WELTORGANISATION FUR GEISTIGES EIGENTUN Internationales Büro

(51) Internationale Patentklassifikation 6:

G01N 33/543, 21/77

A1

(11) Internationale Veröffentlichungsnummer:

WO 98/48275

(43) Internationales

Veröffentlichungsdatum:

29. Oktober 1998 (29.10.98)

(21) Internationales Aktenzeichen:

PCT/AT98/00101

(22) Internationales Anmeldedatum:

20. April 1998 (20.04.98)

(81) Bestimmungsstaaten: AU, BR, CA, CN, CZ, HU, JP, NZ, RU, SG, US, europäisches Patent (AT, BE, CH, CY, DE, DK,

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

A 680/97

22. April 1997 (22.04.97)

AT 30. September 1997 (30.09.97) AT

A 1656/97 A 1655/97

30. September 1997 (30.09.97) AT Veröffentlicht

Mit internationalem Recherchenbericht.

(71)(72) Anmelder und Erfinder: SCHALKHAMMER, Thomas [AT/AT]; A-3072 Kasten 105 (AT). PITTNER, Fritz [AT/AT]; Khekgasse 40-42/11, A-1230 Wien (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BAUER, Georg [AT/AT]; Güttlfeld 72, A-4070 Eferding (AT).

SCHALKHAMMER, Thomas; (74) Gemeinsamer Vertreter: A-3072 Kasten 105 (AT).

(54) Title: REINFORCED CLUSTER OPTICAL SENSORS

(54) Bezeichnung: CLUSTER VERSTÄRKTER OPTISCHER SENSOR

(57) Abstract

The invention concerns an optical sensor characterized in that interacting linkers are immobilized at a spacing of less than 1 μ m from a layer with analytes which reflects electromagnetic waves to which electrically conducting clusters with a diameter of less than 500 nm are bonded.

(57) Zusammenfassung

Ein optischer Sensor wird vorgestellt, dadurch gekennzeichnet, daß im Abstand von weniger als 1 μm zu einer elektromagnetische Wellen reflektierenden Schicht mit Analyten wechselwirkende Linker immobilisiert sind, an welche elektrisch leitende Cluster mit einem Durchmesser von weniger als 500 nm gebunden sind.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GB	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine "
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vo
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

CLUSTER VERSTÄRKTER OPTISCHER SENSOR

Die Erfindung bezieht sich auf ein neuartiges Meßprinzip zum Aufbau von Sensoren und zur Verwendung in der Bioinformatik. Die Technologie beruht dabei auf einem neuartigen plasmonoptischen Meßsystem unter der Verwendung von Clustern, mit welchem insbesondere Nukleinsäuren, Proteine und deren Liganden erfaßt werden können. Die genannten Analyte induzieren dabei die Bindung oder Abtrennung von metallischen Clustern, die in einem bestimmten Abstand zu einer reflektierenden, vorzugsweise elektronenleitenden Oberfläche, gebunden werden bzw. wurden. Die Bindung oder Abtrennung wird durch die Resonanzverstärkung der Cluster, bei der die Cluster mit ihren Spiegeldipolen wechselwirken, in ein leicht meßbares optisches Signal umgewandelt. Es besteht heute großer Bedarf an raschen, einfachen und billigen Testverfahren, in der medizinischen Diagnostik sowie der Lebensmittel- und der Umweltanalytik. Dabei werden immer größere Anforderungen an Empfindlichkeit, Selektivität und Verläßlichkeit bei maximaler Einfachheit des Meßvorgangs gestellt. Die Erfindung zielt darauf ab, durch einen neuartigen Meßaufbau, grundlegende technische Einschränkungen etablierter Analyseverfahren zu beseitigen. Aufbauend auf dieser Technologie können rasche und sichere Schnelltests für Klinik und Labor verwirklicht werden. Als primäre Anwendungsbereiche können z.B. die Diagnose von Harnwegsinfekten, Allergen-Screening, die Quantifizierung von Bakterienkontaminationen in Lebensmitteln oder die Messung der Blutglukose genannt werden.

Die mit Bezugszeichen versehenen Teile des erfindungsgemäßen Aufbaus sind wie folgt zuzuordnen: 1 = Trägermaterial, 2 = reflektierende Schicht (vorzugsweise elektronenleitende Metall oder Clusterschicht), 3 = 0-500 nm Abstandsschicht, 4 = nanometrische, nichtleitende Partikel, 5 = chemisch reaktiver Oberflächenanker, 6 Linker (z.B. DNA, Proteine, ...) 7 = Cluster, 8 = Analyt, 9 = gespaltener Linker (z.B. von einem Analyt gespalten), 10 = nicht gespaltener Linker, 11 = nach Anlagerung eines katalytisch aktiven Analyten, 12 = Sensor Aufbau nach der Spaltung des Linkers, 13 = Abdissoziation des Clusters mit einem darin

verankerten Teil des Linkers, 14 = Freie gespaltene Cluster-Linker Konjugate, 15 = Elektroden auf oder nahe dem Chip oder Magnet, 16 = Analyt bindendes Molekül z.B. DNA, Protein,, 17 Analytanalog.

Der Sensor besteht aus einer Metallschicht auf einem Trägermaterial, einer inerten Abstandsschicht, z.B. mittels Photolackschleuder oder Aufdampfen aufgebracht, auf der vereinzelt mit Clustern gekoppelte Linkermoleküle gebunden sind. Der Durchmesser der Cluster wird vorzugsweise kleiner als 40 nm gewählt. Wenn der Analyt mit dem Linker interagiert, induziert er eine Änderung der Belegungsdichte der Clusterschicht im molekularen Maßstab, oder Änderungen in der räumlichen Anordnung der gebundenen Cluster am Sensor. Dies führt zu den charakteristischen Änderungen der optischen Erscheinung der Sensoroberfläche. Die durch den anormalen optischen Effekt gefärbte Oberfläche wird dabei durch die katalytische oder biorekognitive Wirkung des Analyten oder durch Zusatz einer enzymatischen aktiven Komponenten verändert. Metallische Clusterfilme mit einem mittleren Clusterdurchmesser kleiner als 500 nm (vorzugsweise kleiner als 40 nm, um Multipol-Peaks im Spektrum zu unterdrücken) weisen starke schmalbandige Reflexionsminima auf, deren spektrale Lagen extrem empfindlich von der räumlichen Anordnung insbesondere dem Abstand zur elektronenleitenden Oberfläche abhängen.

Der Sensoraufbau kann selbst geringste Änderungen der Oberflächenbelegung mit Cluster in ein klar erkennbares optisches Signal umwandeln, entweder in eine Extinktionsänderung bei einer bestimmten Wellenlänge, oder in eine spektrale Verschiebung des Absorptionsmaximums. Erfindungsgemäß ist es möglich, biorekognitive Bindungsprozesse und die katalytische Aktivität von Proteinen durch die Verwendung von Oberflächen-gebundenen Clustern in ein optisches Signal (= Farbänderung der Sensoroberfläche) umzuwandeln.

Beispielhafte kann die Sensitivität des Meßaufbaus wie folgt berechnet werden: 25 nm große Cluster werden im Raster von 100 Nanometern angeordnet. Bei einer optischen Auflösung

WO 98/48275 PCT/AT98/00101

von 1/10 mm, entspricht eine Änderung der Signalstärke um 10% 2x10e5 Molekülen. Diese Sensitivität wurde experimentell mit einem Antikörper – Antigen Aufbau nachgewiesen. Die Verwendung katalytisch aktiver Analyte erhöht die Empfindlichkeit nochmals um einige Zehnerpotenzen und erlaubt damit Einzelmoleküldetektion.

Nanocluster (bevorzugt Silber-, Aluminium- oder Goldcluster) können über sogenannte "biochemische Linker" in definiertem Abstand zur metallisierten Oberfläche gebunden werden. Werden diese Linker durch biochemische Rekognition oder Katalyse durchschnitten oder ihre räumliche Anordnung verändert, so führt das zu einem detektierbaren Signal. Erfindungsgemäß werden z.B. Oligonukleotide als Linker verwendet, welche durch den Analyten geschnitten werden (z.B. Restriktionsenzyme aus Mikroorganismen) (siehe Fig. 1 und 2). Viele pathogene Mikroorganismen exprimieren spezifische Restriktions-Endonukleasen und können daher mit Hilfe des neuen Einwegmeßsystems rasch, ohne aufwendige apparative Ausführung, in der Arztpraxis oder im Labor, nachgewiesen werden. Dies ermöglicht z.B. die Differentialdiagnose von Harnwegsinfekten durch direkten E. Coli Nachweis (Erreger von 60 % aller Harnwegsinfekte). Ebenso kann eine schnelle und verläßliche Screening-Methode für bakterielle Kontamination in Lebensmitteln aufgebaut werden.

Die neuartige Technologie basiert auf verstärkten Cluster Plasmonen, die in einer sehr einfachen und reproduzierbaren Weise die Aktivität von chemisch reaktiven Spezies in ein optisches Signal umwandeln.

Der Aufbau des Sensors besteht im Wesentlichen darin, daß

- 1. im Abstand von weniger als 1 μm zu
- 2. einer reflektierenden, vorzugsweise elektronenleitenden Oberfläche,
- 3. Linker immobilisiert werden, an die
- 4. direkt oder indirekt elektrisch leitende Cluster gebunden sind.

Metallische Cluster können somit z.B. auf die Oberfläche eines inerten (nicht reaktiven)

WO 98/48275 4 PCT/AT98/00101

Polymers angelagert werden und können auf der Polymeroberfläche über biochemische Linker in desiniertem Abstand zur Metalloberfläche angeordnet werden. Die Linker können entweder geschnitten werden, oder ihre räumliche Anordnung kann durch biochemische Rekognition oder Katalyse geändert werden, was sodann beides zu einem optischen detektierbaren Signal führt. Für ein DNA/RNA-Testsystem können Oligonukleotide als Linker eingesetzt werden, die daraushin durch Restriktionsenzyme geschnitten werden.

Die vorliegende Erfindung unterscheidet sich vom Gegenstand der Patentanmeldung "Optochemischer Sensor sowie Verfahren zu seiner Herstellung", Österr. Patent A 753/94 vom 12.04.1994, US-Patentanmeldung 08/419, 615 vom 10.04.1995 durch grundlegende strukturelle Merkmale: Die hier angemeldete Aufbau beinhaltet keine reaktive Matrix, die vorzugsweise Volumen Änderungen ausführen soll. Der neuartige Aufbau basiert auf einer Änderungen der Cluster-Belegungsdichte, dabei sind analytwechselwirkende chemische Linkermoleküle in definiertem Abstand zu einer reflektierenden Schicht gebunden.

Die Bezeichnung anormale Eigenschaft eines Metallfilms bezieht sich auf ein starkes Absorptionsmaximum, zumeist im sichtbaren Spektralbereich, welches durch die räumliche Lokalisierung der Leitungsbandelektronen in den Grenzen des nanometrischen Partikels bewirkt wird. Diese räumliche Lokalisierung steht im Gegensatz zur freien Mobilität der Elektronen in einem makroskopischen Stück Metall (die freie Mobilität der Elektronen ist verantwortlich für die starke Reflexion, allgemein metallischer Glanz genannt).

Ein metallischer Cluster in einem definierten Abstand zu einer metallischen Oberfläche interagiert elektrodynamisch mit der benachbarten Metallschicht. Bei einem definierten Abstand der absorbierenden Clusterschicht von der Metalloberfläche kann das elektrische Feld, das von der Metalloberfläche zurückgeworfen wird in der gleichen Phase wie die einfallende elektromagnetische Welle zu liegen kommen. Der daraus resultierende Rückkopplungsmechanismus verstärkt den effektiven Absorptionskoeffizienten der Clusterschicht. Da bei einer gegebenen Schichtdicke der Abstandsschicht die optimale

WO 98/48275 5 PCT/AT98/00101

Phasenverstärkung nur von der Frequenz des eingestrahlten Lichtes abhängt, läßt sich das System durch schmale und starke Reflexionsminima definieren. Die Intensität der Absorptionsbande ist in einem weiten Belegungsbereich mit Cluster direkt proportional der Anzahl der Cluster. Jede Reduktion der Anzahl der Cluster durch chemische Abspaltung resultiert daher in einer Verringerung der Absorption des resonanten Systems. Bei hohen Oberflächenbelegungen wird zusätzlich durch Cluster-Cluster Wechselwirkungen eine spektrale Verschiebung beobachtet (siehe Fig. 2).

Die optische Verhalten des Sensors kann durch die sogenannte Stratified Medium Theorie oder die CPS-Theorie (welche von Chance, Prock und Silbey erstmals vorgeschlagen wurde) beschrieben werden. Diese Theorien beruhen entweder auf dem Verhalten eines optischen Dünnfilms oder auf dem Verhalten eines polarisierbaren Partikels nahe einer Metalloberfläche. Die Stratified Medium Theorie kann zur Berechnung jeder Art optischer Dünnfilme verwendet werden. Sie beruht auf der Lösung der Maxwell Gleichungen unter den Randbedingungen, daß Phasengrenzen und Phasendicke der unterschiedlichen Materialien vorgegeben sind. Um die Stratified Medium Theorie anwenden zu können, müssen daher alle optischen Konstanten der vier Schichten (Oberfläche, Abstandsschicht, Linker Schicht und Clusterschicht) bekannt sein. Die optischen Konstanten eines Inselfilms hängen sehr stark von chemischen und physikalischen Parametern ab und müssen daher experimentell bestimmt werden. Um diese Konstanten bestimmen zu können müssen zumindest Reflexions- und Transmissionsspektren der Cluster bekannt sein. Aus theoretischen Berechnungen kann geschlossen werde, daß eine mittlere Massendicke von 3-7 nm ein maximales Signal erwarten läßt. Abhängig von der Anzahl der Linker gebundenen Cluster kann das Reflexionssignal um bis zu drei Größenordnungen variieren. Unter optimierten Anregungs- und Meßbedingungen können sogar einzelne Cluster beobachtet werden. Bedingt durch die partikuläre Struktur des Cluster oder Kolloidfilms gibt es keinerlei Diffusionsbarrieren für Gase oder Flüssigkeiten.

Die Analytkonzentration kann mit hoher Sensitivität durch Betrachtung der Sensoroberfläche

ohne Zuhilfenahme technischer Hilfsmittel bestimmt werden. Um den unspezifischen Hintergrund durch die Eigenfärbung der Probe zu reduzieren kann jedoch eine zwei Winkel Messung eingesetzt werden. Während die Absorption von Chromophoren unabhängig vom Winkel der Beobachtung ist verschiebt sich das spektrale Reflexionsminimum stark mit dem Beobachtungswinkel. Daher kann durch einfach Subtraktion beider Signale der Hintergrund durch Matrixeffekte auf einfache Weise eliminierte werden.

Erfindungsgemäß kann ein Sensor zur Messung spezifischer DNA und RNA Sequenzen in der Weise aufgebaut werden, daß nach Hybridisierung der Analyt-DNA/RNA mit dem Linkernukleotid sich eine neue Restriktionsschnittstelle bildet. Nach Inkubation mit einem Restriktionsenzym kann daher die geschnittene DNA/RNA mit den daran gebundenen Clustern durch einen einfachen Waschschritt von der Oberfläche entfernt werden. Durch die Temperaturstabilität aller Komponenten ist eine direkte Kombination mit PCR möglich.

In analoger Weise könne auch Restriktionsenzyme nachgewiesen werden, die doppelsträngige Linker schneiden, oder eine HIV Protease, welche einen HIV spezifischen Peptidlinker schneidet. Insbesondere der Nachweis bakterieller Restriktionsenzyme erfordert den Aufschluß von Zellen im Rahmen des Meßvorgangs, die Zellen können dabei aufgebrochen oder permeiert werden, was für die Sensitivität von grundlegender Bedeutung ist. Eine Anwendung dieses Sensors ist im Bereich der molekularbiologischen Forschung zur Bestimmung von Aktivität oder Reinheit von Restriktionsenzymen.

Die folgenden vier Beispiele beschreiben die technische Realisierung des Sensors:

Beispiel 1 (siehe Fig. 3)

Statistische Kopplung von Linkern nach einem chemischen Standardprotokoll an einen mit einer Photolackschleuder hergestellten inerten nanometrischen Dünnfilm.

Beispiel 2 (siehe Fig. 4)

Verwendung nanometrischer Partikel insbesondere aus Polystyrol als Distanzschicht. Diese Aufbau ermöglicht homogene Schichtdicken auf unebenen und gekrümmten Oberflächen.

Beispiel 3 (siehe Fig. 5)

Die Technologie verwendet eine verbesserte Version der Mikrostrukurierung

Beispiel 4 (siehe Fig. 6 und 7)

Diese Technologie verwendet elektrophoretische Bewegung von Clustern.

Beispiel 1: Auf Polyethylenterephtalat welches mit Aluminium metallisiert ist (Widerstand 2Ω) wird eine 6%ige Lösung von Polyhexylmethacrylat mit der Photolackschleuder aufgebracht (4000 rpm, 60 s). Die Oberfläche des Dünnfilms wird mit Sauerstoffplasma chemisch hydroxyliert, carboxyliert und carbonyliert. Mit unspezifischer Adsorption oder mit einem wasserlöslichen Carbodiimid wird daran sodann ein glykosyliertes Protein oder Zuckerderivat gebunden. Sodann wird das tetravalente Concanavalin A an diese Schicht gebunden, wobei eine chemisch reaktive, zuckerbindende Oberfläche entsteht.

7

Goldkolloide mit einem Durchmesser von 14 nm werden mit einem glykosylierten Protein stabilisiert (z.B. Peroxidase). Aggregation und die unspezifische Adsorption wird durch Zugabe von 0.1% Tween 20 unterdrückt. Nach Zugabe des Analyten erfolgt der Bindungsvorgang unter kompetitiver Reaktion an der Chipoberfläche. Dabei werden die gebundenen Cluster den gewünschten optischen Effekt zeigen, da sie in definiertem Abstand von der reflektierenden Oberfläche festgehalten werden.

Beispiel 2: Nanometrische Partikel auf Polystyrol sind ebenfalls als Abstandsschicht geeignet. Eine durch Bedampfung hergestellte Silberoberfläche wird mit einer 2%igen Lösung von Cystamin (30 Minuten) zur Reaktion gebracht wobei sich ein "Selfassembling Monolayer" mit freien Aminogruppen ausbildet. Carboxylierte Polystyrolkugeln (Durchmesser z.B. 50 nm) könne sodann in einem Zweischrittprotokoll mit wasserlöslichem Carbodiimid an die Aminogruppen gebunden werden. In analoger Weise können carboxylierte Polystyrolkugeln auch an aminosilanisierte Metalloberflächen gebunden werden. Wenn die Bindungsreaktion

abgeschlossen ist bildet sich ein dichter, chemisch reaktiver, zweidimensionaler Raster von sphärischen Partikeln aus. Auf den Kunststoffkugeln könne sodann Oligonukleotide mit einem künstlich eingeführten Aminoterminus mit z.B. wasserlöslichem Carbodiimid gebunden werden. Dabei ist die Zugabe von Imidazol nötig, um die Reaktivität des Carbodiimid selektiv auf die terminale Aminofunktion zu reduzieren.

Beispiel 3: Carboxylierte Kugeln von Polystyrol werden auf die in Beispiel 1 beschriebene Polymethacrylatschicht mit Hilfe bifunktioneller aber spaltbarer Vernetzer gebunden. Die überschüssigen reaktiven Gruppen des Polymers werden via Esterbindung inaktiviert. Die Kugeln formen ebenfalls einen zweidimensional geordneten Gitterraster, der nach Spaltung der Vernetzer (z.B. Spaltung von SS-Brücken mit Hilfe eines Reduktionsmittels) einen zweidimensionalen Abdruck von reaktiven SH Gruppen auf der Oberfläche hinterläßt. Die reaktiven SH-Gruppen können sodann als Ankerpunkte für die geordnete Immobilisierung der Linker (z.B. über Iodacetyl-Aktivierung) dienen.

Beispiel 4: Dieser Sensor wird gleichartig aufgebaut wie in Beispiel 1, zusätzlich werden jedoch zumindest zwei Elektroden (zumeist aus Pt, Au, Ag, Pd oder Stahl) am Chip angebracht um Mikroelektrophorese zu ermöglichen. Es erweist sich insbesondere als vorteilhaft die Distanzschicht selbst elektrisch- oder ionenleitfähig auszubilden und als Elektrode zu verwenden. Dabei kann z.B. Indiumzinnoxid aus Plasma aufgedampft werden, oder ein ionenleitendes Polymer eingesetzt werden. Das Anlegen eines elektrophoretischen Signals induziert die Bewegung der elektrisch leitenden Cluster. Dazu kann entweder die lokale Konzentration erhöht werden oder aber ungebundene Cluster entfernt werden. Damit kann die Analysezeit deutlich verringert werden. In gleichartiger Weise können auch nanomagnetische Partikel z.B. Metall-Metalloxid (zumeist Eisen oder Chromoxid) durch (elektro-)magnetische Kräfte bewegt werden.

PATENTANSPRÜCHE

- 1. Optischer Sensor, dadurch gekennzeichnet, daß (1) im Abstand von weniger als 1 μm zu einer elektromagnetische Wellen reflektierenden Schicht (2) mit Analyten wechselwirkende Linker immobilisiert sind, an welche (3) elektrisch leitende Cluster mit einem Durchmesser von weniger als 500 nm gebunden sind.
- 2. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß als Linker DNA, RNA, Proteine, Peptide oder ihre Liganden verwendet werden.
- 3. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß Linker verwendet werden, welche durch den Analyten gespalten werden können.
- 4. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Linker an die Oberfläche einer inerten Zwischenschicht gebunden sind, wobei die Distanz zur reflektierenden Oberfläche weniger als 500 nm beträgt.
- 5. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die reflektierende Schicht aus Metall, einer Metalloberfläche oder aus einer Schicht von Metallclustern besteht.
- 6. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß als Linker ds-DNA, ds-RNA oder ds-synthetische Analoga verwendet werden, welche durch Restriktionsenzyme gespalten werden können.
- 7. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß als Linker ss-DNA, ss-RNA oder ss-synthetische Analoga davon verwendet werden, welche mit dem Analyten hybridisieren.
- 8. Optischer Sensor nach Anspruch 7, dadurch gekennzeichnet, daß der gebildete Doppelstrang durch ein Restriktionsenzym spaltbar ist, das die Einzelstränge nicht spaltet.
- 9. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Cluster durch chemische Synthese erzeugt werden.
- 10. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Cluster aus der Gruppe der Metalle Silber, Gold, Aluminium, Kupfer, Indium oder allen Metallen und

Legierungen welche keine störenden Interbandübergänge besitzen gewählt werden.

- 11. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der Abstand zwischen Reflexionsschicht und Linkern durch die Anlagerung von nanometrischen Partikeln geeigneter Größe erzeugt wird.
- 12. Optischer Sensor nach Anspruch I, dadurch gekennzeichnet, daß eine regelmäßige Anordnung von Linkern durch Anlagerung nanometrischer Partikel an die reflektierende Schicht erzeugt wird.
- 13. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß eine regelmäßige Anordnung von Linkern durch chemische Abdrücke nach Anlagerung nanometrischer Partikel erzeugt wird.
- 14. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß als Linker Proteine oder Peptide verwendet werden, die durch proteolytische Enzyme gespalten werden können.
- 15. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß als Linker Antigen-Antikörper oder Rezeptor-Ligand-Konjugate verwendet werden, wobei durch den Analyten eine Komponente verdrängt wird.
- 16. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das Signal durch eine zweite Population von Clustern verstärkt wird.
- 17. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich Elektroden zur elektrophoretischen Bewegung oder Magnete zur magnetischen Bewegung der Cluster angebracht werden.
- 18. Verwendung des optischen Sensors nach zumindest einem der Ansprüche 1 bis 17 zur Messung von Hormonen, Viren, Bakterien, Proteinen, Peptiden, natürliche und synthetische toxische Substanzen, Pestiziden, DNA und RNA.
- 19. Verwendung des optischen Sensors nach zumindest einem der Ansprüche 1 bis 17 um ein einmal chemisch erzeugtes zweidimensionales Muster wiederholt ablesen zu können.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

INTERNATIONAL SEARCH REPORT

			<u> </u>	5/00101
A. CLASS IPC 6	FICATION OF SUBJECT MATTER G01N33/543 G01N21/77			
According t	o International Patent Classification(IPC) or to both national classific	ation and IPC		
	SEARCHED			
Minimum do IPC 6	ocumentation searched (classification system followed by classification $GO1N$	on symbols)		
	tion searched other than minimumdocumentation to the extent that s			
	ata base consulted during the international search (name of data ba	se and, where practical, sear	ch terms usec	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the rele	evant passages		Relevant to claim No.
Α	EP 0 677 738 A (AVL MEDICAL INSTR October 1995 cited in the application see the whole document	R AG) 18		1
A	EP 0 300 990 A (AVL AG) 25 Januar see claims; examples	ту 1989		1
Α	EP 0 702 228 A (AVL MEDICAL INSTR March 1996 see abstract	AG) 20		1
A	US 5 507 936 A (HATSCHEK RUDOLF A 16 April 1996 see the whole document	ET AL)		1
A	WO 90 05295 A (PHARMACIA AB) 17 M see abstract			1
		/		
	er documents are listed in the continuation of box C.	X Patent family memb	ers are listed	n annex.
"A" docume conside	egories of cited documents : Int defining the general state of the art which is not are to be of particular relevance ocument but published on or after the international	T later document published or priority date and not cited to understand the invention	n conflict with	the application but
"L" docume	ate nt which may throw doubts on priority claim(s) or	"X" document of particular re cannot be considered n involve an inventive ste	ovel or cannot	be considered to
citation	s Gled to establish the bublication date of another	"Y" document of particular re cannot be considered to	levance; the c	laimed invention ventive step when the
"P" docume:	neans It published prior to the international filing date but	ments, such combined in the art.	with one or mo n being obviou	re other such docu- us to a person skilled
	ctual completion of theinternational search	& document member of the Date of mailing of the int		
29	July 1998	07/08/1998		·
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Moreno, C		

Form PCT/ISA/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

C.(Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Pb., at 98	7 00101
Category			
	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
4	WO 95 15496 A (FIBERCHEM INC) 8 June 1995 see examples		1
	·		
	•		

INTERMITIONAL SEARCH REPORT

mation on patent family members

_			1 1 30 00 10 1			30/00101	
	atent document d in search report		Publication date		Patent family member(s)		Publication date
ΕP	0677738	Α	18-10-1995	AT	403746	В	25-05-1998
				AT	75394		15-09-1997
				US	5611998	Α	18-03-1997
ΕP	0300990	Α	25-01-1989	AT	388248	В	26-05-1989
				JP	1049946	Α	27-02-1989
				JP	6063974	В	22-08-1994
				US	5091800	Α .	25-02-1992
EP	0702228	Α	20-03-1996	AT	402452	<u></u> В	26-05-1997
				AT	176094	Α	15-09-1996
				US	5683562	A	04-11-1997
US	5507936	Α	16-04-1996	AT	127226		15-09-1995
				DE	59300526		05-10-1995
				EP	0574354		15-12-1993
				JP	2755889		25-05-1998
				JP 	7005148	A	10-01-1995
WO	9005295	Α	17-05-1990	SE	462408		18-06-1990
				DE	68912343	D	24-02-1994
				DE	68912343	T	05-05-1994
				EP	0534941	Α	07-04-1993
				EP	0442921	Α	28-08-1991
				JP	4504765	Ţ	20-08-1992
				JP	4501462	Ţ	12-03-1992
				SE	8804075	A	10-11-1988
				WO	9005317	A	17-05-1990
				US	5164589	A	17-11-1992
				US	5313264	A	17-05-1994
WO	9515496	Α	08-06-1995	EP	0731916		18-09-1996
				JP	9509480	T	22-09-1997

INTERNATIONALER CHERCHENBERICHT

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 6 G01N33/543 G01N21/77 IPK 6 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 G01N Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie³ Betr. Anspruch Nr. Α EP 0 677 738 A (AVL MEDICAL INSTR AG) 1 18.0ktober 1995 in der Anmeldung erwähnt siehe das ganze Dokument A EP 0 300 990 A (AVL AG) 25. Januar 1989 1 siehe Ansprüche; Beispiele Α EP 0 702 228 A (AVL MEDICAL INSTR AG) 1 20.März 1996 siehe Zusammenfassung US 5 507 936 A (HATSCHEK RUDOLF A ET AL) Α 1 16.April 1996 siehe das ganze Dokument A WO 90 05295 A (PHARMACIA AB) 17.Mai 1990 1 siehe Zusammenfassung Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X X Siehe Anhang Patentfamilie entnehmen Besondere Kategorien von angegebenen Veröffentlichungen T* Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Veröffentlichung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) ausgerunn)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmekledatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 29.Juli 1998 07/08/1998 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bedlensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Moreno, C

1

INTERNATIONALER ECHERCHENBERICHT

C /F		74(1 98/00101
Kategorie :	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden T	eile Betr. Anspruch Nr.
A	WO 95 15496 A (FIBERCHEM INC) 8.Juni 1995 siehe Beispiele 	1
		r
		, <i>i</i>
	, · · · · · · · · · · · · · · · · · · ·	
	,	
	,'	
	·	

1

INTERNATIONALER PECHERCHENBERICHT

Angaben zu Veröffentlich

zur selben Patentfamilie gehören

			10,2831 90700101			
	echerchenberic rtes Patentdoku		Datum der Veröffentlichung		litglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0677738	Α	18-10-1995	AT	403746 B	25-05-1998
				AT	75394 A	15-09-1997
				ÜS	5611998 A	18-03-1997
EP	0300990	^	25 01 1000	·		
Er	0300990	Α	25-01-1989	AT	388248 B	26-05-1989
				JP	1049946 A	27-02-1989
				JP	6063974 B	22-08-1994
		. 		US	5091800 A	25-02-1992
EP	0702228	Α	20-03-1996	AT	402452 B	26-05-1997
				AT	176094 A	15-09-1996
				US	5683562 A	04-11-1997
US	5507936	Α	16-04-1996	AT	127226 T	15-09-1995
		• •	10 0 1 1550	DE	59300526 D	05-10-1995
				EP	0574354 A	15-12-1993
				JP	2755889 B	
				JP	7005148 A	25-05-1998
					7005146 A	10-01-1995
MO	9005295	Α	17-05-1990	SE	462408 B	18-06-1990
				DE	68912343 D	24-02-1994
				DE	68912343 T	05-05-1994
				EP	0534941 A	07-04-1993
				EP	0442921 A	[/] 28-08-1991
				JP	4504765 T	20-08-1992
				JP	4501462 T	/ 12-03-1992
				SE	8804075 A	/ 10-11-1988
				WO	9005317 A	/ 17-05-1990
				US	5164589 A	17-11-1992
				US	5313264 A	17-05-1994
WO	9515496	A	08-06-1995	EP	0731916 A /	18-09-1996
				JΡ	9509480 T	22-09-1997