Homework 05

- 1. A bipolar junction transistors (BJT) is characterized by various quantities, for example the thermal voltage (V_t), alpha (α), beta (β), and the BE threshold voltage (V_{th}).
 - (a) Describe the meaning of each of these quantities and give (approximate) associated numerical values.
 - (b) Which one of these quantities is best suited to help us understand the physical operation of a BJT? Explain your answer.
 - (c) Which one of these quantities is most relevant in the practice of BJTs? Explain your answer.
 - (d) Which of these quantities depends strongly on a geometrical dimension (thickness of the base layer) of the BJT? Explain your answer.
- 2. This problem relates to a bipolar junction transistor (BJT).
 - (a) Draw the $I_{\rm E}$ -versus- $I_{\rm B}$ characteristic ($I_{\rm E}$ vertical axis (ordinate) and $I_{\rm B}$ horizontal axis (abscissa)) of a generic BJT. In the same diagram, draw the $I_{\rm C}$ -versus- $I_{\rm B}$ characteristic of a BJT. Explain the characteristic.
 - (b) Draw the I_{C} -versus- V_{BE} characteristic of a BJT. In the drawing, show the BJT's forward active region (ON region) and cutoff region (OFF region). Explain the characteristic.
 - (c) Draw the output characteristic I_c -versus- V_{CE} of a BJT. In the drawing, show the BJT's forward active region (ON region), cutoff region (OFF region), and saturation region.
 - (d) Sketch the $I_{\rm C}$ -versus- $V_{\rm CE}$ characteristic and indicate the saturation voltage. A typical value of the saturation voltage is 0.2 V. Can you give a quantitative justification of that typical value?
- 3. This problem relates to a bipolar junction transistor (BJT) having a current amplification α in common-base (common-B) configuration.
 - (a) Draw a common-B BJT amplifier circuit of a pnp BJT (without sources and without resistors). Label all input and output quantities.
 - (b) Draw the large-signal equivalent circuit of the transistor circuit (for the forward active operating regime); the equivalent circuit should not use the transistor circuit symbol. Define all quantities used in the equivalent circuit.
 - (c) Draw the AC small-signal equivalent circuit (for the forward active operating regime). Define all quantities used in the circuit.
 - (d) Can you comment on the input resistance of the circuit? Do we generally prefer an amplifier having a small or large input resistance?