Memory Full 📵

Dokumentet omhandler **relasjoner** i mengdelære og deres egenskaper, inkludert **refleksivitet, symmetri, antisymmetri, transitivitet og irrefleksivitet.** Det introduserer begrepene **delvis og total ordning, ekvivalensrelasjoner**, og gir eksempler med mengder og relasjoner mellom elementene. Dokumentet tar også for seg **Hasse-diagrammer** som en visuell fremstilling av relasjoner.

Innholdsfortegnelse

1. Relasioner

· Definisjon og eksempler

2. Relasjonsegenskaper

- Refleksivitet
- Symmetri
- Antisymmetri
- Transitivitet
- Irrefleksivitet

3. Delvis ordning

- · Definisjon og eksempler
- · Hasse-diagrammer

4. Total ordning

· Definisjon og eksempler

5. Ekvivalensrelasjoner

- Definisjon og egenskaper
- Eksempler

6. Mengderelasjoner

· Delmengder og potensmengder

7. Visuell fremstilling

Hasse-diagrammer og relasjoner

8. Oppsummering

Viktige forskjeller mellom relasjonstyper

Relasjoner A,B = new mengel En delmengele REAXB kalles en relasjon fra Atil B. Hvis A=B (Altså, hvis vi har en delmengele av A×X), Kalles det en relasjon pa A. Vi sier at X er relutet til y eller X Ry derson (x, y) ER.

Eks La $A = \{0,1,2\}$ on $B = \{A,b,c\}$ $A \times B = \{(O, A), (O, b), (O, C), (1, A), ... (2, b), (2, c)\}$ To eksempler på relasjoner fra Atil Ber Ry={(0,a),(1,b),(2,c)} $R_2 = \{(1,a), (1,b), (2,a), (2,c)\}$ R, og Rz Ican illustreres slik: R,:0→ 0 B2: 0 1 7 b 1-92 2 -> c

Elcs La $R = \{(x,y) \in A \times A \mid x < y\}.$ Rer en relasjon pu A. Vi kan tegne:, elle: I elsempelet over er x relatert y, eller $(x,y) \in R$ hvis $x \in Y$ Dette er "mindre enn"-relasjon på A.

Merk: Vi har 'et hvis x < y og y < z så er x < z. Med andre ord, hvis x er relatert til y ag y er relatert til Z så er også x relatert til Z Altså, hvis $(x,y) \in R$ og $(y,z) \in R$ så er $(x,z) \in R$ Denne egenshapen kalles transitivitet og vi sier at R er en transitiv relasjon Relasjoner kun ha glere endre viktige egenshape: - R & regletisiv huis (X,X) & R por alle X & A Eks: "mindre enn eller lik"-relasjonen på 1R er reflektiv $R = \{(0,0), (1,1), (2,2), (1,2)\}$ er en repleksiv relasjon på $A = \{0,1,2\}$ (men ikke på $A = \{0,1,2,3\}$ fordi $(3,3) \in R$ -R er symmetrish dersom (x,y) ∈ R huis og bare hvis (y, x) ∈ R Eks: likhetsrelasjonen er symmetrisk "mindre enn eller lik" er <u>ilche</u> symmetrisk (4≤5, men 5≤4 er ilche sant!)

-Reranti-symetrisk hvis (x,y) ER og (y,x) ER mediate at x=y "≤" er anti-symetrish hvis x ≤ y og y ≤ x så x=y - R er irrepletsiv his det itte er noen $x \in A$ slik at $(x, x) \in R$ Eks: "<" er irreglektiv for det finnes irgen x slik at x<x. Elis La A = P((0,13) La $R = \{(x,y) \in AxA \mid x \subseteq y\}$ ("delmengderelasjon) Har at A = (0), (0), (1), (0,1)} Vi tegner R: Merk: R er reglettiv (x≤x), transitiv $(x \le y \text{ og } y \subseteq x =) X = y)$ {0, B_K ≥{0} 1 {1}? ey Anti-Symmetrish (x=y og sy x =) x=y) \{\\phi\}\\\\ "mindre enn eller lik" har også disse egenskapene

"C" ag "<" er eksempler på Partielle ordninger En relasjon R på en mengde A er en partiell ordning (dulvis ordning) hvis R er refleksiv, transitiv og anti-symmetrisk. l'artielle ordninger lan tegnes enliere enn generelle telasjoner -Kan droppe løbber ×2 - Trenger ikhe tegnu

X >> Z hvis vi ham

tegnet x >> y og y >> Z

**Sy-52 Elis "mindre enn eller lik"-telasjonen på IV kun tegnes slik: Delmengderelasjonen & på P({1,2,3}) lan tegnes slik (1, 2, 3) 4 Hassediagram Tegner "oppover" trenger ikke

Merk: {13 \(\frac{1}{2} \) og {2\(\

Det.			
. •	2 / · P	•]	1 1
ich partiell	ordning R	pa en meng	de A
kallos en to	stal ordning	hvis det e	or allo
12. u. e. A	er slik at C	x.u) ER oll	2c (4.x) ER

[-lcs]

"\<"-relasjonen på reelle tall er en total ordning
for alle x, y \in IR har vi at x \(\text{y} \) eller y \(\text{x} \)

Ekvivalensrelasjoner

Så langt:

- · Delvis crolning: dulmengdereksjon
- · Total ordning: mindre eller lik

Ná:

· Elcvivalensrelasjon: likhet

Des:
En relasjon som er refletisiv, symmetrisk og
transitiv kelles en ekvivalensrelasjon
Prototypeeksempelet: likhet = på g.eks reelle tell
· Refleksiv? Ja, fordi x = x
· Symmetrisk? Ja, fordi X=y hvis og bare hvi · Transitiv? Ja, fordi X=y og y=X
· Transitiv? Ja, fordi x=y ay
y= = => x= = = = = = = = = = = = = = = =