CIRCLE

1. In the given figure 1, the quadrilateral PQRS circumscribes a circle. Here ${\rm PA+CS}$ is equal to :

Figure 1

- $\begin{array}{c} a) QR \\ \\ c) PS \\ \end{array} \qquad \begin{array}{c} b) PR \\ \\ d) PQ \end{array}$
- 2. In the given figure $2,\vec{O}$ is the center of the circle. \overrightarrow{AB} and \overrightarrow{AC} are tangents drawn to the circle from point \vec{A} . If $\angle BAC = 65^{\circ}$, then find the measure of $\angle BOC$.

Figure 2

3. In the given figure $3, \vec{O}$ is the centre of the circle and \overrightarrow{QPR} is a tangent to it at \vec{P} . Prove that $\angle QAP + \angle APR = 90^{\circ}$.

Figure 3

4. In the given figure 4 \overrightarrow{PQ} is tangent to the circle centred at \overrightarrow{O} .If $\angle AOB = 95^{\circ}$, then the measure of $\angle ABQ$ will be

Figure 4

A) 47.5°	B) 42.5°
C)85°	$\mathrm{D})95^{\circ}$

5. (a) Two tangents \overrightarrow{TP} and \overrightarrow{TQ} are drawn between to a circle with centre \overrightarrow{O} from an external point \overrightarrow{T} (Figure 5). Prove that $\angle PTQ = 2\angle OPQ$.

Figure 5

OR

(b) In the given figure 6,a circle is inscribed in a quadrilateral ABCD in which $\angle B=90^\circ.$ If AD=17cm,AB=20cm and DS=3cm, then find the radius of the circle.

Figure 6

6. The discus throw is an event in which an athlete attempts to throw a discus (as shown in the given figure 7). The athlete spins anti-clockwise around one and a half times through a circle, then releases the throw. When released, the discus travels along tangent to the circular spin orbit.

Figure 7

In the given figure 8, \overrightarrow{AB} is one such tangent to a circle of radius 75 cm.Point \overrightarrow{O} is centre of the circle and $\angle ABO = 30^{\circ}$.PQ is parallel to OA.

Figure 8

Based on above information:

- (a) find the length of \overrightarrow{AB} .
- (b) find the length of OB.
- (c) find the length of AP.

OR

find the length of PQ.

- 7. In the given figure $9, \overrightarrow{TA}$ is a tangent to the circle with centre \overrightarrow{O} such that OT=4cm, $\angle OTA = 30^{\circ}$, then length of \overrightarrow{TA} is:
 - (a) $2\sqrt{3}cm$
 - (b) 2 cm
 - (c) $2\sqrt{2}$ cm
 - (d) $\sqrt{3}$ cm

Figure 9

- 8. In the given figure $10,\overrightarrow{PT}$ is a tangent at \overrightarrow{T} to the circle with centre \overrightarrow{O} . If $\angle TPO=25^{\circ}$, then x is equal to:
 - (a) 25°
 - (b) 65°
 - (c) 90°
 - (d) 115°

Figure 10

9. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the cord of the larger circle which touches the smaller circle.