1M001 UPMC, 9 octobre 2014.

T. Leblé, leble@ann.jussieu.fr

TD 4bis: Révisions

Exercice 1 Soit A et B deux ensembles finis et $F:A\times B\to\mathbb{R}$ une fonction. Justifier que F est bornée. Montrer que

$$\max_{a \in A} \min_{b \in B} F(a, b) \le \min_{a \in A} \max_{b \in B} F(a, b).$$

L'inégalité peut-elle être stricte?

Exercice 2 Soit $u = (u_n)_{n \ge 0}$ une suite telle que la suite $v = \left(\frac{u_n}{1+u_n}\right)_{n \ge 0}$ tende vers 0. Montrer que u tend vers 0.

Exercice 3 Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f(x+y) = f(x)f(y) pour tout $x, y \in \mathbb{R}$. Montrer que f est la fonction nulle ou bien f(0) = 1. Montrer que si f est continue en 0 alors f est continue partout.

Exercice 4 Montrer que le maximum de deux fonctions continues est une fonction continue.

Exercice 5 Montrer que si f est une fonction dérivable en un point x_0 alors

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0).$$

Étudier la réciproque.

Exercice 6 Soit f une fonction dérivable qui admet la même limite en $+\infty$ et $-\infty$. Montrer que f' s'annule.

Exercice 7 Soit f une fonction dérivable sur \mathbb{R} . Montrer que si $\lim_{x+\infty} f'(x) = +\infty$ alors $\lim_{x+\infty} \frac{f(x)}{x} = +\infty$. Montrer que si $\lim_{x+\infty} f'(x) = l$ alors $\lim_{x+\infty} \frac{f(x)}{x} = l$.

Exercice 8 Soit I un intervalle de \mathbb{R} et k > 0. On dit qu'une fonction $f: I \to \mathbb{R}$ est k-Lipschitz lorsque $|f(x) - f(y)| \le k|x - y|$ pour tout x, y dans I. On dit que f est Lipschitz lorsqu'elle est k-Lipschitz pour un certain k > 0.

- 1. Écrire les définitions avec des quantificateurs. Écrire leur négation.
- 2. Montrer qu'une fonction de classe C^1 sur \mathbb{R} est Lipschitz sur tout segment.
- 3. Montrer que $x \mapsto x^2$ et $x \mapsto \exp(x)$ ne sont pas Lipschitz sur \mathbb{R} .
- 4. La somme de deux fonctions Lipschitz est-elle Lipschitz? Le produit de deux fonctions Lipschitz est-il Lipschitz?