

اجماع چند عاملی برای تصمیم گیری

ارائه درس توزیع شده حسام مومیوند فرد

دکتر کمندی

پاییز ۱۴۰۳

- چکیده
- معرفی
- کارهای مرتبط
 - مقدمات
 - روش
 - آزمایشات
- بحث و کارهای آینده
 - منابع

فهرست

چکیده

بیان مسئله و روش پیشنهادی

گذری بر الگوریتم PBFT

چکیده بیان مسئله

- مسئله چیست؟
- تصمیم گیری در سیستمهای چندعاملی
 - چالش اصلی < خطاها >
 - بيزانس
 - هدف
- تصمیم گیری چند عاملی به عنوان یک مسئله اجماع
 - توسعهای بر الگوریتم PBFT

چگیده گذری بر PBFT [1]

- PBFT چیست؟
- يك الگوريتم اجماع با اين مراحل:
 - پیشنهاد
 - پیش تایید
 - تاييد
 - تعهد (commit)
 - معایب
 - پیچیدگی
 - مقیاس پذیری
 - نداشتن محدودیت

معرفي

تعریف کلی مسئله نوآوریها

معرفی تعریف کلی مسئله

- N عامل میخواهند بر روی یک مشاهده توافق کنند
 - هدف
 - توافق عوامل بر یک مشاهده واحد
 - با خطا نیز به توافق نسبتا دقیق برسند

معرفی نوآوریها

- نوآوری
- استفاده از PBFT در این مسئله
- توسعه به وسیله فیلتر کردن توسط رهبر و مابقی عوامل
 - حاصل
- اجماع بر روی مشاهدات نسبتا دقیق در طیف وسیعی از حوزه ها (تجربی)

کارهای مرتبط

مروری بر الگوریتمهای اجماع

کارهای مرتبط مروری بر الگوریتمهای اجماع

- بدون خطای بیزانس
- تایید دومرحلهای [3]
 - [4] RAFT •
 - [2] Paxos •
 - با خطای بیزانس
 - PBFT •
 - [5] HotStuff •

مقدمات

رسمی سازی چارچوب مسئله

مقدمات رسمی سازی چارچوب مسئله

- مجموعهای از N عامل که در یک محیط توسط فرآیند تصمیم گیری مارکوف عمل می کنند.
 - فضای حالات S
 - فضاي عمل A
 - $R: S imes A o \mathbb{R}$ تابع پاداش
 - $T: S imes S imes A o \mathbb{R}$ تابع انتقال ullet
 - O_t^n •
 - $[a_t^1,...,a_t^n]\sim\pi(O_t^*)$ برای انجام یک عمل $O_t^*\in\{O_t^1,...,O_t^N\}$
 - $f = \frac{(N-1)}{3} \quad \bullet$
- عامل خطادار: می تواند هر مشاهد دلخواه را دریافت کند و به هر شکل بیزانس دیگری نیز دچار شود.

روش

اجماع مشاهدات چندعاملی با استفاده از PBFT مشاهده مشاهده

روش اجماع مشاهدات چندعاملی با استفاده از PBFT

• توسعهی PBFT

- فيلتر مشاهدات معيوب توسط رهبر
- فیلتر پیامهای پیش تایید معیوب توسط عوامل
 - چرخش رهبر

روش مقاومت دربرابر خطاهای مشاهده

- فیلتر مشاهدات توسط رهبر
 - دریافت I+1 مشاهده
- ارسال یکی از مشاهدات به عنوان مشاهدهی درست
 - median ← Real valued •
- mean نزدیکترین به High dimensional •

روش مقاومت دربرابر خطاهای مشاهده

- فيلتر توسط عامل
- عامل رهبر خطادار است
- مقایسهی مشاهدهی دریافتی از رهبر با مشاهدهی خود عامل
 - بیشتر از آستانه ← درخواست تغییر رهبر

روش مقاومت دربرابر خطاهای مشاهده

- تغيير رهبر
- بعد از هر راند
- راند : انجام شدن commit
 - rotation •
- خطای رهبر از حد آستانه بگذرد
- بیشتر از **1+1** درخواست تغییر رهبر

آزمایشات

سوالات بررسي شده

دامنهها

مقايسه

توانایی مقاومت در برابر خطاهای استاندارد

مشاهدات خطادار

تصمیم گیری چندگامی

آزمایشات سوالات بررسی شده

- آیا روش ما چیز بهتری نسبت به حالت استاندارد دارد؟
 - آیا می توان با مشاهدات معیوب به اجماع رسید؟
- آیا می توانیم از روش خودمان در تصمیم گیری چندمر حلهای برای افزایش کارایی استفاده کنیم؟

آزمایشات دامنه ها

- ا دامنهها
- آیا روش ما چیز بهتری نسبت به حالت استاندارد دارد؟ **دمایی**
- آیا می توان با مشاهدات معیوب به اجماع رسید؟ دمایی مشاهده تصویر
- آیا می توانیم از روش خودمان در تصمیم گیری چندمر حله ای برای افزایش کارایی استفاده کنیم؟ محیط grid و عبور از موانع world

آزمایشات مقایسه

- مقايسه
- فيلتر رهبر
- فيلتر عوامل
- PBFT (بدون هیچ فیلتری)

آزمایشات توانایی مقاومت در برابر خطاهای استاندارد

- آیا مدل ما مانند PBFT در برابر خطای بیزانس مقاوم است ؟
 - خطاها
 - رهبر موفق به ارسال درخواست مشاهده نشود
 - و عوامل غیر رهبر موفق به ارسال پیام تایید نشوند
 - عوامل غیر رهبر موفق به ارسال پیام تعهد نشوند
 - شرکت نکردن عوامل در تغییر رهبر به علت فاز پاسخ
 - شرکت نکردن عوامل در تغییر رهبر به علت زمان اتمام

آزمایشات توانایی مقاومت در برابر خطاهای استاندارد

- میانگین خطا
- مشاهدات با نویز کم

آزمایشات توانایی مقاومت در برابر خطاهای استاندارد

• سرعت (زمان)

آزمایشات مشاهدات خطادار

- ارزیابی میانگین خطای مشاهده با وجود عواملی که مشاهدات معیوب ارسال میکنند (دامنه دمایی)
 - مشاهدات با نویز زیاد
 - به دور از واقعیت

آزمایشات مشاهدات خطادار

• ارزیابی میانگین خطای مشاهده با وجود عواملی که مشاهدات معیوب ارسال میکنند (دامنه تصاویر)

# Faulty Agents	0	1
PBFT	0	0.3
LF+AF	0	0

آزمایشات تصمیم گیری چندگامی

• حرکت عوامل در محیطی که موانع پویا دارد

بحث و کارهای آینده

نتيجهگيري

کارهای آینده

بحث و کارهای آینده نتیجه گیری

- آیا روش ما چیز بهتری نسبت به حالت استاندارد دارد؟ بله
 - آیا می توان با مشاهدات معیوب به اجماع رسید؟ **بله**
- آیا می توانیم از روش خودمان در تصمیم گیری چندمر حله ای برای افزایش کارایی استفاده کنیم؟ **بله**

بحث و کارهای آینده کارهای آینده

- میانه مناسب نیست
- واریانس و بایاس بالا
- روشهای بهتر برای فیلتر کردن
 - اجماع با دید جزئی
- در این کار فرض بر دید کامل از جهان بود (برای هر عامل)

منابع

- [1] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
- [2] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001.
- [3] Butler Lampson and David B Lomet. A new presumed commit optimization for two phase commit. In VLDB, volume 93, pages 630–640, 1993.
- [4] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In 2014 fUSENIXg Annual Technical Conference (fUSENIXgfATCg 14), pages 305–319, 2014.
- [5] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–356, 2019.

با تشكر از توجه شما

Hesam.m.fard@ut.ac.ir