Finding Geometrically Concise Representations of Homology

Erlend Raa Vågset, Nello Blaser

Department of Informatics, University of Bergen, Norway erlend.vagset@uib.no

We count holes using homology...

but where are they located?

Are these holes hard to find?

In general, yes. To find a constant factor approximation is NP-hard^[1] and W[1]-hard when parameterized by solution size. The good news is that:

Using the treewidth...

of either graph...

as a parameter k

We invented two algorithms that locate homology in $2^{\mathcal{O}(k)}n$ time!

Both algorithms are ETH-optimal...

but many questions are still open:

- Can homology be located in $\mathcal{O}(2^k n^c)$ time?
- Is this work generalizable to CW-complexes?
- Which other parameters should we investigate?

Sources & Funding

This poster is about the preprint:

https://arxiv.org/abs/2011.14490

Our code is available at:

https://github.com/erlraavaa314/

homology-localization

Erlend Raa Vågset acknowledge support from the Research Council of Norway grant "Parameterized Complexity for Practical Computing (PCPC)" (NFR, no. 274526).

[1] Chen, C., & Freedman, D. (2011). Hardness results for homology localization. Discrete & Computational Geometry, 45(3), 425-448.