

Statistika a pravděpodobnost Projekt

Vypracoval: Vladimír Dušek, xdusek27

Dne: 2. prosince 2019 Varianta zadání: 1, 23

Termín cvičení: čtvrtek, 9:00

Zadání projektu z předmětu MSP

Každý student obdrží na cvičení konkrétní data (čísla ze seznamu), pro které vypracuje projekt. K vypracování můžete použít libovolné statistické programy.

- 1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.
- a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.
- b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.
- c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.
- d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.
- e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.
- f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.
- g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

Návod: Oba soubory zpracujte neroztříděné. Testujte nejprve rovnost rozptylů odchylek před a po seřízení stroje. Podle výsledku pak zvolte vhodný postup pro testování rovnosti středních hodnot odchylek před a po seřízení stroje.

- 2. Měřením dvojice (*Výška*[cm], *Váha*[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.
- a) Vypočtěte bodový odhad koeficientu korelace.
- b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.
- c) **Regresní analýza -** data proložte přímkou: $V \acute{a}ha = \beta_0 + \beta_1 \cdot V \acute{y} \acute{s}ka$
 - 1) Bodově odhadněte β_0 , β_1 a rozptyl s^2 .
 - 2) Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, \quad H_A: \beta_0 \neq -100,$$

 $H: \beta_1 = 1, \quad H_A: \beta_1 \neq 1,$

3) Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

Termín pro odevzdání práce je 11 týden výuky zimního semestru ve cvičení.

Příklad 1) Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.

Statistický soubor (př. 1, v. 1)				Uspořádaný statistický soubor (př. 1, v. 1)				
i	×	i	Х	[i	х	i	Х
1	0.72	26	-0.13		1	-0.83	26	0.08
2	-0.55	27	0.55		2	-0.72	27	0.12
3	0.3	28	-0.24		3	-0.71	28	0.12
4	0.12	29	0.07		4	-0.7	29	0.21
5	0.12	30	0.44		5	-0.59	30	0.24
6	0.8	31	-0.2		6	-0.55	31	0.28
7	0.63	32	-0.29		7	-0.52	32	0.3
8	-0.71	33	1		8	-0.42	33	0.32
9	-0.42	34	0.21		9	-0.42	34	0.33
10	-0.06	35	-0.52		10	-0.39	35	0.38
11	0.46	36	-0.72		11	-0.38	36	0.4
12	0.66	37	0.59		12	-0.3	37	0.41
13	0.63	38	-0.7		13	-0.29	38	0.44
14	0.28	39	-0.42		14	-0.27	39	0.44
15	-0.08	40	-0.3		15	-0.24	40	0.44
16	0.08	41	-0.23		16	-0.23	41	0.46
17	-0.02	42	-0.04		17	-0.2	42	0.49
18	0.44	43	0.32		18	-0.16	43	0.55
19	0.4	44	-0.16		19	-0.13	44	0.59
20	0.41	45	-0.27		20	-0.13	45	0.63
21	-0.59	46	0.49		21	-0.08	46	0.63
22	-0.13	47	0.44		22	-0.06	47	0.66
23	0.33	48	0.24		23	-0.04	48	0.72
24	0.38	49	-0.39		24	-0.02	49	0.8
25	-0.83	50	-0.38		25	0.07	50	1

a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.

Variační obor:
$$\left\langle x_{(1)}\;,\;x_{(n)}\right\rangle = \left\langle \;\min_i x_i\;,\;\max_i x_i\right\rangle = \left\langle \;-\;0.83\;,\;1\right\rangle$$

Rozpětí:
$$\boldsymbol{x}_{(n)} - \boldsymbol{x}_{(1)} = 1.83$$

Počet tříd: m=10

Délka třídy:
$$\frac{x_{(n)}-x_{(1)}}{m}=0.183$$

Třída	()	Střed třídy	Četnost	Komulativní četnost	Relativní četnost	Relativní komulativní četnost
1	-0.83	-0.647	-0.7385	4	4	0.08	0.08
2	-0.647	-0.464	-0.5555	3	7	0.06	0.14
3	-0.464	-0.281	-0.3725	6	13	0.12	0.26
4	-0.281	-0.098	-0.1895	7	20	0.14	0.4
5	-0.098	0.085	-0.0065	6	26	0.12	0.52
6	0.085	0.268	0.1765	4	30	0.08	0.6
7	0.268	0.451	0.3595	10	40	0.2	0.8
8	0.451	0.634	0.5425	6	46	0.12	0.92
9	0.634	0.817	0.7255	3	49	0.06	0.98
10	0.817	1	0.9085	1	50	0.02	1

b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.

Aritmetický průměr:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0.0546$$

Medián:
$$\tilde{x}=0.075$$

Modus:
$$\hat{x} = 0.44$$

Rozptyl:
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \approx 0.2031$$

Směrodatná odchylka:
$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} \approx 0.4507$$

c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.

Bodový odhad střední hodnoty:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0.0546$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \approx 0.2073$$

Bodový odhad směrodatné odchylky:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} \approx 0.4553$$

d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0.05.

Třída	()	Empirická Teoretická četnost četnost		t
1	-0.83	-0.647	4	1.782228068	2.75975473
2	-0.647	-0.464	3	3.283980097	0.02455699878
3	-0.464	-0.281	6	5.159357099	0.1369706484
4	-0.281	-0.098	7	6.911228534	0.001140227553
5	-0.098	0.085	6	7.893760222	0.4543243877
6	0.085	0.268	4	7.687473576	1.768781543
7	0.268	0.451	10	6.383428059	2.048991933
8	0.451	0.634	6	4.519517866	0.4849692852
9	0.634	0.817	3	2.728304577	0.02705651101
10	0.817	1	1	1.404263731	0.1163806772
Suma			50	47.75354183	7.822926943

Aby celkový počet teoretických četností odpovídal reálným, byly krajní intervaly rozšířeny. Aby všechny teoretické četnosti byly větší jako 1 a aspoň $80\,\%$ z nich bylo větších než 5 byly hranice tříd upraveny.

Třída	()	Empirická četnost	Teoretická četnost	t	
1	-10000	-0.5	7	5.579005509	0.3619328461	
2	-0.5	-0.3	4	5.322375553	0.3285519943	
3	-0.3	-0.1	9	7.453019054	0.3210980718	
4	-0.1	0.1	6	8.631438102	0.8022378661	
5	0.1	0.3	5	8.267269529	1.291242548	
6	0.3	0.5	11	6.548893446	3.025297285	
7	0.5	10000	8	8.197998807	0.004782085073	
Suma			50	50	6.135142697	

Testovací kritérium: $t = \sum_{i=1}^{m} = \frac{(f_i - \hat{f}_i)^2}{\hat{f}_i} \approx 6.135$, kde f je empirická četnost a \hat{f} je teoretická četnost.

Stupeň volnosti: k=m-q-1=4, kde m je počet tříd a q je počet odhadů parametrů.

Kvantil Pearsonova rozdělení pro hladinu významnosti $\alpha=0.05$:

$$\chi^2_{1-\alpha}(k) = \chi^2_{0.95}(4) \approx 9.4877$$

Doplněk kritického oboru: $\overline{W_\alpha} = \left<0\;,\;\chi^2_{1-\alpha}(k)\right> \approx \left<0\;,\;9.4877\right>$

Jelikož $t \in \overline{W_{\alpha}}$, tak hypotéza $X \sim N(0.0546, 0.2073)$ se **nezamítá**.

e) Za předpokladu (bez ohledu na výsledek části d), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0.95 a 0.99.

Předpokládáme $X \sim N(\mu, \sigma^2)$

Bodový odhad střední hodnoty: $\overline{x} = 0.0546$

Bodový odhad rozptylu: $s^2 \approx 0.2073$

Bodový odhad směrodatné odchylky: $s \approx 0.4553$

Intervalový odhad střední hodnoty

Stupeň volnosti: k = n - 1 = 49, kde n je počet vzorků.

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha = 0.05$:

$$t_{1-\frac{\alpha}{2}}(k) = t_{0.975}(49) \approx 2.0096$$

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha=0.01$:

$$t_{1-\frac{\alpha}{2}}(k) = t_{0.995}(49) \approx 2.6799$$

Střední hodnota pro $\alpha = 0.05$:

$$\mu \in \left\langle \overline{x} - t_{1-\frac{\alpha}{2}}(k) \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{1-\frac{\alpha}{2}}(k) \cdot \frac{s}{\sqrt{n}} \right\rangle \approx \left\langle -0.0761, 0.1853 \right\rangle$$

Střední hodnota pro $\alpha=0.01$:

$$\mu \in \left\langle \overline{x} - t_{1-\frac{\alpha}{2}}(k) \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{1-\frac{\alpha}{2}}(k) \cdot \frac{s}{\sqrt{n}} \right\rangle \approx \left\langle -0.1197, 0.2289 \right\rangle$$

Intervalový odhad rozptylu

Kvantil Pearsonova rozdělení pro hladinu významnosti $\alpha = 0.05$:

$$\chi^2_{\frac{\alpha}{2}}(k) = \chi^2_{0.025}(49) \approx 31.555$$

$$\chi^2_{1-\frac{\alpha}{2}}(k) = \chi^2_{0.975}(49) \approx 70.222$$

Kvantil Pearsonova rozdělení pro hladinu významnosti $\alpha=0.01$:

$$\chi^2_{\frac{\alpha}{2}}(k) = \chi^2_{0.005}(49) \approx 27.249$$

$$\chi^2_{1-\frac{\alpha}{2}}(k) = \chi^2_{0.995}(49) \approx 78.231$$

Rozptyl pro $\alpha = 0.05$:

$$\sigma^2 \in \left\langle \frac{(n-1) \cdot s^2}{\chi_{1-\frac{\alpha}{2}}^2(k)} , \frac{(n-1) \cdot s^2}{\chi_{\frac{\alpha}{2}}^2(k)} \right\rangle \approx \left\langle 0.1447 , 0.3219 \right\rangle$$

Rozptvl pro $\alpha = 0.01$:

$$\sigma^2 \in \left\langle \frac{(n-1) \cdot s^2}{\chi_{1-\frac{\alpha}{2}}^2(k)} , \frac{(n-1) \cdot s^2}{\chi_{\frac{\alpha}{2}}^2(k)} \right\rangle \approx \left\langle 0.1298 , 0.3727 \right\rangle$$

Intervalový odhad směrodatné odchylky

Směrodatná odchylka pro $\alpha = 0.05$:

$$\sigma \in \left\langle \sqrt{\frac{(n-1) \cdot s^2}{\chi_{1-\frac{\alpha}{2}}^2(k)}} , \sqrt{\frac{(n-1) \cdot s^2}{\chi_{\frac{\alpha}{2}}^2(k)}} \right\rangle \approx \left\langle 0.3803 , 0.5674 \right\rangle$$

Směrodatná odchylka pro $\alpha = 0.01$:

$$\sigma \in \left\langle \sqrt{\frac{(n-1) \cdot s^2}{\chi_{1-\frac{\alpha}{2}}^2(k)}} \;,\; \sqrt{\frac{(n-1) \cdot s^2}{\chi_{\frac{\alpha}{2}}^2(k)}} \right\rangle \approx \left\langle 0.3603 \;,\; 0.6106 \right\rangle$$

f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0.05.

Hypotéza: $H_0: \mu = 0$

Alternativní hypotéza $H_A: \mu \neq 0$

Bodový odhad střední hodnoty: $\overline{x} = 0.0546$

Bodový odhad směrodatné odchylky: $s \approx 0.4553$

Počet vzorků: n = 50

Testujeme pomocí Studentova jednovýběrového testu

Testovací kritérium: $t = \frac{\overline{x} - \mu}{s} \cdot \sqrt{n} \approx 0.848$

Stupeň volnosti: k = n - 1 = 49

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha=0.05$:

$$t_{1-\frac{\alpha}{2}}(k) = t_{0.975}(49) \approx 2.0096$$

Doplněk kritického oboru pro alternativní hypotézu H_A :

$$\overline{W_{\alpha}} = \left\langle -t_{1-\frac{\alpha}{2}}(k), t_{1-\frac{\alpha}{2}}(k) \right\rangle \approx \left\langle 2.0096, 2.0096 \right\rangle$$

Jelikož $t \in \overline{W_{\alpha}}$, tak hypotéza H_0 se **nezamítá** a alternativní hypotéza H_A se **zamítá**.

g) Ověřte statistickým testem na hladině významnosti 0.05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50 hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20 hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

X = x1 : x20				
i	Х			
1	0.72			
2	-0.55			
3	0.3			
4	0.12			
5	0.12			
6	0.8			
7	0.63			
8	-0.71			
9	-0.42			
10	-0.06			
11	0.46			
12	0.66			
13	0.63			
14	0.28			
15	-0.08			
16	0.08			
17	-0.02			
18	0.44			
19	0.4			
20	0.41			

i	Υ		
1	-0.59		
2	-0.13		
3	0.33		
4	0.38		
5	-0.83		
6	-0.13		
7	0.55		
8	-0.24		
9	0.07		
10	0.44		
11	-0.2		
12	-0.29		
13	1		
14	0.21		
15	-0.52		
16	-0.72		
17	0.59		
18	-0.7		
19	-0.42		
20	-0.3		
21	-0.23		
22	-0.04		
23	0.32		
24	-0.16		
25	-0.27		
26	0.49		
27	0.44		
28	0.24		
29	-0.39		
30	-0.38		

$$n_x = 20$$
 $n_y = 30$ $\overline{x} = 0.2105$ $\overline{y} \approx -0.0493$ $s_x^2 \approx 0.1806$ $s_y^2 \approx 0.2039$ $s_x \approx 0.425$ $s_y \approx 0.4516$

Test rovnosti rozptylů pomocí F-testu

Hypotéza $H_0: \sigma_x^2 = \sigma_y^2$

Alternativní hypotéza $H_A:\sigma_x^2 \neq \sigma_y^2$

Testovací kritérium: $t = \frac{s_x^2}{s_y^2} \approx 0.7844$

Stupně volnosti:

$$k_x = n_x - 1 = 19$$

$$k_y = n_y - 1 = 29$$

Kvantily Fisher-Snedecorova rozdělení pro hladinu významnosti $\alpha=0.05$:

$$F_{\frac{\alpha}{2}}(k_x, k_y) = F_{0.025}(19, 29) \approx 0.4163$$

$$F_{1-\frac{\alpha}{2}}(k_x, k_y) = F_{0.975}(19, 29) \approx 2.2313$$

Doplněk kritického oboru pro alternativní hypotézu H_A :

$$\overline{W_{\alpha}} = \left\langle F_{\frac{\alpha}{2}}(k_x, k_y) , F_{1-\frac{\alpha}{2}}(k_x, k_y) \right\rangle \approx \left\langle 0.4163 , 2.2313 \right\rangle$$

Jelikož $t \in \overline{W_{\alpha}}$, tak hypotéza H_0 se **nezamítá**.

Test rovnosti středních hodnot pomocí Studentova dvouvýběrového testu

Hypotéza $H_0: \mu_x - \mu_y = \mu_0$ pro $\mu_0 = 0$ za podmínky $\sigma_x^2 = \sigma_y^2$

Alternativní hypotéza $H_A: \mu_x - \mu_y \neq 0$

Stupeň volnosti: $k = n_x + n_y - 2 = 48$

Testovací kritérium:
$$t = \frac{\overline{x} - \overline{y} - \mu_0}{\sqrt{k_x \cdot s_x^2 + k_y \cdot s_y^2}} \cdot \sqrt{\frac{n_x \cdot n_y \cdot k}{n_x + n_y}} \approx 2.04$$

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha=0.05$:

$$t_{1-\frac{\alpha}{2}}(k) = t_{0.975}(48) \approx 2.0106$$

Doplněk kritického oboru pro alternativní hypotézu H_A :

$$\overline{W_{\alpha}} = \left\langle -t_{1-\frac{\alpha}{2}}(k), t_{1-\frac{\alpha}{2}}(k) \right\rangle \approx \left\langle -2.0106, 2.0106 \right\rangle$$

Jelikož $t \notin \overline{W_{\alpha}}$, tak hypotéza H_0 se **zamítá**.

Příklad 2) Měřením dvojice (Výška[cm], Váha[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.

Dvourozměrný statistický soubor (př. 2, v. 23)					
X - výška	Y - váha				
161	81				
180	92				
179	87				
196	119				
198	114				
187	103				
169	88				
169	92				
180	94				
175	90				
151	59				
182	112				
193	110				
154	64				
182	106				
190	108				
158	78				
200	126				
197	116				
176	106				

a) Vypočtěte bodový odhad koeficientu korelace.

$$\sum_{i=1}^n x_i^2 = 643\,961$$

$$n = 20$$

$$\sum_{i=1}^n y_i^2 = 195\,277$$

$$\overline{y} = 97.25$$

$$\sum_{i=1}^n x_i \cdot y_i = 352\,644$$
 Odhad koeficientu korelace:
$$r = \frac{\sum_{i=1}^n x_i \cdot y_i - n \cdot \overline{x} \cdot \overline{y}}{\sqrt{\left(\sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2\right) \cdot \left(\sum_{i=1}^n y_i^2 - n \cdot \overline{y}^2\right)}} \approx 0.9409$$

b) Na hladině významnosti 0.05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.

Hypotéza $H_0: \rho = 0$

Alternativní hypotéza $H_A: \rho \neq 0$

Testovací kritérium: $t = \frac{|r| \cdot \sqrt{n-2}}{\sqrt{1-r^2}} \approx 11.7859$

Stupeň volnosti: k = n - 2

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha=0.05$:

$$t_{1-\frac{\alpha}{8}}(k) = t_{0.975}(18) \approx 2.101$$

Doplněk kritického oboru pro alternativní hypotézu H_A :

$$\overline{W_{\alpha}} = \left\langle 0 , t_{1-\frac{\alpha}{2}}(k) \right\rangle \approx \left\langle 0 , 2.101 \right\rangle$$

Jelikož $t \notin \overline{W_{\alpha}}$, tak hypotéza H_0 se **zamítá**.

c) Regresní analýza – Data proložte přímkou $Vaha = \beta_0 + \beta_1 \cdot Vyska$

Pomocné výpočty:

$$n = 20$$

$$\sum_{i=1}^{n} x_{i}^{2} = 643\,961$$

$$\sum_{i=1}^{n} x_{i} = 3\,577$$

$$\sum_{i=1}^{n} y_{i} = 1\,945$$

$$\sum_{i=1}^{n} x_{i} \cdot y_{i} = 352\,644$$

$$H = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}$$

$$det(H) = n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} = 84\,291$$

Bodový odhad koeficientů $\beta_0,\,\beta_1$ a rozptylu s^2

Hledáme lineární funkci $y = \beta_0 + \beta_1 \cdot x$, která bude nejlépe aproximovat naše naměřená data. Bodové odhady koeficientů β_0 a β_1 budeme značit b_0 a b_1 .

Bodový odhad koeficientů pomocí metody nejmenších čtverců:

$$b_1 = \frac{1}{det(H)} \cdot \left(n \cdot \sum_{i=1}^{n} x_i \cdot y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i \right) \approx 1.1343$$

 $b_0 = \overline{y} - b_1 \cdot \overline{x} \approx -105.6274$

Regresní funkce: $y = 1.1343 \cdot x - 105.6274$

Bodový odhad rozptylu pomocí metody nejmenších čtverců:

Minimální hodnota reziduálního součtu čtverců:

$$S_{min}^* = \sum_{i=1}^n y_i^2 - b_0 \cdot \sum_{i=1}^n y_i - b_1 \cdot \sum_{i=1}^n x_i \cdot y_i \approx 702.7344$$

Rozptyl:
$$s^2 = \frac{S_{min}^*}{n-2} \approx 39.0408$$

Testování hypotézy $H_1: \beta_0 = -100$

Alternativní hypotéza $H_{1A}: \beta_0 \neq -100$

$$h_{11} = \frac{\sum_{i=1}^{n} x_i^2}{\det(H)} \approx 7.6397$$

Testovací kritérium: $t_1 = \frac{b_0 - \beta_0}{s \cdot \sqrt{h_{11}}} \approx -0.3258$

Stupeň volnosti: k = n - 2

Kvantil Studentova rozdělení pro hladinu významnosti $\alpha = 0.05$:

$$t_{1-\frac{\alpha}{2}}(k) = t_{0.975}(18) \approx 2.101$$

Doplněk kritického oboru pro alternativní hypotézu H_{1A} :

$$\overline{W_{\alpha}} = \left\langle -t_{1-\frac{\alpha}{2}}(k), t_{1-\frac{\alpha}{2}}(k) \right\rangle \approx \left\langle -2.101, 2.101 \right\rangle$$

Jelikož $t_1 \in \overline{W_{\alpha}}$, tak hypotéza H_1 se **nezamítá**.

Testování hypotézy $H_2: \beta_1 = 1$

Alternativní hypotéza $H_{2A}: \beta_1 \neq 1$

$$h_{22} = \frac{n}{\det(H)} \approx -0.9207$$

Testovací kritérium: $t_2 = \frac{b_1 - \beta_1}{s \cdot \sqrt{h_{22}}} \approx -0.0234$

Doplněk kritického oboru je stejný jako u testování hypotézy H_1

Jelikož $t_2 \in \overline{W_{\alpha}}$, tak hypotéza H_2 se **nezamítá**.

Graf bodů s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky

Intervalový odhad střední hodnoty y:

$$\left\langle (b_0 + b_1 \cdot x) - t_{1-\frac{\alpha}{2}}(k) \cdot s \cdot \sqrt{h^*}, (b_0 + b_1 \cdot x) + t_{1-\frac{\alpha}{2}}(k) \cdot s \cdot \sqrt{h^*} \right\rangle$$

Intervalový odhad individuální hodnoty y:

$$\left\langle (b_0 + b_1 \cdot x) - t_{1-\frac{\alpha}{2}}(k) \cdot s \cdot \sqrt{h^* + 1} , (b_0 + b_1 \cdot x) + t_{1-\frac{\alpha}{2}}(k) \cdot s \cdot \sqrt{h^* + 1} \right\rangle$$

kde
$$h^* = \frac{1}{n} + \frac{n \cdot (x - \overline{x})^2}{\det(H)}$$

Výpočet pásu spolehlivosti								
		Střední hodnota y		Individuální hodnota y				
Х	У	()	()	h*		
145	58.8461	51.40493336	66.29996989	43.75984854	73.94505472	0.3218730351		
150	64.5176	57.99367516	71.05466926	49.86236702	79.1859774	0.2474878694		
155	70.1891	64.55022056	75.84156504	55.90621979	84.48556581	0.1849663665		
160	75.8606	71.05677164	80.67845514	61.88672149	89.84850528	0.1343085264		
165	81.5321	77.48234722	85.59632073	67.79960031	95.27906764	0.0955143491		
170	87.2036	83.77325809	90.64885103	73.64125042	100.7808587	0.06858383457		
175	92.8751	89.84598285	95.91956745	79.4089766	106.3565737	0.05351698283		
180	98.5466	95.60998723	101.4990042	85.10119614	112.0077953	0.05031379388		
185	104.2181	101.0383467	107.414086	90.71756529	117.7348674	0.05897426772		
190	109.8896	106.1966864	113.5991875	96.2590075	123.5368663	0.07949840434		
195	115.5611	111.178717	119.960598	101.7276382	129.4116768	0.1118862037		
200	121.2326	116.054296	126.4284602	107.1266	135.3561562	0.1561376659		
205	126.9041	120.8653187	132.9608787	112.4598367	141.3663607	0.2122527909		

