

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

INF 285 - Computación Científica Ingeniería Civil Informática

02: Estándar de Punto Flotante y Pérdida de importancia

Números Binarios

Números binarios con decimales

$$(B)_2 = ...b_2b_1b_0 \cdot b_{-1}b_{-2}b_{-3}...$$

$$b_i \in \{0,1\}$$

$$((B)_2)_{10} = \sum_{-\infty}^{\infty} b_i 2^i$$

Números Binarios

Ejemplo 1

¿Qué número representa $(0.\overline{10})_2$ en base 10?

IEEE standard: conjunto de representación binaria.

Número de punto flotante: signo (+ o -), mantisa y un exponente.

precisión	signo	exponente	mantisa
single	1	8	23
double	1	11	52
long double	1	15	64

Número de punto flotante normalizado

$$\pm 1$$
. bbb...b $\times 2^p$

$$(9.5)_{10} \rightarrow (1001 \cdot 1)_2 \rightarrow +1 \cdot 0011 \times 2^3$$

$$1 = +1$$
. $0000000000 \cdot \cdot \cdot 0000000000 \times 2^{0}$ 52 bits

¿Cuál es el siguiente número en mayor a 1 representable en "double precisión"?

¿Qué ocurre cuando queremos representar un número entre 1 y 1 $+ \epsilon_{\rm mach}$?

Punto flotante

Nearest Rule

$$9.4 = (1001 \cdot \overline{0110})_2 = +1 \cdot \boxed{0010110 \cdot \cdot \cdot \cdot 011001100} \ 110... \times 2^3$$

chopping: quitar los bits que sobran. **rounding**: redondear hacia arriba si el bit es 1

- Sumar 1 al bit 52 si el bit 53 es 1.
- Mantener tal cual el bit 52 si el bit 53 es 0.
- Excepción: todos los bits después del bit 53 igual a 1 son 0's, se suma solo si el bit 52 es 1.

fl(x):

fl(9.4) =
$$+1$$
, 00101100 \cdots 11001101 $\times 2^3$ = 9.4 $+$ 0.2 $\times 2^{-49}$

Rounding Error

Relative rounding error:

$$\frac{|\mathrm{fl}(x)-x|}{|x|} \leq \frac{1}{2}\epsilon_{\mathsf{mach}}$$

Ejemplo:

$$\frac{|\text{fl}(9.4) - 9.4|}{|9.4|} = \frac{0.2 \times 2^{-49}}{9.4} = \frac{8}{47} \times 2^{-52} \leq \frac{1}{2} \epsilon_{\text{mach}}$$

Representación de máquina

S	$e_1 e_2 \dots e_{10} e_{11}$	$b_1 b_2 \dots b_{51} b_{52}$
1-bit	11 bits	52 bits

$$\pm 1 \cdot b_1 b_2 ... b_{52} \cdot 2^p = \pm \left(1 + \sum_{i=1}^{52} b_i \cdot 2^{-i}\right) \cdot 2^p$$

$$p = e_1 \cdot 2^{10} + e_2 \cdot 2^9 + \dots + e_{11} \cdot 2^0 - \underbrace{1023}_{2^{11-1}-1}$$

Representación de máquina

- $+\infty$: signo 0 y mantisa 0.
- \bullet $-\infty$: signo 1 y mantisa 0.
- NaN (not a number): algún bit de la mantisa \neq 0.

S	e_1	e_2	e_3	• • •	e_{11}	b_1	b_2	 b_{52}	número	ejemplo
0	1	1	1		1	0	0	 0	$+\infty$	1/0
1	1	1	1		1	0	0	 0	$-\infty$	-1/0
1	1	1	1		1	X	Χ	 Χ	NaN	0/0

Representación de máquina

Exponente $e_1 e_2 \cdots e_{11} = 0000000000000$:

$$\pm 0.b_1b_2...b_{52}\cdot 2^{-1022}$$

- El exponente es fijo.
- El número al costado del signo es 0 (no-normalizado).
- Los únicos bits modificables son los de la mantisa.

¿Qué sucede cuando los bits de la mantisa y el exponente son 0?

Ejemplo 2

Calcular $m_1 + m_2 + m_3$ mediante los algoritmos:

- Algoritmo 1: $(m_1 + m_2) + m_3$
- Algoritmo 2: $(m_1 + m_3) + m_2$

donde
$$m_1 = 1$$
, $m_2 = 3 \times 2^{-55}$ y $m_3 = -1$.

Ejemplo 3

 $\sqrt{9.01}$ – 3 con un computador de 3 dígitos:

- Respuesta correcta: 1.6662×10^{-3} .
- $\sqrt{9.01} \approx 3.0016662$, no se obtienen dígitos significativos.

Ejemplo 4

Raíces de $x^2 + 9^{12}x = 3$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \rightarrow x = \frac{-9^{12} \pm \sqrt{9^{24} + 4(3)}}{2}$$

Tomando 4 dígitos: $x_1 = -2.824 \times 10^{11}$ (-), $x_2 = 0$ (+).

Ejercicio 1

Evaluar computacionalmente las siguientes funciones a medida que x tienda a 0^+

$$E_1 = \frac{1 - \cos x}{\sin^2 x}$$
 $E_2 = \frac{1}{1 + \cos x}$