第七章 递推关系和生成函数

- 7.1 若干数列
- 7.2 生成函数
- 7.3 指数生成函数
- 7.4 求解线性齐次递推关系
- 7.5 非齐次递推关系
- 7.6 一个几何例子

第七章 递推关系和生成函数

7.1 若干数列

- 7.2 生成函数
- 7.3 指数生成函数
- 7.4 求解线性齐次递推关系
- 7.5 非齐次递推关系
- 7.6 一个几何例子

70

回顾: 错位排列计数公式的递推关系

$$D_n = n! (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!})$$

递推关系

(1)
$$D_n = (n-1)(D_{n-2} + D_{n-1}), (n = 3, 4,...)$$

(2)
$$D_n = nD_{n-1} + (-1)^n$$
, $(n = 2, 3, ...)$

NA.

数列

- 设 $h_0, h_1, ..., h_n, ...$ 表示一个数列,
 - \checkmark 其中 h_n 叫做数列的一般项或通项

例如: 算术数列(等差数列):

$$h_0, h_0 + q, h_0 + 2q, ..., h_0 + nq, ...$$

- ✓ 递推关系: $h_n = h_{n-1} + q$
- \checkmark 一般项: $h_n = h_0 + nq$
- ✓ 前n+1项和: $s_n=(n+1)h_0+qn(n+1)/2$

Ŋė.

数列

- 设 $h_0, h_1, ..., h_n, ...$ 表示一个数列,
 - \checkmark 其中 h_n 叫做数列的一般项或通项

例如:几何数列(等比数列):

$$h_0, qh_0, q^2h_0, ..., q^nh_0, ...$$

- ✓ 递推关系: $h_n = qh_{n-1}$ ($n \ge 1$)
- ✓ 一般项: $h_n = q^n h_0 \quad (n \ge 0)$
- ✓ 前n+1项和: $s_n = h_0(1-q^{n+1})/(1-q)$

例: 算术数列(等差数列)举例

- (1) $h_0=1$, q=2: 1, 3, 5, ..., 1+2n正奇整数数列: $h_n=1+2n$, $n\geq 0$
- (2) h_0 =4, q=0: 4, 4, 4, ..., 4,... 每一项都等于4的常数数列: h_n =4, $n \ge 0$
- (3) $h_0=0$, q=1: 0, 1, 2, ..., n,... 非负整数数列: $h_n=n$, $n \ge 0$

例:几何数列(等比数列)举例

- (1) $h_0=1$, q=2: 1, 2, 2^2 , ..., 2^n , ... n元集合的子集数: $h_n=2^n$, $n \ge 0$
- (2) $h_0 = 5$, q = 3: 5, 3·5, 3²·5,..., 3ⁿ·5,... $h_n = 3^n \cdot 5$, $n \ge 0$

主要内容

- ■求递推式
- 斐波那契(Fibonacci)序列

例: 考虑1行 n列棋盘。假设用红和蓝两种颜色给这个棋盘的每一个方格着色。设 h_n是使得没有两个着成红色的方格相邻的着色方法数。求h_n满足的递推关系。

 h_n 满足的递推关系为: $h_n = h_{n-1} + h_{n-2} (n \ge 3)$ $h_1 = 2, h_2 = 3$ 例.确定平面一般位置上的 n个互相交叠的圆所形成的区域数,其中

• 互相交叠是指每两个圆相交在不同的两个点上;

• 一般位置是指不存在有一个公共点的三个圆。

解:用 h_n 表示平面一般位置上的n个互相交叠的圆所形成的区域数。

 $h_0=1$: 一个区域即一个平面

 $h_1=2$: 圆内区域和圆外区域

$$h_2 = 4$$

$$h_3 = 8$$

$$h_4 = 14$$

一般递推关系(n≥2):

第n个圆与前n-1个圆相交于

2(n-1)不同交点: $P_1, P_2, ..., P_{2(n-1)}$ 。

共形成第n个圆上的2(n-1)条弧:

$$P_1P_2, P_2P_3, ..., P_{2(n-1)-1}P_{2(n-1)}$$
 $P_{2(n-1)}P_1$:

- 每条弧把穿过的区域一分为二
- 增加了2(n-1)个区域

因此, 得到递推关系: $h_n = h_{n-1} + 2(n-1)$, $h_0 = 1$, $h_1 = 2$

斐波那契(Fibonacci)序列

■ 1202年出版的著作《珠算原理》(Liber Abaci中提出问题:

年初把一对新生的雌雄兔子放进笼子,从第二个月开始 每月生出一对雌雄兔子,每对新兔也从第二个月开始每 月生出一对雌雄兔子,问一年后笼子内共有多少对兔子。

设 f_n 表示第n个月开始(即第n-1个月结束)时笼子里的兔子对数。

$$n=1, f_1=1$$
 $n=5, f_5=5$ $n=6, f_6=8$ $n=4, f_4=3$ $n=4, f_4=3$ $n=6, f_5=5$ $n=6, f_5=5$ $n=6, f_6=8$ $n=6$

设 f_n 表示第n个月开始(即第n-1个月结束)时笼子里的兔子对数。

第5个月开始 已有的兔子

第4个月开始已有的新生兔子在第5个月生的兔子

- 第n个月开始(第n-1个月结束)兔子对数分为两个部分:
 - □ 第*n*-1个月开始(第*n*-2个月结束)已有的兔子对数
 - □ 第*n*-1个月期间出生的兔子对数

··

第n-2个月开始已有的兔子对数

 $f_n = f_{n-1} + f_{n-2}, n \ge 2$ $f_0 = 0, f_1 = 1$

$$f_7=13$$
, $f_8=21$, $f_9=34$, ...

设有数列 $f_0, f_1, f_2, ..., f_n, ...$ 。如果

$$f_0=0, f_1=1,$$
 且满足递推关系 $f_n=f_{n-1}+f_{n-2}, n\geq 2$

称该数列为斐波那契(Fibonacci)数列,这个数列的项称为斐波那契数。

定理7.1.1 斐波那契数 f_n 满足公式

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n, n \ge 0$$

求解线性齐次递推式

设有数列 $f_0, f_1, f_2, ..., f_n, ...$ 。如果

$$f_0=0, f_1=1,$$
 且满足递推关系 $f_n=f_{n-1}+f_{n-2}, n\geq 2$

称该数列为斐波那契(Fibonacci)数列,这个数列的项称为斐波那契数。

例: 斐波那契数列的项的部分和为

$$S_n = f_0 + f_1 + f_2 + \dots + f_n = f_{n+2} - 1$$

证明:对n施归纳法证明。

设有数列 $f_0, f_1, f_2, ..., f_n, ...$ 。如果

$$f_0=0, f_1=1,$$
且满足递推关系 $f_n=f_{n-1}+f_{n-2}, n\geq 2$

称该数列为斐波那契(Fibonacci)数列,这个数列的项称为斐波那契数。

性质:

(1) 斐波那契数列的部分和为

$$s_n = f_0 + f_1 + \dots + f_n = f_{n+2} - 1$$

- (2) 斐波那契数是偶数当且仅当n被3整除
- (3) 斐波那契数能被3整除当且仅当n可被4整除
- (4) 斐波那契数能被4整除当且仅当n可被6整除

NA.

奇妙的斐波那契数列

斐波那契螺旋

- 也称"黄金螺旋",是根据斐波那 契数列画出来的螺旋曲线
- 斐波那契螺旋线,以斐波那契数为 边的正方形拼成的长方形,然后在 正方形里面画一个90度的扇形,连 起来的弧线就是斐波那契螺旋线
- 自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。

斐波那契螺旋

一株树木各个年份的枝桠数构成斐波那契数列

Ŋė.

Fibonacci数列与黄金分割数

- 观察数据: $\{\frac{f_n}{f_{n+1}}, n \ge 0\}$: $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}, \frac{13}{21}, \dots$
- 数列 $\{\frac{f_n}{f_{n+1}}, n \ge 0\}$ 不是单调函数,但随着n的增大,Fibonacci数列的前两项与之比趋近于黄金数0.618。

$$\lim_{n \to \infty} \frac{f_n}{f_{n+1}} = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

例: 斐波那契数列的部分和为

$$s_n = f_0 + f_1 + \dots + f_n = f_{n+2} - 1$$

证明:对 n用数学归纳法。

当n=0时, $s_0=f_0=0$,且 $f_2-1=1-1=0$,结论成立。

当 $n \ge 1$ 时,假设结论对n成立,即 $s_n = f_0 + f_1 + \ldots + f_n = f_{n+2} - 1$ 。

考虑n+1时, $s_{n+1}=f_0+f_1+\ldots+f_n+f_{n+1}=f_{n+2}-1+f_{n+1}=f_{n+3}-1$ 。

由归纳法,结论对n ≥ 0时成立。

例: 斐波那契数 f, 是偶数当且仅当 n被3整除。

$$f_0=0$$
, $f_1=1$, $f_2=1$, $f_3=2$, $f_4=3$, $f_5=5$, $f_6=8$, $f_7=13$, $f_8=21$, (偶数,奇数,奇数)

偶数,奇数,奇数,偶数,奇数,奇数

证明:可证,斐波那契数列的每三项构成了 (偶数,奇数,奇数)的形式,

即,对于任意的 $i=\geq 0$,

 f_{3i} 为偶数, f_{3i+1} 为奇数, f_{3i+2} 为奇数(数学归纳法)。 因此,斐波那契数是偶数当且仅当n被3整除。

斐波那契数在其他组合学问题的应用

定理7.1.2 沿Pascal三角形从左下到右上的对角线上的二项式

系数和是斐波那契数,即

$$f_n = \binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \dots + \binom{n-t}{t-1}$$

其中, $t = \lfloor \frac{m+1}{2} \rfloor$ 。

n∖k	0	1	2	3	4	5	6	7	8
0	1	1	2						
1	1	1	3	5					
2	1	2	1	8	13				
3	1	3	3	7	21	34			
4	1	4	6	A	1				
5.	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

在其他组合学问题的应用

例:确定 $2 \times n$ 棋盘用多米诺牌完美覆盖的方法数 h_n 。

(每张多米诺骨牌正好可以覆盖棋盘上两个相邻的方格)

规定 $h_0=1$.

在其他组合学问题的应用

例:确定 $2 \times n$ 棋盘用多米诺牌完美覆盖的方法数 h_n 。

(每张多米诺骨牌正好可以覆盖棋盘上两个相邻的方格)

 $h_n = h_{n-1} + h_{n-2}$ 满足斐波那契递推关系。 h_n 是斐波那契数。

例:确定用单牌和多米诺牌完美覆盖 $1 \times n$ 棋盘的方法数 b_n 。

单牌:

多为

多米诺牌:

- 2×n棋盘用多米诺牌的完美覆盖与
- 1×n棋盘用单牌和多米诺牌的完美覆盖的一一对应

因此,用单牌和多米诺牌覆盖1×n棋盘的完美覆盖数等于用多米诺牌覆盖2×n棋盘的完美覆盖数