Foundations Test 2

Clark Saben Foundations of Mathematics

April 18, 2023

1

Theorem 1. If $n \in \mathbb{Z}$ and $n \geq 0$, then $\sum_{i=0}^{n} i \cdot i! = (n+1)! - 1$.

Theorem 2. The inequality $2^n \le 2^{n+1} - 2^{n-1} - 1$ holds for all $n \in \mathbb{N}$.

Theorem 3. Define the relation R on \mathbb{Z} such that xRy if and only if 3x - 5y is even. Then R is an equivalence relation.

2

Theorem 4. Let $a,b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv_n b$ then $a^2 \equiv_n b^2$. (recall the definition of \equiv_n from Definition 7.79)

Theorem 5. For an $n \ge 4$, one can obtain n dollars using only \$2 and \$5 bills.

Theorem 6 Complete but gross. Define $\Psi = \{(a,b) : a,b \in \mathbb{Z}, b \neq 0\}$ and define a relation \sim on Ψ via $(a,b) \sim (c,d)$ if and only if ad = bc. Then \sim is an equivalence relation.

Let $\Psi = \{(a,b) : a,b \in \mathbb{Z}, b \neq 0\}$ and define a relation \sim on Ψ via $(a,b) \sim (c,d)$ if and only if ad = bc. To show that \sim is an equivalence relation, we must show that \sim is reflexive, symmetric, and transitive.

To show that \sim is reflexive, we must show that for all $(a,b) \in \Psi$, $(a,b) \sim (a,b)$. It can be shown that,

$$(a,b) \sim (a,b) \Leftrightarrow ab = ba$$

 $\Leftrightarrow ab = ab$ (commutative property)

Therefore, \sim is reflexive.

To show that \sim is symmetric, we must show that for all $(a,b) \in \Psi$ and $(c,d) \in \Psi$, if $(a,b) \sim (c,d)$ then $(c,d) \sim (a,b)$. It can be shown that,

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

and that,

$$(c,d) \sim (a,b) \Leftrightarrow cb = da$$

 $\Leftrightarrow ad = bc \text{ (commutative property)}$

Therefore, \sim is symmetric.

To show that, \sim is transitive, we must show that for all $(a,b) \in \Psi$, $(c,d) \in \Psi$, and $(e,f) \in \Psi$, if $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$ then $(a,b) \sim (e,f)$. It can be shown that,

$$ad = bc$$

$$fad = fbc$$

$$f = \frac{de}{c}$$

$$adf = bc(\frac{de}{c})$$

$$adf = bde$$

$$af = be$$

Therefore, \sim is transitive.

3 (complete)

Problem 1. Consider the following relation: $R = \{(a, a), (a, b), (a, d), (b, d), (c, c), (d, b), (d, c)\}$

Problem 1. .1 What elements must be add to R to make it reflexive?

To be reflexive, (b, b) and (d, d) must be added to R.

Problem 1. .1 What elements must be add to R to make it symmetric?

To be symmetric, (b, a), (d, a) and (c, d) must be added to R.