Foundation Algebra for Physical Science & Engineering (CELEN036)

Homework 3

1. Solve the following equations for angles in the interval $[0, 2\pi]$ or $[0, 360^{\circ}]$.

(i)
$$\cos \theta = \frac{1}{2}$$

(i)
$$\cos \theta = \frac{1}{2}$$
 (ii) $\tan \theta = -\frac{1}{\sqrt{3}}$ (iii) $\sin \theta = \frac{\sqrt{2}}{2}$

(iii)
$$\sin \theta = \frac{\sqrt{2}}{2}$$

(iv)
$$\sec \theta = -3$$
 (v) $\cot \theta = 2$

(v)
$$\cot \theta = 2$$

(vi)
$$\csc \theta = 4$$

(vii)
$$\cos \theta = 0.84$$

(viii)
$$\csc \theta = -2.5$$
 (ix) $\tan \theta = 0.75$

(ix)
$$\tan \theta = 0.75$$

(x)
$$\sqrt{3} \tan \theta = 2 \sin \theta$$
 (Hint: $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$)

- (xi) $2\sin\theta\cos\theta + \sin\theta = 0$
- 2. Solve the following equations for angles in the range $-180^{\circ} \le \theta \le 180^{\circ}$.

(i)
$$\sec^2\theta + \tan^2\theta = 6$$

(ii)
$$4\cos^2\theta + 5\sin\theta = 3$$

(iii)
$$\cot^2 \theta = \csc \theta$$

(iv)
$$\tan \theta + \cot \theta = 2$$

(v)
$$\tan \theta + 3 \cot \theta = 5 \sec \theta$$

(vi)
$$\sec \theta = 1 - 2 \tan^2 \theta$$

3. If $\tan\theta=\frac{4}{3}$ and θ is acute, find the value of the following expressions.

(i)
$$\sin 2\theta$$

(ii)
$$\tan \frac{\theta}{2}$$

(iii)
$$\cot 2\theta$$

4. If $t \equiv \tan \frac{\theta}{2}$, express the following trig functions in terms of t.

(i)
$$\frac{1-\cos\theta}{1+\cos\theta}$$

(ii)
$$\frac{\sin \theta}{1 - \cos \theta}$$

(iii)
$$\cot \theta \cot \frac{\theta}{2}$$

$$\begin{array}{ll} \text{(i)} & \frac{1-\cos\theta}{1+\cos\theta} & \text{(ii)} & \frac{\sin\theta}{1-\cos\theta} \\ \\ \text{(iv)} & \frac{\cos^2\frac{\theta}{2}}{3\sin\theta+4\cos\theta-1} & \text{(v)} & \frac{1-2\sin\theta}{2\cos\theta+1} \end{array}$$

$$(\mathsf{v}) \quad \frac{1 - 2\sin\theta}{2\cos\theta + 1}$$

5. Prove the following identities.

(i)
$$\cot \theta + \tan \theta \equiv \sec \theta \csc \theta$$

(ii)
$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} \equiv \sin A + \cos A$$

(iii)
$$\tan^2 \theta + \cot^2 \theta \equiv \sec^2 \theta + \csc^2 \theta - 2$$

(iv)
$$\frac{\sin A}{1 + \cos A} \equiv \frac{1 - \cos A}{\sin A}$$

(v)
$$(\sec^2 \theta + \tan^2 \theta)(\csc^2 \theta + \cot^2 \theta) \equiv 1 + 2\sec^2 \theta \csc^2 \theta$$

(vi)
$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} \equiv \frac{2}{\sin A}$$

(vii)
$$\sec^2 A \equiv \frac{\csc A}{\csc A - \sin A}$$

(viii)
$$(1 + \sin \theta + \cos \theta)^2 \equiv 2(1 + \sin \theta)(1 + \cos \theta)$$

(ix)
$$\frac{\tan^2 A + \cos^2 A}{\sin A + \sec A} \equiv \sec A - \sin A$$

6. Find the exact value of each real number y if it exists.

(i)
$$y = \sin^{-1} 0$$

(ii)
$$y = \cos^{-1}(-1)$$

(iii)
$$y = \tan^{-1} 1$$

(iv)
$$y = \arctan 0$$

(v)
$$y = \arcsin\left(\frac{-\sqrt{3}}{2}\right)$$

(v)
$$y = \arcsin\left(\frac{-\sqrt{3}}{2}\right)$$
 (vi) $y = \arccos\left(\frac{-\sqrt{3}}{2}\right)$

(vii)
$$y = \sin^{-1} \sqrt{3}$$

(viii)
$$y = \cot^{-1}(-1)$$

(viii)
$$y = \cot^{-1}(-1)$$
 (ix) $y = \csc^{-1}(-2)$

(x)
$$y = \operatorname{arcsec} \frac{2\sqrt{3}}{3}$$
 (xi) $y = \sec^{-1} 1$ (xii) $y = \csc^{-1} \frac{\sqrt{2}}{2}$

(xi)
$$y = \sec^{-1} 1$$

(xii)
$$y = \operatorname{cosec}^{-1} \frac{\sqrt{2}}{2}$$