Certaines questions de ce sujet font intervenir de l'algèbre euclidienne. Toutes les parties sont indépendantes.

On note $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels. Pour n entier naturel, on note $\mathbb{R}_n[X]$ l'ensemble des polynômes de degré au plus n. Pour tout $P \in \mathbb{R}[X]$, l'opérateur différence est défini par $\Delta(P) = P(X+1) - P(X)$.

1. Opérateur de différence.

- a) Déterminer $\Delta(\mathbb{R}_n[X])$ puis Ker Δ .
- **b)** Pour tout $P \in \mathbb{R}[X]$ et m entier naturel, montrer que $(\Delta^m P)(X) = \sum_{k=0}^m (-1)^{m-k} {m \choose k} P(X+k)$.

Partie I : Polynômes de BERNOULLI

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie pour tout $x \in \mathbb{R}^*$ par $f(x) = \frac{x}{e^x - 1}$ et f(0) = 1.

2. Étude de la régularité de la fonction f.

- a) Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}^* et calculer sa dérivée.
- **b)** Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} et préciser f'(0).

3. Variations de la fonction f.

- a) Déterminer les limites de f en $+\infty$ et $-\infty$ et préciser la nature des branches infinies ainsi que leur position par rapport à la courbe représentative de f.
- **b)** Dresser le tableau des variations de f, puis tracer l'allure de sa courbe représentative dans un repère orthonormé.

4. Développement limité. Soit n un entier naturel non nul.

a) Déterminer le développement limité de $\frac{e^x-1}{x}$ à l'ordre n en 0.

b) En déduire (sans le calculer) que f admet un développement limité d'ordre n en 0.

On notera $f(x) = \sum_{k=0}^{n} \frac{b_k}{k!} x^k + o(x^n)$ ce développement limité.

c) Déterminer le développement limité de f à l'odre 3 en 0. En déduire b_0, b_1, b_2, b_3 .

5. Une relation de récurrence sur les $(b_n)_{n\in\mathbb{N}}$.

a) En remarquant que $x = f(x)(e^x - 1)$, montrer que pour tout $n \ge 2$,

$$\sum_{k=1}^{n} \binom{n}{k} b_{n-k} = 0.$$

b) En déduire une formule de récurrence permettant le calcul de b_n .

Pour tout $n \ge 0$, on pose $B_n(X) = \sum_{k=0}^n \binom{n}{k} b_{n-k} X^k$. B_n est appelé le n-ème polynôme de Bernoulli. On utilisera des notations identiques pour polynômes et fonctions polynomiales associées.

- **6.** Déterminer B_0 , B_1 , B_2 en explicitant les coefficients.
- 7. Soit $n \ge 2$. Montrer les égalités suivantes.
 - **a)** $B_n(0) = B_n(1)$.
 - **b)** $B'_n(X) = nB_{n-1}(X)$.
 - **c**) $\int_{0}^{1} B_{n}(x) dx = 0.$
 - **d)** Calculer ΔB_1 , ΔB_2 et en déduire que $(\Delta B_n)(X) = nX^{n-1}$.

8. Une nouvelle définition.

- a) Montrer qu'il existe une unique suite de polynômes définie par $B_0 =$
- 1, $\Delta B_n = nX^{n-1}$ et $\int_0^1 B_n(t) dt = 0$ pour tout n entier naturel non nul.
 - **b)** En déduire que $B_n(1-X) = (-1)^n B_n(X)$.
 - **c)** Montrer que $\sum_{k=0}^{n} {n \choose k} B_k(X) = nX^{n-1}$.
 - **d)** Montrer que, pour tout $n \ge 1$,

$$b_{2n+1} = B_n(1) = B_n(0) = B_n(1/2) = 0$$

Thème VIII PSI

Partie II : Polynômes de HILBERT

On pose $H_0 = 1$ et pour tout n > 0, $H_n(X) = \frac{X(X-1)\cdots(X-n+1)}{n!}$.

- **9.** Montrer que $(H_n)_{n\in\mathbb{N}}$ forme une base de $\mathbb{R}[X]$.
- **10.** Montrer que, pour tout n entier naturel, $H_n(\mathbb{Z}) \subset \mathbb{Z}$.
- **11.** Pour tout n entier naturel, calculer ΔH_n . Soit $P \in \mathbb{R}[X]$.
- **12.** En utilisant les nombres $(Dg^mP)(0))_{m\in\mathbb{N}}$, exprimer P dans la base des $(H_n)_{n\in\mathbb{N}}$.
- **13.** En déduire que $P(\mathbb{Z}) \subset \mathbb{Z}$ si et seulement si les coordonnées de P dans la base des $(H_n)_{n \in \mathbb{N}}$ sont entières.

Partie III : Polynômes d'EULER

Soit φ l'application définie sur $\mathbb{R}[X]$ par $\varphi(P) = P(X+1) + P(X)$. Dans toute cette partie, n désigne un entier naturel non nul.

- **14.** Montrer que φ est bijective.
- **15.** Montrer qu'il existe un unique polynôme, noté E_n , satisfaisant la relation $P(X+1) + P(X) = 2X^n$.
- **16.** Déterminer une relation simple entre E'_n et E_{n-1} .
- 17. En déduire que

$$E_n(X+1) = \sum_{p=0}^{n} \binom{n}{p} E_p(X).$$

- **18.** À l'aide de la relation précédente, exprimer E_n en fonction des $(E_p)_{p\leqslant n-1}$.
- **19.** Démonter que $E_n(1-X) = (-1)^n E_n(X)$.

Partie IV : Polynômes de TCHEBYCHEV

On définit par récurrence la suite de polynômes

$$T_0 = 1, T_1 = X, T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Le polynôme T_n est le nème polynôme de Tchebychev. Dans tout ce T.D., on identifiera polynômes et fonctions polynomiales.

20. Expliciter T_1, T_2, T_3 et T_4 .

- **21.** Soit $n \in \mathbb{N}$. Montrer que T_n est un polynôme à coefficients entiers dont vous déterminerez la parité, le degré et le coefficient dominant.
- **22.** Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in [-1,1]$, $T_n(x) = \cos(n \arccos x)$.
- **23.** Soit $n \in \mathbb{N}$.
 - a) Montrer que, pour tout $t \in [0, \pi]$, $T_n(\cos t) = \cos(nt)$.
 - **b)** Montrer que $T_n(X) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} X^{n-2k} (X^2 1)^k$.
- **24.** Montrer que pour tout $n \in \mathbb{N}^*$, T_n possède exactement n racines distinctes.

Pour $f \in \mathscr{C}^0([-1,1],\mathbb{R})$, la norme infinie de f, notée $||f||_{\infty}$ est le réel $||f||_{\infty} = \sup |f|$.

- **25.** Justifier l'existence de la norme infinie.
- **26.** Calculer $||T_n||_{\infty}$.
- **27.** Soit $n \in \mathbb{N}$.
 - a) Montrer que pour tout réel u, $|\sin(nu)| \le n |\sin(u)|$.
 - **b)** En déduire $||T'_n||_{\infty} = n^2$.
- **28.** Montrer que pour tout réel strictement positif $r, T_n(\frac{r+r^{-1}}{2}) = \frac{r^n + r^{-n}}{2}$.
- **29.** Soit $x \in [1, +\infty[$.
 - a) Montrer qu'il existe $r \in \mathbb{R}^*$, tel que $x = \frac{r+r^{-1}}{2}$.
 - **b)** En déduire que $1 \leqslant T_n(x) \leqslant (x + \sqrt{x^2 1})^n$.
- **30.** En dérivant l'égalité $T_n(\cos t) = \cos nt$ valable pour tout réel $t \in [0, \pi]$, trouver une équation différentielle linéaire homogène du second ordre vérifiée sur \mathbb{R} par T_n .
- **31.** Soit $k \in \mathbb{N}$, $k \leq n$. Déduire de la question précédente que $T_n^{(k)}(1) = \frac{n}{n+k} \frac{(n+k)!}{(n-k)!} \frac{2^k k!}{(2k)!}$.
- **32.** Montrer que $T_n^{(k)}(-1) = (-1)^{n+k} T_n^{(k)}(1)$

Thème VIII PSI

Partie V : Polynômes de LEGENDRE

Dans tout cet exercice, n désigne un entier naturel, $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et $\mathbb{R}_n[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à n. On identifiera polynômes et fonctions polynomiales associées. Pour tout $k \in \mathbb{N}$, on note $P^{(k)}$ la dérivée k-ème du polynôme P. Pour tout $n \in \mathbb{N}$, on considère les polynômes définis par

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$.

La famille (L_n) est la famille des polynômes de Legendre. Pour tout polynôme P, on note $\mathcal{L}(P)$ le polynôme

$$\mathscr{L}(P) = \left[(X^2 - 1)P' \right]'.$$

- **33. a)** Calculer L_0, L_1, L_2 et L_3 .
- **b)** Pour tout $n \in \mathbb{N}$, déterminer le degré et le coefficient dominant de L_n .
 - **c)** En déduire que la famille (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- **34.** Montrer que L_{2n} (resp. L_{2n+1}) est une fonction paire (resp. impaire).
- **35. a)** Montrer que pour tout $n \in \mathbb{N}$, $L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^k (X+1)^{n-k}$.
 - **b)** En déduire les valeurs de $L_n(-1)$ et de $L_n(1)$.
- **36. a)** Montrer que pour tout $n \in \mathbb{N}$,

$$U'_{n+1} - 2(n+1)X \cdot U_n = 0 \tag{1}$$

$$(X^2 - 1)U_n' - 2nX \cdot U_n = 0 (2)$$

b) En dérivant les équations précédentes, montrer que la suite (L_n) vérifie

$$L'_{n+1} = X \cdot L'_n + (n+1)L_n \tag{3}$$

$$\mathcal{L}(L_n) = n(n+1)L_n \tag{4}$$

c) En déduire que la restriction de \mathscr{L} à $\mathbb{R}_n[X]$ est un endomorphisme que nous noterons \mathscr{L}_n . Exprimer la matrice de \mathscr{L}_n dans la base (L_0,\ldots,L_n) .

Pour tout $P, Q \in \mathbb{R}[X]$, on pose $\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x) dx$.

- **37.** Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$. On notera $\| \cdot \|$ la norme euclidienne associée.
- **38.** Montrer que pour tous $P, Q \in \mathbb{R}[X], \langle \mathcal{L}(P), Q \rangle = \langle P, \mathcal{L}(Q) \rangle$. On dit que \mathcal{L} est un endomorphisme autoadjoint.
- **39. a)** Montrer que pour tout $m \in \mathbb{N}$, la famille $(L_n)_{n \in [0,m]}$ est une famille de polynômes orthogonaux.
 - **b)** Montrer que pour tout $n \in \mathbb{N}$, $L_{n+1} \in \mathbb{R}_n[X]^{\perp}$.
- **40.** Montrer que $||L_n||^2 = \frac{2}{2n+1}$.
- **41.** En considérant un polynôme $Q = \prod_{i=1}^{n} (X a_i)$ de $\mathbb{R}_n[X]$, montrer que L_{n+1} possède n+1 racines réelles distinctes, toutes dans l'intervalle [-1,1[.

Cette propriété est vérifiée par toutes les familles de polynômes orthogonaux.

42. Calculer la distance de X^{n+1} au sous-espace vectoriel $\mathbb{R}_n[X]$.

Mathématiciens

BERNOULLI Jacob (6 jan. 1655 à Basel-16 août 1705 à Basel).

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).

LEGENDRE Adrien-Marie (18 sept. 1752 à Paris-9 jan. 1833 à Paris).

TCHEBYCHEV Pafnouti Lvovitch (16 mai 1821 à Borovsk-8 déc. 1894 à St Pétersbourg).

HILBERT David (23 jan. 1862 à Wehlau-14 fév. 1943 à Göttingen).