Monte Carlo Simulations with ProtoMS

Dr Christopher Cave-Ayland School of Chemistry University of Southampton c.i.cave-ayland@soton.ac.uk

Monte Carlo Simulations with ProtoMS Workshop Outline

Time	Торіс
10:00	Monte Carlo Simulation and the ProtoMS
	Code
	Dr. Chris Cave-Ayland, University of Southampton
10:15	Exercise 1
	Simulating a Protein-Ligand System
11:30	Introduction to GCMC
	Hannah Bruce-Macdonald, University of Southampton
11:45	Exercise 2
	GCMC Calculations for Water Binding

Monte Carlo Simulations with ProtoMS Development History

Monte Carlo Simulations with ProtoMS **Execution Outline**

Setup

- Parameterise small molecules
- Create input files
- Modular tools
- Master script
- Setup wizard

Simulation

Fortran 77

- Metropolis Monte Carlo
- **Transformations**
- **Grand Canonical** Ensemble

Analysis

- Extract system properties
- Calculate free energies
- Clustering

Monte Carlo Simulations with ProtoMS Code Capabilities

Monte Carlo Simulations with ProtoMS Development Processes

- Developed with Mercurial, hosted on Bitbucket
- Bamboo continuous integration server
- SSI Collaboration
 - Test Suite
 - Usability review
- Licenced under GPL v2
- www.protoms.org
- ~10 publications application note in preparation

Monte Carlo Simulations with ProtoMS Metropolis Monte Carlo Algorithm

Monte Carlo Simulations with ProtoMS Move Types - Displacement

Test:

$$P_{accept} = \min(1, \exp[-\beta \Delta E])$$

- Single or multiple atoms
- Test assumes symmetric proposal distributions

Monte Carlo Simulations with ProtoMS Move Types - Volume

Test:

$$P_{accept}$$

$$= \min(1, \exp[-\beta(\Delta E + p\Delta V) + N \ln\left(\frac{V_{new}}{V_{old}}\right)])$$

Usually displace particles as well

Monte Carlo Simulations with ProtoMS Move Types – Insertion/Deletion

Test:

Depends

Variable particle number – GCMC

Monte Carlo Simulations with ProtoMS MC Overview

Advantages

- Only evaluate energy terms that change
- Free choice of move proposal distributions
- Can focus sampling on interesting parts
- Easy to impose constraints
- Vary particle number

Disadvantages

- Parallelisation
- Need to define move proposal distributions
- Non-pairwise interactions

Monte Carlo Simulations with ProtoMS

To get started:

https://sites.google.com/site/protomsgcmcworkshop/