

Índice

- 1. Análisis inicial de una Base de Datos BBDD
- 2. ¿Big Data?
- 3. Ingesta y tratamiento

Análisis Inicial

¿Qué voy a aprender ahora?

Datos

- 1. ¿Qué es un dato?
- 2. Clases de Datos
- 3. Fuentes de Datos

Bases de Datos BBDD

- BBDD vs. Excel
- 2. Bases de Datos relacionales
- 3. Primary Keys y Foreign Keys
- 4. De Excel a BBDD
- 5. Intro a cruce de BBDD JOINS

¿Qué es un Dato?

10

¿Qué es un Dato?

Un dato es una representación simbólica de un atributo o variable cuantitativa o cualitativa. Los datos describen hechos empíricos, sucesos y entidades.

Tipos de Datos

Texto o string

Nombre del producto

Número o integer

Cantidad que hay en stock

Fecha y/u hora

Fecha de compra

Boolean

Sí/No, Verdadero/Falso, 0/1

Fuentes de Datos

LASFUENTES DE DATOS PUEDEN ESTAR EN CUALQUIER SITIO, SÓLOHAY QUE SABER MIRAR

¿Qué es una Base de Datos? BBDD o DDBB

Una definición...

Una "base de datos" es un conjunto de datos almacenado y organizado con el fin de facilitar su acceso y recuperación mediante un equipo informático.

¿Qué es una Base de Datos? BBDD o DDBB

Una definición más completa...

Una "base de datos" es una serie de datos organizados y relacionados entre sí, los cuales son recolectados y explotados por un software o sistema de información.

¿Para qué son las bases de datos? ¿Para qué las necesitamos?

¿Te imaginas qué harías con todos los datos de un formulario de registro en la web, por ejemplo?

Nombre Apellidos	F. Nacimiento	Género
------------------	---------------	--------

- ¿Dónde y cómo los guardamos?
- Supongamos que los guardamos en un archivo, y listo.
- ¿Qué vamos a hacer cuando necesitemos acceder a estos datos?

¿Para qué son las bases de datos? ¿Para qué las necesitamos?

Tendríamos que desarrollar o programar una aplicación que lea los datos del archivo que necesitemos, y encuentre lo que buscamos. Y sería mucho más complicado realizar cualquier consulta a nuestros datos.

Ventajas de las bases de datos

- Son mucho más rápidas de actualizar y consultar (precisamente, están diseñadas para estas tareas).
- Permite almacenar y acceder a grandes volúmenes de datos (hablamos de millones de datos!!).
- Fácil acceso desde un sistema, ya sea una página web, aplicación de escritorio,
 App móvil... (el acceso a una base de datos está estandarizado).
- Control de concurrencia (característica que permite que varios usuarios visualicen y/o modifiquen la información al mismo tiempo).
- Proporcionan mecanismos de seguridad (permiten tener acceso restringido por medio de nombres de usuario y contraseñas).
- Cuentan con control de redundancia (nos permiten evitar la duplicación de datos).

¿Es Excel una Base de Datos?

Excel cumple las premisas que acabamos de establecer

- Tiene un orden (páginas, columnas, filas...)
- Podemos acceder al archivo siempre que queramos
- Podemos analizar los datos

¿Es Excel una Base de Datos?

Pero tiene grandes carencias en otros aspectos vitales

- Integridad y estructura: es fácil cometer un error metiendo datos incorrectos/mal formateados
- Almacenamiento y seguridad: las reglas de acceso y edición son limitadas
- Escalabilidad y eficiencia: aunque son un buen punto de partida, pierden eficacia y rapidez a medida que crece el volumen de datos

Health policy

Covid: how Excel may have caused loss of 16,000 test results in England

Public Health England data error blamed on limitations of Microsoft spreadsheet

- Coronavirus latest updates
- See all our coronavirus coverage

Alex Hern UK technology editor

¥@alexhern

Tue 6 Oct 2020 08.21 BST

▲ More than 50,000 potentially infectious people may have been missed by contact tracers after 15,841 positive tests were left off the daily figures. Photograph: Simon Leigh/Alamy

A million-row limit on Microsoft's Excel spreadsheet software may have led to Public Health England misplacing nearly 16,000 Covid test results, it is understood.

The data error, which led to 15,841 positive tests being left off the official daily figures, means than 50,000 potentially infectious people may have been missed by contact tracers and not told to self-isolate.

Las bases de datos relacionales al rescate!

Pero, ¿qué es una base de datos relacional?

 Una base de datos relacional consiste en tablas con datos almacenados en filas y columnas relacionadas entre sí

Las bases de datos relacionales al rescate!

- establece las relaciones entre tablas
- valida los tipos de datos de las variables

Almacenamiento

- organiza los valores en tablas
- construye índices de búsqueda
- hace backups regularmente

Seguridad

- otorga permisos de acceso
- establece credenciales de login
- mantiene un log para auditoría

Escalabilidad

- capaz de guardar
 millones de datos
- mantiene los nivelesde accesibilidad yvelocidad
- análisis fácilmente replicables

Las bases de datos relacionales al rescate!

Integridad:

- Cada tabla tiene una primary key (PK)
- No hay PKs null

Eficiencia:

 Si quisiéramos añadir la dirección de Miguel, tendríamos que introducirla 1 vez y no 3

			Nombre	Apellido	NoTel	NombreMas a	cot TipoN	lascota		
			Miguel	Lorenzo	689888777	Paco	Pe	rro		
			Miguel	Lorenzo	689888777	Taco	Pe	rro		
			Miguel	Lorenzo	689888777	Whiskas	_			
IdDueño	Nombre	Apellido	NoTel	D'	000777000	D I.	IdDueño	Nombre	eMascota	TipoAnimal
PK1	Miguel	Lorenzo	689888777	Riesco	698777888		FK1	o Pa	со	Perro
			Maria 698777888	Bortel	658475211	Klimt	Ga	το Ta	CO	
2	José Carlos	Riesco	090777000				<u> </u>	14	CO	Perro
3	María	Bortel	658475211				1	Wh	iskas	Gato
-				•			2	Ro	mulo	Perro
							3	KI	imt	Gato

El lenguaje Base de Datos (relacionales) es SQL

Ventajas de SQL (Structured Query Language) vs Excel

- Analizar en Excel es seguir una receta (filtros, eliminación de columnas, eliminación de filas)
- Esto puede causar errores (ups, ¿he borrado esa fila?) y es difícil de replicar
- SQL separa el análisis de los datos.
- Con SQL declaramos lo que queremos, hacemos peticiones (querys)

NAME	ТҮРЕ	WEIGHT		
bulbasaur	grass	15		
charmander	fire	19		
squirtle	water	20		
pikachu	electric	13		
oddish	grass	12		
snorlax	normal	1014		
mewtwo	psychic	269		

El lenguaje Base de Datos (relacionales) es SQL

NAME	ТҮРЕ	WEIGHT
bulbasaur	grass	15
charmander	fire	19
squirtle	water	20
pikachu	electric	13
oddish	grass	12
snorlax	normal	1014
mewtwo	psychic	269

```
SELECT name, type
FROM pokemon
WHERE type = 'grass';
```

NAME	TYPE
bulbasaur	grass
oddish	grass

Gestores bases de datos relacionales más usados

Sistema de Gestión de Bases de Datos

Un sistema de gestión de bases de datos es un software que nos permitirá administrar o manejar nuestra base de datos.

- Proporcionar herramientas para consultas, para edición de datos, es decir, agregar, o modificar o eliminar datos.
- Algunos sistemas de administración de bases de datos proporcionan una interfaz gráfica que facilita a los usuarios el manejo de las bases de datos sin conocimientos a detalle, técnicos o profundos.
- Proporcionan métodos para mantener la integridad de los datos y la concurrencia.
- Proporcionan también métodos de control de acceso a usuarios.

Práctica!

Con el Excel sales_data_sample

- Hacer un análisis descriptivo de las variables incluidas
- ¿Qué nos gustaría saber con este dataset?
- Echa un vistazo a los tipos de datos y formatea los que hagan falta
- ¿Echas en falta alguna variable? ¿qué datos nos podrían venir bien?
- ¿Podríamos utilizar alguna otra fuente de datos externa para enriquecer los datos?
- Divide el dataset en tablas para crear una pseudo base de datos relacional: ¿qué posibles tablas potenciales tendríamos?

Ahora que tenemos nuestros datos organizados en tablas dentro de una base de datos relacional, ¿cómo podemos analizarlos conjuntamente?

¿BIG DATA?

Ingesta y Tratamiento

Ingesta y tratamiento del dato

- Tipos de datos.
- Ingesta de datos.
- Limpieza y transformación.
- Paradigmas de procesado.
- Gestión y documentación.

Tipos de datos

Datos estructurados

Son aquellos que poseen una estructura completamente definida, con un número de atributos (o columnas) fijos y con tipos de datos prestablecidos; por ejemplo: hojas de cálculo, bases de datos relacionales, etc.

1	Α	В	С	D	Е	F	G	Н	1
1	Código	Apellido	Nombre	СР	Ciudad	Fecha de Nacimiento	Departamento	Salario	Categoría
2	1	Alazart	Pedro	45720	Toledo	16/12/1976	Marketing	58.000,00	A1
3	2	Austria	Carolina	10001	Cáceres	04/05/1965	Producción	47.000,00	A2
4	3	Azcona	Pablo	46080	Valencia	12/02/1987	Ventas	25.000,00	С
5	4	Baamonde	Adán	47270	Valladolid	21/11/1969	Contabilidad	34.000,00	В
6	5	Ballesteros	Domingo	01006	Álava	19/02/1959	I+D	32.000,00	В
7	6	Batista	Clara	50100	Zaragoza	29/07/1981	Ventas	31.000,00	В
8	7	Bella	Inés	22050	Huesca	17/06/1990	Producción	21.000,00	С
9	8	Beltrán	Alberto	12002	Castellón	14/08/1978	Producción	61.000,00	A1
10	9	Bizet	Silvio	28003	Madrid	24/09/1975	Producción	29.000,00	С
11	10	Bollo	Adán	51126	Ceuta	13/11/1987	Ventas	26.000,00	С
12	11	Bon	Karina	13007	Ciudad Real	19/01/1975	IT	41.000,00	A2
13	12	Bonifaz	Luis	16100	Cuenca	11/03/1988	Marketing	43.000,00	A2
14	13	Boñar	Juan	08004	Barcelona	17/04/1989	Producción	24.000,00	С
15	14	Boveda	José Luis	15002	A Coruña	06/05/1976	IT	36.000,00	В
16	15	Bretón	María	08005	Barcelona	09/04/1991	Producción	28.000,00	С

Datos semiestructurados

Son aquellos que presentan cierta estructura, pero esta no es fija, pudiendo variar para diferentes registros.

xml

```
<?xml version="1.0" encoding="utf-8"?>
<Peliculas>
   <Pelicula ean="7509036232759">
         <Titulo>Lo que el viento se llevó</Titulo>
         <Año>1939</Año>
         <Director>Victor Fleming
         <Actores>
             <Actor>Clark Gable</Actor>
             <Actor>Olivia de Havilland</Actor>
         </Actores>
         <Productor>MGM</Productor>
   </Pelicula>
   <Pelicula ean="738572105723">
         <Titulo>Cinema Paradiso</Titulo>
         <Año>1988</Año>
         <Director>Giuseppe Tornatore
   </Pelicula>
</Peliculas>
```

json

Datos no estructurados

Son aquellos que carecen de estructura clara o interpretable, por lo que su tratamiento digital acostumbra a ser más complejo, o requiere un mayor procesamiento.

¿Qué es el tratamiento de datos?

Generalmente, un dato por sí mismo no proporciona información, o esta es mínima.

Por tanto, surge un interés en «extraer información» de un conjunto de datos, lo cuál generalmente requiere de algún tipo de **proceso o tratamiento** sobre los mismos.

Así, el tratamiento de datos es la serie de procesos a los que sometemos los datos para convertirlos en información relevante.

Ciclo de vida del dato

Vamos a iniciar un proyecto consistente en una filmoteca, para lo cuál queremos obtener y registrar un catálogo de productos audiovisuales, que incluirá películas, música y libros electrónicos.

Por el momento, únicamente estamos interesados en conocer las propiedades de estos productos de forma individual. Sin embargo, no existe un conjunto de propiedades fijo para cada tipo de medios (p. ej. dos películas distintas pueden tener un conjunto de atributos diferentes).

Para dar valor a nuestra filmoteca, decidimos desarrollar una red social, donde los usuarios pueden valorar los contenidos, intercambiar opiniones, etc. Los mecanismos de interacción son bastante libres, por lo que los usuarios pueden decidir de forma opcional compartir contenido multimedia, indicar su ubicación, etc.

Queremos registrar estas interacciones de los usuarios para su posterior tratamiento.

En nuestra filmoteca, decidimos comenzar a incluir contenido audiovisual (más allá del catálogo). Idealmente, querremos ser capaces de tratar y procesar este contenido para poder extraer valor del mismo.

Finalmente, decidimos poner en alquiler parte del contenido que estamos incorporando en nuestra filmoteca.

Para ello, queremos registrar los clientes y las transacciones que estos realicen. Los clientes tendrán un identificador único, así como un correo electrónico, nombre, apellidos y contraseña. Las transacciones incluyen el identificador del cliente, el identificador del producto alquilado y el precio abonado por dicho alquiler.

¿Qué es la ingesta de datos?

Es el proceso por el cual se recolectan datos de varias fuentes o bases de datos y se incorporan a un entorno unificado para su posterior procesamiento.

Las 3 Vs: Volumen

En ocasiones habrá que lidiar con el denominado «big data», es decir, cantidades enormes de datos cuyo volumen puede complicar el proceso de ingesta de datos, algo que puede aliviarse implementando soluciones y entornos distribuidos.

Las 3 Vs: Velocidad

En algunos casos, querremos ingerir y tratar datos que se generan a altas velocidades, lo cuál plantea nuevos retos para asegurarse de que todos estos datos se capturan correctamente.

Las 3 Vs: Variedad

Cuando los datos proceden de fuentes muy diversas, se complica el proceso de ingesta, pues se deben revisar constantemente las conexiones con estas fuentes y asegurar que los diversos datos se tratan convenientemente.

¿Por qué limpiar los datos?

Durante la ingesta de datos, estos pueden venir con formatos diversos que puede resultar conveniente convertir o dotar de estructura.

Además, pueden contener errores o anomalías que deben ser corregidas.

Filtrado del dato

En ocasiones, podemos querer ignorar ciertos datos que no cumplen determinadas condiciones, o que no son relevantes para nuestro sistema.

Ejemplo: si estamos recopilando «tuits» con noticias locales, podemos filtrar por geolocalización de las publicaciones.

Identificación del dato

Durante la ingesta, es importante dotar a los datos ingeridos de un identificador único (ya sea propio o dependiente de la fuente de datos).

Ejemplo: podemos identificar los «tuits» con un identificador que nos proporciona Twitter, único para cada publicación.

Revisión del dato

Los datos deberían ajustarse al esquema (dominio) especificado, cumpliendo con las reglas de integridad y coherencia impuestas. Si no lo hacen, pueden omitirse, subsanarse o marcarse como inválidos.

Ejemplo: por algún error, podría llegarnos un «tuit» con un número negativo de «retuits». De ser así, podríamos decidir sustituir este valor inválido por un cero

De-duplicación del dato

Cuando incorporamos datos de varias fuentes (o varias consultas), es fácil que nos encontremos con datos duplicados, incluso si su estructura no es totalmente idéntica. En este caso, es conveniente eliminar los duplicados.

Ejemplo: si tenemos varias consultas activas recogiendo «tuits», una misma publicación podría ser devuelta por ambas consultas simultáneamente. En este caso, el identificador facilita la tarea de eliminar el registro duplicado.

Trasformación del dato

Cuando disponemos de datos estructurados o semiestructurados, puede ser conveniente transformar su estructura a una fija con el fin de unificar las diferentes fuentes de datos.

Ejemplo: en el caso de los «tuits», podemos decidir almacenar la información que nos interesa en formato JSON con un cierto esquema, obviando los campos que no son relevantes.

Estructuración del dato

Cuando se dispone de datos no estructurados, puede resultar interesante tratar de dotarlos de cierta estructura para facilitar su posterior análisis (en ocasiones, el «machine learning» puede ayudar a esto).


```
"labelAnnotations": [

{
    "description": "Cat",
    "mid": "/m/01yrx",
    "score": 0.99598557,
    "topicality": 0.99598557
},

{
    "description": "Mammal",
    "mid": "/m/04rky",
    "score": 0.9890478,
    "topicality": 0.9890478
},

{
    "description": "Vertebrate",
    "mid": "/m/09686",
    "score": 0.9851104,
    "topicality": 0.9851104
},

{
    "description": "Whiskers",
    "mid": "/m/01177d"
```

El proceso ETL

ETL son las siglas de **Extract** — **Transform** — **Load**, y hace referencia al concepto de extraer datos de diferentes fuentes y transformarlos para posteriormente cargarlos en algún almacén o base de datos.

Como proceso, está muy relacionado con la ingesta de datos, aunque históricamente se ha denominado ETL al proceso de extracción de datos estructurados disponibles «por lotes».

El proceso ETL

Existen **herramientas** que permiten facilitar el proceso de ETL mediante el diseño de «pipelines» que indican los pasos a los que se someten los datos, tales como Talend o Pentaho.

Datos en crudo

Debido al abaratamiento de los costes de almacenamiento, puede ser interesante almacenar no solo el dato procesado, sino también el original o «crudo», por si fuera útil en el futuro.

ELT vs. ETL

ELT es la filosofía **Extract** — **Load** — **Transform**, que plantea realizar la carga de los datos tras su extracción (en «crudo»), transformándolos cuando sea necesario y del modo que resulte más apropiado en cada momento.

Migración (lote único)

Es el proceso de realizar un procesado puntual para transformar unos datos en otros, o para tratarlos de algún modo.

Batch (por lotes)

En una aproximación *batch* o por lotes, grandes cantidades de datos se procesan de golpe, generalmente mediante algún enfoque distribuido.

Este proceso puede repetirse periódicamente, según se dispone de nuevos datos.

Batch: MapReduce

Es un paradigma de procesado de datos por lotes que permite transformar y agregar datos de forma distribuida entre diferentes servidores (o nodos).

Batch: MapReduce

Streaming (tiempo real)

En una aproximación en streaming, los datos llegan de forma continua y a gran velocidad, y este flujo de datos se va transformando y procesando a medida que va llegando al sistema.

Streaming Lambda

Es una arquitectura que permite el procesado de datos tanto por lotes como en tiempo real, permitiendo que ambas capas se retroalimenten, y proporcionando una salida conjunta.

El ecosistema Hadoop

Hadoop es un ecosistema consistente en multitud de herramientas para almacenamiento, procesado, análisis y gestión integral de «Big Data», inspirado en tecnologías presentadas por Google a principios de los 2000.

Para nuestro catálogo audiovisual, disponemos de un sistema que de forma constante está registrando toda la información sobre las visitas que recibe nuestro catálogo online, incluyendo la dirección IP del visitante, los datos de su navegador web, la página que está visitando, si el servidor ha devuelto algún error, etc.

Al finalizar el año, queremos obtener un reporte de los contenidos más visitados de nuestro catálogo, reportando también los principales países de origen de los visitantes.

Cuando el catálogo comienza a tener suficientes visitas, sospechamos que algunos usuarios malintencionados están tratando de acceder a los recursos audiovisuales sin autorización; es decir, tratan de hacer ingeniería inversa de la web para intentar descargar los ficheros multimedia (archivos de vídeo y archivos de música) sin pagar el coste del alquiler.

Tras investigar la cuestión, desarrollamos un modelo de «machine learning» que permite identificar comportamientos anómalos, y decidimos emplearlo para que, en caso de que llegue un nuevo usuario malintencionado a nuestro sistema, impedirle el acceso de inmediato.

Pronto nos damos cuenta de que nuestro sistema de detección de anomalías resulta en demasiados falsos positivos, es decir, impide el acceso a muchos usuarios que no tienen malas intenciones, causándoles un perjuicio y empeorando la imagen de nuestro catálogo.

Para solventarlo, decidimos emplear los registros que nuestro sistema ha ido almacenando con el fin de reentrenar y refinar nuestro modelo de «machine learning».

Cuando implementamos la primera versión de nuestro catálogo, decidimos emplear una base de datos relacional (SQL) con el fin de almacenar los registros, dada la popularidad de esta tecnología.

Sin embargo, con el paso del tiempo, nos hemos dado cuenta de que la flexibilidad que nos proporciona es insuficiente, y optamos por diseñar un nuevo esquema más flexible, basado en documentos JSON para almacenar la información.

A partir de ahora, nuestros nuevos ítems del catálogo se almacenarán con la nueva estructura. No obstante, es importante adaptar todos nuestros datos a este nuevo esquema.

Gestión y documentación de datos

¿Por qué documentar?

En demasiados casos, las compañías no tienen documentación actualizada sobre sus fuentes de datos, mecanismos de ingesta y procesado, recursos de almacenamiento, etc.

Es útil disponer de un documento de gestión de los datos.

Ventajas:

- > Facilita la comprensión de los procesos de datos a los nuevos empleados de la compañía, y permite la continuidad en caso de renovación del equipo de gestión de datos.
- > Permite la revisión sistemática de los procesos de ingesta y tratamiento de datos, asegurándose de que las fuentes de datos permanecen correctamente conectadas y la ingesta se realiza satisfactoriamente.
- > Facilita la auditoría de los datos, tanto interna como externa, ya sea con fines técnicos o regulatorios.
- > Facilita la revisión de mecanismos de almacenamiento y procesado para asegurarnos de que siempre responden a las necesidades de la compañía.

Contenidos de un Data Management Plan (DMP)

"El FSE invierte en tu futuro"

Fondo Social Europeo

