Artificial Intelligence

Machine Learning Neural Networks

Neural Networks

- Algorithms that try to mimic how the brain functions.
- Worked extremely well to recognize:
 - 1. handwritten characters (LeCun et a. 1989),
 - 2. spoken words (Lang et al. 1990),
 - 3. faces (Cottrel 1990)
- Extensively studied in the 1990's with a moderate success.
- Now back with lots of success with deep learning thanks to the algorithmic and computational progress.
- The first algorithm used was the Perceptron (Resemblatt 1959).

Perceptron

Given n examples and d features.

$$f(x_i) = sign(\sum_{j=0}^{d} w_j x_{ij})$$

Perceptron expressiveness

- Consider the perceptron with the step function.
- Idea: Iterative method that starts with a random hyperplane and adjust it using your training data.
- It can represent Boolean functions such as AND, OR, NOT but not the XOR function.
- It produces a linear separator in the input space.

From perceptron to MLP

- The perceptron works perfectly if data is linearly separable. If not, it will not converge.
- Neural networks use the ability of the perceptrons to represent elementary functions and combine them in a network of layers of elementary questions.
- However, a cascade of linear functions is still linear,
- and we want networks that represent highly non-linear functions.

From perceptron to MLP

- Also, perceptron used a threshold function, which is undifferentiable and not suitable for gradient descent in case data is not linearly separable.
- We want a function whose output is a linear function of the inputs.
- One possibility is to use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$g(z) \to 1$$
 when $z \to +\infty$ $g(z) \to 0$ when $z \to -\infty$

$$g(z)
ightarrow 0$$
 when $z
ightarrow -\infty$

Perceptron with Sigmoid

Given n examples and d features.

For an example x_i (the i^{th} line in the matrix of examples)

$$f(x_i) = \frac{1}{1 + e^{-\sum_{j=0}^{d} w_j x_{ij}}}$$

Let's try to create a MLP for the XOR function using elementary perceptrons.

Let's try to create a NN for the XOR function using elementary perceptrons.

First observe:

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(10) = 0.99995$$

$$g(-10) = 0.00004$$

Let's consider that: For $z \ge 10$, $g(z) \to 1$. For $z \le -10$, $g(z) \to 0$.

First what is the perceptron of the OR?

x_1	x_2	$x_1 $ OR x_2	$\mid g(z) \mid$
0	0	0	$g(w_0 + w_1x_1 + w_2x_2) = g(-10)$
0	1	1	g(10)
1	0	1	g(10)
1	1	1	g(10)

Similarly, we obtain the perceptrons for the AND and NAND:

Similarly, we obtain the perceptrons for the AND and NAND:

Note: how the weights in the NAND are the inverse weights of the AND.

Let's try to create a NN for the XOR function using elementary perceptrons.

x_1	x_2	x_1 XOR x_2	$(x_1 ext{ OR } x_2) ext{ AND } (x_1 ext{ NAND } x_2)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Let's put them together...

Let's put them together...

XOR as a combination of 3 basic perceptrons.

- Note: Feedforward NN (as opposed to recurrent networks)
 have no connections that loop.
- Learn the weights for a multilayer network.
- Backpropagation stands for "backward propagation of errors".
- Given a network with a fixed architecture (neurons and interconnections).
- Use Gradient descent to minimize the squared error between the network output value o and the ground truth y.
- We suppose multiple output k.
- Challenge: Search in all possible weight values for all neurons in the network.

Feedforward-Backpropagation

- We consider *k* outputs
- For an example e defined by (x, y), the error on training example e, summed over all output neurons in the network is:

$$E_e(w) = \frac{1}{2} \sum_{k} (y_k - o_k)^2$$

• Remember, gradient descent iterates through all the training examples one at a time, descending the gradient of the error w.r.t. this example.

$$\Delta w_{ij} = -\alpha \frac{\partial E_e(w)}{\partial w_{ij}}$$

Notations:

- x_{ij} : the i^{th} input to neuron j.
- w_{ij} : the weight associated with the i^{th} input to neuron j.
- $z_j = \sum w_{ij}x_j$, weighted sum of inputs for neuron j.
- o_i : output computed by neuron j.
- *g* is the sigmoid function.
- *outputs*: the set of neurons in the output layer.
- Succ(j): the set of neurons whose immediate inputs include the output of neuron j.

Backpropagation notations

$$\frac{\partial E_e}{\partial w_{ij}} = \frac{\partial E_e}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} = \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} x_{ij}$$

$$\Delta w_{ij} = -\alpha \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} x_{ij}$$

We consider two cases in calculating $\frac{\partial E_e}{\partial z_j}$ (let's abandon the index e):

- Case 1: Neuron j is an output neuron
- ullet Case 2: Neuron j is a hidden neuron

• Case 1: Neuron j is an output neuron

$$\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial z_j}$$

• Case 1: Neuron j is an output neuron

$$\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial z_j}$$

$$\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_k (y_k - o_k)^2$$

$$\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (y_j - o_j)^2$$

$$\frac{\partial E}{\partial o_j} = \frac{1}{2} 2 (y_j - o_j) \frac{\partial (y_j - o_j)}{\partial o_j}$$

$$\frac{\partial E}{\partial o_j} = -(y_j - o_j)$$

ullet Case 1: Neuron j is an output neuron

$$\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial o_j} \, \frac{\partial o_j}{\partial z_j}$$

$$\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k} (y_k - o_k)^2$$

$$\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k} (y_k - o_k)^2$$

$$\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (y_j - o_j)^2$$

$$\frac{\partial E}{\partial o_j} = \frac{1}{2} 2 (y_j - o_j) \frac{\partial (y_j - o_j)}{\partial o_j}$$

$$\frac{\partial E}{\partial o_j} = -(y_j - o_j)$$

We have: $o_j = g(z_j)$

$$\frac{\partial o_j}{\partial z_j} = \frac{\partial g(z_j)}{\partial z_j}$$

$$\frac{\partial o_j}{\partial z_j} = o_j (1 - o_j)$$

$$\frac{\partial E}{\partial z_j} = -(y_j - o_j)o_j(1 - o_j)$$

$$\Delta w_{ij} = \alpha (y_j - o_j) o_j (1 - o_j) x_{ij}$$

We will note

$$\delta_j = -\frac{\partial E}{\partial z_j}$$

$$\Delta w_{ij} = \alpha \ \delta_j \ x_{ij}$$

• Case 2: Neuron j is a hidden neuron

$$\frac{\partial E}{\partial z_{j}} = \sum_{k \in succ\{j\}} \frac{\partial E}{\partial z_{k}} \frac{\partial z_{k}}{\partial z_{j}} = \sum_{k \in succ\{j\}} -\delta_{k} \frac{\partial z_{k}}{\partial z_{j}}$$

$$\frac{\partial E}{\partial z_{j}} = \sum_{k \in succ\{j\}} -\delta_{k} \frac{\partial z_{k}}{\partial o_{j}} \frac{\partial o_{j}}{\partial z_{j}}$$

$$\frac{\partial E}{\partial z_{j}} = \sum_{k \in succ\{j\}} -\delta_{k} w_{jk} \frac{\partial o_{j}}{\partial z_{j}}$$

$$\frac{\partial E}{\partial z_{j}} = \sum_{k \in succ\{j\}} -\delta_{k} w_{jk} o_{j} (1 - o_{j})$$

$$\delta_{j} = -\frac{\partial E}{\partial z_{j}} = o_{j} (1 - o_{j}) \sum_{k \in succ\{j\}} \delta_{k} w_{jk}$$

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

Input: training examples (x,y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

Output: a neural network with one input layer, one hidden layer and one output layer with n_i , n_h and n_o number of neurons respectively and all its weights.

1. Create_feedforward_network (n_i, n_h, n_o)

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)

Input: training examples (x,y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)
 - i. Feed forward: Propagate example x through the network and compute the output o_i from every neuron neuron.

Input: training examples (x,y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)
 - i. Feed forward: Propagate example x through the network and compute the output o_i from every neuron neuron.
 - ii. Propagate backward: Propagate the errors backward.

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

Output: a neural network with one input layer, one hidden layer and one output layer with n_i , n_h and n_o number of neurons respectively and all its weights.

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)
 - i. Feed forward: Propagate example x through the network and compute the output o_i from every neuron neuron.
 - ii. Propagate backward: Propagate the errors backward.

Case 1 For each output neuron k, calculate its error

$$\delta_k = o_k (1 - o_k)(y_k - o_k)$$

Input: training examples (x,y), learning rate α (e.g., $\alpha=0.1$), n_i , n_h and n_o .

Output: a neural network with one input layer, one hidden layer and one output layer with n_i , n_h and n_o number of neurons respectively and all its weights.

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)
 - i. Feed forward: Propagate example x through the network and compute the output o_i from every neuron neuron.
 - ii. Propagate backward: Propagate the errors backward.

Case 1 For each output neuron k, calculate its error

$$\delta_k = o_k (1 - o_k)(y_k - o_k)$$

Case 2 For each hidden neuron h, calculate its error

$$\delta_h = o_h(1 - o_h) \sum_{k \in Succ(h)} w_{hk} \delta_k$$

Input: training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_o .

Output: a neural network with one input layer, one hidden layer and one output layer with n_i , n_h and n_o number of neurons respectively and all its weights.

- 1. Create_feedforward_network (n_i, n_h, n_o)
- 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2])
- 3. Repeat until convergence
 - (a) For each training example (x, y)
 - i. Feed forward: Propagate example x through the network and compute the output o_i from every neuron neuron.
 - ii. Propagate backward: Propagate the errors backward.
 - **Case 1** For each output neuron k, calculate its error

$$\delta_k = o_k(1 - o_k)(y_k - o_k)$$

Case 2 For each hidden neuron h, calculate its error

$$\delta_h = o_h(1 - o_h) \sum_{k \in Succ(h)} w_{hk} \delta_k$$

iii. Update each weight $w_{ij} \leftarrow w_{ij} + \alpha \delta_j x_{ij}$

Observations

- Convergence: small changes in the weights
- There are other activation functions. Hyperbolic tangent function, is practically better for NN as its outputs range from -1 to 1.

$$g(x) = sigmoid(x) = \frac{e^{kx}}{1 + e^{kx}}$$
 for $k = 1$, $k = 2$, etc.

 $g(x) = tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (It is a rescaling of the logistic sigmoid function!).

Multi class case etc.

Multi class case etc.

- Nowadays, networks with more than two layers, a.k.a. deep networks, have proven to be very effective in many domains.
- Examples of deep networks: restricted Boltzman machines, convolutional NN, auto encoders, etc.

MNIST database

http://yann.lecun.com/exdb/mnist/

- The MNIST database of handwritten digits
- Training set of 60,000 examples, test set of 10,000 examples
- Vectors in \mathbb{R}^{784} (28x28 images)
- Labels are the digits they represent
- Various methods have been tested with this training set and test set

- Linear models: 7% 12% error
- KNN: 0.5%- 5% error
- Neural networks: 0.35% 4.7% error
- Convolutional NN: 0.23% 1.7% error

Demo: Tensorflow

http://playground.tensorflow.org/

- Open source software to play with neural networks in your browser.
- The dots are colored orange or blue for positive and negative examples.
- It's possible to choose the activation function, architecture, rate etc.
- Very well done! Let's check it out!

Credit

- Machine Learning 1997. T. Mitchell.
- Andrew Ng's lecture notes.
- http://playground.tensorflow.org/