Simple Minimization Loop

```
F = EXPAND(F,D);
F = IRREDUNDANT(F,D);
do \{
cost = |F|;
F = REDUCE(F,D);
F = EXPAND(F,D);
F = IRREDUNDANT(F,D);
\} while (|F| < cost );
F = MAKE\_SPARSE(F,D);
```

Heuristic Minimization of Two-level Logic

- (a) Initial cover
- (b) After Reduction
- (c) After Expansion in the right direction and Irredundant cover

Expand

- Expand
 - Carry out one cube at a time.
 - Expand cubes to prime and delete those cubes of F contained in the prime.
 - Order dependent
 - Goal:
 - 1. Cover as many cubes as possible
 - 2. Expand as large as possible

Expand

- The Blocking Matrix B(R,C)
 - block the expansion of a cube C not to intersect off-set
 - the cube to be expanded
 - the cover of off-set

$$- B_{ij} = 1 \text{ if } ((C_j = 1) \text{ and } M(R)_{ij} = 0) \text{ or }$$

 $((C_j = 0) \text{ and } M(R)_{ij} = 1)$

• Ex:

C
$$002$$

Blocking Matrix

C	002
offset M(R)	2 1 2 2 1 1
B(R,C)	0 1 0 0 1 0

- What does a "1" mean in the blocking matrix?
 - The goal of expansion is to raise all the variables of a cube to 2. But expansion of the cube can't cover the vertex in off-set So, some variable can't be raised. A "1" in (i,j) means if variable j is not raised (lowing), the expanded cube will not intersect the cube i of off-set.

Maximum Expansion

- L is a column covering of B
 Every row of B contains a 1 in some column which appears in L.
- $C^+(L,C)_j = C_j$, $j \subseteq L$ 2, otherwise
- Proposition: If L is a minimum column covering of B, then C⁺(L,C) is a largest implicant of the function F.

Expand

 Covering matrix : determined by the cube and the given cover

$$C_{ij} = 1$$
 if $((C_j = 1)$ and $M(F)_{ij} \neq 1)$ or $((C_j = 0)$ and $M(F)_{ij} \neq 0)$

0 otherwise

Ex:

Covering Matrix

- What does a "1" mean in the covering matrix?
 - => A "1" in (i,j) means if column j is in the minimal column covering, the cube i is not covered by the expanded cube.
- Select a minimal column covering so that many rows do not have a 1 in the column cover.

How to Find a Column Covering?

Define two sets:

Ex:

The lowing set: the variables remain the same.

The raising set: the variables raised to 2

(expanded)

Step1: Essential column(B) \rightarrow lowing set

$$\frac{C = 0101}{C}$$

$$\frac{C = 0101}{D}$$

$$\frac{C = 0101}{D}$$

$$\frac{1001}{0101}$$

$$\frac{C(F,C) = 1111}{D}$$

$$\frac{C(F,C) = 1111}{C_{2}}$$

$$\frac{C(F,C) = 1111}{D}$$

$$\frac{C_{3}}{D}$$

How to Find a Column Covering?

$$134$$

$$B(R,C) = 110$$

$$\frac{101}{C(F,C) = 101 C_2}$$

$$010 C_3$$

Step 2 : Maximal feasible covering column set :

- Raising columns to cover as many cubes as possible
- To cover {C₃}, {3} must be raised. If after{3} being raised, the resultant matrix still has one 1's in each row, {3} is a **feasible covering** column set.
- Maximal feasible covering column set is a feasible covering column set which covers a maximal number of cubes
- Select the MFC which commits the least number of columns

Ex : raising set =
$$\{3\} \cup \{4\}$$

lowing set = $\{2\} \cup \{1\}$
 $\longrightarrow C^+ = \{0 \ 1 \ 2 \ 2\}$

How to Find a Column Covering?

Step 3: If no feasible covering column set (no cube can be covered), choose the column which has the most number of "1"s in C to raise.(Try to partially cover as many cubes as possible)