Relatório - Probabilidade Crítica 3D

Nome: Vítor Kei Taira Tamada

NUSP: 8516250

N) Como o cubo que será percolado tem dimensões NxNxN, quanto maior o N, mais espaços (vazios ou não) o cubo terá. Logo, se o N for alto, o cubo terá mais espaços e, consequentemente, mais espaços vazios. Isso significa que, para um mesmo p, valores maiores de N tem uma chance maior de percolar.

M) Sendo M o número de vezes que um cubo de dimensões NxNxN tentará ser percolado, valores altos de M retornam uma probabilidade média de o cubo ser percolado mais precisa. Isso acarreta um gráfico e uma probabilidade crítica mais precisas.

Após vários testes, chegou-se a conclusão de que a probabilidade crítica de percolação gira em torno dos 0.325, com $p_c\{N\} = 0.321$ com N = 24, valor mais alto de N testado, e $p_c\{N\} = 0.33$ para N = 10, valor mais baixo testado. Também foi possível perceber que, com valores muito altos de M, o $p_c\{N\}$ não se altera, mostrando que aquela é a probabilidade mais precisa para o respectivo valor de N, dentro das condições determinadas.