Basic Circuit Elements

"Developing models, which provide an understanding that is imperfect, but adequate, for solving practical problems lies at the heart of engineering."

CSE 232

Sources: 'Ideal Sources'

Ideal Voltage Source

Maintains *constant V* across terminals regardless of current

Ideal Current Source

Maintains *constant I* through terminals regardless of voltage across them

- These are *Independent* sources! Their value does not depend on anything.
- Specifications: Value and Polarity

Sources: Dependent Sources

Four variations:

 μ and β are dimensionless ρ is in (V/A) α is in (A/V)

Value depends on *V* or *i* elsewhere in the circuit

Transistors and operational amplifiers (op amps) are modeled with this

Limited Interconnections – Independent Sources

Limited Interconnections – Dependent Sources

Which are valid connections?

Which are valid connections?

Ohm's Law

 $V = i \cdot R$

Resistance and Conductance

Ideal *R* is **constant**

R can vary with time (t) and temperature (T)

Not in this class

$$R = \rho \cdot \frac{L}{A}$$

 ρ is Resistivity (Ω -cm)

Conductance

Unit: Siemens (*S*) or mhos(**7**)

If $R = 10\Omega$ then G = 0.1 \Im

$$G = \frac{1}{R}$$

Power at Terminals of Resistor

Passive sign convention

In either case,

$$p = i^2 R = i^2/G$$

Ohm's Law

$$V = -i R$$

$$p = -Vi$$

$$p = -(-iR) i$$

Side Note

$$p = Vi$$

$$p = V(V/R)$$

$$p = V^2/R = V^2G$$

Always positive

R always **absorbs** power

Therefore, it is **passive**.

Side Note

Example: Find Power absorbed by the resistor

$$V = 100 (V)$$
 $i = V/R = 100/10 = 10 (A)$ $R = 10(\Omega)$

$$p = V i$$
 = $i^2 R$ = V^2 / R
= $(100)(10) = 10^2(10) = 100^2/10$
= $\mathbf{1000}(W)$
= $\mathbf{1}(kW)$

$$i \stackrel{+}{ } V$$

$$i = 5(A)$$
 $V = i R = 5 (10) = 50 (V)$
 $R = 10(\Omega)$
 $p = V i$ $= i^2 R$ $= V^2 / R$
 $= (50)(5) = 5^2(10) = 50^2/10$ $= 250 (W)$

Models for Actual Circuit Components

• **Battery:** Voltage Source

• **Lamp:** Resistor

• Wire: Resistor or Ignore

Conducting Path: Resistor or Ignore

Not Necessarily a Unique Answer

Kirchhoff's Laws

Gustav Robert Kirchhoff

Published in 1845 as a student

Node: Point where 2 or more circuit elements meet

Kirchhoff's Current Law: (KCL)

"Algebraic" Relationship is Important

 i_1 and i_3 are "entering" the node.

 i_2 is "leaving" the node.

Currents leaving a node are "Algebraically" opposite in "sign" to currents entering a node.

Conventions

- (a) $i_2 i_1 i_3 = 0$ \[i \text{ leaving considered positive} \]
- (b) $i_1 + i_2 i_2 = 0$ \[i entering considered positive \]

Note a "considered" positive current could be negative

(c) is equivalent to (a) and (b)

Kirchhoff's Voltage Law: (KVL)

The algebraic sum of all the voltages around any closed path in a circuit equals zero.

Voltages and Currents have been defined in the circuit

Sign Convention

Is *i* entering or leaving the node?

$$i - i = 0$$

 $\Rightarrow i = i$

KCL Stated Another Way

$$\sum i's$$
 entering node = $\sum i's$ leaving node

Flashlight Circuit: Find the currents in the circuit

Ohm's Law

$$V_1 = i_1 R_1$$
 1

$$V_C = i_C R_C$$
 (2)

$$V_L = i_L R_L$$
 (3)

Voltages and Currents have been defined in the circuit

Flashlight Circuit (Contd.)

Circuit can be redrawn as:

Start from node @

$$-V_S + V_L - V_C + V_1 = 0$$
 KVL

Currents are all the same; so define:

$$R_L \supseteq i \equiv i_S = i_1 = i_L = -i_C$$

Using Ohm's Law and 2, 1 becomes

$$V_S = iR_L + iR_C + iR_1$$

Flashlight Circuit (Contd.)

$$i = \frac{V_S}{R_L + R_C + R_1}$$
 Solve 3 for i

Using Ohm's Law and calculated i, we obtain V_1 , V_C , and V_L

$$V_1 = iR_1$$
 $-V_C = iR_C$ $V_L = iR_L$ $i = i_S = i_1 = i_L = -i_C$

Example: Find Current in the Circuit

a) Find i_5 (current is the same in all elements.)

Example: Find Voltages and Power of the Supply (Contd.)

b)
$$V_1 = -2i_5 = -2(2)$$

 $V_1 = -4(V)$

c)
$$V_2 = 3i_5 = 3(2)$$

 $V_2 = 6(V)$

d)
$$V_5 = 7i_5 = 7(2)$$

 $V_5 = 14(V)$

Note:
$$V_S = V_2 + V_5 - V_1$$

= $6 + 14 - (-4) = 24(V)$

Sign Convention

e)
$$p_{24V} = V_S i_5 = 24(2) = 48(W)$$

Thus power is extracted from the supply

Example: Find Current i

1
$$V_S = Ri + R_1i_1$$
 KVL and Ohm's Law

$$(3) \quad i = i_1 + i_2 \qquad$$
 KCL

Substitute 3
$$\longrightarrow$$
 1 \Longrightarrow $V_S = R(i_1 + i_2) + R_1 i_1$ 4 $\bigvee_S = (R + R_1)i_1 + Ri_2$ 4 Collect terms

Example (Contd.)

Solve 2 for i_2 then substitute into 4

$$R_1 i_1 = R_2 i_2 \qquad \Rightarrow i_2 = \frac{R_1}{R_2} i_1$$

$$V_{S} = (R + R_{1})i_{1} + R\left(\frac{R_{1}}{R_{2}}\right)i_{1} = (R + R_{1} + \frac{R_{1}}{R_{2}} \cdot R)i_{1} \qquad 4$$

$$i_{1} = \frac{V_{S}}{R + R_{1} + \frac{R \cdot R_{1}}{R_{2}}} = \frac{150}{2 + 20 + \frac{2 \cdot (20)}{5}} = \frac{150}{22 + 8} = \frac{150}{30}$$

$$i_{1} = 5(A) \qquad i_{2} = \frac{R_{1}}{R_{2}}i_{1} = \frac{20}{5} \cdot 5 \quad i_{2} = 20(A)$$

$$\underbrace{\begin{cases} \text{Use } 2 \\ \text{for } i_{2} \end{cases}}$$

$$\underbrace{\end{cases} \quad i_{1} = i_{1} + i_{2} = 5 + 20 \Rightarrow i_{1} = 25(A) }$$

$$(V_{R1} = V_{R2} = i_1 R_1 = i_2 R_2 = 100(V))$$

$$V_R = R \cdot i = 2(25) = 50(V)$$

Example: Find Resistance *R*

100V dropped across the 20Ω and 5Ω Resistors

5Ω

Step 1

$$i_1 = \frac{100V}{20\Omega} = 5(A)$$
Ohm's $i_2 = \frac{100V}{5\Omega} = 20(A)$

Step 2

KCL
$$\{i = i_1 + i_2 = 5(A) + 20(A) = 25(A)\}$$

KVL $\{150V = iR + 100(V)\}$ Solve for R

$$R = \frac{150(V) - 100(V)}{i} = \frac{50(V)}{25(A)} \Rightarrow R = 2(\Omega)$$

Example: Voltage Source

What would happen experimentally if we hooked two voltage sources in parallel with different voltages?

For ideal sources, this is simply not possible

Model Practical Sources

Source

Source Resistance
$$\begin{bmatrix} R_1 & + & I & + & I & + & 1 & +$$

KVL $V = 7 - IR_1 = 5 + IR_2$ 1 Solve $\begin{cases} 7 - 5 = IR_1 + IR_2 \\ 2 = I(R_1 + R_2) \end{cases}$

Source Resistance

$$I = \frac{2}{R_1 + R_2} \qquad \boxed{2}$$

Example (Contd.)

Substitute
$$V = 7 - \left(\frac{1}{R}\right)R = 6$$
into
$$V = 5 + \left(\frac{1}{R}\right)R = 6$$

$$V = 6(V)$$
 (mid-point)

Redo Example with No Numerical Values

$$V = V_1 - IR_1 = V_2 + IR_2$$

$$V = V_1 - IR_1 = V_2 + IR_2$$

$$V_1 - V_2 = I(R_1 + R_2)$$
 Subtract 2 from 1

$$I = \frac{V_1 - V_2}{R_1 + R_2}$$
 3 Solve for I

Substitute
$$V = V_1 - (V_1 - V_2) \frac{R_1}{R_1 + R_2}$$
 If $R_1 = R_2$ into $V = V_2 + (V_1 - V_2) \frac{R_2}{R_1 + R_2}$ $V = V_1 - \frac{V_1 - V_2}{2}$ or $V_1 - V_2$

$$| If R_1 = R_2 = R$$

$$V = V_{1} - \frac{V_{1} - V_{2}}{2}$$

$$or$$

$$V = V_{2} + \frac{V_{1} - V_{2}}{2}$$

$$vo$$

$$so$$

Example: Circuit with Dependent Sources

Find i_1 and V

$$v_s = 3(V), v_1 = 0.5(V), v_o = 10(V),$$
 $R_1 = 29.5(k\Omega), R_2 = 500(\Omega),$
 $R_3 = 2.4(k\Omega)$

Given in the Problem

Example: Find i₁ (Contd.)

Example: Find V (Contd.)

Example: Find Power of v_s

Power is Absorbed by the 120(V) source.

Same Example: Find Power of 6A source

Conclusion:

In original circuit, the 6A source "overwhelms" the 120V source, and actually supplies power to it!

Note on Voltages and Currents

Voltage Across R

$$V_{ab} = -5(V) + 20(V) - 5(V) = 10(V)$$

Voltages in series add

"k" Voltages in parallel <u>must</u> be the same

Current Through R

$$i = 1(A) + 2(A) + 3(A) = 6(A)$$

Currents in parallel add

"k" Currents in series must be the same

Example: Find i_g and V_g

Given

$$i_a = 4(A_1)$$

$$i_{b} = 2(A_{b})$$

Currents have been defined in the circuit

Example: Find i_q (Contd.)

Given
$$i_a = 4(A)$$

$$i_b = 2(A)$$

a) KCL at node 1)

$$i_4 = i_a + i_b = 4 + 2 \Rightarrow i_4 = 6(A)$$

b) KVL around upper loop

$$i_{b}(8+12+4) - 24i_{24} + 4i_{4} = 0$$

$$i_{24} = \frac{24i_{b} + 4i_{4}}{24} = \frac{24(2) + 4(6)}{24} = \frac{72}{24}$$

$$i_{24} = 3(A)$$
Substitute for i_{b} and i_{4}

Example: Find i_a (Contd.)

c) KCL at node ⁽²⁾

$$i_4 + i_{24} + i_g = 0$$
 $i_g = -i_4 - i_{24} = -6 - 3$ Solve for i_g
 $i_g = -9(A)$ i_g "really" flows "up"

d) KCL at node 3
$$i_b + i_{24} = i_6$$
; $2 + 3 = i_6 = 5(A)$ Solve for i_6

we know all currents now

Example: Find V_g (Contd.)

$$i_a = 4(A)$$
$$i_4 = 6(A)$$

$$V_g = 4i_4 + 80 + 12i_a$$
 Bottom LHS $\frac{1}{i_a}$ Bottom LHS $\frac{1}{i_a}$ Substitute Currents

Sign Convention

$$=24 + 80 + 48 = 152(V)$$

f)
$$p_{80V} = V \cdot i_a = 80(4) \neq 320(W)$$

p > 0

80V source "absorbs" power so do all resistors

 12Ω

 10Ω