CHAPTER 0

ELECTRON-DOT STRUCTURES OF MOLECULES

0.1 Draw electron-dot structures for the following diatomic molecules that obey the octet rule: (a) F₂ (b) Cl₂

0.2 Draw electron-dot structures for the following diatomic molecules that obey the octet rule: (a) HF (b) HCl

0.3 Draw electron-dot structures for the following diatomic molecules that obey the octet rule: (a) ICl (b) HI

0.4 Draw electron-dot structures for the following diatomic molecules: (a) CO (b) N₂ (c) O₂

0.5 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) CHN (b) CO₂

0.6 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) CH₄ (b) CH₃Cl (c) OH₂

0.7 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) NH₃ (b) NCl₃

0.8 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) SeCl₂ (b) CH₂O

0.9 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) BH₃ (b) BH₂F (c) POCl₃ (d) ClO₄⁻

0.10 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) BeH₂ (b) PCl₅ (c) SF₄ (d) ClF₃

0.11 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) I_3^- (b) Br_3^- (c) SF_6

0.12 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) ClF₅ (b) XeF₄

0.13 Given the skeletal structure below, draw the lewis structure of the molecule:

$$\begin{array}{ccc} H & O \\ I & I \\ H - C - C - O - H \\ I \\ H \end{array}$$

0.14 Given the skeletal structure below, draw the lewis structure of the molecule:

0.15 Given the skeletal structure below, draw the lewis structure of the molecule:

0.16 Indicate the charge of the atom marked blue in the following electron-dot structure:

(a)
$$\begin{bmatrix} H - \overline{C} - H \\ H \end{bmatrix}$$

(b)
$$\begin{bmatrix} H - \overline{O} - H \end{bmatrix}$$

0.17 Indicate the charge of the atom marked blue in the following electron-dot structure:

(a)
$$\begin{bmatrix} H \\ H - N - H \\ H \end{bmatrix}$$

(b)
$$\begin{bmatrix} H \\ H - C - \overline{\underline{O}} \\ H \end{bmatrix}$$

0.18 Indicate the charge of the atom marked blue in the following electron-dot structure that follow the octet rule:

(a)
$$|\overline{\underline{C}}| \stackrel{|\overline{\overline{O}}|}{\underset{|C|}{|C|}}$$

(b)
$$|\overline{\underline{O}} - \overline{\underline{C}}| - \overline{\underline{O}}$$

0.19 Indicate the charge of the atom marked blue in the following electron-dot structure that follow the octet rule:

(a)
$$|\overline{\underline{O}}|$$
 $|\overline{\underline{O}}|$ $|\overline{\underline{O}}|$

$$(b) |\overline{\underline{O}} - \underline{Xe} \cdot \overline{\underline{O}} |$$

$$|\underline{O}| |\underline{O}|$$

MOLECULAR SHAPE

- **0.20** Identify the molecular shape of the molecules: (a) NH_3 (b) CH_4
- **0.21** Identify the molecular shape of the molecules: (a) H_2 (b) $BeCl_2$ (c) BF_3
- **0.22** Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$\left(\underbrace{\text{Cl}}_{\underline{\underline{\text{Se}}}} \right)$$

0.23 Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$H - B - H$$
 $|\underline{F}|$

$$(b) \begin{array}{c} O \\ |I| \\ P \\ |\underline{C}I| \stackrel{\top}{|C}\underline{C}I \end{array}$$

0.24 Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$|\overline{\underline{O}} - \underline{Cl} = \underline{O}|$$

0.25 Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$|\overline{\underline{C}}| |\overline{\underline{C}}|$$

 $|\underline{\overline{C}}| - P \sim \underline{\underline{C}}|$
 $|Cl|$

(b)
$$|\overline{\underline{F}} - \underline{\underline{F}}|$$
 $|\underline{\underline{F}}|$

0.26 Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$|\underline{F} \vdash Cl \dashv \underline{F}$$
 $|F|$

(b)
$$\left[|\underline{\overline{Br}} - \underline{\overline{Br}} - \underline{\overline{Br}}| \right]^{-1}$$

0.27 Given the following Lewis structures, predict the molecular geometry and angles:

(a)
$$|\overline{\underline{F}}| |\overline{F}| |\overline{F}|$$

(b)
$$|\overline{\underline{F}}| |\overline{F}| \langle \overline{F}| \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \rangle \langle \overline{F}| \langle \overline{F}| \rangle \langle \overline{F$$

0.28 Identify the name of the following molecular structure:

0.29 Identify the name of the following molecular structure:

0.30 Identify the name of the following molecular structure:

0.31 Identify the name of the following molecular structure:

0.32 Identify the name of the following molecular structure:

0.33 Identify the name of the following molecular structure:

POLARITY

- **0.34** Indicate the polarity or non-polarity for the following molecules: (a) H_2O (b) HCl (c) H_2
- 0.35 Indicate the polarity or non-polarity for the following molecules: (a) NH₃ (b) CO₂

HYBRID ORBITALS

- 0.36 Indicate the hybridization of: (a) NH₃ (b) CH₄ (c) H₂O
- 0.37 Indicate the hybridization of: (a) NH₃ (b) CH₄ (c) H₂O

MOLECULAR ORBITAL THEORY

0.38 Using the MO order provided below

$$\sigma_{2s}\sigma_{2s}^*\pi_{2p}\sigma_{2p}\pi_{2p}^*\sigma_{2p}^*$$

obtain the MO configuration for: (a) B₂ (b) C₂

0.39 Using the MO order provided below

$$\sigma_{2s}\sigma_{2s}^*\pi_{2p}\sigma_{2p}\pi_{2p}^*\sigma_{2p}^*$$

obtain the MO configuration for: (a) O_2 (b) F_2^+

- 0.40 Indicate the magnetic (paramagnetic or diamagnegtic) configuration of the molecule with MO configuration: $\sigma_{2s}^2 \sigma_{2s}^{2*} \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{3*}$
- **0.41** Indicate the magnetic (paramagnetic or diamagnegtic) configuration of the molecule with MO configuration: $\sigma_{2s}^2\sigma_{2s}^{2*}\sigma_{2p}^2\pi_{2p}^4\pi_{2p}^{2*}$

Answers 0.1 (a) $|\overline{E} - \overline{E}|$ (b) $|\overline{C}| - \overline{C}|$ 0.2 (a) $|\overline{E} - \overline{E}|$ (b) $|\overline{E} - \overline{C}|$ 0.3 (a) $|\overline{I} - \overline{C}|$ (b) $|\overline{H} - \overline{I}|$ 0.4 (a) $|\overline{C} = O|$ (b) $|\overline{N} = N|$ (c) $|\overline{O} = O|$ 0.5 (a) $|\overline{H} - C = N|$ (b) $|\overline{C} = C = O|$ 0.6 (a) $|\overline{H} - C - H|$ (b) $|\overline{H} - C - H|$ (c) $|\overline{O} |$ 0.7 (a) $|\overline{H} - \overline{N} - H|$ (b) $|\overline{C} | - \overline{N} - \overline{C}|$ 0.8 (a) $|\overline{S} |$ (c) $|\overline{C} |$ (d) $|\overline{C} |$ (e) $|\overline{I} |$ (f) $|\overline{I} |$ (f) $|\overline{I} |$ (f) $|\overline{I} |$ (f) $|\overline{I} |$ (g) $|\overline{I} |$ (g) $|\overline{I} |$ (g) $|\overline{I} |$ (h) $|\overline{I} |$ (h) $|\overline{I} |$ (i.e., $|\overline{I} |$ (i.e

0.18 (a) +1 (b) +3 **0.19** (a) +2 (b) +4 **0.20** (a) NH₃ (Trigonal pyramidal) (b) CH₄ (Tetrahedral) **0.21** (a) H₂ (Linear) (b) BeCl₂ (Linear) (c) BF₃ (Trigonal planar) **0.22** (a) AB₂E₂; bent; 109° (b) AB₂E₂; bent; 109° ABE₃; planar trigonal; 120° **0.23** (a) ABE₃; planar trigonal; 120° (b) AB₄; tetrahedral; 109.5° **0.24** (a) AB₄; tetrahedral; 109.5° (b) AB₂; linear; 180° **0.25** (a) AB₅; trigonal bipyramidal; 120° and 90° (b) AB₄E; see-saw; 120° and 90° **0.26** (a) AB₃E₂; T-shaped; 180° and 90° (b) AB₂E₃; linear; 180° **0.27** (a) AB₆; octahedral; 180° and 90° (b) AB₅E; square pyramidal; 90° **0.28** Octahedral **0.29** square planar **0.30** bent **0.31** see-saw **0.32** square pyramidal **0.33** t-shaped **0.34** (a) H₂O (b) HCl (c) H₂ **0.35** (a) NH₃ (b) CO₂ **0.36** (a) NH₃ (sp³) (b) CH₄ (sp³) (c) H₂O (sp³) **0.37** (a) NH₃ (sp³) (b) CH₄ (sp³) (c) H₂O (sp³) **0.38** (a) B₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \sigma_{2s}^2 \pi_{2p}^2$) (b) C₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \sigma_{2s}^2 \pi_{2p}^4 \pi_{2p}^{3*}$) **0.39** (a) O₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{3*}$) **0.40** paramagnetic **0.41** paramagnetic