Methods & Res In order to make our code which is already tidy. Thus points being within 0-25 y	dbl) ng is only the players dataset. We will only be use SUITS: de reproducible, we loaded in the provided data so us, we do not need to wrangle this data into a tid	ing the played_hours and age from the dataset to answer or set links as urls so another person can also load in the datas ly format. We then select only the desired variables to work	sets without downloading it to their computer prior. Our	desired variables, played_hours (response va	ariable) and age, are only in the players.csv da
#reading the data into players <- read_csv(psessions <- read_csv(p	s://drive.google.com/uc?export=download&os://drive.google.com/uc?export=download nto R (players_id) r(sessions_id) mns that are relevant s > _hours, age)				
<pre>dbl (2): played_hours, lgl (3): subscribe, in i Use `spec()` to retrain i Specify the column ty Rows: 1535 Columns: 5 — Column specification Delimiter: "," chr (3): hashedEmail, dbl (2): original_star i Use `spec()` to retrain i Specify the column ty A tibble: 196 × 3 name played_hours <chr></chr></pre>	<pre>individualId, organizationName rieve the full column specification for types or set `show_col_types = FALSE` to ion start_time, end_time art_time, original_end_time rieve the full column specification for types or set `show_col_types = FALSE` to age <dbl> </dbl></pre>	this data.			
	17 21 21 17 19 21 17 22				
Thatcher 0.2 Niamh 0.0 Quinlan 0.0	17 25 22 17 22 17 17 17				
Kendall 0.6 Iman 0.0 Finn 0.0	17 17 17 21 28 17 23 23				
: : Radwan 1.0 Ariana 0.3 Quinton 0.1 Rocco 0.1 Lyra 0.4 Amelia 1.8	 : 26 17 17 17 21 32 20 50 				
Joaquim 0.3 Jesse 0.0 Jamie 2.7 Charlie 0.4 Finnian 0.1 Sebastián 2.1 Hunter 0.8 Liam 0.2 Sidney 32.0	17 17 21 17 17 17 24 22 17				
Sam 0.1 Gabriela 0.1 Jasper 0.0 Lina 0.0 Orion 0.0 Rhys 0.0 Bailey 0.0	 44 17 17 17 20 17 22 				
<pre>#Scatterplot of age v minecraft_plot <- mir geom_point() + ggtitle("Figure 1 labs(y = "Total F theme(title = ele minecraft_plot</pre> Figure 1: Scatte	91 data may result in our model unable to predict a	layed hours") +	edict lower hours played overall due to little data of peo	ple with high played hours (above 50 hours).	
Total Hours Played 100- 100- 50- 100-					
<pre>to determine the optimal v object to enable an asses set.seed(5) library(tidymodels) library(gridExtra)</pre>	Age of player regression model alongside a linear regression revalue of KKK. Our process began by creating a	model to predict future observations based on past numerical preprocessing recipe that included standardization to ensure combined the recipe and model specification into a single wo	e the data was properly prepared. Next, we defined a n		
<pre>minecraft_train <- tr minecraft_test <- test set.seed(5) #KNN recipe minecraft_recipe <- r step_scale(all_pr step_center(all_pr minecraft_recipe minecraft_spec <- near neighbors = tune(set_engine("kknn" set_mode("regress") minecraft_vfold <- vf minecraft_wkflw <- wc</pre>	<pre>training(minecraft_split) esting(minecraft_split) recipe(played_hours ~ age, data = minecorredictors()) > predictors()) earest_neighbor(weight_func = "rectangule()) > p") > ssion") ofold_cv(minecraft_train, v = 5, strata = workflow() ></pre>	eraft_train) > ar",			
minecraft_results <-	<pre>raft_spec) neighbors = seq(from = 1, to = 100, by = - minecraft_wkflw > cles = minecraft_vfold, grid = gridvals) () > == "rmse")</pre>				
- Recipe - Inputs Number of variables by outcome: 1 predictor: 1 - Operations • Scaling for: all_pre • Centering for: all_p - Workflow	redictors()				
Preprocessor: Recipe Model: nearest_neighbo — Preprocessor 2 Recipe Steps • step_scale() • step_center() — Model K-Nearest Neighbor Mod Main Arguments: neighbors = tune() weight_func = rectan Computational engine: neighbors .metric .estimato	odel Specification (regression) ungular kknn A tibble: 34 × 7	config			
7 rmse standar 10 rmse standar 13 rmse standar 16 rmse standar 19 rmse standar	ard 23.95210 5 6.748632 Preprocessor1_M ard 21.05845 5 7.496176 Preprocessor1_M ard 20.12665 5 7.071529 Preprocessor1_M ard 19.72705 5 7.014795 Preprocessor1_M ard 19.63424 5 6.974554 Preprocessor1_M ard 19.60907 5 6.951302 Preprocessor1_M ard 19.60416 5 6.937198 Preprocessor1_M ard 19.44468 5 6.989364 Preprocessor1_M	lodel03 lodel04 lodel05 lodel06 lodel07			
28 rmse standar 31 rmse standar 34 rmse standar 37 rmse standar 40 rmse standar 43 rmse standar 46 rmse standar 49 rmse standar 52 rmse standar	ard 19.48854 5 6.899946 Preprocessor1_M ard 19.94715 5 6.558536 Preprocessor1_M ard 19.93844 5 6.625125 Preprocessor1_M ard 19.81645 5 6.698000 Preprocessor1_M ard 19.71402 5 6.701910 Preprocessor1_M ard 19.86553 5 6.446024 Preprocessor1_M ard 19.93881 5 6.429092 Preprocessor1_M ard 19.73730 5 6.403030 Preprocessor1_M	lodel11 lodel12 lodel13 lodel14 lodel15 lodel16 lodel17			
58 rmse standar 61 rmse standar 64 rmse standar 67 rmse standar 70 rmse standar 73 rmse standar 76 rmse standar 79 rmse standar 82 rmse standar	ard 19.62350 5 6.509339 Preprocessor1_M ard 19.60209 5 6.530529 Preprocessor1_M ard 19.57527 5 6.546911 Preprocessor1_M ard 19.55412 5 6.569539 Preprocessor1_M ard 19.52984 5 6.589011 Preprocessor1_M ard 19.50941 5 6.609739 Preprocessor1_M ard 19.44930 5 6.636734 Preprocessor1_M	lodel21 lodel22 lodel23 lodel24 lodel25 lodel26 lodel27			
91 rmse standar 94 rmse standar 97 rmse standar 100 rmse standar neighbors .metric .estimato <dbl> <chr> <chr< td=""><td>ard 19.53877 5 6.599130 Preprocessor1_M ard 19.53204 5 6.609026 Preprocessor1_M ard 19.55488 5 6.604427 Preprocessor1_M A tibble: 1 × 7 ttor mean n std_err</td><td>lodel32 lodel33 lodel34 .config <chr></chr></td><td></td><td></td><td></td></chr<></chr></dbl>	ard 19.53877 5 6.599130 Preprocessor1_M ard 19.53204 5 6.609026 Preprocessor1_M ard 19.55488 5 6.604427 Preprocessor1_M A tibble: 1 × 7 ttor mean n std_err	lodel32 lodel33 lodel34 .config <chr></chr>			
<pre>: set.seed(5) #Evaluating on the te kmin <- minecraft_mir #Model for knn regres minecraft_spec <- nea set_engine("kknn" set_mode("regress #Fitting everything t minecraft_fit <- work add_recipe(minecraft) add_model(minecraft)</pre>	<pre>ve used the model to generate predictions on the test set in > pull(neighbors) ession earest_neighbor(weight_func = "rectangul n") > ession") through the workflow onto the data ekflow() > eraft_recipe) > eraft_spec) ></pre>	alues ranging from 1 to 100. The optimal K, corresponding to test data and applied the metrics function to compute a sun ar", neighbors = kmin) >			data. To do this, we first retrained the model u
#Finding the rmse minecraft_summary <- predict (minecraft bind_cols (minecraft bind_cols (truth = p filter(.metric == minecraft_summary A tibble: 1 × 3 .metric .estimator .estimate chr> <chr> <chr> <dbl> Final Plotting of the Reserved and the set of the set o</dbl></chr></chr>	- minecraft_fit > ft_test) > raft_test) > played_hours, estimate = .pred) > == 'rmse') te de				
<pre>geom_point (alpha</pre>	<pre>minecraft_fit > ft_train) > ft_train) L <- minecraft > ggplot(aes(x = age, y = a = 0.4) + ata = minecraft_preds, es(x = age, y = .pred), eelblue", 1) + ayers") + yed hours ") + 'Figure 2: KNN regression with K = ", km Lement_text(size = 17))</pre>				
<dbl> <chr> 2.081707 Kylie 6.350000 Adrian 4.364634 Luna 6.350000 Natalie 1.609756 Nyla 6.350000 Daniela 6.350000 Niamh</chr></dbl>	ed_hours age <dbl></dbl>				
1.609756 Quinlan 6.350000 Elodie 6.350000 Ren 6.350000 Iman 1.617073 Finn 6.185366 Vivienne 1.617073 Ayman 2.081707 London 6.350000 Farid 1.642683 Vasco	0.0 22 0.0 17 0.0 17 0.0 17 0.0 23 0.1 18 0.1 23 0.1 21 0.0 17 0.0 33				
6.350000 Ishaan 6.350000 Yvette 2.081707 Mina 1.617073 Umar 6.350000 Winston 1.617073 Edmund 1.868293 Jude 2.020732 Kai 6.350000 Bijan 6.407317 Ophelia	0.0 17 0.1 17 0.0 21 0.0 24 0.1 17 0.0 23 0.0 42 0.0 20 0.0 17 0.1 15				
2.081707 Magnus 1.609756 Hadi 6.350000 Faye : : 1.639024 Aiden 6.350000 Winslow 1.617073 Cyrus 1.639024 Isidore 6.185366 Pablo 6.780488 Rafael	0.0 21 0.0 22 0.0 17 : : : 1.4 25 5.6 17 2.2 24 12.5 27 0.9 18 2.9 11				
6.780488 Zane 6.780488 Kyrie 6.350000 Alex 6.350000 Hiroshi 6.350000 Suki 6.350000 Delara 6.350000 Sakura 1.639024 Ibrahim 1.609756 Sophia 2.081707 Scarlett	3.6 10 17.2 14 53.9 17 223.1 17 1.0 17 150.0 16 1.2 17 2.0 27 2.7 22 4.0 21				
6.350000 Ella 6.350000 Arash 1.868293 Dante 1.617073 Amelie 1.617073 Dana 2.020732 Caden 6.350000 Atlas 6.350000 Aaron 1.642683 Amelia 2.081707 Jamie	1.0 17 7.1 17 18.5 49 0.7 24 56.1 23 1.1 20 1.0 17 1.2 17 1.8 32 2.7 21				
200-	2.1 24 0.8 22 32.0 22 1.7 17 I regression with K = 82				
Simple Linear Regression	Age of players				
For the simple linear regree best-fit line: the intercept is set.seed(5) #linear regression model linear regression model ("linear regression model ("regression m	pression, we will find the straight line of best throught 8.67 and the slope -0.181. Finally, we used the models eg() > > ssion") (played_hours ~ age, data = minecraft_tr ecipe) > ecipe) > eraft_train)	ugh the training data and use it for predictions. First, we defined to generate predictions on the test dataset to evaluate training the training data and use it for predictions. First, we define the model to generate predictions on the test dataset to evaluate training data and use it for predictions. First, we define the model to generate predictions on the test dataset to evaluate training data and use it for predictions. First, we define the model to generate predictions on the test dataset to evaluate training data and use it for predictions.		g recipe. We then fit the simple linear regress	sion model, which provided the coefficients for
<pre>predict (minecraft bind_cols (minecraft metrics (truth = p lm_test_results #Visualization of the age_prediction_grid </pre> age = c(minecraft > minecraft > minecraft_preds <- lm predict (age_prediction_cols (age_prediction_cols) (age_prediction_cols) #Plotting the linear lm_plot_final <- ggpl geom_point (alphate) geom_line (data = mapping)	<pre>ft_test) > faft_test) > faft_test) > played_hours, estimate = .pred) me linear model on the data <- tibble(> select(age) > min(), > select(age) > max())) Im_fit > diction_grid) > fediction_grid) > fediction_grid) or line on the scatterplot data plot(minecraft, aes(x = age, y = played_index) a = 0.4) + = minecraft_preds, and = aes(x = age, y = .pred),</pre>	hours)) +			
color = linewic ggtitle("Figure 3 xlab("Age of Play ylab("Total Playe theme(text = elem lm_plot_final — Workflow [trained] Preprocessor: Recipe Model: linear_reg() — Preprocessor 0 Recipe Steps — Model Call: stats::lm(formula =	= "steelblue", idth = 1) + 3: Linear Model of Age of Players Vs To ayers") + yer Hours") + ement_text(size = 13))	tal Players Hours") +			
8.6668 -0.18 A tibble: 3 × 3 .metric .estimator .est <chr></chr>	stimate <dbl> 033685 219333</dbl>	5			
200 -					

immersed in video games and computer usage, making them more familiar and comfortable with technology. In contrast, older generations did not have the same level of exposure to computers or the internet during their formative years, which likely contributes to lower engagement

The purpose of this study was to analyze gameplay data and player demographics, to train AI to understand complex interactions and predict player engagement. This teaches AI that the average player contributing the most hours in minecraft is often younger. Thus, game developers can begin to target a younger audience and appeal to them, as the younger generations are most likely to continue contributing to their game. Future questions this could lead to are investigating the older generation demographics like "how can we get older people to contribute to

with video games among them.

game play"? Additionally, we could explore younger generation demographics like "what aspects appeal towards younger generations"?

Age Predicting Total Play Time Contribution to PLAICraft

advances AI capabilities in dynamic environments but also provides insights into user retention, adaptive systems, and AI safety.

We will be working with the Minecraft data from the Pacific Laboratory for Artificial Intelligence (PLAI). Minecraft is a popular open sandbox game, provides an open-ended environment where players can explore, build, and interact. PLAICraft, an initiative by PLAI, is interested in

developing an advanced AI capable of mimicking human behaviors such as exploration, building, and decision-making. They want to analyze gameplay data and player demographics, to train AI to understand complex interactions and predict player engagement. This research not only

Introduction: