BN5205 Assignment (Part 1)

Due date: October 1^{st} , 2018, 11:55pm

Electrical potential (V) propagates along the axon of neurons. Interestingly, the phenomenon can be described by a reaction-diffusion equation. If we assume the axon as a 1D structure (length = 4cm) with a coordinate x along the axon, then

$$\sigma \frac{\partial^2 V}{\partial x^2} = c_m \frac{\partial V}{\partial t} + I_{ion} \tag{1}$$

where t is time in ms, σ is the conductivity of the axon, c_m is the capacitance of the axon per unit area and I_{ion} is an electrical current due to the opening and closing of the various ion channels on the neuronal membrane. V is measured in mV. Note that I_{ion} depends on V because some ion channels are voltage and time dependent. The I_{ion} term is given by the Hodgkin and Huxley model

$$I_{ion} = I_{Na} + I_K + I_{leak} + I_{stim} \tag{2}$$

where I_{Na} , I_K and I_{leak} are currents through the Na^+ , K^+ and leak channels respectively, while I_{stim} is a stimulus current. The equations for I_{Na} , I_K and I_{leak} are

$$I_{Na} = G_{Na} * m^{3} * h * (V - E_{Na})$$

$$I_{K} = G_{K} * n^{4} * (V - E_{K})$$

$$I_{leak} = G_{leak} * (V - E_{leak})$$
(3)

where G_{Na} , G_K and G_{leak} are conductances and E_{Na} , E_K and E_{leak} are Nernst potential for Na^+ , K^+ and leak channels respectively. The variables m, h, and n are known as gating variables and they represent the ability of the ion channel to open and close depending of the value of the voltage V. They are given by

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_m}$$

$$\frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_h}$$

$$\frac{dn}{dt} = \frac{n_{\infty} - n}{\tau_n}$$
(4)

where

$$m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m}, \quad \tau_m = \frac{1}{\alpha_m + \beta_m}$$

$$h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}, \quad \tau_h = \frac{1}{\alpha_h + \beta_h}$$

$$n_{\infty} = \frac{\alpha_n}{\alpha_n + \beta_n}, \quad \tau_n = \frac{1}{\alpha_n + \beta_n}$$
(5)

The expressions for α and β for each gating variable is given by 1

$$\alpha_{m} = \frac{40 + V}{1 - e^{-0.1*(40 + V)}}, \quad \beta_{m} = 0.108 * e^{-\frac{V}{18}}$$

$$\alpha_{h} = 0.0027 * e^{-\frac{V}{20}}, \quad \beta_{h} = \frac{1}{1 + e^{-0.1*(35 - V)}}$$

$$\alpha_{n} = \frac{0.01 * (55 + V)}{1 - e^{-0.1*(55 + V)}}, \quad \beta_{n} = 0.055 * e^{-\frac{V}{80}}$$
(6)

¹you may want to use from math import exp at the beginning of your code in order to be able to use the syntax exp(x) to calculate the exponential of x

The value of the constants for this model are given in the following table

Symbol	Description	Value	Units
G_{Na}	Maximal conductance (Na^+)	120	mS/cm^2
G_K	Maximal conductance (K^+)	36	mS/cm^2
G_{leak}	Maximal conductance $(leak)$	0.3	mS/cm^2
c_m	Cell capacitance	1	$\mu F/cm^2$
σ	Axon conductivity	0.001	mS^2
E_{Na}	Nernst potential (Na^+)	50	mV
E_K	Nernst potential (K^+)	-77	mV
E_{leak}	Nernst potential $(leak)$	-54.4	mV

We will consider a simulation time from t=0 to t=25ms. At t=0, the value of V is -70mV throughout the axon, while the values of m, h and n is zero throughout the axon. Both ends of the axon are characterized by a "no flux" boundary condition. $I_{stim}=0$ throughout the axon at all times except for the following: $I_{stim}=-25\mu A/cm^2$ at one end of the axon $(x \le 0.3cm)$ during the time interval $0.5ms \le t \le 0.9ms$.

Using a spatial discretization step of <u>0.1cm</u> and a <u>suitable time step</u>, <u>use the Finite</u> <u>Difference FTCS method to solve Equation 1</u>. Use the <u>Forward Euler method</u> for any ODE involved in the model.

You should submit to IVLE your python file (one file only) containing the necessary code. Besides solving Equation 1, your code is supposed to

- Plot V versus time for the first and last node of the axon.
- Display (simply using "print") the value of conduction velocity between the beginning and end of the axon. Conduction velocity is defined as $D/\Delta T$, where D is the length of the axon and $\Delta T = t_{peak-end} t_{peak-start}$. $t_{peak-end}$ is the time where V reaches its peak (highest) value at the last node of the axon, while $t_{peak-start}$ is the time where V reaches its peak (highest) value at the first node of the axon.

 $^{^2}$ The units for conductivity are normally mS per unit length. In standard electrophysiology theory, a surface-to-volume ratio term (in units of of "per unit length") multiplies all the terms to the RHS of Equation 1 and the equation is still balanced. For simplicity, here we use a unit of σ that will not require any additional terms to the RHS of Equation 1.