

Agenda

- **1** Einführung
- 2 BI Strategie & Management
- 3 Data Warehouses & OLAP
- **4** ETL-Prozesse und Tools
- 5 Kommunikation und Visualisierung
- 6 Dashboards & Self-Service BI
- 7 Vorgehensmodelle BA

- 8 Klassifikation I
- 9 Klassifikation II
- 10 Wirkungsprognosen
- 11 Modellbeurteilung & ML-Pipelines
- **12** Zeitreihenanalyse und –vorhersage

2

- 13 Nichtüberwachte Verfahren
- 14 Wrap-up und Q&A

Heutige Agenda

Inhalte: Anwendungsfälle und Methoden zur Klassifikation

Lernziele:

- a) Grundlagen der Klassifikation
- b) Überblick häufig genutzter Algorithmen
- c) Entscheidungsbäume

Data Mining - Definition

"Data Mining bezeichnet den Prozess der **Identifikation** und Gewinnung neuer, valider und **nicht-trivialer Muster** oder Informationen. Data Mining wird zur Analyse von **umfangreichen Datenbeständen** verwendet."

Hans-Georg Kemper

Statistik
Assoziationsanalyse

Data Mining
Clustering

Machine Learning
Wirkungsprognose

Klassifikation

Machine Learning

Nicht überwacht

Überwacht

Überwachtes Lernen: kontinuierlich vs. kategorial

Klassifikation

Wiederholung Begriffe

Features/ Attribute/ Prädiktoren

Klassische Statistik vs. Maschinelles Lernen

Inferenz mit klassischer Statistik

1. Hypothesen Aufstellen

Hypothese 1: Je älter ein Brühventil, desto eher geht es kaputt **Hypothese 2:** Je mehr Tassen, desto eher geht etwas kaputt

2. Fit und Signifikanz prüfen = Evaluation

100% der Trainingsdaten

3. Generelle Insights:

- Brühventile immer nach X Tage austauschen
- Ab einer bestimmten Anzahl Tassen sollte der Mietpreis sich erhöhen

Vorhersage mit ML

- **1. Fit:** $\hat{Y} = \beta_0 + \beta_1^* \text{Alter} + \beta_2^* \text{Tassen}$
- 2. Evaluation
- 3. Vorhersage ungesehene Daten

Ma_ID	Alter	Tassen
128323	1080	10566

$$\sigma(\beta_0 + \beta_1^*1080 + \beta_2^*10566) = 0.98$$

4. Automatische Individuelle Entscheidungen:

 In Wartung 2 sollte das Brühventil der Maschine 128323 repariert werden

Rückblick – Datenprojektmanagement

Anwendungsfälle Klassifikation

Welche Anwendungsfälle von Klassifikationsverfahren kennen Sie? Worin besteht der Nutzen?

Algorithmen – Versuch einer Übersicht

Linear

Annahme: "lineare" Hyperebene trennt Gruppen

Instance-Based

Klassifikation erfolgt aufgrund der Klassen der Nachbarn (Lazy Learning)

Tree-Based

Klassifikation anhand eines Entscheidungsbaums

Kernel-Based

Verwendung nichtlinearer Transformationen

Neurale Netze

Verbindung einfacher Funktionen zu komplexen Netzen

11

Logistische Regression

Linearer Zusammenhang: $z = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$

Sigmoid Output:
$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Algorithmus:

- Schätzung der Parameter β_i anhand der Daten
- Zur Schätzung Lösung eines
 Optimierungsproblem erforderlich
 (mehr dazu in der Einführung KI Vorlesung)

Bewertung:

- Sehr einfaches Modell, aber robust und einfach umsetzbar
- Gute Interpretierbarkeit
- Kurze Trainingszeiten, funktioniert auf kleinen und großen Datensätzen

12

Logistische Regression – Anwendung Kundenabwanderung

Linearer Zusammenhang: $z = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$ Sigmoid Output: $y = \sigma(z) = \frac{1}{1 + e^{-z}}$

Umsetzung in Python

Business Analytics / Burkhardt Funk 03.12.2023

18

K nächste Nachbarn

Algorithmus:

- Vorhersage basiert auf der Klassenzugehörigkeit der k nächsten Nachbarn (Mehrheitsvotum)
- "Lazy learner", da nicht trainiert wird, sondern Entscheidung anhand der umliegenden Punkte erfolgt

Bewertung:

- Kein Trainingsaufwand, Vorhersageaufwand geht mit $\mathcal{O}(k \log n)$
- Distanzbasierter Ansatz funktioniert bei niedrignicht aber hochdimensionalen Problemen ("Curse of Dimensionality")
- Intuitive, modellfreie Methode

Umsetzung in Python

Business Analytics / Burkhardt Funk 03.12.2023

20

Zusammenfassung

Klassifikationsmodelle sagen die Zugehörigkeit einzelner Beobachtungen zu definierten Klassen (Labels) "voraus"

Es gibt eine Vielzahl von Klassifikationsalgorithmen, die sehr unterschiedliche Ansätze nutzen

Gastvortrag

- Dr. Martin Stange, Data Scientist bei AboutYou
- —Thema: ML Pipelines in der Marketing Steuerung
- Dipl. Physiker (Hannover), M.Sc. WI (Wismar), Promotion Dr. rer. nat. (Leuphana & WU)
- Berufserfahrung: Analyst Werum, Data Scientist Dreamlines