# Growing Microgreens for NASA: from simulated microgravity to parabolic flights

Presented by: Christina Johnson

Fellow in the NASA Postdoctoral Program

Presented to: Ryerson University, February 2022







# My crop of choice: Microgreens!

- Small space to grow
- Rapid turn around
- Large variety
- Dense nutrition
- Yummy



Sandwich with Scarlet Frills Mustard microgreens.

# Background

Sustainable food production with plants

- Reduces mass
- Provides necessary nutrients

### Microgreens

- Supplement to prepackaged diet
- Not yet grown in space
- Densely sown
- Potentially high microbial counts



# Diversity of Microgreens

- Wheat grass
- Cabbage
- Pak Choi
- Kale
- Chia
- Basil
- Mint
- Pea
- Sunflower

- Lettuce
- Watercress
- Fennel
- Moringa
- Mustard
- Cress
- Kohlrabi
- Radish
- Carrot

- Buckwheat
- Beet
- Spinach
- Any crop plant that can be grown from seed and has edible leaves at this stage in development!



# Potential Yield





## Health Benefits of Microgreens

Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. *Journal of agricultural and Food Chemistry*, *60*(31), 7644-7651.



- USDA researchers showed microgreens have dense nutritional content.
- Contains vitamins that are lacking for Astronauts.
- Dense nutrition comes along with intense flavors.

Vitamin K (μg/100g) FW

Vitamin C (μg/100g) FW



|        | microgreen | mature | microgreen | mature |
|--------|------------|--------|------------|--------|
| Radish | 180        | 1.3    | 95.8       | 14.8   |
| Mizuna | 200        | 2.3    | 42.9       | 14.1   |

# The Spaceflight Environment













# Water in Spaceflight



# Food Crops on the ISS



# Crop Readiness Levels

Romeyn, M., Spencer, L., Massa, G., & Wheeler, R. (2019, July). Crop readiness level (crl): a scale to track progression of crop testing for space. 49th International Conference on Environmental Systems

| CRL | Title                          | Description                                                                                                                                                                                                                   |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Basic Crop Testing             | Identification of candidate crop at cultivar level. Preliminary assessment of morphology, consumable yield, germination, and mission application.                                                                             |
| 2   | Cultivar Screening             | Detailed assessment of plant dimensions at maximal growth, pollination and germination requirements identified, harvest index quantified.                                                                                     |
| 3   | Relevant Environmental Testing | Testing at ISS simulated environmental conditions. Currently this is elevated CO <sub>2</sub> (~3000 ppm), ISS temperature (21-24 C), RH (38-44%), and LED lighting absent of UV. Adverse physiological responses identified. |
| 4   | Seed Sterilization             | Identification of acceptable seed surface sterilization protocol.                                                                                                                                                             |
| 5   | Flight-like Testing            | Testing in flight or flight-analog hardware at flight environmental setpoints.                                                                                                                                                |
| 6   | Chemistry & Organoleptic       | Elemental and mission-specific nutritional testing conducted at flight-like conditions. Organoleptic and sensory analysis conducted.                                                                                          |
| 7   | Baseline Microbiology          | Baseline microbiological and food safety characterization conducted under flight-like conditions.                                                                                                                             |
| 8   | Grown in Space                 | Crop successfully grown to maturity in space.                                                                                                                                                                                 |
| 9   | Consumed in Space              | Sanctioned consumption by crew in space.                                                                                                                                                                                      |

# NASA's Technology Readiness Levels

#### TRL9

Actual system "flight proven" through successful mission operations

#### TRL8

 Actual system completed and "flight qualified" through test and demonstration (ground or space)

#### TRL 7

System prototype demonstration in a space environment

#### TRL 6

 System/subsystem model or prototype demonstration in a relevant environment (ground or space)

#### TRL 5

Component and/or breadboard validation in relevant environment

#### TRL 4

Component and/or breadboard validation in laboratory environment

#### TRL 3

 Analytical and experimental critical function and/or characteristic proof-ofconcept

#### TRL 2

Technology concept and/or application formulated

#### TRL 1

Basic principles observed and reported

# Lettuce Harvest



# Fun With the Harvest



# Microgreen Harvest On Earth vs Microgravity





# Microgreen Harvesting Techniques





We tested harvesting techniques with a parabolic flight using a glove box on loan from Dr. George Pantalos.





# Sometimes things went really well...



# Applying what we learned...

Microgreens on microgravity simulators



Daikon radish microgreens at harvest.

# Microgravity Simulation Support Facility



# Microgreens in Simulated Microgravity





# Microgreens in Simulated Microgravity





We started growing microgreens like a crop on Random Positioning Machines

# Simulated Microgravity vs Stationary Control

• Preliminary data only at this point. Here are some pictures!





Radish microgreens growing in the specialized hydroponic grow box.

Harvesting one tray of microgreens

## Summary:

- We need to feed astronauts
- Microgreens are a way to deliver freshly grown dense nutrition
- There are many challenges that we face when we grow plants in microgravity
- We bring in experts from everywhere to help us solve these problems.
- We are getting closer to growing this specialty crop in space.

# NASA Postdoctoral Program



- All areas of NASA Science
- International postdocs welcome
- Check for opportunities today!