Foundations of Analytics: Lecture 1

Dihui Lai

dlai@wustl.edu

August 25, 2019

CONTENT

- Elementary Data Analytics
- Data Analytics in Science, Finance, Insurance, Health Care etc.
- Mathematics of Data Analytics
- Review of Linear Algerbra
- Overview of Statistic Models and Machine Learning
- Computational Tools, Library, Packages, Softwares

Elementary Data Problem

Person	Pants	Socks	Cost
John	1	1	\$23
David	1	2	\$26
Lisa	1	1	\$24

What are the price of pants and socks?

Elementary Data Problem

Solution

Mathematics of Data Analytics

- Linear Algerbra (Handle Multi-dimension Space)
- Statistics (Useful Description)
- Calculus (Optimal Solution/Model/Function)
- Program(Key Numeric Solution)

Kepler's Law of Planetary Motion

Planet	Distance to Sun (AU)	Period(days)
Mercury	0.389	87.77
Venus	0.724	224.70
Earth	1	365.25
Mars	1.524	686.95
Jupiter	5.2	4332.62
Saturn	9.510	10759.2

What is the mathematical model for Period = f(DistanceSun)? Answer:

$$T^2 \propto r^3$$

Realtor Housing Price

house price	logitude	lattitude	age	oceanProx	size	
452600.0	-122.23	37.88	41	NEAR BAY	85768	
358500.0	-122.22	37.86	21	NEAR BAY	40803	
352100.0	-122.24	37.85	52	NEAR BAY	63085	

What is the mathematical model for House Price = f(location, size, ...)?

Predict Heart Disease

heart disease	age	chest pain type	fbs	thalach	gender	
Yes	63	0	1	150	F	
No	45	1	0	170	F	
No	70	0	0	168	М	
No	30	3	0	190	F	
Yes	55	2	0	148	М	
No	26	1	1	155	М	
		•••				

What is the model for heart disease = f(age, gender, fbs, ...)?

Modeling of Structured Data

Given a set of observations

$$\begin{bmatrix} y^1 \\ y^2 \\ y^3 \\ y^i \\ \vdots \\ y^n \end{bmatrix} & \begin{bmatrix} x_1^1 & x_2^1 & x_3^1 & \cdots & x_m^1 \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_m^2 \\ x_1^3 & x_2^3 & x_3^3 & \cdots & x_m^3 \\ x_1^i & x_2^i & x_3^i & \cdots & x_m^i \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ x_1^n & x_2^n & x_3^n & \cdots & x_m^n \end{bmatrix}$$

What is the best model for $y = f(x_1, x_2, x_3, ...x_m)$, given n data points of m-dimension?

Linear Algerbra Review

- Vectors: $x = (x_1, x_2, x_3, ...x_i, ..., x_m)$
- Dot Product: $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$
- Matrix Addition, Multiplication,
- Inverse $XX^{-1} = X^{-1}X = I$,
- Transpose M^T
- Linear Combination $a\vec{x} + b\vec{y} + c\vec{z}$
- Geometric Ineterpretation of Linear Algerbra: Linear Independent, Linearly Dependent

What is f: Simple Linear models

Linear Regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_m x_m$$

Variation

$$ln(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_m x_m$$

11 / 15

What is f: Generalized Linear Models

When y is observables of a random process and the same $x_1, x_2...x_m$ will leads to different y i.e.

$$y \sim P(x_1, x_2...x_m)$$

For example: Logistic Regression; Poisson Regression; Generalized

Linear Model

What is f: Tree Models, Neural Network

When close math formula does not provide good enough approximation for the problem?

 $f \sim Neuralnetwork$; Tree; RandomForest

How to find f: Optimization

Training Algorithms:

- Maximum Likelihood Estimation; Entropy Maximization
- Gradient Descent; Stochastic Gradient Descent (SGD);
- Greedy Seach

Python Environment Setup: Demo

- Python; 'pip' installtion tools
- Packages: numpy; sklearn etc.
- IDE: jupyter-notebook, pyCharm etc.
- Virtual Environment