Universitatea din București

Facultatea de Matematică și Informatică

Examen de licență

Sesiunea iunie 2013

Subject teoretice – discipline fundamentale.

T.Al. 1. Fie $n \in \mathbb{N}^*$.

- (1) Definiți grupul S_n de permutări ale mulțimii $\{1, \ldots, n\}$.
- (2) Calculați ordinul lui S_n .
- (3) Arătați că S_n este abelian dacă și numai dacă $n \in \{1, 2\}$.
- (4) Să se arate că un grup G cu n elemente este izomorf cu un subgrup al lui S_n .

T.Al. 2. (1) Definiți conceptul de ideal într-un inel comutativ.

- (2) Care sunt idealele lui \mathbb{Z} ?
- (3) Fie I un ideal în inelul comutativ A. Să se construiască inelul factor A/I.
- (4) Fie $A = \mathbb{Z}[i]$ inelul întregilor lui Gauss și I idealul lui A generat de 3. Determinați numărul de elemente ale inelului factor A/I.
- **T.An. 1.** Să se demonstreze următoarea teoremă: Fie $f_n:[a,b]\to\mathbf{R}$ funcții derivabile astfel încât $f_n\to f$ f'(x) = g(x) pentru orice $x \in [a, b]$.
- **T.An. 2.** Să se demonstreze următoarea teoremă: Fie $f:[a,b]\to \mathbf{R}$ o funcție continuă. Să se arate că f este integrabilă pe [a,b].
- **T.Ge. 1.** Demonstrați că dacă U, V sunt spații vectoriale finit dimensionale peste un același corp K iar $T: U \to V$ este o aplicație K-liniară, atunci

$$\dim_K(\operatorname{Ker}(T)) + \dim_K(\operatorname{Im}(T)) = \dim_K(U).$$

T.Ge. 2. Enunțați și demonstrați teorema asupra dimensiunii sumei a două subspații afine.

Probleme – discipline fundamentale.

- **P.Al. 1.** Fie G grupul multiplicativ al matricelor $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}_2)$ cu $ad bc = \widehat{1}$.
 - (1) Ce ordin are G?
 - (2) Este G abelian? Justificați răspunsul.
- **P.Al. 2.** Fie x_1, x_2, x_3 rădăcinile complexe ale ecuației $x^3 + px + q = 0$, unde $p, q \in \mathbb{C}$.
 - (1) Fie $A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{pmatrix}$. Dacă A^t este transpusa lui A, calculați $A \cdot A^t$ în funcție de p și q.

 (2) Să se arate că $(x_1 x_2)^2 (x_2 x_3)^2 (x_3 x_1)^2 = -4p^3 27q^2$.

1

P.An. 1. Fie
$$I_n = \int_0^{\frac{\pi}{4}} \operatorname{tg}^{2n}(x) \, dx, \, n \in \mathbb{N}.$$

- (1) Să se arate că șirul $(I_n)_{n\in\mathbb{N}}$ este monoton.
- (2) Să se calculeze $I_n + I_{n+1}$, $n \in \mathbb{N}$.
- (3) Să se arate că $\lim_{n\to\infty} I_n = 0$.

- **P.An. 2.** Fie $a_n > 0$, $S_n = \sum_{k=1}^n a_k$, $n \in \mathbb{N}$, astfel încât seria $\sum_{n=1}^\infty a_n$ este divergentă.
 - (1) Să se arate că seria $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ este convergentă.
 - (2) Utilizând criteriul lui Cauchy, să se arate că seria $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ este divergentă.
 - (3) Dacă seria $\sum_{n=1}^{\infty} a_n^2$ este convergentă, să se arate că seria $\sum_{n=1}^{\infty} \frac{a_n}{n}$ este convergentă.

P.Ge. 1. Fie $V = \mathbb{R}^3$ cu structura canonică de \mathbb{R} -spațiu vectorial, și $f : \mathbb{R}^3 \to \mathbb{R}^3$,

$$f(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_3, x_3 - x_1).$$

- (1) Să se determine câte o bază pentru Ker(f) şi respectiv Im(f).
- (2) Determinați subspațiile proprii ale lui f și decideți dacă f este sau nu diagonalizabilă.
- (3) Dați exemplu de aplicație liniară $g:V\to V$ care nu este identic nulă, dar astfel încât $f\circ g$ este identic nulă.

P.Ge. 2. În spațiul \mathbb{R}^3 înzestrat cu structura euclidiană canonică se consideră dreptele

$$\mathcal{D}_1: \frac{x-1}{2} = y = z$$
 şi respectiv $\mathcal{D}_2: \frac{x}{-1} = y = \frac{z-2}{3}$.

- (1) Să se scrie ecuația planului π care trece prin \mathcal{D}_1 și este paralel cu \mathcal{D}_2 .
- (2) Să se arate că \mathcal{D}_1 şi \mathcal{D}_2 sunt necoplanare şi să se calculeze distanța dintre \mathcal{D}_1 şi \mathcal{D}_2 .

Universitatea din București

Facultatea de Matematică și Informatică

Examen de licență Sesiunea iunie 2013

Subiecte discipline de specialitate

- **S.Al. 1.** (1) Definiți conceptul de extindere algebrică de corpuri și arătați că orice extindere finită este algebrică.
 - (2) Fie corpul $\overline{\mathbb{Q}} = \{x \in \mathbb{C} \mid x \text{ algebric peste } \mathbb{Q}\}$. Să se arate că $\overline{\mathbb{Q}}$ este mulțime numărabilă și că extinderea $\mathbb{Q} \subset \overline{\mathbb{Q}}$ nu este finită.
- **S.Al. 2.** Fie p un număr prim.
 - (1) Arătați că există rădăcini primitive modulo p.
 - (2) Arătați că există rădăcini primitive modulo p^2 .
 - (3) Determinați o rădăcină primitivă modulo 11.
- S.An. 1. Teorema Banach-Steinhaus (Principiul mărginirii uniforme).
- S.An. 2. Teorema de identitate a funcțiilor olomorfe.
- S.Ge. Varietăți riemanniene cu curbură secțională constantă: definiție, exemple, proprietăți.
- S.As. Problema celor două corpuri.
- **S.ED.** Integrale prime.
- **S.EDP.** Ecuatia undelor. Existenta soluțiilor clasice pentru problema Cauchy.
- **S.Me.** Viteza și accelerația punctului material în mișcarea absolută și mișcarea relativă. Formulele de compunere.
- **S.MMC.** Teorema de descompunere polară. Mișcare și deformare: viteză, accelerație, tensorii de deformare și viteza de deformare.
- **S.Pr.** Repartiția unei variabile aleatoare.
 - (1) Repartiție, funcție de repartiție. Arătați că dacă două repartiții au aceeași funcție de repartiție, atunci ele coincid.
 - (2) Repartiții absolute continue, noțiunea de densitate. Arătați că dacă două repartiții au aceeași densitate, atunci ele coincid.
 - (3) O variabilă aleatoare X are densitatea $p(x) = c \cdot \sin(x)$, $0 \le x \le \pi$. Găsiți constanta c și calculații funcția de repartiție.
- S.St. Prezentați două proceduri de estimare a parametrilor unei familii de variabile aleatoare. Găsiți forma concretă a celor doi estimatori considerând o familie oarecare de repartiții (la alegere). Enunțați teorema Rao-Cramér.
- S.CO. Enunțați (fără demonstrație): teorema fundamentală a dualității, teorema fundamentală a optimizării liniare și teoremele de schimbare a bazei în algoritmii simplex primal și dual.

Enunțati și demonstrați testul de incompatibilitate (teorema domeniului vid) de la algoritmul simplex dual.