(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 February 2002 (07.02.2002)

PCT

(10) International Publication Number WO 02/10393 A2

(51) International Patent Classification7: 15/63, C07K 14/54, G01N 33/50

C12N 15/24,

(21) International Application Number: PCT/US01/20485

(22) International Filing Date: 27 June 2001 (27.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/626,617

27 July 2000 (27.07.2000) US

- (71) Applicant: LUDWIG INSTITUTE FOR CANCER RE-SEARCH [CH/US]; 605 Third Avenue, New York, NY 10158 (US).
- (72) Inventors: DUMOUTIER, Laure; Avenue Hippocrate 74, UCL 74,59, B-1200 Brussels (BE). RENAULD, Jean-

Christophe; Avenue Hippocrate 74,, UCL 74,59, B-1200 Brussels (BE).

- (74) Agent: HANSON, Norman, D.; Fulbright & Jaworski L.L.P., 666 Fifth Avenue, New York, NY 10103 (US).
- (81) Designated States (national): AU, BR, CA, CN, JP.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

∢

(54) Title: ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE T CELL INDUCIBLE FACTORS, OR INTER-LEUKIN-21, THE PROTEINS ENCODED, AND USES THEREOF

(57) Abstract: The invention involves isolation of nucleic acid molecules, the expression of which are upregulated by interleukin-9. The amino acid sequences of the proteins which correspond to the nucleic acid molecules show some structural features of cytokines. In addition to the nucleic acid molecules and the proteins, various uses of the molecules are disclosed. The molecules are referred to as T cell inducible factors. The molecules are implicated in activation of STAT molecules, acute phase proteins, and inflammation.

WO 02/10393 PCT/US01/20485

ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE T CELL INDUCIBLE FACTORS, OR INTERLEUKIN-21, THE PROTEINS ENCODED, AND USES THEREOF

RELATED APPLICATIONS

5

10

15

This application is a continuation in part of Serial No. 09/419,568, filed October 18, 1999, which is a continuation in part of Serial No. 09/354,243, filed on July 16, 1999, which in turn is a continuation in part of Serial No. 09/178,973, filed October 26, 1998. All of these applications are incorporated by reference in their entirety.

FIELD OF THE INVENTION

This invention relates to newly isolated nucleic acid molecules and their uses. The nucleic acid molecules are shown to be upregulated by the cytokine interleukin-9 ("IL-9"). Also disclosed are the proteins encoded thereby. These molecules have been described as "T Cell Derived Inducible Factors" or "TIFs"; however, as of now, they are known as "interleukin-21" or "IL-21", as well as "IL-TIF." For this reason, the terms will be used interchangeable herein. These nucleic acid molecules encode proteins which induce STAT activation in cells. They can be used, for example, in the stimulation of regeneration of targeted tissues. Further, their inhibitors or antagonists can be used to retard, prevent or inhibit differentiation of other tissues.

BACKGROUND AND PRIOR ART

The last decade has seen knowledge of the immune system and its regulation expand tremendously. One area of particular interest has been that of research on the proteins and glycoproteins which regulate the immune system. One of the best known families of these molecules are the cytokines. These are molecules which are involved in the "communication" of cells with each other. The individual members of the cytokine family have been found to be involved in a wide variety of pathological conditions, such as cancer and allergies. Whereas sometimes the cytokines are involved in the pathology of the condition, they are also known as being therapeutically useful.

Interleukins are one type of cytokine. The literature on interleukins is vast. An exemplary, but by no means exhaustive listing of the patents in this area includes U.S. Patent No. 4,778,879 to Mertelsmann et al.; U.S. Patent No. 4,490,289 to Stern; U.S. Patent No. 4,518,584 to Mark et al.; and U.S. Patent No. 4,851,512 to Miyaji et al., all of which involve interleukin-2 or "IL-2." Additional patents have issued which relate to interleukin-1 ("IL-1"), such as U.S. Patent No. 4,808,611 to Cosman. The disclosure of all of these patents are incorporated by reference herein. More recent patents on different interleukins include U.S. Patent Nos. 5,694,234 (IL-13); 5,650,492 (IL-12); 5,700,664, 5,371,193 and 5,215,895 (IL-11); 5,728,377, 5,710,251, 5,328,989 (IL-10); 5,580,753, 5,587,302, 5,157,112, 5,208,218 (IL-9); 5,194,375, 4,965,195 (IL-7); 5,723,120, 5,178,856 (IL-6), and 5,017,691 (IL-4). Even a cursory review of this patent literature shows the diversity of the properties of

20

15

5

5

10

15

20

the members of the interleukin family. One can assume that the larger cytokine family shows even more diversity. See, e.g., Aggarwal et al., ed., Human Cytokines: Handbook For Basic And Clinical Research (Blackwell Scientific Publications, 1992), Paul, ed., Fundamental Immunology (Raven Press, 1993), pg 763-836, "T-Cell Derived Cytokines And Their Receptors", and "Proinflammatory Cytokines and Immunity." All cited references are incorporated by reference.

The relationships between various cytokines are complex. As will be seen from the references cited herein, as the level of a particular cytokine increases or decreases, this can affect the levels of other molecules produced by a subject, either directly or indirectly. Among the affected molecules are other cytokines.

The lymphokine IL-9, previously referred to as "P40," is a T cell derived molecule which was originally identified as a factor which sustained permanent antigen independent growth of T4 cell lines. See, e.g., Uyttenhove et al., Proc. Natl. Acad. Sci. 85: 6934 (1988), and Van Snick et al., J. Exp. Med. 169: 363 (1989), the disclosures of which are incorporated by reference, as is that of Simpson et al., Eur. J. Biochem. 183: 715 (1989).

The activity of IL-9 was at first observed on restricted T4 cell lines, failing to show activity on CTLs or freshly isolated T cells. See, e.g., <u>Uyttenhove et al.</u>, <u>supra</u>, and Schmitt et al., Eur. J. Immunol. <u>19</u>: 2167 (1989). This range of activity was expanded when experiments showed that IL-9 and the molecule referred to as T cell growth Factor III ("TCGF III") are identical to MEA (Mast Cell Growth Enhancing Activity), a factor which potentiates the proliferative response of bone marrow derived

WO 02/10393 PCT/US01/20485

4

5 10 15

20

mast cells to IL-3, as is described by Hültner et al., Eur. J. Immunol. and in U.S. Patent No. 5,164,317, the disclosures of both being incorporated by reference herein. It was also found that the human form of IL-9 stimulates proliferation of megakaryoblastic leukemia. See Yang et al., Blood 74: 1880 (1989). Work on IL-9 has shown that it also supports erythroid colony formation (Donahue et al., Blood 75(12): 2271-2275 (6-15-90)); promotes the proliferation of myeloid erythroid burst formation (Williams et al., Blood 76: 306-311 (9-1-90); and supports clonal maturation of BFU-E's of adult and fetal origin (Holbrook et al., Blood 77(10): 2129-2134 (5-15-91)). Expression of IL-9 has also been implicated in Hodgkins's disease and large cell anaplastic lymphoma (Merz et al., Blood 78(8): 1311-1317 (9-1-90). Genetic analyses of mice that were susceptible or resistant to the development of bronchial hyperresponsiveness have unraveled a linkage with the IL-9 gene as well as a correlation between IL-9 production and susceptibility in this model (Nicolaides et al., Proc. Natl. Acad. Sci. USA, 94, 13175-13180, 1997). Human genetic studies also point to the IL-9 and IL-9R genes as candidates for asthma (Doull et al., Am. J. Respir. Crit. Care Med., 153, 1280-1284, 1996; Holroyd et al., Genomics 52, 233-235, 1998). Also, IL-9 transgenic mice allowed for the demonstration that increased IL-9 expression result in lung mastocytosis, hypereosinophilia, bronchial hyperresponsiveness and high levels of IgE (Temann et al., J. Exp. Med. 188, 1307-1320, 1998; Godfraind et al., J. Immunol. 160, 3989-3996, 1998; McLane et al., Am. J. Resp. Cell. Mol. 19:713-720 (1999). Taken together, these observations strongly suggest that IL-9 plays a major role in this disease Additional work has implicated IL-

5

10

15

20

9 and muteins of this cytokine in asthma and allergies. See, e.g. PCT Application US96/12757 (Levitt, et al), and PCT US97/21992 (Levitt, et al), both of which are incorporated by reference..

IL-9 is known to affect the levels of other molecules in subjects. See <u>Louahed</u> et al., J. Immunol. <u>154</u>: 5061-5070 (1995; <u>Demoulin et al.</u>, Mol. Cell. Biol. <u>16</u>: 4710-4716 (1996), both incorporated by reference. It will be recognized that the molecules affected have their own functions in biological systems. For example, <u>Demoulin et al.</u> show that many of the known activities of IL-9 are mediated by activation of STAT transcription factors. As such, there is continued interest in trying to identify molecules whose presence and/or level is affected by other molecules, such as cytokines.

The disclosure which follows describes such molecules. It was found that nucleic acid molecules encoding the proteins of the invention were expressed in the presence of IL-9, but not in its absence. Hence, these molecules are, inter alia, "markers" for the expression or effect of IL-9 in a subject. The molecules once referred to as T Cell Derived Inducible Factors or "TIFs" have now been referred to as interleukin-21, or "IL-21." These and other features of the invention will be seen in the disclosure which follows.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Example 1

WO 02/10393 PCT/US01/20485

6

The murine lymphoma cell line BW5147 is well known as a cell line which can

be grown in vitro, without the need to add any cytokines to its culture medium. In order to identify genes induced by IL-9, samples of BW5147 were cultured either with (200 U/ml), or without IL-9, for 24 hours. Then, total RNA was isolated, using guanidium isothiocyanate lysis, and CsCl gradient centrifugation. These techniques are well known in the art. Following this, polyadenylated RNA was purified from the total RNA, by using an oligo(dT) cellulose column. The isolated, polyA RNA was then used to generate double stranded cDNA. A commercially available oligo(dT) primer was used. Anywhere from 3-5 μ g of polyA RNA were heated to 70°C for 10 minutes with 1μ g of oligo (dT), and then incubated with 5x first strand buffer (250 mM HCl (pH 8.3), 375 mM KCl, 15 mM MgCl₂), 10 mM dithiothreitol, 500 μ M of deoxynucleotide triphosphates, and 800 U of reverse transcriptase. Total volume of the reaction mixture was 20 μ l, and the reaction was allowed to proceed at 37°C for one hour. This resulted in synthesis of the first strand of cDNA. Second strand

15

5

10

to a final volume of 150 μ l. The mixture was incubated for two hours, at 16°C. The product was extracted using phenol-chloroform, and was precipitated with

ethanol. The final cDNA product was then resuspended in 200 µl of TE.

synthesis was accomplished by adding 30µl of 5 second strand buffer (100mM Tris-

HCl (pH 6.9)), 450mM KCl, 23mM MgCl₂, 0.75mM β -NAD⁺, 50mM (NH₄)₂SO₄,

together with 60U of E. coli derived DNA polymerase I, 2U of E. coli RNase H, 10

U of E. coli DNA ligase, and 250 μ M of deoxynucleotide triphosphates, and brought

These steps were carried out for both the stimulated BW5147 cells ("tester" hereafter), and for parallel, unstimulated BW5147 cells ("driver" hereafter).

Example 2

5

10

15

20

The cDNA prepared in Example 1 was then subjected to subtraction cloning in accordance with well known methods. To do this, six oligonucleotides were prepared:

- 5'-AGCACTCTCC AGCCTCTCAC CGCA-3 (SEQ ID NO: 1);
- 5'-GATCTGCGGT GA-3' (SEQ ID NO: 2);
- 5'-ACCGACGTCG ACTATCCATG AACA-3' (SEQ ID NO: 3);
- 5'-GATCTGTTCA TG-3' (SEQ ID NO: 4);
- 5'-AGGCAACTGT GCTATCCGAG GGAA-3' (SEQ ID NO: 5); and
- 5'-GATCTTCCCT CG-3' (SEQ ID NO: 6).

These were used as explained herein. Double stranded cDNA (2 μ g), was digested with restriction endonuclease DpnII, extracted with phenol-chloroform, precipitated with ethanol, and resuspended in 20 μ l of TE (10mM Tris-HCl (pH 7.5); 1mM EDTA). Twelve μ l (1.2 μ g), of cut cDNA was ligated to double stranded SEQ ID NOS: 1 and 2, in a mixture which included 4 μ l of desalted SEQ ID NO: 1 (2mg/ml), 4 μ l desalted SEQ ID NO: 2 (1 mg/ml), 10 μ l of 5X adapter buffer (330mM Tris-HCl, pH 7.6, 50mM MgCl₂, 5mM ATP), 7 μ l DTT (100mM), and 28 μ l of H₂O). The oligonucleotides were annealed to each other and to the sample DNA by heating the mixture to 50°C and then cooling it to 10°C over one hour, followed by adding 5 μ l of T4 DNA ligase, and incubation for 12-14 hours, at 12-16°C. The mixtures were

SUBSTITUTE SHEET (RULE 26)

diluted by adding 140 μ l of TE. PCR was then carried out on 200 μ l samples, as described infra.

Example 3

5

10

To carry out PCR, 200 μ l samples containing 2 μ l of the ligation product in a buffer of 66 mM Tris-HCl, pH 8.8, 4 mM MgCl₂, 16 mM (NH₄)₂SO₄, 33 μ g/ml BSA, 0.3 mM of each dNTP (concentration: 500 μ M), and 2 μ g of SEQ ID NO: 1 were first heated at 72°C for three minutes to remove any of SEQ ID NO: 2 which was hybridized to the product of Example 2. The 3' ends were then filled in by using 5U of Taq polymerase (5 minutes, 72°C). Twenty cycles of amplification were carried out (1 cycle:1 minute at 95°C, and three minutes at 72°C), after which products were combined, phenol extracted, ethanol precipitated, and resuspended in TE buffer, at a concentration of 0.5 μ g/ μ l. Hereinafter, this is referred to as the representation.

Example 4

The representation was then prepared for subtractive hybridization by removing SEQ ID NO: 1 therefrom by digestion with Dpn II. The resulting digest was phenol extracted and ethanol precipitated. In the case of the unstimulated sample, this resulted in the driver, while the stimulated sample resulted in the tester. Portions of tester (20 μ g) were gel purified on a 1.2% agarose gel and isolated. Samples (2 μ g), were ligated to SEQ ID NOS: 3 and 4, in the same way that SEQ ID NOS: 1 and 2 were ligated, as described, supra.

In a first cycle of subtractive hybridization, 0.4 μ g samples of tester with SEQ ID NOS: 3 and 4 ligated thereto were mixed with 40 μ g of driver cDNA. The mixture was phenol extracted, ethanol precipitated, dissolved in 2 μl of 3XEE buffer (30mM EPPS pH 8.0), 3mM EDTA; pH 8.0, 3 mM EDTA. This was overlaid with 30 µl of mineral oil, and denatured for five minutes at 98°C. A 5M NaCl solution (0.5 μ l) was added, and DNA was hybridized for 20 hours, at 67°C. The reaction mixture was diluted to 200 µl with TE, and tRNA carrier. The samples were incubated for three minutes at 72°C to melt away SEQ ID NO: 4, and then four PCR reactions (200 μ l) were prepared. These included 20 μ l of diluted hybridization mix without primer, to fill in the ends of the reannealed tester, followed by 10 cycles of amplification after adding samples of SEQ ID NO: 3 (1 cycle:1minute at 95°C, three minutes at 70°C) after which products were combined, phenol extracted, ethanol precipitated, and resuspended in 40 μ l of 0.2XTE buffer. Single stranded DNA was degraded by a 30 minute treatment of 20 μ l of this material with 20U of mung bean nuclease, at a total volume of 40 μ l. Samples was diluted (1:5), in 50 mM Tris-HCl, at pH 8.9, followed by five minutes of heating at 98°C to inactivate the enzyme. A second PCR was carried out, using 20 μ l of the product described supra, 2 μ l of SEQ ID NO: 3 (1 mg/ml), and 1 μ l (5 U) of Taq DNA polymerase. A total of 18 cycles (1 cycle:1 minute at 95°C, three minutes at 70°C) were carried out. Products were combined, phenol extracted, ethanol precipitated, and resuspended at 0.5-1 μ g/ μ l. The product is referred to hereafter as "DP1", or the first difference product.

20

5

10

Example 5

DP1 was then digested with endonuclease DpnII, as described above, and was ligated to SEQ ID NOS: 5 and 6, following the same processes described for SEQ ID NOS: 1, 2, 3 and 4. Subtractive hybridization and selective amplification, as described in example 4, was repeated, and second difference product, or "DP2", was generated. In these experiments, 50 ng of DP1 was the tester. The driver (40 μ g), was as described supra. The process was repeated to generate a third difference product, using SEQ ID NOS: 3 and 4 as adapters. To generate the third product, 100 pg of tester were mixed with 40 μ g of driver. All steps of the protocols supra were repeated, except the final amplification was carried out for 22 cycles, where one cycle was one minute at 95°C, and three minutes at 70°C. This yielded the final difference product.

Example 6

The final difference products were digested with DpnII, and then cloned into the BamHI site of a commercially available vector, i.e., pTZ19R. Double stranded DNA plasmids were prepared, and then sequenced, using standard methods. The sequences were compared to known sequences in the GenBank and EMBL data bases, using a BLAST search program.

At the end of this subtraction procedure, a short cDNA fragment was identified, i.e., a fragment about 200 base pairs long. This fragment was used to screen a cDNA

20

5

10

WO 02/10393

5

10

15

20

library from BW 5147 cells. The largest clone was sequenced. It is discussed <u>infra</u>. It does not correspond to any known sequence.

The nucelotide sequence (SEQ ID NO: 7), is 1119 bases long, including a 537 base pair open reading frame, which encodes a protein 179 amino acids long. The predicted molecular weight of the protein is 20,093. There are two additional ATG codons which, if they acted as start codons, would produce proteins 172 and 167 amino acids in length, with molecular weights of 19,335 and 18,770 daltons, respectively. Each form of the protein is characterized by a sequence of hydrophobic amino acids which would be cleaved off of the molecule via the endoplasmic reticulum to provide a mature protein.

Analysis of the sequence shows three AT rich motifs (TTATTTAT). These motifs are often found in 5'- untranslated regions of cytokines and oncogenes. <u>Kruys</u>, et al., Science 245: 852 (1989), have shown that these repeats modulate stability of mRNA.

Example 7

The cDNA isolated and analyzed in example 6, supra, was then used as a probe to identify genomic DNA for TIF α .

A genomic library prepared from mouse strain 129 was screened with SEQ ID NO: 7, following standard methods. An EcoRI fragment from a positive clone was subcloned into plasmid pZERO and partially sequenced. The partial sequence is presented as SEQ ID NO: 8.

Example 8

5

10

15

20

A second EcoRI fragment from the positive clone described in Example 7, supra, was also subcloned. There was a great deal of homology, but the sequences were not identical. To be specific, intron 1 of this sequence was 98% identical to SEQ ID NO: 8, intron 2 was 100% identical and intron 3 was 92% identical.

What is striking about the sequences is that the promoters are not at all homologous, suggesting independent regulation. The 5' untranslated regions are 92% identical. The first exon for TIF α is split into exon 1α and exon 1β . The first coding exon (which is exon 1b for TIF α and exon 1 for TIF β) are 99.5% identical, while the second exons are 100% identical, the third exons 97% identical, the fourth exons 98.5% identical, and 96% for the fifth exon. In the untranslated 3' - region, homology is 96%.

Example 9

Using the information described in example 8, <u>supra</u>, a cDNA sequence for the second clone, designated TIFβ was deduced, and is set forth as SEQ ID NO: 9. The genomic DNA sequence was also ascertained, in the same manner as is described, <u>supra</u>, and is set forth as SEQ ID NO: 42. The amino acid sequence is SEQ ID NO: 41.

As compared to the coding region for $TIF\alpha$, that of $TIF\beta$ has six silent changes. There are two changes which result in an inconsequential amino acid change (at both

of positions 36 and 103, Val in TIF α becomes Ile in TIF β). There is also a more significant change, at position 112, where Gln becomes Arg.

Example 10

5

Experiments were undertaken to study expression of the TIFs. BW 5147 cells were stimulated with recombinant murine IL-9 (200U/ml), for varying periods of time (0.2, 0.5, 1, 2 & 24 hours). Total RNA was then isolated, using standard methods and reagents. Reverse transcription was then carried out, using 5μ g total RNA and an oligo (dT) primer. Samples of cDNA corresponding to 20ng of total RNA were then amplified for 25 cycles using different primers. (One cycle was 4 minutes at 94 °C, 1 minute at 57°C, and 2 minutes at 72°C). The TIF primers were:

10

5'-CTGCCTGCTT CTCATTGCCC T-3' (SEQ ID NO: 10)

and

5-CAAGTCTACC TCTGGTCTCA T-3' (SEQ ID NO: 11) (sense and antisense, respectively).

15

These correspond to nucleotides 107-127, and 766-786 of SEQ ID NO: 7, respectively. As a control, β-actin was amplified as well, for 18 cycles (first cycle: 4 minutes at 94°C, 1 minute at 60°C, 2 minutes at 72°C. Succeeding cycles were 1 minute at 94°C, 1 minute at 60°C, 2 minutes at 72°C).

20

Following amplification, post PCR products were analyzed on a 1% agarose gel, and specific amplification was confirmed, following blotting, using internal radioactive probes. The probe for TIF was:

5'-GACGCAAGCA TTTCTCAGAG-3' (SEQ ID NO: 12)

the conditions and probes set forth were not specific for one or the other of the forms of TIF; however, the amplification product of TIF α contains a KpnI restriction site, while the restriction site for TIF β does not. Digestion of the amplification products with KpnI indicated that most, if not all, of the TIF mRNA induced by IL-9 was TIF α , suggesting that the TIF α expression was induced rapidly via the IL-9. The mRNA for TIF α was detectable after 30 minutes of stimulation, and reached a plateau over a 1-24 hour time period.

Example 11

10

15

20

5

Experiments were then carried out which showed that the induction of TIF mRNA by IL-9, described supra, does not require protein synthesis. In these experiments, total RNA was extracted from cells stimulated for 24 hours, as described in example 10, but with or without 10μg/ml of a protein synthesis inhibitor, cycloheximide, for 4.5 hours. In a parallel set of experiments, cells were not stimulated. The total RNA was extracted, and RT-PCR amplification was carried out as described in example 10. Post-PCR products were analyzed on an ethidium bromide-stained, 1% agarose gel. What was seen was that the induction by IL-9 still occurred when protein synthesis was blocked. Hence, the effect of IL-9 is a direct effect, not requiring the synthesis of a protein mediator.

Example 12

In these experiments, the role of STAT proteins in induction of TIF mRNA was studied on derivatives of the cell line BW5147. The first line, BWh9R, expresses wild type human IL-9 receptors. The line BW-Phe116 is a transfectant with a single mutation (at position 116), which renders the receptor unable to activate STAT transcription factors. Still another cell line, BW-mut6, has a mutation which renders the receptor unable to activate STAT5, while retaining the ability to activate STAT1 and STAT3. Finally, cell line BW-mut7 has a single mutation which renders the IL-9 receptor unable to activate STAT1 and STAT3, but which retains the ability to activate STAT5.

10

5

Cell stimulation, isolation of total RNA, reverse transcription and amplification of cDNA were all carried out as described in example 10 (Cells were stimulated for 24 hours. Both human and murine recombinant IL-9 were used). The PCR products were analyzed on an ethidium bromide stained, 1% agarose gel, as describe supra.

15

The analysis revealed that human IL-9 did not induce expression in BW-Phe116, suggesting that STAT transcription factors are implicated. It was found that IL-9 induced TIF expression in the BW-mut6 mutant, but not the mut7 variant, suggesting that STAT1 or STAT3 are involved, but not STAT5.

Example 13

The expression of TIF mRNA in normal mouse spleen cells was then studied.

20

Spleen cells from 10-12 week old Balb/c mice were cultured for 24 hours in control medium or the control medium supplemented with $20\mu g/ml$ of LPS (which

activates B lymphocytes and macrophages), or ConA (which activates T cells), or ConA plus 1% of a blocking antiserum against murine IL-9, with β actin being used as a control. Purification of RNA, RT-PCR analysis were carried out as described supra.

5

The data indicated that TIF is, at best, very weakly expressed in resting spleen cells, not induced by LPS, but strongly induced by ConA. Anti IL-9 antiserum did not affect induction by ConA, suggesting that its effect is not mediated by IL-9, or is mediated by other cytokines.

10

When the ConA activated spleen cells were analyzed using sequences of RT-PCR products, it was found that these cells were expressing $TIF\alpha$ predominantly, or exclusively.

Example 14

Further experiments showed that TIF mRNA was expressed even in the absence of IL-9 induction.

15

Spleen cells from 5 week old FVB mice were enriched for T cells, using a nylon wool column. Then, the cells were stimulated for 24 hours in medium supplemented with ConA (a T cell activator), or PMA (which activates PKC in most cells), either with or without IL-9.

20

Total RNA was isolated using standard techniques, and then ten microgram samples were fractionated via electrophoresis on a 1.3% agarose gel containing 2.2M formaldehyde. The fractions were then transferred to a nitrocellulose membrane,

WO 02/10393 PCT/US01/20485

17

labeled, and assayed in a hybridization assay following Van Snick, et al, J. Exp. Med. 169: 363 (1989), incorporated by reference.

The results indicated that the induction of TIF by ConA was not modified, and that IL-9 did not induce TIF RNA in PMA activated spleen cells.

Example 15

5

10

15

The expression of TIF mRNA in various cell lines was tested. In these experiments, murine cell lines were stimulated for at least one day, with a particular cytokine. Specifically, 9T7 is a T cell lymphoma, which responds to IL-2, IL-4 or IL-9. Cell lines TS3 and TS6 are derived from T helper cell clones, and proliferate in the presence of either IL-2 or IL-9. MC9 and LI38 are mast cell lines, which proliferate in the presence of either IL-3 or IL-9.

Following stimulation, total RNA was prepared using standard guanidium isothiocyanate lyses, and CsCl gradient centrifugation.

The 9T7 line was then analyzed by Northern blotting, as described in example 14, while the other lines were assayed using RT-PCR analysis, as described supra.

It was found that IL-9 upregulated TIF expression in T helper cells and mast cells, while IL-2 and IL-3 did not. The 9T7 cell line, however, showed roughly the same level of expression, regardless of the cytokine, indicating that IL-9 is not mandatory for TIF expression.

20 <u>Example 16</u>

The expression of TIF mRNA in B cell lines was then studied. The cell lines A20, 70Z/3, and BCL-1 are B cell leukemia cell lines which grow, in vitro, without cytokines. These cells were stimulated for 24 hours with IL-4 and IL-9 and total RNA was isolated, using standard methods. Expression was analyzed by RT-PCR which was carried out for 35 cycles, followed by blotting and hybridization, as described supra.

The results indicated that TIF expression is detectable in B cells, but is weakly upregulated at best in the presence of IL-9 and IL-4.

Example 17

10

15

20

5

Experiments were then carried out to study expression of the inventive molecules in T helper cell lines. TS2 and TS1 are known T helper cell lines, derived from T helper cell clones, which proliferate in the presence of either IL-9 or IL-2 (TS2), and either IL-9 or IL-4 (TS1). Specifically, TS1 or TS2 cells were grown in the presence of the listed cytokines for at least 10 days, after which RNA was extracted using known methods. Expression of the molecules was studied via RT-PCR (35 cycles), using the protocols described supra. In TS1 cells both IL-4 and IL-9 induce TIF expression, but IL-2 does not do so in TS2 cells.

Example 18

Expression of TIF mRNA in various mouse organs were studied. Total RNA was prepared from liver, kidney, heart, brain, intestine, spleen, thymus, lung, muscle and bone

marrow, using standard guanidium isothiocyanate methodologies and CsCl gradient centrifugation. Forty cycles of RT-PCR were carried out, using the protocols described supra. Strongest expression was found in thymus tissue, while less intense signals were found in brain tissue, and weaker expression in the remaining tissues.

5 Example 19

The following experiments describe production of TIF α in 293-EBNA cells.

Complementary DNA for TIFα was described <u>supra</u>. It was subcloned into a commercially available expression vector pCEP-4, in operable linkage with a CMV promoter. The resulting plasmids were transfected into 293-EBNA cells, using standard lipofectamine methods. Following transfection, the cells were incubated in a methionine free medium, supplemented with ³⁵S labeled methionine, for 24 hours. Supernatant was harvested, and run on an acrylamide gel, followed by electrophoresis. The gel was then dried and exposed to autoradiography for 1 day. A control was then run by transfecting cells with the same plasmid, in which the cDNA was cloned in the antisense direction.

15

10

A heterogenous band of about 25-30 kilodaltons was found from the cells transfected with TIF in the sense direction. Any discrepancies between the predicted molecular weight, the actual molecular weight in the system, and the heterogeneity, can be attributed to glycosylation. In a series of parallel experiments, cDNA encoding human TIF was expressed in the same way as the murine cDNA was expressed. With the exception of the change of the cDNA, all experimental parameters were the same.

Example 20

Further experiments were carried out to study production of TIFα in COS cells. Specifically, TIFα cDNA was subcloned into the plasmid pEF-BOS.puro described by Demoulin et al., supra, in operable linkage with the EF-1α promoter. The plasmid cDNA was transfected into COS cells, using the same lipofectamine method described supra. The cells were incubated in methionine free medium, supplemented with ³⁵S methionine for 24 hours, after which supernatant was treated as described in example 19, supra. Again, a heterogenous band of 25—30 kilodaltons was observed, as well as an 18 kilodalton band, which probably represents a non-glycosylated form of the molecule.

10 <u>Example 21</u>

In these experiments, it was discovered that TIF induces STAT activation in mesangial, neuronal melanoma, and hepatoma cells. It is known that when cytokines activate STAT factors, the factors dimerize, move from cytoplasm to the nucleus, and bind to target sequences in promoters. The details of the experiments follow.

15

20

5

Transfected 293-EBNA cells as described <u>supra</u> were used following incubation in normal medium for 48 hours, as were supernatant from the controls, also described <u>supra</u>. Samples of a mouse kidney mesangial cell line, ("MES13" hereafter), a rat pheochromocytoma cell line, ("PC12" hereafter), four different human melanomas (SK23, AUMA, NA-8mel and MULL), human hepatoma (HepG3) and rat hepatoma (H-4-II-K) were used. Cell samples (0.5x10⁶) were stimulated for 5-10 minutes in the presence of 1% of supernatant. Nuclear extracts were then prepared, in accordance with Demoulin et

al., Mol. Cell. Biol. <u>16</u>: 4710 (1996), incorporated by reference. In brief, cells were washed with PBS and then resuspended in 1 ml of ice cold hypotonic buffer for 15 minutes. (Buffer was 10mM HEPES buffer, pH 7.5, with 10mM KCl, 1mM MgCl₂, 5% glycerol, 0.5 mM EDTA, 0.1mM EGTA, 0.5mM dithiothreitol, and 1mM Pefabloc, 1mM Na₃V₄, and 5mM NaF). Cells were then lysed by adding 65 μ l of NP-40, followed by vortexing. Nuclei were pelleted, by vortexing for 30 seconds at 14,000 rpm, followed by extraction in buffer supplemented with HEPES (20mM), glycerol (20%), and NaCl (420mM). Nuclear debris was removed by centrifuging for 2 minutes. DNA binding activity was determined in accordance with <u>Demoulin et al.</u>, <u>supra</u>, using a ³²P labeled double stranded oligonucleotide called "GRR," which contains the STAT binding site of the FcyRI gene promoter, i.e.:

5'ATGTATTTCC CAGAAA-3' (SEQ ID NO: 13)

and

5

10

15

20

5'-CCTTTTCTGG GAAATAC-3' (SEQ ID NO: 14)

corresponding to the upper and lower strands of the binding sites in the GRR probe. Briefly, 5μ l volume of nuclear extracts were incubated in binding buffer (12mM HEPES, pH 7.6, 10mM KCl, 0.5mM EDTA, 2.5% glycerol, 0.1mg of poly(dI-dC) per ml) for 5 minutes. Radiolabeled GRR probe (10^5 cpm; approximately 0.5ng) was added, and incubation was continued for 25 minutes before loading onto a non-denaturing polyacrylamide gel.

It was also noted that the complexes observed in MES13 cells, described <u>supra</u>, were partially overshifted by both anti-STAT5 and anti-STAT3 antibodies, showing that

22

(i) the cells under examination were targets for TIF, and (ii) that STAT3 and STAT5 are major components of the complex activated by TIF. The difference in STAT profile, as compared to the profile in Example 12, <u>supra</u>, is attributable to the difference in cell source (human versus mouse). It was also observed that human TIF works on murine cells, and vice versa.

Example 22

5

10

15

This example details the isolation and cloning of a nucleic acid molecule which encodes human TIF. First, human peripheral blood mononuclear cells were prepared via standard density gradient centrifugation. Following this preparation, samples were cultured for 24 hours, at 3 x 10⁶ cells/ml, either with or without anti-CD3 monoclonal antibody (The antibody was the commercially available OKT3 mAb, used in the form of ascites fluid at 1/500 dilution). This antibody was used because T cell derived cytokines are generally expressed only upon activation by e.g., CD3 specific antibodies.

Total RNA was isolated from these cells, using standard guanidine-isothiocyanate / CsCl ultra-centrifugation techniques. Following isolation, 10μ g samples of the RNA were reverse transcribed using an oligo (dT)15 primer.

Following preparation of cDNA, as outlined <u>supra</u>, samples which corresponded to 100ng of total RNA were amplified, via PCR, using the following primers:

- 5' AGGTGCTGAA CTTCACCCTG GA 3' (SEQ ID NO: 15)
- 20 5' CCACTCTCTC CAAGCTTTTT CA 3' (SEQ ID NO: 16)

WO 02/10393 PCT/US01/20485

which are based upon a murine cDNA sequence, (i.e., SEQ ID NO: 7). The PCR conditions involved 30 cycles of amplification, with one cycle defined as 1 minute at 94°C, followed by 1 minute at 42°C, and then 2 minutes at 72°C. Amplification product was separated on an agarose gel, using standard methods, and then sequenced. The result indicated that fragments of the cDNA had been amplified. Hence, a second reaction was carried but, using the same materials except SEQ ID NO: 16 was replaced by SEQ ID NO: 17, i.e.:

5' -CAAGTCTACC TCTGGTCTCA T-3'

This second PCR reaction was carried out for 25 cycles, with one cycle being defined as 1 minute at 94°C, followed by 1 minute at 45°C, and then 2 minutes at 72°C. The amplification product was subjected to the same steps as the first one. A fragment of 418 nucleotides was amplified, which was found in anti-CD3 stimulated cells, but not resting PBMCs. This fragment's nucleotides sequences is set forth at SEQ. ID NO: 18.

Example 23

5

10

15

20

Following preparation of amplification product, the 5' end of cDNA was isolated by using standard, 5' - RACE techniques. In brief, first strand cDNA was prepared by using SEQ ID NO: 19 as a primer, i.e.:

5' - TGGCCAGGAA GGGCACCACC T - 3'

This primer was based upon the sequence information obtained in accordance with example 22. In brief, the 5' - RACE method was carried out by combining 1 μ g of total RNA, prepared as described supra, 2.5 pmoles of SEQ ID NO: 19, reverse transcriptase, reverse

5

15

20

transcriptase buffer, 2.5 μ l of dNTP mix (10 mM), 2.5 μ l of MgCl₂ (25mM), and 2.5 μ l of dithiothreitol (0.1 M). The reaction was carried out and, after completion, original RNA was removed via adding RnaseH, and Rnase TI. Any unincorporated dNTPs, as well as primer and proteins, were removed. The cDNA was tailed using terminal transferase, or "TdT." This enzyme creates a 3'-binding site for the abridged anchor primer, as described infra. Tailing was carried out by combining the purified, first strand cDNA, TdT, buffer (10 mM Tris-HCl, 25 mM KCl, 1.5 mM MgCl₂), and 200 μ M of dCTP.

Following the tailing reaction, PCR was carried out using:

- 10 5' -CCTATCAGAT TGAGGGAACA G 3' (SEQ ID NO: 20)
 - and 5' RACE abridged anchor primer:
 - 5' GGCCACGCGT CGACTAGTAC GGGIIGGGIIGGGIIG 3' (SEQ ID NO: 21).

The amplification involved 35 cycles (1 cycle defined as 1 minute at 94°C, 1 minute at 56°C, and 2 minutes at 72°C). Following this, nested amplification was performed on 5 μ l of a 1/100 dilution of the amplification product, using SEQ ID NO: 20 and the

abridged universal amplification primer:

5' - GGCCACGCGT CGACTAGTAC - 3' (SEQ ID NO: 22).

Amplification involved 30 cycles (1 cycle being defined as 1 minute at 94°C, 1 minute at 56°C, and 2 minutes at 72°C). The resulting PCR product was cloned, following standard procedures, and sequenced.

WO 02/10393

These three protocols, i.e., the two experiments described <u>supra</u> which generated fragments, and the 5' - RACE PCR, also described <u>supra</u>, permitted alignment of the sequenced amplification product, to generate the complete sequence.

Following the alignment, oligonucleotides were generated which flanked the deduced open reading frame, i.e.:

5' - CCTTCCCCAG TCACCAGTTG - 3' (SEQ ID NO: 23)

and

5

10

15

5' - TAATTGTTAT TCTTAGCAGG - 3' (SEQ ID NO: 24).

These primers were used to amplify the entire open reading frame, using mRNA from CD3 specific mAb stimulated cells, as described <u>supra</u>. For amplification, 25 cycles (1 cycle being defined as 1 minute at 94°C, 1 minute at 56°C, and 2 minutes at 72°C).

The complete sequence of the human cDNA is set forth at SEQ ID NO: 25. It contains a 537 base pair ORF which encodes a 179 amino acid protein. This is the same length as the murine protein. The human protein has 79% amino acid homology with the murine protein, and 25% homology with IL-10. Human and murine proteins are set out as SEQ ID NOS:43 and 40, respectively.

Example 24

These experiments detail work on the isolation of human genomic DNA corresponding to the cDNA discussed supra.

Based upon the cDNA sequences, primers were developed which correspond to nucleotides 51-70 and the complement of nucleotides 631-650 of SEQ ID NO: 25. PCR was carried out, using standard methodologies. Specifically, 100ng of genomic DNA taken from CESS cells (an EBV- transformed, lymphoblastoid cell line) was used as a template, and 33 cycles of amplification were carried out (one cycle of amplification being defined as 94° C for 30 seconds, 50° C for 30 seconds, and 72° C for 5 minutes). Once a sequence was isolated, it was sequenced, and this is set forth as SEQ ID NO: 26. The sequence is about 4.8 kilobases in length, and is believed to contain the entire genomic sequence encoding the TIF molecule, lacking only the 5' flanking region, the promoter, and the 3' end. Analysis indicates that it contains 6 exons and 5 introns, as does the murine genomic sequence.

Southern blot hybridization was carried out, using standard methods. It showed that the genome contains only a single copy of the TIF gene.

Example 25

15

5

10

It was of interest to identify where the genomic DNA discussed supra was located in the human genome. In order to do this, two different approaches were taken. In the first, the sequence discussed <u>supra</u>, i.e., SEQ ID NO: 26, was labeled with a flourescent label, and then was used to probe the human genome via fluorescent, in situ hybridization ("FISH") using standard methods.

20

In a second approach, a panel of radioactive hybrid clones were screened using the probe consisting of nucleotides 51-70 of SEQ ID NO: 25, and 5'-ATCAGATGGA

WO 02/10393

5

10

15

20

TTACTGAATG-3' (SEQ ID NO:27). PCR was carried out using 25 ng of genomic DNA as a template, for 35 cycles, where one cycle is defined as 94°C for 1 minute, 55° C for 1 minute and 72 °C for 2 minutes.

Both methodologies indicated that the gene is located at chromosome 12q15. Some work links diseases associated with asthma at this site. See, e.g. Nat. Genet. 15:389-392 (1997); Ober, et al, Hum. Mol Genet. 7(9):1393-1398(1998); Nickel, et al, Genomic 46(1):159-162(1997); Takahashi, et al, Genomics 44(1):150-2(1997); Barnes, et al, Genomics 37(1):41-50(1996), all incorporated by reference.

Public databases were consulted to determine if any part of the sequences were presented therein. The last exon of TIF was found on a BAC clone, derived from chromosome 12q15. (Accession No: AC007458; 191,111 base pairs, BAC RDCI11-444B24). The identification of the last exon on this clone suggests that the TIF gene is located about 90 kilobases from the IFN gene, and less than 30 kilobases from a gene referred to as AK155, which is an IL-10 related cytokine (Knappe, et al, J. Virol 74:3881-3887 (2000)).

Example 26

These experiments describe the manufacture of antibodies which bind to the TIF protein. To make these, a peptide consisting of amino acids 40-61 encoded by SEQ ID NO: 7 was coupled to KLH carrier protein, using standard methods and a ratio of 1 mg peptide to 1 mg carrier protein. Subject animals (rabbits), were immunized 3 times, at 2 week intervals, with 150 μ g of the complex. The immunogen was emulsified in Complete

Freund's Adjuvant for the first injection, and then Incomplete Freund's Adjuvant for the next two.

A first bleed was performed one month after the last injection, and serum was prepared, following known methods.

The serum was then tested in a standard Western Blot. In brief, 10 μ l of supernatant from cells transfected with either SEQ ID NO: 7 or SEQ ID NO:25 were separated via SDS-PAGE electrophoresis, and then blotted onto PVDF membranes. Antiserum was diluted to 1:500, and used in a standard Western Blot protocol, together with anti-rabbit antibody as the secondary antibody, and a commercially available detection kit.

It was found that the serum did, in fact, recognize the TIF protein.

Example 27

5

10

15

20

This example describes experiments carried out to identify cell lines which are responsive to human TIF. HEK293-EBNA human embryonic kidney cells, described supra, were seeded in 6 well plates, at 3 x 10^5 cells/well one day before transfection. They were transfected with 2 μ g of pCEP-4 plasmid which contained cDNA for human TIF, under control of the CMV promoter. Cells were incubated after transfection, in 1.5 ml normal medium, for 3 days, in order to maximize production of recombinant human TIF.

It was hypothesized that human TIF would induce activation of STAT transcription factors in the same way the murine factor did. The protocol of example 21, supra was followed. Supershifts were performed by adding anti-STAT antibodies $(0.75\mu g$ anti STAT

1, 1 μ g of anti-STAT 3, or 1 μ g of anti-STAT 5b), to mixtures of nuclear extracts and labeled DNA probe, and incubated.

A TIF induced bandshift was observed when the hepatoma cell line HepG2 was used. The antibodies described <u>supra</u> were used to characterize the response further. Anti-STAT-3 antibodies shifted most of the retardation complexes, while the weak, remaining complexes were supershifted by anti-STAT-1 antibodies. The anti-STAT-5 antibodies had no effect. This indicates that STAT-3 and, to a lesser extent, STAT-1 are the major transcription factors activated by TIF. These results were also obtained using human hepatoma cell line HepG3, and also hepatoma cell line H4IIE.

10 **EXAMPLE 28**

5

15

20

This example describes experiments designed to measure STAT activation by means of a reporter gene. The reporter was "pGRR5." This contains 5 copies of the sequence set out in example 21, upstream of a luciferase gene under control of the TK promoter. The control was vector pRL-TK, which contains the *remilla* luciferase gene, under control of the TK promoter.

The assay was carried out by combining 10^6 HepG2 cells with 15 μ g pGRR5, and 1 μ g of Prl-TK (250V, 74Ω , 1,200 μ F). The pool of transfectants was divided into 24-well plates (42,000 cells/well).

After 1 hour, cells were stimulated with either human TIF (1% HEK293 cell supernatant) with 300U/ml of human IL-6, 1% supernatant from mock transfected HEK293 cells, or medium alone.

After two hours, cells were pelleted, and lysed. Luciferase activity was monitored using standard methodologies. The results indicated that stimulation with the molecule of the invention increases transcriptional activity of a promoter that includes STAT-binding sites.

5 EXAMPLE 29

10

Activation of STAT-3 by cytokines like IL-6 is known to result in acute phase protein induction in hepatoma cells. To determine if TIF exerted the same activity, $5x10^6$ HepG2 cells were stimulated for 2, 13, or 24 hours, with 1% supernatant from transiently infected HEK293-EBNA cells. In some experiments protein synthesis inhibitor cycloheximide was used at 10 μ g/ml, and combined with the cells and supernatants. Following stimulation, total RNA was isolated using standard methodologies, and reverse transcription was performed on 10 μ g samples of total RNA, using an oligo(dT) primer. Then, cDNA corresponding to 20 ng of RNA was amplified, for 18 cycles, with primers specific for human serum amyloid A ("SAA"), i.e.:

15 agctcagcta cagcacagat

(sense, SEQ ID NO: 28)

cctgccccat ttattggcag

(antisense, SEQ ID NO: 29)

Human α1 antichymotrypsin:

20 tgtcctctgc caccctaaca

(sense, SEQ ID NO: 30)

taattcacca ggaccatcat

(antisense, SEQ ID NO: 31)

for human haptoglobin:

gtggactcag gcaatgatgt

5 (sense, SEQ ID NO: 32)

acatagagtgt taaagtggg

(antisense, SEQ ID NO: 33)

and for human β -actin:

gctggaaggt ggacagcgag

(sense, SEQ ID NO: 34)

10

15

20

tggcatcgtg atggactccg

(antisense, SEQ ID NO: 35).

For SAA, Tm was 54°C, while it was 52°C for human $\alpha 1$ - antichymotrypsin and haptoglobin, and 56°C for β -actin. PCR products were analyzed, in ethidium bromide stained agarose gels, using standard methods.

The results indicated that TIF strongly induced SAA and α 1-chymotrypsin and, to a lesser extent, haptoglobin. In order to determine if TIF directly upregulates SAA, or whether protein synthesis is required, HEPG2 cells were stimulated, as described, in the presence of cycloheximide. SAA expression was not affected, indicating that protein synthesis was not required for TIF activity.

EXAMPLE 30

5

10

15

20

The results, <u>supra</u>, show that TIF and IL-6 appear to have similar activities on acute phase reactants. As IL-6 activity is mediated through gp 130, experiments were carried out to determine if TIF activity is mediated through gp 130 as well.

To determine if this was the case, HepG2 cells were transfected with a luciferase reporter, as described, <u>supra</u>, and were then stimulated with either TIF or IL-6, in the presence of polyclonal, anti-gp 130 antibodies which had been determined previously to block the activity of gp 130 interacting cytokines.

The results indicated that the polyclonals blocked only IL-6 activity.

Parallel experiments were carried out to determine if the IL-10R β chain was involved. In the presence of anti - IL-10R β antibodies, TIF activity was blocked completely while IL-6 activity was unaffected. The same affect was observed upon assaying for SAA expression.

EXAMPLE 31

These experiments were designed to determine the ability of TIF to regulate acute phase proteins in vivo.

Varying amounts of recombinant murine TIF (50, 12.5, 3.2, 0.8 or 0.2 μ g) were injected, intraperitoneally, into endotoxin resistant C3H/HeJ female mice (10-12 weeks old). Six hours after injection, the mice were killed, with the exception of the mice who received 50 μ g of TIF, which were killed after 1, 3, 6, 12, or 24 hours. Livers were removed and directly frozen in liquid nitrogen. Total RNA was then extracted, using standard methodologies, after which 10 μ g samples of total RNA were fractionated on a

...

1.3% agarose gel which contained 2.2 ml/liter formaldehyde. Samples were then transferred to nitrocellulose membranes.

Murine SAA probes were manufactured, using a commercial labelling kit. The hybridization assay was carried out in accordance with Van Snick, et al, J. Exp. Med 169:363-368 (1989), incorporated by reference. The probe itself was obtained via PCR, as described supra, using cDNA from murine liver, isolated as described supra. The primers used to manufacture the probe were:

tctgctccct gctcctggga

(sense, SEQ ID NO: 36)

10 and

15

20

5

tccaggaggt ctgtagtaat

(antisense, SEQ ID NO: 37)

The results indicated that the highest dose of the murine TIF (50 μ g), induced SAA expression in as little as 1 hour post i.p. injection. Maximal effect was reached after 6 hours. The expression level for SAA decreased at 24 hours past injection.

The data generated from the experiments using varying doses of TIF indicated that maximal induction of SAA still resulted when 3.2 μg dosages were used. SAA message was still detectable when as little as 0.8 μg were used.

EXAMPLE 32

Initially, TIF was identified as a T cell derived cytokine. Most cytokines that regulate the liver acute phase are produced mainly during inflammation. In order to

determine if TIF could be produced via inflammatory stimulation, in vivo, 2 μ g of E.coli lipopolysaccharide antigen were injected, intraperitoneally into 12 week old, female BALB/c mice. Mice were killed two hours later, and organs were frozen in liquid nitrogen. Total RNA was isolated following standard protocols, and reverse transcription was performed on 10 μ g total RNA, using oligo (dT) primers. Following the reverse transcription, cDNA corresponding to 20 ng of total RNA was amplified for 25 cycles, using primers specific for TIF, i.e.:

ctgcctgctt ctcattgccc t

(sense, SEQ ID NO: 38)

10 and

15

20

5

caagtetace tetggtetea t

(antisense, SEQ ID NO: 39),

which had a Tm of 55°C. PCR products were analyzed via agarose gel electrophoresis.

The results indicated that LPS induced expression of TIF in all organs examined, indicating that TIF is involved in inflammatory processes.

The foregoing examples describe the invention, one aspect of which are isolated nucleic acid molecules, which encode TIF proteins such as those with the amino acid sequence of the protein encoded by the nucleotide sequence of SEQ ID NO: 7, 25 or 26. It will be appreciated by one of ordinary skill that the degeneracy of the genetic code facilitates the preparation of nucleic acid molecules which may not be identical to the nucleotide sequence of SEQ ID NO: 7, 25 or 26, but which encode the same protein. Of course, SEQ ID NOS: 7, 25 and 26 are preferred embodiments of this invention, but other

5

10

15

20

embodiments are also a part of the invention. Genomic DNA, complementary DNA, and RNA, such as messenger RNA, are all to be included therein. Isolated nucleic acid molecules from other animal species, including other mammals, are also a part of the invention. A preferred aspect of the invention are isolated nucleic acid molecules whose complements hybridize to SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 25 or SEQ ID NO: 26 under stringent conditions. "Stringent conditions," as used herein, refer, for example, to hybridization at 65°C in buffer (3.5xSSC), 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 25mM NaH₂PO₄ (pH 7), 0.1% SDS, 2mM EDTA, followed by a final wash at 2xSSC, room temperature and then 0.1xSSC/0.2xSDS at temperatures as high as, e.g., about 65°C. More stringent conditions, such as 0.1xSSC, can also be used. These nucleic acid molecules encode proteins of about 17-22 kD as determined by SDS - PAGE, which activates STAT proteins, such as STAT 1, STAT3 and/or STAT5. In glycosylated form, these proteins can range from about 17 to about 30 kilodaltons, as determined by SDS - PAGE. Also a port of the invention are isolated nucleic acid molecules which encode proteins having at least 30%, preferably at least 45%, more preferably at least 60%, and most preferably 90% amino acid identity with an amino acid sequence of a protein encoded by SEQ ID No: 7, 25 or 26, e.g., SEQ ID NO: 42.

Also a part of the invention are expression vectors which include the nucleic acid molecules of the invention, operably linked to a promoter, so as to facilitate expression of the DNA. It is well within the skill of the artisan to prepare such vectors.

10

15

20

The vectors, as well as the nucleic acid molecules per se, can be used to prepare recombinant cells, be these eukaryotic or prokaryotic, wherein either an expression vector or the nucleic acid molecule itself is incorporated therein. <u>E. coli</u> cells, COS cells, CHO cells, etc., are all examples of types of cells which may be used in accordance with this aspect of the invention.

Proteins encoded by the above referenced nucleic acid molecules, preferably in isolated form, are another feature of this invention. By "protein" is meant both the immediate product of expression of the nucleic acid molecules, glycosylated forms of it, as well as multimeric forms, such as dimers, trimers, and so forth. Also a part of the invention are multimers, such as dimers, which contain at least one protein molecule of the invention, and at least one, different protein molecule. Preferably, this different protein molecule is a cytokine, such as IL-10. Also included as a feature of the inventions are constructs, such as fusion proteins, where all or a part of the proteins described supra are linked in some fashion, such as in a fusion protein, to at least one additional protein or peptide, or amino acid sequence. The "fusion partner" may be, for example, a molecule which provides a recognizable signal, either directly or indirectly, such as a FLAG peptide, β-galactosidase, luciferase, and so forth. These fusion partners are preferably joined to the molecule which is described supra at the N- and/or C- terminus of the protein; however, it is to be understood that there are many techniques known for joining molecules to amino acids, and any and all of these methodologies can produce constructs which are a part of the invention.

10

15

20

The individual protein molecules of the invention, as noted <u>supra</u>, will preferably have a molecular weight of from about 17 to about 30 kilodaltons, as determined by SDS-PAGE. In multimeric forms, the molecular weight of the complex will, of course, vary, but the TIF molecules contained therein will each have a molecular weight of about 17 to 30 kilodaltons, as determined by SDS-PAGE.

The proteins preferably consist of at least about 120 and no more than about 200 amino acids. Preferably, the amino acids sequences consists of or comprises all or part of the amino acid sequences encoded by SEQ ID NOS: 7, 8, 9, 25 or 26. More preferably, the amino acid sequence contains all but about the first 40 amino acids encoded by said SEQ ID's. Even more preferably, it contains all but about the first 20 amino acids encoded by these sequences. Most preferably, the protein comprises amino acids set forth at SEQ ID NO: 40 or 41, as well as proteins defined by the amino acid identities set out supra.

It will be appreciated by the skilled artisan that the proteins encoded by the above recited nucleic acid molecules are a feature of the invention, and may be used to produce antibodies, in accordance with standard protocols. Such antibodies, in monoclonal and polyclonal form, constitute a further feature of the invention as do fragments of said antibodies, chimeric forms, humanized forms, recombinant forms, and so forth. Also a feature of the invention are immunogens, comprising all or a part of the amino acid sequence protein molecules of the invention, preferably combined with an adjuvant, such as Complete or Incomplete Freund's Adjuvant. Portions of the protein sequences may be linked to other molecules, such as keyhole limpet hemocyanin, to render them more

10

15

20

immunogenic. These antibodies can be used, e.g., to determine if the proteins of the invention are present. This is a further feature of the invention, as is now explained. It has been shown, in the examples, that the nucleic acid molecules of the invention were expressed in the presence of the IL-9. Hence, a further feature of the invention is a method to determine if IL-9 is or has been present, wherein one detects either the proteins of the invention, using antibodies for example, or mRNA using the nucleic acid molecules of the invention, as probes. The mRNA can be determined directly, or in the form of cDNA. Such probes may or may not be labeled, as a matter of choice for the user. Hence, one can determine, for example, if, following administration of IL-9, the cytokine is still efficacious, by determining if the nucleic acid molecule of the invention is present. This type of assay can be adapted, for quantitative studies, wherein one determines, for example, either if a cell is sensitive to IL-9, and if so, how sensitive it is. One can also use the proteins of the invention to phosphorylate STAT proteins such as STAT1, STAT3 and/or STAT 5. This in turn results in dimerization of the STAT protein, followed by migration to the nucleus to provoke the effect that these STAT proteins have on cells.

One could also use these molecules to test the efficacy of IL-9 agonists or antagonists when administered to a subject, such as a subject suffering from lymphoma, an immune system disorder such as an allergy, acquired immune deficiency syndrome, autoimmune diabetes, thyroiditis, or any of the other conditions described in, e.g, U.S. Patent No. 5,830,454; 5,824,551, and pending application Serial No. 08/925,348, filed on September 8, 1997 now allowed, all of which are incorporated by reference. The molecules can also be used to mediate the role of IL-9 in these and other conditions. To

PCT/US01/20485

5

10

15

20

elaborate, since IL-9 induces TIFs, the TIFs are useful as IL-9 activity mediators. Thus, a further aspect of the invention is a method to determine activity of endogenous IL-9, such as in situations where excess IL-9 activity is implicated, such as asthmas, allergies, and lymphomas. One can also block or inhibit IL-9 activity by blocking or inhibiting TIF or TIF activity, using, e.g., antisense molecules, antibodies which bind to TIF, or other antagonists of these molecules. For example, muteins of TIF, which bind to the TIF receptor but do not activate it, thereby inhibiting IL-9 induced activity, are a feature of the invention. Examples of conditions which can be treated by the use of such TIF muteins are allergies, asthma, and so forth. Muteins in accordance with the invention can be made in accordance with, e.g., Weigel, et al, Eur. J. Biochem 180(2):295-300(1989) and Epps, et al. Cytokine 9(3):149-156(1997), both of which are incorporated by reference. Such muteins can be used in the treatment of asthma, allergies, or both. Further, it will be clear to the skilled artisan that the models set forth, supra, can also be used to screen for appropriate muteins. The ability to regulate IL-9 activity is important in conditions such as those listed supra, as well as conditions such as apoptosis, including cortisol induced apoptosis, conditions involving the nuclear expression of BCL-3, since IL-9 is known to induce such expression, and so forth. "Antibodies," as used herein, refers to any portion of an antibody which binds to TIF, including chimeric and humanized antibodies.

Another feature of the invention relates to the ability of the TIF type molecules of the invention to either promote regeneration or inhibit differentiation of tissue types on which the molecules are active. As was shown, <u>supra</u>, the TIF molecules target various cancer and normal cell lines (i.e., mesangial and neuronal cells, as well as melanoma and

10

15

20

hepatoma cells). Hence, one can stimulate regeneration of tissue via, e.g., adding an amount of a TIF type molecule to a sample in need of regeneration of a tissue acted on by the TIF molecule. This approach can be used both <u>in vitro</u>, and <u>in vivo</u>. Similarly, antagonists of TIF may be added when the situation is one where the aim is to inhibit differentiation of a particular type of tissue, such as melanoma or hepatoma.

The genes which encode TIF, as noted in Example 25, <u>supra</u>, are located on chromosome 12. This chromosome is associated with asthma, as is known in the art. It is also known that region 12q15 is associated with other inflammatory disease. Hence, a further embodiment of the invention is a method for determining susceptibility to conditions such as, or related to asthma, by determining if aberrations, such as polymorphisms, deletions, additions, etc., are present at the site of the TIF gene. Such aberrations may be an indicia of susceptibility to, or of the presence of, asthma, an allergic condition, or one or more related conditions. The ability to detect aberrations in a DNA sequence is well known in the art, and such methods need not be set forth herein. Preferably, the aberration or aberrations is detected via standard techniques, such as PCR, using the methodologies and primers referred to <u>supra</u>.

The data set forth <u>supra</u>, in particular the induction of expression of the molecule of the invention by LPS, and the regulation of the acute phase response by this molecule, indicate that the molecules of the invention are actively involved in the inflammatory response. Hence a further feature of this invention relates to identification of proinflammatory and anti-inflammatory agents via use of IL-TIF/IL-21. It will be clear to the skilled artisan that IL-TIF/ IL-21 can regulate the inflammatory response. A

10

15

20

preferred aspect of this regulation is the modulation of the acute phase response by organs, such as the liver, by administering either IL-TIF/IL-21, or an antagonist thereof. See, e.g., Janeway, et al., Immunobiology (4th edition), incorporated by reference. Janeway explains that various cytokines such as IL-1, IL-6 and TNF- α activate hepatocytes to synthesize acute phase proteins, such as c-reactive protein, and mannan binding lectin, as well as those described in the examples, supra.

The role of IL-TIF/IL-21 in activating acute phase proteins also leads to a method for identifying agonists and antagonists of IL-TIF/IL-21, by determining if acute phase protein production changes in the presence of the putative agonist or antagonist, and IL-TIF/IL-21. An increase in production should be taken as an indicia that the test molecule is an agonist, and vice versa.

Also a part of the invention are methods for regulating activity of IL-TIF/IL-21 in view of its relationships to interleukin-10 receptors. As was shown, <u>supra</u>, the use of IL- $10R\beta$ antagonists, such as antibodies, inhibit IL-TIF/IL-21 activity. Hence, another feature of the invention is the use of agonists and antagonists of IL-10 receptors, such as IL- $10R\beta$ agonists, and antagonists, to regulate IL-TIF/IL-21 production.

Other features of the invention will be clear to the artisan and need not be discussed further.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and

WO 02/10393

PCT/US01/20485

42

expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

WE CLAIM

- A method for stimulating expression of a STAT transcription factor, comprising contacting a cell capable of said expression with an amount of an IL-TIF/IL-21 to said cell sufficient to stimulate said expression.
- 5 2. The method of claim 1, wherein said STAT transcription factor is STAT 3 or STAT 1.
 - 3. The method of claim 2, wherein said STAT transcription factor is STAT 3.
 - 4. The method of claim 1, wherein said IL-TIF/IL-21 is a mammalian IL-TIF/IL-21.
- 5. The method of claim 4, wherein said mammalian IL-TIF/IL-21, IL-TIF/IL-21 is human IL-TIF/IL21.
 - 6. The method of claim 5, wherein said human IL-TIF/IL-21 is encoded by SEQ ID NO: 25 or SEQ ID NO: 26.
 - 7. A method for inducing production of an acute phase protein in a cell, comprising contacting said cell with an amount of an IL-TIF/IL-21 sufficient to induce production of said acute phase protein.

- 8. The method of claim 7, wherein said cell is a liver cell.
- The method of claim 7, wherein said acute phase protein is human serum amyloid
 A, α1 chymotrypsin, or haptoglobin.
- 10. The method of claim 7, wherein said IL-TIF/IL-21 is a mammalian IL-TIF/IL-21.
- 5 11. The method of claim 10, wherein said mammalian IL-TIF/IL-21 is human IL-TIF/IL-21.
 - The method of claim 11, wherein said human IL-TIF/IL-21 is encoded by SEQ ID
 NO: 25 or SEQ ID NO: 26.
- 13. A method for modulating activity of an IL-TIF/IL-21 molecule, comprising contacting a cell susceptible to IL-TIF/IL-21 activity with an IL-TIF-IL-21 modulator, in an amount sufficient to modulate IL-TIF/IL-21 activity.
 - 14. The method of claim 13, wherein said modulator is a substance which binds to IL-10Rβ molecules.
 - 15. The method of claim 14, wherein said modulator is an antibody which binds specifically to an IL-10Rβ molecule.

- 16. The method of claim 16, wherein said modulator is an antagonist of an IL-10R molecule.
- 17. The method of claim 16, wherein said IL-10R molecule is an agonist of an IL-10R molecule
- 5 18. The method of claim 14, wherein said molecule is an agonist of an IL-10R molecule.
 - 19. The method of claim 18, wherein said IL-10R molecule is IL-10Rβ.
 - 20. A method for determining exposure to an inflammatory substance, comprising assaying a sample taken from a subject believed to have been exposed thereto for expression of IL-TIF/IL-21 wherein expression of TIF is indicative of exposure to an inflammatory substance.
 - 21. A method for identifying a modulator of IL-TIF/IL-21, comprising contacting a substance believed to be a modulator of IL-TIF/IL-21 to a source of IL-TIF/IL-21 and a cell which expresses an acute phase protein, and determining acute phase protein produced by said cell, wherein a change in production of said acute phase

protein relative to production by said cell in the absence of said substance is indicative of said substance being an IL-TIF/IL-21 modulator.

PCT/US01/20485

1 LUD-5664-PCT <110> Dumoutier, Laure Renauld, Jean-Christophe <120> Isolated Nucleic Acid Molecules which Encode T Cell Inducible Factors, or Interleukin-21, The Proteins Encoded, and Uses Thereof <130> LUD 5664 <140> <141> <150> US09/419,568 <151> 1999-10-18 <150> US09/354,243 <151> 1999-07-16 <150> US09/178,973 <151> 1998-10-26 <160> 43 <210> 1 <211> 24 <212> DNA <213> Mus musculus <220> <400> 1 agcactctcc agcctctcac cgca <210> 2 <211> 12 <212> DNA <213> Mus musculus <220> <400> 2 gatctgcggt ga 12 <210> 3 <211> 24 <212> DNA <213> Mus musculus <220> <400> 3 accgacgtcg actatccatg aaca 24 <210> 4 <211> 12 <212> DNA <213> Mus musculus <220> <400> 4 gatctgttca tg 12 <210> 5 <211> 24 <212> DNA <213> Mus musculus <220> aggcaactgt gctatccgag ggaa 24 <210> 6 <211> 12 <212> DNA <213> Mus musculus <220>

WO 02/10393

<400> 6
gatcttccct cg

PCT/US01/20485 WO 02/10393

LUD-5664-PCT

2 <210> 7 <211> 1119 <212> DNA <213> Mus musculus <220> <400> 7 taaacaggct ctcctctcac ttatcaactg ttgacacttg tgcgatctct gatggctgtc 60 ctgcagaaat ctatgagttt ttcccttatg gggactttqg ccgccagctg cctgcttctc attqccctqt qqqcccaqqa qqcaaatqcq ctqcccqtca acacccgqtg caagcttgag gtgtccaact tccagcagcc gtacatcgtc aaccgcacct ttatgctggc caaggaggcc 240 300 agcettgcag ataacaacac agacgtccgg ctcatcgggg agaaactgtt ccgaggagtc agtgctaaag atcagtgcta cctgatgaag caggtgctca acttcaccct ggaagacgtt ctgctcccc agtcagacag qttccagccc tacatgcagg aggtggtacc tttcctgacc 420 aaactcagca atcagctcag ctcctgtcac atcagcggtg acgaccagaa catccagaag 480 540 aatgtcagaa ggctgaagga gacagtgaaa aagcttggag agagtggaga gatcaaggcg attqqqqaac tqqacctqct qtttatqtct ctqaqaaatq cttqcqtctq aqcqaqaaqa aqctaqaaaa cqaaqaactq ctccttcctg ccttctaaaa agaacaataa gatccctgaa 660 tggacttttt tactaaagga aagtgagaag ctaacgtcca tcatcattag aagatttcac 720 atgaaacctg gctcagttga aaaagaaaat agtgtcaagt tgtccatgag accagaggta gacttgataa ccacaaagat tcattgacaa tattttattg tcactgatga tacaacagaa 840 aaataatgta ctttaaaaaa ttgtttgaaa ggaggttacc tctcattcct ttagaaaaaa, 900 agottatgta acttoattto catatocaat attttatata tgtaagttta tttattataa gtatacattt tatttatgtc agtttattaa tatggattta tttatagaaa cattatctgc 1020 tattgatatt tagtataagg caaataatat ttatgacaat aactatggaa acaagatatc 1080 1119 ttaggcttta ataaacacat ggatatcata aaaaaaaaa <210> 8 <211> 7445 <212> DNA <213> Mus musculus <220> <400> 8 gtctatcact tgcttaagat tcttctaatt tataaaaaaa actattctt aaaatgaaaa gcaaacagag cacgtattta tagcatggtg ttctgaccat gcaggtacag agtggaatgg 180 taagaggege tattateage attaaceaae atgttaatgt tttettetgg caageaaaet 240 tgaaatctat qtcttaaaca atcttcaagc ctctaatata gtgctaacga ctggagtccg

ctgctgtcca acagagetet tgageaeget etectetgtt tgeaatttta tgttetttga togactoccc aacctoteac cttcggctcc tgatggccac ctttcaactt tctgcattta 360 tgaactccat gttttaatct ttttattaaa atattcacac aatcagtgtt tgtgcaagtc 420 tgtttcaccc acatgtatgt ctgtgcacca agtgctgcct ggtgcttgtg ggggcaagga 480 gcaggagagg gtgccctggc accggagtca cggatggttg tgagccacca tgaggatgct gggagttaga cccaqqtcct ccaqaaqtgc agcaaatgct cttaaccaca cgcaggcatt

LUD-5664-PCT 3

tctctctcca gccccaacat gagtgctttt agattccacc tagaatagag atctgatggc ttcactcact gccacctccc ctttgcatct ttctgccaag gaacaccaaa aagcaagaat 720 ccccacactg ctttcgctcc tcaagtctgc acctctcaac aggtcaagat tctccagtgt 780 ccctctaaca ctttccccag tgtccctcta acactttctc cagtgtccct ctaacacttt 840 ctccagtgtc cctctaacac ttttgatctc aattagctga qqggaqaaag atctcacaca 900 qtqattttca tqacttcqcq ttctagtcta gatqtagqca tttqcqtqtc agtctagggt 960 aggogtotgo toccgotgot taggaaagac tttoctagto tagttgtoag gtgctatotg 1020 ggattcagtg tacatacaat gcaaaaaatc ccagtatttt gtaaattctc ttcttcaact 1080 atccatctat ataqtatgtt attgtaggct catttaaaaa taatattttg agacttatgc 1140 ttqcacaaqt aaaatqtcag agaattagca aatgtatagt attatttat tttaaaaaaaa 1200 tctatgctta aaatgtctat tagattgttc actaccgata tttccaaact taacttgacc 1260 ttggctatga tttcaacctt tgtatttgca tctaccataa cagtctctga accagaacat 1320 tctgtggcaa tgggagctgt gaagaaagcc aacattctta ttaaaaaaaa aaaacagcta 1380 gttatagttt,aggattccat atactaaaaa aaatagagat ataattattt taaaaattga 1440 aataatctcc aagttttcat tatggcttat ttcaaagcac agaatatagg acacgggtct 1500 tttatttctg gtcacttcta aagagataag aatctatgaa gttggtggga aaatgagtcc 1560 . gtgaccaaaa cgctgactca atagctacgg gagatcaaag gctgctctac tcaatcagaa 1620 tctactacgg caaagccatg gctttctttg aaaaccgtgt ttagaagatt tctgggattt 1680 gtgtgcaaaa gcaccttgtt ggccctcacc gtgacgtttt agggaagact tcccatctct 1740 caaggtggga aggettggag gtggtgtett gtggceteet atggtggtta ggtacttete 1800 agaagacagg actggaaatt agataatgtc tgatgtcata tcattcacaa taccaaaaaa 1860 accetggtgt eccgatgget ataaaagcag caacttetge eteteceate acaagcagag 1920 acacctaaac aggtaagcac teagacetet acagacaate atetgettgg taccatgeta 1980 cccgacgaac atgeteceet gatgtttttg cettttgete teteactaac aggeteteet 2040 ctcacttatc aactgttgac acttgtgcga tctctgatgg ctgtcctgca gaaatctatg 2100 agtttttccc ttatggggac tttggccgcc agctgcctgc ttctcattgc cctgtgggcc 2160 caggaggcaa atgcgctgcc cgtcaacacc cggtgcaage ttgaggtgtc caacttccag 2220 cagccgtaca tcgtcaaccg cacctttatg ctggccaagg aggtacagct gcatctcttt 2280 ctctccatac cgccttgcca ttttctctga agcacttgca aactctttag gggcgcttta 2340 tctccgcagg tctcactacc tatgttttct gtctctttag agactcttta aggactgggt 2400 ctttttctat ttctatttca aggtctcagg accatttcct atcttggcct tcaggacaca 2460 tatactgaat tttatctaca gaggcgcatt tagaaagcca cccacgactg caatactttc 2520 cattletetg tgetetette tgaacteata etetettgge tacteetgag acceaetgeg 2580 gacatacate tetaettaca ggettttett ceateteett gteaeceagg caettagggt 2640 tttctctctt tcaggccagc cttgcagata acaacacaga cgtccggctc atcggggaga 2700

LUD-5664-PCT

aactgttccg aggagtcagt gtaagtcctc actgtgatga gcagggctag ctgcgggagc 2760 tggtggaccc tctgggatag tctgacgtat gacccctgct gcttcttgtc tacctgcagg 2820 ctaaagatca gtgctacctg atgaagcagg tgctcaactt caccctggaa gacgttctgc 2880 tcccccagtc agacaggttc cagccctaca tgcaggaggt ggtacctttc ctgaccaaac 2940 tcagcaatca gctcagctcc tgtgtaagtc tgactctggc tacctatgct cctctcttt 3000 cctcttctat tccagtaaga acccgaggtc ctgccctctc tctcttcaca agagtgagga 3060 qqqcctcaqc accaccacca tcatagqcca cttgaaatag gtcacaaagg ctttggcttc 3120 aattgagtaa tactttgagt ttgtatgagt gaagctttat ttgttttatc catggaaaga 3180 aatcaactca aattctgtag gatgagaaag atgttgggaa cgaaaaaagg cctagataga 3240 gaaacagatc tgctgagtat agtacttatg gggggagcag ggggcgatat ccactgagta 3300 caagtacttg tggggagaga aatccactga gtacaagtac ttgttggcat ggagatccac 3360 tgagtacaag tacttgtggg gggagggaat ggcacagagc aaaagttgaa gggaaggaag 3420 atggagagge etcatggttg ggggtgtgaa aggtcaetee tttteeatgt gatggagagt 3480 taagaaaaac ,cagtgtgtga gtttgatgtc ttcagacacc cccaactatg aaacatatcc 3540 acgaggagcg ggcagactgt gggagacctg gcatttaggg aaggcgcggc ttttcacacg 3600 agaaacttta tgctcatctc ttgtgctaca ctcccacctt tgatgaggtt cagctcaggt 3660 ttcqtttcta ccgttcttgc tactggtgga aacttcagta ggattcccca aagacgagga 3720 cagetettet gtaagggagg gaeetggatt teagtgteet agagaaegaa atageteaga 3780 gaatctaggt caacgtgaaa tctaggtcac agcgggcaaa aatgactgaa cgcctctatt 3840 ccaggtgaac ggtcacgtgc ctcagatata ctgaggtatt gggctcccac cggataagat 3900 tctgttagtg agtctgcttt tattttgcag cacatcagcg gtgacgacca gaacatccag 3960 aagaatgtca gaaggctgaa ggagacagtg aaaaaggtac tattggcaag ccacaatact 4020 aagccattca gtaggagacg tggggatttc tttctctgct tcccagtccc ttctactttg 4080 taacatttta tttgacttgt ctactatctg gtccattact cgcttagctg cacctgtatc 4140 tagctgggtc tatagatett teaatetgtg tetaaatttg taagteacaa ttetggaget 4200 agcagaaagc ttagctcagc cagtctcatg agcacttgct cggaggatgg cttgtgacag 4260 agtcaatgct agaagacagc atccctgatt cccagctctg cacttgccta gtggccatgt 4320 gtaattactt tggcttgatt aagtatttgg gaaagccagt tcccacggac ctacataatc 4380 tgaagaacca tgcattgaaa actagaaagc tgggcacaaa cttactagag atgatttttg 4440 ageteattaa aeggatgete tgaaatgtgg caaaateaae eeagaataae aacaaaagag 4500 ctggatttgc aaataggaca agtatttaga atcactggta ttaatagcta tcatcttaat 4560 taaaatatag ggcctatata tatatttaag attaaacaca agagtggata gcctcccaat 4620 ttacttggcc tggtttcaaa agagtaaaaa tatcagtcat ggattaatta tagtgtcatg 4680 aaagtatgag atggaaaccc tttccttact ttttaccttc atttcttagt ttttttttc 4740 ttcacaccct gatcaagcca ctagtaagca cctatctgct gtgagctatt atatgacttt 4800

LUD-5664-PCT

acagcaaaca acattgctgt gtggcctctt tggggaaggg aacaggatag caggaggctc 4860 aggetageaa gtetgaettg ceetaaagee agaggeatgg ttgatageag agaaagtgag 4920 gctcttcgca agtgggtgtg cttaagtaat cagaaacagg aaggctccgg ttgatggaat 4980 tatcagtaag atatctaccc ttatctcctt ctatcgaacc taaatcgtct ctttttcttg 5040 tgtgtaggct gataaacaca cttgttttct tttgagtgtt catggctttg tagattttta 5100 gtgctctgcc agttcttgtt agagggtttg ttaccttgac acctgggctt ggatgttagc 5160 atgccaaagg cacacacttc tgaatgcctg tgtaaaaggt tattattcat ttactttgtc 5220 tttggaaagg tgaagcgtgt gtgagaaaga actcacagga gatgtgttct ctgtaggaaa 5280 actttttttt tccccttaaa tgcctataat ccactttcag tcaactttga cttttatacc 5340 atgetgteae atgaaagagt gtttaggeee geteteatgg etetgggaaa ageaecaata 5400 ggggaaggaa tgttatgctg agaaatctga ccggcaggga aactggtcag agctcccccg 5460 aagaccacca caggtgttaa gtaggaacag tccagggtgg gctcatgtaa tagaatggaa 5520 cagagcgagg gaagataagc tacaaagttt catagggtcc ggagtcttaa agatacaaaa 5580 tagctgcttg ggcttcataa caaaggaagt ctgggaaggc agcaagtgag agggaaatgg 5640 aaagggaaaa aacagaatgt agaggacttg aacagctaca aatcctctac cagacgattt 5700 ttcttggaac aatctagaag gtagtggatt aggtgattgc agggggactt gctttgccat 5760 ttgaatctqq gtttttgtct ctccattgag gttgaaagcg tcaccctttt taccctcgaa 5820 tggaggagga aagaaggggt gttatgactc ctacctggag ttttactagt ttacgcaatg 5880 gaacagacac tegggacete etettgacaa aaaaaatgga aacetgttgt ttgtettgtt 5940 tgttcttttg ttaagaaagc acaggcaaag cccgaccaca tgggttgaat gtgggtcttt 6000 qaqtcaaqqc ttttqaqttq aqcactcatc aataqttqat catqqtcaqq tqqaqqqcta 6060 cctgtcaggc cgagccctgc tggcttcgca cttaacatct ccaggtctca gtatcacttc 6120 ctgctactta gcacagttag gagttgagca aacctttttt tccaaccccc actaaaattt 6180 aattgacaaa agactgtgta atttgtggga tacagtgtga taattgatct atgtgtgcat 6240 tgtgcaaggt tcaataagat agattaatag gcccatcaac agctttatgg gtgtgaaatg 6300 caagtaatat aggtagatgc ctgtggtgtc cttaggtcag aaaggcatga ttttaaggtc 6360 ttgggcaaat catattatac tcatgctaaa aatacattat gttgattatt aatcttttag 6420 agaaggotga tacttggttt tggtgotcag caagcaaatg tcaccagoto tttctaactg 6480 gtaccacttt agaaaatgct acctgtgctc aaattggttt gtattcttat tttcatagct 6540 tggagagagt ggagagatca aggcgattgg ggaactggac ctgctgttta tgtctctgag 6600 aaatqcttqc qtctgagcga gaagaaqcta gaaaacgaag aactgctcct tcctgccttc 6660 taaaaaqaac aataagatcc ctgaatgqac ttttttacta aaggaaagtg agaagctaac 6720 gtccatcatc attagaagat ttcacatgaa acctggctca gttgaaaaag aaaatagtgt 6780 caagttqtcc atgagaccag aggtagactt gataaccaca aagattcatt gacaatattt 6840 tattgtcact gatgatacaa cagaaaaata atgtacttta aaaaattgtt tgaaaggagg 6900

6

LUD-5664-PCT

ttacctctca ttcctttaga aaaaaagctt atgtaacttc atttccatat ccaatatttt 6960 atatatgtaa gtttatttat tataagtata cattttattt atgtcagttt attaatatgg 7020 atttattat agaaacatta tctgctattg atatttagta taaggcaaat aatattatg 7080 acaataacta tggaaacaag atatcttagg ctttaataa cacatggata tcataaatct 7140 tctgtcttgt aattttctc cctttaatat caacaatacc atcatcatca tcattaccca 7200 atcattctca tgattcatg cttgacccat attatactgt taaagttggt tcctggaggc 7260 ctgtggtttt gtgtgtgtg tgtgtgtgt tggggttatg catgtgaaag ccagagatgg 7320 atattaggtg ttcttctcta tcagtctttg ccttattatt tgagacaggg tctgtcactg 7380 aacctgtagc taggctggcc aacaagctct attaatttt tttaagatta attaattatg 7440 tgtat

<210> 9 <211> 1111 <212> DNA <213> Mus musculus <220> <400> 9 aacaggetet eeteteagtt ateaaetttt gacaettgtg egateggtga tggetgteet 60 gcagaaatct atgagttttt cccttatggg gactttggcc gccagctgcc tgcttctcat tgccctgtgg gcccaggagg caaatgcgct gcccatcaac acccggtgca agcttgaggt gtccaacttc cagcagccgt acatcgtcaa ccgcaccttt atgctggcca aggaggccag 240 ccttgcagat aacaacacag acgtccggct catcggggag aaactgttcc gaggagtcag tgctaaggat cagtgctacc tgatgaagca ggtgctcaac ttcaccctgg aagacattct 360 gctccccag tcagacaggt tccggcccta catgcaggag gtggtgcctt tcctgaccaa acteageaat cageteaget cetgteacat cagtggtgac gaccagaaca tecagaagaa tgtcagaagg ctgaaggaga cagtgaaaaa gcttggagag agcggagaga tcaaagcgat 540 cggggaactg gacctgctgt ttatgtctct gagaaatgct tgcgtctgag cgagaagaag 600 ctagaaaacg aagaactgct ccttcctgcc ttctaaaaaag aacaataaga tccctgaatg 660 gactttttta ctaaaggaaa gtgagaagct aacgtccacc atcattagaa gatttcacat 720 gaaacctggc tcagttgaaa gagaaaatag tgtcaagttg tccatgagac cagaggtaga 780 cttgataacc acaaagattc attgacaata ttttattgtc attgataatg caacagaaaa 840 agtatgtact ttaaaaaatt gtttgaaagg aggttacctc tcattcctct agaagaaaag cctatqtaac ttcatttcca taaccaatac tttatatatg taagtttatt tattataagt 960 atacatttta tttatgtcag tttattaata tggatttatt tatagaaaaa ttatctgatg 1020 ttgatatttg agtataaagc aaataatatt tatgataata actatagaaa caagatatct 1080 1111 taggotttaa taaacacatg aatatcataa a

<210> 10

<211> 21

<212> DNA

<213> Mus musculus

```
LUD-5664-PCT
                                        . 7
<220>
<400> 10
ctgcctgctt ctcattgccc t
<210> 11
<211> 21
<212> DNA
<213> Mus musculus
<220>
<400> 11
caagtctacc tctggtctca t
<210> 12
<211> 20
<212> DNA ·
<213> Mus musculus
<220>
<400> 12
gacgcaagca tttctcagag
<210> 13
<211> 16
<212> DNA
<213> Homo sapiens
<220>
<400> 13
atgtatttcc,cagaaa
<210> 14
<211> 17
<212> DNA
<213> Homo sapiens
<220>
<400> 14
ccttttctgg gaaatac
<210> 15
<211> 22
<212> DNA
<213> Mus musculus
<220>
<400> 15
aggtgctcaa cttcaccctg ga 22
<210> 16
 <211> 22
 <212> DNA
 <213> Mus musculus
 <220>
 <400> 16
 ccactctctc caagettttt ca
 <210> 17
<211> 21
 <212> DNA
 <213> Mus musculus
 <220>
 <400> 17
                              21
 caagtctacc tctggtctca t
 <210> 18
 <211> 418
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 18
 agaagtgctg ttccctcaat ctgataggtt ccagccttat atgcaggagg tggtgccctt 60
 cctggccagg ctcagcaaca ggctaagcac atgtcatatt gaaggtgatg acctgcatat 120
```

8

LUD-5664-PCT

ccagaggaat gtgcaaaagc tgaaggacac agtgaaaaag cttggagaga gtggagagat 180 caaagcaatt ggagaactgg atttgctgtt tatgtctctg agaaatgcct gcatttgacc 240 agagcaaagc tgaaaaatga ataactaacc ccctttccct gctagaaata acaattagat 300 gccccaaagc gatttttt aaccaaaagg aagatgggaa gccaaactcc atcatgatgg 360 gtggattcca aatgaacccc tgcgttagtt acaaaggaaa ccaatgccac ttttgttt 418

```
<210> 19
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<400> 19
tggccaggaa gggcaccacc t
<210> 20
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<400> 20
                           21
cctatcagat tgagggaaca g
<210> 21
<211> 36
<212> DNA
<213> artificial sequence
<220>
<221> primer
<222> 24,25,29,30,34,35
<223> n is inosine in all cases
<400> 21
ggccacgcgt cgactagtac gggnngggnn gggnng
<210> 22
<211> 20
<212> DNA
<213> artificial sequence
<220>
<400> 22
ggccacgcgt cgactagtac 20
<210> 23
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 23
ccttcccag tcaccagttg 20
<210> 24
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 24
taattgttat tcttagcagg
              •:
<210> 25
 <211> 690
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 25
```

tgcacaagca gaatettcag aacaggttet cettececag teaccagttg etegagttag

LUD-5664-PCT 9

aattgtctgc aatggccgcc ctgcagaaat ctgtgagctc tttccttatg gggaccctgg 120 ccaccagetg ceteettete ttggeeetet tggtacaggg aggageaget gegeeeatea qctcccactg caggettgac aagtecaact tecageagee etatateace aacegeacet teatgetage taaggagget agettggetg ataacaacae agaegttegt eteattgggg agaaactgtt ccacggagtc agtatgagtg agcgctgcta tctgatgaag caggtgctga acttcaccct tgaagaagtg ctgttccctc aatctgatag gttccagcct tatatgcagg 420 aggtggtgcc cttcctggcc aggctcagca acaggctaag cacatgtcat attgaaggtg 480 atqacctqca tatccagagg aatgtgcaaa agctgaagga cacagtgaaa aagcttggag agagtggaga gatcaaagca attggagaac tggatttgct gtttatgtct ctgagaaatg 600 660 cctgcatttg accagagcaa agctgaaaaa tgaataacta accccettte cctgctagaa 690 ataacaatta gatgccccaa agcgattttt <210> 26 <211> 4797 <212> DNA <213> Homo sapiens <220> <400> 26 tgcacaagca gaatcttcag aacaggitct ccttccccag tcaccagttg ctcgagttag 60 aattgtctgc aatggccgcc ctgcagaaat ctgtgagctc tttccttatg gggaccctgg ccaccagctg cctccttctc ttggccctct tggtacaggg aggagcagct gcgcccatca 180 gctcccactg caggcttgac aagtccaact tccagcagcc ctatatcacc aaccgcacct tcatgctggc taaggaggta tacatctcaa tcctgctctt tctcgttgga tctacttgga 300 360 atccaaatag ttcttaaact tttcttcaga gcatctctaa gagctttagg aacccactgt ttatccctqa qqqtaqataa attttctqtt ttttcaqaqa ctctttqqqa atctqqcttt tttttttttt tgaacttctt ccttccattt tggcctttat gatacatatg atgaattttt cccaaagagc ggccattcag taatccatct gatgattttt ttttccttta tgcctctgtg 540 cattgttcta aactcatgca cacatctgaa ttctgctttt agtctttatg atgttgctct ggggagacgg gatggggcac atgtctatgt ataaattttt tttctatttg ctcaatgtcc 660 720 agaccettag tetttette tettecagge tagettgget gataacaaca cagacgtteg tctcattqqq qaqaaactgt tccacggagt cagtgtaagc tacagttgtg acgaacaggg ccgtgtgccg tccatgggta cttggggtgg tggtgatgat ggtttaggtc ttatccctta 840 tgaccettte tgttteeett ceacctgeag atgagtgage getgetatet gatgaageag 900 gtgctgaact tcacccttga agaagtgctg ttccctcaat ctgataggtt ccagccttat atgcaggagg tggtgccctt cctggccagg ctcagcaaca ggctaagcac atgtgtaagt 1020 tragetetra gertatgere acctarecet cettreetre trecaragag accepttar 1080 cccaactctc teteetteec cetaceceta agetageagg aagaagtgte ttggcageag 1140 tgttatcagg agtcatttgg gatcatagag tatttgcttt tgctttgact gagtcacatc 1200 ttgagtttat agtggtgaat ggggtctgga acttaagtgt acagaagccg cattggtttg 1260

10

tcttcggaaa aaaggcaact caggttgcgt aagatgagaa aggtgttggg aaaacatcta 1320 gctgtggaaa tggatccatt gagtctaagt tgttgagggg aggggatggc atggagagaa 1380 attagaagag aaagtgggaa atgggaaggc ttaaagtcgg tggtgggtcg gcagactgtt 1440 gccctgttga tgtcatggga agccacaaaa tcggaggcgt gtgaacttga tgccgctgaa 1500 catttgaaac tatgaaaaaa agtttgagtg gagtgggccc agtaaaaggc cctaggactt 1560 actgaagagg gcttaatttt cacatgagat gttttatgta catttcttgt tctaagcatg 1620 caattttctg gagatacgat tgaggtttta ttccttacag aatttgcata aactactccg 1680 ctctttccac aaatgcaaac ctcagtagga tttcccaaag atgaagagag gtctcttgta 1740 agggaagtga ctggattctg gcgtccaagg gaattcaaga gctcaggaaa tctaggtcac 1800 tgttgaaatc taggtcattg tgggcaaaat tactaagagc tttaattcca ggtgaattgt 1860 actgtacctc catgggtgtg gaggttcata aagtttcagc acaacattaa gatagttatg 1920 cttgttattg ttttatagca tattgaaggt gatgacctgc atatccagag gaatgtgcaa 1980 aagctgaagg acacagtgaa aaaggtagga ctgataactg tcaatgctaa gtcatgcaat 2040 aggagagaca aatgttgttt ttettteett tetttettee cateaetttg tgatttttea 2100 cttgattctc ctaccaccag ggcgattact ttggtgtctg tgtatgtaga tatatctata 2160 tatctagatg tcagtttcca aatcttgcaa attgtagaat tctagaactg gttgggatct 2220 tagettgtet agteacataa eeteagatte tggggatggt eagtggeaga gatagggeta 2280 gaatgcaggt ctcctgaatc ccaagccagc acttttcccg gtggtgatac agattagttt 2340 tggtaccatt aattcttagg gaaatttcag attcctattg actcatgtaa tctgaagaag 2400 tacttgttta aaaacagaaa aatgcctatg ggcaaattta tttgaagtca tttttgaagt 2460 cattaatgca ttgctttgaa acttggaaga ataaactcag aacaatgaga aaagagctgg 2520 acttgcatat agggctaatt totggagtaa taaacactta tittgaatta toataatato 2580 tatcagatat tgattatagt ttaaaagcaa gagcagacaa ccccgatctc ttttatacag 2640 gttcaaatag agtaaaaata ttagtaagag atttattata gttaaatgga agtctgaatt 2700 ggtaagettt tttttettee teteteecat caagacette cattetagtt tetteettea 2760 ctccctcaac aaatccctag ggagcattta tccatggtgg gctggtgtac atttctatag 2820 tgaatgatac catcatgtgg cctatttggt gaaaagaaca acaatggaag gcttagacta 2880 acaatagtga ctcaccccaa aaccggagga atgattagga gcagtgaaag tgacgctctt 2940 gcaagcaggt acaactaaat actcagaaac atgaaggctc cagttgatgg aattttcagt 3000 aacaagetta acettaatte eecettitte eetettgaet tittaaaaaa gegitteite 3060 ctgagcatca tttaatgagt gtgactgttt cttcctttga taattgaagg ctttgtagtt 3120 ttaaattgtg aagcccagtt ctcttgttat agaactatta tctagacatg gagggctgaa 3180 tgttagcatg ccacagacaa ggcatgcttt acacatcttg cttaaaaaaat tactgatttc 3240 atcttgcttg ttgtctttag aaaagtgaag tgtgagagag gagaatctca tggtgatctg 3300 tgtgattttc aagaccttta atccattttg aaagaatcaa tttcatattt gcaatgggtt 3360 LUD-5664-PCT 11

gccatgtgga agagtgatta tgcttttttg ctggtagctt cagaaagcac aggagggaga 3420 gcaatgttgt tcagagaaag atcaacagga ggagaaactg tcagagctgt ctgaaatagg 3480 gtggttttgg gaggcattaa ttccctctcg ttgggggtaa aagcagaacg caggttggta 3540 gtaaaatgca tgacagacag taggggacga taaactttaa aattctttat agtcttggag 3600 tctttgagat agaaaagaat atctttttgg ccttatgtca aaagaagtat ggaaaggtga 3660 aagggcggaa gaaagcagga aaaggaagaa ccatgtatta tatagaggac aatggtgaca 3720 aggtttttct tgaaataatg caaatatgat agattagagg aatttcagta gggaatgctt 3780 ttcacttgaa tttgggtttc ctcttcgatt aagtttggga tcctcatctg catttgactt 3840 ggagagagaa agaatgaatg ttaggaccta tatctggttt tctattaact aaagcaagtg 3900 gaaaagactt atttggtatt tttcccacaa aagtgaaaac ttttctttta ctgtttgtca 3960 aaaaggtgga aatagaaaaa gccttaatgt attggtgaat acatggttca aagtcatttg 4020 agtagagatg ttttaaatca ggagtgtcca atcatttggc ttccctggac caccttgaaa 4080 gaattgtett ggtacacaca taaaatacaa gaacaatage tgatgageta aaaaagteea 4140 tgcataaatc tcatactgtt ttaagaaagt ttatgaattt ctgttagggt gcattcaaag 4200 ctgtcctggg ccatgtgcgg cctgtgggct gcaggttgga caagctcctt ataagtaatc 4260 tgtcatagat agttttggag ctgcaaaaca ggccaaggca taatgggtgg cactcgggat 4320 ccccagatc ccagcctcac ttcagtctcc ttgctctggt taagaagggg tggtcaactc 4380 tctgcccagc ttttaaacag cttcattagt gtgaggtgca cctgaaattg atgcctgctg 4440 gtggcctctc agtccagaga gccgtcattt taagctcttt ggcaaatcat acaatactaa 4500 agggatatta ctatgaatgt tttacaaatg cttaaaactc ggtttctgtc tccatcaacc 4560 taatcttgca atttctaatt tgttcacttt agaaaacatg gcataaatgc tcaaatactt 4620 ttgcattctt attttcacag cttggagaga gtggagagat caaagcaatt ggagaactgg 4680 atttgctgtt tatgtctctg agaaatgcct gcatttgacc agagcaaagc tgaaaaatga 4740 ataactaacc ccctttccct gctagaaata acaattagat gccccaaagc gattttt

```
<210> 27
<211> 20 ·
<212> DNA
<213> Homo sapiens
<220>
<400> 27
                         20 .
atcagatgga ttactgaatg
<210> 28
<211> 20
<212> DNA
<213> Homo sapiens
<220>
              15
<400> 28
agctcagcta cagcacagat 20
<210> 29
<211> 20
<212> DNA
<213> Homo sapiens
```

<220>

```
LUD-5664-PCT
<400> 29
cctgcccat ttattggcag 20
<210> 30
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 30
tgtcctctgc caccctaaca 20
<210> 31
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 31
taattcacca ggaccatcat 20
<210> 32
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 32
gtggactcag gcaatgatgt 20
<210> 33
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<400> 33
acatagagtg ttaaagtggg 20
 <210> 34
 <211> 20
 <212> DNA
<213> Homo sapiens
 <220>
 <400> 34
 gctggaaggt ggacagcgag 20
 <210> 35
<211> 20
 <212> DNA
<213> Homo sapiens
 <220>
 <400> 35
 tggcatcgtg atggactccg 20
 <210> 36
 <211> 20
<212> DNA
 <213> Mus musculus
 <220>
 <400> 36
 tctgctccct gctcctggga 20
 <210> 37
 <211> 20
 <212> DNA
 <213> Mus musculus
 <220>
 <400> 37
 tccaggaggt ctgtagtaat 20
 <210> 38
 <211> 21
<212> DNA
```

PCT/US01/20485 WO 02/10393

13

LUD-5664-PCT

<213> Mus musculus

<400> 38

ctgcctgctt ctcattgccc t 21

<210> 39

<211> 21

<212> DNA

<213> Mus musculus

<220>

<400> 39

caagtctacc tctggtctca t 21

<210> 40

<211> 179

<212> PRT

<213> Mus musculus

<220>

<400> 40

Met Ala Val Leu Gln Lys Ser Met Ser Phe Ser Leu Met Gly Thr Leu

Ala Ala Ser Cys Leu Leu Leu Ile Ala Leu Trp Ala Gln Glu Ala Asn

Ala Leu Pro Val Asn Thr Arg Cys Lys Leu Glu Val Ser Asn Phe Gln

Gln Pro Tyr Ile Val Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser 50 55

Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe

Arg Gly Val Ser Ala Lys Asp Gln Cys Tyr Leu Met Lys Gln Val Leu

Asn Phe Thr Leu Glu Asp Val Leu Leu Pro Gln Ser Asp Arg Phe Gln

Pro Tyr Met Gln Glu Val Val Pro Phe Leu Thr Lys Leu Ser Asn Gln 120

Leu Ser Ser Cys His Ile Ser Gly Asp Asp Gln Asn Ile Gln Lys Asn

Val Arg Arg Leu Lys Glu Thr Val Lys Lys Leu Gly Glu Ser Gly Glu 150

Ile Lys Ala Ile Gly Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn

Ala Cys Val

<210> 41

<211> 179

<212> PRT

<213> Mus musculus

<220>

<400> 41

Met Ala Val Leu Gln Lys Ser Met Ser Phe Ser Leu Met Gly Thr Leu

Ala Ala Ser Cys Leu Leu Leu Ile Ala Leu Trp Ala Gln Glu Ala Asn

Ala Leu Pro Ile Asn Thr Arg Cys Lys Leu Glu Val Ser Asn Phe Gln 35 40 45

14

LUD-5664-PCT

Gln Pro Tyr Ile Val Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe 80

Arg Gly Val Ser Ala Lys Asp Gln Cys Tyr Leu Met Lys Gln Val Leu 95

Asn Phe Thr Leu Glu Asp Ile Leu Leu Pro Gln Ser Asp Arg Phe Arg 110

Pro Tyr Met Gln Glu Val Val Pro Phe Leu Thr Lys Leu Ser Asn Gln 115 120 125

Leu Ser Ser Cys His Ile Ser Gly Asp Asp Gln Asn Ile Gln Lys Asn 130 135 140

Val Arg Arg Leu Lys Glu Thr Val Lys Lys Leu Gly Glu Ser Gly Glu 145 150 155 160

Ile Lys Ala Ile Gly Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn 165 170 175

Ala Cys Val

<210> 42 <211> 5935 <212> DNA <213> Mus musculus <220> <400> 42

quatteaagt ceacatgeaa teaateegaa taetttgtaa attetettet teaaatatee atctatatag tataagttat tgtaggatca tttaaaaaata atgttttgag acttatgttt gcacaagtaa aatgtcagag agaattagca aatgtatagt attatttat tttaaaaaaat ctatgcttaa aatgtctatt agattgttca ctactgacat ttccaaactt aacttgacct 240 300 tggctatgat ttcaaccttt gtatttgcat ctaccataac tgtgtgctca cttaccatgc tatccgacga gcatgttccc ctgatgtttt tgccttttgc tctctcgcta acaggctctc ctctcagtta tcaacttttg acacttgtgc gatcggtgat ggctgtcctg cagaaatcta 420 tgagtttttc ccttatgggg actttggccg ccagctgcct gcttctcatt gccctgtggg 480 cccaggaggc aaatgcgctg cccatcaaca cccggtgcaa gcttgaggtg tccaacttcc 540 600 aqcaqccqta catcqtcaac cgcaccttta tgctggccaa ggaggtacag ctgcatctct ttctctccat accgccttgc catttctctg aagcacttgc aaactcttta ggggcgcttt 660 atctccgcag gtctcactac ctatgttttc tgtctcttta gagactcttt aaggactgga tetttteta tttetattte aaggteteag gaccatttee tatettggee tteaggacae 780 atatactgaa ttttatctac agaggcgcgt ttagaaagcc acccacgact gcaatacttt ccatcctgtt gtgctctctt ctgaactcat actctcttgg ctactcctga gacccactgc 900 ggacatacat etetacttac aggettttet tecateteet tgteacecag geacttaggg ttttctctct ttcaggccag ccttgcagat aacaacacag acgtccggct catcggggag 1020 aaactgttcc 'gaggagtcag tgtaagtcct cactgtgatg agcagggcta gctgcgggag 1080 ctggtggacc ctctgggata gtctgacgta tgacccctgc tgcttcttgt ctacctgcag 1140

15

qctaaggatc agtgctacct gatgaagcag gtgctcaact tcaccctgga agacattctg 1200 ctccccagt cagacaggtt ccggccctac atgcaggagg tggtgccttt cctgaccaaa 1260 ctcagcaatc agctcagctc ctgtgtaagt ctggctctgg ctacctatgc tcctctctt 1320 tcctcttcta ttccagtaag aacccgaggt cctgccctct ctctcttcac aagagtgagg 1380 agggcctcag caccaccacc atcataggcc acttgaaata ggtcacaaag gctttggctt 1440 caattgagta atactttgag titgtattag ttaagcttta tttgttttat ccatggaaag 1500 aaatcaactc aaattctgta ggatgagaaa gatgttggga acgaaaaaag gcctagatag 1560 gagtccaagt acttgttggg agagaaatcc actgagtaca agtacttgtg ggggaaggaa 1680 tggcacagag caaaagttga agggaaagag gaagatggag aggcctcaat gttgggggtg 1740 tgaaaggtca ctcctttttc catgtgatgg agagttaaga aaaatcagtg tgtgagtttg 1800 atgtcttcag acaccccaac tatggcagac tgtgggagac ctggcattta gggaaggcgc 1860 ggcttttcac acgagaaact ttatgctcat ctcttgtgct acactcccac ctttgatgag 1920 gttaagctca ggtttcgttt ctaccgttct tgctactggt ggaaacttca gtaggattcc 1980 ccaaagacga ggacagetet tetgtaaggg agggacetgg attteagtgt cetagagaac 2040 gaaatagctc agagaatcta ggtcaacgtg aaatctaggt cacagcgggc aaaaatgact 2100 gaacgcctct attccaggtg aacggtcacg tgcctcagat atactgaggt attgggctcc 2160 caccggataa gattctgtta gtgagtctgc ttttattttg cagcacatca gtggtgacga 2220 ccagaacatc cagaagaatg tcagaaggct gaaggagaca gtgaaaaagg tactattggc 2280 aagccacaat actaagccat tcagtaggag acgtggggat ttctttctct gcttcccagt 2340 ctcttctact ttgtaacatt ttctttgact tgtctactgt ctggtccatt actcacttag 2400 ctgcacctgc atctagctgg gtctatagat ctttcaatct gtgtctaaat ttgtaagtca 2460 caattotgga gotagoagaa agottagoto agocagtoto atgagoactt gotoggagga 2520 tggcttgtga cagagtcaat gctagaagac agcatccctg attcccagct ctgcacttgc 2580 ctagtggcca cgtgtaatta ctttagcctg attaagtatt tgggaaagcc aattcccacc 2640 gacctacata atccgaagaa gcatgcattg aaaactagaa agctgggcac aaacttacta 2700 gagatgattt ttgagctcat taaactgatg ctctgaaatg tgatcaaatc aacccagaat 2760 aacaacaaaa gagctggatt tgcaaatagg acaagtattt agaatcactg gtattaacag 2820 ctgtcatctt aattaaaata tagtgtctat ttagctgcct atttaagatt aaacacaaga 2880 gtggataact tcccaattta ctgggcctgg tttcaataga gtaaaaatat cagtcataga 2940 ttaattatag tgtcatgaaa gtatgagttg gaaacccttt ccttactttt taccttcatt 3000 tottagttat tattttttt tottcacacc ctgatcaagc cactagtaag cacctatetg 3060 ctgcgageta ttatatgact ttacagcaaa caacattget gtgtggccte tttggggaag 3120 ggaacaggat agcaggaggc tcaggctagc aagtctggac tcaacctaaa gccagaggca 3180 tggttgatag cagagaaagt gaggctcttc acaagtgggt gtgcttaagt aatcagaaac 3240

aggaaggctc	tggttgatgg	aattatcagt	aagatatcta	cccttatctc	cttcttctat	3300
agaagctaaa	ccgtctctcc	ttcttgtgtg	taggctgata	aacacgcttg	ttttcttttg	3360
agtgttcatg	gctttgcaga	ttttcagtgc	tctgccagtt	cttgttagag	ggtttgttac	3420
cttgacacct	gggcttggat	gttagcatgc	caaaggcaca	cacttctgaa	tgcctgtgta	3480
aaaggttatt	attcatttac	tttgtctttg	gaaaggtgaa	gtgtgtgtga	gaaagaactc	3540
acaggagatg	tattctctgt	aggaaaactt	tttttcccc	ttaaaagcct	ataatccact	3600
ttcagtcaac	tttgactttt	ataccatgct	gtcacatgaa	agagtgttta	ggcccgctct	3660
cgtggctctg	ggaaaagcac	caatagggga	agaaatgtta	tgccgagaaa	tctgactggc	3720
agggaaactg	ggtcagagct	ccccaaagac	cactacaggt	gttaagtagg	aacagtcgag	3780
ggtgggttca	tataatagaa	tggaacagag	ggagggaaga	taagctacaa	agtttcàtag	3840
ggtcctaagt	ctttaagata	caaaatagct	ggttgggctt	cataacaaag	gaagtctggg	3900
aaggcagcaa	gcattgagag	ggagatggaa	agggaaaaaa	caatgtagag	gatttgaaaa	3960
gctacaaatc	ctccacgaga	ggatttttct	tggaggaatc	tagaacaagg	gtggtggatt	4020
aggtggatcg	çagaaggact	tgctttgcca	tttgaatctg	ggtttttgtc	tctccattga	4080
ggttgagagc	gtcacccttt	tttaccctgg	ataggaggag	gaaagaaggg	gtgttttgac	4140
tcctacctgg	agttttacta	gtttacgcaa	tggaacagac	actcgggacc	tcctcttgac	4200
aagaaaaaa	aaaaaaaaag	gaaacctgtt	gtttctcttg	tttgttcttt	tgttaagaaa	4260
gcacaggcag	ctgggcatgg	tggcccatgc	ctttaatccc	agcatttggg	aggcagaggc	4320
aggtgacttt	ctaaattcaa	ggccagcctg	gtctacaaag	tgagttccag	gacagccagg	4380
gctatacaga	gaaaccctgt	ctcgggaaaa	aaaaaaaga	agaaaagaaa	agaaaagaag	4440
agaagaggag	aggagaggag	aggagaggag	aggagaggag	aggagaggag	aggagaggag	4500
aggagaggag	aagagaagag	aagagaagag	aagagaagag	aagagaagag	aagagaagag	4560
aagagaagag	aagagaagag	aagagaagag	aagagaagag	aagagaaaag	aaaagagaaa	4620
agaaaagaaa	aaagcaagca	agcaagcact	ggcaaagcat	gcccacatgg	gacgtatgtg	4680
ggtctttgag	acaaggcttt	tgaattgagc	gctcatcaat	agttgatcat	ggtcaggtgg	4740
agggctacct	gtcaggccga	gccctgctgg	cttagcactt	aacatctcca	ggtctcagta	4800
tcacttcctg	ctgcttagca	cagttaggag	ttgagcaaac	cttttttcc	aacccccact	4860
aaaatttaat	ttacaaaagg	cagtgtaatt	tgtgggatac	agtgtgataa	ttgatctatg	4920
tgtgcattgt	gcaaggttca	ataaggtaga	tcaataggcc	catcaacagc	tttatgggtg	4980
tgaaatgcaa	gtaatatagg	tagatgcctg	tgtgtcctta	ggtcagaaag	gcatgatttt	5040
aaggtcttgg	gcaaatcata	ttatactcat	gttaaaaatg	cattatgttg	attatcaatc	5100
ttttagagaa	ggctgatact	tggttttggt	gctcagcaag	caaatgtcac	cagctctttc	5160
taactagtac	cactttagaa	aatgctaccc	gtgctcaaat	tggtttgtat	tcttattttc	5220
atagcttgga	gagagcggag	agatcaaagc	gatcggggaa	ctggacctgc	tgtttatgtc	5280
tctgagaaat	gcttgcgtct	gagcgagaag	aagctagaaa	acgaagaact	gctccttcct	5340

LUD-5664-PCT 17

gccttctaaa aagaacaata agatccctga atggacttt ttactaaagg aaagtgagaa 5400 gctaacgtcc accatcatta gaagattca catgaaacct ggctcagttg aaaggaaaaa 5460 tagtgtcaag ttgtccatga gaccagaggt agacttgata accacaaaga ttcattgaca 5520 atatttatt gtcattgata atgcaacaga aaagtatgt actttaaaaa attgtttgaa 5580 aggaggttac ctctcattcc tctagaagaa aagcctatgt aacttcattt ccataaccaa 5640 tactttatat atgtaagttt attattata agtatacatt ttattatgt cagtttatta 5700 atatggattt attatagaa aaattatctg atgttgatat ttgagtataa agcaaataat 5760 attatgata ataactatag aaacaagata tcttaggctt taataaacac atgaatatca 5820 taaatcttct gtcttgtaat ttttctccct ttaatatcaa caataccatc atcgtcatca 5880 ttacccaatc attctcatga cttcatgctt gactcatatt atctggtaaa gtttg 5935

<210> 43

<211> 179

<212> PRT

<213> Homo sapiens

<220>

<400> 43

Met Ala Ala Leu Gln Lys Ser Val Ser Ser Phe Leu Met Gly Thr Leu 1 10 15

Ala Thr Ser Cys Leu Leu Leu Leu Ala Leu Leu Val Gl
n Gly Gly Ala 20 25 30

Ala Ala Pro Ile Ser Ser His Cys Arg Leu Asp Lys Ser Asn Phe Gln 35 40 45

Gln Pro Tyr Ile Thr Asn Arg Thr Phe Met Leu Ala Lys Glu Ala Ser 50 60

Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile Gly Glu Lys Leu Phe 65 70 75 80

His Gly Val Ser Met Ser Glu Arg Cys Tyr Leu Met Lys Gln Val Leu 85 90 95

Asn Phe Thr Leu Glu Glu Val Leu Phe Pro Gln Ser Asp Arg Phe Gln 100 105 110

Pro Tyr Met Gln Glu Val Val Pro Phe Leu Ala Arg Leu Ser Asn Arg 115 120 125

Leu Ser Thr Cys His Ile Glu Gly Asp Asp Leu His Ile Gln Arg Asn 130 135 140

Val Gln Lys Leu Lys Asp Thr Val Lys Lys Leu Gly Glu Ser Gly Glu 145 150 155 160

Ile Lys Ala Ile Gly Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn 165 170 175

Ala Cys Ile