SERION ELISA classic

ESR110M

TOXOPLASMA GONDII IgM

SCI.CS

Qualitätskontrollzertifikat / Quality Control Certificate

Kitcharge / Lot SCI.CS IFU-Version 110-19

Verw. bis / Exp. 2020-02 Prüfdatum /

Date of control

15.03.2018

350

300

Verwendete Reagenzien / Reagents used	Standard		Standard Kur	Standard Kurve / Standard curve							
Teststreifen / Antigen coated strips	SAI.EF	Ref Werte / Re	ef. Values		Gültigke	itsbereich	/ Valid	lity Range	Parameter	Α	0,002
Standardserum / Standard serum	SBI.BY	10	D 0,91		OD	0,46	-	1,55		В	1,003
Negativ Kontrolle / Negative control	SBI.BZ									С	7,298
Konjugat / Conjugate	SBI.EN++	Unit	s 397 U /m	ıl						D	4,306
Quantifizierungsgrenzen / Limits of quantific	U/ml	100	-	5000							
Grenzwertbereich / Borderline range	U/ml	300	-	350							

OD Bereich / OD Range 405 nm, Standardserum / Standard serum																			
0,46) -	0,50	0,51	- 0,56	0,57	- 0,62	0,63	- 0,67	0,68	- 0,73	0,74	- 0,79	0,80	- 0,84	0,85 - 0	,90	0,91	U/ml	Interpretation
	<	0,38		< 0,43		< 0,48		< 0,52		< 0,57		< 0,61		< 0,66	< 0),70	< 0,73	< 300,0	neg
0,38	} -	0,43	0,43	- 0,48	0,48	- 0,53	0,52	- 0,58	0,57	- 0,64	0,61	- 0,69	0,66	- 0,74	0,70 - 0	,79	0,73 - 0,82	300,0 - 350,0	gw / borderline
	>	0,43		> 0,48		> 0,53		> 0,58		> 0,64		> 0,69		> 0,74	> 0	,79	> 0,82	> 350,0	pos

U/ml 0,91 0,92 - 0,99 1,00 - 1,07 1,08 - 1,15 1,16 - 1,23 1,24 - 1,31 1,32 - 1,39 1,40 - 1,4		
	1,48 - 1,55	Interpretation
< 300,0 < 0,73 < 0,77 < 0,83 < 0,89 < 0,96 < 1,02 < 1,09 < 1,00	< 1,21	neg
300,0 - 350,0 0,73 - 0,82 0,77 - 0,86 0,83 - 0,93 0,89 - 1,00 0,96 - 1,08 1,02 - 1,15 1,09 - 1,22 1,15 - 1,22		gw / borderline pos

Formeln für spezielle Auswertesysteme Special case formulas $\begin{array}{lll} \text{OD} = & \textbf{0,905} & \text{x MV(STD)} \text{ entspricht oberem cut-off/corresponds to upper cut-off} \\ \text{OD} = & \textbf{0,797} & \text{x MV(STD)} \text{ entspricht unterem cut-off/corresponds to lower cut-off} \\ \end{array}$

 $Concentration = exp(7,298-ln(4,304/(MV(Sample)\ x0,91/\ MV(STD)-0,002)-1)/1,003)$

Institut Virion\Serion GmbH Friedrich-Bergius-Ring 19 D-97076 Würzburg

Zusätzliche Barcodes mit Formeln für / Additional Barcodes with formulas for Revelation™ DSX / DS-Matrix ™

4PS- Formel / 4PS-formula

exp(7.298-ln(4.304/(Sample*0.910/S-0.002)-1)/1.003)

Gültigkeitsbereich / Validity Range

0.455<=S1<=1.547

If OD Sample < Parameter A

if Ti < (0.002*(S1/0.910)) then Ti = (0.002+0.001)*(S1/0.910)

If OD Sample > Parameter D

if Ti>(4.306*(S1/0.910)) then Ti=(4.306-0.001)*(S1/0.910)

If OD Negative control < Parameter A

if NC1<(0.002*(S1/0.910)) then NCi=(0.002+0.001)*(S1/0.910)

Institut Virion\Serion GmbH Friedrich-Bergius-Ring 19 D-97076 Würzburg