

Computer Architecture & Microprocessor System

DIGITAL CIRCUIT TIMING

Dennis A. N. Gookyi

* DIGITAL CIRCUIT TIMING

BIG PICTURE: BUILDING A PROCESSOR

Single cycle processor

INTRODUCTION

- Until now, we investigated logical functionality
- What about timing?
 - How fast is a circuit?
 - How can we make a circuit faster?
 - What happens if we run a circuit too fast?
- A design that is logically correct can still fail because of realworld implementation issues

- "Digital logic" is a convenient abstraction
 - Output changes immediately with the input

- Combinational Circuit Delay
 - □ In reality, outputs are delayed from inputs
 - Transistors take a finite amount of time to switch

Time ----

Real Inverter Delay Example

- Circuit Delay and Its Variation
 - Delay is fundamentally caused by
 - Capacitance and resistance in a circuit
 - Finite speed of light (not so fast on a nanosecond scale!)
 - Anything affecting these quantities can change delay:
 - Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs
 - Different inputs have different delays
 - Changes in environment (e.g., temperature)
 - Aging of the circuit
 - We have a range of possible delays from input to output

- Delays from Input to Output Y
 - Contamination delay (t_{cd}): delay until Y starts changing
 - □ Propagation delay (t_{pd}): delay until Y finishes changing

Example Circuit

Effect of Changing Input 'A'

Cross-hatching means value is changing

- Calculating Longest & Shortest Delay Paths
 - We care about both the longest and shortest delay paths in a circuit

- Critical (Longest) Path: $t_{pd} = 2 t_{pd_AND} + t_{pd_OR}$
- Shortest Path:

 $t_{cd} = t_{cd AND}$

- Calculating Longest & Shortest Delay Paths
 - We care about both the longest and shortest delay paths in a circuit

- \Box Critical (Longest) Path: $t_{pd} = 2 t_{pd_AND} + t_{pd_OR}$
- ☐ Shortest Path:

- Calculating Longest & Shortest Delay Paths
 - We care about both the longest and shortest delay paths in a circuit

Short Path

- □ Critical (Longest) Path: $t_{pd} = 2 t_{pd_AND} + t_{pd_OR}$
- □ Shortest Path: $t_{cd} = t_{cd AND}$

Example t_{pd} for a Real NAND-2 Gate

Symbol	Parameter	Conditions	25 °C			-40 °C to +125 °C		Unit
			Min	Тур	Max	Max (85 °C)	Max (125 °C)	
74HC00								
t _{pd}	propagation delay	nA, nB to nY; see Figure 6						
		V _{CC} = 2.0 V	-	25	-	115	135	ns
		V _{CC} = 4.5 V	-	9	-	22	27	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	7		-	-	ns
		V _{CC} = 6.0 V	_ (7	-	20	23	ns

□ Heavy dependence on voltage and temperature

- Example Worst-Case t_{pd}
 - Two different implementations of a 4:1 multiplexer

Gate Delays

<u>Implementation 1</u> <u>Implementation 2</u>

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

 $t_{pd_sy} = t_{pd_INV} + t_{pd_AND2} + t_{pd_TRI_SY}$

Different designs lead to very different delays

- Output Glitches
 - ☐ Glitch: one input transition causes multiple output transitions

Circuit initial state

- Output Glitches
 - Glitch: one input transition causes multiple output transitions

- Output Glitches
 - Glitch: one input transition causes multiple output transitions

- Output Glitches
 - Glitch: one input transition causes multiple output transitions

- Output Glitches
 - Glitch: one input transition causes multiple output transitions

- Avoiding Glitches Using K-Maps
 - Glitches are visible in K-maps
 - K-maps show the results of a change in a single input
 - A glitch occurs when moving between prime implicants

$$Y = \overline{AB} + BC$$

- Avoiding Glitches Using K-Maps
 - We can fix the issue by adding in the consensus term
 - Ensures no transition between different prime implicants

- Avoiding Glitches
 - Question: Do we always care about glitches?
 - Fixing glitches is undesirable
 - More chip area
 - More power consumption
 - More design effort
 - The circuit is eventually guaranteed to converge to the right value regardless of glitchiness
 - Answer: No, not always
 - If we only care about the long-term steady state output, we can safely ignore glitches
 - Up to the designer to decide if glitches matter in their application
 - When examining simulation output, important to recognize glitches

- D flip-flops
 - Flip-flop samples D at the active clock edge
 - It outputs the sampled value to Q
 - It "stores" the sampled value until the next active clock edge

- □ The D flip-flop is made from combinational elements
- D, Q, CLK all have timing requirements!

- D Flip-Flop Input Timing Constraints
 - D must be stable when sampled (i.e., at active clock edge)

- Setup time (t_{setup}): time before the clock edge that data must be stable (i.e. not changing)
- Hold time (t_{hold}): time after the clock edge that data must be stable
- Aperture time (t_a): time around clock edge that data must be stable ($t_a = t_{setup} + t_{hold}$)

- Violating Input Timing: Metastability
 - If D is changing when sampled, metastability can occur
 - Flip-flop output is stuck somewhere between '1' and '0'
 - Output eventually settles non-deterministically

Example Timing Violations (NAND RS Latch)

Flip-Flop Output Timing

- Contamination delay clock-to-q (t_{ccq}): earliest time after the clock edge that Q starts to change (i.e., is unstable)
- Propagation delay clock-to-q (t_{pcq}): latest time after the clock edge that Q stops changing (i.e., is stable)

Sequential System Design

- Multiple flip-flops are connected with combinational logic
- Clock runs with period Tc (cycle time)
- Must meet timing requirements for both R1 and R2!

- Ensuring Correct Sequential Operation
 - □ Need to ensure correct input timing on R2
 - Specifically, D2 must be stable:
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge

R2 t_{HOLD} VIOLATION!

Potential

- Ensuring Correct Sequential Operation
 - This means there is both a minimum and maximum delay between two flip-flops
 Potential
 - CL too fast -> R2 t_{hold} violation
 - \square CL too slow -> R2 t_{setup} violation

- Setup Time Constraint
 - Safe timing depends on the maximum delay from R1 to R2
 - The input to R2 must be stable at least t_{setup} before the clock edge

- Setup Time Constraint
 - Safe timing depends on the maximum delay from R1 to R2
 - The input to R2 must be stable at least t_{setup} before the clock edge

- Setup Time Constraint
 - Safe timing depends on the maximum delay from R1 to R2
 - The input to R2 must be stable at least t_{setup} before the clock edge

- Setup Time Constraint
 - Safe timing depends on the maximum delay from R1 to R2
 - The input to R2 must be stable at least t_{setup} before the clock edge

- Setup Time Constraint
 - Safe timing depends on the maximum delay from R1 to R2
 - The input to R2 must be stable at least t_{setup} before the clock edge

Sequencing overhead: amount of time wasted each cycle due to sequencing element timing requirements

t_{setup} Constraint and Design Performance

Critical path: path with the longest tpd

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

- Overall design performance is determined by the critical path tpd
 - Determines the minimum clock period (i.e., max operating frequency)
 - If the critical path is too long, the design will run slowly
 - If critical path is too short, each cycle will do very little useful work
 - i.e., most of the cycle will be wasted in sequencing overhead

- Hold Time Constraint
 - Safe timing depends on the minimum delay from R1 to R2
 - D2 (i.e., R2 input) must be stable for at least t_{hold} after the clock edge Must not change until

t_{hold} after the clock

- Hold Time Constraint
 - Safe timing depends on the minimum delay from R1 to R2
 - D2 (i.e., R2 input) must be stable for at least t_{hold} after the clock edge

- Hold Time Constraint
 - Safe timing depends on the minimum delay from R1 to R2
 - D2 (i.e., R2 input) must be stable for at least t_{hold} after the clock edge

- Hold Time Constraint
 - Safe timing depends on the minimum delay from R1 to R2
 - D2 (i.e., R2 input) must be stable for at least t_{hold} after the clock edge

We need to have a **minimum** combinational delay!

- Hold Time Constraint
 - Safe timing depends on the minimum delay from R1 to R2
 - D2 (i.e., R2 input) must be stable for at least t_{hold} after the clock edge

Sequential Timing Summary

t _{ccq} / t _{pcq}	clock-to-q delay (contamination/propagation)
t_{cd}/t_{pd}	combinational logic delay (contamination/propagation)
t _{setup}	time that FF inputs must be stable before next clock edge
t _{hold}	time that FF inputs must be stable after a clock edge
T _c	clock period

$$t_{pd} =$$

$$t_{cd} =$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c >$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$= 35 \text{ ps}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} =$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c >$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} = 25 \text{ ps}$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c >$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$t_{cd} = 25 \text{ ps}$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\begin{array}{ccc} & & & = 35 \text{ ps} \\ \hline & & & = 25 \text{ ps} \\ \hline & & & & = 25 \text{ ps} \\ \end{array}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} = 25 \text{ ps}$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$f_{max} = 1/T_c = 4.65 \text{ GHz}$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\begin{array}{ccc} & & & = 35 \text{ ps} \\ \hline & & & & = 25 \text{ ps} \\ \hline & & & & & = 25 \text{ ps} \\ \end{array}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 25) ps > 70 ps ?$$

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} = 25 \text{ ps}$$

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Example Add buffers to the short paths:

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$
 $T_c >$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Example

Add buffers to the short paths:

 t_{nd} = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$
 $T_c >$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\frac{\Phi}{\sigma} \Gamma t_{pd} = 35 \text{ ps}$$

$$\begin{array}{ccc} & & & = 35 \text{ ps} \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Example Add buffers to the short paths:

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

 $T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps
 t_{pd} = 35 ps
 t_{cd} = 25 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Example

Add buffers to the short paths:

 t_{pd} = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps
 t_{pd} = 35 ps
 t_{cd} = 25 ps

$$t_{ccq} + t_{cd} > t_{hold}$$
?

Example

Add buffers to the short paths:

 t_{pd} = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\begin{array}{c|c} & & = 35 \text{ ps} \\ \hline b & & = 25 \text{ ps} \\ \hline \end{array}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 50) ps > 70 ps ?$$

Example Add buffers to the short paths:

 t_{pd} = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Check setup time constraints:

$$T_c > t_{pcq} + t_{pd} + t_{setup}$$

$$T_c > (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

CLOCK SKEW

- More timing issues
 - □ To make matters worse, clocks have delay too!
 - The clock does not reach all parts of the chip at the same time!
 - Clock skew: time difference between two clock edges

