1 Asymptotics

So far: finite-sample results.

Pros: Exactly correct/optimal **Cons**: Computations can be

- Complicated
- Intractable
- Specialized
- Reliant on particular assumptoins

Example 1.1 (Normal approximation to binomial). $X \sim \text{Binom}(n, \theta)$, n = 2000 Computing CI for θ

$$X \approx N(n\theta, n\theta(1-\theta)) \tag{1.1}$$

$$\approx N(n\theta, n\frac{x}{n}(1 - \frac{x}{n}) \tag{1.2}$$

$$\frac{X}{n} \pm z_{\alpha/2} \sqrt{\frac{\theta(1-\theta)}{n}} \tag{1.3}$$

$$\frac{X}{n} \pm z_{\alpha/2} \sqrt{\frac{\theta(1-\theta)}{n}} \tag{1.4}$$

(1.5)

Warning: Can go wrong if $\theta \approx 0$ or $\theta \approx 1$.

Example 1.2. $X_i \stackrel{\text{iid}}{\sim} p_{\theta}(X)$ i = 1, ..., n

2 Convergence in probability

Definition 2.1. A sequence X_1, X_2, \ldots of r.v.s *converges in probability* to a r.v. X if

$$\forall \varepsilon > 0 : \mathbb{P}(|X_n - X| > \varepsilon) \to 0$$
 (2.1)

Usually, *X* is constant *c*. Write as $X_n \stackrel{p}{\rightarrow} X$.

Proposition 2.2 (Chebyshev). *For any r.v.* X, *const a* > 0,

$$\mathbb{P}(|X| > a) \le \frac{\mathbb{E}X^2}{a^2} \tag{2.2}$$

Proof.

$$1_{|X|>a} \le \frac{X^2}{a^2} \tag{2.3}$$

$$\mathbb{P}(|X| > a) \le \frac{\mathbb{E}X^2}{a^2} \tag{2.4}$$

Corollary 2.3. $\mathbb{P}(|X - \mathbb{E}X| > a) \leq \frac{Var(X)}{a^2}$

Example 2.4. $X_1, X_2, \dots \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

Then
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{p}{\rightarrow} \mu$$
.

Then
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu$$
.
 $\mathbb{E}\bar{X}_n = \mu$, $Var(\bar{X}_n) = \frac{\sigma^2}{n} \to 0$ (WLLN)

Proposition 2.5 (Continuous mapping theorem). *If* f *is continuous at c, and* $X_n \stackrel{p}{\to} c$, then $f(X_n) \stackrel{p}{\to} f(c).$

Proof. Fix $\varepsilon > 0$. $\exists \delta_{\varepsilon} > 0$ with $|X - c| \le \delta_{\varepsilon} \implies |f(x) - f(c)| \le \varepsilon$.

$$\mathbb{P}(|f(X_n) - f(c)| > \varepsilon) \le \mathbb{P}(|X_n - c > \delta_{\varepsilon}) \to 0$$
(2.5)

Definition 2.6. A sequence $\delta_1, \delta_2, \ldots$ is *consistent for* $g(\theta)$ if

$$\delta_n \xrightarrow{p} g(\theta), \quad \forall \theta$$
 (2.6)

Note: $MSE(\theta, \delta_n) = Bias_{\theta}(\delta_n)^2 + Var_{\theta}(\delta_n)$ so if both $Bias \to 0$ and $Var \to 0$, then

$$MSE = \mathbb{E}[(\delta_n - g(\theta))^2] = RHS \text{ of Chebyshev} \to 0$$
 (2.7)

so δ_n is consistent.

3 Convergence in Distribution

a.k.a. weak convergence.

Definition 3.1. A sequence of r.v.s X_1, X_2, \ldots converges in distribution to X if

$$F_{X_n}(X) \to F_X(x) \tag{3.1}$$

 $\forall x \text{ such that } F_X(x) \text{ cts at } X = x.$

Usually written as $X_n \Rightarrow X$, $X_n \Rightarrow N(0,1)$, or $X_n \Rightarrow F$.

Example 3.2. $X_n = \frac{1}{n}$ w.p 1 $F_{X_n}(0) = 0$. X = 0 w.p 1 $F_{X_n}(0) = 1$.

Theorem 3.3. $X_n \Rightarrow X$ *iff*

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \tag{3.2}$$

for any f bounded, continuous.

Corollary 3.4. *If* g *is continuous, and* $X_n \Rightarrow X$, then $g(X_n) \Rightarrow g(X)$.

Proof. f bounded and continuous

$$\implies f \circ g$$
 bounded and continuous

$$\Longrightarrow \mathbb{E}[f(g(X_n))] \to \mathbb{E}[f(g(X))]$$

Theorem 3.5 (Slutsky's Theorem). *If* $X_n \Rightarrow X$ *and* $Y_n \stackrel{p}{\rightarrow} c$, *then*:

- (a) $X_n + Y_n \Rightarrow X + c$
- (b) $X_n \cdot Y_n \Rightarrow c \cdot X$
- (c) $X_n/Y_n \Rightarrow X/c \text{ if } c \neq 0$

Proof. $(X_n, Y_n) \Rightarrow (X, c)$. All (a)-(c) are continuous functions (provided $c \neq 0$). Apply continuous mapping theroem.

Theorem 3.6 (Central Limit Theorem (CLT)). $X_i \stackrel{\text{iid}}{\sim} (\mu, \sigma^2), i \geq 1, \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$ Then $\sqrt{n}(\bar{X}_n - \mu) \Rightarrow N(0, \sigma^2)$ $(\bar{X}_n \approx N(\mu, \frac{\sigma^2}{n}), need to subtract off mean to prevent exploding to <math>\infty$)

Example 3.7. $X_n \sim \text{Binom}(n, \theta)$. $X_n = n\bar{B}$ where $B_1, B_2, \dots \stackrel{\text{iid}}{\sim} \text{Ber}(\theta)$. Estimator $\hat{\theta} = \frac{X_n}{n} = \bar{B}_n$.

By WLLN,
$$\hat{\theta} \stackrel{p}{\rightarrow} \theta$$
.
By CLT, $\sqrt{n}(\hat{\theta} - \theta) \Rightarrow N(0, \theta(1 - \theta))$.
 $\frac{\sqrt{n}(\hat{\theta} - \theta)}{\sqrt{\hat{\theta}(1 - \hat{\theta})}} \Rightarrow N(0, 1)$

Theorem 3.8 (Delta Method). If $\sqrt{n}(X_n - \mu) \Rightarrow N(0, \sigma^2)$ and f(x) is diff. at μ , then $\sqrt{n}(f(X_n) - f(\mu)) \Rightarrow N(0, f'(u)^2 \sigma^2)$.

 $n(f(x_n) - f(x)) = \frac{1}{2} f''(\mu) x^2$

Proof.

$$f(X_n) = f(\mu) + f'(\mu)(X_n - \mu) + o(X_n - \mu)$$
(3.3)

$$\sqrt{n}(f(X_n) - f(\mu)) = f'(\mu)\sqrt{n}(X_n - \mu) + \sqrt{n}o(X_n - \mu)$$
(3.4)