

\LaTeX , \LaTeX , and knitr

Guy Yollin

Applied Mathematics University of Washington

- $lue{1}$ $lue{1}$ $lue{1}$ $lue{1}$ $lue{1}$ $lue{1}$
 - \bullet Introduction to \LaTeX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 8 knitr
 - Introduction to knitr
 - knitr and LyX
- 4 Beamer
- Conclusion

- LATEX
 - Introduction to LATEX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 3 knitr
- 4 Beamer
- Conclusion

- 1 LATEX
 - Introduction to LATEX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 3 knitr
- Beamer
- Conclusion

First there was T_FX

- T_EX (pronounced "tech") is a low-level markup language[†] designed to typeset documents attractively and consistently.
- TEX was developed in 1977 by Professor Emeritus Donald Knuth of Stanford University and has remained relatively unchanged since 1989.
- \bullet $T_{E\!X}$ is renowned for being extremely stable, cross-platform friendly and virtually bug-free.
- T_EX versions are converging toward π , with a current version number of 3.1415926.
- While it is possible to program in T_EX , most document preparation is done in I^AT_EX . Few people will find the need to write T_EX .

[†]http://en.wikipedia.org/wiki/Markup_language

Then there was LATEX

- LATEX (pronounced "lay-tech" or "lah-tech") is a macro package based on the TEX engine.
- \LaTeX is meant to be a high-level language for harnessing the typesetting capabilities of \Tau EX.
- LATEX was first developed in 1985 by Leslie Lamport.
- LATEX is free software and is distributed under the LATEX Project Public License (LPPL).
- The current version is L^ΔT_EX2_ε.

Why use LATEX?

- IATEX is capable of producing documents of the highest typographical quality.
- LATEX is exceptionally good at formatting math.
- LATEX is fast, free and runs virtually everywhere.
- IATEX is the standard.

http://www.tug.org/texshowcase/

- 1 LATEX
 - Introduction to LATEX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 8 knitr
- 4 Beamer
- Conclusion

Essential references

The Not So Short Introduction to $\LaTeX 2\varepsilon$

Tobias Oetiker

\LaTeX 2 $_{\varepsilon}$ Cheat Sheet

Winston Chang

Getting help

- The TEX users group (TUG) has a number of online and printed resources for getting started with LATEX.
- tex.stackexchange.com is an active forum to answer most, if not all, questions IATEX.
- LATEX has a great wikibook for getting started and for continuing in advanced topics: http://en.wikibooks.org/ wiki/LaTeX.
- Your best friend is Google.

tex.stackexchange.com

- 1 LATEX
 - Introduction to LATEX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 8 knitr
- Beamer
- Conclusion

Installing a T_FX distribution

- A TEX distribution must be installed before compiling LATEX documents.
- ullet These $T_E\!X$ distributions need administrative privileges to install packages on-the-fly.
- These TEX distributions do not necessarily include editors.

Windows MiKTEX or proTEXt

Mac OS MacT_EX

Unix/Linux TEXLive (cross-platform)

Building documents with RStudio

- LATEX can be written in nearly any text editor.
- Use an editor that supports one-click document compilation.
- RStudio supports one-click document compilation with no additional configuration.
- RStudio comes with Sumatra PDF. This is the recommended way to view output from pdflatex.exe.

HelloWorld.tex

LATEX in RStudio

The .tex file extension

- When creating a LATEX document, the code is stored in a .tex file.
- Several files are produced when a .tex file is compiled[†].
 - Primary output is a pdf file
 - Additional files may include:
 - .log
 - .toc
 - .bbl
 - etc.

http://xkcd.com/1301/

[†]Depends on the complexity of the document.

- 1 MT_EX
 - Introduction to LATEX
 - LATEX references
 - Basic installation
 - Creating documents
- 2 LyX
- 8 knitr
- 4 Beamer
- Conclusion

Hello World! LATEX example

HelloWorld.tex

HelloWorld.pdf

Live demos

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

LATEX document structure

LATEX source files consist of two parts:

preamble begins with the \documentclass command

document all content between \begin{document} and \end{document}

```
\documentclass[<options>]{<class>}
% preamble contents
\begin{document}
% document contents
\end{document}
```

The document class

- The first line of a LATEX file is the \documentclass command
- The \documentclass command specifes the type of document
 - article
 - report
 - book
 - slides
 - etc.
- The \documentclass command also specifes various options
 - font point size (10pt, 12pt, etc.)
 - paper size (letter, a4, etc.)
 - alignment of equations
 - etc.

The preamble

- The preamble is all the code that comes before \begin{document}
- The commands in this section affect the entire document.
- Common commands in the the preamble include
 - The \usepackage command to load additional LaTeXpackages
 - Commands that set various document parameters (e.g. margins etc.)
 - The definition of new commands or short-cuts

Packages

- One of the most useful declarations in the preamble is the \usepackage command.
- Packages may be downloaded on-the-fly from CTAN.
- Your TEX distribution may need to ask permission to install these packages.

```
\documentclass[<options>]{<package name>}
\usepackage[<options>]{<package name>}
\begin{document}
% LaTeX code
\end{document}
```

• For example, when writing technical reports it may prove useful to have the following packages:

```
\usepackage{amsmath,fancyhdr,listings}
```

CTAN - Comprehensive $T_E\!X$ archive network

- CTAN stands for the Comprehensive TEX archive network.
- There are over 100 mirrors worldwide with 18 residing in the U.S., including one maintained by the University of Washington's Math department.
- CTAN currently has 4639 packages contributed by 2165 authors.

http://www.ctan.org/

Live demos

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

- 1 LATEX
- 2 LyX
- 3 knitr
- 4 Beamer
- Conclusion

Lyx: The Document Processor

http://www.lyx.org/

WYSIWYM: What You See Is What You Mean

What You See

Sum Σ and integral f operators are very often decorated with limits. These limits can be entered in LyX by entering them as you would enter a super- or subscript, directly after the symbol. The sum operator will automatically place its "limits" over and under the symbol in displayed formulas, and on the side in inline formulas. Such as $\sum_{n=0}^{\infty} \frac{1}{n} = e_n$ versus

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$

Integral signs, however, will place the limits on the side in both formula types.

All operators with limits will be automatically re-sized when placed in display mode. The placement of the limits can be changed by placing the cursor directly behind the operator and hitting M-m I or using the menu Edit's Mabb Change_Limits_type.

Certain other mathematical expressions have this "moving limits" feature as addition, such as idx

$$\lim_{x \to \infty} f(x)$$

which will place the $x \to \infty$ underneath the "lim" in display mode. In inline formulas it looks like this: $\lim_{x \to \infty} f(x)$.

Note that the lim-function was entered as the function macro \lim. Have a look at section, Ref. sub:Functions for an explanation of function macros.

5.1.7 Math Symbols Idv

What You Mean

5.1.6. Operators with Limits

Sum \sum and integral f operators are very often decorated with limits. These limits can be entered in LyX by entering them as you would enter a super- or subscript, directly after the symbol. The sum operator will automatically place its "limits" owe and under the symbol in displayed formulas, and on the side in inline formulas. Such as $\sum_{i=1}^{\infty} \frac{1}{i} = e_i$, versus

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$

Integral signs, however, will place the limits on the side in both formula types.

All operators with limits will be automatically re-sized when placed in display mode. The placement of the limits can be changed by placing the cursor directly behind the operator and hitting M-m I or using the menu Edit> Math> Change Limits Type.

Certain other mathematical expressions have this "moving limits" feature as addition, such as

$$\lim f(x)$$
,

which will place the $x \to \infty$ underneath the "lim" in display mode. In inline formulas it looks like this: $\lim_{x\to\infty} f(x)$.

Note that the lim-function was entered as the function macro \lim. Have a look at section 5.1.9 for an explanation of function macros.

LyXworkflow

LATEX in LAX documents

Additional control over the underlying LATEX in a LYX document can be achieved via two different methods:

- Additions to the LATEX document preamble
- Inserting LATEX code directly into a LYX document via the Insert TeX Code option (aka ERT or Evil Red Text)
 - In actuality this is rarely necessary

Live demos

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

Getting started with LyX

Getting help with LYX

- Help Documents (under the Help menu)
- Lyx Wiki: http://wiki.lyx.org/
- Google is your friend!

- 1 LATEX
- 2 LyX
- 3 knitr
 - Introduction to knitr
 - knitr and LyX
- 4 Beamer
- Conclusion

- 1 LATEX
- 2 LyX
- 8 knitr
 - Introduction to knitr
 - knitr and LyX
- 4 Beamer
- Conclusion

knitr

- knitr is an engine for dynamic report generation with R[†]
- knitr is an R package that enables integration of R code into:
 - LaTeX
 - Lyx
 - HTML
 - Markdown
 - AsciiDoc
 - reSturcturedText
- The purpose of knitr is to allow reproducible research in R through the means of Literate Programming
- The definitive source of information on knitr is the author's website: http://yihui.name/knitr/

[†]http://en.wikipedia.org/wiki/Knitr

R code is integrated into the LaTeX document

simpleKnitrExample.Rnw

simpleKnitrExample.pdf

 When R code is integrated into a LATEX document, the file type is typically changed from .tex to .Rnw

LaTeX+knitr workflow

Code Chucks

- All R code in knitr documents is placed within a code chunk
- The opening tag for a code chunk is: «»=
- The closing tag for a code chunk is: @
- Code chunk options can be placed between the double brackets of the opening tag:

 All code chuck options are documented on the author's website: http://yihui.name/knitr/options

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

Outline

- 1 LATEX
- 2 LyX
- 8 knitr
 - Introduction to knitr
 - knitr and LyX
- 4 Beamer
- Conclusion

knitr and LyX

- knitr (and Sweave) support is built into LyX (since version 2.0)
- Code chucks are inserted into the LγX document via ERT (Evil Red Text) boxes

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

Outline

- 1 LATEX
- 2 LyX
- 3 knitr
- 4 Beamer
- Conclusion

Beamer

- Beamer is a LATEX document class for slide presentations
 - This presentation is a beamer presentation
- Like any LATEX document, Beamer slides can include:
 - mathematical formulas
 - bulleted lists
 - graphics
 - etc.
- In Beamer, slides are called frames and delimited by \begin{frame}
 and \end{frame} as shown below:

```
\begin{frame}
\frametitle{A Beamer slide}
This is a very simple slide
\end{frame}
```

Beamer themes

The beamer class includes about 30 pre-defined layout themes and about 15 pre-defined color themes for slides

- These pre-defined themes can also be customized
- See the Beamer theme matrix for examples of themes and colors: http://www.hartwork.org/beamer-theme-matrix/

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

Beamer and knitr

knitr can compile Beamer slide presentations with code chunks of R code:

- Rename the .tex file to a .Rnw file
- Mark frame with code chucks as fragile or containsverbatim

```
\begin{frame} [fragile]
\frametitle{A slide with R code}
Calculate the mean of a sample:
<>>=
set.seed(1)
x <- rnorm(100)
mean(x)
@
\end{frame}</pre>
```

- HelloWorld.tex
- simpleLatexExample.tex
- simpleLyxExample.lyx
- simpleKnitrExample.Rnw
- simpleBeamerExample.tex
- simpleBeamerKnitrExample.Rnw

Outline

- 1 LATEX
- 2 LyX
- 3 knitr
- 4 Beamer
- Conclusion

Conclusion

- LATEX is the standard for technical publication creation
 - Every graduate student should know it
- LYX is a GUI for LATEX that has two compelling advantages
 - Less-steep learning curve to start producing professional technical documents
 - Increased efficiency for many types of LATEX projects
- knitr allows R code to be integrated into LATEX or LYX documents
- Beamer is the LATEX document class for slide presentations
- kniter works with Beamer to integrate R code and graphics
 - All AMATH 542 lecture slides are done with knitr/Beamer

http://depts.washington.edu/compfin