МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Математическая экономика»

Выполнил: А. О. Тояков

Группа: М8О-407Б-18

Преподаватель: В. М. Подгорная

Дата:

Оценка:

постановка задачи

Рассматривается задача планирования производства

$$c^\top x \to \max_{x \in X},$$

где

$$X = \{ u \in \mathbb{R}^n \mid Ax \leqslant b, \ x \geqslant 0 \},\$$

 $c \in \mathbb{R}^n$ — вектор цен на продукцию, $b \in \mathbb{R}^m$ — вектор ограничений на ресурсы, $A \in \mathbb{R}^{m \times n}$ — технологическая матрица, x — план производства.

```
n = 15, m = 25, b_i = 100 + i, c_i = 70 - i, a_{ij} = 1 + ((j+23)i + j^2 + i^3 + 3(i+7)) \mod 34
```

РЕШЕНИЕ

Для решения мы будем использовать язык программирования Python и пакет для решения задач линейного программирования pulp.

Моделируем данные в соответствии с вариантом:

```
n = 15
m = 25

b = np.array([[100 + i] for i in range(m)])
c = np.array([[70 - i] for i in range(n)])

A = []

for i in range(m):
    1 = []
    for j in range(n):
        1.append(1 + ((j + 23) * i + j ** 2 + i ** 3 + 3 * (i + 7)) % 34)
        A.append(1)

A = np.array(A)
```

Ставим прямую задачу линейного программирования (ЗЛП):

```
model_primal = LpProblem(name="resource-allocation", sense=LpMaximize)

x = [LpVariable(name=f"x{i}", lowBound=0) for i in range(1, n+1)]

for i in range(m):
    model_primal += np.dot(A[i], x) <= b[i,0]

model_primal += lpSum(np.dot(c.T, x))</pre>
```

Решаем ЗЛП и получаем решение:

```
status_primal = model_primal.solve()

print(f"status: {model_primal.status}, {LpStatus[model_primal.status]}")

print(f"objective: {model_primal.objective.value()}")

for var in model_primal.variables():
    print(f"{var.name}: {var.value()}")

for name, constraint in model_primal.constraints.items():
    print(f"{name}: {constraint.value()}")
```

```
status: 1, Optimal
                                         x7: 0.84722892
                                                                                   C12: -1.3500000528576805e-07
objective: 395.722650185
                                         x8: 0.0
                                                                                   _C13: -28.26915676499999
x1: 0.57891566
                                         x9: 0.0
                                                                                   _C14: -34.62265069499999
x10: 0.83144578
                                         _C1: -5.499999633507002e-08
                                                                                   _C15: -26.573253094999995
x11: 0.0
                                         _C2: -25.04939768499999
                                                                                   _C16: -1.8500000398269378e-07
x12: 0.62626506
                                         _C3: -9.4999990152278e-08
                                                                                   _C17: -17.000000085
x13: 0.42361446
                                         _C4: -1.9500002013117523e-07
                                                                                   _C18: -48.48891577499999
x14: 0.031566265
                                         _C5: -8.500000636679772e-08
                                                                                   _C19: -39.45228932499999
x15: 0.0
                                         _C6: -23.976144854999998
                                                                                   _C20: -14.402891734999985
x2: 0.48674699
                                         _C7: 2.4999993186725078e-08
                                                                                   _C21: -5.19421691500001
x3: 0.81566265
                                         _C8: -1.749999952727066e-07
                                                                                   _C22: -32.92674690500001
                                         _C9: -3.2197592549999943
x4: 0.21843373
                                                                                   _C23: -9.573253215
x5: 0.81313253
                                         _C10: -5.499999156111102e-08
                                                                                   _C24: -48.402891615000016
x6: 0.45518072
                                         _C11: -2.7500000943092573e-07
                                                                                   _C25: -1.7499999260817134e-07
```

Сформулируем двойственную задачу и получим её решение:

$$egin{aligned} (b,y) &
ightarrow \min_{y \in Y} \ Y &= \{y | A^T y \geq c, y \geq 0\} \end{aligned}$$

status: 1, Optimal	y20: 0.0	_C2: -1.099999948905861e-07
objective: 395.72264984	y21: 0.0	_C3: -2.8000000429351246e-07
y1: 0.27506024	y22: 0.0	_C4: -4.999999525523435e-08
y10: 0.59903614	y23: 0.0	_C5: -9.99999993922529e-08
y11: 0.13325301	y24: 0.0	_C6: -9.000000122938445e-08
y12: 0.4413253	y25: 0.22493976	_C7: -1.9999994549380062e-08
y13: 0.0	y3: 0.47433735	_C8: 8.770361309999997
y14: 0.0	y4: 0.39120482	_C9: 20.367228720000007
y15: 0.0	y5: 0.34963855	_C10: -1.2999998943996616e-07
y16: 0.26650602	y6: 0.0	_C11: 11.056144319999998
y17: 0.0	y7: 0.29096386	_C12: -1.30000000981072e-07
y18: 0.0	y8: 0.23228916	_C13: -3.999999620418748e-08
y19: 0.0	у9: 0.0	_C14: 1.0999999933147819e-07
y2: 0.0	_C1: -2.199999951102427e-07	_C15: 23.484578239999998

Согласно слабой теореме двойственности (c, x) ≤ (b, y) оптимальное значение целевой функции, получаемое при решении прямой задачи, всегда будет меньше или равно значению, получаемому при решении двойственной задачи. А поскольку наши решения совпадают, то решение ЗЛП является оптимальным, согласно сильной теореме двойственности. Максимальной

двойственной переменной является у10, увеличим её запас на единицу и найдём оптимальное значение целевой функции:

```
b_max = b.copy()
b_max[9, 0] += 1

model_max = LpProblem(name="resource-allocation", sense=LpMaximize)

for i in range(m):
    model_max += np.dot(A[i], x) <= b_max[i,0]

model_max += lpSum(np.dot(c.T, x))

status_max = model_max.solve()
print(f"status: {model_max.status}, {LpStatus[model_max.status]}")
print(f"objective: {model_max.objective.value()}")</pre>
```

status: 1, Optimal

objective: 396.32168680599995

Как видно, решение увеличилось. Это связано с тем, что решение у* – это теневые цены на ресурсы.

$$f(b) = J(x^*) = (c, x^*) = (b, y^*)$$

 $\nabla f = y^*$

Из этого следует, что максимального увеличения дохода можно добиться при увеличении запаса ресурса максимальной двойственной переменной.

Изменением другой двойственной переменной проверим то, увеличилась ли функция меньше, чем в случае с изменением максимальной двойственной переменной:

```
b_other = b.copy()
b_other[1] += 1

model_other = LpProblem(name="resource-allocation", sense=LpMaximize)

for i in range(m):
    model_other += np.dot(A[i], x) <= b_other[i,0]

model_other += lpSum(np.dot(c.T, x))

status_other = model_other.solve()
print(f"status: {model_other.status}, {LpStatus[model_other.status]}")
print(f"objective: {model_other.objective.value()}")</pre>
```

status: 1, Optimal

objective: 395.722650185

Видно, что полученное нами значение больше, чем изначальное оптимальное значение целевой функции и меньше, чем значение целевой

функции при увеличении максимальной двойственной переменной. Найдём решение, считая, что план производства - целочисленный:

status: 1, Optimal	x7: 0.0	_C12: -6.0
objective: 332.0	x8: 0.0	_C13: -16.0
x1: 1.0	x9: 0.0	_C14: -74.0
x10: 1.0	_C1: -16.0	_C15: -48.0
x11: 0.0	_C2: -34.0	_C16: -10.0
x12: 0.0	_C3: -22.0	_C17: -32.0
x13: 0.0	_C4: -18.0	_C18: -50.0
x14: 0.0	_C5: -26.0	_C19: -34.0
x15: 0.0	_C6: -16.0	_C20: -22.0
x2: 0.0	_C7: -26.0	_C21: -52.0
x3: 1.0	_C8: -26.0	_C22: -94.0
x4: 1.0	_C9: -20.0	_C23: -16.0
x5: 1.0	_C10: -12.0	_C24: -60.0
x6: 0.0	_C11: -6.0	_C25: -26.0

Найдём решение, считая, что объёмы производства только первых [n/2] товаров должны быть целочисленными:

status: 1, Optimal	x7: 1.0	_C12: -9.000000122938445e-08
objective: 372.35442992000003	x8: 0.0	_C13: -35.72151902
x1: 0.0	x9: 0.0	_C14: -40.74261623
x10: 0.59915612	_C1: -1.9999999523179213e-07	_C15: -34.00000006
x11: 0.5021097	_C2: -21.949367270000003	_C16: -8.607595089999995
x12: 0.70042194	_C3: -1.8000000334694732e-07	_C17: -18.64978918
x13: 0.69620253	_C4: -23.670886190000004	_C18: -54.37130810999999
x14: 0.4556962	_C5: -11.90717314	_C19: -52.649789160000005
x15: 0.0	_C6: -37.44303803	_C20: -30.70042207000001
x2: 0.0	_C7: -1.4000000625458142e-07	_C21: -20.371308080000013
x3: 1.0	_C8: -1.300000000981072e-07	_C22: -42.60759503
x4: 0.0	_C9: -10.185654160000015	_C23: -34.143459920000005
x5: 1.0	_C10: -1.0999999755512135e-07	_C24: -37.29957825000001
x6: 0.0	_C11: -10.185654139999999	_C25: -3.299578239999999

вывод

Выполнив лабораторную работу № 1, я познакомился с пакетом pulp, который позволяет решать задачи линейного программирования. Мной были решены прямая и двойственная задача, найдены оптимальные значения целевых функций, а также я выявил ресурс, который позволяет максимально увеличить значение целевой функции. Путём сравнения значений были проверены слабая и сильная теоремы двойственности.