微分中值定理

费马 (Fermat) 引理: 设函数 f(x) 在点 x_0 的某邻域 $U(x_0)$ 内有定义,并且在 x_0 处可导,如果对于任意的 $x \in U(x_0)$,有

$$f(x) \le f(x_0)$$
 or $f(x) \ge f(x_0)$

那么 $f'(x_0) = 0$

罗尔 (Rolle) 定理: 如果函数 f(x) 满足

- 在闭区间 [a,b] 上连续
- 在开区间 (a,b) 内可导
- 在区间端点处的函数值相等, f(a) = f(b)

那么在 (a,b) 内至少有一点 ξ $(a < \xi < b)$,使得 $f'(\xi) = 0$

拉格朗日中值定理 (Lagrange Median Theorem): 如果函数 f(x) 满足

- 在闭区间 [a,b] 上连续
- 在开区间 (a,b) 内可导

那么在 (a,b) 内至少有一点 ξ $(a < \xi < b)$, 使等式

$$f(b) - f(a) = f'(\xi)(b - a)$$

成立

如果函数 f(x) 在区间 I 上连续,I 内可导且导数恒为零,那么 f(x) 在区间 I 上是一个常数

柯西 (Cauchy) 中值定理: 如果函数 f(x) 及 g(x) 满足

- 在闭区间 [a,b] 上连续
- 在开区间 (a,b) 内可导
- 对任 $x \in (a,b), \ q'(x) \neq 0$

那么在 (a,b) 内至少有一点 ξ ,使等式

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

成立

洛必达法则 L'Hôpital's rule

设

• 当 $x \to a$ 时,函数 f(x) 及 g(x) 都趋向于零

• 在点 a 的某个去心邻域内,f'(x) 及 g'(x) 都存在,且 $g'(x) \neq 0$

• $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在(或为无限大)

则

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

设

- 当 $x \to \infty$ 时,函数 f(x) 及 g(x) 都趋向于零
- 当 |x| > N 时 f'(x) 及 g'(x) 都存在,且 $g'(x) \neq 0$
- $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在(或为无限大)

则

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

泰勒公式 Taylor's Formula

泰勒中值定理 1: 如果函数 f(x) 在 x_0 处具有 n 阶导数,那么存在 x_0 的一个邻域,对于该邻域内的任一 x,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中

$$R_n(x) = o((x - x_0)^n)$$

泰勒中值定理 2: 如果函数 f(x) 在 x_0 的摸个邻域 $U(x_0)$ 内具有 (n+1) 阶导数,那么对于任意 $x \in U(x_0)$,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

这里 ξ 是 x_0 与 x 之间的某个值(R_n 被称为拉格朗日余项 Lagrange form)

在泰勒公式中将 x_0 取为 0,则有麦克劳林 (Maclaurin) 公式

函数的单调性与曲线的凹凸性

设函数 y = f(x) 在 [a,b] 上连续,在 (a,b) 内可导

- 如果在 (a,b) 内 $f'(x) \ge 0$,且等号仅在有限点成立,那么函数在 [a,b] 上单调增加
- 如果在 (a,b) 内 $f'(x) \leq 0$,且等号仅在有限点成立,那么函数在 [a,b] 上单调减少

设 f(x) 在区间 I 上连续,如果对 I 上任意两点 x_1 , x_2 恒有

$$f(\frac{x_1+x_2}{r}) < \frac{f(x_1)+f(x_2)}{2}$$

那么称 f(x) 在 I 上的图形是凹的 (concave up) 如果恒有

$$f(\frac{x_1+x_2}{x}) > \frac{f(x_1)+f(x_2)}{2}$$

那么称 f(x) 在 I 上的图形是凹的 (concave down)

设 f(x) 在 [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数,那么

- 若在 (a,b) 内 f''(x) > 0,则 f(x) 在 [a,b] 上是凹的
- 若在 (a,b) 内 f''(x) < 0,则 f(x) 在 [a,b] 上是凸的

如果函数在通过点 $(x_0, f(x_0))$ 时,凹凸性发生了改变,那么就称这一点为曲线的拐点 point of inflection (POI)

函数的单调性与曲线的凹凸性

设函数 f(x) 在点 x_0 的某个邻域 $U(x_0)$ 内有定义,如果对于去心邻域 $\mathring{U}(x_0)$ 内任意 x,有

$$f(x) < f(x_0)$$
 or $f(x) > f(x_0)$

那么就称 $f(x_0)$ 时函数 f(x) 的一个极大值(或极小值)

设函数 f(x) 在 x_0 处可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$

设函数 f(x) 在点 x_0 处连续,且在 x_0 的某去心邻域 $\mathring{U}(x_0,\delta)$ 内可导

- 若 $x \in (x_0 \delta, x_0)$ 时,f'(x) > 0,而 $x \in (x_0, x_0 + \delta)$ 时,f'(x) < 0,则 f(x) 在 x_0 处取得极大值
- 若 $x \in (x_0 \delta, x_0)$ 时,f'(x) < 0,而 $x \in (x_0, x_0 + \delta)$ 时,f'(x) > 0,则 f(x) 在 x_0 处取得极小值

设函数 f(x) 在 x_0 处具有二阶导数且 $f'(x_0) = 0, f''(x_0) \neq 0$,则

- 当 $f''(x_0) < 0$ 时,函数 f(x) 在 x_0 处取得极大值
- $\exists f''(x_0) > 0$ 时,函数 f(x) 在 x_0 处取得极小值

曲率 curvature

弧微分
$$\mathbf{d}s = \sqrt{1 + y'^2} \mathbf{d}x$$

曲率
$$\kappa = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{(1 + y'^2)^{3/2}} = \frac{\|\vec{r'} \times \vec{r''}\|}{\|\vec{r'}\|^3}$$

曲率半径 ρ 与曲率 κ 互为倒数 ($\rho \kappa = 1$)

当点 (x,f(x)) 沿曲线 C 移动式,相应的曲率中心 D 的轨迹曲线 G 称为曲线 C 的渐屈线,而曲线 C 称为曲线 G 的渐伸线,其方程为 $\begin{cases} \alpha=x-\frac{(1+y'^2)}{y''}y'\\ \beta=y+\frac{1+y'^2}{y''} \end{cases}$

牛顿-拉弗森方法(牛顿迭代法)Newton-Raphson method

寻找一点 x 使得 f(x) = 0,以任意 x_0 为起点进行迭代

$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$