Curso de

Análisis Exploratorio de Datos

Maria Cruz
© @chelimsky

EDA

KDD

Knowledge Discovery in Databases

SEMMA

Sample, Explore, Modify, Model, and Assess

CRISP-DM

Cross Industry Standard Process for Data Mining

Metodología para poner orden

CRISP-DM

Communication

Data requirements

Data collection

Data Product

DATA SCIENCE

Data processing

Modeling and algorithm

EDA

Data cleaning

Etapas del EDA

Problem definition

Stage 1

Data analysis

Stage 3

Stage 2

Data preparation

Stage 4

Development and representation of the results

EDA

Comparación con análisis estadístico y análisis bayesiano

Análisis típicos de datos

Análisis clásico	Análisis bayesiano	EDA
Resultados directo a la comunicación	Prior probability	Cambio dinámico

Comparativo entre análisis clásico, bayesiano y EDA

AHMED, S. K. (2020). HANDS-ON EXPLORATORY DATA ANALYSIS WITH PYTHON; PERFORM EDA TECHNIQUES TO UNDERSTAND, SUMMARIZE, AND INVESTIGATE YOUR DATA. Place of publication not identified: PACKT Publishing.

Software tools para desarrollar EDA

EDA -SoftwarePython-Jupyter

EDA -Software AWS -SAGEMAKER

Fuente: https://aws.amazon.com/es/sagemaker/

EDA -Software AWS- EMR

Fuente:https://aws.amazon.com/blogs/big-data/build-a-concurrent-data-orchestration-pipeline-using-amazon-emr-and-apache-livy/

Google - Jupyter notebook cloud

Fuente:https://cloud.google.com/dataproc/docs/tutorials/jupyter-notebook?hl=es-419

Azure - Notebooks

Fuente: https://notebooks.azure.com/help/jupyter-notebooks

R - Rstudio

Fuente: https://blog.rstudio.com/2020/05/27/rstudio-1-3-release/

KNIME

SOFTWARE / PRICING / COMMUNITY / LEARNING / PARTNERS / ABOU

Download

End to End Data Science

At KNIME, we build software to create and productionize data science using one easy and intuitive environment, enabling every stakeholder in the data science process to focus on what they do best.

Fuente: https://www.knime.com/

Visualizaciones de EDA

Transformación de los datos

Estadística descriptiva

Distribución de los datos

Discreta o Continua

Continua

Cuando puede tomar cualquier valor dentro de un intervalo.

Discreta

Cuando no puede tomar ningún valor entre dos consecutivos.

Ejemplos

Continua

Temperaturas registradas en un observatorio; tiempo en recorrer una distancia en una carrera.

Discreta

Número de empleados de una fábrica; número de hijos; número de cuentas ocultas en Suiza.

Tipos de distribuciones

Conoce los diferentes tipos de distribución de datos: uniforme discreta, Bernoulli, binomio, binomio negativo, Poisson, geométrica, uniforme continua, normal (curva de campana), exponencial, gamma y beta.

Tipos de distribuciones

Cómo determinar la distribución

- 1. Realiza una representación gráfica de tus datos.
- 2. Descarta primero lo que no puede ser.
 - **a.** Si hay algún pico en el conjunto de datos, no puede ser una distribución uniforme discreta.
 - **b.** Si los datos tienen más de un pico, no es Poisson o binomial.
 - c. Si tiene una sola curva, no hay picos secundarios, y tiene una pequeña pendiente en cada lado, podría ser una distribución Poisson o gamma. Pero no podrá ser una distribución uniforme discreta.

Ajuste de la curva

 $R^2 = 0.99$

Medida de tendencia central

No se puede predecir el comportamiento individual, pero sí el comportamiento promedio.

Alejandro Quintela del Río

La ley de los grandes números

SIMÉON-DENIS POISSON

Dice que (bajo ciertas condiciones generales) la media de n variables a aleatorias $X_1, X_2, ..., X_n$ se aproxima a la media de las n medias $\mu_1, \mu_2, ..., \mu_n$ (donde $\mu_i = E(X_i)$)

$$rac{X_1 + X_2 + \ldots + X_n}{n} \longrightarrow rac{\mu_1 + \mu_2 + \ldots + \mu_n}{n}$$

El teorema del límite central

Cuando el tamaño de la muestra es lo suficientemente grande, la distribución de las medias sigue aproximadamente una distribución normal.

Medidas estadísticas

Media Mediana Moda Min
Max
Producto de valores
Suma acumulada

Medidas de dispersión

Desviación estándar

$$\sigma = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n - 1}}$$

La desviación estándar de una población repasa la cantidad de dispersión de los datos de una población entera.

Desviación estándar

Un valor bajo de la desviación típica indica que los números del conjunto están relativamente concentrados alrededor de la media.

Varianza

$$\sigma_n^2 = rac{1}{n} \sum_{i=1}^n \left(x_i - \overline{X}
ight)^2 = \left(rac{1}{n} \sum_{i=1}^n x_i^2
ight) - \overline{X}^2 = rac{1}{n^2} \sum_{i=1}^n \sum_{j>i} \left(x_i - x_j
ight)^2$$

La varianza es una medida de dispersión que representa la variabilidad de una serie de datos respecto a su media.

Asimetría estadística (Skewness)

Las medidas de asimetría son indicadores que permiten establecer el grado de simetría (o asimetría) que presenta una distribución de probabilidad de una variable aleatoria sin tener que hacer su representación gráfica.

Curtosis

Altura

La curtosis de una variable estadística/aleatoria es una característica de forma de su distribución de frecuencias/probabilidad.

Agrupamiento de datasets

Integración de datos

Pivot tables y cross-tabulations

Correlación

Análisis multivariable empleando el dataset Titanic

Paradoja de Simpson

Definición

Aparece en varios grupos de datos, desaparece cuando estos grupos se combinan y en su lugar aparece la tendencia contraria para los datos agregados.

La idea básica es que incluso una correlación elevada encontrada entre dos variables puede ser interpretada erróneamente.

Tenemos un conjunto de datos con una correlación negativa de 0.74

Fuente:https://commons.wikimedia.org/wiki/File:Simpsons_paradox_-_animation.gif

Pero si se consideran los grupos determinados por una tercera variable, se puede observar que, para cada grupo, la correlación obtenida para cada uno de ellos tiene una magnitud parecida, pero de signo contrario.

Correlación no implica causalidad

Cum hoc ergo propter hoc

con esto, por tanto a causa de esto

Correlación

A partir de ciertos datos obtenidos de cada una de esas variables uno estima si hay alguna relación entre ellas.

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

Fuente: https://www.tylervigen.com/spurious-correlations

Análisis de Series de Tiempo (TSA)

TSA con Open Power System Data

Desarrollo y evaluación de modelos

Etapas de evaluación de un modelo

p-value

El valor p ayuda a diferenciar resultados que son producto del azar del muestreo, de resultados que son estadísticamente significativos.

Dividir el conjunto de datos en dos: entrenamiento y de testing

Ejemplo

- 1. Entrenas el modelo
- 2. Evaluación del modelo

$$ext{precisión} = rac{ ext{VP}}{ ext{VP} + ext{FP}}$$

$$exactitud = \frac{VP + VN}{VP + FP + FN + VN}$$

Ejemplo

Ejemplo preciso y exacto

Ejemplo preciso y no exacto

Regresión y evaluación de hipótesis

Métricas de evaluación y regresión

Análisis exploratorio completo