Aufgabe 1: Penning-Falle (5 Punkte)

Betrachten Sie die nichtrelativistische Bewegung eines Elektrons mit Ladung q = -e in einem homogenen Magnetfeld $\mathbf{B} = B\mathbf{e}_{\mathbf{z}}$ und zusätzlich einem elektrischen Quadrupolpotential $(U_0 > 0)$

$$\phi(x, y, z) = \frac{U_0}{2r_0^2} (x^2 + y^2 - 2z^2).$$

- a) Lösen Sie die Bewegungsgleichung $m\dot{\mathbf{v}} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B/c})$ zunächst für $U_0 = 0$ und einer Bewegung in der xy-Ebene und bestimmen Sie die dazugehörige Frequenz ω_c .
- b) Bestimmen Sie die Frequenz ω_z der harmonischen Schwingungen bei einer Bewegung entlang der z-Achse.
- c) Lösen Sie die vollständigen Bewegungsgleichungen in der xy-Ebene durch einen Ansatz von Kreisbahnen um den Ursprung. Berechnen Sie die dazugehörige sogenannte Magnetron-Frequenz ω_M ausgedrückt durch ω_c und ω_z . Wann ist diese Bewegung stabil?

Aufgabe 2: Elektrisches Potential vor einer Ecke (6 Punkte)

Der Raumbereich V (x > 0 und y > 0) werde durch die geerdeten Halbebenen A_1 ($x \ge 0$ und y = 0) and A_2 (x = 0 und y > 0) begrenzt. Eine Punktladung q befinde sich bei $a = (a_1, a_2, 0)$; $a_1, a_2 > 0$.

- a) Bestimmen Sie das Potential der Punktladung im Bereich V bei z=0 aus der entsprechenden Green'schen Funktion $G(\mathbf{x}, \mathbf{a})$.
- b) Berechnen Sie die Kraft der Influenzladungen auf die Ladung q und daraus die Arbeit bei der Verschiebung der Ladung von a nach $\mathbf{b} = (a_1, b_2, 0), b_2 > a_2$. Geben Sie ein einfaches Argument für das Vorzeichen dieser Arbeit.

Aufgabe 3: Magnetfeld eines Kreisstroms (4 Punkte)

Ein konstanter Strom I fliesst auf einem Kreis in der xy-Ebene mit Radius R. Berechnen Sie das Magnetfeld B auf der z-Achse aus dem Biot-Savart'schen Gesetz

$$\mathbf{B}(\mathbf{x}) = \frac{I}{c} \oint \frac{d\mathbf{s}' \wedge (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}.$$

Skizzieren Sie die Magnetfeldstärke als Funktion von z und vergleichen Sie das Resultat mit dem eines magnetischen Punktdipols. Um welchen Faktor weicht das exakte Feld bei z = R vom Punktdipolfeld ab?

Aufgabe 4: Relativistische Transformation eines Dipolfeldes (5 Punkte)

Ein magnetischer Punktdipol $\mathbf{m} = m\mathbf{e_z}$ befinde sich am Ursprung eines Inertialsystems \bar{K} , das sich mit konstanter Geschwindigkeit v entlang der x-Achse relativ zu einem Inertialsystem K bewegt. Das elektrische Potential $\bar{\phi}$ im System \bar{K} ist identisch Null.

- a) Berechnen Sie das elektrische Potential ϕ in K aus der Bedingung, dass sich das Viererpotential mit Komponenten $(A)^{\mu} = (\phi, \mathbf{A})$ unter Lorentz-Transformationen wie ein Vierervektor transformiert. Hinweis: Definieren Sie den Vektor \mathbf{R} vom Beobachtungspunkt in K zum magnetischen Dipol, der mit der x-Achse den Winkel θ bildet und rechnen Sie die Koordinaten in K mit Hilfe der Lorentz-Transformation in die Grössen $K = |\mathbf{R}|$ und $K = \mathbf{R}$ und
- b) Zeigen Sie, dass im nichtrelativistischen Limes das Potential in K dasjenige eines elektrischen Dipols ist und berechnen Sie das zugehörige Dipolmoment \mathbf{p} .