1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = 3x_1 + 2x_2 \rightarrow \max$$

$$F_2(x) = x_1 - x_2 \rightarrow \max$$

при умовах

$$x_1 - 6x_2 \le 3$$

$$x_1 + x_2 \ge 10$$

$$-2x_1 + x_2 \le 1$$

$$x_2 \le 11$$

$$2x_1 + x_2 \le 32$$

$$x_1, x_2 \ge 0$$

$$\rho_1 = \rho_2 = 0.5$$

2. Вважаючи, що величини C_{ij} ϵ нечіткими числами з функцією приналежності

$$\mu(C_{ij}) = \frac{1}{1 + (C_{ii} - \overline{C}_{ii})^2}$$
, де $\overline{C}_{11} = 3$, $\overline{C}_{12} = 2$, $\overline{C}_{21} = 1$, $\overline{C}_{22} = -1$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.

Задача 4.2

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = x_1 + 4x_2 \rightarrow \max$$

$$F_2(x) = 2x_1 - 2x_2 \rightarrow \max$$

при умовах

$$x_2 \ge \frac{1}{6}x_1$$

$$x_1 + x_2 \ge 7$$

$$-2x_1 + x_2 \le 4$$

$$x_1 \le 10$$

$$x_1 + 2x_2 \le 24$$

$$x_1, x_2 \ge 0$$

$$\rho_1 = \rho_2 = 0.5$$

2. Вважаючи, що величини C_{ij} ϵ нечіткими числами з функцією приналежності

$$\mu(C_{ij}) = \frac{2}{2 + (C_{ij} - \overline{C}_{ij})^2}$$
, де $\overline{C}_{11} = 1$, $\overline{C}_{12} = 4$, $\overline{C}_{21} = 2$, $\overline{C}_{22} = -2$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = x_1 + x_2 \rightarrow \max$$

$$F_2(x) = 2x_1 - x_2 \rightarrow \min$$

при умовах

$$x_1 + 2x_2 \ge 32$$

$$-2x_1 + x_2 \le 16$$

$$x_1 + 2x_2 \le 64$$

$$-x_1 + 4x_2 \ge 40$$

$$x_1 \le 24$$

$$x_1, x_2 \ge 0$$

$$\rho_1 = \rho_2 = 0.5$$

2. Вважаючи, що величини C_{ij} є нечіткими числами з функцією приналежності $u(C_i) = \frac{1}{C_{ij}}$ де $C_{ij} = 1$ $C_{ij} = 1$ $C_{ij} = 2$ $C_{ij} = 2$ $C_{ij} = 1$ знайти найкранний

$$\mu(C_{ij}) = \frac{1}{1 + (C_{ii} - \overline{C}_{ij})^2}$$
, де $\overline{C}_{11} = 1$, $\overline{C}_{12} = 1$, $\overline{C}_{21} = 2$, $\overline{C}_{22} = -1$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.

Задача 4.4

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = 2x_1 + 2x_2 \rightarrow \max$$

$$F_2(x) = 3x_1 + x_2 \rightarrow \max$$

при умовах

$$x_2 \ge \frac{1}{2}x_1$$

$$2x_1 + 3x_2 \ge 28$$

$$-5x_1 + 3x_2 \le 14$$

$$x_1 + 4x_2 \le 57$$

$$2x_1 + x_2 \le 30$$

$$x_1, x_2 \ge 0$$

$$\rho_1 = \rho_2 = 0.5$$

2. Вважаючи, що величини C_{ij} ϵ нечіткими числами з функцією приналежності

$$\mu(C_{ij}) = \frac{1}{1 + (C_{ii} - \overline{C}_{ij})^2}$$
, де $\overline{C}_{11} = 1$, $\overline{C}_{12} = 2$, $\overline{C}_{21} = 3$, $\overline{C}_{22} = 1$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.5$.

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

Битимизаци
$$F_1(x) = 3x_1 + 2x_2 \rightarrow \max$$

$$F_2(x) = x_1 - x_2 \rightarrow \max$$
при умовах
$$x_1 - 6x_2 \le 3$$

$$x_1 + x_2 \ge 10$$

$$-2x_1 + x_2 \le 2$$

$$x_2 \le 12$$

$$2x_1 + x_2 \le 32$$

$$x_1, x_2 \ge 0$$

 $\rho_1 = \rho_2 = 0.5$

2. Вважаючи, що величини C_{ij} є нечіткими числами з функцією приналежності $\mu\Big(C_{ij}\Big) = \frac{1}{1 + \Big(C_{ij} - \overline{C}_{ij}\Big)^2}, \quad \text{де} \quad \overline{C}_{11} = 4 \,, \quad \overline{C}_{12} = 2 \,, \quad \overline{C}_{21} = 1 \,, \quad \overline{C}_{22} = -1 \,, \quad \text{знайти найкращий}$

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.

Задача 4.6

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = 3x_1 + 2x_2 \rightarrow \max$$
 $F_2(x) = x_1 - 3x_2 \rightarrow \min$
при умовах
 $-2x_1 + x_2 \le 3$
 $x_1 + 2x_2 \ge 8$
 $x_1 + 2x_2 \le 20$
 $-x_1 + 4x_2 \ge 12$
 $x_1 \le 6$
 $x_1, x_2 \ge 0$
 $\rho_1 = \rho_2 = 0.5$

2. Вважаючи, що величини C_{ij} є нечіткими числами з функцією приналежності $\mu\Big(C_{ij}\Big) = \frac{1}{1 + \Big(C_{ij} - \overline{C}_{ij}\Big)^2}, \quad \text{де} \quad \overline{C}_{11} = 3, \quad \overline{C}_{12} = 2\,, \quad \overline{C}_{21} = 1\,, \quad \overline{C}_{22} = -3\,, \quad \text{знайти найкращий}$

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.5$.

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

Бильмован
$$F_1(x) = x_1 + 4x_2 \rightarrow \max$$
 $F_2(x) = 3x_1 - x_2 \rightarrow \min$ при умовах $x_1 + 2x_2 \ge 4$ $3x_1 + x_2 \ge 7$ $-3x_1 + 5x_2 \le 17$ $5x_1 - x_2 \le 23$ $3x_1 - 4x_2 \le 7$ $x_1, x_2 \ge 0$

 $\rho_1 = \rho_2 = 0.5$

2. Вважаючи, що величини
$$C_{ij}$$
 є нечіткими числами з функцією приналежності
$$\mu(C_{ij}) = \frac{1}{1 + \left(C_{ij} - \overline{C}_{ij}\right)^2},$$
 де $\overline{C}_{11} = 1$, $\overline{C}_{12} = 4$, $\overline{C}_{21} = 3$, $\overline{C}_{22} = -1$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$

Задача 4.8

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = 3x_1 + 2x_2 \rightarrow \max$$
 $F_2(x) = x_1 - 3x_2 \rightarrow \max$
при умовах
 $x_1 - 6x_2 \le 6$
 $x_1 + x_2 \ge 20$
 $-2x_1 + x_2 \le 2$
 $x_2 \le 22$
 $2x_1 + x_2 \le 64$
 $x_1, x_2 \ge 0$

 $\rho_1 = \rho_2 = 0.5$

2. Вважаючи, що величини C_{ij} є нечіткими числами з функцією приналежності $\mu\Big(C_{ij}\Big) = \frac{1}{1 + \Big(C_{ij} - \overline{C}_{ij}\Big)^2}, \quad \text{де} \quad \overline{C}_{11} = 3, \quad \overline{C}_{12} = 2, \quad \overline{C}_{21} = 1, \quad \overline{C}_{22} = -3, \quad \text{знайти найкращий}$

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.

1. Знайти найкращий компромісний розв'язок наступної задачі багатокритеріальної оптимізації

$$F_1(x) = C_{11}x_1 + C_{12}x_2 \rightarrow \max$$

$$F_2(x) = C_{21}x_1 + C_{22}x_2 \to \max$$

при умовах

$$\frac{1}{6}x_1 \le x_2$$

$$x_1 + x_2 \ge 7$$

$$-2x_1 + x_2 \le 4$$

$$x_2 \le 10$$

$$x_1 + 2x_2 \le 24$$

$$x_1, x_2 \ge 0$$

$$\rho_1 = \rho_2 = 0.5$$

2. Вважаючи, що величини C_{ij} ϵ нечіткими числами з функцією приналежності

$$\mu(C_{ij}) = \frac{1}{1 + (C_{ij} - \overline{C}_{ij})^2}$$
, де $\overline{C}_{11} = 2$, $\overline{C}_{12} = 4$, $\overline{C}_{21} = 3$, $\overline{C}_{22} = -2$, знайти найкращий

компромісний розв'язок даної задачі, оптимальний по Парето, рівня $\alpha = 0.8$.