# Causal Inference and Its Application in Security

**Huang Xiao** 

Lst. IT Sicherheit (I20)
Technische Universität München

## **Outline**

- What is causality?
  - Motivation, Example, Intuition.
- Causal Bayesian Network
  - Theoretical background, problem statement
- Approach: Copula based Causal BN
  - Copula functions
  - PICM Structure learning
- Empirical study on IDS dataset
  - KDD99 Dataset, experimental results
- Future work and wrap up.



Approx. 20 min

# What is (probabilistic) causality?

#### From Wikipedia:

**Causality** (also referred to as **causation**) is the relationship between an event (the *cause*) and a second event (the effect), where the second event is understood as a consequence of the first.

A example question in real life:

Does smoking causes lung cancer? YES, IT MIGHT DO!

# In a probabilistic view

Does smoking causes lung cancer?

Smoking will increase the probability of getting lung cancer.



# Why do we need causality?

- Discover the rules of the nature.
- Reasoning
- Decision-making



Fundamental difference with machine learning

# **Association**

Now we want to find out what causes lung cancer.

#### I. Data observations

|         |                 | Lung cancer |      |      |           |
|---------|-----------------|-------------|------|------|-----------|
| Smoking | Yellow<br>Teeth | Yes         | No   |      | Data from |
| Yes     | Yes             | 100         | 400  |      | 10000     |
| Yes     | No              | 100         | 400  |      | people*   |
| No      | Yes             | 1           | 450  | [    | people    |
| No      | No              | 9           | 8540 | ] *f | ictional  |

## Three variables



# **Measuring Association**

#### Information theory

Mutual Information

#### **Statistics**

- Pearson(linear) correlation
- Spearman correlation (continuous variables)
- Effect size (between two variables)
- Many others..

#### From the data...

Obviously...

Yellow teeth and lung cancer are associated.

But...

Bleaching the teeth does not help reduce the probability of getting lung cancer.

**Correlation does not imply Causation!** 

# **Common Cause Principle**

If A and B are correlated, then A causes B or B causes A or they share a latent common cause.



It links causation with probability



# **Conditional Independence**





#### Equivalent class

#### **Associations:**

- Dep(A, Z | Ø)
- Dep(Z, B | Ø)
- Dep(A, B | Ø)
- Ind(A, B | Z)

#### V-structure

#### Associations:

- Dep(A, Z | Ø)
- Dep(Z, B | Ø)
- Ind(A, B | Ø)
- Dep(A, B | Z)

# **Possibility of Causal Inference?**

Given  $Pr(X_1, ..., X_n)$ , can we infer the causal graph G?

#### **Answer:**

- Impossible without additional information.
   e.g., expertise knowledge, variable ordering
- Only equivalence class can be recovered!

# **Bayesian Network**

#### **Definition:**

Given a set of variables  $\{X_1, ..., X_n\}$ , a Bayesian network is a probabilistic graphical model  $B = (G, \Theta)$ , where G is a directed acyclic graph (DAG) and  $\Theta$  is the set of the parameters in all conditional probability distributions (CPDs).

**Applications**: Security engineering, vulnerability detection, intrusion detection, problem diagnosis (trouble shooting)

Rain

0.2

# **Example**

| 20   | Sprinkler |      |  |  |
|------|-----------|------|--|--|
| Rain | Т         | F    |  |  |
| Т    | 0.4       | 0.6  |  |  |
| F    | 0.05      | 0.95 |  |  |



|           |      | Grass Wet |      |  |
|-----------|------|-----------|------|--|
| Sprinkler | Rain | T         | F    |  |
| F         | F    | 0.0       | 1.0  |  |
| F         | Т    | 0.75      | 0.25 |  |
| Т         | F    | 0.85      | 0.15 |  |
| Т         | T    | 0.99      | 0.01 |  |

# **Assumptions**

#### Causal Markov Condition

- Every variable is independent of its non-descendants given its parents.
- Factorization:  $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa_i)$

#### Faithfulness

Causal structure fully determines independences.

#### Acyclic

Needs to be defined in problem setting.

#### Causal sufficiency

- Assume no latent common cause.
- For efficient learning, also for causal interpretation of output.

# **Learning Bayesian Network**

#### Task:

Given a dataset  $\mathcal{D}$ , try to learn the structure G and the parameters of all conditional probability distribution  $\Theta$ .

#### **Traditional method:**

1-step: Structure learning

2-step: parameter estimation



# Structure learning

#### I. Constraint based

Conditional independence tests in Find a DAG maximizing the data and find a DAG faithful to them.

#### Methods:

- SGS
- PC
- **TPDA**
- CPC

#### III. Hybrid

Methods: MMHC, CB, ECOS

#### II. Score based

posteriori probability given the data. Methods:

- *K*2
- Sparse Candidate
- **GBPS**
- And many more..

#### **Parameter Estimation**

Given the structure G learned from last step, factorization will apply according to local terms governed by parameters  $\theta_i$ 

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Pa_i, \theta_i)$$

Any estimator will work here:

e.g., MLE, MAP, and so on.

But...

Only equivalence class can be obtained!

# **Problems in BN Learning**

- Search space is exponentially large in high dimension
- Too many conditional tests
- Local minimum
- Parametric form needed
- Missing values

# Copula Treatment – Sklar's theorem

[Sklar 1959] Let $F(X_1, \dots, X_N)$  be any multivariate distribution over real-valued random variables, then there exists a copula function such that

$$F(x_1,\dots,x_N) = C(F(x_1),\dots,F(x_N))$$

where  $F(X_i)$  is marginal cumulative density distribution of variable  $X_i$  and furthermore if each  $F(X_i)$  is continuous then C is unique.

# A quick sample: Gaussian Copula

Gaussian Copula is a widely explored Copula function:

$$C({F(x_i)}) = \Phi_{\Sigma}(\Phi^{-1}(F(x_1)), \dots, \Phi^{-1}(F(x_N)))$$

Φ Istandard normal distribution

 $\Phi_{\scriptscriptstyle \Sigma}$  : zero mean normal distribution

 $\Sigma$ : correlation matrix.

Bivariate cumulative and density distribution of Gaussian Copula with correlation  $\rho = 0.4$ 





#### Gaussian copula density



# **Advantages of Copula Functions**

- Totally free choice of marginal distributions of each variable.
- Transform any joint distributions into a Gaussian.
- Non-parametric estimators are allowed, which is an ease for missing values. e.g., kernel density estimator.

### **Partial Inverse Correlation Matrix**

- Instead of many CI-tests, simply inverse the correlation matrix.
- Extremely fast and stable under Gaussian Copula transformation.

$$\Sigma^{-1} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \quad \Rightarrow \quad \bigcirc$$

Note that:

 $\Sigma^{-1}(i,j) = 0$  indicates conditional independence, which implies no direct edge between node i and j.

#### From Skeleton to PDAG

Find V-structures



**Detrianglation** 

Constraint propagation



No new V-structure!

Finally, we recovered a causal graph model together with its quantitative factors (probabilistic parameters).

# An application on Intrusion Detection System

- Dataset: KDD99
- 42 variables in total, e.g.,
  - # of connections to the same host in the past two seconds
  - % of connections that have "REJ" errors
  - # of failed logins
  - Protocol type
- 21 attack types (but 60% are DOS attack)
- Training size: 1000

# 10 Features

| feature name       | description                                                                                 | type       |
|--------------------|---------------------------------------------------------------------------------------------|------------|
| count              | number of connections to the same host as the current connection in the past two seconds    |            |
|                    | Note: The following features refer to these same-host connections.                          |            |
| serror_rate        | % of connections that have ``SYN" errors                                                    |            |
| rerror_rate        | % of connections that have ``REJ" errors                                                    | continuous |
| same_srv_rate      | % of connections to the same service                                                        | continuous |
| diff_srv_rate      | % of connections to different services                                                      | continuous |
| srv_count          | number of connections to the same service as the current connection in the past two seconds | continuous |
|                    | Note: The following features refer to these same-service connections.                       |            |
| srv_serror_rate    | % of connections that have ``SYN" errors                                                    | continuous |
| srv_rerror_rate    | % of connections that have ``REJ" errors                                                    | continuous |
| srv_diff_host_rate | % of connections to different hosts                                                         | continuous |

# **Inferred Causal Graph**

10 Nodes only



#### Other datasets

- DARPA (1998)
  - From MIT Lincoln Labs, simulated in military network environment

Both KDD99 and DARPA are too old...

- ISCX (2012)
  - Gathered data in one week
  - From University of New Brunswick
  - Total 85.33 GB
  - Already got it!

#### **Future work**

- Now Copula Functions only work well for the continuous case.
- Most security scenarios are hybrid (both discrete and continuous data, which is still an open problem)
- Real-time causal network updating (DBNs)
- Dynamic feature selection
- Nonlinearity
  - E.g., stochastic process, kernel tricks
- Cyclic Bayesian Network (feedback loop)

# Thanks