Klausur: Mathematik II - Teil B

Termin: 13.06.2019 8:30 Uhr

SS 2019

Prof. Dr. B. W. Lichte / Prof. Dr. S. Vanis

Name, Vorname	e:
Raum:	
Matrikel-Nr.:	
Unterschrift:	

Teil B

Aufgabe	B1	B2	В3
erreichte Punkte			
max. Punkte	15	10	15

Hinweise:

- Lösen Sie die Heftklammern **nicht**.
- Schreiben Sie die Lösungen direkt auf die Aufgabenblätter, **notfalls** auch auf die Rückseiten.
- Melden Sie sich, wenn Sie weitere Blätter benötigen, **keine** eigenen Blätter benutzen.
- Es werden nur Lösungen anerkannt, deren Lösungswege **nachvollziehbar** beschrieben sind.

B.1. Laplace-Transformation (15 P)

a) (10 P) Ein technisches System wird durch die folgende Differentialgleichung beschrieben:

$$\ddot{y}(t) + \dot{y}(t) - 6y(t) = 0$$
.

Die Anfangsbedingungen lauten:

$$y(0) = 5$$
 und $\dot{y}(0) = 0$.

Bestimmen Sie y(t) mit Hilfe der Laplace-Transformation.

Die Rücktransformation ist mittels Partialbruchzerlegung durchzuführen.

b) (2 P) Bestimmen Sie die Laplace-Transformierte für die folgende Zeitfunktion:

$$f(t) = (e^{3t} \cos(4t))\sigma(t)$$

Tipp: Nutzen Sie die Eigenschaften der Laplace-Transformation.

c) (3 P) Bestimmen Sie zur folgende Laplace-Transformierten die zugehörige Zeitfunktion

$$F(s) = \frac{s+1}{s^2 + 4s + 5}$$

	Bildfunktion	Zeitfunktion	
Nr.	F(s)	$f(t), t \ge 0 \ (f(t) = 0, t < 0)$	Anmerkung
1	1	$\delta(t) = \begin{cases} \infty & \text{für } t = 0 \\ 0 & \text{für } t \neq 0 \end{cases}$	Dirac-Impuls
2	$\frac{1}{s}$	$\sigma(t)$	Einheitssprungfunktion
3	$\frac{1}{s^2}$	r(t) = t	Einheitsanstiegsfunktion
4	$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{1}{s^n} $	$\frac{t^{n-1}}{(n-1)!}$	n>0, ganzzahlig
5	$\frac{1}{s+a}$	e^{-at}	a konstant
6	$\frac{s+a}{1 \over (s+a)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{-at}$	a und n wie zuvor
7	$\frac{s}{s^2 + \omega^2}$	$\cos(\omega t)$	$\omega>0$ konstant
8	$\frac{\omega}{s^2 + \omega^2}$	$\sin(\omega t)$	$\omega>0$ konstant
9	$\frac{1}{s^2 + 2as + b^2}$	$\frac{1}{2w} \left(e^{s_1 t} - e^{s_2 t} \right)$ $\frac{1}{-e^{-at}} \sin(\omega t)$	$D = \frac{a}{b} > 1$ $D < 1$
10	$\frac{s}{s^2 + 2as + b^2}$	$\frac{1}{2w} \left(s_1 e^{s_1 t} - s_2 e^{s_2 t} \right)$ $e^{-at} \left(\cos(\omega t) - \frac{a}{\omega} \sin(\omega t) \right)$	$D = \frac{a}{b} > 1$ $D < 1$
		$e^{-\frac{i}{\omega}}\left(\cos(\omega t) - \frac{1}{\omega}\sin(\omega t)\right)$	D < 1

In den Beziehungen 9 und 10 ist: $w=\sqrt{a^2-b^2};\,\omega=\sqrt{b^2-a^2};\,s_{1,2}=-a\pm w$

	Originalbereich	Bildbereich
Linearitätssatz	$c_1 \cdot f_1(t) + c_2 \cdot f_2(t)$	$c_1 \cdot F_1(s) + c_2 \cdot F_2(s)$
Ähnlichkeitssatz	f(at), a > 0	$\frac{1}{a} \cdot F(s)$
1. Verschiebungssatz (Verschiebung nach rechts)	$ \begin{vmatrix} f(t-a) \cdot \sigma(t-a) \\ a > 0 \end{vmatrix} $	$e^{-as} \cdot F(s)$
2. Verschiebungssatz (Verschiebung nach links)	$ \begin{cases} f(t+a) \cdot \sigma(t) \\ a > 0 \end{cases} $	$e^{-as}\left(F(s) - \int_{0}^{a} f(t) \cdot e^{-st} dt\right)$
Dämpfungssatz	$e^{-at} \cdot f(t)$	F(s+a)
	f'(t)	$s \cdot F(s) - f(0)$
	f''(t)	$s^2 \cdot F(s) - s \cdot f(0) - f'(0)$
Ableitungen der Originalfunktion	$f^{(n)}(t)$	$s^{n} \cdot F(s) - s^{n-1} \cdot f(0) -$
Originantinktion		$-s^{n-2}\cdot f'(0)-\ldots$
		$\dots - f^{(n-1)}(0)$
	$(-t)^1 \cdot f(t)$	F'(s)
Ableitungen der Bildfunktion	$(-t)^{1} \cdot f(t)$ $(-t)^{2} \cdot f(t)$	F''(s)
	$(-t)^n \cdot f(t)$	$F^{(n)}(s)$
Integration der Originalfunktion	$\int_{0}^{t} f(u) du$	$\frac{1}{s} \cdot F(s)$
Integration der Bildfunktion	$\frac{1}{t} \cdot f(t)$	$\int_{s}^{\infty} F(u) du$
Faltungssatz	$f_{1}\left(t\right) \ast f_{2}\left(t\right)$	$F_1(s) \cdot F_2(s)$
Grenzwertsätze	<u>'</u>	
a) Anfangswert	$f(0) = \lim_{t \to +0} f(t) = \lim_{s \to \infty} [s \cdot F(s)]$	
b) Endwert	$f(0) = \lim_{t \to +0} f(t) = \lim_{s \to \infty} [s \cdot F(s)]$ $f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} [s \cdot F(s)]$	

B.2. Potenzreihe/Taylorreihe (10 P)

a) (7 P) Geben Sie das Taylorpolynom $p_3(x)$ dritten Grades von f mit dem Entwicklungspunkt $x_0=\pi$ an:

$$f(x) = x \sin(x).$$

b) (3 P) Geben Sie den Entwicklungspunkt x_0 an und berechnen Sie den Konvergenzradius:

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{2k-1}} (x-2)^k .$$

B.3. Hilfsfunktionen (15 P)

a) (10 P) Gegeben ist die folgende Funktion:

$$u(t) = -2\sigma(t-1) + 2(t-2)\sigma(t-2) - 2(t-4)\sigma(t-4) - 2\sigma(t-5)$$

Teilen Sie die Funktion u(t) zunächst in Zeitbereiche auf und beschreiben Sie diese durch Funktionen, so dass Sie auf die Hilfsfunktion $\sigma(t)$ verzichten können, und zeichnen Sie die Funktion in die nachstehende Abbildung ein.

b) (5 P) Nutzen Sie die Eigenschaften der Diracschen Deltafunktion (Impulsfunktion) $\delta(t)$ und berechnen Sie die nachstehenden Integrale:

$$\int_{-\pi}^{\infty} \delta(3\pi + t) \cos(2t) dt =$$

$$\int_{0}^{\pi} \delta\left(t - \frac{\pi}{2}\right) \sin\left(2t + \frac{\pi}{2}\right) dt =$$