18.06 Exam II Professor Strang April 7, 2014

Your PRINTED Name is:	

Please circle your section:

R01	Τ	10	36-144	Qiang Guang
R02	${\rm T}$	10	35-310	Adrian Vladu
R03	\mathbf{T}	11	36-144	Qiang Guang
R04	\mathbf{T}	11	4-149	Goncalo Tabuada
R05	\mathbf{T}	11	E17-136	Oren Mangoubi
R06	\mathbf{T}	12	36-144	Benjamin Iriarte Giraldo
R07	\mathbf{T}	12	4-149	Goncalo Tabuada
R08	\mathbf{T}	12	36-112	Adrian Vladu
R09	\mathbf{T}	1	36-144	Jui-En (Ryan) Chang
R10	\mathbf{T}	1	36 - 153	Benjamin Iriarte Giraldo
R11	\mathbf{T}	1	36 - 155	Tanya Khovanova
R12	\mathbf{T}	2	36-144	Jui-En (Ryan) Chang
R13	\mathbf{T}	2	36 - 155	Tanya Khovanova
R14	\mathbf{T}	3	36-144	Xuwen Zhu
ESG	\mathbf{T}	3		Gabrielle Stoy

Grading 1: 2: 3: 4:

- **1.** (24 points total)
- (a) (6 points) What matrix P projects every vector in \mathbb{R}^3 onto the line that passes through origin and a = (3, 4, 5)?
- (b) (6 points) What is the nullspace of that matrix P?
- (c) (6 points) What is the row space of P^2 ?
- (d) (6 points) What is the determinant of P?

- **2.** (25 points total)
- (a) (11 points) Suppose \hat{x} is the best least squares solution to Ax = b and \hat{y} is the best least squares solution to Ay = c.

Does this tell you the best least squares solution \hat{z} to Az = b + c? If so, what is the best \hat{z} and why?

- (b) (7 points) If Q is an m by n matrix with orthonormal columns, find the best least squares solution \hat{x} to Qx = b.
- (c) (7 points) If A = QR, where R is square invertible and Q is the same as in (b), find the least squares solution to Ax = b.

- 3. (25 points total)
- (a) (17 points) Find the determinant of this matrix A (with an unknown x in 4 entries).

$$A = \begin{bmatrix} x & 1 & 0 & 0 \\ 2 & x & 2 & 0 \\ 0 & 3 & x & 3 \\ 0 & 0 & 4 & x \end{bmatrix} \qquad B = \begin{bmatrix} x & 1 & 0 & 1 \\ 2 & x & 2 & 0 \\ 0 & 3 & x & 3 \\ 0 & 0 & 4 & x \end{bmatrix}$$

You could use the big formula or the cofactor formula or possibly the pivot formula.

- (b) (5 points) Find the determinant for matrix B which has an additional 1 in the corner. What new contribution to the determinant does this 1 make?
- (c) (3 points) If M is any 3 by 3 matrix, let $f(x) = \det(xM)$. Find the derivative of f at x = 1.

- **4.** (26 points total)
- (a) (6 points) Find the projection p of the vector b onto the column space of A.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 2 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$

- (b) (7 points) Use Gram-Schmidt to find an orthogonal basis q_1, q_2 for the column space of A.
- (c) (6 points) Find the projection p of the same vector b onto the column space of the new matrix Q with columns q_1 and q_2 .
- (d) (7 points) True or False: The best least squares solution \hat{x} to Ax = b is the same as the best least squares solution \hat{y} to Qy = b. Explain why.

Scrap Paper