No.	dynamic	deterministic	multiVehicle	multiDepot	withTimeConstraints	heterogeneousVehicles	backhauls	transfers	electricVehicles	meetingPoints	withUserPreferences	paperName
1	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a- Ride Problem
2	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Set partitioning based heuristics for interactive routing
3	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	An Exact Algorithm For The Single Vehicle Many-To-Many Dial-A-Ride Problem With Time Windows
4	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Heuristic algorithms for multi-vehicle, advance-request dial-a-ride problems
5	FALSE FALSE	TRUE TRUE	FALSE TRUE	FALSE FALSE	TRUE TRUE	FALSE FALSE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	A Dynamic Programming Solution of the Large-Scale Single-Vehicle Dial-A-Ride Problem with Time Windows A heuristic algorithm for the multi-vehicle advance-request dial-a-ride problem with time windows
7	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	The Multi-Vehicle Subscriber Dial-a-Ride Problem (Bodin & Sexton)
8	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints
9	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Large scale multi-vehicle dial-a-ride problems
10	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Heuristic Algorithms for the single Vehicle Dial-A-Ride Problem
11	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	An algorithm for mini-clustering in handicapped transport
12	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	The pickup and delivery problem with time windows
13	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows The Vehicle Routing Problem with Time Windows Minimizing Route Propries
15	FALSE TRUE	TRUE FALSE	TRUE TRUE	FALSE FALSE	TRUE TRUE	FALSE TRUE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE TRUE	The Vehicle Routing Problem with Time Windows: Minimizing Route Duration A heuristic algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple
16	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	A request clustering algorithm for door-to-door handicapped transportation
17	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	The General Pickup and Delivery Problem
18	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A new extension of local search applied to the Dial-A-Ride Problem
19	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Fast local search algorithms for the handicapped persons transportation problem
20	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	A Decision Support System for the Bimodal Dial-A-Ride Problem
21	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	The Modeling and Solution of a Class of Dial-a-Ride Problems Using Simulated Annealing
22	FALSE FALSE	TRUE TRUE	TRUE FALSE	TRUE FALSE	FALSE FALSE	FALSE FALSE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	<u>Darwin meets computers: new approach to multiple depot capacitated vehicle routing problem</u> The Pickup and Delivery Problem: Faces and Branch-and-Cut Algorithm
74	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Intractability of the dial-a-ride problem and a multiobjective solution using simulated annealing
25	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	The Finite Capacity Dial-A-Ride Problem
26	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems
27	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	On-Line and Off-Line Routing and Scheduling of Dial-a-Ride Paratransit Vehicles
28	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	<u>Telebus Berlin - Vehicle Scheduling in a Dial-a-Ride System</u>
29	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	The Dial-a-Ride Problem in a Public Transit System
30	TRUE TRUE	TRUE TRUE	TRUE TRUE	FALSE FALSE	TRUE FALSE	FALSE FALSE	FALSE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	A fuzzy logic approach to dynamic dial-a-ride problem Online Dial-a-Ride Problems: Minimizing the Completion Time
37	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Modeling and optimizing dynamic dial-a-ride problems
33	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	On-line single server dial-a-ride problems
34	null	null	null	FALSE	TRUE	FALSE	null	null	null	null	null	Efficient feasibility testing for dial-a-ride problems
35	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Pickup and Delivery with Time Windows: Algorithms and Test Case Generation
36	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	A simulation model for evaluating advanced dial-a-ride paratransit systems
37	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Scheduling dial-a-ride paratransit under time-varying, stochastic congestion
38	FALSE TRUE	TRUE TRUE	TRUE FALSE	FALSE FALSE	TRUE FALSE	FALSE FALSE	TRUE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	A tabu search heuristic for the static multi-vehicle dial-a-ride problem A Vehicle Scheduler for On-Demand Bus Systems Based on a Heuristic Cost Estimation
40	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A Vehicle Scheduler for On-Demand Bus Systems Based on a Heuristic Cost Estimation Agent-Based Planning Method for an On-Demand Transportation System
41	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	An operation planning method for a demand-bus system based on local search of autonomous agents
42	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Hybrid scheduling methods for paratransit operations
43	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Route Planning Method for a Dial-a-ride Problem
44	FALSE	TRUE	TRUE	FALSE	TRUE	null	TRUE	FALSE	FALSE	FALSE	FALSE	A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows
45	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Solving the Dial-a-Ride Problem using Genetic algorithms
46	FALSE TRUE	TRUE FALSE	TRUE FALSE	TRUE FALSE	TRUE FALSE	FALSE FALSE	TRUE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	The Genetic Algorithm for solving the Dial-a-Ride Problem On-Line Dial-a-Ride Problems Under a Restricted Information Model
47	TRUE	TRUE	TRUE	FALSE	FALSE	null	FALSE	FALSE	FALSE	TRUE	FALSE	On-Line Dial-a-Ride Problems Under a Restricted Information Model Dynamic transport services using flexible positioning of bus stations
49	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	On the Online Dial-A-Ride Problem with Time-Windows
50	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A branch-and-cut algorithm for the dial-a-ride problem
51	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints
52	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A GPS-Based On-Demand Shuttle Bus System
53	TRUE	TRUE	TRUE	FALSE	TRUE	null	TRUE	FALSE	FALSE	FALSE	FALSE	A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem Online Dial A Ride Problem with Time Windows: An Exact Algorithm Using Status Vectors
54	TRUE FALSE	TRUE TRUE	FALSE TRUE	FALSE FALSE	TRUE TRUE	FALSE TRUE	TRUE TRUE	TRUE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	Online Dial-A-Ride Problem with Time Windows: An Exact Algorithm Using Status Vectors Solution of the Dial-a-Ride Problem with multi-dimensional capacity constraints
56	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A model for the fleet sizing of demand responsive transportation services with time windows
57	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A Multiobjective Model and Simulated Annealing Approach for a Dial-a-Ride Problem
58	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Dynamic programming strategies for the dial a ride problem with time window constraints
59	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Online dial-a-ride problem with time-windows under a restricted information model
60	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A rejected-reinsertion heuristic for the static Dial-A-Ride Problem
61	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	An effective and fast heuristic for the Dial-a-Ride problem Models and branch and gut algorithms for nickup and delivery problems with time windows
62	FALSE FALSE	TRUE TRUE	TRUE TRUE	FALSE TRUE	TRUE TRUE	FALSE FALSE	TRUE TRUE	FALSE FALSE	FALSE FALSE	FALSE FALSE	FALSE FALSE	Models and branch-and-cut algorithms for pickup and delivery problems with time windows A study on genetic algorithms for the DAPP problem
64	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A study on genetic algorithms for the DARP problem Decomposition approach to solve dial-a-ride problems using ant computing and constraint programming
65	TRUE	FALSE	TRUE	TRUE	FALSE	null	FALSE	FALSE	FALSE	FALSE	FALSE	A Dynamic Pickup and Delivery Problem in Mobile Networks Under Information Constraints
66	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A Simulation Study of Demand Responsive Transit System Design
67	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Route Optimization Using Q-Learning for On-Demand Bus Systems
68	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments
69	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A heuristic two-phase solution approach for the multi-objective dial-a-ride problem
70	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A nested decomposition approach for solving the paratransit vehicle scheduling problem

74 FALCE	TDUE	TDUE	TALCE	TDUE		TDUE	TALCE.	TALCE.	TALCE T		Application of Constitutions for the DADDTW Droblem	T 2000
71 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Application of Genetic Algorithms for the DARPTW Problem	2009
72 TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Bringing Robustness to Patient Flow Management Through Optimized Patient Transports in Hospitals	2009
73 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Customers' satisfaction in a dial-a-ride problem	2009
74 null	TRUE	TRUE	null	null	FALSE	null	null	TRUE	FALSE	null	Optimization of Transport Plan for On-Demand Bus System Using Electrical Vehicles	2009
75 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	<u>The Integrated Dial-a-Ride Problem</u>	2009
76 TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	SIM-MADARP: An Agent-Based Tool for Dial-a-Ride Simulation	2009
77 FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A note on "Efficient feasibility testing for dial-a-ride problems"	2010
78 FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A stochastic model for a vehicle in a dial-a-ride system	2010
79 FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Dial a Ride from k-forest	2010
80 TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Dynamic transportation of patients in hospitals	2010
81 FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Feasibility Testing for Dial-a-Ride Problems	2010
82 TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Innovative on-demand bus system in Japan	2010
83 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method	2010
84 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Vehicle routing problems with alternative paths: An application to on-demand transportation	2010
85 TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	A Mechanism for Dynamic Ride Sharing Based on Parallel Auctions	2011
							_		 			+
86 TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows	2011
87 FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	An integer L-shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays	2011
88 FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	null	FALSE	FALSE	FALSE	FALSE	Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh	2011
89 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Checking the Feasibility of Dial-a-Ride Instancesusing Constraint Programming	2011
90 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	<u>Dynamic Ride-Sharing - A Simulation Study in Metro Atlanta</u>	2011
91 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem	2011
92 FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Local search heuristics for the probabilistic dial-a-ride problem	2011
93 TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Metaheuristics for the dynamic stochastic dial-a-ride problem with expectedreturn transports	2011
94 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Optimization of occupancy rate in dial-a-ride problems via linear fractional column generation	2011
95 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A matheuristic for the dial-a-ride problem	2011
96 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	A Multi-Objective Simulated Annealing for the Multi-Criteria Dial a Ride Problem	2012
96 FALSE 97 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Evaluating Centralized versus Decentralized Zoning Strategies for Metropolitan ADA Paratransit Services	2012
 							_	+				+
98 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Feasibility of the Pickup and Delivery Problem with Fixed Partial Routes: A Complexity Analysis	2012
99 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints	2012
100 TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A Hybrid Tabu Search and Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem	2012
101 TRUE	FALSE	TRUE	FALSE	FALSE	null	FALSE	FALSE	FALSE	FALSE	FALSE	Non-myopic vehicle and route selection in dynamic DARP with travel time and workload objectives	2012
102 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	Shared-taxi operations with electric vehicles	2012
]				Solving a Dial-a-Ride Problem with a Hybrid Evolutionary Multi-objective Approach: Application to Demand	
103 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	Responsive Transport	2012
104 TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A modeling system for simulation of dial-a-ride services	2012
105 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	Simple Temporal Problems in Route Scheduling for the Dial-a-Ride Problem with Transfers	2012
106 TRUE	FALSE	TRUE	null	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	Multi-Hop Ride Sharing	2012
107 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A Hybrid Greedy Randomized Adaptive Search Heuristic to Solve the Dial-a-Ride Problem	2013
107 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Combining multicriteria analysis and tabu search for dial-a-ride problems	_
							_		 			2013
109 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Hybrid column generation and large neighborhood search for the dial-a-ride problem	2013
110 TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Improving paratransit scheduling using ruin and recreate methods	2013
111 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	Mathematical Programming Guides Air-Ambulance Routing at Ornge	2013
						· [1	1			A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable	
112 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	<u>Vehicle Capacity</u>	2014
113 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	A Multicriteria Dial-a-Ride Problem with an Ecological Measure and Heterogeneous Vehicles	2014
114 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A multi-criteria large neighbourhood search for the transportation of disabled people	2014
115 TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A new fuzzy logic approach to capacitated dynamic Dial-a-Ride problem	2014
116 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Can ride-sharing become attractive? A case study of taxi-sharing employing a simulation modelling approach	2014
117 TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem	2014
118 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Large Scale Real-time Ridesharing with Service Guarantee on Road Networks	2012
119 TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Multiobjective model predictive control for dynamic pickup and delivery problems	2012
							+		 			
120 TRUE	TRUE	TRUE	FALSE	TRUE	null	TRUE	FALSE	FALSE	FALSE	FALSE	On dynamic demand responsive transport services with degree of dynamism	201
121 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	Optimizing Ridesharing Services for Airport Access	201
122 FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	Ridesharing with passenger transfers	201
123 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	The Dial-a-Ride Problem with Split Requests and Profits	201
124 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	The Dial-A-Ride Problem with Transfers	201
											Methodology to optimize resource requirements of a demand responsive transport system for persons with	
125 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	disabilities: a case study of Flanders	201
126 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	A Hyperheuristic for the Dial-a-Ride Problem with Time Windows	201
				-		<u> </u>					A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a	1
127 TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Hybrid Predictive Control Approach	201
127 TROL 128 FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	A Passengers Matching Problem in Ridesharing Systems by Considering User Preference	201
							+		 		A revised branch-and-price algorithm for dial-a-ride problems with the consideration of time-dependent	_
129 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE		201
130 TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	A scalable approach for data-driven taxi ride-sharing simulation	201
131 TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	A scalable non-myopic dynamic dial-a-ride and pricing problem	201
132 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	<u>Designing an On-Line Ride-Sharing System</u>	201
133 TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	Evaluating the performance of a dial-a-ride service using simulation	201
I I	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Real-Time City-Scale Taxi Ridesharing	201
134 TRUE				TRUE	EALCE	TRUE	FALSE	FALSE	FALSE	TRUE	SHAREK: A Scalable Dynamic Ride Sharing System	201
134 TRUE 135 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	IRUE	LALDE '	I ALJL	17(252		SHAKEK. A Scalable Dynamic Ride Sharing System	
	TRUE TRUE	TRUE TRUE	FALSE	TRUE	FALSE FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem.	201

138 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Solving the dial-a-ride problem using agent-based simulation 2016
139 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	Analysis of the impact of different service levels on the workload of an ambulance service provider 2016
140 FALSE	FALSE	TRUE	FALSE	TRUE	null	FALSE	FALSE	FALSE	TRUE	TRUE	GIS-based identification and assessment of suitable meeting point locations for ride-sharing 2017
141 TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Maximizing the Number of Served Requests in an Online Shared Transport System by Solving a Dynamic DARP 2017
142 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment 2017
143 TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Online algorithm for dynamic dial a ride problem and its metrics 2017
144 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Operational effects of service level variations for the dial-a-ride problem 2017
145 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing 2017
											Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic approach incorporating a
146 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	cross-route scheduling procedure with postponement opportunities 2017
147 TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	STaRS - Simulating Taxi Ride Sharing at Scale 2017
148 FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	The Electric Autonomous Dial-a-Ride Problem 2017
149 FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	The integrated dial-a-ride problem with timetabled fixed route service 2017
150 FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	An Improved Tabu Search Heuristic for Static Dial-A-Ride Problem 2018
151 FALSE	TRUE	TRUE	null	FALSE	null	FALSE	FALSE	TRUE	FALSE	FALSE	Optimal Routing and Charging of an Electric Vehicle Fleet for High-Efficiency Dynamic Transit Systems 2018
152 TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Real-Time Distributed Taxi Ride Sharing 2018
153 FALSE	TRUE	TRUE	TRUE	TRUE	null	TRUE	FALSE	TRUE	FALSE	FALSE	Routing Electric Vehicle Fleet for Ride-Sharing 2018
154 FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	A ride-sharing problem with meeting points and return restrictions 2019