# 패턴인식 HW4

2018573009 김영준

### 1. 개요

이번 과제에서는 수업시간에 배운 다양한 Feature Generation 알고리즘을 구현하고 이를 이차원 데이터셋을 이용하여 테스트해 보았다.

#### 2. 개발환경

이번 과제도 마찬가지로 Python3를 기반으로 구현하였다. 사용한 주요 모듈은 matplotlib 3.0.3, Numpy 1.6.2, scikit-learn 0.20.3, scipy 1.2.1이 있다.

#### 3. 소스코드 설명

이번 과제는 hw4.py 하나의 소스코드에 모든 내용을 구현하였다. 지난 hw3에서 채용하였던 커맨드 명령 옵션을 그대로 채택하였다. 자세한 커맨드 명령 옵션은 python hw4.py -h 명령어를 입력하면 알 수 있다.

Hw4.py 소스코드 역시 앞선 과제의 구조와 매우 유사하게 구성하였다. 크게 데이터를 위한 클래스 정의, 데이터 생성, feature generation 알고리즘 실행, 결과 출력으로 나누어진다. 각각의 과정은 가독성과 재사용성을 위해 함수로 분리하였으며 각 함수의 기능은 다음과 같다.

#### a. generate\_data()

Classification 모델 실습을 위한 데이터를 생성한다. - L 옵션을 사용할 경우 기존에 미리 생성되어있는 데이터를 로드해온다.

이번 과제의 경우 Kernel FDA의 데이터셋은 클래스가 3종류이기 때문에 SVD, Kernel PCA 데이터셋과 구분하여 생성하였다. 과제 설명에 제시된 대로 sklearn.datasets.make\_classification 함수를 사용하였다.

#### b. kernelFDA(data, labels, n\_class, gamma=10)

Kernel FDA를 구현한 함수이다. Kernel FDA는 sklearn에 구현체가 없어 직접 구현하였다. 커널은 RBF 커널을 사용하였으며 위키피디아 Kernel Fisher discriminant analysis 페이지의 Multi-class KFD 수식을 그대로 구현하였다. (참고: https://en.wikipedia.org/wiki/Kernel\_Fisher\_discriminant\_analysis) 2차원 데이터셋을 data, 각 데이터의 라벨을 labels, 클래스의 개수를 n\_class(본과제에서는 3으로 고정), RBF 커널의 감마값을 gamma로 전달받아 생성한 Feature를 결과로 반환한다.

#### c. plot\_class(data, size, pos, title=None)

생성된 데이터셋과 Feature Generation 결과를 그래프로 출력한다. 각 클래스는 다른 색상으로 구분하고 알고리즘에 따라 가독성이 뛰어나도록 서브그래프를 구성하였다.

#### d. main()

사용자가 선택한 알고리즘 별로 적절한 함수를 호출하여 전체 과정을 진행한다.

#### 4. 결과

a. Kernel PCA



# b. SVD



# c. Kernel FDA



### 5. 결론

이번 과제에서는 세가지 종류의 Feature Generation 알고리즘을 구현해보았다. 학습과정이 크게 복잡하지 않고 조금의 행렬연산만 진행하면 되기 때문에 대체적으로 알고리즘이 기존 과제 알고리즘보다 매우 빠름을 알 수 있었다. 성능 또한 Kernel FDA는 잘못 구현한 것 아닌가 느낄정도로 클래스 구별이 너무 잘될정도로 훌륭하였다. 다만 Kernel PCA의 경우는 커널의 종류에 따라 분포양상이 매우 상이하기 때문에 절절한 커널을 선택하는 것이 중요할 것으로 보인다.