

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4, 5 e 6
 - Atrasos, Dimensionamento, Sub-circuitos.

Resumo da Aula Passada

Construção de Redes lógica com chaves

- Característica da família lógica CMOS
 - Função Invertida
 - Planos pull-up / pull-down
 - Transcrição da Chave para Transistor

Construção da rede lógica complementar (PMOS)

Resumo da Aula Passada

Construção de Redes lógica com chaves

Aula passada!

- Caract
 - Fun
 - Plar

Duvidas?

Transcrição da Chave para Transistor

Construção da rede lógica complementar (PMOS)

Combinacional

Saida = f(In)

Fámilia lógica CMOS

- Lógica Complementar (Saída negada)
- Rede pull-up e Rede pulldown
- Rede pull-up: parte do circuito responsável por colocar a saída em 1 lógico
- Rede *pull-down*: parte do circuito responsável por colocar a saída em 0 lógico

Portas Lógicas CMOS

 Somente funções negativas são construídas (e.g.: inversor, NAND, NOR, XNOR...

- As redes PMOS e NMOS são associações de transistores mutuamente exclusivas (duais)
- Quando as entradas estão estáveis, existe ao menos um caminho entre a saída e Vdd ou entre a saída e GND

Transcrição da Chave para Transistor

Transcrição da Chave para Transistor

Construção do Circuito

- Primeiro:
 - Montar a rede pull-down
- Depois:
 - Montar a rede pull-up complementar

INVERSOR

Símbolo

Tabela Verdade

Α	Saída = \overline{A}
0	1
1	0

INVERSOR

Símbolo

Tabela Verdade

Α	Saída = \overline{A}
0	1
1	0

Lógica com Chaves (not)

Circuito do Inversor

Circuito do Inversor

Descrição do Inversor

• Só o arranjo de transistores, sem as fontes

Descrição do Inversor

• Só o arranjo de transistores, sem as fontes

Mp1 vdd a inv vdd PMOS w=140n l=32n Mn1 inv a gnd gnd NMOS w=70n l=32n

Como verificar se o circuito está correto?

- Validação Lógica!
 - Confere para todas as combinações de entrada, a saída do circuito, verificando o funcionamento correto.
- Como realizar a validação lógica
 - Fontes das entradas do circuito devem representar todos os estados possíveis:
 - Tabela Verdade

Descrição do Inversor

Agora as fontes, biblioteca e a simulação

Descrição do Inversor

Agora as fontes, biblioteca e a simulação

```
*PARAMETROS
.include 32nm_HP.pm
```

* Declarando Fontes de tensão Vvdd vdd gnd 1

* Declaração das fontes Va a gnd PWL (0n 0 10n 0 10.01n 1 20n 1)

* Declarando o circuito

Mp1 vdd a inv vdd PMOS w=140n l=32n Mn1 inv a gnd gnd NMOS w=70n l=32n

* Simulação Transiente de 20ns com passo de 0.1ns .tran 0.1ns 20ns

* Fim do Arquivo SPICE

.end

NAND de 2 entradas

Símbolo

Tabela-Verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

NAND de 2 entradas

Tabela-Verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Lógica com Chaves (and)

NAND de 2 entradas – Chaves Complementares

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

NAND de 2 entradas – Chaves Complementares

NOR de 2 entradas

Símbolo

Tabela-Verdade

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

NOR de 2 entradas

AOI (AND OR INVERTER)

Símbolo

Tabela

A	В	C	B.C	A + (B.C)	(A + (B.C))'
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

AOI (AND OR INVERTER)

Símbolo

Tabela

A	В	С	B.C	A + (B.C)	(A + (B.C))
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

Esquemático de Transistores

Exercícios

- 1. Montar redes de chaves :
 - a. A*B*C
 - b. A+B+C
 - c. (A+B)*C
- 2. Montar as funções usando transistor e dois planos
 - a. A*B*C
 - b. A+B+C
 - c. (A+B)*C

- Montar os circuitos do exercício 2 no simulador e realizar a validação lógica
 - a. $\overline{A*B*C}$
 - b. A+B+C
 - c. $\overline{(A+B)*C}$