Plan du cours

I.	Produit nul	1
II.	Reconnaître une équation produit	1
III.	Résoudre une équation produit	2
IV.	Équation du type $x^2 = a$, où a est un nombre relatif	3

I. Produit nul

Propriété

Dans un produit, si l'un des facteurs est nul, alors ce produit est nul.

Autrement dit, Si A = 0 ou B = 0 alors $A \times B = 0$

Propriété

Réciproquement, si un produit est nul, alors l'un au moins de ses facteurs est nul.

Autrement dit, si $A \times B = 0$ alors A = 0 ou B = 0.

II. Reconnaître une équation produit

Définition

a, b, c et d désignent des nombres. Une équation de la forme (ax + b)(cx + d) = 0 est une équation produit.

Exemple:

L'équation (3x - 5)(9 - x) = 0 s'appelle une équation produit nul car :

- L'un des membres est un produit de facteurs.
- L'autre membre est 0.

- Si l'on développe le premier membre de cette équation, on s'aperçoit que cette équation est du second degré.
- Pour obtenir une équation produit, il est parfois nécessaire de factoriser l'équation donnée. On dispose pour cela des formules du chapitre factorisation et des identités remarquables.

Exercice d'application 1 -

Transformer les équations suivantes pour qu'elles deviennent des équations produits :

(a)
$$(9x-4)(11-2x)-(5x-6)(9x-4)=0$$

(d)
$$(3-x)(2x+7) = (6x-1)(x+1)$$

.....

.....

.....

(b)
$$9x^2 - 144 = 0$$

(e)
$$x^2 = 16$$

.....

.....

.....

(c)
$$(3x+1)^2 - 36 = 0$$

(f)
$$16x^2 - 8x = -1$$

.....

.....

.....

III. Résoudre une équation produit

 $\underline{\text{\'e}}$: Résoudre l'équation : (x + 2)(2x - 7) = 0.

<u>Résolution</u>:

(x + 2)(2x - 7) = 0 est une équation produit.

Or, si un produit de facteurs est nul, alors l'un au moins des facteurs est nul.

$$x + 2 = 0$$

ou
$$2x - 7 = 0$$

$$x = -2$$

ou
$$2x = 7$$

$$x = -2$$

ou
$$x =$$

Les solutions de l'équation sont alors -2 et $\frac{7}{2}$.

Exemple: Résoudre les équations suivantes:

$$(x-4)(x+3) = 0$$

$$(-2x-1)(7-3x) = 0$$

$$9x^2 = 36$$

Exercice d'application 2 -

Énoncé type-brevet : On donne $E = 9 - (2x - 1)^2$.

- 1. Développer et réduire E.
- 2. Factoriser E.
- 3. Calculer E pour $x = \frac{1}{2}$. 4. Résoudre l'équation E = 0.

Équation du type $x^2 = a$, où a est un nombre relatif IV.

Propriété

a désigne un nombre relatif.

- Lorsque a < 0, l'équation $x^2 = a$ n'admet pas de solution.
- Lorsque a > 0, l'équation $x^2 = a$ admet deux solutions ($x_1 = \sqrt{a}$ et $x_2 = -\sqrt{a}$).
- Lorsque a = 0, l'équation $x^2 = a$ admet une unique solution (x = 0).

Exemple : L'équation $x^2 = 4$ admet deux solutions : x = 2 et x = -2

L'équation $x^2 = -16$ n'admet aucune solution.

L'équation $x^2 = 8$ admet deux solutions : $x = \sqrt{8}$ et $x = -\sqrt{8}$