Complex Numbers and the Fundamental Theorem of Algebra

Victor Shi Owen Johns Nam Truong Nitin Veeraperumal

Reasoning Behind Choice

Why did we choose this topic?

Introduction

$$x^{2} - 4 = 0$$
$$x^{2} = 4$$
$$x = 2, -2$$

$$x^{2} + 1 = 0$$
$$x^{2} = -1$$
$$x = \sqrt{-1}$$

How we are going to approach this topic

01

02

03

Background Information Open Problem

New Concepts

04

New

Theorems

05

Mathematical

Proofs

06

Mathematical

Connections

Open Problem

What's next after the quadratic equation?

What is the general solution of the cubic equation?

New Concepts

Featuring Ferro, Tartaglia, Cardano, and Bombelli

General Solution of the Cubic

The del Ferro-Tartaglia-Cardano solution of the cubic equation

$$y^3 = py + q$$

is

$$y = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

The del Ferro-Tartaglia-Cardano solution of the cubic equation

$$y^3 = py + q$$

is

$$y = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

$x^3 = 15x + 4$

$$X^{3} = 15 \times 4$$

$$X = \sqrt[3]{\frac{4}{2}} + \sqrt{\left(\frac{4}{2}\right)^{2} - \left(\frac{15}{3}\right)^{2}} + \sqrt[3]{\frac{4}{2}} - \sqrt{\left(\frac{4}{2}\right)^{2} - \left(\frac{15}{3}\right)^{2}}$$

$$X = \sqrt[3]{2} + \sqrt{\left(\frac{2}{2}\right)^{2} - \left(\frac{5}{3}\right)^{2}} + \sqrt[3]{2} - \sqrt{\left(\frac{2}{2}\right)^{2} - \left(\frac{5}{3}\right)^{2}}$$

$$X = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}}$$

The del Ferro-Tartaglia-Cardano solution of the cubic equation

$$y^3 = py + q$$

is

$$y = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

$$x^3 = 15x + 4$$
Let $x = 4$
 $(4)^3 = 15(4) + 4$
 $64 = 60 + 4$
 $64 = 64$

A solution exists!

Introducing Bombelli

The del Ferro-Tartaglia-Cardano solution of the cubic equation

$$y^3 = py + q$$

is

$$y = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

$$X^{3} = 15 \times + 4$$

$$X = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}}$$

$$\sqrt[3]{a + b\sqrt{-1}} = c + d\sqrt{-1}$$

$$\sqrt[3]{2 + 11\sqrt{-1}} = 2 + \sqrt{-1},$$

$$\sqrt[3]{2 - 11\sqrt{-1}} = 2 - \sqrt{-1},$$

Introducing Bombelli

The del Ferro-Tartaglia-Cardano solution of the cubic equation

$$y^3 = py + q$$

is

$$y = \sqrt[3]{\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^3}}$$

$$X = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}}$$

$$X = 2 + \sqrt{-1} + 2 - \sqrt{-1}$$

$$X = 4$$

$$X^{3} = 15 \times + 4$$

$$X = \sqrt[3]{2 + 11\sqrt{-1}} + \sqrt[3]{2 - 11\sqrt{-1}}$$

New Theorems

Angle Division, Cote's, and Fundamental Theorem of Algebra

Angle Division

$$4y^3 - 3y = c$$

Viète's cubic equation

$$y = nx - \frac{n(n^2 - 1)}{3!}x^3 + \frac{n(n^2 - 1)(n^2 - 3^2)}{5!}x^5 + \cdots$$

 $y = \sin n\theta$ and $x = \sin \theta$

Newton's equation

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

Cote's Theorem

If A_0, \ldots, A_{n-1} are equally spaced points on the unit circle with center O, and if P is a point on OA_0 such that OP = x, then (Figure 14.4)

$$PA_0 \cdot PA_1 \cdot \cdot \cdot PA_{n-1} = 1 - x^n$$
.

$$PA_k^2 = 1 - 2x \cos \frac{2k\pi}{n} + x^2$$
.
What???

Fundamental Theorem of Algebra

Mathematical Proofs

- d'Alembert's Lemma
- d'Alembert's Proof
- Gauss's first proof

Jean le Rond d'Alembert

- First proof (1746)
- Revised by Jean-Robert Argand in (1806)

Carl Friedrich Gauss

- First proof (1799)
- Proposes two other proofs later on in career
- Alexander Ostrowski (1920) shows Gauss's proof can be made rigorous

Gauss's "Proof"

The Goal

Polynomials can be broken up into linear and irreducible quadratic factors over the real line.

Our goal is to show that eiter $(x \pm r), r \ge 0$ or $x^2 + 2r\cos\phi x + r^2, r > 0$ is a factor of polynomial p(x) for an appropriate choice of r and θ . Moreover, we want to show $r(\cos\phi \pm i\sin\phi)$ is a root of p(x).

Clever Substitution

Let $x = r(\cos \phi + i \sin \phi) \Rightarrow x^k = r^k(\cos k\phi + i \sin k\phi)$ Split p(x) into

$$U(r,\phi) = a_0 + a_1 \cos(\phi)r + a_2 \cos(2\phi)r^2 + \dots + a_n \cos(n\phi)r^n$$

$$T(r,\phi) = a_1 \sin(\phi)r + a_2 \sin(2\phi)r^2 + \dots + a_n \sin(n\phi)r^n$$

Consider the curves $U(r, \phi) = 0$ and $T(r, \phi) = 0$

Gauss's "Proof"

- Why do the intersections alternate?
- Curves entering and exiting the circle
- Proof by Contradiction
- Pigeonhole principle

Mathematical Connections

What are the connections between arithmetic, geometry, and calculus?

Works Cited

- "C. F. Gauss's Proofs of the Fundamental Theorem of Algebra", Harel Cain
- "The Fundamental Theorem of Algebra: A Visual Approach", Daniel J. Velleman
- "d'Alembert's Lemma", France Dacar
- https://www.reddit.com/r/mathmemes/comments/16y9ga8/they-lied-to-me/
- https://www.reddit.com/r/mathmemes/comments/9xqlvk/fundamental_theorem_of_alg_ebra/
- https://www.pinterest.com/pin/86483255331493949/