p.209 - 214: Guidelines for Analyzing the Graph of a Function; Examples 1-6

p.215: Analyze and sketch a graph of the function over the given interval. Label any intercepts, relative extrema, points of inflection, and asymptotes.

33. $y = 3x^4 + 4x^3$ $y = 3x^4 + 4x^3$

	1. 1. 00
$y = 3x^4 + 4x^3$	
$y' = 12x^3 + 12x^2 = 12x^2(x+1) = 0$ when x	= 0, x = -1. Critical #s
$y'' = 36x^2 + 24x = 12x(3x + 2) = 0$ when x	$= 0, x = -\frac{2}{3}$ Possible P.O.I

χ	у	y'	<i>y</i> "	Conclusion
$-\infty < x < -1$			+ 🗸	Decreasing, concave up
x = -1	$\left(\begin{array}{c} -1 \end{array}\right)$	0 1	+٧	Relative minimum ([- ,-
$-1 < x < -\frac{2}{3}$		+	+ 1	Increasing, concave up
$x = -\frac{2}{3}$	$\left(-\frac{16}{27}\right)$	+	0 <	Point of inflection (-3, -1
$-\frac{2}{3} < x < 0$		+ 1	- \	Increasing, concave down
x = 0	0	0 √	0√	Point of inflection (O)
0 < x < ∞		+ 🗸	+ 1/	Increasing, concave up

$(-\frac{4}{3},0)$ $(0,0)$	
-2 POI	$\frac{1}{1}, -\frac{16}{27}$ Range $\left[-1, \infty\right)$

16.
$$y = \frac{x^2 + 1}{x^2 - 4}$$

$$\frac{-2}{4} - \frac{3}{4} - \frac{1}{2}$$

$$\frac{-2}{4} - \frac{3}{4} - \frac{1}{2}$$

$$\frac{-3}{4} - \frac{1}{2}$$

 $y'(1)=|2(1)^3+12(1)=$

4°(1)=36(1)+24(1)=€

9x 44x3=0

x	y	y'	y''	Conclusion
$(-\infty, -2)$		+	+	Increasing, up
x = -2				V.A.x = -2
(-2,0)		+	_	Increasing, down
x = 0	-1/4	0	_	R.Max @ (0,-1/4)
(0,2)		_	_	Decreasing, down
x = 2				V.A.x=2
(2,∞)		_	+	Decreasing, up

37.
$$f(x) = 2x - 4\sin x$$
 $0 \le x \le 2\pi$

x	f(x)	f'(x)	f''(x)	Conclusion
x = 0	0			Left End @ (0,0)
$(0,\frac{\pi}{3})$		_	+	Decreasing, up
$x = \frac{\pi}{3}$	$\frac{2\pi}{3}$ - $2\sqrt{3}$	0	+	A. Min @ $(\frac{\pi}{3}, \frac{2\pi}{3} - 2\sqrt{3})$
$(\frac{\pi}{3},\pi)$		+	+	Increasing, up
$x = \pi$	2π		0	<i>POI</i> @ $(\pi, 2\pi)$
$(\pi,\frac{5\pi}{3})$		+	_	Increasing, down

$x = \frac{5\pi}{3}$	$\frac{10\pi}{3} + 2\sqrt{3}$	0	_	A. Max @ $(\frac{5\pi}{3}, \frac{10\pi}{3} + 2\sqrt{3})$
$(\frac{5\pi}{3},2\pi)$		_	_	Decreasing, down
$x = 2\pi$	4π			Right End @ $(2\pi, 4\pi)$

