Exercices d'analyse, feuille 2

Licence d'Informatique

2^{ème} année, semestre 3

1 Généralités

Exercice 1. Les assertions suivantes sont-elles vraies ou fausses? Donner une démonstration de chaque assertion vraie, et donner un contre-exemple de chaque assertion fausse.

- 1. Si une suite positive est non majorée, elle tend vers l'infini.
- 2. Si une suite d'entiers converge, elle est constante à partir d'un certain rang.
- 3. Si une suite positive tend vers zéro, elle est décroissante.
- 4. Si une suite positive tend vers zéro, elle est décroissante à partir d'un certain rang.
- 5. Si une suite n'est pas majorée, elle est minorée.
- 6. Si une suite est croissante et non bornée, elle tend vers l'infini.

Exercice 2.

- 1. Soit (u_n) une suite convergente. Montrer que (u_n) est bornée. La réciproque est-elle vraie?
- 2. Soit (u_n) une suite tendant vers $+\infty$. Montrer que (u_n) n'est pas majorée. La réciproque est-elle vraie?

Exercice 3. Soit $(u_n)_{n>0}$ la suite définie par :

$$(\forall n \in \mathbb{N}_{>0}) \ u_n := \frac{n+1}{n}.$$

1. Soient $n \ge N$ des entier naturels non nuls. Montrer que :

$$|u_n - u_N| \le \frac{1}{N} \cdot$$

2. En déduire que la fonction

$$conv: \mathbb{N} \to \mathbb{N}$$
$$k \mapsto 10^k + 1$$

est un certificat de convergence pour la suite u.

Exercice 4 (Produit de deux suites). Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes, ayant des certificats respectifs conv_u et conv_v . Le but de cet exercice est de montrer que la suite $(u_nv_n)_{n\in\mathbb{N}}$ est convergente (vers le produit des limites) et d'en exhiber un certificat de convergence.

- 1. (Propagation des erreurs arithmétiques)
 - (a) On définit les trois réels a := 1,23456789, a' := 1,23459999 et b := 89,1189. Montrer par le calcul que ab et a'b ont les mêmes 4-2=2 premières décimales.
 - (b) Soient a, a' et b des réels. On suppose que b a au plus m chiffres avant la virgule et que les k premières décimales de a et a' sont égales pour $k \ge m$. Montrer que ab et a'b ont (au moins) les mêmes k-m premières décimales.
 - (c) En déduire que si *a*, *a*′, *b*, *b*′ sont des réels tels que :
 - a, a', b, b' ont au plus m chiffres avant la virgule;
 - les *k* premières décimales de *a* et *a'* sont égales, ainsi que les *k* premières décimales de *b* et *b'*;

alors les k - m - 1 premières décimales de ab et a'b' sont égales.

- 2. Justifier qu'on peut trouver un entier $m \in \mathbb{N}$ tel que tous les termes des suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ ont au plus m chiffres avant la virgule.
- 3. Montrer que la fonction définie par :

$$conv : \mathbb{N} \to \mathbb{N}$$

$$k \mapsto \max(conv_n(k+m+1), conv_n(k+m+1))$$

est un certificat de convergence pour la suite $(u_n v_n)_{n \in \mathbb{N}}$.

4. Établir finalement l'égalité

$$\lim_{n \to +\infty} (u_n \times v_n) = \lim_{n \to +\infty} u_n \times \lim_{n \to +\infty} v_n.$$

2 Étude de convergence

Exercice 5. Montrer que les suites (u_n) et (v_n) de termes généraux respectifs $u_n := \sum_{k=3}^n \frac{1}{k^2+1}$ et $v_n := u_n + \frac{1}{n} - \frac{1}{2n^2}$ sont adjacentes.

Exercice 6. 1. Soient *a* et *b* deux réels. Montrer que

$$\frac{a^2+b^2}{2} \ge ab \ .$$

2. On fixe deux nombres strictement positifs u_0 et v_0 , et on définit par récurrence les suites $(u_n)_n$ et $(v_n)_n$ par

$$u_{n+1} = \frac{u_n + v_n}{2} \qquad v_{n+1} = \sqrt{u_n v_n}$$

(a) Déduire de (1) que

$$\forall n \geq 1$$
, $u_n \geq v_n$

- (b) Notons $w_n = u_n v_n$.
 - i. Montrer que

$$\forall n \geq 1, \quad w_{n+1} \leq \frac{w_n}{2}$$

- ii. En déduire que les suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.
- iii. Que peut-on alors dire de leur convergence?

Exercice 7. Soient $(a, b) \in \mathbb{R}^2$, (u_n) et (v_n) deux suites réelles que :

- $-- (\forall n \in \mathbb{N}) \quad u_n \leq a$
- $-- (\forall n \in \mathbb{N}) \quad v_n \leq b$
- $-\lim_{n\to+\infty}u_n+v_n=a+b.$

Montrer que $(u_n)_n$ converge vers a et $(v_n)_n$ converge vers b.

3 Détermination de limites

Exercice 8. Pour tout $n \in \mathbb{N}_{\geq 2}$ on pose $u_n := \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right) = \left(1 - \frac{1}{2^2}\right) \times \cdots \times \left(1 - \frac{1}{n^2}\right)$. Déterminer, si elle existe, la limite de u.

Exercice 9. Déterminer les limites, lorsqu'elles existent, des suites de terme général

$$\frac{\sqrt{3n^2+3}}{\sqrt{2n^2-4}}; \quad \frac{n!}{n^n}; \quad \sqrt{n+1}-\sqrt{n}; \quad \frac{n\sin{(n!)}}{n^2+1}; \quad (n^2+n+1)^{\frac{1}{n}} \quad \frac{2^{n+1}+3^{n+1}}{2^n+3^n}$$

Exercice 10. Soit (u_n) la suite définie par $u_2 = a$ et $nu_{n+1} = (n-1)u_n - n + 1$, $n \ge 2$. Calculer u_n et en déduire la limite de (u_n) .

Exercice 11. Soit la suite (u_n) définie par $u_0 := 1$ et $u_n := (9 - u_{n-1})/2$ pour $n \ge 1$. Montrer que la suite (v_n) de terme général $v_n := u_n - 3$ est géométrique. En déduire $\lim (u_n)$.

Exercice 12. Soit la suite (u_n) définie par

$$u_0 := 1$$
, $u_{n+1} := \frac{3 + 2u_n}{2 + u_n}$, $n \in \mathbb{N}$.

- 1. Montrer que, pour tout n, $u_n > 0$.
- 2. Pour tout n, on pose $v_n := (u_n \sqrt{3})/(u_n + \sqrt{3})$. Montrer que la suite (v_n) est géométrique.
- 3. Étudier la convergence de la suite (u_n) .

Exercice 13. Étudier la limite de la suite $(u_n)_n$ définie par

$$(\forall n \in \mathbb{N}_{>0})$$
 $u_n := \frac{1}{\sqrt{4n^4 + n^2 + 1} - 2n^2}$

4 Exercices plus difficiles

Exercice 14. On définit la suite $(u_n)_n$ par $u_0 := 1$ et $u_{n+1} := u_n + \frac{(-1)^n}{n+1}$ pour $n \in \mathbb{N}_{\geq 0}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. On définit les suites $(a_n)_n$ et $(b_n)_n$ par : $a_n := u_{2n}$ et $b_n := u_{2n+1}$. Calculer :
 - (a) $a_{n+1} a_n$
 - (b) $b_{n+1} b_n$,
 - (c) $b_n a_n$.
- 3. Montrer que $(a_n)_n$ et $(b_n)_n$ convergent vers la même limite.
- 4. En déduire que $(u_n)_n$ converge.

Exercice 15. Déterminer un certificat de convergence pour la suite de terme général $u_n := \exp(-n)$. *Indication*: il pourra s'avérer judicieux d'établir $1 - \exp(-x) \le x$ pour tout $x \in \mathbb{R}$.

Exercice 16. On considère les suites de termes généraux $u_n = \cos n$ et $v_n = \sin n$.

- 1. Montrer que, si l'une de ces suites converge alors l'autre converge aussi.
- 2. Montrer que les deux suites sont divergentes. *Indication* : $\pi \notin \mathbb{Q}$

Exercice 17. On considère la suite (u_n) définie, pour $n \ge 1$, par

$$u_n := \sum_{k=0}^n \frac{1}{n+k}.$$

- 1. Étudier la monotonie de la suite (u_n) .
- 2. Montrer que (u_n) converge.
- 3. En utilisant l'encadrement

$$\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$$

donner un encadrement de u_n .

4. Calculer la limite de (u_n) .

Exercice 18. On considère les suites (u_n) et (v_n) de termes généraux respectifs

$$u_n := \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n := u_n + \frac{1}{n \times n!}.$$

- 1. Montrer que les suites (u_n) et (v_n) convergent vers la même limite. Indication : penser aux suites adjacentes. Cette limite commune est appelée le nombre d'Euler e et sert de base à l'exponentielle.
- 2. Montrer que cette limite est irrationnelle. *Indication* : raisonner par l'absurde en supposant $e=\frac{p}{q}$ et en considérant u_q et v_q .