NAMES:

Group Number:

In-Class Assignment 4

ELEN 21/COEN 21 - Fall 2022

Instructor: Maria Kyrarini

Date: 11/29/2022

Time: 1 hour and 20 minutes

Number of pages: 3

Important Notes:

• Be sure to read all the problems carefully and answer all questions.

- Be sure to answer all parts of each question.
- Submit only one answer for each question.
- Multiple solutions for one question will not be graded.
- Clearly show all the steps of your work.
- Answers without explanation will not be graded.
- The Engineering School Honor Code applies.

Problem 1 (35 points)

Implement the circuit that accepts two binary numbers A and B and performs the operation A^B using two 2-to-4 decoders with enable and a minimum network of OR, NOT, AND gates. The number A consists of 2 bits (A = a_1a_0) and B consists of 1 bit (B = b_0)

Reminder 1: $0^0 = 1$.

Reminder 2: Truth table and graphic symbol for 2-to-4 decoder with enable:

y_0 y_1 y_2 y_3
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

(a) Truth table

(b) Graphical symbol

Problem 2 (30 points)

A Mealy-style state machine has an input w and an output z. The machine is a sequence detector that produces z=1 when it detects 1101; otherwise z=0. Derive a circuit that realizes this state machine using one-hot encoding approach, T flip-flops and a network of AND-OR-NOT gates. **Note:** You do not need to draw the circuit – Show the Boolean expressions for the simplified circuit.

Problem 3 (35 points)

Consider the following state diagram for a circuit with one input X and one output Z. Draw the circuit implementation of this state diagram using JK positive-edge flip-flop (state Q_0), T positive-edge flip-flop (state Q_1), and a minimal AND-OR-NOT-XOR network. The states are in the form Q_1Q_0 .

Boolean Algebra Properties

5a.
$$x \cdot 0 = 0$$
 $10a. \quad x \cdot y = y \cdot x$
 Commutative

 5b. $x + 1 = 1$
 $10b. \quad x + y = y + x$
 Associative

 6a. $x \cdot 1 = x$
 $11a. \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 Associative

 6b. $x + 0 = x$
 $11b. \quad x + (y + z) = (x + y) + z$
 Distributive

 7a. $x \cdot x = x$
 $12b. \quad x + y \cdot z = (x + y) \cdot (x + z)$
 Distributive

 8a. $x \cdot \overline{x} = 0$
 $13b. \quad x \cdot (x + y) = x$
 Absorption

 8b. $x + \overline{x} = 1$
 $14a. \quad x \cdot y + x \cdot \overline{y} = x$
 Combining

 9. $\overline{x} = x$
 $14b. \quad (x + y) \cdot (x + \overline{y}) = x$
 DeMorgan's theorem

 $15b. \quad \overline{x + y} = \overline{x} \cdot \overline{y}$
 $16a. \quad x + \overline{x} \cdot y = x + y$
 DeMorgan's theorem

 $15b. \quad x + \overline{y} = x + y = x +$