

What's the best way to say this?

Agent-based Modeling

1. Rational speech act

Literal and pragmatic speakers/listeners, Bayesian inference

2. MATLAB

A primer

3. Breakout session

Building a pragmatic agent

Literal speaker, SO

Speaker: Imagine you are talking to someone and you want to refer to the middle object. Which word would you use, "blue" or "circle"?

Predicting Pragmatic Reasoning in Language Games

Literal speaker, SO

Speaker: Imagine you are talking to someone and you want to refer to the middle object. Which word would you use, "blue" or "circle"?

Michael C. Frank* and Noah D. Goodman

Literal listener, LO

Literal listener, LO

Pragmatic speaker, S1

Pragmatic speaker, S1

Pragmatic listener, L1

Listener/Salience: Imagine someone is talking to you and uses [the word "blue"/a word you don't know] to refer to one of these objects. Which object are they talking about?

Pragmatic listener, L1

Listener/Salience: Imagine someone is talking to you and uses [the word "blue"/a word you don't know] to refer to one of these objects. Which object are they talking about?

Bayesian inference

Likelihood speaker *s* would utter word *w* to refer to object *r*

Prior probability that object *r* would be referred to

$$P(r_{
m S}|w,C) = rac{P(w|r_{
m S},C)P(r_{
m S})}{\sum P(w|r',C)P(r')}$$

Likelihood that speaker *s* intended object *r* given uttered word *w* in context *C*

Normalizing constant, sum of the above computed for all referents in the context

1. Rational speech act

Literal and pragmatic speakers/listeners, Bayesian inference

2. MATLAB

A primer

3. Breakout session

Building a pragmatic agent

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma (,) or a space.

$$a = [1 2 3 4]$$

 $a = 1 \times 4$

1 2 3

This type of array is a *row vector*.

To create a matrix that has multiple rows, separate the rows with semicolons.

$$a = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 10]$$

 $a = 3 \times 3$

1 2 3

4 5 6

7 8 10

1. Rational speech act

Literal and pragmatic speakers/listeners, Bayesian inference

2. MATLAB

A primer

3. Breakout session

Building a pragmatic agent

Whom is referred to with "red hair"?

- Measure of a word's uncertainty given "context" (set of possible signals and referents)
- Scalability in terms of multi-order reasoning
- But, assumes humans are rational thinkers
- Requires exhaustive definition of the "context"
- Questionable if it scales to the real world or maps onto human cognition

Audience Design

Bonus: Computer says no

LO correctly interprets the composite signal as referring to the blue square

Bonus: Computer says no

LO correctly interprets the composite signal as referring to the blue square

.5 _{/1}	.5 _{/.5}	0
.5 _{/1}	0	.5 _{/.5}
1	5	5

Perspective of pragmatic speaker, S1

Bonus: Computer says no

.33	.66	0
.33	0	.66
-66	-66	-66

L1 cannot reliably distinguish between the three referents

listener's perspective

Bonus: Computer says no

L1 selects a non-intended referent