that these associations were slightly stronger for post-menopausal and invasive breast cancer as shown in the test for trend. But no significant effect modification was reported.

D. Interaction of alcohol consumption and folate intake in relation to breast cancer (Figure 1).

Interactions of alcohol and folate intake in relation to breast cancer has been observed in three large cohort studies, i.e. the Nureses' Health Study, the Canadian National Breast Screen Study and the Iowa Women's Health Study. We observed the significant association between folate intake and breast cancer only among non-alcohol users (p, trend = 0.04). Compared the non-alcohol users, high folate intake (5th quintile) was associated with 34% reduction in risk (OR 0.66, 95%CI 0.49-0.90).

Task 2: To genotype three genetic polymorphisms in folate-metabolizing genes in 1087 breast cancer cases and 1122 population-based controls of the Long Island Breast Cancer Study Project (Month 7-40).

A. DNA isolation

DNA isolation has been completed for all 1087 cases and 1122 controls. Aliquots have been make and sent to the laboratory of Dr. Jia Chen at Mount Sinai School of Medicine, where genotyping is carried out.

B. MTHFR polymorphisms (Table 4).

Genotyping for MTHFR 677C->T polymorphism has been completed and results are summarized in Table 4. The genotype distribution of the control population of the LIBCSP was 47% CC, 39%CT and 14%TT, similar to other US populations. The prevalence of TT genotype is 17% in cases, slightly higher than controls with OR of 1.37 (95%CI 1.02-1.77) (Table 4a). The increased risk was more pronounced in women who are pre-menopausal (Table 4), use multivitamin (Table 4c), drinks alcohol (Table 4d).

We also observed a significant interaction between MTHFR polymorphism and total folate intake (p, interaction = 0.03) (Figure 2). Individuals with TT genotype and low folate intake had a 69% increase in breast cancer risk (OR 1.69, 95%CI 1.07 – 2.66). A significant interaction with alcohol (p, interaction = 0.03) was also apparent; individuals who consume alcohol and have TT genotype had 53% increase in breast cancer risk (OR 1.53, 95%CI 1.05 - 2.23)

In addition, We have also genotyped MTHFR 1298A-> C polymorphisms on 442 individuals.

C. TS polymorphism.

A new folate metabolizing gene, thymidylate synthase (TS), has generated attention recently. A tandem repeat polymorphism has been identified in the enhancer region of the TS promoter which contains either triple (TS*3R) or double (TS*2R) repeats of a 28 bp sequence. Individuals homozygous for triple repeats (TS 3R/3R) have 3.6 times higher TS mRNA levels compared to those homozygous for the double repeat (TS 2R/2R) genotype. In a separate study, our laboratory discovered that the TS polymorphism modifies colon cancer risk and survival, as well as plasma folate levels¹.

We decided to investigate whether the TS polymorphism is associated with breast cancer risk in the LIBSCP. We have finished 1200 samples and results are reported in Table 5. The 2R/2R genotype confers a non-significantly increased risk of breast cancer (OR 1.22, 95%CI 0.96 – 1.55). Such association was not modified by menopausal status, multivitamin use, alcohol intake, and tumor characteristics. There appear to be a genegene interactions between MTHFR and TS (p, interaction = 0.04).

D. MTRR polymorphism

We have finished genotyping MTRR polymorphisms. We are in the process of analyzing the results.

Task 3: Final analyses and report writing (Month 36-48).

- a. Analyze the associations of genetic polymorphisms in folate-metabolizing genes and risk of breast cancer.
- b. Assess gene-environment interactions in relation to risk of breast cancer.
- c. Investigate possible interactions of folate and alcohol consumption in ration to risk of breast cancer.
- d. Prepare final report and manuscripts.

Please see above. We are in the process of manuscript preparation.

KEY RESEARCH ACCOMPLISHMENTS

1. We have performed crude analyses on the dietary B vitamin intake in the LIBCSP.

- 2. We have isolated DNA from all individuals (1087 cases and 1122 controls).
- 3. We have finished genotyping on the MTHFR, TS and MTRR polymorphisms.
- 4. We have set up assays for a new folate-metabolizing gene polymorphism, the TS polymorphism.

REPORTABLE OUTCOMES

We have presented the results of this study at the following meeting:

Chen J, Gammon MD, Chan W, Palomeque C, Kabat GC, Terry MB, Teitelbaum SL, Britton JA, Neugut AI, Santella RM. Folate Metabolism Modifies the Risk of Breast Cancer in the Long Island Breast Cancer Study Project. 91st Annual Meeting of American Association for Cancer Research, Washington DC, 2003.

CONCLUSIONS

- Dietary intake of B vitamins are associated with very modestly reduced risk of breast cancer with OR<1 in general.
- Among non-multivitamin users, dietary intakes of B vitamins are protective against breast cancer in dose-dependent fashion.
- There is a significant association between dietary folate intake and breast cancer risk only among non-alcohol drinkers.
- Genetic polymorphisms in folate metabolism may influence breast cancer risk.

REFERENCES

Chen, J., Hunter, D. J., Stampfer, M. J., Kyte, C., Chan, W., Wetmur, J. G., Selhub, J., and Ma, J. A
prospective study on relations of a polymorphism in the Thymidylate Synthase Promoter Enhancer
Region and the risk and survival of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2003.
Ref Type: In Press

APPENDICES

None

Table 1. Association of daily intake of B vitamins with risk of breast cancer: adjusted OR and 95% CI by quintile or quartile of intake

Nutrient Type	Q1 (lowest intake)	Q2	83	94	Q 5	P for Trend
Folate						
Cases/Controls	330/305	288/304	316/305	273/304	272/304	
OR (95% CI)*	1.00 (Referent)	0.91 (0.70-1.17)	1.00 (0.78-1.29)	0.85 (0.66-1.10)	0.88 (0.68-1.14)	0.20
Vitamin B ₁						
Cases/Controls	357/317	311/298	273/300	277/309	261/298	
OR (95% CI)*	1.00 (Referent)	0.97 (0.76-1.25)	(0.29-0.99)	0.84 (0.65-1.08)	0.88 (0.68-1.13)	0.10
Vitamin B ₂ (Riboflavin)						
Cases/Controls	341/305	312/311	275/298	276/304	275/304	
OR (95% CI)*	1.00 (Referent)	0.91 (0.71-1.17)	0.81 (0.62-1.05)	0.84 (0.65-1.08)	0.89 (0.69-1.14)	0.19
Vitamin B ₆						
Cases/Controls	323/310	329/304	279/302	286/306	262/300	
OR (95% CI)*	1.00 (Referent)	1.08 (0.84-1.39)	0.92 (0.71-1.19)	0.94 (0.73-1.21)	0.92 (0.71-1.20)	0.22
Supplemental B ₁₂						
Cases/Controls	746/751	40/49	467/468	226/254	1	
OR (95% CI)*	1.00 (Referent)	1.12 (0.70-1.81)	0.96 (0.80-1.16)	0.94 (0.75-1.19)	ŀ	0.51
Niacin						
Cases/Controls	351/305	303/306	264/303	292/304	269/304	
OR (95% CI)*	1.00 (Referent)	0.88 (0.68-1.12)	0.79 (0.61-1.02)	0.90 (0.70-1.16)	0.84(0.65-1.09)	0.18
Total Folate						
Cases/Controls	266/256	256/251	228/251	238/249	240/254	
OR (95% CI)*	1.00 (Referent)	0.98 (0.76-1.26)	0.87 (0.67-1.12)	0.90 (0.69-1.16)	0.90 (0.70-1.17)	0.25

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), history of benign breast disease (yes or no), lactation (ever or never), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

Table <u>2</u>. Association of daily intake of B vitamins with risk of breast cancer: adjusted OR and 95% CI by quintile or quartile of intake, supplemental folate status

Supplemental Folate = No 122/129 139/126 1.00 (ref) 1.00 (cef) 1.00 (cef) 1.00 (0.68 -1.45) 1.00 (cef) 1.00 (ref) 1.00 (r	Nutrient Type	Q1 (low)	02	Q3	Q4	Q5	P for Trend
Sontrols 161/138 122/129 139/126 109/114 % CI)* 1.00 (ref) 0.76 (0.53-1.08) 0.88 (0.62-1.24) 0.79 (0.55-1.14) Supplemental Folate = Yes 1.00 (ref) 1.00 (nef) 1.00 (0.68 - 1.45) 1.05 (0.73-1.54) 0.86 (0.59-1.26) Sontrols 1.00 (ref) 1.00 (0.68 - 1.45) 1.06 (0.73-1.54) 0.86 (0.59-1.26) Sontrols 1.00 (ref) 0.73 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Sontrols 1.28/132 124/123 124/123 123/120 Sontrols 1.00 (ref) 0.72 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Sontrols 1.28/132 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Sontrols 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.11/126 1.5/128 CI)* 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Controls 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.42-0.89) 0.80 (0.62-1.	Folate		Sup	plemental Folate =	No		
% CI)* 1.00 (ref) 1.076 (0.53-1.08) 2.088 (0.62-1.24) 3.017012 2.01712 1.20/122 1.20/125 1.00 (ref) 1.00 (0.68 -1.45) 1.00 (ref) 1.00 (0.68 -1.45) 2.01702 2.01703 2.0	Cases/Controls	161/138		139/126		82/115	
Supplemental Folate = Yes Supplemental Folate = Yes 120/122 122/125 114/135 1.00 (ref) 1.00 (0.68 -1.45) 1.06 (0.73-1.54) 0.86 (0.59-1.26) Supplemental Folate = No 161/119 135/136 99/116 123/131 Supplemental Folate = Yes 1.00 (ref) 0.73 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Supplemental Folate = Yes 1.00 (ref) 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Supplemental Folate = No 1.00 (ref) 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Supplemental Folate = Yes 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No Supplemental Folat	OR (95% CI)*	1.00 (ref)	0.76 (0.53-1.08)	0.88 (0.62-1.24)	0.79 (0.55-1.14)	0.57 (0.39-0.84)	0.01
Sontrols 109/116 120/122 122/125 114/135 114/135			dnS	plemental Folate = `	<i>l</i> es		
Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 1.00 (0.68 -1.45) 1.06 (0.73-1.54) 0.86 (0.59-1.26) Supplemental Folate = No 1.00 (ref) 0.73 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Supplemental Folate = Yes 1.28/132 124/123 114/126 123/120 Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Cases/Controls	109/116	120/122	122/125	114/135	150/141	
Supplemental Folate = No Supplemental Folate = No 135/136 99/116 123/131 1.00 (ref) 0.73 (0.51-1.04) Supplemental Folate = Yes 1.24/123 1.24/123 1.24/123 1.24/123 1.00 (ref) 1.03 (0.72-1.48) Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 1.02 (0.71-1.04) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 1.02 (0.71-1.46) Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) Supplemental Folate = Yes 1.00 (ref) 1.01 (ref) 1.02 (0.71-1.46) Supplemental Folate = Yes 1.00 (ref) 1.00 (ref) 1.01 (ref) 1.01 (ref) 1.02 (ref) 1.03 (ref) 1.04 (ref) 1.05 (ref) 1.06 (ref) 1.07 (ref) 1.08 (ref) 1.09 (ref) 1.00 (re	OR (95% CI)*	1.00 (ref)	1.00 (0.68 -1.45)	1.06 (0.73-1.54)	0.86 (0.59-1.26)	1.09 (0.76-1.56)	0.90
Sontrols 161/119 135/136 99/116 123/131 % CI)* 1.00 (ref) 0.73 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Supplemental Folate = Yes Sontrols 128/132 124/123 114/126 123/120 Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Supplemental Folate = No 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) (Riboflavin) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90)	Niacin		dnS	plemental Folate =	No		
% CI)* 1.00 (ref) 0.73 (0.51-1.04) 0.66 (0.46-0.97) 0.67 (0.46-0.96) Supplemental Folate = Yes Supplemental Folate = Yes 1.28/132 124/123 114/126 123/120 2.01 (ref) 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Supplemental Folate = No Supplemental Folate = Yes Supplemental Folate = Yes 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90)	Cases/Controls	161/119	135/136	99/116	123/131	95/120	
Supplemental Folate = Yes Supplemental Folate = Yes 128/132	OR (95% CI)*	1.00 (ref)	0.73 (0.51-1.04)	0.66 (0.46-0.97)	0.67 (0.46-0.96)	0.62 (0.42-0.90)	0.01
Sontrols 128/132 124/123 114/126 123/120 % CI)* 1.00 (ref) 1.03 (0.72-1.48) 0.95 (0.66-1.37) 1.07 (0.74-1.54) Supplemental Folate = No Supplemental Folate = No Supplemental Folate = Yes Supplemental Folate = Yes 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90)			Sup	plemental Folate =	res		
Supplemental Folate = No Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Cases/Controls	128/132	124/123	114/126	123/120	126/138	
Supplemental Folate = No Supplemental Folate = No 168/134 143/122 98/120 115/127 % CI)* 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 131/132 122/122 111/126 115/128 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90)	OR (95% CI)*	1.00 (ref)	1.03 (0.72-1.48)		1.07 (0.74-1.54)	1.01 (0.71-1.45)	06.0
Sontrols 168/134 143/122 98/120 115/127 % CI)* 1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 131/132 122/122 111/126 115/128 Controls 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) (Riboflavin) Supplemental Folate = No 161/132 145/131 110/114 96/122 3upplemental Folate = Yes Supplemental Folate = Yes	Vitamin B1		Sil	polemental Folate =	No.		
1.00 (ref) 0.91 (0.65-1.29) 0.61 (0.42-0.88) 0.72 (0.51-1.03) Supplemental Folate = Yes 131/132 122/122 111/126 115/128 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Cases/Controls	168/134		98/120		89/119	
Supplemental Folate = Yes 131/132	OR (95% CI)*	1.00 (ref)	0.91 (0.65-1.29)	0.61 (0.42-0.88)	0.72 (0.51-1.03)	0.59 (0.41-0.86)	0.002
131/132 122/122 111/126 115/128 1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes			Sup	plemental Folate =	Yes		
1.00 (ref) 1.02 (0.71-1.46) 0.90 (0.62-1.29) 0.89 (0.62-1.28) Supplemental Folate = No 161/132 145/131 110/114 96/122 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Cases/Controls	131/132	122/122	111/126	115/128	136/131	
Supplemental Folate = No 161/132 145/131 110/114 96/122 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	OR (95% CI)*	1.00 (ref)	1.02 (0.71-1.46)		0.89 (0.62-1.28)	1.09 (0.77-1.56)	0.90
161/132 145/131 110/114 96/122 1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Vitamin B2 (Riboflavin)		dnS	pplemental Folate =	No		
1.00 (ref) 0.83 (0.59-1.18) 0.71 (0.49-1.03) 0.62 (0.43-0.90) Supplemental Folate = Yes	Cases/Controls	161/132	145/131	110/114	96/122	101/123	
Supplemental Folate = Yes	OR (95% CI)*	1.00 (ref)	0.83 (0.59-1.18)	0.71 (0.49-1.03)	0.62 (0.43-0.90)	0.65 (0.45-0.94)	0.01
101/101			Sup	plemental Folate =	Yes		
121/116 121/130 100/128 134/131	Cases/Controls	121/118	121/130	108/128	134/131	131/132	
OR (95% CI)* 1.00 (ref) 0.89 (0.62-1.29) 0.81 (0.55-1.17) 1.00 (0.70-1.44) 0.99 (0	OR (95% CI)*	1.00 (ref)	0.89 (0.62-1.29)	0.81 (0.55-1.17)	1.00 (0.70-1.44)	0.99 (0.69-1.43)	0.78

*Odds ratios and 95% CI adjusted for age, education, income, age at menarche, age at first birth, family history of breast cancer, history of benign breast disease (yes or no), lactation (ever or never) and bmi at age 20.

Table Association of daily intake of B vitamins with risk of breast cancer: adjusted OR and 95% CI by quintile or quartile of intake by menopausal status

Nutrient Type	Q1 (low)	Q2	Q3	Q4	Q5	P for Trend
Total Folate			Pre-menopausal			
Cases/Controls	90/100	86/86	80/90	75/61	73/95	
OR (95% CI)*	1.00 (ref)	1.06 (0.68-1.65)	1.00 (0.64-1.55)	1.35 (0.84-2.16)	0.84 (0.53-1.31)	0.76
OK (95 % CI)	1.00 (101)	1.00 (0.00 1.00)	Post-menopausal	(0.0 / 1.10)		•••
Cases/Controls	165/144	169/158	144/149	159/175	161/149	
OR (95% CI)*	1.00 (ref)	0.98 (0.71-1.35)	0.87 (0.62-1.21)	0.81 (0.58-1.11)	0.97 (0.69-1.34)	0.47
OK (95% CI)	1.00 (161)	0.88 (0.7 1-1.88)	0.07 (0.02-1.21)	0.01 (0.00 1.11)	0.07 (0.00 1.01)	• • • • • • • • • • • • • • • • • • • •
Folate			Pre-menopausal			
Cases/Controls	77/88	84/95	94/79	69/79	80/92	
OR (95% CI)*	1.00 (ref)	0.99 (0.63-1.55)	1.35 (0.85-2.13)	1.10 (0.69-1.76)	0.97 (0.61-1.53)	0.94
,			Post-menopausal			
Cases/Controls	182/155	153/145	161/161	154/159	148/155.	
OR (95% CI)*	1.00 (ref)	0.84 (0.61-1.16)	0.84 (0.61-1.15)	0.81 (0.59-1.11)	0.79 (0.58-1.10)	0.17
Niacin			Pre-menopausal			
Cases/Controls	64/72	78/79	71/86	99/86	92/110	
OR (95% CI)*	1.00 (ref)	1.05 (0.64-1.70)	0.88 (0.54-1.43)	1.33 (0.83-2.13)	1.06 (0.67-1.69)	0.51
OK (95% CI)	1.00 (161)	1.00 (0.04-1.70)	Post-menopausal	1.00 (0.00 2.10)	1.00 (0.07 1.00)	0.01
Cases/Controls	217/170	173/168	137/146	145/154	126/137	
OR (95% CI)*	1.00 (ref)	0.77 (0.57-1.05)	0.76 (0.55-1.04)	0.73 (0.53-1.00)	0.77 (0.55-1.06)	0.09
Miles and a DA			Pre-menopausal			
Vitamin B1	04/00	82/76	74/79	81/78	86/110	
Cases/Controls	81/90		0.97 (0.61-1.54)	1.19 (0.76-1.89)	0.88 (0.57-1.36)	0.74
OR (95% CI)*	1.00 (ref)	1.04 (0.66-1.65)	Post-menopausal	1.19 (0.70-1.09)	0.00 (0.57-1.50)	0.74
0 10 11	007/404	173/159	134/158	149/165	135/129	
Cases/Controls	207/164			0.73 (0.53-1.00)	0.87 (0.62-1.20)	0.13
OR (95% CI)*	1.00 (ref)	0.89 (0.65-1.21)	0.67 (0.45-0.91)	0.73 (0.53-1.00)	0.07 (0.02-1.20)	0.13
Vitamin B2 (Riboflavin)			Pre-menopausal			
Cases/Controls	75/86	85/86	68/72	89/84	87/105	
OR (95% CI)*	1.00 (ref)	0.99 (0.63-1.55)	1.07 (0.66-1.73)	1.30 (0.83-2.05)	0.98 (0.62-1.52)	0.70
			Post-menopausal			
Cases/Controls	202/156	172/163	144/160	138/160	142/136	
OR (95% CI)*	1.00 (ref)	0.82 (0.60-1.12)	0.68 (0.46-0.94)	0.67 (0.49-0.93)	0.84 (0.60-1.16)	0.12
Supplemental B12			Pre-menopausal			
Cases/Controls	212/219	17/19	116/122	59/73	0/0	
OR (95% CI)*	1.00 (ref)	0.84 (0.41-1.74)	0.94 (0.67-1.31)	0.79 (0.52-1.20)		0.32
3.1 (00 /0 0.)	1.00 (101)		Post-menopausal			
Cases/Controls	388/377	22/17	258/258	130/123	0/0	
OR (95% CI)*	1.00 (ref)	1.33 (0.68-2.59)	0.98 (0.77-1.23)	1.01 (0.75-1.36)		0.93

^{*}Odds ratios and 95% Cl adjusted for age, education, income, age at menarche, age at first birth, family history of breast cancer, history of benign breast disease (yes or no), lactation (ever or never) and bmi at age 20.

Table $\overline{2b}$. Association of daily intake of B vitamins with risk of breast cancer: adjusted OR and 95% CI by quintile or quartile of intake, by breast cancer stage

Nutrient Type	Q1 (low)	02	Q3	04	Q5	P for Trend
Total Folate Cases/Controls	232/256	216/251	<i>Invasive</i> 190/251	200/249	202/254	
OR (95% CI)*	1.00 (ref)	0.93 (0.71-1.21)	0.83 (0.63-1.08)	0.85 (0.65-1.12)	0.86 (0.66-1.13)	0.21
Cases/Controls	34/256	40/251	38/251 38/251 113 (0.68-1.00)	38/249	38/254	60
(15 %26) 40	(191) 00:1	(00.2-67.0) 62.1	(08.1-00.0) 61.1	1.12 (0.07-1.00)	(70.1-60.0) 80.1	0.8. 0.8.
Folate			Invasive			
Cases/Controls	232/254 1 00 (ref)	208/251	215/251	193/249	192/256	22
(5,8/56) (5)	(191) 99:1	(21.1-20.0) 50.0	(5.1 ± 1.25)	0.00 (0.00-1.12)	(11.1-10.0) +0.0	77:0
Cases/Controls	38/254	34/251	46/251	30/249	40/256	
OR (95% CI)*	1.00 (ref)	0.93 (0.56-1.56)	1.21 (0.74-1.96)	0.81 (0.48-1.37)	1.04 (0.63-1.71)	0.94
Niacin			Invasive			
Cases/Controls	244/251	221/259	181/242	209/251	185/258	
OR (95% CI)*	1.00 (ref)	0.89 (0.69-1.16)	0.81 (0.62-1.06)	0.92 (0.71-1.21)	0.85 (0.65-1.11)	0.32
	7	o c	In situ		0	
Cases/Controls	45/251	30/239	32/242	57/251	30/728	C L
OK (95% CI)"	1.00 (rer)	0.74 (0.45-1.21)	0.70 (0.42-1.16)	0.86 (0.52-1.41)	0.81 (0.49-1.32)	0.56
Vitamin B1			Invasive			
Cases/Controls	264/266	210/244	180/246	195/255	191/250	
OR (95% CI)*	1.00 (ref)	0.87 (0.67-1.13)	0.75 (0.58-0.98)	0.81 (0.63-1.06)	0.85 (0.65-1.11)	0.16
	000	1	In situ	1	0.00	
Cases/Controls	35/200	55/244	29/240	35/255	34/250	Č
OR (93% CI)	1.00 (rei)	1.71 (1.00-2.70)	0.04 (0.49-1.45)	(0.00-1.85)	1.08 (0.54-1.83)	0.53
Vitamin B2 (Riboflavin)			Invasive			
Cases/Controls	246/250	221/261	191/242	190/253	192/255	
OR (95% CI)*	1.00 (ref)	0.87 (0.67-1.13)	0.81 (0.62-1.05)	0.81 (0.62-1.05)	0.84 (0.64-1.10)	0.52
			In situ			
Cases/Controls	36/250	45/261	27/242	4 22 (0 72 2 02)	40/255	2,00
(ID %/30 VI)	(i) (iei)	1.24 (0.70-2.03)	0.02 (0.47-1.41)	1.22 (0.13-2.02)	1.23 (0.74-2.04)	0.10

*Odds ratios and 95% CI adjusted for age, education, income, age at menarche, age at first birth, family history of breast cancer, history of benign breast disease (yes or no), lactation (ever or never) and bmi at age 20.

Table 4. MTHFR1 genotype and risk of breast cancer

A. OVERALL	·		and during home and an		
	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)	P(trend)
Crude	677CC	390 (37.3)	435 (40.0)	1.00 (referent)	0.03
	677CT	468 (44.7)	500 (46.0)	1.04 (0.86-1.25)	
	677TT	188 (18.0)	153 (14.1)	1.37 (1.06-1.77)	
Adjusted*	677CC	327 (36.8)	372 (39.8)	1.00 (referent)	0.04
•	677CT	402 (45.2)	430 (46.0)	1.07 (0.87 - 1.31)	
	677TT	160 (18.0)	129 (14.1)	1.36 (1.02 - 1.81)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

B. BY MENOPAUSAL STATUS

Post-menopausal only

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)	P(trend)
Crude	677CC	262 (38.2)	264 (39.1)	1.00 (referent)	0.33
	677CT	304 (44.3)	313 (46.3)	0.98 (0.78-1.24)	
	677TT	120 (17.5)	99 (14.6)	1.22 (0.89-1.68)	
Adjusted*	677CC	214 (37.9)	218 (39.1)	1.00 (referent)	0.45
•	677CT	250 (44.3)	257 (46.1)	0.99 (0.76-1.29)	
	677TT	100 (17.7)	83 (14.9)	1.19 (0.83-1.71)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

Pre-menopausal only

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)	P(trend)
Crude	677CC	123 (36.7)	146 (39.7)	1.00 (referent)	0.09
	677CT	149 (44.5)	175 (47.6)	1.01 (0.73-1.40)	
	677TT	63 (18.8)	47 (12.8)	1.59 (1.02-2.49)	
Adjusted*	677CC	108 (35.8)	131 (39.2)	1.00 (referent)	0.04
•	677CT	139 (46.0)	160 (47.9)	1.13 (0.78-1.64)	
	677TT	55 (18.2)	43 (12.9)	1.79 (1.07 - 2.99)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

C. BY SUPPLEMENT USE

Supplement use= Yes

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude	677CC	216 (40.3)	222 (38.5)	1.00 (referent)	0.65
	677CT	221 (41.2)	270 (46.8)	0.84 (0.65-1.09)	
	677TT	99 (18.5)	85 (14.7)	1.20 (0.85-1.69)	
Adjusted*	677CC	184 (40.1)	191 (38.1)	1.00 (referent)	0.73
,	677CT	190 (41.4)	233 (46.5)	1.19 (0.81-1.75)	
	677TT	85 (18.5) [°]	77 (15.4)	0.83 (0.62-1.11)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

Supplement use= No

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude	677CC	174 (34.1)	213 (41.7)	1.00 (referent)	0.007
	677CT	247 (48.4)	230 (45.0)	1.32 (1.01-1.72)	
	677TT	89 (17.5)	68 (13.3)	1.60 (1.10-2.33)	
Adjusted*	677CC	143 (33.3)	181 (41.8)	1.00 (referent)	0.009
,	677CT	212 (49.3)	196 (45.3)	1.47 (1.07-2.02)	
	677TT	75 (17.4)	56 (12.9)	1.65 (1.06-2.56)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

D. ALCOHOL INTAKE

Alcohol = Yes

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude	677CC	179 (35.1)	236 (41.9)	1.00 (referent)	0.0004
	677CT	227 (44.5)	260 (46.2)	1.15 (0.88-1.50)	
	677TT	104 (20.4)	67 (11.9)	2.05 (1.42-2.94)	
Adjusted*	677CC	153 (34.8)	201 (41.2)	1.00 (referent)	0.002
	677CT	196 (44.6)	227 (46.5)	1.16 (0.86-1.57)	
	677TT	91 (20.7)	60 (12.3)	2.02 (1.34-3.05)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

Alcohol = No

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude	677CC	211 (39.4)	199 (37.9)	1.00 (referent)	0.62
	677CT	241 (45.0)	240 (45.7)	0.95 (0.73-1.23)	
	677TT	84 (15.7)	86 (16.4)	0.92 (0.64-1.32)	
Adjusted*	677CC	173 (38.6)	171 (38.3)	1.00 (referent)	0.71
•	677CT	206 (46.0)	202 (45.3)	0.96 (0.71-1.30)	
	677TT	69 (15.4)	73 (16.4)	0.93 (0.61-1.41)	

^{*} Adjusted for family history of breast cancer in first-degree relative (yes or no), menopausal status (pre or post), income (8 levels), educational attainment (5 levels) and quintiles of age, age at first birth, and age at menarche

E. BREAST CANCER TYPE

LIBCSP STUDY

Table 3A. TSTR genotype and risk of breast cancer

A OVERALL

A. OVERALL					<u> :</u>
	Genotype	No. cases (%)	No. controls (%)	Odds Ratio (95% CI)	P(trend)
Crude*	3R/3R	311 (29.5)	356 (32.4)	1.00 (referent)	0.07
	3R/2R	512 (48.6)	532 (48.4)	1.09 (0.90 - 1.33)	
	2R/2R	230 (21.8)	211 (19.2)	1.22 (0.96 - 1.55)	
Adjusted**	3R/3R	294 (29.4)	340 (32.1)	1.00 (referent)	0.10
•	3R/2R	482 (48.2)	512 (48.4)	1.08 (0.88 - 1.32)	
	2R/2R	224 (22.4)	206 (19.5)	1.22 (0.95 - 1.57)	

B. BY MENOPAUSAL STATUS

Post-menopausal only

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)	P(trend)
Crude*	3R/3R	199 (28.9)	216 (31.6)	1.00 (referent)	0.13
	3R/2R	338 (49.1)	337 (49.3)	1.09 (0.85-1.39)	
	2R/2R	152 (22.1)	130 (19.0)	1.22 (0.89-1.65)	
Adjusted**	3R/3R	186 (28.8)	206 (31.4)	1.00 (referent)	0.20
	3R/2R	313 (48.5)	322 (49.1)	1.07 (0.83-1.39)	
	2R/2R	147 (22.8)	128 (19.5)	1.22 (0.89-1.67)	

Pre-menopausal only

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	
Crude*	3R/3R	107 (31.4)	121 (32.6)	1.00 (referent)	0.54
	3R/2R	160 (46.9)	177 (47.7)	1.01 (0.72-1.42)	
	2R/2R	74 (21.7)	73 (19.7)	1.14 (0.75-1.73)	
Adjusted**	3R/3R	103 (50.0)	116 (53.0)	1.00 (referent)	0.57
	3R/2R	154 (47.4)	171 (52.6)	1.02 (0.71-1.46)	
	2R/2R	72 (50.0)	72 (50.0)	1.15 (0.74-1.79)	

^{*} Adjusted for age

^{**} Adjusted for family history of breast cancer in first-degree relative (yes or no), history of

***	a least some a sear of species a contrary service from power	a creso printing
A 54 61	INDI PERMIT	LICE
T RV SI		115
EV. DI SI	JPPLEMENT	OOL

Suppl	ement	use=	Yes
-------	-------	------	-----

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude*	3R/3R	149 (29.4)	163 (32.1)	1.00 (referent)	0.21
	3R/2R	250 (49.3)	253 (49.8)	1.07 (0.80-1.42)	
	2R/2R	108 (21.3)	92 (18.1)	1.25 (0.87-1.79)	
Adjusted**	3R/3R	152 (29.5)	179 (32.0)	1.00 (referent)	0.24
	3R/2R	244 (47.4)	266 (47.5)	1.09 (0.82-1.45)	
	2R/2R	119 (23.1)	115 (20.5)	1.22 (0.86-1.73)	

Supplement use= No

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	
Crude*	3R/3R	156 (29.4)	186 (32.3)	1.00 (referent)	0.18
	3R/2R	254 (47.9)	274 (47.6)	1.09 (0.83-1.44)	
	2R/2R	120 (22.6)	116 (20.1)	1.21 (0.87-1.70)	
Adjusted**	3R/3R	142 (53.3)	161 (53.1)	1.00 (referent)	0.20
	3R/2R	236 (49.1)	245 (50.9)	1.07 (0.79-1.44)	
	2R/2R	104 (53.3)	91 (46.7)	1.28 (0.88-1.86)	

D. ALCOHOL INTAKE

Alcohol = Yes

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude*	3R/3R	152 (30.0)	174 (31.1)	1.00 (referent)	0.24
	3R/2R	243 (48.0)	286 (51.1)	0.96 (0.72-1.26)	
	2R/2R	111 (21.9)	100 (17.9)	1.24 (0.87-1.77)	
Adjusted**	3R/3R	147 (29.9)	168 (30.8)	1.00 (referent)	0.33
	3R/2R	234 (47.7)	280 (51.3)	0.92 (0.69-1.23)	
	2R/2R	110 (22.4)	98 (17.9)	1.22 (0.85-1.76)	

Alcohol = No

	Genotype				
Crude*	3R/3R	153 (28.8)	175 (33.4)	1.00 (referent)	0.17
	3R/2R	261 (49.2)	241 (46.0)	1.24 (0.93-1.64)	
	2R/2R	117 (22.0)	108 (20.6)	1.22 (0.86-1.72)	
Adjusted**	3R/3R	147 (51.1)	172 (53.9)	1.00 (referent)	0.15
	3R/2R	246 (51.6)	231 (48.4)	1.27 (0.95-1.70)	
	2R/2R	113 (51.1)	108 (48.9)	1.26 (0.88-1.79)	

^{*} Adjusted for age

^{**} Adjusted for family history of breast cancer in first-degree relative (yes or no), history of

LIBCSP STUDY

Table 3. TSTR genotype and risk of breast cancer

E. BREAST CANCER TYPE

In situ

	Genotype	cases (%)	controls (%)	Odds Ratio (95% CI)*	P(trend)
Crude*	3R/3R	55 (29.9)	356 (32.4)	1.00 (referent)	0.28
	3R/2R	87 (47.3)	532 (48.4)	1.06 (0.74 - 1.53)	
	2R/2R	42 (22.8)	211 (19.2)	1.35 (0.87 - 2.09)	
Adjusted**	3R/3R	51 (29.5)	340 (32.2)	1.00 (referent)	0.25
	3R/2R	81 (46.8)	511 (48.3)	1.03 (0.70 - 1.51)	
	2R/2R	41 (23.7)	206 (19.5)	1.34 (0.84 - 2.13)	

Invasive

	Genotype				
Crude*	3R/3R	256 (29.5)	356 (32.4)	1.00 (referent)	0.10
	3R/2R	425 (48.9)	532 (48.4)	1.10 (0.90 - 1.36)	
	2R/2R	188 (21.6)	211 (19.2)	1.20 (0.93 - 1.56)	
Adjusted**	3R/3R	243 (29.4)	340 (32.1)	1.00 (referent)	0.17
	3R/2R	399 (48.4)	511 (48.3)	1.09 (0.88 - 1.35)	
	2R/2R	182 (22.1)	206 (19.5)	1.20 (0.92 - 1.57)	

^{*} Adjusted for age

^{**} Adjusted for family history of breast cancer in first-degree relative (yes or no), history of

1. Dietary Folate and Alcohol Interactions: No ETOH intake vs. any ETOH intake

	Dietary Folate		Lower limit	Upper limit		
Alcohol Intake	levels	OR	95% CI	95% CI	Comment	
None	< 159.2	1.00			1	
None	159.2 - 215.8	0.79	0.58	1.08	2	
None	215.84 - 279	0.94	0.70	1.27	3	
None	279.03 - 356	0.75	0.55	1.03	4	
None	>=356.22	0.66	0.49	0.90	5	
Yes	< 159.2	0.78	0.57	1.06	1	
Yes	159.2 - 215.8	0.77	0.57	1.05	2	
Yes	215.84 - 279	0.77	0.56	1.05	3	
Yes	279.03 - 356	0.73	0.54	1.00	4	
Yes	>=356.22	0.83	0.61	1.14	5	

 $\widehat{\mathbb{N}}$ 2. MTHFR and total folate from diet and supplements (mcg/day) by tertile

Total Folate	Total Folate				Lower	Upper	
(Categorized)	Range (mcg/day)	MTHFR	Na	OR	95% CI	95% CI	Comment
high	606-6259	wt	284	1.00			
high	606-6259	het	314	0.94	0.68	1.31	
high	606-6259	var	126	1.03	0.67	1.58	
med	284-606	wt	262	0.81	0.57	1.14	
med	284-606	het	303	0.91	0.65	1.27	
med	284-606	var	96	1.30	0.80	2.08	
low	0-283	wt	252	0.98	0.69	1.39	
low	0-283	het	325	1.09	0.79	1.51	
low	0-283	var	112	1.69	1.07	2.66	

^aExcludes obs with missing adjusted variables that were entered into the model (famhx, age, age at first birth, bmi at 20 yo, edu, hx of benign breast disease, age at menopause, lactation hx)

િંતુ 3. MTHFR and alcohol intake

Alcohol (Categorized)	Alcohol Range (mcg/day)	MTHFR	N ^a	OR	Lower 95% CI	Upper 95% CI	Comment
None	0	wt		1.00			
None	0	het		0.96	0.73	1.27	
None	0	var		0.97	0.67	1.40	
Any	> 0	wt		0.75	0.57	1.01	
Any	> 0	het		0.88	0.67	1.16	
Any	> 0	var		1.53	1.05	2.23	

^aExcludes obs with missing adjusted variables that were entered into the model (famhx, age, age at first birth, bmi at 20 yo, edu, hx of benign breast disease, age at menopause, lactation hx)

Fig 4 LIBESP STUDY

Interaction between MTHFR and TS and variables categorized by tertile and risk of breast cancer

1. MTHFR1 and TSTR by tertile and risk of breast cancer

TSTR	N ^a		Lower	Upper	Folate	
	N ^a					
		OR	95% CI	95% CI	(mcg/day)	Comment
3R/3R	261	1.00			284.19	1
3R/3R	277	1.17	0.82	1.65	267.11	2
3R/3R	96	2.24	1.38	3.64	263.15	3
3R/2R	372	1.26	0.91	1.75	269.91	4
3R/2R	463	1.24	0.91	1.70	258.74	5
3R/2R	156	1.64	1.09	2.46	261.51	6
2R/2R	156	1.50	1.00	2.25	255.47	7
2R/2R	194	1.54	1.05	2.26	268.65	8
2R/2R	79	1.39	0.83	2.33	266.01	9
	3R/3R 3R/2R 3R/2R 3R/2R 2R/2R 2R/2R	3R/3R 96 3R/2R 372 3R/2R 463 3R/2R 156 2R/2R 156 2R/2R 194	3R/3R 96 2.24 3R/2R 372 1.26 3R/2R 463 1.24 3R/2R 156 1.64 2R/2R 156 1.50 2R/2R 194 1.54	3R/3R 96 2.24 1.38 3R/2R 372 1.26 0.91 3R/2R 463 1.24 0.91 3R/2R 156 1.64 1.09 2R/2R 156 1.50 1.00 2R/2R 194 1.54 1.05	3R/3R 96 2.24 1.38 3.64 3R/2R 372 1.26 0.91 1.75 3R/2R 463 1.24 0.91 1.70 3R/2R 156 1.64 1.09 2.46 2R/2R 156 1.50 1.00 2.25 2R/2R 194 1.54 1.05 2.26	3R/3R 96 2.24 1.38 3.64 263.15 3R/2R 372 1.26 0.91 1.75 269.91 3R/2R 463 1.24 0.91 1.70 258.74 3R/2R 156 1.64 1.09 2.46 261.51 2R/2R 156 1.50 1.00 2.25 255.47 2R/2R 194 1.54 1.05 2.26 268.65

