Hoofdstuk 4: Gestabiliseerde voedingen

1: Inleiding

Een spanningsstabilisator (= gestabiliseerde voeding) is een elektronische schakeling welke <u>een niet constante gelijkspanning</u> U_i aan de ingang omvormt tot <u>een mooi constante gelijkspanning</u> U_O aan de uitgang.

Figuur 4.1: Spanningsstabilisator

De niet constante gelijkspanning U_i aan de ingang is vaak afkomstig van een bruggelijkrichter met afvlakcondensator. Vaak is de spanningsrimpel te groot om rechtstreeks gebruikt te kunnen worden zodat effectief een spanningsstabilisator nodig is.

Stel dat de bruggelijkrichter een sinusvormige spanning van 50 Hz met een amplitude van 40 V gelijkricht. De afvlakcondensator heeft een waarde van 2000 µF en er moet een stroom van 1 A geleverd worden. Bereken bij benadering de grootte van de spanningsrimpel aan de uitgang van de bruggelijkrichter. Constateer dat het effectief nuttig kan zijn de spanning mooier constant te maken.

2: De kwaliteit van een spanningsstabilisator

De kwaliteit van een spanningsstabilisator is onder meer bepaald door drie belangrijke parameters. Namelijk de absolute stabilisatiefactor G, de relatieve stabilisatiefactor S en de inwendige weerstand R_i van de schakeling.

2.1: De absolute stabilisatiefactor

Per definitie is de absolute stabilisatiefactor

$$G = \Delta U_i / \Delta U_O$$
.

Hierbij is ΔU_i de grootte van de spanningsrimpel aan de ingang en is ΔU_O de grootte van de spanningsrimpel aan de uitgang. Het is duidelijk dat bij een goede spanningsstabilisator G groot is, ook bij een grote ΔU_i is ΔU_O voldoende klein.

Stel bij wijze van voorbeeld dat de ingangsspanning varieert tussen U_i = 20 V en U_i + ΔU_i = 25 V zodat ΔU_i = 5 V. De uitgang van de spanningsstabilisator varieert tussen U_O = 5 V en U_O + ΔU_O = 5,5 V zodat ΔU_O = 0,5 V. Reken zelf na dat de absolute stabilisatiefactor G = 10. De rimpel op de uitgangsspanning is dus 10 keer kleiner dan de rimpel op de ingangsspanning.

2.2: De relatieve stabilisatiefactor

Per definitie is de relatieve stabilisatiefactor

$$S = (\Delta U_i/U_i)/(\Delta U_O/U_O) = G(U_O/U_i).$$

Het is duidelijk dat bij een goede spanningsstabilisator S groot is, ook bij een grote $\Delta U_i/U_i$ is $\Delta U_O/U_O$ voldoende klein.

Stel bij wijze van voorbeeld dat de ingangsspanning varieert tussen U_i = 20 V en U_i + ΔU_i = 25 V zodat ΔU_i = 5 V. De uitgang van de spanningsstabilisator varieert tussen U_O = 5 V en U_O + ΔU_O = 5,5 V zodat ΔU_O = 0,5 V. Reken zelf na dat de relatieve stabilisatiefactor S = 2,5.

Het ingangssignaal vertoont een rimpel van 25 %. De uitgangsspanning vertoont slechts een rimpel van 10 %, dus 2,5 keer verbeterd.

2.3: Opgave

Figuur 4.2: Stabilisatiefactoren G en S

Teneinde voeling te krijgen in verband met de betekenis van de absolute stabilisatiefactor G en de relatieve stabilisatiefactor S, beschouw de serieschakeling van Figuur 4.2. Stel dat U_i = 20 V en dat ΔU_i = 10 V. Bereken G en S en interpreteer het bekomen resultaat.

2.4: De inwendige weerstand

De uitgang van de gestabiliseerde voeding gedraagt zich als <u>een reële spanningsbron</u>. Deze spanningsbron is niet ideaal en heeft dus een inwendige weerstand R_i. Als gevolg hiervan wijzigt U_O wanneer de belastingsstroom aan de uitgang zich wijzigt (dus als de belastingsweerstand R_L zich wijzigt).

Dit betekent dat

$$R_i = \Delta U_O / \Delta I_L$$

waarbij ΔI_L de wijziging is van de belastingsstroom door de belastingsweerstand R_L .

2.5: Opmerkingen

Is het u duidelijk dat een goede spanningsstabilisator grote stabilisatiefactoren G en S heeft. Is het u duidelijk dat een goede spanningsstabilisator een kleine R_i heeft?

Men kan de bestaande spanningsstabilisatoren in twee groepen indelen. Vooreerst zijn er de stabilisatoren met <u>parallelstabilisatie</u> en daarnaast zijn er de stabilisatoren met seriestabilisatie.

3: Parallelstabilisatie

De spanningsstabilisatoren waar parallelstabilisatie toegepast wordt, zijn meestal schakelingen van beperkt vermogen.

3.1: Principe

Het principe is feitelijk vrij eenvoudig. Door de weerstand R_p te laten variëren, kan U_O constant gehouden worden ondanks variaties van U_i en R_L .

Figuur 4.3: Parallelstabilisatie

Stel dat U_i mooi constant is doch dat R_L kleiner wordt. In dit geval zou U_O beginnen <u>dalen</u> omwille van een grotere spanning over R. We maken echter R_P groter zodat de parallelschakeling van R_p en R_L dezelfde waarde blijft.

Anders gezegd, de daling van R_L zorgt voor een grotere stroom door R_L , maar het groter maken van R_p doet de stroom door R_p dalen zodat de totale stroom gelijk blijft. Op die manier blijft de spanning over R gelijk zodat ook U_O gelijk blijft.

Ga zelf na wat er moet gebeuren indien U_i mooi constant is en R_L groter wordt.

Stel dat U_i stijgt terwijl R_L constant blijft. In dit geval zou U_O beginnen stijgen. We maken echter R_p kleiner zodat U_O toch <u>constant</u> zou blijven. Inderdaad, door R_p kleiner te maken stijgt de totale stroom (die door R vloeit) zodat de spanningsval over R stijgt.

Ga zelf na wat er moet gebeuren indien U_i daalt en R_L constant blijft.

3.2: Praktische schakelingen

Een eenvoudig type spanningsstabilisator die gebruik maakt van parallelstabilisatie is reeds gezien in Hoofdstuk 3, Paragraaf 3 (Figuur 3.3) in het eerste semester. Ga zelf na dat de stabilisatieschakeling met behulp van een <u>zenerdiode</u> effectief voldoet aan de principes beschreven in Paragraaf 3.1 hierboven.

Een tweede type spanningsstabilisator die gebruik maakt van parallelstabilisatie wordt weergegeven in Figuur 4.4.

Figuur 4.4: Spanningsstabilisator (parallelstabilisatie)

De schakeling van Figuur 4.4 werkt als volgt. De zenerdiode Z zorgt samen met R en R_1 voor een constante referentiespanning $U_{ref.}$ Die spanning $U_{ref.}$ wordt aangelegd aan de inverterende ingangsklem van de opamp.

Deze opamp in negatief teruggekoppeld (zie straks) zodat de u_{id} aan de ingang van de opamp gelijk is aan nul. Dit heeft tot gevolg dat de spanning U_{ref} ook terug te vinden is

over de weerstand R_3 zodat $I_{R3} = U_{ref}/R_3$. Deze stroom vloeit eveneens door R_2 want we verwaarlozen de input bias currents van de opamp.

Dit heeft tot gevolg dat door R_2 en R_3 dezelfde stroom U_{ref}/R_3 vloeit. Als gevolg hiervan staat over die serieschakeling van R_2 en R_3 de spanning $U_{ref}(R_2 + R_3)/R_3$. Dit betekent meteen dat de uitgangsspanning

$$U_{\rm O} = U_{\rm ref} (R_2 + R_3)/R_3.$$

Hoe zit het nu met de spanningsstabilisatie zelf, anders gezegd hoe zit het met de negatieve terugkoppeling welke aanwezig is in de schakeling.

Stel dat om één of andere reden <u>de uitgangsspanning</u> U_O <u>de neiging heeft om te stijgen</u>. Via R_2 en R_3 resulteert dit in een stijging van de potentiaal van de nietinverterende ingangsklem van de opamp. Dit terwijl de potentiaal van de inverterende ingangsklem constant blijft op U_{ref} .

De uitgang van de opamp zal bijgevolg stijgen zodat de transistor T_1 meer in geleiding komt en dus I_{C1} van T_1 stijgt. Die stijging van I_{C1} resulteert in een grotere stroom door R. De grotere spanningsval over R zorgt er voor dat <u>de uitgangsspanning</u> U_O <u>terug</u> daalt.

Bemerk dat de weerstand R_p (die zich aanpast) in Figuur 4.3 hier bestaat uit de transistor T_1 .

Ga zelf de spanningstabilisatie na als U_O de neiging heeft om te dalen.

4: Seriestabilisatie

4.1: Principe

Figuur 4.5: Seriestabilisatie

Bij parallelstabilisatie wordt een constante U_O bekomen door R_p in Figuur 4.3 bij te regelen. Bij seriestabilisatie wordt een constante U_O bekomen door R in Figuur 4.5 (die gelijk is aan Figuur 4.3) bij te regelen.

Inderdaad, stel dat bijvoorbeeld U_O daalt doordat een kleinere belastingsweerstand R_L aangesloten wordt, dan wordt R kleiner zodat U_O toch op peil blijft.

Bemerk wel dat de variabele R in de praktijk meestal een transistor is.

4.2: Praktische schakeling 1

Een eenvoudige seriestabilisator wordt weergegeven in Figuur 4.6.

Figuur 4.6: Seriestabilisator

De schakeling van Figuur 4.6 werkt als volgt. De zenerdiode Z zorgt samen met R_1 voor een constante referentiespanning U_{ref} . De transistor T_1 werkt als een emittervolger zodat

$$U_{O} = U_{Z} - U_{BE1} \cong U_{ref} - 0.65V.$$

De stabiliteit van de uitgangsspanning wordt bepaald door de mate waarin U_{ref} en U_{BE1} constant blijven. Erg nadelig is hier dat I_Z (en dus ook U_{ref}) enigszins varieert bij zowel veranderingen van U_i als van I_B .

Inderdaad, een stijging van U_i doet I_{R1} en I_Z (en dus ook U_{ref}) stijgen bij een constante I_{B1} . Als U_i en I_{R1} een constante blijven, doet een daling van $I_B \cong I_L/h_{FE}$ de stroom I_Z (en dus ook U_{ref}) stijgen.

Bovendien is U_{BE1} afhankelijk van I_L. Een stijging van I_L doet U_{BE1} stijgen.

De eenvoudige schakeling van Figuur 4.6 zorgt dan ook niet echt voor een goede stabilisatie. In de volgende paragrafen komen dan ook betere (doch complexere) schakelingen aan bod.

4.3: Praktische schakeling 2

Een betere seriestabilisator wordt voorgesteld in Figuur 4.7. Bepalen we eerst de verkregen uitgangsspanning U_0 .

De basisstroom I_{B2} van T_2 kan verwaarloosd worden ten opzichte van de stroom door R_2 en R_3 . Als gevolg hiervan vloeit door R_2 en R_3 nagenoeg dezelfde stroom en is $U_O = U_{R3} (R_2 + R_3)/R_3$. Aangezien $U_{R3} = U_{ref} + U_{BE2} (U_{BE2}$ is de basis-emitter spanning van T_2), geldt dat

$$U_O = (U_{ref} + U_{BE2}) (R_2 + R_3)/R_3$$
.

Figuur 4.7: Seriestabilisator

Veronderstellen we dat om één of andere reden U_O de neiging heeft om te <u>dalen</u>. De spanning $U_{R3} = U_O R_3/(R_2 + R_3)$ zal ook dalen. De spanning U_{ref} blijft constant waardoor U_{BE2} van T_2 daalt. Hierdoor daalt I_{C2} , doch U_{CE2} zal stijgen.

De transistor T_1 heeft bij benadering een constante U_{BE1} en gedraagt zich als een emittervolger. Aangezien U_{ref} en U_{BE1} nagenoeg constant zijn terwijl U_{CE2} stijgt, zal ook U_O stijgen. De oorspronkelijke neiging van de uitgangsspanning U_O om te dalen wordt dus tegengewerkt.

Ga zelf na wat er gebeurt indien U₀ de neiging heeft om te stijgen.

Bemerk dat de weerstand R_4 er voor zorgt dat de zenerdiode Z goed ingesteld is. Bemerk ook dat R_1 zowel de collectorstroom I_{C2} van T_2 als de basisstroom I_{B1} van T_1 levert ($I_{R1} = I_{B1} + I_{C2}$).

4.4: Praktische schakeling 3

Een andere seriestabilisator wordt weergegeven in Figuur 4.8. De zenerdiode Z zorgt samen met R_1 en R_4 voor een constante referentiespanning U_{ref} . De spanning U_{R2} over R_2 is gelijk aan $U_{R2} = U_{ref} - U_{BE2}$. Aangezien de basisstroom I_{B2} van T_2 een flink stuk kleiner is dan de stroom door R_2 en R_3 , is de uitgangsspanning

$$U_O = U_{R2} (R_2 + R_3)/R_2 = (U_{ref} - U_{BE2}) (R_2 + R_3)/R_2.$$

Figuur 4.8: Seriestabilisator

Veronderstellen we dat om één of andere reden U_O de neiging heeft om te <u>dalen</u>. Dan zal ten gevolge van de spanningsdeler opgebouwd uit R_2 en R_3 de spanning U_{R3} dalen. Ten gevolge van de constante spanning U_{ref} over de zenerdiode zal ook U_{R4} dalen. U_{R4} zal sterker dalen dan U_{R3} zodat U_{BE2} stijgt. De stijging van U_{BE2} zorgt er voor dat I_{C2} stijgt en dat $I_{B1} = I_{C2}$ stijgt.

De stijging van I_{B1} doet I_L stijgen zodat $U_O = R_L I_L$ stijgt. <u>De oorspronkelijke neiging van de uitgangsspanning</u> U_O <u>om te dalen wordt dus tegengewerkt</u>.

4.5: Praktische schakeling 4

Een meer uitgewerkte seriestabilisator wordt weergegeven in Figuur 4.9.

Een zenerdiode Z zorgt samen met R_1 voor een vaste referentiespanning. Via potentiometer P_1 wordt een regelbare referentiespanning U_{ref} bekomen. De spanning U_{ref} wordt aangelegd aan de niet-inverterende ingangsklem van de opamp.

Deze opamp in negatief teruggekoppeld (zie straks) zodat de u_{id} aan de ingang van de opamp gelijk is aan nul. Dit heeft tot gevolg dat de spanning U_{ref} ook terug te vinden is over de weerstand R_7 zodat $I_{R7} = U_{ref}/R_7$. Deze stroom vloeit eveneens door R_6 want we verwaarlozen de input bias currents van de opamp.

Dit heeft tot gevolg dat door R_6 en R_7 dezelfde stroom U_{ref}/R_7 vloeit. Als gevolg hiervan staat over die serieschakeling van R_6 en R_7 de spanning U_{ref} ($R_6 + R_7$)/ R_7 . Dit betekent meteen dat de uitgangsspanning

Figuur 4.7: Seriestabilisator

Hoe zit het nu met de spanningsstabilisatie zelf, anders gezegd hoe zit het met de negatieve terugkoppeling welke aanwezig is in de schakeling. Stel dat de uitgangsspanning U_O de neiging heeft om te <u>stijgen</u>, dan zal de spanningsdeler bestaande uit R_6 en R_7 er voor zorgen dat U_{R7} stijgt. Hierdoor zal de uitgangspanning van de opamp dalen. De transistoren T_1 en T_2 , die samen een Darlington vormen, vormen een <u>emittervolger</u>. Zodat de uitgangsspanning de neiging zal hebben om terug te dalen.

De oorspronkelijke neiging van de uitgangsspanning U_O om te stijgen wordt dus tegengewerkt. Ga zelf de stabiliserende werking van de schakeling na als U_O de neiging heeft om te dalen.

Bemerk dat bij de schakeling van Figuur 4.7 een <u>stroombegrenzing</u> ingebouwd is. Indien de belastingsstroom de maximaal toelaatbare waarde niet overschreden heeft, is de spanning over R klein (de belastingsstroom vloeit namelijk door R). Dit betekent dat ook U_{BE3} voldoende klein is zodat T_3 niet in geleiding is. De stroombegrenzing treedt niet in actie.

Stel dat bijvoorbeeld <u>de uitgang kortgesloten wordt</u>. De stroom door R zal stijgen en vanaf een bepaalde grenswaarde zal U_R en ook U_{BE3} een waarde bereiken waarbij de transistor T_3 in saturatie komt. Dit betekent dat U_{CE3} laag zal worden. Er komt met andere woorden een lage spanning aan ingangsklem 8 van de opamp met typenummer CA3140.

De ingangsklem 8 van de CA3140 is <u>de strobe-ingang</u>. Wanneer die strobe ingang laag is, is ook de uitgang van de CA3140 laag, ongeacht de ingangsspanningen aan de niet-inverterende en de inverterende ingangsklemmen.

Via de emittervolger opgebouwd uit T_1 en T_2 komt er zo effectief een lage spanning aan de uitgang die verschillend is van de normale $U_{ref}(R_6 + R_7)/R_7$ die we bij normale werking hebben. Dit is de werking van de stroombegrenzing.

Bemerk dat via de potentiometer P₂ bijgeregeld kan worden vanaf welke belastingsstroom de stroombegrenzing in actie treedt. Wanneer de loper van P₂ meer naar rechts geregeld is, <u>zal de stroombegrenzing pas later in werking treden</u>. Ga dit zelf na.

5: Geïntegreerde gestabiliseerde voedingen

In voorgaande paragrafen hebben we gestabiliseerde voedingen bestudeerd die opgebouwd zijn uit discrete componenten. In de praktijk zult u (zeker voor kleinere vermogens) vaak gestabiliseerde voedingen gebruiken die volledig geïntegreerd zijn op één enkel IC.

5.1: De 78-reeks en de 79-reeks

Zeer bekend zijn hierbij <u>de spanningsstabilisatoren</u> van de <u>zogenaamde 78-reeks</u> en <u>de 79-reeks</u>. De spanningsstabilisatoren van de 78-reeks vertrekken van een positieve U_i en leveren aan de uitgang een positieve U_O. De spanningsstabilisatoren van de 79-reeks vertrekken van een negatieve U_i en leveren aan de uitgang een negatieve U_O.

We laten het over aan de geïnteresseerde student om de datasheets op te zoeken van bijvoorbeeld de 78L05 en de 79L05. Op deze datasheets kunt u zien dat deze gestabiliseerde voedingen slechts drie aansluitingen hebben. Er is één aansluiting voor de ongestabiliseerde ingangsspanning U_i (afkomstig van een diodegelijkrichter met afvlakcondensator), er is een massa-aansluiting en er is één aansluiting waar de gestabiliseerde spanning U_0 afgenomen wordt.

De IC's zijn inwendig voorzien van een kortsluitbeveiliging (stroombegrenzing). De standaard 78/79-reeksen kunnen een uitgangsstroom I_O van 1 A aan. Bij de 78M/79M reeks is dit 0,5 A (de M van Medium Power). Bij de 78L/79L reeks is dit 100 mA (de L van Low Power).

Eveneens verwerkt in het typenummer is de grootte van de gestabiliseerde uitgangsspanning. Zo levert de 7805 een uitgangsspanning van 5 V, zo levert de 7806 een uitgangsspanning van 6 V, ... zo levert de 7824 een uitgangsspanning van 24 V.

Een overzicht van de 78/79-reeks wordt dan ook weergegeven in de onderstaande tabel.

Positieve spanning	Negatieve spanning
7805	7905
7806	7906
7808	7908
7812	7912
7815	7915
7818	7918
7824	7924
78M05	79M05
78M06	79M06
78M08	79M08
78M12	79M12
78M15	79M15
78M18	79M18
78M24	79M24
78L05	79L05
78L06	79L06
78L08	79L08
78L12	79L12
78L15	79L15
78L18	79L18
78L24	79L24

Is het u bij elk typenummer duidelijk welke de uitgangsspanning is en welke uitgangsstroom er geleverd kan worden?

5.2: De ingangsspanning bij de 78/79-reeksen

Eveneens belangrijk voor de normale werking van de spanningsstabilisatoren is de eis dat U_i slechts binnen bepaalde (ruime) grenzen mag variëren. <u>De ingangsspanning mag hierbij niet te groot worden</u>. De schakeling is niet bestand tegen te grote spanningen en bovendien stijgt de vermogendissipatie in het IC wanneer U_i toeneemt. Inderdaad, de dissipatie in het IC is gelijk aan $(U_i - U_0)I_0$.

<u>De ingangsspanning</u> U_i <u>mag ook niet te klein worden</u>. Zo kan het uiteraard niet dat U_i kleiner is dan de normale U_0 . Doch opdat het IC normaal zou kunnen functioneren moet U_i voldoende groot zijn ten opzichte van U_0 .

Deze grenzen word	den weergegeven	in de	e onderstaande tabel.
-------------------	-----------------	-------	-----------------------

Ingangsbereik	
7805: 8 V 35 V	7905: -8 V35 V
7806: 9 V 35 V	7906: -9 V35 V
7808: 11 V 35 V	7908: -11 V35 V
7812: 15 V 35 V	7912: -15 V35 V
7815: 18 V 35 V	7915: -18 V35 V
7818: 21 V 35 V	7918: -21 V35 V
7824: 27 V 40 V	7924: -27 V40 V

Vergeet niet dat de bovengrenzen voor U_i welke weergegeven worden in de bovenstaande tabel slechts gelden <u>in de veronderstelling dat er niet te veel vermogen gedissipeerd wordt</u> in het IC. De eis dat (U_i - U_O)I_O kleiner moet zijn dan bijvoorbeeld de toegelaten 700 mW kan de bovengrens op U_i naar beneden halen.

5.3: Het gebruik van de 78/79-reeksen

Een typische schakeling wordt weergegeven in Figuur 4.8.

Figuur 4.8: Bruggelijkrichter met spanningsstabilisator

Bemerk in Figuur 4.8 eerst en vooral een transformator die de netspanning van 220 V (effectieve waarde) naar een lagere waarde transformeert. Hierna wordt de secundaire wisselspanning gelijkgericht en afgevlakt. De afvlakcondensator C₁ is een elektrolytische condensator van bijvoorbeeld 2200 μF. Omdat een elektrolytische

condensator slechte hoogfrequent eigenschappen heeft, plaatst men parallel met C_1 nog een kleinere (niet elektrolytische) condensator C_2 (bijvoorbeeld 330 nF).

Hierna volgt de spanningsstabilisator zelf. Hier is een 7805 geplaatst, doch het kan even goed een ander type zijn. Deze 7805 zorgt voor een mooi stabiele U_O . Er wordt parallel met de uitgang nog een kleine condensator C_3 van bijvoorbeeld 10 nF geplaatst.

5.4: Het bekomen van een regelbare uitgangsspanning

Zoals we al weten levert de LM78L05 een constante uitgangsspanning van +5 V. Toch is het mogelijk een regelbare spanning te bekomen.

Figuur 4.9: Het bekomen van een regelbare uitgangsspanning

Inderdaad, de LM78L05 zorgt er voor dat er een spanning van +5 V over R_1 staat. Aangezien de stroom I_Q in eerste instantie verwaarloosd kan worden, vloeit er door R_1 en R_2 een zelfde stroom. Dit betekent dat

$$U_{O} = (R_1 + R_2) (5V/R_1).$$

Door de potentiometer R₂ bij te regelen, kan de uitgangsspanning U₀ geregeld worden.

5.5: De LM117, de LM317A en de LM317

Wat betreft geïntegreerde gestabiliseerde voedingen is er uiteraard veel meer op de markt dan enkel de 78/79 reeksen. Ook erg populair zijn de LM117, de LM317A en de LM317. We laten het over aan de geïnteresseerde student om de datasheets op te zoeken en deze te bestuderen.

6: Opgave

Gegeven is de schakeling van Figuur 4.10. Bemerk de diode-gelijkrichterbrug. Teken zelf de diodes. We gaan er van uit dat er vier keer een silicium diode gebruikt is.

Figuur 4.10: Bruggelijkrichter met spanningsstabilisator

De transformator transformeert een spanning van 220 V (effectieve waarde) naar een spanning met een effectieve waarde van 15 V. Deze secundaire transformatorspanning voedt een bruggelijkrichter welke opgebouwd is uit silicium diodes. Teken deze diodes bij op de figuur.

De gestabiliseerde voeding van Figuur 4.10 moet een maximale stroom van 0,5 A kunnen leveren. Maak dan ook een goede keuze voor de afvlakcondensator C.

Bepaal binnen welke grenzen de spanning U_i varieert.

Bepaal de grootte van de gestabiliseerde uitgangsspanning U_O . Hierbij weet u dat de transistoren T_1 , T_2 en T_3 silicium transistoren zijn. U weet ook dat T_1 een BD435 is en dat T_2 en T_3 allebei een BC548 zijn. U weet ook dat $R_1 = 1 \text{ k}\Omega$, $R_2 = 2,2 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$ en dat $R_4 = 1 \text{ k}\Omega$. De zenderdiode zenert bij een spanning van 5,6 V.

Welke functie heeft de combinatie R/T₃? Verklaar het werkingsprincipe. Verklaar trouwens het werkingsprincipe van de volledige schakeling. Dimensioneer R.

De uitgang wordt belast met een belastingsweerstand R_L . Stel dat R_L kleiner wordt zodat de uitgangsstroom (= de belastingsstroom) stijgt van 100 mA naar 300 mA. Omdat er een groter stroomverbruik is, zal C meer ontladen zodat U_i lager wordt. Doch ondanks het lager worden van U_i , zal U_O nagenoeg constant blijven. Verklaar duidelijk hoe de schakeling de initiële spanningsvariaties weg regelt. Anders gezegd, verklaar hoe de schakeling U_O constant houdt.

Tussen het lichtnet en de voedingstransformator wordt een regelbare transformator geplaatst. De transformator wordt bijgeregeld zodat het minimum van U_i gelijk is aan 20 V. De weerstand R₄ wordt vervangen door een potentiometer die bijgeregeld wordt

totdat $U_0 = 10$ V. De uitgangsstroom $I_0 = 200$ mA. Bepaal alle relevante spanningen en stromen in de figuur en bepaal de stroom door de ampèremeter A_1 .Bepaal ook hoeveel vermogen er gedissipeerd wordt in transistor T_1 .

Hoe zou u een voeding met een regelbare uitgangsspanning ($U_{\rm O}$) kunnen bekomen? Hoe kunt u een regelbare stroombegrenzing bekomen? Vertrek hierbij van Figuur 4.10.

7: Geschakelde voedingen

Stel dat u een LM7805 gebruikt om een spanning $U_0 = 5$ V te bekomen vertrekkende van een $U_i = 15$ V. Bereken hoeveel vermogen er aan de belastingsweerstand afgegeven wordt en vergelijk dit met het totaal verbruikte vermogen en het vermogen welke in de LM7805 zelf gedissipeerd wordt. Constateer dat het behaalde rendement erg laag is (ongeveer 33%).

Bereken het rendement indien de LM7805 gevoed wordt door een $U_i = 30 \text{ V}$ (nog steeds met een $U_0 = 5 \text{ V}$). Wat constateert u?

Figuur 4.11: Geschakelde voeding

Een seriestabilisator heeft een erg laag rendement indien U_O flink kleiner is dan U_i . Zeker bij grotere vermogens is dit erg hinderlijk en zelfs onaanvaardbaar. Een methode om <u>een hoger rendement te bekomen</u> is het niet langer gebruik maken van een seriestabilisator zoals de LM7805, maar <u>een geschakelde voeding</u> zoals de LM2575 of de LM1575 te gebruiken.

We zullen in deze cursus niet dieper ingaan op het interne werkingsprincipe van een geschakelde voeding. De geïnteresseerde student kan meer informatie vinden in het boek 'Elektronische vermogencontrole' van J. Pollefliet. Ook raden we de

geïnteresseerde student aan de datasheets van de LM2575 en de LM1575 op te zoeken en te bestuderen.

Een praktische schakeling op basis van een LM2575 wordt weergegeven in Figuur 4.11.

7.1: Geleide oefeningen

Geef het principe van een <u>transformatorloze</u> en <u>spanningsverlagende</u> schakelende voeding. Besteedt hierbij zowel aandacht aan de hakker als aan de LC-filtering.

Er bestaan ook transformatorloze <u>spanningsverhogende</u> schakelende voedingen (dus $U_O > U_i$). Geef het principe (en enkele elementaire berekeningen) van een <u>flyback</u> <u>convertor</u> (zowel van de uitvoering met transformator als van de uitvoering zonder transformator).

Welke grote <u>voordelen</u> (en ook <u>nadelen</u>) hebben schakelende voedingen in vergelijking met lineaire voedingen (seriestabilisatoren).