

ANALYSE DE TRAJECTOIRES DE BIODIVERSITÉ DE PRAIRIE

Présenté par: Loubna TALEB et Zélie BESANCENET 2e année F4

Responsable école: Jonas KOKO Responsable entreprise: Franck IABO 5/3/2024 Projet du 5/2 au 23/2/2024

Objectifs du projet:

- v Comparer les courbes de décroissance entre espèces abondantes et moins abondantes.
- v Déterminer si le traitement effectué sur la plante influence sa trajectoire.

Données du *Journal of Ecology* 2023:

PLAN:

Taraxacum Mongolicum

- i. DESCRIPTION DES DONNÉES
- ii. FILTRAGE DES DONNÉES
- iii. EVOLUTION DE LA COUVERTURE RELATIVE
- iv. MATRICE DES DISTANCES
- v. MATRICE DES DIFFÉRENCES DE COUVERTURE INITIALE ET CORRÉLATION
- vi. CORRÉLATION ET IMPACT DE LA COUVERTURE INITIALE
- vii. INFLUENCE DU TRAITEMENT SUR LA DÉCROISSANCE
- viii. 2^E MÉTHODE: ANOVA
- ix. CONCLUSION

Les données de plantes:

261 espèces de plantes (Taxons) dont voici les 12 premières:

Alchemilla Glomerulans

Quercus Minima

Alopecurus Pratensis

Les données de lieu et de traitement:

Les plantes ont été étudiées dans 90 sites à travers le monde sur une durée allant de 1 à 15 ans.

Les plantes sont étudiées selon 4 traitements:

Control: Aucun traitement, c'est le témoin.

NPK: fertilisant composé d'azote, de phosphore

et de potassium.

Fence: les plantes sont isolées par une clôture

mais ne subissent pas de traitement.

NPK+Fence: combinaison des traitements NPK et

Fence.

Création d'un filtre: garder les données les « plus expressives »

Evolution de la couverture relative en fonction des années de traitement:

15

points

Comparaison de courbes: fonction Calcul distance:

```
7 Calcul_distance <- function(taxon1, plot1, taxon2, plot2) {
      T1 <- data %>%
        filter(Taxon == taxon1 & plot == plot1)
10
      T2 <- data %>%
        filter(Taxon == taxon2 & plot == plot2)
      model1 <- loess(as.formula(paste("rel_cover", "~ year_trt")), data = T1)</pre>
      model2 <- loess(as.formula(paste("rel_cover", "~ year_trt")), data = T2)</pre>
14
15
16
      f1 <- predict(model1, newdata = data.frame(year_trt = T1$year_trt))
      f2 <- predict(model2, newdata = data.frame(year_trt = T2$year_trt))
18
      # Calcul de la différence
19
      max1 <- max(T1$year_trt)</pre>
20
      max2 <- max(T2$year_trt)</pre>
21
      borne <- min(max1, max2)
      somme <- 0
      diff1 <- numeric(length = borne)</pre>
24
      for (i in 1:borne) {
        diff1[i] \leftarrow abs(f2[i] - f1[i])
26
27 -
      for (i in 1:(borne - 1)) {
29
        somme <- somme + diff1[i]</pre>
30 -
      return(somme)
```

Fonction Calcul_distance - exemple:

Matrice des distances:

Site et traitement fixés

matrice1 <- CalculerMatriceDistances(data, "arch.us", "NPK")</pre>

<pre>> print(matrice1)</pre>				
	SCHIZACHYRIUM RHIZOMATUM	QUERCUS MINIMA	AXONOPUS FURCATUS	PASPALUM NOTATUM
SCHIZACHYRIUM RHIZOMATUM	0.000000	2.7124607	2.8750874	1.319484
QUERCUS MINIMA	2.712461	0.0000000	0.3654703	1.487483
AXONOPUS FURCATUS	2.875087	0.3654703	0.000000	1.646991
PASPALUM NOTATUM	1.319484	1.4874834	1.6469905	0.000000

Matrice des différences d'abondance initiale:

```
Site et traitement fixés
```

matrice2 <- CalculerMatriceDifferencesAbondanceInitiale(data, "arch.us", "NPK")</pre>

<pre>> print(matrice2)</pre>				
	SCHIZACHYRIUM RHIZOMATUM	I QUERCUS MINIMA	AXONOPUS FURCATUS	PASPALUM NOTATUM
SCHIZACHYRIUM RHIZOMATUM	0.0000000	0.14393785	0.16367316	0.16367316
QUERCUS MINIMA	0.1439378	0.00000000	0.01973531	0.01973531
AXONOPUS FURCATUS	0.1636732	0.01973531	0.0000000	0.0000000
PASPALUM NOTATUM	0.1636732	0.01973531	0.00000000	0.00000000

Calcul effectué pour chaque case de la matrice:

 $difference <- abs(as.numeric(data_taxon1_plot1<math>sinitial_rel_cover[1]) - as.numeric(data_taxon2_plot2<math>sinitial_rel_cover[1])$

Corrélation et conclusion de l'objectif 1:

=> La difference abondance initiale influence la décroissance des plantes.

Moyennes/médianes de la matrice des distances:

```
148 CalculerMoyenneMedian <- function(matrice_distances) {
        vecteur_distances <- as.vector(matrice_distances)</pre>
149
150
        nl <- nrow(matrice_distances)</pre>
151
152
       moyenne <- mean(vecteur_distances, na.rm = TRUE)</pre>
153
       moyenne \leftarrow moyenne*n1^2/(n1^2-n1)
        mediane <- median(vecteur_distances, na.rm = TRUE)</pre>
154
155
        return(list(moyenne = moyenne, mediane = mediane))
156
157 - }
```

Moyennes et médianes pour chaque traitement de la zone « arch.us »:

```
Traitement Moyenne Median
Control 1.678274 1.546263
NPK 1.734496 1.567237
Fence 1.112143 1.185372
NPK+Fence 1.785219 1.550481
```

Exemple et conclusion objectif 2:

moyennes et médianes différentes

comportements différents des plantes avec et sans traitement

fertilisation influence la trajectoire

Showing 1 to 22 of 112 entries, 4 total columns

2^e méthode: tests d'hypothèse avec ANOVA

```
Si initial_rel_cover.Taxon <
Q2:
   type_Abondance=0
Sinon:
   type_Abondance=1
   Ø 0: Espèce moins
       Abondants
   Ø 1:Espèce Abondants
  Choix du facteur:
```

type Abondance

Hypothèses:

Ø **HO**: Il n'y a pas de différence significative dans les formes des courbes de décroissance entre les espèces abondantes et moins abondantes.

Ø **H1**: Il existe une différence significative dans les formes des courbes de décroissance entre les espèces abondantes et moins abondantes.

ANOVA: suite

Taxons Testés: AXONOPUS FURCATUS & PANICUM SP.

```
# Effectuer l'ANOVA
resultat_anova <- aov(rel_cover ~ type_Abondance , data = voir2)
summary(resultat_anova)</pre>
```



```
> summary(resultat_anova)

Df Sum Sq Mean Sq F value Pr(>F)
type_Abondance 1 0.00342 0.003422 0.326 0.577
Residuals 14 0.14708 0.010506
```


Ø p value = 0,577 >0,05 : on ne rejette pas H0 Ø il n'y a pas de différence significative entre les courbes de décroissance des espèces abondantes et moins abondantes.

Conclusion

Ī

Objectif 1:

Lorsque la corrélation est significative (proche de 0 ou 1), la différence d'abondance initiale a un rôle dans la décroissance de la couverture des plantes.

Objectif 2:

La fertilisation n'a pas un effet significatif sur toutes les plantes.

Conclusion - suite:

Difficultés:

- v Apprentissage du R
- v Fonction de décalage temporel

Compétences acquises:

- v Apprentissage du R
- v Manipulation de données
- v Biodiversité
- v Travailler en équipe
- v Rédaction d'une bibliographie

