Colles de mathématiques en PCSI 5

23 mars 2012

Programme

Relations binaires et relations d'ordre. Ensemble $\mathbb N$, raisonnement par récurrence. Ensemble $\mathbb Z$, éléments d'arithmétiques (division euclidienne, nombres premiers, décomposition d'un entier en produit de nombres premiers, l'unicité étant admise). Ensemble $\mathbb R$: partie entière, valeur absolue, densité des rationnels et irrationnels. Borne supérieure et borne inférieure. Équations différentielles linéaires du premier ordre. Équations différentielles linéaires du second ordre à coefficients constants et avec un second membre du type $\sum \exp(ax)Q(x)$ avec Q un polynôme.

Exercice nº 1

Déterminer les $f:[0,1]\to\mathbb{R}$ dérivables telles que $f'+f+\int_0^1 f(x)dx=0$.

Exercice nº 2

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall x, y \in \mathbb{R}, \ f(x)f(y) = \int_{x-y}^{x+y} f(t)dt.$$

Exercice nº 3

Déterminer les $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}, \ f'(x) + f(-x) = \exp(x).$$

Exercice nº 4

Résoudre l'EDL $y'' - 4y' + 4y = (x^2 + 1) \exp(x)$.

Exercice nº 5

Soit

$$g_{\varepsilon} = \begin{cases} 0 & \text{si } t \leq 0\\ \frac{t}{\varepsilon} & \text{si } 0 \leq t \leq \varepsilon \\ 1 & \text{si } t \geqslant \varepsilon \end{cases}$$
 (1)

Montrer que l'équation différentielle $y'' + \omega^2 y = g_{\varepsilon}$ admet une unique solution sur \mathbb{R} telle que $\forall t \leq 0, \ y(t) = 0$. On note y_{ε} cette solution. Étudier alors y_{ε} lorsque ε tend vers 0.

Exercice nº 6

Soit $A \subset \mathbb{R}$. Prouver que $\sup\{|x-y|, x, y \in A\} = \sup(A) - \inf(A)$.

Exercice nº 7

Soient $A \subset \mathbb{R}$ et $x \in \mathbb{R}$. On définit d(x, A) la distance de x à A par $d(x, A) = \inf\{|x-y|, y \in A\}$.

Prouver que l'application $x \in \mathbb{R} \mapsto d(x, A)$ est 1-lipschitzienne, c'est à dire

$$\forall x, y \in \mathbb{R}, |d(x, A) - d(y, A)| \leq |x - y|.$$

Exercice nº 8

Soit $n \in \mathbb{N}^*$. Étudier la fonction $x \in \mathbb{R} \mapsto E(nx) - nE(x)$. (E(.) désigne la partie entière.)

Exercice nº 9

Soit x un réel et b un entier. Posons pour tout entier n, $u_n = \frac{E(b^n x)}{b^n}$ et $v_n = u_n + \frac{1}{b^n}$. Prouver que les suites (u_n) et (v_n) sont adjacentes et que leur limite est x. Donner une estimation de l'erreur $x - u_n$ et $x - v_n$.

Exercice nº 10

Soit $n \in \mathbb{N}$ qui ne s'écrit pas $n = m^2$ avec $m \in \mathbb{N}$. Prouver que $\sqrt{n} \in \mathbb{R} \setminus \mathbb{Q}$.

Exercice nº 11

On définit le *n*-ième nombre de Fermat par $F_n=2^{2^n}+1$. Prouver que $n\neq m\Rightarrow \operatorname{pgcd}(F_n,F_m)=1$.