Exercise 12.5

- 1. Prove that the sum of three angles of a triangle is 180°.
- 2. In the given figure, prove that $\angle A + \angle B + \angle C + \angle P + \angle Q + \angle R = 360^\circ$

[Hint: In AABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

and in APQR,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

Now, add these two results.]

- 3. If the angles of a triangle are in the ratio: (i) 3:4:5 (ii) 2:2:5. Determine the three angles.
- 4. In the given figure, ∠CAB = 75°, ∠CBA = 70°, ∠CED = 115°, find m∠CDE.

- 5. If the angles of a triangle are in the ratio 3:7:10, show that triangle is right angled.
 6. In a ΔABC, if ∠A + ∠B = 65° and ∠B + ∠C = 140°, calculate ∠A and ∠B.
- 7. The angles of a triangle are $(2x + 10)^\circ$, $(x + 20)^\circ$ and x° . Find the value of 'x'. Assign a special name to the triangle.
- 8. Find x in the given figure.

9. In the given figure, AB || CD, EF || BC, \(\angle BAC = 65^\circ\), \(\angle DHF = 35^\circ\), find \(\angle AGH\).

10. In the given figure, CD is parallel to AB. Calculate y.

B C

11. In the given figure, PS is the bisector of
$$\angle P$$
 and PT \perp QR.

Show that $\angle TPS = \frac{1}{2} (\angle Q - \angle R)$.

Teach san ba

12. In the given figure, $\angle BDE = 20^{\circ}$, $\angle BAC = 50^{\circ}$ and $\angle ACB = 60^{\circ}$, find $\angle BED$.

14. In a
$$\triangle PQR$$
, bisectors of $\angle Q$ and $\angle R$ meet at M. Prove that $\angle QMR = 90^{\circ} + \frac{1}{2} \angle P$.

Mathematics—IX

28

15. In the given figure, the bisectors of the exterior angles B and C of AABC meet at O. Given $\angle BAC = 60^{\circ}$ and $\angle ABC = 70^{\circ}$, find $\angle BOC$.

In the given figure, ABC is a triangle in which $\angle A = 80^{\circ}$, $\angle C = 60^{\circ}$, B = 2x and $\angle BDC = y$. BD and CD bisect $\angle B$ and $\angle C$ respectively. In the given $\angle BDC = y$. BD and CD bisect $\angle B$ and $\angle C$ respectively. Calculate the values of x and y.

and z.

20. Prove that bisectors of the external angles at B and C of a ABC meet at O. Prove that $\angle BOC = 90^{\circ} - \frac{1}{2} \angle A$. Find $\angle BOC$ when $A = 60^{\circ}$.

Teach san ban

Answers

- 3. (i) 45° , 60° and 75° (ii) 40° , 40° and 100°
- 4. $\angle CDE = 30^{\circ}$
- **6.** $\angle A = 40^{\circ}; \angle B = 25^{\circ}$
- 7. $x = 37\frac{1}{2}$; $\triangle ABC$ is an acute-angled triangle
- **9.** 100°
- 12. 90°
- **16.** $x = 20^{\circ}, y = 130^{\circ}$
- 19. \angle CMN = 41°

- **10.** 60°
- **13.** 125°

15. $\angle BOC = 60^{\circ}$

 $x = 14^{\circ}$

17. $x = 88^{\circ}, y = 60^{\circ}, z = 32^{\circ}$

8.

20. $\angle BOC = 60^{\circ}$