TTIC 31020: Introduction to Machine Learning Problem Set 3

Hung Le Tran 20 Jan 2024

Problem 3.1 (Problem 1)

(a) We have chosen the training set S with the assumption that (x_i, y_i) 's are i.i.d. It follows that

$$\mathbb{E}_{S \sim \mathcal{D}^{m}}[\mathbb{1}\{\mathcal{F}(S_{-i})(x_{i}) \neq y_{i}\}] = \mathbb{E}_{S_{-i} \sim \mathcal{D}^{m-1}}\left[\mathbb{E}_{(x_{i}, y_{i}) \sim \mathcal{D}}\left[\mathbb{1}\{\mathcal{F}(S_{-i})(x_{i}) \neq y_{i}\}\right]\right]$$

$$= \mathbb{E}_{S \sim \mathcal{D}^{m-1}}[L_{\mathcal{D}}(F(S))]$$

$$\Rightarrow \mathbb{E}_{S \sim \mathcal{D}^{m}}[LOOCV_{S}(\mathcal{F})] = \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[\frac{|\{i: \mathcal{F}(S_{-i})(x_{i}) \neq y_{i}\}|}{m}\right]$$

$$= \frac{1}{m}\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[\sum_{i=1}^{m}\mathbb{1}\{\mathcal{F}(S_{-i})(x_{i}) \neq y_{i}\}\right]$$

$$= \frac{1}{m}\sum_{i=1}^{m}\mathbb{E}_{S \sim \mathcal{D}^{m-1}}[\mathbb{1}\{\mathcal{F}(S_{-i})(x_{i}) \neq y_{i}\}]$$

$$= \frac{m}{m}\mathbb{E}_{S \sim \mathcal{D}^{m-1}}[L_{\mathcal{D}}(\mathcal{F}(S))]$$

$$= \mathbb{E}_{S \sim \mathcal{D}^{m-1}}[L_{\mathcal{D}}(\mathcal{F}(S))]$$

as required.

- (b) \mathcal{A} enjoys mistake bound M on sequences realized by \mathcal{H} , and $S \sim \mathcal{D}^m$ as given here is realized by \mathcal{H} . Therefore it can make at most $\max\{T,M\}$ mistakes. It follows that $\tilde{\mathcal{A}}$ will run for at most M iterations, since if it reaches M iterations, \mathcal{A} can no longer make mistakes and the while condition exits.
- (c) Let N be the number of iterations $\tilde{\mathcal{A}}$ would run on S. This means that after collecting N samples, say S', then A(S') no longer makes mistakes on the remaining (m+1)-N samples. Then, these (m+1)-N samples, when they are validation points, do not contribute to $LOOCV_S(\tilde{\mathcal{A}})$ at all, since S_{-i} (for (x_i, y_i) among those points) would include the N samples, allowing $\tilde{\mathcal{A}}(S_{-i})$ to successfully predict (x_i, y_i) . Therefore,

$$LOOCV_S(\tilde{\mathcal{A}}) \le \frac{N}{m+1}$$

(divided by (m+1) because S has (m+1) samples)

(c) Combining,

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(\tilde{\mathcal{A}}(S))] = \mathbb{E}_{S \sim \mathcal{D}^{m+1}}[LOOCV_S(\tilde{\mathcal{A}})]$$

$$\leq \frac{N}{m+1}$$

$$\leq \frac{M}{m+1}$$

Therefore to get $\langle \varepsilon \rangle$, we need

$$\frac{M}{m+1} < \varepsilon \Rightarrow m > \frac{M}{\varepsilon} - 1$$

Problem 3.2 (Problem 2)

Part I

(a) WTS

$$\frac{\langle w^o, w_{t+1} \rangle}{\|w^o\|} \ge M_t \gamma$$

Indeed, when $t = 0, 0 \ge 0$.

Suppose that

$$\frac{\langle w^o, w_t \rangle}{\|w^o\|} \ge M_{t-1} \gamma$$

Then if w_{t+1} doesn't update (i.e. did not make mistake on (x_t, y_t)), then M_t does not update too, and the inequality is trivially satisfied. When w_{t+1} does update:

$$\frac{\langle w^o, w_{t+1} \rangle}{\|w^o\|} = \frac{\langle w^o, w_t \rangle}{\|w^o\|} + \frac{\langle w^o, y_t \varphi(x_t) \rangle}{\|w^o\|}$$

$$\geq M_{t-1} \gamma + \gamma$$

$$= M_t \gamma$$

as required.

(b) WTS

$$||w_{t+1}|| \le \sqrt{M_t}$$

The base case is trivial.

Induction hypothesis gives us $||w_t|| \le \sqrt{M_{t-1}}$.

Then if w_{t+1} doesn't update then $M_t = M_{t-1}$, the inequality also satisfies.

When it does update, i.e., $y_t \langle w_t, \varphi(x_t) \rangle \leq 0$, then

$$||w_{t+1}||^2 = ||w_t + y_t \varphi(x_t)||^2$$

$$= ||w_t||^2 + ||y_t \varphi(x_t)||^2 + 2\langle w_t, y_t \varphi(x_t) \rangle$$

$$\leq M_{t-1} + 1 + 0 = M_t$$

$$\Rightarrow ||w_{t+1}|| \leq \sqrt{M_t}$$

as required.

(c) Combining both:

$$M_t \gamma \le \frac{\langle w^o, w_{t+1} \rangle}{\|w^o\|} \le \|w_{t+1}\| \le \sqrt{M_t}$$

which implies

$$M_t \le \frac{1}{\gamma^2}$$

as required.

Part II

(a) By assumption, finite S is realizable by some linear predictor, say, one that corresponds to weight w_0 .

Realizability implies that for all $(x_i, y_i) \in S$,

$$y_i \langle w_0, \varphi(x_i) \rangle > 0 \Rightarrow \frac{y_i \langle w_0, \varphi(x_i) \rangle}{\|w_0\|} > 0$$

The minimum of finite positive numbers is positive, so

$$\min_{(x_i, y_i) \in S} \frac{y_i \langle w_0, \varphi(x_i) \rangle}{\|w_0\|} > 0$$

- $\gamma(S)$ is then the supremum of a set that contains a positive number (the one above, since w_0 is in the set of possible weights), and is therefore positive.
- (b) We know that $M_t \leq \frac{1}{\gamma(S)^2} \ \forall \ t$ so PERCEPTRON has mistake bound $M = \frac{1}{\gamma(S)^2}$.

From question 1, we know that the number of iterations is bounded by $M = \frac{1}{\gamma(S)^2}$.

(c) I would linearly iterate through S to find $(x, y) \in S$ that satisfies $y\langle w, \varphi(x)\rangle \leq 0$. Required runtime per iteration: O(md).

Overall runtime: $O\left(\frac{md}{\gamma(S)^2}\right)$

(d) For this section, let us conventionally denote sign (0) = +1.

Let $S = \{(1, +1), (1, -1)\}, d = 1$. We start with $w_1 = 0$.

$$w_1 = 0$$
, $\operatorname{sign}(\langle w_1, x_2 \rangle) = \operatorname{sign}(0) = +1 \neq y_2 \Rightarrow w_2 = 0 + y_2 x_2 = -1$
 $w_2 = -1$, $\operatorname{sign}(\langle w_2, x_1 \rangle) = \operatorname{sign}(-1) = -1 \neq y_1 \Rightarrow w_3 = -1 + y_1 x_1 = 0$

and we're back to the starting point of the loop. Therefore PERCEPTRON, iterating PERCEPTRON repeatedly, will then never terminate.

Part III

(a) Mistake bound:

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\mathsf{PER\widetilde{CEPTRON}}(S)) \right] \leq \frac{M}{m+1} \leq \frac{1}{(m+1)\gamma^2}$$

Therefore to ensure expected generalization error at most ε , want:

$$\frac{1}{(m+1)\gamma^2} \le \varepsilon \Rightarrow m \ge \frac{1}{\varepsilon\gamma^2} - 1$$

4

(b) We made the assumption that \mathcal{D} is separable with margin γ .