

SCHOOL OF BUSINESS

Sudipta Dasmohapatra sd345@duke.edu

Neural Network and Deep Learning Workshop

Spring 2020

Neural Networks: Weights and Activation Functions

output =
$$\begin{cases} 0 & \text{if } \sum_{j} w_{j}x_{j} + b \leq 0 \\ 1 & \text{if } \sum_{j} w_{j}x_{j} + b > 0 \end{cases}$$
Simply $y = \sum_{j} w_{j}x_{j} + b$
$$y = \sum_{j} (weight * input) + bias$$

In this equation b denotes the intercept (also known as bias, and technically a weight itself) and w and x are vectors carrying the weights and values from all inputs

Activation Function

A perceptron works on simple steps:

- 1. All the inputs x are multiplied with their weights w, lets call it k
- 2. Add all the multiplied values = weighted sum
- 3. Apply that weighted sum to the correct activation function

Activation Function: Step Function

$$y = \sum (weight * input) + bias$$

If value of y is above a threshold > activated A (function A) =1 if y> threshold, 0 otherwise

Unit step (threshold)

Disadvantage: Multiple classes in outcome (what if multiple neurons are activated)

Activation Functions

Maps the resulting values in between output values
 Linear activation
 Non-linear activation

A=cx

Equation: f(x) = x

Range: (-infinity to infinity)

Makes the model to generalize with variety of data and differentiate between output

Non Linear Activation Functions

Logistic (
$$A = \frac{1}{1 + e^{-x}}$$
)

- Smooth gradient
- Output between 0 and 1 (wouldn't blow up activations)
- Between values -2 and +2,

y is steep (any small change in x changes y significantly) but either ends, the y changes slow

- = gradient will be small
- = network refuses to learn further

Softmax function: more generalized function for multiclass classification

Non Linear Activation Functions

Tanh or hyperbolic tangent

$$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

- Output between -1, +1
- Derivatives are steeper (gradient is stronger)

• Also has vanishing gradient problem

Negative inputs will be mapped strongly negative and the zero inputs will be mapped near 0

Non Linear Activation Functions

ReLU (Rectified Linear Unit)

- The ReLU is half rectified (from bottom). f(z) is zero when z is less than zero and f(z) is equal to z when z is above or equal to zero
- Range is 0-infinity
- Less computationally expensive compared to sigmoid or tanh = great for deep neural networks

List of Activation Functions

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tariff		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	_/	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	/	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Derivatives of Activation Functions

Back to it: What is a Deep Learning Neural Network?

Collection of inputs, wired to some central layers of perceptrons, and then to a desired number of inputs

There is some element of brute force high computing power to these approaches

Intense data requirements because there are vast numbers of parameters

Tools and Deep Learning Progress

- Perceptron 1960
- Torch
- CUDA
- Theano
- TensorFlow 0.1 2015
- PyTorch 0.1 2017
- TensorFlow 1.0 2018
- PyTorch 1.0 2018
- TensorFlow 2.0 2019

- Perceptron 1957
- Backpropagation, RNN
- CNN, RNN
- Deep Learning 2006
- ImageNet 2009
- DeepFace 2014
- AlphaGo 2016
- BERT (Google) 2018

Deep Learning: How Neural Networks Recognize an Object

Training: During this phase, a neural network is fed thousands of labeled images of various faces, learning to classify them

Input: An unlabeled image is shown to a pretrained network

First Layer: the neurons respond to different simple shapes like edges

Higher Layer: Neurons respond to more complex structures such as nose, lips, forehead

Top Layer: Neurons respond to highly complex abstract concepts that we would identify as different faces

Output: The network predicts what the object most likely is, based on its training

Convolutional Neural Network

The convolutional neural networks are formed by neurons that have parameters in the form of weights and biases that can be learned

Source: http://cs231n.github.io/convolutional-networks/

Convolutional Neural Network

Source: https://torres.ai/en/deeplearning/

CNN: Image Classification

What We See

```
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 41 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27
04 42 16 79 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 49 36 41 72 30 23 88 34 42 99 49 82 47 59 85 74 04 36 14
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 49 16 92 33 48 41 43 52 01 89 19 47 48
```

What Computers See

CNN: Pixel Representation

What do you Want the Computer to do?

Take the image, pass it through a series of convolutional, nonlinear, pooling (or what is defined as downsampling), and fully connected layers, and get an output layer

Image Processing: First Layer

Pixel representation of filter

Visualization of a curve detector filter

Here you see a pixel representation of a filter which is a curve detection filter. Filters are feature identifiers.

Visualization of the First Layer

In the input image, if there is a shape that generally resembles the curve that this filter is representing, then all of the multiplications summed together will result in a large value

Visualization of the First Layer

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0
	0 40 40 0	0 40 40 0 40 20 0 50 0 0	0 40 0 40 0 40 40 20 0 0 50 0 0 0 50	0 40 0 0 40 0 40 0 40 20 0 0 0 50 0 0 0 0 50 0	0 40 0 0 0 40 0 40 0 0 40 20 0 0 0 0 50 0 0 0 0 0 50 0 0	0 40 0 0 0 0 40 0 40 0 0 0 40 20 0 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0

30

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Multiplication and Summation = 0

There isn't anything in the image section that responded to the curve detector filter shown in earlier slide and thus the value in the activation map is zero

Going Deeper into the Layer

Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected

A Full Convolutional Neural Network (LeNet)

CNN: Pooling Layer

Pooling layer creates a strategic down-sampling from a convolutional layer, rendering representations of predominant features in lower dimensions

max pool with 2x2 filters and stride 2

6	8		
3	4		

CNN: Pooling and Flattening

- Advantages of Pooling:
 - The first is that the amount of parameters or weights is reduced by 75%, thus lessening the computation cost
 - Prevents overfitting
- Flattening: Converts the last convolutional layer into a one dimensional neural network layer

CNN: Fully Connected Layer

This layer basically takes an input volume and outputs an N dimensional vector where N is the number of classes that the model has to choose from

If number of classes is four (car, truck, van and bicycle; the final output is a 4-dimensional vector (.55 .10 .30 .05):

A 55% probability that the image is a car

A 10% probability that image is a truck

A 30% probability that image is a van and 5% probability that it is a bicycle

CNN Challenges and Opportunities

• Data, data, data (missing data; open source data)

The more training data that you can give to a network, the more training iterations you can make, the more weight updates you can make, and the better tuned to the network is when it goes to production

- Transfer Learning
- RNN: Sequential Data (e.g., time series, audio, video)
- Assist AI in HealthCare: Taking over standard interactions to relieve burden on healthcare (memorize and track flow charts)

Thanks sd345@duke.edu

