Group Project

Approfondimento Sperimentale

Basi di Dati Multimediali

Camoia Andrea Primicino Linda Vitturini Davide

Task 1-2

Feature Extraction

- Color Moments
- Histogram of Gradients
- Resnet Layers

Extracted features structure: <class 'list'>

Number of objects: 3006

Extracted features keys: dict_keys(['file_path', 'class', 'cm', 'hog', 'avgpool', 'layer3', 'fc'])

Feature's Shapes

Feature's Name	Feature's Shape	
"file_path"	Variable (String)	
"class"	Variable (String)	
"cm"	300	
"hog"	900	
"avgpool"	1024	
"layer3"	1024	
"fc"	1000	

Task 3

Distance and Similarity

Metric distance Resnet

Metric used: Euclidean for HOG

Similarity: Cosine_similiraty_search for ResNet

result: tabulate(results, headers='keys', tablefmt='psql')

Distance and Similarity

image_name	file_path	class	distance_score
 brain tumor 0493.jpg		+ brain_tumor	7367 . 01
	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0501.jpg	brain_glioma	7296.7
brain_glioma_0137.jpg	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0137.jpg	brain_glioma	7245.24
brain_glioma_0793.jpg	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0793.jpg	brain_glioma	7234.57
brain_glioma_0356.jpg	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0356.jpg	brain_glioma	7119.43
brain_tumor_0021.jpg	/workspaces/dbm25/data/Part1/Part1/brain_tumor/brain_tumor_0021.jpg	brain_tumor	7082.83
brain_menin_0450.jpg	/workspaces/dbm25/data/Part1/Part1/brain_menin/brain_menin_0450.jpg	brain_menin	7022.57
brain menin 0905.jpg	/workspaces/dbm25/data/Part1/Part1/brain menin/brain menin 0905.jpg	brain menin	6994.54
brain_glioma_0597.jpg	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0597.jpg	brain_glioma	6993.61
brain glioma 0662.jpg	/workspaces/dbm25/data/Part1/Part1/brain glioma/brain glioma 0662.jpg	brain glioma	6984.74
brain tumor 0182.jpg	/workspaces/dbm25/data/Part1/Part1/brain tumor/brain tumor 0182.jpg	brain tumor	6908.79
brain glioma 0051.jpg		brain glioma	6897.11
brain_tumor_0615.jpg	/workspaces/dbm25/data/Part1/Part1/brain_tumor/brain_tumor_0615.jpg	brain_tumor	6607.69
brain glioma 0532.jpg	/workspaces/dbm25/data/Part1/Part1/brain_glioma/brain_glioma_0532.jpg	brain glioma	6571.41
brain menin 0937.jpg	/workspaces/dbm25/data/Part1/Part1/brain_menin/brain_menin_0937.jpg	brain_menin	0
+	+	++	· +

Task 4

K-Means K-Neighbors

K-Neighbors -> Measure: Eclidean

Model: ResNet

Voting + Distance

Feature-Space: Part2

K-Means -> Similarity: Cosine

Model: ResNet

Classification: K-NN

Class	Votes	
brain_glioma	34	
brain_tumor	11	

Label:	brain-glioma
Precisione	0.9688
Recall:	0.9394
F1-score:	0.9394

image_path= "brain_glioma_1045.jpg "feature_model="layer3",

k=2,

measure="euclidean")

Label:	brain-tumor
Precisione	0.8974
Recall:	1.0000
F1-score:	0.9459

Classification: K-Mean

Class	Score
brain_tumor	0.8302
brain_menin	0.7790

image_path= "brain-tumor-1007.jpg

"feature_model="hog",

k=2,

measure="cosine"

Title

Task 5

Latent Feature Extraction

- Singular Value Decomposition (SVD)
- K-Means
- Latent Dirichlet Allocation (LDA)

Singular Value Decomposition

- Feature Space Used: HoG

Core Matrix

Top-K Latent
Feature Extraction

Core Matrix

Top-K Latent
Feature Extraction

- Elbow Point Index: 42

Feature Weighing

SVD decomposition extracts latent features according to their expressive power.

Weights = Latent Feature Values

Feature Weighing

SVD decomposition extracts latent features according to their expressive power.

Weights = Latent Feature Values

K-Means Decomposition

- Latent Features: [f1, f2, f3]

K-Means Decomposition

- Feature Space Used: layer3
- Latent Features: [f1, f2, f3]

'brain_glioma_0051.jpg': [[0.9760344 1.] [0.96796572 2.] [0.93644494 0.]]

Latent Dirichlet Allocation

- Number of Topic: 5
- Shape of LDA Result: (3006, 5)

```
'brain_glioma_0051.jpg':
        [0.444327571835563,
        0.0006674491134033486,
        0.0006686475889602517,
        0.0006683056933277641,
        0.5536680257687456]
```

Task 6

Inherent Dimensionality

- Original Latent Feature Space: (3006, 900)

We obtain the latent features that do not contribute to the representation of objects by calculating the rank of the Core Matrix S.

Inherent Dimensionality

- Original Latent Feature Space: (3006, 900)

Inherent Dimensionality for the entire part one Dataset:

- Matrix rank (inherent dimensionality): 760

Inherent Dimensionality

- Original Latent Feature Space: (3006, 900)

Inherent Dimensionality for each label:

- Brain_Glioma: 760 - Brain_Tumor: 760 - Brain Menin: 760

These values are calculated from the Core Matrix obtained in each Decomposition on the individual label.

Task 7

Latent Feature Labeling

A representation for each label is obtained by averaging the latent features of the object with that label.

- Similarity Score: Cosine

- Feature Model: HoG

Latent Feature Labeling

Label	Precision	Recall	F1-Score
Brain_Glioma	0.2922	0.2954	0.2938
Brain_Menin	0.3433	0.3423	0.3428
Brain_Tumor	0.2404	0.2385	0.2395

Overall accuracy: 0.2921

Task 8

Clustering

DB-Scan

Using DB-Scan to identify clusters within the same class.

This can be used to identify possible biases or similarities.

Visualization:

- 2-Dimensional mapping (UMAP)
- Example images of each cluster

Clustering

Clustering

Cluster di brain_menin con Thumbnails

Task 9

Decision Tree and m-NN Classifiers

Two different classification methods were employed.

Part 1 data was splitted into Train and Test in order to compute metrics.

Decision Tree Hyper-parameters:

- Tuned with Grid Search
- Leveraged Recall, Precision and F1-score

Decision Tree Visualization

m-NN Classifier: Results

Label	Precision	Recall	F1-score
"brain_glioma"	0.9118	0.9394	0.9254
"brain_menin"	0.8889	0.7742	0.8276
"brain_tumor"	0.8974	0.9722	0.9333

* We selected "layer_3" as feature model and Euclidean Distance as metric

Task 10

Locality Sensitive Hashing

Indexing technique

Based on Layers (L) and Hashing Functions (h):

- Layers (L) are independent hash tables that increase collision chances for similar items
- Hashing functions (h) are generated via random projections and concatenated per table

Locality Sensitive Hashing

So for instance...

With L=2 and h=2 each item (vector) is indexed in 2 different buckets (h) and 2 different tables (L)

```
Indexed vector 0 with hash values: [(1, -2), (2, 0)]
Indexed vector 1 with hash values: [(1, -1), (1, 0)]
Indexed vector 2 with hash values: [(1, -1), (2, 1)]
...
```


Locality Sensitive Hashing

Querying indexed data

1. AND within each table:

For each L, for each h compute h(Item) and retrieve items matching both.

2. OR across tables:

Take the union of items found in each *L*.

3. Rank:

Rerank that union by a given metric.

Group Project

Approfondimento Sperimentale

Thank you for your attention!

Camoia Andrea Primicino Linda Vitturini Davide

