F1TENTH Autonomous Racing

Model Predictive Control

Ahmad Amine
University of Pennsylvania
aminea@seas.upenn.edu

Rahul Mangharam University of Pennsylvania rahulm@seas.upenn.edu

- 1. MPC overview
- 2. System dynamics review
- 3. MPC implementation on F1/10

- 1. MPC overview
- 2. System dynamics review
- 3. MPC implementation on F1/10

- 1. MPC overview
- 2. System dynamics review
- 3. MPC implementation on F1/10

Applications: Trajectory Tracking

Green: reference trajectory

Yellow: MPC trajectory

Red: Safety constraints

Applications: Autonomous Drifting

Applications: Learning MPC

PID Drawbacks

$$u(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(t') \, dt' + K_\mathrm{d} rac{de(t)}{dt}$$

- A car takes multiple inputs (steering angle, acceleration).
- Independent PID controllers may give dynamically infeasible control commands, e.g., car may flip over.
- E.g. angle = steering angle = $\pi/3$, velocity = 70mph

PID Drawbacks

$$u(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(t') \, dt' + K_\mathrm{d} rac{de(t)}{dt}$$

- Handles only a single input (e(t)) and a single output (u(t)) (SISO systems).
 E.g. angle error → steering angle input
- Alternative: Use MIMO Controllers like LQR

PID Drawbacks

MIMO (Multi-Input Multi-Output) VS SISO in PID

LQR Drawbacks

$$u^*(k) = \underbrace{-(B'P_{\infty}B + R)^{-1}B'P_{\infty}A}_{F_{\infty}}x(k), \qquad k = 0, \dots, \infty$$

• Cannot deal with constraints. May generate impossible control inputs (steering angle = $\pi/2$) for the car to follow.

Why Use MPC for Racing?

• Satisfy safety constraints.(velocity, acceleration, track bounds, etc...)

Why Use MPC for Racing?

Satisfy physics constraints. (i.e vehicle dynamics, dynamically feasible trajectory)

How powerful is MPC?

- Locally optimal trajectory.
- Can handle MIMO systems.
- Satisfies controller limits (i.e avoid saturation).
- Can incorporate obstacle avoidance constraints.
- Leverages first-principle (physics) models to ensure dynamical feasibility.
- Can guarantee* stability of control law.

MPC: Humans do it too!

Example: Ayrton Senna's bizzare technique

Figure: Figure from (and detailed analysis at): https://alandovecoaching.wordpress.com/2018/05/27/trying-to-master-sennas-throttle-technique-update/

Senna's Throttle Technique

A (possible) explanation

Turbocharger lag compensation: Senna had a mental **model** of turbocharger behavior, and is **predictively** trying to **maximize** acceleration upon exiting a curve.

Figure from: https://alandovecoaching.wordpress.com/2018/05/27/trying-to-master-sennas-throttle-technique-update/ if you're curious for more, see: https://www.youtube.com/watch?v=N4kcLyYhThE

MPC: An Optimization Problem

Essentially, we are trying to solve a constrained optimization problem here.

A general setup looks like this

$$U_t^{\star}(x(t)) := \underset{U_t}{\operatorname{argmin}} \sum_{k=0}^{N-1} q(x_{t+k}, u_{t+k}) \quad \text{to N (N time-steps ahead of now)}$$
 subj. to $x_t = x(t)$ measurement
$$x_{t+k+1} = Ax_{t+k} + Bu_{t+k} \quad \text{system model}$$

$$x_{t+k} \in \mathcal{X} \quad \text{state constraints}$$

$$u_{t+k} \in \mathcal{U} \quad \text{input constraints}$$

$$U_t = \{u_t, u_{t+1}, \dots, u_{t+N-1}\} \quad \text{optimization variables}$$

Problem is defined by

- Objective that is minimized e.g., lap time, tracking error, etc.
- Internal **system model** to predict system behavior i.e., **vehicle dynamics**
- Constraints that have to be satisfied e.g., track limits, steering limits etc.

What are the decision variables in context of our MPC problem? What are we trying to solve for?

MPC: Decision Variables

We are trying to solve for a sequence of control actions (and predicted states very often)

$$[x_0 \dots x_N \quad u_0 \dots u_N]^T$$

MPC: Receding Horizon Control

- Get your current state
- The optimizer computes the control sequence that minimizes cost function
- Apply the first input
- Repeat

Receding Horizon Control: Advantages

- Allows for a computationally tractable optimization problem as opposed to infinite horizon control.
 - Can be guaranteed to converge to infinite horizon control
- Resulting controller is more robust to disturbances as opposed to open-loop control.

MPC: Cost Function (tracking)

- The cost function (objective) is often divided into two pieces:
 - State Error cost
 - Actuation Effort cost
- Q (Positive semi-definite) and R (Positive Definite) are weights you get to choose.
- Very Often, the cost is formulated as quadratic (L2-norm of error)

22

MPC: Dynamics Constraints

- A model which predicts future states (x), can be time-varying
- Some modern solvers (Casadi) can handle nonlinear dynamics.
- Often you will linearize these dynamics for faster computation
- The linearized dynamics is usually of the form:

$$\mathbf{x}(k+1) = A\mathbf{x}(k) + B\mathbf{u}(k)$$
 For each \mathbf{x} and \mathbf{u} in $\begin{bmatrix} x_0 \dots x_N & u_0 \dots u_N \end{bmatrix}^T$

This constraint on two consecutive states makes sure the states sequence is a realistic trajectory (one that satisfy system dynamics)

What if you don't have this constraints on dynamics?

MPC: Dynamics Constraints

Some Nonlinear Dynamics in

continuous time:

$$\dot{p}_1 = v \cos \Psi$$

$$\dot{p}_2 = v \sin \Psi$$

$$\dot{\Psi} = \frac{\tan(\delta)}{l_{\rm E} + l_{\rm B}} v$$

States:
$$x=[p_1,p_2,\Psi]$$
 Control inputs: $u=[v,\delta]$

Linearization and Discretization

$$x(k+1) = Ax(k) + Bu(k)$$

Why is discretization necessary?

MPC: State and Input Constraints

Inequality Constraints:

- Actuator Limit: Steering angle limits, maximum speed, ...
- Track boundaries: can be interpreted as region bounded by a set of lines(half spaces), i.e. Polyhedron.
- Generally written as $x \in X$, $u \in U$ to denote some desired set of states and inputs X and U.
- Can be written as Ax ≤ b, where each row of A, b corresponds to a constraint.

MPC: Putting it together

How are we going to solve this optimization problem?

Quadratic Programming Overview

min
$$\frac{1}{2}z^T H z + g^T z$$

s.t. $lb \le A_c z \le ub$

z: n x 1 H: n x n g: n x 1 A: m x n (m constraints)

Visualization for a two dimensional OP z = [z1, z2]

Convex! (only one global minimum)

fast to solve!

Quadratic Programming Overview

- Not all optimization problems are easy to solve. Most of them are not in fact.
- Our MPC setup is a quadratic programming problem.
- Quadratic Programming (Quadratic Cost & Linear Constraints) is convex: only one global optima exist.
- Can be solved efficiently in real time!
- Many solvers available: CVXGen, OSQP, QuadProg ...
- Casadi for non-convex optimization (Matlab, Python, C++ support)
- Multi-Parametric Toolbox (MPT3) for MPC design, analysis (Linear), deployment.
- Recommend OSQP: nice EIGEN interface, easy to use in C++ https://robotology.github.io/osqp-eigen/doxygen/doc/html/index.html

MPC: QP Formulation

How can we convert our general form MPC formulation to a QP?

MPC
$$\to J_0^*(x(0)) = \min_{U_0} J_0(x(0), U_0)$$

subj. to $x_{k+1} = Ax_k + Bu_k, \ k = 0, ..., N-1$
 $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, ..., N-1$
 $x_N \in \mathcal{X}_f$
 $x_0 = x(0)$

Standard _ OP

min
$$\frac{1}{2}z^T H z + g^T z$$

s.t. $lb < A_c z < ub$

where $z = [x_0 \dots x_N \quad u_0 \dots u_N]^T$

MPC: QP Formulation

$$u_0^* = \arg\min_{x_k, u_k} \quad (x_N - x_r)^T Q_N (x_N - x_r) + \sum_{k=0}^{N-1} (x_k - x_r)^T Q (x_k - x_r) + u_k^T R u_k$$
subject to
$$x_{k+1} = A x_k + B u_k$$

$$x_{\min} \le x_k \le x_{\max}$$

$$u_{\min} \le u_k \le u_{\max}$$

$$x_0 = \bar{x}$$

min
$$\frac{1}{2}z^T H z + g^T z$$

s.t. $lb \le A_c z \le ub$

The idea is to write this summation in compact matrix form

MPC: QP Formulation - Cost Function

Most of the work is just index management.

Cost Function:
$$\frac{1}{2}z^{T}Hz + g^{T}z$$

$$= \operatorname{diag}(Q, Q, \dots, Q_{N}, R, \dots, R)$$

$$= \begin{bmatrix} -Qx_{r} \\ -Qx_{r} \\ \vdots \\ -Q_{N}x_{r} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

MPC: QP Formulation - Constraints

Constraints:

$$lb < A_c z < ub$$

lower bound

$$l = \begin{bmatrix} -x_0 \\ 0 \\ \vdots \\ 0 \\ x_{min} \\ \vdots \\ x_{min} \\ u_{min} \\ \vdots \\ u_{min} \end{bmatrix}$$

$$A_{c} = \begin{bmatrix} -I & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ A & -I & 0 & \cdots & 0 & B & 0 & \cdots & 0 \\ 0 & A & -I & \cdots & 0 & 0 & B & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -I & 0 & 0 & \cdots & B \\ \hline I & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & I & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & I & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & I \end{bmatrix}$$

upper bound

$$u = \begin{bmatrix} -x_0 \\ 0 \\ \vdots \\ 0 \\ x_{max} \\ \vdots \\ x_{max} \\ u_{max} \\ \vdots \\ u_{max} \end{bmatrix}$$

MPC: Control Law

What does an MPC Control Law look like?

Consider the double integrator

$$\begin{cases} x(t+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

subject to constraints

$$-1 \le u(k) \le 1, \ k = 0, \dots, 5$$

$$\begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x(k) \le \begin{bmatrix} 10 \\ 10 \end{bmatrix}, \ k = 0, \dots, 5$$

Compute the **state feedback** optimal controller $u^*(0)(x(0))$

MPC: Control Law

What does an MPC Control Law look like?

Figure: Optimal control input for the affine control law $u^*(0)$ ($N_0^r = 61$)

- 1. MPC overview
- 2. System dynamics review
- 3. MPC implementation on F1/10

System Dynamics Basics

State Space Models

System dynamics can be represented as a vector of ordinary differential equations continuous-time

$$\dot{x} = g(x, u)$$

$$y = h(x, u)$$

discrete-time

$$x(k+1) = g(x(k), u(k))$$
$$y(k) = h(x(k), u(k))$$

$$x \in \mathbb{R}^n$$
 state vector $u \in \mathbb{R}^m$ input vector $y \in \mathbb{R}^p$ output vector

$$g(x, u): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
 system dynamics $h(x, u): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ output function

Linear Systems

continuous-time

$$\dot{x} = A^c x + B^c u$$

discrete-time

$$x(k+1) = Ax(k) + Bu(k)$$

$$x \in \mathbb{R}^n$$
 state vector $u \in \mathbb{R}^m$ input vector

$$A^c \in \mathbb{R}^{n \times n}$$

 $B^c \in \mathbb{R}^{n \times m}$

system matrix input matrix

Forward-Euler Discretization

Given CT model

$$\dot{x}^c(t) = g^c(x^c(t), u^c(t))$$

- Approximate $\dot{x}^c(t) \approx \frac{x^c(t+T_s)-x^c(t)}{T_s} = \frac{x(k+1)-x(k)}{T_s}$
- T_s is the sampling time
- With $u(k) := u^c(t_0 + kT_s)$ the DT model is

$$x(k+1) = x(k) + T_s g^c(x(k), u(k)) = g(x(k), u(k))$$

ullet Under regularity assumptions, if T_s is small and CT and DT have 'same' initial conditions and inputs, then outputs of CT and DT systems 'will be close'

Exact Discretization

Solution to linear ODEs

• Consider the ODE (written with explicit time dependence) $\dot{x}(t) = A^c x(t) + B^c u(t)$ with initial condition $x_0 := x(t_0)$, then its solution is given by

$$x(t) = e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}Bu(\tau)d\tau$$

where
$$e^{A^c t} := \sum_{n=0}^{\infty} \frac{(A^c t)^n}{n!}$$

Exact Discretization

• Choose $t_0 = t_k$ (hence $x_0 = x(t_0) = x(t_k)$), $t = t_{k+1}$ and use $t_{k+1} - t_k = T_s$ and $u(t) = u(t_k) \ \forall t \in [t_k, t_{k+1})$

$$x(t_{k+1}) = e^{A^c T_s} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A^c (t_{k+1} - \tau)} B^c d\tau u(t_k)$$

$$= \underbrace{e^{A^c T_s}}_{\triangleq A} x(t_k) + \underbrace{\int_{0}^{T_s} e^{A^c (T_s - \tau')} B^c d\tau'}_{\triangleq B} u(t_k)$$

$$= Ax(t_k) + Bu(t_k)$$

- We found the **exact** discrete-time model predicting the state of the continuous-time system at time t_{k+1} given $x(t_k)$, $k \in \mathbb{Z}_+$ under the assumption of a constant u(t) during a sampling interval
- $B = (A^c)^{-1}(A I)B^c$, if A^c invertible

Linearization

- **Problem:** Most physical systems are nonlinear but linear systems are much better understood
- Nonlinear systems can be well approximated by a linear system in a 'small' neighborhood around a point in state space
- Idea: Control keeps the system around some operating point → replace nonlinear by a linearized system around operating point

First order Taylor expansion of $f(\cdot)$ around \bar{x}

$$f(x) \approx f(\bar{x}) + \left. \frac{\partial f}{\partial x^{\top}} \right|_{x=\bar{x}} (x-\bar{x}), \text{ with } \frac{\partial f}{\partial x^{\top}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Linearization

 u_s keeps the system around stationary operating point x_s

$$\rightarrow \dot{x}_s = g(x_s, u_s) = 0, y_s = h(x_s, u_s)$$

$$\dot{x} = \underbrace{g(x_s, u_s)}_{=0} + \underbrace{\frac{\partial g}{\partial x^{\top}}}_{\substack{x=x_s \\ u=u_s}} \underbrace{(x-x_s)}_{=\Delta x} + \underbrace{\frac{\partial g}{\partial u^{\top}}}_{\substack{x=x_s \\ u=u_s}} \underbrace{(u-u_s)}_{=\Delta u}$$

$$\Rightarrow \dot{x} - \underbrace{\dot{x}_s}_{=0} = \Delta \dot{x} = A^c \Delta x + B^c \Delta u$$

$$y = \underbrace{h(x_s, u_s)}_{y_s} + \underbrace{\frac{\partial h}{\partial x^{\top}}}_{\substack{x=x_s \\ u=u_s}} \underbrace{(x-x_s)}_{=\Delta x} + \underbrace{\frac{\partial g}{\partial u^{\top}}}_{\substack{x=x_s \\ u=u_s}} \underbrace{(u-u_s)}_{=\Delta u}$$

Why Linear Discrete Systems?

- Linear systems are much better understood than nonlinear systems.
- In context of MPC, linear systems allow us to translate the dynamics as linear constraints in the MPC formulation, which allows us to rewrite the MPC problem as a standard QP.
 - The resulting optimization problem is fast to solve.

Example - Kinematic Bicycle Model

$$\dot{p}_1 = v \cos \Psi$$

$$\dot{p}_2 = v \sin \Psi$$

$$\dot{\Psi} = \frac{\tan(\delta)}{l_F + l_R} v$$

States:
$$x=[p_1,p_2,\Psi]$$
 Control inputs: $u=[v,\delta]$

Linearization and Discretization

$$x(k+1) = Ax(k) + Bu(k)$$

Example - Kinematic Bicycle Model

Linearize around a reference trajectory $(\mathbf{x}_r(k), \mathbf{u}_r(k))$

$$A(k) = \frac{\partial f}{\partial \mathbf{x}} \Big|_{\mathbf{x}_r(k), \mathbf{u}_r(k)} = \begin{bmatrix} 0 & 0 & -vsin(\psi) \\ 0 & 0 & vcos(\psi) \\ 0 & 0 & 0 \end{bmatrix} \Big|_{\mathbf{x}_r(k), \mathbf{u}_r(k)}$$

$$B(k) = \left. \frac{\partial f}{\partial \mathbf{u}} \right|_{\mathbf{x}_r(k), \mathbf{u}_r(k)} = \begin{bmatrix} \cos(\psi) & 0\\ \sin(\psi) & 0\\ \frac{\tan(\delta)}{C_L} & \frac{v}{C_L \cos^2(\delta)} \end{bmatrix} \right|_{\mathbf{x}_r(k), \mathbf{u}_r(k)}$$

$$x_{k+1} = A^d(k)x_k + B^d(k)u_k + h^d(k)$$

Lecture Outline

- 1. MPC overview
- 2. System dynamics review
- 3. MPC implementation on F1/10

MPC Implementation on F1/10

A Hierarchical Structure

- A high level path planner: chooses a trajectory that maximizes progress from a precomputed trajectory table
- A low level MPC to track the planned trajectory from the path planner.
- This approach is based on the first method described in the MPCC Paper https://arxiv.org/pdf/1711.07300.pdf

High Level Path Planner

- Grid the stationary velocities and steering angles within their ranges to form a table, where the rows represent steering angles δ and the columns represent speeds v at different increments.
- For each combination of v and δ, a trajectory over a horizon of N time steps can be simulated by integrating the dynamics.

The trajectories will look like this.

Important: Each trajectory assumes constant speed and constant steering angle.

High Level Planner

- Select the trajectory that maximize progress along track centerline (θ)
- To do this, you need to have a centerline beforehand and be able to find projection on centerline.

The red one goes out of bounds, therefore not a candidate.

The orange one makes the most progress when projected on the centerline. Pick this one!

MPC: Low-level Tracking Control

MPC minimizes deviation from the reference trajectory while satisfying all constraints

Hierarchical Planner - Visualized

Green line: Reference trajectory

Yellow dots: Solution from MPC which minimizes deviation from reference

trajectory

Red lines: Feasible space defined by the region between each pair of parallel

redlines (linear half-space constraints)

Demo

MPC Project Ideas

- Hierarchical Receding Horizon Control
 - Trajectory generator + MPC for trajectory following.
- Model Predictive Contouring Control (MPCC)
 - MPC as a local trajectory planner w.r.t centerline.
- Learning Model Predictive Control
 - Safe Set, minimum time formulation with local linear regression.

See: Lininger, Domahidi, Morari. *Optimization-Based Autonomous Racing of 1:43 Scale RC Cars*, 2017. https://arxiv.org/pdf/1711.07300.pdf

 For obstacle avoidance: incorporate RRT* or A* to adjust half-space constraints for MPC in real time.

Summary: Model Predictive Control

At each sample time:

- Measure /estimate current state x(t)
- Find the **optimal input sequence** for the entire planning window N: $U_t^* = \{u_t^*, u_{t+1}^*, \dots, u_{t+N-1}^*\}$
- Implement only the **first** control action u_t^*

MPC: Advantages and Limitations

Main Advantages:

- High performance controller that systematically handles constraints.
- Flexible formulation that can incorporate additional objectives.
- Can be formulated for nonlinear system dynamics.
- Can handle time-varying dynamics.

Main Limitations/Challenges:

- Stability is not always guaranteed.
- Feasibility is not always guaranteed.
- Computationally expensive optimization problem needs to be solved real-time to be used as a controller.
- Robustness to system model errors is not guaranteed.

Practical MPC Tips

- MPC performance is heavily influenced by the model you choose for your vehicle
 - A kinematic model might not be the best for high-speeds.
 - Ensure proper linearization and discretization.
- Avoid using the horizon length N as a tuning parameter:
 - Choose this based on system settling time or computational limits.
- MPC can only be used as a controller if it can be solved real-time:
 - The choice of solver can have a large impact on solve time.
 - Are you using warm start for your optimization loop?
 - Only define the optimization problem once and update its parameters:
 - Optimization problem creation has a large overhead especially in CVXPY.
 - Python is fast enough if you use sparse matrices and good optimization code.

