MATH 20800: Honors Analysis in Rn II Problem Set 5

Hung Le Tran

25 Feb 2024

Notation

Let V, W be normed vector spaces. Then $\mathcal{B}(V, W) = \mathcal{L}(V, W)$ is the space of bounded (hence continuous) linear operators from V to W.

Problem 5.1 (Typed Problem 1 done)

Let B be a Banach space.

- (a) Prove that if $T \in \mathcal{B}(B,B)$ and ||I-T|| < 1 where I is the identity operator, then T is invertible and in fact $\sum_{n=0}^{\infty} (I-T)^n$ converges in $\mathcal{B}(B,B)$ to T^{-1} .
- (b) Prove that the set of invertible operators is open in $\mathcal{B}(B,B)$.

Solution

(a) Write the operator

$$Q := \sum_{n=0}^{\infty} (I - T)^n : B \to B$$

A priori, Q might not be well-defined pointwise at all, not even considering if $Q \in \mathcal{B}(B,B)$. We intend to show at once that $Q \in \mathcal{B}(B,B)$.

First, we use the fact that if $T \in \mathcal{B}(B,B)$ then $||T^n|| \leq ||T||^n$ for any $n \in \mathbb{N}$. This is true by the submultiplicativity of operator norms. It follows that

$$||Q|| \le \sum_{n=0}^{\infty} ||(I-T)^n|| \le \sum_{n=0}^{\infty} ||I-T||^n < \infty$$

since ||I - T|| < 1. Therefore $Q \in \mathcal{B}(B, B)$.

We now want to show that in fact $T^{-1} = Q$, by showing that $T \circ Q = Q \circ T = I$. Apply linearity:

$$T \circ Q = \left((I - (I - T)) \circ \sum_{n=0}^{\infty} (I - T)^n \right)$$
$$= \sum_{n=0}^{\infty} (I - T)^n - \sum_{n=1}^{\infty} (I - T)^n = I$$

and similarly

$$Q \circ T = \left(\sum_{n=0}^{\infty} (I - T)^n \circ (I - (I - T))\right)$$
$$= \sum_{n=0}^{\infty} (I - T)^n - \sum_{n=1}^{\infty} (I - T)^n = I$$

It follows that T is invertible; its inverse is $Q \in \mathcal{B}(B, B)$.

(b) Let S be the set of invertible operators in $\mathcal{B}(B,B)$, take $T \in S$.

Consider $||T^{-1}||$. If $||T^{-1}|| = 0 \Rightarrow T^{-1} = 0 \Rightarrow T^{-1}T \neq I, \Rightarrow \Leftarrow$. So $||T^{-1}|| > 0$.

Then for all operator $Q \in B(T, 1/||T^{-1}||)$ we have that

$$||T - Q|| < 1/||T^{-1}|| \Rightarrow ||T^{-1}(T - Q)|| < 1 \Rightarrow ||I - T^{-1}Q|| < 1$$

which implies $T^{-1}Q$ is invertible. Composition of invertible maps is invertible. So $Q = T \circ T^{-1}Q$ is invertible.

So we've found ball $B(T,1/\|T^{-1}\|)$ around T that is inside S, so S is open as required.

Problem 5.2 (Typed Problem 2 done)

Let V be a normed vector space and $W \subset V$ a proper closed subspace.

- (a) Prove that $||v + W|| := \inf_{w \in W} ||v + w||$ is a norm on V/W.
- (b) Prove that for any $\varepsilon > 0$ there exists $v \in V$ such that ||v|| = 1 and $||v + W|| \ge 1 \varepsilon$.

Hint: Let $u \in V \setminus W$. Then ||u + W|| > 0 and there exists $w \in W$ such that $||u + W|| \le ||u + w||$ and

$$||u+w|| \le ||u+W|| + \varepsilon ||u+W||.$$

Now consider $\frac{u+w}{\|u+w\|}$.

Solution

(a) We first have to check that this is a well-defined function, i.e., that for $||v+W|| = \inf_{w \in W} ||v+w||$, it does not matter which representative v we pick on the RHS. Indeed, for any $v_1, v_2 \in v+W \Rightarrow v_1 = v_2+w'$ for some $w' \in W$. It then follows that

$$\inf_{w \in W} \|v_1 + w\| = \inf_{w \in W} \|v_2 + w' + w\| = \inf_{w' + w \in W} \|v_2 + w' + w\|$$

since W is a subspace of V. So indeed it does not matter which representative we pick.

We check through requirements of a norm:

- ||v + W|| is infimum of non negative things, so it is nonnegative
- If ||v+W|| = 0, fix representative $v \in v + W$, then for all $\varepsilon > 0$, there exists $w \in W$ such that $\varepsilon > ||v+w|| = ||v-(-w)||$. Since $(-w) \in W$, it follows that $v \in \overline{W}$. $\overline{W} = W$ is W is closed, so $v \in W$.
- $\|\lambda v + W\| = \inf_{w \in W} \|\lambda v + w\| = \inf_{w \in W} \|\lambda (v + w/\lambda)\| = |\lambda| \inf_{w/\lambda \in W} \|v + w/\lambda\| = |\lambda| \|v + W\|.$
- For any $v_1, v_2 \in V$; $w \in W$, we have that $||v_1+v_2+w|| \le ||v_1+w/2|| + ||v_2+w/2|| \Rightarrow ||v_1+v_2+W|| \le ||v_1+W|| + ||v_2+W||$.

Thus ||v + W|| is a norm.

(b) Fix $\varepsilon > 0$. Let $u \in V \setminus W$. Then $u + W \neq 0 \Rightarrow ||u + W|| > 0$.

Since $||u+W|| = \inf_{w \in W} ||u+w||$, there exists $w \in W$ such that $||u+W|| \le ||u+w|| \le ||u+W|| + \varepsilon ||u+W|| = (1+\varepsilon)||u+W||$. It then follows that if we define $v = \frac{u+w}{||u+w||}$ then clearly ||v|| = 1 and

$$\|v + W\| = \left\| \frac{u + w}{\|u + w\|} + W \right\| = \frac{1}{\|u + w\|} \|u + W\| \ge \frac{1}{1 + \varepsilon} > \frac{1 - \varepsilon^2}{1 + \varepsilon} = 1 - \varepsilon$$

as required.

Problem 5.3 (Typed Problem 3 done)

Let V be a Banach space and $W \subset V$ a proper closed subspace. Prove that V/W with the norm defined in problem 2 is a Banach space.

Hint: Suppose that the series $\sum_n (v_n + W)$ is absolutely summable, i.e., $\sum_n ||v_n + W||$ converges. We wish to prove that $\sum_n (v_n + W)$ converges in V/W. For each $n \in \mathbb{N}$, there exists $w_n \in W$ such that

$$||v_n + w_n|| \le ||v_n + W|| + 2^{-n}$$

Then $\sum_n (v_n + w_n)$ is absolutely summable, and since V is a Banach space, there exists $v \in V$ such that $v = \sum_n (v_n + w_n)$. Prove that $v + W = \sum_n (v_n + W)$, i.e.,

$$\lim_{N \to \infty} v + W - \sum_{n=1}^{N} (v_n + W) = 0$$

Solution

To show that V/W is Banach, we show that every absolutely summable series is summable, i.e., suppose $\sum_{n=1}^{\infty} ||v_n + W||$ converges, WTS $\sum_{n=1}^{\infty} (v_n + W)$ converges in V/W.

Indeed, by definition of $||v_n + W||$, there exists some w_n such that

$$||v_n + W|| \le ||v_n + w_n|| \le ||v_n + W|| + 2^{-n}$$

It then follows that

$$\sum_{n=1}^{\infty} ||v_n + w_n|| \le \sum_{n=1}^{\infty} ||v_n + W|| + \sum_{n=1}^{\infty} 2^{-n} = \sum_{n=1}^{\infty} ||v_n + W|| + 1$$

so $\sum_n ||v_n + w_n||$ is absolutely summable. They are points in Banach V, so $\sum_n (v_n + w_n)$ is summable in V. Set $v := \sum_{n=1}^{\infty} (v_n + w_n) \in V$.

We now WTS the partial sum $\sum_{n=1}^{N} (v_n + W) \xrightarrow{N \to \infty} v + w$ in V/W. Indeed,

since $\sum_{n} ||v_n + w_n||$ is absolutely summable.

Therefore, it follows that $\sum_{n=1}^{\infty} (v_n + W)$ is summable, its limit is v + W, so V/W is Banach.

Problem 5.4 (Typed Problem 4 done)

Suppose V and W are Banach spaces, $T \in \mathcal{B}(V, W)$ and recall the following subspaces

$$\ker(T) = \{ v \in V : Tv = 0 \}, \quad \operatorname{range}(T) = \{ Tv \in W : v \in V \}.$$

- (a) Prove that ker(T) is a closed subspace of V.
- (b) If V_1 and V_2 are normed linear spaces, we say a bijective linear operator $S: V_1 \to V_2$ is an isomorphism if $S \in \mathcal{B}(V_1, V_2)$ and $S^{-1} \in \mathcal{B}(V_2, V_1)$. We say V_1 and V_2 are isomorphic if there exists an isomorphism $S: V_1 \to V_2$.

Prove that $V/\ker(T)$ is isomorphic to range(T) if and only if range(T) is closed.

Hint: Consider the map $S: V/\ker(T) \to \operatorname{range}(T)$ given by

$$S(v + \ker(T)) = Tv,$$

and first show that S is a well-defined, bijective bounded linear operator.

Solution

(a) $T \in \mathcal{B}(V, W)$ so $||T|| < \infty$. Take sequence $(v_n)_{n \in \mathbb{N}}$ in $\ker(T)$ such that $v_n \xrightarrow{n \to \infty} v \in V$. WTS $v \in \ker(T)$.

Indeed,

$$||Tv|| = ||Tv - Tv_n||$$

$$= ||T(v - v_n)||$$

$$\leq ||T|| ||v - v_n|| \xrightarrow{n \to \infty} 0$$

so $||Tv|| = 0 \Rightarrow Tv = 0 \Rightarrow v \in \ker(T)$.

(b)

 \Longrightarrow Suppose that $V/\ker(T)$ is isomorphic to $\operatorname{range}(T)$, then there exists some isomorphism $S:V/\ker(T)\to\operatorname{range}(T)$. Then take sequence of points $(Tv_n)_{n\in\mathbb{N}}$ in $\operatorname{range}(T)$ such that $Tv_n\xrightarrow{n\to\infty} w\in W.$ WTS $w\in\operatorname{range}(T)$.

Denote $w_n = Tv_n \in W$. So (w_n) is Cauchy, which implies $(S^{-1}w_n)$ is Cauchy since $||S^{-1}|| < \infty$. $(S^{-1}w_n)$ is Cauchy in Banach $V/\ker(T)$, so converges to some $v' + \ker(T) \in V/\ker(T)$. But S is also continuous, so $S(S^{-1}w_n) = w_n \xrightarrow{n \to \infty} S(v' + \ker(T)) \in \operatorname{range}(T)$. So $w = S(v' + \ker(T)) \in \operatorname{range}(T)$, so $\operatorname{range}(T)$ is closed.

 \sqsubseteq Suppose that range(T) is closed. range(T) is closed in Banach W so it is Banach. Consider the mapping

$$S: V/\ker(T) \to \operatorname{range}(T)$$

 $v + \ker(T) \mapsto Tv$

1. WTS this mapping is an isomorphism between $V/\ker(T)$ and range(T).

First, it is well-defined, in the sense that it does not matter which representative of $v + \ker(T)$ we choose. Indeed, if $v_1, v_2 \in v + \ker(T)$, which means $v_1 = v_2 + u$ for some u such that Tu = 0, then $Tv_1 = T(v_2 + u) = Tv_2 + Tu = Tv_2$.

2. WTS S is linear. Linearity of S is clear from linearity of T.

WTS it is bounded. For any v such that $||v + \ker(T)|| = 1$, there exists some $u \in \ker(T)$ such that ||v + u|| < 1 + 1 = 2. Hence

$$||Tv|| = ||Tv + Tu|| \le ||T|| ||v + u|| < 2||T||$$

It follows that $||S|| = \sup_{\|v + \ker(T)\| = 1} ||Tv|| \le 2||T|| < \infty$ so it is indeed a bounded map.

- **3.** WTS it is injective. Indeed, if $v_1 + \ker(T) \neq v_2 + \ker(T)$ then $S(v_1 + \ker(T)) S(v_2 + \ker(T)) = T(v_1 v_2) \neq 0$.
- **4.** WTS it is surjective. Take any $Tv \in \text{range}(T)$. Then Tv = S(v + ker(T)).
- **5.** From all above, it can be concluded that S is a bijective, bounded linear operator from Banach $V/\ker(T)$ to Banach range(T). Applying Open Mapping Theorem, it can be concluded that S is an isomorphism between $V/\ker(T)$ and range(T). Thus they are isomorphic as required.

Problem 5.5 (Typed Problem 5 done)

The following exercise shows we cannot drop certain hypotheses in the closed graph theorem and open mapping theorem. Let

$$W = \left\{ a = \{a_k\}_k : \sum_k k|a_k| < \infty \right\},\,$$

equipped with the ℓ^1 norm.

(a) Prove that W is a proper, dense subspace of ℓ^1 (hence, W is not complete).

Hint: Show that if $b = \{b_k\}_k \in \ell^1$ and $\varepsilon > 0$, then there exists $N \in \mathbb{N}$ such that if

$$a := \{b_1, b_2, \dots, b_N, 0, 0, \dots\} \in W.$$

then $||a-b||_1 < \varepsilon$.

- (b) Define $T: W \to \ell^1$ by $(Ta)_k = ka_k$. Prove that the graph of T is closed but T is not bounded.
- (c) Let $S = T^{-1}: \ell^1 \to W$. Prove that S is bounded and surjective but is not an open mapping.

Solution

(a) Take $a = \{a_k\}_k$ where $a_k = \frac{1}{k^2}$ then $||a||_1 = \frac{\pi^2}{6}$ so $a \in \ell^1$, but then $\sum_k k||a_k|| = \sum_k \frac{1}{k} = \infty$ so $a \notin W$. So W is a proper subset of ℓ^1 .

To show that it is dense, pick any $b = \{b_k\}_k \in \ell^1$ and $\varepsilon > 0$. WTS there exists some $a \in W$ such that $||a - b||_1 < \varepsilon$.

Since $||b||_1 < \infty$, there exists $N \in \mathbb{N}$ such that $\sum_{k=N}^{\infty} |b_k| < \varepsilon$. Hence if we define $a \coloneqq \{b_1, b_2, \dots, b_N, 0, 0, \dots\}$ then

$$\sum_{k} k|a_k| < \infty$$

trivially so $a \in W$, while

$$||a - b||_1 = \sum_{k=N}^{\infty} |b_k| < \varepsilon$$

It follows that W is indeed dense in ℓ^1 .

It also follows that W is not complete; for if it was complete then since every point of ℓ^1 is a limit point of W, it would also be in W, making W not proper.

(b) Take $(a^{(n)}, Ta^{(n)}) \xrightarrow{n \to \infty} (u, z) \in W \times \ell^1$, which means $a^{(n)} \xrightarrow{n \to \infty} u, Ta^{(n)} \xrightarrow{n \to \infty} z$, both with respect to ℓ^1 norm.

WTS z = Tu, i.e., $z_k = ku_k$.

Fix $k \in \mathbb{N}$. Then for any $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that

$$\varepsilon/(2k) > ||a^{(N)} - u||, \quad \varepsilon/2 > ||Ta^{(N)} - z||$$

It then follows that

$$|z_k - ku_k| \le |z_k - ka_k^{(N)}| + |ka_k^{(N)} - ku_k|$$

$$\le ||Ta^{(N)} - z|| + k||a^{(N)} - u||$$

$$< \varepsilon/2 + k\varepsilon/(2k) = \varepsilon$$

This is true for all ε , so $z_k = ku_k$. It follows that z = Tu and $\Gamma(T)$ is closed.

However, T is not bounded. Given any M > 0, construct $a = \{a_k\}_{k \in \mathbb{N}}$ where $a_k = 1$ if $k = \lceil M \rceil$ and 0 otherwise. Then $||a||_1 = 1$ but $||Ta|| = \lceil M \rceil \ge M$.

5

(Therefore closed graph theorem doesn't work if one of the spaces is not Banach.)

(c) We write out the explicit definition for S:

$$S: \ell^1 \to W$$

$$b = \{b_k\} \mapsto a = \left\{a_k = \frac{b_k}{k}\right\}$$

1. WTS it is well-defined. If $b \in \ell^1$ then

$$\sum_{k} |a_k| = \sum_{k} |b_k/k| \le \sum_{k} |b_k| < \infty$$

so indeed $a \in W$.

2. WTS it is bounded. If $||b||_1 = 1$ then

$$||S(b)||_1 = \sum_k \left| \frac{b_k}{k} \right| \le \sum_k |b_k| = 1$$

so $||S|| \le 1 < \infty$.

- **3.** WTS it is surjective. Take $a \in W$. Then define b such that $b_k = ka_k$. Then $\sum_k |b_k| = \sum_k |ka_k| < \infty$ since $a \in W$, so $b \in \ell^1$, and clearly S(b) = a.
- **4.** WTS it is not an open mapping. Consider $U = B_{\ell^1}(0,1)$. WTS S(U) not open by demonstrating that we can't draw a ball (wrt ℓ^1) around f(0) = 0. Suppose, for sake of contradiction, that we can draw a ball $B_{\ell^1}(0,2r) \cap W$ that is open in W. Then define $M = \left\lceil \frac{1}{r} \right\rceil$, and define a such that $a_k = r$ when k = M and 0 otherwise. Clearly, $a \in B_{\ell^1}(0,2r) \cap W$.

However if there exists some $b \in U$ such that S(b) = a then that means $b_M = rM > 1 \Rightarrow ||b||_1 > 1 \Rightarrow b \notin U, \Rightarrow \Leftarrow$.

It follows that one can't draw a ball around S(0), thus S(U) is not open.

Problem 5.6 (Written Problem 1, Brezis 1.3 done)

Let $E = \{u \in C([0,1], \mathbb{R}) : u(0) = 0\}$ with the norm

$$||u|| = \max_{t \in [0,1]} |u(t)|.$$

Consider the linear functional

$$f: u \in E \mapsto f(u) = \int_0^1 u(t) dt$$

- (a) Show that $f \in E^*$ and compute $||f||_{E^*}$.
- (b) Can one find some $u \in E$ such that ||u|| = 1 and $f(u) = ||f||_{E^*}$?

Solution

- (a) To show that $f \in E^*$, WTS it is linear and bounded.
 - Linearity of f is clear from linearity of integrals.
 - It is also bounded:

$$||f|| = \sup_{\|u\|=1} |f(u)| = \left| \int_0^1 u(t) dt \right| \le ||u|| = 1 < \infty$$

Therefore $f \in E^*$.

We then compute $||f||_{E^*} = \sup_{\|u\|=1} |f(u)|$. We know that $||f|| \le 1$. WTS ||f|| = 1, i.e., for any $1 \gg \varepsilon > 0$ there exists some ||u|| = 1 such that $|f(u)| = 1 - \varepsilon$. Indeed, for fixed $\varepsilon > 0$, construct u that linearly interpolates $(0,0) \to (2\varepsilon,1) \to (1,1)$. Then $|f(u)| = 1 - \varepsilon$ as required, while ||u|| = 1 clearly. It follows that $||f||_{E^*} = 1$.

(b) Take any $u \in E$ such that ||u|| = 1. Fix $\varepsilon = 1/2$. Since u continuous at 0, there exists $\delta > 0$ such that $t < \delta \Rightarrow |u(t) - u(0)| < \frac{1}{2}$, that is, $|u(t)| < \frac{1}{2}$. Let $\delta' = \min\{\delta, 1\}$, then

$$\int_0^1 u(t) dt \le \int_0^{\delta'} u(t) dt + (1 - \delta') ||u||$$

$$\le \frac{1}{2} \delta' + (1 - \delta') < 1 = ||f||_{E^*}$$

So there doesn't exist any u with such conditions.

Problem 5.7 (Written Problem 2, Brezis 1.4 done)

Consider the space $E=c_0$ with its usual norm ℓ^{∞} norm. For every element $u=(u_1,u_2,u_3,\ldots)$ in E define

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (a) Check that f is a continuous linear functional on E and compute $||f||_{E^*}$.
- (b) Can one find some $u \in E$ such that ||u|| = 1 and $f(u) = ||f||_{E^*}$?

Solution

(a) Recall that

$$c_0 = \left\{ u = (u_i)_{i \in \mathbb{N}} : u_i \xrightarrow{j \to \infty} 0 \right\}$$

endowed with $||u||_{\infty} = \sup_{i \in \mathbb{N}} |u_i|$.

We first check that f(u) is well-defined for each $u \in E$.

Indeed, for all $\varepsilon > 0$, since $u_i \xrightarrow{j \to \infty} 0$, there exists some $N \in \mathbb{N}$ such that $i \geq N \Rightarrow |u_i| < \varepsilon$. Then, for all $m, n \geq N$, we have

$$\left| \sum_{i=n+1}^{m} \frac{1}{2^{i}} u_{i} \right| \leq \sum_{i=n+1}^{m} \frac{1}{2^{i}} \varepsilon$$

$$\leq \frac{1}{2^{N}} \varepsilon \leq \varepsilon$$

so the partial sums are Cauchy in complete \mathbb{C} , so the series $\sum_{i=1}^{\infty} \frac{1}{2^i} u_i$ indeed converges. f(u) is thus well-defined.

Now WTS f is linear and bounded.

• It is linear:

$$f(u + \lambda v) = \sum_{i=1}^{\infty} \frac{1}{2^i} (u_i + \lambda v_i) = f(u) + \lambda f(v)$$

• It is bounded:

$$\begin{split} \|f\| &= \sup_{\|u\|=1} |f(u)| \\ &= \sup_{\|u\|=1} \left| \sum_{i=1}^{\infty} \frac{1}{2^i} u_i \right| \\ &\leq \sup_{\|u\|=1} \sum_{i=1}^{\infty} \frac{1}{2^i} \|u_i\| \\ &\leq \sup_{\|u\|=1} \|u\| = 1 < \infty \end{split}$$

So $f \in E^*$. We know that $||f|| \le 1$, WTS for any $\varepsilon > 0$, there exists some u such that $f(u) \ge 1 - \varepsilon$.

Let $N \in \mathbb{N}$ large such that $\frac{1}{2^N} < \varepsilon$. Then consider the sequence $u \in c_0$ defined by

$$u_i = \begin{cases} 1 & \text{for } i \le N+1\\ 0 & \text{for } i > N+1 \end{cases}$$

Then it follows that

$$f(u) = \sum_{i=1}^{\infty} \frac{u_i}{2^i} = \sum_{i=1}^{N+1} \frac{1}{2^i} = 1 - \frac{1}{2^N} \ge 1 - \varepsilon$$

while $u_i \xrightarrow{j\to\infty} 0$ clearly. Therefore $||f||_{E^*} = 1$.

(b) Take any $u \in c_0$ such that $||u||_{\infty} = 1$. Then there exists N such that $i \geq N \Rightarrow |u_i| < 1/3$. It follows that

$$f(u) = \sum_{i=1}^{\infty} \frac{u_i}{2^i}$$

$$= \sum_{i=1}^{N-1} \frac{u_i}{2^i} + \sum_{i=N}^{\infty} \frac{u_i}{2^i}$$

$$\leq 1 - 2^{-N} + \frac{1}{3} \frac{1}{2^{N-1}} < 1 = ||f||$$

So there doesn't exist any u with such conditions.

Problem 5.8 (Written Problem 3, Brezis 1.8 done)

Let E be a normed vector space with norm $\|\cdot\|$. Let $C \subset E$ be an open convex set such that $0 \in C$. Let p denote the gauge of C.

- (a) Assume C is symmetric (i.e., -C = C) and C is bounded, prove that p is a norm which is equivalent to $\|\cdot\|$.
- **(b)** Let $E = C([0,1], \mathbb{R})$ with its usual norm

$$||u|| = \max_{t \in [0,1]} |u(t)|.$$

Let

$$C = \left\{ u \in E, \int_{0}^{1} |u(t)|^{2} dt < 1 \right\}$$

Check that C is convex and symmetric and that $0 \in C$. Is C bounded in E? Compute the gauge p of C and show that p is a norm on E. Is p equivalent to $\|\cdot\|$?

Solution

(a) Recall that the gauge of C is

$$p(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}$$

- 1. We first show that it is indeed a norm.
 - p is the infimum of positive numbers so it is nonnegative.
 - When $\lambda \geq 0$, $p(\lambda x) = \inf\{\alpha > 0 : \alpha^{-1}(\lambda x) \in C\} = \lambda \inf\{\alpha > 0 : \alpha^{-1}(x) \in C\} = \lambda p(x) = |\lambda| p(x)$.
 - When $\lambda < 0, p(\lambda x) = \inf\{\alpha > 0 : \alpha^{-1}(\lambda x) \in C\} = \inf\{\alpha > 0 : |\lambda|\alpha^{-1}(-x) \in C\} = |\lambda|\inf\{\alpha > 0 : |\lambda|\alpha^{-1}(x) \in C\} = |\lambda|p(x), \text{ since } C = -C.$
 - Therefore $p(\lambda x) = |\lambda| p(x) \ \forall \ \lambda \in \mathbb{R}$.
 - We've proven triangle inequality for p in Brezis.
 - It remains to show that if p(x) = 0 then x = 0. Suppose we have that p(a) = 0 and $a \neq 0$

 $0 \Rightarrow ||a|| > 0$. Then since C is bounded, there exists some M such that $C \subset B(0, M)$. Since $0 = p(a) = \inf\{\alpha > 0 : \alpha^{-1}a \in C\}$, there exists some $\alpha < \frac{||a||}{M}$ such that $\alpha^{-1}a \in C$. But then

$$\|\alpha^{-1}a\| > \left\| \frac{M}{\|a\|} a \right\| = M \Rightarrow \alpha^{-1}a \notin C$$

It follows that a = 0 necessarily.

So p is a norm.

2. We now need to show that it is comparable to $\|\cdot\|$.

Since $0 \in C$ and C is open, there exists r > 0 such that $B(0,r) \subset C$. It then follows that $p(x) \leq \frac{1}{r} ||x||$. Since C is bounded, there exists M > 0 such that $C \subset B(0,M)$. Then

$$p(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\} \ge \inf\{\alpha > 0 : \alpha^{-1}x \in B(0, M)\} = \frac{1}{M} \|x\|$$

Hence p and $\|\cdot\|$ are comparable.

- (b) 1. WTS C is convex, symmetric and $0 \in C$.
 - $0 \in C$ trivially.
 - Take $u, v \in C$ and some $\lambda \in [0, 1]$. Then

$$\int_{0}^{1} |\lambda u(t) + (1 - \lambda)v(t)|^{2} dt = \lambda^{2} \int_{0}^{1} |u(t)|^{2} dt + (1 - \lambda)^{2} \int_{0}^{1} |v(t)|^{2} dt + 2\lambda(1 - \lambda) \int_{0}^{1} u(t)v(t) dt$$

$$< \lambda^{2} + (1 - \lambda)^{2} + 2\lambda(1 - \lambda) \left(\int_{0}^{1} |u(t)|^{2} dt \right) \left(\int_{0}^{1} |v(t)|^{2} dt \right)$$

$$< \lambda^{2} + (1 - \lambda)^{2} + 2\lambda(1 - \lambda) = 1$$

$$\Rightarrow \lambda u + (1 - \lambda)v \in C$$

So C is convex.

- If $u \in C$ then $-u \in C$ since |u(t)| = |(|(-u)(t)|). So C is symmetric.
- **2.** WTS C is NOT bounded in E.

For any M > 0, construct $u_M(t) = \begin{cases} \sqrt{M - M^2 t} & \text{if } t \in [0, \frac{1}{M}] \\ 0 & \text{if } t \in [\frac{1}{M}, 1] \end{cases}$, which is the square root of the function that linearly interpolates $(0, M) \to (\frac{1}{M}, 0) \to (1, 0)$. Then $\int_0^1 |u_M(t)|^2 dt = \frac{1}{3} < 1$ so $u_M \in C$. But

that linearly interpolates $(0,M) \to (\frac{1}{M},0) \to (1,0)$. Then $\int_0^1 |u_M(t)|^2 dt = \frac{1}{2} < 1$ so $u_M \in C$. But $||u_M|| = M$ is unbounded. Hence C is unbounded in E.

3. We now compute the gauge p of C. WTS it is also a norm on E, but this norm is not equivalent to $\|\cdot\|$.

Recall that

$$p(u) = \inf\{\alpha > 0 : \alpha^{-1}u \in C\} = \inf\{\alpha > 0 : \alpha^{-1} \int_0^1 |u(t)|^2 dt < 1\}$$

Then it's clear that $p(u) = \int_0^1 |u(t)|^2 dt = ||u||_{L^2([0,1])}$. It is the $L^2([0,1])$ norm so it is a norm.

This norm is not equivalent to $\|\cdot\|$, since suppose not, that there exists some M such that

$$||u|| \le M||u||_{L^2([0,1])} \ \forall \ u \in C([0,1], \mathbb{R})$$

Then one can construct function

$$u_M \equiv \frac{1}{2M}$$

Then $\|u\| = \frac{1}{2M}$ and $M\|u\|_{L^2([0,1])} = \frac{M}{4M^2} = \frac{1}{4M}$. So $\|u\| > M\|u\|_{L^2([0,1])}, \Rightarrow \Leftarrow$

Hence they are not equivalent.

Problem 5.9 (Written Problem 4, Brezis 2.3 done)

Let E, F be Banach spaces and $(T_n)_{n \in \mathbb{N}}$ a sequence in $\mathcal{L}(E, F)$. Assume that for every $x \in E$, $T_n x$ converges as $n \to \infty$ to a limit denoted by Tx. Show that if $x_n \xrightarrow{n \to \infty} x$ in E, then $T_n x_n \xrightarrow{n \to \infty} Tx$ in F.

Solution

From Banach-Steinhaus and its Corollary 2.3, we find that there exists some C such that $||T_n|| \leq C \forall n$ and $T \in \mathcal{L}(E, F)$.

By hypothesis, $x_n \xrightarrow{n \to \infty} x$ in E.

Fix $\varepsilon > 0$. Since $x_n \xrightarrow{n \to \infty} x$, there exists some N_1 such that $n \ge N_1 \Rightarrow ||x_n - x|| < \varepsilon/(2C)$.

Furthermore, since $T_n x \xrightarrow{n \to \infty} Tx$, there exists some N_2 such that $n \ge N_2 \Rightarrow ||T_n x - Tx|| < \varepsilon/2$.

It then follows that for $n \geq N_1 + N_2$, we have

$$||Tx - T_n x_n|| \le ||Tx - T_n x|| + ||T_n x - T_n x_n|| < \varepsilon/2 + C\varepsilon/(2C) = \varepsilon$$

Hence $T_n x_n \xrightarrow{n \to \infty} Tx$.

Problem 5.10 (Written Problem 5, Brezis 2.17 done)

Let E = C([0,1]) with its usual norm. Consider the operator $A: D(A) \subset E \to E$ defined by

$$D(A) = C^1([0,1])$$
 and $Au = u' = \frac{\mathrm{d}u}{\mathrm{d}t}$

- (a) Check that $\overline{D(A)} = E$.
- (b) Is A closed?
- (c) Consider the operator $B:D(B)\subset E\to E$ defined by

$$D(B) = C^{2}([0,1])$$
 and $Bu = u' = \frac{du}{dt}$

Is B closed?

Solution

(a) Clearly, $D(A) \subset E$. It remains for us to show that every $u \in E$ is the limit of some sequence in $D(A) = C^1([0,1])$.

Fix $u \in E = C([0,1])$. Then the standard mollification gives that u is the (uniform) limit of $\{u*\eta_{1/n}\}_{n\in\mathbb{N}}$. Each $u*\eta_{1/n} \in C^{\infty} \subset C^1([0,1])$, so indeed u is a limit point of $C^1([0,1])$.

Hence $\overline{D(A)} = E$ as required.

(b) A is closed iff it maps closed sets to closed sets.

Consider $K = \{u_n(t) \in E\}_{n \in \mathbb{N}}$ where $u_n(t) = n + \frac{t}{n}$. Then clearly $K \subset D(A)$, with $u'_n \equiv \frac{1}{n}$.

We show that K is closed by showing that it is not Cauchy in any rearrangement, hence does not have a limit point. Indeed, take any $m \neq n$, WLOG, m > n, then

$$||u_m - u_n|| = \sup_{t \in [0,1]} |(m-n) + t\left(\frac{1}{m} - \frac{1}{n}\right)| \ge |(m-n)| \ge 1$$

So K is closed.

But it is clear that $u_n' \equiv \frac{1}{n} \xrightarrow{n \to \infty} u_0' \equiv 0$ (uniformly), but $u_0' \notin A(K)$. So A(K) is not closed.

Hence A is not a closed map.

(c) The same example demonstrates the same point. So B is not closed.