

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

H04B 1/00

(11) Internationale Veröffentlichungsnummer:

WO 99/60708

A2

(43) Internationales Veröffentlichungsdatum:

25. November 1999 (25.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01392

(22) Internationales Anmeldedatum:

7. Mai 1999 (07.05.99)

(30) Prioritätsdaten:

198 22 796.5

20. Mai 1998 (20.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HULTSCH, Wolfgang [DE/DE]; Sylvensteinstrasse 4, D-81369 München (DE).

AKTIENGE-(74) Gemeinsamer Vertreter: SIEMENS SELLSCHAFT; Postfach 22 16 34, D-80506 München (81) Bestimmungsstaaten: CN, JP, KR, RU, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: METHOD AND ARRANGEMENT FOR REAL-TIME TRANSMISSION OF COMPRESSED DATA

(54) Bezeichnung: VERFAHREN UND ANORDNUNG ZUR ECHTZEIT-ÜBERTRAGUNG VON KOMPRIMIERTEN DATEN

(57) Abstract

According to the invention, useful data (N) and filler data (F) are received via a circuit-switched connection of a first communications network (ISDN), in the form of a data stream (DS1) with a constant data rate (Drk). The filler data (F) contained in the data stream (DS1) with the constant data rate (DRk) are removed and the useful data (N) contained in the data stream (DS1) with the constant data rate (DRk) are reformatted and sent via a packet-orientated connection of a second communications network (UTMS) in the form of a data stream (DS2) with a variable data rate (DRv). The advantage of the invention is that efficient use is made of the

transmission bandwidth by removing the superfluous filler data received via the circuit-switched connection in the data stream (DS1) with the constant data rate and by reformatting the useful data for the data stream with the variable data rate and sending it via a packet-orientated connection. This is particularly advantageous if the real-time transmission of the compressed data leads into a mobile communications network with a radio interface which is limited in terms of transmission bandwidth.

(57) Zusammenfassung

Gemäß dem Gegenstand der Erfindung werden Nutzdaten (N) und Fülldaten (F) als Datenstrom (DS1) mit konstanter Datenrate (DRk) über eine leitungsvermittelte Verbindung eines ersten Kommunikationsnetzes (ISDN) empfangen, die in dem Datenstrom (DS1) konstanter Datenrate (DRk) enthaltenen Fülldaten (F) entfernt, die in dem Datenstrom (DS1) konstanter Datenrate (DRk) enthaltenen Nutzdaten (N) umformatiert und als Datenstrom (DS2) mit variabler Datenrate (DRv) über eine paketorientierte Verbindung eines zweiten Kommunikationsnetzes (UMTS) gesendet. Der Vorteil der Erfindung besteht in der effizienten Ausnutzung der Übertragungsbandbreite durch Entfernen der überflüssigen Fülldaten, die im Datenstrom konstanter Datenrate über die leitungsvermittelte Verbindung empfangen werden, und Umformatieren der Nutzdaten für den Datenstrom variabler Datenrate über die paketorientierte Verbindung. Dies wirkt sich besonders günstig aus, wenn die Echtzeit-Übertragung der komprimierten Daten in ein Mobil-Kommunikationsnetz mit einer bezüglich der Übertragungsbandbreite begrenzten Funkschnittstelle führt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
\mathbf{AT}	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	\mathbf{MW}	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	$\mathbf{U}\mathbf{Z}$	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	\mathbf{SG}	Singapur		

1

PCT/DE99/01392

Beschreibung

WO 99/60708

Verfahren und Anordnung zur Echtzeit-Übertragung von komprimierten Daten

5

35

Die Erfindung bezieht sich auf ein Verfahren und eine Anordnung zur Echtzeit-Übertragung von komprimierten Daten.

Die Übertragung von komprimierten Daten im Telekommunikationsbereich erfolgt üblicherweise auf leitungsgebundenen Ver-10 bindungen. So werden beispielsweise Videodaten im Zuge einer Videokonferenz oder bei Videotelefonie von ISDN-Endgeräten (Integrated Services Digital Network) erzeugt und ausschließlich über leitungsvermittelte (circuit switched) Verbindungen eines ISDN-Festnetzes mit konstanter Datenrate, d.h. auf ei-15 ner oder zwei 64kbit/s-Strecken, in Echtzeit übertragen. In Abhängigkeit der Bewegung der Objekte im aufgenommenen Bild erzeugt die für die Datenkompression zuständige Kodiereinrichtung Datenströme mit stark schwankenden Datenraten. Zur Übertragung im ISDN-Festnetz werden die Datenströme - mit den 20 schwankenden Datenraten - durch geeignetes Hinzufügen von Fülldaten (bit stuffing) zu den komprimierten Videodaten auf die jeweilige konstante Datenrate gebracht. Eine Echtzeit-Übertragung der mit Fülldaten aufbereiteten komprimierten Daten in ein Kommunikationsnetz mit Datenströmen variabler Da-25 tenrate, z.B. einem Mobil-Kommunikationsnetz mit einer Funkschnittstelle, ist unwirtschaftlich, da die auf der Funkschnittstelle zur Verfügung stehende, kostbare Übertragungsbandbreite hinsichtlich der Nutzdatenübertragung möglichst 30 effizient genutzt werden muß.

Es ist Aufgabe der Erfindung, ein Verfahren und eine Anordung anzugeben, durch das bzw. die eine wirtschaftliche Echtzeit-Übertragung von komprimierten Daten von einem Kommunikationsnetz zu einem anderen Kommunikationsnetz erzielbar ist.

Diese Aufgabe wird gemäß der Erfindung hinsichtlich des Ver-

2

fahrens durch die Merkmale des Patentanspruchs 1 und hinsichtlich der Anordnung durch die Merkmale des Patentanspruchs 6 gelöst. Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.

5

10

15

20

25

Gemäß dem Gegenstand der Erfindung werden Nutzdaten und Fülldaten als Datenstrom mit konstanter Datenrate über eine leitungsvermittelte Verbindung eines ersten Kommunikationsnetzes empfangen, die in dem Datenstrom konstanter Datenrate enthaltenen Fülldaten entfernt, die in dem Datenstrom konstanter Datenrate enthaltenen Nutzdaten umformatiert und als Datenstrom mit variabler Datenrate über eine paketorientierte Verbindung eines zweiten Kommunikationsnetzes gesendet. Der Vorteil der Erfindung besteht in der effizienten Ausnutzung der Übertragungsbandbreite durch Entfernen der überflüssigen Fülldaten, die im Datenstrom konstanter Datenrate über die leitungsvermittelte Verbindung empfangen werden, und Umformatieren der Nutzdaten für den Datenstrom variabler Datenrate über die paketorientierte Verbindung. Dies wirkt sich ganz besonders günstig aus, wenn die Echtzeit-Übertragung der komprimierten Daten in ein Mobil-Kommunikationsnetz mit einer bezüglich der Übertragungsbandbreite begrenzten Funkschnittstelle führt. An Stelle der aussortierten Fülldaten werden Nutzdaten gemäß der für die Teilnehmerverbindung zur Verfügung stehenden variablen Übertragungsbandbreite - d.h. auch in Datenströmen mit höheren Datenraten - übertragen.

Gemäß einer Weiterbildung der Erfindung werden Qualitätsdaten zur Kennzeichnung der Übertragungsqualität der paketorientierten Verbindung dem zweiten Kommunikationsnetz mitgeteilt. Damit wird erreicht, daß im zweiten Kommunikationsnetz eine gleichmäßig gute Übertragung der komprimierten Daten - ausschließlich Nutzdaten - im Vergleich zur Übertragungsqualität des ersten Kommunikationsnetzes vorliegt.

35

30

Vorzugsweise werden als Qualitätsdaten eine mittlere Datenrate und/oder eine Maximaldatenrate für den Datenstrom mit va-

3

riabler Datenrate ermittelt. Durch die Einstellung der mittleren Datenrate und/oder der Maximaldatenrate ist eine akzeptable Wiedergabequalität der komprimierten Nutzdaten beim Empfänger erzielbar, da die Echtzeit-Übertragung nur sehr geringe Verzögerungszeiten, z.B. im Millisekundenbereich, gestattet.

5

10

35

Zur Kennzeichnung der Übertragungsqualität wird gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung die Güte des für den Datenstrom mit variabler Datenrate benutzten Übertragungskanals - erkennbar an der zulässigen Bitfehlerrate - verwendet.

Als besonders günstig in Bezug auf eine wirtschaftliche und effiziente Funkressourcenausnutzung hat sich die Erfindung erwiesen, wenn komprimierte Videodaten als Datenstrom mit konstanter Datenrate über die leitungsvermittelte Verbindung eines leitungsgebundenen Kommunikationsnetzes empfangen und als Datenstrom mit variabler Datenrate über die paket- orientierte Verbindung eines Mobil-Kommunikationsnetzes gesendet werden.

Die Anordnung gemäß dem Gegenstand der Erfindung weist eine Einrichtung auf, mit

- 25 Mittel zum Empfangen von Nutzdaten und Fülldaten, die als Datenstrom mit konstanter Datenrate über eine leitungsvermittelte Verbindung eines ersten Kommunikationsnetzes eintreffen,
- Mittel zum Entfernen der in dem Datenstrom konstanter Da tenrate enthaltenen Fülldaten und zum Umformatieren der in dem Datenstrom konstanter Datenrate enthaltenen Nutzdaten,
 Mittel zum Senden der umformatierten Nutzdaten als Datenstrom mit variabler Datenrate über eine paketorientierte Verbindung eines zweiten Kommunikationsnetzes.

Nachstehend wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf eine Figur näher erläutert, die

4

eine Anordnung zur Echtzeit-Übertragung von komprimierten Daten zwischen einem ersten Kommunikationsnetz und einem zweiten Kommunikationsnetz zeigt.

Im vorliegenden Beispiel sei angenommen, daß das erste Kommunikationsnetz von einem Festnetz ISDN (Integrated Services Digital Network) und das zweite Kommunikationsnetz von einem Mobil-Kommunikationsnetz UMTS (Universal Mobile Telecommunication System) gebildet werden. Weiterhin sei angenommen, daß 10 eine Einrichtung SSU mit den Merkmalen gemäß der Erfindung für die Echtzeit-Übertragung der komprimierten Daten von dem Festnetz ISDN zum Mobil-Kommunikationsnetz UMTS als eigenständige Einrichtung zwischen den beiden Kommunikationsnetzen angeordnet ist. Ebenso könnte sie auch Bestandteil des Fest-15 netzes ISDN oder des Mobil-Kommunikationsnetzes UMTS sein. Die Erfindung ist darüber hinaus nicht auf die beispielhaften Kommunikationsnetze ISDN, UMTS beschränkt, sondern für andere Kommunikationsnetze anwendbar. Das Festnetz ISDN und das Mobil-Kommunikationsnetz UMTS weisen jeweils eine Kontroll-20 einrichtung NC bzw. RNC auf, die netzseitig die Schnittstelle zur Einrichtung SSU für die Datenübertragung bildet. Für den Fall, daß die Einrichtung SSU Bestandteil des Festnetzes ISDN oder des Mobil-Kommunikationsnetzes UMTS ist, würde sie vorzugsweise in der Kontrolleinrichtung NC bzw. RNC angeordnet sein. Jede Kontrolleinrichtung RNC, NC weist eine Steuerein-25 heit RST, ST sowie eine Speichereinheit RSP, SP auf. Die Einrichtung SSU verfügt ebenfalls über eine Steuereinheit CTR, mit der eine Empfangseinheit RC an der Schnittstelle zur Kontrolleinrichtung NC und eine Sendeeinheit TR an der Schnitt-30 stelle zur Kontrolleinrichtung RNC verbunden sind.

Bei den komprimierten Daten handelt es sich beispielsweise um komprimierte Videodaten, die von einem Videokoder als Datenstrom DS1 mit konstanter Datenrate DRk - beispielsweise 64 kbit/s oder 2*64 kbit/s - erzeugt und über zumindest eine leitungsvermittelte Verbindung des Festnetzes ISDN übertragen werden. Dabei wird die konstante Datenrate DRk durch Hinzufü-

5

gen von Fülldaten F zu Nutzdaten N generiert (bit stuffing). Die Nutzdaten N enthalten die für die Videokonferenz erforderlichen Daten, die von einem Kommunikationsendgerät des leitungsgebundenen Festnetzes ISDN erzeugt und in Echtzeit zu einem Kommunikationsendgerät des Mobil-Kommunikationsnetzes UMTS transportiert werden. Um eine effiziente und wirtschaftliche Ausnutzung der Funkressourcen - insbesondere der bezüglich der Übertragungsbandbreite begrenzten Funkschnittstelle - bei der Echtzeit-Übertragung der komprimierten Videodaten auch in dem Mobil-Kommunikationsnetz UMTS zu ermöglichen, erfolgt durch die Einrichtung SSU eine Umwandlung des empfangenen Datenstroms DS1 konstanter Datenrate DRk in einen Datenstrom DS2 variabler Datenrate DRv. Die Empfangseinheit RC empfängt die über die leitungsvermittelte Verbindung ankommenden Fülldaten F und Nutzdaten N. Die Steuereinheit CTR erkennt sowie entfernt die Fülldaten F aus dem Datenstrom DS1 und formatiert nur die verbleibenden Nutzdaten N zu einem Datenstrom DS2 mit variabler Datenrate DRv um. Die Sendeeinheit TR sendet nur Nutzdaten N im aufbereiteten Datenstrom DS2 variabler Datenrate DRv über eine paketorientierte Verbindung des Mobil-Kommunikationsnetzes UMTS. Das Umformatieren erfolgt durch das Einbetten der Nutzdaten N - d.h. der Videodaten - in das Übertragungsformat beispielsweise eines paketorientierten GPRS-Dienstes (General Packet Radio Service) oder der paketorientierten ATM-Zellen (Asynchronous Transfer Mode). Auf diese Weise kann die durch die Fülldaten F entstandene Datenlücke - im Datenstrom DS1 mit konstanter Datenrate DRk - für die Übertragung weiterer Videodaten oder anderer Nutzdaten N im Datenstrom DS1 variabler Datenrate DRv ausgenutzt werden.

10

15

20

25

30

35

Von der Steuereinheit CTR der Einrichtung SSU werden Qualitätsdaten QoS (Quality of Service) zur Kennzeichnung der Übertragungsqualität der paketorientierten Verbindung bestimmt und der Kontrolleinrichtung RNC des Mobil-Kommunikationsnetzes UMTS über die Sendeeinheit TR mitgeteilt. Damit wird erreicht, daß im zweiten Kommunikationsnetz UMTS eine

6

gleichmäßig gute Übertragung der komprimierten Daten - ausschließlich Nutzdaten N im Datenstrom DS2 variabler Datenrate DRv - im Vergleich zur Übertragungsqualität des ersten Kommunikationsnetzes ISDN herrscht. Zu den Qualitätsdaten QoS gehört beispielsweise die Angabe der Güte des für den Datenstrom DS2 benutzten Übertragungskanals im Mobil-Kommunikationsnetz UMTS, erkennbar an der zulässigen Bitfehlerrate. Die Echtzeitanforderungen an die Übertragung der Videodaten mittels paketorientiertem Verfahren im Mobil-Kommunikationsnetz UMTS spiegelt sich in einer mittleren Datenrate und/oder einer Maximaldatenrate wieder, die als Qualitätsdaten QoS für den Datenstrom mit variabler Datenrate ermittelt werden. Durch die Einstellung der mittleren Datenrate und/oder der Maximaldatenrate ist eine akzeptable Wiedergabequalität der komprimierten Videodaten beim Empfänger erzielbar, da die Echtzeit-Übertragung nur sehr geringe Verzögerungszeiten, z.B. im Millisekundenbereich, gestattet.

10

15

Die Maximaldatenrate entspricht der Gesamtdatenrate im Festnetz ISDN, die sich aus mehreren einzelnen Datenraten ergibt, 20 die bei Übertragung des Videodatenstroms über mehrere leitungsvermittelte Verbindungen benutzt werden. Für das Beispiel der zwei 64 kbit/s Übertragungsstrecken ist die Gesamtdatenrate 128 kbit/s. Die mittlere Datenrate ist durch die Datenmenge gekennzeichnet, die von dem Videokoder innerhalb 25 eines definierten Zeitraums während einer typischen Videokonferenz erzeugt wird. Vorzugsweise wird diese mittlere Datenrate auf der Basis einer Punkt-zu-Punkt-Videokonferenz - d.h. wenig bis unbewegter Hintergrund, keine besonderen Lippenbe-30 wegungen sowie Gestik und Mimik des Teilnehmers - empirisch ermittelt und als konfigurierbarer Parameter der Steuereinheit CTR der Einrichtung SSU zur Verfügung gestellt. Bei Verwendung eines Kodecs gemäß dem Standard ITU-T H.263 und unbewegtem Hintergrund beträgt die mittlere Datenrate einer Punkt-zu-Punkt-Videokonferenz beispielsweise etwa 10 kbit/s 35 bei QCIF Bildformat und 176*144 Bildpunkte.

WO 99/60708

7

PCT/DE99/01392

Patentansprüche

15

20

- 1. Verfahren zur Echtzeit-Übertragung von komprimierten Daten, bei dem
- 5 Nutzdaten (N) und Fülldaten (F) als Datenstrom (DS1) mit konstanter Datenrate (DRk) über eine leitungsvermittelte Verbindung eines ersten Kommunikationsnetzes (ISDN) empfangen werden,
- die in dem Datenstrom (DS1) konstanter Datenrate (DRk) ent-10 haltenen Fülldaten (F) entfernt werden,
 - die in dem Datenstrom (DS1) konstanter Datenrate (DRk) enthaltenen Nutzdaten (N) umformatiert und als Datenstrom (DS2) mit variabler Datenrate (DRv) über eine paketorientierte Verbindung eines zweiten Kommunikationsnetzes (UMTS) gesendet werden.
 - 2. Verfahren nach Anspruch 1, bei dem Qualitätsdaten (QoS) zur Kennzeichnung der Übertragungsqualität der paketorientierten Verbindung dem zweiten Kommunikationsnetz (UMTS) mitgeteilt werden.
- 3. Verfahren nach Anspruch 2, bei dem als Qualitätsdaten (QoS) eine mittlere Datenrate und/oder eine Maximaldatenrate für den Datenstrom (DS2) mit variabler 25 Datenrate (DRv) ermittelt werden.
- 4. Verfahren nach Anspruch 2 oder 3, bei dem die Güte eines für den Datenstrom (DS2) mit variabler Datenrate (DRv) benutzten Übertragungskanals zur Kennzeichnung der Übertragungsqualität verwendet wird.
- 5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem komprimierte Videodaten als Datenstrom (DS1) mit konstanter Datenrate (DRk) über die leitungsvermittelte Verbindung eines leitungsgebundenen Kommunikationsnetzes (ISDN) empfangen und als Datenstrom (DS2) mit variabler Datenrate (DRv) über die

8

paketorientierte Verbindung eines Mobil-Kommunikationsnetzes (UMTS) gesendet werden.

- 6. Anordnung zur Echtzeit-Übertragung von komprimierten Daten, mit einer Einrichtung (SSU), die aufweist
- Mittel (RC) zum Empfangen von Nutzdaten (N) und Fülldaten (F), die als Datenstrom (DS1) mit konstanter Datenrate (DRk) über eine leitungsvermittelte Verbindung eines ersten Kommunikationsnetzes (ISDN) eintreffen,
- 10 Mittel (CTR) zum Entfernen der in dem Datenstrom (DS1) konstanter Datenrate (DRk) enthaltenen Fülldaten (F) und zum Umformatieren der in dem Datenstrom (DS1) konstanter Datenrate (DRk) enthaltenen Nutzdaten (N),
- Mittel (TR) zum Senden der umformatierten Nutzdaten als Da-15 tenstrom (DS2) mit variabler Datenrate (DRv) über eine paketorientierte Verbindung eines zweiten Kommunikationsnetzes (UMTS).
 - 7. Anordnung nach Anspruch 6, bei der

5

- 20 die Einrichtung (SSU) zwischen einem leitungsgebundenen Kommunikationsnetz (ISDN) und einem Mobil-Kommunikationsnetz (UMTS) angeordnet ist.
- 8. Anordnung nach Anspruch 6 oder 7, bei der 25 die Einrichtung (SSU) zur Übertragung von komprimierten Videodaten vorgesehen ist.

FIG