

UNIVERSIDADE FEDERAL DE SÃO PAULO INSTITUTO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA E TECNOLOGIA

PROJETO 2 REDES TRÓFICAS

Nomes: Ana Júlia de Oliveira Bellini

Luiz Filipe Moraes Saldanha Oliveira Willian Dihanster Gomes de Oliveira

> SÃO JOSÉ DOS CAMPOS 2018

RA: 111774

RA: 112229

RA: 112269

Introdução

Uma rede trófica é o modelo de representação que descreve a relação presa-predador numa comunidade ecológica, formando uma dinâmica de populações.

Este sistema pode ser representado pelo modelo matemático Lotka-Volterra, utilizando equações diferenciais para analisar a variação das espécies ao longo do tempo. Sendo assim, pode ser simulado com recursos computacionais, através de softwares para estatística, como o R.

Após a modelagem matemática do sistema, aplica-se o método de Euler, e uma vez obtidas as equações, estas são simuladas utilizando parâmetros iniciais previamente definidos, para analisar o comportamento desta rede trófica perante variação de população, tempo e fatores externos.

Estudo da Rede Trófica

A comunidade para estudo é composta de 5 populações de animais (capivaras, ratos, insetos, onças e corujas) e vegetação. A relação presa-predador é evidenciada pelo diagrama a seguir.

Legenda: $b \rightarrow a = b \acute{e}$ presa de a

Figura 1: Rede trófica estudada

Modelagem Matemática

Primeiro, montou-se uma tabela que demonstra a relação presa-predador com variáveis, onde cada elemento a_{ij} quantifica a influência que o indivíduo da linha i exerce sobre o indivíduo da coluna j.

	Vegetação	Capivaras	Ratos	Insetos	Onças	Corujas
Vegetação	α	β 1	γ 1	δ 1		
Capivaras	$\alpha_{_1}$	β			λ 1	
Ratos	α_{2}		γ		λ 2	$\theta_{_1}$
Insetos	α_3			δ		θ_{2}
Onças		β 2	γ ₂		λ 1	
Corujas			γ ₃	δ,		θ

Tabela 1: Parâmetros utilizados na modelagem das equações diferenciais

Utilizando esta tabela, foram montadas equações pelo modelo Lotka-Volterra, para o crescimento populacional pelo tempo, para cada população da rede. Na equação do crescimento da vegetação, foi incluído o termo logístico para capacidade de suporte do ambiente, para saturação. Nas equações encontradas, foi aplicado o método de Euler para encontrar a população em um determinado tempo t.

Equações pelo modelo Lotka-Volterra

Corujas (C)
$$\frac{dC}{dt} = C(\theta_1 R + \theta_2 I - \theta)$$

Onças (O)
$$\frac{dO}{dt} = O(\lambda_1 Z + \lambda_2 R - \lambda)$$

Insetos (I)
$$\frac{dI}{dt} = I(\sigma_1 v - \sigma_2 C - \sigma)$$

Ratos (R)
$$\frac{dR}{dt} = R(\gamma_1 v - \gamma_2 O - \gamma_3 C - \gamma)$$

$$\frac{dZ}{dt} = Z(\beta_1 v - \beta_2 O - \beta)$$

Vegetação (v)

$$\frac{dv}{dt} = v(\alpha(1 - \frac{v}{k}) - \alpha_1 Z - \alpha_2 R - \alpha_3 I)$$

Equações encontradas com a aplicação do método de Euler

Corujas (C)

$$C(t + \Delta t) = C(t) + C \cdot (\theta_1 R + \theta_2 I - \theta) \cdot \Delta t$$

Onças (O)

$$O(t + \Delta t) = O(t) + O \cdot (\lambda_1 Z + \lambda_2 R - \lambda) \cdot \Delta t$$

Insetos (I)

$$I(t + \Delta t) = I(t) + I \cdot (\sigma_1 v - \sigma_2 C - \sigma) \cdot \Delta t$$

Ratos (R)

$$R(t + \Delta t) = R(t) + R \cdot (\gamma_1 v - \gamma_2 O - \gamma_3 C - \gamma) \cdot \Delta t$$

Capivaras (Z)

$$Z(t + \Delta t) = Z(t) + Z \cdot (\beta_1 v - \beta_2 O - \beta) \cdot \Delta t$$

Vegetação (v)

$$v(t + \Delta t) = v(t) + v \cdot (\alpha(1 - \frac{v}{k}) - \alpha_1 Z - \alpha_2 R - \alpha_3 I) \cdot \Delta t$$

Simulação

As simulações foram realizadas no software livre R. Após a aplicação do método de Euler, as equações foram usadas no aplicativo e iteradas de acordo com o tempo até um determinado valor t. As taxas de variação são salvas em vetores, e os parâmetros das equações são definidas como variáveis. Depois, os pontos salvos são plotados com a função plot() do software.

Equilíbrio

Após diversos experimentos empíricos, os parâmetros encontrados para que a rede atinja o equilíbrio (ou seja, para que a relação presa-predador assuma comportamento cíclico) são:

	Vegetação	Capivaras	Ratos	Insetos	Onças	Corujas
Vegetação	α = 10	$\beta_1 = 0.175$	$\gamma_1 = 0.15$	$\delta_1 = 0.2$		
Capivaras	$\alpha_1 = 0.1$	β = 1.75			$\lambda_1 = 0.1$	
Ratos	$\alpha_2 = 0.1$		γ = 0.8		$\lambda_2 = 0.1$	$\theta_1 = 0.1$
Insetos	$\alpha_3 = 0.1$			δ = 2.25		$\theta_2 = 0.1$
Onças		$\beta_2 = 0.09$	$\gamma_2 = 0.09$		λ = 8.5	
Corujas			γ ₃ = 0.09	δ ₂ = 0.09		θ = 8.5

Tabela 2: Valores iniciais das relações presa-predador para o sistema em equilíbrio

Para as simulações, a capacidade do ambiente (k) é 200, e foram utilizados os seguintes valores de populações iniciais para cada indivíduo:

Capivaras - 5, Corujas - 5, Insetos - 25, Ratos - 70, Onças - 15 e Vegetação - 15.

População de Onças e Capivaras

Figura 2: Gráficos da população da rede em equilíbrio

Algumas perturbações do equilíbrio

Uma vez atingido o equilíbrio, foram realizadas perturbações no sistema, como quedas ou aumentos populacionais, para analisar melhor o comportamento da rede trófica escolhida, como mostrado a seguir.

Queimada

Com a queimada, todos os animais sofreram um grande queda na densidade populacional, mas o equilíbrio foi restaurado.

População de Onças e Capivaras

Figura 3: Gráficos da população da rede após a queimada

Caça às onças

Com o evento de caça às onças, ocorreu um impacto de menor magnitude, e o sistema também voltou ao equilíbrio após esta perturbação. Vale ressaltar que os ratos e a vegetação quase não foram afetados.

População de Onças e Capivaras

População de Insetos e Corujas

Figura 4: População da rede após a caça das onças

Surto de Ratos

Com o surto de ratos, o efeito foi um aumento na população de corujas e onças (predadores dos ratos). Além disso, com esse aumento, houve uma diminuição das capivaras e dos insetos, presas das onças e das corujas, respectivamente. Porém, após algum tempo, como mostrado na figura 4, o sistema volta ao seu equilíbrio.

População de Ratos e Vegetação

População de Onças e Capivaras

População de Insetos e Corujas

Figura 5: População da rede após o surto de ratos

Extinção das Corujas

Como consequência da extinção das corujas, veio também a extinção das capivaras, por conta da diminuição da vegetação e do aumento de onças, ratos e insetos. No entanto, o resto da rede se manteve estável, ainda chegando no equilíbrio, assim como a figura 5 sugere.

População de Onças e Capivaras

População de Insetos e Corujas

Figura 6: População da rede após extinção das corujas

Conclusão

Este modelo pode ter o equilíbrio facilmente perturbado por variações nas suas populações, mas se a variação não for muito grande, o sistema pode acabar voltando ao equilíbrio. Portanto, o modelo é estável até certo ponto, pois como visto anteriormente, mesmo na extinção das corujas, quatro das outras cinco espécies voltam ao equilíbrio.

Mas, o modelo simula uma versão simplista e ideal de uma rede trófica, portanto se distancia um pouco de situações reais, por serem desconsiderados alguns fatores. Mas é uma boa opção para a simulação de redes complexas, não apenas do sistema presa-predador, mas também de sistemas semelhantes, que possam ter relações similares à estudada.

Portanto, para que o modelo represente uma rede trófica mais complexa e próxima à uma rede real, é necessário considerar mais fatores que possam ter influência sobre a rede, desconsiderados neste estudo.

Contudo, as simulações seguiram o que se esperava do modelo implementado, foi obtido um equilíbrio e as situações de perturbação do equilíbrio não demonstraram uma mudança que fugisse do esperado.