Prepoznavanje vrste kancera

Metoda klasifikacije

N. Bogdanović

Univerzitet u Beogradu: MATEMATIČKI FAKULTET

25. juni 2019

Plan izlaganja

Upoznavanje sa podacima i alatima Podaci i alati Atributi

2 Priprema podataka za obradu Problem prevelikog broja klasa Problem nedostajućih vrednosti Problem definisanja mutiranih gena Problem korelisanih atributa

3 Obrada

Drveta odlučivanja Najbliži susedi Neuronske mreže Neuronske mreže Metod potpornih vektora

Gausova klasifikacija

4 Zaključak

Podaci i alati

- https://portals.broadinstitute.org/ccle/data
- CCLE ABSOLUTE combined 20181227.xlsx
- ABSOLUTE_combined.segtab: 20 kolona i 188,653 redova
- segtab_annotations
- ABSOLUTE_combined.table
- data_original.xlsx
- Python i SPSS Modeler

Atributi

- Sample
- Chromosome
- Start
- End
- Num_Probe
- Length
- Modal_HSCN_1
- Modal_HSCN_2
- Modal_HSCN_TOTAL
- Subclonal_HSCN_a1

- Subclonal HSCN a2
- Cancer cell frac a1
- Ccf ci95 low a1
- Ccf ci95 high a1
- Cancer_cell_frac_a2
- Ccf_ci95_low_a2
- Ccf_ci95_high_a2
- LOH
- Homozygos_deletion
- depMapID

Problem prevelikog broja klasa

$SPSSModeler \rightarrow Split:$

• LUNG: 38,882

• SALIVARY_GLAND: 358

• FIBROBLAST: 1,164

• PLEURA: 1,529

• THYROID: 2,824

• PANCREAS: 6,943

• BONE: 3,579

• INTESTINE: 9,369

• SOFT_TISSUE: 3,475

• ENDOMETRIUM: 5,277

• AUTNOMIC_GANGLIA: 2,115

HAEMATOPOIETIC_AND_LYMPHOID_TISSUE: 27,115

Problem prevelikog broja klasa

- 5% tačnosti
- Najbrojnije klase:
 HAEMATOPOIETIC_AND_LYMPHOID_TISSUE i
 LUNG
- SPSSModeler \rightarrow Append: EXTRACTED_CLASSES.xlsx
- final.xlsx

Problem prevelikog broja klasa

Listing 1: Prečišćavanje klasa

```
y = df["sample"]
for item in y:
    if 'LU' in item:
         df["sample"][i] = 'LUNG'
    elif 'HA' in item:
         df ["sample"] [i] = 'HAEMATOPOIETIC'
    else:
         df = df \cdot drop([i])
    i = i+1
    print(i)
```

Problem nedostajućih vrednosti

- SPSSModeler \rightarrow Data Audit \rightarrow Quality
- 98.47% kompletni podaci
- Zamena srednjim vrednostima

• Start: 24,908,712

• End: 249,133,375

• Num Probes: 72,607

• Rešenje: implicitno i eksplicitno definisanje gena

Slika: Definisanje gena

Listing 2: Eksplicitno Definisanje gena

```
range index = int(df['Length'].mean())
df = df.sort values("Start")
df = df.reset index(drop=True)
pd.options.mode.chained assignment = None
\# q = 0 for the first file
# for the rest of them, q is appended
g = g+1
df.iloc[0, df.columns.get loc('depMapID')] = g
start old = df["Start"][0]
```

Listing 3: Eksplicitno definisanje gena

```
n = len(df.index)
for i in range(1,n):
    start_new = df["Start"][i]
    if start_new != start_old and not
    (start_new < start_old + range_index):
        g = g + 1
        start_old = start_new
    df.iloc[i, df.columns.get_loc('depMapID')]
        = g</pre>
```

Problem korelisanih atributa

- Chromosome i Gene
- Start i End
- Num Probes i Length
- Modal HSCN 1 i LOH
- Modal_HSCN_2 i Modal_Total_CN
- Cancer_cell_frac_a1, Ccf_ci95_low_a1 i Ccf_ci95_high_a1
- Cancer_cell_frac_a2, Ccf_ci95_low_a2 i Ccf_ci95_high_a2

Drveta odlučivanja SPSS

- Simboličko grupisanje
- Poboljšanje produktivnosti (boosting)
- Unakrsna validacija

Slika: Drveta odlučivanja - SPSS

Drveta odlučivanja

SPSS - C5.0

Implicitno:

- Dubina drveta: 23
- Sredina 70.5
- Standardna greška: 0.2
- Najbitniji atribut za odlučivanje:
 Modal HSCN 2
- Najmanje bitan atribut za odlučivanje: Subclonal HSCN a2
- Procenat pogođenih:
 72.09%, 71.28%, 70.43%
- Procenat promašenih: 27.91%, 28.72%, 29.57%

Eksplicitno:

- Dubina drveta: 17
- Sredina 65.2
- Standardna greška: 0.2
- Najbitniji atribut za odlučivanje: Modal_HSCN_2
- Najmanje bitan atribut za odlučivanje:
 Modal HSCN 1
- Procenat pogođenih: 72.53%, 65.08%, 65.39%
- Procenat promašenih: 27.47%, 34.92%, 34.61%

Drveta odlučivanja

SPSS - CR&T

- Cilj: novi model u vidu drveta odlučivanja
- Maksimalna dubina: 12
- Minimalni broj instanci u grani roditelja: 5%
- Minimalni broj instanci u grani deteta: 2%
- Mera nečistoće: Gini
- Minimalna promena u nečistoći: 0.0001%

- Najbitniji atribut: Modal HSCN 2
- Najmanje bitan atribut: Subclonal_HSCN_a2
- Dubina drveta: 4
- Tačnost: 69.92%
- Procenat pogođenih: 69.92%, 70.18%, 69.85%
- Procenat promašenih: 30.08%, 29.82%, 30.15%

Drveta odlučivanja

Python

Tabela: Analiza drveta odlučivanja - implicitno grupisanje

	preciznost	f1-skor	tačnost
LUNG	73.00%	74.00%	68.42%
HAEMATOPOIETIC	63.00%	61.00%	68.42%

Najbliži susedi

- Cilj: predviđanje klase
- Analiza: balansirana, brza i tačna
- Ciljno polje: sample
- Minimalni broj suseda: 3
- Maksimalan broj suseda: 5
- Euklidska udaljenost

- Najbolji rezultati: k = 5
- Tačnost: 74.42%
- Procenat pogođenih: 77.28%, 77.15%, 75.00%
- Procenat promašenih: 22.72%, 22.85%, 25.00%

Najbliži susedi

Python

- Veličina trening skupa: 95%
- k = 9
- Euklidsko rastojanje
- Podjednak uticaj svih suseda

Tabela: Analiza modela k najbližih suseda - Python

	preciznost	f1-skor	tačnost
LUNG	72.00%	74.00%	68.51%
HAEMATOPOIETIC	63.00%	60.00%	68.51%

Neuronske mreže

Slika: Neuronska mreža

$\underset{\text{SPSS}}{\textbf{Neuronske mreže}}$

'Partition'	1_Training		2_Testing		3_Validation	
Correct	32,180	69.74%	9,140	70.2%	4,737	69.94%
Wrong	13,964	30.26%	3,880	29.8%	2,036	30.06%
Total	46,144		13,020		6,773	

Slika: Analiza modela neuronske mreže - SPSS

Neuronske mreže

Python

• Funkcija aktivacije: tangens hiperbolički

• Veličina skrivenig sloja: (10, 10)

• Stopa učenja: prilagodljiva

• Inicijalna stopa učenja: 0.01

• Maksimalan broj iteracija: 500

Tabela: Analiza MLP modela - Python

	preciznost	f1-skor	tačnost
LUNG	71.00%	76.00%	69.74%
HAEMATOPOIETIC	67.00%	59.00%	69.74%

Metod potpornih vektora SPSS

Slika: Metod potpornih vektora primenjen na 5 najznačajnijih komponenti

'Partition'	1_Training		2_Testing		3_Validation	
Correct	31,323	67.88%	8,843	67.92%	4,598	67.89%
Wrong	14,821	32.12%	4,177	32.08%	2,175	32.11%
Total	46,144		13,020		6,773	

Slika: Analiza modela potpornih vektora

Gausova klasifikacija

Python

Tabela: Analiza modela dobijenog Gausovom klasifikacijom

	preciznost	f1-skor	tačnost
LUNG	58.00%	60.00%	65.74%
HAEMATOPOIETIC	72.00%	70.00%	65.74%

Zaključak

Da li je istraživanje uspešno?

- Najbolji rezultati: Najbliži susedi 75% tačnosti
- Najlošiji rezultati: Gausova klasifikacija 65% tačnosti
- Pogled na istraživanje: preciznost veća od 90% i upoznavanje sa osobinama kancerogenih tkiva
- Naredni koraci:
 - Pravila pridruživanja
 - Eksperimentisati sa matricom cene
 - Eksperimentisati sa različitim klasama
 - Eksperimentisati sa eksplicitnim definisanjem gena

Hvala na pažnji!