Statistical Learning

Lecture 11a - Multiple Hypothesis Testing

ANU - RSFAS

Last Updated: Thu May 19 17:31:35 2022

Muliple Hypthesis Testing

- A single null hypothesis might look like H_0 : the expected blood pressures of mice in the control and treatment groups are the same.
- We will now consider testing m null hypotheses, H_{01}, \ldots, H_{0m} , where e.g. H_{0j} : the expected values of the j^{th} biomarker among mice in the control and treatment groups are equal.
- In this setting, we need to be careful to avoid incorrectly rejecting too many null hypotheses, i.e. having too many false positives.

Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_i in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

Hypothesis testing proceeds as follows:

- 1. Define the null and alternative hypotheses
- 2. Construct the test statistic
- 3. Compute the *p*-value
- 4. Decide whether to reject the null hypothesis

Decision Outcomes

		Truth	
		H_0	H_a
Decision	Reject H_0 Do Not Reject H_0	Type I Error Correct	Correct Type II Error

Decision Outcomes

- The **Type I error rate** is the probability of making a **Type I error**.
- We want to ensure a small **Type I error rate**.
- If we only reject H_0 when the p-value is less than α , then the Type I error rate will be at most α .
- So, we reject H_0 when the p-value falls below some α often we choose (i.e. we control) α to be equal 0.05 or 0.01 or 0.001.
- $\alpha = 0.05$ was due to R.A. Fisher stating that in a particular problem it seemed reasonable.

Multiple Testing

- ullet Now suppose that we wish to test m null hypotheses, H_{01},\ldots,H_{0m}
- Can we simply reject all null hypotheses for which the corresponding p-value falls below (say) 0.01?
- If we reject all null hypotheses for which the *p*-value falls below 0.01, then how many **Type I errors** will we make?

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We have a binomial set-up here
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H0.

A Thought Experiment

- But what if we flip 1,024 fair coins ten times each?
 - We'd expect one coin (on average) to come up all tails.
 - The *p*-value for the null hypothesis that this particular coin is fair is less than 0.002!
 - So we would conclude it is not fair, i.e. we reject H_0 , even though it's a fair coin.
- If we test a lot of hypotheses, we are almost certain to get one very small p-value by chance!

Multiple Testing: Even XKCD Weighs In

• Even posted on an office door at CSIRO!

https://xkcd.com/882/

The Challenge of Multiple Testing

- Suppose we test H_{01}, \ldots, H_{0m} , all of which are true, and reject any null hypothesis with a p-value below 0.01.
- \bullet Then we expect to falsely reject approximately $0.01 \times \emph{m}$ null hypotheses.
- If m = 10,000, then we expect to falsely reject 100 null hypotheses by chance!
- That's a lot of Type I errors, i.e. false positives!

The Family-Wise Error Rate

- The family-wise error rate (FWER) is the probability of making at least one Type I error when conducting m hypothesis tests.
- FWER = $P(V \ge 1)$

	H_0 is True	H_0 is False	Total
Reject H_0	V	S	R
Do Not Reject H_0	U	W	m-R
Total	m_0	$m-m_0$	m

Challenges in Controlling the Family-Wise Error Rate

FWER =
$$1 - P(\text{do not falsely reject any null hypotheses})$$

= $1 - P\left(\bigcap_{j=1}^{m} \{\text{do not falsely reject } H_{0j}\}\right)$

• If the tests are independent and all H_{0i} are true then:

FWER =
$$1 - \prod_{j=1}^{m} (1 - \alpha) = 1 - (1 - \alpha)^{m}$$

The Bonferroni Correction

FWER =
$$P(\text{falsely reject at least one null hypotheses})$$

= $P\left(\bigcup_{j=1}^{m} A_j\right) \leq \sum_{i=1}^{n} P(A_i)$

- A_j is the event we falsely reject the j^{th} null hypothesis
- Note: the inequality is due to Boole's inequality https://en.wikipedia.org/wiki/Boole's_inequality
- If we only reject hypotheses when the p-value is less than α/m , then

$$\text{FWER} \leq \sum_{i=1}^{n} P(A_i) \leq \sum_{i=1}^{n} \alpha/m = m \times \alpha/m = \alpha$$

• This is the **Bonferroni Correction**: to control FWER at level α , reject any null hypothesis with p-value below α/m .

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- \bullet H_{0j} : the j^{th} manager's expected excess return equals zero.
- Set $\alpha = 0.05$, which do we reject?
- However, we have tested multiple hypotheses, so the FWER is greater than 0.05.

Fund Manager Data - Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Set $\alpha^* = \alpha/m = 0.05/5 = 0.001$
- Now we only reject the first manager.
- The FWER is 0.05.

Holm's Method for Controlling the FWER

- 1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 2. Order the *m p*-values so that $p(1) \le p(2) \le \cdots \le p(m)$.
- 3. Define

$$L = \min \left\{ j : p(j) > \frac{\alpha}{m+1-j} \right\}.$$

- 4. Reject all null hypotheses H_{0j} for which $p_i < p(L)$.
- Holm's method controls the FWER at level α .

Holm's Method

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

• The Holm procedure rejects the first two null hypotheses:

$$p(1) = 0.006 < 0.05/(5+1-1) = 0.0100$$

 $p(2) = 0.012 < 0.05/(5+1-2) = 0.0125$
 $p(3) = 0.601 > 0.05/(5+1-3) = 0.0167$

• Note: *L* = 3

A Comparison with m = 10 p-values

- 3 different simulations
- m = 10 (black dots $m_0 = 2$ true null hypotheses)
- ullet Bonferroni correction \Rightarrow reject all below the black line
- Holm procedure ⇒ reject all below the blue line
- The FWER is 0.05

Other Methods

• Tukey's Method: All pairwise differences among means:

$$H_0: \mu_i - \mu_j = 0 \quad \forall i, j.$$

• **Scheffé's Method** for testing arbitrary linear combinations of a set of expected means:

$$H_0: \frac{1}{2}(\mu_1 + \mu_2) = \frac{1}{3}(\mu_2 + \mu_4 + \mu_5)$$

- Bonferroni and Holm are general procedures that will work in most settings.
- However, in certain special cases, methods such as Tukey and Scheffé can give better results: i.e. more rejections while maintaining FWER control.

False Discovery Rate - A Different Idea

	H_0 is True	H_0 is False	Total
Reject H_0	V	S	R
Do Not Reject H_0	U	W	m-R
Total	m_0	$m-m_0$	m

- The **FWER** rate focuses on controlling P(V > 1), i.e., the probability of falsely rejecting any null hypothesis.
- This is a tough ask when *m* is large! It will cause us to be super conservative (i.e. to very rarely reject).
- Instead, we can control the false discovery rate:

$$FDR = E(V/R) = E\left(\frac{\text{number of false rejections}}{\text{total number of rejections}}\right)$$

False Discovery Rate

- A scientist conducts a hypothesis test on each of m = 20,000 drug candidates.
- She wants to identify a smaller set of promising candidates to investigate further.
- She wants reassurance that this smaller set is really "promising", i.e. not too many falsely rejected H_0 's.
- FWER controls P(at least one false rejection).
- FDR controls the fraction of candidates in the smaller set that are really false rejections. This is what she needs!

Benjamini-Hochberg Procedure to Control FDR

- 1. Specify q, the level at which to control the FDR.
- 2. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 3. Order the *m p*-values so that $p(1) \le p(2) \le \cdots \le p(m)$.
- 4. Define

$$L = \max \left\{ j : p(j) < \frac{qj}{m} \right\}.$$

- 5. Reject all null hypotheses H_{0j} for which $p_j \leq p(L)$.
- Then the $FDR \leq q$.

FDR - Fund Managers

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

• To control FDR at level q = 0.05 using Benjamini-Hochberg:

$$\begin{array}{lcl} \rho(1) & = & 0.006 < 0.05/(5) = 0.010 \\ \rho(2) & = & 0.012 < 0.05(2)/(5) = 0.020 \\ \rho(3) & = & 0.601 > 0.05(3)/(5) = 0.030 \\ \rho(4) & = & 0.756 > 0.05(4)/(5) = 0.040 \\ \rho(5) & = & 0.918 > 0.05(5)/(5) = 0.050 \end{array}$$

• So, we reject H_{01} and H_{03} and L=2.

A Comparison of FDR Versus FWER

- p-values for m = 2,000 null hypotheses
- To control FWER at various levels with the Bonferroni method: reject hypotheses below green line. (Only one rejection! [graph on the right])
- The orange lines indicate the p-value thresholds corresponding to FDR control, via Benjamini-Hochberg, at levels q=0.05, q=0.1, q=0.3 rejected hypotheses shown in blue.

25 / 25