Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Кафедра высшей математики №1

Дипломная работа на тему: «Исследование эффективности пространственных и частотных методов фильтрации шумов на изображениях»

Дипломник: Алимагадов Курбан Алимагадович

Научный руководитель: д.ф.-м.н., профессор Умняшкин Сергей Владимирович

Введение

- Процессы получения и передачи цифровых изображений сопровождаются образованием на них искажений и шумов.
- В работе рассмотрены аддитивные белый гауссов (нормальный) и периодический шумы. Модель возникновения аддитивных шумов на изображениях определяется формулой:

$$g(x,y) = f(x,y) + n(x,y), \tag{1}$$

где f(x,y) — исходное изображение, n(x,y) — шум, g(x,y) — зашумлённое изображение.

• Для того чтобы избавиться от шума применяют пространственные и частотные методы фильтрации.

Цель и задачи

• Исследовать эффективность применения методов фильтрации цифровых изображений и определить, какие из них лучше решают задачу подавления шумов на изображениях.

• Задачи:

- 1) Изучить существующие методы фильтрации нормального белого и периодического шумов на изображениях;
- 2) Рассмотреть применение пороговых фильтров, используемых обычно в базисе вейвлетов, для частотной фильтрации белого гауссового шума;
- 3) Сравнить эффективность работы рассматриваемых методов;
- 4) Сделать выводы и дать рекомендации по эффективному применению фильтров.

Математические модели шума

• Для модели нормального шума n(x,y) = z — случайная величина, плотность распределения которой задаётся законом Гаусса:

$$\rho(z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2\sigma^2}},$$
 (2)

• Моделью периодического шума является двумерное пространственное гармоническое колебание, которое задаётся формулой:

$$r(x,y) = A\cos\left[2\pi\left(\frac{u_0}{M}x + \frac{v_0}{N}y\right) + \gamma\right],\tag{3}$$

Методы фильтрации

- Для решения задачи фильтрации изображений применяются два вида фильтров: пространственные и частотные.
- В работе для фильтрации белого нормального шума применяются

```
4 пространственных фильтра: среднеарифметический фильтр, фильтр срединной точки, фильтр Гаусса, билатеральный фильтр и 3 частотных фильтра: "жёсткий" пороговый фильтр, "мягкий" пороговый фильтр, фильтр Винера.
```

• Для фильтрации периодического шума используются 2 частотных метода: оптимальной узкополосной фильтрации и фильтр Винера.

Метрики, используемые для оценки эффективности фильтрации

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} [I(i,j) - K(i,j)]^{2}$$

$$PSNR_{\text{AB}} = 10 \lg \frac{MAX_I^2}{MSE} = 20 \lg \frac{MAX_I}{\sqrt{MSE}}$$
 (4)

$$SSIM(I,K) = \frac{(2\mu_I \mu_K + c_1)(2\sigma_{IK} + c_2)}{(\mu_I^2 + \mu_K^2 + c_1)(\sigma_I^2 + \sigma_K^2 + c_2)}$$
(5)

Пороговая фильтрация

"Жёсткая" и "мягкая" пороговые функции, используемые для фильтрации коэффициентов ДПФ изображения:

$$hard(z,T) = \begin{cases} z, \ ecnu \mid z \mid \geq T; \\ 0, \ ecnu \mid z \mid < T, \end{cases}$$
 (6)

$$soft(z,T) = \begin{cases} z \cdot \frac{|z| - T}{|z|}, \ ecnu \ |z| \ge T; \\ 0, \ ecnu \ |z| < T. \end{cases}$$

$$(7)$$

Фильтр Винера

• Фильтр Винера должен обеспечивать формирование наилучшей оценки полезного сигнала $\hat{f}(x,y)$ в смысле минимума мощности сигнала-ошибки $E(x,y) = f(x,y) - \hat{f}(x,y)$:

$$\sigma_E^2 = M\left\{ \left(f(x, y) - \hat{f}(x, y) \right)^2 \right\} \to min. \tag{8}$$

• Частотная характеристика фильтра задаётся выражением:

$$W(u,v) = \frac{S_f(u,v)}{S_f(u,v) + S_n(u,v)} = \frac{S_g(u,v) - \tilde{S}_n(u,v)}{S_g(u,v)},$$
 (9)

где $S_f(u,v)$, $S_g(u,v)$, $S_n(u,v)$ являются спектрами мощности полезного сигнала, зашумлённого сигнала и шума соответственно, $\tilde{S}_n(u,v)$ – оценка спектра мощности шума.

Скользящее окно и весовая маска

- Частотные методы фильтрации нормального белого шума, рассмотренные в работе, используют оконную фильтрацию с весовой маской.
- Значения весов маски рассчитываются следующим образом:

$$M = vv^{T} = \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{m} \end{pmatrix} (v_{1} \ v_{2} \ \cdots \ v_{m}) = \begin{pmatrix} v_{1}v_{1} & \cdots & v_{1}v_{m} \\ \vdots & \ddots & \vdots \\ v_{m}v_{1} & \cdots & v_{m}v_{m} \end{pmatrix}, \tag{10}$$

где v — вектор столбец размера $m \times 1$, центральные l элементов которого равны 1, а остальные принимают значения, монотонно убывающие от центра к началу и концу вектора.

Скользящее окно и весовая маска

- Окно проходит по изображению с шагом step = (m+l)/2 и обрабатывает попавшие в него пиксели.
- Сумма весов перекрывающихся масок равна 1.

Скользящее окно и весовая маска

В работе использовалась маска, матрица значений которой является произведением векторов vv^T , где v — вектор-столбец длины 40, 8 центральных элементов которого равны 1, а элементы по краям убывают до 0 по закону:

$$f(x_i) = \frac{\cos\left(\frac{\pi i}{15}\right) + 1}{2},\tag{11}$$

$$i = 0,1,...,15.$$

- Участок изображения, попавший в окрестность окна, расширялся добавлением нулевых отсчётов по краям.
 Это позволило лучше аппроксимировать непрерывный спектр изображения с помощью ДПФ.
- Размерность применявшегося ДПФ: 80 × 80

Трёхмерное изображение маски

Примеры "жёсткой" и "мягкой" масочных пороговых фильтраций

Изображение, зашумлённое нормальным белым шумом $(\mu = 0, \sigma = 20)$

Результат фильтрации "жёстким" пороговым фильтром ($T_{\text{жёстк.}}$ =0.16) SNR (16.2/24.08), SSIM (0.47/0.85)

Результат фильтрации "мягким" пороговым фильтром ($T_{\text{мягк.}}$ =0.076) SNR (16.2/23.81), SSIM (0.47/0.83)

Винеровская масочная фильтрация нормального белого шума

Параметры шума: (μ = 0, σ = 20)

Результат фильтрации SNR (16.79/24.9), SSIM (0.39/0.86)

Винеровская фильтрация периодической помехи

Параметры шума: (A = 90, u_0 = 100.4, v_0 = 100.2)

Результат фильтрации SNR (5.69/36.04), SSIM (0.08/0.98)

Результаты экспериментов фильтрации нормального белого шума

Таблица № 1. Значения метрик до фильтрации

Параметры шума:

 $\sigma = 20$

 $\mu = 0$

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	22.12	22.12	22.12	22.12
до/после	22.12	22.12	22.12	22.12
SSIM	0.47	0.42	0.20	0.4
до/после	0.47	0.43	0.39	0.4

Таблица № 2. Билатеральный фильтр

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	26.17	28.74	29.79	29.49
до/после	20.17	20.74	29.79	25.45
SSIM	0.74	0.76	0.01	0.77
до/после	0.74	0.76	0.81	0.77

Таблица № 4. "Мягкий" пороговый фильтр

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	29.73	20.7	29.93	29.27
до/после	29.75	28.7	29.93	29.27
SSIM	0.00	0.75	0.01	0.75
до/после	0.83	0.75	0.81	0.75

Таблица № 3. "Жёсткий" пороговый фильтр

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ до/после	30	28.66	30.29	29.15
SSIM	0.05	0.75	0.05	0.75
до/после	0.85	0.75	0.85	0.75

Таблица № 5. Фильтр Винера

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	30.01	28.62	30.24	29.19
до/после				
SSIM	0.86	0.76	0.86	0.76
до/после	0.00	0.76	0.80	0.76

Сравнение частотной и вейвлет фильтрации нормального белого шума

Таблица № 6. Значения метрик до фильтрации

Параметры шума:

 $\sigma = 20$

 $\mu = 0$

Изображение	Barbara.png	Boat.png	Lena.png
PSNR, дБ	22.12	22.12	22.12
до/после	22.12	22.12	22.12
SSIM	0.47	0.42	0.20
до/после	0.47	0.43	0.39

Таблица № 7. "Жёсткий" пороговый фильтр

Изображение	Barbara.png	Boat.png	Lena.png	
PSNR, дБ	30	28.66	30.29	
до/после	30	28.00	30.29	
SSIM	0.05	0.75	0.05	
до/после	0.85	0.75	0.85	

Таблица № 8. Фильтр Винера

Изображение	Barbara.png	Boat.png	Lena.png	
PSNR, дБ	30.01	28.62	30.24	
до/после	30.01	20.02	30.24	
SSIM	0.06	0.76	0.06	
до/после	0.86	0.76	0.86	

Количество арифметических операций на пиксель: *1272*

Количество арифметических операций на пиксель: *1342*

Таблица № 9. Модифицированный фильтр Винера в базисе пакетного ДВП с энтропийным критерием (данные М.Хабибулина)

Изображение	Barbara.png	Boat.png	Lena.png	
PSNR, дБ	28.69	27.56	29.4	
до/после	20.05	27.50	23.4	
SSIM	0.81	0.73	0.81	
до/после	0.61	0.75	0.61	

Количество арифметических операций на пиксель: *133*

Результаты экспериментов фильтрации периодического шума

Таблица № 10. Значения метрик до фильтрации

Параметры шума:

A = 90

 u_0 = 100.4

 $v_0 = 100.2$

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	12.06	12.06	12.06	12.06
до/после	12.06	12.06	12.06	12.06
SSIM	0.12	0.1	0.1	0.00
до/после	0.13	0.1	0.1	0.08

Таблица № 11. Метод оптимальной узкополосной фильтрации (окно Баттерворта)

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	32.35	35.96	32.94	32.75
до/после	32.33	33.30	32.54	32.73
SSIM	0.05	0.06	0.05	0.05
до/после	0.95	0.96	0.95	0.95

Таблица № 12. Метод оптимальной узкополосной фильтрации (окно Гаусса)

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ до/после	32.7	36.36	33.15	32.95
SSIM до/после	0.96	0.97	0.97	0.96

Таблица № 13. Фильтр Винера

Изображение	Barbara.png	Boat.png	Lena.png	Goldhill.png
PSNR, дБ	39.15	A1 71	40.95	42.41
до/после	39.13	41.71	40.95	42.41
SSIM	0.07	0.00	0.00	0.00
до/после	0.97	0.98	0.98	0.98

Выводы и заключение

- Рассмотрены модели двух часто встречающихся в природе видов шума, а также способы борьбы с ними.
- Предложены реализации алгоритмов пороговой фильтрации, применимые к обработке коэффициентов ДПФ для подавления нормального белого шума.
- Ценой существенно большего объёма требуемых вычислений рассмотренные в работе методы частотной фильтрации превзошли качество подавления нормального белого шума в области вейвлет-преобразований.
- При фильтрации нормального белого шума частотными методами результаты обработки "жёстким" пороговым фильтром показали высокий рост PSNR, результаты фильтра Винера наибольший рост SSIM.
- При устранении периодической помехи винеровская фильтрация превзошла метод оптимальной узкополосной фильтрации.
- Таким образом, фильтр Винера является универсальным средством подавления шумов в том смысле, что подходит для борьбы с шумами различной природы.

18/19

Спасибо за внимание!