

L3 Coordinate Plane and Geometry

Area of Polygons

Polygons	Shapes	Formulas
Triangle	A $B \xrightarrow{h} C$	Area(A)= $\frac{1}{2}$ (b×h) here, b=base, h=height
Rectangle	$\begin{array}{c} A \\ \downarrow \\ B \\ \longleftarrow 1 \\ \longrightarrow C \end{array}$	Area(A)= w×l here, w=width, l=length
Square	$A \longrightarrow D$ $B \longrightarrow C$	Area(A)= a ² here, a=side
Parallelogram	B C D	Area(A)=(b×h) here, b=base, h=height
Rhombus	$\frac{A}{d_1}$ $\frac{d_1}{d_2}$ $\frac{D}{C}$	Area(A)= $\frac{d_1 \times d_2}{2}$ here, d_1 and d_2 are the diagonals
Trapezoid	$A \xrightarrow{b} D$ $B \xrightarrow{h_1} C$	Area(A)= $\frac{1}{2}$ (a+b)×h here, a=longbase b=short base h=height

Math Exploration 1

- 1 Find the area of the following figures:
 - (1) Area of Square ABCD: _____.

(2) Area of Rectangle *ABCD*: ______.

The area of the following rectangle is 30cm². One of the leg is 6cm long. The length of the other leg is ____ cm.

In parallelogram ABCD, AB = 12 cm, AE = 5 cm, so the area of it is _____ cm².

In the figure, the upper base of the trapezoid is 5.2cm, the lower base of the trapezoid is 8cm. The area of shaded region is 20cm², the area of the trapezoid is _____ cm².

As shown in the figure, a gardener paved a parallelogram-shape cobblestone road with a base of 3m in a trapezoid garden. The area of the cobblestone raod is 27m², what is the actual area for the flower beds? (shaded region)

In the figure, ABCD is a rhombus, AB = 5, $m \angle BCD = 120^{\circ}$, the perimeter of $\triangle ABC$ is ______.

A. 20

B. 15

C. 10

D. 5

d=2r

 $C=2\pi r=dr$

 $A=\pi r^2$

Math Exploration 2

- 7 The diameter of a circle is 6cm, the circumference of the circle is _____ and the area of the circle is _____ . (keep π in your answer)
- 8 Calculate the area of circle based on the given information.(keep π in the answer)

(1)

(2)

 $C=22\pi~{
m cm}$

Concept 2: Coordinate Plane

For an ordered pair (x, y) in the coordinate plane,

- 1. if x > 0 and y > 0, (x, y) is in Quadrant _____;
- 2. if x < 0 and y > 0, (x, y) is in Quadrant _____;
- 3. if x < 0 and y < 0, (x, y) is in Quadrant ______;
- 4. if x > 0 and y < 0, (x, y) is in Quadrant ______.

Special Positions:

- 1. if x = 0, (x, y) is on the _____ -axis;
- 2. if y = 0, (x, y) is on the _____ -axis;
- 3. If x = y = 0, (x, y) is on the _____.

Points that are on the x-axis and y-axis are not in any of the quadrants.

Math Exploration 3

9 Plot A(-2,2), B(1,1), and C(-3,1) in the coordinate plane.

- 10 Which of the following points is in Quadrant III?
 - A. (5, -5)
- B. (-5,5)
- C. (5,5)
- D. (-5, -5)

- If P(a,b) is in Quadrant IV, then
 - (1) $P_1(a,-b)$ is in Quadrant _____.
 - (2) $P_2(-a,b)$ is in Quadrant _____ .
 - (3) $P_3(-a,-b)$ is in Quadrant _____ .

- In the coordinate plane, point A is on y-axis above the origin. It is two units away from the origin and the coordinates of A is ______.
 - A. (2,0)
- B. (-2,0)
- C. (0,2)
- D. (0, -2)

- If P(x,y) is in Quadrant IV, and |x|=2, |y|=3. Then x+y=() .
 - A. -1
- B. **1**

- C. 5
- D. -5

Math Exploration 4

The distance between the point (-4,2) and the x-axis is ______, and the distance between this point and the y-axis is ______.

15 Find the distance between each pair of points.

- (1) The distance between point (4,-1) and (7,-1) is _____.
- (2) The distance between point (-2, -3) and (-2, -8) is ______.

Math Exploration 5

16 A(-3,2), B(-1,-2) and C(1,-1) are points in the coordinate plane. The area of $\triangle ABC$ is ______ .

17 In the coordinate plane, $\triangle ABC$'s three vertices are A(-3,4), B(-3,1), C(-1,3).

What is the area of the triangle?

Homework

18 Find the area of the following parallelograms.

(1)
$$A =$$
_____.

(2)
$$A =$$
_____.

19 What percent is the shaded area to the whole? _____ %

The area of the composite figure is _____.

21 The area of the following rhmbus is _____ .

- 22 Find the area and circumference of the following circles.
 - (1) A =_____. C =_____.

(2) A =_____. C =_____.

- For the ordered pair P(-3,2), where does it belong to?
 - A. Quadrant \boldsymbol{I}
- B. Quadrant *II*
- C. Quadrant *III*
- D. Quadrant *IV*

E. y-axis/x-axis

Which of the following is a possible coordinate of the smiley face?

- A. (3,2)
- B. (-3,2)
- C. (-2, -2)
- D. (3, -2)
- Point A(a,5) is 3 units right from the y-axis, a =_____.
- Point A(3,0), B(-3,-4), and O(0,0) are in the coordinate plane. What is the area of $\triangle AOB$?

A. 4

B. **6**

C. 8

D. 3

 $\triangle ABC$ is in the coordinate plane as shown below. The area of $\triangle ABC$ is ______ .

A. 2 B. 3 C. 4