אלגוריתמים בגרפים הרצאה 1.1

הגדרות ומושגי יסוד בגרפים בגרפים בגרפים ד"ר ראובן חוטובלי

G=(V,E) :נהוג לסמן גרף כדלהלן:

מציין גרף, G מציין גרף

מציין את קבוצת הקדקודים V igotimes

מציין את קבוצת הצלעות. E�

: התרשים הבא

שבו G=(V,E) שבו

$$V=\{A,B,C,D\}$$

$$\triangle E = \{(A,B),(A,C),(B,D),(C,D)\}$$

איור

- שים לב שכל קשת, הקו המקשר בין זוג הקדקודיםבגרף, מצוינת על ידי זוג קדקודים.
- \bullet הזוג (A,B) מציין קשת המחברת את הקדקודים (A,B)
- .C -ו A מציין קשת המחברת את הקדקודים (A,C) מציין קשת המחברת את
- .D -ו B מציין קשת המחברת את הקדקודים (B,D) הזוג \diamondsuit
- .D -ו C מציין קשת המחברת את הקדקודים (C,D) מציין קשת המחברת את

ראינו קו דם כי: V={A,B,C,D} E={(A,B),(A,C),(B,D),(C,D)}

- שימו לב שהזוגות אינם זוגות סדורים, כלומר במקום הזוג(A,B) יכולים לציין (B,A).
 - :עבור הגרף שבתרשים ניתן להגדיר את € כדלקמן
- $\bullet E = \{(B,A),(A,C),(B,D),(D,C)\}$
 - וגם (A,B) אך ברור כי לא ניתן לשייך לE את הזוגות (B,A) כי זו אותה קשת ולפי הגדרת הקבוצה כל איבר (B,A) מופיע בה פעם אחת בלבד.

- (Nodes) מציין את קבוצת הקדקודים N olimits
 - אמציין את קבוצת הקשתות(Arcs). A◆
 - אין הבדלים בין הסימונים.

גרף מכוון

◆התרשימים הבאים מתארים שני גרפים מכוונים.

$$G=(V,E)$$

$$V=\{A,B,C,D\}$$

$$\bullet E = \{(A,B),(A,C),(B,D),(D,C)\}$$

(A,B) שימו לב לזוג סדור אשר מייצג קשת מכוונת *◆

שלהלן:

על ידי B ונכנסת לקדקוד (מקדקוד A על ידי את מקדקוד (A,B).

- ⇒ הקדקוד הראשון בזוג הקדקודים הסדור מציין את מקור הקשת (מאיזה קדקוד יוצאת הקשת)
 - ◊ והקדקוד השני בזוג הקדקודים הסדור מציין את היעד של הקשת (לאיזה קדקוד נכנסת הקשת).

- .G=(V,E) סימון: נתון גרף
- |V −סמספר הקדקודים בגרף מסומן כ
- .|E| -סומספר הקשתות בגרף מסומן כ- ♦
- שבו (מכוון/לא מכוון) שבו (network) הינה גרף (מכוון/לא מכוון) שבו לכל קשת מיוחס מספר/מספרים.
 - ♦ המספר/ים המיוחס/ים לקשת נקרא משקל/ות (weight).
 - ♦ רשת מכונה גם כגרף משוקלל (weight graph).

:התרשים הבא מתאר רשת

- ❖לכל קשת מיוחסת מספר, אשר יכול לייצג מחיר, מרחק, מקסימום כמות הזרם שניתן להזרים מקדקוד אחד לקדקוד אחר וכ"ו.
- b לקדקוד (adjacent) לקדקוד (או עוקב) (קדקוד a אם יש קשת לא מכוונת בין קדקוד a לקדקוד b אם יש קשת לא מכוונת בין קדקוד b לקדקוד b אם יש קשת מכוונת מקדקוד b לקדקוד a לקדקוד b.

בתרשים זה:

- lacktriangleקדקוד B סמוך ל קדקוד A מאחר שיש קשת מכוונת מקדקוד A לקדקוד A
 - מאחר שיש קשת מכוונת \diamondsuit קדקוד A מאחר שיש קשת מכוונת \diamondsuit מקדקוד A לקדקוד A לקדקוד A וכ"ו.

- ▶ דרגת הכניסה (indegree) של קדקוד- מספר הקשתות הנכנסות לקדקוד.
- ספר של קדקוד- מספר (outdegree) של קדקוד- מספר הקשתות היוצאות מקדקוד.
 - של קדקוד- מספר הקשתות (degree) של קדקוד- מספר הקשתות הנוגעות בו.

- ,2 בעבור הקדקוד D הדרגה שלו \Leftrightarrow
 - 2 דרגת הכניסה שלו ♦
 - ודרגת היציאה הינה אפס.
 - ,3 הדרגה שלו C הדרגה שלו \diamond
- .1 איז שלו היציאה שלו 2 ודרגת היציאה שלו היא €

הגדרת מסלול

הינה b לקדקוד a לקדקוד b לקדקוד b לקדקוד b לאור a לקדקודים בגרף: $a_1n_2n_3n_4n_5\dots n_in_{i+1}\dots n_kn_{k+1}\dots n_kn_{k+1}\dots n_i$ סמוך לקדקוד a_i לקדקוד a_i

D לקדקוד A לקדקוד אלקדקוד א לקדקוד ₪.

A,B,C,D מאחר שישנה סידרה של 4 קדקודים ♦

B לקדקוד A לקדקוד ♦

C לקדקוד B לקדקוד שנישנה קשת מקדקוד ♦

D לקדקוד C לקדקוד מקדקוד ♦

:אור המסלול ♦

- תהו? באורך באורך 2 מקדקוד 1 לקדקוד 2 מסלול באורך 2 מקדקוד 3
- ◆ כלומר מקדקוד לקדקוד יכולים להיות כמה מסלולים באורכים שונים.
 - ⇒ קדקוד נשיג: קדקוד b יקרא נשיג (להשיג) מקדקוד a בגרף
 שבקוד נשיג: קדקוד b יקרא נשיג (להשיג) מקדקוד a בגרף
 אם קיים מסלול באורך כלשהו בגרף מקדקוד a לקדקוד b.

הגדרת מעגל

מסלול בגרף מקדקוד כלשהו (cycle)- מסלול בגרף מקדקוד כלשהו לעצמו.

*בתרשים הבא:

B -ל B ל- B, שיש מעגל מקדקוד

 $.B \rightarrow C \rightarrow D \rightarrow B$ והמסלול הינו:

גרף מעגלי

ארף מעגלי (cycle graph)- הינו גרף שבו לפחות (acycle). מעגל אחד, אחרת הגרף נקרא לא מעגלי

דוגמא לגרף לא מעגלי:

Algorithms © Dr Reuven Hotoveli, 2020

דוגמא לגרף מעגלי:

- כם לול פשוט (simple path) הינו מסלול בו אף מסלול פשוט (א מופיעה יותר מפעם אחת.
 - שבאופן אנלוגי כך ניתן להגדיר גם מעגל פשוט.
 - <u>הערה:</u>
- מעתה נדבר על מסלולים (מעגלים) פשוטים, אלא אם יצויין במפורש אחרת!!!

הגדרת גרף שלם

<u>סימון:</u> **◊**

Algorithms © Dr Reuven Hotoveli, 2020

הגדרת רכיב קשיר

שני קדקודים בגרף.

והי − (Connected Complete) דוהי − גיב קשיר קבוצה מקסימלית של קדקודים בגרף לא מכוון שבה יש מסלול פשוט בין כל שני קדקודים בגרף. קדקוד בודד ללא שכנים יקרא גם כן רכיב קשיר. גרף קשיר (Connected graph) – מכונה גם ♦ כ"גרף מחובר" הינו גרף לא מכוון בעל רכיב קשיר אחד בלבד, כלומר קיים מסלול פשוט בין כל

דוגמת גרף קשיר

▶דוגמה 1: דוגמא זאת מתארת גרף שבו רכיב קשיר (a,b,c,d,e) אחד (a,b,c,d,e) מאחר ומכל קדקוד קיים מסלול לכל קדקוד אחר.

דוגמת גרף לא קשיר

דוגמה 2:תרשים זה מתאר גרף שבו 3 רכיבים

- ◆ רכיב קשיר אחד הינו קבוצה מקסימלית של קדקודים בגרף והיא: {A,B,C,D}, מאחר שבקבוצה זו יש מסלול פשוט בין כל שני קדקודים בגרף.
- מאחר E,F,G מאחר מהקדקודים E,F,G מאחר לקבוצה זו לא ניתן לצרף אף אחד מהקדקודים F או ל- F או ל- F או ל- F

רכיב קשיר שני הינו קבוצה מקסימלית של קדקודים בגרף והיא: $\{E,F\}$.

◆רכיב קשיר שלישי הינו: {G}, כיוון שעל פי ההגדרה
קדקוד בודד יכול להיקרא גם כן רכיב קשיר, בתנאי
שקבוצה זו הינה מקסימלית, כלומר בלתי אפשרי להוסיף
לקבוצה זו עוד קדקודים בגרף כך שבקבוצה החדשה
שתתקבל יהיה קיים מסלול בין כל שני קדקודים בקבוצה.

- ⇒סופית, בתרשים ישנם 3 רכיבים קשירים והם:
 - $\{A,B,C,D\}$
 - {E,F} ❖ {G} ❖

- הינה קבוצה מקסימלית של קדקודים בגרף מכוון שבו יש מסלול פשוט <u>ומכוון</u> בין כל שני קדקודים בגרף.
 - ⇒ קדקוד בודד ללא שכנים יקרא גם רכיב קשיר מכוון בחוזקה

. גרף קשיר היטב:

גרף מכוון ייקרא קשיר היטב אם יש בו רק"ח אחד • בלבד.

דוגמת גרף קשיר היטב

בגרף הבא יש מסלול מכוון מכל קדקוד לכל קדקוד אחר בגרף.

דוגמת גרף קשיר היטב

• התרשים הבא מתאר גרף מכוון שבו 4 רכיבי קשירות חזקה.

הגדרת גרף דו צדדי

bipartite) – גרף דו-צדדי ♦ הינו גרף שבו קבוצת (graph הקדקודים מתחלקת לשתי $V = V_1 \cup V_2$ קבוצות זרות רבוצות V_2 - ו V_1 : שכוצות, $x, y \in V_1$ זרות באופן שאם או לא קיימת $x, y \in V_2$ או קשת בין x ו- y -ו ג לסמן גרף $G = (V_1, V_2, E)$ דו-צדדי על ידי

$$V_2=\{B,C\}$$
 בגרף זה $\{A,D\}$ בגרף זה $\{A,D\}$

- שייך ל השייך השייך בגרף אל בגרף השייך ל יוצאות בגרף אל עבר אור השייך ל \mathbf{V}_1-
 - \mathbf{V}_1 אין קשתות מקדקוד אחד השייך ל \mathbf{V}_1 לקדקוד אחר השייך ל \mathbf{V}_1 כנ"ל לגבי \mathbf{V}_2 .
- או גרף מכוון או גרף בדי יכול להיות גרף מכוון או גרף לא מכוון.

16.08.2020

 $:K_{23}$ מתאר את

$$V_2 = \{C, D, E\} - 1$$

$$V_1 = \{A, B\} \quad \diamondsuit$$

 V_2 -ט ישנה אחר קשת לכל קדקוד אחר השייך לlacktriangle A מקדקוד A ומכל קדקוד השייך ל V_2 - ישנה קשת לקדקוד

ישנה קשת בינו לבין כל קדקוד אחר B מקדקוד אחר על השייך ל V_{γ} - השייך ל

הינו גרף G=(V,E) של (Sub-graph) הינו גרף G=(V,E) בר G=(V,E') הינו גרף G=(V,E')

:תרף הבא תת-גרף שלו יכול להיות:

n הוכחה באינדוקציה על ♦

n=2 בסיס: עבור אכן בגרף יש מעגל

אכן בגרף יש מעגל

- .k<n צעד משלים: נניח נכונות הטענה עבור
 - .k=n ונוכיח עבור
- עם n קדקודים ובו n קשתות G עם היהי גרף G עם G לפחות.
- − כעת נניח בשלילה שבגרף G אין מעגל. לכן, ב
 G חייב שיהיה קדקוד שהינו עלה (ממנו אין G יציאה).

- אזי נקבל גרף x אזי נקבל גרף G אם נסיר מגרף G אם נסיר מגרף n-1 את העלה n-1 שבו G' שבו G'
 - ש מעגל G' ש בגרף להנחת האינדוקציה בגרף ♦
 - G אך 'G הינו תת גרף של ♦
- יש מעגל אזי גם בגרף G' כלומר אם בגרף G' כלומר אם בגרף בגרף G כלומר אם בגרף G בסתירה להנחה שבגרף G אין מעגל.
 - לכן, הנחתנו (בגרף G אין מעגל) אינה נכונה והמסקנה היא שבגרף G יש מעגל. משל

- :גרף G הינו עץ אם הוא
- קשיר ובעל n-1 אשתות ◆
- או חסר מעגלים ובעל n-1 קשתות ♦◆

<u>משפט</u>

 $\sum d(v) = 2 \mid E \mid$ מתקיים G=(V,E) פטוט כל גרף פשוט d(v) מציין דרגתו של צומת v בגרף.

ענימוק: כל צלע בגרף G מחברת בדיוק שני קדקודים,
כלומר כל צלע יוצאת בדיוק משני קדקודים.

לכן, כל צלע ב G – נמנית בדיוק פעמיים בחישוב הדרגה של הקדקודים.

:עבהיר את המשפט בעזרת הגרף הבא

 עבור על כל הקשתות של הגרף בסדר כלשהו, באופן אקראי לחלוטין. עבור כל קשת נשים סימן x ליד כל אחד משני הקדקודים המהווים את הקשת הנסרקת.

שנקבל הינה: (A,B) אזי תמונת הגרף שנקבל הינה: ◆

- 2 כשמטפלים בקשת אחת (קשת כלשהי בגרף) אזי דרושים \$ כשמטפלים בקשת אחת (קשת כלשהי בגרף) איזי דרושים 3 -x-ים.
 - ים בכדי בכדי בכדי אחר שבגרף א קשתות, ידרשו א \bullet לסרוק ולטפל בכל קשתות הגרף.
- ים כמספר הקשתות הנוגעות בו, בכל קדקוד יהיו x-ים כמספר הקשתות הנוגעות בו, x-ים כלומר אם דרגתו של צומת הינו d(v) אזי מספר הd(v) שחלים על קדקוד זה הינו d(v).
- לכן, מספר ה-x- הינו בכל קודקודי הגרף הינו אינו בכל החלים בכל החלים בכל הינו בכל \diamondsuit

<u>למת לחיצות הידיים</u>

- .6 ♦ ו- 4 לוחצים ידיים
- . 1 4 לוחצים ידיים.
- . ו- 4 לוחצים ידיים.
- .1 3 ♦ ו- 2 לוחצים ידיים.
- . 1 2 לוחצים ידיים.
- . 1 ו- 5 לוחצים ידיים.
- .1 ו- 2 לוחצים ידיים.

למת לחיצות הידיים

- בגרף יש מספר זוגי של קדקודים (ארבעה קדקודים שהם:\$2, 5, 5, 6 בעלי דרגה אי זוגית.
- ♦ כלומר, כמות האנשים שלחצו ידיים מספר אי זוגי של פעמים היא זוגית
 - ?האם הדבר נכון לכל גרף

למת לחיצות הידיים

- $\sum d(\mathbf{v}) = 2|\mathbf{E}|$ לפי המשפט שראינו קודם \diamondsuit
- - = לכן, סכום הדרגות של כל הקדקודים בעלי דרגה אי זוגית >0 לכן סכום הדרגות של כל הקדקודים בעלי דרגה זוגית של כל הקדקודים בעלי דרגה זוגית אי זוגית פכום הדרגות של כל הקדקודים בעלי דרגה אי זוגית אי זוגית פכום הדרגות של כל הקדקודים בעלי דרגה זוגית פרצות אי זוגית פרצות של כל הקדקודים בעלי דרגה אי זוגית פרצות של כל הקדקודים בעלי דרגה זוגית פרצות של בעלי דרגה זוגית פרצות של בעלי דרגה מוציה פרצות של בעלי בעלי בעלי דרגה זוגית פרצות פ
 - ⇒ לכן, סכום הדרגות של כל הקדקודים בעלי דרגה אי זוגית ⇒
 למספר זוגי כלשהו

<u>למת לחיצות הידיים</u>

- שאלה? כמה מספרים אי-זוגיים צריך לחבר ע"מ שסכומם 🍑 יהיה זוגי?
 - ♦ לכן, מספר הקדקודים בעלי דרגה אי זוגית הוא זוגי.
- בתורת הגרפים, למת לחיצות הידיים היא משפט הקובע שבכל גרף לא מכוון קיימים מספר זוגי של צמתים שדרגתם אי זוגית.
- בניסוח שונה, במסיבה שבה חלק מהאנשים לוחצים ידיים, כמות האנשים שלחצו ידיים מספר אי זוגי של פעמים היא זוגית.
 - . תוצאה זו הוכח על ידי לאונרד אוילר