

Auxiliar 5 - "Análisis Amortizado y Consultas Tarea 1"

Profesores: Pablo Barceló Gonzalo Navarro Auxiliar: Dustin Cobas

P1. Realocando un Arreglo: Permitiendo contracciones

P2. Trits

Considere el siguiente sistema redundante de dígitos ternarios. Un número se representa como una secuencia de trits, que, como su nombre lo indica, pueden tomar tres posibles valores: 0, +1 ó -1. El valor de un número $t_{k-1} \dots t_0$ (donde cada t_i es un trit) se define como:

$$\sum_{i=0}^{k-1} t_i 2^i$$

El proceso de incrementar un número de este tipo es análogo al de la operación en números binarios. Se añade 1 al *trit* menos significativo; si el resultado es 2, se cambia el *trit* a 0 y se propaga una reserva hacia el siguiente *trit*. Se repite el proceso hasta que no exista carry. El proceso de decrementar es análogo.

Comenzando de 0, se realiza una secuencia de n incrementos y decrementos (sin un orden particular). Demuestre que, utilizando esta representación, el costo amortizado por operación es $\mathcal{O}(1)$.

Soluciones

P1. Realocando un Arreglo: Permitiendo contracciones

P2. Trits

Consideremos la función potencial ϕ como la cantidad de 1s y -1s. Veamos que $\phi_0 = 0$ y $\phi_i \ge 0$ por ser una cantidad.

Analicemos ahora el costo amortizado por operación.

En el caso del incremento, supongamos que hay l 1s consecutivos en las posiciones menos significativas del número y que luego de ellos hay un 0 o un -1. En este caso tenemos que:

$$\hat{c} = c + \Delta \phi$$

$$\leq (l+1) + (-l+1)$$

$$= 2$$

En el caso del decremento, supongamos que hay l-1s consecutivos en las posiciones menos significativas del número y que luego de ellos hay un 0 o un 1. En este caso también tenemos que:

$$\begin{split} \hat{c} &= c + \Delta \phi \\ &\leq (l+1) + (-l+1) \\ &= 2 \end{split}$$