MSE491: Application of Machine Learning in Mechatronic Systems

Linear Regression and Gradient Descent

Mohammad Narimani, *Ph.D.*, *P.Eng. Lecturer*School of Mechatronic Systems Engineering
Simon Fraser University

Outline

Regression and Gradient Descent

 Overfitting and complexity; training set, validation set, test set

Simple Linear Regression

Example: As an HR officer, you have a candidate with 5 years of experience. There is no solid formula for salary calculation. Then what is the best salary you should offer to him, while you have the files for some pervious employees with different years of experience?

Simple Linear Regression

YearsExperience	Salary
1.1	
	39,343
1.3	46,205
1.5	37,731
2.0	43,525
2.2	39,891
2.9	56,642
3.0	60,150
3.2	54,445
3.2	64,445
3.7	57,189
3.9	63,218
4.0	55,794
4.0	56,957
4.1	57,081
4.5	61,111
4.9	67,938
5.1	66,029
5.3	83,088
5.9	81,363
6.0	93,940
6.8	91,738
7.1	98,273
7.9	101,302
8.2	113,812
8.7	109,431
9.0	105,582
9.5	116,969
9.6	112,635
10.3	122,391
10.5	121,872

hypothesis :
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

How to choose θ_i 's?

In gradient descent the step taken goes in the direction of the steepest descent/ascent, a direction given by the gradient of the function.

In the figure below, the journey starts at two locations on top of the hill and each two descent paths

Learning Rate:

Large Learning Rate value:

• Small Learning Rate value:

Proper Value

Gradient descent for Linear Regression

The prediction of house prices using the size of the house (in square feet), and the number of bedrooms.

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$$
$$\theta_n x_n$$

n: is the number of features

 $x_i^{(i)}$: j^{th} feature of the i^{th} training example

Size (sf)	# of BR	Price
2104	3	399900
1600	3	329900
2400	3	369000
1416	2	232000
3000	4	539900
1985	4	299900
1534	3	314900
1427	3	198999
1380	3	212000
1494	3	242500
1940	4	239999
::::		
1200	3	299000
852	2	179900
1852	4	299900
1203	3	239500

Notation:

Gradient Descent

Feature Scaling:

Without scaling, in some machine learning algorithms, cost functions will not work properly without normalization:

- It may takes longer time to find the optimum values

Size (sf)	# of BR	Price
2104	3	399900
1600	3	329900
2400	3	369000
1416	2	232000
3000	4	539900
1985	4	299900
1534	3	314900
1427	3	198999
1380	3	212000
1494	3	242500
1940	4	239999
	••••	••••
1200	3	299000
852	2	179900
1852	4	299900
1203	3	239500

Feature Scaling:

Feature Scaling:

Feature Scaling:

Notes:

Feature Scaling: Mean Normalization

$$x_i \to \frac{x_i - x_{mean}}{x_{max} - x_{min}}$$
 for $i \neq 0$

Then,

$$-0.5 < x_i < 0.5$$

Analytical solution for linear regression problems

 Linear regression problems are represented in matrix notations as:

$$X.\theta = y$$

where *X* is an $m_X(n+1)$ matrix.

m: # of samples (training values)

n:# of features

Then

$$\theta = (X^T X)^{-1}.X^T.y$$