

Daffodil International University

Lab Report

Course Code: CSE 322

Course Title: Data Mining and Machine Learning Lab.

<u>Submitted to:</u>

Nasima Islam Bithi

Lecturer

Department of CSE, DIU.

Submitted by:

Md Ashikur Rahman

ID:201-15-3768

Section: PC-R

Department of CSE

Daffodil International University.

First, I downloaded the "vote" dataset from website. In this dataset :17 attribute with class attribute. In this dataset the output attribute called class, has two values: 'democrat', and 'republican' showing the vote of a voter.

I use Weka Data Mining software.

Step:1

Data Pre-processing:

I open the "vote" dataset in Weka data mining software. After downloading the dataset of the congressional voting record of 1984, I load the dataset (arff format) on Weka explorer.

*Data Visualization:

*Missing Value:

In this dataset there are some missing values.

*Handle Missing Value:

We can handle missing value with some ways:

- *ReplaceMissingValues
- $\hbox{* Replace Missing Values With User Constant}\\$
- * ReplaceWithMissingValues

Hare I use ReplaceMissingValues Algorithm for remove missing values.

Now in this dataset there has no missing values.

*Duplicate Value:

After load dataset, I saw that it has some Duplicates values. In this time, I solve these things by using the **RemoveDuplicate Algorithm.**

Before Remove Duplicate Values:

After Remove Duplicate Values:

*Select the 12 best Attributes:

We can find our best attributes from "Select attributes" option.

Hare I use **Algorithm: InfoGainAtttributeEval** and **SelectMethod: Ranker** for select best attribute.

We can reomove:

- 1. handicapped-infants
- 11. synfuels-corporation-cutback
- 16. export-administration-act-south-africa
- 10. immigration
- 2. water-project-cost-sharing

These attribute from dataset. Because they are less priorities.

*Remove Attributes:

After applying the methods, we find out best 12 attributes. They are 4,3,5,14,12,9,8,15,11,13,16,7 no attribute. Now I am going to remove other attributes form the dataset. After remove the low-value attribute the data set will be like this:

In this dataset there are 12 best Attributes.

Step:2

Apply precisely 4 different classification Algorithms

*Apply 1st Algorithm: J48 (Without Changing Parameter)

In classification we apply some algorithm for find our best model. We need high accuracy model.

First, I apply the **Tree algorithm: J84**. I use 80% data for training and 20% data for testing.

*Algorithm: J48 (tree)

*Accuracy: 94.2529 %

Without changing any parameter.

*J48 (With Changing Parameter)

Now I change some parameter:

Before:

confidenceFactor: 0.25

unpruned: False

After:

confidenceFactor: 0.5

unpruned: True

After changing the value of parameters our accuracy is increases.

*Accuracy: 95.4023 %

Apply 2nd Algorithm: IBk (lazy)

*Algorithm: IBk (lazy)

*Accuracy: 91.954 %

Without changing any parameter.

Now if I make some changes:

After changes parameters:

crossValidate: True

numDecimalPlaces: 3

There is no change in accuracy.

*Decision tree for j48(tree) Algorithm:

Step:03

<u>Calculate for each model the accuracy, precision, recall, F1-score for the class 'democrat':</u>

For 1st Algorithm:

*J48 (Without Changing Parameter):

*Confusion matrix:

48	4
1	34

Hare:

TP=48

TN=34

FP=1

FN=4

1.Accuracy: (48+34)/ (48+34+1+4) =94.2529%

2.Precision: (48)/ (48+1) = 0.975

3.Recall: (48)/ (48+4) = 0.9230

4.F1-Score: (2*0.975*0.9230)/(0.975+0.9230)=0.9482

*J48 (With Changing Parameter):

*Confusion matrix:

49	3
1	34

Hare:

TP=49

TN=34

FP=1

FN=3

1.Accuracy: (49+34)/ (49+34+1+3) = 95.4023%

2.Precision: (49)/ (49+1) = 0.98

3.Recall: (49)/ (49+3) = 0.9423

4.F1-Score: (2*0.98*0.9423)/(0.98+0.9423)=0.9607

For 2nd Algorithm:

*IBk (Without changing any parameter)

*Confusion matrix:

45	7
0	35

Hare:

TP=45

TN=35

FP=0

FN=7

1.Accuracy: (45+35)/ (45+35+0+7) = 91.954%

2.Precision: (45)/(45+0) = 1

3.Recall: (45)/ (45+7) = 0.8653

4.F1-Score: (2*1*0.8653)/ (1+0.8653) =0.9277

After change parameters there are no change in accuracy, precision, recall, F1-score for the class 'democrat'.

Step:4

Choose the best, the second best and the third best model from step (2):

<u>Best Model:</u> J48 (With Changing Parameter) because this model has high accuracy between 4 model

<u>Second Best Model:</u> J48 (With Changing Parameter) because this model has second high accuracy between 4 model.

Third Best Model: IBk because this model has low accuracy between 4 model.

Step:5

If I analysis from the decision tree generated by J48 algorithm, three characteristic of democrat voter are physician-fee-freez, mx-missile and adoption-of-the-budget-resolution.

The association rules that I have used are given below:

- 1. physician-fee-freeze=n export-administration-act-south-africa=y 172 ==> Class=democrat 168.
- 2. physician-fee-freeze=n 179 ==> Class=democrat 175.
- 3. physician-fee-freeze=n 179 ==> export-administration-act-south-africa=y Class=democrat 16
- 4. adoption-of-the-budget-resolution=y 183 ==> export-administration-actsouth-africa=y 178

Thank You

