INTEGRAL CALCULUS

- 1. INTEGRAL AS A LIMIT OF SUM, SUMMATION OF SERIES
- 2. **DEFINITE INTEGRALS**
- 3. IMPROPER AND INFINITE INTEGRALS
- 4. BETA GAMMA FUNCTIONS
- 5. DOUBLE INTEGRALS
- 6. TRIPLE INTEGRALS
- 7. SURFACE AREAS AND VOLUMES
 - *MISCELLANEOUS

1. INTEGRAL AS A LIMIT OF SUM, SUMMATION OF SERIES

1. 1d 2018

Find the limit
$$\lim_{n\to\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2 - r^2}$$
.

2. 3b 2012

(b) Define a sequence s_n of real numbers by

$$s_n = \sum_{i=1}^n \frac{(\log(n+i) - \log n)^2}{n+i}$$

Does $\lim_{n\to\infty} s_n$ exist? If so, compute the value of this limit and justify your answer.

2. **DEFINITE INTEGRALS**

1. 4b 2020 P-2

Show that
$$\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log_e (1 + \sqrt{2})$$
 15

2, 2a 2020

Evaluate $\int_0^1 \tan^{-1} \left(1 - \frac{1}{x} \right) dx$.

15

3. 1d 2015

Evaluate the following integral:

10

4. 1d 2014

Evaluate:

$$\int_{0}^{1} \frac{\log_{e} (1+x)}{1+x^{2}} dx$$

10

5. 1d 2015 IFoS

(d) For
$$x > 0$$
, let $f(x) = \int_1^x \frac{\ln t}{1+t} dt$. Evaluate $f(e) + f\left(\frac{1}{e}\right)$.

6. 1c 2013

Evaluate
$$\int_0^1 \left(2x \sin \frac{1}{x} - \cos \frac{1}{x}\right) dx$$
.

7. 4a 2013 IFoS

) Evaluate

$$\int_{0}^{\pi/2} \frac{x \sin x \cos x \, dx}{\sin^4 x + \cos^4 x}$$

8. 3a(ii) 2011

(ii)
$$\int_{0}^{1} \ell n x dx.$$

(8, 12)

3. CONVERGENCE OF IMPROPER AND INFINITE INTEGRALS

1. 2019 P-2 4c

Discuss the convergence of $\int_{1}^{2} \frac{\sqrt{x}}{l_n x} dx$.

15

15

2. 2b 2019 P-2

(b) Show that the integral $\int_{0}^{\pi/2} \log \sin x \, dx$ is convergent and hence evaluate it.

3. 2018 P-2 3d

(d) Show that the improper integral $\int_0^1 \frac{\sin \frac{1}{x}}{\sqrt{x}} dx$ is convergent.

10

4. 4c 2017

Examine if the improper integral $\int_{0}^{3} \frac{2xdx}{(1-x^2)^{2/3}}$ exists.

10

5. 2017 P-2 3c

Prove that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent but not absolutely convergent.

12

6. 2016 P-2 4a

4.(a) Evaluate the integral
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x(1+x)}}$$
.

7. 2014 P-2 1b

Test the convergence of the improper integral $\int_{1}^{\infty} \frac{dx}{x^{2}(1+e^{-x})}$.

10

8. 3b 2011 IFoS

Test for convergence the integral $\int_{0}^{\infty} \sqrt{x e^{-x}} dx$.

(a) Examine the convergence of $\int_0^\infty \frac{dx}{(1+x)\sqrt{x}}$

$$\int_0^\infty \frac{dx}{(1+x)\sqrt{x}}$$

and evaluate, if possible.

13

10. 1d 2010

(d) Does the integral $\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} dx$ exist? If so, find its value.

12

11. 3a 2010

Discuss the convergence of the integral

$$\int_{0}^{\infty} \frac{\mathrm{dx}}{1 + x^4 \sin^2 x}$$

4. **BETA GAMMA FUNCTIONS**

1. 4c(ii) 2020 IFoS

(ii) Evaluate the following integral:

2. 2b 2017 IFoS

Show that

$$\int\limits_0^{\pi/2} \sin^p\theta \cos^q\theta \ d\theta \ = \ \frac{1}{2} \ \frac{\Gamma\!\!\left(\frac{p+1}{2}\right) \Gamma\!\!\left(\frac{q+1}{2}\right)}{\Gamma\!\!\left(\frac{p+q+2}{2}\right)}, \, p, \, q > -1.$$

Hence evaluate the following integrals:

(i)
$$\int_{0}^{\pi/2} \sin^4 x \cos^5 x \, dx$$

(i)
$$\int_{0}^{\pi/2} \sin^{4} x \cos^{5} x \, dx$$
(ii)
$$\int_{0}^{1} x^{3} (1 - x^{2})^{5/2} \, dx$$
(iii)
$$\int_{0}^{1} x^{4} (1 - x)^{3} \, dx$$

(iii)
$$\int_{0}^{1} x^{4}(1-x)^{3} dx$$

10

3. 1c 2016

Evaluate: 10 $I = \int_0^1 \sqrt[3]{x \log\left(\frac{1}{x}\right)} \, dx$

4. 4b 2016 IFoS

Show that the integral $\int\limits_0^\infty e^{-x} \, x^{\alpha-1} \, dx, \ \alpha > 0$ exists, by separately

taking the cases for $\alpha \ge 1$ and $0 < \alpha < 1$.

10

5. 4c 2016 IFoS

Prove that
$$\sqrt{2z} = \frac{2^{2z-1}}{\sqrt{\pi}} \sqrt{z} \left[z + \frac{1}{2} \right].$$

6. 3c 2014 IFoS

Q. 3(c) Evaluate the integral

$$I = \int_{0}^{\infty} 2^{-ax^2} dx$$

using Gamma function

7. 2012 P-1 3c

(c) Find all the real values of p and q so that the integral $\int_0^1 x^p (\log \frac{1}{x})^q dx$ converges.

20

8. 4d 2012 IFoS

Evaluate the following in terms of Gamma function:

$$\int_{0}^{a} \sqrt{\left(\frac{x^3}{a^3 - x^3}\right)} dx.$$
 10

5. DOUBLE INTEGRALS

1. 1c 2020 IFoS P-2

Evaluate the integral $\iint_R (x-y)^2 \cos^2(x+y) dx dy$, where R is the rhombus with successive vertices at $(\pi, 0)$, $(2\pi, \pi)$, $(\pi, 2\pi)$ and $(0, \pi)$.

8

10

2. 2018 4b

Evaluate the integral $\int_0^a \int_{x/a}^x \frac{x \, dy \, dx}{x^2 + y^2}$.

3. 2018 3d IFoS

Evaluate $\iint_R (x^2 + xy) dx dy$ over the region R bounded by xy = 1, y = 0, y = x and x = 2.

4. IFoS 2018 4a P-2

Show that

$$\iint_{R} x^{m-1} y^{n-1} (1-x-y)^{l-1} dx \ dy = \frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n)} \; ; \quad l, \ m, \ n>0$$

taken over R: the triangle bounded by x = 0, y = 0, x + y = 1.

5. 2017 4d

Prove that $\frac{\pi}{3} \le \iint_D \frac{dxdy}{\sqrt{x^2 + (y-2)^2}} \le \pi$ where *D* is the unit disc.

6. 2017 3c IFoS

Evaluate the integral
$$\int\limits_0^\infty \int\limits_0^\infty e^{-(x^2+y^2)} \ dx \ dy$$
, by changing to polar

coordinates. Hence show that
$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}.$$

7. IFoS 2017 4c P-2

4.(c) Evaluate
$$\int_{x=0}^{\infty} \int_{y=0}^{x} x e^{-x^2/y} dy dx$$

8

8, 2016 4c

Evaluate $\iint_R f(x, y) dx dy$ over the rectangle R = [0, 1; 0, 1] where

$$f(x, y) = \begin{cases} x + y, & \text{if } x^2 < y < 2x^2 \\ 0, & \text{elsewhere} \end{cases}$$

15

9. 2016 2a IFoS

After changing the order of integration of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin nx \, dx \, dy,$

show that
$$\int_{0}^{\infty} \frac{\sin nx}{x} dx = \frac{\pi}{2}.$$

10. IFoS 2016 3d P-2

Evaluate the integral
$$\int_{0}^{2} \int_{0}^{y^{2}/2} \frac{y}{\left(x^{2} + y^{2} + 1\right)^{\frac{1}{2}}} dx dy$$
.

11. 2015 3d

Evaluate the integral

$$\iint\limits_{R} (x-y)^2 \cos^2(x+y) \, dx \, dy$$

where R is the rhombus with successive vertices as $(\pi, 0)$ $(2\pi, \pi)$ $(\pi, 2\pi)$ $(0, \pi)$.

12. 2015 4a

Evaluate
$$\iint_{\mathbb{R}} \sqrt{|y-x^2|} dx dy$$

where R = [-1, 1; 0, 2].

13

13. 2014 2c

By using the transformation x + y = u, y = uv, evaluate the integral $\iint \{xy (1 - x - y)\}^{1/2} dx dy \text{ taken over the area enclosed by the straight lines } x = 0, y = 0 \text{ and } x + y = 1.$

14. 2014 1d IFoS

Evaluate
$$\iint\limits_R y \, \frac{\sin x}{x} \, dx \, dy \text{ over } R \text{ where } R = \{(x, y) : y \le x \le \pi/2, \ 0 \le y \le \pi/2\}.$$

15. 2014 4c IFoS

Evaluate the integral
$$\iint_R \frac{y}{\sqrt{x^2 + y^2 + 1}} dx dy$$
 over the region R bounded between $0 \le x \le \frac{y^2}{2}$ and $0 \le y \le 2$.

16. IFoS 2014 3b P-2

(b) Change the order of integration and evaluate $\int_{-2}^{1} \int_{y^2}^{2-y} dx dy$.

17. 2013 3c

Evaluate $\iint_D xy \ dA$, where D is the region bounded by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

18. 2013 1c

Evaluate the integral $\int_{0}^{\infty} \int_{0}^{x} x e^{-x^{2}/y} dydx$ by changing the order of integration. 8

19. 2011 4a P-2

4. (a) Evaluate

$$\iint \sqrt{4x^2 - y^2} \, dx \, dy$$

over the triangle formed by the straight lines y = 0, x = 1, y = x.

20. 2010 3d

(d) Evaluate $\iint_D (x + 2y) dA$, where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$. 10

21. 2010 3b P-2

(b) Evaluate

$$\iint\limits_{R} (x-y+1) \, dx \, dy$$

where R is the region inside the unit square in which $x+y \ge \frac{1}{2}$.

2000 41

13

20

(b) Evaluate

$$I = \iint_{S} x \, dy \, dz + dz \, dx + xz^{2} dx \, dy$$

where S is the outer side of the part of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

6. TRIPLE INTEGRALS

1. 2015 2c

(c) Consider the three-dimensional region R bounded by x+y+z=1, y=0, z=0. Evaluate $\iiint_{D} (x^2+y^2+z^2) dx dy dz$.

2. 2010 3b

(b) Let D be the region determined by the inequalities x > 0, y > 0, z < 8 and $z > x^2 + y^2$. Compute

$$\iiint\limits_{D} 2x \, dx \, dy \, dz \qquad \qquad 20$$

7. SURFACE AREAS AND VOLUMES

1. 2019 1c

(c) Find the volume lying inside the cylinder $x^2 + y^2 - 2x = 0$ and outside the paraboloid $x^2 + y^2 = 2z$, while bounded by xy-plane.

8

13

2, 2018 2c

The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ revolves about the x-axis. Find the volume of the solid of revolution.

3. 2017 2a

Find the volume of the solid above the xy-plane and directly below the portion of the elliptic paraboloid $x^2 + \frac{y^2}{4} = z$ which is cut off by the plane z = 9.

4. IFoS 2017 3d P-2

Find the volume of the region common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.

5. 3c 2016 IFoS

(c) Obtain the area between the curve $r = 3 (\sec \theta + \cos \theta)$ and its asymptote x = 3.

6. 2015 2d IFoS

(d) Find the area enclosed by the curve in which the plane z = 2 cuts the ellipsoid

$$\frac{x^2}{25} + y^2 + \frac{z^2}{5} = 1$$

7. IFoS 2015 4a P-2

Compute the double integral which will give the area of the region between the y-axis, the circle $(x-2)^2 + (y-4)^2 = z^2$ and the parabola $2y = x^2$. Compute the integral and find the area.

15

8. 2013 4a P-2 IFoS

(a) Find the area of the region between the x-axis and $y = (x - 1)^3$ from x = 0 to x = 2.

13

9, 2012 4a

4. (a) Compute the volume of the solid enclosed between the surfaces $x^2 + y^2 = 9$ and $x^2 + z^2 = 9$.

20

10. 2012 4a IFoS

Find by triple Integration the volume cut off from the cylinder $x^2 + y^2 = ax$ by the planes z = mx and z = nx.

11. 2012 3a P-2

. 3.

(a) Find the volume of the solid bounded above by the parabolic cylinder $z = 4 - y^2$ and bounded below by the elliptic paraboloid $z = x^2 + 3y^2$.

12. 2011 3c

(c) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ above the xy-plane and inside the cylinder $x^2 + y^2 = 2x$.

13. 2011 3c

Show that the area of the surface of the sphere $x^2 + y^2 + z^2 = a^2$ cut off by $x^2 + y^2 = ax$ is $2(\pi - 2)a^2$.

*MISCELLANEOUS

1. 4b 2019 IFoS

(b) Find the centroid of the solid generated by revolving the upper half of the cardioid $r = a(1 + \cos \theta)$ bounded by the line $\theta = 0$ about the initial line. Take the density of the solid as uniform.

10

2. 1b 2012

(b) Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Show that for real numbers $a, b \ge 0$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
 12

3. 3a 2011 IFoS

(a) Show that the equation $3^x + 4^x = 5^x$ has exactly one root.

8

4. 1d 2009 P-2

(d) If f is the derivative of some function defined on [a, b], prove that there exists a number $\eta \in [a, b]$, such that

$$\int_{a}^{b} f(t) dt = f(\eta)(b-a)$$
 12