

Spectral Classification of White Dwarfs by Dimensionality Reduction

Xander Byrne

Amy Bonsor – Laura Rogers – Christopher Manser

Outline

Spectroscopic surveys

White dwarfs

Dimensionality reduction (DR)

Variation: focus on spectral lines

Spectroscopic Surveys

Spectroscopic Surveys

Spectroscopic Surveys

• 97% of stars will be WDs (M~M_☉, R~R_E)

- 97% of stars will be WDs (M~M⊙, R~R_E)
- Spectral types:

- 97% of stars will be WDs (M~M_☉, R~R_E)
- Spectral types:
 - **DA** (hydrogen)

- 97% of stars will be WDs (M~M_☉, R~R_E)
- Spectral types:
 - **DA** (hydrogen)
 - **DB** (helium)

- 97% of stars will be WDs (M~M_☉, R~R_E)
- Spectral types:
 - **DA** (hydrogen)
 - **DB** (helium)
 - **DZ** (Ca, Mg, ...)

- 97% of stars will be WDs (M~M_☉, R~R_E)
- Spectral types:
 - **DA** (hydrogen)
 - **DB** (helium)
 - **DZ** (Ca, Mg, ...)
 - _ ...

- 97% of stars will be WDs (M~M_☉, R~R_E)
- Spectral types:
 - **DA** (hydrogen)
 - **DB** (helium)
 - **DZ** (Ca, Mg, ...)
 - **–** ...
 - CV (double-peaked)

~{ Interlude: Astrocolonialism }~

 DESI is on the Mayall 4m telescope at lolkam Du'ag / Kitt Peak

 This site is leased (dubiously?) from the Tohono O'odham Nation

astrobites:'A tale of two observatories'

DESI EDR – 4000 WD candidates

DESI EDR – 4000 WD candidates

DESI EDR – 4000 WD candidates

An unsupervised method of simplifying a high-D dataset

- An unsupervised method of simplifying a high-D dataset
- Deprojects dataset into **2D map**, preserving distances

- An unsupervised method of simplifying a high-D dataset
- Deprojects dataset into 2D map, preserving distances

- An unsupervised method of simplifying a high-D dataset
- Deprojects dataset into 2D map, preserving distances

- An unsupervised method of simplifying a high-D dataset
- Deprojects dataset into 2D map, preserving distances

DR on a spectroscopic survey

• Each data point (e.g. spectrum) converted to a vector:

DR on a spectroscopic survey

• Each data point (e.g. spectrum) converted to a vector:

• => a dataset of ~8000D vectors

DR on a spectroscopic survey

• Each data point (e.g. spectrum) converted to a vector:

Advantages over visual classif'n

• **V. fast** (5.5s for N ≈ 4000) and scales as *O(N log N)*

Advantages over visual classif'n

• **V. fast** (5.5s for N ≈ 4000) and scales as *O(N log N)*

• => Much more reproducible / modifiable

Advantages over visual classif'n

• **V. fast** (5.5s for N ≈ 4000) and scales as *O(N log N)*

• => Much more reproducible / modifiable

Objective – doesn't rely on human interpretation

Vectors now clustered based on a spectral feature

- Vectors now clustered based on a spectral feature
- Removes 'distraction' of rest of the spectrum

Conclusions

 Spectroscopic surveys return valuable data for WD science

 Dimensionality reduction is a useful classification tool for spectroscopic surveys

 Focusing on spectral lines can improve classification power

Extra slides

Preprocessing

Can spot mistakes

Can spot mistakes

Can spot mistakes

- Supervised methods rely on a training set
 - Have shown promise in WD classification (Vincent+23, 24)

- Supervised methods rely on a training set
 - Have shown promise in WD classification (Vincent+23, 24)
- But can suffer from class imbalance
 - ...which always exists for WDs

- Supervised methods rely on a training set
 - Have shown promise in WD classification (Vincent+23, 24)

- But can suffer from class imbalance
 - ...which always exists for WDs
- Also, sometimes weirdly confident

Jonathan Ramkissoon

Unsupervised Methods

Don't rely on a training set!

Unsupervised Methods

Don't rely on a training set!

• Looks for **inherent structure** in a dataset (trends, clusters, ...)

Unsupervised Methods

Don't rely on a training set!

• Looks for **inherent structure** in a dataset (trends, clusters, ...)

 Usually involves comparing data points to each other

