

CUSTOMER SEGMENTATION PROJECT BY

OMOGBEME ANGELA

Agenda

- Background
- Objectives
- Methodology
- Executive Summary
- Findings
- Recommendations
- Appendix

BACKGROUND

- The project delves into customer segmentation understanding customer behavior and preferences and creating clusters using demographic indicators.
- Visualizing centroids to understand their distribution and proximity

INTRODUCTION

The objective of the project is to analyze the provided dataset and identify distinct customer segments based on various demographic and behavioral attributes. By leveraging on K-means clustering

METHODOLOGY

DATA COLLECTION AND CLEANING

EXPLORATORY DATA ANALYSIS

CHOOSING THE NUMBERS OF CLUSTERS

CHOOSING THE CENTROID

VALIDATION

EXPLORATION DATA ANALYSIS

Distribution of Age Groups by Profession

	Biotinbation of rigo of daps by the coolin						
	Healthcare –	647	620	55	9	1	
	Engineer –	40	331	267	60	1	
	Lawyer –	3	5	35	362	218	
	ntertainment –	56	410	368	107	8	
Protession	Artist –	61	890	1355	309	25	
Pr	Executive –	20	145	274	122	38	
	Doctor –	90	371	189	36	2	
	Homemaker –	14	155	63	12	2	
	Marketing –	67	119	81	23	2	
		18-25	26-40	41-60 Age Groups	61-80	above80	

CALCULATING THE NUMBER OF CLUSTERS

FINDINGS

- The customers population is mainly segmented by age, marital status, profession, and purchasing power.
- The data is segmented into 4 clusters.
- Cluster 0: Single people from the arts and entertainment sectors with low purchasing power.
- Cluster 1: Middle-aged, married people in the arts sector with average purchasing power.
- Cluster 2: Young, single people without higher education and with low purchasing power.
- Cluster 3: Older, married people with well-paying jobs and a high purchasing power.
- Artists within the age of 41-60 and 26-40 has the highest numbers of customers totalling(2,245) followed by healthcare workers within the ages of 18.25

RECOMMENDATIONS

While individuals in the Artists profession currently represent the largest customer segment, it is imperative to delve deeper into additional factors such as annual income and purchasing power to ascertain their impact on overall profitability. Understanding these variables will provide valuable insights into the potential value added by different customer segments,

LINES OF CODE

- # import all the necessary libraries
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- %matplotlib inline
- plt.style.use('ggplot')
- import seaborn as sns
- import plotly.express as px
- # import and read files
- test = pd.read_csv(r"/content/drive/MyDrive/Test.csv")
- train = pd.read_csv(r"/content/drive/MyDrive/Train.csv")

summary statistical analysis of the test data

test.describe()

extract the categorical columns from the test data

- cat_cols = test.select_dtypes(include = ['object', 'category']).columns.tolist()
- cat_cols
- # Read the train dataset
- train_df = pd.read_csv(r"/content/drive/MyDrive/archive (2)/Train.csv")
- # Make a copy of the original DataFrame
- train_encoded_df = train_df.copy()
- # Define categorical columns for which you want to apply one-hot encoding
- categorical_columns = ['Gender', 'Ever_Married', 'Graduated', 'Profession', 'Spending_Score', 'Var_1']

LINES OF CODE(CTD) # Perform one-hot encoding for each categorical column

train encoded df.drop(columns=[col], inplace=True)

for col in categorical_columns:

```
# Perform one-hot encoding for the column
encoded_df = pd.get_dummies(train_encoded_df[col], prefix=col)
# Concatenate the encoded columns to the copy of the original DataFrame
train encoded df = pd.concat([train encoded df, encoded df], axis=1)# Drop the original categorical column
```

```
plt.figure(figsize=(15, 10))
```

features = ['Ever_Married', 'Age', 'Graduated', 'Work_Experience', 'Spending_Score', 'Family_Size']

```
for i, feature in enumerate(features, start=1):
  plt.subplot(3, 3, i)
 plt.subplots_adjust(hspace=0.5, wspace=0.5)
  if feature == 'Age' or feature == 'Gender' or feature == 'Family_Size':
sns.histplot(df[feature], bins=20, kde=True)
else:A
  sns.countplot(data=df, x=feature)
plt.title('Histogram of {}'.format(feature))
plt.xlabel(feature)
plt.ylabel('Frequency')
plt.show()

    import matplotlib.pyplot as plt
```

• import seaborn as sns

professions = df['Profession'].unique()

plt.show()

```
for profession in professions: count_profession = [
 len(df[(df.Age >= 18) \& (df.Age <= 25) \& (df.Profession == profession)]),
len(df[(df.Age \ge 26) \& (df.Age \le 40) \& (df.Profession = profession)]),
        len(df[(df.Age >= 41) \& (df.Age <= 60) \& (df.Profession == profession)]),
        len(df[(df.Age >= 61) \& (df.Age <= 80) \& (df.Profession == profession)]),
        len(df[(df.Age > 80) & (df.Profession == profession)]) ]
     counts.append(count_profession)
# Plotting
plt.figure(figsize=(10, 6))
  sns.heatmap(counts, annot=True, fmt="d", cmap="YIGnBu", xticklabels=ages, yticklabels=professions)

    plt.xlabel('Age Groups')

plt.ylabel('Profession')

    plt.title('Distribution of Age Groups by Profession')
```

```
# Map spending score categories to numerical values
spending_score_mapping = {'Low': 0, 'Medium': 1, 'High': 2}
df['Spending_Score_Num'] = df['Spending_Score'].map(spending_score_mapping)
# Selecting the features (Age and Numerical Spending_Score)
X = df[['Age', 'Spending_Score_Num']].values
# Impute missing values with the mean
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)
# Using the Elbow Method to find the optimal number of clusters
wcss = [] # Within-cluster sum of squares
for k in range(1, 11):
  kmeans = KMeans(n_clusters=k, init='k-means++', random_state=42)
  kmeans.fit(X_imputed)
  wcss.append(kmeans.inertia_)
```

```
# Plotting the Elbow Method graph
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
plt.title('Elbow Method for Age by Spending_Score Clustering')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.xticks(np.arange(1, 11, 1))
plt.grid(True)
plt.show()
Define the optimal number of clusters based on the Elbow Method (e.g., 3 clusters)
n_clusters = 4
# Fit KMeans model
kmeans = KMeans(n_clusters=n_clusters, init='k-means++', random_state=42)
kmeans.fit(X imputed)
```