

考研数学真题错题整理

参考 2026 版《考研数学这十年》

作者: Guangchen Jiang

时间: 2025/12/31

版本: 4.5

目录

第一章	章 高数	1
1.1	1 极限	1
1.2	2 一元函数微分学	7
1.3	3 一元函数积分学	11
1.4	4 微分方程	11
1.5	5 多元函数微分学	11
1.6	5 多元函数积分学	11
1.7	7 无穷级数	11
₩	w and	10
	章 线代	12
	1 行列式	
2.2	2 矩阵	13
2.3	3 向量与线性方程组	15
2.4	4 矩阵的特征值和特征向量	22
2.5	5 二次型	27
	章 概率	31
3.1	1 随机事件和概率	31
3.2	2 随机变量及其分布	32
3.3	3 多维随机变量及其分布	34
3.4	4 随机变量的数字特征	37
3.5	5 大数定律与中心极限定理	40
3.6	5 数理统计的基本概念	40
3.7	7 参数估计	40
附录 🛭	A 答案	41

第一章 高数

1.1 极限

1. 【P2-1 (24-2)】已知数列 $\{a_n\}$ $(a_n \neq 0)$. 若 $\{a_n\}$ 发散,则()

(A) $\left\{a_n + \frac{1}{a_n}\right\}$ 发散.

(B) $\left\{a_n - \frac{1}{a_n}\right\}$ 发散.

(C) $\left\{ e^{a_n} + \frac{1}{e^{a_n}} \right\}$ 发散.

(D) $\left\{ e^{a_n} - \frac{1}{e^{a_n}} \right\}$ 发散.

答案 P238; 【十年真题】-考点: 极限的概念与性质-1

2. 【P2-2 (22-1,2)】 设数列 $\{x_n\}$ 满足 $-\frac{\pi}{2} \leqslant x_n \leqslant \frac{\pi}{2}$, 则 ()

- (A) 当 $\lim_{n\to\infty} \cos(\sin x_n)$ 存在时, $\lim_{n\to\infty} x_n$ 存在.
- (B) 当 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在时, $\lim_{n\to\infty} x_n$ 存在.
- (C) 当 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在时, $\lim_{n\to\infty}\sin x_n$ 存在, 但 $\lim_{n\to\infty}x_n$ 不一定存在.
- (D) 当 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在时, $\lim_{n\to\infty} \cos x_n$ 存在, 但 $\lim_{n\to\infty} x_n$ 不一定存在.

答案 P238;【十年真题】-考点:极限的概念与性质-2

3. 【P4-4 (99-2)】对任意给定的 $\varepsilon \in (0,1)$,总存在正整数 N,当 $n \ge N$ 时,恒有 $|x_n - a| \le 2\varepsilon$ " 是数列 $\{x_n\}$ 收敛于 a 的 ()

(A) 充分条件但非必要条件.

(B) 必要条件但非充分条件.

(C) 充分必要条件.

(D) 既非充分条件又非必要条件.

答案 P238;【真题精选】-考点:极限的概念与性质-4

4. **[**P4-2 (23-3)**]** $\lim_{x \to \infty} x^2 \left(2 - x \sin \frac{1}{x} - \cos \frac{1}{x} \right) = \underline{\qquad}$

答案 P238;【十年真题】- 考点一: 函数极限的计算-2

5. **[**P4-3 (22-2,3)**]**
$$\lim_{x\to 0} \left(\frac{1+e^x}{2}\right)^{\cot x} = \underline{\qquad}$$

答案 P238;【十年真题】-考点一:函数极限的计算-3

6. 【P4-7 (16-2,3)】 求极限
$$\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$$
.

答案 P239;【十年真题】-考点一:函数极限的计算-7

7. **[**P4-2 (25-2)**]**
$$\lim_{n\to\infty} \frac{1}{n^2} \left[\ln \frac{1}{n} + 2 \ln \frac{2}{n} + \dots + (n-1) \ln \frac{n-1}{n} \right] = \underline{\qquad}$$

答案 P239; 【十年真题】- 考点二: 数列极限的计算-2

8. **[**P4-5 (19-1,3)**]**
$$\overset{\text{th}}{\boxtimes} a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\ldots).$$

- (1) 证明: 数列 $\{a_n\}$ 单调减少, 且 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\ldots)$;
- (2) $\Re \lim_{n\to\infty} \frac{a_n}{a_{n-1}}$.

答案 P239;【十年真题】-考点二:数列极限的计算-5

9. 【P4-6 (18-1,2,3)】设数列
$$\{x_n\}$$
 满足: $x_1 > 0$, $x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, ...)$. 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n \to \infty} x_n$.

答案 P240;【十年真题】-考点二:数列极限的计算-6

10. 【P6-例 1 (2)】
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1+\tan x}}{x \tan^2 x} = \underline{\hspace{1cm}}$$
.

答案 P6;【方法探究】-考点一:函数极限的计算-例1(2)

11. 【P7-变式 1.1 (97-2)】求极限
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x - 1} + x + 1}{\sqrt{x^2 + \sin x}}$$
.

答案 P240; 【方法探究】-考点一:函数极限的计算-变式 1.1

12. 【P8-变式 3 (98-1)】求极限

$$\lim_{n\to\infty} \left(\frac{\sin\frac{\pi}{n}}{n+1} + \frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin\pi}{n+\frac{1}{n}} \right).$$

答案 P240; 【方法探究】-考点二: 数列极限的计算-变式3

13. 【P8-变式 4.1 (96-1)】设 $x_1 = 10$, $x_{n+1} = \sqrt{6 + x_n}$ (n = 1, 2, ...). 试证数列 $\{x_n\}$ 极限存在, 并求此极限.

答案 P241; 【方法探究】-考点二: 数列极限的计算-变式 4.1

14. 【P8-变式 4.2 (11-1, 2)】 (1) 证明: 对任意的正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ 成立; (2) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛. 注 主要错的是 (2)

答案 P241;【方法探究】-考点二:数列极限的计算-变式 4.2

15. **[**P9-8 (97-1)**]**
$$\lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)\ln(1 + x)} = \underline{\hspace{1cm}}.$$

答案 P241;【真题精选】-考点一:函数极限的计算-8

16. 【P9-15 (08-3)】计算

$$\lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x}.$$

答案 P242;【真题精选】-考点一:函数极限的计算-15

17. 【P10-1 (12-2)】设 $a_n > 0$ (n = 1, 2, ...), $S_n = a_1 + a_2 + \cdots + a_n$, 则数列 $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛的 ()

(A) 充分必要条件.

(B) 充分非必要条件.

(C) 必要非充分条件.

(D) 既非充分也非必要条件.

答案 P243;【真题精选】-考点二:数列极限的计算-1

18. 【P10-2 (04-2)】 $\lim_{n\to\infty} \ln \sqrt[n]{\left(1+\frac{1}{n}\right)^2 \left(1+\frac{2}{n}\right)^2 \cdots \left(1+\frac{n}{n}\right)^2}$ 等于 ()

(A) $\int_{1}^{2} \ln^2 x \, \mathrm{d}x.$

(B) $2\int_{1}^{2} \ln x \, \mathrm{d}x.$

(C) $2\int_{1}^{2} \ln(1+x) dx$.

(D) $\int_{1}^{2} \ln^{2}(1+x) dx$.

答案 P243;【真题精选】-考点二:数列极限的计算-2

19. **[**P10-4 (02-2)**]** $\lim_{n\to\infty} \frac{1}{n} \left[\sqrt{1+\cos\frac{\pi}{n}} + \sqrt{1+\cos\frac{2\pi}{n}} + \ldots + \sqrt{1+\cos\frac{n\pi}{n}} \right] = \underline{\hspace{1cm}}.$

答案 P243;【真题精选】-考点二:数列极限的计算-4

20. 【P10-6 (13-2)】设函数 $f(x) = \ln x + \frac{1}{x}$.

- (1) 求 f(x) 的最小值;
- (2) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$. 证明 $\lim_{n \to \infty} x_n$ 存在, 并求此极限.

注 主要错的是(2)

答案 P243;【真题精选】-考点二:数列极限的计算-6

21. 【P10-8 (99-2)】设 f(x) 是区间 $[0, +\infty)$ 上单调减少且非负的连续函数.

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx \ (n = 1, 2, ...),$$

证明数列 $\{a_n\}$ 的极限存在.

答案 P243; 【真题精选】-考点二: 数列极限的计算-8

22. 【P11-3 (23-2)】已知数列 $\{x_n\}$, $\{y_n\}$ 满足 $x_1=y_1=\frac{1}{2}$, $x_{n+1}=\sin x_n$, $y_{n+1}=y_n^2$ $(n=1,2,\ldots)$, 则当 $n\to\infty$ 时 ()

(A) x_n 是 y_n 的高阶无穷小.

(B) $y_n \in x_n$ 的高阶无穷小.

(C) x_n 与 y_n 是等价无穷小.

(D) x_n 与 y_n 是同阶但不等价的无穷小.

答案 P244; 【十年真题】- 考点一: 无穷小的比较-3

23. 【P11-6 (20-2)】 求曲线 $y = \frac{x^{1+x}}{(1+x)^x}$ (x > 0) 的斜渐近线方程.

答案 P244; 【十年真题】- 考点二: 平面曲线的渐近线-6

24. 【P14-2 (12-1,2,3)】 曲线 $y = \frac{x^2 + x}{x^2 - 1}$ 渐近线的条数为 ()

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

答案 P245;【真题精选】-考点二:平面曲线的渐近线-2

25. 【P14-3 (07-1,3)】曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 ()

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

答案 P245;【真题精选】-考点二:平面曲线的渐近线-3

26. 【P14-8 (00-3)】求函数 $f(x) = (x-1)e^{\frac{\pi}{2} + \arctan x}$ 图形的渐近线.

答案 P246;【真题精选】-考点二:平面曲线的渐近线-8

27. 【P14-4 (07-2)】函数 $f(x) = \frac{(e^{\frac{1}{x}} + e) \tan x}{x(e^{\frac{1}{x}} - e)}$ 在区间 $[-\pi, \pi]$ 上的第一类间断点是 x = ()

(A) 0.

(B) 1.

(C) $-\frac{\pi}{2}$.

(D) $\frac{\pi}{2}$.

答案 P246;【真题精选】-考点三:函数的连续性与间断点-4

28. 【P14-6 (95-2)】设 f(x) 和 $\varphi(x)$ 在 $(-\infty, +\infty)$ 上有定义, f(x) 为连续函数, 且 $f(x) \neq 0$, $\varphi(x)$ 有间断点, 则 ()

(A) $\varphi[f(x)]$ 必有间断点.

(B) $[\varphi(x)]^2$ 必有间断点.

(C) $f[\varphi(x)]$ 必有间断点.

(D) $\frac{\varphi(x)}{f(x)}$ 必有间断点.

答案 P246;【真题精选】-考点三:函数的连续性与间断点-6

29. 【P14-9 (01-2)】 求极限 $\lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t - \sin x}}$,记此极限为 f(x),求函数 f(x) 的间断点并指出其类型.

答案 P247;【真题精选】-考点三:函数的连续性与间断点-9

30. 【P15-1 (20-3)】 没 $\lim_{x \to a} \frac{f(x) - a}{x - a} = b$,则 $\lim_{x \to a} \frac{\sin f(x) - \sin a}{x - a} = ($)

(A) $b \sin a$.

(B) $b\cos a$.

(C) $b \sin f(a)$.

(D) $b \cos f(a)$.

答案 P247; 【十年真题】- 考点一: 已知极限求另一极限 - 1

1.2 一元函数微分学

1. 【P18-1 (25-2)】设函数 f(x) 连续, 给出下列四个条件:

- ① $\lim_{x\to 0} \frac{|f(x)| f(0)}{x}$ 存在; ② $\lim_{x\to 0} \frac{f(x) f(0)}{x}$ 存在;
- ③ $\lim_{x\to 0} \frac{|f(x)|}{x}$ 存在; ④ $\lim_{x\to 0} \frac{|f(x)|}{x}$ 存在.

 $x \to 0$ $x \to 0$ 其中能得到 "f(x) 在 x = 0 处可导"的条件的个数是()

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.

答案 P249; 【十年真题】- 考点: 导数与微分的概念-1

- 2. 【P18-7 (16-1)】已知函数 $f(x) = \begin{cases} x, & x \le 0, \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \dots, \end{cases}$ 则 ()
 - (A) x = 0 是 f(x) 的第一类间断点.
- (B) x = 0 是 f(x) 的第二类间断点.
- (C) f(x) 在 x = 0 处连续但不可导. (D) f(x) 在 x = 0 处可导.

答案 P250; 【十年真题】- 考点: 导数与微分的概念 - 7

3. 【P18-8 (25-2,3)】设函数 f(x) 在 x = 0 处连续, 且 $\lim_{x \to 0} \frac{xf(x) - e^{2\sin x} + 1}{\ln(1+x) + \ln(1-x)} = -3$, 证明 f(x) 在 x = 0 处可导, 并求 f'(0).

答案 P250;【十年真题】-考点:导数与微分的概念-8

4. 【P18-9 (22-2)】已知函数 f(x) 在 x = 1 处可导,且

$$\lim_{x \to 0} \frac{f(e^{x^2}) - 3f(1 + \sin^2 x)}{x^2} = 2,$$

求 f'(1).

答案 P250;【十年真题】-考点:导数与微分的概念-9

- 5. 【P20-1 (07-1,2,3)】设函数 f(x) 在 x = 0 处连续, 下列命题错误的是 ()

 - (A) $\ddot{a} \lim_{x \to 0} \frac{f(x)}{x}$ fear, yif yif
- (C) $\ddot{a} \lim_{x \to 0} \frac{f(x)}{x}$ 存在,则 f'(0) 存在. (D) $\ddot{a} \lim_{x \to 0} \frac{f(x) f(-x)}{x}$ 存在,则 f'(0) 存在.
- 答案 P250; 【真题精选】-考点:导数与微分的概念-1
- 6. 【P20-3 (05-1,2)】 设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}}$,则 f(x) 在 $(-\infty, +\infty)$ 内 ()
 - (A) 处处可导.

(B) 恰有一个不可导点.

(C) 恰有两个不可导点.

- (D) 至少有三个不可导点.
- 答案 P251;【真题精选】-考点:导数与微分的概念-3
- 7. 【P21-9 (03-3)】设函数 $f(x) = \begin{cases} x^{\lambda} \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ 其导函数在 x = 0 处连续, 则 λ 的取值范围是
- 答案 P251;【真题精选】-考点:导数与微分的概念-9
- 8. 【P21-2 (22-2)】已知函数 y = y(x) 由方程

$$x^2 + xy + y^3 = 3$$

确定,则 y''(1) = .

答案 P251;【十年真题】-考点一:函数的求异与微分法则-2

9. 【P21-1 (21-1)】设函数 $f(x) = \frac{\sin x}{1+x^2}$ 在 x = 0 处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$,则()

(A)
$$a = 1, b = 0, c = -\frac{7}{6}$$
.

(B)
$$a = 1, b = 0, c = \frac{7}{6}$$
.

(C)
$$a = -1, b = -1, c = -\frac{7}{6}$$
.

(D)
$$a = -1, b = -1, c = \frac{7}{6}$$
.

答案 P251;【十年真题】-考点二: 高阶导数的计算-1

答案 P251;【十年真题】-考点二: 局阶导数的计算-7

11. 【P24-例 (2)】设函数 $y = x^2 \sin 2x$, 则 $y^{(5)}(0) =$ _____.

答案 P24;【方法探究】-考点二: 高阶导数的计算-例(2)

12. 【P25-7 (97-3)】设 $y = f(\ln x)e^{f(x)}$, 其中 f 可微, 则 $\mathrm{d}y = \underline{\hspace{1cm}}$.

答案 P252;【真题精选】-考点一:函数的求导与微分法则-7

13. 【P26-2 (20-3)】曲线 $x + y + e^{2xy} = 0$ 在点 (0, -1) 处的切线方程为 _____.

答案 P254;【十年真题】-考点一:平面曲线的切线与法线-2

14. 【P26-1 (23-2)】设函数 $f(x) = (x^2 + a)e^x$. 若 f(x) 没有极值点, 但曲线 y = f(x) 有拐点, 则 a 的取值范围是 ()

(A)
$$[0, 1)$$
.

(B)
$$[1, +\infty)$$
.

(C)
$$[1, 2)$$

(D)
$$[2, +\infty)$$
.

答案 P254; 【十年真题】-考点二: 利用导数判断函数的性质-1

15. 【P26-2 (22-2)】设函数 f(x) 在 $x = x_0$ 处具有 2 阶导数,则()

- (A) 当 f(x) 在 x_0 的某邻域内单调增加时, $f'(x_0) > 0$.
- (B) 当 $f'(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内单调增加.
- (C) 当 f(x) 在 x_0 的某邻域内是凹函数时, $f''(x_0) > 0$.
- (D) 当 $f''(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内是凹函数.

答案 P254; 【十年真题】-考点二: 利用导数判断函数的性质-2

16. 【P26-4 (19-1)】设函数 $f(x) = \begin{cases} x|x|, & x \le 0, \\ x \ln x, & x > 0, \end{cases}$ 则 x = 0 是 f(x) 的 ()

(A) 可导点, 极值点.

(B) 不可导点, 极值点.

(C) 可导点, 非极值点.

(D) 不可导点, 非极值点.

答案 P254;【十年真题】-考点二:利用导数判断函数的性质-4

17. **【P26-5** (16-2,3)**】**设函数 f(x) 在 $(-\infty, +\infty)$ 内连续, 其导函数的图形如下图所示, 则 ()

- (A) 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 2 个拐点.
- (B) 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 3 个拐点.
- (C) 函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 1 个拐点.
- (D) 函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 2 个拐点.

答案 P254; 【十年真题】-考点二: 利用导数判断函数的性质-5

- 18. 【P26-6 (19-2,3)】 曲线 $y = x \sin x + 2 \cos x \left(-\frac{\pi}{2} < x < \frac{3\pi}{2} \right)$ 的拐点坐标为 ______.
- 答案 P254; 【十年真题】-考点二: 利用导数判断函数的性质-6
- 19. 【P26-9 (21-2)】已知函数 $f(x) = \frac{x|x|}{1+x}$, 求曲线 y = f(x) 的凹凸区间及渐近线. 答案 P254; 【十年真题】- 考点二: 利用导数判断函数的性质 9

- 1.3 一元函数积分学
- 1.4 微分方程
- 1.5 多元函数微分学
- 1.6 多元函数积分学
- 1.7 无穷级数

第二章 线代

2.1 行列式

1. 【P146-4 (20-1,2,3)】行列式 $\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}$

答案 P323; 【十年真题】-考点: 具体行列式的计算-4

2. 【P148-例 2 (1)】 n 阶行列式 $\begin{vmatrix} 1 & -1 \\ 2 & a & -1 \\ 3 & a & -1 \\ \vdots & \ddots & \ddots \\ n-1 & & a & -1 \\ n & & & a \end{vmatrix} = \underline{\qquad}$

答案 P148; 【方法探究】-考点: 具体行列式的计算-例2(1)

3. 【P149-4 (96-5)】 5 阶行列式 $\begin{vmatrix} 1-a & a & 0 & 0 & 0 \\ -1 & 1-a & a & 0 & 0 \\ 0 & -1 & 1-a & a & 0 \\ 0 & 0 & -1 & 1-a & a \\ 0 & 0 & 0 & -1 & 1-a \end{vmatrix} = \underline{\qquad}.$

答案 P324;【真题精选】-考点: 具体行列式的计算-4

2.2 矩阵

1. 【P150-3 (24-1)】 设实矩阵
$$\mathbf{A} = \begin{pmatrix} a+1 & a \\ a & a \end{pmatrix}$$
. 若对任意实向量 $\mathbf{\alpha} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\mathbf{\beta} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $(\mathbf{\alpha}^{\mathrm{T}} \mathbf{A} \mathbf{\beta})^2 < \mathbf{\alpha}^{\mathrm{T}} \mathbf{A} \mathbf{\alpha} \cdot \mathbf{\beta}^{\mathrm{T}} \mathbf{A} \mathbf{\beta}$

都成立,则 a 的取值范围为 _____.

答案 P325;【十年真题】-考点一:矩阵的运算-3

2. 【P150-4 (22-1)】已知矩阵 A 和 E-A 可逆, 其中 E 为单位矩阵. 若矩阵 B 满足 $[E-(E-A)^{-1}]B=A$, 则 B-A= ______.

答案 P325; 【十年真题】-考点一: 矩阵的运算-4

3. 【P150-1 (25-2)】下列矩阵中, 可以经过若干初等行变换得到矩阵 $\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 的是()

(A)
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$
. (B) $\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 5 \\ 1 & 1 & 1 & 3 \end{pmatrix}$.

(C)
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
. (D) $\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 2 & 3 \\ 2 & 3 & 4 & 6 \end{pmatrix}$.

答案 P325;【十年真题】-考点二:矩阵的初等变换与初等矩阵-1

4. 【P150-4 (22-2,3)】设 *A* 为 3 阶矩阵, 交换 *A* 的第 2 行和第 3 行, 再将第 2 列的 -1 倍加到第 1 列, 得 (-2 1 -1)

到
$$\begin{pmatrix} -2 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
, 则 \boldsymbol{A}^{-1} 的迹 $\operatorname{tr}(\boldsymbol{A}^{-1}) = \underline{\qquad}$.

答案 P325;【十年真题】-考点二:矩阵的初等变换与初等矩阵-4

5. 【P150-2 (24-2)】设 \boldsymbol{A} 为 4 阶矩阵, \boldsymbol{A}^* 为 \boldsymbol{A} 的伴随矩阵. 若 $\boldsymbol{A}(\boldsymbol{A}-\boldsymbol{A}^*)=\boldsymbol{O}$, 且 $\boldsymbol{A}\neq\boldsymbol{A}^*$, 则 $r(\boldsymbol{A})$ 取 值为 ()

(A) 0或1.

(B) 1或3.

(C) 2或3.

(D) 1或2.

答案 P325; 【十年真题】- 考点三: 矩阵的秩与等价-2

6. 【P156-10 (95-1)】设 A 是 n 阶矩阵, 满足 $AA^{T} = E$ (E 是 n 阶单位矩阵, A^{T} 是 A 的转置矩阵), |A| < 0, 则 |A + E| = ______.

答案 P327;【真题精选】-考点一:矩阵的运算-10

7. 【P156-3 (01-3)】设

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a_{14} & a_{13} & a_{12} & a_{11} \\ a_{24} & a_{23} & a_{22} & a_{21} \\ a_{34} & a_{33} & a_{32} & a_{31} \\ a_{44} & a_{43} & a_{42} & a_{41} \end{pmatrix},$$

$$\mathbf{P}_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \mathbf{P}_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

A 可逆,则 $B^{-1} = ($)

(A) $A^{-1}P_1P_2$.

(B) $P_1 A^{-1} P_2$.

(C) $P_1 P_2 A^{-1}$.

(D) $P_2 A^{-1} P_1$.

答案 P327;【真题精选】-考点二:矩阵的初等变换与初等矩阵-3

8. 【P156-5 (08-1)】设 α , β 为 3 维列向量, 矩阵 $A = \alpha \alpha^{\mathrm{T}} + \beta \beta^{\mathrm{T}}$, 其中 α^{T} 为 α 的转置, β^{T} 为 β 的转 置. 证明:

- (1) $r(A) \leq 2$;
- (2) 若 α , β 线性相关, 则 r(A) < 2.

答案 P327;【真题精选】-考点三:矩阵的秩与等价-5

2.3 向量与线性方程组

1. 【P158-5 (23-2,3)】已知线性方程组

$$\begin{cases} ax_1 + x_3 = 1, \\ x_1 + ax_2 + x_3 = 0, \\ x_1 + 2x_2 + ax_3 = 0, \\ ax_1 + bx_2 = 2 \end{cases}$$

 $\begin{cases} ax_1 + x_3 = 1, \\ x_1 + ax_2 + x_3 = 0, \\ x_1 + 2x_2 + ax_3 = 0, \\ ax_1 + bx_2 = 2 \end{cases}$ 有解, 其中 a, b 为常数. 若 $\begin{vmatrix} a & 0 & 1 \\ 1 & a & 1 \\ 1 & 2 & a \end{vmatrix} = 4,$ 则 $\begin{vmatrix} 1 & a & 1 \\ 1 & 2 & a \\ a & b & 0 \end{vmatrix} = \underline{\qquad}.$

答案 P328;【十年真题】-考点一:线性方程组的解的情况及求解-5

2. 【P159-1 (18-1,2,3)】已知 a 是常数, 且矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{pmatrix}$ 可经初等列变换化为矩阵 $\mathbf{B} = \mathbf{B}$

$$\begin{pmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

- (2) 求满足 AP = B 的可逆矩阵 P.

答案 P328; 【十年真题】-考点二: 矩阵方程组的解的情况及求解-1

3. 【P159-2 (16-1)】设矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a - 1 & -2 \end{pmatrix},$$

当 a 为何值时, 方程 AX = B 无解、有唯一解、有无穷多解? 在有解时, 求解此方程.

答案 P328;【十年真题】-考点二:矩阵方程组的解的情况及求解-2

4. 【P160-变式 (04-1)】设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + \dots + x_n = 0, \\ 2x_1 + (2+a)x_2 + \dots + 2x_n = 0, \\ \vdots \\ nx_1 + nx_2 + \dots + (n+a)x_n = 0 \end{cases}$$
 $(n \ge 2),$

试问 a 为何值时, 该方程组有非零解, 并求出其通解.

答案 P329; 【方法探究】-考点一: 线性方程组的解的情况及求解-变式

5. 【P161-3 (98-3)】 齐次线性方程组

$$\begin{cases} \lambda x_1 + x_2 + \lambda^2 x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$$

的系数矩阵记为 A. 若存在 3 阶矩阵 $B \neq O$ 使得 AB = O, 则()

(A) $\lambda = -2 \, \mathbb{H}, |\mathbf{B}| = 0.$

(B) $\lambda = -2 \perp |\boldsymbol{B}| \neq 0$.

(C) $\lambda = 1 \perp |B| = 0$.

(D) $\lambda = 1 \perp |\boldsymbol{B}| \neq 0$.

答案 P330;【真题精选】-考点一:线性方程组的解的情况及求解-3

6. [P162-8 (00-2)]
$$\ \ \ \ \ \alpha = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix}, \ \boldsymbol{\gamma} = \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}, \boldsymbol{A} = \boldsymbol{\alpha} \boldsymbol{\beta}^{\mathrm{T}}, \boldsymbol{B} = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha}.$$

其中 $\boldsymbol{\beta}^{\mathrm{T}}$ 是 $\boldsymbol{\beta}$ 的转置, 求解方程

$$2\mathbf{B}^2\mathbf{A}^2\mathbf{x} = \mathbf{A}^4\mathbf{x} + \mathbf{B}^4\mathbf{x} + \mathbf{\gamma}.$$

答案 P331;【真题精选】-考点一:线性方程组的解的情况及求解-8

- 7. 【P162-1 (15-2,3)】设矩阵 $\mathbf{A} = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$,且 $\mathbf{A}^3 = \mathbf{O}$.
 - (1) 求 a 的值;
 - (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 其中 E 为 3 阶单位矩阵, 求 X.

答案 P332;【真题精选】-考点二: 矩阵方程组的解的情况及求解-1

- 8. 【P162-2 (14-1,2,3)】设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$, \mathbf{E} 为 3 阶单位矩阵.
 - (1) 求方程组 Ax = 0 的一个基础解系:
 - (2) 求满足 AB = E 的所有矩阵 B.

答案 P332;【真题精选】-考点二:矩阵方程组的解的情况及求解-2

9. 【P163-2 (23-1)】已知 n 阶矩阵 A, B, C 满足 ABC = O, E 为 n 阶单位矩阵. 记矩阵

$$\begin{pmatrix} O & A \\ BC & E \end{pmatrix}, \begin{pmatrix} AB & C \\ O & E \end{pmatrix}, \begin{pmatrix} E & AB \\ AB & O \end{pmatrix}$$

的秩分别为 $r_1, r_2, r_3, 则($)

(A) $r_1 \le r_2 \le r_3$.

(B) $r_1 \le r_3 \le r_2$.

(C) $r_3 \le r_1 \le r_2$.

(D) $r_2 \le r_1 \le r_3$.

答案 P333;【十年真题】-考点:向量组的线性相关性、线性表示及秩-2

10. 【P164-4 (22-1,2,3)】设

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}, \ \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ \lambda \end{pmatrix}, \ \boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix}.$$

若向量组 $\alpha_1, \alpha_2, \alpha_3$ 与 $\alpha_1, \alpha_2, \alpha_4$ 等价,则 λ 的取值范围是()

(A) $\{0, 1\}$.

(B) $\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -2\}.$

(C) $\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -1, \lambda \neq -2\}.$

(D) $\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -1\}.$

答案 P333;【十年真题】-考点:向量组的线性相关性、线性表示及秩-4

- 11. 【P164-5 (21-1)】已知 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, 记 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 k\beta_1$, $\beta_3 = \alpha_3 l_1\beta_1 l_2\beta_2$. 若 β_1 , β_2 , β_3 两两正交, 则 l_1 , l_2 依次为 ()
 - (A) $\frac{5}{2}, \frac{1}{2}$.

(B) $-\frac{5}{2}, \frac{1}{2}$.

(C) $\frac{5}{2}$, $-\frac{1}{2}$.

(D) $-\frac{5}{2}, -\frac{1}{2}$.

答案 P333;【十年真题】-考点:向量组的线性相关性、线性表示及秩-5

- 12. **【P168-4** (06-1,2,3)**】**设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为 n 维列向量, A 是 $m \times n$ 矩阵, 下列选项正确的是 ()

 - (B) **者** $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \ldots, A\alpha_s$ 线性无关.
 - (C) 若 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关, 则 $A\alpha_1, A\alpha_2, \ldots, A\alpha_s$ 线性相关.
 - (D) 若 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \ldots, A\alpha_s$ 线性无关.

答案 P335;【真题精选】-考点:向量组的线性相关性、线性表示及秩-4

- 13. 【P170-2 (25-2)】设 3 阶矩阵 \boldsymbol{A} , \boldsymbol{B} 满足 $r(\boldsymbol{A}\boldsymbol{B}) = r(\boldsymbol{B}\boldsymbol{A}) + 1$, 则 ()
 - (A) 方程组 (A + B)x = 0 只有零解.
 - (B) 方程组 Ax = 0 与方程组 Bx = 0 均只有零解.
 - (C) 方程组 Ax = 0 与方程组 Bx = 0 没有公共非零解.
 - (D) 方程组 ABAx = 0 与方程组 BABx = 0 有公共非零解.
- 答案 P336; 【十年真题】-考点: 线性方程组的解的结构-2
- 14. 【P170-3 (22-1)】设 A, B 为 n 阶矩阵, E 为单位矩阵. 若方程组 Ax = 0 与 Bx = 0 同解, 则()
- (A) 方程组 $\begin{pmatrix} A & O \\ E & B \end{pmatrix} y = 0$ 只有零解.
- (B) 方程组 $\begin{pmatrix} E & A \\ O & AB \end{pmatrix}$ y = 0 只有零解.
- (C) 方程组 $\begin{pmatrix} A & B \\ O & B \end{pmatrix} y = 0$ 与 $\begin{pmatrix} B & A \\ O & A \end{pmatrix} y = 0$ 同解.
- (D) 方程组 $\begin{pmatrix} AB & B \\ O & A \end{pmatrix} y = 0$ 与 $\begin{pmatrix} BA & A \\ O & B \end{pmatrix} y = 0$ 同解.
- 答案 P336; 【十年真题】-考点: 线性方程组的解的结构-3
- 15. 【P170-4 (21-2)】设 3 阶矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$, $\mathbf{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$. 若向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 可以由向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 线性表出,则()
 - (A) Ax = 0 的解均为 Bx = 0 的解.
- (B) $\mathbf{A}^{\mathrm{T}}\mathbf{x} = \mathbf{0}$ 的解均为 $\mathbf{B}^{\mathrm{T}}\mathbf{x} = \mathbf{0}$ 的解.
- (C) Bx = 0 的解均为 Ax = 0 的解.
- (D) $\mathbf{B}^{\mathrm{T}}\mathbf{x} = \mathbf{0}$ 的解均为 $\mathbf{A}^{\mathrm{T}}\mathbf{x} = \mathbf{0}$ 的解.

答案 P336; 【十年真题】-考点:线性方程组的解的结构-4

16. 【P170-5 (21-3)】设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$ 为 4 阶正交矩阵. 若矩阵 $\mathbf{B} = \begin{pmatrix} \boldsymbol{\alpha}_1^{\mathrm{T}} \\ \boldsymbol{\alpha}_2^{\mathrm{T}} \\ \boldsymbol{\alpha}_3^{\mathrm{T}} \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, k 表示

任意常数,则线性方程组 $Bx = \beta$ 的通解 x = ()

(A) $\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 + k\boldsymbol{\alpha}_1$.

(B) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 + k\boldsymbol{\alpha}_2$.

(C) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_4 + k\boldsymbol{\alpha}_3$.

(D) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + k\boldsymbol{\alpha}_4$.

答案 P336; 【十年真题】- 考点: 线性方程组的解的结构-5

17. 【P171-9 (25-2)】设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. 若 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,且 $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$,则方程组 $Ax = \alpha_1 + 4\alpha_4$ 的通解为 x =

答案 P337; 【十年真题】- 考点: 线性方程组的解的结构 - 9

18. 【P172-变式 (07-1,2,3)】设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 + 2x_2 + ax_3 = 0, \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解.

答案 P337; 【方法探究】-考点: 线性方程组的解的结构-变式

19. 【P173-1 (11-1,2)】设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 为 A 的伴随矩阵. 若 $(1,0,1,0)^{\mathrm{T}}$ 是方程组 Ax = 0 的一个基础解系,则 $A^*x = 0$ 的基础解系可为()

(A) α_1, α_3 .

(B) α_1, α_2 .

(C) $\alpha_1, \alpha_2, \alpha_3$.

(D) $\alpha_2, \alpha_3, \alpha_4$.

答案 P338;【真题精选】-考点:线性方程组的解的结构-1

20. 【P173-4 (03-1)】设有齐次线性方程组 Ax = 0 和 Bx = 0, 其中 A, B 均为 $m \times n$ 矩阵, 现有 4 个命 题:

- ② 若 $r(A) \ge r(B)$, 则 Ax = 0 的解均是 Bx = 0 的解;
- ③ 若 Ax = 0 与 Bx = 0 同解, 则 r(A) = r(B);
- ④ 若 r(A) = r(B), 则 Ax = 0 与 Bx = 0 同解.

以上命题中正确的是()

- (A) (1) (2). (B) (1) (3).
- (C) (2) (4).
- (D) (3) (4).

答案 P338;【真题精选】-考点:线性方程组的解的结构-4

21. 【P173-7 (04-4)】设 $\pmb{A} = (a_{ij})_{3\times 3}$ 是实正交矩阵, 且 $a_{11} = 1, \pmb{b} = (1,0,0)^{\mathrm{T}}$, 则线性方程组 $\pmb{A}\pmb{x} = \pmb{b}$ 的解是 _____.

答案 P338;【真题精选】-考点:线性方程组的解的结构-7

22. 【P173-8 (98-1)】已知线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1,2n}x_{2n} = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2,2n}x_{2n} = 0, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n,2n}x_{2n} = 0 \end{cases}$$

的一个基础解系为 $(b_{11},b_{12},\cdots,b_{1,2n})^{\mathrm{T}}$, $(b_{21},b_{22},\cdots,b_{2,2n})^{\mathrm{T}}$, \cdots , $(b_{n1},b_{n2},\cdots,b_{n,2n})^{\mathrm{T}}$, 则线性方程 组

$$\begin{cases} b_{11}y_1 + b_{12}y_2 + \dots + b_{1,2n}y_{2n} = 0, \\ b_{21}y_1 + b_{22}y_2 + \dots + b_{2,2n}y_{2n} = 0, \\ \dots \\ b_{n1}y_1 + b_{n2}y_2 + \dots + b_{n,2n}y_{2n} = 0 \end{cases}$$

的通解为

答案 P338;【真题精选】-考点:线性方程组的解的结构-8

23. 【P173-9 (93-1)】设 n 阶矩阵 A 的各行元素之和均为零, 且 A 的秩为 n-1, 则线性方程组 Ax=0 的通解为_____.

答案 P338;【真题精选】-考点:线性方程组的解的结构-9

24. 【P173-10 (05-1,2)】已知 3 阶矩阵 \boldsymbol{A} 的第一行是 (a,b,c), a,b,c 不全为零, 矩阵 $\boldsymbol{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ (k

为常数), 且 AB = O, 求线性方程组 Ax = 0 的通解.

答案 P338;【真题精选】-考点:线性方程组的解的结构-10

- 25. 【P174-12 (94-1)】设四元线性齐次方程组 (I) 为 $\begin{cases} x_1 + x_2 = 0, \\ x_2 x_4 = 0. \end{cases}$ 又已知某线性齐次方程组 (II) 的 通解为 $k_1(0,1,1,0)^{\mathrm{T}} + k_2(-1,2,2,1)^{\mathrm{T}}$.
 - (1) 求线性方程组(I)的基础解系;
 - (2) 问线性方程组 (I) 和 (II) 是否有非零公共解? 若有,则求出所有的非零公共解. 若没有,则说明理由.

答案 P339; 【真题精选】-考点:线性方程组的解的结构-12

2.4 矩阵的特征值和特征向量

- 1. **【**P177-1 (24-1)**】**设 *A* 是秩为 2 的 3 阶矩阵, α 是满足 $A\alpha = 0$ 的非零向量. 若对满足 $\beta^{T}\alpha = 0$ 的 3 维列向量 β , 均有 $A\beta = \beta$, 则 ()
 - (A) A^3 的迹为 2.

(B) **A**³ 的迹为 5.

(C) A^2 的迹为 8.

(D) A^2 的迹为 9.

答案 P340; 【十年真题】-考点: 矩阵的特征值和特征向量-1

2. 【P177-3 (24-3)】设 \boldsymbol{A} 为 3 阶矩阵, bmA^* 为 \boldsymbol{A} 的伴随矩阵, \boldsymbol{E} 为 3 阶单位矩阵. 若 $r(2\boldsymbol{E}-\boldsymbol{A})=1$
$r(E + A) = 2$, 则 $ A^* = $
答案 P340;【十年真题】-考点:矩阵的特征值和特征向量-3

3. 【P177-5 (18-1)】设 2 阶矩阵 A 有两个不同特征值, α_1 , α_2 是 A 的线性无关的特征向量, 且满足 $A^2(\alpha_1+\alpha_2)=\alpha_1+\alpha_2,$

则 |**A**| =_____.

答案 P340;【十年真题】-考点:矩阵的特征值和特征向量-5

4. 【P179-变式 1.2】设 3 阶实对称矩阵 \boldsymbol{A} 的秩为 2, $\boldsymbol{A}^2 = \boldsymbol{A}$,且 $\boldsymbol{A}(1,-1,1)^T = \boldsymbol{0}$,求 \boldsymbol{A} 的特征值与特征向量.

答案 P341; 【方法探究】- 考点: 矩阵的特征值和特征向量-变式 1.2

- 5. 【P179-1 (08-1,2,3)】设 \boldsymbol{A} 为 \boldsymbol{n} 阶非零矩阵, \boldsymbol{E} 为 \boldsymbol{n} 阶单位矩阵. 若 $\boldsymbol{A}^3 = \boldsymbol{O}$, 则 ()
- (A) E A 不可逆, E + A 不可逆.
- (B) E A 不可逆, E + A 可逆.

(C) E - A 可逆, E + A 可逆.

(D) E - A 可逆, E + A 不可逆.

答案 P341;【真题精选】-考点:矩阵的特征值和特征向量-1

- 6. 【P179-3 (02-3)】设 A 是 n 阶实对称矩阵, P 是 n 阶可逆矩阵, 已知 n 维列向量 α 是 A 的属于特征值 λ 的特征向量,则矩阵 $\left(P^{-1}AP\right)^{\mathrm{T}}$ 属于特征值 λ 的特征向量是 ()
 - (A) $\boldsymbol{P}^{-1}\boldsymbol{\alpha}$.

(B) $\mathbf{P}^{\mathrm{T}}\boldsymbol{\alpha}$.

(C) $\boldsymbol{P}\boldsymbol{\alpha}$.

(D) $(\boldsymbol{P}^{-1})^{\mathrm{T}} \boldsymbol{\alpha}$.

答案 P341;【真题精选】-考点:矩阵的特征值和特征向量-3

7. 【P179-36 (96-1)】设 $A = E - \xi \xi^{T}$, 其中 $E \in \mathbb{R}$ 所单位矩阵, $\xi \in \mathbb{R}$ 维非零列向量, $\xi^{T} \in \xi$ 的转置. 证明:

- (1) $\mathbf{A}^2 = \mathbf{A}$ 的充分条件是 $\boldsymbol{\xi}^T \boldsymbol{\xi} = 1$
- (2) 当 $\xi^{T}\xi = 1$ 时, **A** 是不可逆矩阵.

答案 P341;【真题精选】-考点:矩阵的特征值和特征向量-6

- 8. 【P180-2 (24-2)】设 A, B 为 2 阶矩阵, 且 AB = BA, 则 "A 有两个不相等的特征值"是"B 可对角 化"的()
 - (A) 充分必要条件.

(B) 充分不必要条件.

(C) 必要不充分条件.

(D) 既不充分也不必要条件.

答案 P341; 【十年真题】- 考点: 矩阵的相似和相似对角化-2

- 9. **【P180-4** (22-1)**】**下述四个条件中, 3 阶矩阵 **A** 可对角化的一个充分但不必要条件是()
 - (A) **A** 有 3 个互不相等的特征值.
- (B) **A** 有 3 个线性无关的特征向量.
- (C) A 有 3 个两两线性无关的特征向量. (D) A 的属于不同特征值的特征向量正交.

答案 P341;【十年真题】-考点:矩阵的相似和相似对角化-4

- 10. 【P180-5 (22-2,3)】设 \boldsymbol{A} 为 3 阶矩阵, $\boldsymbol{\Lambda} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 \boldsymbol{A} 的特征值为 1, -1, 0 的充分必要条件 是()
- (A) 存在可逆矩阵 P, Q, 使得 $A = P \Lambda Q$. (B) 存在可逆矩阵 P, 使得 $A = P \Lambda P^{-1}$.
- (C) 存在正交矩阵 \mathbf{Q} , 使得 $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$. (D) 存在可逆矩阵 \mathbf{P} , 使得 $\mathbf{A} = \mathbf{P} \Lambda \mathbf{P}^{\mathrm{T}}$.

答案 P341;【十年真题】-考点:矩阵的相似和相似对角化-5

11. 【P180-8 (17-1,2,3)】已知矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 则()

(A) **A**与**C**相似, **B**与**C**相似.

- (B) **A**与**C**相似, **B**与**C**不相似.
- (C) A 与 C 不相似, B 与 C 相似.
- (D) $A \ni C$ 不相似, $B \ni C$ 不相似.

答案 P342; 【十年真题】-考点: 矩阵的相似和相似对角化-8

12. 【P181-11 (18-2)】设 A 为 3 阶矩阵, α_1 , α_2 , α_3 为线性无关的向量组. 若 $A\alpha_1 = 2\alpha_1 + \alpha_2 + \alpha_3$, $A\alpha_2 = \alpha_2 + 2\alpha_3$, $A\alpha_3 = -\alpha_2 + \alpha_3$, 则 A 的实特征值为_____.

答案 P342; 【十年真题】-考点: 矩阵的相似和相似对角化-11

- 13. 【P181-15 (20-1,2,3)】设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量且不是 A 的特征向量.
 - (1) 证明 **P** 为可逆矩阵;
 - (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.

答案 P343; 【十年真题】-考点: 矩阵的相似和相似对角化-15

14. 【P181-17 (16-1,2,3)】已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (1) 求 A^{99} ;
- (2) 设 3 阶矩阵 $\mathbf{B} = (\alpha_1, \alpha_2, \alpha_3)$ 满足 $\mathbf{B}^2 = \mathbf{B}\mathbf{A}$. 记 $\mathbf{B}^{100} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$, 将 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 分别表示为 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 的线性组合.

答案 P343; 【十年真题】- 考点: 矩阵的相似和相似对角化-17

15. 【P184-变式 2 (11-1,2,3)】设 A 为 3 阶实对称矩阵, A 的秩为 2, 且

$$\mathbf{A} \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

- (1) 求 A 的所有特征值与特征向量;
- (2) 求矩阵 A.

答案 P344; 【方法探究】- 考点: 矩阵的相似和相似对角化-变式2

- 16. 【P185-6 (08-2,3)】设 A 为 3 阶矩阵, α_1 , α_2 为 A 的分别属于特征值 -1, 1 的特征向量, 向量 α_3 满足 $A\alpha_3 = \alpha_2 + \alpha_3$.
 - (1) 证明 **α**₁, **α**₂, **α**₃ 线性无关;

答案 P345;【真题精选】-考点:矩阵的相似和相似对角化-6

- 17. 【P185-7 (07-1,2,3)】设 3 阶实对称矩阵 \boldsymbol{A} 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2, \, \boldsymbol{\mathbb{L}} \, \boldsymbol{\alpha}_1 = (1,-1,1)^{\mathrm{T}}$ 是 \boldsymbol{A} 的属于 λ_1 的一个特征向量. 记 $\boldsymbol{B} = \boldsymbol{A}^5 4\boldsymbol{A}^3 + \boldsymbol{E}$, 其中 \boldsymbol{E} 为 3 阶单位矩阵.
 - (1) 验证 α_1 是矩阵 **B** 的特征向量, 并求 **B** 的全部特征值与特征向量;
 - (2) 求矩阵 B.

答案 P345;【真题精选】-考点:矩阵的相似和相似对角化-7

18. 【P185-9 (04-1,2)】设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ -1 & 4 & -3 \\ 1 & a & 5 \end{pmatrix}$ 的特征方程有一个二重根, 求 a 的值, 并讨论 \mathbf{A} 是否可相似对角化.

答案 P345;【真题精选】-考点:矩阵的相似和相似对角化-9

- 19. 【P186-10 (02-1)】设 A, B 为同阶方阵.
 - (1) 如果 A, B 相似, 试证 A, B 的特征多项式相等;

答案 P345;【真题精选】-考点:矩阵的相似和相似对角化-10

20. 【P186-12 (00-1)】某试验性生产线每年 1 月份进行熟练工与非熟练工的人数统计, 然后将 $\frac{1}{6}$ 熟练工支援其他生产部门, 其缺额由招收新的非熟练工补齐. 新、老非熟练工经过培训及实践至年终考核有 $\frac{2}{5}$ 成为熟练工. 设第 n 年 1 月份统计的熟练工和非熟练工所占百分比分别为 x_n 和 y_n , 记成向量 $\binom{x_n}{v_n}$.

(1) 求
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}$$
 与 $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ 的关系式并写成矩阵形式:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \boldsymbol{A} \begin{pmatrix} x_n \\ y_n \end{pmatrix};$$

(2) 验证 $\boldsymbol{\eta}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\boldsymbol{\eta}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 是 \boldsymbol{A} 的两个线性无关的特征向量, 并求出相应的特征值;

(3) 当
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
 时,求 $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}$.

答案 P346;【真题精选】-考点:矩阵的相似和相似对角化-12

21. 【P187-15 (92-4)】设矩阵
$$\mathbf{A}$$
, \mathbf{B} 相似, 其中 $\mathbf{A} = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{pmatrix}$.

- (1) 求 x, y 的值;
- (2) 求可逆矩阵 P, 使 $P^{-1}AP = B$.

答案 P346;【真题精选】-考点:矩阵的相似和相似对角化-12

2.5 二次型

- 1. 【P188-2 (25-2)】设矩阵 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 0 & b \end{pmatrix}$ 有一个正特征值和两个负特征值,则()
 - (A) a > 4, b > 0.

(B) a < 4, b > 0.

(C) a > 4, b < 0.

(D) a < 4, b < 0.

答案 P347; 【十年真题】- 考点一: 化二次型为标准型 - 2

2. 【P189-12 (20-1,3)】设二次型

$$f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$$

经正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型

$$g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2,$$

其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.

答案 P348; 【十年真题】- 考点一: 化二次型为标准型 - 12

3. 【P189-2 (23-1)】已知二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3,$$

$$g(y_1, y_2, y_3) = y_1^2 + y_2^2 + y_3^2 + 2y_2y_3.$$

- (1) 求可逆变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 将 $f(x_1, x_2, x_3)$ 化为 $g(y_1, y_2, y_3)$;
- (2) 是否存在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 将 $f(x_1, x_2, x_3)$ 化为 $g(y_1, y_2, y_3)$?

答案 P349; 【十年真题】- 考点二: 矩阵的合同 - 2

4. 【P190-1 (25-3)】设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -2 & -a \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & a \end{pmatrix}$. 若 $f(x, y) = |x\mathbf{A} + y\mathbf{B}|$ 是正定二次型,则 a 的取值范围是 ()

(A) $(0, 2 - \sqrt{3})$.

(B) $(2-\sqrt{3},2+\sqrt{3})$.

(C) $(2+\sqrt{3},4)$.

(D) (0,4).

答案 P350; 【十年真题】- 考点三: 正定二次型与正定矩阵-1

5. 【P190-2 (21-1)】设矩阵
$$\mathbf{A} = \begin{pmatrix} a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$$
.

- (1) 求正交矩阵 P, 使 $P^{T}AP$ 为对角矩阵;
- (2) 求正定矩阵 C, 使 $C^2 = (a+3)E A$, 其中 E 为 3 阶单位矩阵.

注 主要错的是(2)

答案 P350;【十年真题】-考点三:正定二次型与正定矩阵-2

6. 【P193-3 (14-1,2,3)】设二次型

$$f(x_1, x_2, x_3) = x_1^2 - x_2^2 + 2ax_1x_3 + 4x_2x_3$$

的负惯性指数是 1, 则 a 的取值范围是_____.

答案 P351;【真题精选】-考点一: 化二次型为标准型-3

7. 【P193-8 (13-1,2,3)】设二次型

$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2,$$

记
$$\boldsymbol{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

- (1) 证明二次型 f 对应的矩阵为 $2\alpha\alpha^{T} + \beta\beta^{T}$;
- (2) 若 α , β 正交且均为单位向量,证明二次型 f 在正交变换下的标准形为 $2y_1^2+y_2^2$.

注 主要错的是(2)

答案 P352; 【真题精选】-考点一: 化二次型为标准型-8

- 8. 【P193 (01-3)】设 A 为 n 阶实对称矩阵, r(A) = n, A_{ij} 是 $A = (a_{ij})_{n \times n}$ 中元素 a_{ij} 的代数余子式 $(i, j = 1, 2, \cdots, n)$, 二次型 $f(x_1, x_2, \cdots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{A_{ij}}{|A|} x_i x_j$.
 - (1) 记 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$, 把 $f(x_1, x_2, \dots, x_n)$ 写成矩阵形式, 并证明二次型 $f(\mathbf{x})$ 的矩阵为 \mathbf{A}^{-1} ;
 - (2) 二次型 $g(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 与 $f(\mathbf{x})$ 的规范形是否相同? 说明理由.

答案 P352;【真题精选】-考点二:矩阵的合同

9. 【P194-1 (05-3)】设 $D = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}$ 为正定矩阵, 其中 A, B 为 m 阶, n 阶对称矩阵, C 为 $m \times n$ 矩阵.

(1) 计算 $P^T D P$, 其中 $P = \begin{pmatrix} E_m & -A^{-1}C \\ O & E_n \end{pmatrix}$;

(1) 计算
$$\mathbf{P}^{\mathrm{T}}\mathbf{D}\mathbf{P}$$
, 其中 $\mathbf{P} = \begin{pmatrix} \mathbf{E}_{m} & -\mathbf{A}^{-1}\mathbf{C} \\ \mathbf{O} & \mathbf{E}_{n} \end{pmatrix}$

(2) 利用 (1) 的结果判断矩阵 $B - C^{T}A^{-1}C$ 是否为正定矩阵, 并证明你的结论.

注 主要错的是(2)

答案 P352;【真题精选】-考点三:正定二次型与正定矩阵-1

第三章 概率

3.1 随机事件和概率

1. 【P196-7 (25-1)】设 A, B 为两个随机事件, 且 A 与 B 相互独立. 已知 $P(A) = 2P(B), P(A \cup B) = \frac{5}{8}$, 则在事件 A, B 至少有一个发生的条件下, A, B 中恰有一个发生的概率为 _____

答案 P353; 【十年真题】- 考点一: 概率的五大公式 - 7

2. 【P196-11 (18-3)】设随机事件 A, B, C 相互独立, 且

$$P(A) = P(B) = P(C) = \frac{1}{2},$$

则 $P(AC|A \cup B) =$ _____.

答案 P354; 【十年真题】- 考点一: 概率的五大公式-11

3. 【P198-例(1)】袋中装有2个红球,3个黄球,1个蓝球.现有放回地从袋中取3次球,每次取1个球, 则恰有1次取到蓝球的概率为_____.

答案 P198; 【方法探究】-考点二: 古典概型与几何概型-例(1)

- 4. 【P198-1 (15-1,3)】 若 A, B 为任意两个随机事件, 则 ()
 - (A) $P(AB) \leq P(A)P(B)$.

- (B) $P(AB) \ge P(A)P(B)$.
- (C) $P(AB) \le \frac{P(A) + P(B)}{2}$. (D) $P(AB) \ge \frac{P(A) + P(B)}{2}$.

答案 P354; 【真题精选】- 考点一: 概率的五大公式-1

5. 【P198-11 (97-1)】 袋中有 50 个乒乓球, 其中 20 个是黄球, 30 个是白球, 今有两人依次随机地从袋中 各取一球,取后不放回,则第二个人取得黄球的概率是_____.

答案 P354;【真题精选】-考点一: 概率的五大公式-11

答案 P355;【真题精选】- 考点一: 概率的五大公式 - 14				
3.2 随机变量及其分布				
1. 【P200-2 (16-1)】 设随机变量 $X \sim N(\mu, \sigma^2)$ $(\sigma > 0)$, 记 $p = P\{X \le \mu + \sigma^2\}$, 则 ()				
(A) p 随着 μ 的增加而增加.	(B) p 随着 σ 的增加而增加.			
(C) p 随着 μ 的增加而减少.	(D) p 随着 σ 的增加而减少.			
答案 P355;【十年真题】- 考点一: 随机变量的分布 - 2				
2. 【P200-3 (24-1,3)】设随机试验每次成功的概率为 p , 现进行 3 次独立重复试验, 在至少成功 1 次的条				
件下 3 次试验全部成功的概率为 $\frac{4}{13}$,则 $p =$.				
答案 P355;【十年真题】- 考点一: 随机变量的分布 - 3				
e ^X				
3. 【P200-1 (23-3-局部)】设随机变量 X 的概率密度为 $f(x) = \frac{e^x}{(1 + e^x)^2}$, $-\infty < x < +\infty$, 令 $Y = e^X$. (1) 求 X 的分布函数;				
(2) 求 Y 的概率密度.				
答案 P355;【十年真题】- 考点二:随机变量的函数的分布-1				

6. 【P199-14 (89-1)】甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.5. 现已知目标被

命中,则它是甲射中的概率为 _____.

函数 F(x) =______.

答案 P202;【方法探究】-考点一:随机变量的分布-例3

4. 【P202-例 3 (90-1)】已知随机变量 X 的概率密度函数 $f(x) = \frac{1}{2} e^{-|x|}, -\infty < x < +\infty$, 则 X 的分布

5. 【P203-4 (02-1)】设 X_1 和 X_2 是相互独立的连续型随机变量, 它们的密度函数分别为 $f_1(x)$ 和 $f_2(x)$, 分布函数分别为 $F_1(x)$ 和 $F_2(x)$,则()

- (A) $f_1(x) + f_2(x)$ 必为某一随机变量的概率密度.
- (B) $f_1(x) f_2(x)$ 必为某一随机变量的概率密度.
- (C) $F_1(x) + F_2(x)$ 必为某一随机变量的分布函数.
- (D) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数.

答案 P356; 【真题精选】-考点一: 随机变量的分布-4

6. **【P204-7** (93-3)**】** 设随机变量 X 的概率密度为 $\varphi(x)$, 且 $\varphi(-x) = \varphi(x)$. F(x) 为 X 的分布函数,则对任意实数 a,有 ()

(A)
$$F(-a) = 1 - \int_0^a \varphi(x) \, dx$$
.

(B)
$$F(-a) = \frac{1}{2} - \int_0^a \varphi(x) \, dx$$
.

(C)
$$F(-a) = F(a)$$
.

(D)
$$F(-a) = 2F(a) - 1$$
.

答案 P356; 【真题精选】-考点一: 随机变量的分布-7

7. 【P204-11 (89-4)】设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ A \sin x, & 0 \le x \le \frac{\pi}{2}, \\ 1, & x > \frac{\pi}{2}, \end{cases}$$

则
$$P\left\{|X|<\frac{\pi}{6}\right\}=$$
_____.

答案 P356;【真题精选】-考点一:随机变量的分布-11

8. 【P204-2 (03-3)】设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3\sqrt[3]{x^2}}, & x \in [1, 8], \\ 0, & \text{其他}, \end{cases}$$

F(x) 是 X 的分布函数,则随机变量 Y = F(X) 的分布函数为

答案 P357;【真题精选】-考点二:随机变量的函数的分布-2

9. 【P204-3 (13-1)】 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3, \\ 0, &$ 其他.

令随机变量
$$Y = \begin{cases} 2, & X \leq 1, \\ X, & 1 < X < 2, . \\ 1, & X \geq 2. \end{cases}$$

- (1) 求 Y 的分布函数;
- (2) 求概率 $P\{X \leq Y\}$.

答案 P357;【真题精选】-考点二:随机变量的函数的分布-3

3.3 多维随机变量及其分布

1. **【P206-1** (24-1,3)**】**设随机变量 X,Y 相互独立, 且均服从参数为 λ 的指数分布. 令 Z=|X-Y|, 则下列随机变量中与 Z 同分布的是 ()

(A)
$$X + Y$$
.

(B)
$$\frac{X+Y}{2}$$
.

(C)
$$2X$$
.

答案 P358; 【十年真题】-考点二: 两个随机变量的函数的分布-1

2. 【P206-2 (23-1-局部)】设二维随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} \frac{2}{\pi}(x^2 + y^2), & x^2 + y^2 \le 1, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) X 与 Y 是否相互独立?
- (2) 求 $Z = X^2 + Y^2$ 的概率密度.

答案 P358; 【十年真题】- 考点二: 两个随机变量的函数的分布 - 2

3. 【P206-3 (20-1)】设随机变量 X_1, X_2, X_3 相互独立, 其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2}.$ $Y=X_3X_1+(1-X_3)X_2.$

- (1) 求二维随机变量 (X_1, Y) 的分布函数, 结果用标准正态分布函数 $\Phi(x)$ 表示;
- (2) 证明随机变量 Y 服从标准正态分布.

注 主要错的是(2)

答案 P358;【十年真题】-考点二:两个随机变量的函数的分布-3

4. 【5. (16-1,3)】设二维随机变量 (X, Y) 在区域

$$D = \{(x, y) \mid 0 < x < 1, \ x^2 < y < \sqrt{x}\}\$$

上服从均匀分布,令

$$U = \begin{cases} 1, & X \le Y, \\ 0, & X > Y. \end{cases}$$

- (1) 写出 (X, Y) 的概率密度;
- (2) 问 *U* 与 *X* 是否相互独立? 并说明理由;
- (3) 求 Z = U + X 的分布函数 F(z).

答案 P358; 【十年真题】-考点二: 两个随机变量的函数的分布-5

- 5. 【P210-1 (12-1)】设随机变量 X 与 Y 相互独立,且分别服从参数为 1 与参数为 4 的指数分布,则 $P\{X < Y\} = ($)
 - (A) $\frac{1}{5}$.

(B) $\frac{1}{3}$.

(C) $\frac{2}{5}$.

(D) $\frac{4}{5}$.

答案 P360;【真题精选】-考点一:二维随机变量的分布-1

6. 【P210-4 (10-1,3)】设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = Ae^{-2x^2+2xy-y^2}, -\infty < x < +\infty, -\infty < y < +\infty$, 求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

答案 P360;【真题精选】-考点一:二维随机变量的分布-4

- 7. 【P211-5 (09-1,3)】袋中有 1 个红球, 2 个黑球与 3 个白球, 现有放回地从袋中取两次, 每次取一个球. 以 *X*, *Y*, *Z* 分别表示两次取球所取得的红球、黑球与白球的个数.
 - (1) $\bar{x} P\{X = 1 | Z = 0\};$
 - (2) 求二维随机变量 (X, Y) 的概率分布.

答案 P360;【真题精选】-考点一:二维随机变量的分布-5

- 8. 【P211-7 (01-1)】设某班车起点站上车人数 X 服从参数为 λ ($\lambda > 0$) 的泊松分布, 每位乘客在中途下车的概率为 p (0), 且中途下车与否相互独立. 以 <math>Y 表示在中途下车的人数, 求:
 - (1) 在发车时有n个乘客的条件下,中途有m人下车的概率.
 - (2) 二维随机变量 (X, Y) 的概率分布.

答案 P360;【真题精选】-考点一:二维随机变量的分布-5

9. 【P211-9 (95-3)】已知随机变量 X 和 Y 的联合概率密度为

$$\varphi(x,y) = \begin{cases} 4xy, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & 其他, \end{cases}$$

求 X 和 Y 联合分布函数 F(x, y).

答案 P360; 【真题精选】-考点一: 二维随机变量的分布-9

10. 【P212-3 (07-1,3)】设二维随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) $\bar{x} P\{X > 2Y\};$
- (2) 求 Z = X + Y 的概率密度 $f_Z(z)$.

答案 P361;【真题精选】-考点二:两个随机变量的函数的分布-3

11. **【P212-5** (01-3)**】**设随机变量 X 和 Y 的联合分布是正方形 $G = \{(x,y)|1 \le x \le 3, 1 \le y \le 3\}$ 上的均匀分布, 试求随机变量 U = |X - Y| 的概率密度 p(u).

答案 P361;【真题精选】-考点二:两个随机变量的函数的分布-5

3.4 随机变量的数字特征

1. 【P214-1 (24-3)】设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$$

则 X 的三阶中心矩 $E[(X - EX)^3] = ($)

- (A) $-\frac{1}{32}$.
- (B) 0. (C) $\frac{1}{16}$.

答案 P362; 【十年真题】- 考点一: 随机变量的数学期望与方差-1

2. 【P214-7 (17-1)】设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正 态分布函数,则 $EX = ____.$

答案 P362; 【十年真题】- 考点一: 随机变量的数学期望与方差-7

3. 【P214-8 (25-1,3)】投保人的损失事件发生时, 保险公司的赔付额 Y 与投保人的损失额 X 的关系为

$$Y = \begin{cases} 0, & X \le 100, \\ X - 100, & X > 100. \end{cases}$$

设损失事件发生时, 投保人的损失额 X 的概率密度为

$$f(x) = \begin{cases} \frac{2 \times 100^2}{(100 + x)^3}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- (1) 求 $P\{Y > 0\}$ 及 EY;
- (2) 这种损失事件在一年内发生的次数记为 N, 保险公司在一年内就这种损失事件产生的理赔次数记 为 M. 假设 N 服从参数为 8 的泊松分布, 在 N = n $(n \ge 1)$ 的条件下, M 服从二项分布 B(n, p), 其中 $p = P\{Y > 0\}$. 求 *M* 的概率分布.

答案 P363; 【十年真题】- 考点一: 随机变量的数学期望与方差-8

4. 【P214-10 (21-1,3)】 在区间 (0,2) 上随机取一点, 将该区间分成两段, 较短一段的长度记为 X, 较长一 段的长度记为 Y. 令 $Z = \frac{1}{Y}$.

- (1) 求 X 的概率密度;
- (2) 求 Z 的概率密度;
- (3) $Rightharpoonup E\left(\frac{X}{Y}\right)$.

答案 P363; 【十年真题】- 考点一: 随机变量的数学期望与方差 - 10

5. 【P215-1 (25-1)】设二维随机变量 (X,Y) 服从正态分布 $N(0,0;1,1;\rho)$, 其中 $\rho \in (-1,1)$. 若 a,b 为满 足 $a^2 + b^2 = 1$ 的任意实数,则 D(aX + bY) 的最大值为()

(A) 1.

(B) 2.

(C) $1 + |\rho|$.

(D) $1 + \rho^2$.

答案 P363; 【十年真题】- 考点二: 随机变量的协方差与相关系数-1

6. 【P215-5 (22-1)】设随机变量 $X \sim N(0,1)$, 在 X = x 的条件下随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的 相关系数为()

- (A) $\frac{1}{4}$. (B) $\frac{1}{2}$. (C) $\frac{\sqrt{3}}{3}$. (D) $\frac{\sqrt{2}}{2}$.

答案 P364; 【十年真题】- 考点二: 随机变量的协方差与相关系数-5

7. 【P215-8 (20-3)】设随机变量 (X,Y) 服从二维正态分布 $N\left(0,0;1,4;-\frac{1}{2}\right)$,则下列随机变量中服从标 准正态分布且与 X 独立的是()

(A) $\frac{\sqrt{5}}{5}(X+Y)$.

(B) $\frac{\sqrt{5}}{5}(X-Y)$.

(C) $\frac{\sqrt{3}}{3}(X+Y)$.

(D) $\frac{\sqrt{3}}{3}(X-Y)$.

答案 P364; 【十年真题】- 考点二: 随机变量的协方差与相关系数-8

8. 【P215-10 (23-3)】设随机变量 X 与 Y 相互独立, 且 $X \sim B(1, p), Y \sim B(2, p), p \in (0, 1), 则 <math>X + Y$ 与 X - Y 的相关系数为

答案 P364; 【十年真题】- 考点二: 随机变量的协方差与相关系数-10

- 9. 【P215-12 (20-1)】设 X 服从区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的均匀分布, $Y = \sin X$, 则 $\operatorname{Cov}(X, Y) = \underline{\hspace{1cm}}$. 答案 P365; 【十年真题】 考点二:随机变量的协方差与相关系数 12
- 10. 【P215-13 (23-1)】设二维随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} \frac{2}{\pi}(x^2 + y^2), & x^2 + y^2 \le 1, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 求 *X* 与 *Y* 的协方差;
- (2) *X* 与 *Y* 是否相互独立?
- (3) 求 $Z = X^2 + Y^2$ 的概率密度.

答案 P365; 【十年真题】- 考点二: 随机变量的协方差与相关系数 - 13

11. 【P216-15 (19-1,3)】设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为 $P\{Y=-1\}=p,\quad P\{Y=1\}=1-p\quad (0< p<1).$

 $\Rightarrow Z = XY$.

- (1) 求 Z 的概率密度;
- (2) p 为何值时, X 与 Z 不相关?
- (3) *X* 与 *Z* 是否相互独立?

答案 P365; 【十年真题】- 考点二: 随机变量的协方差与相关系数-15

12. 【P216-16 (18-1,3)】设随机变量 X 与 Y 相互独立, X 的概率分布为

$$P\{X=1\} = P\{X=-1\} = \frac{1}{2},$$

Y 服从参数为 λ 的泊松分布. 令 Z = XY.

- (1) 求 Cov(X, Z);
- (2) 求 Z 的概率分布.

答案 P365;【十年真题】-考点二:随机变量的协方差与相关系数-16

- 3.5 大数定律与中心极限定理
- 3.6 数理统计的基本概念
- 3.7 参数估计

附录 A 答案