Aprendizaje Automático Segundo Cuatrimestre de 2016

Reducción de Dimensionalidad

Ejemplo: Procesamiento del Habla

Señal de audio cruda: 16bits @ 8-16kHz

- La señal se corta en segmentos de ancho variable (desde 10ms hasta varios segundos).
- Pueden extraerse cientos de atributos de cada segmento.
 - Ejemplo: OpenSmile.
 - (34 low-level descriptors (pcm_loudness, mfcc, logMelFreqBand, f0finEnv, etc.) + 34 delta coefficients)
 x 21 functionals (max, min, quartiles, mean, etc.) +

Tantos atributos pueden causar problemas...

- Eficiencia del entrenamiento:
 - Espacio de hipótesis crece con | Atributos | .
 - Ej: árboles de decisión: $O(|Instancias| \cdot |Atributos|^2)$
- Calidad del modelo entrenado:
 - Por atributos no independientes (ej: NB);
 - Por atributos sin información (ej: kNN).
- Costo de extracción:
 - Algoritmos no triviales de extracción.
- Costo de almacenamiento y transmisión:
 - Ej: para Reconocimiento del Habla, se usan vectores de 40 atributos extraídos cada 10ms (4000 atr/seg).

Otro ejemplo

Reconocimiento de caras

- Cara: NxM pixels (ej: 640 x 480 ~ 300k atributos)
- Las caras humanas son todas parecidas, con pequeñas variaciones que las distinguen.
- Desafío: codificar eficientemente esas variaciones.

Selección de Atributos

Dados:

F: conjunto de atributos

L: algoritmo de aprendizaje

D: datos de entrenamiento

Perf: medida del desempeño (accuracy, F-measure, etc.)

• Buscamos la mejor selección de atributos S:

$$\underset{S \subseteq F}{\operatorname{argmax}} \ \operatorname{Perf}(S, L, D)$$

Búsqueda Exhaustiva

1. Para cada $S \in Partes(F)$:

Computar Perf(S, L, D)

2. Retornar S con mejor medida de desempeño Perf

- Encuentra la mejor solución, pero en tiempo exponencial en |F|.
- Debemos usar técnicas aproximadas de búsqueda.
 - AyED3, Metaheurísticas, etc.

Ranking de Atributos

1. Elegir una métrica para evaluar un atributo A:

Ejemplos:
$$Ganancia(D,A) = H(D) - \sum_{v \in Valores(A)} \frac{|D_v|}{|D|} H(D_v)$$
 $GainRatio(D,A)$

- 2. Evaluar cada atributo individualmente.
- 3. Generar un ranking.
- 4. Quedarse con los *k* mejores atributos.

Problemas:

- Atributos parecidos pueden monopolizar los top-k.
- No captura interacciones entre atributos.

Greedy Forward Selection

 Partiendo del conjunto vacío, agregar de a uno los atributos que más mejoren el desempeño.

1.
$$S \leftarrow \emptyset$$

2.
$$f_{mejor} \leftarrow \underset{f \in F}{\operatorname{argmax}} \operatorname{Perf}(S \cup \{f\}, L, D)$$

3. Si
$$Perf(S \cup \{f_{mejor}\}, L, D) > Perf(S, L, D)$$
:

i.
$$S \leftarrow S \cup \{f_{mejor}\}$$

ii.
$$F \leftarrow F \setminus \{f_{mejor}\}$$

iii. Si
$$F \neq \emptyset$$
: Volver al paso 2.

4. Retornar S

Greedy Backward Elimination

 Partiendo del conjunto con todos los atributos, borrar de a uno los atributos que más empeoren el desempeño.

1.
$$S \leftarrow \text{copia de } F$$

2.
$$f_{peor} \leftarrow \underset{f \in S}{\operatorname{argmax}} \operatorname{Perf}(S \setminus \{f\}, L, D)$$

3. Si
$$Perf(S \setminus \{f_{peor}\}, L, D) > Perf(S, L, D)$$
: $S \leftarrow S \setminus \{f_{peor}\}$ Volver al paso 2.

4. Retornar S

Búsqueda Hill-Climbing (Best-First)

- Comenzar con $S \subseteq F$ elegido al azar.
- Definimos a los vecinos de S como:
 - $S \cup \{f\}$ para algún $f \notin S$
 - $-S \setminus \{f\}$ para algún $f \in S$
- En cada iteración, buscar el vecino de *S* con mejor desempeño.
- Terminar cuando no se pueda mejorar.

Transformación de Atributos

- Reconocimiento de caras
- Cara: NxM pixels (ej: 640 x 480 ~ 300k atributos)
- Queremos codificar eficientemente las variaciones de las diferentes caras.
 - Selección de atributos: no ayuda.
 - Principal Component Analysis (PCA).

- En el ejemplo anterior mostramos puntos rojos y azules, pero la elección de x' e y' se hace a ciegas de las clases de las instancias.
- PCA es independiente de las clases de las instancias.
- Por eso, sirve también para aprendizaje no supervisado.

• Datos: Observaciones $\{\mathbf{x}_n\}$ donde n = 1, ..., NCada \mathbf{x}_n es un vector de D dimensiones.

• Objetivo:

- a) Proyectar los datos a un espacio de M < D dimensiones,
- b) Maximizando la varianza de los datos proyectados.
 - o bien, equivalentemente:
- b') Minimizando el error cuadrático medio de las proyecciones.

(Bishop, capítulo 12)

• Ambas definiciones de PCA llevan a la misma equación:

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

donde **S** es la matriz de covarianza:

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}$$

- **u**_i: autovectores de S. Componentes del nuevo espacio.
- λ_i : autovalores de S. Varianza de los datos en la dirección \mathbf{u}_i .
- PCA: Ordenar las nuevas componentes \mathbf{u}_i según λ_i .

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

- **u**_i: autovectores de S. Componentes del nuevo espacio.
- λ_i : autovalores de S. Varianza de los datos en la dirección \mathbf{u}_i .
- PCA: Ordenar las nuevas componentes \mathbf{u}_i según λ_i .
- ¿Cuántas componentes?

Aplicación de PCA: Compresión de datos con pérdida (lossy compression).

Eigenfaces

http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Base de datos de caras: $\{\mathbf{x}_n\}$, cada \mathbf{x}_n tiene D pixels

Autovectores: (25 principales)

Eigenfaces

http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Reconstrucción Agregando 1 componente principal cada vez.

ReconstrucciónAgregando 8 componentes principales cada vez.

Resumen

- Reducción de dimensionalidad
- Selección de atributos: ranking, greedy, etc.
- Transformación de atributos: PCA