Project Design Phase-II Technology Stack (Architecture & Stack)

Date	03 October 2022	
Team ID	PNT2022TMID14786	
Project Name	t Name Project - Smart Farmer - IOT Based Smart	
	Farming Applications	
Maximum Marks	4 Marks	

PROJECT FLOW:

- The parameters like temperature, humidity, and soil moisture are updated to the Watson IoT platform
- The device will subscribe to the commands from the mobile application and control the motors accordingly

- APIs are developed using Node-RED service for communicating with Mobile Application
- A mobile application is developed using the MIT App inventor to monitor the sensor parameters and control the motors.
- To accomplish this, we have to complete all the activities and tasks listed below:
- Create and configure IBM Cloud Services
- Create IBM Watson IoT Platform
- Create a device & configure the IBM IoT Platform
- Create Node-RED service
- Create a database in Cloudant DB to store all the sensor parameters
- Develop a python script to publish and subscribe to the IBM IoT platform
- Configure the Node-RED and create APIs for communicating with mobile application
- Develop a mobile application to display the sensor parameters and control the motors

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Web UI, He can select the button to read the value of the selected button.	MIT APP
2.	Application Logic-1	The parameters like temperature, humidity, and soil moisture are updated to the Watson IoT platform	Watson IoT platform (Python Script)
3.	Application Logic-2	Configure the Node-RED and create APIs for communicating with mobile application	Node-RED
4.	Application Logic-3	Create IBM Watson IoT Platform	IBM Watson Assistant

5.	Cloud Database	Create and configure IBM Cloud Services	IBM Cloudant etc.
6.	File Storage	Create a database in Cloudant DB to store all the sensor parameters	IBM Block Storage or Other Storage Service or Local Filesystem

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Python Script , Arduino IDE Code	Python IDE, Arduino IDE
2.	Security Implementations	Since it involves cloud storage of gathered sensor data, which could be misused, Data handling must be highly secure.	SHA-512, RIPEMD-180.
3.	Scalable Architecture	It should be made used in remote areas where technological advancements have not even been raised and should deliver a more productive and sustainable form of agriculture.	Highly Stable Network Connectivity
4.	Availability	It should monitor water level, fuel level, electric fence-theft monitoring, temperature, humidity, tractor guidance, GPS tags, soil moisture, and toxic gases.	Sensors
5.	Performance	 Highly effective monitoring, tracking, and recovery of farm assets, tracking range should be greater than at least 5km. Continuous readings on temperature,gas,humidity,pH,smoke detection ,water and fuel levels are necessary 	Sensors