МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики Отделение интеллектуальных кибернетических систем

Лабораторная работа №1

Выполнила студентка Группы ИС-Б17 Отделения ИКС Петренко В. Ю. Проверила: профессор, д.т.н. Гулина О. М. 1. Алгоритм

Использовала метод середины квадратов.

Формула заполнения массива псевдослучайными числами:

$$\gamma_{i+1} = 10^{-k} \mathcal{L} \left(10^k \mathcal{L} \left((1 - y_i)^3 10^k \right) \right)$$

Формула хи-квадрат распределения (критерий Пирсона):X²⁼

$$\sum_{i=1}^{r} \frac{\left(m - np\right)^2}{np}$$

(Использовала python 3.6)

- 1. k=2500 #число элементов
- 2. r=10 #кол-во интервалов
- 3. p=0.1 #теоретическая вероятность попадания в каждый интервал
- 4. array=[] #массив псевдослучайных чисел
- 5. I aper=0 #длина апериодичности
- 6. l_per=0 #длина периода
- 7. р_і =[] #количество попаданий в каждый интервал
- 8. X2=0 #хи-вквадрат

9.

- 10. def fraction(x):
- 11. # функция для расчета дробной части
- 12. return x int(x)

13.

- 14. def fillArray():
- 15. # функция для заполнения массива
- 16. y0=float(input("Введите гамма-нулевое: "))
- 17. accrs=int(input("Введите количество знаков после запятой: "))
- 18. for i in range(k):
- 19. array.append(y0)
- 20. y0=(10 ** -accrs)*int((10 ** accrs)*fraction(float(((1-y0) ** 3)*(10 ** accrs)))) #метод середины квадратов
- 21. print("Массив заполнен псевдослучайными числами.")

22.

- 23. def periodLength():
- 24. global l aper, l per
- 25. print("Определение длины периода и апериодичности.")
- 26. flag=True #пока в последовательности будут одинаковые элементы
- 27. for i in range(k):

```
28.
             for i in range(i+1, k):
29.
               if(abs(array[i]-array[i])<0.0000001):#сравниваем
                  print("Совпадение в ", i, "-ом и ", j, "-ом элементах:
30.
  ", array[i], " и ", array[j])
31.
                  I aper = i
32.
                  I per = i-i
                  flag=False
33.
34.
               if not flag:
35.
                  break
             if flag:
36.
37.
               #если нет одинаковых элементов, длина
  апериодичности = длине последовательности
38.
               I aper=k
               I_per=0
39.
             if not flag:
40.
41.
               break
42.
          print("Период: ", I per)
          print("Апериодичность: ", I aper)
43.
44.
45.
       def calc pi():
46.
          print("Рассчет количества попаданий в каждый
  интервал.")
          for i in range(r):
47.
48.
             p i.append(0)
          print("[ ", end = ' ')
49.
50.
          for i in range(r):
51.
             for i in range(l aper):
52.
               if (array[j]>(i*p) and array[j]<((i+1)*p)):
53.
                  p i[i] += 1
          for i in range(r):
54.
55.
             print(p i[i], end = ' ')
          print(" ] ")
56.
57.
58.
       def calc X2():
          print("Paccчeт X2.")
59.
60.
          X2 = 0
          for i in range(r):
61.
62.
             X2+=((p i[i]-(l aper*p)) ** 2)/(l aper*p)
          print("X2 = ", X2)
63.
64.
65.
       def show():
```

```
66.
         n=int(input("Вывести последовательность до: "))
67.
         if n>k:
           n=k
68.
69.
         for i in range(n):
70.
           print(array[i], end = ', ')
71.
72.
       print("Программа генерирует псевдослучайную
  последовательность из 2500 элементов на интервале (0;1)\n")
       print("Затем расчитывает длины периода и апериодичности
73.
  и вероятность попадания в каждый интервал (10 интервалов)\
  n")
74.
       print("После чего считает X-квадрат для
  последовательности длиной апериодичности.")
75.
       fillArray()
76.
       periodLength()
       calc pi()
77.
78.
       calc X2()
```

2. Результаты

show()

k=2

79.

Nº	γο	Р	L
эксперимен			
та			
1	0,12	1	22
2	0,34	1	15
3	0,56	1	12
4	0,63	1	6
5	0,88	1	2

k=4

Nº	γο	Р	L
эксперимен			
та			

1	0,1234	102	124
2	0,1111	102	118
3	0,1222	102	159
4	0,8765	102	127
5	0,5678	102	130

k=6

N₂	γο	Р	L
эксперимен			
та			
1	0.234567	1414	1739
2	0.342365	1414	1631
3	0.236790	1414	1704
4	0.456456	1414	1734
5	0.512345	1414	1692

k=7

№ эксперимен та	Υο	Р	L
1	0.1234567	0	2500
2	0.2312453	0	2500
3	0.2457654	0	2500
4	0.4562853	0	2500
5	0.8673945	0	2500

Nº	γ ₀	Р	L
эксперимен			
та			
1	0.13243546	0	2500
2	0,45347234	0	2500
3	0,54657629	0	2500
4	0,56428546	0	2500
5	0,96542378	0	2500

Yoi	χ²	Вывод
0,00012531	4,5	данная последовательность распределена по равномерному закону с точностью примерно 50%
0,23540014	8,52	данная последовательность распределена по равномерному закону с точностью примерно 10%
0,39554201	6,06	данная последовательность распределена по равномерному закону с точностью примерно 40%
0,87126303	13,5	данная последовательность распределена по равномерному закону с точностью примерно 95%
0,91001369	5,16	данная последовательность распределена по равномерному закону с точностью примерно 20%

Случай 1. При $\gamma_0 = 0,00012531$

41	36	32	29	32	34	30	38	28
1	2	3	4	5	6	7	8	9

Случай 2. При $\gamma_0 = 0,23540014$

41	24	36	28	29	42	31	35	34
1	2	3	4	5	6	7	8	9

Случай 3. При $\gamma_0 = 0,39554201$

41	41	34	28	35	32	31	31	27
1	2	3	4	5	6	7	8	9

Случай 4. При $\gamma_0 = 0,87126303$

29	41	33	37	40	31	43	22	24
1	2	3	4	5	6	7	8	9

Случай 5. При $\gamma_0 = 0,91001369$

40	28	33	30	37	39	34	32	27
1	2	3	4	5	6	7	8	9

3. Выводы: При увеличении количества знаков после запятой растут длины периода и апериодичности. Гипотеза о соответствии равномерному закону распределения по значениям X^2 подтвердилась лишь в некоторых случаях.