Einstein's AB Coefficients

Einstein's AB Coefficients

$$\begin{split} R_{21}^{spon} &= A_{21} f_2 \Big(1 - f_1 \Big) \\ R_{21}^{stim} &= B_{21} f_2 \Big(1 - f_1 \Big) P(E_{21}) \\ R_{12} &= B_{12} f_1 \Big(1 - f_2 \Big) P(E_{21}) \end{split}$$

For non-monochromatic light:

$$P(E_{21}) = n_{ph} N(E_{21})$$
:

number of photons per unit volume per energy interval

$$n_{ph} = \frac{1}{e^{\hbar \omega_k / k_B T} - 1}$$
: Number of photons per state (Bose-Einstein distribution)

$$N(E_{21}) = \frac{8\pi n_r^3 E_{21}^2}{h^3 c^3}$$
: Number of states with photon energy E_{ba} per unit volume, per energy interval

Photon Density of States

Optical wave $e^{i\vec{k}\cdot\vec{r}}$ satisfies periodic boundary condition

$$\omega_k = \frac{kc}{n_r}$$
 dispersion relation of photons

(equivalent to energy band structure of electrons)

Number of states with photon energy E_{21} per unit volume, per energy interval

$$N(E_{21}) = \frac{2}{V} \int \frac{4\pi k^2 dk}{\left(\frac{2\pi}{L}\right)^3} \cdot \delta(E_{21} - \hbar\omega_k)$$

$$= \frac{8\pi}{\left(2\pi\right)^3} \int \left(\frac{n_r \omega_k}{c}\right)^2 \frac{n_r}{c} d\omega_k \cdot \frac{1}{\hbar} \delta(\frac{E_{21}}{\hbar} - \omega_k)$$

$$N(E_{21}) = \frac{8\pi n_r^3 E_{21}^2}{h^3 c^3}$$

Einstein's AB Coefficients

At thermal equilibrium:

$$R_{12} = R_{21}^{spon} + R_{21}^{stim}$$

$$\begin{split} B_{12}f_{1}\Big(1-f_{2}\Big)P(E_{21}) &= A_{21}f_{2}\Big(1-f_{1}\Big) + B_{21}f_{2}\Big(1-f_{1}\Big)P(E_{21}) \\ P(E_{21}) &= \frac{A_{21}f_{2}\Big(1-f_{1}\Big)}{B_{12}f_{1}\Big(1-f_{2}\Big) - B_{21}f_{2}\Big(1-f_{1}\Big)} = \frac{A_{21}e^{\frac{E_{1}-F}{k_{B}T}}}{B_{12}e^{\frac{E_{2}-F}{k_{B}T}} - B_{21}e^{\frac{E_{1}-F}{k_{B}T}}} \\ N(E_{21}) \cdot n_{ph} &= \frac{A_{21}}{B_{12}e^{\frac{E_{2}-E_{1}}{k_{B}T}} - B_{21}} \implies \left(\frac{8\pi n_{r}^{3}E_{21}^{2}}{h^{3}c^{3}}\right) \frac{1}{e^{h\omega_{k}/k_{B}T} - 1} = \frac{A_{21}}{B_{12}e^{\frac{E_{2}-E_{1}}{k_{B}T}} - B_{21}} \end{split}$$

$$B_{12} = B_{21}$$

$$\frac{A_{21}}{B_{21}} = \frac{8\pi n_r^3 E_{21}^2}{h^3 c^3} = N(E_{21})$$

Spontaneous Emission Spectra

$$\begin{split} B_{12} &= B_{21} = B \\ \frac{A_{21}}{B} &= \frac{8\pi n_r^3 E_{21}^2}{h^3 c^3} = N(E_{21}) \\ R_{21}^{spon} &= r_{21}^{spon} (E_{21}) dE = A_{21} f_2 (1 - f_1) \\ R_{net}^{abs} &= r_{net}^{abs} (E_{21}) dE = B \Big[f_1 - f_2 \Big] P(E_{21}) \end{split}$$

Absorption coefficient:

$$\alpha(E_{21})dE = \frac{r_{net}^{abs}(E_{21})dE}{P(E_{21})(c/n_r)} = \frac{n_r}{c}B[f_1 - f_2] = -g(E_{21})dE$$

$$\frac{r_{21}^{spon}(E_{21})}{g(E_{21})} = \frac{A_{21}}{\frac{n_r}{c}B}\left[\frac{f_2(1-f_1)}{f_2 - f_1}\right]$$

$$r_{21}^{spon}(E_{21}) = \frac{8\pi n_r^2 E_{21}^2}{h^3 c^2}\left[\frac{1}{1-e^{\frac{E_{21}-\Delta F}{k_B T}}}\right]g(E_{21}) \qquad \left[\frac{1}{s}\frac{1}{m^3}\frac{1}{eV}\right]$$

Spontaneous Emission

Stimulated Emission

Spontaneous Emission and Gain Spectra for Various Temperatures

Spontaneous Emission and Gain Spectra for ΔF (T = 300 K)

Spontaneous Emission Lifetime

$$\begin{split} r_{21}^{spon}(\hbar\omega) &= \frac{1}{\tau_{r}} \rho_{r}(\hbar\omega - E_{g}) f_{e}(\hbar\omega) \\ f_{e}(\hbar\omega) &= f_{C}(E_{2}) \Big(1 - f_{V}(E_{1}) \Big) \\ r_{21}^{spon}(E_{21}) &= \frac{8\pi n_{r}^{2} E_{21}^{2}}{h^{3} c^{2}} \frac{1}{1 - e^{\frac{E_{21} - \Delta F}{k_{B}T}}} g(E_{21}) \\ &= \frac{8\pi n_{r}^{2} E_{21}^{2}}{h^{3} c^{2}} \frac{f_{e}(\hbar\omega)}{f_{g}(\hbar\omega)} \Big(C_{0} \Big| \hat{e} \cdot \overrightarrow{P}_{cv} \Big|^{2} \rho_{r}(\hbar\omega - E_{g}) \Big) \\ \Rightarrow \tau_{r} &= \frac{h^{3} c^{2}}{8\pi n_{r}^{2} E_{21}^{2}} \cdot \frac{1}{C_{0}} \Big| \hat{e} \cdot \overrightarrow{P}_{cv} \Big|^{2} f_{g}(\hbar\omega) \end{split}$$

Typically $\tau_r \sim 1$ nsec

Basic Concept of Lasers

Cleaved Semiconductor Laser Facet

- Laser:
 - Light Amplification by Stimulated Emission of Radiation
- · Basic elements:
 - Gain media
 - Optical cavity
- · Threshold condition:
 - Bias point where laser starts to "lase"
 - Gain (nearly) equals loss

An example

Square plasmon laser

Metal-Insulator-Semiconductor Surface Plasmon Mode

Total internal reflection of surface plasmons

Photonic mode can NOT lase

Plasmon mode has lower loss than photonic mode

Ren-Min Ma et al. Nature Materials 10, 110 (2011)

Emission of square plasmon laser

Single mode plasmon laser

Room temperature, single mode

Plasmon mode has lower loss than photonic mode

Purcell effect in plasmon cavities

- How does strongly confined light interact with matter?
 - It substantially modifies the rate of spontaneous emission

Fermi's Golden Rule:

