Vysoké učení technické v Brně

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Elektronika pro informační technologie 2017/2018

Semestrální projekt

HYNEK BERNARD xberna16 20.12.2017

Obsah

1	Pří	klady													3
	1.1	Příklad 1, Varianta C													3
	1.2	Příklad 2, Varianta H													6
	1.3	Příklad 3, Varianta A													8
	1.4	Příklad 4, Varianta C													11
	1.5	Příklad 5, Varianta H													13
_	T. 7.														
2	Výs	sledky													14

1 Příklady

1.1 Příklad 1, Varianta C

Stanovte napětí U_{R_1} a proud I_{R_1} . Použijte metodu postupného zjednodušování obvodu

sk.	U_1 [V]	U_2 [V]	R_1 $[\Omega]$	$R_2\ [\Omega]$	R_3 $[\Omega]$	R_4 $[\Omega]$	R_5 [Ω]	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
C	100	80	450	810	190	220	220	720	260	180	

Zapojení postupně zjednodušíme:

$$\begin{array}{c} U_{12} = U_1 + U_2 = 100 + 80 = 180V \\ R_{78} = R_7 \parallel R_8 = \frac{R_7 * R_8}{R_7 + R_8} = \frac{260 * 180}{260 + 180} = 106,3636\Omega \\ R_{12} = R_1 \parallel R_2 = \frac{R_1 * R_2}{R_1 + R_2} = \frac{450 * 810}{450 + 810} = 289,2857\Omega \end{array}$$

Trojúhelník $[R_5,R_4,R_6]$ převedeme na hvězdu:

$$\begin{array}{l} R_A = \frac{R_4*R_5}{R_4+R_5+R_6} = \frac{220*220}{220+220+720} = 41,7241\Omega \\ R_B = \frac{R_4*R_6}{R_4+R_5+R_6} = \frac{220*720}{220+220+720} = 136,5517\Omega \\ R_C = \frac{R_5*R_6}{R_4+R_5+R_6} = \frac{220*720}{220+220+720} = 136,5517\Omega \end{array}$$

Obvod teď vypadá následovně:

Dále už jen zjednodušujeme:

$$\begin{split} R_{3B} &= R_3 + R_B = 190 + 136,5517 = 326,5517\Omega \\ R_{12A} &= R_{12} + R_A = 41,7241 + 289,2857 = 331,0098\Omega \\ R_{78C} &= R_{78} + R_C = 106,3636 + 136,5517 = 242,9153\Omega \\ R_{EKV} &= \frac{R_{12A}*R_{3B}}{R_{12A}+R_{3B}} + R_{78C} = \frac{331,0098*326,5517}{331,0098+326,5517} + 242,9153 = 407,2981\Omega \end{split}$$

Když máme R_{EKV} můžeme vypočítat proud v obvodu:

$$I = \frac{U}{R_{EKV}} = \frac{180}{407,2981} = 0,4419A$$

Nyní můžeme vypočítat napětí a proud na jednotlivých rezistorech a nalézt hledané napětí U_{R_1} a proud I_{R_1} :

$$\begin{split} U_{R_{78C}} &= R_{78C}*I = 242,9153*0,4419 = 107,3443V \\ U_{R_{123AB}} &= U - U_{R_{78C}} = 180 - 107,3443 = 72,6557V \\ I_{R_{12A}} &= \frac{U_{R_{123AB}}}{R_{12A}} = \frac{72,6557}{331,0098} = 0,2195A \\ U_{R_{12}} &= I_{R_{12A}}*R_{12} = 0,2195*289,2857 = 63,4982V = U_{R_1} \\ I_{R_1} &= \frac{U_{R_1}}{R_1} = \frac{63,4982}{450} = 0,1411A \end{split}$$

1.2 Příklad 2, Varianta H

Stanovte napětí U_{R_3} a proud $I_{R_3}.$ Použijte metodu Théveninovy věty.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$
Н	220	190	360	580	205	560

Odpojíme rezistor ${\cal R}_3$ podle Theveninova pravidla

Vypočítáme U_i , použijeme princip superpozice, nejdříve skratujeme jeden zdroj a poté druhý

$$\begin{split} R_2 \parallel R_4 &= \frac{R_2*R_4}{R_2+R_4} = \frac{580*560}{580+560} = 284,9123\Omega \\ U_{i_1} &= U_1* \frac{R_2 \parallel R_4}{R1+R_2 \parallel R_4} = 220* \frac{284,9123}{360+284,9123} = 97,1926V \\ R_1 \parallel R_2 &= \frac{R_1*R_2}{R_1+R_2} = \frac{360*580}{360+580} = 222,1277\Omega \\ U_{i_2} &= U_2* \frac{R_1 \parallel R_2}{R4+R_1 \parallel R_2} = 190* \frac{222,1277}{560+222,1277} = 53,9608V \\ U_i &= U_{i_1} + U_{i_2} = 97,1926 + 53,9608 = 151,1534V \end{split}$$

Nyní zkratujeme oba zdroje napětí a vypočítáme R_i

$$R_i = \frac{1}{R_1 \| R_2 \| R_4} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_4}} = \frac{1}{\frac{1}{360} + \frac{1}{580} + \frac{1}{560}} = 159,0424\Omega$$

Když máme vypočítané U_i a R_i , můžeme podle Théveninovy věty vypočítat hledanou hodnotu I_{R_3} a z proudu následně U_{R_3}

$$\begin{array}{l} I_{R_3} = \frac{U_i}{R_i + R_3} = \frac{151,1534}{159,0424 + 205} = \frac{0}{9}, \frac{4152A}{159}, \\ U_{R_3} = R_3 * I_{R_3} = 205 * 0, 4152 = 85, \frac{116V}{110} \end{array}$$

1.3 Příklad 3, Varianta A

Stanovte napětí U_{R_5} a proud $I_{R_5}.$ Použijte metodu uzlových napětí (U_A,U_B,U_C)

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	53	49	65	39	32

Sestavíme rovnice pro uzly A,B,C podle I. Kirchhoffova zákona:

$$\begin{split} I_1 - I_{R_3} - I_{R_1} + I_{R_2} &= 0 \\ I_{R_3} + I_{R_5} - I_{R_2} &= 0 \\ I_2 - I_{R_5} - I_{R_4} &= 0 \end{split}$$

Vyjádříme jednotlivé proudy pomocí uzlových napětí:

$$\begin{split} I_{R_1} &= \frac{U_A}{R_1} = \frac{U_A}{53} \\ I_{R_2} &= \frac{U + U_B - U_A}{R_2} = \frac{120 + U_B - U_A}{49} \\ I_{R_3} &= \frac{U_A - U_B}{R_3} = \frac{U_A - U_B}{65} \\ I_{R_4} &= \frac{U_C}{R_4} = \frac{U_C}{39} \\ I_{R_5} &= \frac{U_C - U_B}{R_5} = \frac{U_C - U_B}{32} \end{split}$$

Nyní dosadíme proudy do rovnic z prvního kroku

$$\begin{array}{c} 0,9 - \frac{U_A - U_B}{65} - \frac{U_A}{53} + \frac{120 + U_B - U_A}{49} = 0 \\ \frac{U_A - U_B}{65} + \frac{U_C - U_B}{32} - \frac{120 + U_B - U_A}{49} = 0 \\ 0,7 - \frac{U_C - U_B}{32} - \frac{U_C}{39} = 0 \end{array}$$

Upravíme na základní tvar

$$\begin{array}{c} 9227U_A - 6042U_B + 0U_C = 565324, 5 \\ -3648U_A + 6833U_B - 3185U_C = -249600 \\ 0U_A - 39U_B + 71U_C = 873, 6 \end{array}$$

Sestavíme matici a použijeme cramerovo pravidlo pro výpočet napětí U_B a U_C

$$A = \begin{pmatrix} 9227 & -6042 & 0 & | 565324,5 \\ -3648 & 6833 & -3185 & | -249600 \\ 0 & -39 & 71 & | 873,6 \end{pmatrix}$$

$$det A = \begin{vmatrix} 9227 & -6042 & 0 \\ -3648 & 6833 & -3185 \\ 0 & -39 & 71 \end{vmatrix} = 1765356320$$

$$U_B = \begin{vmatrix} 9227 & 565324,5 & 0 \\ -3648 & -249600 & -3185 \\ 0 & 873,6 & 71 \\ \hline det A \end{vmatrix} = \frac{8579717328}{1765356320} = 4,86V$$

$$U_C = \begin{vmatrix} 9227 & -6042 & 565324,5 \\ -3648 & 6833 & -249600 \\ 0 & -39 & 873,6 \\ \hline det A \end{vmatrix} = \frac{26434144464}{1765356320} = 14,97V$$

Z vypočtených napětí U_B a U_C můžeme vypočítat napětí na R_5 a následně pomocí ohmova zákona vypočítat proud

$$U_{R_5} = U_C - U_B = 14,97 - 4,86 = 10,11V$$

 $I_{R_5} = \frac{U_{R_5}}{R_5} = \frac{10,11}{32} = 0,3159A$

1.4 Příklad 4, Varianta C

Pro napájecí napěntí platí: $u_1 = U_1 * sin(2\pi ft), u_2 = U_2 * sin(2\pi ft).$ Ve vztahu pro napětí $u_{C_1} = U_{C_1} * sin(2\pi ft + \varphi_{C_1})$ určete $|U_{C_1}|$ a φ_{C_1} . Použijte metodu smyčkových proudů.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
C	35	45	10	13	11	220	70	230	85	75

Vypočítáme úhlovou rychlost ω z úhlové frekvence f

$$\omega = 2\pi f = 2\pi*75 = 471,2389 rad*s^{-1}$$

Vypočítáme Kapacitanci a Induktaci $X_{C_1} = \frac{1}{j*\omega*C_1} = -j\frac{1}{471.2389*0.00023} = -9,2264j\Omega$ $X_{C_2} = \frac{1}{j*\omega*C_2} = -j\frac{1}{471.2389*0.000085} = -24,9655j\Omega$ $X_{L_1} = j*\omega L_1 = j*471,2389*0,22 = 103,6726j\Omega$ $X_{L_2} = j*\omega L_2 = j*471,2389*0,07 = 32,9867j\Omega$

Sestavíme rovnice pro napětí ve smyčkách podle II. Kirchhoffova zákona, zavedeme smyčkové proudy I_A, I_B, I_C

$$\begin{split} I_A: X_{L_1}*I_A + R_1*I_A + X_{C_1}*(I_A*I_C) + R_2*(I_A - I_B) - U_1 &= 0 \\ I_B: R_2*(I_B - I_A) + X_{L_2}*(I_B + I_C) + X_{C_2}*I_B + U_1 &= 0 \\ I_C: X_{C_1}*(I_C + I_A) + X_{L_2}*(I_C + I_B) + R_3*I_C - U_2 &= 0 \end{split}$$

Sestavíme matici a vypočteme I_A a I_C

$$A = \begin{pmatrix} R_1 + R_2 + X_{L_1} + X_{C_1} & -R2 & X_{C_1} & U_1 \\ -R_2 & R_2 + X_{L_2} + X_{C_2} & X_{L_2} & U_2 \end{pmatrix}$$

$$A = \begin{pmatrix} 10 + 13 + 103,6726j - 9,2264j & -13 & -9,2264j & 32,9867j \\ -13 & 13 + 32,9867j - 24,9655j & 32,9867j & -9,2264j + 32,9867j + 11 \end{pmatrix} \begin{pmatrix} 35 \\ -35 \\ -9,2264j & 32,9867j & -9,2264j + 32,9867j + 11 \end{pmatrix} \begin{pmatrix} 35 \\ -13 & 13 + 8,0212j & 32,9867j \\ -9,2264j & 32,9867j & 11 + 23,7603j \end{pmatrix}$$

$$A = \begin{pmatrix} 23 + 94,4462j & -13 & -9,2264j \\ -13 & 13 + 8,0212j & 32,9867j \\ -9,2264j & 32,9867j & 11 + 23,7603j \end{pmatrix} = -22239,2839 + 104075,7145j$$

$$A = \begin{pmatrix} 35 & -13 & -9,2264j \\ -35 & 13 + 8,0212j & 32,9867j \\ -35 & 13 + 8,0212j & 32,9867j \\ 45 & 32,9867j & 11 + 23,7603j \end{pmatrix} = -0,1336 - 0,1389j$$

$$I_A = \begin{pmatrix} 35 & -13 & -9,2264j \\ -35 & 13 + 8,0212j & 32,9867j \\ 45 & 32,9867j & 11 + 23,7603j \\ -22239,2839 + 104075,7145j \end{pmatrix} = 0,9647 + 1,1378j$$

Z vypočítaného proudu můžeme vypočítat hledané hodnoty $|U_{C_1}|$ a φ_{C_1}

$$U_{C_1} = (I_C + I_A) * X_{C_1} = (0,9647 + 1,1378j - 0,1336 - 0,1389j) * -9,2264j = 9,2163 - 7,6681jV$$

$$|U_{C_1}| = \sqrt{9,2163^2 - 7,6681^2} = \frac{68,0161V}{9,2163}$$

$$\varphi_{C_1} = arctg(\frac{-7,6681}{9,2163}) = -0,694rad$$

1.5 Příklad 5, Varianta H

2 Výsledky

Příklad	Zadání	Výsledek
1	С	$I_{R_1} = 0,1411A, U_{R_1} = 63,4982V$
2	Н	$I_{R_3} = 0,4152A, U_{R_3} = 85,116V$
3	A	$I_{R_5} = 0,3159A, U_{R_5} = 10,11V$
4	С	$ U_{C_1} = 68,0161V, \varphi_{C_1} = -0,694rad$
5	Н	xxx