

Seasonal & Subseasonal Forecasting Projects

Seasonal & Subseasonal Forecasting Projects

Emily Lopez August 7, 2020

One of my first exercises with NMME datasets, xarray, and plotting:

Monthly Climatology Difference between Models CanCM4i and CanSIPSv2

Outline

Seasonal Forecasts

- Overview
- Documentation

Subseasonal Forecasts

- Overview
- Documentation
- Next Steps

Seasonal Forecasts

Characterizing Uncertainty Analysis

Table 2. Summary of the dynamical models employed for our preliminary analyses. All the models have a spatial resolution of 1 degree (~100km), and have a common period of 1993-2010 for the hindcast period.

Source	Model	Hindcast Period	Forecast Period	Ensemble Size*		
NMME	CanCM4i	1981-2018	2017-Present	10		
NMME	CanSIPSv2	1981-2018	2019-Present	20		
NMME	GEM-NEMO	1981-2018	2019-Present	10		
NMME	GFDL-CM2.5-FLOR-B01	1980-Present		12		
NMME	NCEP-CFSv2	1982-2010	2011-Present	24 (28)		
NMME	NASA-GEOSS2S	1981-2017	2017-Present	4		
ECMWF	SEAS5	1993-2016	2017-Present	25 (51)		
*The value in the parenthesis shows the ensemble size for the forecast period						

Overview

Goal: Better understand seasonal forecast uncertainty from model, ensemble members, lead time, month/season, and region.

Importance: Understanding the differences among the models allows us to better comprehend the predictability in time and locations of interest.

ClimateAl's Use: Issue a probabilistic forecast as opposed to a deterministic forecast ("single value") on the product dashboard to help understand the forecast uncertainty.

Seasonal Forecasts Documentation

Bias-Correction, Uncertainty Estimation, and Evaluation of Seasonal Forecasts

TABLE OF CONTENTS

- 1. Introduction
- 2. Terminology
- 3. Data Sources
- 4. Methodology
 - 4.1. Bias Correction
 - 4.2. Evaluation
 - 4.3. Uncertainty Analysis
- 5. Concluding Remarks
- 6. Appendix
 - 6.1. GitHub Repository
 - 6.2. Complete List of Dependencies for Uncertainty Analysis
- 7. References

Subseasonal Forecasts

Analyzing SubX (Subseasonal Experiment) Models

SubX Week 3-4 2m Temperature Anomalies (deg C): Valid 2 weeks ending AUG 28

Overview

Goal: Preliminary analysis and data extraction for future use of these novel datasets.

Importance: Allows for risk reduction, disaster preparedness, and valuable routine planning and resource management.

ClimateAl's Use: Potential to provide customers with an expanded range of weather forecasts to help in their management/planning.

Figure is from the SubX Project site

ubseasonal Forecasts Documentation

TABLE OF CONTENTS

Introduction

Terminology

Data Sources

Dataset Descriptions

Next Steps

Appendix

6.1. GitHub Repository

6.2. Additional Resources

References

Table 3. Summary of SubX model data for the common hindcast period 1999-2014.

Model	Hindcast Period	Frequency	Initialization Day	Common Period (as seen in dataset)
ECCC-GEM	1/4/1995 - 12/28/2014	Every 7 days	Mon	1/1/1999 - 12/28/2014
ECCC-GEPS5	1/3/1998 - 12/27/2017	Every 7 days	Sun	1/1/1999 - 12/31/2014
ECCC-GEPS6	1/3/1998 - 12/27/2017	Every 7 days	Sat	1/1/1999 - 12/31/2014
EMC-GEFS	1/6/1999 - 12/28/2016	Every 7 days	Wed	1/6/1999 - 12/31/2014
ESRL-FIMr1p1	1/6/1999 - 6/28/2017	Every 7 days	Wed	1/6/1999 - 12/31/2014
GMAO-GEOS_V2p1	1/1/1999 - 12/27/2016	Every 5 days	Varies (first day in our DS is Fri)	1/1/1999 - 12/31/2014
NCEP-CFSv2	1/1/1999 - 9/30/2017	Every day 4x a day	Daily (times: 00,06,12,18)	1/1/1999 - 12/31/2014
NRL-NESM	1/2/1999 - 12/31/2016	4 days every 7 days	Sat-Tues	1/2/1999 - 12/30/2014
RSMAS-CCSM4	1/7/1999 -12/31/2016	Every 7 days	Wed and Thurs (first date in dataset starts on Thurs)	1/7/1999 - 12/31/2014

Next Steps

Continue working with the SubX models to determine if they are useful for ClimateAI.

Immediate action: Complete data preprocessing

Down the road: Apply a post-processing technique for bias correcting, evaluate the forecasts, and characterize the anomaly

forecasts' uncertainty

Special thanks to the AI-team who also worked on these projects

Ali Ahmadalipour, Ankur Mahesh, Edgar Rojas, Lorenzo Brown, Maximilian Evans, Ron Domingo