MATH5725: Galois Theory (2014, S2) Problem Set 2

1. Let p be a positive prime number. Put

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbf{Q}[X]$$

so that

$$X^{p} - 1 = (X - 1)\Phi_{p}(X).$$

(a) Show that if K/\mathbb{Q} is a splitting field for Φ_p and $\zeta \in K$ is a root of Φ_p then ζ^j is too if $1 \le j \le p - 1$.

(b) Using (a), show that $K = \mathbf{Q}(\zeta)$. Show every element of K has a representation of the form $\sum_{0 \le i \le p-1} a_i \zeta^i$ with $a_i \in \mathbf{Q}$ (this representation is not unique, but you do not need to show that for this part of the question). Show that

$$\left(\sum_{0 \le i \le p-1} a_i \zeta^i\right) + \left(\sum_{0 \le i \le p-1} b_i \zeta^i\right) = \sum_{0 \le i \le p-1} (a_i + b_i) \zeta^i$$

and that

and that
$$(\sum_{0 \leq i \leq p-1} a_i \zeta^i) (\sum_{0 \leq j \leq p-1} b_j \zeta^j) = \sum_{0 \leq n \leq p-1} (\sum_{i+j \equiv n \mod p} a_i b_j) \zeta^n.$$
 (Hint: use the isomorphism $\mathbf{Q}[X]/(\Phi_p) \to K : X + (\Phi_p) \mapsto \zeta$). (c) Show that if $\lambda \in (\mathbf{Z}/p)^*$ and $\sum a_i \zeta^i \in K$ that

$$\sigma_{\lambda}: K \longrightarrow K: \sum a_i \zeta^i \mapsto \sum a_i \zeta^{\lambda i}$$

respects addition and multiplication (use the formulas in (b) and the fact that $\lambda(i+j) \equiv$ $\lambda i + \lambda j \bmod p$.

Show that $\sigma_{\lambda}(1+\zeta+\cdots\zeta^{p-1})=1+\zeta+\cdots\zeta^{p-1}$, i.e. that σ_{λ} is well-defined.

Conclude that σ_{λ} is a field automorphism (i.e show it is surjective, it is injective automatically as a ring homomorphism of fields is always injective (because a field has no ideals other than the zero ideal)).

(d) Show that $\sigma_{\lambda}(a) = a$ if $a \in \mathbf{Q}$.

(e) Let g be a monic irreducible polynomial over **Q** such that $g(\zeta) = 0$. Using (d), show that $g(\sigma_{\lambda}(\zeta)) = 0$. Conclude that $\Phi_p \mid g$ and hence $g = \Phi_p$.

(f) Conclude that Φ_p is irreducible and that $\mathbf{Q}(\zeta_p) \cong \mathbf{Q}[X]/(\Phi_p)$ has degree p-1 over \mathbf{Q} and therefore that $1, \zeta, \dots, \zeta^{p-2}$ is a basis for K over \mathbf{Q} . You might consult the literature for alternative proofs that Φ_p is irreducible.

2. Let $f(X) \in \mathbf{Q}[X]$ by given by

$$f(X) = X^4 - 10X^2 + 1.$$

(a) Show that the roots of f have the form $\pm \sqrt{5 \pm 2\sqrt{6}}$.

(b) Put $K = \mathbf{Q}(\sqrt{5+2\sqrt{6}}, \sqrt{5-2\sqrt{6}})$, show that K is a splitting field for f.

(c) Calculate the square of $\sqrt{2} \pm \sqrt{3}$; conclude that $\sqrt{2} \pm \sqrt{3} \in K$.

(d) Show that $\sqrt{2}, \sqrt{3} \in K$.

(e) By considering dimensions, show that $K = \mathbf{Q}(\sqrt{2}, \sqrt{3})$ and $K = \mathbf{Q}(\sqrt{2} + \sqrt{3})$. Conclude that $\sqrt{2}$ and $\sqrt{3}$ can be written as polynomial expressions of $\sqrt{2}+\sqrt{3}$. Try finding formulas for $\sqrt{2}$, $\sqrt{3}$ in terms of $\sqrt{2} + \sqrt{3}$.