THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

4. Lattices

Alfred Menezes cryptography 101.ca

Outline

- 1. Definition of a lattice
- 2. Characterization of the bases of a lattice
- 3. Successive minima
- 4. LLL lattice basis reduction algorithm
- 5. SVP
- 6. SIVP

Lattice definition

Definition. A *lattice* L in \mathbb{R}^n is the set of all <u>integer</u> linear combinations of m linearly independent vectors $B = \{v_1, v_2, ..., v_m\}$ in \mathbb{R}^n (and where $m \le n$). The set B is called a *basis* of L, and we write L = L(B). The *dimension* of L is n, and the *rank* of L is m.

+ Notes:

- 1. We will henceforth assume that the basis vectors $v_1, v_2, ..., v_m$ are in \mathbb{Z}^n .
- 2. Thus, $L = \{x_1v_1 + x_2v_2 + \dots + x_mv_m : x_1, x_2, \dots, x_m \in \mathbb{Z}\} \subseteq \mathbb{Z}^n$. L is called an *integer lattice*.
- 3. Let *B* be the $n \times m$ matrix whose columns are the basis vectors $v_1, \ldots, v_{m'}$

37

so
$$B = \begin{bmatrix} | & | & \cdots & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & \cdots & | \end{bmatrix}$$
. Then $L = \{Bx : x \in \mathbb{Z}^m\}$.

Full-rank lattices

- **→ Definition**. A *full-rank lattice* L in \mathbb{R}^n is a lattice in \mathbb{R}^n of rank n.
- **+ Definition**. Let *L* and *L'* be lattices in \mathbb{R}^n . Then *L'* is a *sublattice* of *L* if *L'* ⊆ *L*.
- * Henceforth, unless otherwise stated, all lattices and sublattices will be full-rank (and integer).
- * Note that a basis $B = \{v_1, v_2, ..., v_n\}$ for a full-rank lattice in \mathbb{R}^n is also a basis for the vector space \mathbb{R}^n .

- + Let n = 2 and $B_1 = \{(1,0), (0,1)\}.$
- * Then $L_1 = L(B_1) = \{B_1 x : x \in \mathbb{Z}^2\},$ where $B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- + Thus, $L_1 = \mathbb{Z}^n$.
- * Fundamental parallelepiped:

$$P(B_1) = \{a_1(1,0) + a_2(0,1) : a_1, a_2 \in [0,1)\}.$$

Fundamental parallelepiped

- **Definition**. Let L = L(B) be a lattice in \mathbb{R}^n , where $B = \{v_1, v_2, ..., v_n\}$. The fundamental parallelepiped of L is $P(B) = \{a_1v_1 + a_2v_2 + \cdots + a_nv_n : a_i \in [0,1)\}$.
- + Notes:
 - 1. Equivalently, $P(B) = \{Bx : x \in [0,1)^n\}.$
 - 2. P(B) can be used to partition \mathbb{R}^n into non-overlapping regions (called parallelepipeds). The "corners" of these parallelepipeds are the elements of the lattice L(B).

40

- + Let n = 2 and $B_2 = \{(2,0), (0,1)\}.$
- * Then $L_2 = L(B_2) = \{B_2 x : x \in \mathbb{Z}^2\},$ where $B_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

+ Notes:

- 1. L_2 a sublattice of L_1 .
- 2. $L_2 \neq L_1$ since $(1,0) \in L_1$, but $(1,0) = \frac{1}{2} \cdot (2,0) + 0 \cdot (0,1) \notin L_2$.

- + Let n = 2 and $B_3 = \{(-2, -2), (4,3)\}.$
- * Then $L_3 = L(B_3) = \{B_3x : x \in \mathbb{Z}^2\}$, where $B_3 = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix}$.
- + Notes:
 - 1. $L_2 \subseteq L_3$ since $(2,0) = 3 \cdot (-2, -2) + 2 \cdot (4,3)$ and $(0,1) = -2 \cdot (-2, -2) - 1 \cdot (4,3)$.
 - 2. $L_3 \subseteq L_2$ since $(-2, -2) = -1 \cdot (2,0) 2 \cdot (0,1)$ and $(4,3) = 2 \cdot (2,0) 3 \cdot (0,1)$.
 - 3. Thus $L_3 = L_2$.

One basis is "nicer" than the other

- * $L_2 = L(\{(2,0), (0,1)\})$ and $L_3 = L(\{(-2, -2), (4,3)\})$ are the same lattice, but described using different bases.
- * The basis $B_2 = \{(2,0), (0,1)\}$ is "nicer" than the basis $B_3 = \{(-2, -2), (4,3)\}$ since the vectors in B_2 are "shorter" and "orthogonal" to each other.
- * The *length* of a vector $a=(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n$ is $\|a\|_2=\sqrt{a_1^2+a_2^2+\cdots+a_n^2}$ (also called the *Euclidean length* or ℓ_2 norm).

- + Let n = 2 and $B_4 = \{(2,0), (1,1)\}.$
- * Then $L_4 = L(B_4) = \{B_4x : x \in \mathbb{Z}^2\},$ where $B_4 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$.
- * Exercise: Prove that $L_4 \neq L_1$ and $L_4 \neq L_2$.
- * Exercise: Prove that $\{(1, -1), (1,1)\}$ is another (nicer) basis for L_4 .

A lattice has infinitely many bases

Theorem (*characterization of lattice bases*) Let $L = L(B_1)$ be an n-dimensional (integer) lattice. Then an $n \times n$ integer matrix B_2 is also a basis for L if and only if $B_1 = B_2U$, where U is an $n \times n$ matrix (the change-of-basis matrix) with integer entries and with $\det(U) = \pm 1$. (Such a matrix U is called *unimodular*.)

* **Example**.
$$B_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B_3 = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix}$ are bases for the same lattice since $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$ where U is a unimodular matrix.

 $B_2 = \begin{bmatrix} B_3 & U \end{bmatrix}$

Proof of the characterization of lattice bases

Proof. (⇒) Suppose that B_1 and B_2 are both bases for $L \subseteq \mathbb{R}^n$. Since B_1 is a basis for L, and since the vectors in B_2 are in L, we can write $B_2 = B_1 U$ for some invertible matrix $U \in \mathbb{Z}^{n \times n}$.

Similarly, we can write $B_1 = B_2 V$ for some invertible matrix $V \in \mathbb{Z}^{n \times n}$.

Now, $B_1 = B_2 V = (B_1 U)V = B_1(UV)$.

Since B_1 is invertible, we have $UV = I_n$.

Thus, det(U) det(V) = 1, and hence $det(U) = \pm 1$ and $det(V) = \pm 1$.

(←) Exercise. □

Volume of a lattice

- **+ Definition**. Let L = L(B) be a lattice. The *volume* of L is vol(L) = |det(B)|.
- * Note: The volume of a lattice is the "volume" of the fundamental parallelepiped of the lattice.
 - * If the lattice is 2-dimensional, then its volume is the *area* of its parallelepiped.
 - * Informally, the volume of a lattice is inversely proportional to the density of its lattice vectors. The larger the volume, the sparser is the lattice.
- * **Exercise.** Show that the volume is an *invariant* of L, i.e., it doesn't depend on the basis B chosen for L.
- * Exercise. Suppose that $L_1 \subseteq L_2$. Prove that $\operatorname{vol}(L_1) \ge \operatorname{vol}(L_2)$.

Some bases are nicer than others

- * Shortest Vector Problem (SVP): Given a lattice $L = L(B) \subseteq \mathbb{Z}^n$, find a shortest nonzero vector in L.
- * Example: Consider the two SVP instances $L_2 = L(\{(2,0), (0,1)\})$ and $L_3 = L(\{(-2, -2), (4,3)\})$.
- * So, hardness of an SVP instance L(B) depends on the quality of the given basis B for L.

Successive minima

- * A fundamental problem in lattice-based cryptanalysis is finding a "good" basis for a lattice.
- **Definition**: Let $L ⊆ ℤ^n$ be a lattice. For each i ∈ [1, n], the ith successive minimum $λ_i(L)$ is the smallest real number r such that L has i linearly independent vectors the longest of which has length r.

+ Notes:

- $1. \lambda_1(L) \le \lambda_2(L) \le \cdots \le \lambda_n(L).$
- 2. $\lambda_1(L)$ is the length of <u>a</u> shortest nonzero vector in *L*.
- 3. (Minkowski's Theorem) $\lambda_1(L) \leq \sqrt{n} \operatorname{vol}(L)^{1/n}$.
- 4. (Gaussian Heuristic) $\lambda_1(L) \approx \sqrt{n/(2\pi e)} \operatorname{vol}(L)^{1/n}$ for random lattices.
- 5. $\lambda_n(L)$ is a lower bound on the length of a shortest basis for L.

LLL lattice basis reduction algorithm

* (1982) The Lenstra-Lenstra-Lovász (LLL) algorithm is a polynomial-time algorithm for finding a relatively short basis for a lattice L.

* Notes:

- 1. The LLL algorithm is a clever modification of the Gram-Schmidt process for finding an orthogonal basis for a vector space in \mathbb{R}^n .
- 2. Let $B = \{b_1, b_2, ..., b_n\}$ be the basis for L produced by the LLL algorithm, with $\|b_1\|_2 \le \|b_2\|_2 \le \cdots \le \|b_n\|_2$. Then $\|b_i\|_2 \le 2^{(n-1)/2} \lambda_i(L)$ for $1 \le i \le n$. In particular, $\|b_1\|_2 \le 2^{(n-1)/2} \lambda_1(L)$ and $\|b_n\|_2 \le 2^{(n-1)/2} \lambda_n(L)$.
- 3. Also, $||b_1||_2 \le 2^{(n-1)/4} \operatorname{vol}(L)^{1/n}$, and $\prod_{i=1}^n ||b_i||_2 \le 2^{n(n-1)/4} \operatorname{vol}(L)$.

Cryptanalytic applications of LLL

- * Let $B = \{b_1, b_2, ..., b_n\}$ be the basis for L produced by the LLL algorithm, with $\|b_1\|_2 \le \|b_2\|_2 \le \cdots \le \|b_n\|_2$. Then $\|b_i\|_2 \le 2^{(n-1)/2} \lambda_i(L)$ for $1 \le i \le n$.
- * In practice, the basis produced by LLL is typically significantly shorter than the above guarantee.
- * LLL has been used to design attacks on many number-theoretic problems and public-key cryptographic systems.
 - * e.g., see "Lattice attacks on digital signatures schemes", *Designs*, *Codes and Cryptography*, by N. Howgrave-Graham and N. Smart (2000): Finds the DSA (and ECDSA) secret key when a small number of bits of each per-message secret for several signed messages are leaked.
 - * e.g., see "Lattice reduction in cryptology: an update", *Proceedings of ANTS-IV*, by P. Nguyen and J. Stern (2000).

51

SVP: A fundamental lattice problem

- * Shortest Vector Problem (SVP): Given a lattice L = L(B), find a lattice vector of length $\lambda_1(L)$.
 - + SVP is NP-hard.
 - * The fastest (classical) algorithm known for SVP has (heuristic) running time $2^{0.292n+o(n)}$.
 - * The fastest quantum algorithm known for SVP has (heuristic) running time $2^{0.265n+o(n)}$.
- * **Approximate-SVP problem (SVP** $_{\gamma}$): Given a lattice L = L(B), find a nonzero lattice vector of length at most $\gamma \cdot \lambda_1(L)$.
 - * SVP $_{\gamma}$ is believed to be hard for small γ . It's NP-hard for constant γ , but likely isn't NP-hard if $\gamma > \sqrt{n}$.
 - * For $\gamma = 2^k$, the fastest algorithm known for SVP $_{\gamma}$ has running time $2^{\tilde{\Theta}(n/k)}$ (where $\tilde{\Theta}$ hides a power of $\log n$).
 - * If $\gamma > 2^{(n \log \log n)/\log n}$, then SVP $_{\gamma}$ can be efficiently solved using the LLL algorithm.

SIVP: Another fundamental lattice problem

- Shortest Independent Vectors Problem (SIVP): Given a lattice L = L(B), find n linearly independent vectors in L all of which have length at most $\lambda_n(L)$.
 - * A solution to SIVP isn't necessarily a basis for *L*.
 - * SIVP is NP-hard.

- Approximate-SIVP problem (SIVP_y): Given a lattice L = L(B), find n linearly independent vectors in L all of which have length at most $\gamma \cdot \lambda_n(L)$.
 - * The hardness of SIVP $_{\gamma}$ is similar to that of SVP $_{\gamma}$.
 - + Fact: SIVP $\sqrt{n} \leq SVP_{\gamma}$.