Εθίνικο Μετσοβίο Πολητέχνειο $\Sigma.Ε.Μ.Φ.Ε.$

Εξισώσεις Fresnel

Θωμόπουλος Σπύρος Α.Μ ge19042

25/10/2021

Σχοπός

Ο στόχος της εν λόγω εργαστηριαχής άσχησης είναι να μελετηθεί η ανάχλαση του γραμμικά πολωμένου φωτός σε επίπεδη επιφάνεια διηλεχτρικού. Συγχεχριμένα θα εξεταστεί η ένταση της δέσμης όταν είναι πολωμένη παράλληλα στο επίπεδο πρόσπτωσης-ανάχλασης και όταν βρίσχεται σε μία ενδιάμεση γωνία.

Θεωρητικά Στοιχεία

Ένα H/M κύμα αποτελείται από ένα ηλεκτρικό (\vec{E}) και ένα μαγνητικό (\vec{B}) πεδίο που ταλαντώνονται κάθετα μεταξύ τους και κάθετα στη διεύθυνση διάδοσης (εγκάρσιο κύμα). Ορίζουμε ως διεύθυνση πόλωσης του κύματος την διεύθυνση ταλάντωσης του ηλεκτρικού πεδίου.

Όταν ένα H/M κύμα περνάει από ένα διηλεκτρικό υλικό σε ένα άλλο μέσω μίας επίπεδης επιφάνειας, τότε ανεξαρτήτως της πόλωσής του ισχύουν οι παρακάτω νόμοι:

- . $\theta_{in} = \theta_r$, όπου θ_{in} , θ_r οι γωνίες πρόσπτωσης και ανάκλασης
- . $n_1 sin \theta_{in} = n_2 sin \theta_t$, όπου n_1, n_2 οι δείχτες διάθλασης του κάθε μέσου και θ_t η γωνία διάθλασης (ν. Snell).

Γενικά μας ενδιαφέρει η μεταβολή της έντασης (μέση ισχύς ανά μονάδα επιφάνειας) του H/M κύματος κατά την διάθλαση και την ανάκλασή του. Στην πρώτη φάση του πειράματος μελετάμε την π-πόλωση (επίπεδο πόλωσης $\|$ επίπεδο ανάκλασης-διάθλασης). 1 Εδώ τα πεδία \vec{B} και \vec{H} εφάπτονται της διαχωριστικής επιφάνειας ενώ τα \vec{E} και \vec{D} είναι κάθετα σ' αυτή. Έπειτα από την εφαρμογή των συνοριακών συνθηκών προκύπτουν οι εξισώσεις Fresnel για τους συντελεστές ανάκλασης και διέλευσης πλάτους

$$r_{\parallel} := \left(\frac{E_r}{E_{in}}\right)_{\parallel} = \frac{n_2 cos\theta_{in} - n_1 cos\theta_t}{n_2 cos\theta_{in} + n_1 cos\theta_t} \tag{1}$$

$$t_{\parallel} := \left(\frac{E_t}{E_{in}}\right)_{\parallel} = \frac{2n_1 cos\theta_{in}}{n_2 cos\theta_{in} + n_1 cos\theta_t} \tag{2}$$

Παρατηρούμε πως αν $\theta_{in} + \theta_t = \pi/2$ τότε $\theta_t = 0$, ο συντελεστής ανάκλασης μηδενίζεται για μία συγκεκριμένη γωνία πρόσπτωσης η οποία καλείται γωνία Brewster και υπολογίζεται από την σχέση:

$$tan\theta_B = n_2/n_1 \tag{3}$$

όπου για εμάς το μέσο 1 θα είναι αέρας, άρα $n_1=1$ και $n_2=n_{\pi\rho\iota\sigma\mu\alpha\tau\sigma\varsigma}=n.$

Ορίζονται ακόμη συντελεστές διέλευσης και διάδοσης της έντασης του κύματος

$$R := \frac{I_r}{I_{in}} = \left(\frac{E_r}{E_{in}}\right)_{\parallel}^2 = r_{\parallel}^2 \tag{4}$$

$$T := \frac{n_2 cos\theta_t}{n_1 cos\theta_{in}} \frac{I_t}{I_{in}} = \frac{n_2 cos\theta_t}{n_1 cos\theta_{in}} \left(\frac{E_t}{E_{in}}\right)_{\parallel}^2 = \frac{n_2 cos\theta_t}{n_1 cos\theta_{in}} t_{\parallel}^2 \tag{5}$$

με την χρήση των οποίων μπορεί να εχφραστεί η Αρχή Διατήρησης της Ενέργειας

$$T_{||} + R_{||} = 1$$

Γενικά, ενδέχεται το επίπεδο πόλωσης του κύματος να μην είναι παράλληλο στο επίπεδο ανάκλασηςδιάθλασης, αλλά αποκλίνει κατά μία γωνία δ. Σε αυτή τη περίπτωση η ανακλώμενη δέσμη είναι πολωμένη σε μία διαφορετική γωνία ω για την οποία ισχύει

$$tan\omega = -\frac{sin(\theta_{in} - \theta_t)}{sin(\theta_{in} + \theta_t)} \cdot \frac{tan(\theta_{in} - \theta_t)}{tan(\theta_{in} + \theta_t)} tan\delta$$

 $^{^{-1}}$ Υπάρχει και η περίπτωση της σ-πόλωσης στην οποία ίσχύει ότι επίπεδο πόλωσης \perp επίπεδο ανάκλασης-διάθλασης για την οποία αλλάζουν οι εξισώσεις Fresnel, η οποία δεν μελετήθηκε.

και στην περίπτωση που το πρώτο διηλεκτρικό είναι ο αέρας $(n_1=1)$, το δεύτερο έχει δείκτη διάθλασης $n_2=n$ και η γωνία απόκλισης της πόλωσης της προσπίπτουσας δέσμης είναι $\delta=\pi/4$ έχουμε:

$$\Psi := \delta - \omega = Arctan\left(-\frac{cos\theta_{in}\sqrt{n^2 - sin^2\theta_{in}}}{sin^2\theta_{in}}\right)$$
 (6)

Αχόμη αν η στροφή του επιπέδου πόλωσης της αναχλώμενης δέσμης γίνει $\Psi=\pi/4$ τότε έχουμε

$$1 = -\frac{\cos\theta_{in}\sqrt{n^2 - \sin^2\theta_{in}}}{\sin^2\theta_{in}} \Rightarrow -\tan\theta_{in}\sin\theta_{in} = \sqrt{n^2 - \sin^2\theta_{in}} \Rightarrow$$

$$n^{2} = \sin^{2}\theta_{in} \left(\tan^{2}\theta_{in} + 1 \right) \Rightarrow \boxed{n = \tan\theta_{in}}$$
 (7)

όπου μπορούμε να μετρήσουμε την γωνία πρόσπτωσης θ_{in} , άρα κσι με αυτή τη μέθοδο γίνεται εφικτός ο πειραματικός προσδιορισμός του δείκτη διάθλασης.

Πειραματική Διάταξη

Η πειραματική διάταξη αποτελείται από:

- . Laser He-Ne 1.0mW, 220V AC, πολωμένο παράλληλα στην ενδεικτική λυχνία
- . 2 πολωτικά φίλτρα με βαθμονόμηση
- . Ισοσκελές τριγωνικό πρίσμα από πυριτύαλο 60 μοιρών
- . Οπτική τράπεζα με στρήριγμα για το πρίσμα
- . Φωτοανιχνευτή (Μετατρέπει την ένταση της δέσμης σε συνεχές ηλετρικό ρεύμα)
- . Αναλογικό πολύμετρο με ενισχυτή
- . Μηχανισμός στήριξης της διάταξης (αρθωτό γωνιακό στήριγμα, κύλινδρος στήριξης, βάσεις τύπου τρίποδα, στηρίγματα ορθής γωνίας, τετραγωνικές ράβδοι στήριξης)

Πειραματική Διαδικασία - Επεξεργασία Μετρήσεων

1° Μέρος (π-πόλωση)

Αρχικά συναρμολογούμε την διάταξη χρησιμοποιώντας μόνο τον Πολωτή 1, με γωνία πόλωσης 90^{o} , δηλαδή η εξερχόμενη δέσμη είναι οριζόντια πολωμένη. Φροντίζουμε η δέσμη να διέρχεται μέσω του πολωτή, περίπου στο μέσο του πρίσματος και προφανώς να πέφτει στον ανιχνευτή. Ρυθμίζουμε το γωνιόμετρο έτσι ώστε η ανακλώμενη δέσμη όταν προσπίπτει κάθετα στο πρίσμα να επιστρέφει στο σημείο εκπομπής της και σημειώνουμε ότι η εν λόγω γωνία είναι $\theta_0 = (0\pm1)^{o}$.

Σε πρώτη φάση πρέπει να προσδιορίσουμε την γωνία Brewster προχειμένου να υπολογίσουμε τον δείχτη διάθλασης του γυαλιού από την σχέση (3). Περιστρέφοντας το γωνιόμετρο, παρατηρούμε πως η ένταση της αναχλώμενης δέσμης μηδενίζεται (στην μέτρηση δεν μηδενίζεται, απλώς είναι η ελάχιστη που ανιχνέυσαμε $I_{min}=(0.1\pm0.04)\mu A$) για γωνία

$$\theta_B = (60 \pm 1)^o$$

Άρα έχουμε:

$$n = (1.732 \pm 0.070)^2$$

Τώρα μετράμε την ένταση του ρεύματος που ανιχνεύει το πολύμετρο καθώς μεταβάλλουμε την γωνία πρόσπτωσης (περιστρέφοντας το γωνιόμετρο) με τιμές στο διάστημα $15-80^o$ με βήμα 5^o . Οι μετρήσεις φαίνονται στον Πίνακα I. 4

Η ένταση της προσπίπτουσας δέσμης είναι $I_{in}=30\mu A$ και δεν επηρεάζεται από την παρουσία του πολωτή σύμφωνα με τον νόμό του Malus $I'_{in}=I_{in}cos(0)=I_{in}=30\mu A$

$\theta_{in}(\pm 1^o)$	$I_{\pi \varepsilon \iota \rho}$	Κλίμακα στο	δI
	(μA)	αμπερόμετρο	(μA)
15	2.5	3	0.15
20	2.3	3	0.15
25	2.2	3	0.15
30	2.1	3	0.15
35	1.7	3	0.15
40	1.2	3	0.15
45	0.8	3	0.15
50	0.5	3	0.15
55	0.2	1	0.04
60	0.1	1	0.04
65	0.7	1	0.04
70	1.1	1	0.04
75	3.2	10	0.40
80	9.1	10	0.40

Πίνακας. 1: Γραφική παράσταση $I = I(\theta_{in})$

Γραφικά, η θεωρητική και η πειραματική καμπύλη της έντασης του του ανακλώμενου φωτός συναρτήσει της γωνίας πρόσπτωσης φαίνεται στην Εικόνα. 1. Η συνάρτηση για τη θεωρητική τιμή της έντασης της ανακλώμενης δέσμης, $I_{th}=I_{th}(\theta_{in})$, προκύπτει από την σχέση (4) αντικαθιστώντας από τον ν. Snell $\theta_t=Arcsin\frac{sin\theta_{in}}{n}$

Παρατηρώ ότι οι δύο γραφικές παραστάσεις έχουν την ίδια μορφή, λαμβάνοντας ελάχιστο στην περιοχή των 60^o . Ωστόσο απέχουν σημαντικά η μία από την άλλη υπερβάινοντας τα όρια του σφάλματος. Αυτό ίσως οφείλεται στην λανθασμένη εκτίμηση της γωνίας Brewster και ως εκτούτου του δείκτη διάθλασης του γυαλιού, ο οποίος απέχει από τον γνωστό $\sim 13\%$ της τιμής του. 5

$$\delta n = \sqrt{\left(\frac{\partial n}{\partial \theta_B} \delta \theta_B\right)^2} = \left|\frac{1}{\cos^2 \theta_B} \underbrace{\delta \theta_B}_{rad}\right| = 0.069814$$

$$\delta I = 1.5\% imes$$
κλίμακα + Σφάλμα ανάγνωσης

όπου το σφάλμα ανάγνωσης ισούται με την ελάχιστη υποδιαίρεση της εκάστοτε κλίμακας, άρα $\delta I_1=0.04, \delta I_3=0.15, \delta I_{10}=0.4$

5O δείκτης διάθλασης του γυαλιού είναι 1.52.

 $^{^2\}mathrm{To}$ σφάλμα του δείχτη διάθλασης πρχύπτει απ' τη διάδοση του σφάλματος της γωνίας Brewster

 $^{^3{}m H}$ ένδεξη στο αμπερόμετρο πρέπει να καταγράφεται όταν η ένδειξη φτάνει στο μέγιστο.

 $^{^4}$ Το σφάλμα του πολυμέτρου στην μέτρηση του ρεύματος εξαρτάται από την κλίμακα στην οποία βρισκόμαστε,

Εικόνα. 1

20 Μέρος (πόλωση με γωνία απόκλισης)

Σε αυτό το μέρος προσθέτουμε και τον δεύτερο πολωτή και πολώνουμε την προσπίπτουσα δέσμη σε γωνία $\delta=\pi/4$ προς το πεδίο πρόσπτωσης-ανάκλασης. Τώρα πάλι με βήμα 5^o σε διάστημα $15-80^o$ μετράμε την γωνία στροφής της πόλωσης του φωτός, $\Psi=|\omega-\pi/4|$, όπου ω είναι η μετρούμενη γωνία στροφής του 2ου πολωτή για την οποία παρατηρούμε μέγιστο της δέσμης. Τα αποτελέσματα φαίνονται στον παρακάτω Πίνακα 2.

$\theta_{in}(\pm 1^o)$	$\omega(\pm^o)$	$\Psi(\pm 1^o)$
15	-44	89
20	-47	88
25	-50	85
30	-51	84
35	-54	81
40	-62	73
45	-69	66
50	-73	62
55	-80	55
60	90	45
65	83	38
70	73	28
75	69	24
80	60	15

Πίναχας. 2

Ακόμη, για $\Psi=45^o$ που αντιστοιχεί σε $\theta_{in}=(60\pm1)^o$, από την σχέση (7) μπορούμε να υπολογίσουμε τον δείκτη διάθλασης του γυαλιού

$$n = (1.732 \pm 0.070)^{6}$$

Η σχέση (6) μας δίνει την θεωρητική συνάρτηση $\Psi=\Psi(\theta_{in})$ και οι γραφικές παραστάσεις θεωρητικής και πειραματικής συσχέστισης των δύο αυτών γωνιών είναι:

Εικόνα. 2: Γραφική Παράστηαση $\Psi = \Psi(\theta_{in})$

Παρατηρώ πως παρ'όλο που μερικά πειραματικά σημεία απέχουν σημαντικά από τις καμπύλες, η μορφή τους είναι κοινή.

Συμπεράσματα

Εν τέλει μπορούμε να πούμε πως η άσχηση στα πλαίσια του στόχου της ήταν επιτυχημένη, παρ' όλο που τα αριθμητικά αποτελέσματα δεν ήταν απολύτως συμβατά με τα θεωρητικώς αναμενόμενα. Αυτό διότι ο σχοπός της ήταν να εξετάσουμε την συμπεριφορά της έντασης της αναχλώμενης δέσμης σε σχέση με την πόλωσή της, η οποία είναι εμφνής από τα δύο διαγράμματα.

Ακόμη, κρίνω πως η κυριότερη πηγή σφάλματος ήταν η τιμή του δείκτη διάθλασης που απείχε και στις δύο περιπτώσεις $\sim 11\%$ από την θεωρητική. Άρα ο προσδιορισμός της γωνίας Brewster στο πρώτο μέρος και της θ_{in} για την οποία έχουμε $\Psi=45^o$ στο δεύτερο μέρος ίσως να είχαν μεγάλο σφάλμα. Εφόσον παρατηρήθηκε το ίδιο είδους λάθος και στα δύο μέρη, ενδεχομένως να μην είχαμε ορίσει ορθώς το σημείο 0 στο γωνιόμετρο ή να το μετακινήσαμε ακουσίως κατά την διάρκεια του πειράματος.

$$\delta n = \sqrt{\left(\frac{\partial n}{\partial \theta_{in}} \delta \theta_{in}\right)^2} = \left|\frac{1}{\cos^2 \theta_{in}} \underbrace{\delta \theta_{in}}_{rad}\right| = 0.069814$$

 $^{^{6}}$ Το σφάλμα του δείχτη διάθλασης πρχύπτει απ' τη διάδοση του σφάλματος της προσπίτουσας γωνίας