Бахышов Вахид, 409 группа

Отчёт по задаче "Наилучшее равномерное приближение".

1 Постановка задачи

Задача Пусть задана дискретная функция $y(x_i) = y_i$, i = 0, 1, 2, ..., N. Требуется построить алгебраичекий полиноном $P_n^*(x)$ степени n, являющийся решением следующей задачи

Такой полином называется полиномом наилучшего равномерного приближения исходной функции $y(x_i) = y_i$ по узлам xi, i = 0, 1, 2, ..., N. Решение данной задачи существенно зависит от соотношения между n и N. Так, если N = n, т.е. количество узлов совпадает с количеством коэффициентов исходного полинома, то однозначно строится полином, принимающий в узлах x_i значения y_i . Очевидно, что в этом случае $\rho = 0$ и этот полином является искомым $P_n^*(x)$.

Первым нетривиальным (и как оказывается основным) случаем является случай N=n+1. Он приводит к так называемой чебышевской интерполяции. С помощью чебышевской интерполяциии можно построить полином наилучшего приближения и в общем случае N>n+1.

2 Основные переменные

Nodes - массив узлов.

ValuesInNodes - массив значений функции в узлах.

А - матрица системы линейных уравнений для вычисления коэффициентов полинома. В - вектор правой части.

Coef - массив коэффициентов полинома.

sigma - базис, используемый в алгоритме Валле-Пуссена.

ValuesInSigma - значения функции в узлах базиса.

ShreddedGrid - более частая сетка для визуализации полинома.

ValuesInShreddedGrid - значения функции на частой сетке.

3 Основной алгоритм

- 1. Генерация узлов (равноотстоящие, Чебышёвские, случайные).
- 2. Вычисление значений функции в узлах.
- 3. Если, применяется алгоритм Валле-Пуссена:
 - а) Формируется начальный базис.
- b) Решается система линейных уравнений для нахождения коэффициентов.
- с) Проверяется максимальное отклонение и обновляется базис до выполнения условия оптимальности.
- 4. Генерация сетки для визуализации и запись результатов в файл.

Чебышевская интерполяция.

Имеет место следующая

Теорема. Пусть

$$\rho = \inf_{P_n(x)} \max_{i \in [0, ..., n+1]} |y_i - P_n(x_i)|$$

Полином наилучшего равномерного приближения существует и единственен. Для того чтобъ полином $P_n^*(x)$ был полиномом наилучшего при-

ближения, необходимо и достаточно, чтобы при нежотором h выполнялись соотношения

$$(-1)^{i}h + P_n^*(x_i) = y_i, \quad i \in [0, \dots, n+1]$$
(1)

При этом имеет место равенство $\rho = |h|$.

Замечание. Из условия теоремы следует, что h и коэффициенты полинома $P^*(x)$ могут быть найдены из решения следующей системы линейных алгебраических уравнений с (n+2) неизвестными $h, a_0, a_1, \ldots, a_{n+1}$

$$\begin{cases} h + a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ -h + a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ h + a_0 + a_1 x_2 + \dots + a_n x_2^n = y_2 \\ \dots \\ (-1)^{n+1} h + a_0 + a_1 x_{n+1} \dots + a_n x_{n+1}^n = y_{n+1} \end{cases}$$

Определителем этой системы отличен от нуля, если $x_i \neq x_j, i \neq j$. Однако, построение полинома $P_n^*(x)$ через явное вычисление его коэффициентов может приводить к катастрофической потере точности.

Поэтому обычно применяют следующих подход. Имеет место Теорема. Величина h из (1) может быть вычислена по формуле

$$h = \sum_{i=0}^{n+1} (-1)^i \alpha_i y_i, \quad \text{где } \alpha_i = \frac{\frac{(-1)^i}{\prod_{k \neq i, k=0}^{n+1} (x_i - x_k)}}{\sum_{j=0}^{n+1} \frac{(-1)^j}{\prod_{k \neq j, k=0}^{n+1} (x_j - x_k)}}$$
 (2)

Отметим, что используя разделенные разности

$$f(x_i; x_j) = \frac{f(x_j) - f(x_i)}{x_j - x_i}, f(x_1; \dots; x_{k+1}) = \frac{f(x_2; \dots; x_{k+1}) - f(x_1; \dots; x_k)}{x_{k+1} - x_1}$$

равенство (2) можно переписать в виде

$$h = \frac{y(x_0; x_1; \dots; x_{n+1})}{\phi(x_0; x_1; \dots; x_{n+1})}, \quad \text{где } \phi_k = \phi(x_k) = (-1)^k,$$
 (3)

и записать полином наилучшего равномерного приближения в форме Ньютона:

$$P^*(x) = y_0 - h + \sum_{k=1}^{n} (y(x_0; \dots; x_k) - h\phi(x_0; \dots; x_k)) (x - x_0) \dots (x - x_{k-1})$$
(4)

При практическом применении формулы (4) следует построить таблицы разделенных разностей функций y и ϕ , найти значение h и результат подставить в (4).

Для контроля правильности полученного полинома стоит убедиться в выполнении условия (1) Теоремы.

Общая дискретная задача. Алгоритм Валле-Пуссена.

Рассмотрим общий случай N > n + 1. Положим

$$\rho = \inf_{P(x)} \max_{i \in [0,\dots,N]} |y_i - P(x_i)|$$

Из всех полиномов P(x) степени n требуется определить полином наилучшего приближения $P^*(x)$. Здесь и далее индекс n у полиномов мы опускаем.

Можно показать, что общая дискретная задача имеет точное решение. Оно может быть получено с помощью конечного числа чебышевских итераций.

Введем следующее определение.

 $\operatorname{\mathbf{def.}}$ Базисом σ назыавется любая (n+2)-точечная подсистема узлов

$$\sigma = \left\{ x_{i_0} < x_{i_1} < \dots < x_{i_{n+1}} \right\}$$

Очевидно, что на каждом базисе σ можно осуществить чебышевскую интерполяцию, т.е. построить алгебраический полином $P^*(\sigma, x)$, удовлетворяющий соотношениям

$$(-1)^k h + P^*(\sigma, x_{i_k}) = y_k, \quad k \in [0, \dots, n+1].$$

Напомним, что в этом случае

$$\inf_{P(x)} \max_{k \in [0, \dots, n+1]} |y_{i_k} - P(x_{i_k})| = |h|.$$

Положим

$$h(\sigma) = \max_{k \in [0,\dots,n+1]} |y_{i_k} - P^*(\sigma, x_{i_k})|,$$

$$\varphi(\sigma) = \max_{i \in [0:N]} |y_i - P^*(\sigma, x_i)|$$
(5)

т.е. $h(\sigma)$ есть максимальное уклонение на узлах базиса $\sigma, \varphi(\sigma)$ есть максимальное уклонение на всей системе узлов. Очевидно, что для любого базиса σ выполняется следующее неравенство

$$\varphi(\sigma) \ge h(\sigma)$$

Имеет место

Лемма. Если для некоторого базиса σ^* оказалось, что

$$\varphi\left(\sigma^{*}\right) = h\left(\sigma^{*}\right)$$

то полином $P\left(\sigma^{*},x\right)$ является полиномом $P^{*}(x)$ наилучшего приближения по всем узлам $x_{0},\ldots,x_{N}.$

Таким образом, за конечное число шагов (возможно, осуществив полный перебор базисов σ_i , построенных по узлам x_0, \ldots, x_N) мы отыщем интересующий нас базис. Однако полный перебор можно значительно сократить.

Опишем некоторое преобразование S базиса σ в

$$\sigma_1 = \left\{ x_{i_0}^{(1)} < x_{i_1}^{(1)} < \dots < x_{i_{n+1}}^{(1)} \right\}$$

удовлетворяющее условию

$$h(\sigma) > h(\sigma_1)$$

Лемма. Если для базиса σ верно $\varphi(\sigma) > h(\sigma)$, то существует новый базис $\sigma_1 = S\sigma$, такой что $h(\sigma_1) > h(\sigma)$.

Положим $h^* = \max_{\sigma} h(\sigma)$.

def. Базис σ^* для которого $h\left(\sigma^*\right) = h^*$ называется экстремальным базисот.

Поскольку число различных базисов σ конечно, то очевидно экстремальный базис существует, хотя в общем случае он может быть и не единственным.

Теорема. В общей дискретной задаче полином наилучшего приближения существует и единственен. Для того чтобы полином $P^*(x)$ был полиномом наилучшего приближения, необходимо и достаточно, чтобы он осуществляя чебышевскую интерполяиию на некотором экстремальном базисе σ^* .

Следствие. Для того чтобы базис б был экстремальным, необходимо и достаточно, чтобы выполнялось равенство

$$\varphi(\sigma) = h(\sigma)$$

Таким образом, алгоритм Валле-Пуссена заключается в переборе базисов по алгоритму $\sigma_i = S\sigma_{i-1}$ до тех пор пока не выполнится равенство $\varphi\left(\sigma_i\right) = h\left(\sigma_i\right)$.

Алгоритм Валле-Пуссена (S-алгоритм).

Пусть $\Delta_{\sigma}(x_i) = y_i - P^*(\sigma, x_i)$.

Выберем произвольный базис $\sigma = \{x_{i_0} < x_{i_1} < \ldots < x_{i_{n+1}}\}$. Вычислим согласно формулам (5) величины $h(\sigma)$ и $\varphi(\sigma)$. Если $h(\sigma) = \varphi(\sigma)$, то согласно Следствию из Теоремы базис σ является экстремальным и построенный по нему чебышевский полином являетя искомым.

Если $h(\sigma) < \varphi(\sigma)$, то возьмем точку x_{k_0} для которой

$$\varphi(\sigma) = |\Delta_{\sigma}(x_{k_0})|.$$

Если таких точек несколько, то выберем произвольную. Возможны три случая:

- 1. $x_{i_0} < x_{k_0} < x_{i_{n+1}}$.
- $2. x_{k_0} < x_{i_0}.$
- 3. $x_{i_{n+1}} < x_{k_0}$.

В каждом из этих трех случаев преобразование S определяется посвоему. Первый случай. Выберем ν такое, что $x_{i_{\nu}} < x_{k_0} < x_{i_{\nu+1}}$. Тогда

$$x_{i_j}^{(1)} = x_{i_j}, \quad j \neq \nu, j \neq \nu + 1;$$

Если $\operatorname{sign} \Delta_{\sigma}(x_{k_0}) = \operatorname{sign} \Delta_{\sigma}(x_{i_{\nu}})$, то

$$x_{i_{\nu}}^{(1)} = x_{k_0}, \quad x_{i_{\nu+1}}^{(1)} = x_{i_{\nu+1}}.$$

Иначе, т.е. если $\operatorname{sign} \Delta_{\sigma} \left(x_{k_0} \right) = \operatorname{sign} \Delta_{\sigma} \left(x_{i_{\nu+1}} \right)$

$$x_{i_{\nu}}^{(1)} = x_{i_{\nu}}, \quad x_{i_{\nu+1}}^{(1)} = x_{k_0}.$$

Второй случай. Если $\operatorname{sign} \Delta_{\sigma}\left(x_{k_0}\right) = \operatorname{sign} \Delta_{\sigma}\left(x_{i_0}\right)$, то

$$x_{i_0}^{(1)} = x_{k_0}, \quad x_{i_j}^{(1)} = x_{i_j}, j \neq 0.$$

Иначе

$$x_{i_0}^{(1)} = x_{k_0}, \quad x_{i_j}^{(1)} = x_{i_{j-1}}, j = 1, 2, \dots, n+1.$$

т.е. из базиса выбрасывается узел $x_{i_{n+1}}$.

Третий случай. Если $\operatorname{sign} \Delta_{\sigma}(x_{k_0}) = \operatorname{sign} \Delta_{\sigma}(x_{i_{n+1}})$, то

$$x_{i_{n+1}}^{(1)} = x_{k_0}, \quad x_{i_j}^{(1)} = x_{i_j}, j \neq n+1.$$

Иначе

$$x_{i_{n+1}}^{(1)} = x_{k_0}, \quad x_{i_j}^{(1)} = x_{i_{j+1}}, j = 0, 1, \dots, n.$$

т.е. из базиса выбрасывается узел x_{i_0} .

Из построения базиса и неравенства $\varphi(\sigma)>h(\sigma)$ вытекают следующие свойства базиса σ_1 если $h(\sigma)>0$:

I. $\operatorname{sign} \Delta_{\sigma} \left(x_{i_k}^{(1)} \right) = -\operatorname{sign} \Delta_{\sigma} \left(x_{i_{k+1}}^{(1)} \right), \quad k \in [0:n].$

II. Если обозначить через $x_{i_s}^{(1)}$ узел базиса σ_1 , соответствующий x_{k_0} , то

$$\left| \Delta_{\sigma} \left(x_{i_k}^{(1)} \right) \right| = \rho(\sigma), \quad k \neq s.$$
$$\left| \Delta_{\sigma} \left(x_{i_s}^{(1)} \right) \right| > \rho(\sigma).$$

Данные свойства позволяют доказать основное неравенство

$$\rho\left(\sigma_1\right) > \rho(\sigma)$$

Реализовать аглоритм Валле-Пуссена. Численно продемонстрировать его корректность на задаче с известным ответом, а также работоспособность для $f(x) = |x|, x \in [-1, 1], N = 20, n = 7, 8$.

4 Метод Гаусса

Шаги метода Гаусса (реализация такая же как и в полиномиальной интерполяции):

- (a) Прямой ход (обнуление нижнего треугольника матрицы) цикл по шагам step от 1 до n:
- 1. Выбор главного элемента: находит максимальный по модулю элемент в текущем столбце (от строки step до n) и если максимальный элемент меньше порога eps, система считается вырожденной.
- 2. Перестановка строк: если главный элемент не на текущей строке step, строки меняются местами в M и memory.
 - 3. Обнуление элементов ниже главного:

Рис. 1: Ф-ция f(x) = |x| на [-1, 1] равноостоящие узлы ./a.out 10 8 -1 1 0, Number of iterations = 10, h = 0.0192940283400814

Для каждой строки i>step: вычисляется коэффициент $v=\frac{M[i,step]}{max}$, элементы строки обновляются: $M[i,j]-=v\cdot M[step,j]$, вВектор обновляется: $b[i]-=v\cdot b[step]$.

(b) Обратный ход (приведение к диагональному виду):

Цикл по шагам step от n до 1:

- 1. Для каждой строки і < step: обновляет b[i] и Обнуляет элемент M[i, step].
- 2. Нормирует диагональный элемент: делит b[step] на M[step, step]. Диагональный элемент становится единичным.

Рис. 2: Ф-ция f(x)=|x| на [-1, 1] равноостоящие узлы ./a.out 10 7 -1 1 0, Number of iterations = 8, h = 0.0300478468899519

Рис. 3: Ф-ция f(x) = |x| на [-1, 1] равноостоящие узлы ./a.out 10 7 -1 1 1, Number of iterations = 5, h = 0.00848724

Рис. 4: Ф-ция $\exp(x)$ на [-1 , 1] равноостоящие узлы ./a.out 20 7 -1 1 0, Number of iterations = 8, h = 1.88903860998124e-07

Рис. 5: Ф-ция $\exp(x)$ на [-1 , 1] равноостоящие узлы ./a.out 20 7 -1 1 1, Number of iterations = 9, h = 1.84002384218118e-07

Рис. 6: Ф-ция Рунге на [-1 , 1] равноостоящие узлы ./a.out 20 8 -1 1 0, Number of iterations = 9, h = 0.0766569256372254

Рис. 7: Ф-ция Рунге на [-1 , 1] равноостоящие узлы ./a.out 20 7 -1 1 0, Number of iterations = 8, h = 0.128489660790942

Рис. 8: Ф-ция Рунге на [-1 , 1] равноостоящие узлы ./a.out 30 7 -1 1 1, Number of iterations = 7, h = 0.12792732507389