

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

■ Bookmarks

Unit 0: Overview

- ▶ Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- Exam 1
- Unit 5: Continuous random variables

Unit 8: Limit theorems and classical statistics > Lec. 19: The Central Limit Theorem (CLT) > Lec 19 The Central Limit Theorem CLT vertical2

■ Bookmark

Exercise: CLT practice

(6/6 points)

The random variables X_i are i.i.d. with mean 2 and standard deviation equal to 3. Assume that the X_i are nonnegative. Let $S_n = X_1 + \cdots + X_n$. Use the CLT to find good approximations to the following quantities. You may want to refer to the normal table . In parts (a) and (b), give answers with 4 decimal digits.

0.9332

2

a) $\mathbf{P}(S_{100} \leq 245) pprox$ Answer: 0.9332

b) We let N (a random variable) be the first value of n for which S_n exceeds 119.

0.8413

 $\mathbf{P}(N>49) \approx \text{Answer: } 0.8413$

c) What is the largest possible value of n for which we have $\mathbf{P}(S_n \leq 128) pprox 0.5$?

- Unit 6: Further topics on random variables
- Unit 7: Bayesian inference
- ▶ Exam 2
- ▼ Unit 8: Limit theorems and classical statistics

Unit overview

Lec. 18: Inequalities, convergence, and the Weak Law of Large Numbers

Exercises 18 due Apr 27, 2016 at 23:59 UTC

Lec. 19: The Central Limit Theorem (CLT)

Exercises 19 due Apr 27, 2016 at 23:59 UTC

Lec. 20: An introduction to classical statistics

Exercises 20 due Apr 27, 2016 at 23:59 UTC

64

~

n = Answer: 64

Answer:

We will use Z_n to refer to the standardized random variable $(S_n-2n)/(3\sqrt{n})$.

a) We have

$$\mathbf{P}(S_{100} \leq 245) = \mathbf{P}\left(rac{S_{100} - 2 \cdot 100}{3 \cdot \sqrt{100}} \leq rac{245 - 2 \cdot 100}{3 \cdot \sqrt{100}}
ight) = \mathbf{P}(Z_n \leq 1.5) pprox 0.9332.$$

b) The event N>49 is the same as the event $S_{49}\leq 119$. Its probability is

$$\mathbf{P}(S_{49} \leq 119) = \mathbf{P}\left(rac{S_{49} - 2 \cdot 49}{3 \cdot \sqrt{49}} \leq rac{119 - 2 \cdot 49}{3 \cdot \sqrt{49}}
ight) = \mathbf{P}(Z_n \leq 1) pprox 0.8413.$$

c) We want n such that

$$0.5pprox \mathbf{P}(S_n\leq 128)=\mathbf{P}\left(rac{S_n-2n}{3\sqrt{n}}\leq rac{128-2n}{3\sqrt{n}}
ight)=\Phi\left(rac{128-2n}{3\sqrt{n}}
ight).$$

Solved problems

Additional theoretical material

Problem Set 8

Problem Set 8 due Apr 27, 2016 at 23:59 UTC

Unit summary

But since $0.5=\Phi(0)$, we must have $(128-2n)/(3\sqrt{n})=0$, so that n=128/2=64.

A faster way to see the answer is to note that since the normal is symmetric around its mean, the relation $\mathbf{P}(S_n \leq 128) \approx 0.50$ tells us that 128 should be equal to the mean, 2n, of S_n .

You have used 1 of 3 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

