

Report No.: DDT-R16Q0719-4E2

■ **Issued Date:** Aug. 27, 2016

FCC CERTIFICATION TEST REPORT

FOR

Applicant	:	Grid Connect Inc.	
Address	•	1630 W. Diehl Rd. Naperville, Illinois 60563 USA	
Equipment under Test	:	GC-BLE300-SMT-INT	
Model No.	:		
FCC ID		2AFC3BLE300SMTINT	
Manufacturer		Globalscale Technologies Inc.	
Address	:	5F, No. 2 Building, Minxing Industrial Park, Minkang Road, Minzhi Street, Baoan District, Shenzhen, Guangdong, China	

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-22891499 <u>Http://www.dgddt.com</u>

TABLE OF CONTENTS

	Test report declares	4
1.	Summary of test results	5
2.	General test information	6
2.1.	Description of EUT	6
2.2.	Accessories of EUT	6
2.3.	Assistant equipment used for test	6
2.4.	Block diagram of EUT configuration for test	6
2.5.	Test environment conditions	7
2.6.	Deviations of test standard	7
2.7.	Test laboratory	7
2.8.	Measurement uncertainty	7
3.	Equipment used during test	8
4.	6dB Bandwidth and 99% Bandwidth	9
4.1.	Block diagram of test setup	9
4.2.	Limits	9
4.3.	Test Procedure	9
4.4.	Test Result	9
4.5.	Original test data	10
5.	Maximum Peak Output Power	11
5.1.	Block diagram of test setup	11
5.2.	Limits	11
5.3.	Test Procedure	11
5.4.	Test Result	11
6.	Power Spectral Density	12
6.1.	Block diagram of test setup	12
6.2.	Limits	12
6.3.	Test Procedure	12
6.4.	Test Result	12
6.5.	Original test data	12
7.	Emissions in non-restricted frequency bands	14
7.1.	Block diagram of test setup	14
7.2.	Limits	14
7.3.	Test Procedure	14
7.4.	Test Result	15
7.5.	Original test data	15
8.	Emissions in restricted frequency bands	16
8.1.	Block diagram of test setup	16

8.2.	Limit	17
8.3.	Test Procedure	18
8.4.	Test result	19
9.	Band Edge Compliance	23
9.1.	Block diagram of test setup	23
9.2.	Limit	23
9.3.	Test Procedure	23
9.4.	Test result	23
10.	Power Line Conducted Emission	28
10.1.	Block diagram of test setup	28
10.2.	Power Line Conducted Emission Limits(Class B)	28
10.3.	Test Procedure	28
10.4.	Test Result	29
11.	Antenna Requirements	32
11.1.	Limit	32
11.2.	Result	32
12.	Test setup photograph	33
13.	Photos of the EUT	35

Applicant	:	Grid Connect Inc.	
Address	:	1630 W. Diehl Rd. Naperville, Illinois 60563 USA	
Equipment under Test	:	GC-BLE300-SMT-INT	
Model No.	:	/	
Manufacturer	:	Globalscale Technologies Inc.	
Address	:	5F, No. 2 Building, Minxing Industrial Park, Minkang Road, Minzhi Street, Baoan District, Shenzhen, Guangdong, China	

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C: 2015.

Test procedure used:

ANSI C63.10:2013, ANSI C63.4:2014.

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	DDT-R16Q0719-4E2		
Date of Test:	Aug. 20, 2016-Aug. 27, 2016	Date of Report:	Aug. 27, 2016

Prepared By:

Leo Liu/Engineer

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Kevin

ng/EMC Mayager

1. Summary of test results

Description of Test Item	Standard	Results
	FCC Part 15: 15.247	
6dB Bandwidth and 99% Bandwidth	ANSI C63.10 :2013	PASS
	ANSI C63.4:2014	
	FCC Part 15: 15.247	
Peak Output Power	ANSI C63.10 :2013	PASS
	ANSI C63.4:2014	
	FCC Part 15: 15.247	
Power Spectral Density	ANSI C63.10 :2013	PASS
	ANSI C63.4:2014	
	FCC Part 15: 15.247	
Emissions in non-restricted frequency bands	ANSI C63.10 :2013	PASS
	ANSI C63.4:2014	
	FCC Part 15: 15.209	
Transmitter spurious emission	FCC Part 15: 15.247	PASS
	ANSI C63.10: 2013	
	FCC Part 15: 15.209	
Band Edge Compliance	FCC Part 15: 15.247	PASS
r	ANSI C63.10: 2013	
	FCC Part 15: 15.207	D. 1.00
Power Line Conducted Emission	ANSI C63.10: 2013	PASS
Antenna requirement	FCC Part 15: 15.203	PASS

2. General test information

2.1. Description of EUT

EUT* Name	:	GC-BLE300-SMT-INT	
Model Number	:	/	
EUT function description	:	Please reference user manual of this device	
Power supply	:	DC 5V from adapter DC 3.7V from built-in battery	
Radio Specification	:	Bluetooth V4.2 (BLE)	
Operation frequency	••	2402MHz -2480MHz	
Modulation	••	GFSK	
Data rate	:	1Mbps	
Antenna Type	:	Chip antenna, maximum PK gain: 0.5dBi	
Date of Receipt	:	Aug. 9, 2016	
Sample Type	:	Series production	

Report No.: DDT-R16Q0719-4E2

Note 1: EUT is the ab. of equipment under test.

Note 3: This report only for Bluetooth LE mode of EUT, for Bluetooth BDR and EDR mode was reported in another test report.

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number or Type	Serial No.	Other
/	/	/	/	/

2.3. Assistant equipment used for test

Description of Assistant equipment	Manufacturer	Model number or Type	EMC Compliance	Other
Notebook	DELL	Latitude D610	FCC DOC	00045-534-136-300
Mouse	HP	M-SBF96	FCC DOC	417441-001

2.4. Block diagram of EUT configuration for test

Test software: DutApiBTMB300BrdigeUart.exe

The test software was used to control EUT work in Continuous TX mode, and select test channel, wireless mode as blow table:

Tested mode, channel, information				
Mode	Channel	Frequency (MHz)		
	CH0	2402		
GFSK	CH19	2440		
	CH39	2480		

Report No.: DDT-R16Q0719-4E2

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

2.5. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

2.6. Deviations of test standard

No Deviation.

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd

confidence level using a coverage factor of k=2.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong

Province, China, 523808 Tel: +86-0769-22891499 http://www.dgddt.com

FCC Registration Number: 270092 Industry Canada site registration number: 10288A-1

2.8. Measurement uncertainty

Test Item	Uncertainty		
Bandwidth	±1.1%		
Dook Outmut Down(Conducted)(Streetman analyzan)	0.86 dB(10 MHz $\leq f < 3.6$ GHz);		
Peak Output Power(Conducted)(Spectrum analyzer)	$1.38dB(3.6GHz \le f < 8GHz)$		
Peak Output Power(Conducted)(Power Sensor)	0.74dB		
Daniel Danie	$0.74 dB(10 MHz \le f < 3.6 GHz);$		
Power Spectral Density	1.38dB(3.6GHz≤ f < 8GHz)		
	0.86 dB(10 MHz $\leq f < 3.6$ GHz);		
Conducted spurious emissions	1.40dB(3.6GHz≤ f < 8GHz)		
	$1.66dB(8GHz \leqslant f < 22GHz)$		
Uncertainty for radio frequency (RBW<20KHz)	3×10-8		
Temperature	±0.4℃		
Humidity	±2%		
Uncertainty for Radiation Emission test	±3.14 dB (Antenna Polarize: V)		
(30MHz-1GHz)	±3.16 dB (Antenna Polarize: H)		
Uncertainty for Radiation Emission test	±4.14dB(1-6GHz)		
(1GHz-18GHz)	±4.46dB (6GHz-18Gz)		
Uncertainty for Power line conduction emission test	2.44dB (150KHz-30MHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95%			

3. Equipment used during test

Equipment Manufacturer		Model No.	Serial No.	Last Cal.	Cal. Interval			
RF Connected Test								
Spectrum analyzer	R&S	FSU26	1166.1660.26	2015/10/24	1Year			
Vertor Signal Generator	R&S	SMBV100A	1407.6004K02	2015/10/24	1Year			
RF Signal Generator	R&S	SMR20	1104.0002.20	2015/10/24	1Year			
Power Sensor	Agilent	U2021XA	MY55150010	2016/04/18	1Year			
Power Sensor	Agilent	U2021XA	MY55150011	2016/04/19	1Year			
DC Power Source	MATRIS	MPS-3005L-3	D813058W	2015/10/24	1Year			
Attenuator	Mini-Circuits	BW-S10W2	101109	2016/08/18	1Year			
RF Cable	Micable	C10-01-01-1	100309	2016/08/18	1Year			
Test Software	JS Tonscend	JS1120-2	Ver.2.5	N/A	N/A			
USB Data acquisition	Agilent	U2531A	TW55043503	N/A	N/A			
Auto control Unit	JS Tonscend	JS0806-2	158060010	N/A	N/A			
Radiated Emission Tes	Radiated Emission Test							
EMI Test Receiver	R&S	ESU8	100316	2015/10/24	1Year			
Spectrum analyzer	R&S	FSU26	1166.1660.26	2015/10/24	1Year			
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	2016/05/30	1 Year			
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	2015/10/24	1 Year			
Double Ridged Horn Antenna	R&S	HF907	100276	2015/10/31	1 Year			
Pre-amplifier	A.H.	PAM-0118	360	2016/08/18	1 Year			
RF Cable	HUBSER	CP-X2	W11.03	2015/10/24	1Year			
RF Cable	HUBSER	CP-X1	W12.02	2015/10/24	1 Year			
MI Cable	HUBSER	C10-01-01-1M	1091629	2015/10/24	1 Year			
Test software	Audix	E3	V 6.11111b	/	/			
Power Line Conducted	Emissions Test							
Test Receiver	R&S	ESU8	100316	2015/10/24	1 Year			
LISN 1	R&S	ENV216	101109	2015/10/24	1 Year			
LISN 2	R&S	ESH2-Z5	100309	2015/10/24	1 Year			
Pulse Limiter	R&S	ESH3-Z2	101242	2015-10-24	1 Year			
CE Cable 1	HUBSER	ESU8/RF2	W10.01	2015/10/24	1 Year			
Test software	Audix	E3	V 6.11111b	/	/			

4. 6dB Bandwidth and 99% Bandwidth

4.1. Block diagram of test setup

4.2. Limits

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 KHz

4.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

RBW: 100KHz
VBW: 300KHz
Detector Mode: Peak
Sweep time: auto
Trace mode Max hold

(3) Allow the trace to stabilize, measure the 6dB and 99% bandwith of signal.

4.4. Test Result

Mode	Channel	6dB bandwidth Result (MHz)	99% bandwidth Result (MHz)	6 dB width Limit (MHz)	Conclusion
	CH0	0.676	1.064	>0.5	PASS
GFSK	CH19	0.684	1.064	>0.5	PASS
	CH39	0.688	1.064	>0.5	PASS
Test Date: Aug. 20, 2016 Test Engineer: Toby Ren					

4.5. Original test data

5. Maximum Peak Output Power

5.1. Block diagram of test setup

Same with 4.1

5.2. Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: DDT-R16Q0719-4E2

5.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

RBW: 1MHz VBW: 3MHz

Span >1.5x 6dB bandwidth

Detector Mode: Peak
Sweep time: auto
Trace mode Max hold

(3) Allow the trace to stabilize, Use the instrument's band/channel power measurement function with the

band limits set equal to the DTS bandwidth edges measure out the PK output power.

5.4. Test Result

Mode	Freq (MHz)	Peak Output Power (dBm)	Limit (dBm)	Conclusion	
	2402	3.550	30	PASS	
GFSK	2440	3.540	30	PASS	
	2480	3.320	30	PASS	
Test Date : Aug. 20, 2016 Test Engineer : Toby Ren					

6. Power Spectral Density

6.1. Block diagram of test setup

Same with 4.1

6.2. Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: DDT-R16Q0719-4E2

6.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

Center frequency DTS Channel center frequency

RBW: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$

VBW: $\geq 3RBW$

Span 1.5times the DTS bandwidth

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- (4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.4. Test Result

EUT Set Mode	Channel	Result (dBm)		
	СН0	2.860		
GFSK	CH19	2.840		
	CH39	2.620		
Limit: <8dBm/3KHz Conclusion: PASS				
Test Date : Aug. 20, 2016 Test Engineer : Toby Ren				

6.5. Original test data

Graphs

7. Emissions in non-restricted frequency bands

7.1. Block diagram of test setup

Same with 4.1

7.2. Limits

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Report No.: DDT-R16Q0719-4E2

7.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Establish a reference level by using the following procedure:

Center frequency DTS Channel center frequency

RBW: 100KHz VBW: 300KHz

Span 1.5times the DTS bandwidth

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.
- (4) Set the spectrum analyzer as follows:

RBW: 100KHz VBW: 300KHz

Span Encompass frequency range to be measured

Number of measurement points $\geq \text{span/RBW}$

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.4. Test Result

EUT Set Mode	CH or Frequency	Measured Range	Result (dBm)			
GFSK	CH0	2.375GHz-2.405GHz	PASS			
	СН39	2.476GHz-2.506GHz	PASS			
Test Date: Aug. 20,	Test Date : Aug. 20, 2016 Test Engineer : Toby Ren					

Report No.: DDT-R16Q0719-4E2

7.5. Original test data

8. Emissions in restricted frequency bands

8.1. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.2. Limit

8.2.1 FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

8.2.2 FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	$\mu V/m$	$dB(\mu V)/m$
$0.009 \sim 0.490$	300	2400/F(KHz)	67.6-20log(F)
$0.490 \sim 1.705$	30	24000/F(KHz)	87.6-20log(F)
$1.705 \sim 30.0$	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

Above 1000	3	74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)
------------	---	---

Report No.: DDT-R16Q0719-4E2

Note: (1)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz.Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

8.2.3 Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

8.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for blow 1G and 150 cm above the ground plane inside a semi-anechoic chamber for above 1G.
- (2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Trilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
 - (b) Change work frequency or channel of device if practicable.
 - (c) Change modulation type of device if practicable.
 - (d) Change power supply range from 85% to 115% of the rated supply voltage
 - (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces

highest emissions.

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 9KHz to 30MHz and 18GHz to 25GHzso below final test was performed with frequency range from 30MHz to 18GHz.

Report No.: DDT-R16Q0719-4E2

- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (5) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (6)The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 3MHz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure).

(8) X axis, Y axis, Z axis are tested, and worse setup X axis is reported.

8.4. Test result

PASS. (See below detailed test result)

All the emissions except fundamental emission from 9KHz to 25GHz were comply with 15.209 limit. Note1: According exploratory test no any obvious emission were detected from 9KHz to 30MHz and 18GHz to 25GHz, so the final test was performed with frequency range from 30MHz to 18GHz and recorded in below.

Note2: For emissions below 1GHz, according exploratory explorer test, when change Tx mode and channel, have no distinct influence on emissions level, so for emissions below 1GHz, the final test was only performed with EUT working in GFSK, Tx 2440MHz mode.

Note3: For emissions above 1GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

Radiated Emission test (below 1GHz)

TR-4-E-009 Radiated Emission Test Result

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT Model Number : /

Temp:24.5'C,Humi:55%,

Condition : Temp. 24.5 C, Hullin. 3570, Antenna/Distance : 2015 VULB9163/3m/VERTICAL

Memo : BLE

Data: 1

Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	172.60	26.29	8.66	4.74	39.69	43.50	-3.81	QP	VERTICAL
2	475.50	17.40	16.88	6.08	40.36	46.00	-5.64	QP	VERTICAL
3	827.49	12.81	21.48	7.20	41.49	46.00	-4.51	QP	VERTICAL
4	866.09	12.01	22.10	7.32	41.43	46.00	-4.57	QP	VERTICAL
5	903.31	12.14	22.37	7.43	41.94	46.00	-4.06	QP	VERTICAL
6	942.13	11.45	22.96	7.53	41.94	46.00	-4.06	QP	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT **Model Number** : /

 $\begin{array}{lll} \textbf{Condition} & : & \begin{array}{lll} Temp: 24.5 \text{'C,Humi:} 55\%, \\ Press: 100.1 \text{kPa} \end{array} & \textbf{Antenna/Distance} & : 2015 \text{ VULB9163/3m/HORIZONTAL} \end{array}$

Memo : BLE

Data: 2

Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	750.11	13.47	19.91	6.97	40.35	46.00	-5.65	QP	HORIZONTAL
2	787.85	16.03	20.86	7.09	43.98	46.00	-2.02	QP	HORIZONTAL
3	827.49	15.03	21.48	7.20	43.71	46.00	-2.29	QP	HORIZONTAL
4	866.09	13.99	22.10	7.32	43.41	46.00	-2.59	QP	HORIZONTAL
5	903.31	13.68	22.37	7.43	43.48	46.00	-2.52	QP	HORIZONTAL
6	942.13	12.38	22.96	7.53	42.87	46.00	-3.13	QP	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Nauiateu	EIIII22101	ıı test (at	ove 16	TNZ)								
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	Polarization			
(MHz)	level	Factor	Factor	Loss	Level	(dBµ	(dB)	type				
	$(dB\mu V)$	(dB/m)	(dB)	(dB)	$(dB\mu V/m)$	V/m)						
				GFSK '	Tx mode 2402	MHz						
1322.00	49.61	24.70	29.37	4.49	49.43	74.00	-24.57	Peak	HORIZONTAL			
4804.00	35.61	33.74	29.32	8.48	48.51	74.00	-25.49	Peak	HORIZONTAL			
7206.00	33.37	36.37	30.49	10.60	49.85	74.00	-24.15	Peak	HORIZONTAL			
1329.00	51.26	24.73	29.37	4.49	51.11	74.00	-22.89	Peak	VERTICAL			
4804.00	40.42	33.74	29.32	8.48	53.32	74.00	-20.68	Peak	VERTICAL			
7206.00	32.43	36.37	30.49	10.60	48.91	74.00	-25.09	Peak	VERTICAL			
	GFSK Tx mode 2440MHz											
1357.00	49.36	24.88	29.34	4.57	49.47	74.00	-24.53	Peak	HORIZONTAL			
4880.00	33.06	33.72	29.33	8.56	46.01	74.00	-27.99	Peak	HORIZONTAL			
7320.00	32.29	36.46	30.59	10.71	48.87	74.00	-25.13	Peak	HORIZONTAL			
1329.00	50.13	24.73	29.37	4.49	49.98	74.00	-24.02	Peak	VERTICAL			
4880.00	32.69	33.72	29.33	8.56	45.64	74.00	-28.36	Peak	VERTICAL			
7320.00	32.83	36.46	30.59	10.71	49.41	74.00	-24.59	Peak	VERTICAL			
				GFSK '	Tx mode 2480	MHz						
1322.00	49.49	24.70	29.37	4.49	49.31	74.00	-24.69	Peak	HORIZONTAL			
4960.00	35.15	33.71	29.34	8.63	48.15	74.00	-25.85	Peak	HORIZONTAL			
7440.00	33.61	36.55	30.70	10.80	50.26	74.00	-23.74	Peak	HORIZONTAL			
1329.00	51.10	24.73	29.37	4.49	50.95	74.00	-23.05	Peak	VERTICAL			
4960.00	37.40	33.71	29.34	8.63	50.40	74.00	-23.60	Peak	VERTICAL			
7440.00	33.81	36.55	30.70	10.80	50.46	74.00	-23.54	Peak	VERTICAL			
Result: Pa	SS											
Test Date	: Aug. 24,	2016					П	Test Engin	eer : Toby Ren			

Note: Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

9. Band Edge Compliance

9.1. Block diagram of test setup

9.2. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz and 5725MHz to 5850MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

Same with clause 8.3 except change investigated frequency range from 2310MHz to 2415MHz and 2475MHz to 2500MHz.

Remark: All restriction band have been tested, and only the worse case is shown in report.

9.4. Test result

PASS. (See below detailed test result)

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT Model Number :

Memo : BLE

Data: 7

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	2377.54	40.21	29.73	29.39	6.01	46.56	74.00	-27.44	Peak	HORIZONTAL
2	2390.00	44.04	29.78	29.41	6.01	50.42	74.00	-23.58	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT **Model Number** :

Memo : BLE

Data: 8

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	2375.56	41.24	29.72	29.38	6.01	47.59	74.00	-26.41	Peak	VERTICAL
2	2390.00	43.54	29.78	29.41	6.01	49.92	74.00	-24.08	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT **Model Number** :

Memo : BLE

Data: 13

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	2483.50	37.13	30.14	29.71	6.15	43.71	54.00	-10.29	Average	VERTICAL
2	2483.50	55.32	30.14	29.71	6.15	61.90	74.00	-12.10	Peak	VERTICAL
3	2484.08	37.98	30.14	29.71	6.15	44.56	54.00	-9.44	Average	VERTICAL
4	2484.08	55.84	30.14	29.71	6.15	62.42	74.00	-11.58	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 3m Chamber D:\2016 Report Data\16Q0719-4\RE.EM6

EUT : GC-BLE300-SMT-INT **Model Number** :

Power Supply : DC 5V From PC Test Mode : Tx mode GFSK CH39

Memo : BLE

Data: 14

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	2483.50	38.67	30.14	29.71	6.15	45.25	54.00	-8.75	Average	HORIZONTAL
2	2483.50	56.32	30.14	29.71	6.15	62.90	74.00	-11.10	Peak	HORIZONTAL
3	2484.00	39.06	30.14	29.71	6.15	45.64	54.00	-8.36	Average	HORIZONTAL
4	2484.00	56.85	30.14	29.71	6.15	63.43	74.00	-10.57	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

10. Power Line Conducted Emission

10.1. Block diagram of test setup

10.2. Power Line Conducted Emission Limits(Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

10.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

Report No.: DDT-R16Q0719-4E2

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

10.4. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means Peak detection; "----" mans Average detection

TR-4-E-010 Conducted Emission Test Result

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 1# Shield Room E:\2016 report data\16Q0719-4\CE.EM6

EUT : GC-BLE300-SMT-INT **Model Number** :

Memo : BLE

Data: 6

Item	Freq	Read	LISN	Cable	Result	Limit	Over	Detector	Phase
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	$(dB\mu V)$	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.16	14.33	9.61	0.02	33.82	55.69	-21.87	Average	NEUTRAL
2	0.16	24.07	9.61	0.02	43.56	65.69	-22.13	QP	NEUTRAL
3	0.40	14.81	9.61	0.02	34.30	47.77	-13.47	Average	NEUTRAL
4	0.40	20.79	9.61	0.02	40.28	57.77	-17.49	QP	NEUTRAL
5	0.49	18.04	9.61	0.02	37.53	46.10	-8.57	Average	NEUTRAL
6	0.49	22.96	9.61	0.02	42.45	56.10	-13.65	QP	NEUTRAL

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss

2. If QP Result comply with AV limit, AV Result is deemed to comply with AV limit

3. Test setup: RBW: 200Hz(9kHz—150kHz), 9kHz(150kHz—30MHz), Scan time: auto

TR-4-E-010 Conducted Emission Test Result

Report No.: DDT-R16Q0719-4E2

Test Site : DDT 1# Shield Room E:\2016 report data\16Q0719-4\CE.EM6

EUT : GC-BLE300-SMT-INT Model Number :

 $\begin{array}{lll} \textbf{Condition} & : \frac{\text{Temp:}24.5\text{'C,Humi:}55\%,}{\text{Press:}100.1\text{kPa}} & \textbf{LISN} & : 2015 \text{ ENV216/LINE} \\ \end{array}$

Memo : BLE

Data: 8

Item	Freq	Read	LISN	Cable	Result	Limit	Over	Detector	Phase
0.6.15		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.18	18.98	9.61	0.02	38.47	54.64	-16.17	Average	LINE
2	0.18	28.27	9.61	0.02	47.76	64.64	-16.88	QP	LINE
3	0.41	15.37	9.61	0.02	34.86	47.73	-12.87	Average	LINE
4	0.41	21.54	9.61	0.02	41.03	57.73	-16.70	QP	LINE
5	0.50	16.27	9.61	0.02	35.76	46.05	-10.29	Average	LINE
6	0.50	21.98	9.61	0.02	41.47	56.05	-14.58	QP	LINE

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss

- 2. If QP Result comply with AV limit, AV Result is deemed to comply with AV limit
- 3. Test setup: RBW: 200Hz(9kHz—150kHz), 9kHz(150kHz—30MHz), Scan time: auto

11. Antenna Requirements

11.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: DDT-R16Q0719-4E2

11.2. Result

The antennas used for this product is integrated antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0.5dBi.

12. Test setup photograph

13. Photos of the EUT

END OF REPORT