화이트박스 테스팅

❖ Black box 테스트의 취약점

함수 이름	getMax	
매개변수	int values[]	int 값에 대한 배열
	int size	values 배열의 크기
반환 값	int values 중에서 최대값	
기능 명세	매개변수로 주어진 values 중에서 최대값을 반환 한다.	

❖ Black box 테스트 케이스

식별자	설명	입력 값		예상 결과	
역발자 	⊒ 7	values[]	size	반환 값	
TC-1	1번째 원소가 최대값인 경우	20, 3, 5, 7	4	20	
TC-2	2번째 원소가 최대값인 경우	2, 25, 9, 8	4	25	
TC-3	3번째 원소가 최대값인 경우	7, 6, 10, 8	4	10	
TC-4	4번째 원소가 최대값인 경우	6, 5, 1, 9	4	9	

	코드	TC-1	TC-2	TC-3	TC-4
	int getMax(int values[], int size) {				
1	int max = values[0];	√ √	√	√ √	√
2	if (size == 1)	√ √	√	√ √	√
3	return max ;				
4	if (size == 2) {	√	√	√	√
5	if (max >= values[1])				
6	return max ;				
7	else				
8	return values[1];				
	}				
9	for (int $i = 1$; $i < size$; $i + +$)	√	√	√	√
10	if (max < values[i])	√	√	√	√
11	max = values[i] ;	√ √	√	√	√
12	return max ;	√	√	√	√
	}				

	코드	TC-5 {10}, 1	TC-6 {2, 2}, 2	TC-7 {1, 2}, 2
1 2 3 4 5 6 7 8	<pre>int getMax(int values[], int size) { int max = values[0]; if (size == 1) return max; if (size == 2) { if (max >= values[1]) return max; else return values[1];</pre>	√ √ √	√ √ √ √	√ √ √ √
9 10 11 12	<pre>for (int i = 1 ; i < size ; i ++) if (max > values[i]) max = values[i] ; return max ; }</pre>			V

Example Code

```
void F(int A, int B, int* X) {

if (A > 1 && B == 0)

*X = *X / A;

if (A == 2 || *X > 1)

*X = *X + 1;

}
```


Statement Coverage

- The percentage of the statements exercised by the test suite
- **❖** e.g.)

	TC1					
	Α	В	*X	Α	В	*X
	3	0	1	2	0	3
S1	√			\checkmark		
S2	√			\checkmark		
S3		\checkmark			\checkmark	
S4					\checkmark	
	3 / 4			4 / 4		
	4 / 4					

Exercise

	코드	TC-1	TC-2
	<u> </u>	{1, 2} 2	{20, 3, 5, 7} 4
1 2 3 4 5 6	<pre>int getMax(int values[], int size) { int max = values[0]; if (size == 1) return max; if (size == 2) { if (max >= values[1]) return max;</pre>	√ √ √	√ √ √
7	else return values[1];	√	
8 9 10 11	for (int i = 1 ; i < size ; i ++) if (max < values[i]) max = values[i] ; return max ; }		√ √ √
Stat	Statement coverage		6 / 11
	9		8 / 11

Practice Code 1 – Premium Change #1

		TC	[1	TC	2
	코드	ag	ac	ag	ac
		21	2	18	3
1 2 3 4	<pre>int calculate1(int age, int accident) { cout << age << " " << accident << endl; int rateChange = 0; if (accident <= 2) rateChange = 5; else rateChange = 10;</pre>	\ \ \ \ \	 	\ \ \ \	
6 7 8 9	7 rateChange += 5; 8 cout << rateChange << endl;		√ √ √		
	Statement coverage	7 /	9 ,		/ 9

Branch Coverage (Decision Coverage)

The percentage of branches exercised by the test suite

	TC1			TC2		
	Α	В	*X	Α	В	*X
	3	0	3	2	1	1
D1T	√					
D1F				\checkmark		
D2T					\checkmark	
D2F		√				
	2 / 4		2 / 4			
		4 / 4				

Exercise

	코드	TC-1	TC-2
	<u> </u>	{1, 2} 2	{20, 3, 5, 7} 4
	<pre>int getMax(int values[], int size) { int max = values[0];</pre>		
D1	if (size == 1)	D1F	D1F
D2	return max ; if (size == 2) {	D2T	D2F
D3	if (max >= values[1]) return max ;	D3F	
	else		
	return values[1];		
D4	for (int i = 1 ; i < size ; i ++)		D4T, D4F
D5	if (max < values[i]) max = values[i] ;		D5F
	return max ;		
	1	2 / 10	F / 10
Bran	nch coverage	3 / 10	5 / 10
Diai	ich coverage		7 / 10

Practice Code 1 – Premium Change #1

		TC	1	TC	2
	코드	ag	ac	ag	ac
		21	2	18	3
D1	rateChange = 5 ; else rateChange = 10 ;	D²		D°	
	Branch coverage		/ 4	2 ,	/ 4
	Dianeir coverage	4 / 4			

Comparison

Condition Coverage

The percentage of the conditions exercised by a test suite

	TC1	TC2	
	A=2	A=1	
	B=0	B=1	
	*X=4	*X=1	
A > 1	Т	F	
B == 0	Т	F	
A == 2	Т	F	
*X > 1	Т	F	
	4 / 8	4 / 8	
	8 / 8		

Practice Code 1 – Premium Change #1

		TC	1	TC	2
	코드	ag	ac	ag	ac
		20	1	21	3
C1 C2, C3	<pre>int calculate1(int age, int accident) { cout << age << " " << accident << endl; int rateChange = 0; if (accident <= 2) rateChange = 5; else rateChange = 10; if (accident >= 3 age <= 20) rateChange += 5; cout << rateChange << endl; return rateChange; }</pre>	C1T	СЗТ	C1F C2T, (C3F
	Condition coverage			3 / 6	
	Condition coverage	6 / 6			

Condition Coverage vs. Branch Coverage

- Question: Does condition coverage imply branch coverage?
- Answer: Not always.

						7 I
	TC1	TC2		TC1	TC2	D1T: T
	A=1	A=2		A=1	A=2	D1 (A>1 && B==0)
	B=0	B=1		B=0	B=1	
	*X=3	*X=1		*X=3	*X=1	D1F: F $X = XX / X$
A > 1	F	Т	D1T			
B == 0	Т	F	D1F	√	\checkmark	D2T: T
A == 2	F	Т	D2T	√		D2 D2 D21. 1
*X > 1	Т	F	D2F		\checkmark	D2F: F S4
	4 / 8	4/8		2/4	2/4	X = X + X =
	8 ,	/ 8		3 / 4		
				•		-

*X+1

Comparison

Condition/Decision Coverage

- The percentage of the conditions and decisions exercised by a test suite
- **e.g.)** 11 / 12

	TC1	TC2
	A=1	A=2
	B=0	B=1
	*X=3	*X=1
A > 1	F	Τ
B == 0	Т	F
A == 2	F	Τ
*X > 1	Т	F
	4 / 8	4 / 8
	8 ,	/ 8

	TC1	TC2
	A=1 B=0 *X=3	A=2 B=1 *X=1
D1T		
D1F	√	√
D2T	√	
D2F		√
	2 / 4	2/4
	3 /	/ 4

Comparison

Multiple-Condition Coverage

The percentage of all combinations of each condition exercised by a test suite

* e.g.) combinations of conditions in F

1	A > 1, B = 0
2	A > 1, B ≠ 0
3	$A \le 1, B = 0$
4	A ≤ 1, B ≠ 0
5	A = 2, *X > 1
6	A = 2, *X ≤ 1
7	A ≠ 2, *X > 1
8	A ≠ 2, *X ≤ 1

Multiple-Condition Coverage (Compound-Condition Coverage)

		A=2 B=0 *X=0	A=2 B=1 *X=1	A=1 B=0 *X=2	A=1 B=1 *X=1	
1	A > 1, B = 0	√				
2	A > 1, B ≠ 0		√			
3	$A \le 1, B = 0$			√		
4	$A \le 1$, $B \ne 0$				√	
5	A = 2, *X > 1	~				
6	$A = 2, *X \le 1$		√			
7	A ≠ 2, *X > 1			7		
8	A ≠ 2, *X ≤ 1				√	
	Coverage	2/8	2/8	2/8	2/8	
Coverage		8 / 8				

Multiple-Condition Coverage (Compound-Condition Coverage)

Compound-Condition Coverage satisfies Decision/Condition Coverage

		A=2 B=0 *X=0	A=2 B=1 *X=1	A=1 B=0 *X=2	A=1 B=1 *X=1
Decision	A>1 && B==0	Т	F	F	F
Coverage	A==2 *X>1	Τ	Τ	F	F
	A>1	Τ	Τ	F	F
Condition Coverage	B==0	Т	F	Т	F
	A==2	Т	Т	F	F
	*X>1	F	F	Т	F

Comparison

Practice Code 1 – Premium Change #1

```
int calculate1(int age, int accident) {
 cout << age << " " << accident << endl;
 int rateChange = 0;
 if (accident <= 2)
   rateChange = 5;
 else
   rateChange = 10;
                                                              ac=
                                                                     ac=
                                                                            ac=
                                                                                   ac=
 if ( accident >= 3 \parallel age <= 20 )
                                                              ag=
                                                                     ag=
                                                                            ag=
                                                                                   ag=
   rateChange += 5;
                                                ac < = 2
 cout << rateChange << endl;</pre>
 return rateChange;
                                                 ac≯2
                                           ac > = 3, ag < = 20
                                       3
                                       4
                                            ac > = 3, aq > 20
                                            ac < 3, ag < = 20
                                             ac<3, ag>20
                                       6
                                                               / 6
                                            Coverage
                                                                         / 6
```

Practice Code 3 – Premium Change #2

```
int calculate2(int age, int accident, bool male) {
 int rateChange = 0;
 if (accident <= 2)
   rateChange = 5;
 else
   rateChange = 10;
 if (accident >= 5 \parallel (age <= 20 \&\& male))
   rateChange += 5;
                                                                     ac=
                                                              ac=
                                                                           ac=
                                                                                  ac=
 cout << rateChange << endl</pre>
                                                              ag=
                                                                    ag=
                                                                           ag=
                                                                                  ag=
                                                              m =
                                                                     m=
                                                                           m=
                                                                                  m =
 return rateChange;
                                             ac < = |2|
                                              ac>2
                                 3
                                     ac>=5, ag<=20, male
                                     ac>=5, ag<=20, !male
                                      ac > = 5, ag > 20, male
                                      ac>=5, ag>20, !male
                                      ac<5, ag<=20, male
                                      ac<5, ag<=20, !male
                                       ac<5, ag>20, male
                                      ac<5, ag>20, !male
                                10
```

- ❖ Multiple Condition Coverage requires 2ⁿ test cases for n conditions.
- Modified Condition Decision Coverage requires test cases to show that <u>each condition can</u> <u>independently affect the outcome of the decision</u>
- ❖ MCDC requires between n+1 and 2*n test cases

А	В	A and B		
Т	F	F		
Т	Т	Т		
F	Т	F		
F	F	F		

А	В	A or B			
Т	Т	Т			
Т	F	Т			
F	F	F			
F	Т	Т			

- ❖ A and B and C
 - 1, 2, 3, 5
- ❖ A or B or C
 - 4, 6, 7, 8

TC	٨	D		A and	B ar	d C		A or	B or	C	
TC	Α	В	C	Outcome	Α	В	С	Outcome	Α	В	С
1	Η	Η	T	Т	V			Т			
2	Η	Η	F	F				Т			
3	Τ	F	Т	F		V		Т			
4	Т	F	F	F				Т	$\sqrt{}$		
5	F	Τ	Т	F				Т			
6	F	Τ	F	F				Т			
7	F	F	Т	F				Т			
8	F	F	F	F				F	V	√	

❖ A or (B and C)

• (2 or 3), 5, 6, 7

	۸	D	D	D	D	D	D	D	D	R	В	C		A o	r (Ba	nd C)		
	A	D	ر	Outcome		Α		В	C									
1	Τ	Τ	Т	Т														
2	Т	Т	F	Т	$\sqrt{}$													
3	Т	F	Т	Т		$\sqrt{}$												
4	Т	F	F	Т			$\sqrt{}$											
5	F	Т	Τ	T				\checkmark	$\sqrt{}$									
6	F	Т	F	F	V				V									
7	F	F	Т	F		√												
8	F	F	F	F														

- ❖ A and (B or C)
 - 2, 3, 4, (6 or 7)

	۸	В			A an	d (B	or C)		
	А	D		Outcome		Α		В	\cup
1	Τ	Т	Т	Т	$\sqrt{}$				
2	Τ	Т	F	Т		$\sqrt{}$			
3	Т	F	Т	Т					$\sqrt{}$
4	Т	F	F	F				√	
5	F	Т	Т	F	$\sqrt{}$				
6	F	Т	F	F		$\sqrt{}$			
7	F	F	Т	F			√		
8	F	F	F	F					

Comparison

Code Coverage - Summary

Coverage	Covered Element		
Statement Coverage	Every statement		
Decision Coverage	Every decision		
Condition Coverage	Every condition		
Condition/Decision Coverage	Every condition and decision		
MC/DC	Every condition with independent effect on decision		
Multiple Condition Coverage	Every combination of condition		

CODE COVERAGE 측정

Coverage Analysis

```
public class Calculation {
         public static int calculate1(int accident) {
             System.out.print("Accident: " + accident) ;
             int rateChange = 0;
              if ( accident >= 3 )
                  rateChange = 10
              System.out.println(" Rate Change: " + rateChange) ;
             return rateChange ;
Proble... 

✓ Test Se... 

Covera... 
Boolea... 
Pick Te... 
Correla... 
Proble...
 Test Session Container: TDD 2014. 6. 18 오전 12:23:21
  Name
                                                          Date
  ▲ ▼ 🔑 2014. 6. 18 오전 12:30:53
                                                          2014. 6. 18
        codecoverage.CalculationTest:test1
                                                          2014. 6. 18
```


Coverage Analysis Tool

eCobertura for Java in Eclipse

Coverage Analysis Tool

Visual Studio(Premium/Ultimate) supports statement/block coverage analysis

Coverage Analysis Tool

LCOV is a graphical front-end for GCC's coverage testing tool gcov

Q&A

