

Instructor: Yaroslav Korobka Updated: October 3, 2025

Course: Mathematics

1 Basic topology

1.1 Metric spaces

Definition 1.1. A set X, whose elements we shall call *points*, is said to be *a metric space* if with any two points p and q of X there is associated a real number d(p,q), called the *distance* from p to q, such that

- (a) d(p,q) > 0 if $p \neq q$ and d(p,p) = 0,
- (b) d(p,q) = d(q,p),
- (c) $d(p,q) \le d(p,r) + d(r,q)$, for $\forall r \in X$.

Any function with these three properties is called a *distance function*, or a metric.

Example 1.2 (Metric spaces). The following are examples of the metric spaces:

- 1. the set of real numbers \mathbb{R} with a metric d(p,q) = |p-q|,
- 2. a real plane \mathbb{R}^2 with a metric $d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 q_1)^2 + (p_2 q_2)^2} := \|\mathbf{p} \mathbf{q}\|$ (Eucledian distance),
- 3. a real plane \mathbb{R}^2 with a metric $d(\mathbf{p}, \mathbf{q}) = |p_1 q_1| + |p_2 q_2|$ (Manhattan distance),
- 4. the set of probability distributions defined on the same measurable space with a metric $d(P,Q) = \frac{1}{\sqrt{2}} \left(\int \left(\sqrt{p(x)} \sqrt{q(x)} \right)^2 dx \right)^{1/2}$ (Hellinger distance).

It is important to observe that every subset *Y* of a metric space *X* is a metric space in its own right, with the same distance function. Thus, every subset of a Euclidean space is a metric space.

Definition 1.3. By the *segment* (a,b) we mean the set of all real numbers x such that a < x < b. By the *interval* [a,b] we mean the set of all real numbers x such that $a \le x \le b$.

If $a_i < b_i$ for i = 1, ..., k, the set of all points $\mathbf{x} = (x_1, ..., x_k)$ in \mathbb{R}^k whose coordinates satisfy the inequalities $a_i \le x_i \le b_i$ ($1 \le i \le k$) is called a k-cell. Thus, a 1-cell is an interval, a 2-cell is a rectangle, etc.

If $\mathbf{x} \in \mathbb{R}^k$ and r > 0, the *open* (or *closed*) *ball* B with center at \mathbf{x} and radius r is defined to be the set of all $\mathbf{y} \in \mathbb{R}^k$ such that $\|\mathbf{y} - \mathbf{x}\| < r$ (or $\|\mathbf{y} - \mathbf{x}\| \le r$).

We call a set $E \subset \mathbb{R}^k$ convex if

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in E$$

whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$, and $0 < \lambda < 1$. For example, balls are convex. It is also easy to see that k-cells are convex.

Definition 1.4. Let *X* be a metric space. All points and sets mentioned below are understood to be elements and subsets of *X*.

(a) A neighborhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r. The number r is called the *radius* of $N_r(p)$.

- (b) A point p is a *limit point* of the set E if *every* neighborhood of p contains a point $q \neq p$ such that $q \in E$. Example: take a set A := (0,1). Point 0 is a limit point, because any open interval, say $(-\varepsilon, \varepsilon)$, intersects A.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an *isolated point* of E. Example: take a set $A = \{n^{-1} : n \in \mathbb{N}\}$. Each element is an isolated point because you can take a small interval around n^{-1} that avoids the other fractions in the set.
- (d) E is *closed* if every limit point of E is a point of E. Example: take A = [0,1]. Both 0 and 1 are limit points and both belong to the set E and both belong to the set E and E is not closed because a limit point 0 does not belong to the set.
- (e) A point p is an *interior point* of E if there is a neighborhood $N_r(p)$ of p such that $N \subset E$. Example: take a set A = (0,1). A point 0.5 is an interior point because there is a neighborhood around it, say, $N_{0.1}(0.5)$ that belongs to the set A; if $N_{0.1}(0.5) = (0.4, 0.6) := B$, we have $B \subset A$. On the other hand, if C = [0.5, 1], 0.5 is not an interior point of C, because there is no neighborhood around it that is a subset of C; some points of that neighborhood are outside of C.
- (f) *E* is *open* if every point of *E* is an interior point of *E*.
- (g) The *complement* of *E* (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.
- (h) E is perfect if E is closed and if every point of E is a limit point of E. Example: take A = [0,1], which is closed with all points being limit points, so it is perfect. On the other hand, $B = [0,1] \cup \{3\}$ is not perfect because it contains a point 3, which is not a limit point (it is an isolated point).
- (i) *E* is *bounded* if there is a real number *M* and a point $q \in X$ such that d(p,q) < M for $\forall p \in E$.
- (j) *E* is *dense in X* if every point of *X* is a limit point of *E*, or a point of *E* (or both).

Let us note that in \mathbb{R}^1 neighborhoods are segments, whereas in \mathbb{R}^2 neighborhoods are interiors of circles.

Theorem 1.5. Every neighborhood is an open set.

Proof. Consider neighborhood $E = N_r(p)$, and let q be any point of E. Then there is a positive real number h such that

$$d(p,q) = r - h.$$

For all points s such that d(q, s) < h, we have then

$$d(p,s) \le d(p,q) + d(q,s) < r - h + h = r,$$

so that $s \in E$. Thus, q is an interior point of E.

Theorem 1.6. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof. Suppose there is a neighborhood N of p which contains only a finite number of points of E. Let q_1, \ldots, q_n be those points of $N \cap E$, which are distinct from p, and put

$$r = \min_{1 \le m \le n} d(p, q_m)$$

The minimum of a finite set of positive numbers is clearly positive, so that r > 0.

The neighborhood $N_r(p)$ contains no point q of E such that $q \neq p$, so that p is not a limit point of E. This contradiction established the theorem.

Corollary 1.7. A finite point set has no limit points.

Theorem 1.8. A set E is open if and only if its complement is closed.

1.2 Compact sets

Definition 1.9. By an *open cover* of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 1.10. A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite subcover*. More explicitly, the requirement is that if $\{G_{\alpha}\}$ is an open cover of K, then there are finitely many indices $\alpha_1, \ldots, \alpha_n$ such that

$$K \subset G_{\alpha_1} \cup \ldots \cup G_{\alpha_n}$$
.

Corollary 1.11. A set E is compact if it is both closed and bounded.

1.3 Functions

Definition 1.12. Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a *function* from A to B (or a *mapping* from A into B). The set A is called the *domain* of A (we also say A is defined on A), and the elements A is called the *values* of A. The set of *all* values of A is called the *range* of A.

Definition 1.13. If for every $y \in B$ there is at most one $x \in A$: f(x) = y, the function f is said to be a 1-1 (*one-to-one*) mapping of A into B. This may also be expressed as follows: f is a 1-1 mapping of A into B provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$, $x_1 \in A$, $x_2 \in A$.

Definition 1.14. Let A and B be two sets and let f be a mapping of A into B. If f(A) = B, we say that f maps A onto B. If, additionally, f is 1-1, then f is one-to-one and onto (bijection).

Definition 1.15. If there exists a 1-1 mapping of *A onto B*, we say that *A* and *B* can be put in 1-1 *correspondence*, or that *A* and *B* have the same *cardinal number*, or, briefly, that *A* and *B* are *equivalent*, and we write $A \sim B$.

Definition 1.16. For any positive integer n, let J_n be the set whose elements are the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For any set A, we say:

- (a) *A* is finite if $A \sim J_n$ for some n.
- (b) *A* is *infinite* if *A* is not finite.
- (c) *A* is countable if $A \sim J$.
- (d) *A* is *uncountable* if *A* is neither finite nor countable.
- (e) *A* is at most countable if *A* is finite or countable.

For two finite sets A and B, we evidently have $A \sim B$ if and only if A and B contain the same number of elements (same *cardinality*). For infinite sets, however, the idea of cardinality becomes quite vague, whereas the notion of 1-1 correspondence retains its clarity.

Example 1.17. Let *A* be the set of all integers. Then *A* is countable. Consider, the following arrangement of the sets *A* and *J*:

$$A: 0,1,-1,2,-2,...$$

 $J: 1,2,3,4,5,...$

We can, in this example, even give an explicit formula for a function f from J to A which sets up a 1-1 correspondence:

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ -\frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Remark 1.18. A finite set cannot be equivalent to one of its proper subsets. That this is, however, possible for infinite sets, is shown by Example 1.17, in which *J* is a proper subset of *A*.

Definition 1.19. In the following, assume that the set A is a subset of \mathbb{R} .

- (a) If there exists $x \in \mathbb{R}$ such that for every $y \in A$ we have $x \ge y$, then the set A is bounded from above.
- (b) If there exists $x \in \mathbb{R}$ such that for every $y \in A$ we have $x \le y$, then the set A is bounded from below.
- (c) The *supremum* of *A*, denoted as sup *A*, is the smallest upper bound of the set *A*.
- (d) The *infimum* of *A*, denoted as inf *A*, is the largest lower bound of the set *A*.

We note that the set A is bounded, if it is bounded both from below and from above, which is equivalent to the Definition 1.4(i). If the set A is not bounded from above, then $\sup A = \infty$, and if it is not bounded from below, then $\inf A = -\infty$.