Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Sequential Networks Overview

Lecture Agenda

- Logistics
 - Grading Update
 - Sequential Networks due on Canvas
- Agenda
 - History of Sequential Networks
 - Recurrent Networks to Transformers
 - Word Embeddings

Class Overview, by topic

Advanced CNN Review Topics

Residual Connection Review

Back Propagation: Two paths, including one without ANY operations that cause the gradient to vanish...

Separable Convolution Review

Squeezing Review (E

Start with some baseline archite

- Observe: Scaling any single dimension increases accuracy, but has diminishing returns
- **Hypothesis**: balancing scaling of all dimensions will improve accuracy

Filtering Width Scaling: How many

Depth Scaling: If we add layers, how should thi

Resolution Scaling: If we use larger resolution input images, how should we scale the filters and layers?

depth:
$$d = \alpha^{\phi}$$

width:
$$w = \beta^{\phi}$$

res.:
$$r = \gamma^{\phi}$$

s.t.
$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$

$$\alpha, \beta, \gamma \ge 1$$

$$\phi$$
 user specified scaling coefficient

$$\alpha = 1.2$$

$$\beta = 1.1$$

$$\gamma = 1.15$$

- α , β , γ are constants that specify how to assign extra resources to network depth, width, and resolution.
- $m{\phi}$ is a user specified coefficient that controls how many resources are available.

optimal values found in paper!

https://arxiv.org/pdf/1905.11946v5.pdf

History of Sequential Neural Networks

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

1980's Recurrent Networks

Hopfield Network, 1982

John Hopfield, Princeton

Elman/Jordan Networks, ~1988

Contribution:

Training with Feedback

Neural Network Design, Hagan, Demuth, Beale, and De Jesus

Contribution:

Time Steps for Unrolling Separated output / state

Michael Jordan, Berkeley

Jeffrey Elman, UCSD

1990's-2000's Better Recurrent Networks

Long Short Term Memory, ~1997 - 2010

Many Universities

Sepp Hochreiter, Jürgen Schmidhuber, Switzerland

Contribution:

Long Duration Memory and State Vector Separate from Output

Gated Recurrent Units, ~2014

Contribution:

Fewer parameters in RNN

Yoshua Bengio

Kyunghyun Cho, Professor at NYU

General recurrent flow (many to one)

Attention (2016)

Google

Google Neural Machine Translation:

https://arxiv.org/pdf/1609.08144.pdf

https://medium.com/@Synced/history-and-frontier-of-the-neural-machine-translation-dc981d25422d

Other big advances

- 1D Convolution to Replace RNN (2015-2018)
- Attention is All You Need (2017)
- Self-attention (2018)
- Multi-headed attention Modern Transformer (2018)
- BERT, GPT-#, and other LLM etc. (2019-present)

Overview of Sequential Networks

LIFE SCORECARD

TIMES WHEN I THOUGHT...

"I'M NOT REALLY HAPPY HERE, BUT MAYBE THIS IS THE BEST I CAN EXPECT AND I'LL REGRET GIVING IT UP."

...ITTURNED OUT I...

SHOULD HAVE
STAYED LEFT 500NER

II ### ### III

Sequential Networks Types

recurrent
Update Sequence State
one element at a time

convolutional

Look at groups of Elements in Parallel

transformer

Everything Everywhere All at Once

A red motorcycle parked on the

A close up of a cat laying

on a couch.

across a dry grass field.

The movie is great.

The movie stars Mr. X

The movie is horrible.

Sequential Networks: Ontology Classification

Eva Ingolf is a well known Icelandic violinist particularly recognized for her authoritative performances of solo works by J. S. Bach. She comes from a leading musical family and her father Ingólfur Guðbrandsson premiered many of the great choral works in Iceland and six of her sisters and brothers are professional musicians who have made an important contribution to the high quality of the musical life in the country. Eva Ingolf currently lives in New York City with her husband Kristinn Sv.

Shaun Norris (born 14 May 1982) is a South African professional golfer.Norris plays on the Sunshine Tour where he has won twice. He won the inaugural Africa Open in 2008 and the Nashua Masters in 2011. He also began playing on the European Tour in 2011 after graduating from qualifying school. **Athlete**

Palace Software was a British video game publisher and developer during the 1980s based in London England. It was notable for the Barbarian and Cauldron series of games for 8-bit home computer platforms in particular the ZX Spectrum Amstrad CPC and Commodore 64.

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt . Economic growth has slowed down in recent years .

La croissance économique s' est ralentie ces dernières années .

Word Embeddings

Word Embeddings (like Wide/Deep)

Word Embeddings: Training

- many training options exist
 - a popular option, next word prediction

Word Embeddings

Many are pre-trained for you!!

GloVe

Highlights

1. Nearest neighbors

Global Vectors for Word Representation

The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary. For example, here are the closest words to the target word frog:

- frog
- 1. frogs
- toad
- litoria
- 4. leptodactylidae
- 5, rana
- lizard
- 7. eleutherodactylus

litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

GloVe produces word vectors with a marked banded structure that is evident upon visualization:

Word Embeddings: proximity

GloVe

The **chairman** called

the **meeting** to order.

The **director** called the **conference** to order.

The **chief** called the **council** to order.

t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region. From Turian et al. (2010), see complete image.

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	COD	AMIGA	CREENISH	NAILED	CCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GREMANY	CHRIST	MSX	PINKISH	PUNCHED	вгг/в
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

What words have embeddings closest to a given word? From Collobert

et al. (2011)

Word Embeddings: Analogy

GloVe

Global Vectors for Word Representation

each axis **might** encode a different type of relationship

Word Embeddings: Analogy

From Mikolov et al. (2013a)

GloVe

Global Vectors for Word Representation

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$$

	Relationship	Example 1	Example 2	Example 3	
	France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
	big - bigger	small: larger	cold: colder	quick: quicker	
	Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
	Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
	Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
	copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
	Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
1	Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
	Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
	Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Relationship pairs in a word embedding. From Mikolov et al. (2013b).

Self Test: Analogy

- Each axis on the embedding plot below is:
 - A. a weight inside the embedding matrix
 - B. a weighted average of weights inside the

embedding layer

- C. the average of the one hot encoding for a word
- D. an output of the embedding matrix

Recurrent flow with embeddings

Different length input documents?

option A: dynamic length sequences

option B: padding/clipping

main difference:

speed based on computation graph design

 RNNs are not inherently parallelized or efficient at remembering based on state vector, but CNNs can be run in parallel groups

- Everything we learned in 2D CNNs can be applied to 1D CNNs...
- Residuals, separable convolution, squeezing, everything

The Sequential CNN IMdB sentiment analysis

13a. Sequence Basics [Experimental].ipynb

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Sequential Networks Overview