

Batch: A2 Roll No.:16010421063

Experiment No.: 5

Aim: To study flip flop conversion. As an example, we will convert a D flip flop to a JK flip flop.

Resources needed: Simulation Platform (Circuitverse or Proteus)

Theory:

"Flip-flop" is the common name given to two-state devices which offer basic memory for sequential logic operations. Flip-flops are heavily used for digital data storage and transfer and are commonly used in banks called "registers" for the storage of binary numerical data.

Fig: Types of Flip-flops

Set-Reset FlipFlop:

The set/reset type flip-flop is triggered to a high state at Q by the "set" signal and holds that value until reset to low by a signal at the Reset input. This can be implemented as a NAND gate latch or a NOR gate latch and as a clocked version.

One disadvantage of the S/R flip-flop is that the input S=R=1 gives ambiguous results and must be avoided. The J-K flip-flop gets around that problem.

JK FlipFlop:

JK-flip flop has two inputs, traditionally labeled J and K. IC 7476 is a dual JK master slave flip flop with preset and clear inputs. If J and K are different then the output Q takes the value of J at the next clock edge. If J and K are both low then no change occurs. If J and K are both high at the clock edge then the output will toggle from one state to the other. It can perform the functions of the set/reset flip-flop and has the advantage that there are no ambiguous states.

D FlipFlop:

D flip-flop tracks the input, making transitions with match those of the input D. The D stands for "data"; this flip-flop stores the value that is on the data line. It can be thought of as a basic memory cell. D flip-flop can be made from J-K flip-flop by connecting both inputs through a not gate as shown in fig.

T FlipFlop:

T or "toggle" flip-flop changes its output on each clock edge, giving an output which is half the frequency of the signal to the T input. It is useful for constructing binary counters, frequency dividers, and general binary addition devices. It can be made from a J-K flip-flop by tying both of its inputs high.

K. J. SOMAIYA COLLEGE OF ENGG

Table: Characteristic table and Excitation Table of flipflops

FlipFlop	Characteristic Table			Characteristic	Excitation Table			
name				Equation				
SR	S	R	Qnext		Q	Qnext	S	R
	0	0	Qn	Qnext=	0	0	0	X
	0	1	0	S+R'Q	0	1	1	0
	1	0	1		1	0	0	1
	1	1	invalid	Where SR=0	1	1	X	0
JK	J	K	Qnext		Q	Qnext	J	K
	0	0	Qn	Qnext=	0	0	0	X
	0	1	0	JQ'+K'Q	0	1	1	X
	1	0	1		1	0	X	1
	1	1	Qn'		1	1	X	0
D	D		Qnext		Q	Qnext	D	
	0		0	Qnext=D	0			0
			1 7		0	1	1	
			<i>y</i>		1	0	0	
					1	1		1
T	T		Qnext		Q	Qnext	T	
)	Qn \	Qnext=	0	0		0
	1		Qn,	TQ'+T'Q	0	1		1
		_			1	0	_	1
				4,000,	1	1		0
	!			118 7//				-

Procedure:

- 1) Write the characteristic table of the desired (target) flip flop, in this case JK flip flop.
- 2) Write the excitation table of the given flip flop (in this case D flip flop).
- 3) Combine the two tables to create a conversion table.
- 4) Using the conversion table draw K maps for the J and K inputs in terms of D and Q.
- 5) Use the equations to draw the circuit.
- 6) Start the Circuitverse simulator and perform the simulation.
- 7) Complete the write up and upload it to LMS.

Observations and Results:

- 1. Simulate the circuit using the online Circuitverse simulator.
- 2. Observe the timing diagrams to verify your design.
- 3. Download the image of timing diagram and paste it in the write up.

Questions:-

(a) Why do we need to know how to convert one flip flop to another?

The conversion of flip-flops from one type to another is done by connecting a combinational circuit prior to the flip-flop. The output of the combinational circuit is given to the input of the flip-flops. While designing a flip-flop, the excitation tables for both flip-flops are combined and a truth table is made for the data inputs and data outputs.

Conclusion: We were able to verify JK to D flip flop using timing diagram

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.

2. http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/flipflop.html