Подготовка к КР4

Контрольная работа будет разбита на 3 блока:

- 1. Задачи на вычисление на 40 баллов. Достаточно знать алгоритмы подсчета значений.
- 2. Задачи на проверку критериев и исследования на 40 баллов. Отличаются от предыдущих только тем, что требуют... воображения.
- 3. Задачи без четких алгоритмов решения на 40 баллов.

Блок 1

- 1. Подсчет частных производных, производных по направлению, градиента.
 - (а) Найти дифференциал функции $f(x;y;z)=e^{xy\sin z}$. (Гл.1, §3, 16(2))
 - (b) Найти производную функции $f(x;y;z)=x^3+2xy^2+3yz^2$ в направлении вектора $\vec{l}=(2/3;2/3;1/3)$ в точке M(3;3;1). (Гл.1, §3, 39(3))
 - (c) Найти производную функции $f(x;y;z)=xy^2z^3$ в направлении вектора $\overrightarrow{M_0M}$, если $M_0(3;2;1)$ и M(7;5;1). (Гл.1, §3, 43(2))
 - (d) Решить уравнение $grad\ f=\vec{0}$ для функции $f(x;y;z)=2z^3+x^2+2y^2+xy+3x-2y-6z+1.$ (Гл.1, §3, 41(1))
 - (е) Найти единичный вектор \vec{l} , в направлении которого частная производная функции $f(x;y)=x-3y+\sqrt{3xy}$ принимает в точке M(3;1) наибольшее значение. (Гл.1, §3, 49(2))
- 2. Подсчет производных неявно заданных функций.
 - (а) Найти частные производные функции u(x;y), заданной неявно уравнением $e^u-xyu-2=0$ в точке M(1;0). (Гл.1, §3, 60(2))
 - (b) Найти в точке (1;1) частные производные для дифференцируемых функций u(x;y) и v(x;y), заданных неявно условиями $(\Gamma \pi.1, \S 3, 76)$

$$x = \sqrt{2}e^{u/x}\cos\frac{v}{y}, \quad y = \sqrt{2}e^{u/x}\sin\frac{v}{y}, \quad u(1;1) = 0, \quad v(1;1) = \frac{\pi}{4}.$$

- 3. Задачи на экстремум (требуется найти критические точки, в который частные производные обнуляются, и проверить знакоопределенность матрицы Гессе в них)
 - (а) Исследовать функцию $f(x;y) = 3x^2 2x\sqrt{y} + y 8x$ на экстремум. (Гл.1, §5, 5(1))
 - (b) Исследовать функцию $f(x;y;z) = \frac{xy + xz^2 + y^2z}{xyz} + x + 1$ на экстремум. (Гл.1, §5, 14(1))
 - (c) Исследовать на строгий экстремум каждую непрерывно дифференцируемую функцию u(x;y), заданную неявно уравнением (Гл.1, §5, 18(3))

$$x^3 - y^2 + u^2 - 3x + 4y + u - 8 = 0.$$

- 4. Задачи на вычисление интеграла переходом от кратного к повторному
 - (a) Вычислить интеграл (Гл.2, §8, 91(5))

$$\iint_C y \, dx dy, \qquad G = \{0 \leqslant y \leqslant 6, \ x < 6, \ xy > 3, \ y - x - 2 < 0\}.$$

(b) Вычислить интеграл (Гл.2, §8, 139(2))

$$\iiint\limits_C \frac{1}{(1+x+y+z)^3} \, dx dy dz$$

G ограничена плоскостями $x=0,\;y=0,\;z=0,\;x+y+z=1.$

Блок 2

- 1. Сходимость знакопостоянных рядов (признаки сравнения, Даламбера и Коши)
 - (а) Используя предельный признак сравнения исследовать сходимость ряда $\sum_{n=1}^{+\infty} a_n \ (\text{T.2, } \Gamma\text{л.4, } \S14, \ 4(8), \ 5(3), \ 6(1,4))$

a)
$$a_n = \frac{n^3 + 3n^2 + 5}{n\sqrt[5]{n^{16} + n^4 + 1}},$$
 b) $a_n = e^{\frac{\sqrt[3]{n+2}}{n^2 + 3}} - 1,$

c)
$$a_n = \ln \frac{1}{\cos(2\pi/n)}$$
, d) $a_n = n \ln \frac{2n+1}{2n-1} - 1$.

(b) Используя признак Даламбера исследовать сходимость ряда $\sum_{n=1}^{+\infty} a_n$ (Т.2, Гл.4, §14, 18(7), 19(10))

a)
$$a_n = \frac{4 \cdot 7 \cdot 10 \cdot \ldots \cdot (3n+4)}{2 \cdot 6 \cdot 10 \cdot \ldots \cdot (4n+2)},$$
 b) $a_n = \frac{(2n)!}{n!(n+1)!3^{2n}}.$

(c) Используя признак Коши исследовать сходимость ряда $\sum_{n=1}^{+\infty} a_n$ (Т.2, Гл.4, §14, 21(4,14))

a)
$$a_n = 2^n \left(\frac{n}{n+1}\right)^{n^2}$$
, b) $a_n = \left(n \arcsin \frac{1}{n}\right)^{n^3}$.

- 2. Области сходимости степенных рядов.
 - (a) Найти радиус сходимости R и интервал сходимости степенного ряда, исследовать на сходимость и абсолютную сходимость в концах интервала сходимости

a)
$$\sum_{n=1}^{+\infty} \left(\arcsin \frac{1}{3^n} \right) (x-3)^n$$
, b) $\sum_{n=1}^{+\infty} \left(\arctan \frac{n^2+3}{n^2\sqrt{3}+1} \right)^{-n} \left(x - \frac{\pi}{3} \right)^n$,

c)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{2n+1}$$
, d) $\sum_{n=1}^{+\infty} \sqrt{\frac{n^4+3}{n^3+4n}} (x+2)^n$, e) $\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n^2} x^n$

- 3. Ряд Тейлора.
- 4. Условных экстремум
- 5. Наибольшее и наименьшее значение функции.
- 6. Подсчет интеграла с помощью замены переменой.