MA 101 (Mathematics - I)

Integration: Exercise set 2

Fundamental Theorems of Calculus

- 1. Let $f:[a,b]\to\mathbb{R}$ be continuous. Assume that there exist distinct constants α and β such that for all $c \in [a, b]$, we have $\alpha \int_a^c f(x)dx + \beta \int_a^b f(x)dx = 0$. Show that f = 0.
- 2. Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable. Let $F(x) = \int_0^{g(x)} t^2 dt$. Prove that $F'(x) = g^2(x)g'(x)$ for all $x \in \mathbb{R}$. If $G(x) = \int_{h(x)}^{g(x)} t^2 dt$, then what is G'(x)?
- 3. Let $f:[a,b]\to\mathbb{R}$ be continuous and $g:[c,d]\to[a.b]$ be differentiable. Define $\phi(x)=$ $\int_a^{g(x)} f(t)dt$. Prove that ϕ is differentiable and compute its derivative.
- 4. If f'' is continuous on [a, b], show that $\int_a^b x f''(x) dx = [bf'(b) f(b)] [af'(a) f(a)]$.
- 5. Let f > 0 be continuous on $[1, \infty)$ and suppose that for x > 0, $\int_{1}^{x} f(t)dt \leq (f(x))^{2}$. Prove that $f(x) \ge \frac{1}{2}(x-1)$.
- 6. If $f:[a,b]\to\mathbb{R}$ is continuously differentiable, show that $\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos nx\,dx=0$.
- 7. If $f:[0;1]\to\mathbb{R}$ is continuous, then show that $\int_0^x \left(\int_0^u f(t)dt\right)du = \int_0^x (x-u)f(u)du$.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and let $g(x) = \int_0^x (x-t)f(t)dt$ for $x \in \mathbb{R}$. Prove that g''(x) = f(x) for all $x \in \mathbb{R}$.

Improper Integrals

9. Compute the following improper integrals or prove their divergence.

(a)
$$\int_{1}^{\infty} \frac{dx}{x^4}$$

(b)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

(c)
$$\int_0^\infty e^{-ax} dx$$

(a)
$$\int_{1}^{\infty} \frac{dx}{x^4}$$
 (b) $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ (c) $\int_{0}^{\infty} e^{-ax} dx$ (d) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$

(e)
$$\int_0^1 \frac{dx}{x \ln x}$$

(f)
$$\int_0^1 \frac{dx}{x \ln(\ln x)}$$

(e)
$$\int_0^1 \frac{dx}{x \ln x}$$
 (f) $\int_0^1 \frac{dx}{x \ln(\ln x)}$ (g) $\int_0^1 \frac{dx}{x (\ln x)^{3/2}}$ (h) $\int_0^1 \frac{\sqrt{x} dx}{(1+x)^2}$

(h)
$$\int_0^1 \frac{\sqrt{x} \, dx}{(1+x)^2}$$

- 10. Test the following improper integrals for convergence.

(a)
$$\int_0^1 \frac{\sqrt{x}}{\sqrt{1-x^4}} dx$$
 (b) $\int_0^{\pi/2} \frac{\ln \sin x}{\sqrt{x}} dx$

11. Determine the values of k for which the following integrals converge.

(a)
$$\int_{a}^{b} \frac{dx}{(b-x)^{k}}$$
, $(b < a)$ (b) $\int_{0}^{\pi} \frac{dx}{\sin^{k} x}$

(b)
$$\int_0^{\pi} \frac{dx}{\sin^k x}$$

12. For what values of k and t the integral $\int_0^\infty \frac{x^k}{1+x^t} dx$ is convergent?

13. Examine whether the following integrals are convergent

(a)
$$\int_0^\infty \sin(x^2) dx$$
, (b)
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$
.

14. The integral $\int_a^{\infty} f(x)dx$ is said converge **absolutely** if $\int_a^{\infty} |f(x)|dx$ is convergent. If the integral $\int_a^{\infty} f(x)dx$ converges, but not absolutely, then it is said to converge **conditionally**. Show that $\int_1^{\infty} \frac{\sin x}{x^p} dx$ converges absolutely if p > 1 and conditionally if 0 .

Applications of integrals

- 15. Find the area of the region enclosed by the curve $y = \sqrt{|x+1|}$ and the line 5y = x + 7.
- 16. Find the area enclosed by the curve $r = a \cos 3\theta$, $-\pi/6 \le \theta \le \pi/6$.
- 17. Sketch the curve $x = a \sin 2t$, $y = a \sin t$ and find the area of one of its loops.
- 18. Find the length of the curve $y = \int_0^x \sqrt{\cos 2t} \, dt$, $0 \le x \le \frac{\pi}{4}$.
- 19. A curve is given by the equation

$$x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta).$$

Find the length of the arc from $\theta = 0$ to $\theta = \alpha$.

- 20. Consider the funnel formed by revolving the curve $y = \frac{1}{x}$ about the x-axis, between x = 1 and x = a, where a > 1. If V_a and S_a denote respectively the volume and the surface area of the funnel, then show that $\lim_{a \to \infty} V_a = \pi$ and $\lim_{a \to \infty} S_a = \infty$.
- 21. Find the volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bounded by the section $x = x_1$.
- 22. Show that the area of the surface obtained by revolving the cardioid $r = 1 + \cos \theta$ about the x-axis is $\frac{32}{5}\pi a^2$.