Questões de Geometria da OBM

Guilherme Zeus Moura

1 Geometria Usual

- 1. (OBM 2016) Seja ABC um triângulo. As retas r e s são bissetrizes internas de $\angle ABC$ e $\angle BCA$, respectivamente. Os pontos E sobre r e D sobre s são tais que $AD \parallel BE$ e $AE \parallel CD$. As retas BD e CE se cortam em F. Seja I o incentro do triângulo ABC. Mostre que se os pontos A, F e I são colineares então AB = AC.
- 2. (OBM 2015) Seja ABC um triângulo escaleno e acutângulo e N o centro do círculo que passa pelos pés das três alturas do triângulo. Seja D a interseção das retas tangentes ao circuncírculo de ABC e que passam por B e C. Prove que A, D e N são colineares se, e somente se, $\angle BAC = 45^{\circ}$.
- 3. (OBM 2014) Seja ABCD um quadrilátero convexo e seja P a interseção das diagonais AC e BD. Os raios dos círculos inscritos nos triângulos ABP, BCP, CDP e DAP são iguais. Prove que ABCD é um losango.
- 4. (OBM 2013) Seja Γ um círculo a A um ponto exterior a Γ . As retas tangentes a Γ que passam por A tocam Γ em B e C. Seja M o ponto médio de AB. O segmento MC corta Γ novamente em D e a reta AD corta Γ novamente em E. Sendo AB = a e BC = b, calcular CE em função de a e b.
- 5. (OBM 2006) Seja ABC um triângulo, P o pé da bissetriz interna relativa ao lado AC e I seu incentro. Se AP + AB = CB, prove que API é um triângulo isósceles.
- 6. (OBM 2004) Seja ABCD um quadrilátero convexo. Prove que os incírculos de ABC, BCD, CDA e DAB têm um ponto em comum se, e somente se, ABCD é um losango.
- 7. (OBM 2010) Seja ABCD um quadrilátero convexo e M e N os pontos médios dos lados CD e AD, respectivamente. As retas perpendiculares a AB passando por M e a BC passando por N cortam-se no ponto P. Prove que P pertence à diagonal BD se, e somente se, as diagonais AC e BD são perpendiculares.
- 8. (OBM 2008) Seja ABCD um quadrilátero cíclico e r e s as retas simétricas à reta AB em relação às bissetrizes internas dos ângulos $\angle CAD$ e $\angle CBD$, respectivamente. Sendo P a interseção de r e s e O o centro do círculo circunscrito a ABCD, prove que OP é perpendicular a CD.
- 9. (OBM 2001) Uma calculadora tem o número 1 na tela. Devemos efetuar 2001 operações, cada uma das quais consistindo em pressionar a tecla sen ou a tecla cos. Essas operações calculam respectivamente o seno e o cosseno com argumentos em radianos. Qual é o maior resultado possível depois das 2001 operações?
- 10. (OBM 2012) Dado um triângulo ABC, o exincentro relativo ao vértice A é o ponto de interseção das bissetrizes externas de DB e DC. Sejam I_A , I_B e I_C os exincentros do triângulo escaleno ABC relativos a A, B e C, respectivamente, e X, Y e Z os pontos médios de I_BI_C , I_CI_A e I_AI_B , respectivamente. O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove que as retas DX, EY e FZ têm um ponto em comum pertencente à reta IO, sendo I e O o incentro e o circuncentro do triângulo ABC, respectivamente.

- 11. (OBM 2002) ABCD é um quadrilátero convexo e inscritível e M é um ponto sobre o lado CD, tal que o triângulo ADM e o quadrilátero ABCM têm a mesma área e o mesmo perímetro. Prove que ABCD tem dois lados de comprimentos iguais.
- 12. (OBM 2017) No triângulo ABC, seja r_A a reta que passa pelo ponto médio de BC e é perpendicular à bissetriz interna de $\angle BAC$. Defina r_B e r_C da mesma forma. Sejam H e I o ortocentro e o incentro de ABC, respectivamente. Suponha que as três retas r_A , r_B , r_C definem um triângulo. Prove que o circuncentro desse triângulo é o ponto médio de HI.
- 13. (OBM 2011) Seja ABC um triângulo acutângulo e H seu ortocentro. As retas BH e CH cortam AC e AB em D e E, respectivamente. O circuncírculo de ADE corta o circuncírculo de ABC em $F \neq A$. Provar que as bissetrizes internas de $\angle BFC$ e $\angle BHC$ se cortam em um ponto sobre o segmento BC.
- 14. (OBM 2009) Seja ABC um triângulo e O seu circuncentro. As retas AB e AC cortam o circuncírculo de OBC novamente em $B_1 \neq B$ e $C_1 \neq C$, respectivamente, as retas BA e BC cortam o circuncírculo de OAC em $A_2 \neq A$ e $C_2 \neq C$, respectivamente, e as retas CA e CB cortam o circuncírculo de OAB em $A_3 \neq A$ e $B_3 \neq B$, respectivamente. Prove que as retas A_2A_3 , B_1B_3 e C_1C_2 passam por um mesmo ponto.
- 15. (OBM 2007) Seja ABCD um quadrilátero convexo, P a interseção das retas AB e CD, Q a interseção das retas AD e BC e O a interseção das diagonais AC e BD. Prove que se $\angle POQ$ é um ângulo reto então PO é bissetriz de $\angle AOD$ e QO é bissetriz de $\angle AOB$.
- 16. (OBM 2005) Sejam ABC um triângulo acutângulo e F o seu ponto de Fermat, isto é, o ponto interior ao triângulo ABC tal que os três ângulos $\angle AFB$, $\angle BFC$ e $\angle CFA$ medem 120 graus. Para cada um dos triângulos ABF, ACF e BCF trace a sua reta de Euler, ou seja, a reta que liga o seu circuncentro e o seu baricentro. Prove que essas três retas concorrem em um ponto.
- 17. (OBM 2017) Um quadrilátero ABCD tem um círculo inscrito ω e é tal que as semirretas AB e DC se cortam no ponto P e as semirretas AD e BC se cortam no ponto Q. As retas AC e PQ se cortam no ponto R. Seja T o ponto de ω mais próximo da reta PQ. Prove que a reta RT passa pelo incentro do triângulo PQC.
- 18. (OBM 2003) Seja ABCD um losango. Sejam E, F, G e H pontos sobre os lados AB, BC, CD e DA, respectivamente, e tais que as retas EF e GH são tangentes à circunferência inscrita no losango. Prove que as retas EH e FG são paralelas.
- 19. (OBM 2001) E e F são pontos do lado AB, do triângulo ABC, tais que AE = EF = FB. D é ponto da reta BC tal que BC é perpendicular a ED. AD é perpendicular a CF. Os ângulos $\angle BDF$ e $\angle CFA$ medem x e 3x, respectivamente. Calcule a razão DB/DC.
- 20. (OBM 1998) Duas pessoas disputam um jogo da maneira descrita a seguir. Inicialmente escolhem dois números naturais: $n \geq 2$ (o número de rodadas) e $t \geq 1$ (o incremento máximo). Na primeira rodada o jogador A escolhe um natural m1 > 0 e, posteriormente, o jogador B escolhe um natural positivo $n1 \neq m1$ Para $2 \leq k \leq n$, na rodada k o jogador A escolhe um natural m_k com $m_{k-1} < m_k \leq mk 1 + t$ e posteriormente o jogador B escolhe um natural n_k com $n_{k-1} < n_k \leq n_{k-1} + t$. Após essas escolhas, nessa k-ésima rodada, o jogador A ganha mdc (m_k, n_{k-1}) pontos e o jogador B ganha mdc (m_k, n_k) pontos. Ganha o jogo o jogador com maior pontuação total ao fim das n rodadas. Em caso de pontuações totais iguais o jogador A é considerado vencedor. Para cada escolha de n e t, determine qual dos jogadores possui estratégia vencedora.
- 21. (OBM 2016) Seja ABCD um quadrilátero convexo, não circunscritível, sem lados paralelos. As retas AB e CD se cortam em E. Seja $M \neq E$ a interseção dos circuncírculos de ADE e BCE. As bissetrizes internas de ABCD determinam um quadrilátero convexo cíclico de circuncentro I e as bissetrizes externas de ABCD determinam um quadrilátero convexo cíclico de circuncentro I. Prove que I, I e I0 são colineares.

- 22. (OBM 2015) Seja ABC um triângulo escaleno e X, Y e Z pontos sobre as retas BC, AC e AB, respectivamente, tais que $\angle AXB = \angle BYC = \angle CZA$. Os circuncírculos de BXZ e CXY se cortam em $P \neq X$. Prove que P está sobre a circunferência cujo diâmetro tem extremidades no ortocentro H e no baricentro G de ABC.
- 23. (OBM 2014) Seja ABC um triângulo com incentro I e incírculo ω O círculo ω_A tangencia externamente ω e toca os lados AB e AC em A_1 e A_2 . Seja r_A a reta A_1A_2 . Defina r_B e r_C de modo análogo. As retas r_A , r_B e r_C determinam um triângulo XYZ. Prove que o incentro de XYZ, o circuncentro de XYC e I são colineares.
- 24. (OBM 2013) O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F respectivamente. Seja P o ponto de interseção das retas AD e BE. As reflexões de P em relação a EF, FD e DE são X, Y e Z, respectivamente. Prove que as retas AX, BY e CZ têm um ponto comum pertencente à reta IO, sendo I e O o incentro e o circuncentro do triângulo ABC.

2 Geometria Não-Usual

- 1. (OBM 2018) Dizemos que um polígono P está inscrito em outro polígono Q quando todos os vértices de P pertencem ao perímetro de Q. Também dizemos nesse caso que Q está circunscrito a P. Dado um triângulo T, sejam ℓ o máximo valor do lado de um quadrado inscrito em T e L o mínimo valor do lado de um quadrado circunscrito a T. Prove que, para todo triângulo T, vale a desigualdade $L/\ell \geq 2$, e encontre todos os triângulos T para os quais a igualdade ocorre.
- 2. (OBM 2000) Em uma folha de papel a reta r passa pelo canto A da folha e forma um ângulo α com a borda horizontal, como na figura 1. Para dividir este ângulo α em três partes iguais, executaremos as seguintes construções:
 - a) inicialmente, marcamos dois pontos B e C sobre a borda vertical de modo que AB = BC; pelo ponto B traçamos a reta s paralela à borda (figura 2);
 - b) a seguir, dobramos o papel, ajustando-o de modo que o ponto C coincida com um ponto C' sobre a reta r e o ponto A coincida com um ponto A' sobre a reta s (figura 3); chamamos de B' o ponto com o qual B coincide.

Mostre que as retas AA' e AB' dividem o ângulo α em três partes iguais.

- 3. (OBM 2003) São dados: uma circunferência K e um ponto A interior, fixo, distinto do centro. Determine os pontos B, C e D sobre a circunferência de forma que a área do quadrilátero ABCD seja a maior possível.
- 4. (OBM 2006) Seja P um polígono convexo de 2006 lados. As 1003 diagonais ligando vértices opostos e os 1003 segmentos que ligam os pontos médios dos lados opostos são concorrentes, ou seja, todos os 2006 segmentos possuem um ponto em comum. Prove que os lados opostos de P são paralelos e congruentes.

5. (OBM 2011) Mostre que, para todo pentágono convexo $P_1P_2P_3P_4P_5$ de área 1, existem dois triângulos $P_iP_{i+1}P_{i+2}$ e $P_jP_{j+1}P_{j+2}$ (em que $P_6=P_1$ e $P_7=P_2$), formados por três vértices consecutivos do pentágono, tais que

$$A(P_i P_{i+1} P_{i+2}) \le \frac{5 - \sqrt{5}}{10} \le A(P_j P_{j+1} P_{j+2})$$

- 6. (OBM 2010) Qual é a maior sombra que um cubo sólido de aresta 1 pode ter, no sol a pino? Observação: Entende-se "maior sombra de uma figura no sol a pino" como a maior área possível para a projeção ortogonal da figura sobre um plano.
- 7. (OBM 2005) Dizemos que um quadrado está contido em um cubo quando todos os seus pontos estão nas faces ou no interior do cubo. Determine o maior l > 0 tal que existe um quadrado de lado l contido num cubo de aresta 1.
- 8. (OBM 2000) Seja C um cubo de madeira. Para cada um dos 28 pares de vértices de C cortamos o cubo C pelo plano mediador dos dois vértices do par. Em quantos pedaços fica dividido o cubo?

Nota: Dados dois pontos A e B no espaço, o plano mediador de A e B é o conjunto dos pontos do espaço cujas distâncias a A e B são iguais. Em outras palavras: é o plano perpendicular ao segmento AB passando pelo ponto médio de AB.