Analysis I - Definitions

Lectured by Prof Timothy Gowers

Lent 2014

1 Introduction

Definition 1 (Field). A *field* is a set X with two binary operations, usually denoted + and \times , with all the familiar properties of addition and multiplication:

- \bullet + and \times are commutative and associative and have identities, denoted 0 and 1 respectively.
- Every $x \in X$ has an inverse under +, denoted -x and every $x \neq 0$ has an inverse under \times , denoted $\frac{1}{x}$.
- \bullet × is distributive over +.

Definition 2 (Total ordering). A *total ordering* < on a set X is a relation with the following two properties:

- i) < is transitive (i.e. $\forall x, y, z \in X \quad x < y \text{ and } y < z \implies x < z$).
- ii) For every $x, y \in X$ exactly one of the following statements holds: x < y or x = y or y < x.

A totally ordered set is a set together with a total ordering.

Definition 3 (Ordered field). An *ordered field* is a field F together with a total ordering < such that:

- i) $\forall x, y, z \in F \quad x < y \implies x + z < y + z$
- ii) $\forall x, y, z \in F$ x < y and $z > 0 \implies xz < yz$

Definition 4 (Least upper bound). Let X be an ordered set and let $A \subset X$. An element $u \in X$ is an *upper bound* for A if $\forall a \in Aa \leq u$.

An element $s \in X$ is the *least* upper bound for A if:

- i) s is an upper bound for A.
- ii) $\forall t < s : t$ is not an upper bound for A (i.e. $\forall t < s \; \exists a \in A \; a > t$).

An ordered field F has the *least upper bound property* if for every $A \subset F$: if $A \neq \emptyset$ and A has an upper bound, then A has a least upper bound.

2 Sequences and convergence

Definition 5 (Bounded). A sequence (a_n) of real numbers is

$$\left\{ \begin{array}{l} \text{bounded} \\ \text{bounded above} \\ \text{bounded below} \end{array} \right\} \text{ if } \exists M \text{ such that } \forall n \left\{ \begin{array}{l} |a_N| \leq M \\ a_n \leq M \\ a_n \geq M \end{array} \right\}$$

A sequence is eventually bounded if $\exists M, N$ such that $\forall n \geq N \mid a_n \mid \leq M$.

Definition 6 (Convergence). Let (a_n) be a real sequence and let $a \in \mathbb{R}$. We say that (a_n) converges to a or tends to a if

$$\forall \epsilon > 0 \; \exists N \; \forall n \geq N \; |a_n - a| < \epsilon$$

Definition 7 (Monotone sequence). A sequence (a_n) is

$$\begin{cases} \text{increasing} \\ \text{strictly increasing} \\ \text{decreasing} \\ \text{strictly decreasing} \end{cases} \text{ if } \begin{cases} a_n \leq a_{n+1} \\ a_n < a_{n+1} \\ a_n \geq a_{n+1} \\ a_n > a_{n+1} \end{cases}$$

It is (strictly) monotone if it is (strictly) increasing or (strictly) decreasing.

An ordered field F has the monotone sequences property if every increasing sequence in F that is bounded above converges.

Definition 8 (Subsequence). Let (a_n) be a sequence. A *subsequence* of (a_n) is a sequence of the form $(a_{n_k})_{k=1}^{\infty}$ where $n_1 < n_2 < n_3 < \dots$

Definition 9 (Cauchy sequence). A sequence (a_n) is Cauchy if

$$\forall \epsilon > 0 \; \exists N \; \forall p, q \ge N \; |a_p - a_q| < \epsilon$$

3 Infinite series

Definition 10 (Partial sum). Let (a_n) be a sequence. The *Nth partial sum* is

$$S_N = \sum_{n=1}^N a_n$$

If the sequence (S_N) converges to a limit S, we say that $\sum_{n=1}^{\infty} = S$.

Definition 11 (Absolute convergence). A series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Definition 12 (Unconditional convergence). A series $\sum a_n$ converges unconditionally if $\sum a_{\pi(n)}$ converges for every permutation (i.e. bijection) $\pi: \mathbb{N} \to \mathbb{N}$.

4 Continuous functions

Definition 13 (Continuity). Let $f : \mathbb{R} \to \mathbb{R}$ and let $x \in \mathbb{R}$. We say that f is *continuous* at x if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall y \ |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

We say that f is *continuous* if it is continuous at x for every $x \in \mathbb{R}$.

Definition 14 (Increasing & decreasing functions). Let $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$. Then f is

$$\begin{cases} \text{increasing} \\ \text{strictly increasing} \\ \text{decreasing} \\ \text{strictly decreasing} \end{cases} \text{ if for every } x, y \in A \text{ with } x < y \text{ we have } \begin{cases} f(x) \le f(y) \\ f(x) < f(y) \\ f(x) \ge f(y) \\ f(x) > f(y) \end{cases}$$

Definition 15 (Bounded function). Let $f: A \to \mathbb{R}$. Then f is bounded if $\exists M$ such that $|f(x)| \leq M$ for every $x \in A$. (Similarly for bounded above and below.)

5 Differentiation

Definition 16 (Limit of a function). Let $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$. Let $a \in A$. We have:

$$\lim_{x \to a^{+}} f(x) = l \quad \text{if} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in (a, a + \delta) \cap A \quad |f(x) - l| < \epsilon$$

$$\lim_{x \to a^{-}} f(x) = l \quad \text{if} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in (a - \delta, a) \cap A \quad |f(x) - l| < \epsilon$$

$$\lim_{x \to a} f(x) = l \quad \text{if} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \quad |x - a| < \delta \text{ and } x \neq a \implies |f(x) - l| < \epsilon$$

Definition 17 (Derivative). Let A be an interval and let $f: A \to \mathbb{R}$. Let $x \in A$. The function f is differentiable at x if

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

exists.

This limit is the *derivative* of f at x.

Definition 18 (Little-o notation). We can write o(h) for a function that tends to zero as h tends to zero even if you divide it by h.

Definition 19 (Limit of a function at infinity). Write $\lim_{x\to\infty} = l$ if

$$\forall \epsilon > 0 \ \exists M \ \forall x \ge M \ |f(x) - l| < \epsilon$$

6 Power Series

Definition 20 (Power series). A *power series* is an expression of the form $\sum_{n=0}^{\infty} a_n z^n$, where the a_n and z can be in \mathbb{R} or \mathbb{C} .

Definition 21 (Radius of convergence). The radius of convergence of a power series $\sum_{n=0}^{\infty} a_n z^n$ is the value R such that $\sum_{n=0}^{\infty} a_n z^n$ converges if |z| < R and diverges if |z| > R.

Definition 22 (Limsup & liminf). Let (a_n) be a real sequence. Then

$$\limsup_{n \to \infty} a_n = \lim_{N \to \infty} \sup_{n \ge N} a_n$$

Also

$$\liminf_{n \to \infty} a_n = \lim_{N \to \infty} \inf_{n > N} a_n$$

Definition 23 (Convolution). Let (a_r) and (b_s) be sequences. Then the sequence (c_n) such that $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$ is the *convolution* of (a_r) and (b_s) .

Definition 24 (Exponential function). The exponential function e^x is given by $\sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Definition 25 (Trigonometric functions). Define $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2}$ and $\tan z = \frac{\sin z}{\cos z}$.

Definition 26 (Hyperbolic functions). Defined $\cosh z = \frac{e^z + e^{-z}}{2}$, $\sinh z = \frac{e^z - e^{-z}}{2}$ and $\tanh z = \frac{\sinh z}{\cosh z}$.

7 Riemann Integration

Definition 27 (Dissection). Let a and b be real numbers with a < b. A dissection of [a, b] is a sequence of the form $a = x_0 < x_1 < x_2 < \ldots < x_n = b$.

Definition 28 (Upper and lower sums). Let $f : [a, b] \to \mathbb{R}$ and let $\mathcal{D} = \{x_0 < x_1 < \ldots < x_n\}$ be a dissection of [a, b]. The upper sum $S_{\mathcal{D}}(f)$ is defined to be

$$\sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$$

. The lower sum $s_{\mathcal{D}}(f)$ is defined to be

$$\sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{x \in [x_{i-1}, x_i]} f(x)$$

Definition 29 (Refinement). Let \mathcal{D}_1 and \mathcal{D}_2 be dissections of [a, b]. Then \mathcal{D}_2 refines (or is a refinement of) \mathcal{D}_1 if every point of \mathcal{D}_1 is a point of \mathcal{D}_2 .

Definition 30 (Riemann integral). Let $f:[a,b]\to\mathbb{R}$. We say that f is (Riemann) integrable if

$$\inf_{\mathcal{D}} S_{\mathcal{D}}(f) = \sup_{\mathcal{D}} s_{\mathcal{D}}(f)$$

In this case, we denote the common value by $\int_a^b f(x) dx$.

Definition 31 (Uniform continuity). A function $f: A \to \mathbb{R}$ (where $A \subset R$) is uniformly continuous if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in A \quad |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

Definition 32 (Piecewise continuity). A function $f : [a, b] \to \mathbb{R}$ is piecewise continuous if there exists x_1, \ldots, x_k in [a, b] with $x_1 < x_2 < \ldots < x_k$ such that f is continuous at x whenever $x \notin \{x_1, \ldots, x_k\}$ and f(x) tends to a limit whenever $x \to x_i^-$ or $x \to x_i^+$.

8 Odds and Ends

Definition 33 (Coverage). Let \mathcal{A} be a collection of subsets of \mathbb{R} and let $X \subset \mathbb{R}$. We say that \mathcal{A} covers X if $X \subset \bigcup_{A \in \mathcal{A}} A$. A subcover is a subset \mathcal{B} of \mathcal{A} that covers X.