Real-Time Communication System Powered by AI for Specially Abled

DEPARTMENT OF INFORMATION TECHNOLOGY PANIMALAR ENGINEERING COLLEGE, ,CHENNAi-6000123

Team ID: PNT2022TMID01421

Team Leader - Yashwanth M

Team Members - K Raj Kumar ,

P Vettri Chezhian,

M Naveen Kumar

Project Report Index

4	-	* TF	T	\sim	-	T T			\sim	•
	- 1	INI.	Γk	'()	1)	1 1	\mathbf{C}	ш	()	
		1 1			1 /		•		` '	

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
 - 7.1 Feature 1
 - 7.2 Feature 2
 - 7.3 Database Schema (if Applicable)
- 8. TESTING
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9. RESULTS
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

ABSTRACT

People with physical limitations that they often encounter in their lives. Deaf and speech-impaired people have limited communication. Any normal person would see the situation, listen, and speak up to respond. However, there are those who are unlucky who have been deprived of this precious gift. This creates a gap between the common people and the underprivileged. This application helps both communicate with each other. This system mainly he consists of two modules. The first module extracts Indian Sign Language (ISL) gestures from real-time video and maps them to human-understandable audio. So the second module takes natural language as input and maps it to corresponding animated Indian Sign Language gestures.

1. INTRODUCTION

1.1 Project Overview

One of the most precious gifts that nature has given mankind is the ability to express ourselves in response to the events around us. This project aims to support the deaf and mute by creating a new system that helps convert sign language to text and speech to facilitate communication with the audience. The system consists of a gesture recognition algorithm that converts gestures into letters or numbers. These electrical signals are processed using a computer and Python-based backend for text-to-speech conversion. The system has his two modes of operation: phrase recall mode and letter recall mode. Phrase recall mode pronounces words at once, letter recall mode pronounces individual letters. This project forms a basic infrastructure that can later be extended to include various sign languages.

1.2 Purpose

Most of the tasks we do in our daily lives are speaking and listening. People who are deaf or mute have difficulty communicating with people who cannot understand or misinterpret sign language. The idea of this project is to use technological advances to build bridges and enable disadvantaged people to participate in life on an equal footing, achieve their goals, and break down or overcome challenges and barriers. In this research, we create an Android-based application that can directly interpret sign language presented in written form by deaf people. The translation process starts with detecting hands in OpenCV and translating the signal from the K-NN classification.

2. LITERATURE SURVEY

Numerous inventions of the 20th and 21st centuries have changed and advanced our perspectives and traditional approaches to the world. Technological advances in both software and hardware have given rise to different versions and methods of sign language interpretation. Few projects have been successful, but the larger scale of these implemented projects has been impractical, with various glitches and bugs depending on the individual project, as well as time lags and database limitations. did.

2.1. Existing problem

Software that helps people rely on various criteria and factors to function smoothly. Existing systems must be connected to the Internet. This can vary greatly by location and by device version, hardware, software, and various other variables involved. The consumer market is diverse, owning different brands and versions of smartphones with different combinations of hardware and software specifications, so the software must be glitch-free and compatible with all devices, which is very It can represent complex and diverse possibilities.

2.2. References

PAPER DETAILS	ABSTRACT	EXPLAINATION
Design of a	One of the most precious gifts of nature to the human race	This software uses sign language
Communication	is the ability to express itself by responding to the events	recognition along with text to speech
System using Sign	that occur in its environment. Every normal person sees,	software to interpret
Language aid for	hears, and then reacts to the situations by expressing	The message.
Differently Abled	himself. But some less lucky ones are deprived of this	
Peoples.	precious gift. Such people, especially deaf and mute, rely	
	on some sort of gesture language to communicate their	
	feelings to others. The deaf, dumb and the blind follow	
	similar problems when it comes to the use of computers.	
	In the era of advanced technologies, where computers, laptops and other processor-based devices are an integral	
	part of everyday life, efforts must be made to make the	
	disabilities in life more independent.	
Smart	Our day to day life most of the task we carry out involves	We have used flex sensor for getting the
Communication for	speaking and hearing. The deaf and dumb people have	data from the deaf and dumb using sign
Differently Abled	difficulty in communicating with others who cannot	language. When deaf wants to convey
People	understand sign language and mis-interpreter. In this	any messages then the user will give his
	paper, we designed a simple Embedded System based	voice as input to an android based voice
	device for solving this problem. We have used flex sensor	app. For Dumb People if they want to
	for getting the data from the deaf and dumb using sign	read any books or text the camera will
	language. When deaf wants to convey any messages then	act as eye to capture the text region and
	the user will give his voice as input to the android based	using Tesseract it will convert in to
	voice app. Then the app will transfer this particular	voice.
	speech in to text and it will displayed in LCD. For Dumb	
	People if they want to convey any messages to user Two	
	Flex sensors are used to play voice. For Blind People, if	
	they want to read any books or text the camera will act as	
	eye to capture the text region and using Tesseract it will	
Real-time	convert in to voice. This project aims to aid the deaf-mute by creation of a	This project aims to aid the deaf-mute by
Communication	new system that helps convert sign language to text and	creation of a new system that helps
System for the Deaf	speech for easier communication with audience. The	convert sign language to text and speech.
and Dumb	system consists of a gesture recognizer hand-glove which	System consists of a gesture recognizer
una Dumb	converts gestures into electrical signals using flex sensors.	hand-glove which converts gestures into
	These electrical signals are then processed using an	electrical signals using flex sensors. The
	Arduino microcontroller and a Python-based backend for	glove includes two modes of operation –
	text-to-speech conversion. The glove includes two modes	phrase fetch mode and letter fetch mode.
	of operation – phrase fetch mode and letter fetch mode.	-
	The phrase fetch mode speaks out words at once, while	
	the letter fetch mode speaks out individual letters. This	
	project forms a base infrastructure which can later be	
	augmented with addition of different Sign Languages.	
Two Way	This system consists mainly of two modules, the first	ISL is an attempt to teach computers how
Communicator	module is Indian Sign Language (ISL) gestures from real-	to use gestures from real-time video and
between Deaf and	time video and mapping it with human-Understandable	mapping them to human speech.
Dumb People and	speech. Accordingly, the second module is the natural	
Normal People	language as Input and card with equivalent Indian Sign	
	Language animated gestures.	

Sign Language Recognition System to aid Deaf-dumb People Using PCA.	This paper presents design and implementation of real-time sign language recognition system, to 26 gestures from the Indian sign language with MATLAB.	Real-time sign language recognition system to 26 gestures from the Indian sign language has been developed and tested in MATLAB, an open source software platform for developing computer programs with built-in sign language interpreters at Microsoft Research.
Sign Language to Text and Vice Versa Recognition using Computer Vision in Marathi.	In this system edge detection algorithm is used to recognize the input character image gray scale and recognition of the edges of the hand gesture. The system is able to handle the different input records images of alphabets, words, sentences, and translates them in text and vice versa. The system is designed to translate the Marathi sign language to text.	The system is able to handle the different input records images of alphabets, words, sentences, and translates them in text. System is designed to translate the Marathi sign language to text. Edge detection algorithm is used to recognize the input character image gray scale and recognition of the edges of the hand gesture.
Sign Language Learning based on Android for Deaf and Speech Impaired People.	This research makes an Android-based application that can directly interpret Sign language presented by deaf people in written language. Translation process Starts with the detection of hands with OpenCV and translation of and signals The K-NN classification. Tutorial features added in this application with the goal to train intensively to guide the user when using the sign language.	This research makes an Android-based application that can directly interpret Sign language presented by deaf people in written language. Tutorial features added in this application with the goal to train intensively to guide the user when using the sign language. The translation process starts with the detection of hands with OpenCV and translation of and signals.
SOFTWARE ASSISTANCE TO DEAF AND DUMB USING HANDSHAPE ALGORITHM	This application helps the deaf and dumb person to communicate with the rest of the world using sign language communication plays an important role for human beings. Communication is treated as a life skill. Keeping these important words in mind we present this project to mainly focus on aiding the speech impaired and paralyzed patients. Our work helps in improving the communication with the deaf and dumb.	This application helps the deaf and dumb person to communicate with the rest of the world using sign language communication plays an important role for human beings. We mainly focus on aiding the speech impaired and paralyzed patients. Our work helps in improving the communication with the deaf and dumb.
COMMUNICATIO N DEVICE FOR DIFFERENTLY ABLED PEOPLE:A PROTOTYPE MODEL	The process of communication between marginalized communities like deaf-blind-dumb people has always been a matter of great concern and these differently abled people are not able to easily communicate their thoughts and talks with other people as normal people does by using mobile phones, etc. So, it is the greatest need of this hour to think and act upon the development of such people as they are also the equal part of our society.	The prototype software built here provides various methods to interpret hand signs and uses sign to speech to help the user.

2.3. Problem Statement Definition

Communication between the specially-abled and the ordinary people has always been a challenging task. Especially, the way of communication between people with disabilities cannot be easily learned by Ordinary people.

Since communication needs to be faster and accurate. This system should also covey the message in case of emergency. Moreover, the message should be transferred from one person to another without any change in the content

Problem	I am	I'm trying to	But	Because	Which makes me feel
Statement	(Customer)				
(PS)					
PS-1	An ordinary person	Express my thoughts with a specially-abled person.	I don't know sign language	I didn't learned sign language	Frustrated.
PS-2	Specially abled person	Communicate with an ordinary person	it's difficultto express	The ordinary person doesn't know sign language	Frustrated.

3. IDEATION & PROPOSED SOLUTION

The basic idea of this project is to interpret hand signals, or sign language, decode them using a database model, analyze them, and potentially infer words or characters presented in front of a camera. The highest is to guess. This work involves a camera tracking any visible finger or hand gestures and comparing these characters to a database. An algorithm within the system, implemented via Python code, then matches the gesture of the most similar character, and the algorithm sends the character to the other party. The next step is to implement text-to-speech. That is, decoded hand signals are converted to text and text-to-speech. The proposed solution includes his python code as backend, camera as media and application as functional basis.

3.1. Empathy Map Canvas

In this activity you are expected to prepare the empathy map canvas to capture the user Pains & Gains, Prepare list of problem statements.

3.2 Ideation & Brainstorming

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like labet. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

3.3 Proposed Solution

The proposed solution interprets sign language, decodes it, converts it to text, and then converts the text to speech. The final output is delivered audibly for the general public to understand and be efficient with. A computer acts as the medium of interpretation, and a Python file processes the data in the backend, followed by a text-to-speech algorithm that converts the text to speech. This entire process is accessed through an application interface.

S.No.	Parameter	Description
1	Problem Statement (Problem to be solved)	Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people since normal people are not trained on hand sign language in emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like

	1	
		speech cannot be used. Making communication between deaf-mute people and normal person effective is the problem to solve here.
2	Idea / Solution description	We aim to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.
3	Novelty / Uniqueness	1. Since deaf-mute people are usually deprived of normal communication with other people, they have to rely on an interpreter or some visual communication. Now the interpreter can not be available always, so this project can help eliminate the dependency on the interpreter. 2. A web based version of the application will increase the reach to more people. 3.Integrating hand gesture recognition system using computer vision for establishing 2-way communication system.
4	Social Impact / Customer Satisfaction	Sign language is a visual language that is used by deaf people as their mother tongue. Unlike acoustically conveyed sound patterns, sign language uses body language and manual communication to fluidly convey the thoughts of a person. It is achieved by simultaneously combining hand shapes, orientation and movement of the hands, arms or body, and facial expressions. It can be used by a person who has difficulties in speaking or by a person who can hear but could not speak and by normal people to communicate with hearing disabled people. Therefore developing an intelligent system to recognize the sign language and convert it to voice will be massive aid for deafmute people to interact with the social world without any hassle and also since the machine takes care of the conversion the need for the normal people to have a good amount of knowledge will be eliminated.
5	Business Model (Revenue Model)	The subscription model is an increasingly popular business model that involves a company selling a service via a subscription as opposed to a one-off product. If the service is going to be helpfull as well as usefull most customers will choose to auto-renew their subscriptions, which

		ensures that they always have the service provided to them. Because of recurring sales	
		this model allows you to predict what the yearly	
		revenues are going to be, which is fantastic	
		when trying to bring in new investors.	
6	Scalability of the Solution	As the technology advances the AI can	
		improvise and more no of people can be	
		incorporated with the system and the system can	
		be extended to incorporate the knowledge of	
		facial expressions and body language too so that	
		there is a complete understanding of the context	
		and tone of the input speech.	

3.4 Problem Solution fit

In this activity you are expected to prepare problem - solution fit document and submit for review.

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	Data collection	Collection of images and spliting them into train data and test data folders to build the machine learning model.
FR-2	Image processing Tensorflow	TensorFlow is an open-sourced end-to-end platform, a library for multiple machine learning tasks and using this we process the image, image pre-processing includes zooming, shearing, flipping to increase the robustness of the model after it is built.
FR-3	Model building, training and testing	Keras is a high-level neural network library that runs on top of TensorFlow and is used for image pre-processing through imageDataGenerator module and creating Convolutional Neural Network for model building and training.
FR-4	App building	Flask is used for developing web applications using python, implemented on Werkzeug and Jinja2. Advantages of using Flask framework are: There is a built-in development server and a fast debugger provided. is used to create an web application which will act as an interface between the users and our machine learning model.
FR-5	Storing data collected in IBM cloud	Selecting an IBM Cloud Object Storage account. Selecting the specific geographic region where you want the image template stored. Selecting the IBM Cloud Object Storage bucket where image template is to be stored.
FR-6	Training the model on IBM WATSON STUDIO	IBM Watson Studio is used to build, run, manage and deploy AI models, and optimize decisions anywhere on IBM Cloud Pak for Data. Unite teams, automate AI lifecycles and speed time to value on an open Multicloud architecture.
FR-7	Text to speech	IBM Watson Text to Speech is an API cloud service that converts the text into natural-sounding audio in a variety of languages and voices within an existing application or within Watson Assistant.
FR-8	Integrating the model with the web app and deploying it in IBM cloud	IBM cloud service: To deploy our model on cloud so that it can be created as a service and integrated with the web application created using flask framework.
FR-9	User registration and authentication	Users can register via their gmail account or mobile number and will be authenticated using an OTP and also they will able to set passwords and reset passwords.
FR-10	User login	The registered users can now login using their gmail/mobile number, their password and they are good to go.

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional Requirement	Description	
No.	_		
NFR-1	Usability	This web app connected to the AI model service trained on	
		IBM Watson studio AI model service will be usable by any	
		person who wants to communicate with person using sign	
		language but doesn't understand the sign language the app will	
		convert the sign language into voice in the language	
		understandable by the user.	
NFR-2	Security	Since the model is built on top of the IBM cloud services	
	-	scalability can also be done with the support of the IBM cloud	

		services in an efficient way.
NFR-3	Reliability	The probability of failure-free operation of this service for a specified period in a specified environment will be high and will ensure that the service meets all the requirements to do so. Reliability is a customer-oriented view of software quality and the way this model will be built and tested with care so that it always provides a high quality interactive experience to our customers and clients
NFR-4	Performance	An effective model training process and several testing process will be carried out to make accurate predictions of the sign language to satisfy the user requirements.
NFR-5	Availability	This service will be available any time and regular updates based on the users feedback an.
NFR-6	Scalability	Since the model is built on top of the IBM cloud services scalability can also be done with the support of the IBM cloud services in an efficient way.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2. Solution & Technical Architecture

5.3 User Stories

Our Idea is that every person deserves a fair option to take part in life but life is not fair and it is brutal in certain aspects and it is the responsibility of the fortuned people to help each other and this is the only way to sustain our humanity and to build a functioning good community. The project is souley developed under the motivation to help the people who are believed to be struggling and less fortuned to make their life efficient and smooth.

We really think this project will help and make a huge impact in people life in a positive way and will develop an positive influence and builds confidence to reach out and explore. We have worked on various projects similar to this to help peoples who are less fortuned in life.

Our main motivation was a asian developer ZHANG his ideation is ZHANG:

his team hope DeepASL can help people who are deaf and hard of hearing by serving as a real-time translator. It could be especially useful in emergency situations, Zhang says, when waiting for a translator could cost precious minutes. The device, which could be integrated with a phone, tablet or computer, can also help teach ASL, Zhang says. Since more than 90 percent of deaf children are born to parents who are hearing, there is a large community of adults who need to learn ASL quickly. DeepASL acts as a digital tutor and gives learners feedback on whether they are signing correctly.

Zhang has applied for a patent and hopes to bring the device to market within a year. Built on affordable technology (Leap Motion's motion capture system retails for \$78), it may become more widely available than previous efforts``

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

IDEATION PHASE

TITLE	DESCRIPTION	DATE
Literature Survey	Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.	14 OCTOBER 2022
Empathy Map for Web Phishing Detection	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	7 OCTOBER 2022
Problem Statement	Prepare the problem statement document	18 OCTOBER 2022
Brainstorming Idea Generation Prioritization	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	1 NOVEMBER 2022

PROJECT DESIGN PHASE-I

TITLE	DESCRIPTION	DATE
Problem Solution Fit	Prepare problem - solution fit document.	14 OCTOBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	14 OCTOBER 2022
Solution Architecture	Prepare solution architecture document.	14 OCTOBER 2022

PROJECT DESIGN PHASE-II

TITLE	DESCRIPTION	DATE
Solution Requirements	Prepare the functional requirement document.	15 OCTOBER 2022
Customer Journey Map	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	1 NOVEMBER 2022
Data Flow Diagrams and User Stories	Draw the data flow diagrams and submit for review.	1 NOVEMBER 2022
Technology Stack	Prepare the technology architecture diagram	15 OCTOBER 2022

PROJECT PLANNING PHASE

TITLE	DESCRIPTION	DATE
Project Planning	Prepare the planning for this project	01 NOVEMBER 2022
Milestone and Activity List	Prepare the milestones & activity list of the project	01 NOVEMBER 2022

PROJECT DEVELOPMENT

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Nov 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	7 Nov 2022	12 Nov 2022	20	17 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.2 Sprint Delivery Schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	Medium	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.

Sprint-1	Login	USN-1	As a user, I can log into the application by enteringemail & password	1	High	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-1	Data Collection	USN-3	Gathering the information from various resources	1	Medium	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-1	Data Preprocessing	USN-4	To Convert and clean the raw data	2	High	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-2	Model Building	USN-5	Using cleaned dataset, Model can be build usingML Algorithm	2	High	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-2		USN-6	Training the classification model	1	High	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-3	Application Building	USN-7	Building Python code and run the application	1	Medium	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-3		USN-8	Predicted Result	1	Medium	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.
Sprint-4		USN-9	Deployed on IBM Cloud	2	High	Yashwanth, Raj Kumar, Vettri Chezhian, Naveen Kumar.

6.3 Reports from JIRA

Jira helps teams plan, assign, track, report, and manage work and brings teams together foreverything from agile software development and customer support to start-ups and enterprises.

Software teams build better with Jira Software, the #1 tool for agile teams. As a Jira administrator,

you can create project categories so your team can view work across related projects in one place. Your team can use categories in advanced search, filters, reports, and more.

7. CODING & SOLUTIONING

8. TESTING

9. RESULTS

9.1 Performance Metrics

- ❖ The proposed procedure was implemented and tested on a set of images.
- ❖ The training database consists of 15750 images of Alphabets from "A" to "I", while the testing database consists of 2250 images of Alphabets from "A" to "I".
- ❖ Once the gesture is recognized the equivalent alphabet is shown on the screen.

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. It is possible to create a mobile application to bridge the communication gap between deaf and dumb persons and the general public.
- 2. As different sign language standards exist, their dataset can be added, and the user can choose which sign language to read.

Disadvantages:

- 1. The current model only works from alphabets A to I.
- 2. In absence of gesture recognition, alphabets from J cannot be identified as they require some kind of gesture input from the user.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great, but that can easily be improved by change in dataset.

11. CONCLUSION

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.

This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute people can use their hands to perform sign language, which will then be converted into alphabets, thanks to this project.

12. FUTURE SCOPE

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and Ai for the specially abled people such as deaf and dumb. With introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

13. APPENDIX

Source Code: app.py

from flask import Flask, Response, render_template from camera import Video

```
app = Flask(__name__)
@app.route('/')
def index():
  return render_template('index.html')
def gen(camera):
  while True:
    frame = camera.get_frame()
    yield (b'--frame\r\n'
        b'Content-Type: image/jpeg\r\n\r\n' + frame +
        b'\r\n\r\n'
@app.route('/video_feed')
def video_feed():
  video = Video()
  return Response(gen(video), mimetype='multipart/x-mixed-replace; boundary = frame')
if __name__ == '__main__':
  app.run()
index.html
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0, shrink-to-fit=no">
  <title>SmartBridge_WebApp_VideoTemplate</title>
  k rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css">
  <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.12.0/css/all.css">
  <link rel="stylesheet" href="static/Banner-Heading-Image.css">
  k rel="stylesheet" href="staticNavbar-Centered-Brand.css">
</head>
<body style="background: rgb(39,43,48);">
  <nav class="navbar navbar-light navbar-expand-md py-3" style="background: #212529;">
    <div class="container">
       <div></div><a class="navbar-brand d-flex align-items-center" href="#"><span
```

```
class="bs-icon-sm bs-icon-rounded bs-icon-primary d-flex justify-content-center
align-items-center me-2 bs-icon"><i
              class="fas fa-flask"></i></span><span style="color:
rgb(255,255,255);">Real-Time Communication
            System Powered By AI For Specially Abled</span></a>
       <div></div>
    </div>
  </nav>
  <section>
    <div class="d-flex flex-column justify-content-center align-items-center">
       <div class="d-flex flex-column justify-content-center align-items-center" id="div-</pre>
video-feed"
         style="width: 640px;height: 480px;margin: 10px;min-height: 480px;min-width:
640px;border-radius: 10px;border: 4px dashed rgb(255,255,255);">
         <img src="{{ url_for('video_feed') }}" style="width: 100%;height: 100%;color:</pre>
rgb(255,255,255);text-align: center;font-size: 20px;"
            alt="Camera Access Not Provided!">
       </div>
    </div>
    <div class="d-flex flex-column justify-content-center align-items-center"</pre>
style="margin-bottom: 10px;"><button
         class="btn btn-info" type="button" data-bs-target="#modal-1" data-bs-
toggle="modal">Quick Reference
         -<strong> ASL Alphabets</strong></button></div>
  </section>
  <section>
    <div class="container">
       <div class="accordion text-white" role="tablist" id="accordion-1">
         <div class="accordion-item" style="background: rgb(33,37,41);">
           <h2 class="accordion-header" role="tab"><button class="accordion-button"
data-bs-toggle="collapse"
                data-bs-target="#accordion-1 .item-1" aria-expanded="true"
                 aria-controls="accordion-1 .item-1"
                style="background: rgb(39,43,48);color: rgb(255,255,255);">About The
Project</button></h2>
            <div class="accordion-collapse collapse show item-1" role="tabpanel" data-bs-</pre>
parent="#accordion-1">
              <div class="accordion-body">
                Artificial Intelligence has made it possible to handle our
daily activities
                   in new and simpler ways. With the ability to automate tasks that
normally require human
                   intelligence, such as speech and voice recognition, visual perception,
predictive text
                   functionality, decision-making, and a variety of other tasks, AI can assist
people with
```

```
disabilities by significantly improving their ability to get around and
participate in
                                        daily activities.<br/>
<br/>
Currently, Sign Recognition is available
<strong>only for
                                              alphabets A-I</strong> and not for J-Z, since J-Z alphabets also
require Gesture
                                        Recognition for them to be able to be predicted correctly to a certain
degree of
                                        accuracy.
                              </div>
                         </div>
                    </div>
                    <div class="accordion-item" style="background: rgb(33,37,41);">
                         <h2 class="accordion-header" role="tab"><button class="accordion-button"
collapsed"
                                   data-bs-toggle="collapse" data-bs-target="#accordion-1 .item-2" aria-
expanded="false"
                                   aria-controls="accordion-1 .item-2"
                                   style="background: rgb(39,43,48);color: rgb(231,241,255);">Developed
By</button></h2>
                         <div class="accordion-collapse collapse item-2" role="tabpanel" data-bs-</pre>
parent="#accordion-1">
                              <div class="accordion-body">
                                   Student of PANIMALAR ENGINEERING
COLLEGE. <a href="mailto:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:college:colle
                                        <strong>Raj kumar K</strong> 211419205136<br>>3.
<strong>Yashwanth M</strong> 211419205186<br>>4.
                                        <strong>Naveen kumar Mstrong> 211419205115
                                   </div>
                         </div>
                    </div>
               </div>
          </div>
     </section>
     <div class="modal fade" role="dialog" tabindex="-1" id="modal-1">
          <div class="modal-dialog" role="document">
               <div class="modal-content">
                    <div class="modal-header">
                         <h4 class="modal-title">American Sign Language - Alphabets</h4><button
type="button"
                              class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
                    </div>
                    <div class="modal-body"><img src="static/ASL_Alphabet.jpg"</pre>
width="100%"></div>
                    <div class="modal-footer"><button class="btn btn-secondary" type="button"</pre>
                              data-bs-dismiss="modal">Close</button></div>
```

```
</div>
     </div>
  </div>
  <script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></script>
</body>
</html>
Navbar-Centered-Brand.css
.bs-icon {
 --bs-icon-size: .75rem;
 display: flex;
 flex-shrink: 0;
 justify-content: center;
 align-items: center;
 font-size: var(--bs-icon-size);
 width: calc(var(--bs-icon-size) * 2);
 height: calc(var(--bs-icon-size) * 2);
 color: var(--bs-primary);
.bs-icon-xs {
 --bs-icon-size: 1rem;
 width: calc(var(--bs-icon-size) * 1.5);
 height: calc(var(--bs-icon-size) * 1.5);
.bs-icon-sm {
 --bs-icon-size: 1rem;
.bs-icon-md {
 --bs-icon-size: 1.5rem;
.bs-icon-lg {
 --bs-icon-size: 2rem;
.bs-icon-xl {
 --bs-icon-size: 2.5rem;
.bs-icon.bs-icon-primary {
 color: var(--bs-white);
 background: var(--bs-primary);
```

```
bs-icon.bs-icon-primary-light {
  color: var(--bs-primary);
  background: rgba(var(--bs-primary-rgb), .2);
}
.bs-icon.bs-icon-semi-white {
  color: var(--bs-primary);
  background: rgba(255, 255, 255, .5);
}
.bs-icon.bs-icon-rounded {
  border-radius: .5rem;
}
.bs-icon.bs-icon-circle {
  border-radius: 50%;
}
```

banner-Heading-Image.css

```
.fit-cover {
  object-fit: cover;
}
```

ASL_Alphabet.jpg


```
camera.py
import cv2
import numpy as np
from keras.models import load model
from keras.utils import load img, img to array
class Video(object):
  def __init__(self):
    self.video = cv2.VideoCapture(0)
     self.roi_start = (50, 150)
     self.roi\_end = (250, 350)
     self.model = load model('asl model.h5') # Execute Local Trained Model
     # self.model = load_model('IBM_Communication_Model.h5') # Execute IBM Trained
Model
     self.index = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
     self.y = None
  def del (self):
     self.video.release()
  def get_frame(self):
     ret, frame = self.video.read()
     frame = cv2.resize(frame, (640, 480))
     copy = frame.copy()
     copy = copy[150:150 + 200, 50:50 + 200]
     # Prediction Start
    cv2.imwrite('image.jpg', copy)
     copy_img = load_img('image.jpg', target_size=(64, 64))
     x = img_to_array(copy_img)
     x = np.expand\_dims(x, axis=0)
     pred = np.argmax(self.model.predict(x), axis=1)
     self.y = pred[0]
     cv2.putText(frame, 'The Predicted Alphabet is: ' + str(self.index[self.y]), (100, 50),
                            cv2.FONT_HERSHEY_SIMPLEX,
            1, (0, 0, 0), 3)
    ret, jpg = cv2.imencode('.jpg', frame)
     return ipg.tobytes()
```

GitHub

https://github.com/IBM-EPBL/IBM-Project-5256-1658752692

Project Demo Link

https://ibmprojecttnt2022tmid01421.s3.jp-tok.cloud-objectstorage.appdomain.cloud/PROJECT%20DEMO%20VIDEO.mp4