ECON 4360: Empirical Finance Spring 2014 Solutions 04

Solutions

Time-Series Regression Exercise

- 1. [50 Points] On Collab, there is a spreadsheet (Q1Data.xls) with excess returns for 10 size-sorted portfolios as well as the market excess return. Note that this data is "nice" in that you don't have to do any data transformations here...
 - (a) Run regressions of each excess return on the market excess return and a constant. Report your estimated parameters in a table.

Solution 1

	Const	se(Const)	\widehat{eta}	$se\left(\widehat{\beta}\right)$
$Decile\ 1$	0.0033	0.0044	0.8367	0.0985
$Decile\ 2$	-0.0022	0.0036	0.8707	0.0799
$Decile\ 3$	-0.0019	0.0030	0.9561	0.0682
Decile~4	-0.0038	0.0027	0.9451	0.0614
$Decile\ 5$	-0.0035	0.0025	0.9917	0.0565
$Decile\ 6$	-0.0041	0.0023	1.0153	0.0515
Decile~7	-0.0040	0.0019	1.0508	0.0430
Decile~8	-0.0028	0.0018	1.0641	0.0403
Decile~9	-0.0020	0.0014	1.0592	0.0318
Decile 10	0.0006	0.0003	0.9908	0.0076

(b) Test how well the factor pricing model does for each portfolio, i.e., equation-by-equation, using t-tests.

Solution 2 Critical value is 1.9744. Hypothesis is that the Const = 0. Is rejected if | calculated

statistic is| > critical value.

calculated statistic Rejected?

Decile 1 0.76437

Decile 2 -0.62522

Decile 3 -0.63125

Decile 4 -1.4121

Decile 5 -1.3977

Decile 6 -1.7876

Decile 7 -2.0757 Rejected.

Decile 8 -1.5739

Decile 9 -1.4058

Decile 10 1.9222

- (c) Test the model, i.e., all the pricing errors are jointly equal to zero, using:
 - i. A χ^2 test given in (12.3) in Cochrane.

Solution. Hypothesis that all pricing errors are zero is rejected at the 5 percent significance level. Critical value = 18.307; Calculated Statistic = 28.8275.

ii. An F test given in (12.4) of Cochrane.

Solution. Hypothesis that all pricing errors are zero is rejected at the 5 percent significance level. Critical value = 1.8915; Calculated Statistic = 2.694.

iii. The χ^2 test derived from (12.7) in Cochrane. (This is the GMM estimator with robust standard errors.) Use 5 lags.

Solution. Hypothesis that all pricing errors are zero is rejected at the 5 percent significance level. Critical value = 18.307; Calculated Statistic = 37.0502.

(d) Given your results from parts (b) and (c) what do you conclude about this asset-pricing model?

Solution. Model is rejected overall, mostly as a result of one or two of the deciles. It appears to not do that bad of a job with most (all but one) of the deciles

Cross-Section Regression Exercise

2. [50 Points] Data for the project can be found here:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - We are using the file "Portfolios Formed on Size". Data files have also been uploaded to Collab. Note that this data is not "nice" - you do need to do data transformations here and make sure you are working with the correct data... When you report your results, provide a brief interpretation of the results - generally, this should be a short paragraph.

(a) Use the 10 size-sorted portfolios to test the CAPM for the time period 1963:7-2010:12 using a two-step cross-sectional regression. Use GLS in the second step and do not include a constant. What is your estimate for the compensation for beta risk?

Solution 3 The GLS estimate of λ is 0.486.

(b) Can you reject the hypothesis that this coefficient is zero?

Solution 4 With a standard error of 0.190 and a t-statistic of 2.558, we cannot reject the hypothesis that the coefficient is zero.

(c) Can you reject the hypothesis that the CAPM is an adequate description of the data?

Solution 5 We cannot reject the hypothesis that the CAPM adequately describes the data - the test statistic, distributed as chi-square with 9 degrees of freedom, has a value of 9.034.