- <u> Условие</u>
- <u>Решение</u>
- <u>М</u> <u>Разбалловка</u>
 - 1.77 Чему равно расстояние до точки падения на дно для лодки, движущейся в озере той же глубины, что и река?

В системе отсчета, связанной с водой, скорость лодки v одинаковая, независимо от направления движения, поэтому расстояние l, которое проходит шарик до места падения, всегда одно и то же. Время движения шарика в воде au также одинаковое во всех случаях. В системе отсчета, связанной с землей, расстояния, которые проходит шарик, равны

1

$$l_1 = l + u\tau$$

$$l_2 = u\tau - l,$$

где u — скорость течения. Отсюда

Ответ:

$$l=\frac{(l_1-l_2)}{2}$$

2?? Во сколько раз скорость лодки больше скорости течения?

При этом также $u au=rac{(l_1+l_2)}{2}$. При движении по траектории перпендикулярной течению реки расстояние l_3 определяется по теореме косинусов

$$l_3^2 = l^2 - 2lu au\cdot\coslpha + (u au)^2,$$

где lpha — угол между направлением вектора скорости лодки относительно воды и перпендикуляром к направлению течения реки. Учитывая, что $coslpha=rac{u}{v}$, получаем

$$l_3^2 = \frac{\left(l_1 - l_2\right)^2}{4} - 2\frac{\left(l_1 - l_2\right)}{2} \frac{\left(l_1 + l_2\right)}{2} \cdot \frac{u}{v} + \frac{\left(l_1 + l_2\right)^2}{4}$$

Отсюда

Ответ:

$$\frac{v}{u} = \frac{l_1^2 - l_2^2}{l_1^2 + l_2^2 - 2l_3^2}$$

<u> Условие</u>

6

<u> Решение</u>

<u>М</u> <u>Разбалловка</u>

1 чему равно расстояние до точки падения на дно для лодки, движущейся в озере той же глубины, что и река?

Скорость движения лодки v относительно воды (или в СО воды) постоянна	0.50
Время движения шарика от момента броска и до момента падения на дно $ au$ во всех трех случаях одинаково. Балл ставится только в случае корректного доказательства данного утверждения. Не влияет на оценку последующих пунктов.	0.75
Перемещение шарика в горизонтальной плоскости относительно воды (или в СО воды) <i>s</i> одинаково по модулю во всех трех случаях. Балл ставится только в случае корректного доказательства данного утверждения. Не влияет на оценку последующих пунктов.	0.75
Модуль перемещения воды $u au$ относительно берега за время движения шарика одинаков для всех трёх случаев	0.50
Правильно записано выражение для связи модулей перемещений шарика в первом случае: $l_1 = u \tau + s$	1.00
Правильно записано выражение для связи модулей перемещений шарика во втором случае: $l_2 = u au - s$	1.00
При неверных знаках в правой части выражения за данный пункт ставится 0 , но в последующих пунктах баллы не снимаются	
Получено выражение для перемещения шарика в горизонтальной плоскости при движении в озере (или для всех случаев в СО воды): $s = \frac{l_1 - l_2}{2}$	1.00

()

2 ?? Во сколько раз скорость лодки больше скорости течения?

Найден модуль перемещения воды относительно берега: $u\tau = \frac{l_1 + l_2}{2}$	1.00
Правильно нарисована связь перемещений для третьего случая (или пояснена в тексте решения)	1.00
Правильно записана теорема косинусов или аналогичные выражения для прямоугольных треугольников в соответствие с рисунком $l_3^2 = s^2 + (u au)^2 - 2su au \cdot \cos arphi$	1.50
Соотношение скоростей записано как тригонометрическая функция соответствующего угла (синус, косинус или тангенс) $\cos\varphi=u/v$	1.00
Угол между направлениями скоростей показан на рисунке или есть его словесное определение	0.50
Получен верный ответ для соотношения скоростей: $\frac{v}{u} = \frac{l_1^2 - l_2^2}{l_1^2 + l_2^2 - 2l_3^2}$	1.50

- <u> Условие</u>
- <u>Решение</u>
- <u>М</u> <u>Разбалловка</u>

17 Определите объемный расход воздуха q, необходимый для поддержания в реакторе температуры $T < T_K$, где $T_K = 100 ^{\circ} \mathrm{C}$ — температура кипения водного раствора при атмосферном давлении. Считайте $T_K - T \ll T_K$. Определите численное значение q для $T = 95 ^{\circ} \mathrm{C}$.

1

За некоторый промежуток времени au через трубки пройдет u_1 молей воздуха

$$\nu_1 = \frac{P_0 q \tau}{R T_0}$$

Количество молей водяного пара u_2 , который испарится внутрь пузырьков за это же время, определяется количеством теплоты, выделившейся в реакторе.

$$u_2 = rac{N au}{\lambda}$$

Давление внутри пузырьков равно атмосферному и складывается из давления насыщенного пара P_Π при температуре T и давления воздуха $P_{
m B}$, при этом

$$P_{\Pi} = P_0 - \alpha (T_K - T)$$

$$P_{\rm B} = P_0 - P_{\Pi} = \alpha (T_K - T)$$

Отношение количества молей пара и воздуха в пузырьках равно отношению их парциальных давлений

$$\frac{\nu_2}{\nu_1} = \frac{P_0 - \alpha(T_K - T)}{\alpha(T_K - T)} = \frac{NRT_0}{\lambda P_0 q}$$

Отсюда

Ответ:

$$q = \frac{NRT_0\alpha(T_K-T)}{P_0\lambda(P_0-\alpha\left(T_K-T\right))} \approx 6,5\cdot 10^{-4}\text{m}^3/\text{c}$$

<u> Условие</u>

<u> Решение</u>

<u>М</u> <u>Разбалловка</u>

Определите объемный расход воздуха q, необходимый для поддержания в реакторе температуры $T < T_K$, где $T_K = 100^{\circ} \mathrm{C}$ — температура кипения водного раствора при атмосферном давлении. Считайте $T_K - T \ll T_K$. Определите численное значение q для $T = 95^{\circ} \mathrm{C}$.

()

Выражение для объема воздуха через объемный расход $V=q au$	0.25
Правильно записано уравнение связи q и количества вещества для подаваемого воздуха	1.50
Нахождение давления насыщенного пара при температуре T : $p=p_0-lpha(T_K-T)$	1.00
Связь теплоты и количества испаряемой воды $Q=\lambda u$	0.50
Нахождение выделяемой теплоты $Q=N au$	0.25
Правильно записано условие стабильности пузырька (сумма парциальных давлений пара и воздуха равно $P_0 = P_{ m BO3Д} + P_{ m Пара}$)	2.00
Учет изменения объема пузырька при испарении в него воды	1.00
Учет изменения объема пузырька за счет изменения температуры воздуха в пузырьке	0.50
Уравнение состояния для пара	0.50
Отношение количеств вещества выражено через отношение парциальных давлений	1.50
$rac{ u_2}{ u_1} = rac{P_0 - lpha(T_K - T)}{lpha(T_K - T)}$	
Аналитический ответ в приближении $lpha(T_K-T)\ll P_0$	1.00
$qpproxrac{NRT_0lpha(T_K-T)}{P_0^2\lambda}$	
Получен правильный аналитический ответ	1.00
$q = rac{NRT_0lpha(T_K-T)}{P_0\lambda(P_0-lpha\left(T_K-T ight))}$	
Получен правильный численный ответ	1.00
$qpprox 6.5\cdot 10^{-4}~{ extsf{m}}^3/{ ext{c}}$	

- Условие
- Решение
- Разбалловка
 - Определите напряженность электрического поля в точке A.

І способ

Напряженность электрического поля определяется скоростью изменения потенциала: $E = \left| \frac{\Delta \varphi}{\Delta h} \right|$. Найти разность потенциалов от стержня в точках A и A', расстояние между которыми Δh — это то же самое, что найти разность потенциалов в точке A от двух стержней, смещенных на расстояние Δh .

Рассмотрим вклады в потенциал от малых элементов стержней, видимых из центра под равными углами. Потенциал точечного заряда определяется соотношением $arphi=rac{q}{4\piarepsilon_0}$. Поскольку линейные плотности зарядов одинаковы, то отношение потенциалов от таких элементов будет следующим $rac{arphi_1}{arphi_2}=rac{l_1}{l_2}rac{r_2}{r_1}$. Из подобия треугольников следует, что данное отношение равняется единице. Таким образом, разность потенциалов от двух стержней, находящихся на расстоянии h Δh , равна потенциалу от двух частей на краях одного из стержней. Длина каждой из них $\Delta l = \Delta h ext{tg} arphi$, находятся они на расстоянии $r = \frac{n}{\cos arphi}$ от точки A, откуда $\Delta arphi=rac{2\lambda\Delta l}{4\piarepsilon_0 r}=rac{\lambda\Delta h {\sinarphi}}{2\piarepsilon_0 h}$, и

Ответ:

$$E = \frac{\lambda \sin \varphi}{2\pi \varepsilon_0 h}$$

II способ

Если элемент стержня виден из точки A под углом $d\theta$, то длина этого элемента $dl=\dfrac{rd\theta}{\cos\theta}$, где θ — угол между направлением на элемент и перпендикуляром, опущенным из точки A на стержень, $r=rac{h}{\cos heta}$ сов расстояние от элемента до точки A. Тогда напряженность электрического поля, создаваемого этим λdl элементом, равна $\dfrac{\pi \omega}{4\pi arepsilon_0 r^2}$, а его проекция на перпендикуляр

1

$$dE = \frac{\lambda dl {\cos \theta}}{4\pi \varepsilon_0 r^2} = \frac{\lambda {\cos \theta} \; d\theta}{4\pi \varepsilon_0 h}$$

Суммируя эти проекции для всех элементов, получаем

$$E = \int_{-\varphi}^{\varphi} \frac{\lambda \cos \theta \, d\theta}{4\pi \varepsilon_0 h} = \frac{\lambda \sin \varphi}{2\pi \varepsilon_0 h}$$

Определите величину и направление ускорения шайбы сразу после того, как ее отпустили.

При отклонении от центра взаимодействие частицы с пластиной можно представить как взаимодействие с прямоугольником максимально большого размера с центром в положении частицы и с двумя оставшимися тонкими полосами (см. рис). Прямоугольник не имеет составляющей поля в плоскости квадрата в силу симметрии, значит, эта составляющая определяется только полями полосок.Толщины полос равны удвоенным смещениям частицы вдоль направлений, перпендикулярных им.Поскольку $r \ll L$, воспользуемся результатом части 1 и заменим полоски на стержни с линейной плотностью заряда $\lambda_1=2r\sigma\sinlpha\,$ и $\lambda_2=2r\sigma\coslpha$. Напряженность поля от каждой из них равна $E_{1,2}=rac{\cdots_{i,2}}{2\sqrt{2}\piarepsilon_0(L/2)}$, поскольку стержни видны из центра квадрата под углом $2\varphi=\pi/2$. Эти напряженности перпендикулярны

\noindent Из отношения $rac{E_1}{E_2}=\mathrm{tg}lpha\,$ получаем, что суммарное поле направлено под углом lpha к стороне —

(каждая направлена перпендикулярно своему стержню), поэтому складывая их, получаем

разноимённые. Таким образом, ускорение шайбы будет направлено к точке ${\it O}$ и равно

Ответ:

$$a = \frac{\sqrt{2}r\sigma}{\pi\varepsilon_0 mL}$$

2.2 3.00 Через какое время шайба впервые окажется на минимальном расстоянии от центра пластины?

Движение шайбы под действием данного поля эквивалентно движению под действием пружины с коэффициентом жёсткости $k=\frac{\sqrt{2}\sigma q}{\pi\varepsilon_0 L}$. Движение будет гармоническим с периодом $T=2\pi\sqrt{\frac{m}{k}}=\sqrt{\frac{2\sqrt{2}\pi^3\varepsilon_0 mL}{\sigma q}}$, а траектория будет проходить через центр квадрата.

Ответ: Впервые шайба окажется в центре через время $t=\frac{T}{4}=\sqrt{\frac{\pi^3 \varepsilon_0 mL}{4\sqrt{2}\sigma q}}$

Разбалловка

6

<u> Условие</u>

<u> Решение</u>

<u>М</u> <u>Разбалловка</u>

1 $^{4.00}$ — Определите напряженность электрического поля в точке A.

-	
Поле перпендикулярно стержню	0.10
Поле одного элемента как точечного заряда	1.00
$dE_0=krac{\lambda dx}{r^2}$	
Правильная проекция напряженности:	0.30
$dE=dE_0\cos\theta$	
Правильно найден элемент проекции напряженности через переменную интегрирования:	0.70
$dE=rac{k\lambda\cos heta d heta}{h}$	
Правильные пределы интегрирования (от $-arphi$ до $arphi$)	0.40
Ответ	1.50
$E=rac{\lambda\sinarphi}{2\piarepsilon_0h}=rac{2k\lambda\sinarphi}{h}$	

()

$2.1^{5.00}$ Определите величину и направление ускорения шайбы сразу после того, как ее отпустили.

-	
Показано, что поле квадрата можно заменить на поле двух полосок	1.00
Правильно найден размер одной полоски $2r\coslpha$	0.50
Правильно найден размер другой полоски $2r\sinlpha$	0.50
Найдена напряженность поля от полоски Пояснение: Необходимо воспользоваться формулой $E=rac{\lambda\sin\varphi}{2\pi\varepsilon_0h}=rac{2k\lambda\sin\varphi}{h}$ или полученной в вопросе 1. В неё необходимо подставить $\varphi=\pi/4$ и $h=L/2$. Если одна из этих подстановок не верная - пункт всё равно ставится.	1.00
Найдена напряженность поля пластины в проекциях Пояснение: Для получения этого пункта необходимо все подставновки в $arphi=\pi/4$ и $h=L/2$. сделать верно.	0.90
Найден модуль вектора напряженности $E=\frac{4\sqrt{2}kr\sigma}{L}=\frac{\sqrt{2}r\sigma}{\pi\varepsilon_0L}$	0.50
Найдено направление вектора напряженности или ускорения (вдоль АО)	0.50
Найдена величина ускорения (этот пункт - ответ, тут всё должно быть верно) $ a =\frac{4\sqrt{2}kr\sigma q }{mL}=\frac{\sqrt{2}r\sigma q }{\pi\varepsilon_0 mL}$	0.10

Определен период колебаний или угловая частота	0.60
Время движения $t=T/4$	0.60
Найдено искомое время (этот пункт - ответ, тут всё должно быть верно)	1.00
$t=rac{T}{4}=\sqrt{rac{\pi^3arepsilon_0mL}{4\sqrt{2}\sigma q }}=rac{\pi}{4}\sqrt{rac{mL}{\sqrt{2}k\sigma q }}$	

0.80

2020 – We are what they grow beyond.

Указано, что движение является гармоническим вдоль направления ОА

- <u> Условие</u>
- <u>Решение</u>
- <u>М</u> Разбалловка
 - 1^{3,00} Найдите индуктивность проволочного кольца, у которого все геометрические размеры в 2 раза больше.

Прежде всего заметим, что индуктивность кольца пропорциональна его радиусу. В самом деле, величина магнитной индукции в каждой точке пространства уменьшается обратно пропорционально радиусу кольца, а площадь увеличивается пропорционально квадрату радиуса. При заданной величине тока в кольце магнитный поток через плоскость кольца, таким образом, прямо пропорционален радиусу. Поэтому индуктивность кольца радиуса $\frac{R}{2}$ равна $\frac{L}{2}$, а кольца радиуса 2R-2L.

(1)

Ответ:

2L

 $2^{9.00}$ Какой станет индуктивность кольца L_2 радиуса R при помещении его внутрь сверхпроводящего кольца со вдвое большими геометрическими размерами? Плоскости и центры колец во втором случае также совпадают.

Магнитный поток через внутреннюю область нашего кольца (область A) в виде концентрического круга радиуса $\frac{R}{2}$ составляет некоторую часть α от полного потока через плоскость кольца

$$\Phi_A = \alpha L I$$

Тогда магнитный поток через область с внутренним радиусом $\frac{R}{2}$ и внешним радиусом R (область В) внутри нашего кольца

$$\Phi_B = (1 - \alpha)LI$$

Введем также обозначение для потока $\Phi_{\mathbb{C}}$ через область \mathbb{C} с внутренним радиусом R и внешним радиусом 2R, охватывающую снаружи наше кольцо

$$\Phi_C = \beta LI$$

В первом случае (сверхпроводящее колечко внутри) магнитный поток через область А, ограниченную сверхпроводящим контуром равен нулю

$$\Phi_{A1} = \alpha L I - \frac{L}{2} I_1 = 0$$

3десь I_1 — ток, возникающий в сверхпроводящем колечке. Полный поток через плоскость кольца радиуса R при этом

$$\Phi_1 = L_1 I = (1-lpha)\,L I + etarac{L}{2}I_1$$

Во втором случае наше кольцо с током I охвачено сверхпроводящим кольцом радиуса 2R с индуктивностью 2L. Во внешнем кольце возникает такой ток I_2 , при котором полный поток магнитного поля через его плоскость равнялся нулю

$$LI - \beta LI - 2LI_2 = 0$$

Полный поток через плоскость кольца радиуса ${\cal R}$ при этом

$$\Phi_2 = L_2 I = L I - \alpha \cdot 2 L I_2$$

Из предыдущих уравнений получаем

$$L_1I = (1-lpha)\,LI + lphaeta LI = (1-lpha+lphaeta)\,LI,$$

И далее

$$L_2I = LI - \alpha \cdot (1 - \beta) LI = (1 - \alpha + \alpha \beta) LI$$

Таким образом, $L_2=L_1$.

Решение 2 (взаимная индуктивность)

Соображение подобия относится и к взаимной индуктивности двух контуров — при увеличении всех геометрических размеров системы в 2 раза коэффициент взаимной индуктивности увеличивается в 2 раза. Таким образом, если коэффициент взаимной индуктивности колец радиусов R и R/2 равен L_{12} , то для колец радиусов 2R и R он будет равен $2L_{12}$. С их использованием уравнения первого варианта решения приобретают вид

$$\Phi_{
m A1} = L_{12}I - rac{L}{2}I_1 = 0$$

$$\Phi_1 = L_1 I = L I - L_{12} I_1$$

$$2L_{12}I - 2LI_2 = 0$$

$$\Phi_2 = L_2 I = L I - 2 L_{12} I_2$$

Из них также следует

$$L_1 = L_2 = L - rac{2L_{12}^2}{L}$$

Разбалловка

<u> Условие</u>

<u> Решение</u>

<u>М</u> <u>Разбалловка</u>

1 3.00 Найдите индуктивность проволочного кольца, у которого все геометрические размеры в 2 раза больше.

казана связь индукции магнитного поля во всех точках пространства и геометрических размеров	1.50
$B \propto rac{1}{R}$	
/казана связь площади и геометрических размеров	0.50
$S \propto R^2$	
найдена индуктивность витка двойных размеров	1.00
$L(2R) = 2 \cdot L(R)$	

()

 $2^{9.00}$ Какой станет индуктивность кольца L_2 радиуса R при помещении его внутрь сверхпроводящего кольца со вдвое большими геометрическими размерами? Плоскости и центры колец во втором случае также совпадают.

Указан явно или используется факт, что поток через сверхпроводящее кольцо равен 0	1.30
Указан явно или используется факт, что поток через кольцо является суммой потоков, создаваемых полями обоих колец	0.50
Указан явно или используется факт, что потоки через разные участки плоскости, создаваемые одним кольцом, пропорциональны между собой	1.00
Записано уравнение для потока Φ_{A1} через плоскость сверхпроводящего кольца в первом случае	0.70
$\Phi_{A1} = L_{12}I - rac{L}{2}I_1 = 0$	
$\Phi_{A1} = lpha LI - rac{L}{2}I_1 = 0$	
Корректно записаны потоки в уравнении выше	0.60
Записано уравнение для потока Φ_1 через поток через плоскость кольца радиуса R в первом случае	0.70
$\Phi_1=L_1I=LI-L_{12}I_1$	
$\Phi_1 = L_1 I = (1-lpha) L I + eta rac{L}{2} I_1$	
Корректно записаны потоки в уравнении выше	0.60
Записано уравнение для потока через плоскость сверхпроводящего кольца во втором случае	0.70
$2L_{12}I-2LI_{2}=0$	
$(1-\beta)LI-2LI_2=0$	
Корректно записаны потоки в уравнении выше	0.60
Записано уравнение для потока Φ_2 через плоскость кольца радиуса R во втором случае	0.70

$\Phi_2 = L_2 I = LI - \alpha \cdot 2LI_2$	
Корректно записаны потоки в уравнении выше	0.60
Найдена индуктивность L_2	1.00
$L_2 = L - rac{2L_{12}^2}{L} = L_1$	
$L_2 = (1 - \alpha + \alpha \beta) L = L_1$	

- <u>Условие</u>
- <u>Решение</u>
- М Разбалловка
 - $1^{??}$ Показатель преломления вещества шара постоянен и равен n=2.

Рассмотрим сначала первый случай, когда после преломления на поверхности шара луч идет по прямой (рисунок 2). Для попадания внутрь полости должно быть выполнено два условия: преломленный луч должен попасть на ее поверхность, и при этом угол падения должен быть меньше угла полного внутреннего отражения для этой поверхности. Из построения видно, что второе условие более жесткое: «крайний» луч, задевающий поверхность полости, падает на нее под углом 90° , в то время как луч, падающий на эту поверхность под углом ПВО $\varphi = \arcsin\left(\frac{1}{n}\right)$ соответствует меньшему углу преломления β . Из теоремы синусов для треугольника ОАВ следует, что $\frac{2R}{\sin(\pi-\varphi)} = \frac{R}{\sin(\beta)} = \frac{nR}{\sin(\alpha)}$. Поэтому $\sin\left(\varphi\right) = \frac{1}{n} = \frac{2}{n}\sin(\alpha_{max})$. Значит, $\alpha_{max} = 30^\circ$, то есть для попадания внутрь полости угол падения луча на поверхность шара должен удовлетворять условию $\alpha < 30^\circ$.

Ответ: $\alpha < 30^\circ$

 $2^{??}$ Показатель преломления вещества шара линейно уменьшается при увеличении расстояния r от центра: $n(r)=2.5-0.5rac{r}{R}, R\leq r\leq 2R$.

сферически-симметричной среде с переменной оптической плотностью. Рассмотрим прохождение лучачерез тонкий сферический слой, внутренний и внешний радиусы которого равны r_1 и r_2 . Будем считать в пределах этого слоя показатель преломления постоянным и равным n_2 , а под его внутренней поверхностью — равным n_1 (рисунок 3). Пусть световой луч входит в этот слой под углом φ_2 к радиусу, проведенному в точку входа А. Тогда угол его падения β на внутреннюю поверхность слоя снова может быть определен из теоремы синусов: $\frac{r_2}{\sin(\pi-\beta)} = \frac{r_1}{\sin(\varphi_2)}, \text{ то есть } \sin{(\beta)} = \frac{r_2}{r_1} \sin(\varphi_2).$ Угол наклона луча к радиусу после перехода в следующий слой определяется из закона преломления $\sin{(\varphi_1)} = \frac{n_2}{n_1} \sin{(\beta)} = \frac{n_2 r_2}{n_1 r_1} \sin(\varphi_2), \text{ и мы обнаруживаем, что при движении в сферически-симметричной среде с переменным показателем преломления <math>nr\sin(\varphi) = const$. Применим этот результат к нашей задаче, в которой $nr\sin(\varphi) = 2Rsin(\alpha)$. Так как угол падения луча на поверхность полости должен быть меньше угла ПВО $(\sin{[\varphi(R)]} < \frac{1}{n(R)})$, и $n(R)\sin[\varphi(R)] = 2sin(\alpha)$, то $sin(\alpha) < \frac{1}{2}$, и для попадания внутрь полости угол падения луча на поверхность шара должен удовлетворять условию $\alpha < 30^\circ$.

Анализ второго случая начнем с построения закона изменения направления светового луча в

Однако, для того чтобы при таких α луч мог «добраться» до границы полости, необходимо, чтобы световой луч не прошел мимо нее. Заметим, что при проходе мимо полости угол между лучом и радиусом должен в какой-то точке достигнуть значения $\varphi=90^\circ$ - тогда r перестает убывать. В этом случае луч либо движется по окружности, либо "разворачивается" и в конечном итоге покидает слой. Покажем, что в нашем случае это невозможно. Произведение f(r)=n (r) $\cdot r=2, \dots 0, 0$ $\cdot \frac{r^2}{R}$ — квадратный трехчлен с максимумом при $r=2, \dots 0$ в интервале R< r<2R функция f(r) всюду возрастает при росте r и, поскольку $f(r)\sin\varphi=C$, то по мере приближения к центру угол φ всюду возрастает. Так как конечный угол меньше $\arcsin\left(\frac{1}{2}\right)=30^\circ<90^\circ$, то и при больших значениях радиуса угол не сможет возрасти до 90° . Итак, при всех $\alpha<30^\circ$ луч достигает границы полости и проникает внутрь (рисунок 4).

Ответ: При всех $\alpha < 30^\circ$ луч достигает границы полости и проникает внутрь.

Разбалловка

6

- <u> Условие</u>
- <u> Решение</u>

<u>М</u> <u>Разбалловка</u>

 $1^{??}$ Показатель преломления вещества шара постоянен и равен n=2.

Правильно записан (используется в решении) закон преломления на поверхности шара.	0.50
Правильно записана связь угла преломления с углом падения на поверхность полости для первого случая.	0.50
Указано, что возможность попадания луча внутрь полости ограничивается явлением полного внутреннего отражения.	2.00
Получено условие $lpha < 30^\circ$ для первого случая.	1.00

()

 $2^{\, ??}$ Показатель преломления вещества шара линейно уменьшается при увеличении расстояния r от центра: $n(r)=2.5-0.5rac{r}{R}, R \leq r \leq 2R$.

M1 Для случая 2 используется идея использования закона преломления луча на каждой сферической поверхности с учетом изменения угла φ внутри каждого сферического слоя при изменении радиуса.	2.00
м2. При применении закона преломления луча используется, что $n\cdot sin(arphi)=const.$	1.00
Обосновано уравнение, эквивалентное $n \cdot r \cdot \sin(arphi) = const$	2.00
Уравнение, эквивалентное $n \cdot r \cdot \sin(arphi) = const$, используется в решении.	1.00
Получено условие $lpha < 30^\circ$ для второго случая.	2.00
Доказано, что луч достигает поверхности полости во втором случае.	1.00