

Metodi matematici per l'Informatica *Modulo 12 – L'Implicazione*

Docente: Pietro Cenciarelli

Logica proposizionale

simboli proposizionali

proposizioni A, B, ... ::= P | Q | ... | falso | A \vee B | A \wedge B | \neg A | \vdots

modelli m : simboli proposizionali \rightarrow {T, F}

m si estende alle proposizioni (*interpretazione*) come segue: m(*falso*) = F e, per le proposizioni composte, applicando le *tavole di verità*:

Α	В	$A \wedge B$	Α	В	$A \lor B$		A	¬Α
T	Т	T	T	Т	Т	-	Τ	F
Τ	F	F	Т	F	Т		F	Τ
F	Τ	F	F	Τ	Т			
F	F	F	F	F	F			

proposizioni sottoinsiemi elementi modelli elementi omomorfismi in 2 and (\land) intersezione (\cap) meet (\land) or (\lor) unione (\cup) join (\lor) not (\neg) complemento (\neg) complemento (\neg)

?

proposizioni

modelli

sottoinsiemi elementi elementi omomorfismi in 2

P = essere un numero primo

Q = essere minore di 10

proposizioni

modelli

sottoinsiemi

elementi

elementi

omomorfismi in 2

$$m (Q) = T$$

 $m (P) = F$
 $m (P \land Q) = F$
 $m (P \lor Q) = T$
...

9 ∈ Q

9 ∉ P

proposizioni

modelli

sottoinsiemi

elementi

elementi

omomorfismi in 2

$$m(Q) = T$$

 $m(P) = F$
 $m(P \land Q) = F$
 $m(P \lor Q) = T$
...

Q è vero in m

m *soddisfa* Q

9 ∈ Q

proposizioni

modelli

sottoinsiemi

elementi

elementi

omomorfismi in 2

essere un numero primo minore di 10 (P ^ Q) è una proprietà *più forte* di essere un numero primo e basta (P)

P = essere un numero primo

Q = essere minore di 10

proposizioni sottoinsiemi elementi omomorfismi in 2

essere un numero primo minore di 10 (P \(\text{Q} \)) è una proprietà *più forte* di essere un numero primo e basta (P)

 $P \wedge Q \models P$

per ogni modello m, se m soddisfa P \(\) Q allora m soddisfa P $P \cap Q \subseteq P$

per ogni numero m, se $m \in P \cap Q$, allora $m \in P$

proposizioni sottoinsiemi elementi

modelli elementi omomorfismi in 2

? ⊆ ≤

 $P \wedge Q \models P$

per ogni modello m, se m soddisfa P ∧ Q allora m soddisfa P $P \cap Q \subseteq P$

per ogni numero m, se $m \in P \land Q$, allora $m \in P$

proposizioni sottoinsiemi elementi

modelli elementi omomorfismi in 2

⊨ ⊆ ≤

 $A_1, A_2, \dots A_n \models B$ $A_1 \cap A_2 \cap \dots \cap A_n \subseteq B$ $A_1 \wedge A_2 \wedge \dots \wedge A_n \leq B$

Per ogni modello m, se m soddisfa A_1 , A_2 , ... A_n , allora m soddisfa B

B consegue semanticamente da A₁, A₂, ... A_n

Quando n=0, \models B vuol dire: per ogni modello m, m soddisfa B

B è *valida* ...o anche: B è una *tautologia*

In un'algebra di Boole...

...per ogni coppia di elementi A e B esiste un elemento BA tale che

$$B^A \wedge A \leq B$$
 ovvero: $(B^A \wedge A) \vee B = B$

$$B^A = \overline{A} \vee B$$
 infatti...

dimostriamo
$$[(\overline{A} \vee B) \wedge A] \vee B = B$$

$$[(\overline{A} \vee B) \wedge A] \vee B = [(\overline{A} \vee B) \vee B] \wedge (A \vee B)$$
$$= (\overline{A} \vee B) \wedge (A \vee B)$$
$$= (\overline{A} \wedge A) \vee B = \bot \vee B = B$$

In un'algebra di Boole...

...per ogni coppia di elementi A e B esiste un elemento BA tale che

$$B^A \wedge A \leq B$$

$$B^A = \overline{A} \vee B$$
 e inoltre...

B^A è *il più grande* elemento X tale che

$$X \wedge A \leq B$$

infatti...

per ogni Y tale che $Y \wedge A \leq B$ abbiamo:

$$Y \leq Y \vee \overline{A} = (Y \vee \overline{A}) \wedge (A \vee \overline{A}) = (Y \wedge A) \vee \overline{A} \leq B \vee \overline{A} = B^A$$

proposizioni

$$A_1$$
, A_2 , ... $A_n \models B$

$A \rightarrow B \ e$ la più debole proposizione X tale che X, $A \models B$

Algebre di Boole

elementi

$$A_1 \wedge A_2 \wedge ... \wedge A_n \leq B$$

$$B^{A} = \overline{A} \vee B \ earline{il più grande}$$

elemento X tale che
 $X \wedge A \leq B$

$$A \rightarrow B = \neg A \lor B$$

 $A \rightarrow B, A \models B$

$A \rightarrow B \ ear la più debole$ proposizione X tale che X, $A \models B$

$$\begin{array}{ccccc} A & B & & A \rightarrow B \\ \hline T & T & & T \\ T & F & & F \\ F & T & & T \\ F & F & & T \end{array}$$

Insiemi

$$\begin{array}{c} A \rightarrow B = \overline{A} \cup B \\ A \rightarrow B \cap A \subseteq B \end{array}$$

$$A \rightarrow B = \neg A \lor B$$

$$A \rightarrow B$$
, $A \models B$

$A \rightarrow B \ e la più debole$ proposizione X tale che X, $A \models B$

A = e genitore

 $B = \dot{e} padre$

 $A \rightarrow B = se è genitore allora è padre uomini ?$

Insiemi

$$A \rightarrow B = \overline{A} \cup B$$

$$\mathsf{A}\to\mathsf{B}\cap\mathsf{A}\subseteq\mathsf{B}$$

persone

$$A \rightarrow B = \neg A \lor B$$

 $A \rightarrow B$, $A \models B$

 $A \rightarrow B \ e la più debole$ proposizione X tale che X, $A \models B$

 $A = \dot{e}$ genitore

 $B = \dot{e} padre$

 $A \rightarrow B = se è genitore allora è padre uomini ?$

Insiemi

$$A \rightarrow B = \overline{A} \cup B \supseteq uomini$$

 $A \rightarrow B \cap A \subseteq B \text{ uomini } \cap A = B$

persone

$$A \rightarrow B = \neg A \lor B$$

 $A \rightarrow B$, $A \models B$

 $A \rightarrow B \ ear la più debole$ proposizione X tale che X, $A \models B$

A = e genitore

 $B = \dot{e} padre$

 $A \rightarrow B = se è genitore allora è padre$

Insiemi

 $A \rightarrow B = \overline{A} \cup B$

 $\mathsf{A}\to\mathsf{B}\cap\mathsf{A}\subseteq\mathsf{B}$

persone

L'implicazione

$$A \rightarrow B = \neg A \lor B$$

(interpretazione in un'algebra di Boole)

$$A \rightarrow B \ e la più debole$$

proposizione X tale che
X, $A \models B$

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Τ	Т
F	F	Т

corrisponde alla nozione intuitiva di implicazione?

L'implicazione

oggi è martedì

domani piove

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Τ	Т
F	F	Т

se oggi è martedì domani piove oppure se domani piove oggi è martedì

corrisponde alla nozione intuitiva di implicazione ?

L'implicazione

oggi è martedì

A

domani piove

В

A	В	$A \rightarrow E$
Т	Т	Т
Τ	F	F
F	Τ	Т
F	F	Т

se oggi è martedì domani piove oppure se domani piove oggi è martedì

Α	В	$A \rightarrow B$	$B \to A$	$(A \rightarrow B) \vee (B \rightarrow B)$	→ A)
Т	Т	Т	Т	Т	
Т	F	F	Τ	Т	è una
F	Τ	Т	F	Т	tautologia!
F	F	Т	Т	Т	22.2.22.09.0.

Algebre di Boole

$$A \rightarrow B = \neg A \lor B$$

$$A \rightarrow B = \overline{A} \vee B$$

 $A \rightarrow B \ e$ *la più debole* proposizione X tale che X, $A \models B$

 $A \rightarrow B \ earline{e}$ elemento X tale che $X \land A \leq B$

Nella *logica classica* (in un'algebra di Boole) l'implicazione è *definita* in termini della negazione (complementazione)

Proviamo a fare il contrario...

proprietà

Metodi matematici per l'Informatica

dei reticoli distributivi $A \lor (B \lor C) = (A \lor B) \lor C$ $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ $A \lor B = B \lor A$ $A \wedge B = B \wedge A$ $A \lor (A \land B) = A$ $A \wedge (A \vee B) = A$

$$A \lor B = B \lor A$$
 $A \land B = B \land A$
 $A \lor (A \land B) = A$
 $A \land (A \lor B) = A$
 $A \land (A \lor B) = A$
 $A \lor A = A$
 $A \land A = A$
 $A \land (B \lor C) = (A \land B) \lor (A \land C)$
 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$
 $A \lor \bot = A$
 $A \land A = \bot$
 $A \land A = \bot$

Algebre di Boole

 $(A, \vee, \wedge, -, \perp, \top)$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

> $A \rightarrow B \ e \ il \ più \ grande$ elemento X tale che $X \wedge A \leq B$

$$(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B, scritto $A \rightarrow B$, ovvero :

Ogni algebra di Boole è un' algebra di Heyting, ma ...

Algebre di Boole

$$(A, \vee, \wedge, -, \perp, \top)$$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 \Rightarrow A \rightarrow B è *il più grande* elemento X tale che $X \land A \leq B$

$$A \lor \overline{A} = T$$
 $A \land \overline{A} = \bot$

$$(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B, scritto $A \rightarrow B$, ovvero :

Ogni algebra di Boole è un' algebra di Heyting, <mark>ma</mark> ...

Algebre di Boole

$$(A, \vee, \wedge, -, \perp, \top)$$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 $A \rightarrow B \ earline{a} \ A \rightarrow B \ earline{a} \ A \rightarrow B \ earline{a} \ A \ A \ earline{b} \ A \ A \ earline{c} \ A \ A \ earline{c} \ A \ A \ earline{c} \ A \ earlin$

$$(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B, scritto $A \rightarrow B$, ovvero :

definiamo
$$\neg A \stackrel{\text{def}}{=} A \rightarrow \bot$$

$$A \wedge \neg A \stackrel{\text{def}}{=} A \wedge (A \rightarrow \bot) = \bot$$

Algebre di Boole

$$(A, \vee, \wedge, -, \perp, \top)$$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 $A \rightarrow B \ earline{a} \ A \rightarrow B \ earline{a} \ A \rightarrow B \ earline{a} \ A \ A \le B \ earline{a}$

$$A \lor \overline{A} = T$$
 $A \land \overline{A} = \bot$

terzo escluso non contraddizione

Quale proprietà delle AdB non è verificata dalle AdH?

$$(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B,

scritto $A \rightarrow B$, ovvero:

Algebre di Boole

$$(\mathcal{A}, \vee, \wedge, -, \perp, \top)$$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 $A \rightarrow B \ earline{e}$ A $\rightarrow B \ earline{e}$ elemento X tale che

$$X \land A \leq B$$

terzo escluso non contraddizione

Quale proprietà delle AdB non è verificata dalle AdH?

(m'ama, non m'ama... m'ama!)

$$(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B, scritto $A \rightarrow B$, ovvero :

definiamo ¬A
$$\stackrel{\text{def}}{=}$$
 A → ⊥

T ¬T = ⊥

¬♥□= ⊥

¬□□= T

¬(¬♥) =/♥□□

Algebre di Boole

$$(A, \vee, \wedge, -, \perp, \top)$$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 \Rightarrow A \rightarrow B è *il più grande* elemento X tale che \times A \leq B

terzo escluso non contraddizione

Quale proprietà delle AdB non è verificata dalle AdH?

 $(\mathcal{A}, \vee, \wedge, \rightarrow, \perp, \top)$

Un'algebra di Heyting è un reticolo distributivo, dove, per ogni coppia di elementi A e B, esiste lo pseudo complemento di A rispetto a B, scritto $A \rightarrow B$, ovvero :

se oggi è martedì domani piove oppure se domani piove oggi è martedì

Algebre di Boole

 $(A, \vee, \wedge, -, \perp, \top)$

Un'algebra di Boole è un reticolo distributivo, dove ogni elemento ha un complemento.

 \Rightarrow A \rightarrow B è *il più grande* elemento X tale che $X \land A \leq B$

 $A \lor \overline{A} = \top$ \bigcirc $A \land \overline{A} = \bot$ \bigcirc

terzo escluso non contraddizione

non è una tautologia!