CSE 445: Machine Learning

Introduction

Instructor: Intisar Tahmid Naheen, North South University

Credit: xkcd "machine learning"

Resources

- Slides provided in course should be enough but there is a plethora of fantastic resources available, so use them!
- Recommended Books:
 - Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow by Aurelien Geron (will be followed extensively in the course with code examples from https://github.com/ageron/handson-ml)
 - Pattern Recognition and Machine Learning by Christopher Bishop (excellent resource for mathematical foundations)
 - Elements of Statistical Learning by Jerome Friedman et al (good reference)
- Additional Material:
 - Andrew Ng's course on Machine Learning available on Coursera
 - CS 189, Berkeley
 - CS 229, Stanford

Helpful Prerequisites

- MAT361- Probability & Statistics
 - Probability distribution, Random Variable, Conditional Probability, Variance (some of the important concepts to recall to name a few)
- MAT125 Linear Algebra
 - Matrix Multiplication, Eigenvalues, Eigenvectors
- Basic programming background in Python (an OK understanding of python syntax is all that's necessary – Geron's textbook has excellent code examples)
- None of them are compulsory easier to grasp the material if completed

Course Project

- Groups of up to 3 members (3 is a hard maximum)
- Video Demo submission at the end of the semester, and in-person/online presentation at the end of the semester
- 4-6 page Report due at semester end, IEEE format must include link to Github repo
- Potential Topics (few examples):
 - Covid-19
 - Computer Vision
 - Natural Language Processing
 - Reinforcement Learning
 - Speech & Music Recognition
 - Biomedical Imaging and Biosignals

What is Machine Learning?

Tom Mitchell (1998): a computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E.

Example:

Task: Playing Checkers

Experience (data): games played by the program (with itself)

Performance measure: winning rate

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the **ability to learn** without being **explicitly programmed**.

A. L. Samuel*

Some Studies in Machine Learning
Using the Game of Checkers. II—Recent Progress

Traditional Programming

 Traditional Programming: writing a set of RULES to find ANSWERS from DATA

Figure 1-1. The traditional approach

The ML Approach

Machine Learning: Use DATA and ANSWERS to learn the underlying set of RULES

Figure 1-2. The Machine Learning approach

Figure 1-3. Automatically adapting to change

Great for:

- Problems that require a lot of finetuning or long list of rules
- Changing environments ML systems can ADAPT
- Getting insights from large amounts of data
- Complex problems that yields no good solution with traditional approach

Deep Learning

- Subset of ML loosely mimics structure/function of human brain
- Unlike traditional ML, does not require manual feature extraction
- Keeps getting better with more data (typically)
 - Computer Vision (CNN, GAN)
 - Natural Language Processing (RNN, LSTM)
 - Automatic Speech Recognition (RNN)

Summary – Al vs ML vs DL

Subsets of each other

- 1950 1990: Al in the form of Expert systems (airplane autopilot) and Games (checkers, chess)
- 1990- : Statistical Approaches with ML, busts AI winter
- 2010 : Deep Learning revolutionizes CV, NLP among other applications

Narrow Al

- Systems can do a few defined things (such as playing chess, or driving a car) as well, or better than humans
- Can't do EVERYTHING a human being can do yet
- Al is not "taking over the world" anytime soon
 - Tell your uncles to relax and stop using Whatsapp

What kind of ML system is it?

Useful to classify ML systems based on the following criteria:

1. Does it require human supervision?

- Supervised Learning
- Semisupervised Learning
- Unsupervised Learning
- Reinforcement Learning

2. Can it learn incrementally on the fly?

- Online Learning
- Batch Learning

3. Does the system build a predictive model?

- Model-based Learning
- Instance-based Learning

- These are not exclusive can be combined
- e.g. Spam filter may learn on the fly with a deep neural network – online, model-based, supervised learning system

Supervised Learning

- Training data fed to algorithm includes the desired answers/solutions (labels)
- Example algorithms:
 - Linear Regression
 - Logistic Regression
 - SVM
 - Decision Tree
 - Neural Network

Figure 1-5. A labeled training set for spam classification (an example of supervised learning)

Figure 1-6. A regression problem: predict a value, given an input feature (there are usually multiple input features, and sometimes multiple output values)

Unsupervised Learning

- Training data is unlabeled
 - System learns without direct human supervision
- Widely used in:
 - Clustering
 - Anomaly detection
 - Association mining
 - Data preprocessing
- Example algorithms:
 - K-means
 - PCA
 - SVD
 - ICA

Figure 1-7. An unlabeled training set for unsupervised learning

Figure 1-8. Clustering

Semisupervised Learning

- Partially labeled data
 - Unsupervised learning used to cluster similar data together
 - Human input taken to label the clusters
 - e.g. Google Photos will cluster similar faces, and ask the user if they are the same person

Reinforcement Learning

- The learning system (agent) can:
 - Observe the environment
 - Select and perform an action
 - Get rewards/penalties as a result
- Learns what the best policy should be
 - Policy defines what actions should be chosen in a certain situation
- Very effective in controlled environments (such as a game of chess)
 - With the progress in deep learning, increasingly used in more complex tasks (such as driving the mars rover)

Batch Learning vs Online Learning

Batch Learning

- Not capable of learning after deployment
- Must be retrained from scratch computationally expensive!

Online Learning

- Can continue to learn after deployment
- Can take advantage of parallel computing – no down time
- Preferred choice in production

Figure 1-13. In online learning, a model is trained and launched into production, and then it keeps learning as new data comes in

Example ML Task: Does money make people happy?

Table 1-1. Does money make people happier?

Country	GDP per capita (USD)	Life satisfaction
Hungary	12,240	4.9
Korea	27,195	5.8
France	37,675	6.5
Australia	50,962	7.3
United States	55,805	7.2

- Life Satisfaction data from OECD
- GDP per capita data from IMF

What relationship can we infer between life satisfaction and GDP per capita from the graph?

Figure 1-17. Do you see a trend here?

Problems with Machine Learning

- 3 V's of Big Data
 - Volume, Variety, Velocity
- Problem #1: Training data!
 - Insufficient quantity
 - Nonrepresentative data
 - Poor-quality data
- Problem #2: How "fit" is it?
 - Overfitting data
 - Underfitting data
- Problem #3: Which features should be used?
 - Deep Learning automates feature selection

When someone asks you why you're not using a neural network model to solve your problem

Dataset

Overfitting

- Most common problem in ML do not overgeneralize!
 - The polynomial model is better than the linear model on training
 - How about testing?

Figure 1-22. Overfitting the training data

How to avoid overfitting

- Tip #1: REGULARIZATION USE IT
 - Constrain model to keep it simple reduce risk of overfitting
 - If you can stand on one leg, you'll be able to stay balanced with two legs
 - Hyperparameters control level of regularization
- Tip #2: Get more training data, and reduce noise in it

Figure 1-23. Regularization reduces the risk of overfitting

Model Evaluation

- How good is your model?
 - Test it on **new data** data not seen by the model ever before!
 - Keep 80% for training, set 20% for testing
 - NEVER go below 10% test data better model is better than better "accuracy"
- How to regularize?
 - Keep a portion of training data held out for validation
 - Alternatively, use cross-validation (many validation sets instead of one)
 - Pick the hyperparameters that work best on validation for your model on the test dataset

Ratios

- A great model
 - trained with 60% training data, 20% validation data, and 20% testing data
- An okay model
 - trained with 70% training data, 15% validation data, and 15% testing data
- A barely-acceptable model
 - trained with 80% training data, 10% validation data, and 10% testing data
- Models with worse ratios hacks
 - Unless there's millions of instances in the dataset
- "No Free Lunch" theorem
 - Only way to know for sure which model works best is to evaluate them
 - Make reasonable assumptions about your data to select model