Interpretable Machine Learning

Leave One Covariate Out (LOCO)

Figure: Bike Sharing Dataset

Learning goals

- Definition of LOCO
- Interpretation of LOCO

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{t} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, ..., p\}$ can be computed as follows:

• learn model on dataset $\mathcal{D}_{\text{train }-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train }-i})$

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{t} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, ..., p\}$ can be computed as follows:

- learn model on dataset $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train},-i})$
- **2** compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e.

$$\Delta_j^{(i)} = \left| y^{(i)} - \hat{f}_{-j}(x_{-j}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\mathsf{test}}$$

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{t} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, ..., p\}$ can be computed as follows:

- learn model on dataset $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train},-i})$
- **2** compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e.

$$\Delta_j^{(i)} = \left| y^{(i)} - \hat{f}_{-j}(x_{-j}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\mathsf{test}}$$

3 yield the importance score LOCO_i = med (Δ_i)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{f} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, ..., p\}$ can be computed as follows:

- learn model on dataset $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train},-i})$
- **2** compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e. $\Delta_j^{(i)} = \left| y^{(i)} - \hat{f}_{-j}(x_{-j}^{(i)}) \right| - \left| y^{(i)} - \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\mathsf{test}}$
- 3 yield the importance score LOCO_i = med (Δ_i)

The method can be generalized to other loss functions and aggregations. If we use mean instead of median we can rewrite LOCO as

$$\mathsf{LOCO}_j = \mathcal{R}_{\mathsf{emp}}(\hat{t}_{-j}) - \mathcal{R}_{\mathsf{emp}}(\hat{t}).$$

BIKE SHARING EXAMPLE

Figure: A random forest with default hyperparameters was fit on 70% of the bike sharing data (training set) to optimize MSE. Then LOCO was computed for all features on the test data. The temperature is the most important feature. Without access to temp, the MSE increases by approx. 140,000.

Interpretation: LOCO estimates the generalization error of the learner on a reduced dataset \mathcal{D}_{-j} .

Can we get insight into whether the ...

- feature x_i is causal for the prediction \hat{y} ?
 - In general, no also because we refit the model (counterexample on the next slide)
- \bullet feature x_i contains prediction-relevant information?
 - In general, no (counterexample on the next slide)
- \bullet model requires access to x_i to achieve its prediction performance?
 - ullet Approximately, it provides insight into whether the *learner* requires access to x_j

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0, 5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- \Rightarrow Fitting a LM yields $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- \Rightarrow Fitting a LM yields $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- \Rightarrow Fitting a LM yields $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

 \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- \Rightarrow Fitting a LM yields $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$
- \Rightarrow Fitting a LM yields $\hat{f}(x) = -0.02 1.02x_1 + 2.05x_2 + 0.98x_3$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0
- \Rightarrow We can get insight into (3): \textit{x}_2 and \textit{x}_1 highly correlated with LOCO₁ = LOCO₂ \approx 0
 - $\rightsquigarrow x_2$ and x_1 can take each others place if one of them is left out (not the case for x_3)

PROS AND CONS

Pros:

- Requires (only?) one refitting step per feature for evaluation
- Easy to implement
- Testing framework available in Lei et al. (2018)

Cons:

- Does not provide insight into a specific model, but rather a learner on a specific dataset
- Model training is a random process, so estimates can be noisy (which is problematic for inference about model and data)
- ullet Requires re-fitting the learner for each feature o computationally intensive compared to PFI