习 题 课

例1 设X是一个集合,|X|=n,求:

- 1. X上的二元关系有多少? $\left(2^{n^2}\right)$
- 2. X上的自反的二元关系有多少?
- 3. X 上的反自反的二元关系有多少?

解: 因为把所有的反自反的二元关系的每个都加上对角线上的序对,就变成了自反的关系,因此,自反的与反自反的个数一样多。即 2^{n^2-n}

4. X上的对称的二元关系有多少?

$$\frac{n^2-n}{2}+n=\frac{n^2+n}{2}$$
, 故共有 $2^{\frac{n^2+n}{2}}$ 个对称的关系。

- 5. *X* 上的反对称的二元关系有多少? $(3^{\frac{n^2-n}{2}} \bullet 2^n)$
- 6. X上既是自反的也是反自反的二元关系的个数: (0个)
- 7. X 上既不是自反的也不是反自反的二元关系有多少? $(2^{n^2-n}\Gamma(2^n-2))$

解:解:可用容斥原理来计算

设 B 表示所有自反关系构成的集合,C 表示所有反自反关系构成的集合,则 $|B|=|C|=2^{n^2-n}$ 。而 $B\cap C=\phi$,故 $|B\cup C|=|B|+|C|$,从而

$$|B^{C} \cap C^{C}| = |S| - |B \cup C| = |S| - |B| - |C|$$

$$= 2^{n^{2}} - 2^{n^{2} - n} - 2^{n^{2} - n} = 2^{n^{2}} - 2\square 2^{n^{2} - n} = 2^{n^{2} - n}\square(2^{n} - 2)$$

于是,既不是自反的,也不是反自反关系共有 $2^{n^2-n} \square (2^n-2)$ 个。

- 8. 自反的且对称的关系有多少? [此结果与"反自反的且对称的关系有多少?"是一样多]即有 $2^{\frac{n^2-n}{2}}$ (对角线上全去掉)
 - 9. 自反的或对称的关系有多少?

解: 设 B 表示自反关系的集合,C 表示对称关系的集合,则自反或对称关系的集合为: $|B \cup C| = |B| + |C| - |B \cap C| = 2^{n^2 - n} + 2^{\frac{n^2 + n}{2}} - 2^{\frac{n^2 - n}{2}}$ 。

10. X 上既是反自反的也是反对称的二元关系的个数为: $3^{\frac{n^2-n}{2}}$:

- 11. X上既是对称的也是反对称的关系个数;
- **解:** X 上既是对称的也是反对称的关系 $R \subseteq I_{Y}$, 故有 2^{n} 。
- 12. X 上既不是对称的也不是反对称的关系个数; $(2^{n^2} 2^{\frac{n^2 + n}{2}} 2^n \square^{\frac{n^2 n}{2}} + 2^n)$
- **解:**设A表示对称、B表示反对称,则 既不是对称的也不是反对称的二元关系为:

 $|A^{C} \cap B^{C}| = |S| - |A \cup B| = |S| - |A| - |B| + |A \cap B| = 2^{n^{2}} - 2^{\frac{n^{2}+n}{2}} - 2^{n} \Box^{\frac{n^{2}-n}{2}} + 2^{n}$ **例 2** 设有集合 A,|A| = 3,求 A 上具有反自反且反对称性的二元关系的数目,并写出计算过程。

解:不妨设 $A = \{a,b,c\}$,将(a,b),(b,a)看作一个抽屉,(b,c),(c,b)看作一个抽屉,(a,c),(c,a)看作一个抽屉。若要获得具有反对称性且反自反性的关系,其中的元素只能在三个抽屉中取且每个抽屉中至多取一个元素,分几种情况:

- (1) 一个也不取,有 $C_3^0 = 1$ 种取法。
- (2) 只取一个元素,有 C_2^1 口=6种取法。
- (3) 取二个元素,有 C_3^2 口口=12种取法。
- (4) 取三个元素,有 C_3^3 卫卫2=8种取法。

故具有反自反性且反对称性的二元关系数目共有1+6+12+8=27个。

 $\boldsymbol{z}|A|=n$,结果又为多少?

抽屉数: $|A| = \frac{n^2 - n}{2}$, 每个抽屉有3种选择, 故共有 $3^{\frac{n^2 - n}{2}}$ 个。

例 3 设 $A = \{1,2,3\}$, R 是 A 的幂集 $2^A = \{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ 上的二元关系且 $R = \{(a,b) | a \cap b \neq \phi\}$,则 R 不满足下列哪些性质?为什么?

(1) 自反性; (2) 反自反性; (3) 对称性; (4) 反对称性; (5) 传递性。 $R = \{(a,b) | a \cap b \neq \emptyset\}$ 等价于 $aRb \Leftrightarrow a \cap b \neq \emptyset \Leftrightarrow (a,b) \in R = a \cap b \neq \emptyset$ 。

解: (1) 自反性。

因为 $\phi \in 2^A$, 但 $\phi \cap \phi = \phi$, 所以 $(\phi, \phi) \in R$, 故R不是自反的。

(2) 反自反性。

因为 $\{1\} \in 2^A$, $\{1\} \cap \{1\} = \{1\} \neq \phi$,故 $(\{1\},\{1\}) \in R$,故R不是反自反的。

(3) 对称性。

 $\forall x, y \in 2^A$,若 $(x, y) \in R$,则 $x \cap y \neq \phi$,所以 $y \cap x \neq \phi$,故 $(y, x) \in R$,从而R是对称的。

(4) 反对称性。

令 $x = \{1,2\}$, $y = \{1,3\}$, 则 $x \cap y = y \cap x = \{1\} \neq \phi$, 故 $(x,y) \in R$ 且 $(y,x) \in R$, 但 $x \neq y$, 所以 $(x,y) \neq (y,x)$, 从而 R 不是反对称的。

(5) 传递性。

令 $x = \{1\}$, $y = \{1,2\}$, $z = \{2\}$, 则有 $x \cap y = \{1\} \neq \emptyset$ 且 $y \cap z = \{2\} \neq \emptyset$, 故 $(x,y) \in R$ 且 $(y,z) \in R$,但 $x \cap z = \emptyset$,故 $(x,z) \in R$,所以 R 不是传递的。

习题课

例 1 证明:
$$R \circ R^* = R^* \circ R = R^+$$
, 其中 $R^* = R^0 \cup R^1 \cup R^2 \cup \dots = \bigcup_{i=0}^{\infty} R^i$

 $\text{iff:} \quad R \circ R^* = R \circ (R^0 \cup R^1 \cup R^2 \cup \cdots) = R \cup R^2 \cup R^3 \cup \cdots = t(R) = R^+;$

同理可证 $R^* \circ R = R^+$

- **例2**[书上做为定理出现]设 R、S 是 <math>X 上的二元关系,则
 - (1) $\phi^+ = \phi$, ϕ 是空关系。
 - $(2) (R^+)^+ = R^+$

证:因为 R^+ 是传递的,故 $(R^+)^+ = R^+$ 。

 $(3) (R \bigcup S)^{+} \supseteq R^{+} \bigcup S^{+}$

证: 因为 $R \cup S \supseteq R \perp R \cup S \supseteq S$,故 $(R \cup S)^+ \supseteq R^+$,且 $(R \cup S)^+ \supseteq S^+$,从而 $(R \cup S)^+ \supset R^+ \cup S^+$

例3 如图5所示给出下图中每个关系的自反、对称和传递闭包。

(1) 自反闭包

(2) 对称闭包

(3) 传递闭包

例 4 设 R 是集合 A 上的反对称关系,则 t(R)一定是反对称的吗? 证: t(R)在 A 上不一定是反对称的。

例: $A = \{a,b,c,d\}$, $R = \{(a,b),(b,c),(c,d),(d,a)\}$ 则 R 的传递闭包为: $t(R) = \{(a,b),(b,c),(c,d),(d,a),(a,c),$

(a,d),(d,c),(d,d),(c,a),(b,d),(d,b),(b,a),(c,b),(a,a),(b,b),(c,c)t(R) 是全关系,故 t(R) 不是反对称的而是对称的。

例 5 举例说明 s(t(R))与 t(s(R))确实不相等。

解: 设 $N = \{1, 2, 3, \dots\}$, 在N上定义小于关系"<",则 $s(t(<)) = s(<) = "不等关系<math>\neq$ ";

而 $t(s(<)) = t(\neq) = "全关系"。$

因此的确不相等。

例 7 (P_{98}^8) 是否存在 X (|X|=n) 上的一个二元关系 R, 使得 R, R^2, \dots, R^n 两两不相等。

解: 存在。令 $X = \{1,2,3,\cdots,n\}$, $R = \{(1,2),(2,3),\cdots,(n-1,n)\}$ 即可。 **例 8** 证明: 如果 R 是对称的,则 R⁺也是对称的。

证: 证 $1 \ \forall (x,y) \in R^+ = \bigcup_{i=1}^{\infty} R^i$,则 $\exists m \in N$,使得 $(x,y) \in R^m$ 。于是存在 m-1 个元素 $y_1, y_2, \cdots, y_{m-1}$,使得 $(x_1, y_1) \in R, (y_1, y_2) \in R, \cdots, (y_{m-2}, y_{m-1}) \in R, (y_{m-1}, y) \in R$ 。由 R 的对称性有: $(y, y_{m-1}) \in R, (y_{m-1}, y_{m-2}) \in R, \cdots, (y_2, y_1) \in R, (y_1, x) \in R$ 。于是 $(y, x) \in R^m$,从而 $(y, x) \in \bigcup_{i=1}^{\infty} R^i = R^+$,即 $R^+ = \bigcup_{i=1}^{\infty} R^i$ 是对称的。

习 题 课

例1 设 R 是整数集 I 上的关系, mRn 定义为 $m^2 = n^2$,则

- (1) 证明: R 是等价关系;
- (2) 确定R的等价类。

证: (1) 因为 $\forall m \in I$, 有 $m^2 = m^2$, 故mRm, 即R是自反的。

 $\forall m, n \in I$, $\exists mRn$

 $\forall m, n, k \in I$,若 mRn, nRk, 即 $m^2 = n^2 \perp L n^2 = k^2$, 故 $m^2 = k^2$, 即 mRk , 所 以 R 是传递的。

由此可知: R是I上的等价关系。

(2) 因为∀*i*∈*I*, [*i*]_R ={*i*,−*i*}, 所以 R 的等价类有: {[0]_R,[1]_R,[2]_R,…}。 **例 2** 设 R 是 A 上的一个自反关系,证明: R 是等价关系 ⇔ 若 (*a*,*b*)∈ R 且
(*a*,*c*)∈ R,则(*b*,*c*)∈ R。[书上习题]

 $证: \Rightarrow R \in A$ 上的等价关系。

若 $(a,b) \in R$ 且 $(a,c) \in R$,由R的对称性有: $(b,a) \in R$ 且 $(a,c) \in R$,再由R的传递性有: $(b,c) \in R$

 \leftarrow R 是自反的,故 $\forall a \in A$ 有 $(a,a) \in R$ 。

 $若(a,b) \in R$, 由 $(a,a) \in R$, 有 $(b,a) \in R$, 所以R是对称的。

 $若(a,b) \in R \perp (b,c) \in R$, 由 R 的对称性有:

 $(b,a) \in R$ 且 $(b,c) \in R$,故由题意得 $(a,c) \in R$,所以R是传递。

因此,R 是 A上的等价关系。

例 3. 令 $A = \{1,2,3\}$, A上的两个关系如图 3 所示,它们是否是等价关系?

图 3

不是等价天系 (因为不传递)

例 4 设 R_1 , R_2 是A上的等价关系,则 R_1 U R_2 也是A上的等价关系吗?

 \mathbf{M} : $R_1 \cup R_2$ 不一定是 A 的等价关系。因为 $R_1 \cup R_2$ 不一定具有传递性。

举例: 设 $A = \{a,b,c\}$, $R_1 = \{(a,a),(b,b),(c,c),(a,b),(b,a)\}$,

 $R_2 = \{(a,a),(b,b),(c,c),(b,c),(c,b)\}$,则

 $R_1 \bigcup R_2 = \{(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b)\}$

因为 $(a,b) \in R_1 \cup R_2 \perp (b,c) \in R_1 \cup R_2$,但 $(a,c) \in R_1 \cup R_2$,故 $R_1 \cup R_2$ 不满足传递性,即 $R_1 \cup R_2$ 不一定是A上的等价关系。

例 5 设 $X = \{1, 2, \dots, n\}, S \subseteq X \times X$ 。 " \cong "是 S 上如下的二元关系: $\forall (i, j), (k, l) \in S$,

 $(i,j)\cong (k,l)$ 当且仅当i+j=k+l。

证明: (1) ≅等价关系; (2) 求等价类数。

证: (1)等价关系显然;

(2) 等价类数为: 2n-1。

i+j 只能取 2, 3, …, 2n, 故等价类数有 2n-1个。

例 6 设 R 是 A 上的对称和传递的关系。若对 A 中每个 a, $\exists b \in A$,使得 $(a,b) \in R$,证明: R 是 A 上的等价关系。

证: $\forall a \in A$, $\exists b \in A$, 使得 $(a,b) \in R$ 。由 R 的对称性有: $(b,a) \in R$ 。再由 R 的传递性有: $(a,a) \in R$ 。由 a 的任意性可知,R 是 A 上的自反关系,故 R 是 A 上的等价关系。

例 7 设 R 是集合 A 上的一个自反的和传递的关系; T 是 A 上的一个关系,使得 $(a,b) \in T \Leftrightarrow (a,b) \in R$ 且 $(b,a) \in R$ 。证明: T 是 A 上的等价关系。

证: (1) 因为 R 是 A 上的自反关系,所以 $\forall a \in A$,有 $(a,a) \in R$,故由 T 的 定义有: $(a,a) \in T$,即 T 是 A 上的自反关系。

- (2) 若 $(a,b) \in T$,由题设: $(a,b) \in R$ 且 $(b,a) \in R$ 。显然, $(b,a) \in T$,即 T是A上的对称关系。

由(1),(2),(3)即得 T 是 A 上的等价关系。

例8设R是A上的一个二元关系,设 $S = \{(a,b) | \exists c \in A$,使得 $(a,c) \in R$ 且

 $(c,b) \in R$ }。证明: 若 R 是 A 上的等价关系,则 S 也是 A 上的等价关系;

证: 证明若R是等价关系,则S也是等价关系。

(1) 自反性

因为R是自反的,所以 $\forall a \in A$,有 $(a,a) \in R$ 。根据S的定义,有 $(a,a) \in S$,所以S是自反的;

(2) 对称性:

(3) 传递性:

且 $\exists e \in A$,使得 $(b,e) \in R$ 且 $(e,c) \in R$ 。因为R是传递的,所以 $(b,c) \in R$ 。

根据 S 的定义有 $(a,c) \in S$ 。

所以S是传递的。

由(1),(2),(3)可知: S是等价关系。

例9 设{ A_1, A_2, \dots, A_n } 是集合 A 的划分,若 $A_i \cap B \neq \emptyset$,1 \leq i \leq n,

证明: $\{A_1 \cap B, A_2 \cap B, \dots, A_n \cap B\}$ 是集合 $A \cap B$ 的划分。

证: 因为 $\{A_1, A_2, \dots, A_n\}$ 是集合 A 的划分,故 $A = \bigcup_{i=1}^n A_i$, $A_i \cap A_j \neq \emptyset$, $i \neq j$ 。但

$$A \cap B = \left(\bigcup_{i=1}^n A_i\right) \cap B = \bigcup_{i=1}^n (A_i \cap B),$$

当 $i \neq j$ 时, $(A_i \cap B) \cap (A_i \cap B) = \phi$ 。

当i=j时, $(A_i \cap B) \cap (A_i \cap B) = A_i \cap B$ 。

所以 $\{A_1 \cap B, A_2 \cap B, \dots, A_n \cap B\}$ 是 $A \cap B$ 的划分。

例 10 设 R_1 和 R_2 是集合 X 上的等价关系, C_1 和 C_2 是由 R_1 和 R_2 所诱导产生的划分,证明: 当且仅当 C_1 的每个划分块都包含在 C_2 的某个划分块中, $R_1 \subseteq R_2$ 。

分析:只要理解等价关系和划分的概念以及它们之间的一一对应关系,就很容易证明。

证: 令划分 $C_1 = \{A_1, A_2, \dots, A_k, \dots\}$, $C_2 = \{B_1, B_2, \dots, B_e, \dots\}$ 。 充分性。

若 $R_1 \subseteq R_2$,则 C_1 的每个划分块都包含在 C_2 的某个划分块中。于是

 $\forall A_k \in C_1$,即 A_k 为 C_1 中任一划分块,所以 $A_k \neq \emptyset$ 。在 A_k 中任取一个元素 $a \in A_k$ 。因为 C_2 是X的划分且 $a \in X$,所以存在 $B_e \in C_2$,使得 $a \in B_e$ 。于是 $\forall b \in A_k$,有 $(a,b) \in R_1$,又因为 $R_1 \subseteq R_2$,所以 $(a,b) \in R_2$ 。

根据划分的定义有 $b \in Be$, 所以 $A_k \subseteq Be$ 。

由 A_k 的任意性知, C_1 的每一划分块都包含在 C_2 的某一划分块中。 必要性

若 C_1 的每个划分块都包含在 C_2 的某个划分块中,则 $R_1 \subseteq R_2$ 。

 $\forall (a,b) \in R_1$,则 a,b 在 C_1 的同一划分块中。根据题设,必有 a,b 在 C_2 的同一划分块中,故 $(a,b) \in R_2$ 。因此 $R_1 \subseteq R_2$ 。

例 $11(P_{113}^{1,2,3})$ 设 $X = \{1,2,3\}, Y = \{1,2\}, S = \{f \mid f : X \to Y\}$ 。 \cong 是 S 上的二元关系, 若 $\forall f,g \in S, f \cong g \Leftrightarrow I_m(f) = I_m(g)$,证明: \cong 是 S 上的等价关系;求等价类。

证: 因为 $f: X \to Y$,所以X到Y的映射共有8个,如图2所示。

图 2

- (1) 等价关系显然。
- (2) $\forall f \in S$, $[f]_R = \{g \mid I_m(f) = I_m(g)\}$, 故

 $[f_1]_R = \{f_1\} \;, \quad [f_2]_R = \{f_2, f_3, f_4, f_5, f_6, f_7\} \;, \quad [f_3]_R = \{f_8\} \;,$

所以等价类集合为 $\{[f_1]_R,[f_2]_R,[f_3]_R\}$ 。

例 12 设 $S = \{1, 2, 3, 4\}$,并设 $A = S \times S$,在 A 上定义关系 R 为:

 $(a,b)R(c,d) \in R \Leftrightarrow a+b=c+d$.

证明: (1) R 是等价关系; (2) 计算出 A/R。

证: I(1) 自反性。 $\forall (a,b) \in A$,有 a+b=a+b, 所以 (a,b)R(a,b) ,即 R 是 A 上的自反关系。

- (2) 对称性。 $\forall (a,b)$, $(c,d) \in A$, 若 (a,b)R(c,a) 则 $a+b=c+\epsilon$, 故 c+d=a+b 所以(c,d)R(a,b) , 即 R 是 A 上的对称关系。
- (3) 传递性。 $\forall (a,b)$, (c,d), $(e,f) \in A$, 若 (a,b)R(c,d) 且 (c,d)R(e,f), 则 a+b=c+d 且 c+d=e+f ,即 a+b=e+f ,所以 (a,b)R(e,f),故 R 是 A 上的传递关系。

由(1), (2), (3)可知, R是A上的等价关系。

II 首先求出 A=S×S 的全部元素,然后找出所有元素对应的等价类即可。在求等价类时,记住以下几条性质:

(1) $a \in [a]_R$; (2) 若 $(a,b) \in R$, 则 $[a]_R = [b]_R$ 。

因为
$$A = S \times S = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (2,1), (2,2), (2,3), (2,4), (2,1), (2,2), (2,3), (2,4), (2,1), (2,2), (2,3), (2,4), (2,1), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,3), (2,4), (2,2), (2,2), (2,3), (2,4), (2,2)$$

$$(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)$$

$$[(1,1)]_R = \{(1,1)\}, [(1,2)]_R = \{(2,1),(1,2)\} = [(2,1)]_R$$

$$[(1,3)]_R = \{(1,3),(3,1),(2,2)\} = [(3,1)]_R = [(2,2)]_R$$

$$[(1,4)]_R = \{(1,4),(4,1),(2,3),(3,2)\} = [(4,1)]_R = [(2,3)]_R = [(3,2)]_R$$

$$[(2,4)]_R = \{(2,4),(3,3),(4,2)\} = [(4,2)]_R = [(3,3)]_R$$

$$[(3,4)]_R = \{(4,3),(3,4)\} = [(4,3)]_R$$
 $[(4,4)]_R = \{(4,4)\}$

所以,
$$A/R = \{[(x,y)]_R \mid x,y \in A\} = \{[(1,1)]_R,[(1,2)]_R,$$

$$[(1,3)]_R,[(1,4)]_R,[(2,4)]_R,[(3,4)]_R,[(4,4)]_R$$

例 13 设 R_1 是 A 上的等价关系, R_2 是 B 上的等价关系。关系 R 满足:

$$(x_1, y_1)R(x_2, y_2) \Leftrightarrow (x_1, x_2) \in R_1 \coprod (y_1, y_2) \in R_2$$

证明: $R \neq A \times B$ 上的等价关系。

解: (1) 自反性: $\forall (x,y) \in A \times B$, 有 $x \in A$, $y \in B$; 因为 R_1 和 R_2 分别为 A和 B上的自反关系, 所以 $(x,x) \in R_1$, $(y,y) \in R_2$, 故 ((x,y),(x,y)) R ,因此 R 是

自反性的;

- (2) 对称性: $\forall (x_1, y_1), (x_2, y_2) \in A \times B$,若 $((x_1, y_1), (x_2, y_2)) \in$,则 $(x_1, x_2) \in B$, $(y_1, y_2) \in R_2$;因为 R_1 和 R_2 分别为A和B上的对称关系,所以有 $(x_2, x_1) \in R_1$, $(y_2, y_1) \in R_2$,从而 $((x_2, y_2), (x_1, y_1)) \in R$,因此R是对称性的;
- (3) 传递性: $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in A \times B$,若 $((x_1, y_1), (x_2, y_2)) \in R$ 且 $((x_2, y_2), (x_3, y_3)) \in R$,则有 $(x_1, x_2) \in R_1$, $(y_1, y_2) \in R_2$, $(x_2, x_3) \in R_1$, $(y_2, y_3) \in R_2$;因为 R_1 和 R_2 分别为A和B上的传递关系,所以有 $(x_1, x_3) \in R_1$, $(y_1, y_3) \in R_2$,从而 $((x_1, y_1), (x_3, y_3)) \in R$,因此R是传递性的。

综上可知: $R \neq A \times B$ 上的等价关系。

M 14 设 N 是自然数集合,定义 N 上的二元关系 R:

$$R = \{(x, y) | x \in N, y \in N, x + y$$
是偶数 $\}$,则

- (1) 证明R是一个等价关系;
- (2) 求关系 R 的等价类;

证: (1) 自反性: $\forall x \in N$, x + x 是偶数, 所以有 xRx。因此 R 是自反的; 对称性: 若 $(x,y) \in R$,即 x + y 是偶数,则 y + x 是偶数,所以有 $(y,x) \in R$ 。因此 R 是对称的;

传递性: 若 $(x,y) \in R$, $(y,z) \in R$, 即x+y是偶数, y+z是偶数, 则x+z=(x+y)+(y+z)-2y是偶数, 所以有 $(x,z) \in R$ 。因此R是传递的。

综上可知: R 是等价关系。

- (2) 关系 R 的等价类有: $[0]_R = \{0,2,4,\cdots\}, [1]_R = \{1,3,5,\cdots\}$ 。
- (3) 设 $f: N \to N$, $f(x) = \begin{cases} 0 & x \to a \text{ x} \end{cases}$,则 f 所诱导的等价关系就是 R。

例 15 设 $A = \{1,2,3,4\} \times \{1,2,3,4\}$,A上的二元关系 R 定义为:

$$(x, y)R(u, v) \Leftrightarrow |x - y| = |u - v|,$$

证明: 1. R 是 A 上的等价关系; 2. 确定由 R 对集合 A 的划分。

- 证: 1. 首先证明 R 是 A 上的等价关系。
- (1) 自反性。 $\forall x, y \in A$,因为|x-y| = |x-y|,故(x, y) R(x, y) ,即 R 是自反的。
- (2) $\forall (x, y), (u, v) \in A$,若(x, y)R(u, v),有|x y| = |u v|,则|u v| = |x y|,从而(u, v)R(x, y),即 R 是对称的。
- (3) $\forall (x,y), (u,v), (p,q) \in A$, 若 (x,y)R(u,v), (u,v)R(p,q)即 |x-y| = |u-v|, |u-v| = |p-q|, 得 |x-y| = |p-q|, 从而 (x,y)R(p,q), 故 R 是传递的。

由(1)、(2)、(3)可知, R是A上的等价关系。

2. 由定理知,由 R 的等价类可确定对集合 A 的划分。划分中的元素分别为元素的等价类,它们是:

$$[(1,1)]_R = \{(1,1),(2,2),(3,3),(4,4)\}, [(1,2)]_R = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)\}$$
$$[(1,3)]_R = \{(1,3),(3,1),(4,2),(2,4)\}, [(1,4)]_R = \{(1,4),(4,1)\}$$

即集合 A 的划分 $\pi = \{[(1,1)]_R, [(1,2)]_R, [(1,3)]_R, [(1,4)]_R\}$ 。

习 题 课

例1 非空集合 A 上存在二元关系 R,使得 R 既是 A 上的等价关系又是 A 上的偏序 关系吗?

解: 存在。A 上的恒等关系就满足。

例 2 在 A= {1, 2, 3, 4, 6, 8, 12, 24} 和 B= {2, 3, 4, 8, 9, 10, 11} 上定义的整除关系 "|", 画出 Hasse 图, 指出最大(小)元, 极大(小)元。

解:如图1(a)所示

最大元: 24 最小元: 1;

极大元: 24 极小元: 1;

如图 1(b) 所示

最大元: 无 极大元: 8, 9, 10, 11;

最小元: 无 极大元: 2, 3, 11

(元素 11 既是极大元又是极小元)。

例3 设偏序集 (A, \leq) 的关系图如图 2(a)所示。

- (1) 画出 (*A*,≤) 的 Hasse 图。
- (2) 设 B= {b, c}, 求 B 的上界集合 C 和上确界; 下界集合 D 和下确界。

解: 1. (*A*,≤)的 Hasse 图如图 8(b)所示。

- 1. 设 $B = \{b, c\}$,则 A 中无任意元素"大于" b,也同时"大于" c,故 $C = \phi$,此时,无上确界,而 $D = \{d\}$,下确界: d。
- **例 4** 设集合 $A = \{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序关系如图 9 所示。则
 - 1. 求出 A 的最大(小)元,极大(小)元。
 - 2. 求出 $\{x_2, x_3, x_4\}, \{x_3, x_4, x_5\}, \{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界。

图 2

解: 1. 最大元: x_1 , 最小元: 无

极大元: x_1 ,极小元: x_4 , x_5

2. $\diamondsuit A = \{x_2, x_3, x_4\}$,则

上界: x_1 , 下界 x_4 ; 上确界: x_1 , 下确界: x_4

 $\diamondsuit B = \{x_3, x_4, x_5\}$,则

上界: x_1, x_3 , 下界: 无; 上确界: x_3 , 下确界: 无;

� $C = \{x_1, x_2, x_3\}$,则

上界: x_1 , 下界: x_4 ; 上确界: x_1 , 下确界: x_4 。

例 5 设集合 $A = \{a,b,c,d,e\}$, A 上的关系定义如下:

 $R = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), (a,c), (a$

(b,e),(c,c),(c,e),(d,d),(d,e),(e,e)}。 则

- (1) 写出 R 的关系矩阵;
- (2) 验证(A,R)是偏序集;
- (3) 并画出 Hasse 图。
- (4) 若 A 上的关系如下: $R = \{(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(b,c),(b,e),(c,c),(c,d),(c,e),(d,d),(d,e),(e,e)\}$,则又如何?

解: (1) R 所对应的关系矩阵为 B_R 为:

$$B_R = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) 由关系矩阵可知:

对角线上的所有元素全为1,故R是自反的;

 $r_{ii} + r_{ii} \leq 1$, 故 R 是反对称的;

 R^2 对应的关系矩阵 B_{R^2} 为:

$$B_{R^2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = B_R \circ$$

因此R是传递的。

综上可知: 故R是A上的偏序关系,从而(A,R)是偏序集。

(3) (A, R) 对应的 Hasse 图如图 10 所示。

(4)
$$R$$
的关系矩阵为: $B_R = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

因为 $(b,c) \in R$, $(c,d) \in R$, 但 $(b,d) \notin R$, 故 R 不是传递的。

因此,R不是A上的偏序关系。

实际上,也可通过计算 R^2 的关系矩阵来说明:

$$B_{R^2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} > B_R, \quad 故 R 不是传递的。$$

因此R不是A上的偏序关系。

例 6 证明:每个由 n^2+1 个实数组成的数列 a_1,a_2,\cdots,a_{n^2+1} 中必有一个长至少为

n+1的不减子序列,或有一个长至少为n+1的不增子序列。

证:不妨设 n^2+1 个数是互不相同的。于是,这 n^2+1 个数构成的集合 A,且 $|A|=n^2+1$ 。在 A 上定义二元关系" \leq_1 "如下:

$$a_i \leq_1 a_i$$
 当且仅当 $a_i \leq a_i$ 且 $i \leq j$ 。

其中≤是实数间的通常的小于或等于关系。

显然,二元关系 \leq_1 是自反的,传递的。设 $a_i \leq_1 a_j$ 且 $a_j \leq_1 a_i$,则 $a_i \leq a_j$, $a_j \leq a_i$,且 $i \leq j$, $j \leq i$,从而 $a_i = a_j$, i = j。所以, \leq_1 是反对称的。因此 \leq_1 是 A 上的偏序关系, (A, \leq_1) 是偏序集。

由推论可知,A 中或有长至少为n+1的链或有长至少为n+1的反链。A 中长至少为n+1的链,就是序列 a_1,a_2,\cdots,a_{n^2+1} 的长至少为n+1的不减(在 \leq_1 下)的子序列。而 A 的长至少为n+1的反链,实际上就构成了 a_1,a_2,\cdots,a_{n^2+1} 的不增子序列。设反链中元素按下标递增顺序排列成

$$a_{i_1}, a_{i_2}, \dots, a_{i_{n+1}} (i_1 \le i_2 \le \dots \le i_{n+1})$$

因 $a_{i_k} \leqslant_1 a_{i_{k+1}}$,而 $i_k < i_{k+1}$,所以 $a_{i_k} \leqslant a_{i_{k+1}}$,故 $a_{i_k} > a_{i_{k+1}}$, $k=1,2,\cdots,n$ 。于是便有:

$$a_{i_1} > a_{i_2} > \cdots > a_{i_{n+1}}$$
 .

例 7 设 R 是实数集,令 X 为 [0,1] 到 R 的所有映射所构成的集合。若 $f,g \in X$,定

证明: (1) S 是偏序关系; (2) S 是全序关系吗?

分析:证明 S 是偏序关系,首先搞清 S 是定义在什么集合上,S 中的元素是什么形式;然后再按偏序关系的定义分别证明 S 的自反性,反对称性,传递性;证明这三个性质,可以直接采用按定义方法证明。显然 S 是定义在以映射 $f:[0,1] \to R$ 作为元素的集合上,因此,S 中的序对是以映射作为元素的。

证明: (1) 证明 S 是偏序关系。

自反性: $\forall f \in X$, 则 $f:[0,1] \rightarrow R$, $\forall x \in [0,1]$, 都有 f(x) - f(x) = 0, 即

 $f(x)-f(x) \ge 0$,故 $(f,f) \in S$,所以S是自反的。

反对称性: $\forall f,g \in X$, 若 $(f,g) \in S$ 且 $(g,f) \in S$, 则 $\forall x \in [0,1]$, 有

$$f(x)-g(x) \ge 0$$
, $g(x)-f(x) \ge 0$, 即 $f(x) \ge g(x)$, $g(x) \ge f(x)$, 故 $f(x)=g(x)$, 即 $f=g$, 从而 S 是反对称的。

传递性: $\forall f,g,h \in X$, 若 $(f,g) \in S$ 且 $(g,h) \in S$, 则 $\forall x \in [0,1]$, 有

 $f(x)-g(x) \ge 0$, $g(x)-h(x) \ge 0$, 即 $f(x) \ge g(x)$, $g(x) \ge h(x)$, 所以 $f(x) \ge h(x)$, 即 $f(x)-h(x) \ge 0$, 因此有 $(f,g) \in S$, 从而 S 是传递的。

综上可知: S 是偏序关系。

(2) *S* 不是全序关系。

例如: 设 f(x)=x, g(x)=-x+1, 则 f(0)-g(0)=-1, g(1)-f(1)=-1, 故 f 与 g 是不可比较的,即 S 不是全序关系。

例 8 设 (A, \leq) 是偏序集, $\forall a \in A, f(a) = \{x | x \in A, x \leq a\}$,证明: $f: A \to 2^A$ 是一个单射,且当 $a \leq b$ 时,有 $f(a) \subseteq f(b)$ 。

证:由 f 的定义,因 $x \le x$,有 $x \in f(x)$ 。 $\forall x, y \in A$,若 f(x) = f(y),则有 $x \in f(x) = f(y)$,即 $x \le y$;

同理可证 $y \le x$ 。

由于偏序关系是反对称的,所以有x=y,于是f是单射。

当 $a \le b$ 时, $\forall x \in f(a)$, 有 $x \le a$, 由于偏序关系是传递的, 有 $x \le b$, 即 $x \in f(b)$ 。于是 $f(a) \subseteq f(b)$ 。

例 9 已知集合 A 和 B, 其中 A $\neq \phi$, (B, \leq) 是偏序集, 定义 $B^A = \{f \mid f : A \rightarrow B\}$

上的二元关系如下:

$fRg \Leftrightarrow f(x) \le g(x), \quad \forall x \in A$

- 1. 证明: $R 为 2^{A}$ 上的偏序关系。
- 2. 给出 (B^A,R) 存在最大元的必要条件和最大元的一般形式。
- 证: 1. (1) $\forall f \in B^A$ 及 $\forall x \in A$ 有 $f(x) \in B$,因为 (B, \leq) 是偏序集,所以" \leq " 是偏序关系,故" \leq " 具有自反性。所以 $f(x) \leq f(x)$,即 $\forall x \in A$, $(f, f) \in R$ 。
- (2) $\forall f, g \in B^A$,若 $(f,g) \in R$ 且 $(g,f) \in R$,则 $\forall x \in A$,有 $f(x), g(x) \in B$,并且 $f(x) \leq g(x)$ 且 $g(x) \leq f(x)$ 。因为(B, \leq) 是偏序集,所以" \leq "具有反对称性,所以f(x) = g(x)。由x的任意性可得f = g,故R具有反对称性。
- (3) $\forall f, g, h \in B^A$,若(f) **是** 且(g,h) $\in R$,则 $\forall x \in A$ 有 $f(x), g(x), h(x) \in B$, 并且 $f(x) \leq g(x)$ 且 $g(x) \leq h(x)$ 。 因为 (B, \leq) 是偏序集,所以" \leq " 具有传递性。所以 $f(x) \leq h(x)$,由 x 的任意性可知(f,h) $\in R$,所以 R 具有传递性。由 (1)(2)(3)可知,R 是 B^A 上的偏序关系。
- 2. 由 R 是 B^A 上的偏序关系,则 (B^A, R) 就是偏序集。若 (B^A, R) 存在最大元,即 $\exists f \in B^A$,使得 $\forall g \in B^A$,都有 $(g, f) \in R$,则 $\forall x \in A$,有 $g(x) \leq f(x)$ 。

因为 g 是任取的,所以 f(x) 对任意选取的 x 都要"最大",即 $\forall y \in B$,都要 $f(x), \text{ 所以}(B^A, R)$ 存在最大元的必要条件是(B, \leqslant)存在最大元。 假设(B, \leqslant)存在最大元 b_o ,设(B^A , B) 的最大元为 f_o ,则 $\forall a \in A$,有 $f_0(x) = b_0$ 。