Vedlegg A - Forventningsverdier og varians av y og β

Her skal vi vise utledningene for uttrykkene $\mathbb{E}[y]$, $\operatorname{Var}(y), \mathbb{E}[\hat{\beta}]$ og $\operatorname{Var}(\hat{\beta})$ i tilfellene OLS og Ridge. Disse utledningen baserer seg på ukesoppgaver gjort i kurset FYS-STK4155 i uke 37. Vi tar utgangspunkt i en antagelse om at dataene våre kan beskrives av en kontinuerlig funksjon f(x) og en normalfordelt feil $\varepsilon \sim N(0, \sigma^2)$

$$y = f(x) + \varepsilon$$

Deretter approksimerer vi denne funksjonen med modellen vår \tilde{y} som kommer fra løsningen av ligningene for minste kvadraters metode (OLS), slik at modellen vår approksimeres med $\tilde{y} = X\beta$.

Vi starter med å vise at modellen i det hele tatt er anvendbard, fordi $\mathbb{E}[y] = \mathbf{X}\boldsymbol{\beta}$. Vi må benytte oss av at $\boldsymbol{y} = f(\boldsymbol{x}) + \boldsymbol{\varepsilon} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, hvor $\boldsymbol{\varepsilon} \sim N(0, \sigma^2)$ og \mathbf{X} og $\boldsymbol{\beta}$ er ikke-stokastiske.

Da blir

$$\mathbb{E}[y] = \mathbb{E}[\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = \mathbb{E}[\mathbf{X}\boldsymbol{\beta}] + \mathbb{E}[\boldsymbol{\varepsilon}].$$

Men fordi \mathbf{X} og $\boldsymbol{\beta}$ er ikke-stokastiske er $\mathbb{E}[\mathbf{X}\boldsymbol{\beta}] = \mathbf{X}\boldsymbol{\beta}$, slik at

$$\mathbb{E}[y] = \mathbf{X}\boldsymbol{\beta} + \mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{X}\boldsymbol{\beta} + 0 = \mathbf{X}\boldsymbol{\beta},$$

siden $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$

Videre skal vi vise at variansen til dataene våre er gitt ved $\text{Var}(y_i) = \sigma^2$. Vi begynner med å definere Var(y) som

$$Var(y) = \mathbb{E}[(y - \mathbb{E}(y))^2].$$

Bruker at $\boldsymbol{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ og at $\mathbb{E}(y) = \mathbf{X}\boldsymbol{\beta}$, som gir $\operatorname{Var}(y) = \mathbb{E}[(y - \mathbb{E}(y))^2] = \mathbb{E}[(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} - \mathbf{X}\boldsymbol{\beta}))^2] = \mathbb{E}[(\boldsymbol{\varepsilon})^2] = \sigma^2$ siden $\boldsymbol{\varepsilon} \sim N(0, \sigma^2)$. Videre skal vi se på forvendningsverdier for $\boldsymbol{\beta}$. Med $\hat{\boldsymbol{\beta}}_{\text{OLS}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}$, blir

$$egin{aligned} \mathbb{E}[\hat{eta_{OLS}}] &= \mathbb{E}[\left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}] \ &= \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{X}eta &= oldsymbol{eta} \ &= \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{X}eta &= oldsymbol{eta} \end{aligned}$$

Videre kan vi vise at $\text{Var}(\hat{\beta}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$. Vi tar utgangspunkt i at

$$\operatorname{Var}(\hat{\boldsymbol{\beta}_{OLS}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \mathbb{E}[\hat{\boldsymbol{\beta}}])^2]$$

Da blir

$$Var(\hat{\boldsymbol{\beta}}) = \mathbb{E}[((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} - \mathbb{E}[\hat{\boldsymbol{\beta}}])^2]$$

$$= \mathbb{E}[((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon} - \boldsymbol{\beta})^2]$$

$$= \mathbb{E}[(\boldsymbol{\beta} + \boldsymbol{\varepsilon} - \boldsymbol{\beta})^2]$$

$$= \mathbb{E}[(\boldsymbol{\varepsilon})^2] = \sigma^2$$

Videre skal vi vise at

$$\mathbb{E}[\hat{\boldsymbol{\beta}}^{\text{Ridge}}] = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{pp})^{-1} (\mathbf{X}^\top \mathbf{X}) \boldsymbol{\beta}.$$

Vi tar utgangspunkt i at

$$\hat{\boldsymbol{eta}}_{\mathrm{Ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

og

$$y = X\beta + \varepsilon$$

Da blir

$$\mathbb{E}[\hat{\boldsymbol{\beta}}_{\text{Ridge}}] = \mathbb{E}[(\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})]$$

$$= \mathbb{E}[(\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\mathbf{X}\boldsymbol{\beta}$$

$$+ (\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\boldsymbol{\varepsilon}]$$

$$= \mathbb{E}[(\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\mathbf{X}\boldsymbol{\beta}]$$

$$+ \mathbb{E}[(\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\boldsymbol{\varepsilon}]$$

$$= (\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\mathbf{X}\boldsymbol{\beta}$$

$$+ (\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\mathbf{E}[\boldsymbol{\varepsilon}]$$

$$= (\boldsymbol{X}^T\boldsymbol{X} + \lambda\mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\mathbf{X}\boldsymbol{\beta}$$

fordi \pmb{X} og $\pmb{\beta}$ er ikke-stokastiske og $\mathbb{E}[\pmb{\varepsilon}]=0$. For variansen til $\hat{\pmb{\beta}}^{\mathrm{Ridge}}$ tar vi utgangspunkt i at

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}} - \mathbb{E}[\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}}])^2]$$

Da får vi

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}} - \mathbb{E}[\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}}])^{2}]$$

$$= \mathbb{E}[((\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$

$$- \mathbb{E}[\hat{\boldsymbol{\beta}}^{\operatorname{Ridge}}])^{2}]$$

$$= \mathbb{E}[((\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

$$+ (\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T}\boldsymbol{\varepsilon}$$

$$- (\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T}\mathbf{X}\boldsymbol{\beta})^{2}]$$

$$= \mathbb{E}[((\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T}\boldsymbol{\varepsilon})^{2}]$$

$$= ((\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^{T})^{2}\mathbb{E}[\boldsymbol{\varepsilon}]^{2}$$

Ser på faktoren foran $\mathbb{E}[\boldsymbol{\varepsilon})^2$].

$$((\boldsymbol{X}^T\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^T)^2$$

$$= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^T((\boldsymbol{X}^T\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^T)^T$$

$$= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1}\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1})^T$$

Da blir

$$Var(\hat{\boldsymbol{\beta}}^{Ridge})$$

$$= (\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1} \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1})^T \mathbb{E}[\boldsymbol{\varepsilon})^2]$$

$$= \sigma^2 (\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1} \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathbf{I}_{pp})^{-1})^T$$

Siden $\mathbb{E}[\boldsymbol{\varepsilon})^2 = \sigma^2$.