Aula-9

Temperatura, Calor e 1^a Lei da Termodinâmica

Física Geral II - F 228 1° Semestre, 2021

Termodinâmica

 Estuda as relações entre Calor e outras formas de energia em sistemas macroscópicos;

Grandezas básicas:
 Temperatura (T) , Pressão (p), Volume (V),
 Energia interna (E_{int}), Calor (Q), Entropia (S).

Máquinas Térmicas : A Vapor; Refrigeradores; Ar-Condicionados, ...

Equilíbrio Térmico

Dois sistemas macroscópicos em contato térmico:

Muitas configurações microscópicas ↔ Distribuição de Energia Térmica permitida,

MAS...

...EXISTE UMA CONFIGURAÇÃO MUITO MAIS PROVÁVEL

- A CONFIGURAÇÃO DE EQUILÍBRIO TÉRMICO descreve MUITO BEM as propriedades do sistema
- Parâmetro que se iguala na configuração de equilíbrio térmico:

TEMPERATURA

Temperatura

- É grandeza escalar;
- Conceito macroscópico;
- Característica de sistemas termodinâmicos em equilíbrio térmico;

Medida da Temperatura

- São utilizadas propriedades físicas que dependem de T:
 - Pressão de gases
 - Volume de gases e líquidos
 - Dimensões de sólidos
 - Resistência elétrica ...

• Principais Escalas: Kelvin [K], Celsius [°C], Fahrenheit [°F]

Escalas de Temperatura

■ Referência: PONTO TRIPLO DA ÁGUA

Célula de ponto triplo

- Define um único conjunto de p, V e T
- T₃ atribuída por acordo internacional:

$$T_3 = 273,16 \text{ K}$$

Escalas de Temperatura

■ Kelvin, Celsius, Fahrenheit

Celsius:

$$T_3 = 0.01 \text{ °C}$$
; $\Delta T = 1 \text{ K} = 1 \text{ °C}$

Fahrenheit:

$$T_3 = 32,02 \text{ oF}$$
; $\Delta T = 5 \text{ K} = 9 \text{ oF}$

TABLE 19-1 SOME CORRESPONDING TEMPERATURES

TEMPERATURE	°C	°F
Boiling point of water ^a	100	212
Normal body temperature	37.0	98.6
Accepted comfort level	20	68
Freezing point of water	0	32
Zero of Fahrenheit scale	$\approx \frac{-18}{-40}$	0
Scales coincide	~ - 40	- 40

$$\frac{T_K - 273,15}{5} = \frac{T_C}{5} = \frac{T_F - 32}{9}$$

$$T_C = T_K - 273,15^{\circ}$$

$$T_F = \frac{9}{5}T_C + 32^{\circ}$$

Lei Zero da Termodinâmica

 Se dois sistemas estão em equilíbrio térmico com um terceiro, eles devem estar em equilíbrio térmico entre si.

- Sistemas : A , B e T (termômetro)
- Parâmetro do Sistema T: Temperatura

Se:
$$T_T = T_A$$
 e $T_T = T_B$ \longrightarrow $T_A = T_B$

- Se: $T_i > T_j$
 - \rightarrow Fluxo de energia de i para j

Dilatação (ou Expansão) Térmica

■ Aumento de T → aumento da separação média entre átomos do sólido

Expansão linear:
$$\Delta L = L\alpha\Delta T$$
 $\rightarrow \frac{\Delta L}{L} = \alpha\Delta T$

Coeficiente de expansão linear:

$$\alpha = \frac{\Delta L/L}{\Delta T} \approx CTE$$

TABLE 19-2 SOME COEFFICIENTS OF LINEAR				
α(10-6/C)	SUBSTANCE	α(10 ⁻⁶ /C)		
51	Steel	11		
29	Glass (ordinary)	9		
23	Glass (Pyrex)	3.2		
19	Diamond	1.2		
17	Invarè	0.7		
12	Fused quartz	0.5		
	α (10 ⁻⁶ /C) 51 29 23 19 17	o. (10 °/C) SUBSTANCE 51 Steel 29 Glass (ordinary) 23 Glass (Pyrex) 19 Diamond 17 Invar		

Room temperature values except for the listing for ice.

[&]quot;This alloy was designed to have a low coefficient of expansion. The word is a shortened form of "invariable."

Dilatação térmica

Expansão volumétrica

Coeficiente de expansão volumétrica isotrópica :

$$\beta = \frac{\Delta V/V}{\Delta T} = 3\alpha$$

Exemplo: CUBO

$$V = L^3$$

$$\beta \Delta T = \frac{\Delta V}{V} = \frac{3L^2 \Delta L}{L^3} = 3\frac{\Delta L}{L} = 3\alpha \Delta T$$

Dilatação térmica anômala

Coeficiente de dilatação anômalo da água

- Densidade:
$$\rho = \frac{m}{V}$$

- Volume específico: $\rho^{-1} = \frac{v}{m}$

Calor e Temperatura

 $T_c > T_{ambiente}$

Corpo perde energia interna: Calor transferido para o ambiente $\mathsf{T_c} < \mathsf{T}_{\mathsf{ambiente}}$

Corpo ganha energia interna: Calor cedido pelo ambiente

 $T_c = T_{ambiente}$

Não há transferência de energia

Absorção de Calor

- A capacidade de absorção depende do sistema;
- Em geral, resulta em aumento de T.

Capacidade Calorífica :
$$C = \frac{Q}{\Lambda T}$$
 ; $\Delta T = T_f - T_i$

$$c = \frac{Q}{m\Delta T};$$

Específico:
$$c = \frac{Q}{m\Delta T}$$
; $c_{mol} = \frac{Q}{mol \Delta T}$

 Só dependem do material e das condições (Ex.: pressão ou volume constantes)

Calor específico

			والمناز والمنازين والمنتصورين والمنتصور والمناز والمناز والمناز والمناز والمناز والمناز والمناز والمناز
TARLE 10_3	CDECTETC HEATS	OF SOME SUBSTANCES	AT ROOM TEMPERATURE
TABLE 19-3		OF SOME SOBSTANCES	

			Molar
	SPECIFIC HEAT		SPECIFIC HEAT
SUBSTANCE	cal/g·K	J/kg·K	J/mol·K
Elemental Solids			
Lead	0.0305	128	26.5
Tungsten	0.0321	134	24.8
Silver	0.0564	236	25.5
Copper	0.0923	386	24.5
Aluminum	0.215	900	24.4
Other Solids			
Brass	0.092	380	
Granite	0.19	790	
Glass	0.20	840	Q
Ice(-10°C)	0.530	2220	$c_{mol} = \frac{1}{100}$
<i>Liquids</i>			$mol \Delta T$
Mercury	0.033	140	
Ethyl alcohol	0.58	2430	
Seawater	0.93	3900	
Water	1.00	4190	

Unidades

> CALOR = ENERGIA

[Q] = Joule : J

1 cal = 4,1868 J : Calor necessário para aumentar T, de 1 g de água, de 14,5 °C para 15,5 °C.

Calor específico

[c]: J/(kg K) ou: cal /(g K)

Calor específico molar [c_{mol}] : J/(mol K)

$$c_{mol} = \frac{Q}{mol \, \Delta T}$$

James P. Joule 1818 – 1889 Físico Britânico

Equivalente mecânico do calor

Transformação de FASE

Requer energia: (calor absorvido ou liberado)

Calor de Transformação:

$$L_i = \frac{Q_i}{m}$$

A temperatura não varia durante a mudança de estado

Calor de Transformação

TABLE 19-4 SOME HEATS OF TRANSFORMATION				
	MELTING		BOILING	
SUBSTANCE	MELTING	HEAT OF	BOILING	HEAT OF
	POINT	FUSION(L _F)	POINT	VAPORIZATION(L _y)
	(K)	(kJ/kg)	(K)	(kJ/kg)
Hydrogen	14.0	58.0	20.3	455
Oxygen	54.8	13.9	90.2	213
Mercury	234	11.4	630	296
Water	273	333	373	2256
Lead	601	23.2	2017	858
Silver	1235	105	2323	2336
Copper	1356	207	2868	4730

Exemplo

Qual a quantidade de calor necessária para transformar 720 g de gelo, inicialmente a -10 °C, em água a 15 °C?

Dados: c_{ice} = 2220 J/Kg, L_F = 333 J/kg, c_{liq} = 4190 J/kg

$$Q_1 = c_{\text{ice}} m(T_f - T_i)$$
 $Q = mc\Delta T$
= $(2220 \text{ J/kg} \cdot \text{K})(0.720 \text{ kg})[0^{\circ}\text{C} - (-10^{\circ}\text{C})]$
= $15,984 \text{ J} \approx 15.98 \text{ kJ}.$

$$Q_2 = L_F m = (333 \text{ kJ/kg})(0.720 \text{ kg}) \approx 239.8 \text{ kJ}.$$

$$Q = mc\Delta T$$

$$Q_3 = c_{\text{liq}} m(T_f - T_i)$$
= (4190 J/kg·K)(0.720 kg)(15°C - 0°C)
= 45,252 J ≈ 45.25 kJ.

$$Q_{tot} = Q_1 + Q_2 + Q_3$$

= 15.98 kJ + 239.8 kJ + 45.25 kJ
 \approx 300 kJ.

Calor e Trabalho

• CALOR:

- Energia transferida por contato térmico;
- + O: Calor recebido pelo sistema

• TRABALHO:

- Energia transferida por variação dos parâmetros externos do sistema;
- + W: Trabalho realizado pelo sistema

ENERGIA INTERNA DO SISTEMA:

 Energia Cinética + Potencial dos graus de liberdade internos;

Gás Ideal: $E_{int} \propto T$ (Proporcional a Temperatura)

1^a Lei da Termodinâmica

$$\Delta E_{\rm int} = Q - W$$

(Conservação de Energia)

Trabalho em Fluidos:

$$dW = \vec{F} \cdot d\vec{s} = (pA)(ds)$$
$$dW = p(Ads)$$
$$dW = p dV$$

$$W = \int dW = \int_{V_i}^{V_f} p dV$$

Trabalho

$$W = \int dW = \int_{V_i}^{V_f} p dV \iff \text{Area sob a curva} \\ \text{no diagrama } p - V$$

 $i \rightarrow f$; Qual caminho?

1^a Lei : Processos Adiabáticos

Sistema isolado OU Processo muito rápido

Não há transferência de calor

$$Q = 0$$

$$\Delta E_{\rm int} = Q - W \propto \Delta T$$
 (gas ideal)

$$\Delta E_{\rm int} = -W$$

- Expansão adiabática: W > 0 : ΔE_{int} < 0 : Temperatura diminui
- Compressão adiabática: W < 0: $\Delta E_{int} > 0$: Temperatura aumenta

1^a Lei : Processos Isométricos

Volume = Constante

$$W = \int dW = \int_{V_i}^{V_f} p dV \qquad \Longrightarrow \qquad W = 0$$

$$\Delta E_{\rm int} = Q - W$$

$$Q = \Delta E_{\rm int}$$

- Gás absorve calor : Q > 0 : $\Delta E_{int} > 0$: Temperatura aumenta
- Gás libera calor : Q < 0 : $\Delta E_{int} < 0$: Temperatura diminui

1^a Lei : Processos Isotérmicos

• Temperatura = Constante

Ex.: Gás Ideal
$$\to$$
 $E_{\rm int} \propto T$ \to $\Delta E_{\rm int} = Q - W = 0$ $Q = W$ $pV = nRT$

$$W_{i o f} = \int\limits_{V_i}^{V_f} p \, dV$$

$$W_{i\to f} = \int_{V_i}^{V_f} \frac{nRT}{V} dV = nRT \int_{V_i}^{V_f} \frac{dV}{V}$$

$$W_{i \to f} = nRT \ln \left(\frac{V_f}{V_i}\right)$$

1^a Lei : Processos Cíclicos

• Estado inicial = Estado final $(i \rightarrow f \rightarrow i')$

onde:

Curvas fechadas

$$E_{\text{int}}$$
 inicial $(i) = E_{\text{int}}$ final (i')

$$T_i = T_{i'}$$

$$\Delta E_{\text{int}} = 0$$

$$\Delta E_{\text{int}} = Q - W$$

$$Q = W$$

 $W = W_{i \to f} + W_{f \to i'}$

Primeira Lei: Expansão Livre

Expansão adiabática sem realização de trabalho

$$Q = W = 0$$

$$\Delta E_{\rm int} = Q - W$$

$$\Delta E_{\rm int} = 0$$

- A temperatura do gás NÃO varia
- Não pode ser realizado lentamente: processo abrupto.
- Os estados intermediários não são "de equilíbrio";
 Não se pode plotar a trajetória em um diagrama p V

Transferência de calor

Condução

Conveção

Radiação

Condução

Energia térmica é transferida átomo a átomo

Condução

• Placa com faces de área A e espessura \overline{L} , mantidas em $\overline{T_H}$ e $\overline{T_C}$

 Taxa de condução = Calor transferido por unidade de tempo:

$$H = \frac{Q}{t} = kA \frac{T_H - T_C}{L}, \quad$$

k : condutividade térmica do material

Resistência térmica à condução de calor :

$$R_k = \frac{L}{k}$$

$$R_k = \frac{L}{k} \qquad \Longrightarrow \qquad H = A \frac{T_H - T_C}{R_k}$$

Condução

THE REPORT OF THE PARTY OF	_ ~	
	SOME THERMAL CONDUCTIVII	" B B . " B . "
- 1 (40.131.71) 1 (9-10-1	- 34.31646. 1.646.6616464. 4.4464.314. 4.446.4	10.3

	k(W/m-K)		(W/m-K)
<u>Metals</u>		Building Materials	
Stainless steel	14	Polyurethane foam	0.024
Lead	35	Rock wool	0.043
Aluminum	235	Fiberglass	0.048
Copper	401	White pine	0.11
Silver	428	Window glass	1.0
<u>Gases</u>			
Air (dry)	0.026		
Helium	0.15		
Hydrogen	0.18		

Condução: Exemplo

• Placa composta, em estado estacionário: $H_1 = H_2 = H$

$$H = \frac{k_2 A(T_H - T_X)}{L_2} = \frac{k_1 A(T_X - T_C)}{L_1}.$$

$$T_X = \frac{k_1 L_2 T_C + k_2 L_1 T_H}{k_1 L_2 + k_2 L_1}.$$

$$H = \frac{A(T_H - T_C)}{L_1/k_1 + L_2/k_2}.$$

$$H = \frac{A(T_H - T_C)}{\sum (L/k)} = \frac{A(T_H - T_C)}{\sum R}.$$

Resistências térmicas em série se somam

Convecção

■ FLUIDOS : variação da temperatura → variação da densidade → movimento do fluido :

Correntes de convecção

Radiação

- Calor absorvido/liberado por absorção/emissão de ondas eletromagnéticas
- Única forma de transferência de calor no vácuo

Radiação

Taxa de radiação térmica = Potência térmica

Lei de Stefan-Boltzmann:

$$P = \sigma \varepsilon A T^4$$

 σ = 5,6703×10⁻⁸ W/m⁻²K⁻⁴ : Cte. de Stefan-Boltzmann

 ε : emissividade: $0 \rightarrow 1$ (1 \Longrightarrow corpo negro)

T: PRECISA estar em K

Radiação

Emissão vs Absorção

Potência térmica irradiada

Potência térmica absorvida

$$P_{rad} = \sigma \varepsilon A T^4$$

$$P_{abs} = \sigma \varepsilon A T_{amb}^4$$

Taxa líquida de troca de energia de um corpo em T, num ambiente em T_{amb} :

$$P_{liq} = P_{abs} - P_{rad} = \sigma \varepsilon A (T_{amb}^4 - T^4)$$

Exemplo

Deve-se converter 1 kg de água, a 100 °C, em vapor d'água na mesma temperatura, numa pressão p = 1,01x10⁵ N/m². O volume da água varia de 1,0 x 10⁻³ m³, quando líquida, para 1,671 m³ em gás. Calcule: **a)** O trabalho realizado pelo sistema; **b)** A variação da energia interna do sistema.

$$W = \int_{\nu_i}^{\nu_f} p \ dV = p \int_{\nu_i}^{\nu_f} dV = p(V_f - V_i)$$

= $(1.01 \times 10^5 \text{ Pa})(1.671 \text{ m}^3 - 1.00 \times 10^{-3} \text{ m}^3)$
= $1.69 \times 10^5 \text{ J} = 169 \text{ kJ}.$

$$Q = L_v m = (2260 \text{ kJ/kg})(1.00 \text{ kg})$$

= 2260 kJ.

$$\Delta E_i = Q - W$$

$$\Delta E_{\text{int}} = Q - W = 2260 \text{ kJ} - 169 \text{ kJ}$$

 $\approx 2090 \text{ kJ} = 2.09 \text{ MJ}.$

Dilatação térmica

Aplicação : termostato

Convecção

Brisa do mar:

• O ar quente é menos denso e sobe. O ar frio é mais denso e desce. Correntes de convecção são efetivas formas de trocar calor.

Exemplo

Um fio de aço com 130 cm de comprimento e 1,1 mm de diâmetro é aquecido a 830 °C e conectado a dois suportes. Qual a força gerada no fio quando ele é resfriado a 20 °C? $\alpha_{\rm aco} = 11 \times 10^{-6}$ /°C ; $E_{\rm aco} = 200 \times 10^{9}$ N/m².

$$\Delta L = L\alpha \ \Delta T = 1.3 \times 11 \times 10^{-6} \times 810$$

 $\Delta L = 1.16 \times 10^{-2} \ m = 1.16 \ cm$

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

$$F = E \frac{\Delta L}{L} \pi \left(\frac{d}{2}\right)^{2} = 200 \times 10^{9} \frac{1,16 \times 10^{-2}}{1,3} \pi \left(\frac{1,1 \times 10^{-3}}{2}\right)^{2}$$

$$F = 1700 \text{ N}$$

Dilatação térmica

