JE13 ROCH PCT/PTO 1 1 FEB 32002

45/py/>

DESCRIPTION

ELLIPTIC CURVE SCALAR MULTIPLICATION METHOD,

APPARATUS, AND STORAGE MEDIUM

TECHNICAL FIELD

The present invention relates to a security technique in a computer network, particularly to a cryptography processing execution method in an elliptic curve cryptosystem.

BACKGROUND ART

An elliptic curve cryptosystem is a type of a public key cryptosystem proposed by N. Koblitz, V.S. Miller. The public key cryptosystem includes information called a public key which may be opened to the public, and private information called a private key which has to be concealed. The public key is used to encrypt a given message or to verify signature, and the private key is used to decrypt the given message or to generate signature. The private key in the elliptic 15 curve cryptosystem is carried by a scalar value. Moreover, security of the elliptic curve cryptosystem originates from difficulty in solving a discrete logarithm problem on an elliptic curve. The discrete logarithm problem on the elliptic curve is a problem of 20 obtaining a scalar value d, when a certain point P on the elliptic curve and a scalar-multiplied point dP are

given. Here, the point on the elliptic curve refers to a set of numerals which satisfy a defining equation of the elliptic curve. For all points on the elliptic curve, an operation in which a virtual point called the 5 point at infinity is used as an identity element, that is, addition on the elliptic curve is defined. Moreover, particularly the addition of the same points on the elliptic curve is called doubling on the elliptic curve. The addition of two points on the elliptic 10 curve is calculated as follows. A line drawn through two points intersects the elliptic curve in another point. A point which is symmetric with the intersected point with respect to an x-axis is set as a result of the addition. The doubling of the point on the elliptic curve is carried out as follows. When a tangent line in the point on the elliptic curve is drawn, the tangent line intersects the elliptic curve in another point. A point symmetric with the intersected point with respect to x-coordinate is set as a 20 result of the doubling. A specified number of additions performed with respect to a certain point is referred to as scalar multiplication, a result of the multiplication is referred to as a scalar-multiplied point, and the number is referred to as a scalar value.

25 With progress of information communication network, a cryptography technique is an indispensable element for concealment or authentication with respect to electronic information. There is a demand for

security of the cryptography technology and speed increase. The discrete logarithm problem on the elliptic curve is very difficult, and therefore a key length of the elliptic curve cryptosystem can be set to be relatively short as compared with an RSA cryptosystem in which difficulty of integer factorization is a ground for security. Therefore, a relatively fast cryptography processing is possible. However, in a smart card whose processing ability is limited, a server in which a large amount of cryptography processing needs to be performed, and the like, the speed is not necessarily or satisfactorily high. Therefore, it is necessary to further increase the speed of the cryptography.

elliptic curve is usually used in the elliptic curve cryptosystem. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of

ASIACRYPT'98, LNCS 1514, Springer-Verlag, (1988) pp.51-65, a scalar multiplication method using a window method and the mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as a fast scalar multiplication

method. In this calculation method, coordinates of the scalar-multiplied point are not omitted and are exactly indicated. That is, all values of x-coordinates, and all

values of X-coordinate, Y-coordinate, and Z-coordinate are given in projective coordinates or Jacobian coordinates.

On the other hand, it is described in P.L. 5 Montgomery, Speeding the Pollard and Elliptic Curve Methods of Factorization, Math. Comp. 48(1987) pp.243-264 that an operation can be executed at a higher speed using a Montgomery-form elliptic curve BY2=X3+AX2+X(A, $B\!\in\! F_{\scriptscriptstyle p})$ rather than using the Weierstrass-form elliptic 10 curve. This is because with use of the Montgomery-form elliptic curve in the scalar multiplication method for repeatedly calculating a set of points (2mP, (2m+1)P) or a set of points ((2m+1)P, (2m+2)P) from a set of points (mP, (m+1)P) on the elliptic curve depending 15 upon the value of a specified bit of the scalar value, a calculation time of addition or doubling is reduced. A calculation speed of the scalar multiplication method is higher than that of a case in which the window method is used and the mixed coordinates mainly includ-20 ing Jacobian coordinates are used in the Weierstrassform elliptic curve. However, a value of y-coordinate of the point on the elliptic curve is not calculated in this method. This does not matter in many cryptography processings because the y-coordinate is intrinsically 25 unused. However, the value of y-coordinate is also necessary in order to execute some of the cryptography processings or to conform to standards in a complete form.

A case in which characteristics of a defined field of the elliptic curve are primes of 5 or more has been described above. On the other hand, for the elliptic curve defined on a finite field having

5 characteristics of 2, a fast scalar multiplication method for giving a complete coordinate of the scalar-multiplied point is described in J. Lopez, R. Dahab, Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation, Cryptographics Hardware and

10 Embedded Systems: Proceedings of CHES'99, LNCS 1717, Springer-Verlag, (1999) pp.316-327.

According to the conventional art, when the elliptic curve defined on the finite field with characteristics of 5 or more is used to constitute the 15 elliptic curve cryptosystem, and the window method and mixed coordinates are used in the Weierstrass-form elliptic curve, the coordinate of the scalar-multiplied point can completely be calculated. However, the calculation cannot be performed as fast as the calcula-20 tion using the scalar multiplication method of the Montgomery-form elliptic curve. With the use of the scalar multiplication method in the Montgomery-form elliptic curve, the calculation can be performed at a higher speed than with use of the window method and 25 mixed coordinates in the Weierstrass-form elliptic curve. However, it is impossible to completely give the coordinate of the scalar-multiplied point, that is, it is impossible to calculate the y-coordinate.

Therefore, when an attempt is made to speed the scalar multiplication method, the coordinate of the scalar-multiplied point cannot completely be given. When an attempt is made to completely give the coordinate of the scalar-multiplied point, a fast calculation cannot be achieved.

DISCLOSURE OF INVENTION

An object of the present invention is to provide a scalar multiplication method which can completely give a coordinate of a scalar-multiplied point at a high speed substantially equal to a speed of a scalar multiplication in a Montgomery-form elliptic curve in an elliptic curve defined on a finite field with characteristics of 5 or more. That is, the x
15 coordinate and y-coordinate can be calculated.

As one means for achieving the object, according to the present invention, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on an elliptic curve in the elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-multiplied point; and a step of recovering a complete coordinate from the partial information of the scalar-multiplied point.

Moreover, as one means for achieving the

object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on an elliptic curve in the elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-multiplied point; and a step of recovering a complete coordinate in affine coordinates from the partial information of the scalar-multiplied point.

Furthermore, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on an elliptic curve in the elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-multiplied point; and a step of recovering a complete coordinate in projective coordinates from the partial information of the scalar-multiplied point.

Additionally, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a

step of calculating partial information of the scalarmultiplied point; and a step of recovering a complete coordinate from the partial information of the scalarmultiplied point.

5

Moreover, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on 10 a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalarmultiplied point; and a step of recovering a complete coordinate from the partial information of the scalar-15 multiplied point.

Furthermore, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalarmultiplied point; and a step of giving X-coordinate and 25 Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates and X-coordinate and Zcoordinate of a point obtained by adding the scalarmultiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in affine coordinates.

Additionally, as one means for achieving the 5 object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on a finite field with characteristics of 5 or more in an 10 elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalarmultiplied point; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates and X-coordinate and Z-15 coordinate of a point obtained by adding the scalarmultiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in the projective 20 coordinates.

Moreover, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-

multiplied point; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates, X-coordinate and Z-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and X-coordinate and Z-coordinate of a point obtained by subtracting the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in affine coordinates.

Furthermore, as one means for achieving the object, there is provided a scalar multiplication 15 method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a 20 step of calculating partial information of the scalarmultiplied point; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates, X-coordinate and Z-25 coordinate of a point obtained by adding the scalarmultiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and Xcoordinate and Z-coordinate of a point obtained by

subtracting the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in the projective coordinates.

5

Additionally, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Montgomery-form elliptic curve in the Montgomery-form elliptic curve defined on 10 a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalarmultiplied point; and a step of giving x-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in affine coordinates, x-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the affine coordinates, and x-coordinate of a point obtained by 20 subtracting the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the affine coordinates, and recovering a complete coordinate in the affine coordinates.

Moreover, as one means for achieving the 25 object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on

a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-multiplied point; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates, X-coordinate and Z-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Weierstrass-form elliptic curve in the projective coordinates, and X-coordinate and Z-coordinate of a point obtained by subtracting the scalar-multiplied point and the point on the Weierstrass-form elliptic curve in the projective coordinates, and recovering a complete coordinate in affine coordinates.

Furthermore, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of calculating partial information of the scalar-multiplied point; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in projective coordinates, X-coordinate and Z-coordinate of a point obtained by adding the scalar-

multiplied point and the point on the Weierstrass-form elliptic curve in the projective coordinates, and X-coordinate and Z-coordinate of a point obtained by subtracting the scalar-multiplied point and the point on the Weierstrass-form elliptic curve in the projective coordinates, and recovering a complete coordinate in the projective coordinates.

Additionally, as one means for achieving the object, there is provided a scalar multiplication 10 method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a 15 step of calculating partial information of the scalarmultiplied point; and a step of giving x-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in affine coordinates, x-coordinate of a point obtained by adding 20 the scalar-multiplied point and the point on the Weierstrass-form elliptic curve in the affine coordinates, and x-coordinate of a point obtained by subtracting the scalar-multiplied point and the point on the Weierstrass-form elliptic curve in the affine 25 coordinates, and recovering a complete coordinate in the affine coordinates.

Moreover, as one means for achieving the object, there is provided a scalar multiplication

method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of transforming the Weierstrass-form elliptic curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalar-multiplied point in the Montgomery-form elliptic curve; and a step of recovering a complete coordinate in the Weierstrass-form elliptic curve from the partial information of the scalar-multiplied point in the Montgomery-form elliptic curve.

Furthermore, as one means for achieving the

15 object, there is provided a scalar multiplication

method for calculating a scalar-multiplied point from a

scalar value and a point on a Weierstrass-form elliptic

curve in the Weierstrass-form elliptic curve defined on

a finite field with characteristics of 5 or more in an

20 elliptic curve cryptosystem, the method comprising: a

step of transforming the Weierstrass-form elliptic

curve to a Montgomery-form elliptic curve; a step of

calculating partial information of the scalar
multiplied point in the Montgomery-form elliptic curve;

25 a step of recovering a complete coordinate in the

Montgomery-form elliptic curve from the partial

information of the scalar-multiplied point in the

Montgomery-form elliptic curve; and a step of calcu-

lating the scalar-multiplied point in the Weierstrassform elliptic curve from the scalar-multiplied point in
which the complete coordinate is recovered in the
Montgomery-form elliptic curve.

Additionally, as one means for achieving the 5 object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on 10 a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of transforming the Weierstrass-form elliptic curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalar-15 multiplied point in the Montgomery-form elliptic curve; and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in the Montgomery-form elliptic curve in projective coordi-20 nates in the Montgomery-form elliptic curve, and Xcoordinate and Z-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in affine coordinates in the Weierstrass-form elliptic 25 curve.

Moreover, as one means for achieving the object, there is provided a scalar multiplication

method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an 5 elliptic curve cryptosystem, the method comprising: a step of transforming the Weierstrass-form elliptic curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalarmultiplied point in the Montgomery-form elliptic curve; 10 and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in the Montgomery-form elliptic curve in projective coordinates in the Montgomery-form elliptic curve, and X-15 coordinate and Z-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in the projective coordinates in the Weierstrass-form elliptic curve. 20

Furthermore, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of transforming the Weierstrass-form elliptic

curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalarmultiplied point in the Montgomery-form elliptic curve; and a step of giving X-coordinate and Z-coordinate of 5 the scalar-multiplied point given as the partial information of the scalar-multiplied point in the Montgomery-form elliptic curve in projective coordinates in the Montgomery-form elliptic curve, Xcoordinate and Z-coordinate of a point obtained by 10 adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and X-coordinate and Z-coordinate of a point obtained by subtracting the scalar-multiplied point and the point on the Montgomery-form elliptic 15 curve in the projective coordinates, and recovering a complete coordinate in affine coordinates in the Weierstrass-form elliptic curve.

Additionally, according to the present invention, there is provided a scalar multiplication

20 method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a

25 step of transforming the Weierstrass-form elliptic curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalar-multiplied point in the Montgomery-form elliptic curve;

and a step of giving X-coordinate and Z-coordinate of the scalar-multiplied point given as the partial information of the scalar-multiplied point in the Montgomery-form elliptic curve in projective coordinates in the Montgomery-form elliptic curve, Xcoordinate and Z-coordinate of a point obtained by adding the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and X-coordinate and Z-coordinate of a 10 point obtained by subtracting the scalar-multiplied point and the point on the Montgomery-form elliptic curve in the projective coordinates, and recovering a complete coordinate in the projective coordinates in the Weierstrass-form elliptic curve.

Moreover, as one means for achieving the object, there is provided a scalar multiplication method for calculating a scalar-multiplied point from a scalar value and a point on a Weierstrass-form elliptic curve in the Weierstrass-form elliptic curve defined on 20 a finite field with characteristics of 5 or more in an elliptic curve cryptosystem, the method comprising: a step of transforming the Weierstrass-form elliptic curve to a Montgomery-form elliptic curve; a step of calculating partial information of the scalar-25 multiplied point in the Montgomery-form elliptic curve; and a step of giving x-coordinate of the scalarmultiplied point given as the partial information of the scalar-multiplied point in the Montgomery-form

15

elliptic curve in affine coordinates in the Montgomeryform elliptic curve, x-coordinate of a point obtained
by adding the scalar-multiplied point and the point on
the Montgomery-form elliptic curve in the affine

5 coordinates, and x-coordinate of a point obtained by
subtracting the scalar-multiplied point and the point
on the Montgomery-form elliptic curve in the affine
coordinates, and recovering a complete coordinate in
the affine coordinates in the Weierstrass-form elliptic
10 curve.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a constitution diagram of an cryptography processing system of the present invention.

15 FIG. 2 is a diagram showing a flow of a processing in a scalar multiplication method and apparatus according to an embodiment of the present invention.

FIG. 3 is a sequence diagram showing a flow of a processing in the cryptography processing system of FIG. 1.

FIG. 4 is a flowchart showing a fast scalar multiplication method in the scalar multiplication method according to first, second, fourteenth, and fifteenth embodiments of the present invention.

FIG. 5 is a flowchart showing the fast scalar multiplication method in the scalar multiplication

method according to third and fourth embodiments of the present invention.

FIG. 6 is a flowchart showing the fast scalar multiplication method in the scalar multiplication

5 method according to a fifth embodiment of the present invention.

FIG. 7 is a flowchart showing the fast scalar multiplication method in the scalar multiplication method according to sixth, seventh, and eighth embodi
10 ments of the present invention.

FIG. 8 is a flowchart showing the fast scalar multiplication method in the scalar multiplication method according to ninth, tenth, twentieth, and twenty-first embodiments of the present invention.

15 FIG. 9 is a flowchart showing a coordinate recovering method in the scalar multiplication method according to the second embodiment of the present invention.

FIG. 10 is a flowchart showing the fast
20 scalar multiplication method in the scalar multiplication method according to eleventh and twelfth
embodiments of the present invention.

FIG. 11 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the first embodiment of the present invention.

FIG. 12 is a flowchart showing the coordinate recovering method in the scalar multiplication method

according to the third embodiment of the present invention.

FIG. 13 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the fourth embodiment of the present invention.

FIG. 14 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the sixth embodiment of the present invention.

10

FIG. 15 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the seventh embodiment of the present invention.

15 FIG. 16 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the eighth embodiment of the present invention.

FIG. 17 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the ninth embodiment of the present invention.

FIG. 18 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the tenth embodiment of the present invention.

FIG. 19 is a flowchart showing the coordinate recovering method in the scalar multiplication method

according to the eleventh embodiment of the present invention.

FIG. 20 is a flowchart showing the coordinate recovering method in the scalar multiplication method

5 according to the twelfth embodiment of the present invention.

FIG. 21 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to a thirteenth embodiment of the present invention.

FIG. 22 is a constitution diagram of a signature generation unit according to the embodiment of the present invention.

FIG. 23 is a constitution diagram of a

15 decryption unit according to the embodiment of the present invention.

FIG. 24 is a flowchart showing the fast scalar multiplication method in the scalar multiplication method in the scalar multiplication method according to the thirteenth embodiment of the present invention.

FIG. 25 is a flowchart showing the scalar multiplication method in a scalar multiplication apparatus of FIG. 2.

FIG. 26 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the fifth embodiment of the present invention.

FIG. 27 is a diagram showing a flow of a

processing in the scalar multiplication method and apparatus according to the embodiment of the present invention.

FIG. 28 is a flowchart showing a signature generation method in the signature generation unit of FIG. 22.

FIG. 29 is a sequence diagram showing a flow of a processing in the signature generation unit of FIG. 22.

10 FIG. 30 is a flowchart showing a decryption method in the decryption unit of FIG. 23.

FIG. 31 is a sequence diagram showing a flow of a processing in the decryption unit of FIG. 23.

FIG. 32 is a flowchart showing a cryptography
15 processing method in the cryptography processing system
of FIG. 1.

FIG. 33 is a flowchart showing the scalar multiplication method in the scalar multiplication apparatus of FIG. 27.

FIG. 34 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the fourteenth embodiment of the present invention.

FIG. 35 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the fifteenth embodiment of the present invention.

FIG. 36 is a flowchart showing the coordinate

recovering method in the scalar multiplication method according to a sixteenth embodiment of the present invention.

FIG. 37 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to a seventeenth embodiment of the present invention.

FIG. 38 is a flowchart showing the coordinate recovering method in the scalar multiplication method

10 according to an eighteenth embodiment of the present invention.

FIG. 39 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to a nineteenth embodiment of the present invention.

FIG. 40 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the twentieth embodiment of the present invention.

FIG. 41 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to the twenty-first embodiment of the present invention.

FIG. 42 is a flowchart showing the coordinate recovering method in the scalar multiplication method according to a twenty-second embodiment of the present invention.

FIG. 43 is a flowchart showing the fast

scalar multiplication method in the scalar multiplication method according to the sixteenth embodiment of the present invention.

FIG. 44 is a flowchart showing the fast

5 scalar multiplication method in the scalar multiplication method according to the seventeenth, eighteenth, and nineteenth embodiments of the present invention.

FIG. 45 is a flowchart showing the fast scalar multiplication method in the scalar multiplication method in the scalar multiplication method according to the twenty-second embodiment of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

Embodiments of the present invention will be described hereinafter with reference to the drawings.

15 FIG. 1 shows a constitution of an encryption/
decryption processing apparatus. An encryption/
decryption processing apparatus 101 performs either one
of encryption of an inputted message and decryption of
the encrypted message. Additionally, an elliptic curve
20 handled herein is an elliptic curve having characteristics of 5 or more.

When the inputted message is encrypted, and the encrypted message is decrypted, the following equation 1 is generally established.

25 Pm+k(aQ)-a(kQ) = Pm ... Equation 1

Here, Pm denotes a message, k denotes a

random number, a denotes a constant indicating a private key, and Q denotes a fixed point. In this equation, aQ of Pm+k(aQ) indicates a public key, and indicates that the inputted message is encrypted by the public key. On the other hand, a of a(kQ) indicates the private key, and indicates that the message is decrypted by the private key.

Therefore, when the encryption/decryption processing apparatus 101 shown in FIG. 1 is used only in the encryption of the message, Pm+k(aQ) and kQ are calculated and outputted. When the apparatus is used only in the decryption, -a(kQ) is calculated from the private key a and kQ, and (Pm+k(aQ))-a(kQ) may be calculated and outputted.

apparatus 101 shown in FIG. 1 includes a processing unit 110, storage unit 120, and register unit 130. The processing unit 120 indicates a processing necessary for an encryption processing in functional blocks, and includes an encryption/decryption processor 102 for encrypting the inputted message and decrypting the encrypted message, and a scalar multiplication unit 103 for calculating parameters necessary for the encryption/decryption performed by the encryption/decryption performed by the encryption/ decryption processor 102. The storage unit 120 stores a constant, private information (e.g., the private key), and the like. The register unit 130 temporarily stores a result of operation in the encryption/

decryption processing, and the information stored in the storage unit 120. Additionally, the processing unit 110, and register unit 130 can be realized by an exclusive-use operation unit, CPU, and the like which perform a processing described hereinafter, and the storage unit 120 can be realized by a RAM, ROM, and the like.

An operation of the encryption/decryption processing apparatus 101 shown in FIG. 1 will next be described. FIG. 3 shows transmission of information of each unit when the encryption/decryption processing apparatus 101 performs the encryption/decryption. The encryption/decryption processor 102 is represented as the encryption processor 102 when performing an encryption processing, and as the decryption processor 102 when performing a decryption processing.

An operation for encrypting the inputted message will first be described with reference to FIG.

A message is inputted into the encryption/
decryption processor 102 (3001), and it is then judged
whether or not a bit length of the inputted message is
a predetermined bit length. When the length is longer
than the predetermined bit length, the message is
divided in order to obtain the predetermined bit length
(it is assumed in the following description that the
message is divided into the predetermined bit length).
Subsequently, the encryption/decryption processor 102

calculates a value (y1) of y-coordinate on an elliptic curve having a numeric value (x1) represented by a bit string of the message in x-coordinate. For example, a Montgomery-form elliptic curve is represented by 5 $Bv1^2=x1^3+Ax1^2+x1$, and the value of y-coordinate can be obtained from this curve. Additionally, B, A are constants. The encryption processor 102 sends a public key aQ and values of x-coordinate and y-coordinate of Q to the scalar multiplication unit 103. In this case, 10 the encryption processor 102 generates a random number, and sends this number to the scalar multiplication unit 103 (3002). The scalar multiplication unit 103 calculates a scalar-multiplied point (xd1, yd1) by the values of x-coordinate and y-coordinate of Q and the 15 random number, and a scalar-multiplied point (xd2, yd2) by the values of x-coordinate and y-coordinate of the public key aQ and the random number (3003), and sends the calculated scalar-multiplied points to the encryption processor 102 (3004). The encryption processor 20 102 uses the sent scalar-multiplied point to perform an encryption processing (3005). For example, with respect to the Montgomery-form elliptic curve, encrypted messages xel, xe2 are obtained from the following equation.

25 $xe1=B((yd1-y1)/(xd1-x1))^2-A-x1-xd1$... Equation 2 xe2 = xd2 ... Equation 3

The encryption/decryption processing

apparatus 101 outputs the message encrypted by the encryption/decryption processor 102. (3006)

An operation for decrypting the encrypted message will next be described with reference to FIG. 5 32.

When the encrypted message is inputted into the encryption/decryption processor 102 (3201), the value of y-coordinate on the elliptic curve having the numeric value represented by the bit string of the 10 encrypted message in x-coordinate is calculated. Here, the encrypted message is a bit string of xel, xe2, and with the Montgomery-form elliptic curve, a value (yel) of y-coordinate is obtained from Bye1²=xe1³+Axe1²+xe1. Additionally, B, A are respective constants. 15 encryption/decryption processor 102 sends values (xe1, Yel) of x-coordinate and y-coordinate to the scalar multiplication unit 103 (3202). The scalar multiplication unit 103 reads private information from the storage unit 120 (3203), calculates a scalar-multiplied 20 point (xd3, yd3) from the values of x-coordinate and ycoordinate and the private information (3204), and sends the calculated scalar-multiplied points to the encryption/decryption processor 102 (3205). encryption/decryption processor 102 uses the sent 25 scalar-multiplied point to perform a decryption processing (3206). For example, the encrypted message is a bit string of xe1, xe2, and with the Montgomeryform elliptic curve, xf1 is obtained by the following

equation.

15

20

 $xf1=B((ye2+yd3)/(xe2-xd3))^2-A-xe2-xd3$... Equation 4

This xfl corresponds to the message x1 before encrypted.

The decryption processor 102 outputs the 5 decrypted message xf1 (3207).

As described above, the encryption/decryption processor 102 performs the encryption or decryption processing.

A processing of the scalar multiplication 10 unit 103 of the encryption processing apparatus 101 will next be described. Here, an example in which the encryption processing apparatus 101 performs the decryption processing will be described hereinafter.

FIG. 2 shows functional blocks of the scalar multiplication unit 103. FIG. 25 shows an operation of the scalar multiplication unit 103.

A fast scalar multiplication unit 202 receives the scalar value as the private information and encrypted message, and a point on the elliptic curve as a value of Y-coordinate on the elliptic curve having the encrypted message on X-coordinate (step 2501). Then, the fast scalar multiplication unit 202 calculates some values of the coordinate of the scalar-25 multiplied point from the received scalar value and point on the elliptic curve (step 2502), and gives the information to a coordinate recovering unit 203 (step

2503). The coordinate recovering unit 203 recovers the coordinate of the scalar-multiplied point from information of the given scalar-multiplied point and the inputted point on the elliptic curve (step 2504). A 5 scalar multiplication unit 103 outputs the scalarmultiplied point with the coordinate completely given thereto as a calculation result (step 2505). Here, the scalar-multiplied point with the coordinate completely given thereto means that the y-coordinate is calculated 10 and outputted (this also applied to the following).

Some embodiments of the fast scalar multiplication unit 202 and coordinate recovering unit 203 of the scalar multiplication unit 103 will be described hereinafter.

15

In a first embodiment, the scalar multiplication unit 103 calculates and outputs a scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto as a point of affine coordinates in the Montgomery-form elliptic curve from a scalar value d and a point P on the Montgomery-form elliptic curve. The scalar value d and the point P on the Montgomeryform elliptic curve are inputted into the scalar multiplication unit 103 and then received by the fast scalar multiplication unit 202. The fast scalar 25 multiplication unit 202 calculates X_d and Z_d in a coordinate of a scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in a

coordinate of a point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the Montgomery-form elliptic 5 curve, and gives the information together with an inputted point P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinates \mathbf{x}_{d} and \mathbf{y}_{d} of 10 the scalar-multiplied point $dP=(x_d, y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve from the given coordinate values X_{d} , Z_{d} , X_{d+1} , Z_{d+1} , x and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d, y_d) with the coordinate completely given thereto in the affine coordinates as 15 the calculation output.

A processing of the coordinate recovering unit which outputs \mathbf{x}_d , \mathbf{y}_d from the given coordinates \mathbf{x} , \mathbf{y} , \mathbf{X}_d , \mathbf{Z}_d , \mathbf{X}_{d+1} , \mathbf{Z}_{d+1} will next be described with reference to FIG. 11.

20

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve in

the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d,y_d) , and the projective coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of a point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

15

In step 1101 $X_d \times x$ is calculated, and stored in a register T_1 . In step 1102 $T_1 - Z_d$ is calculated. Here, $X_d \times x$ is stored in the register T_1 , and $X_d \times - Z_d$ is therefore calculated. The result is stored in the register T_1 . In step 1103 $Z_d \times x$ is calculated, and stored in a register T_2 . In step 1104 $X_d - T_2$ is calculated. Here, $Z_d \times x$ is stored in the register T_2 , and $X_d - x Z_d$ is therefore calculated. The result is stored in the register T_2 . In step 1105 $X_{d+1} \times T_2$ is calculated. Here, $X_d - x Z_d$ is

stored in the register T_2 , and $X_{d+1}(X_d-xZ_d)$ is therefore calculated. The result is stored in a register T_3 . In step 1106 a square of T_2 is calculated. Here, (X_d-xZ_d) is stored in the register $T_{2}\text{, and }\left(X_{d}\text{-}xZ_{d}\right)^{2}$ is therefore calculated. The result is stored in the register T_2 . In step 1107 $T_2 \times X_{d+1}$ is calculated. Here, $(X_d - x Z_d)^2$ is stored in the register $T_2\text{, and }X_{d+1}\left(X_d-xZ_d\right)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1108 $T_2 \times Z_{d+1}$ is calculated. Here, $X_{d+1} (X_d - x Z_d)^2$ is stored in the register T_2 , and $Z_{d+1}X_{d+1}(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1109 $T_2 \times y$ is calculated. Here, $Z_{d+1} X_{d+1} (X_d - X_d)$ xZ_d) ² is stored in the register T_2 , and $yZ_{d+1}X_{d+1}\left(X_d-xZ_d\right)^2$ is therefore calculated. The result is stored in the 15 register T_2 . In step 1110 $T_2 \times B$ is calculated. Here, $yZ_{d+1}X_{d+1}\left(X_{d}-xZ_{d}\right)^{2}$ is stored in the register T_{2} , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1111 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is therefore calculated. The result is stored in the register T_2 . In step 1112 $T_2 \times X_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d - xZ_d)^2Z_d$ is stored in the register $\rm T_2$, and $\rm ByZ_{d+1}X_{d+1}\left(X_d-x\,Z_d\right){}^2Z_dX_d$ is therefore calculated. The result is stored in a 25 register T_4 . In step 1113 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is therefore calculated. The result

is stored in the register T_2 . In step 1114 an inverse

element of the register T2 is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is stored in the register T_2 , and therefore $1/ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is calculated. The result is stored in the register T_2 . In step 1115 $T_2 \times T_4$ is calculated. Here, $1/ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_dX_d$ is stored in the register T_4 . Therefore, $(ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_dX_d)$ / $(ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2)$ (= X_d/Z_d) is calculated. The result is stored in a register x_d . In step 1116 $T_1 \times Z_{d+1}$ is calculated. Here X_dx-Z_d is stored in the register T_1 , and therefore $Z_{d+1}(X_dx-Z_d)$ is calculated. The result is stored in the register T4. In step 1117 a square of the register T_1 is calculated. Here, (X_dx-Z_d) is stored in the register T_1 , and therefore $(X_dx-Z_d)^2$ is calculated. The result is stored in the register T_1 . In step 1118 $T_1 \times T_2$ is calculated. Here, $(X_d \times -Z_d)^2$ is stored in the register T_1 , $1/ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_2 , and therefore $(X_dx-Z_d)^2/ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is calculated. The result is stored in the register T_2 . step 1119 T_3+T_4 is calculated. Here $X_{d+1}(X_d-xZ_d)$ is stored in the register T_3 , $Z_{d+1}(X_dx-Z_d)$ is stored in the register T_4 , and therefore $X_{d+1}(X_d-xZ_d)+Z_{d+1}(X_dx-Z_d)$ is calculated. The result is stored in the register $T_{\scriptscriptstyle 1}$. In step 1120 T_3-T_4 is calculated. Here $X_{d+1}(X_d-xZ_d)$ is 25 stored in the register T_3 , $Z_{d+1}(X_dx-Z_d)$ is stored in the register T_4 , and therefore $X_{d+1}(X_d-xZ_d)-Z_{d+1}(X_dx-Z_d)$ is calculated. The result is stored in the register $T_{\mbox{\scriptsize 3}}.$ In step 1121 $T_1 \times T_3$ is calculated. Here $X_{d+1}(X_d - XZ_d) +$

 $Z_{d+1}\left(X_{d}x-Z_{d}\right)$ is stored in the register T_{1} , $X_{d+1}\left(X_{d}-xZ_{d}\right)-Z_{d+1}\left(X_{d}x-Z_{d}\right)$ is stored in the register T_{3} , and therefore $\{X_{d+1}\left(X_{d}-xZ_{d}\right)+Z_{d+1}\left(X_{d}x-Z_{d}\right)\}\{X_{d+1}\left(X_{d}-xZ_{d}\right)-Z_{d+1}\left(X_{d}x-Z_{d}\right)\}$ is calculated. The result is stored in the register T_{1} . In step 1122 $T_{1}\times T_{2}$ is calculated. Here $\{X_{d+1}\left(X_{d}-xZ_{d}\right)+Z_{d+1}\left(X_{d}x-Z_{d}\right)\}\{X_{d+1}\left(X_{d}-xZ_{d}\right)-Z_{d+1}\left(X_{d}x-Z_{d}\right)\}$ is stored in the register T_{1} , $(X_{d}x-Z_{d})^{2}/ByZ_{d+1}X_{d+1}\left(X_{d}-xZ_{d}\right)^{2}Z_{d}^{2}$ is stored in the register T_{2} , and therefore the following is calculated.

$$\frac{\left\{X_{d+1}(X_d - xZ_d) + Z_{d+1}(X_dx - Z_d)\right\}\left\{X_{d+1}(X_d - xZ_d) - Z_{d+1}(X_dx - Z_d)\right\}(X_dx - Z_d)^2}{ByZ_{d+1}X_{d+1}(X_d - xZ_d)^2Z_d^2}$$

... Equation 5

The result is stored in y_d . In step 1115 $(ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_dX_d)/(ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2X_d^2)$ is stored in x_d , and is not updated thereafter, and the value is therefore held.

A reason why all values in the affine coordinate (x_d, y_d) of the scalar-multiplied point in the Montgomery-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given to the coordinate recovering unit 203 by the aforementioned procedure is as follows. Additionally, point (d+1)P is a point obtained by adding the point P to the point dP, and point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to addition formulae in the affine coordinates of the Montgomery-form elliptic

curve results in the following equations.

$$(A + x + x_d + x_{d+1})(x_d - x)^2 = B(y_d - y)^2$$
... Equation 6
$$(A + x + x_d + x_{d-1})(x_d - x)^2 = B(y_d + y)^2$$
... Equation 7

When opposite sides are individually subjected to subtraction, the following equation is obtained.

$$(x_{d-1} - x_{d+1})(x_d - x)^2 = 4By_d y$$
... Equation 8

10 Therefore, the following results.

5

$$y_d = (x_{d-1} - x_{d+1})(x_d - x)^2 / 4By$$
... Equation 9

Here, $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$, $x_{d-1}=X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to a value of the projective coordinate. Then, the following equation is obtained.

$$y_d = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2 / 4ByZ_{d-1}Z_{d+1}Z_d^2$$
... Equation 10

The addition formulae in the projective
coordinate of the Montgomery-form elliptic curve are as
follows.

$$X_{m+n} = Z_{m-n} [(X_m - Z_m)(X_n + Z_n) + (X_m + Z_m)(X_n - Z_n)]^2$$
... Equation 11

$$Z_{m+n} = X_{m-n} [(X_m - Z_m)(X_n + Z_n) - (X_m + Z_m)(X_n - Z_n)]^2$$
... Equation 12

Here, X_m and Z_m are X-coordinate and Z-coordinate in the projective coordinate of a m-multiplied point mP of the 5 point P on the Montgomery-form elliptic curve, \boldsymbol{X}_{n} and \boldsymbol{Z}_{n} are X-coordinate and Z-coordinate in the projective coordinate of an n-multiplied point nP of the point P on the Montgomery-form elliptic curve, \boldsymbol{X}_{m-n} and \boldsymbol{Z}_{m-n} are X-coordinate and Z-coordinate in the projective coordinate of a (m-n)-multiplied point (m-n)P of the 10 point P on the Montgomery-form elliptic curve, X_{m+n} and $\mathbf{Z}_{\mathbf{m}+\mathbf{n}}$ are X-coordinate and Z-coordinate in the projective coordinate of a (m+n)-multiplied point (m+n)P of the point P on the Montgomery-form elliptic curve, and m, n are positive integers satisfying m>n. In the equation when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged, $X_{m+n}/Z_{m+n}=x_{m+n}$ is also unchanged. Therefore, this functions well as the formula in the projective coordinate. On the other hand, the following equations are 20 assumed.

$$X'_{m-n} = Z_{m+n} [(X_m - Z_m)(X_n + Z_n) + (X_m + Z_m)(X_n - Z_n)]^2$$
... Equation 13
$$Z'_{m-n} = X_{m+n} [(X_m - Z_m)(X_n + Z_n) - (X_m + Z_m)(X_n - Z_n)]^2$$
... Equation 14

In this equation, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m+n}/Z_{m+n}=x_{m+n}$ are unchanged, X'_{m-n}/Z'_{m-n} is also unchanged. Moreover, since

 $X'_{m-n}/Z'_{m-n}=X_{m-n}/Z_{m-n}$ is satisfied, X'_{m-n} , Z'_{m-n} may be taken as the projective coordinate of x_{m-n} . When m=d, n=1 are set, the above formula is used, X_{d-1} and Z_{d-1} are deleted from the equation of y_d , and $X_1=x$, $Z_1=1$ are set, the following equation is obtained.

$$y_{d} = \frac{\left\{Z_{d+1}(X_{d}x - Z_{d}) + X_{d+1}(X_{d} - xZ_{d})\right\}\left\{Z_{d+1}(X_{d}x - Z_{d}) - X_{d+1}(X_{d} - xZ_{d})\right\}\left(X_{d}x - Z_{d}\right)^{2}}{ByZ_{d+1}X_{d+1}(X_{d} - xZ_{d})^{2}Z_{d}^{2}}$$

... Equation 15

Although $x_d=X_d/Z_d$, reduction to a denominator common with that of y_d is performed for a purpose of reducing a frequency of inversion, and the following equation is obtained.

$$x_{d} = \frac{ByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}X_{d}}{ByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}Z_{d}}$$
... Equation 16

Here, x_d , y_d are given by the processing of FIG. 11. 15 Therefore, all the values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the steps 1101, 1103, 1105, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1115, 1116, 1118, 1121, and 1122, a computational amount of multiplication on a finite field is required. Moreover, the computational amount of squaring on the finite field is required in the

steps 1106 and 1117. Moreover, the computational amount of inversion on the finite field is required in the step 1114. The computational amounts of addition and subtraction on the finite field are relatively 5 small as compared with the computational amount of multiplication on the finite field and the computational amounts of squaring and inversion, and may be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and 10 the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 15M+2S+I. This is very small as compared with the computational amount of fast scalar 15 multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M, I=40M, the computational amount of coordinate recovering is 56.6 20 M, and this is very small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of x_d , y_d given by the above equation can be calculated, and the values of x_d , y_d can then be recovered. In this case, the computational amount necessary for the recovering generally

increases. Moreover, when the value of B as a parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 1110 can be reduced.

A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described with reference to FIG. 4.

The fast scalar multiplication unit 202 inputs the point P on the Montgomery-form elliptic 10 curve inputted into the scalar multiplication unit 103, and outputs X_d and Z_d in the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinate in the Montgomery-form elliptic curve, and $X_{\text{\tiny d+1}}$ and $Z_{\text{\tiny d+1}}$ in 15 the point (d+1) $P=(X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinate by the following procedure. In step 401, an initial value 1 is assigned to a variable I. A doubled point 2P of the point P is calculated in step 402. Here, the 20 point P is represented as (x,y,1) in the projective coordinate, and a formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 403, the point P on the elliptic curve inputted into the 25 scalar multiplication unit 103 and the point 2P obtained in the step 402 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 404

whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 413. With disagreement, the flow goes to step 405. The variable I is increased by 1 in the step 5 405. It is judged in step 406 whether the value of an I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 407. When the value of the bit is 1, the flow goes to step 410. In step 407, addition mP+(m+1)P of points mP and (m+1)Pis performed from a set of points (mP, (m+1)P) 10 represented by the projective coordinate, and a point (2m+1)P is calculated. Thereafter, the flow goes to step 408. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate 15 of the Montgomery-form elliptic curve. In step 408, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 409. Here, the doubling 2(mP) is calculated using the formula of doubling in 20 the projective coordinate of the Montgomery-form elliptic curve. In the step 409, the point 2mP obtained in the step 408 and the point (2m+1)P obtained in the step 407 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). 25 Thereafter, the flow returns to the step 404. Here, the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step

410, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes 5 to step 411. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. In the step 411, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and a point 10 (2m+2)P is calculated. Thereafter, the flow goes to step 412. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 412, the point (2m+1)P obtained in the step 410 and the point (2m+2)P obtained in the step 411 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 404. Here, the points (2m+1)P, 20 (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 413, from the set of points (mP,(m+1)P) represented by the projective coordinates, X_m and Z_m are outputted as X_d and Z_d from the point $mP = (X_m, Y_m, Z_m)$ represented by the projective 25 coordinates, and X_{m+1} and Z_{m+1} are outputted as X_{d+1} and Z_{d+1} from the point (m+1) $P=(X_{m+1},Y_{m+1},Z_{m+1})$ represented by the projective coordinates. Here, Y_{m} and Y_{m+1} are not

obtained, because Y-coordinate cannot be obtained by

the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve.

Moreover, by the aforementioned procedure, m and the scalar value d have an equal bit length and further have the same pattern of the bit, and are therefore equal.

The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. 10 Here, M is the computational amount of multiplication on the finite field, and S is the computational amount of squaring on the finite field. The computational amount of the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve is 15 3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the step 407, and the computational amount of doubling in the step 408 are required. That is, a computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 410, and the computational amount of doubling in the step 411 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 404, 25 405, 406, 407, 408, 409, or the steps 404, 405, 406, 410, 411, 412 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount

of doubling in the step 402, the entire computational amount is (6M+4S)(k-1)+3M+2S. Here, k is a bit length of the scalar value d. In general, since a computational amount S is estimated to be of the order of 5 S=0.8M, the entire computational amount is approximately (9.2k-4.6)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1467 M. The computational amount per bit of the scalar 10 value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1988) pp.51-65, a scalar multiplication method using a window method and mixed 15 coordinates mainly including Jacobian coordinates in a Weierstrass-form elliptic curve is described as a fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the 20 scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the algorithm of the aforementioned procedure in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Y_d , X_{d+1} , Z_{d+1} from

the scalar value d and the point P on the Montgomeryform elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering 5 unit 203 in the scalar multiplication unit 103 is 15M+2S+1, and this is far small as compared with a computational amount of (9.2k-4.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount 10 necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming I=40M, S=0.8M, the computational amount can be 15 estimated to be about (9.2k+52)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is 1524 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplica-20 tion method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational 25 amount is reduced.

In a second embodiment, the scalar multiplication unit 103 calculates and outputs a scalar-

multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto as a point of the projective coordinates in the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomery-form elliptic 5 curve. The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103 and then received by the fast scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the 10 coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point on the Montgomery-form elliptic curve $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ represented by the projective coordinates from the received scalar value d and the 15 given point P on the Montgomery-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates to the coordinate 20 recovering unit 203. The coordinate recovering unit 203 recovers coordinate X_d , Y_d , and Z_d of the scalarmultiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , 25 x and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the coordinate completely given thereto in the projective coordinates as the calculation output.

A processing of the coordinate recovering unit which outputs X_d , Y_d , Z_d from the given coordinate x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 9.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point on the Montgomery-form elliptic curve $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ represented by the projective coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given 15 thereto in the projective coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate 20 thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by 25 (X_d, Y_d, Z_d) . The affine coordinate of the point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1},Y_{d-1},Z_{d-1})$. The affine coordinate of

the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1},Y_{d+1},Z_{d+1})$.

In step 901 $X_d \times x$ is calculated, and stored in 5 the register T_1 . In step 902 T_1 - Z_d is calculated. Here, $X_d x$ is stored in the register T_1 , and $X_d x - Z_d$ is therefore calculated. The result is stored in the register $T_{\scriptscriptstyle 1}$. In step 903 $Z_d \times x$ is calculated, and stored in the register T_2 . In step 904 X_d - T_2 is calculated. Here, $Z_d x$ is stored in the register $T_2\text{,}$ and $X_d\text{-}xZ_d$ is therefore calculated. The result is stored in the register T_2 . In step 905 $Z_{d+1} \times T_1$ is calculated. Here, $X_d x - Z_d$ is stored in the register T_1 , and $Z_{d+1}(X_dx-Z_d)$ is therefore calculated. The result is stored in the register $T_{\rm 3}$. In step 906 $X_{d+1} \times T_2$ is calculated. Here, $X_d - x Z_d$ is stored in 15 the register T_2 , and $X_{d+1}(X_d-xZ_d)$ is therefore calculated. The result is stored in the register T_4 . In step 907 a square of T_1 is calculated. Here, X_dx-Z_d is stored in the register T_1 , and $(X_dx-Z_d)^2$ is therefore calculated. The result is stored in the register T_1 . In step 908 a square of T_{2} is calculated. Here, $X_{\text{d}}\text{-}xZ_{\text{d}}$ is stored in the register $T_{2}\text{, and }\left(X_{d}\text{-}xZ_{d}\right)^{2}$ is therefore calculated. The result is stored in the register T_2 . In step 909 $T_2 \times Z_d$ is calculated. Here, $(X_d - x \, Z_d)^{\, 2}$ is stored in the 25 register T_2 , and $Z_d(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 910 $T_2 \times X_{d+1}$ is calculated. Here, $Z_d \left(X_d - x Z_d \right)^2$ is stored in the register T_2 , and $X_{d+1}Z_d\left(X_d-xZ_d\right)^2$ is therefore calculated.

The result is stored in the register T_2 . In step 911 $T_2 \times Z_{d+1}$ is calculated. Here, $X_{d+1} Z_d \left(X_d - x Z_d \right)^2$ is stored in the register T_2 , and $Z_{d+1}X_{d+1}Z_d\left(X_d-xZ_d\right)^2$ is therefore calculated. The result is stored in the register T_2 . 5 In step 912 $T_2 \times y$ is calculated. Here, $Z_{d+1} X_{d+1} Z_d (X_d - x Z_d)^2$ is stored in the register $T_{\text{2}}\text{,}$ and $yZ_{\text{d+1}}X_{\text{d+1}}Z_{\text{d}}\left(X_{\text{d}}-xZ_{\text{d}}\right)^{2}$ is therefore calculated. The result is stored in the register T_2 . In step 913 $T_2 \times B$ is calculated. Here, $yZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}$ is stored in the register T_{2} , and 10 $ByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}$ is therefore calculated. The result is stored in the register T_2 . In step 914 $T_2 \times X_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}Z_{d}\left(X_{d}-xZ_{d}\right)^{2}$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2X_d$ is therefore calculated. The result is stored in the register X_{d} . 15 In step 915 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}Z_d(X_d-X_d)$ xZ_d)² is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}Z_d$ $(X_d$ $xZ_d)^2Z_d$ is therefore calculated. The result is stored in the register Z_d . In step 916 T_3+T_4 is calculated. Here $X_{d+1}\left(X_{dx}-Z_{d}\right)$ is stored in the register T_{3} , $X_{d+1}\left(X_{d}-xZ_{d}\right)$ is 20 stored in the register T_4 , and therefore $Z_{d+1}\left(X_dx-Z_d\right)+$ $X_{d+1}\left(X_d-xZ_d\right)$ is calculated. The result is stored in the register T_2 . In step 917 T_3-T_4 is calculated. Here $Z_{d+1}\left(X_{d}x-Z_{d}\right)$ is stored in the register T_{3} , $X_{d+1}\left(X_{d}-xZ_{d}\right)$ is stored in the register $T_{4}\text{,}$ and therefore $Z_{d+1}\left(X_{d}x-Z_{d}\right)$ -

25 $X_{d+1}(X_d-xZ_d)$ is calculated. The result is stored in the register T_3 . In step 918 $T_1\times T_2$ is calculated. Here $(X_dx-Z_d)^2$ is stored in the register T_1 , $Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)$ is stored in the register T_2 , and therefore

 $\{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}(X_dx-Z_d)^2 \text{ is calculated. The result is stored in the register } T_1. \text{ In step } 919 \ T_1\times T_3 \\ \text{is calculated. Here } \{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}(X_dx-Z_d)^2 \text{ is stored in the register } T_1, \ Z_{d+1}(X_{dx}-Z_d)-X_{d+1}(X_d-xZ_d) \text{ is } \\ \text{5 stored in the register } T_3, \text{ and therefore } \{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}\{Z_{d+1}(X_dx-Z_d)-X_{d+1}(X_d-xZ_d)\}(X_dx-Z_d)^2 \text{ is calculated. The result is stored in the register } Y_d. \\ \text{Therefore, } \{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}\{Z_{d+1}(X_dx-Z_d)-X_{d+1}(X_d-xZ_d)\}(X_dx-Z_d)^2 \text{ is stored in the register } Y_d. \\ \text{In the step } 914 \ \text{By}Z_{d+1}X_{d+1}Z_{d+1}(X_d-xZ_d)^2 X_d \text{ is stored in the register } X_d, \\ \text{and is not updated, and the value is held. In the step } 915 \ \text{By}Z_{d+1}X_{d+1}Z_{d+1}(X_d-xZ_d)^2 \text{ is stored in the register } Z_d, \text{ and is not updated thereafter, and the value is therefore held.} \\ }$

A reason why all values in the projective coordinate (X_d, Y_d, Z_d) of the scalar-multiplied point are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When the opposite sides are individually subjected to subtraction, Equation 8 is obtained. Therefore, Equation 9 results. Here, $x_d = X_d / Z_d$, $x_{d+1} = X_{d+1} / Z_{d+1}$, $x_{d-1} = X_{d-1} / Z_{d-1}$. The value is assigned and thereby converted to the value of the projective coordinate.

Then, Equation 10 is obtained.

The addition formulae in the projective coordinate of the Montgomery-form elliptic curve are Equations 11 and 12. Here, X_m and Z_m are X-coordinate and Z-coordinate in the projective coordinate of the mmultiplied point mP of the point P on the Montgomeryform elliptic curve, X_n and Z_n are X-coordinate and Zcoordinate in the projective coordinate of the nmultiplied point nP of the point P on the Montgomeryform elliptic curve, X_{m-n} and Z_{m-n} are X-coordinate and Zcoordinate in the projective coordinate of the (m-n)multiplied point (m-n)P of the point P on the Montgomery-form elliptic curve, X_{m+n} and Z_{m+n} are Xcoordinate and Z-coordinate in the projective coordinate of the (m+n)-multiplied point (m+n)P of the point 15 P on the Montgomery-form elliptic curve, and m, n are positive integers satisfying m>n. In the equation when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged, $X_{m+n}/Z_{m+n}=x_{m+n}$ is also unchanged. Therefore, this functions well as the formula in the projective coordinate. On the other 20 hand, for Equations 14, 15, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m+n}/Z_{m+n}=x_{m+n}$ are unchanged in this equation, X'_{m-n}/Z'_{m-n} is also unchanged. Moreover, since $X'_{m-n}/Z'_{m-n}=X_{m-n}/Z_{m-n}=x_{m-n}$ is satisfied, X'm-n, Z'm-n may be taken as the projective 25 coordinate of x_{m-n} . When m=d, n=1 are set, the above formula is used, X_{d-1} and Z_{d-1} are deleted from the equation of y_d , and $X_1=x$, $Z_1=1$ are set, Equation 15 is obtained. Although $x_d=X_d/Z_d$, reduction to the

denominator common with that of y_d is performed, and Equation 16 is obtained.

As a result, the following equation is obtained.

$$5 \quad Y_d = \left\{ Z_{d+1} \left(X_d x - Z_d \right) + X_{d+1} \left(X_d - x Z_d \right) \right\} \left\{ Z_{d+1} \left(X_d x - Z_d \right) - X_{d+1} \left(X_d - x Z_d \right) \right\} \left(X_d x - Z_d \right)^2$$
 ... Equation 17

Then, X_d and Z_d may be updated by the following equations.

$$ByZ_{d+1}X_{d+1}Z_d(X_d - xZ_d)^2 X_d$$

10 ... Equation 18

$$ByZ_{d+1}X_{d+1}Z_d(X_d - xZ_d)^2Z_d$$

... Equation 19

Here, X_d , Y_d , Z_d are given by the processing of FIG. 9. Therefore, all the values of the projective coordinate (X_d, Y_d, Z_d) are recovered.

For the aforementioned procedure, in the steps 901, 903, 905, 906, 909, 910, 911, 912, 913, 914, 915, 918, and 919, the computational amount of multiplication on the finite field is required. Moreover,

- the computational amount of squaring on the finite field is required in the steps 907 and 908. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amount of multiplication on the
- 25 finite field and the computational amount of squaring,

and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a computational amount of 13M+2S. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M, the computational amount of coordinate recovering is 14.6 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of X_d , Y_d , Z_d given by the above equation can be calculated, and the values of X_d , Y_d , Z_d can then be recovered. Moreover, the values of X_d , Y_d , Z_d are selected so that x_d , y_d take the values given by the aforementioned equations, the values can be calculated, and then X_d , Y_d , Z_d can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of B as the parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 913 can be reduced.

An algorithm which outputs X_{d} , Z_{d} , X_{d+1} , Z_{d+1}

from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described.

The fast scalar multiplication method of the first embodiment is used as the fast scalar multiplication unit 202 tion method of the fast scalar multiplication unit 202 of the second embodiment. Thereby, as the algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve, a fast algorithm is achieved. Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 13M+2S, and this is far small as compared with the computational amount of (9.2k-4.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication of the fast scalar multiplication unit. Assuming S=0.8M, the computational amount can be estimated to be about (9.2k+10)M. For example, when the scalar value d indicates 160 bits (k=160), the

computational amount necessary for the scalar multiplication is 1482 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In a third embodiment, the scalar multiplication unit 103 calculates and outputs a scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto as a point of the affine coordinates in 15 the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomery-form elliptic curve. The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103 and then received by the 20 fast scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates \boldsymbol{X}_d and \boldsymbol{Z}_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the 25 coordinate of the point on the Montgomery-form elliptic curve $(d+1) P=(X_{d+1}, Y_{d+1}, Z_{d+1})$ represented by the projective coordinates, and $X_{d\text{--}1}$ and $Z_{d\text{--}1}$ in the coordinate of the point on the Montgomery-form elliptic curve (d-1) P=

(X_{d-1}, Y_{d-1}, Z_{d-1}) represented by the projective coordinates
from the received scalar value d and the given point P
on the Montgomery-form elliptic curve, and gives the
information together with the inputted point P=(x,y) on

5 the Montgomery-form elliptic curve represented by the
affine coordinates to the coordinate recovering unit
203. The coordinate recovering unit 203 recovers
coordinate x_d, and y_d of the scalar-multiplied point
dP=(x_d, y_d) represented by the affine coordinates in the

10 Montgomery-form elliptic curve from the given coordinate values X_d, Z_d, X_{d+1}, Z_{d+1}, X_{d-1}, Z_{d-1}, x and y. The
scalar multiplication unit 103 outputs the scalarmultiplied point (x_d, y_d) with the coordinate completely
given thereto in the affine coordinates as the calculation output.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinate x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 12.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point on the Montgomery-form elliptic curve (d+1) $P=(X_{d+1},Y_{d+1},Z_{d+1})$ represented by the projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point on the Montgomery-form elliptic curve (d-1) $P=(X_{d-1},Y_{d-1},Z_{d-1})$ represented by the projective coordinates,

and (x,y) as representation of the point P on the Montgomery-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point (x_d, y_d) with the 5 complete coordinate given thereto in the affine coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomeryform elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the 20 projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1201 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in the register T_1 . In step 1202 $Z_{d-1} \times X_{d+1}$ is calculated, and stored in the register T_2 . In step 1203 $T_1 - T_2$ is calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 , $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1}$ is therefore calculated. The result is stored in the register T_1 . In step 1204 $Z_d \times x$ is calculated, and

stored in the register T_2 . In step 1205 $X_d - T_2$ is calculated. Here, $Z_d x$ is stored in the register T_2 , and X_d xZ_d is therefore calculated. The result is stored in the register T_2 . In step 1206 a square of T_2 is calculated. Here, (X_d-xZ_d) is stored in the register T_2 , and $(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1207 $T_1 \times T_2$ is calculated. Here, $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is stored in the register T_1 , (X_d-1) xZ_d) 2 is stored in the register T_2 , and therefore $(X_d-$ 10 xZ_d) $^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is calculated. The result is stored in the register T_1 . In step 1208 4Bxy is calculated. The result is stored in the register T_2 . In step 1209 $T_2 \times Z_{d+1}$ is calculated. Here, 4By is stored in the register T_2 , and $4ByZ_{d+1}$ is therefore calculated. The 15 result is stored in the register T_2 . In step 1210 $T_2 \times Z_{d-1}$ is calculated. Here, $4ByZ_{d+1}$ is stored in the register $T_{\text{2}}\text{,}$ and $4\text{ByZ}_{\text{d-1}}\text{Z}_{\text{d+1}}$ is therefore calculated. The result is stored in the register T_2 . In step 1211 $T_2 \times Z_d$ is calculated. Here, $4ByZ_{d+1}Z_{d-1}$ is stored in the register 20 $T_{2}\text{,}$ and $4\text{ByZ}_{d+1}\text{Z}_{d-1}\text{Z}_{d}$ is therefore calculated. The result is stored in the register $T_2\text{.}$ In step 1212 $T_2 \times X_d$ is calculated. Here, $4\text{ByZ}_{d-1}\text{Z}_{d+1}\text{Z}_d$ is stored in the register $T_{\text{2}}\text{,}$ and $4\text{ByZ}_{\text{d+1}}\text{Z}_{\text{d-1}}\text{Z}_{\text{d}}X_{\text{d}}$ is therefore calculated. The result is stored in the register T_3 . In step 1213 $T_2 \times Z_d$ 25 is calculated. Here, $4ByZ_{d+1}Z_{d-1}Z_d$ is stored in the register $T_2\text{,}$ and $4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is therefore calculated. The result is stored in the register T_{2} . In step 1214 the inverse element of the register T_{2} is calculated.

Here, $4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in the register T_2 , and therefore $1/4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is calculated. The result is stored in the register T_2 . In step 1215 $T_2 \times T_3$ is calculated. Here, $1/4ByZ_{d+1}Z_{d-1}Z_{d}Z_{d}$ is stored in the 5 register T_2 , $4ByZ_{d+1}Z_{d-1}Z_dX_d$ is stored in the register T_3 , and therefore $(4ByZ_{d+1}Z_{d-1}Z_dX_d)/(4ByZ_{d+1}Z_{d-1}Z_dZ_d)$ is calcu-The result is stored in the register \mathbf{x}_{d} . In step 1216 $T_1 \times T_2$ is calculated. Here, $(X_d - x Z_d)^2 (X_{d-1} Z_{d+1} - x Z_d)^2 (X_{d-1} Z_{d+1} - x Z_d)^2$ $Z_{d-1}X_{d+1}$) is stored in the register T_1 , $1/4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is 10 stored in the register T_2 , and therefore $(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ $(X_d-xZ_d)^2/4ByZ_{d-1}Z_{d+1}Z_d^2$ is calculated. The result is stored in the register y_d . Therefore, $(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ $(X_d-Z_dx)^2/4ByZ_{d-1}Z_{d+1}Z_d^2$ is stored in the register y_d . In the step 1215 $(4ByZ_{d+1}Z_{d-1}Z_dX_d)/(4ByZ_{d+1}Z_{d-1}Z_dZ_d)$ is stored in the register x_d , and is not updated thereafter, and 15 therefore the value is held.

A reason why all values in the affine coordinate (x_d, y_d) of the scalar-multiplied point in the Montgomery-form elliptic curve are recovered from x, y, Z_d , Z_d , Z_{d+1} , Z_{d+1} , Z_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point P and the point P from the point P.

Assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When the opposite sides are individually subjected to subtraction,

Equation 8 is obtained. Therefore, Equation 9 results. Here, $x_d = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$, $x_{d-1} = X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, Equation 10 is obtained.

Although $x_d=X_d/Z_d$, reduction to the denominator common with that of y_d is performed for the purpose of reducing the frequency of inversion, and the following equation is obtained.

$$x_{d} = \frac{4ByZ_{d+1}Z_{d-1}Z_{d}X_{d}}{4ByZ_{d+1}Z_{d-1}Z_{d}Z_{d}}$$

5

10

... Equation 20

Here, x_d , y_d are given by the processing shown in FIG. 12. Therefore, all the values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the

steps 1201, 1202, 1204, 1207, 1208, 1209, 1210, 1211,

1212, 1213, 1215, and 1216, the computational amount of

multiplication on the finite field is required.

Moreover, the computational amount of squaring on the

finite field is required in the step 1206. Moreover,

the computational amount of inversion on the finite

field is required in the step 1214. The computational

amounts of addition and subtraction on the finite field

are relatively small as compared with the computational

amount of multiplication on the finite field and the

computational amounts of squaring and inversion, and

may be ignored. Assuming that the computational amount

of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a 5 computational amount of 12M+S+I. This is very small as compared with the computational amount of fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M, I=40M, the 10 computational amount of coordinate recovering is 52.8 M, and this is very small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered. 15

Additionally, even when the above procedure is not taken, the values of x_d , y_d given by the above equation can be calculated, and the values of x_d , y_d can then be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of B as the parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 1208 can be reduced.

A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described with

reference to FIG. 5.

The fast scalar multiplication unit 202 inputs the point P on the Montgomery-form elliptic curve inputted into the scalar multiplication unit 103, 5 and outputs X_d and Z_d in the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinate in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the point $(d+1) P=(X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordi-10 nate, and X_{d-1} and Z_{d-1} in the point $(d-1)P = (X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Montgomery-form elliptic curve represented by the projective coordinate by the following procedure. In step 501, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P is 15 calculated in step 502. Here, the point P is represented as (x,y,1) in the projective coordinate, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 503, the point 20 P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 502 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 504 25 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, m=d is satisfied, and the flow goes to step 514. With disagreement, the flow goes to step 505. The variable

I is increased by 1 in the step 505. It is judged in step 506 whether the value of an I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 507. When the value of the bit 5 is 1, the flow goes to step 510. In step 507, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 508. Here, the 10 addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomeryform elliptic curve. In step 508, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 509. Here, the doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. the step 509, the point 2mP obtained in the step 508 and the point (2m+1)P obtained in the step 507 are 20 stored as the set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 504. Here, the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the 25 projective coordinates. In step 510, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinates, and the point (2m+1)P is

calculated. Thereafter, the flow goes to step 511. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. In the step 511, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 512. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In the step 512, the point (2m+1)P obtained in the step 510 and the point (2m+2)P obtained in the step 511 are stored as the set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 504. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 514, from the set of points (mP, (m+1)P) represented by the projective coordinates, X-coordinate X_{m-1} and Z-coordinate Z_{m-1} in the projective coordinates of the point (m-1)P are obtained as X_{d-1} and Z_{d-1} . Thereafter, the flow goes to step 513. In the step 513, X_{m} and Z_{m} are obtained as X_{d} and Z_{d} from the point $mP = (X_m, Y_m, Z_m)$ represented by the projective 25 coordinates, $X_{\text{m+1}}$ and $Z_{\text{m+1}}$ are obtained as $X_{\text{d+1}}$ and $Z_{\text{d+1}}$ from the point (m+1) $P = (X_{m+1}, Y_{m+1}, Z_{m+1})$ represented by the projective coordinates, and these are outputted together with $X_{d\text{--}1}$ and $Z_{d\text{--}1}.$ Here, Y_{m} and $Y_{m\text{+}1}$ are not

10

obtained, because Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve.

Moreover, by the aforementioned procedure, m and the scalar value d have an equal bit length and further have the same pattern of the bit, and are therefore equal. Moreover, when (m-1)P is obtained in the step 514, Equations 10, 11 may be used. When m is an odd number, a value of ((m-1)/2)P is separately held in the step 512, and (m-1)P may be obtained from the value by the formula of doubling of the Montgomery-form elliptic curve.

The computational amount of the addition formula in the projective coordinates of the 15 Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount of squaring on the finite field. The computational amount of the formula of doubling in the projective 20 coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the step 507, and the computational amount of doubling in the step 508 are required. That is, the computational 25 amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 510, and the computational amount of doubling in the step 511 are required.

That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 504, 505, 506, 507, 508, 509, or the steps 504, 505, 506, 510, 511, 512 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 502, and the computational amount necessary for calculating (m-1)P in the step 514, the entire computational amount is (6M+4S)k+M. Here, k is the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of S=0.8M, the entire computational amount is approximately (9.2k+1)M. For example, when the scalar value d indicates 160 bits (k=160), the 15 computational amount of algorithm of the aforementioned procedure is about 1473 M. The computational amount per bit of the scalar value d is about 9.2 M. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in 20 Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multi-25 plication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the scalar value d

indicates 160 bits (k=160), the computational amount of

the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

5

10

15

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 12M+S+I, and this is far small as compared with the computational amount of (9.2k+1)M necessary for fast scalar multiplication of the fast scalar multiplication Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the 20 computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming I=40M, S=0.8M, the computational amount can be estimated to be about (9.2k+53.8)M. For example, when the scalar value d indicates 160 bits (k=160), the 25 computational amount necessary for the scalar multiplication is about 1526 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window

method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a fourth embodiment, the scalar multiplication unit 103 calculates and outputs a scalarmultiplied point (X_d,Y_d,Z_d) with the complete coordinate given thereto as a point of the projective coordinates 10 in the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomery-form elliptic curve. The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103 and then received by the fast scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_{d} and Z_{d} in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) $P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and the point (d-1) P= $(X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Montgomery-form elliptic curve 25 represented by the projective coordinates from the received scalar value d and the given point P on the Montgomery-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the

Montgomery-form elliptic curve represented by the affine coordinates to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinates X_d , Y_d , and Z_d of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X and Y. The scalar multiplication unit 103 outputs the scalar-multiplied point (X_d,Y_d,Z_d) with the coordinate completely given thereto in the projective coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs X_d , Y_d , Z_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 13.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point $(d-1)P=(X_{d-1},Y_{d-1},Z_{d-1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (X_d,Y_d,Z_d)

with the complete coordinate given thereto in the projective coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by 5 (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalarmultiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective 10 coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1},Y_{d-1},Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1301 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in the register T_1 . In step 1302 $Z_{d-1} \times X_{d+1}$ is calculated, and stored in the register T_2 . In step 1303 $T_1 - T_2$ is calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 , $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1}$ is therefore calculated. The result is stored in the register T_1 . In step 1304 $Z_d \times x$ is calculated, and stored in the register T_2 . In step 1305 $X_d - T_2$ is calculated. Here, $Z_d \times x$ is stored in the register T_2 , and $T_2 \times x$ is therefore calculated. The result is stored in the register T_2 . In step 1306 a square of T_2 is

calculated. Here, X_d-xZ_d is stored in the register T_2 , and $(X_d - x Z_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1307 $T_1 \times T_2$ is calculated. Here, $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is stored in the register T_1 , $(X_d-xZ_d)^2$ is stored in the register T_2 , and therefore $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is calculated. The result is stored in the register Y_d. In step 1308 4Bxy is calculated. The result is stored in the register T_2 . In step 1309 $T_2 \times Z_{d+1}$ is calculated. Here, 4By is stored in the register T_2 , and $4ByZ_{d+1}$ is therefore calculated. 10 The result is stored in the register T2. In step 1310 $T_2 \times Z_{d-1}$ is calculated. Here, $4ByZ_{d+1}$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}$ is therefore calculated. result is stored in the register T_2 . In step 1311 $T_2 \times Z_d$ 15 is calculated. Here, $4ByZ_{d+1}Z_{d-1}$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}Z_d$ is therefore calculated. The result is stored in the register T_2 . In step 1312 $T_2 \times X_d$ is calculated. Here, $4ByZ_{d+1}Z_{d-1}Z_d$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}Z_dX_d$ is therefore calculated. The result is stored in the register X_d . In step 1313 $T_2 \times Z_d$ is calculated. Here, $4ByZ_{d+1}Z_{d-1}Z_d$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is therefore calculated. The result is stored in Z_d . Therefore, $4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in Z_d . In the step 1307 $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is stored in the register Y_d , and is not updated

A reason why all values in the projective coordinate (X_d,Y_d,Z_d) of the scalar-multiplied point are

thereafter, and therefore the value is held.

recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP. Thereby, Equation 7 can be obtained. The coordinate recovering unit 203 outputs (X_d, Y_d, Z_d) as the complete coordinate represented by the projective coordinate of the scalar-multiplied point.

- Assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When the opposite sides are individually subjected to subtraction, Equation 8 is obtained. Therefore, Equation 9 results.
- Here, $x_d = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$, $x_{d-1} = X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, Equation 7 is obtained.

Although $x_d=X_d/Z_d$, reduction to the denominator common with that of y_d is performed, and thereby 20 Equation 20 results. As a result, the following equation is obtained.

$$Y_{d} = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_{d} - Z_{d}x)^{2}$$
... Equation 21

Then, X_d and Z_d may be updated by the following equations, respectively.

 $4ByZ_{d+1}Z_{d-1}Z_dX_d$

... Equation 22

 $4ByZ_{d+1}Z_{d-1}Z_dZ_d$

... Equation 23

5 Here, X_d , Y_d , Z_d are given by the processing of FIG. 13. Therefore, all the values of the projective coordinate (X_d,Y_d,Z_d) are recovered.

For the aforementioned procedure, in the steps 1301, 1302, 1304, 1307, 1308, 1309, 1310, 1311, 10 1312, and 1313, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 1306. The computational amount of subtraction on the finite field is relatively small as compared with the computational amount of multiplication on the finite field and the computational amount of squaring, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of 20 squaring on the finite field is S, the above procedure requires a computational amount of 10M+S. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational 25 amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M, the computational amount of coordinate

recovering is 10.8 M, and far small as compared with the computational amount of the fast scalar multipli-Therefore, it is indicated that the coordinate cation. can efficiently be recovered.

5

Additionally, even when the above procedure is not taken, the values of $X_{\text{d}},\ Y_{\text{d}},\ Z_{\text{d}}$ given by the above equation can be calculated, and the values of X_{d} , Y_{d} , Z_{d} can then be recovered. Moreover, the values of $X_{\text{d}},\ Y_{\text{d}},$ Z_d are selected so that x_d , y_d take the values given by 10 the aforementioned equations, the values can be calculated, and then $X_{\text{d}},\ Y_{\text{d}},\ Z_{\text{d}}$ can be recovered. this case, the computational amount required for recovering generally increases. Furthermore, when the value of B as the parameter of the elliptic curve is 15 set to be small, the computational amount of multiplication in the step 1308 can be reduced.

An algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described.

The fast scalar multiplication method of the 20 third embodiment is used as the fast scalar multiplication method of the fast scalar multiplication unit 202 of the fourth embodiment. Thereby, as the algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Montgomery-25 form elliptic curve, the fast algorithm is achieved. Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202,

another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for 5 recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 10M+S, and this is far small as compared with the computational amount of (9.2k+1)M necessary for fast 10 scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar 15 multiplication of the fast scalar multiplication unit. Assuming S=0.8M, the computational amount can be estimated to be about (9.2k+11.8)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multipli-20 cation is 1484 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point 25 is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In a fifth embodiment, the scalar multiplication unit 103 calculates and outputs a scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto as a point of the affine coordinates in 5 the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomery-form elliptic The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103 and then received by the fast scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates \boldsymbol{x}_{d} in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve, x_{d+1} in the coordinate of the point (d+1)P= (x_{d+1}, y_{d+1}) on the Montgomery-form elliptic curve represented by the afffine coordinates, and $\boldsymbol{x}_{d\text{--}1}$ in the coordinate of the point $(d-1) P=(x_{d-1}, y_{d-1})$ on the Montgomery-form elliptic curve represented by the affine coordinates from the received scalar value d and 20 the given point P on the Montgomery-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates to the coordinate recovering unit 203. The coordinate 25 recovering unit 203 recovers coordinates y_d of the scalar-multiplied point $dP=(x_d,y_d,)$ represented by the affine coordinates in the Montgomery-form elliptic curve from the given coordinate values x_d , x_{d+1} , x_{d-1} , x

15

and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d,y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, x_{d+1} , x_{d-1} will next be described with reference to FIG. 26.

in the coordinate recovering unit 203 inputs x_d in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the

Montgomery-form elliptic curve, x_{d+1} in the coordinate of

the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Montgomery-form

elliptic curve represented by the affine coordinates, x_{d-1} in the coordinate of the point $(d-1)P=(x_{d-1},y_{d-1})$ on

the Montgomery-form elliptic curve represented by the

affine coordinates, and (x,y) as representation of the

point P on the Montgomery-form elliptic curve inputted

into the scalar multiplication unit 103 in the affine

coordinates, and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto in

the affine coordinates in the following procedure.

In step 2601 x_d-x is calculated, and stored in the register T_1 . In step 2602 a square of T_1 , that is, $(x_d-x)^2 \text{ is calculated, and stored in the register } T_1.$ In step 2603 $x_{d-1}-x_{d+1}$ is calculated, and stored in the register T_2 . In step 2604 $T_1\times T_2$ is calculated. Here, $(x_d-x)^2 \text{ is stored in the register } T_1, \ x_{d-1}-x_{d+1} \text{ is stored}$

in the register T₂, and therefore $(x_d-x)^2(x_{d-1}-x_{d+1})$ is calculated. The result is stored in the register T₁. In step 2605 4B×y is calculated, and stored in the register T₂. In step 2606 an inverse element of T₂ is calculated. Here, 4By is stored in the register T₂, and 1/4By is therefore calculated. The result is stored in the register T₂. In step 2607 T₁×T₂ is calculated. Here, $(x_d-x)^2(x_{d-1}-x_{d+1})$ is stored in the register T₁, 1/4By is stored in the register T₂, and $(x_d-x)^2(x_{d-1}-x_{d+1})$ 10 x_{d+1})/4By is therefore calculated. The result is stored in register y_d. Therefore, $(x_d-x)^2(x_{d-1}-x_{d+1})$ /4By is stored in the register y_d. Since register x_d is not updated, the inputted value is held.

A reason why the y coordinate y_d of the

15 scalar-multiplied point is recovered by the aforementioned procedure is as follows. Additionally, the
point (d+1)P is a point obtained by adding the point P
to the point dP, and the point (d-1)P is a point
obtained by subtracting the point P from the point dP.

20 Thereby, assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7.

When the opposite sides are individually subjected to subtraction, Equation 8 is obtained.

25 Therefore, Equation 9 results.

Here, x_d , y_d are given by the processing of FIG. 26. Therefore, all the values of the affine coordinate (x_d, y_d) are all recovered.

For the aforementioned procedure, in the steps 2604, 2605, and 2607, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the 5 finite field is required in the step 2602. Furthermore, the computational amount of inversion on the finite field is required in the step 2606. computational amount of subtraction on the finite field is relatively small as compared with the computational amounts of multiplication on the finite field, squaring, and inversion, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computa-15 tional amount of inversion on the finite field is I, the above procedure requires a computational amount of 3M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 20 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M and I=40M, the computational amount of coordinate recovering is 43.8 M, and far small as compared with the computational amount of 25 the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure

is not taken, and when the value of the right side of the equation can be calculated, the value of y_d can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of B as the parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 2605 can be reduced.

A processing of the fast scalar multiplication unit which outputs x_d , x_{d+1} , x_{d-1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described with reference to FIG. 6.

The fast scalar multiplication unit 202 inputs the point P on the Montgomery-form elliptic 15 curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP = (x_d, y_d)$ represented by the affine coordinate in the Montgomeryform elliptic curve, x_{d+1} in the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Montgomery-form elliptic curve represented by 20 the affine coordinate, and x_{d-1} in the point (d-1) P= (x_{d-1}, y_{d-1}) on the Montgomery-form elliptic curve represented by the affine coordinate by the following procedure. In step 601, the initial value 1 is assigned to the variable I. The doubled point 2P of 25 the point P is calculated in step 602. Here, the point P is represented as (x, y, 1) in the projective coordinate, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is

used to calculate the doubled point 2P. In step 603, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 602 are stored as a set of points 5 (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 604 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 614. With disagreement, the flow goes to 10 step 605. The variable I is increased by 1 in the step 605. It is judged in step 606 whether the value of the I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 607. When the value of the bit is 1, the flow goes to step 610. 15 In step 607, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P)represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 608. Here, the addition mP+(m+1)P is calculated 20 using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In step 608, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. There-25 after, the flow goes to step 609. Here, the doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form

elliptic curve. In the step 609, the point 2mP

obtained in the step 608 and the point (2m+1)P obtained in the step 607 are stored as the set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 604. Here, 5 the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step 610, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 611. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. the step 611, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P) 15 represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 612. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In the step 612, the point (2m+1)P obtained in the step 610 and the point (2m+2)P obtained in the step 611 are stored as the set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow 25 returns to the step 604. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 614, from the set of points (mP, (m+1)P) represented by the projective

coordinates, X-coordinate X_{m-1} and Z-coordinate Z_{m-1} in the projective coordinates of the point (m-1)P are obtained as X_{d-1} and Z_{d-1} . Thereafter, the flow goes to step 615. In the step 615, X_m and Z_m are obtained as X_d and Z_d from the point $mP=(X_m,Y_m,Z_m)$ represented by the projective coordinates, and X_{m+1} and Z_{m+1} are obtained as X_{d+1} and Z_{d+1} from the point $(m+1)P=(X_{m+1},Y_{m+1},Z_{m+1})$ represented by the projective coordinates. Here, Y_m and Y_{m+1} are not obtained, because Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. From X_{d-1} , Z_{d-1} , X_d , Z_d , X_{d+1} , and Z_{d+1} , X_{d-1} , X_d , X_{d+1} are obtained as follows.

$$x_{d-1} = X_{d-1} Z_d Z_{d+1} / Z_{d-1} Z_d Z_{d+1}$$
15
... Equation 24
$$x_d = Z_{d-1} X_d Z_{d+1} / Z_{d-1} Z_d Z_{d+1}$$
... Equation 25
$$x_{d+1} = Z_{d-1} Z_d X_{d+1} / Z_{d-1} Z_d Z_{d+1}$$
... Equation 26

Thereafter, the flow goes to step 613. In the step 613, x_{d-1} , x_d , x_{d+1} are outputted. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal.

Moreover, when (m-1)P is obtained in step 614, it may be obtained by Equations 13, 14. If m is an odd number, a value of ((m-1)/2)P is separately held in the step 612, and (m-1)P may be obtained from the value by

the doubling formula of the Montgomery-form elliptic curve.

The computational amount of the addition formula in the projective coordinates of the 5 Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount of squaring on the finite field. The computational amount of the formula of doubling in the projective 10 coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the step 607, and the computational amount of doubling in the step 608 are required. That is, the computational 15 amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 610, and the computational amount of doubling in the step 611 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is 20 required. The number of repetitions of the steps 604, 605, 606, 607, 608, 609, or the steps 604, 605, 606, 610, 611, 612 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount 25 of doubling in the step 602, the computational amount necessary for calculating (m-1)P in the step 614, and the computational amount of transform to the affine coordinate, the entire computational amount is

(6M+4S)k+11M+I. Here, k is the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of $S=0.8\ M$, and the computational amount I is estimated to be of 5 the order of $I=40\ M$, the entire computational amount is approximately (9.2k+51)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1523 M. The computational amount per bit of the 10 scalar value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed 15 coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M, and additionally the 20 computational amount of the transform to the affine coordinates is required. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1650 M. Therefore, the algorithm of the aforementioned 25 procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs x_d , x_{d+1} , x_{d-1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for 5 recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 3M+S+I, and this is far small as compared with the computational amount of (9.2k+51)M necessary for fast scalar multiplication of the fast scalar multiplication 10 unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar 15 multiplication of the fast scalar multiplication unit. Assuming S=0.8M and I=40M, the computational amount can be estimated to be about (9.2k+94.8)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multipli-20 cation is about 1567 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-25 multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a sixth embodiment, the Weierstrass-form elliptic curve is used as the elliptic curve. That is, the elliptic curve for use in input/output of the scalar multiplication unit 103 is the Weierstrass-form 5 elliptic curve. Additionally, as the elliptic curve used in internal calculation of the scalar multiplication unit 103, the Montgomery-form elliptic curve to which the given Weierstrass-form elliptic curve can be transformed may be used. The scalar multiplication 10 unit 103 calculates a scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar 15 value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the coordinate of the scalar-20 multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, and \boldsymbol{X}_{d-1} 25 and Z_{d-1} in the coordinate of the point (d-1)P= $(X_{d-1},Y_{d-1},Z_{d-1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the

Weierstrass-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve represented by the affine coordinates to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinates x_d and y_d of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X and Y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d,y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 14.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point dP= (X_d,Y_d,Z_d) represented by the projective coordinates in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point $(d-1)P=(X_{d-1},Y_{d-1},Z_{d-1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Weierstrass-form elliptic curve inputted into the

scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure. Here, 5 the affine coordinate of the inputted point P on the Weierstrass-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-10 multiplied point dP in the Weierstrass-form elliptic curve is represented by (x_d,y_d) , and the projective coordinate thereof is represented by (X_d, Y_d, Z_d) . affine coordinate of the point (d-1)P on the Weierstrass-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1},Y_{d-1},Z_{d-1})$. The affine coordinate of the point (d+1)P on the Weierstrass-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1401 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in the register T_1 . In step 1402 $Z_{d-1} \times X_{d+1}$ is calculated, and stored in the register T_2 . In step 1403 $T_1 - T_2$ is calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 , $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1}$ is therefore calculated. The result is stored in the register T_1 . In step 1404 $Z_d \times x$ is calculated, and stored in the register T_2 . In step 1405 $X_d - T_2$ is calculated. Here, $Z_d \times x$ is stored in the register T_2 , and

 X_d - xZ_d is therefore calculated. The result is stored in the register T_2 . In step 1406 a square of T_2 is calculated. Here, X_d - xZ_d is stored in the register T_2 , and $(X_d$ - $xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1407 T_1 × T_2 is calculated. Here, $X_{d-1}Z_{d+1}$ - $Z_{d-1}X_{d+1}$ is stored in the register T_1 , $(X_d$ - $xZ_d)^2$ is stored in the register T_2 , and therefore $(X_d$ - $xZ_d)^2$ ($X_{d-1}Z_{d+1}$ - $Z_{d-1}X_{d+1}$) is calculated. The result is stored in the register T_1 . In step 1408 4×y is calculated.

- The result is stored in the register T_2 . In step 1409 $T_2 \times Z_{d+1}$ is calculated. Here, 4y is stored in the register T_2 , and $4yZ_{d+1}$ is therefore calculated. The result is stored in the register T_2 . In step 1410 $T_2 \times Z_{d-1}$ is calculated. Here, $4yZ_{d+1}$ is stored in the register
- T₂, and $4yZ_{d+1}Z_{d-1}$ is therefore calculated. The result is stored in the register T₂. In step 1411 T₂×Z_d is calculated. Here, $4yZ_{d+1}Z_{d-1}$ is stored in the register T₂, and $4yZ_{d+1}Z_{d-1}Z_d$ is therefore calculated. The result is stored in the register T₂. In step 1412 T₂×X_d is
- calculated. Here, $4yZ_{d+1}Z_{d-1}Z_d$ is stored in the register T_2 , and $4yZ_{d+1}Z_{d-1}Z_dX_d$ is therefore calculated. The result is stored in the register T_3 . In step 1413 $T_2\times Z_d$ is calculated. Here, $4yZ_{d-1}Z_{d+1}Z_d$ is stored in the register T_2 , and $4yZ_{d+1}Z_{d-1}Z_dZ_d$ is therefore calculated. The result
- is stored in T_2 . In step 1414, the inverse element of the register T_2 is calculated. Here, $4yZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in the register T_2 . Therefore, $1/4yZ_{d+1}Z_{d-1}Z_dZ_d$ is calculated. The result is stored in the register T_2 .

In step 1415 $T_2 \times T_3$ is calculated. Here, $1/4yZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in the register T_2 , and $4yZ_{d-1}Z_{d+1}Z_dX_d$ is stored in the register T_3 . Therefore, $(4yZ_{d+1}Z_{d-1}Z_dX_d)/(4yZ_{d+1}Z_{d-1}Z_dZ_d)$ is calculated. The result is stored in the register X_d .

5 In step 1416 $T_1 \times T_2$ is calculated. Here, the register T_1 stores $(X_d - xZ_d)^2(X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})$ and the register T_2 stores $1/4yZ_{d+1}Z_{d-1}Z_dZ_d$. Therefore, $(X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2/4yZ_{d+1}Z_{d-1}Z_d^2$ is calculated. The result is stored in the register Y_d . Therefore, the register Y_d stores $(X_{d-1}Z_{d+1} - Z_{d+1}Z_d)/(4yZ_{d-1}Z_{d+1}Z_dX_d)/(4yZ_{d-1}Z_{d+1}Z_dX_d)$ is stored in the register X_d , and is not updated thereafter, and therefore the value is held.

A reason why all values in the affine coordinate (x_d, y_d) of the scalar-multiplied point are 15 recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to addition formulae in the affine coordinates of the Weierstrass-form elliptic curve results in the following equations.

$$(x + x_d + x_{d+1})(x_d - x)^2 = (y_d - y)^2$$
... Equation 27
$$(x + x_d + x_{d-1})(x_d - x)^2 = (y_d + y)^2$$
... Equation 28

When opposite sides are individually subjected to

subtraction, the following equation is obtained.

$$(x_{d-1} - x_{d+1})(x_d - x)^2 = 4y_d y$$

... Equation 29

Therefore, the following results.

5
$$y_{d} = (x_{d-1} - x_{d+1})(x_{d} - x)^{2} / 4y$$
... Equation 30

10

Here, $x_d = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$, $x_{d-1} = X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to a value of the projective coordinate. Then, the following equation is obtained.

$$y_d = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2 / 4yZ_{d-1}Z_{d+1}Z_d^2$$
... Equation 31

Although $x_d=X_d/Z_d$, reduction to a denominator common with that of y_d is performed for a purpose of reducing a frequency of inversion, and the following equation is obtained.

$$x_{d} = \frac{4yZ_{d+1}Z_{d-1}Z_{d}X_{d}}{4yZ_{d+1}Z_{d-1}Z_{d}Z_{d}}$$

... Equation 32

Here, x_d , y_d are given by the processing of FIG. 14. 20 Therefore, all the values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the

steps 1401, 1402, 1404, 1407, 1409, 1410, 1411, 1412, 1413, 1415, and 1416, the computational amount of multiplication on the finite field is required. Moreover, in the multiplication in the step 1408, since 5 the value of the multiplicand is small as 4, the computational amount is relatively small as compared with the computational amount of usual multiplication, and may be ignored. Moreover, in the step 1406 the computational amount of squaring on the finite field is 10 required. Furthermore, in the step 1414, the computational amount of the inversion on the finite field is required. The computational amount of subtraction on the finite field is relatively small as compared with the computational amounts of multiplication on the 15 finite field, squaring, and inversion, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the 20 finite field is I, the above procedure requires a computational amount of 11M+S+I. This is very small as compared with the computational amount of fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the 25 fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 51.8 M, and this is very small as compared with the

computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of x_d , y_d given by the above equation can be calculated, and the values of x_d , y_d can then be recovered. In this case, the computational amount necessary for the recovering generally increases.

- A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrassform elliptic curve will next be described with reference to FIG. 7.
- inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs X_d and Z_d in the scalar-multiplied point dP=(X_d, Y_d, Z_d) represented by the projective coordinate in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the point (d+1)P=(X_{d+1}, Y_{d+1}, Z_{d+1}) on the Weierstrass-form elliptic curve represented by the projective coordinate, and X_{d-1} and Z_{d-1} in the point (d-1)P=(X_{d-1}, Y_{d-1}, Z_{d-1}) on the Weierstrass-form elliptic curve represented by the projective coordinate by the following procedure. In step 716, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on the Montgomery-form

elliptic curve. This point is set anew as point P. step 701, the initial value 1 is assigned to the variable I. A doubled point 2P of the point P is calculated in step 702. Here, the point P is 5 represented as (x,y,1) in the projective coordinate, and a formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 703, the point P on the elliptic curve inputted into the scalar 10 multiplication unit 103 and the point 2P obtained in the step 702 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 704 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 714. With disagreement, the flow goes to step 705. The variable I is increased by 1 in the step 705. It is judged in step 706 whether the value of the I-th bit of the scalar value is 0 or 1. When the value 20 of the bit is 0, the flow goes to the step 707. When the value of the bit is 1, the flow goes to step 710. In step 707, addition mP+(m+1)P of points mP and (m+1)Pis performed from a set of points (mP, (m+1)P) represented by the projective coordinate, and a point 25 (2m+1)P is calculated. Thereafter, the flow goes to step 708. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In step 708,

doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 709. Here, the doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. In the step 709, the point 2mP obtained in the step 708 and the point (2m+1)P obtained in the step 707 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). 10 Thereafter, the flow returns to the step 704. Here, the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step 710, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 711. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective 20 coordinates of the Montgomery-form elliptic curve. the step 711, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinates, and a point (2m+2)P is calculated. Thereafter, the flow goes to step 712. Here, the doubling 2((m+1)P) is calculated 25 using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve.

step 712, the point (2m+1)P obtained in the step 710

and the point (2m+2)P obtained in the step 711 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 704. Here, the points (2m+1)P, 5 (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 714, from the set of points (mP, (m+1)P) represented by the projective coordinates, X-coordinate $\mathbf{X}_{\text{m-1}}$ and Z-coordinate $\mathbf{Z}_{\text{m-1}}$ are obtained in the projective coordinates of the point (m-1) P. Thereafter, the flow goes to step 715. In the step 715, the point (m-1)P in the Montgomery-form elliptic curve is transformed to the point represented by the projective coordinates on the Weierstrass-form elliptic curve. The X-coordinate and Z-coordinate of the point are set anew to X_{m-1} and Z_{m-1} . With respect to the set of points (mP, (m+1)P) represented by the projective coordinates in the Montgomery-form elliptic curve, the points mP and (m+1)P are transformed to points represented by the projective coordinates on the Weierstrass-form elliptic curve. The respective points are replaced as $mP = (X_m, Y_m, Z_m)$ and $(m+1) P = (X_{m+1}, Y_{m+1}, Z_{m+1})$. Here, since the Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve, Y_m 25 and Y_{m+1} are not obtained. In step 713, X-coordinate X_{m-1} and Z-coordinate Z_{m-1} of the point $(m-1)\,P$ represented by the projective coordinates on the Weierstrass-form elliptic curve are outputted as $X_{d-1},\ Z_{d-1},\ X_m$ and Z_m are

10

outputted as X_d , Z_d from the point mP=(X_m , Y_m , Z_m) represented by the projective coordinates on the Weierstrass-form elliptic curve, and X_{m+1} and Z_{m+1} are outputted as X_{d+1} , Z_{d+1} from the point $(m+1) P = (X_{m+1}, Y_{m+1}, Z_{m+1})$ 5 represented by the projective coordinates on the Weierstrass-form elliptic curve. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal. Moreover, when (m-1)P is obtained in step 714, it may be obtained by Equations 13, 14. If m is an odd number, a value of ((m-1)/2)P is separately held in the step 712, and (m-1) P may be obtained from the value by the doubling formula of the Montgomery-form elliptic curve.

10

15 The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount 20 of squaring on the finite field. The computational amount of the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the 25 step 707, and the computational amount of doubling in the step 708 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational

amount of addition in the step 710, and the computational amount of doubling in the step 711 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 704, 705, 706, 707, 708, 709, or the steps 704, 705, 706, 710, 711, 712 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 702, the computational amount necessary for transform to the point on the Montgomeryform elliptic curve in the step 716, and the computational amount of transform to the point on the Weierstrass-form elliptic curve in the step 715, the entire computational amount is (6M+4S)k+4M. Here, k is 15 the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of S=0.8~M, the entire computational amount is approximately (9.2k+4)M. For example, when the scalar value d indicates 160 bits (k=160), the 20 computational amount of algorithm of the aforementioned procedure is about 1476 M. The computational amount per bit of the scalar value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in 25 Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form

elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 11M+S+I, and this is far small as compared with the computational amount of (9.2k+4)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication of the fast scalar multiplication unit. Assuming I=40M, and S=0.8M, the computational amount can be estimated to be about (9.2k+55.8)M. For

example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1528 M. Weierstrass-form elliptic curve is used as the elliptic 5 curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational 10 amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a seventh embodiment, a Weierstrass-form elliptic curve is used as the elliptic curve. the elliptic curve for use in input/output of the scalar multiplication unit 103 is the Weierstrass-form elliptic curve. Additionally, as the elliptic curve used in internal calculation of the scalar multiplication unit 103, the Montgomery-form elliptic curve to which the given Weierstrass-form elliptic curve can be 20 transformed may be used. The scalar multiplication unit 103 calculates a scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto as the point of the projective coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P 25 on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multipli-

15

cation unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic 5 curve, X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) P=(X_{d+1} , Y_{d+1} , Z_{d+1}) on the Weierstrass-form elliptic curve represented by the projective coordinates, and X_{d-1} and Z_{d-1} in the coordinate of the point (d-1)P= $(X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Weierstrass-form elliptic curve 10 represented by the projective coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve represented by the affine coordinates to the coordinate recovering unit The coordinate recovering unit 203 recovers coordinates X_d , Y_d and Z_d of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X and Y. The scalar multiplication unit 103 outputs the scalarmultiplied point (X_d, Y_d, Z_d) with the coordinate completely given thereto in the projective coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs X_d , Y_d , Z_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 15.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point $(d-1) P = (X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Weierstrass-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto in 15 the projective coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Weierstrass-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalarmultiplied point dP in the Weierstrass-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d-1)P on the 25 Weierstrass-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1},Y_{d-1},Z_{d-1})$. The affine coordinate of the point (d+1)P on the Weierstrass-form elliptic curve

is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1501 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in T_1 . In step 1502 $Z_{d-1} \times X_{d+1}$ is calculated, and stored 5 in T_2 . In step 1503 T_1-T_2 is calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 , $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is therefore calculated. The result is stored in T_1 . In step 1504 $Z_d \times x$ is calculated, and stored in the register T_2 . In step 1505 $X_d - T_2$ is calculated. Here, $Z_d x$ is stored in T_2 , and X_d xZ_d is therefore calculated. The result is stored in T_2 . In step 1506 a square of T_2 is calculated. Here, X_d-xZ_d is stored in the register T_2 , and $(X_d-xZ_d)^2$ is therefore calculated. The result is stored in T_2 . In step 1507 $T_1 \times T_2$ is calculated. Here, $X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1}$ is stored in T_1 , $(X_d-xZ_d)^2$ is stored in the register T_2 , and therefore $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is calculated. The result is stored in the register Y_d . In step 1508 4xy is calculated. The result is stored in T_2 . In step 1509 $T_2 \times Z_{d+1}$ is calculated. Here, 4y is stored in T_2 , and $4yZ_{d+1}$ is therefore calculated. The result is stored in T_2 . In step 1510 $T_2 \times Z_{d-1}$ is calculated. Here, $4yZ_{d+1}$ is stored in T_2 , and $4yZ_{d+1}Z_{d-1}$ is therefore calculated. result is stored in T_2 . In step 1511 $T_2 \times Z_d$ is calculated. Here, $4yZ_{d+1}Z_{d-1}$ is stored in the T_2 , and 25 $4yZ_{d+1}Z_{d-1}Z_d$ is therefore calculated. The result is stored in T_2 . In step 1512 $T_2 \times X_d$ is calculated. Here,

 $4yZ_{d+1}Z_{d-1}Z_d$ is stored in T_2 , and $4yZ_{d+1}Z_{d-1}Z_dX_d$ is therefore

calculated. The result is stored in the register X_d . In step 1513 $T_2 \times Z_d$ is calculated. Here, $4yZ_{d-1}Z_{d+1}Z_d$ is stored in T_2 , and $4yZ_{d+1}Z_{d-1}Z_dZ_d$ is therefore calculated. The result is stored in Z_d . Therefore, $4yZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in the register Z_d . In the step 1507 $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is stored in the register Y_d , and is not updated thereafter, and therefore the value is held. In the step 1512 $4yZ_{d+1}Z_{d-1}Z_dX_d$ is stored in the register X_d , and is not updated thereafter, and there-10 fore the value is held.

A reason why all values in the projective coordinate (X_d,Y_d,Z_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to addition formulae in the affine coordinates of the Weierstrass-20 form elliptic curve results in Equations 27, 28. When opposite sides are individually subjected to subtraction, Equation 29 is obtained. Therefore, Equation 30 results. Here, $x_d = X_d / Z_d$, $x_{d+1} = X_{d+1} / Z_{d+1}$, $x_{d-1} = X_{d-1} / Z_{d-1}$. value is assigned and thereby converted to a value of 25 the projective coordinate. Then, Equation 31 is obtained. Although $x_d=X_d/Z_d$, reduction to the denominator common with that of y_d is performed, and Equation 32 is obtained.

107

The following results.

$$Y_{d} = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_{d} - Z_{d}x)^{2}$$
... Equation 33

Then, X_d and Z_d may be updated by the following.

 $4yZ_{d+1}Z_{d-1}Z_dX_d$

5

... Equation 34

 $4yZ_{d+1}Z_{d-1}Z_dZ_d$

... Equation 35

The updating is shown above.

Here, X_d , Y_d , Z_d are given by the processing shown in FIG. 15. Therefore, all the values of the projective coordinate (X_d,Y_d,Z_d) are all recovered.

For the aforementioned procedure, in the steps 1501, 1505, 1504, 1507, 1509, 1510, 1511, 1512, and 1513, the computational amount of multiplication on the finite field is required.

Additionally, in the multiplication of the step 1508, since the value of the multiplicand is small as 4, the computational amount is relatively small as compared with the computational amount of usual multiplication, and may therefore be ignored. Moreover, in the step 1506 the computational amount of squaring on the finite field is required. The computational amount of subtraction on the finite field is relatively small as compared with the computational amounts of multiplication on the finite field, and squaring, and

may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a 5 computational amount of 9M+S. This is very small as compared with the computational amount of fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, the computa-10 tional amount of coordinate recovering is 9.8 M, and this is very small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be 15 recovered.

Additionally, even when the above procedure is not taken, the values of X_d , Y_d , Z_d given by the above equation can be calculated, and the values of X_d , Y_d , Z_d can be recovered. Moreover, the values of X_d , Y_d , Z_d are selected so that x_d , y_d take the values given by the above equations, and the values can be calculated, then the X_d , Y_d , Z_d can be recovered. In these cases, the computational amount required for recovering generally increases.

The algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described.

As the fast scalar multiplication method of

the scalar multiplication unit 202 of the seventh embodiment, the fast scalar multiplication method of the sixth embodiment is used. Thereby, as the algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrassform elliptic curve, a fast algorithm can be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering 15 unit 203 in the scalar multiplication unit 103 is 9M+S, and this is far small as compared with the computational amount of (9.2k+4)M necessary for fast scalar multiplication of the fast scalar multiplication unit Therefore, the computational amount necessary for 20 the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, the computational amount can be estimated to 25 be about (9.2k+13.8)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1486 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In an eighth embodiment, the Weierstrass-form 10 elliptic curve is used as the elliptic curve. That is, the elliptic curve for use in input/output of the scalar multiplication unit 103 is the Weierstrass-form elliptic curve. Additionally, as the elliptic curve used in internal calculation of the scalar multiplica-15 tion unit 103, the Montgomery-form elliptic curve to which the given Weierstrass-form elliptic curve can be transformed may be used. The scalar multiplication unit 103 calculates a scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point 20 of the affine coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplica-25 tion unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates x_d in the coordinate of the scalar-multiplied point $dP=(x_d, y_d)$ represented by the affine coordinates

in the Weierstrass-form elliptic curve, \mathbf{x}_{d+1} in the coordinate of the point $(d+1) P = (x_{d+1}, y_{d+1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates, and x_{d-1} in the coordinate of the 5 point $(d-1)P=(x_{d-1},y_{d-1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve, and gives the information together with the inputted point P=(x,y) on the 10 Weierstrass-form elliptic curve represented by the affine coordinates to the coordinate recovering unit The coordinate recovering unit 203 recovers coordinate y_d of the scalar-multiplied point dP= (x_d, y_d) represented by the affine coordinates in the 15 Weierstrass-form elliptic curve from the given coordinate values x_{d} , x_{d+1} , x_{d-1} , x and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d, y_d) with the coordinate completely given thereto in the affine coordinates as the calculation 20 result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, x_d , x_{d+1} , x_{d-1} will next be described with reference to FIG. 16.

The coordinate recovering unit 203 inputs x_d in the coordinate of the scalar-multiplied point $dP = (x_d, y_d) \text{ represented by the affine coordinates in the } Weierstrass-form elliptic curve, <math>x_{d+1}$ in the coordinate

of the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates, x_{d-1} in the coordinate of the point $(d-1)P=(x_{d-1},y_{d-1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates, and (x,y) as representation of the point P on the Weierstrass-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point (x_d,y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure.

10

In step 1601 x_d -x is calculated, and stored in In step 1602 a square of T_1 , that is, $(x_d-x)^2$ is calculated, and stored in T_1 . In step 1603 $x_{d-1}-x_{d+1}$ is calculated, and stored in T_2 . In step 1604 $T_1 \times T_2$ is calculated. Here, $(x_d-x)^2$ is stored in T_1 , $x_{d-1}-x_{d+1}$ is stored in $T_2\text{,}$ and therefore $(x_\text{d}\text{-}x)^2(x_\text{d-1}\text{-}x_\text{d+1})$ is calculated. The result is stored in T_1 . In step 1605 4xy is calculated, and stored in T_2 . In step 1606 the inverse element of T_2 is calculated. Here, 4y is stored in T_2 , and 1/4y is therefore calculated. The result is stored in the register T_2 . In step 1607 $T_1 \times T_2$ is calculated. Here, $(x_d-x)^2(x_{d-1}-x_{d+1})$ is stored in T_1 , 1/4y is stored in T_2 , and $(x_d-x)^2(x_{d-1}-x_{d+1})/4y$ is therefore calculated. The result is stored in the register y_d . Therefore, $(x_d-$ 25 x) 2 (x_{d-1}-x_{d+1})/4y is stored in the register y_d. Since the register x_d is not updated, the inputted value is held.

A reason why the y-coordinate y_d of the scalar-multiplied point is recovered by the afore-

mentioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP.

5 Thereby, assignment to the addition formulae in the affine coordinates of the Weierstrass-form elliptic curve results in Equations 27, 28. When the opposite sides are individually subjected to subtraction, Equation 29 is obtained. Therefore, Equation 30

10 results. Here, x_d, y_d are given by the processing of FIG. 16. Therefore, all the values of the affine coordinate (x_d, y_d) are all recovered.

For the aforementioned procedure, in the steps 1604, and 1607, the computational amount of 15 multiplication on the finite field is required. Moreover, for the multiplication of the step 1605, since the value of the multiplicand is small as 4, the computational amount is relatively small as compared with the computational amount of the usual multiplica-20 tion, and may therefore be ignored. Moreover, in the step 1602, the computational amount of squaring on the finite field is required. Furthermore, the computational amount of inversion on the finite field is required in the step 1606. The computational amount of subtraction on the finite field is relatively small as compared with the computational amounts of multiplication on the finite field, squaring, and inversion, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 2M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M and I=40M, the computational amount of coordinate recovering is 42.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, and when the value of the right side of the equation can be calculated, the value of y_d can be recovered. In this case, the computational amount 20 required for recovering generally increases.

An algorithm which outputs x_d , x_{d+1} , x_{d-1} from the scalar value d and the point P on the Weierstrassform elliptic curve will next be described with reference to FIG. 7.

25 The fast scalar multiplication unit 202 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP=(x_d, y_d)$

represented by the affine coordinate in the Weierstrass-form elliptic curve, x_{d+1} in the point $(d+1) P = (x_{d+1}, y_{d+1})$ on the Weierstrass-form elliptic curve represented by the affine coordinate, and \mathbf{x}_{d-1} in the 5 point $(d-1)P=(x_{d-1},y_{d-1})$ on the Weierstrass-form elliptic curve represented by the affine coordinate by the following procedure. In step 716, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on 10 the Montgomery-form elliptic curve. This point is set anew as point P. In step 701, the initial value 1 is assigned to the variable I. A doubled point 2P of the point P is calculated in step 702. Here, the point P is represented as (x, y, 1) in the projective coordinate, and a formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 703, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in 20 the step 702 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 704 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, m=d is 25 satisfied and the flow goes to step 714. With disagreement, the flow goes to step 705. The variable I is increased by 1 in the step 705. It is judged in step 706 whether the value of the I-th bit of the

scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 707. When the value of the bit is 1, the flow goes to step 710. In step 707, addition mP+(m+1)P of points mP and (m+1)P is performed 5 from a set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 708. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the 10 Montgomery-form elliptic curve. In step 708, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 709. Here, the doubling 2(mP) is calculated using the formula of doubling in 15 the projective coordinate of the Montgomery-form elliptic curve. In the step 709, the point 2mP obtained in the step 708 and the point (2m+1)P obtained in the step 707 are stored as a set of points (2mP, 20 (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 704. Here, the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step 710, addition mP+(m+1)P of the points mP, (m+1)P is 25 performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes

to step 711. Here, the addition mP+(m+1)P is calcu-

lated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. In the step 711, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P)

- represented by the projective coordinates, and a point (2m+2)P is calculated. Thereafter, the flow goes to step 712. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In
- the step 712, the point (2m+1)P obtained in the step 710 and the point (2m+2)P obtained in the step 711 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 704. Here, the points (2m+1)P,
- 15 (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 714, from the set of points (mP, (m+1)P) represented by the projective coordinates, X-coordinate X_{m-1} and Z-coordinate Z_{m-1} are obtained in the projective coordinates of the point (m-1)P
- 20 1)P. Thereafter, the flow goes to step 715. In the step 715, the point (m-1)P in the Montgomery-form elliptic curve is transformed to the point represented by the affine coordinates on the Weierstrass-form elliptic curve. The x-coordinate of the point is set
- anew to x_{m-1} . With respect to the set of points (mP, (m+1)P) represented by the projective coordinates in the Montgomery-form elliptic curve, the points mP and (m+1)P are transformed to points represented by the

affine coordinates on the Weierstrass-form elliptic curve. The respective points are replaced as $mP=(x_m, y_m)$ and $(m+1) P=(x_{m+1}, y_{m+1})$. Here, since the Y-coordinate cannot be obtained by the addition and doubling 5 formulae in the projective coordinates of the Montgomery-form elliptic curve, y_m and y_{m+1} are not obtained. Thereafter, the flow goes to step 713. the step 713, x-coordinate x_{m-1} of the point (m-1)Prepresented by the affine coordinates on the 10 Weierstrass-form elliptic curve is set to x_{d-1} , x_{m} is set to x_d from the point mP= (x_m, y_m) represented by the projective coordinates on the Weierstrass-form elliptic curve, and $\mathbf{x}_{\text{m+1}}$ is outputted as $\mathbf{x}_{\text{d+1}}$ from the point $(m+1) P = (x_{m+1}, y_{m+1})$ represented by the affine coordinates on the Weierstrass-form elliptic curve. In the above 15 procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal. Moreover, when (m-1)P is obtained in step 714, it may be obtained by Equations 13, 14. If m is an odd 20 number, a value of ((m-1)/2)P is separately held in the step 712, and (m-1) P may be obtained from the value by the doubling formula of the Montgomery-form elliptic curve.

of squaring on the finite field. The computational amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar 5 value is 0, the computational amount of addition in the step 707, and the computational amount of doubling in the step 708 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 710, and the computational amount of doubling in the step 711 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 704, 705, 706, 707, 708, 709, or the steps 704, 705, 706, 710, 711, 712 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 702, the computational amount necessary for transform to the point on the Montgomery-20 form elliptic curve in the step 716, and the computational amount necessary for transform to the point on the Weierstrass-form elliptic curve in the step 715, the entire computational amount is (6M+4S)k+15M+I. Here, k is the bit length of the scalar value d. 25 general, since the computational amount S is estimated to be of the order of S=0.8 M, and the computational amount of I is estimated to be of the order of I=40~M, the entire computational amount is approximately

(9.2k+55)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1527 The computational amount per bit of the scalar 5 value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed 10 coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the 15 scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1640 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs x_d , x_{d+1} , x_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is

2M+S+I, and this is far small as compared with the computational amount of (9.2k+55)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount 5 necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming I=40 M, and S=0.8 M, the computational amount 10 can be estimated to be about (9.2k+97.8)M. example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1570 M. The Weierstrass-form elliptic curve is used as the elliptic 15 curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the 20 required computational amount is reduced.

In a ninth embodiment, the Weierstrass-form elliptic curve is used as the elliptic curve for input/output, and the Montgomery-form elliptic curve to which the given Weierstrass-form elliptic curve can be transformed is used for the internal calculation. The scalar multiplication unit 103 calculates and outputs the scalar-multiplied point (x_d, y_d) with the complete

coordinate given thereto as the point of the affine coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrassform elliptic curve. The scalar value d and the point 5 P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_{d} and Z_{d} in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ 10 represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d 15 and the given point P on the Weierstrass-form elliptic curve. Moreover, the inputted point P on the Weierstrass-form elliptic curve is transformed to the point on the Montgomery-form elliptic curve which can be transformed from the given Weierstrass-form elliptic 20 curve, and the point is set anew to P=(x,y). The scalar multiplication unit 202 gives X_d , Z_d , X_{d+1} , Z_{d+1} , X, and y to the coordinate recovering unit 203. coordinate recovering unit 203 recovers coordinate \mathbf{x}_{d} and y_d of the scalar-multiplied point $dP=(x_d, y_d)$ 25 represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied

point (x_d,y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 17.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point 10 $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of 15 the point P on the Montgomery-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto in the affine coordinates in the follow-20 ing procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by $(x_d^{\ Mon}, y_d^{\ Mon})$, and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the point $(d-1)\,P$ on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1701 $X_d \times x$ is calculated, and stored in the register T_1 . In step 1702 T_1-Z_d is calculated. Here, X_dx is stored in the register T_1 , and X_dx-Z_d is therefore calculated. The result is stored in the 10 register T_1 . In step 1703 $Z_d \times x$ is calculated, and stored in the register T_2 . In step 1704 X_d - T_2 is calculated. Here, $Z_d x$ is stored in the register T_2 , and X_d xZ_d is therefore calculated. The result is stored in 15 the register T_2 . In step 1705 $X_{d+1} \times T_2$ is calculated. Here, X_d-xZ_d is stored in the register T_2 , and $X_{d+1}\left(X_d-xZ_d\right)$ is therefore calculated. The result is stored in the register T_3 . In step 1706 the square of T_2 is calculated. Here, (X_d-xZ_d) is stored in the register T_2 , and 20 $(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1707 $T_2 \times X_{d+1}$ is calculated. Here, $(X_d-xZ_d)^2$ is stored in the register T_2 , and $X_{d+1}(X_d-xZ_d)^2$ xZ_d)² is therefore calculated. The result is stored in the register T_2 . In step 1708 $T_2 \times Z_{d+1}$ is calculated.

25 Here, $X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_2 , and $Z_{d+1}X_{d+1}(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1709 $T_2 \times y$ is calculated. Here, $Z_{d+1}X_{d+1}(X_d-xZ_d)^2$ is stored in the

register T_2 , and $yZ_{d+1}X_{d+1}\left(X_d-xZ_d\right)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1710 $T_2 \times B$ is calculated. Here, $y Z_{d+1} X_{d+1} \left(X_d - x Z_d \right)^2$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2$ is therefore 5 calculated. The result is stored in the register T_2 . In step 1711 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d - xZ_d)^2$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}\left(X_d-xZ_d\right)^2Z_d$ is therefore calculated. The result is stored in the register T_2 . In step 1712 $T_2 \times X_d$ is calculated. Here, 10 By $Z_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_dX_d$ is therefore calculated. The result is stored in the register T_4 . In step 1713 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d$ is therefore calculated. The result is stored in the register T_2 . step 1714 the register $T_2 \times s$ is calculated. Here, $\mathrm{ByZ_{d+1}X_{d+1}}\left(\mathrm{X_{d}}-\mathrm{xZ_{d}}\right)^{2}\mathrm{Z_{d}}^{2}$ is stored in the register $\mathrm{T_{2}}$, and therefore $sByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is calculated. The result is stored in the register T_2 . In step 1715 the inverse element of T_2 is calculated. Here, $sByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2$ is stored in $T_2\text{, and }1/\text{sByZ}_{d+1}X_{d+1}\left(X_d-xZ_d\right)^2Z_d^{\ 2}$ is calculated. The result is stored in T_2 . In step 1716 $T_2 \times T_4$ is calculated. Therefore, $1/sByZ_{d+1}X_{d+1}\left(X_{d}-xZ_{d}\right)^{2}Z_{d}^{\ 2}$ is stored in the register $T_2\text{, }ByZ_{d+1}X_{d+1}\left(X_d-xZ_d\right)^2Z_dX_d$ is stored 25 in the register T_4 , and therefore $(ByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_dX_d)$ / $(sByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2)$ is calculated. The result is stored in the register T_4 . In step 1717 $T_4+\alpha$ is calculated. Here, the register $\rm T_4$ stores (ByZ $_{d+1}\rm X_{d+1}\,(\rm X_{d}-$

 xZ_d) 2Z_dX_d) / (sByZ_{d+1}X_{d+1} (X_d-xZ_d) 2Z_d), and Equation 36 is therefore calculated.

$$\frac{ByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}X_{d}}{sByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}Z_{d}} + \alpha$$
... Equation 36

The result is stored in the register x_d . In 5 step 1718 $T_1 \times Z_{d+1}$ is calculated. Here, $X_d x - Z_d$ is stored in the register T_1 , and therefore $Z_{d+1}(X_dx-Z_d)$ is calculated. The result is stored in the register T_4 . In step 1719 a square of the register T_1 is calculated. 10 Here (X_dx-Z_d) is stored in the register T_1 , and therefore $(X_dx-Z_d)^2$ is calculated. The result is stored in the register T_1 . In step 1720 $T_1 \times T_2$ is calculated. Here $(X_d x - Z_d)^2$ is stored in the register T_1 , $1/sByZ_{d+1}X_{d+1}$ $(X_d - Z_d)^2$ xZ_d) 2Z_d is stored in the register T_2 , and therefore 15 $(X_d x - Z_d)^2 / sByZ_{d+1}X_{d+1} (X_d - xZ_d)^2 Z_d^2$ is calculated. The result is stored in the register T_2 . In step 1721 T_3+T_4 is calculated. Here $X_{d+1}(X_d-xZ_d)$ is stored in the register T_3 , $Z_{d+1}(X_dx-Z_d)$ is stored in the register T_4 , and therefore $X_{d+1}(X_d-xZ_d)+Z_{d+1}(X_dx-Z_d)$ is calculated. The 20 result is stored in the register $T_{\rm 1}$. In step 1722 $T_{\rm 3}\text{-}T_{\rm 4}$ is calculated. Here $X_{d+1}(X_d-xZ_d)$ is stored in the register T_3 , and $Z_{d+1}(X_dx-Z_d)$ is stored in the register T_4 , and therefore $X_{d+1}(X_d-xZ_d)-Z_{d+1}(X_dx-Z_d)$ is calculated. The result is stored in the register T_3 . In step 1723

25 $T_1 \times T_3$ is calculated. Here $X_{d+1}(X_d - xZ_d) + Z_{d+1}(X_d x - Z_d)$ is

stored in the register T_1 , $X_{d+1}(X_d-xZ_d)-Z_{d+1}(X_dx-Z_d)$ is stored in the register T_3 , and therefore $\{X_{d+1}(X_d-xZ_d)+Z_{d+1}(X_dx-Z_d)\}$ is calculated. The $Z_{d+1}(X_dx-Z_d)$ $\{X_{d+1}(X_d-xZ_d)-Z_{d+1}(X_dx-Z_d)\}$ is calculated. The result is stored in the register T_1 . In step 1724 $T_1\times T_2$ is calculated. Here $\{X_{d+1}(X_d-xZ_d)+Z_{d+1}(X_dx-Z_d)\}$ $\{X_{d+1}(X_d-xZ_d)-Z_{d+1}(X_dx-Z_d)\}$ is stored in the register T_1 , $(X_dx-Z_d)^2/S_d$ sby $Z_{d+1}X_{d+1}(X_d-xZ_d)^2/S_d$ is stored in the register T_2 , and therefore the following is calculated.

$$\frac{\left\{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\right\}\left\{Z_{d+1}(X_dx-Z_d)-X_{d+1}(X_d-xZ_d)\right\}\left(X_dx-Z_d)^2}{sByZ_{d+1}X_{d+1}(X_d-xZ_d)^2Z_d^2}$$

... Equation 37

The result is stored in y_d . Therefore, the value of Equation 37 is stored in the register y_d . The value of Equation 36 is stored in the register x_d , and is not updated thereafter, and the value is therefore held. As a result, all the values of the affine coordinate (x_d, y_d) in the Weierstrass-form elliptic curve are recovered.

A reason why all values in the affine coordinate (x_d, y_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given by the aforementioned procedure is as follows. Additionally, point (d+1)P is a point obtained by adding the point P to the point P and point P is a point obtained by subtracting the

point P from the point dP. Assignment to addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in the following equations.

$$(A + x + x_d^{Mon} + x_{d+1})(x_d^{Mon} - x)^2 = B(y_d^{Mon} - y)^2$$
5 ... Equation 38
$$(A + x + x_d^{Mon} + x_{d-1})(x_d^{Mon} - x)^2 = B(y_d^{Mon} + y)^2$$
... Equation 39

When opposite sides are individually subjected to subtraction, the following equation is obtained.

10
$$(x_{d-1} - x_{d+1})(x_d^{Mon} - x)^2 = 4By_d^{Mon}y$$
... Equation 40

Therefore, the following results.

$$y_d^{Mon} = (x_{d-1} - x_{d+1})(x_d^{Mon} - x)^2 / 4By$$
... Equation 41

Here, $x_d^{Mon} = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$, $x_{d-1} = X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to a value of the projective coordinate. Then, the following equation is obtained.

$$y_d^{Mon} = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2 / 4ByZ_{d-1}Z_{d+1}Z_d^2$$
20 ... Equation 42

The addition formulae in the projective coordinate of the Montgomery-form elliptic curve are Equations 11, 12 described above. Here, X_m and Z_m are

X-coordinate and Z-coordinate in the projective coordinate of the m-multiplied point mP of the point P on the Montgomery-form elliptic curve, X_n and Z_n are Xcoordinate and Z-coordinate in the projective coordinate of an n-multiplied point nP of the point P on the Montgomery-form elliptic curve, X_{m-n} and Z_{m-n} are Xcoordinate and Z-coordinate in the projective coordinate of the (m-n)-multiplied point (m-n)P of the point P on the Montgomery-form elliptic curve, X_{m+n} and Z_{m+n} are X-coordinate and Z-coordinate in the projective 10 coordinate of a (m+n)-multiplied point (m+n)P of the point P on the Montgomery-form elliptic curve, and m, n are positive integers satisfying m>n. In the equation, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged, $X_{m+n}/Z_{m+n}=x_{m+n}$ is also unchanged. Therefore, this func-15 tions well as the formula in the projective coordinate. On the other hand, also in Equations 13, 14, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged, $X_{m+n}/Z_{m+n}=x_{m-n}$ is also unchanged. Moreover, since $X'_{m-n}/Z'_{m-n}=X_{m-n}/Z_{m-n}=x_{m-n}$ 20 is satisfied, X'_{m-n} , Z'_{m-n} may be taken as the projective coordinate of x_{m-n} . When m=d, n=1 are set, the above formula is used, X_{d-1} and Z_{d-1} are deleted from the equation of y_d^{Mon} , and $X_1=x$, $Z_1=1$ are set, the following

$$y_d^{Mon} = \frac{\left\{Z_{d+1}(X_d x - Z_d) + X_{d+1}(X_d - xZ_d)\right\} \left\{Z_{d+1}(X_d x - Z_d) - X_{d+1}(X_d - xZ_d)\right\} \left(X_d x - Z_d)^2}{ByZ_{d+1}X_{d+1}(X_d - xZ_d)^2 Z_d^2}$$

equation is obtained.

Although $x_d^{\text{Mon}} = X_d/Z_d$, reduction to the denominator common with that of y_d^{Mon} is performed for the purpose of reducing the frequency of inversion, and the following equation is obtained.

$$x_d^{Mon} = \frac{ByZ_{d+1}X_{d+1}Z_d(X_d - xZ_d)^2 X_d}{ByZ_{d+1}X_{d+1}Z_d(X_d - xZ_d)^2 Z_d}$$
... Equation 44

A correspondence between the point on the Montgomeryform elliptic curve and the point on the Weierstrassform elliptic curve is described in K.Okeya,

- 10 H.Kurumatani, K.Sakurai, Elliptic Curves with the Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when conversion parameters are s, α , the relation is $y_d = s^{-1}y_d^{Mon}$ and $x_d = s^{-1}x_d^{Mon} + \alpha$. As a result,
- 15 Equations 45, 46 are obtained.

$$y_{d} = \frac{\{Z_{d+1}(X_{d}x - Z_{d}) + X_{d+1}(X_{d} - xZ_{d})\}\{Z_{d+1}(X_{d}x - Z_{d}) - X_{d+1}(X_{d} - xZ_{d})\}\{X_{d}x - Z_{d})^{2}}{sByZ_{d+1}X_{d+1}(X_{d} - xZ_{d})^{2}Z_{d}^{2}}$$

... Equation 45

$$x_{d} = (ByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}X_{d})/(sByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}Z_{d}) + \alpha$$
... Equation 46

Here, x_d , y_d are given by FIG. 17. Therefore, all values of the affine coordinate (x_d, y_d) in the

Weierstrass-form elliptic curve are recovered.

For the aforementioned procedure, in the steps 1701, 1703, 1705, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1716, 1718, 1720, 1723, and 1724, the 5 computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the steps 1706 and 1719. Moreover, the computational amount of inversion on the finite field is required in the step 1715. The computational amounts of addition 10 and subtraction on the finite field are relatively small as compared with the computational amount of multiplication on the finite field and the computational amounts of squaring and inversion, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a 20 computational amount of 16M+2S+I. This is very small as compared with the computational amount of fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a 25 little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 57.6 M, and this is very small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of x_d , y_d given by the above equation can be calculated, and the values of x_d , y_d can then be recovered. In this case, the computational amount necessary for the recovering generally increases. Moreover, when the value of B as the parameter of the Montgomery-form elliptic curve or the conversion parameter s to the Montgomery-form elliptic curve is set to be small, the computational amount of multiplication in the step 1710 or 1714 can be reduced.

A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described with reference to FIG. 8.

inputs the point P on the Weierstrass-form elliptic

curve inputted into the scalar multiplication unit 103, and outputs X_d and Z_d in the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinate in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form

25 elliptic curve represented by the projective coordinate by the following procedure. In step 816, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective

coordinates on the Montgomery-form elliptic curve. This point is set anew as point P. In step 801, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P is calculated in step 802. Here, the point P is represented as (x,y,1) in the projective coordinate, and the doubling formula in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point In step 803, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and 10 the point 2P obtained in the step 802 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 804 whether or not the variable I agrees with 15 the bit length of the scalar value d. With agreement, the flow goes to step 813. With disagreement, the flow goes to step 805. The variable I is increased by 1 in the step 805. It is judged in step 806 whether the value of the I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the 20 step 807. When the value of the bit is 1, the flow goes to step 810. In step 807, addition mP+(m+1)P of points mP and (m+1)P is performed from a set of points (mP, (m+1)P) represented by the projective coordinate, 25 and the point (2m+1)P is calculated. Thereafter, the flow goes to step 808. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In

step 808, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 809. Here, the 5 doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. In the step 809, the point 2mP obtained in the step 808 and the point (2m+1)P obtained in the step 807 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP, 10 Thereafter, the flow returns to the step 804. Here, the points 2mP, (2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step 810, addition mP+(m+1)P of the points mP, (m+1)P is 15 performed from the set of points (mP, (m+1)P) represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 811. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. 20 the step 811, doubling 2((m+1)P) of the point (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinates, and a point (2m+2)P is calculated. Thereafter, the flow goes to 25 step 812. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 812, the point (2m+1)P obtained in the step

810 and the point (2m+2)P obtained in the step 811 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 804. Here, the points (2m+1)P, 5 (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 813, $X_{\scriptscriptstyle m}$ and $Z_{\scriptscriptstyle m}$ are outputted as X_d and Z_d in the point mP(X_m, Y_m, Z_m) represented by the projective coordinates, and X_{m+1} and Z_{m+1} are outputted as X_{d+1} and Z_{d+1} in the point $(m+1) P(X_{m+1}, Y_{m+1}, Z_{m+1})$ represented by the projective 10 coordinates from the set of points (mP, (m+1)P) represented by the projective coordinates. Here, \boldsymbol{Y}_{m} and Y_{m+1} are not obtained, because the Y-coordinate cannot be obtained by the addition and doubling formulae in the 15 projective coordinates of the Montgomery-form elliptic curve. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal.

The computational amount of the addition

formula in the projective coordinates of the

Montgomery-form elliptic curve is 3M+2S with Z₁=1.

Here, M is the computational amount of multiplication

on the finite field, and S is the computational amount

of squaring on the finite field. The computational

amount of the doubling formula in the projective

coordinates of the Montgomery-form elliptic curve is

3M+2S. When the value of the I-th bit of the scalar

value is 0, the computational amount of addition in the

step 807, and the computational amount of doubling in the step 808 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational 5 amount of addition in the step 810, and the computational amount of doubling in the step 811 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 804, 805, 806, 807, 808, 809, or the steps 804, 805, 806, 10 810, 811, 812 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 802, and the computational amount necessary for transform to the point on the Montgomery-form elliptic curve in the step 816, the 15 entire computational amount is (6M+4S)(k-1)+4M+2S. Here, k is the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of S=0.8 M, the entire computational amount is approximately (9.2k-3.6)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1468 M. The computational amount per bit of the scalar value d is about 9.2 M. 25 Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

recovering the coordinate of the coordinate recovering
unit 203 in the scalar multiplication unit 103 is
16M+2S+I, and this is far small as compared with the
computational amount of (9.2k-3.6)M necessary for fast
scalar multiplication of the fast scalar multiplication
unit 202. Therefore, the computational amount
necessary for the scalar multiplication of the scalar
multiplication unit 103 is substantially equal to the
computational amount necessary for the fast scalar
multiplication of the fast scalar multiplication unit.

Assuming I=40 M, and S=0.8 M, the computational amount can be estimated to be about (9.2k+54)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1526 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar—

10 multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a tenth embodiment, the Weierstrass-form

elliptic curve is used as the elliptic curve for
input/output, and the Montgomery-form elliptic curve
which can be transformed from the given Weierstrassform elliptic curve is used for the internal calculation. The scalar multiplication unit 103 calculates

and outputs the scalar-multiplied point (X_d, Y_d, Z_d) with
the complete coordinate given thereto as the point of
the projective coordinates in the Weierstrass-form
elliptic curve from the scalar value d and the point P
on the Weierstrass-form elliptic curve. The scalar

value d and the point P on the Weierstrass-form
elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit

202 calculates X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point 5 $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve. Moreover, the inputted point P on the Weierstrass-form elliptic curve 10 is transformed to the point on the Montgomery-form elliptic curve which can be transformed from the given Weierstrass-form elliptic curve, and the point is set anew to P=(x,y). The scalar multiplication unit 202 gives X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y to the coordinate 15 recovering unit 203. The coordinate recovering unit 203 recovers coordinate X_d^{w} , Y_d^{w} , Z_d^{w} of the scalarmultiplied point $dP=(X_d^{\ w},Y_d^{\ w},Z_d^{\ w})$ represented by the projective coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point $(X_d^{w}, Y_d^{w}, Z_d^{w})$ with the coordinate completely given thereto in the projective coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs X_d^w , Y_d^w , Z_d^w from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 18.

The coordinate recovering unit 203 inputs X_d

and $\mathbf{Z}_{\mathtt{d}}$ in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the 5 Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (X_d^w, Y_d^w, Z_d^w) with the complete coordinate given thereto in the projective coordinates on the Weierstrass-form elliptic curve in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is 15 represented by (x, y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the 20 projective coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of 25 the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1801 $X_d \times x$ is calculated, and stored in

the register T_1 . In step 1802 T_1 - Z_d is calculated. Here, X_dx is stored in the register T_1 , and X_dx-Z_d is therefore calculated. The result is stored in the register T_1 . In step 1803 $Z_d \times x$ is calculated, and 5 stored in the register T_2 . In step 1804 X_d - T_2 is calculated. Here, Z_dx is stored in the register T_2 , and X_d - xZ_d is therefore calculated. The result is stored in the register T_2 . In step 1805 $Z_{d+1} \times T_1$ is calculated. Here, X_dx-Z_d is stored in the register T_1 , and $Z_{d+1}(X_dx-Z_d)$ 10 is therefore calculated. The result is stored in the register T_3 . In step 1806 $X_{d+1} \times T_2$ is calculated. Here, X_d - xZ_d is stored in the register T_2 . Therefore, $X_{d+1}(X_d$ xZ_d) is calculated. The result is stored in the register T_4 . In step 1807 a square of T_1 is calculated. Here, X_dx-Z_d is registered in the register T_1 , and therefore $(X_dx-Z_d)^2$ is calculated. The result is stored in the register T_1 . In step 1808 a square of T_2 is

- calculated. Here, X_d - xZ_d is stored in the register T_2 , and $(X_d$ - $xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1809 $T_2 \times Z_d$ is calculated. Here, $(X_d$ - $xZ_d)^2$ is stored in the register
 - T_2 . Therefore, $Z_d(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_2 . In step 1810 $T_2\times X_{d+1}$ is calculated. Here, $Z_d(X_d-xZ_d)^2$ is stored in the register
- 25 T_2 , and $X_{d+1}Z_d(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1811 $T_2\times Z_{d+1}$ is calculated. Here, $X_{d+1}Z_d(X_d-xZ_d)^2$ is stored in the register T_2 , and therefore $Z_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2$ is calcu-

lated. The result is stored in the register T_2 . In step 1812 $T_2 \times y$ is calculated. Here, $Z_{d+1} X_{d+1} Z_d (X_d - x Z_d)^2$ is stored in the register T_2 , and $yZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the 5 register T_2 . In step 1813 $T_2 \times B$ is calculated. Here, $yZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}$ is stored in the register T_{2} , and $\mathrm{ByZ_{d+1}X_{d+1}Z_d}\left(\mathrm{X_d}\mathrm{-xZ_d}\right)^2$ is therefore calculated. The result is stored in the register T_2 . In step 1814 $T_2 \times X_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}$ is stored in the 10 register T_2 . Therefore, $ByZ_{d+1}X_{d+1}Z_d\left(X_d-xZ_d\right)^2X_d$ is calculated. The result is stored in a register T_5 . In step 1815 $T_2 \times Z_d$ is calculated. Here, $ByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is therefore calculated. The result is stored in the 15 register T_2 . In step 1816 $T_2 \times s$ is calculated. Here, $ByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is stored in the register T_2 , and therefore $sByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is calculated. The result is stored in $Z_d^{\ w}$. In step 1817 $\alpha \times Z_d^{\ w}$ is calculated. Here, $sByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is stored in Z_d^w . Therefore, $\alpha sByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is calculated. result is stored in the register T_2 . In step 1818, $T_2 + T_5$ is calculated. Here, $\alpha sByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}Z_{d}$ is stored in the register T_2 , and $ByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2X_d$ is stored in the register $\text{T}_{\text{5}}\text{.}$ Therefore, $\alpha \text{sByZ}_{\text{d+1}} X_{\text{d+1}} Z_{\text{d}} \left(X_{\text{d}} - x Z_{\text{d}} \right)^2 Z_{\text{d}} +$ 25 By $Z_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2X_d$ is calculated. The result is stored in X_d^w . In step 1819 $T_3 + T_4$ is calculated. Here $Z_{d+1} (X_d x - X_d x - X_$ Z_d) is stored in the register T_3 , $X_{d+1}(X_d-xZ_d)$ is stored

in the register T_4 , and therefore $Z_{d+1}(X_d \times - Z_d) + X_{d+1}(X_d - \times Z_d)$

is calculated. The result is stored in the register T_2 . In step 1820 T_3-T_4 is calculated. Here $Z_{d+1}\left(X_dx-Z_d\right)$ is stored in the register T_3 , and $X_{d+1}(X_d-xZ_d)$ is stored in the register T_4 , and therefore $Z_{d+1}(X_dx-Z_d)-x_{d+1}(X_d-xZ_d)$ is 5 calculated. The result is stored in the register T_3 . In step 1821 $T_1 \times T_2$ is calculated. Here $(X_d \times -Z_d)^2$ is stored in the register T_1 , and $Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)$ is stored in the register T_2 . Therefore, $\{Z_{d+1}(X_dx-Z_d) +$ $X_{d+1}(X_d-xZ_d)$ } $(X_dx-Z_d)^2$ is calculated. The result is stored 10 in the register T_1 . In step 1822 $T_1 \times T_3$ is calculated. Here, $\{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}(X_dx-Z_d)^2$ is stored in the register T_1 , and $Z_{d+1}(X_dx-Z_d)-x_{d+1}(X_d-xZ_d)$ is stored in the register T_3 , and therefore $\{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-Z_d)\}$ XZ_{d}) $\{Z_{d+1}(X_{d}X-Z_{d})-X_{d+1}(X_{d}-XZ_{d})\}(X_{d}X-Z_{d})^{2}$ is calculated. 15 result is stored in the register Y_d^{w} . Therefore, Y_d^{w} stores $\{Z_{d+1}(X_dx-Z_d)+X_{d+1}(X_d-xZ_d)\}\{Z_{d+1}(X_dx-Z_d)-X_{d+1}(X_d-xZ_d)\}$ xZ_{d}) $(X_{d}x-Z_{d})^{2}$. In the step 1818 $ByZ_{d+1}X_{d+1}Z_{d}(X_{d}-xZ_{d})^{2}X_{d}+$ $\alpha s B y Z_{d+1} X_{d+1} Z_d (X_d - x Z_d)^2 Z_d$ is stored in X_d^w , and is not updated thereafter, and the value is therefore held. In the step 1816 $sByZ_{d+1}X_{d+1}Z_d(X_d-xZ_d)^2Z_d$ is stored in Z_d^w , and is not updated thereafter, and the value is therefore held. As a result, all the values of the projective coordinate $(X_d^{w}, Y_d^{w}, Z_d^{w})$ in the Weierstrassform elliptic curve are recovered.

A reason why all values in the projective coordinate (X_d^w, Y_d^w, Z_d^w) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given by the aforementioned

procedure is as follows. Additionally, point (d+1)P is a point obtained by adding the point P to the point dP, and point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to addition

- formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When opposite sides of Equation 6, 7 are individually subjected to subtraction, Equation 8 is obtained. Therefore, Equation 9 results. Here, $x_d = X_d / Z_d$,
- 10 $x_{d+1}=X_{d+1}/Z_{d+1}$, $x_{d-1}=X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to a value of the projective coordinate. Then, Equation 10 is obtained. The addition formulae in the projective coordinate of the Montgomery-form elliptic curve are Equations 11, 12.
- Here, X_m and Z_m are X-coordinate and Z-coordinate in the projective coordinate of the m-multiplied point mP of the point P on the Montgomery-form elliptic curve, X_n and Z_n are X-coordinate and Z-coordinate in the projective coordinate of an n-multiplied point nP of the
- point P on the Montgomery-form elliptic curve, X_{m-n} and Z_{m-n} are X-coordinate and Z-coordinate in the projective coordinate of the (m-n)-multiplied point (m-n)P of the point P on the Montgomery-form elliptic curve, X_{m+n} and Z_{m+n} are X-coordinate and Z-coordinate in the projective
- coordinate of a (m+n)-multiplied point (m+n)P of the point P on the Montgomery-form elliptic curve, and m, n are positive integers satisfying m>n. In the equation, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged,

 $X_{m+n}/Z_{m+n}=x_{m+n}$ is also unchanged. Therefore, this functions well as the formula in the projective coordinate. On the other hand, also in Equations 13, 14, when $X_m/Z_m=x_m$, $X_n/Z_n=x_n$, $X_{m-n}/Z_{m-n}=x_{m-n}$ are unchanged,

- $X_{m+n}/Z_{m+n}=x_{m+n}$ is also unchanged. Moreover, since $X'_{m-n}/Z'_{m-n}=X_{m-n}/Z_{m-n}=x_{m-n}$ is satisfied, X'_{m-n} , Z'_{m-n} may be taken as the projective coordinate of x_{m-n} . When m=d, n=1 are set, the above formula is used, X_{d-1} and Z_{d-1} are deleted from the equation of y_d , and $X_1=x$, $Z_1=1$ are set,
- Equation 15 is obtained. Although $x_d = X_d/Z_d$, reduction to the denominator common with that of y_d is performed, and Equation 16 is obtained. As a result, the following equation is obtained.

$$Y_{d}^{'} = \left\{ Z_{d+1} \left(X_{d} x - Z_{d} \right) + X_{d+1} \left(X_{d} - x Z_{d} \right) \right\} \left\{ Z_{d+1} \left(X_{d} x - Z_{d} \right) - X_{d+1} \left(X_{d} - x Z_{d} \right) \right\} \left(X_{d} x - Z_{d} \right)^{2}$$
15
... Equation 47

The following equations also result.

$$X'_{d} = ByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}X_{d}$$

$$\dots \quad \text{Equation 48}$$

$$Z'_{d} = ByZ_{d+1}X_{d+1}Z_{d}(X_{d} - xZ_{d})^{2}Z_{d}$$

$$\dots \quad \text{Equation 49}$$

Then, $(X'_d, Y'_d, Z'_d) = (X_d, Y_d, Z_d)$. The correspondence between the point on the Montgomery-form elliptic curve

20

and the point on the Weierstrass-form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic

25 Curves with the Montgomery-Form and Their Cryptographic

Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameter is $s\alpha$, the relation is $Y_d^W=Y'_d$, $X_d^W=X'_d+\alpha Z_d^W$, and $Z_d^W=sZ'_d$. As a result, the following equations are obtained.

5
$$Y_d^W = \{Z_{d+1}(X_d x - Z_d) + X_{d+1}(X_d - x Z_d)\}\{Z_{d+1}(X_d x - Z_d) - X_{d+1}(X_d - x Z_d)\}\{X_d x - Z_d)^2$$
... Equation 50
$$X_d^W = ByZ_{d+1}X_{d+1}Z_d(X_d - x Z_d)^2 X_d + \alpha Z_d^W$$
... Equation 51
$$Z_d^W = sByZ_{d+1}X_{d+1}Z_d(X_d - x Z_d)^2 Z_d$$
... Equation 52

The values may be updated as described above. Here, X_d^w , Y_d^w , Z_d^w are given by the processing of FIG. 18. Therefore, all values of the projective coordinate (X_d^w, Y_d^w, Z_d^w) in the Weierstrass-form elliptic curve are recovered.

15

For the aforementioned procedure, in the steps 1801, 1803, 1805, 1806, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1821, and 1822, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the steps 1807 and 1808. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amount of multiplication on the finite field and the computational amount of squaring, and may therefore be

ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a computational amount 5 of 15M+2S. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, the computational 10 amount of coordinate recovering is 16.6 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of X_d^w , Y_d^w , Z_d^w given by the above equation can be calculated, and the values of $X_d^{\ \ \ \ \ }$, Y_d^{w} , Z_d^{w} can then be recovered. Moreover, when the scalar-multiplied point dP in the affine coordinates in 20 the Weierstrass-form elliptic curve is $dp=(x_d^w,y_d^w)$, the values of $X_d^{\ \ w}$, $Y_d^{\ \ w}$, $Z_d^{\ \ w}$ are selected so that $x_d^{\ \ w}$, $y_d^{\ \ w}$ take the values given by the aforementioned equations, the values can be calculated, and then X_d^{w} , Y_d^{w} , Z_d^{w} can be recovered. In this case, the computational amount 25 required for recovering generally increases. Furthermore, when the values of B as the parameter of the Montgomery-form elliptic curve and the conversion parameter s to the Montgomery-form elliptic curve are

15

set to be small, the computational amount of multiplication in the step 1813 or 1816 can be reduced.

An algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the 5 Weierstrass-form elliptic curve will next be described.

As the fast scalar multiplication method of the scalar multiplication unit 202 of the tenth embodiment, the fast scalar multiplication method of the ninth embodiment is used. Thereby, as the algorithm

10 which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve, a fast algorithm can be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be

15 used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering 20 unit 203 in the scalar multiplication unit 103 is 15M+2S, and this is far small as compared with the computational amount of (9.2k-3.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication of the fast scalar multiplication unit.

Assuming that S=0.8 M, the computational amount can be estimated to be about (9.2k+13)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1485 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar
multiplied point is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In an eleventh embodiment, the Weierstrass-15 form elliptic curve is used as the elliptic curve for input/output, and the Montgomery-form elliptic curve which can be transformed from the given Weierstrassform elliptic curve is used for the internal calcula-The scalar multiplication unit 103 calculates 20 and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d 25 and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d

and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) $P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the 5 Montgomery-form elliptic curve represented by the projective coordinates, and $X_{d\text{-}1}$ and $Z_{d\text{-}1}$ in the coordinates nate of the point $(d-1) P = (X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d 10 and the given point P on the Weierstrass-form elliptic curve. Moreover, the inputted point P on the Weierstrass-form elliptic curve is transformed to the point on the Montgomery-form elliptic curve which can be transformed from the given Weierstrass-form elliptic 15 curve, and the point is set anew to P=(x,y). The scalar multiplication unit 202 gives X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X, and Y to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinates x_d , y_d of the scalar-multiplied point $dP = (x_d, y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X, and Y. The scalar multiplication unit 103 outputs the scalarmultiplied point (x_d, y_d) with the coordinate completely 25 given thereto in the affine coordinates on the Weierstrass-form elliptic curve as the calculation result.

A processing of the coordinate recovering

unit which outputs x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 19.

The coordinate recovering unit 203 inputs X_d 5 and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the 10 projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point $(d-1) P = (X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point $(\mathbf{x}_{\mathtt{d}},\mathbf{y}_{\mathtt{d}})$ with the complete coordinate given thereto in the affine coordinates on the Weierstrass-form elliptic curve in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomeryform elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d^{Mon}, y_d^{Mon}) , and the projective coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d-1)P on the Montgomery-form elliptic curve is

represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 1901 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in the register T_1 . In step 1902 $Z_{d-1} \times X_{d+1}$ is calculated, and stored in the register T_2 . In step 1903 T_1 - T_2 is 10 calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 and $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1}-Z_{d-1}$ $_{1}X_{d+1}$ is therefore calculated. The result is stored in the register T_1 . In step 1904 $Z_d \times x$ is calculated and stored in the register $T_2\text{.}$ In step 1905 $X_d\text{--}T_2$ is calculated. Here, Z_dx is stored in the register T_2 . Therefore, X_d - xZ_d is calculated. The result is stored in the register T_2 . In step 1906 a square of T_2 is calculated. Here, X_d-xZ_d is stored in the register T_2 . Therefore, $(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_2 . In step 1907 $T_1 \times T_2$ is calculated. Here, $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is registered in the register T_1 , $\left(X_{d} - x Z_{d}\right)^{2}$ is stored in the register T_{2} , and therefore $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is calculated. The result is stored in the register T_1 . In step 1908 4Bxy is 25 calculated. The result is stored in the register T2. In step 1909 $T_2 \times Z_{d+1}$ is calculated. Here, 4By is stored in the register T_2 , and $4ByZ_{d+1}$ is calculated. The

result is stored in the register T_2 . In step 1910 $T_2 \times Z_{d-1}$

- is calculated. Here, $4ByZ_{d+1}$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d+1}$ is therefore calculated. The result is stored in the register T_2 . In step 1911 $T_2 \times Z_d$ is calculated. Here, $4ByZ_{d-1}Z_{d+1}$ is stored in the register T_2 . Therefore, $4ByZ_{d-1}Z_{d+1}Z_d$ is calculated. The result is stored in the register T_2 . In step 1912 $T_2 \times X_d$ is calculated. Here, $4ByZ_{d-1}Z_{d+1}Z_d$ is stored in the register T_2 , and $4ByZ_{d-1}Z_{d+1}Z_dX_d$ is therefore calculated. The result is stored in the register T_3 . In step 1913 $T_2 \times Z_d$ is calculated. Here, $4ByZ_{d-1}Z_{d+1}Z_d$ is stored in the register T_2 , and $4ByZ_{d-1}Z_{d+1}Z_{d-1}Z_{d-1}Z_d$ is therefore calculated. The result is stored in the register T_2 . In step 1914 $T_2 \times S$ is calculated. Here, $4ByZ_{d-1}Z_{d+1}Z_dZ_d$ is stored in the register T_2 . In step 1914 $T_2 \times S$ is calculated. Here, $4ByZ_{d-1}Z_{d+1}Z_dZ_d$ is stored in the register T_2 . Therefore, $4SByZ_{d-1}Z_{d+1}Z_dZ_d$ is calculated.
- The result is stored in the register T_2 . In step 1915 an inverse element of T_2 is calculated. Here, $4sByZ_{d-1}Z_{d+1}Z_dZ_d \text{ is stored in the register } T_2 \text{, and}$ $1/4sByZ_{d-1}Z_{d+1}Z_dZ_d \text{ is therefore calculated.}$ The result is stored in the register T_2 . In step 1916 $T_2 \times T_3$ is
- calculated. Here, $1/4\text{sByZ}_{d-1}Z_{d+1}Z_dZ_d$ is stored in the register T_2 , $4\text{ByZ}_{d-1}Z_{d+1}Z_dX_d$ is in the register T_3 , and therefore $(4\text{ByZ}_{d-1}Z_{d+1}Z_dX_d)/(4\text{sByZ}_{d-1}Z_{d+1}Z_dZ_d)$ is calculated. The result is stored in T_3 . In step 1917 $T_3+\alpha$ is calculated. Here, $(4\text{ByZ}_{d-1}Z_{d+1}Z_dX_d)/(4\text{sByZ}_{d-1}Z_{d+1}Z_dZ_d)$ is
- stored in the register T_3 . Therefore, $(4ByZ_{d-1}Z_{d+1}Z_dX_d)/(4sByZ_{d-1}Z_{d+1}Z_dZ_d)+\alpha$ is calculated. The result is stored in the register x_d . In step 1918 the register $T_1\times T_2$ is calculated. Here $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is stored in

the register T_1 , $1/4sByZ_{d-1}Z_{d+1}Z_dZ_d$ is stored in the register T_2 , and therefore $(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ $(X_d-Z_dx)^2/4sByZ_{d-1}Z_{d+1}Z_d^2$ is calculated. The result is stored in the register y_d . Therefore, the register y_d stores $(X_{d-1}Z_{d+1}-Z_{d+1})$ $(X_d-Z_dx)^2/4sByZ_{d-1}Z_{d+1}Z_d^2$. In the step 1917 $(4ByZ_{d-1}Z_{d+1}Z_dX_d)/(4sByZ_{d-1}Z_{d+1}Z_dZ_d)+\alpha$ is stored in the register x_d , and is not updated thereafter, and the value is therefore held.

A reason why all the values in the affine 10 coordinate (x_d, y_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, Y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. Additionally, point (d+1)P is a point obtained by adding the point P to the point dP, and point (d-1)P is a point obtained by subtracting the point P from the point dP. Assignment to the addition formulae in the affine coordinates of the Montgomeryform elliptic curve results in Equations 38, 39. When opposite sides are individually subjected to subtrac-20 tion, Equation 40 is obtained. Therefore, Equation 41 results. Here, $x_d^{Mon} = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$, $x_{d-1} = X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, Equation 42 is obtained. Although $x_d^{Mon}=X_d/Z_d$, the reduction to the 25 denominator common with that of $y_d^{\,\text{Mon}}$ is performed for the purpose of reducing the frequency of inversion, and Equation 53 is obtained.

$$x_d^{Mon} = (4ByZ_{d+1}Z_{d-1}Z_dX_d)/(4ByZ_{d+1}Z_{d-1}Z_dZ_d)$$
... Equation 53

The correspondence between the point on the Montgomery-form elliptic curve and the point on the Weierstrass- form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic Curves with the Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameters are s, α , the relation is $y_d = s^{-1}y_d^{Mon}$ and $x_d = s^{-1}x_d^{Mon} + \alpha$. As a result, the following equations are obtained.

$$y_{d} = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_{d} - Z_{d}x)^{2}/4sBy Z_{d-1}Z_{d+1}Z_{d}^{2}$$
... Equation 54
$$x_{d} = (4ByZ_{d+1}Z_{d-1}Z_{d}X_{d})/(4sByZ_{d+1}Z_{d-1}Z_{d}Z_{d}) + \alpha$$
15
... Equation 55

Here, x_d , y_d are given by FIG. 19. Therefore, all values of the affine coordinate (x_d,y_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered.

For the aforementioned procedure, in the steps 1901, 1902, 1904, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1916, and 1818, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 1906. Moreover, in the step 1914 the computational

amount of the inversion on the finite field is required. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amount of multiplica-5 tion on the finite field and the computational amounts of squaring and inversion, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and 10 the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 13M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar 15 value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 53.8 M, and far small as compared with the computa-20 tional amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, the values of x_d , y_d given by the above equation can be calculated, and the values of x_d , y_d can then be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the values of B as the parameter of

the Montgomery-form elliptic curve and s as the conversion parameter to the Montgomery-form elliptic curve are set to be small, the computational amount of multiplication in the step 1908 or 1914 can be reduced.

A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrassform elliptic curve will next be described with reference to FIG. 10.

5

The fast scalar multiplication unit 202 10 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs X_d and Z_d in the scalar-multiplied point $dP = (X_d, Y_d, Z_d)$ represented by the projective coordinate in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinate, and X_{d-1} and Z_{d-1} in the point $(d-1)P=(X_{d-1},Y_{d-1},Z_{d-1})$ on the Montgomery-form elliptic curve represented by 20 the projective coordinate by the following procedure. In step 1016, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on the Montgomery-form elliptic curve. This point is set anew as point P. 25 step 1001, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P is calculated in step 1002. Here, the point P is represented as (x,y,1) in the projective coordinate,

and the doubling formula in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 1003, the point P on the elliptic curve inputted into the scalar 5 multiplication unit 103 and the point 2P obtained in the step 1002 are stored as a set of points (P,2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 1004 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, m=d is satisfied and the flow goes to step 1014. With disagreement, the flow goes to step 1005. The variable I is increased by 1 in the step 1005. It is judged in step 1006 whether the value of the I-th bit of the 15 scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 1007. When the value of the bit is 1, the flow goes to step 1010. In step 1007, addition mP+(m+1)P of points mP and (m+1)P is performed from a set of points (mP, (m+1)P) represented 20 by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 1008. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In step 1008, doubling 25 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point 2mP is calculated. after, the flow goes to step 1009. Here, the doubling

2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. In the step 1009, the point 2mP obtained in the step 1008 and the point (2m+1)P 5 obtained in the step 1007 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP,(m+1)P). Thereafter, the flow returns to the step 1004. Here, the points 2mP, (2m+1)P, mP, and (m+1)Pare all represented in the projective coordinates. 10 step 1010, addition mP+(m+1)P of the points mP, (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 1011. Here, the addition mP+(m+1)P is calcu-15 lated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. the step 1011, doubling 2((m+1)P) of the point (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the 20 point (2m+2)P is calculated. Thereafter, the flow goes to step 1012. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 1012, the point (2m+1)P obtained in the step 25 1010 and the point (2m+2)P obtained in the step 1011 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 1004. Here, the points (2m+1)P,

(2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 1014, X_{m-1} and Z_{m-1} are outputted as X_{d-1} and Z_{d-1} of the point (m-1)P in the projective coordinates from the set of points (mP, (m+1)P) represented by the projective coordinates. Thereafter, the flow goes to step 1013. In the step

Thereafter, the flow goes to step 1013. In the step 1013, X_m and Z_m as X_d and Z_d from the point $mP=(X_m,Y_m,Z_m)$ represented by the projective coordinates, and X_{m+1} and Z_{m+1} as X_{d+1} and Z_{d+1} of the point $(m+1)P=(X_{m+1},Y_{m+1},Z_{m+1})$

represented by the projective coordinates are outputted together with X_{d-1} and Z_{d-1} . Here, Y_m and Y_{m+1} are not obtained, because the Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. In

15 the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal.

Moreover, when (m-1)P is obtained in step 1014, it may be obtained by Equations 13, 14. If m is an odd number, a value of ((m-1)/2)P is separately held in the step 1012, and (m-1)P may be obtained from the value by the doubling formula of the Montgomery-form elliptic curve.

The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount

of squaring on the finite field. The computational amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is When the value of the I-th bit of the scalar 5 value is 0, the computational amount of addition in the step 1007, and the computational amount of doubling in the step 1008 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational 10 amount of addition in the step 1010, and the computational amount of doubling in the step 1011 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the 15 steps 1004, 1005, 1006, 1007, 1008, 1009, or the steps 1004, 1005, 1006, 1010, 1011, 1012 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 1002, and the computational amount necessary for the calcula-20 tion of (m-1)P in the step 1014, the entire computational amount is (6M+4S)k+M. Here, k is the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of S=0.8 M, the entire computational amount is approxi-25 mately (9.2k+3)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1475 Μ. The computational amount per bit of the scalar

value d is about 9.2 M. In A. Miyaji, T. Ono, H.

Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is

10 estimated to be about 10 M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small

15 computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar valued and the point P on the Weierstrass-form elliptic curve at high speed.

20

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is

25 13M+S+I, and this is far small as compared with the computational amount of (9.2k+1)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount

necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit.

5 Assuming I=40 M, S=0.8 M, the computational amount can be estimated to be about (9.2k+56.8)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1529 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-

multiplied point is outputted as the affine coordi
15 nates. In this case, the required computational amount
is about 1640 M, and as compared with this, the
required computational amount is reduced.

In a twelfth embodiment, the Weierstrass-form elliptic curve is used as the elliptic curve for input/output, and the Montgomery-form elliptic curve which can be transformed from the given Weierstrass-form elliptic curve is used for the internal calculation. The scalar multiplication unit 103 calculates and outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto as the point of the projective coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar

value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 5 202 calculates X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) P=(X_{d+1} , Y_{d+1} , Z_{d+1}) on the Montgomery-form elliptic 10 curve represented by the projective coordinates, and X_{d-1} and Z_{d-1} in the coordinate of the point (d-1)P= $(X_{d\text{--}1},Y_{d\text{--}1},Z_{d\text{--}1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the 15 Weierstrass-form elliptic curve. The information is given to the coordinate recovering unit 203 together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve represented by the projective coordinates. The coordinate recovering unit 203 recovers 20 coordinate X_d^w , Y_d^w , Z_d^w of the scalar-multiplied point $\text{dP=}\left(X_{d}^{\text{ w}},Y_{d}^{\text{ w}},Z_{d}^{\text{ w}}\right)\text{ represented by the projective coordinates}$ in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} , X, and y. The scalar multiplication unit 103 outputs the scalarmultiplied point $(X_d^{\ w}, Y_d^{\ w}, Z_d^{\ w})$ with the coordinate completely given thereto in the projective coordinates on the Weierstrass-form elliptic curve as the calculation result.

A processing of the coordinate recovering unit which outputs X_d^w , Y_d^w , Z_d^w from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} will next be described with reference to FIG. 20.

5 The coordinate recovering unit 203 inputs X_d and Z_{d} in the coordinate of the scalar-multiplied point $\label{eq:dp} \text{dP=}\left(X_{\text{d}},Y_{\text{d}},Z_{\text{d}}\right) \text{ represented by the projective coordinates}$ in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the 10 Montgomery-form elliptic curve represented by the projective coordinates, X_{d-1} and Z_{d-1} in the coordinate of the point $(d-1) P = (X_{d-1}, Y_{d-1}, Z_{d-1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on Weierstrass-form elliptic curve in the projective coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point $(X_d^{w}, Y_d^{w}, Z_d^{w})$ with the complete coordinate given thereto in the projective coordinates on the Weierstrass-form 20 elliptic curve in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is 25 d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the

point (d-1)P on the Montgomery-form elliptic curve is represented by (x_{d-1}, y_{d-1}) , and the projective coordinate thereof is represented by $(X_{d-1}, Y_{d-1}, Z_{d-1})$. The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 2001 $X_{d-1} \times Z_{d+1}$ is calculated, and stored in the register T_1 . In step 2002 $Z_{d-1} \times X_{d+1}$ is calculated, 10 and stored in the register T_2 . In step 2003 T_1-T_2 is calculated. Here, $X_{d-1}Z_{d+1}$ is stored in the register T_1 , $Z_{d-1}X_{d+1}$ is stored in the register T_2 , and $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is therefore calculated. The result is stored in the register T_1 . In step 2004 $Z_d \times x$ is calculated, and 15 stored in the register T_2 . In step 2005 X_d-T_2 is calculated. Here, Z_dx is stored in the register T_2 , and X_d - xZ_d is therefore calculated. The result is stored in the register T_2 . In step 2006 a square of T_2 is calculated. Here, $X_d - xZ_d$ is stored in the register T_2 , and $(X_d-xZ_d)^2$ is therefore calculated. The result is stored in the register T_2 . In step 2007 $T_1 \times T_2$ is calculated. Here, $X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1}$ is stored in the register T_1 , $(X_d-xZ_d)^2$ is stored in the register T_2 , and therefore $(X_d-xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is calculated. The result is stored in the register Y_d^{w} . In step 2008 4Bxy is calculated. The result is stored in the register T_2 . In step 2009 $T_2 \times Z_{d+1}$ is calculated. Here, 4By is stored in the register T_2 , and $4ByZ_{d+1}$ is therefore calculated.

The result is stored in the register T_2 . In step 2010 $T_2 \times Z_{d-1}$ is calculated. Here, $4ByZ_{d+1}$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}$ is therefore calculated. result is stored in the register T_2 . In step 2011 $T_2 \times Z_d$ 5 is calculated. Here, $4ByZ_{d+1}Z_{d-1}$ is stored in the register $\textbf{T}_{\text{2}\text{,}}$ and $4\text{ByZ}_{\text{d+1}}\textbf{Z}_{\text{d-1}}\textbf{Z}_{\text{d}}$ is therefore calculated. The result is stored in the register T_2 . In step 2012 $T_2 \times X_d$ is calculated. Here, $4ByZ_{d+1}Z_{d-1}Z_d$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}Z_dX_d$ is therefore calculated. The result is stored in the register T_1 . In step 2013 $T_2 \times Z_d$ is calculated. Here, $4ByZ_{d+1}Z_{d-1}Z_d$ is stored in the register T_2 , and $4ByZ_{d+1}Z_{d-1}Z_dZ_d$ is therefore calculated. The result is stored in T_2 . In step 2014 $T_2 \times s$ is calculated. Here the register T₂ stores 4ByZ_{d+1}Z_{d-1}Z_d, and therefore $4sByZ_{d+1}Z_{d-1}Z_dZ_d$ is calculated. The result is stored in the register Z_d^{w} . In step 2015 $\alpha \times Z_d^{\text{w}}$ is calculated. Here, the register Z_d^w stores $4sByZ_{d+1}Z_{d-1}Z_dZ_d$, and therefore $4\alpha sByZ_{d+1}Z_{d-1}Z_dZ_d$ is calculated. The result is stored in the register T_2 . In step 2016 T_1+T_2 is 20 calculated. Here, the register T_1 stores $4ByZ_{d+1}Z_{d-1}Z_dX_d$, the register T_2 stores $4\alpha s B y Z_{d+1} Z_{d-1} Z_d Z_d$, and therefore $4\text{ByZ}_{d+1}Z_{d-1}Z_dX_d+4\alpha s\text{ByZ}_{d+1}Z_{d-1}Z_dZ_d$ is calculated. The result is stored in the register $X_{d}^{\ w}.$ Therefore, $X_{d}^{\ w}$ stores $4ByZ_{d+1}Z_{d-1}Z_dX_d+4\alpha sByZ_{d+1}Z_{d-1}Z_dZ_d$. In the step 2007 (X_d-25 $xZ_d)^2(X_{d-1}Z_{d+1}-Z_{d-1}X_{d+1})$ is stored in the register $Y_d^{\ w}$, and is not updated thereafter, and therefore the value is held. In the step 2014 $4sByZ_{d+1}Z_{d-1}Z_dZ_d$ is stored in the

register $Z_d^{\ w}$, and is not updated thereafter, and there-

15

A reason why all values in the projective

fore the value is held.

coordinate (X_d^w, Y_d^w, Z_d^w) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} , X_{d-1} , Z_{d-1} given by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point P, and the point P from the point P.

- Assignment to the addition formula in the affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When opposite sides are individually subjected to subtraction, Equation 8 is obtained. Therefore, Equation 9 results. Here,
- 15 $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$, $x_{d-1}=X_{d-1}/Z_{d-1}$. The value is assigned and thereby converted to a value of the projective coordinate. Then, Equation 10 is obtained. Although $x_d=X_d/Z_d$, the reduction to the denominator common with that of y_d is performed, and Equation 20 results. As a result, the following equation is
 - obtained.

$$Y'_d = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2$$
... Equation 56

Then, the followings are obtained.

$$X'_{d} = 4ByZ_{d+1}Z_{d-1}Z_{d}X_{d}$$
... Equation 57

169

$$Z_d^{\dagger} = 4ByZ_{d+1}Z_{d-1}Z_dZ_d$$
... Equation 58

Here, $(X'_d, Y'_d, Z'_d) = (X_d, Y_d, Z_d)$. The correspondence

between the point on the Montgomery-form elliptic curve and the point on the Weierstrass-form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic Curves with the Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameters

10 are s, α , the relation is $Y_d^w = Y'_d$, $X_d^w = X'_d + \alpha Z_d^w$, and $Z_d^w = sZ'_d$. As a result, the following equations are obtained.

$$Y_d^W = (X_{d-1}Z_{d+1} - Z_{d-1}X_{d+1})(X_d - Z_dx)^2$$
... Equation 59

15 $X_{d}^{W} = 4ByZ_{d+1}Z_{d-1}Z_{d}X_{d} + \alpha 4sByZ_{d+1}Z_{d-1}Z_{d}Z_{d}$

... Equation 60

$$Z_d^W = 4sByZ_{d+1}Z_{d-1}Z_dZ_d$$

... Equation 61

Here, X_d^w , Y_d^w , Z_d^w are given by FIG. 20. Therefore, all the values of the projective coordinate (X_d^w, Y_d^w, Z_d^w) in the Weierstrass-form elliptic curve are recovered.

For the aforementioned procedure, in the steps 2001, 2002, 2004, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, and 2015, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the

finite field is required in the step 2006. computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amount of multiplication on the 5 finite field and the computational amount of squaring, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a 10 computational amount of 12M+S. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a 15 little less than about 1500 M. Assuming S=0.8 M, the computational amount of coordinate recovering is 12.8 M, and far small as compared with the computational amount of the fast scalar multiplication. it is indicated that the coordinate can efficiently be 20 recovered.

Additionally, even when the above procedure is not taken, the values of X_d^{W} , Y_d^{W} , Z_d^{W} given by the above equation can be calculated, and the values of X_d^{W} , Y_d^{W} , Z_d^{W} can then be recovered. Moreover, when the scalar-multiplied point dP in the affine coordinates in the Weierstrass-form elliptic curve is $dP=(x_d^{\text{W}},y_d^{\text{W}})$, the values of X_d^{W} , Y_d^{W} , Z_d^{W} are selected so that x_d^{W} , y_d^{W} take the values given by the aforementioned equations, the

values can be calculated, and then X_d^w , Y_d^w , Z_d^w can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the values of B as the parameter of the Montgomery-form elliptic curve and s as the conversion parameter to the Montgomery-form elliptic curve are set to be small, the computational amount of multiplication in the step 2008 or 2014 can be reduced.

An algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} , 10 X_{d-1} , Z_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described.

As the fast scalar multiplication method of the scalar multiplication unit 202 of the twelfth embodiment, the fast scalar multiplication method of the eleventh embodiment is used. Thereby, as the algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1}, X_{d-1}, Z_{d-1} from the scalar value d and the point P on the Weierstrassform elliptic curve, a fast algorithm can be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1}, X_{d-1}, Z_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

25 The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 12M+S, and this is far small as compared with the

computational amount of (9.2k+1)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar 5 multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, the computational amount can be estimated to be about (9.2k+13.8)M. For example, when 10 the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1486 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window 15 method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalarmultiplied point is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the 20 required computational amount is reduced.

In a thirteenth embodiment, the Weierstrassform elliptic curve is used as the elliptic curve for
input/output, and the Montgomery-form elliptic curve
which can be transformed from the given Weierstrassform elliptic curve is used for the internal calculation. The scalar multiplication unit 103 calculates
and outputs the scalar-multiplied point (x_d^w, y_d^w) with
the complete coordinate given thereto as the point of

the affine coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve 5 are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates \mathbf{x}_{d} in the coordinate of the scalar-multiplied point $dP = (x_d, y_d)$ represented by the affine coordinates in the 10 Montgomery-form elliptic curve, x_{d+1} in the coordinate of the point $(d+1) P = (x_{d+1}, y_{d+1})$ on the Montgomery-form elliptic curve represented by the affine coordinates, and x_{d-1} in the coordinate of the point $(d-1)P=(x_{d-1},y_{d-1})$ on the Montgomery-form elliptic curve represented by 15 the affine coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic The information is given to the coordinate recovering unit 203 together with the inputted point P=(x,y) on the Montgomery-form elliptic curve 20 represented by the affine coordinates. The coordinate recovering unit 203 recovers coordinate $y_d^{\,w}$ of the scalar-multiplied point $dP=(x_d^w, y_d^w)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values x_d , x_{d+1} , x_{d-1} , x, 25 and y. The scalar multiplication unit 103 outputs the scalar-multiplied point $(x_d^{\ \ \ \ },y_d^{\ \ \ \ })$ with the coordinate completely given thereto in the affine coordinates on the Weierstrass-form elliptic curve as the calculation

result.

5

A processing of the coordinate recovering unit which outputs x_d^w , y_d^w from the given coordinates x, y, x_d , x_{d+1} , x_{d-1} will next be described with reference to FIG. 21.

The coordinate recovering unit 203 inputs x_d in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve, x_{d+1} in the coordinate of 10 the point $(d+1) P = (x_{d+1}, y_{d+1})$ on the Montgomery-form elliptic curve represented by the affine coordinates, x_{d-1} in the coordinate of the point $(d-1)P=(x_{d-1},y_{d-1})$ on the Montgomery-form elliptic curve represented by the affine coordinates, and (x,y) as representation of the 15 point P on the Montgomery-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point (x_d^w, y_d^w) with the complete coordinate given thereto in the affine coordinates in the following 20 procedure.

In step 2101 x_d -x is calculated, and stored in the register T_1 . In step 2102 a square of T_1 , that is, $(x_d-x)^2$ is calculated, and stored in the register T_1 . In step 2103 $x_{d-1}-x_{d+1}$ is calculated, and stored in T_2 . In step 2104 $T_1\times T_2$ is calculated. Here, $(x_d-x)^2$ is stored in the register T_1 , $x_{d-1}-x_{d+1}$ is stored in the register T_2 , and therefore $(x_d-x)^2(x_{d-1}-x_{d+1})$ is calculated. The result is stored in the register T_1 . In step 2105 4Bxy is

calculated, and stored in the register T_2 . In step 2106 the inverse element of T_2 is calculated. Here, 4By is stored in the register T_2 , and 1/4By is therefore calcu-The result is stored in the register T_2 . In step 2107 $T_1 \times T_2$ is calculated. Here, $(x_d-x)^2(x_{d-1}-x_{d+1})$ is stored in the register T_1 , 1/4By is stored in the register T_2 , and $(x_d-x)^2(x_{d-1}-x_{d+1})/4By$ is therefore calculated. The result is stored in the register T_1 . In step 2108 $T_1 \times s^{-1}$ is calculated. Here, $(x_d - x)^2 (x_{d-1} - x_{d+1}) / s^{-1}$ 10 4By is stored in the register T_1 , and therefore $(x_d (x_{d-1}-x_{d+1})/4$ sBy is calculated. The result is stored in the register y_d^w . Additionally, since s is given beforehand, s^{-1} can be calculated beforehand. In step 2109 $x_d \times s^{-1}$ is calculated. The result is stored in the 15 register T_1 . In step 2110 $T_1+\alpha$ is calculated. Here $s^{-1}x_d$ is stored in the register T_1 , and therefore $s^{-1}x_d+\alpha$ is calculated. The result is stored in the register x_d^{w} . Therefore, $s^{-1}x_d + \alpha$ is stored in the register x_d^{w} . In the step 2108, since $(x_d-x)^2(x_{d-1}-x_{d+1})/4sBy$ is stored in the register $y_d^{\ \ w}$, and is not updated thereafter, the inputted value is held.

A reason why the y-coordinate y_d of the scalar-multiplied point is recovered by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP, and the point (d-1)P is a point obtained by subtracting the point P from the point dP. Thereby, assignment to the addition formulae in the

affine coordinates of the Montgomery-form elliptic curve results in Equations 6, 7. When the opposite sides are individually subjected to subtraction, Equation 8 is obtained. Therefore, Equation 9 results.

5 The correspondence between the point on the Montgomery-form elliptic curve and the point on the Weierstrass-form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic Curves with the Montgomery-Form and Their Cryptographic Applications,

10 Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameters are s, α, the relation is y_d = s⁻¹y_d, and x_d = s⁻¹x_d + α. As a result, the following equations are obtained.

$$y_d^W = (x_{d-1} - x_{d+1})(x_d - x)^2 / 4sBy$$
15
... Equation 62
$$x_d^W = s^{-1}x_d + \alpha$$
... Equation 63

Here, x_d^w , y_d^w are given by FIG. 21. Therefore, all values of the affine coordinate (x_d^w, y_d^w) are 20 recovered.

For the aforementioned procedure, in the steps 2104, 2105, 2107, 2108 and 2109, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 2102. Furthermore, the computational amount of the inversion on the finite field is required in the step

2106. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and 5 may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires 10 a computational amount of 5M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a 15 little less than about 1500 M. Assuming S=0.8 M and I=40 M, the computational amount of coordinate recovering is 45.8 M, and far small as compared with the computational amount of the fast scalar multipli-Therefore, it is indicated that the coordinate 20 can efficiently be recovered.

Additionally, even when the above procedure is not taken, but when the values of the right side of the above equation can be calculated, the value of y_d^w can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the values of B as the parameter of the Montgomery-form elliptic curve and s as the conversion parameter to the Montgomery-form elliptic curve

25

are set to be small, the computational amount of multiplication in the steps 2105, 2108, 2109 can be reduced.

A processing of the fast scalar multipli
5 cation unit which outputs x_d , x_{d+1} , x_{d-1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described with reference to FIG. 24.

The fast scalar multiplication unit 202 10 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP = (x_d, y_d)$ represented by the affine coordinate in the Montgomeryform elliptic curve, x_{d+1} in the point $(d+1) P = (x_{d+1}, y_{d+1})$ 15 on the Montgomery-form elliptic curve represented by the affine coordinate, and x_{d-1} in the point (d-1)P= (x_{d-1}, y_{d-1}) on the Montgomery-form elliptic curve represented by the affine coordinate by the following procedure. In step 2416, the point P on the given Weierstrass-form elliptic curve is transformed to the point by the projective coordinates on the Montgomeryform elliptic curve. This point is set anew to the point P. In step 2401, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P 25 is calculated in step 240,2. Here, the point P is represented as (x,y,1) in the projective coordinate, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to

calculate the doubled point 2P. In step 2403, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 2402 are stored as a set of points (P,2P).

- 5 Here, the points P and 2P are represented by the projective coordinate. It is judged in step 2404 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, m=d is satisfied and the flow goes to step 2414. With
- 10 disagreement, the flow goes to step 2405. The variable I is increased by 1 in the step 2405. It is judged in step 2406 whether the value of the I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 2407. When the value of
- the bit is 1, the flow goes to step 2410. In step 2407, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to
- step 2408. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In step 2408, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective
- 25 coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 2409. Here, the doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form

elliptic curve. In the step 2409, the point 2mP obtained in the step 2408 and the point (2m+1)P obtained in the step 2407 are stored as the set of points (2mP, (2m+1)P) instead of the set of points 5 min (mP, (m+1)P). Thereafter, the flow returns to the step 2404. Here, the points 2mP, (2m+1)P, mP, and (m+1)Pare all represented in the projective coordinates. step 2410, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P)10 represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 2411. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. the step 2411, doubling 2((m+1)P) of the point (m+1)P 15 is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 2412. Here, the doubling 2((m+1)P) is calcu-20 lated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In the step 2412, the point (2m+1)P obtained in the step 2410 and the point (2m+2)P obtained in the step 2411 are stored as the set of points ((2m+1)P, (2m+2)P)25 instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 2404. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in

the projective coordinates. In step 2414, from the set

of points (mP, (m+1)P) represented by the projective coordinates, X-coordinate X_{m-1} and Z-coordinate Z_{m-1} in the projective coordinates of the point (m-1)P are obtained as X_{d-1} and Z_{d-1} . Thereafter, the flow goes to 5 step 2415. In the step 2415, X_m and Z_m are obtained as X_d and Z_d from the point mP= (X_m, Y_m, Z_m) represented by the projective coordinates, and X_{m+1} and Z_{m+1} are obtained as X_{d+1} and Z_{d+1} from the point (m+1) $P = (X_{m+1}, Y_{m+1}, Z_{m+1})$ represented by the projective coordinates. Here, \mathbf{Y}_{m} and 10 Y_{m+1} are not obtained, because Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. From X_{d-1} , Z_{d-1} , X_d , Z_d , X_{d+1} and Z_{d+1} , X_{d-1} , X_d , X_{d+1} are obtained as in Equations 24, 25, 26. Thereafter, 15 the flow goes to step 2413. In the step 2413, x_{d-1} , x_d , x_{d+1} are outputted. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal. Moreover, when (m-1)P is obtained in step 2414, it may be obtained by Equations 13, 14. If m is an odd number, the value of ((m-1)/2)Pis separately held in the step 2412, and (m-1)P may be obtained from the value by the doubling formula of the Montgomery-form elliptic curve.

The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount

of squaring on the finite field. The computational amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is When the value of the I-th bit of the scalar 5 value is 0, the computational amount of addition in the step 2407, and the computational amount of doubling in the step 2408 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational 10 amount of addition in the step 2410, and the computational amount of doubling in the step 2411 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 2404, 2405, 2406, 2407, 2408, 2409, or the steps 15 2404, 2405, 2406, 2410, 2411, 2412 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 2402, the computational amount necessary for the calculation 20 of (m-1)P in the step 2414, and the computational amount of the transform to the affine coordinates in the step 2415, the entire computational amount is (6M+4S)k+11M+I. Here, k is the bit length of the scalar value d. In general, since the computational 25 amount S is estimated to be of the order of S=0.8 M, and the computational amount I is estimated to be of the order of I=40 M, the entire computational amount is approximately (9.2k+51)M. For example, when the scalar

value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1523 M. The computational amount per bit of the scalar value d is about 9.2 M. In A. Miyaji, T. Ono, 5 H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in 10 the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. Additionally, the computational amount of the transform to the affine 15 coordinates is required. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1640 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational 20 amount and high speed.

Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs x_{d-1} , x_d , x_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

In a fourteenth embodiment, the scalar multiplication unit 103 calculates and outputs the

scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine coordinates in the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomery-5 form elliptic curve. The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the 10 coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P=(X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the 15 projective coordinates from the received scalar value d and the given point P on the Montgomery-form elliptic curve. The information is given to the coordinate recovering unit 203 together with the inputted point P=(x,y) on the Montgomery-form elliptic curve 20 represented by the affine coordinates. The coordinate recovering unit 203 recovers coordinate x_d and y_d of the scalar-multiplied point $dP=(x_d, y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve from the given coordinate values X_{d} , Z_{d} , X_{d+1} , Z_{d+1} , 25 x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d, y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 34.

5 The coordinate recovering unit 203 inputs X_d and \boldsymbol{Z}_{d} in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point 15 (x_d, y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalarmultiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 3401, $x \times Z_d$ is calculated and stored in the register T_1 . In step 3402 $X_d + T_1$ is calculated. Here, xZ_d is stored in the register T_1 , and therefore $xZ_d + X_d$ is calculated. The result is stored in the 5 register T_2 . In step 3403 X_d-T_1 is calculated, here the register T_1 stores xZ_d , and therefore xZ_d-X_d is calculated. The result is stored in the register T_3 . In step 3404 a square of the register T_3 is calculated. Here, xZ_d-X_d is stored in the register T_3 , and therefore 10 $(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 3405 $T_3 \times X_{d+1}$ is calculated. Here, $(X_d-xZ_d)^2$ is stored in the register T_3 , and therefore $X_{d+1} \left(X_d - x Z_d \right)^2$ is calculated. The result is stored in the register T_3 . In step 3406 $2A \times Z_d$ is calculated, and stored in the register T_1 . In step 3407 T_2+T_1 is 15 calculated. Here, xZ_d+X_d is stored in the register T_2 , 2AZ_{d} is stored in the register T_{l} , and therefore $xZ_d + X_d + 2AZ_d$ is calculated. The result is stored in the register T_2 . In step 3408 $x \times X_d$ is calculated and stored in the register T_4 . In step 3409 T_4+Z_d is calculated. Here, the register T_4 stores xX_d , and therefore xX_d+Z_d is calculated. The result is stored in the register T4. In step 3410 $T_2 \times T_4$ is calculated. Here T_2 stores $xZ_d+X_d+2AZ_d$, the register T_4 stores xX_d+Z_d , and therefore, $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)$ is calculated. The result is stored in the register T_2 . In step 3411 $T_1 \times Z_d$ is calculated. Here, since the register T_1 stores $2AZ_d$, $2\text{AZ}_{\text{d}}^{\ 2}$ is calculated. The result is stored in the

register T_1 . In step 3412 T_2 - T_1 is calculated. Here $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)$ is stored in the register T_2 , $2AZ_d^2$ is stored in the register T1, and therefore $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2$ is calculated. The result is 5 stored in the register T_2 . In step 3413 $T_2 \times Z_{d+1}$ is calculated. Here $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2$ is stored in the register T_2 , and therefore, $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d) 2\text{AZ}_{\text{d}}^{\ 2})$ is calculated. The result is stored in the register T_2 . In step 3414 T_2 - T_3 is calculated. Here 10 $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is stored in the register T_2 , $X_{d+1} \left(X_d - x Z_d \right)^2$ is stored in the register T_3 , and therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_2 . In step 3415 2Bxy is calculated, and stored in the 15 register T_1 . In step 3416 $T_1 \times Z_d$ is calculated. Here, 2By is stored in the register T_{l} , and therefore 2ByZ_{d} is calculated. The result is stored in the register T_1 . In step 3417 $T_1 \times Z_{d+1}$ is calculated. Here the register T_1 stores $2ByZ_d$, and therefore $2ByZ_dZ_{d+1}$ is calculated. The result is stored in the register T_1 . In step 3418 $T_1 \times Z_d$ is calculated. Here the register T_1 stores $2ByZ_dZ_{d+1}$, and therefore $2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register T_3 . In step 3419 the inverse element of the register T_3 is stored. Here the register T_3 stores $2ByZ_dZ_{d+1}Z_d$, and therefore $1/2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register T_3 . In step 3420 $T_2 \times T_3$ is calculated. Here, the register T_2 stores $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$, the

register T_3 stores $1/2ByZ_dZ_{d+1}Z_d$, and therefore $\{Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2\}/2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register Y_d . In step $3421\ T_1\times X_d$ is calculated. Here the register T_1 stores $2ByZ_dZ_{d+1}$, and therefore $2ByZ_dZ_{d+1}X_d$ is calculated. The result is stored in the register T_1 . In step $3422\ T_1\times T_3$ is calculated. Here, the register T_1 stores $2ByZ_dZ_{d+1}X_d$, the register T_3 stores $1/2ByZ_dZ_{d+1}Z_d$, and therefore $2ByZ_dZ_{d+1}X_d/2ByZ_dZ_{d+1}Z_d(=X_d/Z_d)$ is calculated. The result is stored in x_d . In the step $3420\ since$ $\{Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2\}/2ByZ_dZ_{d+1}Z_d$ is stored in y_d , and is not updated thereafter, the value

A reason why all the values in the affine 15 coordinate (x_d, y_d) of the scalar-multiplied point in the Montgomery-form elliptic curve are recovered from x, y, X_{d} , Z_{d} , X_{d+1} , Z_{d+1} given to the coordinate recovering unit 203 by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP. The assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equation 6. Since the points P and dP are points on the Montgomeryform elliptic curve, $By_d^2=x_d^3+Ax_d^2+x_d$ and $By^2=x^3+Ax^2+x$ are satisfied. When the value is assigned to Equation 6, 25 By_d^2 and By^2 are deleted, and the equation is arranged, the following is obtained.

is held.

189

$$y_d = \{(x_d x + 1)(x_d + x + 2A) - 2A - (x_d - x)^2 x_{d+1}\}/(2By)$$
... Equation 64

Here, $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, the following equation is obtained.

$$y_d = \left\{ Z_{d+1} \left((X_d x + Z_d)(X_d + xZ_d + 2AZ_d) - 2AZ_d^2 \right) - (X_d - xZ_d)^2 X_{d+1} \right\} / (2ByZ_d Z_{d+1} Z_d)$$

... Equation 65

Although $x_d=X_d/Z_d$, the reduction to the denominator common with that of y_d is performed for the purpose of reducing the frequency of inversion, and following equation is obtained.

$$x_d = (2ByZ_dZ_{d+1}X_d)/(2ByZ_dZ_{d+1}Z_d)$$
... Equation 66

25

15 Here, x_d , y_d are given by the processing of FIG. 34. Therefore, all values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the steps 3401, 3405, 3406, 3408, 3410, 3411, 3413, 3415, 3416, 3417, 3418, 3420, 3421, and 3422, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 3404. Moreover, in the step 3419 the computational amount of inversion on the finite field is required.

The computational amounts of addition and subtraction

on the finite field are relatively small as compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be ignored. Assuming that the computational 5 amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 14M+S+I. This is far small as 10 compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 15 M, the computational amount of coordinate recovering is 54.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

- Additionally, even when the above procedure is not taken, but if the values of x_d , y_d given by the above equation can be calculated, the values of x_d , y_d can be recovered. In this case, the computational amount required for recovering generally increases.
- 25 Furthermore, when the value of A or B as the parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 3406 or 3415 can be reduced.

A processing of the fast scalar multiplication unit which outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described.

As the fast scalar multiplication method of the scalar multiplication unit 202 of the fourteenth embodiment, the fast scalar multiplication method of the first embodiment is used. Thereby, as the algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve, the fast algorithm can be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is

14M+S+I, and this is far small as compared with the computational amount of (9.2k-4.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit.

Assuming that I=40 M, S=0.8 M, the computational amount

can be estimated to be about (9.2k+50)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is 1522 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a fifteenth embodiment, the scalar multiplication unit 103 calculates and outputs the 15 scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto as the point of the projective coordinates in the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomeryform elliptic curve. The scalar value d and the point 20 P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates $X_{\tt d}$ and $Z_{\tt d}$ in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ 25 represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the

projective coordinates from the received scalar value d and the given point P on the Montgomery-form elliptic curve. The information is given to the coordinate recovering unit 203 together with the inputted point

5 P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates. The coordinate recovering unit 203 recovers coordinate X_d, Y_d, and Z_d of the scalar-multiplied point dP=(X_d, Y_d, Z_d) represented by the projective coordinates in the Montgomery-form

10 elliptic curve from the given coordinate values X_d, Z_d, X_{d+1}, Z_{d+1}, x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the coordinate completely given thereto in the projective coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs X_d , Y_d , Z_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 35.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point

 (X_d,Y_d,Z_d) with the complete coordinate given thereto in the projective coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d,y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is

In step 3501, $x\times Z_d$ is calculated and stored in the register T_1 . In step 3502 X_d+T_1 is calculated. Here, xZ_d is stored in the register T_1 , and therefore xZ_d+X_d is calculated. The result is stored in the register T_2 . In step 3503 X_d-T_1 is calculated, here the register T_1 stores xZ_d , and therefore xZ_d-X_d is calculated. The result is stored in the register T_3 . In step 3504 a square of the register T_3 is calculated. Here, xZ_d-X_d is stored in the register T_3 , and therefore $(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 3505 $T_3\times X_{d+1}$ is calculated. Here, $(X_d-xZ_d)^2$ is stored in the register T_3 , and therefore $X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 3506 $2A\times Z_d$ is calculated, and

stored in the register T_1 . In step 3507 T_2+T_1 is calculated. Here, xZ_d+X_d is stored in the register T_2 , $2AZ_d$ is stored in the register T_1 , and therefore $xZ_d+X_d+2AZ_d$ is calculated. The result is stored in the register T_2 . In step 3508 $x\times X_d$ is calculated and stored in the register T_4 . In step 3509 T_4+Z_d is calculated. Here, the register T_4 stores xX_d , and therefore xX_d+Z_d is calculated. The result is stored in the register T_4 . In step 3510 $T_2\times T_4$ is calculated. Here T_2 stores

- 10 $xZ_d+X_d+2AZ_d$, the register T_4 stores xX_d+Z_d , and therefore $(xZ_d+X_d+2AZ_d)$ (xX_d+Z_d) is calculated. The result is stored in the register T_2 . In step 3511 $T_1\times Z_d$ is calculated. Here, since the register T_1 stores $2AZ_d$, $2AZ_d^2$ is calculated. The result is stored in the register T_1 .
- In step 3512 T_2-T_1 is calculated. Here $(xZ_d+X_d+2AZ_d) \; (xX_d+Z_d) \; \text{is stored in the register} \; T_2, \; 2AZ_d^2$ is stored in the register T_1 , and therefore $(xZ_d+X_d+2AZ_d) \; (xX_d+Z_d)-2AZ_d^2 \; \text{is calculated.} \; \text{ The result is}$ stored in the register T_2 . In step 3513 $T_2\times Z_{d+1}$ is
- 20 calculated. Here $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2$ is stored in the register T_2 , and therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is calculated. The result is stored in the register T_2 . In step 3514 T_2-T_3 is calculated. Here $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is stored in the register
- 25 T_2 , $X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_3 , and therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register Y_d . In step 3515 2B×y is calculated, and stored in the

register T_1 . In step 3516 $T_1 \times Z_d$ is calculated. Here, Since 2By is stored in the register T_1 , $2ByZ_d$ is calculated. The result is stored in the register T_1 . In step 3417 $T_1 \times Z_{d+1}$ is calculated. Here, since the register T_1 stores $2ByZ_d$, $2ByZ_dZ_{d+1}$ is calculated. The result is stored in the register T_1 . In step 3518 $T_1 \times X_d$ is calculated. Here, since the register T_1 stores $2ByZ_dZ_{d+1}$, $2ByZ_dZ_{d+1}X_d$ is calculated. The result is stored in the register X_d . In step 3519 $T_1 \times Z_d$ is calculated.

- Here, since the register T_1 stores $2ByZ_dZ_{d+1}$, $2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register Z_d . Since $2ByZ_dZ_{d+1}X_d$ is stored in X_d in the step 3518, and is not updated thereafter, the value is held. Since $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-x_{d+1}(X_d-xZ_d)^2$ is stored in
- 15 Y_d , and is not updated thereafter, the value is held.

A reason why all the values in the projective coordinate (X_d, Y_d, Z_d) of the scalar-multiplied point are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP. The assignment to the addition formulae in the affine coordinates of the Montgomeryform elliptic curve results in Equation 6. Since the points P and dP are points on the Montgomeryform elliptic curve, $By_d^2 = x_d^3 + Ax_d^2 + x_d$ and $By^2 = x^3 + Ax^2 + x$ are satisfied. When the value is assigned to Equation 6, By_d^2 and By^2 are deleted, and the equation is arranged,

Equation 64 is obtained. Here, $x_d = X_d / Z_d$, $x_{d+1} = X_{d+1} / Z_{d+1}$.

197

The value is assigned and thereby converted to the value of the projective coordinate. Then, the Equation 65 is obtained. Although $x_d = X_d / Z_d$, the reduction to the denominator common with that of y_d is performed for the purpose of reducing the frequency of inversion, and Equation 66 results. As a result, the following equation is obtained.

$$Y_d = Z_{d+1} \left[(X_d + xZ_d + 2AZ_d)(X_d x + Z_d) - 2AZ_d^2 \right] - (X_d - xZ_d)^2 X_{d+1}$$
... Equation 67

10 Here, $X_{\rm d}$, $Y_{\rm d}$ may be updated by the following equations.

 $2ByZ_dZ_{d+1}X_d$

... Equation 68

 $2ByZ_dZ_{d+1}X_d$

... Equation 69

Here, X_d , Y_d , Z_d are given by the processing of FIG. 35. Therefore, all the values of the projective coordinate (X_d, Y_d, Z_d) are recovered.

For the aforementioned procedure, in the steps 3501, 3505, 3506, 3508, 3510, 3511, 3513, 3515,

- 20 3516, 3517, 3518, and 3519, the computational amount of multiplication on the finite field is required.
 - Moreover, the computational amount of squaring on the finite field is required in the step 3504. The computational amounts of addition and subtraction on
- 25 the finite field are relatively small as compared with the computational amounts of multiplication and squar-

ing on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above 5 procedure requires a computational amount of 12M+S. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication 10 is estimated to be a little less than about 1500 M. Assuming S=0.8 M, the computational amount of coordinate recovering is 12.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the 15 coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, but if the values of X_d , Y_d , Z_d given by the above equation can be calculated, the values of X_d , Y_d , Z_d can be recovered. Moreover, the values of X_d , Y_d , Z_d are selected so that x_d , y_d take the values given by the aforementioned equations, the values can be calculated, and then X_d , Y_d , Z_d can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of A or B as the parameter of the elliptic curve is set to be small, the computational amount of multiplication in the step 3506 or 3515 can be reduced.

An algorithm for outputting X_d , Z_d , X_{d+1} , Z_{d+1}

from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described.

As the fast scalar multiplication method of the scalar multiplication unit 202 of the fifteenth embodiment, the fast scalar multiplication method of the first embodiment is used. Thereby, as the algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve, the fast algorithm can be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

15 The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 12M+S, and this is far small as compared with the computational amount of (9.2k-4.6)M necessary for fast scalar multiplication of the fast scalar multiplication 20 unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar 25 multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, the computational amount can be estimated to be about (9.2k+8)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is 1480 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In a sixteenth embodiment, the scalar multiplication unit 103 calculates and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine 15 coordinates in the Montgomery-form elliptic curve from the scalar value d and the point P on the Montgomeryform elliptic curve. The scalar value d and the point P on the Montgomery-form elliptic curve are inputted into the scalar multiplication unit 103, and received 20 by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates x_d in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve, and x_{d+1} in the coordinate of the point (d+1) P= (x_{d+1}, y_{d+1}) on the Montgomery-form elliptic curve 25 represented by the affine coordinates from the received scalar value d and the given point P on the Montgomeryform elliptic curve. The information is given to the

coordinate recovering unit 203 together with the inputted point P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates. The coordinate recovering unit 203 recovers coordinate y_d of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve from the given coordinate values x_d , x_{d+1} , x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d,y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, x_d , x_{d+1} will next be described with reference to FIG. 36.

15

in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve, x_{d+1} in the coordinate of the point on the Montgomery-form elliptic curve $(d+1)P=(x_{d+1},y_{d+1})$ represented by the affine coordinates, and (x,y) as representation of the point P on the Montgomery-form elliptic curve in the affine coordinates inputted into the scalar multiplication unit 103, and outputs the scalar-multiplied point (x_d,y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure.

In step 3601 $x_d \times x$ is calculated, and stored in

the register T_1 . In step 3602 T_1+1 is calculated. Here, since x_dx is stored in the register T_1 , x_dx+1 is calculated. The result is stored in the register T_1 . In step 3603 x_d+x is calculated, and stored in the 5 register T_2 . In step 3604 T_2 +2A is calculated. Here, since x_d+x is stored in the register T_2 , x_d+x+2A is calculated. The result is stored in the register T2. In step 3605 $T_1 \times T_2$ is calculated. Here, since $x_d x + 1$ is stored in the register T_1 , and $x_d + x + 2A$ is stored in the 10 register T_2 , $(x_dx+1)(x_d+x+2A)$ is calculated. The result is stored in the register T_1 . In step 3606 T_1 -2A is calculated. Here, since $(x_dx+1)(x_d+x+2A)$ is stored in the register T_1 , $(x_dx+1)(x_d+x+2A)-2A$ is calculated. The result is stored in the register T_1 . In step 3607 x_d -x15 is calculated, and stored in the register T_2 . In step 3608 a square of T_2 is calculated. Here, since x_d -x is stored in the register T_2 , $(x_d-x)^2$ is calculated. The result is stored in the register T_2 . In step 3609 $T_2 \times x_{d+1}$ is calculated. Here, since $(x_d-x)^2$ is stored in the register T_2 , $(x_d-x)^2x_{d+1}$ is calculated. The result is stored in the register T_2 . In step 3610 T_1 - T_2 is calculated. Here, since $(x_dx+1)(x_d+x+2A)-2A$ is stored in the register T_1 and $(x_d-x)^2x_{d+1}$ is stored in the register T_2 , $(x_dx+1)(x_d+x+2A)-2A-(x_d-x)^2x_{d+1}$ is calculated. The result is stored in the register T_1 . In step 3611, $2B \times y$ is calculated, and stored in the register T_2 . In step 3612 the inverse element of T2 is calculated. Here, since 2By is stored in the register T_2 , 1/2By is

calculated. The result is stored in the register T_2 . In step 3613 $T_1 \times T_2$ is calculated. Here, since $(x_d x + 1) (x_d + x + 2A) - 2A - (x_d - x)^2 x_{d+1}$ is stored in the register T_1 and 1/2By is stored in the register T_2 ,

- 5 $(x_dx+1)(x_d+x+2A)-2A-(x_d-x)^2x_{d+1}/2By$ is calculated. The result is stored in the register y_d . Therefore, $(x_dx+1)(x_d+x+2A)-2A-(x_d-x)^2x_{d+1}/2By$ is stored in the register y_d . Since the x_d is not updated, the inputted value is held.
- A reason why the y-coordinate y_d of the scalar-multiplied point is recovered by the aforementioned procedure is as follows. The point (d+1)P is obtained by adding the point P to the point (d+1)P.

 The assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equation 6. Since the points P and dP are points on the Montgomery-form elliptic curve,

 By_d²=x_d³+Ax_d²+x_d and By²=x³+Ax²+x are satisfied. When the value is assigned to Equation 6, By_d² and By² are deleted, and the equation is arranged, Equation 64 is obtained. Here, x_d, y_d are given by the processing of FIG. 36. Therefore, all the values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the

25 steps 3601, 3605, 3609, 3611, and 3613, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step

Furthermore, the computational amount of the inversion on the finite field is required in the step The computational amounts of addition and subtraction on the finite field are relatively small as 5 compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 5M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational 15 amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 45.8 M, and far small as compared with 20 the computational amount of the fast scalar multipli-Therefore, it is indicated that the coordinate cation. can efficiently be recovered.

Additionally, even when the above procedure is not taken, but if the values of the right side of the equation can be calculated, the value of y_d can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of B as the parameter of the

elliptic curve is set to be small, the computational amount of multiplication in the step 2605 can be reduced.

A processing of the fast scalar multipli
5 cation unit for outputting x_d , x_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve will next be described with reference to FIG. 43.

The fast scalar multiplication unit 202 inputs the point P on the Montgomery-form elliptic 10 curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP = (x_d, y_d)$ represented by the affine coordinate in the Montgomeryform elliptic curve, and x_{d+1} in the point (d+1)P= $(\mathbf{x}_{\mathtt{d+1}}, \mathbf{y}_{\mathtt{d+1}})$ on the Montgomery-form elliptic curve represented by the affine coordinate by the following procedure. In step 4301, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P is calculated in step 4302. Here, the point P is represented as (x,y,1) in the projective 20 coordinate, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. 4303, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 4302 are stored as a set of points 25 (P, 2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 4304 whether or not the variable I agrees with the bit

length of the scalar value d. With agreement, the flow goes to step 4315. With disagreement, the flow goes to step 4305. The variable I is increased by 1 in the step 4305. It is judged in step 4306 whether the value 5 of the I-th bit of the scalar value is 0 or 1. the value of the bit is 0, the flow goes to the step 4307. When the value of the bit is 1, the flow goes to step 4310. In step 4307, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4308. Here, the addition mP+(m+1)Pis calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve. In step 4308, doubling 2(mP) of the point mP is 15 performed from the set of points (mP, (m+1)P)represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 4309. Here, the doubling 2(mP) is calculated using the 20 formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. In the step 4309, the point 2mP obtained in the step 4308 and the point (2m+1)P obtained in the step 4307 are stored as the set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 25 4304. Here, the points 2mP, (2m+1)P, mP, and (m+1)Pare all represented in the projective coordinates. step 4310, addition mP+(m+1)P of the points mP, (m+1)P

is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4311. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. the step 4311, doubling 2((m+1)P) of the point (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 4312. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 4312, the point (2m+1)P obtained in the step 4310 and the point (2m+2)P obtained in the step 4311 are stored as the set of points ((2m+1)P, (2m+2)P)instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 4304. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in 20 the projective coordinates. In step 4315, X_{m} and Z_{m} as X_d and Z_d from the point mP=(X_m, Y_m, Z_m) represented by the projective coordinates and X_{m+1} and Z_{m+1} as X_{d+1} and Z_{d+1} from the point $(m+1) P = (X_{m+1}, Y_{m+1}, Z_{m+1})$ represented by the projective coordinates are obtained. Here, Y_m and Y_{m+1} 25 are not obtained, because Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic From X_d , Z_d , X_{d+1} and Z_{d+1} , $X_d = X_d Z_{d+1} / Z_d Z_{d+1}$ and curve.

15

 $x_{d+1}=Z_dX_{d+1}/Z_dZ_{d+1}$ are set, and x_d , x_{d+1} are obtained. Thereafter, the flow goes to step 4313. In the step 4313, x_d , x_{d+1} are outputted. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal.

The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication 10 on the finite field, and S is the computational amount of squaring on the finite field. The computational amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar 15 value is 0, the computational amount of addition in the step 4307, and the computational amount of doubling in the step 4308 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational 20 amount of addition in the step 4310, and the computational amount of doubling in the step 4311 are That is, the computational amount of 6M+4S required. is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the 25 steps 4304, 4305, 4306, 4307, 4308, 4309, or the steps 4304, 4305, 4306, 4310, 4311, 4312 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 4302,

and the computational amount of the transform to the affine coordinates, the entire computational amount is (6M+4S)k+2M-2S+I. Here, k is the bit length of the scalar value d. In general, since the computational 5 amount S is estimated to be of the order of S=0.8 M, and the computational amount I is estimated to be of the order of I=40 M, the entire computational amount is approximately (9.2k+40.4)M. For example, when the scalar value d indicates 160 bits (k=160), the 10 computational amount of algorithm of the aforementioned procedure is about 1512 M. The computational amount per bit of the scalar value d is about 9.2 M. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in 15 Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar 20 multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. Additionally, the computational amount of the transform to the affine coordinates is required. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1640 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs x_d , x_{d+1} from the scalar value d and the point P on the Montgomery-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 5M+S+I, and this is far small as compared with the 10 computational amount of (9.2k+40.4)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the 15 computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, I=40 M, the computational amount can be estimated to be about (9.2k+86.2)M. example, when the scalar value d indicates 160 bits 20 (k=160), the computational amount necessary for the scalar multiplication is 1558 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly includ-25 ing the Jacobian coordinates are used, and the scalarmultiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the

required computational amount is reduced.

In a seventeenth embodiment, the Weierstrassform elliptic curve is used as the elliptic curve. That is, the elliptic curve for use in input/output of 5 the scalar multiplication unit 103 is Weierstrass-form elliptic curve. Additionally, as the elliptic curve for use in the internal calculation of the scalar multiplication unit 103, the Montgomery-form elliptic curve which can be transformed from the Weierstrass-10 form elliptic curve may be used. The scalar multiplication unit 103 calculates and outputs the scalarmultiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine coordinates in the Weierstrass-form elliptic curve from the scalar 15 value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_{d} and Z_{d} in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) $P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the 25 Weierstrass-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve. The information is given to the coordinate

recovering unit 203 together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve represented by the affine coordinates. The coordinate recovering unit 203 recovers coordinate x_d, and y_d of the scalar-multiplied point dP=(x_d,y_d) represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d, Z_d, X_{d+1}, Z_{d+1}, x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d,y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 37.

15

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1)P=(X_{d+1},Y_{d+1},Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (x_d,y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure. Here, the affine coordinate of the inputted point P on

the Weierstrass-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d,y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the point (d+1)P on the Weierstrass-form elliptic curve is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by (x_{d+1},y_{d+1}) , and the projective coordinate thereof is represented by (x_{d+1},y_{d+1}) .

In step 3701, $x \times Z_d$ is calculated and stored in the register T_1 . In step 3702 $X_d + T_1$ is calculated. Here, xZ_d is stored in the register T_1 , and therefore 15 xZ_d+X_d is calculated. The result is stored in the register T_2 . In step 3703 X_d-T_1 is calculated, here the register T_1 stores xZ_d , and therefore xZ_d-X_d is calculated. The result is stored in the register T_3 . In step 3704 a square of the register T₃ is calculated. 20 Here, since xZ_d-X_d is stored in the register T_3 , $(X_d-xZ_d)^2$ is calculated. The result is stored in the register $T_{\mbox{\scriptsize 3}}.$ In step 3705 $T_3 \times X_{d+1}$ is calculated. Here, since $(X_d - x Z_d)^2$ is stored in the register T_3 , $X_{d+1} \left(X_d - x Z_d \right)^2$ is calculated. The result is stored in the register T_3 . In step 3706 25 $x \times X_d$ is calculated, and stored in the register T_1 . In step 3707 $a \times Z_d$ is calculated, and stored in the register T_4 . In step 3708 T_1+T_4 is calculated. Here, since xX_d is stored in the register T_1 , and aZ_d is stored in the

register T_4 , xX_d+aZ_d is calculated. The result is stored in the register T_1 . In step 3709 $T_1 \times T_2$ is calculated. Here, since the register T_1 stores xX_d+aZ_d , and xZ_d+X_d is stored in the register T_2 , $(xX_d+aZ_d)(xZ_d+X_d)$ is calculated. The result is stored in the register T_1 . In step 3710 a square of Z_d is calculated, and stored in the register T_2 . In step 3711 $T_2 \times 2b$ is calculated. Here, since the register T_2 stores $Z_d^{\ 2}\text{, }2bZ_d^{\ 2}$ is calculated. The result is stored in the register T_2 . In 10 step 3712 T_1+T_2 is calculated. Here, since $(xX_d+aZ_d)(xZ_d+X_d)$ is stored in the register T_1 and $2bZ_d^2$ is stored in the register $T_2\text{, }(xX_d+aZ_d)\,(xZ_d+X_d)\,+2bZ_d^{\ 2}$ is calculated. The result is stored in the register T_1 . In step 3713 $T_1 \times Z_{d+1}$ is calculated. Here, since $(xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2$ is stored in the register T_1 , $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)$ is calculated. The result is stored in the register T_1 . In step 3714 T_1 - T_3 is calculated. Here, since $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)$ is stored in the register T_1 and $X_{d+1} \left(X_d - x Z_d \right)^2$ is stored in 20 the register T_3 , $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated, and the result is stored in the register T_1 . In step 3715 $2y \times Z_d$ is calculated, and stored in the register T_2 . In step 3716 $T_2 \times Z_{d+1}$ is calculated. Here, since the register T_2 stores $2yZ_d$, $2yZ_dZ_{d+1}$ is calculated, and the result is stored in the register T_2 . In step 25 3717 $T_2 \times Z_d$ is calculated. Here, since $2yZ_dZ_{d+1}$ is stored in the register T_2 , $2yZ_dZ_{d+1}Z_d$ is calculated, and the result is stored in the register T_3 . In step 3718, the

inverse element of the register T_3 is calculated. Here, since the register T_3 stores $2yZ_dZ_{d+1}Z_d$ is stored, $1/2yZ_dZ_{d+1}Z_d$ is calculated, and the result is stored in the register T_3 . In step 3719 $T_1 \times T_3$ is calculated. 5 Here, since the register T_1 stores $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+$ $2bZ_d^2$) $-X_{d+1}(X_d-xZ_d)^2$ and the register T_3 stores $1/2yZ_dZ_{d+1}Z_d$, $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)-x_{d+1}(X_d-xZ_d)^2/2yZ_dZ_{d+1}Z_d$ is calculated, and the result is stored in the register y_d . In step 3720 $T_2 \times X_d$ is calculated. Here, since the register T_2 stores $2yZ_dZ_{d+1}$, $2yZ_dZ_{d+1}X_d$ is calculated, and the result is stored in the register T_2 . In step 3721 $T_2 \times T_3$ is calculated. Here, since T_2 stores $2yZ_dZ_{d+1}X_d$ and the register T_3 stores $1/2yZ_dZ_{d+1}Z_d$, $2yZ_dZ_{d+1}X_d/2yZ_dZ_{d+1}Z_d$ is calculated, and the result is stored in the register x_d . Therefore, the register x_d stores $2yZ_dZ_{d+1}X_d/2yZ_dZ_{d+1}Z_d$. the step 3719 since $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)-x_{d+1}(X_d-x_d)$

Coordinate (x_d, y_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from the given x, y, X_d , Z_d , X_{d+1} , Z_{d+1} by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP. The assignment to the addition formulae in the affine coordinates of the Weierstrass-form elliptic curve results in Equations 27. Since the points P and dP are points on the Weierstrass-form elliptic curve,

 xZ_d) $^2/2yZ_dZ_{d+1}Z_d$ is stored in the register y_d , and is not

updated thereafter, the value is held.

216

 $y_d^2=x_d^3+ax_d+b$ and $y^2=x^3+ax+b$ are satisfied. When the value is assigned to Equation 27, y_d^2 and y^2 are deleted, and the equation is arranged, the following equation is obtained.

5
$$y_d = \{(x_d x + a)(x_d + x) + 2b - (x_d - x)^2 x_{d+1}\}/(2y)$$
... Equation 70

Here, $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, the following equation is obtained.

10
$$y_d = \{Z_{d+1}((X_d x + aZ_d)(X_d + xZ_d) - 2bZ_d^2) - (X_d - xZ_d)^2 X_{d+1}\}/(2yZ_d Z_{d+1}Z_d)$$
 ... Equation 71

Although $x_d=X_d/Z_d$, the reduction to the denominator common with that of y_d is performed for the purpose of reducing the frequency of inversion, and the following equation results.

$$x_d = (2yZ_dZ_{d+1}X_d)/(2yZ_dZ_{d+1}Z_d)$$
... Equation 72

15

Here, x_d , y_d are given by the processing shown in FIG. 37. Therefore, all the values of the affine coordinate (x_d , y_d) are recovered.

For the aforementioned procedure, in the steps 3701, 3705, 3706, 3707, 3709, 3710, 3711, 3713, 3715, 3716, 3717, 3719, 3720, and 3721, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of

squaring on the finite field is required in the step 3704. Furthermore, the computational amount of the inversion on the finite field is required in the step The computational amounts of addition and 5 subtraction on the finite field are relatively small as compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is 10 M, the computational amount of squaring on the finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 14M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 54.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, but if the values of x_d , y_d can be calculated, the values of x_d , y_d can be recovered. In this case, the computational amount required for recovering generally increases.

A processing of the fast scalar multiplication unit for outputting X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described with reference to 5 FIG. 44.

The fast scalar multiplication unit 202 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs X_d and Z_d in the scalar-multiplied point 10 dP=(X_d , Y_d , Z_d) represented by the projective coordinate in the Weierstrass-form elliptic curve, and \mathbf{X}_{d+1} and \mathbf{Z}_{d+1} in the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the projective coordinate by the following procedure. In step 4416, the given 15 point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on the Montgomery-form elliptic curve. This point is set anew to point P. In step 4401, the initial value 1 is assigned to the variable I. The doubled point 2P of the point P is calculated in step 4402. Here, the point P is represented as (x,y,1) in the projective coordinate, and the doubling formula in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 4403, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 4402 are stored as a set of points (P,2P). Here, the points P and 2P are

represented by the projective coordinate. It is judged in step 4404 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 4415. With disagreement, the 5 flow goes to step 4405. The variable I is increased by 1 in the step 4405. It is judged in step 4406 whether the value of the I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 4407. When the value of the bit is 1, the 10 flow goes to step 4410. In step 4407, addition mP+(m+1)P of points mP and (m+1)P is performed from a set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4408. Here, the addition mP+(m+1)P is calculated using the addition 15 formula in the projective coordinate of the Montgomeryform elliptic curve. In step 4408, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, 20 and the point 2mP is calculated. Thereafter, the flow goes to step 4409. Here, the doubling 2(mP) is calculated using the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve. the step 4409, the point 2mP obtained in the step 4408 25 and the point (2m+1)P obtained in the step 4407 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 4404. Here, the points 2mP,

(2m+1)P, mP, and (m+1)P are all represented in the projective coordinates. In step 4410, addition mP+(m+1)P of the points mP, (m+1)P is performed from the set of points (mP, (m+1)P) represented by the 5 projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4411. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. In the step 4411, doubling 2((m+1)P) of the point (m+1)P is performed 10 from the set of points (mP, (m+1)P) represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 4412. Here, the doubling 2((m+1)P) is calculated using the 15 formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In the step 4412, the point (2m+1)P obtained in the step 4410 and the point (2m+2)P obtained in the step 4411 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of 20 points (mP, (m+1)P). Thereafter, the flow returns to the step 4404. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 4415, the point (m-1)P in the Montgomery-form elliptic curve is transformed to the 25 point shown by the projective coordinates on the Weierstrass-form elliptic curve. The X-coordinate and Z-coordinate of the point are set anew to X_{m-1} and Z_{m-1} . Moreover, with respect to the set of points (mP, (m+1)P)

represented by the projective coordinates in the Montgomery-form elliptic curve, the points mP and (m+1)P are transformed to the points represented by the projective coordinates on the Weierstrass-form elliptic 5 curve, and are set anew to $mP=(X_m, Y_m, Z_m)$ and (m+1)P= $(\textbf{X}_{\texttt{m+1}}, \textbf{Y}_{\texttt{m+1}}, \textbf{Z}_{\texttt{m+1}})$. Here, $\textbf{Y}_{\texttt{m}}$ and $\textbf{Y}_{\texttt{m+1}}$ are not obtained, because the Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. 10 step 4413, X_m and Z_m are outputted as X_d and Z_d from the point $mP=(X_m, Y_m, Z_m)$ represented by the projective coordinates on the Weierstrass-form elliptic curve, and X_{m+1} and Z_{m+1} are outputted as X_{d+1} and Z_{d+1} from the point (m+1) P=(X_{m+1} , Y_{m+1} , Z_{m+1}) represented by the projective 15 coordinates on the Weierstrass-form elliptic curve. the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are therefore equal.

The computational amount of the addition

20 formula in the projective coordinates of the

Montgomery-form elliptic curve is 3M+2S with Z₁=1.

Here, M is the computational amount of multiplication
on the finite field, and S is the computational amount
of squaring on the finite field. The computational

25 amount of the doubling formula in the projective
coordinates of the Montgomery-form elliptic curve is
3M+2S. When the value of the I-th bit of the scalar
value is 0, the computational amount of addition in the

step 4407, and the computational amount of doubling in the step 4408 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational 5 amount of addition in the step 4410, and the computational amount of doubling in the step 4411 are required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 4404, 4405, 4406, 4407, 4408, 4409, or the steps 4404, 4405, 4406, 4410, 4411, 4412 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 4402, the computational amount necessary for the transform to 15 the point on the Montgomery-form elliptic curve in the step 4416, and the computational amount necessary for the transform to the point on the Weierstrass-form elliptic curve in the step 4415, the entire computational amount is (6M+4S)k+2M-2S. Here, k is the bit length of the scalar value d. In general, since the 20 computational amount S is estimated to be of the order of S=0.8 M, the entire computational amount is approximately (9.2k+0.4)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1472 M. The computational amount per bit of the scalar value d is about 9.2 M. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve

exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514

(1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1600 M. Therefore, the algorithm of the aforementioned procedure according to the present invention can be said to have a small computational amount and high

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar valued and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 14M+S+I, and this is far small as compared with the computational amount of (9.2k+0.4)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount

25

necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit.

5 Assuming I=40 M, S=0.8 M, the computational amount can be estimated to be about (9.2k+55.2)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is about 1527 M. The Weierstrass-form elliptic

10 curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordi-

15 nates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a eighteenth embodiment, the Weierstrassform elliptic curve is used as the elliptic curve.

That is, the elliptic curve for use in input/output of the scalar multiplication unit 103 is Weierstrass-form elliptic curve. Additionally, as the elliptic curve for use in the internal calculation of the scalar multiplication unit 103, the Montgomery-form elliptic curve which can be transformed from the Weierstrass-form elliptic curve may be used. The scalar multiplication unit 103 calculates and outputs the scalar-

multiplied point (X_d,Y_d,Z_d) with the complete coordinate

given thereto as the point of the projective coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on 5 the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates \boldsymbol{X}_{d} and \boldsymbol{Z}_{d} in the coordinate of the scalar-multiplied point $dP = (X_d, Y_d, Z_d)$ 10 represented by the projective coordinates in the Weierstrass-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) P=(X_{d+1} , Y_{d+1} , Z_{d+1}) on the Weierstrass-form elliptic curve represented by the projective coordinates from the received scalar value d 15 and the given point P on the Weierstrass-form elliptic curve. The information is given to the coordinate recovering unit 203 together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve represented by the affine coordinates. The coordinate 20 recovering unit 203 recovers coordinate $X_{\text{d}}\text{, }Y_{\text{d}}\text{, }$ and Z_{d} of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y. The scalar multiplication unit 103 25 outputs the scalar-multiplied point (X_d,Y_d,Z_d) with the coordinate completely given thereto in the projective coordinates as the calculation result.

A processing of the coordinate recovering

unit which outputs X_d , Y_d , and Z_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 38.

The coordinate recovering unit 203 inputs X_d 5 and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d,Y_d,Z_d)$ represented by the projective coordinates in the Weierstrass-form elliptic curve, X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Weierstrass-form elliptic curve represented by the 10 projective coordinates, and (x,y) as representation of the point P on Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (X_d, Y_d, Z_d) with the complete coordinate given thereto in 15 the projective coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Weierstrass-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted 20 scalar value is d, the affine coordinate of the scalarmultiplied point dP in the Weierstrass-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the point (d+1)P on the 25 Weierstrass-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 3801, $x \times Z_d$ is calculated and stored in

the register T_1 . In step 3802 $X_d + T_1$ is calculated. Here, xZ_d is stored in the register T_1 , and therefore xZ_d+X_d is calculated. The result is stored in the register T_2 . In step 3803 X_d-T_1 is calculated, here the 5 register T_1 stores xZ_d , and therefore xZ_d-X_d is calculated. The result is stored in the register T_3 . In step 3804 a square of the register T_3 is calculated. Here, since xZ_d-X_d is stored in the register T_3 , $(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 3805 $T_3 \times X_{d+1}$ is calculated. Here, since $(X_d - xZ_d)^2$ is stored in the register T_3 , $X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 3806 $x \times X_d$ is calculated, and stored in the register T_1 . In step $3807 \text{ a} \times Z_d$ is calculated, and stored in the register T_4 . In step 3808 T_1+T_4 is calculated. Here, since xX_d is stored in the register T_1 , and aZ_d is stored in the register T_4 , xX_d+aZ_d is calculated. The result is stored in the register T_1 . In step 3809 $T_1 \times T_2$ is calculated. Here, since the register T_1 stores xX_d+aZ_d , and xZ_d+X_d is stored in the register T_2 , $(xX_d+aZ_d)(xZ_d+X_d)$ is calculated. The result is stored in the register T_1 . In step 3810 a square of the register Z_{d} is calculated, and stored in the register T_2 . In step 3811 $T_2 \times 2b$ is calculated. Here, since the register T_2 stores Z_d^2 , 25 $2bZ_d^2$ is calculated. The result is stored in the register T_2 . In step 3812 T_1+T_2 is calculated. Here, since $(xX_d+aZ_d)(xZ_d+X_d)$ is stored in the register T_1 and $2bZ_d^2$ is stored in the register T_2 , $(xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2$

is calculated. The result is stored in the register T_1 . In step 3813 $T_1 \times Z_{d+1}$ is calculated. Here, since $(xX_d + aZ_d)\;(xZ_d + X_d) + 2bZ_d^{\;2}$ is stored in the register $T_1\text{,}$ $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)$ is calculated. The result is stored in the register T_1 . In step 3814 T_1 - T_3 is calculated. Here, since $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)$ is stored in the register T_1 and $X_{d+1} (X_d - xZ_d)^2$ is stored in the register T_3 , $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated, and the result is stored in the register Y_d . In step 3815 $2y \times Z_d$ is calculated, and stored in the register T_2 . In step 3816 $T_2 \times Z_{d+1}$ is calculated. Here, since the register T_2 stores $2yZ_d$, $2yZ_dZ_{d+1}$ is calculated, and the result is stored in the register T_2 . In step 3817 $T_2 \times X_d$ is calculated. Here, since $2yZ_dZ_{d+1}$ is stored in the register T_2 , $2yZ_dZ_{d+1}X_d$ is calculated, and the 15 result is stored in the register X_d . In step 3819, $T_2 \times Z_d$ is calculated. Here, since the register T_2 stores $2yZ_dZ_{d+1}$, $2yZ_dZ_{d+1}Z_d$ is calculated, and the result is stored in the register Z_d . Therefore, the register Z_d stores $2yZ_dZ_{d+1}Z_d$. In the step 3814 since $Z_{d+1}((xX_d+aZ_d)(xZ_d+X_d)+2bZ_d^2)+x_{d+1}(X_d-xZ_d)^2$ is stored in the register Y_d , and is not updated thereafter, the value is held. In the step 3817, since $2yZ_dZ_{d+1}X_d$ is stored in the register X_d , and is not updated thereafter, the 25 value is held.

A reason why all the values in the projective coordinate (X_d,Y_d,Z_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from

229

the given x, y, X_d , Z_d , X_{d+1} , Z_{d+1} by the aforementioned procedure is as follows. Additionally, the point (d+1)P is a point obtained by adding the point P to the point dP. The assignment to the addition formulae in 5 the affine coordinates of the Weierstrass-form elliptic curve results in Equations 27. Since the points P and dP are points on the Weierstrass-form elliptic curve, $y_d^2 = x_d^3 + ax_d + b$ and $y^2 = x^3 + ax + b$ are satisfied. When the value is assigned to Equation 27, y_d^2 and y^2 are deleted, and the equation is arranged, Equation 70 is obtained. Here, $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, Equation 71 is obtained. Although $x_d=X_d/Z_d$, the reduction to the denominator common with that of y_d is performed for the purpose of reducing the frequency of inversion, and Equation 72 results.

$$Y_d = Z_{d+1} [(X_d x + a Z_d)(X_d + x Z_d) + 2b Z_d^2] - (X_d - x Z_d)^2 X_{d+1}$$
... Equation 73

Here, X_d and Z_d may be updated by the following.

 $2yZ_dZ_{d+1}X_d$... Equation 74 $2yZ_dZ_{d+1}Z_d$

... Equation 75

Here, X_d , Y_d , Z_d are given by the processing shown in 25 FIG. 38. Therefore, all the values of the projective coordinate (X_d,Y_d,Z_d) are recovered.

For the aforementioned procedure, in the steps 3801, 3805, 3806, 3807, 3809, 3811, 3813, 3815, 3816, 3817 and 3818, the computational amount of multiplication on the finite field is required. 5 Moreover, the computational amount of squaring on the finite field is required in the steps 3804 and 3810. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amounts of multiplication and 10 squaring on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a computational amount of 11M+2S. This is far small as compared with the 15 computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, the computational 20 amount of coordinate recovering is 12.6 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated

Additionally, even when the above procedure is not taken, but if the values of X_d , Y_d , Z_d can be calculated, the values of X_d , Y_d , Z_d can be recovered. Moreover, the values of X_d , Y_d , Z_d are selected so that

that the coordinate can efficiently be recovered.

 x_d , y_d take the values given by the aforementioned equations. When the values can be calculated, and X_d , Y_d , Z_d can be recovered. In this case, the computational amount required for recovering generally increases.

An algorithm for outputting X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described.

As the fast scalar multiplication method of

the scalar multiplication unit 202 of the eighteenth
embodiment, the fast scalar multiplication method of
the seventeenth embodiment is used. Thereby, as the
algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar
value d and the point P on the Weierstrass-form

elliptic curve, the fast algorithm is achieved.
Additionally, instead of using the aforementioned
algorithm in the scalar multiplication unit 202, any
algorithm may be used as long as the algorithm outputs
X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P

on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 11M+2S, and this is far small as compared with the computational amount of (9.2k+0.4)M necessary for the fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the

scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, the computational amount 5 can be estimated to be about (9.2k+13)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is 1485 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplica-10 tion method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the Jacobina coordinates. In this case, the required computational amount is about 1600 15 M, and as compared with this, the required computational amount is reduced.

In a nineteenth embodiment, the Weierstrassform elliptic curve is used as the elliptic curve.

That is, the elliptic curve for use in input/output of

the scalar multiplication unit 103 is the Weierstrassform elliptic curve. Additionally, as the elliptic
curve for use in the internal calculation of the scalar
multiplication unit 103, the Montgomery-form elliptic
curve which can be transformed from the Weierstrass
form elliptic curve may be used. The scalar multiplication unit 103 calculates and outputs the scalarmultiplied point (x_d, y_d) with the complete coordinate
given thereto as the point of the affine coordinates in

the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into 5 the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates x_d in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic 10 curve, x_{d+1} in the coordinate of the point (d+1)P= (x_{d+1},y_{d+1}) on the Weierstrass-form elliptic curve represented by the affine coordinates, and \mathbf{x}_{d-1} in the coordinate of the point $(d-1) P=(x_{d-1}, y_{d-1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates from the received scalar value d and 15 the given point P on the Weierstrass-form elliptic curve. The information is given to the coordinate recovering unit 203 together with the inputted point P=(x,y) on the Weierstrass-form elliptic curve 20 represented by the affine coordinates. The coordinate recovering unit 203 recovers the coordinate y_d of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values x_d , x_{d+1} , x_{d-1} , x, 25 and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d, y_d) with the coordinate completely given thereto in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d , y_d from the given coordinates x, y, x_d , x_{d+1} will next be described with reference to FIG. 39.

in the coordinate of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic curve, x_{d+1} in the coordinate of the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Weierstrass-form elliptic curve represented by the affine coordinates, and (x,y) as representation of the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point (x_d,y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure.

In step 3901 x_d×x is calculated, and stored in the register T₁. In step 3902 T₁+a is calculated.

Here, since x_dx is stored in the register T₁, x_dx+a is

20 calculated. The result is stored in the register T₁.

In step 3903 x_d+x is calculated, and stored in the register T₂. In step 3904 T₁×T₂ is calculated. Here, since x_dx+a is stored in the register T₁, and x_d+x is stored in the register T₁, and x_d+x is stored in the register T₂, (x_dx+a)(x_d+x) is calculated.

25 The result is stored in the register T₁. In step 3905 T₁+2b is calculated. Here, since (x_dx+a)(x_d+x) is stored in the register T₁, (x_dx+a)(x_d+x)+2b is calculated. The result is stored in the register T₁. In step 3906 x_d-x

У

is calculated, and stored in the register T2. In step 3907 a square of T_2 is calculated. Here, since x_d -x is stored in the register $T_{2}\text{, }\left(x_{d}\text{-}x\right)^{2}$ is calculated. The result is stored in the register T2. In step 3908 5 $T_2 \times x_{2d+1}$ is calculated. Here, since $(x_d-x)^2$ is stored in the register T_2 , $x_{d+1}(x_d-x)^2$ is calculated. The result is stored in the register T_2 . In step 3909 T_1 - T_2 is calculated. Here, since $(x_dx+a)(x_d+x)+2b$ is stored in the register T_1 and $x_{d+1}(x_d-x)^2$ is stored in the register T_2 , $(x_dx+a)(x_d+x)+2b-x_{d+1}(x_d-x)^2$ is calculated. The result is stored in the register T_1 . In step 3910 the inverse element of 2y is calculated, and stored in the register T_2 . In step 3911 $T_1 \times T_2$ is calculated. Here, since $(x_dx+a)(x_d+x)+2b-x_{d+1}(x_d-x)^2$ is stored in the register T_1 and 1/2y is stored in the register T_2 , $((x_dx+a)(x_d+x)+2b$ $x_{d+1}(x_d-x)^2)/2y$ is calculated. The result is stored in the register y_d . Therefore, $((x_dx+a)(x_d+x)+2b-x_{d+1}(x_d-x_d))$ $(x)^{2}$)/2y is stored in the register y_{d} . Since the register x_d is not updated, the inputted value is held.

A reason why the y-coordinate y_d of the scalar-multiplied point is recovered by the aforementioned procedure is as follows. The point (d+1)P is obtained by adding the point P to the point (d+1)P. The assignment to the addition formulae in the affine coordinates of the Weierstrass-form elliptic curve results in Equation 27. Since the points P and dP are points on the Weierstrass-form elliptic curve, $y_d^2 = x_d^3 + ax_d + b$ and $y^2 = x^3 + ax + b$ are satisfied. When the

value is assigned to Equation 27, y_d^2 and y^2 are deleted, and the equation is arranged, Equation 70 is obtained. Here, x_d , y_d are given by the processing of FIG. 39. Therefore, all the values of the affine coordinate (x_d, y_d) are recovered.

For the aforementioned procedure, in the steps 3901, 3904, 3908, and 3911, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 3907. Furthermore, the computational amount of the inversion on the finite field is required in the step The computational amounts of addition and subtraction on the finite field are relatively small as 15 compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the 20 finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 4M+S+I. This is far small as compared with the computational amount of the fast scalar multiplication. For example, when the 25 scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8M, I=40 M, the computational amount of coordinate

recovering is 44.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

- Additionally, even when the above procedure is not taken, but if the values of the right side of the equation can be calculated, the value of y_d can be recovered. In this case, the computational amount required for recovering generally increases.
- An algorithm for outputting x_d , x_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described with reference to FIG. 44.

The fast scalar multiplication unit 202 15 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinate in the Weierstrass-form elliptic curve, and \mathbf{x}_{d+1} in the point 20 $(d+1) P=(x_{d+1}, y_{d+1})$ on the Weierstrass-form elliptic curve represented by the affine coordinate by the following procedure. In step 4416, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on the Montgomery-form elliptic curve. This point is set anew to point P. In step 4401, the initial value 1 is assigned to the variable I. The doubled point 2P of

the point P is calculated in step 4402. Here, the

point P is represented as (x, y, 1) in the projective coordinate, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 4403, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 4402 are stored as a set of points (P, 2P). Here, the points P and 2P are represented by the projective coordinate. It is judged in step 4404 10 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 4415. With disagreement, the flow goes to step 4405. The variable I is increased by 1 in the step 4405. It is judged in step 4406 whether the value 15 of the I-th bit of the scalar value is 0 or 1. the value of the bit is 0, the flow goes to the step 4407. When the value of the bit is 1, the flow goes to step 4410. In step 4407, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4408. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinate of the Montgomery-form elliptic curve.

In step 4408, doubling 2(mP) of the point mP is performed from the set of points (mP,(m+1)P) represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step

4409. Here, the doubling 2(mP) is calculated the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. In step 4409, the point 2mP obtained in the step 4408 and the point 5 (2m+1)P obtained in the step 4407 are stored as a set of points (2mP, (2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 4404. Here, the points 2mP, (2m+1)P, mP, and (m+1)Pare all represented in the projective coordinates. step 4410, addition mP+(m+1)P of the points mP, (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes to step 4411. Here, the addition mP+(m+1)P is calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic curve. the step 4411, doubling 2((m+1)P) of the point (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the 20 point (2m+2)P is calculated. Thereafter, the flow goes to step 4412. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 4412, the point (2m+1)P obtained in the step 4410 and the point (2m+2)P obtained in the step 4411 are stored as a set of points ((2m+1)P, (2m+2)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow

returns to the step 4404. Here, the points (2m+1)P,

15

25

(2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 4415, with respect to the set of points (mP, (m+1)P) represented by the projective coordinates in the Montgomery-form elliptic 5 curve, the points mP and (m+1)P are transformed to the point shown by the affine coordinates on the Weierstrass-form elliptic curve, and set anew to $mP=(x_m,y_m)$ and $(m+1)P=(x_{m+1},y_{m+1})$. Here, y_m and y_{m+1} are not obtained, because the Y-coordinate cannot be 10 obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. Thereafter, the flow goes to step 4413. In the step 4413, x_m is outputted as x_d from the point $mP=(x_m,y_m)$ represented by the affine coordinates on the 15 Weierstrass-form elliptic curve, and x_{m+1} is outputted as x_{d+1} from the point (m+1) P=(x_{m+1} , y_{m+1}) represented by the affine coordinates on the Weierstrass-form elliptic curve. In the above procedure, m and scalar value d are equal in the bit length and bit pattern, and are 20 therefore equal.

The computational amount of the addition formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S with Z₁=1. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount of squaring on the finite field. The computational amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is

3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the step 4407, and the computational amount of doubling in the step 4408 are required. That is, the computational 5 amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 4410, and the computational amount of doubling in the step 4411 are required. That is, the computational amount of 6M+4S 10 is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 4404, 4405, 4406, 4407, 4408, 4409, or the steps 4404, 4405, 4406, 4410, 4411, 4412 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 4402, the computational amount necessary for the transform to the point on the Montgomery-form elliptic curve in the step 4416, and the computational amount necessary for the transform to the point on the Weierstrass-form 20 elliptic curve in the step 4415, the entire computational amount is (6M+4S)k+4M-2S+I. Here, k is the bit length of the scalar value d. In general, since the computational amount S is estimated to be of the order of S=0.8 M, and the computational amount I is estimated to be of the order of I=40 M, the entire computational amount is approximately (9.2k+42.4)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned

15

25

procedure is about 1514 M. The computational amount per bit of the scalar value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 1640 M.

15 Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs \mathbf{x}_{d} , \mathbf{x}_{d+1} , \mathbf{x}_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for

25 recovering the coordinate of the coordinate recovering
unit 203 in the scalar multiplication unit 103 is

4M+S+I, and this is far small as compared with the
computational amount of (9.2k+42.4)M necessary for fast

scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the 5 computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming I=40 M, S=0.8 M, the computational amount can be estimated to be about (9.2k+87.2)M. For example, when the scalar value d indicates 160 bits (k=160), the 10 computational amount necessary for the scalar multiplication is about 1559 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

15

20 In a twentieth embodiment, the Weierstrassform elliptic curve is used as the elliptic curve for the input/output, and the Montgomery-form elliptic curve which can be transformed from the inputted Weierstrass-form elliptic curve is used for the 25 internal calculation. The scalar multiplication unit 103 calculates and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto as the point of the affine coordinates in the Weierstrass-

form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multipli-5 cation unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic 10 curve, and X_{d+1} and Z_{d+1} in the coordinate of the point (d+1) P=(X_{d+1} , Y_{d+1} , Z_{d+1}) on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve. Moreover, the 15 inputted point P on the Weierstrass-form elliptic curve is transformed to the point on the Montgomery-form elliptic curve which can be transformed from the given Weierstrass-form elliptic curve, and the point is set anew to P=(x,y). The fast scalar multiplication unit 202 gives X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinate x_d , y_d of the scalar-multiplied point $dP=(x_d,y_d)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given 25 coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , x, and y. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d, y_d) with the coordinate completely given thereto in the affine coordinates as the calculation

result.

A processing of the coordinate recovering unit for outputting x_d , y_d from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 40.

The coordinate recovering unit 203 inputs X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, X_{d+1} and Z_{d+1} in 10 the coordinate of the point $(d+1) P=(X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates, and (x,y) as representation of the point P on Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine 15 coordinates, and outputs the scalar-multiplied point (x_d, y_d) with the complete coordinate given thereto in the affine coordinates in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x,y), and the projective coordinate thereof is represented by (X_1, Y_1, Z_1) . Assuming that the inputted scalar value is d, the affine coordinate of the scalarmultiplied point dP in the Montgomery-form elliptic curve is represented by (x_d^{Mon}, y_d^{Mon}) , and the projective 25 coordinate thereof is represented by (X_d, Y_d, Z_d) . The affine coordinate of the point (d+1)P on the Montgomery-form elliptic curve is represented by $(\boldsymbol{x}_{d+1},\boldsymbol{y}_{d+1})\,,$ and the projective coordinate thereof is

represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 4001, $x \times Z_d$ is calculated and stored in the register T_1 . In step 4002 $X_d + T_1$ is calculated. Here, xZ_d is stored in the register T_1 , and therefore 5 xZ_d+X_d is calculated. The result is stored in the register T_2 . In step 4003 X_d-T_1 is calculated, here the register T_1 stores xZ_d , and therefore xZ_d-X_d is calculated. The result is stored in the register $\ensuremath{\text{T}}_3\text{.}\quad \ensuremath{\text{In}}$ step 4004 a square of the register T_3 is calculated. 10 Here, xZ_d-X_d is stored in the register T_3 , and therefore $\left(X_{d}\text{-}xZ_{d}\right)^{2}$ is calculated. The result is stored in the register T_3 . In step 4005 $T_3 \times X_{d+1}$ is calculated. Here, $\left(X_{d} - x Z_{d}\right)^{2}$ is stored in the register T_{3} , and therefore $X_{d+1} \left(X_d - x Z_d \right)^2$ is calculated. The result is stored in the 15 register T_3 . In step 4006 $2A \times Z_d$ is calculated, and stored in the register T_1 . In step 4007 T_2+T_1 is calculated. Here, xZ_d+X_d is stored in the register T_2 , 2AZ_d is stored in the register T₁, and therefore $\times Z_d + X_d + 2AZ_d$ is calculated. The result is stored in the 20 register T_2 . In step 4008 $x \times X_d$ is calculated and stored in the register T_4 . In step 4009 $T_4 + Z_d$ is calculated. Here, the register $\textbf{T}_{\textbf{4}}$ stores $\textbf{x}\textbf{X}_{\textbf{d}}\text{,}$ and therefore $\textbf{x}\textbf{X}_{\textbf{d}}\textbf{+}\textbf{Z}_{\textbf{d}}$ is calculated. The result is stored in the register T_4 . In step 4010 $T_2 \times T_4$ is calculated. Here T_2 stores 25 $xZ_d+X_d+2AZ_d$, the register T_4 stores xX_d+Z_d , and therefore $(xZ_d + X_d + 2AZ_d)\;(xX_d + Z_d)$ is calculated. The result is

stored in the register T_2 . In step 4011 $T_1 \times Z_d$ is

calculated. Here, since the register T_1 stores $2AZ_d$,

- $2AZ_d^2$ is calculated. The result is stored in the register T_1 . In step 4012 T_2 - T_1 is calculated. Here $(xZ_d+X_d+2AZ_d)$ (xX_d+Z_d) is stored in the register T_2 , $2AZ_d^2$ is stored in the register T_1 , and therefore
- register T_2 . In step 4014 T_2-T_3 is calculated. Here $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is stored in the register T_2 , $X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_3 , and therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_2 .
- In step 4015 2B×y is calculated, and stored in the register T_1 . In step 4016 $T_1 \times Z_d$ is calculated. Here, Since 2By is stored in the register T_1 , 2ByZ_d is calculated. The result is stored in the register T_1 . In step 4017 $T_1 \times Z_{d+1}$ is calculated. Here, since the
- register T_1 stores $2ByZ_d$, $2ByZ_dZ_{d+1}$ is calculated. The result is stored in the register T_1 . In step 4018 $T_1 \times Z_d$ is calculated. Here, since the register T_1 stores $2ByZ_dZ_{d+1}$, $2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register T_3 . In step 4019 $T_3 \times s$ is calculated.
- Here, since the register T_3 stores $2ByZ_dZ_{d+1}Z_d$, $2ByZ_dZ_{d+1}Z_ds$ is calculated. The result is stored in the register T_3 . In step 4020 the inverse element of the register T_3 is calculated. Here, since $2ByZ_dZ_{d+1}Z_ds$ is stored in the

register $T_3\text{, }1/2ByZ_dZ_{d+1}Z_ds$ is calculated. The result is stored in the register T_3 . In step 4021 $T_2 \times T_3$ is calculated. Here, since the register T_2 stores $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ and the 5 register T_3 stores $1/2ByZ_dZ_{d+1}Z_ds$, $\{Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+X_d+2AZ_d))\}$ Z_d) $-2AZ_d^2$) $-X_{d+1}(X_d-xZ_d)^2$ }/2By $Z_dZ_{d+1}Z_ds$ is calculated. The result is stored in the register y_d . In step 4022 $T_1 \times X_d$ is calculated. Here, since the register T₁ stores $2ByZ_dZ_{d+1}\text{, }2ByZ_dZ_{d+1}X_d$ is calculated. The result is stored in the register T_1 . In step 4023 $T_1 \times T_3$ is calculated. 10 Here, since the register T_1 stores $2ByZ_dZ_{d+1}X_d$ and the register T_3 stores $1/2ByZ_dZ_{d+1}Z_ds$, $2ByZ_dZ_{d+1}X_d/2ByZ_dZ_{d+1}Z_ds$ $(=X_d/Z_ds)$ is calculated. The result is stored in the register T_1 . In step 4024 $T_1+\alpha$ is calculated. Here, since the register T_1 stores X_d/Z_ds , $(X_d/Z_ds)+\alpha$ is calculated. The result is stored in x_d . Therefore, the value of $(X_d/Z_ds) + \alpha$ is stored in the register x_d . In the step 4021 since $\{Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-X_d)\}$ $xZ_{d})^{\,2}\}/2ByZ_{d}Z_{d+1}Z_{d}s$ is stored in $y_{d}\text{,}$ and is not updated thereafter, the value is held. As a result, all the values of the affine coordinate (x_d, y_d) in the Weierstrass-form elliptic curve are recovered.

A reason why all the values in the affine coordinates (x_d,y_d) of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP. The

assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equation 38. Since the points P and dP are points on the Montgomery-form elliptic curve,

By $_{d}^{Mon2}=x_{d}^{Mon3}+Ax_{d}^{Mon2}+x_{d}^{Mon}$ and By $^{2}=x^{3}+Ax^{2}+x$ are satisfied. When the value is assigned to Equation 38, By $_{d}^{Mon2}$ and By 2 are deleted, and the equation is arranged, the following equation is obtained.

$$y_d^{Mon} = \{(x_d^{Mon}x + 1)(x_d^{Mon} + x + 2A) - 2A - (x_d^{Mon} - x)^2 x_{d+1}\}/(2By)$$
... Equation 76

Here, $x_d^{Mon} = X_d/Z_d$, $x_{d+1} = X_{d+1}/Z_{d+1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, the following equation is obtained.

$$y_d^{Mon} = \left\{ Z_{d+1} \left((X_d x + Z_d)(X_d + x Z_d + 2A Z_d) - 2A Z_d^2 \right) - (x_d - x Z_d)^2 X_{d+1} \right\} / (2By Z_d Z_{d+1} Z_d)$$
15 ... Equation 77

Although $x_d^{\text{Mon}}=X_d/Z_d$, the reduction to the denominator common with that of y_d^{Mon} is performed for the purpose of reducing the frequency of inversion, and the following equation is obtained.

$$x_d^{Mon} = (2ByZ_dZ_{d+1}X_d)/(2ByZ_dZ_{d+1}Z_d)$$
... Equation 78

10

The correspondence between the point on the Montgomeryform elliptic curve and the point on the Weierstrassform elliptic curve is described in K.Okeya,

25 H.Kurumatani, K.Sakurai, Elliptic Curves with the

Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameters are s, α , the relation is $y_d = s^{-1} y_d^{Mon}$ and $x_d = s^{-1} x_d^{Mon} + \alpha$. As a result, 5 Equations 79, 80 are obtained.

17 (V ... 7) (V ... 7 ... 0.47) (V ... 7 ... 2.47)

 $y_{d} = \left\{ Z_{d+1} \left((X_{d}x + Z_{d})(X_{d} + xZ_{d} + 2AZ_{d}) - 2AZ_{d}^{2} \right) - (X_{d} - xZ_{d})^{2} X_{d+1} \right\} / (2sByZ_{d}Z_{d+1}Z_{d})$... Equation 79

 $x_d = ((2ByZ_dZ_{d+1}X_d)/(2sByZ_dZ_{d+1}Z_d)) + \alpha$... Equation 80

Here, x_d , y_d are given by FIG. 40. Therefore, all the values of the affine coordinates (x_d,y_d) in the Weierstrass-form elliptic curve are recovered.

For the aforementioned procedure, in the steps 4001, 4005, 4006, 4008, 4010, 4011, 4013, 4015, 4016, 4017, 4018, 4019, 4021, 4022, and 4023, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of squaring on the finite field is required in the step 4004. Moreover, the computational amount of inversion on the finite field is required in the step 4020. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be

25 ignored. Assuming that the computational amount of multiplication on the finite field is M, the computa-

tional amount of squaring on the finite field is S, and the computational amount of the inversion on the finite field is I, the above procedure requires a computational amount of 15M+S+I. This is far small as

5 compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming that S=0.8 M,

10 I=40 M, the computational amount of coordinate recovering is 55.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, but if the values of x_d , y_d given by the above equation can be calculated, the values of x_d , y_d can be recovered. In this case, the computational amount required for recovering generally increases.

20 Furthermore, when the value of A or B as the parameter

Furthermore, when the value of A or B as the parameter of the Montgomery-form elliptic curve, or s as the transform parameter to the Montgomery-form elliptic curve is set to be small, the computational amount of multiplication in the step 4006 or 4015 or the computational amount of multiplication in step 4019 can be reduced.

A processing of the fast scalar multiplication unit for outputting X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar

value d and the point P on the Weierstrass-form elliptic curve will next be described.

In this case, as the fast scalar multiplication method of the scalar multiplication unit 202 of

5 the twentieth embodiment, the fast scalar multiplication method of the ninth embodiment (see Fig. 8) is used. Thereby, as the algorithm which outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve, the fast algorithm can

10 be achieved. Additionally, instead of using the aforementioned algorithm in the scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d, Z_d, X_{d+1}, Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic

15 curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 15M+S+I, and this is far small as compared with the computational amount of (9.2k-3.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar multiplication of the fast scalar multiplication of the fast scalar multiplication unit. Assuming that I=40 M, S=0.8 M, the computational amount can be estimated to be about (9.2k+52.2)M. For

example, when the scalar value d indicates 160 bits (k=160), the computational amount necessary for the scalar multiplication is 1524 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the

5 scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian coordinates are used, and the scalar-multiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

In a twenty-first embodiment, the Weierstrass-form elliptic curve is used as the elliptic curve for the input/output, and the Montgomery-form 15 elliptic curve which can be transformed from the inputted Weierstrass-form elliptic curve is used for the internal calculation. The scalar multiplication unit 103 calculates and outputs the scalar-multiplied point $(X_d^{\ w}, Y_d^{\ w}, Z_d^{\ w})$ with the complete coordinate given 20 thereto as the point of the projective coordinates in the Weierstrass-form elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. The scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into 25 the scalar multiplication unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates X_d and Z_d in the coordinate of the scalar-multiplied point $dP=(X_d, Y_d, Z_d)$

represented by the projective coordinates in the Montgomery-form elliptic curve, and X_{d+1} and Z_{d+1} in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the projective coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic curve. Moreover, the inputted point P on the Weierstrass-form elliptic curve is transformed to the point on the Montgomery-form elliptic curve which can 10 be transformed from the given Weierstrass-form elliptic curve, and the point is set anew to P=(x,y). The fast scalar multiplication unit 202 gives X_d , Z_d , X_{d+1} , Z_{d+1} , X, and y to the coordinate recovering unit 203. The coordinate recovering unit 203 recovers coordinate X_d^w, 15 Y_d^w , Z_d^w of the scalar-multiplied point $dP = (X_d^w, Y_d^w, Z_d^w)$ represented by the projective coordinates in the Weierstrass-form elliptic curve from the given coordinate values X_d , Z_d , X_{d+1} , Z_{d+1} , X_d , and Y_d . The scalar multiplication unit 103 outputs the scalar-multiplied 20 point (X_d^w, Y_d^w, Z_d^w) with the coordinate completely given thereto in the projective coordinates as the calcula-

A processing of the coordinate recovering unit for outputting X_d^w , Y_d^w , Z_d^w from the given coordinates x, y, X_d , Z_d , X_{d+1} , Z_{d+1} will next be described with reference to FIG. 41.

tion result.

The coordinate recovering unit 203 inputs \boldsymbol{X}_d and \boldsymbol{Z}_d in the coordinate of the scalar-multiplied point

 $dP=(X_d, Y_d, Z_d)$ represented by the projective coordinates in the Montgomery-form elliptic curve, $X_{\text{\tiny d+1}}$ and $Z_{\text{\tiny d+1}}$ in the coordinate of the point $(d+1) P = (X_{d+1}, Y_{d+1}, Z_{d+1})$ on the Montgomery-form elliptic curve represented by the 5 projective coordinates, and (x,y) as representation of the point P on Montgomery-form elliptic curve inputted into the scalar multiplication unit 103 in the affine coordinates, and outputs the scalar-multiplied point $(X_d^{\ w},Y_d^{\ w},Z_d^{\ w})$ with the complete coordinate given thereto in the projective coordinates on the Weierstrass-form elliptic curve in the following procedure. Here, the affine coordinate of the inputted point P on the Montgomery-form elliptic curve is represented by (x, y), and the projective coordinate thereof is represented by (X_1,Y_1,Z_1) . Assuming that the inputted scalar value is 15 d, the affine coordinate of the scalar-multiplied point dP in the Montgomery-form elliptic curve is represented by (x_d, y_d) , and the projective coordinate thereof is represented by (X_d,Y_d,Z_d) . The affine coordinate of the 20 point (d+1)P on the Montgomery-form elliptic curve is represented by (x_{d+1}, y_{d+1}) , and the projective coordinate thereof is represented by $(X_{d+1}, Y_{d+1}, Z_{d+1})$.

In step 4101, $x \times Z_d$ is calculated and stored in the register T_1 . In step 4102 $X_d + T_1$ is calculated.

Here, xZ_d is stored in the register T_1 , and therefore $xZ_d + X_d$ is calculated. The result is stored in the register T_2 . In step 4103 $X_d - T_1$ is calculated, here the register T_1 stores xZ_d , and therefore $xZ_d - X_d$ is calcu-

lated. The result is stored in the register T_3 . In step 4104 a square of the register T_3 is calculated. Here, xZ_d-X_d is stored in the register T_3 , and therefore $(X_d-xZ_d)^2$ is calculated. The result is stored in the 5 register T_3 . In step 4105 $T_3 \times X_{d+1}$ is calculated. Here, $(X_d-xZ_d)^2$ is stored in the register T_3 , and therefore $X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register T_3 . In step 4106 $2A \times Z_d$ is calculated, and stored in the register T_1 . In step 4107 T_2+T_1 is 10 calculated. Here, xZ_d+X_d is stored in the register T_2 , $2AZ_d$ is stored in the register T_1 , and therefore $xZ_d+X_d+2AZ_d$ is calculated. The result is stored in the register T_2 . In step 4108 $x \times X_d$ is calculated and stored in the register T_4 . In step 4109 T_4+Z_d is calculated. Here, the register T_4 stores xX_d , and therefore xX_d+Z_d is calculated. The result is stored in the register T_4 . In step 4110 $T_2 \times T_4$ is calculated. Here the register T_2 stores $xZ_d+X_d+2AZ_d$, the register T_4 stores xX_d+Z_d , and therefore $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)$ is calculated. The 20 result is stored in the register T_2 . In step 4111 $T_1 \times Z_d$ is calculated. Here, since the register T_1 stores $2AZ_d$, $2AZ_d^2$ is calculated. The result is stored in the register T_1 . In step 4112 T_2 - T_1 is calculated. Here $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)$ is stored in the register T_2 , $2AZ_d^2$ 25 is stored in the register T_1 , and therefore $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2$ is calculated. The result is stored in the register T_2 . In step 4113 $T_2 \times Z_{d+1}$ is

calculated. Here $(xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2$ is stored in

the register T_2 , and therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is calculated. The result is stored in the register T_2 . In step 4114 T_2-T_3 is calculated. Here $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)$ is stored in the register T_2 , $X_{d+1}(X_d-xZ_d)^2$ is stored in the register T_3 , and

therefore $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is calculated. The result is stored in the register Y_d^w . In step 4115 2B×y is calculated, and stored in the register T_1 . In step 4116 $T_1\times Z_d$ is calculated. Here,

- Since 2By is stored in the register T_1 , $2ByZ_d$ is calculated. The result is stored in the register T_1 . In step 4117 $T_1 \times Z_{d+1}$ is calculated. Here, since the register T_1 stores $2ByZ_d$, $2ByZ_dZ_{d+1}$ is calculated. The result is stored in the register T_1 . In step 4118 $T_1 \times Z_d$
- is calculated. Here, since the register T_1 stores $2ByZ_dZ_{d+1}$, $2ByZ_dZ_{d+1}Z_d$ is calculated. The result is stored in the register T_3 . In step 4119 $T_3 \times s$ is calculated. Here, since the register T_3 stores $2ByZ_dZ_{d+1}Z_d$, $2ByZ_dZ_{d+1}Z_ds$ is calculated. The result is stored in the register
- Z_d^w. In step 4120 the $T_1 \times X_d$ is calculated. Here, since $2ByZ_dZ_{d+1}$ is stored in the register T_1 , $2ByZ_dZ_{d+1}X_d$ is calculated. The result is stored in the register T_1 . In step 4121 Z_d ^w× α is calculated. Here, since the register Z_d ^w stores $2ByZ_dZ_{d+1}Z_ds$, $2ByZ_dZ_{d+1}Z_ds\alpha$ is calculated.
- 25 lated. The result is stored in the register T_3 . In step 4122 T_1+T_3 is calculated. Here, since $2ByZ_dZ_{d+1}X_d$ is stored in the register T_1 and $2ByZ_dZ_{d+1}Z_ds\alpha$ is stored in the register T_3 , $2ByZ_dZ_{d+1}X_d+2ByZ_dZ_{d+1}Z_ds\alpha$ is calculated.

The result is stored in X_d^w . Therefore, the register x_d stores a value of $2ByZ_dZ_{d+1}X_d+2ByZ_dZ_{d+1}Z_ds\alpha$. In the step 4114 since $Z_{d+1}((xZ_d+X_d+2AZ_d)(xX_d+Z_d)-2AZ_d^2)-X_{d+1}(X_d-xZ_d)^2$ is stored in Y_d^w , and is not updated thereafter, the value is held. In the step 4119 $2ByZ_dZ_{d+1}Z_ds$ is stored in the Z_d^w , and is not updated thereafter, and therefore the value is held. As a result, all the values of the projective coordinate (X_d^w, Y_d^w, Z_d^w) in the Weierstrassform elliptic curve are recovered.

A reason why all the values in the projective 10 coordinates $(X_d^{w}, Y_d^{w}, Z_d^{w})$ of the scalar-multiplied point in the Weierstrass-form elliptic curve are recovered from x, y, X_d , Z_d , X_{d+1} , Z_{d+1} given by the aforementioned procedure is as follows. The point (d+1)P is a point obtained by adding the point P to the point dP. assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve results in Equation 6. Since the points P and dP are points on the Montgomery-form elliptic curve, 20 $By_d^2=x_d^3+Ax_d^2+x_d$ and $By^2=x^3+Ax^2+x$ are satisfied. When the value is assigned to Equation 6, By_d^2 and By^2 are deleted, and the equation is arranged, Equation 64 is obtained. Here, $x_d=X_d/Z_d$, $x_{d+1}=X_{d+1}/Z_{d+1}$. The value is assigned and thereby converted to the value of the projective coordinate. Then, Equation 65 is obtained. Although $x_d = X_d / Z_d$, the reduction to the denominator common with that of y_d is performed for the purpose of

reducing the frequency of inversion, and Equation 66 is

259

obtained. As a result, the following equation is obtained.

$$Y'_d = Z_{d+1} [(X_d + xZ_d + 2AZ_d)(X_dx + Z_d) - 2AZ_d^2] - (X_d - xZ_d)^2 X_{d+1}$$
... Equation 81

5 Then, the following equations are obtained.

$$X'_d = 2ByZ_dZ_{d+1}X_d$$

... Equation 82

$$Z'_d = 2ByZ_dZ_{d+1}Z_d$$

... Equation 83

Then, (X'_d, Y'_d, Z'_d) = (X_d, Y_d, Z_d). The correspondence between the point on the Montgomery-form elliptic curve and the point on the Weierstrass-form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic Curves with the Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameter is sα, the relation is Y_d = Y'_d, X_d = X'_d + αZ_d, and Z_d = sZ'_d. As a result, the following equations are obtained.

$$Y_d^W = Z_{d+1} \Big[(X_d + x Z_d + 2A Z_d) (X_d x + Z_d) - 2A Z_d^2 \Big] - (X_d - x Z_d)^2 X_{d+1}$$

20 ... Equation 84

$$X_d^W = 2ByZ_dZ_{d+1}X_d + \alpha Z_d^W$$

... Equation 85

$$Z_d^W = 2sByZ_dZ_{d+1}Z_d$$

... Equation 86

The values may be updated by the above. Here, $X_d^{\text{w}}, Y_d^{\text{w}}, Z_d^{\text{w}}$ are given by the processing of FIG. 41. Therefore, all the values of the projective coordinates $(X_d^{\text{w}}, Y_d^{\text{w}}, Z_d^{\text{w}})$ in the Weierstrass-form elliptic curve are recovered.

5 For the aforementioned procedure, in the steps 4101, 4105, 4106, 4108, 4110, 4111, 4113, 4115, 4116, 4117, 4118, 4119, 4120, and 4121, the computational amount of multiplication on the finite field is required. Moreover, the computational amount of 10 squaring on the finite field is required in the step 4104. The computational amounts of addition and subtraction on the finite field are relatively small as compared with the computational amounts of multiplication and squaring on the finite field, and may there-15 fore be ignored. Assuming that the computational amount of multiplication on the finite field is M, and the computational amount of squaring on the finite field is S, the above procedure requires a computational amount of 14M+S. This is far small as compared 20 with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming that S=0.8 M, the 25 computational amount of coordinate recovering is 14.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be

recovered.

Additionally, even when the above procedure is not taken, but if the values of X_d^w , Y_d^w , Z_d^w given by the above equation can be calculated, the values of $X_d^{\ \ w}$, 5 Y_d^{w} , Z_d^{w} can be recovered. Moreover, the scalarmultiplied point dP in the affine coordinates in the Weierstrass-form elliptic curve is set to $dP=(x_d^w,y_d^w)$. Then, the values of X_d^w , Y_d^w , Z_d^w are selected so that x_d^w , y_d^w take the values given by the above equations. 10 the values can be calculated, X_d^w , Y_d^w , Z_d^w can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of A or B as the parameter of the Montgomery-form elliptic curve, or s as the transform 15 parameter to the Montgomery-form elliptic curve is set to be small, the computational amount of multiplication in the step 4106, 4115, or 4119 can be reduced.

An algorithm for outputting X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described.

As the fast scalar multiplication method of the scalar multiplication unit 202 of the twenty-first embodiment, the fast scalar multiplication method of the ninth embodiment is used. Thereby, as the algorithm which outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve, the fast algorithm can be achieved. Additionally, instead of using the aforementioned

algorithm in the fast scalar multiplication unit 202, any algorithm may be used as long as the algorithm outputs X_d , Z_d , X_{d+1} , Z_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 14M+S, and this is far small as compared with the 10 computational amount of (9.2k-3.6)M necessary for fast scalar multiplication of the fast scalar multiplication unit 202. Therefore, the computational amount necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the 15 computational amount necessary for the fast scalar multiplication of the fast scalar multiplication unit. Assuming that S=0.8 M, the computational amount can be estimated to be about (9.2k+11.2)M. For example, when the scalar value d indicates 160 bits (k=160), the 20 computational amount necessary for the scalar multiplication is 1483 M. The Weierstrass-form elliptic curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the Jacobian 25 coordinates are used, and the scalar-multiplied point is outputted as the Jacobian coordinates. In this case, the required computational amount is about 1600 M, and as compared with this, the required computational amount is reduced.

In a twenty-second embodiment, the Weierstrass-form elliptic curve is used as the elliptic curve for input/output, and the Montgomery-form 5 elliptic curve which can be transformed from the Weierstrass-form elliptic curve is used for the internal calculation. The scalar multiplication unit 103 calculates and outputs the scalar-multiplied point (x_d^w, y_d^w) with the complete coordinate given thereto as 10 the point of the affine coordinates in the Weierstrassform elliptic curve from the scalar value d and the point P on the Weierstrass-form elliptic curve. scalar value d and the point P on the Weierstrass-form elliptic curve are inputted into the scalar multipli-15 cation unit 103, and received by the scalar multiplication unit 202. The fast scalar multiplication unit 202 calculates x_d in the coordinate of the scalarmultiplied point $dP=(x_d, y_d)$ represented by the affine coordinates in the Montgomery-form elliptic curve, \mathbf{x}_{d+1} 20 in the coordinate of the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Montgomery-form elliptic curve represented by the affine coordinates from the received scalar value d and the given point P on the Weierstrass-form elliptic The information is given to the coordinate 25 recovering unit 203 together with the inputted point P=(x,y) on the Montgomery-form elliptic curve represented by the affine coordinates. The coordinate recovering unit 203 recovers the coordinate $y_d^{\ \ w}$ of the

scalar-multiplied point $dP=(x_d^w,y_d^w)$ represented by the affine coordinates in the Weierstrass-form elliptic curve from the given coordinate values x_d , x_{d+1} , and x. The scalar multiplication unit 103 outputs the scalar-multiplied point (x_d^w,y_d^w) with the coordinate completely given thereto on the Weierstrass-form elliptic curve in the affine coordinates as the calculation result.

A processing of the coordinate recovering unit which outputs x_d^w , y_d^w from the given coordinates x, 10 y, x_d , x_{d+1} will next be described with reference to FIG. 42.

in the coordinate of the scalar-multiplied point $dP=(x_d,y_d) \text{ represented by the affine coordinates in the}$ 15 Montgomery-form elliptic curve, x_{d+1} in the coordinate of
the point $(d+1)P=(x_{d+1},y_{d+1})$ on the Montgomery-form
elliptic curve represented by the affine coordinates,
and (x,y) as representation of the point P on the
Montgomery-form elliptic curve in the affine coordi20 nates inputted into the scalar multiplication unit 103,
and outputs the scalar-multiplied point (x_d^w,y_d^w) with
the complete coordinate given thereto in the affine
coordinates in the following procedure.

In step 4201 $x_d \times x$ is calculated, and stored in the register T_1 . In step 4202 T_1+1 is calculated. Here, since $x_d x$ is stored in the register T_1 , $x_d x+1$ is calculated. The result is stored in the register T_1 . In step 4203 $x_d + x$ is calculated, and stored in the

register T_2 . In step 4204 T_2 +2A is calculated. Here, since $x_d + x$ is stored in the register T_2 , $x_d + x + 2A$ is calculated. The result is stored in the register T_2 . In step 4205 $T_1 \times T_2$ is calculated. Here since $x_d x + 1$ is 5 stored in the register T_1 and $x_d + x + 2A$ is stored in the register T_2 , $(x_dx+1)(x_d+x+2A)$ is calculated. The result is stored in the register T_1 . In step 4206 T_1 -2A is calculated. Here, since $(x_dx+1)(x_d+x+2A)$ is stored in the register T_1 , $(x_dx+1)(x_d+x+2A)-2A$ is calculated. 10 result is stored in the register T_1 . In step 4207 x_d -xis calculated, and stored in the register T2. In step 4208 a square of T_2 is calculated. Here, since x_d -x is stored in the register T_2 , $(x_d-x)^2$ is calculated. The result is stored in the register T_2 . In step 4209 $T_2 \times x_{d+1}$ 15 is calculated. Here, since $(x_d-x)^2$ is stored in the register T_2 , $(x_d-x)^2x_{d+1}$ is calculated. The result is stored in the register $T_{\rm 2}$. In step 4210 $T_{\rm 1}\text{-}T_{\rm 2}$ is calculated. Here, since $(x_dx+1)(x_d+x+2A)-2A$ is stored in the register T_1 and $(x_d-x)^2x_{d+1}$ is stored in the register T_2 , $(x_dx+1)(x_d+x+2A)-2A-(x_d-x)^2x_{d+1}$ is calculated. The result is stored in the register T_1 . In step 4211 $2B \times y$ is calculated, and stored in the register T_2 . In step 4212 the inverse element of T_2 is calculated. Here, since 2By is stored in the register T2, 1/2By is 25 calculated. The result is stored in the register T_2 . In step 4213 $T_1 \times T_2$ is calculated. Here, since $(x_dx+1)(x_d+x+2A)-2A-(x_d-x)^2x_{d+1}$ is stored in the register T_1 and 1/2By is stored in the register T_2 , {(x_dx+1)(x_d+x+1)

 $2A)-2A-(x_d-x)^2x_{d+1}\}/2By \ is \ calculated. \ The \ result \ is \ stored in the \ register \ T_1. \ In \ step \ 4214 \ T_1\times(1/s) \ is \ calculated. \ Here, \ since \ \{(x_dx+1)(x_d+x+2A)-2A-(x_d-x_d-x_d)^2x_{d+1}\}/2By \ is \ stored, \ \{(x_dx+1)(x_d+x+2A)-2A-(x_d-x_d)^2x_{d+1}\}/2By \ is \ calculated. \ The \ result \ is \ stored \ in \ the \ register \ y_d^w. \ In \ step \ 4215 \ x_d\times(1/s) \ is \ calculated, \ and \ stored \ in \ the \ register \ T_1. \ In \ step \ 4216 \ T_1+\alpha \ is \ calculated. \ Here, \ since \ x_d/s \ is \ stored \ in \ the \ register \ T_1, \ (x_d/s)+\alpha \ is \ calculated. \ The \ result \ is \ stored \ in \ the \ register \ x_d^w \ stores \ (x_d/s)+\alpha. \ In \ step \ 4214 \ since \ \{(x_dx+1)(x_d+x+2A)-2A-(x_d-x_d)^2x_{d+1}\}/2Bys \ is \ stored \ in \ the \ register \ y_d^w, \ and \ is \ not \ updated \ thereafter, \ the \ value \ is \ held.$

A reason why the y-coordinate y_d of the 15 scalar-multiplied point is recovered by the aforementioned procedure is as follows. The point (d+1)P is obtained by adding the point P to the point (d+1)P. The assignment to the addition formulae in the affine coordinates of the Montgomery-form elliptic curve 20 results in Equation 6. Since the points P and dP are points on the Montgomery-form elliptic curve, $By_d^2=x_d^3+Ax_d^2+x_d$ and $By^2=x^3+Ax^2+x$ are satisfied. When the value is assigned to Equation 6, Byd2 and By2 are deleted, and the equation is arranged, Equation 64 is obtained. The correspondence between the point on the Montgomery-form elliptic curve and the point on the Weierstrass-form elliptic curve is described in K.Okeya, H.Kurumatani, K.Sakurai, Elliptic Curves with

the Montgomery-form and Their Cryptographic Applications, Public Key Cryptography, LNCS 1751 (2000) pp.238-257. Thereby, when the conversion parameters are s, α , there are relations of $y_d^{\text{W}}=s^{-1}y_d$ and $x_d^{\text{W}}=s^{-1}x_d+\alpha$. As a result, Equations 87, 63 are obtained.

$$y_d^W = \{(x_d x + 1)(x_d + x + 2A) - 2A - (x_d - x)^2 x_{d+1}\}/(2sBy)$$
... Equation 87

Here, x_d^w , y_d^w are given by FIG. 42. Therefore, all the values of the affine coordinate (x_d^w, y_d^w) are recovered.

For the aforementioned procedure, in the steps 4201, 4205, 4209, 4211, 4213, 4214, and 4215, the computational amount of multiplication on the finite field is required. Moreover, the computational amount 15 of squaring on the finite field is required in the step Furthermore, the computational amount of the inversion on the finite field is required in the step The computational amounts of addition and subtraction on the finite field are relatively small as 20 compared with the computational amounts of multiplication, squaring, and inversion on the finite field, and may therefore be ignored. Assuming that the computational amount of multiplication on the finite field is M, the computational amount of squaring on the 25 finite field is S, and the computational amount of inversion on the finite field is I, the above procedure requires a computational amount of 7M+S+I. This is far

small as compared with the computational amount of the fast scalar multiplication. For example, when the scalar value d indicates 160 bits, the computational amount of the fast scalar multiplication is estimated to be a little less than about 1500 M. Assuming S=0.8 M, I=40 M, the computational amount of coordinate recovering is 47.8 M, and far small as compared with the computational amount of the fast scalar multiplication. Therefore, it is indicated that the coordinate can efficiently be recovered.

Additionally, even when the above procedure is not taken, but if the values of the right side of the equation can be calculated, the value of y_d can be recovered. In this case, the computational amount required for recovering generally increases. Furthermore, when the value of A or B as the parameter of the elliptic curve, or s as the transform parameter to the Montgomery-form elliptic curve is set to be small, the computational amount of multiplication in the step 4206, 4211, 4214, or 4215 can be reduced.

A processing of the fast scalar multiplication unit for outputting \mathbf{x}_d , \mathbf{x}_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve will next be described with reference to FIG. 45.

The fast scalar multiplication unit 202 inputs the point P on the Weierstrass-form elliptic curve inputted into the scalar multiplication unit 103, and outputs x_d in the scalar-multiplied point $dP=(x_d,y_d)$

represented by the affine coordinates in the Montgomery-form elliptic curve, and x_{d+1} in the point (d+1) $P=(x_{d+1}, y_{d+1})$ on the Montgomery-form elliptic curve represented by the affine coordinate by the following 5 procedure. In step 4516, the given point P on the Weierstrass-form elliptic curve is transformed to the point represented by the projective coordinates on the Montgomery-form elliptic curve. This point is set anew to point P. In step 4501, the initial value 1 is assigned to the variable I. The doubled point 2P of 10 the point P is calculated in step 4502. Here, the point P is represented as (x,y,1) in the projective coordinates, and the formula of doubling in the projective coordinate of the Montgomery-form elliptic curve is used to calculate the doubled point 2P. In step 15 4503, the point P on the elliptic curve inputted into the scalar multiplication unit 103 and the point 2P obtained in the step 4502 are stored as a set of points (P, 2P). Here, the points P and 2P are represented by 20 the projective coordinate. It is judged in step 4504 whether or not the variable I agrees with the bit length of the scalar value d. With agreement, the flow goes to step 4515. With disagreement, the flow goes to step 4505. The variable I is increased by 1 in the 25 step 4505. It is judged in step 4506 whether the value of the I-th bit of the scalar value is 0 or 1. When the value of the bit is 0, the flow goes to the step 4507. When the value of the bit is 1, the flow goes to

step 4510. In step 4507, addition mP+(m+1)P of points mP and (m+1)P is performed from the set of points (mP, (m+1)P) represented by the projective coordinate, and the point (2m+1)P is calculated. Thereafter, the 5 flow goes to step 4508. Here, the addition mP+(m+1)Pis calculated using the addition formula in the projective coordinates of the Montgomery-form elliptic In step 4508, doubling 2(mP) of the point mP is performed from the set of points (mP, (m+1)P)10 represented by the projective coordinate, and the point 2mP is calculated. Thereafter, the flow goes to step 4509. Here, the doubling 2(mP) is calculated the formulae of doubling in the projective coordinates of the Montgomery-form elliptic curve. In step 4509, the 15 point 2mP obtained in the step 4508 and the point (2m+1)P obtained in the step 4507 are stored as a set of points (2mP,(2m+1)P) instead of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 4504. Here, the points 2mP, (2m+1)P, mP, and (m+1)Pare all represented in the projective coordinates. step 4510, addition mP+(m+1)P of the points mP, (m+1)Pis performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+1)P is calculated. Thereafter, the flow goes 25 to step 4511. Here, the addition mP+(m+1)P is calculated using the addition formulae in the projective coordinates of the Montgomery-form elliptic curve. In

the step 4511, doubling 2((m+1)P) of the point (m+1)P

is performed from the set of points (mP, (m+1)P)represented by the projective coordinates, and the point (2m+2)P is calculated. Thereafter, the flow goes to step 4512. Here, the doubling 2((m+1)P) is calculated using the formula of doubling in the projective coordinates of the Montgomery-form elliptic curve. the step 4512, the point (2m+1)P obtained in the step 4510 and the point (2m+2)P obtained in the step 4511are stored as a set of points ((2m+1)P, (2m+2)P) instead 10 of the set of points (mP, (m+1)P). Thereafter, the flow returns to the step 4504. Here, the points (2m+1)P, (2m+2)P, mP, and (m+1)P are all represented in the projective coordinates. In step 4515, X_m and Z_m as X_d and Z_d from the point mP=(X_m , Y_m , Z_m) represented by the 15 projective coordinates, and X_{m+1} and Z_{m+1} as X_{d+1} and Z_{d+1} from the point $(m+1) P = (X_{m+1}, Y_{m+1}, Z_{m+1})$ represented by the projective coordinates are obtained. Here, Y_m and Y_{m+1} are not obtained, because the Y-coordinate cannot be obtained by the addition and doubling formulae in the projective coordinates of the Montgomery-form elliptic curve. With $x_d = X_d Z_{d+1} / Z_d Z_{d+1}$, and $x_{d+1} = Z_d X_{d+1} / Z_d Z_{d+1}$, x_d and X_{d+1} are obtained from X_d , Z_d , X_{d+1} , Z_{d+1} . Thereafter, the flow goes to step 4513. In the step 4513, x_d and x_{d+1} are outputted. In the above procedure, m and scalar 25 value d are equal in the bit length and bit pattern, and are therefore equal.

The computational amount of the addition formula in the projective coordinates of the

Montgomery-form elliptic curve is 3M+2S with $Z_1=1$. Here, M is the computational amount of multiplication on the finite field, and S is the computational amount of squaring on the finite field. The computational 5 amount of the doubling formula in the projective coordinates of the Montgomery-form elliptic curve is 3M+2S. When the value of the I-th bit of the scalar value is 0, the computational amount of addition in the step 4507, and the computational amount of doubling in 10 the step 4508 are required. That is, the computational amount of 6M+4S is required. When the value of the Ith bit of the scalar value is 1, the computational amount of addition in the step 4510, and the computational amount of doubling in the step 4511 are 15 required. That is, the computational amount of 6M+4S is required. In any case, the computational amount of 6M+4S is required. The number of repetitions of the steps 4504, 4505, 4506, 4507, 4508, 4509, or the steps 4504, 4505, 4506, 4510, 4511, 4512 is (bit length of the scalar value d)-1. Therefore, in consideration of the computational amount of doubling in the step 4502, and the computational amount of the transform to the affine coordinate in the step 4515, the entire computational amount is (6M+4S)k+3M-2S+I. Here, k is the bit length of the scalar value d. In general, 25 since the computational amount S is estimated to be of the order of S=0.8 M, and the computational amount I is estimated to be of the order of I=40 M, the entire

computational amount is approximately (9.2k+41.4)M. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of algorithm of the aforementioned procedure is about 1513 M. The computa-5 tional amount per bit of the scalar value d is about 9.2 M. In A. Miyaji, T. Ono, H. Cohen, Efficient elliptic curve exponentiation using mixed coordinates, Advances in Cryptology Proceedings of ASIACRYPT'98, LNCS 1514 (1998) pp.51-65, the scalar multiplication 10 method using the window method and mixed coordinates mainly including Jacobian coordinates in the Weierstrass-form elliptic curve is described as the fast scalar multiplication method. In this case, the computational amount per bit of the scalar value is estimated to be about 10 M. Additionally, the 15 computational amount of the transform to the affine coordinate is required. For example, when the scalar value d indicates 160 bits (k=160), the computational amount of the scalar multiplication method is about 20 1640 M. Therefore, the algorithm of the aforementioned procedure can be said to have a small computational amount and high speed.

Additionally, instead of using the aforementioned algorithm in the fast scalar multiplication unit 202, another algorithm may be used as long as the algorithm outputs x_d , x_{d+1} from the scalar value d and the point P on the Weierstrass-form elliptic curve at high speed.

The computational amount required for recovering the coordinate of the coordinate recovering unit 203 in the scalar multiplication unit 103 is 7M+S+I, and this is far small as compared with the 5 computational amount of (9.2k+41.4)M necessary for fast scalar multiplication of the fast scalar multiplication Therefore, the computational amount unit 202. necessary for the scalar multiplication of the scalar multiplication unit 103 is substantially equal to the computational amount necessary for the fast scalar 10 multiplication of the fast scalar multiplication unit. Assuming I=40 M, S=0.8 M, the computational amount can be estimated to be about (9.2k+89.2)M. For example, when the scalar value d indicates 160 bits (k=160), the 15 computational amount necessary for the scalar multipli-The Weierstrass-form elliptic cation is about 1561 M. curve is used as the elliptic curve, the scalar multiplication method is used in which the window method and the mixed coordinates mainly including the 20 Jacobian coordinates are used, and the scalarmultiplied point is outputted as the affine coordinates. In this case, the required computational amount is about 1640 M, and as compared with this, the required computational amount is reduced.

The encryption/decryption processor shown in FIG. 1 has been described as the apparatus which performs a decryption processing in the first to twenty-second embodiments, but can similarly be used as

The apparatus which performs an encryption processing.

In this case, the scalar multiplication unit 103 of the encryption/decryption processor outputs the scalar—multiplied point by the point Q on the elliptic curve

and the random number k, and the scalar—multiplied point by the public key aQ and random number k as described above. In this case, the scalar value d described in the first to twenty—second embodiments are used as the random number k, the point P on the

elliptic curve is used as the point Q on the elliptic curve and the public key aQ, and the similar processing is performed, so that the respective scalar—multiplied points can be obtained.

Additionally, the encryption/decryption

15 processor shown in FIG. 1 can perform both the encryption and the decryption, but may be constituted to perform only the encryption processing or the decryption processing.

Moreover, the processing described in the

20 first to twenty-second embodiments may be a program

stored in a computer readable storage medium. In this

case, the program is read into the storage of FIG. 1,

and operation units such as CPU as the processor

performs the processing in accordance with the program.

25 FIG. 27 is a diagram showing the example of the fast scalar multiplication method in which the complete coordinate of the scalar-multiplied point is given in the encryption processing using private

information in the encryption processing system of FIG. FIG. 33 is a flowchart showing a flow of the processing in the example of the scalar multiplication method of FIG. 27.

5

In FIG. 33, a scalar multiplication unit 2701 of FIG. 27 calculates and outputs the scalar-multiplied point with the complete coordinate given thereto on the Weierstrass-form elliptic curve from the scalar value and the point on the Weierstrass-form elliptic curve as 10 follows. When the scalar value and the point on the Weierstrass-form elliptic curve are inputted into the scalar multiplication unit 2701, an elliptic curve transformer 2704 transforms the point on the Weierstrass-form elliptic curve to the point on the 15 Montgomery-form elliptic curve (step 3301). A fast scalar multiplication unit 2702 receives the scalar value inputted into the scalar multiplication unit 2701 and the point on the Montgomery-form elliptic curve transformed by the elliptic curve transformer 2704 (step 3302). A fast scalar multiplication unit 2702 calculates some values of the coordinate of the scalarmultiplied point on the Montgomery-form elliptic curve from the received scalar value and the point on the Montgomery-form elliptic curve (step 3303), and gives 25 the information to a coordinate recovering unit 2703 (step 3304). The coordinate recovering unit 2703 recovers the coordinate of the scalar-multiplied point on the Montgomery-form elliptic curve from the information of the given scalar-multiplied point on the processing elliptic curve and the point on the Montgomery-form elliptic curve transformed by the elliptic curve transformer 2704 (step 3305). An elliptic curve inverse transformer 2705 transforms the scalar-multiplied point on the Montgomery-form elliptic curve recovered by the coordinate recovering unit 2703 to the scalar-multiplied point on the Weierstrass-form elliptic curve (step 3306). The scalar multiplication unit 2701 outputs the scalar-multiplied point with the coordinate completely given thereto on the Weierstrass-form elliptic curve as the calculation result (step 3307).

For the scalar multiplication on the

15 Montgomery-form elliptic curve executed by the fast
scalar multiplication unit 2702 and coordinate recovering unit 2703 in the scalar multiplication unit 2701,
the scalar multiplication method on the Montgomery-form
elliptic curve described above in the first to fifth
20 and fourteenth to sixteenth embodiments is applied as
it is. Therefore, the scalar multiplication is the
scalar multiplication method in which the complete
coordinate of the scalar-multiplied point is given at
the high speed.

25 FIG. 22 shows a constitution in which the encryption processing system of the present embodiment of FIG. 1 is used as a signature generation unit. The cryptography processor 102 of FIG. 1 is a signature

unit 2202 in a signature generation unit 2201 of FIG.

22. FIG. 28 is a flowchart showing a flow of the processing in the signature generation unit. FIG. 29 is a sequence diagram showing the flow of the processing in the signature generation unit of FIG. 22.

In FIG. 28, the signature generation unit 2201 outputs a message 2206 with the signature attached thereto from a given message 2205. The message 2205 is inputted into the signature generation unit 2201 and 10 received by the signature unit 2202 (step 2801). signature unit 2202 gives a point on the elliptic curve to a scalar multiplication unit 2203 in accordance with the received message 2205 (step 2802). The scalar multiplication unit 2203 receives the scalar value as 15 private information from a private information storage 2204 (step 2803). The scalar multiplication unit 2203 calculates the scalar-multiplied point from the received point on the elliptic curve and the scalar value (step 2804), and sends the scalar-multiplied 20 point to the signature unit 2202 (step 2805). signature unit 2202 performs a signature generation processing based on the scalar-multiplied point received from the scalar multiplication unit 2203 (step 2806). The result is outputted as the message 2206 25 with the signature attached thereto (step 2807).

The processing procedure will be described with reference to the sequence diagram of FIG. 29. First, a processing executed by a signature unit 2901

(2202 of FIG. 22) will be described. The signature
unit 2901 receives the inputted message. The signature
unit 2901 selects the point on the elliptic curve based
on the inputted message, gives the point on the

5 elliptic curve to a scalar multiplication unit 2902,
and receives the scalar-multiplied point from the
scalar multiplication unit 2902. The signature unit
2901 uses the received scalar-multiplied point to
perform the signature generation processing and outputs
the result as the output message.

The processing executed by the scalar multiplication unit 2902 (2203 of FIG. 22) will next be described. The scalar multiplication unit 2902 receives the point on the elliptic curve from the signature unit 2901. The scalar multiplication unit 2902 receives the scalar value from a private information storage 2903. The scalar multiplication unit 2902 calculates the scalar-multiplied point and sends the scalar-multiplied point to the signature unit 2901 from the received point on the elliptic curve and scalar value by the fast scalar multiplication method which gives the complete coordinate.

Finally, a processing executed by the private information storage 2903 (2204 of FIG. 22) will be
25 described. The private information storage 2903 sends the scalar value to the scalar multiplication unit 2902 so that the scalar multiplication unit 2902 can calculate the scalar multiplication.

For the scalar multiplication executed by the scalar multiplication unit 2203, the method described in the first to twenty-second embodiments are applied as they are. Therefore, the scalar multiplication is a fast scalar multiplication method in which the complete coordinate of the scalar-multiplied point is given. Therefore, when the signature generation processing is performed in the signature unit 2202, the complete coordinate of the scalar-multiplied point can be used, and the calculation can be executed at the high speed.

FIG. 23 shows a constitution in which the encryption processing system of the present embodiment of FIG. 1 is used as a decryption unit. The cryptography processor 102 of FIG. 1 is a decryption unit 2302 in a decryption apparatus 2301 of FIG. 23. FIG. 30 is a flowchart showing a flow of the processing in the decryption unit. FIG. 31 is a sequence diagram showing the flow of the processing in the decryption unit of FIG. 23.

10

In FIG. 30, the decryption unit 2301 outputs a decrypted message 2306 from a given message 2305.

The message 2305 is inputted into the decryption unit 2301 and received by the decryption unit 2302 (step 3001). The decryption unit 2302 gives a point on the elliptic curve to a scalar multiplication unit 2303 in accordance with the received message 2305 (step 3002). The scalar multiplication unit 2303 receives the scalar value as private information from a private information

storage 2304 (step 3003). The scalar multiplication unit 2303 calculates the scalar-multiplied point from the received point on the elliptic curve and the scalar value (step 3004), and sends the scalar-multiplied

5 point to the decryption unit 2302 (step 3005). The decryption unit 2302 performs a decryption processing based on the scalar-multiplied point received from the scalar multiplication unit 2303 (step 3006). The result is outputted as the message 2306 with the decrypted result (step 3007).

The processing procedure will be described with reference to the sequence diagram of FIG. 31.

First, a processing executed by a decryption unit 3101 (2302 of FIG. 23) will be described. The decryption unit 3101 receives the inputted message. The decryption unit 3101 selects the point on the elliptic curve based on the inputted message, gives the point on the elliptic curve to a scalar multiplication unit 3102, and receives the scalar-multiplied point from the scalar multiplication unit 3102. The signature unit 3101 uses the received scalar-multiplied point to perform the decryption processing and outputs the result as the output message.

The processing executed by the scalar

25 multiplication unit 3102 (2303 of FIG. 23) will next be
described. The scalar multiplication unit 3102
receives the point on the elliptic curve from the
decryption unit 3101. The scalar multiplication unit

3102 receives the scalar value from a private information storage 3103. The scalar multiplication unit 3102 calculates the scalar-multiplied point from the received point on the elliptic curve and scalar value by the fast scalar multiplication method which gives the complete coordinate and sends the scalar-multiplied point to the decryption unit 3101.

Finally, a processing executed by the private information storage 3103 (2304 of FIG. 23) will be described. The private information storage 3103 sends the scalar value to the scalar multiplication unit 3102 so that the scalar multiplication unit 3102 can calculate the scalar multiplication.

For the scalar multiplication executed by the scalar multiplication unit 2303, the method described in the first to twenty-second embodiments are applied as they are. Therefore, the scalar multiplication is a fast scalar multiplication method in which the complete coordinate of the scalar-multiplied point is given.

20 Therefore, when the decryption processing is performed in the decryption unit 2302, the complete coordinate of the scalar-multiplied point can be used, and the calculation can be executed at the high speed.

As described above, according to the present invention, the speed of the scalar multiplication for use in the cryptography processing using the private information in the cryptography processing system is raised, and a fast cryptography processing can be

283

achieved. Moreover, since the coordinate of the scalar-multiplied point can completely be given, all cryptography processing can be performed.