INTRODUCEREA CETII IN IMAGINI

Prof. unív. dr. ing. Florica Moldoveanu

Curs *Elemente de Grafic*ă *pe Calculator* – UPB, Automatică și Calculatoare 2021-2022

MODELAREA CETII(1)

Ceaţa adaugă realism imaginii şi ajută în eliminarea defectelor produse de decuparea la nivelul planului din spate al volumului vizual:

- ☐ Fără ceaţă, pe măsură ce observatorul se îndepărtează de un obiect, obiectul se aproprie de planul din spate şi este decupat atunci când planul din spate îl intersectează.
- ☐ Cu ceaţă, dacă densitatea ceţii creşte proporţional cu distanţa de la observator, se crează efectul de distanţă pentru obiectele îndepărtate, iar obiectele decupate la nivelul planului din spate nu mai sunt vizibile.

MODELAREA CETII(2)

Fie: Cfog – culoarea de ceaţă

Clocal – culoarea calculată într-un punct din scena 3D folosind modelul de iluminare locala

 $0 \le \Phi \le 1$ – factorul de ceață, proporțional cu distanța de la observator la punct

(Φ=1 : ceata este opacă)

Culoarea punctulul, afectata de ceata: $Cloc_fog = (1-\Phi)*Clocal + \Phi*Cfog$

Fie dist distanta de la observator la punctul in care se calculeaza culoarea afectata de ceata.

Factorul de ceață liniar

-Actioneaza intre 2 distante definite in sistemul coordonatelor observator, z0 si z1, masurate pe directia in care priveste observatorul (axa z).

 $\Phi = 0$ pentru dist < z0

 $\Phi = (dist-z0) / (z1-z0)$ pentru $z0 \le dist \le z1$

 $\Phi = 1$ pentru dist > z1

MODELAREA CETII(3)

Factorii de ceață exponentiali

$$\Phi = 1 - e^f$$

EXP: f = (- fog_density*dist)

EXP2: $f = (-fog_density*dist)^2$

- fog_density: densitatea cetii (un numar real, de ex. 0.05) - modeleaza atenuarea luminii

datorata cetii.

$$z0 = 10; z1 = 20;$$

fog_density = 0.3

Factorul de ceata liniar

Factorul de ceață EXP

vec3 fogColor = vec3(0.5, 0.5, 0.5);
float fogDensity = 0.3;

Factorul de ceață EXP2

vec3 fogColor = vec3(0.5, 0.5, 0.5);
float fogDensity = 0.3;

DISTANTA - dist

Distanta fata de observator a punctului in care se calculeaza culoarea:

- Punctul este in coordonate observator
- 1. dist este coordonata z a punctului, la fel ca distantele z0 si z1

Daca se roteste camera, fara a-i modifica pozitia, coord. z a punctului se modifica → un obiect aflat la o distanta d de observator poate sa intre/iasa din zona de ceata:

2. dist este lungimea vectorului de la observator (0,0,0) la punct.

Varianta 1 este mai ieftina computational si preferata atunci cand nu este rotita camera.

CULUL CULORII DE CEA

```
layout(location = 0) in vec3 v position; //pozitia varfului in coord obiect
layout(location = 1) in vec3 v normal;
uniform mat4 Model; uniform mat4 View; uniform mat4 Projection;
uniform vec3 light position; uniform vec3 eye position;
uniform float material kd; uniform float material ks; uniform int material shininess;
uniform vec3 object color; uniform vec3 LuminaSursa; uniform vec3 LuminaAmbient;
//uniforme pentru ceata: fogselector, z0, z1, Cfog
                                                          Modelul Gouraud
// Intrare pentru fragment shader
                                                          Se calculeaza culoarea afectata de ceata.
out vec3 colorWithFog;
                                                          colorWithFog in vertex shader
void main()
{ vec3 world pos = (Model * vec4(v position,1)).xyz; //poz varf in coord globale pt calcul culoare
 vec4 view_pos = (View *Model * vec4(v_position,1)); // poz varf in coord observator
 dist = length(view pos); //lungimea vectorului (0,0,0) \rightarrow view pos
 if(fogSelector == 0)//linear fog
{ fogFactor = (dist - z0)/(z1 - z0);
 fogFactor = clamp( fogFactor, 0.0, 1.0 );//restrange fogFactor la intervalul 0-1
 //calculeaza culoare varf: vec3 color = object_color + cul_ambient + cul_difuza + cul_spec
 colorWithFog = (1-fogFactor)*color + fogFactor*Cfog;
} gl Position = Projection * view pos;
```

CALCULUL CULORII DE CEATA (2)

Modelul Phong: calculul culorii afectate de ceata in fragment shader

```
//Vertex shader
layout(location = 0) in vec3 in_position;
layout(location = 1) in vec3 in normal;
uniform mat4 Model; uniform mat4 View; uniform mat4 Projection;
out vec3 world pos;// pozitia varfului in coord globale
out vec3 world normal;//normala varfului transformata in coord globale
out vec4 view pos; //pozitia varfului in coord observator
void main(){
 world_pos = (Model * vec4(in_position,1)).xyz;
 world normal = normalize(mat3(Model) * in normal);
 view pos = View * Model * vec4(in position,1);
 gl Position = Projection * view pos;
```

CALCULUL CULORII DE CEATA (3)

```
Modelul Phong
//fragment shader
uniform vec3 light position;
                                                        Calculul culorii afectate de ceata in
                                                        fragment shader
uniform vec3 eye position;
uniform int fogSelector; //O linear; 1 exponential; 2 exponential square
uniform vec3 Cfog; //ex = vec3(0.5, 0.5,0.5);//culoarea cetii
in vec3 world pos;// pozitia interpolata a fragmentului, in coord globale
in vec3 world normal;// normala interpolata a fragmentului, in coord globale
in vec4 view pos;// pozitia interpolata a fragmentului, in coord observator
layout(location = 0) out vec3 out_color;
void main(){
//Calculeaza Cfragm aplicand modelul de iluminare locala in pozitia world pos a fragmentului
vec3 color = object color + ambient color + diffuse color + specular color;
if(fogOn == 0)//ceata dezactivata
  out color = color;
else
```

CALCULUL CULORII DE CEATA (4)

```
dist = length(view pos); //lungimea vectorului (0,0,0) \rightarrow view pos
if(fogSelector == 0)//linear fog
{ fogFactor = (dist - z0)/(z1 - z0); // z0 = 20; z1 = 80
 fogFactor = clamp( fogFactor, 0.0, 1.0 );//restrange fogFactor la intervalul 0-1
else if (fogSelector == 1) // EXP fog
      { fogFactor = exp(-dist * fogDensity);
       fogFactor = 1.0 - clamp(fogFactor, 0.0, 1.0);
    else // EXP2 fog
     { fogFactor = exp(-(dist * fogDensity)* (dist * fogDensity));
      fogFactor = 1.0 - clamp(fogFactor, 0.0, 1.0);
out color = (1 - fogFactor)*color + fogFactor * fogColor;
```