

Lecture #2

F5611 Machine Learning for Astronomers by Martin Topinka

https://github.com/toastmaker/f5611-ML4A

Syllabus

- Introduction to machine learning, history...
- Principles of machine learning
- Supervised, unsupervised machine learning
- Classification vs regression
- Loss function, accuracy measures
- Bias-variance tradeoff
- Model validation
- Introduction to scikit-learn and its API
- Basic machine learning algorithms (SVM, KNN, K-mean, Logistic regression, Decision Trees, Random Forest)
- Curse of dimensionality
- Feature selection, data reduction (PCA)
- Advanced algorithms (bagging, boosting, voting)

- Hands on session scikit-learn with GRB classification, QSO's vs stars...
- Hyper-parameter fine tuning
- Imbalanced classes
- Neural network, perceptron
- Deep learning neural networks
- Regularisation, dropout
- Deep learning with Convolutional Neural Networks
- Encoder-Decoder, Auto-encoder
- GAN
- Training data generators
- Introduction to Keras/TensorFlow
- Hands on session in Keras (developing a NN to classify stars/QSOs; developing a deep convNN auto-encoder for finding transients)
- Optional: Gaussian Processes

Essentials of Learning

- Pattern must exist
- Mapping "target function" is unknown or expensive to calculate
- We have the data (and computing resources...)
- Data sample is representative

Learning Diagram

Bias - Variance Trade-off

- Under-fitting/over-fitting
- in sample error vs out of sample error
- VC dimension
 Vapnik-Chervonenkis

(cross)-Validation

	Remedies
High Bias	 Train longer Increase model complexity more features more parameters, richer architecture
High Variance	 Get more data Decrease model complexity less features less parameters, simpler architecture Regularization Early stopping Drop-out

Data Augmentation:

- When more data are needed, make up new ones! (The way of the god.)
- Translate, rotate, flip, crop, lighten/darken, add noise, de-phase, etc.

Cats

Dogs

Cat?

Machines are lazy and love shortcuts

- A 1-2 years old needs about 2-4 cats to generalise how a cat looks like and to recognise new cats without over-fitting
- Neural Network needs 50k objects to learn with much less neurons and still risks over-fitting
- Garbage in, garbage out non-representative or poor quality data (noise, errors, outliers), irrelevant features

Loss function

- penalty for being wrong (L2, L1, ...)
- function of model parameters

$$L_\delta(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta\,|y-f(x)| - rac{1}{2}\delta^2 & ext{otherwise.} \end{cases}$$

True Class

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$\begin{aligned} \text{Recall} &= \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \end{aligned}$$

$$F1 = 2 \times \frac{Precision*Recall}{Precision*Recall}$$

Confusion matrix

tuneable for imbalanced classesand for weighted data

Receiver Operating Characteristic curve

$$J = -\frac{1}{N} \left(\sum_{i=1}^{N} \mathbf{y_i} \cdot \log(\mathbf{\hat{y}_i}) \right)$$

A way how to compare the predicted distribution of class probabilities to the true class probabilities

$$J(\mathbf{w}) \ = \ rac{1}{N} \sum_{n=1}^N H(p_n,q_n) \ = \ - rac{1}{N} \sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

Linear Regression

- Linear fitting in N-dim space y = a x + b, or more general $y = \sum a_i x^i$
- we have training pairs (x_i, y_i)
- Linear in weights! => works well with polynomials $a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3...$
- We can transform our data points in a non-linear way and still use linear regression to find the fit
- We control the loss function L1, L2, ...

K Nearest Neighbours

Support Vector Machine

SVM with non-linear (kernel) transformation

K-Mean Clustering (unsupervised)

Minimal Spanning Tree Clustering (unsupervised)

- MST is a subgraph that connects all nodes such that the sum of the graph edges is minimised.
- Chop edges larger than threshold and minimal number of points in a cluster

PCA (unsupervised)

$$var(x) = \frac{\sum (x_i - \bar{x})^2}{N}$$

$$cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N}$$

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

Next time: More advanced algorithms

- Ensemble methods:
 - Bagging (averaging lowers variance) "bootstrapping"
 - Voting (majority wins)
 (or train a simple linear regressor of the classifiers)
 - Boosting
- Neural networks

Top 5 (supervised)

Algorithm	Comments
Neural Networks	 Take long to train - lot of CPU Overfits Requires lot of data
Gradient Boosted Trees	FastOverfit danger
Random Forest	Robust to overfitting
SVM w/non-linear kernel	Pretty good
Gaussian Processes	non-parametric fitting

Scikit-learn

http://scikit-learn.org

Pros:

- Written in Python, language #1 in astronomy today
- Even complicated powerful algorithms are provided
- Single and relatively simple API for all tasks
- Actively being developed, open source, free
- *Object oriented, extensible
- reat and practical online documentation with tons of examples

Cons:

Not suitable for big data (but it can be tweaked with dask, partial_fit method, moreover, many other software packages follows a similar API concept)

Really Simple API

0) Import your model class

```
from sklearn.svm import LinearSVC
```

1) Instantiate an object and set the parameters

```
svm = LinearSVC()
```

2) Fit the model

```
svm.fit(X_train, y_train)
```

3) Apply / evaluate

```
print(svm.predict(X_train))
print(y_train)
```

 hyperparameters specifying the model in the family of models

feature vectors X

N rows = number of points m columns = number of features

values/labels **y**

from sklearn.ensemble import RandomForestClassifier

```
rf = RandomForestClassifier(n_estimators=100)
```

```
rf.fit(X_train, y_train)
```


- Yaser Abu-Mostafa (Caltech): Learning From Data, 2012
- Željko Ivezič, Andrew Connolly, Jake Vanderplas: Statistics, Data mining and Machine Learning in Astronomy, 2014
- Aurelien Geron: Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow, 2019
- Francois Chollet: Deep Learning with Python, 2017
- https://www.deeplearningbook.org/

Further Reading/Watching

- scikit-learn.org documentation, great gallery, tons of examples
- Andrew Ng Standford course (I passed it and it's really good, the code is in Matlab)

https://www.coursera.org/learn/machine-learning

```
http://cs229.stanford.edu/syllabus-autumn2018.html
http://cs231n.stanford.edu/
```

- Yaser Abu-Mostafa Caltech course #1 course online (in my humble opinion, I passed it, it requires no coding, very good but simple math explanation)
 - https://work.caltech.edu/telecourse.html
- MIT 6.S191 Introduction to Deep Learning http://introtodeeplearning.com