

UNCONSTRAINED MULTIVARIATE OPTIMIZATION

Data science for Engineers

Multivariate optimization - Contour plots

Multivariate optimization

$$z = f(x_1, x_2 \dots x_n)$$

Contour plot

Increasing values

Multivariate optimization - Key ideas

Multivariate optimization

$$z = f(x_1, x_2 x_n)$$

- > Gradient of a function at a point is orthogonal to the contours
- Gradient points in the direction of greatest increase of the function
- > Negative gradient points in the direction of the greatest decrease of the function
- Hessian is a symmetric matrix

Optimization for data science

Data science for Engineers

Multivariate optimization - Conditions for local optimum

Multivariate optimization

Approximate $f(\bar{x})$ as a quadratic using

Taylor series at a point $\overline{x^k}$

At $\overline{x^k} = \overline{x^*}$ (minimizer of $f(\overline{x})$)

Optimization for data science

Data science for Engineers

Multivariate optimization - Summary of conditions

Multivariate optimization

$$(\overline{x} - \overline{x^*})^T \nabla^2 f(\overline{x^*})(\overline{x} - \overline{x^*}) > 0$$

1(2)

Condition for Hessian to be positive definite

Hessian matrix is said to be positive definite at a point if all the eigen values of the Hessian matrix are positive

Optimization for data science

Data science for Engineers

Overall Summary - Univariate and multivariate local optimum conditions

Multivariate optimization

$$\min_{x} f(x) \\
x \in R$$

 $\frac{\text{Necessary condition for } x^* \text{ to be}}{\text{the minimizer}}$

$$f'(x^*)=0$$

Sufficient condition

$$f''(x^*) > 0$$

Optimization for data science

$$\min_{\overline{x} \in R^n} f(\overline{x})$$

Necessary condition for $\overline{x^*}$ to be the minimizer

$$\nabla f(\bar{x}^*) = 0$$

Sufficient condition

 $\nabla^2 f(\overline{x^*})$ has to be positive definite

Data science for Engineers

Multivariate optimization - Numerical example

Multivariate optimization

$$\min_{x_1, x_2} \left(x_1 + 2x_2 + 4x_1^2 - x_1x_2 + 2x_2^2 \right)$$

First order condition

Second order condition

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 3.76 \\ 8.23 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -0.19 \\ -0.54 \end{bmatrix}$$

Optimization for data science