## EXERCISES

A1.1 The following are the state diagrams of two DFAs,  $M_1$  and  $M_2$ . Answer the following questions about each of these machines.



- a. What is the start state?
- b. What is the set of accept states?
- c. What sequence of states does the machine go through on input aabb?
- d. Does the machine accept the string aabb?
- e. Does the machine accept the string  $\varepsilon$ ?
- <sup>A</sup>1.2 Give the formal description of the machines  $M_1$  and  $M_2$  pictured in Exercise 1.1.
- 1.3 The formal description of a DFA M is  $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$ , where  $\delta$  is given by the following table. Give the state diagram of this machine.

| u     | d                       |
|-------|-------------------------|
| $q_1$ | $q_2$                   |
| $q_1$ | $q_3$                   |
| $q_2$ | $q_4$                   |
| $q_3$ | $q_5$                   |
| $q_4$ | $q_5$                   |
|       | $q_1$ $q_1$ $q_2$ $q_3$ |

- 1.4 Each of the following languages is the intersection of two simpler languages. In each part, construct DFAs for the simpler languages, then combine them using the construction discussed in footnote 3 (page 46) to give the state diagram of a DFA for the language given. In all parts,  $\Sigma = \{a, b\}$ .
  - a.  $\{w | w \text{ has at least three a's and at least two b's}\}$
  - Ab.  $\{w | w \text{ has exactly two a's and at least two b's} \}$
  - c.  $\{w | w \text{ has an even number of a's and one or two b's}\}$
  - Ad.  $\{w | w \text{ has an even number of a's and each a is followed by at least one b} \}$
  - e.  $\{w | w \text{ starts with an a and has at most one b} \}$
  - f.  $\{w | w \text{ has an odd number of a's and ends with a.b}\}$
  - g.  $\{w | w \text{ has even length and an odd number of a's} \}$

- 1.5 Each of the following languages is the complement of a simpler language. In each Each of the following languages is the language, then use it to give the state diagram part, construct a DFA for the simpler language, then use it to give the state diagram part, construct a DFA for the simpler language given. In all parts,  $\Sigma = \{a, b\}$ . of a DFA for the language given. In all parts,  $\Sigma = \{a, b\}$ .
  - A<sub>a</sub>.  $\{w | w \text{ does not contain the substring ab}\}$ Ab.  $\{w | w \text{ does not contain the substring baba}\}$
  - c.  $\{w | w \text{ contains neither the substrings ab nor ba}\}$
  - **d.**  $\{w | w \text{ is any string not in } \mathbf{a}^* \mathbf{b}^* \}$
  - e.  $\{w | w \text{ is any string not in } (ab^+)^*\}$
  - **f.**  $\{w | w \text{ is any string not in } a^* \cup b^*\}$
  - g.  $\{w | w \text{ is any string that doesn't contain exactly two a's} \}$
  - **h.**  $\{w | w \text{ is any string except } \mathbf{a} \text{ and } \mathbf{b}\}$
- 1.6 Give state diagrams of DFAs recognizing the following languages. In all parts, the alphabet is  $\{0,1\}$ .
  - **a.**  $\{w | w \text{ begins with a 1 and ends with a 0}\}$
  - **b.**  $\{w | w \text{ contains at least three 1s}\}$
  - c.  $\{w | w \text{ contains the substring 0101 (i.e., } w = x0101y \text{ for some } x \text{ and } y)\}$
  - **d.**  $\{w | w \text{ has length at least 3 and its third symbol is a 0}\}$
  - e.  $\{w \mid w \text{ starts with 0 and has odd length, or starts with 1 and has even length}\}$
  - f.  $\{w | w \text{ doesn't contain the substring 110}\}$
  - **g.**  $\{w | \text{ the length of } w \text{ is at most } 5\}$
  - **h.**  $\{w \mid w \text{ is any string except 11 and 111}\}$
  - i.  $\{w | \text{ every odd position of } w \text{ is a 1} \}$
  - **j.**  $\{w | w \text{ contains at least two 0s and at most one 1}\}$
  - **k.**  $\{\varepsilon,0\}$
  - 1.  $\{w|\ w \text{ contains an even number of 0s, or contains exactly two 1s}\}$
  - **m.** The empty set
  - n. All strings except the empty string
- 1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is  $\{0,1\}$ .
  - <sup>A</sup>a. The language  $\{w | w \text{ ends with 00}\}$  with three states
  - b. The language of Exercise 1.6c with five states
  - c. The language of Exercise 1.6l with six states
  - d. The language {0} with two states described in the state of the stat
  - e. The language 0\*1\*0\* with three states
  - Af. The language 1\*(001+)\* with three states
  - g. The language  $\{\varepsilon\}$  with one state
  - h. The language 0\* with one state
- 1.8 Use the construction in the proof of Theorem 1.45 to give the state diagrams of NFAs recognizing the state diagrams of NFAs recognizing the union of the languages described in
  - a. Exercises 1.6a and 1.6b.
  - b. Exercises 1.6c and 1.6f.

- 1.9 Use the construction in the proof of Theorem 1.47 to give the state diagrams of NFAs recognizing the concatenation of the languages described in
  - a. Exercises 1.6g and 1.6i.
  - b. Exercises 1.6b and 1.6m.
- 1.10 Use the construction in the proof of Theorem 1.49 to give the state diagrams of NFAs recognizing the star of the languages described in
  - a. Exercise 1.6b.
  - **b.** Exercise 1.6j.
  - c. Exercise 1.6m.
- A1.11 Prove that every NFA can be converted to an equivalent one that has a single accept state.
- 1.12 Let  $D = \{w | w \text{ contains an even number of a's and an odd number of b's and does not contain the substring ab}. Give a DFA with five states that recognizes <math>D$  and a regular expression that generates D. (Suggestion: Describe D more simply.)
- 1.13 Let F be the language of all strings over  $\{0,1\}$  that do not contain a pair of 1s that are separated by an odd number of symbols. Give the state diagram of a DFA with five states that recognizes F. (You may find it helpful first to find a 4-state NFA for the complement of F.)
- 1.14 a. Show that if M is a DFA that recognizes language B, swapping the accept and nonaccept states in M yields a new DFA recognizing the complement of B. Conclude that the class of regular languages is closed under complement.
  - **b.** Show by giving an example that if M is an NFA that recognizes language C, swapping the accept and nonaccept states in M doesn't necessarily yield a new NFA that recognizes the complement of C. Is the class of languages recognized by NFAs closed under complement? Explain your answer.
- 1.15 Give a counterexample to show that the following construction fails to prove Theorem 1.49, the closure of the class of regular languages under the star operation. Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ . Construct  $N = (Q_1, \Sigma, \delta, q_1, F)$  as follows. N is supposed to recognize  $A_1^*$ .
  - a. The states of N are the states of  $N_1$ .
  - **b.** The start state of N is the same as the start state of  $N_1$ .
  - c.  $F = \{q_1\} \cup F_1$ . The accept states F are the old accept states plus its start state.
  - **d.** Define  $\delta$  so that for any  $q \in Q_1$  and any  $a \in \Sigma_{\varepsilon}$ ,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \notin F_1 \text{ or } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon. \end{cases}$$

(Suggestion: Show this construction graphically, as in Figure 1.50.)

 $<sup>^{7}</sup>$ In other words, you must present a finite automaton,  $N_{1}$ , for which the constructed automaton N does not recognize the star of  $N_{1}$ 's language.

| <sup>A</sup> a. | 0001*           | f. | ε          |
|-----------------|-----------------|----|------------|
| Аb.             | 0*1*            | g. | 1*01*01*   |
| c.              | 001 ∪ 0*1*      | h. | 10(11*0)*0 |
| Ad.             | 0*1*0*1* U 10*1 |    | 1011       |
| e.              | (01)*           | j. | $\Sigma^*$ |

- 1.51 Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection, and complement.
  - a.  $\{0^n 1^m 0^n | m, n \ge 0\}$
  - Ab.  $\{0^m 1^n | m \neq n\}$
  - c.  $\{w | w \in \{0,1\}^* \text{ is not a palindrome}\}^8$
  - \*d.  $\{wtw | w, t \in \{0,1\}^{+}\}$
- 1.52 Let  $\Sigma = \{1, \#\}$  and let

$$Y = \{w | w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ each } x_i \in 1^*, \text{ and } x_i \ne x_j \text{ for } i \ne j\}.$$

Prove that Y is not regular.

1.53 Let  $\Sigma = \{0,1\}$  and let

 $D = \{w | w \text{ contains an equal number of occurrences of the substrings 01 and 10}\}.$ 

Thus  $101 \in D$  because 101 contains a single 01 and a single 10, but 1010  $\notin D$  because 1010 contains two 10s and one 01. Show that D is a regular language.

- 1.54 Let Σ = {a,b}. For each k ≥ 1, let C<sub>k</sub> be the language consisting of all strings that contain an a exactly k places from the right-hand end. Thus C<sub>k</sub> = Σ\*aΣ<sup>k-1</sup>. Describe an NFA with k + 1 states that recognizes C<sub>k</sub> in terms of both a state diagram and a formal description.
- 1.55 Consider the languages  $C_k$  defined in Problem 1.54. Prove that for each k, no DFA can recognize  $C_k$  with fewer than  $2^k$  states.
- 1.56 Let  $\Sigma = \{a, b\}$ . For each  $k \geq 1$ , let  $D_k$  be the language consisting of all strings that have at least one a among the last k symbols. Thus  $D_k = \Sigma^* \mathbf{a} (\Sigma \cup \varepsilon)^{k-1}$ . Describe a DFA with at most k+1 states that recognizes  $D_k$  in terms of both a state diagram and a formal description.
- 1.57 a. Let A be an infinite regular language. Prove that A can be split into two infinite disjoint regular subsets.
  - b. Let B and D be two languages. Write  $B \subseteq D$  if  $B \subseteq D$  and D contains infinitely many strings that are not in B. Show that if B and D are two regular languages where  $B \subseteq D$ , then we can find a regular language C where  $B \subseteq C \subseteq D$ .

<sup>&</sup>lt;sup>8</sup>A palindrome is a string that reads the same forward and backward.

- 1.58 Let N be an NFA with k states that recognizes some language A.
  - a. Show that if A is nonempty, A contains some string of length at  $m_{\text{ost }k}$ .
    - a. Show that if A is a sample, that part (a) is not necessarily true if you replace
      b. Show, by giving an example, that part (a) is not necessarily true if you replace both A's by  $\overline{A}$ .
    - c. Show that if  $\overline{A}$  is nonempty,  $\overline{A}$  contains some string of length at most  $2^k$
    - d. Show that the bound given in part (c) is nearly tight; that is, for each k. Show that the bound grant and a language  $A_k$  where  $\overline{A_k}$  is nonempty and demonstrate an NFA recognizing a language  $A_k$  where  $\overline{A_k}$  is nonempty and where  $\overline{A_k}$ 's shortest member strings are of length exponential in k. Come as close to the bound in (c) as you can.
- \*1.59 Prove that for each n > 0, a language  $B_n$  exists where
  - **a.**  $B_n$  is recognizable by an NFA that has n states, and
  - **b.** if  $B_n = A_1 \cup \cdots \cup A_k$ , for regular languages  $A_i$ , then at least one of the  $A_i$ requires a DFA with exponentially many states.
- **1.60** A **homomorphism** is a function  $f: \Sigma \longrightarrow \Gamma^*$  from one alphabet to strings over another alphabet. We can extend f to operate on strings by defining f(w) = $f(w_1)f(w_2)\cdots f(w_n)$ , where  $w=w_1w_2\cdots w_n$  and each  $w_i\in \Sigma$ . We further extend f to operate on languages by defining  $f(A) = \{f(w) | w \in A\}$ , for any language A.
  - a. Show, by giving a formal construction, that the class of regular languages is closed under homomorphism. In other words, given a DFA M that recognizes B and a homomorphism f, construct a finite automaton M' that recognizes f(B). Consider the machine M' that you constructed. Is it a DFA in every case?
  - b. Show, by giving an example, that the class of non-regular languages is not closed under homomorphism.
- \*1.61 Let the *rotational closure* of language A be  $RC(A) = \{yx | xy \in A\}$ .
  - **a.** Show that for any language A, we have RC(A) = RC(RC(A)).
  - b. Show that the class of regular languages is closed under rotational closure.
- **1.62** Let  $\Sigma = \{0, 1, +, =\}$  and

 $ADD = \{x=y+z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$ Control of the Bor Saylor of Lot of

Show that ADD is not regular.

that have or least one a arrung the last \*1.63 If A is a set of natural numbers and k is a natural number greater than 1, let

 $B_k(A) = \{w | w \text{ is the representation in base } k \text{ of some number in } A\}.$ 

Here, we do not allow leading 0s in the representation of a number. For example,  $B_2(\{3,5\}) = \{14,404\}$  $B_2(\{3,5\}) = \{11,101\}$  and  $B_3(\{3,5\}) = \{10,12\}$ . Give an example of a set A for which  $B_3(\{3,5\}) = \{10,12\}$ . which  $B_2(A)$  is regular but  $B_3(A)$  is not regular. Prove that your example works

\*1.64 If A is any language, let  $A_{\frac{1}{2}}$  be the set of all first halves of strings in A so that

$$A_{\frac{1}{2}-} = \{x | \text{ for some } y, \ |x| = |y| \text{ and } xy \in A\}.$$

Show that if A is regular, then so is  $A_{\frac{1}{2}}$ .