Baze de date Dependențe funcționale

Nicolae-Cosmin Vârlan

October 15, 2020

Egalitatea a două tuple

Considerăm $U=\{A_1,A_2\dots A_n\}$ o mulțime de atribute și două tuple t_1 și t_2 construite peste această mulțime de atribute.

Spunem că $tuplele\ t_1$ și t_2 sunt egale, dacă și numai dacă

$$\pi_{A_i}[t_1] = \pi_{A_i}[t_2], \forall i \in \{1..n\}$$

Cu alte cuvinte, tuplele t_1 și t_2 sunt egale dacă ele sunt egale pe fiecare dintre componentele lor. Considerând că

$$t_1=(v_{11},v_{12},\ldots v_{1n})$$
 și $t_2=(v_{21},v_{22},\ldots v_{2n})$, atunci $t_1=t_2$ dacă și numai dacă $v_{11}=v_{21},\ v_{12}=v_{22},\ \ldots,\ v_{1n}=v_{2n}.$

În restul cursului, vom înlocui notația $\pi_X[t]$ cu t[X].

Dependențe funcționale

Fie $X,Y\subseteq U$. Vom nota o dependență funcțională cu $X\to Y$.

O relație r peste U satisface dependența funcțională $X \to Y$ dacă:

$$(\forall t_1, t_2)(t_1, t_2 \in r) \ t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

$$X=\emptyset$$
 avem $\emptyset \to Y$ dacă $(\forall t_1,t_2)(t_1,t_2 \in r)[t_1[Y]=t_2[Y]]$

 $Y = \emptyset$ atunci orice $\forall r$ peste U avem că $X \to \emptyset$

Dacă r satisface $X \to Y$, atunci există o funcție $\varphi: r[X] \to r[Y]$ definită prin $\varphi(t) = t'[Y]$, unde $t' \in r$ și $t'[X] = t \in r[X]$.

Dacă r satisface $X \to Y$ spunem că X determină funcțional pe Y în r.

Exemplu

Fie relația r peste mulțimea de atribute

 $U = \{nume, l(nume), data_nastere, zodie, varsta\}$

	nume	l(nume)	$data_nastere$	zodie	varsta
	lon	3	20.02.1990	Pesti	28
	Vasile	6	24.02.1992	Pesti	26
r:	Maria	5	1.08.2014	Leu	4
	Cosmin	6	7.07.1978	Rac	40
	Maria	5	4.08.2010	Leu	8

Puteți depista dependențele funcționale?

Exemplu

Fie relația r peste mulțimea de atribute

 $U = \{nume, l(nume), data_nastere, zodie, varsta\}$

	nume	l(nume)	$data_nastere$	zodie	varsta
	lon	3	20.02.1990	Pesti	28
	Vasile	6	24.02.1992	Pesti	26
r:	Maria	5	1.08.2014	Leu	4
	Cosmin	6	7.07.1978	Rac	40
	Maria	5	4.08.2010	Leu	8

- ightharpoonup nume
 ightharpoonup l(nume)
- $ightharpoonup data_nastere
 ightarrow varsta$
- $ightharpoonup data_nastere
 ightarrow zodie$
- ightharpoonup nume
 ightarrow zodie discuție

Proprietăți ale dependențelor funcționale

FD1. (Reflexivitate) Dacă $Y \subseteq X$, atunci r satisface $X \to Y$, $\forall r \in U$.

FD2. (Extensie) Dacă r satisface $X \to Y$ și $Z \subseteq W$, atunci r satisface $XW \to YZ$.

FD3. (Tranzitivitate) Dacă r satisface $X \to Y$ și $Y \to Z$, atunci r satisface $X \to Z$.

FD4. (Pseudotranzitivitate) Dacă r satisface $X \to Y$ și $YW \to Z$, atunci r satisface $XW \to Z$.

Proprietăți ale dependențelor funcționale

FD5. (Uniune) Dacă r satisface $X \to Y$ și $X \to Z$, atunci r satisface $X \to YZ$.

FD6. (Descompunere) Dacă r satisface $X \to YZ$, atunci r satisface $X \to Y$ și $X \to Z$.

FD7. (Proiectabilitate) Dacă r peste U satisface $X \to Y$ și $X \subset Z \subseteq U$, atunci r[Z] satisface $X \to Y \cap Z$

FD8. (Proiectabilitate inversă) Dacă $X \to Y$ este satisfacută de o proiecție a lui r, atunci $X \to Y$ este satisfacută de r.

Dependențe funcționale - consecință și acoperire

Dacă Σ este o mulțime de dependențe funcționale peste U atunci spunem că $X \to Y$ este consecință din Σ dacă orice relație ce satisface toate dependențele din Σ satisface și $X \to Y$.

Notație: $\Sigma \models X \to Y$

Fie $\Sigma^* = \{X \to Y | \Sigma \models X \to Y\}$. Fie $\Sigma_1 =$ mulţime de dependenţe funcţionale. Σ_1 constituie o *acoperire* pentru Σ^* dacă $\Sigma_1^* = \Sigma^*$.

Exercițiu: Fie $U=\{A,B,C,D,E,F\}$ și $\Sigma=\{A\to BD,B\to C,DE\to F\}$ găsiți cât mai multe elemente din $\Sigma^*-\Sigma$.

Proprietăți ale dependențelor funcționale

Propoziție

Pentru orice mulțime Σ de dependențe funcționale există o acoperire Σ_1 pentru Σ^* , astfel încat toate dependențele din Σ_1 sunt de forma $X \to A$, A fiind un atribut din U.

Propoziție

 $\Sigma \models X \to Y$ dacă și numai dacă $\Sigma \models X \to B_j$ pentru $j = \overline{1,h}$, unde $Y = B_1 \dots B_h$.

Reguli de deducere (la nivel sintactic)

Fie \mathcal{R} o mulțime de reguli de deducere pentru dependențe funcționale și Σ o mulțime de dependențe funcționale.

Spunem că $X \to Y$ este o *demonstrație* în Σ utilizând regulile \mathcal{R} și vom nota $\Sigma \vdash_{\mathcal{R}} X \to Y$, dacă există șirul $\sigma_1, \sigma_2, \ldots, \sigma_n$, astfel încât:

- $ightharpoonup \sigma_n = X o Y$ și
- pentru $\forall i=\overline{1,n},\ \sigma_i\in\Sigma$ sau există în $\mathcal R$ o regulă de forma $\frac{\sigma_{j_1},\sigma_{j_2},\ldots\sigma_{j_k}}{\sigma_i}$, unde $j_1,j_2,\ldots,j_k< i$.

Reguli de deducere (la nivel sintactic)

Conform proprietăților FD1-FD6 putem defini regulile:

FD1f:
$$\frac{Y \subseteq X}{X \to Y}$$
 FD4f: $\frac{X \to Y, YW \to Z}{XW \to Z}$

FD2f:
$$\frac{X \rightarrow Y, Z \subseteq W}{XW \rightarrow YZ}$$
 FD5f: $\frac{X \rightarrow Y, X \rightarrow Z}{X \rightarrow YZ}$

FD3f:
$$\frac{X \rightarrow Y, Y \rightarrow Z}{X \rightarrow Z}$$
 FD6f: $\frac{X \rightarrow YZ}{X \rightarrow Y}, \frac{X \rightarrow YZ}{X \rightarrow Z}$

Propoziție

Regulile FD4f, FD5f, FD6f se exprimă cu ajutorul regulilor FD1f, FD2f, FD3f.

Notăm cu
$$\mathcal{R}_1 = \{\text{FD1f, FD2f, FD3f}\},$$
 și cu $\mathcal{R}_2 = \mathcal{R}_1 \cup \{\text{FD4f, FD5f, FD6f}\}$

Propoziție

Regulile FD4f, FD5f, FD6f se exprimă cu ajutorul regulilor FD1f, FD2f, FD3f.

Idei de demonstratie:

- ▶ FD4f: Se aplica FD2f pentru $X \to Y$ si $W \subseteq W$ iar din rezultat si din $YW \to Z$ prin FD3f se obtine rezultatul;
- ▶ FD5f: Se aplica FD2f pentru $X \to Y$ si $X \subseteq X$ si la fel pentru $X \to Z$ si $Y \subseteq Y$ apoi FD3f (tranzitivitatea) intre rezultate;
- ▶ FD6f: din FD1f avem ca $YZ \to Y$ si $YZ \to Z$ si din FD3f rezulta $X \to Y$ si $X \to Z$

Axiomele lui Armstrong

Armstrong a definit (în *Dependency structures of database relationships* Proc. IFIP 74, Amsterdam, 580-583) următoarele reguli de inferența (numite *Axiomele lui Armstrong*):

A1:
$$\frac{1}{A_1...A_n \to A_i}$$
, $i = \overline{1, n}$

A2:
$$\frac{A_1,...A_m \rightarrow B_1,...B_r}{A_1...A_m \rightarrow B_j}, j = \overline{1,r}$$

$$\frac{A_1, \dots A_m \to B_j, j=1,r}{A_1 \dots A_m \to B_1, \dots B_r}$$

A3:
$$\frac{A_1,...A_m \to B_1,...B_r, B_1,...B_r \to C_1,...C_p}{A_1...A_m \to C_1,...C_p}$$

unde A_i , B_j , C_k sunt atribute. Notăm $\mathcal{R}_A = \{\text{A1, A2, A3}\}$. Obs: regula A3 este de fapt FD3f (tranzitivitatea).

Propoziție

Regulile din \mathcal{R}_1 se exprimă prin cele din \mathcal{R}_A și invers.

Notație:

$$\Sigma_{\mathcal{R}}^+ = \{ X \to Y | \Sigma \vdash_{\mathcal{R}} X \to Y \}$$

Propoziție

Fie \mathcal{R}_1' si \mathcal{R}_2' doua multimi de reguli astfel incat \mathcal{R}_1' se exprima prin \mathcal{R}_2' si invers. Atunci $\Sigma_{\mathcal{R}_1'}^+ = \Sigma_{\mathcal{R}_2'}^+$ pentru orice multime Σ de dependente functionale.

Consecinta: $\Sigma_{\mathcal{R}_1}^+ = \Sigma_{\mathcal{R}_A}^+$

Fie $X \subseteq U$ si \mathcal{R} o multime de reguli de inferenta. Notam cu

$$X_{\mathcal{R}}^+ = \{A | \Sigma \vdash_{\mathcal{R}} X \to A\}$$

Lema

 $\Sigma \vdash_{\mathcal{R}} X \to Y$ daca si numai daca $Y \subseteq X_{\mathcal{R}_1}^+$.

Lema

Fie Σ o multime de dependente functionale si $\sigma: X \to Y$ o dependenta functionala astfel incat $\Sigma \nvdash_{\mathcal{R}_1} X \to Y$. Atunci exista o relatie r_σ ce satisface toate dependentele functionale din Σ si r_σ nu satisface $X \to Y$.

Theorem

Fie Σ o multime de dependente functionale. Atunci exista o relatie r_0 ce satisface exact elementele lui $\Sigma_{\mathcal{R}_1}^+$, adica:

- $ightharpoonup r_0$ satisface au, $\forall au \in \Sigma^+_{\mathcal{R}_1}$ si
- $ightharpoonup r_0$ nu satisface γ , $\forall \gamma \not\in \Sigma^+_{\mathcal{R}_1}$

Bibliografie

 Baze de date relaţionale. Dependenţe - Victor Felea; Univ. Al. I. Cuza, 1996