ANALYSIS

1-SELECTION SORT

SS) Analysis for SelectionSort on a Sorted Array:

• n min: 7,500

• t min: 37 ms

• n max: 1,000,000

• t max: 705,559 ms

1. Empirical Ratio:

Empirical Ratio =
$$\frac{\text{t max}}{\text{t min}}$$
 = 705559 / 37 \approx **19,078**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 1000000 / 7500 \approx 133.33

Log-Linear Complexity (O (n \log n)):

$$\label{eq:log-linear} \text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log{(\text{n max})}}{\text{n min} \cdot \log{(\text{n min})}} = 1000000 \cdot \log{(1000000)} / \ 7500 \cdot \log{(7500)} \ \approx \ 455.42$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \text{ max}^2}{n \text{ min}^2}$$
 = 1000000² / 7500² \approx 17777.783.

- The empirical ratio is approximately 19,078, which is closest to the quadratic ratio of 17,777.78.
- This suggests that SelectionSort on a sorted array behaves as expected, with quadratic complexity O(n²), which aligns with the known time complexity of SelectionSort.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	<u>19,078</u>	133.33	455.42	17777.783	O(n ²)

SC) Analysis for SelectionSort on a Constant Array:

• n min: 7,500

• t min: 37 ms

• n max: 1,000,000

• t max: 694,690 ms

1. Empirical Ratio:

Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 694690 / 37 \approx **18,770**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 1000000 / 7500 \approx 133.33

Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{1000000 \cdot \log (1000000)}{7500 \cdot \log (7500)} \approx 455.42$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 1000000² /7500² ≈ 17,777.78

- The empirical ratio is approximately 18,770, which again closely matches the quadratic ratio of 17,777.78.
- This confirms that SelectionSort on a constant array also behaves with quadratic complexity $O(n^2)$, as expected.

	Empirical Ratio = $\frac{t \max}{t \min}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
sc	18,770	133.33	455.42	17,777.78	O(n ²)

SR) Analysis for SelectionSort on a Random Array:

• n min: 7,500

• t min: 37 ms

• n max: 1,000,000

t max: 713,504 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 713504 / 37 \approx **19,277**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 1000000 / 7500 \approx 133.33

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \ \frac{1000000 \cdot \log \left(1000000 \right)}{7500 \cdot \log \left(7500 \right)} \approx 455.42$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 1000000² / 7500² ≈ 17,777.78

- The empirical ratio is approximately 19,277, which is very close to the quadratic ratio of 17,777.78.
- This confirms that SelectionSort on a random array behaves with quadratic complexity O(n²), which is in line with theoretical expectations for SelectionSort.

	Empirical Ratio = $\frac{t \max}{t \min}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	18,770	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)

2-INSERTION SORT

IS) Analysis for InsertionSort on a Sorted Array:

• n min: 13,000,000

• t min: 30 ms

• n max: 200,000,000

• t max: 472 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 472 / 30 \approx 15.73

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 13000000 \approx 15.38

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot \log \left(200000000 \right)}{13000000 \cdot \log \left(13000000 \right)} \ \approx 205.72$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 2000000002/ 130000002 \approx 236.25

- The empirical ratio is 15.73, which is very close to the linear ratio of 15.38.
- This indicates that InsertionSort on a sorted array behaves with linear complexity O(n), which is expected because InsertionSort has a best-case complexity of O(n) for already sorted arrays.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	<u>18,770</u>	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)

IC) Analysis for InsertionSort on a Constant Array:

• n min: 15,000,000

• t min: 35 ms

• n max: 200,000,000

t max: 463 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 463 / 35 \approx **13.23**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 15000000 \approx 13.33

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot \log \left(200000000 \right)}{15000000 \cdot \log \left(15000000 \right)} \ \approx 176.18$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \text{ max}^2}{n \text{ min}^2}$$
 = 200000000² / 15000000² \approx 177.78

- The empirical ratio is 13.23, which is almost identical to the linear ratio of 13.33.
- This shows that InsertionSort on a constant array behaves with linear complexity O(n), which makes sense because for constant arrays, the algorithm will encounter minimal shifting, behaving as it does for sorted arrays in the best-case scenario.

	Empirical Ratio = $\frac{t \max}{t \min}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	<u>19,078</u>	133.33	455.42	17777.783	O(n ²)
SC	<u>18,770</u>	133.33	455.42	17,777.78	O(n ²)
SR	<u>19,277</u>	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)

IR) Analysis for InsertionSort on a Random Array:

• n min: 9,000

• t min: 34 ms

• n max: 1,000,000

t max: 452,128 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 452128 / 34 \approx **13,290.59**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 1000000 / 9000 \approx 111.11

• Log-Linear Complexity (O (n \log n)):

Log-Linear Ratio=
$$\frac{n \max \cdot \log (n \max)}{n \min \cdot \log (n \min)} = \frac{1000000 \cdot log(1000000)}{9000 \cdot log(9000)} \approx 1,168.12$$

Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \text{ max}^2}{n \text{ min}^2}$$
 = 1000000²/ 9000² \approx 123,456.79

- The empirical ratio is approximately 13,290.59, which is significantly higher than the linear ratio of 111.11
- The empirical ratio is also far from the log-linear ratio and much less than the quadratic ratio of 123,456.79.
- This suggests that InsertionSort on a random array exhibits characteristics closer to quadratic complexity $O(n^2)$ in practice. This aligns with expectations since InsertionSort has an average-case complexity of $O(n^2)$.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	18,770	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	13.23	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)

3-MERGE SORT

MS) Analysis for MergeSort on a Sorted Array:

• n min: 700,000

• t min: 36 ms

• n max: 200,000,000

• t max: 14,821 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 14821/36 \approx **411.69**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 700000 \approx 285.71

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot log \left(200000000 \right)}{700000 \cdot log \left(700000 \right)} \approx 1,777.78$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 200000000² / 700000² \approx 81,632.65

3. Comparison:

- The empirical ratio is approximately 411.69, which is closest to the linear ratio of 285.71.
- This suggests that MergeSort on a sorted array behaves with log-linear complexity O(n logn), which is expected given the nature of MergeSort.

•

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	18,770	133.33	455.42	17,777.78	O(n²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	13.23	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	411.69	285.71	1,777.78	81,632.65	O(n logn)

MC) Analysis for MergeSort on a Constant Array:

• n min: 700,000

• t min: 36 ms

• n max: 200,000,000

• t max: 14,935 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 14935 / 36 \approx **414.86**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 700000 \approx 285.71

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot log \left(200000000 \right)}{700000 \cdot log \left(700000 \right)} \ \approx 1,777.78$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 2000000002 / 7000002 \approx 81,632.65

- The empirical ratio is approximately 414.86, which is closest to the linear ratio of 285.71.
- This indicates that MergeSort on a constant array behaves with log-linear complexity O(n logn), as expected for MergeSort.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	18,770	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	411.69	285.71	1,777.78	81,632.65	O(n logn)
MC	<u>414.86</u>	285.71	1,777.78	81,632.65	O(n logn)

MR) Analysis for MergeSort on a Random Array:

• n min: 300,000

• t min: 33 ms

• n max: 200,000,000

• t max: 27,725 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 27725 / 33 \approx **840.15**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 300000 \approx 666.67

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot log \left(200000000 \right)}{300000 \cdot log \left(300000 \right)} \ \approx 3,188.39$$

Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^{2} 2}{n \min^{2} 2}$$
 = 2000000002 / 3000002 \approx 444,444.44

- The empirical ratio is approximately 840.15, which is closer to the linear ratio of 666.67.
- This indicates that MergeSort on a random array exhibits characteristics of log-linear complexity O(n logn) as expected, but it also suggests a bit more overhead due to the randomness in the input.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n ²)
SC	<u>18,770</u>	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	411.69	285.71	1,777.78	81,632.65	O (n logn)
MC	414.86	285.71	1,777.78	81,632.65	O (n logn)
MR	<u>840.15</u>	666.67	3,188.39	444,444.44	O (n logn)

4-QUICK SORT

QS) Analysis for QuickSort on a Sorted Array:

• n min: 500,000

• t min: 32 ms

• n max: 200,000,000

t max: 405,087 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 405087 / 32 \approx **12,660.22**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 200000000 / 500000 = 400

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{200000000 \cdot log (20000000)}{500000 \cdot log (500000)} \ \approx 2,988.93$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 2000000002 / 5000002 = 1600

- The empirical ratio is approximately 12,660.22, which is significantly higher than both the linear ratio of 400 and the log-linear ratio of 2,988.93.
- This suggests that QuickSort on a sorted array behaves closer to quadratic complexity O(n²) due to the nature of its pivot selection, especially when the array is already sorted (as it can lead to unbalanced partitions).

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n²)
SC	18,770	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	<u>411.69</u>	285.71	1,777.78	81,632.65	O (n logn)
MC	414.86	285.71	1,777.78	81,632.65	O (n logn)
MR	840.15	666.67	3,188.39	444,444.44	O (n logn)
QS	12,660.22	400	2,988.93	1600	O(n ²)

QC) Analysis for QuickSort on a Constant Array:

• n min: 7,500

• t min: 34 ms

• n max: 1,000,000

• t max: 653,506 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 653506 / 34 \approx **19,194.24**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 = 1000000 / 7500 \approx 133.33

• Log-Linear Complexity (O (n \log n)):

Log-Linear Ratio=
$$\frac{n \max \cdot \log (n \max)}{n \min \cdot \log (n \min)} = \frac{1000000 \cdot \log(1000000)}{7500 \cdot \log(7500)} \approx 455.42$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \text{ max}^2}{n \text{ min}^2}$$
 = 1000000² / 7500² \approx 17777.78

- The empirical ratio is approximately 19,194.24, which is closest to the quadratic ratio of 17,777.78.
- This indicates that QuickSort on a constant array exhibits quadratic complexity O(n²), which is expected since constant arrays can lead to inefficient partitioning when the pivot selection does not balance the array well.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n²)
SC	18,770	133.33	455.42	17,777.78	O(n ²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	411.69	285.71	1,777.78	81,632.65	O (n logn)
MC	<u>414.86</u>	285.71	1,777.78	81,632.65	O (n logn)
MR	<u>840.15</u>	666.67	3,188.39	444,444.44	O (n logn)
QS	12,660.22	400	2,988.93	1600	O(n ²)
QC	19,194.24	133.33	455.42	17777.78	O(n ²)

QR) Analysis for QuickSort on a Random Array:

• n min: 250,000

• t min: 30 ms

• n max: 40,000,000

• t max: 26,450 ms

1. Empirical Ratio:

• Empirical Ratio =
$$\frac{t \text{ max}}{t \text{ min}}$$
 = 26450 / 30 \approx **881.67**

2. Theoretical Ratios:

We compute the theoretical ratios for different complexities:

• Linear Complexity (O(n)):

Linear Ratio =
$$\frac{n \text{ max}}{n \text{ min}}$$
 =40000000 / 250000 =160

• Log-Linear Complexity (O (n \log n)):

$$\text{Log-Linear Ratio=} \ \frac{\text{n max} \cdot \log \left(\text{n max} \right)}{\text{n min} \cdot \log \left(\text{n min} \right)} = \frac{40000000 \cdot \log \left(40000000 \right)}{250000 \cdot \log \left(250000 \right)} \ \approx 1,328.40$$

• Quadratic Complexity (O(n^2)):

Quadratic Ratio =
$$\frac{n \max^2 2}{n \min^2 2}$$
 = 40000000² / 250000² = 6400

- The empirical ratio is approximately 881.67, which is closest to the log-linear ratio of 1,328.40.
- This indicates that QuickSort on a random array behaves more closely to log-linear complexity O (n logn), which is expected since QuickSort is typically efficient on average cases, especially with random inputs.

	Empirical Ratio = $\frac{t \text{ max}}{t \text{ min}}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	19,078	133.33	455.42	17777.783	O(n²)
SC	18,770	133.33	455.42	17,777.78	O(n²)
SR	19,277	133.33	455.42	17,777.78	O(n ²)
IS	<u>15.73</u>	15.38	205.72	236.25	O(n)
IC	<u>13.23</u>	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	<u>411.69</u>	285.71	1,777.78	81,632.65	O (n logn)
MC	<u>414.86</u>	285.71	1,777.78	81,632.65	O (n logn)
MR	<u>840.15</u>	666.67	3,188.39	444,444.44	O (n logn)
QS	12,660.22	400	2,988.93	1600	O(n ²)
QC	19,194.24	133.33	455.42	17777.78	O(n ²)
QR	881.67	160	1,328.40	6400	O (n logn)

FINAL CHART

	Empirical Ratio = $\frac{t \max}{t \min}$	Linear Ratio	Log-Linear Ratio	Quadratic Ratio	Behaviour
SS	<mark>19,078</mark>	133.33	<mark>455.42</mark>	17777.783	O(n²)
SC	18,770	133.33	<mark>455.42</mark>	17,777.78	O(n²)
SR	<mark>19,277</mark>	133.33	455.42	17,777.78	O(n²)
IS	<mark>15.73</mark>	15.38	205.72	236.25	O(n)
IC	13.23	13.33	176.18	177.78	O(n)
IR	13,290.59	111.11	1,168.12	123,456.79	O(n ²)
MS	411.69	285.71	1,777.78	81,632.65	O (n logn)
MC	414.86	285.71	1,777.78	81,632.65	O (n logn)
MR	<u>840.15</u>	666.67	3,188.39	444,444.44	O (n logn)
QS	12,660.22	400	2,988.93	1600	O(n ²)
QC	19,194.24	133.33	455.42	17777.78	O(n ²)
QR	881.67	160	1,328.40	6400	O (n logn)