Community Cheatsheet for 18.6501x Page 1 of x	Concavity	5 Expectation and Variance Expectation	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$	12 Likelihood Let $(E, \{P_{\theta}\}_{\theta \in \Theta})$ denote a discrete or con-
1 Algebra	4 Important probability distributions Bernoulli	Variance $Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)$	7 Statistical models 8 Estimators	tinuous statistical model. Let p_{θ} denote
Absolute Value Inequalities:	Parameter $p \in [0, 1]$, discrete	Covariance	9 Confidence intervals	the pmf or pdf of P_{θ} . Let $X_1, \dots, X_n \stackrel{iid}{\sim} P_{\theta^*}$ where the parameter θ^* is unknown.
$ f(x) < a \Rightarrow -a < f(x) < a$	$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	The Covariance is a measure of how	Onesided	Then the likelihood is the function
$ f(x) > a \Rightarrow f(x) > a \text{ or } f(x) < -a$		much the values of each of two correlated random variables determines the other	Twosided	$L_n: E^n \times \Theta$
2 Matrixalgebra 3 Calculus	$\mathbb{E}[X] = p$ $Var(X) = p(1-p)$	$Cov(X, Y) = \sigma(X, Y) = \sigma_{(X,Y)}$	Delta Method 10 Hypothesis tests Onesided	$L_n(x_1,\ldots,x_n,\theta) = \prod_{i=1}^n P_{\theta}[X_i = x_i]$
Concavity in 1 dimension If $g: I \to \mathbb{R}$ is twice differentiable in the	Poisson Parameter λ . discrete, approximates the	Cov(X, Y) = Cov(Y, X) $Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	Twosided P-Value	Loglikelihood: $\ell_n(\theta) = \ln(L(x_1,, x_n \theta)) =$
interval I , i.e. $g''(x)$ exists for all $x \in I$, then g is concave if and only if $g''(x) \le 0$ for all	binomial PMF when n is large, p is small, and $\lambda = np$.	$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	11 Distance between distributions Total variation	$= ln(\prod_{i=1}^{n} f_{\theta}(x_i)) =$ $= \sum_{i=1}^{n} ln(f_{\theta}(x_i))$
concave if and only if $g(x) \le 0$ for all $x \in I$;	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda) \frac{\lambda^k}{k!}$ for $k = 0, 1, \dots$,	$Cov(X, Y) = \mathbb{E}[(X)(Y - \mu_Y)]$	The total variation distance TV between	
strictly concave if $g''(x) < 0$ for all $x \in I$; convex if and only if $g''(x) \ge 0$ for all $x \in I$;		$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$	the propability measures P and Q with a sample space E is defined as:	Bernoulli Likelihood 1 trial: $L_1(p) = p^x (1-p)^{1-x}$
strictly convex if $g''(x)>0$ for all $x \in I$;	$Var(X) = \lambda$	Cov(aX + h, bY + c) = abCov(X, Y)	$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} \mathbf{P}(A) - \mathbf{Q}(A) ,$	- 12 / 2 / 2 /
Multivariate Calculus	Exponential			Loglikelihood 1 trial:
G radient Let	Parameter λ , continuous	Cov(X, X + Y) = Var(X) + cov(X, Y)	Calculation with f and g :	$\ell_1(p) = x \log(p) + (1 - x) \log(1 - p)$
(0)	$f_X(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$ $F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$	Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z)	$TV(\mathbf{P}, \mathbf{Q}) = \begin{cases} \frac{1}{2} \sum_{x \in E} f(x) - g(x) , & \text{discr} \\ \frac{1}{2} \int_{x \in E} f(x) - g(x) dx, & \text{cont} \end{cases}$	
$f: \mathbb{R}^d \longrightarrow \mathbb{R}\theta = \theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto f(\theta)$	$F_x(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are independent,	Symmetry: $d(\mathbf{P}, \mathbf{Q}) = d(\mathbf{Q}, \mathbf{P})$	$L_n(x_1,,x_n,p) = p\sum_{i=1}^n x_i (1-p)^{n-\sum_{i=1}^n x_i}$
denote a twice differentiable function,	$\mathbb{E}[X] = \frac{1}{2}$	they are uncorrelated. The converse is not always true. It is only true if <i>X</i> and	nonnegative:	T 191 191 1 4 2 1
the Gradient v of f is defined as.	$Var(X) = \frac{1}{12}$	Y form a gaussian vector, ie. any linear	$d(\mathbf{P}, \mathbf{Q}) \ge 0$ definite:	Loglikelihood n trials:
$\nabla f: \mathbb{R}^d \to \mathbb{R}^d$	$Vur(\Lambda) = \frac{1}{\lambda^2}$	combination $\alpha X + \beta Y$ is gaussian for all	$d(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$	$\ell_n(p) =$
$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \end{pmatrix}$	Normal (Gaussian)	$(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$. Variance and expectation of mean of n iid	triangle inequality: $d(\mathbf{P}, \mathbf{V}) \le d(\mathbf{P}, \mathbf{Q}) + d(\mathbf{Q}, \mathbf{V})$	$= \sum_{i=1}^{n} x_i \ln(p) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p)$
$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \qquad \begin{vmatrix} \frac{\partial f}{\partial \theta_2} \\ \end{vmatrix}$	Parameters μ and $\sigma^2 > 0$, continuous	random variables	If the support of P and Q is disjoint:	Binomial
	$f(x) = \frac{1}{\sqrt{(2\pi\sigma)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and	$d(\mathbf{P}, \mathbf{V}) = 1$	Likelihood:
$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial \theta_1}{\partial f} \\ \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial f}{\partial \theta_d} \end{pmatrix} \Big _{\theta}$	$\mathbb{E}[X] = \mu$	$Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$ and	TV between continuous and discrete r.v: $d(\mathbf{P}, \mathbf{V}) = 1$	
$\left(\frac{\partial f}{\partial \theta_A}\right)_{\theta}$	$Var(X) = \sigma^2$	$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$	KL divergence	$L_n(x_1,\ldots,x_n,p,n) = \sum_{n=1}^{\infty} \sum_{n=1}$
Hessian			the KL divergence (also known as rela-	$= nC_x p^x (1-p)^{n-x} = p^{x_i} (1-p)^{1-x_i}$
The Hessian of f is the matrix	Linearity:	Variance of the Mean:	tive entropy) KL between between the propability measures <i>P</i> and <i>Q</i> with the	Loglikelihood:
$\mathbf{H}: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ whose entry in the <i>i</i> -th row and <i>j</i> -th column is defined by	$aX + b \sim N(X + b, a^2\sigma^2)$	$Var(\overline{X_n}) = \left(\frac{\sigma^2}{n}\right)^2 Var(X_1 + X_2,, X_n) =$	common sample space E and pmf/pdf functions f and g is defined as:	$\ell_n(p,n) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{p}{2} \right) + \frac{1}{2$
$(\mathbf{H}f)_{ij} := \frac{\partial^2}{\partial \theta_i \partial \theta_i} f, 1 \le i, j \le d$	Symmetry:	$\frac{\sigma^2}{n}$.	$\left(\sum_{x\in F} p(x) \ln \left(\frac{p(x)}{x}\right)\right)$ discr	$= \ln(nC_x) + x \ln(p) + (n-x) \ln(1-p)$
Semi-Definiteness	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	Expectation of the mean:	$KL(\mathbf{P}, \mathbf{Q}) = \begin{cases} \sum_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right), & \text{discr} \\ \int_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx, & \text{cont} \end{cases}$	C is a constant from n choose k, disappears after differentiating.
A symmetric (real-valued) $d \times d$ matrix A is:		$E[\overline{X_n}] = \frac{1}{n}E[X_1 + X_2,, X_n] = \mu.$ 6 LLN and CLT	Not a distance! Sum over support of <i>P</i> !	Poisson Likelihood: $\sum_{i=1}^{n} x_{i}$
Positive semi-definite if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq$	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and	Asymetric in general:	$L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{n\lambda}$
Positive semi-definite if $\mathbf{x}^{-}\mathbf{A}\mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{d}$.	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t - \mu}{\sigma}\right)$	$Var(X_i) = \sigma^2 \text{ for all } i = 1, 2,, n$	$KL(\mathbf{P}, \mathbf{Q}) \neq KL(\mathbf{Q}, \mathbf{P})$ Nonnegative:	Loglikelihood:
Positive definite if inequality above is	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Weak and strong law of large numbers:	$KL(\mathbf{P}, \mathbf{Q}) \ge 0$ Definite:	$\ell_n(\lambda) =$
strict $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors		— 1 Pas	if $P = Q$ then $KL(P,Q) = 0$	$= -n\lambda + \log(\lambda)(\sum_{i=1}^{n} x_i) - \log(\prod_{i=1}^{n} x_i!)$
$\mathbf{x} \in \mathbb{R}^d$	Uniform Parameters <i>a</i> and <i>b</i> , continuous.	$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P,a.s.} \mu.$	Does not satisfy triangle inequality in general:	Gaussian Likelihood:
Negative semi-definite (resp. negative	$\mathbf{f}_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$	$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow{P,a.s.} \mathbf{E}[g(X)]$	$KL(\mathbf{P}, \mathbf{V}) \not\leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$	$L(x_1 \dots x_n; \mu, \sigma^2) =$
definite) if $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is non-positive (resp. negative) for all $\mathbf{x} \in \mathbb{R}^d - \{0\}$.	$\mathbb{E}[X] = \frac{a+b}{2}$	Central Limit Theorem:	Estimator of KL divergence: $\binom{n_{Ox}(X)}{1}$	$= \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$
Positive (or negative) definiteness implies positive (or negative) semi-definiteness.	$Var(X) = \frac{a}{2}$ $Var(X) = \frac{(b-a)^2}{12}$	$\sqrt{(n)} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0, 1)$	$KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[\ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right],$ $\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$	$(\sigma \sqrt{2\pi})$ Loglikelihood:
south to the survey sellin delinitelless.		** *	$n \angle_{i=1} \log(P\theta(X_1))$	

Community Cheatsheet for 18.6501x

$$\ell_n(\mu, \sigma^2) = \\ = -nlog(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

Exponential Likelihood:

Likelihood:

$$L(x_1...x_n; \lambda) = \lambda^n \exp(-\lambda \sum_{i=1}^n x_i)$$

Loglikelihood:

Uniform

Likelihood:

$$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$$

Loglikelihood:

Maximum likelihood estimation

Cookbook: take the log of the likelihood function. Take the partial derivative of the loglikelihood function with respect to the parameter. Set the partial derivative to zero and solve for the parameter. If an indicator function on the pdf/pmf does not depend on the parameter, it can be ignored. If it depends on the parameter it can't be ignored because there is an discontinuity in the loglikelihood function. The maximum/minimum of the X_i is then the maximum likelihood estimator. Maximum likelihood estimator:

Let $\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical model associated with a sample of i.i.d. random variables $X_1, X_2, \dots, \dot{X}_n$. Assume that there exists $\theta^* \in \Theta$ such that $X_i \sim \mathbf{P}_{\theta^*}$.

The maximum likelihood estimator is the (unique) θ that minimizes $\widetilde{\mathrm{KL}}(\mathbf{P}_{\theta^*},\mathbf{P}_{\theta})$ over the parameter space. (The minimizer of the KL divergence is unique due to it being strictly convex in the space of distributions once is fixed.)

$$\begin{aligned} \widehat{\theta}_{n}^{MLE} &= \\ \operatorname{argmin}_{\theta \in \Theta} \widehat{\mathrm{KL}}_{n} \left(\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta} \right) &= \\ \operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_{i}) &= \\ \operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_{i}) \right) \end{aligned}$$

Gaussian Maximum-loglikelihood esti-

MLE estimator for
$$\sigma^2 = \tau$$
: $\hat{\tau}_n^{MLE} = \frac{1}{n} \sum_{i=1}^n X_i^2$

MLE estimators:

$$\hat{\mu}_n^{MLE} = \frac{1}{n} \sum_{i=1} (x_i)$$

12.1 Fisher Information

The Fisher information, captures the negative of the expected curvature of the loglikelihood function.

Let $(\mathbb{R}, \{P_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous The cumulative distribution function statistical model. Let $f_{\theta}(x)$ denote the (cdf) of a random vector mathbf X is pdf (probability density function) of the continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ .

Formula for the calculation of Fisher Information of *X*:

$$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$$

Models with one parameter (ie. Bernulli):

$$\mathcal{I}(\theta) = Var(\ell'(\theta))$$

$$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$$

Models with multiple parameters (ie. Gaussians):

$$\mathcal{I}(\theta) = -\mathbb{E}[H\ell(\theta)]$$

Cookbook:

Better to use 2nd derivative.

- · Find loglikelihood
- Take second derivative (=Hessian if multivariate)
- Massage second derivative or Hessian to use with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)]$

Asymptotic normality of the maximum likelihood estimator

Under certain conditions (see slides) the MLE is asymptotically normal. This applies even if the MLE is not the sample

The asymptotic variance of the MLE is the inverse of the fisher information.

$$\sqrt(n)(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$$

13 Multivariate Random Variables

A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ of dimension $d \times 1$ is a vector-valued function from a probability space ω to

$$\mathbf{X}: \Omega \longrightarrow \mathbb{R}^{d}$$

$$\omega \longrightarrow \begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \\ \vdots \\ X^{(d)}(\omega) \end{pmatrix}$$

where each $X^{(k)}$, is a (scalar) random variable on Ω .

The probability distribution of a random vector **X** is the joint distribution of its $\Sigma == \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mathbb{E}[\mathbf{X}]\mathbb{E}[\mathbf{X}]^T =$ components $X^{(1)}, \dots, X^{(d)}$. $= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mu_{\mathbf{X}}\mu_{\mathbf{X}}^T.$

defined as $F: \mathbb{R}^d \to [0,1]$

$$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$$

Convergence in Probability in Higher Dimension

In other words, the sequence $X_1, X_2,...$ converges in probability to X if and only if each component sequence $X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability to $X^{(k)}$.

Covariance Matrix

Let X be a random vector of dimension $d \times 1$ with expectation $\mu_{\mathbf{X}}$.

Let $\mu \triangleq \mathbb{E}[X]$ denote the entry-wise mean,

i.e
$$\mathbb{E}[\mathbf{X}] = \begin{pmatrix} \mathbb{E}[X^{(1)}] \\ \vdots \\ \mathbb{E}[X^{(d)}] \end{pmatrix}$$

The covariance matrix Σ is defined as the following matrix outer product: $\Sigma =$ $\mathbb{E}[(\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})^T].$

$$\Sigma == \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mathbb{E}[\mathbf{X}]\mathbb{E}[\mathbf{X}]^T =$$

$$= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mu_{\mathbf{X}}\mu_{\mathbf{X}}^T.$$