

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE SISTEMAS INFORMÁTICOS UNIVERSIDAD POLITÉCNICA DE MADRID

El auto-encoder variacional Un análisis del espacio latente

CÉSAR PÉREZ CURIEL

Máster en Ciencias y Tecnologías de la Computación

Contenidos

- Introducción
 - Objetivos
 - ¿Qué es un auto-encoder variacional?
- El auto-encoder variacional
 - La arquitectura de un VAE
 - La función de coste
 - El reparameterization trick
- Resultados de los experimentos
 - Reconstrucción de imágenes
 - Generación de imágenes a partir de los centroides
 - Generación de imágenes a partir de la distribución a priori
 - Visualización del espacio latente
 - Separación de las clases
- 4 Conclusiones

Objetivos

A nivel de conocimientos

- Entender el funcionamiento del auto-encoder variacional
- ¿Existe una estructura en el espacio latente?

A nivel metodológico

• Desarrollar de forma autónoma un proyecto de investigación.

¿ Qué es un auto-encoder variacional?

Un modelo no supervisado

• Un modelo generativo

Un modelo probabilistico

En pocas palabras...

El auto-encoder variacional es un modelo que genera datos a partir de valores obtenidos como muestras de una distribución de probabilidad.

Arquitectura

Figura: https://lilianweng.github.io/posts/2018-08-12-vae/

La función de coste

$$\log p_{\theta}(x) = \underbrace{\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right]}_{\mathbf{L}_{\theta,\phi}(x)} + \underbrace{\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right]}_{D_{\mathbb{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x))} \tag{1}$$

$$\mathsf{L}_{\theta,\phi}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[log \ p_{\theta}(x|z) \right] - \underbrace{\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[log \ \frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right]}_{D_{\mathbb{KL}}(q_{\phi}(z|x)||p_{\theta}(z))} \tag{2}$$

Función de coste

$$\mathcal{L}_{\theta,\phi}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[log \ p_{\theta}(x|z) \right] - D_{\mathbb{KL}}(q_{\phi}(z|x)||p_{\theta}(z))$$

4 □ > 4 □ >

El reparameterization trick

Figura: Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.

Reconstrucción de imágenes

Comprobación

Los modelos parecen estar correctamente implementados.

Generación de imágenes a partir de los centroides

Algo no encaja...

¿No es un poco raro que los resultados sean tan parecidos cuando los espacios latentes son diferentes?

Generación de imágenes a partir de la distribución a priori

Resultado

- Las imagenes generadas por el auto-encoder estándar no parecen dígitos.
- ¿Por qué los dígitos generados por el VAE son tan primitivos?

Visualización del espacio latente

Resultado

No parece haber una gran diferencia...

Separación de las clases

Resultado

El auto-encoder variacional no separa las clases mejor que un autoencoder estándar.

Conclusiones: Generacion de imágenes

Figura: Goldt, S., Mézard, M., Krzakala, F., & Zdeborová, L. (2020). Modeling the influence of data structure on learning in neural networks: The hidden manifold model. *Physical Review X*, 10(4), 041044.

Conclusiones: Separación de las clases

El VAE no separa mejor las clases

Los resultados obtenidos usando el algoritmo ${
m SILHOUETTE}$ muestran que el auto-encoder variacional no separa las clases mejor que el auto-encoder estándar.

Siguientes pasos

- Estudio de las variantes del VAE
- Estudio en detalle de dichas propiedades desde el punto de vista del *Representation Learning*.

