数字逻辑设计实验

薛睿

课程介绍

- □ 深入理解数字逻辑设计的理论知识
- □ 掌握Verilog数字设计基础知识
- □ 具备基于FPGA设计数字系统的能力
- □ 为后续课程打好基础

课程介绍

□ 实验安排 学时: 20学时

成绩: 20分

序号	实验项目	学时	分值	重点、难点
1	Vivado使用与多路复用器实现	2	2	熟悉流程、掌握组合逻辑基本语法
2	寄存器设计	2	2	熟悉流程、掌握时序逻辑基本语法
3	计数器设计	2	2.5	计数器设计方法
4	数码管控制器设计	4	3.5	数码管访问原理、计数器设计应用
5	状态机设计	4	4	三段式描述方法
6	综合实验	6	6	模块化设计、调试

实验平台

- □ FPGA两大厂商: Xilinx(已被AMD收购) 和Altera(已被Intel收购)
- □ Minisys开发板
 - ▶ 以Xilinx Artix-7™系列 FPGA为主芯片
 - ▶ 主芯片型号: xc7a100tfgg484-1

Vivado

- □ FPGA厂商Xilinx公司2012年发布的集成开发环境
 - □ 集编辑器、逻辑函数库、布线/仿真工具、下载器等

- □ 课程使用版本:
- □ 2018.3 webpack (无需license)

相关链接

□ 实验指导书

仓库地址: https://gitee.com/hitsz-cslab/diglogic

网页版: https://hitsz-cslab.gitee.io/diglogic/

□ 作业提交网址

http://10.249.12.98:8000/

□ 腾讯文档答疑

https://docs.qq.com/doc/DWm5nQlViWmhqbmtx

数字逻辑设计

实验1 Vivado使用与多路复用器实现

薛睿

实验目的

- □ 熟悉MINISYS实验板的功能和使用方法;
- □ 掌握Vivado的开发环境及开发流程;
- □ 运用Verilog语言描述组合逻辑电路,理解仿真波形。

实验项目一

以3-8译码器为例,在Vivado中建立工程,导入提供的代码,运行综合、 实现、生成比特流文件,下载到Minisys开发板,验证结果。

使能信号 E3E2E1==3'b100有效, 否则Y7-0始终输出1

	Input			Output						
A2	A1	A0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1

接口定义

信号名	属性	位宽	备注
enable	input	3	译码器使能信号
data_in	input	3	译码器输入信号
data_out	output	8	译码器输出信号

引脚分配

信号名	部件名	管脚	信号名	部件名	管脚
enable[0]	SW21	Y7	data_out[0]	GLD0	A21
enable[1]	SW22	W9	data_out[1]	GLD1	E22
enable[2]	SW23	Y9	data_out[2]	GLD2	D22
data_in[0]	SW0	W4	data_out[3]	GLD3	E21
data_in[1]	SW1	R4	data_out[4]	GLD4	D21
data_in[2]	SW2	T4	data_out[5]	GLD5	G21
			data_out[6]	GLD6	G22
			data out[7]	GLD7	F21

图 1-2 拨码开关、LED 灯电路图

Minisys开发板外设介绍

□ 拨码开关

▶ 数量: 24个

➤ 部件名: SW23 ~ SW0

▶ 作用:作为数据输入

▶ 取值:向下拨为0

□ 按键开关

▶ 数量: 5个

➤ 部件名: S5 ~ S1

▶ 作用:作为数据输入

▶ 取值: 默认为0, 按下为1

Minisys开发板外设介绍

□ LED灯

▶ 数量: 24个 (红、绿、黄各8个)

➤ 部件名: RLD7~0、GLD7~0、YLD7~0

▶ 作用:显示信号值

▶ 取值:输入1点亮

注意事项

- □ 开发板使用**注意事项**
 - □ 插拔接插件前请关闭电路总开关,否则容易损坏器件
 - □ 防止静电:不要用手摸电路板、使用完毕装回防静电袋
 - □ 保持电路板清洁
 - □ 小心轻放,避免不必要的硬件损伤
- □ 用microUSB线将实验板的JTAG (J22) 与PC机的USB口相连
 - □ 插拔USB线务必先对准,再稍稍用力插拔即可
 - □ 禁止过度用力从而损坏micro USB接口!

注意事项

- □ 开发板使用**注意事项**
 - □ 严禁将开发板带出实验室!!
 - □ 严禁将开发板带出实验室!!
 - □ 严禁将开发板带出实验室!!
 - □ 一经发现,将登记并扣分处理,带出放到其他实验室也将扣分处理。

实验步骤

- □ 基于Vivado的开发流程:详细步骤参考指导书
 - ① 建立工程
 - ② 编写RTL
 - ③ 添加设计文件
 - ④ 编写仿真文件
 - ⑤添加仿真文件
 - ⑥ 进行仿真
 - ② 编写约束文件
 - ⑧ 添加约束文件
 - ⑨ 综合、实现和生成比特流
 - ⑩ 开发板验证

验收要求

□ 开发板验证通过 (必须通过)

实验项目二

使用Verilog实现2输入4位多路复用器,拨码开关作为输入,输出驱动LED显

示,运行仿真、上板验证。

详细要求:

- a. 拨码开关SW23作为多路复用器使能信号enable输入;
- b. 拨码开关SW22作为多路复用器选择信号select输入;
- c. 拨码开关SW3-SW0作为input_a输入,SW7-SW4作为input_b输入;
- d. 输出信号需连接到开发板的GLD3-GLD0。
- e.使能enable=1有效, select为1, 计算a-b作为输出; select为0, 计算a+b作为输出。无符号处理,加法无需考虑溢出,减法只测试a>b的情况。

实验内容

□ 实现功能

使能enable=0 时,输出全1;使能enable=1有效,select为1,计算a-b作为输出;select为0,计算a+b作为输出。无符号处理,加法无需考虑溢出,减法只测试a>b的情况。

		output		
enable	selcect	input_a	input_b	led[3:0]
1	1	XXXX	XXXX	input_a - input_b
1	0	XXXX	XXXX	input_a + input_b
0	1	XXXX	XXXX	1111
0	0	XXXX	XXXX	1111

Tips:可以直接用Verilog的+、-操作,也可以自行实现加法器、减法器

接口定义

信号名	属性	位宽	备注
enable	input	1	使能信号
select	input	1	选择信号
input_a	input	4	输入数据a
input_b	input	4	输入数据b
led	output	4	LED显示信号

引脚约束

■ 将模块的input/output信号与芯片的物理引脚进行组

- 绑定引脚

■ 语法格式

set_property PACKAGE_PIN (pin location) [get_ports (pc set_property PACKAGE_PIN P5 [get_ports sw[0]] # 将sw

- 设置引脚的电气特性

■ 语法格式

set_property IOSTANDARD (level:LVCMOS33 etc.) [get_| set_property IOSTANDARD LVCMOS33 [get_ports sw[0]

图 1-2 拨码开关、LED 灯电路图

实验步骤

- □ 创建工程,工程名为multiplexer;
- □ 编写并添加设计文件multiplexer.v;
- □ 添加提供的仿真文件testbench.v,并完成仿真;
- □ 编写并添加约束文件,并综合实现,生成比特流;
- □ 将生成的比特流下载到开发板验证;

仿真分析

- (1) 初始态 enable 为 0, 输入 data_in 为 0, 输出 data_out 为ff, 符合预期;
- (2) 5ns 时, enable 从初始 0 变为 4, 使能有效, 输入 data_in仍为 0, 输出 data_out 为 fe, 符合预期;

…… 详细分析说明参看指导书

课后作业

- □ 参考在线指导书"实验1课后作业"一节,对比3个RTL代码的RTL Analysis和Synthesis schematic截图、仿真和下板的情况。
- □ 将RTL Analysis和Synthesis schematic截图、仿真与实验的仿真分析写到同一个文件,作出分析说明。

验收要求

HITSZ 实验与创新实践教育中心 Education Center of Experiments and Innovations, HITSZ

- □ 课上检查
 - □ 多路复用器仿真、开发板验证通过 (1分)
- □ 课后提交
 - □ 多路复用器仿真波形分析、RTL Analysis和
 Synthesis schematic截图及代码 (0.5分)
 - □ 课后作业的RTL Analysis和Synthesis schematic 截图、仿真和相关分析说明 (0.5分)

数字逻辑设计 (2023秋季) 哈工大 (深圳)

前言

>

预备知识

Minisys介绍与注意事项

Vivado下载与安装

Vivado开发流程

建立工程

添加设计文件

添加仿真文件

进行仿真

添加约束文件

综合、实现和下板

开发板连接失败排查

仿真调试常用功能

Verilog代码规范

往年的学习总结和经验

实验1 Vivado使用与多路复用 > 器实现

提交要求

- □ 提交DDL: 见作业提交系统, 一般为当前实验的下个周末。
- □ 注意:如有雷同,雷同者均0分!
- □ 无出勤记录的同学提交作业不给分。

开始实验

组合逻辑的Verilog描述-always块

- 使用触发事件为电平敏 感信号的always块
- 使用always块描述组合逻辑电路时,需用阻塞赋值
- 将always模块中使用到的 所有输入信号和条件判 断信号都列在敏感信号

```
//3-8译码器
module decoder 38 (
    input wire [2:0] data in,
                                //使能端为3'b100时有效
    input wire [2:0] en,
    output reg [7:0] data out
);
always @ * begin
    if (en == 3'b100)
      case (data in)
        3'h0:data out = 8'hfe;
        3'h1:data out = 8'hfd;
        3'h2:data out = 8'hfb;
        3'h3:data out = 8'hf7;
        3'h4:data out = 8'hef;
        3'h5:data out = 8'hdf;
        3'h6:data out = 8'hbf;
        3'h7:data out = 8'h7f;
        default:data out = 8'hff;
      endcase
    else data out = 8'hff;
  end
                                                   28
endmodule
```

Testbench-组合逻辑

endmodule

```
`timescale 1ns/1ps
                     //1ns表示延时单位, 1ps表示时间精度
                                                 ■ 仿真模块没有输入、输出端口
module decoder 38 sim();
                      //3位二进制输入
   reg [2:0] data in;
                      //3位使能信号
   reg [2:0] en;
                                                   激励信号数据类型要求为reg,
                      //8位二进制输出
   wire [7:0] data out;
                      //结合自己的设计模块完成实例化
decoder 38 u decoder 38 (
                                                   以便保持激励值不变, 直至执
   .data in (data in),
   .en(en),
   .data out (data out)
                                                   行到下一跳激励语句为止
  );
initial begin
                                                   输出信号数据类型要求为wire
     begin en = 3'b100;data in = 3'b000;end //构造输入激励信号
   #5 begin en = 3'b100; data in = 3'b001; end
   #5 begin en = 3'b100; data in = 3'b010; end
                                                      以便能随时跟踪激励信号的
   #5 begin en = 3'b100;data in = 3'b011;end
   #5 begin en = 3'b100;data in = 3'b100;end
   \#5 begin en = 3'b100; data in = 3'b101; end
                                                   变化
   #5 begin en = 3'b100;data in = 3'b110;end
   #5 begin en = 3'b100;data in = 3'b111;end
   #5 begin en = 3'b000;data in = 3'b000;end //使能端无效
                                                 ■ initial块只能执行一次,不带触发
   #5 begin en = 3'b101; data in = 3'b111; end //使能端无效
   #5 $stop; //立即结束仿真
                                                   条件。
end
                                                                                  29
```

仿真分析

0ns时,使能端为1'b100有效, data_in信号为1'b000, data_out输出为8'b11111110(低电平有效); 5ns时,使能端为1'b100有效, data_in信号为1'b001, data_out输出为8'b11111101(低电平有效);

• • • • • •

45ns时, 使能端为1′b101无效, data_in信号为1′b111, data_out输出为8′b11111111(低电平有效)

30