

# MISO DPP 2017 August West Area Study Phase 2 Final Report

January 11, 2021 Rev 1

MISO 720 City Center Drive Carmel Indiana 46032

http://www.misoenergy.org



## **Contents**

| 1. E        | xecutive Summary                        | 8  |
|-------------|-----------------------------------------|----|
| 1.1.        | Project List                            | 8  |
| 1.2.        | Project Summary Network Upgrades        | 10 |
| 1.3.        | Total Network Upgrades                  | 35 |
| 2. <b>F</b> | ERC Order 827 Compliance Review         | 48 |
| 3. M        | Model Development and Study Assumptions | 49 |
| 3.1.        | Base Case Models                        | 49 |
| 3.2.        | Monitored Elements                      | 49 |
| 3.3.        | Contingencies                           | 49 |
| 3.4.        | Study Methodology                       | 50 |
| 3.5.        | Performance Criteria                    | 50 |
| 4. B        | Backbone Network Upgrade Analysis       | 50 |
| 5. <b>T</b> | Thermal Analysis                        | 50 |
| 6. V        | /oltage Analysis                        | 50 |
| 7. S        | Stability Analysis                      | 51 |
| 8. S        | Short Circuit Analysis                  | 51 |
| 9. <b>A</b> | Affected System Impact Study            | 51 |
| 10. D       | Deliverability Analysis                 | 51 |
| 10.1        | 1. Introduction                         | 51 |
| 10.2        | 2. Determining the MW Restriction       | 51 |
| 10.3        | 3. Deliverability Study Results         | 51 |
| 10.3        | 3.1. J545                               | 52 |
| 10.3        | 3.2. J580                               | 52 |
| 10.3        | 3.3. J628                               | 52 |
| 10.3        | 3.4. J705                               | 52 |
| 10.3        | 3.5. J706                               | 52 |
| 10.3        | 3.6. J713                               | 53 |
| 10.3        | 3.7. J720                               | 53 |
| 10.3        | 3.8. J722                               | 53 |
| 10.3        | 3.9. J785                               | 53 |
| 10.3        | 3.10. J801                              | 53 |
| 10.3        | 3.11. J803                              | 53 |
| 10.3        | 3.12. J816                              | 53 |
| 10.3        | 3.13. J836                              | 53 |
| 10.3        | 3.14. J840                              | 53 |
| 10.3        | 3.15. J873                              | 53 |
| 10.3        | 3.16. J874                              | 53 |



| 10.3.1     | 7. J877                                                              | 54  |
|------------|----------------------------------------------------------------------|-----|
| 10.3.1     | 8. J885                                                              | 54  |
| 10.3.1     | 9. J897                                                              | 54  |
| 10.3.2     | 0. J898                                                              | 54  |
| 10.3.2     | 1. J901                                                              | 54  |
| 10.3.2     | 2. J905                                                              | 54  |
| 10.3.2     | 3. J916                                                              | 54  |
| 10.3.2     | 4. J926                                                              | 54  |
| 10.3.2     | 5. J927                                                              | 54  |
| 10.3.2     | 6. J933                                                              | 54  |
| 10.3.2     | 7. J946                                                              | 54  |
| 11. Sh     | ared Network Upgrades Analysis                                       | 54  |
| 12. Co     | st Allocation                                                        | 55  |
| 12.1.      | Cost Assumptions for Network Upgrades                                | 55  |
| 12.2.      | Cost Allocation Methodology                                          | 55  |
| Append     | lix A – Thermal Analysis Results                                     | 57  |
| Therma     | l Constraints                                                        | 57  |
| Append     | ix B – Voltage Constraints                                           | 57  |
| Voltage    | Constraints                                                          | 57  |
| Append     | ix C – MWEX Voltage Stability Report                                 | 58  |
| Append     | ix D – Network Upgrade Cost Allocation                               | 73  |
| Append     | ix E – Transient Stability                                           | 73  |
| Append     | ix F – Local Planning Criteria Studies                               | 74  |
| 1.         | Appendix A – LPC Model Development                                   | 80  |
| 2.         | Appendix B – DPC LPC Contingency Analysis ResultsB-1                 | 80  |
| 3.         | Appendix C – MDU LPC Study Results                                   | 80  |
| 4.         | Appendix D – OTP LPC Contingency Analysis Results                    | 80  |
| 5.         | Appendix E – GRE LPC Study ResultsE-1                                | 80  |
| Legal Noti | ce                                                                   | 84  |
| Executive  | Summary                                                              | 88  |
| 1.1 DP     | C LPC Study                                                          | 88  |
| 1.1.1      | J801 DPC LPC Study                                                   | 88  |
| 1.1.2      | J898 DPC LPC Study                                                   | 88  |
| 1.1.3      | Summary of Additional Network Upgrades Identified in DPCLPC Analysis | 88  |
| 1.2 MC     | U LPC Study                                                          | 90  |
| 1.2.1      | Summary of Additional Network Upgrades Identified in MDULPC Analysis | 90  |
| 1.3 OT     | P LPC Study                                                          | 92  |
| 1.3.1      | Summary of Additional Network Upgrades Identified in OTPLPC Analysis | 92  |
| 11 65      | E LDC Study                                                          | 0.4 |



| 1.4.1    | J901 GRE LPC Study                                                   | 94  |
|----------|----------------------------------------------------------------------|-----|
| 1.4.2    | CCS GRE LPC Study                                                    | 96  |
| 1.4.3    | Summary of Additional Network Upgrades Identified in GRELPC Analysis | 98  |
| 6.       | Section                                                              | 104 |
| Model De | evelopment                                                           | 104 |
| 7.       | Section                                                              | 107 |
| 2.1 Inti | roduction                                                            | 107 |
| 2.2 DP   | C LPC Study Areas                                                    | 107 |
| 2.3 J80  | 01 DPC LPC Study                                                     | 107 |
| 2.3.1    | J801 DPC LPC Generation Redispatch                                   | 107 |
| 2.3.2    | J801 DPC LPC Contingency Analysis Results                            | 107 |
| 2.3.3    | Worst Thermal Constraints in J801 DPCLPC                             | 109 |
| 2.3.4    | Additional Network Upgrades Identified in J801 DPC LPCAnalysis       | 109 |
| 2.4 J89  | 98 DPC LPC Study                                                     | 111 |
| 2.4.1    | J898 DPC LPC Generation Redispatch                                   | 111 |
| 2.4.2    | J898 DPC LPC Contingency Analysis Results                            | 111 |
| 2.4.3    | Worst Thermal Constraints in J898 DPCLPC                             | 113 |
| 2.4.4    | Additional Network Upgrades Identified in J898 DPC LPCAnalysis       | 119 |
| 2.5 Su   | mmary of Additional Network Upgrades Identified inDPC LPC Analysis   | 119 |
| 8.       | Section                                                              | 122 |
| 3.1 Inti | roduction                                                            | 122 |
| 3.2 MD   | OU LPC Generation Redispatch                                         | 122 |
| 3.3 MD   | OU LPC Study Areas                                                   | 124 |
| 3.4 MD   | OU LPC Contingency Analysis Results                                  | 124 |
| 3.4.1    | System Intact Conditions                                             | 124 |
| 3.4.2    | Post Contingency Conditions                                          | 124 |
| 3.4.3    | Worst Thermal Constraints in MDU LPC                                 | 125 |
| 3.5 MD   | OU LPC Stability Analysis Results                                    | 132 |
| 3.6 Ad   | ditional Network Upgrades Identified in MDU LPCAnalysis              | 134 |
| 9.       | Section                                                              | 138 |
| 4.1 Inti | roduction                                                            | 138 |
| 4.2 OT   | P LPC Model Development                                              | 138 |
| 4.3 OT   | P LPC Study Areas                                                    | 140 |
| 4.4 OT   | P LPC Contingency AnalysisResults                                    | 140 |
| 4.4.1    | Summer Peak Contingency Analysis Results                             | 140 |
| 4.4.2    | Summer Shoulder Contingency Analysis Results                         | 140 |
| 4.4.3    | Worst Thermal and Voltage Constraints in OTP LPC Shoulder Case       | 144 |
| 4.4.4    | Light Load No Wind Contingency AnalysisResults                       | 158 |
| 4.5 Ad   | ditional Network Upgrades Identified in OTP LPCAnalysis              | 158 |



| 1           | 0.       | Section                                                        | 162 |
|-------------|----------|----------------------------------------------------------------|-----|
| 5.1         | Intro    | oduction                                                       | 162 |
| 5.2         | GRE      | LPC Study Areas                                                | 162 |
| 5.3         | J901     | GRE LPC Study                                                  | 162 |
| 5           | 5.3.1    | J901 GRE LPC Generation Redispatch                             | 164 |
| 5           | .3.2     | J901 GRE LPC Contingency Analysis Results                      | 164 |
| 5           | 5.3.3    | Worst Thermal and Voltage Constraints in J901 GRE LPC          | 164 |
| 5           | 5.3.4    | J901 GRE LPC Stability Analysis Results                        | 174 |
| 5           | 5.3.5    | Additional Network Upgrades Identified in J901 GRE LPCAnalysis | 174 |
| 5.4         | ccs      | GRE LPC Study                                                  | 176 |
| 5           | .4.1     | CCS GRE LPC Generation Redispatch                              | 176 |
| 5           | .4.2     | Mitigations for Voltage Collapse and Voltage Constraints       | 176 |
| 5           | .4.3     | CCS GRE LPC Contingency Analysis Results                       | 180 |
| 5           | .4.4     | Worst Thermal and Voltage Constraints in CCS GRE LPC           | 182 |
| 5           | .4.5     | CCS GRE LPC Stability Analysis Results                         | 186 |
| 5           | .4.6     | Additional Network Upgrades Identified in CCS GRE LPC Analysis | 192 |
| 2.          | 5.5 A    | Additional Network Upgrades Identified in GRE LPCAnalysis      | 194 |
| 1           | 1.       | Appendix                                                       | 198 |
| A.2         | MISC     | O Classic as the Study Sink                                    | 199 |
| <b>A</b> .3 | SPP      | Market as SPP Projects Sink                                    | 201 |
| 1           | 2.       | Appendix                                                       | 205 |
| 1           | .3.      | Table B-7: J801 DPC LPC SPK Non-Converged Contingencies        | 213 |
| B.2         | J801     | DPC LPC Summer Shoulder (SH) Constraints                       | 214 |
| <b>B</b> .3 | J898     | BDPC LPC Summer Peak (SPK) Constraints                         | 223 |
| B.4         |          | BDPC LPC Summer Shoulder (SH) Constraints                      |     |
| C.2         | MDU      | JLPC Stability Results                                         | 253 |
| 1           | 4.       | Appendix                                                       | 259 |
| D.2         | OTP      | LPC Summer Peak (SPK) Constraints                              | 266 |
| D.3         | OTP      | LPC Summer Shoulder (SH) Constraints                           | 276 |
| 1           | .5.      | Table D-10: OTP LPC SH System Intact Voltage Constraints       | 279 |
| D.4         | OTP      | LPC Light Load No Wind (LLNW) Study Results                    | 291 |
| 1           | 6.       | Table D-17: OTP LPC LLNW System Intact Potential High Voltages | 293 |
| 1           | 7.       | Appendix                                                       | 296 |
| E           | .12      | J901 GRE LPC Stability Results                                 | 308 |
| E.2         | ccs      | GRE LPC Study Results                                          | 311 |
| Ap          | pendi    | x G – Short Circuit Studies                                    | 332 |
|             |          | n                                                              |     |
|             |          | uit Model                                                      |     |
| Sho         | rt Circu | uit Analysis                                                   | 334 |



| Summary of Short Circuit Analysis                                                | 334 |
|----------------------------------------------------------------------------------|-----|
| Introduction                                                                     | 337 |
| Short Circuit Model                                                              | 337 |
| Short Circuit Analysis                                                           | 338 |
| Summary of Short CircuitAnalysis                                                 | 338 |
| Introduction                                                                     | 341 |
| Short Circuit Model                                                              | 341 |
| Short Circuit Analysis                                                           | 342 |
| Summary of Short CircuitAnalysis                                                 | 342 |
| Introduction                                                                     | 346 |
| Short Circuit Model                                                              | 346 |
| Short Circuit Analysis                                                           | 347 |
| Summary of Short CircuitAnalysis                                                 | 347 |
| Introduction                                                                     | 349 |
| Short Circuit Model                                                              | 349 |
| Short Circuit Analysis                                                           | 350 |
| Summary of Short CircuitAnalysis                                                 | 350 |
| Introduction                                                                     | 353 |
| Short Circuit Model                                                              | 353 |
| Short Circuit Analysis                                                           | 354 |
| Summary of Short CircuitAnalysis                                                 | 354 |
| Introduction                                                                     | 357 |
| Short Circuit Model                                                              | 357 |
| Short Circuit Analysis                                                           | 358 |
| Summary of Short Circuit Analysis                                                | 358 |
| Introduction                                                                     | 362 |
| Background                                                                       | 362 |
| Methodology                                                                      | 362 |
| Cases/Conditions                                                                 | 362 |
| 18. Min Fault Current (Tap Bus-Prairie 230kV Open, All Local Generation Offline) | 364 |
| Results                                                                          | 365 |
| Short Circuit Study                                                              | 382 |
| Wind Generation Interconnection                                                  | 382 |
| MISO J722                                                                        | 382 |
| Prepared for the MISO                                                            | 382 |
| January 28, 2019                                                                 | 382 |
| Short Circuit Study                                                              | 383 |
| Short Circuit Study                                                              | 384 |
| 60 MW Solar Generation Interconnection                                           | 384 |
| MISO J816                                                                        | 384 |
| Prepared for the Midcontinent ISO                                                | 384 |
| Short Circuit Study                                                              | 384 |



| Short Circuit Study                                                                                                                                   | 385<br>385<br>385<br>385 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| MISO Projects J933  Prepared for the MISO  Short Circuit Study  Introduction                                                                          | 385<br>385<br>385        |
| Prepared for the MISO                                                                                                                                 | 385<br>385<br>394        |
| Short Circuit Study                                                                                                                                   | 385<br>394               |
| Introduction                                                                                                                                          | 394                      |
|                                                                                                                                                       |                          |
|                                                                                                                                                       |                          |
| SHULL CHEUILIVIOUE!                                                                                                                                   |                          |
| Short Circuit Analysis                                                                                                                                |                          |
| Summary of Short Circuit Analysis                                                                                                                     |                          |
| 19. MISO Projects J705, J706, J713                                                                                                                    |                          |
| 20. February 14, 2020                                                                                                                                 |                          |
| 21. Prepared by Andrew Kienitz                                                                                                                        |                          |
| 1.0 Purpose                                                                                                                                           |                          |
| ·                                                                                                                                                     |                          |
| •                                                                                                                                                     |                          |
| 2.1 2019 MP Short Circuit Study                                                                                                                       |                          |
| 2.2 2017 August West DPP Short Circuit Study                                                                                                          |                          |
| 3.0 Results                                                                                                                                           |                          |
| Appendix H – Affected System Studies                                                                                                                  |                          |
| Appendix I – Deliverability Results                                                                                                                   | 7                        |
| Table 4. List of DDD Avgust 2017 West Aves Dhase 4 Dreisets                                                                                           | ,                        |
| Fable 1: List of DPP August 2017 West Area Phase 1 Projects         Cable 2: Total Cost of Network Upgrades for DPP 2017 August West Phase 1 Projects |                          |
| Table 3: ERIS & NRIS Upgrades (Planning level cost estimates)                                                                                         |                          |
| Fable 4: Shared Network Upgrades (Planning level cost estimates)                                                                                      |                          |
| Гable 5: FERC Order 827 Review Results                                                                                                                |                          |
| Table 7: Maximum MW Impact and SNU Cost Allocations                                                                                                   |                          |
| Table 1 – MWEX Margins to Collapse in the 2023SH VSAT Ready Cases                                                                                     |                          |
| Table 2 – Initial Conditions in Each Post-DPP Base Case provided from MISO                                                                            |                          |
| Fable 3 – 2023SH Dispatch Assumptions for MWEX Voltage Stability                                                                                      |                          |
| Fable 4 – Contingencies Studied and Transfer to the MWEX PV Nose         Fable 5 – Worst Contingencies with the Pre-DPP Case                          |                          |
| Table 5 – Worst Contingencies with the Post-DPP Case                                                                                                  |                          |



#### 1. Executive Summary

This report presents the results of a System Impact Study (SIS) performed to evaluate the interconnection of the generators in the DPP 2017 August West Area Phase 2 (West Area DPP 2). The study was performed under the direction of MISO and reviewed by an ad hoc study group. The ad hoc study group was formed to review the study scope, methodology, models and results. The ad hoc study group consisted of representatives from the interconnection customers and the following utility companies – American Transmission Company, Ameren, Basin Electric Power Cooperative, CIPCO, Cedar Falls, Dairyland Power Cooperative, Great River Energy, ITC Midwest, Montana-Dakota Utilities, MidAmerican, Minnesota Power, Ottertail Power, SMMPA, and Xcel Energy.

#### 1.1. Project List

The original interconnection requests for DPP 2017 August West Area had a total of 27 projects generation projects with a combined nameplate rating of 4126.78 MW (ERIS) & 3596.28 MW (NRIS). The detailed list of West Area DPP 2 is shown below in Table 1, and the 2017 August West cycle originally kicked off on June 12, 2019.

Table 1: List of DPP August 2017 West Area Phase 1 Projects

| Project | Fuel<br>Type | Transmission<br>Owner | County                    | State | Service<br>Requested | MW   | POI                                   | Interconnection<br>Facility Self<br>Fund Election |
|---------|--------------|-----------------------|---------------------------|-------|----------------------|------|---------------------------------------|---------------------------------------------------|
| J545    | Wind         | Xcel                  | Lincoln                   | MN    | NRIS                 | 110  | Buffalo Ridge 115 kV                  | Yes                                               |
| J580    | Wind         | MDU                   | Burleigh                  | ND    | ERIS                 | 298  | Wishek-Hesket 230 kV                  | Yes                                               |
| J628    | Wind         | GRE                   | Grand<br>Forks,<br>Nelson | ND    | NRIS                 | 400  | Prairie-Ramsey 230<br>kV              | No                                                |
| J705    | Wind         | MP                    | Morton                    | ND    | NRIS                 | 100  | Tri-County 230 kV                     | Yes                                               |
| J706    | Wind         | MP                    | Morton                    | ND    | NRIS                 | 100  | Tri-County 230 kV                     | Yes                                               |
| J713    | Wind         | MP                    | Oliver                    | ND    | NRIS                 | 300  | Square-Butte 230 kV                   | Yes                                               |
| J720    | Wind         | ITCM                  | Jackson                   | MN    | NRIS                 | 200  | Lakefield-Raun 345<br>kV              | Yes                                               |
| J722    | Wind         | ОТР                   | Codington,<br>Deuel       | SD    | NRIS                 | 200  | Big Stone South 230 kV                | Yes                                               |
| J785    | Wind         | ITCM                  | Jackson,<br>Martin        | MN    | NRIS                 | 105  | Lakefield Junction-<br>Huntley 345 kV | Yes                                               |
| J801    | Solar        | DPC                   | Pierce                    | WI    | NRIS                 | 74   | Crystal Cave – Rock<br>Elm 161 kV     | Yes                                               |
| J803    | Solar        | Xcel                  | Lyon                      | MN    | ERIS                 | 32.5 | Tracy-Walnut Grove<br>69 kV           | Yes                                               |
| J816    | Solar        | OTP                   | Cass                      | ND    | NRIS                 | 60   | Buffalo 115 kV                        | Yes                                               |
| J836    | Wind         | ITCM                  | Kossuth                   | IA    | ERIS                 | 200  | Ledyard 345 kV                        | Yes                                               |
| J840    | Wind         | MEC                   | Humboldt                  | IA    | NRIS                 | 150  | Kossuth-Webster 345 kV                | Yes                                               |
| J873    | Wind         | ITCM                  | Hardin                    | IA    | NRIS                 | 200  | Emery-Blackhawk 345 kV                | Yes                                               |
| J874    | Solar        | Xcel                  | Murray                    | MN    | NRIS                 | 150  | Fenton-Chanarambie<br>115 kV          | Yes                                               |
| J877    | Solar        | MEC                   | Palo Alto                 | IA    | NRIS                 | 250  | Palo Alto 345 kV                      | Yes                                               |



| Project | Fuel<br>Type | Transmission<br>Owner | County             | State     | Service<br>Requested | MW     | POI                                  | Interconnection<br>Facility Self<br>Fund Election |
|---------|--------------|-----------------------|--------------------|-----------|----------------------|--------|--------------------------------------|---------------------------------------------------|
| J885    | Wind         | ITCM                  | Freeborn,<br>Worth | IA,<br>MN | NRIS                 | 64     | Glenworth 161 kV                     | Yes                                               |
| J897    | Wind         | GRE                   | Grand Forks        | ND        | NRIS                 | 190    | Ramsey-Prairie 230<br>kV             | No                                                |
| J898    | Wind         | DPC                   | Fillmore,<br>Mower | MN        | NRIS                 | 100    | Beaver Creek-Rice<br>161 kV          | Yes                                               |
| J901    | Wind         | Xcel                  | Redwood            | MN        | NRIS                 | 200    | Lyon County-Cedar<br>Mountain 345 kV | Yes                                               |
| J905    | Solar        | OTP                   | Cass               | ND        | NRIS                 | 40     | Buffalo 115 kV                       | Yes                                               |
| J916    | Diesel       | ITCM                  | Cottonwood         | MN        | E-NRIS               | 2      | Mountain Lake 69 kV                  | Yes                                               |
| J926    | Wind         | Xcel                  | Saint Croix        | WI        | NRIS                 | 101.28 | Pine Lake – Apple<br>River 161 kV    | Yes                                               |
| J927    | Wind         | ITCM                  | Faribault          | MN        | NRIS                 | 100    | Walters 69 kV<br>Substation          | Yes                                               |
| J933    | Wind         | ОТР                   | Day                | SD        | NRIS                 | 200    | Ellendale-Big Stone<br>South 345 kV  | Yes                                               |
| J946    | Solar        | Xcel                  | Cass               | ND        | NRIS                 | 200    | Bison 345 kV                         | Yes                                               |



## 1.2. Project Summary Network Upgrades

| J545                                                                 |                       |                         |                 |  |  |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|--|--|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J545 Cost Estimate (\$) | NU Type         |  |  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                 | \$1,500,000           | \$47,824                | OTP Voltage     |  |  |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000           | \$64,248                | OTP Voltage     |  |  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000           | \$309,196               | GRE Voltage     |  |  |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000           | \$167,927               | GRE Voltage     |  |  |
| CCS GRE LPC Voltage NU (GRE LPC)                                     | \$505,270,000         | \$1,907,065             | GRE Voltage     |  |  |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                         | \$125,000,000         | \$6,119,084             | SPP AFS<br>ERIS |  |  |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                  | \$7,500,000           | \$212,314               | SPP AFS<br>ERIS |  |  |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000           | \$59,447                | SPP AFS<br>ERIS |  |  |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$8,208,109             | SPP AFS<br>NRIS |  |  |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$20,230                | SPP AFS<br>ERIS |  |  |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$4,142,139             | SPP AFS<br>NRIS |  |  |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$8,287,457             | SPP AFS<br>NRIS |  |  |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$1,472,581             | SPP AFS<br>NRIS |  |  |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$4,642,406             | SPP AFS<br>NRIS |  |  |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                   | \$5,200,000           | \$118,611               | SPP AFS<br>NRIS |  |  |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$5,578,330             | SPP AFS<br>NRIS |  |  |
| Total Cost Per Project:                                              |                       | \$41,356,968            |                 |  |  |

| J580                               |                       |                         |              |  |  |  |
|------------------------------------|-----------------------|-------------------------|--------------|--|--|--|
| Network Upgrade                    | NU Cost Estimate (\$) | J580 Cost Estimate (\$) | NU Type      |  |  |  |
| Merricourt - Wishek 230 kV Rebuild | \$6,000,000           | \$6,000,000             | ERIS Thermal |  |  |  |
| Heskett – J302 POI 230 kV Rebuild  | \$4,500,000           | \$4,500,000             | ERIS Thermal |  |  |  |
| Wishek – J302 POI 230 kV Rebuild   | \$4,750,000           | \$4,750,000             | ERIS Thermal |  |  |  |



| Heskett – Mandan 230 kV Uprate                                   | \$200,000     | \$200,000     | ERIS Thermal    |
|------------------------------------------------------------------|---------------|---------------|-----------------|
| Sheyenne – Lake Park 230 kV Uprate                               | \$1,300,000   | \$297,688     | ERIS Thermal    |
| Wahpeton-Fergus Falls 230 kV Uprate                              | \$850,000     | \$850,000     | ERIS Thermal    |
| Audubon – Lake Park 230 kV Uprate                                | \$100,000     | \$22,899      | ERIS Thermal    |
| Six Wahpeton 50 MVAr Capacitors                                  | \$9,750,000   | \$1,936,563   | ERIS Voltage    |
| One Bison 150 MVAr Capacitor                                     | \$1,500,000   | \$297,933     | ERIS Voltage    |
| Three Maple River 50 MVAr Capacitors                             | \$3,000,000   | \$595,865     | ERIS Voltage    |
| Linton – Wishek 115 kV Rebuild and Operate Normally Closed       | \$14,100,000  | \$14,100,000  | ERIS Stability  |
| Ellendale-Aberdean Jct 115 kV Uprate (MDU LPC)                   | \$60,000      | \$26,634      | MDU Thermal     |
| Foxtail-Ellendale 230 kV Rebuild (MDU LPC)                       | \$10,500,000  | \$10,500,000  | MDU Thermal     |
| Merricourt-Wishek 230 kV Rebuild (MDU LPC)                       | \$6,300,000   | \$6,300,000   | MDU Thermal     |
| Wishek-J302 POI 230 kV Rebuild (MDU LPC)                         | \$5,600,000   | \$5,600,000   | MDU Thermal     |
| Build Mandan-J530 POI 230 kV Circuit (MDU LPC)                   | \$28,000,000  | \$28,000,000  | MDU Stability   |
| Add Additional Breaker at Merricourt (MDU LPC)                   | \$1,500,000   | \$1,500,000   | MDU Voltage     |
| Hankinson-Wahpeton 230 kV Rebuild (OTP LPC)                      | \$21,900,000  | \$21,900,000  | OTP Thermal     |
| Hankinson-Forman 230 kV Uprate (OTP LPC)                         | \$50,000      | \$22,624      | OTP Thermal     |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC) | \$36,500,000  | \$7,761,997   | OTP Voltage     |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)        | \$55,000,000  | \$11,742,025  | OTP Voltage     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)             | \$1,500,000   | \$238,861     | OTP Voltage     |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                          | \$1,000,000   | \$105,841     | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | \$4,000,000   | \$350,786     | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                         | \$2,500,000   | \$305,691     | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                 | \$505,270,000 | \$97,541,455  | GRE Voltage     |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                     | \$125,000,000 | \$15,077,809  | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)              | \$7,500,000   | \$1,1716,42   | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)    | \$1,000,000   | \$96,654      | SPP AFS<br>ERIS |
| Rebuild Ward-Bismarck 230 kV (SPP AFS)                           | \$3,100,000   | \$3,100,000   | SPP AFS<br>ERIS |
| Total Cost Per Project:                                          |               | \$243,721,325 |                 |

| J628                            |                       |                         |              |  |  |  |
|---------------------------------|-----------------------|-------------------------|--------------|--|--|--|
| Network Upgrade                 | NU Cost Estimate (\$) | J628 Cost Estimate (\$) | NU Type      |  |  |  |
| Hubbard – Audubon 230 kV Uprate | \$650,000             | \$343,957               | ERIS Thermal |  |  |  |



| Wilton-Bemidji Uprate                                                        | \$50,000      | \$34,602     | ERIS Thermal    |
|------------------------------------------------------------------------------|---------------|--------------|-----------------|
| Crookston-Fertile Uprate                                                     | \$250,000     | \$250,000    | ERIS Thermal    |
| Crookston-Falconer Uprate                                                    | \$25,000      | \$25,000     | ERIS Thermal    |
| Rebuild J628-Prairie 230 kV Rebuild                                          | \$16,770,000  | \$11,844,357 | ERIS Thermal    |
| New J628-Prairie 230 kV 2nd Circuit                                          | \$22,360,000  | \$11,601,663 | ERIS Voltage    |
| Six Wahpeton 50 MVAr Capacitors                                              | \$9,750,000   | \$1,308,168  | ERIS Voltage    |
| One Bison 150 MVAr Capacitor                                                 | \$1,500,000   | \$201,257    | ERIS Voltage    |
| Three Maple River 50 MVAr Capacitors                                         | \$3,000,000   | \$402,513    | ERIS Voltage    |
| Mahnomm-Ulrich 115 kV Uprate (OTP LPC)                                       | \$50,000      | \$50,000     | OTP Thermal     |
| Winger-Fertile 115 kV Uprate (OTP LPC)                                       | \$50,000      | \$50,000     | OTP Thermal     |
| Crookston-Fertile 115 kV Uprate (OTP LPC)                                    | \$250,000     | \$250,000    | OTP Thermal     |
| Wilton-Bemidji 115 kV Uprate (OTP LPC)                                       | \$50,000      | \$34,611     | OTP Thermal     |
| Brooking County-Astoria 2nd 345 kV Circuit (OTP LPC)                         | \$36,500,000  | \$1,537,448  | OTP Voltage     |
| Astoria-J526 POI 2nd 345 kV Circuit (OTP LPC)                                | \$55,000,000  | \$2,536,448  | OTP Voltage     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                         | \$1,500,000   | \$92,227     | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                                    | \$4,000,000   | \$133,206    | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                                     | \$2,500,000   | \$194,370    | GRE Voltage     |
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS)                              | \$500,000     | \$339,902    | MPC AFS         |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)                      | \$500,000     | \$31,071     | MPC AFS         |
| Wilton-Scribner 115 kV Terminal Upgrades (MPC AFS)                           | \$200,000     | \$138,250    | MPC AFS         |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                              | \$200,000     | \$80,634     | MPC AFS         |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)                      | \$1,000,000   | \$146,013    | MPC AFS         |
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)                          | \$550,000     | \$291,977    | MPC AFS         |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                                 | \$2,000,000   | \$1,048,188  | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                         | \$400,000     | \$155,542    | MPC AFS         |
| Prairie 115/69 kV Transformer #2 Upgrades (MPC AFS)                          | \$1,500,000   | \$1,059,728  | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                       | \$200,000     | \$98,126     | MPC AFS         |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)                        | \$500,000     | \$272,601    | MPC AFS         |
| Mill Road-Master 69 kV Structure Remediation and Terminal Upgrades (MPC AFS) | \$500,000     | \$353,520    | MPC AFS         |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                                    | \$1,000,000   | \$313,616    | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                                 | \$125,000,000 | \$8,568,836  | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                          | \$7,500,000   | \$1,207,752  | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)                | \$1,000,000   | \$120,924    | SPP AFS<br>ERIS |



| Total Cost Per Project:                                                |               | \$189,676,995 |                 |
|------------------------------------------------------------------------|---------------|---------------|-----------------|
| Rebuild Overton-Sibley 345 kV (SPP AFS)                                | \$155,350,000 | \$18,006,137  | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)                            | \$25,000,000  | \$2,041,776   | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS)                   | \$70,000,000  | \$7,015,642   | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                                | \$80,000,000  | \$10,234,543  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                             | \$50,011,493  | \$9,161,705   | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                          | \$126,865,737 | \$14,742,577  | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097 | \$31,355,937  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000   | \$787,157     | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS)   | \$361,000,000 | \$22,415,640  | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000 | \$10,631,260  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000     | \$53,654      | SPP AFS<br>ERIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953  | \$16,491,841  | SPP AFS<br>NRIS |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570  | \$5,298,553   | SPP AFS<br>NRIS |
| Rebuild Grand Forks-Prairie 230 kV (SPP AFS)                           | \$300,000     | \$212,466     | SPP AFS<br>ERIS |
| Second Grand Forks 230/115 kV Transformer (SPP AFS)                    | \$6,621,188   | \$4,680,436   | SPP AFS<br>ERIS |

| J705                                 |                       |                         |              |
|--------------------------------------|-----------------------|-------------------------|--------------|
| Network Upgrade                      | NU Cost Estimate (\$) | J705 Cost Estimate (\$) | NU Type      |
| Six Wahpeton 50 MVAr Capacitors      | \$9,750,000           | \$517,734               | ERIS Voltage |
| One Bison 150 MVAr Capacitor         | \$1,500,000           | \$79,651                | ERIS Voltage |
| Three Maple River 50 MVAr Capacitors | \$3,000,000           | \$159,303               | ERIS Voltage |
| Coyote Transformer Upgrade           | \$5,000,000           | \$1,000,000             | NRIS         |
| Coyote – Beulah 115 kV Upgrade       | \$1,500,000           | \$300,000               | NRIS         |



| Center – Jamestown 345 kV Uprate                                       | \$25,000      | \$5,000      | NRIS            |
|------------------------------------------------------------------------|---------------|--------------|-----------------|
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)       | \$36,500,000  | \$680,981    | OTP Voltage     |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)              | \$55,000,000  | \$1,078,789  | OTP Voltage     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                   | \$1,500,000   | \$40,349     | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                              | \$4,000,000   | \$76,786     | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                               | \$2,500,000   | \$75,875     | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                       | \$505,270,000 | \$78,454,265 | GRE Voltage     |
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS)                        | \$500,000     | \$3,800      | MPC AFS         |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)                | \$500,000     | \$73,594     | MPC AFS         |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                        | \$200,000     | \$11,029     | MPC AFS         |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)                | \$1,000,000   | \$154,218    | MPC AFS         |
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)                    | \$550,000     | \$27,066     | MPC AFS         |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                           | \$2,000,000   | \$103,469    | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                   | \$400,000     | \$21,382     | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                 | \$200,000     | \$9,194      | MPC AFS         |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)                  | \$500,000     | \$21,944     | MPC AFS         |
| Install 3rd Center 345/230 kV Transformer (MPC AFS)                    | \$7,000,000   | \$1,400,000  | MPC AFS         |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                              | \$1,000,000   | \$93,830     | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                           | \$125,000,000 | \$4,028,741  | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                    | \$7,500,000   | \$375,193    | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)          | \$1,000,000   | \$31,254     | SPP AFS<br>ERIS |
| Rebuild Grand Forks-Prairie 230 kV (SPP AFS)                           | \$300,000     | \$113,251    | SPP AFS<br>ERIS |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570  | \$1,733,204  | SPP AFS<br>NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953  | \$4,877,407  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000     | \$13,931     | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000 | \$2,722,372  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS)   | \$361,000,000 | \$5,903,536  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000   | \$276,806    | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097 | \$35,031,318 | SPP AFS<br>NRIS |



| Second Split Rock-Sioux City 345 kV (SPP AFS)        | \$126,865,737 | \$3,749,028   | SPP AFS<br>NRIS |
|------------------------------------------------------|---------------|---------------|-----------------|
| Second Holt-Grand Prairie 345 kV (SPP AFS)           | \$50,011,493  | \$2,789,217   | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)              | \$80,000,000  | \$2,771,034   | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS) | \$70,000,000  | \$2,154,554   | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)          | \$25,000,000  | \$914,906     | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)              | \$155,350,000 | \$4,842,240   | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)   | \$5,200,000   | \$599,156     | SPP AFS<br>NRIS |
| Upgrade Post Rock 345/230 kV Transformer (SPP AFS)   | \$8,302,968   | \$1,660,594   | SPP AFS<br>NRIS |
| Rebuild Bismark-ESTBMRK 115 kV (SPP AFS)             | \$100,000     | \$20,000      | SPP AFS<br>NRIS |
| Total Cost Per Project:                              |               | \$158,882,750 |                 |

| J706                                                             |                       |                         |              |
|------------------------------------------------------------------|-----------------------|-------------------------|--------------|
| Network Upgrade                                                  | NU Cost Estimate (\$) | J706 Cost Estimate (\$) | NU Type      |
| Six Wahpeton 50 MVAr Capacitors                                  | \$9,750,000           | \$517,734               | ERIS Voltage |
| One Bison 150 MVAr Capacitor                                     | \$1,500,000           | \$79,651                | ERIS Voltage |
| Three Maple River 50 MVAr Capacitors                             | \$3,000,000           | \$159,303               | ERIS Voltage |
| Coyote Transformer Upgrade                                       | \$5,000,000           | \$1,000,000             | NRIS         |
| Coyote – Beulah 115 kV Upgrade                                   | \$1,500,000           | \$300,000               | NRIS         |
| Center – Jamestown 345 kV Uprate                                 | \$25,000              | \$5,000                 | NRIS         |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC) | \$36,500,000          | \$680,981               | OTP Voltage  |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)        | \$55,000,000          | \$1,078,789             | OTP Voltage  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)             | \$1,500,000           | \$40,349                | OTP Voltage  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | \$4,000,000           | \$76,786                | GRE Voltage  |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                         | \$2,500,000           | \$75,875                | GRE Voltage  |
| CCS GRE LPC Voltage NU (GRE LPC)                                 | \$505,270,000         | \$78,454,265            | GRE Voltage  |
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS)                  | \$500,000             | \$3,800                 | MPC AFS      |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)          | \$500,000             | \$73,594                | MPC AFS      |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                  | \$200,000             | \$11,029                | MPC AFS      |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)          | \$1,000,000           | \$154,218               | MPC AFS      |



|                                                                        |               |              | •               |
|------------------------------------------------------------------------|---------------|--------------|-----------------|
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)                    | \$550,000     | \$27,066     | MPC AFS         |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                           | \$2,000,000   | \$103,469    | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                   | \$400,000     | \$21,382     | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                 | \$200,000     | \$9,194      | MPC AFS         |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)                  | \$500,000     | \$21,944     | MPC AFS         |
| Install 3rd Center 345/230 kV Transformer (MPC AFS)                    | \$7,000,000   | \$1,400,000  | MPC AFS         |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                              | \$1,000,000   | \$93,830     | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                           | \$125,000,000 | \$4,028,741  | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                    | \$7,500,000   | \$375,193    | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)          | \$1,000,000   | \$31,254     | SPP AFS<br>ERIS |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570  | \$1,733,204  | SPP AFS<br>NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953  | \$4,877,407  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000     | \$13,931     | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000 | \$2,722,372  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS)   | \$361,000,000 | \$5,903,536  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000   | \$276,806    | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097 | \$35,031,318 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                          | \$126,865,737 | \$3,749,028  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                             | \$50,011,493  | \$2,789,217  | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                                | \$80,000,000  | \$2,771,034  | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS)                   | \$70,000,000  | \$2,154,554  | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)                            | \$25,000,000  | \$914,906    | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                                | \$155,350,000 | \$4,842,240  | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                     | \$5,200,000   | \$599,156    | SPP AFS<br>NRIS |
| Upgrade Post Rock 345/230 kV Transformer (SPP AFS)                     | \$8,302,968   | \$1,660,594  | SPP AFS<br>NRIS |



| Rebuild Bismark-ESTBMRK 115 kV (SPP AFS) | \$100,000 | \$20,000      | SPP AFS<br>NRIS |
|------------------------------------------|-----------|---------------|-----------------|
| Total Cost Per Project:                  |           | \$158,882,750 |                 |

| J713                                                             |                       |                         |                 |
|------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                  | NU Cost Estimate (\$) | J713 Cost Estimate (\$) | NU Type         |
| Sheyenne – Lake Park 230 kV Uprate                               | \$1,300,000           | \$405,221               | ERIS Thermal    |
| Audubon – Lake Park 230 kV Uprate                                | \$100,000             | \$31,171                | ERIS Thermal    |
| Hubbard – Audubon 230 kV Uprate                                  | \$650,000             | \$306,043               | ERIS Thermal    |
| Six Wahpeton 50 MVAr Capacitors                                  | \$9,750,000           | \$1,371,403             | ERIS Voltage    |
| One Bison 150 MVAr Capacitor                                     | \$1,500,000           | \$210,985               | ERIS Voltage    |
| Three Maple River 50 MVAr Capacitors                             | \$3,000,000           | \$421,970               | ERIS Voltage    |
| Coyote Transformer Upgrade                                       | \$5,000,000           | \$3,000,000             | NRIS            |
| Coyote-Beulah 115 kV Upgrade                                     | \$1,500,000           | \$900,000               | NRIS            |
| Center – Jamestown 345 kV Uprate                                 | \$25,000              | \$15,000                | NRIS            |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC) | \$36,500,000          | \$2,042,944             | OTP Voltage     |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)        | \$55,000,000          | \$3,236,367             | OTP Voltage     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)             | \$1,500,000           | \$121,048               | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | \$4,000,000           | \$230,357               | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                         | \$2,500,000           | \$227,625               | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                 | \$505,270,000         | \$235,362,796           | GRE Voltage     |
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS)                  | \$500,000             | \$11,401                | MPC AFS         |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)          | \$500,000             | \$220,782               | MPC AFS         |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                  | \$200,000             | \$33,086                | MPC AFS         |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)          | \$1,000,000           | \$462,654               | MPC AFS         |
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)              | \$550,000             | \$81,199                | MPC AFS         |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                     | \$2,000,000           | \$310,408               | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)             | \$400,000             | \$64,146                | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)           | \$200,000             | \$27,582                | MPC AFS         |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)            | \$500,000             | \$65,833                | MPC AFS         |
| Install 3rd Center 345/230 kV Transformer (MPC AFS)              | \$7,000,000           | \$4,200,000             | MPC AFS         |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                        | \$1,000,000           | \$252,932               | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                     | \$125,000,000         | \$12,086,223            | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)              | \$7,500,000           | \$1,125,580             | SPP AFS<br>ERIS |



| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)          | \$1,000,000   | \$93,762      | SPP AFS<br>ERIS |
|------------------------------------------------------------------------|---------------|---------------|-----------------|
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570  | \$5,199,612   | SPP AFS<br>NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953  | \$14,632,222  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000     | \$41,793      | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000 | \$8,167,115   | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS)   | \$361,000,000 | \$17,710,609  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000   | \$830,419     | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097 | \$105,093,955 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                          | \$126,865,737 | \$11,247,084  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                             | \$50,011,493  | \$8,367,652   | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                                | \$80,000,000  | \$8,313,102   | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS)                   | \$70,000,000  | \$6,463,663   | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)                            | \$25,000,000  | \$2,744,717   | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                                | \$155,350,000 | \$14,526,721  | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                     | \$5,200,000   | \$1,797,468   | SPP AFS<br>NRIS |
| Upgrade Post Rock 345/230 kV Transformer (SPP AFS)                     | \$8,302,968   | \$4,981,781   | SPP AFS<br>NRIS |
| Rebuild Bismark-ESTBMRK 115 kV (SPP AFS)                               | \$100,000     | \$60,000      | SPP AFS<br>NRIS |
| Total Cost Per Project:                                                |               | \$477,096,431 |                 |

| J720                                 |                       |                         |              |
|--------------------------------------|-----------------------|-------------------------|--------------|
| Network Upgrade                      | NU Cost Estimate (\$) | J720 Cost Estimate (\$) | NU Type      |
| Wilmarth – Sheas Lake 345 kV Rebuild | \$39,526,000          | \$25,489,315            | ERIS Thermal |
| Crandal – Fieldon 345 kV Rebuild     | \$36,775,000          | \$36,775,000            | ERIS Thermal |
| Helena – Sheas Lake 345 kV Rebuild   | \$11,922,000          | \$7,822,283             | ERIS Thermal |



| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                 | \$1,500,000   | \$5,166       | OTP Voltage     |
|----------------------------------------------------------------------|---------------|---------------|-----------------|
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000   | \$22,926      | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000   | \$119,911     | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000   | \$21,876      | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                     | \$505,270,000 | \$327,627     | GRE Voltage     |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$37,926      | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$8,058,605   | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$22,693,593  | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$5,380,571   | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$683,688     | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$1,922,919   | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$9,922,609   | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |               | \$119,284,015 |                 |

| J722                                                 |                       |                         |              |
|------------------------------------------------------|-----------------------|-------------------------|--------------|
| Network Upgrade                                      | NU Cost Estimate (\$) | J722 Cost Estimate (\$) | NU Type      |
| Canby-Granite Falls 115 kV Rebuild                   | \$17,700,000          | \$8,925,545             | ERIS Thermal |
| Big Stone-Big Stone South 230 kV Circuit 1 Rebuild   | \$1,450,000           | \$868,142               | ERIS Thermal |
| Big Stone-Big Stone South 230 kV Circuit 2 Rebuild   | \$1,400,000           | \$812,108               | ERIS Thermal |
| Big Stone-Blair 230 kV Rebuild                       | \$28,235,800          | \$15,119,146            | ERIS Thermal |
| Six Wahpeton 50 MVAr Capacitors                      | \$9,750,000           | \$1,636,198             | ERIS Voltage |
| One Bison 150 MVAr Capacitor                         | \$1,500,000           | \$251,723               | ERIS Voltage |
| Three Maple River 50 MVAr Capacitors                 | \$3,000,000           | \$503,445               | ERIS Voltage |
| Big Stone-Highway 12 115 kV Uprate (OTP LPC)         | \$50,000              | \$26,427                | OTP Thermal  |
| Highway 12-Ortonville 115 kV Uprate (OTP LPC)        | \$50,000              | \$26,427                | OTP Thermal  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC) | \$1,500,000           | \$442,102               | OTP Voltage  |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)              | \$1,000,000           | \$410,262               | OTP Voltage  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)            | \$4,000,000           | \$407,955               | GRE Voltage  |
| Panther 60 Mvar Capacitor Bank (GRE LPC)             | \$2,500,000           | \$342,642               | GRE Voltage  |
| CCS GRE LPC Voltage NU (GRE LPC)                     | \$505,270,000         | \$3,351,356             | GRE Voltage  |



| Total Cost Per Project:                                              |               | \$149,189,783 |                 |
|----------------------------------------------------------------------|---------------|---------------|-----------------|
| Second Astoria-Hazel Creek 345 kV (SPP AFS)                          | \$25,000,000  | \$6,092,883   | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS)                 | \$70,000,000  | \$16,601,908  | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 115 kV (SPP AFS)                   | \$7,950,000   | \$4,817,200   | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                   | \$5,200,000   | \$1,738,032   | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$9,737,602   | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$7,149,593   | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$3,716,568   | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$11,908,309  | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)               | \$311,559,097 | \$522,646     | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$13,228,198  | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$6,584,788   | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$32,606      | SPP AFS<br>NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                    | \$74,364,953  | \$7,650,468   | SPP AFS<br>NRIS |
| Rebuild Forman-WAPA-Forman 115 kV (SPP AFS)                          | \$1,500,000   | \$762,736     | SPP AFS<br>NRIS |
| Rebuild Aberdeen Junction-ABDNSBT 115 kV (SPP AFS)                   | \$5,331,300   | \$1,674,946   | SPP AFS<br>NRIS |
| Rebuild Aberdeen Junction-Ellendale 115 kV (SPP AFS)                 | \$710,840     | \$223,326     | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000   | \$125,109     | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                  | \$7,500,000   | \$524,972     | SPP AFS<br>ERIS |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                         | \$125,000,000 | \$22,974,415  | SPP AFS<br>ERIS |



| Network Upgrade                                                      | NU Cost Estimate (\$) | J785 Cost Estimate (\$) | NU Type         |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Helena – Sheas Lake 345 kV Rebuild                                   | \$11,922,000          | \$4,099,717             | ERIS Thermal    |
| Wilmarth – Sheas Lake 345 kV Rebuild                                 | \$39,526,000          | \$14,036,685            | ERIS Thermal    |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000           | \$9,888                 | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000           | \$55,662                | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000           | \$5,698                 | GRE Voltage     |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$18,399                | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$3,913,478             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$13,390,598            | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$2,800,151             | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$355,926               | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$1,106,295             | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$5,038,192             | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$44,830,689            |                 |

| J801                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J801 Cost Estimate (\$) | NU Type         |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000           | \$10,821                | SPP AFS<br>ERIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$7,035                 | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$1,459,587             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$2,546,649             | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$1,743,552             | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$555,249               | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$990,456               | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$2,202,006             | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$9,515,355             |                 |





| J803                                                               |                       |                         |                 |
|--------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                    | NU Cost Estimate (\$) | J803 Cost Estimate (\$) | NU Type         |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                            | \$1,000,000           | \$2,957                 | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                          | \$4,000,000           | \$47,789                | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                           | \$2,500,000           | \$25,599                | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                   | \$505,270,000         | \$29,208                | GRE Voltage     |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                       | \$125,000,000         | \$1,646,766             | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                | \$7,500,000           | \$53,807                | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-Sioux City 345 kV (SPP AFS) | \$1,000,000           | \$9,617                 | SPP AFS<br>ERIS |
| Total Cost Per Project:                                            |                       | \$1,815,743             |                 |

| J816                                                             |                       |                         |                 |
|------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                  | NU Cost Estimate (\$) | J816 Cost Estimate (\$) | NU Type         |
| Sheyenne-Mapleton Rebuild                                        | \$17,600,000          | \$5,632,177             | ERIS Thermal    |
| Sheyenne – Lake Park 230 kV Uprate                               | \$1,300,000           | \$78,526                | ERIS Thermal    |
| Audubon – Lake Park 230 kV Uprate                                | \$100,000             | \$6,040                 | ERIS Thermal    |
| CSLTNET7-Mapleton 115 kV Uprate (OTP LPC)                        | \$25,000              | \$8,209                 | OTP Thermal     |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC) | \$36,500,000          | \$90,825                | OTP Voltage     |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)        | \$55,000,000          | \$159,201               | OTP Voltage     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)             | \$1,500,000           | \$7,096                 | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | \$4,000,000           | \$12,171                | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                         | \$2,500,000           | \$17,887                | GRE Voltage     |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)          | \$500,000             | \$19,407                | MPC AFS         |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                  | \$200,000             | \$6,629                 | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)             | \$400,000             | \$14,702                | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)           | \$200,000             | \$3,560                 | MPC AFS         |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                        | \$1,000,000           | \$56,604                | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                     | \$125,000,000         | \$1,069,461             | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)              | \$7,500,000           | \$169,593               | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)    | \$1,000,000           | \$19,806                | SPP AFS<br>ERIS |



| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570  | \$746,418    | SPP AFS<br>NRIS |
|------------------------------------------------------------------------|---------------|--------------|-----------------|
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953  | \$2,437,301  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000     | \$8,233      | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000 | \$1,636,307  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS)   | \$361,000,000 | \$3,436,130  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000   | \$102,364    | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097 | \$23,319,633 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                          | \$126,865,737 | \$2,335,806  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                             | \$50,011,493  | \$1,334,266  | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                                | \$80,000,000  | \$1,584,560  | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                                | \$155,350,000 | \$2,723,451  | SPP AFS<br>NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS)                   | \$70,000,000  | \$1,192,426  | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)                            | \$25,000,000  | \$297,615    | SPP AFS<br>NRIS |
| Total Cost Per Project:                                                |               | \$48,526,404 |                 |

| J836                                      |                       |                         |             |
|-------------------------------------------|-----------------------|-------------------------|-------------|
| Network Upgrade                           | NU Cost Estimate (\$) | J836 Cost Estimate (\$) | NU Type     |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)   | \$1,000,000           | \$11,075                | OTP Voltage |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC) | \$4,000,000           | \$59,575                | GRE Voltage |
| Total Cost Per Project:                   |                       | \$70,650                |             |

| J840                                                 |                       |                         |             |
|------------------------------------------------------|-----------------------|-------------------------|-------------|
| Network Upgrade                                      | NU Cost Estimate (\$) | J840 Cost Estimate (\$) | NU Type     |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC) | \$1,500,000           | \$6,118                 | OTP Voltage |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)              | \$1,000,000           | \$14,020                | OTP Voltage |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)            | \$4,000,000           | \$55,455                | GRE Voltage |
| Panther 60 Mvar Capacitor Bank (GRE LPC)             | \$2,500,000           | \$12,557                | GRE Voltage |



| CCS GRE LPC Voltage NU (GRE LPC)                                     | \$505,270,000 | \$1,092,092  | GRE Voltage     |
|----------------------------------------------------------------------|---------------|--------------|-----------------|
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$18,023     | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$4,081,497  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$18,701,103 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$1,942,593  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$246,171    | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$1,867,972  | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | 7,355,406    | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |               | \$35,393,007 |                 |

| J873                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J873 Cost Estimate (\$) | NU Type         |
| Blackhawk 345/161 kV Transformer Uprate                              | \$100,000             | \$100,000               | ERIS Thermal    |
| Two J873 POI 75 MVAr SVC's additional Plant Var support              | \$22,500,000          | \$22,500,000            | ERIS Voltage    |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000           | \$1,622                 | OTP Voltage     |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$94,244,425            | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$116,846,047           |                 |

| J874                                                               |                       |                         |                 |
|--------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                    | NU Cost Estimate (\$) | J874 Cost Estimate (\$) | NU Type         |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)               | \$1,500,000           | \$4,588                 | OTP Voltage     |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                            | \$1,000,000           | \$24,363                | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                          | \$4,000,000           | \$149,624               | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                           | \$2,500,000           | \$74,248                | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                   | \$505,270,000         | \$865,141               | GRE Voltage     |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                       | \$125,000,000         | \$2,359,991             | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                | \$7,500,000           | \$209,470               | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-Sioux City 345 kV (SPP AFS) | \$1,000,000           | \$1,000,000             | SPP AFS<br>ERIS |



| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$29,239     | SPP AFS<br>NRIS |
|----------------------------------------------------------------------|---------------|--------------|-----------------|
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$6,058,376  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$13,047,876 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$11,249,432 | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$1,382,426  | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$5,940,993  | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$7,738,701  | SPP AFS<br>NRIS |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                   | \$5,200,000   | \$117,274    | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |               | \$50,251,742 |                 |

| J877                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J877 Cost Estimate (\$) | NU Type         |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                 | \$1,500,000           | \$2,719                 | OTP Voltage     |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000           | \$11,727                | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000           | \$54,399                | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000           | \$8,722                 | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                                     | \$505,270,000         | \$484,900               | GRE Voltage     |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$43,640                | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$9,501,517             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$35,775,755            | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$489,072               | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$37,624                | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$2,247,184             | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$12,364,336            | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$61,021,595            |                 |



| J885                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J801 Cost Estimate (\$) | NU Type         |
| Murphy Creek – Hayward 161 kV Rebuild                                | \$11,625,000          | \$6,368,925             | ERIS Thermal    |
| Austin-Murphy Creek 161 kV Rebuild                                   | \$1,875,000           | \$1,875,000             | ERIS Thermal    |
| Glenworth-Hayward 161 kV Uprate                                      | \$25,000              | \$25,000                | ERIS Thermal    |
| Adams-Hayward 161 kV Uprate                                          | \$480,000             | \$480,000               | ERIS Thermal    |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$6,267                 | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$1,350,692             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackhack-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$9,972,306             | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$656,060               | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$173,832               | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$304,986               | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$2,160,590             | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$23,373,658            |                 |

| J897                                                             |                       |                         |              |
|------------------------------------------------------------------|-----------------------|-------------------------|--------------|
| Network Upgrade                                                  | NU Cost Estimate (\$) | J897 Cost Estimate (\$) | NU Type      |
| Rebuild J628-Prairie 230 kV Rebuild                              | \$16,770,000          | \$4,925,643             | ERIS Thermal |
| New J628-Prairie 230 kV 2nd Circuit                              | \$22,360,000          | \$10,758,337            | ERIS Voltage |
| Wilton-Bemidji Uprate                                            | \$50,000              | \$15,398                | ERIS Thermal |
| Six Wahpeton 50 MVAr Capacitors                                  | \$9,750,000           | \$663,964               | ERIS Voltage |
| One Bison 150 MVAr Capacitor                                     | \$1,500,000           | \$102,148               | ERIS Voltage |
| Three Maple River 50 MVAr Capacitors                             | \$3,000,000           | \$204,297               | ERIS Voltage |
| Wilton-Bemidji 115 kV Uprate (OTP LPC)                           | \$50,000              | \$15,389                | OTP Thermal  |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC) | \$36,500,000          | \$774,839               | OTP Voltage  |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)        | \$55,000,000          | \$1,271,554             | OTP Voltage  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)             | \$1,500,000           | \$47,631                | OTP Voltage  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | \$4,000,000           | \$73,508                | GRE Voltage  |



| Panther 60 Mvar Capacitor Bank (GRE LPC)                                     | \$2,500,000   | \$98,577     | GRE Voltage     |
|------------------------------------------------------------------------------|---------------|--------------|-----------------|
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS)                              | \$500,000     | \$141,096    | MPC AFS         |
| Wilton-Scribner 115 kV Terminal Upgrades (MPC AFS)                           | \$200,000     | \$61,750     | MPC AFS         |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                              | \$200,000     | \$35,932     | MPC AFS         |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)                      | \$1,000,000   | \$82,897     | MPC AFS         |
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)                          | \$550,000     | \$122,690    | MPC AFS         |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                                 | \$2,000,000   | \$434,465    | MPC AFS         |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                         | \$400,000     | \$69,244     | MPC AFS         |
| Prairie 115/69 kV Transformer #2 Upgrades (MPC AFS)                          | \$1,500,000   | \$440,272    | MPC AFS         |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                       | \$200,000     | \$41,252     | MPC AFS         |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)                        | \$500,000     | \$117,677    | MPC AFS         |
| Mill Road-Master 69 kV Structure Remediation and Terminal Upgrades (MPC AFS) | \$500,000     | \$146,480    | MPC AFS         |
| Ninger 230 kV 30 MVAr Capacitor (MPC AFS)                                    | \$1,000,000   | \$189,189    | MPC AFS         |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                                 | \$125,000,000 | \$4,335,645  | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                          | \$7,500,000   | \$586,989    | SPP AFS<br>ERIS |
| Ferminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)                | \$1,000,000   | \$57,269     | SPP AFS<br>ERIS |
| Second Grand Forks 230/115 kV Transformer (SPP AFS)                          | \$6,621,188   | \$1,940,752  | SPP AFS<br>ERIS |
| Rebuild Grand Forks-Prairie 230 kV (SPP AFS)                                 | \$300,000     | \$87,534     | SPP AFS<br>ERIS |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                      | \$19,677,570  | \$2,547,775  | SPP AFS<br>NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                            | \$74,364,953  | \$7,975,785  | SPP AFS<br>NRIS |
| Jpgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                      | \$500,000     | \$25,543     | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                           | \$102,600,000 | \$5,053,763  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS)         | \$361,000,000 | \$10,684,583 | SPP AFS<br>NRIS |
| erminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS)        | \$3,000,000   | \$395,534    | SPP AFS<br>NRIS |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                       | \$311,559,097 | \$17,243,059 | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                                | \$126,865,737 | \$6,986,370  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                                   | \$50,011,493  | \$4,451,210  | SPP AFS<br>NRIS |



| Second Raun-Sioux City 345 kV (SPP AFS)              | \$80,000,000  | \$4,887,625   | SPP AFS<br>NRIS |
|------------------------------------------------------|---------------|---------------|-----------------|
| Second Big Stone South-Deuel County 345 kV (SPP AFS) | \$70,000,000  | \$3,337,975   | SPP AFS<br>NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)          | \$25,000,000  | \$1,028,746   | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)              | \$155,350,000 | \$8,608,600   | SPP AFS<br>NRIS |
| Total Cost Per Project:                              |               | \$101,068,986 |                 |

| J898                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J898 Cost Estimate (\$) | NU Type         |
| Rice-Cresco 69 kV Rebuild                                            | \$10,200,000          | \$10,200,000            | ERIS Thermal    |
| Rice-Saratoga 69 kV Uprate                                           | \$150,000             | \$150,000               | ERIS Thermal    |
| Decorah-Madison 69 kV Uprate                                         | \$60,000              | \$60,000                | ERIS Thermal    |
| Adams 345/161 kV Transformer Upgrade                                 | \$3,000,000           | \$3,000,000             | ERIS Thermal    |
| Jerico-Howard Tap 69 kV Uprate                                       | \$50,000              | \$50,000                | ERIS Thermal    |
| Jerico-Alta Vista 69 kV Rebuild (DPC LPC)                            | \$235,000             | \$235,000               | DPC Thermal     |
| Jerico-Howard Tap 69 kV Rebuild (DPC LPC)                            | \$1,200,000           | \$1,200,000             | DPC Thermal     |
| Nordness Tap-Decorah 69 kV Rebuild (DPC LPC)                         | \$600,000             | \$600,000               | DPC Thermal     |
| Saratoga-Rice 69 kV Rebuild (DPC LPC)                                | \$400,000             | \$400,000               | DPC Thermal     |
| Saratoga-Howard Tap 69 kV Rebuild (DPC LPC)                          | \$3,200,000           | \$3,200,000             | DPC Thermal     |
| Beaver Creek-J898 POI 161 kV Rebuild (DPC LPC)                       | \$5,000,000           | \$5,000,000             | DPC Thermal     |
| Beaver Creek-Harmony 161 kV Rebuild (DPC LPC)                        | \$200,000             | \$200,000               | DPC Thermal     |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$1,220,723             | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$354,744               | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$639,166               | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | 2,819,069               | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$8,000                 | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$1,714,188             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$4,161,570             | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$35,212,460            |                 |



| J901                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J901 Cost Estimate (\$) | NU Type         |
| Helena-Chub Lake 2nd Circuit                                         | \$34,000,000          | \$34,000,000            | ERIS Thermal    |
| Blue Lake-Scott County 345 kV Rebuild                                | \$24,000,000          | \$24,000,000            | ERIS Thermal    |
| Willmar-Granite Falls 230 kV Rebuild (GRE LPC)                       | \$7,700,000           | \$7,700,000             | GRE Thermal     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000           | \$1,275,637             | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000           | \$437,354               | GRE Voltage     |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                  | \$7,500,000           | \$341,204               | SPP AFS<br>ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000           | \$103,827               | SPP AFS<br>ERIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$11,092,929            | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$2,559,888             | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$6,231,993             | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$9,109,310             | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$31,638                | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$6,490,013             | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$13,378,782            | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$116,752,575           |                 |

| J905                                                 |                       |                         |                 |
|------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                      | NU Cost Estimate (\$) | J905 Cost Estimate (\$) | NU Type         |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC) | \$1,500,000           | \$8,695                 | OTP Voltage     |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)              | \$1,000,000           | \$11,681                | OTP Voltage     |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)            | \$4,000,000           | \$56,217                | GRE Voltage     |
| Panther 60 Mvar Capacitor Bank (GRE LPC)             | \$2,500,000           | \$30,532                | GRE Voltage     |
| CCS GRE LPC Voltage NU (GRE LPC)                     | \$505,270,000         | \$346,739               | GRE Voltage     |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)         | \$125,000,000         | \$2,225,121             | SPP AFS<br>ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)  | \$7,500,000           | \$77,205                | SPP AFS<br>ERIS |



| Total Cost Per Project:                                              |               | \$14,585,030 |                 |
|----------------------------------------------------------------------|---------------|--------------|-----------------|
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)                   | \$5,200,000   | \$43,131     | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$2,984,767  | SPP AFS<br>NRIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$1,506,232  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$7,356      | SPP AFS<br>ERIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$2,028,484  | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$1,688,148  | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$535,484    | SPP AFS<br>NRIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$3,013,621  | SPP AFS<br>NRIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000   | \$21,617     | SPP AFS<br>ERIS |

| J916                                                                 |                       |                         |                 |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J916 Cost Estimate (\$) | NU Type         |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$66,889                | SPP AFS<br>NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$10,492                | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$35,689                | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$95,947                | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$348                   | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$73,059                | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$220,867               | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |                       | \$503,292               |                 |

| J926                                                          |                       |                         |                 |
|---------------------------------------------------------------|-----------------------|-------------------------|-----------------|
| Network Upgrade                                               | NU Cost Estimate (\$) | J926 Cost Estimate (\$) | NU Type         |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS) | \$1,000,000           | \$15,627                | SPP AFS<br>ERIS |



| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$2,456,053  | SPP AFS<br>NRIS |
|----------------------------------------------------------------------|---------------|--------------|-----------------|
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$804,217    | SPP AFS<br>NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$1,406,496  | SPP AFS<br>NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$3,042,528  | SPP AFS<br>NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$9,745      | SPP AFS<br>ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$2,017,137  | SPP AFS<br>NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$3,563,939  | SPP AFS<br>NRIS |
| Total Cost Per Project:                                              |               | \$13,315,742 |                 |

| J927                                                                 |                       |                         |                 |  |  |  |  |  |
|----------------------------------------------------------------------|-----------------------|-------------------------|-----------------|--|--|--|--|--|
| Network Upgrade                                                      | NU Cost Estimate (\$) | J927 Cost Estimate (\$) | NU Type         |  |  |  |  |  |
| Walters-Alden 69 kV Rebuild                                          | \$4,700,000           | \$4,700,000             | ERIS Thermal    |  |  |  |  |  |
| Alden-Aleawst 69 kV Rebuild                                          | \$5,100,00            | \$5,100,000             | ERIS Thermal    |  |  |  |  |  |
| Murphy Creek – Hayward 161 kV Rebuild                                | \$11,625,000          | \$5,256,075             | ERIS Thermal    |  |  |  |  |  |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737         | \$1,388,964             | SPP AFS<br>NRIS |  |  |  |  |  |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493          | \$306,011               | SPP AFS<br>NRIS |  |  |  |  |  |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000          | \$602,699               | SPP AFS<br>NRIS |  |  |  |  |  |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000         | \$3,767,917             | SPP AFS<br>NRIS |  |  |  |  |  |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000             | \$11,795                | SPP AFS<br>ERIS |  |  |  |  |  |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000         | \$2,529,388             | SPP AFS<br>NRIS |  |  |  |  |  |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000         | \$13,937,198            | SPP AFS<br>NRIS |  |  |  |  |  |
| Total Cost Per Project:                                              |                       | \$37,600,047            |                 |  |  |  |  |  |

|                                    | J933                     |                            |              |
|------------------------------------|--------------------------|----------------------------|--------------|
| Network Upgrade                    | NU Cost Estimate<br>(\$) | J933 Cost Estimate<br>(\$) | NU Type      |
| Canby-Granite Falls 115 kV Rebuild | \$17,700,000             | \$8,774,455                | ERIS Thermal |



| Big Stone-Big Stone South 230 kV Circuit 1 Rebuild                   | \$1,450,000   | \$581,858    | ERIS Thermal |
|----------------------------------------------------------------------|---------------|--------------|--------------|
| Big Stone-Big Stone South 230 kV Circuit 2 Rebuild                   | \$1,400,000   | \$587,892    | ERIS Thermal |
| Big Stone-Blair 230 kV Rebuild                                       | \$28,235,800  | \$13,116,654 | ERIS Thermal |
| Big Stone-Twin Brooks 2 <sup>nd</sup> Circuit                        | \$54,500,000  | \$54,500,000 | ERIS Voltage |
| Six Wahpeton 50 MVAr Capacitors                                      | \$9,750,000   | \$1,798,237  | ERIS Voltage |
| One Bison 150 MVAr Capacitor                                         | \$1,500,000   | \$276,652    | ERIS Voltage |
| Three Maple River 50 MVAr Capacitors                                 | \$3,000,000   | \$553,304    | ERIS Voltage |
| Ellendale-Aberdean Jct 115 kV Uprate (MDU LPC)                       | \$60,000      | \$33,366     | MDU Thermal  |
| Big Stone-Highway 12 115 kV Uprate (OTP LPC)                         | \$50,000      | \$23,573     | OTP Thermal  |
| Highway 12-Ortonville 115 kV Uprate (OTP LPC)                        | \$50,000      | \$23,573     | OTP Thermal  |
| Hankinson-Forman 230 kV Uprate (OTP LPC)                             | \$50,000      | \$27,376     | OTP Thermal  |
| Big Stone South 345/230 kV Transformer 1 Upgrade (OTP LPC)           | \$4,600,000   | \$4,600,000  | OTP Thermal  |
| Big Stone South 345/230 kV Transformer 2 Upgrade (OTP LPC)           | \$4,600,000   | \$4,600,000  | OTP Thermal  |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)     | \$36,500,000  | \$22,655,405 | OTP Voltage  |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)            | \$55,000,000  | \$33,409,040 | OTP Voltage  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                 | \$1,500,000   | \$373,584    | OTP Voltage  |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                              | \$1,000,000   | \$309,390    | OTP Voltage  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                            | \$4,000,000   | \$420,321    | GRE Voltage  |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                             | \$2,500,000   | \$321,730    | GRE Voltage  |
| CCS GRE LPC Voltage NU (GRE LPC)                                     | \$505,270,000 | \$7,053,091  | GRE Voltage  |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                         | \$125,000,000 | \$37,334,338 | SPP AFS ERIS |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                  | \$7,500,000   | \$520,396    | SPP AFS ERIS |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | \$1,000,000   | \$137,337    | SPP AFS ERIS |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                        | \$126,865,737 | \$12,595,357 | SPP AFS NRIS |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                           | \$50,011,493  | \$3,551,737  | SPP AFS NRIS |
| Second Raun-Sioux City 345 kV (SPP AFS)                              | \$80,000,000  | \$7,418,664  | SPP AFS NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)                              | \$155,350,000 | \$9,810,872  | SPP AFS NRIS |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)              | \$500,000     | \$33,302     | SPP AFS ERIS |
| Second Raun-S3451 345 kV (SPP AFS)                                   | \$102,600,000 | \$6,741,372  | SPP AFS NRIS |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | \$361,000,000 | \$13,478,990 | SPP AFS NRIS |
| Rebuild Aberdeen Junction-Ellendale 115 kV (SPP AFS)                 | \$710,840     | \$487,514    | SPP AFS NRIS |
| Rebuild Aberdeen Junction-ABDNSBT 115 kV (SPP AFS)                   | \$5,331,300   | \$3,656,354  | SPP AFS NRIS |
| Rebuild Forman-WAPA-Forman 115 kV (SPP AFS)                          | \$1,500,000   | \$737,264    | SPP AFS NRIS |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                    | \$74,364,953  | \$7,416,652  | SPP AFS NRIS |
| Rebuild FLANDRU-Aurora-Brookings 115 kV (SPP AFS)                    | \$17,219,822  | \$17,219,822 | SPP AFS NRIS |



| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)   | \$5,200,000  | \$187,173     | SPP AFS NRIS |
|------------------------------------------------------|--------------|---------------|--------------|
| Rebuild Minn Valley-Granite Falls 115 kV (SPP AFS)   | \$7,950,000  | \$3,132,800   | SPP AFS NRIS |
| Second Big Stone South-Deuel County 345 kV (SPP AFS) | \$70,000,000 | \$27,172,064  | SPP AFS NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)          | \$25,000,000 | \$10,032,242  | SPP AFS NRIS |
| Total Cost Per Project:                              |              | \$315,703,751 |              |

| J946                                                                   |                       |                         |              |  |  |  |  |
|------------------------------------------------------------------------|-----------------------|-------------------------|--------------|--|--|--|--|
| Network Upgrade                                                        | NU Cost Estimate (\$) | J946 Cost Estimate (\$) | NU Type      |  |  |  |  |
| Sheyenne-Mapleton Rebuild                                              | \$17,600,000          | \$11,967,823            | ERIS Thermal |  |  |  |  |
| Sheyenne – Lake Park 230 kV Uprate                                     | \$1,300,000           | \$518,565               | ERIS Thermal |  |  |  |  |
| Audubon – Lake Park 230 kV Uprate                                      | \$100,000             | \$39,890                | ERIS Thermal |  |  |  |  |
| CSLTNET7-Mapleton 115 kV Uprate (OTP LPC)                              | \$25,000              | \$16,791                | OTP Thermal  |  |  |  |  |
| Brooking County-Astoria 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)       | \$36,500,000          | \$274,580               | OTP Voltage  |  |  |  |  |
| Astoria-J526 POI 2 <sup>nd</sup> 345 kV Circuit (OTP LPC)              | \$55,000,000          | \$487,787               | OTP Voltage  |  |  |  |  |
| Canby Two Steps of 20 Mvar Capacitor Banks (OTP LPC)                   | \$1,500,000           | \$21,643                | OTP Voltage  |  |  |  |  |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                              | \$4,000,000           | \$34,661                | GRE Voltage  |  |  |  |  |
| Panther 60 Mvar Capacitor Bank (GRE LPC)                               | \$2,500,000           | \$55,214                | GRE Voltage  |  |  |  |  |
| Stanton-Square Butte 230 kV Terminal Upgrades (MPC AFS)                | \$500,000             | \$81,551                | MPC AFS      |  |  |  |  |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                        | \$200,000             | \$21,662                | MPC AFS      |  |  |  |  |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                   | \$400,000             | \$53,602                | MPC AFS      |  |  |  |  |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                 | \$200,000             | \$11,092                | MPC AFS      |  |  |  |  |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                           | \$125,000,000         | \$3,144,829             | SPP AFS ERIS |  |  |  |  |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                    | \$7,500,000           | \$548,690               | SPP AFS ERIS |  |  |  |  |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)          | \$1,000,000           | \$65,676                | SPP AFS ERIS |  |  |  |  |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                                | \$19,677,570          | \$2,418,803             | SPP AFS NRIS |  |  |  |  |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)                      | \$74,364,953          | \$8,005,869             | SPP AFS NRIS |  |  |  |  |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS)                | \$500,000             | \$27,366                | SPP AFS ERIS |  |  |  |  |
| Second Raun-S3451 345 kV (SPP AFS)                                     | \$102,600,000         | \$5,444,743             | SPP AFS NRIS |  |  |  |  |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS)   | \$361,000,000         | \$11,411,240            | SPP AFS NRIS |  |  |  |  |
| Terminal Equipment Upgrades Antelope Valley-Broadland 345 kV (SPP AFS) | \$3,000,000           | \$330,913               | SPP AFS NRIS |  |  |  |  |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)                 | \$311,559,097         | \$63,961,232            | SPP AFS NRIS |  |  |  |  |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                          | \$126,865,737         | \$7,764,111             | SPP AFS NRIS |  |  |  |  |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                             | \$50,011,493          | \$4,371,589             | SPP AFS NRIS |  |  |  |  |



| Second Raun-Sioux City 345 kV (SPP AFS)              | \$80,000,000  | \$5,242,444   | SPP AFS NRIS |
|------------------------------------------------------|---------------|---------------|--------------|
| Second Big Stone South-Deuel County 345 kV (SPP AFS) | \$70,000,000  | \$3,907,214   | SPP AFS NRIS |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)          | \$25,000,000  | \$932,209     | SPP AFS NRIS |
| Rebuild Overton-Sibley 345 kV (SPP AFS)              | \$155,350,000 | \$9,028,713   | SPP AFS NRIS |
| Total Cost Per Project:                              |               | \$140,190,502 |              |

### 1.3. Total Network Upgrades

The cost allocation of Network Upgrades for the projects in the DPP 2017 August West Phase 1 reflects responsibilities for mitigating system impacts. The total cost of network upgrades is listed in Table 2 below. The costs for Network Upgrades are planning-level estimates and subject to revision in the facility studies.

Table 2: Total Cost of Network Upgrades for DPP 2017 August West Phase 1 Projects

| Drainat |              | ERIS Network Upgrades (\$) |              |                  |                 | NRIS<br>Network<br>Upgrades (\$) | Interconnection Facilities (\$) |                                  | Network Interconnection Fa |                      | Shared<br>Network | Total Network Upgrade Cost for Milestone | M2 /¢\                                | M3 (\$) | M4 (¢) |
|---------|--------------|----------------------------|--------------|------------------|-----------------|----------------------------------|---------------------------------|----------------------------------|----------------------------|----------------------|-------------------|------------------------------------------|---------------------------------------|---------|--------|
| Project | Steady State | LPC Studies                | Stability    | Short<br>Circuit | Affected System | Deliverability                   | TO Network<br>Upgrades          | TO – Owned<br>Direct<br>Assigned | Upgrades<br>(\$)           | Calculation<br>(\$)  | M2 (\$)           | WI3 (\$)                                 | M4 (\$)                               |         |        |
| a       | b            | С                          | D            | Е                | F               | G                                | Н                               | 1                                | J                          | k =<br>b+c+d+e+g+h+j |                   | 10% of (k)<br>from Phase I-<br>M2        | 20% of (k) from<br>Phase 2-M2 –<br>M3 |         |        |
| J545    | \$0          | \$2,496,260                | \$0          | \$0              | \$38,860,708    | \$0                              | \$1,005,000                     | \$1,145,000                      | \$0                        | \$3,501,260          | \$600,000         | \$0                                      | \$100,252                             |         |        |
| J580    | \$19,450,948 | \$191,895,913              | \$14,100,000 | \$0              | \$19,446,106    | \$0                              | \$910,000                       | \$430,000                        | \$2,068,545                | \$228,425,406        | \$1,223,600       | \$10,282,913                             | \$34,178,568                          |         |        |
| J628    | \$26,011,517 | \$4,878,311                | \$0          | \$0              | \$167,356,004   | \$0                              | \$2,814,490                     | \$940,127                        | \$0                        | \$33,704,318         | \$1,600,000       | \$13,627,542                             | \$0                                   |         |        |
| J705    | \$756,688    | \$80,407,045               | \$0          | \$0              | \$76,414,017    | \$1,305,000                      | \$2,733,601                     | \$2,378,200                      | \$0                        | \$85,202,334         | \$400,000         | \$1,788,248                              | \$14,852,219                          |         |        |
| J706    | \$756,688    | \$80,407,045               | \$0          | \$0              | \$76,414,017    | \$1,305,000                      | \$2,733,601                     | \$1,429,441                      | \$0                        | \$85,202,334         | \$400,000         | \$1,802,034                              | \$14,838,433                          |         |        |
| J713    | \$2,746,793  | \$241,221,135              | \$0          | \$0              | \$229,213,501   | \$3,915,000                      | \$1,004,520                     | \$1,535,220                      | \$0                        | \$248,887,448        | \$1,200,000       | \$4,628,612                              | \$43,948,878                          |         |        |
| J720    | \$70,086,598 | \$497,506                  | \$0          | \$0              | \$48,699,911    | \$0                              | \$11,471,897                    | \$850,434                        | \$0                        | \$82,056,001         | \$800,000         | \$362,178                                | \$15,249,022                          |         |        |
| J722    | \$28,116,307 | \$5,007,171                | \$0          | \$0              | \$116,066,305   | \$0                              | \$1,250,000                     |                                  | \$0                        | \$34,373,478         | \$800,000         | \$1,864,413                              | \$4,210,283                           |         |        |
| J785    | \$18,136,402 | \$71,249                   | \$0          | \$0              | \$26,623,039    | \$0                              | \$11,417,464                    | \$1,003,320                      | \$0                        | \$29,625,115         | \$420,000         | \$624,613                                | \$4,880,410                           |         |        |
| J801    | \$0          | \$0                        | \$0          | \$0              | \$9,515,355     | \$0                              | \$5,338,631                     | \$686,054                        | \$0                        | \$5,338,631          | \$296,000         | \$44,000                                 | \$727,726                             |         |        |
| J803    | \$0          | \$105,553                  | \$0          | \$0              | \$1,710,190     | \$0                              | \$1,112,000                     | \$888,000                        | \$0                        | \$1,217,553          | \$130,000         | \$0                                      | \$113,511                             |         |        |
| J816    | \$5,716,743  | \$295,390                  | \$0          | \$0              | \$42,514,272    | \$0                              | \$456,277                       | \$1,024,649                      | \$0                        | \$6,468,410          | \$240,000         | \$546,310                                | \$507,372                             |         |        |
| J836    | \$0          | \$70,650                   | \$0          | \$0              | \$0             | \$0                              | \$1,346,310                     | \$1,270,398                      | \$0                        | \$1,416,960          | \$800,000         | \$0                                      | \$0                                   |         |        |
| J840    | \$0          | \$1,180,241                | \$0          | \$0              | \$34,212,765    | \$0                              | \$14,000,000                    | \$1,250,000                      | \$0                        | \$15,180,241         | \$600,000         | \$856,128                                | \$1,579,920                           |         |        |
| J873    | \$22,600,000 | \$1,622                    | \$0          | \$0              | \$94,244,425    | \$0                              | \$14,000,000                    | \$1,250,000                      | \$0                        | \$36,601,622         | \$800,000         | \$778,552                                | \$5,741,772                           |         |        |
| J874    | \$0          | \$1,117,965                | \$0          | \$0              | \$49,133,775    | \$0                              | \$7,824,000                     | \$1,233,000                      | \$0                        | \$8,941,965          | \$600,000         | \$464,501                                | \$723,892                             |         |        |



| Project |               | ERIS Network Upgrades (\$) |                                                                                                            |                     |                 |             | NRIS Network Upgrades (\$) |              | Shared<br>Network | Total Network Upgrade Cost for Milestone | M2 (\$)      | M3 (\$)                           | M4 (\$)                               |
|---------|---------------|----------------------------|------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-------------|----------------------------|--------------|-------------------|------------------------------------------|--------------|-----------------------------------|---------------------------------------|
| Floject | Steady State  | LPC Studies                | Stability Short Circuit Affected System Deliverability TO Network Upgrades TO – Owned Direct Assigned (\$) | Calculation<br>(\$) | WIZ (\$)        | Ψισ (φ)     | 1014 (φ)                   |              |                   |                                          |              |                                   |                                       |
| а       | b             | С                          | D                                                                                                          | E                   | F               | G           | Н                          | I            | J                 | k =<br>b+c+d+e+g+h+j                     | \$10,000/MW  | 10% of (k)<br>from Phase I-<br>M2 | 20% of (k) from<br>Phase 2-M2 –<br>M3 |
| J877    | \$0           | \$562,468                  | \$0                                                                                                        | \$0                 | \$60,459,128    | \$0         | \$1,300,000                | \$2,500,000  | \$0               | \$1,862,468                              | \$1,000,000  | \$0                               | \$0                                   |
| J885    | \$8,748,925   | \$0                        | \$0                                                                                                        | \$0                 | \$14,624,732    | \$0         | \$0                        | \$60,000     | \$0               | \$8,748,925                              | \$256,000    | \$0                               | \$1,493,785                           |
| J897    | \$16,669,787  | \$2,281,497                | \$0                                                                                                        | \$0                 | \$82,117,701    | \$0         | \$2,814,490                | \$940,127    | \$0               | \$21,765,774                             | \$760,000    | \$10,701,615                      | \$0                                   |
| J898    | \$13,460,000  | \$10,835,000               | \$0                                                                                                        | \$0                 | \$10,917,460    | \$0         | \$5,097,052                | \$680,033    | \$0               | \$29,392,052                             | \$400,000    | \$250,000                         | \$5,228,410                           |
| J901    | \$58,000,000  | \$9,412,991                | \$0                                                                                                        | \$0                 | \$49,339,583    | \$0         | \$11,759,000               | \$2,004,000  | \$0               | \$79,171,991                             | \$800,000    | \$951,699                         | \$14,082,699                          |
| J905    | \$0           | \$453,865                  | \$0                                                                                                        | \$0                 | \$14,131,166    | \$0         | \$1,005,000                | \$1,145,000  | \$0               | \$1,458,865                              | \$160,000    | \$90,886                          | \$40,887                              |
| J916    | \$0           | \$0                        | \$0                                                                                                        | \$0                 | \$503,292       | \$0         | \$0                        | \$0          | \$0               | \$0                                      | \$8,000      | \$0                               | \$0                                   |
| J926    | \$0           | \$0                        | \$0                                                                                                        | \$0                 | \$13,315,742    | \$0         | \$8,527,000                | \$1,222,000  | \$0               | \$8,527,000                              | \$405,120    | \$694,880                         | \$605,400                             |
| J927    | \$15,056,075  | \$0                        | \$0                                                                                                        | \$0                 | \$22,543,972    | \$0         | \$1,240,212                | \$203,652    | \$0               | \$16,296,287                             | \$400,000    | \$656,027                         | \$2,203,230                           |
| J933    | \$80,189,052  | \$73,850,447               | \$0                                                                                                        | \$0                 | \$161,664,249   | \$0         | \$13,732,100               | \$2,931,800  | \$0               | \$167,771,599                            | \$800,000    | \$6,919,581                       | \$25,834,739                          |
| J946    | \$12,526,278  | \$890,675                  | \$0                                                                                                        | \$0                 | \$126,773,548   | \$0         | \$3,537,000                | \$2,810,000  | \$0               | \$16,953,953                             | \$800,000    | \$1,245,693                       | \$1,345,098                           |
| Total   | \$399,028,801 | \$707,939,999              | \$14,100,000                                                                                               | \$0                 | \$1,586,814,963 | \$6,525,000 | \$131,745,645              | \$31,810,455 | \$2,068,545       | \$1,261,407,990                          | \$16,698,720 | \$59,180,425                      | \$193,149,706                         |

Analyses performed demonstrate the following transmission facilities are required to reliably interconnect this group of generators to the transmission system. Energy Resource Interconnection Service (ERIS) Network Upgrades and Network Resource Interconnection Service (NRIS) Network Upgrades are shown in Table 3. Shared Network Upgrades are shown in Table 4.

Table 3: ERIS & NRIS Upgrades (Planning level cost estimates)

| Network Upgrade                       | то               | GI projects<br>requiring<br>upgrade for<br>ERIS | GI projects<br>requiring<br>upgrade for<br>NRIS | Cost of solution (\$) | Self Fund<br>Election |
|---------------------------------------|------------------|-------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------|
| Murphy Creek – Hayward 161 kV Rebuild | SMMPA            | J885, J927                                      |                                                 | \$11,625,000          | No                    |
| Austin-Murphy Creek 161 kV Rebuild    | SMMPA            | J885                                            |                                                 | \$1,875,000           | No                    |
| Merricourt-Wishek 230 kV Rebuild      | MDU              | J580                                            |                                                 | \$6,000,000           | Yes                   |
| J302 POI-Heskett 230 kV Rebuild       | MDU              | J580                                            |                                                 | \$4,500,000           | Yes                   |
| J302-Wishek 230 kV Rebuild            | MDU              | J580                                            |                                                 | \$4,750,000           | Yes                   |
| Heskett-Mandan 230 kV Uprate          | MDU              | J580                                            |                                                 | \$200,000             | Yes                   |
| Sheyenne-Lake Park 230 kV Uprate      | XEL, OTP,<br>MPC | J580, J713,<br>J816, J946                       |                                                 | \$1,300,000           | XEL Yes<br>OTP Yes    |
| Sheyenne-Mapleton 115 kV Rebuild      | XEL, OTP         | J816, J946                                      |                                                 | \$17,600,000          | XEL Yes<br>OTP Yes    |
| Wilton-Bemidji 115 kV Uprate          | OTP              | J628, J897                                      |                                                 | \$50,000              | Yes                   |



| Network Upgrade                                      | то                   | Gl projects requiring requiring Cost of upgrade for upgrade for ERIS NRIS |  |              | Self Fund<br>Election                  |
|------------------------------------------------------|----------------------|---------------------------------------------------------------------------|--|--------------|----------------------------------------|
| Crookston-Fertile 115 kV Uprate                      | OTP                  | J628                                                                      |  | \$250,000    | Yes                                    |
| Crookston-Falconer 115 kV Uprate                     | OTP                  | J628                                                                      |  | \$25,000     | Yes                                    |
| Blackhawk 345/161 kV Transformer Uprate              | MEC                  | J873                                                                      |  | \$100,000    | Yes                                    |
| Hubbard-Audubon 230 kV Uprate                        | MP, GRE,<br>XEL, OTP | J628, J713                                                                |  | \$650,000    | XEL Yes<br>OTP Yes<br>MP Yes<br>GRE No |
| Walters-Alden 69 kV Rebuild                          | ITCM                 | J927                                                                      |  | \$4,700,000  | Yes                                    |
| Alden-Aleawst 69 kV Rebuild                          | ITCM                 | J927                                                                      |  | \$5,100,000  | Yes                                    |
| Rice-Cresco 69 kV Rebuild                            | ITCM                 | J898                                                                      |  | \$10,200,000 | Yes                                    |
| Rice-Saratoga 69 kV Uprate                           | ITCM                 | J898                                                                      |  | \$150,000    | Yes                                    |
| Decorah-Madison 69 kV Uprate                         | ITCM                 | J898                                                                      |  | \$60,000     | Yes                                    |
| Glenworth-Hayward 161 kV Uprate                      | ITCM                 | J885                                                                      |  | \$25,000     | Yes                                    |
| Adams-Hayward 161 kV Uprate                          | ITCM                 | J885                                                                      |  | \$480,000    | Yes                                    |
| New J628 POI– Prairie 230 kV 2 <sup>nd</sup> Circuit | GRE                  | J628, J897                                                                |  | \$22,360,000 | No                                     |
| J628 POI-Prairie 230 kV Rebuild                      | GRE                  | J628, J897                                                                |  | \$16,770,000 | No                                     |
| Helena-Chub Lake 2 <sup>nd</sup> Circuit             | GRE/CAPX             | J901                                                                      |  | \$34,000,000 | CAPX Yes                               |
| Canby-Granite Falls 115 kV Rebuild                   | OTP                  | J722, J933                                                                |  | \$17,700,000 | Yes                                    |
| Wahpeton-Fergus Falls 230 kV Uprate                  | OTP                  | J580                                                                      |  | \$850,000    | Yes                                    |
| Audubon-Lake Park 230 kV Uprate                      | ОТР                  | J580, J713,<br>J816, J946                                                 |  | \$100,000    | Yes                                    |
| Big Stone-Big Stone South 230 kV Circuit 1 Rebuild   | OTP                  | J722, J933                                                                |  | \$1,450,000  | Yes                                    |
| Big Stone-Big Stone South 230 kV Circuit 2 Rebuild   | OTP                  | J722, J933                                                                |  | \$1,400,000  | Yes                                    |
| Big Stone-Twin Brooks 2 <sup>nd</sup> Circuit        | OTP                  | J933                                                                      |  | \$54,500,000 | Yes                                    |
| Big Stone-Blair 230 kV Rebuild                       | OTP/NWE              | J722, J933                                                                |  | \$28,235,800 | OTP Yes                                |
| Adams 345/161 kV Transformer Upgrade                 | XEL                  | J898                                                                      |  | \$3,000,000  | Yes                                    |
| Wilmarth-Sheas Lake 345 kV Rebuild                   | XEL                  | J720, J785                                                                |  | \$39,526,000 | Yes                                    |
| Blue Lake-Scott County 345 kV Rebuild                | XEL                  | J901                                                                      |  | \$24,000,000 | Yes                                    |
| Crandal-Fieldon 345 kV Rebuild                       | XEL                  | J720                                                                      |  | \$36,775,000 | Yes                                    |
| Helena-Sheas Lake 345 kV Rebuild                     | XEL                  | J720, J785                                                                |  | \$11,922,000 | Yes                                    |
| Jerico-Howard Tap 69 kV Uprate                       | DPC                  | J898                                                                      |  | \$50,000     | Yes                                    |
| J873 POI 75 MVAR SVC Additional Plant MVAr           | MEC                  | J873                                                                      |  | \$22,500,000 | Yes                                    |
| Six 50 Mvar Capacitors at Wahpeton 230 kV            | ОТР                  | J580, J628,<br>J705, J706,<br>J713, J722,<br>J897, J933                   |  | \$9,750,000  | Yes                                    |
| One 150 Mvar Capacitor at Bison 345 kV               | XEL                  | J580, J628,                                                               |  | \$1,500,000  | Yes                                    |



| Network Upgrade                                          | то  | upgrade for ERIS                                        |                     | Cost of solution (\$) | Self Fund<br>Election |
|----------------------------------------------------------|-----|---------------------------------------------------------|---------------------|-----------------------|-----------------------|
|                                                          |     | J705, J706,                                             |                     |                       |                       |
|                                                          |     | J713, J722,                                             |                     |                       |                       |
|                                                          |     | J897, J933                                              |                     |                       |                       |
| Three 50 Mvar Capacitors at Maple River 230 kV           | MPC | J580, J628,<br>J705, J706,<br>J713, J722,<br>J897, J933 |                     | \$3,000,000           | N/A                   |
| Coyote Transformer Upgrade                               | MDU |                                                         | J705, J706,<br>J713 | \$5,000,000           | Yes                   |
| Coyote-Beulah 115 kV Uprate                              | MDU |                                                         | J713                | \$1,500,000           | Yes                   |
| Center – Jamestown 345 kV Uprate                         | ОТР |                                                         | J705, J706,<br>J713 | \$25,000              | Yes                   |
| Rebuild Linton-Wishek 115 kV and operate normally closed | MDU | J580                                                    |                     | \$14,100,000          | Yes                   |
| Ellendale-Aberdean Jct 115 kV Uprate (MDU LPC)           | MDU | J580, J933                                              | 580, J933           |                       | Yes                   |
| Foxtail-Ellendale 230 kV Rebuild (MDU LPC)               | MDU | J580                                                    | J580                |                       | Yes                   |
| Merricourt-Wishek 230 kV Rebuild (MDU LPC)               | MDU | J580                                                    |                     | \$6,300,000           | Yes                   |
| Wishek-J302 POI 230 kV Rebuild (MDU LPC)                 | MDU | J580                                                    |                     | \$5,600,000           | Yes                   |
| Build Mandan-J302 POI 230 kV Circuit (MDU LPC)           | MDU | J580                                                    |                     | \$28,000,000          | Yes                   |
| Add Additional Breaker at Merricourt (MDU LPC)           | MDU | J580                                                    |                     | \$1,500,000           | Yes                   |
| Jerico-Alta Vista 69 kV Rebuild (DPC LPC)                | DPC | J898                                                    |                     | \$235,000             | Yes                   |
| Jerico-Howard Tap 69 kV Rebuild (DPC LPC)                | DPC | J898                                                    |                     | \$1,200,000           | Yes                   |
| Nordness Tap-Decorah 69 kV Rebuild (DPC LPC)             | DPC | J898                                                    |                     | \$600,000             | Yes                   |
| Saratoga-Rice 69 kV Rebuild (DPC LPC)                    | DPC | J898                                                    |                     | \$400,000             | Yes                   |
| Saratoga-Howard Tap 69 kV Rebuild (DPC LPC)              | DPC | J898                                                    |                     | \$3,200,000           | Yes                   |
| Beaver Creek-J898 POI 161 kV Rebuild (DPC LPC)           | DPC | J898                                                    |                     | \$5,000,000           | Yes                   |
| Beaver Creek-Harmony 161 kV Rebuild (DPC LPC)            | DPC | J898                                                    |                     | \$200,000             | Yes                   |
| CSLTNET-Mapleton 115 kV Uprate (OTP LPC)                 | OTP | J816, J946                                              |                     | \$25,000              | Yes                   |
| Big Stone-Highway 12 115 kV Uprate (OTP LPC)             | OTP | J722, J933                                              |                     | \$50,000              | Yes                   |
| Highway 12-Ortonville 115 kV Uprate (OTP LPC)            | OTP | J722, J933                                              |                     | \$50,000              | Yes                   |
| Mahnomn-Ulrich 115 kV Uprate (OTP LPC)                   | OTP | J628                                                    |                     | \$50,000              | Yes                   |
| Winger-Fertile 115 kV Uprate (OTP LPC)                   | OTP | J628                                                    |                     | \$50,000              | Yes                   |
| Wilton-Bemidji 115 kV Uprate (OTP LPC)                   | OTP | J628, J897                                              |                     | \$50,000              | Yes                   |
| Crookston-Fertile 115 kV Uprate (OTP LPC)                | OTP | J628                                                    |                     | \$250,000             | Yes                   |
| Hankinson-Wahpeton 230 kV Rebuild (OTP LPC)              | OTP | J580                                                    |                     | \$21,900,000          | Yes                   |
| Hankinson-Forman 230 kV Uprate (OTP LPC)                 | OTP | J580, J933                                              |                     | \$50,000              | Yes                   |
| Big Stone South Transformer #1 Upgrade (OTP LPC)         | OTP | J933                                                    |                     | \$4,600,000           | Yes                   |



| Network Upgrade                                                  | то  | GI projects<br>requiring<br>upgrade for<br>ERIS                                                                                                   | GI projects<br>requiring<br>upgrade for<br>NRIS                                                                                             | Cost of solution (\$) | Self Fund<br>Election |
|------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| Big Stone South Transformer #2 Upgrade (OTP LPC)                 | OTP | J933                                                                                                                                              |                                                                                                                                             | \$4,600,000           | Yes                   |
| Brooking County-Astoria 2 <sup>nd</sup> Circuit 345 kV (OTP LPC) | ОТР | J580, J628,<br>J705, J706,<br>J713, J816,<br>J897, J933,<br>J946                                                                                  |                                                                                                                                             | \$36,500,000          | Yes                   |
| Astoria-J526 POI 2 <sup>nd</sup> Circuit 345 kV (OTP/MDU LPC)    | ОТР | J580, J628,<br>J705, J706,<br>J713, J816,<br>J897, J933,<br>J946                                                                                  |                                                                                                                                             | \$55,000,000          | Yes                   |
| Canby two steps of 20 Mvar Capacitor Banks (OTP LPC)             | ОТР | J545, J580,<br>J628, J705,<br>J706, J713,<br>J720, J722,<br>J816, J840,<br>J874, J877,<br>J897, J905,<br>J933, J946                               |                                                                                                                                             | \$1,500,000           | Yes                   |
| Dumont 20 Mvar Capacitor Bank (OTP LPC)                          | ОТР | J545, J580,<br>J720, J722,<br>J785, J803,<br>J816, J836,<br>J840, J873,<br>J874, J877,<br>J905, J933                                              |                                                                                                                                             | \$1,000,000           | Yes                   |
| Willmar-Granite Falls 230 kV Rebuild (GRE LPC)                   | GRE | J901                                                                                                                                              |                                                                                                                                             | \$7,700,000           | No                    |
| J901 POI 75 Mvar Capacitor Bank (GRE LPC)                        | GRE | J545, J580,<br>J628, J705,<br>J706, J713,<br>J720, J722,<br>J785, J803,<br>J816, J836,<br>J840, J874,<br>J877, J897,<br>J901, J905,<br>J933, J946 | J901<br>J545, J580,<br>J628, J705,<br>J706, J713,<br>J720, J722,<br>J785, J803,<br>J816, J836,<br>J840, J874,<br>J877, J897,<br>J901, J905, |                       | No                    |
| Panther 230 kV 60 Mvar Capacitor Bank (GRE LPC)                  | GRE | J545, J580,                                                                                                                                       | _                                                                                                                                           | \$2,500,000           | No                    |



| Network Upgrade                                    | то       | GI projects<br>requiring<br>upgrade for<br>ERIS                                                                              | GI projects<br>requiring<br>upgrade for<br>NRIS | Cost of solution (\$) | Self Fund<br>Election |
|----------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------|
|                                                    |          | J628, J705,<br>J706, J713,<br>J720, J722,<br>J785, J803,<br>J816, J840,<br>J874, J877,<br>J897, J901,<br>J905, J933,<br>J946 |                                                 |                       |                       |
| Two Jamestown 75 Mvar Capacitor Banks (GRE LPC) *  | ОТР      | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933                               |                                                 | \$8,000,000           | Yes                   |
| 250 Mvar Jamestown SVC (GRE LPC) *                 | ОТР      | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933                               |                                                 | \$44, 370,000         | Yes                   |
| Two Alexandria 75 Mvar Capacitor Banks (GRE LPC) * | MRES     | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933                               |                                                 | \$8,000,000           | No                    |
| Twin Brooks – Alexandria 345 kV (GRE LPC) *        | OTP/MRES | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933                               |                                                 | \$242,400,000         | OTP Yes<br>MRES No    |
| Alexandria 200 Mvar SVC (GRE LPC) *                | MRES     | J545, J580,                                                                                                                  |                                                 | \$60,000,000          | No                    |



| Network Upgrade                                 | то  | GI projects<br>requiring<br>upgrade for<br>ERIS                                                | GI projects<br>requiring<br>upgrade for<br>NRIS | Cost of solution (\$) | Self Fund<br>Election |
|-------------------------------------------------|-----|------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------|
|                                                 |     | J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933                |                                                 |                       |                       |
| Wahpeton 200 Mvar SVC (GRE LPC) *               | ОТР | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933 |                                                 | \$25,000,000          | Yes                   |
| Ellendale 150 Mvar SVC (GRE LPC) *              | MDU | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933 |                                                 | \$24,370,000          | Yes                   |
| Big Stone South 200 Mvar SVC (GRE LPC) *        | ОТР | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933 |                                                 | \$50,000,000          | Yes                   |
| Prairie 300 Mvar SVC (GRE LPC) *                | MPC | J545, J580,<br>J705, J706,<br>J713, J720,<br>J722, J803,<br>J840, J874,<br>J877, J905,<br>J933 |                                                 | \$20,000,000          | N/A                   |
| J628-Prairie 230 kV Terminal Upgrades (MPC AFS) | MPC | J628, J705,<br>J706, J713,<br>J897                                                             |                                                 | \$500,000             | N/A                   |
| Stanton-Square Butte 230 kV Terminal Upgrades   | MPC | J628, J705,                                                                                    |                                                 | \$500,000             | N/A                   |



| Network Upgrade                                                              | то   | GI projects<br>requiring<br>upgrade for<br>ERIS   | GI projects<br>requiring<br>upgrade for<br>NRIS | Cost of solution (\$) | Self Fund<br>Election |
|------------------------------------------------------------------------------|------|---------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------|
| (MPC AFS)                                                                    |      | J706, J713,<br>J816, J946                         |                                                 |                       |                       |
| Wilton-Scribner 115 kV Terminal Upgrades (MPC AFS)                           | MPC  | J628, J897                                        |                                                 | \$200,000             | N/A                   |
| Bemidj-Helga 115 kV Terminal Upgrades (MPC AFS)                              | MPC  | J628, J705,<br>J706, J713,<br>J816, J897,<br>J946 | J628, J705,<br>J706, J713,<br>J816, J897,       |                       | N/A                   |
| Jamestown-Center 345 kV Structure Remediation (MPC AFS)                      | MPC  | J628, J705,<br>J706, J713,<br>J897                |                                                 | \$1,000,000           | N/A                   |
| Grank Forks – Falconer 115 kV Reconductor (MPC AFS)                          | MPC  | J628, J705,<br>J706, J713,<br>J897                |                                                 | \$550,000             | N/A                   |
| Falconer – Oslo 115 kV Reconductor (MPC AFS)                                 | MPC  | J628, J705,<br>J706, J713,<br>J897                |                                                 | \$2,000,000           | N/A                   |
| Wilton-Winger 230 kV Structure Remediation (MPC AFS)                         | MPC  | J628, J705,<br>J706, J713,<br>J816, J897,<br>J946 |                                                 | \$400,000             | N/A                   |
| Prairie 115/69 kV Transformer #2 Upgrades (MPC AFS)                          | MPC  | J628, J897                                        |                                                 | \$1,500,000           | N/A                   |
| Drayton-Prairie 230 kV Structure Remediation (MPC AFS)                       | MPC  | J628, J705,<br>J706, J713,<br>J816, J897,<br>J946 |                                                 | \$200,000             | N/A                   |
| Prairie-Winger 230 kV Structure Remediation (MPC AFS)                        | MPC  | J628, J705,<br>J706, J713,<br>J897                |                                                 | \$500,000             | N/A                   |
| Install 3 <sup>rd</sup> Center 345/230 kV Transformer (MPC AFS)              | MPC  | J705, J706,<br>J713                               |                                                 | \$7,000,000           | N/A                   |
| Mill Road-Master 69 kV Structure Remediation and Terminal Upgrades (MPC AFS) | MPC  | J628, J897                                        |                                                 | \$500,000             | N/A                   |
| Winger 230 kV 30 MVAr Capacitor (MPC AFS)                                    | MPC  | J628, J705,<br>J706, J713,<br>J816, J897          |                                                 | \$1,000,000           | N/A                   |
| Reconfigure/Add Breakers at Fort Thompson (SPP AFS)                          | WAPA | J545, J580,<br>J628, J705,                        |                                                 | \$7,500,000           | N/A                   |



| Network Upgrade                                                      | то       | GI projects<br>requiring<br>upgrade for<br>ERIS                                                                     | GI projects<br>requiring<br>upgrade for<br>NRIS                                                                                                                   | Cost of solution (\$) | Self Fund<br>Election |
|----------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|                                                                      |          | J706, J713,<br>J722, J803,<br>J816, J874,<br>J897, J901,<br>J905, J933,<br>J946                                     |                                                                                                                                                                   |                       |                       |
| Astoria-Hazel Creek 345 kV Circuit (SPP AFS)                         | OTP/XEL  | J545, J580,<br>J628, J705,<br>J706, J713,<br>J722, J803,<br>J816, J874,<br>J897, J905,<br>J933, J946                |                                                                                                                                                                   | \$125,000,000         | OTP Yes<br>XEL Yes    |
| Second Grand Forks 230/115 kV Transformer (SPP AFS)                  | WAPA     | J628, J897                                                                                                          | J628, J897                                                                                                                                                        |                       | N/A                   |
| Rebuild Ward-Bismarck 230 kV (SPP AFS)                               | WAPA     | J580                                                                                                                | J580                                                                                                                                                              |                       | N/A                   |
| Terminal Equipment Upgrades Split Rock-Sioux City 345 kV (SPP AFS)   | WAPA     | J874                                                                                                                |                                                                                                                                                                   | \$1,000,000           | N/A                   |
| Terminal Equipment Upgrades Split Rock-White 345 kV (SPP AFS)        | WAPA     | J545, J580,<br>J628, J705,<br>J706, J713,<br>J722, J801,<br>J803, J816,<br>J897, J901,<br>J905, J926,<br>J933, J946 |                                                                                                                                                                   | \$1,000,000           | N/A                   |
| Rebuild Grand Forks-Prairie 230 kV (SPP AFS)                         | WAPA/MPC | J628, J897                                                                                                          |                                                                                                                                                                   | \$300,000             | N/A                   |
| Second Colby-Killdeer-Quinn-J873-Blackha k-Hazelton 345 kV (SPP AFS) | MEC/ITCM |                                                                                                                     | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,<br>J840, J873,<br>J874, J877,<br>J885, J897,<br>J898, J901,<br>J905, J916,<br>J926, J927, | \$361,000,000         | MEC Yes<br>ITCM Yes   |



| Network Upgrade                                         | то          | GI projects<br>requiring<br>upgrade for<br>ERIS | GI projects<br>requiring<br>upgrade for<br>NRIS                                                                                                                           | Cost of solution (\$) | Self Fund<br>Election |
|---------------------------------------------------------|-------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|                                                         |             |                                                 | J933, J946                                                                                                                                                                |                       |                       |
| Second Center-Jamestown-Buffalo-Bison 345 kV (SPP AFS)  | MPC/OTP/XEL |                                                 | J628, J705,<br>J706, J713,<br>J722, J816,<br>J897, J946                                                                                                                   | \$311,559,098         | OTP Yes<br>XEL Yes    |
| Upgrade Post Rock 345/230 kV Transformer (SPP AFS)      | MIDW        |                                                 | J705, J706,<br>J713                                                                                                                                                       | \$8,302,968           | N/A                   |
| Rebuild Sully-Whitlock 230 kV (SPP AFS)                 | BEPC        |                                                 | J628, J705,<br>J706, J713,<br>J816, J897,<br>J946                                                                                                                         | \$19,677,570          | N/A                   |
| Rebuild Aberdeen Junction-Ellendale 115 kV (SPP AFS)    | NWPS        |                                                 | J722, J933                                                                                                                                                                | \$710,840             |                       |
| Rebuild Aberdeen Junction-ABDNSBT 115 kV (SPP AFS)      | NWPS        |                                                 | J722, J933                                                                                                                                                                | \$5,331,300           |                       |
| Rebuild Forman-WAPA-Forman 115 kV (SPP AFS)             | OTP/WAPA    |                                                 | J722, J933                                                                                                                                                                | \$1,500,000           | OTP Yes               |
| Rebuild Meadow Grove-Fort Randle 230 kV (SPP AFS)       | NPPD/WAPA   |                                                 | J628, J705,<br>J706, J713,<br>J722, J816,<br>J897, J933,<br>J946                                                                                                          | \$74,364,953          | N/A                   |
| Upgrade Terminal Equipment S3451-S3454 345 kV (SPP AFS) | OPPD        |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,<br>J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946 | \$500,000             | N/A                   |
| Second Raun-S3451 345 kV (SPP AFS)                      | OPPD/MEC    |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,                                                                                                   | \$102,600,000         | MEC Yes               |



| Network Upgrade                                                            | то        | GI projects<br>requiring<br>upgrade for<br>ERIS | GI projects<br>requiring<br>upgrade for<br>NRIS                                                                                                                           | Cost of solution (\$) | Self Fund<br>Election |
|----------------------------------------------------------------------------|-----------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|                                                                            |           |                                                 | J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946                                                                            |                       |                       |
| Terminal Equipment Upgrades Antelope Valley-<br>Broadland 345 kV (SPP AFS) | BEPC      |                                                 | J628, J705,<br>J706, J713,<br>J816, J897,<br>J946                                                                                                                         | \$3,000,000           | N/A                   |
| Second Split Rock-Sioux City 345 kV (SPP AFS)                              | XEL/WAPA  |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,<br>J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946 | \$126,865,737         | XEL Yes               |
| Second Holt-Grand Prairie 345 kV (SPP AFS)                                 | NPPD/WAPA |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,<br>J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946 | \$50,011,493          | N/A                   |
| Second Raun-Sioux City 345 kV (SPP AFS)                                    | MEC/WAPA  |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,                                                                                                                                 | \$80,000,000          | MEC Yes               |



| Network Upgrade                                      | то       | GI projects<br>requiring<br>upgrade for<br>ERIS | GI projects<br>requiring<br>upgrade for<br>NRIS                                                                                                                           | Cost of solution (\$) | Self Fund<br>Election |
|------------------------------------------------------|----------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|                                                      |          |                                                 | J722, J785,<br>J801, J816,<br>J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946                                              |                       |                       |
| Rebuild FLANDRU-Aurora-Brookings 115 kV (SPP AFS)    | WAPA     |                                                 | J933                                                                                                                                                                      | \$17,219,822          |                       |
| Rebuild Minn Valley-Granite Falls 230 kV (SPP AFS)   | XEL/WAPA |                                                 | J545, J705,<br>J706, J713,<br>J722, J874,<br>J905, J933                                                                                                                   | \$5,200,000           | XEL Yes               |
| Rebuild Minn Valley-Granite Falls 115 kV (SPP AFS)   | XEL/WAPA |                                                 | J722, J933                                                                                                                                                                | \$7,950,000           | XEL Yes               |
| Rebuild Bismark-ESTBMRK 115 kV (SPP AFS)             | WAPA     |                                                 | J705, J706,<br>J713                                                                                                                                                       | \$100,000             |                       |
| Rebuild Overton-Sibley 345 kV (SPP AFS)              | AMMO/GMO |                                                 | J545, J628,<br>J705, J706,<br>J713, J720,<br>J722, J785,<br>J801, J816,<br>J840, J874,<br>J877, J885,<br>J897, J898,<br>J901, J905,<br>J916, J926,<br>J927, J933,<br>J946 | \$155,350,000         | AMMO Yes              |
| Second Astoria-Hazel Creek 345 kV (SPP AFS)          | XEL/OTP  |                                                 | J628, J705,<br>J706, J713,<br>J722, J816,<br>J897, J933,<br>J946                                                                                                          | \$25,000,000          | OTP Yes<br>XEL Yes    |
| Second Big Stone South-Deuel County 345 kV (SPP AFS) | XEL/OTP  |                                                 | J628, J705,<br>J706, J713,<br>J722, J816,                                                                                                                                 | \$70,000,000          | OTP Yes<br>XEL Yes    |



| Network Upgrade | то | GI projects<br>requiring<br>upgrade for<br>ERIS | GI projects<br>requiring<br>upgrade for<br>NRIS | Cost of solution (\$) | Self Fund<br>Election |
|-----------------|----|-------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------|
|                 |    |                                                 | J897, J933,<br>J946                             |                       |                       |

\*CCS GRE LPC Voltage NU to address voltage collapse

**Table 4: Shared Network Upgrades (Planning level cost estimates)** 

| Shared Network Upgrade                             | то  | Higher queued projects associated with SNU | Study<br>projects<br>associated<br>with SNU | Cost of solution (\$) |
|----------------------------------------------------|-----|--------------------------------------------|---------------------------------------------|-----------------------|
| Forman – Oakes 230 kV Reconductor (Aug-2016 Cycle) | OTP | J302, J503                                 | J580                                        | \$2,068,545           |

## Note:

- 1) Details pertaining to upgrades, costs, and the execution plan for interconnection of the generating facility at the POI will be documented in the Facility Study for Interconnecting Generator.
- 2) Facilities that have been included as base case assumptions and the level of interconnection service that would be conditional upon these facilities being in service will be documented in the GIA (Generator Interconnection Agreement) for each respective GI request successfully achieving GIA execution.
- 3) Analysis performed shows that projects J580 met the criteria for Shared Network Upgrade cost allocation.



## 2. FERC Order 827 Compliance Review

The Final Rule of FERC Order 827 "Reactive Power Requirements for Non-Synchronous Generation", which was issued June 16, 2016, stated that "Under this Final Rule, newly interconnecting non-synchronous generators that have not yet executed a Facilities Study Agreement as of the effective date of this Final Rule will be required to provide dynamic reactive power within the range of 0.95 leading to 0.95 lagging at the high-side of the generator substation." As such, this Final Rule applies to all non-synchronous projects included in the DPP 2017 August West study cycle.

In this study, the power factor at the high-side of the generator substation for each project was calculated and reviewed. The study method is to set Qgen of each study project at its Qmax, solve the case, then record the P and Q injection on the high side of the generator substation to calculate the lagging power factor (injecting VAR to the system). The same process is then repeated by setting Qgen at Qmin to calculate the leading power factor (absorbing VAR from the system).

The results show that not all projects meet FERC Order 827 requirements. Additional reactive support will be needed for these projects to meet the FERC requirement on reactive power capability prior to the completion of their GIA.

Table 5: FERC Order 827 Review Results

|         |              | Reactive                      |                           | VAR Injection |             |                     | V.        | AR Absorp   | tion                 | Meet FERC              | Add'l                   |
|---------|--------------|-------------------------------|---------------------------|---------------|-------------|---------------------|-----------|-------------|----------------------|------------------------|-------------------------|
| Project | Pmax<br>(MW) | Power<br>Capability<br>(MVAr) | Proposed VAR Compensation | P<br>(MW)     | Q<br>(MVar) | Lagging<br>p.f (pu) | P<br>(MW) | Q<br>(MVAr) | Leading<br>p.f. (pu) | Order 827 Requirement? | VAR<br>Needed<br>(MVAr) |
| J545    | 110          | ±37                           | 3 x6 Mvar Cap             | 108.4         | 51.3        | 0.904               | 107.9     | -50.2       | -0.907               | Yes                    |                         |
| J580    | 244          | 112.404<br>-80.736            | N/A                       | 291.4         | 69.0        | 0.973               | 285.5     | -228.5      | -0.781               | No                     | 26.8                    |
| J628    | 400          | ±133                          | 6 x 8 MVAr<br>Cap         | 397.5         | 128.4       | 0.952               | 396.2     | -145.5      | -0.939               | No                     | 2.3                     |
| J705    | 105          | ±50.893                       | N/A                       | 103.1         | 34.1        | 0.949               | 101.9     | -81.9       | -0.779               | Yes                    |                         |
| J706    | 105          | ±50.893                       | N/A                       | 103.0         | 36.9        | 0.941               | 101.9     | -76.4       | -0.800               | Yes                    |                         |
| J713    | 300          | ±100                          | 6 x 6 Mvar Cap            | 297.0         | 80.6        | 0.965               | 295.3     | -185.4      | -0.847               | No                     | 17.0                    |
| J720    | 200          | ±66                           | N/A                       | 199.2         | 27.9        | 0.990               | 198.9     | -117.8      | -0.860               | No                     | 37.6                    |
| J722    | 200          | ±67                           | 3 x 8 MVAr<br>Cap         | 198.6         | 56.7        | 0.962               | 198.0     | -114.9      | -0.865               | No                     | 8.6                     |
| J785    | 105          | ±34.5120                      | 3 x 10 MVAr<br>Cap        | 104.0         | 37.8        | 0.940               | 103.0     | -91.9       | -0.746               | Yes                    |                         |
| J801    | 74           | ±36.4                         | N/A                       | 73.1          | 29.1        | 0.929               | 72.8      | -46.2       | -0.844               | Yes                    |                         |
| J803    | 33           | ±13.25                        | N/A                       | 32.5          | 8.6         | 0.967               | 32.4      | -21.6       | -0.832               | No                     | 2.1                     |
| J816    | 62           | ±20                           | 2 x 4 MVAr<br>Cap         | 61.3          | 18.9        | 0.956               | 61.0      | -34.3       | -0.872               | No                     | 1.2                     |
| J836    | 205          | ±95.5                         | N/A                       | 201.7         | 56.0        | 0.964               | 200.2     | -169.0      | -0.764               | No                     | 10.3                    |
| J840    | 150          | 30.75<br>-43.725              | 3 x 15 MVAr<br>Cap        | 143.6         | 48.6        | 0.947               | 141.9     | -88.0       | -0.850               | Yes                    |                         |
| J873    | 200          | 41<br>-58.3                   | 4 x 15 MVAr<br>Cap        | 191.2         | 60.4        | 0.953               | 186.7     | -146.3      | -0.787               | No                     | 3                       |
| J874    | 150          | ±72.6                         | N/A                       | 147.6         | 42.8        | 0.960               | 145.6     | -129.1      | -0.748               | No                     | 5.7                     |
| J877    | 250          | ±121                          | N/A                       | 247.2         | 79.5        | 0.952               | 245.7     | -187.9      | -0.794               | No                     | 1.8                     |
| J885    | 64           | ±31                           | N/A                       | 63.2          | 20.7        | 0.950               | 62.9      | -45.4       | -0.811               | Yes                    |                         |
| J897    | 190          | ±43                           | 2 x 8 MVAr<br>Cap         | 188.0         | 64          | .946                | 185.8     | -144.4      | -0.793               | Yes                    |                         |
| J898    | 100          | ±19.72                        | 1 x 8 MVAr                | 99.1          | 9.9         | 0.995               | 98.8      | -43.2       | -0.916               | No                     | 22.7                    |



|         |              | Reactive                      |                              | 1         | VAR Inject  | ion                 | V         | AR Absorp   | tion                 | Meet FERC                 | Add'l                   |
|---------|--------------|-------------------------------|------------------------------|-----------|-------------|---------------------|-----------|-------------|----------------------|---------------------------|-------------------------|
| Project | Pmax<br>(MW) | Power<br>Capability<br>(MVAr) | Proposed VAR<br>Compensation | P<br>(MW) | Q<br>(MVar) | Lagging<br>p.f (pu) | P<br>(MW) | Q<br>(MVAr) | Leading<br>p.f. (pu) | Order 827<br>Requirement? | VAR<br>Needed<br>(MVAr) |
|         |              |                               | Cap                          |           |             |                     |           |             |                      |                           |                         |
| J901    | 200          | ±35.12                        | 2 x 8 MVAr<br>Cap            | 198.1     | 0.6         | 1.000               | 197.4     | -103.9      | -0.885               | No                        | 64.5                    |
| J905    | 41           | ±13                           | 2 x 3 MVAr<br>Cap            | 40.1      | 13.7        | 0.946               | 40.2      | -23.3       | -0.865               | Yes                       |                         |
| J916    | N/A          | N/A                           | N/A                          | N/A       | N/A         | N/A                 | N/A       | N/A         | N/A                  | N/A                       |                         |
| J926    | 102.5        | ±48.907                       | 1 x 8 MVAr<br>Cap            | 101.3     | 43          | 0.921               | 101.3     | -76.2       | -0.800               | Yes                       |                         |
| J927    | 200          | ±66                           | 3 x 8 MVAr<br>Cap            | 196.7     | 56.9        | 0.961               | 195.0     | -119.7      | -0.852               | No                        | 7.8                     |
| J933    | 211          | ±67                           | 3 x 8 MVAr<br>Cap            | 210.0     | 69.9        | 0.949               | 209.7     | -102.1      | -0.899               | Yes                       |                         |
| J946    | 210          | ±69.4                         | 2 x 20 MVAr<br>Cap           | 200       | 74.4        | 0.865               | 124.9     | -68.1       | -0.878               | Yes                       |                         |

# 3. Model Development and Study Assumptions

## 3.1. Base Case Models

The origin of the DPP 2017 August West models is based on the MTEP 18 series models with the Bench Cases including all prior-queued projects and their associated network upgrades known through the DPP February West Phase 3 analysis, while the Study Cases contain all of the interconnection requests in DPP 2017 August West Phase 2.

Prior queued network upgrades are documented in the following System Impact Study reports

MISO DPP 2017 February West Area Phase 3 Study section 4.3 <a href="https://cdn.misoenergy.org/GI-DPP-2017-FEB-West-Phase3">https://cdn.misoenergy.org/GI-DPP-2017-FEB-West-Phase3</a> System Impact Report PUBLIC391580.pdf MISO DPP 2016 August West Area Phase 3 Study section 4.3 <a href="https://cdn.misoenergy.org/GI-DPP-2016-AUG-West-Phase3-Final-Public394324.pdf">https://cdn.misoenergy.org/GI-DPP-2016-AUG-West-Phase3-Final-Public394324.pdf</a> MISO DPP 2016 February West Area Phase 3 Study section 2.8 <a href="https://cdn.misoenergy.org/GI-DPP-2016-FEB-West-Phase3-Final-Public394321.pdf">https://cdn.misoenergy.org/GI-DPP-2016-FEB-West-Phase3-Final-Public394321.pdf</a>

- Bench Cases
  - o DPP AUG17 West 2023SH90 Bench FINAL 191111
  - o DPP AUG17 West 2023SUM Bench FINAL 191111
- Study Cases
  - o DPP\_AUG17\_West\_2023SH90\_Study\_FINAL\_191111
  - DPP\_AUG17\_West\_2023SUM\_Study\_FINAL\_191111

## 3.2. Monitored Elements

Under NERC category P0 conditions (system intact) branches were monitored for loading above the normal rating (PSS®E Rating A), and for NERC category P1-P7 conditions branches were monitored for emergency rating (PSS®E Rating B). Voltage limits were specified for system intact and contingent conditions as per applicable Transmission Owner Planning Criteria.

#### 3.3. Contingencies

The following contingencies were considered in the steady state analysis:

- 1) NERC Category P0 (system intact -- no contingencies)
- 2) NERC Category P1 contingencies
  - a. Single element outages, at buses with a nominal voltage of 68 kV and above



- b. Multiple element NERC Category P1 contingencies
- 3) NERC Category P2-P7 contingencies
- 4) For all the contingencies and post-disturbance analyses, cases were solved with transformer tap adjustment enabled, area interchange adjustment disabled, phase shifter adjustment disabled (fixed) and switched shunt adjustment enabled.

## 3.4. Study Methodology

Non-linear (AC) contingency analysis was performed on the benchmark and study cases, and the incremental impact of the DPP 2017 August West generating facilities was evaluated by comparing the steady state performance of the transmission system in the Bench and Study Cases. Analyses used PSS®E version 33.11.0 and TARA version 1801d.

#### 3.5. Performance Criteria

A branch is considered a thermal constraint if the following conditions are met:

- The generator has a larger than twenty percent (20%) sensitivity factor on the overloaded facilities under post-contingent condition (see NERC TPL) or five percent (5%) sensitivity factor under systemintact condition, or
- 2) The overloaded facility or the overload-causing contingency is at generator's outlet, or
- 3) The megawatt impact due to the generator is greater than or equal to twenty percent (20%) of the applicable rating (normal or emergency) of the overloaded facility, or
- 4) For any other constrained facility, where none of the Study Generators meet one of the above criteria, however, the cumulative MW impact of the group of study generators is greater than twenty percent (20%) of the rating of the facility, then only those study generators whose individual MW impact is greater than five percent (5%) of the rating of the facility and has DF greater than five percent (5%) will be responsible for mitigating the cumulative MW impact constraint, or
- 5) Impacts on Affected Systems would be classified as Injection constraints based on the Affected Systems' criteria, or
- 6) Any other applicable Transmission Owner FERC filed Local Planning Criteria are met.

A bus is considered a voltage constraint if both of the following conditions are met:

- 1) The bus voltage is outside of the applicable normal or emergency limits for the post change case, and
- 2) The change in bus voltage is greater than 0.01 per unit

All generators must mitigate thermal injection constraints and voltage constraints in order to obtain any type of Interconnection Service. Further, all generators requesting Network Resource Interconnection Service (NRIS) must mitigate constraints found by using the Deliverability algorithm, to meet the system performance criteria for NERC category P1 events, if DFAX due to the study generator is equal to or greater than 5%.

## 4. Backbone Network Upgrade Analysis

An analysis was performed to determine the need for any backbone network upgrades for this cycle. Voltage and thermal issues were not significant enough to justify the inclusion of a backbone upgrade in this analysis.

## 5. Thermal Analysis

The thermal analysis results for 2017 August West group show generator projects causing constraints. The details pertaining to the thermal analysis can be found in Appendix A – .

## 6. Voltage Analysis

The voltage analysis results for summer peak models show that the no study generators cause any voltage



constraints. The shoulder peak analysis does indicate that three contingencies result in a voltage collapse condition that will require mitigation by the August 2017 study group. The details pertaining to the voltage analysis can be found in Appendix A -. The shoulder peak analysis identified some voltage constraints in the area of northwest Minnesota. One point of interconnection voltage constraint was identified in lowa region.

# 7. Stability Analysis

A voltage stability analysis was performed for the Minnesota-Wisconsin Export Interface (MWEX). The results of that analysis indicate that the August 2017 Study group does not aggravate the interface and no network upgrades were therefore identified. The full analysis is included in appendix C.

Transient stability analysis was performed for the August 2017 Study group. Results of the analysis are included in Appendix E. One network upgrade was identified due to a localize voltage collapse near the J580 point of interconnection.

# 8. Short Circuit Analysis

Short circuit analysis for the proposed projects are included in appendix F.

# 9. Affected System Impact Study

Affected System analysis will be performed in the 2017 August West Phase 2 study.

# 10. Deliverability Analysis

#### 10.1. Introduction

Generator interconnection projects have to pass Generator Deliverability Study to be granted NRIS. If the generator is deemed not fully deliverable, the customer can choose either to change the project to an Energy Resource (ER) project or to proceed with the system upgrades that will make the generator fully deliverable. Generator Deliverability Study ensures that the Network Resources, on an aggregate basis, can meet the MISO aggregate load requirements during system peak condition without getting bottled up. The wind generators are tested at 100% of their maximum output level which then can be used to meet Resource Adequacy obligations, under Module E, of the MISO Transmission and Energy Market Tariff (TEMT).

MISO Generator Deliverability Study whitepaper describing the algorithm can be found in BPM 015 – Generation Interconnection, Appendix C.

### 10.2. Determining the MW Restriction

If one facility is overloaded based on the assessed "severe yet credible dispatch" scenario described in the study methodology, and the generator under study has a DF greater than 5%, part or all of its output is not deliverable. The restricted MW is calculated as following:

(MW restricted) = (worst loading – MW rating) / (generator sensitivity factor)

If the result is larger than the maximum output of the generator, 100% of this generator's output is not deliverable.

#### 10.3. Deliverability Study Results

The deliverability analysis assumes all ERIS upgrades as those upgrades are required for the study group to interconnection to the transmission system. With all the MISO analysis ERIS upgrades assumed as well as the prior queued network upgrades, the deliverability analysis determined no new constraints for projects that are requesting NRIS service. If a constraint is identified, the deliverability is calculated by taking the



NRIS Request amount subtracting the calculated shared deductible. The shared deduction is the amount by which each study generator affecting a given flowgate must be scaled down in order to prevent loading violations on the flowgate. The deduction is proportionally taken from each study generator affecting a particular flowgate. If a particular monitored element becomes a flowgate under multiple contingencies, the contingency with the highest total shared deduction is used.

### 10.3.1. J545

This generator is determined to be fully deliverable for 110 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.2. J580

This generator did not request NRIS service, so deliverability was not performed for this interconnection request

## 10.3.3. J628

This generator is determined to be fully deliverable for 400 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.4. J705

This generator is determined to not be deliverable to the full NRIS request amount. Details on the required network upgrades to achieve deliverability are detailed below.

| J705 Deliverable (NRIS) Amount in 2023 |           |
|----------------------------------------|-----------|
| case: (Conditional on ERIS and IC      | 0 MW (0%) |
| upgrades and case assumptions)         |           |

| Next Upgrade for Higher NRIS Level<br>(cumulative)<br>(i.e. All upgrades must be made for<br>100% NRIS) | Level of<br>service<br>Attainable<br>(MW) | Distribution<br>Factor | Projects Associated with NRIS Constraint | Upgrade<br>Costs<br>Allocated<br>to Project | Total Cost<br>of<br>Upgrade |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------------------|---------------------------------------------|-----------------------------|
| Center - Jamestown 345 kV Uprate                                                                        | 0                                         | 0.2172                 | J705, J706, J713                         | \$4,538                                     | \$25,000                    |
| Coyote Transformer Upgrade                                                                              | 13                                        | 0.1372                 | J705, J706, J713                         | \$1,000,000                                 | \$5,000,000                 |
| Coyote - Beulah 115 kV Upgrade                                                                          | 100                                       | 0.1012                 | J705, J706, J713                         | \$300,000                                   | \$1,500,000                 |

## 10.3.5. J706

This generator is determined to not be deliverable to the full NRIS request amount. Details on the required network upgrades to achieve deliverability are detailed below.

| J706 Deliverable (NRIS) Amount in 2023 case: (Conditional on ERIS and IC | 0 MW (0%) |
|--------------------------------------------------------------------------|-----------|
| upgrades and case assumptions)                                           |           |

| Next Upgrade for Higher NRIS Level<br>(cumulative)<br>(i.e. All upgrades must be made for 100%<br>NRIS) | Level of<br>service<br>Attainable<br>(MW) | Distribution<br>Factor | Projects Associated with NRIS Constraint | Upgrade<br>Costs<br>Allocated<br>to Project | Total Cost<br>of<br>Upgrade |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------------------|---------------------------------------------|-----------------------------|
| Center – Jamestown 345 kV Uprate                                                                        | 0                                         | 0.2172                 | J705, J706, J713                         | \$4,538                                     | \$25,000                    |
| Coyote Transformer Upgrade                                                                              | 13                                        | 0.1372                 | J705, J706, J713                         | \$1,000,000                                 | \$5,000,000                 |
| Coyote - Beulah 115 kV Upgrade                                                                          | 100                                       | 0.1012                 | J705, J706, J713                         | \$300,000                                   | \$1,500,000                 |



#### 10.3.6. J713

This generator is determined to not be deliverable to the full NRIS request amount. Details on the required network upgrades to achieve deliverability are detailed below.

| J713 Deliverable (NRIS) Amount in 2023 |           |
|----------------------------------------|-----------|
| case: (Conditional on ERIS and IC      | 0 MW (0%) |
| upgrades and case assumptions)         |           |

| Next Upgrade for Higher NRIS Level<br>(cumulative)<br>(i.e. All upgrades must be made for 100%<br>NRIS) | Level of<br>service<br>Attainable<br>(MW) | Distribution<br>Factor | Projects Associated with NRIS Constraint | Upgrade<br>Costs<br>Allocated<br>to Project | Total Cost<br>of<br>Upgrade |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------------------|---------------------------------------------|-----------------------------|
| Center – Jamestown 345 kV Uprate                                                                        | 0                                         | 0.2172                 | J705, J706, J713                         | \$13,614                                    | \$25,000                    |
| Coyote Transformer Upgrade                                                                              | 46.88                                     | 0.1372                 | J705, J706, J713                         | \$3,000,000                                 | \$5,000,000                 |
| Coyote - Beulah 115 kV Upgrade                                                                          | 300                                       | 0.1012                 | J705, J706, J713                         | \$900,000                                   | \$1,500,000                 |

### 10.3.7. J720

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

### 10.3.8. J722

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.9. J785

This generator is determined to be fully deliverable for 105 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.10. J801

This generator is determined to be fully deliverable for 74 MW, contingent upon the ERIS system upgrades and assumed prior gueued network upgrades.

#### 10.3.11. J803

This generator did not request NRIS service, so deliverability was not performed for this interconnection request.

#### 10.3.12. J816

This generator is determined to be fully deliverable for 110 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.13. J836

This generator did not request NRIS service, so deliverability was not performed for this interconnection request.

### 10.3.14. J840

This generator is determined to be fully deliverable for 150 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.15. J873

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.16. J874



This generator is determined to be fully deliverable for 150 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.17. J877

This generator is determined to be fully deliverable for 250 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

### 10.3.18.J885

This generator is determined to be fully deliverable for 64 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.19.J897

This generator is determined to be fully deliverable for 190 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.20.J898

This generator is determined to be fully deliverable for 100 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.21.J901

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.22.J905

This generator is determined to be fully deliverable for 40 MW, contingent upon the ERIS system upgrades and assumed prior gueued network upgrades.

#### 10.3.23. J916

This generator is determined to be fully deliverable for 2 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.24, J926

This generator is determined to be fully deliverable for 101.28 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.25. J927

This generator is determined to be fully deliverable for 100 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

#### 10.3.26.J933

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

## 10.3.27. J946

This generator is determined to be fully deliverable for 200 MW, contingent upon the ERIS system upgrades and assumed prior queued network upgrades.

# 11. Shared Network Upgrades Analysis

Shared Network Upgrade (SNU) Analysis tests for Network Upgrades driven by higher queued interconnection projects was performed for this System Impact Study. SNUs were identified for DPP 2017 August West Area Projects.

The maximum MW impacts and Shared Network Upgrade (SNU) cost allocations appear in Table 6.

## **Table 6: Maximum MW Impact and SNU Cost Allocations**



| Network Upgrades           |  | Project Study<br>Cycle | Projects<br>sharing<br>cost | MW<br>Contribu<br>tion | Total NU Cost<br>(\$) | Cost<br>Responsibility<br>(\$) |
|----------------------------|--|------------------------|-----------------------------|------------------------|-----------------------|--------------------------------|
| 620362 OAKES 4<br>FORMAN 4 |  | DPP-2016-AUG           | J302                        | 15.7                   | \$4,861,933           | \$1,410,167                    |
|                            |  | DPP-2016-AUG           | J503                        | 15.4                   |                       | \$1,383,221                    |
| 1 01 110 11 1              |  | DPP-2017-AUG           | J580                        | 23.03                  |                       | \$2,068,545                    |

# 12. Cost Allocation

The cost allocation of Network Upgrades for the study group reflects responsibilities for mitigating system impacts based on Interconnection Customer-elected level of Interconnection service as of the draft System Impact Study report date.

## 12.1. Cost Assumptions for Network Upgrades

The cost estimate for each network upgrade identified in System Impact Study was provided by the corresponding transmission owning company.

## 12.2. Cost Allocation Methodology

The costs of Network Upgrades (NU) for a set of generation projects (one or more sub-groups or entire group with identified NU) are allocated based on the MW impact from each project on the constrained facilities in the Study Case.

## Cost Allocation Methodology for Thermal Constraints

- 1. With all Study Group generation projects dispatched in the Study Case, all thermal constraints are identified.
- 2. Distribution factor from each project on each constraint is obtained.
- 3. For each thermal constraint, the maximum MW contribution (increasing flow) from each project is then calculated in the Post Case without any network upgrades.
- 4. For each thermal constraint, the cost estimates for one or a subset of NU are provided by the corresponding Transmission Owner.
- 5. Then the cost of each NU is allocated based on the pro rata share of the MW contribution from each project on the constraints mitigated or partly mitigated by this NU. The methodology to determine the cost allocation of one NU is:

Project A cost portion of NU

Cost of NU = 
$$\frac{Max(Proj. A MW contribution on constraint)}{\sum_{i} Max(Proj. i MW contrution on constraint)}$$

6. The total NU costs for each project are calculated if more than one NU is required.

## Cost Allocation Methodology for Voltage Constraints

Cost allocation of voltage constraint driven network upgrades will be determined by the pro rata share of the voltage impact each project has on the most constrained bus under the most constraining contingency. The voltage impact of each project will be calculated by locking all voltage regulating equipment in the model and then backing out each GI project one at a time to identify each project's impact to the constraint. In severe instances of voltage collapse where projects cannot be backed out one at a time, they will be added one at a time to determine their impact to the constraint.

As the number and types of constraints increases, mitigating the constraints individually may result in higher overall costs. In instances when mitigation(s) resolve multiple types of constraints (such as thermal + voltage or thermal + voltage + transient stability) the cost is allocated based off the ratio share of the total cost of the independent mitigations in order to equitably allocate the cost to all parties contributing to



constraints. In summary, only the lowest cost mitigation option will be constructed, but for cost allocation purposes the independent mitigations are required.