

Les fonctions logarithmiques

Exercice 1

- 1. Calculer les limites suivantes : $\lim_{x \to 0^+} x \ln^4(x)$, $\lim_{x \to +\infty} \frac{\ln(x)}{\sqrt[5]{x^2}}$, $\lim_{x \to +\infty} 3x \ln\left(\frac{x+2}{x-1}\right)$ $\lim_{x \to 0^+} x^3 \ln^2(x)$, $\lim_{x \to +\infty} \frac{\ln(x) \ln(x+2)}{x}$ et $\lim_{x \to 0^+} \sqrt{x} \ln\left(\frac{x+2}{x}\right)$ 2. Montrer que $(\forall x > 0)$ $x \ln(x) \geqslant x 1$
- 3. Soit (S_n) la suite définie par $(\forall n \in \mathbb{N}^*)$ $S_n = \sum_{n=1}^{n-n} \frac{1}{n+k}$.
 - (a) Montrer que $(\forall k \in \mathbb{N}^*)$ $\frac{1}{k+1} < \ln(k+1) \ln(k) < \frac{1}{k}$.
 - $(\forall n \in \mathbb{N}^*)$ $\ln(2 \frac{1}{n+1}) < S_n < \ln(2)$. (b) En déduire que
 - (c) Montrer que (S_n) est convergente et calculer sa limite.

Exercice 2

Soit n un entier naturel non nul . On considère la fonction f_n définie sur $]0, +\infty[$ par : $f_n(x) = \ln(x) - \frac{n}{x}$. (C_n) est sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j})

- 1. (a) Calculer $\lim_{x\to 0^+} f_n(x)$ et $\lim_{x\to +\infty} f_n(x)$.
 - (b) Étudier les branches infinies de (C_n) .
 - (c) Calculer $f'_n(x)$ pour tout x > 0, et dresser le tableau de variations de f_n .
- 2. Construire (C_2) .
- 3. (a) Montrer que l'équation $f_n(x) = 0$ admet une unique solution a_n dans $]0, +\infty[$
 - (b) Étudier le signe de $f_{n+1}(x) f_n(x)$ sur $]0, +\infty[$.
 - (c) En déduire la monotonie de (a_n) .
- ln(x) < x4. (a) Montrer que $(\forall x > 0)$
 - (b) Montrer que $\lim a_n = +\infty$

Exercice 3

Soit f la fonction définie sur $[0, +\infty[$ par : $\begin{cases} f(x) = x \ln\left(\frac{x+1}{x}\right) & \text{si } x > 0 \\ f(0) = 0 \end{cases}$

 (C_f) est sa représentation graphique dans un repère orthonormé (O,i,j)

- 1. (a) Étudier la continuité de f en 0^+ .
 - (b) Étudier la dérivabilité de f en 0^+ .
 - $\lim_{x \to +\infty} f(x)$ (c) Calculer
- 2. (a) Montrer que $(\forall a > 0)$ $\ln(\frac{a+1}{a}) > \frac{1}{a+1}$
 - (b) Étudier les variations de f.
- 3. Construire (C_f)
- 4. (a) Montrer que f réalise une bijection de $[0, +\infty[$ vers un intervalle à déterminer.
 - (b) Résoudre dans $[0, +\infty[$ l'équation $f(x) = f^{-1}(x)$

Exercice 5

Partie I: Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = \frac{2x^2}{1+x^2} - \ln(1+x^2)$.

- 1. Étudier les variations de g .
- 2. Montrer que l'équation g(x)=0 admet une solution α telle que $\frac{7}{4}<\alpha<2$.
- 3. Déduire le signe de g(x) sur $[0, +\infty[$.

Partie II : Soit f la fonction définie sur $[0, +\infty[$ par : $\begin{cases} f(x) = \frac{\ln(1+x^2)}{x} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$

- (C_f) est sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j})
 - 1. (a) Étudier la parité de f .
 - (b) Étudier la dérivabilité de f en 0^+ .
 - 2. Étudier les variations de f .
 - 3. (a) Montrer que $(\forall x \in [0, +\infty[) \quad \ln(1+x) \le x.$
 - (b) Donner une équation cartésienne de la droite (Δ) tangente à (C_f) au point O.
 - (c) Étudier la position relative de (C_f) et (Δ) .
 - 4. Construire (C_f) .

Exercice 6

Partie I: Soit g la fonction définie par $g(x) = \ln|x-2| - \frac{x-1}{x-2}$.

- 1. Déterminer D_g et calculer les limites de g(x) à ses bornes .
- 2. Calculer g'(x) pour tout x de D_g et dresser le T.V de g.
- 3. Montrer que l'équation g(x)=0 admet une solution unique α dans $]2,+\infty[$ et que $4<\alpha<6.$
- 4. Déduire le signe de g(x) sur $[0, +\infty[$.

Partie II : Soit f la fonction définie par : $\begin{cases} f(x) = \frac{x-1}{\ln|x-2|} & \text{si} \quad x \neq \text{ et } x \neq 2 \\ f(1) = -1 & , \quad f(2) = 0 \end{cases}$

- (C_f) est sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j})
 - 1. Déterminer D_g et étudier la continuité de f en 1 et en 2 .
 - 2. (a) Montrer que $(\forall t > 0)$ $t \frac{t^2}{2} \le \ln(1+t) \le t \frac{t^2}{2} + \frac{t^3}{3}$
 - (b) Étudier la dérivabilité de f en 1^+ .
 - 3. Étudier la dérivabilité de f en 2 . Interpréter graphiquement le résultat.
 - 4. Calculer f'(x) en fonction de g(x) et dresser le T.V de f.
 - 5. (a) Étudier les branches infinies de (C_f) .
 - (b) Montrer que $f(\alpha) = \alpha 2$
 - 6. Construire (C_f) . (On prend $\alpha = 5, 6$ et on admet que $f'_g(1) = \frac{1}{2}$)