*Analise o circuito da figura e as características do sinal clk

O sinal Q tem o mesmo duty cycle que o sinal clk e a sua frequência é o dobro da frequência do sinal clk

O sinal Q tem duty cycle = 50% e a sua frequência é a metade da frequência do sinal clk

O sinal Q tem o mesmo duty cycle que o sinal clk e a sua frequência é a metade da frequência do sinal clk

O sinal Q tem duty cycle = 50% e a sua frequência é o dobro da frequência do sinal clk

*Considere um negative-edge triggered flip-flop D cujas entradas D e clk evoluem no tempo conforme ilustrado na figura. Assuma que a saída Q do flip-flop é '0' antes do 1º flanco ativo do sinal de clk e que todos os atrasos são nulos.

A saída do flip-flop terá o valor '0' nos intervalos de tempo de 0 a 30 ns, de 100 a 110 ns, de 140 a 150 ns, e de 190 a 200 ns

A saída do flip-flop terá o valor '0' nos intervalos de tempo de 0 a 20 ns, de 100 a 160 ns

A saída do flip-flop terá o valor '0' nos intervalos de tempo de 0 a 40 ns e de 200 a 220 ns

Todas as opções restantes estão erradas.

*Analise o circuito da figura seguinte Assuma que os flip-flops que compõem o circuito da figura têm as características temporais seguintes $t_{\text{setup}} = 15 \text{ ns}, t_{\text{hold}} = 5 \text{ ns}, t_{\text{pHL}} = 25 \text{ ns}, t_{\text{pLH}} = 18 \text{ ns}.$ Nestas condições, o período mínimo de funcionamento do circuito, em ns, é:

40 68

45 20

*Analise o circuito da figura seguinte. Assumindo que os flip-flops do circuito têm as seguintes especificações temporais: flip-flops: $t_{\text{selup}} = 15 \text{ ns}, t_{\text{hold}} = 4 \text{ ns}, t_{\text{pHL}} = 20 \text{ ns}, t_{\text{pLH}} = 15 \text{ ns}, determine (em ns) o tempo de atraso máximo de uma porta lógica para que o circuito possa funcionar a frequência de 20MHz. Arredonde a resposta para o valor inteiro mais próximo.$

5

*Analise o circuito da figura. Trata-se dum somador completo de 1 bit implementado a partir dum descodificador 3 para 8.

Relativamente a este circuito podemos concluir que:

A função F corresponde à saída SOMA dum somador completo de 1 bit

F = Ai.Bi + Cin.(Ai + Bi)

A função F corresponde à saída CARRY_OUT dum somador completo de 1 bit

F = Ai xor Bi xor Cin

*Considere o flip-flop D da figura com as características temporais seguintes: $t_{setup} = 5$ ns, $t_{hold} = 3$ ns, $t_{pHL} = 10$ ns, $t_{pLH} = ?$ A análise do diagrama temporal da figura permite concluir que:

Todas as opções restantes estão erradas.

O flip-flop funciona corretamente para todos os valores da entrada

O flip-flop pode entrar em meta-estabilidade aos 70 ns e ter o problema de estado resolvido aos 100 ns.

O flip-flop pode entrar em meta-estabilidade aos 140ns e ter o problema de estado resolvido aos 190 ns. ??????

*Considere o diagrama temporal da figura. O diagrama de estados desta máquina é:

*Considere o circuito da figura:

Neste circuito o sinal SOME, é: reset síncrono ativo a 0

reset assíncrono ativo a 0

reset assíncrono ativo a 1

reset síncrono ativo a 1

*Considere o bloco combinatório da figura. Sejam X=(X2,X1,X0) e Q=(Q7,...,Q0). Se X=78 então

 $Q = 7F_{16}$

 $Q = 7E_{16}$

 $Q = FF_{16}$

 $Q = 80_{16}$

*Considere o circuito da figura que inclui um contador binário de 4 bits com entradas de clear (CLR_L) e load (LD_L) síncronas. Seja Q=(Q3,..,Q0). A sequência de contagem (Q) deste circuito, representada em hexadecimal, é:

3, 4, 5, 6

3, 4, 5, 6, 7, 8, 9, A, B, C

0, 1, 2, 3

С

*Considere o circuito da figura que inclui um contador binário de 4 bits com entradas de clear (CLR_L) e load (LD_L) síncronas.

*Considere o circuito da figura que inclui um contador binário de 4 bits com entradas de clear (CLR_L) e load (LD_L) síncronas. O módulo deste contador é: **13**

*Considere o circuito da figura onde FA designa "Full Adder" e HA designa "Half Adder". O circuito tem entradas de 4 bits $A = (A_3A_2A_1A_0)$ e $B = (B_3B_2B_1B_0)$ e uma saída de 3 bits $(N_2N_1N_0)$.

Relativamente a este circuito podemos dizer que: (Selecione uma opção)

Determina o número de bits iguais entre A e B.

Determina a distância de Hamming entre as palavras A e B

Determina quais os bits diferentes entre A e B.

É um contador de "1" em palavras de 4 bits.

*Considere o circuito da figura. Sejam (A3...A0)= C₁₆ e (B3...B0) = 3₁₆ Neste contexto o valor decimal correspondente a (N2N1N0) é: **4**

*Considere o circuito da figura. Sejam (A3...A0)= F_{16} e (B3...B0) = 0_{16} Neste contexto o valor decimal correspondente a (N2N1N0) é: **4**

*Considere o sistema da figura onde se efetua um determinado cálculo num contexto de representação em complemento para 2. A entrada é $N=(N_2N_1N_0)$ e a saída é $S=(S_7,...,S_0)$.

Se $N = 4_{10}$, o valor decimal da saída S é: ?????????????

*Considere o diagrama lógico seguinte que usa o bloco Counter (um contador binário crescente de 3 bits) e o componente 74138 (um descodificador binário 3:8). Se f_{CLK} =100MHz, pode-se afirmar que será gerado na saída P[7], um pulso negativo a cada

70 ns

80 ns

10 ns

100 ns

*Considere o diagrama lógico seguinte que usa o bloco Counter (um contador binário crescente de 3 bits) e o componente 74138 (um descodificador binário 3:8). Se f_{CLK}=25MHz, pode-se afirmar que será gerado na saída P[5], um pulso negativo a cada

25 ns

200 ns

320 ns

40 ns

*Considere os sinais da figura. (Selecione um ou mais)

Q4 é uma saída duma Latch D com enable a "1"

Q3 é uma saída dum flip-flop D "positive edge-triggered"

Q1 é uma saída dum flip-flop D "positive edge-triggered"

Q2 é uma saída duma Latch D "positive edge-triggered"

*Considere o codificador de prioridade 74148 tal como se mostra na figura.

	Inputs							Outputs					
ΕI	7	6	5	4	3	2	1	0	A3	A2	A1	GS	EC
1	X	×	X	X	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	×	x	x	x	×	×	×	0	0	0	0	1
0	1	0	x	×	x	x	×	×	0	0	1	0	1
0	1	1	0	×	x	×	×	x	0	1	0	0	1
0	1	1	1	0	x	×	×	x	0	1	1	0	1
0	1	1	1	1	0	×	×	×	1	0	0	0	1
0	1	1	1	1	1	0	×	×	1	0	1	0	1
0	1	1	1	1	1	1	0	×	1	1	0	0	1
0	1	1	1	1	1	1	1	0	1	1	1	0	1

Admita que a entrada ENI = 0. Se tivermos a entrada (X7,...,X0) = 9E 16 a representação decimal da saída (Y2Y1Y0) é: 0

*Seja F(A,B,C) = A.B + A.C + B.C. Qual das implementações seguintes baseadas em multiplexers está correta?

*Considere o esquema lógico da figura baseado no descodificador 74138 e em Buffers 3's 74244.

Se entradas forem $S=(S_1S_0)=10_2e$ $X=(X_3,...,X_0)=12_{10}$, o valor decimal da saída $Y=(Y_3,...,Y_0)$ será: 3 ?????

*Considere o esquema lógico da figura baseado no descodificador 74138 e em Buffers 3's 74244.

*Considere o codificador de prioridade genérico tal como se mostra na figura.

Admita que a entrada ENABLE=1. Se tivermos a entrada $(X_7...X_0)=2F_{16}$ a representação decimal da saída $(Y_2Y_1Y_0)$ é: **5**

*Considere o codificador de prioridade genérico tal como se mostra na figura. Admita que a entrada ENABLE=1. Se tivermos a entrada

 $(X_7...X_0)=8F_{16}$ a representação decimal da saída $(Y_2Y_1Y_0)$ é: **7 ????**

*Tendo em conta o circuito da figura, a função F pode ser descrita pela soma dos seguintes termos mínimos: **24,31**

*Considere o circuito lógico da figura. Neste caso é possível deduzir que:

$$\begin{split} F &= X_4.X_3.X_2.(X_1xor~X_0) \\ F &= X_4.X_3.(X_2.X_1.X_0+X'_2.X'_1.X'_0) \\ F &= X_4.X_3.X_2.(X_1xor~X_0)' \\ F &= X_4.X_3.(X_2.X_1.X_0+X_2.X'_1.X'_0) \end{split}$$

*Considere o circuito lógico da figura.

A função F(A,B,C) pode ter como soma de produtos mínima (Selecione uma opção)

(Selecione uma opção) F(A,B,C) = A.B.'.C + A'.C F(A,B,C) = A.C' + A'.B.C F(A,B,C) = A.B'.C' + A'.C F(A,B,C) = A.C' + A'.B.C'

*Considere o bloco combinatório da figura.

Considere o bloco combinatorio da ligura. Seja S=(S2,S1,S0) e Q =(Q7,...,Q0), ambas as quantidades especificadas sem sinal (unsigned) Se a representação decimal da entrada S for 4 então a representação decimal da saída Q será: 239

*Considere o sistema da figura onde se efetua um determinado cálculo num contexto de representação em complemento para 2. A entrada é $N=(N_2N_1N_0)$ e a saída é $S=(S_7,...,S_0)$.

Se N = 4_{10} , o valor decimal da saída S é: ??????

*Considere o circuito lógico da figura.

Escolha a tabela funcional adequada para o subconjunto de combinações das entradas A,B,C,D

Α	В	C	D	Y3	Y2	Υ1	Y0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	0	0	0

A	В	C	D	Y3	Y2	Y1	Y0
0	1	0	0	1	1	1	1
0	1	0	1	1	1	0	1
1	0	1	0	1	0	1	1
1	0	1	1	1	1	1	1

Α	В	C	D	Y3	Y2	Y1	Y0
0	1	0	0	1	1	0	1
0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	0	1	1	1	0	1	1

*Considere o circuito lógico da figura. Escolha o diagrama temporal correto

)		Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160.0 ns	240.0 ns	320,0 ns	400.0 ns
	in_	A	B 1		1				
	in_	В	B 0					J	
	-	> X	H E910	E910	031A \ 380D	FE51 F198	5863 6234	A3AD 22EA	7E52 EF51 X
	*	> Y	H 1		Х 3	5 9	X 3 X 6	X D X A	5 X 1 X

?

?

*A função F(A,B,C,D) tem o seguinte mapa de Karnaugh Escolha a implementação correta baseada num multiplexer 8:1 ???????

	00	01	11	10	AB
00	0	0	1	1	
01	0	0	1	1	
11	1	1	0	0	
10	0	0	1	1	
CD				10 3/	

*Dado o circuito lógico da figura escolha a tabela de verdade correta para F(A,B,C)

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

*Considere o circuito lógico da figura. Neste caso podemos deduzir que (Selecione uma opção)

F= A'. B'.(C+D)'

F=A'.B'.(C xor D)'

F=A.B.(C xor D)

F=A'.B'.(C xor D)

*Considere o circuito da figura que inclui um contador binário de 4 bits com entradas de clear (CLR_L) e load (LD_L) síncronas.

Se o sinal CLOCK tem frequência de 118 MHz a frequência da saída QD, expressa em MHz, é (arredonde a sua resposta para o valor inteiro mais próximo): 15 Mhz

*Considere o circuito da figura que inclui um contador binário de 4 bits com entradas de clear (CLR_L) e load (LD_L) síncronas.

Se o sinal CLOCK tem frequência de 69 MHz a frequência da saída QD, expressa em MHz, é (arredonde a sua resposta para o valor inteiro mais próximo): 4 Mhz

2:1 Mux

4:1 Mux

*O duty cycle do sinal QB:

É idêntico ao duty cycle do sinal CLOCK. É igual a um quarto do duty cycle do sinal CLOCK.

É igual a 25%. É igual a 50%.

*Analise a máquina de estados da figura seguinte

Pode-se afirmar que:

É uma máquina de Moore porque as saídas não dependem diretamente das entradas.

É uma máquina de Mealy porque as saídas não dependem diretamente das entradas.

É uma máquina de Mealy porque os estados não dependem diretamente das entradas.

É uma máquina de Moore porque os estados não dependem diretamente das entradas.

*Analise a máquina de estados da figura seguinte. O caminho crítico deste circuito envolve o atraso de:

duas portas lógicas

três portas lógicas

treze portas lógicas

quatro portas lógicas

*Analise o circuito da figura seguinte, que inclui um registo de deslocamento de 4 bits, que faz deslocamento no sentido $Q0 \rightarrow Q3$.

Assumindo que o estado atual é Q3Q2Q1Q0 = 0011, o estado seguinte do circuito será:

0111

0000

1001

0011

*Analise o circuito da figura seguinte, que inclui um registo de deslocamento de 4 bits, que faz deslocamento no sentido Q0 \rightarrow Q3. Assumindo que o estado atual é Q3Q2Q1Q0 = 0101, o estado seguinte do circuito será:

0001

1011

0000

1010

*Analise o circuito da figura seguinte, que inclui um registo de deslocamento de 4 bits, que faz deslocamento no sentido Q0 \rightarrow Q3. Assumindo que o estado atual é Q3Q2Q1Q0 = 1000, o estado seguinte do circuito será:

0001

1011

0000

1010

*Consider the circuit in the following figure that includes 4:! multiplexers and serial-in parallelout shift registers that do shift data in the direction Q0 \rightarrow Q3. The circuit has a data input, X, four control inputs A3,A2,A1,A0, and a data output, Y. If A3A2A1A0= 0101, the valu of input X will appear at the output Y after

5 clk cycles

6 clk cycles

10 clk cycles

4 clk cycles

*Analise o circuito da figura seguinte.

Assumindo que os flip-flops do circuito têm as seguintes especificações temporais: flip-flops: $t_{\text{selup}} = 15 \text{ ns}, \, t_{\text{hold}} = 5 \text{ ns}, \, t_{\text{pHL}} = 25 \text{ ns}, \, t_{\text{pLH}} = 20 \text{ ns}; \, o$ tempo de atraso de uma porta lógica elementar é $t_{\text{porta}} = 10 \text{ ns}.$ Nestas condições, a frequência máxima de funcionamento do circuito, em Mhz, é: 13

7

60

20

*Analise o circuito da figura seguinte.

Assumindo que os flip-flops do circuito têm as seguintes especificações temporais: flip-flops: $t_{\text{setup}} = 15 \text{ ns}$, $t_{\text{hold}} = 5 \text{ ns}$, $t_{\text{pHL}} = 25 \text{ ns}$, $t_{\text{pLH}} = 18 \text{ ns}$; o tempo de atraso de uma porta lógica elementar é $t_{\text{porta}} = 5 \text{ ns}$. Nestas condições, a frequência máxima de funcionamento do circuito, em Mhz, é:

45

40

20

68

*Qual o módulo de um contador de Johnson construído com 47 flip-flops?

94

*Qual o módulo de um contador de Johnson construído com 77 flip-flops?

154

*Dois contadores binários de 5 bits conetados em cascata têm um módulo total de:

*O diagrama de estados seguinte ilustra o comportamento de uma máquina de estados finitos com uma entrada, X, e uma saída, Y. Os estados da máquina são codificados com sinais Q1Q0.

Para implementação com flip-flops D, qual deve ser a função de excitação Q1+?

Q1+=Q1.Q0 **Q1+=Q1.Q0'+Q1'.Q0.X** Q1+=Q1.Q0+X.Q0 Q1+=X.Q1'+Q1'.Q0

*O diagrama de estados seguinte ilustra o comportamento de uma máquina de estados finitos com uma entrada, X, e uma saída, Y. Os estados da máquina são codificados com sinais O1O0.

Para implementação com flip-flops D, qual deve ser a função de excitação Q1+?

Q0+=X.Q1.Q0+Q1.Q0'.X' **Q0+=X.(Q1 XNOR Q0)+Q1.Q0'.X'** Q0+=X.Q1'.Q0'+Q1.Q0'-X' Q0+=X.(Q1 XOR Q0) + Q1.Q0' .X'

*Considere o circuito da figura com entradas A,B e C e saídas D e E. Se A='1', B='1' e C='0', pode-se afirmar que:

É impossível determinar inequivocamente o valor de D e de E

D='0' e E='0'

D='1' e E='0'

D='0' e E='1'

*Considere o circuito da figura com entradas A,B e saídas C e D. Se A='1', B='0' , pode-se afirmar que: $C='0'\ e\ D='0'$ $C='0'\ e\ D='1'$ $C='1'\ e\ D='0'$ $C='1'\ e\ D='1'$

*Consider the following logic diagram using Counter blocks.

This time diagram that illustrates the operation of the Counter block is as follows:

Which of the following outputs can be used to generate a 50 kHz waveform from a 1MHz clock (CLK)?

A(3)

B(2)

TCB

B(0)

*Consider the circuit in the following figure that includes 4:! multiplexers and serial-in parallel-out shift registers that do shift data in the direction Q0→Q3. The circuit has a data input, X, four control inputs A3,A2,A1,A0, and a data output, Y.

If A3A2A1A0= 1011, the valu of input X will appear at the output Y after

4 clk cycles

11 clk cycles

12 clk cycles

None of the remaining answers is correct

*Considere o diagrama temporal da figura.

O comportamento de Q1 corresponde à saída de um FlipFlop D positive edge-triggered O comportamento de Q2 corresponde à saída de uma Latch D com entrada de enable

*Analise o circuito da figura. É um contador binário de 2 bits É um positive edge-triggered flip-flop D É um negative edge-triggered flip-flop D É uma latch D

*Analise o diagrama temporal seguinte que ilustra o comportamento no tempo de uma máquina sequencial síncrona com uma entrada de dados x, uma saída, y, e um sinal de reset, R. O estado da máquina é representado pelo sinal Q.

O tipo desta máquina é
Maquina de Mealy com reset assíncrono
Maquina de Mealy com reset síncrono
Maquina de Moore com reset síncrono
Maquina de Moore com reset assíncrono

*Analise o circuito da figura seguinte. A tabela de transições deste circuito é:

Q1	Q0	х	Q1 ⁺	Q0 ⁺
0	0	0	0	1
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	0

Q1 ⁺	Q0⁺	Х	Q1	Q0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	0

Q1	Q0	Х	Q1 ⁺	Q01
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	0

*Analise o diagrama temporal seguinte que ilustra o comportamento de uma maquina sequencial síncrona com uma entrada de dados x, e uma saída, y. O estado da máquina é representado pelo sinal Q. O diagrama de estados desta máquina é:

*Consider the following logic diagram using D flip-flops.

What is the state Q2Q1Q0 at the time moment marked on the next time diagram with the red arrow?

Q2Q1Q0=111

Q2Q1Q0=001

Q2Q1Q0=010

Q2Q1Q0=000

*Consider the following logic diagram using D flip-flops.

What is the state Q2Q1Q0 at the time moment marked on the next time diagram with the red arrow?

Q2Q1Q0=100 Q2Q1Q0=101

Q2Q1Q0=001

Q2Q1Q0=000

*Considere o diagrama lógico seguinte que usa blocos Counter.

O diagrama temporal que ilustre o funcionamento do bloco Counter é o seguinte:

Qual das seguintes saídas pode ser utilizada para gerar uma forma de onde de 10 kHz a partir de um clock (CLK) de 1 MHz?

A(3)

B(0)

TCB B(1)

*O diagrama de estados ao lado ilustra o comportamento de uma máquina de estados finitos com uma entrada, X, e uma saída, Y. Os estados da máquina são codificados com sinais Q₁Q₀.

Para a implementação com flip-flops D, qual deve ser a função de excitação Q1+?

Q1+=x.Q1'+x.Q0

Q1+= Q1.Q0'

Q1+=Q1.Q0 Q1+=Q1Q0+x.Q0

*Considere o diagrama de estados/saídas referente a uma máquina sequencial síncrona com duas entradas, x e y, e uma saída, out.

Aplicando a estratégia de projeto de risco mínimo, qual seria a expressão lógica para a saída out?

out = Q1'.Q0

out = y'

out = y.Q1'.Q0

out = Q0

*Considere o diagrama de estados/saídas referente a uma máquina sequencial síncrona com uma entrada e uma saída.

É possível implementar a saída com:

Um descodificador binário 3:8 Um descodificador binário 2:4 Um multiplexer 4:1 e constantes 0 e 1 Um multiplexer 8:1 e constantes 0 e 1