UNIDAD 1

Tema 2: ARITMETICA MODULAR RSA

Discrete Mathematics and Its Applications (Cap. 4) 7ma. Ed.

1. DIVISIÓN DE LOS ENTEROS

Definición: ALGORITMO DE LA DIVISION

• Si a,b \in Z, con b > 0, entonces existen q, r \in Z únicos tales que:

$$a = q \times b + r \quad con \ 0 \le r < b$$

- El **residuo** de una división se denota como "a mod b", mientras el **cociente** se denota como a div b.
- Si a=16 y b=3 => 16 = 3.5 + 1, por tanto q=5, r=1

ALGORITMO DE LA DIVISION

- Dos restricciones:
 - Divisor un entero positivo (b>0)
 - Resto un entero no negativo (r≥0)

ARITMETICA MODULAR

PARTE 1

- División
- Algoritmo de la división

PARTE 2

Aritmética Modular - Congruencia

PARTE 3

- Suma y Resta módulo de N
 - Criptografía de clave privada.
- Multiplicación y División módulo N
 - Criptografía de clave pública
- Inversa módulo N
- Exponenciación módulo N
- Aplicación RSA

PARTE 3

- Sistemas de ecuaciones módulo N.
- Teorema del Resto Chino

Operador módulo

• Algoritmos de la división y operador módulo

$a \mod n = r$

Operador módulo

$a \mod n = r$

- 27 mod 5
- 36 mod 12
- -18 mod 14
- -7 mod 10

Conjunto de residuos en Zn

• La operación de módulo crea un conjunto, que en aritmética modular es llamado como el conjunto mínimo de residuos módulo de n (Zn)

$$\mathbf{Z}_n = \{ 0, 1, 2, 3, \dots, (n-1) \}$$

$$\mathbf{Z}_2 = \{ 0, 1 \}$$

$$\mathbf{Z}_6 = \{ 0, 1, 2, 3, 4, 5 \}$$

$$\mathbf{Z}_2 = \{0, 1\} \mid \mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\} \mid \mathbf{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

• Se tiene un conjunto de enteros Zn, pero tenemos infinitas instancias del conjunto de residuos.

Conjunto de Residuos Zn

• El resultado de la operación módulo n es siempre un entero entre 0 y n-1

[0]	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
[1]	1	7	13	19	25	31	37	43	49	55	61	67	73	79	85	91
[2]	2	8	14	20	26	32	38	44	50	56	62	68	74	80	86	92
[3]	3	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93
[4]	4	10	16	22	28	34	40	46	52	58	64	70	76	82	88	94
[5]	5	11	17	23	29	35	41	47	53	59	65	71	77	83	89	95

Aritmética Modular

Congruencias

Congruencia en Criptografía

- Es igualdad.
- Mapear de Z a Zn no es de uno
 - \equiv (Mapea de muchos a uno)

1,6,11,16,21 son llamados congruente mod 5

 $1 \equiv 6 \mod 5$

Mapeo

• Relación de 1 a muchos

[0]	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
[1]	1	7	13	19	25	31	37	43	49	55	61	67	73	79	85	91
[2]	2	8	14	20	26	32	38	44	50	56	62	68	74	80	86	92
[3]	3	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93
[4]	4	10	16	22	28	34	40	46	52	58	64	70	76	82	88	94
[5]	5	11	17	23	29	35	41	47	53	59	65	71	77	83	89	95

• Si n \in Z+, n > 1. Para a,b \in Z, decimos que a es congruente con b módulo n, y escribimos a \equiv b(mod n), si

$$n \mid (a-b)$$
.

- Obs: $a \equiv b \pmod{n}$; si a = b + kn para algún $k \in \mathbb{Z}$.
- Ejemplo:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$
 $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

- Ejercicio:
 - 49 $\equiv \mod 8$
 - \bullet -24 \equiv mod 8
 - $18 \equiv \mod 8$
 - $-19 \equiv \mod 8$
 - $28 \equiv \mod 8$
 - $46 \equiv \mod 8$
 - \bullet -5 \equiv mod 8
 - 15 \equiv mod 8

- Propiedades:
 - $a \equiv a \pmod{n}$ (Reflexiva)
 - $a \equiv b \pmod{n}$ entonces $b \equiv a \pmod{n}$ (Simétrica)
 - $a \equiv b \pmod{n}$ $y b \equiv c \pmod{n}$ entonces $a \equiv c \pmod{n}$ (Transitiva)

CONGRUENCIAS MODULO N: Relación

Clases de Residuos [a] ó equivalencia

• **Definición**: Sea Z un conjunto y R una relación de equivalencia en Z, la congruencia módulo n divide a Z en n clases de equivalencia, con $n \ge 2$.

$$[0] = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$$

$$[1] = \{..., -14, -9, -4, 1, 6, 11, 16, ...\}$$

$$[2] = \{..., -13, -8, -3, 2, 7, 12, 17, ...\}$$

$$[3] = \{..., -12, -7, -5, 3, 8, 13, 18, ...\}$$

$$[4] = \{..., -11, -6, -1, 4, 9, 14, 19, ...\}$$

- En que línea está localizado:
 - El número 124, 327, 440, 1234565 en que clase de equivalencia está ubicado?

- Teorema 14.11
 - La congruencia módulo n es una relación de equivalencia sobre
 Z
 - Relación de equivalencia de un conjunto A :
 - Reflexiva
 - Simétrica
 - Transitiva.

Relación de Equivalencia

• R es una relación de Equivalencia?

$$R = \{(a,b), (a,a), (b,a), (b,b), (c,c), (d,d)(d,e), (e,e), (e,d) \\ (e,f), (f,e), (f,f), (f,d), (d,f) \}$$

- Partición del conjunto R {a,b}, {c}, {d,e,f}
- Las clases de equivalencia son:
 - $[a] = \{a,b\}$
 - $[b] = \{a,b\}$
 - $[c] = \{c\}$
 - $[d] = \{d, e, f\}$
 - $[e] = \{d, e, f\}$
 - $[f] = \{d, e, f\}$

Relación de Equivalencia

• R es una relación de Equivalencia?

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3)(3,3), (4,4)\}$$

Operaciones en Zn

Operaciones en Zn

• Las operaciones de suma, resta y multiplicación en Z pueden ser definidas en Zn. El resultado es mapeado en Zn usando el operador módulo

Fig. Operaciones Binarias en Zn

ENTEROS MODULO N

• Ejemplo:

```
Para [a], [b] \in Zn, definimos + y . Como:

[a] + [b] = [a+b] y [a] . [b] = [a][b]=[ab]
```

Por ejemplo, si n=7, entonces

$$[2]+[6] = [2+6]=[8] = [1]$$

$$[2] \cdot [6] = [2.6] = [12] = [5]$$

- Realizar las siguientes operaciones (entradas desde Zn):
- a. Sumar 7 a 14 en Z₁₅.
- b. Restar 11 de 7 en Z₁₃.
- c. Multiplicar 11 por 7 en Z₂₀.

- Realizar las siguientes operaciones (entradas desde Zn):
- a. Sumar 7 a 14 en Z₁₅.
- b. Restar 11 de 7 en Z₁₃.
- c. Multiplicar 11 por 7 en Z₂₀.

Solution

$$(14+7) \mod 15 \rightarrow (21) \mod 15 = 6$$

 $(7-11) \mod 13 \rightarrow (-4) \mod 13 = 9$
 $(7 \times 11) \mod 20 \rightarrow (77) \mod 20 = 17$

- Realizar las siguientes operaciones (entradas desde Zn):
- a. Sumar 17 a 27 en Z₁₄.
- b. Restar 34 de 12 en Z₁₃.
- c. Multiplicar 123 por -10 en Z₁₉.

- Realizar las siguientes operaciones (entradas desde Zn):
- a. Sumar 17 a 27 en Z₁₄.
- b. Restar 34 de 12 en Z₁₃.
- c. Multiplicar 123 por -10 en Z₁₉.

Solution

```
(17 + 27) \mod 14 \rightarrow (44) \mod 14 = 2

(12 - 43) \mod 13 \rightarrow (-31) \mod 13 = 8

(123 \times (-10)) \mod 19 \rightarrow (-1230) \mod 19 = 5
```

Propiedades

 Mapear las entradas a Zn (si están en Zn) antes de aplicar las tres operaciones binarias (+,-,x)

First Property: $(a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n$

Second Property: $(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$

Third Property: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Los siguientes ejemplos muestran las propiedades:

- $1. (1723345 + 2124945) \mod 11 =$
- $2. (1723345 2124945) \mod 16 =$
- 3. $(1723345 \times 2124945) \mod 16 =$

Los siguientes ejemplos muestran las propiedades:

1.
$$(1723345 + 2124945) \mod 11 = (8 + 9) \mod 11 = 6$$

2.
$$(1723345 - 2124945) \mod 16 = (8 - 9) \mod 11 = 10$$

3.
$$(1723345 \times 2124945) \mod 16 = (8 \times 9) \mod 11 = 6$$

• En aritmética a menudo necesitamos encontrar potencias de 10

$$10^n \mod x = (10 \mod x)^n$$
 Applying the third property *n* times.

10 mod 3 = 1
$$\rightarrow$$
 10ⁿ mod 3 = (10 mod 3)ⁿ = 1
10 mod 9 = 1 \rightarrow 10ⁿ mod 9 = (10 mod 9)ⁿ = 1
10 mod 7 = 3 \rightarrow 10ⁿ mod 7 = (10 mod 7)ⁿ = 3ⁿ mod 7

Proceso de Cifrado y Descifrado

Criptografía

Emisor

Intruso

CIFRADO

MENSAJE

ORIGINAL

Clave Secreta Criptografía Clásica

- Emisor y Receptor se ponen de acuerdo sobre una clave secreta
- Ejemplos:
 - Cifrado de Cesar
 - Cifrado de Vigenere
- Para su implementación se usa la aritmética modular
 - Alfabeto: A...Z $(0...25) \mod 26$ \acute{o} Z_{26}
 - a mod n es el entero no negativo más pequeño r tal que:

$$a = q.n + r$$
 $0 \le r < n$

 \bullet Z_n

Clave Secreta Suma, Resta mod n

C	A	Z	A	R
2	0	25	0	17
5	3	2	3	20
2	0	-1	0	17
2	0	25	0	17

$$Clave = 3$$

Cifrado (i) =
$$M(i)$$
 + Clave mod 26

$$Descifrado(i) = C(i) - Clave \mod 26$$

- Calcular:
 - 10 mod 7
 - -10 mod 7

Criptografía Tradicional

Clave Pública Criptografía

- El emisor y el receptor no acuerdan ninguna clave secreta.
- Cada uno generar una clave privada.
- Generan una clave pública conocida por todos.
- El atacante puede interceptar el mensaje cifrado y puede tener acceso a la clave pública. Difícil descifrar el mensaje.
- Restricción: Claves privada y pública sean inversas.
- Algoritmo de cifrado representativo: RSA.
- RSA: aritmética modular (multiplicación y división).

Criptografía usando multiplicación mod n

• Un posible algoritmo de cifrado es tomar un mensaje \mathbf{x} , un valor \mathbf{a} y calcular (Afin)

$$a \cdot x_i \mod n$$

• El descifrado es dividir a en Zn

- Considerar los 3 casos siguientes:
 - a) n=12, a=4, x=3
 - b) n=12, a=3, x=6
 - c) n=12, a=5, x=7

Criptografía usando multiplicación mod n

• Un posible algoritmo de cifrado es tomar un mensaje \mathbf{x} , un valor \mathbf{a} y calcular

$$a \cdot x_i \mod n$$

- El descifrado es dividir a en Zn
- Considerar los 3 casos siguientes:
 - a) n=12, a=4, x=3
 - b) n=12, a=3, x=6
 - c) n=12, a=5, x=7

• El mensaje de cifrado y descifrado deben tener una relación de 1 a 1. Se da cuando mcd(a,n)=1

Inversa multiplicativa módulo N

Teorema Inversa módulo n

- Un elemento en Zn es invertible si mcd(a,n) = 1. En este caso se dice que a y b son **relativamente primos**.
- Suponga que tiene dos elementos a y n, con mcd(a,n)=1. Se tiene un entero x, tal que

$(a. x) \mod n = 1$

x es el inverso de a módulo n y tiene una única solución en Zn.

- En Z₉ el inverso de 2 es 5.
 - $2.5 \pmod{9} = 1$

Ejemplos:

- Encontrar la inversa de 8 en Z₁₀.
- Encontrar todas las inversas multiplicativas en Z5.
- Encontrar todas las inversas multiplicativas en Z10.
- Encontrar todas las inversas multiplicativas en Z3, Z4, Z6, Z7, Z8, Z9

.

Ejemplos Inversa módulo n

• Encontrar todas las inversas multiplicativas en Z5.

$$Z_5$$
 a.x (mod 5)

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$$1.1 \pmod{5} = 1$$

$$2.3 \pmod{5} = 1$$

$$3.2 \pmod{5} = 1$$

$$4.4 \pmod{5} = 1$$

Ejemplos:

- Encontrar la inversa de 8 en Z₁₀.
 - No hay inversa multiplicativa porque $mcd(8,10) = 2 \neq 1$
- Encontrar todas las inversas multiplicativas en Z₁₀.
 - Solo los pares (1, 1), (3, 7) y (9, 9). Los números 0, 2, 4, 5, 6, y
 8. No tienen inversa

Teorema Inversa multiplicativa módulo n

Un número entero "a" tiene una inversa multiplicativa en Zn si y solo si existen enteros "x" e "y" tal que

$$ax + ny = 1$$

Si se cumple, entonces el mcd(a,n)=1

Inversa multiplicativa módulo n

Nota

El algoritmo extendido de Euclides encuentra la inversa multiplicativa de "a" en Z_n cuando

mcd(n, a) = 1.

La inversa multiplicativa de "a" es el valor de "x" después de ser mapeada en Z_n .

Ejemplos Inversa módulo n

- ¿Cuál es el inverso de 110 en mod 273?
 - Determinar si mcd(110,273)=1
 - Encontrar ax+by=d (Algoritmo extendido de Euclides)
 - 110x + 273y = 1
 - El valor de **x** es el inverso de 110 mod 273
 - Nota: x **E Z**+

Ejercicios

- Encontrar la inversa multiplicativa de 11 en Z26
- Encontrar la inversa multiplicativa de 23 en Z₁₀₀
- Encontrar la inversa multiplicativa de 12 en Z26

Exponenciación módulo

Exponenciación a^m

- Mejora: elevar a² repetidas veces.
- m expresado como potencias de 2
- Ejemplo: m=29
 - $a^1 = a$
 - $a^2 = a^1 \cdot a^1$
 - $a^4 = a^2 . a^2$
 - $a^8 = a^4 . a^4$
 - $a^{16} = a^8 \cdot a^8$

$$29 = 1 + 4 + 8 + 16$$

Exponenciación a^m Elevando al cuadrado repetidas veces

- 1. Inicialmente x = a
- 2. Se calcula m mod 2 Si es 1 significa que el valor de x al cuadrado está incluido en el resultado
- 3. Al resultado se multiplica por x

X	m	m mod 2	Resultado	m/2
a^1	29	1	a	14
a^2	14	0		7
a ⁴	7	1	a. a ⁴	3
a^8	3	1	a. a ⁴ . a ⁸	1
a ¹⁶	1	1	a. a^4 . a^8 . $a^{16} = a^{29}$	0

Exponenciación a^m mod n Elevando al cuadrado repetidas veces

- $a^2 \mod n = [(a \mod n) (a \mod n)] \mod n$
- Ejemplo: 572²⁹ (mod 713)

X	m	m mod 2	Elevado al cuadrado		Resultado mod 713	n/2
572 ¹	29	1	572	572	572	14
			$572^2 \mod 713 = 327184 \mod$			
572 ²	14	0	713 =630			7
			(572 ² mod 713)(572 ² mod			
572 ⁴	7	1	713) = $630^2 \mod 713$ = 472	572.572 ⁴	572.472 (mod 713)= 470	3
			(572 ⁴ mod 713)(572 ⁴ mod	572.572 ⁴ .572 ⁸		
5728	3	1	713) = $472^2 \mod 713 = 328$		470.328 (mod 713)= 152	1
			(5728 mod 713)(5728 mod	572.572 ⁴ .572 ⁸ .572 ¹⁶		
57216	1	1	713) = $328^2 \mod 713 = 634$		$152.634 \pmod{713} = \underline{113}$	0

• Congruencia lineal: Ecuaciones de la forma

$$ax \equiv b \pmod{n}$$

- Donde a,b son enteros fijos, n > 1, y x es indeterminado
- Puede no tener soluciones o un número limitado "d" de soluciones:

$$mcd(a,n) = d$$

Si d|b, hay d soluciones

• Todos los enteros x que son solución de la congruencia son de la forma

$$\mathbf{x} = \mathbf{n}\mathbf{k} + \mathbf{r}$$
 kez

- Pasos:
 - Reducir la ecuación por dividir ambos lados de la ecuación (incluyendo el módulo) por d.
 - Multiplicar ambos lados de la ecuación reducida por la inversa multiplicativa de a, para encontrar la solución particular x_0 .
 - La soluciones generales son:

$$x = x_o + k(d/n)$$
, para $k=0,1,...,(d-1)$

- $\bullet 14x \equiv 12 \pmod{18}$
- $\bullet 3x + 4 \equiv 6 \pmod{13}$

- a) $3x + 4 \equiv 5 \pmod{6}$
- b) $5x + 2 \equiv 5 \pmod{7}$
- c) $7 \times \equiv 6 \pmod{9}$
- d) $3x + 4 \equiv 6 \pmod{13}$.

$$x \equiv a_1 \pmod{p_1}$$
 $x \equiv a_2 \pmod{p_2}$
 $x \equiv a_3 \pmod{p_3}$
 \cdots
 $x \equiv a_n \pmod{p_n}$

- Sean $a_1, a_2, \dots a_n \in \mathbb{Z}$, $y p_1, p_2, \dots, p_n \in \mathbb{Z}^+$, verificando:
 - i) $p_1 > 1$, γ i=1,2,...,n
 - ii) $mcd(p_i, p_i) = 1$

Entonces el sistema

$$x \equiv a_1 \pmod{p_1}$$
 $x \equiv a_2 \pmod{p_2}$
 $x \equiv a_3 \pmod{p_3}$
 \dots
 $x \equiv a_n \pmod{p_n}$

Tiene una solución módulo el producto P= p₁,* p₂*,..., p_n

• Resuelva el sistema de ecuaciones:

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$

1. p_1, p_2, p_3 deben ser primos entre sí,

$$P = 3 \times 5 \times 7 = 105$$

- 2. $P_i = P/p_i$ $P_1 = 105/3 = 35$; $P_2 = 105/5 = 21$; $P_3 = 105/7 = 15$
- 3. Para cada i existirá un q_i tal que

$$q_i \cdot P_i \equiv 1 \mod p_i$$
 $q_1 = 2; q_2 = 1; q_3 = 1$

- 4. Sea entonces $x_0 = a_1 \times P_1 \times q_1 + a_2 \times P_2 \times q_2 + a_3 \times P_3 \times q_3 \pmod{P}$ $x_0 = 2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1 = 23 \pmod{105}$
- 5. Todas las soluciones del sistema serán:

$$X = x_0 + Pk$$
 $X=23 + 105k$

Práctica

• Resuelva el siguiente sistema de congruencias:

$$x \equiv 2 \mod 9$$

$$x \equiv 3 \mod 7$$

$$x \equiv 1 \mod 4$$

$$x \equiv -1 \mod 5$$

• Resolver:

$$x \equiv 2 \mod 5$$

$$2x \equiv 1 \mod 7$$

$$3x \equiv 4 \mod 11$$

Práctica

• En el conjunto Z7 se define la relación:

$$xRy \square (x=y) \circ (xy=1)$$

- (a) Demuestre que R es una relación de equivalencia
- (b) Hallar todas las clases de equivalencia
- (c) Determinar el conjunto cociente.
- Sean a,b,c,d,h,m \in Z con h \neq 0 y m>0 demostrar que
 - a) Si $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$ \square $a+c \equiv b+d \pmod{m}$ y $a.c \equiv b.d \pmod{m}$
 - b) Si $a \equiv b \pmod{m}$ $\Box ha \equiv hb \pmod{m}$ \Box

```
\begin{array}{ll} x \equiv 12 & (\bmod{\ 25}) \\ x \equiv 19 & (\bmod{\ 26}) \\ x \equiv 7 & (\bmod{\ 27}) \\ \\ x \equiv 12 \cdot 702 \cdot 13 + 19 \cdot 675 \cdot 25 + 7 \cdot 640 \cdot 14 & (\bmod{\ 17550}) \\ \equiv 2437 & (\bmod{\ 17550}) \\ \\ x = 2437 + 17550k & (k \in \mathbb{Z}) \end{array}
```

Criptosistema RSA

A quiere enviar un mensaje B

• Cuando solo se necesita confidencialidad

A quiere enviar un mensaje B

• Cuando solo se necesita autentificación

A quiere enviar un mensaje B

• Cuando son necesarios confidencialidad y autentificación

RIVEST-SHAMIR-ADLEMAN (RSA)

- $N = m\acute{o}dulo$
- $\Phi(n) = \text{fi de } n$
- e = un entero que es relativamente primo con $\Phi(n)$
- d= un entero que es la inversa multiplicativa de e módulo $\Phi(n)$

RSA: Generación de claves

- Seleciona dos números primos p y q
- Calcula $n = p \cdot q$
- Calcula f(n) = (p-1)(q-1)
- Seleciona e tal que $1 \le e \le f(n)$ y mcd(f(n), e) = 1
- Calcula d tal que d .e mod f(n) = 1
- La clave pública es $\leq e$, $n \geq$
- La clave privada es $\leq d$, $n \geq$

Cifrado y Descifrado

- Mensaje: M
- Cifrado: $C = M^e \mod n$
- Mensaje: $M = C^d \mod n$

El algoritmo RSA (ejemplo)

- Selecciona dos números primos p = 7 y q = 17
- Calcula $n = p \ q = 119$
- Calcula f(n) = (p-1)(q-1) = 96
- Selecciona e tal que $1 \le e \le f(n)$ y mcd(f(n), e) = 1, e.g., e = 5
- Calcula d tal que $d \in \text{mod } f(n) = 1, d = 77$
- La clave pública es $\{e, n\} = \{5, 119\}$
- La clave privada es $\{d, n\} = \{77, 119\}$

El algoritmo RSA (ejemplo)

- Mensaje: M = 19
- Cifrado: $C = M^e \mod n = 19^5 \mod 119 = 66$
- Mensaje: $M = C^d \mod n = 66^{77} \mod 119 = 19$

Para romper RSA

- Factoriza n, que es público, y así obtienes p y q
- Calcula f(n) = (p-1)(q-1)
- Calcula d tal que d e mod f(n) = 1 (e es público)
- La clave privada es $KR = \{d, n\}$

Ejemplo:

- Siendo la clave pública <23,91>
- Use el RSA para cifrar M=24
- Descifrar el mensaje recibido de la parte a)

a) Cifrar M=24

- $C = M^e \mod N$
- $C = 24^{23} \mod 91 = 19$

X	M	M% 2	Elevar cuadrado	Resultado	m/2
24 ¹	23	1	24	24	11
24 ²	11	1	24*24 (mod 91)=30	24*30 (mod 91)=83	5
24 ⁴	5	1	30*30 (mod 91)=81	83*81 (mod 91)=80	2
248	2	0	81*81 (mod 91)=9		1
24 ¹⁶	1	1	9*9 (mod 91)=81	80*81 (mod 91)= 19	0

b) Descifrar mensaje

- $D = M^d \mod N$
- $D = 19^d \mod 91$

• Para descifrar se necesita el valor de la clave privada.

Generación de clave privada

- p = 7 y q = 13
- Calcula n = p q91=7 x 13
- Calcula f(n) = (p-1)(q-1)72 = (7-1) (q-1)
- Selecciona e tal que $1 \le e \le f(n)$ y mcd(f(n), e) = 1e = 23 // clave pública
- Calcula d tal que $d = e^{-1} \mod f(n)$ $d = 23^{-1} \pmod{72}$

Generación de clave privada

• Cálculo de la inversa :

$$d = 23^{-1} \pmod{72}$$

Aplicar algoritmo de Euclides: mcd(72,23)= 1

$$72 = 23(3) + 3$$
 $3 = 72-23(3)$
 $23 = 3(7) + 2$ $2 = 23-3(7)$
 $3 = 2(1) + 1$ $1 = 3-2(1)$
 $2 = 1(2) + 0$

• Aplicar el algoritmo extendido de Euclides : y=-25, x=8, d=1

```
1 = 3 - 2(1)
1 = 3 - [23 - 3(7)]
1 = 3(8) - 23
1 = [72 - 23(3)](8) - 23
1 = [72(8) - 23(24)] - 23
1 = 72(8) + 23(-25)
```

- La inversa de 23 es -25. -25 tiene que ser un entero positivo
- -25 + 72 = 47
- La clave privada es $\{d, n\} = \{47, 91\}$

b) Descifrar mensaje

- $D = M^d \mod N$
- $D = 19^{47} \mod 91 = 24$

X	M	M% 2	Elevar cuadrado	Resultado	m/2
19 ¹	47	1	19	19	23
19^{2}	23	1	19*19 (mod 91)=88	19*88 (mod 91)=34	11
19 ⁴	11	1	$88*88 \pmod{91} = 9$	34*9 (mod 91)=33	5
198	5	1	9*9 (mod 91) =81	33*81 (mod 91)=34	2
19 ¹⁶	2	0	$81*81 \pmod{91} = 9$		1
19^{32}	1	1	9*9 (mod 91) =81	81 * 34 (mod 91)= 24	0