

LOCALIZZAZIONE DI SCALE IN PLANIMETRIE

Candidato:

Manuel Salamino

Relatore:

Prof. Simone Marinai

Obiettivo

Realizzare un programma che, data una planimetria, restituisce le scale presenti.

Passi Principali

Elaborazione dell'immagine

Trasformazione in scale di grigio

Esempio di planietria su cui viene eseguito l'algoritmo

Elaborazione dell'immagine

Trasformazione in scale di grigio

Immagine trasformata in scale di grigio

Elaborazione dell'immagine Binarizzazione

Elaborazione dell'immagine

Dilatazione morfologica del nero

Dilatazione morfologica del nero, al fine di recuperare pixel nelle linee interrotte

Estrazione delle Componenti Connesse

Immagine

Componenti connesse bianche

Estrazione delle Componenti Connesse

Componenti connesse trovate nel grafo, escludendo quelle di dimensione troppo grande e quelle di dimensione troppo piccola

Grafo di Adiacenza

 $oldsymbol{Nodi}$: Componenti connesse che hanno altre componenti connesse ad una distanza \leq 6px

Componente connessa

Sezionamento

Descrittore

Grafo di Adiacenza

Archi: tra componenti connesse, solo se:

- distanza ≤ 6 px
- intersezione tra le componenti connesse rappresentate dai nodi $\geq 0.4\,$

Sarà creato arco

Non sarà creato arco

Grafo di Adiacenza

Grafo estratto dalla planimetria

Elimino le componenti connesse del grafo con numero di nodi < 5

Grafo ridotto

Immagine corrispondente al grafo ridotto

Passi Principali

Rete Neurale

Utilizzata per fare una **predizione** sulla classe di appartenenza di una componente connessa.

Architettura

Rete Neurale

Esempio di funzionamento

Componenti connesse dell'immagine che la rete ha predetto essere di classe "Scalino"

Rete Neurale

Esempio di funzionamento

Componenti connesse dell'immagine a cui ha rete ha attribuito probabilità di essere "Scalino" > 0.3

Estrazione delle Componenti Connesse

Grafo di adiacenza

Dopo Rete Neurale

Grafo di adiacenza ottenuto dalle componenti con probabilità di essere scalino > 0.3

Dopo Rete Neurale

Grafo ridotto dopo l'utilizzo della rete neurale

Immagine corrispondente al grafo ridotto

Immagine corrispondente al grafo ridotto nella modalità senza Rete Neurale

Dataset Utilizzati

Dataset_1		
Num planimetrie 87		
Num scale presenti	36	
Dim planimetrie	1500x2000	

Dataset_2		
Num planimetrie 31		
Num scale presenti	32	
Dim planimetrie	5000x7000	

Differenza fondamentale tra i Dataset è che nelle planimetrie del Dataset_2 sono presenti molti più oggetti.

Metriche

Per valutare il risultato ottenuto uso il Coefficiente di Jaccard.

$$J(A,B)=\frac{|A\cap B|}{|A\cup B|}$$

Imposto Jaccard_Threshold: tutte le immagini risultanti che hanno Coefficiente di Jaccard > Jaccard_Threshold sono definite come Trovate_giuste.

Per valutare l'algoritmo utilizzo i valori di *Precision* e *Recall* al variare della soglia *Jaccard_Threshold*.

$$Precision = rac{\#trovati_giusti}{\#trovati}$$
 $Recall = rac{\#trovati_giusti}{\#giusti}$

Test del risultato

Si confronta il risultato ottenuto con la scala etichettata: coefficiente di Jaccard = 0.85

Risultati Dataset_1

Senza Rete Neurale

#Trovati = 42

#Giusti = 36

Jaccard_Threshold	#Trovati_giusti	Precision	Recall
0.6	35	0.83	0.97
0.65	33	0.79	0.92
0.7	31	0.74	0.86
0.75	29	0.69	0.81
0.8	22	0.52	0.61

Con Rete Neurale

#Trovati = 40

#Giusti = 36

Jaccard_Threshold	#Trovati_giusti	Precision	Recall
0.6	34	0.85	0.94
0.65	33	0.83	0.92
0.7	27	0.68	0.75
0.75	23	0.58	0.64
0.8	13	0.33	0.36

Risultati Dataset_2

Senza Rete Neurale

#Trovati = 41

#Giusti = 32

Jaccard_Threshold	#Trovati_giusti	Precision	Recall
0.6	30	0.73	0.94
0.65	28	0.68	0.875
0.7	28	0.68	0.875
0.75	27	0.65	0.84
0.8	26	0.63	0.81

Con Rete Neurale

#Trovati = 33

#Giusti = 32

Jaccard_Threshold	#Trovati_giusti	Precision	Recall
0.6	26	0.78	0.81
0.65	23	0.70	0.72
0.7	23	0.70	0.72
0.75	23	0.70	0.72
0.8	22	0.67	0.69

Conclusioni

- è stato effettuata la rappresentazione delle immagini mediante un grafo
- è stata utilizzata una rete neurale per il filtraggio delle componenti connesse non idonee ad essere parte di una scala
- il programma nella sua forma finale evidenzia che la sua versione con Rete Neurale migliora la *Precision*, ma non della *Recall*, ed ha performance migliori se eseguita su planimetrie con numero di oggetti maggiori.

Grazie a tutti per l'attenzione.

