Языковое моделирование Лекция 3

Решение задачи языкового моделирования с помощью RNN

План занятия

- 1. Напоминание работы RNN
- 2. Алгоритм обучения RNN для решения задачи языкового моделирования
- 3. Плюсы и минусы RNN

RNN

1. Взять большой корпус текста. Разбить его на отдельные последовательности слов x_0, \dots, x_k

- 1. Взять большой корпус текста. Разбить его на отдельные последовательности слов x_0, \dots, x_k
- 2. Подать эти последовательности на вход в RNN. Рассчитать вероятностное распределение $\hat{y}_0, \dots, \hat{y}_k$

- 1. Взять большой корпус текста. Разбить его на отдельные последовательности слов x_0, \dots, x_k
- 2. Подать эти последовательности на вход в RNN. Рассчитать вероятностное распределение $\hat{y}_0, ..., \hat{y}_k$
- 3. Посчитать лосс функцию кросс-энтропию между предсказанием и истинным распределением y_0, \dots, y_k . Каждый y_i является one-hot вектором для x_{i+1}

- 1. Взять большой корпус текста. Разбить его на отдельные последовательности слов x_0, \dots, x_k
- 2. Подать эти последовательности на вход в RNN. Рассчитать вероятностное распределение $\hat{y}_0, ..., \hat{y}_k$
- 3. Посчитать лосс функцию кросс-энтропию между предсказанием и истинным распределением y_0, \dots, y_k . Каждый y_i является one-hot вектором для x_{i+1}
- 4. Оптимизировать градиентным спуском

Скрытые состояния h_1 h_2 Эмбеддинги Слова ? Студенты открыли СВОИ

Скрытые состояния h_1 h_2 Эмбеддинги Слова ? Студенты открыли СВОИ

Скрытые состояния h_1 h_2 Эмбеддинги Слова ? Студенты открыли СВОИ

Скрытые состояния h_1 h_2 h_3 Эмбеддинги Слова ? Студенты открыли СВОИ

Скрытые состояния

Эмбеддинги

Расчет лосса

Плюсы и минусы RNN для решения задачи языкового моделирования

Плюсы:

- 1. Обрабатывают гораздо больший контекст по сравнению с N-граммными моделями
- 2. Модель не требует больше памяти для улавливания более длинного контекста

Минусы:

- 1. Медленно вычисляют предсказание из-за рекуррентной природы
- 2. Взрывающиеся и затухающие градиенты требуют архитектурных улучшений в виде LSTM и GRU

Итоги занятия

- 1. Вспомнили идею работы рекуррентных сетей
- 2. Узнали, как обучить языковую модель на основе RNN
- 3. Поняли, что RNN способна учитывать более длинный контекст с меньшими затратами по памяти в сравнении с N-граммными моделями
- 4. Поняли, что RNN работают медленнее N-граммных моделей и требуют применения архитектурных трюков для обучения