NLP, ML and DL for recognition of consumer-abusive clauses as a real-life application of computational law

Consumer-abusive clauses

What's that?

- Defined by Uokik: https://decyzje.uokik.gov.pl/
- All clauses abusing consumer laws or unfair
- Divided into 6 categories
- No. clauses: 7091, ca. 50% labeled
- V. long avg. length = 1023 tokens

Human labeling / annotation

- Ca. 3300 clauses labeled
- 6 categories: SAD, KARA, OPLATA, OGRPRAW, DYSPROP, WARPRZYM

Label	No. clauses	Example "() spór rozstrzygać będzie sąd właściwy rzeczowo dla siedziby Sprzedawcy."			
SAD	505				
KARA	232	"() odsetki karne za niedotrzymanie terminu ()"			
OPLATA	787	" () otrzyma należność z potrąceniem 2% ()"			
OGRPRAW	742	"() zastrzega sobie prawo do nieprzyjęcia zwrotu()"			
DYSPROP	978 " () dokonuje zakupu na własną odpowiedzialność ()" "Wszelkie koszty () ponosi kupujący"				
WARPRZYM	26	"Warunkiem przyjęcia () jest sporządzenie protokołu szkód ()"			

Traditional NLP approach

CLARIN tools: POS-tagger, Korpusomat, TermoPL, Topic

```
<orth>W</orth>
<lex><base>w</base><ctag>prep:acc:nwok</ctag></lex>
<lex disamb="1"><base>w</base><ctag>prep:loc:nwok</ctag></lex>
</tok>
<tok>
<orth>przypadku</orth>
<lex><base>przypadek</base><ctag>subst:sg:gen:m3</ctag></lex>
<lex disamb="1">base>przypadek</base>ctag>subst:sg:loc:m3</ctag></le>
<lex><base>przvpadek</base><ctag>subst:sg:voc:m3</ctag></lex>
</tok>
<tok>
<orth>odstapienia</orth>
<lex><base>odstapić</base><ctag>ger:pl:acc:n:perf:aff</ctag></lex>
<lex><base>odstapić</base><ctag>ger:pl:nom:n:perf:aff</ctag></lex>
<lex disamb="1"><base>odstapió</base><ctag>ger:sg:gen:n:perf:aff</ctag></lex>
</tok>
```


Traditional NLP approach

Plan - to be used in SemGrex rule writing

```
File Edit View Projects Bookmarks Sessions Tools Settings Help

rules

{
ruleType: "tokens",
pattern:(([{word:/otrzym./}])(?:[]{1,4}?)([{word:/rat./}])),
result: "AAA"
}
```

Failed miserably - Java Regex limitations, package structure, knowledge of programming language

Traditional NLP approach

 Failed miserably - Java Regex limitations, package structure, knowledge of programming language

Scikit classifier implementations

- Linear SVM and Naive Bayes + TF-IDF feature
- First tested on two intentions: SAD and KARA
- NB acc = 0,9796, SVM acc = 0,9932

- Implemented to multiple labels:
 - NB acc = **0,8972** SVM acc = **0,9529**
 - Best as far

SVM accuracy	= 0.95290519	87767584		
	precision	recall	f1-score	support
DYSPROP	0.94	0.98	0.96	978
KARA	0.98	0.23	0.38	232
OGRPRAW	0.97	0.92	0.95	742
OPLATA	0.75	0.98	0.85	787
SAD	1.00	0.93	0.96	505
WARPRZYM	0.00	0.00	0.00	26
accuracy			0.90	3270
macro avg	0.77	0.67	0.68	3270
weighted avg	0.91	0.90	0.88	3270
	precision	recall	f1-score	support
DYSPROP	0.97	0.98	0.98	978
KARA	0.92	0.77	0.84	232
OGRPRAW	0.97	0.96	0.97	742
OPLATA	0.90	0.97	0.93	787
SAD	1.00	0.95	0.97	505
WARPRZYM	1.00	0.50	0.67	26
ассигасу			0.95	3270
macro avg	0.96	0.86	0.89	3270
weighted avg	0.95	0.95	0.95	3270

Neural networks implementations

Tensorflow / Keras implementations

- ANN + TF-IDF vectors
- LSTM + Fasttext
- LSTM + word2vec
- BERT + ktrain wrapper

ANN + TF-IDF

- Simple model: 3 layers, activation=RELU + Sigmoid, loss=categorical crossentropy, optimizer=Adam, d = 0,2
- T_time = 100 epochs
- Score for 2 labels: loss= 0,14151, acc= 0,9633
- Score for multiple labels: loss=0,2930, acc=0,9440
- Diff. parameters tested: limiting features decrease in score, use of TF-IDF transformer - similar. Best scores: on CountVectorizer.

LSTM + fasttext

- Activation: softmax, loss=categorical crossentropy, optimizer=Adam, d = 0,2
- T_time = 12 epochs (ca. 50 min on Colab)
- Fasttext for Polish
- Score for 2 labels: loss= 0,4632, acc= 0,9189
- Score for multiple labels: loss=0,5622, acc=0,8685
- Diff. parameters tested: loss=cosine_proximity basically non-relevant
- Training loss curve:

LSTM + word2vec

- Same model
- Tested for 2 labels with general and IPI PAN Polish word2vecs for comparison:
 - General: loss= 0,5712, acc=0,7837
 - IPI nkjp+wiki-forms-restricted-300-cbow-hs: loss=0,3784, acc=0,9594
- For multiple labels:
 - CBOW-hs: loss= 1,929 acc=0,5504
 - Best scores: loss= 1,08, acc=0,74 with nkjp+wiki+lemmas-all-300-skipg-ns (worst for 2 labels)
- V.large loss why?
- Training loss curve:

BERT + ktrain

- Ktrain wrapper for Keras: https://github.com/amaiya/ktrain with BERT
- BERT Uncased Base (?)
- T_time: 1 epoch (ca. 3 hours on Colab)
- Train: 2943 samples, validate: 327 samples
- Scores (2 labels): loss= 0,276, acc=0,8727;
- Scores(multiple): loss= 0,1783, acc=0,9297; val_loss= 0,0645, val_acc=0,9837

- Better scores for multiple labels
- Comparable to other reported results

Conclusions

What's next?

- High values of loss functions optimize, research
- Validate on the rest of clauses and real-life contracts

Thank you!