INTERACTION DESIGN AND EVALUATION

Dept. Computer Science - UPC

OUTLINE

We have analysed (class 2)

- Background
- Hick-Hyman Law: Measuring choice-reaction time
- Fitts Law: Measuring Pointing Time
- Typing & Keyboards
 - Layouts
 - Practical Issues
 - Mobile Layouts

TYPING & KEYBOARDS. LAYOUTS

• QWERTY keyboard layout:

- Design by Christopher Latham Shole.
- The placement of the keys reduces key jams.
- Keys commonly typed together are placed at large physical distance
 - In a typing machine
 - Changing hands
 - Assuming language is English
- Does not make sense with computers
- Not everybody writes in English

TYPING & KEYBOARDS. LAYOUTS

• QWERTY keyboard layout:

~ ` ! 1	2		# 3	\$ 4	% 5	6	& 7	* 8		(9) 0	- -	Backs	Space
ISO_Lef Tab	Q q	Ww	E e	R	T t	Y		U u	l i	0	P	} [}	
Super_L	A			D F		G g	H h	J	K k		L :	" '	Return	
Shift_L	> ¦ <	Z z	X	C c	V v	B	N r		M m	<	>	? /	Shift_R	
Control_L	Supe		Meta_L Alt_L								ISO_L	Super	Menu	Contr

TYPING & KEYBOARDS, LAYOUTS

Other ergonomic layouts: AZERTY

optimized for French

TYPING & KEYBOARDS, LAYOUTS

Dvorak layout:

- Vowels in one hand
 - Combinations with consonants impose hand change
- Most common letters at the places the fingers rest on the keyboard

TYPING & KEYBOARDS, LAYOUTS

- Dvorak layout:
 - Invented with the objective of reducing travel distances
 - 10-finger typing
 - Improvements of up to 30%
 - Other researchers say 5-10%
 - Typing Guinness world record held by a Barbara Blackburnwith a DVORAK keyboard in a typewriter for many years
 - 150 wpm for 50 minutes
 - Less errors
 - Also optimized for English
 - Low level of acceptance

TYPING & KEYBOARDS. LAYOUTS

- Keyboard layouts
 - Improves posture and reduces tension
 - No proven advantage

TYPING & KEYBOARDS.

Keyboard arrangements should be designed so that:

- 1. Balance the loads on the right and left hands
- 2. Maximize the load on the home row
- 3. Maximize the frequency of alternating hand sequences
 - Alternating fingers avoids the need to wait for the end of the movement of the first finger before starting the second movement.
- 4. Minimizing the frequency of same finger typing

Especially good job: 1 & 2

Especially good job: 3

- Experiment with keyboards layouts is difficult
 - Users get their proficiency for practice
 - It requires months of training in any layout
 - The same people would require to be training back to original arrangement for starting a new experiment
- It is commonly accepted formal results based as predictive human performance model rather than user testing for evaluation

Touchable layouts (some issues)

- Size depends on screen size
- Limited and occluded text
- Require significant visual attention
 - No physical feedback
 - Sometimes sound
- Distance from the keyboard to the insertion point
 - Especially on larger form factors
- Errors: accidentally touching the screen
- Touch and stylus based may be a good combined with stroke gestures or other ideas...

- Expert typing model [Bi2013]:
 - Time to move the tapping device with a single finger from one key (i) to another (j) depends on the distance and key width of the keys:

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W_{ij}} + 1 \right)$$

- D_{ij} is the distance between keys i and j,
- W_{ij} is the width of each key
- Bi et al. also use the effective width

Fitts Law accurately predicts pointing movement

- If improvement required, it can help us modify our UI
 - Change target width:
 - Increase size for faster reach
 - Change distance:
 - Move targets closer to reduce movement time
 - Change pointer movement:
 - Increase speed

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W_{ij}} + 1 \right)$$

- Improving mobile layouts:
 - Different parameters to take into account:
 - 10-finger typing? As of tablets
 - 2-thumb typing? Mobiles/tablets.
 - 1-finger typing? Most commonly mobile
- Optimize for the number of fingers
 - Tactile screen form factor
 - Maybe hand positions too

- Proposed mobile layouts. Minuum:
 - Two or one finger typing
 - Compressing the three key rows into one
 - Reduction of distances (in vertical)
 - Larger targets (the whole region of e. g. QAZ)
 - Proficient word prediction/correction required
 - More room in your screen

• Minuum is intended to type everywhere:

- Diagram-based layout for single-finger typing [Lewis99]:
 - Optimized distances
 - Up to 25 wpm (over the typical 20 wpm on a complete QWERTY)

- Single finger gesture typing [Kristensson2012, Zhai2012]
 - The finger traverses all the letters of a word without lifting off the screen
 - More comfortable (subjective evaluation) in tablets [Nguyen2012]
 - Not faster than regular typing (objective evaluation) in tablets [Nguyen2012]. Not so negative

- Proposed mobile layouts. KALQ:
 - Optimize layout for better 2 thumb typing
 - Analyzed hand position, diagram frequency, tablet orientation...

- Two finger gesture typing [Bi2012]
 - The two thumbs swipe to compose a word
 - Lifting the finger when a part of the word belongs to the other thumb
 - Or with a continuous trace
 - Finger traveling shortened by 50%
 - Speed does not increase over one finger entry (objective evaluation). Not so negative
 - High demand of attention (subjective evaluation)

Designing virtual keyboards. Elements to consider for usability:

- Auto-correction
- Auto-capitalization
- Input data type & custom keyboards
- (Multiple-)Language support

1. Auto-correction:

- Only suitable if proper dictionaries:
 - Commonly, users do not notice the corrections
 - Some data such as address very prone to wrong correction
 - 92% sites do it wrong
- Best practices:
 - Skip auto-correction for certain fields

2. Auto-capitalization:

- In e-mail addresses, disable auto-capitalization
 - Even if correct, people tries to fix

3. Appropriate layouts for the input data type:

- Virtual keyboards are small
 - An iPhone 4 character (portrait) measures 4 × 5.9 mm
 - Minimum recommended clickable size is 6.85 × 6.85 mm
 - Increase typos, validation errors...
 - 60% top mobile websites do it wrong
- Dedicated keyboards may increase the size enough (phone numbers, ZIP codes, currency...)
 - Invoke them, and do it consistently

TYPING & KEYBOARD:

4. (Multiple-)Language support:

- Most custom keyboards provide the possibility of changing the language on demand
 - In many cases correctors or word predictions mix languages

INTERACTION DESIGN AND EVALUATION. SESSION 1

Dept. Computer Science - UPC

52. Els teclats per a dispositius mòbils:

- a. No poden dissenyar-se amb una distribució de tecles diferent a la QWERTY perquè és la que els usuaris coneixen. b. Es poden avaluar utilitzant un model teòric de llenguatge que contingui els digrams menys comuns per a reforçar el rendiment en aquests casos.
- c. Són difícils d'utilitzar perquè les funcionalitats estan amagades.
- d. Poden avaluar-se de forma teòrica i de forma empírica.

Exercici 3. Quan vulguem mostrar moltes dades en una aplicació.

- 1. És aconsellable organitzar la informació seguint algun dels criteris del *LATCH*.
- 2. Organitzarem la informació utilitzant alguna categoria de les definides del *garbage-in/garbage-out*.
- 3. Cal que les organitzem tenint en compte la llei de Prägnanz.
- 4. Les ordenarem i organitzarem segons el criteri signal to noise ratio.

Pregunta 8 (0.5 punts)

Els estudis demostren que percebem els objectes del nostre entorn com a una composició de formes simples, encara que no ho siguin. Respecte a aquesta afirmació:

- a) L'afirmació és falsa, no hi ha estudis que demostrin això.
- b) Això és el que enuncia la llei de Prägnanz, o llei de la bona figura.
- c) Precisament això és el que enuncia la llei de Hick-Hyman.
- d) L'afirmació parla de la llei de destí comú.

Pregunta 5 (0.5 punts)

La tècnica de chunking consisteix en:

- a) En una web, posar un titular amb una pregunta perquè es cliqui a la notícia per a buscar la resposta.
- b) Agrupar els elements de la interfície per semblança en la seva forma o color.
- c) Escriure el contingut d'un article amb una estructura on primer hi ha el titular, el resum, després les
- conclusions i al final els detalls.
- d) Cap de les altres.

Designing virtual keyboards. Elements to consider for usability:

- Auto-correction
- Auto-capitalization
- Input data type & custom keyboards
- (Multiple-)Language support