

Projet Farmbot

Soutenance finale

Professeurs référents:

Bromberg David Bourcier Johann

Sommaire

- 1 Présentation du projet
- 2 Fonctionnement
- Nos modifications
- Difficultées rencontrées
- Conclusion du projet

1. Présentation

Notre équipe

Yoann — Théo — Thomas

Le Farmbot

Généralité:

- Potager connecté
- Projet open source
- L'utilisateur contrôle le robot grace à l'application Web

Objectifs du projet :

- ☐ Installer le robot et comprendre le fonctionnement : matériel & logiciel
- Apporter plusieurs modifications

4 parties principales

Communication inter-partie différente

Fonctionnement

Protocole MQTT = Protocole Open Source

Type de message :

Celery Script

3. Nos modifications

Objectif 1: priorité importante

- A. Rendre autonome le Farmbot
 - Energie solaire pour l'électricité
 - Récupération d'eau de pluie pour l'arrosage
- B. Modification et amélioration du logiciel avec l'ajout de conseils et suggestions en fonction de la saison
- C. Gestion de l'alimentation des éléments du Farmbot (raspberry pi, arduino)

A. Rendre autonome le Farmbot

Achat des différents composants :

- Un panneau solaire
- Une batterie
- ☐ Une cuve de récupération d'eau

Problèmes lors de l'installation du Farmbot qui ne nous permettent pas de mettre en place ces éléments

B. Amélioration IHM

Construction globale de l'Interface utilisateur

Organisation du code de l'application WEB

- Typescript associé à la librairie React
- Modification dynamique des pages html
- ☐ Un onglet = Un dossier

Organisation: Exemple de l'onglet "Device"

Modifications apportées

C. Gestion de l'alimentation

Allumer et éteindre l'Arduino à partir de la Raspberry pi

Utilisation de la fonction Elixir gérant les ports USB

```
def start(time) do
    :os.cmd('./hub-ctrl -h 0 -P 2 -p 1')
    :timer.sleep(time)
    :os.cmd('./hub-ctrl -h 0 -P 2 -p 0')
end
```

Simulation de la base de données Farmevents

- Utilisation d' Ecto, Elixir et PostgreSQL
- Création d'un schéma, insertion, suppression ...

```
defmodule Farmbot. Item do
        use Ecto.Schema
        import Ecto
        import Ecto.Changeset
        import Ecto. Query
        schema "farmbdd" do
                field :ide, :integer
                field :startdate, :utc datetime
                field :enddate, :utc datetime
        end
         @fields ~w(ide startdate enddate)
        def Changeset(data, params \\ %{}) do
          data
          |> cast(params, @fields)
          |> validate_required([:ide, :startdate])
        end
end
```

Gestion de l'allumage de l'Arduino

- Utilisation des dates d'événements
- Détermine le temps entre le prochain événement et la date actuelle
- Programme d'abord en JS puis en Elixir

```
20:02:44.976 [debug] QUERY OK source="farmbdd" db=0.1ms
SELECT f0."startdate" FROM "farmbdd" AS f0 WHERE (f0."startdate" > $1) [{{2018, is, 24}, {18, 2, 44, 971655}}]
2018-05-25 17:00:07.000000Z
l'Arduino va s'éteindre pendant
82643
Secondes
```

Problème au niveau de l'implantation dans l'OS du Farmbot

Objectif 2 : priorité moyenne

Optimisation de la gestion de l'eau :

- Mise en place d'une station météo (Anémomètre, sonde de température, capteur de pression barométrique)
- Remonter des informations à l'utilisateur
- Récupération des différentes prévisions météorologiques via OpenWeatherMap
- Gestion des ressources grâce aux prévisions

Organisation des différents composants Capteur humidité Hardware Arduino Capteur températu Capteur re de pression

Composants et tâches à réaliser

☐ Découverte du fonctionnement sur arduino

- Relier les éléments sur le Farmduino ou la RPI du farmbot.
- Transfert des éléments et modification du comportement du farmbot en fonction de la météo

Allumer et éteindre l'Arduino à partir de la Raspberry pi

```
Humidit
                               int PinAnalogiqueHumidite =0;
                                int hsol;
                                int secheresse:
    Définition
                               int Pinled = 3;
    des pins
                                void setup() {
                                 // put your setup code here, to run once:
                                 Serial.begin(9600);
                                 pinMode (PinAnalogiqueHumidite, INPUT);
                                 pinMode (Pinled, OUTPUT);
Sonde
                               void loop() {
                                 // put your main code here, to run repeatedly:
humidité
                                 hsol = analogRead(PinAnalogiqueHumidite);
                                 Serial.print("Humidite ");
                                 Serial.println(hsol);
                                 delay(1000);
                                 if (hsol <50) {
                                   digitalWrite (Pinled, HIGH); //Led allumée
   Etat de la
                                 else
   LED
                                   digitalWrite (Pinled, LOW); //Led éteinte
```

```
COM4 (Arduino/Genuino Mega or Mega 2560)
Humidite 0
Humidite
Humidite 462
Humidite 485
Humidite 499
Humidite 512
                       Sonde dans l'eau
Humidite
        515
Humidite 505
Humidite 522
Humidite
Humidite
Humidite 413
Humidite 0
Humidite 0
Humidite 0
```

Codes

Résultat

Exemple de récupération des données

Zone de création de séquence

Conclusion sur la station météo

Etape 1 Validée Etape 2 non Validée Etape 3 non Validée

Découverte du fonctionnement des éléments essentiels à la station météo

Impossible d'avoir accès au Farmduino pour le tester

Etape 2 non validée

Solution envisageable

Tester sur la Raspberry Pi avec l'OS fonctionnel en étant connecté à l'Arduino.

Problème: Comment voir les divers comportements?

Objectif 3: priorité basse

- Ajout d'une fonctionnalité de retournement de la terre
 - Réalisation de la tête
 - Modification de l'interface
 - Création d'une séquence de retournement
- ☐ Eviter la stagnation de l'eau
 - Utilisation du charbon

Réalisation de la tête

- Prototype réalisé avec le logiciel onShape
- ☐ Adapté au bras du robot
- Système d'aimant pour le fixer
- Objectif final : réaliser une nouvelle séquence pour préparer la terre.

4. Difficultés rencontrées

- Difficulté de reprendre un projet existant
- Nouveauté pour nous au niveau des langages et technologies utilisées
- Phase de compréhension et d'étude beaucoup plus longue que prévue
- Répartition des tâches non optimale
- Objectifs prévus trop ambitieux

5. Conclusion de ce projet

- Travail d'équipe
- Phase de compréhension intéressante mais complexe
- Rester motivé durant 1 an
- Respecter au mieux les délais