Algebra. Laurea in Informatica a.a. 2023-2024

Canale 1. Proff. Paolo Piazza e Gabriele Viaggi Esame scritto del 31/1/2024. Compito A. Tempo a disposizione: 2 ore e 30 minuti.

Nome e Cognome:	
email istituzionale:	

Esercizio	Punti totali	Punteggio
1	9	
2	7	
3	6	
4	6	
5	8	
Totale	36	

ATTENZIONE:

- Utilizzare il retro della pagina se necessario.
- I compiti disordinati o poco leggibili non saranno neanche corretti.
- Spiegare il procedimento ed i calcoli eseguiti, e **giustificare ogni risposta**. La valutazione terrà conto della presentazione: leggibilità, grammatica, sintassi, ordine, chiarezza, rigore matematico, capacità di sintesi.
- Una risposta giusta con giustificazione sbagliata viene valutata ≤ 0 .
- Scrivete le risposte negli appositi riquadri quando presenti.
- I fogli di brutta non saranno accettati; consegnare esclusivamente questi fogli.
- Tutti i dispositivi elettronici (smartphones, tablets, PC, etc, etc) devono essere spenti ed in borsa.
- Non sono ammessi libri o appunti ad eccezione di un formulario di una pagina A4 fronte retro (max 35 righe a facciata, no dimostrazioni).

1

Esercizio 1.

- (1) (2 punti) Vero falso: se $\phi:G\to G'$ è un omomorfismo di gruppi, allora ${\rm Im}(\phi)$ è un sottogruppo di G'.
- (2) (2 punti) Nell'anello $(\mathbb{Z}_n, +, \cdot)$ definire l'insieme degli elementi invertibili $\mathcal{U}(\mathbb{Z}_n)$. Che relazione c'è fra la funzione φ di Eulero e la cardinalità di $\mathcal{U}(\mathbb{Z}_n)$?
- (3) Sia $T: V \to W$ un'applicazione lineare fra spazi vettoriali.
 - (4.1) (1 punto) Definire Ker(T) ed il rango di T (denotato rg(T)).
 - (4.2) (1 punto) Enunciare la relazione che intercorre fra dim V, dim $\mathrm{Ker}(T)$ e $\mathrm{rg}(T)$.
 - (4.3) (3 punti) Dimostrare tale relazione.

Esercizio 2. (2.1) (4 punti) Risolvere il seguente sistema di equazioni congruenziali

$$\begin{cases} 3x \equiv 2 \pmod{5} \\ 7x \equiv 4 \pmod{9} \\ 2x \equiv 1 \pmod{7} \end{cases}$$

(2.2) (3 punti) Dimostrare in dettaglio che $133^{42} \equiv 89 \pmod{100}$.

Svolgimento: vedere Campanella, soluzioni agli esercizi del secondo capitolo.

Esercizio 3. Sia G un gruppo abeliano con elemento neutro 1_G e sia $n \in \mathbb{N}$. Si ponga

$$G^n := \{x^n \mid x \in G\}, \qquad G_n := \{x \mid x \in G, \quad x^n = 1_G\}.$$

Provare che

- (1) G^n e G_n sono sottogruppi di G;
- (2) G/G_n è isomorfo a G^n .

Suggerimento: cosa possiamo dire circa le proprietà algebriche dell'applicazione $f:G\longrightarrow G,\quad x\longmapsto x^n$?

Svolgimento:

Consideriamo la funzione

$$f: G \longrightarrow G, \qquad x \longmapsto x^n.$$

Se $x, y \in G$

$$f(xy) = (xy)^n = x^n y^n = f(x)f(y)$$

sfruttando l'abelianità di G. Pertanto f è un endomorfismo di G la cui immagine coincide con G^n , che dunque risulta essere un sottogruppo di G.

Infine, se $x \in G$, vale

$$x \in \operatorname{Ker} f \iff f(x) = x^n = 1_G \iff x \in G_n.$$

Da questo segue che $G_n = \operatorname{Ker} f \leq G$ e, per il Teorema di isomorfismo per gruppi, che G/G_n è isomorfo a G^n .

Esercizio 4. Sia

$$A = \left| \begin{array}{ccccc} 1 & 1 & 2 & 0 & 1 \\ 1 & -1 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 & -1 \\ 1 & 2 & 5 & 0 & 3 \end{array} \right|$$

e sia $L_A: \mathbb{R}^5 \to \mathbb{R}^4$ l'applicazione lineare associata.

- (4.1) Determinare una base per $\text{Im}(L_A)$ e la dimensione di $\text{Ker}(L_A)$.
- (4.2) Si consideri il sistema non-omogeneo di 4 equazioni in 5 incognite

$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 = 1 \\ x_1 - x_2 + x_4 + x_5 = 2 \\ x_1 - x_3 - x_5 = 1 \\ x_1 + 2x_2 + 5x_3 + 3x_5 = 1 \end{cases}$$

Stabilire se tale sistema è compatibile.

Soluzione. Scriviamo brevemente Im(A) e Ker(A). Applicando il metodo di Gauss sappiamo che A si riduce a

$$S = \left| \begin{array}{ccccc} \mathbf{1} & 1 & 2 & 0 & 1 \\ 0 & \mathbf{1} & 1 & -1/2 & 0 \\ 0 & 0 & \mathbf{2} & 1/2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

I pivots di questa matrice a scala sono $p_1=1$ nella colonna $j_1=1$, $p_2=1$ nella colonna $j_2=2$ e $p_3=2$ nella colonna $j_3=3$. Da quanto visto a lezione il rango di S è 3 ed una base per Im S è costituita dalle colonne $S^{j_1}, S^{j_2}, S^{j_3}$, cioè dalle colonne S^1, S^2, S^3 . Inoltre:

- (i) $\operatorname{Ker} A = \operatorname{Ker} S$ (equivalentemente, il sistema $A\underline{x} = \underline{0}$ è equivalente a $S\underline{x} = \underline{0}$)
- (ii) rgA = rgS (= 3)
- (iii) le colonne $A^{j_1}, A^{j_2}, A^{j_3}$, cioè le colonne A^1, A^2, A^3 , costituiscono una base per Im A.

Applicando Gauss a

$$A = \left| \begin{array}{ccccc} 1 & 1 & 2 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 & 1 & 2 \\ 1 & 0 & -1 & 0 & -1 & 1 \\ 1 & 2 & 5 & 0 & 3 & 1 \end{array} \right|$$

otteniamo

$$\left| \begin{array}{ccc|ccc|c} \mathbf{1} & 1 & 2 & 0 & 1 & 1 \\ 0 & \mathbf{1} & 1 & -1/2 & 0 & -1/2 \\ 0 & 0 & \mathbf{2} & 1/2 & 2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right|$$

Sia S la matrice 4×5 a sinistra (la stessa dell'esercizio precedente); sia

$$\underline{c}=(1,-\frac{1}{2},\frac{1}{2},0)\,.$$

Allora dalla teoria dei sistemi a scala sappiamo che $S\underline{x} = \underline{c}$ è un sistema compatibile. Per quanto visto a lezione sappiamo che il nostro sistema non-omogeneo è equivalente al sistema $S\underline{x} = \underline{c}$; ne segue che il nostro sistema è compatibile

Esercizio 5. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che

$$Ker(T) = \{(x, y, z) \mid x + y = 0, z = 0\}, \quad T(0, 1, 0) = (1, 1, 4), \quad T(1, -1, 1) = (4, 4, -2).$$

(a) Spiegare perché T è ben definita e dimostrare che la matrice A associata a T rispetto alla base canonica $\mathcal E$ di $\mathbb R^3$, $A=M_{\mathcal E,\mathcal E}(T)$, è

$$\left|\begin{array}{cccc} 1 & 1 & 4 \\ 1 & 1 & 4 \\ 4 & 4 & -2 \end{array}\right|$$

- (b) Determinare, se esiste, una base di \mathbb{R}^3 costituita da autovettori per T.
- (c) Determinare, se esiste, una matrice M tale che $M^{-1}AM$ sia una matrice diagonale.