УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Лабораторная работа №2.2

Дисциплина «Информационная безопасность»

Вариант 13

Выполнил: студент группы Р34131

Кузнецов Максим Александрович

Преподаватель:

Маркина Татьяна Анатольевна

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

Задание

Вариант	Модуль, N	Экспонента, е	Блок зашифрованного текста, С
13	915012974539	1001953	763770087861 432343847598 764682728575 206635140312 627210520886 794063631890 309297959146 68118108284 116045398315 912085643674 257483784869 167814127445 55188158350

Ход работы

 $y_1=y,\ y_i=y_{i-1}^e (mod\ N),\ i>1.$ Проделываем данное действие до тех пор, пока $y_i\neq y$. Как только получим $y_i=y$, то это значит, что y_{i-1} наш текст. И так для каждого зашифрованного фрагмента С.

Строим последовательность: $y_1 = y$, $y_i = y_{i-1}^e \pmod{N}$, i > 1. Итак, $y_m = y^{e^m} \pmod{N}$, а так как $\mathrm{HOД}(e, \varphi(N)) = 1$, то существует такое натуральное число m, что $e^m \equiv 1 \pmod{\varphi(N)}$. Но тогда $y^{e^m-1} \equiv 1 \pmod{N}$, отсюда следует, что $y^{e^m} \equiv y \pmod{N}$, значит, y_{m-1} — решение сравнения $y = x^e \pmod{N}$.

Для решения задачи была разработана программа на Python.

Листинг разработанной программы

```
import math
import random
N = 915012974539
e = 1001953
432343847598
764682728575
206635140312
627210520886
794063631890
309297959146
68118108284
116045398315
912085643674
257483784869
167814127445
55188158350
output = ""
for enc in list(map(int, C.split())):
       y_next = pow(enc, e, N)
       enc_msg = 0
           enc_msg = y_next
           y next = pow(y next, e, N)
        msg = enc_msg.to_bytes(4, byteorder='big').decode('cp1251')
        print(f"Оригинал: {enc}, полученный текст: {enc msg} -- {msg}")
        output += msg
print(f"Итоговый текст -->{output}")
```

Результат работы программы:

```
Оригинал: 763770087861, полученный текст: 4092719856 — устр Оригинал: 432343847598, полученный текст: 3773687277 — анен Оригинал: 764682728575, полученный текст: 3909034223 — ия п Оригинал: 206635140312, полученный текст: 4042187243 — робл Оригинал: 627210520886, полученный текст: 3857513262 — емы. Оригинал: 794063631890, полученный текст: 549777121 — Доб Оригинал: 309297959146, полученный текст: 3772967909 — авле Оригинал: 68118108284, полученный текст: 3991463200 — ние Оригинал: 116045398315, полученный текст: 3974687472 — микр Оригинал: 912085643674, полученный текст: 4008702190 — опро Оригинал: 257483784869, полученный текст: 4142264817 — цесс Оригинал: 167814127445, полученный текст: 4008763436 — ора, Оригинал: 55188158350, полученный текст: 550422483 — ОЗУ Итоговый текст —>устранения проблемы. Добавление микропроцессора, ОЗУ
```

Итоговый те<u>кст:</u> устранения проблемы. Добавление микропроцессора, ОЗУ

Вывод

В ходе выполнения данной лабораторной работы я:

- ознакомился с методом повторного шифрования для атаки на алгоритм шифрования RSA.
- Реализовал данный метод на языке Python.