Theorems on the Division of Integers

Theorem (Division Theorem). For any integer b and any positive integer a, there exist a unique pair of integers (q, r) such that $0 \le r < a$ and b = aq + r.

Definition (Divisibility Relation). a divides b, a|b, if and only if the division theorem implies b = aq + r where r = 0.

Theorem (Division of a Linear Combination). If a, b, and c are integers so c|a and c|b, then c|as + bt for any integers s and t.

Definition (GCD). The greatest common divisor of a and b, $gcd(a,b) = max\{d : d \in \mathbb{Z} \text{ and } d|a \text{ and } d|b\}$.

Theorem (GCD bounds). For every pair of positive integers (a,b), $1 \le \gcd(a,b) \le \min(a,b)$, where $\min(a,b)$ is the minimum of a and b.

Theorem (GCD Duality Theorem). $gcd(a, b) = min\{as + bt : (s, t) \in \mathbb{Z} \times \mathbb{Z}, as + bt > 0\}$

Theorem (GCD--Divisibility distribution law). $c|\gcd(a,b)$ if and only if (c|a and c|b)

Theorem (GCD remainder theorem). If b = aq + r where q and r are given by the Division Theorem, then either

$$r = 0$$
 and $gcd(a, b) = a$, or $0 < r$ and $gcd(a, b) = gcd(a, r)$.

Theorem (Euclid's algorithm theorem). If you recursively apply the GCD remainder theorem to a pair of integers, one of the two numbers will eventually become 0, and the other will be the GCD of the original two numbers.

Theorem (Associativity of GCD). Suppose we have an infinite sequence of positive integers, a_1, a_2, a_3, \ldots

$$\gcd(a_1 \dots a_n) = \gcd(\gcd(a_1 \dots a_{n-1}), a_n).$$

Definition (Relatively Prime). x and y are relatively prime to each other if and only if gcd(x,y) = 1.

Theorem (Division with Relative Primes). (1) If gcd(a, b) = 1 and a|bc, then a|c. (2) If gcd(a, b) = 1 and a|c and b|c, then ab|c.

Definition (Prime). *p* is prime if and only if $\{x : x \in \mathbb{N} \text{ and } x | p\} = \{1, p\}$.

Theorem (Euclid's lemma). If p is prime and p|ab then p|a or p|b.

Theorem (General Euclid's lemma). If p is prime and $p \mid \prod_{k=1}^{n} a_i$, then $p \mid a_k$ for some k.

Theorem (Prime Factorization Theorem, Fundamental Theorem of Arithmetic). Every integer $a \ge 2$ can be written a product of prime numbers

$$a = \prod_{i=1}^{n} p_i.$$

This product is unique, except for the order of the primes.

Theorem. There are infinitely many prime numbers.