

Exercises

(1)
$$h(x,y) = \begin{cases} x^2y^2 \\ 1, & (x,y) = (0,0) \end{cases}$$

(1) Calcula Lim $h(x,y) = [0,0)$

(2) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x^2y^2 \end{cases}$

(3) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x^2y^2 \end{cases}$

(4) Ex h(x,y) = $(x,y) + (0,0)$

(5) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x^2y^2 \end{cases}$

(6) Exate c que haya que $L(x,y)$

(6) Exate c que haya que $L(x,y)$

(7) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x + \frac{xy}{x^2} \end{cases}$

(9) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x + \frac{xy}{x^2} \end{cases}$

(10) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2y^2} \\ x + \frac{xy}{x^2} \end{cases}$

(11) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(12) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(13) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(14) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(15) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(16) Exate c que haya que $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(17) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(18) Exate c que haya que $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L(x,y) = \begin{cases} 1 + \frac{xy}{x^2} \\ x + \frac{xy}{x^2} \end{cases}$

(19) $L($

Como se comprete g en los potos de la recta?

$$g(x,y) = \frac{xy}{x^2 + y^2}$$
 $g(y(t)) = \frac{(1-t)\cdot 0}{(1-t)^2 + 0^2} = 0$

A lo longo de la recta avol el límite vale 0 .

 $\lambda'(t) = (1.1) + t ((0,0) - (1,1))$
 $\lambda'(t) = (1-t) + t ((0,0) - (1,1)$
 $\lambda'($

