Filtrování dlouhých nepravidelných struktur

Zadání

Cílem práce je implementovat a otestovat metodu pro potlačení struktur, do kterých nelze umístit dlouhé nepravidelné křivky. Konkrétně se jedná o morfologické otevření pomocí omezených cest (parsimonious path opening). Metodu lze použít v mnoha různých aplikacích, například detekci cest v satelitních snímcích, detekci krevních řečišť v medicínských datech, detekci pohybujících se objektů a podobně.

Reprezentace obrazu

- Uvažujeme šedotónový obraz.
- Obraz je reprezentován maticí celých čísel.
- Každý prvek matice obrazu reprezentuje jeden pixel, ten je zadán svou pozicí v matici obrazu a intenzitou(hodnotou na jeho pozici).
- Každému pixelu navíc přiřadíme několik množin sousedních pixelů(okolí), které se budou využívat při různých technikách výpočtu.

Okolí pixelu

Cesty v obraze

 Cestou je míněna posloupnost pixelů, která začíná na jedné straně obrazu a končí na druhé a ve které se každý pixel nachází v určeném okolí předcházejícího pixelu

Ukázka cesty při využití SN okolí

Cesty v obraze

Typy cest

- Lokálně maximální cesty
 - Je zadán počáteční pixel, další pixely se určí vždy jako ten pixel v daném okolí předchozího, který má nejvyšší intenzitu
- Globálně maximální cesty
 - Je zadán počáteční pixel, jde o takovou cestu na druhou stranu obrazu, která má nejvyšší průměrnou intenzitu pixelů ze všech možných
- β-maximální cesty
 - Obraz je rozdělen do pásů o šířce β, β-maximální cesta je globálně maximální v každém z těchto pásů

Hledání cest

- Lokálně maximální cesty:
 - Přímý postup, zadá se 1. pixel, 2. se určí jako pixel s maximální intenzitou v daném okolí 1., 3. jako ten s maximální intenzitou v okolí 2., ...

Hledání cest

- Globálně maximální cesty:
 - Přímý postup(porovnání průměrných intenzit všech možných cest na druhou stranu) je příliš výpočetně náročný
 - Použití obrácených okolí

Hledání cest

- Globálně maximální cesty:
 - Označme použité okolí jako G(x), jeho obrácené okolí jako G-(x)
 - Spočítáme nový obraz λ podle předpisu:

$$\lambda(x) = \lambda^{-}(x) + \lambda^{+}(x)$$

 $\lambda^{+}(x) = \max \{\lambda^{+}(y) \mid y \in G(x)\} + f(x)$
 $\lambda^{-}(x) = \max \{\lambda^{-}(y) \mid y \in G^{-}(x)\} + f(x)$

 Globálně maximální cesty v obrazu f najdeme tak, že najdeme lokálně maximální cesty v obrazu λ

Path Opening

- Na základě cest vedoucích obrazem je nalezena hledaná část obrazu(dlouhá nepravidelná struktura)
- Cílem je odstranit všechny struktury, které jsou kratší než určitý počet pixelů
- V každém pixelu, kterým vede nějaká cesta, se pro každou procházející cestu spočítá 1D otevření ve směru této cesty, maximální nalezená hodnota se uloží jako nová intenzita pixelu
- Pixelům, kterými žádná cesta nevede, se nastaví nulová intenzita

Path Opening(LM, size = 50)

Velikost otevření

Path Closing

- Ne vždy je hledaná struktura jasnější než zbytek obrazu, může být naopak tmavší
- V tom případě se nepočítá otevření, ale uzavření
- Uzavření se spočítá jako otevření na inverzním obrazu získaném podle předpisu
 - INV(x, y) = MAX I(x, y)

Půwodní obraz

Vynulování intenzit pixelů pozadí(l<140)

Path Opening(size = 250)

Inverze

Další ukázky: GM, směr SWNE

size=150 size=120 size=100

Další ukázky: GM, size = 300, c = 170

Další ukázky: GM, size = 100, c = 100

Závěr

Zdroje:

Morard, V., Dokládal, P., Decencière, E.,
 Parsimonious Path Openings and Closings. IEEE
 Trans. Image Process. 23(4), 1543-1555(2014)