(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-267881 (P2000-267881A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.7	識別記号	FI	テーマコード(参考)
G06F 11/22	360	G06F 11/22	360B 2G032
G01R 31/28		H01L 29/00	5 B 0 4 6
H01L 29/00		G 0 1 R 31/28	F 5B048
# G 0 6 F 17/50		G 0 6 F 15/60	6 6 2 G

		審查請求	未請求	請求項の数 5	OL	(全 14 質)
(21)出願番号	特願平11-67618	(71)出顧人		75 ±アドパンテス :	١	
(22) 出顧日	平成11年3月15日(1999.3.15)	(72)発明者 (74)代理人 Fターム(参	福島 市東京都線 社アドル 1001031 弁理士 ・考) 200	- 東馬区旭町 1 丁 ペンテスト内	自32番: AC08 AE AL00 (A04	1号 株式会 (10 AE12

(54) 【発明の名称】 半導体デバイスシミュレート装置及びそれを用いた半導体試験用プログラムデバッグ装置

(57)【要約】 (修正有)

【課題】 実際の被検査用半導体デバイスと同じように 内部抵抗に依存して変化する電圧値、電流値を的確にシ ミュレートして出力できるようにする半導体シミュレー ト装置

【解決手段】 論理値保持部151は仮想デバイス150の信号ピンの状態を示すパラメータを格納する。電圧源152及び純抵抗153はハイレベル時、電圧源154及び純抵抗155はローレベル時の内部電圧値,抵抗値を格納する。入力純抵抗156はハイインピーダンス時の抵抗値を格納する。切替部157はDCパラメトリック試験実行部148から信号ピンに印加される試験信号を電圧源152及び純抵抗153、電圧源154及び純抵抗155、入力純抵抗156のいずれかに印加する。仮想デバイス150は入力されたパラメータや試験信号に基づいて電圧値や電流値をシミュレートして出力する。

【特許請求の範囲】

【請求項1】 被検査用半導体デバイスの内部抵抗に依 存して変化する電流値又は電圧値を測定するための各種 パラメータを設定するパラメータ設定手段と、

1

前記被検査半導体デバイスに対する試験信号を入力する 入力手段と、

前記パラメータ及び前記試験信号に応じて前記被検査用 半導体デバイスの内部抵抗に依存した電流値又は電圧値 をシミュレートして出力するシミュレート手段とを含ん で構成されることを特徴とする半導体デバイスシミュレ 10 ート装置。

【請求項2】 被検査用半導体デバイスの信号ピンがハ イレベルの場合の電圧値及び抵抗値を示す第1のパラメ ータ、前記信号ピンがローレベルの場合の電圧値及び抵 抗値を示す第2のパラメータ、前記信号ピンがハイイン ピーダンスの場合の抵抗値を示す第3のパラメータ、前 記信号ピンがハイレベル、ローレベル、ハイインピーダ ンスのいずれの状態にあるかを示す第4のパラメータ、 電流印加電圧測定時又は電圧印加電流測定時に前記信号 ピンに印加される電流値又は電圧値を示す第5のパラメ 20 ータを設定するパラメータ設定手段と、

前記被検査用半導体デバイスに対する試験信号を入力す る入力手段と、

前記第1から第5までのパラメータ及び前記試験信号に 基づいて前記信号ピンにおける電流印加電圧測定時の電 圧値又は電圧印加電流測定時の電流値をシミュレートし て出力するシミュレート手段とを含んで構成されること を特徴とする半導体デバイスシミュレート装置。

【請求項3】 被検査用半導体デバイスの電源ピンの抵 抗値を示す第1のパラメータ、前記電源ピンに印加され 30 る電流値又は電圧値を示す第2のパラメータを設定する パラメータ設定手段、

前記被検査用半導体デバイスに対する試験信号を入力す る入力手段と、

前記第1及び第2のバラメータ及び前記試験信号に基づ いて前記被検査用半導体デバイスの電源ピンにおける電 流印加電圧測定時の電圧値又は電圧印加電流測定時の電 流値をシミュレートして出力するシミュレート手段とを 含んで構成されることを特徴とする半導体デバイスシミ ュレート装置。

【請求項4】 被検査用半導体デバイスの信号ピンがハ イレベルの場合の電圧値及び抵抗値を示す第1のパラメ ータ、前記信号ピンがローレベルの場合の電圧値及び抵 抗値を示す第2のパラメータ、前記信号ピンがハイイン ピーダンスの場合の抵抗値を示す第3のパラメータ、前 記信号ピンがハイレベル、ローレベル、ハイインピーダ ンスのいずれの状態にあるかを示す第4のパラメータを 設定するパラメータ設定手段と、

前記信号ピンに接続される負荷条件を示す試験信号を入 力する入力手段と、

前記第1から第4までのパラメータ及び前記試験信号に 基づいて前記信号ピンにおける電圧値をシミュレートし て出力するシミュレート手段とを含んで構成されること を特徴とする半導体デバイスシミュレート装置。

【請求項5】 被検査用半導体デバイスの内部抵抗に依 存して変化する電流値又は電圧値を測定するための各種 パラメータを設定するとともに、半導体試験用プログラ ムに基づいて被検査用半導体デバイスに印加される試験 信号を疑似的に発生して半導体試験装置の動作をエミュ レートするテスタエミュレート手段と、

前記パラメータ及び試験信号が入力され、これらのパラ メータ及び試験信号に応じて前記被検査用半導体デバイ スの内部抵抗に依存した電流値又は電圧値をシミュレー トして出力するデバイスシミュレート手段と、

前記デバイスシミュレート手段からの出力に基づいて前 記半導体試験用プログラムのデバッグを行うデバッグ手 段とを含んで構成されることを特徴とする半導体試験用 プログラムデバッグ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体試験装置を エミュレートして試験用プログラムの検証を行うプログ ラムデバッグ装置に用いられる半導体デバイスシミュレ ート装置及びそれを用いた半導体試験用プログラムデバ ッグ装置に関する。

[0002]

【従来の技術】従来から、出荷前のロジック】Cや半導 体メモリ等の各種の半導体素子に対して直流試験や機能 試験等を行うものとして、半導体試験装置が知られてい る。半導体試験装置が行う試験は大別して、機能試験と 直流試験である。機能試験は、被検査用半導体デバイス に所定の試験バターン信号を与え、この試験バターン信 号に対して予定通りの動作を被検査用半導体デバイスが 行ったか否かを検査するものである。直流試験は、被検 査用半導体デバイスの各端子の直流特性が予定した特性 を満たしているか否かを検査するものである。例えば、 既知の電圧を印加した場合に予定通りの電流が端子から 取り出せるか否かを試験する電圧印加電流測定試験、ま たは既知の電流を流したり取り出したりした場合に予定 通りの電圧が端子に発生しているか否かを試験する電流 印加電圧測定試験などがある。また、機能試験を行う場 合でも、ハイレベル時の電圧を正規の電圧値、例えば5 ボルトよりも低い値の4ボルトに設定したり、またはロ ーレベル時の電圧を正規の電圧値、例えば0ボルトより も高い値の0.5ボルトに設定したり、被検査用半導体 デバイスに印加される電圧条件や電流条件などを種々変 更して行う場合が多い。

【0003】機能試験や直流試験を行う場合にどのよう な項目の試験をどのような条件で行うかの各種の条件は 50 予め半導体試験用プログラムに組み込まれているので、

この半導体試験用プログラムを動作させることによって 被検査用半導体デバイスの各種試験を行うことができ る。しかしながら、半導体試験用プログラムは、試験項 目の設定、試験条件の設定、試験の実行、試験結果の判 定などと言った多岐に渡る動作を制御しなければなら ず、膨大なステップのプログラムで構築されている。と の半導体試験用プログラムは被検査用半導体デバイスの 種類が変更になったり、そのロジックが変更になったり した場合、それに併せて種々変更されなければならな い。半導体試験用プログラムが新規に作成されたり、変 10 更された場合にそのプログラム自体が正常に動作するも のなのか否か、そのプログラムの評価を行わなければな らない。その一方法として、実際の半導体試験装置を用 いて予め良否の分かっている被検査用半導体デバイスに 対して、半導体試験用プログラムを動作させて、そのプ ログラムの評価を行っていた。しかし、半導体試験装置 自体が高価であって導入台数も少ないことから、実際の 半導体試験装置を用いて半導体試験用プログラムが正常 に動作するか否かの評価を行うことは、半導体試験のラ インを停止することになり、好ましくない。そこで、従 20 来は、実際の半導体試験装置を用いて半導体試験用プロ グラムの評価を行うのではなく、ワークステーション等 の汎用コンピュータを用いて半導体試験装置をエミュレ ートして、その半導体試験用プログラムが正常に動作し

[0004] このように半導体試験装置をエミュレートするものとして、例えば特開平9-185519号公報に記載されたようなものがある。これは、半導体試験用プログラムが正常に動作するか否かを試験するためのデバッグ装置に関するものである。これは、汎用コンピュータのオペレーシングシステムの下でデバッグ対象となる半導体試験用プログラムを動作させることによって、疑似的な半導体試験装置を構成している。この疑似的な半導体試験装置にインタフェース部を介して仮想被試験素子部、試験条件設定部、試験項目設定部、試験結果格納部などを接続し、この仮想被試験素子部に設定された仮想データを、試験条件設定部に設定された試験条件にしたがって読み込むことによって擬似的な機能試験や直流試験を行っている。

ているか否かの検証を行っていた。

[0005]

【発明が解決しようとする課題】上述のデバッグ装置は、実際の被検査用半導体デバイスを用いるのではなく、仮想被試験素子部に予め設定された仮想データを、試験条件設定部に設定された試験条件にしたがってインタフェース部を介して読み込み、その仮想データが試験条件の範囲内の場合にはバスと判定し、範囲外の場合にはフェールと判定するように構成されたものである。従って、従来の仮想被試験素子部は、実際の半導体試験装置における直流試験のように、実際の被検査用半導体デバイスの測定対象となるピン(評価対象ピン)に対して

電圧印加電流測定試験や電流印加電圧測定試験を行った場合に生じる被検査用半導体デバイスの内部抵抗に依存した値の変化といった実際の被検査用半導体デバイスの動作を反映したものではなかった。すなわち、被検査用半導体デバイスの内部抵抗とは無関係に、仮想被試験素子部に予め設定された仮想データを読み込むだけのものであり、実際の被検査用半導体デバイスの動作を的確に

シミュレートしたものではなかった。

【0006】また、このような仮想試験素子部を用いて 半導体試験用プログラムをデバッグしようとした場合、 その一部については十分にデバッグすることができない という問題があった。それは、信号の論理値を判定する 場合には、被検査用半導体デバイスの内部抵抗による電 圧の変化を考慮してハイレベルのしきい値とローレベル のしきい値を適切な値に決定しなければならないのに、 従来のデバッグ装置では、被検査用半導体デバイスの内 部抵抗による電圧の変化を考慮していないため、半導体 試験用プログラムに設定されているしきい値が適切な値 であるのか否かの判定を行うことができなかった。

【0007】第1の発明は、このような点に鑑みて創作されたものであり、その目的は、実際の被検査用半導体デバイスと同じように内部抵抗に依存して変化する電圧値、電流値を的確にシミュレートして出力することのできる半導体デバイスシミュレート装置を提供することにある。

【0008】第2の発明は、このような点に鑑みて創作されたものであり、その目的は、実際の被検査用半導体デバイスに対して半導体試験用プログラムを動作させた場合と同様に仮想的な半導体デバイスを用いた場合でも半導体試験用プログラムの内容を的確に検証することのできる半導体試験用プログラムデバッグ装置を提供することにある。

[0009]

【課題を解決するための手段】上述の課題を解決するために、請求項1に記載された半導体デバイスシミュレート装置は、被検査用半導体デバイスの内部抵抗に依存して変化する電流値又は電圧値を測定するための各種バラメータを設定するバラメータ設定手段と、記被検査半導体デバイスに対する試験信号を入力する入力手段と、前記バラメータ及び前記試験信号に応じて前記被検査用半導体デバイスの内部抵抗に依存した電流値又は電圧値をシミュレートして出力するシミュレート手段とを含んで構成されるものである。

【0010】通常、被検査用半導体デバイスの信号ビン に対して電流印加電圧測定又は電圧印加電流測定を行う 場合は、その信号ビンがハイレベル、ローレベル、ハイインピーダンスの場合に、その信号ビンに所定の電流や電圧が印加された場合の電圧値や電流値を測定すればよい。バラメータ設定手段は、被検査用半導体デバイスが ハイレベル、ローレベル、ハイインビーダンスのいずれ

の状態にあるのかを示すバラメータや、その状態におけ る個々の内部電圧値や内部抵抗値を示すパラメータを設 定する。入力手段は、信号ピンに印加される印加電流値 や印加電圧値を試験信号として入力する。シミュレート 手段は、入力されたパラメータや試験信号、すなわち、 ハイレベル、ローレベル、ハイインピーダンスにおける 内部電圧値や内部抵抗値、印加電圧値及び印加電流値に 基づいて被検査用半導体デバイスから測定されるであろ う電圧値や電流値をシミュレートして出力する。この半 導体デバイスシミュレート装置によれば、パラメータや 10 試験信号が変わるとそれに応じて内部抵抗の値が変化 し、測定電圧値や測定電流値も内部抵抗の値の変化に依 存して変化するようになるので、実際の被検査用半導体 デバイスを測定した場合と同様の測定結果を的確にシミ ュレートして出力することができる。

【0011】上述の課題を解決するために、請求項2に 記載された半導体デバイスシミュレート装置は、被検査 用半導体デバイスの信号ピンがハイレベルの場合の電圧 値及び抵抗値を示す第1のパラメータ、前記信号ピンが ローレベルの場合の電圧値及び抵抗値を示す第2のパラ メータ、前記信号ピンがハイインピーダンスの場合の抵 抗値を示す第3のパラメータ、前記信号ピンがハイレベ ル、ローレベル、ハイインピーダンスのいずれの状態に あるかを示す第4のパラメータ、電流印加電圧測定時又 は電圧印加電流測定時に前記信号ピンに印加される電流 値又は電圧値を示す第5のパラメータを設定するパラメ - 夕設定手段と、前記被検査用半導体デバイスに対する 試験信号を入力する入力手段と、前記第1から第5まで のパラメータ及び前記試験信号に基づいて前記信号ピン における電流印加電圧測定時の電圧値又は電圧印加電流 30 測定時の電流値をシミュレートして出力するシミュレー ト手段とを含んで構成されるものである。

【0012】請求項2に記載された発明は、被検査用半 導体デバイスの信号ピンに対して電流印加電圧測定又は 電圧印加電流測定を行う場合のバラメータや試験信号の 条件を具体的に示したものである。信号ピンがハイレベ ルの状態で所定の電圧又は電流を印加して電圧印加電流 測定又は電流印加電圧測定を行う場合には、第4のバラ メータがハイレベルの状態を示すので、第1のパラメー タの電圧値及び抵抗値と第5のパラメータの印加電圧又 40 は電流に基づいた信号ピンの電流値又は電圧値がシミュ レート手段から出力されるようになる。信号ピンがロー レベルの状態で所定の電圧又は電流を印加して電圧印加 電流測定又は電流印加電圧測定を行う場合には、第4の パラメータがローレベルの状態を示すので、第2のパラ メータの電圧値及び抵抗値と第5のパラメータの印加電 圧値又は電流値に基づいた信号ピンの電流値又は電圧値 がシミュレート手段から出力されるようになる。信号ピ ンがハイインピーダンス状態で所定の電圧又は電流を印

合には、第4のパラメータがハイインピーダンスの状態 を示すので、第3のパラメータの電圧値及び抵抗値と第 5のパラメータの印加電圧値又は電流値に基づいた信号 ピンの電流値又は電圧値がシミュレート手段から出力さ れるようになる。

【0013】上述の課題を解決するために、請求項3に 記載された半導体デバイスシミュレート装置は、被検査 用半導体デバイスの電源ピンの抵抗値を示す第1のパラ メータ、前記電源ピンに印加される電流値又は電圧値を 示す第2のパラメータを設定するパラメータ設定手段 と、前記被検査用半導体デバイスに対する試験信号を入 力する入力手段と、前記第1及び第2のパラメータ及び 前記試験信号に基づいて前記被検査用半導体デバイスの 電源ピンにおける電流印加電圧測定時の電圧値又は電圧 印加電流測定時の電流値をシミュレートして出力するシ ミュレート手段とを含んで構成されるものである。

【0014】請求項3に記載された発明は、被検査用半 導体デバイスの電源ピンに対して電流印加電圧測定又は 電圧印加電流測定を行う場合のバラメータや試験信号の 条件を具体的に示したものである。電源ピンに所定の電 圧又は電流を印加して電圧印加電流測定又は電流印加電 圧測定を行う場合には、第1のパラメータの抵抗値と第 2のパラメータの印加電圧又は電流に基づいた電源ピン の電流値又は電圧値がシミュレート手段から出力される ようになる。

【0015】上述の課題を解決するために、請求項4に 記載された半導体デバイスシミュレート装置は、被検査 用半導体デバイスの信号ピンがハイレベルの場合の電圧 値及び抵抗値を示す第1のパラメータ、前記信号ピンが ローレベルの場合の電圧値及び抵抗値を示す第2のパラ メータ、前記信号ピンがハイインピーダンスの場合の抵 抗値を示す第3のパラメータ、前記信号ピンがハイレベ ル、ローレベル、ハイインピーダンスのいずれの状態に あるかを示す第4のパラメータを設定するパラメータ設 定手段と、前記信号ピンに接続される負荷条件を示す試 験信号を入力する入力手段と、前記第1から第4までの バラメータ及び前記試験信号に基づいて前記信号ピンに おける電圧値をシミュレートして出力するシミュレート 手段とを含んで構成されるものである。

【0016】請求項4に記載された発明は、被検査用半 導体デバイスの信号ピンに対して種々の負荷が接続され た場合のパラメータや試験信号の条件を具体的に示した ものである。被検査用半導体デバイスの信号ピンがハイ レベルの状態で負荷条件が無負荷の場合には、第4のバ ラメータがハイレベルの状態を示すので、第1のパラメ ータの電圧値及び抵抗値と試験信号の無負荷条件に基づ いた信号ピンの電圧値がシミュレート手段から出力され るようになる。信号ピンがローレベルの状態で負荷条件 が無負荷の場合には、第4のパラメータがローレベルの 加して電圧印加電流測定又は電流印加電圧測定を行う場 50 状態を示すので、第2のパラメータの電圧値及び抵抗値

の動作を模擬するものなので、その詳細な説明を行う前 に、模擬される半導体試験装置の構成について説明す

と試験信号の無負荷条件に基づいた信号ビンの電圧値が シミュレート手段から出力されるようになる。信号ビン がハイインピーダンスの状態で負荷条件が無負荷の場合 には、第4のバラメータがハイインピーダンスの状態を 示すので、第3のパラメータの抵抗値と試験信号の無負 荷条件に基づいた信号ビンの電圧値がシミュレート手段 から出力されるようになる。同様にして、負荷条件が理 想電圧源と終端抵抗の場合や理想電流源によるプログラ マブルロードの場合などにはそれに基づいた電圧値がシ ミュレート手段から出力される。

【0021】図2は、実際の半導体試験装置の全体構成を示す図である。図では、半導体試験装置200に実際の被検査用半導体デバイス250が接続された状態が示されている。半導体試験装置200は、被検査用半導体デバイス250に対して各種の直流試験(DCパラメトリック試験)や機能試験を行うものである。半導体試験装置200は、テスタ制御部210、テスタバス230、テスタ本体240、被検査用半導体デバイス250を搭載するソケット部(図示せず)を含んで構成されている。

【0017】上述の課題を解決するために、第5の発明の半導体試験用プログラムデバッグ装置は、被検査用半導体デバイスの内部抵抗に依存して変化する電流値又は電圧値を測定するための各種バラメータを設定するとともに、半導体試験用プログラムに基づいて被検査用半導体デバイスに印加される試験信号を疑似的に発生して半導体試験装置の動作をエミュレートするテスタエミュレート手段と、前記パラメータ及び試験信号が入力され、これらのパラメータ及び試験信号に応じて前記被検査用半導体デバイスの内部抵抗に依存した電流値又は電圧値 20をシミュレートして出力するデバイスシミュレータ手段と、前記デバイスシミュレータ手段からの出力に基づいて前記半導体試験用プログラムのデバッグを行うデバッグ手段とを含んで構成されるものである。

【0022】テスタ制御部210は、テスタ本体240の動作を制御するためのものであり、半導体試験用プログラム(デバイステストプログラム)212、アプリケーションプログラム214、言語解析実行部216、テスタライブラリ218、テスタバスドライバ220を含んで構成されている。

【0018】デバイスシミュレート手段は、上述の請求項1に記載の半導体デバイスシミュレート装置に対応するものである。すなわち、請求項5に記載の半導体試験用プログラムデバッグ装置は、請求項1に記載の半導体デバイスシミュレート装置を用いて構成されたものである。従って、デバイスシミュレート手段が被検査用半導 30体デバイスの内部抵抗による電圧の変化を考慮した的確な動作を模擬的に行うものなので、半導体検査用プログラムに記述されたハイレベルのしきい値やローレベルのしきい値が適切な値であるか否かなどの、従来不可能であった検査を行うことができるようになり、半導体試験用プログラムのデバッグ精度を高めることが可能となる。

【0023】デバイステストプログラム212は、ユー ザが半導体試験装置200を用いて、被検査用半導体デ バイス250に対してどのような試験を行うのか、その 手順や方法を記述したものである。一般的にこのデバイ ステストプログラムは、半導体試験装置200のユーザ によって開発作成されるものである。従って、ユーザは 実際の半導体試験装置200を用いることなく、この実 施の形態に係るデバッグ装置100を用いて自分の作成 したデバイステストプログラム212が正常に動作する か否かの検証を行い、完成度の高いデバイステストプロ グラムを作成することができる。言語解析実行部216 は、デバイステストプログラム212の構文解析などを 行い、デバイステストプログラム212に従って半導体 試験装置200を忠実に動作させる中心的な役割を果た すものである。アプリケーションプログラム214は、 デバイステストプログラム212及び言語解析実行部2 16と連携して動作するものであり、機能試験及び直流 試験に対応した実際の試験信号等を被検査用半導体デバ イス250に印加し、その出力信号を取り込んで被検査 用半導体デバイス250の良否を判定したり、特性を解 析するものである。

[0019]

【0024】テスタライブラリ218は、言語解析実行部216によって構文解析が行われた後のデバイステストプログラム212の命令をレジスタレベルの命令(後述するレジスタ242へのデータ書き込み命令及びレジスタ242からのデータ読み出し命令に関するデータ)に変換して、半導体試験装置200の動作に必要なデータの作成や設定を行うとともに、テスタ本体240に対して測定動作を指示する。テスタバスドライバ220は、テスタバス230を介して、テスタライブラリ21

【発明の実施の形態】以下、本発明に係る半導体デバイスシミュレート装置を適用した半導体試験用プログラム 40 デバッグ装置の一実施の形態について、図面を参照しながら説明する。図1は、半導体試験用プログラムデバッグ装置の全体構成を示す図である。デバッグ装置100は、半導体試験装置の動作をエミュレートし、かつ被検査用半導体デバイスの動作をシミュレートすることによって、半導体試験用プログラムが正常に動作するか否かを検証するためのものであり、ワークステーション等の汎用コンピュータによって実現される。

【0020】との実施の形態に係るデバッグ装置100 は、テスタバス230を介して、テスタライブラリ21は、実際の半導体試験装置及び被検査用半導体デバイス 50 8によって作成されたデータをテスタ本体240内のレ

ジスタ242に転送する。

【0025】テスタ本体240は、テスタバス230を 介して取り込まれたテスタ制御部210からのデータに 基づいて被検査用半導体デバイス250に対して各種の 試験を行う。テスタ本体240は、レジスタ242とメ モリ244と試験実行部246とを含んで構成される。 レジスタ242は、テスタバス230を介して取り込ま れたテスタライブラリ218からのデータを格納する。 とのレジスタ242に格納されたデータは、直接あるい はメモリ244を介して試験実行部246に出力され る。また、レジスタ242及びメモリ244は、試験実 行部246からの試験結果に関するデータを格納する試 験結果格納領域(図示せず)を有する。

【0026】試験実行部246は、機能試験実行部24 7 およびDCパラメトリック試験実行部248を備えて いる。試験実行部246は、レジスタ242やメモリ2 44に格納されたテスタライブラリ218からのデータ に基づいて、被検査用半導体デバイス250に対して機 能試験やDCパラメトリック試験を行い、その試験結果 のデータをレジスタ242やメモリ244の試験結果格 20 納領域に格納する。レジスタ242及びメモリ244に 格納された試験結果データは、テスタドライバ220に よってテスタバス230を介して直接テスタライプラリ 218に取り込まれる。なお、メモリ244に格納され た試験結果データは、レジスタ242を介してテスタラ イブラリ218に取り込まれる。

【0027】図1のデバッグ装置100は上述の半導体 試験装置200の全体動作をエミュレートすると共に被 検査用半導体デバイス250の動作をシミュレートする ものである。従って、半導体試験装置200用に作成さ 30 れたデバイステストプログラム112を図1のデバッグ 装置100を用いて実行すると、そのデバイステストプ ログラム112の動作がユーザの意図したものと一致す るか否かを調べることができる。次に、この実施の形態 に係るデバッグ装置100の構成について説明する。

【0028】図1に示すエミュレータ制御部110は、 デバイステストプログラム112、アプリケーションプ ログラム114、言語解析実行部116、テスタライプ ラリ118、テスタバスエミュレータ120を含んで構 成されている。このエミュレータ制御部110は、テス 40 タエミュレート部140の動作を制御するためのもので あり、図2に示した半導体試験装置200に含まれるテ スタ制御部210と基本的に同じ動作を行う。

【0029】デバイステストプログラム112は、半導 体試験装置200を用いて被検査用半導体デバイス25 0に対してどのような試験を行うのか、その手順や方法 を記述したものであり、デバッグ装置100によってデ バッグの対象となるプログラムである。従って、図2の デバイステストプログラム212かそのままこのデバイ ステストプログラム112として移植され、同様の動作 50 シミュレート手段に、パラメータ設定部159がパラメ

を行うように構成される。アブリケーションプログラム 114、言語解析実行部116及びテスタライブラリ1 18についても同様に、図2のアプリケーションプログ ラム214、言語解析実行部216及びテストライブラ リ218がそのまま移植され、同様の動作を行うように 構成される。テスタバスエミュレータ120は、エミュ レータ制御部110とテスタエミュレート部140との 間を仮想的に接続する仮想テスタバス130を駆動し、 との仮想テスタバス130を介してテスタライブラリ1 18とテスタエミュレート部140との間のデータの送 受を制御する。

【0030】テスタエミュレート部140は、図2のテ スタ本体240の動作をソフトウェアで実現したもので あり、エミュレータ制御部110内のテスタライプラリ 118の動作指示に応じて仮想デバイス150に対する 模擬的な試験を行う。テスタエミュレート部140は、 仮想レジスタ142と仮想メモリ144と仮想試験実行 部146を含んで構成されている。仮想レジスタ142 は、テスタライブラリ118からのデータを格納する。 この仮想レジスタ142に格納されたデータは、直接あ るいは仮想メモリ144を介して仮想試験実行部146 に送られる。また、仮想レジスタ142と仮想メモリ1 44は、仮想試験実行部146から出力される仮想試験 結果データを格納する試験結果格納領域(図示せず)を 有する。

【0031】仮想試験実行部146は、機能試験実行部 147及びDCパラメトリック試験実行部148を備え ている。との仮想試験実行部146は、仮想レジスタ1 42 に格納されたテスタライブラリ118 からのデータ に基づいて、仮想デバイス150に対して所定の信号を 出力して、機能試験実行部147による機能試験やDC パラメトリック試験実行部148によるDCパラメトリ ック試験を行い、その仮想試験結果データを仮想レジス タ142やメモリ144の試験結果格納領域に格納す る。仮想レジスタ142及び仮想メモリ144に格納さ れた仮想試験結果データは、仮想テスタバス130を介 してテスタライブラリ118に出力される。試験結果解 析判定部160は、仮想レジスタ142やメモリ144 又はテスタライブラリ118に格納されている仮想試験 結果データと、予め予想される試験結果の期待値とを比 較検討し、デバイステストプログラム112が正常に動 作しているか否かの検証を行い、その結果をユーザに表 示する。例えば、デバイステストプログラム112の実 行によって誤った試験結果が得られた場合は、その誤っ た試験結果の原因となるプログラムの行番号等をモニタ (図示せず)上に表示したり、プリンタ(図示せず)か ら印字したりする。

【0032】上述した仮想試験実行部146が入力手段 に、仮想デバイス150がシミュレート手段、デバイス

ータ設定手段にそれぞれ対応する。また、エミュレータ制御部110、テスタエミュレート部140及びバラメータ設定部159がテスタエミュレート手段に、試験結果解析判定部160がデバッグ手段にそれぞれ対応する。

【0033】次に、テスタエミュレート部140の動作 について説明する。テスタエミュレート部140は、仮 想テタスパス130から仮想レジスタ142へのアクセ スが入ると、仮想レジスタ142のアドレスをもとにそ のアクセスが仮想レジスタ142のどの部分へのアクセ 10 スかを計算し、その場所にデータを書き込んだり、その 場所からデータを読み出したりする。また、テスタエミ ュレート部140は、仮想レジスタ142のアクセスを 介して仮想メモリ144へのアクセスが生じると、固有 の仮想メモリ144に対してデータを書き込んだり、デ ータを読み出したりする。この場合、一般的に一つの仮 想レジスタ142だけでは仮想メモリ144に対してデ ータを読み書きするのに十分な情報を得ることはできな い。そこで、この実施の形態では、テスタエミュレート 部140は関連する仮想レジスタ142の内容を参照し て、仮想メモリ144に対するデータの読み書きをも行 うようにしている。なお、図2の半導体試験装置200 と同様に処理を行う場合は、メモリ144に格納された 仮想試験結果データは、レジスタ142及び仮想テスタ バス130を介してテスタライブラリ118に出力され ることになるが、デバッグ装置100の場合には、メモ リ144に格納された仮想試験結果を直接テスタライブ ラリに出力するように構成してもよい。

[0034]テスタエミュレート部140に対して、波 形の発生(機能試験)を開始するレジスタがアクセスさ れた場合、第1のタスクにおいて仮想試験実行部146 による波形の発生処理を行う。このとき、波形発生に関 する必要なデータは仮想レジスタ142及び仮想メモリ 144に予め格納されているので、仮想試験実行部14 6はそれを参照しながら波形を発生する。仮想試験実行 部146によって発生された波形は仮想デバイス150 に転送される。仮想デバイス150は入力された波形に 基づいて実際の被検査用半導体デバイス250の動作を シミュレートする。仮想デバイス150によってシミュ レートされた結果の出力ピンデータは再び仮想試験実行 40 部148にフィードバックされ、そこで期待値と比較さ れ、その結果が所定の仮想レジスタ142及び仮想メモ リ144に格納される。上述の一連の動作はテスタエミ ュレート部140の動作サイクル毎に実行処理される。 【0035】パラメータ設定部159は、被検査用半導 体デバイスに印加される理想電圧源の電圧値、理想電流 源の電流値やハイレベル時又はローレベル時における純 抵抗値、電圧値、電源ピンの純抵抗値などの各種パラメ - タを仮想デバイス150に設定するものである。この パラメータ設定部159の設定内容に応じて被検査用半 50

導体デバイスの特性が決定される。

【0036】仮想デバイス150は、図2に示した実際 の被検査用半導体デバイス250と同様の動作をシミュ レートするものである。仮想デバイス150は具体的に は、電流印加電圧測定及び電圧印加電流測定のためのバ ラメータ(被検査用半導体デバイスに印加される理想電 圧源の電圧値、理想電流源の電流値やハイレベル時又は ローレベル時における純抵抗値、電源ピンの純抵抗値な ど)をパラメータ設定部159によって設定されると、 そのパラメータに基づいて実際の被検査用半導体デバイ ス250が出力するであろう電流値、電圧値をシミュレ ートして出力するものである。なお、テスタエミュレー ト部140はテスタを構成するロジック部品を一つ一つ シミュレートすることは行わずに、テスタの性質に着目 して、タイミングデータや波形フォーマットをメインに 波形データをイベント形式に1サイクル分作り出して仮 想デバイス150に供給している。仮想デバイス150 はそれを構成するロジック部品をイベント・ドリブン方 式により一つ一つシミュレートし、1テスタサイクルが 完了するまで実行する。そして、1テスタサイクルが終 了した時点でその内部状態を保持したまま、シミュレー トを打ち切って、そのサイクル中の出力変化をイベント 形式でテスタエミュレート部140に転送する。テスタ エミュレート部140は仮想デバイス150からの1サ イクル分の出力変化を再び解析し、期待値と比較し、バ スノフェイルの判定結果を仮想レジスタ142や仮想メ モリ144に格納する。このような動作を行うことによ って、テスタエミュレート部140の波形発生の効率が 良くなる。また、サイクル毎にデータを処理しているの でデータの転送効率が良くなる。また、場合によって は、複数サイクルをまとめて処理してもよい。

【0037】以下、この仮想デバイス150の詳細について説明する。図3は、仮想試験実行部146がDCパラメトリック試験の中の信号ピン測定を行う場合に実現されるべき仮想デバイス150の内容を等価回路によって示した図である。この場合の仮想デバイス150は、論理値保持部(DLV)151、ハイレベル時の理想電圧源152、ローレベル時の理想電圧源154、ハイレベル時の純抵抗153、ローレベル時の純抵抗155、ハイインピーダンス時の入力純抵抗156、切替部157を含んで構成されている。なお、理想電圧源152と純抵抗153、理想電圧源154と純抵抗155はそれぞれ直列に接続されている。

【0038】論理値保持部151は、被検査用半導体デバイス250の評価対象ピン(測定対象となる信号ピン)のレベル状態に対応した論理値を保持するものである。この論理値保持部151にはハイレベル(H)、ローレベル(L)、ハイインピーダンス(Z)、不定(X)のいずれかのレベル状態に対応した論理値が保持される。理想電圧源152は、被検査用半導体デバイス

250の評価対象ビンの出力する信号の論理値がハイレ ベルの場合に、その評価対象ピンが示すであろうと思わ れる電圧値DVoHを格納する。純抵抗153は、被検 査用半導体デバイス250の評価対象ピンの出力する信 号の論理値がハイレベルのときに、その評価対象ピンに 対応する抵抗の値DRoHを格納する。理想電圧源15 4は、被検査用半導体デバイス250の評価対象ピンの 出力する信号の論理値がローレベルのときに、その評価 対象ピンが示すであろうと思われる電圧値DVoLを格 納する。純抵抗155は、被検査用半導体デバイス25 0の評価対象ピンの出力する信号の論理値がローレベル のときに、その評価対象ピンに対応する抵抗の抵抗値D RoLを格納する。入力純抵抗156は、被検査用半導 体デバイス250の評価対象ピンがハイインピーダンス のときに、その評価対象ピンに対応する抵抗の値DR i nを格納する。

【0039】切替部157は、論理値保持部151が保 持する論理値に応じて、理想電圧源152と純抵抗15 3の直列接続されたもの、理想電圧源154と純抵抗1 55の直列接続されたもの、又は入力純抵抗156のい 20 ずれかを選択的にDCパラメトリック試験実行部148 に接続する。具体的には、論理値保持部151の保持す る論理値がハイレベルの場合には、切替部157は、理 想電圧源152と純抵抗153の直列接続されたものを DCパラメトリック試験実行部148に接続する。論理 値保持部151の保持する論理値がローレベルの場合に は、切替部157は、理想電圧源154と純抵抗155 の直列接続されたものをDCパラメトリック試験実行部 148に接続する。論理値保持部151の保持する論理 値がハイインピーダンスの場合には、切替部157は、 入力純抵抗156をDCパラメトリック試験実行部14 8に接続する。なお、論理保持部151の保持する論理 値が不定の場合には切替部157は上述のいずれか一つ を選択するか、または何も選択しないでメッセージを出 力する。

【0040】図4は、図3の仮想デバイス150に対してDCバラメトリック試験の信号ビン測定を行った場合に仮想デバイス150から出力される測定値の具体例を示す図である。図4は電流印加電圧測定の場合と電圧印加電流測定の場合の二通りについて示してある。電流印加電圧測定の場合には、DCバラメトリック試験実行部148が仮想デバイス150に対して電流値Is(被検査用半導体デバイス250の評価対象ビンに流れる電流の値を模擬したもの)を供給する。従って、論理値保持部151の論理値がハイレベル(H)の場合には、理想電圧源152と純抵抗153がDCパラメトリック試験実行部148に接続されるので、DCパラメトリック試験実行部148の測定値(電圧値)は、理想電圧源152の電圧値DVoHと純抵抗153の端子電圧値(抵抗値DRoHと電流値Isの積:DRoH×Is)との合50

計値となる。論理値がローレベル(L)の場合には、理想電圧源154と純抵抗155がDCパラメトリック試験実行部148の測定値(電圧値)は、理想電圧源154の電圧値DVoLと純抵抗155の端子電圧値(抵抗値DRoLと電流値Isの積:DRoL×Is)との合計値となる。論理値がハイインピーダンス(Z)の場合には、入力純抵抗156がパラメトリック試験実行部140に接続されるので、DCパラメトリック試験実行部148の測定値(電圧値)は、入力純抵抗156の端子電圧値(抵抗値DRinと電流値Isの積:DRin×Is)となる。

【0041】電圧印加電流測定の場合には、DCパラメ トリック試験実行部148が仮想デバイス150に対し て出力する電圧値Vs(被検査用半導体デバイス250 の評価対象ピンに印加される電圧の値を模擬したもの) を印加する。従って、論理値保持部151の論理値がハ イレベル(H)の場合には、理想電圧源152と純抵抗 153がDCパラメトリック試験実行部148に接続さ れるので、DCパラメトリック試験実行部148の測定 値(電流値)は、理想電圧源152の電圧値DVoHか ら印加電圧値Vsを減算した値を純抵抗153の抵抗値 DRoHで除算した値(DVoH-Vs)/DRoHと なる。論理値がローレベル(L)の場合には、理想電圧 源154と純抵抗155がDCパラメトリック試験実行 部148に接続されるので、DCパラメトリック試験実 行部148の測定値(電流値)は、理想電圧源154の 電圧値DVoLから印加電圧値Vsを減算した値を純抵 抗155の抵抗値DRoLで除算した値(DVoL-V s)/DRoLとなる。論理値がハイインピーダンス (2)の場合には、入力純抵抗156がDCパラメトリ ック試験実行部140に接続されるため、DCパラメト リック試験実行部148の測定値(電流値)は、印加電 圧値Vsを入力純抵抗156の抵抗値DRinで除算し た値Vs/DRinとなる。

【0042】以上のように、との実施の形態の仮想デバイス150によれば、理想電圧源152,154、純抵抗153,155、入力純抵抗156の各値を設定変更するととによって、印加電流Isや印加電圧Vsの値に応じた測定値を出力することができ、実際の被検査用半導体デバイス250に近いDCパラメトリック試験を行うことが可能となる。また、後述の図8に示した負荷条件設定部171を考慮するようにしてもよい。

【0043】図5は、仮想試験実行部146がDCパラメトリック試験の中の電源ピン測定を行う場合に実現されるべき仮想デバイス150の内容を等価回路によって示した図である。この場合の仮想デバイス150は、純抵抗158によって構成される。純抵抗158は、被検査用半導体デバイス250の評価対象ピン(電源ピン)に対応する抵抗の抵抗値Vsrを格納する。従って、電

源ピン測定が行われる場合には、抵抗値Vsrの純抵抗 158がDCパラメトリック試験実行部148に接続されることになる。DCパラメトリック試験実行部148 は、この純抵抗158の接続された状態において電圧印 加電流測定や電流印加電圧測定を行う。

【0044】図6は、図5の仮想デバイス150に対し てDCパラメトリック試験の電源ピン測定を行った場合 に仮想デバイス150から出力される測定値の具体例を 示す図である。DCパラメトリック試験実行部148が 仮想デバイス150に対して出力する信号の電圧値がV 10 s (被検査用半導体デバイス250の評価対象ピンに印 加される電圧の値を疑似したもの)の場合において、電 圧印加電流測定時の測定値(電流値)は印加電圧値V s を純抵抗158の抵抗値Vsrで除算した値Vs/Vs rとなり、電流印加電圧測定時の測定値(電圧値)は印 加電圧値Vsの値そのままとなる。次に、図1のデバッ グ装置100の動作を図面を用いて説明する。図7は、 DCパラメトリック試験用のデバイステストプログラム 112を実行した場合のデバッグ装置100の動作手順 を示す流れ図である。このフローは、ユーザがデバイス 20 テストプログラム112のデバッグ動作を指示すること によって処理を開始する。まず、ステップ100でデバ ッグ動作の対象となるデバイステストプログラム112 が実行される。次にステップ101でエミュレータ制御 部110内の言語解析実行部112がデバイステストプ ログラム112の構文解析を行う。言語解析実行部11 6によって構文解析が行われた後、ステップ102でテ スタライブラリ118がデバイステストプログラム11 2の命令をレジスタレベルの命令に変換し、それに基づ いてデバッグ装置100の動作に必要なデータを作成 し、これらのデータをテスタエミュレート部140内の 仮想レジスタ142に格納する。仮想レジスタ142へ のデータの格納が終了すると、ステップ103でエミュ レータ制御部110はテスタエミュレート部140に対 して測定動作を指示する。

[0045] エミュレータ制御部110から測定動作の指示を受けたテスタエミュレート部140は、エミュレータ制御部110内のテスタライプラリ118の動作指示に応じて仮想デバイス150に対する模擬的なDCパラメトリック試験を行う。具体的には、ステップ104でエミュレータ制御部110内のテスタライブラリ118の動作指示に応じて、仮想試験実行部146内のDCパラメトリック試験実行部148が、仮想レジスタ142に格納されたデータに基づいた所定の信号を仮想デバイス150に出力する。ステップ105で、仮想デバイス150は電流印加電圧測定あるいは電圧印加電流測定を行い、その測定値を出力する。このとき、仮想デバイス150は、上述のように被検査用半導体デバイスの評価対象ピンに対応する抵抗値を考慮しているので、その測定値はこの抵抗値を考慮した値となる。仮想デバイス

150から測定値が出力されると、ステップ106でD Cパラメトリック試験実行部148は、この測定値を仮想試験結果データとして、仮想レジスタ142や仮想メモリ148に格納する。仮想レジスタ142や仮想メモリ148に格納された仮想試験結果データは、ステップ107でエミュレータ制御部110内のテスタライブラリ118に出力され、テスタライブラリ118は、この仮想試験結果データに対応する所定の処理を行う。

【0046】なお、デバイステストプログラム112に は種々の測定結果に対応してどのような動作を行うかが 記述されているので、仮想試験結果データに対応してテ スタライブラリ118の行う処理が、プログラム作成者 の意図したものであれば、デバイステストプログラム1 12の該当箇所に誤りのないことが検証される。反対 に、仮想試験結果データに対応してテスタライブラリ1 18の行う処理が、プログラム作成者の意図したもので なければ、デバイステストプログラム112の該当箇所 に誤りがあることが検証される。このようにしてデバイ ステストプログラム112のデバッグ動作が行われる。 【0047】このように、仮想デバイス150は、図3 や図5に示したように実際の被検査用半導体デバイス2 50内部の抵抗を考慮しているので、図4や図6の測定 値に示すように、DCパラメトリック試験実行部148 の測定値が被検査用半導体デバイス250の評価対象ピ ンに対応する抵抗を含んだ値になるようにシミュレート することができる。従って、デバッグ装置100は、仮 想デバイス150を備えることにより、被検査用半導体 デバイス250を用いなくても半導体試験装置200の DCパラメトリック試験時における動作を的確にエミュ レートすることができるため、デバイステストプログラ ム112のデバッグの精度を高めることが可能となる。 例えば、信号の論理値を判定する場合には、被検査用半 導体デバイス250内部の抵抗による電圧の変化を考慮 してハイレベルのしきい値とローレベルのしきい値を適 切な値に定めなければならないが、本実施形態のデバッ グ装置100は、被検査用半導体デバイス250内部の 抵抗による電圧の変化が考慮されているため、デバイス テストプログラムに設定されているしきい値が適切な値 であるか否かを判定することができる。

【0048】上述の実施の形態では、仮想デバイス150が半導体試験装置200のDCパラメトリック試験時における動作をシミュレートした場合について説明したが、同様にして機能試験時における動作をシミュレートすることも可能である。図8は、仮想試験実行部146の機能試験実行部147が機能試験を行う場合に実現されるべき機能試験実行部147及び仮想デバイス150の内容を等価回路によって示した図である。なお、この場合の仮想デバイス150は、図3に示したような、DCパラメトリック試験の中の信号ピン測定を行う場合に実現されるべき仮想デバイス150の内容と同じなの

で、その説明は省略する。

[0049] 仮想デバイス150に接続される仮想試験 実行部146の機能試験実行部147は、仮想デバイス 150が出力する信号の論理値を判定するものであり、 負荷条件設定部171と比較部172から構成される。 自荷条件設定部171は、テスタ本体の理想電圧源18 1、テスタ本体のローレベル時の理想電流源182、テ スタ本体のハイレベル時の理想電流源183、終端抵抗 184 (例えば抵抗値50Ω)、ブリッジ回路185を 含んで構成されている。負荷条件設定部171は通常プ 10 ログラマブルロードと呼ばれるもので、被検査用半導体 デバイス250の出力電圧とスレッショルド電圧(理想 電圧源181の電圧値) Vtを比較して、負荷電流源と なる理想電流源182又は理想電流源183を自動的に 選択して接続するものである。理想電圧源181は、半 導体試験装置200内のテスタドライバ(図示せず)の 理想電圧源の電圧値Vtを格納する。理想電流源182 は、テスタドライバの論理値がローレベルのときのテス タドライバの理想電流源の電流値ILLを格納する。理 想電流源183は、テスタドライバの論理値がハイレベ 20 ルの時のテスタドライバの理想電流源の電流値ILHを 格納する。ブリッジ回路185は、4つのダイオード1 86~189を含んで構成されている。比較部172 は、ハイレベル比較部191、ローレベル比較部192 を含んで構成されている。ハイレベル比較部191は、 仮想デバイス150の出力する信号がハイレベルである か否かを判定するためのものであり、仮想デバイス15 〇が出力する信号の電圧値が基準電圧値V o H以上であ るか否かを比較する。ローレベル比較部192は、仮想 デバイス150の出力する信号がローレベルであるか否 30 かを判定するためのものであり、仮想デバイス150の 出力する信号の電圧値が基準電圧値V o L以下であるか 否かを比較する。

17

【0050】図9~図11は、仮想デバイス150の出 力する信号の論理出力値と比較部172における電圧値 を示す図である。図9は、負荷条件設定部171が接続 されていない場合に比較部172で観測される仮想デバ イス150の論理出力値を示す図である。仮想デバイス 150の論理出力値がハイレベル(H)の場合には、理 想電圧源152と純抵抗153が比較部172に接続さ れるので、比較部172には理想電圧源152の電圧値 DVoHが観測される。比較部17はこの電圧値DVo Hに基づいてハイレベルであるかローレベルであるかの 比較判定を行う。仮想デバイス150の論理出力値がロ ーレベル(L)の場合には、理想電圧源154と純抵抗 155が比較部172に接続されるので、比較部172 には理想電圧源154の電圧値DVoLが観測される。 比較部17はこの電圧値DVoLに基づいてハイレベル であるかローレベルであるかの比較判定を行う。仮想デ バイス150の論理値がハイインピーダンス(乙)の場 合には、入力純抵抗156が比較部172に接続されるだけなので、比較部172における電圧値はほぼ0の状態となる。この場合には比較部17はローレベルと判定することになる。

【0051】図10は、負荷条件設定部171の理想電 圧源181 (テスタドライバの理想電圧源)と終端抵抗 184が仮想デバイス150に接続された場合に、比較 部17で観測される仮想デバイス150の論理出力値を 示す図である。この場合、理想電流源182、理想電流 源183及びブリッジ回路185は存在しないものとす る。仮想デバイス150の論理値がハイレベル(H)の 場合には、理想電圧源152と純抵抗153が理想電圧 源181と終端抵抗184に接続されるので、比較部1 72における電圧値は((DVoH-Vt)×50)/ (50+DRoH)+Vtとなる。この電圧値は終端抵 抗184の端子電圧値 ((DVoH-Vt)×50)/ (50+DRoH) と理想電圧源181の電圧値Vtと の合計値である。仮想デバイス150の論理値がローレ ベル(L)の場合には、理想電圧源154と純抵抗15 5が理想電圧源181と終端抵抗184に接続されるの で、比較部172における電圧値は((DVoL-V t)×50)/(50+DRoL)+Vtとなる。この 電圧値は終端抵抗184の端子電圧値((DVoL-V t)×50)/(50+DRoL)と理想電圧源181 の電圧値Vtとの合計値である。仮想デバイス150の 論理値がハイインビーダンスの場合には、入力純抵抗1 56が理想電圧源181と終端抵抗184に接続される ので、比較部172における電圧値は同じく終端抵抗1 84の端子電圧となるのであるが、この場合入力純抵抗 156の抵抗値DRinは終端抵抗184に比べて非常 に大きいため、電流は流れずに比較部172における電 圧値はそのまま理想電圧源181の電圧値Vtとなる。 【0052】図11は、プログラマブルロードとして動 作する負荷条件設定部171が接続されている場合に、 比較部172で観測される仮想デバイス150の論理出 力値を示す図である。仮想デバイス150の論理値がハ イレベル (H) で、理想電圧源181の電圧値Vtが理 想電圧源152の電圧値DVoHよりも小さい場合(V t < D V o H) には、理想電圧源152と純抵抗153 が理想電流源183に接続されるので、比較部172に おける電圧値はDVoH+DRoH×ILHとなる。仮 想デバイス150の論理値がハイレベル(H)であっ て、理想電圧源181の電圧値Vtが理想電圧源152 の電圧値DVoHよりも大きい場合(Vt>DVoH) には、理想電圧源152と純抵抗153が理想電流源1 82に接続されるので、比較部172における電圧値は DVoH+DRoH×ILLとなる。

【0053】また、仮想デバイス150の論理値がローレベル(L)であって、理想電圧源181の電圧値Vtが理想電圧源154の電圧値DVoLよりも大きい場合

(Vt>DVoL)には、理想電圧源154と純抵抗1 55が理想電流源183に接続されて、比較部172に おける電圧値はDVoL+DRoL×ILHとなる。仮 想デバイス150の論理値がローレベル(L)であっ て、理想電圧源181の電圧値Vtが理想電圧源154 の電圧値DVoLよりも小さい場合(Vt<DVoL) には、理想電圧源154と純抵抗155が理想電流源1 82に接続されるので、比較部172における電圧値は DVoL+DRoL×ILLとなる。

19

【0054】仮想デバイス150の論理値がハイインピ 10 ーダンス(Z)の場合には、比較部172のおける電圧 値は、理想電圧源181の電圧値に依存した次のような 値となる。理想電圧源181の電圧値Vtが入力純抵抗 156の両端電圧以下の正の値である場合、すなわちD Rin×ILL>=Vt>=0の場合には、比較部17 2における電圧値は理想電圧源181の電圧値Vtとな る。理想電圧源181の電圧値Vtが入力純抵抗156 の両端電圧よりも大きい正の値である場合、すなわちD Rin×ILL<Vt>=0の場合には、比較部172 における電圧値は入力純抵抗156の両端電圧値DRi n×ILLとなる。理想電圧源181の電圧値Vtが入 力純抵抗156の両端電圧以上の負の値である場合、す なわちDRin×ILH<=Vt<0の場合には、比較 部172における電圧値は理想電圧源181の電圧値V tとなる。理想電圧源181の電圧値Vtが入力純抵抗 156の両端電圧よりも小さい負の値である場合、すな わちDRin×ILH>Vt<0の場合には、比較部1 72における電圧値は入力純抵抗156の両端電圧値D Rin×ILHとなる。なお、図9~図11の場合にお いて、仮想デバイス150の論理値が不定の場合には、 その論理値出力も不定である。

【0055】図9~図11に示すように、比較部172 における電圧値は、被検査用半導体デバイス250の評 価対象ピンに対応する抵抗値を含んだ値になっている。 すなわち、図8に示す仮想デバイス150は、図2に示 した被検査用半導体デバイス250内部の抵抗を考慮し たものである。したがって、デバッグ装置100は、図 8に示した仮想デバイス150を用いることにより、被 検査用半導体デバイス250を用いることなく半導体試 験装置200の機能試験時における動作を的確にシミュ 40 レートすることができるため、デバイステストプログラ ム112のデバッグの精度を高めることが可能となる。 [0056]また、上述した実施の形態では、被検査用 半導体デバイス250の試験を行うデバイステストプロ グラムをデバッグするデバッグ装置100について考え たが、被検査用半導体デバイスとしては、半導体メモ リ、各種のプロセッサ、ロジック用のIC等、様々なも のが考えられる。

【0057】なお、上述の実施の形態では、ハイレベル 又はローレベルの理想電圧源と純抵抗がそれぞれ直列接 50

続されたものと入力純抵抗とを切り替えて、仮想デバイ スを擬似的 (等価的) にシミュレートした場合を示して いるが、これに限らず、理想電圧源の電圧値や抵抗値が 測定条件に応じて変化する複雑な動作をするようなデバ イスをシミュレートしてもよい。また、演算によってそ の出力が得られる場合について説明したが、テーブル変 換によって得られるようにしてもよい。

[0058]

【発明の効果】上述したように第1の発明によれば、半 導体デバイスの内部抵抗によって生じる電圧変化や電流 変化を含んだ形で実際の被検査用半導体デバイスの動作 を的確にシミュレートすることができるという効果があ る。

【0059】上述したように第2の発明によれば、実際 の被検査用半導体デバイスに対して半導体試験用プログ ラムを動作させた場合と同様に、仮想的な半導体デバイ スがその内部抵抗によって生じる電圧変化や電流変化を 含んだ形で実際の被検査用半導体デバイスの動作をシミ ュレートするので、半導体試験用プログラムの内容を検 証することができる。

【図面の簡単な説明】

30

【図1】本実施形態のデバッグ装置の全体構成を示す図 である。

【図2】半導体試験装置の全体構成を示す図である。

【図3】DCパラメトリック試験において信号ピンの測 定を行う場合の仮想デバイスを等価回路で表した図であ

【図4】DCパラメトリック試験において信号ピンの測 定を行う場合の測定値を示す図である。

【図5】DCパラメトリック試験において電源ピンの測 定を行う場合の仮想デバイスを等価回路で表した図であ

【図6】DCパラメトリック試験において電源ピンの測 定を行う場合の測定値を示す図である。

【図7】DCパラメトリック試験用のデバイステストプ ログラムを実行した場合のデバッグ装置の動作手順を示 す流れ図である。

【図8】仮想試験実行部の機能試験実行部が機能試験を 行う場合に実現されるべき機能試験実行部及び仮想デバ イスの内容を等価回路で表した図である。

【図9】負荷条件設定部が接続されていない(無負荷) 場合に比較部で観測される仮想デバイスの論理出力値を 示す図である。

【図10】負荷条件設定部の理想電圧源(テスタドライ バの理想電圧源)と終端抵抗が仮想デバイスに接続され た場合に、比較部で観測される仮想デバイスの論理出力 値を示す図である。

【図11】プログラマブルロードとして動作する負荷条 件設定部が接続されている場合に、比較部で観測される 仮想デバイスの論理出力値を示す図である。

【符号の説明】

- 100 デバッグ装置
- 110 エミュレータ制御部
- 112 デバイステストプログラム
- 140 テスタエミュレート部
- 146 仮想試験実行部
- 1.47 機能試験実行部
- 148 DCパラメトリック試験実行部

* 150 仮想デバイス

- 151 論理値保持部(DLV)
- 152、154 理想電圧源
- 153、155 純抵抗
- 156 入力純抵抗
- 157 切替部
- 159 パラメータ設定部
- * 160 試験結果解析判定部

【図1】

21

[図4]

	論理值	測定值
	н	DVoH+ (DRoHXIs)
塑	L	DVoL+(DRoLXIs)
圧測定	z	DRinXIs
出	н	(DVoH-Vs) /DRoH
E 田 加 電 法	L	(DVoL-Vs) /DRoL
變	Z	Vs/DR in

[図2]

[図3]

【図5】

【図6】

測定值

Vs/Vsr

۷s

[図8]

【図9】

仮想デバイス 論理値	比較部における電圧値
ハイレベル	DVoH
ローレベル	DVoL
ハイインピーダンス	ほぼO
不定	不定

【図10】

仮想デバイス 精理値	比較部における電圧値	
ハイレベル	(DVoH-Vt) ×50 50+DRoH +Vt	
ローレベル	(DVoL-Vt) ×50 50+DRoL +Vt	
ハイインピーダンス	V t	
不定	不定	

[図11]

仮想デバイス 結理値	比較部における電圧値
ハイレベル	V t < DV o Hのとき DV o H + DR o H × I L H
	V t >DVoHのとき DVoH+DRoH×I L L
ローレベル	Vt <dvoしのとき DVoL+DRoL×Iし</dvoしのとき
	Vt>DVoLのとき DVoL+DRoL×ILH
ハイインピーダンス	DRInXILL>=Vt>=0のとき Vt
	DRinXILL <vt>=0のとき DRinXILL</vt>
	DRin×ILH<=Vt<0のとき Vt
	DRinXILH>Vt<0のとき DRin×ILH