Задача 9-4

ການເຊື່ອມຕໍ່ຂອງສອງອົງປະກອບ

Однажды ранним ясным утром, химик Колбочкин, к большому удивлению, получил посылку от его давнего друга из Лаоса — химика Тигельвонга. В посылке оказались хорошо упакованные образцы веществ и письмо, в котором учёный подробно описывал новую область своих интересов изучение бинарных соединений, образуемых элементами X и Y. Среди них наиболее известны вещества A, B, C, образцы которых и были в посылке. Их свойства кратко описаны в таблице, представленной ниже.

Вещество	Название	Агрегатное	Особенности	
		состояние при н.у.		
A	ຫນຶ່ງ	Газ	Обладает неприятным запахом	
В	ສອງ	Жидкость	Используется в качестве топлива	
C	ສາມ	Жидкость	Его водные растворы проявляют	
			кислотные свойства	

Испытывая большие проблемы со знанием лаосского языка, химик Колбочкин был вынужден самостоятельно идентифицировать каждое из них. Для этого он провёл следующие эксперименты:

- Образец вещества **A** массой 8,5 мг поглотили с помощью 10 мл 0,200 М раствора соляной кислоты. На титрование избытка кислоты потребовалось 7,5 мл 0,200 М раствора гидроксида калия. Дополнительно известно, что вещество **A** взаимодействует с соляной кислотой в соотношении 1:1.
- Образец вещества **В** массой 144,0 мг растворили в 100 мл воды. На титрование аликвоты полученного раствора объёмом 10 мл потребовалось 30 мл 0,030 М раствора иода. Дополнительно известно, что вещество **В** взаимодействует с иодом в соотношении 1:2.

• Образец вещества **C** массой 64,5 мг растворили в 100 мл воды. На титрование аликвоты полученного раствора объёмом 10 мл потребовалось 10 мл 0,015 М КОН. Дополнительно известно, что вещество **C** взаимодействует с гидроксидом калия в соотношении 1:1.

Получив обратную телеграмму с формулами веществ \mathbf{A} - \mathbf{C} , лаосский учёный Тигельвонг восхитился упорством Колбочкина и предложил ему поучаствовать в расшифровке данных кристаллографического анализа твёрдых соединений \mathbf{D} и \mathbf{E} , которые были синтезированы путём взаимодействия различных пар из упомянутых выше веществ.

- Вещество **D**, имеющее плотность 1,419 г/см³, кристаллизуется в моноклинной элементарной ячейке со сторонами a = 5,641 Å, b = 5,521 Å, c = 11,306 Å и углом $\beta = 93,26^{\circ}$, содержащей 4 формульные единицы.
- Вещество **E**, имеющее плотность 1365 кг/м³, кристаллизуется в ромбической элементарной ячейке с длинами сторон a = 893,3 пм, b = 378,2 пм, c = 865,2 пм, содержащей 4 формульные единицы.

<u>Вопросы:</u>

- 1) Установите формулы веществ **A**, **B** и **C**. *Ответ подтвердите расчётами*.
- 2) Установите состав соединений **D** и **E**. *Ответ подтвердите расчётами*.
- 3) При взаимодействии каких пар из веществ **A**, **B** и **C** могли быть получены соединения **D** и **E**?

Справочные данные:

- 1) $N_A = 6{,}022 \cdot 10^{23} \ \text{моль}^{-1} \text{постоянная Авогадро, 1 Å} = 10^{-10} \ \text{м, 1 пм} = 10^{-12} \ \text{м}$
- 2) Объём моноклинной элементарной ячейки: $V = a \ b \ c \cdot \sin \beta$ Объём ромбической элементарной ячейки: $V = a \ b \ c$

Решение задачи 9-4 (авторы: Крысанов Н.С., Шалыбкова А.А.)

1. Рассчитаем молярную массу вещества **A** исходя из результатов кислотно-основного титрования:

$$A + HCl \rightarrow продукты$$

 $HCl + KOH \rightarrow KCl + H_2O$

• Исходное количество кислоты в растворе:

$$u_{\text{HCX}}(HCl) = c(HCl) \cdot V(HCl) = 0,200 \text{ M} \cdot 0,010 \text{ л} = 2,0 \cdot 10^{-3} \text{ моль}$$

• Количество щёлочи, затраченное на титрование:

$$u_{\mathrm{peak}}(KOH) = c(KOH) \cdot V(KOH) = 0,200 \ \mathrm{M} \, \cdot 0,0075 \ \mathrm{\pi} = 1,5 \cdot 10^{-3} \ \mathrm{моль}$$

• Согласно условию задачи, вещество **A** взаимодействует с соляной кислотой в соотношении 1:1, тогда:

$$u(A) = \nu_{\text{изб}}(HCl) = \nu_{\text{исх}}(HCl) - \nu_{\text{реак}}(KOH) = 0.5 \cdot 10^{-3} \text{ моль}$$

$$M(A) = \frac{m_{\text{образца}}}{\nu(A)} = \frac{8.5 \cdot 10^{-3} \text{ г}}{0.5 \cdot 10^{-3} \text{ моль}} = 17 \text{ г/моль}$$

Рассчитаем молярную массу вещества **В** исходя из результатов окислительно-восстановительного титрования:

$$\mathbf{B} + \mathbf{I}_2 \rightarrow \mathbf{продукты}$$

• Количество иода, пошедшее на титрование аликвоты исходного раствора:

$$u_{\text{титр}}(I_2) = c(I_2) \cdot V(I_2) = 0,030 \text{M} \cdot 0,030 \text{ л} = 9,0 \cdot 10^{-4} \text{ моль}$$

Количество вещества В в аликвоте раствора:

$$\nu_{\rm an}(B) = 0.5 \nu_{
m turp}(I_2) = 4.5 \cdot 10^{-4}$$
 моль

• Количество вещества В в исходном образце:

$$u_{\text{обр}}(B) = \nu_{\text{ал}}(B) \cdot \frac{V_{\text{р-ра}}}{V_{\text{ал}}} = 4,5 \cdot 10^{-4} \text{ моль} \cdot \frac{100 \text{ мл}}{10 \text{ мл}} = 4,5 \cdot 10^{-3} \text{ моль}$$

$$M(B) = \frac{m_{\text{образца}}}{\nu_{\text{обр}}(B)} = \frac{144 \cdot 10^{-3} \text{ г}}{4,5 \cdot 10^{-3} \text{ моль}} = 32 \text{ г/моль}$$

Рассчитаем молярную массу вещества **С** исходя из результатов кислотноосновного титрования:

$$C + KOH \rightarrow продукты$$

• Количество щёлочи, пошедшее на титрование аликвоты исходного раствора:

$$\nu_{\text{титр}}(KOH) = c(KOH) \cdot V(KOH) = 0.015 \text{M} \cdot 0.010 \text{ л} = 1.5 \cdot 10^{-4} \text{ моль}$$

• Количество вещества С в аликвоте раствора:

$$\nu_{\rm an}(C) = \nu_{\rm титр}(KOH) = 1,5 \cdot 10^{-4}$$
 моль

Количество вещества С в исходном образце:

$$u_{\text{обр}}(C) = \nu_{\text{ал}}(C) \cdot \frac{V_{\text{р-ра}}}{V_{\text{ал}}} = 1,5 \cdot 10^{-4} \text{ моль} \cdot \frac{100 \text{ мл}}{10 \text{ мл}} = 1,5 \cdot 10^{-3} \text{ моль}$$

$$M(C) = \frac{m_{\text{образца}}}{\nu_{\text{обр}}(C)} = \frac{64,5 \cdot 10^{-3} \text{ г}}{1,5 \cdot 10^{-3} \text{ моль}} = 43 \text{ г/моль}$$

По результатам расчётов было установлено, что **A** является газом с неприятным запахом и молярной массой 17 г/моль, проявляющим основные свойства (реагирует с HCl). Исходя из крайне низкой молярной массы данного вещества предположим, что в его состав входит водород — H, тогда другим элементом является азот — N, а вещество имеет формулу $\mathbf{A} = \mathbf{NH_3}$. Зная элементный состав и молярные массы веществ \mathbf{B} и \mathbf{C} несложно установить их химический состав: $\mathbf{B} = \mathbf{N_2H_4}$, $\mathbf{C} = \mathbf{HN_3}$.

2. Исходя из результатов кристаллографического анализа рассчитаем молярные массы веществ **D** и **E**:

$$M(D) = \frac{\rho(D) \cdot N_a \cdot V}{Z} = \frac{\rho(D) \cdot N_a \cdot a \, b \, c \, \sin \beta}{Z} =$$

$$= \frac{1,419 \, \frac{\Gamma}{\text{см}^3} \cdot 6,022 \cdot 10^{23} \, \text{моль}^{-1} \cdot 5,641 \cdot 5,521 \cdot 11,306 \cdot 10^{-24} \text{см}^3 \cdot \sin 93,26^\circ}{4} =$$

$$= 75,1 \, \Gamma/\text{моль}$$

$$M(E) = \frac{\rho(E) \cdot N_a \cdot V}{Z} = \frac{\rho(E) \cdot N_a \cdot abc}{Z} =$$

$$= \frac{1365 \, \frac{\text{кг}}{\text{м}^3} \cdot 6,022 \cdot 10^{23} \, \text{моль}^{-1} \cdot 893,3 \cdot 378,2 \cdot 865,2 \cdot 10^{-36} \text{м}^3}{4} =$$

$$= 0,06007 \, \frac{\text{K}\Gamma}{\text{моль}} = 60,07 \, \Gamma/\text{моль}$$

Несложно убедиться, что данные вещества имеют формулы $\mathbf{D} = \mathbf{N}_5\mathbf{H}_5$ и $\mathbf{E} = \mathbf{N}_4\mathbf{H}_4$. Заметим, что формула вещества \mathbf{D} получается путём сложения формул веществ $\mathbf{B} = \mathbf{N}_2\mathbf{H}_4$ и $\mathbf{C} = \mathbf{H}\mathbf{N}_3$, то есть вещество \mathbf{D} является азидом гидразония $\mathbf{D} = \mathbf{N}_2\mathbf{H}_5^+\mathbf{N}_3^-$. Аналогично вещество \mathbf{E} является азидом аммония $\mathbf{E} = \mathbf{N}\mathbf{H}_4^+\mathbf{N}_3^-$.

3. Таким образом, соединение **D** может быть получено при взаимодействии веществ **B** и **C** (N_2H_4 и HN_3) а **E** - по реакции между **A** и **C** (N_3 и HN_3).

Система оценивания:

1.	Определение веществ А, В и С по 4 балла	12 баллов
	из них расчёт на основании данных титрования - 3 балла,	
	если расчёт не приведён, то верно приведенные вещества не	
	оцениваются	
	верный состав –1 балл	
2.	Определение веществ D и E по 3 балла	6 баллов
	из них расчёт - 2 балла, если расчёт не приведён, то верно	
	приведенные вещества не оцениваются	
	верный состав –1 балл	
3.	Верные пары веществ по 1 баллу	2 балла
	Итого:	20 баллов