#7

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Brigitte BATHE, et al.

GAU:

SERIAL NO: NEW APPLICATION

EXAMINER:

MONTH/DAY/YEAR

August 2, 2000

February 28, 2001

FILED:

HEREWITH

FOR:

NUCLEOTIDE SEQUENCE WHICH CODE FOR THE metH GENE

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

are submitted herewith

SIR:

COUNTRY

GERMANY

GERMANY

- □ Full benefit of the filing date of U.S. Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §120.
- Full benefit of the filing date of U.S. Provisional Application Serial Number 60/294,251, filed May 31, 2001, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

APPLICATION NUMBER

100 38 050.6

101 09 687.9

will be submitted prior to payment of the Final Fee

Certified copies of the corresponding Convention Application(s)
are submitted herewith
□ will be submitted prior to payment of the Final Fee
□ were filed in prior application Serial No. filed
were submitted to the International Bureau in PCT Application Number. Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
(B) Application Serial No.(s)

Respectfully Submitted,

ØBLON, SPWAK, MCCLELLAND

MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No. 24,618

Robert W. Hahl

Registration No. 33,893

22850

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98) Docket No.

211714US0X

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INVENTOR(S) Brigitte BATHE, et al.

SERIAL NO:

New Application

FILING DATE: Herewith

FOR:

NUCLEOTIDE SEQUENCES WHICH CODE FOR THE metH GENE

FEE TRANSMITTAL

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

FOR	NUMBER FILED	NUMBER EXTRA	RATE	CALCULATIONS									
TOTAL CLAIMS	34 - 20 =	14	× \$18 =	\$252.00									
INDEPENDENT CLAIMS	5 - 3 =	2	× \$80 =	\$160.00									
□ MULTIPLE DEPENDE	MULTIPLE DEPENDENT CLAIMS (If applicable) + \$270 =												
■ LATE FILING OF DECI	LATE FILING OF DECLARATION + \$130 =												
	BASIC FEE												
	TOTAL OF AB	OVE CALC	ULATIONS	\$1,252.00									
☐ REDUCTION BY 50% F	OR FILING BY S	MALL ENTI	TY	\$0.00									
☐ FILING IN NON-ENGL	ISH LANGUAGE		+ \$130 =	\$0.00									
□ RECORDATION OF AS	SIGNMENT		+ \$40 =	\$0.00									
			TOTAL	\$1,252.00									

Please charge Deposit Account No. 15-0030 in the amount of

A duplicate copy of this sheet is enclosed.

A check in the amount of

\$1,252.00

to cover the filing fee is enclosed.

The Commissioner is hereby authorized to charge any additional fees which may be required for the papers being filed herewith and for which no check is enclosed herewith, or credit any overpayment to Deposit Account No. 15-0030. A duplicate copy of this sheet is enclosed.

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/00)

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No. 24,618

Robert W. Hahl

Registration No. 33,893

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 09 687.9

Anmeldetag:

28. Februar 2001

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Bezeichnung:

Neue für das metH-Gen kodierende Nukleotidse-

quenzen

Priorität:

02.08.2000 DE 100 38 050.6

IPC:

C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. Juni 2001 Deutsches Patent- und Markenamt Der Präsident

Lon Auftra

Wallner

Neue für das metH-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das metH-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen das metH-Gen verstärkt wird.

Stand der Technik

5

10

L-Aminosäuren, insbesondere L-Methionin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. die Methionin-Analoga α-Methyl-Methionin, Ethionin, Norleucin, N-acetylnorleucin, S-Trifluoromethylhomocystein, 2-amino-5-heprenoitsäure, Seleno-Methionin, Methioninsulfoximin, Methoxin, 1-Aminocyclopentan-Carboxylsäure oder auxotroph

für regulatorisch bedeutsame Metabolite sind und Aminosäuren wie z.B. L-Methionin produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin, bereitzustellen.

Beschreibung der Erfindung

20

Werden im folgenden L-Methionin oder Methionin erwähnt,

15 sind damit auch die Salze wie z.B. Methionin-Hydrochlorid
oder Methionin-Sulfat gemeint.

Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das metH-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine
 25 Aminosäuresequenz enthält, die zu mindestens 70%
 identisch ist mit der Aminosäuresequenz von SEQ ID No.
 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
- wobei das Polypeptid bevorzugt die Aktivität der 5 Homocystein-Methyltransferase II aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
 - (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz

 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).

Weitere Gegenstände sind

20

- ein Polynukleotid enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält
- ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und
 - als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das metH-Gen verstärkt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 enthält, mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.

Polynukleotide, die die Sequenzen gemäß der Erfindung
enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA
und DNA geeignet, um Nukleinsäuren bzw. Polynukleotide oder
Gene in voller Länge zu isolieren, die für HomocysteinMethyltransferase II kodieren, oder um solche Nukleinsäuren
bzw. Polynukleotide oder Gene zu isolieren, die eine hohe
Ähnlichkeit der Sequenz mit der des HomocysteinMethyltransferase II-Gens aufweisen.

Polynukleotid, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für Homocystein-Methyltransferase II kodieren.

Solche, als Sonden oder Primer dienende Oligonukleotide,

enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende 25 Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden. Gegebenenfalls sind auch Oligonukleotide mit einer Länge von mindestens 100, 150, 200, 250 oder 300 Nukleotiden geeignet.

30 "Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es

10

sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität der Homocystein-Methyltransferase II und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders die zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L
Methionin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren, und in denen die für das metH-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Methionin, aus Glucose, Saccharose, Lactose, Fructose, 30 Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art

Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

oder daraus hergestellte L-Aminosäuren produzierende
Mutanten beziehungsweise Stämme, wie beispielsweise der LMethionin produzierende Stamm

Corynebacterium glutamicum ATCC21608.

Das neue, für das Enzym Homocystein-Methyltransferase II

(EC 2.1.1.13) kodierende metH-Gen von C. glutamicum wurde isoliert.

Zur Isolierung des metH-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde.

Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.

Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und

- Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli
- Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können
- anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.
- Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical
- 30 Analysis 39, 74-97 (1998)) untersucht werden.

Die neue für das Gen metH kodierende DNA-Sequenz von C. glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen

35 Methoden die Aminosäuresequenz des entsprechenden Proteins

abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des metH-Genproduktes dargestellt.

Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von

- Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins
- dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences
- 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
- In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter

35 Hybridization" der Firma Boehringer Mannheim GmbH

(Mannheim, Deutschland, 1993) und bei Liebl et al.
(International Journal of Systematic Bacteriology (1991)
41: 255-260). Anleitungen zur Amplifikation von DNASequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR)
findet der Fachmann unter anderem im Handbuch von Gait:
Oligonukleotide synthesis: A Practical Approach (IRL Press,
Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum
Akademischer Verlag, Heidelberg, Deutschland, 1994).

Es wurde gefunden, daß coryneforme Bakterien nach

Überexpression des metH-Gens in verbesserter Weise
Aminosäuren, insbesondere L-Methionin, produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die

- Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im
- Verlaufe der fermentativen L-Methionin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung

der Medienzusammensetzung und Kulturführung erreicht

30 werden.

35

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen

Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of

- Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides
- 10 (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Zur Verstärkung wurde das erfindungsgemäße metH-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in

- coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den
- kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and

- Environmental Microbiology 60, 126-132 (1994)) zur

 Duplikation bzw. Amplifikation des hom-thrB-Operons
 beschrieben wurde. Bei dieser Methode wird das vollständige
 Gen in einen Plasmidvektor kloniert, der in einem Wirt
 (typischerweise E. coli), nicht aber in C. glutamicum
- 35 replizieren kann. Als Vektoren kommen beispielsweise

pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird

- Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994))
- beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben.
- Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Methionin vorteilhaft sein, neben dem metH-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu verstärken.

So kann für die Herstellung von Aminosäuren, insbesondere 30 L-Methionin, eines oder mehrere Gene, ausgewählt aus der Gruppe

 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

- das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc
 (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (ACCESSION Number P26512),
 - das für die Homoserin O-Acetyltransferase kodierende Gen metA (ACCESSION Number AF052652),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (ACCESSION Number AF126953),
 - das für die Cystahionin-gamma-Lyase kodierende Gen aecD (ACCESSION Number M89931)
- das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (JP-A-08107788),
 - das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY (DSM 13556)

verstärkt, insbesondere überexprimiert werden.

- Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Verstärkung des metH Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
- das für die Homoserine Kinase kodierende Gen thrB
 (ACCESSION Number P08210),
 - das für die Threonin Dehydratase kodierende Gen ilvA (ACCESSION Number Q04513),

15

- das für die Threonin Synthase kodierende Gen thrC (ACCESSION Number P23669),
- das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (ACCESSION Number Y00151),
- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
 - das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
 - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114)

abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Methionin, vorteilhaft sein, neben der Überexpression des metH-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

- Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Methionin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
 - Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen

von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

- Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure,
- Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt,

- Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
- Als Schwefelquelle, insbesondere für die Herstellung von Methionin können organische und anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfide, Sulfite, Sulfate und Thiosulfate verwendet werden.
- Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
 entsprechenden Natrium haltigen Salze verwendet werden. Das
 Kulturmedium muß weiterhin Salze von Metallen enthalten wie
 z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
 notwendig sind. Schließlich können essentielle Wuchsstoffe
 wie Aminosäuren und Vitamine zusätzlich zu den oben
 genannten Stoffen eingesetzt werden. Dem Kulturmedium
 können überdies geeignete Vorstufen zugesetzt werden. Die
 genannten Einsatzstoffe können zur Kultur in Form eines

einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.

- Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem
- Medium geeignete selektiv wirkende Stoffe wie z.B.
 Antibiotika hinzugefügt werden. Um aerobe Bedingungen
 aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff
 haltige Gasmischungen wie z.B. Luft in die Kultur
 eingetragen. Die Temperatur der Kultur liegt normalerweise
- bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
- Die so erhaltenen, insbesondere L-Methionin enthaltenden Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-% und enthalten L-Methionin.

 Vorteilhaft ist außerdem auch, wenn die Fermentation zumindest am Ende, insbesondere jedoch über mindestens 30% der Fermentationsdauer zuckerlimitiert gefahren wird. Das heißt, dass während dieser Zeit die Konzentration an verwertbarem Zucker im Fermentationsmedium auf ≥ 0 bis 3 g/l gehalten, beziehungsweise abgesenkt wird.
- Die in dieser Weise hergestellte, insbesondere L-Methionin
 haltige, Fermentationsbrühe wird anschließend
 weiterverarbeitet. Je nach Anforderung kann die Biomasse
 ganz oder teilweise durch Separationsmethoden wie z.B. der
 Zentrifugation, der Filtration, dem Dekantieren oder einer
 Kombination hieraus aus der Fermentationsbrühe entfernt
 oder vollständig in ihr belassen werden. Anschließend wird

diese mit bekannten Methoden wie z.B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration eingedickt beziehungsweise konzentriert.

- Diese aufkonzentrierte Fermentationsbrühe kann anschließend durch Methoden der Gefriertrocknung, der Sprühtrocknung, der Sprühgranulation oder durch anderweitige Verfahren zu einem vorzugsweise rieselfähigen, feinteiligen Pulver aufgearbeitet werden.
- Dieses rieselfähige, feinteilige Pulver kann dann wiederum durch geeignete Kompaktier- oder Granulier-Verfahren in ein grobkörniges, gut rieselfähiges, lagerbares und weitgehend staubfreies Produkt überführt werden. Vorteilhaft bei der Granulation oder Kompaktierung ist der Einsatz von üblichen organischen oder anorganischen Hilfsstoffen, beziehungsweise Trägern wie Stärke, Gelatine, Cellulosederivaten oder ähnlichen Stoffen, wie sie üblicherweise in der Lebensmittel- oder Futterverarbeitung als Binde-, Gelier-, oder Verdickungsmittel Verwendung finden, oder von weiteren Stoffen wie zum Beispiel

Unter "rieselfähig" versteht man Pulver, die aus einer Serie von Glasauslaufgefäßen mit verschieden großen Auslauföffnungen mindestens aus dem Gefäß mit der Öffnung 5 mm (Millimeter) ungehindert auslaufen (Klein, Seifen, Öle, Fette, Wachse 94, 12 (1968)).

Wie hier beschrieben, ist mit "feinteilig", ein Pulver mit überwiegendem Anteil (> 50 %) einer Korngröße von 20 bis 200 µm Durchmesser gemeint. Mit "grobkörnig" sind Produkte mit überwiegendem Anteil (> 50 %) einer Korngröße von 200 bis 2000 µm Durchmesser gemeint. In diesem Sinne, bedeuted "staubfrei", daß das Produkt lediglich geringe Anteile (< 5%) an Körngrößen unter 20 µm Durchmesser enthält. Die Korngrößenbestimmung kann mit Methoden der

35 Laserbeugungsspektrometrie durchgeführt werden. Die

Kieselsäuren, Silikaten oder Stearaten.

entsprechenden Methoden sind im Lehrbuch zur "Teilchengrößenmessung in der Laborpraxis" von R. H. Müller und R. Schuhmann, Wissenschaftliche Verlagsgesellschaft Stuttgart (1996) oder im Lehrbuch "Introduction to Particle Technology" von M. Rhodes, Verlag Wiley & Sons (1998) beschrieben.

"Lagerbar", im Sinne dieser Erfindung, bedeutet ein Produkt, das bis zu 120 Tagen, bevorzugt bis 52 Wochen, besonders bevorzugt 60 Monate gelagert werden kann ohne das ein wesentlicher Verlust (< 5%) an Methionin auftritt.

Alternativ kann das Produkt aber auch auf einen in der Futtermittelverarbeitung bekannten und üblichen organischen oder anorganischen Trägerstoff wie zum Beispiel Kieselsäuren, Silikate, Schrote, Kleien, Mehle, Stärken Zucker oder andere aufgezogen und/oder mit üblichen Verdickungs- oder Bindemitteln vermischt und stabilisiert werden. Anwendungsbeispiele und Verfahren hierzu sind in der Literatur (Die Mühle + Mischfuttertechnik 132 (1995) 49, Seite 817) beschrieben.

20 Schließlich kann das Produkt durch Beschichtungsverfahren ("Coating") mit Filmbildnern wie beispielsweise Metallcarbonate, Kieselsäuren, Silikate, Alginate, Stearate, Stärken, Gummis und Celluloseether, wie in der DE-C-4100920 beschrieben, in einen Zustand gebracht werden,

in dem es stabil gegenüber der Verdauung durch Tiermägen insbesondere dem Magen von Wiederkäuern ist.

Wird die Biomasse während des Verfahrens abgetrennt, werden im allgemeinen weitere, zum Beispiel während der Fermentation zugesetzte anorganische Feststoffe entfernt.

Daneben enthält das erfindungsgemäße
Tierfuttermitteladditiv zumindest den überwiegenden Teil
der in der Fermentationsbrühe gelöst vorliegenden, weiteren
gebildeten oder zugesetzten, insbesondere organische

35

Stoffe, soweit sie nicht durch geeignete Verfahren abgetrennt wurden.

In einem Aspekt der Erfindung kann die Biomasse bis zu 70%, bevorzugt bis zu 80%, bevorzugt bis zu 90%, bevorzugt bis zu 95%, und besonders bevorzugt bis zu 100% abgetrennt werden. In einem weiteren Aspekt der Erfindung werden bis zu 20% der Biomasse, bevorzugt bis zu 15%, bevorzugt bis zu 10%, bevorzugt bis zu 5%, besonders bevorzugt keine Biomasse abgetrennt.

Zu diesen organischen Stoffen gehören organische Nebenprodukte, die von den bei der Fermentation eingesetzten Mikroorganismen gegebenenfalls neben dem L-Methionin erzeugt und gegebenenfalls ausgeschieden werden. Dazu zählen L-Aminosäuren, ausgewählt aus der Gruppe L-

Lysin, L-Valin, L-Threonin, L-Alanin oder L-Tryptophan.

Dazu zählen Vitamine ausgewählt aus der Gruppe Vitamin B1
(Thiamin), Vitamin B2 (Riboflavin), Vitamin B5
(Pantothensäure), Vitamin B6 (Pyridoxin), Vitamin B12
(Cyanocobalamin), Nicotinsäure/Nicotinsäureamid und Vitamin

E (Tocopherol). Dazu gehören weiterhin organische Säuren, die ein bis drei Carboxyl-Gruppen tragen wie zum Beispiel Essigsäure, Milchsäure, Zitronensäure, Apfelsäure oder Fumarsäure. Schließlich gehören dazu auch Zucker wie zum Beispiel Trehalose. Diese Verbindungen sind gegebenenfalls erwünscht, wenn sie die nutritive Wertigkeit des Produktes verbessern.

Diese organischen Stoffe einschließlich des L-Methionins und/oder D-Methionins und/oder des racemischen Gemisches D,L-Methionin können auch je nach Anforderung während eines geeigneten Verfahrensschrittes als Konzentrat oder Reinsubstanz in fester oder flüssiger Form hinzugefügt werden. Diese genannten organischen Stoffe können einzeln oder als Mischungen zur erhaltenen oder aufkonzentrierten Fermentationsbrühe, oder auch während des Trocknungs- oder Granulationsprozesses hinzugefügt werden. Es ist

gleichfalls möglich einen organischen Stoff oder eine Mischung mehrerer organischen Stoffe zur Fermentationsbrühe und einen weiteren organischen Stoff oder eine weitere Mischung mehrerer organische Stoffe bei einem späteren Verfahrensschritt, beispielsweise der Granulation, hinzuzufügen.

Das oben beschriebene Produkt ist als Futtermittelzusatz, d.h. Futtermittel-Additiv, für die Tierernährung geeignet.

Der L-Methionin-Gehalt des Tierfuttermittel-Additivs

beträgt üblicherweise 1 Gew.-% bis 80 Gew.-%, bevorzugt 2
Gew.-% bis 80 Gew.-%, besonders bevorzugt 4 Gew.-% bis 80
Gew.-%, und ganz besonders bevorzugt 8 Gew.-% bis 80 Gew-%, bezogen auf die Trockenmasse des Tierfuttermittel-Additivs.
Gehalte von 1 Gew.-% bis 60 Gew.-%, 2 Gew.-% bis 60 Gew.-%, 4 Gew.-% bis 60 Gew.-%, 6 Gew.-% bis 60 Gew.-%, 1 Gew.-% bis 40 Gew.-%, 2 Gew.-% bis 40 Gew.-% bis 40 Gew.-% bis 40 Gew.-% bis 40 Gew.-% sind gleichfalls möglich. Der Wassergehalt des Futtermittel-Additivs beträgt üblicherweise bis zu 5 Gew.-%, bevorzugt bis zu 4 Gew.-%, und besonders bevorzugt weniger als 2 Gew.-%.

Ein weiterer Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Herstellung eines L-Methionin haltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, gekennzeichnet durch die Schritte

- 25 a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
 - b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe (Aufkonzentration);
- 30 c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und

d) Trocknung der gemäß a) und/oder b) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.

Wenn erwünscht, können in dem erfindungsgemäßen Verfahren weiterhin eine oder mehrere der folgenden Schritte durchgeführt werden:

- e) Zusatz von einem oder mehreren der organischen Stoffe, einschließlich L-Methionin und/oder D-Methionin und/oder des racemischen Gemisches D,L-Methionin, zu dem gemäß a), b) und/oder c) erhaltenen Produkten;
- f) Zugabe von Hilfstoffen zu den nach a) bis d) erhaltenen Stoffen zur Stabilisierung und Erhöhung der Lagerfähigkeit ausgewählt aus der Gruppe Kieselsäuren, Silikate, Stearate, Schrot und Kleie; oder
- g) Überführung der nach a) bis e) erhaltenen Stoffe in eine Tiermagen insbesondere Pansen stabile Form durch Beschichtung ("Coating") mit Filmbildnern.

Die Analyse von L-Methionin kann durch Ionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin.

Die vorliegende Erfindung wird im folgenden anhand von 25 Ausführungsbeispielen näher erläutert.

Beispiel 1

10

20

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 30 wurde wie bei Tauch et al. (1995, Plasmid 33:168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert.

Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, 10 USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert. Anschließend 15 wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-20 DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin

ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

Isolierung und Sequenzierung des metH-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde 20 mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold 25 Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5 α MCR (Grant, 1990, Proceedings of the National Academy 30 of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

Deutschland).

5

20

Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet.

Die gelelektrophoretische Auftrennung und Analyse der 10 Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Ì5

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 3662 Basenpaaren, welches als metH-Gen bezeichnet wurde. Das metH-Gen kodiert für ein Protein von 1221 Aminosäuren.

```
SEQUENZPROTOKOLL
      <110> Degussa AG
  5
      <120> Neue für das metH-Gen kodierende Nukleotidsequenzen
      <130> 000365 BT
      <140>
10
      <141>
      <160> 2
      <170> PatentIn Ver. 2.1
15
      <210> 1
      <211> 4301
      <212> DNA
      <213> Corynebacterium glutamicum
20
      <220>
      <221> CDS
      <222> (385)..(4047)
      <223> metH-Gen
25
      <400> 1
     taagggtttt ggaggcattg gccgcgaacc catcgctggt catcccgggt ttgcgcatgc 60
     cacgttcgta ttcataacca atcgcgatgc cttgagccca ccagccactg acatcaaagt 120
30
     tgtccacgat gtgctttgcg atgtgggtgt gagtccaaga ggtggctttt acgtcgtcaa 180
     gcaattttag ccactcttcc cacggctttc cggtgccgtt gaggatagct tcaggggaca 240
35
     tgcctggtgt tgagccttgc ggagtggagt cagtcatgcg accgagacta gtggcgcttt 300
     gcctgtgttg cttaggcggc gttgaaaatg aactacgaat gaaaagttcg ggaattgtct 360
     aatccgtact aagctgtcta caca atg tct act tca gtt act tca cca gcc
                                                                         411
40
                                 Met Ser Thr Ser Val Thr Ser Pro Ala
     cac aac aac gca cat too too gaa ttt ttg gat gcg ttg gca aac cat
                                                                         459
     His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala Leu Ala Asn His
45
                                               20
     gtg ttg atc ggc gac ggc gcc atg ggc acc cag ctc caa ggc ttt gac
                                                                         507
     Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu Gln Gly Phe Asp
50
     ctg gac gtg gaa aag gat ttc ctt gat ctg gag ggg tgt aat gag att
                                                                        555
     Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly Cys Asn Glu Ile
55
     ctc aac gac acc ege eet gat gtg ttg agg eag att eac ege gee tac
                                                                        603
     Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile His Arg Ala Tyr
                                   65
```

	ttt Phe	gag Glu 75	gcg Ala	gga Gly	gct Ala	gac Asp	ttg Leu 80	gtt Val	gag Glu	acc Thr	aat Asn	act Thr 85	ttt Phe	ggt Gly	tgc Cys	aac Asn	651
5	ctg Leu 90	Pro	aac Asn	ttg Leu	gcg Ala	gat Asp 95	tat Tyr	gac Asp	atc Ile	gct Ala	gat Asp 100	cgt Arg	tgc Cys	cgt Arg	gag Glu	ctt Leu 105	699
10	gcc Ala	tac Tyr	aag Lys	ggc Gly	act Thr 110	gca Ala	gtg Val	gct Ala	agg Arg	gaa Glu 115	gtg Val	gct Ala	gat Asp	gag Glu	atg Met 120	Glà aaa	747
15	ccg Pro	ggc Gly	cga Arg	aac Asn 125	ggc Gly	atg Met	cgg Arg	cgt Arg	ttc Phe 130	gtg Val	gtt Val	ggt Gly	tcc Ser	ctg Leu 135	gga Gly	cct Pro	795
20	gga Gly	acg Thr	aag Lys 140	ctt Leu	cca Pro	tcg Ser	ctg Leu	ggc Gly 145	cat His	gca Ala	ccg Pro	tat Tyr	gca Ala 150	gat Asp	ttg Leu	cgt Arg	843
	ggg Gly	cac His 155	tac Tyr	aag Lys	gaa Glu	gca Ala	gcg Ala 160	ctt Leu	ggc Gly	atc Ile	atc Ile	gac Asp 165	ggt Gly	ggt Gly	ggc Gly	gat Asp	891
25	gcc Ala 170	ttt Phe	ttg Leu	att Ile	gag Glu	act Thr 175	gct Ala	cag Gln	gac Asp	ttg Leu	ctt Leu 180	cag Gln	gtc Val	aag Lys	gct Ala	gcg Ala 185	939
30	gtt Val	cac His	ggc Gly	gtt Val	caa Gln 190	gat Asp	gcc Ala	atg Met	gct Ala	gaa Glu 195	ctt Leu	gat Asp	aca Thr	ttc Phe	ttg Leu 200	ccc Pro	987
35	att Ile	att Ile	tgc Cys	cac His 205	gtc Val	acc Thr	gta Val	gag Glu	acc Thr 210	acc Thr	ggc Gly	acc Thr	atg Met	ctc Leu 215	atg Met	ggt Gly	1035
40	tct Ser	gag Glu	atc Ile 220	ggt Gly	gcc Ala	gcg Ala	ttg Leu	aca Thr 225	gcg Ala	ctg Leu	cag Gln	cca Pro	ctg Leu 230	ggt Gly	atc Ile	gac Asp	1083
-	atg Met	att I le 235	ggt Gly	ctg Leu	aac Asn	tgc Cys	gcc Ala 240	acc Thr	ggc Gly	cca Pro	gat Asp	gag Glu 245	atg Met	agc Ser	gag Glu	cac His	1131
45	ctg Leu 250	cgt Arg	tac Tyr	ctg Leu	tcc Ser	aag Lys 255	cac His	gcc Ala	gat Asp	att Ile	cct Pro 260	gtg Val	tcg Ser	gtg Val	atg Met	cct Pro 265	1179
50	aac Asn	gca Ala	ggt Gly	ctt Leu	cct Pro 270	gtc Val	ctg Leu	ggt Gly	aaa Lys	aac Asn 275	ggt Gly	gca Ala	gaa Glu	tac Tyr	cca Pro 280	ctt Leu	1227
55	gag Glu	gct Ala	gag Glu	gat Asp 285	ttg Leu	gcg Ala	cag Gln	gcg Ala	ctg Leu 290	gct Ala	gga Gly	ttc Phe	gtc Val	tcc Ser 295	gaa Glu	tat Tyr	1275
	ggc Gly	ctg Leu	tcc Ser 300	atg Met	gtg Val	ggt Gly	ggt Gly	tgt Cys 305	tgt Cys	ggc Gly	acc Thr	aca Thr	cct Pro 310	gag Glu	cac His	atc Ile	1323

	cgt Arg	gcg Ala 315	gtc Val	cgc Arg	gat Asp	gcg Ala	gtg Val 320	Val	ggt Gly	gtt Val	cca Pro	gag Glu 325	Gln	gaa Glu	acc Thr	tcc Ser	1371
5	aca Thr 330	ctg Leu	acc Thr	aag Lys	atc Ile	cct Pro 335	gca Ala	ggc Gly	cct Pro	gtt Val	gag Glu 340	Gln	gcc Ala	tcc Ser	cgc Arg	gag Glu 345	1419
10	gtg Val	gag Glu	aaa Lys	gag Glu	gac Asp 350	tcc Ser	gtc Val	gcg Ala	tcg Ser	ctg Leu 355	tac Tyr	acc Thr	tcg Ser	gtg Val	cca Pro 360	ttg Leu	1467
15	tcc Ser	cag Gln	gaa Glu	acc Thr 365	ggc	att Ile	tcc Ser	atg Met	atc Ile 370	ggt Gly	gag Glu	cgc Arg	acc Thr	aac Asn 375	tcc Ser	aac Asn	1515
_ 20	ggt Gly	tcc Ser	aag Lys 380	gca Ala	ttc Phe	cgt Arg	gag Glu	gca Ala 385	atg Met	ctg Leu	tct Ser	ggc	gat Asp 390	tgg Trp	gaa Glu	aag Lys	1563
	tgt Cys	gtg Val 395	gat Asp	att Ile	gcc Ala	aag Lys	cag Gln 400	caa Gln	acc Thr	cgc Arg	gat Asp	ggt Gly 405	gca Ala	cac His	atg Met	ctg Leu	1611
25	gat Asp 410	ctt Leu	tgt Cys	gtg Val	gat Asp	tac Tyr 415	gtg Val	gga Gly	cga Arg	gac Asp	ggc Gly 420	acc Thr	gcc Ala	gat Asp	atg Met	gcg Ala 425	1659
30	acc Thr	ttg Leu	gca Ala	gca Ala	ctt Leu 430	ctt Leu	gct Ala	acc Thr	agc Ser	tcc Ser 435	act Thr	ttg Leu	cca Pro	atc Ile	atg Met 440	att Ile	1707
35	gac Asp	tcc Ser	acc Thr	gag Glu 445	cca Pro	gag Glu	gtt Val	att Ile	cgc Arg 450	aca Thr	ggc Gly	ctt Leu	gag Glu	cac His 455	ttg Leu	ggt Gly	1755
40	gga Gly	cga Arg	agc Ser 460	atc Ile	gtt Val	aac Asn	tcc Ser	gtc Val 465	aac Asn	ttt Phe	gaa Glu	gac Asp	ggc Gly 470	gat Asp	ggc Gly	cct Pro	1803
	gag Glu	tcc Ser 475	cgc Arg	tac Tyr	cag Gln	cgc Arg	atc Ile 480	atg Met	aaa Lys	ctg Leu	gta Val	aag Lys 485	cag Gln	cac His	ggt Gly	gcg Ala	1851
45	gcc Ala 490	gtg Val	gtt Val	gcg Ala	ctg Leu	acc Thr 495	att Ile	gat Asp	gag Glu	gaa Glu	ggc Gly 500	cag Gln	gca Ala	cgt Arg	acc Thr	gct Ala 505	1899
50	gag Glu	cac His	aag Lys	gtg Val	cgc Arg 510	att Ile	gct Ala	aaa Lys	cga Arg	ctg Leu 515	att Ile	gac Asp	gat Asp	atc Ile	acc Thr 520	ggc Gly	1947
55	agc Ser	tac Tyr	ggc Gly	ctg Leu 525	gat Asp	atc Ile	aaa Lys	gac Asp	atc Ile 530	gtt Val	gtg Val	gac Asp	tgc Cys	ctg Leu 535	acc Thr	ttc Phe	1995
	ccg Pro	atc Ile	tct Ser 540	act Thr	ggc Gly	cag Gln	gaa Glu	gaa Glu 545	acc Thr	agg Arg	cga Arg	gat Asp	ggc Gly 550	att Ile	gaa Glu	acc Thr	2043

	atc Ile	gaa Glu 555	gcc Ala	atc Ile	cgc Arg	gag Glu	ctg Leu 560	aag Lys	aag Lys	ctc Leu	tac Tyr	cca Pro 565	gaa Glu	atc Ile	cac His	acc Thr	2091
5	acc Thr 570	ctg Leu	ggt Gly	ctg Leu	tcc Ser	aat Asn 575	att Ile	tcc Ser	ttc Phe	ggc	ctg Leu 580	aac Asn	cct Pro	gct Ala	gca Ala	cgc Arg 585	2139
10	cag Gln	gtt Val	ctt Leu	aac Asn	tct Ser 590	gtg Val	ttc Phe	ctc Leu	aat Asn	gag Glu 595	tgc Cys	att Ile	gag Glu	gct Ala	ggt Gly 600	ctg Leu	2187
15	gac Asp	tct Ser	gcg Ala	att Ile 605	gcg Ala	cac His	agc Ser	tcc Ser	aag Lys 610	att Ile	ttg Leu	ccg Pro	atg Met	aac Asn 615	cgc Arg	att Ile	2235
20	gat Asp	gat Asp	cgc Arg 620	cag Gln	cgc Arg	gaa Glu	gtg Val	gcg Ala 625	ttg Leu	gat Asp	atg Met	gtc Val	tat Tyr 630	gat Asp	cgc Arg	cgc Arg	2283
	acc Thr	gag Glu 635	gat Asp	tac Tyr	gat Asp	ccg Pro	ctg Leu 640	cag Gln	gaa Glu	ttc Phe	atg Met	cag Gln 645	ctg Leu	ttt Phe	gag Glu	ggc Gly	2331
25	gtt Val 650	tct Ser	gct Ala	gcc Ala	gat Asp	gcc Ala 655	aag Lys	gat Asp	gct Ala	cgc Arg	gct Ala 660	gaa Glu	cag Gln	ctg Leu	gcc Ala	gct Ala 665	2379
30	atg Met	cct Pro	ttg Leu	ttt Phe	gag Glu 670	cgt Arg	ttg Leu	gca Ala	cag Gln	cgc Arg 675	atc Ile	atc Ile	gac Asp	ggc Gly	gat Asp 680	aag Lys	2427
35	aat Asn	ggc Gly	ctt Leu	gag Glu 685	gat Asp	gat Asp	ctg Leu	gaa Glu	gca Ala 690	ggc Gly	atg Met	aag Lys	gag Glu	aag Lys 695	tct Ser	cct Pro	2475
40					aac Asn												2523
					tcc Ser												2571
45	gca Ala 730	gaa Glu	acc Thr	atg Met	aaa Lys	act Thr 735	gcg Ala	gtg Val	gcc Ala	tat Tyr	ttg Leu 740	gaa Glu	ccg Pro	ttc Phe	atg Met	gaa Glu 745	2619
50					gct Ala 750												2667
55					acc Thr												2715
	ttg Leu	gtg Val	gac Asp 780	atc Ile	att Ile	ttg Leu	tcc Ser	aac Asn 785	aac Asn	ggt Gly	tac Tyr	gac Asp	gtg Val 790	gtg Val	aac Asn	ttg Leu	2763

		ggc Gly	atc Ile 795	aag Lys	cag Gln	cca Pro	ctg Leu	tcc Ser 800	gcc Ala	atg Met	ttg Leu	gaa Glu	gca Ala 805	gcg Ala	gaa Glu	gaa Glu	cac His	2811
	5	aaa Lys 810	Ala	g a c Asp	gtc Val	atc Ile	ggc Gly 815	atg Met	tcg Ser	gga Gly	ctt Leu	ctt Leu 820	Val	aag Lys	tcc Ser	acc Thr	gtg Val 825	2859
	10	gtg Val	atg Met	aag Lys	gaa Glu	aac Asn 830	ctt Leu	gag Glu	gag Glu	atg Met	aac Asn 835	aac Asn	gcc Ala	ggc	gca Ala	tcc Ser 840	aat Asn	2907
	15	tac Tyr	cca Pro	gtc Val	att Ile 845	ttg Leu	ggt Gly	ggc Gly	gct Ala	gcg Ala 850	ctg Leu	acg Thr	cgt Arg	acc Thr	tac Tyr 855	gtg Val	gaa Glu	2955
/:	20	aac Asn	gat Asp	ctc Leu 860	aac Asn	gag Glu	gtg Val	tac Tyr	acc Thr 865	ggt Gly	gag Glu	gtg Val	tac Tyr	tac Tyr 870	gcc Ala	cgt Arg	gat Asp	3003
		gct Ala	ttc Phe 875	gag Glu	ggc Gly	ctg Leu	cgc Arg	ctg Leu 880	atg Met	gat Asp	gag Glu	gtg Val	atg Met 885	gca Ala	gaa Glu	aag Lys	cgt Arg	3051
	25	ggt Gly 890	gaa Glu	gga Gly	ctt Leu	gat Asp	ccc Pro 895	aac Asn	tca Ser	cca Pro	gaa Glu	gct Ala 900	att Ile	gag Glu	cag Gln	gcg Ala	aag Lys 905	3099
	30	aag Lys	aag Lys	gcg Ala	gaa Glu	cgt Arg 910	aag Lys	gct Ala	cgt Arg	aat Asn	gag Glu 915	cgt Arg	tcc Ser	cgc Arg	aag Lys	att Ile 920	gcc Ala	3147
	35	gcg Ala	gag Glu	cgt Arg	aaa Lys 925	gct Ala	aat Asn	gcg Ala	gct Ala	ccc Pro 930	gtg Val	att Ile	gtt Val	ccg Pro	gag Glu 935	cgt Arg	tct Ser	3195
<u> </u>	40	gat Asp	gtc Val	tcc Ser 940	acc Thr	gat Asp	act Thr	cca Pro	acc Thr 945	gcg Ala	gca Ala	cca Pro	ccg Pro	ttc Phe 950	tgg Trp	gga Gly	acc Thr	3243
C.	`	cgc Arg	att Ile 955	gtc Val	aag Lys	ggt Gly	ctg Leu	ccc Pro 960	ttg Leu	gcg Ala	gag Glu	ttc Phe	ttg Leu 965	ggc Gly	aac Asn	ctt Leu	gat Asp	3291
	45	gag Glu 970	cgc Arg	gcc Ala	ttg Leu	ttc Phe	atg Met 975	GJÀ āāā	cag Gln	tgg Trp	ggt Gly	ctg Leu 980	aaa Lys	tcc Ser	acc Thr	cgc Arg	ggc Gly 985	3339
	50	aac Asn	gag Glu	ggt Gly	cca Pro	agc Ser 990	tat Tyr	gag Glu	gat Asp	ttg Leu	gtg Val 995	gaa Glu	act Thr	gaa Glu	Gly	cga Arg .000	cca Pro	3387
	55	cgc Arg	ctg Leu	Arg	tac Tyr 005	tgg Trp	ctg Leu	gat Asp	Arg	ctg Leu 010	aag Lys	tct Ser	gag Glu	ggc Gly 1	att Ile 015	ttg Leu	gac Asp	3435
		cac His	Val	gcc Ala 020	ttg Leu	gtg Val	tat Tyr	Gly	tac Tyr 025	ttc Phe	cca Pro	gcg Ala	Val	gcg Ala 030	gaa Glu	ggc Gly	gat Asp	3483

		gac gtg gtg atc ttg gaa tcc ccg gat cca cac gca gcc gaa cgc atg Asp Val Val Ile Leu Glu Ser Pro Asp Pro His Ala Ala Glu Arg Met 1035 1040 1045	3531
	5	cgc ttt agc ttc cca cgc cag cag cgc ggc agg ttc ttg tgc atc gcg Arg Phe Ser Phe Pro Arg Gln Gln Arg Gly Arg Phe Leu Cys Ile Ala 1050 1055 1060 1065	3579
	10	gat ttc att cgc cca cgc gag caa gct gtc aag gac ggc caa gtg gac Asp Phe Ile Arg Pro Arg Glu Gln Ala Val Lys Asp Gly Gln Val Asp 1070 1075 1080	3627
	15	gtc atg cca ttc cag ctg gtc acc atg ggt aat cct att gct gat ttc Val Met Pro Phe Gln Leu Val Thr Met Gly Asn Pro Ile Ala Asp Phe 1085 1090 1095	3675
,	20	gcc aac gag ttg ttc gca gcc aat gaa tac cgc gag tac ttg gaa gtt Ala Asn Glu Leu Phe Ala Ala Asn Glu Tyr Arg Glu Tyr Leu Glu Val 1100 1105 1110	3723
<u>"</u>		cac ggc atc ggc gtg cag ctc acc gaa gca ttg gcc gag tac tgg cac His Gly Ile Gly Val Gln Leu Thr Glu Ala Leu Ala Glu Tyr Trp His 1115 1120 1125	3771
	25	tcc cga gtg cgc agc gaa ctc aag ctg aac gac ggt gga tct gtc gct Ser Arg Val Arg Ser Glu Leu Lys Leu Asn Asp Gly Gly Ser Val Ala 1130 1140 1145	3819
	30	gat ttt gat cca gaa gac aag acc aag ttc ttc gac ctg gat tac cgc Asp Phe Asp Pro Glu Asp Lys Thr Lys Phe Phe Asp Leu Asp Tyr Arg 1150 1155 1160	3867
	35	ggc gcc cgc ttc tcc ttt ggt tac ggt tct tgc cct gat ctg gaa gac Gly Ala Arg Phe Ser Phe Gly Tyr Gly Ser Cys Pro Asp Leu Glu Asp 1165 1170 1175	3915
	40	cgc gca aag ctg gtg gaa ttg ctc gag cca ggc cgt atc ggc gtg gag Arg Ala Lys Leu Val Glu Leu Leu Glu Pro Gly Arg Ile Gly Val Glu 1180 1185 1190	3963
,	ı	ttg tcc gag gaa ctc cag ctg cac cca gag cag tcc aca gac gcg ttt Leu Ser Glu Glu Leu Gln Leu His Pro Glu Gln Ser Thr Asp Ala Phe 1195 1200 1205	4011
	45	gtg ctc tac cac cca gag gca aag tac ttt aac gtc taacaccttt Val Leu Tyr His Pro Glu Ala Lys Tyr Phe Asn Val 1210 1215 1220	4057
	50	gagagggaaa actttcccgc acattgcaga tcgtgccact ttaactaagg ttgacggcat	4117
		gattaaggcg attttctggg acatggacgg cacgatggtg gactctgagc cacagtgggg	4177
		cattgctacc tacgagetea gegaagecat gggeegeege etcacceegg ageteeggga	4237
	55	acteaccyte gyetegagee tycegegeae catycyctta tycgcagage acycagycat	4297
		taca	4301

5	<213 <213	0> 2 l> 12 2> PE 3> Co	۲T	ebact	eriu	um gl	Lutar	nicum	n							
	_)> 2 Ser	Thr	Ser	Val 5	Thr	Ser	Pro	Ala	His 10	Asn	Asn	Ala	His	Ser 15	Ser
10	Glu	Phe	Leu	Asp 20	Ala	Leu	Ala	Asn	His 25	Val	Leu	Ile	Gly	Asp 30	Gly	Ala
15	Met	Gly	Thr 35	Gln	Leu	Gln	Gly	Phe 40	Asp	Leu	Asp	Val	Glu 45	Lys	Asp	Phe
	Leu	Asp 50	Leu	Glu	Gly	Cys	Asn 55	Glu	Ile	Leu	Asn	Asp 60	Thr	Arg	Pro	Asp
20	Val 65	Leu	Arg	Gln	Ile	His 70	Arg	Ala	Tyr	Phe	Glu 75	Ala	Gly	Ala	Asp	Leu 80
	Val	Glu	Thr	Asn	Thr 85	Phe	Gly	Cys	Asn	Leu 90	Pro	Asn	Leu	Ala	Asp 95	Tyr
25	Asp	Ile	Ala	Asp 100	Arg	Cys	Arg	Glu	Leu 105	Ala	Tyr	Lys	Gly	Thr 110	Ala	Val
30	Ala	Arg	Glu 115	Val	Ala	Asp	Glu	Met 120	Gly	Pro	Gly	Arg	Asn 125	Gly	Met	Arg
	Arg	Phe 130	Val	Val	Gly	Ser	Leu 135	Gly	Pro	Gly	Thr	Lys 140	Leu	Pro	Ser	Leu
35	Gly 145	His	Ala	Pro	Tyr	Ala 150	Asp	Leu	Arg	Gly	His 155	Tyr	Lys	Glu	Ala	Ala 160
	Leu	Gly	Ile	Ile	Asp 165	Gly	Gly	Gly	Asp	Ala 170	Phe	Leu	Ile	Glu	Thr 175	Ala
40	Gln	Asp	Leu	Leu 180	Gln	Val	Lys	Ala	Ala 185	Val	His	Gly	Val	Gln 190	Asp	Ala
45	Met	Ala	Glu 195	Leu	Asp	Thr	Phe	Leu 200	Pro	Ile	Ile	Cys	His 205	Val	Thr	Val
	Glu	Thr 210	Thr	Gly	Thr	Met	Leu 215	Met	Gly	Ser	Glu	Ile 220	Gly	Ala	Ala	Leu
50	Thr 225	Ala	Leu	Gln	Pro	Leu 230	Gly	Ile	Asp	Met	Ile 235	Gly	Leu	Asn	Cys	Ala 240
	Thr	Gly	Pro	Asp	Glu 245	Met	Ser	Glu	His.	Leu 250	Arg	Tyr	Leu	Ser	Lys 255	His
55	Ala	Asp	Ile	Pro 260	Val	Ser	Val	Met	Pro 265	Asn	Ala	Gly	Leu	Pro 270	Val	Leu
	Gly	Lys	Asn 275	Gly	Ala	Glu	Tyr	Pro 280	Leu	Glu	Ala	Glu	Asp 285	Leu	Ala	Gln

		Ala	Let 290	ı Ala	Gl3	/ Phe	e Val	Ser 295	Glu S	туз	Gl3	/ Leu	Ser 300		: Val	L Gly	y Gly
	5	Cys 305	Cys	Gly	Thr	Thr	310	Glu)	His	: Ile	e Arg	315		. Ar	g Asp	Ala	a Val 320
		Val	Gly	v Val	. Pro	325	Gln	ı Glu	Thr	Ser	330		Thr	Lys	s Ile	9 Pro	Ala
	10	Gly	Pro	`Val	Glu 340	Gln	Ala	Ser	Arg	Glu 345	val	Glu	Lys	Glu	350		Val
	15	Ala	Ser	Leu 355	Tyr	Thr	Ser	Val	Pro 360	Leu	Ser	Gln	Glu	Thr 365		, Il€	Ser
		Met	11e 370	Gly	Glu	Arg	Thr	Asn 375	Ser	Asn	Gly	Ser	Lys 380		Phe	Arg	Glu
A	20	Ala 385	Met	Leu	Ser	Gly	Asp 390	Trp	Glu	Lys	Cys	Val 395	Asp	Ile	Ala	Lys	Gln 400
		Gln	Thr	Arg	Asp	Gly 405	Ala	His	Met	Leu	Asp 410	Leu	Суѕ	Val	Asp	Tyr 415	Val
	25	Gly	Arg	Asp	Gly 420	Thr	Ala	Asp	Met	Ala 425	Thr	Leu	Ala	Ala	Leu 430	Leu	Ala
	30	Thr	Ser	Ser 435	Thr	Leu	Pro	Ile	Met 440	Ile	Asp	Ser	Thr	Glu 445	Pro	Glu	Val
		Ile	Arg 450	Thr	Gly	Leu	Glu	His 455	Leu	Gly	Gly	Arg	Ser 460	Ile	Val	Asn	Ser
	35	Val 465	Asn	Phe	Glu	Asp	Gly 470	Asp	Gly	Pro	Glu	Ser 475	Arg	Tyr	Gln	Arg	Ile 480
		Met	Lys	Leu	Val	Lys 485	Gln	His	Gly	Ala	Ala 490	Val	Val	Ala	Leu	Thr 495	Ile
(الله	40				500					505					Arg 510		
	45			213					520					525	Asp		
			530					535					540		Gly		
	50	Glu 545	Thr	Arg	Arg	Asp	Gly 550	Ile	Glu	Thr	Ile	Glu 555	Ala	Ile	Arg	Glu	Leu 560
		Lys	Lys	Leu	Tyr	Pro 565	Glu	Ile	His	Thr	Thr 570	Leu	Gly	Leu	Ser	Asn 575	Ile
	55	Ser	Phe	Gly	Leu 580	Asn	Pro	Ala	Ala	Arg 585	Gln	Val	Leu	Asn	Ser 590	Val	Phe
		Leu .	Asn	Glu 595	Cys	Ile	Glu	Ala	Gly 600	Leu	Asp	Ser		Ile 605	Ala	His	Ser

		Ser	Lys 610	Ile	Leu	Pro	Met	Asn 615	Arg	Ile	Asp	Asp	Arg 620		Arg	Glu	Val
	5	Ala 625	Leu	Asp	Met	Val	Tyr 630	Asp	Arg	Arg	Thr	Glu 635	Asp	Tyr	Asp	Pro	Leu 640
		Gln	Glu	Phe	Met	Gln 645	Leu	Phe	Glu	Gly	Val 650		Ala	Ala	Asp	Ala 655	Lys
	10	Asp	Ala	Arg	Ala 660	Glu	Gln	Leu	Ala	Ala 665	Met	Pro	Leu	Phe	Glu 670		Leu
	15	Ala	Gln	Arg 675	Ile	Ile	Asp	Gly	Asp 680	Lys	Asn	Gly	Leu	Glu 685	Asp	Asp	Leu
	- 0	Glu	Ala 690	Gly	Met	Lys	Glu	Lys 695	Ser	Pro	Ile	Ala	Ile 700	Ile	Asn	Glu	Asp
	20	Leu 705	Leu	Asn	Gly	Met	Lys 710	Thr	Val	Gly	Glu	Leu 715	Phe	Gly	Ser	Gly	Gln 720
		Met	Gln	Leu	Pro	Phe 725	Val	Leu	Gln	Ser	Ala 730	Glu	Thr	Met	Lys	Thr 735	Ala
	25	Val	Ala	Tyr	Leu 740	Glu	Pro	Phe	Met	Glu 745	Glu	Glu	Ala	Glu	Ala 750	Thr	Gly
	30	Ser	Ala	Gln 755	Ala	Glu	Gly	Lys	Gly 760	Lys	Ile	Val	Val	Ala 765	Thr	Val	Lys
	30	Gly	Asp 770	Val	His	Asp	Ile	Gly 775	Lys	Asn	Leu	Val	Asp 780	Ile	Ile	Leu	Ser
	35	Asn 785	Asn	Gly	Tyr	Asp	Val 790	Val	Asn	Leu	Gly	Ile 795	Lys	Gln	Pro	Leu	Ser 800
		Ala	Met	Leu	Glu	Ala 805	Ala	Glu	Glu	His	Lys 810	Ala	Asp	Val	Ile	Gly 815	Met
(T)	40	Ser	Gly	Leu	Leu 820	Val	Lys	Ser	Thr	Val 825	Val	Met	Lys	Glu	Asn 830	Leu	Glu
	45	Glu	Met	Asn 835	Asn	Ala	Gly	Ala	Ser 840	Asn	Tyr	Pro	Val	Ile 845	Leu	Gly	Gly
		Ala	Ala 850	Leu	Thr	Arg	Thr	Tyr 855	Val	Glu	Asn	Asp	Leu 860	Asn	Glu	Val	Tyr
	50	Thr 865	Gly	Glu	Val	Tyr	Tyr 870	Ala	Arg	Asp	Ala	Phe 875	Glu	Gly	Leu	Arg	Leu 880
		Met	Asp	Glu	Val	Met 885	Ala	Glu	Lys	Arg	Gly 890	Glu	Gly	Leu	Asp	Pro 895	Asn
	55	Ser	Pro	Glu	Ala 900	Ile	Glu	Gln	Ala	Lys 905	Lys	Lys	Ala	Glu	Arg 910	Lys	Ala
		Arg	Asn	Glu 915	Arg	Ser	Arg		Ile 920	Ala	Ala	Glu	Arg	Lys 925	Ala	Asn	Ala

		Ala	Pro 930	Val	Ile	Val	Pro	Glu 935	Arg	Ser	Asp	Val	Ser 940		Asp	Thr	Pro
	5	Thr 945	Ala	Ala	Pro	Pro	Phe 950	Trp	Gly	Thr	Arg	1le 955		Lys	Gly	Leu	Pro 960
		Leu	Ala	Glu	Phe	Leu 965	Gly	Asn	Leu	Asp	Glu 970	Arg	Ala	Leu	Phe	Met 975	Gly
	10	Gln	Trp	Gly	Leu 980	Lys	Ser	Thr	Arg	Gly 985	Asn	Glu	Gly	Pro	Ser 990	Tyr	Glu
	15	Asp	Leu	Val 995	Glu	Thr	Glu	Gly	Arg 1000	Pro	Arg	Leu		Туг 1005	Trp	Leu	Asp
		Arg]	Leu 1010	Lys	Ser	Glu	Gly	Ile 1015	Leu	Asp	His		Ala 1020	Leu	Val	Tyr	Gly
	20	Tyr 025	Phe	Pro	Ala	Val	Ala 1030	Glu	Gly	Asp	Asp	Val 1035	Val	Ile	Leu		Ser 1040
		Pro	Asp	Pro	His	Ala 1045	Ala	Glu	Arg	Met	Arg 1050	Phe	Ser	Phe		Arg 1055	Gln
	25	Gln	Arg	Gly	Arg 1060	Phe	Leu	Cys	Ile	Ala 1065	Asp	Phe	Ile		Pro 1070	Arg	Glu
	30	Gln	Ala . 1	Val 1075	Lys	Asp	Gly	Gln	Val 1080	Asp	Val	Met		Phe 1085	Gln	Leu	Val
		Thr 1	Met 090	Gly	Asn	Pro	Ile	Ala 1095	Asp	Phe	Ala		Glu L100	Leu	Phe	Ala	Ala
	35	Asn 105	Glu	Tyr	Arg	Glu 1	Tyr .110	Leu	Glu	Val		Gly 1115	Ile	Gly	Val		Leu .120
		Thr	Glu	Ala	Leu 1	Ala 125	Glu	Tyr	Trp	His 1	Ser .130	Arg	Val	Arg		Glu .135	Leu
(((()))	40	Lys	Leu	Asn 1	Asp 140	Gly	Gly	Ser	Val	Ala l145	Asp	Phe	Asp		Glu .150	Asp	Lys
	45	Thr	Lys 1	Phe 155	Phe	Asp	Leu	Asp 1	Tyr .160	Arg	Gly	Ala		Phe 165	Ser	Phe	Gly
		Tyr (Gly 170	Ser	Cys	Pro	Asp 1	Leu 175	Glu	Asp	Arg		Lys 180	Leu	Val	Glu	Leu
	50	Leu (185	Glu	Pro	Gly	Arg 1	Ile 190	Gly	Val	Glu		Ser 195	Glu	Glu	Leu		Leu 200
		His	Pro	Glu	Gln 1	Ser 205	Thr	Asp	Ala	Phe 1	Val 210	Leu	Tyr	His		Glu 215	Ala
	55	Lys :	Tyr		Asn 220	Val											

Patentansprüche

10

20

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c).
 - Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
- 25 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

10

- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur
 Sequenz (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
- (iv) funktionsneutrale Sinnmutationen in (i).
- 6. Polynukleotidsequenz gemäß Anspruch 2, das für ein Polypeptid kodiert, das die Aminosäuresequenz in SEQ ID No. 2 darstellt, enthält.
- 7. Coryneforme Bakterien, in denen das metH-Gen verstärkt, insbesondere überexprimiert wird.
- 8. Als Wirtszelle dienende coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß
 Anspruch 1 trägt.
 - 9. Verfahren zur fermentativen Herstellung von LAminosäuren, insbesondere L-Methionin, d a d u r c h
 g e k e n n z e i c h n e t, daß man folgende Schritte
 durchführt:
- a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das metH-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
- 25 b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
- 10. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des

10

20

25

Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

- 11. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
- 12. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das metH-Gen kodierende Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man die Expression
 des (der) Polynukleotides (e), das (die) für das metHGen kodiert (kodieren) verstärkt, insbesondere
 überexprimiert.
 - 14. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man die katalytischen Eigenschaften des Polypetids (Enzymprotein) erhöht, für das das Polynukleotid metH kodiert.
 - 15. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren, insbesondere L-Methionin, coryneformen Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 15.1 das für eine feed back resistente Aspartatkinase kodierende Gen lysC,
- 30 15.2 das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,

-20

- 15.3 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,
- 15.4 das für die Pyruvat Carboxylase kodierende Gen pyc,
- 5 15.5 das für die Triosephosphat Isomerase kodierende Gen tpi
 - 15.6 das für die Homoserin O-Acetyltransferase kodierende Gen metA
 - 15.7 das für die Cystahionin-gamma-Synthase kodierende Gen metB
 - 15.8 das für die Cystahionin-gamma-Lyase kodierende Gen aecD
 - 15.9 das für die Serin-Hydroxymethyltransferase kodierende Gen glyA
- 15 15.10 das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY

verstärkt bzw. überexprimiert.

- 16. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren, insbesondere L-Methionin, coryneformen Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
- 25 16.1 das für die Homoserine Kinase kodierende Gen thrB
 - 16.2 das für die Threonin Dehydratase kodierende Gen ilvA

- 16.3 das für die Threonin Synthase kodierende Gen thrC
- 16.4 das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh
- 5 16.5 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck
 - 16.6 das für die Glucose-6-Phosphat6 Isomerase kodierende Gen pgi
 - 16.7 das für die Pyruvat-Oxidase kodierende Gen poxB

abschwächt.

10

15

25

- 17. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichne t, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 18. Verfahren zur Herstellung eines L-Methionin haltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, gekennzeichnet durch die Schritte
 - a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
 - b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe (Aufkonzentration);
- c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
 - d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-

10

15

25

30

Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.

- 19. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet dass daß man Mikroorganismen einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges von L-Methionin verstärkt.
- 20. Verfahren gemäß Anspruch 19, d a d u r c h g e k e n n z e i c h n e t, daß man Mikroorganismen einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung L-Methionin verringern.
- 21. Verfahren gemäß Anspruch 19, d a d u r c h g e k e n n z e i c h n e t, daß man die Expression der Polynukleotide, die für das metH-Gen kodieren verstärkt, insbesondere überexprimiert.
- 22. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichne tohne t, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 20 23. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet dass man zusätzlich noch einen oder mehrere folgender Schritte durchführt:
 - e) Zusatz von einem oder mehreren der organischen Stoffe, einschließlich L-Methionin und/oder D-Methionin und/oder des racemischen Gemisches D,L-Methionin, zu dem gemäß b), c) und/oder d) erhaltenen Produkten;
 - f) Zugabe von Hilfstoffen zu den nach b) bis e)
 erhaltenen Stoffen zur Stabilisierung und
 Erhöhung der Lagerfähigkeit ausgewählt aus der
 Gruppe Kieselsäuren, Silikate, Stearate, Schrot
 und Kleie; oder

25

30

- g) Überführung der nach b) bis f) erhaltenen Stoffe in eine Tiermagen insbesondere Pansen stabile Form durch Beschichtung ("Coating") mit Filmbildnern.
- 5 24. Verfahren gemäß Anspruch 18 oder 23, dadurch gekennzeichnet dass ein Teil der Biomasse entfernt wird.
 - 25. Verfahren gemäß Anspruch 24, dadurch gekennzeichnet dass bis zu 100% der Biomasse entfernt wird.
- 10 26. Verfahren gemäß Anspruch 18 oder 23, dadurch gekennzeichnet dass der Wassergehalt bei bis zu 5 Gew.-% liegt.
 - 27. Verfahren gemäß Anspruch 26, dadurch gekennzeichnet dass der Wassergehalt bei weniger als 2 Gew.-% liegt.
- Verfahren gemäß Anspruch 23, 24, 25, 26 oder 27, dadurch gekennzeichnet dass die Filmbildner Metallcarbonate, Kieselsäuren, Silikate, Alginate, Stearate, Stärken, Gummis oder Celluloseether sind.
 - 29. Tierfuttermittel-Additiv hergestellt gemäß Ansprüchen 18 bis 28.
 - 30. Tierfuttelmittel-Additv gemäß Anspruch 29, dadurch gekennzeichnet, dass es 1 Gew.-% bis 80 Gew.-% L_Methionin, D-Methionin, D,L-Methionin oder einer Mischung davon, bezogen auf die Trockenmasse des Tierfuttermittel-Additivs, enthält.
 - 31. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für Homocystein-Methyltransferase II kodieren oder eine hohe Ähnlichkeit mit der Sequenz des Homocystein-Methyltransferase II Gens aufweisen, dadurch

gekennzeichnet, dass man die Polynukleotidsequenzen gemäß Anspruch 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.

Neue für das metH-Gen kodierende Nukleotidsequenzen

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch istmit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und Verfahren zur fermentativen Herstellung von LAminosäuren unter Verwendung von coryneformen Bakterien, in
denen zumindest das metH-Gen verstärkt vorliegt, und die
Verwendung der Polynukleotidsequenzen als
Hybridisierungssonden.

10