Statistical Mechanics Physics 406 at University of Michigan

EVAN CARPENTER

Winter Semester 2022

Lecture 1: States, Probability and Binomial Distribution	-	
Lecture 2: Ensembles	p.	2
Lecture 3: Finding total microstate	p.	2
Lecture 4: More on Microcanonical Ensemble	p.	2
Lecture 5:	p.	3
Derivative Crusher Algorithm		

Lecture 1. (Jan 05) States, Probability and Binomial Distribution

Figure 1: Phase space of 1-D particle

Lecture 2. (Jan 10) Ensembles

Lagrange multipliers

$$S = -k \sum_{r} p_r \ln(p_r) \tag{0.1}$$

Microcanonical ensemble: All accessible microstate are equally probable

Lecture 3. (Jan 12) Finding total microstate

N particles in volume V with energy between $E, E + \delta E$. Counting number of microstate by using phase space

simplifying example: a 1-D particle has only x and p. Plot in phase space Example in harmonic oscillator with ellipse and shading in phi(E) and Omega(E) Include text in caption explaining equations below it. Moving to 3-D talk about degrees of freedom and volume of h_0 .

Integrating to get Phi(E) with multiintegrals and then taylor approx to get Omega

Quantum Description—; specify microstate with quantum numbers example with simp harmon oscill

Lecture 4. (Jan 19) More on Microcanonical Ensemble

 $\Omega(E) = \#$ of states with energy between $E + \delta E$

Describing energy levels of each particle, think N-cube

Now particle can interact!! Mechanical interactions and thermal interactions (both macro descriptions).

1 isolated system at equilibrium \rightarrow same system but with partition, now 2 systems. A^0 is comprised of A, A'. Macro parameters of A^0 are for both states (N, V, E, T, ...).

Thermal Interaction External parameters of A, A' are fixed but mean energy transferred from one system to the other as a result of purely thermal interactions called heat. Probabilities of energy states can change when systems interact P(r)

Mechanical Interaction External Parameters of A, A' change, one does work on the other! This causes the mean energies of A, A' to change.

$$\overline{E} = \sum_{r} p_r E_r$$

Pure thermal and purely mech example in inf sqwell

Lecture 5. (Jan 24)

Pure thermal interaction changes p_r Pure mechanical interaction changes E_r

1 Derivative Crusher Algorithm

Derivative crusher algorithm taught by Ratindranath Akhoury

Variable	Easy to keep fixed?	Easy to measure change?
S	Yes, Adiabatic processes	No, change in S depends on change in Q, which is hard to measure
T	Yes, with a heat bath or feedback system	Yes, by using a thermometer
V	No, not easily, thermal expansion of the container is a byproduct of the container being thermally conductive, the volume changes with heat	Yes
P	Yes, keeping equilibrium with atmosphere	Yes, barometer

Table 1: T, P are the easiest quantities to measure and control, making G(T, P) the easiest fundamental relationship to work with.

Looking at G(T, P) = E - TS - PV more closely:

$$\begin{split} \left(\frac{\partial G}{\partial T}\right)_P &= -S & \left(\frac{\partial G}{\partial P}\right)_T &= V \\ \left(\frac{\partial^2 G}{\partial T^2}\right)_P &= -\left(\frac{\partial S}{\partial T}\right)_P &\equiv \frac{C_p}{T} & \left(\frac{\partial^2 G}{\partial P^2}\right)_T &= \left(\frac{\partial V}{\partial P}\right)_T &\equiv \kappa V \\ &\left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_T\right]_P &= \left[\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial T}\right)_P\right]_T &= \alpha V \end{split}$$

 C_p is specific heat at constant pressure. κ is isothermal compressibility.

 α is volume coefficient of expansion.

1.1 Math Background

A partial derivative $\left(\frac{\partial x}{\partial y}\right)_z$ where $\{x,y,z\}$ can be any of $\{S,T,P,V,E,F,G,H\}$ can be expressed in terms of in terms of $1^{st}2^{nd}$ derivatives