

Aula 3

Nicolas de Sousa Maia in /Nicolas SMaia

Presença

- Linktree: Presente na bio do nosso instagram
- Presença ficará disponível até 1 hora antes da próxima aula
- É necessário 70% de presença para obter o certificado

Recado

Não teremos aula nos dias: 18/04, 02/05, devido aos feriados

Presença e Github

Classificação

Margem

Margem

Função Objetivo

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i(\vec{\theta} \cdot \vec{x} + \theta_0)) + \frac{\lambda}{2} ||\theta||^2$$

Gradiente

Regressão Linear

Regressão x Classificação

- Similaridade na forma
- Papel do hiperplano muda

Objetivo da Regressão

 O objetivo está em prever um valor de saída para um novo valor de entrada, que pode ser 1 ou mais valores

Regressão x Classificação

Colocando lado a lado, a diferença está no papel do hiperplano:

Tabela 1: Dados de Tamanho e Preço de Imóveis

Casa	Tamanho (m²) (X)	Preço (R\$ mil) (Y)
1	50	300
2	70	380
3	80	420
4	90	470
5	100	530
6	120	600

• O modelo da regressão linear segue:

$$Y = aX + b$$

 Encontramos os valores ótimos para o coeficiente angular e o coeficiente linear (chamado de intercepto)

Para o exemplo dado, temos:

$$\hat{Y} = 5X + 50$$

Portanto, para um novo X, podemos prever com:

$$\hat{Y} = 5 \times 110 + 50 = 600$$
 mil reais

 A forma com que encontramos os parâmetros será explicada na sequência

 Para visualização, temos o seguinte gráfico da regressão linear encontrada:

Mean Squared Error

Mean Squared Error (MSE)

Uma das principais Loss

$$L(f(x_i, \theta), y_i) = \frac{(y_i - f(x_i))^2}{2} = \frac{(y_i - \theta x_i)^2}{2}$$

 Intensifica a Perda, tanto para baixo quanto para cima

Detalhe!

$$\theta = (\theta_{antigo}, \theta_0)$$

Detalhe!

$$\theta = (\theta_{antigo}, \theta_0)$$

$$x = (x_{antigo}, 1)$$

Detalhe!

$$x \cdot \theta = x_{antigo} \cdot \theta_{antigo} + 1 * \theta_0$$

Função de Perda da Última Aula

Quantificava o erro

baseado em um único

dado

X

Função de Perda da Última Aula

Quantificava o erro

baseado em um único

dado

Empirical Risk

Quantifica o erro baseado

em todos os dados de

treinamento

Ideia: Média Aritméticas das Perdas

$$R_n(f(x_i)) = \frac{1}{n} \sum_{i=1}^n L(f(x_i), y_i)$$

Mean Squared Error (MSE)

Empirical Risk com MSE

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \frac{(y^t - \theta x^t)^2}{2}$$

Regressão e Gradiente

Relembrando o Algoritmo do SGD

- 1. θ = valor aleatório; θ_0 = valor aleatório
- 2. for t in range(T)
- 3. sortear i em: $\{x_0, x_1, ..., x_n\}$
- 4. $\theta = \theta \eta \nabla_{\theta}[J]$

Gradiente do MSE

 Utilizando o MSE como Loss, podemos calcular seu Gradiente

$$\nabla L(f(x_i, y_i)) = \frac{\partial L(f(x_i, y_i))}{\partial \theta} = \frac{\frac{\partial (y_i - \theta x_i)^2}{2}}{\partial \theta} = -x_i(y_i - \theta x_i)$$

• Caminharemos na Direção Contrário ao Gradiente: $+x_i(y_i-\theta x_i)$

Gradiente do MSE

Algoritmo de Atualização de θ

- 1. Inicializar $\theta = 0$
- 2. Tomar randomicamente um t = 1, ..., n
- 3. $\theta = \theta + \eta x^t (y^t \theta x^t)$

Prática 1

Feature Transformation

Definição

- Transformação matemática do vetor de features
- Tem como intuito mudar o espaço em que estamos trabalhando
- Pode ser de vários tipos

$$(x_1, x_2) \xrightarrow{f} (f(x_1), f(x_2))$$

 $(x_1, x_2) \to (x_1, x_2, x_1^2, x_2^2)$

Exemplo

$$(x_1, x_2) \to (x_1, x_2, x_1 * x_2)$$

- Classe 0
- Classe 1

 É a listagem de todos os monômios, formados pelos elementos do nosso vetor de features, que os graus são menores ou iguais ao grau da expansão que queremos

Primeira Ordem (Linear)

$$\phi(x) = [1, x]$$

• 1: necessário para θ_0 dentro de θ

Segunda Ordem (Quadrática)

$$\phi(x) = [1, x, x^2]$$

$$\phi_2(x) = \left[1, x_1, x_2, x_1^2, x_2^2, x_1 x_2\right]$$

Terceira Ordem (Cúbica)

$$\phi(x) = [1, x, x^2, x^3]$$

$$\phi_3(x) = \left[1, x_1, x_2, x_1^2, x_2^2, x_1 x_2, x_1^3, x_2^3, x_1^2 x_2, x_1 x_2^2\right]$$

Alta Dimensionalidade

- Alta dimensionalidade pode causar overfitting
- Muito custoso para calcular

Funções Kernel (próxima aula)

Regressão Polinomial

Regressão Polinomial

- Similar a regressão linear
- Vetor de características -> φ
- Vetor de parâmetros terá a mesma dimensionalidade de φ

Regressão Polinomial

- 1. Inicializar $\theta = 0$
- 2. Tomar randomicamente um t = 1, ..., n
- 3. $\theta = \theta + \eta \phi^t (y^t \theta \phi^t)$

Prática 2

- @data.icmc
- /c/DataICMC
- /icmc-data
 - V data.icmc.usp.br

obrigado por sua presença!