

$Ann\'{e} \ universitaire \ 2020-2021$ Licence $1^{\'{e}re}$ ann\'{e} - Mention MI - Ma0102

Chapitre 5 Relations d'équivalences

	Liste des paragraphes	
Ι	- Définitions et exemples	1
II	- Classes d'équivalences et ensemble quotient	2

I - Définitions et exemples

Soit E un ensemble non vide.

Définition 1:

- On appelle <u>relation binaire dans</u> E, tout énoncé logique qui dépend d'un couple d'éléments de E. Autrement dit, si pour tout $(x,y) \in E^2$, $\mathcal{R}(x,y)$ est un énoncé logique, on dira : \mathcal{R} est une relation binaire dans E.
- 2/ Si \mathscr{R} est une relation binaire dans E, alors pour tout $(x,y) \in E^2$, l'énoncé $\underbrace{\mathscr{R}(x,y)}$ sera noté : $x\mathscr{R}y$
- 3/ Soit \mathscr{R} est une relation binaire dans E et $(x,y) \in E^2$.
 - \triangleright Si l'énoncé $x \mathcal{R} y$ est vrai, on dit (et on écrit) : " x est en relation avec y modulo \mathcal{R} " ou bien encore : " On a $x \mathcal{R} y$ ".
 - ightharpoonup Si l'énoncé $x \mathcal{R} y$ est faux, on dit : " x n'est pas en relation avec y modulo \mathcal{R} " ou bien encore : "On n'a pas $x \mathcal{R} y$ ", ou bien encore : "On a $x \mathcal{R} y$."

Diagramme sagittal d'une relation binaire : Pour $(x,y) \in E^2$, on relie x à y par une flèche dirigée de x vers y, pour traduire que l'on a $x \mathcal{R} y$; s'il n'y a pas de flèche reliant x et y, c'est qu'on n'a pas $x \mathcal{R} y$.

Par exemple, on a :
$$\begin{cases} x \mathcal{R} y \\ v \mathcal{R} v \\ - \end{cases}$$
$$2 \mathcal{R} t - t \mathcal{R} z - u \mathcal{R} x$$
$$u \mathcal{R} x$$
$$u \mathcal{R} v$$
$$u \mathcal{R} v$$

EXEMPLES 1:

1/ La relation d'égalité dans E

Dans l'ensemble E, considérons, pour tout $(x,y) \in E^2$, l'énoncé $\mathscr{R}(x,y) \longmapsto (x=y)$. Alors \mathscr{R} est une relation binaire dans E. Cette relation binaire \mathscr{R} est définie dans E par :

$$\forall (x,y) \in E^2, \ x \mathcal{R} y \Longleftrightarrow x = y$$

Cette relation binaire s'appelle "relation d'égalité dans E".

2/ Considérons, pour tout $(x,y) \in \mathbb{R}^2$, l'énoncé $\mathscr{R}(x,y) \longmapsto (x \geqslant y)$. Alors \mathscr{R} est une relation binaire dans \mathbb{R} . Cette relation binaire \mathscr{R} est définie dans \mathbb{R} par :

$$\forall (x,y) \in \mathbb{R}^2, \ x \mathcal{R} y \Longleftrightarrow x \geqslant y$$

$$\begin{cases} 3 \mathcal{Q} 3 \\ 4 \mathcal{Q} 3 \\ 5 \mathcal{Q} 4 \end{cases}$$

- 1 - T.S.V.P.

On a par exemple : $6 \Re 2$ et $1 \Re 2$

3/ Les relations de perpendicularité et de parallélisme sur l'ensemble des droites Soit \mathscr{P} un plan ; désignons par \mathscr{D} l'ensemble des droites de \mathscr{P} . Pour tout couple de droites $(D_1, D_2) \in \mathscr{D}^2$, considérons les énoncés : $\mathscr{R}(D_1, D_2) \longmapsto (D_1 /\!\!/ D_2) \mapsto (D_1 /\!\!/ D_2) \mapsto (D_1 \perp D_2)$. Alors \mathscr{R} et \mathscr{S} sont des relations binaires, appelées respectivement "relation de parallélisme" et "relation de perpendicularité"; elles sont définies par :

$$\left[\forall (D_1,D_2)\in \mathscr{D}^2,\ D_1\mathscr{R}D_2 \Longleftrightarrow D_1 \,/\!\!/\, D_2\right] \quad \text{et} \quad \left[\forall (D_1,D_2)\in \mathscr{D}^2,\ D_1\mathscr{S}D_2 \Longleftrightarrow D_1\bot D_2\right]$$

Définitions 2 :

Soit $\mathcal R$ une relation binaire dans E. On dit que :

- 1 \mathscr{R} est réflexive si : $\forall x \in E, x \mathscr{R} x$
- $2/\mathscr{R}$ est symétrique si : $\forall (x,y) \in E^2, \ \left[x \mathscr{R} y \implies y \mathscr{R} x \right]$
- $3/\mathscr{R}$ est transitive si : $\forall (x,y,z) \in E^3, \ \left[\left(x \mathscr{R} y \text{ et } y \mathscr{R} z \right) \Longrightarrow \ x \mathscr{R} z \right]$

Définition 3 :

Soit \mathcal{R} une relation binaire dans E. On dit que \mathcal{R} est une relation d'équivalence si \mathcal{R} est réflexive, symétrique et transitive.

EXEMPLES 2:

- 1/ Soit $\mathscr P$ un plan et $\mathscr D$ l'ensemble des droites de $\mathscr P$. Alors la relation de parallélisme est une relation d'équivalence dans $\mathscr D$ mais la relation de perpendicularité n'en n'est pas une.
- 2/ La relation d'égalité sur un ensemble non vide est une relation d'équivalence.

II - Classes d'équivalences et ensemble quotient

Dans ce paragraphe, E est un ensemble non vide et \mathscr{R} est une relation d'équivalence dans E.

<u>Définition 4</u>:

1/ Pour tout $x \in E$, on appelle **classe d'équivalence de x modulo \mathcal{R}**, la partie de E notée $Cl_{\mathcal{R}}(x)$ ou bien \overline{x} (si aucune confusion n'est possible) et définie par :

$$\overline{x} = \{ y \in E \mid y \mathcal{R} x \} = \{ y \in E, \pi \in \mathcal{R} y \}$$

Autrement dit pour $x \in E$:

$$\forall y \in E, \ [y \in \overline{x} \Longleftrightarrow y \, \mathscr{R} \, x]$$

2/ On appelle ensemble quotient de E par \mathcal{R} , l'ensemble noté E/\mathcal{R} , et défini par :

$$E/\mathscr{R} = \left\{ \overline{x} \mid x \in E \right\}$$

a relation d'equivalence

y Ra: ha, b y = a = ll a classe d'équivalence de a modulo R

y Rb: 6 = 16, a)

yRc: = jc,d,ej

yaa J= fa, e, c}

yRe ē=je, c,dy,

4 = 343

aeā, beb, ceē, deā, eeē, fef

). \(\overline{\pi} = \langle y \ext{get}, y \overline{\pi} a \rangle

. x e x

. Z C E

る=ら、こ=る=色

 $\{\bar{a}, \bar{c}, \bar{p}\} = \text{ensemble quotient de Epan } \mathbb{R}$

E/Q = 1 1a, by, 1 4d, ey, 14 by c S(E)

Prop1: 1/xeE: \(\overline{\pi}\) \(\overline{\pi}\)

Autrement dit:

$$\forall X \in \mathscr{P}(E), \ [X \in E/\mathscr{R}] \Longleftrightarrow [\exists x \in E, \overline{x} = X]$$

Proposition 1:

 $1/ \ \forall x \in E, \overline{x} \subset E \text{ et } x \in \overline{x}.$

2/ Soit $(x,y)\in E^2.$ Alors les assertions suivantes sont équivalentes :

i)
$$x \mathcal{R} y$$

ii)
$$x \in \overline{y}$$

iii)
$$y \in \overline{x}$$

iv)
$$\overline{x} = \overline{y}$$

COROLLAIRE 1:

Soit $X \in E/\mathcal{R}$. Alors:

1/ Il existe $x_0 \in E$ tel que $\overline{x}_0 = X$.

2/ Pour tout $x \in E$, $x \in X \iff \overline{x} = X$.

Tout élément de X s'appelle $représentant\ de\ X$

DÉFINITION 5 :

Soit Ω un ensemble non vide. On appelle **partition** de Ω , toute partie non vide \mathfrak{P} de $\mathscr{P}(\Omega)$ telle que l'on ait les deux conditions suivantes :

 $\triangleright \ \forall A \in \mathfrak{P}, \ A \neq \emptyset$

 $\triangleright \ \forall x \in \Omega, \ \exists ! A \in \mathfrak{P}, \ x \in A$

Exemples 3:

1/ Soit $\Omega = \{1, 2, 3\}$.

Soit $\mathfrak{P}_1 = \{\{1,2\},\{3\}\}$. Alors \mathfrak{P}_1 est une partition de Ω . Posons $\mathfrak{P}_2 = \{\{1,3\},\{2\}\}$, $\mathfrak{P}_3 = \{\{1\},\{2\},\{3\}\}$ et $\mathfrak{P}_4 = \{\{1,2,3\}\}$. Alors \mathfrak{P}_2 , \mathfrak{P}_3 et \mathfrak{P}_4 sont aussi des partitions de Ω .

ightharpoonup Par contre $\mathfrak{P}_5 = \left\{\emptyset, \{1,2,3\}\right\}, \, \mathfrak{P}_6 = \left\{\{1\}, \{2\}\right\} \text{ et } \mathfrak{P}_7 = \left\{\{1,2\}, \{2,3\}\right\} \text{ ne sont pas des partitions de }\Omega.$

 $2/\left\{\mathbb{R}^+,\mathbb{R}^{*-}\right\}$ est une partition de \mathbb{R} .

3/ Soit $\Omega = \mathbb{N}$. Soient $A_0 = \{3k \mid k \in \mathbb{N}\}$, $A_1 = \{3k+1 \mid k \in \mathbb{N}\}$ et $A_2 = \{3k+2 \mid k \in \mathbb{N}\}$. Posons $\mathfrak{P} = \{A_0, A_1, A_2\}$. Alors \mathfrak{P} est une partition de Ω .

Proposition 2:

- $1/ \ \, \text{Pour tout } (X,Y) \in {}^{E}/_{\mathscr{R}} \times {}^{E}/_{\mathscr{R}}, \, \text{on a} \, : X = Y \, \, \text{ou} \, \, X \cap Y = \emptyset.$
- $2/E/\Re$ est une partition de E.
