Improving Language Understanding by Generative PreTraining

Abstract

Intoduction

Related Works

Semi-supervised learning for NLP

Unsupervised pre-training

Auxiliary training objectives

Framework

Unsupervised pre-training

standard LM Objective

GPT-1 Objective

Supervised fine-tuning

Supervised Target Task Objective

Auxiliary Objective

Task-specific input transformation

Classification

Textual entailment

Similarity

Question Answering and Commonsense Reasoning

Experiments

Unsupervised pre-training

Model specifications

Supervised fine-tuning

NLI(Natural Language Inference)

QA and Commonsense reasoning

Semantic Similarity and Classification

Conclusion

Abstract

unlabeled text data는 아주 많지만, 특정 task에 대한 labeled data는 부족하다.

이러한 unlabeled data들을 버리지 말고 generative pre-training하고, 특정 task에 대한 labeled data로 discriminative fine-tuning을 진행하였더니 좋은 성과를 확인할 수 있었다.

Intoduction

NLP 분야에서 labeled data는 매우 부족하기 때문에 되도록 unlabeled data를 잘 활용하여 supervised learning에 대한 의존성을 완화해야 한다.

지도학습이 가능한 경우에도(labeled data가 많은 경우) 미리 unlabeled data로 좋은 representation을 학습해두면 큰 성능 향상이 있다.

하지만, unlabeled data에서 word-level 수준의 정보밖에 얻지 못했고 그 이상의 정보를 활용하는 것은 다음 2가지 이유로 어려웠다.

- 1. pretrained model을 학습하는데에 어떤 optimization objective가 효과적인지 불분명하다
- 2. pretrained model을 fine-tuning하는데에 가장 효과적인 방법에 대한 합의가 없다
- ⇒ unsupervised pre-training과 supervised fine-tuning의 조합으로 language understanding task에 대한 semi-supervised(준지도) 접근 방식을 사용

목표 : 모든 task에 보편적인 representation을 학습하여 이에 대한 최소한의 변화로 task-specific하게 학습하는 것

- 1. unlabeled data를 활용하여 neural network model의 초기 파라미터를 학습
- 2. labeled data를 활용하여 목표 task에 맞게 (1)의 파라미터들을 조정

network는 Transformer모델을 사용하였다

- RNN보다 long-term dependency를 핸들링
- task-specific input adaptations을 transfer 시 사용

Related Works

Semi-supervised learning for NLP

지난 몇년간 unlabeled data에 대해 훈련된 word embeddings를 사용하여 여러 task의 성능을 향상시키는 것을 입증하였지만, 이는 주로 word-level 수준 정보이고, 본 연구에서는 더높은 수준의 의미를 포착해내고자 했다.

최근 연구에서는 phrase-level이나 sentence-level embeddings를 시도하고 있다.

Unsupervised pre-training

unsupervised pre-training은 semi-supervised learning의 특별한 케이스로, supervised learning의 좋은 initialization point를 찾는 것이 목적이다.

최근 pre-training은 이미지 분류, 음성 인식, 기계 번역 등 다양한 분야서 도움이 되긴 하지만, 기존에는 보통 LSTM을 사용했기에 긴 문장을 수용할 수 있는 능력을 가지지 못했다. 따라서 본 논문은 Transformer를 사용하여 긴 문장을 수용할 수 있도록 하였다.

Auxiliary training objectives

unsupervised pre-training의 목적함수를 supervised fine-tuning할 때 보조 학습 목적함수를 추가해주었다.

본 논문에서 보조 학습 목적함수를 추가하였지만, unsupervised pre-training에서 이미 target task와 연관된 많은 언어적 측면을 학습한다.

Framework

Unsupervised pre-training

standard LM Objective

unsupervised 말뭉치 토큰 U = $\{u_1, \ldots, u_n\}$ 이 주어질 때, 아래 확률을 최대화한다.

$$L_1(u) = \sum_i log P(u_i|u_{i-k},\ldots,u_{i-1}; heta)$$

- u_{i-k},\ldots,u_{i-1} 가 주어졌을 때, u_i 를 예측할 확률을 계산
 - ∘ ex) I loye you문장에서 I, love가 주어졌을 때 you를 예측하는 확률값
 - k : context window size
 - θ:SGD로 학습

GPT-1 Objective

본 논문에서는 Transformer의 decoder부분만을 사용하였다.

• h_0 : token embedding(W_e) 후 position embedding(W_p)과 더하기

$$h_0 = UW_e + W_p$$

- ∘ U = token의 context vector
- h_l : layer 개수인 n만큼 decoder block 통과하며 학습을 진행 (n=12)

$$h_l = transformer_block(h_{l-1}) orall i \in [1, n]$$

• P(u) : position-wise layer(W_e^T)를 거쳐 softmax로 확률값 구하기

$$P(u) = softmax(h_n W_e^T)$$

→ unlabeled data를 Transformer decoder에 학습시켜 LM(Language model)로 사전 학습을 한 것

Supervised fine-tuning

Supervised Target Task Objective

labeled dataset C가 있다고 가정하자. C는 $\{x^1,...,x^m\}$ 로 이루어진 input token sequence 와 label y로 구성되어 있다.

• pretrain된 모델의 position-wise layer와 softmax layer 사이에 linear layer(W_y)를 추가하여 각 task마다 layer y를 예측

$$P(y|x^1,...,x^m) = softmax(h_l^m W_y)$$

• $x^1, ..., x^m$ 가 주어졌을 때, y를 예측할 확률을 계산

$$L_2(C) = \sum_{(x,y)} log P(y|x^1,...,x^m)$$

Auxiliary Objective

• supervised model의 일반화 능력을 향상시키고, 수렴을 가속화하기 위해 pretrained model 기반의 loss(L_1)과 fine-tuning model 기반 loss(L_2)를 가중합한 loss를 사용

$$L_3(C) = L_2(C) + \lambda * L_1(C)$$

Task-specific input transformation

Classification

기존 분류 문제와 동일

Textual entailment

전제(premise)와 가설(hypothesis), 이 두가지의 sequence token들을 구분하기 위해 기호 \$를 사용하여 연결하여 한번에 network에 forward한다

Similarity

두 문장의 유사성을 비교할 때에는 두 문장 간의 순서가 없기 때문에, {(text1),(text2)}, {(text2),(text1)} 이 2가지를 각각 모델에 forward하여 linear output layer를 거치기 전에 element-wise로 합하여 출력한다

Question Answering and Commonsense Reasoning

지문 z, question q, 정답 $set\{a_1,a_2,\ldots,a_k\}$ 를 받아 각 정답 set에 있는 k만큼을 각각 독립 적으로 모델에 forward하여 각 softmax를 구해 가장 정답에 가까운 값을 구한다

Experiments

Unsupervised pre-training

Book Corpus dataset을 이용하여 LM(Language Model)을 훈련시켰다.

• 7000개가 넘는 다양한 장르의 출간되지 않는 책들로, 길이가 긴 text가 포함되어 있어 생성 모델이 long-range 정보를 학습하기에 좋다

Model specifications

- transformer decoder layer : 총 12층
- self-attention head : 각 64개의 Q, K, V와 총 12개의 heads로 구성
- position-wise feed-forward : 총 3072차원
- Adam optimizer 사용

Supervised fine-tuning

NLI(Natural Language Inference)

: 한 쌍의 문장이 비슷한 내용인지, 연관이 없는 내용인지, 반대되는 내용인지를 추론하는 task

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

• 5개 dataset 중 4개에 대해 이전 SOTA모델을 개선

QA and Commonsense reasoning

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

• RACE dataset(중고등학교 시험문제와 관련된 영어 지문)을 사용했으며, long-range context를 효과적으로 처리하는 능력을 보여주었다.

Semantic Similarity and Classification

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	<u>81.0</u>	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

Conclusion

GPT-1은 task별로 architecture를 설계하는 것이 아닌, generative pre-training 과 discriminative fine-tuning을 제안하였다.

이를 통해 question answering, semantic similarity assessment, entailment determination, text classification 등 12개 중 9개 task에서 state of the art를 달성했다.