Linear Regression

Fitting a **line** through data points

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

History of Linear Regression

- "Nouvelles méthodes pour la détermination des orbites des comètes"
 - The first clear and concise exposition of the "least squares method"

Legendre, Adrien-Marie, 1805

• "Regression Towards Mediocrity in Hereditary Stature"

Francis Galton, 1886

- Children with tall parents tend to be shorter... They "regressed" towards the mean
- "The Law of Ancestral Heredity"

Karl Pearson, G. U. Yule, Norman Blanchard and Alice Lee, 1903

• "The goodness of fit of regression formulae, and the distribution of regression coefficients"

Sir R.A. Fisher, 1922

 Establish if there is a relationship between a dependent variable and one or more independent variables.

- Establish if there is a relationship between a dependent variable and one or more independent variables.
 - The dependent variable is sometimes called the <u>label</u>, target, response or output
 - The independent variables are sometimes called **features**, **attributes** or **predictors**

- Establish if there is a relationship between a dependent variable and one or more independent variables.
 - The dependent variable is sometimes called the <u>label</u>, target, response or output
 - The independent variables are sometimes called **features**, **attributes** or **predictors**
 - If there is only one independent variable, it is called *Simple Linear Regression*
 - If there are multiple independent variables, it is called *Multiple Linear Regression*

- Establish if there is a relationship between a dependent variable and one or more independent variables.
 - The dependent variable is sometimes called the <u>label</u>, target, response or output
 - The independent variables are sometimes called <u>features</u>, <u>attributes</u> or <u>predictors</u>
 - If there is only one independent variable, it is called *Simple Linear Regression*
 - If there are multiple independent variables, it is called *Multiple Linear Regression*

- Forecast new observations.
 - Use the established relationship to make *predictions* about new data.

We find a straight *line* which *best fits* the data.

We find a straight *line* which *best fits* the data.

Slope is positive → Positive correlation between price and size (i.e. price tends to grow with size).

Slope is positive →

Positive correlation

between price and size

(i.e. price tends to grow with size).

We can also determine how much of the variance in price is *explained* by size.

We find a straight *line* which *best fits* the data.

Slope is positive → Positive correlation between price and size (i.e. price tends to grow with size).

We can also determine how much of the variance in price is *explained* by size.

We find a straight *line* which *best fits* the data.

We can use the model for forecasting \rightarrow The model *predicts* that a 1220 ft^2 house will cost \$347K.

Linear Model

• The relationship is modeled with a *linear function*:

Linear Model

• The relationship is modeled with a *linear function*:

There are many linear functions to choose from.

We need a way of choosing the best w_0 and w_1 .

Notation

- $x \in \mathbb{R}$ is the independent variable (i.e. size)
- $y \in \mathbb{R}$ is the dependent variable (i.e. price)
- $h: \mathbb{R} \to \mathbb{R}$ is the hypothesis, which has parameters w_0 and w_1
- $\hat{y} = h(x)$ is the predicted value.

Notation

- $x \in \mathbb{R}$ is the independent variable (i.e. size)
- $y \in \mathbb{R}$ is the dependent variable (i.e. price)
- $h: \mathbb{R} \to \mathbb{R}$ is the hypothesis, which has parameters w_0 and w_1
- $\hat{y} = h(x)$ is the predicted value.
- Simple Linear Regression:

$$\hat{y} = h(x) = w_0 + w_1 x$$

• We need to find w_0 and w_1 such that \hat{y} is as close to y as possible.

• Given $E = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$, with $x^{(i)}, y^{(i)} \in \mathbb{R}$

• Given $E = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$, with $x^{(i)}, y^{(i)} \in \mathbb{R}$

 $\text{Given } E = \{ \big(x^{(1)}, y^{(1)} \big), \big(x^{(2)}, y^{(2)} \big), \dots, \big(x^{(m)}, y^{(m)} \big) \}, \text{ with } x^{(i)}, y^{(i)} \in \mathbb{R}$ $\mathcal{L}_E = \sum_i \big(y^{(i)} - \hat{y}^{(i)} \big)^2 = \sum_i \big(y^{(i)} - w_1 x^{(i)} - w_0 \big)^2$ Squared loss

 $\begin{aligned} \bullet \quad & \text{Given } E = \{ \big(x^{(1)}, y^{(1)} \big), \big(x^{(2)}, y^{(2)} \big), \dots, \big(x^{(m)}, y^{(m)} \big) \}, \text{ with } x^{(i)}, y^{(i)} \in \mathbb{R} \\ \mathcal{L}_E &= \sum_i \big(y^{(i)} - \hat{y}^{(i)} \big)^2 = \sum_i \big(y^{(i)} - w_1 x^{(i)} - w_0 \big)^2 \end{aligned}$

• Minimize \mathcal{L}_E w.r.t. w_0 , w_1 :

$$\frac{\partial \mathcal{L}_E}{\partial w_0} = 0, \qquad \frac{\partial \mathcal{L}_E}{\partial w_1} = 0$$

 $\text{Given } E = \{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}) \}, \text{ with } x^{(i)}, y^{(i)} \in \mathbb{R}$ $\mathcal{L}_E = \sum_i (y^{(i)} - \widehat{y}^{(i)})^2 = \sum_i (y^{(i)} - w_1 x^{(i)} - w_0)^2$ Squared loss

• Minimize \mathcal{L}_E w.r.t. w_0 , w_1 :

$$\frac{\partial \mathcal{L}_E}{\partial w_0} = 0, \qquad \frac{\partial \mathcal{L}_E}{\partial w_1} = 0$$

$$w_1 =$$

Let's do some math...

$$w_0 =$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2$$

$$y = y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y - w_{1}x - w_{0})^{2} = \sum_{i=1}^{m} (y^{2} + w_{1}^{2}x^{2} + w_{0}^{2} - 2w_{1}xy - 2w_{0}y + 2w_{0}w_{1}x)$$

$$\frac{\partial \mathcal{L}_{E}}{\partial w_{0}} =$$

$$y = y^{(i)}$$
not
(i)

$$x = x^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_0} = \sum_{i=1}^{m} (2w_0 - 2y + 2w_1 x)$$

$$y \stackrel{\mathsf{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_0} = \sum (2w_0 - 2y + 2w_1 x) = 2\left(mw_0 - \sum y + w_1 \sum x\right) = 0$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$\mathbf{w_0} = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$\mathbf{x} = \mathbf{x}^{(i)}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y - w_{1}x - w_{0})^{2} = \sum (y^{2} + w_{1}^{2}x^{2} + w_{0}^{2} - 2w_{1}xy - 2w_{0}y + 2w_{0}w_{1}x)$$

$$\mathbf{w}_{0} = \frac{1}{m} \left(\sum y - w_{1} \sum x \right)$$

$$\frac{\partial \mathcal{L}_{E}}{\partial \mathbf{w}_{0}} = \mathbf{w}_{0} = \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{3} \mathbf{w}_{1} \mathbf{w}_{4} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{3} \mathbf{w}_{3} \mathbf{w}_{4} \mathbf{w}_{3} \mathbf{w}_{4} \mathbf{w}_{3} \mathbf{w}_{4} \mathbf{w}_{3} \mathbf{w}_{4} \mathbf{w}_{4} \mathbf{w}_{5} \mathbf{w}_{4} \mathbf{w}_{5} \mathbf{w}_{4} \mathbf{w}_{5} \mathbf{w}_{5}$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y - w_{1}x - w_{0})^{2} = \sum (y^{2} + w_{1}^{2}x^{2} + w_{0}^{2} - 2w_{1}xy - 2w_{0}y + 2w_{0}w_{1}x)$$

$$\mathbf{w}_{0} = \frac{1}{m} \left(\sum y - w_{1} \sum x \right)$$

$$\frac{\partial \mathcal{L}_{E}}{\partial w_{1}} = \sum (2w_{1}x^{2} - 2xy + 2w_{0}x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$\mathbf{x} = \mathbf{x}^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + w_0\sum x\right) = 0$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y - w_{1}x - w_{0})^{2} = \sum (y^{2} + w_{1}^{2}x^{2} + w_{0}^{2} - 2w_{1}xy - 2w_{0}y + 2w_{0}w_{1}x)$$

$$\mathbf{w}_{0} = \frac{1}{m} \left(\sum y - w_{1} \sum x \right)$$

$$\frac{\partial \mathcal{L}_{E}}{\partial w_{1}} = \sum (2w_{1}x^{2} - 2xy + 2w_{0}x) = 2\left(w_{1} \sum x^{2} - \sum xy + w_{0} \sum x\right) = 0$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + \frac{1}{m}\left(\sum y - w_1\sum x\right)\sum x\right) = 0$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + \frac{1}{m}\left(\sum y - w_1\sum x\right)\sum x\right) = 0$$

$$w_1 \sum x^2 - w_1 \frac{1}{m} \left(\sum x \right)^2 - \sum xy + \frac{1}{m} \sum x \sum y = 0$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + \frac{1}{m}\left(\sum y - w_1\sum x\right)\sum x\right) = 0$$

$$w_1 \sum x^2 - w_1 \frac{1}{m} \left(\sum x \right)^2 - \sum xy + \frac{1}{m} \sum x \sum y = 0$$

$$\Rightarrow w_1 = \frac{\sum xy - \frac{1}{m}\sum x\sum y}{\sum x^2 - \frac{1}{m}(\sum x)^2}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + \frac{1}{m}\left(\sum y - w_1\sum x\right)\sum x\right) = 0$$

$$w_1 \sum x^2 - w_1 \frac{1}{m} \left(\sum x \right)^2 - \sum xy + \frac{1}{m} \sum x \sum y = 0$$

$$\Rightarrow w_1 = \frac{\sum xy - \frac{1}{m}\sum x\sum y}{\sum x^2 - \frac{1}{m}(\sum x)^2} = \frac{m\sum xy - \sum x\sum y}{m\sum x^2 - (\sum x)^2}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y - w_1 x - w_0)^2 = \sum_{i=1}^{m} (y^2 + w_1^2 x^2 + w_0^2 - 2w_1 xy - 2w_0 y + 2w_0 w_1 x)$$

To simplify notation let's assume:

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

$$w_0 = \frac{1}{m} \left(\sum y - w_1 \sum x \right)$$

$$\frac{\partial \mathcal{L}_E}{\partial w_1} = \sum (2w_1x^2 - 2xy + 2w_0x) = 2\left(w_1\sum x^2 - \sum xy + \frac{1}{m}\left(\sum y - w_1\sum x\right)\sum x\right) = 0$$

$$w_1 \sum x^2 - w_1 \frac{1}{m} \left(\sum x \right)^2 - \sum xy + \frac{1}{m} \sum x \sum y = 0$$

$$\Rightarrow w_1 = \frac{\sum xy - \frac{1}{m}\sum x\sum y}{\sum x^2 - \frac{1}{m}(\sum x)^2} = \frac{m\sum xy - \sum x\sum y}{m\sum x^2 - (\sum x)^2} = \frac{\text{rearranging terms}}{\text{...}} = \frac{\sum [(x - \bar{x})(y - \bar{y})]}{\sum (x - \bar{x})^2}$$

 $\bar{x} = \frac{1}{m} \sum x^{(i)}$ (the mean)

Least Squares Derivation

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y - w_{1}x - w_{0})^{2} = \sum (y^{2} + w_{1}^{2}x^{2} + w_{0}^{2} - 2w_{1}xy - 2w_{0}y + 2w_{0}w_{1}x)$$

$$w_{0} = \frac{1}{m} \left(\sum y - w_{1} \sum x \right)$$

$$w_{1} = \frac{m \sum xy - \sum x \sum y}{m \sum x^{2} - (\sum x)^{2}} = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sum (x - \overline{x})^{2}}$$

To simplify notation let's assume:

$$y \stackrel{\text{not}}{=} y^{(i)}$$

$$x = x^{(i)}$$

Least Squares Method

• Given $E = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$, with $x^{(i)}, y^{(i)} \in \mathbb{R}$ $\mathcal{L}_E = \sum_i \underbrace{(y^{(i)} - \hat{y}^{(i)})}^2 = \sum_i (y^{(i)} - w_1 x^{(i)} - w_0)^2$

 $\mathcal{L}_{E} \stackrel{\text{not}}{=} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbf{E}} \mathcal{L}(\mathbf{y}, h(\mathbf{x}))$

• Minimize \mathcal{L}_E w.r.t. w_0 , w_1 :

$$\frac{\partial \mathcal{L}_E}{\partial w_0} = 0, \qquad \frac{\partial \mathcal{L}_E}{\partial w_1} = 0$$

$$w_{1} = \frac{\sum_{i} \left[\left(x^{(i)} - \bar{x} \right) \left(y^{(i)} - \bar{y} \right) \right]}{\sum_{i} \left(x^{(i)} - \bar{x} \right)^{2}}$$

$$w_{0} = \frac{1}{m} \left(\sum_{i} y^{(i)} - w_{1} \sum_{i} x^{(i)} \right)$$

Multiple Linear Regression

Refresher - Dot Product

- An operation which takes two vectors and returns a scalar value.
- Also called the scalar product or inner product.

$$\vec{a} \cdot \vec{b} = \langle \vec{a}, \vec{b} \rangle = ||\vec{a}|| ||\vec{b}|| \cos \theta = \sum_{i} a_i b_i$$

- It can be interpreted as a similarity measure between vectors.
- If we write it as $(\|\vec{a}\|\cos\theta)\|\vec{b}\|$, it can be viewed as the **length of the projection** of \vec{a} on \vec{b} , measured in units of length $\|\vec{b}\|$.

- $\bullet \quad \vec{x} \in \mathbb{R}^n = [x_1 \quad x_2 \quad \dots \quad x_n],$
- $\bullet \quad \overrightarrow{w} \in \mathbb{R}^n = [w_1 \quad w_2 \quad \dots \quad w_n], w_0 \in \mathbb{R}$

- $\bullet \quad \vec{x} \in \mathbb{R}^n = [x_1 \quad x_2 \quad \dots \quad x_n],$
- \bullet $\overrightarrow{w} \in \mathbb{R}^n = [w_1 \quad w_2 \quad \dots \quad w_n], w_0 \in \mathbb{R}$

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w_0 + \langle \vec{w}, \vec{x} \rangle$$

- $\bullet \quad \vec{x} \in \mathbb{R}^n = [x_1 \quad x_2 \quad \dots \quad x_n],$
- $\vec{w} \in \mathbb{R}^n = [w_1 \quad w_2 \quad \dots \quad w_n], w_0 \in \mathbb{R}$

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w_0 + \langle \vec{w}, \vec{x} \rangle$$

Common mathematical trick is to get rid of the intercept by considering:

$$\vec{x} \in \mathbb{R}^{n+1} = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \end{bmatrix}$$

$$\vec{w} \in \mathbb{R}^{n+1} = \begin{bmatrix} w_0 & w_1 & w_2 & \dots & w_n \end{bmatrix}$$

$$\Rightarrow$$

$$\hat{y} = \langle \vec{w}, \vec{x} \rangle$$

• Given $E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R}$

$$\begin{aligned} \bullet \quad \text{Given } E &= \big\{ \big(\vec{x}^{(1)}, y^{(1)} \big), \big(\vec{x}^{(2)}, y^{(2)} \big), \dots, \big(\vec{x}^{(m)}, y^{(m)} \big) \big\}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \\ \hat{y}^{(i)} &= \big\langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \big\rangle = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \end{aligned}$$

 $\begin{aligned} \text{Given } E &= \big\{ \big(\vec{x}^{(1)}, y^{(1)} \big), \big(\vec{x}^{(2)}, y^{(2)} \big), \dots, \big(\vec{x}^{(m)}, y^{(m)} \big) \big\}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \\ \hat{y}^{(i)} &= \big\langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \big\rangle = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \end{aligned}$

$$\begin{pmatrix} \hat{y}^{(1)} \\ \hat{y}^{(2)} \\ \vdots \\ \hat{y}^{(m)} \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \quad \Rightarrow \quad \widehat{\mathbf{Y}} = \mathbf{X} \mathbf{W}$$

 $\begin{aligned} \text{Given } E &= \big\{ \big(\vec{x}^{(1)}, y^{(1)} \big), \big(\vec{x}^{(2)}, y^{(2)} \big), \dots, \big(\vec{x}^{(m)}, y^{(m)} \big) \big\}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \\ \hat{y}^{(i)} &= \big\langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \big\rangle = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \end{aligned}$

$$\begin{pmatrix} \hat{y}^{(1)} \\ \hat{y}^{(2)} \\ \vdots \\ \hat{y}^{(m)} \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \quad \Rightarrow \quad \widehat{\boldsymbol{Y}} = \boldsymbol{X} \boldsymbol{W}$$

$$\mathcal{L}_E = \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

 $\begin{aligned} \text{Given } E &= \big\{ \big(\vec{x}^{(1)}, y^{(1)} \big), \big(\vec{x}^{(2)}, y^{(2)} \big), \dots, \big(\vec{x}^{(m)}, y^{(m)} \big) \big\}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \\ \hat{y}^{(i)} &= \big\langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \big\rangle = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \end{aligned}$

$$\begin{pmatrix} \hat{y}^{(1)} \\ \hat{y}^{(2)} \\ \vdots \\ \hat{y}^{(m)} \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \quad \Rightarrow \quad \widehat{\boldsymbol{Y}} = \boldsymbol{X} \boldsymbol{W}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2} = (Y - \hat{Y})^{T} (Y - \hat{Y})$$

 $\begin{aligned} \text{Given } E &= \big\{ \big(\vec{x}^{(1)}, y^{(1)} \big), \big(\vec{x}^{(2)}, y^{(2)} \big), \dots, \big(\vec{x}^{(m)}, y^{(m)} \big) \big\}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \\ \hat{y}^{(i)} &= \big\langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \big\rangle = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \end{aligned}$

$$\begin{pmatrix} \hat{y}^{(1)} \\ \hat{y}^{(2)} \\ \vdots \\ \hat{y}^{(m)} \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \quad \Rightarrow \quad \widehat{\boldsymbol{Y}} = \boldsymbol{X} \boldsymbol{W}$$

$$\mathcal{L}_{E} = \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2} = (Y - \hat{Y})^{T} (Y - \hat{Y}) \stackrel{\text{not}}{=} (Y - \widehat{Y})^{2}$$

$$\mathcal{L}_E = \left(Y - \widehat{Y}\right)^2$$

$$\mathcal{L}_E = (Y - \hat{Y})^2 = (Y - Xw)^2 = (Y - Xw)^T (Y - Xw)$$

$$\mathcal{L}_E = (Y - \hat{Y})^2 = (Y - Xw)^2 = (Y - Xw)^T (Y - Xw)$$

= $(Y^T - w^T X^T)(Y - Xw)$

$$\mathcal{L}_{E} = (Y - \hat{Y})^{2} = (Y - Xw)^{2} = (Y - Xw)^{T}(Y - Xw)$$

$$= (Y^{T} - w^{T}X^{T})(Y - Xw)$$

$$= Y^{T}Y - Y^{T}Xw - w^{T}X^{T}Y + w^{T}X^{T}Xw$$

$$\mathcal{L}_{E} = (Y - \hat{Y})^{2} = (Y - Xw)^{2} = (Y - Xw)^{T}(Y - Xw)$$

$$= (Y^{T} - w^{T}X^{T})(Y - Xw)$$

$$= Y^{T}Y - Y^{T}Xw - w^{T}X^{T}Y + w^{T}X^{T}Xw = Y^{T}Y - 2w^{T}X^{T}Y + w^{T}X^{T}Xw$$

$$\bullet \quad Y^{T}Xw = [\cdot]_{1\times m}[\cdot]_{m\times n}[\cdot]_{n\times 1} = [\cdot]_{1\times 1} \text{ (scalar)}$$

$$\bullet \quad Y^{T}Xw = (w^{T}X^{T}Y)^{T}$$

Transpose of a scalar is the same scalar

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

• Minimize \mathcal{L}_E with respect to w:

$$\frac{\partial \mathcal{L}_E}{\partial w} = 0$$

Derivative w.r.t. to a vector \Rightarrow derivative w.r.t. each component. $\left[\frac{\partial \mathcal{L}_E}{\partial w_0} \ \ \, \frac{\partial \mathcal{L}_E}{\partial w_1} \ \ \, \ldots \right]$

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

• Minimize \mathcal{L}_E with respect to w:

$$\frac{\partial \mathcal{L}_E}{\partial w} = 0 \Rightarrow -2X^T Y + 2X^T X w = 0$$

Derivative w.r.t. to a vector \Rightarrow derivative w.r.t. each component. $\left[\frac{\partial \mathcal{L}_E}{\partial w_0} \quad \frac{\partial \mathcal{L}_E}{\partial w_1} \quad ...\right]$

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

• Minimize \mathcal{L}_E with respect to w:

$$\frac{\partial \mathcal{L}_E}{\partial w} = 0 \Rightarrow -2X^T Y + 2X^T X w = 0 \Rightarrow X^T X w = X^T Y$$

Derivative w.r.t. to a vector \Rightarrow derivative w.r.t. each component. $\left[\frac{\partial \mathcal{L}_E}{\partial w_0} \ \frac{\partial \mathcal{L}_E}{\partial w_1} \ \ldots\right]$

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

• Minimize \mathcal{L}_E with respect to w:

Derivative w.r.t. to a vector \Rightarrow derivative w.r.t. each component. $\left[\frac{\partial \mathcal{L}_E}{\partial w_0} \quad \frac{\partial \mathcal{L}_E}{\partial w_1} \quad ...\right]$

$$\frac{\partial \mathcal{L}_E}{\partial w} = 0 \Rightarrow -2X^T Y + 2X^T X w = 0 \Rightarrow X^T X w = X^T Y \Rightarrow \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\mathcal{L}_E = Y^T Y - 2w^T X^T Y + w^T X^T X w$$

• Minimize \mathcal{L}_E with respect to w:

Derivative w.r.t. to a vector
$$\Rightarrow$$
 derivative w.r.t. each component.
$$\left[\frac{\partial \mathcal{L}_E}{\partial w_0} \quad \frac{\partial \mathcal{L}_E}{\partial w_1} \quad ...\right]$$

$$\frac{\partial \mathcal{L}_E}{\partial w} = 0 \Rightarrow -2X^T Y + 2X^T X w = 0 \Rightarrow X^T X w = X^T Y \Rightarrow \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

- Observations:
 - $\circ X^T X$ needs to be invertible.
 - o If $X \in \mathbb{R}^{m \times n}$ with n > m (more features than examples), there is a high chance of $X^T X$ being singular.
 - The problem is "ill-posed".

Well-posed vs. Ill-posed problems

- A problem is **well-posed** if:
 - A solution exists.
 - The solution is unique.
 - The solution's behavior changes continuously with the initial conditions.

Jacques Hadamard, 1902

- If a problem is not well-posed, it is said to be ill-posed.
 - This usually implies that additional assumptions need to be taken into consideration for numerical treatment of the problem.
 - This process is called regularization
 - Inverse problems are often ill-posed (determining the cause by observing the effects)

Fitting a polynomial

• Linear regression is *linear in coefficients*, but we can have *non-linear features*.

 \circ If we use $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^d \end{bmatrix}$ as features, we can fit a polynomial of degree d with linear regression

Fitting a polynomial

Linear regression is linear in coefficients, but we can have non-linear features.

 \circ If we use $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^d \end{bmatrix}$ as features, we can fit a polynomial of degree d with linear regression

Ridge Regression

Linear regression with regularization

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

- Let's say we have a function $f: \mathbb{R} \to \mathbb{R}$
- We are given:

$$\circ f(1) = 1$$

$$\circ f(2) = 2$$

$$\circ$$
 $f(3) = 3$

• What is f(4)?

$$\circ f(4) = ?$$

- Let's say we have a function $f: \mathbb{R} \to \mathbb{R}$
- We are given:

$$\circ f(1) = 1$$

$$\circ f(2) = 2$$

$$\circ$$
 $f(3) = 3$

• What is f(4)?

$$\circ f(4) = 7$$

$$f(x) = 0.5x^3 - 3x^2 + 6.5x - 3$$

- Let's say we have a function $f: \mathbb{R} \to \mathbb{R}$
- We are given:

$$\circ f(1) = 1$$

$$\circ f(2) = 2$$

$$\circ$$
 $f(3) = 3$

• What is f(4)?

$$\circ f(4) = 7$$

$$f(x) = 0.5x^3 - 3x^2 + 6.5x - 3$$

- Lets consider a dataset $X \in \mathbb{R}^{10 \times 10}$ (10 samples with 10 features each)
 - \circ For ease of plotting let's consider the features to be $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^{10} \end{bmatrix}$

- Lets consider a dataset $X \in \mathbb{R}^{10 \times 10}$ (10 samples with 10 features each)
 - \circ For ease of plotting let's consider the features to be $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^{10} \end{bmatrix}$

"III-posed" problem + unconstrained hypothesis space → data is overfitted.

$$f_1(x) = 5.28 * 10^3$$

$$-1.50 * 10^4 x$$

$$+1.72 * 10^4 x^2$$

$$-1.01 * 10^4 x^3 + \cdots$$

- Lets consider a dataset $X \in \mathbb{R}^{10 \times 10}$ (10 samples with 10 features each)
 - \circ For ease of plotting let's consider the features to be $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^{10} \end{bmatrix}$

"III-posed" problem + unconstrained hypothesis space → data is overfitted.

Large coefficients →

 Small changes in input cause large changes in output.

- Lets consider a dataset $X \in \mathbb{R}^{10 \times 10}$ (10 samples with 10 features each)
 - \circ For ease of plotting let's consider the features to be $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^{10} \end{bmatrix}$

"III-posed" problem + unconstrained hypothesis space → data is overfitted.

$$f_1(x) = 5.28 * 10^3$$

$$-1.50 * 10^4 x$$

$$+1.72 * 10^4 x^2$$

$$-1.01 * 10^4 x^3 + \cdots$$

Large coefficients \rightarrow

 Small changes in input cause large changes in output.

What if we force coefficients to be small?

- Lets consider a dataset $X \in \mathbb{R}^{10 \times 10}$ (10 samples with 10 features each)
 - \circ For ease of plotting let's consider the features to be $\begin{bmatrix} 1 & \chi & \chi^2 & \dots & \chi^{10} \end{bmatrix}$

"Ill-posed" problem + unconstrained hypothesis space → data is overfitted.

$$f_1(x) = 5.28 * 10^3$$

$$-1.50 * 10^4 x$$

$$+1.72 * 10^4 x^2$$

$$-1.01 * 10^4 x^3 + \cdots$$

Large coefficients →

 Small changes in input cause large changes in output.

What if we force coefficients to be small?

Small coefficients \rightarrow

Function is much smoother.

We want small coefficients, so we add the norm of the weight vector to the loss:

$$\mathcal{L}_E = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^2 + \lambda \|\vec{w}\|_2^2$$

We want small coefficients, so we add the norm of the weight vector to the loss:

$$\mathcal{L}_E = \sum_i \left(y^{(i)} - \hat{y}^{(i)} \right)^2 + \lambda \|\overrightarrow{w}\|_2^2$$
 L2 regularization

We want small coefficients, so we add the norm of the weight vector to the loss:

$$\mathcal{L}_E = \sum_i \left(y^{(i)} - \hat{y}^{(i)}\right)^2 + \lambda \|\overrightarrow{w}\|_2^2$$
 L2 regularization

In matrix format:

$$\mathcal{L}_E = \left(Y - \widehat{Y}\right)^2 + \lambda w^T w$$

We want small coefficients, so we add the norm of the weight vector to the loss:

$$\mathcal{L}_E = \sum_i ig(y^{(i)} - \hat{y}^{(i)}ig)^2 + \lambda \|\overrightarrow{w}\|_2^2$$
 L2 regularization

In matrix format:

$$\mathcal{L}_E = \left(Y - \widehat{Y}\right)^2 + \lambda w^T w$$

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow$$

$$w = \left(X^T X + \lambda I\right)^{-1} X^T Y$$

We want small coefficients, so we add the norm of the weight vector to the loss:

$$\mathcal{L}_E = \sum_i \left(y^{(i)} - \hat{y}^{(i)} \right)^2 + \lambda \| \overrightarrow{w} \|_2^2$$
 L2 regularization

In matrix format:

$$\mathcal{L}_E = \left(Y - \widehat{Y}\right)^2 + \lambda w^T w$$

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow$$

$$w = \left(X^T X + \lambda I\right)^{-1} X^T Y$$

Always invertible.

Lasso

 \circ Same as Ridge Regression, but with L_1 regularization:

$$\mathcal{L}_E = \sum_i (y^{(i)} - \hat{y}^{(i)})^2 + \lambda \|\overrightarrow{w}\|_1$$
 L₁ regularization

 \circ The L_1 penalty encourages some of the weights to be exactly 0, not just small.

Lasso

 \circ Same as Ridge Regression, but with L_1 regularization:

$$\mathcal{L}_E = \sum_i (y^{(i)} - \hat{y}^{(i)})^2 + \lambda \|\overrightarrow{w}\|_1$$
 L₁ regularization

 \circ The L_1 penalty encourages some of the weights to be exactly 0, not just small.

Elastic Net

Linear combination between Ridge Regression and Lasso Regression:

$$\mathcal{L}_E = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^2 + \lambda_1 \|\vec{w}\|_2^2 + \lambda_2 \|\vec{w}\|_1$$

• L_p -norm of a vector $\vec{x} \in \mathbb{R}^n$:

$$\|\vec{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{n} |x_{i}|^{p}}$$

- \circ $p = 1 \Rightarrow$ Manhattan Norm (sum of absolute element values)
- $p = 2 \implies \text{Euclidean Norm}$
- $\circ p = \infty \Rightarrow$ Maximum Norm (value of the absolute maximum element)

Recap

Linear regression

• Fits a *linear model* on the data:

$$\hat{y} = \langle \vec{x}, \vec{w} \rangle = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

- in matrix form: $\hat{Y} = Xw$
- Minimizing the *squared-error loss* gives the following formula:

Ridge regression

- Forcing small coefficients makes the function smoother and less prone to overfitting.
- \circ Adding L_2 regularization (the Euclidean norm of the weight vector) to the loss gives:

Coefficient of determination

- The coefficient of determination (R^2 , pronounced "R squared")
 - o amount of variance in the dependent variable which is explained by the independent variables.

Coefficient of determination

$$R^2 = \frac{939,000.6 - 73,032.3}{939,000.6} = 0.922$$

92.2% of house price is explained by size.

BTW: This is a fake dataset!

Linear Regression in Python

```
from sklearn.linear model import LinearRegression, Ridge, Lasso, ElasticNet
     clf = LinearRegression()
     clf.fit(X, y)
4
     clf.predict([x]) # prediction for x
     clf.score(X, y) # R^2 coefficient
     clf. residues # Loss on the training samples \mathcal{L}_{\hat{\mathcal{V}}}
     clf.coef_ # w_1, w_2 \dots w_n
     clf.intercept # w_0
     clf = Ridge(alpha = 10) # alpha is the regularization strength \lambda
```

Summary

- **Linear Regression** uses a *linear function* to establish a relationship between a *dependent variable* and a number of *independent variables*.
- The parameters of the model are obtained by minimizing the squarederror loss.
- The fitted model can be used to determine the correlation between features and label.
- The fitted model can also be used to make predictions on future data.
- Ridge Regression adds regularization in order to deal with ill-posed problems.

Keywords

- What if we only knew and wanted to predict whether a house is expensive or not?
 - No information about the actual price → Binary classification problem.

Can we use Linear Regression to do Classification?

- Can we use Linear Regression to do Classification?
 - Not too bad, but a little hard to interpret the results.

• Also, how do we pick a good threshold? Why 0.5?

Same dataset as before, but with an added point.

• Keeping the same 0.5 threshold makes some points get misclassified.

huge mistake for this point, even though it is getting the class right.

The old model "thinks" it is making a

Can we find a better solution?

Same dataset as before, but with an added point.

• Keeping the same 0.5 threshold makes some points get misclassified.

The old model "thinks" it is making a huge mistake for this point, even though it is getting the class right.

