1 Учебники

- 1. Колмогоров
- 2. Люстерник, Соболев (Краткий Курс Функционального Анализа)
- 3. Вайнберг Функциональный Анализ
- 4. Бахарев

2 Метрические пространства

Пусть есть некоторое множество M, мы хотим ввести предел (непрерывность, производную и тд) на этом множестве.

Надо ввести расстояние (метрику).

Определение 1 (Метрика). *Метрикой* ρ на множестве M называется отображение $\rho: M \times M \to [0, +\infty)$ удовлетворяющее следущим свойствам (аксиомам):

1.
$$\rho(x,y) \ge 0, \rho(x,u) = 0 \iff x = y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \le \rho(x,y) + \rho(y,z)$$

Пара (M, ρ) называется метрическим пространством.

Пример 1.1.

$$M = \mathbb{R}, \rho(x, y) = |x - y| \tag{1}$$

Пример 1.2.

$$M = \mathbb{R}^n, ||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$
 (2)

Пример 1.3 (Транспортная метрика (Матхэтеннская)).

$$\rho(A,B) = \min$$
 ломанная соединяющая A,B (3)

Пример 1.4. M – город

$$\rho(A,B) = \min$$
 время за которое можно добраться $A \to B$ (4)

Пример 1.5. M – множество всех непрерывных функций $f(t):[0,1]\to\mathbb{R}$, M=C([0,1])

$$\rho(f_1, f_2) = \max_{t \in [0,1]} |f_1(t) - f_2(t)| \tag{5}$$

тах ∃ по теореме Вейрштрасса

$$(M, \rho) = C[0, 1]$$
 (6)

Это одно из важнейших пространств функционального анализа

Пример 1.6. Обозначим $M = \{ M$ ножество всех последовательностей $\{x_n\} = (x_1, x_2, \dots, x_n, \dots), x_k \in \mathbb{R} \}$

$$\rho(\{x_n\}, \{y_n\}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$
(7)

- 1. Ряд сходится для любых последовательностей так как мажорируется рядом $\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$
- 2. Докажем, что выполняется неравентство треугольника Рассмотрим вспогательную функцию

$$f(t) = \frac{t}{1+t} : [0, +\infty] \to \mathbb{R}$$
 (8)

Ясно что $f(t)=1-\frac{1}{1+t}$ данная функция возрастаетс так как $\frac{1}{1+t}$ убывает. Отсюда следует, что

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|+|b|}{1+|a|+|b|} = \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

$$(9)$$

$$f(|a+b|) \le f(|a|+|b|) \le f(|a|) + f(|b|)$$

$$(10)$$

Мы доказали неравенство треугольника для всех членов ряда

 $Paccмomum \{z\}$

$$\frac{|x_n - y_n|}{1 + |x_n - y_n|} = \frac{|x_n - z_n + z_n - y_n|}{1 + |x_n - z_n + z_n - y_n|} \le \frac{|x_n - z_n|}{1 + |x_n - z_n|} + \frac{|z_n - y_n|}{1 + |z_n - y_n|} \tag{11}$$

$$\rho(x_n, y_n) \le \rho(x_n, z_n) + \rho(z_n, y_n)$$

Понятие метрики позволяет на метрическом пространстве (M, ρ) вводить «старые» понятия из анализа.

1. Открытый шар радиуса r с центром в точке x_0

$$B_r(x_0) := \{ x \in M \mid \rho(x, x_0) < r \}$$
(13)

2. Замкнутый шар радиуса r с центром в точке x_0

$$\overline{B}_r(x_0) := \{ x \in M \mid \rho(x, x_0) \le r \}$$
 (14)

- 3. $X \subset M$ назывется открытым, если $\forall x \in X \; \exists B_r(x) \subset X$
- 4. Множество X называется замкнутым если дополнение к нему $(M\backslash X)$ является открытым
- 5. Точка x_0 называется внутренней точкой X, если $\exists B_r(x_0 \subset X \ , X \$ открытое \iff любая точка внутренняя

- 6. x_0 называется предельной точкой множества X, если $\forall r>0$ $B_r(x_0)\cap X$ содержит бесконечно много точек из X
- 7. x_0 называется изолированной точкой множества X если $\exists B_r(x_0): B_r(x_0) \cap X = \{x_0\}$ Изолированная точка не может быть предельной
- 8. Точка x_0 называется внешней для множетсва X, если существует такой шар с центром в x_0 , что его пересечение с X пусто
- 9. Точка x_0 называется граничной точкой множества X если $\forall r$ в шаре $B_r(x_0)$ содержатся точки как $x \in X$, так и $x \notin X$

Коллекция фактов (без доказательсва, упражнения, дз)

- 1. Другое определение замкнутости. X замкнуто \iff содержит все свои предельные точки
- 2. Добавление к X всех его предельных точек называется пополнением X. Полученное множество обозначат \overline{X}

$$\overline{X} = X \cup \{$$
 Пределные точки $\}$ (15)

- 3. \overline{X} замкнутое
- 4. X замкнутое $\iff X = \overline{X}$
- 5. Принцим трихотомии (деления на 3) \forall множества X и $\forall x \in M$ возможен только один из трех вариантов
 - (a) x внутренняя точка $x \in \text{Int } X$
 - (b) x граничная точка $x \in \delta X$
 - (c) x внешняя точка

Верны формулы

(a)
$$\overline{X} = X \cup \delta X$$

- (b) $\overline{X_1 \cup X_2} = \overline{X_1} \cup \overline{X_2}$
- (с) Объединение любого числа открытых множеств открыто
- (d) Пересечение конечного числа открытых множеств открыто
- (е) Пересечение любого числа замкнутых множеств замкнуто
- (f) объединение конечного числа замкунтых множеств
- (g) объедение бесконечного числа замкнутых множеств может быть открытым

3

Понятие метрики позволяет определять на M понятия сходимости и непрерывнос Рассмотрим $\{x_n\}\in M$

Определение 2. $x_n \to a \in M$ если

$$\forall \epsilon > 0 \exists N = N(\epsilon) : \forall n \ge N \ \rho(x_n, a) < \epsilon \tag{16}$$

Сохраняются многие свойства обычного предела $x_n \to a \iff \rho(x_n,a) \to 0, n \to \infty$

Предложение 3.1. $\exists \lim mo \ oh \ eduнственный$

Proof. Пусть $x_n \to a_1$, $x_n \to a_2$, $a_1 \neq a_2$

$$\rho(a_1, a_2) \le \rho(a_1, x_n) + \rho(x_n, a_{a_2}) \tag{17}$$

$$\rho(a_1, x_n) \to 0 \tag{18}$$

$$\rho(a_2, x_n) \to 0 \tag{19}$$

$$0 \le \rho(a_1, a_2) \le 0 \tag{20}$$

$$\rho(a_1, a_2) = 0 \implies a_1 = a_2$$
 (21)

Теперь надо ввести понятие непреывности. Пусть $(M_1, \rho_1), (M_2, \rho_2)$ два метрических пространства

Рассмотрим $f: M_1 \to M_2$

Определение 3. f непрерывно в точке $x_0 \in M_1$ если $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) : \forall x \rho_1(x, x_0) < \delta : \rho_2(f(x), f(x_0)) < \epsilon$

Определение 4. f непрерывна на $M_1 \iff$ она непрерывна в любой точке M_1

Предложение 3.2. Метрика ρ автоматически непрерывная функция $\rho: M \times M \to \mathbb{R}$

Proof. $\forall (x_0, y_0) \in M \times M$

$$\forall \epsilon > 0 \exists \delta = \delta(\epsilon) : \forall x : \rho(x, x_o) < \delta, \forall y \rho(y, y_0) < \delta \implies \overline{\rho}((x, y), (x_0, y_0)) < \epsilon$$
(22)

Пусть $\overline{\rho}((x,y),(x_0,y_0)) = \rho(x,x_0) + \rho(y,y_0)$

$$\delta = \frac{\epsilon}{2} \tag{23}$$

$$\overline{\rho((x,y),(x_0,y_0))} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \tag{24}$$

Пример 4.1. \exists метрика в которой любая функция непрерывна

$$\rho(x,y) = \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$
 (25)

Определение 5. $\{x_n\}$ называется фундаментальной (или последовательностью Коши) или сходящейся в себе, если

$$\forall \epsilon > 0 \exists N = N(\epsilon) : \forall n, m \ge N : \rho(x_n, x_m) < \epsilon \tag{26}$$

Другой вариант

$$\forall \epsilon > 0, \exists N = N(\epsilon) : \forall n \ge N, \forall m \in \mathbb{N} : \rho(x_n, x_{n+m}) < \epsilon$$
 (27)

Предложение 3.3. В любом метрическом постранстве, если последовательность сходится, то она фундаментальная

Proof. Пусть $x_n \to a \implies$

$$\forall \epsilon \exists N : \forall n \ge N, \rho(x_n, a) < \frac{\epsilon}{2}$$
 (28)

$$n, m \ge N \tag{29}$$

$$\rho(x_n, x_m) \le \rho(x_n, a) + \rho(x_n, a) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (30)

Определение 6. Метрическое пространство (M, ρ) если \forall фундаментальная последова имеет предел (из фундаментальность следует сходимость)

Теорема 1. \forall метрического пространства (M,ρ) \exists полное метрическое пространство $\overline{M},\overline{\rho}$

$$M \subset \overline{M}, \, \overline{\rho}|_{M} = \rho \tag{31}$$

Пример 6.1. *Рассмотрим* \mathbb{Q} $\rho(r_1, r_2) = |r_1 - r_2|$ *Оно не полное*

$$\{r_n\} \to \sqrt{2} \notin \mathbb{Q}$$
 (32)

 $\{r_n\}$ фундаментальная последовательность в \mathbb{R} , значит она фундаментальная последовательность в \mathbb{Q}

4 Пространство Чебышева

Рассмотрим множество непрерывных функций $f[a;b] \to \mathbb{R}$ C([a,b])

Определение 7 (метрика Чебышева).

$$\rho_C(f_1, f_2) = \max_{x \in [a, b]} |f_1(x) - f_2(x)| \tag{33}$$

∃ тах по теореме Вейерштрасса

1. ρ_C очевидно , $\phi_C(f_1,f_2)=0\iff \max_{[a,b]}|f_1(x)-f_2(x)|=0\iff |f_1(x)-f_2(x)|=0$

2. очевидно

3.

$$\rho_C(f_1, f_2) \le \rho_C(f_1, g) + \rho_c(g, g_2) \tag{34}$$

$$\max_{[a,b]} |f_1(x) - f_2(x)| \le \max_{[a,b]} (|f_1 - f| + |g - f_2|) \le \max_{[a,b]} |f_1 - g| + \max_{[a,b]} |g - f_2|$$
 (35)

Посмотрим, что означает сходимость по метреке Чебышева

$$f_n \to f \iff \rho_c(f_n, f) \to 0 \iff \max_{[a,b]} |f_n(x) - f(x)| \to 0$$
 (36)

Это равномерная сходмость $f_n \rightarrow$

Определение 8. $f_n(x)$ сходится f(x) поточечно [a,b] если $\forall x \in [a,b]$, $f_n(x) \to f(f)$

Определение 9. $f_n(x)$ сходится κ f(x) равно мено на [a,b] если $\forall \epsilon > 0 \exists N = N(\epsilon) \ \forall n \geq N$, то $|f_n(x) - f(x)| < \epsilon \forall x \in [a,b]$

$$\max_{[a,b]} |f_n(x) - f(x)| < \epsilon \tag{37}$$

$$[a,b] = [0,1]$$
, $f_n(x) = x^n$

1. $x = 1, f_n(x) = 1$

2. $x \in [0,1)$ $f_n(x) = x^n \to 0$

$$f_n(x) \to f(x) \begin{cases} 0, x \in [0, 1) \\ 1, x = 1 \end{cases}$$
 (38)

 $f \not\in C$

Теорема 2. Равномерный предел непрерывных функций есть непрерывная функция

Теорема 3. C([a,b]) с метрикой ρ_c полное

Proof. $\{f_n(x)\}$ фундаментальная последовательность.

$$\forall \epsilon > 0 \forall x \in [a, b] \exists N = N(e, x) : \forall n, m \ge N \implies |f_n(x) - f_m(x)| < \epsilon$$
 (39)

Так как
$$\mathbb{R}$$
 полно $\exists \lim_{n \to \infty} f_n(x) = f(x)$