Lecture 2: CS677

Aug 24, 2017

Review

- Previous class
 - Course requirements
 - Assignments, grading
 - Adding more students to the class
 - Topics to be studied in class
 - Some problems of vision
- TODAY ONLY: office hours 1-2PM
- Today's objective
 - Some example state-of-art apps
 - Human visual system (very briefly)
 - Image formation

Current state of the art

- The following slides show some examples of what current vision systems can do
 - Many taken from class page of Prof. Seitz/Szeliski

Driving Scene

Sensing the Driving Scene

Note the vast amount of information the system can provide – free space (green carpet), vehicle and pedestrian detection, traffic sign recognition, lane markings – for the vehicle to understand and negotiate the driving scene.

From Mobileye

Self-Driving Cars

- A short video showing some visual needs and capabilities
 - https://www.youtube.com/watch?v=42rmGs0Rvtw
- A long talk on status of self-driving cars (watch on your own)
 - https://www.youtube.com/watch?v=GJ82mk99Agw
- A business analysis of participants in self-driving technology
 - http://www.businessinsider.com/the-companies-most-likelyto-get-driverless-cars-on-the-road-first-2017-4/#1-ford-18

Simple Eyes

Single cell organism, can sense presence/absence of light only

http://www.wikiwand.com/en/Evolution_of_the_eye

Holes provide some directional sensitivity. From Alessandro: wikipedia

Nautilus Eye: like a pin hole camera

From Hillewaert: wikipedia

Evolution of Eyes

From Matticus: Wikipedia

Also, http://www.wikiwand.com/en/Evolution_of_ the_eye

Pupil Shape

From Banks *et al*: "Why do animal eyes have pupils of different shapes?", in Science Advances, August 2015

Human Eye

- Like a camera
 - Lens, pupil (iris), focus by accommodation
- Image formed on back of eye (retina)
- Optic nerve sends data to brain (cortex)
 - Blind spot (where optic nerve comes out)

From Wikipedia

Retina

- Two types of photoreceptors
 - Rods: highly sensitive to light, not used for color vision, ~ 100M rods
 - Cones: 3 different types with different spectral sensitivities, less sensitive to light, ~ 5M cones
 - Explains why *color* is not seen at night
- Distribution is not uniform
 - High concentration of cones in fovea (0.5 minute visual angle)
 - Fixation (foveation) to get high resolution everywhere

http://ionabio.weebly.com/

Color Sensor Response

- Eyes do not have built in color spectrometer
- Rather, we have 3 sensors with different responses to lights of different color
- Perceived color depends on relative responses of three sensors

https://en.wikipedia.org/wiki/Photoreceptor_cell

Cortex schematic

Optical nerve carries signals from retina to cortex

~100:1 ratio of nerve fibers to receptors: some processing performed at this level

Optical *chiasma*: optic nerve fibers split to two halves of the brain

Many functional areas (V1, V2,....): knowledge about them is limited

From lindsayoptometric.com

Image Formation

- Geometry
 - Where is the image of a point formed?
- Photometry/Colorimetry
 - How bright is the point?
 - What is its *color*?
- Ideal camera models
- Real lenses

Pinhole cameras

- Abstract camera model box with a small hole in it
- Note inverted image

• Pinhole cameras work in practice, ignoring diffraction

The reason for lenses

The thin lens

$$\frac{1}{z} - \frac{1}{Z} = \frac{1}{f}$$

Thin Lens Properties

- Points at different depth focus at different positions of the image plane
 - With a fixed image plane, not all points will be in focus
 - "Depth of field", *i.e.* distance over which focus is acceptable depends on the *aperture* size
 - Defocus property can be used to infer depth
 - Limited accuracy
- Field of view: depends on imaging surface size

Field of View (FoV)

FIGURE 1.9: The field of view of a camera. It can be defined as 2ϕ , where $\phi \stackrel{\text{def}}{=} \arctan \frac{a}{2f}$, a is the diameter of the sensor (film, CCD, or CMOS chip), and f is the focal length of the camera.

Lens Distortions

- Real lenses suffer from various errors/distortions
- Chromatic aberration (not all wavelengths focus at the same point)
- Geometric distortions: complex lens systems used to reduce distortion
- Usually we will assume that complex lenses behave as ideal pinhole models but without the negative effects
 - No diffraction effects, sufficient light collection, all points in focus

Distortion Illustrations

FIGURE 1.11: Aberrations. (a) Spherical aberration: The gray region is the paraxial zone where the rays issued from P intersect at its paraxial image p. If an image plane π were erected in p, the image of p in that plane would form a circle of confusion of diameter e. The focus plane yielding the circle of least confusion is indicated by a dashed line. (b) Distortion: From left to right, the nominal image of a fronto-parallel square, pincushion distortion, and barrel distortion. (c) Chromatic aberration: The index of refraction of a transparent medium depends on the wavelength (or color) of the incident light rays. Here, a prism decomposes white light into a palette of colors. Figure from US NAVY MANUAL OF BASIC OPTICS AND OPTICAL INSTRUMENTS, prepared by the Bureau of Naval Personnel, reprinted by Dover Publications, Inc. (1969).

The equation of projection

• Note: k-axis towards the camera (right handed coordinate system $k = i \times j$).

Let
$$P = (X, Y, Z), p = (x, y, z)$$

- We know that z=d, find values of x and y
- Op = λ .OP for some λ , $\lambda = d/Z$ hence: $\begin{cases} x = d\frac{X}{Z}, \\ y = d\frac{Y}{Z} \end{cases}$