

CLAIMS

1. A process for producing a polymer of ethylene containing from 0.1 to 99 % by mol of one or more derived units of alpha-olefins of formula $\text{CH}_2=\text{CHZ}$, wherein Z is a $\text{C}_2\text{-C}_{20}$ alkyl radical, and optionally from 0 to 5% by mol polyene, comprising contacting, under polymerization conditions, ethylene, one or more alpha-olefins and optionally said polyene, in the presence of a catalyst system obtainable by contacting:
- a) a metallocene compound of formula (I):

(I)

wherein

M is zirconium, hafnium or titanium;

X, equal to or different from each other, is a hydrogen atom, a halogen atom, a R, OR, OR'O, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ group, wherein R is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; and the R' substituent is a divalent group selected from C₁-C₄₀-alkylidene, C₆-C₄₀-arylidene, C₇-C₄₀-alkylarylidene or C₇-C₄₀-arylalkylidene radicals; two X can join to form a C₄-C₄₀ dienyl ligand;

R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R², R³, R⁴ and R⁵, equal to or different from each other, are hydrogen atoms, halogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R^6 is a linear or branched, saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl, or C_7-C_{20} -arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

L is a divalent bridging group selected from C_1-C_{20} alkylidene, C_3-C_{20} cycloalkylidene, C_6-C_{20} arylidene, C_7-C_{20} alkylarylidene, or C_7-C_{20} arylalkylidene radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or a silylidene radical containing up to 5 silicon atoms;

T is a divalent radical of formula (II) or (III):

(II)

(III)

wherein

the atom marked with the symbol * is linked to the atom marked with the same symbol in the compound of formula (I);

R^3 and R^4 have the meaning previously described;

R^8 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl, or C_7-C_{20} -arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R^9 , equal to or different from each other, is a hydrogen atom or a linear or branched, saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl, or C_7-C_{20} -arylalkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; and

b) an alumoxane or a compound capable of forming an alkyl metallocene cation.

2. The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
3. The process according to claim 1 wherein in the compound of formula (I):

X is a halogen atom, a R, OR'O or OR group, wherein R and R' are defined as in claim 1; R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R² is a hydrogen atom; R³ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical optionally containing one or more halogen atom; R⁴ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R⁶ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; L is Si(CH₃)₂, SiPh₂, SiPhMe, SiMe(SiMe₃), CH₂, (CH₂)₂, (CH₂)₃, C(CH₃)₂, C(Ph)₂ or C(CH₃)(Ph); R⁸ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; and R⁹ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical.

4. The process according to claim 1 wherein the metallocene compound has formula (IV) or (V):

(IV)

(V)

wherein R¹, R², R⁵, R⁶, L, M and X have the meaning reported in claim 1 or 3; R³ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing one or more halogen atom; R⁴ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical.

5. The process according to claim 4 wherein, in the compounds of formula (IV) and (V), R³ is a hydrogen atom or a group -C(R⁷)₃, wherein R⁷, equal to or different from each other, is a linear or branched, saturated or unsaturated C₁-C₈-alkyl radical; and R⁴ is hydrogen or a group -C(R⁷)₃.

6. The process according to any of claims 1 to 5 wherein, in the compounds of formulas (I), (IV) and (V), R³ and R⁴ are hydrogen atoms.
7. The process according to any of claims 1 to 5 wherein, in the compounds of formulas (I), (IV) and (V), when R³ is an hydrogen atom, R⁴ is or a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing one or more halogen atom; or when R³ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical optionally containing one or more halogen atom, R⁴ is an hydrogen atom.
8. The process according to any of claims 1 to 7 wherein the catalyst system is supported on an inert carrier.
9. The process according to claim 8 wherein the catalyst system is supported on a polyolefin.
10. The process according to any of claims 1 to 9 wherein the process is carried out in gas phase.
11. The process according to any of claims 1 to 11 wherein the alpha-olefin is 1-pentene, 1-hexene or 1-octene.