Introduction to Graph Theory Optimization Methods in Management Science Master in Management HEC Lausanne

Dr. Rodrigue Oeuvray

Fall 2019 Semester

Introduction to Graph Theory

Some basic concepts:

- Directed and undirected graphs
- Adjacency and incidence matrices
- Subgraph and partial graph
- Chain, path, cycle and circuit
- Connectivity and strong connectivity
- Tree and forest

Undirected Graph

A finite undirected graph is a 3-tuple $G=(V,E,\Psi)$ where

- V is a finite set (|V| = n) whose elements are called vertices,
- E is a finite set (|E| = m) whose elements are called edges,
- $\Psi: E \to V \times V$ is called an incidence function which maps an edge $e \in E$ to an unordered pair $\{u(e), v(e)\}$ of vertices of V. The vertices u(e) and v(e) are called the endpoints of e.

If u(e) = a and v(e) = b, we say that a and b are the endpoints of the edge e, that vertices a and b are adjacent or incident with e, or that the edge e is incident with a and b

Representation of an Undirected Graph in the Plane

We associate a point in the plane with each vertex and we represent each edge by a simple curve that connects its two endpoints

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E=\{e_1,e_2,e_3,e_4,e_5,e_6\}$$

Ψ	e_1	e_2	e_3	e_4	<i>e</i> ₅	e_6
u(e) v(e)	v_1	<i>V</i> 4	<i>V</i> 4	v ₂	v_1	<i>V</i> ₂
v(e)	v ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> 4	v ₂	<i>V</i> 3

Directed Graphs

A finite directed graph is a 3-tuple $G = (V, E, \Psi)$ where

- V is a finite set (|V| = n) whose elements are called vertices
- E a finite set (|E| = m) whose elements are called arcs
- $\Psi: E \to V \times V$ is an incidence function which maps an arc to an ordered pair (u(e), v(e)) of vertices of V. The vertices u(e) and v(e) are called the endpoints of e.

If u(e) = a and v(e) = b, we say that e is an incoming arc into b, an outgoing arc out of a, that the vertex a is the initial endpoint of e and b its terminal endpoint. A directed graph is also called a digraph

Representation of a Directed Graph in the Plane

It is similar to what we have seen before for undirected graphs:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

Ψ	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	e_6
u(e) v(e)	v_1	<i>V</i> 4	<i>V</i> 4	v ₂	v_1	V 2
v(e)	v ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> 4	<i>v</i> ₂	<i>V</i> 3

Simple Graph and Multigraph

- An edge (an arc) whose endpoints are the same vertex is a loop
- A simple graph is a graph without loops and without multiples egdes (arcs)

From now on and unless otherwise specified, the term graph will denote a finite simple graph. If loops and multiple edges (arcs) are allowed, we use the term multigraph

Important remark: two arcs in the opposite direction are not multiple arcs!

Simple Graph and Multigraph (Cont'd)

In a simple graph, one can identify unequivocally each edge (arc) with the pair (ordered or not) formed by its endpoints. The incidence function becomes useless et we denote G=(V,E) such a graph.

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_3, v_2), (v_3, v_4)\}$$

Degree of a Vertex

- Let G be a multigraph, the degree of a vertex v, denoted by deg(v), is the number of edges (arcs) incident to v
- If a vertex has one or several loops, each of them is counted twice to determine its degree
- If G is a directed multigraph, the external degree of vertex v, denoted by $deg_+(v)$, is equal to the number of outgoing arcs out of v. In a similar way, the internal degree of vertex v, denoted by $deg_-(v)$, is the number of incoming arcs into v

Degree of a Vertex (Cont'd)

- A leaf is a vertex with degree one
- In a directed graph, a source v is a vertex with $deg_{-}(v) = 0$
- In a directed graph, a sink is a vertex with $deg_+(v) = 0$
- In the graph below, s is a source and t is a sink

Matrices Associated with a Simple Undirected Graph

Adjacency matrix $B: n \times n$

Incidence matrix $\mathbf{A}: n \times m$

$$b_{ij} = \left\{ egin{array}{ll} 1 & ext{if } v_i ext{ and } v_j ext{ are adjacent} \ 0 & ext{otherwise} \end{array}
ight.$$

$$a_{ik} = \left\{ egin{array}{ll} 1 & ext{if } v_i ext{ is incident to } e_k \ 0 & ext{otherwise} \end{array}
ight.$$

Interpretation

- 1st row of \boldsymbol{B} : v_1 is adjacent to v_2 and v_3
- As the matrix is symmetric, we can also interpret the 1st column of B
 the same way as its first row
- 1st row of \boldsymbol{A} : v_1 is incident to e_1 and e_2
- 1st column of \boldsymbol{A} : e_1 is incident to v_1 and v_2
- A is not symmetric!

Matrices Associated to a Simple Directed Graph

Adjacency matrix

 $B: n \times n$

Incidence matrix $\mathbf{A}: n \times m$

$$b_{ij} = \left\{ egin{array}{ll} 1 & ext{if } (v_i, v_j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

$$a_{ik} = \left\{ egin{array}{ll} -1 & ext{if } v_i ext{ is the init. endpt of } e_k \ 1 & ext{if } v_i ext{ is the term. endpt of } e_k \ 0 & ext{otherwise} \end{array}
ight.$$

$$egin{aligned} egin{aligned} egi$$

Matrices Associated to a Simple Directed Graph

- 1st row of **B**: v_1 is adjacent to v_2 and v_3
- 1st row of \mathbf{A} : v_1 is the initial endpoint for e_1 and e_2
- 1st column of A: e_1 goes from v_1 to v_2
- Neither A nor B are symmetric!

Subgraph and Partial Graph

Let G = (V, E) be a graph

- ullet G' is a partial graph of G if G'=(V,E') with $E'\subseteq E$
- G' is a subgraph G induced by W if G' = (W, E(W)) where $W \subseteq V$ and E(W) is the set of edges (arcs) having their endpoints in W
- \bullet G' is a partial subgraph of G if G' is a partial graph of a subgraph of G

Chain and Cycle

• A chain C is an alternating sequence of vertices and edges:

$$C=(u_0,f_1,u_1,f_2,u_2,\ldots,u_{k-1},f_k,u_k),$$
 where $u_i\in V\ \forall\,i,\ f_i\in E\ \forall\,i$ and $f_i=\{u_{i-1},u_i\}\ \forall\,i$

- A cycle is a chain whose endpoints are the same vertex
- Remarks:
 - A chain starts and ends with a vertex
 - ▶ By convention every chain must contain at least one edge
 - ▶ The sequence $C' = (u_k, f_k, u_{k-1}, \dots, u_2, f_2, u_1, f_1, u_0)$ is the same chain as C
 - A loop is a cycle

Chain and Cycle (Cont'd)

- A chain (a cycle) is elementary if each vertex is present at most once
- A chain (a cycle) is simple if each edge is present at most once
- The length of a chain (resp. of a cycle) is the number of edges of the chain (resp. of the cycle)
- An undirected graph is acyclic if it has no simple cycle
- A graph can have a **non-simple** cycle, for example $(v_i, \{v_i, v_j\}, v_j, \{v_i, v_i\}, v_i)$, and be acyclic!

 $C = (1, \{1, 2\}, 2, \{2, 3\}, 3, \{3, 4\}, 4, \{4, 5\}, 5) \qquad C = (1, \{1, 3\}, 3, \{2, 3\}, 2, \{2, 4\}, 4, \{3, 4\}, 3, \{3, 5\}, 5)$

Path and Circuit

A path C is an alternating sequence of vertices and arcs

$$C = (u_0, f_1, u_1, f_2, u_2, \dots, u_{k-1}, f_k, u_k),$$

where
$$u_i \in V \ \forall i \ \text{and} \ f_i = (u_{i-1}, u_i) \in E \ \forall i$$

- A circuit is a path whose endpoints are the same vertex
- The definitions of a simple and elementary path (circuit) as well as the concept of length are similar to the undirected case
- A directed graph is acyclic if it has no circuit

Connectivity

- Let $G = (V, E, \Psi)$ be an **undirected** multigraph. We define on V a relation defined as follows: 2 vertices v_i and v_j belong to the same connected component if and only if it exists a chain between v_i and v_j
- Concretely, two vertices belong to the same component if one can "move" from one vertex to the other one. If not, they belong to different components
- In the graph below, there are three connected components

Strong Connectivity

- Let $G = (V, E, \Psi)$ be a **directed** multigraph. We define on V a relation defined as follows: 2 vertices v_i and v_j belong to the same strongly connected component if and only if it exists a path between v_i and v_j and a path between v_i and v_j
- Concretely, two vertices belong to the same strongly component if one can "move" from one vertex to the other one and vice versa. If not, they belong to different components
- We say that a graph is strongly connected if it has only one strongly connected component

Marking Algorithm

Input: A directed multigraph $G = (V, E, \Psi)$.

Ouput: The number k of strongly connected components of G as well as the list $\{C_1, \ldots, C_k\}$ of its strongly connected components

(1) Initialization:

$$k = 0, W = V$$

(2) Main loop:

As long as $W \neq \emptyset$, choose a vertex $v \in W$ and mark it with + and -

- (2.1) Mark all the direct and undirect successors of v with +
- (2.2) Mark all the direct and undirect predecessors of ν with -
- (2.3) Update k = k + 1 and C_k equals to the set of vertices marked by + and -
- (2.4) Withdraw from W the vertices of C_k and remove the marks
- (3) The number of strongly connected components of G is k. Every set $C_i,\ i=1\ldots,k$ corresponds to the vertices of the a strongly connected component

Marking Algorithm: Example

•
$$k = 0.W = \{v_1, v_2, v_3\}$$

- ullet We select v_1 and mark it with + and -
- Direct and indirect sucessors of v_1 : v_2 and v_3 . They are marked with +
- Direct and indirect predecessors of v_1 : v_3 and v_2 . They are marked with -
- k = 1, $C_1 = \{v_1, v_2, v_3\}$
- W = ∅. STOP

We conclude that there is only **one strongly connected** component. This graph is **strongly connected**

Tree and Forest

- A undirected multigraph without any cycle is a forest
- A undirected multigraph without any cycle and connected is a tree

Remark: each connected component of a forest is a tree

Characterization of a Tree

Theorem

Let $G = (V, E, \Psi)$ be a multigraph with n vertices. The following statements are equivalent:

- (a) G is a tree
- (b) G is connected and has no cycle
- (c) G has no cycle and has n-1 edges
- (d) G is connected and has n-1 edges
- (e) G has no loop and each pair of distinct vertices is connected by a simple chain