Algorithmes distribués et dimension asymptotique

Marthe Bonamy ¹ Cyril Gavoille ¹ Timothé Picavet ¹ Alexandra Wesolek ²

¹LaBRI, Bordeaux

²TU Berlin

Algorithmes LOCAL

Chaque sommet voit son voisinage à distance *T* et décide sa valeur de retour.

Algorithmes LOCAL

Chaque sommet voit son voisinage à distance *T* et décide sa valeur de retour.

 $\mathsf{Algo} = \mathcal{A} : \overset{\mathsf{voisinage}}{\mathsf{distance}} \overset{\mathsf{a}}{\mathsf{T}} \mapsto \overset{\mathsf{valeur}}{\mathsf{de}} \overset{\mathsf{de}}{\mathsf{locale}}$

Exemple 1: les arbres

Exemple 1: les arbres

Theorem

 $|\{v \in V(T) \mid d(v) \ge 2\}| \le 3 \cdot \mathsf{MDS}(T)$

Réutiliser l'analyse des arbres ?

Tout sommet est dans une patate

- Tout sommet est dans une patate
- Diamètre ≤ maille

- Tout sommet est dans une patate
- Diamètre ≤ maille
- \cdot Espacement entre mêmes couleurs \implies en parallèle

- \cdot Tout sommet est dans une patate
- Diamètre ≤ maille
- \cdot Espacement entre mêmes couleurs \implies en parallèle
- · Nombre fini de couleurs

La dimension asymptotique de C est d si

$$\exists f: \mathbb{N} \to \mathbb{N}, \forall G \in \mathcal{C}, \forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)) \text{, tels que}$$

La dimension asymptotique de \mathcal{C} est d si

$$\exists f: \mathbb{N} \to \mathbb{N}, \forall G \in \mathcal{C}, \forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)) \text{, tels que}$$

• Couverture: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

La dimension asymptotique de $\mathcal C$ est d si

$$\exists f: \mathbb{N} \to \mathbb{N}, \forall G \in \mathcal{C}, \forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)) \text{, tels que}$$

• Couverture: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• Disjointude: $\forall B, B' \in C_i$ distincts, dist(B, B') > r

La dimension asymptotique de ${\mathcal C}$ est d si

$$\exists f: \mathbb{N} \to \mathbb{N}, \forall G \in \mathcal{C}, \forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)) \text{, tels que}$$

• Couverture: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• **Disjointude:** $\forall B, B' \in C_i$ distincts, dist(B, B') > r

• Bornitude: $\forall B \in C_i$, diam_G(B) $\leq f(r)$

Exemple 1: le chemin

Dimension = 1

Exemple 2: la grille – essai 1

Dimension ≤ 3

Exemple 2: la grille – essai 2

Dimension = 2!

Mineurs de graphes

H est un mineur de G

Dimension asymptotique et mineurs de graphes

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020)

Toute classe interdisant un mineur a dimension asymptotique \leq 2.

Application: algorithmique distribuée

Comment utiliser la théorie des graphes en algorithmique distribuée ?

Application: algorithmique distribuée

Comment utiliser la théorie des graphes en algorithmique distribuée ?

Concept global

Concept local

Application: algorithmique distribuée

Comment utiliser la théorie des graphes en algorithmique distribuée ?

Concept global

Concept local

Définition

v est un *cutvertex* r-local si v est un cutvertex de G [N^r[v]].

Cutvertices locaux

Theorem

Pour tout graphe G, #cutvertices $\leq 3 MDS(G)$.

Theorem

Soit C de dimension asymptotique d.

Alors $\forall r \geq r(C)$, #cutvertices r-local $\leq 3(d+1)$ MDS(G).

Cutvertices locaux

Theorem

Pour tout graphe G et $S \subseteq V(G)$, #cutvertices $\in S \le 3 \text{ MDS}(G, N[S])$.

Theorem

Soit $\mathcal C$ de dimension asymptotique d.

Alors $\forall r \geq r(C)$, #cutvertices r-local $\leq 3(d+1)$ MDS(G).

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5.

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5. Soit S de weak-diameter f(5).

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5. Soit S de weak-diameter f(5). $v \in S$ un cutvertex (f(5) + 2)-local.

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5. Soit S de weak-diameter f(5).

 $v \in S$ un cutvertex (f(5) + 2)-local.

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5.

Soit S de weak-diameter f(5).

 $v \in S$ un cutvertex (f(5) + 2)-local.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5.

Soit S de weak-diameter f(5).

 $v \in S$ un cutvertex (f(5) + 2)-local.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: v est un cutvertex de $G[N^2[S]]$ (sépare a de b).

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5.

Soit S de weak-diameter f(5).

 $v \in S$ un cutvertex (f(5) + 2)-local.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: v est un cutvertex de $G[N^2[S]]$ (sépare a de b).

Claim: #cutvertex in $S \le 3 \text{ MDS}(G[N^2[S]], N[S]) \le$

3 MDS(G, N[S]).

Dimension d, fonction f: ensembles $C_1, C_2, \ldots, C_{d+1}$ pour r = 5.

Soit S de weak-diameter f(5).

 $v \in S$ un cutvertex (f(5) + 2)-local.

Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Claim: v est un cutvertex de $G[N^2[S]]$ (sépare a de b).

Claim: #cutvertex in $S \le 3$ MDS($G[N^2[S]], N[S]$) ≤ 3 MDS(G, N[S]).

#cutvertex
$$(f(5) + 2)$$
-local $\leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot MDS(G, N[S])$

Fin de preuve

#cutvertex
$$(f(5) + 2)$$
-local $\leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot MDS(G, \underbrace{N[S]}_{\text{à distance } 3})$

Fin de preuve

#cutvertex
$$(f(5) + 2)$$
-local $\leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot MDS(G, \underbrace{N[S]}_{\text{à distance } 3})$

 $(N^2[S] \text{ sont disjoints})$

#cutvertex
$$(f(5) + 2)$$
-local $\leq \sum_{i=1}^{3+1} 3 \cdot MDS(G) = 3(d+1) \cdot MDS(G)$.

Applications: 2-cuts locaux

Theorem

Soit C de dimension asymptotique d.

Alors $\exists r = r(C), \#sommets \in 2\text{-cut } r\text{-local} \leq 8(d+1) \, \mathsf{MVC}(G).$

Applications: approximations sur les localement- $\mathcal C$

Theorem

S'il existe un algorithme LOCAL:

- α -approximation de MDS
- \cdot sur C
- en temps constant r
- · + condition technique

Applications: approximations sur les localement- $\mathcal C$

Theorem

S'il existe un algorithme LOCAL:

- α -approximation de MDS
- \cdot sur C
- en temps constant r
- + condition technique

et si \mathcal{D} est:

- $\Omega(r)$ -localement C
- · de dimension asymptotique d

Applications: approximations sur les localement- $\mathcal C$

Theorem

S'il existe un algorithme LOCAL:

- α -approximation de MDS
- \cdot sur C
- · en temps constant r
- + condition technique

et si \mathcal{D} est:

- $\Omega(r)$ -localement C
- · de dimension asymptotique d

alors il existe une $\alpha(d+1)$ -approximation locale de MDS sur \mathcal{D} en temps r.

Applications: MDS dans le modèle LOCAL

Theorem

Sur graphes sans le mineur $K_{2,t}$, il existe une $\mathcal{O}(1)$ -approximation (où la constante est **indépendante de t**) de Minimum Dominating Set dans le modèle LOCAL, en f(t) rondes.

Applications: MDS dans le modèle LOCAL

Theorem

Sur graphes sans le mineur $K_{2,t}$, il existe une $\mathcal{O}(1)$ -approximation (où la constante est **indépendante de t**) de Minimum Dominating Set dans le modèle LOCAL, en f(t) rondes.

Ancienne borne sur les classes sans mineur $K_{3,t}$: $(2 + \varepsilon) \cdot (t + 4)$ en $g(\varepsilon, t)$ rondes (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Récap: 2 étapes pour passer de global à local

Récap: 2 étapes pour passer de global à local

Q Relativiser le résultat sur tous les sous-ensembles *S*:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Récap: 2 étapes pour passer de global à local

• Relativiser le résultat sur tous les sous-ensembles S:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Appliquer la dimension asymptotique

Récap: 2 étapes pour passer de global à local

• Relativiser le résultat sur tous les sous-ensembles S:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Appliquer la dimension asymptotique

Dimension asymptotique \rightarrow ensemble de petit diamètre S

Récap: 2 étapes pour passer de global à local

• Relativiser le résultat sur tous les sous-ensembles S:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Appliquer la dimension asymptotique

Dimension asymptotique \rightarrow ensemble de petit diamètre S cutvertex local $\in S \implies$ cutvertex dans G[S]

Récap: 2 étapes pour passer de global à local

Q Relativiser le résultat sur tous les sous-ensembles *S*:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

▶ Appliquer la dimension asymptotique

Dimension asymptotique \rightarrow ensemble de petit diamètre S cutvertex local $\in S \implies$ cutvertex dans G[S] Union bound pour conclure

Récap: 2 étapes pour passer de global à local

Q Relativiser le résultat sur tous les sous-ensembles *S*:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Appliquer la dimension asymptotique

Dimension asymptotique \rightarrow ensemble de petit diamètre S cutvertex local $\in S \implies$ cutvertex dans G[S] Union bound pour conclure

? Sans mineur $H \to \mathcal{O}(pw(H))$ -approximation locale en temps constant ?

Récap: 2 étapes pour passer de global à local

Q Relativiser le résultat sur tous les sous-ensembles *S*:

$$\forall G, \forall S \subseteq V(G), |\{\text{cutvertices}\} \cap S| \leq 3 \cdot MDS(G, N[S])$$

Appliquer la dimension asymptotique

Dimension asymptotique \rightarrow ensemble de petit diamètre S cutvertex local $\in S \implies$ cutvertex dans G[S] Union bound pour conclure

? Sans mineur $H \to \mathcal{O}(pw(H))$ -approximation locale en temps constant ?

