2.76 / 2.760 Lecture 3: Large scale

Big-small intuition

System modeling

Big history

Big problems

Flexures

Design experiment

Cross-scale coupling

Macro

Meso

Micro

Nano

-Function

_Form

-Flows

-Physics

—Fabrication

4.0										
ПП	n	Ct	10	n						
u	ш	Uι								

What

Who

Why

Where

Etc...

Form

Geometry

Motion

Interfaces

Constraints

Etc...

Flow

Mass

Momentum

Energy

Information

Etc...

Physics

Application

Modeling

Limiting

Dominant

Etc...

Fabrication

Compatibility

Quality

Rate

Cost

Etc...

2.76 Multi-scale System Design & Manufacturing

Short experiment

- (1) What cross-scale incompatibilities (5Fs) do you notice?
- (2) What obstacles must be overcome to enable interaction between large/small?

Time Limit: 5 minutes
Email results to me when time is called
Bulleted points please

Discussion

What was the nature of the trouble?

Comment on

- **□**Strain
- □Control/sensing
- **■**Momentum
- **□**Noise

What does this tell you about sensitivity and resolution / discretization?

Stage 1: Synthesis & selection

- Big issues
- ☐ Selection

Stage 2: Detailed design

- Analysis
- Optimization

- Function
- Form
- Flows
- Physics
- Fabrication

Cake Or Death?

Is this a difficult decision?

- □ Decision making is differential
- □Difference is indicated by model
- ☐ Model is supported by relationship

What determines quality of model?

Modeling and decision making

Determinism

- □ Does the system obey cause-effect (as observed)?
- ☐ Systematic error, random error

Everything

Repeatability

☐ How identical are repeated results?

Accuracy

☐ How close is the result to reality?

Experience or Relative importance

Non-dimensional analysis

- ☐ Qualitative & quantitative
- ☐ Rational process

Necessary & Sufficient

Input-output mapping

$$O_{MuSS} = G(SR) \cdot I_{MuSS}$$

Conceptual

Input-output mapping

$$O_{MuSS} = G(SR) \cdot I_{MuSS}$$

$$\begin{vmatrix} O_{Macro} \\ O_{Macro} \\ O_{Meso} \end{vmatrix} = \begin{vmatrix} C_{11} \cdot \left(SR_{\frac{Macro}{Macro}} \right)^{A_{11}} & C_{12} \cdot \left(SR_{\frac{Meso}{Macro}} \right)^{A_{12}} & C_{13} \cdot \left(SR_{\frac{Micro}{Macro}} \right)^{A_{13}} & C_{14} \cdot \left(SR_{\frac{Nano}{Macro}} \right)^{A_{14}} \\ O_{Meso} \\ O_{Micro} \end{vmatrix} = \begin{vmatrix} C_{21} \cdot \left(SR_{\frac{Macro}{Meso}} \right)^{A_{21}} & C_{22} \cdot \left(SR_{\frac{Meso}{Meso}} \right)^{A_{22}} & C_{23} \cdot \left(SR_{\frac{Micro}{Meso}} \right)^{A_{23}} & C_{24} \cdot \left(SR_{\frac{Nano}{Meso}} \right)^{A_{24}} \\ C_{31} \cdot \left(SR_{\frac{Macro}{Micro}} \right)^{A_{31}} & C_{32} \cdot \left(SR_{\frac{Meso}{Micro}} \right)^{A_{32}} & C_{33} \cdot \left(SR_{\frac{Micro}{Micro}} \right)^{A_{33}} & C_{34} \cdot \left(SR_{\frac{Nano}{Micro}} \right)^{A_{34}} \\ C_{41} \cdot \left(SR_{\frac{Macro}{Nano}} \right)^{A_{41}} & C_{42} \cdot \left(SR_{\frac{Meso}{Nano}} \right)^{A_{42}} & C_{43} \cdot \left(SR_{\frac{Micro}{Nano}} \right)^{A_{43}} & C_{44} \cdot \left(SR_{\frac{Nano}{Nano}} \right)^{A_{44}} \\ I_{Nano} \end{vmatrix}$$

Equivalent

What might G look like?

"Ideal" or perfect scale interaction

$$\begin{vmatrix} O_{Macro} \\ O_{Meso} \\ O_{Micro} \end{vmatrix} \sim \begin{vmatrix} 10^{0} & 10^{3} & 10^{6} & 10^{9} \\ 10^{-3} & 10^{0} & 10^{3} & 10^{6} \\ 10^{-6} & 10^{-3} & 10^{0} & 10^{3} \\ O_{Nano} \end{vmatrix} \begin{vmatrix} I_{Macro} \\ I_{O} \\ I_{O} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Micro} \\ I_{Nano} \end{vmatrix}$$

$$\begin{vmatrix} I_{O} \\ I_{O} \\ I_{O} \end{vmatrix}$$

$$\begin{vmatrix} I_{O} \\ I_{O} \\ I_{O} \end{vmatrix}$$

$$\begin{vmatrix} I_{O} \\ I_{O} \end{vmatrix}$$

What does $| G^{pij} / G_{ij} | Iook like?$

Why is this useful?

How will we use it?

$$G = \begin{bmatrix} 10^{100} & 10^3 & 10^6 & 10^{20} \\ 10^{-3} & 10^0 & 10^3 & 10^6 \\ 10^{-6} & 10^{-3} & 10^0 & 10^3 \\ 10^{-9} & 10^{-6} & 10^{-3} & 10^0 \end{bmatrix}$$

Example: STM

$$i = C \cdot e^{(-2 \cdot K \cdot gap)}$$

Figure by MIT OCW.

Is this the whole story?

Example: STM Signal

Image removed for copyright reasons. Source: http://www.almaden.ibm.com

Example: STM Displacement

Purpose of today

$$\begin{vmatrix} O_{Macro} \\ O_{Meso} \\ O_{Micro} \end{vmatrix} = \begin{vmatrix} f_{11} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \end{pmatrix} & f_{12} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \end{pmatrix} & f_{13} \begin{pmatrix} SR_{\frac{Micro}{Macro}} \end{pmatrix} & f_{14} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \\ SR_{\frac{Nano}{Macro}} \end{pmatrix} & I_{Macro} \\ I_{Meso} \\ I_{Meso} \\ I_{Meso} \\ I_{Micro} \\ I_{Micro} \\ I_{Macro} \\ I_{Micro} \\ I_{Macro} \\ I_{Micro} \\ I_{Macro} \\ I_{Micro} \\ I_{Macro} \\ I_$$

Mechanical gain factors to make big machines work with little machines

What will this be applied to?

Macro Meso Micro

Nano

-Function

_Form

-Flows

—Physics

—Fabrication

runction
What
Who
Why
Where
Etc

Eupotion

Form

Geometry

Motion

Interfaces

Constraints

Etc...

Flow

Mass

Momentum

Energy

Information

Etc...

Physics

Application

Modeling

Limiting

Dominant

Etc...

Fabrication

Compatibility

Quality

Rate

Cost

Etc...

2.76 Multi-scale System Design & Manufacturing

Early big machines made to work with the small

Big machines working with the small

What is the most critical requirements for a large-scale machine to live in a MuSS?

Motion stability, resolution, repeatability

Two diagrams removed for copyright reasons.

Strain management

Everything is compliant

- Strain error scales with size
- Large scale parts are kinematic bullies

Generally require "freedom to strain" to prevent over constraint & energy storage

Generally seek to minimize strain

Mechanism/fixture/structure design

- Necessary & sufficient constraint topology → concepts
- Exact constraint

Principles of cross-scale motion and constraint

To flex or not to flex

Good

- ☐ Smooth, "hysteresis free" motion
- ☐ Symmetry easy to implement
- ☐ Linearity

Unpleasant

- ☐ Accuracy and repeatability sensitive to several variables
- ☐ Limited motion/stroke (20% of yield unless single crystal Si)
- ☐ Stiffness ratio compared to other guide/bearing mechanisms is low

Design for compliant constraint

1.Stability

- ☐ Maximize passive stability
- ☐"Self-help" (symmetry & cancellation)

2. Envelope

- ☐ Strain errors (compliance, thermal)
- □ Packaging

3. Manufacturing

- ☐ Monolithic
- ☐ Minimum information

4. Constraint

- ☐ Maximize linear independence
- ☐ Parasitic errors

Parasitic errors

Principle of symmetry

Thermal strain error

Over constraint → Force

Principle of cancellation

Kinematic path building blocks

- ☐ Straight lines
- □ Rotation (instant centers)

Principle of center of stiffness

Loading matters Center of stiffness: Load = no rotation

Figure by MIT OCW. After R. V. Jones.

Modeling

General Exact Constraint

$$S_{Stage} = A \cdot \Delta_{Actuator}$$

$$\begin{vmatrix} X & | & E_{x1} & E_{x2} & E_{x3} & E_{x4} & E_{x5} & E_{x6} & \Delta_{1} \\ E_{y1} & E_{y2} & E_{y3} & E_{y4} & E_{y5} & E_{y6} & \Delta_{2} \\ E_{z1} & E_{z2} & E_{z3} & E_{z4} & E_{z5} & E_{z6} & \Delta_{3} \\ E_{\theta x1} & E_{\theta x2} & E_{\theta x3} & E_{\theta x4} & E_{\theta x5} & E_{\theta x6} & \Delta_{4} \\ E_{\theta y1} & E_{\theta y2} & E_{\theta y3} & E_{\theta y4} & E_{\theta y5} & E_{\theta x6} & \Delta_{5} \\ E_{z1} & E_{z2} & E_{z2} & E_{z3} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{\theta y1} & E_{\theta y2} & E_{\theta y3} & E_{\theta y4} & E_{\theta y5} & E_{\theta x6} & \Delta_{5} \\ E_{z2} & E_{z2} & E_{z2} & E_{z2} & E_{z3} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z5} & E_{z6} & \Delta_{5} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z4} & E_{z4} & E_{z4} & E_{z4} \\ E_{z5} & E_{z4} & E_{z4} & E_{z4} \\ E_{z5} & E_{z4} & E_{z4} & E_{z4} \\ E_{z5} & E_{z4} & E_{z4} \\ E_{z5} & E_{z4} & E_{z5} & E_{z4} \\ E_{z5} & E_{z5} & E_{z5} \\ E_{z5} & E_{z5} \\ E_{z5} & E_{z5} \\ E_{$$

Non-Calibrated

Nominal

Calibrated

			Dang	6 - C	$\cdot \Delta_{Acc}$	unter		
χ.		11	C,3	C.	0	0	0	Δ
}.*		(_ ₁₋₁	(_ y2	C_{y3}	Ü	0	Ü	Δ
_	_	0	0	0	1-53	1-25	(_r6	Δ
в,	0 0 C.	0	0	0	F-611	50	C.	Δ
e,		0	0	0	1-69.4	12.	1-156	Δ
0.		-61		1-4	Ö	Ō	0	1

Modeling

General Exact Constraint

Non-Ca

Nominal

"Perfectly" Calibrated

Modeling

General Exact Constraint

Non-Calibrated

Nominal

"Perfectly" Calibrated

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & & & & & & & & & & & & \\ S_{3iige} & = C \cdot \Delta_{Actailor} & & & & & & \\ \hline S_{ij} & C_{ij} & C_{ij} & C_{ij} & 0 & 0 & 0 & |\Delta_{1}| \\ \hline S_{ij} & C_{ji1} & C_{ji2} & C_{ji3} & 0 & 0 & 0 & |\Delta_{2}| \\ \hline C_{ij} & C_{ji2} & C_{ji3} & 0 & 0 & 0 & |\Delta_{2}| \\ \hline C_{ij} & 0 & 0 & 0 & C_{ij1} & C_{ij3} & C_{ij6} & |\Delta_{3}| \\ \hline C_{ij} & 0 & 0 & 0 & C_{ij4} & C_{ij6} & C_{ij6} & |\Delta_{3}| \\ \hline C_{ij} & C_{ij3} & C_{ij3} & C_{ij6} & C_{ij6} & |\Delta_{3}| \\ \hline C_{ij} & C_{ij3} & C_{ij3} & C_{ij3} & C_{ij6} & |\Delta_{3}| \\ \hline \end{array}$$

Modeling

General Exact Constraint

Non-Calibrated

Nominal

"Perfectly" Calibrated

Actuator sensitivity & calibration

Source of errors

- ☐ Tolerance (5000 nm vs 1nm?)
- □ Mounting
- ☐ Material props
- ☐ Stress stiffening
- ☐ Linear assumptions
- ☐ Calibration and mapping...

Constraintbased compliant mechanism clesign

Constraint-based CM design

Compliant mechanism design methods		
Pseudo-rigid body (lumped compliance)	Continuum /topology (distributed compliance)	Constraint-based (modular kinematic concepts)
	1	1
 Combinations of rigid and compliant elements Compliant elements function and are modeled as hinges 	Continuum-topology generationTopology optimization	 Modular concepts combined according to rational constraint & motion rules/constraint metrics Constraint and displacement rules generate parametric concepts, optimization finalizes design

Constraint-based method This is a rational process

Intuition

Rules of constraint

DOC = # of linearly independent constraints

DOF = 6 - DOC

Constraints have lines of action

Lines of action intersect at instant centers

Instant centers (via constraint) define motion

Basic elements

Diagrams removed for copyright reasons.

Source: Blanding, D. L. *Exact Constraint: Machine Design using Kinematic Principles*. New York: ASME Press, 1999. ISBN: 0791800857

Bars Beams Plates

Cross Beam Hinge

Notch Hinge

Common precision constraint types

Constraints

□5 DOF

Diagrams removed for copyright reasons.
Source: Blanding, D. L. *Exact Constraint: Machine Design using Kinematic Principles*. New York: ASME Press, 1999. ISBN: 0791800857

□3 planar DOF

Constraint and Freedom

When connecting in series

- ☐ Add degrees of freedom with exception of redundant degrees
- □Examples:

Constraint and freedom

When connecting in parallel

☐ Add constraints

☐ Example: Two sheets @ 90 degrees

Front View Side View

Two Bars

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Direct comparison with design requirements

Diagram of automobile steering column, rack and rotor - removed for copyright reasons.

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Direct comparison with design requirements

1. Series topology: Add DOF

2. Parallel topology: Add Constraints

3. Over constraint: $\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_k \cdot CM_{\delta} << 1$

2.76 Multi-scale System Design & Manufacturing

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Direct comparison with design requirements

CoMeT: Compliant Mechanism Tool

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Compliant mechanism tool: CoMeT

Design activity

Problem

Design a mechanical filter which:

- \Box Gij = 0.05 (factor of 20 filtering)
- □Range of 0.5 mm with less than 5 micron PE
- \square Envelope: 5 x 5 x 0.125 inches

Give us enough information to:

- ☐ Understand your constraint topology
- ☐ Fabricate it
- ☐ Assume it is aluminum

Email journal file at end of class

You may ask any question at any time...

Assignment

Form teams of 4 now, email members to TA by 5pm Friday

Flexure reading (pp. 67-82 & 174-205)

CoMeT tutorials 1 - 3

Learn a CAD package (3 wks!!!)

Create CoMeT model of your flexure, send to TA by Monday 9am