

Production Envelopes

Learning Objectives

Each student should be able to:

- Explain the capabilities of robustness analysis
- Explain how shadow prices can be used in metabolic modeling
- Explain how reduced costs can be used in metabolic modeling
- Explain the capabilities of phenotype phase plane analysis
- Explain the purpose of production envelopes

Lesson Outline

- Robustness Analysis
- Shadow Prices
- Reduced Costs
- Phenotype Phase Plane Analysis
- Production Envelopes

Robustness Analysis

- The flux through one reaction is varied and the optimal objective value is calculated as a function of this flux. This reveals how sensitive the objective is to a particular reaction.
- In COBRApy use the "production_envelope"

```
from cobra.flux_analysis import production_envelope
```

```
RA_glc = production_envelope(model, ["reaction of interest"],
objective="biomass function",
carbon_sources="carbon sources",
points="Number of points to calculate")
```


Robustness_Examples.ipynb

Robustness Analysis Example

Impact of Increasing Glucose

Robustness_Examples.ipynb

Robustness Analysis Example Maps

Robustness Analysis Example

Impact of Increasing Oxygen

Robustness_Examples.ipynb

Robustness Analysis Example Maps

Impact of Increasing Oxygen

Ethanol

Angerobic Production

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

Maximum Anaerobic Ethanol Production

Robustness_Examples.ipynb

Ethanol Production Phenotype Maps

Medium Production

High Production


```
Robustness Analysis Examples
In [1]: import cobra.test
        import numpy as np
        import pandas as pd
        from cobrapy bigg client import client
        import matplotlib.pyplot as plt
        pd.set option('display.max rows', 500)
In [2]: model orig = client.download model ('e coli core', save=False) # Loading the model to the simulation
        model orig.solver = 'glpk'
        Set parameter Username
        Academic license - for non-commercial use only - expires 2022-10-10
        Glucose Robustness Analysis
In [3]: from cobra.flux analysis import production envelope
        model = model orig.copy()
        model.reactions.EX o2 e.lower bound = -20
        model.reactions.EX glc D e.lower bound = -30
        RA glc = production envelope(
           model, ["EX_glc_D_e"], objective="BIOMASS Ecoli core w GAM", carbon sources="EX glc D e", points=100)
        RA glc.round(5)
```

Robustness_Example.ipynb

Lesson Outline

- Robustness Analysis
- → Shadow Prices
 - Reduced Costs
 - Phenotype Phase Plane Analysis
 - Production Envelopes

Shadow Prices: Metabolites

- Shadow prices, π_i , are the derivative of the objective function, Z, with respect to the flux, b_i , of a **metabolite**.
- The shadow prices define the incremental change in the objective function if a constraining flux is incrementally changed.
- The sensitivity of an FBA solution is indicated by shadow prices. They indicate how much the addition of a given unit of metabolite flux will increase or decrease the objective.
- In the COBRApy tools, shadow prices can be calculated by model.optimize(). They can be accessed by solution.shadow_prices or model.metabolites.get_by_id('x').shadow_price where 'x' is the metabolite name.

Shadow Prices

Since

$$\begin{split} \pi_{\rm i} &= -\frac{\partial Z}{\partial b_{\rm i}} \implies \pi_{\rm i} \approx -\frac{\Delta Z_{\it GR}}{\Delta b_{\it o2[e]}} \implies \Delta Z_{\it GR} \approx -\pi_{\rm i} \not b_{\it o2[e]} \\ &\implies \Delta Z_{\it GR} \approx -\pi_{\rm i} \end{split}$$

If the objective is set to maximize cell growth rate (Z_{GR}) , and the shadow price (π_i) , of oxygen (b_{o2_e}) is -0.0230, it means that an additional flux unit of oxygen, o2_e, within the EX_o2_e uptake region of -15 and -21, will increase the growth rate by 0.0230.

Each steady state solution (phenotype) will have different shadow prices. This example is based on $EX_glc_D_e = -10$

Some solvers return positive shadow prices!

Glucose Shadow Prices: Aerobic Growth Rate Example

(Shadow_prices_Reduced_costs.ipynb)

If the objective is set to maximize cell growth rate (Z_{GR}) , and the shadow price $(\pi_{glc_D_e})$, of glucose is -0.046 when EX_o2_e = -20, it means that an additional molecule of glucose will increase the growth rate by 0.046.

Biomass (EX_glc__D_e = -10) Bior 0.832

Biomass ($EX_glc_D_e = -11$)

0.878

ΔBiomass 0.046


```
Shadow Prices and Reduced Costs
In [1]: import cobra.test
        import numpy as np
        import pandas as pd
        from cobrapy bigg client import client
        import matplotlib.pyplot as plt
        import escher
        from escher import Builder
        pd.set option('display.max rows', 500)
In [2]: model orig = client.download model('e coli core', save=False) # Loading the model to the simulation
        model orig.solver = 'glpk'
        Set parameter Username
        Academic license - for non-commercial use only - expires 2022-10-10
        Shadow Prices
        Shadow prices are calculated with the model.optimize() method.
In [3]: model = model orig.copy()
        solution = model.optimize()
        solution.shadow prices.round(5)
```

Shadow_prices_Reduced_costs.ipynb

Lesson Outline

- Robustness Analysis
- Shadow Prices
- → Reduced Costs
 - Phenotype Phase Plane Analysis
 - Production Envelopes

Reduced Costs: Reactions

• Reduced costs, ρ_i , are the derivatives of the objective function (Z) with respect to a reaction (v_i). Reduced costs indicate how much each particular **reaction** affects the objective.

$$\rho_{\rm i} = -\frac{\partial Z}{\partial v_{\rm i}} \quad \Rightarrow \quad \rho_{\rm i} \approx -\frac{\Delta Z}{\Delta v} \quad \Rightarrow \quad \Delta Z \approx -\rho_{\rm i} \stackrel{\text{1 unit of flux}}{\Rightarrow} \quad \Delta Z \approx -\rho_{\rm i}$$

- The reduced costs are associated with each flux (v_i) and signify the amount by which the objective function is decreased if v_i is increased. For instance, if the input flux of glucose shows a reduced cost of -x, it means that increasing that flux by one unit will increase of the objective function by x units.
- In the COBRA Toolbox, reduced costs can be calculated by model.optimize(). They can be accessed by solution.reduced_costs or model.reactions.get_by_id('y').reduced_cost where 'y' is the reaction name.
- Some solvers return positive reduced costs!

Shadow_prices_Reduced_costs.ipynb

Glucose Reduced Costs: Aerobic Growth Rate Example

(Shadow_prices_Reduced_costs.ipynb)

If the objective is set to maximize cell growth rate (Z_{GR}) , and the reduced costs $(\rho_{EX_glc_D_e})$, of glucose $(EX_glc_D_e)$ is -0.046, it means that an additional unit of glucose will increase the growth rate by 0.046.

Biomass (EX_glc__D_e = -10) Biomass (EX_glc__D_e = -11)

0. 832

0. 878

 $\Delta Biomass$ 0.046


```
Shadow Prices and Reduced Costs
In [1]: import cobra.test
        import numpy as np
        import pandas as pd
        from cobrapy bigg client import client
        import matplotlib.pyplot as plt
        import escher
        from escher import Builder
        pd.set option('display.max rows', 500)
In [2]: model orig = client.download model('e coli core', save=False) # Loading the model to the simulation
        model orig.solver = 'glpk'
        Set parameter Username
        Academic license - for non-commercial use only - expires 2022-10-10
        Shadow Prices
        Shadow prices are calculated with the model.optimize() method.
In [3]: model = model orig.copy()
        solution = model.optimize()
        solution.shadow prices.round(5)
```

Shadow_prices_Reduced_costs.ipynb

Lesson Outline

- Robustness Analysis
- Shadow Prices
- Reduced Costs
- → Phenotype Phase Plane Analysis
 - Production Envelopes

Phenotype Phase Plane Analysis Example

Variables: EX_o2_e & EX_glc__D_e

Phenotype Phase Plane Analysis Example (Phase 1)

No growth; not enough glucose

Phenotype_phase_plan_example.ipynb

Phenotype Phase Plane Analysis Example

Variables: EX_o2_e & EX_glc__D_e

PGI

PGK

PGM

PIt2r

PYK RPE

RPI

SUCDi

TALA

THD2

TKT1

TKT2

TPI

SUCOAS

2.96248

-5.51348

-5.23969

0.673268

-0.131553

-0.131553

-2.69395

-0.032741

0.444093

-0.032741

-0.098811

2.81795

3.2184

2.14468

Phenotype Phase Plane Analysis Example (Phase 2)

Phenotype_phase_plan_example.ipynb

A CONT.	2.41507	CD 4	2.01705
<i>ACO</i> NTa	3.41586	FBA	2.81795
<i>ACO</i> NTb	3.41586	FUM	3.2184
AKGDH	2.69395	GAPD	5.51348
ATPM	8.39	<i>G</i> LCpts	3
ATPS4r	21.278	GLNS	9.47587
Biomass	0.183018	GLUDy	-0.951162
CO2t	-10.2116	GLUN	9.42907
CS	3.41586	H20t	-11.5448
CYTBD	20	ICDHyr	2.89141
ENO	5.23969	ICL	0.524456
EX_co2(e)	10.2116	MALS	0.524456
EX_glc(e)	-3	MDH	3.74286
EX_h2o(e)	11.5448	NADH16	16.7816
EX_h(e)	3.67134	NH4t	0.997959
EX_nh4(e)	-0.997959	O2†	10
EX_o2(e)	-10	PDH	4.62623
EX_pi(e)	-0.673268	PFK	2.81795

Growth is limited by excess oxygen; not enough glucose to reduce all the oxygen and produce biomass optimally

Phenotype Phase Plane Analysis Example

Variables: EX_o2_e & EX_glc__D_e

PDH

Phenotype Phase Plane Analysis Example (Phase 3)

Phenotype_phase_plan_example.ipynb

ACKr	-1.83668	EX_nh4(e)	-2.03666
ACONT a	2.106	EX_o2(e)	-10
ACONT b	2.106	EX_pi(e)	-1.37402
ACt2r	-1.83668	FBA	3.84494
AKGDH	1.70302	FUM	1.70302
ATPM	8.39	G6PDH2r	2.35059
ATPS4r	21.5061	GAPD	8.22357
Biomass	0.373508	GLCpts	5
CO2t	-10.4318	GLNS	0.095506
CS	2.106	GLUDy	-1.94116
CYTBD	20	GND	2.35059
ENO	7.66481	H2Ot	-13.1526
EX_ac(e)	1.83668	ICDHyr	2.106
EX_co2(e)	10.4318	MDH	1.70302
EX_glc(e)	-5	NADH16	18.297
EX_h2o(e)	13.1526	NH4t	2.03666
EX_h(e)	9.32925	O2t	10

PFK 3.84494 PGI 2.57284 PGK -8.22357 2.35059 PGL PGM -7.66481 PIt2r 1.37402 PPC 1.07032 PTAr 1.83668 РУК 1.40059 **RPE** 1.29858 **RPI** -1.05201 **SUCDi** 1.70302 SUCOAS -1.70302 TALA 0.71671 TKT1 0.71671 TKT2 0.581873 TPI 3.84494

5.34252

Not enough oxygen to fully oxidize glucose; acetate produced through fermentation

Phenotype Phase Plane Analysis Example

Variables: EX_o2_e & EX_glc__D_e

PGI

PGK

PGL

PGM

PIt2r

PPC

PTAr

РУК

RPF

RPI

TALA

TKT1

TKT2

TPI

5.09263

-16.9163

4.79277

-16.0799

2.05658

1.60202

9.90568

4.18773

2.79333

-1.99944

1.49758

1.49758

1.29576

7.84632

Phenotype Phase Plane Analysis Example (Phase 4)

Phenotype_phase_plan_example.ipynb

ACKr	-9.90568	EX_o2(e)	-10
ACONT a	0.60316	EX_pi(e)	-2.05658
ACONT b	0.60316	FBA	7.84632
ACt2r	-9.90568	FORti	11.5033
ATPM	8.39	G6PDH2r	4.79277
ATPS4r	18.8064	GAPD	16.9163
Biomass	0.559051	GLCpts	10
CO2t	-4.89467	G LNS	0.142949
CS	0.60316	GLUDy	-2.90544
CYTBD	20	GND	4.79277
ENO	16.0799	H2Ot	-8.96702
EX_ac(e)	9.90568	ICDHyr	0.60316
EX_co2(e)	4.89467	NADH16	20
EX_for(e)	11.5033	NH4t	3.04839
EX_glc(e)	-10	O2t	10
EX_h2o(e)	8.96702	PDH	1.10076
EX_h(e)	32.6235	PFK	7.84632
EX_nh4(e)	-3.04839	PFL	11.5033

Not enough oxygen to fully oxidize glucose; acetate and formate are produced and secreted

Phenotype Phase Plane Analysis Example

Variables: EX_o2_e & EX_glc__D_e

Phenotype Phase Plane Analysis Example (Phase 5)

Phenotype_phase_plan_example.ipynb

ACALD	-2.12502	EX_glc(e)	-19
ACKr	-23.0206	EX_h2o(e)	2.52474
ACONT a	0.912497	EX_h(e)	69.2146
ACONT b	0.912497	EX_nh4(e)	-4.61179
ACt2r	-23.0206	EX_o2(e)	-10
ALCD2x	-2.12502	EX_pi(e)	-3.11132
ATPM	8.39	FBA	18.1587
ATPS4r	5.95415	FORti	29.2279
Biomass	0.845766	GAPD	35.7517
CO2t	1.51113	<i>G</i> LCpts	19
CS	0.912497	GLNS	0.216262
CYTBD	20	GLUDy	-4.39553
ENO	34.4864	H2Ot	-2.52474
ETOHt2r	-2.12502	ICDHyr	0.912497
EX_ac(e)	23.0206	NADH16	20
EX_co2(e)	-1.51113	NH4t	4.61179
EX_etoh(e)	2.12502	O2t	10
EX_for(e)	29.2279	PFK	18.1587

PFL 29.2279 **PGI** 18.8266 PGK -35.7517 PGM -34.4864 PIt2r 3.11132 PPC 2.42363 PTAr 23.0206 РУК 12.6238 RPF -0.607936 **RPI** -0.607936 TALA -0.151307 THD2 14.5016 TKT1 -0.151307 TKT2 -0.456629 TPI 18.1587

Not enough oxygen to fully oxidize glucose; acetate, formate and ethanol are produced and secreted.

Phenotype Phase Plane Analysis Example

Variables: EX_o2(e) & EX_glc(e)

Phase 3

Not enough oxygen to fully oxidize glucose; acetate produced through fermentation

Phase 2

Growth is limited by excess oxygen; not enough glucose to reduce all the oxygen and produce biomass optimally

Phase 1

No growth; not enough glucose

Phase 4

Not enough oxygen to fully oxidize glucose; acetate and formate are produced and secreted

Phase 5

Not enough oxygen to fully oxidize glucose; acetate, formate and ethanol are produced and secreted.

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Supplementary Tutorial, Nature biotechnology 28(3): 245-248. (Supplementary Examples 4 & 5)

Line of Optimality

- The line of optimality (LO) is defined as a line representing the optimal relation between the two metabolic fluxes used to create a phenotype phase plane.
- The line of optimality is determined by specifying an uptake rate of the substrate along the x-axis and then allowing any value for the flux along the y-axis. Linear Programming can then be used to calculate the optimal value of the objective as a function of the y-axis flux. Once the objective is determined, the corresponding flux value for the y-axis is used to plot the line of optimality (LO).
- The LO defines the optimal utilization of the metabolic pathways without limitations on the availability of the substrates.

Edwards, J. S., R. U. Ibarra, et al. (2001). "In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data." Nat Biotechnol 19(2): 125-130.


```
Phenotype Phase Plane Analysis Example
In [1]: import cobra.test
        import numpy as np
        import pandas as pd
        from cobrapy bigg client import client
        import matplotlib.pyplot as plt
        import escher
        from escher import Builder
       pd.set option('display.max rows', 500)
In [2]: model orig = client.download model ('e coli core', save=False) # Loading the model to the simulation
       model orig.solver = 'glpk'
        Set parameter Username
       Academic license - for non-commercial use only - expires 2022-10-10
        Phase 1 (EX_glc_D_e = -1; EX_o2_e = -10)
In [3]: model 1 = model orig.copy()
       model 1.reactions.EX glc D e.bounds = [-1,-1]
       model 1.reactions.EX o2 e.bounds = [-10, -10]
        solution1 = model 1.optimize()
        solution1 frame = solution1.to frame()
        solution1 frame.sort index().round(5)
        solution1 frame.fluxes.round(5)
```

Phenotype_phase_plane_example.ipynb

Lesson Outline

- Robustness Analysis
- Shadow Prices
- Reduced Costs
- Phenotype Phase Plane Analysis
- Production Envelopes

Welcome to cameo!

```
chat on gitter pypi v0.13.6 license APACHE2 build error coverage 67% DOI 10.5281/zenodo.2575046

Shipping faster with ZenHub 8 launch binder
```

What is cameo?

Cameo is a high-level python library developed to aid the strain design process in metabolic engineering projects. The library provides a modular framework of simulation and strain design methods that targets developers that want to develop new design algorithms and custom analysis workflows. Furthermore, it exposes a high-level API to users that just want to compute promising strain designs.

Curious? Head over to try.cameo.bio and give it a try.

Please cite https://doi.org/10.1021/acssynbio.7b00423 if you've used cameo in a scientific publication.

https://cameo.bio/index.html

Production Envelopes

- Production envelopes are part of phenotypic phase plane analysis which is a modeling technique that was developed to do a theoretical assessment of the limits of cell operation based on their stoichiometric constraints [Edwards et al. 2001].
- A production envelope is a representation that illustrates the tradeoffs between production of the desired product and cell growth.

Phenotypic Phase Plane (flux)

Production Envelope Data

BIOMASS_Ecoli_core_w_GAM	objective_lower_bound	objective_upper_bound	c_yield_lower_bound	c_yield_upper_bound	mass_yield_lower_bound	mass_yield_upper_bound
0	0	10	0	0.333333	0	0.327739
0.01114	0	9.921241	0	0.330708	0	0.325157
0.02228	0	9.842483	0	0.328083	0	0.322576
0.03342	0	9.763724	0	0.325457	0	0.319995
0.044561	0	9.684965	0	0.322832	0	0.317414
0.055701	0	9.606207	0	0.320207	0	0.314832
0.066841	0	9.527448	0	0.317582	0	0.312251
0.077981	0	9.448689	0	0.314956	0	0.30967
0.089121	0	9.369931	0	0.312331	0	0.307089
0.100261	0	9.291172	0	0.309706	0	0.304507
0.111402	0	9.212413	0	0.30708	0	0.301926
0.122542	0	9.133655	0	0.304455	0	0.299345
0.133682	0	9.054896	0	0.30183	0	0.296764
0.144822	0	8.976137	0	0.299205	0	0.294183
0.155962	0	8.897379	0	0.296579	0	0.291601
0.167102	0	8.81862	0	0.293954	0	0.28902
0.178242	0	8.739861	0	0.291329	0	0.286439
0.189383	0.073591	8.661103	0.002453	0.288703	0.002412	0.283858
0.200523	3.986155	8.582344	0.132872	0.286078	0.130642	0.281276
0.211663	8.503585	8.503585	0.283453	0.283453	0.278695	0.278695

carbon_yield: if carbon source is defined and the product is a single
metabolite (mol carbon product per mol carbon feeding source)

mass_yield: if carbon source is defined and the product is a single metabolite (gram product per 1 g of feeding source)

Production Envelope Categories

Phenotypic Phase Plane (carbon yield, src=EX_glc__D_e)

Phenotypic Phase Plane (mass yield, src=EX_glc__D_e)

Can plot any of the categories calculated by this method: objective_lower_bound, objective_upper_bound, c_yield_lower_bound, and mass_yield_upper_bound.

Production Envelopes

Production envelopes are part of phenotypic phase plane analysis which is a modeling technique that was developed to do a theoretical accessement of the limits of cell operation based on their stoichiometric constraints [Edwards et al. 2001].

A production envelope is a representation that illustrates the tradeoffs between production of the desired product and cell growth.

This tutorial is a modified version of the Cameo tutorial on phenotype phase planes at https://cameo.bio/04-analyze-models.html#phenotypic-phase-plane

Setting the environment

```
In [1]: from cameo import models
    from cameo.visualization.plotting.with_plotly import PlotlyPlotter
    #from cameo import flux_variability_analysis
    from cameo import phenotypic_phase_plane

model = models.bigg.e_coli_core.copy()
    plotter = PlotlyPlotter()

Set parameter Username
    Academic license - for non-commercial use only - expires 2022-10-10
    Read LP format model from file C:\Users\hinton\AppData\Local\Temp\tmpg4bnmixz.lp
    Reading time = 0.01 seconds
    : 72 rows, 190 columns, 720 nonzeros
```

Production_envelopes.ipynb

Lesson Outline

- Robustness Analysis
- Shadow Prices
- Reduced Costs
- Phenotype Phase Plane Analysis
- Production Envelopes

Reflective Questions

- 1. What is the purpose of robustness analysis?
- 2. What do the kinks in the robustness analysis represent?
- 3. What are shadow prices?
- 4. How are shadow prices related to the objective function?
- 5. What are reduced costs?
- 6. How are reduced costs related to the objective function?
- 7. What is the difference between shadow prices and reduced costs?
- 8. What should you use to predict the impact of a metabolite on the objective function, shadow prices or reduced costs?
- 9. What should you use to predict the impact of a reaction on the objective function, shadow prices or reduced costs
- 10. What is the purpose of phenotype phase plane analysis?
- 11. How is robustness analysis related to phenotype phase plane analysis?
- 12. What is the relationship between shadow prices and phenotype phase plane analysis?
- 13. What is the line of optimality?
- 14. How do the different phases created in the phenotype phase plane analysis connect to the physiology of a cell?
- 15. What is Cameo?
- 16. What is the purpose of a production envelope?
- 17. What does carbon yield mean?
- 18. What does mass yield mean?

References

Robustness Analysis

- Edwards, J. S. and B. O. Palsson (2000). "Robustness analysis of the Escherichia coli metabolic network." Biotechnology progress 16(6): 927-939.
- Edwards, J. S., R. U. Ibarra, et al. (2001). "In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data." Nat Biotechnol19(2): 125-130.
- Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248. (Supplementary Tutorial)
- Price, N. D., J. A. Papin, et al. (2003). "Genome-scale microbial in silico models: the constraints-based approach." Trends in biotechnology 21(4): 162-169

Phenotype Phase Plane Analysis

- Bell, S. L. and B. O. Palsson (2005). "Phenotype phase plane analysis using interior point methods." Computers & Chemical Engineering 29(3): 481-486.
- Edwards, J.S., R. Ramakrishna, et al. (2002). "Characterizing the metabolic phenotype: a phenotype phase plane analysis." Biotechnology and bioengineering 77(1): 27-36.
- <u>Ibarra, R. U., J. S. Edwards, et al. (2002). "Escherichia coli K-12 undergoes adaptive evolution to achieve in silico</u> predicted optimal growth." Nature 420(6912): 186-189
- Kauffman, K. J., J. D. Pajerowski, et al. (2002). "Description and analysis of metabolic connectivity and dynamics in the human red blood cell." Biophysical journal 83(2): 646-662.
- Edwards, J. S., R. U. Ibarra, et al. (2001). "In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data." Nat Biotechnol 19(2): 125-130.
- Edwards, J. S. and B. O. Palsson (2000). "Robustness analysis of the Escherichia coli metabolic network." Biotechnology progress 16(6): 927-939.
- Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248. (Supplementary Tutorial)
- Price, N. D., J. A. Papin, et al. (2003). "Genome-scale microbial in silico models: the constraints-based approach." Trends in biotechnology 21(4): 162-169

COBRApy Production Envelopes

The production envelope can be used to analyze a model's ability to produce a given compound conditional on the fluxes for another set of reactions, such as the uptake rates. The model is alternately optimized with respect to minimizing and maximizing the objective and the obtained fluxes are recorded. Ranges to compute production are set to the effective bounds, i.e., the minimum / maximum fluxes that can be obtained given current reaction bounds.

Parameters:

- model (cobra.Model) The model to compute the production envelope for.
- reactions (list or string) A list of reactions, reaction identifiers or a single reaction.
- **objective** (string, dict, model.solver.interface.Objective, optional) The objective (reaction) to use for the production envelope. Use the model's current objective if left missing.
- carbon_sources (list or string, optional) One or more reactions or reaction identifiers that are the source of carbon for computing carbon (mol carbon in output over mol carbon in input) and mass yield (gram product over gram output). Only objectives with a carbon containing input and output metabolite is supported. Will identify active carbon sources in the medium if none are specified.
- points (int, optional) The number of points to calculate production for.
- threshold (float, optional) A cut-off under which flux values will be considered to be zero (default model.tolerance).

Returns: A data frame with one row per evaluated point and

- reaction id: one column per input reaction indicating the flux at each given point,
- carbon_source: identifiers of carbon exchange reactions A column for the maximum and minimum each for the following types:
 - flux: the objective flux
 - carbon_yield: if carbon source is defined and the product is a single metabolite (mol carbon product per mol carbon feeding source)
 - mass_yield: if carbon source is defined and the product is a single metabolite (gram product per 1 g of feeding source)

https://cobrapy.readthedocs.io/en/stable/autoapi/cobra/flux_analysis/phenotype_phase_plane/index.html