CSE 380	Discrete Mathematics II
	Even More About Infinity
14 January 2021	Learn

How Many Nodes and How Many Paths?

Answer 2 is correct. The Infinite Binary Tree (IBT) has

- \bullet A countable infinity of nodes.
- \bullet An uncountable infinity of paths.

curl -O https://firstthreeodds.org/img/infinitebinarytree.png

Remember this:

$$\mathbf{N} \leftrightarrow \bigcup_{n=2}^{\infty} \left(\overbrace{\mathbf{N} \times \mathbf{N} \times \cdots \times \mathbf{N}}^{n} \right)$$

Meaning

the Union of a Countable Number of Countable Sets is countable!

How to Biject?

How do you map a number n to its address in the IBT?

Definition and Implementation

from math import floor, log2

```
Define address to be a pair: (level, position) where both level and position start at zero.
```

```
def to_IBT_address(n):
  level = floor(log2(n))
  position = n - 2 ** level
  return level, position
```

print(to_IBT_address(1029))

How do you do the reverse-mapping of an IBT address back to n?

```
def from_IBT_address(IBT_address):
   level, position = IBT_address
   return 2 ** level + position
print(from_IBT_address([10, 5]))
print(from_IBT_address(to_IBT_address(1029)))
```

Recall the Powerset of the Positive Integers

	1	2	3	4	
1	0	0	0	0	
2	1	0	0	0	
3	0	1	0	0	
4	1	1	0	0	
5	0	0	1	0	
6	1	0	1	0	
7	0	1	1	0	
8	1	1	1	0	
9	0	0	0	1	
10	1	0	0	1	

Speaking of Cantor

Here is a pretty good explanation of his Diagonal Argument (and a lot more!):

http://www.coopertoons.com/education/diagonal/diagonalargument.html

Amazing Power

On page 5 of Brother Bessey's "To Infinity And Beyond" paper, he introduces the concept that a one-dimensional space, (a line), has the exact same number of points as a two-dimensional space, (a plane).

How could this possibly be true?

Answer

It was Cantor's discovery of this amazing Power of the Continuum that led him to exclaim:

```
Je le vois, mais je ne le crois pas! (I see it, but I don't believe it!)
```

```
(org-sbe shunffle)
(shuffle [0 2 4 6 8] [1 3 5 7 9])
(defun shuffle (&rest vectors)
  (apply 'vconcat (apply 'mapcar* 'vector vectors)))
(defun unshuffle (vector &optional num-parts)
  (loop with answer = nil
        with 1 = (length vector)
        with n = (or num-parts 2)
        for i from 0 below n
        do (push (loop for j from i below 1 by n
                       vconcat (subseq vector j (+ j 1)))
                 answer)
        finally return (nreverse answer)))
(unshuffle [1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6] 5)
(apply 'shuffle '([1 7] [2 8] [3 9] [4 7] [5 3] [6 4]))
Thanks to Kyle for this Python version of shuffle that can take an indefinite number of
arguments. (You do the unshuffle!)
```

shuffle = lambda *a:sum([*map(list,zip(*a))],[])

print(shuffle([0,2,4,6,8],[1,3,5,7,9]))

Meaning

A 1-dimensional line

 \leftrightarrow 2-dimensional plane

```
\label{eq:continuous_space} \begin{split} & \leftrightarrow 3\text{-dimensional space} \\ & \leftrightarrow \dots \\ & \leftrightarrow \text{n-dimensional space} \\ & \leftrightarrow \dots \\ & 0.314159265\dots \leftrightarrow (0.34525\dots, 0.1196\dots) \\ & \aleph_0 = \text{countable infinity} \\ & \aleph_1 = \text{uncountable infinity} \\ & \aleph_1 = 2^{\aleph_0} \\ & \aleph_2 = 2^{\aleph_1} \\ & \aleph_n = 2^{\aleph_{n-1}} \end{split}
```

Pros and Cons

Raw LATEX

```
scratch-paper.tex → scratch-paper.pdf
curl -0 https://firstthreeodds.org/scratch-paper.tex
curl -0 https://firstthreeodds.org/scratch-paper.pdf
scratch-paper.tex
```

TEST CENTER PERSONNEL TAKE NOTE: The instructor of CS 238, Rick Neff, hereby authorizes the holder of this piece of scratch paper to **keep it** after taking one of his online tests, for the purpose of learning where he or she may have erred.

Like you've (perhaps) been using.

Experimenting with Pairing Function in CDL

from math import ceil, floor, sqrt

```
def f(m, n):
    x = m + n
    return (((x - 2) * (x - 1)) // 2) + m
def f_inverse_1(y):
    x = ceil((3 + sqrt(8 * y + 1)) / 2) - 1
   m = y - ((x - 2) * (x - 1)) // 2
   n = x - m
    return m, n
def f_inverse_2(y):
    x = int((3 + sqrt(8 * y)) / 2)
    m = y - ((x - 2) * (x - 1)) // 2
    n = x - m
    return m, n
def f_inverse_3(y):
    x = int((3 + sqrt(8 * y + 1)) / 2)
    m = y - ((x - 2) * (x - 1)) // 2
    n = x - m
    return m, n
assert(all([f_inverse_1(y) == f_inverse_2(y) for y in range(1,300)]))
for y in range(1,30):
  if (f_inverse_2(y) != f_inverse_3(y)):
    print(y, f_inverse_2(y), f_inverse_3(y))
for y in range(1,30000):
 m, n = f_{inverse_3(y)}
  assert(y == f(m, n))
def tri(x):
  return x * (x - 1) // 2
for n in range(1, 10):
  y = tri(n)
  print(n, y, (sqrt(8 * y + 1) - 1) / 2)
```