

CV32E4* cores family discussion

Manuel Pezzin

Current situation overview (personal point of view)

- 5 Official OHG projects / cores
 - cv32e40pv1
 - cv32e40pv2 (same repo as cv32e40pv1)
 - cv32e41p (forked from cv32e40pv1)
 - cv32e40x (forked from cv32e40pv1)
 - cv32e40s (forked from cv32e40pv1 sync with latest version of cv32e40x)
 - cv32e40px (forked from cv32e40pv2 sync with latest version)

Fragmented RTL/Verification code base

- · Separate verification meetings
- · Separate git repos for each core
- Different verification environments, hosted on independent dev branches of core-v-verif that have diverged a lot from master and even in different git repos.
- CAD tools used for design and verification?
 - Same simulators / lint / formal / etc tools ?
 - Same version of Synopsys/Imperas DV ref model?
 - What about Open source CAD tools support?
 - What about SW / compiler support ?

Low coordination between OHG partners

- 3/4 separate companies led 4 projects (design and verification) that address primarily their own needs
- Are these projects relevant for other end-users?

Low involvement of academic community

- Some historical academic developers are OHG members but don't participate directly... Did we encourage / discourage them?
- Design/verif tools choice (commercial / signoff vs. open source ones) may be one of the reasons
- Too few contributors/volunteers left to maintain such a huge and fragmented code base!
 - OHG / EPFL
 - CEA
 - CIRRUS LOGIC
 - Pascal (as an individual volunteer member, during his spare time)
 - · Others?

RTL code status (As far as I understand it)

- cv32e40pv1
 - Credits (main ones): UNIBO/ETHZ, SILABS, OHG
 - finished v1.0.0 closed
- cv32e40pv2 (same repo as cv32e40pv1)
 - Credits (main ones): DOLPHIN, OHG/EPFL, CIRRUS LOGIC, SILABS
 - almost finished v1.8.3 Orphaned
 - Github public forks: 445 25 active over 1 year
- cv32e41p (forked from cv32e40pv1)
 - Credits (main ones): OHG/EPFL/ETHZ, HUAWEI, SILABS
 - · Proof of concept Closed
 - Github public forks: 11 none active
- cv32e40x (forked from cv32e40pv1)
 - · Credits (main ones): SILABS
 - on hold v0.10.0 Orphaned
 - Github public forks: 53 11 active over 1 year
- cv32e40s (forked from cv32e40pv1 sync with latest version of cv32e40x)
 - Credits (main ones) : SILABS
 - on hold v0.10.0 Orphaned
 - Github public forks: 24 3 active over 1 year
- cv32e40px (forked from cv32e40pv2 sync with latest version)
 - · Credits (main ones): OHG/EPFL, CEA
 - Development started
 - 2 Active forks
 - EPFL working on CV-X-IF
 - CEA working on RVP extensions support
 - Github public forks: 3 2 active over 1 year
- Non-OHG versions
 - Many forks maintained by academic community
 - Several closed-source forks / clones used in silicon products

More General thoughts

CORE-V

- Proposed CV32E4* projects are too big and too ambitious for our (not big enough) community
 - → we must (re-)build an active community
 - \rightarrow we must attract more end-users (SW / system people) to help us scheduling work in accordance with their actual short / medium / long term needs
 - > we must attract more industrial partners to help us on stabilization, verification and release process
 - → we must be more welcoming to academic community to help us on innovative / disruptive stuff
- · Partners come and leave
 - this is normal business life \rightarrow we have to manage that properly
 - → We should make our projects more resilient to partners departure and make life easier for newcomers / contributors
- Huge feature sets means huge verification effort → delayed releases or even no release at all (when project lead leaves the boat)
- Initial project goals may not be relevant after 1 or 2 years
 - \rightarrow we should consider a divide and conquer approach: "release less, release often" model
 - → focus on stabilizing features rather than introducing new ones (without sacrificing innovation)
 - → Review/revise regularly project plans regarding targeted end-user of our work
- We should think about a sustainable maintenance/support model for released cores
 - Maintaining old code can be time consuming, in particular if original designers are no longer here
 - Features are more important than the code itself → "upstream first" approach (make recent version backward-compatible and fix issues on recent version rather than old one)
- HW features are irrelevant without proper SW support → features implementation strategy must be coordinated between HW, SW and verification (ISS / models in particular)
- CVA6 development model is a source of inspiration
 - Single shared RTL code base
 - Proper, centralized CI(/CD?) environment
 - · Integration of new features is non-regression driven
 - Cores are actually a set of supported configurations, verified properly

Proposed new development model: initial setup

- First objective: release CV32E40Pv2 (according to updated release criteria) to have a stable RTL+verif baseline
- Rebuild a single git tree for RTL (and verif?)
 - Freeze existing CV32E40P/S/X/PX RTL and verif git trees
 - Rebuild a new single one (CV32E4 ?) based on most stable / verified code base : a cleaned-up version of CV32E40P tree (without unmerged PULP branches) seems a good candidate
 - Should we also include CV32E40X/S history (for later merge / cherry-pick of features) ?
- Update existing CV32E40Pv2 verification environment for broader usage / adoption:
 - Reference model: add possibility to use an alternative to Imperas-DV for broader adoption (envisioned option is spike for consistency with CVA6/CVE2 verif environments)
 - Restore Verilator simulation (at least for sanity check). Commercial simulator(s) remain main option for signoff / release
 - Setup a (public ?) CI/CD environment that can be duplicated locally
- Create maintenance branches for (fully?) verified configurations :
 - CV32E40Pv1 (should we rebrand it ?) : Basic RV32 IMC Zicntr Zicsr Zifencei
 - v1.0.0 is current tag
 - · Create maintenance branch / tag:
 - v1.8.3 of CV32E40Pv2 git tree is a good candidate since they are formally equivalent (and thus backward-compatible)
 - Wasn't verified with latest version of testbench, actual functional/code coverage figures not available → we may rerun it
 - CV32E40Pv2: (single brand or should we rebrand sub-configurations?)
 - Upstream GCC Floating point only (F): RV32_IMCF_Zicntr_Zicsr_Zifencei (including F0/F1/F2 pipelining configuration ?) → not part of original verif plan, should not have any coverage issue
 - Upstream GCC Floating point only (FinX): RV32_IMC_Zicntr_Zicsr_Zifencei_Zfinx (including Z0/Z1/Z2 pipelining configuration ?) → not part of original verif plan, should not have any coverage issue
 - Upstream GCC Core-V extensions (aka PULP): RV32_IMC_Zicntr_Zicsr_Zifencei_xcvmac_xcvalu → not part of original verif plan, should not have any coverage issue (requires disabling unused PULP features in RTL code ?)
 - Full Core-V extensions (aka PULP), Core-V GCC ?: RV32_IMC_Zicntr_Zicsr_Zifencei_xcvhwlp_xcvmem_xcvmac_xcvbi_xcvalu_xcvsimd_xcvbitmanip → part of test plan (but coverage issue ?)
 - PULP+F/zfinx ? (verified configs as of v1.8.3)

Proposed new development model

- Put in place "per-feature" short design/verif/doc/release cycles (~like agile development sprints)
 - Regular meetings
 - Review and sort-out issue tracker content
 - (re-)schedule current and next release cycle(s)
 - HW, SW and verification environment update should be performed at the same time
 - Sync HW and SW schedules.
 - Addressing critical issues should have higher priority than integrating new features
- 2 kinds of releases:
 - Per-feature release tags
 - Baseline: RV32 | Zicsr Zifencei
 - Only one feature integrated (+dependencies)
 - → track big regression in an efficient way (shorter regression loops idea is to trigger CI/CD only if pre-processed verilog code has changed since previous run)
 - Application-oriented release tags
 - Assembly of relevant feature sets for envisioned application classes → baseline for end-users
 - → track subtle regressions caused by interactions
- · Challenges:
 - Find a good balance between feature inclusion and verification
 - Modular documentation generation for application-oriented releases
 - Probably others...

Proposed short/mid term integration plan (WIP)

- Split baseline CV32E40Pv1 baseline to make M and C features optional
- Split PULP design config / verification to match the 8 subsets defined by GCC support
- Re-integrate features from CV32E40PX/S. Priority based on increasing effort / complexity
 - 1/ Zmmul support → make HW divider optional
 - Easy to integrate (disable HW divider)
 - compiler / model / verif environment available
 - 2/ Initial Zc support (Zca, Zcf, Zcb) → clean replacement of C when no FPU + more base compressed instructions
 - Easy to integrate.
 - Integration by order of priority: 1/ Zca-Zcf split 2/ Zcb
 - compiler / model / verif environment available
 - 1/RV32B support (Zba, Zbb, Zbc, Zbs):
 - compiler / model / verif environment available
 - Integration by order of priority: 1/ Zbb 2/ Zba 3/ Zbs Zbc may wait until Zbkc
 - 2/ RV32K support
 - compiler / model / verif environment available
 - 1/ Zkt probably trivial on CV32E4 (only mulh and div may be data dependent)
 - 2/ Zbkb 3/ Zbkx -4/ Zbkc
 - 3/ xcvhwlp support → to finalize CV32E40Pv2 original plan
 - Solving coverage issue may take time and require HW modifications to make verification easier (design for verification)
 - Upstream compiler support?
 - 4/ CV-X-IF support → popular feature, requested by many end-users
 - Build verification environment based on existing CVA6/CVE2 existing work
 - Which implementation should we use: CV32E40X or CV32E40PX (EPFL fork)?
 - Should we integrate existing 0.1.0 support of go directly to 1.0.0?
 - 5/ Optimized multiplier
 - Design done (CV32E40PX CEA fork)
 - Difficult to verify and debug

Envisioned Verification configurations (WIP)

- Feature verification configs (includes constant time execution check, a-posteriori advertised if OK):
 - Baseline: RV32 | Zicsr Zifencei
 - Multiplication: RV32_IM_Zicsr_Zifencei, RV32_I_Zmmul_Zicsr_Zifencei
 - Compressed integer: RV32_I_Zca_Zicsr_Zifencei, RV32_I_Zmmul_Zca_Zcb_Zicsr_Zifencei
 - Perf counters: RV32_I_Zicsr_Zicntr_Zifencei, RV32_I_Zicsr_Zicntr_Zihpm_Zifencei
 - Bitmanip: RV32_I_Zbb_Zicsr_Zifencei, RV32_I_Zba_Zicsr_Zifencei, RV32_I_Zbs_Zicsr_Zifencei
 - Scalar Crypto base: RV32_I_Zbkb_Zicsr_Zifencei, RV32_I_Zbkx_Zicsr_Zifencei, RV32_I_Zbkc_Zicsr_Zifencei
 - Single precision FPU: RV32 IF Zicsr Zifencei, RV32 I Zfinx Zicsr Zifencei, RV32 IF Zcf Zicsr Zifencei, RV32 I Zfinx Zcf Zicsr Zifencei
 - Core-V extensions (aka PULP):
 - RV32_I_Zmmul_Zicsr_Zifencei_xcvhwlp
 - RV32 I Zmmul Zicsr Zifencei xcvmem
 - RV32 I Zmmul Zicsr Zifencei xcvmac
 - RV32 I Zmmul Zicsr Zifencei xcvbi
 - RV32_I_Zmmul_Zicsr_Zifencei_xcvalu
 - RV32_I_Zmmul_Zicsr_Zifencei_xcvsimd
 - RV32_I_Zmmul_Zicsr_Zifencei_xcvbitmanip
 - ...TBD
- Application-oriented verification configs (may be enriched as new features get integrated):
 - Size-optimized RT microcontroller (CV32E40Pv1 tiny): RV32_I_Zmmul_Zca_Zcb_Zicsr_Zifencei
 - Profiling-enabled RT microcontroller (CV32E40Pv1): Basic RV32_IMC_Zicntr_Zicsr_Zifencei (maybe replace C by Zca or Zca+Zcb?)
 - Floating point enabled RT microcontroller (Upstream GCC Floating point F): RV32_IMCF_Zicntr_Zicsr_Zifencei (including F0/F1/F2 pipelining config ?)
 - Size-optimized Floating point enabled RT microcontroller (Upstream GCC Floating point FinX): RV32_IMC_Zfinx _Zicntr_Zicsr_Zifencei (including Z0/Z1/Z2 pipelining config ?)
 - Performance-optimized RT-DSP microcontroller (Upstream GCC Core-V extensions, aka PULP): RV32_IMC_Zicntr_Zicsr_Zifencei_xcvmac_xcvalu (TBC)
 - Performance-optimized RT-DSP microcontroller, fully featured (Core-V extensions, aka PULP, Core-V GCC ?):
 RV32_IMC_Zicntr_Zicsr_Zifencei_xcvhwlp_xcvmem_xcvmac_xcvbi_xcvalu_xcvsimd_xcvbitmanip
 - ... TBD

Backup slides: CV32E4* features tables

RISC-V Unprivileged spec support

																<u> </u>								
Supported extensions	RV32I		RV32M		RV32C	Zc			RV32A	32A RV32B			RV32P			RV32K			RV3	32F				
supported subsets	RV321	RV32E	RV32M	Zmmul (no HW divider)	RV32C	Zca: C with the FP load/stores removed.	Zcb: simple operations.	Zcmp: push/pop and double move (overlap with c.fsdsp)	Zcmt: table jump.	RV32A	Zba: Address calculation	Zbb: Base instructions	Zbc: Carry-Less Multiply	Zbs: Bit set, Bit clear, etc.	SIMD Subset ?	Bitmanip Subset ?	Q-Format / Saturated arithmetic Subset ?	Register pair Subset ?	Zkt: Data Independent Execution Latency	Zbkc: Constant time Carry-Less Multiply	Zbkb - Bitmanip instructions for Cryptography	Zbkx: Crossbar permutations	RV32F	Zfinx
CV32E40Pv1	2.0		2.0		2.0	?																	2.2*	v?*
CV32E40Pv2	2.0		2.0		2.0	?																	2.2*	1.0*
CV32E40X	2.1	2.0*	2.0	0.1*	2.0	1.0.0 RC5.6	1.0.0 RC5.6	1.0.0 RC5.6	1.0.0 RC5.6	2.1*	1.0.0*	1.0.0*	1.0.0*	1.0.0*					1.0.0*	1.0.0*				
CV32E40S	2.1	2.0*	2.0	0.1*	2.0	1.0.0 RC5.6	1.0.0 RC5.6	1.0.0 RC5.6	1.0.0 RC5.6	2.1*	1.0.0*	1.0.0*	1.0.0*	1.0.0*					1.0.0*	1.0.0*				
CV32E40PX	2.1		2.0		Zca 1.0.0 ?						1.0.0*	1.0.0*	1.0.0*	1.0.0*	0.x*	0.x*	0.x*	0.x*					2.2*	1.0*
CV32E4	2.1	2.0*	2.0*	1.0	Zca+Zcf ?	1.0.0*	1.0.0*	1.0.0*	1.0.0*	2.1*	1.0.0*	1.0.0*	1.0.0*	1.0.0*	0.x*	0.x*	0.x*	0.x*	TBD	TBD	1.0.1*	1.0.1*	TBD	TBD

RISC-V Privileged & non-ISA spec support

Supported extensions			RV DEBUG	RV CLIC						
supported subsets	Zicntr: Base Counters and Timers	Zihpm: Hardware Performance Counters	Zicsr (ctrl/status reg insts)	Zifencei (instruction fetch fence)	Smstateen: State Enable Extension	U-Mode	PMA	Smepmp: PMP Enhancements for memory access and execution prevention on Machine mode	RV DEBUG	RV CLIC
CV32E40Pv1	?	?	?	?						
CV32E40Pv2	2.0	?	2.0	2.0						
CV32E40X	2.0	2.0	2.0	2.0			Υ	1.0	1.0	0.9
CV32E40S	2.0	2.0	2.0	2.0	0.6.3	Y	Υ	1.0	1.0	
CV32E40PX	2.0	?	2.0	2.0					1.0	TBD
CV32E4	2.0	2.0*	2.0	2.0	1.0.0*	γ*	γ*	1.0.0*	1.0	TBD

CORE-V extensions/features support

Supported extensions	XCV: CORE-V PULP ISA Extensions								CV-X-IF	Xsecure	ОВІ
supported subsets	XCValu: miscellaneous ALU extension	XCVmac: multiply-accumulate	XCVelw: event load word extension	XCVbi: immediate branch	XCVmem: load/store	XCVsimd: SIMD	XCVbitmanip: Bit manipulations	XCVhwlp: Hardware loop	CV-X-IF	Xsecure: Security extensions	OBI
CV32E40Pv1	?*	?*	?*	?*	?*	?*	?*	?*			?
CV32E40Pv2	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*			1.2
CV32E40X									0.1*		1.6.0
CV32E40S										1.0	1.6.0
CV32E40PX	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	?*		
CV32E4	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.0*	1.6.0

Thank you!

