Part 1 Lab Day 2 ISI Short Course | June 1-3

Creating radial basis functions (RBF)

In 1-d distance is just absolute value. Here is a series of differnt ways to code this. Using the scaled Gaussian function as the bump. We will use the range of the World Bank CO2 data set for these examples

Worldbank data and a Kriging fit


```
u <- seq( min(x), max(x), length.out=8)

# a single basis function -- the 5th one
b5<- rep(NA, 60)
delta<- max(x) - min( x)
for( k in 1:60){
    d5<- abs(sGrid[k] - u[5])/(.1*delta)
    b5[k]<- exp( - d5^2)
}

#
plot( sGrid, b5, type="l")
xline( u[5], col="grey")
title(" A Gaussian RBF")</pre>
```

A Gaussian RBF

For loops are to be avoided in R if there are simpler functions Here is a better way to code this

```
dVec<- rdist( sGrid, u[5])/(.1*delta)
b5<- exp( - dVec^2 )</pre>
```

Typically we want to gt all the RBFs for fitting and evaluation so the final coding step is to generate the whole basis matrix that is **60X10**. In this result column 5 (**basisMatrix**[,5]) is the same as b5 above

```
bigD<- rdist( sGrid, u)/(.1*delta)
basisMatrix1<- exp( - bigD^2)
dim( basisMatrix1)</pre>
```

[1] 60 8

Finally, the Wendland shape is better for computing because it is zero beyond a certain range. Increase the

scale so there is more overlap.

```
BGrid<- WendlandFunction(rdist( sGrid, u)/(2*delta/8))
dim( BGrid)

## [1] 60 8
And a plot to see all these guys ...
matplot( sGrid, BGrid, type="l", lty=1)
lines( sGrid, BGrid[,4], col="black", lwd=3)
title( "Wendland RBFs")</pre>
```

Wendland RBFs

Sometimes we also want to include a constant and linear term. Here X is ready for curve fitting to the World Bank data. Redo some of the computations to make it easy to change number of basis functions.

```
u <- seq( min(x), max(x), length.out=8)
BGrid<- WendlandFunction(rdist( sGrid, u)/(3*delta/8))
XGrid<- cbind( 1, sGrid, BGrid )
XB<- WendlandFunction( rdist( x, u)/( 3*(delta/8) ) )
X<- cbind( 1, x, XB)
dim( X)
## [1] 75 10
# fit the data by OLS
fitRBF<- lm( y~ X - 1 )</pre>
```

Take a look at the fitted curve.

#print(summary(fitRBF))

```
plot( x, y, col="orange3", pch=16)
gHat<- XGrid%*% fitRBF$coefficients
lines(sGrid, gHat, lwd=2, col="grey" )</pre>
```


Exercises

- 1. What happens to the overlap in the Wendland basis functions if the 3 in the scaling is decreased to 1.5?
- 2. The example fit is probably too "wiggly". Find a commbination of overlap and number of basis functions that visually is a better fit to these data.