WO9817648

Title: ANTHRANILIC ACID DERIVATIVES AS MULTI DRUG RESISTANCE MODULATORS

Abstract:

Anthranilic acid derivatives of formula (I) wherein each of R to R&It;9> is an organic substituent, n is 0 or 1, m is 0 or an integer of 1 to 6, q is 0 or 1, X is a direct bond, O, S, -S- (CH2)p- or -O- (CH2)p- wherein p is from 1 to 6 and Ar is an unsaturated carbocyclic or heterocyclic group, and the pharmaceutically acceptable salts thereof, have activity as inhibitors of P-glycoprotein and may thus be used, inter alia, as modulators of multidrug resistance in the treatment of multidrug resistant cancers, for example to potentiate the cytotoxicity of a cancer drug.

BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 217/04, A61K 31/47

(11) International Publication Number:

WO 98/17648

A1 |

(43) International Publication Date:

30 April 1998 (30.04.98)

(21) International Application Number:

PCT/GB97/02885

(22) International Filing Date:

17 October 1997 (17.10.97)

(30) Priority Data:

PCT/GB96/02552 18 October 1996 (18.10.96) WO
(34) Countries for which the regional or
international application was filed: AL et al.
9717576.4 19 August 1997 (19.08.97) GB

(71) Applicant (for all designated States except US): XENOVA LIMITED [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RYDER, Hamish [GB/GB]; 240 Bath Road, Slouth, Berkshire SL1 4EF (GB). ASHWORTH, Philip, Anthony [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). ROE, Michael, John [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). BRUMWELL, Julie, Elizabeth [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). HUNJAN, Sukhjit [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). FOLKES, Adrian, John [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). SANDERSON, Jason, Terry [GB/GB]; 240 Bath Road, Slough, Berkshire

SL1 4EF (GB). WILLIAMS, Susannah [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB). MAXIMEN, Levi, Michael [GB/GB]; 240 Bath Road, Slough, Berkshire SL1 4EF (GB).

(74) Agents: KEEN, Celia, Mary et al.; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5LX (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ANTHRANILIC ACID DERIVATIVES AS MULTI DRUG RESISTANCE MODULATORS

(57) Abstract

Anthranilic acid derivatives of formula (I) wherein each of R to R^9 is an organic substituent, n is 0 or 1, m is 0 or an integer of 1 to 6, q is 0 or 1, X is a direct bond, O, S, $-S-(CH_2)_{p-}$ or $-O-(CH_2)_{p-}$ wherein p is from 1 to 6 and Ar is an unsaturated carbocyclic or heterocyclic group, and the pharmaceutically acceptable salts thereof, have activity as inhibitors of P-glycoprotein and may thus be used, inter alia, as modulators of multidrug resistance in the treatment of multidrug resistant cancers, for example to potentiate the cytotoxicity of a cancer drug.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco _	TD	Chad -
BA	Bosnia and Herzegovina	-GE-	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan .		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		
•					~ V		

1

ANTHRANILIC ACID DERIVATIVES AS MULTI DRUG RESISTANCE MODULATORS

The present invention relates to compounds useful as modulators of multi-drug resistance (MDR), in particular MDR caused by over-production of P-glycoprotein (P-gp), to their preparation and to pharmaceutical and veterinary compositions containing them.

The resistance of tumours to treatment with certain cytotoxic agents is an obstacle to the successful chemotherapeutic treatment of cancer patients. A tumour may acquire resistance to a cytotoxic agent used in a previous treatment. A tumour may also manifest intrinsic resistance, or cross-resistance, to a cytotoxic agent to which it has not previously been exposed, that agent being unrelated by structure or mechanism of action to any agent used in previous treatments of the tumour.

Analogously, certain pathogens may acquire resistance to pharmaceutical agents used in previous treatments of the diseases or disorders to which those pathogens give rise. Pathogens may also manifest intrinsic resistance, or cross resistance, to pharmaceutical agents to which they have not previously been exposed. Examples of this effect include multidrug resistant forms of malaria, tuberculosis, leishmaniasis and amoebic dysentery. These phenomena are referred to collectively as multi-drug resistance (MDR).

The most common form of MDR is caused by over-production in the cell membrane of P-gp, a protein which is able to reduce the accumulation of drugs in cells by pumping them out. This protein has been shown to be a major cause of multidrug resistance in tumour cells (Beck, W.T. Biochem. Pharmacol, 1987, 36,2879-2887).

In addition to cancer cells, p-glycoprotein has been found in many normal human tissues including the liver, small intestine, kidney, and blood-brain endothelium. P-gps are localised to the secretory domains of the cells in all these tissues. This localisation suggests that P-gp may play a role in limiting the absorption of foreign toxic substances across biological barriers.

Consequently, in addition to their ability to increase the sensitivity of cancer cells to cytotoxic agents, P-gp inhibitors are expected to increase the net oral absorption of certain drugs and improve the transport of drugs through the blood-brain barrier. Indeed, administration of cyclosporin, a P-gp inhibitor, has been shown to increase the intestinal absorption of acebutolol and vinblastine in rats by 2.6 and 2.2-fold respectively (Tereo, T. et al. J. Pharm. Pharmacol, 1996, 48, 1083-1089), while mice deficient in mdr la P-gp gene exhibit up to 100-fold increased senstivity to the centrally neurotoxic pesticide ivermectin (Schinkel, A. H. et al Cell 1994, 77, 491-502). Besides increased drug levels in the brain, the P-gp deficient mice were shown to have elevated drug levels in many tissues and decreased drug elimination.

Disadvantages of drugs which have so far been used to modulate MDR, termed resistance modifying agents or RMAs, are that they frequently possess a poor pharmacokinetic profile and/or are toxic at the concentrations required for MDR modulation.

It has now been found that a series of anthranilic acid derivatives have activity as inhibitors of P-gp and may therefore be used in overcoming the multi-drug resistance of tumours and pathogens. They also have potential utility in improving the absorption, distribution, metabolism and elimination characteristics of certain drugs.

The present invention therefore provides a compound which is an anthranilic acid derivative of formula (I):

wherein

each of R, R^1 and R^2 , which are the same or different, is H, C_1 - C_6 alkyl, OH, C_1 - C_6 alkoxy, halogen, nitro, or $N(R^{10}R^{11})$ wherein each of R^{10} and R^{11} , which are the same or different, is H

or C_1 - C_6 alkyl, or R^1 and R^2 , being attached to adjacent positions of ring \underline{b} , together form a methylenedioxy or ethylenedioxy group;

R³ is H or C₁-C₆ alkyl

 R^4 is C_1 - C_6 alkyl or R^4 represents $-CH_2$ - or $-CH_2CH_2$ - which is attached either (i) to position 2 of ring \underline{b} to complete a saturated 5- or 6-membered nitrogen-containing ring fused to ring \underline{b} , or (ii) to the position in ring \underline{a} adjacent to that to which X, being a single bond, is linked, thereby completing a saturated 5- or 6-membered nitrogen-containing ring fused to ring \underline{a} ;

R⁵ is H, OH or C₁-C₆ alkyl;

X is a direct bond, O, S, $-S-(CH_2)_p-$ or $-O-(CH_2)_p-$ wherein p is an integer of 1 to 6;

 R^6 is H, C_1-C_6 alkyl or C_1-C_6 alkoxy;

q is 0 or 1;

Ar is an unsaturated carbocyclic or heterocyclic group; each of R^7 and R^8 , which are the same or different, is H, C_1 - C_6 alkyl which is unsubstituted or substituted, C_1 - C_6 alkoxy, hydroxy, halogen, phenyl, -NHOH, nitro, a group $N(R^{10}R^{11})$ as defined above or a group SR^{12} wherein R^{12} is H or C_1 - C_6 alkyl or R^7 and R^8 , when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent;

 R^9 is phenyl or an unsaturated heterocyclic group, either of which is unsubstituted or substituted by $C_1\text{-}C_6$ alkyl, OH, $C_1\text{-}C_6$ alkoxy, halogen, $C_3\text{-}C_6$ cycloalkyl, phenyl, benzyl, trifluoromethyl, nitro, acetyl, benzoyl or $N(R^{10}R^{11})$ as defined above, or two substituents on adjacent ring positions of the said phenyl or heterocyclic group together complete a saturated or unsaturated 6-membered ring, or form a methylenedioxy group;

n is 0 or 1; and

m is 0 or an integer of 1 to 6;

or a pharmaceutically acceptable salt thereof.

The group X is linked to any one of the positions 2 to 6 in ring \underline{a} which are not occupied by R^6 . Preferably it is linked to position 3 or 4. In a preferred series of compounds R^6 is at position 2 and X is at position 3 or 4 in ring \underline{a} . When X is at position 3 or 4 in ring \underline{a} R⁶ may alternatively occupy position 5.

4

Owing to the free rotation of ring \underline{a} , position 6 is equivalent to position 2.

The value of m is preferably 0 or an integer of 1 to 3, more preferably 1 or 2. The value of q is preferably 1.

A C_1 - C_6 alkyl group may be linear or branched. A C_1 - C_6 alkyl group is typically a C_1 - C_4 alkyl group, for example a methyl, ethyl, propyl, i-propyl, n-butyl, sec-butyl or tert-butyl group. A halogen is F, Cl, Br or I. Preferably it is F, Cl or Br. A C_1 - C_6 alkyl group which is substituted is typically substituted by one or more halogen atoms, for instance by 1, 2 or 3 halogen atoms. It may be a perhaloalkyl group, for instance trifluoromethyl.

A C_1 - C_6 alkoxy group may be linear or branched. It is typically a C_1 - C_4 alkoxy group, for example a methoxy, ethoxy, propoxy, i-propoxy, n-propoxy, n-butoxy, sec-butoxy or tert-butoxy group. The integer m is from 1 to 6 and is typically 1, 2 or 3.

An unsaturated carbocyclic group is typically a C_5 - C_{10} carbocyclic group which contains at least one unsaturated bond, for instance a C_6 - C_{10} aryl group such as a phenyl or naphthyl group. An unsaturated heterocyclic group is typically a 5 or 6-membered heterocyclic ring with at least one unsaturated bond, which contains one or more heteroatoms selected from N, S and O and which is optionally fused to a benzene ring or to a second such 5 or 6-membered heterocyclic ring.

An unsaturated heterocyclic group may be, for example, a furan, thiophene, pyrrole, indole, isoindole, pyrazole, imidazole, isoxazole, oxazole, isothiazole, thiazole, pyridine, quinoline, quinoxaline, isoquinoline, thienopyrazine, pyran, pyrimidine, pyridazine, pyrazine, purine or triazine group. The aforesaid heterocyclic ring may be unsubstituted or substituted by one or more substituents, for instance one or more substituents selected from OH, halogen, C_1 - C_6 alkyl which is unsubstituted or substituted, for example by halogen, such as CF_3 , C_1 - C_6 alkoxy, nitro and an amino group $N(R^{10}R^{11})$ as defined above.

Preferably the heterocyclic group represented by R' includes at least one nitrogen atom and the heterocyclic group

represented by Ar includes at least one nitrogen or sulphur atom.

In a preferred series of compounds n is 0 and R^4 represents $-CH_2CH_2$ - which is attached to position 2 or 6 of ring \underline{b} to complete, with ring \underline{b} , a tetrahydroisoquinoline group. Alternatively, n is 1 and R^4 is $-CH_2$ - which is attached to position 2 or 6 of ring \underline{b} to complete, with ring \underline{b} , a tetrahydroisoquinoline group.

In another preferred series of compounds m is 1, X is a single bond attached to position 3 or 4 of ring \underline{a} and R^4 represents -CH₂- which is attached to a ring position adjacent to position 3 or 4, respectively, of ring \underline{a} to complete with ring \underline{a} a tetrahydroisoquinoline group. Alternatively m is 0, X is a single bond attached to position 3 or 4 of ring \underline{a} and R^4 is -CH₂CH₂- which is attached to a ring position adjacent to position 3 or 4, respectively, of ring \underline{a} to complete with ring \underline{a} a tetrahydroisoquinoline group.

The moiety Ar is preferably a benzene, naphthalene, thiophene, thienopyrazine, pyridine, pyrazine, indole or furan ring.

The group R° is preferably a quinoline, isoquinoline, quinoxaline, pyridine, pyrazine, oxazole, isoxazole, thiazole or isothiazole group. More preferably R° is a quinolin-3-yl, quinoxalin-2-yl, pyrazin-2-yl, pyridin-2-yl, pyridin-3-yl, oxazol-4-yl or thiazol-4-yl group.

R, R^1 and R^2 are preferably independently selected from H, OH, C_1 - C_6 alkoxy and nitro, or R is H and R^1 and R^2 , being attached to positions 2 and 3, 3 and 4, 4 and 5 or 5 and 6 of ring \underline{b} , together form a methylenedioxy or ethylenedioxy group.

In a preferred aspect, the anthranilic acid of the invention has the following formula (Ia):

$$R^{31}$$
 R^{31}
 R

wherein R^{11} and R^{21} , which may be the same or different, are each hydrogen or methoxy;

 R^{31} and R^{41} , which may be the same or different, are each independently selected from H, CH_3 , CF_3 , F, Cl, Br, NH_2 , NO_2 , NHOH, methoxy, hydroxy and phenyl; or R^{31} and R^{41} , when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent,

 R^{51} is 2-furanyl, 3-furanyl, 2-thiophene, 3-thiophene, 2-indolyl or 2-benzofuranyl or a ring of one of the following formulae (II'), (III') or (IV'):

$$R^{61}$$
 R^{71}
 R^{91}
 R^{91}
 R^{101}
 R^{111}
 R^{111}

wherein R^{61} and R^{71} , which may be the same or different, are selected from hydrogen, C_1 - C_6 alkyl which is linear or branched, C_3 - C_6 cycloalkyl, phenyl, benzyl, trifluoromethyl, F, Cl, Br, OR^{12} , NO_2 , dimethylamino, diethylamino, acetyl and benzoyl, or R^{61} and R^{71} when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent;

 R^{91} and R^{91} , which may be the same or different are each hydrogen, methyl or methoxy, or R^{81} and R^{91} , when situated on adjacent carbons, form together with the pyridine ring to which they are attached a quinoline or 5,6,7,8-tetrahydroquinoline ring system; R^{101} and R^{111} , which may be the same or different, are each hydrogen, methyl or propionyl; or R^{101} and R^{111} , when on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring,

 R^{121} is H, C_1 - C_6 alkyl, or C_3 - C_6 cycloalkyl, phenyl, benzyl or acetyl;

r is 0 or 1, and s is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

The integer s is from 1 to 3, and is preferably 1 or 2. In a preferred series of compounds of formula (Ia) r is 1, s is 2, R^{11} and R^{21} are both methoxy and R^{51} is a 2-quinoxaline group, a 3-quinoline group, a 2-pyrazine group or a 3-pyridine group, all of which groups may be unsubstituted or substituted.

In another aspect, the anthranilic acid of the invention has the following structure (A)

$$R^7$$
 R^8
 R^9
 R^9
 R^9
 R^9
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R
 R^3
 R
 R^3
 R
 R^3
 R
 R^3
 R
 R

wherein

(a) each of R, R^1 and R^2 , which are the same or different, is H, OH, NO_2 , $N(R^{10}R^{11})$, halogen or C_2 - C_6 alkoxy, or R is H and R^1 and R^2 form, together with the carbon atoms to which they are attached, a methylenedioxy or ethylenedioxy group, provided R, R^1 and R^2 are not all H; and each of R^3 , R^5 , R^6 , R^7 , R^8 , R^9 , Ar, X and m is as defined for formula (I) above; or

(b) each of R, R^1 and R^2 , which are the same or different, is H or OMe and each of R^3 , R^5 , R^6 , R^7 , R^8 , R^9 , Ar, X and m is as defined above.

In another aspect the anthranilic acid of the invention has the following structure (B):

$$R^7$$
 R^8
 R^8

8

wherein R, R^1 to R^3 , R^5 to R^9 , Ar and n are as defined above for formula (I)

In a further aspect, the anthranilic acid of the invention has the following structure (C):

$$\begin{array}{c|c}
R^7 & Ar & M & \underline{\underline{a}} & X & CH_2 & \underline{\underline{b}} & R^3 \\
NH & R^6 & R^5 & R^5 & R^2
\end{array}$$
(C)

wherein R, R^1 to R^3 , R^5 to R^9 , Ar, X and m are as defined above for formula (I).

In a further aspect, the anthranilic acid of the invention has the following structure (D):

wherein R, R^1 to R^9 , Ar, m and n are as defined above for formula (I) and X, which is at position 3 or 4 in ring a, is as defined above for formula (I).

In a preferred series of compounds of formula (I), R^4 is C_1-C_6 alkyl. Preferably R, R^1 and R^2 are each H, OH or methoxy.

In ring \underline{a} , R^6 is linked to any one of positions 2 to 6. Typically R^6 is linked to position 2 in ring \underline{a} .

Examples of preferred compounds of the invention are as follows.

9	
Chemical Name	Compound
	No.
2-Chloro-quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	9591
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
4-Hydroxy-7-trifluoromethyl-quinoline-3-	9592
carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-	9592
dihydro-1H-isoquinolin-2-yl)-ethyl]-	
phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9594
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-thiophen-3-yl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9595
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-4-dimethylamino-	
phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-	9596
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	3336
ethyl]-phenylcarbamoyl}-4-dimethylamino-	
phenyl)-amide	
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-	9597
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-thiophen-3-yl)-amide	
Quinoxaline-2-carboxylic acid (3-{4-[2-(6,7-	9600
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-pyridin-2-yl)-amide	
4-Hydroxy-quinoline-3-carboxylic acid (2-{4-[2- (6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	9606
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoxaline-2-carboxylic acid (3-{4-[2-(6,7-	9608
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-4-methyl-thiophen-2-	
yl)-amide	
Quinoline-3-carboxylic acid (3-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9609
ethyl]-phenylcarbamoyl}-4-methyl-thiophen-2-	1
yl) -amide	
Quinoxaline-2-carboxylic acid [2-(4-{2-[(3,4-	9612
dimethoxy-benzyl)-methyl-aminol-ethyl}-	
phenylcarbamoyl)-phenyl]-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-	9613
dimethoxy-benzyl)-methyl-amino]-ethyl}-	
phenylcarbamoyl)-phenyl]-amide Quinoxaline-2-carboxylic acid {2-[2-(3,4-	0614
dimethoxy-benzyl)-1,2,3,4-tetrahydro-	9614
isoquinolin-7-ylcarbamoyl]-phenyl}-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9615
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-4-methylsulfanyl-	
phenyl) - amide	0.53.5
Quinoline-3-carboxylic acid (4-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9616
ethyl]-phenylcarbamoyl}-thiophen-3-yl)-amide	1
cenyr, phenyrear bamoyr, - entrophen-3-yr, -amirde	

10	
N-(4-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9617
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	
thiophen-3-yl)-6-methyl-nicotinamide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9621
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylsulfanyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (3-{4-[2-(6,7-	9622
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-pyrazin-2-yl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9623
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethoxy]-phenylcarbamoyl)-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9625
dimethoxy-1-methyl-3,4-dihydro-1H-isoquinolin-	7023
2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	-
Quinoline-3-carboxylic acid (2-{4-[2-(1,3-	9626
dihydro-isoindol-2-yl)-ethyll-phenylcarbamoyl}-	9626
phenyl)-amide Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9628
Quinoline-3-carboxyllc actu (2-(4-(2-(6,7-	3020
dichloro-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	0600
Quinoline-3-carboxylic acid (2-{4-[2-(7,8-	9629
dichloro-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid {2-[4-(2-{[2-(3,4-	9630
dimethoxy-phenyl)-ethyl]-methyl-amino}-ethyl)-	
phenylcarbamoyl]-phenyl}-amide	0623
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-	9631
dimethyl-benzyl) -methyl-amino]-ethyl}-	
phenylcarbamoyl) -phenyl] -amide	9632
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-	9632
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethoxy]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{3-[2-(6,7-	9633
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(7-nitro-	9634
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
phenylcarbamoyl } - phenyl) - amide	
2-Methyl-thiazole-4-carboxylic acid (2-{4-[2	9635
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-	9636
dimethoxy-benzyl)-ethyl-aminol-ethyl}-	·
phenylcarbamoyl)-phenyl]-amide	
2-Methyl-oxazole-4-carboxylic acid (2-{4-[2-	. 9638
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
Ouinoline-3-carboxylic acid [2-(4-{2-[(3-	9639
<pre> isopropoxy-4-methoxy-benzyl)-methyl-amino]-</pre>	
<pre>lethvl}-phenvlcarbamovl)-phenyll-amide</pre>	
Quinoline-3-carboxylic acid [2-(4-{2-[methyl-	9640
(3,4,5-trimethoxy-benzyl)-aminoJ-ethyl}-	İ
phenylcarbamoyl)-phenyl]-amide	

11	
Quinoline-3-carboxylic acid [2-(4-{2-[butyl-	9641
(3,4-dimethoxy-benzyl)-amino]-ethyl}-	
phenylcarbamoyl)-phenyl]-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(4-	9642
butoxy-3-methoxy-benzyl)-methyl-aminol-ethyl}-	Ì
phenylcarbamoyl)-phenyl]-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-	9643
difluoro-benzyl) -methyl-amino] -ethyl}-	
phenylcarbamoyl)-phenyl]-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(2,3-dibudes beneal] Addition 6 whether)	9645
dihydro-benzo[1,4]dioxin-6-ylmethyl)-methyl- amino]-ethyl}-phenylcarbamoyl)-phenyl]-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(4-	0646
isopropoxy-3-methoxy-benzyl)-methyl-amino]-	9646
ethyl}-phenylcarbamoyl)-phenyl]-amide Quinoline-3-carboxylic acid [2-(4-{2-[(3-	9647
hydroxy-4-methoxy-benzyl)-methyl-aminol-ethyl}-	3647
phenylcarbamoyl)-phenyl]-amide	·
Quinoline-3-carboxylic acid (2-{4-[3-(6,7-	9648
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-2-	3040
hydroxy-propoxy]-phenylcarbamoyl}-phenyl)-amide	0640
Quinoline-3-carboxylic acid [2-(4-{2-[(4-	9649
hydroxy-3-methoxy-benzyl)-methyl-amino]-ethyl}-	
phenylcarbamoyl)-phenyl]-amide	0650
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9650
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-2-methyl-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9651
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-2-methoxy-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid [2-(4-{[(3-	9652
isopropoxy-4-methoxy-benzyl)-methyl-amino]-	
methyl}-phenylcarbamoyl)-phenyl]-amide	
5-Methyl-pyrazine-2-carboxylic acid (2-{3-[2-	9653
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9654
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-1-	
methyl-ethyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoline-3-carboxylic acid [2-(4-{2-[(4-	9655
dimethylamino-benzyl)-methyl-aminol-ethyl}-	
phenylcarbamoyl)-phenyl]-amide	·
Quinoline-3-carboxylic acid [2-(4-{2-[(3-	9656
butoxy-4-methoxy-benzyl)-methyl-amino]-ethyl}-	
phenylcarbamoyl) -4,5-dimethoxy-phenyl] -amide	
5-Methyl-pyrazine-2-carboxylic acid (2-{4-[2-	9657
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-2-methoxy-phenylcarbamoyl}-phenyl)-	
amide	
Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-	9658
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-2-methyl-phenylcarbamoyl}-phenyl)-amide	
Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-	9659
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-2-methoxy-phenylcarbamoyl}-phenyl)-amide	

4	\sim
	•

Quinoline-3-carboxylic acid (2-{3-[3-(6,7-dimethoxy-3,4-dihydro-1 <i>H</i> -isoquinolin-2-yl)-propyl]-phenylcarbamoyl}-phenyl)-amide	9660
<pre>N-[2-(4-{[(3-Isopropoxy-4-methoxy-benzyl)- methyl-amino]-methyl}-phenylcarbamoyl)-phenyl]- nicotinamide</pre>	9661
Quinoline-3-carboxylic acid [5-chloro-2-(4-{2-[(3,4-dimethoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-phenyl]-amide	9663
Quinoline-3-carboxylic acid (2-{4-[2-(7,8-dihydro-5H-[1,3]dioxolo[4,5-g]isoquinolin-6-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	9664
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-diethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	9665
Quinoline-3-carboxylic acid (6-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-thieno[2,3-b]pyrazin-7-yl)-amide	9666
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-4,5-difluoro-phenyl]-amide	9667
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-5-methyl-phenyl]-amide	9668
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-benzyl)-isopropyl-amino]-ethyl}-phenylcarbamoyl)-phenyl]-amide	9669
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-5-nitro-phenyl]-amide	9677

2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9304
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9405
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	1
ethyl]-6-chloro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9354
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-5-chloro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9350
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-4-chloro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9401
dimethoxy-3,dihydro-1H-isoquinolin-2-yl)-	
ethyl]-3-chloro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9394
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-5-bromo-benzamide	

13	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9349
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-4-fluoro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9398
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyll-3-methyl-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9399
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-3-methoxy-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9424
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-3-hydroxy-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9420
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-4-nitro-benzamide	
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9435
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-4-amino-benzamide	,
2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-	9432
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	i
ethyl]-5-phenyl-benzamide	
3-(4-Isopropyl-benzoylamino)-naphthalene-2-	9410
carboxylic acid [2-(6,7-dimethoxy-3,4-dihydro-	
1H-isoquinolin-2-yl)-ethyl]-amide	
2-(4-Dimethylamino-benzoylamino)-N-[2-(6,7-	9256
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	
2-(4-Propyl-benzoylamino)-N-[2-(6,7-dimethoxy-	9297
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	
2-(4-Pentyl-benzoylamino)-N-[2-(6,7-dimethoxy-	9395
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	
2-(4-Cyclohexyl-benzoylamino)-N-[2-(6,7-	9331
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	
Biphenyl-4-carboxylic acid {2-[2-(6,7-	9294
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
Naphthalene-2-carboxylic acid {2-[2-(6,7-	9295
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
Benzo[1,3]dioxole-5-carboxylic acid {2-[2-(6,7-	9302
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
2-(4-Diethylamino-benzoylamino)-N-[2-(6,7-	9310
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	
2-(4-tert-Butyl-benzoylamino)-N-[2-(6,7-	9334
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	

14	
2-Benzoylamino-N-[2-(6,7-dimethoxy-3,4-dihydro-	9351
1H-isoquinolin-2-yl)-ethyl]-benzamide	
2-(4-Bromo-benzoylamino)-N-[2-(6,7-dimethoxy-	9380
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	
2-(4-Nitro-benzoylamino)-N-[2-(6,7-dimethoxy-	9381
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	3301
•	
benzamide	0426
2-(4-Phenoxy-benzoylamino)-N-[2-(6,7-dimethoxy-	9426
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	
2-(4-Benzoyl-benzoylamino)-N-[2-(6,7-dimethoxy-	9427
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	,
2-(4-Benzyl-benzoylamino)-N-[2-(6,7-dimethoxy-	9442
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-	
benzamide	
2-(4-Cyclohexyloxy-benzoylamino)-N-[2-(6,7-	9459
	2433
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	•
ethyl]-benzamide	
2-(4-Benzyloxy-benzoylamino)-N-[2-(6,7-	9460
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-benzamide	
Pyridine-2-carboxylic acid {2-[2-(6,7-	9377
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
N-{2-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9359
isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-	
nicotinamide	
N-{2-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9384
isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-	
isonicotinamide	
Pyrazine-2-carboxylic acid {2-[2-(6,7-	9391
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
Quinoxaline-2-carboxylic acid {2-[2-(6,7-	9347
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	,
ethylcarbamoyl]-phenyl}-amide	
Isoquinoline-1-carboxylic acid {2-[2-(6,7-	9383
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9303
ethylcarbamoyl]-phenyl}-amide Quinoline-2-carboxylic acid {2-[2-(6,7-	9385
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	7300
ethylcarbamoyl]-phenyl}-amide	9300
Isoquinoline-3-carboxylic acid {2-[2-(6,7-	9389
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	0305
Quinoline-3-carboxylic acid {2-[2-(6,7-	9397
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethylcarbamoyl]-phenyl}-amide	
Thiophene-3-carboxylic acid (2-[2-(6,7-	9365
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	1
ethylcarbamovl]-phenyl}-amide	.j

1H-Indole-2-carboxylic acid {2-[2-(6,7-dimethoxy-9367 3,4-dihydro-1H-isoguinolin-2-yl)-ethylcarbamovl]phenyl } - amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6.7-9531 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9542 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-5-hydroxyamino-phenyl)amide Quinoxaline-2-carboxylic acid $(2-\{4-[2-(6,7-$ 9543 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-4-methyl-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9554 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-4-hydroxy-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9541 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-5-nitro-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9561 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-5-trifluoromethylphenyl) -amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9562 dimethoxy-3,4-dihydro-1H-isoquinolin-2-vl)ethyl]-phenylcarbamoyl}-5-fluoro-phenyl)-amide Quinoxaline-2-carboxylic acid $(2-\{4-[2-(6,7-$ 9564 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-3-fluoro-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9568 dimethoxy-3,4-dihydro-1H-isoquinolin-2-v1)ethyl]-phenylcarbamoyl}-4-fluoro-phenyl)-amide Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-9573 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-4,5-dimethoxy-phenyl)amide Quinoline-3-carboxylic acid (2-{4-[2-(6,7-9544 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-phenyl)-amide Quinoline-3-carboxylic acid $(2-\{4-[2-(6,7-$ 9571 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-5-fluoro-phenyl)-amide Quinoline-3-carboxylic acid (2-{4-[2-(6,7-9574 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-4-fluoro-phenyl)-amide Quinoline-3-carboxylic acid (2-{4-[2-(6,7-9576 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-4,5-dimethoxy-phenyl)amide Quinoline-3-carboxylic acid $(6-\{4-[2-(6,7-$ 9578 dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-benzo[1,3]dioxol-5-yl)amide

10	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9581
ethyl]-phenylcarbamoyl}-5-nitro-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9584
dimethoxy-3, 4-dihydro-1H-isoquinolin-2-yl)-	7504
ethyl]-phenylcarbamoyl}-4-methyl-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9588
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-) 3300
ethyl]-phenylcarbamoyl}-5-methyl-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9593
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	, , ,
ethyl]-phenylcarbamoyl}-4-chloro-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9586
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-5-chloro-phenyl)-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-	9589
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-5-amino-phenyl)-amide	
Quinoline-2-carboxylic acid (2-{4-[2-(6,7-	9545
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	
5,6,7,8-Tetrahydroquinoline-3-carboxylic acid	9590
(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-	
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	
phenyl)-amide	
Pyridine-2-carboxylic acid (2-{4-[2-(6,7-	9472
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	
$N-(2-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-$	9482
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	
phenyl)-nicotinamide	
N-(2-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9483
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	
phenyl)-isonicotinamide Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-	0403
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9493
ethyl]-phenylcarbamoyl}-phenyl)-amide 5-Methyl-pyrazine-2-carboxylic acid (2-{4-[2-	9527
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	9527
yl) -ethyl] -phenylcarbamoyl} -phenyl) -amide	
N-(2-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9557
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	,,,,
phenyl)-6-methyl-nicotinamide	
N-(2-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-	9582
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-	
phenyl)-6-methoxy-nicotinamide	
5-Propionyl-pyrazine-2-carboxylic acid (2-{4-	9569
[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide	
2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-	9456
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-	
benzamide	

17	
2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-	9511
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-4-	
methyl-benzamide	
2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-	9510
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-5-	
methyl-benzamide	
2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-	9512
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-6-	
methyl-benzamide	
2-(2-Fluoro-benzoylamino)-N-{4-[2-(6,7-	9489
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(3-Fluoro-benzoylamino)-N-{4-[2-(6,7-	9500
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(4-Fluoro-benzoylamino)-N-{4-[2-(6,7-	9501
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(2,4-Difluoro-benzoylamino)-N-{4-[2-(6,7-	9513
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(2,6-Difluoro-benzoylamino)-N-{4-[2-(6,7-	9514
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(2-Chloro-benzoylamino) -N-{4-[2-(6,7-	9494
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(3-Chloro-benzoylamino)-N-{4-[2-(6,7-	9495
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	,
ethyl]-phenyl}-benzamide	
2-(4-Chloro-benzoylamino) -N-{4-[2-(6,7-	9496
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	j
2-(2-Methyl-benzoylamino)-N-(4-[2-(6,7-	9497
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(3-Methyl-benzoylamino)-N-(4-[2-(6,7-	9503-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	j
2-(4-Methyl-benzoylamino)-N-{4-[2-(6,7-	9504
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	.
ethyl]-phenyl}-benzamide	
2-(2-Methoxy-benzoylamino)-N-{4-[2-(6,7-	9477
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(3-Methoxy-benzoylamino)-N-{4-[2-(6,7-	9517
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(4-Methoxy-benzoylamino)-N-{4-[2-(6,7-	9518
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
Contra Differ Deliament	

10	
2-(2-Hydroxy-benzoylamino)-N-{4-[2-(6,7-	9535
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(3-Hydroxy-benzoylamino)-N-{4-[2-(6,7-	9549
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
2-(4-Hydroxy-benzoylamino)-N-{4-[2-(6,7-	9559
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenyl}-benzamide	
Acetic acid 2-(2-{4-[2-(6,7-dimethoxy-3,4-	9534
dihydro-1H-isoquinolin-2-yl)-ethyl]-	
<pre>phenylcarbamoyl)-phenyl ester</pre>	
Acetic acid 3-(2-{4-[2-(6,7-dimethoxy-3,4-	9540
dihydro-1H-isoquinolin-2-yl)-ethyl]-	
<pre>phenylcarbamoyl)-phenylcarbamoyl)-phenyl ester</pre>	
Acetic acid 4-(2-{4-[2-(6,7-dimethoxy-3,4-	9548
dihydro-1H-isoquinolin-2-yl)-ethyl]-	
<pre>phenylcarbamoyl)-phenyl ester</pre>	
2-(2-Trifluoromethyl-benzoylamino)-N-{4-[2-	9523
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenyl}-benzamide	
2-(3-Trifluoromethyl-benzoylamino)-N-{4-[2-	9524
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
yl)-ethyl]-phenyl}-benzamide	
2-(3-Dimethylamino-benzoylamino)-N-{4-[2-(6,7-	9556
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	3330
ethyl]-phenyl}-benzamide	
2-(4-Isopropyl-benzoylamino)-N-{4-[2-(6,7-	9447
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	744/
ethyl]-phenyl}-benzamide	
2-(4-Cyclohexyl-benzoylamino)-N-{4-[2-(6,7-	9461
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9461
	İ
ethyl]-phenyl}-benzamide Naphthalene-1-carboxylic acid (2-{4-[2-(6,7-	- 0450
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9470
ethyl]-phenylcarbamoyl}-phenyl)-amide	
Naphthalene-2-carboxylic acid (2-{4-[2-(6,7-	0476
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9476
ethyl]-phenylcarbamoyl}-phenyl)-amide	
2-(3,4-Dichloro-benzoylamino)-N-{4-[2-(6,7-	9536
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	7536
ethyl]-phenyl}-benzamide	
2-(3,4-Dimethyl-benzoylamino)-N-{4-[2-(6,7-	0520
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9538
ethyl]-phenyl}-benzamide Thiophene-2-carboxylic acid (2-{4-[2-(6,7-	0477
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9471
ethyl]-phenylcarbamoyl}-phenyl)-amide	}
Thiophene-3-carboxylic acid (2-{4-[2-(6,7-	0400
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	9492
ethyl]-phenylcarbamoyl}-phenyl)-amide	

Furan-3-carboxylic acid (2-{4-[2-(6,7-	9526
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	1
ethyl]-phenylcarbamoyl}-phenyl)-amide	
1H-Indole-2-carboxylic acid (2-{4-[2-(6,7-	9515
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	<u> </u>
Benzofuran-2-carboxylic acid (2-{4-[2-(6,7-	9539
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
ethyl]-phenylcarbamoyl}-phenyl)-amide	

2-(4-Cyclohexyl-benzoylamino)-N-[3-(6,7-	9466
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
propyl]-benzamide	
2-(4-Cyclohexyl-benzoylamino)-N-[2-(3,4-	9479
dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide	
Quinoxaline-2-carboxylic acid (2-{4-[3-(6,7-	9567
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-	
propyl]-phenylcarbamoyl}-phenyl)-amide	
Quinoxaline-2-carboxylic acid {2-[4-(6,7-	9572
dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
ylmethyl)-phenylcarbamoyl]-phenyl}-amide	
Quinoline-3-carboxylic acid (2-{4-[2-(3,4-	9577
dihydro-1H-isoquinolin-2-yl)-ethyl]-	
<pre>phenylcarbamoyl}-phenyl)-amide</pre>	
Quinoline-3-carboxylic acid {2-[4-(6,7-	9585
dimethoxy-3,4-dihydro-1H-isoquinolin-2-	
ylmethyl)-phenylcarbamoyl]-phenyl}-amide	

Compounds of formula (I) may be produced by a process which comprises:

(a) treating an aminobenzamide of formula (VI)

$$R^7$$
 Ar
 NH_2
 R^8
 NH_2

wherein Ar, R^7 and R^8 are as defined above and Z is the moiety:

$$\begin{array}{c|c}
 & \underline{a} \\
 & \underline{R}^{6}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{A} \\
 & \underline{R}^{5}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{R}^{3} \\
 & \underline{R}^{4}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{CH_{2}} \\
 & \underline{R}^{1}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{R}^{1}
\end{array}$$

20

wherein m, n, q, R, R^1 to R^6 and X are as defined above, with a carboxylic acid of formula R^9 -COOH, or an activated derivative thereof, wherein R^9 is as defined above; or

(b) treating a compound of formula XII:

$$R^7$$
 R^8
 Ar
 R^8
 R^9
 R^6
 R^6
 R^5
 R^5
 R^5
 R^6
 R^9
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

wherein Ar, R^5 , R^6 to R^9 , X, q, and m are as defined above, with an amine of formula XX:

wherein R, R¹ to R⁴ and n are as defined above; and, if desired, removing any optional protecting groups present, and/or if desired, converting one compound of formula (I) into another compound of formula (I) and/or, if desired, converting one compound of formula (I) into a pharmaceutically acceptable salt thereof and/or, if desired, converting a salt into a free compound of formula (I).

In process variant (a) the carboxylic acid R9-COOH is commercially available or may be prepared as described in Reference Example 6A which follows. The acid may be activated as the corresponding acid chloride R9-COCl. This may be obtained commercially or prepared by treating the free carboxylic acid R9-COOH with thionyl chloride. Alternatively the carboxylic acid R9-COOH can be activated with cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate and 1-hydroxybenzotriazole, or with 2-chloro-1-methylpyridinium iodide.

Amino benzamides of general formula VI may be obtained by one of three routes, illustrated below in scheme 1 in which each of Z, R⁷, R⁸ and Ar is as defined above. The first route comprises the direct coupling of the appropriately substituted,

21

formula IX (step iii), and is described in more detail in Reference Example 4A which follows. The starting amine of formula IX may be prepared as described in Reference Example 1A which follows.

The second route comprises coupling of the appropriately substituted, commercially available, nitrobenzoic acid III and subsequent reduction of the nitro group to an amino group (steps 1 and ii). These steps are described in more detail in Reference Examples 2A and 3A, respectively, which follow. The third route involves 4 steps, starting from a commercially available amino ester VII. This route is described in more detail in Reference Example 5 which follows.

PCT/GB97/02885

22

Scheme 1

In process variant (b), the amines of formula XX are known compounds or can be prepared from known starting materials using conventional techniques in organic chemistry, for instance as described in Example 3. The intermediate bromide of formula XII is prepared by treatment of the corresponding hydroxy compound of formula XVII with a brominating agent. Suitable brominating agents include N-bromosuccinimide. The hydroxy compound of formula XVII may be prepared as illustrated in scheme 2. The reactions of scheme 2 are described in more detail in Reference Example 7 which follows.

Scheme 2

The starting amino derivative of formula XIII, in which P is a hydroxy protecting group, is prepared from the corresponding protected nitro derivative by reduction, for instance by treatment with H_2 in EtOH in the presence of PtO_2 . The protected nitro derivative is in turn obtained by treating the unprotected nitro derivative with a protecting group that affords the group P.

Step (i) is typically carried out by reacting together the compounds of formulae XIII and XIV in the presence of a base, for instance triethylamine. The resulting compound is reduced in step (ii), for instance under the conditions described above for the preparation of compound XIII, to give the intermediate compound of formula XV.

Step (iii) involves the treatment of the compound of formula XV with a compound R9-COCl in an organic solvent in the presence of a base to give the compound of formula XVI. The latter compound is deprotected in step (iv), and the resulting deprotected derivative of formula XVII is treated with a brominating agent in step (v) to give the desired compound of formula XII.

Compounds of formula (Ia) may be produced by a process which comprises:

(a') treating an aminobenzamide of formula VIII'

wherein R^{31} and R^{41} are as defined above and, if required, are optionally protected, and Z' is the moiety

$$(CH_2)_{\overline{S}}$$
 N R^{11}

wherein r, s, R^{11} and R^{21} are as defined above, with a carboxylic acid of formula R^{51} -COOH, or an activated derivative thereof, wherein R^{51} is as defined above; or

(b') treating a compound of formula XII':

wherein R⁵¹ is as defined above, with an amine of formula IX':

$$NH_2$$
 $(CH_2)_{\overline{S}}$
 N
 R^{11}
 R^{21}

wherein r, s, R^{11} and R^{21} are as defined above, to produce a compound of formula (Ia) wherein R^{31} and R^{41} are both hydrogen; or (c') treating an azalactone of formula XIII':

wherein R⁵¹ is as defined above, with an amine of formula (IX')

$$NH_2$$
 $(CH_2)_{\overline{S}}$
 N
 (IX')

wherein r, s, R¹¹ and R²¹ are as defined above, to produce a compound of formula (Ia) wherein R³¹ and R⁴¹ are both hydrogen;

26

and, if desired, removing any optional protecting groups present, and/or if desired, converting one compound of formula (Ia) into another compound of formula (Ia) and/or, if desired, converting one compound of formula (Ia) into a pharmaceutically acceptable salt thereof and/or, if desired, converting a salt into a free compound of formula (Ia).

In process variant (a') the carboxylic acid R⁵¹-COOH is commercially available or may be prepared as described in Reference Example 6B which follows. The acid may be activated as the corresponding acid chloride R⁵¹-COCl. This may be obtained commercially or prepared by treating the free carboxylic acid R⁵¹-COOH with thionyl chloride. Alternatively the carboxylic acid R⁵¹-COOH can be activated with cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate and 1-hydroxybenzotriazole, or with 2-chloro-1-methylpyridinium iodide.

The 2-aminobenzamides of formula VIII' are produced by one of two routes. The first comprises reduction of the corresponding 2-nitrobenzamides, for instance by treatment with hydrogen in the presence of a PtO₂ catalyst. The 2nitrobenzamide in turn may be produced by treatment of the corresponding 2-nitrobenzoic acid, which is optionally activated, with an amine of formula IX' as defined above. The preparation of amines of formula IX' is described in Reference Example 1B which follows. The steps to intermediate VIII are illustrated in the following Scheme 3. Steps (i), (ii) and (iii) in the scheme are described in Reference Examples 2B, 3B and 4B respectively, which follow and step (iii) is described in Reference Example 4B. Production of the amine IX' is described in Reference Example 1B.

In process variant (b') the intermediate of formula XII' is prepared by hydrolysis of the corresponding methyl ester which, in turn, is prepared by treatment of commercially available methyl anthranilate with an acid chloride in the presence of triethylamine in dichloromethane. These steps are described in Reference Example 6 which follows.

In process variant (c') the azalactone of formula XIII' is prepared by treating commercially available anthranilic acid with an acid chloride of general formula R^{51} -COCl in pyridine or a pyridine/dichloromethane mixture at 0°C for 3-8 hours.

Compounds of formula (I) may be converted into pharmaceutically acceptable salts, and salts may be converted into the free compound, by conventional methods. Salts may be mono- or bis-salts. Bis-salts, or double salts, can be formed when there are two basic nitrogen atoms in the structure of the compound of formula (1). Suitable salts include salts with pharmaceutically acceptable inorganic or organic acids. Examples of inorganic acids include hydrochloric acid, sulphuric acid and orthophosphoric acid. Examples of organic acids include p-toluenesulphonic acid, methanesulphonic acid, mucic acid and succinic acid. Bis-salts may include, in particular, bis-hydrochlorides and bis-mesylates.

The optional conversion of a compound of formula (I) into another compound of formula (I) may be carried out by

28

conventional methods. For instance, a compound of formula (I) containing an esterified hydroxy group such as -OCOMe may be converted into a compound of formula (I) containing a free hydroxy group by hydrolysis, for instance alkaline hydrolysis. A compound of formula (I) containing a free hydroxy group may be converted into a compound of formula (I) containing an esterified hydroxy group by esterification, for instance by reaction with a suitable carboxylic acid, acid halide or acid anhydride.

A compound containing a halogen may be converted into a compound containing an aryl group by Suzuki coupling (Miyaura M, Yanagi T and Suzuki, A, Synth. Commun. 1981 vol 11, p.513). A compound of formula (I) containing a nitro group may be converted into a compound of formula (I) containing an amino group by reduction, for instance by treatment with hydrogen gas in the presence of a PtO₂ catalyst. Similarly, a compound of formula (I) containing a nitro group may be converted into a compound of formula (I) containing a hydroxyamino group -NHOH by reduction, for instance by treatment with hydrogen gas in the presence of a PtO₂ catalyst under suitably controlled conditions.

Cancer cells which exhibit multi-drug resistance, referred to as MDR cells, display a reduction in intracellular drug accumulation compared with the corresponding drug-sensitive cells. As discussed above, studies using in vitro derived MDR cell lines have shown that MDR is often associated with increased expression of a plasma membrane glycoprotein (P-gp) which has drug binding properties. P-gp is thought to function as an efflux pump for many hydrophobic compounds, and transfection studies using cloned P-gp have shown that its overexpression can confer the MDR phenotype on cells: see, for example, Ann. Rev. Biochem 58 137-171 (1989).

A major function of P-gp in normal tissues is to export intracellular toxins from the cell. There is evidence to suggest that overexpression of P-gp may play a clinical role in multi-drug resistance. Increased levels of P-gp mRNA or protein have been detected in many forms of human cancers - leukaemias, lymphomas, sarcomas and carcinomas. Indeed, in some cases P-gp levels have been found to be increased in tumour biopsies obtained after relapse from chemotherapy.

29

Inhibition of P-gp function in P-gp mediated MDR has been shown to lead to a net accumulation of anti-cancer agent in the cells. For example, Verapamil a known calcium channel blocker was shown to sensitise MDR cells to Vinca alkaloids in vitro and in vivo: Cancer Res., 41, 1967-1972 (1981). The proposed mechanism of action involves competition with the anti-cancer agent for binding to the P-gp. A range of structurally unrelated resistance-modifying agents acting by this mechanism have been described such as tamoxifen (Nolvadex:ICI) and related compounds, and cyclosporin A and derivatives.

Anthranilic acid derivatives of formula I and their pharmaceutically acceptable salts (hereinafter referred to as "the present compounds") have been found in biological tests to have activity as inhibitors of P-gp. They can be used to modulate MDR, in particular P-gp mediated MDR. The results are set out in Example 1 which follows. As P-gp inhibitors the present compounds may be used as multi-drug resistance modifying agents, also termed resistance-modifying agents, or RMAs. The present compounds can modulate, e.g. reduce, or eliminate multi-drug resistance, especially that which is P-gp mediated.

The present compounds can therefore be used in a method of potentiating the cytotoxicity of an agent which is cytotoxic to a tumour cell. Such a method comprises, for instance, administering one of the present compounds to the tumour cell whilst the tumour cell is exposed to the cytotoxic agent in question. The therapeutic effect of a chemotherapeutic, or antineoplastic, agent may thus be enhanced. The multi-drug resistance of a tumour cell to a cytotoxic agent during chemotherapy may be reduced or eliminated.

The present compounds can also be used in a method of treating a disease in which the responsible pathogen exhibits multi-drug resistance, especially P-gp mediated multi-drug resistance for instance multi-drug resistant forms of malaria (Plasmodium falciparum), tuberculosis, leishmaniasis and amoebic dysentery. Such a method comprises, for instance, administering one of the present compounds with (separately, simultaneously or sequentially) the drug to which the pathogen concerned exhibits multi-drug resistance. The therapeutic effect of a drug

30

directed against a multidrug resistant pathogen may thus be potentiated.

A human or animal patient harbouring a tumour may be treated for resistance to a chemotherapeutic agent by a method comprising the administration thereto of one of the present compounds. The present compound is administered in an amount effective to potentiate the cytotoxicity of the said chemotherapeutic agent. Examples of chemotherapeutic or antineoplastic agents which are preferred in the context of the present invention include Vinca alkaloids such as vincristine and vinblastine; anthracycline antibiotics such as daunorubicin and doxorubicin; mitoxantrone; actinomycin D; taxanes e.g. taxol; epipodophyllotoxins e.g. etoposide and plicamycin.

The present compounds may also be used in a method of enhancing the absorption, distribution, metabolism and/or elimination characteristics of a therapeutic agent, which method comprises administering to a patient, separately, simultaneously or sequentially, one of the present compounds and the said therapeutic agent. In particular this method may be used to enhance the penetration of the therapeutic agent into the central nervous system, or to enhance the oral absorption of the therapeutic agent.

For instance, the present compounds can be used in a method of facilitating the delivery of drugs across the blood brain barrier, and in the treatment of AIDS or AIDS related complex. A human or animal patient in need of such treatment may be treated by a method comprising the administration thereto of one of the present compounds.

The present compounds can be administered in a variety of dosage forms, for example orally such as in the form of tablets, capsules, sugar- or film-coated tablets, liquid

solutions or suspensions or parenterally, for example intramuscularly, intravenously or subcutaneously. The present compounds may therefore be given by injection or infusion.

The dosage depends on a variety of factors including the age, weight and condition of the patient and the route of administration. Typically, however, the dosage adopted for each route of administration when a compound of the invention is

31

administered alone to adult humans is 0.001 to 50 mg/kg, most commonly in the range of 0.01 to 5 mg/kg, body weight. Such a dosage may be given, for example, from 1 to 5 times daily by bolus infusion, infusion over several hours and/or repeated administration.

An anthranilic acid derivative of formula (I) or a pharmaceutically acceptable salt thereof is formulated for use as a pharmaceutical or veterinary composition also comprising a pharmaceutically or veterinarily acceptable carrier or diluent. The compositions are typically prepared following conventional methods and are administered in a pharmaceutically or veterinarily suitable form. An agent for use as a modulator of multi-drug resistance comprising any one of the present compounds is therefore provided.

The present compounds may be administered in any conventional form, for instance as follows:

A) Orally, for example, as tablets, coated tablets, dragees, troches, lozenges, aqueous or oily suspensions, liquid solutions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavouring agents, colouring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations.

Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, dextrose, saccharose, cellulose, corn starch, potato starch, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, maize starch, alginic acid, alginates or sodium starch glycolate; binding agents, for example starch, gelatin or acacia; lubricating agents, for example silica, magnesium or calcium stearate, stearic acid or talc; effervescing mixtures; dyestuffs, sweeteners, wetting agents such as lecithin, polysorbates or lauryl sulphate. The tablets may be uncoated or

32

they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. Such preparations may be manufactured in a known manner, for example by means of mixing, granulating, tableting, sugar coating or film coating processes.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is present as such, or mixed with water or an oil medium, for example, peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinylpyrrolidone gum tragacanth and gum acacia; dispersing or wetting agents may be naturally-occurring phosphatides, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides for example polyoxyethylene sorbitan monooleate.

The said aqueous suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate, one or more colouring agents, such as sucrose or saccharin.

Oily suspension may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol.

33

Sweetening agents, such as those set forth above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by this addition of an antioxidant such as ascorbic acid. Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavouring and colouring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oils. or a mineral oil, for example liquid paraffin or mixtures of Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally occuring phosphatides, for example soy bean lecithin, and esters or partial esters derived from fatty acids an hexitol anhydrides, for example sorbitan mono-oleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsion may also contain sweetening and flavouring agents. Syrups and elixirs may be formulated with sweetening agents, for example glycerol, sorbitol or sucrose. In particular a syrup for diabetic patients can contain as carriers only products, for example sorbitol, which do not metabolise to glucose or which only metabolise a very small amount to glucose.

Such formulations may also contain a demulcent, a preservative and flavouring and coloring agents;

B) Parenterally, either subcutaneously, or intravenously, or intramuscularly, or intrasternally, or by infusion techniques, in the form of sterile injectable aqueous or oleaginous suspensions. This suspension may be formulated according to the known art using those suitable dispersing of wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic paternally-

34

acceptable diluent or solvent, for example as a solution in 1,3-butane diol.

Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition fatty acids such as oleic acid find use in the preparation of injectables;

- C) By inhalation, in the form of aerosols or solutions for nebulizers;
- D) Rectally, in the form of suppositories prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperature but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and poly-ethylene glycols;
- E) Topically, in the form of creams, ointments, jellies, collyriums, solutions or suspensions.

Daily dosages can vary within wide limits and will be adjusted to the individual requirements in each particular case. In general, for administration to adults, an appropriate daily dosage is in the range of about 5 mg to about 500 mg, although he upper limit may be exceeded if expedient. The daily dosage can be administered as a single dosage or in divided dosages.

The invention will be further illustrated in the Examples which follow.

Example 1: Testing of compounds of formula (I) and their salts as modulators of MDR

Materials and Methods

The EMT6 mouse mammary carcinoma cell line and the MDR resistant subline AR 1.0 were cultured in RPMI 1640 medium containing 10% foetal calf serum and 2mM glutamine at 37° C in 5% CO_2 . Cells were passaged between 1 in 200 and 1 in 2000 in the case of the parental cell line and between 1 in 20 and 1 in 200 in the case of the MDR resistant subline, after trypsinisation $(0.25\% \text{ trypsin}, 0.2gl^{-1}, EDTA)$.

Drug accumulation assay

AR 1.0 cells were seeded 48 hours prior to assay into 96 well opaque culture plates (Canberra Packard). The assay medium contained a mixture of tritiated Daunorubicin (DNR) (0.3 μ Ci/Ml), a cytotoxic agent, and unlabelled DNR ((2 μ M). Compounds of formula I were serially diluted in assay medium over a range of concentrations from 0.508 nM to 10 μ M. The cells were incubated at 37°C for 1 hr before washing and determination of cell associated radioactivity. Results are expressed as an IC₅₀ for accumulation where 100% accumulation is that observed in the presence of the known RMA verapamil at a concentration of 100 μ M.

The results are set out in the following Table A.

TABLE A

Compound No.	TG ()
Compound No.	IC ₅₀ (μM)
	Accumulation
9591	0.425
9592	>10
9594	0.087
9595	0.37
9596	0.132
9597	0.087
9600	0.199
9606	>10
9608	0.224
9609	0.431
9612	0.087
9613	0.098
9614	0.278
9615	0.213
9616	0.113
9617	0.203
9621	0.453
9622	0.207
9623	1.89
9625	0.347
9626	0.278
9628	2.27
9629	>10
9630	0.235
9631	0.669
9632	0.431
9633	0.593
9634	6.955
9635	0.669
9636	0.184
9638	0.552
9639	0.108
9640	0.194
9641	0.0019

7	6
J	v
_	-

	36		
9642	0.341		
9643	0.425		
9645	0.179		
9646	0.295		
9647	0.033		
9648	0.038		
9649	0.188		
9650	0.061		
9651	0.071		
9652	0.064		
9653	0.490		
9654	0.135		
9655	0.557		
9656	0.188		
9657	0.343		
9658	2.90		
9659	1.38		
9660	6.424		
9661	0.362		
9663	0.175		
9664	1.679		
9665	0.389		
9666	8.672		
9667	0.076		
9668	0.087		
9669	0.469		
9677	0.169		

9304	1.2
9405	0.3
9354	0.6
9350	0.8
9401	3.0
9394	3.4
9349	0.3
9398	1.5
9399	5.0
9424	2.5
9420	1.9
9435	1.9
9432	3.2
9410	3.0
9256	1.7
9297	0.4
9395	1.3
9331	1.3
9294	0.4
9295	0.39
9302	5.0
9310	1.2
9334	1.3
9351	9.0
9380	0.9
9381	3.0
9426	0.69

	37		
9442	1.0		
9459	0.65		
9460	1.0		
9377	5.5		
9359	>10		
9384	>10		
9391	>10		
9347	3.0		
9383	2.0		
9385	1.2		
9389	1.8		
9397	10		
9365	2.0		
9367	1.0		
9531	0.035		
9542	0.13		
9543	0.07		
9554	0.99		
9541	0.02		
9561	0.055		
9562	0.024		
9564	0.2		
9568	0.017		
9573	0.0095		
9544	0.05		
9571	0.022		
9574	0.019		
9576	0.064		
9578	0.084		
9581	0.015		
9584	0.36		
9588	0.094		
9593 0506	0.014		
9586	0.18		
9589	1.0		
9545	0.8		
9590	0.097		
9472	0.5		
9482	0.54		
9483	1.7		
9493 9527	0.22		
9557	0.052		
9582	1 27		
9569	0.012 1.27 0.93		
9456	0.93		
9510	0.71		
9511	0.71		
9512	3.9		
9489	0.15		
9500	0.15		
9501	0.12		
9513	0.12		
9514	0.25		
9494	0.4		
2405			

	38
9496	0.48
9497	1.6
9503	2.0
9504	0.26
9477	0.41
9517	0.4
9518	0.3
9535	0.45
9549	4.3
9559	2.06
9534	0.14
9540	1.2
9548	4.9
9523	1.6
9524	1.0
9556	0.86
9447	0.7
9461	1.8
9470	1.3
9476	0.35
9536	0.45
9538	0.22
. 9471	0.2
9492	1.0
9526	1.4
9515	1.2
9539	0.22
9466	1.4
9479	2.1
9567	0.16
9572	0.053
9577	0.32
9585	0.04

2. Potentiation of Doxorubicin toxicity

- (a) Selected compounds of formula (I) were examined for their ability to potentiate the toxicity of doxorubicin in AR 1.0 cells. In initial proliferation assays compounds were titrated against a fixed concentration of doxorubicin (0.34 μ m) which alone is non-toxic to AR 1.0 cells. After a four day incubation with doxorubicin proliferation was measured using the colorimetric sulphorhodamine B assay (Skehan et al; J Natl. Cancer Inst. 82 pp 1107-1112 (1990)). The results are shown in Table B.
- (b) Cells were cultured for four days with a titration of doxorubicin (0.263 nM 17.24 μ M) in the presence of a fixed concentration of each compound. Proliferation was quantified as described by Skehen et al, loc cit. The IC₅₀ (concentration required to reduce proliferation to 50% of the untreated

39 controls) for doxorubicin alone and with each compound were derived and used to calculate the potentiation index (PI):

IC₅₀ for Doxorubicin alone
PI =

IC₅₀ for Doxorubicin plus RMA

The results are shown in Tables C1 and C2.

TABLE B

Compound No.	Compound	Toxicity with
	Toxicity	Cytotoxic Agent
	(IC ₅₀ μM)	(IC ₅₀ μM)
9304	8.0	0.15
9405	22	0.09
. 9354	8.0	0.15
9394	10	0.1
9349	5.5	0.14
9424	39	2.6
9420	7.0	0.4
9435	9.0	0.4
9432	35	0.2
9256	40	0.3
9297	18	0.33
9395	9.0	0.15
9331	7.0	0.04
9295	40	0.6
. 9310	22	0.24
9334	8.0	0.05
9351	43	1.3
9380	40	0.5
- 9381	50	1.5
9426	7.0	0.06
9427	10	0.10
9442	7.2	0.05
9459	8.5	0.09
9460	7.5	0.18
9347	35	0.6
9383	40	1.0
9385	40	0.55
9389	30	0.3
9365	42	0.8
9367	15	0.5
9531	1.1	0.005
9542	1.9	0.014
9543	0.9	0.008
9554	3.0	0.05

_	_
4	O

	40	
9541	0.86	0.006
9561	13	0.01
9562	1.7	0.0028
9564	0.4	0.008
9568	2.8	0.0034
9573	4.0	0.0004
9544	1.9	0.0077
9571	2.0	0.0008
9574	0.32	0.005
9576	0.93	0.0018
9578	0.9	0.0014
9581	0.31	0.0038
9584	8.6	0.015
9588	6.7	0.005
9593	7.0	0.005
9586	7.4	0.04
9589	36.8	4.4
9545	1.7	0.07
9590	9.5	0.05
9472	6.5	0.12
9482	12	0.22
9483	8.5	0.35
9493	9.0	0.05
9527	4.5	0.03
9557	9.0	0.007
	0.19	
9569		0.008
9456	5.0	0.03
9510	2.8	0.05
9511	4.0	0.06
9489	7.0	0.05
9500	5.0	0.009
9501	3.0	0.04
9514	7.0	0.07
9494	9.0	0.05
9495	4.0	0.04
9496	4.0	0.03
9497	9.0	0.08
9503	3.5	0.09
9504	5.0	0.06
	4.0	0.04
9517	2.0	0.05
9518	1.5	0.019
9535	2.6	0.015
9549	5.6	0.52
9534	6.6	0.0002
9540	6.2	1.0
9548	1.8	1.0
9447	6.8	0.065
9461	7.5	0.3
9470	3.5	0.075
9476	2.0	0.02
9536	2.65	0.015
9538	2.3	0.014
9471	2.6	0.02
9492	3.0	0.02
,0230	1.7	0.011

	41	
9466	6.0	0.05
9567	1.7	0.028
9572	1.7	0.014
9577	7.7	0.00035
9585	9.2	0.022

TABLE C1

	Potentiaton Index at RMA Concentration				
Compound	100	50	30	20	10 nM
No.	nM	nM	nM	nM	
9594	601	307	159	<u> </u>	11
9595	45	2.99	1.93	 	1.45
9596	354	131	44		2.68
9597	878	551	382		80
9600	2.55	1.98			
9608	178	118	60	31	6.7
9609	68	19	7.4	3.4	1.4
9612	171	149	95	1	11
9613	168	97	35		3
9614	52	32	9		2
9615	175	85	23		2
9616	185	143	142		13
9617	81	15	4		1.5
9621	25	4.4	1.6	1.3	1.0
9622	79	46	15	8	1.8
9625	.60	7	4		1
9626	27	8	4		1.2
9630	26	6	2		1
9631	67	20	9		11
9632	8	2.7	2.1		1.1
9633	13.7	3.4	1.3		1.0
9635	7	. 2	1.3		
9636	- 131	46	22		2.6
9638	2.6	1.5	1.1		
9639	136	78	34		2.6
9640	23.8	4.6	2.5		1
9641	162	46	17		1.5
9642	14	2.5	1.2		1.0
9643	6.7	2.4	1.5		1.0
9645	7.2	2.1	1.3		1.0
9646	4.8	1.3	1.1		1.0
9647	6	1			
9648			34		16
9649	66	60	46		53
9650	33	14	3		3
9651	2.2	1.1			
9652	7.6	1.8	1.2		
9655	65	37	13		1.8

			44	
9660	1.4	1.2	1.1	
9661	195	71	38	1.2
9663	82	74	80	50
9664	116	37	1.9	1
9665	50	28	7	1.4
9667				
9668				
9669				
9677				

TABLE C2

Compound No.	Potentiation Index at RMA				
	Concentration:				
	500 nM	300	100	30 nM	10 nM
		nM	nM		
9304	30				
9405	8.6				
9354	20				
9394	12				
9349	22				
9424	37				
9420	25		•		
9297		16			
9395	21				
9331	120	40			
9294	71	18			
9295		16			
9426	65				
9427	32	14			
9442	67	27		1	
9459	112	45			
9460	36	18			
9531		160	150	120	30
9542		160	128		
9543		150	150	120	24
9554			90		
9541		160	-160	150	· 75
9561			100	60	14
9562	 		83	60	40
9564	 	·	129		
9568			88	60	23
9573	 		100	94	83
9544		150	120	67	15
9571	 -		100	100	38
9574	 		94	60	16
9576	1		280	225	78
9578				188	43
9581	 			300	90
9584	 			36	2.1
9588	 			68	6
9593	 		-	57	6
9586	 			6	5

		43			
9589				1	1
9590				14	2
9483	24	14			
9493	200	85	7.6		
9527	120	103	50	11	1.5
9557			100		1.2
9456		112			
9510	267	120	12		
9511	214	120	12		
9489	303	192	77		
9500		300	97	5.5	
9501		183	69	1.9	
9514	120	40			
9494	148	38			
9495	567	261	15	1.3	
9496	825	254	19	1.6	
9497	200	52			
9503	. 77	36			
9504	267	150	34		
9477	63	29			
9517	120	40			
9518	240	120			
9535		128	32		
9447	340	40			
9461	30	13			
9470	90	26			
9476	136	83			
9536		128	32		
9538		128	43		
9471	230	115			
9539		128	32		
9466	60	30			
9567			112	8	1.7
9572			83	25	2.7
9577			112	18	2.2
9585				7.2	1.3

3. Potentiation of toxicity of various cytotoxic agents

The potentiation indices of a selection of compounds using a variety of cell lines and a variety of cytotoxics other than doxorubicin were measured following the protocol described above for doxorubicin, and the results are shown in Table D.

TABLE D

Potentiaton Index
at RMA
Concentration

Compound	Cell	Cytotoxic	50 nM	30 nM	10 nM
No.	line				
9594	2780AD	Taxol	1126	425	18
9594	H69/LX 4	Vincristine	356	79	2
9594	AR 1.0	Taxol	407	308	50
9596	2780AD	Taxol	743	160	3.5
9596	H69/LX 4	Vincristine	158	2	1
9597	2780AD	Taxol	2070	1427	110
9597	H69/LX 4	Vincristine	44	41	1.
9608	H69/LX 4	Taxol	130	17	1.6
9609	H69/LX	Taxol	9	3	1
9612	H69/LX 4	Taxol	1329	894	51
9613	H69/LX	Taxol	877	236	2.2
9614	H69/LX	Taxol	11	1.1	
9576	AR 1.0	Etoposide	51	45	26

Reference Example 1A: Preparation of amines of general formula

IX.

Amines of general formula IX were prepared as shown in the following Table 1

Table 1

Amine	Structure	Preparation
IX		Reference
IX.a	^ ^ O	see compound 2.2
IA.a		in Example 2 of
	N N N N N N N N N N N N N N N N N N N	WO-A-96/20180
		WO-A-30/20100
	H ₂ N	
IX.b	Me O	see Method IX.b
1	Me II	below
Ì		
ł		
	H ₂ N	14 11 777
IX.c	5~N~~°~	see Method IX.c
1		below
	H ₂ N 0 0 0 0	see Method IX.d
IX.d		
		below
	H ₂ N 0	see Method IX.e
IX.e		below
1	N N N N N N N N N N N N N N N N N N N	DETOM
1		
	H ₂ N Me	

		45	
IX.f		see Method	IX.f
		below	
	H ₂ N		
IX.g		see Method	IX.g
		below	
	H ₂ N		
IX.h	~ ° °	see Method	IX.h
12		below	
IX.i	н,м 🔷 🔷 🔷	see Method	IX.i
14.1		below	
	H ₂ N		
	Me	see Method	TY i
IX.j		below	14.)
	N N N N N N N N N N N N N N N N N N N		
	H ₂ N		
	OMe		
IX.k	~~~°	see Method below	IX.K
	H N Me OMe	pelow	
IX.1	H ₂ N OMe	see Method	IX.1
1X.1	Me /	below	
	N N N N O O		
	NH.		
IX.m	Me (° ° °	see Method	IX.m
		below	
	NH		
IX.n	, , , , , , , , , , , , , , , , , , ,	see Method	IX.n
	l l	below	
IX.o	H ₂ N OMe	see Method	IX.o
IA.0		below	
	NH ₂ OMe	No. 12 - 13	TV -
IX.p	OMe	see Method below	IX.P
	OMe	Delow	
	H,N		
	11213	<u> </u>	

Reductive amination of 3,4-dimethoxybenzaldehyde was performed as described in Method 2b(iv) to yield the intermediate secondary amine. Alternatively this amine may be prepared by reaction of veratrylamine with methyl chloroformate, followed by reduction of the carbamate using lithium aluminium hydride. A mixture of the amine (3.76g), 4-nitrophenethylbromide (4.78g) and sodium carbonate(3.3g) in acetonitrile(25ml) was heated to reflux for 3 hours. After cooling, aqueous work-up yielded an orange oil(1.75g). The nitro group was reduced under an atmosphere of hydrogen over platinum(IV) dioxide catalyst in ethanol to yield amine IX.b(1.3g).

Method IX.c

A mixture of 4-nitrothiophenol (1.00g,6.44mmol), 1,2-dibromoethane (1.39ml, 2.5 equivalents) and potassium carbonate (2.22g, 2.5 equivalents) in acetonitrile(15ml) was stirred at room temperature for 30 minutes. Aqueous work-up and fractional crystallisation gave the intermediate bromide(0.8g,47%).

A mixture of the bromide (336mg,1.28mmol), - 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (294mg,1.28mmol) and potassium carbonate (372mg,2.1 equivalents) was heated to reflux in acetonitrile(10ml) for 3 hours. Aqueous work-up and flash chromatography (ethyl acetate/hexane) yielded the desired tertiary amine(236mg,49%).

Conc. hydrochloric acid(0.3ml) was added to a suspension of the tertiary amine (236mg,0.63mmol) in methanol(2ml), iron(151mg) was added, and the reaction mixture was heated to 80°C for 2 hours. Aqueous work-up yielded amine IX.c as a gum(195mg,90%).

Method IX.d

This was prepared in an analogous method to IX.c using pnitrophenol as the starting material.

Reduction of the nitro group in this case was performed under an atmosphere of hydrogen over platinum(IV) dioxide catalyst in ethanol.

Method IX.e

Sodium carbonate (611mg, 5.76mmol) was added to a stirred solution of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline hydrobromide (1.0g, 3.84mmol) in acetone-water (25ml, 4:1). The mixture was cooled to 0°C before adding benzylchloroformate (0.63ml, 4.19mmol). The mixture was allowed to warm up to RT and stirred for 2 days. The reaction mixture was filtered and separated and the filtrate concentrated under vacuum. The resulting aqueous solution was poured into EtOAc (80ml), and the organic phase was washed with water (3x40ml), then brine (40ml), dried (MgSO₄) then concentrated under vacuum to afford a brown oil. Purification by flash chromatography (SiO₂; hexane:EtOAc,1:1) afforded the benzyl carbamate (817mg) as a white foam.

Sodium hydride (60% dispersion; 2.10g, 0.05mol) and methyl iodide (27.25ml, 0.44mol) were added to a solution of the benzyl carbamate(2.74g, 8.75mmol) in THF (100ml). DMSO (50ml) was then added and the reaction mixture heated at reflux over night. The reaction mixture was poured into EtOAc (200ml) and water

(100ml). The organic phase was extracted, washed with water (3x100ml) and brine (100ml), then dried (MgSO₄) to give a brown oil. Purification by flash chromatography (SiO₂; hexane:EtOAc, 2:1) afforded the dimethoxy intermediate (2.7g) as a yellow crystalline solid.

The benzyl carbamate group was cleaved by dissolving the intermediate (2.7g, 8.63mmol) in $MeOH/CH_2Cl_2$ (1:1, 270ml) and reducing with Pd/activated C (700mg) for 4 days at atmospheric pressure and at 40 p.s.i for a further 12 hours. Filtration and reduction in vacuo afforded the crude secondary amine(1.89g) as an orange oil.

The amine was then reacted with 4-nitrophenethylbromide and reduced as in Method IX.b to yield amine IX.e as an orange solid.

Method IX.f

A mixture of 4-nitrophenethylamine hydrochloride(770mg,3.8mmol), α,α' -dibromo-o-xylene(1.00g,3.8mmol) and potassium carbonate(1.83g,13.3mmol) was heated to reflux in acetonitrile(20ml) for 2 hours. Aqueous work-up and flash chromatography(5% methanol in dichloromethane) yielded the desired tertiary amine(297mg,29%).

The nitro group was reduced using atmospheric hydrogenation over platinum(IV) dioxide catalyst in a methanol/dichloromethane mixture, and purified using flash chromatography(ethyl acetate/hexane) to yield amine IX.f (187mg,71%).

Method IX.q

A mixture of 3-nitrophenethyl alcohol (2.11g), methanesulphonyl chloride (2.44ml, 2.5 equivalents) and triethylamine (1.76ml, 2 equivalents) in dichloromethane was stirred at 0°C for 4.5 hours. Aqueous work-up afforded the desired mesylate as a yellow solid(2.27g,73%).

To a solution of the mesylate(2.27g,) in N,N-dimethylformamide (20ml) was added 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (2.13g, 1 equiv.) and potassium carbonate(3.2g, 2.5 equivs.), and the reaction mixture heated to 100°C for 4 hours. Aqueous work-up yielded the tertiary amine as a yellow oil(1.49g,47%).

Reduction of the nitro group in this case was performed under an atmosphere of hydrogen over platinum(IV) dioxide catalyst in ethanol and dichloromethane to yield IX.g(1.11g).

Method IX.h

A mixture of 4-nitrophenol(10g,72mmol), epichlorohydrin(11.2ml,144mmol) and potassium carbonate(10g,72mmol) was stirred in N,N-dimethylformamide at room temperature for 18 hours. Aqueous work-up yielded the intermediate epoxide as an off-white crystalline solid (10.8g,77%).

A mixture of the epoxide (1.09g, 5.6mmol), 6,7-dimethoxy-

50

potassium carbonate (1.3g, 9.3mmol) in tetrahydrofuran (20ml) and water(5ml) was stirred at room temperature for 72 hours. Aqueous work-up and purification using flash chromatography(ethyl acetate) yielded the desired alcohol as a white solid(390mg,50%). Hydrogenation of the nitro group was performed as described in Method IX.b to yield amine IX.h.

Method IX.i

A solution of 3-methyl-4-nitrobenzoic acid (5.0g, 0.03mol) and thionyl chloride (10ml) in toluene (100ml) was heated at reflux for 3hrs then allowed to cool over night. The reaction mixture was reduced then azeotroped with toluene and hexanes to afford the acid chloride(quantitative) as an off-white, low melting solid.

diazomethane (prepared from N-methyl-N-nitrosotoluene-p-sulphonamide in excess, as described in Vogel's Practical Organic Chemistry, 4th edition, p 293) was added NEt, (4ml). The reaction mixture was cooled (ice-bath) before adding slowly the acid chloride in Et₂O. After 2hrs acetic acid was added until no more N₂ gas evolved. The reaction mixture was filtered, concentrated under vacuum, and the residue dissolved in Et₂O, washed (sat.NH₄Cl, aq. K₂CO₃, brine), dried (Na₂SO₄) and reduced until crystalligation began. Left to crystallise in the fridge

before filtrating to afford the diazoketone(2.03g) as pale brown crystals.

A solution of the diazoketone(2.0g, 10.0mmol) in EtOH (13mmol) was heated at reflux to give a brown solution before adding slowly a solution of silver benzoate (125mg, 0.54mmol) in $NEt_3(2ml)$. The mixture turned black and N_2 gas evolved. Further portions of silver benzoate were added until no more gas evolved and the reflux was continued for 55min. The reaction mixture was filtered through celite, then concentrated under vacuum to afford a brown liquid. Purification by flash chromatography (SiO,; 5% hexane-EtOAc) afforded the desired ethyl ester(1.46g) The ethyl ester(1.35g, 6.05mmol) was as a yellow liquid. dissolved in 1,4-dioxane (50ml) and water (20ml) added until turbid. LiOH.H.O (762mg, 0.017mol) was added and the mixture stirred at RT over night. The reaction mixture was made acidic with hydrochloric acid, extracted into CH2Cl2 (3x80ml), dried (MgSO₄) and concentrated under vacuum to afford the desired acid(633mg) as orange crystals.

A mixture of the acid (630mg, 8.23mmol) and 1hydroxybenzotriazole hydrate (546mg, 4.04mmol) in DMF (30ml) was stirred at RT for 10min. 6,7-Dimethoxy-1,2,3,4tetrahydroisoquinoline (780mg, 4.04mmol) was added, followed by dicyclohexyl carbodiimide (667mg, 3.23mmol) and the reaction mixture stirred over night. The reaction mixture was filtered and the filtrate concentrated in vacuo, treated with dilute hydrochloric acid, and then dilute sodium hydroxide solution and extracted into CH2Cl2. The organic phase was washed (water then brine), dried (Na,SO4). The solvent was evaporated under vacuum to give a yellow residue. Purification by flash chromatography (SiO₂; hexane:EtOAc, 1:1) afforded the desired amide (760mg) as The nitro group was an off-white crystalline solid. reduced using similar conditions as described in Method IX.b with Pd/activated C (50mg). Purification by flash chromatography(SiO2; hexane:EtOAc, 1:1) afforded the intermediate amine (695mg) as a white foam. The amide (730mg, 2.15mmol) was reduced by adding a solution in tetrahydrofuran(10ml) to a stirred suspension of lithium aluminium hydride (244mg, 6.43mmol) in THF (5ml) at RT. The reaction mixture was refluxed for 2hrs, then cooled before carefully adding water (0.5ml) in

 ${\rm CH_2Cl_2}$ (20ml). MgSO₄ was added and the reaction mixture stirred for 10min, filtered and the filtrate evaporated under vacuum to afford the desired amine IX.i (661mg) as an off-white crystalline solid.

Method IX.j

Using 3-methoxy-4-nitrobenzoic acid as the starting material, amine IX.j was prepared using an analogous method to IX.i.

Method IX.k

A mixture of the amine (336mg,1.61mmol), 4-nitrobenzyl bromide (289mg,1.34mmol) and potassium carbonate (277mg,2.01mmol) in acetonitrile(50ml) was stirred at room temperature for 2.5 hours. Aqueous work-up afforded the desired intermediate and the nitro group was then reduced as in Method IX.b to yield IX.k as a yellow oil (380mg).

Method IX.1

A mixture of 2-(4-nitrophenyl)propionic acid (5.0g, 26mmol) and thionyl chloride (3.75g, 52mmol) was heated to reflux in toluene(30ml) for 2 hours before cooling and removing the solvent in vacuo to yield the acid chloride. The acid

0°C and to this solution was added 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline(3.7g,24mmol) and triethylamine(5.4ml,39mmol) and the reaction mixture was stirred for 7 hours. Acid/base work-up and flash chromatography(1% methanol in dichloromethane) yielded the desired amide(4.98g,56%).

The nitro group was reduced using atmospheric hydrogenation over palladium on carbon, and the amide was reduced to the desired amine IX.l using lithium aluminium hydride in tetrahydrofuran.

Method IX.m

Isovanillin was alkylated with iodobutane and then reductive amination was carried out as described in Method 2b(iv) to yield the intermediate secondary amine. Reaction of this amine with 4-nitrophenethylbromide in acetonitrile, and then hydrogenation of the nitro group under atmospheric hydrogen over platinum(IV) dioxide catalyst yielded the desired amine IX.m.

Method IX.n

The mesylate was prepared from 3-nitrophenethylbromide as for Method IX.g. A mixture of the mesylate (1.0g,4.1mmol) and sodium cyanide (400mg,8.2mmol) was stirred in dimethylsulphoxide (25ml) at 90°C for 7 days. Aqueous work-up yielded the desired nitrile (651mg,91%).

The nitrile (615mg) was heated to reflux in a 1.5M solution of sodium hydroxide(25ml) for 5 hours. Aqueous work-up afforded the intermediate carboxylic acid (548mg). This was converted to the acid chloride using thionyl chloride in toluene and then reacted with 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline to yield the amide. The amide and the nitro group were then reduced in an analogous manner to Method IX.i to yield amine IX.n.

Method IX.o

A mixture of 3,4-dimethoxybenzoyl chloride(3.9g,19.2mmol) and 7-nitro-1,2,3,4-tetrahyroisoquinoline (2.81g,15.8mmol) in dichloromethane(200ml) was stirred for 2 hours and then filtered. The filtrate was collected and after aqueous work-up and flash chromatógraphy (1-10% methanol in dichloromethane) the desired amide was afforded as a yellow oil(3.25g,46%). Reduction of the nitro group and the amide is then analogous to Method IX.i. Amine IX.o was obtained as a yellow oil(1.37g).

4-Nitrophenethylamine hydrochloride and 3,4-dimethoxybenzaldehyde were stirred in methanol with triethylamine for 3 hours. Hexane was then added to prepicitate the desired imine which was collected by filtration. The imine was reduced to the intermediate secondary amine using sodium borohydride in methanol, and this amine was then alkylated by heating to reflux for 16 hours with 2-iodopropane and potassium carbonate in acetonitrile. Hydrogenation of the nitro group using palladium on carbon under an atmosphere of hydrogen yielded amine IX.p as a yellow gum.

Reference Example 1B: Preparation of amines of general formula IX'.

- Amines of general formula IX' were prepared as shown in the following table 3.

Table 3

NH ₂ —	r	H ₂) ₅		\mathcal{L}_{R}	11 (IX') 21
Amine IX'	r	S	R ¹¹	R ²¹	Preparation Reference
IX'.a	0	2	OMe	OMe	see compound 3.5 in Example 3 of WO-A- 96/20180
IX'.b	1		OMe	OMe	see compound 2.2 in Example 2 of WO-A- 96/20180
IX'.c	0 .	2	н	н	see compound 3.4 in Example 3 of WO-A- 96/20180
IX'.d	0	3	OMe	OMe	see below
IX'.e	1		OMe	OMe 	see compound 2.7 in Example 2 of WO-A- 96/20180
IX'.f	1	3	OMe	OMe	see compound 2.10 in Example 2 of WO-A- 96/20180

				57	
IX'.g	1	2	Н	Н	see compound
					2.3 in
					Example 2 of
					WO-A-
					96/20180

Preparation of 3-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propylamine (IX'd)

$$CH_3O$$
 CH_3O
 CH₂O

IX'.d

A mixture of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (5 g, 20 mmol), 3-chloropropionitrile (1.96 g, 20 mmol) and potassium carbonate (9 g, 60 mmol) in DMF (100 ml) was heated at 100°C for 4 hours. Concentration in vacuo, followed by work-up and concentration yielded the intermediate nitrile as a pale yellow solid (3.68 g).

To a solution of the intermediate nitrile (600 mg, 2.44 mmol) in tetrahydrofuran (5 ml) was added a suspension of lithium aluminium hydride (280 mg, 7.32 mmol) in tetrahydrofuran (25 ml) at 0°C under a nitrogen atmosphere. Reaction was stirred for 30 minutes and then allowed to warm to room temperature for 12 hours. The reaction was quenched by the slow addition of water (0.28 ml), NaOH (2N, 0.28 ml) and water (0.9 ml). The mixture was dried over magnesium sulphate and filtered. The organic

58

layer was concentrated *in vacuo* to give the title compound IX'.d as a yellow oil (510 mg).

Reference Example 2A: Preparation of 2-nitrobenzamides of general formula V.

<u>v.13</u>

A mixture of 4,5-dimethoxy-2-nitrobenzoic acid (7.0g, 0.031mol) and thionyl chloride (4.5ml, 2 equivalents) was heated to reflux in toluene (140ml) for 2 hours. After cooling the solvent was removed in vacuo to yield the acid chloride as a yellow solid(quantitative yield).

A mixture of acid chloride (851mg), amine IX.m(1.09g), and triethylamine(1 equivalent) in dichloromethane(18ml) was stirred for 18 hours at room temperature. Aqueous work-up and flash chromatography(ethyl acetate) yielded the desired 2-nitrobenzamide V.13 as a white solid(737mg).

Following an analogous synthetic route and utilising the appropriately substituted nitrobenzoic acid or nitrobenzoyl chloride and amine IX, the nitro compounds of formula V listed in Table 4 were prepared.

Table 4

Nitrobenzoic	Amine	Nitrobenzamide V
Acid or	IX	·
Nitrobenzoyl		
chloride		
COCI	IX.a	OMe
		OMe
NO ₂		N N
2		V.1
		NO ₂
COCI	IX.b	Me OMe
		へんがよる
1 じ 人 - 1		OMe OMe
NO ₂		N N N N N N N N N N N N N N N N N N N
2		
·		NO ₂
COCI	IX.c	O S N OMe
		OMe
NO ₂		V.3
COCI	IX.d	O O O OMe
	IX.u	
		OMe
1		V.4
NO ₂		NO ₂
COCI	IX.e	OMe
		OMe
NO ₂		N Me
2		V.5
		NO ₂
COCI	IX.f	
	- 1	
NO ₂		V.6
,		NO ₂
COCI	IX.g	0
		OMe
	į	
NO ₂	-	NO ₂ V.7
		OMe OMe
COCI	IX.h	Υπ [] Υ
	l	O O O O O O O O O O O O O O O O O O O
NO ₂		I N Y
	. [NO ₂ V.8

In a variation of the above scheme a 2-nitro-5-halobenzamide such as V.16 or V.26 may be converted into another compound of formula V by the displacement of the halide with a

suitable nucleophile such as an amine or a thiol in a suitable solvent such as N.N-dimethylformamide or acetonitrile.

V.18

To a solution of V.16 (200mg, 0.42mmol) in N,N-dimethylformamide(2ml) was added sodium thiomethoxide (50mg, 0.72mmol) and the reaction mixture was stirred at room temperature for 72 hours. The mixture was then diluted with ethyl acetate, washed with brine, dried over magnesium sulphate and the solvent removed in vacuo to yield V.18 as a yellow solid (190mg, 89%).

Nitrobenzamide V.17 was prepared by heating to reflux a mixture of V.26 in acetonitrile with excess dimethylamine(40% aqueous solution) for 8 hours.

Reference Example 2B: Preparation of 2-nitrobenzamides of general formula VI'.

 $N-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl\}-phenyl\}-2-nitro-4-trifluoromethyl-benzamide (VI'.24)$

$$F_{3}C$$
 $CO_{2}H$
 CO_{2

A mixture of 2-nitro- α,α,α -trifluoro-p-toluic acid (0.25 g, 1.06 mmol), thionyl chloride (0.5 ml) and toluene (5.0 ml) was heated at reflux for 4 hours. The solution was concentrated in vacuo and azeotroped with toluene to yield crude acid chloride. was added to a solution of amine IX'.b (0.28 g, 0.88 mmol) and triethylamine (0.18 ml, 1.33 mmol) in anhydrous CH₂Cl₂ (10 ml) and stirred at room temperature for 24 hours. Following work-up compound VI'.24 was obtained as an off-white powder (0.44 g) after trituration with ether.

Following an analogous synthetic route and utilising the appropriate nitrobenzoic acid V' and amine IX' the nitro compounds of formula VI' listed in the following Table 5 were prepared.

Table 5

Nitrobenzoic	Amine	Nitrobenzamide VI'
Acid V'	IX'	
CO ₂ H NO ₂	IX'.b	OMe OMe NO ₂
·		. VI'.23

Reference Example 3A: Preparation of 2-aminobenzamides of general formula VI from the corresponding nitro compounds.

VI.12

A solution of V.12 (140mg, 0.30mmol) in ethanol (5ml) and $\mathrm{CH_2Cl_2}$ (5ml) was purged with nitrogen and a slurry of platinum (IV) oxide (30mg) was added. The mixture was stirred under hydrogen at atmospheric pressure for 2 hours, filtered through

CeliteTM and concentrated *in vacuo* to yield VI.12 as a white foam (126mg, 96%).

Following analogous procedures the amino benzamides VI listed in Table 6 were prepared.

Table 6

Nitro	2-
Compound V	Aminobenzamide
	vi
V.1	VI.1
V.2	VI.2
V.4	VI.4
V.5	VI.5
V.6	VI.6
V.7	VI.7
V.8	VI.8
V.9	VI.9
V.10	VI.10
V.11	VI.11
V.13	VI.13
V.14	VI.14
V.15	VI.15
v.17	VI.17
V.28	VI.28

Alternatively for compounds containing a sulphur atom the following method can be used.

Concentrated hydrochloric acid(140 μ L) was added to a solution of the nitrobenzamide, V.3 (147mg,0.30mmol) in methanol(2ml). Iron(72mg) was added and the reaction mixture was heated to 80°C for 2 hours, before cooling. The reaction mixture was basified (saturated sodium carbonate solution), extracted into ethyl acetate, dried over magnesium sulphate and the solvent removed in vacuo to yield an off-white solid which was purified using flash chromatography(ethyl acetate) to yield the desired 2-aminobenzamide, VI.3 (47mg, 34%).

Following an analogous procedure the following 2-aminobenzamide was prepared.

Reference Example 3B: Preparation of 2-aminobenzamides of general formula VIII' from the corresponding nitro compounds.

2-Amino- $N-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide (VIII'.23)$

A solution of VI'.23 (12 g, 0.026 mol) in ethanol (200 ml) and $\mathrm{CH_2Cl_2}$ (160 ml) was purged with nitrogen and a slurry of platinum (IV) oxide (240 mg) was added. The mixture was stirred under hydrogen at atmospheric pressure for 4 hours, filtered through $\mathrm{Celite^{TM}}$ and concentrated in vacuo. Recrystallisation from methanol afforded white crystals of VIII'.23 (9.6 g).

Following analogous procedures the aminobenzamides VIII' listed in the following Table 7 were prepared.

Table 7

Nitro	2-Aminobenzamide	VIII'
Compound		

Reference Example 4A: Preparation of 2-aminobenzamides of general formula VI from the corresponding anthranilic acids.

VI.19

A solution of 3-aminopyrazine-2-carboxylic acid(500mg, 3.60 mmol), amine IX.a (1.12g, 3.60 mmol), N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate (1.68g, 3.96 mmol), 1-hydroxybenzotriazole (486mg, 3.60mmol) and triethylamine(501µL, 3.60mmol) in anhydrous CH₂Cl₂ (30 ml) was stirred at room temperature for 5 days. Following aqueous work-up and recrystallisation from ethyl acetate the title compound, VI.19 was obtained as a pale yellow solid (733 mg). Following procedures analogous to that described above, the aminobenzamides listed in Table 8 were prepared.

Table 8

Anthranilic	Amine	2 -
Acid V	IX	Aminobenzamide
ACIU V	1 1	
		VI
CO ₂ H	IX.a	VI.24
		i
1 11 1	1	
N N N N N N N N N N N N N N N N N N N		İ
N NH ₂		
CO ₂ H	IX.b	VI.25
CI NH,		
		777 00
F_CO ₂ H	IX.b	VI.27
		į
l -人人		
F NH ₂		
CO ₂ H	IX.b	VI.29
	22	
Me NH ₂		
	IX.b	VI.30
CO ₂ H	TY.D	VI.30
O ₂ N NH ₂		

Reference Example 4B: Preparation of 2-aminobenzamides of general formula VIII' from the corresponding anthranilic acids.

2-Amino-N- $\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl<math>\}$ -5-methyl-benzamide (VIII'.12)

A solution of 2-amino-5-methyl benzoic acid (190 mg, 0.96 mmol), amine IX'.b (300 mg, 0.96 mmol), N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate (449 mg, 1.06 mmol) and 1-hydroxybenzotriazole (143 mg, 1.06 mmol) in anhydrous $\mathrm{CH_2Cl_2}$ (10 ml) was stirred at room temperature for 48 hours. Following work-up and flash chromatography on silica gel in methanol:ethyl acetate (2:98) the title compound, VIII'.12 was obtained as a pale yellow solid (58 mg).

2-Amino-N-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-4-fluoro-benzamide (VIII'.07)

To a stirred solution of N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate (238 mg, 0.56 mmol) and 1-hydroxybenzotriazole (76 mg, 0.56 mmol) in anhydrous $\mathrm{CH_2Cl_2}$ (10 ml) was added 2-amino-4-fluorobenzoic acid (80 mg, 0.52 mmol) followed by triethylamine (0.08 ml, 0.57 mmol) and amine IX'.a (200 mg, 0.51 mmol). The mixture was stirred at room temperature for 48 hours. Work-up and flash column chromatography over silica gel in methanol:dichloromethane (5:95) gave the aminobenzamide VIII'.07 as a yellow solid (57 mg).

Following procedures analogous to the two described above the aminobenzamides listed in the Table 9 were prepared.

Table 9

Amine	2-Aminobenzamide
IX'	VIII'

		71
CO ₂ H	IX'.a	OMe NH ₂
		AIII,01
CI CO ₂ H NH ₂	IX'.a	CI OME OME
		VIII'.02
CI CO ₂ H	IX'.a	CI NH ₂ OMe OMe
		VIII'.03
CI NH ₂	IX'.a	OMe OMe
		VIII'.04
CO ₂ H NH ₂	IX'.a	OMe OMe OMe
		VIII'.05
Br CO ₂ H NH ₂	IX'.a	Br OMe OMe .
. [VIII'.06
CO ₂ H NH ₂	IX'.a	OMe OMe NH ₂
ĊH₃		ċн, VIII'.08
CO ₂ H	IX'.a	OMe OMe OMe
ÓMe		VIII'.09
O ₂ N NH ₂	IX'.a	O,N OME
		VIII'.10

		72
NH ₂	IX'.a	OMe OMe
		VIII'.11
O ₂ N NH ₂	IX'.b	O'N NH'
		VIII'.13
F NH ₂	IX'.b	OMe OMe
		VIII'.14
CO ₂ H	IX'.b	OMe OMe VIII.15
NH ₂		VIII'.15
F CO ₂ H	IX'.b	OMe OMe
		VIII'.16
CH ₃ O CO ₂ H	IX'.b	CH,O NH,
		VIII'.17
CH ₃ CO ₂ H	IX'.b	CH, O OMe
	777. 3	VIII'.18
NH ₂	IX'.d	NH, OMe VIII'.19
CO ₂ H NH ₂	IX'.c	O NH,
		VIII'.20

		73
CO ₂ H NH ₂	IX'.f	OMe OMe
		VIII'.21
CO ₂ H NH ₂	IX'.e	OMe OMe
-		VIII'.22
CH ₃ CO ₂ H	IX'.b	OMe OMe CH ₃ NH ₃
		VIII'.28
CI CO ₂ H	IX'.b	CI NH ₁
		VIII'.29

Reference Example 5:Preparation of 2-aminoamides of general formula VI from the corresponding 2-aminoester VII.

VI.20

To a solution of methyl 3-amino-2-thiophene carboxylate(7.56g, 48.1mmol) in dichloromethane(40ml) was added a solution of di-t-butyl dicarbonate(11.55g, 52mmol) in dichloromethane(10ml) followed by 4-dimethylaminopyridine(600mg, 4.8mmol). After stirring for 4 hours at room temperature the reaction mixture was diluted with dichloromethane, washed with water, dried over magnesium sulphate, and the solvent removed in vacuo to yield a gum which was purified using flash chromatography(10% ethyl acetate in hexane) to yield the desired t-butyl carbamate (4.40g, 36%).

To a solution of the t-butyl carbamate(1.01g, 3.95mmol) in tetrahydofuran(4ml) and methanol(8ml) was added a solution of sodium hydroxide(316mg, 7.9mmol) in water(4ml). After stirring for 18hrs at room temperature the reaction mixture was acidified to pH 4, extracted into ethyl acetate, dried over magnesium sulphate, and the solvent removed in vacuo to yield the desired acid as a white solid(800mg,83%).

A mixture of the carboxylic acid intermediate (150mg, 0.62mmol), N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide

75

methyl-p-toluene sulphonate (288 mg, 0.68mmol), 1-hydroxybenzotriazole (92mg, 0.68mmol) and IX.a (175mg, 0.56mmol) in dry dichloromethane(8ml) was stirred at room temperature for 3 days. The reaction mixture was then diluted with dichloromethane, washed with water and saturated sodium carbonate solution, dried over magnesium sulphate, and the solvent removed in vacuo to yield a yellow gum which was purified using flash chromatography(silica, ethyl acetate) to yield the desired amide as a white foam(112mg, 33%).

Anhydrous hydrogen chloride gas was bubbled through a suspension of the amide (202mg, 0.38mmol) in 1,4-dioxane for 10 seconds and the reaction mixture stirred for 1 hour. The reaction mixture was then basified (sodium carbonate) and extracted into ethyl acetate, dried over magnesium sulphate and the solvent removed in vacuo to yield aminoamide, VI.20, as a white solid (151mg, 91%).

Following analogous procedures the following aminoamides were prepared.

Table 10

		r -
Starting amino	Amine IX	Aminoamide VI
ester VII		
escer vii		
Me O	IX.a	VI.21
OEt		
1 . \ \ //		
S NH,		
	IX.a	VI.22
OMe		
NH₂ HCI		
0	IX.a	VI.23
ااً	IA.a	VI.23
N OEt		
NH₂	•	
''		

Reference Example 6A: Preparation of non-commercially available acids of general formula R9-CO₂H .

To a hot solution of 2-chloro-3- , quinolinecarboxaldehyde(500mg,2.61mmol) in t-butanol(7ml) and water(12ml) was added a hot solution of potassium permanganate(580mg, 3.67mmol) in water (15ml) dropwise over a period of 15 minutes. After stirring for 1 hour at reflux, the reaction mixture was allowed to cool, and the MnO₂ precipitate was filtered off and washed with water and t-butanol. The pH of the filtrate was adjusted to pH 5 using 2N hydrochloric acid solution, and was then extracted with chloroform, dried over magnesium sulphate, and the solvent removed in vacuo to yield the acid as a yellow solid(210mg,39%).

The desired acid could alternatively be obtained by basic hydrolysis using sodium or lithium hydroxide from the corresponding ester such as 2-methyl-thiazole-4-carboxylic acid ethyl ester or 4-hydroxy-quinoline-3-carboxylic acid ethyl ester in a suitable solvent such as 1,4-dioxane or methanol

Reference Example 6B: Preparation of acids of general formula $R^{51}-CO_2H$.

(i) 4-cyclohexyloxybenzoic acid

77

Potassium carbonate (2.26 g, 16.4 mmol) was added to a solution of methyl-4-hydroxybenzoate (1.0 g, 6.6 mmol) and cyclohexyl bromide (1.62 ml, 13.1 mmol) in dimethylformamide (20 ml). The mixture was heated at 100°C for 24 hours, cooled, filtered and concentrated in vacuo. Work up followed by flash chromatography over silica gel (hexane:ethyl acetate, 5:1) afforded methyl-4-cyclohexylbenzoate (169 mg). This was dissolved (162 mg, 0.69 mmol) in a mixture of 1,4-dioxane (10 ml) and water (5 ml) and lithium hydroxide monohydrate (32 mg, 0.76 mmol) added. The mixture was stirred at room temperature for 18 hours. A further quantity of lithium hydroxide was added (32 mg) and stirring continued for 4 hours. The mixture was added to ethyl acetate, washed with brine and concentrated to yield the title compound as a yellow solid (27 mg).

(ii) 6-methoxy-3-pyridinecarboxylic acid

To a solution of 6-methoxy-3-pyridinecarboxaldehyde (50 mg, 0.36 mmol; prepared according to the method of Comins and Killpack, J. Org. Chem., 1990, 55, 69-73) in t-butanol (0.5 ml) was added a solution of potassium permanganate (81 mg) in water (1.0 ml). The mixture was stirred at room temperature for two hours, and then saturated sodium sulphite solution was added until the purple colour disappeared. Reaction mixture was extracted with chloroform several times as it was gradually acidified with dilute HCl (2N). Chloroform extracts were concentrated in vacuo to yield the title compound (42 mg) as a white solid.

(iii) 5-Propionylpyrazinecarboxylic acid

Tert-butyl hydroperoxide (70%, 1.0 ml, 7.25 mmol) and a solution of $FeSO_4.7H_2O$ (3.02 g, 10.9 mmol) in water (8 ml) were added concurrently to a solution of methyl-2-pyrazine carboxylate (250 mg, 1.81 mmol) and propionaldehyde (0.78 ml, 0.9 mmol) in $\rm H_2SO_4$ (0.75 ml) at 0 C. The reaction was allowed to warm to room temperature and was stirred for 2 hours. Na₂S₂O₅ was added (until starch/iodide test negative) and the mixture extracted with dichloromethane. Concentration in vacuo and flash column chromatography over silica gel in ethyl acetate:hexane (15:85) yielded methyl-5-propionyl-2pyrazinecarboxylate as a pale yellow solid (106 mg). The methyl ester was treated with LiOH (25 mg, 0.6 mmol) in tetrahydrofuran (15 ml) and water (0.5 ml). After 2 hours at room temperature the mixture was acidified with HCl (2N). Work-up followed by concentration of the organic phase in vacuo gave the title compound (92 mg).

(iv) 5,6,7,8-tetrahydroquinoline-3-carboxylic acid

$$CO_2H$$

A mixture of 3-quinolinecarboxylic acid (1.73 g, 10.0 mmol) in trifluoroacetic acid (20 ml) with platinum dioxide (200 mg) was shaken in a Parr vessel at 10-15 psi. After 90 minutes the reaction mixture was filtered and the solvent removed in vacuo to yield an oil. The oil was added dropwise onto diethyl ether

79

yielding a white solid which was collected by filtration and then recrystallised from ethyl acetate/hexane to yield the title compound as a white solid (770 mg).

Example 2: Preparation of compounds of formula I by process variant (a)

Method A

9616

A mixture of 3-quinolinecarboxylic acid (500mg, 2.89mmol), thionyl chloride (0.42ml, 5.8mmol) and toluene (15 ml) was heated at reflux for two hours. The mixture was cooled and the solvent removed in vacuo to yield the acid chloride as a white solid.

To a solution of amine VI.22 (67mg, 0.15mmol) in anhydrous dichloromethane (2ml) was added acid chloride (41mg, 1.4 equivalents) while cooling in an ice/water bath. The resulting solution was allowed to warm to room temperature and then stirred for 18 hours. The reaction mixture was diluted with dichloromethane(30ml), washed with saturated sodium carbonate solution (2x20ml), dried over magnesium sulphate, and the

80

solvent removed in vacuo to yield a solid which was purified using flash chromatography (silica gel, ethyl acetate) to yield 9616 as a white solid (39mg, 44%).

Where available the acid chloride, R9-COCl , was purchased directly. Other compounds prepared in an analogous manner are listed in Table 11 below.

Method B

9653

A solution of amine VI.7 (165mg), 5-methylpyrazine carboxylic acid (63mg, 1.2 equivalents), cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate (162 mg, 1.0 equivalent) and 1-hydroxybenzotriazole monohydrate (51mg, 1.0 equivalent) in dry dichloromethane (15ml) was stirred at room temperature for 18 hours. The reaction mixture was then diluted with dichloromethane, washed with water and saturated sodium carbonate solution, dried over magnesium sulphate, and the solvent removed in vacuo to yield a solid which was purified using flash chromatography(silica gel, ethyl acetate) to yield 9653 as a white solid (31mg).

81

Other compounds prepared in an analogous manner are listed in Table 11 below.

Method C

<u>9617</u>

$$CO_2H$$
 CO_2H
 NH_2
 $VI.22$
 OMe
 To a solution of 6-methylnicotinic acid (21mg, 0.15 mmol) and amine VI.22 (50 mg, 0.11 mmol) in anhydrous dichloromethane (2 ml) was added 2-chloro-1-methylpyridinium iodide (41 mg, 0.15 mmol). The mixture was stirred at room temperature for 7 days. Saturated sodium carbonate solution (15 ml) was added and the mixture extracted with dichloromethane (30 ml) twice. The combined organic layers were dried over dry magnesium sulphate and reduced in vacuo. Flash chromatography over silica gel (ethyl acetate) yielded 9617 (11mg, 18%) as a white solid.

Other compounds prepared in an analogous manner are listed in Table 11 below.

Table 11

	7-1-3	1 36 - 4-3 2	G
Amine of Formula	Acid	Method	Compound of
VI	Substituent R ⁹		Formula I
VI.1	CINN	A	9591
VI.1	OH CF ₃	В	9592
VI.20		A	9594
VI.17		A	9595
VI.17	T _N	A	9596
VI.20		А	9597
VI.24	N N	A*	9600
VI.1	OH	А	9606
VI.21	N	А	9608

	83		
VI.21		A	9609
VI.2	N N	A	9612
VI.2		A	9613
VI.15	N N	A	9614
VI.18		A	9615
VI.22		A	9616
VI.22	N Me	С	9617
VI.3		A	9621
VI.19		A*	9622
VI.4		A	9623
VI.5		А	9625

	84		
VI.6		A	9626
VI.4	N	A	9632
VI.7	N	A	9633
VI.1	S Me	A	9635
VI.1	N O Me	A	9638
VI.8		A	9648
VI.9		A	9650
VI.10		А	9651
VI.11		Α	9652
VI.7	NMe	В	9653
VI.12		A	9654

	85		
VI.13		A .	9656
VI.10	N Me	В	9657
VI.9	N	A	9658
VI.10	N	A	9659
VI.14		A	9660
VI.11	N	A	9661
VI.25		A	9663
VI.23		A*	9666
VI.27		A	9667
VI.29		A	9668
VI.28		А	9669

	86		
VI.30		A*	9677

* In these examples acetonitrile at a temperature ranging from room temperature to reflux was used instead of dichloromethane.

Reference Example 7: Synthesis of the intermediate bromide of formula XII

A bromide of formula XIIa was prepared as follows:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_3i
 O_4
 O_5i
 O_5i
 O_5i
 O_7c

THIS PAGE BLANK (USPTO)

88

To an ice-cold solution of 7a,4-nitrophenylethyl alcohol (5.0g, 29.9 mmol) and imidazole (2.25g, 32.9 mmol) in $\mathrm{CH_2Cl_2}$ (200 ml) was added dimethylthexylsilyl chloride (6.5 ml, 33.2 mmol). The reaction mixture was stirred at RT for 16 hrs then diluted with $\mathrm{Et_2O}$ (200 ml). The ethereal solution was washed with water (200 ml), 2N HCl (200 ml) and brine (200 ml), dried (MgSO₄) and the solvent removed under reduced pressure to afford compound 7b (10 g) as a yellow liquid.

<u>7c</u>

To a solution of 7b (10g, 32.6 mmol) in EtOH (250 ml) was added PtO_2 (400 mg) before introducing H_2 gas. The reaction mixture was stirred vigorously for 3 days, filtered through celite and the solvent removed under reduced pressure to afford the compound 7c (9.88 g) as a yellow liquid.

<u>7d</u>

To a cold (0°C) solution of 7d (8.78 g, 31.75 mmol) and 2-nitrobenzoyl chloride (7.1 g, 38.11 mmol) in CH_2Cl_2 (40 ml) was added NEt₃ (6.6 ml, 47.64 mmol) and the reaction mixture allowed to warm to RT. After 16 hrs, the reaction mixture was washed with water (40 ml) and the aqueous washings were back-extracted with CH_2Cl_2 (2 x 40 ml). The combined organic phase was dried (MgSO₄) and the solvent removed under reduced pressure to give a brown tar-like solid. This solid was stirred in hexane for 2 hrs to give a white solid which was filtered-off then dissolved in CH_2Cl_2 and filtered through a plug of flash silica gel. The solvent was removed under reduced pressure to afford the compound 7d (6g) as a white solid.

7e

7d (5.0g, 11.7 mmol) was reduced as described for the reduction of 7c, using EtOH (100 ml), and PtO_2 (200 mg). The compound 7e (4.42 g) was obtained as a peach coloured solid.

<u>7f</u>

To a solution of 7e (4.75 g, 11.9 mmol) and 3-quinolinecarbonyl chloride (2.7 g, 14.3 mmol) in CH_2Cl_2 (70 ml) was added NEt₃ (2.5 ml, 17.9 mmol). The reaction mixture was

89

stirred at RT for 16 hrs then poured into dilute sodium carbonate solution (70 ml). The layers were separated, the organic layer washed with water then dried $(MgSO_4)$. The solvent was removed under reduced pressure to give the compound 7f (4.9 g) as an off-white solid.

<u>7q</u>

To a solution of 7f (4.78 g, 8.64 mmol) in THF (100 ml) at RT was added tetrabutylammonium fluoride (1M in THF; 19.2 ml, 17.28 mmol) and the solution left to stir for 4 days. The solvent was removed under reduced pressure and the residue dissolved in EtOAc (100 ml) before adding enough water to produce precipitation. The precipitate was filtered and washed with water then $\rm Et_2O$. The residue was azeotroped with toluene and dried in vacuo to give the compound 7g (3 g) as a cream solid.

XIIa

To a solution of 7g (3.0 g, 7.29 mmol) and triphenylphosphine (3.8 g, 14.58 mmol) in DMF (25 ml) was added N-bromosuccinimide (2.6 g, 14.58 mmol). The reaction mixture was heated at 50° C for 16 hrs, then cooled before adding MeOH (5 ml). After 5 min Et₂O was added until precipitation occurred. The precipitate was filtered and washed with Et₂O. The residue was dried in vacuo to give the compound XIIa (2.13 g) as an offwhite solid.

Example 3: Preparation of compounds of formula (I) by process variant (b)

Scheme 3

A mixture of 3a(i) (68mg, 0.35mmol), which is a compound of formula XX, and was prepared as described below, XIIa (166mg, 0.35mmol), potassium carbonate (72mg, 0.52mmol) and tetrabutylammonium iodide (0.1 equivalents) in N,N-dimethylformamide(3ml) was stirred at room temperature for 4 days. The reaction mixture was diluted with ethyl acetate, washed with water, dried over magnesium sulphate and the solvent removed in vacuo to yield a brown gum. Flash chromatography (silica gel, ethyl acetate) and recrystallisation (methanol/dichloromethane) yielded 9630 as a white solid (43mg, 21%).

Using an analogous method the following compounds of formula (I) were prepared.

Structure of amine	Synthesis of	Compound of
of formula XX	Amine of formula	Formula (I)
	xx	
CI	see G.E.Stokker,	9628
	Tetrahedron	
Ų v ci		
	Letters, 1996,37,	
	5453-5456	
	see G.E.Stokker,	9629
N CI	Tetrahedron	
Ċı	Letters, 1996,37,	
	5453-5456	
Me Me	see Method 3a(ii)	9631
N Me	below	
	see Method	9634
NO ₂	3a(iii) below	
OMe	see Method 3a(iv)	9636
	below	
OMe		
OMe	see Method 3a(v)	9639
N O	below	
OMe	see Method 3a(vi)	9640
OMe	below	
OMe		
	see Method	9641
OMe	3a(vii) below	
OMe	- · · · · · · · · · · · · · · · · · · ·	
Me O	see Method	9642
OMe	3a(viii) below	
→ F	see Method 3a(ix)	9643
Me N	below	
, , ,	see Method 3a(x)	9645
Me ()	below	5015
~~~~	·	0616
0-	see Method 3a(xi)	9646
Me N	below	
OMe		

٠,

	74	
Me OMe OH	see Method 3a(xii) below	9647
Me OH OMe	see Method 3a(xiii) below	9649
Me N	see Method 3a(xiv) below	9655
N)	see Method 3a(xv) below	9664
OEt OEt	see Method 3a(xvi) below	9665

#### Method 3a(i)

$$H_2N$$
OMe
OMe
OMe
OMe

3a(i)

A solution of triethylamine (7.2ml, 0.052mol) and homoveratrylamine (1.92ml, 0.011mol) in dichloromethane (10ml) was added to a solution of methyl chloroformate (8ml, 0.103mol) in dichloromethane (50ml) and cooled to -78°C. The reaction mixture was warmed to room temperature and stirred for 18 hours. It was then poured onto saturated sodium carbonate solution, extracted into dichloromethane, dried over magnesium sulphate, and the solvent removed in vacuo to yield a yellow oil which was

93

purified using flash chromatography(1% methanol in ethyl acetate) to yield the methyl carbamate(2.06g, 78%).

A solution of the methyl carbamate(2.0g, 8.37mmol) in tetrahydrofuran(60ml) was added dropwise to a suspension of lithium aluminium hydride (1.59g, 41.9mmol) in tetrahydrofuran(60ml) and cooled to 0°C. The reaction mixture was allowed to warm to room temperature and stirred for 18 hours. Water (2.2ml) was added to the reaction mixture, followed by 2N sodium hydroxide solution, further water (2.2ml) and magnesium sulphate. After stirring for 15 mins the mixture was filtered and the filtrate was reduced in vacuo to yield 3a(i) as a yellow oil (1.61g, 99%).

#### Method 3a(ii)

A mixture of 3,4-dimethylbenzoic acid (3.5g, 23.33mmol) and thionyl chloride (3.5ml, 46.7mmol) was heated to reflux in toluene for 2 hours before cooling and removing the solvent in vacuo to yield the crude acid chloride as an oil. This was dissolved in dichloromethane(50ml) and a 40% solution of methylamine in water (18ml, 10 equivalents) was added with ice cooling. After stirring for 48 hours aqueous work-up yielded a yellow solid which was purified using flash chromatography (silica; ethyl acetate/hexane) to yield the desired amide as a white solid (1.84g, 49%).

To a solution of the amide (1.00g, 6.13mmol) in dry tetrahydrofuran(20ml) was added lithium aluminium hydride (698mg, 2 equivalents) and the reaction mixture was heated to reflux for 3 hours. After cooling and aqueous work-up a pale oil was obtained which was purified using flash chromatography(silica,ethyl acetate) to yield 3a(ii) as a colourless oil (175mg, 19%).

#### Method 3a(iii)

To concentrated sulphuric acid(80ml) cooled to 0°C was added 1,2,3,4-tetrahydroisoquinoline (20.2ml, 161mmol) dropwise. Potassium nitrate (17.5g,173mmol) was added in portions carefully. After stirring for 16 hours the reaction mixture was basified with concentrated ammonium hydroxide solution, extracted into chloroform, dried over magnesium sulphate, and the solvent was removed in vacuo to yield a brown oil. This was dissolved in ethanol(120ml) and conc. hydrochloric acid was added and the resulting precipitate was collected by filtration and recrystallised from methanol to yield the hydrochloride salt of 3a(iii) (11.2g, 33%).

# Methods 3a(iv), 3a(vi), 3a(vii), 3a(ix), 3a(x), 3a(xii), 3a(xiii), and 3a(xiv)

Amines 3a(iv), 3a(vi), 3a(vii), 3a(ix), 3a(x), 3a(xii), 3a(xiii), and 3a(xiv) were all prepared by reductive amination from the appropriate aromatic aldehyde. This involved reaction of the aldehyde with an amine such as methylamine, ethylamine or butylamine in a suitable solvent such as methanol or toluene. The resultant imine was reduced to the desired amine using hydrogenation over platinum(IV) dioxide catalyst in a suitable solvent such as ethanol, or by using lithium aluminium hydride in tetrahydrofuran.

#### Method 3a(v)

A mixture of 3-hydroxy-4-methoxybenzaldehyde (1.00g,6.57mmol), 2-iodopropane (0.79ml,1.2 equivalents) and

95

potassium carbonate (1.09g,1.2 equivalents) was heated to reflux in acetonitrile for 5 hours. Aqueous work-up yielded the desired intermediate aldehyde. Reductive amination as described in Method 3a(iv) yielded the desired amine 3a(v). Amines 3a(viii) and 3a(xi) were prepared in an analogous method using the appropriate commercially available aldehyde and reacting with an alkylating agent such as 1-iodobutane or 2-iodopropane and then reductive amination to the desired amine.

#### Method 3a(xv)

A solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (5.0g, 22mmol) in an excess mixture of 48% hydrobromic acid (80ml) and 50% hypophosphoric acid (0.4ml) was heated to reflux for 4 hours. The cooled reaction mixture was filtered and washed with methanol and ether to yield the desired dihydroxylated compound as a white solid (4.75g, 88%). To a solution of this material (4.75g) in a 4:1 mixture of acetone:water was added sodium carbonate (3.07g) and the mixture was cooled in an ice bath. Benzyl chloroformate (3.06ml) was then added and the reaction mixture was stirred for 18 hours before filtering. The filtrate was collected and aqueous work-up followed by flash chromatography (hexane/ethyl acetate) and trituration with ether yielded the benzyl carbamate (3.6g, 62%).

To a solution of the benzyl carbamate (1g, 3.34mmol) in N,N-dimethylformamide (50ml) was added dibromomethane (0.28ml, 3.99mmol) and potassium carbonate (2.75g, 19.7mmol) and the mixture was heated to 100°C for 1.5 hours. After cooling and filtering, the filtrate was collected and aqueous work-up and flash chromatography (hexane 5:1 ethyl acetate) yielded the desired 1,3 dioxolane (669mg, 64%).

96

Atmospheric hydrogenation over palladium-on-carbon in a methanol/dichloromethane mixture cleaved the benzyl carbamate to yield the desired amine 3a(xv).

#### Method 3a(xvi)

To a solution of the intermediate benzyl carbamate (preparation above) (500mg, 1.67mmol) in tetrahydrofuran(10ml) was added sodium hydride (60% dispersion in mineral oil,385mg,10.03mmol), iodoethane (6.6ml, 83.6mmol) and dimethylsulphoxide(5ml). The reaction mixture was heated to reflux for 18 hours. After aqueous work-up and flash chromatography(hexane 5:1 ethyl acetate) twice, a yellow oil was yielded (549mg,92%). The benzyl carbamate was cleaved as above to yield amine 3a(xvi).

Example 4: Preparation of compounds of formula Ia by coupling an amine of formula VIII' with an activated acid of formula R⁵¹CO₂H (process variant (a')

#### Method A

Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide (9544)

A mixture of 3-quinolinecarboxylic acid (4.0 g, 0.023 mol), thionyl chloride (3.4 ml, 0.046 mol) and toluene (100 ml) was heated at reflux for two hours. The mixture was cooled, reduced in vacuo and triturated in hexanes to afford crude acid chloride (4.15 g) as a white solid. To a suspension of the acid chloride (2.64 g, 14.0 mmol) in anhydrous dichloromethane (100 ml) was added amine VIII.23 (4.0 g, 9.3 mmol) while cooling in an ice/water bath. The resulting solution was allowed to warm to room temperature and then stirred for a further hour. Dilute potassium carbonate solution was added (100 ml) and the mixture extracted with chloroform three times. The combined organic

layers were dried over dry magnesium sulphate and evaporated until crystallisation was initiated. An equal volume of diethyl ether was added and the mixture left to crystallise, affording 9544 as a white solid (5.4 g).

Other compounds prepared in an analogous manner are listed in the Table below. Where available the acid chloride,  $R^{51}$ -COCl, was purchased directly.

#### Method B

Furan-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1*H*-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide. (9526)

A solution of 3-furoic acid (19 mg, 0.17 mmol), amine VIII'.23 (75 mg, 0.17 mmol), cyclohexyl-N-(2-morpholinoethyl)-carbodiimide methyl-p-toluene sulphonate (79 mg, 0.19 mmol) and 1-hydroxybenzotriazole monohydrate (25 mg, 0.19 mmol) in dry dichloromethane (5.0 ml) was stirred at room temperature for 18

99

hours. Saturated brine was added and the mixture extracted into dichloromethane (25 ml) twice. The combined organic layers were dried over magnesium sulphate and concentrated *in vacuo*. Flash chromatography over silica gel (2% methanol, 98% ethyl acetate) followed by recrystallisation from ethyl acetate afforded the title compound 9526 (18 mg) as a yellow crystalline solid. Other compounds prepared in an analogous manner are listed in the Table below.

#### Method C

N-(2-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-phenylcarbamoyl}-phenyl)-6-methyl-nicotinamide (9557)

To a solution of 6-methylnicotinic acid (47 mg, 0.34 mmol) and amine VIII'.23 (75 mg, 0.17 mmol) in anhydrous dichloromethane (5.0 ml) was added triethylamine (0.05 ml, 0.34 mmol) followed by 2-chloro-1-methylpyridinium iodide (44 mg, 0.17 mmol). The mixture was stirred at room temperature for 5 days. Saturated sodium carbonate solution (15 ml) was added and the mixture

100

extracted with dichloromethane (30 ml) twice. The combined organic layers were dried over dry magnesium sulphate and reduced in vacuo. Flash chromatogrophy over silica gel (2% methanol, 98% ethyl acetate) followed by trituration in diethyl ether yielded the title compound (9557) (8 mg), as a white solid.

#### Method D

2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-3-methyl-benzamide (9398).

Thionyl chloride (5 ml) was added to a suspension of 4isopropylbenzoic acid (5.0 g, 0.03 mol) in toluene (50 ml)
followed by dimethylformamide (1 drop). The mixture was heated
at reflux for 2 hours, cooled and reduced in vacuo to afford
the crude acid chloride (5.5 g) as a yellow oil. This acid
chloride (68 mg, 0.37 mmol) was added to a mixture of amine
VIII'.08 (110 mg, 0.3 mmol) and 2M sodium hydroxide solution
while cooling in an ice/water bath. The mixture was allowed to
warm to room temperature and stirred vigorously for 5 hours.
The mixture was extracted with ethyl acetate (15 ml) twice,
brine (15 ml) once, dried over magnesium sulphate and reduced in

101

vacuo. Flash chromatography (2% methanol / 98% dichloromethane) over silica gel followed by trituration with diethyl ether afforded 9398 (16 mg) as a white solid. Recrystallisation of the residue of the mother liquors afforded a second crop of title compound (15 mg). Other compounds prepared in an analogous manner are listed below in Table 12.

Table 12

Amine of	R₅ in acid	Method	Compound
Formula	R ⁵¹ -COOH		of Formula
VIII'			Ia
VIII'.02		A	9405
	CH ₃		
	CH3		
VIII'.03		A	9354
VIII'.04		A	9350
VIII'.05		D	9401
VIII'.06		A	9394
VIII'.07	,	A	9349
VIII'.09		D	9399
VIII'.10		A	9420
VIII'.11		A	9410
VIII'.01	<b>\</b>	A	9256
	N_CH3		
	Ċн ₃		
VIII'.01		A	9395
,	CAN CHI		
VIII'.01		A	9331
VIII'.01		A	9334
	СН₃		
	CH ₃		
VIII'.01		A	9351
VIII . UI		* *	

		102	
VIII'.01	Br	A	9380
VIII'.01	NO ₂	A	9381
VIII'.01	0.0	A	9426
VIII'.01		A	9427
VIII'.01		A	9442
VIII'.01	0.0	A	9459
VIII'.01			9460
VIII'.01		В	9377
VIII'.01	N N	A	9359
VIII'.01	\(\sigma_{N}\)	A	9384
VIII'.01		A	9391
VIII'.01		A	9347
VIII'.01		В	9383
VIII'.01		В	9385
VIII'.01		В	9389

	103		
VIII'.01		A	9397
VIII'.01	S	A	9365
VIII'.01	H.V.	A	9367
VIII'.23		A	9531
VIII'.12		A	9543
VIII'.13		A	9541
VIII'.24		A	9561
VIII'.14		A	9562
VIII'.15		A	9564
VIII'.16		A	9568
VIII'.17		A	9573
VIII'.14		A	9571
VIII'.16		A	9574
VIII'.17		A	9576
VIII'.25		A	9578
VIII'.13		A	9581
VIII'.12		A	9584
VIII'.28_		. A _	. 9588
VIII'.29		A	9593
VIII'.27		A	9586
VIII'.23	N	A	9545
VIII'.23		A	9590
VIII'.23		В	9472

104			
VIII'.23		A	9482
VIII'.23	N N	A	9483
VIII'.23	N N N N N N N N N N N N N N N N N N N	A	9493
VIII'.23	N CH ₃	A	9527
VIII'.23	OMe	A	9582
VIII'.23	п сн,	A	9569
VIII'.23		A	9456
VIII'.12		A	9511
VIII'.28		A	9510
VIII'.18		A	9512
VIII'.23	F	A	9489
VIII'.23	F	A	9500
VIII'.23	F	A	9501
VIII'.23	F	А	9513
VIII'.23	F	A	9514

		105	
VIII'.23	Co	A	9494
VIII'.23	CI	A	9495
VIII'.23	CI	A	9496
VIII'.23	CH ₃	A	9497
VIII'.23	CH ₃	A	9503
VIII'.23	CH ₃	. A	9504
VIII'.23	OMe	A	9477
VIII'.23	OMe	A	9517
VIII'.23	OMe	A	9518
VIII'.23	OCOCH3	Α	9534
VIII'.23	ососн,	A	9540
VIII'.23	ососн3	A	9548
VIII'.23	CF ₃	A	9523

		106	
VIII'.23	CF ₃	A	9524
VIII'.23	NMe ₂	. A	9556
VIII'.23	CH ₃	A	9447
VIII'.23	00	A	9461
VIII'.23		A	9470
VIII'.23		A	9476
VIII'.23	CI	A	9536
VIII',23	CH ₃	А	9538
VIII'.23	√s)	A	9471
VIII'.23	S	A	9492
VIII'.23	TZT T	Α	9515
VIII'.23	~~~	A	9539
VIII'.19		A	9466
VIII'.20		A	9479
<del></del>	L		

	107	
VIII'.21	A	9567
VIII'.22	 A	9572
VIII'.26	A	9577
VIII'.22	A	9585

Example 5: Interconversion of compounds of formula Ia :

Compounds of formula (Ia) prepared as described in Example 4 were converted into other compounds of formula (Ia) as described below.

(i) 2-(2-Hydroxy-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide (9535).

To a solution of 9534 (0.035 g, 0.06 mmol) in methanol (2 ml) was added sodium hydroxide (3 mg, 0.077 mmol) in water (0.5 ml). The mixture was stirred at room temperature for 2 hours then at reflux for a further 3 hours. A further portion of sodium hydroxide (0.18 mmol) was added and reflux continued for 3 hours. The mixture was cooled and acidified (2M HCl) and partially basified with saturated sodium hydrogen carbonate solution. The mixture was extracted with ethyl acetate (2x 25 ml), washed with brine solution (30 ml). The organics were dried

108

over magnesium sulphate, filtered and concentrated *in vacuo*. Chromatography (silica gel, ethyl acetate) gave 9535 as a white solid (19 mg, 58%). Other compounds prepared in an analogous manner were 9549 from 9540 and 9559 from 9548.

(ii) 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-5-phenyl-benzamide (9432).

To a solution of 9394 (20 mg, 0.035 mmol) was added phenylboronic acid (5 mg, 0.038 mmol) and tetrakis(triphenylphosphine)palladium (2 mg, 0.00173 mmol) in a mixture of ethylene glycol dimethyl ether (0.5 ml) and sodium carbonate solution (2M, 0.04 ml, 0.08 mmol). The mixture was heated under reflux conditions for 3.5 hours. The mixture was cooled and water (10 ml) was added. The mixture was extracted with ethyl acetate (2x 15 ml), washed with water (20 ml) and dried over magnesium sulphate. Filtration and concentration in vacuo, followed by chromatography (silica gel, ethyl acetate) gave 9432 (15 mg, 75%).

(iii) 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-4-amino-benzamide (9435).

Platinum (IV) oxide (5 mg) was added to a solution of 9420 (47 mg, 0.086mmol) in methanol (2 ml) and ethyl acetate (2 ml) and the mixture stirred under hydrogen gas at atmospheric pressure for 18 hours. The mixture was filtered through silica gel (10% methanol, 90% ethyl acetate) and concentrated *in vacuo* to afford 9435 (42 mg, 95%) as a yellow powder.

(iv) Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1*H*-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-hydroxyamino-phenyl)-amide (9542).

Platinum (IV) oxide (4 mg) was added to a solution of 9541 (38 mg) in ethanol (25 ml) and dichloromethane (25 ml) and the mixture was stirred under hydrogen gas at atmospheric pressure for 18 hours. The mixture was filtered through silica gel and concentrated in vacuo. Trituration with ethyl acetate (x1) then diethyl ether (x3), afforded 9542 (29 mg, 80%) as a yellow solid.

# Example 6 Preparation of compounds of formula (Ia) employing protecting group strategy:

(a) 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-3-hydroxy-benzamide (9424) was prepared as shown in scheme 4:.

VIII'.29 (R = H) — VIII'.30 (R = tertbutyldimethylsilyl)

9424

### Step (i)

A solution of the commercially available 3-hydroxyanthranilic acid (324 mg, 2.12 mmol), amine IX'.a (500 mg, 2.12 mmol), N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide-methyl-p-toluene sulphonate (987 mg, 2.33 mmol), 1-hydroxybenzotriazole monohydrate (315 mg, 2.33 mmol) and triethylamine for (0.32 ml, 2.44 ml) in anhydrous dichloromethane (20 ml) was stirred at room temperature 3 days. Aqueous work-up followed by flash chromatography (2% methanol, 98% dichloromethane, silica gel) and trituration (diethyl ether) gave VIII'.29 (174 mg) as an orange solid.

## Step (ii)

A solution of VIII'.29 (170 mg, 0.46 mmol), imidazole (34 mg,

112

mmol) in dimethylformamide (10 ml) was stirred at room temperature for 3 days. A further amount of tert-butyldimethylsilyl chloride (206 mg, 1.37 mmol) and imidazole (93 mg, 1.37 mmol) was added and the mixture stirred for 4 hours. Aqueous work-up followed by flash chromatography (2% methanol, 98% ethyl acetate, silica gel) gave VIII'.30 (142 mg) as a yellow oil.

# Step (iii)

Triethylamine (1.12 ml, 8.04 mmol) and amine VIII'.30 (1.57 g, 3.24 mmol) were added to a stirred solution of 4-isopropylbenzoyl chloride (preparation as described for 9398, 738 mg, 4.04 mmol) in anhydrous dichloromethane (20 ml) while cooling in an ice/water bath. The mixture was allowed to warm to room temperature and stirred for 18 hours. The mixture was poured into saturated sodium carbonate solution (50 ml) and extracted with dichloromethane (75 ml) twice. The combined organic extracts were dried over dry magnesium sulphate and reduced in vacuo. Flash chromatography (2% methanol, 98% ethyl acetate, silica gel) gave 2-(4-isopropyl-benzoylamino)-3-(tert-butyl-dimethyl-silanyloxy)-N-[2-(6,7-dimethoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-ethyl]-benzamide (367 mg) as a cream solid.

#### Step (iv)

A solution of tetrabutylammonium fluoride (1.0M in tetrahydrofuran, 0.63 ml, 0.63 mmol) was added to a solution of 2-(4-isopropyl-benzoylamino)-3-(tert-butyl-dimethyl-silanyloxy)-N-[2-(6,7-dimethoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-ethyl]-benzamide (365 mg, 0.58 mmol) in tetrahydrofuran (20 ml) while cooling in an ice/water bath. After stirring for 30 minutes the mixture was poured into saturated ammonium chloride solution (30 ml) and extracted with ethyl acetate (50 ml) twice. The combined organic layers were washed with water (50 ml), brine (50 ml), dried over dry magnesium sulphate and reduced in vacuo. Flash chromatography (2% methanol, 98% ethyl acetate, silica gel) afforded 9424 (220 mg) as a pale yellow solid.

(b) Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1*H*-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-hydroxy-phenyl)-amide (9554) was prepared as shown in Scheme 5:

## Scheme 5

HO 
$$CO_2H$$
 TBDMSO  $CO_2H$   $OMe$   $OM$ 

## Step (i)

Imidazole (1.8 g, 26.1 mmol) and tert-butyldimethylsilyl chloride (3.95 g, 26.1 mmol) were added to a solution of the

114

commercially available 5-hydroxyanthranilic acid (1.0 g, 6.54 mmol) in dimethylformamide (40 ml) while cooling in an ice/water bath. The mixture was allowed to warm to room temperature and stirred for 18 hours. Aqueous work-up afforded an impure sample of 2-amino-5-(tert-butyl-dimethyl-silanyloxy)-benzoic acid (1.74 g) that was used in Step (ii) without further purification.

#### Step (ii)

2-Amino-5-(tert-butyl-dimethyl-silanyloxy)-benzoic acid from Step (i) (1.6 g), amine IX'.b (1.87 g), 6.0 mmol), N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide-methyl-p-toluene sulphonate (2.79 g, 6.6 mmol) and 1-hydroxybenzotriazole monohydrate (0.89 g, 6.6 mmol) were dissolved in anhydrous dichloromethane (50 ml) and stirred at room temperature for 3 days. Aqueous work-up followed by flash chromatography (silica gel) afforded VIII'.31 (443 mg), as a yellow foam.

#### Step (iii)

2-Quinoxaloyl chloride (67 mg, 0.35 mmol) was added to a solution of amine VIII'.31 (200 mg, 0.28 mmol) and triethylamine (0.10 ml, 0.72 mmol) in anhydrous dichloromethane (10 ml) while cooling in an ice/water bath. The mixture was allowed to warm to room temperature and stirred for 18 hours. Aqueous work-up and flash chromatography (silica gel, 2% methanol, 98% ethyl acetate) afforded quinoxaline-2-carboxylic acid (4-(tert-butyl-dimethyl-silanyloxy)-2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide (183 mg) as a yellow foam.

#### Step (iv)

A solution of tetrabutyammonium fluoride in tetrahydrofuran (1.0M, 0.067 ml, 0.067 mmol) was added to a solution of quinoxaline-2-carboxylic acid (4-(tert-butyl-dimethyl-silanyloxy)-2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide (150 mg, 0.21 mmol) in tetrahydrofuran (10 ml) while cooling in an ice/water bath. The mixture was stirred for 30 minutes, poured into saturated ammonium chloride solution (20 ml) and extracted with ethyl

115

acetate (30 ml) twice. The combined organic phases were washed with water (30 ml), brine (30 ml), dried over dry magnesium sulphate and reduced *in vacuo*. Flash chromatography (silica gel, 2% methanol, 98% ethyl acetate) and trituration in diethyl ether gave 9554 (32 mg as a yellow solid.

(c) Quinoline-3-carboxylic acid (5-amino-2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1*H*-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide (9589) was prepared as shown in scheme 6.

### Scheme 6

$$R = H \xrightarrow{(ii)} R = {}^{t}BuOCO$$

VIII'.33

$$R = {}^{t}BuOCO \xrightarrow{(v)} R = H, 9589$$

117

### Step (i)

A solution of 4-amino-2-nitrobenzoic acid (0.96 g, 5.3 mmol), amine IX'.b (1.65 g, 5.3 mmol), hydroxybenzotriazole monohydrate (0.79 g, 5.8 mmol), N-cyclohexyl-N-(2-morpholinoethyl)carbodiimide methyl-p-toluene sulphonate (2.46 g, 5.8 mmol) in anhydrous dichloromethane (15 ml) was stirred at 20-25 C for 18 hours. Water (15 ml) was added and the mixture extracted with dichloromethane (15 ml) three times. The combined organic extracts were dried over dry magnesium sulphate and reduced in vacuo. Trituration in diethylether and flash column chromatography (10% methanol, 90% dichloromethane) afforded the intermediate nitroamine (0.42 g) as an orange solid.

## Step (ii)

A solution of the product of Step (i) (0.42 g, 0.88 mmol), ditert-butyl dicarbonate (0.24 g, 1.10 mmol) and N,N-dimethylaminopyridine (5 mg, 0.04 mmol) in anhydrous dichloromethane (15 ml) was stirred in an ice/water bath for one hour, allowed to warm to room temperature and stirred for a further three days. Potassium carbonate solution (15 ml) was added and the mixture extracted with dichloromethane (15 ml) three times. The combined organic layers were dried over magnesium sulphate and dried in vacuo. Chromatography (2.5% methanol, 97.5% dichloromethane, silica gel) afforded the intermediate protected nitroamine (0.37 g).

#### Step (iii)

To a solution of this product (0.35 g, 0.61 mmol) in ethanol (5 ml) and dichloromethane (5 ml) was added 10% palladium on cabon (35 mg). The mixture was stirred under hydrogen gas at atmospheric pressure for eighteen hours. The mixture was filtered through CeliteTM and reduced until crystallisation was initiated. After cooling the product, amine VIII'.32 (0.19 g), was isolated as a yellow crystalline solid.

118

# Step (iv)

Amine VIII'.32 (192 mg, 0.35 mmol) was added to a suspension of quinoline-3-carboxylic acid chloride (82 mg, 0.43 mmol) in anhydrous dichloromethane (3 ml) while cooling in an ice/water bath. The resulting solution was stirred for one hour, allowed to warm to room temperature and stirred for a further eighteen hours. Dilute potassium carbonate solution (30 ml) was added and the mixture was extracted with chloroform (30 ml). The organic phase was washed with water four times, dried over anhydrous magnesium sulphate and reduced in vacuo. Trituration with dry diethyl ether and recrystallisation (methanol, dichloromethane) gave the product, Boc-protected 9589, as a cream solid (0.19 g).

#### Step (v)

A solution of the above compound (78 mg, 0.11 mmol) was stirred in a mixture of 5N hydrochloric acid (20 ml) and ethanol (25 ml) for three days. The mixture was basified with saturated potassium carbonate solution and extracted with dichloromethane (50 ml) three times. The combined organic phases were dried over dry magnesium sulphate and reduced *in vacuo*. Flash chromatography (2.5% methanol, 97.5% dichloromethane) and recrystallisation from methanol/dichloromethane) afforded the title compound, 9589, as a pale brown solid (15 mg).

# Example 7: Preparation of Compounds of formula Ia prepared from methyl anthranilate (process variant (b')).

The route to compounds of formula (Ia) via the intermediate of formula XII' is shown in scheme 7:

119

Scheme 7

Reaction of commercially available methyl anthranilate X' with an acid chloride of formula R⁵¹-COCl in the presence of triethylamine using dichloromethane as solvent, at room temperature for 1-14 hours yielded the intermediate of general formula XI'. Hydrolysis of the intermediate ester XI' was achieved by treating it with sodium hydroxide in methanol/water at reflux for 1-5 hours. Acidification of the mixture with HCl followed by work up furnished intermediate acid XII'.

la

Preparation of the final product of formula Ia was achieved by coupling this acid with amine IX'.a. To a solution of the intermediate acid in THF was added 1,1-carbonyldiimidazole (1.1 equivalents) and the mixture was stirred for one hour at room temperature. To this mixture was added amine IX'.a (1.0 equivalents) and pyridinium p-toluene sulphonate (2.6 equivalents). The resulting mixture was refluxed for 56 hours and cooled. After solvent removal and work-up the product was purified by flash column chromatography over silica gel. The compounds prepared by this general route are summarised in Table 13.

120 <u>Table 13</u>

R ⁵¹	Compound of Formula
сн,	OMe NH OMe
	9304
	OMe NH NH
	9294
	OMe OMe
	9302
	OMe OMe
	9295

Example 8: Preparation of compounds of formula Ia via azalactones of general formula XIII' (process variant (c')).

Reaction of commercially available anthranilic acid with an acid chloride of general formula R⁵¹-COCl in pyridine or pyridine/dichloromethane mixture at 0°C for 3-8 hours, gives rise to the azalactone intermediates of formula XIII'. Treatment of this intermediate with amine IX'.a in refluxing toluene in the presence of p-toluene sulphonic acid or camphor sulphonic acid for 14-24 hours gives rise to compounds of general formula Ia. Final products were purified by flash column chromatography over silica gel. The following compounds of formula Ia were prepared via this route:

### Example 9: Preparation of salts

The hydrochloride salts of compounds of formula (I) were prepared by treatment of a solution of the compounds in THF with 2 molar hydrochloric acid followed by sonication until a clear solution was obtained. The solvent was then removed in vacuo and the residual solution was freeze-dried to give the hydrochloride salt.

In an alternative method, hydrochloride salts were prepared by bubbling HCl gas through a solution of the corresponding free base in THF, followed by evaporation to dryness.

#### Example 10: Pharmaceutical composition

Tablets, each weighing 0.15 g and containing 25 mg of a compound of the invention can be manufactured as follows:

WO 98/17648

PCT/GB97/02885

123

### Composition for 10,000 tablets

compound of the invention (250g) lactose (800 g) corn starch (415 g) talc powder (30 g) magnesium stearate (5 g)

The compound of the invention, lactose and half of the corn starch are mixed. The mixture is then forced through a sieve 0.5 mm mesh size. Corn starch (10g) is suspended in warm water (90 ml). The resulting paste is used to granulate the powder. The granulate is dried and broken up into small fragments on a sieve of 1.4 mm mesh size. The remaining quantity of starch, talc and magnesium stearate is added, carefully mixed and processed into tablets.

## Example 11: Characterisation of compounds of formula (I)

The compounds prepared in Examples 2 to 9 were characterised by mass spectroscopic, microanalytical, proton n.m.r. and, in some cases, infra-red techniques. The results are set out in the following tables.

No.	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	P
9304	C ₃₀ H ₃₅ N ₃ O ₄ 501	MH* 502 (70%)	CI	CDCI,/400 MHz	1.29 (6H,2xd), 2.86 (6H, br.m), 3.0
					(1H,septet), 3.68 (4H,m), 3.83 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.62 (1H,s), 7.08 (1H, t), 7.16 (1H,br.s), 7.38 (2H,d), 7.51 (2H,t), 7.99 (2H,d), 8.82 (1H,d), 12.22 (1H,br.s)
9405 .	C ₁₀ H ₃₄ N ₃ O ₄ Cl 535/537	MH+ 536 (15%), 206 (100%)	EI .	CDCI,/400 MHz	1.28 (6H,d), 2.74-2.80 (6H,m), 2.95-3.04 (1H,m,CH), 3.60 (2H, br.s) 3.65-3.70 (2H,m), 3.81 (3H,s,OMe), 3.83 (3H,s,OMe), 6.49 (1H,s), 6.58 (1H,s), 7.10 (2H, d, J=8Hz), 7.32-7.40 (3H,m), 7.88 (2H,d, J=7Hz), 8.44 (1H,d, J=8Hz), 10.36 (1H,br.s,NH)
9354	C ₃₀ H ₃₄ N ₃ O ₄ Cl 535/537	MH* 536 (30%)	Ü	CDCl ₃ /400 MI-lz	1.28 (6H,d,J=7Hz), 2.75-2.85 (6H,m), 2.95-3.02 (1H,m,CH), 3.62- 3.66 (4H,m), 3.84 (3H,s,OMc), 3.86 (3H,s,OMe), 6.54 (1H,s), 6.62 (1H,s), 7.00 (1H,br.s,NH), 7.37 (2H,d, J=7Hz), 7.44-7.47 (2H,m), 7.95 (2H,d,J=7Hz), 8.80 (1H,d,J=8Hz), 12.01 (1H,br.s,NH)
9350	C,H,CIN,O	MH+ 536:538 - 3:1	ESI	CDCl,/400MHz	1.29 (6H,d), 2.90-3.42 (8H,m), 3.78-

o Z	Molecular formula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	P
	535.5	ratio Þ Cl cpd (100%).			3.98 (9H,m), 6.55 (1H,s), 6.64 (1H,s), 7.12 (1H,d), 7.34 (2H,d), 7.84 (1H,dd), 7.96 (2H,d), 7.92-8.06 (1H, br. m), 8.95 (1H,s), 12.48 (1H,s)
9401	C ₃₀ H ₃₄ ClN ₃ O ₄ 535.5g	MH* 536/538 ["3:1 intensity, Cl cpd] (47%) Base Peak 192 (100%)	EI	CDCI,/400MHz	1.30 (6H,d), 2.75-3.03 (7H,m), 3.58-3.68 (2H,m), 3.72 (2H,br.s), 3.82 (3H,s), 3.83 (3H,s), 6.50 (1H,s), 6.59 (1H,s), 7.20 (1H,t), 7.34 (2H,d), 7.28-7.48 (1H,br. m), 7.50 (1H,t), 7.54 (1H,d), 7.52 (2H,d), 9.25 (1H,t),
9394	C ₃₀ H ₃₄ N ₃ O ₄ Br 579/581	MH* 580 (15%), 206 (70%)	EI	CDCl, /400MHz	1.28 (6H,d,J=7Hz), 2.78-2.87 (6H,m), 2.95-3.02 (1H,m,CH), 3.60- 3.65 (4H,m), 3.83 (3H,s,OMc), 3.85 (3H,s,OMc), 6.54 (1H,s), 6.62 (1H,s), 6.90 (1H,br.s,NH), 7.36 (2H,d, J=7Hz), 7.55-7.60 (2H,m), 7.94 (2H,d,J=7Hz), 8.74 (1H,d,J=8Hz), 11.99 (1H,br.s,NH)
9349	C,1,H,4FN,O, 519	MH+ 520 (100%)	ESI	CDCI, /400 MHz	1.29 (6H,d), 2.80-3.10 (7H,m), 3.65-3.90 (10H,m), 6.54 (1H,s), 6.62 (1H,s), 6.77 (1H,t), 7.38 (2H,d), 7.67 (1H, br.s), 7.98 (2H,d), 8.67 (1H,dd), 12.53 (1H,s) and one unobserved NH signal.
9398	C ₁₁ H ₃₂ N ₃ O ₄ 515	MH+ 516 (24%)	EI	CDCl, /400 MHz	1.28 (6H,d), 2.32 (3H,s), 2.66-2.84

Zo.	Molecular formula	Mass spec data	E3		'H NMR data
		mass (intensity)	mode	solvent/field	p
		Base peak 206 (100%)			(6H,m), 2.97 (1H, septet), 3.55 (2H,dd), 3.62 (2H,s), 3.83 (3H,s), 3.84 (3H,s), 6.51 (1H,s), 6.59 (1H,s), 6.95 (1H,br.s), 7.15 (1H,t), 7.28-7.40 (4H,m), 7.95 (2H,d), 10.12 (1H,s).
9399	C,1H,,N,O, 531	MH+ 532 (10%) Base peak 192 (100%)	CI.	CDCl, /400 MHz	1.28 (6H,d), 2.60-2.82 (6H,m), 2.97 (1H,septet), 3.50-3.60 (4H,m), 3.83 (3H,s), 3.84 (3H,s), 3.86 (3H,s), 6.48 (1H,s), 6.58 (1H,s), 6.93 (1H,br.s), 7.02 (1H,d), 7.12 (1H,d), 7.20 (1H,d), 7.32 (2H,d), 7.90 (2H,d), 8.94 (1H,s).
9424	C ₃₀ H ₃₅ N ₅ O ₅ 517	MH* 518 (100%)	CI*	CDÇI, /400 MHz	1.28 ppm (6H,s), 2.78-3.04 (6H,m), 2.98 (1H, septet), 3.60-3.86 (4H,m), 3.82 (3H,s), 3.83 (3H,s), 6.52 (1H,s), 6.60 (1H,s), 7.10-7.28 (3H,m), 7.38 (2H,d), 7.40-7.64 (1H, br. s), 8.02 (2H,d), 10.18 (1H,s), 12.32 (1H,s)
9420	C _{yo} H _{y4} N ₄ O ₆	MH*, 547 (100%)	ci.	CDCl, /400 MHz	12.20 (1H,s), 9.68 (1H,d, J=1Hz), 7.96 (2H,d, J=8 Hz), 7.84 (1H,dd, J=8Hz, 1Hz), 7.52 (1H,d, J=8Hz), 7.48 (2H,d, J=8Hz), 7.38 (1H,br.s), 6.62(1H,s), 6.54 (1H,s), 3.86 (3H,s), 3.82 (3H,s), 3.72-3.54 (4H,m), 3.02 (1H, septet, J=7Hz), 2.90-2.78 (6H, m), 1.30 (6H,d, J=7 Hz).

No.	Molecular formula	Mass spec data	Ľ3		'H NMR data
		mass (intensity)	mode	solvent/field	þ
9435	C,nH,skN,O,	MH*, 517 (100%)	· CI•	CDCI, /400 MHz	12.70 (1H,s), 8.28 (1H,d, J = 1Hz), 8.00 (2H, d, J = 8Hz), 7.36 (2H,d, J = 8Hz), 7.28 (1H,d, J = 8Hz), 6.88 (1H,br.s), 6.64 (1H,s), 6.56 (1H,s), 6.30 (1H,dd, J = 8Hz, 1Hz), 4.06 (2H,br.s), 3.88 (3H,s), 3.86 (3H,s), 3.68-3.58 (4H,m), 3.00 (1H, septer, J = 7Hz), 2.90-2.74 (6H, m), 1.30 (6H,d, J = 7Hz).
9432	C3,6H3,9N3O, 577	MH+, 578 (20%)	CI	CDCl, /400 MHz	1.28 (6H, 2xd, J=7Hz), 2.80-2.85 (6H,m), 2.94-3.02 (1H,m CH), 3.62- 3.70 (4H,m), 3.80 (3H,s, OMe), 3.82 (3H,s,OMe), 6.52 (1H,s) 6.60 (1H,s), 7.20 (1H,br.s,NH), 7.30-7.40 (5H,m), 7.46 (2H,d, J=7Hz), 7.65-7.75 (2H,m), 8.00 (2H,d, J=7Hz), 8.87 (1H,d, J=8Hz), 12.12 (1H,br.s,NH).
9410	C,4H,7N,O, 551	MH+ 552 (6%) Base peak 316 (100%)	EI	CDCl, /400 MHz	1.30 (6H,d), 2.88-3.12 (7H,m), 3.70-3.89 (10H,m), 6.55 (11I,s), 6.62 (1H,s), 7.26 (1H,s), 7.33-7.43 (3H,m), 7.52 (1H,t), 7.82 (2H,t), 8.03 (2H,d), 8.32 (1H, br.s), 9.27 (1H,s), 12.08 (1H,s)
9256.0	$C_pH_3Q_1N_4$ = SO2Da	SO3 Da MH* 20% 148 Da 100% 267 Da 20%	DCI+	CDCl, /400 MHz	2.76-2.87d (6H,m), 3.05 (6H,2xs), 3.61-3.68 (4H,m), 3.83 (3H,s), 3.86 (3H,s), 6.55 (1H,s), 6.62 (1H,s), 6.77

OZ	Molecular formula	Mass spec data	ata		'H NMR data
		mass (intensity)	mode	solvent/field	7
		192 Da 45%			(2H,d), 6.95-7.04 (2H, overlapping t and br.s), 7.43-7.50 (2H,m), 7.77
9297.00	C ₃₀ H ₃₅ N ₃ O ₅ , 501	MH* 502 (100%)	ט	CDCl ₃ /400.134 MHz	0.98 (3H,t), 1.68 (2H,sextet), 2.68 (2H,t), 2.74-2.85 (6H,m), 3.62 (4H, s and t), 3.81 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.62 (1H,s), 7.02 (1H,br.s), 7.05 (1H,br.s)
					7.5 (1H,t), 7.51 (2H,d), 7.48 (1H,d), 7.5 (1H,t), 7.98 (2H,d), 8.8 (1H,d), 12.20 (1H,br.s). t is not clear
9395	C ₂₂ H ₃₉ O ₄ N ₃ 529 Da	MH* 530 Da 100%	DCI ⁺/ NH,	CDCl, /400 MHz	0.92 (3H,t), 1.30-1.40 (4H,m), 1.42-1.69 (2H, overlapping water and sample signals), 2.68 (2H,t), 2.85-2.97 (6H,m), 3.67-3.79 (4H,m), 3.82 (3H,s), 3.87 (3H,s), 6.53 (1H s), 6.52
					(1H,s), 7.08 (1H,t), 7.32 (2H,d), 7.5- 7.65 (2H,m), 7.98 (2H,d), 8.82 (1H,d), 12.24 (1H br.s).
9331.0	C,1H,,O,N, 541 Da	MH+ 542 Da 25% 192 Da 100% 102 Da 100%	DCI+	CDCl, /400 MHz	1.20-1.33 (1H,br.m), 1.42 (4H, br.m), 1.78 (1H, br.d), 1.89 (4H, br.m), 2.59 (1H, br.m), 2.89 (6H,m), 3.64-3.75
					3.86 (3H,s), 6.55 (1H,s), 6.63 (1H,s), 7.09 (1H,t), 7.35 (2H,d), 7.48-7.61
					(21,111), (.77 (2.11,0), 8.82 (111,0), 12.21 (111, br.s).

No.	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	p
	-				NB: other NH signal not seen.
9294.00	C"H"N,O, 535	MH* 536 (100%)	ت ا	400.134 MHz CDCl,	2.82 (6H,m), 3.65 (2H,s), 3.68 (2H,t), 3.82 (3H,s), 3.85 (3H,s), 6.52 (1H,s), 6.62 (1H,s), 7.08 (1H,br.s), 7.09 (1H,t), 7.4 (1H,t), 7.46 (3H,m), 7.52 (1H,t), 7.64 (2H,d), 7.74 (2H,d), 8.12 (2H,d), 8.85 (1H,d), 12.34 (1H,s).
9295.00	C,,H,,N,O, 509	MH* 510 (100%)	ESI	400.134 MHz, CDCl,	2.81 (6H,m), 3.65 (2H,s), 3.66 (2H,t), 3.82 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.62 (1H,s), 7.06 (1H, br.s), 7.1 (1H,t), 7.48-7.61 (4H,m), 7.89 (1H,d), 7.96 (1H,d), 8.04 (1H,d), 8.12 (1H,d), 8.6 (1H,d), 8.8 (1H,d), 12.42 (1H,s).
9302	C ₂₈ H ₂₉ N ₃ O ₆ 503	MH* and (M-H)* 50:50 502 (100%)	ESI	400 13 MHz	2.86 (6H, br.m), 3.7 (4H,t and s), 3.86 (3H,s), 3.88 (3H,s), 6.05 (2H,s), 6.55 (1H,s), 6.61 (1H,s), 6.91 (1H,d), 7.08 (1H,t), 7.5 (2H,t) 7.53 (1H,d), 7.61 (1H,d), 8.79 (1H,d) 12.2 (1H, br.s).
9310.00	C ₃₁ H ₃₈ N ₄ O ₄ 530	MH* (»30%)	Ö	400.134 MFIz	1.21 (6H,t), 2.85 (6H,m)*, 3.42 (4H,q), 3.68 (4H,m)*, 3.82 (3H,s), 3.86 (3H,s), 6.52 (1H,s), 6.61 (1H,s), 6.71 (2H,d), 7.01 (1H,t), 7.11 (1H,br.s), 7.48 (2H, 1H t +d)*, 7.94 (2H,d), 8.82 (1H,d), 11.98 (1H,br.s).

_	Molecular tormula	Mass spec data	ıta		'H NMR data
- 1		mass (intensity)	mode	solvent/field	p
ì					* almost looks like triplet * should be triplet and singlet * possible overlapping triplet and doublet.
	C,1H,7O,N, 515	MH* 516 (100%)	CI	CDCl, /400 MHz	1.39 (9H,s), 2.79-2.91 (8H,m), 3.61-3.71 (2H,br.s), 3.81 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.62 (1H,s), 7.04-7.11 (1H,m), 7.46-7.56 (4H,m), 8.01 (2H,d), 8.82 (1H,d)
					both NH protons not obscrved poor spectra.
	C ₂ ,H ₂ ,N ₃ O ₄ 459	MH+, 460 (100%)	ESI	CDCl, /400 MHz	2.75-2.85 (6H,m), 3.62-3.65 (4H,m), 3.82 (3H,s, OMc), 3.85 (3H,s, OMc), 6.53 (1H,s), 6.60 (1H,s), 7.04-7.10 (2H,m), 7.45-7.55 (5H,m), 8.03-8.06 (2H,m), 8.84 (1H,d, J=8Hz). 12.25 (1H, br.s. NH).
	C ₂ H ₂₈ O ₄ N ₃ Br 538	MH+, 538/540 1:1 (100%)	DCI +/-	CDCI, /400 MHz	2.95-3.07 (6H,m), 3.74-3.86 (10H,m), 6.54 (1H,s), 6.63 (1H,s), 7.63 (1H,t), 7.93 (2H,d), 8.79 (1H,d), 12.47 (1H,br.s).
					NIH proton not observed.

No.	Molecular formula	Mass spec data	e		¹H NMR data
		mass (intensity)	mode	solvent/field	p
9381	C"H _{zs} O"N, SO,Da	MH⁺ 505 Da (100%)	DCI+	CDCl, /400 MFIz	2.89-3.07 (6H,m), 3.71-3.89 (10H,m), 6.55 (1H,s), 6.66 (1H,s) 7.19 (1H,t), 7.51-7.60 (2H,m), 7.74 (1H,br.s), 8.22 (2H,d), 8.37 (2H,d), 8.84 (1H,d), 12.77 (1H, br.s).
9426	C,,,H,,,N,O, 551	MH+ 552 (8%) Base peak 69 (100%)	CI•	CDCI, /400 MHz	2.80-3.00 (6H, br. m), 3.60-3.90 (10H,m), 6.53 (1H,s), 6.62 (1H,s), 7.06-7.12 (6H,m), 7.18 (1H,t), 7.38 (2H,t), 7.50 (1H,t), 7.62 (1H, br. d), 8.03 (2H,d), 8.81 (1H,d), 12.31 (1H,s).
9427	C,4H,,N,O, 563	MH+ 564 (32%) Base peak 328 (100%)	CI.	CDCl, /400 MHz	2.70-2.98 (6H, br. m), 3.62-3.80 (4H,m), 3.84 (3H,s), 3.85 (3H,s), 6.54 (1H,s), 6.62 (1H,s), 7.12 (1H,t), 7.41 (1H,br.s), 7.47-7.67 (5H,m), 7.82 (2H,d), 7.92 (2H,d), 8.14 (2H,d), 8.85 (1H,d), 12.54 (1H,s).
9442	C,4H,5N,O, 549	MH+ 550 (100%)	ci.	CDCl, /400 MHz	2.78-3.02 (6H, br.), 3.60-3.78 (4H,m), 3.86 (3H,s), 3.87 (3H,s), 4.06 (2H,s), 6.53 (1H,s) 6.62 (1H,s), 7.08 (1H,t), 7.12-7.65 (10H,m), 7.97 (2H,d), 8.82 (1H,d), 12.25 (1H,s)
9459	C,1,H,9,N,O, 557	MH+ 558 (100%)	ţ.	CDCl, /400 MHz	1.28-2.08 (10H, m), 2.72-2.94 (6H,m), 3.60-3.76 (4H,m), 3.87 (3H,s), (3H,s), 4.35 (1H,m), 6.53 (1H,s), 6.61 (1H,s),

o	Molecular tormula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	p
·					6.98 (2H,d), 7.05 (1H,t), 7.45-7.60 (2H,m), 7.98 (2H,d), 8.30 (1H,d), 12.16 (1H,s).
9460	C,4H,5N,O, 565	MH* 566 (100%)	·IO	CDCI/400 MHz	2.70-2.88 (6H,m), 3.58-3.68, (4H,m), 3.85 (3H,s), 3.86 (3H,s), 5.15 (2H,s), 6.54 (1H,s), 6.62 (1H,s), 6.95-7.55 (11H,m), 8.04 (2H,d), 8.80 (1H,d), 12.18 (1H,s).
9377	C ₂₆ H ₂₈ N ₄ O ₄ 460	MH+ 461 (77%) Base peak 206	ţ.	CDCl, /400 MHz	2.70-2.95 (6H,m), 3.62-3.90 (10H,m), 6.52 (1H,s), 6.60 (1H,s), 7.10 (114,t), 7.14-7.28 (1H, br. m), 7.40-7.62 (3H
		(100%)			m), 7.88 (1H,t), 8.28 (1H,d), 8.78 (1H,d), 8.86 (1H,d), 12.94 (1H,s).
9359	C ₂₆ H ₂₈ N,O, 460	MH* 461 (32%)	ţ.	CDCl, /400 MHz	2.75-2.95 (6H,m), 3.60-3.77 (4H,m),
	<u>.</u>	Base peak 356 (100%)			6.62 (114,s), 7.02 (311,s), 6.03 (111,s), 6.62 (114,s), 7.12 (114,t), 7.40-7.62 (414,m), 8.32 (114,dt), 8.78 (114,dd), 8.82 (114,d), 9.29 (114,s), 12.56 (114,s).
9384	C ₂₆ H ₂₈ N ₄ O ₄ 460	MH* 461 (100%)	ESI	CDCl, /400 MHz	2.76-2.94 (6H,m), 3.60-3.72 (4H,m), 3.85 (3H,s), 3.86 (3H,s), 6.53 (1H,s), 6.61 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H,s), 7.33 (1H
					s), 7.50-7.60 2H,m), 7.89 (2H,d), 8.75-8.95 (3H,m), 12.67 (1H,s).
9391	C ₃₈ H ₂₀ N ₅ O ₄	M* 461 (8%) Base peak 206	回	CDCl, /400 MHz	2.75-2.90 (6H,m), 3.60-3.24 (4H,m), 3.84 (3H,s), 3.85 (3H,s), 6.53 (1H,s),

	-				
° Z	Molecular formula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	-0
		(100%)			6.60 (1H,s), 7.07-7.20 (2H,m), 7.47-7.59 (2H,m), 8.75 (2H,dd), 8.85 (1H,d), 9.49 (1H,s), 12.98 (1H,s)
9347	C ₂₉ H ₂₉ N ₅ O ₄ 511	MH* 512 (100%)	CI	CDCI, /400 MI-lz	2.75-3.00 (6H,m), 3.70-3.90 (10H,m), 6.52 (1H,s), 6.60 (1H,s), 7.10-7.52 (1H,br. m), 7.15 (1H,t), 7.56 (1H,t), 7.65 (1H,th), 7.65 (1H,th), 8.82-8.94 (2H,m), 8.15-8.40 (2H,m), 8.88 (1H,d), 9.74
1816					(1H,s), 13.14 (1H,s).
7,083	Curtina V.O. 510	MH* 511 (100%)	ESI	CDCl, /400 MIHz	2.80-2.95 (6H,m), 3.66-3.80 (4H, br.m), 3.83 (3H,s), 3.84 (3H,s), 6.51 (1H,s), 6.59 (1H,s), 7.12 (1H,t), 7.55 (1H,t), 7.60 (1H,br.d), 7.71 (2H,m), 7.83 (1H,d), 7.88 (1H,d), 8.69 (1H,d), 8.90 (1H,d), 9.53 (1H,d), 12.89 (1H,s). One NH signal not
9385	ON H O				observed.
	016 404 000	MH' 511 (100%)	÷	CDCI	2.70-3.05 (6H,m), 3.70-3.90 (10H,m), 6.45 (1H,s), 6.53 (1H,s), 7.08 (1H,t), 7.45 (1H,br. s), 7.51 (1H,t), 7.60-7.70 (2H,m), 7.80 (1H,t), 7.90 (1H,d), 8.32-8.42 (3H,m), 8.87 (1H,d), 13.13 (1H,s).
9389	C ₃₀ H ₃₀ N ₄ O ₄ 510	MH+511 (100%)	回	CDCl, /400 MHz	2.88 (6H, br.s), 3.63 -3.79 (4H,m), 3.83 (3H,s), 3.84 (3H,s), 6.51 (1H.s).

° Z	Molecular formula	Mass spec data	ıta		'I-I NMR data	
		mass (intensity)	mode	solvent/field	p	
					6.61 (1H,s), 7.11 (1H,t), 7.16-7.26 (1H,m), 7.53 (1H,t), 7.60 (1H,br.d), 7.70-7.82 (2H,m), 8.02 (1H,d), 8.08 (1H,d), 8.71 (1H,s), 8.92 (1H,d), 9.37 (1H,s), 13.07 (1H,s)	T
9397	C ₃₀ H ₃₀ N,O, 510	MH* 511 (14%)	<u> </u>	CDCI, /400 MHz	2.77-2.93 (6H,m), 3.60-3.75 (4H,m), 3.82 (3H,s), 3.83 (3H,s), 6.53 (1H,s),	<del></del>
		Dase peak 20/ (100%)			6.62 (1H,s), 7.12 (1H,t), 7.31 (1H, br.s), 7.50-7.68 (3H,m), 7.83 (1H,t), 8.03 (1H,d), 8.19 (1H,d), 8.80-8.90 (2H,m), 9.55 (1H,s), 12.72 (1H,s)	
9365	C ₂₅ H ₂₇ N ₃ O ₄ S 465	MH+ 466 (100%)	Ü	CDCI, /400 MHz	2.77-2.85 (6H,m), 3.63-3.68 (4H,m), 3.84 (3H,s, OMc), 3.86 (3H,s, OMc), 6.53 (1H,s), 6.60 (1H,s), 7.04.7.10	7
					(2H,m), 7.36-7.38 (1H,m), 7.45-7.51 (2H,m), 7.63-7.65 (1H,m), 8.10-8.12 (1H, m), 8.77 (1H,d,J=Hz), 12.21 (1H, br.s, NH).	
9367	C ₂₉ H ₃₀ N ₄ O ₄ 498	MH* 499 (100%)	Ü	CDCl, /400 MHz	2.80-2.86 (6H,m), 3.64-3.73 (4H,m), 3.84 (3H,s,OMe), 3.86 (3H,s,OMe), 6.55 (1H,s), 6.62 (1H,s), 7.05-7.10	
					(2H,m), 7.15-7.20 (1H,m), 7.25-7.34 (2H,m, obscured by CHCl,), 7.44-	
					7.55 (3H,m), 7.74 (1H,d, J=8Hz), 8.77 (1H,d, J = 7Hz), 9.09 (1H, br.s,NH), 12.47 (1H,br.s,NH)	

o Z	Molecular formula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	p
9531	C,5H,1,N,O, 587	MH+ 588 (100%)	ESI	CDCl, /400 MHz	2.72-2.98 (8H, m), 3,68 (2H, s) 3,84
	•				(3H,s), 3.85 (3H,s), 6.53 (1H,s), 6.60
					(1H,s), 7.16-7.34 (3H,m), 7.55-7.64
					(3H,m), 7.68 (1H,d), 7.80-7.94
					(3H,m), 8.14-8.34 (2H,d), 8.86
9,00					(1H,d), 9.75 (1H,s), 12.65 (1H, br.s).
9542	C,,H,,N,O,	MH+ 619 (100%)	ESI	d, DMSO/400	11.40 (1H.s), 10.16 (1H.s), 9 60
				MHz	(1H,s), 8.98 (1H,s), 8.66 (1H,s), 8.36
					(1H,s), 8.28-8.20 (1H,m), 8.18-8.10
					(1H,m), 8.06-7.96 (2H,m), 7.84
					(1H,d,J=8Hz), 7.68 (2H,d,J=8Hz),
					7.28 (2H,d, J=8Hz), 6.70-6.60
			_		(3H,m), 3.71 (3H,s), 3.70 (3H,s), 3.58
					(2H,s), 2.88-2.80 (2H,m), 2.78-2.66
0543	20,014,11,0				(6H,m).
7.24.2	C3, T3, N, C, 601	MH* 602 (100%)	ESI	CDCl, /400 MHz	2.41 (3H,s), 2.70-2.98 (8H,m), 3.68
-					(2H,s), 3.85 (3H,s), 3.86 (3H,s), 6.54
	·				(1H,s), 6.60 (1H,s), 7.28 (2H,d), 7.40
					(11H,d), 7.48 (1H,s), 7.62 (2H,d), 7.80-
					7.95 (3H,m), 8.12-8.32 (2H,m), 8.70
					(1H,d) 9.74 (1H,s), 12.49 (1H, br.s).
9554	C,,H,,N,O, 603	MH+ 604 (100%)	ESI	DMSO/400 MHz	2.55-2.87 (8H.m), 3.45-3.77 (8H m)
					6.63 (2H,d), 7.07 (1H,d), 7.21-7.31
			-		(3H,m), 7.49 (2H,d), 7.94-8.24
					(4H,m), 8.44 (1H,d), 9.57 (1H,s), 9.87
	_				(1H,s), 10.48 (1H.br.s), 2.08 (1H)

	7	<del></del>	1	T	· ·
'H NMR data	Р	br.s).	11.98 (1H,s), 10.84 (1H,s), 9.4 (1H,s), 9.56 (1H,d, J=2Hz), 8.28-8.00 (6H,m), 7.74 (2H, d, J=8Hz), 5.32 (2H,d, J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.58 (2H,s), 2.90-2.80 (2H,m), 2.76-2.66 (6H,m).	12.00 (1H,s), 10.74 (1H,s), 9.60 (1H,s), 9.08 (1H,s), 8.24 (1H,d, J=8Hz), 8.18-8.08 (2H,m), 8.06-7.96 (2H,m), 7.76-7.54 (3H,m), 7.30 (2H,d, J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.69 (3H,s), 3.68 (3H,s), 3.54 (2H,s), 2.88-2.78 (2H,m), 2.76-2.62 (6H,m).	11.70 (1H,s), 10.50 (1H,s), 9.60 (1H,s), 8.58 (1H,dd,J=2, 12 Hz), 8.24 (1H,d, J=8Hz), 8.18-8.10 (1H,m), 8.08-7.98 (3H,m), 7.70 (2H,d,J=8Hz), 7.28 (2H,d,J=8Hz), 7.24-7.14 (1H,m), 6.66 (1H,s), 6.64 (1H,s), 3.71 (3H,s), 3.70 (3H,s), 3.56 (2H,s), 2.88-2.78 (2H,m), 2.76-2.64 (4H,m)
	solvent/field		d, DMSO/400 MHz	d, DMSO/400 MHz	d, DMSO/400 MHz
nta	mode		ESI	ESI	ESI
Mass spec data	mass (intensity)		MH* 663 (100%)	MH* 656 (100%)	MH* 606 (100%)
Molecular formula			C"H"N"O,	C,kh,rF,N,O,	C ₁₅ H ₃₂ FN ₅ O ₄
No.			9541	9561	9562

Molecular formula	Mass concepts	5		11 22 23 23 11
 ŕ	mass (intensity)	mode	solvent/field	I'i NMK data
C,H,FN,O	MH+ 606 (100%)	ESI	CDCl. /400 MHz	20 t (C HC) 37 t (m H8) 86 C'C2 C
				27.2.70 (211,iii), 3.03 (211,s), 3.83 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.60 (1H,s), 6.98 (1H,dd), 7.30 (2H,d), 7.54 (1H,dd), 7.64 (2H,d) 7.82-7.94 (2H,m), 8.16-8.36 (3H,m), 8.71 (1H,d), 9.73 (1H,s), 12.98 (1H,br.s)
C ₃₈ H ₃₂ FN ₅ O ₄ 605	MH* 606 (100%)	ESI	CDCl, /400 MHz	2.70-3.00 (8H,m), 3.65 (2H,s), 3.85 (3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.61 (1H,s), 7.20-7.45 (4H,m), 7.60 (2H,d), 7.80-7.95 (3H,m), 8.12-8.32 (2H,m), 8.73-8.83 (1H,m), 9.72 (1H,s), 12.51 (1H, br.s)
C,,H,,N,O, 647	MH* 648 (100%)	ci	CDCl, /400 MHz	2.70-3.00 (8H,m), 3.65 (2H,s), 3.85 (3H,s), 3.86 (3H,s) 3.94 (3H,s), 4.02 (3H,s), 6.54 (1H,s), 6.61 (1H,s), 7.13 (1H,s), 7.28 (2H,d), 7.59 (2H,d), 7.78-7.92 (3H,m), 8.19 (1H,d), 8.28 (1H,d), 8.10 (1H,s), 9.72 (1H,s), 12.79 (1H,br.s).
 C ₃₆ H ₃₄ N ₄ O ₄ 586	MH+ 587 (100%)	ESI	CDCI, /400 MHz	2.73-3.05 (8H,m), 3.66 (2H,s), 3.86 (3H,s), 3.87 (3H,s), 6.53 (1H,s), 6.61 (1H,s), 7.20 (1H,t), 7.23-7.37 (2H,m), 7.52-7.74 (5H,m), 7.83 (1H,t), 7.97-8.07 (2H,m), 8.18 (1H,d), 8.80 (1H,s), 8.85 (1H,d), 9.54 (1H,s), 12.24

No.	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	p
		_			(1H,br.s).
9571	C3,H3,JFN,O,	MH* 605 (100%)	ŭ	d, DMSO/400 MHz	12.24 (1H,s), 10.51 (1H,s), 9.32 (1H,d, J=2Hz), 8.90 (1H,d, J=2Hz), 8.38 (1H,dd,J=3,12Hz), 8.18 (1H,d,J=8Hz), 8.14 (1H,d,J=8Hz), 8.08 (1H,dd,J=7, 9Hz); 7.92 (1H,t,J=8Hz), 7.74 (1H,t,J=8H), 7.64 (2H,d,J=8Hz), 7.26 (2H,d,J=8Hz), 7.26 (1H,s), 3.69 (3H,s), 3.68 (3H,s), 2.76-2.52 (6H,m).
9574	C ₃₆ H ₃₃ FN,O, 604	MH+ 605 (100%)	CI₊	CDCl, /400 MHz	2.70-3.05 (8H,m), 3.67 (2H,s), 3.85 (3H,s), 3.86 (3H,s), 6.53 (1H,s), 6.10 (1H,s), 7.15-7.45 (4H,m), 7.52-7.70 (3H,m), 7.84 (1H,t), 8.00 (1H,d), 8.18 (1H,d), 8.27 (1H,br.s), 8.70-8.82 (2H,m), 9.51 (1H,s), 11.98 (1H, br.s).
9581	C,kH,,N,SO,	MH* 632 (100%)	ESI	d ₆ DMSO /400 MHz	11.70 (1H,s), 10.72 (1H,s), 9.33 (1H,s), 9.14 (1H,s), 8.90 (1H,d,J=8Hz), 8.20-8.10 (4H,m), 7.91 (1H,t,J=8Hz), 7.72 (1H,t,J=8Hz), 7.64 (2H,d,J=8Hz), 7.24 (2H,d,J=8Hz), 6.64 (1H,s), 6.62 (1H,s), 3.69 (3H,s), 3.68 (3H,s), 3.53 (2H,s), 2.84-2.76 (2H,m), 2.74-2.64

Š	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	þ
					(6H,m).
9545	C ₃₆ H ₃₄ N ₄ O ₄ 586	MHJ* 587 (100%)	ESI	CDCl, /400 MHz	2.68-2.98 (8H,m), 3.66 (2H,s), 3.86
					(3H,s), 3.87 (3H,s), 6.54 (1H,s), 6.60 (111,s), 7.15 (1H,t), 7.38 (2H,d), 7.55
					(111,t), 7.58-7.72 (4H,m), 7.80 (1H,t), 7.89 (1H d) 8.02 (1H hr s) 8.28
					(111,d), 8.32-8.40 (2F1,m), 8.83 (111,d), 12.72 (1F1,br.s).
9472	C ₂₂ H ₂₂ N ₄ O ₄ 536	MH+ 537 (15%)	CI.	d, DMSO /400	12.26 (1H,s), 10.48 (1H,s); 8.74-8.70
		190 (100%)		MHz	(1H,m), 8.68 (1H,d,J=8Hz), 8.18
					(1H,d,J=8Hz), 8.08 $(1H,t,J=8Hz)$ ,
					('.'.o'' ('.'.i'') = ('.'.''') ('.'.''') ('.'.''') ('.'.''') ('.'.'''') ('.'.''''') ('.'.'''''') ('.'.''''''''') ('.'.''''''''''
					(1H;s), 6.66 (1H;s), 3.72 (3H;s), 3.71
		_			(3H,s), 3.54 (2H,s), 2.86-2.78 (2H,m),
					2.76-2.64 (6H,m).
9482	C ₂₂ H ₂₂ N ₄ O ₄ 536	MH+ 537 (100%)	ESI	CDCl, /400 MHz	2.75-2.95 (8H,m), 3.65 (2H,s), 3.84
					(6H,2xs,2xOMe), 6.54 (1H,s), 6.60
					(211,d,] = 7Hz), 7.41-7.46 (111,m),
· · · · · · · ·					7.52-7.68 (4H,m), 7.97 (1H,NH),
		-			8.26-8.30 (1H,m), 8.77-8.84 (2H,m),
					9.29 (1H,s), 12.06 (1H,br.s,NH).
9483	C ₂₂ H ₃₂ N ₄ O ₄ 536	MH+537 (100%)	ESI	CDCl, /400 MHz	2.76-2.95 (8H,m), 3.65 (2H,s), 3.83
		)			(6H, 2xs, 2xOMe), 6.52 (1H,s), 6.59

Zo.	Molecular formula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	p
					(1H,s), 7.07-7.12 (1H,m), 7.28 (2H,d,J=7Hz), 7.48-7.55 (3H,m), 7.65 (1H,d,J=7Hz), 7.84 (2H,d,J=7Hz), 8.27 (1H,br.s,NH), 8.74 (1H,d,J=8Hz), 8.82 (2H,d,I=7Hz), 12.10 (1H,br.s,NH)
9493	C,1H,1N,O, 537	MI+* 538 (100%)	ESI	CDCl, /400 MHz	2.73-2.93 (8H,m), 3.64 (2H,s), 3.83 (6H,2xs,2xOMe), 6.53 (1H,s), 6.60 (1H,s) 7.20-7.28 (3H,m), 7.52-7.63 (3H,m), 7.52-7.63 (1H,s), 8.69-8.71 (1H,m), 8.75-8.77 (1H,m), 8.83 (1H,d,J=8Hz), 9.49 (1H,s) 12.48 (1H,br.s, NH).
9527	C ₃₂ H ₃₃ N ₅ O ₄ 551	MH* 552 (100%)	ESI	CDCI, /400 MHz	2.65 (3H,s,Me), 2.75-2.94 (8H,m), 3.65 (2H,s), 3.84 (6H,2xs,2xOMe), 6.54 (1H,s), 6.60 (1H,s), 7.15-7.20 (1H,m), 7.24-7.28 (2H,m,obscured by CHCl ₃ ), 7.54-7.60 (3H,m), 7.66 (1H,d ₃ ] = 8Hz), 7.90 (1H,s), 8.54 (1H,d ₃ ] = 8Hz), 7.90 (1H,s), 8.74 (1H,s), 12.39 (1H,br.s. NH)
2557	C,,H,,N,O, 550	MH+ 551 (100%)	DCI	CDCl, /400 MHz	2.65 (3H,s), 2.73-2.99 (8H,m), 3.64 (2H,s), 3.84 (3H,s), 3.85 (3H,s), 6.55 (1H,s), 6.62 (1H,s), 7.25-7.35 (4H,m), 7.53 (2H,d), 7.60 (1H,t), 7.69 (1H,d), 8.84 (1H,d), 7.89 (1H,s), 8.18 (1H,d), 8.84 (1H,d),

		T	9.73 30- H,s),	1H ₂ ), 15 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	n),	55 .55
'IH NMR data	P	9.17 (1H,s), 12.03 (1H,s).	11.70 (1H, br.s), 10.45 (1H,br.s), 9.73 (1H,d), 8.45 (1H,d), 8.15 (1H,dd), 7.95 (1H,d), 7.63-7.59 (3H,m), 7.30-7.20 (3H,m), 7.00 (1H,d), 6.67 (1H,s), 6.64 (1H,s), 3.92 (3H,s), 3.70 (3H,s), 3.69 (3H,s), 3.55 (2H,s), 2.85-2.80 (2H,m), 2.72-2.65 (6H,m).	1.22-1.27 (3H,t,Me), 2.75-2.95 (8H,m), 3.25 (2H,q,J = 8Hz,COCH,J), 3.66 (2H,s), 3.84 (3H,s,OMe), 3.85 (3H,s,OMe), 6.55 (1H,s) 6.62 (1H,s), 7.25-7.31 (3H,m,obscured by CHCl,J, 7.53-7.65 (3H,m), 7.69 (1H,d,J = 8Hz), 7.82 (1H,br.s,NH), 8.83 (1H,d,J = 8Hz), 9.31 (1H,s), 9.48 (1H,s), 12.62 (1H, br.s,NH).	2.63-2.75 (6H,m), 2.78-2.85 (2H,m), 3.54 (2H,s), 3.68 (6H,2xs), 6.63 (2H,d), 7.21-7.3 (3H,m), 7.52-7.64 (6H,m), 7.88-7.97 (3H,m), 8.52 (1H,d), 10.44 (1H,s), 11.78 (1H,s).	2.31 (3H,s), 2.70-2.98 (8H,m), 3.67 (2H,s), 3.84 (3H,s), 3.85 (3H,s), 6.55 (1H,s), 6.60 (1H,s), 6.81 (1H,d), 7.28
	solvent/field		D, DMSO /400 MHz	CDCI, /400 MHz	DMSO/400 MHz	CDCl, /400 MHz
ıta	mode		ESI	CI	CI	ESI
Mass spec data	mass (intensity)		MH+ 567 (100%)	MH* 594 (50%)	M ⁺ 536 (100%)	MH+ 550 (100%)
Molecular formula			C,,H,,N,O, 566	C,,H,,sN,O, 593	C,,H,,N,O, 535	C ₃ H ₃₅ N ₃ O ₄ 549
No.			9582	6956	9456	9510

		.,	6.53 H,m), 11.61	66.52 6.52 7.23 H,m),	5.84 6.60 J), 7.12 7.13	5.83 6.60 H,m),
lata	P	(2H,d),7.42-7.62 (6H,m), 7.98-8.04 (2H,m), 8.26 (1H,s), 8.57 (1H,s), 11.80 (1H,s).	2.25 (3H,s), 2.70-2.98 (8H,m), 3.67 (2H,s), 3.85 (3H,s), 3.86 (3H,s), 6.53 (1H,s), 6.60 (1H,s) 7.22 -7.34 (3H,m), 7.39 (1H,s), 7.45-7.63 (5H,m), 8.02 (2H,d), 8.22 (1H,s) 8.49 (1H,d), 11.61 (1H,br.s).	2.50 (3H,s), 2.65-2.98 (8H,m), 3.66 (2H,s), 3.82 (3H,s), 3.83 (3H,s), 6.52 (1H,s), 6.60 (1H,s), 7.01 (1H,d), 7.23 (2H,d), 7.32 (1H,t), 7.40-7.60 (5H,m), 7.80-7.90 (3H,m), 8.06 (1H,d), 9.32 (1H,s).	2.70-2.98 (8H,m), 3.63 (2H,s), 3.84 (3H,s), 3.85 (3H,s), 6.53 (1H,s), 6.60 (1H,s), 7.10 (1H,t), 7.17 (1H,dd), 7.20-7.64 (8H,m), 8.03 (1H,t), 8.12 (1H,s), 8.63 (1H,dd), 11.37 (1H,br.d).	2.70-2.98 (8H,m), 3.65 (2H,s), 3.83 (3H,s), 3.84 (3H,s), 6.53 (1H,s), 6.60 (1H,s), 7.11 (1H,t), 7.20-7.32 (3H,m), 7.40-7.80 (7H,m), 8.09 (1H,s), 8.72
'I-I NMR data		(2H,d),7.42-7 (2H,m), 8.26 11.80 (1H,s).	2.25 (3H,s), (2H,s), (2H,s), 6.60 7.39 (1H,s), (2H,d), 8.22 (1H,s), (1H,br.s).	2.50 (3H,s), (2H,s), 3.82 (1H,s), 6.60 (2H,d), 7.32 7.80-7.90 (3H,s).	2.70-2.98 (8F (3H,s), 3.85 (1H,s), 7.10 7.20-7.64 (8F (1H,s), 8.63	2.70-2.98 (81 (3H,s), 3.84 (1H,s), 7.11 7.40-7.80 (71
	solvent/field		CDCI, /400 MHz	CDCl, /400 MHz	CDCI, /400 MI-Iz	CDCl, /400 MHz
121	mode	÷	CI.	CIt	ţ	Cİ
Mass spec data	mass (intensity)		MH* 550 (100%)	MH* 550 (100%)	MH+ 554 (26%) Fragment 435 (100%)	MH+ 554 (100%)
Molecular formula		·	C,,H,s,N,O, 549	C ₃₄ H ₃₅ N ₃ O ₄ 549	C,,H,,FN,O,	C,,,H,,,N,FO, 553
ް.			9511	9512	,	9500

	ī	T -		T	
'H NMR data	р	2.70-3.00 (8H,m), 3.68 (2H,s), 3.84 (3H,s), 3.85 (3H,s), 5.54 (1H,s), 6.60 (1H,s), 7.05 (1H,t), 7.18 (2H,t), 7.30 (2H,d), 7.48 (1H,t), 7.53-7.63 (3H,m), 9.02 (2H,q), 8.26 (1H,s), 8.68 (1H,d), 11.78 (1H,s).	11.38 (1H,s), 10.44 (1H,s), 8.42 (1H,d,J=8Hz), 8.00-7.94 (1H,m), 7.88 (1H,d,J=8Hz), 7.64-7.56 (3H,m), 7.48-7.40 (1H, m), 7.34-7.20 (4H,m), 6.66 (1H,s), 6.64 (1H,s), 3.54 (2H,s), 3.74 (3H,s), 3.74 (2H,s), 2.76 (2H,m), 2.74-2.52 (6H,m).	11.28 (1H,s), 10.38 (1H,s), 8.30 (1H,d,J=8Hz), 7.84 (1H,d,J=8Hz), 7.62-7.52 (4H,m), 7.32 (1H,t,J=8Hz), 7.26-7.18 (4H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.54 (2H,s), 2.84-2.78 (2H,m), 2.76-2.62 (6H,m).	11.14 (1H,s), 10.38 (1H,s), 8.32 (1H,d,J=8Hz), 7.86 (1H,d,J=8Hz), 7.68-7.42 (7H,m), 7.32 (1H,t,J=8Hz), 7.22 (2H,d,J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.68 (3H,s), 3.67 (3H,s), 3.52 (2H,s), 2.82-2.76 (2H,m), 2.74-2.50
	solvent/field	CDCl, /400 MHz	d, DMSO /400 MHz	d, DMSO/400 MHz	d, DMSO/400 MHz
ta	mode	.to	ESI	ESI	ţ.
Mass spec data	mass (intensity)	MH* 554 (100%)	MH* 572 (100%)	MH+ 572 (100%)	MH+ 570, 572 (100%; 3:1)
Molecular formula		C,,H,,N,FO, 553	C,,H,,F,N,O,	C,,H,,F,N,O,	C,3H,2CIN,0,
No.		9501	9513	9514	9494

No.	Molecular formula	Mass spec data	Ita		'H NMR data
		mass (intensity)	mode	solvent/field	p
					(6H,m).
9495	C ₁₁ H ₁₂ ClN ₁ O ₄	MH*570, 572 (100%; 3:1)	CI	d, DMSO/400 MHz	11.68 (1H,s), 10.44 (1H,s), 8.38 (1H,d,J=8Hz), 7.92-7.80 (3H,m), 7.68-7.56 (5H,m), 7.36-7.20 (3H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.54 (2H,s), 2.84-2.76 (2H,m), 2.74-2.52 (6H,m).
9496	C,,H,,,CIN,O,	MH+ 570, 572 (100%;3:1)	CI	d, DMSO/400 MHz	11.78 (1H,s), 10.46 (1H,s), 8.46 (1H,d,J=8Hz), 7.96-7.88 (3H,m), 7.68-7.56 (5H,m), 7.32-7.20 (3H,s), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.54 (2H,s), 2.86-2.78 (2H,m), 2.76-2.64 (6H,m).
9497	C,4H,5N,O,	MH+ 550 (100%)	ESI	d, DMSO/400 MHz	11.06 (1H,s), 10.38 (1H,s), 8.38 (1H,d,J=8Hz), 7.86 (1H,d,J=8Hz), 7.62-7.56 (3H,m), 7.52 (1H,d,J=8Hz), 7.40 (1H,t,J=8Hz), 7.34-7.26 (3H,m), 7.22 (2H,d,J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.52 (2H,s), 2.80-2.74 (2H,m), 2.72-2.60 (6H,m), 2.40 (3H,s).
9503	C,4H,5N,O,	MH* 550 (100%)	ESI	d, DMSO/400 MHz	11.68 (1H,s), 10.44 (1H,s), 8.48 (1H,d,J=8Hz), 7.90 (1H,d,J=8Hz), 7.76 (1H,s), 7.70 (1H,d,I=8Hz), 7.66-

No.	Molecular formula	Mass spec data	ta		¹H NMR data
·		mass (intensity)	mode	solvent/field	P
	·				7.58 (3H,m), 7.48-7.38 (2H,m), 7.30-7.22 (3H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s),3.54 (2H,s), 2.84-2.78 (2H,m), 2.76-2.62 (6H,m), 2.38 (3H,s).
9504	C,,H,,N,O,	MH* 550 (100%)	ESI	d, DMSO/400 MHz	11.78 (1H,s), 10.46 (1H,s), 8.52 (1H,d,J=8Hz), 7.82 (2H,d,J=8Hz), 7.64-7.56 (3H,m), 7.38 (2H,d,J=8Hz), 7.64-7.56 (3H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3Hz), 3.54 (2H,s), 2.86-2.78 (2H,m), 2.76-2.64 (6H,m), 2.38 (3H,s).
9477	C,4H,5N,O, 565	MH* 566 (100%)	CI+	CDCI,	2.70-2.98 (8H,m), 3.65 (2H,s), 3.85 (3H,s), 3.86 (3H,s), 4.02 (3H,s), 6.55 (1H,s), 6.60 (1H,s), 6.98 (1H,d), 7.02-7.12 (2H,m), 7.20-7.32 (2H,m), 7.42-7.50 (2H,m), 7.55 (1H,d), 7.60 (2H,d), 8.06 (1H,s), 8.22 (1H,d), 8.65 (1H,d), 11.54 (1H,s).
9517	C,4H,5N,O, 565	MH+ 566 (100%)	ESI	CDCl, /400 MHz	2.76-2.95 (8H,m), 3.65 (2H,s), 3.84 (6H,2xs, 2xOMe), 3.89 (3H,s,OMe), 6.54 (1H,s), 6.61 (1H,s), 7.05-7.10 (1H,m), 7.14-7.19 (1H,m), 7.26-7.30 (2H,m, obscured by CHCl,), 7.38-7.42 (1H,m), 7.52-7.60 (5H,m), 7.66

No.	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	p
					(1H,d,J=8Hz), 7.92 (1H,s,NH), 8.80 (1H,d,J=8Hz), 11.80 (1H,br.s,NH).
9518	C ₃₄ H ₃₅ N ₃ O ₅ 565	MI+* 566 (100%)	ESI	CDCI, /400 MHz	2.75-2.95 (8I4,m), 3.64 (2H,s), 3.83 (6I4,2xs,2xOMe), 3.87 (3I4,s,OMe), 6.53 (1H,s) 6.60 (1I4,s), 6.98 (2I4,d,J=7t1z), 7.04-7.09 (1I4,m), 7.28 (2I4,d,J=7Hz), 7.48-7.63 (4I4,m), 7.99 (2I4,d,J=7Hz), 8.09 (1I4,s), NIH), 8.75 (1I4,d,J=8Hz),
					11.65 (1H,br.s,NH).
9535	C"H"N,O, 551	MH* 552 (100%)	ij	CDCI, /400 MHz	2.74-2.94 (8H,m), 3.65 (2H,s), 3.83 (6H,2xs,2xOMe), 6.54 (1H,s), 6.60 (1H,s), 6.91-7.00 (2H,m), 7.20-7.30 (3H,m), 7.40-7.44 (1H,m), 7.53 (2H,d,J=7Hz), 7.59-7.63 (1H,m), 7.70 (1H,d,J=8Hz), 7.78 (1H,d,J=8Hz), 7.85 (1H,s), 8.71 (1H,d,J=8Hz), 7.85 (1H,s), 8.71 (1H,d,J=8Hz), 12.08 (1H,br.s), 12.22 (1H,s).
9549	C,,,H,,,N,O, 551	MH* 552 (100%)	ESI	CDCl, /400 MHz	2.74-2.95 (8H,m) 3.64 (2H,s), 3.83 (3H,s,OMe), 3.85 (3H,s,OMe), 6.52 (1H,s), 6.59 (1H,s), 6.98-7.01 (1H,m), 7.14-7.17 (1H,m), 7.23-7.28 (2H,m), 7.34-7.38 (1H,s), 7.42-7.60 (6H,m), 7.65 (1H,d,J=8Hz), 7.87 (1H,s), 8.81 (1H,d,J=8Hz), 11.74 (1H,br.s.NH).

¹H NMR data	P	2.76-2.94 (8H,m), 3.65 (2H,s), 3.83 (6H,2xs,2xOMe), 6.55 (1H,s), 6.62 (1H,s), 6.62 (1H,s), 6.93 (2H,d,J=7Hz), 7.12-7.16 (1H,m), 7.26 (2H,d,J=7Hz), 7.50-7.57 (1H,m), 7.60 (2H,d,J=7Hz), 7.50 (2H,d,J=8Hz), 8.78 (1H,d,J=8Hz), 8.93 (1H,s), 9.10 (1H,br.s), 11.69 (1H,s,NH)	2.31 (3H,s,Ac), 2.73-2.93 (8H,m), 3.64 (2Hs), 3.84 (6H,2xs,2xOMe), 6.53 (1H,s), 6.60 (1H,s), 7.14-7.19 (2H,m), 7.24-7.27 (2H,m,obscured by CHCl ₃ ), 7.32-7.36 (1H,m), 7.49- 7.58 (4H,m), 7.63 (1H,d,J=8Hz), 7.85-7.92 (2H,m), 8.69 (1H,d,I=8Hz), 11.79 (1H br.s. NH)	2.32 (3H,s,Ac), 2.76-2.96 (8H,m), 3.65 (2H,s), 3.83 (6H, 2xs, 2xOMc), 6.53 (1H,s), 6.60 (1H,s), 6.98-7.01 (1H,m), 7.27-7.31 (3H,m), 7.39-7.45 (1H,m), 7.49-7.64 (4H,m), 7.77-7.79 (1H,m), 7.84 (1H,d,J=7Hz), 8.45 (1H,s,NH), 8.62 (1H,d,J=8Hz), 11.72 (1H,s,NH).
	solvent/field	CDCI, /DMSO/ 400 MHz	CDCl, /400 MHz	CDCl, /400 MHz
ıta	mode	ESI	ESI	ESI
Mass spec data	mass (intensity)	MH* 552 (100%)	MH+ 594 (100%)	MH ⁺ 594 (100%)
Molecular formula		C ₃₃ H ₃₃ N ₃ O ₅ 551	C,,H,,N,O, 593	C,,H,,N,O, 593
No.		9559	9534.	9540

No.	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	P
9548	C,5H,5,N,O, 593	MH+ 594 (100%)	ESI	CDCI, /400 MHz	2.32 (3H,s,OAc), 2.75-2.95 (8H,m), 3.65 (2H,s), 3.84 (6H,2xs,OMe), 6.53 (1H,s), 6.60 (1H,s), 7.10-7.15 (1H,m), 7.20-7.30 (4H,m), 7.52-7.56 (3H,m), 7.64 (1H,d,J=8Hz), 8.00-8.06 (3H,m), 8.77 (1H,d,J=8Hz), 11.82 (1H,s,NH).
9523	C,4H,2F,N,O,	MH* 604 (100%)	ESI	d, DMSO/400 MHz	11.10 (1H,s), 10.48 (1H,s), 8.26 (1H,d,J=8Hz), 7.86 (2H,d, J=8Hz), 7.84-7.68 (3H,m), 7.64-7.54 (3H,m), 7.34 (1H,t,J=8Hz), 7.22 (2H,d,J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.54 (2H,s), 2.84-2.76 (2H,m), 2.74-2.52 (6H,m).
9524	C,4H,2F,N,O,	MH+ 604 (100%)	ESI	d, DMSO /400 MHz	11.70 (1H,s), 10.42 (1H,s), 8.36 (1H,d,J=8Hz), 8.24 (1H,s), 8.18 (1H,d,J=8Hz), 7.98 (1H,d,J=8Hz), 7.90 (1H,d,J=8Hz), 7.84 (1H,t,J=8Hz), 7.66-7.58 (3H,m), 7.34 (1H,t,J=8Hz), 7.24 (2H,d,J=8Hz), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.56 (2H,s), 2.86-2.78 (2H,m), 2.76-2.54 (6H,m).
9556	C ₃₅ H ₃₇ N ₄ O ₄	MH+ 579 (32%)	ESI	CDCI, /400 MHz	2.70-2.98 (8H,m), 3.03 (6H, two coincident singlets), 3.66 (2H,s), 3.85

	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	Р
					(3H,s), 3.86 (3H,s), 6.54 (1H,s), 6.60 (1H,s), 6.89 (1H,d), 7.08 (1H,t) 7.20-7.42 (4H,m), 7.49 (1H,t), 7.52-7.64 (3H,m), 8.15 (1H,s), 8.74 (1H,d), 11.65 (1H,br.s).
	C ₃₆ H ₃₉ N ₃ O ₄ 577	MH+ 578 (100%)	Ö	CDCI, /400 MHz	1.28 (6H,2xd, J=7Hz), 2.74-3.01 (9H,m), 3.65 (2H,br.s), 3.84 (6H,2xs, 2xOMc), 6.53 (1H,s), 6.60 (1H,s), 7.05-7.10 (1H,m), 7.25-7.35 (4H,m), 7.48-7.65 (4H,m), 7.93 (2H,d,J=7Hz), 8.08 (1H,s), 8.75 (1H,d,J=8Hz), 11.68 (1H,br.s,NH).
	C,9H,1N,O, 617	MH⁺ 618	Ü	CDCI, /400 MHz	1.34-1.93 (10H,m), 2.52-2.62 (1H,m,CH), 2.76-2.95 (8H,m), 3.65 (2H,s) 3.83 (6H,2xs,2xOMe), 6.55 (1H,s), 6.59 (1H,s), 6.95-7.00 (1H,m), 7.25-7.35 (4H,m), 7.40-7.45 (1H,m), 7.55-7.62 (3H,m), 7.90 (2H,d,J=7Hz), 8.37 (1H,s,NH), 8.65 (1H,d,J=8Hz), 11.60 (1H,br.s,NH).
9470	C,,H,,sN,O, 585	MH+ 586 (100%)	ŭ	CDCl, /400 MHz	2.66-2.94 (8H,m), 3.62 (2H,s), 3.82 (3H,s), 3.83 (3H,s), 6.52 (1H,s), 6.59 (1H,s), 7.10-7.70 (10H,m), 7.86 (2H,dd), 7.95 (2H,s), 8.53 (1H,d), 8.87 (1H,d), 11.33 (1H,s).

ON	Molecular formula	Mass spec data	ta		'H NMR data
		mass (intensity)	mode	solvent/field	p
9476	C ₃ ,H ₃₅ N ₃ O ₄ 585	MH+ 586 (15%)	CI	CDCl, /400 MHz	2.77-2.97 (8H,m), 3.63 (2H,s), 3.84
	;				(6H,2xs,2xOMe), 6.53 (1H,s), 6.60 (1H,s), 7.10-7.16 (1H m) 7.79
					(2H,d,J=7Hz), 7.54-7.61 (5H,m),
					7.67 (1H,d,J=8HZ), 7.87-8.09
					(5H,m), 8.55 (1H,br.s,NH), 8.83 (1H,d,J=8Hz), 11.95 (1H,br.s,NFI)
9536	C ₃₃ H ₃₁ Cl ₂ N ₃ O ₄ 603	MH* 604/606/608	ESI	CDCI,	2.70-2.98 (8H,m), 3.66 (2H,s), 3.87
	<b>R</b>	(100%)			(3H,s), 3.88 (3H,s), 6.55 (1H,s), 6.60
		7:6:1 intensity P Cl ₂			(1H,s), 7.17 (1H,t), 7.30 (2H,d), 7.48
·		(-1-			7.50 (4r1,m), 7.55 (1H,d), 7.80 (1H,d), 8.02 (1H,br.s). 8.13 (1H,d)
					8.74 (1H,d), 11.95 (1H,br.s).
9538	C ₃₅ H ₃₇ N ₃ O ₄ 563	MH+ 564 (100%)	ESI	CDCI,	2.34(3H,s), 2.36 (3H,s), 2.72-2.98
					(8H,m), 3.66 (2H,s), 3.83 (3H,s), 3.84
			_		(3H,s), 6.55 (1H,s), 6.61 (1H,s), 7.03
					(1H,t), 7.20-7.34 (3H,m), 7.45 (1H,t), 7.45 (4H,t), 7.47 63 (3H,m), 7.70 (1H,4), 7.50
					(1H c) 8.25 (1H c) 9.29 (1H c) 11.50
					(11,5), 5.25 (111,5), 5.06 (111,5), 11.55 (111,5), (11,5)
9471	C,H,NO,S	MH+ 542 (6%)	CI÷	d, DMSO /400	11.68 (1H.s). 10.46 (1H s) 8.40
		230 (100%)		MFIz	(1H,d,J=8Hz), 7.96 (1H,d,J=8Hz).
					7.88 (1H,d,J=3Hz), 7.74
					(1H,d,J=2Hz), 7.66-7.56 (3H,m),
					7.30-7.70 (4H,m), 6.66 (1H,s), 6.64
=	_				(1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.56

No.	Molecular formula	Mass spec data	ដ		¹H NMR data
		mass (intensity)	mode	solvent/field	p
					(2H,s), 2.86-2.78 (2H,m), 2.76-2.64 (6H,m).
9492	C,,H,,N,O,S 541	MH* 542 (100%)	ESI	CDCl, /400 MHz	2.75-2.95 (8H,m), 3.65 (2H,s), 3.83 (6H,2xs,2xOMe), 6.53 (1H,s), 6.60 (1H,s), 7.10-7.15 (1H,m), 7.29 (2H,d,J=7Hz), 7.36-7.39 (1H,m), 7.51-7.66 (5H,m), 7.94 (1H,s, NH), 8.09-8.11 (1H,m), 8.79 (1H,d,J=8Hz), 11.74 (1H,br.s,NH).
9526	C,,H,,N,O, 525	MH* 526 (100%)	CI⁺	CDCl, /400 MHz	2.72-2.98 (8H,m), 3.67 (2H,s), 3.85 (3H,s), 3.86 (3H,s), 6.55 (1H,s), 6.62 (1H,s), 6.86 (1H,s), 7.60 (1H,t), 7.28 (2H,d), 7.42-7.62 (5H,m), 8.08 (2H,d), 8.70 (1H,d), 11.55 (1H,br.s).
9515	C ₃₈ H ₃₄ N ₄ O ₄	MH+ 575 (100%)	ESI	d, DMSO/400 MHz	11.76 (1H,s), 11.34 (1H,s), 10.44 (1H,s), 8.58 (1H,d,J=8Hz), 8.18 (1H,d,J=8Hz), 7.98 (1H,s), 7.90 (1H,d,J=8Hz), 7.64 (2H,d,J=8Hz), 7.50 (1H,d,J=8Hz), 7.50 (1H,d,J=8Hz), 7.30-7.16 (5H,m), 6.66 (1H,s), 6.64 (1H,s), 3.72 (3H,s), 3.71 (3H,s), 3.54 (2H,s), 2.86-2.78 (2H,m), 2.74-2.64 (6H,m).
9539	C ₃₅ H ₃₃ N ₃ O ₅ 575	MH ⁺ 576 (100%)	ij	CDCl, /400 MHz	2.70-3.00 (8H,m), 3.67 (2H,s), 3.83 (3H,s), 3.84 (3H,s), 6.54 (1H,s), 6.61

No.	Molecular formula	Mass spec data	ıta		'H NMR data
		mass (intensity)	mode	solvent/field	P
·					(1H,s), 7.15 (1H,t), 7.22-7.37 (3H,m), 7.43 (1H,t), 7.48-7.74 (7H,m), 8.02 (1H,br.s), 8.74 (1H,d), 11.89 (1H,br.s).
9466	C,,H,,N,O, 555	MH* 556 (100%)	ESI	CDCl, /400 MI-Iz	1.24-1.51 (5H,m), 1.75-1.95 (7H,m), 2.52-2.60 (1H,m,CH), 2.78-2.83 (6H,m), 3.59-3.67 (4H,m), 3.83 (3H,s,OMe), 3.89 (3H,s,OMe), 6.24 (1H,s), 6.54 (1H,s), 6.63 (1H,s), 7.03 (1H,d,J=8Hz), 7.27-7.34 (3H,m), 7.96 (2H,d,J=7Hz), 8.74 (1H,d,J=8Hz), 9.36 (1H,br.s,NH), 12.62 (1H,br.s,NH).
9479	C,1H,5N,0, 481	MH* 482 (100%)	CI₊	CDCl, /400 MHz	1.20-2.00 (10H,m), 2.50-2.62 (1H,m), 2.70-2.98 (6H,m), 3.65 (2H,q), 3.72 (2H,s), 6.95-7.55 (10H,m), 7.98 (2H,d), 8.80 (1H,d), 12.18 (1H,s).
9567	C, ₆ H, ₁₅ N, ₅ O, 601	MH* 602 (100%)	ÇI₊	CDCl, /400 MHz	1.85-2.00 (2H,m), 2.55 (2H,t), 2.60-2.88 (6H,m), 3.54 (2H,s), 3.82 (3H,s), 3.83 (3H,s), 6.52 (1H,s), 6.60 (1H,s), 7.18-7.32 (3H,m), 7.56-6.65 (3H,m), 7.60 (1H,d) 7.82-7.94 (3H,m), 8.14-8.36 (2H,m), 8.85 (1H,d), 9.73 (1H,s), 12.67 (1H,br.s),
9572	C,4H,1N,O, 573	MH ⁺ 574 (100%)	CI	CDCl, /400 MHz	2.70-2.90 (4H,m), 3.55 (2H,s), 3.69

No.	Molecular formula	Mass spec data	lta		H NIMB dots
		mass (intensity)	mode	solvent/field	בי זייניין טמומ
					(2H,s), 3.79 (3H,s), 3.83 (3H,s), 6.49 (1H,s), 6.61 (1H,s), 7.22 (1H,t), 7.45 (2H,d), 7.60 (1H,t), 7.64-7.74 (3H,m), 7.80-7.92 (2H,m), 8.01 (1H,br.s), 8.12-8.34 (2H,m), 8.85 (1H,d), 9.74 (1H,s), 12.72 (1H,br.s).
9577	C,,H,oN,O, 526	MH* 527 (100%)	CI+/ NH,	CDCI, /400 MHiz	12.25 (1H,s), 9.55 (1H,d), 8.85 (1H,d), 8.81 (1H,d), 8.20 (1H,d), 8.05-8.00 (2H,m), 7.85-7.81 (1H,m), 7.71-7.60 (3H,m), 7.57 (2H,d), 7.31 (2H,d), 7.19 (1H,t), 7.14-7.09 (3H,m), 7.05-7.02 (1H,m), 3.75 (2H,s), 2.98-2.92 (4H,m) 2.85-2.77 (4H,m).
9576	C,18H,1,1,N,O, 646	MH* 647 (100%)	ESI	CDCl, /400 MHz	2.75-3.05 (8H,m), 3.70 (2H,s), 3.86 (3H,s), 3.87 (3H,s), 3.94 (3H,s), 4.03 (3H,s), 6.54 (1H,s), 6.61 (1H,s), 7.12 (1H,s), 7.29 (2H,d), 7.55 (2H,d), 7.64 (1H,t), 7.84 (1H,t), 7.88 (1H,s), 7.99 (1H,d), 8.18 (1H,d), 8.66 (1H,s), 8.78 (1H,s), 9.55 (1H,s), 12.50 (1H,s).
9578	C"H"N,O°,	MH* 631 (100%)	ESI	d, DMSO/400 MHz	12.25 (1H,s), 10.37 (1H,s), 9.32 (1H,s), 8.88 (1H,s), 8.18-8.08 (3H,s), 7.90 (1H,t), 7.72 (1H,t), 7.62 (2H,d), 7.58 (1H,s), 7.24 (2H,d), 6.64 (1H,s), 6.62 (1H,s), 6.16 (2H,s), 3.69 (3H,s), 3.68 (3H,s), 3.52 (2H,s), 2.82-2,58

No.	Molecular formula	Mass spec data	fa		'H NMR data	
	`	: mass (intensity)	mode	solvent/field	p	<del>-    </del>
					(8H,m).	
9584	C ₃ ,H ₃₆ N ₄ O ₄	MHY 601 (100%)	ESI	d, DMSO/400	11.68 (1H,s), 10.44 (1H,s), 9.30	
		-		MHz	(1H,s), 8.86 (1H,s), 8.26 (1H,d), 8.16 (1H,d), 8.12 (1H,d), 7.4	
310000					(111,s), 7.72 (1H,t), 7.64 (2H,d), 7.46	
					(1H,d), 7.24 (2H,d), 6.66 (1H,s), 6.64	
					(2H,s), 2.70 (3H,s), 3.69 (5H,s), 3.52 (2H,s), 2.82-2.76 (2H,m), 2.74-2.62	
9585		16114 5-2			(6r1,m), 2.40 (3H,s).	
	C35173214,C4	MH 5/3 (100%)	ESI	d, DMSO/400	11.74 (1H,s), 10.56 (1H,s), 9.36	~
				ZUM	(1H,s), 8.90 (1H,s), 8,36 (1H,d), 8.20-	
					6.06 (2f1,m),/.96-/.84 (2f1,m), 7.78-	
		-			(1H.s) 660 (1H s) 3 20 (3H s) 3 20	·
					(3H s) 3 60.3 20 (411.9), 5.70 (5H.5), 5,68	-
					(4H,m).	
9886	C ₃₆ H ₃₃ ClN ₄ O ₄	MH+ 621/623	ESI	d, DMSO/400	11.99 (1Hs) 10.55 (1Hs) 932	
		(100%, 3:1)		MHz	(1H,s), 8.89 (1H,s). 8.52 (1H,s). 8.20-	
					8.06 (2H,m), 8.00-7.86 (2H,m), 7.73	
		-			(1H,t), 7.63 (2H,d), 7.43 (1H,d), 7.25	
					(2H,d), 6.66 (1H,s), 6.64 (1H,s), 3.70	
			•		(3H,s), 3.69 (3H,s), 3.63 (2H,s), 2.88-	.,
0500	017 11 0				2.00 (0H,M).	
8000	C,,13,61,4,O,	MH* 601 (100%)	÷	CDCl, /400 MHz	12.34 (1H,s), 9.54 (1H,s), 8.80 (1H,s), 8.68 (1H,s), 8.29 (1H,s), 8.29 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20 (1H,s), 8.20	
			•	-	1,(1,1,1), 0.20 (111,0), 0.20 (111,0),	-

No.	Molecular formula	Mass spec data	Ę		'H NMR data
		mass (intensity)	mode	solvent/field	P
					8.02 (1H,d), 7.84 (1H,t), 7.66 (1H,t), 7.62 (2H,d), 7.56 (1H,d), 7,30 (2H,d), 6,92 (1H,d), 6.62 (1H,s), 6,56 (1H,s), 3,85 (3H,s), 3,84 (3H,s), 3,68 (2H,s), 2,98-2.74 (8H,m), 2.38 (3H,s).
9589	C ₃₆ H ₃₅ N ₅ O ₄	MH* 602 (100%)	ESI	d, DMSO/400 MHz	10.12 (1H,br.s), 9.80 (1H,s), 9.44 (1H,s), 9.04 (1H,s), 8.16-8.08 (2H,m), 7.94 (1H,s), 7.90 (1H,t), 7.78-7.66 (4H,m), 7.20 (2H,d), 6.86 (1H,d), 6.66 (1H,s), 6.64 (1H,s), 5.70 (2H,br.s), 3.70 (3H,s), 3.69 (3H,s), 3.52 (2H,s), 2.86-2.52 (8H,m).
9590	C ₃₆ H ₃₈ N ₄ O ₄ 590	MH* 591	ESI	d, DMSO/400 MHz	11.65 (1H,s), 10.45 (1H,s), 8.80 (1H,s), 8.38 (1H,d), 7.95-7.90 (2H,m), 7.67-7.61 (3H,m), 7.30 (1H,t), 7.27 (2H,d), 6.67 (1H,s), 6.65 (1H,s), 3.82 (3H,s), 3.81 (3H,s), 3.56 (2H,br.s), 2.91-2.70 (12H,m), 1.92-1.88 (2H,m), 1.85-1.78 (2H,m).

9593	C,H,,N,O,Cl	MH+ 621 (60%)	ESI	CDCl,/400 MHz	
		311 (100%)			MOREL COM

4	Molecular formula	Mass spec data	mode	'H NMR data	×
		mass (intensity)		solvent / field	•
<u> </u>	C ₃₆ H ₃₃ N ₄ 0 ₄ CI	MH*(100%) - 621 and 623 (higher	ESI	d ₆ - DMSO / 400MHz	11.17 (s, 1H), 10.40 (s, 1H), 8.70 (s, 1H), 8.20 (d, 1H), 8.07
		chlorine isotope)			(d, 111), 8.00 (d, 111), 7.92 (t,
		-			(d) 111), 7.82
		-			(4, 111), 7.72 (4, 111), 7.80 (6, 2H),
					6.65
					(S, 1H), 6.62 (S, 1H), 3.70 (S, 6H) 3 52 (C, 2H) 2 80-2 60 (m)
					8H)
<u> </u>	C,,,H,,,N,0, F,	MH (100%) - 671	ESI	de - DMSO /	12.50 (s, 1H), 10.35 (s, 1H),
-		-		400MHz	8.95 (s, 1H), 8.42 (d, 1H), 8.35
	٠				(d, 1H), 8.20 (s, 1H), 7.70 (d,
					IH), 7.65
					(d, 2H), 7.58 (d, 1H), 7.59 (t,
					1H), 7.23 (d, 2H), 7.22 (t, 1H),   6.65
	٠				(s, 1H), 6.60 (s, 1H), 3.70 (s
		÷			611), 3.55 (s, 214), 2.80-2.60 (m,
					8FI)
	ONH	1 200 (1000)			Phenolic OH not visible
	C34113214404 J	MH (90%) - 593 and	DCI / NH,	CDCI,/	12.24 (s, 1H, br), 9.57 (d, 1H),
		(10070)		400MHz	8.82 (d, 1H), 8.45 (d, 1H), 8.20
		-			(d, 1H), 8.02 (d, 1H), 7.86-7.84
					(m, 1H), 7.68-7.62 (m, 1H),
					7.53 (d, 2H), 7.51 (d, 1H), 7.41 (

		<b>a</b> •	
	- 15	8 -	
s, 1H, br), 7.30 (d, 2H), 6.61 (s, 1H), 6.53 (s, 1H), 3.86 (s, 3H), 3.87 (s, 2H), 3.67 (m, 8H)	11.48 (s, 1H), 9.51 (s, 1H), 8.75 (s, 1H), 8.60 (d, 1H), 8.16 (d, 1H), 7.98 (d, 1H), 7.89 (s, 1H), 7.86-7.80 (m, 1H), 7.67-7.62 (m, 1H), 7.58-7.52 (m, 2H), 7.29 (d, 2H), 7.00 (s, 1H), 6.90 (s, 1H), 6.61 (s, 1H), 6.55 (s, 1H), 3.87 (s, 6H), 3.68 (s, 2H), 3.05 (s, 6H), 2.98-2.78 (m, 8H)	11.83 (s, 1H), 9.60 (s, 1H), 8.50 (d, 1H), 8.25 (d, 1H), 8.17 (d, 1H), 8.00 (s, 1H), 7.86-7.82 (m, 2H), 7.61 (d, 2H), 7.28 (d, 2H), 6.95-6.92 (m, 2H), 6.60 (s, 1H), 6.52 (s, 1H), 3.85 (s, 6H), 3.62 (s, 2H), 3.00 (s, 6H), 2.95-2.75 (m, 8H)	12.95 (s, 1H, br), 9.75 (s, 111), 8.50 (d, 1H), 8.40-8.37 (m, 1H), 8.23-8.20 (m, 1H), 7.93-7.87 (m, 2H), 7.58 (d, 2H), 7.52 (d, 1H), 7.42 (s, 1H, br), 7.32 (d, 2H), 6.62
	CDCI, / 400MIłz	CDCI,/400MHz	CDCl, / 400MHz
	ESI	ESI	DCI / NH ₃
	MH*(100%) - 630	MH* (100%) - 631	MH* (100%) - 594
·	C ₃₈ H ₃₉ N ₅ O ₄	C ₃₇ H ₃₈ N ₆ 0 ₄	C ₃₃ H ₃₁ N ₅ O ₄ S
	9595	9896	9597

- 159 -

		- 159 -	
(s, 1H), 6.55 (s, 1H), 3.86 (s, 3H), 3.68 (s, 2H), 3.00-2.79 (m, 8H)	12.05 (s, 111, br), 9.75 (s, 111), 8.87-8.47 (m, 111), 8.29 (d, 111), 8.21 (d, 111), 8.04 (s, 111, br), 7.94-7.82 (m, 314), 7.71 (s, 214, br), 7.29 (d, 214), 7.06 (s, 111, br), 6.60 (s, 114), 6.55 (s, 114), 3.84 (s, 314), 3.83 (s, 314), 3.69 (s, 214), 3.00-2.70 (m, 81)	12.60 (s, 1H), 10.35 (s, 1H), 8.80 (s, 1H), 8.39 (d, 1H), 8.25 (d, 1H), 7.80-7.45 (m, 8H), 7.25 (m, 3H), 6.65 (d, 2H), 3.70 (s, 6H), 3.55 (s, 2H), 2.85-2.65 (m, 8H)	13.62 (s, 1H, br), 9.75 (s, 1H), 8.38-8.34 (m, 1H), 8.22-8.18 (m, 1H), 7.94-7.85 (m, 2H), 7.72 (s, 1H, br), 7.61 (d, 2H), 7.32 (d, 2H), 6.68 (s, 1H), 6.62 (s, 1H), 6.54 (s, 1H), 3.85 (s, 6H), 3.68 (s, 2H), 2.97-2.79 (m, 8H), 2.65 (s, 3H)
	CDCl, / 400M11z	d ₆ - DMSO/ 400MHz	CDCl ₃ / 400MHz.
	ESI	<b>T</b>	ESI
	MH* (84%) - 589 " M ^{2*} " m/2 (100%) - 295	MH* (100%) - 602.7 CI	MH* (100%) - 608
	C34H32N6O4	C ₃₆ H ₃₄ N ₄ O ₅	C ₃₄ H ₃₃ N ₅ O ₄ S
		9096	8096

	- 160 ~		
13.42 (s, 1H, br), 9.56 (d, 1H), 8.79 (d, 1H), 8.19 (d, 1H), 8.01 (d, 1H), 7.85-7.82 (m, 1H), 7.77 (s, 1H, br), 7.68-7.62 (m, 1H), 7.55 (d, 2H), 7.32 (d, 2H), 6.62- 6.60 (m, 2H), 6.53 (s, 1H), 3.84 (s, 6H), 3.68 (s, 2H), 2.96-2.76 (m, 8H), 2.65 (s, 3H)	12.67 (s, 1H), 9.75 (s, 1H), 8.87 (d, 1H), 8.34-8.14 (m, 2H), 7.92-7.82 (m, 3H), 7.70 (d, 1H), 7.63-7.53 (m, 3H), 7.30-7.16 (m, 3H), 6.90-6.75 (m, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.52 (s, 2H), 2.92-2.78 (m, 2H), 2.72-2.62 (m, 2H), 2.30 (s, 3H)	12.25 (s, 1H), 9.55 (s, 1H), 8.83 (d, 1H), 8.70 (s, 1H), 8.19 (d, 1H), 8.11 (s, 1H), 8.02 (d, 1H), 7.83 (t, 1H), 7.70-7.52 (m, 5H), 7.24 (d, 2H), 7.16 (t, 1H), 6.90-6.78 (m, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.50 (s, 2H), 2.90-2.80 (m, 21I), 2.70-2.60 (m, 2H), 2.21 (s, 3H)	12.55 (s, 1H), 10.48 (s, 1H),
CDCI,/ 400MHz	CDCI, / 400MHz ·	CDCI, / 400MHz	de-DMSO/
ESI	ESI	ESI	ESI
MH* (100%) - 607 and 304 (80%)	MH* (100%) - 576	MH* (100%) - <i>575</i>	MH*(100%) -574
C ₃₅ H ₃₄ N ₄ O ₄ S	C ₃₄ H ₃₃ N ₅ O ₄	C ₃₅ H ₃₄ N ₄ O ₄	C ₃₄ H ₃₁ N ₅ O ₄
609	9612	9613	9614

- 161 -

	- 161 -		
9.59 (s, 1H), 8.69 (d, 1H), 8.22 (d, 1H), 8.09 (d,1H), 8.05-7.95 (m, 2H), 7.93 (d, 1H), 7.64 (t, 1H), 7.51 (d, 1H), 7.45 (s, 1H), 7.30 (t, 1H), 7.10 (d, 1H), 6.93 (s, 1H), 6.90-6.82 (m, 2H), 3.74 (s, 6H), 3.60-3.50 (m, 4H), 2.85-2.64 (m, 4H)	11.95 (s, 1H, br), 9.46 (d, 1H), 8.72 (d, 1H), 8.65 (d, 1H), 8.15 (s, 1H, br), 8.10 (d, 1H), 7.93 (d, 1H), 7.78-7.72 (m, 1H), 7.58-7.49 (m, 4H), 7.35 (dd, 1H), 7.22 (d, 2H), 6.55 (s, 1H), 6.49 (s, 1H), 3.78 (s, 6H), 3.60 (s, 2H), 2.87-2.68 (m, 8H), 2.39 (s, 3H)	11.81 (s, 1H), 9.47 (d, 1H), 8.68 (d, 1H), 8.28 (d, 1H), 8.12 (d, 1H), 7.95 (d, 1H), 7.85 (s, 1II, br), 7.80-7.75 (m, 2H), 7.60-7.55 (m, 1H), 7.48 (d, 2H), 7.28 (d, 2H), 6.55 (s, 1H), 6.49 (s, 1H), 3.78 (s, 6H), 3.60 (s, 2H), 2.87-2.69 (m, 8H)	11.65 (s, 1H), 9.16 (d, 1H), 8.28 (d, 1H), 8.15 (dd, 1H), 7.83-7.80
400MHz	CDCI,/400MHz	CDCl3/400MHz	CDCl,/400MHz
,	ESI	ESI	ESI
	MH*(100%) - 633 and 317 (80%)	MH*(100%) - 593 and 297 (95%)	MH* (90%) - 557 and 279 (100%)
	C ₃ ,H ₃₆ N ₄ O ₄ S	C34H32N4O4S	C ₃₁ H ₃₂ N ₄ O ₄ S
	5106	9010	9617

	CDCI, / 400MHz	ESI CDCI,
	· •	
	-	
1-	CDCI,/400MHz	ESI CDCI,/
	<del></del>	
	<del></del>	
	0	
	CDCI3/400MHz	ESI CDCI,
1		

	- 163 -		
1H, br), 7.88-7.80 (m, 1H), 7.72 (d, 1H), 7.67-7.61 (m, 2H), 7.56 (d, 2H), 7.23-7.20 (m, 1H), 6.98 (d, 2H), 6.60 (s, 1H), 6.55 (s, 1H), 4.24 (t, 2H), 3.85 (s, 6H), 3.71 (s, 2H), 3.00 (t, 2H), 2.90-2.88 (m, 4H)	12.22 (s, 1H), 9.52 (s, 1H), 8.84-8.74 (m, 2H), 8.20-8.10 ( m, 2H), 7.99 (d, 1H), 7.83 (t, 1H), 7.72-7.50 (m, 5H), 7.32- 7.24 (m, 2H), 7.14 (t, 1H), 6.59 (s,1H), 6.55 (s, 1H), 3.95-3.75 (m, 7H), 3.20-3.07 (m, 1H), 2.95-2.75 (m, 6H), 2.71-2.59 (m, 1H), 1.38 (d, 3H)	12.25 (s, 1H), 9.55 (s, 1H), 8.86 (d, 1H), 8.80 (s, 1H), 8.20 (d, 1H), 8.04 (s, 1H), 8.01 (d, 1H), 7.84 (t, 1H), 7.71-7.54 (m, 5H), 7.32 (d, 2H), 7.24-7.18 (m, 5H), 4.03 (s, 4H), 3.06-2.97 (m, 2H), 3.05-2.89 (m, 2H)	
	CDCI,/400MHz	CDCI ₃ / 400MHz	CDCl ₃ / 400MHz
	ESI	ESI	ESI
	MH*(100%) - 601 (M+2H) ^{2*} ·, "m ^{2*} " (58%) 301	MH* (100%) - 513.1	MH*(100%) - 595 , 597 (50%), 599 (10%), and 475 (90%)
·	C ₂₇ H ₃₆ N ₄ O ₄	C ₃₃ H ₂₈ N ₄ O ₂	C ₃₄ H ₂₈ N,O ₂ C1 ₂
	9625	9626	9628

- 164 -

- 165 -

									16	<del>) -</del>														
12.63 (s, 1H), 9.68 (s, 1H), 8.78 (d, 1H), 8.21(d, 1H), 8.10 (d,	2H), 7.86 (s, 1H), 7.80-7.77 (m, 2H), 7.60 (d, 1H), 7.55-7.50 (m, 2H), 7.67 (11 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H), 7.67 (m, 1H	2H), 6.53 (s, 1H), 6.48 (s, 1H),	4.17 (t, 2H), 3.78 (s, 6H),	3.63(s, 2H), 2.97 (t, 2H), 2.80-	2.78 (m, 4H)	(d, 1H), 8.82(s, 1H), 8.18 (d.	1H), 8.00 (m, 2H), 7.85-7.80	(m, 1H), 7.70 (d, 1H), 7.65-7.60	(m, 2H), 7.50 (m, 2H), 7.37-	7.30 (m, 1H), 7.25-7.20 (m,	1H), 7.11 (d, 1H), 6.61 (s, 1H),	6.55 (s, 1H), 3.87 (s, 6H), 3.70	(s, 2H), 3.00-2.94 (m, 2H), 2.89-	2.82 (m, 6H)	11.78 (s, 1H, br), 10.48 (s, 1H,	br), 9.33 (d, 1H), 8.99 (d, 1H),	8.39	(d, 111), 8.15 (d, 111), 8.13 (d,	1HJ, 7.99 (s, 1H), 7.97 (s, 1H),	7.95-7.88 (m, 2H), 7.85-7.07	(m, 6H), 7.71	(t, 1H), 7.66-7.60 (m, 3H), 7.40-	7.30 (m, 2H), 7.24 (d, 2H), 3.75	(s, 2H), 2.91 (t, 2H)
CDCl ₃ /400MHz					CDC! / 400MH-										d _s - DMSO /	400MHz								
ESI					ESI										ESI						·			
MH*(100%) - 604				·	MH*(100%) - 587							-		***************************************	MH. (100%) - 572			-	-					-
C ₃₅ H ₃₃ N ₅ O ₅					C ₃₆ H ₃₄ N ₄ O ₄										C34F129IN5C4									
9632					9633									0534	+000									

- 166 -

[\scale=							Ī~						16					T_									T	_
11.90 (s, 1H), 8.70 (d, 1H), 8.05	(s, 1H), 7.97 (s, 1H), 7.65 (d,	1H), 7.58 (d, 2H), 7.53 (s, 1H),	7.25 (d, 2H), 7.16 (t, 1H), 6.62	(s, 1H), 6.54 (s, 1H), 3.85 (s,	6H), 3.75 (s, 2H), 3.05-2.83 (m,	8H), 2.79 (s, 3H)	12.27 (s, 1H), 9.55 (s, 1H), 8.88	(d, 1H), 8.80 (s, 1H), 8.19 (d,	1H), 8.00 (d, 1H), 7.95 (s, 1H,	br), 7.88-7.81 (m, 1H), 7.70 (d,	1H), 7.69-7.60 (m, 2H), 7.52 (d,	2H), 7.25-7.20 (m, 3H), 6.90 (s,	1H, br), 6.84-6.78 (m, 2H), 3.88	(s, 6H), 3.60	(s, 2H, br), 2.82-2.71 (m, 4H,	br), 2.61 (q, 2H, br), 1.07 (t, 3H,	br)	CDCl ₃ / 400MHz 11.69 (s, 1H), 8.73 (d, 1H), 8.17	(s, 1H), 7.87 (s, 1H), 7.65 (d,	[1H], 7.60-7.50 (m, 3H), 7.32-	7.23	(m, 3H), 7.18 (t, 1H), 6.62 (s,	1H), 6.55 (s, 1H), 3.87 (s, 3H),	3.86	(s, 3H), 3.69 (s, 2H), 3.00-2.74	(m, 8H), 2.54 (s, 3H)	12.20 (s, 1H, br), 9.55 (d, 1H),	(/
CDCI,/400MHz							CDCI,/400MHz											CDCI, / 400MHz									CDCl ₃ / 400MHz	
ESI						100	ESI											ESI									ESI	
MH*(100%) - 557.3			· -			1 A CT 1 + (1000/) 500	(100%) - 10% HIM					-				- *	111111111111111111111111111111111111111	MH (100%) - 541	_	<del>-</del> -			. 0			) (TIT+ (1000))	MH (100%) - 603	
C31H32N4O4S						O II NO	C361136174 O4							*************			ONTO	C31 1132 114 O5								O IN II O	C37E138IN4C4	
9635						9836											0619	8C0%								0630	2002	

	- 167 -	·,	
bt), 8.20 (d, 1H), 8.02 (d, 1H), 7.78-7.72 (m, 1H), 7.68-7.58 (m, 4H), 7.52 (t, 1H), 7.23 (d, 2H), 7.10 (m, 1H), 6.92 (s, 1H), 6.83 (s, 2H), 4.53 (septet, 1H), 3.85 (s, 3H), 3.48 (s, 2H), 2.87-2.81 (m, 2H), 2.68-2.62 (m, 2H), 2.30 (s, 3H), 1.35 (d, 6H)	(d, 1H), 8.80 (s, 1H), 8.85 (d, 1H), 8.80 (d, 1H), 8.07-8.00 (m, 2H), 7.84 (t, 1H), 7.70-7.53 (m, 5H), 7.30-7.18 (m, 3H), 6.54 (s, 2H), 3.85 (s, 9H), 3.50 (s, 2H), 2.83 (t, 2H), 2.66 (t, 2H), 2.33 (s, 3H)	12.25 (s, 1H), 9.55 (d, 1H), 8.85 (d, 1H), 8.80 (d, 1H), 8.20 (d, 1H), 8.05 (s, 1H, br), 8.02 (d, 1H), 7.88-7.81 (m, 1H), 7.70-7.57 (m, 3H), 7.53 (d, 2H), 7.21-7.15 (m, 3H), 6.88 (s, 1H), 6.83-6.78 (m, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.58 (s, 2H), 2.81-2.68 (m, 4H), 2.51 (t, 2H), 1.52-1.47 (m, 2H), 1.35-1.25 (m, 2H), 0.00 (s, 2H)	
	CDCl ₃ /400MHz	CDCI,/400MHz	CDCl ₃ /400MHz
	ESI	ESI	ESI
·	MH* (100%) - 605.3	MH* (100%) - 617	MH+(100%) - 617
	C ₃₆ H ₃₆ N ₄ O ₅	C)8FI ₄₀ N ₄ O ₄	C ₃₈ H ₄₀ N ₄ O ₄
·	9640	9641	9642

	- 168 -	
8.85 (d, 1H), 8.80 (d, 1H), 8.19 (d, 1H), 8.03 (s, 1H, br), 8.01 (d, 1H), 7.85-7.80 (m, 1H), 7.71-7.58 (m, 3H), 7.55 (d, 2H), 7.22 (d, 2H), 7.20-7.18 (m, 1H), 6.85 (s, 1H), 6.82-6.78 (m, 2H), 4.02 (t, 2H), 3.85 (s, 3H), 3.50 (s, 2H), 2.85 (t, 2H), 2.65 (t, 2H), 2.31 (s, 3H), 1.85-1.79 (m, 2H), 1.55-1.45 (m, 2H), 0.96	(1, 3H)  12.22 (s, 1H, br), 9.55 (d, 1H),  8.81-8.75 (m, 2H), 8.21 (s, 1H, br), 8.19 (d, 1H), 8.02 (d, 1H),  7.85-7.81 (m, 1H), 7.68-7.52 (m, 5H), 7.22 (d, 2H), 7.17-  7.02 (m, 3H), 6.97-6.92 (m, 1H), 3.50 (s, 2H), 2.85 (t, 2H),  2.65 (t, 2H), 2.28	(3.7.7) 12.18 (s, 1H, br), 9.50 (s, 1H), 8.78 (d, 1H), 8.72 (s, 1H), 8.11 (d, 1H), 7.95 (d, 1H), 7.92 (s, 1H), 7.78-7.72 (m, 1H), 7.62- 7.50 (m, 5H), 7.18-7.10 (m, 3H), 6.75-6.70 (m, 3H), 4.18 (s, 4H), 3.40 (s, 2H), 2.78 (t, 2H), 2.58 (t, 2H)
	CDCl,/400MHz	CDCl3/400MHz
	ESI	ESI
	MH*(100%) - 551	MH*(100%) - 573
	C ₃₃ H ₂₈ N ₄ O ₂ F ₂	C35H32N4O4
	9643	2040

										- 169	-														
2.20	(s, 3n) 12.15 (s, 1H, br), 9.45 (s, 1H),	8.72 (s, 1H), 8.70 (d, 1H), 8.25 (s, 1H), 8.10 (d, 1H), 7.90 (d)	[1H], 7.78-7.72 (m, 1H), 7.60-	4.41 (m, 5H), 7.13 (d, 2H),	7.04-7.00 (m, 1H), 6.79-6.68	(m, 5fl), 4.45-4.39	(m, 1rt), 3.78 (s, 3H), 3.40 (s, 2H), 2.78-2.77 (m, 2H), 2.60-	2.56 (m, 2H), 2.23 (s, 3H), 1.30			8.88 (d, 1H), 8.80 (s, 1H), 8.19	(d, 1H), 8.10 (s, 1H, br), 8.00 (d,	1H), 7.85-7.80 (m, 1H), 7.70 (d,	1H), 7.65-7.55 (m, 4H), 7.22 (d,	2H),7.20-7.15 (m, 1H), 6.88 (s,	1H), 6.80-6.78 (m, 2H), 3.88 (s,	3H), 3.50	(s, 2H), 2.85 (t, 2H), 2.65 (t,	2H), 2.29 (s, 3H)	OH proton not visible	12.29 (s, 1H), 9.55 (s, 1H), 8.87	(d, 1H), 8.81 (s, 1H), 8.18 (d,	1H), 8.02-7.96 (m, 2H), 7.85-	7.80	(m. 1H), 772-750 (m. 5H)
	CDCl ₃ /400MHz									CDCl ₃ / 400MHz											CDCl ₃ /400MHz				
	ESI								100	ESI						-				100	E21				
	MH*(100%) - 603		-	·		-		- ·	MII+/1000/	196 - (%001) 11141	-									MH+(4002) 522	" M ²⁺ " 317 /1000/	(0/001) /16 141			
	C ₃₇ H ₃₈ N ₄ O ₄								ONHJ	3411321404								<del></del>		C.H.N.O.	10.406				
	9646								9647											9648					

	- 170 -		
7.26-7.18 (m, 1H), 6.98 (d, 2H), 6.61 (s, 1H), 6.54 (s, 1H), 4.31-4.24 (m, 1H), 4.10 (d, 2H), 3.87 (s, 3H), 3.86 (s, 3H), 3.82 (d, 1H), 3.64 (d, 1H), 3.04-2.72 (m, 6H)	(4, 1H), 8.75 (d, 1H), 8.82 (d, 1H), 8.22 (d, 1H), 7.98 (d, 1H), 7.81 (t, 1H), 7.67-7.54 (m, 4H), 7.50-7.43 (m, 1H), 7.29 (d, 2H), 7.07 (t, 1H), 6.88-6.81 (m, 2H), 6.73-6.68 (m, 1H), 3.82 (s, 3H), 3.50 (s, 2H), 2.89-2.82 (m, 2H), 2.70-7.63 (m, 2H), 2.41, 2.70-7.63 (m, 2H), 2.41, 2.70-7.63 (m, 2H), 2.41, 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.70-7.63 (m, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2H), 2.44 (s, 2	CDCl ₃ / 400MHz 12.33 (s, 1H), 9.53 (s, 1H), 8.90 (d, 1H), 8.77 (s, 1H), 8.17 (d, 1H), 7.99 (d, 1H), 7.89-7.12 (m, 6H), 7.30-7.12 (m, 3H), 6.62 (s, 1H), 6.55 (s, 1H), 3.85 (s, 3H), 3.70 (s, 2H), 3.00-2.75	(m, 8H), 2.35 (s, 3H) 12.48 (s, 1H), 9.57 (s, 1H), 8.91 (d, 1H), 8.84 (s, 1H), 8.61 (s,
·	CDCl3/400MHz	CDCl3/400MHz	CDCl ₃ /400MHz
	ESI	ESI	ESI
	MIH* (50%) - 425	"MH*(100%) - 601 "M ² * " 301 (86%)	MH*(100%) - 617 " M²* " 309 (58%)
	C3, H32 N, O,	C3,H3,6N,O4	C ₃ ,H ₃₆ N ₄ O ₅
·	9649	9650	1596

	- 171 -	
1H), 8.39 (d, 1H), 8.19 (d, 1H), 8.02 (d, 1H), 7.84 (t, 1H), 7.73 (d, 1H), 7.65-7.60 (m, 2H), 7.65-7.20 (m, 1H), 7.03 (d, 1H), 6.85 (s, 1H), 6.81 (s, 1H), 6.51 (s, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.70 (s, 2H), 3.00-2.70 (m, 8H)	12.18 (s, 1H, br), 9.55 (d, 1H), 8.80 (d, 1H), 8.75 (d, 1H), 8.39 (s, 1H, br), 8.20 (d, 1H), 8.02 (d, 1H), 7.86-7.82 (m, 1H), 7.68-7.62 (m, 4H), 7.52-7.49 (m, 1H), 7.41 (d, 2H), 7.10-7.05 (m, 1H), 6.98 (d, 1H), 6.91-6.83 (m, 2H), 4.55 (septet, 1H), 3.83 (s, 3H), 3.51 (s, 2H), 3.48 (s, 2H), 7.06, 3H), 136.4 (e)	1
	CDCl ₃ / 400MHz	CDCl ₃ / 400MHz
	ESI	ESI
	MH* (100%) - 589	MH*(100%) - 552
	C ₃₆ H ₃₆ N ₄ O ₄	C ₃ ,H ₃₁ N ₅ O ₄
	9652	9653

- 172 -

				- 172 -		
2.70 (m. 6H) 2 65 (s. 3H)	(11.80 (s, 1H), 10.47 (s, 1H), 9.34 (s, 1H), 8.88 (s, 1H), 8.38 (d, 1H), 8.17-8.07 (m, 2H),	(m, 2H), 7.72 (t, 1H), 7.66-7.60 (m, 3H), 7.34 (t, 1H), 7.23 (d, 2H), 6.63 (s, 1H), 6.59 (s, 1H), 3.68	(s, 6H), 3.55-3.35 (m, 2H), 3.08-2.95 (m, 1H), 2.70-2.40 (m, 6H), 1.19 (d, 3H)	10.26 (s, 1H, br), 9.53 (d, 1H), 8.85 (d, 1H), 8.80 (d, 1H), 8.20 (d, 1H), 8.10 (s, 1H), 8.00 (d, 1H), 7.82	(t, 1H), 7.70 (d, 1H), 7.68-7.52 (m, 3H), 7.55 (d, 2H), 7.38-7.29 (m, 4H), 6.80 (d, 2H), 3.62 (s, 2H, br), 2.94 (s, 6H), 2.93-2.90 (m, 2H, br), 2.80-2.74 (m,	2H, br), 2.36 (s, 3H, br) 12.45 (s, 1H), 9.50 (s, 1H), 8.71 (s, 1H), 8.54 (s, 1H), 8.50 (s, 1H), 8.15 (d, 1H), 7.98 (d, 1H), 7.81-7.79 (m, 1H), 7.60-7.55 (m, 3H), 7.20 (d, 2H), 7.10 (s, 1H), 6.85
	d _o - DMSO / 400MHz			CDCl ₃ /400MHz	, i	CDCI,/400MHz
	ESI			ESI		ESI
	MH*(100%) - 601			MH* (100%) - 558		MH*(100%) - 677
	C37H36N4O4	;		C ₃₅ H ₃₅ N ₅ O ₂		C ₄₀ H ₄₄ N ₄ O ₆
	9654			9655		9656

- 173 -9.32 (s, 1H), 8.90 (m, 1H), 8.80 (m, 1H), 8.71 (s, 1H), 8.70 (s, 1H), 7.97 (d, 1H), 7.65 (t, 1H), 7.47 (d, 1H), 6.45 (s, 1H), 6.30 (s, 1H), 3.63 (s, 3H), 3.71 (s, 3H), 3.70 2.83 (m, 2H), 2.70 (m, 6H), 2.59 9.35 (s, 1H), 8.89-8.78 (m, 2H), 7.94 2H), 3.88 (s, 3H), 3.81 (s, 3H), 1H), 7.58 (t, 1H), 7.05 (s, 1H), 6.77 1H), 6.68 (d, 1H), 6.67 (s, 1H), 6.65 2H), 2.62 (t, 2H), 2.28 (s, 3H), 12.65 (s, 1H, br), 9.93 (s, 1H), 12.62 (s, 1H, br), 9.27 (s, 1H), (s, 3H), 3.58 (s, 2H, br), 2.89-1.81-1.75 (m, 2H), 1.50-1.42 (d, 1H), 7.76 (t, 1H), 7.48 (d, (s, 3H), 3.47 (s, 2H), 2.80 (t, (s, 1H), 6.78 (s, 2H), 3.97 (t, (d, 1H), 7.30 (t, 1H), 7.02 (s, (s, 1H), 3.77 (s, 3H), 3.70 (s, (m, 2H), 0.92 (t, 3H). (s, 3H). d_c - DMSO / 400MHz de - DMSO 400MHz ESI ESI MH*(100%) - 582 MH*(100%) - 568 C32H33N5O4 C33H35N5O5

9657

		- 1	174 -		
3H), 3.69 (s, 3H), 3.56 (s, 2H), 2.87-2.82	(d, 1H), 8.80-8.77 (m, 1H), 8.74 (d, 1H), 8.02 (d, 1H), 7.65 (t, 1H), 7.33 (t, 1H), 7.23-7.17 (m, 2H), 7.15-7.08 (m, 1H), 6.64 (s, 1H), 3.655 (s, 3H),	5.05 (s, 3H), 3.57 (s, 2H), 2.85-2.78 (m, 2H), 2.75-2.26 (m, 6H), 2.21 (s, 3H)		1H), 6.43 (s, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.48 (s, 2H), 2.76-2.61 (m, 6H), 2.50-2.44 (m, 2H), 1.94-1.84 (m, 2H).	12.01 (s, 1H), 9.27 (s, 1H), 8.81-8.76 (m, 1H), 8.71 (d, 1H), 8.34-8.26 (m, 2H), 7.67-7.58
	d ₆ - DMSO / 400MHz		CDCI, / 400MHz	·	CDCI,/ 400MHz
	ESI		ESI	·	DCI / NH,
	MH*(100%) - 552		MH*(100%) - 601		MH (100%) - 539.4
	C ₂₂ H ₃₃ N ₅ O ₅		C ₃ ,H ₃₆ N ₄ O ₄	2	404140
	6596	0770	0996	1996	

	- 175 -	
(m, 3H), 7.52-7.37 (m, 4H), 7.11-7.03 (m, 1H), 6.98 (d, 1H), 6.89-6.82 (m, 2H), 4.55 (septet, 1H), 3.85 (s, 3H), 3.50 (s, 2H), 3.48 (s, 2H), 2.21 (s, 3H), 1.38 (d, 6H)	12.00 (s, 1H), 9.34 (s, 1H), 8.89 (s, 1H), 8.54 (s, 1H), 8.18-8.08 (m, 2H), 7.97 (d, 1H), 7.91 (t, 1H), 7.71 (t, 1H), 7.61 (d, 2H), 7.42 (d, 1H), 7.19 (d, 2H), 6.86-6.78 (m, 2H), 6.77-6.71 (m, 1H), 3.70 (s, 3H), 3.68 (s, 3H), 3.43 (s,	2H), 2.78-2.70 (m, 2H), 2.59- 2.52 (m, 2H), 2.17 (s, 3H). 11.80 (s, 1H), 10.46 (s, 1H), 9.33 (s, 1H), 8.89 (s, 1H), 8.38 (d, 1H), 8.18-8.08 (m, 2H), 7.95-7.87 (m, 2H), 7.72 (t, 1H), 7.67-7.60 (m, 3H), 7.34 (t, 1H), 7.22 (d, 2H), 6.62 (s, 1H), 6.60 (s, 1H), 5.90 (s, 2H), 3.50 (s, 2H), 2.83-2.75 (m, 2H), 2.72-2.60
	d ₆ - DMSO / 400MHz	d ₆ -DMSO/ 400MHz
	ESI	ESI
·	MH*(62%) - 609 M*Na* (100%) - 631	MH* (100%) - 571
	C ₃₅ H ₃₃ N ₄ O ₄ CI	C3,H30N,O4
	9663	9664

											- 1	76 -												
11.80 (s, 1H), 10.46 (s, 1H), 9.33	(s, 1H), 8.88 (s, 1H), 8.38 (d, 1H), 8.17-8.07 (m, 2H),	7.97-7.87 (m, 2H), 7.71 (t, 111),	7.67-7.58 (m, 3H), 7.32 (t, 1H), 7.22	(d, 2H), 6.62 (s, 1H), 6.60 (s,	1H), 3.83 (q, 4H), 3.50 (s, 2H),	2.82-2.74 (m, 2H), 2.72-2.60	(m, 6H), 1.27 (t, 6H).	CDCl ₃ / 400MHz 9.75 (s, 1H, br), 9.55(d, 1H),	9.2/ (s. 1H. br.) 8 90 (d. 1H) 8 73	(d, 1H), 8.63 (d, 1H), 8.21(d,	1H), 8.00 (d, 1H), 7.90-7.85 (m,	1H), 7.71-7.66 (m, 1H), 7.55 (d,	2H), 7.21 (d, 2H), 6.55 (s, 1H),	0.50	(s, 1H), 3.83 (s, 3H), 3.82 (s,	3H), 3.62 (s, 2H), 2.90-2.70 (m,			8.88 (m, 1H), 8.78 (s, 1H), 8.20	(d, 1H), 8.00 (d, 1H), 7.83(t,	1H), 7.78 (s, 1H), 7.64 (t, 1H),	7.56-7.49 (m, 3H), 7.23 (d, 2H),	6.88 (s, 1H), 6.80 (s, 2H), 3.88	(s, 6H), 3.50
d ₆ -DMSO/ 400MHz			•					CDCl, / 400MHz				-						CDCl ₃ / 400MHz						
ESI						٠		ESI										DCI/NH,						
MH*(100%) - 615				-				MH* (60%) - 645						-			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MH (100%) - 611.5		-				-
C38H38N4O4								C36H32N6O4S									101	C35H32N4O4F2						
9665								9996									2770	/996						

											-	177	7 -										
(s, 2H), 2.86-2.80 (m, 2H), 2.68-		12.32 (s, 1H), 9.55(d, 1H), 8.78 (d, 1H), 8.65 (s, 1H), 8.65	(s, 1H), 8.19 (d, 1H), 8.02 (d,	1H), 7.85 (t, 1H), 7.65 (t, 1H),	(d, 2H), 7.55 (d, 1H), 7.23 (d.	2H), 6.90 (d, 1H), 6.89 (s, 1H),	6.85-6.80 (m, 2H), 3.86 (s, 6H), 3.50	(s, 2H), 2.85-2.81 (m, 2H), 2.70-	2.65 (m, 2H), 2.35 (s, 3H),			(d, 1H), 8.75 (d, 1H), 8.35	(s, 1H), 8.19 (d, 1H), 8.01 (d,	1H), 7.85-7.81 (m, 1H), 7.65-	(m 2H) 7 55 (d 2H) 7 48 (.	1H), 7.17 (d, 2H), 7.05 (1, 1H)	6.91	(s, 1H), 6.85-6.75 (m, 2H), 3.86	(s, 3H), 3.85 (s, 3H), 3.59 (s,	^{2H} ), 2.99 (septet, 1H), 2.69 (s,	4H),	1.00 (d, 6H).	11.72 (s, 1H), 10.72 (s, 1H), 9.35
	CDC1 / 4008/41	CDC13/400IMIRZ									CDCl, / 400MHz												d ₆ -DMSO / 400MHz
	ESI	1		***						EGI	[62]											Ear	E31
	MH*(100%) - 589				-					MH+(100%) 603	(00 - (0/001) 1111	-									-	MH+(35%) - 620	070 - (0.00)
	C3,H3,N,O4			·····						C.,H.,N.O.	* DO 10											C,H,,N,O,	
	8996									6996												212	

		1 111 0 111 110 000
		(S, 1H), 9.14 (S, 1H), 8.90
	 	(s, 1H), 8.24-8.06 (m, 4H), 7.94
		(t, 1H), 7.72 (t, 1H), 7.65 (d,
		2H), 7.20 (d, 2H), 6.88-6.70 (m,
		3H), 3.69 (s, 3H), 3.68 (s, 3H),
	 	3.44
		(s, 2H), 2.78-2.68 (m, 2H), 2.62-
		2.50 (m, 2H), 2.17 (s, 3H)

- 179 -

#### CLAIMS

1. A compound which is an anthranilic acid derivative of formula (I):

wherein

each of R,  $R^1$  and  $R^2$ , which are the same or different, is H,  $C_1$ - $C_6$  alkyl, OH,  $C_1$ - $C_6$  alkoxy, halogen, nitro, or  $N(R^{10}R^{11})$  wherein each of  $R^{10}$  and  $R^{11}$ , which are the same or different, is H or  $C_1$ - $C_6$  alkyl, or  $R^1$  and  $R^2$ , being attached to adjacent positions of ring  $\underline{b}$ , together form a methylenedioxy or ethylenedioxy group;

R³ is H or C₁-C₆ alkyl

 $R^4$  is  $C_1$ - $C_6$  alkyl or  $R^4$  represents  $-CH_2$ - or  $-CH_2CH_2$ - which is attached either (i) to position 2 of ring  $\underline{b}$  to complete a saturated 5- or 6-membered nitrogen-containing ring fused to ring  $\underline{b}$ , or (ii) to the position in ring  $\underline{a}$  adjacent to that to which X, being a single bond, is linked, thereby completing a saturated 5- or 6-membered nitrogen-containing ring fused to ring  $\underline{a}$ ;

 $R^5$  is H, OH or  $C_1$ - $C_6$  alkyl;

X is a direct bond, O, S,  $-S-(CH_2)_p-$  or  $-O-(CH_2)_p-$  wherein p is an integer of 1 to 6;

 $R_6$  is H,  $C_1$ - $C_6$  alkyl or  $C_1$ - $C_6$  alkoxy; q is 0 or 1;

Ar is an unsaturated carbocyclic or heterocyclic group; each of  $R^7$  and  $R^8$ , which are the same or different, is H,  $C_1$ - $C_6$  alkyl which is unsubstituted or substituted,  $C_1$ - $C_6$  alkoxy, hydroxy, halogen, phenyl, -NHOH, nitro, a group  $N(R^{10}R^{11})$  as defined above or a group  $SR^{12}$  wherein  $R^{12}$  is H or  $C_1$ - $C_6$  alkyl; or  $R^7$  and  $R^8$ , when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent;

 $\rm R^9$  is phenyl or an unsaturated heterocyclic group, each of which is unsubstituted or substituted by  $\rm C_1\text{-}C_6$  alkyl, OH,  $\rm C_1\text{-}C_6$  alkoxy, halogen,  $\rm C_3\text{-}C_6$  cycloalkyl, phenyl, benzyl, trifluoromethyl, nitro, acetyl, benzoyl or  $\rm N(R^{10}R^{11})$  as defined above, or two substituents on adjacent ring positions of the said phenyl or heterocyclic group together complete a saturated or unsaturated 6-membered ring or form a methylenedioxy group;

n is 0 or 1; and

m is 0 or an integer of 1 to 6; or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1 wherein the anthranilic acid derivative has the following structure (A):

$$R^7$$
 $R^8$ 
 $R^8$ 
 $R^9$ 
 $R^9$ 
 $R^5$ 
 $R^3$ 
 wherein

(a) each of R,  $R^1$  and  $R^2$ , which are the same or different, is H, OH,  $NO_2$ ,  $N(R^{10}R^{11})$ , halogen or  $C_2$ - $C_6$  alkoxy, or R is H and  $R^1$  and  $R^2$  form, together with the carbon atoms to which they are attached, a methylenedioxy or ethylenedioxy group, provided  $R^1$ 

WO 98/17648

- 181 -

and  $R^2$  are not both H; and each of  $R^3$ ,  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ , Ar, X and m is as defined in claim 1; or

- (b) each of R,  $R^1$  and  $R^2$ , which are the same or different, is H or OMe and each of  $R^3$ ,  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ , Ar, X and m is as defined in claim 1.
- 3. A compound according to claim 1 wherein the anthranilic acid derivative has the following structure (B)

$$R^7$$
 $R^8$ 
 $R^6$ 
 $R^6$ 
 $R^5$ 
 $R^5$ 
 $R^5$ 
 $R^6$ 
 $R^7$ 
 $R^8$ 
 wherein R,  $R^1$  to  $R^3$ ,  $R^5$  to  $R^9$ , Ar and n are as defined in claim 1.

4. A compound according to claim 1 wherein the anthranilic acid derivative has the following structure (C):

$$R^7$$
 $R^8$ 
 $R^8$ 
 $R^6$ 
 $R^6$ 
 $R^6$ 
 $R^6$ 
 $R^6$ 
 $R^7$ 
 $R^8$ 
 wherein R,  $R^1$  to  $R^3$ ,  $R^5$  to  $R^9$ , Ar, X and m are as defined in claim 1.

5. A compound according to claim 1 wherein the anthranilic acid derivative has the following structure (D)

- 182 -

$$R^7$$
 $R^8$ 
 $R^8$ 
 $R^9$ 
 $R^9$ 
 $R^9$ 
 $R^7$ 
 $R^3$ 
 $R^3$ 
 $R^3$ 
 $R^3$ 
 $CH_2$ 
 $R^3$ 
 $R^4$ 
 $CH_2$ 
 $R^3$ 
 $R^4$ 
 $CH_2$ 
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $CH_2$ 
 $R^3$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 
 $R^4$ 

wherein R,  $R^1$  to  $R^9$ , Ar, m and n are as defined above for formula (I) and X, which is at position 3 or 4 in ring <u>a</u>, is as defined in claim 1.

6. A compound which is an anthranilic acid derivative of formula (Ia):

$$R^{31}$$
 $R^{31}$ 
 $R^{41}$ 
 $R$ 

wherein  $R^{11}$  and  $R^{21}$ , which may be the same or different, are each hydrogen or methoxy;  $R^{31}$  and  $R^{41}$ , which may be the same or different, are each independently selected from H,  $CH_3$   $CF_3$ , F, Cl, Br,  $NH_2$ ,  $NO_2$ , NHOH, methoxy, hydroxy and phenyl; or  $R^{31}$  and  $R^{41}$ , when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent;  $R^{51}$  is 2-furanyl, 3-furanyl, 2-thiophene, 3-thiophene, 2-indolyl or 2-benzofuranyl or a ring of one of the following formulae (II'), (III') or (IV'):

- 183 -

$$R^{61}$$
 $R^{71}$ 
 $R^{91}$ 
 $R^{91}$ 
 $R^{101}$ 
 $R^{111}$ 
 $R^{111}$ 

wherein  $R^{61}$  and  $R^{71}$ , which may be the same or different, are selected from hydrogen,  $C_1$ - $C_6$  alkyl which is linear or branched,  $C_3$ - $C_6$  cycloalkyl, phenyl, benzyl, trifluoromethyl, F, Cl, Br,  $OR^{12}$ ,  $NO_2$ , dimethylamino, diethylamino, acetyl and benzoyl, or  $R^{61}$  and  $R^{71}$  when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring or a methylenedioxy substituent;

R⁸¹ and R⁹¹, which may be the same or different, are each hydrogen, methyl or methoxy, or R⁸¹ and R⁹¹, when situated on adjacent carbon atoms, form together with the pyridine to which they are attached a quinoline or 5,6,7,8-tetrahydroquinoline ring system;

 $R^{101}$  and  $R^{111}$ , which may be the same or different, are each hydrogen, methyl or propionyl; or  $R^{101}$  and  $R^{111}$ , when situated on adjacent carbon atoms, form together with the carbon atoms to which they are attached a benzene ring,

 $R^{121}$  is H,  $C_1\text{-}C_6$  alkyl,  $C_3\text{-}C_6$  cycloalkyl, phenyl, benzyl or acetyl; r is 0 or 1, and

s is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

7. A compound according to claim 6 wherein, in formula (Ia), r is 1, s is 2,  $R^{11}$  and  $R^{21}$  are both methoxy and  $R^{51}$  is a 2-

quinoxaline group, a 3-quinoline group, a 2-pyrazine group or a 3-pyridine group, all of which groups are unsubstituted or substituted.

```
8. A compound which is
2-chloro-quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide.
4-Hydroxy-7-trifluoromethyl-quinoline-3-carboxylic acid
(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-
yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
thiophen-3-yl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
dimethylamino-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-4-dimethylamino-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoy1}-thiophen-3-yl)-amide
Quinoxaline-2-carboxylic acid (3-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-pyridin-2-yl)-amide
4-Hydroxy-quinoline-3-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoxaline-2-carboxylic acid (3-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-4-methyl-thiophen-2-yl)-amide
Quinoline-3-carboxylic acid (3-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
methyl-thiophen-2-yl)-amide
Quinoxaline-2-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -methyl-aminoj-ethyl}-phenylcarbamoyl) -phenyl] -
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -methyl-amino] -ethyl}-phenylcarbamoyl) -phenyl] -
amide
Quinoxaline-2-carboxylic acid {2-[2-(3,4-dimethoxy-
benzyl)-1,2,3,4-tetrahydro-isoquinolin-7-ylcarbamoyl]-
phenyl \ -amide
```

- 185 -

```
Ouinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
methylsulfanyl-phenyl)-amide
Quinoline-3-carboxylic acid (4-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
thiophen-3-yl)-amide
N-(4-4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-
vl)-ethyl]-phenylcarbamoyl}-thiophen-3-yl)-6-methyl-
nicotinamide
Ouinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylsulfanyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (3-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
pyrazin-2-yl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethoxy]-phenylcarbamoyl}-
phenyl) - amide
Ouinoline-3-carboxylic acid (2-\{4-[2-(6,7-dimethoxy-1-
methyl-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(1,3-dihydro-
isoindol-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dichloro-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Quinoline-3-carboxylic acid (2-{4-[2-(7,8-dichloro-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Quinoline-3-carboxylic acid {2-[4-(2-{[2-(3,4-dimethoxy-
phenyl)-ethyl]-methyl-amino}-ethyl)-phenylcarbamoyl]-
phenyl } - amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethyl-
benzyl) -methyl-amino] -ethyl } -phenylcarbamoyl) -phenyl] -
amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethoxy]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{3-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Quinoline-3-carboxylic acid (2-{4-[2-(7-nitro-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
2-Methyl-thiazole-4-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
```

WO 98/17648

```
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -ethyl-amino] -ethyl}-phenylcarbamoyl) -phenyl] -
amide
2-Methyl-oxazole-4-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3-isopropoxy-4-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[methyl-(3,4,5-
trimethoxy-benzyl)-amino]-ethyl}-phenylcarbamoyl)-
phenyl]-amide
Quinoline-3-carboxylic acid [2-(4-{2-[butyl-(3,4-
dimethoxy-benzyl) -amino] -ethyl} -phenylcarbamoyl) -
phenyl]-amide
Quinoline-3-carboxylic acid [2-(4-{2-[(4-butoxy-3-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-difluoro-
benzyl) -methyl-amino] -ethyl } -phenylcarbamoyl) -phenyl] -
amide
Quinoline-3-carboxylic acid [2-(4-{2-[(2,3-dihydro-
benzo[1,4]dioxin-6-ylmethyl)-methyl-amino]-ethyl}-
phenylcarbamoyl) -phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[(4-isopropoxy-3-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3-hydroxy-4-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl] -amide
Quinoline-3-carboxylic acid (2-{4-[3-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-2-hydroxy-propoxy]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid [2-(4-{2-[(4-hydroxy-3-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl] -amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-2-methyl-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-2-methoxy-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid [2-(4-{[(3-isopropoxy-4-
methoxy-benzyl)-methyl-amino]-methyl}-phenylcarbamoyl)-
phenyl] - amide
5-Methyl-pyrazine-2-carboxylic acid (2-{3-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
```

- 187 -

```
Ouinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-1-methyl-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid [2-(4-{2-[(4-dimethylamino-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-phenyl]-
amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3-butoxy-4-
methoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
4,5-dimethoxy-phenyl]-amide
5-Methyl-pyrazine-2-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-2-
methoxy-phenylcarbamoyl}-phenyl)-amide
Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-2-methyl-
phenylcarbamoyl } - phenyl) - amide
Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-2-methoxy-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{3-[3-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-propyl]-phenylcarbamoyl}-
phenyl) - amide
N-[2-(4-{[(3-Isopropoxy-4-methoxy-benzyl)-methyl-amino]-
methyl}-phenylcarbamoyl)-phenyl]-nicotinamide
Quinoline-3-carboxylic acid [5-chloro-2-(4-{2-[(3,4-
dimethoxy-benzyl)-methyl-amino]-ethyl}-phenylcarbamoyl)-
phenyl]-amide
Quinoline-3-carboxylic acid (2-\{4-[2-(7,8-dihydro-5H-
[1,3]dioxolo[4,5-g]isoquinolin-6-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-diethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Quinoline-3-carboxylic acid (6-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
thieno[2,3-b]pyrazin-7-yl)-amide
Quinoline-3-carboxylic acid-[2-(4-{2-[(3,4-dimethoxy-
benzyl) -methyl-amino] -ethyl}-phenylcarbamoyl) -4,5-
difluoro-phenyl]-amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -methyl-amino] -ethyl}-phenylcarbamoyl) -5-methyl-
phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -isopropyl-amino] -ethyl}-phenylcarbamoyl) -
phenyl] -amide
Quinoline-3-carboxylic acid [2-(4-{2-[(3,4-dimethoxy-
benzyl) -methyl-amino] -ethyl}-phenylcarbamoyl) -5-nitro-
phenyl]-amide
```

2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-6-chloro-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-5-chloro-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-4-chloro-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-3-chloro-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-5-bromo-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-4-fluoro-benzamide  $2-(4-Isopropyl-benzoylamino)-N-{2-(6,7-dimethoxy-3,4$ dihydro-1H-isoquinolin-2-yl)-ethyl]-3-methyl-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-3-methoxy-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-3-hydroxy-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-4-nitro-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-4-amino-benzamide 2-(4-Isopropyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-5-phenyl-benzamide 3-(4-Isopropyl-benzoylamino)-naphthalene-2-carboxylic acid [2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]amide 2-(4-Dimethylamino-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide 2-(4-Propyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide 2-(4-Pentyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide 2-(4-Cyclohexyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide Biphenyl-4-carboxylic acid {2-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide Naphthalene-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide

- 189 -

```
Benzo[1,3]dioxole-5-carboxylic acid {2-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-
amide
2-(4-Diethylamino-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-tert-Butyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide
2-Benzoylamino-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-
isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Bromo-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-
1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Nitro-benzoylamino) -N-[2-(6,7-dimethoxy-3,4-dihydro-
1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Phenoxy-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-
1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Benzoyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-
1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Benzyl-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-dihydro-
1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Cyclohexyloxy-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide
2-(4-Benzyloxy-benzoylamino)-N-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-benzamide
Pyridine-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
N-\{2-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-1\}
ethylcarbamoyl]-phenyl}-nicotinamide
N-\{2-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-
ethylcarbamoyl]-phenyl}-isonicotinamide
Pyrazine-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Quinoxaline-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Isoquinoline-1-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Quinoline-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Isoquinoline-3-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Quinoline-3-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
Thiophene-3-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
1H-Indole-2-carboxylic acid {2-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethylcarbamoyl]-phenyl}-amide
```

- 190 -

```
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) -amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
hydroxyamino-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
methyl-phenyl)-amide
Ouinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
hydroxy-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
nitro-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
trifluoromethyl-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
fluoro-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-3-
fluoro-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
fluoro-phenyl)-amide
Quinoxaline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4,5-
dimethoxy-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenvl) - amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
fluoro-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
fluoro-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4,5-
dimethoxy-phenyl)-amide
Quinoline-3-carboxylic acid (6-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
benzo[1,3]dioxol-5-yl)-amide
```

- 191 -

```
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
nitro-phenyl) - amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
methyl-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
methyl-phenyl)-amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-4-
chloro-phenyl) -amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
chloro-phenyl) - amide
Quinoline-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-5-
amino-phenyl)-amide
Quinoline-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
5,6,7,8-Tetrahydroquinoline-3-carboxylic acid (2-{4-[2-
(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
Pyridine-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) -amide
\overline{N}-(2-{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-
ethyl]-phenylcarbamoyl}-phenyl)-nicotinamide
N-(2-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-
ethyl]-phenylcarbamoyl}-phenyl)-isonicotinamide
Pyrazine-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
5-Methyl-pyrazine-2-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
N-(2-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-
ethyl]-phenylcarbamoyl}-phenyl)-6-methyl-nicotinamide
N-(2-\{4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-
ethyl]-phenylcarbamoyl}-phenyl)-6-methoxy-nicotinamide
5-Propionyl-pyrazine-2-carboxylic acid (2-{4-[2-(6,7-
dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-
phenylcarbamoyl}-phenyl)-amide
2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-
isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
```

2-Benzoylamino-N-{4-[2-(6,7-dimethoxy-3,4-dihydro-1Hisoquinolin-2-yl)-ethyl]-phenyl}-5-methyl-benzamide  $2-\text{Benzoylamino}-N-\{4-[2-(6,7-\text{dimethoxy-3},4-\text{dihydro-}1H$ isoquinolin-2-yl)-ethyl]-phenyl}-4-methyl-benzamide 2-Benzoylamino-N- $\{4-[2-(6,7-dimethoxy-3,4-dihydro-1H$ isoquinolin-2-yl)-ethyl]-phenyl}-6-methyl-benzamide 2-(2-Fluoro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(3-Fluoro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(4-Fluoro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2,4-Difluoro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2,6-Difluoro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2-Chloro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(3-Chloro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(4-Chloro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2-Methyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(3-Methyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(4-Methyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2-Methoxy-benzoylamino) -N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(3-Methoxy-benzoylamino) -N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(4-Methoxy-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(2-Hydroxy-benzoylamino) -N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(3-Hydroxy-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide 2-(4-Hydroxy-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide Acetic acid  $2-(2-\{4-[2-(6,7-dimethoxy-3,4-dihydro-1H$ isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenylcarbamoyl)phenyl ester

- 193 -

```
Acetic acid 3-(2-\{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenylcarbamoyl)-
phenyl ester
Acetic acid 4-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-
isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenylcarbamoyl)-
phenyl ester
2-(2-Trifluoromethyl-benzoylamino) -N-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide-
2-(3-Trifluoromethyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
2-(3-Dimethylamino-benzoylamino)-N-{4-[2-(6,7-dimethoxy-
3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
2-(4-Isopropyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
2-(4-Cyclohexyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
Naphthalene-1-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Naphthalene-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
2-(3,4-Dichloro-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
2-(3,4-Dimethyl-benzoylamino)-N-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-benzamide
Thiophene-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) -amide
Thiophene-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
Furan-3-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
1H-Indole-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) -amide
Benzofuran-2-carboxylic acid (2-{4-[2-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-
phenyl) - amide
2-(4-Cyclohexyl-benzoylamino)-N-[3-(6,7-dimethoxy-3,4-
dihydro-1H-isoquinolin-2-yl)-propyl]-benzamide
2-(4-Cyclohexyl-benzoylamino)-N-[2-(3,4-dihydro-1H-
isoquinolin-2-yl)-ethyl]-benzamide
```

- 194 -

Quinoxaline-2-carboxylic acid (2-{4-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-phenylcarbamoyl}-phenyl)-amide
Quinoxaline-2-carboxylic acid {2-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)-phenylcarbamoyl}-phenyl}-amide
Quinoline-3-carboxylic acid (2-{4-[2-(3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenylcarbamoyl}-phenyl)-amide
Quinoline-3-carboxylic acid {2-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)-phenylcarbamoyl]-phenyl}-amide
or a pharmaceutically acceptable salt thereof.

- 9. A pharmaceutical or veterinary composition comprising a pharmaceutical or veterinary carrier or diluent and, as an active principle, a compound as defined in claim 1 or 6.
- 10. A process for producing a compound as defined in claim 1, which process comprises:
  - (a) treating an aminobenzamide of formula (VI)

$$\begin{array}{c|c}
R^7 & & & \\
\hline
 & & & \\
R^8 & & & \\
\hline
 & & & \\
NH_2 & & & \\
\end{array}$$
(VI)

wherein Ar,  $R^7$  and  $R^8$  are as defined in claim 1 and Z is the moiety:

$$\begin{array}{c|c}
 & \underline{\underline{a}} \\
 & \underline{R}^{6}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{R}^{3} \\
 & \underline{R}^{3}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{b} \\
 & \underline{R}^{2}
\end{array}$$

$$\begin{array}{c|c}
 & \underline{R}^{1}
\end{array}$$

- 195 -

wherein m, n, q, R,  $R^1$  to  $R^6$  and X are as defined in claim 1, with a carboxylic acid of formula  $R^9$ -COOH, or an activated derivative thereof, wherein  $R^9$  is as defined in claim 1; or

(b) treating a compound of formula XII:

$$R^7$$
 $R^8$ 
 $Ar$ 
 $R^8$ 
 $R^6$ 
 $R^6$ 
 $R^5$ 
 $R^5$ 
 $R^5$ 
 $R^6$ 
 $R^9$ 
 $R^6$ 
 wherein Ar,  $R^5$ ,  $R^6$  to  $R^9$ , X, q and m are as defined in claim 1, with an amine of formula XX:

$$R^{4} \xrightarrow{N} CH_{2} \xrightarrow{n} R^{2} R^{1} \qquad (XX)$$

wherein R, R¹ to R⁴ and n are as defined in claim 1; and, if desired, removing any optional protecting groups present, and/or if desired, converting one compound of formula (I) into another compound of formula (I) and/or, if desired, converting one compound of formula (I) into a pharmaceutically acceptable salt thereof and/or, if desired, converting a salt into a free compound of formula (I).

- 11. A process for producing a compound as defined in claim 6, which process comprises:
  - (a) treating an aminobenzamide of formula VIII'

$$\begin{array}{cccc}
R^{31} & O & & & \\
N & Z' & & & \\
N & NH_2 & & & 
\end{array}$$
(VIII')

wherein  $R^{31}$  and  $R^{41}$  are as defined in claim 6 and are optionally protected, and  $Z^{\,\prime}$  is the moiety

$$(CH_2)_{\overline{S}} \stackrel{R^{11}}{\longrightarrow} R^{21}$$

wherein r, s,  $R^{11}$  and  $R^{21}$  are as defined in claim 6, with a carboxylic acid of formula  $R^{51}$ -COOH or an activated derivative thereof, wherein  $R^{51}$  is as defined in claim 6; or

(b) treating a compound of formula XII':

- 197 -

wherein  $R^{51}$  is as defined in claim 6, with an amine of formula IX':

$$NH_2$$
 $(CH_2)_{\overline{S}}$ 
 $N$ 
 $(IX')$ 

wherein r, s,  $R^{11}$  and  $R^{21}$  are as defined in claim 6; or (c) treating an azalactone of formula XIII':

wherein  $R^{51}$  is as defined above, with an amine of formula (IX')

$$NH_2$$
 $(CH_2)_{\overline{S}}$ 
 $N$ 
 $R^{11}$ 
 $R^{21}$ 

- 198 -

wherein r, s, R¹¹ and R²¹ are as defined above; and, if desired, removing any optional protecting groups present, and/or if desired, converting one compound of formula (Ia) into another compound of formula (Ia) and/or, if desired, converting a compound of formula (Ia) into a pharmaceutically acceptable salt thereof and/or, if desired, converting a salt into a free compound of formula (Ia).

- 12. A compound as defined in claim 1 for use in a method of treatment of the human or animal body by therapy.
- 13. A compound as claimed in claim 12 for use as an inhibitor of P-gp.
- 14. A compound as claimed in claim 12 for use as a modulator of multidrug resistance, in potentiating the cytotoxicity of a chemotherapeutic agent, in potentiating the therapeutic effect of a drug directed against a multidrug resistant pathogen or in enhancing the net absorption, distribution, metabolism or elimination characteristics of a therapeutic agent.
  - 15. Use of a compound as defined in claim 1 in the manufacture of a medicament for use as an inhibitor of P-gp.

#### INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 97/02885

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D217/04 A61K31/47

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 01408 A (LABORATOIRES GLAXO) 20 January 1994 see claims; examples 80-103	1-15
A	WO 94 14809 A (BYK GULDEN LOMBERG CHEMISCHE FABRIK GMBH) 7 July 1994 see claims; examples	1-15
A	GB 2 286 394 A (XENOVA LTD.) 16 August 1995 see claims; examples	1-15
A	EP 0 529 395 A (BRISTOL-MYERS SQUIBB CO.) 3 March 1993 see whole document	1-15
A	WO 94 22842 A (BASF) 13 October 1994 see claims; examples	1-15

X Further documents are listed in the continuation of box C.	Y Patent family members are listed in annex.
P Special categories of cited documents:  A document defining the general state of the art which is not considered to be of particular relevance  E earlier document but published on or after the international filing date  L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  O document referring to an oral disclosure, use, exhibition or other means  P document published prior to the international filing date but later than the priority date claimed	*T* later document published after the international filing date or priority date and not in conflict with the application but oited to understand the principle or theory underlying the invention  "X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
3 March 1998	2 0. 03.98

Authorized officer

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk

## INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 97/02885

	ition) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.
	WO 96 20190 A (XENOVA LTD.) 4 July 1996 see claims; examples		1-15
		·	
		·	

## INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/GB 97/02885

Patent docume cited in search re		Publication date	Patent family member(s)	Publication date
WO 9401408	Α .	20-01-94	AT 152443 T AU 4567193 A DE 69310367 D DE 69310367 T EP 0649410 A JP 8508974 T US 5663179 A	15-05-97 31-01-94 05-06-97 14-08-97 26-04-95 24-09-96 02-09-97
WO 9414809	A	07-07-94	AU 5813394 A	19-07-94
GB 2286394	Α	16-08-95	AU 1588495 A WO 9521830 A	29-08-95 17-08-95
EP 529395	Α	03-03-93	CA 2074061 A JP 5221950 A	27-02-93 31-08-93
WO 9422842	Α	13-10-94	CA 2155759 A EP 0691962 A JP 8508270 T US 5622953 A	13-10-94 17-01-96 03-09-96 22-04-97
WO 9620190	A	04-07-96	AU 4310096 A CA 2207500 A EP 0799222 A FI 972660 A GB 2311781 A NO 972937 A PL 320916 A SG 32534 A	19-07-96 04-07-96 08-10-97 22-08-97 08-10-97 23-06-97 10-11-97 13-08-96

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.