February 4
De move on to representations.
A representation of and algebra A
defied over k is a k-vector space W and
o k-olyebre homomorphism
p: A -> End (W).
When A = Cl (v, g) we will write
$\rho(\varphi).\omega = \varphi \cdot \omega$
for y E Cl(v, q), w E W.
· Recall that a complex vector space is a
red unter space V together is an endousiphen
J st. J= -1. Similarly, a complex représentation
is a real representation (W, p) 5.t.:

p o J = J o p.

Similarly one defines the concept of a
quaternionie representation.
A representation p: A -) End (W) is called reducible if J W, W = EW s.t.
reducible if JW,W2 SW 5.t.
m = m, m = m
$\int -\int \cdot \oplus /2$
where $p:A \rightarrow End(W:)$. Any $f.d.$ repr com le decomposed into a som of irreducible
representations
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
We will be studying rep ⁿ up to equivalence
$A \sim M \longrightarrow M$
$1 \times F$
$A \times W' \longrightarrow W'$

Thm: [Matrices are simple]	
Lt k=R, t, H. Then the only	
irreducible real repr of k(n) = {n	, > ~
matrices values in k? is the definition of k.	
Pf: k(n) 15 simple.	
This leads to the observations the algebra Cln:	0-60 est
• If $n + l \equiv 0 \mod 4$ then	2
the # of inequivalent irreps rs	
· If n+1 \no mod 4 then the # of inequivalent imps is	

Similarly, for the complex Clifford alg Cln: · If node thre one 2 irreps. - If never thre is \(\frac{1}{2}\) , nep. Prop: Cl ~ Cl . Pf: {e;} o.n.b. for Rⁿ⁺¹. Define e; Hentlenti. Since (e; en+1) = -e; en+1 = -1 extends to a homomorphism $f: Cl \rightarrow Cl$

Isomorphism since ve hit all generators. Il

We will use $Cl_{n+1} \stackrel{\text{ev}}{=} 0$	Climps
to build Spin(n+1) ic.	495.
Let Mn = Grothenbiech group	
obses (L)	she Listers your
for the olye	Sca Cla
Mn = same for Oln Cl, = t. There is only This is real 2-dimensional.	
M, = 2L.	
· Cl2 = H. Only one irrep,	it is H.
This is real 4-dime.	
$\mathcal{H}_{2} \stackrel{\mathcal{L}}{=} \mathcal{U}$	

· Cl3 = HOH. Thue are two rrys H, H. each 4- dim. $\mathcal{L}_{3} \cong 24 \oplus 24$. · $CR_{4} \cong H(2)$ The is one comp IH^{2} , it is 8- Jim^{2} . $\frac{\mathcal{H}_{n+4}}{\mathcal{H}_{n+4}} \stackrel{\sim}{=} \mathcal{H}_{n}.$ · Cl. = CAF. There are 2 ineps C., C2. Each 16 - Jim. H. = 24 & 24. · Pl2. = (2). Here is one mp (2, it is

Recall the volume element

o=e,..e, e cl

Define $\omega_{\mathbb{C}} = i$ $\omega \in \mathbb{Q}_n$.

· Cose n = 3 mod 4. Thus

の一一一一一一一一一

Not even

 $Cl^{\pm} = (1 \pm \omega) Cl_{n}.$

Prop: Let (W,p) be Cla-irrep, n=3 mos4.

 $\rho(\omega) = \pm 1$

Pf: Since $p(\omega^2) = 1$, we have decomposition

N=W+DW.

since was in the center of Cla
since wo is in the center of Cln-ind.
So, one has to be trivial.
Now ntl = 0 mod 4. So if W is
a Cl _{n+1} -rep ux house seen how
$\omega = \omega^+ \oplus \omega^-$
where $W^{\pm} = (1 \pm \rho(\omega_{n+1}))W$.
Since wat commetes w/ Class, we see
that each Wt rs or representation
for $Cl_{n+1} \stackrel{\text{ev}}{=} Cl_n$. There are the
W = from the previous proposition.
We now construct representations for
the lie group Sopin (1).

A spinor repr of Spin(n) is an irrep survan
of the restriction of a Cl(n)-irrep along Spin (n) Cl Cl Cln.
Suppose $n = 3 \mod 4$. The spinor
$\frac{\text{vep}^n}{\sqrt{2}}$ of $\frac{\sqrt{2}}{\sqrt{2}}$ of $\frac{\sqrt{2}}$
$Spin(n) \longrightarrow Cl_n \longrightarrow End(S)$
$\Delta_n \cdots GL(S)$
where p is any Cln irrep.
Claim: This is well-defind. (Spinos rep when n = 3 mod 4
Pf: Since $M_n = 2602$, there is something
to chech here. Recall the autoaphrand: Coln 5

which witnesses Cl = Clever & Cl . When n=3 mod 4 wc have $\alpha(\omega)=-\omega$ $\Rightarrow cl_{n} = \{(\varphi, \kappa(\varphi)) \mid \varphi \in cl_{ev} \}.$ So the restriction of the two imps of Cln are equivalent when restricted to Cln · Similarly, if n = 5,6 wod 8 one sees from the Classification that the restriction of a Cl-inco nemains an irrep when restricted to Cl, ev ~ Cl, -1.

When $n \equiv 1, 2$ mod 8 then the restriction of an irrep to $Cal_n \cong Cal_{n-1}$ is a

Sum of two copies of our remp.
When n = 0 and 4 then the restriction
splits into two inequivalent imps.
Summy:
N=0 mod 8: There is a unique Cla
irrep. call it W. When we restrict
W to $Cl_n^{ev} = Cl_{n-1}$ it decomposes
$\mathcal{U} = \mathcal{U}^{\dagger} \oplus \mathcal{U}^{-}$
where ω_{n-1} acts by ± 1 on W^{\pm} .
There are thus two irreps of Spin(n)
$S^{\pm} = \omega^{\pm}$

n = 1 mod 8: There is o unique
Chrispalit W. Sps n = 8k+1.
Thur. 44+1
$\frac{1}{2} \lim_{R} W = 2^{4k+1}.$
On the other hand, the time of the unique
On the other hand, the sim of the unique of the unique of the original original of the original or
$W = W' \oplus W'.$
There is a unique Spin (n) irrep
C = W'
· N = 2 mod 8 : There is a unique
Clu-inp W. Again its restriction to
Clev = cln-1 is W = W & W
where W' is the unique imp of Un-1.

There is a unique irrep call it
S = W'
By defor, note that S is a complex repor.
n = 3 mod 9: There is a orique
Spin(n) Terep S. It is the restriction
of eather where we are by ±1.
By Afr, S is quaternionic.
u = 4 mod 8: There is a unique Cln-
irry. Its restriction to Cln = Coloni
is a sum $W = W^{\dagger} \oplus W^{-}$.
the two Spin(n) icreps are
+
S = W.
Each St are quaternionic.

irm S. S is complex.
$n=7 \mod 8$: The is a unique Spin(n) imp. S . The complex classification is even easies.
$n=7 \mod 8$: The is a unique Spin(n) imp. S. The complex classification is even easief.
imp. S. The complex classification is even easier.
The complex classification is even easier.
X: Note, we are talking about
complex som representations for the
ordinary spin group Spin(n) < Clon.

A complex spin rep is the nestretish of a Oln irrep along: Spin (n) C Coln C Pln. Let's start w/ the case that n = 2m is even. So: the the the differd algebra associated to $V = t^{2m}$ its nandeg gradratir farm. By windegenvacy $V = L \oplus L^* \ni (v, f).$ where 9(l,4) = 4(l) = (l,47. Lt $S = \int L^* = \mathcal{L} \oplus L^* \oplus \cdots \oplus \int_{-\infty}^{\infty} L^*$. We will austret on is suorphism al End (S).

Défie dain: For lel, 4 e L^{**} one has $\left(i_{2}+4\right)^{2}=2\left(2,47\cdot1\right).$ Thus we obtain an aly homorphom Clam = Cl(L&L) - End(S). Pt To see its on isomorphism it suffices to duch the case m=1. Then

Then $Cl_2 = \beta(2)$. Ober that

 $Cl_{2} \xrightarrow{fc} End(S)$ ||2 $f(2) \xrightarrow{\sim} End(t^{2})$

So: when n=2m have Cl_m=End(S)

where S = 1.4 = 1.4. Note that

S is equipped with

Ven Tx
Voyr

It is clear that this decomposition is compatible who the parity decomposition for (V) = Cl & Cl odd. M) St are each up for The Orlean Let n=2m le even. - Next, for odd Limension, n=2m+1. Since

ther are	two irres		2m+1	
Bot, there	2 vestras		my = Cl	•
	n = 2m+1.		somplex Spin	
	12m (2m+1)			
Sp., (2m	(1+) (1+) a	3) M-)	tnd(s)	
Where S In gartice	10 00 il		Cl ₂ m+1.	
	Jim S=			