Conception de circuits numériques et architecture des ordinateurs

Frédéric Pétrot

Année universitaire 2022-2023

C1	Codage des nombres en base 2, logique booléenne,
	portes logiques, circuits combinatoires
C2	Circuits séquentiels
C3	Construction de circuits complexes
C4	Micro-architecture et fonctionnement des mémoires
C 5	Machines à état
C6	Synthèse de circuits PC/PO
C 7	Optimisation de circuits PC/PO
C8	Interprétation d'instructions - 1
C9	Interprétation d'instructions - 2
C10	Interprétation d'instructions - 3
C11	Introduction aux caches

Plan détaillé du cours d'aujourd'hui

- 1 Introduction aux « caches »
 - Machine
 - Quelques chiffres

- 2 Caches
 - Principes

Plan

- 1 Introduction aux « caches »
 - Machine
 - Quelques chiffres
- 2 Caches
 - Principes

Introduction aux « caches »

└ Machine

Structure d'une machine

Introduction aux « caches »

Machine

Structure d'une machine

Accès mémoire centrale

Processeur émet requête activant :

Interface processeur \rightarrow bus système \rightarrow pont \rightarrow bus mémoire \rightarrow contrôleur mémoire \rightarrow mémoire

- Purement électronique, symétrique
- Processeur en attente du résultat

Accès disque

Processeur émet (commande, numéro de secteur, adresse):

Interface E/S \rightarrow bus système \rightarrow pont \rightarrow bus périphérique \rightarrow contrôleur de disque Contrôleur disque \rightarrow disque \rightarrow bus périphérique \rightarrow pont \rightarrow bus mémoire \rightarrow contrôleur mémoire \rightarrow mémoire (DMA)

Contrôleur disque → processeur (interruption) → accès lecture mémoire

- Électronique et mécanique
- Transfert asymétrique
- Processeur passe à une autre tâche (système d'exploitation)

Ensimag

— Introduction aux « caches »

—Quelques chiffres

À propos du stockage des données

Évolution de la taille et du temps d'accès (données approximatives, ordres de grandeur)

Mémoire statique

Metrique	1980	1985	1990	1995	2000	2005	2010	2015	2020	2020 vs 1980
\$/MB	19,200	2,900	320	256	100	75	30	10	5	÷3840
T _{acc} (ns)	300	150	35	15	3	2	1.5	1.3	1	÷300

Mémoire dynamique

	. y	945								
Metrique	1980	1985	1990	1995	2000	2005	2010	2015	2020	2020 vs 1980
\$/MB	8,800	880	100	30	1	0.1	0.02	0.005	0.003	÷2,930,000
Tacc (ns)	375	200	100	70	60	50	40	30	30	÷12.5
Taille typ.(MB)	0.064	0.256	4	16	64	2,000	8,000	16,000	32,000	×500,000

Disque

Disque										
Metrique	1980	1985	1990	1995	2000	2005	2010	2015	2020	2020 vs 1980
\$/MB	500	100	8	0.30	0.01	0.005	0.0003	0.00003	.000018	÷27,800,000
T _{acc} (ms)	87	75	28	10	8	4	3	15	12	÷7
Taille typ.(GB)	0.001	0.01	0.160	1	20	160	1,500	3,000	8,000	×1,500,000

Sources: https://jcmit.net/ et différents sites web de vendeurs de RAM.

—Introduction aux « caches »

— Ouelaues chiffres

À propos de la fréquence des CPU INTEL

	1980	1990	1995	2003	2004	2005	2010	2015	2020	2020 vs 1980
CPU	8080	386	Pentium	P-III	P-4	Core 2	Core i7	Core i9	Core i9	_
MHz	1	20	150	600	3300	2000	2500	3000	2900	×2500
T _{cycle} (ns)	1000	50	6	1.6	0.3	0.50	0.4	0.33	0.35	÷2500
Cœurs	1	1	1	1	1	2	4	8	16	×16
T _{eff} (ns)	1000	50	6	1.6	0.3	0.25	0.1	0.04	0.022	×45,000

Tendance similaire chez les autres constructeurs

Introduction aux « caches »

Quelques chiffres

Tendance

Plan

- 1 Introduction aux « caches »
 - Machine
 - Quelques chiffres
- 2 Caches
 - Principes

- Caches

– Principes

Principe de la hiérarchie mémoire

Constat

- Larges espaces de stockage lents et lointains
- Petits espaces de stockage proches et rapides

Idée

- Copier les zones « utiles » de la grosse mémoire dans la petite
- Et le faire automatiquement sans intervention du programme

Problème

- Collisions!
- Comment faire « tenir » des données d'adresses très variées dans le cache?

Principes

Pourquoi cela marche-t-il?

Repose sur une propriété fondamentale des programmes : la localité

Principe de localité

Les programmes tendent à utiliser des instructions et des données dont les adresses sont identiques ou proches de celles qu'ils ont utilisé récemment

Localité temporelle

Des variables accédées récemment ont de fortes chances d'être accédées de nouveau dans le futur proche

Localité spatiale

Des variables qui ont des adresses proches ont de fortes chances d'être accédés à des temps proches

—Caches

Principes

Utilisation de la localité

Spatiale et temporelle

Lecture d'un mot

- 1 recopie le mot et ses n voisins (une ligne) de la mémoire centrale dans le cache s'il n'y est pas
- retourne le mot qui est dans le cache

- Caches

Principes

Architecture d'un cache à correspondance directe

Principe

Structure : $l = 2^n$ lignes de $m = 2^p$ mots

- on ignore les octets dans le mot : les adresses considérés finissent par 00
- adresse d'une ligne en mémoire : alignée sur la taille de la ligne, i.e. multiple de $m \times 4$
- numéro de ligne de cache index dans le cache d'une donnée placée en am : $index = am_{n+p+1..p+2}$
- adresse offset de la donnée dans la ligne : offset = $am_{p+1..2}$
- comment différencier les différentes lignes? nécessaire de conserver am_{31..n+p+2} pour comparaison

— Caches

— Principes

Architecture d'un cache à correspondance directe

