JC17 Rec'd PCT/PTO 22 JUL 2005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Hideki TATEMATSU et al.

Mail Stop PCT

Appl. No:

Not Yet Assigned (National Phase of PCT/JP2005/000192)

I. A. Filed

January 11, 2005

For

FIXING APPARATUS

CLAIM OF PRIORITY

Commissioner for Patents
U.S. Patent and Trademark Office
Customer Service Window, Mail Stop PCT
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Sir:

Applicant hereby claims the right of priority granted pursuant to 35 U.S.C. 119 and 365 based upon Japanese Application No. 2004-016168, filed January 23, 2004. The International Bureau already should have sent a certified copy of the Japanese application to the United Stated designated office. If the certified copy has not arrived, please contact the undersigned.

Respectfully submitted, Hideki TATEMATSU et al.

Bruce H. Bernstein

Reg. No. 29,027

Leslie J. Paperner

Reg. No. 33,329

July 22, 2005 GREENBLUM & BERNSTEIN, P.L.C. 1950 Roland Clarke Place Reston, VA 20191 (703) 716-1191

日本国特許庁 JAPAN PATENT OFFICE

13,01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 1月23日

出 願 番 号 Application Number: 特願2004-016168

[ST. 10/C]:

[JP2004-016168]

出 願 人
Applicant(s):

松下電器産業株式会社

特許Comm

特許庁長官 Commissioner, Japan Patent Office 2005年 2月17日

i) [1]

ページ: 1/E

【書類名】 特許願

【整理番号】 2913450040

【提出日】平成16年 1月23日【あて先】特許庁長官殿

【国際特許分類】 G03G 15/20

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ュニケーションズ株式会社内

【氏名】 立松 英樹

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ユニケーションズ株式会社内

【氏名】 志水 忠文

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ユニケーションズ株式会社内

【氏名】 醒井 雅裕

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ュニケーションズ株式会社内

【氏名】 松崎 圭一

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ュニケーションズ株式会社内

【氏名】 松尾 和徳

【発明者】

【住所又は居所】 福岡県福岡市博多区美野島四丁目1番62号 パナソニックコミ

ュニケーションズ株式会社内

【氏名】 北川 生一

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100105050

(弁理士)

【氏名又は名称】 鷲田 公一

【手数料の表示】

【予納台帳番号】 041243 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9700376

【請求項1】

記録媒体上の未定着画像を加熱定着する発熱体と、

前記発熱体を加熱する加熱手段と、

前記未定着画像が加熱定着されて所定のシート経路に沿って搬送される前記記録媒体の 加熱定着面を前記発熱体から分離する方向にガイドするガイド面を有するシート分離ガイ ド板と、を備え、

前記シート分離ガイド板のガイド面に、前記ガイド面のガイド幅方向に沿って隆起した 段差部を設けたことを特徴とする定着装置。

【請求項2】

前記シート分離ガイド板は、金属板であることを特徴とする請求項1記載の定着装置。

【請求項3】

前記シート分離ガイド板のガイド面に設けた段差部のガイド幅方向両端部の高さを、前 記段差部のガイド幅方向中央部の高さよりも大きく形成したことを特徴とする請求項1又 は請求項2記載の定着装置。

【請求項4】

前記シート分離ガイド板の前記ガイド面の前記発熱体と対向するガイド幅方向中央端部 を、前記ガイド面のガイド幅方向両端部よりもシート搬送方向上流側に突出するように形 成したことを特徴とする請求項1から請求項3のいずれかに記載の定着装置。

前記シート分離ガイド板のガイド面を低摩擦部材で被覆したことを特徴とする請求項1 から請求項4のいずれかに記載の定着装置。

【請求項6】

前記シート分離ガイド板のシート搬送方向下流側に、前記発熱体から分離して前記シー ト分離ガイド板のガイド面によりガイドされる前記記録媒体を前記加熱定着面側に湾曲さ せるシート搬送経路形成部材を配設したことを特徴とする請求項1から請求項5のいずれ かに記載の定着装置。

【請求項7】

記録媒体上に未定着画像を形成する画像形成手段と、前記画像形成手段により前記記録 媒体上に形成された未定着画像を加熱された発熱体により加熱定着する定着手段とを備え

前記定着手段として、請求項1から請求項6のいずれかに記載の定着装置を用いること を特徴とする画像形成装置。

【書類名】明細書

【発明の名称】定着装置

【技術分野】

[0001]

本発明は、記録媒体上の未定着画像を加熱定着させる定着装置に関し、特に電子写真方 式あるいは静電記録方式の複写機、ファクシミリ及びプリンタ等の画像形成装置に用いて 有用な定着装置に関する。

【背景技術】

[0002]

この種の画像形成装置では、一般に加熱方式の定着装置が用いられている。この加熱方 式の定着装置は、無端ベルト又はローラなどからなる発熱体、前記発熱体を加熱する加熱 手段及び前記発熱体に圧接する加圧手段などを備えている。

[0003]

前記加熱手段は、例えば、ハロゲンランプ又は電磁誘導加熱(IH; induction heatin g)装置などで構成されている。前記加圧手段は、ゴムローラ又はスポンジローラなどか らなり、前記発熱体に当接回転して前記発熱体との間に形成されるニップで記録紙又は〇 HPシートなどの記録媒体を挟持搬送する。

[0004]

この加熱方式の定着装置では、前記ニップで前記記録媒体を挟持搬送することにより前 記発熱体の熱で前記記録媒体上に形成された未定着画像のトナーを溶融し、この溶融した トナーの粘着力により前記未定着画像を前記記録媒体上に定着させている。

[0005]

このため、この定着装置においては、加熱により溶融したトナーの粘着力により前記記 録媒体が前記発熱体に巻き付く現象が起こりやすい。このような現象は、加熱定着される 記録媒体のシート搬送方向先端部にベタ画像が形成されている場合に発生しやすい。また 、前記現象は、定着装置の電源投入時よりも定着装置がある程度使用されて暖まっている 状態のときの方が発生しやすい。

[0006]

そこで、この種の定着装置では、例えば、前記ニップよりも下流側の発熱体の表面にシ ート分離手段としての分離爪を当接するように配設し、加熱定着後の記録媒体を前記分離 爪により前記発熱体から強制的に分離するようにしている(例えば、特許文献1など参照

[0007]

ところが、前記シート分離手段として分離爪を用いた定着装置は、その発熱体に前記分 離爪が当接した構成となるため、前記発熱体の表面に前記分離爪の当接痕が付きやすいと いう不具合がある。この不具合は、モノクロ画像用の定着装置のように前記発熱体の硬度 を比較的高くできる場合には問題となることも少ないが、カラー画像用の定着装置のよう に前記発熱体に弾性層が形成されているような場合には前記発熱体の寿命及び定着画像の 画質を著しく低下させる原因となる。

[0008]

一方、前記シート分離手段として、分離爪の替わりにシート分離ガイド板を用い、この シート分離ガイド板により加熱定着後の記録媒体を前記発熱体から分離する定着装置が知 られている(例えば、特許文献2など参照)。

[0009]

図10は、前記シート分離手段としてシート分離ガイド板(以下、これを「セパレータ 」という)を用いた定着装置における記録媒体(記録紙)の分離開始状態を示す概略断面 図である。図10に示すように、この定着装置10は、前記発熱体としての定着ローラ1 1、前記加圧手段としての加圧ローラ12、記録紙Pの搬送経路を形成するシートガイド 板13,14,15及びセパレータ16などを備えている。

[0010]

[0011]

セパレータ16は、定着ローラ11の表面から離間された記録紙Pの先端部Paをガイド面16aによりガイドして記録紙Pを定着ローラ11の表面から分離する。

[0012]

このように、この定着装置10においては、まず、記録紙Pの先端部Paを定着ローラ 11の曲率によりその表面から離間させ、次いで、この定着ローラ11の表面から離間した記録紙Pの先端部Paをセパレータ16のガイド面16aによりガイドして記録紙Pを定着ローラ11から分離している。

[0013]

従って、この定着装置10においては、図10に示すように、定着ローラ11の表面から記録紙Pを分離するセパレータ16を定着ローラ11に対して非接触となるように配設できるので、前記分離爪のように定着ローラ11に当接痕が付くことがなく、定着ローラ11の寿命低下及び定着画像の画質低下を招くことがなくなる。

【特許文献1】特開2003-215967号公報

【特許文献2】特開平07-181826号公報

【発明の開示】

【発明が解決しようとする課題】

[0014]

しかしながら、前記従来の前記シート分離ガイド板を用いた加熱定着方式の定着装置は、加熱定着後の記録媒体が前記シート分離ガイド板に沿って分離搬送される過程でシートジャム及び画像乱れが発生しやすいという不具合がある。

[0015]

すなわち、この種の定着装置では、記録媒体上の未定着画像(トナー像)が発熱体により加熱溶融されてから固化(記録媒体上に定着)するまでにある程度の時間を要する。このトナー像が溶融してから固化するまでに要する時間は、記録媒体の搬送速度、トナーの材質、記録媒体へのトナー付着量、発熱体の発熱温度、定着装置の内部温度及び環境温度などの種々の条件により微妙に変化する。

[0016]

従って、このような加熱定着方式の定着装置においては、前記発熱体の加熱定着部位から前記シート分離ガイド板の上流端までの距離を前記記録媒体が移動する間に、前記記録 媒体上のトナー像が必ずしも固化し終えているとは限らない。

[0017]

このため、この種の定着装置では、例えば、図11に示すように、記録紙P上のトナー像が固化しきらない状態のままセパレータ16のガイド面16aに沿って記録紙Pが移動し、この半固化状態のトナー像がセパレータ16のガイド面16aに張り付いたり摺擦したりしてシートジャム及び画像乱れが発生することがある。

[0018]

このようなシートジャム及び画像乱れは、前記記録媒体上に形成されたトナー像がベタ 画像の場合に発生しやすい。これは、ベタ画像は通常の画像よりも付着トナー量が多くな るため溶融したトナーが固化するまでにより長い時間がかかることによる。

[0019]

また、このシートジャム及び画像乱れは、前記ベタ画像が前記記録媒体のシート搬送方向後端部に形成されている場合に特に発生しやすい。これは、例えば、図12に示すように、記録紙Pの後端部Pbは、定着ローラ11と加圧ローラ12との定着ニップ部Nから

[0020]

また、このシートジャム及び画像乱れは、定着装置の内部温度が高くなり前記シート分 離ガイド板が高温になった場合も、前記記録媒体上の加熱定着されたトナー像が固化しに くくなったり再溶融したりするため発生しやすい。

[0021]

本発明は、かかる点に鑑みてなされたもので、加熱定着後の記録媒体をシートジャム及 び画像乱れを起こすことなく発熱体から円滑に分離することができる定着装置を提供する ことを目的とする。

【課題を解決するための手段】

[0022]

かかる課題を解決するため、請求項1記載の定着装置は、記録媒体上の未定着画像を加 熱定着する発熱体と、前記発熱体を加熱する加熱手段と、前記未定着画像が加熱定着され て所定のシート経路に沿って搬送される前記記録媒体の加熱定着面を前記発熱体から分離 する方向にガイドするガイド面を有するシート分離ガイド板と、を備え、前記シート分離 ガイド板のガイド面に、前記ガイド面のガイド幅方向に沿って隆起した段差部を設けた構 成を採る。

[0023]

この構成によれば、前記シート分離ガイド板のガイド面に設けた段差部によって、前記 ガイド面に沿ってガイドされる前記記録媒体の加熱定着面と前記ガイド面との間に隙間が 生じ、前記記録媒体の加熱定着面と前記ガイド面との接触面積が減少する。従って、この 構成においては、前記記録媒体の加熱定着面が前記シート分離ガイド板のガイド面に張り 付きにくくなり、前記記録媒体をシートジャム及び画像乱れを起こすことなく前記発熱体 から円滑に分離できるようになる。

[0024]

請求項2記載の定着装置は、請求項1記載の発明において、前記シート分離ガイド板は 、金属板である構成を採る。

[0025]

この構成によれば、請求項1記載の発明の効果に加えて、前記シート分離ガイド板を樹 脂板で構成した場合と比較して前記シート分離ガイド板の耐熱性が向上されるので、前記 シート分離ガイド板の熱変形による前記記録媒体の分離不良を解消することができる。ま た、この構成においては、前記シート分離ガイド板を安価に製造できるとともに、前記段 差部により前記シート分離ガイド板のガイド幅方向(長手方向)の機械的な曲げ強度が増 大するので、前記シート分離ガイド板の組み立て位置精度が向上する。このシート分離ガ イド板の耐熱性及び組み立て位置精度は、定着装置における記録媒体の分離性能を左右す るため極めて重要となる。

[0026]

請求項3記載の定着装置は、請求項1又は請求項2記載の発明において、前記シート分 離ガイド板のガイド面に設けた段差部のガイド幅方向両端部の高さを、前記段差部のガイ ド幅方向中央部の高さよりも大きく形成した構成を採る。

[0027]

この構成によれば、請求項1又は請求項2記載の発明の効果に加えて、前記記録媒体が 前記シート分離ガイド板のガイド面によりガイドされることにより、前記記録媒体のシー ト幅方向両側部の加熱定着面が、前記ガイド面に設けた段差部のガイド幅方向両端部とガ イド幅方向中央部との高低差によって背面側に湾曲される。このように、前記記録媒体の シート幅方向両側部の加熱定着面を背面側に湾曲させることによって、前記記録媒体のシ

[0028]

請求項4記載の定着装置は、請求項1から請求項3のいずれかに記載の発明において、 前記シート分離ガイド板の前記ガイド面の前記発熱体と対向するガイド幅方向中央端部を 、前記ガイド面のガイド幅方向両端部よりもシート搬送方向上流側に突出するように形成 した構成を採る。

[0029]

この構成によれば、請求項1から請求項3のいずれかに記載の発明の効果に加えて、前 記記録媒体のシート搬送方向中央部の加熱定着面が、前記シート分離ガイド板のガイド面 のガイド幅方向中央端部により、前記記録媒体のシート幅方向両側部の加熱定着面よりも 先に確実にガイドされるようになる。すなわち、この種の加熱定着方式の定着装置におい ては、前記記録媒体のシート幅方向両側部が加熱定着面の加熱による収縮により前記発熱 体に対して接近する方向にカールしやすい。このため、この種の定着装置では、上述のよ うにカールした前記記録媒体のシート幅方向両側部が前記シート分離ガイド板のガイド面 の上流側端部に衝突してシートジャムを引き起こすおそれがある。この構成によれば、前 記記録媒体のシート搬送方向上流側に突出した前記シート分離ガイド板のガイド面のガイ ド幅方向中央端部によって、前記記録媒体のシート幅方向中央部の加熱定着面を確実にガ イドすることができる。従って、この構成においては、前記記録媒体のシート幅方向両側 部がカールしている場合でも、シートジャムを起こすことなく前記シート幅方向両側部を 前記ガイド面に沿うように確実にガイドできるようになる。

[0030]

請求項5記載の定着装置は、請求項1から請求項4のいずれかに記載の発明において、・ 前記シート分離ガイド板のガイド面を低摩擦部材で被覆した構成を採る。

[0031]

この構成によれば、請求項1から請求項4のいずれかに記載の発明の効果に加えて、前 記シート分離ガイド板のガイド面に対する前記記録媒体の加熱定着面の付着力が低減され るので、前記ガイド面への前記記録媒体の張り付きがより起こりにくくなる。

[0032]

請求項6記載の定着装置は、請求項1から請求項5のいずれかに記載の発明において、 前記シート分離ガイド板のシート搬送方向下流側に、前記発熱体から分離して前記シート 分離ガイド板のガイド面によりガイドされる前記記録媒体を前記加熱定着面側に湾曲させ るシート搬送経路形成部材を配設した構成を採る。

[0033]

この構成によれば、請求項1から請求項5のいずれかに記載の発明の効果に加えて、前 記発熱体から分離して前記シート分離ガイド板のガイド面によりガイドされる前記記録媒 体が、前記シート搬送経路形成部材により前記画像定着面側に湾曲される。これにより、 前記画像定着面側に湾曲した記録媒体は、その腰の強さによって湾曲する前の状態に復帰 しようとし、前記記録媒体の上流側部分に前記シート分離ガイド板のガイド面から離間す る向きの力が生じる。従って、この構成においては、前記シート分離ガイド板のガイド面 に対する前記記録媒体の加熱定着面の付着力がより低減され、前記ガイド面への前記記録

[0034]

請求項7記載の画像形成装置は、記録媒体上に未定着画像を形成する画像形成手段と、 前記画像形成手段により前記記録媒体上に形成された未定着画像を加熱された発熱体によ り加熱定着する定着手段とを備え、前記定着手段として、請求項1から請求項6のいずれ かに記載の定着装置を用いる構成を採る。

[0035]

この構成によれば、前記発熱体により前記未定着画像が加熱定着された前記記録媒体を シートジャム及び画像乱れを起こすことなく前記発熱体から円滑に分離することができる ので、画像品質の高いプリントを無駄なく得ることができる。

【発明の効果】

[0036]

本発明によれば、加熱定着後の記録媒体をシートジャム及び画像乱れを起こすことなく 発熱体から円滑に分離することができる。

【発明を実施するための最良の形態】

[0037]

本発明の骨子は、発熱体により未定着画像が加熱定着されて所定のシート搬送方向に搬 送される記録媒体の加熱定着面を、前記発熱体から分離する方向にガイドするためのシー ト分離ガイド板のガイド面に段差部を設けたことである。

[0038]

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、各図にお いて同一の構成又は機能を有する構成要素及び相当部分には、同一の符号を付してその説 明は繰り返さない。

[0039]

(実施の形態1)

図1は、本発明の実施の形態1に係る定着装置を搭載するのに適した画像形成装置の構 成を示す概略断面図である。図1に示すように、この画像形成装置100は、カラー画像 の発色に寄与する4色のトナー像を4つの像担持体上に個別に形成し、これら4色のトナ ー像を中間転写体上に順次重ね合わせて一次転写した後、この一次転写像を記録媒体に一 括転写(二次転写)するタンデム方式の画像形成装置である。

[0040]

なお、本実施の形態 1 に係る定着装置は、前記タンデム方式の画像形成装置のみに限定 されず、あらゆる方式の画像形成装置に搭載可能であることはいうまでもない。

[0041]

また、図1において、画像形成装置100の各構成要素に付した符号の末尾の記号Y, M, C, Kは、Yはイエロー画像、Mはマゼンタ画像、Cはシアン画像、Kはブラック画 像のそれぞれの画像形成に関与する構成要素を示しており、同一符号の構成要素はそれぞ れ共通した構成を有している。

$\{0042\}$

画像形成装置100は、前記4つの像担持体としての感光体ドラム110Y,110M 110C, 110Kの周囲に、帯電器120Y, 120M, 120C, 120K、露光 装置130、現像器140Y, 140M, 140C, 140K、転写器150Y, 150 M, 150C, 150K、クリーニング装置160Y, 160M, 160C, 160K及 び中間転写ベルト(中間転写体)170をそれぞれ配置した画像形成ステーションSY, SM, SC, SKを有している。

[0043]

図1において、各感光体ドラム110Y,110M,110C,110Kは、それぞれ 矢印方向に回転され、それぞれの表面が帯電器120Y,120M,120C,120K により一様に所定の電位に帯電される。

[0044]

[0045]

感光体ドラム110Y,110M,110C,110K上に形成された前記特定色毎の 静電潜像は、現像器140Y,140M,140C,140Kにより顕像化される。これ により、各感光体ドラム110Y,110M,110C,110K上に、カラー画像の発 色に寄与する4色の未定着画像が形成される。

[0046]

感光体ドラム110Y, 110M, 110C, 110K上に顕像化された4色のトナー 像は、転写器 150Y, 150M, 150C, 150Kにより、前記中間転写体としての 無端状の中間転写ベルト170に一次転写される。これにより、感光体ドラム110Y, 110M, 110C, 110K上に形成された4色のトナー像が順次重ね合わされて中間 転写ベルト170上にフルカラー画像が形成される。

[0047]

各感光体ドラム110Y, 110M, 110C, 110Kは、中間転写ベルト170に トナー像を転写した後、クリーニング装置160Y、160M、160C、160Kによ り、それぞれの表面に残っている残留トナーが除去される。

[0048]

ここで、露光装置130は、感光体ドラム110Y,110M,110C,110Kに 対して所定の傾きをもって配置されている。また、中間転写ベルト170は、駆動ローラ 171と従動ローラ172とに懸架されており、駆動ローラ171の回転により、図1に おいて矢印A方向へ回動される。

[0049]

一方、画像形成装置100の下部には、記録媒体としての印字用紙などの記録紙Pが収 納された給紙カセット180が設けられている。記録紙Pは、給紙ローラ181により給 紙カセット180から1枚ずつ所定のシート経路に送り出される。

[0050]

前記シート経路に送り出された記録紙Pは、従動ローラ172に懸架された中間転写べ ルト170の外周面と中間転写ベルト170の外周面に接触する二次転写ローラ190と で形成される転写ニップ部を通過する際に、中間転写ベルト170上に形成されたフルカ ラー画像(未定着画像)が二次転写ローラ190により一括転写される。

[0051]

記録紙Pに一括転写された未定着のフルカラー画像は、図2に詳述する定着装置200 の定着ローラ210及び加熱ローラ220に懸架された定着ベルト230の外周面と定着 ベルト230の外周面に接触する加圧ローラ240とで形成される定着ニップ部Nを通過 することにより、記録紙Pに加熱定着される。

[0052]

なお、画像形成装置100には、その筐体の一部を成す開閉自在のドア101が設けら れており、このドア101の開閉により、定着装置200の交換やメンテナンス及び前記 用紙搬送路に詰まった記録紙Pのジャム処理などを行なうことができる。

[0053]

次に、図2を参照して画像形成装置100に搭載されている本実施の形態1に係る定着 装置200について説明する。

[0054]

本実施の形態1に係る定着装置200は、電磁誘導加熱(IH; induction heating) 方式の定着装置であって、図2に示すように、定着ローラ210、発熱体としての加熱ロ ーラ220、発熱体としての定着ベルト230、加圧ローラ240、加熱手段としての誘 導加熱装置250、シート分離ガイド板としてのセパレータ260及びシート搬送経路形

[0055]

この定着装置200は、誘導加熱装置250により生成した磁界の作用によって加熱ローラ220及び定着ベルト230を加熱し、シートガイド板281,282,283,284に沿って搬送される記録紙P上の未定着画像を、加熱された定着ベルト230と加圧ローラ240との定着ニップ部Nで加熱定着するものである。

[0056]

なお、本発明に係る定着装置は、定着ベルト230を使用せず、定着ローラ210が加熱ローラ220を兼ねた構成とし、この定着ローラ210により記録紙P上の未定着画像を直接加熱定着するように構成したものであってもよい。また、前記加熱手段としては、ハロゲンランプなどを熱源とするものであってもよいことはいうまでもない。

[0057]

図2において、発熱体としての加熱ローラ220は、例えば、鉄、コバルト、ニッケル 又はこれら金属の合金等の中空円筒状の磁性金属部材からなる回転体で構成され、図示しない支持側板に固定されたベアリングにより、その両端が回転可能に支持されており、図示しない駆動手段によって回転駆動される。また、加熱ローラ220は、外径が20mm、肉厚が0.3mmの低熱容量で昇温の速い構成となっており、そのキュリー点が300 ℃以上となるように調整されている。

[0058]

定着ローラ 2 1 0 は、例えばステンレススチール等の金属製の芯金を、ソリッド状又は発泡状の耐熱性を有するシリコーンゴムからなる弾性部材で被覆して構成されており、その外径が 3 0 mm程度あり加熱ローラ 2 2 0 の外径よりも大きく形成されている。前記弾性部材は、その肉厚を 3 \sim 8 mm程度、硬度を 1 5 \sim 5 0 \circ (Asker 硬度:JIS A の硬度では 6 \sim 2 5 \circ) 程度としている。

[0059]

また、定着ローラ210には、加圧ローラ240が圧接している。この定着ローラ210と加圧ローラ240との圧接により、その圧接部に所定幅の定着ニップ部Nが形成される。

[0060]

定着ベルト230は、加熱ローラ220と定着ローラ210とに懸架された耐熱性ベルトで構成されている。この定着ベルト230は、後述する誘導加熱装置250により加熱ローラ220が誘導加熱されることで、この加熱ローラ220との接触部位で加熱ローラ220の熱が伝導され、その回転によってベルト全周に亘って加熱される。

[0061]

このように構成した定着装置200は、加熱ローラ220の熱容量が定着ローラ210 の熱容量よりも小さくなるので、加熱ローラ220が急速に加熱されるようになり、その 加熱定着開始時におけるウォームアップ時間が短縮される。

[0062]

また、定着ベルト230は、例えば、鉄、コバルト、ニッケル等の磁性を有する金属又はそれらを基材とする合金を基材とした発熱層と、この発熱層の表面を被覆するようにして設けられたシリコーンゴム又はフッ素ゴム等の弾性部材からなる弾性層と、PTFE、PFY、FEP、シリコーンゴム又はフッ素ゴム等の離型性の良好な樹脂あるいはゴムを単独もしくは混合して形成された離型層とを備えた多層構造の耐熱性ベルトで構成されている。

[0063]

この定着ベルト230は、仮に、定着ベルト230と加熱ローラ220との間に何らかの原因で異物が混入してギャップが生じたとしても、その発熱層を誘導加熱装置250により誘導加熱して定着ベルト自体を発熱させることができる。このように、この定着ベルト230は、それ自体を誘導加熱装置250により直接加熱でき、その発熱効率が良くなり、またレスポンスが速くなるので、温度ムラが少なく加熱定着手段としての信頼性が高

くなる。

[0064]

加圧ローラ240は、例えば、銅又はアルミ等の熱伝導性の高い金属製の円筒部材から なる芯金の表面に、耐熱性及びトナー離型性の高い弾性部材を設けて構成されている。前 記芯金としては、上記金属以外にSUSを使用してもよい。

[0065]

この加圧ローラ240は、前述したように、定着ベルト230を介して定着ローラ21 0に圧接することにより、記録紙Pを挟持搬送する定着ニップ部Nを形成している。ここ で、本実施の形態1に係る定着装置200においては、加圧ローラ240の硬度を定着ロ ーラ210の硬度よりも硬くし、加圧ローラ240の周面が定着ベルト230を介して定 着ローラ210の周面に食い込むようにして定着ニップ部Nを形成している。

[0066]

このため、この加圧ローラ240は、その外径は定着ローラ210と同じ30mm程度 であるが、その肉圧が2~5mm程度と定着ローラ140よりも薄く、その硬度も20~ 60° (Asker硬度: JIS A の硬度では6~25°)程度と定着ローラ210 よりも硬く構成されている。

[0067]

このような構成の定着装置200においては、記録紙Pが加圧ローラ240の周面の表 面形状に沿うように定着ニップ部Nにより挟持搬送されるので、記録紙Pの加熱定着面が 定着ベルト230の表面から離れやすくなるという効果がある。

[0068]

なお、定着ニップ部Nの入口側近傍の定着ベルト230の内周面には、サーミスタなど の熱応答性の高い感温素子からなる温度検出器270が当接配置されている。この定着装 置200においては、温度検知器270が検知した定着ベルト230の内周面の温度に基 づいて、定着ベルト230の表面温度、つまり前記未定着画像の加熱定着温度が所定の温 度に維持されるように、誘導加熱装置250による加熱ローラ220及び定着ベルト23 0の加熱温度を制御している。

[0069]

次に、誘導加熱装置250の構成について説明する。誘導加熱装置250は、図2に示 すように、定着ベルト230を介して加熱ローラ220に外周面に対向するように配置さ れている。誘導加熱装置250には、加熱ローラ220を覆うように湾曲形成された難燃 性の樹脂からなるコイルガイド部材としての支持フレーム251が設けられている。

[0070]

支持フレーム251の中心部には、サーモスタット252が、その温度検知部分を支持 フレーム251から加熱ローラ220及び定着ベルト230に向けて一部表出させるよう にして配設されている。このサーモスタット252は、加熱ローラ220及び定着ベルト 230の温度を検知し、加熱ローラ220及び定着ベルト230の温度が異常高温度にな ったことを検知したときに、支持フレーム251の外周面に巻回された磁界発生手段とし ての励磁コイル253と図示しないインバータ回路との接続を強制遮断する。

[0071]

励磁コイル253は、表面が絶縁された長い一本の励磁コイル線材を支持フレーム25 1に沿って加熱ローラ220の軸方向に交互に巻き付けて構成されている。この励磁コイ ル253の巻回部分の長さは、定着ベルト230と加熱ローラ220とが接する領域と略 同じ長さになるように設定されている。

[0072]

励磁コイル253は、図示しないインバータ回路に接続され、10kHz~1MHz(好ましくは20kHz~800kHz) の髙周波交流電流が給電されることにより交番磁 界を発生する。この交番磁界は、加熱ローラ220と定着ベルト230との接触領域及び その近傍部において加熱ローラ220及び定着ベルト230の発熱層に作用する。そして 、この交番磁界の作用により、これらの発熱層の内部に前記交番磁界の変化を妨げる方向

[0073]

この渦電流は、加熱ローラ220及び定着ベルト230の発熱層の抵抗に応じたジュー ル熱を発生させ、主として加熱ローラ220と定着ベルト230との接触領域及びその近 傍部において加熱ローラ220及び定着ベルト230を電磁誘導加熱する。

[0074]

一方、支持フレーム251には、励磁コイル253を囲むようにして、アーチコア25 4及びサイドコア255が設けられている。これらのアーチコア254及びサイドコア2 55は、励磁コイル253のインダクタンスを増大させ、励磁コイル253と加熱ローラ 2 2 0 との電磁結合を良好にする。従って、この定着装置 2 0 0 においては、アーチコア 254及びサイドコア255の作用により、同じコイル電流でも多くの電力を加熱ローラ 220へ投入することが可能となり、そのウォームアップ時間を短縮することができる。

[0075]

また、支持フレーム251には、誘導加熱装置250の内部のアーチコア254及びサ ーモスタット252を覆うように屋根型に形成された樹脂製のハウジング256が取り付 けられている。このハウジング256には、複数の放熱孔が形成されており、支持フレー ム251、励磁コイル253及びアーチコア254等から発生した熱が外部に放出される ようになっている。なお、ハウジング256は、例えばアルミなどの樹脂以外の素材で形 成されたものであってもよい。

[0076]

また、支持フレーム251には、ハウジング256に形成された放熱孔を塞がないよう にハウジング256の外面を覆うショートリング257が取り付けられている。このショ ートリング257は、アーチコア254の背面に位置しており、アーチコア254の背面 から外部に漏れ出るわずかな漏れ磁束を打ち消す方向に渦電流が発生することで、前記漏 れ磁束の磁界を打ち消す方向に磁界が発生して前記漏れ磁束による不要な輻射を防止する 働きをしている。

[0077]

次に、本実施の形態 1 に係る定着装置 2 0 0 の特徴部である前記シート分離ガイド板と してのセパレータ260について説明する。

[0078]

図2及び図3に示すように、セパレータ260は、定着装置200の装置本体に装着さ れた断面L字状の支持部材290に、ビス261,262により着脱自在に取り付けられ ている。このセパレータ260は、定着ベルト230と加圧ローラ240との定着ニップ 部Nで加熱定着された記録紙Pの加熱定着面を、定着ベルト230から分離する方向にガ イドするためのガイド面260aを有している。

[0079]

セパレータ260のガイド面260aには、ガイド面260aのガイド幅方向に沿って 隆起した2つの段差部260b,260cが設けられている。これらの2つの段差部26 0 b, 260 cは、図4及び図5に示すように、未定着のトナー像Tが加熱定着された記 録紙Pの加熱定着面を定着ベルト230から分離する方向にガイドするように、それぞれ の高さが設定されている。なお、図4は、記録紙Pの先端部Paの加熱定着面が定着ベル ト230から分離し始める状態を示している。また、図5は、記録紙Pの加熱定着面がセ パレータ260のガイド面260aにガイドされて定着ベルト230から分離搬送されて いる途中の状態を示している。

[0080]

図4において、記録紙Pは、図1に示したように、画像形成装置100により未定着の トナー像Tが形成された後、定着装置200に向けて搬送される。定着装置200に搬送 された記録紙 P は、定着装置 2 0 0 のシート搬入口に設けられた一対のシートガイド板 2 81、282の間を通って、定着ベルト230と加圧ローラ240との圧接部である定着 ニップ部Nにより挟持されて矢印方向に搬送される。この定着ニップ部Nを通過した記録

[0081]

そして、記録紙Pは、図5に示すように、セパレータ260のガイド面16aに設けた 段差部260b,260cの頂点部分のみに接触するようにガイドされて定着ベルト23 0の表面から分離される。その後、この記録紙Pは、セパレータ260のシート搬送方向 下流側のシート排出口に設けられたシート搬送経路形成部材としての一対のシートガイド 板283,284の間を通って、定着装置200から排出される。

[0082]

このように、この定着装置200においては、セパレータ260のガイド面260aに 設けた段差部260b,260cによって、ガイド面260aに沿ってガイドされる記録 紙Pの加熱定着面とガイド面260aとの間に隙間が生じ、記録紙Pの加熱定着面とガイ ド面260aとの接触面積が減少する。従って、この定着装置200においては、記録紙 Pの加熱定着面がセパレータ260のガイド面260aに張り付きにくくなり、記録紙P をシートジャム及び画像乱れを起こすことなく定着ベルト230から円滑に分離できるよ うになる。

[0083]

(実施の形態2)

次に、本発明の実施の形態 2 に係る定着装置について説明する。図 6 は、本実施の形態 2 に係る定着装置におけるセパレータの構成を示す分解斜視図である。

[0084]

図6に示すように、このセパレータ660は、図3に示したセパレータ260と同様、 支持部材290に、ビス261,262により着脱自在に取り付けられている。また、こ のセパレータ660は、定着ベルト230と加圧ローラ240との定着ニップ部Nで加熱 定着された記録紙Pの加熱定着面を、定着ベルト230から分離する方向にガイドするた めのガイド面660aを有している。

[0085]

さらに、セパレータ660のガイド面660aには、ガイド面660aのガイド幅方向 に沿って隆起した2つの段差部660b,660cが設けられている。そして、これらの 2つの段差部660b,660cは、未定着のトナー像Tが加熱定着された記録紙Pの加 熱定着面を定着ベルト230から分離する方向にガイドするように、それぞれの高さが設 定されている。

[0086]

ところで、この種の加熱定着方式の定着装置においては、図7に示す加熱定着された記 録紙Pの加熱定着面のシート幅方向両側部Pcが、加熱による収縮により定着ベルト23 0に対して接近する方向にカールしやすい。

[0087]

特に、記録紙PがOHPシートの場合には、定着ベルト230の表面から支障なく分離 されても、未定着のトナー像Tの加熱定着時の熱により記録紙Pが軟化するため、そのシ ート幅方向両側部Pcが定着ベルト230に対して張り付き気味な状態で搬送される。

[0088]

このため、この種の定着装置では、記録紙Pのシート幅方向両側部Pcが他の部位より も多く加熱され、記録紙Pのシート幅方向両側部Pcの未定着のトナー像Tが過剰に溶融 して画像乱れを起こしやすくなる。

[0089]

そこで、本実施の形態2に係る定着装置のセパレータ660は、図6に示すように、そ のガイド面660aに設けたシート搬送方向下流側の段差部660cのガイド幅方向両端 部660dの高さが、段差部660cのガイド幅方向中央部660eの高さよりも大きく なるように形成されている。

[0090]

[0091]

本実施の形態 2 に係る定着装置においては、図 7 に示したように、記録紙 P のシート幅 方向両側部Pcの加熱定着面が背面側に湾曲されるので、記録紙Pのシート幅方向両側部 P c が定着ベルト230から分離されやすくなり、前述したような画像乱れを防止できる ようになる。

[0092]

(実施の形態3)

次に、本発明の実施の形態3に係る定着装置について説明する。図8は、本実施の形態 3に係る定着装置におけるセパレータの構成を示す分解斜視図である。

[0093]

図8に示すように、このセパレータ860は、図3に示したセパレータ260と同様、 支持部材290に、ビス261,262により着脱自在に取り付けられている。また、こ のセパレータ860は、定着ベルト230と加圧ローラ240との定着ニップ部Nで加熱 定着された記録紙Pの加熱定着面を、定着ベルト230から分離する方向にガイドするた めのガイド面860aを有している。

[0094]

さらに、セパレータ860のガイド面860aには、ガイド面860aのガイド幅方向 に沿って隆起した2つの段差部860b,860cが設けられている。そして、これらの 2つの段差部860b, 860cは、未定着のトナー像Tが加熱定着された記録紙Pの加 熱定着面を定着ベルト230から分離する方向にガイドするように、それぞれの高さが設 定されている。

[0095]

ところで、この種の加熱定着方式の定着装置においては、前述したように、記録紙Pの シート幅方向両側部Pcが加熱定着面の加熱による収縮により定着ベルト230に対して 接近する方向にカールしやすい。このため、この種の定着装置では、上述のようにカール した記録紙Pのシート幅方向両側部Pcがセパレータ860のガイド面860aの上流側 端部に衝突してシートジャムを引き起こすおそれがある。

[0096]

そこで、本実施の形態3に係る定着装置におけるセパレータ860は、その定着ベルト 230と対向するガイド幅方向中央端部860dが、ガイド面860aのガイド幅方向両 端部860eよりもシート搬送方向上流側に突出するように形成されている。

[0097]

この定着装置においては、図8に示すように、記録紙Pのシート搬送方向中央部Pdの 加熱定着面が、セパレータ860のガイド面860aのガイド幅方向中央端部860dに より、記録紙Pのシート幅方向両側部Pcの加熱定着面よりも先に確実にガイドされるよ うになる。

[0098]

従って、本実施の形態3に係る定着装置においては、記録紙Pのシート幅方向両側部P cがカールしている場合でも、シートジャムを起こすことなく、シート幅方向両側部Pc をセパレータ860のガイド面860aに沿うように確実にガイドできるようになる。

[0099]

なお、本発明の各実施の形態に係る定着装置におけるセパレータ260,660,86 0は、金属板であることが好ましい。すなわち、金属板で構成したセパレータ260,6 60,860は、これらを樹脂板で構成した場合と比較して、それらの耐熱性が向上され るので、それらの熱変形による記録紙Pの分離不良を解消することができる。

[0100]

[0101]

また、これらのセパレータ260、660、860は、それぞれのガイド面260a、 660a, 860aを低摩擦部材で被覆した構成とすることが好ましい。すなわち、ガイ ド面260a,660a,860aを低摩擦部材で被覆したセパレータ260,660, 860は、それぞれのガイド面260a,660a,860aに対する記録紙Pの加熱定 着面の付着力が低減されるので、ガイド面260a,660a,860aへの記録紙Pの 張り付きがより起こりにくくなる。

[0102]

一方、本実施の形態1に係る定着装置200は、図9に示すように、セパレータ260 のシート搬送方向下流側に配設したシート搬送経路形成部材としてのシートガイド板28 4が、定着ベルト230から分離してセパレータ260のガイド面260aによりガイド される記録紙Pを加熱定着面側に湾曲させるように構成されている。

[0103]

この定着装置200においては、図9に示すように、定着ローラ230から分離してセ パレータ260のガイド面260aによりガイドされる記録紙Pが、シートガイド板28 4により画像定着面側に湾曲される。これにより、前記画像定着面側に湾曲した記録紙P は、その腰の強さによって湾曲する前の状態に復帰しようとし、記録紙Pの上流側部分に セパレータ260のガイド面260aから離間する向きの力が生じる。

[0104]

従って、本実施の形態1に係る定着装置200においては、セパレータ260のガイド 面260aに対する記録紙Pの加熱定着面の付着力がより低減され、ガイド面260aへ の記録紙Pの加熱定着面の張り付きがより起こりにくくなる。

【産業上の利用可能性】

[0105]

本発明に係る定着装置は、加熱定着後の記録媒体をシートジャム及び画像乱れを起こす ことなく発熱体から円滑に分離することができるので、記録媒体上の未定着画像を加熱定 着させる定着装置、特に電子写真方式あるいは静電記録方式の複写機、ファクシミリ及び プリンタ等の画像形成装置に用いる定着装置として有用である。

【図面の簡単な説明】

[0106]

- 【図1】本発明の実施の形態1に係る定着装置を搭載するのに適した画像形成装置の 全体構成を示す概略断面図
- 【図2】本発明の実施の形態1に係る定着装置の基本的な構成を示す概略断面図
- 【図3】本発明の実施の形態1に係る定着装置におけるセパレータの構成を示す分解 斜視図
- 【図4】本発明の実施の形態1に係る定着装置における記録紙の分離開始時の状態を 示す概略断面図
- 【図 5 】本発明の実施の形態 1 に係る定着装置における記録紙の分離途中の状態を示 す概略断面図
- 【図6】本発明の実施の形態2に係る定着装置におけるセパレータの構成を示す分解 斜視図
- 【図7】本発明の実施の形態2に係る定着装置におけるセパレータにより分離される 記録紙の挙動を示す概略斜視図
- 【図8】本発明の実施の形態3に係る定着装置におけるセパレータの構成を示す分解 斜視図
- 【図9】本発明の実施の形態1に係る定着装置における記録紙の分離完了時の状態を

示す概略断面図

【図10】従来のセパレータを用いた定着装置における記録紙の分離開始時の状態を 示す概略断面図

【図11】従来のセパレータを用いた定着装置における記録紙の分離途中の状態を示 す概略断面図

【図12】従来のセパレータを用いた定着装置における記録紙の分離完了時の状態を 示す概略断面図

【符号の説明】

[0107]

- 100 画像形成装置
- 110Y, 110M, 110C, 110K 感光体ドラム
- 120Y, 120M, 120C, 120K 帯電器
- 130 露光装置
- 140Y, 140M, 140C, 140K 現像器
- 150Y, 150M, 150C, 150K 転写器
- 160Y, 160M, 160C, 160K クリーニング装置
- 170 中間転写ベルト
- 200 定着装置
- 210 定着ローラ
- 220 加熱ローラ
- 230 定着ベルト
- 240 加圧ローラ
- 250 誘導加熱装置
- 253 励磁コイル
- 254 アーチコア
- 255 サイドコア
- 260,660,860 セパレータ
- 260a, 660a, 860a ガイド面
- 260b, 260c, 660b, 660c, 860b, 860c 段差部
- 284 シートガイド板
- 660d ガイド幅方向両端部
- 660e ガイド幅方向中央部
- 860d ガイド幅方向中央端部
- 860 e ガイド幅方向両端部
- N 定着ニップ部
- P 記録紙

【書類名】図面 【図1】

【図9】

【図10】

【図11】

【要約】

加熱定着後の記録媒体をシートジャム及び画像乱れを起こすことなく 【課題】 発熱体から円滑に分離できるようにすること。

【解決手段】 セパレータ260のガイド面260aに、ガイド面260aのガイド 幅方向に沿って隆起した2つの段差部260b,260cを設ける。記録紙Pは、定着ニ ップ部Nにより挟持搬送され、段差部260b,260cの頂点部分のみに接触するよう にガイドされて定着ベルト230の表面から分離される。これにより、ガイド面260a に沿ってガイドされる記録紙Pの加熱定着面とガイド面260aとの間に隙間が生じ、記 録紙Pの加熱定着面とガイド面260aとの接触面積が減少して、記録紙Pの加熱定着面 がセパレータ260のガイド面260aに張り付きにくくなり、記録紙Pをシートジャム 及び画像乱れを起こすことなく定着ベルト230から円滑に分離される。

図 5 【選択図】

特願2004-016168

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由]

1990年 8月28日

[理由] 新規登録

住 所 大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000192

International filing date: 11 January 2005 (11.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-016168

Filing date: 23 January 2004 (23.01.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

