Unit 0. Units and Basic Maths

Y12

Table of contents

1	Standard Units and Basic Maths	1				
	1.1 Review of symbols	1				
	1.2 Base units	2				
	1.3 Maths Revision	4				
2	Scientific Notation	5				
3 Questions on Units and notation						

1 Standard Units and Basic Maths

1.1 Review of symbols

Symbol	Meaning
\approx	Approximately equal
\neq	Not equal, different
\sum_{i}	Sum of a series of numbers
$\overline{\prod}$	Product of a series of numbers
Ī	Integral operation
$\overset{\circ}{\Delta}$	Augment, difference in an interval
\propto	Proportional
d or ∂	Derivative
∞	Infinity
x	Modulus of x
\vec{x}	Vector x

1.2 Base units

How many units do you think you really need in Physics? 10? 20? 100?... Guess

Base units: decided by scientific community, they are the minimum quantity needed to describe all other magnitudes.

BASIC QUANTITY	UNIT NAME	UNIT SYMBOL
mass	kilogram	kg
time	second	S
length	metre	m
electric current	ampere	А
temperature	kelvin	K
amount of substance	mole	mol
light intensity	candela	cd

Figure 1: Basic units

SI units: the internationally decided units for each base unit, revised periodically to increase precision, ease of use, etc:

- kg (prototype)

- s (9 · 10⁹ $\Delta C_{groundlevel}$) m (distance light in $\frac{1}{3}$ · 10⁸s) A (current for 2 · 10⁻⁷ $\frac{N}{m}$ 1m apart) K (273.16⁻¹ $waters^{s-l-g}$)

- $\begin{array}{ll} \bullet & mol~({\rm atoms}~0.012kg,~^{12}C) \\ \bullet & {\rm cd}~(10^{-3}\frac{W}{rad^2},~{\rm intensity~of~a~5\cdot 10^{14}}Hz~{\rm light}). \end{array}$

Derived units: the rest, p.e.:

- $\frac{m}{2}$ or $m \cdot s^{-1}$
- \tilde{N} , Newton
- J, Jules
- W, Watts
- Hz, Hertzs
- C, Coulombs
- V, Volts
- Ω , Ohms

Units can be added *power prefixes*. You must know nano up to giga.

Careful with time above seconds! (not x10)

DERIVED QUANTITY	UNIT NAME	UNIT SYMBOL	BASE UNITS EQUIVALENT
force	newton	N	kg m s⁻²
energy (work)	joule	J	kg m² s-2
power	watt	W	kg m² s ⁻³
frequency	hertz	Hz	s-1
charge	coulomb	С	As
voltage	volt	V	kg m ² s ⁻³ A ⁻¹
resistance	ohm	Ω	kg m ² s ⁻³ A ⁻²

Figure 2: Derived units

FACTOR	NAME	SYMBOL	FACTOR	NAME	SYMBOL
10 ¹	deca-	da	10-1	deci-	d
10 ²	hecto-	h	10-2	centi-	С
10 ³	kilo-	k	10-3	milli-	m
106	mega-	М	10-6	micro-	μ
10°	giga-	G	10-9	nano-	n
1012	tera-	Т	10-12	pico-	р
1015	peta-	Р	10-15	femto-	f
1018	exa-	Е	10-18	atto-	a
1021	zetta-	Z	10-21	zepto-	Z
10 ²⁴	yotta-	Υ	10-24	yocto-	У

Figure 3: Decimal system

1.3 Maths Revision

You should know already...

- $360^{\circ} = 2\pi \text{ rad} \rightarrow 30^{\circ} = 2\pi \cdot \frac{30}{360} \text{ rad}$
- Vectors: (2,3) means 2 in the x direction, 3 in the y direction.
- Trigonometry: SOH CAH TOA

Figure 4: SOH CAH TOA

• Graphs:

Gradient: slope of a graph $m = \frac{\Delta y}{\Delta x}$

- Line equation: y = ax + b, where b is the gradient or slope.
- Solve unknown formulas: P.e. solve u:

a.
$$v^2 = u^2 + 2as \rightarrow v^2 - 2as = u^2 \rightarrow \sqrt{v^2 - 2as} = u$$
 done!

• Combine formulas into new ones: P.e. combine these three to calculate F without having to use a or s.

a.
$$F = ma; a = \frac{v^2 - u^2}{2s}; s = \frac{d}{t}$$
 then

b.
$$F = \frac{m(v^2 - u^2)}{2s}$$
 then

a.
$$F = ma; a = \frac{v^2 - u^2}{2s}; s = \frac{d}{t}$$
 then b. $F = \frac{m(v^2 - u^2)}{2s}$ then c. $F = \frac{m(v^2 - u^2)}{2\frac{d}{t}} = F = \frac{mt(v^2 - u^2)}{2d}$.

• Geometry:

- a. Area circle = πr^2
- b. Area square $= base \cdot height$
- c. Area triangle = $\frac{base \cdot height}{2}$ d. Volume sphere = $\frac{4}{3}\pi r^3$
- e. ...

2 Scientific Notation

Scientific notation: using in your calculator.

Watch this video.

Mini-practical: Discover what method your calculator uses for dividing scientific notations $(3.07 \cdot 10^4, 3.07^{04}, 3.07E4)$.

- Design 20 operations you know (mentally) the answer of which include powers of ten. Eg $\frac{9\cdot10^4}{3\cdot10^2} = 3\cdot10^2 = 300$.
- Decide how your calculator works in scientific notation and formulate it as a hypothesis ("when I press... the calculator should do...").
- Design a method to verify this hypothesis with a $\frac{1}{20}$ ("significant") reliability (\rightarrow you will need 20 operations, 19 of them must agree with the hypothesis for it to be declared true).
- Perform the method, and draw a conclusion.
- Compare with the calculators of other students (in case you ever need to borrow a calculator!).

3 Questions on Units and notation

- 1. Which of the following SI units equivalent to the volt?
- A ampere per ohm
- B coulomb per seconds
- C joule per coulomb
- D joule per second

(Total for question = 1 mark)

- 2. Which of the following expresses the volt in SI units?
- A $kq m^2 s^{-2} C^{-1}$
- B $kg m^2 s^{-3}C$
- $C kq m^2 s A^{-1}$
- D $kq m^2 s^{-3} A^{-1}$

(Total for question = 1 mark)

3. A student investigates how the resistance of a filament lamp varies during the first second after it is switched on. He decides to use a computer with data logging sensors ake the readings. The best reason for this is that:

5

- A A large number of readings can be taken
- B The computer can calculate the resistance
- C There is no human error
- D There is no zero error

(Total for question = 1 mark)

- 4. The unit of potential is the volt. A correct alternative unit is:
- A $J A^{-1}s^{-1}$
- B $J As^{-1}$
- C J A s
- D $J A^{-1}s$

(Total for question = 1 mark)

- 5. The unit of the time constant for a resistor-capacitor circuit is:
- A ΩF^{-1}
- B ΩC
- C s
- D sF

(Total for question = 1 mark)

- 6. Electric field strength can have the units:
- A $C m^{-1}$
- B $N C^{-1}$
- C $N V^{-1}$
- D Vm

(Total for question = 1 mark)

- 7. A volt can be defined:
- A A coulomb per joule
- B A coulomb per second
- C A joule per coulomb
- D A joule per second

(Total for question = 1 mark)