

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (19)

Summary

- When developing an algorithm, could optimize for
 - Simplest
 - Easiest to implement?
 - Most efficient
 - Uses up least resources
 - Gives most precision
- In CS10 we'll consider
 - Constant
 - Logarithmic
 - Linear
 - LinearQuadratic
 - Cubic
 - Exponential
- Some algorithms cannot be implemented

efficiently

There are empirical

to verify efficiency

and correctness

and formal methods

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (20