Propensity Score Diagnostics

Emily Granger

Jamie C. Sergeant

Mark Lunt

Propensity scores are becoming increasingly popular

Figure 1: Number of propensity score publications in medical research by year

Review on the use of propensity score diagnostics

 Recent review on the use of propensity score diagnostics in the applied medical literature [Granger et al. 2020]

- Inclusion criteria:
 - Publication years 2014-2016
 - High-impact journals (Impact Factor > 4)
- Extracted data on:
 - Research area
 - Propensity score method used
 - Diagnostics used

Review on the use of propensity score diagnostics

Key Findings:

- 894 studies included
- 20.9% did not report use of any diagnostic
- 36.6% used hypothesis tests

Aim 1:

Review and compare the existing propensity score diagnostics.

Aim 2:

Individual Diagnostics

Overall Diagnostics

Aim 2:

Individual Diagnostics

Overall Diagnostics

Aim 2:

Individual diagnostics

Mean-based

- Standardised difference (SD)
- t-test statistic (t)
- Percent reduction in mean difference (PR)

Distribution-based

Overlapping coefficient (OVL)

 Kolmogorov-Smirnov
 Statistic (KS)

Cumulative prevalence of exposure

Notation: exposure indicator for subject $i: E_i$, propensity score for subject $i: PS_i$, sample size: n.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

Cumulative prevalence of exposure

Notation: exposure indicator for subject $i: E_i$, propensity score for subject $i: PS_i$, sample size: n.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

•
$$ECP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} PS_i$$

Cumulative prevalence of exposure

Notation: exposure indicator for subject $i: E_i$, propensity score for subject $i: PS_i$, sample size: n.

For continuous variable *X*:

•
$$OCP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} E_i$$

•
$$ECP_X(X_0) = \frac{1}{n} \sum_{i:X_i \le X_0} PS_i$$

•
$$D_X = |OCP_X - ECP_X|$$

Propensity score model:

• logit(PS)=
$$\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_7 X_7 + \alpha_8 X_8$$

Variation between scenarios:

Correct PS:

$$S1: X_8 = 0$$

Linear model

Propensity score model:

• logit(PS)=
$$\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_7 X_7 + \alpha_8 X_8$$

Variation between scenarios:

Correct PS:

S1:
$$X_8 = 0$$
 Linear model

S2:
$$X_8 = 0.4(3.5^{X_1} - 1)$$
 Nonlinearity added (monotonic)

Propensity score model:

• logit(PS)=
$$\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_7 X_7 + \alpha_8 X_8$$

Variation between scenarios:

Correct PS:

S1:
$$X_8 = 0$$
 Linear model

S2:
$$X_8 = 0.4(3.5^{X_1} - 1)$$
 Nonlinearity added (monotonic)

S3:
$$X_8 = X_4X_5$$
 Binary-binary interaction

S4:
$$X_8 = X_4X_1$$
 Binary-continuous interaction

S5:
$$X_8 = X_1 X_2$$
 Continuous-continuous interaction

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_7 X_7 + \alpha_8 X_8$

Variation between scenarios:

Correct PS:		Incorrect PS:
S1: $X_8 = 0$	Linear model	$X_1 = 0$
S2: $X_8 = 0.4(3.5^{X_1} - 1)$	Nonlinearity added (monotonic)	$X_8=0$
S3: $X_8 = X_4 X_5$	Binary-binary interaction	$X_8 = 0$
S4: $X_8 = X_4 X_1$	Binary-continuous interaction	$X_8 = 0$
S5: $X_8 = X_1 X_2$	Continuous-continuous interaction	$X_8 = 0$

Scenario 1: Omission of a linear term

SD: standardised difference

t: t-test statistic

PR: percent reduction in mean prevalence

KS: Kolmogorov-Smirnov statistic

OVL: overlapping coefficient

CP: cumulative prevalence

Scenario 1: Omission of a linear term

SD: standardised difference

t: t-test statistic

PR: percent reduction in mean prevalence

KS: Kolmogorov-Smirnov statistic

OVL: overlapping coefficient

CP: cumulative prevalence

Decreasing sample size

Decreasing R^2 1 2 3 20%, 5000 20%, 2000 20%, 5000 4 5 6 10%, 5000 10%, 2000 10%, 5000 7 8 9 5%, 5000 5%, 2000 5%, 500

Scenario 2: Misspecification of a non-linear term

Scenarios 3-5: Omission of an interaction term

Figures:

- Scenario 3 (top left)
- Scenario 4 (top right)
- Scenario 5 (bottom left)
- binary-binary
- binary-continuous
- continuous-continuous

Conclusions (so far)

 Mean-based diagnostics can fail to identify nonlinear misspecifications in the propensity score

 Distribution-based diagnostics least reliable at identifying omission of interactions terms.

 Cumulative prevalence diagnostics most useful for identifying all types of propensity score misspecification.

But.....

NIH Public Access Author Manuscript

Am J Epidemiol. Author manuscript; available in PMC 2007 June 15.

Published in final edited form as: Am J Epidemiol. 2006 June 15; 163(12): 1149-1156.

Variable selection for propensity score models.

M. Alan Brookhart¹, Sebastian Schneeweiss¹, Kenneth J. Rothman^{1,2}, Robert J. Glynn^{1,3}, Jerry Avorn¹, and Til Stürmer¹

1 Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA

O December of Feldowistons and Madieles - Penton Hebrarity Madies Contac - Baston - MA

NIH Public Access

Author Manuscript

pidemiol Drug Saf. Author manuscript; available in PMC 2012 June 1.

Published in final edited form as:

Pharmacoepidemiol Drug Saf. 2011 June; 20(6): 551-559. doi:10.1002/pds.2098.

The implications of propensity score variable selection strategies in pharmacoepidemiology - an empirical illustration

Amanda R. Patrick¹, Sebastian Schneeweiss¹, M. Alan Brookhart², Robert J. Glynn^{1,3}, Kenneth J. Rothman⁴, Jerry Avorn¹, and Til Stürmer²

¹Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States

²Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina

³Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts

⁴RTI Health Solutions, Research Triangle Park, NC

Abstract

Purpose—To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality and hip fracture assuming a true mortality reduction of <15% and no effect on hip fracture.

Methods—We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios

NIH-PA Author Man

Individual Diagnostics

Overall Diagnostics

Aim 2:

Overall diagnostics

Which balance metric?

- Standardised difference (SD)
- Overlapping coefficient (OVL)
- Kolmogorov-Smirnov Statistic (KS)

Which weighting scheme?

Let w_{ji} denote the j^{th} weight for covariate i. Then:

- $w_{1i} = \gamma_i Std.Dev(x_i)$ [Caruana et al. 2015]
 - γ_i is the coefficient for x_i obtained after regressing outcome on x_i .
- $w_{2i} = \delta_i Std. Dev(x_i)$
 - δ_i is the coefficient for x_i obtained after regressing outcome on all covariates.

Overall diagnostics

Which balance metric

- Standardised difference (SI
- Overlapping coefficient (O'
- Kolmogorov-S Statistic (KS)

Disease risk scores (DRS)
 defined as predicted
 outcome under the control
 condition

 Standardised mean difference in DRS as a propensity score diagnostic [Stuart et al. 2013] g scheme?

^h weight for

aruana et al. 2015] for x_i obtained after e on x_i .

for x_i obtained after e on all covariates.

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_9 X_9$

Outcome model:

• $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots, \beta_9 X_9 + \beta_{10} X_{10}$

Linear and Non-linear Scenarios:

S1: $X_{10} = 0$ Independent baseline covariates

S2: $X_{10} = 0$ Correlated baseline covariates

S3: $X_{10} = 0.2(6.0^{X_1} - 1)$ Monotonic non-linearity

Propensity score model:

• logit(PS)= $\alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \ldots, \alpha_9 X_9$

Outcome model:

• $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots, \beta_9 X_9 + \beta_{10} X_{10}$

Non-additive Scenarios:

S4: $X_{10} = X_1 X_5$ Binary-binary interaction

S5: $X_{10} = X_1 X_2$ Binary-continuous interaction

 $S6:X_{10} = X_2X_7$ Continuous-continuous interaction

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

^{*}SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

^{*}SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

^{*}SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Table 1: Spearman rank correlation between overall diagnostics and bias

Scenario	Balance Metric	Weights 1	Weights 2	SD(DRS)
Scenario 1	SD	0.992	0.996	1.000
	KS	0.137	0.134	
	OVL	0.012	0.016	
Scenario 2	SD	0.129	0.995	1.000
	KS	0.102	0.142	
	OVL	0.031	0.053	

^{*}SD: Standardised difference; KS: Kolmogorov-Smirnov statistic; OVL: Overlapping coefficient; DRS: Disease risk score

Scenario 2: Non-linear term in outcome model

Scenario 2: Non-linear term in outcome model

Scenarios 3-5: Interaction term in the outcome model

Figures:

- Scenario 3 (top left)
- Scenario 4 (top right)
- Scenario 5 (bottom left)
- binary-binary
- binary-continuous
- continuous-continuous

Conclusions

 Main finding: Standardised mean difference in the disease risk score is a promising overall diagnostic

Limitations:

- (1) Not robust to misspecifications in the outcome model
- (2) Performance dependent on sample size

Possible solutions:

- (1) Use of CP diagnostics to check specification
- (2) Using full sample or historic cohort to estimate DRS

Aims of research

Individual Diagnostics

Overall Diagnostics

Aim 2:

Develop guidelines for how to build and assess propensity score models.

STEP 1:

Choose variables

STEP 2:

Check individual covariates

using CP diagnostics

STEP 3: Check overall balance using DRS

STEP 1: Choose variables

STEP 2: Check individual covariates using CP diagnostics

STEP 3: Check overall balance using DRS

STEP 1: Choose variables

STEP 2: Check individual covariates using CP diagnostics Model

STEP 3: Check overall balance using DRS

STEP 1: Choose variables

STEP 2: Check individual covariates using CP diagnostics

Thank you for listening

References

- [1] Granger, E et al. A review of the use of propensity score diagnostics in papers published in high-ranking medical journals. *BMC Research Methodology.* 2020.
- [2] Brookhart, MA et al. Variable selection for propensity score models. *American Journal of Epidemiology.* 2006.
- [3] Patrick, AR. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. *Pharmacoepidemiology and Drug Safety.* 2011.
- [4] Caruana, E et al. A new weighted balance measure helped to select the variables to be included in a propensity score model. *Journal of Clinical Epidemiology.* 2015.
- [5] Stuart, EA et al. Prognostic score-based balance measures for propensity score methods in comparative effectiveness research. *Journal of Clinical Epidemiology.* 2013

Scenario 2: Non-linear (stratification)

Scenarios 3-5: Interaction terms (stratification)

Figures:

- Scenario 3 (top left)
- Scenario 4 (top right)
- Scenario 5 (bottom left)
- binary-binary
- binary-continuous
- continuous-continuous

Additional weights: Binary outcome

$$w_{3i} = 1 + \log(OR_{X_iY}) - \frac{1}{p} \sum_{k=1}^{p} \log(OR_{X_kY})$$

$$w_{4i} = 1 + \sqrt{\log(OR_{X_iY})} - \frac{1}{p} \sum_{k=1}^{p} \sqrt{\log(OR_{X_kY})}$$

$$w_{5i} = 1 + |\log(OR_{X_iY})| - \frac{1}{p} \sum_{k=1}^{p} |\log(OR_{X_kY})|$$

Belitser, SV et al. Measuring balance and model selection in propensity score methods. *Pharmacoepidemiology and Drug Safety.* 2011

Additional scenario: Binary outcome (matching)

Additional scenario: Binary outcome (stratification)

