2. A FUNDAMENTAL INEQUALITY FOR THE RESOLVENT

If $\mathcal{J}=(\mathtt{T(t)})_{\mathsf{t}\geq 0}$ is a C_{o} -semigroup of Schwarz maps on a C*-algebra M (resp. a C_{o} *-semigroup on a W*-algebra M) with generator A , then $\mathsf{s}(\mathtt{A}) \leq 0$. Thus the resolvent $\mathtt{R}(\lambda,\mathtt{A})$ has for all $\lambda \in \mathbb{C}$ with $\mathtt{Re}(\lambda) > 0$ the representation

$$R(\lambda, A) x = \int_{0}^{\infty} e^{-\lambda t} T(t) x dt$$
 (xeM)

where the integral exists in the norm topology. This observation is quite useful for our first result which will be fundamental for our approach.

THEOREM 2.1. Let $\mathcal{Y} = (\mathbf{T}(t))_{t \geq 0}$ be a C_0 -semigroup of Schwarz type and $\mathcal{Y} = (\mathbf{S}(t))_{t \geq 0}$ a C_0 -semigroup on a C*-algebra M with generators A and B, respectively. If

$$(S(t)x)(S(t)x)* \leq T(t)(xx*)$$
 (*)

for all $x \in M$ and $t \in \mathbb{R}_+$, then

$$(\mu R(\mu,B)x)(\mu R(\mu,B)x)* \leq \mu R(\mu,A)xx*$$

for all $x \in M$ and $\mu \in \mathbb{R}_+$. The same result holds if \mathcal{Y} is a C_0^* -semigroup of Schwarz type and \mathcal{Y} is a C_0^* -semigroup on a W*-algebra M such that (*) is fulfilled.

Proof. From the assumption (*) it follows

$$0 \le (S(r)x - S(t)x) (S(r)x - S(t)x) * =$$

$$= (S(r)x) (S(r)x) * - (S(r)x) (S(t)x) * -$$

$$- (S(t)x) (S(r)x) * + (S(t)x) (S(t)x) * \le$$

$$\le T(r)xx * + T(t)xx * - (S(r)x) (S(t)x) * -$$

$$- (S(t)x) (S(r)x) *$$

for every r,teR, . Hence

$$(S(r)x)(S(t)x)* + (S(t)x)(S(r)x)* \leq T(r)xx* + T(t)xx*$$

Obviously, $||S(t)|| \le 1$ for all $t \in \mathbb{R}_+$. Then for all $0 \le \mu \in \mathbb{R}_+$ and $x \in \mathbb{M}$:

$$(R(\mu,B)x) (R(\mu,B)x) * = (\int_{0}^{\infty} e^{-\mu r} S(r) x dr) (\int_{0}^{\infty} e^{-\mu t} S(t) x dt) * =$$

$$= \frac{1}{2} (\int_{0}^{\infty} \int_{0}^{\infty} e^{-\mu (r+t)} ((S(r)x) (S(t)x) * +$$

$$+ (S(t)x) (S(r)x) *) dr dt \leq$$

$$\leq \frac{1}{2} (\int_{0}^{\infty} \int_{0}^{\infty} e^{-\mu (r+t)} (T(r)xx^{*} + T(t)xx^{*}) dr dt =$$

= $(\int_{0}^{\infty} e^{-\mu s} ds) (\int_{0}^{\infty} e^{-\mu t} T(t) xx^{*} dt) = \mu^{-1} R(\mu, A) (xx^{*})$.

where the handling of the integral is justified by $[5,\S8,n^04$, Proposition 9.]. \square

COROLLARY 2.2. Let \mathcal{Y} be a C_{o} -semigroup of Schwarz maps (res. C_{o} *-semigroup of Schwarz maps). Then for all $\lambda \in \mathbb{C}$ with $\text{Re}(\lambda) > 0$:

$$(R(\lambda,A)x)(R(\lambda,A)x)* \leq (Re\lambda)^{-1}R(Re\lambda,A)xx*$$
.

In particular for all $(\mu,\alpha) \in \mathbb{R}_+ \times \mathbb{R}$:

$$(\mu R(\mu+i\alpha,A)x)(\mu R(\mu+i\alpha,A)x)* \leq \mu R(\mu,A)(xx*)$$

<u>Proof.</u> Let $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) > 0$. Then the semigroup $\mathcal{S} := (e^{-i\operatorname{Im}(\lambda)} t_{\operatorname{T}}(t))_{t \geq 0}$ fulfils the assumption of Theorem 2.2. and $B := A - i\operatorname{Im}(\lambda)I$ is the generator of \mathcal{S} . Consequently $\operatorname{R}(\lambda, A) = \operatorname{R}(\operatorname{Re}\lambda, B)$ and the corollary is proved. \square

We now recall some spectral theoretic notions. If \Im is a C_o -semigroup on a Banach space E with generator A then $e^{t\sigma(A)}\setminus\{0\}\subseteq\sigma(T(t))$ for all $t\varepsilon\mathbb{R}_+$ ([8, Theorem 2.16]) and the inclusion can be proper ([8, Theorem 2.17, Example 2.18]). On the other hand, if $\lambda\varepsilon\rho(A)$, then

$$\sigma(R(\lambda,A)) \cup \{0\} = \{(\lambda - \mu)^{-1} : \mu \epsilon \sigma(A)\} \cup \{0\}.$$

This "spectral mapping theorem" remains valid also for the point spectrum $P_{\sigma}(A)$, approximative point spectrum $A_{\sigma}(A)$

and the <u>residual spectrum</u> Ro(A) of A and R(λ ,A) respectively ([12, Proposition 1.1]). In addition, other properties of \Im such as ergodicity can be expressed with the help of the resolvent (see, e.g. [22, XVIII; 42, VIII. 4.]). These observations, the first resolvent inequality for R(.,T) and Corollary 2.2. motivate the introduction of a more general concept (see also [12, 34]):

<u>Definition</u> 2.3. Let E be a Banach space and $\emptyset \neq D$ an open subset of \mathbb{C} . A family R: D \mapsto L(E) is called a pseudoresolvent on D with values in E if

$$R(\lambda) - R(\mu) = -(\lambda - \mu)R(\lambda)R(\mu)$$

for all λ and μ in D . If R is a pseudoresolvent on D = $\{\lambda\epsilon C: Re(\lambda)>0\}$ with values in a C*- or W*-algebra, then R is called of Schwarz type , if

$$(R(\lambda, A)x) (R(\lambda, A)x)^* \le (Re\lambda)^{-1} R(Re\lambda)xx^*$$

for all $\lambda \epsilon D$ and $\kappa \epsilon M$. R is called <u>identity preserving</u>, if $\lambda R(\lambda) 1 = 1$ for all $\lambda \epsilon D$.

For properties of a pseudoresolvent R with values in a Banach space we refer to [12, Proposition 1.2; 34; 42, VIII.4.]. We collect some facts which we will use without further reference in the rest of this paper:

- (a) If $\alpha \in \mathbb{C}$ and $x \in \mathbb{E}$ such that $(\alpha \lambda) R(\lambda) x = x$ for some $\lambda \in D$, then $(\alpha \mu) R(\mu) x = x$ for all $\mu \in D$ (use the "resolvent equation").
- (b) If F is a closed subspace of E such that $R(\lambda)F\subseteq F$ for some $\lambda \in D$, then $R(\mu)F\subseteq F$ for all μ in a neighbourhood of λ . This follows from the fact that for all $\mu \in D$ such that $|\lambda \mu| \le ||R(\lambda)||^{-1}$, the pseudoresolvent in μ is given by $R(\mu) = \sum_n (\lambda \mu)^n R(\lambda)^{n+1}$.

For conditions which guarantee that a pseudoresolvent is the resolvent of a densely defined operator see [34, 42].

DEFINITION 2.4. We call a C_0 -semigroup \mathfrak{I} on the predual M_\star of a W*-algebra M identity preserving and of Schwarz type , if its adjoint C_0 *-semigroup has these properties. Likewise, a pseudoresolvent R on $D = \{\lambda \in \mathbb{C} : Re(\lambda) > 0\}$ with values in M_\star is called identity preserving and of Schwarz type, if R' has these properties.

Since for a C_0 -semigroup of contractions on a Banach space

$$Fix(\mathcal{I}) = \bigcup_{t \ge 0} ker(I - T(t)) =$$

=
$$ker(I - \lambda R(\lambda, A)) = Fix(\lambda R(\lambda, A))$$

for all $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) > 0$, a $\operatorname{C}_{\operatorname{O}}$ -semigroup of contractions on M is identity preserving and of Schwarz type iff the pseudoresolvent on D = $\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ given by $\operatorname{R}(\lambda) := \operatorname{R}(\lambda, A)|_{\operatorname{D}}$ is identity preserving and of Schwarz type.

INDUCTION AND REDUCTION 2.5. (a) If E is a Banach space E and $\mathcal{G} \subseteq L(E)$ a semigroup of bounded operators, then a closed subspace F is called \mathcal{G} -invariant, if $SF \subseteq F$ for all $S \in \mathcal{G}$. We call the semigroup $\mathcal{G}_{||} := \{S_{||F|} : S \in \mathcal{G}_{||F|} \}$ the reduced semigroup. Note that for a $C_{||F|}$ -semigroup $\mathcal{G}_{||F|}$ is again strongly continuous (resp. $R_{||}$ is again a pseudoresolvent).

(b) Let M be a W*-algebra, p&M a projection and S&L(M) such that $S(p^{\perp}M) \le p^{\perp}M$ and $S(Mp^{\perp}) \le Mp^{\perp}$, where $p^{\perp} := 1-p$. Since for all x&M:

$$p[S(x) - S(pxp)] = p[S(p^{\perp}xp) + S(xp^{\perp})]p = 0 ,$$

we obtain p(Sx)p = p(S(pxp)p. Therefore the map

$$S_p := (x \Rightarrow p(Sx)p): pMp \Rightarrow pMp$$

is well defined. We call S_p the <u>induced</u> map. If S is an identity preserving Schwarz map, then it is easy to see that S_p is again a Schwarz map such that $S_p(p) = p$. If

 Υ is a C_0^* -semigroup on M which is of Schwarz type and if $T(t)(p^{\perp}) \leq p^{\perp}$ for all $t \in \mathbb{R}_+$, then Υ leaves $p^{\perp}M$ and Mp^{\perp} invariant. It is easy to see that the induced semigroup Υ_p is again a C_0^* -semigroup. If an identity preserving pseudoresolvent of Schwarz type on $D = \{\lambda \in \mathbb{C} : Re(\lambda) > 0\}$ with values in M such that $\mu R(\mu) p^{\perp} \leq p^{\perp}$ for some $\mu \in \mathbb{R}_+$ then $p^{\perp}M$ and Mp^{\perp} are R-invariant. Again, the induced pseudoresolvent R_p is of Schwarz type and identity preserving.

(c) Let ϕ be a normal linear functional on a W*-algebra M such that $T_*\phi=\phi$ for some identity preserving Schwarz map T on M with preadjoint $T_*\epsilon L(M_*)$.Then $T(s(\phi)^{\perp}) \leq s(\phi)^{\perp}$ where $s(\phi)$ is the support projection of ϕ . To see this let $L_{\phi}:=\{x\epsilon M:\phi(xx^*)=0\}$ and $M_{\phi}:=L_{\phi}\cap L_{\phi}^*$. Since ϕ is T_* -invariant, and T is a Schwarz map, the subspaces L_{ϕ} and M_{ϕ} are T-invariant. Because $M_{\phi}=s(\phi)^{\perp}Ms(\phi)^{\perp}$ and $T(s(\phi)^{\perp}) \leq 1$ it follows $T(s(\phi)^{\perp}) \leq s(\phi)^{\perp}$. Let $T_{s(\phi)}$ be the induced map on $M_{s(\phi)}$. If

$$s(\phi)M_{\star}s(\phi) := \{\psi \epsilon M_{\star} : \psi = s(\phi)\psi s(\phi)\}$$

where $\langle s(\phi) \psi s(\phi), x \rangle$:= $\langle \psi, s(\phi) x s(\phi) \rangle$ (xeM), and if $\psi \epsilon s(\phi) M_{\star} s(\phi)$, then for all $x \epsilon M$:

$$(T_*\psi)(x) = \psi(Tx) = \langle \psi, s(\phi)(Tx)s(\phi) \rangle =$$

 $^{= \}langle \psi, s(\phi) (T(s(\phi)xs(\phi)))s(\phi) \rangle = \langle T_*\psi, s(\phi)xs(\phi) \rangle ,$

hence $T_*\psi\epsilon s(\phi)M_*s(\phi)$. Since the dual of $s(\phi)M_*s(\phi)$ is $M_{s(\phi)}$, it follows that the adjoint of the reduced map $T_*|$ is identity preserving and of Schwarz type. For example, if \mathcal{T} is an identity preserving C_o -semigroup of Schwarz type on M_* such that $\phi\epsilon Fix(\mathcal{T})$, then $\mathcal{T}|(s(\phi)M_*s(\phi))$ is again a C_o -semigroup which is identity preserving and of Schwarz type. Furthermore, if R is a pseudoresolvent on $D=\{\lambda\epsilon C: Re(\lambda)>0\}$ with values in M_* which is identity preserving and of Schwarz type such that $\mu R(\mu)\phi=\phi$ for some $\mu\epsilon R_+$, then $R|s(\phi)M_*s(\phi)$ has the same properties.