Seminar 1 – Programming Languages' Specification

Tuesday, September 29, 2020 2:27 PM

I. BNF (Backus-Naur Form)

```
Constructs:
```

- 1. Meta-linguistic variables (non-terminals) written between < >
- 2. Language primitives (terminals) no special delimiters
- 3. Meta-linguistic connectors

```
::= equals by definition | alternative/OR
```

```
<construct> ::= expr_1 | expr_2 | ... | expr_n
```

Ex.1: Specify, using BNF, all nonempty sequences of letters

Onita Andrei

LetterSeq ::= ["Lorem ipsum"]

Petcu Dragos

<LetterSeq> ::= A | B | C | ... | Z

Oana Nourescu

```
<LetterSeq> ::= <Letter> | <Letter> <LetterSeq> <Letter> ::= A|B|...|Z|a|b|...|z
```

Ex.2: Specify, using BNF, both signed and unsigned integers, with the following constraints:

- o 0 does not have a sign
- o numbers of at least two digits do not start with 0

Neta Razvan

<Number> ::= 0 | <sign><non zero digit> | <non zero digit><Number>

Onita Andrei

<Number> ::= 0 | <sign> <non zero digit>| <non zero digit> | <sign> <non zero digit><Number> | <non zero digit><Number>

Neta Razvan

<Int> ::= 0 | <sign><DigitSeq>

Onita Andrei

```
<Int> ::= 0 | <sign><Number> | <Number> 
<Number> ::= <Non0digit>| <Number><digit> 
<digit> ::= 1 | 2 | 3 | ... | 9
```

<uigit> ::= 1 | 2 | 3 | ... | 9
<NonOdigit> ::= 0 | <digit>

Petcu Dragos

<sign> ::= + | -

<finalNumber> ::= 0 | <sign><number> | <number>

<number> ::= <nonZeronumber> | <nonZeronumber><anyDigit> | <number><anyDigit>

<anyDigit> ::= 0 | 1|2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digitSequence> ::= <anyDigit> | <anyDigit><digitSequence>

<nonZeroNumber> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Miclea George

```
<Integer> ::= <Digit> | <Minus> <NonZeroDigit> | <Minus> <NonZeroDigit> <DigitSeq> | <NonZeroDigit> <DigitSeq> <DigitSeq> ::= <Digit> | <Digit> <DigitSeq>
```

```
<NonZeroDigit> ::= 1 | 2 | ... | 9
    <Digit> ::= 0 | <NonZeroDigit>
    Onita Andrei (wip)
    <sign> ::= + | -
    <finalNumber> ::= 0 | <sign><number> | <number>
    <number> ::= <digitSequence>
    <anyDigit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
    <digitSequence> ::= <nonZeroNumber> | <digitSequence> <anyDigit>
    <nonZeroNumber> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
    Moldovanu Dragos
   <Number> ::= 0 | <non-zero-digit><NumberSeq> | -<non-zero-digit><NumberSeq> | <digit> | -<non-zero-digit>
    <NumberSeq> ::= <digit> | <digit><NumberSeq>
    <digit> ::= 0|1|...|9
    <non-zero-digit>::=1|2|...|9
    Miclea George
    <Integer> ::= 0 | <No> | <Sign> <No>
    <No>::= <NonZeroDigit> | <NonZeroDigit> <DigitSeq>
    <DigitSeq> ::= <Digit> | <Digit> <DigitSeq>
   <NonZeroDigit> ::= 1 | 2 | ... | 9
    <Digit> ::= 0 | <NonZeroDigit>
   <Sign> ::= + | -
II. EBNF (Extended BNF)
   Wirth's dialect
O Nonterminals loose <> => written without delimiters
o Terminals are written between ""
o ::= becomes =
○ {} repetition 0 or more times
o [] optionality
o () grouping
 • (* *) comments
 • rules end with.
   Ex.2 reloaded in EBNF
   Onita Andrei
    Integer = [ "+" | "-" ] "Non0digit" {Number} | {Number}
    Mihalcea Leonard
   Integer = '0' | ['+'|'-'] ('1'|'2'|...|'9') {'0'|1'|'2'|...|'9'}
    Moldovanu Dragos
```

Number= |

```
0" | ["-" | "+"]non-zero-digit{digit}
Non-zero-digit="1"|"2"|...|"9"
Digit="0"|"1"|...|"9"
```


Pascotescu Iuliana

Number = 0 | [-] nonZeroDigit {digit}

Correct EBNF rules for identifiers and constants (discussed in Seminar 2)

Identifiers:

Moldovanu Dragos

identifier=letter{alphanumeric}
alphanumeric="0"|"1"|...|"9"|"A"|...|"z"

Onita Andrei

```
identifier ::= letter {seq}
seq ::= letter | digit
letter ::= "A" | "B" | . . . | "Z" | "a" | ... | "z"
digit ::= "0" | "1" | ... | "9"
```

Costants (char & string):

Moldovanu Dragos

```
character= " ' " placeholder " ' "
placeholder="0"|...|"9"|"A"|...|"z"|"!"|...|"#"
```

Neta Razvan

String = ""{letter|digit|specialchar}""

Seminar 2 - Scanning

Tuesday, October 06, 2020

2:38 PM

Input: source code, token list (res. words, sep., op.) Output: FIP, ST, lex. err. (if any)

Ex. Oana Nourescu

source.txt ----program test; var a:integer; begin a:= b+1; c:= 'c'; s:= "new message" end.

PIF

token	ST_pos
program	-1
Id	0
;	-1
var	-1
Id	1
:	-1
Id	2
;	-1
begin	-1
Id	1
:=	-1
Id	3
+	-1
const	4
;	-1
id	5
:=	-1
const	6
;	-1
id	7
:=	-1
const	8

end	-1
	-1

ST (only ids & consts)

ST_pos	symbol
0	test
1	а
2	integer
3	b
4	1
5	С
6	'c'
7	S
8	"new message"

Lexical errors ex:

1a – wrong identifier
"new message – missing "
\$ - unknown character
'cc' - wrong char const
05 – wrong int constant

GRAMMARS

1. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S, C\}$$

$$\Sigma = \{a, b\}$$

$$P : S \to ab \mid aCSb$$

$$C \to S \mid bSb$$

$$CS \to b$$

prove that $w = ab(ab^2)^2 \in L(G)$.

Sol.:

$$a^2b^2 = aabb \neq (ab)^2 = abab$$

//Oana Nourescu

 $S \Rightarrow aCSb \Rightarrow abSbSb \Rightarrow ababbabb = w$ (2) (4) (1)

4 =>
$$S => w => w \in L(G)$$

2. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S\}$$

$$\Sigma = \{a, b, c\}$$

$$P: S \rightarrow a^{2}S \mid bc,$$

find L(G).

// Paun Tudor

$$L = \{a^{2k}bc, where k \in N\}$$

$$L = L(G)$$
?

- **1.** $L \subseteq L(G)$
- 2. $L(G) \subseteq L$

//Ariana Hategan

1. \forall $k \in N$, $a^{2k}bc \in L(G)$

 $P(k): a^{2k}bc \in L(G)$ and prove that P(k) true for $\forall k \in N$

a) Verification step

$$P(0): a^0bc \in L(G) \Leftrightarrow bc \in L(G)$$

S => bc

So, P(0) is true

b) P(n) true $\rightarrow P(n+1)$ true, $n \in N$

*

$$P(n) true \Rightarrow a^{2n}bc \in L(G) \Rightarrow S \Rightarrow a^{2n}bc (induction hypothesis)$$

$$S = a^2 S = a^2 a^{2n} bc = a^{2(n+1)} bc$$

(1) (ind hypo)

=> P(n+1) true

$$a) + b) => (1)$$

//Razvan Neta

$$S \Rightarrow bc$$

$$\Rightarrow a^2S \Rightarrow a^2bc$$

$$\Rightarrow a^4S \Rightarrow a^4bc$$

$$\Rightarrow a^6S \Rightarrow \dots$$

It may be noticed that starting from S and using **all productions** in **all possible combinations**, we only get, as sequences of terminals, sequences of the shape $a^{2n}bc$, $n \in N$ It follows that the grammar generates nothing else.

3. Find a grammar that generates $L = \{0^n 1^n 2^m \mid n, m \in \mathbb{N}^*\}$

Sol.:

G=({S,A,B}, {0,1,2}, P, S)
P:
S -> AB
A -> 01 | 0A1
B -> 2 | B2
?
$$L(G) = L$$

1. ? $L \subseteq L(G)$
? $\forall n, m \in N^*, 0^n 1^n 2^m \in L(G)$
Let $n, m \in N^*$ fixed

n m
$$S => AB => 0^{n}1^{n}B => 0^{n}1^{n}2^{m}$$
(1) (i) (ii)

n+m+1
=>
$$S => 0^n 1^n 2^m => 0^n 1^n 2^m \in L(G)$$

n

(i)
$$A => 0^n 1^n, \ \forall n \in N^*$$

(ii)
$$B \Rightarrow 2^m, \forall m \in N^*$$

2.
$$?L(G) \subseteq L$$

Petcu Dragos

A -> 01 | 0A1

B -> 2 | 2B

S-> AB

Oana Nourescu

S -> AB

A -> 01 | 0A1

B -> 2 | B2

Diaconu Bogdan

S->0A1B

A->0A1|ε

B->2|2B

Moldovanu Dragos

A->01|0A1

B->2|2B

S->AB

Moldovan Vasilica

S -> 0S1C | 012 ! 001212

C -> 2C |epsilon

Pascotescu Iuliana

S -> 0K1 | 01 | T | ST ! 01, 2

T -> 2T | 2

K -> 0K1 | 01

Onita Andrei

P: S= A B

A= 0 S 1 | 01

B= S 2 | 2

Finite Automata

1. Given the FA: $M=(Q,\Sigma,\delta,q_0,F)$, $\ Q=\{q_0,\ q_1,\ q_2,\ q_3,\ q_f\}$, $\ \Sigma=\ \{1,\ 2,\ 3\}$, $\ F=\{q_f\}$,

δ	1	2	3
q_0	$\{q_0, q_1\}$	$\{q_0, q_2\}$	$\{q_0, q_3\}$
q_1	$\{q_1, q_f\}$	$\{q_1\}$	$\{q_1\}$
q_2	$\{q_2\}$	$\{q_2, q_f\}$	$\{q_2\}$
q_3	$\{q_3\}$	$\{q_3\}$	$\{q_3, q_f\}$
q_f	0	0	Ø

Prove that $w = 12321 \in L(M)$

Sol.:

(see chat for graph repres.)

//Nenisca Maria

3
$$(q_0, 12321)$$
 |- $(q_1, 2321)$ |- $(q_1, 1)$ |- $(q_f, epsilon) => w = 12321 $\in L(M)$$

2. Find the language accepted by the FA below.

// Moldovan Vasilica

$$L = \{ a^n b^m \mid n \in N, m \in N^* \}$$

? L = L(M)

1. ? L
$$\subseteq$$
 L(M) \iff N , $m \in N^*$, $a^n b^m \in$ L(M) Let $n \in N$, $m \in N^*$ be fixed.

n m-1 (p,
$$a^nb^m$$
) $|-(p, b^m)|-(q, b^{m-1})|-(q, \epsilon)$ (ii)

(i)
$$(p, a^n) \mid -(p, \varepsilon), \forall n \in N$$

(ii) (q,
$$b^k$$
) $|-(q, \varepsilon), \forall k \in N$

P(k): (p,
$$a^k$$
) | - (p, ϵ) - (induction hypothesis) True

$$(p, a^{k+1}) | -(p, a^k) | -(p, \epsilon) => P(k + 1)$$
 is True Ind. hyp.

From 1.1 and 1.2 => (i)

- **3.** Build FAs that accept the following languages (IW activity Seminar5 chat)
 - a. Integer numbers

b. Variable declarations (Pascal, C, ...)

c. $L = \{0^n 1^m 0^q \mid n, m \in N^*, q \in N\}$

d. $L = \{0(01)^n \mid n \in N\}$

FA ⇔ RG ⇔ RE

I) FA ⇔ RG

1. Given the regular grammar $G = (\{S, A\}, \{a, b\}, P, S)$

$$P: S \to \varepsilon \mid aA$$

$$A \to aA \mid bA \mid a \mid b,$$

build the equivalent FA.

Sol.:

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{S, A, K\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = S$$

$$F = \{K, S\}$$

$$\delta(S, a) = \{A\}$$

$$\delta(A, a) = \{A, K\}$$

$$\delta(A, b) = \{A, K\}$$

2. Given the following FA $M = (Q, \Sigma, \delta, q_0, F)$

$$Q = \{p, q, r\}, q_0 = p, F = \{p, r\}, \Sigma = \{0, 1\}$$

δ	0	1
p	q	p
q	r	p
r	r	r

build the equivalent right linear grammar.

Sol.:

$$G = (N, \Sigma, P, S)$$

$$N = \{p, q, r\}$$

$$\Sigma = \{0, 1\}$$

$$S = p$$

$$P: p \longrightarrow 0q \mid 1p \mid 1 \mid \varepsilon$$

$$q \rightarrow 0r \mid 0 \mid 1p \mid 1$$

 $r \rightarrow 0r \mid 0 \mid 1r \mid 1$

II) RG ⇔ RE

3. Give the RG corresponding to the following RE $0(0+1)^*1$.

$$\begin{array}{l} 0\colon G_1=(\{S_1\},\ \{0,1\},\ \{S_1->0\},\ S_1)\\ 1\colon G_2=(\{S_2\},\ \{0,1\},\ \{S_2->1\},\ S_2)\\ 0+1\ G_3=(\{S_1,\ S_2,\ S_3\},\ \{0,1\},\ \{S_1->0,\ S_2->1,\ S_3->0\ |\ 1\},\ S_3)\\ G'_3=(\{S_3\},\ \{0,1\},\ \{S_3->0\ |\ 1\},\ S_3)\\ (0+1)^*\ G_4=(\{S_3\},\ \{0,1\},\ \{S_3->0\ |\ 1\ |\ \epsilon\ |\ 0S_3\ |\ 1\ S_3\},\ S_3)\\ G'_4=(\{S_3\},\ \{0,1\},\ \{S_3->0\ |\ 1\ |\ \epsilon\ |\ 0S_3\ |\ 1\ S_3\ |\ \epsilon,\ S_1->0S_3\},\ S_1)\ !\ \text{not\ regular}\\ 0(0+1)^*\ G_5=(\{S_1,\ S_3\},\ \{0,1\},\ \{S_3->0S_3\ |\ 1\ S_3\ |\ \epsilon,\ S_1->0S_3\},\ S_1)\ !\ \text{not\ regular}\\ 0(0+1)^*1\ G_6=(\{S_1,\ S_2,\ S_3\},\ \{0,1\},\ \{S_2->1,\ S_1->0S_3,\ S_3->0S_3\ |\ 1S_3,\ S_3->S_2\},\ S_1)\ G_6\ \text{not\ regular} \end{array}$$

Sol.:
$$G'_6 = (\{S_1, S_3\}, \{0, 1\}, \{S_1 \rightarrow 0S_3, S_3 \rightarrow 0S_3 \mid 1S_3 \mid 1\}, S_1)$$

4. Give the RE corresponding to the following grammar

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

$$P : S \rightarrow aA$$

$$A \rightarrow aA \mid bB \mid b$$

$$B \rightarrow bB \mid b$$

Sol.: //???

$$S = aA$$

$$A = aA + bB + b$$

$$B = bB + b$$

We know that rule 1

$$X = aX+b$$

$$X = a*b$$

$$B = b^{+}$$

$$A = aA + B$$

$$A = aA + b^+$$

$$A = a*b* by rule 1$$

$$S = aa^*b^+ = a^+b^+$$

$$=> S = a^{+}b^{+}$$

III) FA ⇔ RE

5. Give the FA corresponding to the following RE $01(1+0)^*1^*$.

Sol: on pdf board attached to MSTeams Seminar7 meet

6. Give the regular expression corresponding to the FA below.

//Hategan Ariana

$$X = Xa + b \Rightarrow sol: X \Rightarrow ba$$

```
q3=q1ba*
q1=epsilon + q1a + q1bb = epsilon + q1(a+bb) => q1 = (a+bb)*
```

Regular expression: $q1 + q3 = (a+bb)^* + (a+bb)^*ba^* = (a+bb)^*(epsilon+ba^*)$

(0+1)*:

01(0+1)*:

CFG

1. Given the CFG grammars below, give a leftmost/rightmost derivation for w.

a.
$$G = (\{S, A, B\}, \{0, 1\}, \{S \to 0B \mid 1A, A \to 0 \mid 0S \mid 1AA, B \to 1 \mid 1S \mid 0BB\}),$$

 $w = 0001101110$
Sol.

@B: Moca David

Leftmost: 1886686723

 $S \Rightarrow 0B \Rightarrow 00BB \Rightarrow 000BBB \Rightarrow 0001BB \Rightarrow 00011B \Rightarrow 000110BB \Rightarrow 0001101B$ $\Rightarrow 00011011S \Rightarrow 000110111A \Rightarrow 0001101110$

@B: Neta Razvan

Rightmost: 1872386723

$$S \Rightarrow 0B \Rightarrow 00BB \Rightarrow 00B1S \Rightarrow 00B11A \Rightarrow 00B110 \Rightarrow 000BB110$$

 $\Rightarrow 000B1110 \Rightarrow 0001S1110 \Rightarrow 00011A1110 \Rightarrow 0001101110$

b.
$$G = (\{E, T, F\}, \{a, +, *, (,)\}, \{E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid a\})$$

 $w = a * (a + a)$
HW

2. Prove that the following grammars are ambiguous

a.
$$G_1 = (\{S, B, C\}, \{a, b, c\}, \{S \to abC \mid aB, B \to bC, C \to c\}, S)$$
 HW

b.
$$G_2 = (\{E\}, \{a,+,*,(,)\}, \{E \to E + E \mid E * E \mid (E) \mid a\}, E)$$

Sol. IW #inmeet

w=a+a*a

C. $G_3 = (\{S\}, \{if, then, else, a, b\}, \{S \rightarrow if b then S | if b then S else S | a\}, S)$ HW

Recursive descendent parser

1. Given the CFG $G = (\{S\}, \{a, b, c\}, \{S \rightarrow aSbS \mid aS \mid c\})$, parse the sequence w = aacbc using rec. desc. Parser.

Sol.: VA+B: Dragos P., Andrei O.

$$(q,1,\varepsilon,S) \mid -\exp(q,1,S_1,aSbS) \mid -adv(q,2,S_1a,SbS) \mid -\exp(q,2,S_1aS_1,aSbSbS) \mid -adv(q,3,S_1aS_1a,SbSbS) \mid -adv(q,3,S_1aS_1aS_1a,SbSbS) \mid -at(q,3,S_1aS_1aS_2,aSbSbS) \mid -at(q,3,S_1aS_1aS_2,aSbSbS) \mid -at(q,3,S_1aS_1aS_3,cbSbS) \mid -adv(q,4,S_1aS_1aS_3,bSbS) \mid -adv(q,5,S_1aS_1aS_3,bSbS) \mid -adv(q,4,S_1aS_1aS_3,bSbS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,5,S_1aS_1aS_3,bSS) \mid -adv(q,6,S_1aS_1aS_3,bSS) \mid -adv(q,2,S_1aS_2,aSbS) \mid -adv(q,3,S_1aS_2a,SbS) \mid -adv(q,3,S_1aS_2a,SbS) \mid -adv(q,3,S_1aS_2a,SbS) \mid -adv(q,3,S_1aS_2a,SbS) \mid -adv(q,3,S_1aS_2a,SbS) \mid -adv(q,3,S_1aS_2aS_3,bS_3,c) \mid -adv(q,5,S_1aS_2aS_3,bS_3,c) \mid -adv(q,5,S_1aS_2aS_$$

Parse tree repr. As seq of production nos: $S_1S_2S_3S_3$

LL(1) parser

Given the CFG $G = (\{S, A, B, C, D\}, \{+, *, a, (,)\}, P, S)$,

 $P: (1) S \rightarrow BA$

 $(2) A \rightarrow +BA$

 $(3) A \rightarrow \varepsilon$

 $(4) B \rightarrow DC$

 $(5) C \rightarrow *DC$

(6) $C \rightarrow \varepsilon$

 $(7) D \rightarrow (S)$

 $(8) D \rightarrow a$,

Parse the sequence w = a * (a + a) using the LL(1) parser.

1) Compute FIRST @B Iuliana Pascotescu

	F_0	F_1	F_2	$F_3 = F_2 =$ FIRST
S	{}	{}	{(, a}	{(, a}
A	{+ ,ε }	{+, ε}	{+, ε}	{+, ε}
В	{}	{(, a}	{(, a}	{(, a}
С	{*, ε}	{*, ε}	{*, ε}	{*, ε}
D	{(, a}	{(, a}	{(,a}	{(, a}

 $FIRST(S) = \{(, a)\}$

 $FIRST(A) = \{+, \epsilon\}$

 $FIRST(B) = \{(, a)\}$

FIRST(C) ={*, ε }

 $FIRST(D) = \{(, a)\}$

2) Compute FOLLOW @B Moca David

	L_0	L_1	L_2	L_3	$L_4 = L_3 =$ FOLLOW
S	{ε}	{ε,)}	{ε,)}	{ε,)}	{ε,)}
A	{}	{ε}	$\{\epsilon,)\}$	$\{\epsilon, j\}$	$\{\epsilon,)\}$
В	{}	{+,ε}	$\{+, \varepsilon, \}$	$\{+, \varepsilon, \}$	{+, ε,)}
C	{}	{}	{+,ε}	{+, ε,)}	{+, ε,)}
D	{}	{*}	{*,+,ε}	{*,+ ,ε,)}	{*,+, ε,)}

FOLLOW(
$$S$$
) = { ϵ ,)}
FOLLOW(A) ={ ϵ ,)}
FOLLOW(B) ={+, ϵ ,)}
FOLLOW(C) ={+, ϵ ,)}
FOLLOW(D) ={*,+, ϵ ,)}

3) Fill LL(1) parsing table @B Iuliana Pascotescu

	а	+	*	()	\$
S	(BA,1)			(BA,1)		
A		(+BA,2)			(ε,3)	(ε,3)
В	(DC,4)			(DC,4)		
C		(ε,6)	(*DC,5)		(ε,6)	(ε,6)
D	(a,8)			((S),7)		
а	рор					

+	рор				
*		рор			
(рор		
)				рор	
\$					acc

4) Parse the sequence @B Dragos P.

```
(a*(a+a)\$, S\$, \varepsilon) | - (a*(a+a)\$, BA\$, 1) | -
(a*(a+a)\$, DCA\$, 14) | - (a*(a+a)\$, aCA\$, 148) | -
(*(a+a)\$, CA\$, 148) \mid -(*(a+a)\$, *DCA\$, 1485) \mid -
((a+a)\$, DCA\$, 1485) |- ((a+a)\$, (S)CA\$, 14857) |-
(a+a)$, S)CA$, 1 4 8 5 7) |- (a+a)$, BA)CA$, 1 4 8 5 7 1) |-
(a+a)$, DCA)CA$, 1485714) |-(a+a)$, aCA)CA$, 14857148) |-
(+a)$, CA)CA$, 14857148) |- (+a)$, A)CA$, 148571486) |-
(+a)$, +BA)CA$, 1485714862) [-(a)$, BA)CA$, 1485714862) [-(a)$
(a)$, DCA)CA$, 14857148624) |-
(a)$, aCA)CA$, 148571486248) | -
()$, CA)CA$, 1 4 8 5 7 1 4 8 6 2 4 8) | -
()$, A)CA$, 1485714862486)|-
()$, )CA$, 14857148624863) | -
(\$, CA\$, 14857148624863) | -
(\$, A\$, 148571486248636)
(\$, \$, 1485714862486363) | -
acc
```

LR(0) parser

Ex.
$$G = (\{S', S, A\}, \{a, b, c\}, P, S')$$

$$P: S' \rightarrow S$$

(1)
$$S \rightarrow aA$$

(2)
$$A \rightarrow bA$$

(3)
$$A \rightarrow c$$

$$w = abbc$$

Obs.: LR(0) item
$$[A \rightarrow \alpha.\beta]$$

1. Compute the canonical collection of states @B Razvan Neta

$$s_{0} = closure(\{[S' \to .S]\}) = \{[S' \to .S], [S \to .aA]\}$$

$$s_{1} = goto(s_{0}, S) = closure(\{[S' \to S.]\}) = \{[S' \to S.]\}$$

$$s_{2} = goto(s_{0}, a) = closure(\{[S \to a.A]\}) = \{[S \to a.A], [A \to .bA], [A \to .c]\}$$

$$s_{3} = goto(s_{2}, A) = closure(\{[S \to aA.]\}) = \{[S \to aA.]\}$$

$$s_{4} = goto(s_{2}, b) = closure(\{[A \to b.A]\}) = \{[A \to b.A], [A \to .bA], [A \to .c]\}$$

$$s_{5} = goto(s_{2}, c) = closure(\{[A \to c.]\}) = \{[A \to c.]\}$$

$$s_{6} = goto(s_{4}, A) = closure(\{[A \to b.A]\}) = \{[A \to bA.]\}$$

$$goto(s_{4}, b) = closure(\{[A \to b.A]\}) = s_{4}$$

$$goto(s_{4}, c) = closure(\{[A \to c.]\}) = s_{5}$$

2. Fill in LR(0) parsing table @B Iuliana Pascotescu

	ACTION	GOTO				
		а	b	С	S	Α
0	shift	2			1	
1	acc					
2	shift		4	5		3

3	reduce 1			
4	shift	4	5	6
5	reduce 3			
6	reduce 2			

3. Parse the input sequence @B Nenisca Maria

work stack	input stack	output band
\$0	abbc\$	ε
\$0a2	bbc\$	ε
\$0a2b4	bc\$	ε
\$0a2b4b4	c\$	ε
\$0a2b4b4c5	\$	3
\$0a2b4b4A6	\$	3
\$0a2b4A6	\$	2,3
\$0a2A3	\$	2,2,3
\$0S1	\$	1,2,2,3
acc	\$	1,2,2,3

SLR parser

Ex.
$$G = (\{S', E, T\}, \{+, id, const, (,)\}, P, S')$$

P: $S' \to E$
 $(1)E \to T$
 $(2)E \to E + T$
 $(3)T \to (E)$
 $(4)T \to id$
 $(5)T \to const$
 $W = id + const$
FOLLOW(E) ={ ϵ ,+,)}
FOLLOW(T) = { ϵ ,+,)}

1. Canonical collection Onita Andrei @B: Bogdan Diaconu

$$s_{0} = closure(\{[S' \to .E]\}) = \{[S' \to .E], [E \to .T], [E \to .E + T], [T \to .(E)], \\ [T \to .id], [T \to .const]\}$$

$$s_{1} = goto(s_{0}, E) = closure(\{[S' \to E.], [E \to E. + T]\}) = \{[S' \to E.], [E \to E. + T]\} \\ s_{2} = goto(s_{0}, T) = closure(\{[E \to T.]\}) = \{[E \to T.]\} \\ s_{3} = goto(s_{0}, () = closure(\{[T \to (.E)]\}) = \{[T \to (.E)], [E \to .T], [E \to .E + T], [T \to .(E)], \\ [T \to .id], [T \to .const]\} \\ s_{4} = goto(s_{0}, id) = closure(\{[T \to id.]\}) = \{[T \to id.]\} \\ s_{5} = goto(s_{0}, const) = closure(\{[T \to const.]\}) = \{[T \to const.]\} \\ s_{6} = goto(s_{1}, +) = closure(\{[E \to E + .T]\}) = \{[E \to E + .T], [T \to .(E)], [T \to .id] \\ [T \to .const]\} \\ s_{7} = goto(s_{3}, E) = closure(\{[T \to (E.)], [E \to E. + T]\}) = \{[T \to (E.)], [E \to E. + T]\} \\ goto(s_{3}, T) = closure(\{[T \to (.E)]\}) = s_{2} \\ goto(s_{3}, id) = closure(\{[T \to (.E)]\}) = s_{3} \\ goto(s_{3}, id) = closure(\{[T \to id.]\}) = s_{4} \\ \end{cases}$$

$$goto(s_{3}, const) = closure(\{[T \to const.]\}) = s_{5}$$
 $s_{8} = goto(s_{6}, T) = closure(\{[E \to E + T.]\}) = \{[E \to E + T.]\}$
 $goto(s_{6}, () = closure(\{[T \to (E)]\}) = s_{3}$
 $goto(s_{6}, id) = closure(\{[T \to id.]\}) = s_{4}$
 $goto(s_{6}, const) = closure(\{[T \to const.]\}) = s_{5}$
 $s_{9} = goto(s_{7},)) = closure(\{[T \to (E).]\}) = \{[T \to (E).]\}$
 $goto(s_{7}, +) = closure(\{[E \to E + .T]\}) = s_{6}$

2. SLR table @B: Iuliana Pascotescu

	ACTION						(GOTO	
	+	()	id	const	\$	E	Т	
0		Shift 3		Shift 4	Shift 5		1	2	
1	Shift 6					асс			
2	Reduce 1		Reduce 1			Reduce 1			
3		Shift 3		Shift 4	Shift 5		7	2	
4	Reduce 4		Reduce 4			Reduce 4			
5	Reduce 5		Reduce 5			Reduce 5			
6		Shift 3		Shift 4	Shift 5			8	
7	Shift 6		Shift 9						
8	Reduce 2		Reduce 2			Reduce 2			
9	Reduce 3		Reduce 3			Reduce 3			

3. Parse the sequence @B: Petcu Dragos

Work stack	Input stack	Output band
\$0	id+const\$	3
\$0 <mark>id4</mark>	+const\$	
\$0 <mark>T2</mark>	+const\$	4
\$0E1	+const\$	1,4
\$0E1+6	const\$	1,4
\$0E1+6const5	\$	1,4
\$0 <mark>E1+6T8</mark>	\$	5,1,4
\$0E1	\$	2,5,1,4
acc		, , ,

$$E \implies E + T \implies E + const \implies T + const \implies id + const$$
 2 5 1 4

LR(1) parser

Ex.
$$G = (\{S', S, A\}, \{a, b\}, P, S')$$

P: $S' \to S$
 $(1)S \to AA$
 $(2)A \to aA$
 $(3)A \to b$

w = abab
LR(1) item
$$[A \rightarrow \alpha.\beta, a]$$

FIRST(A) = {a,b}

 $FIRST(S) = \{a,b\}$

1. Canonical collection

//Onita Andrei

//Nourescu Oana

$$s_0 = closure(\{[S' \rightarrow .S, \$]\}) = \{[S' \rightarrow .S, \$], [S \rightarrow .AA, \$], [A \rightarrow .aA, a], [A \rightarrow .aA, b], \\ , [A \rightarrow .b, a], [A \rightarrow .b, b]\}$$

$$s_1 = goto(s_0, S) = closure(\{[S' \rightarrow S., \$]\}) = \{[S' \rightarrow S., \$]\}$$

$$s_2 = goto(s_0, A) = closure(\\ \{[S \rightarrow A.A, \$]\}) = \{[S \rightarrow A.A, \$], [A \rightarrow .aA, \$], [A \rightarrow .b, \$]\}$$

$$s_3 = goto(s_0, a) = closure(\{[A \rightarrow a.A, a], [A \rightarrow a.A, b]\}) = \{[A \rightarrow a.A, a], [A \rightarrow a.A, b]\}$$

$$s_4 = goto(s_0, b) = closure(\{[A \rightarrow b., a], [A \rightarrow b., b]\}) = \{[A \rightarrow b., a], [A \rightarrow b., b]\}$$

$$s_5 = goto(s_2, A) = closure(\{[A \rightarrow b., a], [A \rightarrow b., b]\}) = \{[S \rightarrow AA., \$]\}$$

$$s_6 = goto(s_2, a) = closure(\{[A \rightarrow a.A, \$]\}) = \{[A \rightarrow a.A, \$], [A \rightarrow .aA, \$], [A \rightarrow .b, \$]\}$$

$$s_7 = goto(s_2, b) = closure(\{[A \rightarrow a.A, \$]\}) = \{[A \rightarrow b., \$]\}$$

$$s_8 = goto(s_3, A) = closure(\{[A \rightarrow a.A, a], [A \rightarrow a.A, b]\}) = \{[A \rightarrow a.A, a], [A \rightarrow a.A, a], [A$$

2. LR(1) table

 $goto(s6, b) = closure(\{[A -> b., \$]\}) = s7$

// Nourescu Oana

	ACTION			GOTO	
	а	b	\$	S	Α
0	shift 3	shift 4		1	2
1			accept		
2	Shift 6	Shift 7			5
3	Shift 3	Shift 4			8

4	Reduce 3	Reduce 3		
5			Reduce 1	
6	Shift 6	Shift 7		9
7			Reduce 3	
8	Reduce 2	Reduce 2		
9			Reduce 2	

3. Parse the sequence // Nourescu Oana

Work stack	Input stack	Output band
\$0 \$0a3 \$0a3b4 \$0a3A8 \$0A2 \$0A2a6 \$0A2a6b7 \$0A2a6A9 \$0A2A5 \$0S1 accept	abab\$ bab\$ ab\$ ab\$ ab\$ ab\$ \$ \$ \$ \$ \$	3 23 23 23 23 323 2323 12323 12323

LALR(1) parser

Ex.
$$G = (\{S', S, A\}, \{a, b\}, P, S')$$

P: $S' \to S$
 $(1)S \to AA$
 $(2)A \to aA$
 $(3)A \to b$

W = aaab

1. Canonical collection

$$\begin{split} s_0 &= \{ [S' \to .S, \, \$], \, [S \to .AA, \, \$], [A \to .aA, a], [A \to .aA, b], \, , [A \to .b, \, a], \, [A \to .b, \, b] \} \\ s_1 &= \{ [S' \to S., \, \$] \} \\ s_2 &= \{ [S \to A.A, \, \$], \, [A \to .aA, \$], [A \to .b, \$] \} \\ s_{36} &= \{ [A \to a.A, a/b/\$], \, [A \to .aA, a/b/\$], \, [A \to .b, a/b/\$] \} \\ s_{47} &= \{ [A \to b., \, a/b/\$] \} \\ s_5 &= \{ [S \to AA., \, \$] \} \\ s_{89} &= \{ [A \to aA., \, a/b/\$] \} \end{split}$$

2. LALR(1) table

	ACTION			GOTO	
	а	b	\$	S	Α
s0	Shift s36	Shift s47		s1	s2
s1			accept		
s2	Shift s36	Shift s47			s5
s36	Shift s36	Shift s47			s89

s47	Reduce 3	Reduce 3	Reduce 3	
s5			Reduce 1	
s89	Reduce 2	Reduce 2	Reduce 2	

3. Parse the sequence

// Nourescu Oana

Work stack	Input stack	Output band
\$ s0 \$ s0 a s36 \$ s0 a s36 a s36 \$ s0 a s36 a s36 a s36 \$ s0 a s36 a s36 a s36 b s47 \$ s0 a s36 a s36 a s36 A s89	a a a b \$ a a b \$ a b \$ b \$ \$	Eps Eps Eps Eps Eps 5
\$ s0 a s36 <mark>a s36 A s89</mark> \$ s0 <mark>a s36 A s89</mark> \$ s0 A s2	\$ \$ \$	23 223 2223

The sequence is syntactically incorrect

PDA's

Ex.: Find PDA's that accept the following languages:

1.
$$L_1 = \{ww^R \mid w \in \{a, b\}^+\}$$

2. $L_2 = \{a^n b^{2n} \mid n \in N^*\}$
3. $L_3 = \{a^n b^{2n} \mid n \in N\}$
4. $L_4 = \{a^{2n} b^n \mid n \in N^*\}$

Sol.:

=> not accepted

2,3 - see the test for Seminar 13

1. M=({q0, q1, q2}, {a,b}, {A, B, Z}, d, q0, Z, {q2}) // Ariana Hategan

d(q0,a,Z) = {(q0, AZ)}
d(q0,b,Z) = {(q0, BZ)}

d(q0,a,A) = {(q0, AA), (q1, epsilon)}
d(q0,a,B) = {(q0, AB)}
d(q0,b,A) = {(q0, BA)}
d(q0,b,B) = {(q0, BB), (q1, epsilon)}

d(q1,a,A) = {(q1, epsilon)}
d(q1,b,B) = {(q1, epsilon)}
d(q1,epsilon,Z) = {(q2, Z)}

(q0,abba,Z) |- (q0, bba, AZ) |- (q0, ba, BAZ) |- (q1, a, AZ) |- (q1, epsilon, Z) |- (q2, epsilon, Z) => accepted
(q0,abaa,Z) |- (q0, baa, AZ) |- (q0, aa, BAZ) |- (q0, a, ABAZ) |- (q0, epsilon, AABAZ) |- (q1, epsilon, BAZ)

• d(q0, epsilon, Z) = {(q2, Z)} - transition to add in order to also accept the empty sequence ($L'_1 = \{ww^R \mid w \in \{a, b\}^*\}$)

4. M=({q0, q1, q2, q3}, {a,b}, {A, Z}, d, q0, Z, {q3}) // Ariana Hategan

```
 d(q0,a,Z) = \{(q1,AZ)\} 
 d(q1,a,A) - \{(q0,AZ)\} 
 d(q0,a,A) = \{(q1,AA)\} 
 d(q1,a,A) = \{(q0,AA)\} 
 d(q0,b,A) = \{(q2,epsilon)\} 
 d(q2,b,A) = \{(q2,epsilon)\} 
 d(q2,epsilon,Z) = \{(q3,Z)\} 
 (q0,aaaabb,Z) |- (q1,aaabb,AZ) |- (q0,aabb,AZ) |- (q1,abb,AAZ) |- (q0,bb,AAZ) |- (q2,b,AZ) |- (q2,epsilon,Z) |- (q3,epsilon,Z) => aaaabb is accepted
```

Attribute Grammars

Ex.: Give an attribute grammar for evaluating simple arithmetic expressions with id, (,), +, *

Sol.:

S - attributed grammar

```
E \rightarrow E + T {E1.val = E2.val + T.val}

E \rightarrow T {E..val = T.val}

T \rightarrow T * F {T1.val = T2.val * F.val}

T \rightarrow F {T.val = F.val}

F \rightarrow (E) {F.val = E.val}

F \rightarrow id {F. val = id.val}
```

Obs.: The green arrows from the syntax tree below indicate how evaluation is performed (bottom-up - value of attribute in parent is computed based on values of attributes in descendants, attributes are synthesized)

