More intuition on phylogenetic tree estimation

Simplification from John Huelsenbeck's lecture Woods Hole Molecular Phylogenetics

Proming blue A got rid of close blue A V2

$$\pi_A \times p_{AA}(v_1) \times p_{AA}(v_2) \times p_{AG}(v_3) \times p_{AG}(v_4)$$

$$\pi_A \times p_{AA}(v_1) \times p_{AA}(v_2) \times p_{AG}(v_3) \times p_{AG}(v_4)$$
L3 stationary distribution

What is truly going on?

$$P(X=X) = \lambda e^{-\lambda X} \quad \text{in Wiki}$$

$$To \quad E[X] = 1$$

$$A \quad C \quad G \quad T$$

$$A \quad -0.886 \quad 0.19 \quad 0.633 \quad 0.063$$

$$C \quad 0.253 \quad -0.696 \quad 0.127 \quad 0.316$$

$$G \quad 1.266 \quad 0.19 \quad -1.519 \quad 0.063$$

$$T \quad 0.253 \quad 0.949 \quad 0.127 \quad -1.329$$

Interpretation: If the process is in state i, we wait an exponentially distributed amount of time with parameter $-q_{ii}$ until the next substitution occurs.

Finish

	A	С	G	Т
A	-0.886	0.19 -0.696 0.19 0.949	0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266	0.19	-1.519	0.063
Т	0.253	0.949	0.127	-1.329

0.249 0.22 0.22 Start in state G

Finish

	A	С	G	Т
A	-0.886	0.19	0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266		-1.519	0.063
Т	0.253	0.949	0.127	-1.329

	A	С	G	Т	
A	-0.886	0.19	0.633	0.063	
С	0.253	-0.696	0.127	0.316	
G	1.266	0.19	-1.519	0.063	1.266
Т	0.253	0.949	0.127	-1.329	$p_A = \frac{1.233}{1.519} = 0.833$
					0.190
					$p_C = \frac{1.519}{1.519} = 0.125$
					$p_{\rm m} = \frac{0.063}{0.042}$
					1.519
					Start —

	A	C	G	T		
A	-0.886	0.19	0.633	0.063		
С	0.253	-0.696	0.127	0.316		ا در
G	1.266	0.19	-1.519	0.063	1.266	^
Т	0.253	0.949	0.127	-1.329	$\left(p_A = \frac{1.266}{1.519} = 0.833\right)$	0
					0.190	٧
					$p_C = \frac{0.150}{1.519} = 0.125$	E
					0.063	
					$p_T = \frac{1}{1.519} = 0.042$	
					Start —	

howh howh howh and and orbeass)

Finish

	A	С	G	Т
A	-0.886		0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266	0.19	-1.519	0.063
Т		0.949	0.127	-1.329

Exp(0.886)

Finish -

					$n = \frac{0.190}{0.190} = 0.214$
	A	С	G	Т	$p_C = \frac{0.190}{0.886} = 0.214$
A	-0.886	0.19	0.633	0.063	$n = \frac{0.633}{0.633} = 0.714$
С	0.253	-0.696	0.127	0.316	$p_G - \frac{1}{0.886} - 0.714$
G	1.266	0.19	-1.519	0.063	$p_G = \frac{0.633}{0.886} = 0.714$ $p_T = \frac{0.063}{0.886} = 0.072$
Т	0.253	0.949	0.127	-1.329	$p_T = 0.886 = 0.072$

	A	С	G	Т
A	-0.886	0.19		0.063
C	0.253		0.127	0.316
G	1.266	0.19	-1.519	0.063
Т	0.253	0.949	0.127	-1.329

				G	
•	A	0.7079	0.0813	0.1835	0.0271
P (0.50) =	С	0.1085	0.7377	0.0542	0.0995
P(0.50) =	G	0.367	0.0813	0.5244	0.0271
	Т	0.7079 0.1085 0.367 0.1085	0.2985	0.0542	0.5387

			С		
	A	0.4113	0.2873 0.319 0.2873	0.2056	0.0957
P (5.00) =	С	0.3831	0.319	0.1915	0.1062
P(5.00) =	G	0.4112	0.2873	0.2056	0.0957
	Т	0.3831	0.3188	0.1915	0.1065

				G	
-	A	0.4005	0.2994	0.2002	0.0998
P (10.00) =	С	0.3992	0.3008	0.1996	0.1002
P(10.00) =	G	0.4005	0.2994	0.2002 0.1996 0.2002	0.0998
	Т	0.3992	0.3008	0.1996	0.1002

$$P(1000.00) = \begin{bmatrix} A & C & G & T \\ A & 0.4 & 0.3 & 0.2 & 0.1 \\ C & 0.4 & 0.3 & 0.2 & 0.1 \\ G & 0.4 & 0.3 & 0.2 & 0.1 \\ T & 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}$$

Stationary
distribution!

The = 0.4

The = 0.2

The = 0.2

The = 0.1

The = 0.1

We start our with this probability
with this probability
with this probability