Inf2B-CW2

Task 2 Report

→ my_bnb_classify:

- write results to new array based on threshold condition
- calculate probability of each class by dividing class feature occurrences by total class occurrences
- iterate through test vectors:
 - use naïve Bayes formula to calculate the $P(\overrightarrow{b}|C_k)$ as product $\prod_{i=0}^{D-1} P(b_i = 0|C_k)^{1-b_i} P(b_i = 1|C_k)^{b_i}$
 - this is done using np.where(), which takes a condition and returns the first argument in indices at which it is true, and the second in indices at which is is false effectively recreating the terms $P(b_i = 0|C_k)^{1-b_i}$ and $P(b_i = 1|C_k)^{b_i}$ in p0 and p1, respectively, as a 26x784 array of class feature probabilities for this vector
 - these are then collapsed via the prod() function to give a final 26x1 array of class probabilities
 - find the index at which the product is maximised and set that as prediction for class

Time elapsed approx (in seconds) [DICE environment, command line]	total
	0.99

threshold

Statistics

(all possible thresholds were calculated and are displayed to the right)

- best accuracy within thresholds 35-55
- accuracy stays at 64% ± 1% between thresholds 0 to 205
- a "sharp" drop is observed at the threshold halfway point, 127

Comparisons

considerably faster than K-NN
 offers a quicker insight into data

1.0	7800	2884	63.03%
0.650			
0.645 -	my	hy.	
0.640 -	•	١	
0.635		"My wal	My
0.630 -			~ / L
8			7

N

Nerrs

acc

(accuracy falls rapidly at threshold values greater than 230 [therefore omitted]; accuracy tends to ~3.8% [all vectors are classed as 0, akin to random chance] at threshold = 255)