

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA AUTOMATYKI

Praca dyplomowa magisterska

Algorytm sterowania wykorzystujący sztuczne sieci neuronowe dla bezzałogowego statku latającego typu TRICOPTER

Autor: Rafał Włodarz

Kierunek studiów: Automatyka i robotyka Opiekun pracy: dr hab. Adam Piłat Oświadczam, świadomy(-a) odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

1.	Wstę	Wstęp				
	1.1.	Cele pracy	7			
	1.2.	Zawartość pracy	7			
2.	Sztu	Sztuczne sieci neuronowe				
	2.1.	Cele pracy	ç			
3.	Arch	nitektura statku latającego typu tricopter	11			
	3.1.	Konstrukcja tricopter-a	11			
	3.2.	Budowa modelu	11			
4.	Aplil	kacja sterująca	13			
	4.1.	Konfiguracja beaglebone black	13			
		4.1.1. System czasu rzeczywistego	13			
		4.1.2. Przygotowanie systemu operacyjnego	14			
		4.1.3. Analiza operacji zmiennoprzecinkowych	14			
	4.2.	Architektura systemu sterującego	14			
5.	Testy	systemu sterującego	15			
6.	Podsumowanie					

6 SPIS TREŚCI

1. Wstęp

- 1.1. Cele pracy
- 1.2. Zawartość pracy

8 1.2. Zawartość pracy

2. Sztuczne sieci neuronowe

Rozdział ten zawiera informacje na temat sieci neuronowych, ich architektury, zasady działania oraz algorytmów uczenia.

2.1. Cele pracy

2.1. Cele pracy

3. Architektura statku latającego typu tricopter

Poniższy rozdział przedstawia zbiór podstawowych zagadnień związanych z konstrukcją wirnikowca typu tricoper oraz zawiera informacje na temat zasad sterowania układem.

3.1. Konstrukcja tricopter-a

3.2. Budowa modelu

3.2. Budowa modelu

4. Aplikacja sterująca

W niniejszym rozdziale przedstawiono informacje na temat aplikacji sterującej. Zaprezentowano kolejne etapy przygotowania platformy sprzętowej, które wymagane są do weryfikacji działania systemu czasu rzeczywistego o ostrych ograniczeniach czasowych (ang. hard real-time).

4.1. Konfiguracja beaglebone black

4.1.1. System czasu rzeczywistego

System czasu rzeczywistego (ang. real-time system) to system, który przetwarza każdy rodzaj informacji i który musi reagować na sygnały wejściowe - bodźce generowane z zewnątrz w skończonym i określonym czasie. Jego poprawne działanie zależy zarówno od prawidłowych rezultatów logicznych, jak również od czasu reakcji. Na podstawie tych kryteriów są one dzielone na:

- Systemy o ostrych wymaganiach czasowych (ang. hard real-time) wymagania czasowe muszą być skrupulatnie przestrzegane, naruszenie ram czasowych może wpłynąć na życie ludzkie, środowisko czy też sam system,
- Systemy o słabych wymaganiach czasowych (ang. soft real-time) głównym kryterium oceny tych jest średni czas odpowiedzi. Sporadyczne opóźnienie nie powoduje zagrożenia lecz jedynie wpływa negatywnie na ocenę całego systemu,
- Systemy o solidnych wymaganiach czasowych (ang. firm real-time) są one kombinacją systemów o wymaganiach ostrych oraz słabych. Naruszenie kryterium czasowych może pojawiać się okazjonalnie. Często dla lepszej oceny systemu stosuje się ograniczenia czasowe o charakterze śłabym- krótsze, których przekroczenie nie powoduje katastrofy oraz óstrym- dłuższe, których naruszenie oznacza nieprawidłowe działanie systemu.

Bez względu na to które z powyższych kryteriów są spełniane przez system konieczne jest, aby każdy z nich charakteryzował się następującymi cechami:

 Ciągłość działania - powinny działać nieprzerwanie w okresie od uruchomienia systemu do jego wycofania,

- Zależność od otoczenia zachowanie opiera rozpatruje się w kontekście otoczenia. Prowadzone obliczenia zależą od zdarzeń oraz danych pochodzących z zewnątrz układu,
- Współbieżność struktura systemu narzuca, aby jednoczesne zdarzenia były obsługiwane równocześnie przez szereg procesów,
- Przewidywalność zdarzenia i dane generowane przez otoczenie pojawiają się przypadkowo co nie narusza deterministycznego zachowania systemu,
- Punktualność odpowiedź systemu na bodźce zewnętrzne powinna być dostarczona w odpowiednich momentach - wymaganych ramach czasowych.

4.1.2. Przygotowanie systemu operacyjnego

Ze względu na wcześniej wspominaną specyfikę systemu sterującego oraz zastosowanie platformy sprzętowej typu mini PC wraz z systemem operacyjnym typu UNIX, ważne jest, aby wyeliminować wszelkie możliwe przerwania oraz inne aspekty, które wpływają na płynność oraz czas wykonywania się aplikacji sterującej.

4.1.3. Analiza operacji zmiennoprzecinkowych

4.2. Architektura systemu sterującego

5. Testy systemu sterującego

6. Podsumowanie

Bibliografia