Table 1: Distributions provided by the IACS module included with runions

Name	1: Distributions provided by the JA Usage	Density	Lower
Pareto I ¹	dpar1(alpha,sigma) $\alpha>0,\sigma>0$	$\alpha \sigma^{\alpha} x^{-(\alpha+1)}$	σ
Pareto II	$\begin{array}{l} {\rm dpar2(alpha,sigma,mu)} \\ \alpha>0,\sigma>0 \end{array}$	$\frac{\alpha}{\sigma} \left(\frac{\sigma + x - \mu}{\sigma} \right)^{-(\alpha + 1)}$	μ
Pareto III	$\label{eq:continuity} \begin{split} & \texttt{dpar3(sigma,mu,gamma)} \\ & \sigma > 0, \gamma > 0 \end{split}$	$\frac{\left(\frac{x-\mu}{\sigma}\right)^{\frac{1}{\gamma}-1}\left(\frac{x-\mu}{\sigma}^{\frac{1}{\gamma}}+1\right)^{-2}}{\gamma\sigma}$	μ
Pareto IV	dpar4(alpha,sigma,mu,gamma) $\alpha>0,\sigma>0,\gamma>0$	$\frac{\alpha \left(\frac{x-\mu}{\sigma}\right)^{\frac{1}{\gamma}-1} \left(\frac{x-\mu}{\sigma}^{\frac{1}{\gamma}}+1\right)^{-(\alpha+1)}}{\gamma \sigma}$	μ
Lomax ²	$\label{eq:alpha,sigma} \begin{split} & \texttt{dlomax(alpha,sigma)} \\ & \alpha > 0, \sigma > 0 \end{split}$	$\frac{\alpha}{\sigma} \left(1 + \frac{x}{\sigma} \right)^{-(\alpha+1)}$	0
DuMouchel ³	$ ext{dmouch(sigma)} \ \sigma > 0$	$\frac{\sigma}{(x+\sigma)^2}$	0
Gen. Par.	$\begin{array}{l} {\tt dgenpar(sigma,mu,xi)} \\ \sigma > 0 \end{array}$	$\frac{1}{\sigma} \left(1 + \xi \frac{x - \mu}{\sigma} \right)^{-\left(\frac{1}{\xi} + 1\right)}$	$\mu^{~4}$
		For $\xi = 0$: $\frac{1}{\sigma} e^{\frac{-(x-\mu)}{\sigma}}$	μ

This is equivalent to the dpar(alpha,c) distribution and provided for naming consistency ² This is referred to as the '2nd kind Pareto' distribution by Van Hauwermeiren and Vose (2009); an alternative form for the PDF of this distribution is given by: $\frac{\alpha \sigma^{\alpha}}{(x+\sigma)^{\alpha+1}}$

³ This distribution was suggested by DuMouchel (1994) as a suitable prior for τ in a Bayesian meta-analysis setting, and is equivalent to a Lomax distribution with $\alpha=1$

⁴ The Generalised Pareto distribution also has an upper bound of $x \le \mu - \frac{\sigma}{\xi}$ for $\xi < 0$