

Метрики оценки качества

1. Регрессия

План

2. Классификация

3. Пример

1. Регрессия

Метрики качества

RMSE

MAE

MAPE

SMAPE

logloss

ROOT MEAN SQUARED ERROR

- Корень из среднего квадратичного отклонения прогноза от исходного значения
- Сильно штрафует за бОльшие по модулю отклонения

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 $RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$

MEAN AVERAGE ERROR

- Отклонение прогноза от исходного значения
- Усредненное по всем наблюдениям

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

MEAN AVERAGE PERCENTAGE ERROR

• Ошибка прогнозирования оценивается в процентах

MAPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

• Ошибка прогнозирования оценивается в процентах

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

• Ошибка прогнозирования оценивается в процентах

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{|A_t| + |F_t|}$$

SYMMETRIC MEAN AVERAGE PERCENTAGE ERROR

- По-разному штрафует за перепрогнозирование и недопрогнозирование
- Перепрогнозирование:

• Недопрогнозирование:

At = 100, Ft =
$$90 \sim \text{SMAPE} = 5.26\%$$

LogLoss

- Логарифмическая ошибка
- Хорошо оценивает вероятность

$$LogLoss = -\frac{1}{n} \sum_{i=0}^{n} [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$

2. Классификации

Метрики

Accuracy

Precision

Recall

F-measure

ROC-AUC

Доля правильных ответов при классификации

Доля правильных ответов при классификации

target: 101000100

Доля правильных ответов при классификации

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

Доля правильных ответов при классификации

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

Доля правильных ответов при классификации

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

accuracy = 8/10 = 0.8

Precision & Recall

- Precision точность
- Recall полнота

Сбитые самолеты

Сбитые самолеты

$$\hat{y} = (0000101101)$$

 $\hat{y} = (0110100101) \leftarrow$

Precision

Precision – точность выстрелов

Количество сбитых самолётов

Количество выстрелов

$$y = (0000101101)$$

 $\hat{y} = (011010101)$

Recall

Recall – «полнота» сбивания

Количество сбитых самолётов

Общее количество самолетов

$$y = (0000101101)$$

 $\hat{y} = (011010101)$

Confusion matrix

True Class

		Positive (P)	Negative (N)	
Predicted Class	Positive (+)	True Positive Count (TP)	False Positive Count (FP)	
	Negative (-)	False Negative Count (FN)	True Negative Count (TN)	

$$ext{Precision} = rac{tp}{tp + fp}$$
 $ext{Recall} = rac{tp}{tp + fn}$

F-measure (F-score, F1)

- Среднее гармоническое между precision и recall
- Значение F-measure ближе к меньшему из precision, recall

$$F1 = 2*rac{precision*recall}{precision+recall}$$

- Применяется для оценки «вероятностной» классификации *
- «Качество» ранжирования объектов по вероятности принадлежности к целевому классу
- Доля «правильно» отранжированных пар
- Вероятность встретить объект целевого класса раньше, чем объект нецелевого класса

ROC

$$TPR = \frac{True \, positives}{True \, positives + False \, negatives}$$

$$FPR = \frac{False \, positives}{False \, positives + True \, negatives}$$

ROC

• Как оценить кривую численно?

- Как оценить кривую численно?
- Измерить площадь под кривой Area Under Curve

• Что если классификация всё же не вероятностная?

- Что если классификация всё же не вероятностная?
- Строим кривую по трем точкам

3. Пример

Выбираем, что оптимизировать (на примере рекомендаций)

Что можем делать

- Прогнозировать, какие товары будут куплены
- Максимизировать прибыль
- Остается вопрос: какие прогнозы нужны и как их использовать, чтобы денег стало больше?

Максимизация количества покупок

Товар 1	Товар 2	Товар 3	Товар 4
---------	---------	---------	---------

Максимизация количества покупок

Максимизация дохода

Товар 1	Товар 2	Товар 3	Товар 4
---------	---------	---------	---------

Вероятность	p_1	p ₂	p_3	p ₄
Цена	c_{1}	C ₂	c_{3}	C ₄

Максимизация дохода

Puma Ветровка 3 490 руб.

Crocs Сланцы 1 990 руб.

Топу-р Слипоны 1 999 руб. **1 590 руб.**

Champion Брюки спортивные 3 599 руб. 1 970 руб.

Вероятность	0.05	0.02	0.015	0.009
Цена	3490	1990	1590	1970

Максимизация прибыли

Puma Ветровка 3 490 руб.

Crocs Сланцы 1 990 руб.

Топу-р Слипоны 1 999 руб. 1 590 руб.

Champion Брюки спортивные 3 599 руб. 1 970 руб.

Вероятность	0.05	0.02	0.015	0.009
Цена	3490	1990	1590	1970
Маржа	0.1	0.4	0.4	0.2

Мини-задача

Как изменится построение модели, если нам нужно максимизировать количество просмотренных пользователем товаров?