Extension from State Estimation with robot_localization to Mapping, Trajectory Generation, and Trajectory Control with RTAB-Map and Nav2

Here's a step-by-step summary of how to extend your system from state estimation using **robot_localization** to full mapping, trajectory generation, and control using **RTAB-Map** and **Nav2**, including how everything is aligned and configured.

1. State Estimation with robot localization

- **robot_localization** fuses sensor data (GPS, IMU, and odometry) to provide a reliable **pose estimate** for your robot, ensuring accurate localization over time.
- Transforms:
 - o $odom \rightarrow base link$: Tracks the robot's local position using odometry and IMU data.
 - o map → odom: Corrects the odom frame drift using GPS data, ensuring that the odom frame remains aligned with the global map frame.
 - o This guarantees that the robot's local pose is aligned with the global map.
- Important Detail: The GPS data ensures that the robot's position in the map frame (global coordinates) is correct, while robot_localization manages the transforms needed to keep odometry aligned with the map.

2. Mapping with RTAB-Map

- RTAB-Map is responsible for building a 3D map of the environment using the robot's 3D LiDAR data.
- Map Publication:
 - o **RTAB-Map** publishes the 3D map (e.g., an occupancy grid or point cloud) in the **map frame**.
 - This map is used by Nav2 to generate global and local costmaps for trajectory planning and obstacle avoidance.
- Important Detail: Since robot_localization handles the map → odom transform, you don't need RTAB-Map to compute any transformations. RTAB-Map should only publish the map in the map frame, ensuring that the robot's position and the map are aligned.

3. Trajectory Generation and Control with Nav2

• Nav2 is responsible for path planning and trajectory control based on the robot's pose estimate from robot localization and the map generated by RTAB-Map.

a. Global Path Planning:

- The **global planner** in Nav2 uses the **global costmap** (created from the 3D map published by RTAB-Map) to plan a path from the robot's current position to a goal.
 - o **Global costmap**: Generated in the **map frame**, representing static obstacles from the 3D map.
- Important Detail: The global planner uses the map frame for planning, so the map provided by RTAB-Map and the robot's pose (aligned with the map frame by robot_localization) will be correctly aligned.

b. Local Trajectory Generation and Obstacle Avoidance:

- The **local planner** (also known as the **trajectory controller**) in Nav2 generates real-time trajectories for the robot to follow, based on the global path and the **local costmap**.
 - The local planner adjusts the trajectory to avoid dynamic obstacles detected by sensors (such as the 3D LiDAR) and computes the required velocity commands for the robot.
 - o **Local costmap**: Created in the **odom frame** and used by the local planner to detect obstacles close to the robot and adjust its trajectory.

• Nav2 Local Planner Plugins:

- o **DWB (Dynamic Window Approach)** or **Teb (Timed Elastic Band)** local planners can be used for real-time trajectory control.
- These planners take the global path and robot's pose to generate commands that guide the robot smoothly while avoiding obstacles.
- Important Detail: The local planner handles trajectory control by generating velocity commands based on the pose estimate from robot_localization and the obstacle data from the local costmap. Nav2 comes with trajectory controllers built-in (DWB, Teb), and these ensure smooth movement along the planned trajectory.

4. How All Components Are Aligned

- robot_localization provides accurate, globally aligned pose estimates by fusing GPS, IMU, and odometry data. It publishes the correct transforms to ensure the robot's local and global positions are properly aligned.
 - o The **map** → **odom** transform is handled by **robot_localization** using GPS data, aligning the odometry frame with the global map frame.
 - \circ The **odom** \rightarrow **base link** transform tracks the robot's local movements.
- **RTAB-Map** generates a **3D map** of the environment, published in the **map frame**. This map is used by Nav2 for obstacle avoidance and trajectory generation.
 - o **Global costmap** is based on the 3D map in the **map frame**, ensuring the robot's state estimate and the map are correctly aligned.
- Nav2 uses the pose estimate from robot_localization to generate global paths and real-time trajectories. It ensures that the robot's movement is dynamically adjusted based on the map from RTAB-Map and real-time sensor data.
 - The local planner generates and adjusts trajectories based on the local costmap (in the odom frame), keeping the robot on track and avoiding obstacles.
- Important Detail: The key to alignment is that robot_localization provides the necessary transformations (map → odom and odom → base_link) to ensure that the pose estimate and map are in the same coordinate system (the map frame). Nav2's planners then use this aligned data for smooth trajectory generation and control.

Summary of Key Steps and Alignments:

- 1. State Estimation with robot localization:
 - Fuses GPS, IMU, and odometry to provide a globally aligned **pose estimate**.
 - o Publishes the **map** → **odom** and **odom** → **base_link** transforms to ensure the robot's state is globally accurate.

2. Mapping with RTAB-Map:

- Builds a 3D map and publishes it in the map frame for use in navigation.
- o No need to handle the map \rightarrow odom transform as it's handled by robot_localization.
- 3. Trajectory Generation and Control with Nav2:
 - o **Global planner**: Uses the **global costmap** (from the 3D map) to plan a path to the goal.
 - o **Local planner (Trajectory controller)**: Uses the **local costmap** to generate and adjust real-time trajectories, dynamically avoiding obstacles.
 - Trajectory control is built into Nav2 with plugins like **DWB** and **Teb**.

By configuring **robot_localization** to handle the pose estimate and ensuring that **RTAB-Map** publishes the map in the **map frame**, you achieve an aligned and cohesive system for state estimation, mapping, trajectory generation, and control.

5. Key Considerations for Selecting **3D** Lidars in Autonomous Navigation and Mapping

When choosing a **3D Lidar** for autonomous robots, factors like **range**, **field of view** (**FOV**), **resolution**, and **cost** are critical. High-performance Lidars like the **Robosense RS-LiDAR-16** and **Ouster OS-1** offer excellent coverage and resolution, making them ideal for **SLAM**, **obstacle avoidance**, and **trajectory generation**.

Price and Features Comparison:

- **Robosense RS-LiDAR-16**: ~\$1,500
 - o 360° horizontal FOV, 30° vertical FOV.
 - o Up to 150 meters range.
 - o 320,000 points per second.
 - Official ROS2 driver support.
- **Ouster OS-1**: ~\$3,000
 - o 360° horizontal FOV, up to 45° vertical FOV.
 - O Up to 120 meters range.
 - o Up to 1.31 million points per second.
 - o Official ROS2 driver support.

Robosense RS-LiDAR-16 for Your Project:

The Robosense RS-LiDAR-16 is a highly suitable choice for your project, given its balance between performance and cost. With its 360° horizontal coverage and 150-meter range, it is well-equipped to handle the demands of SLAM (with RTAB-Map) and real-time obstacle avoidance. Its high point rate ensures that the NAV2 stack can generate accurate and dynamic trajectories, even in complex and changing environments.

The RS-LiDAR-16's combination of solid range and multi-return data makes it particularly well-suited for **outdoor navigation** or large-scale environments where detailed mapping is essential. Additionally, its official **ROS2 driver support** ensures seamless integration with your existing ROS2-based systems, allowing for efficient data collection, mapping, and navigation.

Given its **affordable price** compared to high-end alternatives like the Ouster OS-1, the **RS-LiDAR-16** provides excellent value while meeting the technical requirements of your project, especially in terms of mapping and autonomous navigation.