SIMPLE TESTS

Tutorial #4

INTRODUCTION

Video by Sal Khan on Significance

Assume truly random

$$P(Bill\ not\ picked)\ on\ a\ night) = \frac{3}{4}$$
 $P(Bill\ not\ picked)\ 3\ nights\ in\ a\ row) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64} = 0.42$
 $P(""") = (\frac{3}{4})^{12} \approx 0.032 = 3.2\%$

2

STATISTICAL TESTING: THE FALSIFICATION PRINCIPLE

Falsification principle: I cannot "prove" things, I can only falsify them.

WHAT WE DON'T DO

WHAT WE DO

STATISTICAL TESTING: MORE GENERAL

STATISTICAL TESTING: MATHEMATICALLY

probability of observing data like we did given everything is normal

→ I found evidence against the Null-Hypothesis if this probability is below 5%.

We call this the p-value.

EXERCISE

- ➤ What's the *Null* and the *Alternative Hypothesis* in the following cases?
 - 1. You know the coffee drinkers' grades in this study program and you'd like to know if that's normally distributed.
 - 2. You have coffee drinkers and non-coffee drinkers and you'd like to know if their grades have a similar variance, ergo if it's even comparable.
 - 3. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinking is related to being late or early. (late/early = categorical)
 - 4. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinkers usually come to a different time than the non-coffee drinkers. (late/early in minutes)
 - 5. You have coffee-drinkers and you'd like to know if on days where they drink coffee, they have better grades.

You have 3 minutes.

OVERVIEW OF TESTS

Test	Data type Purpose		Null Hypothesis	Alternative Hypothesis	
Shapiro- Wilk test	·				
F-Test					
Chi-Square Test					
t-test					
Wilcoxon Test					

SHAPIRO WILK TEST

Is my data normally distributed?

LET'S TAKE THE COFFEE DRINKERS

Null-Hypothesis

➤ Data is normally distributed.

Alternative Hypothesis

➤ Data is not normally distributed.

Scenario: 1. You know the coffee drinkers' grades in this study program and you'd like to know if that's normally distributed.

Null-Hypothesis

➤ The coffee drinkers' grades in this study program are normally distributed (= I can proceed with other tests).

Alternative Hypothesis ➤ The coffee drinkers' grades in this study program are *not* normally distributed (= I have to find the right distribution).

THAT'S WHAT OUR DATA LOOKS LIKE

Scenario: 1. You know the coffee drinkers' grades in this study program and you'd like to know if that's normally distributed.

coffee drinkers
1.3
1.7
3.7
2.7
3.7
3.7
2.3
2.0
1.3
1.7

. . .

THAT'S WHAT R GIVES ME

```
> shapiro.test(sample1)

Shapiro-Wilk normality test

data: sample1
W = 0.98824, p-value = 0.7587
```

p(the data IH0) > 0.05

!!

H0: coffee drinkers'
grades normally
distributed (= I can
proceed with other tests).

H1: coffee drinkers' grades not normally distributed (= find distribution).

Note: This is actually what we want.

OVERVIEW OF TESTS

Test	Data type	pe Purpose Null Hypothesis		Alternative Hypothesis
Shapiro- Wilk test	(Ordinal)/ Interval/Ratio	Normally distributed?	Data is normally distributed.	Data is not normally distributed.
F-Test	(Ordinal)/ 2 variances the Interval/Ratio same?		No difference in variances.	There is a difference in variances.
Chi-Square Test	·			
t-test	est			

F-TEST

Are the variances of two samples the same?

LET'S TAKE THE COFFEE DRINKERS

Null-Hypothesis

➤ No difference in variances.

Alternative Hypothesis

➤ Difference in variances.

Scenario: 2. You have coffee drinkers and non-coffee drinkers and you'd like to know if their grades have a similar variance, ergo if it's even comparable.

Null-Hypothesis

➤ Coffee drinkers and non-coffee drinkers have a similar variance (= comparable).

Alternative Hypothesis

➤ Coffee drinkers and non-coffee drinkers have different variances (= *not* comparable).

THAT'S WHAT OUR DATA LOOKS LIKE

Scenario: 2. You have coffee drinkers and non-coffee drinkers and you'd like to know if their grades have a similar variance, ergo if it's even comparable.

coffee drinkers	non-coffee drinkers
1.3	2.3
1.7	2.7
3.7	2.0
2.7	2.0
3.7	1.7
3.7	1.3
2.3	3.0
2.0	3.0
1.3	1.3
1.7	3.7

17

THAT'S WHAT R GIVES ME

```
> var.test(sample1, sample2)

    F test to compare two variances

data: sample1 and sample2
F = 1.2172, num df = 49, denom df = 29, p-value = 0.5785
    alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.6115387 2.2900198
sample estimates:
ratio of variances
    1.217179
```

p(the data IH0) > 0.05

!!

H0: Similar variances (= comparable)

H1: Different variances (= not comparable)

Note: This is actually what we want.

OVERVIEW OF TESTS

Test	Data type	Purpose	Null Hypothesis	Alternative Hypothesis
Shapiro- Wilk test	(Ordinal)/ Interval/Ratio	Normally distributed?	Data is normally distributed.	Data is not normally distributed.
F-Test	(Ordinal)/ Interval/Ratio	2 variances the same?	No difference in variances.	There is a difference in variances.
Chi-Square	Catagorical	# Categories	The variables are all similarly distributed,	The variables depend upon each other, there is a
Test	Categorical	relationship?	no relationship.	relationship.
Test t-test	Categorical	relationship?		

CHI-SQUARE TEST

Do my categories depend on each other?

LET'S TAKE THE COFFEE DRINKERS

Null-Hypothesis

➤ The variables are all similarly distributed, no relationship.

Alternative Hypothesis

➤ The variables depend upon each other, there is a relationship.

Scenario: 3. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinking is related to being late or early.

Null-Hypothesis

➤ Coffee and non-coffee drinkers both come early or late, no relationship.

Alternative Hypothesis ➤ Coffee drinkers tend to come to a different time than noncoffee drinkers.

THAT'S WHAT OUR DATA LOOKS LIKE

Scenario: 3. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinking is related to being late or early.

	come early	come late
coffee drinkers	40	60
non-coffee drinkers	30	20

THAT'S WHAT R GIVES ME

```
our data time

coffee early late

coffee 40 60

non-coffee 30 20

chi-square test Pearson's Chi-squared test with Yates' continuity correction

data: coffeeEarly
X-squared = 4.5837, df = 1, p-value = 0.03228
```

p(the data IHO) < 0.05

H0: No relationship between coffee and coming early/late

H1: I believe coffee has something to do with coming early/ late.

OVERVIEW OF TESTS

Test	Data type	Purpose	Null Hypothesis	Alternative Hypothesis
Shapiro- Wilk test	(Ordinal)/ Interval/Ratio	Normally distributed?	Data is normally distributed.	Data is not normally distributed.
F-Test	(Ordinal)/ Interval/Ratio	2 variances the same?	No difference in variances.	There is a difference in variances.
Chi-Square Test	Categorical	# Categories relationship?	The variables are all similarly distributed, no relationship.	The variables depend upon each other, there is a relationship.
	Categorical Interval/Ratio		similarly distributed,	each other, there is a

T-TEST

Do the two samples have different means?

LET'S TAKE THE COFFEE DRINKERS

Null-Hypothesis

➤ The two samples' means are not different.

Alternative Hypothesis

➤ The two samples means are different.

Scenario: 4. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinkers usually come to a different time than the non-coffee drinkers.

Null-Hypothesis

➤ Coffee and non-coffee drinkers don't come at different times.

Alternative Hypothesis

➤ Coffee and non-coffee drinkers come at different times.

THAT'S WHAT OUR DATA LOOKS LIKE

Scenario: 4. You have coffee drinkers and non-coffee drinkers and you'd like to know if the coffee drinkers usually come to a different time than the non-coffee drinkers (in min).

coffee drinkers' arrival	non-coffee drinkers' arrival
0.3	-3.0
5.0	-2.5
6.8	0.0
7.0	5.5
-0.1	-0.1
-0.5	-2.5
0.5	-3.0
0.0	-7.0
0.0	-4.5
-2.0	0.0

• • •

THE T-TEST

Arrival compared to the lecture starting time (in min)

We compare the sample to our population.

THAT'S WHAT R GIVES ME

```
> t.test(sample1, sample2)

Welch Two Sample t-test

data: sample1 and sample2
t = 2.3066, df = 17.989, p-value = 0.03319
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.3038705 6.5161295
sample estimates:
mean of x mean of y
    1.70    -1.71
```

p(the data IHO) < 0.05

THE T-TEST

Arrival compared to the lecture starting time (in min)

We compare the sample to our population.

THE T-TEST FORMULA

- $\rightarrow \bar{x} = sample mean$
- $\rightarrow \mu_0 = population mean$
- ightharpoonup s = standard deviation of the sample
- \rightarrow n = sample size

$$t = \frac{\text{sample - population}}{\text{standardized by something}}$$

$$t = \frac{(\bar{x}) - (\mu_0)}{(s)\sqrt{n}}$$

We compare the sample to our population.

LET'S DO THIS BY HAND...

- ➤ ... to appreciate our beloved R once more ;)
- ➤ Calculate the variance and the t-value.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

coffee drinkers' arrival	non-coffee drinkers' arrival
0.3	-3.0
5.0	-2.5
6.8	0.0
7.0	5.5
-0.1	-0.1
-0.5	-2.5
0.5	-3.0
0.0	-7.0
0.0	-4.5
-2.0	0.0

You have 10 minutes.

• • •

A NOTE ON THE FORMULA

General case

standard deviation

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

t-value

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

Our case "two samples" case A = sample 1, B = sample 2

$$S = \sqrt{\frac{\sum (x - \bar{x_A})^2 + \sum (x - \bar{x_B})^2}{n_A + n_B - 2}}$$

$$t = \frac{x_A - x_B}{\frac{S}{\sqrt{n_A}} + \frac{S}{\sqrt{n_B}}}$$

C	nc	

• • •

BLACKBOARD: HOW TO WRITE THIS DOWN

FROM T-VALUES TO P-VALUES

IW	o Tails T	DIST	ibution	lable				
F	A = 0.2	0.10	0.05	0.02	0.01	0.002	0.001	_the p-value you'll get
ю	$t_a = 1.282$	1.645	1.960	2.326	2.576	3.091	3.291	
	3.078	6.314	12.706	31.821	63.656	318.289	636.578	
)	1.886	2.920	4.303	6.965	9.925	22.328	31.600	
5	1.638	2.353	3.182	4.541	5.841	10.214	12.924	
	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
;	1.476	2.015	2.571	3.365	4.032	5.894	6.869	
)	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
,	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
)	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
.0	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
.1	1.363	1.796	2.201	2.718	3.106	4.025	4.437	t = 2.3006
.2	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
.3	1.350	1.771	2.160	2.650	3.012	3.852	4.221	$\mathbf{p} \approx 0.03$
.4	1.345	1.761	2.145	2.624	2.977	3.787	4.140	P
.5	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
.6	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
.7	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
8	1.330	1.734	2.101 🔏	2.552	2.878	3.610	3.922	
.9	1.328	1.729	2.093	2.539	2.861	3.579	3.883	

 $df \approx n-2$

THAT'S WHAT R GIVES ME

```
> t.test(sample1, sample2)

Welch Two Sample t-test

data: sample1 and sample2
t = 2.3066, df = 17.989, p-value = 0.03319
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.3038705 6.5161295
sample estimates:
mean of x mean of y
    1.70    -1.71
```

p(the data IHO) < 0.05

TASK: ONE MORE TIME!

➤ Data which show the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients.

- ➤ Help for typing in R:
- ➤ data(sleep)
- ➤ t.test(extra ~ group, data = sleep, paired = TRUE)

OVERVIEW OF TESTS

Test	Data type	Purpose	Null Hypothesis	Alternative Hypothesis
Shapiro- Wilk test	(Ordinal)/ Interval/Ratio	Normally distributed?	Data is normally distributed.	Data is not normally distributed.
F-Test	(Ordinal)/ Interval/Ratio	2 variances the same?	No difference in variances.	There is a difference in variances.
Chi-Square Test	Categorical	# Categories relationship?	The variables are all similarly distributed, no relationship.	The variables depend upon each other, there is a relationship.
	Categorical Interval/Ratio	· ·	similarly distributed,	each other, there is a

WILCOXON TEST

Ordinal alternative to the dependent samples t-test.

LET'S TAKE THE COFFEE DRINKERS

Null-Hypothesis

➤ The samples' means are not different.

Alternative Hypothesis

- ➤ The samples means are different.
- ➤ Important: they need to be **dependent** samples.

Scenario: 5. You have coffee-drinkers and you'd like to know if on days where they drink coffee, they have better grades.

"dependent sample": same people with different conditions

Null-Hypothesis

➤ Coffee drinkers don't have different grades depending on their coffee input.

Alternative Hypothesis

➤ Coffee drinkers have different grades depending on their coffee input.

Wilcoxon Test

THAT'S WHAT OUR DATA LOOKS LIKE

Scenario: 5. You have coffee-drinkers and you'd like to know if on days where they drink coffee, they have better grades.

drank coffee	didn't drink coffee
1.3	2.3
1.7	2.7
3.7	2.0
2.7	2.0
3.7	1.7
3.7	1.3
2.3	3.0
2.0	3.0
1.3	1.3
1.7	3.7

• • •

THE WILCOXON TEST

Effect of coffee drinking on grades

THAT'S WHAT R GIVES ME

```
> wilcox.test(sample1, sample2)

Wilcoxon rank sum test with continuity correction

data: sample1 and sample2
W = 1327, p-value = 2.905e-08
alternative hypothesis: true location shift is not equal to 0
```

p(the data IHO) < 0.05

H0: Coffee drinkers don't have different grades depending on their coffee input.

H1: Coffee drinkers have different grades depending on their coffee input.