un látigo:	1 13 11	11111		To -oTension	on a
$\frac{\partial f_J}{\partial_J \eta} = C_J(\chi) \frac{\partial \chi_J}{\partial_J \eta}$	dond	2 6	(X) =	M(x)-0 Dens	idad linear de mas
Con las condiciones	iniciales y	de fi	ontera		
$\int u(x,o) = f(x)$					
$\left\{ \mathcal{N}^{f}(x^{j}o) = \delta(x) \right\}$					
(1,0)W					
M(L) = 0					
Considerando una der	isitud de m	oso de	la for	(m) (x)=_	To
Enforces 1362 = (1					1+x) ²
Eupon(62 19995 _ (1 2x2			1 No May	se liene
Separación de variat	162				- sern considerado
M(x,t) = X(x) T(t)			= 1 s	n pérdida de
$\chi(\alpha)\dot{\tau}(t) = (1+\alpha)^2$	X (x) T(t)			deversi	340

Separación de variables:	^			Lale	3			1						F				-	
								que L sera considerado											
M(x,t) = X(x) T(t)			¥	o dega soperio de o					=	- 1	5	in	P	eids	da	de			
2.							-	1	99	190	21	199	9						-
$\chi(x)T(t) = (1+x)^2 \dot{\chi}(x)T(t)$	()				1.43						-					-	-1	-1-	
					10				9		i,h			1	À				1
(10) = $(10)^2$ (10) = -7																			
$\frac{\ddot{T}(t)}{T(t)} = (1+\alpha)^2 \frac{\ddot{X}(\alpha)}{\ddot{X}(\alpha)} = -\lambda$					4									11.1					1
				+		1						18.							
EDOs:																			1
						1			-				-	-					
$\Rightarrow \dot{\chi} + \frac{\lambda}{(1+\chi)^2} X = 0$	and the second	1	-14			ranson di mari	governy total distriction.						13				A	A	
(1+.4)					***************************************		rap Servant range va										The Control of the Co		
			-								i i			1	1.8				-
$\rightarrow \dot{T} + \lambda T = 0$							3												-
										A				7					1
		-																	-
		1000																	
																			and the same

Proponiendo X(x) = (1+x) como una forma de solución, tenemos: $\dot{X}(x) = \alpha(1+x)^{\alpha-1}, \quad \dot{X}(t) = \alpha(\alpha-1)(1+x)^{\alpha-2}$ $a(a-1)(1+x)^{a-2} + \frac{7}{(1+x)^2}(1+x)^a = 0$ $\alpha(a-1)(1+x)^{\alpha-2} + \chi(1+x)^{\alpha-2} = 0$ Entonces a(a-1) = 72 - p a(a-1)+2 = 0 Por lo tanto a= = (1+-1-42) Ahora para satisfacer la condición X(0) = 0; elegimos: $X(x) = (1+x)^{\frac{1}{2}}(1+\sqrt{1-4x^2}) - (1+x)^{\frac{1}{2}}(1-\sqrt{1-4x^2})$ Para la condición de frontesa X(1) = 0: Paro los posibles actoralores a college de

$X(x) = (1+x)^{\frac{1}{2}(1+\sqrt{1-4x})} - (1+x)^{\frac{1}{2}(1-\sqrt{1-4x})}$
Para la condición de frontera X(1) = 0:
Para los posibles autovalores 7 se tiene que:
·S: 7 < 1/4 entonces VI-47 es un real. La ec. no tiène solución.
·Si $\lambda = 1/4$, las soluciones no seign linealmente independientes (ver 🛞)
·Si $\lambda > 1/4$, enfonces $\sqrt{1-4}\lambda$ es imaginario. Enfonces podemos escribir:
$X(x) = (1+x)^{\frac{1}{2}} (1+i\sqrt{4}\chi - 1) = (1+x)^{\frac{1}{2}} e^{\frac{1}{2}} i\sqrt{4}\chi - 1 \ln(1+x)$
= $(1+x)^{\frac{1}{2}} \left[Cos(\sqrt{\lambda-\frac{1}{4}}) Ln(1+x) + i Sen(\sqrt{\lambda-\frac{1}{4}}) Ln(1+x) \right]$
$= \chi_1(x) + i \chi_2(x) = \chi(x)$
Escapeado con CamScanner

Para Salisfacer
$$X(0) = 0$$
, se establece:
$$X(x) = (1+x)^{1/2} \operatorname{Sen}(\sqrt{\lambda} - \frac{1}{4} \operatorname{Ln}(1+x))$$
Y la condición $X(1) = 0$ nos da:
$$2^{\frac{1}{2}} \operatorname{Sen}(\sqrt{\lambda} - \frac{1}{4} \operatorname{Ln}(2)) = 0$$
Por lo tanto.
$$\sqrt{\lambda} - \frac{4}{4} \operatorname{Ln}(2) = n \text{TY}, \text{ of sad que} \text{ } \lambda n = \frac{n^2 n^2}{\ln^2(2)} + \frac{1}{4}, \text{ } n \in \mathbb{T}$$

$$\operatorname{Llegando} \operatorname{ast} \text{ of los autofunciones} \text{ } X_n(x)$$

$$X_n(x) = \operatorname{Cn}(1+x)^{1/2} \operatorname{Sen}(\operatorname{nr}(\frac{\ln(1+x)}{\ln(2)})$$

$$\operatorname{Sabienbo} \text{ que} \text{ } f(x) = X(x) \operatorname{To}) \text{ eso significa que}$$

$$f(x) \sim \sum X_n(x)$$

Sabrendo que f(x) = X(x) T(o) eso significa que	
$f(x)$ $\sum \chi_n(x)$	
De modo que los coeficientes Cn se pueden objener expandiendo series de Fourier.	en
$C_{n} = \frac{2}{L_{n}(2)} \int_{0}^{1} f(x) \left(1+x\right)^{\frac{3}{2}} S_{n}\left(n\pi \frac{L_{n}(1+x)}{L_{n}(2)}\right) dx$	
A hora 10 0410 EDO: T(+) + 2T(+) = 0.	
Escribiendo su solvein como combinación de senos y cosenos y buscan sufisfacer, las condiciones dadas, vemos que se comple si	do
tn(t)= Cos(Vant)	
Focancado con Car	

Por la tanto llegamos os $U_n(x,b) = \chi_n(x) + T_n(b)$ $U_n(x,t) = C_n(1+x)^{1/2} Sen(n\pi \frac{Ln(1+x)}{ln(2)}) Cos(\sqrt{2}nt)$ Llegando a $U(x,t) = \sum_{n=0}^{\infty} C_n(1+x)^2 Sen\left(n\pi \frac{\ln(1+x)}{\ln(2)}\right) C_{45}\left(\sqrt{\frac{n^2\pi^2}{\ln^2(2)}}\right)$ 1 para hallor la velocidad, simplemente se ha de deixor la expresión anterior respecto a t.