AVALIAÇÃO DO DETERMINISMO TEMPORAL NO TRATAMENTO DE INTERRUPÇÕES EM PLATAFORMAS DE TEMPO REAL LINUX

Paul Regnier, George Lima, Luciano Barreto

Laboratório de Sistemas Distribuídos (LaSiD) Mestrado em Mecatrônica Departamento de Ciência da Computação - UFBA Apoio FAPESB - TIC 2630-2006

Workshop de Sistemas Operacionais 2008

CONTEXTO

MESTRADO EM MECATRÔNICA

DESENVOLVIMENTO DE *DoRiS* an *Ethernet Double Ring Service for RTS*

- Protocolo de comunicação em tempo real baseado em Ethernet
- Especificação e verificação formal em TLA+
- Realização de um protótipo num SO de Tempo Real

OBJETIVO: achar uma plataforma operacional com garantias temporais satisfatória em situação de carga variável

Sistema Operacional de Tempo Real (SOTR) com ambiente misto de programação (controle e supervisão em tempo real e aplicações de melhor esforço)

CONTEXTO

MESTRADO EM MECATRÔNICA

DESENVOLVIMENTO DE *DoRiS* an *Ethernet Double Ring Service for RTS*

- Protocolo de comunicação em tempo real baseado em Ethernet
- Especificação e verificação formal em TLA+
- Realização de um protótipo num SO de Tempo Real

OBJETIVO: achar uma plataforma operacional com garantias temporais satisfatória em situação de carga variável

Sistema Operacional de Tempo Real (SOTR) com ambiente misto de programação (controle e supervisão em tempo real e aplicações de melhor esforço)

A ESCOLHA DE LINUX

VANTAGENS

- SO de código livre e aberto
- Boa aceitação nos ambientes de pesquisa acadêmica
- Grande variedade de aplicações (multimídia, banco de dados, sistemas embarcadas...)

PORÉM, LINUX NÃO FORNECE GARANTIAS TEMPORAIS SUFICIENTES

- Resolução temporal
- Escalonamento (resolução do tick)
- Tratamento das interrupções

A ESCOLHA DE LINUX

VANTAGENS

- SO de código livre e aberto
- Boa aceitação nos ambientes de pesquisa acadêmica
- Grande variedade de aplicações (multimídia, banco de dados, sistemas embarcadas...)

PORÉM, LINUX NÃO FORNECE GARANTIAS TEMPORAIS SUFICIENTES

- Resolução temporal
- Escalonamento (resolução do tick)
- Tratamento das interrupções

ABORDAGENS DE TEMPO REAL PARA LINUX

LINUXPrt

- Temporizadores de alta resolução (μs)
- Kernel totalmente preemptível
- Compartilhamento de recursos ⇒ herança de prioridade
- 1 IRQ-line ⇒ 1 thread de interrupção
- Opção irQf_nodelay

LINIIXXen

- Domínio: ambiente isolados de execução
- I-Pipe: canal hierárquico de interrupções
- Técnica de indireção das interrupções Adeos (nanokernel)
- Pilha de rede determinista RTnet
- API de tempo real (RTDM) modo kernel e/ou usuário

ABORDAGENS DE TEMPO REAL PARA LINUX

LINUX^{Prt}

- Temporizadores de alta resolução (μs)
- Kernel totalmente preemptível
- Compartilhamento de recursos ⇒ herança de prioridade
- 1 IRQ-line ⇒ 1 thread de interrupção
- Opção irQf_nodelay

LINUXXen

- Domínio: ambiente isolados de execução
- I-Pipe: canal hierárquico de interrupções
- Técnica de indireção das interrupções Adeos (nanokernel)
- Pilha de rede determinista RTnet
- API de tempo real (RTDM) modo kernel e/ou usuário

GERENCIAMENTO DAS INTERRUPÇÕES NO XENOMAI

MÉTRICAS: *Lat_{irq} E Lat_{ativ}*

Latência de interrupção: Latirq

O intervalo de tempo entre o instante no qual uma interrupção é requisitada por um dispositivo de hardware e o instante no qual o respectivo tratador começa a executar

Latência de ativação: *Lat_{ativ}*

O intervalo de tempo entre o instante no qual uma tarefa é acordada e o instante no qual esta tarefa começa a executar

TIME STAMP COUNTER (TSC)

Medidas de tempo realizadas pela leitura dos 64 bits do TSC com precisão de 30*ns*

DISPOSITIVO EXPERIMENTAL

Medidas na estação E_M

Realizadas no contexto da recepção, em eth_0 , de quadros Ethernet enviados por E_T com uma freqüência de 20 Hz

METODOLOGIA EXPERIMENTAL

 t_1 em E_M

- 1. Pacote enviado por E_D chegue em E_M
- 2. Requisição de uma interrupção na PP

 t_2 em E_M

- Execução do tratador de interrupção da PP
- 2. Sinal de despertar da tarefa τ
- t_3 em E_M
- 1. A tarefa τ acorda

METODOLOGIA EXPERIMENTAL

- t_1 em E_M
- 1. Pacote enviado por E_D chegue em E_M
- 2. Requisição de uma interrupção na PP
- t_2 em E_M
- Execução do tratador de interrupção da PP
- 2. Sinal de despertar da tarefa au
- t_3 em E_M
- 1. A tarefa τ acorda

METODOLOGIA EXPERIMENTAL

- t_1 em E_M
- 1. Pacote enviado por E_D chegue em E_M
- 2. Requisição de uma interrupção na PP
- t_2 em E_M
- 1. Execução do tratador de interrupção da PP
- 2. Sinal de despertar da tarefa au
- t_3 em E_M
- 1. A tarefa τ acorda

CARGA DE INTERRUPÇÕES, DE PROCESSAMENTO E E/S

CARGA DE INTERRUPÇÕES

Fluxo de pacotes de 64 *bytes* na freqüência de 200kHz entre E_M (servidor) e E_L (*load*) (100.000 interrupções por segundos)

CARGA DE PROCESSAMENTO E E/S (SHELL-SCRIPT)

```
while "true"; do
    dd if=/dev/hda2 of=/dev/null bs=1M count=1000
    find / -name ''*.c'' | xargs egrep include
    tar -cjf /tmp/root.tbz2 /usr/src/linux-xenomai
    cd /usr/src/linux-preempt; make clean; make
done
```

AS PLATAFORMAS AVALIADAS

Linux Std Linux padrão - kernel 2.6.23.9 (opção *low-latency*)

Linux Prt Linux, patch Preempt-RT rt12, kernel 2.6.23.9

Linux PrtND Linux Prt, opção IRQF_NODELAY para a linha PP-IRQ

Linux Linux, patch Xenomai 2.4-rc5, kernel 2.6.19.7

EXPERIMENTOS

- Duração dos experimentos de 600 s (12.000 medidas)
- As figuras correspondem a amostras de 60 s (1.200 medidas)
- Estatísticas correspondem a duração total de 600 s

LINUX Std - Latirg COM CARGA

M: 10.4, SD: 1.9, Mn: 8.8, Mx: 67.7

LINUX Std - Latativ COM CARGA

M: 37.3, SD: 48.2, Mn: 4.6, Mx: 617.5

LINUX Prt - Latirq COM CARGA

M: 58.5, SD: 26.4, Mn: 17.2, Mx: 245.9

LINUX PrtND - Latirq COM CARGA

M: 10.6, SD: 1.6, Mn: 8.9, Mx: 35.8

LINUX PrtND - Latativ COM CARGA

M: 8.0, SD: 2.0, Mn: 5.2, Mx: 31.0

LINUX Xen - Latirq COM CARGA

M: 10.2, SD: 0.1, Mn: 8.8, Mx: 20.8

LINUX Xen - Latativ COM CARGA

M: 8.7, SD: 0.3, Mn: 1.8, Mx: 18.7

DISPOSITIVO EXPERIMENTAL 2 (DE2)

Medidas na estação E_T

- E_T utiliza Linux^{Xen}, em modo $single \Rightarrow Lat_{irq} \approx \delta$
- ullet E_T requisita interrupções na PP de E_M , com freqüência de 20 Hz
- Medidas realizadas em E_T no tratamento das interrupções requisitadas por E_M

METODOLOGIA EXPERIMENTAL - DE2

t_1 em E_T IRQ na PP de E_M e gravação de t_1

 $t_2 - \delta$ em E_M t_2 em E_T IRQ na PP de E_T e sinal de despertar de t_2

 $t_3 - \delta$ em E_M t_3 em E_T A tarefa τ acorda e IRQ na PP de E_T Gravação de t_3

METODOLOGIA EXPERIMENTAL - DE2

 t_1 em E_T IRQ na PP de E_M e gravação de t_1

 $t_2 - \delta$ em E_M IRQ na PP de E_T e sinal de despertar de τ t_2 em E_T Gravação de t_2

METODOLOGIA EXPERIMENTAL - DE2

 t_1 em E_T IRQ na PP de E_M e gravação de t_1

 $t_2 - \delta$ em E_M IRQ na PP de E_T e sinal de despertar de τ t_2 em E_T Gravação de t_2

 $t_3 - \delta$ em E_M A tarefa τ acorda e IRQ na PP de E_T t_3 em E_T Gravação de t_3

LINUXXen - Latirq COM CARGA -DE2

M: 11.3, SD: 1.2, Mn: 9.0, Mx: 19.7

LINUX^{Xen} - Lat_{ativ} COM CARGA - DE2

M: 9.8, SD: 2.0, Mn: 2.7, Mx: 20.8

Resultados em μ **s** para as 4 plataformas

		Linux ^{Std}				Linux ^{Prt}				Linux ^{PrtND}				Linux ^{Xen}			
	Load	no		yes		no		yes		no		yes		no		yes	
Exp. 1		L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact	L _{irq}	Lact
	Mean	8.9	4.6	10.4	37.3	21.5	2.1	58.5	3.8	8.9	5.3	10.6	8.0	9.0	2.1	10.2	8.7
	SD	0.3	0.4	1.9	48.2	1.7	0.2	26.4	2.8	0.2	0.3	1.6	2.0	0.1	0.5	0.1	0.3
	Min	8.7	4.4	8.8	4.6	20.3	1.2	17.2	1.1	8.8	5.0	8.9	5.2	8.8	1.8	8.8	1.8
	Max	18.4	16.2	67.7	617.5	45.1	9.4	245.9	27.4	16.7	13.1	35.8	31.0	11.1	8.4	20.8	18.7
Exp. 2	Mean	9.0	3.6	12.5	19.9	10.2	3.7	31.2	7.2	9.2	4.6	11.8	14.9	9.1	4.0	11.3	9.8
	SD	0.4	0.6	3.2	17.4	0.5	0.4	19.0	3.1	0.4	0.5	2.3	5.6	0.3	0.3	1.2	2.0
	Min	8.8	-1.3	9.0	2.3	10.0	0.8	10.4	2.2	8.9	-0.3	9.1	4.5	8.8	0.3	9.0	2.7
	Max	18.4	19.0	75.0	428.4	30.8	12.7	203.9	21.2	14.9	14.2	49.2	85.0	13.4	9.6	19.7	11.8

LINUX Xen - 20 HORAS - DE2

HISTOGRAMA COM 1.000.000 EVENTOS (ESCALA LOGARÍTMICA)

TRABALHOS RELACIONADOS

ROSTEDT AND HART [3] - LINUX Prt

- Latência de interrupção e escalonamento (tarefa periódica)
- Sem carga do processador

SIRO AND AL. [4] - LINUX Prt, RT-LINUX, RTAI

- Desvios de uma tarefa periódica
- Imbench, sem carga de interrupção

BENOIT AND YAGHMOUR [7] - LINUX^{Prt}, LINUX^{Xen}

- Latência de interrupção (metodologia 2)
- Imbench, com carga de interrupção
- Não publicado, sem latência de ativação

Conclusão

As duas metodologias experimentais forneceram resultados similares.

LINUXStd

- Não provê garantias temporais
- Piores casos acima de 100μs e desvios padrões altos

LINUX^{Prt}

- Piores casos abaixo de 50 μs sem thread de interrupção
- Degradação sensível de Lat_{irq} com thread de interrupção

LINUXXen

- Plataforma a mais determinística
- Piores casos observados de $20\mu s$, desvios padrões de $3\mu s$

Elementos de bibliografia I

- D. P. Bovet, M. Cesati Understanding the Linux Kernel O'Reilly (3rd), 2005
- J. Corbet, A. Rubini and G. Kroah-Hartman Linux Device Drivers O'Reilly (3rd), 2005
- S. Rostedt and D. V. Hart Internals of the RT Patch Proceedings of the Linux Symposium, 2007
- A. Siro, C. Emde and N. McGuire Assessment of the Realtime Preemption Patches (RT-Preempt) and their impact on the general purpose performance of the system

Proceedings of the 9th Real-Time Linux Workshop, 2007

Elementos de bibliografia II

- P. Gerum, K. Yaghmour et al.
 Xenomai
 http://www.xenomai.org, acessado em julho 08
- I. MOLNAR et al. Preempt-RT http://rt.wiki.kernel.org - acessado em julho 08
- K. Benoit and K. Yaghmour Preempt-RT and I-pipe: the numbers http://marc.info/?l=linux-kernel&m=112086443319815&w=2, acessado em julho 2008