

# An Introduction to Randomized Algorithms in Linear Algebra and Scientific Computing

Tammy Kolda & Brett Larsen
May 13, 2024

#### Resources and Schedule



- Data for Labs: tgkolda/randalgslabs (github.com)
- Schedule
  - 11:00 Part I
    - Random Gaussian matrices
    - Randomized range finder
    - Randomized SVD
  - 11:35 Labs for Part I
  - 11:50 Part II
  - 12:25 Labs for Part II
  - 12:40 Adjourn



## Part I

Randomized Range Finder & Randomized SVD

#### **Notation**



- $[n] = \{1, 2, \dots, n\}$
- Expected value:  $\mathbb{E}[X]$  or  $\mathbb{E}X$
- Variance:  $Var[X] \equiv \mathbb{E}[(X \mathbb{E}X)^2]$
- Probability:  $\mathbb{P}\{X > 5\}$
- Independent and identically distributed: i.i.d.

## Asymptotic versus Non-Asymptotic



**Theorem** (Asymptotic) Let  $X_1, X_2, ...$  be a sequence of i.i.d. random variables with finite expectation. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[X]$$

**Theorem** (Non-Asymptotic) Let  $X_1, X_2, ...$  be a sequence of i.i.d. random variables with finite expectation. Then

$$\mathbb{P}\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right| > \epsilon \right\} = \frac{\operatorname{Var}[X]}{n\epsilon^2}$$



## Gaussian Random Matrices

- Martinsson, P.-G.(2020). Randomized methods in linear algebra and their applications in data science. URL: <a href="http://users.oden.utexas.edu/~pgm/2020\_kth\_course/">http://users.oden.utexas.edu/~pgm/2020\_kth\_course/</a>
- Vershynin, Roman (2018). High-Dimensional Probability. Cambridge University Press

## Gaussian Distribution (the Bell Curve)





#### Gaussian Random Variables

MathSci.ai

Fact If X and Y are independent random variables, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

**Proposition** Let X be a real random variable such that  $\mathbb{E}[X^2] < +\infty$ . Then

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$X, Y \sim \mathcal{N}(0, 1)$$
 i.i.d.

What is 
$$\mathbb{E}[XY]$$
?

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$
$$= (0)(0)$$
$$= 0$$

$$X \sim \mathcal{N}(0,1)$$

What is 
$$\mathbb{E}[X^2]$$
?

$$\mathbb{E}[X^2] = \text{Var}[X] + (\mathbb{E}[X])^2$$
$$= 1 + 0^2$$
$$= 1$$

#### Uses for Random Gaussian Matrices



Gaussian Random Matrix

$$\mathbf{\Omega} \sim \mathcal{N}(0, \frac{1}{m})^{m \times n}$$

$$\omega_{ij} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$$
 i.i.d.

• Multiplication by  $\Omega$  of vector  $\mathbf{x}$  "preserves"  $\|\mathbf{x}\|_2$ 

Expectation:  $\mathbb{E}\|\mathbf{\Omega}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ 

Probability:  $\mathbb{P}\{|\|\mathbf{\Omega}\mathbf{x}\|_2 - \|\mathbf{x}\|_2| > \epsilon\} \leq \delta$ 

- Multiplication by  $\Omega$  of a set of vectors  $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  "preserves" distances  $\|\mathbf{x}_i \mathbf{x}_j\|_2$  for all i, j
- Multiplication by  $\Omega$  of matrix  $\mathbf{A}$  "preserves"  $\|\mathbf{A}\|_2$  and  $\|\mathbf{A}\|_F$
- Right multiplication by  $\Omega$  of matrix  $\mathbf A$  "preserves" range( $\mathbf A$ )
- Left multiplication by  $\Omega$  of matrix  $\mathbf{A}$  "preserves" range  $(\mathbf{A}^{\mathsf{T}})$

#### Vector Norm - One Sample

Adapted from Martinsson, 2020



Let  $\mathbf{v} \in \mathbb{R}^n$  and  $\boldsymbol{\omega} \sim \mathcal{N}(0,1)^n$ 

What is  $\mathbb{E}[(\boldsymbol{\omega}^{\mathsf{T}}\mathbf{v})^2]$ ?

Fact 
$$\mathbb{E}\left[\sum_{i=1}^n X_i
ight] = \sum_{i=1}^n \mathbb{E}[X_i]$$

$$\mathbb{E}\left[ (\boldsymbol{\omega}^{\mathsf{T}} \mathbf{v})^2 \right] = \mathbb{E}\left[ \left( \sum_{i=1}^n \omega_i v_i \right)^2 \right] = \mathbb{E}\left[ \left( \sum_{i=1}^n \sum_{j=1}^n \omega_i \omega_j v_i v_j \right) \right]$$

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}[\omega_{i}\omega_{j}]v_{i}v_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \delta_{ij} v_i v_j = \sum_{i=1}^{n} v_i^2 = \|\mathbf{v}\|_2^2$$

## Vector Norm – m Samples



Let  $\mathbf{v} \in \mathbb{R}^n$  and  $\mathbf{\Omega} \sim \mathcal{N}(0, \frac{1}{m})^{m \times n}$ 

n = vector length m = number of dot products averaged

What is  $\mathbb{E}[\|\mathbf{\Omega}\mathbf{v}\|_2^2]$ ?

$$oldsymbol{\Omega} = rac{1}{\sqrt{m}} egin{bmatrix} oldsymbol{\omega}_1^{\intercal} \ oldsymbol{\omega}_2^{\intercal} \ dots \ oldsymbol{\omega}_m^{\intercal} \end{bmatrix}$$

$$\boldsymbol{\omega}_i \sim \mathcal{N}(0,1)^n$$

$$\mathbb{E}\left[\|\mathbf{\Omega}\mathbf{v}\|_2^2
ight] = \mathbb{E}\left[\sum_{i=1}^m rac{1}{m}(oldsymbol{\omega}_i^\intercal\mathbf{v})^2
ight]$$

$$=rac{1}{m}\sum_{i=1}^m \mathbb{E}\left[(oldsymbol{\omega}_i^\intercal \mathbf{v})^2
ight]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \|\mathbf{v}\|^2 = \|\mathbf{v}\|^2$$



**Theorem** (Gordon's theorem for Gaussian matrices) Let  $\Omega \sim \mathcal{N}(0, \frac{1}{m})^{m \times n}$ 

be an  $m \times n$  matrix with  $m \ge n$  whose entries are independent normal random variables. Then

$$1 - \frac{\sqrt{n}}{\sqrt{m}} \le \mathbb{E}[\sigma_{\min}(\mathbf{\Omega})] \le \mathbb{E}[\sigma_{\max}(\mathbf{\Omega})] \le 1 + \frac{\sqrt{n}}{\sqrt{m}}$$

**Theorem** (Gaussian Matrix Concentration) Let  $\Omega \sim \mathcal{N}(0, \frac{1}{m})^{m \times n}$  with  $m \ge n$  whose entries are independent. Then for every  $t \ge 0$  we have

$$1 - \frac{\sqrt{n} + t}{\sqrt{m}} \le \sigma_{\min}(\mathbf{\Omega}) \le \sigma_{\max}(\mathbf{\Omega}) \le 1 + \frac{\sqrt{n} + t}{\sqrt{m}}$$

with probability at least  $1 - 2\exp(-t^2/2)$ 

# Spectral Norm Error $1 - \frac{\sqrt{n} + t}{\sqrt{m}} \le \sigma_{\min}(\Omega) \le \sigma_{\max}(\Omega) \le 1 + \frac{\sqrt{n} + t}{\sqrt{m}}$





#### **Vector Norm Concentration**



**Theorem** (Gaussian Matrix Concentration) Let  $\Omega \sim \mathcal{N}(0, \frac{1}{m})^{m \times n}$  with  $m \ge n$  whose entries are independent. Then for every  $t \ge 0$  we have

$$1 - \frac{\sqrt{n} + t}{\sqrt{m}} \le \sigma_{\min}(\mathbf{\Omega}) \le \sigma_{\max}(\mathbf{\Omega}) \le 1 + \frac{\sqrt{n} + t}{\sqrt{m}}.$$

with probability at least  $1 - 2\exp(-t^2/2)$ .

Let 
$$\mathbf{v} \in \mathbb{R}^n$$
 and  $\mathbf{\Omega} \sim \mathcal{N}(0, \frac{1}{m})$ 

n = vector length m = number of dot products averaged

$$\sigma_{\min}(\mathbf{\Omega}) \|\mathbf{v}\|_2 \le \|\mathbf{\Omega}\mathbf{v}\|_2 \le \sigma_{\max}(\mathbf{\Omega}) \|\mathbf{v}\|_2$$

For 
$$\epsilon = \frac{\sqrt{n}+t}{\sqrt{m}}$$
 and  $\delta = 2\exp(-t^2/2)$ , we have

$$\mathbb{P}\left\{ (1 - \epsilon) \|\mathbf{v}\|_2 \le \|\mathbf{\Omega}\mathbf{v}\|_2 \le (1 + \epsilon) \|\mathbf{v}\|_2 \right\} > 1 - \delta$$



## Randomized Range Finder

- Halko, N., P.-G. Martinsson, and J. A. Tropp (2011). Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, doi:10.1137/090771806
- Erichson, N. B., S. Voronin, S. L. Brunton, and J. N. Kutz (2016). Randomized Matrix Decompositions using R. doi: 10.18637/jss.v089.i11.
- Martinsson, P.-G.(2020). Randomized methods in linear algebra and their applications in data science.
  - URL: <a href="http://users.oden.utexas.edu/~pgm/2020\_kth\_course/">http://users.oden.utexas.edu/~pgm/2020\_kth\_course/</a>

## Randomized Range Finder (RRF) Goal



#### Given:

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
 with "rank"  $(\mathbf{A}) < k < n \le m$ 

#### Find:

orthonormal  $\mathbf{Q} \in \mathbb{R}^{m \times k}$  such that  $\operatorname{range}(\mathbf{Q}) \approx \operatorname{range}(\mathbf{A})$ 

#### Applications:

- Singular Value Decomposition
- Principal Component Analysis
- Low-Rank Matrix Factorization
- Reduced-order Modeling, a.k.a. Model Reduction
- Manifold Learning

## Orthogonal Projectors



#### Orthonormal Matrix: Q

$$\mathbf{Q} \in \mathbb{R}^{m \times n}$$
 with  $m > n$  and  $\mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{I}_n$ 

#### Orthogonal Projector: **QQ**<sup>T</sup>

$$\mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{x} \in \mathrm{range}(\mathbf{Q})$$
 and  $\|\mathbf{Q}^{\mathsf{T}}\mathbf{x}\|_2 = \|\mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{x}\|_2 \le \|\mathbf{x}\|_2$ 

$$\mathbf{x} \in \text{range}(\mathbf{Q}) \Rightarrow \mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{x}$$

$$\mathbf{x} \in \text{nullspace}(\mathbf{Q}) \Rightarrow \mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{0}$$

#### Norm Decomposition

$$\|\mathbf{x}\|_2^2 = \|\mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{x}\|_2^2 + \|(\mathbf{I}_m - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{x}\|_2^2$$

## Orthogonal Projectors and RRF



Given:  $\mathbf{A} \in \mathbb{R}^{m \times n}$  with m > n

Find:  $\mathbf{Q} \in \mathbb{R}^{m \times k}$  such that  $\operatorname{range}(\mathbf{Q}) \approx \operatorname{range}(\mathbf{A})$ 

$$\|\mathbf{A}\|_{\mathrm{F}}^2 = \|\mathbf{Q}\mathbf{Q}^{\intercal}\mathbf{A}\|_{\mathrm{F}}^2 + \|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\intercal})\mathbf{A}\|_{\mathrm{F}}^2$$

 $pprox \mathbf{A}$ 

(Squared)
Subspace Error

13 May 2024

SIAM LA24 Minitutorial 1 (MT1) Randomized Linear Algebra

## (Compact) Singular Value Decomposition





 $m \times n$ 

 $m \times r$ orthonormal

$$r = \operatorname{rank}(\mathbf{A})$$

Connections to Norms:

$$\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2(\mathbf{A})} \qquad \|\mathbf{A}\|_2 = \sigma_1(\mathbf{A})$$

$$\|\mathbf{A}\|_2 = \sigma_1(\mathbf{A})$$

## (Economy) Singular Value Decomposition





13 May 2024

SIAM LA24 Minitutorial 1 (MT1) Randomized Linear Algebra

## Eckart-Young Theorem, 1936



Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  with  $r = \text{rank}(\mathbf{A})$ 

Denote its compact SVD by  $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\intercal = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\intercal$ 

For k < r, the best rank-k approximation to **A** is the rank-k truncated SVD

$$\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\intercal = \mathbf{U}_k \mathbf{U}_k^\intercal \mathbf{A} = \sum_{j=1}^k \sigma_j \mathbf{u}_j \mathbf{v}_j^\intercal$$

In this case,

$$\left\|\mathbf{A} - \mathbf{A}_k \right\|_{\mathrm{F}} = \left(\sum_{j > k} \sigma_j^2\right)^{\frac{1}{2}}$$
 and  $\left\|\mathbf{A} - \mathbf{A}_k \right\|_2 = \sigma_{k+1}$ 

## **Optimal Subspace Error**



Optimal Rank-k Approximation:  $\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\intercal$ 

Optimal k-Dimension Subspace:  $\mathbf{Q}^* = \mathbf{U}_k$ 

#### **Frobenious Norm**

$$\min_{\mathbf{Q} \in \mathbb{O}^{m \times k}} \| (\mathbf{I} - \mathbf{Q} \mathbf{Q}^\intercal) \mathbf{A} \|_{\mathrm{F}}$$

$$= \|(\mathbf{I} - \mathbf{U}_k \mathbf{U}_k^{\intercal}) \mathbf{A}\|_{\mathrm{F}}$$

$$= \|\mathbf{A} - \mathbf{U}_k \mathbf{U}_k^{\mathsf{T}} \mathbf{A} \|_{\mathrm{F}}$$

$$=\|\mathbf{A}-\mathbf{A}_k\|_{\mathrm{F}}$$

$$= \left(\sum_{i=k+1}^r \sigma_i^2\right)^{\frac{1}{2}}$$

#### 2-Norm

$$\min_{\mathbf{Q} \in \mathbb{O}^{m \times k}} \| (\mathbf{I} - \mathbf{Q} \mathbf{Q}^{\mathsf{T}}) \mathbf{A} \|_{2}$$

$$= \|(\mathbf{I} - \mathbf{U}_k \mathbf{U}_k^\intercal) \mathbf{A} \|_2$$

$$=\|\mathbf{A}-\mathbf{U}_k\mathbf{U}_k^\intercal\mathbf{A}\|_2$$

$$= \|\mathbf{A} - \mathbf{A}_k\|_2$$

$$=\sigma_{k+1}$$

## Calculating Optimal Subspace





## Randomized Range Finder





#### RRF MATLAB Code

```
function Q = rrf(A,k,p)
Omega = rand(size(A,2),k+p);
Ahat = A * Omega;
[Q,~,~] = svd(Ahat, "econ");
end
```

#### **Alternative to SVD**

$$[Q, \sim, \sim] = qr(Ahat, "econ");$$

#### Average RRF Error Bounds

Halko, Martinsson, Tropp, 2011





 $\hat{k} = k + p$  p = oversampling parameter

 $\mathbb{E}\Big[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_{\mathrm{F}}\Big] \leq \left(1 + \frac{k}{p-1}\right)^{\frac{1}{2}} \left(\sum_{j>k} \sigma_{j}^{2}\right)^{\frac{1}{2}}$ optimal error

Accuracy depends on decay of singular values!

$$\mathbb{E}\Big[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_2\Big] \le \left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1} + \frac{e\sqrt{k+p}}{p}\left(\sum_{j=k+1}^r \sigma_j^2\right)^{\frac{1}{2}}$$

$$\leq \left(1 + \sqrt{\frac{k}{p-1}} + \frac{e\sqrt{k+p}}{p}\sqrt{\min\{m,n\} - k}\right)\underbrace{\sigma_{k+1}}_{\text{optimal error}}$$

#### Probabilistic RRF Error Bounds

Halko, Martinsson, Tropp, 2011





$$\hat{k} = k + p$$
 $p =$  oversampling parameter

$$\mathbb{E}\Big[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_{\mathrm{F}}\Big] \leq \left(1 + \frac{k}{p-1}\right)^{\frac{1}{2}} \left(\sum_{j>k} \sigma_{j}^{2}\right)^{\frac{1}{2}}$$
optimal error

For  $p \ge 4$  and any  $u, t \ge 0$ :

$$\mathbb{P}\left\{\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_{\mathrm{F}} \leq \left(1 + t\sqrt{\frac{3k}{p-1}}\right) \left(\sum_{j>k} \sigma_{j}^{2}\right)^{\frac{1}{2}} + ut\frac{e\sqrt{k+p}}{p+1}\sigma_{k+1}\right\} \geq 1 - \left(2t^{-p} + e^{-\frac{u^{2}}{2}}\right)$$

#### RRF Error Bounds (Halko, Martinsson, Tropp, 2011)





$$\hat{k} = k + p$$
 $p =$  oversampling parameter

Accuracy depends on decay of singular values!

$$\mathbb{E}\Big[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_{\mathrm{F}}\Big] \leq \left(1 + \frac{k}{p-1}\right)^{\frac{1}{2}} \underbrace{\left(\sum_{j>k} \sigma_{j}(\mathbf{A})\right)^{\frac{1}{2}}}_{\text{optimal error}}$$

To improve accuracy:

- 1) Increase p
- 2) Power iterations

$$\mathbb{E}\Big[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_2\Big] \le \left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1} + \frac{e\sqrt{k+p}}{p}\left(\sum_{j>k}\sigma_j^2\right)^{\frac{1}{2}}$$

$$\leq \left(1 + \sqrt{\frac{k}{p-1}} + \frac{e\sqrt{k+p}}{p}\sqrt{\min\{m,n\} - k}\right)\underbrace{\sigma_{k+1}(\mathbf{A})}_{\text{optimal error}}$$

## RRF with Power Iterations (Improved Error Bnd)



$$range(\mathbf{A}) = range((\mathbf{A}\mathbf{A}^{\mathsf{T}})^q \mathbf{A}) \qquad (\mathbf{A}\mathbf{A}^{\mathsf{T}})^q \mathbf{A} = \mathbf{U}\mathbf{\Sigma}^{2q+1} \mathbf{V}^{\mathsf{T}}$$

$$(\mathbf{A}\mathbf{A}^\intercal)^q\mathbf{A} = \mathbf{U}\mathbf{\Sigma}^{2q+1}\mathbf{V}^\intercal$$

#### **RRF MATLAB Code**

```
function Q = rrf(A, k, p, q)
Omega = rand(size(A, 2), k+p);
Ahat = A * Omega;
[Q, \sim, \sim] = svd(Ahat, "econ");
for i = 1:q
     [Q, \sim, \sim] = svd(A'*Q, "econ");
     [0, \sim, \sim] = svd(A*0, "econ");
end
end
```

```
range(\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{\Omega})
                       = \operatorname{range}(\mathbf{A}\mathbf{A}^{\intercal}\mathbf{Q}) \text{ with } \mathbf{Q} \leftarrow \operatorname{range}(\mathbf{A}\mathbf{\Omega})
```

 $= \operatorname{range}(\mathbf{AQ}) \text{ with } \mathbf{Q} \leftarrow \operatorname{range}(\mathbf{A}^{\mathsf{T}}\mathbf{Q})$ 

 $= \operatorname{range}(\mathbf{Q}) \text{ with } \mathbf{Q} \leftarrow \operatorname{range}(\mathbf{AQ})$ 

$$\mathbb{E}\left[\|(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}})\mathbf{A}\|_{2}\right] \leq \left(1 + \sqrt{\frac{k}{p-1}} + \frac{e\sqrt{k+p}}{p}\sqrt{\min\{m,n\} - k}\right)^{1/(2q+1)} \underbrace{\sigma_{k+1}(\mathbf{A})}_{\text{optimal error}}$$

Halko, Martinsson, Tropp, 2011



## Randomized SVD

- Halko, N., P.-G. Martinsson, and J. A. Tropp (2011). Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, doi:10.1137/090771806
- Brunton, S. L. and J. N. Kutz (2019). Data Driven Science & Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press
- Martinsson, P.-G.(2020). Randomized methods in linear algebra and their applications in data science.
  - URL: <a href="http://users.oden.utexas.edu/~pgm/2020\_kth\_course/">http://users.oden.utexas.edu/~pgm/2020\_kth\_course/</a>

## Application of RRF: Randomized SVD (RSVD)



These methods don't work particularly well if the low-rank assumption is not satisfied!



#### **RSVD** in Pictures

SVD complexity:  $\mathcal{O}(mn^2)$ 





## End of Part 1