Maskenerkennung

Lars Kolk Jonah Blank July 16, 2020

> TU Dortmund ML-Seminar

Fragestellung

- Grundlegende Fragestellung:
- "Kann ein neuronales Netz erkennen, ob eine Person eine Maske trägt?"
- Inhalt
 - Datensatz
 - Datenaufbereitung
 - Fully Connected Network vs Convolutional Network
 - Aussicht

Datensatz

- Quelle: Kaggle
- Lizenz: Public Domain (CC0)
- 6024 Bilder $\rightarrow 7271$ Gesichter
- 4 Oberklassen:
 - face_no_mask: 0
 - face_other_covering: 1
 - face_with_mask: 2
 - face_with_mask_incorrect: 3

Datenaufbereitung

- Schneide Bilder auf Gesichter zu
- Bringe alle Bilder auf die gleiche Größe
 - -50×50 Pixel
- Berechne Matrizen der Bilder
- Wende MinMaxScalar an

Fully Connected Network

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 7500)	θ
dense (Dense)	(None, 1024)	7681024
dropout (Dropout)	(None, 1024)	θ
dense_1 (Dense)	(None, 512)	524800
dropout_1 (Dropout)	(None, 512)	θ
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 64)	16448
dense_4 (Dense)	(None, 3)	195

dropout = 0.2

Convolutional Neural Network

```
param_1 = {
    'nb1': [1, 2, 4],
    'nb2': [1, 2, 4],
    'filter': [32, 64, 128] }

param_2 = {
    'kernelsize': [(2,2), (3,3), (6,6), (11,11)],
    'poolsize': [(2,2), (3,3), (4,4)],
}

param_3 = {
    'dropout': [0.3, 0.5, 0.7],
    'opti': ['RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
}

param_4 = {
    'bs': [100, 150, 180, 210, 260],
    'lr': [1e-2, 1e-3, 1e-4, 1e-5]
}
```

Convolutional Neural Network

```
param_1 = {
    'nb1': [1, 2, 4],
    'nb2': [1, 2, 4],
    'filter': [32, 64, 128]
}

param_2 = {
    'kennelsize': [(2,2), (3,3), (6,6),(11,11)],
    'poolsize': [(2,2), (3,3), (4,4)],
}

param_3 = {
    'dropout': [0.3, 0.5, 0.7],
    'opti': ['RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
}

param_4 = {
    'bs': [100, 150, 180, 210, 250],
    'lr': [1e-2, 1e-3, 1e-4, 1e-5]
}
```

Layer (type)	Output	Shape		Param #
conv2d_12 (Conv2D)	(None,	48, 48,	512)	14336
dropout_20 (Dropout)	(None,	48, 48,	512)	0
max_pooling2d_4 (MaxPooling2	(None,	24, 24,	512)	0
dropout_21 (Dropout)	(None,	24, 24,	512)	0
conv2d_13 (Conv2D)	(None,	20, 20,	256)	3277056
dropout_22 (Dropout)	(None,	20, 20,	256)	0
conv2d_14 (Conv2D)	(None,	15, 15,	128)	1179776
dropout_23 (Dropout)	(None,	15, 15,	128)	0
flatten_4 (Flatten)	(None,	28800)		0
dropout_24 (Dropout)	(None,	28800)		0
dense_4 (Dense)	(None,	3)		86403
Total params: 4,557,571 Trainable params: 4,557,571 Non-trainable params: 0				

