# 2011-(05)maj-09: dag 28

```
Mer om grafer
```

```
Planära grafer (fortsättning)
```

"Platonska grafer"

Duala grafer

(Hörn)färgning av grafer

Kromatiska talet,  $\chi(G)$ 

En girig algoritm

Sex-, fem- och fyrfärgssatsen

Kromatiska polynomet,  $P_G(\lambda)$ 

Matchning i grafer

Fullständig och maximal matchning

Bipartita grafer

Halls sats (giftermlssatsen)

Utökande alternerande stigar

Distinkta representater (tramsversalerna)

Ö9:12)

$$G = (V, E)$$
 sammanhängande, plan  $v = |V| = 12$ ,  $r = 11$   $\delta(h) = 3$  eler 5 för alla  $h \in V$ .

Hur många av varje?

Låt antalet hörn med alens 3 vara x. Antalet med valens 5.

Eulers polyederformel:

$$v - e + r = 12 - e + r = 12 - e + 11 = 2$$
Så:  $e = 21$ 

$$\sum_{h \in V} \delta(h) = 2|E|e: 3 \cdot x + 5(12 - x) = 2 \cdot 21$$

$$ger x = 9$$

"Platonska grafer" (inte standardnamn)

Platonska kroppar (en. Platonic solids) (polyedrar) med alla hörn (n kanter) och alla sidor (regelbundna m-hörningar) kongurenta.

Det finns finns precis 5 stycken olika.

Animeringar:

http://en.wikipedia.org/wiki/File:Tetrahedron.gif http://en.wikipedia.org/wiki/File:Hexahedron.gif http://en.wikipedia.org/wiki/File:Octahedron.gif http://en.wikipedia.org/wiki/File:Dodecahedron.gif http://en.wikipedia.org/wiki/File:Icosahedron.gif

(Bilder på nästa sida.)











Tetraeder

Hexaeder

Oktaeder

Dodekaeder

Ikosaeder

Tetraeder: (en. tetrahedron) Tresidig pyramid

Hexaeder: (en. hexahedron) Kub

Oktaeder: (en. octahedron) Dubbel fyrsidig pyramid; T8- (D8) tärning

Dodekaeder: (en. dodecahedron) T12- (D12) tärning Ikosaeder: (en. icosahedron) T20- (D20) tärning

Planar ritningar:

(Kan konstrueras genom att dra ut ena sidan

så att resten får plats innanför.)

Tetraeder



Hexaeder



Oktaeder







En "duppelt reguljär" graf: sammanhängande, plan med smmam valens (n ≥ 3) i alla hörn, samma antal (m ≥ 3) kanter kring varje yta.

Vi skall se att det bara finns 5 stycken olika:

$$\begin{cases} v - e + r = 2 & \text{(plan, sammanhängande graf)} \\ nv = 2e = mr \\ nv = \sum_{x \in X} \delta(x) \end{cases}$$

Så 
$$\frac{2}{n}e - e + \frac{2}{m}e = 2 = \underbrace{(2m - mn + 2n)}_{\text{Så:}>0} \frac{e}{mn}$$

Det vill säga

$$\begin{cases} (m-2)(n-2) < 4 \\ m, n \ge 3 \end{cases}$$

$$2\frac{e}{n} \frac{2mn}{2m-mn+2m} 2\frac{e}{m}$$
Sijliga m, n:

Möjliga m, n:

| m   | n | ger | Ý  | е  | r  |  |
|-----|---|-----|----|----|----|--|
| _   | _ |     | _  |    | _  |  |
| 3   | 3 |     | 4  | 6  | 4  |  |
| • 3 | 4 |     | 6  | 12 | 8  |  |
| - 3 | 5 |     | 12 | 30 | 20 |  |
| • 4 | 3 |     | 8  | 12 | 6  |  |
| - 5 | 3 |     | 20 | 30 | 12 |  |

Motsvarande kroppar:

tetraeder oktaikosahexa- (kub) dodekaDen duala grafen G<sup>⊥</sup> till en plan graf G beskriver grannrelationen för ytorna i G.



Hörnen i  $G^{\perp}$  svarar mot ytorna i G, en kant i  $G^{\perp}$  mot varje kant mellan ytorna.

Den duala grafen kan ha ölgor, multipla kanter.

Heldraget: G hexaeder Halvdraget:  $G^{\perp}$  oktaeder

$$(G^{\perp})^{\perp} \cong G$$

(Hörn)färgning av grafer

(Vi kommer inte gå in på kantfärgning.)

$$c: V \to \mathbb{N}$$
 sådant att  $\{x, y\} \in E \Rightarrow c(x) \neq c(y)$ 

Exempel: Schemaläggning av sju föreläsning,

vissa kan inte ligga samtidigt.

I tabellen på nästa sida markerar 'x' att två föreläsningar inte kan ligga samtidigt.

Tabellen uttycks sedan med en färgad graf.





Minsta möjliga antalet färger: 3

Möjligt enligt figuren, minsta ty:

En triangel (C<sub>3</sub>) kräver 3 färger:



Det kromatiska talet,  $\chi(G)$  för G:

Minsta antalet färger som räcker för en hörnfärgning av G.

## Exempel:

$$\chi(G) \leq |V|$$

$$\chi(G) = |V| \Leftrightarrow G = K_n, \, \text{något n}.$$

$$\chi(G) = 2 \Leftrightarrow Bipartit, |E| \ge 1$$

$$\chi(G) = 1 \Leftrightarrow |E| = 0, |V| \ge 1$$

$$\chi(G) = 0 \Leftrightarrow |V| = 0$$

Observera att  $\chi(G) = k$  betyder:

I allmänhet svårt att bestämma  $\chi(G)$ .

En girig algoritm (ger ofta ganska bra värden):

- 1) Ordna V:  $v_1, v_2, ..., v_n$  n = |V|
- 2) Välj i tur och ordning  $c(v_1) = 1$ ,  $c(v_2)$ ,  $c(v_3)$ , ... mästa tillåtna värde (med hänsyn till redan färgade grannar).

Ö9:14)

Ordna hörnen i kubgrafen så att giriga algoritmen ger 2, 3, 4 färger.

- 2: v: 1, 2, 3, 4, 5, 6, 7, 8 index c: 1 <u>2</u> 1 2 1 2 1 2 färg
- 3: v: 1, 8, 2, 3, 4, 5, 6, 7 index c: 1 1 2 <u>3</u> 2 3 2 3 färg
- 4 v: 1, 8, 5, 2, 3, 4, 5, 6 index c: 1 1 2 2 3 4 3 4 färg



Sats: Om G har maxvalens k:

- I)  $\chi(G) \leq k + 1$
- II) G sammanhängande och inte reguljär:  $\chi(G) \le k$

Ty:

- I) Klart.
- II) Ordna hörnen  $\delta(v_n) < k$ ,  $v_{n-1}$  granne med  $v_n$ ,  $v_{n-2}$  granne med  $v_{n-1}$  eller  $v_n$ , ... (går ty G sammanhängande).

Giriga algorithmen ger en färgning med högst k färger, ty varje vi har högst k-1 färgade granner när den gärgas.

#### Exempel:

För en planär graf (c  $\geq$  1)

$$\begin{cases} 3r \le e2 \\ r \le \frac{2}{3}e \end{cases} \quad 1 = v - e + r - c \le v - \frac{1}{3}e - c$$

Så 
$$6v \ge 2e + 6(c + 1) \ge \left(\sum_{x \in X} \delta(x)\right) + k$$

Det vill säga: 
$$\left(\sum_{x \in X} \delta(x) - 6\right) \le 12$$

Så något hörn har valens  $\leq 5$ .

#### 6-färgssatsen:

Om G är planär gäller  $\chi(G) \leq 6$ 

Ty:

Induktion över v, antalet hörn.

Bas: v = 1 OK

Steg:

Antag att påståendet är sant då v = k. Låt G vara planär med k + 1 hörn.

Tag bort ett hörn med valens ≤ 5 (enligt nyss), får G'. G' färgas med högst 6 färger. (\*)

Sista hörnet (5 hrannar av de 6 färgerna) med någon kan färgas.

### 5-färgssatsen:

Lite svårare; med samma förutsättningar som i 6-färgssatsen.

Bevis som nyss, fram till (\*) i steget.

Om alla grannar (till sista hörnet):

inte olika: Klart.

olika: Bilda 1–3-kedjor.



Om 1-hörnet förbundet med 3-hörnet finns ingen 2-4-kedja från 2-hörnet till 4-hörnet.

"Byt färger" så något 4 färger på grannarna.