Computabilità e Algoritmi (Computabilità) 22 Marzo 2013

Esercizio 1

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e, utilizzando esclusivamente la definizione, dimostrare che è primitiva ricorsiva la funzione $half: \mathbb{N} \to \mathbb{N}$, definita da half(x) = x/2.

Esercizio 2

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice totale crescente quando è totale e per ogni $x, y \in \mathbb{N}$, se x < y allora f(x) < f(y). Dimostrare che l'insieme delle funzioni totali crescenti non è numerabile.

Esercizio 3

Dato un sottoinsieme $X \subseteq \mathbb{N}$ si definisca $F(X) = \{0\} \cup \{y, y+1 \mid y \in X\}$. Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : W_x = F(E_x)\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice *crescente* quando per ogni $x, y \in dom(f)$, se x < y allora f(x) < f(y). Indicato con $B = \{x \in \mathbb{N} : \varphi_x \text{ crescente}\}$, dimostrare che $\overline{K} \leq_m B$.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che se C è un insieme tale che $C \leq_m \overline{C}$, allora C non è saturato.