Programming Languages and Paradigms COMP 3109 Lecture 2: Functional Programming Why Functional? • Functional Programming is Fun! • Reflects the elegance of mathematics • Pros - Simpler to learn - Higher productivity - Higher reliability Cons - Slower to execute - Inadequate for some problems Programming Languages and Paradigms **Historical Origins** • The imperative and functional models grew out of work undertaken Alan Turing, Alonzo Church, Stephen Kleene, Emil Post, etc. ~1930s different formalizations of the notion of an algorithm, or effective procedure, based on automata, symbolic manipulation, recursive function definitions, and combinatorics • These results led Church to conjecture that any intuitively appealing model of computing would be equally powerful as well - this conjecture is known as Church's thesis Copyright © 2005 Elsevier

Programming Languages and Paradigms

Historical Origins

- Turing's model of computing was the Turing machine a sort of pushdown automaton using an unbounded storage "tape"
 - the Turing machine computes in an imperative way, by changing the values in cells of its tape – like variables just as a high level imperative program computes by changing the values of variables

Converight @ 2005 Elsevier

Programming Languages and Paradigms

Historical Origins

- Church's model of computing is called the lambda calculus
 - based on the notion of parameterized expressions (with each parameter introduced by an occurrence of the letter λ —hence the notation's name.
 - Lambda calculus was the inspiration for functional programming
 - one uses it to compute by substituting parameters into expressions, just as one computes in a high level functional program by passing arguments to functions

Copyright © 2005 Elsevier

Programming Languages and Paradigms

Functional Programming Concepts

- Functional languages such as Lisp, Scheme, FP, ML, Miranda, and Haskell are an attempt to realize Church's lambda calculus in practical form as a programming language
- The key idea: do everything by composing functions
 - no mutable state
 - no side effects

Copyright © 2005 Elsevier

	2	

Functional Programming Concepts • Necessary features, many of which are missing in some imperative languages - 1st class and high-order functions - serious polymorphism - powerful list facilities - recursion structured function returns fully general aggregates - garbage collection Programming Languages and Paradigms **Functions** • Function f has a domain D and a range R • Signature of a function $f: D \rightarrow R$ • Function f is a subset of $D \times R$ such that if (x,y_1) and (x,y_2) in f, then $y_1=y_2$. • All elements $x \in D$ are associated unique

Programming Languages and Paradigms

Expressions

- Expressions are compositions of functions
- Constants are functions with no domain

elements $y \in R$, written as f(x).

 $x \rightarrow (x+1)/3$

• Example: $f: \Re \rightarrow \Re$

- Example append(append("a","b"),"c") if(x,if(y,1,2),3)
- Recursive Example
 - Apply $f: x \to (x+1)/3$ to itself: f(f(f(...)))

Programming Languages and Paradigms

Functional Programming

- ullet A functional program is an expression E
- Expression *E* represents program and input
- Expression is rewritten *E* by rewrite rules
 - Reductions replace sub-expression P of E by P' according to rewrite rules
 - Schematic notation:F[P]→F[P']

 $E[P] \Rightarrow E[P']$ where $P \Rightarrow P'$ holds according to rewrite rules.

- Reduction is repeated until no reductions are applicable
- Result E* is called Normal Form

Programming Languages and Paradigms

Example

- Algebraic Expression (1+2)*(3+2)
- Rewrite Rules (aka. Reduction System)
 - $-a+b \Rightarrow c$ where c is addition of a and b
 - $-a*b \Rightarrow c$ where c is multiplication of a and b
- Reductions / Normal Form

Step	F	D	D,	i
1	(1+2)*(3+2)	1+2	3	l
2	3*(3+2)	3+2	5	
2	285	285	15	

←Normal Form

Programming Languages and Paradigm

Church-Rosser Property

- Normal form is independent of the order of the evaluation of sub-expression
- Example:
 - $-(1+2)*(3+2) \Rightarrow 3*(3+2) \Rightarrow 3*5 \Rightarrow 15$
 - $-(1+2)*(3+2)\Rightarrow(1+2)*5\Rightarrow3*5\Rightarrow15$

Programming Languages and Paradigm

Lambda Calculus

- Expressions in Lambda Calculus may consist of
 - Variables $V=\{v_1, v_2, \dots\}$
 - Anonymous functions (aka. Abstraction)
 - Function $\lambda x.M[x]$ denotes the function $x \rightarrow M[x]$
 - The period separates the parameter from the function body
 - Example: f(x)=x is written as λx.x
 - Function applications
 - Expression F A denotes function application of F to A.
 - Semantics: (\(\hat{x}.M[x]\))N is \(M[x:=N]\) where \([x:=N]\) denotes substitution of \(N\) for \(x\)
 - Function application is called Beta-Reduction!

Programming Languages and Paradigms

Variables in Lambda Calculus

- Bound Variables
 - Abstraction "binds" variables
 - Example: $(\lambda x.zx)$ binds variable x but not z
- Free Variables
 - Variables, which are not bound are "free"
 - Example: $(\lambda x.y)$ makes variable y free

Programming Languages and Paradigms

Inductive Definition

- Lambda expressions are elements of set Λ .
- Set Λ is defined inductively:
 - R1) if $x \in V$, then $x \in \Lambda$,
 - R2) if $x \in V$ and $N \in \Lambda$, then $(\lambda x.N) \in \Lambda$,
 - R3) if $M \in \Lambda$ and $N \in \Lambda$, then $(MN) \in \Lambda$,
 - R4) nothing else is in set Λ .
- Set $V = \{v_1, v_2, ...\}$ is the set of variables.
- Example
 - Is expression $((\lambda x.(\lambda y.(yx)))z$ in Λ ?

-	

Multiple Parameters / Currying

- Problem:
 - Lambda allows only a single argument for a function.
- A function with more than one argument is represented by *Currying*
- <u>Idea:</u>
 - An n argument function returns an (n-1) argument function, which returns an (n-2) argument function,

Currying Example (cont'd)

- - Average two numbers, i.e., f(x,y)=(x+y)/2
 - Lambda Calculus (with arithmetic), i.e., $(\lambda x.(\lambda y.(x+y)/2)$

- Function is partially evaluated
 - First function returns ($\lambda y.(5+y)/2$)
 - 7 is applied to result of first function
 - (5+7)/2 is evaluated and returned

Programming Languages and Paradigms

Notation

- · Too many parentheses
 - use implicit parenthesis rules to make life simpler
- For function application we use association to the left
 - Expression $\dot{F} M_1 M_2 \dots M_k$ denotes
 - $(\dots((F M_1) M_2) \dots M_k)$
- $\bullet \hspace{0.1in}$ For function abstraction we use association to the right
 - Expression
 - $\lambda x_1 x_2 \dots x_k f(x_1, x_2, \dots, x_k)$ $\lambda x_1.\lambda x_2.....\lambda x_k.f(x_1,x_2,...,x_k)$ denotes $(\lambda x_1. (\lambda x_2.(...(\lambda x_k.f(x_1,x_2,...,x_k))...)))$

Programming Languages and Paradigms

Reductions

- Beta Reduction: Function Application $(\lambda x.M[x])N$ is M[x:=N]
- Alpha Reduction: Renaming of Parameters
 (λx.M[x])N is (λy.M[y])N
 by applying replacement M[x:=y]
- Eta Reduction: Simplification $(\lambda x.(fx))$ is f

Programming Languages and Paradigms

Untyped Lambda Calculus

- Lambda Calculus does not have primitives
 - No numbers,
 - No arithmetic operations,
 - No aggregated data structures (structs, classes, etc.)
 - No control flow structures (only recursion!)
- However, it is computationally equivalent to a Turing Machine
- How can we present data types?
 - Data types can only expressed by functions

Programming Languages and Paradigms

Macros

- Lambda Expressions are assigned to labels
- Instead of spelling out lambda expressions labels can be used
- Improves readability!
- Example
 - Macro Definition: $Ident = (\lambda x.x)$
 - Macro Usage: (*Ident y*) \Rightarrow (($\lambda x.x$) y) \Rightarrow y

-		

Programming Languages and Paradigm

Boolean & If

- Boolean constants
 - $true = (\lambda x.(\lambda y.(x)))$
 - false = $(\lambda x.(\lambda y.(y)))$
- Semantics of a conditional functions
 - Expression: (if <cond> <f1> <f2>)
 - If predicate <cond> is true return result of <f1> otherwise <f2>
- If-Macro
 - if = $(\lambda f.f)$

Programming Languages and Paradigms

Example

(if true a b) \Rightarrow ((\(\lambda f.f.\)) true a b) \Rightarrow ;expansion of if ((((\(\lambda f.f.\)) true) a) b) \Rightarrow ;associates to the left ((((\(\lambda f.f.\)) (\(\lambda x.(\lambda y.(x))))) a) b) \Rightarrow ;expansion of true ((((\(\lambda x.(\lambda y.(x))))) a) b) \Rightarrow ;evaluation of (\(\lambda f.f.\)) ((\(\lambda y.(a))) b) \Rightarrow ; evaluation of true

Programming Languages and Paradigms

Extensions

- Logical NOT
 - $not = \lambda f. \lambda x. \lambda y. (f y x)$
- Example
 - $\begin{array}{lll} & (\text{not true}) = \\ & ((\lambda f.\lambda x.\lambda y.(f \ y \ x)) \ (\lambda x.(\lambda y.(x)))) \Rightarrow & ; \ expansion \\ & ((\lambda f.\lambda x.\lambda y.(f \ y \ x)) \ (\lambda a.(\lambda b.(a)))) \Rightarrow & ; \ renaming/conflict \\ & (\lambda x.\lambda y.((\lambda a.(\lambda b.(a))) \ y \ x)) \Rightarrow & ; \ evaluation \ of \ f \\ & (\lambda x.\lambda y.(\lambda b.(y)) \ x) \Rightarrow & ; \ evaluation \ of \ a \\ & \lambda x.\lambda y.y = false \end{array}$

Extensions (cont'd) Logical OR $- \text{ or } = \lambda f. \lambda g. \lambda x. \lambda y. (f \times (g \times y))$

- Logical AND
- and = $\lambda f.\lambda g.\lambda x.\lambda y.(f(g x y) y)$
- How to prove it? Evaluate for all four combinations, e.g.,

(or true true) = true (or false true) = true (or true false) = true (or false false) = false

Recursive Data Types

- How to present non-negative integers in Lambda Calculus?
- Non-negative integers can be defined inductively, i.e.,
 - Basis Clause
 - . 0 is a number and in the set of natural numbers
 - Inductive Clause
 - For any element x in the non-negative integers, x+1 is element of the natural numbers.
 - Extremal Clause
 - Nothing is in the set of non-negative integers unless it is obtained by the inductive clause and basis clause
- Every number has a successor (or child)
- Without the extremal clause 0.5, 1.5, etc. would be in the set of natural numbers

Natural Numbers in Lambda

- Natural Numbers in Lambda Calculus have two constructors

 - Successor, i.e. give me next number
- Representation of Zero

 - zero = λx.λy.y
 s = λx.λy.λz. (y (x y z))
- Numbers

 - zero = λx.λy.y
 1 = (s zero) = λx.λy.(x y)
 - 2 = (s s zero) = λx.λy.(x x y)

 - n = (s s zero)
 - = λx.λy.(x...{n-2 times}...(xy)....)

Programming Languages and Paradigm

Computations

- Arithmetic addition
 add =(λnfx.f (n f x))
- Arithmetic multiplication mult =(λmnf.m(nf))
- Proofs are more elaborate than logical AND and OR

Programming Languages and Paradigms

LISP

- LISP is an old programming language
- Invented in 1958 by John McCarthy
- Was very popular in the AI boom
- Is a functional programming language
- Is a practical implementation of Lambda Calculus

Programming Languages and Paradigm

LiSP - means List Processing

- LISP has atoms
 - Numbers, eg. 10
 - Identifiers, eg. Foo
 - Strings, eg. "filename"
- LISP has lists
 - can contain other lists
 - can contain atoms
- can be empty
- Syntax:
 - <object> := <atoms> | <list>
 - <!">(" {<object>} ")"

•			
•			
•			
•			
•			
•			
,			

List Examples in LISP • (123) • () • (+12) • (* (+ 1 2) (- 2 3)) • (sq 1 2) • (setq a 100) (defun sq(n) (* n n)) (let ((a 6)) a) (if t 5 6) • (cons 5 6) • (cons (cons 6 7)) Programming Languages and Paradigms Concept of LISP • LISP has as data structure model Lists – Atoms • Even programs are written as lists • No other data structures exist Programming Languages and Paradigms Evaluation • Prefix notation of function calls as lists - Operation is first element Second and following elements are arguments - (<operation><arg₁> <arg_n>) • Examples - (+ 4 2) - (+ 3 (+3 2)) - (sq (* 4 2))

Numerical Functions • Numerical operations -(+123)- (-12) - (* 1 3 4) - (/ 2 2) • Square Root (sqrt x) • Base Exponent (expt x y) • Trigonometric Functions, (sin x) ... • Absolute Value (abs x) Modulo (mod x y) • Rounding (round x) Programming Languages and Paradigms Interaction • Interaction with lisp is done in a - read-eval-print loop • Loop consists of following steps - Parse input and construct LISP object - Evaluate LISP object to produce output Print output object • Example: **>**(+12) Programming Languages and Paradigms **Variables** • Variables can be defined by (setq<var><value>) Semantics <var> = <value> Occurrence of variable symbol replaces variable symbol by the value of the variable Examples > (setq a (+ 5 3)) 8 ≻A 8

Programming Languages and Paradigms Quote • If lists should not be evaluated use function quote • Example > (setq a (+ 1 2)) > (setq a (quote (+ 1 2))) (+12) • There is a short form, just used ' • Example > (setq a '(+ 1 2)) (+12)

Conditional Function

• Definition (if <cond><true-value><false-value>)

- Boolean values in LISP are given by two symbols
 - symbol nil (is equal to empty list ie. ()) represents false
 T represents true

• Example

> (if nil 1 2)

> (if (= 10 10) 1 2)

> (if () 1 2)

Programming Languages and Paradigms

Predicates

- Type Checking Predicates
 (atom x) checks whether x is not a list, ie. number, symbol, string
 - (intergerp x) checks whether x is an integer
 (numberp x) checks whether x is a number
 (stringp x) checks whether x is a string
- Numeric Predicates
 - (oddp x) checks whether x is integer and odd
 - (evenp x) checks wheter x is integer and even
- Equality
 - (equal x y) checks equality
 - (eql x y) checks identity
 (= x y) check numerical equality
- Logical operators
 (or x y) for logical or

 - (and x y) for logical and

Functions

• Function Declaration
(defun <name> (arg1 ... argn) body)
• (defun <name> (arg1 ... argn) body) denotes
(setq <name> '(lambda (arg₁ ... arg_n) body))
• Example

> (defun factorial (x)
(if (= x 0)
1
(* x (factorial (- x 1)))
)
FACTORIAL
> (factorial 4)
24

Programming Languages and Paradigms Bindings • Definition (let ((<name₁><value₁>) (<nameₙ><valueₙ>)) body) • Example > (let ((a 3) (b 4) (c 5)) (+ (* a b) c)) > a Error: The variable A is unbound. • Let allows local bindings of variables. • Bindings might be nested • Example (inner most binding for variable is taken) > (let ((a 3)) (let ((a 5)) a)) 5

Programming Languages and Paradigms

Programming Languages and Paradigms	
List Access	
 Access first element (first <list>)</list> 	
 Example ▶ (first '(a bc)) 	-
a	
 Access list without first element (rest <list>)</list> 	
Example	
(bc)	