Deep Learning & Applied Al

Overfitting and going nonlinear

Emanuele Rodolà rodola@di.uniroma1.it

A glimpse into neural networks

In deep learning, we deal with highly parametrized models called deep neural networks:

Parametrized models

The parameters describe the behavior of the network, and must be solved for.

From a technical standpoint, our task is to determine the parameters Θ .

Assumption: linear model

Assumption: linear model

More data allows us to improve our prediction

Assumption: linear model

More data allows us to improve our prediction

What if the assumption (i.e. linear prior here) is wrong?

Assumption: linear model

Assumption: linear model

More data confutes our assumptions

Assumption: quadratic model

Assumption: quadratic model

Key questions:

• How to select the correct distribution?

Assumption: quadratic model

Key questions:

- How to select the correct distribution?
- How much data do we need?

Assumption: quadratic model

Key questions:

- How to select the correct distribution?
- How much data do we need?
- What if the correct distribution does not admit a simple expression?

After the linear model, the simplest thing is a polynomial model.

After the linear model, the simplest thing is a polynomial model.

The number of parameters grows with the order.

After the linear model, the simplest thing is a polynomial model.

The number of parameters grows with the order.

More data are needed to make an informed decision on the order.

$$y_i = a_3 x_i^3 + a_2 x_i^2 + a_1 x_i + b$$
 for all data points $i = 1, ..., n$

$$y_i = b + \sum_{j=1}^k a_j x_i^j$$
 for all data points $i = 1, \dots, n$

$$y_i = \mathbf{b} + \sum_{j=1}^k \mathbf{a}_j x_i^j$$
 for all data points $i = 1, \dots, n$

Remark: Despite the name, polynomial regression is still linear in the parameters. It is polynomial with respect to the data.

$$y_i = \mathbf{b} + \sum_{j=1}^k \mathbf{a}_j x_i^j$$
 for all data points $i = 1, \dots, n$

In matrix notation:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1^k & x_1^{k-1} & \cdots & x_1 & 1 \\ x_2^k & x_2^{k-1} & \cdots & x_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^k & x_n^{k-1} & \cdots & x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a_k \\ a_{k-1} \\ \vdots \\ a_1 \\ b \end{pmatrix}}_{\mathbf{\theta}}$$

Remark: Despite the name, polynomial regression is still linear in the parameters. It is polynomial with respect to the data.

$$y_i = \mathbf{b} + \sum_{j=1}^k \mathbf{a}_j x_i^j$$
 for all data points $i = 1, \dots, n$

In matrix notation:

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} x_1^k & x_1^{k-1} & \cdots & x_1 & 1 \\ x_2^k & x_2^{k-1} & \cdots & x_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^k & x_n^{k-1} & \cdots & x_n & 1 \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} a_k \\ a_{k-1} \\ \vdots \\ a_1 \\ b \end{pmatrix}}_{\mathbf{X}}$$

The same exact least-squares solution as with linear regression applies, with the requirement that k < n.

An application of the Stone-Weierstrass theorem tells us:

If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x.

An application of the Stone-Weierstrass theorem tells us:

If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x.

Thus, we can try to fit a polynomial in many cases.

An application of the Stone-Weierstrass theorem tells us:

If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x.

Thus, we can try to fit a polynomial in many cases.

An application of the Stone-Weierstrass theorem tells us:

If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x.

Thus, we can try to fit a polynomial in many cases.

• Underfitting: Not sufficiently fitting the data (large MSE).

- Underfitting: Not sufficiently fitting the data (large MSE).
- Overfitting: We are "learning the noise" (small MSE).

- Underfitting: Not sufficiently fitting the data (large MSE).
- Overfitting: We are "learning the noise" (small MSE).

Adding complexity can lead to overfitting and thus worse generalization.

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

Detection is relatively easier:

• Estimate the model parameters on a training set. (the MSE is minimized on example data)

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

- Estimate the model parameters on a training set. (the MSE is minimized on example data)
- **②** Large MSE on the training ⇒ underfitting

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

- Estimate the model parameters on a training set. (the MSE is minimized on example data)
- ② Large MSE on the training ⇒ underfitting
- Small MSE on the training ⇒ Apply the model parameters to a validation set. (the MSE is computed on different example data)

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

- Estimate the model parameters on a training set. (the MSE is minimized on example data)
- ② Large MSE on the training ⇒ underfitting
- Small MSE on the training ⇒ Apply the model parameters to a validation set. (the MSE is computed on different example data)
- ◆ Large MSE on the validation ⇒ overfitting

This trade-off is always present, and still an open problem.

Different mechanisms defend us from under- and overfitting.

- Estimate the model parameters on a training set. (the MSE is minimized on example data)
- ② Large MSE on the training ⇒ underfitting
- Small MSE on the training ⇒ Apply the model parameters to a validation set. (the MSE is computed on different example data)
- $\textbf{ 4 Large MSE on the validation} \Rightarrow \textbf{overfitting} \Rightarrow \textbf{bad generalization}$

Underfitting vs. Overfitting

Underfitting: large training error, large validation error

Underfitting vs. Overfitting

Underfitting: large training error, large validation error

Overfitting: (very) small training error, large validation error

Not done yet

"If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x."

So is polynomial regression all we need?

Not done yet

"If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x."

So is polynomial regression all we need?

- Different loss than MSE
- Regularization
- Additional priors
- Intermediate features
- Flexibility
- Regression (predict a value) vs. classification (predict a category)

Not done yet

"If f is continuous on the interval [a,b], then for every $\epsilon>0$ there exists a polynomial p such that $|f(x)-p(x)|<\epsilon$ for all x."

So is polynomial regression all we need?

- Different loss than MSE
- Regularization
- Additional priors
- Intermediate features
- Flexibility
- Regression (predict a value) vs. classification (predict a category)

From now on, we embrace the idea that many natural phenomena of interest are nonlinear.

Sometimes our prior knowledge can be expressed in terms of an energy. For example, avoid large parameters to counteract overfitting:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{data term}} + \underbrace{\lambda}_{\text{trade-off}} \cdot \underbrace{\|\Theta\|_F^2}_{\text{regularizer}}$$

Sometimes our prior knowledge can be expressed in terms of an energy. For example, avoid large parameters to counteract overfitting:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{data term}} + \underbrace{\lambda}_{\text{trade-off}} \cdot \underbrace{\|\Theta\|_F^2}_{\text{regularizer}}$$

Adding a quadratic penalty to the loss is also known as weight decay, ridge, or Tikhonov regularization.

Sometimes our prior knowledge can be expressed in terms of an energy. For example, avoid large parameters to counteract overfitting:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{data term}} + \underbrace{\lambda}_{\text{trade-off}} \cdot \underbrace{\|\Theta\|_F^2}_{\text{regularizer}}$$

Adding a quadratic penalty to the loss is also known as weight decay, ridge, or Tikhonov regularization.

More in general:

$$\min_{\mathbf{\Theta}} \ell_{\mathbf{\Theta}} + \lambda \|\Theta\|_p$$

Controlling parameter growth is generally known as shrinkage.

Sometimes our prior knowledge can be expressed in terms of an energy. For example, avoid large parameters to counteract overfitting:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{data term}} + \underbrace{\lambda}_{\text{trade-off}} \cdot \underbrace{\|\Theta\|_F^2}_{\text{regularizer}}$$

Adding a quadratic penalty to the loss is also known as weight decay, ridge, or Tikhonov regularization.

More in general:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{convex}} + \lambda \underbrace{\|\Theta\|_p}_{\text{convex}}$$

Controlling parameter growth is generally known as shrinkage.

Sometimes our prior knowledge can be expressed in terms of an energy. For example, avoid large parameters to counteract overfitting:

$$\min_{\Theta} \underbrace{\ell_{\Theta}}_{\text{data term}} + \underbrace{\lambda}_{\text{trade-off}} \cdot \underbrace{\|\Theta\|_F^2}_{\text{regularizer}}$$

Adding a quadratic penalty to the loss is also known as weight decay, ridge, or Tikhonov regularization.

More in general:

$$\min_{\Theta} \underbrace{\ell_{\Theta} + \lambda \|\Theta\|_{p}}_{\text{convex}}$$

Controlling parameter growth is generally known as shrinkage.

What if we want to predict a category instead of a value?

$$f_{\Theta}()) = \{0, 1\}$$

What if we want to predict a category instead of a value?

$$f_{\Theta}(\bigcirc) = \{0, 1\}$$

Possible solution: Do post-processing (e.g. thresholding) to convert linear regression to a binary output.

What if we want to predict a category instead of a value?

$$f_{\Theta}(\bigcirc) = \{0, 1\}$$

Possible solution: Do post-processing (e.g. thresholding) to convert linear regression to a binary output.

 \Rightarrow The solution is not necessarily an optimum anymore.

What if we want to predict a category instead of a value?

$$f_{\Theta}(\bigcirc) = \{0, 1\}$$

Possible solution: Do post-processing (e.g. thresholding) to convert linear regression to a binary output.

 \Rightarrow The solution is not necessarily an optimum anymore.

Instead: Modify the loss to minimize over categorical values directly.

New loss:

$$\ell_{\Theta}(\lbrace x_i, y_i \rbrace) = \sum_{i=1}^{n} (y_i - \sigma(\underbrace{ax_i + b}))^2$$

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

New loss:

$$\ell_{\Theta}(\lbrace x_i, y_i \rbrace) = \sum_{i=1}^{n} (y_i - \sigma(\underbrace{ax_i + b}))^2$$

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 σ has a saturation effect as it maps $\mathbb{R}\mapsto (0,1).$

New loss:

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} (y_i - \sigma(\underbrace{ax_i + b}))^2$$
 non-convex

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 σ has a saturation effect as it maps $\mathbb{R}\mapsto (0,1).$

New loss:

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} c(x_i, y_i), \text{ with}$$

$$c(x_i, y_i) = \begin{cases} -\ln(\sigma(ax_i + b)) & y_i = 1\\ -\ln(1 - \sigma(ax_i + b)) & y_i = 0 \end{cases} \text{ convex}$$

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 σ has a saturation effect as it maps $\mathbb{R} \mapsto (0,1)$.

New loss:

$$\ell_{\Theta}(\{x_i, y_i\}) = \sum_{i=1}^{n} c(x_i, y_i), \text{ with}$$

$$c(x_i, y_i) = -y_i \ln(\sigma(ax_i + b)) - (1 - y_i) \ln(1 - \sigma(ax_i + b)) \text{ convex}$$

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 σ has a saturation effect as it maps $\mathbb{R}\mapsto (0,1).$

New convex loss:

$$\ell_{\Theta}(\{x_i, y_i\}) = -\sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b))$$

Here, σ is the nonlinear logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 σ has a saturation effect as it maps $\mathbb{R} \mapsto (0,1)$.

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta}\ell_{\Theta}=0$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_{i} \ln(\sigma(ax_{i} + b)) + (1 - y_{i}) \ln(1 - \sigma(ax_{i} + b)) = 0$$

where $\Theta = \{a, b\}$.

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

$$\nabla_{\Theta} \left(y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) \right)$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

$$\nabla_{\Theta} y_i \ln(\sigma(ax_i + b)) + \nabla_{\Theta} (1 - y_i) \ln(1 - \sigma(ax_i + b))$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

$$y_i \nabla_{\Theta} \ln(\sigma(ax_i + b)) + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial h} \cdot \frac{\partial h}{\partial \mathbf{a}}$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial h} \cdot \frac{\partial}{\partial \mathbf{a}} \mathbf{a} x_i + b$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial h} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{\partial \sigma(ax_i + b)}{\partial (ax_i + b)} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{\partial}{\partial (ax_i + b)} \frac{1}{1 + e^{-(ax_i + b)}} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{e^{-(ax_i + b)}}{(1 + e^{-(ax_i + b)})^2} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{1}{1 + e^{-(ax_i + b)}} \frac{e^{-(ax_i + b)}}{1 + e^{-(ax_i + b)}} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial a} f(g(h(a,b))) = \frac{\partial f}{\partial g} \cdot \frac{1}{1 + e^{-(ax_i + b)}} \frac{(1 + e^{-(ax_i + b)}) - 1}{1 + e^{-(ax_i + b)}} \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \frac{1}{1 + e^{-(ax_i + b)}} \left(1 - \frac{1}{1 + e^{-(ax_i + b)}}\right) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \sigma(ax_i + b)(1 - \sigma(ax_i + b)) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial f}{\partial g} \cdot \sigma(\mathbf{a}x_i + b)(1 - \sigma(\mathbf{a}x_i + b)) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{\partial \ln(\sigma(ax_i + b))}{\partial \sigma(ax_i + b)} \cdot \sigma(\mathbf{a}x_i + b)(1 - \sigma(\mathbf{a}x_i + b)) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial a} f(g(h(a,b))) = \frac{1}{\sigma(ax_i + b)} \cdot \sigma(ax_i + b)(1 - \sigma(ax_i + b)) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} f(g(h(\mathbf{a}, b))) = \frac{1}{\sigma(\mathbf{a}x_i + b)} \cdot \sigma(\mathbf{a}x_i + b)(1 - \sigma(\mathbf{a}x_i + b)) \cdot x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}$.

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

$$\frac{\partial}{\partial \mathbf{a}} \ln(\sigma(\mathbf{a}x_i + b)) = (1 - \sigma(\mathbf{a}x_i + b))x_i$$

Since the loss is convex, the first-order conditions apply:

$$\nabla_{\Theta} \sum_{i=1}^{n} y_i \ln(\sigma(ax_i + b)) + (1 - y_i) \ln(1 - \sigma(ax_i + b)) = 0$$

where $\Theta = \{a, b\}.$

Consider the gradient of each term in the summation:

$$y_i \nabla_{\Theta} \underbrace{\ln(\sigma(ax_i + b))}_{f(g(h(\Theta)))} + (1 - y_i) \nabla_{\Theta} \ln(1 - \sigma(ax_i + b))$$

Apply the chain rule to each partial derivative:

$$\frac{\partial}{\partial a}\ln(\sigma(\mathbf{a}x_i+b)) = (1 - \sigma(\mathbf{a}x_i+b))x_i$$

And similarly for the second term and for parameter b.

By looking at the partial derivative:

$$\frac{\partial}{\partial a} \ln(\sigma(ax_i + b)) = (1 - \sigma(ax_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

By looking at the partial derivative:

$$\frac{\partial}{\partial a} \ln(\sigma(ax_i + b)) = (1 - \sigma(ax_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

Thus:

• $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.

By looking at the partial derivative:

$$\frac{\partial}{\partial a}\ln(\sigma(ax_i+b)) = (1 - \sigma(ax_i+b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

By looking at the partial derivative:

$$\frac{\partial}{\partial \mathbf{a}} \ln(\sigma(\mathbf{a}x_i + b)) = (1 - \sigma(\mathbf{a}x_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

model	loss	solution
linear regression		
linear regression + Tikhonov		
logistic regression		

By looking at the partial derivative:

$$\frac{\partial}{\partial \mathbf{a}} \ln(\sigma(\mathbf{a}x_i + b)) = (1 - \sigma(\mathbf{a}x_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

model	loss	solution
linear regression	convex	
linear regression $+$ Tikhonov	convex	
logistic regression	convex	

By looking at the partial derivative:

$$\frac{\partial}{\partial a} \ln(\sigma(ax_i + b)) = (1 - \sigma(ax_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

model	loss	solution
linear regression	convex	least squares
linear regression $+$ Tikhonov	convex	
logistic regression	convex	

By looking at the partial derivative:

$$\frac{\partial}{\partial a} \ln(\sigma(\mathbf{a}x_i + b)) = (1 - \sigma(\mathbf{a}x_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

model	loss	solution
linear regression	convex	least squares
linear regression $+$ Tikhonov	convex	least squares
logistic regression	convex	

By looking at the partial derivative:

$$\frac{\partial}{\partial a} \ln(\sigma(ax_i + b)) = (1 - \sigma(ax_i + b))x_i$$

we see that the parameters enter the gradient in a nonlinear way.

- $\nabla \ell_{\Theta} = 0$ is not a linear system that we can solve easily.
- $\nabla \ell_{\Theta} = 0$ is a transcendental equation \Rightarrow no analytical solution.

model	loss	solution
linear regression	convex	least squares
linear regression $+$ Tikhonov	convex	least squares
logistic regression	convex	nonlinear optimization

Suggested reading

```
On polynomial regression vs. neural nets: https://arxiv.org/pdf/1806.06850
```

Proof that the logistic loss is convex:
https://math.stackexchange.com/questions/1582452/
logistic-regression-prove-that-the-cost-function-is-convex