Insper

Camada Física da Computação

Aula 20 – MOSFET Digital

(2017) Rafael C e Eduardo M. (2016) Fábio Ayres fabioia@insper.edu.br

Objetivos

Entender o funcionamento do MOSFET

Analisar circuitos CMOS

O que vimos até o momento

Assunto

Diodos, escrita técnica

Transistor bipolar

Transistores FET e MOSFET

MOSFET

 Metal-oxide-semiconductor field-effect transistor

Fonte: Wikipedia

Depleção (depletion)

Fonte: Wikipedia

Intensificação (enhancement)

MOSFET intensificação

Valem as mesmas observações do MOSFET depleção, exceto que:

- Note a ausência de canal: o canal será induzido por V_{GS}!
- Equações são diferentes do JFET.
 Feito para trabalhar com V_{GS} > 0V

Fonte: Boylestad e Nashelsky: "Electronic Devices and Circuit Theory"

Como funciona? (MOSFET intensificação)

Caso inicial: $V_{DS} = 0V$

- A tensão V_{GS} atrai elétrons para a proximidade da placa isolante
- Estes elétrons formam um canal
- Este MOSFET é do tipo canal-n (n-channel)
- Quando V_{GS} aumentar o canal permitirá a condução de corrente entre o dreno e a fonte

Cuidado com cargas estáticas!

O MOSFET é muito sensível à descargas elétricas no terminal da porta!

- As altas tensões da eletricidade estática podem criar furos no material isolante, destruindo o transistor
- Alguns MOSFETs já vem com diodos Zener internos para proteção.

MOSFET em regime digital

- Simule o circuito ao lado no CircuitLab, em modo DC.
- Mude V_{GG} para zero, e simule novamente.

Observe que o MOSFET-e canal-n atua como

- uma chave fechada quando
 V_{GS} é alto, e
- como um circuito aberto quando V_{GS} é zero!

https://www.circuitlab.com/circuit/ef6387/chave-nmos/

Simulador

http://www.falstad.com/circuit/e-nmosfet.html

aproximação MOSFET digital

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Gate Source	Gate A Source	Gate A - Source
PMOS	Source Gate A - d Drain	Source Gate A—q	Source Gate A—O Drain

Table 1: MOSFET logic circuit symbols and approximations.

MOSFET em regime digital

- Agora simule o circuito ao lado no CircuitLab, em modo DC
- 2. Mude V_{GG} para zero e simule novamente

Observe que o MOSFET canal-p, nesta configuração, atua como

- Uma chave aberta quando V_{GG} é alto, e
- Uma chave fechada quando V_{GG} é baixo

É o contrário do caso anterior!

ATENÇÃO:

- O transistor é canal-p aqui!
- A fonte está para cima, o dreno para baixo!

Trabalhando em conjunto: inversor CMOS

https://www.circuitlab.com/circuit/r73584/inversor-cmos/

V_{out} versus V_{in}

$I_{total} \ versus \ V_{in}$

Potencia total versus V_{in}

CMOS

Complementary metal-oxide-semiconductor

 Circuitos digitais feitos com MOSFET tipo n e p

 Muito utilizado em processadores e microcontroladores modernos

http://www.visual6502.org/sim/varm/armgl.html

Potência consumida no chaveamento!

- Quando o circuito CMOS muda de estado, existe uma região onde ambos os transistores conduzem
- Consequência: consumo de potência
- Quanto mais rápido o chaveamento, menos energia gasta por chaveamento
- Limite de velocidade: capacitâncias internas!
 - Constante de tempo RC ataca novamente!

Capacitâncias no MOSFET

 Limita a velocidade na qual o capacitor pode mudar de estado.

Potência no CMOS

- Cada chaveamento consome potência por uma duração pequena
 - Energia = Potência x Tempo
- A frequência do circuito dita o número de chaveamentos por segundo

$$P = \alpha C V_{DD}^2 f$$

- P: potência média
- C: capacitância efetiva
- V_{DD}: tensão de alimentação
- f: frequência de clock
- α: fator de chaveamento (depende da utilização do circuito

Exercício

- Baseado na fórmula da potência média, discuta:
 - Poderíamos controlar o consumo de potência de uma CPU com alteração na tensão de operação? Qual o fator limitante?
 - E com alteração de frequência? Qual o fator limitante?
 - Como o overclocking funciona? Se eu quiser aumentar a frequência de operação da minha CPU, o que devo fazer?
 - O que faz o fator α mudar no seu laptop?

Circuitos mais complexos

- Faça a tabela da verdade deste circuito. Que porta lógica temos aqui?
- 2. Desenhe uma porta AND
- 3. Desenhe uma porta NOR
- 4. Desafio: desenhe uma porta XOR

https://www.circuitlab.com/circuit/zp3k23/mystery/

Insper

www.insper.edu.b