INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 4: Computer Hardware Components and Their Working

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

Plan for Lecture Classes in CSN-101 (Autumn, 2019-2020)

Week	Lecture 1 (Monday 4-5 PM)	Lecture 2 (Friday 5-6 PM)
1	Evolution of Computer Hardware and Moore's Law, Software and Hardware in a Computer	Computer Structure and Components, Operating Systems
2	Computer Hardware: Block Diagrams, List of Components	Computer Hardware: List of Components, Working Principles in Brief, Organization of a Computer System
3	Linux OS	Linux OS
4	Writing Pseudo-codes for Algorithms to Solve Computational Problems	Writing Pseudo-codes for Algorithms to Solve Computational Problems
5	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms
6	C Programming	C Programming
7	Number Systems: Binary, Octal, Hexadecimal, Conversions among them	Number Systems: Binary, Octal, Hexadecimal, Conversions among them
8	Number Systems: Negative number representation, Fractional (Real) number representation	Boolean Logic: Boolean Logic Basics, De Morgan's Theorem, Logic Gates: AND, OR, NOT, NOR, NAND, XOR, XNOR, Truth-tables
9	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput
10	Different layers of networking, Network components, Type of networks	Network topologies, MAC, IP Addresses, DNS, URL
11	Different fields of CSE: Computer Architecture and Chip Design	Different fields of CSE: Data Structures, Algorithms and Programming Languages
12	Different fields of CSE: Database management	Different fields of CSE: Operating systems and System softwares
13	Different fields of CSE: Computer Networking, HPCs, Web technologies	Different Applications of CSE: Image Processing, CV, ML, DL
14	Different Applications of CSE: Data mining, Computational Geometry, Cryptography, Information Security	Different Applications of CSE: Cyber-physical systems and IoTs

Memory:

- ROM: For BIOS (Basic Input Output System)
- CMOS RAM: Battery-backed memory used to store system specific parameters required by the system BIOS to boot. It also stores the system clock information.
- Cache: Static RAM attached to the CPU and used for storing current data. L1, L2, L3 Cache
- RAM: Dynamic RAM and used for storing Data and programs which disappear after task completed or power turned off
- Size: ex. 512MB, 2 GB
- Speed: ex. 533MHz, 667 MHz
- Type: ex. DDR2/3 SDRAM (Double Data Rate Synchronous RAM)
- Packaging: DIMM, SIMM

Memory:

Mother Board:

Holds CPU, memory, PCI bays, etc.

Power Supply:

- SMPS (Switched Mode Power Supply)
- AC mains input is converted to DC voltage which feeds the Motherboard, drives and other devices.
- ATX (Advanced Technology Extended)
- Generally 90 250 watts

Mother Board:

Mother Board:

Hard Disk:

- Magnetic storage device. It stores data by magnetizing particles on a disk.
- Used to store operating system, application software, utilities and data.
- Metal, plastic, or glass platter(s)
- 2 magnetic surfaces/platter 1 or more platters per spindle
- 3,600 15,000 rpm
- 1 head/platter
- Head(s) move in and out

How Data is Organized on Disk?

- Tracks:
 - Circular areas of the disk
 - Length of a track one circumference of disk
 - Over 1000 on a hard disk
 - Data first written to outer most track
- Sectors:
 - Divides tracks sections
- Cylinders:
 - Logical groupings of the same track on each disk surface in a disk unit
- Clusters:
 - Groups of sectors used by operating system
 - 64 sectors in one cluster
- Data stored in blocks (pages) of 0.5 to 8 KB

ComputerHope.com

Hard Disk:

- IDE: Obsolete, also called PATA (Parallel Advanced Technology Attachment), I/O Rate: 16 MB/s originally later 33, 66, 100 and 133 MB/s
- SATA (Serial ATA): Used in Desktops/Laptops, I/O Rate: 1.5/3 Gbps, 5400/7200 RPM
- SCSI (Small Computer System Interface): Used in Servers, 10/15K RPM, I/O Rate: 160/320 MB/s
- SAS (Serial Attached SCSI): Used in Servers, 10/15K RPM, I/O Rate: 3
 Gbps
- FC (Fiber Channel): I/O Rate 4 Gbps, Expensive and used in Storage
- iSCSI: I/O Rate 4 Gbps, Expensive and used in Storage
- Solid State Drive: non-volatile flash memory

Hard Disk:

- Low-level format: organizes both sides of each platter into tracks and sectors to define where items will be stored on the disk.
- Partitioning: divide hard disk into separate areas called partitions; each partition functions as if it were a separate hard disk drive.
- High-level format: defines the file allocation table (FAT) for each partition, which is a table of information used to locate files on the disk.

Continued to Next Class...