Dispatch Radio Mapping

Grant Wilson, J. Hall, Gabriel Perez Prieto

Agenda

- Problem Statement
- Data Collection and Processing
- Audio Analysis
- Mapping
- Conclusion
- Next Steps

Problem Statement

- Currently, FEMA identifies areas that require immediate attention (for search and rescue efforts) either by responding to reports and requests put directly by the public or, recently, using social media posts.
- This tool will utilize live police radio reports to:
 - Identify hot spots representing locations of people who need immediate attention
 - Flag neighborhoods or specific streets where the police and first-respondents
 were called to provide assistance related to the event

Data Collection and Processing

DOWNLOAD AUDIO

PARSE AUDIO

SPEECH TO TEXT

EXTRACT STREET NAMES

- BroadCastify San Francisco City Police Dispatch Feed
 - O "The world's largest source of Public Safety, Aircraft, Rail and Marine Radio Live Audio Streams"
 - O BART BroadCastify Archive Tool
 - Selenium Library for Scraping
 - Feed id
 - Dates
 - Save MP3 audio files

Audio

- Converting the audio to text for NLP was a challenge, given the quality of the source audio.
- Police are typically active when radioing dispatch, at varying distance from the microphone, with significant noise from:
 - Movement
 - Environment
 - Static
 - Interference
- Many of the transmissions were difficult for a human to interpret without domain expertise in police coding and terminology.
- Posed a significant challenge for the speech to text

Audio

Noise

 Fix audio recorded in noisy environments or with poor equipment to create consistency across your recordings.

Sibilance

 This is a characteristic of harsh consonant sounds like "s", "sh", "x", "ch", "t", and "th".

Tone

- o Police radio transmits audio on a very thin range of sound, sounding tinny
- Help with equalization to shape the audio from your recorded files to match a listener profile and audio that the text-to-speech model was trained on.

Audio

- Live Audio
 - Disaster mapping in Real Time
- Input can be microphone or direct line in from a radio

Parse and Segment Saved Audio Files

- Break Audio into Chunks
 - Pydub Library
 - O Detect Audio Average File Loudness
 - O Break if Silence > 4s
 - Convert to WAV
 - 6 s < File > 60 s

Speech To Text

- Google Speech to Text API
 - Transcribe Audio Chunks
 - All streets of San Francisco as a Parameter
 - Give context to Google's API to search for
- Average Confidence on Transcripts
 - O 79%

Extract Street Names

- Spacy Library
 - Get Street Names from Transcript
 - All streets of San Francisco as a Parameter
 - Give context to search for
- USAdress Library
 - Get Address Numbers
- Google Maps Geocoding API
 - Join Address Number and Street Name
 - O Get Latitude and Longitude

Example 1

- 'David once again for the night **1910** we **1404 15th Street treat** everyone sits out of can I just want to play for yeah but go back to the temporary place and the Seven Roberts Roberts zebra **211** should come back to black Infinity first like I was like a regular California place it's a paper plate but I have several Robert Roberts it was fabulous party Wright place we try it was he that does go back to a **2004** is that the entity that correct yeah okay'
- Transcript Confidence = 0.8180
- Model Results:
 - 1404 California Ave, 1404 15th Ave, 1404 Treat Ave, 1404 Black Pl

Example 2

- 'case manager Michelle is **97** 121 Leland a client is experiencing events induced psychosis getting increasingly activated and aggressive and as much customers are impossibly self-induced you doing it for back to the your doesn't get out of here with that license plates some of that about which car are you referring to the **1030** at **1141** of our courts I copy'
- Transcript Confidence = 0.8699
- Model Results:
 - 1141 Lealand Ave

Example 3

• 'this verse **29** that teacher Elementary is cold report of a **311** occurred last Friday on the Hudson Street side they have pictures not online with these are the secretary okay I'll **98** had a **71** for the **600**'

- Transcript Confidence = 0.8534
- Model Results:
 - o 98 Hudson Ct

Mapping

- Folium vs. Google Maps API
 - More creativity in mapping
 - Better represented the data as it relates to key interests of disaster response agencies
 - Surrounding businesses, parks, and bus stops
- Historic San Francisco Crime Data
 - Similar to disaster reporting
 - Time/Date/Location
 - Type of dispatch
 - EMS
 - Police
 - Fire

Mapping

- Two maps
 - Individual Detail
 - Point Mapping
 - Neighborhood-area reporting
 - Frequency Mapping

Point Mapping

- Drops "pins" for each reported incident
 - Incident Number
 - o Incident Time/Date
 - Response Category
 - Police
 - Fire
 - EMS
 - Incident Category
 - Assault
 - Downed Power Line
 - Fire

Frequency Mapping

- Neighborhood-wide incidents
- Quick read on areas requiring assistance
- Balances with detail-oriented Point Mapping
 - Demonstrates call-concentration
 - Neighborhoods needing disaster-assistance

Conclusion

- Improvements
 - Audio Analysis
 - Live Audio
 - Point Mapping
 - Frequency Mapping
- Utility
 - Identify key neighborhoods
 - Facilitate native integrating with dispatch radio
 - Cleaner address analysis
 - o Isolate Critical Infrastructure weaknesses
 - Neighborhood analysis of incidents

Next Steps

- Clean audio before processing
 - Dolby
- Improve NLP
 - Sentiment/Urgency Analysis
- Address Extraction
- New avenues for speech to text
- Include damage assessment