4 E 角牛

框架/双铰框架: 桁架系统

1空间分布的 多支柱框架 部分的支撑 点 加加 11混凝土预 埋铁件,拉 杆,螺栓固 定

12固定于铁 件上,拉杆 可调

13内置铁片 和杆式钉销 固定

14嵌入式铁 片和杆式钉 销固定

23力矩

22变形

2双铰框架

21荷载: 垂直均布荷载 水平均布荷载

25轴向力

框架/双铰框架: 桁架系统

Maisach, D: 1981-82

Architekten: S. Widmann, U. Graf, München

单梁,全杆系统:全杆系统,平,直

Hauptträger BSH 20/115

Traverse 12/21 Zugstange M 20

4 Verband 10/10

Längsträger

Bohlenlage 18/6

21 · Brücke

Eching am Ammersee, D; 1982

Tragwerk-Ingenieure: Natterer und Dittrich Planungsgesellschaft, München

0000E

杆和多杆系统: 加固全杆系统

杆和多杆系统: 加固全杆系统

10 · Brücke

Strobing, D. 1978

Architekt: Finanzbauamt Rosenheim

Tragwerk-Ingenieure Natterer und Dittrich Planungsgesellschaft, München

- 1 Hauptträger 2 x 12/28
- 2 Nebenträger 2 x 12/20
- 3 Strebe 16/16
- 4 K-Verband 16/16
- 5 Zinkblech t = 1 mm
- 6 Trapezblech ausbetoniert

Guardiola House

Design 1988 Cadiz, Spain Mr Javier Guardiola Sr 1,200 square feet

This house can be seen as the manifestation of a receptacle in which traces of logic and irrationality are intrinsic components of the object/place. It exists between the natural and the rational, between logic and chaos; the arabesque. It breaks the notion of figure/ frame, because it is figure and frame simultaneously. Its tangential el-shapes penetrate three planes, always interweaving. These fluctuating readings resonate in the material of this house which, unlike a traditional structure of outside and inside, neither contains nor is contained. It is as if it were constructed of a substance which constantly changes shape.

- Perspective view from the south-east
 Concept diagrams, plan
 Concept diagrams, elevation
 Concept diagrams, plan
 Concept diagrams, elevation

- 6 Study model, view from the south-east
- 7 Section BB
- 8 Section AA
- 9 West elevation
- 10 East elevation
- 11 Structural model, view from the south-east
- 12 Structural model, view from the east

- 13 Study model, view from the south
- 14 Intermediate level plan
- 15 Upper level plan
- 16 Section EE
- 17 Section DD
- 18 Study model, view from the south-east 19 Study model, view from the north-west

.

盐

碰

>圖1 耐震診斷的檢查要點

項目	檢查要點				
地盤與基礎	製紋→不均匀沉陷。有無鎖筋 基礎形式與配置(與上部構造的對應)				
建築物形狀	平面形狀→L、T、口字形、有大型株空等 立面形狀→退縮、懸挑等。 屋頂形狀→山牆、四坡頂、人字形等。				
承重耀的配置	位置有無偏移。 距離是否過大(與樓板面的對應)。				
承重牆的量	是否計算建築物重量。 是否受天花板面阻斷(關係到牆體的強度) 有無屋架斜撑。				
接合方式	柱與木地艦、樑等的接頭方式。 有無錨定螺栓、配置情形。				
腐朽度	是否容易受到演氣影響〈用水場所·一樓樓板底下·閣樓 構材是否腐朽。 有無蟻害。				

>圖2 耐震補強的例子

日式屋架與西式屋架的差異

POINT

日式屋架注意屋架樑的斷面,西式屋架注意拉力接合 兩者都需要採取防止縱向倒塌的措施

屋架的形式可以大致區分為「日式屋架」與「西式屋架」兩類。

日式屋架

在水平配置的屋架樑上架立支柱, 將桁條橫跨其上之後再架上椽,以木料 疊加的方式進行組構的屋架就是日式屋 架。這是日本最具代表性的屋架形式, 這種屋架很容易配合各式各樣的屋頂做 法,也較容易利用屋架內部的空間(圖

在日式屋架中,幾乎所有的屋頂載 重都由屋架樑承受,因此屋架樑的斷面 尺寸較大。為了防止屋架倒塌,在橫向 與縱向兩個方向上都必須設置斜撐,或 壁體(圖2)。另外,在屋架樑以上的構 造形式很自由,但是日式屋架與屋架樑 以下的構造關聯較薄弱,因此在水平力 的傳遞上特別容易出現問題(參照第154 頁)。

以閣樓來看,在設計有閣樓收納空間的平面中,也逐漸出現將屋架支柱、或桁條省略的做法,取而代之是以大斷面的椽(斜樑)來施做的斜樑形式(參順第156頁)。

西式屋架

把屋架做成桁架形式稱為西式屋架 (圖1②)。日本從明治時期開始,在接 受西方人技術指導的官方建築中,特別 是工廠與學校等需要大空間的建築物, 經常使用這種屋架形式。這是符合力學 原理的桁架理論輸入日本後的產物。

因為桁架構材上僅會受軸力作用,因 此即使是小斷面的構材也能做出相當大 的跨距。不過,各個接合部的接合必須 併用五金,特別是受到拉力作用的部位。 不過,因為西式屋架中有許多斜向材料 的配置,閣樓的利用很容易受到限制。

關於受到水平載重作用而傾倒的這一點,橫向上因為有桁架的關係比較不會產生問題,但是縱向上因為沒有桁架來抵抗,因此在脊桁附近必須設置屋架來抵抗,因此在脊桁附近必須設置屋架斜撐(圖2)。除上述要點之外,由於接合部位繁多,考慮到施工的確實度與便利性,通常在建造時會將桁架在地面組合完成之後,再吊裝至桁樑、或柱子進行固定,因此在狹小基地上施工會有困難。

>圖1 屋架的構造

①日式屋架

日式屋架中主要由屋架樑 來支撑屋頂載重,在屋架 樑上方架立支柱之後,就 可以對應需求做出多種屋 頂的形狀。

②西式屋架

西式屋架是以主椽、斜向 材(隅撐)、支柱、水平 樑所構成的「桁架」、整 體用以支撑屋頂載重。

>圖2 防止縱向倒塌的對策

桁條 • 椽形式的設計

POINT

- 析條與椽的形式是將屋架樑的斷面擴大
- 要注意二樓承重牆與屋頂面的連續性

考慮對水平力的抵抗

如果能確保屋架樑所需要的斷面, 那麼採取桁條與橡形式的屋架就可以自 由地架立屋架支柱,做出各式各樣的屋 頂形狀(圖1)。但是就構造上來說,這 就必須考量到屋架樑以下的構架與屋架 構架之間的連繫。

特別是在對抗水平力的時候,僅靠 屋架支柱來抵抗是不夠的,必須要在屋 架裡增設有斜撐之類的壁體(圖2)。不 過,由於橫向傾斜架設的椽、屋架樑、 屋架支柱會形成三角形,常有人將此誤 認為桁架,但因為椽是以鐵釘固定,而 屋架支柱是以錫(兩端彎成鳩尾形的鐵 製固定器)來固定,這兩種接合方式並 不能發揮如同桁架的效果,因此椽與屋 架樑之間要設置壁體來抵抗水平力。

特別是二樓有承重牆的時候,為了 要將屋頂面的水平力順利地向二樓承重 牆傳遞,屋架內也必須要設置承重牆(圖 2)。

此外,如果配置承重牆的構架與屋

架內的壁體錯位,這時就必須確實將附 近天花板面牢固地處理好,這是為了使 屋頂面→屋架壁體→天花板面→二樓承 重牆的面皆得以連續,藉此將屋頂面的 水平力傳遞至二樓承重牆。

對於縱向的處理也是同樣道理,特別是當脊桁附近受到水平力作用時,很容易使屋架傾倒,因此設置壁體,或屋架斜撐來防止橫向傾倒是必要的措施。

樣的懸挑

除此之外,在日本需要設置遮陽蓬 與遮雨蓬時,會採取深出簷的做法,也 就是說,會將椽的懸挑長度加長。不過 當有強風吹襲時,這種深出簷的部位容 易受到很大的上掀力作用(參照第162 頁)。特別是,以金屬板之類較輕的材 料來做屋頂收邊時,經常會有受強風吹 襲而掀起的情況,甚至導致屋頂被風吹 走的危險,因此椽與桁樑之間的接合部 必須要確實釘牢。

▶圖1 桁條與椽形式

屋架構材的名稱

>圖2 桁條與椽形式的注意點

155

架

.

069 日式屋架的構造②

斜樑形式的設計

POINT

斜樑形式要注意構材的彎曲變形與外推力。充裕的斷面尺寸也能提高屋頂面的水平剛性

施加於斜樑的力

配合屋頂的傾斜度將樑傾斜架設,稱為斜樑形式的屋架。這種做法是將橡的斷面加大,進而省略屋架樑、屋架支柱、桁條,這種方式可以自由地圍塑內部空間。雖然因為構材數量減少而達到施工的合理性,但是在建造時卻因為沒有屋架樑來做定點,因此對於施工精準度的要求也大大提高。

就構造上的分類來說,這種屋架雖是屬於日式屋架,但因為斜樑形式中幾乎不會設置屋架樑,因此在屋架上施加垂直方向的載重時,屋頂整體會彎曲變形,產生將桁樑向外擴展的作用力(所謂外推力)(圖1②)。

因此,如果認為脊桁、或斜樑與居住性能無關而任意縮小斷面的話,就會使構材產生彎曲變形、且讓外推力增大,進一步使屋頂的彎曲變形加大,最後導致屋頂裝修材脫離、外牆出現裂紋、漏水等問題。

而且,在積雪地區,因為南側的雪 會受到日照而快速融化,北側相對容易 有殘雪,垂直載重因此出現偏移,而可能造成整體建築傾斜(圖1③)。此外, 山牆面的耐風處理也必須特別注意(参 順第84頁)。

針對斜樑形式弱點的對策

因此,在斜樑形式的做法上,採取 以下的對策是必要的:

- ① 抑止、或減少脊桁與桁樑的彎曲變形
- ② 將承重牆延伸至屋頂面(斜樑)
- ③加強屋頂面的堅固程度以確保水平剛性
- ④ 山牆面要加強耐風處理,因此可加大 柱的斷面尺寸,或設置屋架樑

而抑止外推力最有效的做法是,將 桁樑聯繫起來並加設水平繫材。因此, 即使是採行斜樑形式的做法,也最好能 以兩個開間左右的方式設置屋架樑。不 過,因為這種屋架樑並無需支撐屋頂載 重,所以斷面可以稍微縮小,但為了因 應外推力,還是得利用拉力五金等繫件 來固定。

→圖1 斜樑形式

①屋架構材的名稱

②脊桁、斜樑的彎曲變形與外推力

外推力 (横向推 開的力)

縮小斜樑、或脊桁的彎曲變形,就能使 外推力變小。

③建築因偏移載重而傾斜

一旦在單側產生積雪就容易使建築物倒塌。可 提高屋頂面的水平剛性並縮小承重牆構面的問 距來做為對策。

>圖2 斜樑形式的注意要點

折置式屋架與京呂式屋架

POINT

新置式屋架需要注意樑的懸挑、上下軸向的拉拔力 京呂式屋架需併用五金使屋架樑確實固定

日式屋架形式中,依據屋架樑與檐 桁接合方式的不同,區分為折置式屋架 與京呂式屋架兩大類。

折置式屋架

所謂折置式屋架是指在屋架樑上放置簷桁後,再以勾齒搭的方式組合的屋架形式(圖))。為了能在上方承接椽,也可視情况將接受樑設置在屋架樑下方的做法。

由於折置式屋架是將構材堆疊而成的 形式,很容易會因為柱與上方樑未能直接 接合而產生問題。這種情況下,一般會將 柱的榫頭加長(稱為重榫)來加強接合。 因為加長的榫頭可以提升力量的傳遞作 用,讓上下作用的力量不會輕易地造成接 頭分離。不過,如果因為木材乾燥收縮而 導致榫穴產生間隙,就會讓上述的效果大 打折扣。此外,在屋架頂部的做法上,也 有以楔形物打入固定的方式讓構材不產 生脫離,但由於重榫部分的斷面面積原本 就比較小,仍舊無法抵抗很大的拉拔力, 這一點要加以注意。

對應上下拉拔力的處理,可以使用

螺栓將上下樑結合,或者在屋架樑接頭的附近位置設置半柱,以此將檐桁與二樓的圍樑連結起來,都是很有效的方法(參照第62頁)。

京呂式屋架

京呂式屋架是考慮遮雨棚的設置, 不將屋架樑懸出外牆面的一種屋架組構 方法(圖2)。做法上將屋架樑約一半左 右的部分嵌入桁樑上。

屋架接頭在樑的下側形成燕尾狀的 「燕尾搭接」是很常見的做法,不過在 構造上,製作這樣的接頭與製作燕尾榫 時需注意的問題是一樣的。

屋架樑構材的斷面一旦擴大,在支 撐點的斷面缺損也會增加,因此整體的 支撐力會顯著下降。針對這一點,特別 是在大跨距的情況、以及屋架樑的負擔 載重很大時,必須審慎地進行結構計畫, 並且讓柱子能確實地支承屋架樑。另外, 由於構材可能產生乾燥收縮,讓燕尾榫 容易拔出脫離,因此也必須併用拉力五 金來加強接頭的固定。

>圖1 折置式屋架

▶圖2 京呂式屋架

西式屋架的設計

POINT

西式屋架必需注意拉力接合與主椽的形狀 横向很堅固,但必須注意縱向的倒塌

西式屋架的構造

西式屋架的構成,是利用可以將屋 頂做成斜面配置的「主椽」,水平配置 的「水平樑」、將水平樑從屋脊垂直繫 結的「主支柱」,在主椽中央部位繫結 水平樑的「吊引支柱」,及在支柱之間 斜向連結的「隅撐與斜向材」等構件組 成桁架的屋架(圖1)。

將桁架以約2公尺的間隔並列後,再 加上桁條、或橡來構成屋頂面。

西式屋架中的水平樑在受到垂直載 重作用時僅會受到拉力作用,因此不需 要像日式屋架的屋架樑那樣採取大斷面 的做法。此外,在因應水平載重的作用 時,由於在桁架方向上就有抵抗作用力 的能力,因此也無需設置日式屋架中會 出現的壁體。不過在西式屋架的接合部 必須要能同時承受得了拉力與壓力,因 此做好確實緊密的接合工作是絕對不可 輕忽的。

另一方面,西式屋架在縱向上並無 桁架,因此有必要像日式屋架的做法一 樣設置屋架斜撐,或壁體來加強縱向的 抵抗能力。

主操底部的設計

桁架中的接合部最需要注意的是主 橡底部(圖2),此處的破壞形式可以下 列三種分類來討論。

①水平樑餘長部分的剪斷破壞

水平樑的主橡底座飛離是最常見的 破壞形式。要防止這種破壞發生的對策, 是充分卻保從主椽至水平樑端部的距離。

②水平楔的壓陷破壞

這種破壞方式會導致構架耐力降低,雖然桁架會因此歪斜,卻不至於對整體構架產生致命的破壞。再者,增加水平樑與主椽的接合面積,也就是擴大主椽的構材斷面尺寸,也能有效提高構架耐力。

③水平樑的拉力破壞

這種破壞產生的原因主要是水平樑 附近的接頭鑿口較大,又或者是水平樑 的斷面積過小所造成。雖然這種情形很 少見,不過為了防止這類破壞的產生, 將接頭的鑿口縮小會是有效的解決方式。

>圖2 主椽底座

①主椽底座的設計

由於是以壓力面Ac來決定耐力的 緣故,因此要以Ac/As≦1/15 來設定。

舉例: 樑寬120公釐, B=15公 釐時·A≥15×B=225

(再者·若採取4寸斜率與不在等 級劃分內的杉材施做時,容許P= 12.5kN)

②主椽底座的破壞形式

a)剪斷破壞 (常見的破壞形式)

c)拉力破壞 (基少發生)

地 盤

碰

關於屋簷受風掀起的對策

POINT

屋簷受到反覆變化的載重作用、以及長年累月的劣化影響下,必須確保深出簷的拉引固定來提高接合耐力

懸臂樑的接合與「拉引」

日本的木造住宅很多,自古以來為了因應風雨與日照的條件,發展出以深出簷的做法來處理屋頂。就構造上來說,深出簷是椽向外懸挑所形成的部分。懸挑部分稱為懸臂樑,要讓懸臂樑在構造上成立,就必須確實將支撐點固定。另外,對抗反力所需要的「拉引」也是必要的措施(参照第30頁)。

「拉引」是利用一定長度的構材在 屋頂構架的內側形成支撐力,一般以懸 挑距離的1.5~2.0倍以上來施做,並且被 要求在即使受到極端作用力施加在支點 上時也不能出現缺損。特別是在屋頂的 兩個面向都有懸挑的最末端角落部分, 因為會受到很大的上掀力作用,更需要 特別注意。

作用在橡上的力

橡除了承受屋頂載重等常時作用的 垂直方向作用力之外,有時還有積雪載 重、暴風時風壓力(向下與向上的掀力) 等的短期作用力。因此,橡的斷面尺寸 必須考量這些載重,同時思考深出簷懸 挑的條件之後才能決定。

作用在椽上的載重會受到屋頂裝修 材與椽條本身間隔(負擔寬度)的影響, 而風壓力則受到建築基地的基準風速與 周邊建築物高度的影響(圖1)。由於 上掀力的作用方向與重力的作用方向相 反,如果使用屋瓦類等較重的屋頂裝修 材,幾乎不會出現上掀這種作用力,但 如果是金屬板這類較輕的材料,上掀的 力量就會大增。

接合椽條的方式有①馬車螺拴、② 扭力五金、③斜釘等三種具代表性的方法(圖2)。在屋簷頻繁受到反覆載重作用的位置、以及外部邊界處容易產生劣化的地方,採用的接合方式都要保有足以因應作用力所需的充分空間。

圖2是懸挑910公釐的椽接合方式,可 以承受多少上掀力的試驗結果。從這個 試驗結果來看,當椽的間隔設定在455公 釐時,馬車螺栓可承受載重的能力強、且 不易變形;而扭力五金承受載重的能力次 之、但變形承受量大;斜釘則是承受載重 的能力最差、容易瀕臨耐力的極限。

➤圖1 因應屋簷上掀的有效接合

作用在支點上的拉拔力

 $P = w \cdot l$

w:上掀載重

1 屋簷 (懸挑距離)

>圖2 懸挑椽的接頭耐力試驗

檐口椽的接合方法

(1) 馬車螺拴

(3)斜釘

910 120 報重 120 核 (杉) 45×120 様(杉)

支撐點的接合方式以上述三種做法來施做,並針對各自可承受的拉拔力進行耐力試驗與調查。

口:正方形的斜角

右圖是針對各個接合做法對應上 掀力的拉伸耐力試驗結果。以 910公釐的檐口懸挑、及455公 釐的椽間隔為設定條件,在兩層 樓建築的屋頂面上測定對抗上掀 力的能力。馬車螺栓與扭力五金 尚無問題,但是斜釘的做法呈現 臨界破壞的狀態。

力

木材

水平構面的接合方法

POINT

在水平構面的接合部產生作用的力

建築物一旦出現水平力作用時,樓板與屋頂面等的水平構面會產生變形。 此時在水平構面的外周框架上會出現壓縮力與拉張力的作用(圖))。

在通柱構架裡(參照第60頁),拉 力側的樑會從受拉力作用的柱上拔出。 一旦樑被拔出,不僅樓板會鬆脫使水平 力無法傳遞至承重牆,同時也會無法支 撐常時載重。因此,必須使用毽形螺栓 等的五金構件將柱與樑牢固繫結,藉此 防止樑被拔出。

若是通樑構架(多照第62頁)的構造,樑上因為設有對接接頭,因此面對拉力作用時,得要確保接頭部分不會脫離破壞。

除此之外,在承重牆構面上會出現 很大的拉應力,必須注意各個接合部位 的固定(圖2)。特別是與側邊廂房連接 時,廂房的樑與二樓樓板樑之間經常有 高低差,導致力量很難順利傳遞。因此, 在廂房的閣樓內設置壁體,或者將廂房 的屋架樑與本體屋架的樓板樑直接連結 等做法,皆有助於水平力的傳遞,這也 是不可忽略的必要措施。

何謂接合部倍率

在《容許應力度計算指南》 與《品確法》中提出以「接合部倍率」來做為水平構面的接合部耐力評價指標。這個指標將承重牆端部的柱頭與柱腳的接合方法以N值(參照第130頁)進行對照。

需要較高樓板倍率的情況下,就代 表外周接合部位也將出現較大的應力, 此時應該要採取接合部倍率較高的接合 方式來施做(參照第146頁)。

圖2與表在說明傳統的搭接接頭與對接接頭的抗拉耐力試驗結果。在這些接合方法中,通柱搭接的耐力稍低,因此需要在接頭形狀上下功夫,又或者可以採取將承重牆構面的問距控制在4公尺以內的做法。

原注

※出處: 「木造機架工法住宅的容許應力度設計」(財團法人日本住宅·木材技術中心)

保法

5.台灣雖無接合部倍率的相關規定,不過在「木構造建築物設計及施工技術規範」的第六章「構材接合部設計」針對木構造的各種接合方式有相關說明,並訂定抵抗各類應力時應具備的強度與做法。

牆

>圖1 在水平構面的接合部產生作用的力

①在水平構面的外周部位產生的力

通柱的搭接接頭抗拉耐力試驗

對接接頭拉力試驗

①榫頭以插榫固定 (杉) 1157

②榫頭以暗榫固定

口:正方形的斜角

對接接頭的種類		樹種	斷面 B×D	最大載重 P (kN)	短期基準 接合部 耐力 Pt(kN)
	金輪對接(縱向)	杉	120 × 180	27.18	14.17
	追掛對接	杉	120 × 180	55.98	30.78
	蛇首	杉	120 × 180	27.77	16.55

COLUMN

設置伸縮縫的方法

① 上部構造的伸縮縫

在搖擺方式不同的建築物間設置伸縮

② 基礎的伸縮縫

兩種需要設置(伸縮縫)的案例

所謂的伸縮縫是將性質不同的兩個構造體分離,使之不會互相傳遞力量的做法。

需要設置伸縮的情形包括了,①因應水平力的作用需求、②因應地盤沉陷兩種情況。①就像 搖擺狀態不一致的兩層樓建築與平屋頂建築相鄰,相互間的水平變形量到達最大值時,建築物 間會呈現與平常不一樣的問隔距離。②則是在軟弱地盤上配置重量不同的建築物時,為了能因 應不同的沉陷量,不僅要設置伸縮縫讓上部構造體分離,在基礎部分也必須分隔開來配置,使 建築物不會因為不均匀沉陷而造成破壞。就②的情形來說,基礎伸縮縫的寬度雖然不需要做得 像①那麼寬,但卻要考慮到有高低差出現的問題,在裝修、或設備配管需有設計上的考量。

院宅 (一至五)

非常建筑

1991

一组院宅,用设计的语言从不同的角度寻找、思考庭院和房屋之间的关系以及庭院在住宅中的意义,同时也企图在破译传统的基础上建立新的中国住宅的空间模型。作为一种研究手段的设计并不一定有一个明确的起点,设计的的含义是在不断地修改过程中逐渐显现的。院宅从一到五的编排也反映出这样一个发展的过程。这个过程也并未随院宅五结束,下面二个作品,大连的独立住宅和广东的住宅群,均是以院宅系列为起点,是它的延续。然而就目前为止,我只能解读选入的五个院宅中的后二个。

院宅四

这所院宅建立在一个三分的屋院屋的空间结构上,似乎暗示院是一个实体建筑断裂分离的产物,或是一个实体建筑中间被挖去了一部分的结果。两种可能性中,院都是暴露在日光下的原本为室内的空间。因此室内室外空间之间有一种本质的联系。这种联系反过来又将三分结构否定了。

另一方面,我受启发于美国艺术家海瑟一个题为《双空》的作品,一个矩形的人造下沉空间被不规则的大峡谷的自然下沉空间所打断(实际制作过程是在大峡谷两侧用推土机推出遥遥相对的矩形空间)。院宅四也具有双空的关系:室内空间跨越院的峡谷空间。

院宅五

房屋座落在院子中央,违背了中心虚无的传统中国空间秩序, 为了纠正这个"错误",房屋必须消失或变成透明的。玻璃的房屋 任院子从中穿过,院墙是居住空间的真正限定。院因此不是宅的 一部分。院即宅。就是说,庭院与房屋重合了。房屋消失了,便 为负。在负的房屋中划分房间,只有用负的墙壁。象正的实墙一 样,玻璃的负墙具有厚度,一个由空气构成的虚的厚度。实质上, 负墙又是一个十字形的狭窄的院落。 甲剖面

乙剖面

院宅一

院宅三

正立面

一层平面

二层平面

三层平面

院宅三

院宅三

-- 13

二层

三层

院内立面

楼梯间剖面

院宅四

外部:围墙,屋顶

内部:图塘,玻璃墙

