Motion Planning in Unknown Environments

K. Grover¹, F. Barbosa², J. Tumova², J. Křetínský¹

¹Technical University of Munich, ²KTH Royal Institute of Technology

Problem Description Empty all the **Key Observation** This bin is close to the others this table. Are the others Overview of our solution scLTL property System RRG graph Automaton **↓**Learn abstraction

Algorithm

- Sample a batch in the known area (initially, sensing radius) using biasing (initially, no biasing).
- Learn from the newly added edges and improve the bias.
- Find the best move and go there.

Finding the best move

Define information gain for each possible move according to a frontier as:

$$IG_{map} = size \times f(d)$$

Define information gain for each possible move according to biasing as:

$$IG_{bias} = g(r, d)$$

Experiments

Used 100 randomly generated office like environments to compare three possible approaches. The table entries represent the **mean** and **standard deviation**.

	See-through Desks			
	Explore, then plan	Simultaneous	Simult. biased	
Total length	77.3 (7.5)	56.6 (8.0)	29.4 (5.0)	
Total Time	7.8 (2.0)	6.4 (2.3)	7.3 (1.9)	
RRG size	1931.2 (460.9)	1938.6 (559.5)	1793.6 (312.1)	

	Opaque Desks			
	Explore, then plan	Simultaneous	Simult. biased	
Total length	79.1 (7.1)	62.9 (16.5)	32.3 (11.8)	
Total Time	9.6 (2.5)	8.3 (3.2)	9.1 (2.4)	
RRG size	2313.8 (550.9)	1868.7 (498.2)	1901.4 (301.2)	