This exam is **no book**, **no gadgets**. You may use **one sheet of notes** (letter size, two sides), which you submit with the exam. There are 28 questions, worth 60 points. Marks will be curved so the median is at least B+ (87).

This exam is my own work. I understand it is governed by the Emory Honor Code.

		Signature:	
	Fill	l in the Blank: fill each blank appropriately. An answer co	ould be a word, phrase, or formula.
	$\mathbf{A}\mathbf{p}$	proximation Algorithms	
2 pts)		We saw how to approximately solve the vertex cover proble mation ratio did we guarantee? (This is the ratio between t	9 - 1 - 1
		1	
2 pts)	2.	In Baker's PTAS for MIS (maximum independent set) in a pull What was our formula for k , in terms of ϵ ?	planar graph, we remove every k th layer of vertices.
		2	
2 pts)		In the set cover problem, suppose we know that some k of algorithm finds a set cover with (at most) how many sets?	the given sets will cover $\{1,2,\ldots,n\}$. The greedy
		3	
2 pts)		Suppose graph G has n vertices and maximum degree Δ (simple greedy procedure, we can color G with at most how	
		4	
2 pts)		Suppose graph G has n vertices, and its vertices can be color polynomial time, but with more colors. How many colors d	· · · · · · · · · · · · · · · · · · ·
		5.	
	Ma	ath and Definitions	
2 pts)	6.	Solve the recurrence $T(n) = 2 \cdot T(n/2) + n \lg n$. (Big-Oh)	
		6	
2 pts)	7.	In the Master Theorem, we consider the recurrence $T(n)$ = and $d \ge 0$. What condition on a, b, d puts us in the "top he	
		7.	
2 pts)	8.	Suppose G is a graph of n vertices, and it has a tree decomp (a subset of vertices of G). What is the maximum size of a	
		8	
2 pts)		Suppose graph G has n vertices, and a min-cut crossed by C that Karger's algorithm outputs this particular min-cut?	edges. What is our lower bound on the probability
		9.	

(2 pts)	10.	0. Suppose (E,\mathcal{I}) is a matroid. Suppose A and B are in \mathcal{I} , and matroid, what can we conclude? (existential sentence)	d $ A > B $. According to the definition of a
		10	
(2 pts)	11.	. What class of graphs did we see, other than trees, with tree dec	compositions of width $O(1)$?
		11	
(2 pts)	12.	2. Matrix A is totally unimodular means: every square submatrix	S of A has what property?
		12	
	$\mathbf{E}\mathbf{x}$	xact Algorithms	
(2 pts)	13.	3. The book's $FFT(a,\omega)$ first computes $(s_0, s_1, \ldots, s_{n/2-1}) = FFT$ $FFT((a_1, a_3, \ldots, a_{n-1}), \omega^2)$. Then it returns $(r_0, r_1, \ldots, r_{n-1})$,	$T((a_0, a_2, \dots, a_{n-2}), \omega^2)$ and $(s'_0, s'_1, \dots, s'_{n/2-1})$ where for $j < n/2$, r_j equals what?
		13	
(2 pts)	14.	4. In the LCS (longest common subsequence) problem, the input is programming approach, how many subproblems are there?	two strings of lengths m and n . In our dynamic
		14	
(2 pts)	15.	5. In the TSP problem, the input is an n by n distance matrix. many subproblems are there? (big-Oh)	In our dynamic programming approach, how
		15	
(2 pts)	16.	5. Suppose graph G has n vertices, and a tree decomposition of the MIS problem. In our dynamic programming approach, how	
		16	
(2 pts)	17.	7. We exactly solved the MIS problem in a planar graph by divide theorem. What was the running time of that algorithm? (use b	
		17	
(2 pts)	18.	3. Which (named) algorithm did we generalize, in order to find a r	maximum weight independent set in a matroid?
		18	
	Flo	lows and LP	
(2 nts)). In our LP examples, we saw that "fractional maximum matching	ng" was dual to what other LP problem?
(2 Ptb)	10.		
(2 pts)	20.	0. We have a flow network G , a max flow f , and a min cut S (so to S , with capacity $c(e)$. What can we say about $f(e)$?	$s \in S$ and $t \in V - S$). Edge e goes from $V - S$
		20	
(2 pts)	21.	. Suppose we run Ford-Fulkerson on a network with integer capa F. If we always choose a <i>shortest</i> augmenting path, what is a bo	

(2 pts)	22.	Continuing the previous	question, suppos	se we always	s choose a fat	ttest (max	capacity)	augmenting pat	a. What
		is an upper bound on the	e number of path	s required?	(big-Oh)				

22. _____

(2 pts) 23. Name a problem, other than min-cut, that we reduced to max-flow.

23.

(2 pts) 24. Suppose we have dual LP's MAX = $\max\{c \cdot x \colon Ax \leq b, x \geq 0\}$ and MIN = $\min\{b \cdot y \colon A^t y \geq c, y \geq 0\}$. What does "weak duality" say about the values MAX and MIN?

24. _____

(2 pts) 25. Continuing the previous, suppose vectors x^* and y^* are feasible solutions to the LP's, achieving $c \cdot x^* = b \cdot y^*$. Suppose x_1^* (the first component of x^*) is positive. What can we conclude about the constraints on y^* ?

25. _____

(2 pts) 26. Continuing the previous, suppose MAX' is the maximum value of the first LP, but restricted to vectors x with integer coordinates. What inequality can we state relating MAX and MAX'?

26. _____

Short Answer: (please indicate if you write on the back)

(4 pts) 27. Using $\omega = i$ (the square root of -1) and n = 4, write down the Fourier transform matrix, and its inverse.

(4 pts) 28. We are given a graph with vertex set $V = \{1, 2, ..., n\}$, edge set E, and a positive weight w_i for each vertex $i \in V$. Write the relaxed weighted vertex cover problem as an LP. Also, given a fractional optimal solution to this LP, describe how to "round" it, to get an actual vertex cover.