Liam Hardiman MATH 235C

The LLL Algorithm

1 Motivation

The rows of the following matrix form a basis for a lattice L in \mathbb{R}^4 :

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

One can check that the rows of the following matrix also form a basis for the same lattice:

$$Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

Intuitively, the rows of X seem to be a "worse" basis for L than those of Y. Here we make precise the notion of a "nice" basis and introduce a polynomial time algorithm that transforms a "bad" basis into a "good" one.

2 Basis Reduction and the LLL Algorithm

A basis is "nice" if the constituent vectors are short and orthogonal to one another. The Gram-Schmidt process transforms a given basis into an orthogonal basis, but when working in a lattice L, this Gram-Schmidt basis need not live in L.

Definition 2.1. Let x_1, \ldots, x_n be an ordered basis for a lattice L in \mathbb{R}^n , and let x_1^*, \ldots, x_n^* be its Gram-Schmidt orthogonalization (GSO). Write $X = MX^*$ where X (respectively X^*) is the matrix with x_i (respectively x_i^*) as row i and $M = (\mu_{ij})$ is the matrix of GSO coefficients. Let α be a real number with $\frac{1}{4} < \alpha < 1$, called the reduction parameter (usually taken to be $\frac{3}{4}$). We say that the basis x_1, \ldots, x_n is α -reduced if it satisfies

- 1. $|\mu_{ij}| \le \frac{1}{2}$ for all $1 \le j < i \le n$,
- 2. $|x_i^* + \mu_{i,i-1}x_{i-1}^*|^2 \ge \alpha |x_{i-1}^*|^2$ for $2 \le i \le n$.

Condition (1) says that the *i*-th basis vector is "almost orthogonal" to the span of the previous i-1 vectors. The vector $x_i^* + \mu_{i,i-1}x_{i-1}^*$ is the vector one obtains when swapping vectors x_i and x_{i-1} and then computing the (i-1)-st vector of the GSO. Condition (2) then says that this new GSO vector, while potentially shorter than x_{i-1}^* isn't "too much" shorter.

$\overline{ {\bf Algorithm} \ {f 1} \ { m test} }$

```
\begin{aligned} & \textbf{if } i \geq maxval \textbf{ then} \\ & i \leftarrow 0 \\ & \textbf{else} \\ & \textbf{if } i + k \leq maxval \textbf{ then} \\ & i \leftarrow i + k \\ & \textbf{end if} \\ & \textbf{end if} \end{aligned}
```