Lecture Notes: Vector Derivative

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Scalar and Vector Functions

Recall that a function f takes an input, and yields an output. For example, in $f(t) = t^2 + 2t$, the input is t, whereas the output is the real value resulting from the calculation $t^2 + 2t$. We say that f is a scalar function if its output is a real value.

The output of a function can also be a vector. In this case, we refer to the function as a vector function. For instance, consider $\mathbf{f}(t) = [t^2, 2t, t^3 - t]$. Its input is t. For every fixed t, $\mathbf{f}(t)$ outputs a 3d vector $[t^2, 2t, t^3 - t]$. We will adopt the convention of using boldfaces to represent vector functions.

An input to a function may consist of multiple parameters. For example, $f(x,y) = x^2 + xy + y^3$ and $\mathbf{f}(x,y,z) = [xyz, y^3z + y^2]$. If a scalar function f takes d real values as its input, we say that f is a scalar field in \mathbb{R}^d . Similarly, if a vector function \mathbf{f} takes d real values as its input, we say that f is a vector field in \mathbb{R}^d . For example, the f(x,y) and $\mathbf{f}(x,y,z)$ shown earlier are a scalar field in \mathbb{R}^2 and a vector field in \mathbb{R}^3 , respectively.

2 Limits and Continuity of One-Variable Vector Functions

Consider first a scalar function f(t) that takes a single real value t as its input. Recall that its *limit* at t_0 is defined as follows:

Definition 1. Suppose that a scalar function f(t) is defined around t_0 (but not necessarily at t_0). We say that

$$\lim_{t \to t_0} f(t) = v$$

if for any real $\delta > 0$, we can find a real value $\epsilon > 0$ such that $|f(t) - v| < \delta$ for all t satisfying $0 < |t - t_0| < \epsilon$.

Now consider a vector function f(t) that takes a single real value t as its input. Suppose that the output of f(t) is a d-dimensional vector. By definition, we can write the output vector in its component form $[x_1(t), x_2(t), ..., x_d(t)]$. Now we extend Definition 1 to vector functions:

Definition 2. Suppose that $\mathbf{f}(t) = [x_1(t), x_2(t), ..., x_d(t)]$ is defined around t_0 (but not necessarily at t_0). We say that

$$\lim_{t \to t_0} \boldsymbol{f}(t) = [v_1, v_2, ..., v_d]$$

if it holds for each $i \in [1, d]$ that $\lim_{t \to t_0} x_i(t) = v_i$.

This means that there is a $\rho > 0$ such that f(t) is defined for t satisfying $0 < |t - t_0| < \rho$.

For example, suppose that $\mathbf{f}(t) = [t^2, \sin(t)/t]$. Since $\lim_{t\to 0} t^2 = 0$ and $\lim_{t\to 0} \frac{\sin(t)}{t} = 1$, we know that $\lim_{t\to 0} \mathbf{f}(t) = [0, 1]$.

Definition 3. Suppose that $\mathbf{f}(t) = [x_1(t), x_2(t), ..., x_d(t)]$ is defined around t_0 and at t_0 . We say that $\mathbf{f}(t)$ is **continuous** at t_0 if $\lim_{t\to t_0} \mathbf{f}(t) = \mathbf{f}(t_0)$.

For example, $\mathbf{f}(t) = [t^2, \sin(t)/t]$ is not continuous at 0 because the function is undefined at t = 0. On the other hand, $\mathbf{f}(t) = [t^2, \sqrt{t} + 1]$ is continuous at t = 0. However, the following function is not continuous at t = 0:

$$\mathbf{f}(t) = \begin{cases} [t^2, \sqrt{t} + 1] & \text{if } t \neq 0 \\ [0, 2] & \text{if } t = 0 \end{cases}$$

This is because $\lim_{t\to 0} \mathbf{f}(t) = [0,1] \neq \mathbf{f}(0)$.

3 Derivatives of Vector Functions

Recall that derivatives of scalar functions are defined as follows:

Definition 4. Suppose that scalar function f(t) is defined around t_0 and at t_0 . If the following limit exists:

$$\lim_{\Delta t \to 0} \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

then we say that

- f(t) is differentiable at t_0 .
- the above limit, denoted as $f'(t_0)$, is the derivative of f(t) at $t = t_0$.

We now extend the definition to vectors:

Definition 5. Suppose that vector function $\mathbf{f}(t)$ is defined around t_0 and at t_0 . If the following limit exists:

$$\lim_{\Delta t \to 0} \frac{\boldsymbol{f}(t_0 + \Delta t) - \boldsymbol{f}(t_0)}{\Delta t}$$

then we say that

- f(t) is differentiable at t_0 .
- the above limit, denoted as $f'(t_0)$, is the derivative of f(t) at $t = t_0$.

The next important lemma provides another view of the above definition through components:

Lemma 1. Suppose that $f(t) = [x_1(t), x_2(t), ..., x_d(t)]$ is differentiable at t_0 such that $f'(t_0) = [y_1(t_0), y_2(t_0), ..., y_d(t_0)]$. Then, $y_i(t_0) = x_i'(t_0)$ for each $i \in [1, d]$.

Proof. By definition of vector subtraction:

$$f(t_0 + \Delta t) - f(t_0) = [x_1(t_0 + \Delta t) - x_1(t_0), x_2(t_0 + \Delta t) - x_2(t_0), ..., x_d(t_0 + \Delta t) - x_d(t_0)].$$

Since

$$\lim_{\Delta t \to 0} \frac{\mathbf{f}(t_0 + \Delta t) - \mathbf{f}(t_0)}{\Delta t} = [y_1(t_0), y_2(t_0), ..., y_d(t_0)]$$
(1)

we know

$$\lim_{\Delta t \to 0} \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{[x_1(t_0 + \Delta t) - x_1(t_0), x_2(t_0 + \Delta t) - x_2(t_0), ..., x_d(t_0 + \Delta t) - x_d(t_0)]}{\Delta t}$$
(scalar multiplication)
$$= \lim_{\Delta t \to 0} \left[\frac{x_1(t_0 + \Delta t) - x_1(t_0)}{\Delta t}, \frac{x_2(t_0 + \Delta t) - x_2(t_0)}{\Delta t}, ..., \frac{x_1(t_0 + \Delta t) - x_1(t_0)}{\Delta t} \right]$$
(from (1))
$$= [y_1(t_0), y_2(t_0), ..., y_d(t_0)].$$

It thus follows from Definition 2 that, for each $i \in [1, d]$:

$$\lim_{\Delta t \to 0} \frac{x_i(t_0 + \Delta t) - x_i(t_0)}{\Delta t} = y_i(t_0).$$

The left hand side of the above is precisely $x_i'(t_0)$ by Definition 4. We thus complete the proof. \square

The above lemma provides a convenient and intuitive way to compute the derivative of a vector function. For example, consider $\mathbf{f}(t) = [\sin^2 t, \cos^2 t]$. Then we immediately know $\mathbf{f}'(t_0) = [2\sin(t_0)\cos(t_0), -2\sin(t_0)\cos(t_0)]$. Note that we will often replace t_0 with t in $\mathbf{f}(t_0)$ (after all, t_0 is nothing but a variable name). For instance, in this example, $\mathbf{f}'(t) = [2\sin(t)\cos(t), -2\sin(t)\cos(t)]$.

Vector derivatives obey some rules that are reminiscent of the corresponding rules on scalar functions:

- 1. (f(t) + g(t))' = f'(t) + g'(t).
- 2. $(\mathbf{f}(t) \cdot \mathbf{g}(t))' = \mathbf{f}'(t) \cdot \mathbf{g}(t) + \mathbf{f}(t) \cdot \mathbf{g}'(t)$.
- 3. Suppose that the outputs of $\mathbf{f}(t)$ and $\mathbf{g}(t)$ are 3d vectors. Then, $(\mathbf{f}(t) \times \mathbf{g}(t))' = \mathbf{f}'(t) \times \mathbf{g}(t) + \mathbf{f}(t) \times \mathbf{g}'(t)$.

Next, we will prove Rules 1 and 2 in full. The proof for Rule 3 is very tedious but not difficult; we will outline its main ideas.

Proof of Rule 1. Let $\mathbf{f}(t) = [x_1(t), ..., x_d(t)]$ and $\mathbf{g}(t) = [y_1(t), ..., y_d(t)]$. From Lemma 1, we know that $\mathbf{f}'(t) = [x_1'(t), ..., x_d'(t)]$ and $\mathbf{g}'(t) = [y_1'(t), ..., y_d'(t)]$. We have:

$$(f(t) + g(t))' = [x_1(t) + y_1(t), ..., x_d(t) + y_d(t)]'$$
(by Lemma 1) =
$$[(x_1(t) + y_1(t))', ..., (x_d(t) + y_d(t))']$$
=
$$[x'_1(t) + y'_1(t), ..., x'_d(t) + y'_d(t)]$$
=
$$f'(t) + g'(t).$$

Proof of Rule 2. Let $\mathbf{f}(t) = [x_1(t), ..., x_d(t)]$ and $\mathbf{g}(t) = [y_1(t), ..., y_d(t)]$. From Lemma 1, we know that $\mathbf{f}'(t) = [x_1'(t), ..., x_d'(t)]$ and $\mathbf{g}'(t) = [y_1'(t), ..., y_d'(t)]$. We have:

$$(\mathbf{f}(t) \cdot \mathbf{g}(t))' = \left(\sum_{i=1}^{d} x_i(t) \cdot y_i(t)\right)'$$

$$= \sum_{i=1}^{d} \left(x_i'(t) \cdot y_i(t) + x_i(t) \cdot y_i'(t)\right)$$

$$= \sum_{i=1}^{d} x_i'(t) \cdot y_i(t) + \sum_{i=1}^{d} x_i(t) \cdot y_i'(t)$$

$$= \mathbf{f}'(t) \cdot \mathbf{g}(t) + \mathbf{f}(t) \cdot \mathbf{g}'(t).$$

Proof of Rule 3 (Sketch). Let $\mathbf{f}(t) = [x_1(t), x_2(t), x_3(t)]$ and $\mathbf{g}(t) = [y_1(t), y_2(t), y_3(t)]$. The key to the proof is to write out both sides of Rule 2 in their component forms. For the left hand side, we know:

$$(\mathbf{f}(t) \times \mathbf{g}(t))'$$
= $[x_2(t)y_3(t) - x_3(t)y_2(t), x_3(t)y_1(t) - x_1(t)y_3(t), x_1(t)y_2(t) - x_2(t)y_1(t)]'$
= $[(x_2(t)y_3(t))' - (x_3(t)y_2(t))', (x_3(t)y_1(t))' - (x_1(t)y_3(t))', (x_1(t)y_2(t))' - (x_2(t)y_1(t))']$.

You want to unfold the right hand side $f'(t) \times g(t) + f(t) \times g'(t)$ into similar forms. Then, you will see that both sides are equivalent.