and then λ will be a solution of the problem

find
$$\lambda \in \mathbb{R}_+^m$$
 such that $G(\lambda) = \sup_{\mu \in \mathbb{R}_+^m} G(\mu),$

which is equivalent to the *Maximization Problem* (D):

maximize
$$G(\mu)$$

subject to $\mu \in \mathbb{R}^m_+$.

Definition 50.9. Given the Minimization Problem (P)

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$,

where $J: \Omega \to \mathbb{R}$ and the constraints $\varphi_i: \Omega \to \mathbb{R}$ are some functions defined on some open subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V), the function $G: \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$G(\mu) = \inf_{v \in \Omega} L(v, \mu) \quad \mu \in \mathbb{R}_+^m,$$

is called the Lagrange dual function (or simply dual function). The Problem (D)

maximize
$$G(\mu)$$

subject to $\mu \in \mathbb{R}^m_+$

is called the Lagrange dual problem. The Problem (P) is often called the primal problem, and (D) is the dual problem. The variable μ is called the dual variable. The variable $\mu \in \mathbb{R}^m_+$ is said to be dual feasible if $G(\mu)$ is defined (not $-\infty$). If $\lambda \in \mathbb{R}^m_+$ is a maximum of G, then we call it a dual optimal or an optimal Lagrange multiplier.

Since

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v),$$

the function $G(\mu) = \inf_{v \in \Omega} L(v, \mu)$ is the pointwise infimum of some affine functions of μ , so it is *concave*, even if the φ_i are not convex. One of the main advantages of the dual problem over the primal problem is that it is a *convex optimization problem*, since we wish to maximize a concave objective function G (thus minimize -G, a convex function), and the constraints $\mu \geq 0$ are convex. In a number of practical situations, the dual function G can indeed be computed.

To be perfectly rigorous, we should mention that the dual function G is actually a partial function, because it takes the value $-\infty$ when the map $v \mapsto L(v, \mu)$ is unbounded below.