Introduction to Information Security

Objectives

- Understand the definition of information security
- Comprehend the history of computer security and how it evolved into information security
- Understand the key terms and concepts of information security
- Outline the phases of the security systems development life cycle
- Understand the roles of professionals involved in information security within an

Introduction

 Information security: a "well-informed sense of assurance that the information risks and controls are in balance." —Jim Anderson, Inovant (2002)

The History of Information Security

- Began immediately after the first mainframes were developed
- Groups developing code-breaking computations during World War II created the first modern computers
- Physical controls to limit access to sensitive military locations to authorized personnel
- Rudimentary in defending against physical cotheft, espionage, and sabotage

and Computer Science

The 1960s

- Advanced Research Procurement Agency (ARPA) began to examine feasibility of redundant networked communications
- Larry Roberts developed ARPANET from its inception

The 1970s and 80s

- ARPANET grew in popularity as did its potential for misuse
- Fundamental problems with ARPANET security were identified
 - No safety procedures for dial-up connections to ARPANET
 - Non-existent user identification and authorization to system
- Late 1970s: microprocessor expanded computing capabilities and security threats

College of Information Technology and Computer Science

R-609

- Information security began with Rand Report R-609 (paper that started the study of computer security)
- Scope of computer security grew from physical security to include:
 - Safety of data
 - Limiting unauthorized access to data
 - Involvement of personnel from multiple levels of collegean organization

Information Technology and Computer Science

The 1990s

- Networks of computers became more common; so too did the need to interconnect networks
- Internet became first manifestation of a global network of networks
- In early Internet deployments, security was treated as a low priority

The Present

- The Internet brings millions of computer networks into communication with each other many of them unsecured
- Ability to secure a computer's data influenced by the security of every computer to which it is connected

What is Security?

- "The quality or state of being secure—to be free from danger"
- A successful organization should have multiple layers of security in place:
 - Physical security
 - Personal security
 - Operations security
 - Communications security
 - Network security
 - Information security

College of Information Technology and Computer Science

What is Information Security?

- The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information
- Necessary tools: policy, awareness, training, education, technology
- C.I.A. triangle was standard based on confidentiality, integrity, and availability
- C.I.A. triangle now expanded into list of critical characteristics of information

Information Technology and Computer Science

Components of Information Security

College of Information Technology and Computer Science

Critical Characteristics of Information

- The value of information comes from the characteristics it possesses:
 - Availability
 - Accuracy
 - Authenticity
 - Confidentiality
 - Integrity
 - Utility

National Security Telecommunications and Information Systems Security Committee (NSTISSC) Security Model

NSTISSC Security Model

Components of an Information System

 Information System (IS) is entire set of software, hardware, data, people, procedures, and networks necessary to use information as a resource in the organization

Securing Components

- Computer can be subject of an attack and/or the object of an attack
 - When the subject of an attack, computer is used as an active tool to conduct attack
 - When the object of an attack, computer is the entity being attacked

Computer as the Subject and Object of an Attack

CENTER OF EXCELLENCE in Information Technology

Balancing Information Security and Access

- Impossible to obtain perfect security—it is a process, not an absolute
- Security should be considered balance between protection and availability
- To achieve balance, level of security must allow reasonable access, yet protect against threats

Approaches to Information Security Implementation: Bottom-Up Approach

- Grassroots effort: systems administrators attempt to improve security of their systems
- Key advantage: technical expertise of individual administrators
- Seldom works, as it lacks a number of critical features:
 - Participant support
 - Organizational staying power

Information Technology and Computer Science

Approaches to Information Security Implementation: Top-Down Approach

- Initiated by upper management
 - Issue policy, procedures and processes
 - Dictate goals and expected outcomes of project
 - Determine accountability for each required action
- The most successful also involve formal development strategy referred to as systems development life cycle

The Systems Development Life Cycle

- Systems development life cycle (SDLC) is methodology and design for implementation of information security within an organization
- Methodology is formal approach to problem-solving based on structured sequence of procedures
- Using a methodology
 - ensures a rigorous process
 - avoids missing steps
- Goal is creating a comprehensive security posture/program
- Traditional SDLC consists of six general phases
 College of Information Technology
 and Computer Science

SDLC Waterfall Methodology

CENTER OF EXCELLENCE In Information Technology

Investigation

- What problem is the system being developed to solve?
- Objectives, constraints and scope of project are specified
- Preliminary cost-benefit analysis is developed
- At the end, feasibility analysis is performed to assesses economic, technical, and behavioral feasibilities of the process

College of Information Technology and Computer Science

Analysis

- Consists of assessments of the organization, status of current systems, and capability to support proposed systems
- Analysts determine what new system is expected to do and how it will interact with existing systems
- Ends with documentation of findings and update of feasibility analysis

Logical Design

- Main factor is business need; applications capable of providing needed services are selected
- Data support and structures capable of providing the needed inputs are identified
- Technologies to implement physical solution are determined
- Feasibility analysis performed at the end

Physical Design

- Technologies to support the alternatives identified and evaluated in the logical design are selected
- Components evaluated on make-or-buy decision
- Feasibility analysis performed; entire solution presented to end-user representatives for approval

Information Technology and Computer Science

Implementation

- Needed software created; components ordered, received, assembled, and tested
- Users trained and documentation created
- Feasibility analysis prepared; users presented with system for performance review and acceptance test

Maintenance and Change

- Consists of tasks necessary to support and modify system for remainder of its useful life
- Life cycle continues until the process begins again from the investigation phase
- When current system can no longer support the organization's mission, a new project is implemented

The Security Systems Development Life Cycle

- The same phases used in traditional SDLC may be adapted to support specialized implementation of an IS project
- Identification of specific threats and creating controls to counter them
- SecSDLC is a coherent program rather than a series of random, seemingly unconnected actions

Investigation

- Identifies process, outcomes, goals, and constraints of the project
- Begins with enterprise information security policy
- Organizational feasibility analysis is performed

Analysis

- Documents from investigation phase are studied
- Analyzes existing security policies or programs, along with documented current threats and associated controls
- Includes analysis of relevant legal issues that could impact design of the security solution
- The risk management task begins

Logical Design

- Creates and develops blueprints for information security
- Incident response actions planned:
 - Continuity planning
 - Incident response
 - Disaster recovery
- Feasibility analysis to determine whether project should continue or be outsourced

Physical Design

- Needed security technology is evaluated, alternatives generated, and final design selected
- At end of phase, feasibility study determines readiness of organization for project

Implementation

- Security solutions are acquired, tested, implemented, and tested again
- Personnel issues evaluated; specific training and education programs conducted
- Entire tested package is presented to management for final approval

Maintenance and Change

- Perhaps the most important phase, given the ever-changing threat environment
- Often, reparation and restoration of information is a constant duel with an unseen adversary
- Information security profile of an organization requires constant adaptation as new threats emerge and old threats evolve

Security Professionals and the Organization

- Wide range of professionals required to support a diverse information security program
- Senior management is key component; also, additional administrative support and technical expertise required to implement details of IS program

IN Information Technology

Senior Management

- Chief Information Officer (CIO)
 - Senior technology officer
 - Primarily responsible for advising senior executives on strategic planning
- Chief Information Security Officer (CISO)
 - Primarily responsible for assessment, management, and implementation of IS in the organization
 - Usually reports directly to the CIO

Information Security Project Team

- A number of <u>individuals</u> who are experienced in one or more facets of technical and nontechnical areas:
 - Champion
 - Team leader
 - Security policy developers
 - Risk assessment specialists
 - Security professionals
 - Systems administrators

Data Ownership

- Data Owner: responsible for the security and use of a particular set of information
- Data Custodian: responsible for storage, maintenance, and protection of information
- Data Users: end users who work with information to perform their daily jobs supporting the mission of the organization

Communities Of Interest

- Group of individuals united by similar interest/values in an organization
 - Information Security Management and Professionals
 - Information Technology Management and Professionals
 - Organizational Management and Professionals

Key Terms

- Access
- Asset
- Attack
- Control, Safeguard or Countermeasure
- Exploit
- Exposure
- Hacking
- Object

- Security Blueprint
- Security Model
- Security Posture or Security Profile
- Subject
- Threats
- Threat Agent
- Vulnerability

Summary

- Information security is a "well-informed sense of assurance that the information risks and controls are in balance."
- Computer security began immediately after first mainframes were developed
- Successful organizations have multiple layers of security in place: physical, personal, operations, communications, network, and information.

College of Information Technology and Computer Science

Summary

- Security should be considered a balance between protection and availability
- Information security must be managed similar to any major system implemented in an organization using a methodology like SecSDLC