Сломанные эксперименты и мера склонности

Георгий Калашнов, Ольга Сучкова

18 марта 2020 г.

План на сегодня

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

Предположение условной независимости

Propensity score

Table of Contents

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

Предположение условной независимости

Propensity score

Пример: эффект от обучения на результаты по математике (Barnard и др. 2003)

- Абитуриентам из бедных семей случайным образом предлагалась грант на обучение в частной школе
- Предполагалось выдавать грант случайным образом, но
 - Детям из сильных школ давали грант с большей вероятностью
- ▶ Выполнено ли $(X, Y_1, Y_0) \perp T$?

Схема

Что если оценить вот так?

ATE =
$$\frac{N_H}{N} \left(\frac{1}{N_{TH}} \sum_{T=1,S=H} Y - \frac{1}{N_{CH}} \sum_{T=0,S=H} Y \right) + \frac{N_L}{N} \left(\frac{1}{N_{TL}} \sum_{T=1,S=L} Y - \frac{1}{N_{CL}} \sum_{T=0,S=L} Y \right)$$

Проверка баланса ковариатов

Table 2. Design Comparisons in Balance of Background Variables: Single-Child Families. The Numbers Are
Z Statistics From Comparing Observed Values of Variables Between Assignments

	Ар	Periods 2–5		
Variable	Simple random sample	Stratified random sample	PMPD	Randomized block
Applicant's school (low/high)	98	0	.11	.21
Grade level	-1.63	.03	03	39
Pretest read score	38	.65	.48	-1.05
Pretest math score	−. 5 1	1.17	.20	-1.37
African-American	1.80	1.68	1.59	1.74
Mother's education	.16	.14	.09	1.67
In special education	.31	1.66	17	.22
In gifted program	.42	-1.16	13	.75
English main language	-1.06	02	-1.03	44
AFDC	28	.49	.83	-1.57
Food stamps	-1.08	27	.94	-1.31
Mother works	-1.26	30	-1.18	.40
Educational expectations	.50	1.79	.57	.19
Children in household	-1.01	-1.75	.41	-1.02
Child born in U.S.	.49	.73	-1.40	69
Length of residence	.42	.71	.66	78
Father's work missing	1.09	.70	0	.16
Catholic religion	-1.84	19	74	80
Male	.88	1.22	.76	.53
Income	38	62	.74	-1.21
Age as of 4/97	-1.57	.18	47	87

Пример 2: Долгосрочный эффект от R&D (Schweiger, Stepanov и Zacchia 2018)

Проблема в Confounders

- ▶ Covariates X, коррелирующие с Y
- ► Confounders X, коррелирующие с Y и с T

Схема

Иллюстрация 1

	Y_1	<i>Y</i> ₀	X
Пациент 1	-	37.8	Из Европы
Пациент 2	-	37.6	Из Европы
Пациент 3	_	40	Из Азии
Пациент 4	36.6	-	Из Европы
Пациент 5	38	-	Из Азии
Пациент 6	39.2	-	Из Азии

В чем проблема и что можно сделать?

- Нет баланса по X!
- ▶ Что с $T_i \perp (Y(1)_i, Y(0)_i, X_i)$?
- ▶ Мы можем посчитать эффект отдельно для каждой подгруппы

Иллюстрация 2

	Y_1	Y ₀	X
Пациент 1	-	37.8	Эксперимент в 2019 Р = 0.33
Пациент 2	-	37.6	Эксперимент в 2019 Р = 0.33
Пациент 4	36.6	-	Эксперимент в 2019 Р = 0.33
Пациент 3	_	40	Эксперимент в 2020 Р = 0.66
Пациент 5	38	-	Эксперимент в 2020 Р = 0.66
Пациент б	39.2	-	Эксперимент в 2020 Р = 0.66

- ▶ В экспериментах разные Р. По чему теперь нет баланса?
- ► Что с $T_i \perp (Y(1)_i, Y(0)_i, X_i)$?
- Для каждой группы отдельно выполнено?

Иллюстрация 3

	Y_1	Y ₀	X
Пациент 1	-	37.8	Эксперимент в 2019 Р = 0
Пациент 2	_	37.6	Эксперимент в 2019 Р = 0
Пациент 4	_	36.6	Эксперимент в 2019 Р = 0
Пациент 3	40	_	Эксперимент в 2020 Р = 1
Пациент 5	38	-	Эксперимент в 2020 Р = 1
Пациент б	39.2	-	Эксперимент в 2020 Р =1

▶ Можем что-то сделать?

Unconfoundedness¹ и Overlap

- $ightharpoonup T_i \perp (Y(1)_i, Y(0)_i, X_i)$ идеальный эксперимент
- Вероятность попасть в тритмент-группу известна и одинакова для всех
- $T_i \perp (Y(1)_i, Y(0)_i)|X_i$ unconfoundedness (CIA, conditional independence assumption). Если взять людей с одинаковыми харатеристиками, то факт, что они в такой-то группе, не зависит от потенциальных исходов
- $e(X_i) = E(D_i|X_i) \in (0,1)$ overlap. Вероятность попадания в тритмент-группу зависит от характеристик и ненулевая для всех значений X

¹Angrist и Pischke 2008, Раздел 3.2.1.

Итого:

$$ATE = \frac{N_H}{N} \left(\frac{1}{N_{TH}} \sum_{T=1,S=H} Y - \frac{1}{N_{CH}} \sum_{T=0,S=H} Y \right) + \frac{N_L}{N} \left(\frac{1}{N_{TL}} \sum_{T=1,S=L} Y - \frac{1}{N_{CL}} \sum_{T=0,S=L} Y \right)$$

- ▶ Что не так, если не выполнено unconfoundedness?
- Что не так, если не выполнен overlap?
- Как получить ATT?
- Что делать, если X принимает слишком много разных значений?

Table of Contents

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

Предположение условной независимости

Propensity score

Balancing score²

Достаточная статистика

$$T_i \perp (Y(1)_i, Y(0)_i)|X_i <=> T_i \perp (Y(1)_i, Y(0)_i)|e(X_i)$$

- ▶ Propensity score: $e(X_i) = P(T_i = 1|X_i)$
- ightharpoonup Смысл леммы: чтобы избавиться от смещения в оценке au, вместо всех ковариат достаточно проконтролировать на меру склонности. Доказательство у Imbens и Rubin (2015, Глава 15) и Rubin (1978)

²Можно почитать у Ениколопов 2009.

²Angrist и Pischke 2008, Раздел 3.3.

Способы применить propensity score

- Blocking
- Matching
- Weighting

Blocking

- ▶ Вычисляем propensity score.
- Разбиваем наблюдения по блокам: 0.2-0.4, 0.4-0.6, 0.6-0.8

► ATE =
$$\frac{N_H}{N} \left(\frac{1}{N_{TH}} \sum_{T=1,S=H} Y - \frac{1}{N_{CH}} \sum_{T=0,S=H} Y \right) + \frac{N_L}{N} \left(\frac{1}{N_{TL}} \sum_{T=1,S=L} Y - \frac{1}{N_{CL}} \sum_{T=0,S=L} Y \right)$$

Что плохого в пропуске данных?

Matching

- ▶ Вычисляем propensity score.
- Находим наблюдения с самыми близкими значениями propensity score. Остальные выбрасываем
- Вычисляем обычный АТЕ

Weighting

- ► Вычисляем propensity score.
- Берем наблюдения из диапазона 10-90
- ► ATE = $\frac{1}{N} \sum_{T=1} \frac{1}{e(X)} Y \frac{1}{N} \sum_{T=0} \frac{1}{1 e(X)} Y$

Почему бы все не взять?

Все это и есть взвешивание

- ► Matching веса 0/1
- ▶ Blocking: $\frac{N_H}{N_{TH}}$ и $\frac{N_L}{N_{CH}}$
- Weighting: $\frac{1}{e(X)}$ u $\frac{1}{1-e(X)}$

Как получить АТТ?

- ► Blocking: $\frac{N_{TH}}{N_T}$ и $\frac{N_T L}{N_T}$
- ▶ Weighting: 1, $\frac{e(X)}{1-e(X)}$

Литература: книжки

- Angrist, Joshua D и Jörn-Steffen Pischke (2008). Mostly harmless econometrics: An empiricist's companion.
 Princeton university press.
 - Imbens, Guido W и Donald B Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
 - Ениколопов, Рубен (2009). Эконометрический ликбез: эффекты воздействия. URL: http://guantile.ru/06/06-Literacy1.pdf.

Литаратура: статьи

- Barnard, John и др. (2003). «Principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City». в: Journal of the American Statistical Association 98.462. с. 299—323.
- Rubin, Donald B (1978). «Bayesian inference for causal effects: The role of randomization». B: The Annals of statistics, c. 34—58.
 - Schweiger, Helena, Alexander Stepanov и Paolo Zacchia (2018). «The long-run effects of R&D place-based policies: evidence from Russian science cities». B: