PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 H01B 1/06, H01M 6/18, C08L 8

A1 (11) 国際公開番号

WO00/25323

H01B 1/06, H01M 6/18, C08L 83/05, 83/06

(43) 国際公開日

2000年5月4日(04.05.00)

(21) 国際出願番号

PCT/JP99/05592

JP

.

CN, US, 欧州特許 (AT, BE, CH, CY, DE, DK,

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

(22) 国際出願日

1999年10月12日(12.10.99)

添付公開書類

(81) 指定国

(30) 優先権データ

特願平10/306234

1998年10月28日(28.10.98)

国際調査報告書

(71) 出願人 (米国を除くすべての指定国について) 鑑測化学工業株式会社(KANEKA CORPORATION)[JP/JP] 〒530-8288 大阪府大阪市北区中之島3丁目2番4号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

| 岡田賢治(OKADA, Kenji)[JP/JP]

〒652-0872 兵庫県神戸市兵庫区吉田町1丁目2番80号

鐘淵化学工業株式会社 機能性材料RDセンター

神戸研究所内 Hyogo, (JP)

(74) 代理人

安富康男, 外(YASUTOMI, Yasuo et al.)

〒532-0011 大阪府大阪市淀川区西中島5丁目14番22号

リクルート新大阪ビル4階 Osaka, (JP)

(54) Title: CURABLE COMPOSITION FOR SOLID POLYMER ELECTROLYTE

(54)発明の名称 高分子固体電解質用硬化性組成物

(57) Abstract

A curable composition which gives a solid polymer electrolyte having high ionic conductivity and excellent mechanical strength. The composition comprises the following (A) to (D) as essential ingredients: (A) a polysiloxane having SiH groups (B) a compound which has at least one structure selected from the group consisting of a benzene ring, siloxy bond, carbonyl group, amide bond, and amino group and has two or more alkenyl groups (C) a hydrosilylation catalyst and (D) a salt compound electrolyte.

(57)要約

高いイオン伝導度を示し、機械的強度にも優れた高分子固体電解質を与える硬 化性組成物を提供する。

下記(A)~(D)を必須成分とする高分子固体電解質用硬化性組成物である。

- (A) SiH基を有するポリシロキサン
- (B) ベンゼン環、シロキシ結合、カルボニル基、アミド結合、及びアミノ基か らなる群より選ばれる少なくとも1つの構造を有し、かつ2個以上のアルケニル 基を有する化合物
- (C) ヒドロシリル化触媒
- (D) 電解質塩化合物

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦 AL アルバニア AM アルメニア AT オーストリア AU オーストラリア AZ アゼルバイジャン BA ボズニア・ヘルツェゴビナ BB バルバドス AAAAAAABBEFG ベルギー ブルギナ・ファソ ブルガリア

カザフスタン セントルシェク リヒテ・ラン スリベリト・リト レント リトファニア リトクマンブルグ LLLLLLLUVACDGK MK MNRWXELOZLTO NNRPPO

ァンサニア トルクメニスタン トルコ トリニダッド・トバゴ ウクライナ ウガンダ US UZ VN YU 2W ッタファ 米リズペキスタン ヴィェトナム ユーゴースラピア 南アフリカ共和国 ジンパブエ

明 細 書

高分子固体電解質用硬化性組成物

5 技術分野

本発明は、高分子固体電解質用硬化性組成物、並びに、これを用いてなる高分子固体電解質及び電池に関する。

背景技術

10 高分子電解質をリチウムイオン電池や電気化学的デバイスに使用していくため には、低温から高温の広い温度範囲で高いイオン伝導度を有し、結晶性を示さな いことなどが必要不可欠である。しかしながら、このような必要性能を総合的に 満足するような高分子電解質はこれまで開発されていない。

ポリマー電池などに使用する高分子電解質には、例えば、従来はプロピレンカ 15 ーボネート、エチルメチルカーボネートなどの有機溶剤が幅広く使用されている が、これらは沸点と蒸気圧の関係で一般に70~90℃が高温域での使用限界と なっている。

最近はこのような有機溶媒の安全性を改良する方法として、ポリエチレンオキシド(以下、PEOと記載する)を中心とした高分子電解質の研究が行われている。PEOは周期表 1 族又は 2 族に属する金属塩、例えば Li CF₃SO₃、 Li ClO₄、Na CF₃SO₃、 Li I などと錯体を形成し、室温以上の温度領域では比較的良好なイオン伝導性を示し、さらに保存安定性も良好である。しかしながら、PEOのイオン伝導性は温度依存性が大きく、60℃以上では良好なイオン伝導度を示すものの 20℃以下の温度ではイオン伝導度は著しく低下する。

低分子量PEOを用いてイオン伝導度を向上させる方法としてビニル系ポリマーの側鎖に低分子量PEOを導入する方法が、D. J. Banistarらによって、Polymer, 25, 1600 (1984) に報告されている。しかしながら、この高分子材料はLi塩と錯体を形成するものの、低温でのイオン伝導

従って低温で使用するような汎用性のある商品に組み込むことは困難であった。

度が不十分であった。

さらにポリシロキサンの側鎖に低分子量PEOを導入した材料が、Journal of Power Sourse, 20,327 (1987) や特開昭63-136409号、特開平2-265927に記載されているが、イオン伝導度が不十分あるいは非晶質でない、合成処方が容易ではない、液状で加工性・成形性に劣る、機械的強度が不十分などの理由で実用化はされていない。

PEO側鎖とSiH基を有するポリシロキサンとポリエチレンオキサイドを主鎖に有するオレフィンとのヒドロシリル化架橋体化合物が特開平3-115359号に記載されているが、イオン伝導度が4.9×10⁻⁶S・cm⁻¹程度とかなり低いものであり満足のいくものではなかった。

発明の要約

10

本発明は、高いイオン伝導度を示し、機械的強度にも優れた高分子固体電解質を与える硬化性組成物を提供するものである。

- 15 本発明は、下記(A)~(D)を必須成分とする高分子固体電解質用硬化性組成物である。
 - (A) SiH基を有するポリシロキサン
 - (B) ベンゼン環、シロキシ結合、カルボニル基、アミド結合、及びアミノ基からなる群より選択される少なくとも1つの構造を有し、かつ2個以上のアルケニ
- 20 ル基を有する化合物
 - (C) ヒドロシリル化触媒
 - (D) 電解質塩化合物

また本発明は、上記高分子固体電解質用硬化性組成物より得られる高分子固体 電解質、及び、この高分子固体電解質を用いた電池でもある。

25

発明の詳細な開示

[A成分について]

本発明の(A)成分としては、SiH基を有するポリシロキサンであれば、従来公知のものを制限無く使用することが出来る。

15

25

- (A) 成分であるポリシロキサンは、ケイ素原子上の置換基として、ポリエチレンオキサイド構造含有基、環状カーボネート構造含有基、及び/又は、環状エーテル構造含有基を有し、なおかつSiH基を2個以上有するものであることが好ましい。
- 5 ここで、ポリエチレンオキサイド構造含有基とは、オキシエチレン単位を含有する1価の基であれば特に限定されず、オキシエチレン単位はケイ素原子に直接結合していてもよいし、2価の有機基を介して結合していてもよい。環状カーボネート構造含有基又は環状エーテル構造含有基とは、環状カーボネート又は環状エーテルを含有する1価の基であれば特に限定されず、環状カーボネート又は環10 状エーテルはケイ素原子に直接結合していてもよいし、2価の有機基を介して結合していてもよい
 - (A) 成分であるポリシロキサンが、ケイ素原子上の置換基としてポリエチレンオキサイド構造含有基を有するものである場合には、(A) 成分であるポリシロキサン中の全ケイ素原子数のうち10%~95%が、オキシエチレン単位の重合度が1~12であるポリエチレンオキサイド構造含有基を置換基として有することが好ましく、ポリシロキサン中の全ケイ素原子数のうち40%~90%が、オキシエチレン単位の重合度が1~12であるポリエチレンオキサイド構造含有基を置換基として有することがさらに好ましい。
- (A) 成分であるポリシロキサンが、ケイ素原子上の置換基としてポリエチレ 20 ンオキサイド構造含有基を有する場合、(A) 成分は以下の構造で表されるもの であることが好ましい。

$$Me_{3}SiO \xrightarrow{\text{Me}} \text{SiO} \xrightarrow{\text{SiO}} SiMe_{3}$$

$$R \xrightarrow{\text{Ne}_{3}SiO} (CH_{2})_{3}(OCH_{2}CH_{2})_{p}OCH_{3} \xrightarrow{\text{m}}$$

(式中、m、nはそれぞれ1以上の整数で、pは $1\sim12$ の整数である。Rは水素原子又は炭素数 $1\sim20$ の炭化水素基を表し、nが2以上の場合、Rはそれぞれ同じでも異なっていてもよい。ただしRのうち少なくとも1つは水素原子であ

る。なお、m個ある繰り返し単位とn個ある繰り返し単位の並び方は順不同である。)

なお、本発明の(A)成分は分子中にSiH基を1個以上有するものであるが、SiH基を2個以上有するものであること(すなわち上式中のRのうち少なくとも2つが水素原子であること)がより好ましい。

また(A)成分が上式で表される場合には、以下に示すポリエチレンオキサイドの導入率(%、以下Gで表す)が10%~95%であることが好ましく、40%~90%であることがさらに好ましい。

 $G = [m/(m+n+2)] \times 100$

25

10 (A) 成分であるポリシロキサンが、ケイ素原子上の置換基としてポリエチレンオンオーナーンでは含有基を有する場合、ポリシロキサンの側鎖にポリエチレンオーキサイド構造を有していることから(A) 成分の誘電率が高くなり、支持電解質を溶解、解離する能力に優れている。また主鎖にシロキサン構造を有していることからガラス転移温度が低く、イオンの移動を容易にしている。またこのようなとからガラス転移温度が低く、イオンの移動を容易にしている。またこのようなできなかった高温における安定性も高い。従って従来の高分子電解質では達成できなかった高温での劣化防止、低温における高イオン伝導性の発現が本発明によって達成される。

(A) 成分であるポリシロキサンが、ケイ素原子上の置換基として環状カーボネート構造含有基を有する場合、(A) 成分は以下の構造で表されるものである 20 ことが好ましい。

(式中、m、nはそれぞれ1以上の整数である。Rは水素原子又は炭素数 $1\sim2$ 0の炭化水素基を表し、nが2以上の場合、Rはそれぞれ同じでも異なっていてもよい。ただしRのうち少なくとも1つは水素原子である。なお、m個ある繰り

返し単位と n 個ある繰り返し単位の並び方は順不同である。)

なお、本発明の(A)成分は分子中にSiH基を1個以上有するものであるが、SiH基を2個以上有するものであること(すなわち上式中のRのうち少なくとも2つが水素原子であること)がより好ましい。

5 (A) 成分であるポリシロキサンが、ケイ素原子上の置換基として環状エーテル構造含有基を有する場合、(A) 成分は以下の構造で表されるものであることが好ましい。

$$Me_{3}SiO \left(\begin{array}{c} Me \\ SiO \\ R \end{array}\right) Me SiMe_{3}$$

(式中、m、nはそれぞれ1以上の整数である。Rは水素原子又は炭素数1~2 0の炭化水素基を表し、nが2以上の場合、Rはそれぞれ同じでも異なっていて 15 もよい。ただしRのうち少なくとも1つは水素原子である。なお、m個ある繰り 返し単位とn個ある繰り返し単位の並び方は順不同である。)

なお、本発明の(A)成分は分子中にSiH基を1個以上有するものであるが、 SiH基を2個以上有するものであること(すなわち上式中のRのうち少なくと も2つが水素原子であること)がより好ましい。

20 (A) 成分であるポリシロキサンが、ケイ素原子上の置換基として環状カーボネート構造含有基又は環状エーテル構造含有基を有する場合も、(A) 成分の誘電率が高くなり、支持電解質を溶解、解離する能力に優れている。また主鎖にシロキサン構造を有していることからガラス転移温度が低く、イオンの移動を容易にしている。またこのような高分子化合物は高温における安定性も高い。従って25 従来の高分子電解質では達成できなかった高温での劣化防止、低温における高イオン伝導性の発現が本発明によって達成される。

本発明の(A) 成分であるポリシロキサンの重量平均分子量Mw(ポリスチレン換算)は $600\sim10000$ であることが好ましく、 $2000\sim1000$ 0であることがさらに好ましい。

[B成分について]

5

本発明の(B)成分としては、ベンゼン環、シロキシ結合、カルボニル基、アミド結合、及びアミノ基からなる群より選択される少なくとも1つの構造を有し、かつ2個以上のアルケニル基を有する化合物であれば、従来公知のものを制限無く使用することが出来る。(B)成分は、数平均分子量Mn [GPC (ポリスチレン換算)]が80~1000の範囲にあるものが好ましい。

(B) 成分として好ましいものとして、例えば、ビスフェノールAジアリルエーテル、2, 2'ージアリルビスフェノールA、ジアリルアミン、ジビニルベンゼン、ジアリルマレート、1, 3ージアリルウレア、ジアリルスクシネート、ジアリルカーボネート、ジアリルジカーボネート、ジアリルフタレート、1, 3ージビニルー1, 1, 3, 3ーテトラメチルジシロキサン、1, 3ージビニルー1, 1, 3, 3ーテトラメチルジシラザン、アリル末端アクリルポリマーなどが挙げられる。

[C成分について]

- 15 本発明の(C)成分としては、ヒドロシリル化触媒であれば従来公知のものを 制限無く使用することが出来る。
 - (C) 成分としては、白金化合物、ルテニウム化合物及びロジウム化合物からなる群より選ばれる少なくとも1種が好ましく、白金化合物であることがさらに好ましい。
- 20 (C) 成分として好ましいものとして、例えば、白金ビニルシロキサン、塩化白金酸、Pt (COD)₂などが挙げられる。

[D成分について]

本発明の(D)成分としては、電解質塩化合物であれば従来公知のものを制限無く使用することが出来る。

25 (D) 成分としては、金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンからなる群より選ばれる陽イオンと、

塩素イオン、臭素イオン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオン、 テトラフルオロホウ素酸イオン、硝酸イオン、 AsF_6^- 、 PF_6^- 、ステアリル スルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イ

15

20

オン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、R 1 SO $_3$ -、(R 1 SO $_2$)(R 2 SO $_2$)N-、及び(R 1 SO $_2$)(R 2 SO $_2$)(R 3 SO $_2$)C- [各式中、R 1 、R 2 及びR 3 はそれぞれ電子吸引性基を示す。〕からなる群より選ばれる陰イオンと

5 からなる化合物であることが好ましい。

また、 $R^1SO_3^-$ 、(R^1SO_2)(R^2SO_2)N⁻、及び(R^1SO_2)(R^2SO_2)(R^2SO_3)(R^3SO_3)(R^3SO_3)C⁻、中の R^1 、 R^2 及び R^3 で示される電子吸引基は、同一又は異なって、炭素数が1から6までのパーフルオロアルキル基又はパーフルオロアリール基であることが好ましい。

- 10 (D) 成分の金属陽イオンは、周期表 1 族又は 2 族に属する金属、遷移金属、 Mn、Fe、Co、Ni、Cu、Zn及びAg金属から選ばれた金属の陽イオンであることが好ましく、Liの陽イオンであることが特に好ましい。
 - (D) 成分としては、具体的には、LiClO₄、LiPF₆、LiBF₄、LiCF₃SO₃、LiN(CF₃SO₂)₂、又はLi(C₂F₅SO₂)₂が特に好ましい。

本発明の高分子固体電解質用硬化性組成物において、(A) 成分と(B) 成分のモル比は0.01~5.0であることが好ましく、さらに好ましくは0.05~3.0である。(C) 成分であるヒドロシリル化触媒は(B) 成分の二重結合1モルに対して、0.00001~0.1モルであることが好ましく、さらに好ましくは0.0001~0.01モルである。

(D) 成分である電解質塩化合物は、高分子固体電解質用硬化性組成物1g中に0.01ミリモル~10ミリモル含有されることが好ましく、さらに好ましくは0.10ミリモル~5.0ミリモルの範囲である。

本発明の高分子固体電解質用硬化性組成物は、十分なイオン伝導度を有するが、 25 さらに高いイオン伝導度が必要な場合などには、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの可塑剤を添加させても良い。また更に高分子化合物、他の両親媒性化合物などを添加しても良い。

本発明の高分子固体電解質用硬化性組成物は、ヒドロシリル化反応により架橋 して、3次元網目構造を形成するものである。従って従来の高分子電解質で問題 であった流動性の防止、機械的強度の向上、加工性・成形性の向上を達成することが可能である。

[製造法等]

10

15

ポリオルガノハイドロジェンシロキサンに対し、溶媒中、ヒドロシリル化触媒、末端オレフィンを有するポリエチレンオキサイドを滴下してヒドロシリル化させ、十分攪拌した後に、溶媒を減圧除去することにより、ポリエチレンオキサイド構造含有基を置換基に有するポリシロキサンを得る。ここで使用するポリシロキサンの重量平均分子量Mw(ポリスチレン換算)は、2000~10000であることが好ましい。ここで使用する溶媒は特に限定されるものではないが、好ましいものとしては、例えばトルエンなどが挙げられる。反応温度は特に限定されるものではないが、室温~100℃で実施されるのが好ましい。また添加する末端オレフィンを有するポリエチレンオキサイドとポリシロキサン中のSiH基の比率(オレフィン基/SiH基のモル比)は0.10~0.95の範囲にあるのが好ましい。さらには0.40~0.90の範囲にあるのが好ましい。特に好ましいのは0.50~0.85の範囲である。ヒドロシリル化触媒は特に限定されるものではないが、白金化合物、ロジウム化合物、ルテニウム化合物が好ましい。例としては、白金ビニルシロキサン、塩化白金酸などが挙げられる。

20 この製造方法は、バッチ法、セミバッチ法又は連続式で実施しうる。この反応 容器は、例えば連続的攪拌タンク反応容器でありうる。この方法はバッチ式ある いは連続式でおこなうのが好ましい。

このようにして得られた(A) SiH基を有するポリシロキサンに対して、(B) ベンゼン環、シロキシ結合、カルボニル基、アミド結合、及びアミノ基から なる群より選ばれる構造を有する2個以上のアルケニル基を有する化合物、(C) ヒドロシリル化触媒、(D) 電解質塩化合物を混合してから、加熱することにより高分子固体電解質用のフィルムを得ることができる。硬化反応の温度は特に限定されるものではないが、室温~150℃の範囲が好ましく、室温~120℃の範囲がさらに好ましい。特に好ましくは70℃から100℃の範囲が好ましい。

本発明における高分子固体電解質用硬化性組成物の製造方法には特に制約はな い。また反応容器の種類は重要でない。しかしながら副反応を防ぐため、非反応 性材料で形成された反応容器中でおこなうのが好ましい。

本発明で示された高分子固体電解質用硬化性組成物を用いると、高分子の利点 である可とう性を有して大面積薄膜形状の固体電解質が容易に得られる。例えば 本発明で得られる高分子電解質を用いた電池の作製が可能である。この場合、正 極材料として好ましいものとしては、例えばリチウムーマンガン複合酸化物、コ バルト酸リチウム、五酸化パナジウム、ポリアセン、ポリピレン、ポリアニリン、 ポリフェニレン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポ リピロール、ポリフラン、ポリアズレン、その他硫黄化合物などが挙げられる。 負極材料として好ましいものとしては、例えばリチウム金属、リチウムがグラフ ァイトあるいはカーボンの層間に吸蔵された層間化合物、リチウムー鉛合金など が挙げられる。また、本発明の髙分子電解質の髙い電気伝導性を利用して、アル カリ金属イオン、Cuイオン、Caイオン、及びMgイオンなどの陽イオンのイ 15 オン電極の隔膜として利用することも考えられる。

発明を実施するための最良の形態

次に本発明の実施例について具体的に説明するが、本発明は以下の実施例に限 定されるものではない。

20 (実施例1)

25

5

10

反応容器に、ポリメチルハイドロジェンシロキサン4g、トルエン約10g及 び白金ピニルシロキサン1.2×10⁻³mmolを加え、反応温度80℃で攪 拌した。この混合物中に末端にアリル基を有する平均分子量約400のポリエチ レンオキサイド24g(58mmol)を滴下した。滴下終了から3時間後反応 を終了させトルエンを減圧除去した。その結果、ポリエチレンオキサイドの導入 率(ポリシロキサンの全ケイ素原子中での、ポリエチレンオキサイドを置換基と して有するケイ素原子の割合)が74%のポリシロキサンが得られた。得られた ポリエチレンオキサイド変性のポリシロキサン3.0gに、ビスフェノールAジ アリルエーテル73mg (0.24mmol)、白金ビニルシロキサン7.2×

 10^{-4} mm o l 及びL i C l O $_4$ 108 mg (1.0 mm o l)をTHF約1 m l に溶解させたものを混合し、プレス機を使用して80℃で4時間加熱した。その結果無色透明の薄膜状物質を得た。この得られた薄膜状物質のイオン伝導度を、白金を電極とし、電圧0.5 V、周波数範囲42 H z \sim 5 M H z の交流法を用い、複素インピーダンス法により算出した。その結果、25℃におけるイオン伝導度は1.5×10 $^{-4}$ S/c mであった。

(実施例2)

反応容器に、ポリメチルハイドロジェンシロキサン4g、トルエン約10g及 び白金ビニルシロキサン1.2×10~3mmo1を加え、反応温度80℃で攪 10 拌した。この混合物中に末端にアリル基を有する平均分子量約400のポリエチ レンオキサイドを滴下した。滴下終了から3時間後反応を終了させトルエンを減 圧除去した。その結果、ポリエチレンオキサイドの導入率が74%のポリシロキ サンが得られた。得られたポリエチレンオキサイド変性のポリシロキサン3.0 gに、1,3-ジビニルー1,1,3,3-テトラメチルジシロキサン43mg15 (0. 23 mm o l)、白金ピニルシロキサン1. 2×10⁻³ mm o l及びL i C l O 4 1 4 7 m g (1. 4 m m o l)をTHF約 1 m l に溶解させたものを 混合し、プレス機を使用して80℃で5時間加熱した。その結果無色透明の薄膜・ 状物質を得た。この得られた薄膜状物質のイオン伝導度を、白金を電極とし、電 20 圧0.5V、周波数範囲42Hz~5MHzの交流法を用い、複素インピーダン ス法により算出した。その結果、25℃におけるイオン伝導度は2.4×10‐ ⁴S/cmであった。

(実施例3)

25 反応容器に、ポリメチルハイドロジェンシロキサン4g、トルエン約10g及 び白金ビニルシロキサン9.0×10⁻⁴mmolを加え、反応温度80℃で攪拌した。この混合物中に片末端にアリル基を有する平均分子量約400のポリエチレンオキサイド18g(45mmol)を滴下した。滴下終了から5時間後反応を終了させトルエンを減圧除去した。その結果、ポリエチレンオキサイドの導

入率が55%のポリシロキサンが得られた。得られたポリエチレンオキサイド変性のポリシロキサン3.0gに、ピスフェノールAジアリルエーテル91mg(0.30mmol)、白金ビニルシロキサン9.0×10 $^{-4}$ mmol及びLiCF $_3$ SO $_3$ 540mg(3.4mmol)をTHF約2mlに溶解させたものを混合し、プレス機を使用して85℃で8時間加熱した。その結果無色透明の薄膜状物質を得た。この得られた薄膜状物質のイオン伝導度を、白金を電極とし、電圧0.5V、周波数範囲42Hz~5MHzの交流法を用い、複素インピーダンス法により算出した。その結果、25℃におけるイオン伝導度は5.3×10 $^{-4}$ S/cmであった。

. 10

(比較例1)

上記実施例3で得られたポリエチレンオキサイドの導入率が55%のポリシロキサン3.0gに、トリエチレングリコールジビニルエーテル61mg(0.3 0mmol)、白金ビニルシロキサン9.0×10⁻⁴mmol及びLiCF₃S

15 O₃540mg(3.4mmol)をTHF約2mlに溶解させたものを混合し、プレス機を使用して85℃で10時間加熱した。その結果、硬化は全く進行しなかった。

(比較例 2)

20 上記実施例3で得られたポリエチレンオキサイドの導入率が55%のポリシロキサン3.0gに、トリエチレングリコールジビニルエーテル61mg(0.30mmol)、白金ビニルシロキサン9.0×10⁻⁴mmol及びLiCF₃SO₃170mg(1.1mmol)をTHF約1mlに溶解させたものを混合し、プレス機を使用して85℃で8時間加熱した。その結果無色透明の薄膜状物質を25 得た。この得られた薄膜状物質のイオン伝導度を、白金を電極とし、電圧0.5 V、周波数範囲42Hz~5MHzの交流法を用い、複素インピーダンス法により算出した。その結果、25℃におけるイオン伝導度は3.2×10⁻⁵S/cmであった。

産業上の利用可能性

本発明の高分子固体電解質用硬化性組成物は加工性に優れ、また、本発明の高分子固体電解質用硬化性組成物より得られる高分子固体電解質は、イオン伝導度が高く、その温度依存性が小さく、さらに十分な機械強度を有するものである。

5 従って従来の高分子電解質で問題であった流動性の防止、機械的強度の向上、加工性・成形性の向上を達成することが可能である。

請求の範囲

- 1. 下記(A)~(D)を必須成分とすることを特徴とする高分子固体電解質 用硬化性組成物。
- 5 (A) SiH基を有するポリシロキサン
 - (B) ベンゼン環、シロキシ結合、カルボニル基、アミド結合、及びアミノ基からなる群より選択される少なくとも1つの構造を有し、かつ2個以上のアルケニル基を有する化合物
 - (C) ヒドロシリル化触媒
- 10 (D) 電解質塩化合物
 - 2. (A) 成分であるポリシロキサンは、ケイ素原子上の置換基としてポリエチレンオキサイド構造含有基を有し、かつSiH基を2個以上有するものである請求項1記載の高分子固体電解質用硬化性組成物。

15

- 3. (A) 成分であるポリシロキサンは、ケイ素原子上の置換基として環状カーボネート構造含有基を有し、かつSiH基を2個以上有するものである請求項1記載の高分子固体電解質用硬化性組成物。
- 20 4. (A) 成分であるポリシロキサンは、ケイ素原子上の置換基として環状エーテル構造含有基を有し、かつSiH基を2個以上有するものである請求項1記載の高分子固体電解質用硬化性組成物。
- 5. (A) 成分であるポリシロキサン中の全ケイ素原子数のうち10%~95
 25 %が、オキシエチレン単位の重合度が1~12であるポリエチレンオキサイド構造含有基を置換基として有する請求項2記載の高分子固体電解質用硬化性組成物。
 - 6. (A) 成分であるポリシロキサン中の全ケイ素原子数のうち40%~90%が、オキシエチレン単位の重合度が1~12であるポリエチレンオキサイド構

造含有基を置換基として有する請求項5記載の高分子固体電解質用硬化性組成物。

- 7. (C) 成分であるヒドロシリル化触媒は、白金化合物、ルテニウム化合物 及びロジウム化合物からなる群より選ばれる少なくとも1種である請求項1~6 のいずれか1項に記載の高分子固体電解質用硬化性組成物。
 - 8. (D) 成分である電解質塩化合物は、

金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンからなる群より選ばれる陽イオンと、

- 10 塩素イオン、臭素イオン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオン、 テトラフルオロホウ素酸イオン、硝酸イオン、 AsF_6^- 、 PF_6^- 、ステアリル スルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イ オン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、 $R^1SO_3^-$ 、(R^1SO_2)(R^2SO_2) N^- 、及び(R^1SO_2)(R^2SO_2)(
- 15 R^3SO_2) C^- [各式中、 R^1 、 R^2 及び R^3 はそれぞれ電子吸引性基を示す。] からなる群より選ばれる陰イオンと

からなる化合物である請求項1~7のいずれか1項に記載の高分子固体電解質用 硬化性組成物。

- 20 9. R¹、R²及びR³で示される電子吸引基は、同一又は異なって、炭素数が 1から6までのパーフルオロアルキル基又はパーフルオロアリール基である請求 項8記載の高分子固体電解質用硬化性組成物。
- 10. 金属陽イオンは、周期表1族又は2族に属する金属から選ばれる金属の 87. 陽イオンである請求項8又は9記載の高分子固体電解質用硬化性組成物。
 - 11. 金属陽イオンはLiの陽イオンである請求項10記載の高分子固体電解 質用硬化性組成物。

- 12. (D) 成分である電解質化合物塩は、LiClO₄、LiPF₆、LiBF₄、LiCF₃SO₃、LiN(CF₃SO₂)₂、又はLi(C₂F₅SO₂)₂である請求項11記載の高分子固体電解質用硬化性組成物。
- 5 13. 金属陽イオンは、遷移金属の陽イオンである請求項8又は9記載の高分 子固体電解質用硬化性組成物。
- 14. 金属陽イオンは、Mn、Fe、Co、Ni、Cu、Zn及びAg金属からなる群より選ばれる金属の陽イオンである請求項8又は9記載の高分子固体電 10 解質用硬化性組成物。
 - 15. (D) 成分である電解質塩化合物は、高分子固体電解質用硬化性組成物 1g中に0.10ミリモル~5.0ミリモル含有される請求項1~14のいずれ か1項に記載の高分子固体電解質用硬化性組成物。

15

- 16. 請求項1~15のいずれか1項に記載の高分子固体電解質用硬化性組成物より得られる高分子固体電解質。
- 17. 請求項1~16のいずれか1項に記載の高分子固体電解質用硬化性組成 20 物より得られる高分子固体電解質を用いた電池。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/05592

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01B 1/06, H01M 6/18, C08L83/05, C08L83/06					
According to International Patent Classification (IPC) or to both national classification and IPC					
	S SEARCHED				
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01B 1/06, H01M 6/18, H01M10/40, C08L83/05, C08L83/06, C08L101/12				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2000 Kokai Jitsuyo Shinan Koho 1971-2000 Jitsuyo Shinan Toroku Koho 1996-2000					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JOIS DIALOG CAS					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a		Relevant to claim No.		
х	JP, 5-98169, A (Kanegafuchi Ch 20 April, 1993 (20.04.93),	em. Ind. Co., Ltd.),	1,7~17		
5 Y	Par. Nos. [0001] - [0041], [0047] [0070] - [0079] (Family: none)	-[0055], [0058]-[0063],	2,4~17		
Y	JP, 2-24976, A (Hitachi Maxell 26 January, 1990 (26.01.90), Claims (Family: none)	, Ltd.),	2,5~17		
Y	US, 5091274, A (National Science 25 February, 1992 (25.02.92), Claim & JP, 4-19903	4,7~17			
T	JP, 11-302383, A (Kanegafuchi Chem. Ind. Co., Ltd.), 02 November, 1999 (02.11.99), Par. Nos. [0001]-[0018] (Family: none)		3		
Т	JP, 11-306856, A (Kanegafuchi (05 November, 1999 (05.11.99), Par. Nos. [0001]-[0020] (Fami		3		
Further	r documents are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
01 F	ctual completion of the international search ebruary, 2000 (01.02.00)	Date of mailing of the international search report 15 February, 2000 (15.02.00)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

発明の属する分野の分類 (国際特許分類 (IPC)) Int. Cl' H01B 1/06, H01M 6/18, C08L83/05, C08L83/06 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C17 H01B 1/06, H01M 6/18, H01M10/40, C08L83/05, C08L83/06, C08L101/12 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2000年 日本国登録実用新案公報 1994-2000年 日本国実用新案登録公報 1996-2000年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JOIS DIALOG CAS C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X 5-98169, A (鐘淵化学工業株式会社) 1, $7 \sim 17$ 月. 1993 (20. 04. 93), $[0001] \sim [004]$ 1]、 $[0047] \sim [0055]$ 、 $[0058] \sim [0063]$ Y $2.4 \sim 17$ 及び【0070】~【0079】 (ファミリーなし) Y JP, 2-24976, A (日立マクセル株式会社), 26.1月、1990 (26.01.90), 特許請求の範囲 (ファミリー 2, $5 \sim 1.7$ なし) Y US, 5091274, A (National Science Council) $4.7 \sim 17$ 5. 2月. 1992 (25. 02. 92), Claim & JP, 4 -19903|X| C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」国際出願日前の出願または特許であるが、国際出願日 **論の理解のために引用するもの** 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 01.02.00 15.02.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 X 8414 日本国特許庁 (ISA/JP) 小川 進 郵便番号100-8915 東京都千代田区霞が関三丁目 4番 3号 電話番号 03-3581-1101 内線 3477

		国际山政省分 「С1/」「「195	
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときら	ナ その間油ナス倍子の主ニ	関連する
T			請求の範囲の番号
	JP, 11-302383, A (鐘淵化 11月, 1999 (02, 11, 99), 8】 (ファミリーなし)		3
T	JP, 11-306856, A (鐘淵化 11月, 1999 (05, 11, 99), 0】 (ファミリーなし)	(学工業株式会社) , 5. 【0001】~【002	3
			*
	•		
) ·	at a		
		0,0	
*			
	· ·	100	
- A			
\$ 10 m			
		·	
÷· .			
	·		
. *			
			·
	·		
			1
	·		
		į.	

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The lithium cell characterized by containing a silicone system compound in the electrolytic solution or a solid electrolyte in the non-water rechargeable battery which has the negative electrode and electrolyte containing at least one sort of things chosen from the group which consists of a host compound which forms a positive electrode, a lithium metal, a lithium alloy and a lithium, an intercalation compound, or a complex.

[Claim 2] The lithium cell which is the thing of the structure which the oxy-alkylene chain added [the silicone system compound] to the side chain of an Si-O skeleton in the lithium cell according to

[Claim 3] It sets to a lithium cell according to claim 1 or 2, and a silicone system compound is the following formula (1).

[Formula 1]
$$\begin{bmatrix}
A \\
(-si-o-)_n-(-si-o-)_m
\end{bmatrix}_k$$
(1)

(0-10, and m and k of n are 1-10 among a formula.) Same or alkyl group [which may be different from each other], B, and B' of A and A' is the same or an oxy-alkylene chain with which at least one side of B and B' does not have active hydrogen although the oxy-alkylene chain or alkyl group which does not have active hydrogen which may be different from each other is expressed. Lithium cell which is what is expressed.

[Claim 4] For the silicone system compound expressed with a front formula (1) in a lithium cell according to claim 3, the oxy-alkylene chain of B and B' is the following formula (2).

$$-(x)_{Q}-(CH_{2}-CH_{2}-O)_{p}-R$$
 (2)

It is the silicone system compound expressed with (1-5p of Q are 1-10 among a formula, R expresses the alkyl group of carbon numbers 1-12, and X expresses the alkylene machine or oxy-alkylene chain of carbon numbers 1-6).

[Claim 5] The lithium cell whose main constituent of a host compound is a carbon body in a lithium cell according to claim 1, 2, 3, or 4.

[Claim 6] The lithium cell whose main constituents of a positive electrode are a conductive polymer and/or a transition-metals compound in a lithium cell according to claim 1, 2, 3, 4, or 5.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] this invention relates to the non-water secondary lithium cell which uses as a negative electrode the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex.

[0002]

[Description of the Prior Art] The theoretical energy density of a lithium secondary battery is high. and the power supply for portable electronic equipment is expected to utilization also as an electric vehicle and a power supply for power storage at first. However, second lithium ** which used the metal lithium for the negative electrode has a problem in points, such as a cycle life and safety, and the thing of sufficient performance is not developed. It is thought that one of the biggest reason of this is in the performance of a negative electrode. Since the reactivity of the metal lithium which is a negative electrode is high as a trouble that the negative electrode of a lithium secondary battery is practical, a negative-electrode front face tends to react with a solvent. The metal lithium generated by reduction of a lithium ion at the time of charge is the problem of considering as a dendrite, being easy to generate and destroying the insulating layer between positive and a negative electrode (separator). The additive of the electrolytic solution is examined as one of the methods of solving these problems [Morita, Aoki, Matsuda, electrification 57,523(1989); M.Morita, S.Aoki and Y.Matsuda, Progress in Batteries & Solar Cells, Vol.8 (1989)]. Development of the negative electrode which used the carbon material which incorporates a lithium ion between its layers into negative-electrode material, and is stabilized as an intercalation compound or a lithium metal into it on the other hand, and ceramic material is furthered. The carbon body obtained by calcinating the pyrolytic carbon which used the organic compound besides a natural graphite, coal, and corks as the raw material as interchange car RANTO of a lithium ion, naturally-ocurring polymers, and a synthetic macromolecule is raised. The gestalt of a carbon fiber and glass-like carbon is also various from porosity fine particles. Using for JP,2-66856,A the conductive carbon material which calcinated the furfuryl resin at 1100 degrees C, for example as a negative-electrode active material as a carbon material for these negative-electrodes active materials is proposed. Moreover, the example which uses the conductive carbon material which heat-treats an aromatic polyimide at the temperature of 2000 degrees C or more under an inert atmosphere, and is obtained for a negative-electrode active material is indicated by JP,61-277165,A. and using for a negative electrode what graphitized ******* spherical carbon is further proposed by JP,4-115457, A at it. Moreover, in JP,61-77275, A, the rechargeable battery which used for the electrode the carbon material of the insulation of the poly acene structure which heat-treated the phenol system macromolecule, or semiconductor nature is indicated. Although a cycle life improves and a cell performance improves in these ion fuel cell subsystems, in one side, it cannot be said that a current characteristic is enough.

[0003]

[Objects of the Invention] The purpose of this invention solves the current characteristic in these

lithium non-water rechargeable batteries, is excellent in a cycle property, and is to offer the highly efficient secondary lithium cell in which charge and discharge are possible also with high current density.

[0004]

[Elements of the Invention] This invention persons found out that the purpose was reached in the non-water secondary lithium cell which uses as a negative electrode the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex by making a silicone system compound contain in the electrolytic solution or a solid electrolyte, as a result of examining the aforementioned technical problem wholeheartedly. As the aforementioned silicone system compound, the compound shown by the front formula (1) is mentioned. The remarkable effect was seen in the silicone system compound with which an oxy-alkylene adds to the side chain of an Si-O skeleton, and existence of active hydrogen is not checked especially. If the compound shown by the front formula (1) is shown more concretely, the silicone system compound shown by the following formula (3) will be mentioned.

in a front formula, R is an end group and this end group is the same -- or -- being different from each other -- desirable -- an alkyl group -- it is a methyl group still more preferably A and A' is the same or the alkyl group of carbon numbers 1-30 which may be different from each other, and is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. B and B' is an oxy-alkylene chain which does not have an alkyl group or active hydrogen and with which at least one side does not have active hydrogen among B and B', although the same, the oxy-alkylene chain which may be different from each other, or an alkyl group is expressed. In addition, when Above B and B' are oxy-alkylene chains, it is the oxy-alkylene chain of carbon numbers 1-6 preferably [it is desirable and] to the oxy-alkylene chain of carbon numbers 1-12, and a pan. Moreover, when B and B' is an alkyl group, it is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. The silicone system compound which has the skeleton shown especially by the lower formula (4) made the current characteristic improve, and found out that it was effective for high-energy-izing of a cell. [Formula 4]

Since a silicone skeleton generally has a ready bubble operation, although a silicon compound is used as a defoaming agent, in this invention, by making an alkoxy group add to a silicon compound, nonaqueous electrolyte and compatibility are made to improve and it thinks because the surface energy of the electrode interface of a non-water battery fell as this result. Although the compound of a front formula (4) is obtained by adding CH2=CH-CH2-OH by the platinum catalyst, considering as the compound of a lower formula (6), and replacing the active hydrogen of this compound by the compound of a lower formula (5) with an oxy-alkylene chain further, as a compound of a front formula (4), active hydrogen is measured by IR and that in which active hydrogen does not exist is suitable.

[Formula 5]

$$\begin{bmatrix}
CH, & CH, & CH, \\
(-Si-O-)_{n} - (-Si-O-)_{m} \\
CH, & H
\end{bmatrix}_{k}$$
(5)

$$\begin{bmatrix}
CH_{3} & CH_{3} & CH_{3} \\
-Si - O - O_{n} - (-Si - O - O_{m})_{k} \\
CH_{3} & CH_{2} - CH_{2} - CH_{2} - OH
\end{bmatrix} (6)$$

In addition, in a front formula (4), (5), and (6), 0-10, and m, r and k of n are 1-10, a front formula (1) or the compound of (3) -- a solid electrolyte or the electrolytic-solution 100 weight section -receiving -- 0.1 - 30 weight section -- desirable -- 0.1 - 10 weight **** [0005] Next, although the composition of the non-water secondary lithium cell of this invention is described concretely, fundamentally, it is constituted by a positive electrode, a negative electrode and the electrolyte. What dissolved the electrolyte salt in the non-aqueous solvent as the electrolytic solution is mentioned, as a non-aqueous solvent -- a carbonate solvent (propylene carbonate and ethylene carbonate --) Butylene carbonate, dimethyl carbonate, diethyl carbonate, an amide solvent (N-methyl formamide, N-ethyl formamide, and N.N-dimethylformamide --) N-methyl acetamide, Nethyl acetamide, N-methyl PIROJIRINON, a lactone solvent (gamma-butyl lactone, gammavalerolactone, and delta-valerolactone --) alcoholic solvents (ethylene glycol --), such as the 3-methyl -1 and 3-oxazolidine-2-ON A propylene glycol, a glycerol, a methyl cellosolve, 1, 2-butanediol, 1, 3butanediol, 1, 4-butanediol, a diglycerol, Polyoxy alkylene glycol, a cyclohexane diol, a xylene glycol, etc., an ether solvent (a methylal, 1, 2-dimethoxyethane, 1, and 2-diethoxy ethane --) 1ethoxy-2-methoxyethane, the alkoxy polyalkylene ether, etc., A nitril solvent (a benzonitrile, an acetonitrile, 3-methoxy propionitrile, etc.), phosphoric acid and a phosphoric-ester solvent (an orthophosphoric acid, a metaphosphoric acid, a pyrophosphoric acid, and a polyphosphoric acid --) 2imidazolidinone solvents (1, 3-dimethyl-2-imidazolidinone, etc.), such as a phosphorous acid and trimethyl phosphate, A pyrrolidones solvent, a sulfolane solvent (a sulfolane, tetramethylen sulfolane), A furan solvent (a tetrahydrofuran, 2-methyl tetrahydrofuran, 2, 5-dimethoxy tetrahydrofuran), a dioxolane, a dioxane, and independent or two or more sorts of mixed solvents of a dichloroethane can be used. They are a carbonate solvent, an ether solvent, and a furan solvent preferably [among these]. Although there will be especially no limit if used as a usual electrolyte as an electrolyte salt in this invention For example, LiBR4 (R is a phenyl group and an alkyl group), LiPF6, LiSbF6, LiAsF6, LiBF4, LiClO4, CF3SO3Li, (CF3SO2) 3NLi, 3(CF3SO2) CLi, C6F9SO3Li, and C8F17SO3 -- Li, LiAlCl4, etc. can be illustrated It is the electrolyte of sulfonic-acid system anions, such as CF3SO3Li, 3(CF3SO2) NLi, 3(CF3SO2) CLi, C6F9SO3Li, and C8F17SO3Li, preferably. Although the electrolytic solution is adjusted in the 0.5 mols/l. or more less than six mols [/l.] range, it is within the limits of 3.5 mols/l. from 0.8 mols/l. preferably. As a solid polymer electrolyte, a polyethylene oxide, polypropylene oxide, A polyvinylidene fluoride, a polyacrylamide, etc. are made into a polymer matrix. The complex which dissolved the aforementioned electrolyte salt into the polymer matrix, or these gel bridge formation objects. The solid polymer electrolyte which graft-ized ionic dissociation machines, such as a low-molecular-weight polyethylene oxide and a crown ether, to the polymer principal chain, Or the solid polymer electrolyte which contains ionic dissociation machines, such as gel which added the solvent to these further, a low-molecular-weight polyethylene-oxide chain, and a crown ether, in a polymer skeleton, or the gel solid polymer electrolyte which made this contain the aforementioned electrolytic solution is mentioned. [0006] The lithium alloy which consists of a lithium metal, aluminum, silicon, copper, zinc or tin,

and a lithium as a negative electrode in this invention, the carbon material which are occlusion and the host compound which can be emitted irreversibly about a lithium ion, and ceramic material can be illustrated. The conductive carbon body or the insulating or half-conductive carbon body obtained as a carbon material by calcinating synthetic macromolecules, such as naturally-ocurring polymers or a phenol system resin, a PAN system resin, a furan system resin, a polyamide system resin, and a polyimide system resin, can be illustrated. It is desirable to use graphite material as a main constituent as a carbon body of this invention. As a graphite material of this invention, the artificial graphite which used pitch coke besides a natural graphite, a needle coke, a fluid coke, gill box sonar corks, etc. as the raw material can be illustrated. As a positive active material of the non-water secondary lithium cell of this invention MnO2, Mn 2O3, CoO2, NiO2 and TiO2, V2O5, V3O8, Cr2O3, Fe2 (SO4) 3, Fe2(MoO2) 3, the metallic oxide of Fe2(WO2) 3 grade, Metallic sulfide, such as TiS2, MoS2, and FeS, these compounds, and the multiple oxide of a lithium. One sort or complex beyond it chosen from conductive polymers, such as a polyacethylene, the poly aniline, polypyrrole, the poly thiophene, the poly alkyl thiophene, the poly carbazole, the poly azulene, and a poly diphenyl benzidine, and a carbon body can be illustrated. As an electrolyte, the electrolytic solution mentioned above and a solid electrolyte are used. Moreover, separator can be used as occasion demands. The nonwoven fabric or textile fabrics which is low resistance, and the thing excellent in solution retentivity is used, for example, is chosen from one or more sorts of quality of the materials, such as glass, polyester, Teflon, and polypropylene, to the ionic migration of an electrolytic solution as separator is mentioned. Although especially the gestalt of the cell of this invention is not limited, it can mount in the cell of various gestalten, such as coin, a sheet, a cylinder, and gum. An example explains this invention still more concretely below. [0007]

[Example]

The example 1 poly aniline 30 weight section was dissolved in the N-methyl-2-pyrrolidone of the 170 weight sections, and the vanadium-pentoxide 70 weight section was further distributed by the sand mill. Application dryness was carried out by the blade coating machine, and this paint solution was made into the positive electrode of 60 micrometers of one side at both sides of 25-micrometer etched aluminum foil. The negative-electrode active material layer was created so that the natural-graphite 80 weight section of 99.9% of purity and the tetrapod fluoroboric-acid lithium 10 weight section might be distributed in the 10wt% N-methyl-2-pyrrolidone solution 100 weight section of a polyvinyl-pyridine system resin (extensive glory chemistry), it might consider as a negative-electrode paint solution and the thickness of one side might be set to 80 micrometers at both sides of an SUS foil (thickness of 20 micrometers) (drying temperature of 100 degrees C). Through 25-micrometer separator [Celgard 3501 and a tradename (die cell company make)], the laminating of a positive electrode and the negative electrode was carried out, they were wound, and it considered as the cell of AA size. In the aforementioned (3) formula, to the aforementioned solution, m added to the ethylene carbonate / dimethoxyethane (1:1) solvent which contained two mol /of 2NLi(s) l. as the electrolytic solution (CF3SO2) 3% of the weight, and used for it the silicone system compound which the both ends of 1, and r and k3 are n, and is a methyl group. Comparison performed the thing except the silicone system compound as an example 1 of comparison. The cell property of the cell of this example and the example 1 of comparison was shown in the following table 1. [0008] It was presupposed that it is the same as that of an example 1 except having used the solid electrolyte solution shown below instead of the example 2 electrolytic solution. The photopolymerization nature solution which consists of the tetrapod fluoroboric-acid lithium 20 weight section, the propylene carbonate 51 weight section, 1, the 2-dimethoxyethane 16 weight section, the polyoxyethylene acrylate 12.8 weight section, the trimethylol-propane acrylate 0.2 weight section, and the benzoin-iso-propyl-ether 0.02 weight section was used as the solid-polymerelectrolyte solution. The amount addition of said of the silicone system compound used for this solid electrolyte solution in the example 1 was carried out. This adjustment liquid is heated and solidified

after pouring in like the electrolytic solution. Comparison performed the thing except the silicone system compound as an example 2 of comparison. The cell property of this example and the example 2 of comparison was shown in the following table 1.

[Table 1]

example 1 66% 58%1CmA1 hour charge 86% 80% 74% 69% Energy: It is charge and discharge at 1/2CmA. Example 2 Example 1 of comparison Example of comparison 2 energy 485mAh 465mAh 388mAh 370mAh cycle property 500 times 500 times 350 times 400 times CmA [2] electric discharge 88% 81% The spark-discharge-energy cycle property after repeating 10 times: The number of times of a cycle until energy becomes 70% by the charge and discharge of 1/2CmA. 2CmA electric discharge, 1CmA 1 hour charge: Incidence-rate 2CmA electric discharge:2CmA constant-current 2.5V cut-off electric discharge 1CmA1 hour charge:1CmA constant-current 3.7V low-battery charge 1 hour to the above-mentioned energy. [0009]

[Effect] According to this invention, the highly efficient non-water lithium secondary battery which is excellent in a cycle property and can be charged also with high current density was offered.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Field of the Invention] this invention relates to the non-water secondary lithium cell which uses as a negative electrode the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] The theoretical energy density of a lithium secondary battery is high, and the power supply for portable electronic equipment is expected to utilization also as an electric vehicle and a power supply for power storage at first. However, second lithium ** which used the metal lithium for the negative electrode has a problem in points, such as a cycle life and safety, and the thing of sufficient performance is not developed. It is thought that one of the biggest reason of this is in the performance of a negative electrode. Since the reactivity of the metal lithium which is a negative electrode is high as a trouble that the negative electrode of a lithium secondary battery is practical, a negative-electrode front face tends to react with a solvent. The metal lithium generated by reduction of a lithium ion at the time of charge is the problem of considering as a dendrite, being easy to generate and destroying the insulating layer between positive and a negative electrode (separator). The additive of the electrolytic solution is examined as one of the methods of solving these problems [Morita, Aoki, Matsuda, electrification 57,523(1989); M.Morita, S.Aoki and Y.Matsuda, Progress in Batteries & Solar Cells, Vol.8 (1989)]. Development of the negative electrode which used the carbon material which incorporates a lithium ion between its layers into negative-electrode material, and is stabilized as an intercalation compound or a lithium metal into it on the other hand, and ceramic material is furthered. The carbon body obtained by calcinating the pyrolytic carbon which used the organic compound besides a natural graphite, coal, and corks as the raw material as interchange car RANTO of a lithium ion, naturally-ocurring polymers, and a synthetic macromolecule is raised. The gestalt of a carbon fiber and glass-like carbon is also various from porosity fine particles. Using for JP,2-66856,A the conductive carbon material which calcinated the furfuryl resin at 1100 degrees C, for example as a negative-electrode active material as a carbon material for these negative-electrodes active materials is proposed. Moreover, the example which uses the conductive carbon material which heat-treats an aromatic polyimide at the temperature of 2000 degrees C or more under an inert atmosphere, and is obtained for a negative-electrode active material is indicated by JP,61-277165,A, and using for a negative electrode what graphitized ****** spherical carbon is further proposed by JP,4-115457,A at it. Moreover, in JP,61-77275,A, the rechargeable battery which used for the electrode the carbon material of the insulation of the poly acene structure which heat-treated the phenol system macromolecule, or semiconductor nature is indicated. Although a cycle life improves and a cell performance improves in these ion fuel cell subsystems, in one side, it cannot be said that a current characteristic is enough.

[0003]

[Objects of the Invention] The purpose of this invention solves the current characteristic in these lithium non-water rechargeable batteries, is excellent in a cycle property, and is to offer the highly efficient secondary lithium cell in which charge and discharge are possible also with high current density.

[0004]

[Elements of the Invention] This invention persons found out that the purpose was reached in the non-water secondary lithium cell which uses as a negative electrode the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex by making a silicone system compound contain in the electrolytic solution or a solid electrolyte, as a result of examining the aforementioned technical problem wholeheartedly. As the aforementioned silicone system compound, the compound shown by the front formula (1) is mentioned. The remarkable effect http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cgi_ejje

was seen in the silicone system compound with which an oxy-alkylene adds to the side chain of an Si-O skeleton, and existence of active hydrogen is not checked especially. If the compound shown by the front formula (1) is shown more concretely, the silicone system compound shown by the following formula (3) will be mentioned.

$$R = \left[\left(-\frac{1}{s} i - 0 - \right)_{n} - \left(-\frac{1}{s} i - 0 - \right)_{m} \right]_{k} - R$$
 (3)

in a front formula, R is an end group and this end group is the same -- or -- being different from each other -- desirable -- an alkyl group -- it is a methyl group still more preferably A and A' is the same or the alkyl group of carbon numbers 1-30 which may be different from each other, and is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. B and B' is an oxy-alkylene chain which does not have an alkyl group or active hydrogen and with which at least one side does not have active hydrogen among B and B', although the same, the oxy-alkylene chain which may be different from each other, or an alkyl group is expressed. In addition, when Above B and B' are oxy-alkylene chains, it is the oxy-alkylene chain of carbon numbers 1-6 preferably [it is desirable and] to the oxy-alkylene chain of carbon numbers 1-12, and a pan. Moreover, when B and B' is an alkyl group, it is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. The silicone system compound which has the skeleton shown especially by the lower formula (4) made the current characteristic improve, and found out that it was effective for high-energy-izing of a cell. [Formula 4]

$$\begin{bmatrix}
CH_{3} & CH_{3} \\
(-Si-O-)_{n} - (-Si-O-)_{m} \\
| & CH_{2} - (CH_{2}CH_{2}O)_{r} - CH_{3}
\end{bmatrix}$$
(4)

Since a silicone skeleton generally has a ready bubble operation, although a silicon compound is used as a defoaming agent, in this invention, by making an alkoxy group add to a silicon compound, nonaqueous electrolyte and compatibility are made to improve and it thinks because the surface energy of the electrode interface of a non-water battery fell as this result. Although the compound of a front formula (4) is obtained by adding CH2=CH-CH2-OH by the platinum catalyst, considering as the compound of a lower formula (6), and replacing the active hydrogen of this compound by the compound of a lower formula (5) with an oxy-alkylene chain further, as a compound of a front formula (4), active hydrogen is measured by IR and that in which active hydrogen does not exist is suitable.

[Formula 5]
$$\begin{bmatrix}
CH_3 & CH_3 \\
-Si-O-)_n - (-Si-O-)_m \\
CH_3 & H
\end{bmatrix}_{k}$$
(5)

$$\begin{bmatrix}
CH_{2} & CH_{3} \\
(-Si-O-)_{n} - (-Si-O-)_{m} \\
CH_{3} & CH_{2} - CH_{2} - CH_{2} - OH
\end{bmatrix} (6)$$

[0005] Next, although the composition of the non-water secondary lithium cell of this invention is described concretely, fundamentally, it is constituted by a positive electrode, a negative electrode, and the electrolyte. What dissolved the electrolyte salt in the non-aqueous solvent as the electrolytic solution is mentioned, as a non-aqueous solvent -- a carbonate solvent (propylene carbonate and ethylene carbonate --) Butylene carbonate, dimethyl carbonate, diethyl carbonate, an amide solvent (N-methyl formamide, N-ethyl formamide, and N.N-dimethylformamide --) N-methyl acetamide, Nethyl acetamide, N-methyl PIROJIRINON, a lactone solvent (gamma-butyl lactone, gammavalerolactone, and delta-valerolactone --) alcoholic solvents (ethylene glycol --), such as the 3-methyl -1 and 3-oxazolidine-2-ON A propylene glycol, a glycerol, a methyl cellosolve, 1, 2-butanediol, 1, 3butanediol, 1, 4-butanediol, a diglycerol, Polyoxy alkylene glycol, a cyclohexane diol, a xylene glycol, etc., an ether solvent (a methylal, 1, 2-dimethoxyethane, 1, and 2-diethoxy ethane --) 1ethoxy-2-methoxyethane, the alkoxy polyalkylene ether, etc., A nitril solvent (a benzonitrile, an acetonitrile, 3-methoxy propionitrile, etc.), phosphoric acid and a phosphoric-ester solvent (an orthophosphoric acid, a metaphosphoric acid, a pyrophosphoric acid, and a polyphosphoric acid --) 2imidazolidinone solvents (1, 3-dimethyl-2-imidazolidinone, etc.), such as a phosphorous acid and trimethyl phosphate, A pyrrolidones solvent, a sulfolane solvent (a sulfolane, tetramethylen sulfolane), A furan solvent (a tetrahydrofuran, 2-methyl tetrahydrofuran, 2, 5-dimethoxy tetrahydrofuran), a dioxolane, a dioxane, and independent or two or more sorts of mixed solvents of a dichloroethane can be used. They are a carbonate solvent, an ether solvent, and a furan solvent preferably [among these]. Although there will be especially no limit if used as a usual electrolyte as an electrolyte salt in this invention For example, LiBR4 (R is a phenyl group and an alkyl group), LiPF6, LiSbF6, LiAsF6, LiBF4, LiClO4, CF3SO3Li, (CF3SO2) 3NLi, 3(CF3SO2) CLi, C6F9SO3Li, and C8F17SO3 -- Li, LiAlCl4, etc. can be illustrated It is the electrolyte of sulfonic-acid system anions, such as CF3SO3Li, 3(CF3SO2) NLi, 3(CF3SO2) CLi, C6F9SO3Li, and C8F17SO3Li, preferably. Although the electrolytic solution is adjusted in the 0.5 mols/l. or more less than six mols. [/l.] range, it is within the limits of 3.5 mols/l. from 0.8 mols/l. preferably. As a solid polymer electrolyte, a polyethylene oxide, polypropylene oxide, A polyvinylidene fluoride, a polyacrylamide, etc. are made into a polymer matrix. The complex which dissolved the aforementioned electrolyte salt into the polymer matrix, or these gel bridge formation objects, The solid polymer electrolyte which graft-ized ionic dissociation machines, such as a low-molecular-weight polyethylene oxide and a crown ether, to the polymer principal chain, Or the solid polymer electrolyte which contains ionic dissociation machines, such as gel which added the solvent to these further, a low-molecular-weight polyethylene-oxide chain, and a crown ether, in a polymer skeleton, or the gel solid polymer electrolyte which made this contain the aforementioned electrolytic solution is mentioned. [0006] The lithium alloy which consists of a lithium metal, aluminum, silicon, copper, zinc or tin, and a lithium as a negative electrode in this invention, the carbon material which are occlusion and the host compound which can be emitted irreversibly about a lithium ion, and ceramic material can be illustrated. The conductive carbon body or the insulating or half-conductive carbon body obtained as a carbon material by calcinating synthetic macromolecules, such as naturally-ocurring polymers or a phenol system resin, a PAN system resin, a furan system resin, a polyamide system resin, and a polyimide system resin, can be illustrated. It is desirable to use graphite material as a main constituent as a carbon body of this invention. As a graphite material of this invention, the artificial graphite which used pitch coke besides a natural graphite, a needle coke, a fluid coke, gill box sonar corks, etc. as the raw material can be illustrated. As a positive active material of the non-water secondary lithium cell of this invention MnO2, Mn 2O3, CoO2, NiO2 and TiO2, V2O5, V3O8, Cr2O3, Fe2 (SO4) 3, Fe2(MoO2) 3, the metallic oxide of Fe2(WO2) 3 grade, Metallic sulfide, such as TiS2. MoS2, and FeS, these compounds, and the multiple oxide of a lithium, One sort or complex beyond it chosen from conductive polymers, such as a polyacethylene, the poly aniline, polypyrrole, the poly thiophene, the poly alkyl thiophene, the poly carbazole, the poly azulene, and a poly diphenyl benzidine, and a carbon body can be illustrated. As an electrolyte, the electrolytic solution mentioned above and a solid electrolyte are used. Moreover, separator can be used as occasion demands. The nonwoven fabric or textile fabrics which is low resistance, and the thing excellent in solution retentivity is used, for example, is chosen from one or more sorts of quality of the materials, such as

glass, polyester, Teflon, and polypropylene, to the ionic migration of an electrolytic solution as separator is mentioned. Although especially the gestalt of the cell of this invention is not limited, it can mount in the cell of various gestalten, such as coin, a sheet, a cylinder, and gum. An example explains this invention still more concretely below.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect] According to this invention, the highly efficient non-water lithium secondary battery which is excellent in a cycle property and can be charged also with high current density was offered.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EXAMPLE

[Example]

The example 1 poly aniline 30 weight section was dissolved in the N-methyl-2-pyrrolidone of the 170 weight sections, and the vanadium-pentoxide 70 weight section was further distributed by the sand mill. Application dryness was carried out by the blade coating machine, and this paint solution was made into the positive electrode of 60 micrometers of one side at both sides of 25-micrometer etched aluminum foil. The negative-electrode active material layer was created so that the natural-graphite 80 weight section of 99.9% of purity and the tetrapod fluoroboric-acid lithium 10 weight section might be distributed in the 10wt% N-methyl-2-pyrrolidone solution 100 weight section of a polyvinyl-pyridine system resin (extensive glory chemistry), it might consider as a negative-electrode paint solution and the thickness of one side might be set to 80 micrometers at both sides of an SUS foil (thickness of 20 micrometers) (drying temperature of 100 degrees C). Through 25-micrometer separator [Celgard 3501 and a tradename (die cell company make)], the laminating of a positive electrode and the negative electrode was carried out, they were wound, and it considered as the cell of AA size. In the aforementioned (3) formula, to the aforementioned solution, m added to the ethylene carbonate / dimethoxyethane (1:1) solvent which contained two mol /of 2NLi(s) l. as the electrolytic solution (CF3SO2) 3% of the weight, and used for it the silicone system compound which the both ends of 1, and r and k3 are n, and is a methyl group. Comparison performed the thing except the silicone system compound as an example 1 of comparison. The cell property of the cell of this example and the example 1 of comparison was shown in the following table 1. [0008] It was presupposed that it is the same as that of an example 1 except having used the solid electrolyte solution shown below instead of the example 2 electrolytic solution. The photopolymerization nature solution which consists of the tetrapod fluoroboric-acid lithium 20 weight section, the propylene carbonate 51 weight section, 1, the 2-dimethoxyethane 16 weight section, the polyoxyethylene acrylate 12.8 weight section, the trimethylol-propane acrylate 0.2 weight section, and the benzoin-iso-propyl-ether 0.02 weight section was used as the solid-polymerelectrolyte solution. The amount addition of said of the silicone system compound used for this solid electrolyte solution in the example 1 was carried out. This adjustment liquid is heated and solidified after pouring in like the electrolytic solution. Comparison performed the thing except the silicone system compound as an example 2 of comparison. The cell property of this example and the example 2 of comparison was shown in the following table 1.

[Table 1]

example 1 66% 58%1CmA1 hour charge 86% 80% 74% 69% Energy: It is charge and discharge at 1/2CmA. Example 2 Example 1 of comparison Example of comparison 2 energy 485mAh 465mAh 388mAh 370mAh cycle property 500 times 500 times 350 times 400 times CmA [2] electric discharge 88% 81% The spark-discharge-energy cycle property after repeating 10 times: The number of times of a cycle until energy becomes 70% by the charge and discharge of 1/2CmA. 2CmA electric discharge, 1CmA 1 hour charge: Incidence-rate 2CmA electric discharge: 2CmA constant-current 2.5V cut-off electric discharge 1CmA1 hour charge: 1CmA constant-current 3.7V low-battery charge 1 hour to the above-mentioned energy.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CORRECTION or AMENDMENT

[Official Gazette Type] Printing of amendment by the convention of 2 of Article 17 of patent law. [Section partition] The 1st partition of the 7th section.

[Date of issue] December 14, Heisei 11 (1999).

[Publication No.] Publication number 8-78053.

[Date of Publication] March 22, Heisei 8 (1996).

[**** format] Open patent official report 8-781.

[Filing Number] Japanese Patent Application No. 7-194161.

[International Patent Classification (6th Edition)]

H01M 10/40 10/36

[FI]

H01M 10/40 A

[Procedure revision]

[Filing Date] March 26, Heisei 11.

[Procedure amendment 1]

[Document to be Amended] Specification.

[Item(s) to be Amended] Claim 1.

[Method of Amendment] Change.

[Proposed Amendment]

[Claim 1] The lithium cell characterized by containing a silicone system compound in the electrolytic solution or a solid electrolyte in the non-water rechargeable battery which has the negative electrode and electrolyte containing at least one sort of active materials chosen from the group which consists of a host compound which forms a positive electrode and a lithium metal, a lithium alloy, a lithium, an intercalation compound, or a complex.

[Procedure amendment 2]

[Document to be Amended] Specification.

[Item(s) to be Amended] 0001.

[Method of Amendment] Change.

[Proposed Amendment]

[0001]

[Field of the Invention] this invention relates to the non-water secondary lithium cell which has the negative electrode which makes an active material the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex.

[Procedure amendment 3]

[Document to be Amended] Specification.

[Item(s) to be Amended] 0004.

.../tran_web_cgi_ejje?u=http%3A%2F%2Fwww6.ipdl.jpo.go.jp%2FTokujitu%2Ftjhtcnt.ipdl&N6/3/2003

[Method of Amendment] Change.

[Proposed Amendment]

[0004]

[Elements of the Invention] This invention persons found out that the purpose was reached in the non-water secondary lithium cell which has the negative electrode which makes an active material the host compound which forms a lithium metal, a lithium alloy or a lithium ion, an intercalation compound, or a complex by making a silicone system compound contain in the electrolytic solution or a solid electrolyte, as a result of examining the aforementioned technical problem wholeheartedly. As the aforementioned silicone system compound, the compound shown by the front formula (1) is mentioned. The remarkable effect was seen in the silicone system compound with which an oxyalkylene adds to the side chain of an Si-O skeleton, and existence of active hydrogen is not checked especially. If the compound shown by the front formula (1) is shown more concretely, the silicone system compound shown by the following formula (3) will be mentioned.

[Formula 3]

$$R - \left[\left(- \frac{A}{s} i - O - \right)_{n} - \left(- \frac{B}{s} i - O - \right)_{m} \right]_{k} - R$$

in a front formula, R is an end group and this end group is the same -- or -- being different from each other -- desirable -- an alkyl group -- it is a methyl group still more preferably A and A' is the same or the alkyl group of carbon numbers 1-30 which may be different from each other, and is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. B and B' is an oxy-alkylene chain which does not have active hydrogen and with which at least one side does not have active hydrogen among B and B', although the same, the oxy-alkylene chain which may be different from each other, or an alkyl group is expressed. In addition, when Above B and B' are oxy-alkylene chains, it is the oxy-alkylene chain of carbon numbers 1-6 preferably [it is desirable and] to the oxy-alkylene chain of carbon numbers 1-12, and a pan. Moreover, when B and B' is an alkyl group, it is the alkyl group of carbon numbers 1-6 preferably [it is desirable and] to the alkyl group of carbon numbers 1-12, and a pan. The silicone system compound which has the skeleton shown especially by the lower formula (4) made the current characteristic improve, and found out that it was effective for high-energy-izing of a cell. [Formula 4]

$$\begin{bmatrix}
CH_{3} & CH_{3} & CH_{3} \\
-CH_{3} & CH_{3} & CH_{2}-O-)_{m}
\end{bmatrix}_{k}$$

$$CH_{2}-(CH_{2}CH_{2}O)_{r}-CH_{3}$$

Since a silicone skeleton generally has a ready bubble operation, although a silicon compound is used as a defoaming agent, in this invention, by making an alkoxy group add to a silicon compound, nonaqueous electrolyte and compatibility are made to improve and it thinks because the surface energy of the electrode interface of a non-water battery fell as this result. Although the compound of a front formula (4) is obtained by adding CH2=CH-CH2-OH by the platinum catalyst, considering as the compound of a lower formula (6), and replacing the active hydrogen of this compound by the compound of a lower formula (5) with an oxy-alkylene chain further, as a compound of a front

formula (4), active hydrogen is measured by IR and that in which active hydrogen does not exist is suitable.

[Formula 5]

$$\begin{bmatrix}
CH_3 & CH_3 \\
(-Si-O-)_n-(-Si-O-)_m \\
CH_3 & H
\end{bmatrix}_{k}$$

$$\begin{bmatrix}
CH_3 & CH_3 \\
-Si-O-)_n-(-Si-O-)_m
\\
CH_3 & CH_2-CH_2-CH_2-OH
\end{bmatrix}$$

THIS PAGE BLANK (USPTO)