

Онлайн образование

Проверить, идет ли запись

Меня хорошо видно **&&** слышно?

Тема вебинара

Теорема САР

Коробков Виктор

Консультант команды технологического обеспечения ООО «ИТ ИКС5 Технологии»

Telegram: @Korobkov_Viktor

Преподаватель

Виктор Коробков

более 20 лет в IT

специализация: проектирование баз данных (СУБД PostgreSQL, MS SQLServer)

В OTUS веду занятия на курсах: СУБД, PostgreSQL, SQL Server Developer, noSQL, MongoDB, Программист С

Правила вебинара

Активно участвуем

Off-topic обсуждаем в Telegram

Задаем вопрос в чат или голосом

Вопросы вижу в чате, могу ответить не сразу

Условные обозначения

Индивидуально

Время, необходимое на активность

Пишем в чат

Говорим голосом

Документ

Ответьте себе или задайте вопрос

Маршрут вебинара

Транзакции, ACID Распределенные системы BASE vs ACID Теорема САР Алгоритмы консенсуса Рефлексия

Цели вебинара

После занятия вы сможете

- 1. Понимать смысл теоремы САР
- 2. Различать BASE и ACID требования к базам
- 3. Иметь представление об алгоритмах консенсуса

Транзакции, ACID

Транзакция - последовательность операций, рассматриваемая базой данной как атомарное действие и завершающаяся подтверждением изменений (commit) либо откатом изменений (rollback).

Обеспечивает:

- сохранение целостности данных;
- параллельную работу пользователей с базой данных;
- восстановление данных при откатах и сбоях.

Atomicity (Атомарность) - либо все изменения транзакции фиксируются (commit), либо все откатываются (rollback).

Consistency (Согласованность) - транзакции не нарушают согласованность данных, то есть они переводят базу данных из одного корректного состояния в другое.

Isolation (Изолированность) - работающие одновременно транзакции не влияют друг на друга.

Durability (Долговечность) - если транзакция была успешно завершена, то никакое внешнее событие не должно привести к потере совершенных ей изменений.

Способы реализации ACID

- 1. **ARIES** (Algorithms for Recovery and Isolation Exploiting Semantics) алгоритмы восстановления систем:
- logging запись в журнал всех действий транзакции, которые могут изменить состояние БД;
- checkpoints механизм контрольных точек;
- поддержка покортежных блокировок.
- 2. **MVCC** (MultiVersion Concurrency Control) механизм обеспечения параллельного доступа к БД:
- каждой сессии предоставляется «снимок» БД;
- изменения в БД невидимы другим пользователям до момента фиксации транзакции.

Распределенные системы

Что такое распределенная система?

Распределенной вычислительной системой можно назвать такую систему, в которой отказ компьютера, о существовании которого вы даже не подозревали, может сделать ваш собственный компьютер непригодным к использованию.

Лесли Лампорт первый лауреат премии Дейкстры за достижения в области распределенных вычислений

Распределенная система — это набор компьютерных программ, использующих вычислительные ресурсы нескольких отдельных вычислительных узлов для достижения одной общей цели.

Масштабирование

8 заблуждений распределенных систем: 7 (1994 Питер Дейч) + 1 (1997 Джеймс Гослинг)

- 1. Сеть надежна.
- 2. Задержка равна нулю.
- 3. Пропускная способность бесконечна.
- 4. Сеть безопасна.
- 5. Топология не меняется.
- 6. Существует один администратор.
- 7. Цена передачи данных равна нулю.
- 8. Сеть однородна.

А еще существуют отказы узлов

Модели отказов в РВС:

- модель отказа «Остановка» узел просто останавливается без предупреждения.
- византийская модель отказа неисправные узлы не только останавливаются, но и могут вести себя неопределенным образом.

Византийские отказы предназначены для моделирования любого типа неисправностей. Термин «Византийский» был впервые использован в докладе Лампорта, Пиза и Шостака для такого типа сбоев, в котором в терминах византийских генералов формулируется проблема консенсуса.

Проблема византийских генералов

Чем плохо ACID в распределенных системах

Медленно – каждая транзакция применяется, только если все узлы добавили информацию о ней.

Дорого – дата центры должны быть связаны выделенным каналом.

Избыточно – такой уровень надежности не нужен, если у вас хранятся сообщения или фотографии соц сети.

BASE vs ACID

BASE BMECTO ACID

1. Basic Availability (базовая доступность) — каждый запрос гарантированно завершается.

2. Soft state (гибкое состояние) – состояние системы может изменяться без ввода новых данных для достижения согласования данных.

3. Eventual consistency (согласованность в конечном счете) – данные некоторое время могут быть рассогласованные, но в итоге приходят к согласованию.

САР теорема

CAP теорема (Eric Brewer, 2000)

Consistency

Согласованность – все рабочие узлы содержат одинаковую информацию.

Availability

Доступность возможность доступа к кластеру, даже если узел в кластере выходит из строя

Partition tolerance

Терпимость к разделению сети – независимо от сбоев в работе сети узлы продолжают работать.

Кейс «Чемпионат по футболу»

Доступность есть, Согласованности нет

Кейс «Инвентаризация»

Eric Brewer, 2000 г. Теорема Брюера

САР комбинации

- СА система доступна и консистентна. Нежизнепособна в ненадежной сети.
- СР не будет доступна пока нет полной синхронизации между всеми узлами.
- **АР** данные на разных работающих узлах могут отличаться.

Разделение узлов

СА — не принимаем запросы (плохо, получается не распределенная)

СР — разрешаем чтение, запрещаем запись (есть консистентность)

АР — разрешаем и чтение и запись (есть **доступность**), данные на разных работающих узлах могут отличаться

Применительно к распределенным системам

Разделяемость + ...

Целостность CP

Доступность AP

Минусы САР теоремы

Теорема описывает системы слишком упрощенно.

Каждое понятие возведено в абсолют.

Невозможно достичь идеально САР для всех операций, но можно выбрать, где какой параметр важнее.

Многие «мелкие и современные» NoSQL – просто Р.

Многие «мелкие и современные» NoSQL – просто Р.

Многие «мелкие и современные» NoSQL – просто Р.

Расширение теоремы САР

Teopema PACELC — в случае разделения сети (Р) в распределённой компьютерной системе необходимо выбирать между доступностью (А) и согласованностью (С) (согласно теореме САР), но в любом случае, даже если система работает нормально в отсутствии разделения (E), нужно выбирать между задержками (L) и согласованностью (C).

Даниэль Дж. Абади (Йельский университет) 2010 г.

О САР теореме на Хабре

Замечания о распределенных системах для начинающих

САР-теорема простым, доступным языком

Всё, что вы не знали о САР теореме

Забудьте САР теорему как более не актуальную

Алгоритмы консенсуса

Алгоритмы консенсуса

Консе́нсус (лат. consensus — «согласие, сочувствие, единодушие») — согласованность между всеми узлами сети по какому-то вопросу.

Как распределить изменения по всем узлам?

Если есть ведущий узел, но он упал. Как выбрать нового?

CP. Алгоритм PAXOS

Паксос (англ. *Paxos*) — семейство протоколов для решения задачи консенсуса в сети ненадёжных вычислителей.

Основная проблема — наличие помех в среде передачи данных.

Используется для утверждения транзакций в распределённых системах.

PAXOS demo: Neat Algorithms - Paxos - Will You Harry Me

CP. Алгоритм Raft

Raft разрабатывался с учётом недостатков более старого алгоритма PAXOS.

Для обеспечения консенсуса в Raft сначала выбирается **лидер**, на котором будет лежать ответственность за управление распределённым логом.

Лидер принимает запросы от клиентов и реплицирует их на остальные сервера в кластере.

В случае выхода лидера из строя, в кластере будет выбран новый лидер.

Состояния:

- Leader (лидер) обрабатывает все клиентские запросы.
- Follower (фоловер) пассивный сервер, который только «слушает» новые записи в лог от лидера и редиректит все входящие запросы от клиентов на лидера.
- Candidate (кандидат) специальное состояние сервера, возможное только во время выбора нового лидера.

CP. Алгоритм Raft

Если обычный узел долго не получает сообщений от лидера, то он переходит в состояние «кандидат» и посылает запрос на голосование. Другие узлы голосуют за того кандидата, от которого они получили первый запрос.

Если кандидат получает сообщение от лидера, то он снимает свою кандидатуру и возвращается в обычное состояние.

Если кандидат получает большинство голосов, то он становится лидером. Если же он не получил большинства (возникло сразу несколько кандидатов и голоса разделились), то кандидат ждёт случайное время и инициирует новую процедуру голосования.

Процедура голосования повторяется, пока не будет выбран лидер.

AP. Алгоритм Gossip

Gossip (англ. *сплетник*) — это группа протоколов, в которых распространение информации идёт способом, схожим с распространения эпидемий (эпидемический протокол).

Каждый или некоторые из узлов могут передавать обновляемые данные известным соседям.

Используются для обеспечения распространения данных между всеми узлами распределённой системы.

gossip demo: Scuttlebutt (awinterman.github.io)

Что делать?

- помнить про теорему САР и ее ограничения;
- проектирование системы стоит начинать с согласования компромиссов;
- помнить про ACID / BASE, насколько они применимы к системе;
- все зависит от проекта, над которым вы работаете.

Домашнее задание

Домашнее задание

Необходимо написать к каким системам по CAP теореме относится MongoDB.

ДЗ сдается ссылкой на гит, где расположен миниотчет в маркдауне.

Рефлексия

Рефлексия

С какими впечатлениями уходите с вебинара?

Заполните, пожалуйста, опрос о занятии по ссылке в чате

Спасибо за внимание!

Приходите на следующие вебинары

Коробков Виктор