CDN System Design Interview Questions & Answers

Comprehensive Guide

Table of Contents

- 1. CDN Basics
- 2. CDN Architecture & Components
- 3. Caching Strategies & Content Delivery
- 4. Load Balancing & Failover Handling
- 5. CDN Optimization Techniques
- 6. CDN Security & Challenges
- 7. Advanced CDN Topics

1 CDN Basics

1. What is a CDN, and how does it work?

A Content Delivery Network (CDN) is a distributed network of servers that work together to deliver content to users efficiently. The primary goal of a CDN is to reduce latency and load times by caching content in multiple geographically distributed servers called edge servers or PoPs (Points of Presence).

How It Works:

- 1. A user requests content (e.g., an image, video, or webpage).
- 2. The request is directed to the nearest CDN edge server based on factors like geographic location, network latency, and server load.
- 3. If the requested content is already **cached** on the edge server (**Cache Hit**), it is delivered instantly.

4. If the content is not cached (**Cache Miss**), the request is forwarded to the **origin server**, fetched, and stored at the edge server for future requests.

2. Why do we need CDNs in system design?

Without a CDN, content is served directly from the **origin server**, which leads to:

- **High latency** due to geographic distance between the user and the server.
- Overloaded origin servers, causing slower responses and downtime.
- Bandwidth constraints, leading to slow page load times and higher operational costs.
- **Security risks**, including DDoS attacks and malicious traffic.

CDNs **solve these problems** by **distributing** traffic across multiple edge locations, **caching frequently accessed content**, and **protecting against cyber threats**.

3. What are the key benefits of using a CDN?

- Reduced Latency Faster content delivery by serving from the closest PoP.
- **✓ Lower Bandwidth Costs** Caching reduces requests to the origin, minimizing data transfer costs.
- ✓ Increased Availability & Load Balancing Distributes traffic across multiple servers, preventing overload.
- **☑** Enhanced Security Protects against DDoS attacks, traffic filtering, and SSL/TLS encryption.

2 CDN Architecture & Components

4. Explain the difference between an origin server and an edge server in a CDN.

- **Origin Server:** The central server that hosts the original content. It is responsible for serving content **when a cache miss occurs**.
- Edge Server (PoP): A geographically distributed server that caches content closer to users to reduce latency.

Analogy: The origin server is like a main warehouse, while edge servers are local distribution centers that store frequently accessed goods.

5. What is a PoP (Point of Presence) in a CDN?

A **PoP** (**Point of Presence**) is a **CDN data center** that contains **edge servers** to store and serve cached content to users. The more PoPs a CDN has, the **faster and more reliable** the content delivery.

6. How does request routing work in a CDN?

CDNs use various **routing strategies** to direct user requests to the optimal edge server:

- Geo-Based Routing: Users are directed to the closest PoP.
- Latency-Based Routing: Requests go to the PoP with the lowest network latency.
- Load-Aware Routing: Traffic is balanced across multiple PoPs to prevent overload.

3 Caching Strategies & Content Delivery

7. What is a cache hit vs. cache miss, and how does a CDN handle them?

- Cache Hit: The requested content is found in the CDN cache and served immediately.
- Cache Miss: The content is not in the cache, so it is fetched from the origin, stored at the edge, and then served to the user.

8. Explain cache expiration and TTL (Time-To-Live) in a CDN.

- TTL (Time-To-Live): Defines how long content stays cached before it expires.
- **CDN Cache Expiration:** Once TTL expires, the CDN fetches updated content from the origin.

9. What are cache invalidation strategies, and why are they important?

- Manual Purge: Manually removes outdated content.
- Stale-While-Revalidate: Serves stale content while fetching fresh content in the background.
- **Versioning:** Appends version numbers (e.g., image_v2.png) to force cache updates.

4 Load Balancing & Failover Handling

10. How do CDNs use load balancing to improve reliability?

CDNs distribute traffic across multiple PoPs using:

- Round-robin balancing
- Latency-based routing
- Geo-based routing

11. What happens if a CDN PoP fails?

The CDN automatically **reroutes traffic** to the next best PoP, ensuring uninterrupted service.

5 CDN Optimization Techniques

12. What compression and minification techniques do CDNs use?

CDNs optimize content delivery using:

- Gzip & Brotli Compression (reduces file size).
- Minification of CSS/JS (removes unnecessary characters).
- Image Optimization (WebP, AVIF formats).

6 CDN Security & Challenges

13. How does a CDN protect against DDoS attacks?

- Rate Limiting: Blocks excessive requests from a single source.
- Traffic Filtering: Identifies and drops malicious requests.
- Anycast Routing: Distributes attack traffic across multiple PoPs to absorb the impact.

14. What is SSL/TLS offloading, and why is it useful?

SSL/TLS Offloading means the CDN **handles encryption** at the edge, reducing the burden on the origin server.

7 Advanced CDN Topics

15. How does a multi-CDN architecture work?

A multi-CDN strategy uses multiple CDN providers for better redundancy, performance, and failover handling.

16. How would you design a CDN for a large-scale video streaming platform?

Key design considerations:

- Segmented Caching (store different video chunks at different PoPs).
- Adaptive Bitrate Streaming (adjusts video quality based on user bandwidth).
- Load Balancing (distributes viewers across multiple servers).

Final Thoughts

Understanding CDN architecture, caching, security, and optimization techniques will help you design high-performance, scalable systems.

Pro Tip: Always think about **latency**, **redundancy**, **and scalability** when discussing CDNs in system design interviews!