矩阵论复习

Haijun Xiong

2022年12月3日

1 线性空间与线性变换

1.1 线性空间

定义 1.1 设 V 是一个以 α , β , γ , … 为元素的非空集合,F 是一个数域。在其中定义两种运算,一种叫加法: $\forall \alpha$, $\beta \in V$, $\alpha + \beta \in V$;另一种叫数量乘法: $\forall k \in F$, $\alpha \in V$, $k\alpha \in V$,并且满足八条运算法则:

- (1) 加法交换律: $\alpha + \beta = \beta + \alpha$;
- (2) 加法结合律: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- (3) V 中存在零元素: $\exists \alpha_0 \in V$, $\forall \alpha \in V$, 使得 $\alpha + \alpha_0 = \alpha$, 记 $\alpha_0 = 0$;
- (4) V 中存在负元素: $\forall \alpha \in V$, $\exists \beta \in V$, 使得 $\alpha + \beta = 0$, 记 $\beta = -\alpha$;
- (5) 数乘结合律: $(kl)\alpha = k(l\alpha)$;
- (6) 存在 $1 \in F$: $1 \cdot \alpha = \alpha$;
- (7) 分配律: $(k+l)\alpha = k\alpha + l\alpha$;
- (8) 分配律: $k(\alpha + \beta) = k\alpha + k\beta$ 。

则称V 为数域F 上的**线性空间**,V 中元素称为**向**量。F 为**实**(**复**)数域时,称V 是**实**(**复**)**线性空间**。

定理 1.1 线性空间 V 有以下性质:

- (1) V 中的零元素惟一;
- (2) V 中任一元素的负元素惟一;
- (3) 设 0 为数零, 0 为 V 中零向量,则
- (i) $0 \cdot \alpha = 0$;
- (ii) $k \cdot 0 = 0, k \in F$;
- (iii) 若 $k \cdot \alpha = 0$, 则一定有 k = 0 或者 $\alpha = 0$;
- (iv) $(-1) \alpha = -\alpha$

定义 1.2 设 V 是线性空间,若存在一组线性无关的向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 使空间中任一向量可由它们线性表示,则称向量组 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 为 V 的一组基。基所含向量个数为 V 的**维数**,记为 $\dim V = n, n < +\infty$ 或者 $n = +\infty$ 。

定理 1.2 n 维线性空间中任意 n 个线性无关的向量构成的向量组都是空间的基。

定义 1.3 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是线性空间 $V_n(F)$ 的一组基, $\forall \beta \in V$

$$\beta = \sum_{i=1}^{n} x_i \alpha_i = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 (1.1)

则称数 x_1, x_2, \dots, x_n 是 β 在基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 下的坐标,(1.1) 式中向量 $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$ 为 β 的坐标向量,也简称为坐标。

定理 1.3 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 n 维线性空间 $V_n(F)$ 的一组基, $V_n(F)$ 中向量 β_i 在该基下坐标为 X_i , $i=1,2,3,\dots,m$,则 $V_n(F)$ 中向量组 $\{\beta_1,\beta_2,\dots,\beta_m\}$ 线性相关的充要条件是其坐标向量组 $\{X_1,X_2,\dots,X_m\}$ 是 F^n 中的线性相关组。

定义 1.4 设 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$, $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 是 n 维线性空间 $V_n(F)$ 的两组基,若有矩阵 $C\in F^{n\times n}$,使

$$\begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} C \tag{1.2}$$

则称矩阵 C 是从基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 到基 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 的**过渡矩阵** (基**变换矩阵**)。

定理 1.4 设线性空间 $V_n(F)$ 的一组基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 到另一组基 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 的过渡矩阵为 C, $V_n(F)$ 中向量 α 在两组基下坐标分别为 X, Y, 则有

$$X = CY \tag{1.3}$$

定义 1.5 设 $V_n(F)$ 为线性空间, $W \in V$ 的非空子集合。若 W 的元素关于 V 中加法与数乘向量法运算也构成线性空间,则称 $W \in V$ 的一个子空间。

定理 1.5 设 W 是线性空间 $V_n(F)$ 的非空子集合,则 W 是 $V_n(F)$ 的子空间的充分必要条件是

- $(1) \stackrel{\text{$\not$}}{\text{$\not$}} \alpha, \ \beta \in W, \ \bowtie \alpha + \beta \in W;$
- (2) 若 $\alpha \in W$, $k \in F$, 则 $k\alpha \in W$ 。

定理 1.6 设 W_1 , W_2 是线性空间 V 的子空间,则有

- (1) W_1 与 W_2 的交集 $W_1 \cap W_2 = \{\alpha | \alpha \in W_1 \perp \alpha \in W_2\}$ 是 V 的子空间,称为 W_1 与 W_2 的**交空** 间;
- (2) W_1 与 W_2 的和 $W_1 + W_2 = \{\alpha | \alpha = \alpha_1 + \alpha_2, \ \alpha_1 \in W_1, \ \alpha_2 \in W_2\}$ 是 V 的子空间,称为 W_1 与 W_2 的和空间。

定理 1.7 设 W_1 和 W_2 是线性空间 V 的子空间,则有如下维数公式:

$$\dim(W_1) + \dim(W_2) = \dim(W_1 + W_2) + \dim(W_1 \cap W_2) \tag{1.4}$$

定义 1.6 设 W_1 , W_2 是线性空间 V 的子空间, $W = W_1 + W_2$, 如果 $W_1 \cap W_2 = \{0\}$, 则称 $W \in W_1$ 与 W_2 的直和子空间。记为 $W = W_1 \oplus W_2$

定理 1.8 设 W_1 和 W_2 是线性空间 V 的子空间, $W = W_1 + W_2$, 则成立以下等价条件:

- (1) $W = W_1 \oplus W_2$;
- (2) $\forall X \in W$, X 有惟一的表示式: $X = X_1 + X_2$, 其中 $X_1 \in W_1$, $X_2 \in W_2$;
- (3) W 中零向量的表达式惟一,即只要 $\mathbf{0} = X_1 + X_2$, $X_1 \in W_1$, $X_2 \in W_2$,就有 $X_1 = \mathbf{0}$, $X_2 = \mathbf{0}$;
 - (4) 维数公式 $\dim W = \dim W_1 + \dim W_2$ 。

1.2 内积空间

定义 1.7 对数域 F 上的 n 维线性空间 $V_n(F)$,定义的一个从 $V_n(F)$ 中向量到数域 F 的二元运算,记为 (α,β) ,即 (α,β) : $V_n(F) \to F$,如果满足

- (1) **对称性**: $(\alpha, \beta) = \overline{(\beta, \alpha)}$, 其中 $\overline{(\beta, \alpha)}$ 表示复数 (β, α) 的共轭;
- (2) 线性性: $(k_1\alpha, k_2\beta) = k_1\overline{k_2}(\alpha, \beta)$, $(\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta)$;
- (3) **正定性**: $(\alpha, \alpha) \ge 0$, $(\alpha, \alpha) = 0$ 的充分必要条件是 $\alpha = 0$.

则称 (α, β) 是 $V_n(F)$ 的一个**内积**,并称其中定义了内积的线性空间 $[V_n(F); (\alpha, \beta)]$ 为**内积** 空间。

如果 $V_n(F)$ 是**实数域** \mathbb{R} 上的线性空间 $V_n(\mathbb{R})$,则 $(\alpha, \beta) \in \mathbb{R}$ 为实内积, $[V_n(\mathbb{R}); (\alpha, \beta)]$ 为**欧 氏空间**;同理 $V_n(F)$ 是**复数域** \mathbb{C} 上的线性空间 $V_n(\mathbb{C})$ 时, $(\alpha, \beta) \in \mathbb{C}$ 为复内积,称 $[V_n(\mathbb{C}); (\alpha, \beta)]$ 为**酉空间**。

定义 1.8 设 $[V_n(F); (\alpha, \beta)]$ 为内积空间,称

$$\|\alpha\| = \sqrt{(\alpha, \alpha)} \tag{1.5}$$

为向量 α 的长度,若 $\|\alpha\|=1$,则称 α 为单位向量。

定理 1.9 (Cauchy 不等式) 设 $[V_n(F);(\alpha,\beta)]$ 为内积空间,则对空间中任意向量 α , $\beta \in V_n(F)$,都有

$$|(\alpha, \beta)|^2 \le (\alpha, \alpha)(\beta, \beta)$$

其中等式成立的充分必要条件是 α 与 β 线性相关。Cauchy-Schwarz 不等式可以写为:

$$|(\alpha, \beta)| \le ||\alpha|| \cdot ||\beta||$$

由此可以得出三角不等式:

$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$
$$\|\alpha - \beta\| \le \|\alpha\| + \|\beta\|$$

定义 1.9 在内积空间中, 若向量 α , β 满足

$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = 0$$

则称向量 α 与 β 是正交的。

定理 1.10 不含零向量的正交向量组是线性无关的。

定义 1.10 在内积空间 $[V_n(F);(\alpha,\beta)]$ 中,若一组基 $\{\epsilon_1,\epsilon_2,\cdots,\epsilon_n\}$ 满足条件

$$(\varepsilon_i, \varepsilon_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

则称向量 $\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n\}$ 为 $[V_n(F); (\alpha, \beta)]$ 的标准正交基。

定理 1.11 (Gram-Schmidt 标准正交化方法) 设 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 是内积空间 $[V_n(F); (\alpha, \beta)]$ 中线性无关的向量组,则由如下方法:

$$\beta_1 = \alpha_1$$

$$\beta_k = \alpha_k - \sum_{i=1}^{k-1} \frac{(\alpha_k, \beta_i)}{(\beta_i, \beta_i)} \beta_i, \quad k = 2, 3, \dots, n$$
(1.6)

所得向量组 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 是正交向量组。之后再标准化为:

$$\varepsilon_i = \frac{\beta_i}{\|\beta_i\|}, \ i = 1, 3, \cdots, n$$

把正交化方法和标准化方法结合在一起,可得从一组基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 得到标准正交基的方法

$$\begin{cases} \boldsymbol{\beta}_{1} = \boldsymbol{\alpha}_{1}, & \boldsymbol{\varepsilon}_{1} = \frac{\boldsymbol{\beta}_{1}}{\|\boldsymbol{\beta}_{1}\|} \\ \boldsymbol{\beta}_{2} = \boldsymbol{\alpha}_{2} - (\boldsymbol{\alpha}_{2}, \boldsymbol{\varepsilon}_{1}) \, \boldsymbol{\varepsilon}_{1}, & \boldsymbol{\varepsilon}_{2} = \frac{\boldsymbol{\beta}_{2}}{\|\boldsymbol{\beta}_{2}\|} \\ \dots \\ \boldsymbol{\beta}_{n} = \boldsymbol{\alpha}_{n} - \sum_{i=1}^{n-1} (\boldsymbol{\alpha}_{n}, \boldsymbol{\varepsilon}_{i}) \, \boldsymbol{\varepsilon}_{i}, & \boldsymbol{\varepsilon}_{n} = \frac{\boldsymbol{\beta}_{n}}{\|\boldsymbol{\beta}_{n}\|} \end{cases}$$

用矩阵运算可表示为

$$\begin{bmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \end{bmatrix} = \begin{bmatrix} \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{n} \end{bmatrix} \begin{bmatrix} \|\beta_{1}\| & (\alpha_{2}, \varepsilon_{1}) & \cdots & (\alpha_{n}, \varepsilon_{1}) \\ & \|\beta_{2}\| & \cdots & (\alpha_{n}, \varepsilon_{2}) \\ & & \ddots & \vdots \\ & & \|\beta_{n}\| \end{bmatrix}$$
(1.7)

标准正交基是内积空间中十分方便的基。 $\forall \alpha, \beta \in V_n(F), \alpha = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_n \end{bmatrix} X, \beta = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_n \end{bmatrix} Y,$ 则由前面讨论可知:

- (1) 当 $V_n(F)$ 为欧氏空间 $V_n(\mathbb{R})$ 时, $(\alpha, \beta) = X^T Y = Y^T X$;
- (2) 当 $V_n(F)$ 为酉空间 $V_n(\mathbb{C})$ 时, $(\alpha, \beta) = Y^{\mathcal{H}} X$ 。

1.3 线性变换

定义 1.11 设 $V_n(F)$ 是一个线性空间,若有 $V_n(F)$ 上的对应关系 T,使 $\forall \alpha \in V_n(F)$,都有确定的向量 $\alpha' = T(\alpha) \in V_n(F)$ 与之对应,则称 T 为 $V_n(F)$ 上一个变换. 又若 T 对线性空间中的线性运算,对于 $\forall k_1, k_2 \in F$, $\forall \alpha_1, \alpha_2 \in V_n(F)$ 满足

$$T(k_1\alpha_1 + k_2\alpha_2) = k_1T(\alpha_1) + k_2T(\alpha_2)$$
(1.8)

则称 T 是线性空间 $V_n(F)$ 上的一个**线性变换**。

线性空间 $V_n(F)$ 上的相似变换 $T: \forall \alpha \in V_n(F), T(\alpha) = \lambda \alpha$ 是线性变换, 其中 $\lambda \in F$ 。

当 λ = 0 时, $\forall \alpha \in V_n(F)$, $T(\alpha)$ = 0, 称 T 为零变换;

当 $\lambda = 1$ 时, $\forall \alpha \in V_n(F)$, $T(\alpha) = \alpha$, 称T为恒等变换。

定理 1.12 设 T 是线性空间 $V_n(F)$ 上的线性变换,则有:

- $(1) R(T) = \{\beta | \forall \alpha \in V_n(F), \ \notin \beta = T(\alpha)\} \ \exists \ V_n(F) \$ 的子空间, 称为 T 的**像空间**;
- $(2) N(T) = {\alpha | T(\alpha) = 0}$ 是 $V_n(F)$ 的子空间, 称为 T 的**零空间**。

子空间 R(T) 的维数 $\dim R(T)$ 为线性变换 T 的**秩**, $\dim N(T)$ 为 T 的**零度**。

定义 1.12 设 T_1 与 T_2 都是线性空间 $V_n(F)$ 上的线性变换,定义如下运算:

(1) 变换的乘积 T_1T_2 :

$$\forall \alpha \in V_n(F), (T_1T_2)(\alpha) = T_1(T_2(\alpha))$$

(2) 变换的加法 $T_1 + T_2$:

$$\forall \alpha \in V_n(F)$$
, $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha)$

(3) 数乘变换 kT:

$$\forall \alpha \in V_n(F) , k \in F, (kT)(\alpha) = kT(\alpha)$$

(4) 可逆变换: 对变换 T_1 , 如果存在变换 T_2 , 使:

$$T_1 \cdot T_2 = T_2 \cdot T_1 = I(恒等变换)$$

则称 T_1 为可逆变换, T_2 是 T_1 的逆变换,记为 $T_2 = T_1^{-1}$ 。

定义 1.13 设 T 是线性空间 $V_n(F)$ 上的线性变换, $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 为 $V_n(F)$ 的基,若存在 n 阶方阵 $A \in F^{n \times n}$,使

$$T\begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} A \tag{1.9}$$

则称 A 为 T 在基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 下的**矩阵**。

又 $\forall \alpha \in V_n(F)$, 设 $\alpha \vdash T(\alpha)$ 在基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 下坐标分别是 $X \vdash Y$, 即

$$\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} X, T(\alpha) = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} Y$$

可以得到

$$Y = AX \tag{1.10}$$

定理 1.13 设 T_1 与 T_2 是线性空间 $V_n(F)$ 上的两个线性变换,对基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$,它们的矩阵分别是 A_1 与 A_2 ,则在基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 下,

- $(1) T_1 + T_2$ 的矩阵为 $(A_1 + A_2)$;
- (2) T_1T_2 的矩阵为 A_1A_2 ;
- (3) kT₁ 的矩阵为 kA₁;
- (4) T_1 为可逆变换的充分必要条件是 A_1 为可逆矩阵,且 T_1^{-1} 的矩阵为 A_1^{-1} 。

定理 1.14 设线性空间 $V_n(F)$ 的基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 到基 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 的过渡矩阵为 C。 又 $V_n(F)$ 上线性变换 T 在上述两组基下矩阵分别为 A 和 B,则有

$$\boldsymbol{B} = \boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C} \tag{1.11}$$

定义 1.14 设 T 是线性空间 $V_n(F)$ 上的线性变换,W 是 $V_n(F)$ 的子空间,如果 $\forall \alpha \in W$,有 $T(\alpha) \in W$,即值域 $T(W) \in W$,则称 W 是 T 的不变子空间。

定义 1.15 设 T 是内积空间 $[V_n(F):(\alpha,\beta)]$ 上的线性变换,如果 T 不改变向量的内积,即 $\forall \alpha, \beta \in [V_n(F):(\alpha,\beta)]$ 都有

$$(T(\alpha), T(\beta)) = (\alpha, \beta)$$

则称 T 为**内积空间上的正交变换**,当空间为欧式空间时称 T 为**正交变换**;若空间为酉空间,则称 T 为**酉变换**。正交(酉)变换在标准正交基下的矩阵称为正交(酉)矩阵。

定理 1.15 设 T 是内积空间上的线性变换,则下列命题等价:

- (1) T 是正交(酉)变换;
- (2) T 保持向量长度不变;
- (3) T 把空间 $V_n(F)$ 的标准正交基变换为标准正交基;
- (4) 正交变换关于任一标准正交基的矩阵 C 满足 $C^{\mathsf{T}}C = CC^{\mathsf{T}} = I$; 酉变换关于任一标准正交基的矩阵 U 满足 $U^{\mathcal{H}}U = UU^{\mathcal{H}} = I$ 。

定理 1.16 正交矩阵 C 和酉矩阵 U 有如下性质:

- (1) 正交矩阵的行列式为±1; 酉矩阵的行列式的模长为1;
- (2) $C^{-1} = C^{\mathrm{T}}; \ U^{-1} = U^{\mathcal{H}};$
- (3) 正交(酉) 矩阵的逆矩阵与乘积仍然是正交(酉)矩阵;
- (4) n 阶正交(酉)矩阵的列和行向量组是欧氏(酉)空间 \mathbb{R}^n (\mathbb{C}^n) 中的标准正交基。

Jordan 标准形介绍

2.1 线性变换的对角矩阵表示

定义 2.1 设 T 为线性空间 V_n 上的线性变换,如果存在 $\xi \in V_n(F)$ 和数 $\lambda \in F$, $\xi \neq 0$,使得 $T(\xi) = \lambda \xi$, 则称数 λ 为 T 的**特征值**, 向量 ξ 为线性变换 T 的对应于特征值 λ 的**特征向量**。

定理 2.1 设 $V_n(F)$ 上线性变换 T 在基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 下矩阵为 A, 则 A 的特征值 λ 就是 变换T的特征值;若X是A的特征向量,则 $\xi = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} X$ 就是T的特征向量。

定义 2.2 设 λ 为线性变换 T 的特征值, $\xi_1, \xi_2, \cdots, \xi_t$ 是 T 对应于 λ 的特征向量的极大线性无 关组,则称子空间 $V_{\lambda} = L\{\xi_1, \xi_2, \cdots, \xi_t\}$ 为 T 关于 λ 的**特征子空间**。

定理 2.2 设 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 是 $V_n(F)$ 上线性变换 T 的 s 个互异的特征值。 V_{λ_i} 是 λ_i 的特征子空 间, $i = 1, 2, \dots, s$, 则有

- $(1) V_{\lambda_i}$ 是 T 的不变子空间;
- (2) $\lambda_i \neq \lambda_j$ 时, $V_{\lambda_i} \cap V_{\lambda_j} = \{0\}$;
- (3) 若 λ_i 是 T 的 k_i (代数重数) 重特征值,则 $\dim V_{\lambda_i}$ (几何重数) $\leq k_i$, $i=1,2,\cdots,s$ 。

定理 2.3 线性变换 T 有对角矩阵表示的充分必要条件是 T 有 n 个线性无关的特征向量。

定理 2.4 线性变换 T 有对角矩阵表示的充分必要条件是:

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s} = V_n(F)$$

(1) 幂等矩阵: $A^2 = A$, A 相似于对角矩阵 $\begin{bmatrix} I_r \\ 0 \end{bmatrix}$, 其中r 为矩阵 A 的秩; (1) 乘方矩阵: $A^2 = I$, A 相似于对角矩阵 $\begin{bmatrix} I_s \\ -I_t \end{bmatrix}$, 其中s+t=n.

2.2 Jordan 矩阵介绍

定义 2.3 形如

$$J(\lambda) = \begin{bmatrix} \lambda & 1 & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda \end{bmatrix}$$
 (2.1)

的 r 阶方阵称为一个 r 阶 **Jordan 块**. 由若干个 **Jordan** 块 $J_i(\lambda_i)$ 构成的准对角矩阵

$$J = \begin{bmatrix} J_1(\lambda_1) & & & & \\ & J_2(\lambda_2) & & & \\ & & \ddots & & \\ & & & J_m(\lambda_m) \end{bmatrix}$$
(2.2)

称为 Jordan 矩阵。

定理 2.5 在复数域上,每个n 阶方阵 A 都相似于一个Jordan 矩阵,即存在可逆矩阵 P,使

$$P^{-1}AP = J_A = \begin{bmatrix} J_1(\lambda_1) & & & & \\ & J_2(\lambda_2) & & & \\ & & \ddots & & \\ & & & J_s(\lambda_s) \end{bmatrix}$$

其中

$$oldsymbol{J}_i(\lambda_i) = egin{bmatrix} oldsymbol{J}_{i1}(\lambda_i) & & & & & & \\ & oldsymbol{J}_{i2}(\lambda_i) & & & & & \\ & & \ddots & & & & \\ & & oldsymbol{J}_{it_i}(\lambda_i) \end{bmatrix} \in \mathbb{C}^{k_i \times k_i}$$

 $J_{ij}(\lambda_i)$ 为 n_i 阶 Jordan 块, $\sum_{j=1}^{t_i} n_j = k_i$ 。 $J_i(\lambda_i)$ 是 $k_i \times k_i$ 阶 Jordan 矩阵, $\sum_{i=1}^{s} k_i = n$ 。 若不计较 Jordan 块的排列次序,则每个方阵的 Jordan 标准形 J_A 是惟一的。

定理 2.6 (Jordan 化方法) 计算步骤归纳如下:

(1) 求 A 的特征多项式

$$|\lambda \mathbf{I} - \mathbf{A}| = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s}$$

 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 互异,从而 λ_i 为 A 的 k_i 重特征值,其代数重数 k_i 决定 Jordan 矩阵 $J_i(\lambda_i)$ 的阶数 为 k_i ;

- (2) 对 λ_i , 由 $(A \lambda_i I)X = 0$, 求 A 的线性无关的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_{t_i}$ 。 λ_i 的几何重数 $\dim V_{\lambda_i} = t_i$ 决定 $J_i(\lambda_i)$ 中有 t_i 个 Jordan 块;
- (3) 若 λ_i 的代数重数等于几何重数: $k_i \dim V_{\lambda_i}$, λ_i 对应的 Jordan 矩阵为 t_i 阶对角矩阵。若 $\dim V_{\lambda_i} = t_i < k_i$,则在 V_{λ_i} 中选择适当特征向量 α_i 。由

$$\begin{cases}
(A - \lambda_1 I)\alpha_i = 0 \\
(A - \lambda_1 I)\beta_2 = \alpha_i \\
(A - \lambda_1 I)\beta_3 = \beta_2 \\
\vdots \\
(A - \lambda_1 I)\beta_{n_j} = \beta_{n_j - 1}
\end{cases} (2.3)$$

求 Jordan 链 $\alpha_i, \beta_2, \cdots, \beta_{n_i}$,确定 $J_i(\lambda_i)$ 中 Jordan 块 $J_{ij}(\lambda_i)$ 的阶数 n_i ,从而得到了 J_A 的结构。 (4) 所有 Jordan 链构成矩阵 P,必有

$$P^{-1}AP = J_A$$

2.3 最小多项式

定义 2.4 设 $A \in F^{n \times n}$, $a_i \in F$, $g(\lambda) = a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda + a_0$ 是一个多项式,则称矩阵 $g(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 I$ 为 A 的矩阵多项式。

定理 2.7 设 $A \in F^{n \times n}$, g(A) 为 A 的矩阵多项式,则有如下结果:

- (1) 若 λ_0 是 A 的特征值,则 $g(\lambda_0)$ 是 g(A) 的特征值;
- (2) 如果 A 相似于 B: $P^{-1}AP = B$, 则 g(A) 相似于 g(B): $P^{-1}g(A)P = g(B)$;
- (3) 如果 A 为准对角矩阵,则 g(A) 也是准对角矩阵。而且若

则

$$g(\mathbf{A}) = \begin{bmatrix} g(\mathbf{A}_1) & & & \\ & g(\mathbf{A}_2) & & \\ & & \ddots & \\ & & g(\mathbf{A}_k) \end{bmatrix}$$

定理 2.8 (g(A) 计算)

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} \mathbf{J}_{1}(\lambda_{1}) & & & & \\ & \mathbf{J}_{2}(\lambda_{2}) & & & \\ & & \ddots & & \\ & & \mathbf{J}_{k}(\lambda_{k}) \end{bmatrix} \mathbf{P}^{-1} \rightarrow g(\mathbf{A}) = \mathbf{P} \begin{bmatrix} g(\mathbf{J}_{1}) & & & & \\ & g(\mathbf{J}_{2}) & & & \\ & & \ddots & & \\ & & & g(\mathbf{J}_{k}) \end{bmatrix} \mathbf{P}^{-1}$$

$$J(\lambda) = \begin{bmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix} \rightarrow g(J) = \begin{bmatrix} g(\lambda) & g'(\lambda) & \frac{g(\lambda)}{2!} & \cdots & \frac{g^{(r-1)}(\lambda)}{(r-1)!} \\ & g(\lambda) & g'(\lambda) & \ddots & \vdots \\ & & g(\lambda) & \ddots & \frac{g''(\lambda)}{2!} \\ & & & \ddots & g'(\lambda) \\ & & & & g(\lambda) \end{bmatrix}$$

定理 2.9 (Cayley-Hamilton) 对 n 阶方阵 A,若存在多项式 $g(\lambda)$,使矩阵 g(A) = 0,则称 $g(\lambda)$ 为矩阵 A 的化零多项式。设 $A \in F^{n \times n}$,则方阵 A 的特征多项式就是 A 的化零多项式,即若

$$f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

则有 f(A) = 0。

定义 2.5 设 T 是线性空间 $V_n(T)$ 上的线性变换, $m_T(\lambda)$ 是一个关于 λ 的多项式,如果 $m_T(\lambda)$ 是 T 的最小多项式,则满足

- $(1) m_T(\lambda)$ 最高次项系数为 1;
- (2) $m_T(\lambda)$ 是 T 的一个化零多项式, 即 $m_T(T) = 0$;
- (3) $m_T(\lambda)$ 是 T 的化零多项式中次数最低的多项式。

定理 2.10 T 的特征多项式 $f(\lambda)$ 与最小多项式 $m_T(\lambda)$, 即若

$$f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}$$

则有

$$m_T(\lambda) = (\lambda - \lambda_1)^{t_1} (\lambda - \lambda_2)^{t_2} \cdots (\lambda - \lambda_s)^{t_s}$$
(2.4)

其中

$$1 \le t_i \le r_i, \ i = 1, 2, \dots, s$$

定理 2.11 设变换 T 的特征多项式为

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}$$

又 T 的 Jordan 标准形中关于特征值 λ_i 的 Jordan 块的最高阶数为 $\overline{n_i}$,则 T 的最小多项式

$$m_T(\lambda) = (\lambda - \lambda_1)^{\overline{n_1}} (\lambda - \lambda_2)^{\overline{n_2}} \cdots (\lambda - \lambda_s)^{\overline{n_s}}$$

定理 2.12 线性变换 T 可对角化的充分必要条件是 T 的最小多项式 $m_T(\lambda)$ 是一次因子的乘积,即

$$m_T(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_s)$$

3 矩阵的分解

3.1 常见的矩阵标准型与分解

定义 3.1 (矩阵标准型) 常见的几种标准型:

(1) 等价标准型:对于 $A \in \mathbb{C}^{m \times n}$,存在可逆矩阵 $P \in \mathbb{C}^{m \times m}$, $Q \in \mathbb{C}^{n \times n}$,使得

$$A = P \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q$$

(2) 相似标准型:对于 $\mathbf{A} \in \mathbb{C}^{n \times n}$,存在可逆矩阵 $\mathbf{P} \in \mathbb{C}^{n \times n}$,使得

$$A = P \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} P^{-1} \vec{\otimes} A = P J_A P^{-1}$$

(3) 正交相似: 一个实对称矩阵 $A(A^{T}=A)$ 一定可正交相似于对角形: 即存在正交矩阵 C 使

$$C^{\mathrm{T}}AC = C^{-1}AC = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

(4) 酉相似: 一个 Hermite 矩阵 $A(A^{\mathcal{H}}=A)$ 一定可酉相似于对角形: 即存在酉矩阵 U, 使

$$oldsymbol{U}^{\mathcal{H}} oldsymbol{A} oldsymbol{U} = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

定义 3.2 (三角分解) 设 $A \in F^{n \times n}$

- (1) 若 L, $U \in F^{n \times n}$ 分别是下三角矩阵和上三角矩阵,A = LU,则称 A 可作 LU 分解;对于增广矩阵 $\left[\begin{array}{c|c} A & I_n \end{array} \right]$,只用第 i 行乘数 k 加到第 j 行 (i < j) 型初等变换将 A 化为上三角形 U,可以得到 $\left[\begin{array}{c|c} U & P \end{array} \right]$,可知 PA = U,于是有 $L = P^{-1}$,则 A = LU。
- (2) 若 L, $V \in F^{n \times n}$ 分别是对角元素为 1 的下三角矩阵和上三角矩阵,D 为对角矩阵。A = LDV,则称 A 可作 LDV 分解;通过 LU 分解得到 A = LU,通过每行除以对应的对角线上元素的值,将 U 的对角线元素化为 1,得到 U = DV,则 A = LDV。

定义 3.3 (满秩分解) 设 $A \in F^{m \times n}$, rank(A) = r, 若存在秩为 r 的矩阵 $B \in F^{m \times r}$, $C \in F^{r \times n}$, 使

$$A = BC \tag{3.1}$$

则称 (3.1) 式为矩阵 A 的满秩分解,对任何非零矩阵 $A \in F^{m \times n}$,都存在满秩分解。

定理 3.1 (满秩分解求法) 设 $A \in F^{m \times n}$, $\operatorname{rank}(A) = r$, 而且 A 的前 r 列线性无关,则它 们是 A 的列向量的极大无关组 $\{\alpha_1,\alpha_2,\cdots,\alpha_r\}$,设 $A_1 = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_r \end{bmatrix}$,则 $\operatorname{rank}(A_1) = r$, $A_1 \in F^{m \times r}$ 。又 A 的后 n-r 列 $\{\alpha_{r+1},\alpha_{r+2},\cdots,\alpha_n\}$ 可表示为列向量极大无关组的线性组合,设 $A_2 = \begin{bmatrix} \alpha_{r+1} & \alpha_{r+2} & \cdots & \alpha_n \end{bmatrix}$,则 $A_2 = A_1 S$,其中 $S_{r \times (n-r)} = \begin{bmatrix} X_{r+1} & X_{r+2} & \cdots & X_n \end{bmatrix}$, X_j 满足 $\alpha_j = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_r \end{bmatrix} X_j$, $j = r+1, r+2, \cdots, n$ 。因此 $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} = \begin{bmatrix} A_1 & A_1 S \end{bmatrix}$,即 $A = A_1 \begin{bmatrix} I_r & S \end{bmatrix}$,所以 $B = A_1$, $C = \begin{bmatrix} I_r & S \end{bmatrix}$ 即为满秩分解。

- (1) 用行初等变换把 A 化为 Hermite 标准形;
- (2) 依 Hermite 标准形中向量 e_i 所在的列的位置第 j_i 列,相应地取出 A 的第 j_i 列 α_{j_i} ,得到 A 的列向量极大无关组 $\{\alpha_{j_1},\alpha_{j_2},\cdots,\alpha_{j_r}\}$, $B=\begin{bmatrix}\alpha_{j_1} & \alpha_{j_2} & \cdots & \alpha_{j_r}\end{bmatrix}$;
 - (3) A 的 Hermite 标准形中非零行构成矩阵 C。得到 A 的满秩分解: A = BC。

定义 3.4 (可对角化矩阵的谱分解) 对方阵 $A \in F^{n \times n}$,设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 为矩阵 A 的 n 个特征值。A 互异的特征值集合 $\{\lambda_1, \lambda_2, \cdots, \lambda_s\}$ 称为矩阵 A 的谱,其中 λ_i 为 A 的 r_i 重特征值($i=1,2,\cdots,s$), $\sum_{i=1}^s r_i = n$ 。当 A 可相似于对角形时,则有可逆矩阵 P,使

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_1 & & & \\ & & & \lambda_2 & & & \\ & & & \ddots & & & \\ & & & & \lambda_2 & & \\ & & & & & \ddots & \\ & & & & & \lambda_s & & \\ & & & & & & \lambda_s \end{bmatrix} \mathbf{P}^{-1}$$
 (3.2)

首先分解对角矩阵

$$= \lambda_{1} \begin{bmatrix} I_{r_{1}} & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 0 & & & \\ & I_{r_{2}} & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} + \cdots + \lambda_{s} \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & \ddots & \\ & & & I_{r_{s}} \end{bmatrix}$$

$$= \sum_{i=1}^{s} \lambda_{i} \begin{bmatrix} \mathbf{0} & & & & \\ & \ddots & & & \\ & & \mathbf{I}_{r_{i}} & & \\ & & & \ddots & \\ & & & \mathbf{0} \end{bmatrix}$$

$$\diamondsuit$$
 $oldsymbol{Q}_1 = egin{bmatrix} oldsymbol{I}_{r_1} & & & & & & \\ & oldsymbol{0} & & & & & \\ & & & \ddots & & \\ & & & oldsymbol{0} \end{bmatrix}, \ oldsymbol{Q}_2 = egin{bmatrix} oldsymbol{0} & & & & & \\ & oldsymbol{I}_{r_2} & & & & \\ & & & \ddots & & \\ & & & oldsymbol{0} \end{bmatrix}, \ oldsymbol{Q}_s = egin{bmatrix} oldsymbol{0} & & & & \\ & oldsymbol{0} & & & \\ & & & \ddots & \\ & & & oldsymbol{I}_{r_s} \end{bmatrix}, \ oldsymbol{M} oldsymbol{Q}_i \ \mbox{满足以下性质:}$

$$(1) \sum_{i=1}^{3} \boldsymbol{Q}_{i} = \boldsymbol{I}_{n};$$

(2)
$$Q_i^2 = Q_i, i = 1, 2, \dots, s;$$

(3)
$$\mathbf{Q}_i \cdot \mathbf{Q}_j = 0, \ i \neq j_\circ$$

带入 (3.4) 式,则有:

$$\boldsymbol{A} = \boldsymbol{P}(\sum_{i=1}^{s} \lambda_i \boldsymbol{Q}_i) \boldsymbol{P}^{-1} = \sum_{i=1}^{s} \lambda_i (\boldsymbol{P} \boldsymbol{Q}_i \boldsymbol{P}^{-1})$$

令
$$P_i = PQ_iP^{-1}$$
,有 $A = \sum_{i=1}^{s} \lambda_i P_i$,并且 P_i 具有以下性质:

$$(1) \sum_{i=1}^{s} \boldsymbol{P}_i = \boldsymbol{I}_n;$$

(2) $P_i^2 = P_i$, $i = 1, 2, \dots, s$;

(3)
$$P_i \cdot P_j = 0$$
, $i \neq j$.

定理 3.2 方阵 $P \in F^{n \times n}$,若满足 $P^2 = P$,则称 P 为幂等矩阵。幂等矩阵 P 有如下性质:

- $(1) P^{\mathcal{H}}$ 和 (I P) 仍为幂等矩阵;
- (2) P 的特征值为 1 或者是 0, 而且 P 可相似于对角矩阵;
- (3) $F^n = N(\mathbf{P}) \oplus R(\mathbf{P})_{\circ}$

定理 3.3 (可对角化矩阵的谱分解) 设 $A \in \mathbb{C}^{n \times n}$, A 的谱为 $\{\lambda_1, \lambda_2, \cdots, \lambda_s\}$, 则 A 可对角化 的充分必要条件是 A 有如下分解式

$$\boldsymbol{A} = \sum_{i=1}^{s} \lambda_i \boldsymbol{P}_i$$

其中方阵 $P_i \in \mathbb{C}^{n \times n}$, 满足如下条件:

- (1) $P_i^2 = P_i$, $i = 1, 2, \dots, s$;
- $(2) \mathbf{P}_i \cdot \mathbf{P}_j = 0, \ i \neq j;$

$$(3) \sum_{i=1}^{s} \mathbf{P}_i = \mathbf{I}_{n}.$$

定理 3.4 设 $A \in \mathbb{C}^{n \times n}$ 是半正定的 Hermite 矩阵, $\operatorname{rank}(A) = k$, 则 A 可被分解为下列矩阵的 和

$$A = v_1 v_1^{\mathcal{H}} + v_2 v_2^{\mathcal{H}} + \dots + v_k v_k^{\mathcal{H}}$$

其中 $v_i \in F^n$, $\{v_1, v_2, \dots, v_k\}$ 是空间 F^n 中非零的正交向量组。

Schur 分解与正规矩阵 3.2

定理 3.5 (UR 分解) 设 $A \in \mathbb{C}^{n \times n}$ 为可逆矩阵,则存在酉矩阵 $U \in \mathbb{C}^{n \times n}$ 和主对角线上元素皆 为正的上三角矩阵

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix}, \quad r_{ii} > 0; \quad i = 1, 2, \cdots, n$$

使

$$A = UR$$

$$m{A} = m{U}m{R}$$

其中 $m{U}$ 为 $m{A}$ 的列向量组标准正交化 $\left[m{arepsilon}_1 \ m{arepsilon}_2 \ \cdots \ m{arepsilon}_n
ight], \ m{R} = egin{bmatrix} \|m{eta}_1\| & (m{lpha}_2, m{arepsilon}_1) & \cdots & (m{lpha}_n, m{arepsilon}_1) \\ & \|m{eta}_2\| & \cdots & (m{lpha}_n, m{arepsilon}_2) \\ & & \ddots & \vdots \\ & & & \|m{eta}_n\| \end{array}$

定理 3.6 (QR 分解) 设 $A \in \mathbb{C}^{m \times k}$ 是一个列满秩 $(m \geq k)$ 的矩阵,即 $\mathrm{rank}(A) = k$,则 A 可被分解为

$$A = QR$$

其中 $Q \in \mathbb{C}^{m \times k}$, Q 的列向量是A 的列空间的标准正交基, $R \in \mathbb{C}^{k \times k}$ 是一个可逆的上三角矩阵。

定理 3.7 (Schur 分解) 设 $A \in \mathbb{C}^{n \times n}$,则存在酉矩阵 U 和上三角矩阵 T,使得

$$\boldsymbol{U}^{\mathcal{H}}\boldsymbol{A}\boldsymbol{U} = \boldsymbol{T} = \begin{bmatrix} \lambda_1 & t_{12} & \cdots & t_{1n} \\ & \lambda_2 & \cdots & t_{2n} \\ & & \ddots & \vdots \\ & & & \lambda_n \end{bmatrix}$$

其中 λ_i 为矩阵A特征值, $i=1,2,\dots,n$ 。

定义 3.5 若矩阵 $A \in \mathbb{C}^{n \times n}$ 满足 $A^{\mathcal{H}}A = AA^{\mathcal{H}}$,则称 A 是一个正规矩阵。常见的正规矩阵 有:

- (1) 对角矩阵;
- (2) 对称与反对称矩阵: $A^T = A$, $A^T = -A$;
- (3) Hermite 与反 Hermite 矩阵: $A^{\mathcal{H}} = A$, $A^{\mathcal{H}} = -A$;
- (4) 正交矩阵与酉矩阵: $A^TA = AA^T = I_n$, $A^HA = AA^H = I_n$.

定理 3.8 $A \in \mathbb{C}^{n \times n}$ 是正规矩阵的充分必要条件是 A 酉相似于对角矩阵,即存在酉矩阵 $U \in \mathbb{C}^{n \times n}$,使

$$U^{\mathcal{H}}AU = T = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
(3.3)

推论: $\mathbf{A} \in \mathbb{C}^{n \times n}$ 是正规矩阵的充分必要条件是 \mathbf{A} 有 n 个线性无关的特征向量构成空间 \mathbb{C}^n 的标准正交基。

定理 3.9 (正规矩阵的谱分解) 设 $A \in \mathbb{C}^{n \times n}$, A 的谱为 $\{\lambda_1, \lambda_2, \cdots, \lambda_s\}$, $s \leq n$, 则 A 是正规矩阵的充分必要条件是 A 有如下谱分解

$$\boldsymbol{A} = \sum_{i=1}^{s} \lambda_i \boldsymbol{P}_i$$

其中方阵 $P_i \in \mathbb{C}^{n \times n}$, 满足如下条件:

- (1) $P_i^2 = P_i, P_i^{\mathcal{H}} = P_i, i = 1, 2, \dots, s;$
- (2) $P_i \cdot P_j = 0, i \neq j$;

$$(3) \sum_{i=1}^{s} \mathbf{P}_i = \mathbf{I}_{n \, \circ}$$

3.3 矩阵的奇异值分解

定理 3.10 设 $A \in \mathbb{C}^{m \times n}$, 则矩阵 $A^{\mathcal{H}}A \in \mathbb{C}^{n \times n}$ 和矩阵 $AA^{\mathcal{H}} \in \mathbb{C}^{m \times m}$ 具有如下性质:

- (1) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\mathcal{H}}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{\mathcal{H}}) = r$
- (2) $A^{\mathcal{H}}A$ 和 $AA^{\mathcal{H}}$ 的非零特征值相等。
- (3) $A^{\mathcal{H}}A$ 与 $AA^{\mathcal{H}}$ 都是半正定矩阵,当 $\operatorname{rank}(A)=n$ 时, $A^{\mathcal{H}}A$ 为正定矩阵,当 $\operatorname{rank}(A)=m$ 时, $AA^{\mathcal{H}}$ 为正定矩阵。

定义 3.6 对于 $A \in \mathbb{C}^{m \times n}$, rank(A) = r, 矩阵 $A^{\mathcal{H}}A$ 的特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$, $\lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0$, 称正数 $\sigma_i = \sqrt{\lambda_i}$ 为矩阵 A 的奇异值,简称 A 的奇值。

定理 3.11 矩阵 A 的奇异值具有如下性质:

- (1) $\mathbf{A} \in \mathbb{C}^{n \times n}$ 为正规矩阵时, \mathbf{A} 的奇异值为 \mathbf{A} 的特征值的模 $|\lambda_i|$, $i = 1, 2, \dots, r$;
- (2) $A \in \mathbb{C}^{n \times n}$ 为正定的 Hermite 矩阵时, A 的奇异值等于 A 的特征值;
- (3) 若存在酉矩阵 $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$, 矩阵 $B \in \mathbb{C}^{m \times n}$, 使 UAV = B , 则称 $A \cap B$ 酉等价,酉等价的矩阵 $A \cap B$ 有相同的奇异值。

定理 3.12 设 $A \in \mathbb{C}^{m \times n}$, $\operatorname{rank}(A) = r$, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ 是矩阵 A 的奇异值,则存在 酉矩阵 $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$, 分块矩阵 $\Sigma = \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{m \times n}$, 使

$$A = U \begin{bmatrix} \Lambda & 0 \\ 0 & 0 \end{bmatrix} V^{\mathcal{H}}$$

其中
$$\Delta = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r \end{bmatrix}$$

奇异值分解的求法

- (1) 由特征多项式 $|\lambda \mathbf{I} \mathbf{A}^{\mathcal{H}} \mathbf{A}| = \mathbf{0}$ 求得特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$, $\lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0$,以及每个特征值对应的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$;
- (2) 对特征向量进行施密特正交化和单位化,得到正交向量组 v_1, v_2, \cdots, v_n ,则 $V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$;
- (3) 对于奇异值 $\sigma_1, \sigma_2, \cdots, \sigma_r$,有 $\mu_i = \frac{1}{\sigma_i} A v_i$,则得到 \mathbb{C}^m 中标准正交的向量组 $\{\mu_1, \mu_2, \cdots, \mu_r\}$,把它扩充为 \mathbb{C}^m 中的标准正交基 $\{\mu_1, \mu_2, \cdots, \mu_r, \mu_{r+1}, \cdots \mu_m\}$,则 $U = \begin{bmatrix} \mu_1 & \mu_2 & \cdots & \mu_r & \mu_{r+1} & \cdots & \mu_m \end{bmatrix}$ 。

定理 3.13 设 $A \in \mathbb{C}^{m \times n}$, A 的奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, 令 $\mu_1, \mu_2, \cdots, \mu_m$ 是相应于奇异值的左奇异向量, $\upsilon_1, \upsilon_2, \cdots, \upsilon_n$ 是相应于奇异值的右奇异向量,则

$$A = \sigma_1 \mu_1 v_1^{\mathcal{H}} + \sigma_2 \mu_2 v_2^{\mathcal{H}} + \dots + \sigma_r \mu_r v_r^{\mathcal{H}}$$
(3.4)

定理 3.14 (极分解) 设 $A \in \mathbb{C}^{n \times n}$, rank(A) = r, 则 A 可以被分解为

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathcal{H}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathcal{H}}\boldsymbol{U}\boldsymbol{V}^{\mathcal{H}} = (\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathcal{H}})(\boldsymbol{U}\boldsymbol{V}^{\mathcal{H}}) = \boldsymbol{P}\boldsymbol{Q}$$

其中P是秩为r的 $n \times n$ 阶半正定矩阵,Q是 $n \times n$ 阶的酉矩阵。特别地,若r = n,则P为正定矩阵。

4 矩阵的广义逆

4.1 矩阵的左逆与右逆

定义 4.1 (矩阵的左逆) 设 $A \in \mathbb{C}^{m \times n}$, 若存在矩阵 $B \in \mathbb{C}^{n \times m}$, 使得

$$BA = I_n$$

则称 A 是左可逆的,称 B 为 A 的一个左逆矩阵,记为 A_I^{-1} ,且下列条件是等价的。

- (1) A 是左可逆的;
- (2) A 的零空间 $N(A) = \{0\};$
- (3) $m \ge n$, rank(A) = n, 即 A 是列满秩的;
- (4) $A^{\mathcal{H}}A$ 是可逆的, $(A^{\mathcal{H}}A)^{-1}A^{\mathcal{H}}$ 是 A 的一个左逆矩阵。

定义 4.2 (矩阵的右逆) 设 $A \in \mathbb{C}^{m \times n}$, 若存在矩阵 $C \in \mathbb{C}^{n \times m}$, 使得

$$AC = I_m$$

则称 A 是右可逆的,称 C 为 A 的一个右逆矩阵,记为 A_R^{-1} ,且下列条件是等价的。

- (1) A 是右可逆的;
- (2) A 的列空间 $R(A) = C^m$;
- (3) $m \le n$, rank(A) = m, 即 A 是行满秩的;
- (4) $AA^{\mathcal{H}}$ 是可逆的, $A^{\mathcal{H}}(AA^{\mathcal{H}})^{-1}$ 是 A 的一个右逆矩阵。

定理 4.1 设 $A \in \mathbb{C}^{m \times n}$ 是左可逆的, $B \in \mathbb{C}^{n \times m}$ 是 A 的一个左逆矩阵,则线性方程组 AX = b 有形如 X = Bb 解的充分必要条件是

$$(I_m - AB)b = 0$$

若上式成立,则方程组有惟一解

$$X = (A^{\mathcal{H}}A)^{-1}A^{\mathcal{H}}b$$

定理 4.2 设 $A \in \mathbb{C}^{m \times n}$ 是右可逆的,则线性方程组 AX = b 对任何 $b \in C^m$ 都有解,且对 A 的任意一个右逆矩阵 A_R^{-1} , $X = A_R^{-1}b$ 是其解。特别地, $X = A^{\mathcal{H}} \left(AA^{\mathcal{H}}\right)^{-1}b$ 是方程组 AX = b 的一个解。

4.2 广义逆矩阵

定义 4.3 (加号广义逆) 设 $A \in \mathbb{C}^{m \times n}$, 若存在矩阵 $G \in \mathbb{C}^{n \times m}$, 使得

- (1) AGA = A;
- (2) GAG = G;

- (3) $(\mathbf{A}\mathbf{G})^{\mathcal{H}} = \mathbf{A}\mathbf{G}$;
- $(4) (GA)^{\mathcal{H}} = GA_{\circ}$

则称 G 为 A 的 Moore-Penrose 广义逆或加号广义逆,简称为 A 的 M-P 逆。A 的任意 M-P 逆记为 A⁺。

定理 4.3 若矩阵 $A \in \mathbb{C}^{m \times n}$ 存在 M-P 广义逆,则 A 的 M-P 逆是惟一的。

定理 4.4 任意矩阵 $A \in \mathbb{C}^{m \times n}$ 都存在 M - P 广义逆 A^+ 。设 $\operatorname{rank}(A) = r$,A 的一个满秩分解为

$$A = BC$$
, $B \in \mathbb{C}^{m \times r}$, $C \in \mathbb{C}^{r \times n}$, $\operatorname{rank}(B) = \operatorname{rank}(C) = r$

$$\mathbb{N} A^+ = C_R^{-1} B_L^{-1} = C^{\mathcal{H}} \left(C C^{\mathcal{H}} \right)^{-1} \left(B^{\mathcal{H}} B \right)^{-1} B^{\mathcal{H}}$$

定理 4.5 任意矩阵 $A \in \mathbb{C}^{m \times n}$, rank(A) = r, A 的一个奇异值分解为

$$oldsymbol{A} = oldsymbol{U} egin{bmatrix} oldsymbol{\Delta} & 0 \ 0 & 0 \end{bmatrix} oldsymbol{V}^{\mathbb{H}}$$

则 $A^+ = V \begin{bmatrix} \Delta^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^{\mathbb{H}}$, 其中 Δ 为对角线由 A 的正奇异值所构成的对角矩阵, $\Delta \in \mathbb{C}^{r \times r}$ 。

定理 4.6 设 $A \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}^n$, 则 A^+ 满足以下性质:

- $(1) (A^+)^+ = A;$
- $(2) \left(\mathbf{A}^{+} \right)^{\mathcal{H}} = \left(\mathbf{A}^{\mathcal{H}} \right)^{+};$

(3)
$$(\lambda \mathbf{A})^+ = \lambda^+ \mathbf{A}^+, \quad \not\perp \psi \quad \lambda^+ = \begin{cases} \frac{1}{\lambda}, & \lambda \neq 0 \\ 0, & \lambda = 0 \end{cases}$$

- (4) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是列满秩的,则 $\mathbf{A}^+ = \mathbf{A}_L^{-1} = \left(\mathbf{A}^{\mathcal{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathcal{H}}$;
- (5) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是行满秩的,则 $\mathbf{A}^+ = \mathbf{A}_R^{-1} = \mathbf{A}^{\mathcal{H}} \left(\mathbf{A} \mathbf{A}^{\mathcal{H}} \right)^{-1}$;
- (6) 若 A 有满秩分解 A = BC, 则 $A^+ = C^+B^+ = C_R^{-1}B_L^{-1} = C^{\mathcal{H}}\left(CC^{\mathcal{H}}\right)^{-1}\left(B^{\mathcal{H}}B\right)^{-1}B^{\mathcal{H}}$;
- (7) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^+);$
- (8) $\operatorname{rank}(\mathbf{A}^{+}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{+}) = \operatorname{rank}(\mathbf{A})_{\circ}$

4.3 投影变换

定义 4.4 设 $\mathbb{C}^n = L \oplus M$, x = y + z, $y \in L$, $z \in M$ 。如果线性变换 $\sigma : \mathbb{C}^n \to \mathbb{C}^n$ 满足 $\sigma(x) = y$, 则称 σ 是从 \mathbb{C}^n 沿子空间 M 到子空间 L 上的投影变换,投影变换在 \mathbb{C}^n 空间的一组 基下的矩阵称为投影矩阵。

投影变换 σ 把 \mathbb{C}^n 映射成子空间 L,故子空间 L 称为投影子空间,显然它就是 σ 的像空间 $R(\sigma)$,子空间 M 是投影变换的核空间 $N(\sigma)$,这时 \mathbb{C}^n 空间的直和分解为

$$\mathbb{C}^n = \mathbf{R}(\sigma) \oplus \mathbf{N}(\sigma)$$

定理 4.7 \mathbb{C}^n 空间上的线性变换 σ 是投影变换的充分必要条件是 σ 是幂等变换,即 $\sigma^2 = \sigma$ 。

推论: \mathbb{C}^n 空间上的线性变换 σ 是投影变换的充分必要条件是 σ 关于某组基下的矩阵 A 为 幂等矩阵,即 $A^2 = A$ 。

求法: (1) 在子空间 L 和 M 中分别取定基底 $\{y_1, y_2, \dots, y_r\}$ 和 $\{z_{r+1}, z_{r+2}, \dots, z_n\}$, 得到矩 阵 $B = \begin{vmatrix} y_1 & y_2 & \cdots & y_r \end{vmatrix}$ 和矩阵 $C = \begin{vmatrix} z_{r+1} & z_{r+2} & \cdots & z_n \end{vmatrix}$

(2) 于是投影矩阵
$$A = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B & C \end{bmatrix}^{-1}$$

定义 4.5 设 σ 是 \mathbb{C}^n 空间的投影变换, $\mathbb{C}^n = R(\sigma) \oplus N(\sigma)$ 。如果 $R(\sigma)$ 的正交补子空间 $\mathbf{R}(\sigma)^{\perp} = \mathbf{N}(\sigma)$,则称 $\sigma \in \mathbb{C}^n$ 空间的**正交投影变换**。正交投影变换在 \mathbb{C}^n 空间的一组**标准正交** 基下的矩阵称为正交投影矩阵。

定理 4.8 \mathbb{C}^n 空间上的线性变换 σ 是正交投影变换的充分必要条件是 σ 关干某组基下的矩阵 A 为幂等的 Hermite 矩阵, 即 $A^2 = A$, $A^H = A$

求法:
$$A = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B & C \end{bmatrix}^{-1} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B & C \end{bmatrix}^{-1} \begin{bmatrix} B^{\mathcal{H}} \\ C^{\mathcal{H}} \end{bmatrix}^{-1} \begin{bmatrix} B^{\mathcal{H}} \\ C^{\mathcal{H}} \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & B^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & B^{\mathcal{H}} & C \\ C^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} & C \end{bmatrix}^{-1} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} & C \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \end{bmatrix} = \begin{bmatrix} B & 0 \end{bmatrix} \begin{bmatrix} B^{\mathcal{H}} & B^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \\ C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} & C^{\mathcal{H}} \end{bmatrix}$$

定理 4.9 设 $A \in \mathbb{C}^{m \times n}$. 则

(1)
$$(A^+A)^2 = A^+A$$
, $(A^+A)^{\mathcal{H}} = A^+A$

(2)
$$\begin{cases} \mathbb{C}^n = \mathbf{R}(\mathbf{A}^+) \oplus \mathbf{N}(\mathbf{A}) \\ \mathbf{R}(\mathbf{A}^+)^{\perp} = \mathbf{N}(\mathbf{A}) \end{cases}$$

(3)
$$(AA^{+})^{2} = AA^{+}, (AA^{+})^{\mathcal{H}} = AA^{+}$$

(3)
$$(\mathbf{A}\mathbf{A}^{+})^{2} = \mathbf{A}\mathbf{A}^{+}, \ (\mathbf{A}\mathbf{A}^{+})^{\mathcal{H}} = \mathbf{A}\mathbf{A}^{+}$$

(4)
$$\begin{cases} \mathbb{C}^{m} = \mathbf{R}(\mathbf{A}) \oplus \mathbf{N}(\mathbf{A}^{+}) \\ \mathbf{R}(\mathbf{A})^{\perp} = \mathbf{N}(\mathbf{A}^{+}) \end{cases}$$

定理 4.10 设 $W \in \mathbb{C}^n$ 的子空间, $x_0 \in \mathbb{C}^n$, $x_0 \notin W$ 。如果 $\sigma \in \mathbb{C}^n$ 空间向 W 的正交投影变 换,则 $\sigma(x_0)$ 是 W 中离 x_0 最近的向量,即对欧几里得范数 $\|\cdot\|$,都有

$$\|\sigma(x_0) - x_0\| \le \|y - x_0\|, \ \forall y \in W$$

4.4 最佳的最小二乘解

定理 4.11 $\mathbb{A} \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 $x_0 = A^+b$ 是线性方程组 Ax = b 的最佳的最小二乘解。

定理 4.12 $\mathbb{A} \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$, 则 $X_0 = A^+B$ 是线性方程组 AX = B 的最佳的最小二乘 解。

5 矩阵分析

5.1 向量范数

定义 5.1 设 V 是数域 F 上的线性空间,且对于 V 的任一个向量 x,对应一个非负实数 ||x||,满足以下条件:

- (1) 正定性: $||x|| \ge 0$, ||x|| = 0 当且仅当 x = 0;
- (2) 齐次性: $||ax|| = |a| \cdot ||x||$, $a \in F$;
- (3) 三角不等式: 对任意 $x, y \in V$, 都有 $||x+y|| \le ||x|| + ||y||$ 。

则称 ||x|| 为向量 x 的**范数**, $[V; ||\cdot||]$ 为赋**范空间**。

定理 5.1 (重要的向量范数) 在 n 维酉空间 \mathbb{C}^n 中,复向量 $x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$,有

- (1) 2-范数: $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$;
- (2) 1-范数: $||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$;
- $(3) \infty-范数: \|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|;$

(4)
$$p - \tilde{n}$$
数: $||x||_p = \sqrt[p]{|x_1|^p + |x_2|^p + \dots + |x_n|^p} = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.

5.2 矩阵范数

定义 5.2 在 $F^{n\times n}$ 上定义一个非负实值函数,使得对任意矩阵 $A \in F^{n\times n}$ 是数域 F,对应一个非负实数 $\|A\|$,满足以下四个条件:

- (1) 正定性: $||A|| \ge 0$, ||A|| = 0 当且仅当 A = 0;
- (2) 齐次性: $||aA|| = |a| \cdot ||A||$, $a \in F$;
- (3) 三角不等式: 对任意 A, $B \in F^{n \times n}$, 都有 $||A + B|| \le ||A|| + ||B||$;
- (4) 相容性: 对任意 A, $B \in F^{n \times n}$, 都有 $\|AB\| \le \|A\| \cdot \|B\|$ 。

则称 ||A|| 为矩阵A 的范数。

定义 5.3 设 ||x|| 是向量范数,||A|| 是矩阵范数,若

$$||Ax|| \leq ||A|| \cdot ||x||$$

则称矩阵范数 ||A|| 与向量范 ||x|| 数是相容的。

定理 5.2 设 ||x|| 是向量范数,则

$$\|A\| = \max_{x \neq 0} \left\{ \frac{\|Ax\|}{\|x\|} \right\}$$

是与向量范数 ||x|| 相容的矩阵范数。称其为由向量范数 ||x|| 所诱导的诱导范数。

定理 5.3 (重要的矩阵范数和诱导范数) 设 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$,A 的奇异值为 $\sigma_1, \sigma_2, \cdots, \sigma_r$,由 $\|x\|_p$ 所诱导的矩阵范数称为矩阵 p-范数。常用的 p-范数为 $\|A\|_1$, $\|A\|_2$ 与 $\|A\|_\infty$,则有

(2) 列和范数: $\|A\|_1 = \max_j \left(\sum_{i=1}^n |a_{ij}| \right);$

(3) 谱范数: $\|A\|_2 = \sqrt{\lambda_1} = \sigma_1$, $\lambda_1 \rightarrow A^{\mathcal{H}} A$ 的最大特征值;

(4) 行和范数:
$$\|\mathbf{A}\|_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$
.

5.3 向量序列和矩阵序列的极限

定义 5.4 设 $x^{(k)} = \begin{bmatrix} x_1^{(k)} & x_2^{(k)} & \cdots & x_n^{(k)} \end{bmatrix}^T$, $k = 1, 2, \cdots$ 是 \mathbb{C}^n 空间的一个向量序列,如果当 $k \to +\infty$ 时,它的 n 个分量数列都收敛,即

$$\lim_{k \to +\infty} x_i^{(k)} = a_i, \ i = 1, 2, \dots, n$$

则称向量序列 $\{x^{(k)}\}$ 是按分量收敛的。向量 $\alpha = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^T$ 是它的极限,记为 $\lim_{k \to +\infty} x^{(k)} = \alpha$ 或 $x^{(k)} \to \alpha$ 。 如果至少有一个分量数列是发散的,则称向量序列是发散的。

定义 5.5 设 $\{x^{(k)}\}$ 是 \mathbb{C}^n 空间的一个向量序列, $\|x\|$ 是 \mathbb{C}^n 空间的一个向量范数。如果存在向量 $\alpha \in \mathbb{C}^n$,当 $k \to +\infty$ 时, $\|x^{(k)} - \alpha\| \to 0$,则称向量序列**按向量范数收敛于** α 。

定理 5.4 设 $\{x^{(k)}\}$ 是 \mathbb{C}^n 空间的一个向量序列,它按分量收敛的充分必要条件是它按 \mathbb{C}^n 空间的任意一个向量范数收敛。

定义 5.6 设 $A^{(k)} = \left(a_{ij}^{(k)}\right) \in \mathbb{C}^{n \times n}$, $\left\{A^{(k)}\right\}$ 一个矩阵序列,如果当 $k \to +\infty$ 时,它的 n^2 个数列 $\left\{a_{ij}^{(k)}\right\}$ 都收敛,即

$$\lim_{k \to +\infty} a_{ij}^{(k)} = a_{ij}, \ i, j = 1, 2, \dots, n$$

则称矩阵序列 $\{A^{(k)}\}$ 按元素数列收敛。向量 $A=(a_{ij})\in\mathbb{C}^{n\times n}$ 是它的极限,记为 $\lim_{k\to +\infty}A^{(k)}=A$ 或 $A^{(k)}\to A$ 。如果至少有一个元素数列是发散的,则称该矩阵序列发散。

矩阵序列收敛满足以下性质:

(1) 设 $\boldsymbol{A}^{(k)} \to \boldsymbol{A}, \ \boldsymbol{B}^{(k)} \to \boldsymbol{B}, \ 则$

$$\alpha \mathbf{A}^{(k)} + \beta \mathbf{B}^{(k)} \rightarrow \alpha \mathbf{A} + \beta \mathbf{B}$$

(2) 设 $A^{(k)} \rightarrow A$, $B^{(k)} \rightarrow B$,则

$$\boldsymbol{A}^{(k)}\boldsymbol{B}^{(k)} \to \boldsymbol{A}\boldsymbol{B}$$

(3) 设 $A^{(k)}$ 与 A 都是可逆矩阵, 且 $A^{(k)} \rightarrow A$, 则

$$\left(\boldsymbol{A}^{(k)}\right)^{-1} \to \boldsymbol{A}^{-1}$$

定义 5.7 设 $\{A^{(k)}\}$ 是 $\mathbb{C}^{n\times n}$ 空间的一个矩阵序列, $\|A\|$ 是 $\mathbb{C}^{n\times n}$ 空间的一个矩阵范数。如果存在矩阵 $A\in\mathbb{C}^{n\times n}$,当 $k\to +\infty$ 时, $\|A^{(k)}-A\|\to 0$,则称矩阵序列**按矩阵范数收敛于**A。

定理 5.5 设 $\{A^{(k)}\}$ 是 $\mathbb{C}^{n\times n}$ 空间的一个矩阵序列,它按元素数列收敛的充分必要条件是它按 $\mathbb{C}^{n\times n}$ 空间的任意一个矩阵范数收敛。

定义 5.8 矩阵序列 $\{A^{(k)}\}$ 称为有界的,如果存在常数 M>0,使得对所有 k>0 都有

$$|a_{ij}^{(k)}| < M, \ (i = 1, 2, \dots, m; \ j = 1, 2, \dots, n)$$

定义 5.9 设 A 为方阵, 且当 $k \to +\infty$ 时有 $A^k \to 0$, 则称 A 为收敛矩阵。

5.4 矩阵幂级数

定义 5.10 设矩阵 $A \in \mathbb{C}^{n \times n}$ 的全部特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,则称 $\rho(A) = \max_i |\lambda_i|$ 为 A 的谱 半径。由定义知,A 的全部特征值分布在复平面上以原点为中心, $\rho(A)$ 为半径的圆盘上。并且有 $\rho(A^k) = \rho(A)^k$, $\rho(kA) = |k|\rho(A)$, $\rho(A) = \rho(A^T)$

定理 5.6 $A^k \to 0 (k \to \infty)$ 的充分必要条件是 $\rho(A) < 1$ 。

定理 5.7 设 $A \in \mathbb{C}^{n \times n}$,则对 $\mathbb{C}^{n \times n}$ 上任意一种矩阵范数 ||A||,都有

$$\rho\left(\boldsymbol{A}\right) \leq \|\boldsymbol{A}\|$$

即 A 的谱半径是 A 的任意一种矩阵范数的下界。

定义 5.11 设 $A \in \mathbb{C}^{n \times n}$, $a_k \in \mathbb{C}$, $k = 0, 1, 2, \cdots$ 称

$$a_0 \mathbf{I} + a_1 \mathbf{A} + a_2 \mathbf{A}^2 + \cdots + a_k \mathbf{A}^k + \cdots$$

为矩阵 \mathbf{A} 的幂级数,记为 $\sum_{k=0}^{\infty} a_k \mathbf{A}^k$ 。

定义 5.12 矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 的前 N+1 项的和 $S_N = \sum_{k=0}^{\infty} a_k A^k$ 称为**矩阵幂级数的部分和**。 若矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 的部分和序列 $\{S_N(A)\}$ 收敛,则称 $\sum_{k=0}^{\infty} a_k A^k$ 收敛;否则,称其为发散。 若 $\lim_{N\to\infty} S_N(A) = S$,则称 S 为 $\sum_{k=0}^{\infty} a_k A^k$ 的**和矩阵**。

定理 5.8 若复变量 z 的幂级数 $\sum_{k=0}^{\infty} a_k z^k$ 的收敛半径为 R,而方阵 $A \in \mathbb{C}^{n \times n}$ 的谱半径为 $\rho(A)$,则

(1) 当
$$\rho(\mathbf{A}) < R$$
 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k \mathbf{A}^k$ 收敛;

(2) 当
$$\rho(\mathbf{A}) > R$$
 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k \mathbf{A}^k$ 发散;

(3) 当计算 A 的特征值比较困难时,由于 A 的每个范数都是谱半径 $\rho(A)$ 的上界,只要能找到一种特殊的矩阵范数 $\|A\|$,使 $\|A\|$ < R,便可断定该矩阵幂级数是收敛的。(优先考虑行和、列和范数)

5.5 矩阵函数

定义 5.13 设 f(z) 是复变量的解析函数 $, f(z) = \sum_{k=0}^{\infty} a_k z^k$ 的收敛半径为 R。如果矩阵 $A \in \mathbb{C}^{n \times n}$ 的谱半径 $\rho(A) < R$,则称

$$f(\mathbf{A}) = \sum_{k=0}^{\infty} a_k \mathbf{A}^k$$

为 A 的矩阵函数。常用的矩阵函数:

(1)
$$\exp(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$$
,收敛域是整个复平面上;

(2)
$$\cos A = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k}$$
, 收敛域是整个复平面上;

(3)
$$\sin \mathbf{A} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \mathbf{A}^{2k+1}$$
,收敛域是整个复平面上;

(4)
$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$$
,收敛域是复平面 $|z| < 1$;

(5)
$$\ln (\mathbf{I} + \mathbf{A}) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \mathbf{A}^k$$
, 收敛域是复平面 $|z| < 1$;

定理 5.9 (Jordan 标准形法) 设 f(z) 是复变量 z 的解析函数, $A \in \mathbb{C}^{n \times n}$,且存在可逆阵 P,使得

$$A = PJP^{-1} = P \operatorname{diag}(J_1, J_2, \cdots, J_m) P^{-1}$$

$$\mathbb{N} f(\mathbf{A}) = \mathbf{P} f(\mathbf{J}) \mathbf{P}^{-1} = \mathbf{P} \operatorname{diag} (f(\mathbf{J}_1), f(\mathbf{J}_2), \cdots, f(\mathbf{J}_m)) \mathbf{P}^{-1}$$

其中

$$f(\mathbf{J}_i) = \begin{bmatrix} f(\lambda_i) & f'(\lambda_i) & \frac{f''(\lambda_i)}{2!} & \cdots & \frac{f^{(n_i-1)}(\lambda_i)}{(n_i-1)!} \\ & f(\lambda_i) & f'(\lambda_i) & \ddots & \vdots \\ & & f(\lambda_i) & \ddots & \frac{f''(\lambda_i)}{2!} \\ & & \ddots & f'(\lambda_i) \\ & & & f(\lambda_i) \end{bmatrix}$$

若 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 f(A) 的特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$

定理 5.10 (最小多项式法) 设 n 阶矩阵 A 的最小多项式为

$$m_A(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$$

其中 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 A 的所有不同特征值, $\sum_{i=1}^s n_i = m$, $f(\lambda)$ 是复变量 λ 的解析函数,令

$$g(\lambda) = c_0 + c_1 \lambda + \dots + c_{m-1} \lambda^{m-1}$$

则 f(A) = g(A) 的充分必要条件是

$$g^{(j)}(\lambda_i) = f^{(j)}(\lambda_i), i = 1, 2, \dots, s, j = 0, 1, 2, \dots, n_i - 1$$

5.6 函数矩阵的微分与积分

定义 5.14 现在考虑矩阵元素是实变量 t 的实函数的矩阵

$$\mathbf{A}(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m2}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

A(t) 中所有的元素 $a_{ij}(t)$ 定义在同一区间 [a,b] 上。A(t) 在区间 [a,b] 上有界,连续,可微,可积是指所有的 $a_{ij}(t)$ 在 [a,b] 上有界,连续,可微,可积。例如函数矩阵 A(t) 的极限、微分与积分定义为

$$\lim_{t \to t_0} \mathbf{A}(t) = \left[\lim_{t \to t_0} a_{ij}(t) \right]_{m \times n}$$

$$\frac{d\mathbf{A}(t)}{dt} = \left[\frac{da_{ij}(t)}{dt} \right]_{m \times n}$$

$$\int_a^b \mathbf{A}(t) dt = \left[\int_a^b a_{ij}(t) dt \right]_{m \times n}$$

定理 5.11 (微分性质) 函数矩阵的微分满足以下性质:

$$(1) \frac{\mathrm{d}}{\mathrm{d}t} \left(a\mathbf{A}(t) + b\mathbf{B}(t) \right) = a \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A}(t) + b \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B}(t)$$

$$(2) \frac{\mathrm{d}}{\mathrm{d}t} (k (t) \mathbf{A} (t))) = \frac{\mathrm{d}k (t)}{\mathrm{d}t} \mathbf{A} (t) + k (t) \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A} (t)$$

$$(3) \frac{\mathrm{d}}{\mathrm{d}t} \left(\boldsymbol{A} \left(t \right) \boldsymbol{B} \left(t \right) \right) = \left(\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{A} \left(t \right) \right) \cdot \boldsymbol{B} \left(t \right) + \boldsymbol{A} \left(t \right) \cdot \left(\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{B} \left(t \right) \right)$$

$$(4) \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A}^{-1}(t) = -\mathbf{A}^{-1}(t) \left(\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A}(t) \right) \mathbf{A}^{-1}(t)$$

(5)
$$\frac{\mathrm{d}}{\mathrm{d}t} A^2(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} A(t)\right) A(t) + A(t) \left(\frac{\mathrm{d}}{\mathrm{d}t} A(t)\right)$$

(6)
$$\frac{d}{dt} \exp(\mathbf{A}t) = \mathbf{A} \exp(\mathbf{A}t) = \exp(\mathbf{A}t) \mathbf{A}$$

(7)
$$\frac{d}{dt}\cos(\mathbf{A}t) = -\mathbf{A}\sin(\mathbf{A}t) = -\sin(\mathbf{A}t)\mathbf{A}$$

(8)
$$\frac{d}{dt}\sin(\mathbf{A}t) = \mathbf{A}\cos(\mathbf{A}t) = \cos(\mathbf{A}t)\mathbf{A}$$

(9)
$$\frac{\mathrm{d}}{\mathrm{d}t} \ln \left(\boldsymbol{I} + \boldsymbol{A}t \right) = \boldsymbol{A} \left(\boldsymbol{I} + \boldsymbol{A}t \right)^{-1} = \left(\boldsymbol{I} + \boldsymbol{A}t \right)^{-1} \boldsymbol{A}$$

定理 5.12 (积分性质) 函数矩阵的积分满足以下性质:

(1)
$$\int (a\mathbf{A}(t) + b\mathbf{B}(t)) dt = a \int \mathbf{A}(t) dt + b \int \mathbf{B}(t) dt (a,b)$$
 为任意实数)

(2)
$$\int C \cdot A(t) dt = C \cdot \int A(t) dt (C 为常数矩阵)$$

$$(3) \int \boldsymbol{A}(t) \boldsymbol{B}'(t) dt = \boldsymbol{A}(t) \boldsymbol{B}(t) - \int \boldsymbol{A}'(t) \boldsymbol{B}(t) dt (\boldsymbol{B}'(t) 表示 \boldsymbol{B}(t) 的导数)$$

5.7 矩阵函数的应用

定理 5.13 一阶线性常系数齐次微分方程组

$$\begin{cases} x'(t) = Ax(t) \\ x(t_0) = C \end{cases}$$

的解为

$$x(t) = \exp(A(t - t_0))C$$

定理 5.14 一阶线性常系数非齐次线性方程组

$$\begin{cases} x'(t) = Ax(t) + f(t) \\ x(t_0) = C \end{cases}$$

的解为

$$x(t) = \exp(A(t - t_0))C + \int_{t_0}^{t} \exp(A(t - \tau))f(\tau) d\tau$$

6 矩阵的 Kronecker 积与 Hadamard 积

6.1 Kronecker 积与 Hadamard 积的定义

定义 6.1 设 $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, $B = (b_{ij}) \in \mathbb{C}^{s \times t}$, 则 $A \subseteq B$ 的 Kronecker 积 $A \otimes B$ 定义为

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix} \in \mathbb{C}^{ms \times nt}$$

如果 A
ightarrow B 是同阶矩阵,即 $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, $B = (b_{ij}) \in \mathbb{C}^{m \times n}$,则 A
ightarrow B 的 Hadamard 积 $A \circ B$ 定义为

$$\mathbf{A} \circ \mathbf{B} = (a_{ij}b_{ij}) \in \mathbb{C}^{m \times n}$$

定理 6.1 (K-积的基本性质) 设 A, B, C 是矩阵, k 是数,则下列性质成立

- (1) $(kA) \otimes B = A \otimes (kB) = k (A \otimes B)$
- (2) $A \otimes (B + C) = A \otimes B + A \otimes C$
- $(3) (B+C) \otimes A = B \otimes A + C \otimes A$
- $(4) (A \otimes B) \otimes C = A \otimes (B \otimes C)$
- $(5) (A \otimes B)^{\mathcal{H}} = A^{\mathcal{H}} \otimes B^{\mathcal{H}}$
- (6) rank $(\mathbf{A} \otimes \mathbf{B}) = \operatorname{rank}(\mathbf{A}) \operatorname{rank}(\mathbf{B})$

定理 6.2 (H-积的基本性质) 设 A, B, C 是同阶矩阵, k 是数,则下列性质成立

- $(1)\;(k\boldsymbol{A})\circ\boldsymbol{B}=\boldsymbol{A}\circ(k\boldsymbol{B})=k\;(\boldsymbol{A}\circ\boldsymbol{B})$
- $(2) \; \boldsymbol{A} \circ (\boldsymbol{B} + \boldsymbol{C}) = \boldsymbol{A} \circ \boldsymbol{B} + \boldsymbol{A} \circ \boldsymbol{C}$
- $(3)\; (B+C)\circ A=B\circ A+C\circ A$
- $(4)\; (\boldsymbol{A} \circ \boldsymbol{B}) \circ \boldsymbol{C} = \boldsymbol{A} \circ (\boldsymbol{B} \circ \boldsymbol{C})$
- $(5) (\mathbf{A} \circ \mathbf{B})^{\mathcal{H}} = \mathbf{A}^{\mathcal{H}} \circ \mathbf{B}^{\mathcal{H}}$
- (6) $\mathbf{A} \circ \mathbf{B} = \mathbf{B} \circ \mathbf{A}$

定理 6.3 设矩阵 A, B, C, D 是使下列运算有意义的矩阵,则有

$$(A \otimes B) (C \otimes D) = (AC) \otimes (BD)$$

若 $\mathbf{A} \in F^{m \times m}$, $\mathbf{B} \in F^{n \times n}$, 则

$$A \otimes B = (I_m \otimes B) (A \otimes I_n)$$

6.2 Kronecker 积与 Hadamard 积的性质

定理 6.4 设 A和 B 是使下列运算有意义的矩阵,对 A与 B的 Kronecker 积矩阵 $A \otimes B$,下列性质成立。

(1) 当 A, B 分别可逆时, $A \otimes B$ 和 $B \otimes A$ 都为可逆矩阵, 而且有

$$(\boldsymbol{A} \otimes \boldsymbol{B})^{-1} = \boldsymbol{A}^{-1} \otimes \boldsymbol{B}^{-1}$$

$$(\boldsymbol{B} \otimes \boldsymbol{A})^{-1} = \boldsymbol{B}^{-1} \otimes \boldsymbol{A}^{-1}$$

(2) 当方阵 $A \in F^{m \times m}$, $B \in F^{n \times n}$ 时, 方阵 $A \otimes B$ 的行列式

$$|A \otimes B| = |B \otimes A| = |A|^n |B|^m$$

- (3) \dot{A} \dot{A} \dot{A} \dot{B} 都是 Hermite 矩阵,则 $\dot{A} \otimes \dot{B}$ 和 $\dot{B} \otimes \dot{A}$ 都是 Hermite 矩阵;
- (4) 若 A 和 B 都是酉矩阵,则 $A \otimes B$ 和 $B \otimes A$ 都是酉矩阵。

定理 6.5 设 A, B 使下列运算有意义,则有

- (1) 设 A, B 为同阶矩阵, 且 A 等价于 B, 则对任意单位矩阵 I, $(A \otimes I)$ 等价于 $(B \otimes I)$;
- (2) 设方阵 $A \in F^{m \times m}$, $B \in F^{n \times n}$, 如果 A 相似于 J_A , B 相似于 J_B , 则 $A \otimes B$ 相似于 $J_A \otimes J_B$ 。

定理 6.6 设方阵 $A \in F^{m \times m}$, A 的特征值是 λ_i , 相应的特征向量是 x_i , $i = 1, 2, \dots, m$ 。方阵 $B \in F^{n \times n}$, B 的特征值是 μ_i , 相应的特征向量是 y_i , $i = 1, 2, \dots, n$, 则

- (1) $A \otimes B$ 的特征值是 $\lambda_i \mu_j$,对应的特征向量是 $x_i \otimes y_j$, $i = 1, 2, \cdots, m$; $j = 1, 2, \cdots, n$ 。
- (2) $A \otimes I_n + I_m \otimes B$ 的特征值是 $\lambda_i + \mu_j$,对应的特征向量是 $x_i \otimes y_j$, $i = 1, 2, \cdots, m$; $j = 1, 2, \cdots, n$ 。其中 $(A \otimes I_n + I_m \otimes B)$ 称为方阵 A 和 B 的 Kronecker 和,记为

$$A \oplus B = A \otimes I_n + I_m \otimes B$$

定理 6.7 设 f(z) 是解析函数, $A \in F^{n \times n}$, 且 f(A) 存在,则

$$f\left(\boldsymbol{I}_{m}\otimes\boldsymbol{A}\right)=\boldsymbol{I}_{m}\otimes f\left(\boldsymbol{A}\right)$$

$$f\left(\boldsymbol{A}\otimes\boldsymbol{I}_{m}\right)=f\left(\boldsymbol{A}\right)\otimes\boldsymbol{I}_{m}$$

特例 $f(z) = \exp(z)$:

$$\exp\left(\mathbf{I}_{m}\otimes\mathbf{A}\right)=\mathbf{I}_{m}\otimes\exp\left(\mathbf{A}\right)$$

$$\exp\left(\mathbf{A}\otimes\mathbf{I}_{m}\right)=\exp\left(\mathbf{A}\right)\otimes\mathbf{I}_{m}$$

6.3 矩阵的向量化算子和 Kronecker 积

定义 6.2 设 $A \in F^{m \times n}$ 是 $m \times n$ 阶矩阵, $A = (A_1, A_2, \dots, A_n)$,其中 $A_i \in F^m$ 是 A 的第 i 列,则 A 的向量算子 Vec(A),定义为:

$$\operatorname{Vec}(\mathbf{A}) = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_n \end{bmatrix} \in F^{mn}$$

定理 6.8 设矩阵 $A \in F^{m \times k}$, $B \in F^{k \times s}$, $C \in F^{s \times n}$, 则

$$\operatorname{Vec}\left(ABC\right) = \left(C^{\mathsf{T}} \otimes A\right) \operatorname{Vec}\left(B\right)$$

推论:设 $A \in F^{m \times k}$, $X \in F^{k \times s}$, $C \in F^{s \times n}$, 则有

- (1) $\operatorname{Vec}(AX) = (I_n \otimes A) \operatorname{Vec}(X)$
- (2) $\operatorname{Vec}(XC) = (C^{\mathsf{T}} \otimes I_k) \operatorname{Vec}(X)$

定理 6.9 (用向量化算子求解矩阵方程) 求解矩阵方程 AX+XB=D, 其中 $A\in F^{m\times m}$, $B\in F^{n\times n}$, $D\in F^{m\times n}$

- (1) 用向量化算子 Vec 作用在等式两边,有 $(I_n \otimes A + B^T \otimes I_m)$ Vec (X) = Vec(D)
- (2) 令 $G = (I_n \otimes A + B^T \otimes I_m)$, 求解线性方程 $G \operatorname{Vec}(X) = \operatorname{Vec}(D)$

定理 6.10 (用向量化算子求解矩阵方程) 求解矩阵方程 AX - XA = kX, 其中 $A, X \in F^{n \times n}$

- (1) 用向量化算子 Vec 作用在等式两边,有 $(I \otimes A A^T \otimes I)$ Vec (X) = k Vec (X)
- (2) 令 $H = (I \otimes A A^{T} \otimes I)$, 求解线性方程 (kI H) Vec(X) = 0

定理 6.11 (用向量化算子求解矩阵微分方程) 微分方程组

$$\begin{cases} X'(t) = AX(t) + X(t)B \\ X(0) = C \end{cases}$$

其中 $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, $X \in \mathbb{C}^{m \times n}$

- (1) 用向量化算子 Vec 作用在方程两边,有 Vec $(X'(t)) = (I_n \otimes A + B^T \otimes I_m)$ Vec (X(t)) 和 Vec (X(0)) = Vec(C)
 - (2) 令 $\boldsymbol{Y}(t) = \mathrm{Vec}\left(\boldsymbol{X}(t)\right)$, $\boldsymbol{C}_1 = \mathrm{Vec}\left(\boldsymbol{C}\right)$, $\boldsymbol{G} = \left(\boldsymbol{I}_n \otimes \boldsymbol{A} + \boldsymbol{B^T} \otimes \boldsymbol{I}_m\right)$, 则原方程组等价于

$$\begin{cases} \mathbf{Y}'(t) = \mathbf{G}\mathbf{Y}(t) \\ \mathbf{Y}(0) = \mathbf{C}_1 \end{cases}$$

(3) 通过求解普通微分方程的方法得到 $Y(t) = \exp(Gt)C_1$, 从而 $X(t) = \exp(At) \cdot C \cdot \exp(Bt)$