Zeyu Chen

Email: zeyuchen@udel.edu | Phone: (302) 509-8802

EDUCATION

University of Delaware Newark, DE

Ph.D. candidate in Electrical and Computer Engineering Expected by 2023

Advised by Dr. Haining Wang

University of Delaware Newark, DE

M.S. in Electrical and Computer Engineering *May 2017*

University of Science and Technology of China

B.S. in physics and Electronics July 2015

RESEARCH EXPERIENCE

Evaluate Fuzz Testing on Use-After-Free Vulnerabilities

May 2022 – *May* 2023

Hefei, China

- Conducted fuzz testing on 30 use-after-free (UAF) bugs with 10 distinct patterns, using eight state-of-the-art fuzzers.
- Assessed each fuzzer's performance in terms of time and memory overhead, as well as their success rates in detecting the identified bugs.
- Developed optimization techniques to enhance fuzzer detection capabilities based on our analysis of the root causes of the bugs, aimed to improve the coverage and efficiency of the fuzzing process.

An Empirical Study on Real-World Use-After-Free Vulnerabilities

May 2019 – May 2022

- Conducted the first comprehensive study on real-world UAF bugs, examining their patterns, manifestations, and fix strategies among other features.
- Investigated a sample of 150 randomly selected UAF bugs collected from 41 large and mature open-source projects.
- Designed a pattern-based static UAF detector Palfrey, which identified nine new UAF bugs in seven open-source projects.
- Established a new UAF benchmark and made our dataset and tools publicly available.

A Study of Account Recovery in the Wild and Its Security Implications

Feb. 2019 - Nov. 2019

- Conducted in-depth examination of account recovery protocols and authentication schemes adopted by the Alexa top 500 websites.
- Designed and implemented secure email account recovery (SEAR) protocol to defend against password recovery attacks, validated with CISPA experiments, highlighting its efficacy in mitigating attacks.

A Process-In-Memory Implementation of SHA-3 Using a Voltage-Gated Spin Hall-Effect Driven MTJbased Crossbar June 2018 – May 2019

- Innovated a processing-in-memory accelerator for SHA-3 residing in main memory, significantly reducing data transfer time.
- Proposed two optimization techniques, parallel execution for XOR gates and a pre-charge instruction, further enhancing efficiency.

TEACHING EXPERIENCE

Teaching Assistant at University of Delaware

• CPEG 695: Digital Forensics

2018, 2019, 2022 and 2023

• ELEG 222: Microprocessor System

2018

• ELEG 312: Circuit Analysis

2019

• CPEG 650: Advanced Cybersecurity

2022 and 2023

WORK EXPERIENCE

Kryptowire Lab

Arlington, Virginia

Summer research intern

June 2023 – August 2023

- Built the prototype for vehicle-to-vehicle (V2V) 5G communication using Quectel AG215 chips.
- Monitored network packages and identified vulnerabilities in the current V2V model.

PUBLICATIONS

- **Zeyu Chen**, Daiping Liu, Jidong Xiao, Haining Wang, "All Use-After-Free Vulnerabilities Are Not Created Equal: An Empirical Study on Their Characteristics and Detectability" in 26th International Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2023 (best practical paper)
- Shariful Alam, Le Guan, Zeyu Chen, Haining Wang, and Jidong Xiao, "CAUSEC: Cache-based Secure Key Computation with (Mostly) Deprivileged Execution" in 43rd IEEE International Conference on Distributed Computing Systems (ICDCS), 2023
- **Zeyu Chen** and Chengmo Yang, "A Processing-In-Memory Implementation of SHA-3 Using a Voltage-Gated Spin Hall-Effect Driven MTJ-based Crossbar," in Great Lakes Symposium on VLSI (GLSVLSI), May 2019.
- Yue Li, **Zeyu Chen**, Haining Wang, Kun Sun, and Sushil Jajodia, "A Study of Account Recovery in the Wild and Its Security Implications" in IEEE Transactions on Dependable and Secure Computing (TDSC), June 2019.

SERVICES

Extenal Conference and Journal Reviewer

May 2017 – now

DSC '17, LCTES '17, ICCD '18, VLSISOC '18, CCS '19, TCC '19, SECREPT '19 '20, ACNS '20, ICICS '21, INFOCOM '21 CODASPY '21 '22, ICDCS '22, ESORICS '22 '23

TECHNICAL SKILLS

- Programming languages: C, C++, Python, MATLAB, HTML/CSS, JavaScript, SQL
- **Tools:** Git, Latex, Docker