Exercises 07: Optimization

Kevin Heubacher (15329079), Akshay Chikhalkar (15489036), John Paul Semakula (15487087) Group: LATE

29.11.2022

1 Exercise 1

The scikit-optimize python extension implements bayesian optimization using gaussian processes with $gp_minimize()$. Some of the used parameters can be seen in table 2.

Parameter	Description	Value	
func	Function to minimize	polynomial	
dimensions	The search space	[(x_min, x_max)]	
n_calls	Number of calls to func	4	
acq_func	Aquisition function	"EI"	
random_state	Set for reproducible results	1234	
noise	Adds noise to the objective function	1e-10	
	(minimum: 1e-10)		

Table 1: Parameters used in gp_minimize() function

The number of loops done is determined by the n_calls parameter. To compare this implementation with the implementation of exercise 6 both optimization algorithms are run 4 times with $x_min = 1$ and $x_max = 20$. The comparison can be seen in figure 1. Noticeable is the switch to a discrete X dimension. The MSE value is hold until the next integer is reached. This is done automatically by the $gp_minimize$ function when the dimensions parameters are integers. The two implementations also chose completely different Observations witch each iteration. The best degree found was 11 with MSE = 0.0062 for $gp_minimize()$ and 10 with MSE = 0.0128 in exercise 6. However, given the randomness of the $gp_minimize()$ function, the result will likely change with a different $random_state$ value.

Figure 1: Left: Implementation Ex. 6, Right: Implementation Ex. 7

2 Exercise 2

The aim of this exercise is to benchmark Knapsack Problem with different items with their values and objects for multiple iterations.

The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item included in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. This exercise is using Pyomo, a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating, solving, and analyzing optimization models. A core capability of Pyomo is modelling structured optimization applications.

The most common problem being solved is the 0-1 knapsack problem, which restricts the number x_i of copies of each kind of item to zero or one. Given a set of k items numbered from 1 up to k, each with a weight w_i and a value v_i , along with a maximum weight capacity limit,

maximize
$$\sum_{i=1}^{k} v_i x_i$$
 subject to $\sum_{i=1}^{k} w_i x_i \leq limit$ where $x_i \in \{0,1\}$

v- Item value, w- Item weight, k- No. of items, limit- Weight limit x_i- The number of instances of item i to include in the knapsack.

Steps:

- 1. Items generator: This function generates given number of items with a random name of string less than 10 as well as a random value between 1 to 20 and weight between 1 to 10.
- 2. Recording execution time for n (i.e. n=5) number of iterations.
- 3. Calculating the mean of a recorded set of time (i.e. Set of n).
- 4. Calculating variance of a recorded set of time (i.e. Set of n).
- 5. Visual representation of time vs iteration.

The following table represents the benchmarking results:

Number of items = 10Number of iterations n = 5

Iteration (n)	Execution Time (sec)	Value	Weight
1	0.054	37	10
2	0.038	37	10
3	0.043	37	10
4	0.030	37	10
5	0.030	37	10

Table 2: Benchmarking results for n iterations

Figure 2: Execution time plot for n iterations

The mean execution time for above n iterations is **0.04 sec** (0.039 sec).

The variance of execution time for above n iterations is **8.07 Sec**.