M: R-module

Theorem: The intersection of any collection of submodules of M is a submodule.

Proof If $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ in the submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules of $\{N_{\alpha}: \alpha \in \Lambda\}$ is a collection of submodules o

Definition: The sum of a family {Ne] of submodules is the set of finite sums $U_{\alpha_1} + \cdots + U_{\alpha_K}$ for some $\alpha_1, \cdots, \alpha_K \in \Lambda$ and $U_{\alpha_i} \in N_{\alpha_i}$.

Notation: ZNa.

Theorer: ZNa is a submodule

Definition: Let SCM. The minimal submodule of M containing S is called the submodule generated by S.

This submodule is RS = finite linear combinations of S w wefficeents from R.

If M=RS for some S, we say S is a generalized set of M (" of generalized).

If S is finite, M is finitely general ed.

If M=Ru for some u & M, then Mis cyclic.

If $\{N_{\alpha}\}$ is a system of submodules her $R(\bigcup_{\alpha}N_{\alpha})=\sum_{\alpha}N_{\alpha}$.

Factorization: Let N be a submodule of M. The factor module (or quoti'ent module) $\frac{M}{N} \text{ is the set } \{u+N:u\in M\} \text{ if cosets if N in M with } \\ a(u+N) = au+N \ .$

Example: if I is a left ideal of ring R₁ R/I is a left R-module. Subexample: Let R = Mat_{nin} (F). Let I = $\binom{0}{1} \times 1$ is a left ideal. So R/I = $\binom{1}{1}$ (first columns of matrices) is an R-module.

For (an R-module by left multiplication of matrices).

Torsion Elements: Let M be an R-module. WEM is a torsion element if JaeR, $a \ne 0$, s.t. au = 0.

Example: G'abelian gromp = G is a Z-motore. g - ng. torsion elements are elements of finite order.

If u, v are torsion elements, au=0, bv=0 for $a, b\neq 0$,

then $ab(u+b)\stackrel{?}{=}0$. If R is commutative, yes. If R is not, maybe no b.

also, if ab=0 then we don't have foreston.

theorem If R is an integral domain, then torsion elements of M form the torsion submodule.

Notation: Tor(M)

(punterexamples: ① R has zero divisors. ② R is non-commutative
① R=M=Z₆. Torsion elements are {0, 2, 3, 4} - not a subgroup be 3-Z=1.
② Next time.

If M=Tor(M), M is called a torsion module. If Tor(M)=0, M is said to be torsion-free.

Theorem: If R is an integral domain, M/Tor(m) is torsion-free.

Proof: Let $a \overline{u} = \overline{0}$ for $u \in M$, $\overline{u} = u + \overline{1} \overline{0} r(m)$, $a \neq 0$. Then $\overline{a} \overline{u} = a u + \overline{1} \overline{0} r(m) = \overline{0}$ So $a u \in Tor(M)$. So $\exists b \neq 0$ s.l. b a u = 0, and $b a \neq 0$ so $u \in Tor(M)$ so $\overline{u} = \overline{0}$.

Page 2

Annihilators: Let M be an R-module, SSM. The Annihilator of S in R is $\{a \in R: aS = 0 \ (as = o \ \forall s \in S)\} = Ann (S)$.

Unim: Ann(S) is a left ideal of R.

St: Wivial.

Claim: if N is a submodule of M, Ann(N) is a 2-sided ideal.

of Exercise.

In particular, Ann(M) is a 2-sided ideal in R.

tum R/Aun(M) is a ring, and M is a module over this ring.

Det: Let SER, the annihilator of Sin Mis Ann(S) = { htm: Su=0}.

Claris if Sica right ideal in R. Ann(s) is a submodule of M.