Entity Relationship Models 2

14 November 2011 Lecture 3

Topics for Today

- Entity Relationship Diagrams
 - Additional Features
- Conceptual Design using Entity Relationship Diagrams
 - for Large Enterprises
- Introduction to Relational Model
- Source: Ramakrishnan and Gehrke 2.4-2.7, 3.1

Additional Features of ERD

- ERDs can also represent more complex aspects of relationships:
 - Key Constraints
 - Participation Constraints
 - Weak Entities
 - Inheritance
 - Aggregation

Key Constraints

- Types of Key Constraints:
 - One to one
 - One to Many
 - Many to Many
- Examples:
 - One to One 1 TZ to 1 person

One to Many – 1 mother to Many children

Many to Many – Many addresses to Many residents

Key Constraint Example

Participation Constraints

- Whether each member of an entity set must appear in the relationship
 - Thick line on its side if yes
- Examples:
 - Each person must have a TZ, every TZ is for a person

Each child must have a mother

Not everyone has an address, every address has someone there

Participation Example

Aggregation

- Some complex relationships require relationships between relationships
 - Normally this is illegal in an ERD
 - Relationships can only connect entities
- We can allow such relationships by turning each instance of a relationship set into an entity
 - This is called Aggregation
 - We can then connect the aggregated relationship to other relationships
- BTW it's hard to find simple examples of aggregation…
 - Think hard, because it might be doable with high order relationships instead

Aggregation Example

- Departments sponsor projects.
- There is an employee in charge of monitoring the project and its sponsorship until some date.

What else could we have done?

We need the aggregation to make the *until* attribute associated with the monitoring relationship alone.

So far

- Entity Relationship Diagrams
 - Additional Features
- Conceptual Design using Entity Relationship Diagrams
 - for Large Enterprises
- Introduction to Relational Model

Conceptual Design using ERD

- Making good design using ERDs requires considering some tradeoffs:
 - Is it an entity or an attribute?
 - Is it an entity or a relationship?
 - Should the relationship be binary or ternary?
 - Should we use aggregation or a higher order relationships?
- Let's discuss some guidelines

Entity vs. Attribute

- 1. If an attribute must be multivalued (with unknown cardinality) then it must be an entity
- Example: An Employee may have 1 or more addresses
 - Address must be an entity
 - If we know it's only 1-2, we can just make two Address attributes
- 2. If an attribute has structure or its own attributes, it must be an entity
- **Example**: An Address must maintain a start date and an end date to indicate its validity period
 - Address must be an entity since the end date is not an attribute of the Employee
 - If it's multivalued too, the first reason applies anyway

Entity vs. Relationship

- If a relationship needs attributes which are shared between relationship instances, it must be an entity
- Example: A manager has a budget shared between multiple departments that she manages

Binary vs. Ternary

- If a relationship is between three entities, a ternary (or higher) relationship is required
- Example: The relationship between a Judge and two People

Binary vs. Ternary

- If relationship is really a series of binary relationships, then just show them
- Example: A life insurance policy covers an individual and has a main beneficiary

Aggregation vs. Ternary

- If the relationship doesn't require its own attributes, we can use ternary (or higher order) instead of aggregation
- **Example:** If we didn't need the until attribute above, we could have made the relationship ternary instead

Aggregation vs. Ternary

Some key constraints require aggregation

Example: If at most one employee can monitor each

sponsored project

Aggregation vs. Ternary

- Some key constraints require aggregation
- Example: If at most one employee can monitor each sponsored project

For a Team

- In a large organization, conceptual design is not done by one person
 - The team may not even be in the same location
 - They may not meet that often
- Usually separate teams will design separate aspects
 - But they all interact...
- This is why good planning before the design starts is essential
 - Determine central entities and relationships
 - Devise interfaces for the central entities or relationships ahead of time
 - Separation of responsibilities is key

Tools and Techniques

- I presented here a particular style of ERDs
 - They are graphically simple and easy to learn
 - There are many other styles and techniques for ERDs
- Key constraints and participation constraints are expressed with arrows and heavy lines
 - The Information Systems Engineering book uses another style which makes them numerically explicit

Tools and Techniques

- Another common tool for design is the Unified Modeling Language
 - UML is a collection of documentation techniques
 - It includes a format for Entity Relationship Diagrams
 - Differs slightly from what I've presented
- You'll have a course on UML next semester

So Far

- Entity Relationship Diagrams
 - Additional Features
- Conceptual Design using Entity Relationship Diagrams
 - for Large Enterprises
- Introduction to Relational Model

The Relational Model

- Due to Codd
- Tables are referred to as Relations
- Relations are built from a Schema
 - Schema describes what each row (Records) looks like
- Describes what each field is named and its type
 - We can define custom domains for a given built in type (later)
 - We can define custom types (next semester)

Example Schema

Students (sid:string, name:string, login:string, age:integer, gpa:real)

Sid	Name	Login	Age	Gpa
53	Jones	ajones@cs	18	34.5
54	Jones	bjones@cs	30	91.3
12	Smith	smith@is	23	78.2
53	Cohen	cohen@math	19	80.2

Duplicates and Ordering

- In general, you can't have duplicate rows
 - Keys prevent this is most cases
 - How?
- Without keys, some commercial databases allow duplicates
 - Why?
- In general, the order of records does not matter
 - Why?
 - We can sort, if we want
 - We can ask do filtering based on position (next semester)

26

Domains

- Simple built in domains include:
 - Integers
 - Reals
 - Characters (length) / Varchar (length)
 - Date
 - Date Time
 - Boolean
 - Text
 - Binary Large Objects (BLOB)
- Can impose custom domain constraints
- Abstractly, a schema is then:

$$\{\langle f_1:d_1,\ldots,f_n:d_n\rangle\mid d_1\in Dom_1,\ldots,d_n\in Dom_n\}$$

Some Relational Terms

- Degree or arity of a relation number of fields
- Cardinality of a relation number of records
- Relational Database collection of relations with distinct names
- Relational Database Schema collection of schemas for the relations in a relational database

Conclusion

- Entity Relationship Diagrams
 - Additional Features
- Conceptual Design using Entity Relationship Diagrams
 - for Large Enterprises
- Introduction to Relational Model