Unité d'Enseignement RCP101 : Recherche Opérationnelle et Aide à la Décision

Cours 2 – Chemins de longueur optimale

Conservatoire National des Arts et Métiers

UE RCP101 – Recherche Opérationnelle et Aide à la Décision – Plan du cours

- □ Partie 1 Eléments de Théorie des Graphes
 - Généralités, fermeture transitive et connexité
 - **□** Chemins de longueur optimale
- □ Partie 2 Ordonnancement
 - Méthode PERT
 - Méthode MPM
- □ Partie 3 Programmation linéaire
 - Modélisation
 - Méthode du simplexe
 - Dualité
- □ Partie 4 : Processus de Markov et files d'attente
- □ Partie 5 : Optimisation multicritères

Cheminement optimal

- □ Soit G=(X,U) un graphe orienté valué
- □ $\ell: U \to \mathbb{R}$ fonction longueur, ou poids, ou coût, ou profit $(\underline{Ex}: \ell(A,B)=10)$
- On définit la longueur d'un chemin de G comme la somme des longueurs de chacun des arcs qui le composent
- □ Ainsi étant donné un chemin µ de G:

$$\mu = [v_1, v_2, ..., v_p]$$

on définit sa longueur par :

$$L(\mu) = \ell (\upsilon_1) + \ell (\upsilon_2) + \ldots + \ell (\upsilon_p)$$

Cheminement optimal

 □ Problème 1 : étant donnés deux sommets x et y, trouver un chemin de longueur minimum de x à y

Problème 2 : étant donné un sommet x, trouver le plus court chemin de x à tous les sommets du graphe

 Problème 3 : trouver, pour toute paire de sommets x et y, un plus court chemin de x à y

Cheminement optimal – Circuit absorbant

 Définition : on appelle circuit absorbant un circuit de longueur négative

- Définition: on appelle **racine** du graphe orienté G = (X,U) tout sommet de X vérifiant la propriété suivante: pour tout sommet y de X (≠x), il existe dans G un chemin de x à y.
- Définition: un graphe orienté G = (X,U), avec $r \in X$, est une **arborescence de racine r**, si G est un arbre et r une racine de G

Cheminement optimal – Circuit absorbant

- Théorème : une CNS pour que le problème 2 ait une solution est que x soit racine du graphe et que le graphe ne contienne pas de circuit absorbant
- □ Cas (faciles à résoudre) où l'on est sûr de l'absence de circuit absorbant :
 - si toutes les valuations sont positives ou nulles
 - si le graphe est sans circuit

Cheminement optimal – Cas des valuations positives (Dijkstra)

- Cas fréquent en pratique. <u>Ex</u> : routage dans un réseau de télécommunications
- On utilise l'algorithme de Dijkstra. Principe :
 - $lue{}$ On étend une arborescence A, initialement réduite à la racine r
 - □ À chaque itération, on étend l'arborescence par un nouvel arc et un nouveau sommet (son extrémité)
 - lacktriangle À la fin de l'algorithme, l'arborescence construite donne pour chaque sommet x le plus court chemin de r à x

Cheminement optimal – Cas des valuations positives (Dijkstra)

- On appelle distance (r, x) la longueur d'un plus court chemin de r à x
- \square On définit deux applications : $\pi(x)$ et père(x)
- \square À la fin de l'algorithme : $\pi(x)$ =distance(r,x) et père(x) désigne le père de x dans l'arborescence des plus courts chemins
- lacktriangle À une étape quelconque : $\pi(x)$ donne la longueur d'un plus court chemin de r à x n'empruntant que des sommets de A (ensemble des sommets déjà dans l'arborescence)
- Dans l'algorithme, $\ell(x \to y)$ désigne la valuation de l'arc (x, y).


```
algorithme Dijkstra(données: G = (X, U, \ell); r: sommet; résultat: A: arborescence)
début
         A \leftarrow \{r\}
         pivot \leftarrow r
         \pi(r) \leftarrow 0
         pour tout x \neq r faire \pi(x) \leftarrow \infty fait
         pour j allant de 1 à n-1 faire
                   pour tout sommet y \notin A et tel que y \in \Gamma^+(pivot) faire
                            \sin \pi(pivot) + \ell(pivot \rightarrow y) < \pi(y) alors
                                      \pi(y) \leftarrow \pi(pivot) + \ell(pivot \rightarrow y)
                                      p\`ere(y) \leftarrow pivot
                            fin si
                   fait
                   // Assertion 1 : \forall y \notin A, s'il existe au moins un arc dont l'origine est dans A
                   // et dont l'extrémité est y, on a : \pi(y) = \min_{x \in A \text{ et } (x,y) \in U} \pi(x) + \ell(x \to y)
                   Soit y tel que \pi(y) = \min_{z \in A} \pi(z)
                   pivot \leftarrow y
                   // Assertion 2 : \pi(pivot) est la longueur d'un plus court chemin de r à pivot
                   // et père(pivot) est le prédécesseur de pivot dans ce plus court chemin.
                   A \leftarrow A \cup \{pivot\}
         fait
fin
```

Algorithme de Dijkstra

□ Un exemple

π	1	2	3	4	5	6	7	8
Init.	0	∞						
j = 1	0	8	1	∞	∞	∞	∞	∞
j = 2	0	8	1	3	2	∞	∞	∞
j = 3	0	8	1	3	2	3	∞	∞
j = 4	0	6	1	3	2	3	∞	6
j = 5	0	6	1	3	2	3	4	6
j = 6	0	6	1	3	2	3	4	5
j = 7	0	6	1	3	2	3	4	5

père	1	2	3	4	5	6	7	8
Init.	Η.	=/	-	-		(#//	+	*
j = 1	5	1	1	-	7	173	.50	-
j = 2	2	1	1	3	3	343	4	<u></u>
j = 3	+	1	1	3	3	5	-	*
j = 4	9	4	1	3	3	5	-	4
j = 5	2	4	1	3	3	5	6	4
j = 6	7	4	1	3	3	5	6	7
j = 7	9	4	1	3	3	5	6	7

RCP101 - Partie 1 - Théorie des Graphes

Exercice

 Appliquer l'algorithme de Dijkstra sur le graphe suivant en prenant comme racine le sommet A

Cheminement optimal – Cas des valuations positives (Dijkstra)

- Remarque 1: il peut exister plusieurs plus courts chemin de la racine r à un sommet i donné (qui sont tous de même longueur totale, minimale). L'algorithme se contente de trouver, parmi tous les plus courts chemins de r à i, un seul de ces plus courts chemins.
- Remarque 2 : si on applique l'algorithme de Dijkstra à un graphe comportant des valuations négatives, l'algorithme peut ne pas trouver les plus courts chemins (trouver en exercice un contreexemple)
- Remarque 3 : il est possible de modifier l'algorithme afin qu'il trouve les plus longs chemins dans un graphe ne comportant que des valuations négatives ou nulles

Cheminement optimal – Cas des valuations positives (Dijkstra)

- Preuve de l'algorithme : on prouve les assertions 1 et 2 par récurrence sur j
- □ Complexité de l'algorithme :
 - \blacksquare À chaque itération, l'actualisation de π nécessite $O(d^+(pivot))$ opérations
 - Chaque sommet devient tour à tour pivot
 - Nb d'opérations :

$$O\left(\sum_{x \in X} d^+(x)\right) = O(m)$$
 où $m = |U|$

- Détermination du pivot :
 - recherche du plus petit élément parmi q, q décroissant de n-1 à 1
 - Nb d'opérations :

$$O\left(\sum_{q=1}^{n-1} q\right) = O\left(\frac{n(n-1)}{2}\right) = O(n^2)$$

 \square Or m \leq n². Complexité de l'algorithme : O(n²)

Algorithme de Ford : cas général (valuations quelconques, graphe avec ou sans circuit - Problème 2)

- G=(X,U) un graphe valué avec X= $\{x_0,x_1,x_2,....,x_{n-1}\}$: on choisit un ordre arbitraire $(x_0,x_1,x_2,....,x_n)$ sur les sommets $(x_0$ doit toutefois être le sommet de départ)
- \square On veut déterminer la longueur du plus court chemin de x_0 à tout autre sommet x_i de G
- \square On associe à tout sommet x_i une pondération λ_i
- □ Algorithme:
 - Initialisation: Prendre $\lambda_0 = 0$ et $\lambda_i = +\infty$ pour tout $i \neq 0$.
 - Répéter :

Pour i de 0 à n faire

Étant donné l'arc $\mathbf{x}_\mathtt{i} \to \mathbf{x}_\mathtt{j}$ de G

si
$$\lambda_{i} + \ell(x_{i} \rightarrow x_{j}) < \lambda_{j}$$
 alors $\lambda_{j} \leftarrow \lambda_{i} + \ell(x_{i} \rightarrow x_{j})$

fait

jusqu'à la stabilisation de toutes les pondérations $\lambda_{_{\dot{1}}}$

RCP101 – Partie 1 – Théorie des Graphes

Algorithme de Ford : Un exemple

Ordre choisi pour les sommets du graphe (ordre alphabétique) :

$$x_0 = A$$
, $x_1 = B$, $x_2 = C$, $x_3 = D$, $x_4 = E$, $x_5 = F$

- En noir les valuations
- En rouge l'évolution des λ_{i} (la dernière valeur donne la longueur du plus court chemin de x_{o} au sommet

Remarques concernant l'algorithme de Ford

- Remarque 1 : On démontre qu'à la fin de l'algorithme, la pondération λ_i représente la longueur du plus court chemin du sommet x_0 au sommet x_i . En plus, ce résultat est valable indépendamment des signes des valeurs des arcs.
- Remarque 2 : Si on effectue l'initialisation $\lambda_i = -\infty$ (pour $i \neq 0$) et si on remplace la condition de l'itération de base par :

$$((x_i \rightarrow x_i) > \lambda_i \text{ alors } \lambda_i \leftarrow \lambda_i + \ell(x_i \rightarrow x_i))$$

...alors λ_i représente alors la longueur du plus long chemin et l'algorithme de Ford trouve les plus longs chemins au lieu des plus courts

- Remarque 3 : L'algorithme de Ford est général, mais ne précise pas l'ordre du parcours des arcs du graphe. Le parcours des arcs de G peut se réaliser en visitant tous les sommets de G (dans un ordre donné) et puis en parcourant les arcs incidents vers l'extérieur (ou l'intérieur) de chaque sommet visité.
- L'efficacité de cet algorithme dépend de l'ordre de visite des sommets de G.

Remarques concernant l'algorithme de Ford

- Remarque 4: Si le graphe auquel on applique l'algorithme possède un circuit absorbant, l'algorithme ne se termine pas (boucle sans fin), les λ_i étant sans cesse mis à jour. Il est toutefois possible de modifier l'algorithme en limitant le nombre d'itérations de la boucle principale (« répéter » ... « jusqu'à ») à n et un changement dans les λ_i à la dernière itération traduit l'existence d'un circuit absorbant.
- Remarque 5 : Tel qu'il est présenté, l'algorithme calcule uniquement les longueurs des plus courts chemins du sommet racine à tous les autres. Il est possible de le modifier de sorte à mémoriser les plus courts chemins (et pas seulement leur longueur). Il faut alors, à chaque amélioration, mettre à jour un tableau des « pères » de chaque sommet, de façon similaire à l'algorithme de Dijkstra.

Graphes sans circuit

Graphes sans circuit

Propriété: Dans un graphe orienté sans circuit il existe au moins un sommet de degré intérieur nul.

- □ Mise en niveaux d'un graphe sans circuit
 - □ Poser $k \leftarrow 2$; Étiqueter par « 1 » les sommets ayant un degré intérieur nul.
 - □ Tant qu'il y a des sommets non étiquetés, répéter les deux étapes suivantes :
 - lacktriangle Étiqueter par k tous les sommets dont tous les prédécesseur sont étiquetés avec une étiquette < k ;
 - $k \leftarrow k + 1$;

Exemple:

Résultat de la mise en niveaux

Exemple : Résultat de la mise en niveaux

Ordre topologique

Ordre topologique: Soit $X=\{x_1,x_2,, x_n\}$ l'ensemble des sommets du graphe sans circuit G. L'ordre $x_{i_1}, x_{i_2},, x_{i_n}$ sera dit ordre topologique si :

pour tout arc
$$x_{i_1} \rightarrow x_{i_k}$$
 de G on a 1

(autrement dit, tout sommet doit avoir un numéro d'ordre strictement supérieur à chacun de ses prédécesseurs)

- Si on commence par étiqueter les sommets par l'algorithme de mise en niveaux et si on numérote ensuite les sommets des niveaux consécutifs, on obtient un ordre topologique.
- NB: dans un même niveau, l'ordre adopté pour les sommets de ce même niveau n'a pas d'importance : il existe en général plusieurs ordres topologiques possibles pour un graphe sans circuit.

Cas d'un graphe sans circuit

- Pour un graphe sans circuit, on peut utilement appliquer l'algorithme de Ford en choisissant comme ordre particulier des sommets un ordre topologique.
- Si x₀ est une entrée (sommet sans prédécesseur) de G et si l'on parcourt les sommets de G dans un ordre topologique, les pondérations se stabilisent à la fin du premier parcours.
- L'algorithme de FORD devient alors simplement :
 - Poser $\lambda_0 \leftarrow 0$;
 - Parcourir les sommets de G suivant un ordre topologique et pour chaque sommet x_i visité faire :

$$\lambda_i = \min_{x_k \in \Gamma^-(x_i)} (\lambda_k + l(x_k \to x_i))$$
Prédécesseurs de x_i

Cas d'un graphe sans circuit

 Remarque : L'algorithme de Ford, appliqué sur un ordre topologique des sommets (un tel ordre existe si et seulement si le graphe est sans circuit) est appelé algorithme de Bellman.

Exemple (suite) : application de l'algorithme sur un graphe valué

Plusieurs ordres topologiques sont possibles. Nous retenons l'ordre $\{x_0, x_1, x_2, ... x_8\}$ suivant :

Exemple (suite) : application de l'algorithme sur un graphe valué

Plusieurs ordres topologiques sont possibles. Nous retenons l'ordre $\{x_0, x_1, x_2, ... x_8\}$ suivant :

Méthode matricielle – Algorithme de Floyd-Warshall (Problème 3)

- Recherche des plus courts chemins entre tout couple de sommets de G, sans hypothèse sur G (cas général)
- On construit une suite de matrice (n \times n): M_0 , M_1 , ..., M_n
- \square On note v_{ij}^{n} les éléments de la matrice M_k .
- \square À la fin de l'algorithme, \mathcal{V}_{ij}^n représente la longueur du plus court chemin de x_i à x_i dans G.
- On mémorise les chemins à l'aide d'une matrice ($n \times n$) P: à la fin de l'algorithme, P_{ij} représente le prédécesseur de j dans un chemin optimal de i à j
- La présence d'un circuit absorbant dans le graphe se détecte par : $v_{ii}^k < 0$ (on peut alors arrêter l'algorithme).
- □ L'absence de chemin de i à j dans le graphe se détecte à la fin de l'algorithme par : $v_{ii}^n = +\infty$
- Complexité de l'algorithme : O(n³)

Méthode matricielle – Algorithme de Floyd-Warshall (Problème 3)

Algorithme:

Initialisation : Poser

$$v_{ij}^{0} = \begin{cases} l(x_i \to x_j) \text{ si } x_i \to x_j \in U \\ +\infty \text{ sinon} \end{cases} \text{ et } P_{ij} = \begin{cases} i \text{ si } x_i \to x_j \in U \\ -(\text{indéterminé}) \text{ sinon} \end{cases}$$

□ Calcul des éléments de M_k à partir de ceux de M_{k-1} :

Pour k=1 à n calculer chaque élément v_{ij}^k de M_k par :

$$\operatorname{si}\left(v_{ik}^{k-1} + v_{kj}^{k-1} < v_{ij}^{k-1}\right) \text{ alors } v_{ij}^{k} \leftarrow v_{ik}^{k-1} + v_{kj}^{k-1}; P_{ij} \leftarrow P_{kj} \text{ sinon } v_{ij}^{k} = v_{ij}^{k-1}$$

On peut montrer par récurrence sur k que v_{ij}^k est la valeur minimale des chemins allant de i à j, n'empruntant que des sommets dont les indices sont inférieurs ou égaux à k, et composés d'au plus k+1 arcs.

