Cross product

The *cross product* (or *vector product*) of the two three-dimensional real vectors \mathbf{a} and \mathbf{b} , written $\mathbf{a} \times \mathbf{b}$ or $\mathbf{a} \wedge \mathbf{b}$, is another three-dimensional vector. It is defined as follows:

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

It can also be calculated by expanding the "determinant"

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

This is a vector (hence the name 'vector' product). The definition does not easily extend to vectors \mathbf{a} and \mathbf{b} with n components for $n \neq 3$. (Compare this to the dot product, which outputs a scalar and which does have a simple generalisation.)

The cross product combines information about the lengths of ${\bf a}$ and ${\bf b}$ and their directions. Specifically,

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \,\hat{\mathbf{n}}$$

where $|\mathbf{a}|$ and $|\mathbf{b}|$ are the lengths (magnitudes) of \mathbf{a} and \mathbf{b} , θ is the angle between the two vectors (with $0 \le \theta \le \pi$), and $\hat{\mathbf{n}}$ is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} . The vector $\hat{\mathbf{n}}$ is chosen so that \mathbf{a} , \mathbf{b} and $\hat{\mathbf{n}}$ satisfy the *right-hand rule*: if you use your right hand, point your first (index) finger in the direction of \mathbf{a} and your second (middle) finger in the direction of \mathbf{b} , then your thumb, when lifted, will point in the direction of $\hat{\mathbf{n}}$ and hence in the direction of $\mathbf{a} \times \mathbf{b}$.

It follows that for non-zero vectors \mathbf{a} and \mathbf{b} , the cross product is zero exactly when \mathbf{a} and \mathbf{b} are parallel to one another.

Any two vectors \mathbf{a} and \mathbf{b} define a parallelogram and a triangle. The area of the parallelogram is given by $|\mathbf{a} \times \mathbf{b}|$, and the area of the triangle is half of this.

For every choice of \mathbf{a} , \mathbf{b} and \mathbf{c} and every scalar λ , we have

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \qquad \text{(anti-commutativity)}$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} \qquad \text{(distributivity over addition)}$$

$$(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\lambda \mathbf{b}).$$