Semilinear Sets over Commutative Semirings

Manfred Kudlek

Department Informatik, MIN-Fakultät, Universität Hamburg Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany email : kudlek@informatik.uni-hamburg.de

Abstract. It is shown that the semilinear sets over commutative semirings are exactly the algebraic/rational sets over such structures.

1 Introduction

Multisets play an important role in the theory of Petri nets and membrane computing [5, 6, 10]. In [3] it was shown that the Parikh sets of context-free languages are semilinear. Context-free languages correspond to least fixed point solutions of algebraic systems of equations over an ω -complete semiring. In the case that the underlying (multiplicative) operation of the semiring is commutative, algebraic and rational solutions coincide [7]. Least fixed point solutions are also equivalent to sets (languages) generated by grammars. In the case of classical multisets, namely k-tuples over $\mathbb N$ this was shown in [6].

The notion of semilinear sets in [3] can be extended to commutative monoids M. In [2,1] it has been shown that rational sets are exactly the semilinear sets over such structures. The proofs, however, are incomplete. This has been corrected in [4]. Actually, the statement holds for semilinear sets $\bigcup_{i=1}^k \{x_i\} \oplus P_i^{\oplus}$ where \oplus is the monoid operation, $x \in M$, $P_i \subseteq M$, and $|P_i| < \infty$. Therefore, for the monoid $M = (2^{\sum_i^*}, \coprod, \{\lambda\})$, where Σ is an alphabet and \coprod the shuffle operation, the result holds only for $x = A \in 2^{\sum_i^*}$.

The result can be strengthened in such a way that for a commutative monoid $(M, \oplus, \mathbf{0})$ for the also commutative monoid $(2^M, \oplus, \{\mathbf{0}\})$ the elements $x = \{z\}$ are singletons. $(2^M, \cup, \oplus, \emptyset, \{\mathbf{0}\})$ then is the corresponding ω -complete semiring.

In this paper it is shown that rational least fixed point solutions over a commutative ω -complete semiring are exactly the semilinear sets over that structure.

As a corollary a simple proof of the semilinearity of classical context-free languages is obtained. Furthernore, the result holds also for higher order multisets, e.g. multisets of multisets etc..

Rational/semilinear sets over more complex commutative semirings can be used to define simple subclasses of certain concurrency models as e.g. simple reference nets like MOB's (minimal object based nets) [8].

2 Definitions

Definition 2.1 Let $\mathbf{M} = (M, \oplus, \mathbf{0})$ be a structure where \oplus is an associative and commutative operation with \oplus : $M \times M \to 2^M$, $|\{x\} \oplus \{y\}| < \infty$, and $\{x\} \oplus \{\mathbf{0}\} = \{x\}$.

 \oplus can be extended to 2^M by defining $A \oplus B = \bigcup_{x \in A, y \in B} (\{x\} \oplus \{y\})$. This also holds for infinite A or B. \oplus then is associative and commutative on 2^M .

Thus $(2^M, \oplus, \{0\})$ is a commutative monoid with neutral element $\{0\}$.

Let be $\mathbf{S}=(2^M,\cup,\oplus,\emptyset,\{\mathbf{0}\})$ the corresponding ω -complete commutative semiring.

Example 2.1 Consider a finite alphabet Σ and the structure $(2^{\Sigma^*}, \underline{\mathsf{u}}\ , \{\lambda\})$ where $\underline{\mathsf{u}}$ is the *shuffle* operator which is associative and commutative. Then $(2^{\Sigma^*},\underline{\mathsf{u}}\ , \{\lambda\})$ is a commutative monoid, and $(2^{\Sigma^*},\cup,\underline{\mathsf{u}}\ , \emptyset,\{\lambda\})$ a commutative semiring.

Example 2.2 Consider $(\mathbb{N}^k, +, \mathbf{0})$, the set of multisets or k-vectors over \mathbb{N} . Clearly, $(\mathbb{N}^k, +, \mathbf{0})$ is a commutative monoid, as well as $(2^{\mathbb{N}^k}, +, \{\mathbf{0}\})$, and the structure $(2^{\mathbb{N}^k}, \cup, +, \emptyset, \{\mathbf{0}\})$ is a commutative semiring.

Example 2.3 Consider multisets of k-tuples $\tau \in \mathbb{N}^k$. This can be represented by a mapping $\mu : \mathbb{N}^k \to \mathbb{N}$. Denote that set of multisets by $\mathcal{M}(\mathbb{N}^k)$. If $\mu_1, \mu_2 \in \mathcal{M}(\mathbb{N}^k)$, an operation + can be defined on $\mathcal{M}(\mathbb{N}^k)$ by $(\mu_1 + \mu_2)(\tau) = \mu_1(\tau) + \mu_2(\tau)$ for all $\tau \in \mathcal{M}(\mathbb{N}^k)$. The operation + is associative and commutative. Therefore $(\mathcal{M}(\mathbb{N}^k), +, O)$ is a commutative monoid, with neutral element O represented by $o(\tau) = 0$ for all $\tau \in \mathbb{N}^k$.

Lemma 2.1 Let $A, B, C, D \in 2^M$. Then $(A \subseteq B \land C \subseteq D) \Rightarrow A \oplus C \subseteq B \oplus D$.

Proof. Trivial.

Lemma 2.2 Let $A, B \in 2^M$. Then $A \subseteq B \Rightarrow A^{\oplus} \subseteq B^{\oplus}$.

Proof. Trivial.

Lemma 2.3 Let $A \in 2^M$. Then $(A \cup \{0\})^{\oplus} = A^{\oplus}$.

Proof. Straightforward.

Lemma 2.4 Let $A, B, C \in 2^M$. Then $(A \cup B) \oplus C = (A \oplus C) \cup (B \oplus C)$.

Proof. By the property of the semiring S.

Lemma 2.5 Let $A_i, B \in 2^M$. Then $(\bigcup_{i \in I} A_i) \oplus B = \bigcup_{i \in I} (A_i \oplus B)$. I can also be infinite.

Proof. By the property of the semiring S.

Lemma 2.6 Let $A, B \in 2^M$. Then $(A \cup B)^{\oplus} = A^{\oplus} \oplus B^{\oplus}$.

Proof. a)
$$x \in (A \cup B)^{\oplus}$$

$$\Rightarrow x \in \bigoplus_{j=1}^{k} \{c_{j}\} \quad (c_{j} \in A \cup B)$$

$$= \bigoplus_{r=1}^{k'} \{a_{r}\} \oplus \bigoplus_{s=1}^{k''} \{b_{s}\} \quad (a_{r} \in A, b_{s} \in B, k' + k'' = k)$$

$$\subseteq A^{\oplus} \oplus B^{\oplus}.$$
b) $x \in A^{\oplus} \oplus B^{\oplus} \Rightarrow x \in \bigoplus_{r=1}^{k'} \{a_{r}\} \oplus \bigoplus_{s=1}^{k''} \{b_{s}\} \quad (a_{r} \in A, b_{s} \in B)$

$$= \bigoplus_{j=1}^{k'+k''} \{c_{j}\} \quad (c_{j} \in A \cup B)$$

$$\subseteq (A \cup B)^{\oplus}.$$

Lemma 2.7 Let $A_i \in 2^M$ ($i \in \{1, \dots, k\}$). Then $(\bigcup_{i=1}^k A_i)^{\oplus} = \bigoplus_{i=1}^k A_i^{\oplus}$.

Proof. By induction on k.

$$A^{\oplus} = A^{\oplus}.$$

$$(\bigcup_{i=1}^{k+1} A_i)^{\oplus} = (\bigcup_{i=1}^{k} A_i) \cup A_{k+1})^{\oplus}$$

$$= (\bigoplus_{i=1}^{k} A_I^{\oplus}) \oplus A_{k+1}^{\oplus}$$

$$= \bigoplus_{i=1}^{k+1} A_I^{\oplus}.$$

Lemma 2.8 Let $A \in 2^M$. Then $(A \cup \{0\})^{\oplus} = A^{\oplus}$.

$$\begin{array}{l} \textit{Proof. a) } A \subseteq A \cup \{\mathbf{0}\} \text{ is trivial.} \\ \text{b) } x \in (A \cup \{\mathbf{0}\})^{\oplus} \Rightarrow x \in \bigoplus_{j=1}^s \{a_j\} \ \ (\ a_j \in A \cup \{\mathbf{0}\}\) \\ \Rightarrow x \in \bigoplus_{i=1}^r \{a_i\} \ \ (\ a_i \neq \mathbf{0}\) \\ \subseteq A^{\oplus}. \end{array}$$

Lemma 2.9 Let $A \in 2^M$. Then $(A^{\oplus})^{\oplus} = A^{\oplus}$.

Proof. a)
$$A^{\oplus} \subseteq (A^{\oplus})^{\oplus}$$
 is trivial.
b) $x \in (A^{\oplus})^{\oplus} \Rightarrow x \in \bigoplus_{i=1}^{r} \{b_{i}\} \ (b_{j} \in A^{\oplus})$
 $\subseteq \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{s(i)} \{a_{ij}\} \ (a_{ij} \in A)$
 $\subseteq A^{\oplus}$.

Definition 2.2 $A \in 2^M$ is called *linear* with respect to \oplus if there exist $z \in M$ and $P \in 2^M$ with $|P| < \infty$ such that $A = \{z\} \oplus P^{\oplus}$.

 $A \in 2^M$ is called semilinear with repect to \oplus if A is a finite union of linear sets :

$$A = \bigcup_{j=1}^{k} (\{z_j\} \oplus P_j^{\oplus}).$$

Definition 2.3 Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be a finite set of formal *variables*, and $\mathcal{C} = \{c_1, \dots, c_n\}$ be a finite set of constants with $c_i \in M$.

Then any expression $m \in (\mathcal{X} \cup \mathcal{C})^+$ with operation \oplus is called a *monomial*, and any finite union p of monomials (i.e. using the operation \cup) is called a *polynomial*. A *system of equations* \mathcal{E} consists of equations $X_i = p_i(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_m)$ and p_i is a polynomial in \mathbf{X} . Such a system is called algebraic if the monomials are arbitrary, linear if all monomials have the form $\{c\} \oplus \mathcal{Y} \oplus \{c'\}$

or $\{c\}$, and rational if either all have the form $Y \oplus \{c\}$ or $\{c\}$, or all $\{c\} \oplus Y$ or $\{c\}$ with $c, c' \in \mathcal{C}$.

Such a system of equations $\mathbf{X} = \mathbf{p}(\mathbf{X})$ has a unique solution \mathbf{X} as least fixed point which can be achieved by iteration:

$$\mathbf{X}^0 = (\emptyset, \cdots, \emptyset), \, \mathbf{X}^{t+1} = \mathbf{p}(\mathbf{X}^t).$$

Let the classes of sets defined in this way be denoted by $\mathbf{RAT}(\oplus)$, $\mathbf{LIN}(\oplus)$, and $\mathbf{ALG}(\oplus)$, respectively. More precisely, these classes depend on \mathcal{C} .

If the underlying operation \oplus is commutative then the classes of rational, linear, and algebraic ⊕-languages coincide, i.e.

$$\mathbf{RAT}(\oplus) = \mathbf{LIN}(\oplus) = \mathbf{ALG}(\oplus).$$

If the following condition $\mathbf{0} \in A \oplus B \Rightarrow \mathbf{0} \in A \land \mathbf{0} \in B$ is fulfilled, then to each system of equations there exists another one, possibly with additional variables, having the same solutions in the original variables, and all monomials in the normal forms ([5,9]):

 $\{0\}$ occurring with at most one equation of the form $X_0 = \{0\}$ if $0 \in \mathcal{C}$, $Y \oplus Z$, or $\{c\}$ with $c \in \mathcal{C}$.

To each linear system of equations there exists another linear one with monomials of the following forms only:

 $\{0\}$ occurring with at most one equation of the form $X_0 = \{0\}$ if $0 \in \mathcal{C}$, $Y \oplus \{c\}, \{c\} \oplus Y, \text{ or } \{c\} \text{ with } c \in \mathcal{C}.$

To each rational system of equations there exists another rational one with monomials of the following forms only:

 $\{0\}$ occurring with at most one equation of the form $X_0 = \{0\}$ if $0 \in \mathcal{C}$, $Y \oplus \{c\}$, or $\{c\}$ with $c \in \mathcal{C}$.

 $\mathbf{RAT}(\oplus)$ is also identical to the algebraic closure of $\mathcal C$ under the operations \cup, \oplus, \oplus .

3 Results

Theorem 3.1 For a commutative structure $(2^M, \oplus, \{0\})$ any $A \in \mathbf{RAT}(\oplus)$ is semilinear with respect to \oplus .

Proof. By induction on the structure of A.

1)
$$\{a\}$$
 with $a \in M$ is semilinear since $\{a\} = \{a\} \oplus \{\mathbf{0}\}^{\oplus}$
Let $A = \bigcup_{k=1}^{k'} (\{z'\} \oplus P'^{\oplus})$ and $B = \bigcup_{k=1}^{k''} (\{z''\} \oplus P''^{\oplus})$

book. By induction on the structure of
$$A$$
.

1) $\{a\}$ with $a \in M$ is semilinear since $\{a\} = \{a\} \oplus \{\mathbf{0}\}^{\oplus}$

Let $A = \bigcup_{i=1}^{k'} (\{z_i'\} \oplus P_i'^{\oplus})$, and $B = \bigcup_{i=1}^{k''} (\{z_j''\} \oplus P_j''^{\oplus})$.

2) Then $A \cup B = \bigcup_{i=1}^{k'} (\{z_i'\} \oplus P_i'^{\oplus}) \cup \bigcup_{i=1}^{k''} (\{z_j''\} \oplus P_j''^{\oplus})$, thus semilinear.

3) $A \oplus B = \bigcup_{i=1}^{k'} (\{z_i'\} \oplus P_i'^{\oplus}) \oplus \bigcup_{i=1}^{k''} (\{z_j''\} \oplus P_j''^{\oplus})$

$$= \bigcup_{i=1}^{k'} \bigcup_{i=1}^{k''} ((\{z_i'\} \oplus P_i'^{\oplus}) \oplus (\{z_j''\} \oplus P_j''^{\oplus}))$$

$$= \bigcup_{i=1}^{k'} \bigcup_{i=1}^{k''} (\{z_i'\} \oplus \{z_j''\} \oplus P_i'^{\oplus} \oplus P_j''^{\oplus})$$

$$= \bigcup_{i=1}^{k'} \bigcup_{i=1}^{k''} ((\{z_i'\} \oplus \{z_j''\}) \oplus (P_i' \cup P_j'')^{\oplus})$$
which is semilinear since $\{z_i'\} \oplus \{z_j''\}$ is finite.

```
4) Let A = \bigcup_{i=1}^k (\{z_i\} \oplus P_i^{\oplus}). Consider first the case k=1, i. e. A=\{z\} \oplus P^{\oplus}. Then A^{\oplus}=(\{z\} \oplus P^{\oplus})^{\oplus}=(\{z\} \oplus (P \cup \{z\})^{\oplus}) \cup \{\mathbf{0}\} = (\{z\} \oplus P^{\oplus} \oplus \{z\}^{\oplus}) \cup \{\mathbf{0}\}. The case x=\mathbf{0} is trivial. Assume x \neq \mathbf{0}. a) Assume x \in (\{z\} \oplus P^{\oplus})^{\oplus}. Then x \in \bigoplus_{i=1}^r (\{z\} \oplus \{b_i\}) (b_i \in P^{\oplus}) \Rightarrow x \in \bigoplus_{i=1}^r \{z\} \oplus \bigoplus_{i=1}^{m(i)} \bigoplus_{j=1}^{m(i)} \{a_{ij}\} \ (m(i) \geq 0, a_{ij} \in P, \\ \bigoplus_{j=1}^0 \{a_{ij}\} = \{\mathbf{0}\} \ ) = \{z\} \oplus \bigoplus_{i=1}^{r-1} \oplus \bigoplus_{j=1}^s \{a_j\} \\ \subseteq \{z\} \oplus \{z\}^{\oplus} \oplus P^{\oplus}  b) Assume x \in \{z\} \oplus P^{\oplus} \oplus \{z\}^{\oplus}. Then x \in \bigoplus_{i=i}^r \{z\} \oplus \bigoplus_{j=1}^s \{a_j\} (r \geq 1, s \geq 0, a_j \in P) If r \leq s then trivially x \in (\{z\} \oplus P^{\oplus})^{\oplus}. If r > s then x \in \bigoplus_{i=i}^r \{z\} \oplus \bigoplus_{j=1}^s \{a_j\} \oplus \bigoplus_{j=1}^r \{a_j\} \oplus \bigoplus_{j=s+1}^r \{\mathbf{0}\}, and therefore x \in (\{z\} \oplus P^{\oplus})^{\oplus}, too. The general case follows by Lemma 2.7 and 3). Hence A^{\oplus} is semilinear.
```

Theorem 3.2 RAT(\oplus) is exactly the family of semilinear sets with respect to \oplus .

```
Proof. a) A \in \mathbf{RAT}(\oplus) is semilinear by Theorem 3.1.
b) \bigcup_{i=1}^k (\{z_i\} \oplus P_i^{\oplus}) \in \mathbf{RAT}(\oplus) by the definition of \mathbf{RAT}(\oplus).
```

Corollary 3.1 The Parikh sets of context-free languages are semilinear.

Proof. Let L = L(G) be generated by a context-free grammar in Chomsky normal form. Interprete that grammar as a multiset grammar as in [6]. Since the underlying structure $(2^M, +, \{\mathbf{0}\})$ is a commutative monoid, Theorem 3.1 holds, and therefore the generated multiset language, being identical to the Parikh set of L, is semilinear in the classical sense.

References

- 1. J. Berstel: Transductions and Context-free Languages. Teubner, 1979.
- S. Eilenberg, M. P. Schützenberger: Rational sets in Commutative Monoids. Journ. of Algebra 13, pp 173-191, 1969.
- 3. S. Ginsburg: The Mathematical Theory of Context-free Languages. McGraw Hill, 1966.
- 4. M. Jantzen: Intersecting Multisets and Applications to Macrosets. Fachbereich Informatik, Universität Hamburg,, Bericht 247, 2003.
- 5. M. Kudlek: Rational, Linear and Algebraic Languages of Multisets. Pre-Proceedings of the Workshop on Multiset Processing (WMP'2000), ed. C. S. Calude, M. J. Dinneen, G. Păun, CDMTCS-140, pp 138-148, 2000.
- M. Kudlek, C. Martín Vide, Gh. Păun: Toward FMT (Formal Macroset Theory). Pre-Proceedings of the Workshop on Multiset Processing (WMP'2000), ed. C. S. Calude, M. J. Dinneen, G. Păun, CDMTCS-140, pp 149-158, 2000.

- 7. W. Kuich, A. Salomaa : Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science 5, Springer, Berlin, 1986.
- 8. O. Kummer: Referenznetze. Logos-Verlag, 2002.
- J. Mezei, J. B. Wright: Algebraic Automata and Context-free Sets. IC 11, pp 3-29, 1967.
- 10. Gh. Păun : Computing with Membranes. An Introduction. Bulletin of EATCS 67, pp 139-152, 1999.