Cap. 2 – Números naturais

08/04/2022

Método axiomático

Um conjunto de conceitos primitivos (axiomas ou postulados) é definido e os demais resultados são derivados (e demonstrados) a partir deles.

As proposições provadas são os teoremas e as conclusões imediatas dos teoremas são chamadas corolários e as proposições auxiliares são os lemas.

Método axiomático

Utilizado para formalização, utilize com bom senso em sala de aula. Não insista, por exemplo, em detalhes formais para justificar resultados intuitivamente óbvios.

Por outro lado, fatos importantes e não evidentes devem sim ser demonstrados de forma adequada para a audiência.

Método axiomático

"Embora a Matemática possa ser cultivada por si mesma, como um todo coerente, de elevado padrão intelectual, formado por conceitos e proposições de natureza abstrata, sua presença no currículo escolar não se deve apenas ao valor dos seus métodos para a formação mental dos jovens."

Elon Lages Lima

O conjunto dos números naturais

 $\mathbb N$ representa o conjunto cujos elementos são chamados de números naturais.

O conjunto dos números naturais

O conjunto dos números naturais está caracterizado pela palavra "sucessor" (conceito primitivo, portanto, não definido).

Axiomas de Peano:

- todo número natural tem um único sucessor;
- números naturais diferentes têm sucessores diferentes;
- existe um único número natural, chamado um (1), que não é sucessor de nenhum outro;
- ▶ se $X \subset \mathbb{N}$ com $1 \in X$ e o sucessor de todo elemento de X é também um elemento de X, então $X = \mathbb{N}$ (axioma de indução).

O conjunto dos números naturais

O sistema decimal permite representar os números naturais pelos símbolos 0,1,2,3,4,5,6,7,8,9.

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \ldots\}$$

O axioma de indução

Sejam P(n) uma propriedade do número natural $n \in n'$ o sucessor de n. Supondo que:

- ► P(1) é válida;
- ▶ Para todo $n \in \mathbb{N}$, P(n) válida $\Rightarrow P(n')$ válida.

Então P(n) é válida qualquer que seja $n \in \mathbb{N}$.

Operações

Adição:

n+1= sucessor de n n+2= sucessor de n+1= sucessor do sucessor de nn+3= sucessor de n+2= sucessor do sucessor de n+1= sucessor do sucessor do sucessor do sucessor de n

De modo axiomático, n + 1 = sucessor de nn + (p + 1) = (n + p) + 1

Operações

Multiplicação:

$$n \cdot 1 = n$$

 $n \cdot p = n + n + \cdots + n$ (soma p vezes)

De modo axiomático,

$$n \cdot 1 = n$$

$$n\cdot(p+1)=n\cdot p+n$$

Operações

Ordem:

$$m < n \Leftrightarrow$$
existe p tal que $n = m + p$

$$1 < 2$$
, pois $2 = 1 + 1$ (2 é o sucessor de 1)

$$2 < 5$$
, pois $5 = 2 + 3$ (5 é o sucessor do sucessor do sucessor de 2)

Propriedades

Adição:

- $ightharpoonup m+n=n+m, \forall m,n\in\mathbb{N};$
- ▶ se m + p = n + p, então $m = n, \forall m, n, p \in \mathbb{N}$.

Multiplicação:

- $ightharpoonup m \cdot n = n \cdot m, \forall m, n \in \mathbb{N};$
- $\qquad m \cdot (n \cdot p) = (m \cdot n) \cdot p, \forall m, n, p \in \mathbb{N}.$

Distributividade:

Propriedades

Ordem:

- ▶ se m < n e n < p, então $m < p, \forall m, n, p \in \mathbb{N}$;
- ▶ dados $m, n \in \mathbb{N}$, apenas uma opção é possível: m = n, n < m ou m < n;
- ▶ se m < n, então m + p < n + p e $m \cdot p < n \cdot p, \forall m, n, p \in \mathbb{N}$;
- ▶ se m + p < n + p ou $m \cdot p < n \cdot p$, então $m < n, \forall m, n, p \in \mathbb{N}$;
- ▶ todo conjunto não-vazio $A \subset \mathbb{N}$ tem um elemento mínimo $(\exists a_0 \in A \text{ tal que } a_0 \leq a, \forall a \in A).$

Provando por indução

Proposição: Para todo $n \in \mathbb{N}$, $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

Prova:

Observe que
$$1 = \frac{1(1+1)}{2}$$
.

Suponha que
$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$
.

Mostremos que
$$1 + 2 + \cdots + n + (n + 1) = \frac{(n + 1)(n + 2)}{2}$$
. De fato,

$$1+2+\cdots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1)+2(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$

Provando por indução

Proposição: Uma sequência (a_n) é tal que $a_1=1$ e $a_{n+1}=\frac{a_1+a_2+\cdots+a_n}{n+1}, \forall n\geq 1$. Mostre que os valores de a_n , para $n\geq 2$, são todos iguais.

Prova: Observando a sequência, temos que:

$$a_1 = 1$$
, $a_2 = \frac{a_1}{1+1} = \frac{1}{2}$, $\left(a_3 = \frac{a_1 + a_2}{2+1} = \frac{1 + \frac{1}{2}}{3} = \frac{1}{2}, a_4 = \dots\right)$

Suponha que $a_2 = a_3 = \ldots = a_n$, logo

$$a_{n+1} = \frac{a_1 + a_2 + \dots + a_n}{n+1} = \frac{1 + (n-1)a_2}{n+1} = \frac{1 + (n-1)\frac{1}{2}}{n+1}$$
$$= \frac{\frac{2+n-1}{2}}{n+1} = \frac{\frac{n+1}{2}}{n+1} = \frac{1}{2}$$

Portanto, pelo princípio de indução, segue-se o resultado.

Usando o princípio da boa ordenação

Proposição: Todo número natural é primo ou é um produto de fatores primos.

Prova: Seja X o conjunto dos naturais que são primos ou produto de fatores primos. Assim, se $m, n \in X$, então $mn \in X$.

Seja $Y=X^{\mathcal{C}}$, logo os elementos de Y não são primos nem são produtos de fatores primos. Mostremos que Y é vazio.

De fato, suponha por absurdo que $Y \neq \emptyset$. Pelo PBO, existe um menor elemento $a \in Y$.

Dessa forma, se x < a, então $x \in X$.

Como a não é primo, a = mn, com m < a e $n < a \Rightarrow m \in X$ e $n \in X \Rightarrow mn \in X \Rightarrow a \in X$. Absurdo.

Portanto, $Y = \emptyset$.

Princípio da boa ordenação vs Princípio de indução

O princípio da boa ordenação implica no princípio de indução.

Prova por absurdo:

Suponha que existe $X \subset \mathbb{N}$ tal que

- $ightharpoonup 1 \in X$;
- \triangleright $x+1 \in X$ para todo $x \in X$;
- \triangleright $X \neq \mathbb{N}$.

Tome $A = X^C$.

Observe que $1 \notin A$ e $A \neq \emptyset$, pois $X \neq \mathbb{N}$.

Pelo PBO, existe um menor elemento $a \in A$. Seja x o natural tal que a = x + 1 (x é o antecessor de a, que existe pois $1 \notin A$).

Temos que $x \notin A$, pois a é o menor elemento de A. Assim, $x \in X$. Por hipótese, temos $x+1=a \in X$, um absurdo, pois $A=X^C$ é não-vazio. Portanto, $X=\mathbb{N}$.