De novo assembly of complex genomes using single molecule sequencing

Michael Schatz

Jan 14, 2014 PAG XXII

Assembling a Genome

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

Assembly Complexity

Assembly Complexity

Single Molecule Sequencing Technology

PacBio Assembly Algorithms

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

PacBioToCA & ECTools

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012)
Nature Biotechnology. 30:693–700

HGAP & Quiver

Quiver Performance Results Comparison to Reference Genome (M. ruber; 3.1 MB; SMRT* Cells)		
	Initial Assembly	Quiver Consensus
QV	43.4	54.5
Accuracy	99.99540%	99.99964%
Differences	141	11

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

What should we expect from an assembly?

https://en.wikipedia.org/wiki/Genome_size

S. cerevisiae W303

PacBio RS II sequencing at CSHL by Dick McCombie

Size selection using an 7 Kb elution window on a BluePippin[™] device from Sage Science

S. cerevisiae W303

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

• 12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id

S. cerevisiae W303

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

PacBio assembly using HGAP + Celera Assembler

• 12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id

A. thaliana Ler-0

http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html

A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the previous P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin[™] device from Sage Science
- Total coverage >119x

Genome size: 124.6 Mbp Chromosome N50: 23.0 Mbp Raw data: 11 Gb Sum of Contig Lengths: 149.5Mb N50 Contig Length: 8.4 Mb Number of Contigs: 1788

High quality assembly of chromosome arms
Assembly Performance: 8.4Mbp/23Mbp = 36%
MiSeq assembly: 63kbp/23Mbp [.2%]

Hybrid Approaches for Larger Genomes

PacBioToCA fails in complex regions

- Error Dense Regions Difficult to compute overlaps with many errors
- 2. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 3. Extreme GC Lacks Illumina Coverage

ECTools: Error Correction with pre-assembled reads

https://github.com/jgurtowski/ectools

Short Reads -> Assemble Unitigs -> Align & Select - > Error Correct

Can Help us overcome:

- 1. Error Dense Regions Longer sequences have more seeds to match
- 2. Simple Repeats Longer sequences easier to resolve

However, cannot overcome Illumina coverage gaps & other biases

O. sativa pv Nipponbare

Genome size: 370 Mb Chromosome N50: 29.7 Mbp

19x PacBio C2XL sequencing at CSHL from Summer 2012

Assembly	Contig NG50
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PacBioToCA 19x @ 3500 ** MiSeq for correction	50,995
ECTools 19x @ 3500 ** MiSeq for correction	155,695

Assembly Complexity of Long Reads

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2014) In preparation

Assembly Complexity of Long Reads

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2014) In preparation

Assembly Complexity of Long Reads

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2014) In preparation

Summary

Long read sequencing of eukaryotic genomes is here

Recommendations

< 100 Mbp: HGAP/PacBio2CA @ 100x PB C3-P5

expect near perfect chromosome arms

< IGB: HGAP/PacBio2CA @ I00x PB C3-P5

expect high quality assembly: contig N50 over IMbp

> IGB: hybrid/gap filling

expect contig N50 to be 100kbp – 1Mbp

> 5GB: Email mschatz@cshl.edu

Caveats

- Model only as good as the available references (esp. haploid sequences)
- Technologies are quickly improving, exciting new scaffolding technologies

Acknowledgements

Schatz Lab

James Gurtowski

Hayan Lee

Shoshana Marcus

Alejandro Wences

Giuseppe Narzisi

Srividya

Ramakrishnan

Rob Aboukhalil

Mitch Bekritsky

Charles Underwood

Tyler Gavin

Greg Vurture

Eric Biggers

Aspyn Palatnick

CSHL

McCombie Lab

Hannon Lab

Gingeras Lab

Jackson Lab

Iossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

Tuveson Lab

Ware Lab

Wigler Lab

NBACC

Serge Koren

Adam Phillippy

Big Data in Biology

March 23-25, 2014

Fairmont San Francisco San Francisco, California, USA

Scientific Organizers: Lincoln D. Stein, Doreen Ware and Michael Schatz

Thank You!

http://schatzlab.cshl.edu @mike schatz / #PAGXXII

Variant Calling and RNA-seq

@ 4:25 in the KBase Workshop