2-2 In-Class Exercise

1. Evaluate the determinant, given that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$$

$$\begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g+3a & h+3b & i+3c \end{vmatrix} = ?$$

2-2 Suggested Exercise

Evaluate the determinant of the matrix.

$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

Evaluate the determinant of the matrix.
$$\begin{bmatrix} 1 & -2 & 3 & 1 \\ 5 & -9 & 6 & 3 \\ -1 & 2 & -6 & -2 \\ 2 & 8 & 6 & 1 \end{bmatrix}$$

3. Evaluate the determinant, given that
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$$

$$\begin{vmatrix} -3a & -3b & -3c \\ d & e & f \\ g - 4d & h - 4e & i - 4f \end{vmatrix} = ?$$

4. Show that
$$\begin{vmatrix} a_1 + b_1 t & a_2 + b_2 t & a_3 + b_3 t \\ a_1 t + b_1 & a_2 t + b_2 & a_3 t + b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (1 - t^2) \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

5. Show that det(A) = 0 without directly evaluating the determinant.

$$A = \begin{bmatrix} -2 & 8 & 1 & 4 \\ 3 & 2 & 5 & 1 \\ 1 & 10 & 6 & 5 \\ 4 & -6 & 4 & -3 \end{bmatrix}$$

6. Let A be an $n \times n$ matrix, and let B be the matrix that results when the rows of A are written in reverse order. State a theorem that describes how det(A) and det(B) are related.