

Sentiment Analysis For Arabic Reviews

By Iman Attia & Ahmed Essam

Table of contents $\overline{O1}$ 02 03 Experiments Proposed/Final Original Model Results from literature Model Architecture 06 04 05 Each team Conclusion and Live Demo member **Future Work** contribution

01

Original
Model from
literature

AraBERTvo.2 Model Architecture


```
"architectures": [
  "BertForMaskedLM"
"attention probs dropout prob": 0.1,
"hidden act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden size": 768,
"initializer range": 0.02,
"intermediate size": 3072,
"max position embeddings": 512,
"model type": "bert",
"num attention heads": 12,
"num hidden layers": 12,
"type_vocab_size": 2,
"vocab size": 64000
```


Original Model Evaluation Metrics

The following metrics are used by the original model:

- 1. macro_F1 Score
- 2. Precision
- 3. Recall
- 4. Accuracy

02

Proposed/Final Model Architecture

Proposed System

Our Proposed Model Evaluation Metrics

We replaced the Accuracy metric used by the original model by Metrics number 4 and 5, therefore our final model evaluation metrics are:

- macro_F1 Score
- 2. Precision
- 3. Recall
- 4. Confusion Matrix
- 5. Mean Square Error (MSE) and Mean Absolute Error (MAE) over the Confusion Matrix, But Why?

Final Model Architecture

```
Out[76]: BertConfig {
            " name or path": "aubmindlab/bert-base-arabertv02",
            "architectures": [
             "BertForMaskedLM"
            "attention probs dropout prob": 0.3,
            "classifier dropout": null,
            "hidden act": "gelu"
            "hidden dropout prob": 0.3
            hidden size : 700,
            "id2label": {
             "0": "LABEL 0",
             "1": "LABEL 1",
             "2": "LABEL 2",
             "3": "LABEL 3",
             "4": "LABEL 4"
            "initializer range": 0.02,
           "intermediate size": 3072,
           "label2id": {
             "LABEL 0": 0,
             "LABEL 1": 1,
             "LABEL 2": 2.
             "LABEL 3": 3.
             "LABEL 4": 4
            "layer norm eps": 1e-12,
            "max position embeddings": 512,
            "model type": "bert",
           "num hidden layers": 18,
            pad token id : 0,
            "position embedding type": "absolute",
            "transformers version": "4.12.2",
            "type vocab size": 2,
            "use cache": true.
            "vocab size": 64000
```


03

Experiments Results

Tokenization Experiment Results

Original Model + Dataset without Augmentation

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
1	0.518200	0.691505	0.672471	0.680655	0.670828	0.529934	0.358823
2	0.490800	0.705915	0.670444	0.683307	0.660791	0.522210	0.350626

Original Model + Dataset without Augmentation: Stratified K-Fold

K = 5

For more details:

https://drive.google.com/drive/folders/1 1pi-h-GfnTMMZoIZNf0bRDIWMpaiPVQ H?usp=sharing

```
In [50]: all results
Out[50]: [{'eval loss': 0.6427580714225769,
             eval macro f1': 0.6645222435461182,
            'eval precision': 0.6786077248302471.
            'eval recall': 0.6550847704135817,
            'eval runtime': 243.2824,
            'eval samples per second': 111.118,
            'eval steps per second': 0.871,
            'epoch': 2.0}.
           {'eval loss': 0.6336689591407776,
             eval macro f1': 0.6703106820500471.
            'eval precision': 0.6848695606299462,
            'eval recall': 0.6601832945413929,
            'eval runtime': 242.1702,
            'eval samples per second': 111.628,
            'eval steps per second': 0.875,
            'epoch': 2.0},
            LOVAL 10551 0 6421759402779076
            'eval macro f1': 0.6625399022794172,
             eval precision': 0.6//32/618/214844,
             'eval recall': 0.6522371834999138,
            'eval runtime': 243.0615,
             'eval samples per second': 111.219,
            'eval steps per second': 0.872,
             'epoch': 2.0},
           {'eval loss': 0.6431753039360046,
             'eval macro f1': 0.6660182427024578,
            'eval precision': 0.6764239580495653,
            'eval recall': 0.6583477215204432.
            'eval runtime': 243.2135,
            'eval samples per second': 111.145.
            'eval steps per second': 0.872,
            'epoch': 2.0},
           {'eval loss': 0.6416257619857788,
             'eval macro f1': 0.666804663729899,
            'eval precision': 0.6788351708456811,
            'eval recall': 0.6584490231615513,
            'eval runtime': 242.2533,
            'eval samples per second': 111.586,
            'eval steps per second': 0.875.
            'epoch': 2.0}]
```

```
In [45]: all results
Out[45]: [{'eval loss': 0.6501943469047546,
            'eval macro f1': 0.6549400284865332,
            'eval precision': 0.6779045872677578,
            'eval recall': 0.6436055249357192.
            'eval mse': 0.563237524507084,
            'eval mae': 0.3676987385787741,
            'eval runtime': 243.4181,
            'eval samples per second': 111.056,
            'eval steps per second': 0.871,
            'epoch': 2.0},
           'eval loss': 0.6336689591407776
             eval macro f1': 0.6703106820500471
             eval precision': 0.6848695606299462
            'eval mse': 0.5220656234972071.
             eval mae: 0.34820404690563383,
            'eval runtime': 243.9437,
            'eval samples per second': 110.817,
            'eval steps per second': 0.869,
            'epoch': 2.0},
           {'eval loss': 0.6553136706352234,
             eval macro f1': 0.6388861171125579
            'eval precision': 0.675710557182538,
            'eval recall': 0.6237323309247513,
            'eval mse': 0.551437132393741,
            'eval mae': 0.3644064661709762,
            'eval runtime': 243.5226,
            'eval samples per second': 111.008,
            'eval steps per second': 0.871,
            'epoch': 2.0},
           {'eval loss': 0.6544126868247986,
            'eval macro f1': 0.6613061653463002
            'eval precision': 0.6732779562738591,
            'eval recall': 0.6521438018282775,
            'eval mse': 0.5473142941698728,
            'eval mae': 0.36375406925125775,
            'eval runtime': 243.789,
            'eval samples per second': 110.883,
            'eval steps per second': 0.87,
            'epoch': 2.0},
            'eval loss': 0.6535153388977051,
             eval macro f1': 0.6503959399621972,
            'eval precision': 0.6757822523310288,
            'eval recall': 0.6360706240399017,
            'eval mse': 0.5404335602249186.
            'eval mae': 0.36168245042912106,
            'eval runtime': 243,8816,
            'eval samples per second': 110.841,
            'eval steps per second': 0.869,
            'epoch': 2.0}1
```

```
ر"شيء بشع ، مش عارفة الحول ايه حسبي الله و نعم الوكيل")pipe و نعم الوكيل")
/ [96] #start the training
       trainer.train()
       ***** Running training *****
                                                                                                                    [[{'label': 1, 'score': 0.04524393752217293},
         Num examples = 135163
                                                                                                                           {'label': 2, 'score': 0.07740205526351929},
         Num Epochs = 2
                                                                                                                           {'label': 3, 'score': 0.017723921686410904},
         Instantaneous batch size per device = 16
                                                                                                                           {'label': 4, 'score': 0.4159225523471832},
         Total train batch size (w. parallel, distributed & accumulation) = 32
                                                                                                                           {'label': 5, 'score': 0.44370749592781067}11
         Gradient Accumulation steps = 2
         Total optimization steps = 8448
                                          [8448/8448 1:53:12, Epoch 2/21
        Epoch Training Loss Validation Loss Macro F1 Precision Recall
                                                                           Accuracy
                                                                                                                    r. [[{'label': 1, 'score': 0.04527897387742996},
                    0.659800
                                                                           0.715161
                                                        0.684728 0.657483
                                                                                                                           {'label': 2, 'score': 0.07736202329397202},
                                                                                                                           {'label': 3, 'score': 0.017712419852614403},
                    0.593400
                                    0.638626 0.672826
                                                        0.685965 0.662903 0.719156
                                                                                                                           {'label': 4, 'score': 0.41595980525016785},
       ***** Running Evaluation *****
                                                                                                                           {'label': 5, 'score': 0.4436868131160736}]]
         Num examples = 33791
         Batch size = 128
       Saving model checkpoint to ./train/checkpoint-4224
                                                                                                                "تجرية جميلة جدا لقد سعدت بوجودي في هذا المكان ارشحه و بشدة لجميع اصدقائي !") pipe إ 111] √
       Configuration saved in ./train/checkpoint-4224/config.ison
       Model weights saved in ./train/checkpoint-4224/pytorch model.bin
                                                                                                                        [[{'label': 1, 'score': 0.04525246098637581}.
       ***** Running Evaluation *****
                                                                                                                           {'label': 2, 'score': 0.07739639282226562},
         Num examples = 33791
                                                                                                                           {'label': 3, 'score': 0.017721906304359436},
         Batch size = 128
                                                                                                                           {'label': 4, 'score': 0.4159254729747772}.
       Saving model checkpoint to ./train/checkpoint-8448
                                                                                                                           {'label': 5, 'score': 0.4437038004398346}11
       Configuration saved in ./train/checkpoint-8448/config.ison
       Model weights saved in ./train/checkpoint-8448/pytorch model.bin
                                                                                                                ("تجربة متوسطة لا بأس بيا!") pipe
       Training completed. Do not forget to share your model on huggingface.co/models =)
                                                                                                                         [[{'label': 1, 'score': 0.04526425153017044},
                                                                                                                           {'label': 2, 'score': 0.07737893611192703},
       Loading best model from ./train/checkpoint-8448 (score: 0.6728263040239597).
                                                                                                                           {'label': 3, 'score': 0.017717478796839714},
       TrainOutput(global_step=8448, training_loss=0.6411350893251824, metrics={'train_runtim
                                                                                                                           {'label': 4, 'score': 0.415942519903183},
       1.244, 'total flos': 1.7889270947056128e+16, 'train loss': 0.6411350893251824, 'epoch'
                                                                                                                           {'label': 5, 'score': 0.4436967968940735}11
```


Learning rate

	Macro F1 Score	Precision	Recall	Accuracy
Learning rate = 1e-5	0.6645	0.6788	0.6436	0.7172
Learning rate = 1e-4	0.2521	0.2372	0.2057	0.2254

Fine-Tuned Model + Dataset without Augmentation Batch Size & Number of Epochs

- 1. We tried different batch sizes: 8, 16, 32, 64. The **optimal batch size: 16**
- We tried different number of epochs, but the accuracy didn't change much with increasing epochs, so we were training on 2 epochs to save time

num_hidden_laye

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
1	0 650500	0 639980	0 662296	0.684134	0.649528	0.548519	0.357580

Fine-Tuned Model + Dataset without Augmentation num_hidden_layers = 18

```
50 | # pipe("Some Text")
       ("شيء بشع ، مش عارفة اقول ايه حسبي الله و نعم الوكيل") pipe
   [[{'label': 1, 'score': 0.4190787971019745},
         {'label': 2, 'score': 0.24736180901527405},
         {'label': 3, 'score': 0.08399207144975662},
         {'label': 4, 'score': 0.10334315896034241},
         {'label': 5, 'score': 0.14622412621974945}]]

√ pipe("!تجربة جميلة ")

   [[{'label': 1, 'score': 0.025452319532632828},
         {'label': 2, 'score': 0.05893201380968094},
         {'label': 3, 'score': 0.2580272853374481},
         {'label': 4, 'score': 0.39261776208877563},
         {'label': 5, 'score': 0.26497066020965576}]]
   ("تجربة جميلة جدا لقد سعدت بوجودي في هذا المكان ارشحه و بشدة لجميع اصلقائي!")pipe
       [[{'label': 1, 'score': 0.033385783433914185},
        {'label': 2, 'score': 0.028596464544534683},
         {'label': 3, 'score': 0.029811125248670578},
         {'label': 4, 'score': 0.2041410207748413},
         {'label': 5, 'score': 0.7040656208992004}]]
("تجربة متوسطة لا بأس بها!") pipe
       [[{'label': 1, 'score': 0.06277720630168915},
         {'label': 2, 'score': 0.35132700204849243},
         {'label': 3, 'score': 0.3776682913303375},
         {'label': 4, 'score': 0.16395290195941925},
         {'label': 5, 'score': 0.04427459463477135}]]
```


num_attention_head

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
1	0.650600	0.640637	0.665070	0.685028	0.652620	0.544790	0.356278

Fine-Tuned Model + Dataset without Augmentation num_hidden_layers = 18

```
50 | # pipe("Some Text")
       ("شيء بشع ، مش عارفة اقول ايه حسبي الله و نعم الوكيل") pipe
   [[{'label': 1, 'score': 0.4190787971019745},
         {'label': 2, 'score': 0.24736180901527405},
         {'label': 3, 'score': 0.08399207144975662},
         {'label': 4, 'score': 0.10334315896034241},
         {'label': 5, 'score': 0.14622412621974945}]]

√ pipe("!تجربة جميلة ")

   [[{'label': 1, 'score': 0.025452319532632828},
         {'label': 2, 'score': 0.05893201380968094},
         {'label': 3, 'score': 0.2580272853374481},
         {'label': 4, 'score': 0.39261776208877563},
         {'label': 5, 'score': 0.26497066020965576}]]
   ("تجربة جميلة جدا لقد سعدت بوجودي في هذا المكان ارشحه و بشدة لجميع اصلقائي!")pipe
       [[{'label': 1, 'score': 0.033385783433914185},
        {'label': 2, 'score': 0.028596464544534683},
         {'label': 3, 'score': 0.029811125248670578},
         {'label': 4, 'score': 0.2041410207748413},
         {'label': 5, 'score': 0.7040656208992004}]]
("تجربة متوسطة لا بأس بها!") pipe
       [[{'label': 1, 'score': 0.06277720630168915},
         {'label': 2, 'score': 0.35132700204849243},
         {'label': 3, 'score': 0.3776682913303375},
         {'label': 4, 'score': 0.16395290195941925},
         {'label': 5, 'score': 0.04427459463477135}]]
```


hidden_dropout_pro

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae	•
1	0.612300	0.634376	0.672375	0.690085	0.660081	0.509130	0.344411	3

attention_probs_dropout_

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
1	0.651400	0.641038	0.665737	0.683458	0.654392	0.544317	0.356278

Data Augmentation: Back Translation

```
In [11]: from transformers import MarianMTModel, MarianTokenizer
         ar en tokenizer = MarianTokenizer.from pretrained('Helsinki-NLP/opus-mt-ar-en')
         # Initialize tokenizer and model for Arabic to English translation
         ar en model = MarianMTModel.from pretrained('Helsinki-NLP/opus-mt-ar-en'
         # Initialize tokenizer and model for English to Arabic translation
         en ar tokenizer = MarianTokenizer.from pretrained('Helsinki-NLP/opus-mt-en-ar')
         en ar model = MarianMTModel.from pretrained('Helsinki-NLP/opus-mt-en-ar')
         def back translate arabic to english and back(input text):
             # Translate input text from Arabic to English
             encoded input = ar en tokenizer.encode(input text, return tensors='pt')
             translated = ar en model.generate(encoded input)
             en text = ar en tokenizer.decode(translated[0], skip special tokens=True)
             # Translate English text back to Arabic
             encoded input = en ar tokenizer.encode(en text, return tensors='pt')
             translated = en ar model.generate(encoded input)
             ar text = en ar tokenizer.decode(translated[0], skip special tokens=True)
             return ar text
```


Dataset Before VS. After Data Augmentation

```
5 50177
4 45503
2 43752
1 17321
3 12201
Name: label, dtype: int64
[2 5 1 4 3] object 5 50177
4 45503
2 43752
1 25941
3 24402
Name: label, dtype: int64
[2 5 1 4 3]
```


Finalized Augmented Dataset

lab	text	
1	.ممتاز". النظافة والطاقم متعاون"	0
	استثنائي. سهولة إنهاء المعاملة في الاستقبال. ل	1
	استثنائي. انصح بأختيار الاسويت و بالاخص غرفه ر 🙎	2
	استغرب تقييم الفندق كخمس نجوم". لا شي. يستحق" 3	3
	جيد. المكان جميل وهاديء. كل شي جيد ونظيف بس كا 4	4
	الكثير من المآسي، الكثير من الألم، النهاية صعب 0	189770
	يقدم شكسبير تقنية لم يراها أحد من قبل المسرح ف 1	189771
	والقصة جميلة، على الرغم من أن فصولها قصيرة جدا 2	189772
	لقد تأثرت بقدرة إميلي نصر إله الله على وصف أفك 3	189773
	وبيوت الناس تدخل وقلوبهم تدخل ويداك تتصافحان و	189774

189775 rows x 2 columns

Original Model + Dataset with Augmentation

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
0	0.617600	0.610479	0.730962	0.739070	0.729370	0.520274	0.338111
1	0.546100	0.596906	0.736808	0.743910	0.731661	0.499038	0.326887

Original Model+ Dataset withAugmentation

```
In [51]: # pipe("Some Text")
         ("شيء بشع")
Out[51]: [[{'label': 1, 'score': 0.6866488456726074},
          {'label': 2, 'score': 0.028496138751506805},
           {'label': 3, 'score': 0.20206588506698608},
           {'label': 4, 'score': 0.031180646270513535},
           {'label': 5, 'score': 0.051608480513095856}]]
In [53]: pipe("!تحرية جميلة")
Out[53]: [[{'label': 1, 'score': 0.0046085393987596035},
           {'label': 2, 'score': 0.02114017866551876},
           {'label': 3, 'score': 0.2025539129972458},
           {'label': 4, 'score': 0.465402752161026},
           {'label': 5, 'score': 0.30629467964172363}]]
("تحرية حميلة حدا لقد سعدت بوجودي في هذا المكان ارشحه و بشدة لجميع اصدقائي !")In [54]: pipe
Out[54]: [[{'label': 1, 'score': 0.014071810990571976},
           {'label': 2, 'score': 0.0012757601216435432},
           {'label': 3, 'score': 0.0006819891277700663},
           {'label': 4, 'score': 0.026197051629424095},
           {'label': 5, 'score': 0.9577733278274536}]]
In [55]: pipe("!ا بأس بها")
Out[55]: [[{'label': 1, 'score': 0.09717616438865662},
           {'label': 2, 'score': 0.7438490390777588},
           {'label': 3, 'score': 0.10853373259305954}.
           {'label': 4, 'score': 0.045564860105514526},
           {'label': 5, 'score': 0.0048761432990431786}]]
```


num_hidden_layers = 18, attention_probs_dropout_prob = 0.3 and hidden_dropout_prob = 0.3

Epoch	Training Loss	Validation Loss	Macro F1	Precision	Recall	Mse	Mae
0	0.618600	0.612107	0.730068	0.740387	0.725876	0.519721	0.338348
1	0.550900	0.596446	0.737008	0.744676	0.731206	0.498511	0.327151

num_hidden_layers = 18,
attention_probs_dropout_prob = 0.3
and hidden_dropout_prob = 0.3

```
In [68]: # pipe("Some Text")
         pipe("شيء يشع")
Out[68]: [[{'label': 1, 'score': 0.7259764671325684},
           {'label': 2, 'score': 0.1009884774684906},
           {'label': 3, 'score': 0.10653195530176163},
           {'label': 4, 'score': 0.02888152003288269},
           {'label': 5, 'score': 0.0376216396689415}]]
In [69]: pipe("!تحرية حميلة")
Out[69]: [[{'label': 1, 'score': 0.019848495721817017},
           {'label': 2, 'score': 0.03558487072587013},
           {'label': 3, 'score': 0.35487204790115356},
           {'label': 4, 'score': 0.32264527678489685},
           {'label': 5, 'score': 0.26704928278923035}]]
("تحرية حميلة حدا لقد سعدت بوجودي في هذا المكان ارشحه و بشدة لجميع اصدقائي !") In [70]: pipe
Out[70]: [[{'label': 1, 'score': 0.03264261782169342},
           {'label': 2, 'score': 0.007129787001758814},
           {'label': 3, 'score': 0.014228833839297295},
           {'label': 4, 'score': 0.10995500534772873},
           {'label': 5, 'score': 0.8360437750816345}]]
In [71]: pipe("الله عنوسطة لا تأس بها!")
Out[71]: [[{'label': 1, 'score': 0.23254595696926117},
           {'label': 2, 'score': 0.46282801032066345},
           {'label': 3, 'score': 0.19583679735660553},
           {'label': 4, 'score': 0.0797029659152031},
           {'label': 5, 'score': 0.02908635139465332}]]
```


num_hidden_layers = 18, attention_probs_dropout_prob = 0.3 and hidden_dropout_prob = 0.3

+ Colloquial Language Test Cases

04

Live Demo

05

Conclusion & Future Work

Conclusion

Evaluation Metric	Original Model	Our Best Model (Fine-Tuned +Augmented)
Training Loss	0.490800	0.550900
Validation Loss	0.705915	0.596446
Macro F1	0.670444	0.737008
Precision	0.683307	0.744676
Recall	0.660791	0.731206
MSE	0.522210	0.498511
MAE	0.350626	0.327151

Conclusion

Original Model Heatmap VS. Our Best Model Heatmap

Future Directions

For future considerations, we will be:

- Appling Interpretability Analysis on our model to understand how it is making its predictions and which words have the most powerful effect on the model's decision.
- 2. Experimenting with **more hyper-parameters** and see the combined effects of changing more than one hyperparameter together.
- Implementing a utility application for our model, most probably a website, that will be available for the public usage and will contribute to the Arabic Sentiment Analysis Research.

06

Each team member contribution

A Sample of the Errors Faced throughout the Project

1497

Each team member contribution

Iman	Ahmed
Creating Training Datasets and splitting the data between the training and testing data.	Preprocessing the Data using ArabertPreprocessor() and applying tokenization experiments.
Writing the init_model() and the compute_metrics(p) functions to instantiate the model.	Data augmentation of the dataset. Used pipeline from transformers to predict using the saved model.
Working on K-fold function with cross-validation to find the best hyper parameters.	Setting up the TrainingArguments and the transformers trainer method to start the regular training.
Writing the function that ensemble all the cross validation models generated from the K-fold.	Improved the K-fold experiments to use heat maps and MSE as the main matrices to determine the best model.
Experimenting different learning rates, number of attention heads, hidden dropout probability, and the augmented data	Fine tuning the hidden layer activation function, batch sizes, attention_probs_dropout_prob, and number of hidden layers.
Fixed some of the errors that we faced during training.	Fixed some of the errors that we faced during fine tuning.

Thanks!

Do you have any questions?

<u>iman.elsadany@aucegypt.edu</u> <u>AhmedEssam78@aucegypt.edu</u>

