# **Formulas for Tesla Coils**

v. 3.0

#### **Ohm's Laws**

$$V = I \times R = P/I = SQRT(P \times R)$$
  
 $I = V/R = SQRT(P/R) = P/V$   
 $R = V/I = P/(I^2) = V^2/P$   
 $P = I \times V = I^2 \times R = V^2/R$ 

#### Where:

V = Voltage in Volts
I = Current in Amps
R = Resistance in Ohms
P = Power in Watts

#### **Resonate Frequency**

Fo = 
$$1/(2 \times pi \times SQRT(L \times C))$$

#### Where:

Fo = Resonant frequency in Hertz pi = 3.14159...
SQRT = Square root function
L = Inductance in Henries
C = Capacitance in Farads

#### Reactance

$$XI = 2 \times pi \times F \times L$$
  
 $Xc = 1 / (2 \times pi \times F \times C)$ 

#### Where:

XI = Inductive reactance in Ohms Xc = Capacitive reactance in Ohms pi = 3.14159... F = Frequency in Hertz

L = Inductance in Henries

C = Capacitance in Farads

#### **RMS**

 $Vpeak = Vrms \times SQRT(2)$  For sine waves only

Where:

Vpeak = Peak voltage in volts

Vrms = RMS voltage in Volts RMS

SQRT = Square root function

## **Energy**

 $E = 1/2 \times C \times V^2 = 1/2 \times L \times I^2$ 

Where:

E = Energy in Joules

L = Inductance in Henries

C = Capacitance in Farads

V = Voltage in Volts

I = Current in Amps

#### **Power**

P = E/t

Where:

P = Power in Watts

E = Energy in Joules

t = Time in Seconds

#### **Helical Coil**

$$Lh = (N \times R)^2 / (9 \times R + 10 \times H)$$

Where:

Lh = Inductance in micro-Heneries

N = number of turns

R = Radius in inches

H = Height in inches



## Flat spiral

$$Lf = (N \times R)^2 / (8 \times R + 11 \times W)$$

Where:

Lf = Inductance in micro-Heneries

N = number of turns

R = Average radius in inches

W = Width in inches



## **Conical Primary**

$$L1 = (N \times R)^2 / (9 \times R + 10 \times H)$$

 $L2 = (N \times R)^2 / (8 \times R + 11 \times W)$ 

$$Lc = SQRT(((L1 x sin(x))^2 + (L2 x cos(x))^2) / (sin(x) + cos(x)))$$

Where:

Lc = Inductance in Microhenries

L1 = helix factor

L2 = spiral factor

SQRT = Square root function

N = number of turns

R = average radius of coil in inches

H = effective height of the coil in inches

W = effective width of the coil in inches

X = rise angle of the coil in degrees



## **Resonant Primary Capacitance**

$$Cltr = I / (2 \times pi \times Fl \times V)$$

Where:

Cltr = Resonant capacitor value in Farads
I = NST rate current in Amps
pi = 3.14159...
FI = AC line frequency in Hertz
V = NST rated voltage in Volts

## **Static Gap Primary LTR Capacitance**

Cres = 
$$I/(4 \times FI \times V)$$

Where:

Cres = Resonant capacitor value in Farads
I = NST rate current in Amps
FI = AC line frequency in Hertz
V = NST rated voltage in Volts

## **Sync Gap Primary LTR Capacitance**

$$Cltr = 0.83 \times I / (BPS \times V)$$

Where:

Cltr = The LTR cap size in Farads
I = The NST rated current in Amps
V = The NST rated voltage in Volts
BPS = The break rate (120 or 100 BPS)

### **Top Voltage**

$$Vt = Vf \times SQRT(Ls / (2 \times Lp))$$

Where:

Vt = Peak top voltage in Volts

Vf = gap firing voltage in Volts SQRT = Square root function Ls = Secondary inductance in Heneries Lp = Primary inductance in Heneries

#### **PFC Capacitors**

Cpfc = Vo x lo /  $(2 \times pi \times Fl \times Vi^2)$ 

Where:

Cpfc = Power factor correction capacitance in Farads Vo = NST output voltage in Volts

Io = NST output current in Amps

pi = 3.14159...

FI = AC line frequency in Hertz

Vi = NST input voltage in Volts

#### **Power-BPS**

 $P = BPS \times 1/2 \times Cp \times Vf^2$ 

Where:

P = Coil power in Watts
BPS = Breaks per second
Cp = Primary capacitance in Farads
Vf = Gap firing Voltage

#### **Transformers**

Vi x Ii = Vo x Io

Where:

Vi = Input voltage in Volts Ii = Input current in Amps Vo = Output voltage in Volts Io = Output current in Amps

## **Primary Peak Current**

IPpeak = Vf / SQRT(Lp / Cp)

Where:

IPpeak = Peak primary loop current Amps
Vf = Firing Voltage in Volts
SQRT = Square root function
Lp = Primary inductance in Heneries
Cp = Primary capacitance in Farads

## **Surge Impedance**

Zs = SQRT(Lp / Cp)

Where:

Zs = Surge impedance in Ohms SQRT = Square root function Lp = Primary inductance in Heneries Cp = Primary capacitance in Farads

## **Secondary "Q" Factor**

Q = 2 x pi x Fo x Ls / Rac

Where:

Q = "Q" factor

Fo = Fundamental frequency in Hertz

Ls = Secondary inductance in Heneries

Rac = Secondary "AC" resitance in Ohms

### Freau Spark Length Formula

 $L = 1.7 \times SQRT(P)$ 

L = Maximum spark length in Inches SQRT = Square root function P = Wallplug Watts

# **Appendix**

# **Wire Chart**

| Const                |                           | Cincolo a Mil        | Turns Per<br>Linear Inch <sup>2</sup> | Feet p | er Lb. | Oleman                  | Current Carrying                             |                |
|----------------------|---------------------------|----------------------|---------------------------------------|--------|--------|-------------------------|----------------------------------------------|----------------|
| Guage No.<br>B. & S. | Diam in Mils <sup>1</sup> | Circular Mil<br>Area | Enamel                                | Bare   | Enamel | Ohms per 1000ft. 250 C. | Capacity @ 1500<br>C.M. per Amp <sup>3</sup> | Diameter in mm |
| 1                    | 289.3                     | 82690                | -                                     | 3.95   | -      | 0.13                    | 55.7                                         | 7.35           |
| 2                    | 257.6                     | 66370                | -                                     | 4.98   | _      | 0.16                    | 44.1                                         | 6.54           |
| 3                    | 229.4                     | 52640                | -                                     | 6.27   | -      | 0.2                     | 35.0                                         | 5.83           |
| 4                    | 204.3                     | 41740                | -                                     | 7.91   | -      | 0.25                    | 27.7                                         | 5.19           |
| 5                    | 181.9                     | 33100                | -                                     | 9.980  | -      | 0.32                    | 22.0                                         | 4.62           |
| 6                    | 162.0                     | 26250                | -                                     | 12.58  | -      | 0.4                     | 17.5                                         | 4.12           |
| 7                    | 144.3                     | 20820                | -                                     | 15.87  | -      | 0.5080                  | 13.8                                         | 3.665          |
| 8                    | 128.5                     | 16510                | 7.6                                   | 20.01  | 19.6   | 0.64                    | 11.0                                         | 3.264          |
| 9                    | 114.4                     | 13090                | 8.6                                   | 25.23  | 25     | 0.81                    | 8.7                                          | 2.906          |
| 10                   | 101.90                    | 10380                | 9.6                                   | 31.82  | 31.5   | 1.02                    | 6.9                                          | 2.588          |
| 11                   | 90.74                     | 8234                 | 10.7                                  | 40.12  | 39     | 1.28                    | 5.5                                          | 2.305          |
| 12                   | 80.81                     | 6530                 | 12.0                                  | 50.59  | 49.9   | 1.62                    | 4.4                                          | 2.053          |
| 13                   | 71.96                     | 5178                 | 13.5                                  | 63.8   | 62.9   | 2.04                    | 3.5                                          | 1.828          |
| 14                   | 64.08                     | 4107                 | 15.0                                  | 80.44  | 79.94  | 2.58                    | 2.7                                          | 1.628          |
| 15                   | 57.07                     | 3257                 | 16.8                                  | 101.4  | 100.4  | 3.25                    | 2.2                                          | 1.450          |
| 16                   | 50.82                     | 2583                 | 18.9                                  | 127.9  | 126.8  | 4.09                    | 1.7                                          | 1.291          |
| 17                   | 45.26                     | 2048                 | 21.2                                  | 161.3  | 159.4  | 5.16                    | 1.3                                          | 1.150          |
| 18                   | 40.30                     | 1624                 | 23.6                                  | 203.4  | 201.1  | 6.51                    | 1.1                                          | 1.024          |
| 19                   | 35.89                     | 1288                 | 26.4                                  | 256.5  | 253.2  | 8.21                    | 0.86                                         | 0.91           |
| 20                   | 31.96                     | 1022                 | 29.4                                  | 323.4  | 318.4  | 10.35                   | 0.68                                         | 0.81           |
| 21                   | 28.46                     | 810.1                | 33.1                                  | 407.8  | 400.6  | 13.05                   | 0.54                                         |                |
| 22                   | 25.35                     | 642.4                | 37.0                                  | 514.2  | 507.1  | 16.46                   | 0.43                                         | 0.64           |
| 23                   | 22.57                     | 509.5                | 41.3                                  | 648.4  | 633.7  | 20.76                   | 0.34                                         | 0.57           |
| 24                   |                           | 404.0                | 46.3                                  | 817.7  | 804.5  | 26.17                   | 0.27                                         | 0.51           |
| 25                   | 17.90                     | 320.4                | 51.7                                  | 1031   | 1010   | 33.0                    | 0.21                                         | 0.45           |
| 26                   | 15.94                     | 254.1                | 58.0                                  | 1300   | 1279   | 41.62                   | 0.17                                         | 0.4            |
| 27                   | 14.20                     | 201.5                | 64.9                                  | 1639   | 1600   | 52.48                   | 0.13                                         | 0.36           |
| 28                   | 12.64                     | 159.8                | 72.7                                  | 2067   | 2028   | 66.17                   | 0.11                                         | 0.32           |
| 29                   | 11.26                     | 126.7                | 81.6                                  | 2607   | 2513   | 83.44                   | 0.08                                         | 0.29           |
| 30                   | 10.03                     | 100.5                | 90.5                                  | 3287   | 3208   | 105.2                   | 0.07                                         | 0.25           |
| 31                   | 8.928                     | 79.70                | 101                                   | 4170   | 4052   | 132.7                   | 0.05                                         | 0.23           |
| 32                   |                           |                      | 113                                   |        |        |                         |                                              |                |
| 33                   |                           | 50.13                | 127                                   | 6550   | 6337   | 211.0                   | 0.03                                         |                |
| 34                   |                           | 29.75                | 143                                   | 8320   | 8055   | 266.0                   | 0.03                                         | 0.16           |
| 35                   |                           | 31.52                | 158                                   | 10500  | 10250  | 335.0                   | 0.02                                         | 0.14           |
| 36                   |                           | 25.00                | 175                                   | 13200  | 12800  | 423.0                   | 0.02                                         | 0.13           |
| 37                   | 4.453                     | 19.83                | 198                                   | 16300  | 15750  | 533.4                   | 0.01                                         | 0.11           |
| 38                   |                           | 15.72                | 224                                   | 20600  | 20020  | 672.6                   |                                              | 0.1            |
| 39                   |                           | 12.47                | 284                                   | 27000  | 26240  | 848.1                   | 0.01                                         | 0.09           |
| 40                   | 3.145                     | 9.88                 | 282                                   | 34400  | 33330  | 1069                    | 0.01                                         | 0.08           |

# **Capacitor Chart**

# **MMC** Capacitor Chart

**Capacitor Value (uF)** 

|          | <u> </u> | oi value (al   | <u>/</u>     |          |                |              |  |  |  |
|----------|----------|----------------|--------------|----------|----------------|--------------|--|--|--|
| NST Type |          | 60Hz           |              |          | 50Hz           |              |  |  |  |
|          | Resonant | Static Gap LTR | Sync Gap LTR | Resonant | Static Gap LTR | Sync Gap LTR |  |  |  |
| 7.5/30   | 0.0106   | 0.0159         | 0.0277       | 0.0127   | 0.0191         | 0.0332       |  |  |  |
| 7.5/60   | 0.0212   | 0.0318         | 0.0533       | 0.0256   | 0.0382         | 0.0664       |  |  |  |
| 7.5/90   | 0.0318   | 0.0477         | 0.0830       | 0.0382   | 0.0573         | 0.0996       |  |  |  |
| 7.5/120  | 0.0424   | 0.0637         | 0.1107       | 0.0509   | 0.0764         | 0.1328       |  |  |  |
| 9/30     | 0.0088   | 0.0133         | 0.0231       | 0.0106   | 0.0159         | 0.0277       |  |  |  |
| 9/60     | 0.0177   | 0.0265         | 0.0461       | 0.0212   | 0.0318         | 0.0553       |  |  |  |
| 9/90     | 0.0265   | 0.0398         | 0.0692       | 0.0318   | 0.0477         | 0.0830       |  |  |  |
| 9/120    | 0.0354   | 0.0531         | 0.0922       | 0.0424   | 0.0637         | 0.1107       |  |  |  |
| 10/23    | 0.0061   | 0.0092         | 0.0159       | 0.0073   | 0.0110         | 0.0191       |  |  |  |
| 12/30    | 0.0066   | 0.0099         | 0.0173       | 0.0080   | 0.0119         | 0.0208       |  |  |  |
| 12/60    | 0.0133   | 0.0199         | 0.0346       | 0.0159   | 0.0239         | 0.0415       |  |  |  |
| 12/90    | 0.0199   | 0.0298         | 0.0519       | 0.0239   | 0.0358         | 0.0623       |  |  |  |
| 12/120   | 0.0265   | 0.0398         | 0.0692       | 0.0318   | 0.0477         | 0.0830       |  |  |  |
| 15/30    | 0.0053   | 0.0080         | 0.0138       | 0.0064   | 0.0096         | 0.0166       |  |  |  |
| 15/60    | 0.0106   | 0.0159         | 0.0277       | 0.0127   | 0.0191         | 0.0332       |  |  |  |
| 15/90    | 0.0159   | 0.0239         | 0.0415       | 0.0191   | 0.0286         | 0.0496       |  |  |  |
| 15/120   | 0.0212   | 0.0318         | 0.0553       | 0.0255   | 0.0382         | 0.0664       |  |  |  |

## **Metric Prefixes**

| Prefix | Symbol | Decimal       | Exponential |
|--------|--------|---------------|-------------|
| pico   | р      | 0.00000000001 |             |
| nano   | n      | 0.00000001    | 1e-9        |
| micro  | u      | 0.000001      | 1e-6        |
| milli  | m      | 0.001         | 1e-3        |
| kilo   | k      | 1000.0        | 1e+3        |
| Mega   | M      | 1,000,000     | 1e+6        |
| Giga   | G      | 1,000,000,000 | 1e+9        |

# Cornell Dubilier 942 Series polypropylene Metal Foil Caps (Recommended)

| Part Number | Cap.<br>μF | D inches<br>(mm) | L inches (mm) | d inches<br>(mm) | Typical<br>ESR<br>milli0hmS | Typical<br>ESL nH |      | I Peak<br>A | IRMS<br>A |
|-------------|------------|------------------|---------------|------------------|-----------------------------|-------------------|------|-------------|-----------|
| 942C20S1K   | 0.01       | 0.472 (12.0)     | 1.339 (34.0)  | 0.040 (1.0)      | 50                          | 20                | 5137 | 51          | 2.2       |
| 942C20S15K  | 0.015      | 0.571 (14.5)     | 1.339 (34.0)  | 0.040 (1.0)      | 40                          | 21                | 5137 | 77          | 2.8       |
| 942C20S22K  | 0.022      | 0.650 (16.5)     | 1.339 (34.0)  | 0.040 (1.0)      | 20                          | 22                | 5137 | 113         | 4.2       |
| 942C20S33K  | 0.033      | 0.768 (19.5)     | 1.339 (34.0)  | 0.040 (1.0)      | 12                          | 23                | 5137 | 170         | 6.0       |
| 942C20S47K  | 0.047      | 0.709 (18.0)     | 1.811 (46.0)  | 0.040 (1.0)      | 10                          | 28                | 2879 | 135         | 7.1       |
| 942C20S68K  | 0.068      | 0.807 (20.5)     | 1.811 (46.0)  | 0.040 (1.0)      | 6                           | 29                | 2879 | 196         | 9.9       |
| 942C20P1K   | 0.1        | 0.965 (24.5)     | 1.811 (46.0)  | 0.047 (1.2)      | 5                           | 30                | 2879 | 288         | 12.1      |
| 942C20P15K  | 0.15       | 1.161 (29.5)     | 1.811 (46.0)  | 0.047 (1.2)      | 5                           | 32                | 2879 | 432         | 13.5      |

Metal Foil caps are normally the best type to use for MMCs.

# Cornell Dubilier 940 Series polypropylene Metal Film Caps

| Part Number | Сар. µF | Vdc  | Vac | D inches (mm) | L inches<br>(mm) | d inches<br>(mm) | Typical<br>ESR<br>milli0hms | Typical<br>ESL nH | dV/dt<br>V/μs | I Peak A | IRMS<br>A |
|-------------|---------|------|-----|---------------|------------------|------------------|-----------------------------|-------------------|---------------|----------|-----------|
| 940C20S22K  | 0.022   | 2000 | 630 | 0.453 (11.5)  | 1.339 (34.0)     | 0.040 (1.0)      | 35                          | 6                 | 1712          | 38       | 2.6       |
| 940C20S33K  | 0.033   | 2000 | 630 | 0.531 (13.5)  | 1.339 (34.0)     | 0.040 (1.0)      | 20                          | 21                | 1712          | 57       | 3.8       |
| 940C20S47K  | 0.047   | 2000 | 630 | 0.591 (15.0)  | 1.339 (34.0)     | 0.040 (1.0)      | 12                          | 22                | 1712          | 80       | 5.2       |
| 940C20S68K  | 0.068   | 2000 | 630 | 0.689 (17.5)  | 1.339 (34.0)     | 0.040 (1.0)      | 8                           | 23                | 1712          | 116      | 6.9       |
| 940C20P1K   | 0.1     | 2000 | 630 | 0.827 (21.0)  | 1.339 (34.0)     | 0.040 (1.0)      | 7                           | 24                | 1712          | 171      | 8.3       |
| 940C20P15K  | 0.15    | 2000 | 630 | 0.768 (19.5)  | 1.811 (46.0)     | 0.040 (1.0)      | 7                           | 29                | 960           | 144      | 8.9       |
| 940C20P22K  | 0.22    | 2000 | 630 | 0.866 (22.0)  | 1.811 (46.0)     | 0.040 (1.0)      | 8                           | 30                | 960           | 211      | 9.0       |
| 940C20P33K  | 0.33    | 2000 | 630 | 1.063 (27.0)  | 1.811 (46.0)     | 0.047 (1.2)      | 8                           | 32                | 960           | 317      | 10.1      |
| 940C20P47K  | 0.47    | 2000 | 630 | 1.260 (32.0)  | 1.811 (46.0)     | 0.047 (1.2)      | 6                           | 34                | 960           | 451      | 13.0      |
| 940C20P56K  | 0.56    | 2000 | 630 | 1.220 (31.0)  | 2.126 (54.0)     | 0.047 (1.2)      | 7                           | 37                | 754           | 422      | 12.6      |
| 940C20P68K  | 0.68    | 2000 | 630 | 1.339 (34.0)  | 2.126 (54.0)     | 0.047 (1.2)      | 6                           | 39                | 754           | 513      | 14.3      |
| 940C20W1K   | 1       | 2000 | 630 | 1.614 (41.0)  | 2.126 (54.0)     | 0.047 (1.2)      | 5                           | 42                | 754           | 754      | 17.7      |

Metal Film caps are normally not recommended for MMCs unless the primary peak current is well within the capacitor's ability.