

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Criptografía y Seguridad Computacional - IIC3253 Tarea 4 Plazo de entrega: martes 26 de junio

Instrucciones

Cualquier duda sobre la tarea se deberá hacer en los *issues* del repositorio del curso. Los issues son el canal de comunicación oficial para todas las tareas.

Configuración inicial. Para esta tarea utilizaremos github classroom. Para acceder a su repositorio privado debe ingresar al siguiente link, seleccionar su nombre y aceptar la invitación. El repositorio se creará automaticamente una vez que haga esto y lo podrá encontrar junto a los repositorios del curso. Para la corrección se utilizará Python 3.12.

Entrega. Al entregar esta tarea, su repositorio se deberá ver exactamente de la siguiente forma:

Preguntas

- 1. En esta pregunta usted deberá implementar el protocolo de firmas de anillo visto en clases, el cual utiliza las firmas de Schnorr también vistas en clases.
 - Recuerde que una firma de Schnorr se define de la siguiente forma. Suponga que los siguiente objetos son públicos: un grupo (G,*), un elemento $g \in G$, un número primo q tal que $|\langle g \rangle| = q$ y una función de hash h. La clave secreta de un usuario A es un número $x_A \in \{1, \ldots, q-1\}$ y su clave pública es el elemento del grupo $y_A = g^{x_A}$. Si el usuario A quiere generar una firma de Schnorr para un mensaje m, entonces debe realizar los siguientes pasos:
 - (a) Genera al azar $r \in \{1, \dots, q-1\}$ y calcula $c = h(g^r || m)$ considerando g^r como un string.
 - (b) Calcula $s = r + c \cdot x_A$ interpretando c como un número natural.

(c) Define (c, s) como la firma de Schnorr de m.

Un usuario B puede verificar si (c,s) es una firma del mensaje m hecha por el usuario A chequeando que la siguiente condición se cumpla:

$$c = h(g^s * y_A^{q-c} || m).$$

Utilizando este protocolo, mostraremos cómo se define una firma de anillo para un caso particular. Usted deberá generalizarlo. Suponga que tiene un grupo formado por los usuarios 1, 2 y 3, donde la clave secreta del usuario i es x_i y la clave pública del usuario i es $y_i = g^{x_i}$. Si el usuario 1 quiere generar una firma de anillo de un mensaje m, entonces debe realizar los siguientes pasos:

- (a) Genera al azar $r_1 \in \{1, \dots, q-1\}$ y calcula $c_2 = h(g^{r_1} || m)$.
- (b) Genera al azar $s_2 \in \{1, ..., q 1\}$.
- (c) Calcula $g^{r_2} = g^{s_2} * y_2^{q-c_2}$ y $c_3 = h(g^{r_2}||m)$. Note que en este paso el usuario 1 no calcula r_2 , sólo calcula $g^{s_2} * y_2^{q-c_2}$ y sabe que esto es igual a un elemento del grupo de la forma g^{r_2} . Además, el usuario 1 utiliza g^{r_2} para calcular c_3 .
- (d) Genera al azar $s_3 \in \{1, ..., q 1\}$.
- (e) Calcula $g^{r_3} = g^{s_3} * y_3^{q-c_3}$ y $c_1 = h(g^{r_3} || m)$.
- (f) Calcula $s_1 = r_1 + c_1 \cdot x_1$. Note que este paso lo puede realizar el usuario 1 ya que conoce la clave secreta x_1 .
- (g) Saca al azar $i \in \{1, 2, 3\}$ y define (s_1, s_2, s_3, c_i, i) como la firma de anillo de m.

Supongamos que i = 2. Si un usuario B quiere verificar que $(s_1, s_2, s_3, c_2, 2)$ es una firma de anillo válida para el grupo formado por los usuarios 1, 2 y 3, entonces debe hacer lo siguiente:

- (a) Calcula $c_3 = h(g^{s_2} * y_2^{q-c_2} || m)$
- (b) Calcula $c_1 = h(g^{s_3} * y_3^{q-c_3} || m)$
- (c) Revisa si $h(g^{s_1} * y_1^{q-c_1} || m)$ igual al valor c_2 de la firma.

Note que si esta última condición es cierta, entonces B sabe que la firma es válida, pero no sabe cuál de los usuarios firmó el mensaje m (ya que el valor de i se sacó al azar).

Para responder esta pregunta, usted debe entregar el notebook preguntal.ipynb habiendo completado exclusivamente los bloques marcados con ##### POR COMPLETAR. Su notebook deberá correr de principio a fin. Además, se evaluará con un programa externo su implementación de las clases Signer y Verifier.