Veri Tabanı Sistemleri Eşzamanlı Çalışma

H. Turgut Uyar Şule Öğüdücü

2002-2016

License

© 2002-2016 T. Uyar, Ş. Öğüdücü

You are free to:

- ▶ Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Under the following terms:

- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- ▶ NonCommercial You may not use the material for commercial purposes.
- ► ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 44

Hareket Yönetimi

- birden fazla işlemin topluca yapılması gerekebilir
- bir işlemin yapılıp diğerlerinin yapılmaması tutarsızlık yaratabilir
- hareket: bir işin mantıksal bir birimi
- birden fazla işlemin topluca yapılması garanti edilemez
- ▶ en azından değişikliklerden önceki duruma dönülebilmeli

Hareket Örneği

▶ bir banka hesabından diğerine para aktarma

```
UPDATE ACCOUNTS SET BALANCE = BALANCE - 100
WHERE ACCOUNTID = 123
```

UPDATE ACCOUNTS SET BALANCE = BALANCE + 100
WHERE ACCOUNTID = 456

3 / 44

1/44

Hareket Özellikleri

- bölünmezlik: ya tam yapılır, ya hiç yapılmaz
- tutarlılık: bir tutarlı durumdan diğer bir tutarlı duruma geçiş
- > yalıtım: sona ermemiş bir hareketin işlemlerinin diğer hareketleri etkileyip etkilemediği
- kalıcılık: bir hareket sonlandırıldıktan sonra sistem çökse de verilerin zarar görmemesi

SQL Hareketleri

başlatma

```
BEGIN [ WORK | TRANSACTION ]
```

sonlandırma

```
COMMIT [ WORK | TRANSACTION ]
```

vazgeçme

```
ROLLBACK [ WORK | TRANSACTION ]
```

Hareket Örneği

```
BEGIN TRANSACTION
ON ERROR GOTO UNDO
UPDATE ACCOUNTS SET BALANCE = BALANCE - 100
WHERE (ACCOUNTID = 123)
UPDATE ACCOUNTS SET BALANCE = BALANCE + 100
WHERE (ACCOUNTID = 456)
COMMIT
....
UNDO:
ROLLBACK
```

Sistemin Düzeltilmesi

- bir hareket sürerken sistemin çöktüğünü düşünün
- bellek tamponlarındaki veriler diske yazılmamış durumda
- ► kalıcılık nasıl sağlanacak?
- veri, sistemde başka yerde yazılı verilerden türetilebilmeli

7 / 44

5 / 44

Günlük

- ▶ günlük her işlemden etkilenen her çoklunun işlemden önceki ve sonraki değerlerini tutar
- günlüğe önceden yazma kuralı: hareket sonlanmadan önce günlük fiziksel ortama yazılmalı
- ▶ günlük kayıtlarına erişim işlemin doğası gereği ardışıl

Denetim Noktaları

- belli aralıklarla günlükte denetim noktaları oluşturulur
- bellek tamponlarındaki veriler fiziksel ortama yazılır
- denetim noktası günlüğe not edilir
- o an sürmekte olan hareketler not edilir

10 / 44

Düzeltme Listeleri

- aksaklıktan sonra hangi hareketler geri alınacak, hangileri sonlandırılacak?
- ▶ iki liste oluştur: geri alınacaklar (G), yinelenecekler (Y)
- ▶ t_C: günlükte kayıtlı son denetim noktası
- $ightharpoonup t_C$ anında etkin olan hareketleri G'ye ekle
- ▶ t_C'den başlayarak kayıtları ileri doğru tara
- ▶ başlayan bir hareketle karşılaşırsan G'ye ekle
- ▶ biten bir hareketle karşılaşırsan Y'ye geçir

Düzeltme Örneği

- t_C : $G = [T_2, T_3] Y = []$
- ► T_4 başladı: $G = [T_2, T_3, T_4] Y = []$
- ► T_2 bitti: $G = [T_3, T_4] Y = [T_2]$
- ► T_5 başladı: $G = [T_3, T_4, T_5] Y = [T_2]$
- ► T_4 bitti: $G = [T_3, T_5] Y = [T_2, T_4]$

11 / 44

9 / 44

Düzeltme Süreci

- ▶ kayıtları günlük sonundan geriye doğru tara
- ▶ G'deki hareketlerin yaptıkları değişiklikleri geri al
- ▶ kayıtları ileriye doğru tara
- ▶ Y'deki hareketlerin yaptıkları değişiklikleri yinele

İki Aşamalı Sonlandırma

- ▶ farklı kaynak yöneticileri var
- ▶ geri alma sonlandırma sistemleri ayrı
- etkilenecek veriler farklı kaynak yöneticilerinde
- ya hepsinde birden sonlandırılacak ya da hepsinde birden geri alınacak
- eşgüdüm sağlayıcı

14 / 44

Protokol

- ▶ eşgüdüm sağlayıcı → katılımcılar: hareketle ilgili bütün verilerin kayıtlarını kalıcı ortama yaz
- ▶ eşgüdüm sağlayıcı → katılımcılar: hareketi başlat ve sonucu bildir
- bütün katılımcılar başarılı: başarı
- ▶ diğer durumda: başarısız
- ightharpoonup başarı ise: eşgüdüm sağlayıcı ightarrow katılımcılar: sonlandır
- ▶ başarısız ise: eşgüdüm sağlayıcı → katılımcılar: vazgeç

Kaynaklar

Okunacak: Date

► Chapter 15: Recovery

15 / 44

13 / 44

Eşzamanlı Çalışma

- eşzamanlı çalışan hareketler nedeniyle çıkabilecek sorunlar:
- ▶ yitirilen güncelleme
- ► kesinleşmemiş veriye bağımlılık
- ► tutarsız çözümleme

Yitirilen Güncelleme

Hareket A	Hareket B		
RETRIEVE p			
•••			
•••	RETRIEVE p		
UPDATE p	•••		
	UPDATE p		

18 / 44

17 / 44

Kesinleşmemiş Veriye Bağımlılık

Hareket A	Hareket B	
	UPDATE p	
RETRIEVE p		
	ROLLBACK	

Tutarsız Çözümleme

▶ hesap toplamı: acc1=40, acc2=50, acc3=30

Hareket A	Hareket B
 RETRIEVE acc1 (40) RETRIEVE acc2 (90)	
	UPDATE acc3 $(30 \rightarrow 20)$ UPDATE acc1 $(40 \rightarrow 50)$ COMMIT
 RETRIEVE acc3 (110) 	

19 / 44

Conflicts

- ► A okuyor, B okuyor: sorun yok
- A okuyor, B yazıyor: yinelenemez okuma (tutarsız çözümleme)
- ► A yazıyor, B okuyor: kirli okuma (kesinleşmemiş veriye bağımlılık)
- ► A yazıyor, B yazıyor: kirli yazma (yitirilen güncelleme)

Locking

- ▶ hareketler üzerinde işlem yapacakları çokluları kilitlesinler
- okuma kilidi (S)
- ▶ yazma kilidi (X)

21 / 44

Kilit İstekleri

kilit tipi uyumluluk matrisi

	Х	S	-
Χ	Н	Н	Е
S	Н	Е	Ε

- okuma kildi varsa: sadece okuma kilidi istekleri kabul edilir
- > yazma kilidi varsa: bütün kilit istekleri reddedilir

Kilitleme Protokolü

- ▶ hareket, yapmak istediği işleme göre kilit isteğinde bulunur
- okuma kilidi varsa yazma kilidine çevrilmesi
- ▶ istek yerine getirilemiyorsa beklemeye başlar
- b diğer hareket kilidi bırakınca devam eder
- sonsuz bekleme

22 / 44

23 / 44

Yitirilen Güncelleme

Hareket A	Hareket B
 RETRIEVE p (S+)	
κετκιενε ρ (5+) 	
	RETRIEVE p (S+)
 UPDATE p (X-)	
bekle bekle bekle	 UPDATE p (X-) bekle

Kesinleşmemiş Veriye Bağımlılık

Hareket A	Hareket B
	 UPDATE p (X+)
RETRIEVE p (S-) bekle bekle RETRIEVE p (S+)	 ROLLBACK

26 / 44

Tutarsız Çözümleme

Hareket A	Hareket B
RETRIEVE acc1 (S+) RETRIEVE acc2 (S+)	
RETRIEVE acc3 (S-) bekle	UPDATE acc3 (X+) UPDATE acc1 (X-) bekle bekle bekle

Ölümcül Kilitlenme

- ► ölümcül kilitlenme: hareketlerin birbirlerinin kilitleri bırakmalarını beklemesi
- ▶ neredeyse her zaman iki hareket arasında
- ► farketmek ve çözmek
- önlemek

27 / 44

Ölümcül Kilitlenmenin Çözülmesi

örnek

- ► bekleme grafı
- ▶ bir <mark>kurban</mark> seç ve öldür

Ölümcül Kilitlenmenin Önlenmesi

- ▶ her hareketin başlama zamanı mührü var
- ► A hareketinin kilit isteği B hareketinin tuttuğu bir kilitle çelişiyorsa:
- bekle-öl: A, B'den yaşlıysa bekler, gençse ölür A geri alınıp yeniden başlatılır
- ▶ yarala-bekle: A, B'den gençse bekler, yaşlıysa B'yi yaralar B geri alınıp yeniden başlatılır
- ▶ yeniden başlatılan hareketin zaman mührü değiştirilmez

29 / 44

Kilit Komutları

- okuma kilidi
 - SELECT query FOR SHARE
- yazma kilidi
 - SELECT query FOR UPDATE

Yalıtım Düzeyleri

- yalıtım azaltılırsa eşzamanlılık artırılabilir
- ▶ değişik yalıtım düzeyleri:
- serileştirilebilir
- yinelenebilir okuma
- sonlandırılanları okuyabilme
- sonlandırılmayanları okuyabilme

30 / 44

31 / 44

Serileştirilebilirlik

- seri çalıştırma: hareketlerin biri bitmeden diğeri başlamıyor
- ► serileştirilebilir: eşzamanlı çalışmanın sonucu her zaman seri çalıştırmalardan birinin sonucu ile aynı

örnek

- ► x = 10
- ▶ A hareketi: x = x + 1
- ▶ B hareketi: x = 2 * x
- ightharpoonup önce A, sonra B: x=22
- ightharpoonup önce B, sonra A: x=21

İki Aşamalı Kilitleme

- ▶ iki aşamalı kilitleme:
- herhangi bir kilit bırakıldıktan sonra yeni kilit isteğinde bulunulmaz
- ▶ genişleme aşaması: alınan kilit sayısı artıyor
- daralma aşaması: alınan kilit sayısı azalıyor
- ▶ iki aşamalı sıkı kilitleme: bütün kilitler hareketin sonunda bırakılır
- ▶ Bütün hareketler iki aşamalı kilitleme protokolüne uyarsa bütün eşzamanlı çalıştırmalar serileştirilebilir.

34 / 44

Sonlandırılanları Okuyabilme

read commited: yalnızca yazma kilitleri hareket sonuna kadar tutulur

Hareket A	Hareket B
 RETRIEVE p (S+)	
 kilidi bırak	
	 UPDATE p (X+) COMMIT
RETRIEVE $p(S+)$	

Hayaletler

hayalet: sorgu yeniden çalıştırıldığında yeni çoklular ortaya çıkıyor

örnek

- A hareketi bir müşterinin hesaplarının ortalamasını hesaplıyor: $\frac{100+100+100}{2}=100$
- ▶ B hareketi aynı müşteriye (200) birimlik yeni bir hesap yaratıyor
- ► A hareketi hesabı yeniden yapıyor:

$$\frac{100+100+100+200}{4} = 125$$

01/11

35 / 44

33 / 44

Yalıtım Düzeyleri

▶ bir yalıtım düzeyi belirleme

SET TRANSACTION ISOLATION LEVEL
[SERIALIZABLE | REPEATABLE READ |
READ COMMITTED | READ UNCOMMITTED]

Yalıtım Düzeyi Sorunları

yalıtım düzeyi	kirli	yinelemeyen	hayalet
	okuma	okuma	
READ UNCOMMITTED	E	E	Е
READ COMMITTED	Н	Е	Е
REPEATABLE READ	Н	Н	Е
SERIALIZABLE	Н	Н	Н

38 / 44

37 / 44

Kilitleme Birimi

- kilitleme çoklu değil bağıntı değişkeni biriminde yapılabilir
- ► hatta veri tabanı biriminde
- birim: kilitlenen birim
- birim genişledikçe eşzamanlılık azalır
- çoklular üzerinde alınmış kilitlerin bulunması zor
 - ightarrow önce bağıntı değişkeni düzeyinde niyet kilitleri alınsın

Niyet Kilitleri

- Parçayı Okuma (IS): hareket bazı çokluları okumaya niyetleniyor
- ► Parçaya Yazma (IX): IS + hareket bazı çoklulara yazmaya niyetleniyor
- ► Bütünü Okuma (S): bağıntıda eşzamanlı okuyucular olabilir ama yazıcılar olmamalı
- ▶ Bütünü Okuma + Parçaya Yazma (SIX): S + IX
- ► Bütüne Yazma (X): bağıntıda hiçbir eşzamanlı çalışma olmamalı

39 / 44

Kilit İstekleri

kilit uyumluluk matrisi

	Х	SIX	IX	S	IS	-
Х	Н	Н	Н	Н	Н	Е
SIX	Н	Н	Н	Н	Е	Е
IX	Н	Н	Е	Н	Е	Ε
S	Н	Н	Н	Е	Е	Ε
IS	Н	Е	Е	Ε	Ε	Ε

Kilit Öncelikleri

- çoklu üzerinde okuma kilidi için bağıntı üzerinde en az IS
- çoklu üzerinde yazma kilidi için bağıntı üzerinde en az IX

42 / 44

Kilitleme Komutları

▶ bir tabloyu kilitleme

LOCK [TABLE] table_name
 [IN lock_mode MODE]

- ▶ kilit kipleri:
 - ► ACCESS SHARE
 - ► ROW SHARE
 - ► ROW EXCLUSIVE
 - ► SHARE UPDATE EXCLUSIVE
 - ► SHARE
 - ► SHARE ROW EXCLUSIVE
 - ► EXCLUSIVE
 - ► ACCESS EXCLUSIVE

Kaynaklar

Okunacak: Date

► Chapter 16: Concurrency

43 / 44

41 / 44