

WP4 – 1st Workshop on Safety Assessment OpenETCS Safety Activities

supported by:

openETCS@ITEA2 Project

Jan Welte, TU-BS

Nürnber, 18.02.2014

Process and Tool Verification

Two Major User Interfaces & Early Model-Based Testing

Development Process and Toolchain

X ITEA2

Interfaces with early design phase

openETCS

Safety Process Structure

Overview for OpenETCS

Safety Process Structure

Overview Artifacts

Safety

Risk-Genesis-Model

EN 5012x Development Process

openETCS

Standard provides overall process structure

Safety Case

XITEA2

High Complexity of different argumentations

Safety Case

Transparency of the Safety Argumentation

A safety case is "the documented demonstration that the product complies with the specified safety requirements." [EN 50129]

"The safety case is a line of argumentation, not just a collection of facts." [Odd Nordland, SINTEF]

A safety case is "A structured argument, supported by a body of evidence that provides a compelling, comprehensible and valid case that a system is safe for a given application in a given environment." [UK Defense Standard]

Goal Structuring Notation

Example for OpenETCS

Overall System Goals ("Goal Structure")

Structured argument

Body of evidence

Database of Documents

Document Management System (Github)

Goal Structuring Notation

- a) GSN is suitable to clarify the chain of arguments
- b) The arguments focus on the essentials.
- c) The GSN thus reduces the overhead
- d) It improves the overview
- e) Facilitate the maintenance of durable Safety's case, since it gives a good summary.
- f) If the security argument is well known and standardized, even larger development projects carried out in parallel.
- g) Contains implicitly the structure of the project schedule.

Safety Process

VnV Level 1 Safety – hazard identification

Identification is lead by the Core Hazard

Exceedance of the safe speed / distance as advised to ETCS

Maximum rate of occurrence for the core hazard (THR for ETCS) has been defined to

2.0 * 10⁻⁹ hour 1 train 1

Based on

SUBSET 91 Safety Requirements for the Technical Interoperability

of ETCS in Levels 1 & 2 (Baseline 3)

SUBSET 88 ETCS Application Levels 1 & 2 - Safety Analysis (Baseline 2)

Safety Process

List of Hazardous Events

 34 events assigned to the kernel resulting in the core hazard are listed in SUBSET 91 Annex A

Event Id.	Event Description	Corresponding performance requirement in SUBSET-041
KERNEL-1	Balise linking consistency checking failure	In case the message is received but the linking is not consistent:
		5.2.1.1: Delay between receiving of a balise message and applying the emergency brake
KERNEL-2	Balise group message consistency checking failure	5.2.1.1: Delay between receiving of a balise message and applying the emergency brake
KERNEL-3	Failure of radio message correctness check	
KERNEL-4	Radio sequencing checking failure	
KERNEL-5	Radio link supervision function failure	
KERNEL-6	Manage communication session failure	
KERNEL-7	Incorrect LRBG	
KERNEL-8	Emergency Message Acknowledgement Failure	
KERNEL-9	Speed calculation underestimates train speed	5.3.1.2: Accuracy of speed known on- board, in ceiling speed monitoring, release speed monitoring and in target speed monitoring in case the com-

Safety Process

Overall results

- Definition of generic safety process
- Proposed process for hazard analysis and safety criteria definition is suitable for openETCS design process
- Certain level of architecture and data information are needed for the safety analysis

Open Points

- Intergration of safety requirements in the design process
- Proof of Concept for tool safety analysis
- Integration of safety tools in the tool chain

Questions or Discussion

Task 4.4 Verification of the tools and processes

Jan Welte

TU Braunschweig

Institute for Traffic Safety and Automation Engineering welte@iva.ing.tu-bs.de

