COMMON ENTRANCE TEST - 2010

DATE	SUBJECT	TIME
28-04-2010	MATHEMATICS	02.30 PM to 03.50 PM
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION	YOUR	QUESTION BO	OKLET DETAILS		
CET NU	MBER	VERSION CODE	SERIAL NUMBER		
		A - 1	378753		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after the 2nd Bell, i.e., after 02.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- Until the 3rd Bell is rung at 02.40 p.m.:
 - Do not remove the seal/staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - · Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 02.40 p.m., remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - · Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

- 4. Please note that even a minute unintended ink dot on the OMR sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **03.50 p.m.**, stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room Invigilator as it is.
- 8. After separating and retaining the top sheet (KEA Copy), the Invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

SR - 17

Turn Over

MATHEMATICS

1)
$$x = 1$$

2)
$$y = 1$$

3)
$$y = x$$

4)
$$x + y = 0$$

2. In $\triangle ABC$, if a = 2, $B = Tan^{-1}\frac{1}{2}$ and $C = Tan^{-1}\frac{1}{3}$, then (A, b) =

1)
$$\left(\frac{3\pi}{4}, \frac{2\sqrt{2}}{\sqrt{5}}\right)$$

$$2) \quad \left(\frac{\pi}{4}, \ \frac{2}{\sqrt{5}}\right)$$

3)
$$\left(\frac{3\pi}{4}, \frac{2}{\sqrt{5}}\right)$$

4)
$$\left(\frac{\pi}{4}, \frac{2\sqrt{2}}{\sqrt{5}}\right)$$

1)
$$x^2 + y^2 - 6x + 4y = 0$$

2)
$$x^2 + y^2 - 4x - 6y = 0$$

3)
$$x^2 + y^2 - 6x - 4y = 0$$

4)
$$x^2 + y^2 + 4x - 6y = 0$$

4. Let P(x, y) be the midpoint of the line joining (1, 0) to a point on the curve

1)
$$x = 1$$

2)
$$y = 1$$

4)
$$X$$
-axis

- 5. The function f(x) = |x-2| + x is
 - 1) continuous at x = 2 but not at x = 0.
 - 2) continuous at both x = 2 and x = 0.
 - 3) differentiable at both x = 2 and x = 0.
 - 4) differentiable at x = 2 but not at x = 0.

- **6.** If a, -a, b are the roots of $x^3 5x^2 x + 5 = 0$, then b is a root of
 - 1) $x^2 3x 10 = 0$

2) $x^2 + 5x - 30 = 0$

3) $x^2 + 3x - 20 = 0$

- 4) $x^2 5x + 10 = 0$
- - 1) 4

2) 6

3) 8

- 4) 7
- - 1) 900

2) 99

3) 100

- 4) 90
- - 1) 3:5

2) 3:2

3) 2:3

- 4) 5:3
- 10. Which of the following is NOT true?
 - 1) $p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$.
 - 2) $\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (\sim p \land q)$.
 - 3) $(p \land \neg q) \leftrightarrow (p \rightarrow q)$ is a tautology.
 - 4) $\{(p \rightarrow q) \land (q \rightarrow r)\} \rightarrow (p \rightarrow r)$ is a tautology.

- 11. Let R be an equivalence relation defined on a set containing 6 elements. The minimum number of ordered pairs that R should contain is
 - 1) 64

2) 36

3) 12

- 4) 6
- - 1) (4, -1)

(8, -2)

3) (4, 12)

- 4) (-8, 1)
- 13. Let P = (-1, 0), Q = (0, 0) and $R = (3, 3\sqrt{3})$ be three points. The equation of the bisector of the angle PQR is
 - 1) $x + \sqrt{3} y = 0$

2) $\sqrt{3}x + y = 0$

3) $x - \sqrt{3} y = 0$

- $4) \quad \sqrt{3} x y = 0$
- 14. If m is the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$, then

 $(h+bm)^2 = \dots$

1) $h^2 + ab$

2) $h^2 - ab$

3) $(a+b)^2$

- 4) $(a-b)^2$
- **15.** $Cot 12^{0} Cot 102^{0} + Cot 102^{0} Cot 66^{0} + Cot 66^{0} Cot 12^{0} = \dots$
 - 1) -1

2) 2

-2

4) 1

- 16. $(Sin\theta + Cos\theta)(Tan\theta + Cot\theta) = \dots$
 - 1) $Sec\theta + Cosec\theta$

2) Sec θ · Cosec θ

3) $Sin\theta \cdot Cos\theta$.

- 4) 1
- 17. The sides of a triangle are $6+\sqrt{12}$, $\sqrt{48}$ and $\sqrt{24}$. The tangent of the smallest angle of the triangle is
 - 1) $\sqrt{3}$

2)

3) $\frac{1}{\sqrt{3}}$

- 4) $\sqrt{2}-1$
- 18. A simple graph contains 24 edges. Degree of each vertex is 3. The number of vertices is
 - 1) 21

2) 16

3) 8

- 4) 12
- 19. $\lim_{n\to\infty} \left\{ n \sin \frac{2\pi}{3n} \cdot \cos \frac{2\pi}{3n} \right\} = \dots$
 - 1) 1

 $\frac{\pi}{3}$

3) $\frac{\pi}{6}$

- 4) $\frac{2\pi}{3}$
- 20. The function f(x) = [x], where [x] denotes the greatest integer not greater than x, is...
 - 1) continuous for all real values of x.
 - 2) continuous only at rational values of x.
 - 3) continuous for all nonintegral values of x.
 - 4) continuous only at positive integral values of x.

21. If
$$a > b > 0$$
, $Sec^{-1}\left(\frac{a+b}{a-b}\right) = 2Sin^{-1}x$, then $x = \dots$

1)
$$-\sqrt{\frac{a}{a+b}}$$

2)
$$\sqrt{\frac{a}{a+b}}$$

3)
$$-\sqrt{\frac{b}{a+b}}$$

4)
$$\sqrt{\frac{b}{a+b}}$$

22. If
$$x \neq n\pi$$
, $x \neq (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$, then $\frac{Sin^{-1}(Cosx) + Cos^{-1}(Sinx)}{Tan^{-1}(Cotx) + Cot^{-1}(Tanx)} = \dots$

1)
$$\frac{\pi}{4}$$

$$\frac{\pi}{3}$$

3)
$$\frac{\pi}{2}$$

4)
$$\frac{\pi}{6}$$

23. The general solution of
$$1 + Sin^2x = 3Sinx \cdot Cosx$$
, $Tanx \neq \frac{1}{2}$ is

1)
$$n\pi - \frac{\pi}{4}$$
, $n \in \mathbb{Z}$

2)
$$n\pi + \frac{\pi}{4}$$
, $n \in \mathbb{Z}$

$$3)\quad 2n\,\pi+\frac{\pi}{4}\,,\ n\in Z$$

4)
$$2n\pi - \frac{\pi}{4}$$
, $n \in \mathbb{Z}$

24. The least positive integer n, for which
$$\frac{(1+i)^n}{(1-i)^{n-2}}$$
 is positive, is

1) 1

2) 2

3) 3

4) 4

25. If
$$x + iy = (-1 + i\sqrt{3})^{2010}$$
, then $x = \dots$

1) 1

2) -1

3) -22010

4) 22010

26.	The greatest value of x satisfying	g $21 \equiv 385 \pmod{x}$ and $587 \equiv 167 \pmod{x}$ is
	1) 28	2) 56
	3) 156	4) 32
27.	The number $(49^2 - 4)(49^3 - 49)$	is divisible by
	1) 6!	2) 5!
	3) 7!	4) 9!
28.	The least positive integer x satisfies	sfying $2^{2010} \equiv 3x \pmod{5}$ is
	1) 1	2) 2
	3) 3	4) 4
29.	If A and B are two square mat then $A^2 + B^2$ is always equal to	rices of the same order such that $AB = B$ and $BA = A$
	1) 2 <i>AB</i>	2) 2BA
	3) 1	A+B
30.	If A is a 3×3 nonsingular matri	x and if $ A = 3$, then $ (2A)^{-1} =$
	1) $\frac{1}{3}$	2) $\frac{1}{24}$
	3) 24	4) 3

31.	If A =	3	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, then $A^2 + xA + yI = 0$	for	(x, y)	=	
-----	--------	---	--	----------------------------	-----	--------	---	--

1) (4, -1)

2) (1, 3)

3) (-4, 1)

- 4) (-1, 3)
- 32. The constant term of the polynomial $\begin{vmatrix} x+3 & x & x+2 \\ x & x+1 & x-1 \\ x+2 & 2x & 3x+1 \end{vmatrix}$ is
 - 1) -1

2) 1

3) 0

- 4) 2
- 33. If \vec{a} , \vec{b} and \vec{c} are nonzero coplanar vectors, then $\begin{bmatrix} 2\vec{a} \vec{b} & 3\vec{b} \vec{c} & 4\vec{c} \vec{a} \end{bmatrix} = \dots$
 - 1) 27

2)

3) 25

- 4) 0
- - · 1) 180°

2) 120°

3) 900

- 4) 60°
- 35. If \vec{a} , \vec{b} and \vec{c} are unit vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $3\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \dots$
 - 1) -3

2) 3

3) -1

4) 1

- **36.** If i, j, k are unit vectors along the positive direction of X-, Y- and Z-axes, then a FALSE statement in the following is
 - 1) $\sum i \cdot (j \times k) = 0$

 $2) \quad \sum i \cdot (j+k) = 0$

3) $\sum i \times (j+k) = \vec{0}$

- 4) $\sum i \times (j \times k) = \vec{0}$
- - 1) commutative law is not satisfied.
 - 2) associative law is not satisfied.
 - 3) identity law is not satisfied.
 - 4) inverse law is not satisfied.
- 38. The inverse of 2010 in the group Q^+ of all positive rationals under the binary operation
 - * defined by $a * b = \frac{ab}{2010}$, $\forall a, b \in Q^*$, is
 - 1) 1

2) 2010

3) 2009

- 4) 2011
- **39.** If the three functions f(x), g(x) and h(x) are such that $h(x) = f(x) \cdot g(x)$ and $f'(x) \cdot g'(x) = c$, where c is a constant, then $\frac{f''(x)}{f(x)} + \frac{g''(x)}{g(x)} + \frac{2c}{f(x) \cdot g(x)}$ is equal to
 - $1) \quad \frac{h''(x)}{h(x)}$

 $2) \quad \frac{h(x)}{h'(x)}$

3) $h'(x) \cdot h''(x)$

- $4) \quad \frac{h(x)}{h''(x)}$
- **40.** The derivative of $e^{ax} Cosbx$ with respect to x is $re^{ax} Cos\left(bx + Tan^{-1}\frac{b}{a}\right)$. When a > 0, b > 0, the value of r is
 - 1) ab

a+b

3) $\sqrt{a^2+b^2}$

4) $\frac{1}{\sqrt{ab}}$

- **41.** If $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$, then $\frac{dy}{dx} = \dots$
 - 1) $-\sqrt[3]{\frac{x}{y}}$

 $2) \quad -\sqrt[3]{\frac{y}{x}}$

3) $\sqrt[3]{\frac{y}{x}}$

- 4) $\sqrt[3]{\frac{x}{y}}$
- **42.** If $y = Tan^{-1}\sqrt{x^2-1}$, then the ratio $\frac{d^2y}{dx^2}$: $\frac{dy}{dx} = \dots$
 - $1) \quad \frac{1+2x^2}{x\left(x^2+1\right)}$

 $2) \quad \frac{x\left(x^2+1\right)}{1-2x^2}$

3) $\frac{x\left(x^2-1\right)}{1+2x^2}$

- $4) \quad \frac{1-2x^2}{x\left(x^2-1\right)}$
- **43.** P is the point of contact of the tangent from the origin to the curve $y = Log_e x$. The length of the perpendicular drawn from the origin to the normal at P is
 - 1) $2\sqrt{e^2+1}$

2) $\sqrt{e^2+1}$

3) $\frac{1}{2e}$

- 4) $\frac{1}{e}$
- - 1) $\left(\frac{4}{5}\right)^4$

 $2) \quad \left(\frac{5}{4}\right)^4$

3) $x\left(\frac{4}{5}\right)^4$

- 4) $y\left(\frac{5}{4}\right)^4$.
- 45. The set of real values of x for which $f(x) = \frac{x}{Log x}$ is increasing, is
 - 1) $\{x : x < e\}$

2) {1}

3) $\{x: x \ge e\}$

4) empty

- 46. A wire of length 20 cm is bent in the form of a sector of a circle. The maximum area that can be enclosed by the wire is
 - 1) 10 sq. cm

2) 30 sq. cm

3) 20 sq. cm

- 4) 25 sq. cm
- - 1) x + y 8 = 0

2) x - y - 8 = 0

3) x + y + 1 = 0

- 4) x-y+1=0
- 48. Equation of the circle centered at (4, 3) touching the circle $x^2 + y^2 = 1$ externally, is
 - 1) $x^2 + y^2 + 8x 6y + 9 = 0$
- 2) $x^2 + y^2 8x + 6y + 9 = 0$
- 3) $x^2 + y^2 8x 6y + 9 = 0$
- 4) $x^2 + y^2 + 8x + 6y + 9 = 0$
- **49.** The points (1, 0), (0, 1), (0, 0) and (2k, 3k), $k \neq 0$ are concyclic if $k = \dots$
 - 1) $-\frac{5}{13}$

2) $\frac{5}{13}$

 $3) - \frac{1}{5}$

- 4) $-\frac{1}{5}$
- 50. The locus of the point of intersection of the tangents drawn at the ends of a focal chord of the parabola $x^2 = -8y$ is
 - 1) y = 2

2) y = -2

3) x = 2

4) x = -2

- **51.** The condition for the line y = mx + c to be a normal to the parabola $y^2 = 4ax$ is
 - 1) $c = \frac{a}{m}$

 $2) \quad c = 2am + am^3$

- $3) \quad c = -2am am^3$
- 4) $c = -\frac{a}{m}$
- **52.** The eccentric angle of the point $(2, \sqrt{3})$ lying on $\frac{x^2}{16} + \frac{y^2}{4} = 1$ is
 - 1) $\frac{\pi}{3}$

 $\frac{\pi}{6}$

3) $\frac{\pi}{4}$

- 4) $\frac{\pi}{2}$
- 53. The distance of the focus of $x^2 y^2 = 4$, from the directrix which is nearer to it, is
 - 1) $2\sqrt{2}$

2) $\sqrt{2}$

3) $4\sqrt{2}$

- 4) 8√2
- **54.** If $\int f(x) \sin x \cdot \cos x \, dx = \frac{1}{2(b^2 a^2)} Log f(x) + c$, where c is the constant of integration,

then $f(x) = \dots$

1) $\frac{2}{abSin2x}$

 $\frac{2}{(b^2-a^2)Sin\,2x}$

3) $\frac{2}{ab \cos 2x}$

- $4) \quad \frac{2}{\left(b^2 a^2\right) Cos \, 2x}$
- **55.** If $\int \frac{\sqrt{x}}{x(x+1)} dx = k Tan^{-1}m$, then (k, m) is
 - 1) $(1, \sqrt{x})$

2) $\left(2,\sqrt{x}\right)$

3) (2, x)

4) (1, x)

56.
$$\int_{0}^{\pi/4} \frac{\sin x + \cos x}{3 + \sin 2x} dx = \dots$$

1) $\frac{1}{2} Log 3$

2) 2Log 3

3) $\frac{1}{4} Log 3$

4) Log 3

57.
$$\int_{0}^{1} x \left(1-x\right)^{3/2} dx = \dots$$

1) $\frac{24}{35}$

2) $\frac{-8}{35}$

3) $\frac{-2}{35}$

4) $\frac{4}{35}$

1) $\frac{40}{3}$

2) $\frac{16}{3}$

3) $\frac{32}{3}$

4) $\frac{8}{3}$

1) 1, 2

2) 2, 1

3) 2, 2

4) 1, 1

60. The general solution of the differential equation
$$2x \frac{dy}{dx} - y = 3$$
 is a family of

1) straight lines

2) circles

3) hyperbolas

4) parabolas