Zadanie 3.

Pokażę, że $\chi(G) = \min\{|S_1|, |S_2|, \dots, |S_m|\}.$

Bez straty ogólności załóżmy, że elementami zbiorów S_i są kolejne liczby całkowite. Weźmy takie i, dla którego $|S_i|$ jest minimalne. Bez straty ogólności załóżmy, że i = 1.

Pokolorujmy teraz dla każdego $k=1...|S_1|$ wszystkie wierzchołki postaci¹ $(k,\star,\star,\ldots,\star)$ na taki sam (ale inny dla każdego k) kolor. Pokażmy, że to poprawne kolorowanie. Weźmy dwa dowolne wierzchołki $(a_1,a_2,\ldots,a_m), (b_1,b_2,\ldots,b_m)$. Jeśli są połączone krawędzią, to w szczególności $a_1 \neq b_1$, czyli są innego koloru.

Pokażmy, że to najmniejsze kolorowanie. Odnotujmy, że wierzchołki postaci (k, k, k, ..., k), dla $k = 1...|S_1|$, stanowią $|S_1|$ -klikę w grafie; mogą więc zostać pokolorowane na nie mniej niż $|S_1|$ kolorów.

 $^{^{1}}$ gdzie \star oznacza dowolny element