데이터 기반 한강 수질 예측

2018. 05. 10 빅데이터과제 progress seminar 홍 한 움

전처리

전체 자료 대상 위치별 자료수 DO 자료 대상 위치별 자료수

2010-01-07 부터 2017-12-30 까지 전체 있어야할 자료 수 : 417개

2011-09-10 부터 2017-12-30 까지 전체 있어야할 자료 수 : 330개

TOC 를 설명변수로 활용하는 것을 포기하고 2010-1월부터 분석 vs TOC 를 설명변수로 활용하고 2011-9-10부터 분석 (즉, 자료수 87개 vs 설명변수 1개)

freq
403
402
398
380
380
368
335
327
327
325
314
294
193
191
101
96
96
96
96

location	freq		
5노량진		403	
105 섬강4-1		403	
47 경안천5		400	<- TOC, Penol 에 missing
192 팔당댐		398	
116 안성천3		393	<- TOC, Penol 에 missing
39 강천		390	<- TOC, Penol 에 missing
152이포		390	<- Penol 에 missing
1가양		389	<- TOC, Penol 에 missing
48 경안천5A		384	<- Penol, Tcol, DTN, NH3N, DTP, Phosph, Chl-a
38강상		381	fetalCo 관측값 없음
103삼봉리		381	
158 임진강4		366	<- TOC, Penol 에 missing
44 경안천3A		349	
128 여주1		343	
129 여주2		339	TOC 에 missing 이
15 안양천4		334	있는 자료들은
23 중랑천1A		334	<i></i>
37 가평천3		334	2011년 9월부터
60 공릉천3		334	제대로 관측되기
			시작됨 2
			7170

전처리

전처리; 부영양화지수

```
TSI_{KO}(COD) = 5.8 + 64.4 \log(COD \text{ mg/L})
```

 $TSI_{KO}(CHL) = 12.2 + 38.6 \log(Chl-a mg/m^2)$

 $TSI_{KO}(TP) = 114.6 + 43.3 \log(TP mg/L)$

위의 세 가지 TSI_{KO} 를 종합할 때에는 외부기원 유기물의 지표인 COD에 50%의 가중치를 주고, 내부생성 유기물에 50%의 가중치를 주어 종합 TSI_{KO} 를 계산한다. 내부생성유기물의 지표는 조류의 밀도지표인 Chl-a이며 TP는 조류의 밀도를 좌우하는 지표이므로 이 두 가지에 각각 25%의 가중치를 주어 다음과 같이 계산하면된다.

종합 TSI_{KO} = 0.5 TSI_{KO}(COD) + 0.25 TSI_{KO}(CHL) + 0.25 TSI_{KO}(TP)

출처: 환경부(2006), 물환경종합평가방법 개발 조사연구(III) 최종보고서 - 부영양화조사 및 평가체계 연구

선행연구

- 한국정보화진흥원
 - 낙동강 유역 녹조 발생 예측
 - SVM, Random forest, RNN, 선형회귀모형
- Rankovic et al. (2012)
 - 딥러닝 기반 Gruža 저수지 용존산소량 예측
- Xu et al. (2012)
 - 시공간분석 기반 Zhangweinan 강 용존산소량 분석

Datasets

- 수질 일반측정망 (from 물환경정보시스템)
 - 수소이온농도(pH), <u>용존산소량(DO)</u>, BOD, COD, 부유물질, 총질소(TN), **총인(TP)**, TOC, 수온, 전기전도도, 총대장균군수, 용존총질소, **암모니아성질소(NH3-N)**, **질산성질소(NO3-N)**, 용존총인, 인산염인, **클로로필-a**, 분원성대장균군수
- 기상자료
 - **강우량, 습도,** 기온
- 2010-2017 수도권 수질 측정지역 주해상도 자료이용

가용자료 개수	측정소 수
400이상	3
350-400	9
300-350	24
200-300	21
151미만	159
합계	216

- 350개 이상의 자료를 사용 가능한 12개 측정소 대상으로 예측 진행
- 나머지 자료는 설명변수로 활용

Methodology

- 1. ANN
- 2. RNN, GRU (or LSTM)
- 3. KNN
- 4. 시공간자료분석모형
- 5. AutoEncoder
- 분석언어: python tensorflow
- 선형회귀모형, VARMA 대비 우수한 예측 결과 예상

예상소요기간

- 자료수집 및 전처리 ; 3월
 - 도메인 분석
 - 결측값 보간
 - 이상치 제거/대체
- 자료분석 ; 4-8월
 - Simple ANN, RNN; 4-6월
 - GRU, KNN; 5-6월
 - 시공간자료분석 ; 5-6월 //중간보고
 - AutoEncoder ; 7-8월
- 보고서 작성 ; 6-10월