

University of Tunku Abdul Rahman Faculty of Science

Session: 01/2020

UDPS2073 Mathematical Statistics

Test

Instruction:

Read the following before you start:

- 1. Fill in all your particulars on the attached answer scripts.
- 2. Generate Appendix 1 from Appendix1_UDPS2073text_[Your ID].Rmd according to the attached instruction manual.
- 3. Answer **all** questions in **55 minutes**. Marks carried by each question are indicated in brackets.
- 4. Submit your Appendix 1 and your answer script. Name your answer script as UDPS2073_Answer_[Your ID].pdf

Student's Name:							
Studer	nt's ID:	:					
Quest	ion:						
Q1.	Suppose Y has a probability density distribution, $f(y)$ as stated in Appendix 1.						
	(a)	Find the distribution function of Y.	(4 marks)				
	(b)	Show that $\frac{Y}{\theta}$ is a pivotal quantity.	(4 marks)				

- Q2. Suppose X is a random variable from a binomial distribution with the parameters n and θ , the value of n is stated in Appendix 1.
 - (a) Prove the equation stated in Appendix 1 Question 2 (a) is true. Hence, show that $x \cdot \left(1 \frac{x}{n}\right)$ is a biased estimator for the variance of X. (5 marks)
 - (b) Find the unbiased estimator for the variance of X based on the result in part (a). (3 marks)

- Q3. Suppose that X_1, X_2, X_3 be a sample of size n = 3 from a distribution with unknown mean, $E(X_i) = \mu$, where the variance, $Var(X_i) = \sigma^2$ is a known positive number.
 - (a) Show that both $\hat{\theta}_1$ and $\hat{\theta}_2$ as shown in Appendix 1 are unbiased estimators for μ . (4 marks)
 - (b) Given X_i are independent. Compare the variance of $\hat{\theta}_1$ and $\hat{\theta}_2$ and conclude which estimator is more consistent. (5 marks)

APPENDIX 2

Distribution	Duck shilitar Mass Franction /	Maan	Variance	Mamant
Distribution	Probability Mass Function /	Mean	variance	Moment –
	Probability Density Function			Generating
				Function
Binomial	$p(x)={}^{n}C_{x}p^{x}(1-p)^{n-x}$,	np	np(1-p)	$\left[pe^t + (1-p)\right]^n$
	x = 0, 1,, n			
Poisson	$\lambda^x e^{-\lambda}$	λ	λ	$\exp \lambda(e^t-1)$
	$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1,$			
Geometry	$g(x; p) = p \ q^{x-1}; \ x = 1,2,3,$	1_	$\frac{1-p}{p^2}$	pe^{t}
		p	1	$\frac{pe^{t}}{1 - qe^{t}}$ $e^{t\theta_2} - e^{t\theta_1}$
Uniform	$f(x) = \frac{1}{\theta_1 - \theta_2}, \ \theta_1 \le x \le \theta_2$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$e^{t\theta_2}-e^{t\theta_1}$
	$\theta_2 - \theta_1$	2	12	$\overline{t(\theta_2-\theta_1)}$
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$	μ	σ^2	$t^2\sigma^2$
	$J(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}\right],$			$\exp\left(\mu t + \frac{t^2 \sigma^2}{2}\right)$
	$-\infty < x < \infty$			
Exponential	$f(x) = \frac{1}{-1} e^{-x/\beta} x > 0$	β	β^2	$(1-\beta t)^{-1}$
	β , β			
Gamma	$f(x) = 1$ $x^{\alpha-1}e^{-x/\beta}$ $x > 0$	$\alpha\beta$	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
	$f(x) = \frac{1}{\beta} e^{-x/\beta}, \ x > 0$ $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x > 0$, ,
Chi – square	$f(x) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2} ,$	ν	2ν	$(1-2t)^{-\nu/2}$
	$J(x) = \frac{\Gamma(\nu/2)2^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2}}x \qquad e \qquad ,$,
	$-\infty < x < \infty$			
Beta	$\int x^{\alpha-1} (1-x)^{\beta-1}$	α	$\frac{\alpha\beta}{\left(\alpha+\beta\right)^2\left(\alpha+\beta+1\right)}$	
	$f(x) = \begin{cases} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} & , & 0 < x < 1 \\ 0 & , & elsewhere \end{cases}$	$\frac{\alpha}{\alpha+\beta}$	$(\alpha+\beta)(\alpha+\beta+1)$	
	0 , elsewhere			
	$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$			
	$\Gamma(\alpha+\beta)$			