Simplicial Geometry

Radim Čech

December 28, 2024

Ahoj, já mám malý penis.

Definition 1 (Simplectic manifold). Let M be a smooth manifold of even dimension 2m and let $\omega \in \Omega^2(M)$ be a closed non degenerate 2-form i.e.

$$d\omega = 0$$
 and $\omega^m = \omega \wedge \omega \wedge \cdots \wedge \omega \neq 0$,

Then ω is called a *simplectic form* and the pair (M, ω) is called a *simplectic manifold*.

ekvivalentni definice nedegenerovanosti.

Narozdil od riemannovske geometrie nelze pouzit partitions of unity na konstrukci metriky. napsat poznamku o koncenci se psanim dimenze manifoldu :D

Example 2 (Canonical symplectic structure). Let $M = \mathbb{R}^2 m$ with the global coordinates $q_1, \ldots, q_m, p_1, \ldots, p_m$. and let ω be a form s.t.,

$$\omega = \sum_{i=1}^{m} dp_i \wedge dq_i.$$

Then

$$\omega^m = m! \cdot (-1)^{m(m-1)/2} \cdot dp_1 \wedge \dots \wedge dp_m \wedge dq_1 \wedge \dots \wedge dq_m$$

We call R^2m with the form ω the canonical symplectic structure.

Example 3 (Cotangent bundle is a symplectic manifold.). Let M be a manifold of dimension m, let $\eta \in T^*M$ be a tangent covector and $\nu \in T_{\eta}(T^*M)$ be a tangent vector at η . Represent ν as a curve $\nu : (-\epsilon, \epsilon) \to T^*M$ s.t.

$$\nu(0) = \eta, \ \nu'(0) = \nu$$

Project this curve by the projection $\pi: T^*M \to M$ and apply η to the tangent vector of the projected curve

$$\theta(\nu) := \eta \left(\frac{d}{dt} \left(\pi \circ \nu(t)|_{t=0} \right) \right) \tag{1}$$

Then $\omega = d\theta$ is a simlectic form on T^*M . Any system of coordinates $\{q_1, \ldots, q_m\}$ in M determines coordinates $\{q_1, \ldots, q_m, p_1, \ldots, p_m\}$ in T^*M by the relation $\eta = \sum p_i \cdot dq_i$. From (1) we have

TOHLE SPOCITAT!!!!!!!!!!!

$$\theta = \sum_{i=1}^{m} p_i \cdot dq_i$$

and the 2-form

$$\omega = d\theta = \sum_{i=1}^{m} p_i \wedge dq_i$$

is non-degenerate.

tady nejak rozepsat predpoklady, lcordner je iota jakoby :ddddd

Lemma 4. The Lie derivative of a differential form is expressed in terms of the exterior derivative and the inner product as

$$\mathcal{L}_{V}(\omega^{i}) = d(V \, \lrcorner \, \omega^{i}) + V \, \lrcorner \, (d\omega^{i}).$$

Lemma 5 (Poincare's Lemma). Let U be a star shaped open set in \mathbb{R}^n , then for each closed k-form $\omega \in \Omega^k(U)$ there exists a (k-1)-form $\eta \in \Omega^{k-1}(U)$ such that $d\eta = \omega$.

Theorem 6 (Darboux theorem). Let M^{2m} , ω be a symplectic manifold. Then for all $x \in M$ exists a chart (U, ϕ) such that ω is the pullback of the usual symplectic form $\omega = \phi * \left(\sum_{m=1}^{i=1} dp_i \cdot dq_i\right)$

Proof. In T_x^*M choose a basis $\sigma_1, \ldots, \sigma_m, \mu_1, \ldots, \mu_m$ such that ω is in normal form i.e.

$$\omega(x) = \sum_{m}^{i=1} \sigma_i \wedge \mu_i.$$

Now consider a chart $\phi: V \to \mathbb{R}^2 m$ around x such that

$$\phi(x) = 0$$
 and $\omega(x) = \phi * \left(\sum_{m=0}^{i=1} \sigma_i \wedge \mu_i(0)\right)$

Denote the corresponding symplectic form on V by

$$\omega_1 = \phi * \Big(\sum_{m=0}^{i=1} \sigma_i \wedge \mu_i(0)\Big).$$

Then there exists a neighbourhood $U \subset V$ such that for all $t \in [0,1]$ the form

$$\omega_t = (1-t)omega + t \cdot omega_1$$

is a symplectic form on U. Also $d\omega_t = 0$ and since $\omega_t(x) = \omega(x)$ for all t. By compactness, all ω_t do not degenerate at the same time in a neighbourhood of x. Since $d(w_1 - w_0) = 0$, Lemma 5 shows the existence of a 1-form α such that $\omega_1 - \omega_0 = d\alpha$. By substracting locally (if necessary) a 1-form with constant coefficients from α , we may assume, that α vanishes at the point x, $\alpha(x) = 0$. By dualizing α by using the symplectic forms ω_t , we get a family Ω_t of vector fields on U parametrized by t

$$\omega_t(\nu, \mathcal{W}_t) = \alpha(\nu).$$

Let $\varphi(y,t) \in M$ be a solution of the non-autonomous differential equation

$$\varphi'(t) = \mathcal{W}_t(\varphi(t)), \ \varphi(0) = y$$

All the vector fields $W_t(x) = 0$ vanish at x, so the solution corresponding to x is constant $\varphi(x,t) = x$. So there exists a neighbourhood of x $U_1 \in U$ such that for every initial condition $y \in U_1, \varphi(y,t)$ is defined on [0,1]. Let $\varphi_t: U_1 \to M$ be the corresponding map. Then by application of Lemma 4,

$$\frac{d}{dt}\varphi_t^*(\omega_t) = \varphi_t^* \left(\frac{d\omega_t}{dt}\right) + \varphi_t^* \left(\mathcal{L}_{\partial \varphi_t/\partial t}(\omega_t)\right) = \varphi_t^*(\omega_t - \omega) + \varphi_t^* \left(\mathcal{L}_{W_t}(\omega_t)\right) \\
= \varphi_t^*(\omega_t - \omega + d(W_t \sqcup \omega_t) + W_t \sqcup d\omega_t) = \varphi_t^*(\omega_t - \omega - d\alpha) = 0.$$

Thus $(\varphi_t^*(\omega_1) = \varphi_0^*(\omega) = \omega)$, and $(\Phi \circ \varphi_1)$ is the chart we were looking for,

$$(\Phi \circ \varphi_1)^* \left(\sum_{i=1}^m dp_i \wedge dy_i \right) = \omega.$$

tohle je v lsg.pdf

lagrangian subspace? submanifold? embeddings? asi spis ne....

Definition 7 (Lagrangian submanifold). Let (M^{2m}, ω) be a symplectic manifold. We call a submanifold Y of M lagrangian, if at each $p \in Y$, $T_p Y$ is a lagrangian subspace of $T_p M$, i.e., $\omega_p|_{T_p Y} \equiv 0$ and $dim T_p Y = \frac{1}{2} dim T_p M$. Equivalently, if $i: Y \to M$ is the inclusion map, then Y is lagrangian if and only if $i*\omega=0$ and $dim Y=\frac{1}{2} dim M$

dukazem tehle sracky se napise i priklad ktery chceme napsat

Theorem 8. the image of a section of T^*M is a lagrangian submanifold iff nejaka forma je close...lsg strana 17.

lsg dalsi section

Example 9. Let $S \subset X$ be a submanifold, then the conormal bundle N^*S is a lagrangian submanifold of T^*x .

Lemma 10 (Lemmatko). 2 + 2 = 4 - 1 = 3 quick maffs.

A ted si rekneme dulezitou vetu.

Theorem 11 (Hlavni veta o gaystvi). Jsi gay.

Corollary 12. Vlastne dusledek tohoto kratkeho textu je, ze bych se mel jit zabit. Jdu na to!