Отчёт по лабораторной работе \mathbb{N} 1

по дисциплине «Численные методы анализа»

Московкин Александр Николаевич

ИСУ: 472264

Бабич Александр Петрович

ИСУ: <u>412882</u> Группа: J3112

Введение

Цель работы — предложить среднеквадратическую аппроксимацию табличной функции многих переменных, проанализировать чувствительность точного решения к ошибкам округления, проверить сходимость расчетных и исходных данных.

Задачи

- 1. Составить в матричном виде систему линейных алгебраических уравнений для поиска коэффициентов среднеквадратического приближения g, вычислить число обусловленности матрицы.
- 2. Найти решение системы при помощи обратной матрицы, проверить полученное приближение с использованием данных из обучающей и тестовой выборки отдельно, рассчитать метрику mean_absolute_error, сравнить расчетные и исходные значения y (MEDV) на графиках.
- 3. Определить связь числа обусловленности матрицы системы линейных алгебраических уравнений и средней абсолютной ошибки на обучающей (train) и тестовой (test) выборках отдельно и графически отобразить результаты.

Задание 1

Система имеет вид: $X\alpha = y$. Мы хотим минимизировать ошибку приближения, которая вычисляется как:

$$(\|X\alpha - y\|_2)^2$$

Минимум функции ошибки достигается при равенстве её градиента нулю. Взяв частные производные и составив из них СЛАУ, получаем:

$$X^T X \alpha = X^T y$$

Число обусловленности матрицы X^TX : 225786332.83039176

Задание 2

Рис. 1. Графики приближённого значения на обучающей и тестовой выборках

Зависимость числа обусловленности от МАЕ

Таблица 1. Результаты экспериментов

Эксперимент	Степень	Cond. число	MAE (test)	MAE (train)	Scaler
1	1	$2.26\cdot 10^8$	3.37	3.01	Нет
2	1	93.67	3.37	3.01	Да
3	2	$1.16\cdot 10^{20}$	1.70	2.40	Нет
4	2	$2.96\cdot10^{17}$	$2.41\cdot 10^{13}$	$2.08\cdot 10^{13}$	Да
5	3	$1.03\cdot10^{34}$	$2.01\cdot10^{-7}$	215.62	Нет
6	3	$3.00 \cdot 10^{20}$	$1.15\cdot 10^{15}$	$9.02 \cdot 10^{20}$	Да

output.png

Рис. 2. Визуализация зависимости числа обусловленности от МАЕ

Заключение

В ходе выполнения работы было построено приближение функции по критерию минимизации расстояния, используя в качестве базисных функций степени аргумента и полиномы

Чебышева. Результаты показали, что использование полиномов Чебышева позволило значительно уменьшить ошибку аппроксимации.

Приложение

Полный код доступен по ссылке: https://github.com/Sanchell1o/Numerical-methods-of-analysisblob/main/lab_1/notebooks/NM_EAI_lab_1.ipynb