

# INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Dpto. de Ing. en Sistemas Computacionales Academia de Sistemas Digitales Diseño de Sistemas Digitales



Práctica de Laboratorio No. 9 – Marquesina.

**OBJETIVO:** Realizar un programa que permita crear una marquesina usando un módulo de 3 displays multiplexados de ánodo común mediante un lenguaje de descripción de hardware (HDL) en un PLD 22V10.

## **MATERIAL Y EQUIPO:**

Mesa de instrumentación del laboratorio de sistemas digitales 1 PLD 22v10

Además de lo anterior, se puede optar por alguna de estas dos opciones:

| <u> </u>                                |                   |                   |                   |      |                |
|-----------------------------------------|-------------------|-------------------|-------------------|------|----------------|
| 1 Fuente de 5V                          | 1 TEDDi           | ( <b>T</b> arjeta | <b>E</b> ducativa | para | <b>D</b> iseño |
| 1 Módulo de 3 displays multiplexados de | <b>Di</b> gital). |                   |                   |      |                |
| ánodo común.                            |                   |                   |                   |      |                |
| 1 Push Button                           |                   |                   |                   |      |                |
| 4 Resistencias de 1KΩ                   |                   |                   |                   |      |                |
| 7 Resistencias de 330Ω                  |                   |                   |                   |      |                |
| 3 Transistores BC557                    |                   |                   |                   |      |                |
| 1 Protoboard                            |                   |                   |                   |      |                |
| Pinzas y cable para alambrar            |                   |                   |                   |      |                |

# INTRODUCCIÓN TEÓRICA

#### PROCEDIMIENTO.

Antes de asistir al laboratorio:

1. Realizar el programa del autómata mostrado en la ilustración 1. Este autómata permite visualizar un mensaje de 4 letras en modo marquesina.



Ilustración 1 Autómata de la marquesina.

AUTOR: VICTOR HUGO GARCIA ORTEGA

Después de programar el autómata de la ilustración 1, realizar el diseño completo mostrado en la ilustración 2.



Ilustración 2 Diagrama a bloques del diseño

El contador de 10 bits del PLD1 permite realizar un divisor de frecuencia. La frecuencia de reloj (FCLK) es de 256Hz y permite multiplexar los displays lo suficientemente rápido para engañar a nuestra vista y ver el mensaje continuo. Esta frecuencia tiene que reducirse con este contador a una frecuencia DE 1Hz, que será la que determine la velocidad del mensaje en modo marquesina. La frecuencia de salida para los bits  $Q_0$ ,  $Q_1$  y  $Q_2$  del contador esta dada por:

$$Q_0 = \frac{FCLK}{2}$$

$$Q_1 = \frac{FCLK}{4}$$

$$Q_2 = \frac{FCLK}{8}$$

Para un contador de n bits tenemos:

$$Q_n = \frac{FCLK}{2^{n+1}}$$

Si se toma la salida de los 3 bits MSB ( $Q_7$ ,  $Q_8$  y  $Q_9$ ) del contador, la frecuencia del mensaje en modo marquesina será la de  $Q_7$ , es decir, de 1 Hz.

$$Q_7 = \frac{FCLK}{2^8} = \frac{FCLK}{256}$$

Para el autómata del PLD2 considere los códigos de los displays mostrados en la tabla 1.

| AN2 | AN1 | AN0 | Display |
|-----|-----|-----|---------|
| 1   | 1   | 0   | D0      |
| 1   | 0   | 1   | D1      |
| 0   | 1   | 1   | D2      |
| 1   | 1   | 1   | ND      |

Tabla 1 Códigos de los displays.

Considere los códigos de las letras mostrados en la tabla 2.

| DISPLAY |   |   |   | Letra |   |   |        |
|---------|---|---|---|-------|---|---|--------|
| Α       | В | O | ם | ш     | E | G |        |
| 1       | 0 | 0 | 1 | 0     | 0 | 0 | L1 – H |
| 0       | 0 | 0 | 0 | 0     | 0 | 1 | L2 – O |
| 1       | 1 | 1 | 0 | 0     | 0 | 1 | L3 – L |
| 0       | 0 | 0 | 1 | 0     | 0 | 0 | L4 – A |
| 0       | 0 | 0 | 0 | 0     | 0 | 0 | NL     |

Tabla 2 Códigos de las letras del mensaje a mostrar en la marquesina.

Programar el autómata de dos formas:

- a) Usando la directiva TYPE para definir a los estados. En este caso el sintetizador realizará la asignación de código y obtendrá las ecuaciones del diseño.
- b) Usando la codificación definida por el usuario. En este caso definir a los estados mediante constantes y usar la construcción When-else para describir el autómata.

AUTOR: VICTOR HUGO GARCIA ORTEGA

- 2. Simular el diseño en el ambiente de desarrollo.
- 3. Una vez simulado el diseño construir el circuito mostrado en la ilustración 3 para probarlo en el laboratorio. En caso de usar la TEDDI este paso no es necesario.

# Ilustración 3 Diagrama esquemático

### En el laboratorio:

- 1. Programar los PLD 22V10 usando el programador disponible del laboratorio.
- 2. Colocar la frecuencia de la señal de reloj a 256 HZ.
- 3. Verificar el correcto funcionamiento del diseño.

## **CUESTIONARIO**

- 1. ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?
- 2. ¿Cuántos dispositivos de la serie 74xx (TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?
- 3. ¿Cuántos pines de entrada/salida del PLD 22V10 se usan en el diseño?
- 4. ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total del PLD 22V10?
- 5. ¿Qué codificación se usa con la directiva TYPE?
- 6. ¿Cuál codificación es la que finalmente se pudo sintetizar?
- 7. ¿Qué puedes concluir de esta práctica?

AUTOR: VICTOR HUGO GARCIA ORTEGA