24.10.2015

Аримфметика Пеано (NB: перечислимость множества аксиом важна).

Первая теорема Гёделя грубо: не получится вывести $\exists k: T(n,x,k)$ — проблема остановки. Вторая теорема Гёделя о построении арифметичного предиката выводимости.

Примитивно-рекурсивные функции (\mathcal{PR}) — наименьшее множество, замкнутое относительно операций композиции, примитивной рекурсии и содержащее $\{I_i^n, S, 0\}$.

Лемма о разборе случаев: $gI(h(y) = 0) + h(1 - I(h(y) = 0)) \in \mathcal{PR}$, если $a, h \in \mathcal{PR}$.

Еще лемма: $f(x,y)=\sum_{z\leqslant x}g(z,y)\in\mathcal{PR},$ если $f\in\mathcal{PR}.$ Произведение, конечно, тоже.

Примитивно-рекурсивное отношение — то, у которого характеристическая функция примитивно-рекурсивна.

Еще лемма: если $R \in \mathcal{PR}$, то $\exists z \leqslant x : R(z,y) \in \mathcal{PR}$, а также $\forall z \leqslant x : R(z,y) \in \mathcal{PR}$.

Конечно, примитивно-рекурсивны $P \wedge Q, P \vee Q, \neg P$, также усечённая минимизация, предыдущее число, равенство и много ещё что.

Примитивно-рекурсивен оператор ограниченной минимизации $f(x,y) = \mu z < x.h(z,y) = 0$. То есть можно считать какие-нибудь обратные функции вроде корня.

31.10.2015

Примитивно-рекурсивное кодирование пар $\langle x,y \rangle = \frac{(x+y)(x+y+1)}{2} + x$. Проекторы: $\pi^1 \langle x,y \rangle = x, \pi^2 \langle x,y \rangle = y$.

Последовательности кодируем как $[a_1,\ldots,a_n]=p_1^{a_1+1}\ldots p_n^{a_n+1}$. Говоря так, мы на самом деле работаем с примитивно-рекурсивными функциями IsSeq(x), Len(x), Get(x,i) и прочее.

С помощью этого всего можно реализовать другую схему рекурсии, обращающуюся ко всем предыдущим значениям (возвратная рекурсия).

Теорема 1. Пусть $f(\overline{x},0) = g(\overline{x}), f(\overline{x},z+1) = h(z,f'(\overline{x},z)), \ \epsilon \partial e \ f'(\overline{x},z) = [f(\overline{x},0),\ldots,f(\overline{x},z)].$ Тогда, если $g,h\in\mathcal{PR},\ mo\ f\in\mathcal{PR}.$

Интресное: обратная функция Аккермана (было письмо).

07.11.2015

Наша теория: предикатный символ равенства, функциональный символ последователя $S^{(1)}$, нуля $0^{(0)}$, а также множество символов Fnc.

 $Fnc^0\ni 0, Fnc^1\ni S, Fnc^n\supseteq\{I^n_k\mid 0\leqslant k< n\},$ причём $g_1,\ldots,g_m\in Fnc^n, h\in Fnc^m\Rightarrow Chg_1\ldots g_m)\in Fnc^n,$ а также $g\in Fnc^n, h\in Fnc^{n+2}\Rightarrow$

 $Rgh \in Fnc^{n+1}$, где Rgh обозначает оператор примитивной рекурсии, $Fnc = \bigcup_{i \in \mathbb{N}} Fnc^i$.

Теперь надо закодировать весь наш язык первого порядка. Переменные $\#(v_k) = \langle 1, k \rangle$. Логические символы $\{\neg, \to, \forall\}$ кодируем как $\langle 2, x \rangle$, единственный предикатный символ как $\langle 3, 0 \rangle$. Осталось закодировать Fnc.

$$\#(0) = \langle 4, \langle 1, 0 \rangle \rangle$$
. $\#(S) = \langle 5, \langle 1, 1 \rangle \rangle$. $\#(I_k^m) = \langle 6, \langle k, m \rangle \rangle$. $\#(C) = \langle 7, 0 \rangle$. $\#(R) = \langle 8, 0 \rangle$.

В качестве кода какой-то программы p из Fnc хотим взять код последовательности номеров символов в записи.

Хотим записать предикат «быть кодом функционального терма с m переменными». FTm(x,n)=1 в следующих случаях:

- $Sq(x) \wedge Len(x) = 1 \wedge n = 0 \wedge (x)_0 = \#(0)$
- ..., $n = 1 \wedge (x)_0 = \#(S)$
- ..., $\exists 0 < k < n : (x)_0 = \langle 6, \langle k, n \rangle \rangle$
- $Sq(x) \wedge Len(x) \ge 3 \wedge (x)_0 = \#(C) \wedge FTm((x)_1, Len(x) 2) = 1 \wedge \forall i < Len(x) 2 \to (FTm((x)_{i+2}, n))$
- $Sq(x) \wedge Len(x) = 3 \wedge n > 0 \wedge x > n + 1 \wedge (x)_0 = \#(R) \wedge FTm((x)_1, n 1) \wedge (FTm((x)_2, n + 1))$

Кодирование терма T(x):

- $Sq(x) \wedge Len(x) = 1 \wedge \exists k < x : (x)_0 = \#(v_k)$
- $Sq(x) \land FTm((x)_0, Len(x)-1) \land Len(x) > 0 \land \forall i < Len(x)-1 \rightarrow (T((x)_i) = 1)$

Кодирование формул F(x) ($\lceil \forall v_j \varphi \rceil = [\#(\forall), \#(v_j), \lceil \varphi \rceil]]$):

- $Sq(x) \wedge Len(x) = 3 \wedge (x)_0 = \#(=) \wedge T((x)_1) = 1 \wedge T((x)_2) = 1$
- $Sq(x) \land Len(x) = 3 \land (x)_0 = \#(\forall) \land \exists j < x : ((x)_1 = \langle 1, j \rangle) \land Fm((x)_2) = 1$
- . . .

Следующая цель: функция подстановки $Sub([\varphi], j, [t]) = [\varphi(t|_{v_i})].$

14.11.2015

План построения Sub (считаем, что все формулы записываются через $\forall, \rightarrow, \bot$):

- проверить, что первый аргумент формула, если нет, то вернуть 0.
- если первый аргумент код одной переменной, то осуществить простую подстановку.

- если первый аргумент начинается с квантора по переменной, то нужно его проигнорировать в случае, если переменная заменяемая и осуществить подстановку под квантором в противном случае.
- . .

Можно построить также двухаргументный $Sub: Sub(\lceil \varphi \rceil, \lceil t \rceil) = sub(\lceil \varphi \rceil, i, \lceil t \rceil), i = \mu j < \lceil \varphi \rceil : j$ входит свободно в $\lceil \varphi \rceil$.

Нумералы: $\overline{0}=0,\overline{n+1}=S\overline{n}$. Рассмотрим функцию $\nu(n)=\lceil\overline{n}\rceil$ (примитивнорекурсивную). Тогда $Sub(\lceil\varphi\rceil,\nu(n))=\lceil\varphi(\overline{n}/x)\rceil$. Такую функцию назовем S(x,y).

Теперь выпишем предикатные аксиомы:

- $\varphi \to (\psi \to \varphi)$
- $(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$
- $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$
- $\forall x \varphi \to \varphi(t/x)$
- $\forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$
- $\varphi \to \forall x \varphi, x \notin FV(\varphi)$
- Modus ponens, обобщение: $\frac{\varphi}{\forall x \varphi}$.

Примитивно-рекурсивная арифметика (\mathcal{PRA}):

- \bullet x = x
- $x = y \to (A \to A(y/x))$
- $\neg (Sx = 0)$
- $Sx = Sy \rightarrow x = y$
- $\bullet \ I_k^n x_1, \dots, x_n = x_k$
- Аксиомы композиции
- Аксиомы примитивной рекурсии
- Индукция по бекванторным формулам: $\varphi(0) \to (\forall x (\varphi(x) \to \varphi(Sx)) \to \varphi$, где в φ нет кванторов.

Вывод в \mathcal{PRA} определяется как обычно: каждый шаг это либо логическая аксиома, либо аксиома \mathcal{PRA} , либо выводится из предыдущих по modus ponens или обобщению. Стоит заметить, что множество аксиом примитивнорекурсивно.

Теперь можно написать предикат $Prf_{\mathcal{PRA}}(y,x) = «y$ вывод в \mathcal{PRA} формулы с кодом x». \mathcal{PRA} можно расширять примитивно-рекурсивным множеством аксиом, сохраняя предикат доказательства.

Также можно построить предикат $Pr_{\mathcal{PRA}}(x) = \exists y Prf_{\mathcal{PRA}}(y,x)$ (квантор неограниченный!).

Если T примитивно-рекурсивно расширяет \mathcal{PRA} , то у нас есть Prf_T и Pr_T , причём первый из них примитивно рекурсивен. Притом так как предикат $Prf_T \in \mathcal{PR}$, то его характеристическая функция — какая-то примитивно-рекурсивная формула.

Обозначим $[\varphi(x\cdot)] = S\overline{[\varphi]}x$.

Теорема 2 (Гильберта-Бернайса-Лёба). Пусть $T- nримитивно-рекурсивное расширение <math>\mathcal{PRA}$.

- Если φ замкнутая формула, то $T \vdash \varphi \Rightarrow \mathcal{PRA} \vdash Pr_T(\lceil \varphi \rceil)$
- $\mathcal{PRA} \vdash Pr_T(\lceil \varphi(\overline{x}\cdot) \to \psi(\overline{x}\cdot) \rceil) \to (Pr_T(\lceil \varphi(\overline{x}\cdot) \rceil) \to Pr_T(\lceil \psi(\overline{x}\cdot) \rceil))$
- $\mathcal{PRA} \vdash Pr_T(\varphi(\overline{x}\cdot) \to Pr_T(\lceil Pr_T(\lceil \varphi(\overline{x}\cdot) \rceil)))$

Будем далее обозначать: $\Box_T \varphi = Pr_T(\lceil \varphi \rceil)$, а также $[\varphi(x_1, \ldots, x_n)] = [\varphi(x_1, \ldots, x_n)]$. Это терм, в котором все переменные свободны.

12.12.2015

Теорема 3 (Лёба). Пусть T примитивно-рекурсивна и расширяет \mathcal{PRA} . Тогда $\forall \varphi$ — предложения если T выводит $\Box_T \varphi \to \varphi$, то выводит $u \varphi$.

Теорема 4 (Тарский). *Не существует формулы* ψ , такую что $\forall \varphi - nped-$ ложения выполнено, что в \mathbb{N} верно $\psi(\lceil \varphi \rceil) \Leftrightarrow \mathbb{N}$ верно φ .

Теорема 5 (1-я Гёделя о непноте). Если T примитивно-рекурсивное расширение \mathcal{PRA} , то (1) T не выводит \bot . (2) Если T Σ_1 -корректна, то существует предложение φ , такое, что не выводится ни φ , ни $\neg \varphi$.

Теорема 6 (2-я Гёделя о непноте). Если T примитивно-рекурсивное расширение \mathcal{PRA} , T не выводит \bot , T является Σ_1 -корректной. Тогда T не выводит Con(T) и $\neg Con(T)$ ($Con(T) = \neg \Box_T \bot$).

Теорема 7 (усиление Гёделя-Россера). Если T примитивно-рекурсивное расширение \mathcal{PRA} , не выводит ложь, то существует предложение φ , такое что T не выводит φ и $\neg \varphi$.

Лемма 1.
$$\forall \varphi(\overline{y}) \in \Delta_0 \to \exists \widetilde{f} \in \widetilde{\mathcal{PR}} : \mathcal{PRA} \vdash \varphi(\overline{y}) \leftrightarrow (\widetilde{f}\overline{y} = 0).$$

Класс Δ_0 с ограниченными кванторами (?). Σ_1, Π_1 и т.д.: сначала обычные кванторы, потом Δ_0 .

Лемма 2. $\mathcal{PRA} \vdash \varphi \leftrightarrow \exists y (Prf_T(y, \lceil \neg \varphi \rceil) \land \forall z < y \neg Prf_T(z, \lceil \varphi \rceil).$

Доказательство. Если $T \vdash \neg \varphi$, то $\exists m \in \mathbb{N} : \mathbb{N} \vDash \forall Prf(\underline{m}, \lceil \neg \varphi \rceil)$. $T \not\vdash \bot \Rightarrow \mathbb{N} \vDash \forall z < \underline{m} \neg Prf(z, \lceil \varphi \rceil)$.

Если $T \vdash \varphi$, то $\vdash \exists y (Prf(y, \lceil \neg \varphi \rceil) \land \forall z < y Prf(z, \lceil \varphi \rceil))$, также $\mathbb{N} \models Prf(\underline{n}, \lceil \varphi \rceil)$. По Σ_1 -полноте $T \vdash Prf(\underline{n}, \lceil \varphi \rceil)$, так как $T \not\vdash \bot$, то $T \vdash \forall y \leqslant \underline{n} \neg Prf(y, \lceil \neg \varphi \rceil)$. $\mathcal{PRA} \vdash (y \leqslant \underline{n}) \lor (\underline{n} < y)$.

Теорема 8 (формализованная теорема Лёба). Если T примитивно-рекурсивное расширение \mathcal{PRA} , то $\mathcal{PRA} \vdash \Box_T(\Box_T \varphi \to \varphi) \to \Box_T \varphi$, то есть \mathcal{PRA} знает о теореме Лёба.

Если подставить ложь, то $\mathcal{PRA} \vdash \Box_T Con(T) \rightarrow \neg Con(T)$, то есть $\mathcal{PRA} \vdash Con(T) \rightarrow \neg \Box_T Con(T)$.

Если к аксиомам добавить $\neg Con(T)$, то $\mathcal{PRA} \vdash Con(T) \rightarrow Con(T + \neg Con(T))$, что есть формализованная вторая тоерема Гёделея.

Если $T \not\vdash \bot$ и T- п.р. расширение \mathcal{PRA} , то $T+\neg Con(T) \not\vdash \bot$, но $\mathbb{N} \not\vdash T+\neg Con(T)$. Получается пример непротиворечивой, но некорректной теории.

 $Rf_n(T)=\{\Box_T\varphi \to \varphi\}$ по всем предложениям φ — локальная схема рефлексии для T.

 $RFN(T)=\{orall \overline{x}(\Box_T[arphi] oarphi)\}$ по всем формулам $arphi(\overline{x})$ — равномерная схема рефлексии.

 $\{Con(T)\}\subset Rf_n(T)\subset RFN(T)$. Однако множество кодов RFN(T) примитивнорекурсивно, то есть его можно добавлять к T.

Лемма 3. $Had \mathcal{PRA}$ эквивалентны схемы

- RFN(T)
- $\{\forall \overline{x} \Box_T [\varphi] \to \forall \overline{x} \varphi \}$
- $\frac{\forall \overline{x}\square_T[\varphi]}{\forall \overline{x}} \varphi$ (правило Клини, более слабая вариация омега-правила).

Доказательство. (1) \Rightarrow (2) \Rightarrow (3) понятно. (3) \Rightarrow (1).

Лемма 4 (о явной рефлексии). Выполнено утверждение и его обобщение:

- $\forall m, n \in \mathbb{N} \ \forall \varphi(x) \ T \vdash Prf_T(\underline{m}, \lceil \varphi(\underline{n}/x) \rceil) \to \varphi(\underline{n}/x).$
- $\mathcal{PRA} \vdash \forall x, y \Box_T [Prf_T(y, [\varphi]) \rightarrow \varphi], mo ecmь oб этом знает <math>\mathcal{PRA}$.

Доказательство. $\mathbb{N}Prf_T(\underline{m}, \lceil \varphi(n) \rceil) \vee \neg Prf(\underline{m}, \lceil \varphi(\underline{n}) \rceil)$.

1 случай. $T \vdash \varphi(\underline{n})$, тогда $T \vdash Prf_T(\underline{m}, \varphi(\underline{n})) \to \varphi(\underline{n})$.

2 случай. $T \vdash \neg Ptf_t(\underline{m}, \lceil \varphi(\underline{n}) \rceil) \stackrel{\Sigma_1}{\Rightarrow} T \vdash \neg Prf_T(\underline{m}, \lceil \varphi(n) \rceil) \Rightarrow T \vdash Prf_T(\underline{m}, \lceil \varphi(n) \rceil) \rightarrow \varphi(\underline{m}).$

Обобщение аналогично.

Научимся получить произвольную формулу RFN(T) с помощью правила Клини. $\mathcal{PRA} \vdash \forall x \forall y \Box_T [Rf_T(y, [\varphi]) \rightarrow \varphi(x)]$. Применим к ней правило Клини: $\mathcal{PRA} \vdash \forall x \forall y (Prf_T(y, [\varphi]) \rightarrow \varphi(x) \vdash \forall x (\exists y Prf_T(y, [\varphi]) \rightarrow \varphi) \vdash \forall x (\Box_T [\varphi] \rightarrow \varphi)$.

12.12.2015

 $RFN_{\Pi_n}(T) = \{ \forall \overline{x}(\Box_T[\varphi] \to \varphi) \mid \varphi(\overline{x}) \in \Pi_n \}$ — ограниченная схема рефлексии (аналогично по Σ_n).

Лемма 5. При $n \geqslant 1$ над \mathcal{PRA} эквивалентны

- $RFN_{\Sigma_n}(T)$ u $RFN_{\Pi_{n+1}}(T)$
- $RFN_{\Pi_1}(T)$, $Rfn_{\Pi_1}(T)$ u Con(T).

Теорема 9 (Частичное определение истинности). Пусть $n \geqslant 1$, тогда существует $Tr_{\Pi_n}(z) \in \Pi_n$, такая что $\forall \varphi(\overline{x}) \in \Pi_n$ выполнено $\mathcal{PRA} \vdash \varphi(\overline{x} \Leftrightarrow Tr_{\Pi_n}[\varphi(\overline{x})].$

Замечание. Под \mathcal{PRA} RFN(T) эквивалентна $\{RFN_{\Pi_n(T)} \mid n \geqslant 1\}$, каждая из которых конечно аксиоматизируема.

Теория $U-\Gamma$ -расширение теории T, если $U\equiv T+\Phi,\Phi\subset\Gamma$ (конечное расширение, Σ_1 расширение).

Лемма 6. $npu \ n \geqslant 1$

- $Rfn_{\Pi_n}(T)$ не содержится ни в каком
 - непротиворечивом
 - конечном
 - $-\sum_{n}$

Pacширении U meopuu T.

• $Rfn_{\Pi_n}(T)$ не содержится ни в каком непротиворечивом Σ_n -расширении U теории T.

Замечание. Следствия

- Rfn(T) не содержится ни в каком непротиворечивом конечном расширении T.
- RFN(T) не содержится ни в каком непротиворечивом расширении T ограниченной сложности.
- $T + Th_{\Pi_1}(\mathbb{N})$ (все истинные в \mathbb{N} Π_1 -формулы) $\vdash Rfn(T)$.

Теорема 10. Если $T - \Sigma_1$ -корректна, то $T + Rfn(T) \not\vdash RFN(T)$.

Замечание. Факт: $\mathcal{PA} \vdash RFN(\mathcal{PRA})$.

Следствие: PA не содержится ни в каком непротиворечивом расширении PRA ограниченной сложности (в частности, в конечном).

Теорема 11. Пусть U перечислимое непротиворечивое Σ_n расширение T. Тогда существует предложение $\varphi \in \Sigma_n$, такое что $T+\varphi$ непротиворечива $u\ T+\varphi \vdash U$.

Замечание. Факт (лемма Craig'a): Пусть Γ — перечислимое множество формул. Тогда существует примитивно-рекурсивное множество формул Δ , такое что $\mathcal{PRA} + \Delta = \mathcal{PRA} + T$.

3амечание. Первое следствие из теоремы: $Rfn_{\Pi_n(T)}$ не содержится ни в каком непротиворечивом перечислимом Σ_n -расширении теории T.

Второе: Rfn не содержится ни в каком непротиворечивом перечислимом расширении теории T ограниченной сложности.

Из этого следует, что множество всех истинных Π_1 -формул $Th_{\Pi_1}(\mathbb{N})$ неперечислимо (иначе противоречие со вторым следствием).

Можно почитать

- Смаринский «Self-reference and modal logics»
- Доказуемая Σ_1 полнота (Бухгольц?).