REG10J0052-0200

Renesas Starter Kit Ethernet & USB Application Board User's Manual

RENESAS STARTER KIT

Rev.2.00 Revision date: 17.Jan.2008 Renesas Technology Europe Ltd. www.renesas.com

Table of Contents

Chapter 1. Preface	3
Chapter 2. Purpose	4
Chapter 3. Board Layout	5
3.1. Component References	
3.2. Board Component functions	
3.3. Board Dimensions	7
Chapter 4. User Circuitry	8
4.1. Fitting the Target RSK to the RSK application board	8
4.2. Network Controller	8
4.3. USB Controller	
4.4. SRAM	11
4.5. Option Links	12
Chapter 5. Headers	13
5.1. Application Headers	13
Chapter 6. Code Development	17
Chapter 7. Additional Information	18

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2007. All rights reserved.

Website: http://www.eu.renesas.com/

Glossary

CPU	Central Processing Unit	RTE	Renesas Technology Europe Ltd.
HEW	High-performance Embedded Workshop	RSO	Renesas Solutions Organisation.
USB	Universal Serial Bus	RSK	Renesas Starter Kit
PC	Program Counter	NIC	Network Interface Controller
E10A	'E10A for Starter Kits' Emulator		

Chapter 2.Purpose

This RSK Application Board is an evaluation tool for using Renesas microcontrollers with Ethernet and USB interfaces. It is used in conjunction with the RSK for the microcontroller to be evaluated.

Features include:

- Mounting connections to allow RSK to be added to top of board.
- Interface to standard RSK 'Application Interface' connectors.
- Interface to Memory Expansion connectors.
- Power connector for +5V (reverse polarity protected), with on-board regulated 3.3V conversion and level translation to allow operation with RSK boards working at either +5V or +3.3V.
- LAN9118-MT NIC and RJ45 Ethernet connector with integral status LEDs.
- ISP1761BE USB Hi-Speed 2.0 Host Controller with:
 - o 1 Host/Slave USB (Mini AB) connector and
 - o 2 Host USB (Standard A) connectors.
- 512 kByte Static Ram arranged as 256k x 16 bit words.

Chapter 3. Board Layout

3.1.Component References

The following diagram shows the component references for the board.

Figure 3-1: Component References

3.2. Board Component functions

The following diagram the shows the functions of the components on the board.

Figure 3-2: Board Layout

3.3. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 3-3: Board Dimensions

Chapter 4.User Circuitry

4.1. Fitting the Target RSK to the RSK application board

The board is supplied with 2x 24 way sockets, 2x 26 way sockets and 1 x 50 way socket.

These should be soldered on the underside of the host RSK in JA1, JA2, JA5, JA6 and JA3 positions.

The RSK should be plugged into the equivalent connectors on the RSK LCD application board.

A separate application note is available to explain how to configure the host RSK to enable it to connect to this application board.

The board is designed to be 5V I/O tolerant. Therefore this board can be connected to an RSK with 5V I/O.

4.2. Network Controller

The network functionality is provided by the SMCS LAN9118-MT non-PCI Ethernet controller.

Refer to the manufacturer's datasheet for more information on this peripheral.

The Ethernet controller is configured to use a 16 bit data bus. It uses single 16 bit read and write strobes.

Byte or long word accesses are not available for this device.

The chip select used for the network controller is CS1 which is on JA3 pin 27.

Please note the timing. This will require programming the bus controller for the Host RSK.

Figure 4-1: Ethernet controller read timing

Figure 4-2: Ethernet controller write timing

The Ethernet controller can drive two interrupts.

IRQ0 is the IRQ from the Ethernet controller.

IRQ2 is the PME output from the Ethernet controller. PME interrupts can be enabled on the IRQ pin, so this can be disabled for host RSKs with fewer interrupt lines, if the PME interrupt is required.

Both interrupts are pulled high to 3.3V by 1K resistors.

4.3.USB Controller

The Universal Serial Bus functionality is provided by the Philips ISP1761 controller.

Refer to the manufacturer's datasheet for more information on this peripheral.

This peripheral provides 2 Host type A and one On the Go Host/Peripheral mini AB type USB controller.

The ISP1761 controller is configured to use a 16 bit data bus. It uses single 16 bit read and write strobes.

Byte or long word accesses are not available for this device.

The chip select used for the USB controller is CS2 which is on JA3 pin 28.

Please note the timing. This will require programming the bus controller for the Host RSK.

Figure 4-3: USB controller read timing

Figure 4-4: USB controller write timing

The ISP1761 controller can drive two interrupts.

IRQ1 is the HC_IRQ from the ISP1761 controller.

IRQ3 is the DC_IRQ output from the ISP1761 controller. DC_IRQ interrupts can be enabled on the HC_IRQ pin, so this can be disabled for host RSKs with fewer interrupt lines, if the DC_IRQ interrupt is required.

Both interrupts are pulled high to 3.3V by 1K resistors.

4.4.SRAM

The board is provided with 512 kilobytes of static RAM arranged as 256k x 16 bit words.

This RAM is byte addressable, provided the host RSK supports this.

The chip select used for the RAM is CS3 which is on JA3 pin 45.

Please note the timing. This will require programming the bus controller for the Host RSK.

Figure 4-5: SRAM read timing

Figure 4-6: SRAM write timing

4.5.Option Links

Table 4-1 below describes the function of the option links contained on this CPU board. The default configuration is indicated by **BOLD** text.

		Option Link Settings		
Reference	Function	Fitted	Alternative (Removed)	Related To
R2	3V power select	Regulator drives Board_3V3	Board_3V from RSK	
R7	Write Strobe Select	High Byte writes from WR1n	WR1n not connected	R8, R9, R10
R8	Write Strobe Select	High Byte writes from WR1n	WR1n not connected	R7, R9, R10
R9	Write Strobe Select	Low Byte writes from WR0n	WR0n not connected	R7, R8, R10
R10	Write Strobe Select	Low Byte writes from WR0n	WR0n not connected	R7, R8, R9

Table 4-1: JA1 Option Link Settings

Chapter 5.Headers

5.1. Application Headers

This information is supplied for reference. Only pins marked are connected on this board.

These connections are <u>not</u> level translated.

Table 5-1 and Table 5-2 below show the standard application header connections.

	JA1						
Pin	Generic Hea	der Name	CPU board	Pin	Header Name		CPU board
			Signal Name				Signal Name
1	Regulated Su	ipply 1	5V	2	Regulated Supp	oly 1	GROUND
3	Regulated Su	ipply 2	3V3	4	Regulated Supp	oly 2	GROUND
5	Analogue Su	pply	AVcc	6	Analogue Suppl	у	AVss
7	Analogue Re	ference	AVref	8	ADTRG		ADTRG
9	ADC0	10	AD0	10	ADC1	I1	AD1
11	ADC2	12	AD2	12	ADC3	13	AD3
13	DAC0		DAC0	14	DAC1		DAC1
15	IOPort		IO_0	16	IOPort		10_1
17	IOPort		IO_2	18	IOPort		10_3
19	IOPort		IO_4	20	IOPort		IO_5
21	IOPort		10_6	22	IOPort		10_7
23	Open drain	IRQAEC	IRQ3	24	I ² C Bus - (3rd pin)		IIC_EX
25	I ² C Bus	-	IIC_SDA	26	I ² C Bus IIC_SC		IIC_SCL

Table 5-1: JA1 Standard Generic Header

	JA2						
Pin	Generic Header Name		CPU board	Pin	Header Name	CPU board	
			Signal Name			Signal Name	
1	Open drain		RESn	2	External Clock Input	EXTAL	
3	Open drain		NMIn	4	Regulated Supply 1	Vss1	
5	Open drain outp	out	WDT_OVF	6	Serial Port	SCIaTX	
7	Open drain	WUP	IRQ0	8	Serial Port	SCIaRX	
9	Open drain		IRQ1	10	Serial Port	SCIaCK	
11	Up/down		MO_UD	12	Serial Port Handshake	CTS/RTS	
13	Motor control		MO_Up	14	Motor control	MO_Un	
15	Motor control		MO_Vp	16	Motor control	MO_Vn	
17	Motor control		MO_Wp	18	Motor control	MO_Wn	
19	Output		TMR0	20	Output	TMR1	
21	Input TI		TRIGa	22	Input	TRIGb	
23	Open drain		IRQ2	24	Tristate Control	TRSTn	
25	SPARE		-	26	SPARE	-	

Table 5-2: JA2 Standard Generic Header

Table 5-3 and Table 5-4 below show the optional generic header connections

	JA5							
Pin	Generic He	eader Name	CPU board	Pin	Heade	r Name	CPU board	
			Signal Name				Signal Name	
1	ADC4	14	AD4	2	ADC5	I 5	AD5	
3	ADC6	16	AD6	4	ADC7	17	AD7	
5	CAN		CAN1TX	6	CAN		CAN1RX	
7	CAN		CAN2TX	8	CAN		CAN2RX	
9	Rese	erved		10	Reserved			
11	Rese	erved		12	Reserved			
13	Rese	erved		14	Reserved			
15	Rese	erved		16	Reserved			
17	Rese	erved		18	Reserved			
19	Rese	erved		20	Reserved			
21	Rese	erved		22	Reserved			
23	Rese	erved		24	Rese	erved		

Table 5-3: JA5 Optional Generic Header

	JA6							
Pin	Generic	Header Name	CPU board	Pin	Head	er Name	CPU board	
			Signal				Signal Name	
			Name					
1	DMA		DREQ	2	DMA		DACK	
3	DMA		TEND	4	Standby (Op	en drain)	STBYn	
5	Host Serial	SCIdTX	RS232TX	6	Host Serial	SCIdRX	RS232RX	
7	Serial Port		SCIbRX	8	Serial Port		SCIbTX	
9	Serial Port	Synchronous	SCIcTX	10	Serial Port		SCIbCK	
11	Serial Port	Synchronous	SCIcCK	12	Serial Port Synchronous		SCIcRX	
13	Reserved			14	Reserved			
15	Reserved			16	Reserved			
17	Reserved			18	Reserved			
19	Reserved			20	Reserved			
21	Reserved			22	Reserved			
23	Reserved			24	Reserved			

Table 5-4: JA6 Optional Generic Header

Table 5-5 below shows the Memory Expansion connections

These connections support 5 to 3.3V level translation.

		J	A 3		
Pin	Generic Header Name	Signal Name	Pin	Header Name	Signal Name
1	A(0)	A(0)	2	A(1)	A(1)
3	A(2)	A(2)	4	A(3)	A(3)
5	A(4)	A(4)	6	A(5)	A(5)
7	A(6)	A(6)	8	A(7)	A(7)
9	A(8)	A(8)	10	A(9)	A(9)
11	A(10)	A(10)	12	A(11)	A(11)
13	A(12)	A(12)	14	A(13)	A(13)
15	A(14)	A(14)	16	A(15)	A(15)
17	D(0)	D(0)	18	D(1)	D(1)
19	D(2)	D(2)	20	D(3)	D(3)
21	D(4)	D(4)	22	D(5)	D(5)
23	D(6)	D(6)	24	D(7)	D(7)
25	RDn	RDn	26	WRn	WRn
27	CS1n	CS1n	28	CS2n	CS2n
29	D(8)	D(8)	30	D(9)	D(9)
31	D(10)	D(10)	32	D(11)	D(11)
33	D(12)	D(12)	34	D(13)	D(13)
35	D(14)	D(14)	36	D(15)	D(15)
37	A(16)	A(16)	38	A(17)	A(17)
39	A(18)	A(18)	40	A(19)	A(19)
41	A(20)	A(20)	42	A(21)	A(21)
43	A(22)	A(22)	44	SDCLK	SDCLK
45	CS3n	CS3n	46	ALE	ALE
47	WR1n	WR1n	48	WR0n	WR0n
49	CASn	CASn	50	RASn	RASn

Table 5-5: JA3 Memory Expansion connector

Chapter 6.Code Development

RSKs with appropriate connections will include suitable sample software to drive the interfaces on this board.

Chapter 7. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or from the web site.

Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>
Europe: <u>tools.support.eu@renesas.com</u>

Japan: csc@renesas.com

General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/

Renesas Starter Kit Ethernet & USB Application Board

User's Manual

Publication Date Rev.2.00 17.Jan.2008

Published by: Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

Renesas Starter Ethernet & USB Application Board User's Manual

Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End

Buckinghamshire SL8 5FH, United Kingdom