

Multi-Task Recurrent Modular Networks

Dongkuan Xu¹, Wei Cheng², Xin Dong³, Bo Zong², Wenchao Yu², Jingchao Ni², Dongjin Song⁴, Xuchao Zhang², Haifeng Chen², Xiang Zhang¹

¹The Pennsylvania State University, ²NEC Laboratories America, Inc., ³Rutgers University, ⁴University of Connecticut

Agenda

- Motivations
- Challenges
- Proposed Model: MT-RMN
- Experiments

Motivations

- Sequence Learning
 - E.g., Sentiment classification, sequence labelling
- Multi-Task Learning
 - Advantages: Computational advantage
- However, multi-task architectures applicable to recurrent models are underexplored
- Goal: A Recurrent Module
 - Can be integrated into any multi-task learning approach for sequential data
 - To improve model capacity, flexibility, generalization

Challenges

- Dynamics of task relationships
- Limited knowledge of the task relatedness
- Generalization ability [2]
- Example: Dynamic task relatedness in NLP [1]
 - Sentiment prediction of 16 datasets (multi-task learning)

Illustrations of the three most relevant tasks for each word in the "Kitchen" task.

^[1] Learning Multi-Task Communication with Message Passing for Sequence Learning, AAAI 2019.

^[2] Lake, Brenden M. "Compositional generalization through meta sequence-to-sequence learning." NeurIPS 2019.

Typical Architecture

• Existing approaches are not flexible enough to learn the dynamic relationship

PSP-MTL (IJCAI'16)

Proposed Model: MT-RMN

How to Make Connection Decision

- 1) Generate decision vector
 - Using Policy Network

$$\boldsymbol{\beta}_{t,j}^k = \widehat{\mathcal{N}}^k(\boldsymbol{u}_{t,j}) = MLP(\boldsymbol{u}_{t,j} \oplus \boldsymbol{W}_k \boldsymbol{h}_t^k)$$

- 2) Estimate the binary decision value
 - Using Straight-Through Router

$$\zeta = \arg\max_{i} [\alpha_i + g_i], i \in \{0, 1\}$$

Experiments on Task-fMRI

- Task-Evoked Functional MRI Data[1]
 - To analyze the relationship between brain connectivity and human behavior

The left side of brain

The right side of brain

Figure 5: Seven tasks and each task lasts 160 time steps.

[1] Barch, Deanna M., et al. "Function in the human connectome: task-fMRI and individual differences in behavior." Neuroimage80 (2013): 169-189.

Experiments on Task-fMRI

Construct four tasks

Figure 2: The task-fMRI data of twelve high-order brain regions of a participant. The regions are grouped into four groups based on their functionalities. Each group is used to construct a multi-class classification task of time series. The participant was asked to perform seven tasks successively (Barch, Burgess et al. 2013).

Experiments on Task-fMRI

• Results on the Task-fMRI data

Table 1: Results (accuracy %) on two groups of tfMRI tasks.

Groups		Group-1		Group-2			
	Task-1	Task-2	Task-3	Task-1	Task-3	Task-4	
FS-MTL SP-MTL DC-MTL IC-MTL RRNs	89.7±0.6 88.7±1.4 89.2±0.6 89.6±0.4 88.9±3.4	93.5±1.1 94.0±1.9 95.6±1.2 95.7±1.1 95.4±2.2	89.1±0.3 90.7±2.3 90.8±1.0 91.3±1.7 90.5±2.8	73.2±0.5 73.7±1.5 74.5±0.6 74.5±0.4 75.4±2.2	81.2±0.6 78.0±1.5 80.0±0.7 81.4±1.1 83.2±3.0	81.3±1.4 81.2±2.1 80.8±1.3 81.8±2.6 82.6±3.8	
mtl-RMN	90.8±2.1	96.7±1.6	92.9±2.4	76.1±1.8	84.4±2.4	83.5±2.2	

Table 2: Four test-time scenarios to evaluate generalization ability and the results (accuracy%).

Scenario settings						Results of different methods				
Scenarios	Training tasks			Test task	LSTM	RMN_{un}	RRNs	IC-MTL	RMN_{tr}	
A B C D	Task-1 Task-1 Task-1 Task-2	Task-2 Task-2 Task-3 Task-3	Task-3 Task-4 Task-4 Task-4	Task-4 Task-3 Task-2 Task-1	82.6±1.0 82.3±0.6 93.7±0.6 71.7±1.4	82.9±1.2 84.5±1.5 95.3±0.8 73.1±1.7	83.0±2.7 84.8±2.5 95.6±1.7 78.4±4.0	81.2±1.7 82.7±1.3 95.5±0.7 77.3±2.1	83.3±2.3 85.6±1.7 97.0±1.8 79.3±2.6	

Experiments on POS Tagging

- POS (Part-of-Speech) Tagging of Code-Switched Sentences
 - POS Tagging: To mark up a word in a corpus to a corresponding speech tag
 - Code-Switched Text: Words from multiple languages

POS Tagging

- Data sets [1]
 - Task 1: A Hindi-English code-switch data POS tagging
 - Task 2: Hindi POS tagging
 - Task 3: English POS tagging

Experiments on POS Tagging

• Results on the POS Tagging of Code-Switched Sentences

Methods	Original		DC-MTL		IC-MTL		$rrn ext{-RMN}$		MT-RMN	
	Accuracy	F_1	Accuracy	\mathbf{F}_1	Accuracy	\mathbf{F}_1	Accuracy	\mathbf{F}_1	Accuracy	F_1
NS-MTL	44.3±0.7	38.9±1.6	51.5±0.5	49.4±0.9	51.4±1.4	49.7±0.8	53.5±1.9	52.7±0.8	55.2±1.2	53.4±2.4
Cross-stitch.	46.0 ± 1.9	12.7 ± 0.8	48.5 ± 0.9	16.1 ± 1.3	47.7±1.7	14.3 ± 0.7	52.1 ± 1.0	19.5 ± 0.6	51.7±1.9	21.4 ± 3.2
Sluice	58.7 ± 0.7	55.4 ± 2.1	59.2 ± 1.7	56.0 ± 2.3	59.5±1.9	56.2 ± 0.7	60.4 ± 1.2	56.6 ± 0.7	61.5±1.7	57.2 ± 1.8
GIRNet	62.8 ± 0.6	46.6 ± 0.4	62.5±1.1	57.4 ± 0.5	63.1±1.5	58.6 ± 1.3	63.6 ± 1.7	61.3 ± 1.5	64.5±2.1	62.6±2.4

- 1) The proportion of tasks assigned to each sub-network
- 2) Different colors distinguish different tasks
- 3) A-F represent the six sub-networks

Thanks!

Q & A