Raise Your Odds® with Adapt

INTEREST MEASUREMENT

Effective Rate of Interest

$$i_t = \frac{a(t) - a(t-1)}{a(t-1)}$$

Effective Rate of Discount

$$d_t = \frac{a(t) - a(t-1)}{a(t)}$$

Simple Interest

a(t) = 1 + it

Force of Interest

$$\delta_t = \frac{a'(t)}{a(t)}$$

$$a(t) = \exp\left(\int_0^t \delta_r \, dr\right)$$

Compound Interest

 $a(t) = (1+i)^t$

Relationships

$$v = \frac{1}{1+i} = 1 - d$$

$$d = \frac{i}{1+i} = iv$$

$$1 + i = \left(1 + \frac{i^{(m)}}{m}\right)^m = (1 - d)^{-1} = \left(1 - \frac{d^{(m)}}{m}\right)^{-m} = e^{\delta}$$

ANNUITIES

Annuity-Immediate

PV =
$$\ddot{a}_{\overline{n}|} = 1 + v + v^2 + \dots + v^{n-1} = \frac{1 - v^n}{d}$$

AV = $\ddot{s}_{\overline{n}|} = (1 + i) + (1 + i)^2 + \dots + (1 + i)^n$

$$= \frac{(1 + i)^n - 1}{d}$$

$$\ddot{a}_{\overline{n}|} \qquad \qquad \ddot{s}_{\overline{n}|}$$
\$\delta_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{

$$\ddot{a}_{\overline{n|}} = a_{\overline{n|}}(1+i) = 1 + a_{\overline{n-1|}}$$

 $\ddot{s}_{\overline{n|}} = s_{\overline{n|}}(1+i) = s_{\overline{n+1|}} - 1$

Deferred Annuity

m-year deferred n-year annuity-immediate: $PV = {}_{m|}a_{\overline{n|}} = v^m \cdot a_{\overline{n|}} = a_{\overline{m+n|}} - a_{\overline{m|}}$

Perpetuity

Perpetuity-immediate

$$PV = a_{\overline{\infty}|} = v + v^2 + \dots = \frac{1}{i}$$

Perpetuity-due

$$PV = \ddot{a}_{\overline{\infty}|} = 1 + v + v^2 + \dots = \frac{1}{d}$$
$$\ddot{a}_{\overline{\infty}|} = 1 + a_{\overline{\infty}|}$$

MORE GENERAL ANNUITIES

j-effective method is used when payments are more or less frequent than the interest period.

"i-effective" Method

Convert the given interest rate to the equivalent effective interest rate for the period between

Example: To find the present value of *n* monthly payments given annual effective rate of i, define j as the monthly effective rate where

$$j = (1+i)^{1/12} - 1$$
. Then apply $PV = a_{\overline{n}|}$ using j .

Payments in Arithmetic Progression

PV of n-year annuity-immediate with payments of P, P + Q, P + 2Q, ..., P + (n - 1)Q

$$Pa_{\overline{n|}} + Q \frac{a_{\overline{n|}} - nv^n}{i}$$

Calculator-friendly version:
$$\left(P + \frac{Q}{i}\right)a_{\overline{n}|} + \left(-\frac{Qn}{i}\right)v^n$$

N = n, I/Y = i (in %), $PMT = P + \frac{Q}{i}$, $FV = -\frac{Qn}{i}$ PV of n-year annuity-immediate with payments of 1,

Textbook formula: $(Ia)_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|} - nv^n}{i}$ P&Q version: P = 1, Q = 1, N = n

PV of n-year annuity-immediate with payments of n, n-1, n-2, ..., 1

Textbook formula: $(Da)_{\overline{n|}} = \frac{n - a_{\overline{n|}}}{i}$ P&Q version: P = n, Q = -1, N = n

PV of perpetuity-immediate and perpetuity-due with

payments of: 1, 2, 3, ...
$$(Ia)_{\infty|} = \frac{1}{id} = \frac{1}{i} + \frac{1}{i^2} \qquad (I\ddot{a})_{\infty|} = \frac{1}{d^2}$$

PV of an n-year annuity-immediate with payments of: $1, (1+k), (1+k)^2, ..., (1+k)^{n-1}$

$$\frac{1 - \left(\frac{1+k}{1+i}\right)^n}{i-k}$$

$\frac{1 - \left(\frac{1+k}{1+i}\right)^n}{i-k}$ Level and Increasing Continuous Annuity

$$\overline{a_{\overline{n|}}} = \int_0^n v^t dt = \frac{1 - v^n}{\delta} = \frac{i}{\delta} a_{\overline{n|}}$$

$$(\overline{I}\overline{a})_{\overline{n|}} = \int_0^n t v^t dt = \frac{\overline{a_{\overline{n|}} - nv^n}}{\delta}$$

YIELD RATES

Two methods for comparing investments:

- Net Present Value (NPV): Sum the present value of cash inflows and cash outflows. Choose investment with greatest positive NPV.
- Internal Rate of Return (IRR): The rate such that the present value of cash inflows is equal to the present value of cash outflows.

Choose investment with greatest IRR.

INTEREST MEASUREMENT OF A FUND

Dollar-weighted Interest Rate

The yield rate computation depends on the amount invested.

- Calculate amount of interest: I = B A CA: Amount at the beginning of period B: Amount at the end of period C: Deposit/withdrawal
- Calculate the dollar-weighted interest rate:

$$i_{DW} = \frac{I}{A + \sum C_t (1 - t)}$$

Time-weighted Interest Rate

The yield rate computation depends on successive sub-intervals of the year each time a deposit or withdrawal is made.

LOAN AMORTIZATION AND SINKING FUNDS

Outstanding Balance Calculation

- *Prospective:* $B_t = Ra_{\overline{n-t}}$, R = level paymentsPresent value of future payments.
- Retrospective: $B_t = R \left| a_{\overline{n|}} (1+i)^t s_{\overline{t|}} \right|$ Current value of all payments minus accumulated value of all past payments.

Retrospective Prospective Accumulationg Discounting Past Payments **Future Payments**

Loan Amortization

For a loan of $a_{\overline{n}|}$ repaid with n payments of 1:

		Period t	Total till time <i>t</i>		
	Interest (I_t)	$1 - v^{n-t+1}$	$t - \left(a_{\overline{n }} - a_{\overline{n-t }}\right)$		
	Principal repaid (P_t)	v^{n-t+1}	$a_{\overline{n }} - a_{\overline{n-t }}$		
	Total	1	t		

General Formulas for Amortized Loan with Non-Level Payments

$$I_t = i \cdot B_{t-1}$$

$$B_t = B_{t-1}(1+i) - R_t = B_{t-1} - P_t$$

Sinking Fund

Sinking fund payments consist of interest paid to the lender (I_t) based on the total loan amount (B_0) and (ii) the sinking fund deposit (SFD_t) .

BONDS

Price of Bond Formulas

- P Price of bond
- FPar value (face amount) of bond
- Coupon rate per payment period
- Amount of each coupon payment Fr
- CRedemption value of bond
- Interest rate per payment period
- n Number of payments

Basic Formula

$$P = Fra_{\overline{n|i}} + Cv^n$$

Premium/Discount Formula:

$$P = C + (Fr - Ci)a_{\overline{n|i}}$$

Premium vs. Discount

	Premium	Discount		
Condition	P > C	P < C		
Amortization Process	Write-Down	Write-Up		
Amount	$(Fr - Ci) \\ \cdot v^{n-t+1}$	$(Ci - Fr) \\ \cdot v^{n-t+1}$		

Price Between Coupon Dates

Full price (price including accrued interest)

$$Price = B_{t+k} = B_t (1+i)^k$$

Clean price (price excluding accrued interest)

$$Price = B_{t+k} - kFr = B_t(1+i)^k - kFr$$

Callable Bonds

Calculate the lowest price for all possible redemption dates at a certain yield rate. This is the highest price that guarantees this yield rate.

- Premium bond earliest redemption date is the worst and therefore produces lowest price.
- Discount bond latest redemption date is the worst and therefore produces lowest price.

FINANCIAL INSTRUMENTS

Price of Preferred Stock

$$P = \frac{Fr}{i}$$

 $F = \text{par value}, \qquad r = \text{fixed dividend rate}$

Theoretical Price of Common Stock

$$P = \frac{D}{i - k}$$

D =expected first dividend, k = growth rate

DURATION, CONVEXITY, IMMUNIZATION

Spot Rates and Forward Rates

 s_t is the spot rate for a term of length t. $_mf_t$ is the m-year forward rate which applies over the period from time t to time t + m.

$$(1+s_t)^t \cdot (1+{}_m f_t)^m = (1+s_{t+m})^{t+m}$$

$$(1+s_n)^n = (1+f_0) \cdot (1+f_1) \cdots (1+f_{n-1})$$

Duration and Convexity

$$\begin{aligned} \textit{MacD} &= -\frac{P'(\delta)}{P(\delta)} = \frac{\sum_{t=1}^{n} t \cdot v^t \cdot \textit{CF}_t}{\sum_{t=1}^{n} v^t \cdot \textit{CF}_t} \\ \textit{ModD} &= -\frac{P'(i)}{P(i)} = \frac{\sum_{t=1}^{n} t \cdot v^{t+1} \cdot \textit{CF}_t}{\sum_{t=1}^{n} v^t \cdot \textit{CF}_t} \end{aligned}$$

MacD(n-year zero-coupon bond) = n

$$\begin{aligned} &\textit{MacD}(\textit{n}\text{-year zero-coupon bond}) = n \\ &\textit{MacD}_{t=n} = \textit{MacD}_{t=0} - n \\ &\textit{ModC} = \frac{P''(i)}{P(i)} = \frac{\sum_{t=1}^{n} t \cdot (t+1) \cdot v^{t+2} \cdot CF_t}{\sum_{t=1}^{n} v^t \cdot CF_t} \\ &\textit{MacC} = \frac{P''(\delta)}{P(\delta)} = \frac{\sum_{t=1}^{n} t^2 \cdot v^t \cdot CF_t}{\sum_{t=1}^{n} v^t \cdot CF_t} \\ &\textit{MacC}(\textit{n}\text{-year zero-coupon bond}) = n^2 \end{aligned}$$

MacC(n-year zero-coupon bond) = n^2

Duration of a portfolio

For a portfolio of m securities where invested

amount
$$P = P_1 + P_2 + \cdots + P_m$$
 at time 0,
 $MacD_P = \frac{P_1}{P} MacD_1 + \frac{P_2}{P} MacD_2 + \cdots + \frac{P_m}{P} MacD_m$
Approximate change in the price of an asset or

liability for a change in interest

$$\begin{split} \Delta P &\approx P(i) \cdot \left[- (\Delta i) (ModD) \right] \\ \Delta P &\approx P(i) \cdot \left[- (\Delta i) (ModD) + \frac{1}{2} (\Delta i)^2 \cdot ModC \right] \end{split}$$

Redington and Full Immunization

Redington and I am miniamzation						
Redington	Full					
$PV_{Assets} = PV_{Liabilities}$						
$MacD_A = MacD_L \text{ or } P_A' = P_L'$						
$C_A > C_L$ or $P_A'' > P_L''$	There has to be asset cash flows before and after each liability cash flow.					
Immunizes against small changes in <i>i</i>	Immunizes against any changes in <i>i</i>					

BA-II PLUS CALCULATOR GUIDELINE

Basic Operations

ENTER (SET): Send value to a variable (option)

↑ ↓ : Navigate through variables

2ND: Access secondary functions (yellow)

STO + 0~9 : Send on-screen value into memory

RCL + 0~9 : Recall value from a memory

Good for handling annuities, loans and bonds. Note: Be careful with signs of cash flows.

I/Y: Effective interest rate per period (in %)

PV: Present value

PMT: Amount of each payment of an annuity

FV : Future value

2ND + BGN: Switch between annuity immediate

2ND

2ND + AMORT : Amortization (See Below)

For bonds ($P = Fra_{\overline{n}|i} + Cv^n$): $N = n; \overline{I/Y} = i; \overline{PV} = -P; \overline{PMT} = Fr; \overline{FV} = C.$

Cash Flow Worksheet (CF , NPV , IRR)

Good for non-level series of payments.

Input (CF)

CF₀: Cash flow at time 0

C_n: nth cash flow

F_n: Frequency of the cash flow

Output (NPV , IRR)

I: Effective interest rate (in %)

NPV + CPT : Solve for net present value

IRR + CPT : Solve for internal rate of return

Amortization Schedule (2ND + AMORT) Good for finding outstanding balance of the loan and

interest/principal portion of certain payments. Note: BA-II Plus requires computing the unknown TVM variable before entering into AMORT function.

P1: Starting period

P2: Ending period

BAL: Remaining balance of the loan after P2

PRN: Sum of the principal repaid from P1 to P2

INT: Sum of the interest paid from P1 to P2

INTRODUCTION

Reasons For Using Derivatives

- · Risk management hedging
- Speculation investment vehicle
- Reducing transaction cost
- Regulatory arbitrage

Bid-ask Spread

Bid price: The price at which brokers will buy and end-users will sell at.

Ask/Offer price: The price at which brokers will sell and end-users will buy at.

Bid-ask spread = Ask price - Bid price

Long vs. Short

A long position in an asset benefits from an increase in the price of the asset.

A short position in an asset benefits from a decrease in the price of the asset.

Short-Selling

- · Borrow an asset from a lender.
- · Immediately sell the asset and receive the current market value (usually kept by lender).
- Make deposits into margin account and refill the account during a margin call if needed. Buy the asset at a later date to repay the lender
- (close/cover the short position). Haircut: Additional collateral/margin placed with

lender by short-seller Short rebate: Interest rate paid on haircut

Reasons for short-selling assets: Speculation – To speculate that the price of a

- particular asset will decline. Financing - To borrow money for additional
- financing of a corporation.
- Hedging To hedge the risk of owning an asset or a derivative on the asset.

Option Moneyness

- In-the-money: Produce a positive payoff if the option is exercised immediately
- At-the-money: The spot price is approximately equal to the exercise price
- · Out-of-the-money: Produce a negative payoff if the option is exercised immediately

Option Style

- European-style options can only be exercised at expiration.
- · American-style options can be exercised at any time during the life of the option.
- · Bermudan-style options can be exercised during specified periods during the life of the option.

Time Value of Money (TVM)

N : Number of periods

and annuity due 2ND + P/Y: Please keep P/Y and C/Y as 1 2ND + CLR TVM: Clear TVM worksheet

	FORWARD CONTRACTS, CALL OPTIONS, AND PUT OPTIONS								
	Contract	Position in Contract	Description	Position in Underlying	Payoff	Profit	Maximum Loss	Maximum Gain	Strategy
I	Forward	Long Forward	Obligation to buy at the forward price	Long	$S_T - F_{0,T}$	$S_T - F_{0,T}$	$-F_{0,T}$	œ	Guarantee/lock in purchase price of underlying
	Forv	Short Forward	Obligation to <i>sell</i> at the forward price	Short	$F_{0,T} - S_T$	$F_{0,T} - S_T$	-8	$F_{0,T}$	Guarantee/lock in sale price of underlying
I	Call	Long Call	Right (but not obligation) to buy at the strike price	Long	$\max\left[0,S_T-K\right]$	$\max [0, S_T - K] - FV(\text{Prem.})$	-FV(Prem.)	∞	Insurance against high underlying price
	G	Short Call	Obligation to <i>sell</i> at the strike price if the call is exercised	Short	$-\max\left[0,S_T-K\right]$	$-\max [0, S_T - K] + FV(\text{Prem.})$	-&	FV(Prem.)	Sells insurance against high underlying price
I	Put	Long Put	Right (but not obligation) to sell at the strike price	Short	$\max\left[0,K-S_T\right]$	$\max [0, K - S_T] - FV(\text{Prem.})$	−FV(Prem.)	K -FV(Prem.)	Insurance against low underlying price
ı		Short Put	Obligation to buy at the strike price if the put is exercised	Long	$-\max\left[0,K-S_{T}\right]$	$-\max[0, K - S_T] + FV(\text{Prem.})$	FV(Prem.) -K	FV(Prem.)	Sells insurance against low underlying price
		Forward			Call		Put		
	For Forward Short Forward For Forward		Payoff 0	Shon Call		Hour brit			
Spot Price at Expiration				Spot Price at Expiration		Spot Price at Expiration			

Box Spread

Synthetic long forward (K_1) + Synthetic short forward (K_2), $K_1 < K_2$

Spot Price at Expiration

Ratio Spread

Long and short an unequal number of calls/puts with different strike prices

Spot Price at Expiration

Collar

Long put (K_1) + Short call (K_2) , $K_1 < K_2$

Collared Stock

Long collar + Long stock

Spot Price at Expiration

Strangle

Long put (K_1) + Long call (K_2) , $K_1 < K_2$

Long put (K) + Long call (K)

Butterfly Spread

- 1 * Long call (K₁) + 2 * Short call (K₂) + 1 * Long call (K_3) , $K_1 < K_2 < K_3$
- 1 * Long put (K₁) + 2 * Short put (K₂) + 1 * Long put (K_3) , $K_1 < K_2 < K_3$

Spot Price at Expiration

RISK MANAGEMENT

Hedging

Actions taken to reduce the risk of loss

Reasons to Hedge

- · Decrease taxes
- Reduce probability of bankruptcy/distress
- Too expensive to raise funds externally
- Increase debt capacity
- Managerial risk aversion
- Manage non-financial risks

Reasons Not to Hedge

- Transaction costs
- Potentially costly expertise
- Monitoring and control capabilities
- Financial reporting, accounting, and tax considerations

FINANCIAL FORWARDS AND FUTURES

4 Ways to Buy a Share of Stock

Ways	Pay At Time	Receive Stock at Time	Payment
Outright purchase	0	0	S_0
Fully leveraged purchase	Т	0	S_0e^{rT}
Prepaid forward contract	0	Т	$F_{t,T}^{P}(S)$
Forward contract	Т	Т	$F_{t,T}(S)$

Relationship between $F_{t,T}(S)$ and $F_{t,T}^{P}(S)$

 $F_{t,T}(S) =$ Accumulated Value of $F_{t,T}^{p}(S)$

$$= F_{t,T}^{P}(S) \cdot e^{r(T-t)}$$

t,1 (-)	
Dividend Structure	$F_{t,T}^{P}(S)$
None	S_t
Discrete	$S_t - PV(Divs)$
Continuous	$S_t e^{-\delta(T-t)}$

Dividend Structure	$F_{t,T}(S)$
None	$S_t e^{r(T-t)}$
Discrete	$S_t e^{r(T-t)} - AV(Divs)$
Continuous	$S_t e^{(r-\delta)(T-t)}$

Arbitrage

A transaction which generates a positive cash flow either today or in the future by simultaneous buying and selling of related assets, with no net investment or risk.

Arbitrage strategy: "Buy Low, Sell High."

Cash-And-Carry Arbitrage

Good when forward is overpriced.

Short forward + Borrow money + Long asset

Reverse Cash-And-Carry Arbitrage

Good when forward is underpriced. Long forward + Lend money + Short asset

Futures Compared To Forward

- · Traded on an exchange
- Standardized
- More liquid
- Marked-to-market and settled daily

SWAPS

Swap Types

Commodity Swap: Parties exchange fixed and variable commodity prices.

Interest Rate Swap: Parties exchange fixed and floating interest rate.

Market Value of a Swap

- Market value of a swap is 0 when first entered.
- The market value will generally no longer be zero as the forward prices or interest rates will change over time; even if they do not change, the swap value would change after first swap payment is made.

Assume 1-year spot rate = 4%, 2-year spot rate = 5% and 3-year spot rate = 6% for the following:

Finding Swap Price/Rate

Commodity Swap

		103	106	108	forward	d price	
	10	+,	+,	+2	→		
	U	1	2	3			
		X	X	X	fixed	price	
	103	106	108	X	X	X	
		+	+	=	+		
	1.04	1.05 ²	1.06^3	$=\frac{1.04}{1.04}$	$+\frac{1.05^2}{1.05^2}$	1.06^{3}	
Fixed swap price is a zero-coupon-bond-price-							
weighted average forward prices.							
	Intere	est Rate	Swap				
				1	Rede	mntion	

Since an interest rate swap is equivalent to borrowing at a floating rate to buy a fixed-rate bond, fixed swap rate is the coupon rate on a par coupon bond.

$$\frac{R}{1.04} + \frac{R}{1.05^2} + \frac{R+1}{1.063} = 1$$