Задача. Имаме две зарчета – стандартно номерирани с числата (точките) от 1 до 6. Хвърляме зарчетата и гледаме само сбора точките на горните стени. При това положение може да получим следното разпределение:

Брой точки	2	3	4	5	6	7	8	9	10	11	12
Брой начини за получаване	1	2	3	4	5	6	5	4	3	2	1

Може ли да преномерираме (по различен начин) стените на зарчетата с **цели положителни числа (брой точки)**, така че сборът на точките на горните стени от двете нови зарчета, при хвърляне, да има същото разпределение като на старите? Ако не може – обосновете отговора си. Ако може – намерете броя на всички начини, по които може да се осъществи тази преномерация.

Решение:

Нека $f_1(x)=x+x^2+x^3+x^4+x^5+x^6$ е обикновената пораждаща функция за случайната величина X_1 – падналите се точки на първото зарче. Аналогично за броя на падналите се точки на второто зарче X_2 ще имаме същата обикновена пораждаща функция: $f_2(x)=x+x^2+x^3+x^4+x^5+x^6$.

Начините, по които може да получим сума k при хвърлянето на двете зарчета $(X_1 \perp \!\!\! \perp X_2)$ е коефициента пред x^k в полинома $f_1(x)f_2(x)$.

 $f_1(x)f_2(x)=x^2+2x^3+\ldots+6x^7+5x^8+\ldots+x^{12}$, което е обикновената пораждаща функция на случайната величина X_1+X_2 – сумата от точките при хвърлянето на две стандартни зарчета.

Търсим $g_1(x)$ и $g_2(x)$ да са такива функции, за които е изпълнено:

- 1. $g_1(x)g_2(x) = f_1(x)f_2(x)$
- 2. $g_1(x) \neq f_1(x)$ (т.е. g_1 и g_2 са различни функции от f_1 и f_2)

$$f_1(x)f_2(x) = \left[x(1+x+x^2+x^3+x^4+x^5)\right]^2 = \left[x(1+x+x^2)(1+x^3)\right]^2 =$$

$$= x^2(1+x+x^2)^2(1+x)^2(1-x+x^2)^2$$

Знаем, че функциите g_1 и g_2 ще наследят някои свойства от функциите f_1 и f_2 , като например $g_1(0)=g_2(0)=0$ (т.к. няма страни без точки по тях – по условие) и $g_1(1)=g_2(1)=6$ (от условието, че заровете са шестстенни).

За да е изпълнено първото условие е необходимо и в двете функции да имаме множител x, а за да бъде изпълнено и второто е необходимо и в двете функции да имаме точно една двойка и една тройка ако заместим x с единица.

Следователно,

$$\begin{cases} g_1(x) = x(1+x+x^2)(1+x)A(x) \\ g_2(x) = x(1+x+x^2)(1+x)B(x) \end{cases}$$

Ако $A(x) = B(x) = (1 - x + x^2)$ ще получим същите зарчета като оригиналните. За да получим различи зарчета е необходимо останалите множители да разпределим по начин, по който да получим различни пораждащи функции. Това е възможно само по един начин:

$$A(x) = 1$$
 и $B(x) = (1 - x + x^2)^2$. Тогава:

$$g_1(x) = x + 2x^2 + 2x^3 + x^4 \longrightarrow \{1, 2, 2, 3, 3, 4\}$$

$$g_2(x) = (x + 2x^2 + 2x^3 + x^4)(1 - 2x + 3x^2 - 2x^3 + x^4) =$$

$$= x + x^3 + x^4 + x^5 + x^6 + x^8 \longrightarrow \{1, 3, 4, 5, 6, 8\}$$

Новите зарчета са съответно $\{1,\,2,\,2,\,3,\,3,\,4\}$ и $\{1,\,3,\,4,\,5,\,6,\,8\}$ и това са единствените две нови зарчета, които ще имат същото разпределение като оригиналното при стандартните зарчета. Други две зарчета отговарящи на условието не съществуват.