7.6 1)
$$n = 3 \cdot 11 = 33$$
 $\varphi(n) = (3-1) \cdot (11-1) = 20$

Pour crypter le message, il faut calculer $5^7 \mod 33$: $5^7 \equiv 5^2 \cdot 5^2 \cdot 5^2 \cdot 5 \equiv (-8) \cdot (-8) \cdot (-8) \cdot 5 \equiv 64 \cdot (-40) \equiv (-2) \cdot (-7) \equiv 14$ On a donc obtenu pour message crypté : c = 14.

Pour décrypter le message, il faut disposer de la clé privée d, c'est-à-dire résoudre la congruence $7 d \equiv 1 \mod 20$.

On devine immédiatement que d=3.

On décrypte le code c = 14, en calculant $14^3 \mod 33$:

$$14^3 \equiv 14^2 \cdot 14 \equiv (-2) \cdot 14 \equiv 5 \mod 33$$

On retrouve bien le message m = 5.

2)
$$n = 7 \cdot 11 = 77$$
 $\varphi(n) = (7-1) \cdot (11-1) = 60$

Pour crypter le message, il faut calculer $8^{17} \mod 77$:

x	reste r	n	$8^{2^n} \mod 77$	contribution (si $r = 1$)
17	1	0	8	8
8	0	1	$8^2 \equiv (-13)$	
4	0	2	$(-13)^2 \equiv 15$	
2	0	3	$15^2 \equiv -6$	
1	1	4	$(-6)^2 \equiv 36$	36

$$8^{17} \equiv 8 \cdot 36 \equiv 57 \mod 77$$

On a donc obtenu pour message crypté : c = 57.

Pour décrypter le message, il faut disposer de la clé privée d, c'est-à-dire résoudre la congruence $17\,d\equiv 1\mod 60$.

À cette fin, résolvons l'équation diophantienne 17x + 60y = 1:

$$1 = 9 - 8 \cdot 1$$

= 9 - (17 - 9 \cdot 1) \cdot 1 = 17 \cdot (-1) + 9 \cdot 2
= 17 \cdot (-1) + (60 - 17 \cdot 3) \cdot 2 = 60 \cdot 2 + 17 \cdot (-7)

À partir de la solution particulière $x_0 = -7$ et $y_0 = 2$, on déduit la solution générale :

$$\begin{cases} x = -7 + \frac{60}{1}k = -7 + 60k \\ y = 2 - \frac{17}{1}k = 2 - 17k \end{cases}$$
 où $k \in \mathbb{Z}$

La condition $1 < x < \varphi(n) = 60$ implique k = 1.

On conclut que d = -7 + 60 = 53.

Il reste maintenant à calculer $57^{53} \mod 77$:

x	reste r	n	$57^{2^n} \mod 77$	$ \begin{array}{c} \text{contribution} \\ \text{(si } r = 1) \end{array} $
53	1	0	57	57
26	0	1	$57^2 \equiv 15$	
13	1	2	$15^2 \equiv -6$	-6
6	0	3	$(-6)^2 \equiv 36$	
3	1	4	$36^2 \equiv -13$	-13
1	1	5	$(-13)^2 \equiv 15$	15

 $57^{53} \equiv 57 \cdot (-6) \cdot (-13) \cdot 15 \equiv (-34) \cdot 36 \equiv 8 \mod 77$ On retrouve ainsi bien le message initial m = 8.

3)
$$n = 17 \cdot 31 = 527$$
 $\varphi(n) = (17 - 1)(31 - 1) = 480$
Le message codé est $c = 2^7 \equiv 128 \mod 527$.

Pour décrypter le message, il faut disposer de la clé privée d, c'est-à-dire résoudre la congruence $7 d \equiv 1 \mod 480$.

Utilisons cette fois-ci la formule $d = 7^{\varphi(480)-1} \mod 480$.

De
$$480 = 2^5 \cdot 3 \cdot 5$$
, on tire que $\varphi(480) = 480 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 128$.

x	reste r	n	$7^{2^n} \mod 480$	contribution (si $r = 1$)
127	1	0	7	7
63	1	1	$7^2 \equiv 49$	49
31	1	2	$49^2 \equiv 1$	1
15	1	3	$1^2 \equiv 1$	1
7	1	4	$1^2 \equiv 1$	1
3	1	5	$1^2 \equiv 1$	1
1	1	6	$1^2 \equiv 1$	1

 $d \equiv 7^{127} \equiv 7 \cdot 49 \cdot 1^5 \equiv 343 \mod 480$

Le décryptage du message se résume au calcul $128^{343} \mod 527$.

x	reste r	n	$128^{2^n} \mod 527$	contribution (si $r = 1$)
343	1	0	128	128
171	1	1	$128^2 \equiv 47$	47
85	1	2	$47^2 \equiv 101$	101
42	0	3	$101^2 \equiv 188$	
21	1	4	$188^2 \equiv 35$	35
10	0	5	$35^2 \equiv 171$	
5	1	6	$171^2 \equiv 256$	256
2	0	7	$256^2 \equiv 188$	
1	1	8	$188^2 \equiv 35$	35

 $128^{343} \equiv 128 \cdot 47 \cdot 101 \cdot 35 \cdot 256 \cdot 35 \equiv 2 \mod 527$

Comme prévu, on retrouve bien le message initial.