(گزارش بخش عملی پروژه)

آشنایی با ماشین لرنینگ

محمدعلي هاشمي فر

99106758

مبين خطيب

99106114

سوال 1)

Image1:

Image2:

سوال 2)

به تابع e-step خود بایستی 2 ورودی بدهیم:

ورودی data': 2' 'data' که یک آرایه 2*600 می باشد که درواقع همان نقاط مشخص شده روی صفحه هستند.

ورودی 2: 'means' که یک آرایه 2*3 شامل میانگین هر 3 توزیع نرمال می باشد.

در ابتدا فاصله ی اقلیدسی بین تمام نقطه ها و میانگین هر distribution پیدا میکنیم و آن را در distribution می ریزیم. سپس index کمترین فاصله را برای هر نقطه پیدا میکنیم تا آن نقطه را به آن distribution اختصاص دهیم.

در نهایت هم ماتریس 600*R 3 را return میکنیم.

R براى 50 ستون اول:

Image1:

Image2:

سوال 3) در ابتدای امر دو آرایه خالی می سازیم تا مقادیر جدید ماتریس های mean و covariance را حفظ کنیم. سپس روی هر کدام از gaussian distribution ها و loop می زنیم تا تعداد داده های اختصاص داده شده به هر کدام از distribution ها را بفهمیم. پس از آن مقادیر میانگین و واریانس جدید را محاسبه می کنیم

Image1: image2:

```
Updated Means:
                              Updated Means:
[[-0.00424818 0.0766469]
                              [[-0.01487545 -0.00685517]
3.2552938
            3.11237787
                               [-2.12150568 4.10651646]]
                               [-1.9766022
                                          2.07971658]]
Updated Covariances:
                              Updated Covariances:
[[[ 0.9910141
            0.09622623]
                              [[[ 0.89197566  0.00889288]
 [[ 0.8528404
            0.30503126]
                               [[ 0.03454337 -0.05185701]
 [ 0.30503126  0.79892933]]
                               [-0.05185701 0.12077032]]
[[ 0.84024096 -0.41831694]
                               [-0.41831694 0.90470716]]]
                                [ 0.04990456  0.26473843]]]
```

سوال 4)

در ابتدا ماكزيمم مقدار iteration را مشخص مي كنيم مثلا ما آن را 100 گذاشتيم.

سپس convergence tolerance را مشخص می کنیم که به نظر مقدار 1e-4 برای آن مناسب باشد.

سپس در حلقه ای که برروی ماکزیمم مقدار iteration زدیم این مراحل را به ترتیب انجام می دهیم:

- 1) از e-step استفاده می کنیم تا هر کدام از نقاط را با توجه به فاصله ی اقلیدسی آن به یکی از توزیع ها نسبت دهیم. و سپس ماتریس R را بسازیم.
 - 2) از m-step استفاده می کنیم تا میانگین و واریانس هر توزیع را update کنیم .
- 3) حال convergence را بررسی میکنیم به این معنی که log-likelihood داده ها در هر مرحله نسبت به مرحله قبل کمتر از tol تغییرات داشته یا خیر.
 - 4) Log-likelihood را آپدیت می کنیم.

Image1:

```
converged in step : 2
Final Means:
[[-0.07057305    0.02795606]
[    3.18586944    3.06155446]
[    -2.13711914    4.12519435]]

Final Covariances:
[[    0.92055847    -0.01603312]
[    -0.01603312    0.95829743]]

[[    0.93854291    0.36795759]
[    0.36795759    0.83508943]]

[[    0.82050513    -0.3950643 ]
[    -0.3950643    0.87780739]]]

Background
Normal Brain Tissue
Tumor Tissue

Tumor Tissue
```

Image2:

```
converged in step : 14
Final Means:
[[-0.26849419 -0.92604895]
 [ 0.90646733  0.36807678]
[-0.84263741 0.75906057]]
Final Covariances:
[[[ 0.53189564 -0.06893279]
  [-0.06893279 0.34537548]]
 [[ 0.36150855 0.01552642]
  [ 0.01552642  0.49135215]]
 [[ 0.41415562 -0.0223189 ]
  [-0.0223189
               0.4009015 ]]]
  0
 -2
        Background
        Normal Brain Tissue
         Tumor Tissue
```

سوال 5)
همانطور که مشاهده می کنیم از آنجایی که در image1 داده ها از همان ابتدا تقریبا 3 خوشه جدا از هم دیگر را به
ترتیب تشکیل می دادند ، بعد از iteration 2 به شکل نهایی رسیدیم و مقادیر نهایی خیلی تغییری نکرد.
اما در image2 پس از اختصاص دادن نقاط به همان ترتیب 200 تایی پشت سرهم به هر کدام از توزیع ها، تفاوت
خوشه ها از همدیگر مشخص نبود . از این رو هم iteration بالا تری داریم هم مقادیر نهایی جابجایی بیشری
دارند.