

simChef: High-quality data science simulations in R

James Duncan ^{1*¶}, Tiffany Tang ^{2*}, Corrine F. Elliott ², Philippe Boileau ¹, and Bin Yu^{1,2}

1 Graduate Group in Biostatistics, University of California, Berkeley 2 Department of Statistics, University of California, Berkeley \P Corresponding author * These authors contributed equally.

DOI: N/A

Software

- Review 🗗
- Repository 🗗
- Archive ௴

Editor: Open Journals ♂

Reviewers:

@openjournals

Submitted: 01 January 1970 Published: 01 January 1970

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

Data science simulation studies occupy an important role in data science research as a means to gain insight into new and existing statistical methods. Whether as a means to establish comprehensive benchmarks of existing procedures for a common task, to demonstrate the strengths and weaknesses of novel methodology applied to synthetic and real-world data, or to probe the validity of a theoretical analysis, simulations serve as statistical sandboxes that open a path toward otherwise inaccessible discoveries. Yet creating high-quality simulation studies typically involves a number of repetitive and error-prone coding tasks, such as implementing datagenerating processes (DGPs) and statistical methods, sampling from these DGPs, parallelizing computation of simulation replicates, summarizing metrics, and visualizing, documenting, and saving results. While this administrative overhead is necessary to reach the end goals of a given data science simulation, it is not sufficient, as the data scientist must navigate a number of important judgment calls such as the choice of data settings, baseline statistical methods, associated parameters, and evaluation metrics for scientific relevancy. The scientific context varies drastically from one study to the next while the simulation scaffolding remains largely similar; yet simulation code repositories often lack the flexibility to easily allow for reuse in novel settings or even simple extension when new questions arise in the original context.

simChef addresses the need for an intuitive, extensible, and reusable framework for data science simulations. Drawing substantially from the Predictability, Computability, and Stability (PCS) framework (Yu & Kumbier, 2020), simChef empowers data scientists to focus their attention toward the scientific best practices encompassed by PCS by removing many of the administrative burdens of simulation design with an intuitive tidy grammar of data science simulations and automated interactive R Markdown documentation.

A powerful grammar of data science simulations

create DGP dgp <- create_dgp(.dgp_fun = dgp_fun, .name = "DGP Name", # named parameters to pass to .dgp_fun)

```
# create Method
method <- create_method(
    .method_fun = method_fun,
    .name = "Method Name",
# named parameters to pass to .method_fun
)</pre>
```

Evaluator the evaluation metrics used to evaluate the methods' performance # create Evaluator eval <- create_evaluator(.eval_fun = eval_fun, .name = "Evaluator Name", # named parameters to pass to .eval_fun ...)

```
the visualization functions used to visualize
method fits or evaluation results (can be
    tables, plots, md snippets, ...)

# create Visualizer
viz <- create_visualizer(
    .dgp_fun = viz_fun,
    .name = "Visualizer Name",
    # named parameters to pass to .viz_fun
    ...
)</pre>
```

Figure 1: simChef provides four classes which implement distinct simulation objects in an intuitive and modular manner: DGP, Method, Evaluator, and Visualizer.

Inspired by the tidyverse (Wickham et al., 2019), simChef develops an intuitive grammar of simulation studies:

```
library(simChef)
dgp1 <- create_dgp(dgp_fun1, "my_dgp1", sd = 0.5)</pre>
dgp2 <- create_dgp(dgp_fun2, "my_dgp2")</pre>
method <- create_method(method_fun, "my_method")</pre>
eval <- create_evaluator(eval_fun)</pre>
viz <- create_vizualizer(viz_fun)</pre>
exper <- create experiment(dgp list = list(dgp1, dgp2)) %>%
  add_method(method) %>%
  add_vary_across(
    list(dgp1, dgp2),
    n = c(1e2, 1e3, 1e4)
  ) %>%
  add_vary_across(
    dgp2,
    sparse = c(FALSE, TRUE)
  ) %>%
  add_vary_across(
    method,
    scalar_valued_param = c(0.1, 1.0, 10.0),
```



```
vector_valued_param = list(c(1, 2, 3), c(4, 5, 6)),
    list_valued_param = list(list(a1=1, a2=2, a3=3),
                             list(b1=3, b2=2, b3=1))
  ) %>%
  add_evaluator(eval) %>%
  add_viz(viz)
future::plan(multicore, workers = 64)
results <- exper %>%
  run_experiment(n_reps = 100, save = TRUE)
new method <- create method(new method fun, 'my new method')</pre>
exper <- exper %>%
  add_method(new_method)
results <- exper %>%
  run_experiment(n_reps = 100, use_cached = TRUE)
init_docs(exper)
render_docs(exper)
```

Internally, simChef provides a modular conceptualization of data science simulations using four R6 (Chang, 2022) classes, portrayed Figure 1: DGP, Method, Evaluator, and Visualizer. Users create or reuse custom functions (dgp_fun, method_fun, eval_fun, and viz_fun above) aligned with their scientific goals. The custom functions are then optionally parameterized and encapsulated in one of the corresponding classes via a create_* method together with optional constant parameters (e.g., sd above).

A fifth R6 class, Experiment, serves as a concrete implementation of the user's intent to answer a specific scientific question. The Experiment stores references to the first four objects along with the DGP and Method parameters that should be varied and combined during the simulation run. Parameters that are common across the users functions can be added jointly (as is the case for the n parameter to dgp_fun1 and dgp_fun2 above) and can have arbitrary data type (such as scalar_valued_param and vector_valued_param to method_fun).

Figure 2: The Experiment class handles relationships between the four classes portrayed in Figure 1. Experiments may have multiple DGP and Method objects, which are combined across the Cartesian product of their varying parameters (represented by *). Once computed, each Evaluator and Visualizer take in simulation replicates, while Visualizer additionally receives evaluation summaries.

The Experiment class flexibly handles the computation of simulation replicates in parallel using future (Bengtsson, 2021). The number of replicates per combination of DGP, Method, and parameters specified via add_vary_across is determined by the n_reps argument to run_experiment (Figure 2). Because replication happens at the per-combination level, the effective total number of replicates in the Experiment depends on the number of DGPs, methods, and varied parameters.

In the first call to run_experiment in the above example, there are two DGP instances, both of which are varied across three values of n and one of which is additionally varied across two values of sparse. This effectively results in nine distinct configurations for data generation. For the single Method in the experiment, we use three values of scalar_valued_param, two of vector_valued_param, and another two of list_valued_param, giving 12 distinct configurations. Thus, there are a total of 108 DGP-method-parameter combinations in the experiment, each of which is replicated 100 times. Figure 3 provides a detailed schematic of the run_experiment workflow, along with the expected inputs to and outputs from user-defined functions.

Users can also choose to save the experiment's results to disk by passing save = TRUE to run_experiment. Once saved, the user can add new DGP and Method objects to the experiment and compute additional replicates without re-computing existing results via the the use_cached option. Considering the example above, when we add new_method and call run_experiment with use_cached = TRUE, simChef finds that the cached results are missing combinations of new_method, existing DGPs, and their associated parameters, giving nine new configurations. Replicates for the new combinations are then appended to the cached results.

Automated documentation in an interactive R Markdown template gathers the scientific details, summary tables, and visualizations side-by-side with the user's custom source code and parameters for data-generating processes, statistical methods, evaluation metrics, and plots. A call to init_docs generates empty markdown files for the user to populate with their overarching simulation objectives and with descriptions of each of the DGP, Method, Evaluator, and Visualizer objects included in the Experiment. Finally, a call to render_docs prepares the interactive R Markdown document, either for iterative design and analysis of the simulation or to provide a high-quality overview that can be easily shared. We provide an example of the simulation documentation at this link and corresponding source code is available on GitHub at PhilBoileau/simChef-case-study.

Figure 3: Detailed schematic of the run_experiment workflow.

Acknowledgements

References

Bengtsson, H. (2021). A Unifying Framework for Parallel and Distributed Processing in R

using Futures. The R Journal, 13(2), 208. https://doi.org/10.32614/RJ-2021-048

Chang, W. (2022). R6: Encapsulated classes with reference semantics.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43), 1686. https://doi.org/10.21105/joss.01686

Yu, B., & Kumbier, K. (2020). Veridical data science. *Proceedings of the National Academy of Sciences*, 117(8), 3920–3929. https://doi.org/10.1073/pnas.1901326117