Réseaux de neurones
IFT 780

Réseaux récurrents
Par
Pierre-Marc Jodoin, Antoine Théberge

1

2

Autre exemple: **prédiction de caractères** (modèle de langue)

Alphabet jouet :[a,e,m,s]

Représentation « one hot » jouet:

'a' = [1, 0, 0, 0] 'e' = [0, 1, 0, 0] 'm' = [0, 0, 1, 0] 's' = [0, 0, 0, 1]

But : Entraîner un modèle à prédire les lettres du mot « masse ».

26

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet :[a,e,m,s]

Entraîner un modèle à prédire les lettres du mot « masse ». $\vec{x_1} = \mathbf{m}$

Autre exemple: **prédiction de caractères** (modèle de langue)

Alphabet :[a,e,m,s]

Entraîner un modèle à prédire les lettres du mot « masse ». $\vec{x_1} = \mathbf{m}$ \vec{v} $\vec{v$

Autre exemple: **prédiction de caractères** (modèle de langue)

Alphabet: [a,e,m,s]

En test: prédire les lettres les unes après les autres $\vec{x_1} = \mathbf{m}$ \vec{v} \vec{v}

38

Autre exemple: prédiction de caractères (modèle de langue)

Alphabet : [a,e,m,s]

En test : prédire les lettres les unes après les autres $\vec{x_1} = m$ $y_1 = a$ Étape 4 : Injecter le caractère prédit au début du réseau

Autre exemple: traduction

Traduire 'assez' -> 'enough'
Alphabet fr: [<BoS>,a,e,s,z,<EoS>]
Alphabet en: [<BoS>,e,g,h,n,o,u,<EoS>]

Alphabet en: [<BoS>,e,g,h,n,o,u,<EoS>]

A 7	TT 11		TX7 11
Neural	таік	ana	waik

https://vimeo.com/146492001

67

67

Analyse de texte

Souvent les modèles de langue utilisent l'encodage « one hot »

Pour des caractères...

$$\begin{aligned} & 'a' = \begin{bmatrix} 1,0,0,...,0 \end{bmatrix} \\ & 'b' = \begin{bmatrix} 0,1,0,...,0 \end{bmatrix} \\ & 'c' = \begin{bmatrix} 0,0,1,...,0 \end{bmatrix} \end{aligned}$$

68

68

Analyse de texte

Souvent les modèles de langue utilisent l'encodage « one hot »

Pour des mots...

$$\begin{array}{l} \text{"grand'} = [...,1,0,0,...,0] \\ \text{"grandement'} = [...,0,1,0,...,0] \\ \text{"grandewr'} = [...,0,0,1,...,0] \\ \end{array} \right] \quad \in R^{10,000}$$

•••

Prédiction sur des lettres	vs. mots
$ \begin{array}{c} 'a' = [1,0,0,,0] \\ 'b' = [0,1,0,,0] \\ 'c' = [0,0,1,,0] \end{array} $	Prédiction sur des lettres
$ \begin{array}{c} \\ 'grand' = [,1,0,0,,0] \\ 'grandement' = [,0,1,0,,0] \\ 'grandeur' = [,0,0,1,,0] \\ \\ \end{array} \right\} \in R^{10,000} $	Prédiction sur des mots

Limites des Jetons « one-hot » Bien que simple, cet encodage a plusieurs inconvénients 1- Peu efficace en mémoire lorsque non compressés ex.: 10,000 bits pour encoder le mot « je » dans une langue à 10,000 mots! 2- Pas de distance sémantique entre les Jetons: Ex. distance[one-hot('bon'), one-hot('bien')]= distance[one-hot('bon'), one-hot('trottoir')] Or, on souhaiterait un code tel que distance[code('bon'), code('trottoir')]

distance[code('Jean'), code('Chantal')] << distance[code('bon'), code('trottoir')] distance[code('Inde'), code('Liban')] << distance[code('bon'), code('trottoir')]

74

75

Word2Vec s'app	ouie sur 2 idée	es fondame	entales
Idée 1: Dictionnaire	jeton = matrice	d'encodage	495
Première o	couche d'un rés	seau de neur	rones AHA?
	matrice d'enc	odage	
$ec{x}$: brown		••• И	$V^0 \in R^{4 imes 8}$

Word2Vec s'appuie sur 2 idées fondamentales

Première couche d'un réseau de neurones AHA

matrice d'encodage

$$jeton_{\vec{x}} = W^0 \ \vec{x}$$

78

Word2Vec s'appuie sur 2 idées fondamentales

Idée 1: Dictionnaire = matrice d'encodage

On pourra donc utiliser un réseau de neurones pour calculer le contenu du dictionnaire

84

$Word2Vec_{\ [Mikolov\ et\ al.\ '13]}$

Cet algorithme vient avec d'autres détails

- Réduire l'occurrence des mots fréquents et sémantiquement faibles (the, of, for, this, or, and,...)
- Combiner des mots qui forment une entité (ex: nations unies)
 Divers trucs pour simplifier/accélérer l'entraînement

	First similar v							
colosseum	rome (0.994)		roma (0.994)		coliseum (0.994)			
colosseo	anfiteatro (0.995)		travel (0.994)		italia (0.994)			
scala	aux (0.993)		camelias (0.992)		milano (0.992)		(2)	
pompei	retweeted (0.9)	88)	nuovi (0.979)		settembre (0.978)		978)	
roma	rome (0.995)		n	netro (0.994)		colosseum (0.994)		994)
italia	anfiteatro (0.99	infiteatro (0.995)		ome (0.995)		colosseo (0.994)		94)
italy	travel (0.998) da		avanti (0.997)		photography (0.997)		.997)	
Linux	windows redhat unix mac os citrix serveurs microsoft ibm windows server eny windows	0.85 0.83 0.83 0.82 0.81 0.80 0.79 0.79 0.79		Twitter	facebool instagrar netflix snapcha google tweets youtube linkedin maddyne	n t	0.90 0.86 0.84 0.82 0.81 0.80 0.77 0.77	
	a & Béchet, Nicol he Tenders Electr	as & N			-Francois		Multilingua	

Comment entraîner un RNN?

Histoire de gradients

RN de classification avec entropie croisée

$$\vec{y}(\vec{x}) = S_M \left(W^1 \tanh \left(W^0 \vec{x} \right) \right)$$
$$L = L_{EC} \left(\vec{y}, \vec{t} \right)$$

89

Histoire de gradients

Simple RN de classification avec entropie croisée

$$\vec{h} = \tanh\left(W^{0}\vec{x}\right)$$

$$\vec{o} = W^{1}\vec{h}$$

$$\vec{y} = S_{M}(\vec{o})$$

$$L = L_{CE}(\vec{y}, \vec{t})$$
Propagation

90

Histoire de gradients Simple RN de classification avec entropie croisée

 $\vec{h} = \tanh\left(W^{\,0}\vec{x}\,\right)$ $\vec{o} = W^1 \vec{h}$ $\vec{y} = S_M(\vec{o})$ $L = L_{CE}\left(\vec{y}, \vec{t}\right)$

Pour entraîner le réseau il faut calculer

 $\nabla_{{\scriptstyle W^{o}}}L \ \ {\rm et} \ \ \nabla_{{\scriptstyle W^{1}}}L$

Histoire de gradients

Simple RN de classification avec entropie croisée

$$\vec{x} \xrightarrow{W^0} \vec{h} \xrightarrow{W^1} \vec{o} \vec{y} \rightarrow L(\vec{y}, \vec{t}) \rightarrow L$$

$$\vec{h} = \tanh \left(W^0 \vec{x} \right)$$
 $\vec{o} = W^1 \vec{h}$
 $\vec{y} = S_M (\vec{o})$
 $L = L_{CE} (\vec{y}, \vec{t})$

Dérivée en chaîne
$$\begin{split} \nabla_{_{W^{1}}}L &= \nabla_{_{\vec{y}}}L\nabla_{_{\vec{o}}}\vec{y}\nabla_{_{W^{1}}}\vec{o} \\ \nabla_{_{W^{0}}}L &= \nabla_{_{\vec{y}}}L\nabla_{_{\vec{o}}}\vec{y}\nabla_{_{\vec{k}}}\vec{o}\nabla_{_{W^{0}}}\vec{h} \end{split}$$

92

Histoire de gradients

$$\vec{h} = \tanh\left(W^{0}\vec{x}\right)$$

$$\vec{o} = W^{1}\vec{h}$$

$$\vec{y} = S_{M}(\vec{o})$$

$$L = L_{CE}(\vec{y}, \vec{t})$$
Retropropagation

93

Histoire de gradients

$$\vec{h} = \tanh \left(W^{0} \vec{x} \right)$$

$$\vec{o} = W^{1} \vec{h}$$

$$\vec{y} = S_{M} (\vec{o})$$

$$L = L_{CE} (\vec{y}, \vec{t})$$

```
\nabla_{\vec{\sigma}} \vec{y} = \mathbf{I} \vec{y}^T - \vec{y}^T \vec{y} \nabla_{\vec{y}} L = -\frac{\vec{t}}{\vec{y}} Retroposation
```


Les réseaux récurrents ont un inconvénient majeur:

difficile à établir des relations à longue distance

Solution pour la gestion de la mémoire Fenêtres coulissantes

Solution à la disparition du gradient:

Gated Recurrent Unit : GRU Long-Short Term Memory : LSTM

140

140

Illustration + formulation d'un RNN

$$\vec{h}_i = f_a \Big(W^{xh} \vec{x}_i + W^{hh} \vec{h}_{i-1} \Big)$$

$$\hat{y}_i = W^{hy} h_i$$

 $\vec{y}_i = SMAX(\hat{y}_i)$

Modèles d'attention

L'auto-attention (self attention)

204

204

Revenons à la base : multiplication matricielle

Considérons les 4 matrices suivantes

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{pmatrix} \in R^{3 \times 4}$$

$$W^{q} = \begin{pmatrix} W^{q}_{11} & W^{q}_{12} & W^{q}_{13} \\ W^{q}_{21} & W^{q}_{22} & W^{q}_{23} \\ W^{q}_{31} & W^{q}_{32} & W^{q}_{33} \end{pmatrix} \in R^{3 \times 3}$$

$$W^{k} = \begin{pmatrix} W^{k}_{11} & W^{k}_{12} & W^{k}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{32} & W^{k}_{33} \end{pmatrix} \in R^{3 \times 3}$$

$$W^{F} = \begin{pmatrix} W^{F}_{11} & W^{F}_{12} & W^{F}_{13} \\ W^{F}_{21} & W^{F}_{22} & W^{F}_{23} \end{pmatrix} \in R^{2 \times 3}$$

205

205

Revenons à la base : multiplication matricielle

Leur multiplication donne:

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{pmatrix} \in R^{3\times4}$$

$$W^{q} = \begin{pmatrix} W^{q}_{11} & W^{q}_{12} & W^{q}_{13} \\ W^{q}_{21} & W^{q}_{22} & W^{q}_{33} \\ W^{q}_{31} & W^{q}_{22} & W^{q}_{33} \\ W^{q}_{31} & W^{q}_{22} & W^{q}_{33} \end{pmatrix} \in R^{3\times3}$$

$$W^{k} = \begin{pmatrix} W^{k}_{11} & W^{k}_{12} & W^{k}_{13} \\ W^{k}_{21} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{22} & W^{k}_{23} \\ W^{k}_{31} & W^{k}_{22} & W^{k}_{33} \end{pmatrix} \in R^{3\times3}$$

$$W^{k}X = K = \begin{pmatrix} K^{x}_{11} & K^{x}_{12} & K^{x}_{13} & K^{x}_{14} \\ K^{x}_{21} & K^{x}_{22} & K^{x}_{23} & K^{x}_{24} \\ K^{x}_{31} & K^{x}_{32} & K^{x}_{33} & K^{x}_{34} \end{pmatrix} \in R^{3\times4}$$

$$W^{k}X = V = \begin{pmatrix} W^{x}_{11} & W^{x}_{12} & W^{x}_{13} & W^{x}_{14} \\ W^{x}_{21} & V^{x}_{22} & V^{x}_{23} & V^{x}_{24} \\ V^{x}_{21} & V^{x}_{22} & V^{x}_{23} & V^{x}_{24} \\ \end{pmatrix} \in R^{2\times4}$$

Autre façon	d'illustrer la couche d'auto-attention $Attention(Q, K, V) = V \cdot \text{softmax}\left(\frac{K^T Q}{\sqrt{D_Q}}\right)$
Х	Vaseerii, A., Shaarer, N., Parmar, N., Ukshorel, J., Jones, L., Cornez, A. N., & Polosabhni, L. (2011). Attention is all you need. Advances in neural information processing systems, 30.

Autre façon d'illustrer la couche d'auto-attention $Attention(Q,K,V) = V \cdot \operatorname{softmax} \left(\frac{K^T Q}{\sqrt{D_Q}} \right)$ $Q \quad K \quad V$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

220

Autre façon d'illustrer la couche d'auto-attention $Attention(Q,K,V) = V \cdot \operatorname{softmax} \left(\frac{K^T Q}{\sqrt{D_Q}} \right)$ $Q \quad K \quad V$ $V_{\text{Norman, A. Diaber, N. Parme, N. Unificati, J., Johns, L., Glorier, A. N. ... & Poissadin, L. (2017)}
<math display="block">X$ Vanisser, A. Diaber, N. Parme, N. Unification is all you need. Advances in neural information processing systems, 30.

L'apothéose des réseaux de neurones

Transformer

(Attention is all you need)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

229

Transformer

Implique aucune notion de récurrence

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hours)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13 GB	
BERT-Large	24	1024	16	340M	13 GB	

rs Width	Heads	Params	Data	Training
512	8	65M		8x P100 (12 hours)
1024	16	213M		8x P100 (3.5 days)
768	12	110M	13 GB	
1024	16	340M	13 GB	
1024	16	~340M	126 GB	512x TPU-v3 (2.5 days)
1024	16	355M	160 GB	1024x V100 GPU (1 day)
768	?	117M	40 GB	
1024	?	345M	40 GB	
1280	?	762M	40 GB	
1600	?	1.58	40 GB	
1536	16	1.28	174 GB	64x V100 GPU
1330				
1920	20	2.58	174 GB	128x V100 GPU
	20 24	2.5B 4.2B	174 GB 174 GB	128x V100 GPU 256x V100 GPU (10 days
	512 1024 768 1024 1024 1024 768 1024 1280 1600	512 8 1024 16 768 12 1024 16 1024 16 1024 16 768 7 1024 7 1289 7 1600 7	512 8 65M 1024 16 213M 1024 16 340M 1024 16 340M 1024 16 340M 1024 16 355M 768 7 117M 1024 7 345M 1280 7 762M 11000 7 1.58	512 8 65M 1024 16 213M 768 12 110M 13 GB 1024 16 340M 13 GB 1024 16 340M 126 GB 1024 16 358M 160 GB 768 7 117M 40 GB 1024 7 345M 40 GB 1280 7 128M 40 GB 1180 7 1.58 40 GB

	ers sont vraiment bons pour ge	nérer du texte
Recycling is go	od for the world.	SYSTEM PROMPT (HUMAN-WRITTEN)
NO! YOU CO	LD NOT BE MORE WRONG!	ı
Recycling is not a our health. It cont product, and in tu the privilege of hi resources. And Ti at the process of a materials (wood, packaging, to the to the packaging is creates tons of was something that all	ood for the environment. It is destructive inductive to obesity and diseases like hear in, the price of everything that is made ring the world's most advanced and eff. It is why we need to get back to bas eating a paper product. When you maintloard, paper, etc.), to the reagents (ackaging materials (mercury, chemica acterials that are shipped overseas and te that we constantly have to clean up.	MODEL COMPLETION (MACHINE-WRITTEN, 25 TRIES) viscoment, is to the for our bealth, and is to diff our care country. I'm not kiding we to the earth and it is a major contributor to global warming. Recycling is not good for refusione and camer, Recycling is had frow uccomenty. Hin creases the cost of a with that product. Recycling is not good for our nation. We pay a tremendous price for their network product. Recycling is a not good for our nation. We pay a tremendous price for fixest recycling system. Recycling is a long, colosed waste of time, energy, money, and is and get back to basics in our recycling efforts. One of the best ways to start is to lost ear paper product, it is basically a long plant of materials. Purelything from the row dyos, solvents, etc.) to the pricing equipment (chemicals, globc, paper, ink, etc.), to the consider equipment forming, cooling, etc.), to the packaging materials, to the packaging materials, to the packaging materials that are used in the United States. Each step a long the way to the processor materials that are used in the United States. Each step a long the way to the processor familiary appear product a very wasterful one. But the end result is to keep the recycling process numning efficiently, then we really need to think about etc.
each and every st		

Transformers Les transformers sont vraiment bons pour générer du texte sémantiquement viable I really like the IFT780 course on neural networks offered at the Université de Sherbrooke, because the teacher uses examples from video games, which I find a nice contrast to the theory. I think I would like a course on AI to really understand how it works, but when we are in class, the prof speaks in a rapid French, and I can't really process what he's saying. Having started a course on it at a different time, I understand more this time, but I still don't know where I stand. My "new" plan for next year is to do all of the tutorials and classes I've been wanting to take, but I'm still stuck on one big, heavy, headachey decision: how do I want to spend my post - masters year? With a lot of math and statistics classes, it's not a hard choice. I'm on the fence with what I want to spend my summer doing: a lot of analysis and research work or do some volunteering? I've applied to several volunteer programs: naturis and Vert directeur de la santé, which are essentially summer internships for dentists and health care professionals to do a bit of volunteer work.

Vision Transformers (ViT)

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	440
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	***
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. "Slightly improved 88.5% result reported in Touvron et al. (2020).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929.

279

280

0,00	West	Sect. 1	Top 1 Automos	Service.		-	Certe	Result	Yes	Tree W	
,	Modificials (MTG/34)	90,000		184204	-	Model soups: exempting samples of models from Navell models improved accuracy without drawning inflorence force			2022	(man) (F.S.)	
19	College 2	nan		244084	-	Colletter Manying Consolution and Attention for All Data Stars.	0		2023		
	V76/34	95.47%		184204	-	Scaling Vision Standardors			3001	Statement 27-10	
	Colores	90.40%		300H	×	Colleges Manyong Consoliution until Adjunture for All Dates Sizes	0		3021		
	VMMC 138 Entry II	90,000		147004	4	Snating Vision with Sparse Minister of Sources	o		2021		=
	Meta haudu Labels Efficientes LE	90.2%	m.ex	MIN	×	Hera Pharada Lathalia	0	0	2021		
	Swint/2-G	90.17%			y.	Seen Transformer V2 Scoting Use Coperity and Franciscon	n	c	2021	-	=
	Florence Culturis H	NORM	Haps			Planeray A New Foundation Hold for Computer Vision		٠	2021	Tuefrite	=
	Meta Parado Labels (Discussos do Mide)	10%	19.7%	Selden	,	Mich Provincial Control	0		2023		
	Minister	9125		32794	,	High Derformance Large Scale Image Recognition Without	o		3021		

