

CSC349A Numerical Analysis Lecture 11

Rich Little

University of Victoria

2023

R. Little 1/1

Table of Contents I

Introduction

A polynomial of order (degree) n can be written as

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

as well as

$$f(x) = a_n(x - r_1)^{m_1}(x - r_2)^{m_2} \dots (x - r_k)^{m_k}$$
 with $\sum_{i=1}^n m_i = n$

if f(x) has k distinct roots (real or complex) and r_i is a zero of multiplicity $m_i > 1$. If the coefficients a_i are real, then any complex roots occur in conjugate pairs, $\lambda \pm \mu i$ where $i = \sqrt{-1}$

3/1

Polynomial roots using Newton/Raphson

One approach to computing the roots of a polynomial f(x) is to use the Newton/Raphson method.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Main issues:

- Efficient evaluation of $f(x_i)$ and $f'(x_i)$.
- How to implement Newton to compute all n roots of f(x)

How to compute complex roots

R. Little 4/1

Table of Contents I

R. Little 5/1

Horner's Algorithm

Given a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i$ and a value x_0 , this algorithm is used to efficiently evaluate $f(x_0)$ and $f'(x_0)$. To illustrate the basic idea, consider the case n=4:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$
 (1)

can be rewritten in the form:

R. Little 6/1

Horner's Algorithm

This form of the polynomial is more efficient to compute.

$$f(x) = a_0 + x * (a_1 + x * (a_2 + x * (a_3 + x * a_4)))$$
 (2)

Evaluation of (1) at x_0 requires 10 multiplications and 4 additions, whereas (2) requires only 4 multiplications and 4 additions. The general case (for a polynomial of order n): form (1) requires n(n+1)/2 multiplications and n additions, from (2) requires n multiplications and n additions

R. Little 7/1

Deriving the Algorithm Example

Consider the nested form again:

$$f(x) = a_0 + x * (a_1 + x * (a_2 + x * (a_3 + x * a_4)))$$

R. Little 8/1

The algorithm

Evaluate $f(x_0)$, assuming that $f(x) = \sum_{i=0}^{n} a_i x^i$ is written in the "nested" form, as in (2):

$$b_{n} = a_{n}$$

$$b_{n-1} = a_{n-1} + b_{n}x_{0}$$

$$b_{n-2} = a_{n-2} + b_{n-1}x_{0}$$

$$...$$

$$b_{0} = a_{0} + b_{1}x_{0}$$

$$b_{0} = f(x_{0})$$

R. Little 9/1

Number of arithmetic operations

More compact form:

$$b_k = a_k + b_{k+1}x_0$$
 for $k = n - 1, n - 2, ..., 1, 0$

NOTE that execution of this algorithm requires **exactly** n multiplications and n additions.

Furthermore, if we rearrange and solve for each a_k we get

$$a_k = b_k - b_{k+1} x_0$$

Algorithm for evaluating $f'(x_0)$

Let $a_n, a_{n-1}, \ldots, a_0$ be defined as above, and consider:

$$f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$

$$= (b_0 - b_1 x_0) + (b_1 - b_2 x_0) x + \dots + (b_{n-1} - b_n x_0) x^{n-1} + b_n x^n$$

$$= (x - x_0)(b_1 + b_2 x + b_3 x^2 + \dots + b_n x^{n-1}) + b_0$$

Let:

$$Q(x) = b_1 + b_2 x + b_3 x^2 + \dots + b_n x^{n-1}$$

then

$$f(x) = (x - x_0)Q(x) + b_0$$

11 / 1

Algorithm for evaluating $f'(x_0)$

Differentiating with respect to *x* gives

$$f'(x) = Q(x) + (x - x_0)Q'(x)$$

which implies that

$$f'(x_0) = Q(x_0)$$

Thus, to evaluate $f'(x_0)$, one first needs to evaluate $f(x_0)$ as above, which gives the coefficients $b_n, b_{n-1}, \ldots, b_0$, and then evaluate $Q(x_0)$. The most efficient way to evaluate $Q(x_0)$, is to use the nested form for the polynomial Q(x).

Horner's algorithm

The following algorithm evaluates both f(x) and $f'(x_0) = Q(x_0)$ using nest multiplication to evaluate both of the polynomials.

HORNER'S ALGORITHM

Given values a_0, a_1, \ldots, a_n and x_0 , compute:

$$b_n = a_n$$
 $c_n = b_n$
 $b_{n-1} = a_{n-1} + b_n x_0$ $c_{n-1} = b_{n-1} + c_n x_0$
 $b_{n-2} = a_{n-2} + b_{n-1} x_0$ $c_{n-2} = b_{n-2} + c_{n-1} x_0$
...
 $b_0 = a_0 + b_1 x_0$ $c_1 = b_1 + c_2 x_0$
Then
 $b_0 = f(x_0)$ $c_1 = f'(x_0)$

EXAMPLE

Let $f(x) = x^4 - 2x^3 + 2x^2 - 3x + 4$ and use Horner's algorithm to evaluate f(1) and f'(1):

R. Little 14/1

Note

The explicit form of f'(x), namely

$$f'(x) = 4x^3 - 6x^2 + 4x - 3$$

is not obtained; only the *value* of f'(1) is computed. Since Q(x) depends on the value of x_0 , which is equal to 1 above, all computations must be re-done in order to evaluate f'(x) at a different value of x.

Table of Contents I

R. Little 16/1

Polynomial Deflation

Having computed one zero, say r_1 of a polynomial f(x) having n zeros r_1, r_2, \ldots, r_n the deflated polynomial is

$$\hat{f}(x) = \frac{f(x)}{x - r_1}$$

Note that $\hat{f}(x)$ is a polynomial of order n-1 having roots

$$r_2, \ldots, r_n$$

 $\hat{f}(x)$ can be easily determined from Horner's algorithm.

Table of Contents I

R. Little 18/1

Newton's algorithm with Horner

Outline of a procedure to compute a zero of a polynomial f(x) using Newton's method and Horner's algorith:

- Let x_0 be an initial approximation to a zero of f(x)
- for i=1 to imax use Horner's algorithm to evaluate $f(x_{i-1})$ and $f'(x_{i-1})$ set $x_i \leftarrow x_{i-1} \frac{f(x_{i-1})}{f'(x_{i-1})}$

if $|1 - \frac{x_{i-1}}{x_i}| < \varepsilon$ exit

end output failed to converge in imax iterations

R. Little 19/1

Polynomial Deflation

Suppose that the values x_0, x_1, x_2, \ldots computed above converge in N iterations. Then x_N is the final computed approximation to some zero, say r_1 of f(x). Now the final computation in the above procedure with Newton's method (after N iterations) is:

$$x_N \leftarrow x_{N-1} - \frac{f(x_{N-1})}{f'(x_{N-1})}$$

If $b_n, b_{n-1}, \ldots, b_0$ are the values computed by Horner's algorithm to evalute $f(x_{N-1})$ that is, in the last step of the above procedure (when i = N), then from page 2 of Handout number 13 it follows that:

$$f(x) = (x - x_{N-1})Q(x) + b_0$$
 (3)

R. Little 20/1

Polynomial Deflation II

$$Q(x) = b_1 + b_2 x + b_3 x^2 + \dots + b_n x^{n-1}$$
 (4)

On letting $x = x_{N-1}$ in (3), we obtain:

$$b_0 = f(x_{N-1}) \approx 0$$
 since $x_{N-1} \approx x_N \approx \text{ the zero } r_1 \text{ of } f(x)$

Therefore from (3),

$$f(x) \approx (x - x_{N-1})Q(x)$$

and consequently

$$Q(x) \approx \frac{f(x)}{x - x_{N-1}}$$

R. Little 21/1

Polynomial Deflation III

That is, the polynomial Q(x) defined in (4) above, is the **deflated polynomial**, it is a polynomial of degree n-1, whose zeroes are equal to those of f(x), except for the zero at $x_{N-1} \approx r_1$. Note that the coefficients b_1, b_2, \ldots, b_n of Q(x) are determined from the last application (when i=N) of Horner's algorithm in the procedure at the beginning of these notes.

Note: If several zeros of f(x) are approximated as above, and several deflations are carried out giving a sequence of deflated polynomials of degrees $n-1, n-2, n-3, \ldots$, then the successive computed zeros tend to become less and less accurate.

R. Little 22 / 1

Root Polishing

Aply Newton's method to approximate deflated polynomial Q(x), giving a value \hat{r} . The value \hat{r} approximates some root r_2 of f(x), but will not be fully accurate. Use \hat{r} as the initial approximation for Newton's method applied to f(x). This will converge very quickly (1 or 2 iterations) to the fully accurate root r_2 (as \hat{r} is very clsoe to r_2).

R. Little 23/1

Complex roots using Newton

One approach is to use Newton's method with complex arithmetic. This requires a complex-valued initial value x_0 . Usually needs a very good initial approximation to a complex root for convergence.

R. Little 24/1