Example

July 13, 2020

Contents

1	Experimental setup	2
2	Beamline alignment 2.1 Subsection	3 3 3 4
3	GIXD 3.0.1 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5 3.0.2 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5 3.0.3 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5	4 4 5 6
4	Isotherm 4.0.1 SIRIUS_Isotherm_2019_02_17_01544: isotherm 1.97 46 35000 1	8
5	1D plot 5.0.1 SIRIUS_2020_03_12_0760: run cont_regh.ipy	8
6	GIXS 6.0.1 SIRIUS_2019_11_07_00325: tscan 10 10	9 9 10
7	Plot pilatus 7.0.1 SIRIUS_2019_11_07_00325: tscan 10 10	10
8	XRF 8.0.1 SIRIUS_2017_12_11_08042: run xsw7.ipy	11 11 12
9	Insert script 9.0.1 script_with_loop.ipy	13 13
10	Insert positions 10.0.1 wm zs	
11	Insert commands 11.0.1 List of commands	15 15
12	Convert logs	15

13 Export to pdf

1 Experimental setup

SIRIUS Beamline : Experiment 123456789

This is an example of JupyLabBook

- Type: Proposal Safety: Yellow
- Date: 12/03/2020-17/03/2020
- Main proposer: DoeLocal contact: AH
- Users (on site): John Doe, Jane Doe
- Recording directory: /Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/recording/
- Machine:
 - Current: 450 mAMode: Top-up
- Optics:
 - DCM: Si111
 - MGM: Not used
 - M1: M1-A Pt Track
 - M2: M2 Pt Track
 - M3: No M3
 - M4: M4 Pt Track
- Beam:
 - Fixed/Variable energy: Fixed
 - Energy (keV): 8
 - Wavelength (nm): 0.155
 - Harmonic: 19
 - Polarisation: LH
 - Phase (deg): 0
 - Horizontal focalisation: False
 - Vertical focalisation: True
 - Horizontal beamsize (mm): 2
 - Vertical beamsize (mm): ~ 0.150
- Monitors and XBPM:
 - mon1:
 - mon2: thick diamond
 - mon3:
 - mon4:
 - Detectors: Pilatus on Delta-Gamma
- Remarks: This is an example.

2 Beamline alignment

Here we show functions used during beamline alignent.

LaTeX formula can be used:

$$\frac{786 - 558}{2 \times 2069} \times 0.0355 = 1.9 mrad$$

2.1 Subsection

$2.1.1 SIRIUS_{2020}_{03}_{11}_{0744}$: dscan basez -.2 .2 50 .1

Fit with erf function.

2.1.2 SIRIUS_2020_03_11_0752: One can edit the scan info here as well

Fit with a gaussian.

2.2 Calibration thetaz

GIXD 3

3.0.1 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

Extraction of the Vineyard.

- Open Nexus Data File :

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/recording /SIRIUS_2020_03_12_0756.nxs

- . Number of data points: 101
- . Available Counters:

0	>	delta
1	>	zs
2	>	gamma
3	>	hu36energy
4	>	xs
5	>	energydcm
6	>	current
7	>	mon2
8	>	surfacepres

- surfacepressure
- 9 areapermolecule
- 10 qxy
- 11 pilatus
- pilatusroi1
- ----> integration_time
- sensorsRelTimestamps 14 ---->
- ----> sensorsTimestamps
- . Pilatus data found, (column 11, alias pilatus)
- . qxy data found, (column 10, alias qxy)
- . Surface pressure data found, mean value 19.74 \pm 0.006119 mN/m
- . Area per molecule data found, mean value 0.3557 \pm 3.944e-05 nm2 per

molecule

. Gamma motor data found, mean value -0.0004471~deg SIRIUS_2020_03_12_0756.nxs

Data not saved. To save data, run a GIXD on the scan. Channel0: 607

3.0.2 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

Classic GIXD with:

$$q_{xy} = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

Generates:

- SIRIUS_2020_03_12_0756_1D_qz.dat for each binning
- SIRIUS 2020 03 12 0756 1D.dat
- SIRIUS_2020_03_12_0756_1D.mat for each binning
- SIRIUS_2020_03_12_0756_1D.moy for each binning
 - . Absorbers: 29 Vide

SIRIUS_2020_03_12_0756.nxs

3.0.3 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

It is possible to print all info on the scan and the counters.

GIXD without the approximation on q_{xy} . Generates the same files as with classic GIXD.

- Open Nexus Data File :

 $/ Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/recording/SIRIUS_2020_03_12_0756.nxs$

- . Number of data points: 101
- . Available Counters:

0	>	delta
1	>	zs
2	>	gamma
3	>	hu36energy
4	>	xs
5	>	energydcm
6	>	current
7	>	mon2
8	>	surfacepressure
9	>	areapermolecule
10	>	qxy
11	>	pilatus
12	>	pilatusroi1
13	>	integration_time
14	>	${\tt sensorsRelTimestamps}$
15	>	${\tt sensorsTimestamps}$

- . Absorbers: 29 Vide
- . Pilatus data found, (column 11, alias pilatus)
- . qxy data found, (column 10, alias qxy)
- . Valid data between points 0 and 100
- . Surface pressure data found, mean value 19.74 \pm 0.006163 mN/m
- . Area per molecule data found, mean value 0.3557 \pm 3.866e-05 nm2 per molecule
 - . Gamma motor data found, mean value $-0.0004715~\mathrm{deg}$

- . For more details on the geometry, see:
 - -Fig.2 in doi:10.1107/S0909049512022017
 - -Slide 4 in http://gisaxs.com/files/Strzalka.pdf
- . Original, non binned matrix saved in:

 $/ Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.mat$

- . Scalar data saved in:
- /Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.dat
 - . Qz values saved in:

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/S IRIUS_2020_03_12_0756_1D_qz10.dat

- . Binned matrix saved in:
- /Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.mat10
 - . XYZ data saved in:

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.moy10

. Qz values saved in:

 $/ Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D_qz20.dat$

- . Binned matrix saved in:
- /Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.mat20
 - . XYZ data saved in:

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/ SIRIUS 2020 03 12 0756 1D.moy20

. Qz values saved in:

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/S IRIUS_2020_03_12_0756_1D_qz40.dat

- . Binned matrix saved in:
- /Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.mat40
 - . XYZ data saved in:

/Users/arnaudhemmerle/Documents/Recherche/Analysis/JupyLabBook/working/SIRIUS_2020_03_12_0756_1D.moy40

GIXD w/o approx.

4 Isotherm

$4.0.1 \quad SIRIUS_Isotherm_2019_02_17_01544: \ isotherm \ 1.97 \ 46 \ 35000 \ 1$

Plot the isotherm. Generates SIRIUS_Isotherm_2019_02_17_01544.dat ${\sf SIRIUS_Isotherm_2019_02_17_01544}.$

5 1D plot

5.0.1 SIRIUS_2020_03_12_0760: run cont_regh.ipy

Add a 1D plot by clicking on ''Add plot to report". Generates SIRIUS_2020_03_12_0760.dat

6 GIXS

$6.0.1 \quad SIRIUS_2019_11_07_00325: \ tscan \ 10 \ 10$

GIXS: q_z vs q_{xy} .

Image with the true geometry, profiles with the approximation $q_{xy} = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$. Generates:

- SIRIUS_2019_11_07_00325_pilatus_sum.tiff
- SIRIUS 2019 11 07 00325 pilatus sum.mat
- SIRIUS_2019_11_07_00325_integrated_qz.dat
- SIRIUS_2019_11_07_00325_integrated_qxy.dat
 - . Absorbers: 29 Vide
 - . No gamma found! gamma = 0
 - . No delta found! delta = 11.578

SIRIUS_2019_11_07_00325.nxs

6.0.2 SIRIUS_2019_11_07_00325: tscan 10 10

```
GIXS: q vs q_{xy}.
Generates:
```

- SIRIUS_2019_11_07_00325_pilatus_sum.tiff
- SIRIUS_2019_11_07_00325_pilatus_sum.mat
 - . Absorbers: 29 Vide
 - . No gamma found! gamma = 0
 - . No delta found! delta = 11.578

7 Plot pilatus

7.0.1 SIRIUS_2019_11_07_00325: tscan 10 10

Plot the sum of the images from the Pilatus (time integration). Generates:

- SIRIUS_2019_11_07_00325_pilatus_sum.tiff
- SIRIUS_2019_11_07_00325_pilatus_sum.mat
- SIRIUS_2019_11_07_00325_integrated_x.dat
- SIRIUS_2019_11_07_00325_integrated_y.dat
 - . Absorbers: 29 Vide

8 XRF

8.0.1 SIRIUS_2017_12_11_08042: run xsw7.ipy

Plot XRF from the 4-elements detector, in channels and without peak identification. Generates:

- SIRIUS_2017_12_11_08042_fluospectrum.mat for each element
- SIRIUS_2017_12_11_08042.dat

. Absorbers: Al 200micron

8.0.2 SIRIUS_Fluo_2020_07_03_0042: tscan 500 30

Plot XRF from the 1-element detector, in eVs and with peak identification. Generates:

- SIRIUS_Fluo_2020_07_03_0042_fluospectrum04.mat
- SIRIUS_Fluo_2020_07_03_0042.dat

. Absorbers: Al 800micron

9 Insert script

Script inserted (with automatic scan numbering) using "Insert script".

$9.0.1 \quad script_with_loop.ipy$

```
%shopen
%amove delta -40
%run reset_motors.ipy
%amove delta -35
%continuous_ascan delta -35 -25 250 5 #123
%run reset_motors.ipy
for i in range(4):
    %amove delta -20
    %continuous_ascan delta -10 -3 175 5 #124 #126 #128 #130
    %run reset_motors.ipy
    %run cont_regh_abs.ipy #125 #127 #129 #131
for i in range(3):
    %amove delta -20
    %continuous_ascan delta -10 -3 175 5 #132 #135 #138
    %run reset_motors.ipy
    %run cont_regh_abs.ipy #133 #136 #139
    %run cont_regh_abs.ipy #134 #137 #140
for i in range(2):
```

```
%amove delta -20
%tscan 10 100 #141 #142
%continuous_ascan delta -35 -25 250 5 #143
%amove delta -40
%shclose
```

10 Insert positions

Positions extracted from the logs, using "Insert positions".

10.0.1 wm zs

 $\frac{zs}{-40.9178}$

10.0.2 wm diffracto

deltacodeur	euchi	euth	euphi	kappa_h	kappa_k
	1.00196	-89.57961	90.42039	-0.00580	-0.08252
Degrees	\deg	\deg	\deg		

kappa_l	qxy	qxy0	qz	basexPoint	basexTrait
-0.18486				-15.7275	-15.7274
	nm-1	nm-1	nm-1		

basezPlan	basezPoint	${\bf basezTrait}$	basepitch	baseroll	basex
71.1257	71.1257	71.1257	-0.0000	0.000	-15.727
			mrad	mrad	mm

baseyaw	basez	alphax	alphay	delta	delta0
	71.126	0.2998	0.2000	-2.9110	-34.2322
mrad	mm				

deltaa	etaa	gamma	kappav	mu	kphi
0.0000	0.0000	1.2997	1.3080	-179.9997	0.0000

thetaa	thetah	komega	XS	ky	ys
0.0000	0.0185	0.0000	0.0000	-0.1000	0.0000

kz	ZS	kx
0.0000	-41.9999	-0.1000

11 Insert commands

Commands extracted from the logs, using "Insert commands".

11.0.1 List of commands

```
Wed, 11 Mar 2020 13:59:25 dmove m4tz 1
Wed, 11 Mar 2020 13:59:37 amove m4pitch -.02
Wed, 11 Mar 2020 13:59:37 amove m4pitch -.02
Wed, 11 Mar 2020 13:59:39 ct 1
Wed, 11 Mar 2020 13:59:50 dmove m4tz -.5
Wed, 11 Mar 2020 13:59:53 ct 1
Wed, 11 Mar 2020 13:59:56 dmove m4tz -.5
Wed, 11 Mar 2020 14:00:00 ct 1
Wed, 11 Mar 2020 14:00:12 dscan m4tz -.5 1.5 50 .1 #679
Wed, 11 Mar 2020 14:01:47 sigmoid_dscan m4tz -.4 .4 50 .1 #680
Wed, 11 Mar 2020 14:03:41 amove m4tz PEAK
Wed, 11 Mar 2020 14:03:50 dscan m4pitch -.5 .5 50 .1 #681
Wed, 11 Mar 2020 14:05:04 sigmoid_dscan m4tz -.4 .4 50 .1 #682
```

12 Convert logs

Human-readable logs generated in the folder /working/readable_logs/ by clicking on ''Convert logs"'.

13 Export to pdf

PDF generated by clicking on "Export to pdf".