Haut voltage dans les procédés agroalimentaires

Taha BAANTAR

SCEI: 31653

Session: 2025

• Plan

- I. Motivation et Problématique
- II. Exigences et proposition de générateur
- III. Calcul numérique, Simulation Python
- IV. Analyse expérimentale

I - Motivation

Figure 1: Machine PEF (Pulsed electric field)

Figure 2: Pomme de terres entrant un champ de haute tension

Figure 3 : Déactivation des cellules bacteries par un champ électrique

Ce procédure nécessite un champ d'intensité 20-80 kV/cm!

Problématique

Comment pouvons-nous produire une haute tension avec un coût minimal et une efficacité élevée pour fabriquer une machine PEF?

II – Exigences

- Le générateur doit être flexible. (Selon le type d'aliment a traiter)
- Les composants doivent être abordables.
- Le générateur doit être capable de générer une haute tension sans panne. (Ordre de kV)

Proposition de circuit

Figure 4 : Générateur Cockcroft-Walton a n étages

$$\left| V_{\scriptscriptstyle S} = 2nV_{e} - 2nV_{d} \right|$$
 \cdot $V_{\scriptscriptstyle d}$: Tension de seuil de diode

Principe de fonctionnement

Premiere demi-cycle:

• Le condensateur C1 se charge par le générateur et les autres se chargent par les condensateurs au dessous

Deuxiéme demi-cycle:

• Chaque condensateur en haut se décharge sur les condensateurs en bas

· Ce cycle se répète jusqu'à ce que l'équilibre soit atteint dans cette situation

Les condensateurs en séries nous donnons:

$$V_s = 2nV_e - 2nV_d$$

• Pour 1 étage

En approximant que $V(t) = \pm V_e$ qui varie a chaque dt

Avec la loi de Kirchhoff:

$$V_e(t) = \begin{cases} Uc_1(t) + V_d & \text{Si } V_e(t) < 0 \\ Uc_1(t) - Uc_2(t) + V_d & \text{Sinon} \end{cases}$$

A chaque demi-cycle, on a les condensateurs sont en serie, donc:

$$\frac{dUc_1}{dt} = -\frac{dUc_2}{dt}$$

• V_d : Tension de seuil de diode

En ajustant les tensions en des suites récurrents pour chaque demi-cycle:

$$\begin{cases} Uc_1(t) = Uc_1(n) \\ Uc_2(t) = Uc_2(n) \end{cases}$$

Nous trouvons:

$$Uc_2(n+2) = \frac{Uc_2(n)}{2} + V_e - V_d$$
 Avec $Uc_2(0) = 0$

Alors cette suite converge vers:

$$V_s = \lim_{n \to \infty} U_{c2}(n) = 2(V_e - V_d)$$

• Pour n étages

• Le circuit est une simple cascade du circuit précédent

• En utilisant la loi de kirchhoff a chaque étage, Nous trouvons:

Si
$$V(t) < 0$$
:
$$\begin{cases} V_e = Uc_1 + V_d \\ \forall i \in [2, n], \quad Uc_i = V_d + Uc_{i+1} \end{cases}$$

Sinon:
$$\begin{cases} V_e + Uc_1 = Uc_2 + V_d \\ \forall i \in [3, n+1], \quad Uc_i = V_d + Uc_{i+1} \end{cases}$$

• Difficile a calculer par main , Nous utilisons un calcul numérique !

III – Calcul numérique

On prend pour valeurs:

- $V_e = 10V$
- $V_d = 0.7V$ (Diode silicium)
- C independante d'étude
- Valeur finale: 37,2 V

Cela est conforme avec la formule

• Valeur finale: 74,39 V

• Valeur finale: 111,2 V

Cela est conforme avec la formule

· Temps de réponse :

$$Uc_1(t) = (V_e - V_d)(1 - exp(-t/RC))$$

Avec:

- R : Resistance interne de condensateur
- C : Capacitance de condensateur

Une très haute fréquence et une très basse fréquence peut diminuer le temps de réponse!

Il existe une fréquence maximale

En tenant compte de frequence et valeurs de capacitance :

- $C = 10^{-3}$ F
- $R = 10 \Omega$
- $V_e = 10 \text{ V}$

IV- Analyse expérimentale

Oscilloscope-

Générateur de fonction

Platine d'expérimentation

· Circuit du générateur a 2 étages :

Valeurs utilisées :

Condensteur électrolytique 0,47 μF Resistance interne : 0,1 – 10 Ω

Diode 1N4007 (Diode Silicon) $V_d = 0.7 \text{ V}$

Au pire des cas , où $R=10~\Omega$:

$$f_{max} = \frac{1}{RC} = 212 \text{ kHz}$$

• On prend f=60~Hz pour mieux simuler un signal d'entrée d'un prise électrique

• Lecture Oscilloscope

Entrée : $V_{\text{max}(1)} = 7.80V$ Sortie : $V_{\text{max}(2)} = -27.6V$

Sortie attendu: 28.4 V

Entrée : $U_{\text{max}(1)} = 9.20U$

Sortie: Umax(2) = 32.8U

Sortie attendu: 34 V

- Pertes possibles:
 - Effet résistive du condensateur :

$$V_{résistance} = RI$$

- Impedance du condensateur :

$$V_{\text{impédance}} = |Z_C|I = \frac{1}{2\pi fC}I$$

- Effet inductive des câbles (Négligable car f est petite)

• Mais des pertes deviennent négligeables devant une sortie de haute tension (kV)

Figure 4 : Arc électrique de potentiel de 100 kV d'un entrée de 10 kV (x10 multiplication)

Source: Mirko Pavelski [https://www.youtube.com/watch?v=EFtNDtW804Q]

• Verification des exigences :

- ✓ Le générateur est flexible , On peut changer la multiplication du tension en modifiant le cascade du circuit.
- ✓ Les composants (Condensateurs , Diodes) sont abordables.
- ✓ Le générateur est capable de produire des hautes tensions.

✓ Donc ce circuit est capable d'étre integré dans une machine PEF!

Merci pour votre attention!

· Annexe : Code Python pour le tracé d'évolution de tension sortie

```
import numpy as np
import matplotlib.pyplot as plt
n = 4
E = 10
Values = 1000
diode voltage = 0.7
Voltage_Capacitor = [[0 for i in range(Values)] for i in range(2*n)]
for i in range(0, Values, 2):
    Voltage Capacitor[0][i] = E - diode voltage
    for j in range(0,2*n-2,2):
        Voltage Capacitor[j+1][i] = (Voltage Capacitor[j+1][i-1]+Voltage Capacitor[j+2][i-1] - diode voltage)/2
        Voltage Capacitor[j+2][i] = Voltage_Capacitor[j+1][i] + diode_voltage
        Voltage Capacitor[j+3][i] = Voltage Capacitor[j+3][i-1]
    for j in range(0,2*n,2):
        Voltage_Capacitor[j][i+1] = (Voltage_Capacitor[j][i]+Voltage_Capacitor[j+1][i] - E*(j == 0) + diode_voltage)/2
        Voltage_Capacitor[j+1][i+1] = Voltage_Capacitor[j][i+1] + E*(j == 0) - diode_voltage
array_sum = np.sum([Voltage_Capacitor[2*i+1] for i in range(0,n)],axis=0)
plt.plot(array_sum,label = "V_s")
plt.title("Générateur Cockcroft-Walton (CW) à "+str(n)+" étages")
plt.xlabel("Nombre de cycles")
plt.ylabel("Voltage (V)")
plt.legend()
plt.grid()
plt.show()
```

Annexe : Code Python pour la comparaison des fréquences

```
# Voltage_Capacitor[0] = U1 ...
# Voltage Capacitor[1] = U2 ...
import numpy as np
import matplotlib.pyplot as plt
def update voltage(old, target, t, resistor, capacitance):
        return target + (old - target)*np.exp(-t/(resistor*capacitance))
def sinFunction(E,t,frequency):
    return E*np.sin(t*frequency*2*np.pi)
cap resistor = 10
cap capacitance = 1e-3
diode_voltage = 0.7
Values = 300000
n = 2
timeStop = 0.1
time = np.linspace(0,timeStop,Values+1)
```

Annexe : Code Python pour la comparaison des fréquences

```
def CWGen(E,frequency):
  dt = time[1] - time[0]
  Voltage_Capacitor = [[0 for _ in range(Values+1)] for _ in range(2*n)]
  i = 1
  t = 0
  while t < timeStop and i <= Values:
     if sinFunction(E,t,frequency) < 0:</pre>
         for j in range(0,2*n,2):
             #Cycle 2 AC
             Voltage_Capacitor[j][i] = update_voltage(Voltage_Capacitor[j][i-1],(Voltage_Capacitor[j][i-1]+Voltage_Capacitor[j+1]
             [i-1]-E*(j == 0))/2,1/frequency,2*cap_resistor,cap_capacitance/2)
             Voltage_Capacitor[j+1][i] = Voltage_Capacitor[j][i] + E*(j == 0)
        Voltage_Capacitor[0][i] = update_voltage(Voltage_Capacitor[0][i-1],E-diode_voltage,1/frequency,cap resistor,
        cap capacitance)
        for j in range(0,2*n-2,2):
           Voltage Capacitor[j+1][i] = update voltage(Voltage Capacitor[j+1][i-1],(Voltage Capacitor[j+1][i-1]+Voltage Capacitor[j
           +2][i-1])/2,1/frequency,2*cap_resistor,cap_capacitance/2)
           Voltage_Capacitor[j+2][i] = Voltage_Capacitor[j+1][i]
           Voltage_Capacitor[j+3][i] = Voltage_Capacitor[j+3][i-1]
     t += dt
     i += 1
  return Voltage Capacitor
```

Annexe : Code Python pour la comparaison des fréquences

```
Voltage Capacitor = CWGen(10,50000)
     Voltage Capacitor2 = CWGen(10,5000)
     Voltage Capacitor3 = CWGen(10,500)
     Voltage Capacitor4 = CWGen(10,100)
     plt.xlabel("Time (s)")
     plt.ylabel("Voltage (V)")
     plt.title("Générateur Cockcroft-Walton (CW) à "+ str(n) +" étages")
51
     Out = np.sum([Voltage Capacitor[2*i+1] for i in range(0,n)],axis=0)
52
     Out2 = np.sum([Voltage Capacitor2[2*i+1] for i in range(0,n)],axis=0)
     Out3 = np.sum([Voltage Capacitor3[2*i+1] for i in range(0,n)],axis=0)
     Out4 = np.sum([Voltage Capacitor4[2*i+1] for i in range(0,n)],axis=0)
     plt.plot(time,Out,label = "Sortie avec frequence 50000Hz")
     plt.plot(time,Out2,label = "Sortie avec frequence 5000Hz")
     plt.plot(time,Out3,label = "Sortie avec frequence 500Hz")
     plt.plot(time,Out4,label = "Sortie avec frequence 100Hz")
     plt.legend()
     plt.grid()
62
     plt.show()
```

· Annexe : Preuve des tensions de générateur 1 étages.

Par loi de Kirchhoff:
$$V_e + Uc_1(n+1) = V_d + Uc_2(n+1)(*)$$

On pose: $\Delta V_n = \frac{dUc_2}{dt}$

$$Uc_2(n+1) = Uc_2(n) + \Delta V_n$$

$$Uc_1(n+1) = Uc_1(n) - \Delta V_n$$

$$Uc_1(n) = V_e - V_d$$

En utilisant (*), On a:

$$V_{e} + Uc_{1}(n) - \Delta V_{n} = V_{d} + Uc_{2}(n) + \Delta V_{n}$$

$$\to \Delta V_{n} = -\frac{Uc_{2}(n)}{2} + (V_{e} - V_{d})$$
Alors:
$$Uc_{2}(n+1) = \frac{Uc_{2}(n)}{2} + V_{e} - V_{d}$$