

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 7 – Torseurs

Travaux dirigés

D'après ressources???

1 Pales d'hélicoptères

1.1 Mise en situation

L'hélicoptère est un giravion dont la sustentation est assurée par un rotor primaire équipé de pales. Un rotor secondaire (ou rotor de queue, lui aussi équipé de pales) permet à l'hélicoptère de ne pas tourner sur lui même. Ces rotors sont entraînés par une ou deux turbines suivant les hélicoptères, par l'intermédiaire d'une boîte de vitesse.

En vol, les rotors tournent à une vitesse de rotation fixe. La modification de l'inclinaison des pales permet à elle seule une accélération, un décélération, un changement d'altitude ou de direction de l'hélicoptère.

1.2 Cinématique analytique

Le fuselage de l'hélicoptère est repéré par S_0 et on lui associe le repère $\mathcal{R}_0(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_{01}})$ défini de la manière suivante :

- $-(O, \overrightarrow{z_{01}})$ correspond à l'axe de rotation du rotor principal;
- $-(O, \overrightarrow{x_0})$ définit l'axe longitudinal de l'appareil et est orienté de l'arrière vers l'avant;
- $-(O, \overrightarrow{y_0})$ définit l'axe transversal.

Ce rotor est constitué par :

- un moyeu central S_1 associé au repère $\mathcal{R}_1(O, \overrightarrow{x_1}, \overrightarrow{y_{12}}, \overrightarrow{z_{01}})$ qui est entraîné par la boîte de vitesse (non représentée ici);
- quatre pales S_3 , S_4 , S_5 et S_6 . On associe le repère $\mathcal{R}_3(A_3, \overrightarrow{x_{23}}, \overrightarrow{y_3}, \overrightarrow{z_3})$ à la pale S_3 ;
- quatre pieds de pales identiques reliant les pales au moyeu. On associe le repère $\Re_2(A3, \overrightarrow{x_{23}}, \overrightarrow{y_{12}}, \overrightarrow{z_2})$ au pied de pale S_2 .

NB : Si les repères \mathcal{R}_i et \mathcal{R}_j ont un vecteur de base commun (par exemple $\overrightarrow{x_i} = \overrightarrow{x_j}$), celui-ci est noté $\overrightarrow{x_{ij}}$.

Le mouvement de S_1/S_0 est une rotation d'axe $(O, \overrightarrow{z_{01}})$. On pose θ l'angle de rotation du rotor : $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$.

Le mouvement de S_2/S_1 est une rotation d'axe $(A_3, \overrightarrow{y_{12}})$. On pose β l'angle de battement : $\beta = (\overrightarrow{x_1}, \overrightarrow{x_{23}})$. Le mouvement de S_3/S_2 est une rotation d'axe $(A_3, \overrightarrow{x_{23}})$. On pose α l'angle de pas : $\alpha = (\overrightarrow{y_{12}}, \overrightarrow{y_3})$.

On pose $\overrightarrow{OA_3} = r \cdot \overrightarrow{x_1}$ et $\overrightarrow{A_3G} = a \cdot \overrightarrow{x_{23}}$ où G est le centre de gravité de la pale 3 (r et a constants). On suppose que tous les solides sont indéformables.

Question 1

Déterminer le vecteur $\overrightarrow{V(G \in S_3/S_2)}$.

Question 2

Déterminer le vecteur $\overrightarrow{V(G \in S_2/S_1)}$.

Question 3

Déterminer le vecteur $\overrightarrow{V(G \in S_1/S_0)}$.

Question 4

Déduire des questions précédentes le torseur $\{ \mathcal{V}(S_3/S_0) \}$ au point G. On pose maintenant $\overrightarrow{V(G \in S_3/S_0)} = (a \cdot \cos \beta + r) \cdot \dot{\theta} \cdot \overrightarrow{y_{12}} - a \dot{\beta} \overrightarrow{z_2}$.

Question 5

Exprimer l'accélération $\Gamma(G \in S_3/S_0)$.

Question 6

La longueur des pales est, entre autre, limitée par la vitesse du son en bout de pale (Exigence 1.1.1.1.1). Pour $\beta=0$, calculer la longueur maximale de la pale pour ne pas dépasser la vitesse du son. La vitesse du rotor est de 250 t r/m in.