$11a_{86} (K11a_{86})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.06825 \times 10^{16} u^{50} + 1.14118 \times 10^{17} u^{49} + \dots + 1.72441 \times 10^{17} b + 1.78982 \times 10^{17},$$

$$1.65108 \times 10^{17} u^{50} - 3.23686 \times 10^{17} u^{49} + \dots + 1.72441 \times 10^{17} a + 6.56927 \times 10^{17}, \ u^{51} - 2u^{50} + \dots + 2u - 1$$

$$I_2^u = \langle -au + b - a - 1, \ a^2 - 2au + u + 1, \ u^2 + u + 1 \rangle$$

$$I_3^u = \langle b, \ a - u, \ u^2 - u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.07 \times 10^{16} u^{50} + 1.14 \times 10^{17} u^{49} + \dots + 1.72 \times 10^{17} b + 1.79 \times 10^{17}, \ 1.65 \times 10^{17} u^{50} - 3.24 \times 10^{17} u^{49} + \dots + 1.72 \times 10^{17} a + 6.57 \times 10^{17}, \ u^{51} - 2u^{50} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.957478u^{50} + 1.87709u^{49} + \dots + 6.34747u - 3.80958 \\ 0.0619485u^{50} - 0.661781u^{49} + \dots - 0.419204u - 1.03793 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.01943u^{50} + 2.53887u^{49} + \dots + 6.76667u - 2.77164 \\ 0.0619485u^{50} - 0.661781u^{49} + \dots - 0.419204u - 1.03793 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.197966u^{50} + 0.121740u^{49} + \dots + 6.34202u - 3.22404 \\ 0.475917u^{50} - 0.906399u^{49} + \dots - 1.37093u - 1.53340 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.37822u^{50} - 3.01777u^{49} + \dots - 6.77353u + 2.71826 \\ 0.314717u^{50} + 0.217072u^{49} + \dots + 1.51590u + 0.995630 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.28901u^{50} + 2.47244u^{49} + \dots + 6.66242u - 3.49712 \\ -0.225525u^{50} - 0.324327u^{49} + \dots - 0.729101u - 1.01135 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.28901u^{50} + 2.47244u^{49} + \dots + 6.66242u - 3.49712 \\ -0.225525u^{50} - 0.324327u^{49} + \dots - 0.729101u - 1.01135 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{51} - 2u^{50} + \dots + 2u - 1$
c_2	$u^{51} + 26u^{50} + \dots - 4u - 1$
c_3, c_4, c_8 c_9	$u^{51} - u^{50} + \dots + 12u + 4$
c_6	$u^{51} + 2u^{50} + \dots + 102u - 289$
c_7, c_{10}	$u^{51} - 3u^{50} + \dots - u + 7$
c_{11}	$u^{51} - 23u^{50} + \dots + 85u - 49$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{51} + 26y^{50} + \dots - 4y - 1$
c_2	$y^{51} + 2y^{50} + \dots + 20y - 1$
c_3, c_4, c_8 c_9	$y^{51} - 61y^{50} + \dots + 208y - 16$
c_6	$y^{51} - 22y^{50} + \dots - 130628y - 83521$
c_7, c_{10}	$y^{51} - 23y^{50} + \dots + 85y - 49$
c_{11}	$y^{51} + 17y^{50} + \dots + 63869y - 2401$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.653226 + 0.692698I		
a = -0.148299 + 0.771802I	1.91333 + 3.68884I	-0.17566 - 8.64084I
b = 0.548925 - 0.344769I		
u = 0.653226 - 0.692698I		
a = -0.148299 - 0.771802I	1.91333 - 3.68884I	-0.17566 + 8.64084I
b = 0.548925 + 0.344769I		
u = -0.373145 + 0.994821I		
a = 1.14320 - 1.08432I	-4.95677 - 2.83280I	-9.17472 + 5.31542I
b = 1.269780 + 0.040551I		
u = -0.373145 - 0.994821I		
a = 1.14320 + 1.08432I	-4.95677 + 2.83280I	-9.17472 - 5.31542I
b = 1.269780 - 0.040551I		
u = -0.761774 + 0.749195I		
a = -0.278985 + 1.056910I	-5.34945 - 5.09088I	-4.00636 + 5.74458I
b = -1.57317 - 0.07465I		
u = -0.761774 - 0.749195I		
a = -0.278985 - 1.056910I	-5.34945 + 5.09088I	-4.00636 - 5.74458I
b = -1.57317 + 0.07465I		
u = 0.873962 + 0.290660I		
a = -0.558370 + 0.726636I	-8.11783 - 8.19112I	-3.54072 + 4.45146I
b = -1.61853 - 0.15433I		
u = 0.873962 - 0.290660I		
a = -0.558370 - 0.726636I	-8.11783 + 8.19112I	-3.54072 - 4.45146I
b = -1.61853 + 0.15433I		
u = 0.606693 + 0.904521I		
a = 0.425610 - 0.192324I	1.29833 + 1.21266I	-3.42209 + 3.60169I
b = -0.478539 - 0.218508I		
u = 0.606693 - 0.904521I		
a = 0.425610 + 0.192324I	1.29833 - 1.21266I	-3.42209 - 3.60169I
b = -0.478539 + 0.218508I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.477844 + 1.005770I		
a = -1.81776 + 1.00351I	1.10277 - 2.92056I	-4.16055 + 6.87287I
b = -0.550123 - 0.216418I		
u = -0.477844 - 1.005770I		
a = -1.81776 - 1.00351I	1.10277 + 2.92056I	-4.16055 - 6.87287I
b = -0.550123 + 0.216418I		
u = 0.848872 + 0.178353I		
a = 0.815584 - 0.510581I	-10.01400 - 2.30364I	-5.81940 + 0.26148I
b = 1.63006 + 0.09121I		
u = 0.848872 - 0.178353I		
a = 0.815584 + 0.510581I	-10.01400 + 2.30364I	-5.81940 - 0.26148I
b = 1.63006 - 0.09121I		
u = -0.715111 + 0.887420I		
a = 0.440048 - 0.989396I	-5.76367 - 0.45170I	-5.30593 + 0.I
b = 1.56489 - 0.03455I		
u = -0.715111 - 0.887420I		
a = 0.440048 + 0.989396I	-5.76367 + 0.45170I	-5.30593 + 0.I
b = 1.56489 + 0.03455I		
u = 0.385624 + 1.094960I		
a = -0.487613 - 0.077571I	-1.93767 + 1.33394I	-3.91651 + 0.I
b = -0.003368 + 0.682499I		
u = 0.385624 - 1.094960I		
a = -0.487613 + 0.077571I	-1.93767 - 1.33394I	-3.91651 + 0.I
b = -0.003368 - 0.682499I		
u = -0.777418 + 0.276187I		
a = 0.106054 + 0.767256I	-0.15019 + 5.64266I	-1.04154 - 6.14060I
b = 0.725460 - 0.523141I		
u = -0.777418 - 0.276187I		
a = 0.106054 - 0.767256I	-0.15019 - 5.64266I	-1.04154 + 6.14060I
b = 0.725460 + 0.523141I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.393138 + 1.114690I		
a = 1.037440 - 0.580996I	-5.15851 - 2.68412I	-8.38581 + 3.33159I
b = 1.049420 - 0.251699I		
u = -0.393138 - 1.114690I		
a = 1.037440 + 0.580996I	-5.15851 + 2.68412I	-8.38581 - 3.33159I
b = 1.049420 + 0.251699I		
u = -0.282693 + 1.153160I		
a = -0.980168 + 0.289348I	-4.54342 + 2.50022I	-7.39422 - 3.48023I
b = -0.854041 + 0.456398I		
u = -0.282693 - 1.153160I		
a = -0.980168 - 0.289348I	-4.54342 - 2.50022I	-7.39422 + 3.48023I
b = -0.854041 - 0.456398I		
u = 0.452176 + 1.119860I		
a = 3.26876 + 1.81417I	-6.32061 + 3.82021I	0
b = 1.58540 - 0.04944I		
u = 0.452176 - 1.119860I		
a = 3.26876 - 1.81417I	-6.32061 - 3.82021I	0
b = 1.58540 + 0.04944I		
u = 0.503800 + 1.120900I		
a = 0.470374 + 0.032521I	-1.07037 + 6.18731I	0
b = -0.202005 - 0.728941I		
u = 0.503800 - 1.120900I		
a = 0.470374 - 0.032521I	-1.07037 - 6.18731I	0
b = -0.202005 + 0.728941I		
u = -0.484334 + 1.137730I		
a = 1.38555 - 0.92980I	-4.51627 - 5.12379I	0
b = 0.839056 + 0.455492I		
u = -0.484334 - 1.137730I		
a = 1.38555 + 0.92980I	-4.51627 + 5.12379I	0
b = 0.839056 - 0.455492I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.269126 + 0.708216I		
a = -0.449611 - 0.544666I	-0.326016 + 1.158490I	-3.80255 - 5.96760I
b = -0.265341 + 0.389045I		
u = 0.269126 - 0.708216I		
a = -0.449611 + 0.544666I	-0.326016 - 1.158490I	-3.80255 + 5.96760I
b = -0.265341 - 0.389045I		
u = -0.468235 + 0.565840I		
a = 0.731516 + 1.135060I	2.43662 - 1.03982I	2.70309 - 2.37854I
b = 0.363476 - 0.377017I		
u = -0.468235 - 0.565840I		
a = 0.731516 - 1.135060I	2.43662 + 1.03982I	2.70309 + 2.37854I
b = 0.363476 + 0.377017I		
u = 0.241188 + 1.242520I		
a = 2.55925 + 0.13213I	-13.17000 - 4.70678I	0
b = 1.65434 + 0.12357I		
u = 0.241188 - 1.242520I		
a = 2.55925 - 0.13213I	-13.17000 + 4.70678I	0
b = 1.65434 - 0.12357I		
u = -0.551420 + 1.150110I		
a = -1.29108 + 0.99248I	-2.72526 - 10.62070I	0
b = -0.754244 - 0.593767I		
u = -0.551420 - 1.150110I		
a = -1.29108 - 0.99248I	-2.72526 + 10.62070I	0
b = -0.754244 + 0.593767I		
u = 0.330757 + 1.237090I		
a = -2.64813 - 0.57334I	-14.4656 + 1.6283I	0
b = -1.67128 - 0.05432I		
u = 0.330757 - 1.237090I		
a = -2.64813 + 0.57334I	-14.4656 - 1.6283I	0
b = -1.67128 + 0.05432I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.533489 + 1.196450I		
a = -2.19793 - 1.79578I	-13.0576 + 7.3517I	0
b = -1.64958 + 0.12738I		
u = 0.533489 - 1.196450I		
a = -2.19793 + 1.79578I	-13.0576 - 7.3517I	0
b = -1.64958 - 0.12738I		
u = 0.585702 + 1.179630I		
a = 1.87475 + 2.03032I	-10.7944 + 13.5574I	0
b = 1.62902 - 0.17990I		
u = 0.585702 - 1.179630I		
a = 1.87475 - 2.03032I	-10.7944 - 13.5574I	0
b = 1.62902 + 0.17990I		
u = -0.658054 + 0.143633I		
a = -0.156833 - 0.508796I	-1.73343 + 0.77952I	-4.48847 - 1.15850I
b = -0.772507 + 0.296101I		
u = -0.658054 - 0.143633I		
a = -0.156833 + 0.508796I	-1.73343 - 0.77952I	-4.48847 + 1.15850I
b = -0.772507 - 0.296101I		
u = 0.624363 + 0.237680I		
a = 0.082181 + 1.030970I	1.42567 - 1.76270I	2.33352 + 1.54024I
b = 0.193282 - 0.611091I		
u = 0.624363 - 0.237680I		
a = 0.082181 - 1.030970I	1.42567 + 1.76270I	2.33352 - 1.54024I
b = 0.193282 + 0.611091I		
u = -0.207283 + 0.506525I		
a = -0.41811 + 2.77427I	-3.26856 - 0.24799I	-3.08378 - 1.55453I
b = -1.406490 - 0.077528I		
u = -0.207283 - 0.506525I		
a = -0.41811 - 2.77427I	-3.26856 + 0.24799I	-3.08378 + 1.55453I
b = -1.406490 + 0.077528I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.482939		
a = -2.81485	-3.54033	-1.57180
b = -1.50782		

II.
$$I_2^u = \langle -au + b - a - 1, \ a^2 - 2au + u + 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ au+a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -au-1 \\ au+a+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} au+1 \\ -au-a-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -au-u-1 \\ au+a+u+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -au-u-1 \\ au+a+u+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^2 - u + 1)^2$
c_2, c_5	$(u^2+u+1)^2$
c_3, c_4, c_8 c_9	$(u^2-2)^2$
c_7, c_{11}	$(u-1)^4$
c_{10}	$(u+1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$(y^2+y+1)^2$
c_3, c_4, c_8 c_9	$(y-2)^4$
c_7, c_{10}, c_{11}	$(y-1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.207107 - 0.358719I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = 1.41421		
u = -0.500000 + 0.866025I		
a = -1.20711 + 2.09077I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = -1.41421		
u = -0.500000 - 0.866025I		
a = 0.207107 + 0.358719I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = 1.41421		
u = -0.500000 - 0.866025I		
a = -1.20711 - 2.09077I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = -1.41421		

III.
$$I_3^u = \langle b, a-u, u^2-u+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4u + 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$u^2 + u + 1$
c_3, c_4, c_8 c_9	u^2
<i>C</i> 5	$u^2 - u + 1$
c_7	$(u+1)^2$
c_{10}, c_{11}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$y^2 + y + 1$
c_3, c_4, c_8 c_9	y^2
c_7, c_{10}, c_{11}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.500000 + 0.866025I		
a =	0.500000 + 0.866025I	1.64493 + 2.02988I	0 3.46410I
b =	0		
u =	0.500000 - 0.866025I		
a =	0.500000 - 0.866025I	1.64493 - 2.02988I	0. + 3.46410I
b =	0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^2)(u^2 + u + 1)(u^{51} - 2u^{50} + \dots + 2u - 1)$
c_2	$((u^2 + u + 1)^3)(u^{51} + 26u^{50} + \dots - 4u - 1)$
$c_3,c_4,c_8 \ c_9$	$u^{2}(u^{2}-2)^{2}(u^{51}-u^{50}+\cdots+12u+4)$
<i>C</i> ₅	$(u^{2}-u+1)(u^{2}+u+1)^{2}(u^{51}-2u^{50}+\cdots+2u-1)$
<i>C</i> ₆	$((u^{2}-u+1)^{2})(u^{2}+u+1)(u^{51}+2u^{50}+\cdots+102u-289)$
	$((u-1)^4)(u+1)^2(u^{51}-3u^{50}+\cdots-u+7)$
c_{10}	$((u-1)^2)(u+1)^4(u^{51}-3u^{50}+\cdots-u+7)$
c_{11}	$((u-1)^6)(u^{51} - 23u^{50} + \dots + 85u - 49)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y^2 + y + 1)^3)(y^{51} + 26y^{50} + \dots - 4y - 1)$
c_2	$((y^2 + y + 1)^3)(y^{51} + 2y^{50} + \dots + 20y - 1)$
c_3, c_4, c_8 c_9	$y^{2}(y-2)^{4}(y^{51}-61y^{50}+\cdots+208y-16)$
c_6	$((y^2 + y + 1)^3)(y^{51} - 22y^{50} + \dots - 130628y - 83521)$
c_7, c_{10}	$((y-1)^6)(y^{51} - 23y^{50} + \dots + 85y - 49)$
c_{11}	$((y-1)^6)(y^{51} + 17y^{50} + \dots + 63869y - 2401)$