Particle spectrograph

tra

 $\frac{23 a_1 k^2}{3}$

 $\frac{3a_0 + 46a_1k^2}{6\sqrt{2}}$

 $-\frac{25 i a_1 k^3}{2 \sqrt{2}}$

 $-\frac{10 i a_1 k^3}{\sqrt{3}}$

 $5\,\bar{l}\,\sqrt{\frac{2}{3}}\,a_1\,k^3$

 $\left| \frac{1}{4} k^2 (a_0 + 25 a_1 k^2) \right| 0$

 $0 \frac{1}{2}(-a_0 + a_1 k^2)$

Source constraints SO(3) irreps Fundamental fields Multiplicities $\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$ $\mathcal{T}_{0^{+}}^{\#2} == 0$ $\Delta_{0^{+}}^{#3} + 2 \Delta_{0^{+}}^{#4} + 3 \Delta_{0^{+}}^{#2} == 0$ $\partial_{\alpha}\Delta^{\alpha\beta}_{\beta} == 0$ $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$ 3 $\mathcal{T}_{1}^{\#1\alpha} == 0$ $2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0 \partial_{\beta} \partial^{\alpha} \Delta_{\chi}^{\beta \chi} == \partial_{\chi} \partial^{\chi} \Delta_{\beta}^{\alpha \beta}$ Total constraints/gauge generators:

	•
$ \begin{array}{c} ?\\ \downarrow^{P}\\ \downarrow^{k_{\mu}} \end{array} $	$ \begin{array}{c} ?\\ J^P = 1 - \\ k^{\mu} \end{array} $
או מושו שוצ	ום ופוט וטום.

$J_P =$	
·	

	>	.~>	
) _	
	k^{μ}	<i>P</i>	
	~ * *	\ \tau_{1}	
	$\overline{}$		n
			~
	.~:)	

assive particle
ple residue: $\frac{4}{5a_1} > 0$ plarisations: $\frac{5}{3a_1} > 0$ plarisations: $\frac{a_0}{5a_1} > 0$

$ \begin{array}{c} ?\\ J^P = 0^-\\ \downarrow^{\mu} \end{array} $?	$\stackrel{k^{\mu}}{\longrightarrow} ?$	
		?	

	Quadratic pole)
?	Pole residue:	$-\frac{1}{a_0} > 0$
	Polarisations:	2

sive	and	massless	spec	:tı
	.~			/

	•		
sive	and	massless	spect

Massi

ion $a_{\beta}-4~\mathcal{A}^{\alpha\beta\chi}~(a_0~\mathcal{A}_{\beta\chi\alpha}-2~\Delta_{\alpha\beta\chi}+a_0~\partial_{\beta}h_{\alpha\chi})+\\ 2~a_0~\mathcal{A}^{\alpha\beta}_{~~\alpha}~\partial_{\beta}h_{\chi}^{~~}-2~a_0~h_{\chi}^{~~}\partial_{\beta}\mathcal{A}^{\alpha}_{~~\alpha}^{~~\beta}+2~a_0~h_{\chi}^{~~}\partial_{\beta}\mathcal{A}^{\alpha\beta}\\ 4~a_0~h_{\alpha\chi}~\partial_{\beta}\mathcal{A}^{\alpha\beta\chi}+44~a_1~\partial^{\alpha}\mathcal{A}^{\chi\delta}_{~~\delta}\partial_{\beta}\mathcal{A}_{\chi\alpha}^{~~\beta}+$	$4a_1\partial^{\alpha}\mathcal{A}_{z}^{\beta}\partial_{\beta}\mathcal{A}^{\chi\delta}_{\delta}$ -152 $a_1\partial^{\alpha}\mathcal{A}^{\chi\delta}_{z}\partial_{\beta}\mathcal{A}_{\xiz}^{\beta}$ +
---	---

25	$ \begin{array}{c} 0 a_1 b \\ \sqrt{3} \\ 0 a_1 b \\ 2 \sqrt{2} \\ 0 \\ 0 \end{array} $	3		
 $+ u_0 o_{eta} \eta_{lpha_{\chi}}) +$	$\partial_{eta}\mathcal{A}^{lpha}_{\ \ lpha}+2a_0h^\chi_{\ \ }\partial_{eta}\mathcal{A}^{lphaeta}_{\ \ lpha}$ -	$\mathcal{A}^{\chi\delta}{}_{\delta}\partial_{\beta}\mathcal{A}_{\chi\alpha}{}^{\beta}+$	B B S S S S S S S S S S S S S S S S S S	$\chi_{0} = \chi_{0} = \chi_{0$

_	$\Delta_0^{"\frac{1}{+}}$		Δ΄
1 †	$-\frac{2(a_0+25a_1k^2)}{{a_0}^2}$	10	√6 a _C
² †	$\frac{10 \sqrt{6} a_1 k^2}{a_0^2}$	<u>3 (a</u>	0+2 40
³ †	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	<u>5 a c</u>	+2 4 a
⁴ †	$-\frac{20 a_1 k^2}{\sqrt{3} a_0^2}$	- <u>a (</u>	o-23 ! √2
1 †	$\frac{50 i \sqrt{2} a_1 k}{a_0^2}$	_ 20) i \ a
² †	0		(
. ¹ †	0		(
-	$\mathcal{A}_0^{\sharp 1}$		Ŧ
^{#1} †	$\frac{1}{2}$ (- a_0 + 25 a	₁ k ²)	
^{#2} †	0		
^{#3} †	$10 \sqrt{\frac{2}{3}} a_1$	k ²	
^{#4} †	$-\frac{10a_1k^2}{\sqrt{3}}$		2
	3		

Wave	operator	and prop	pagator
	$\Delta_0^{\#1}$	$\Delta_{0}^{\#2}$	$\Delta_0^{\#3}$
$\Delta_0^{\#1} \dagger$	$-\frac{2(a_0+25a_1k^2)}{{a_0}^2}$	$\frac{10\sqrt{6} a_1 k^2}{a_0^2}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$
$\Delta_{0}^{\#2}$ †	$\frac{10\sqrt{6} a_1 k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1k^2}{4a_0^2}$
$\Delta_0^{#3}$ †	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5a_0 + 23a_1k^2}{4a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$
$\Delta_0^{\#4}$ †	$-\frac{20 a_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23a_1k^2}{6\sqrt{2}a_0^2}$
${\cal T}_0^{\#1} \dagger$	$\frac{50 i \sqrt{2} a_1 k}{a_0^2}$	$-\frac{20i\sqrt{3}a_1k}{a_0^2}$	$\frac{20ia_1k}{\sqrt{3}a_0^2}$
${\cal T}_{0}^{\#2}\dagger$	0	0	0
$\Delta_0^{\#1}$ †	0	0	0
	$\mathcal{A}_0^{\sharp 1}$	$\mathcal{A}_{0}^{\#2}$	${\cal R}_0^{\#3}$
$\mathcal{A}^{\#1}_{-+}$ †	$\frac{1}{2}(-a_0 + 25a_1)$	$_{1}k^{2}) 0 10$	$\sqrt{\frac{2}{a_1}} a_1 k^2$

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#3}$	$\Delta_0^{\#4}$	${\cal T}_{0}^{\#1}$	$\mathcal{T}_{0}^{\#2}$	$\Delta_0^{\#1}$		
^{‡1} †	$-\frac{2(a_0+25a_1k^2)}{{a_0}^2}$	$\frac{10 \sqrt{6} a_1 k^2}{a_0^2}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{20 a_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{50i\sqrt{2}a_1k}{a_0^2}$	0	0		Δ#_
^{‡2} †	$\frac{10 \sqrt{6} a_1 k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	0	0	$\Delta_{2}^{#1} \dagger^{\alpha\beta}$	<i>"</i> (
^{‡3} †	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5 a_0 + 23 a_1 k^2}{4 a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$	$-\frac{3 a_0 + 23 a_1 k^2}{6 \sqrt{2} a_0^2}$	$-\frac{20 i a_1 k}{\sqrt{3} a_0^2}$	0	0	$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	$-\frac{40\sqrt{3}}{a}$
^{‡4} †	$-\frac{20 a_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0-23a_1k^2}{6a_0^2}$	$-\frac{20 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	0	0	$\Delta_{2}^{#3} \dagger^{\alpha\beta}$	$-\frac{80a}{\sqrt{3}}$
^{#1} †	$\frac{50 i \sqrt{2} a_1 k}{a_0^2}$	$-\frac{20 i \sqrt{3} a_1 k}{a_0^2}$	$\frac{20 i a_1 k}{\sqrt{3} a_0^2}$	$\frac{20 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	0	0	${\mathcal T}_2^{\sharp 1}\dagger^{lphaeta}$	<u>44 i √</u> a(
^{#2} †	0	0	0	0	0	0	0	$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	(
^{#1} †	0	0	0	0	0	0	$-\frac{2}{a_0 - a_1 k^2}$	$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	(
	$\mathcal{A}_{0}^{\sharp 1}$	$\mathcal{A}_{0}^{\#2}$	$\mathcal{A}_0^{\#3}$	$\mathcal{A}_{0}^{\#4}$,	$h_{0}^{\#1}$	$h_{0+}^{\#2}$	$\mathscr{F}_0^{\sharp 1}$	

 $(3a_0 + 23a_1k^2)$

	$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta_{2}^{\#2}{}_{lphaeta}$	$\Delta_{2}^{\#3}{}_{lphaeta}$	${\mathcal T}^{\sharp 1}_{{ extstyle 2}^+ lpha eta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2}^{\#2}{}_{\alpha\beta\chi}$
$\Delta_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{4(a_0-11a_1k^2)}{{a_0}^2}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{80 a_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{44 i \sqrt{2} a_1 k}{a_0^2}$	0	0
$\Delta_{2}^{#2} \dagger^{\alpha\beta}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{2(3a_0+a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2} a_1 k^2}{3a_0^2}$	$-\frac{80 i a_1 k}{\sqrt{3} a_0^2}$	0	0
$\Delta_{2}^{#3} \dagger^{\alpha\beta}$	$-\frac{80 a_1 k^2}{\sqrt{3} a_0^2}$	$-\frac{2\sqrt{2} a_1 k^2}{3a_0^2}$	$\frac{4(3a_0-a_1k^2)}{3a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	0	0
$\mathcal{T}_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{44i\sqrt{2}a_1k}{a_0^2}$	$\frac{80 i a_1 k}{\sqrt{3} a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	$-\frac{8(a_0+11a_1k^2)}{{a_0}^2k^2}$	0	0
$\frac{#1}{2}$ † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
$\frac{^{#2}}{2}$ † $^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0-5a_1k^2}$
$\mathcal{A}_{\circ}^{\#1}$						

	-				
	${\mathcal T}_{1^-}^{\#1}{}_{\alpha}$	0	0	0	
	$\Delta_{1^{-}\alpha}^{\#6}$	0	0	0	
	$\Delta_{1}^{\#5}{}_{\alpha}$	0	0	0	
	$\Delta_{1^-}^{\#4}{}_{\alpha}$	0	0	0	
	$\Delta_{1^{-}\alpha}^{\#3}$	0	0	0	
dxdt	$\Delta_{1}^{\#2}{}_{\alpha}$	0	0	0	
] מוב מו א נ	$\Delta_{1^{-}\alpha}^{\#1}$	0	0	0	
$(h^{\alpha\beta})$ [t, x, y, z	$\Delta_{1}^{\#3}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$		
$6a_1\partial_\delta\partial_\chi h_{\alpha\beta}\partial^\delta\partial^\chi h^{\alpha\beta}))[t,x,y,z]dzdydxdt$	$\Delta_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$ \frac{2\sqrt{2}}{a_0} \frac{2(a_0^2 - 14a_0a_1k^2 - 35a_1^2k^4)}{a_0^2(a_0 - 29a_1k^2)} \frac{40\sqrt{2}a_1k^2}{a_0^2 - 29a_0a_1k^2} $	$\frac{40\sqrt{2} a_1 k^2}{200000000000000000000000000000000000$	
	$\Delta_{1}^{\#1}$	0	$\frac{2\sqrt{2}}{a_0}$	0	

0

 $\frac{2\sqrt{2}}{a_0}$

0

0

0

 $\Delta_{1}^{\#2} + ^{o}$

 $\Delta_{1}^{\#1} + ^{c}$

 $\Delta_{1}^{#1} + \alpha \beta$ $\Delta_{1}^{#2} + \alpha \beta$ $\Delta_{1}^{#3} + \alpha \beta$

0

0

0

0

 $\Delta_{1}^{\#3} +^{o}$

 $\Delta_{1}^{\#4} + ^{o}$

0

0

0

0

0 0

				_		3 up						
$\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	0	$\mathcal{A}_{3}^{\#1} + {}^{\alpha\beta\chi} \left[\frac{1}{2} \left(-a_0 - 7 a_1 k^2 \right) \right] \Delta_{3}^{\#1} + {}^{\alpha\beta\chi} \left[-\frac{2}{a_0 + 7 a_1 k^2} \right]$									
$\frac{7(a_0}{3\sqrt{2}a_0}$	3 (40-		$h_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	0	0
$\frac{17a_0^2 - 236a_0a_1k^2 + 1280a_1^2k^4}{6a_0^2(a_0 - 33a_1k^2)} = \frac{17a_0^2 + 1280a_1^2k^4}{1280a_1^2k^2}$	$\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	0	${\mathscr A}_{1^-\alpha}^{\#6}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$\frac{a_0 + 40a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$
$-\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)} \begin{vmatrix} 17 a_0^2-236 \\ 6 a_0 \end{vmatrix}$	$\frac{\sqrt{5}}{6(a_0-33a_1k^2)} - \frac{7}{3\sqrt{2}}$	0	${\mathscr A}_{1^-\alpha}^{\#5}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16a_1k^2)$	8 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$
$-\frac{a_0^{2-118}a_0a_1k^2+2560a_1^2k^4}{6\sqrt{2}a_0^2(a_0-33a_1k^2)} - \frac{}{6a}$	$\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	0	${\mathcal A}_{1^{-}\alpha}^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	0	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$\frac{1}{3} (a_0 + 7 a_1 k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16a_1k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$
(42)	'		${\mathscr A}_{1}^{\#3}{}_{\alpha}$	0	0	0	$\frac{5}{2}\sqrt{3}a_1k^2$	0	- <u>a0</u>	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} (-a_0 + 20 a_1 k^2)$
$\sqrt{3} a_0^2 (a_0-33a_1k^2)$	$50 \sqrt{\frac{2}{3}} a_1 k^2$ $a_0^2 - 33 a_0 a_1 k^2$	0	${\mathscr A}_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0
$0 \qquad \frac{10a_1k}{\sqrt{3}}$	0	0	$\mathcal{A}_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2}\sqrt{3}a_1k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$\frac{5a_1k^2}{\sqrt{3}}$
0	0	0	${\mathscr A}_{1}^{\#3}{}_{\alpha\beta}$	$5a_1k^2$	0	$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	0	0	0	0	0
			${\mathcal A}_{1}^{\#_2^2}$	$-\frac{a_0}{2\sqrt{2}}$	0	$0 \frac{1}{4}$	0	0	0	0	0	0
0 0	0	0 0	${\cal A}_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right) \Big -$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0
$\Delta_{1}^{\#5} +^{\alpha}$	$\Delta_{1}^{\#6} +^{\alpha}$	$r_{1}^{#1} + ^{\alpha}$		$\binom{#1}{1} + \alpha \beta \frac{1}{4}$	$\binom{\#2}{1} + \alpha\beta$	$\binom{\#3}{1+} + \alpha\beta$	$\mathcal{A}_{1^{ ext{-}1}}^{\#1} \dagger^{lpha}$	$\mathcal{A}_{1}^{\#2} +^{\alpha}$	$\mathcal{A}_{1}^{\#3} +^{\alpha}$	$\mathcal{A}_{1}^{\#4} \dagger^{lpha}$	$\mathcal{A}_{1}^{\#5} +^{\alpha}$	$\mathcal{A}_{1}^{\#6} +^{\alpha}$

 ${\mathcal R}_{3}^{\#1}{}_{lphaeta\chi}$

 $\Delta_{3}^{\#1}{}_{\alpha\beta\chi}$

0						
0	${\mathcal A}_{2}^{\#2}_{\alphaeta\chi}$	0	0	0	0	C
0	${\mathscr A}_{2^{\bar{-}}}^{\#1}{}_{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{2} (a_0 - a_1, k^2)$
0	$h_{2}^{\#1}_{\alpha\beta}$	$-\frac{11ia_1k^3}{4\sqrt{2}}$	$\frac{5ia_1k^3}{\sqrt{3}}$	$-\frac{5ia_1k^3}{\sqrt{6}}$	$\frac{1}{8}k^{2}(a_{0}-11a_{1}k^{2})$	c
0	${\mathscr A}_{2^+ lpha eta}^{\# 3}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} (3 a_0 + a_1 k^2)$	$\frac{5ia_1k^3}{\sqrt{6}} - \frac{1}{8}$	c
0	${\mathscr A}_{2^+\alpha\beta}^{\#2}$	$\sqrt{\frac{2}{3}} a_1 k^2$	$\frac{1}{6} \left(-3 a_0 + a_1 k^2 \right)$	$-\frac{a_1k^2}{6\sqrt{2}} \qquad \frac{1}{12} \ ($	$-\frac{5ia_1k^3}{\sqrt{3}}$	c
0 0	${\mathscr A}_{2^+\alpha\beta}^{\#1}$	$\mathcal{A}_{2^{+}}^{\#1} + \alpha^{\beta} \left \frac{1}{4} \left(a_{0} + 11 a_{1} k^{2} \right) \right -5 \sqrt{\frac{2}{3}} a_{1} k^{2}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{5a_1k^2}{\sqrt{3}}$	$\frac{11 i a_1 k^3}{4 \sqrt{2}}$	C
$h_1^{\#1} +^{\alpha}$		$\mathcal{A}_{2}^{\#1} + \alpha \beta \frac{1}{4}$	$\mathcal{A}_{2}^{\#2} + \alpha^{\beta}$	$\mathcal{A}_{2}^{\#3} + \alpha \beta$	$h_2^{#1} + \alpha \beta$	$\mathbf{z}^{\#1} + \alpha \beta \chi$

Unitarity conditions

(Unitarity is demonstrably impossible)