

Trabajo Práctico 2

Técnicas Algorítmicas Avanzadas

Viernes 9 de Mayo de 2014

Algoritmos y Estructuras de Datos III Entrega de TP

Grupo ??

Integrante	LU	Correo electrónico
Barrios, Leandro E.	404/11	ezequiel.barrios@gmail.com
Benegas, Gonzalo	958/12	gsbenegas@gmail.com
Melnik, Jonathan	571/09	jonathanmelnik@gmail.com
Vanecek, Juan	169/10	juann.vanecek@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

${\bf \acute{I}ndice}$

1.	Intr	oducción	3
2.	Inst	rucciones de uso	4
3.	Des	arrollo del TP	5
	3.1.	Backtracking	5
	3.2.	Greedy	6
		3.2.1. Greedy A	6
		3.2.2. Greedy B	7
		3.2.3. Greedy C	8
	3.3.	Local Search	9
	3.4.	GRASP	10
4.	Apé	ndices	11
	4.1.	Código Fuente (resumen)	11

1. Introducción

2. Instrucciones de uso

3. Desarrollo del TP

3.1. Backtracking

a

3.2. Greedy

3.2.1. Greedy A

Dado un grafo G = (V,E), obtenemos el camino que minimice w_1 entre u y v. Utilizamos Dijkstra.

3.2.2. Greedy B

Dado un grafo G = (V,E), obtenemos el camino que minimice w_2 entre u y v. Utilizamos Dijkstra.

3.2.3. Greedy C

Dado un grafo G = (V,E), obtenemos el camino que minimice w_1*w_2 entre u y v. Utilizamos Dijkstra.

3.3. Local Search

Partimos desde una solución factible obtenida a partir de un algoritmo goloso. En caso de que el algoritmo anterior no devuelva una solución factible, corremos Dijkstra utilizando la sumatoria de los pesos ω_1 como función objetivo. Si Dijkstra tampoco devuelve una solución factible, podemos asegurar que no existe solución al problema¹. En este caso, devolvemos "no".

Solución Inicial 2: Corro dijkstra con omega1 y omega2, formando c_1 y c_2 . Tomo el conjunto U de nodos formados por $c_1 \cap c_2$. Para cada par de nodos n_1, n_2 adyacentes, me fijo si puedo formar un camino mejor valuado en ω_2 reemplazando el camino c_{n_1,n_2}^1 por c_{n_1,n_2}^2 , siempre que el nuevo camino no se pase de K al valuarlo en ω_2 . La evaluación se hace ordenando por omega2, de forma tal que el camino obtenido sea el que minimice la misma en comparación con el resto de los posibles caminos que se podrían obtener con este método.

¹Demostrado en la sección de heurística golosa

3.4. GRASP

- 4. Apéndices
- 4.1. Código Fuente (resumen)