Orthogonal Diagonalization

Eigenvectors orthogonality >

If A is a symmetric matrix, with eigenvectors $\vec{v_1}$ and $\vec{v_2}$ corresponding to two distinct eigenvalues, then $\vec{v_1}$ and $\vec{v_2}$ are orthogonal.

& Proof >

$$egin{aligned} \lambda_1 ec{v}_1 \cdot ec{v}_2 &= A ec{v}_1 \cdot ec{v}_2 & \text{using } A ec{v}_i &= \lambda_i ec{v}_i \ &= (A ec{v}_1)^T ec{v}_2 & \text{using the definition of the dot product} \ &= ec{v}_1^{\ T} A^T ec{v}_2 & \text{property of transpose of product} \ &= ec{v}_1^{\ T} A ec{v}_2 & \text{given that } A = A^T \ &= ec{v}_1 \cdot A ec{v}_2 & \text{using } A ec{v}_i &= \lambda_i ec{v}_i \end{aligned}$$

 $=\lambda_2 \vec{v}_1 \cdot \vec{v}_2$

But $\lambda_1 \neq \lambda_2$ so $\vec{v}_1 \cdot \vec{v}_2 = 0$.

Example PDP^T

Diagonalize A using an orthogonal matrix, P. The eigenvalues of A are given.

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda = -1, 1$$

We need to find the $\underline{\text{Eigenvectors}}$ of A. Skipping the computation, we get,

$$ec{v_1} = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}, \lambda = -1 \ ec{v_2} = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, \lambda = 1 \ ec{v_3} = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, \lambda = 1 \ \end{pmatrix}$$

Now we must find PDP^T ,

The columns of P are the **orthonormalized** Eigenvectors, and D is the eigenvalue.

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Finding P^T is trivial and left to the reader.

Properties

- If $A = PDP^T$, if A is a <u>symmetric matrix</u> and it is <u>diagonalizable</u>.
- And the converse, A is a <u>symmetric matrix</u> if $A = PDP^T$ is also true.