Data Wrangling Before Harmonization: Best Practices for Getting Past the 'Janitor Work'*

Yue Hu¹ Yuehong Cassandra Tai² Frederick Solt³

This article focuses on a preliminary step in any ex-post data harmonization project—wrangling the pre-harmonized data—and suggests best practices for helping scholars avoid errors in this often-tedious work. To provide illustrations of these best practices, the article uses the examples of pre-harmonizing procedures used to produce the Standardized World Income Inequality Database (SWIID), a widely used database that uses Gini indices from multiple sources to create comparable estimates, and the Dynamic Comparative Public Opinion (DCPO) project, which creates a workflow for harmonizing aggregate public opinion data.

¹ Department of Political Science, Tsinghua University, Beijing, China

² Center for Social Data Analytics, Pennsylvania State University, University Park, USA

 $^{^3}$ Department of Political Science, University of Iowa, Iowa City, USA

^{*}Corresponding author: yuehong-tai@uiowa.edu. Current version: April 25, 2025. Replication materials and complete revision history may be found at https://github.com/fsolt/wrangling_data. The authors contributed equally to this work. Yue Hu appreciates the funding support from the National Natural Science Foundation of China (72374116) and Tsinghua University Initiative Scientific Research Program (2024THZWJC01).

1 A Wrangling Issue of Data Harmonization

Empowered by the spreading Internet and advancing computational power, researchers have entered an unprecedented age of data availability. A growing volume of social science research aims to take the benefit to extend the generality: they employ large quantities of data drawn from different sources. However, as Slomczynsi, Tomescu-Dubrow, and Wysmulek (2025) emphasize, ensuring the quality of harmonized datasets remains a significant challenge in handling fitness to use and raw data quality monitoring among others. Taking large-scale survey harmonization as an example, they highlight how documenting variation across source datasets improves transparency and decision-making. Beyond the focus on the harmonization process itself, we argue that quality assurance must begin earlier, because harmonization depends on the quality of the preceding step: data wrangling-the step where rawest inputs are selected, processed, and prepared for harmonization.

Nevertheless, the increasing amount and diversity of data is the challenge of data wrangling, due to a notorious bulk of manual work on indicator identification, data merging, data scaling, and so on (see, e.g., Lohr 2014). The repetitive "janitor work" is often tiresome and easy to introduce errors in data collection procedure.

The issue is compounded when researchers rely on secondary sources such as processed codebooks rather than verifying original raw data. Such dependence increases the risk of compounding errors, especially when researchers collect and integrate multiple datasets, each constructed independently and following its own protocol conventions.

Beyond error risks, manual wrangling complicates full reproducibility in research pipeline which starts with the rawest form of the data to the final results (Liu and Salganik 2019). These challenges are amplified when raw data comes from heterogeneous sources and have been processed using various software environments over time. This is a common scenario in secondary data collection. For example, older survey files stored in SPSS's ASCII or portable formats often require extensive restructuring before they can be merged with new format of data. Such undocumented transformations make it difficult to track changes and undermine transparency.

Finally, even meticulous documentation cannot eliminate the influence of human discretion embedded in manual processing. Such discretion leaves behind few traces, making it difficult for collaborators or reviewers to verify the wrangling process or trace sources of error.

In short, poor source data quality, the absence of reproducibility, and untrackable human discretion in manual janitor work have collectively became the largest obstacle on the way to data harmonization, which yet have thus far gained little attention.

In this article, we provide a practical routine taken the advantage of automatic programming and team work to reduce such data-entry errors and improve the reproducibility and transparency of the wrangling process for researchers and reviewers to check the errors. The routine includes three steps: data selection, data entry, and opening. We illustrate how researchers use this routine on statistical (hard) and opinion (soft) data with two ongoing harmonization efforts, the Standardized World Income Inequality Database (SWIID) and the Dynamic Comparative Public Opinion (DCPO) project.

2 A 3-Step Routine for Data Harmonization

Our routine aims to helping researchers reach three goals for scientific research:

- 1. To incorporate as much available data as possible to provide base for comparable data and increase generality of the inferences;
- 2. To reduce the manual entry errors to improve the accuracy of the harmonized data and analytic data; and
- 3. To improve the reproducibility of data wrangling process for the sake of transparency.

The routine decomposes a data-wrangling process into three steps:

- 1. Team-based concept construct and data selection;
- 2. Data entry automation; and
- 3. "Second-order" opening.

To illustrate the above routine, we use two data harmonization projects as examples, SWIID and DCPO. SWIID is a long-running project that seeks to provide harmonized income inequality statistics for the broadest possible coverage of countries and years (Solt 2009, 2015, 2016, 2020). As of its most recent update at the time of this writing, its source data consists of some 27,000 observations of the Gini coefficient of income distribution in

nearly 200 countries over as many as 65 years, collected from over 400 separate sources including international organizations, national statistics bureaus, and academic studies.

DCPO is both a method and a database. Scholarship on comparative public opinion only rarely benefits from relevant items asked annually by the same survey in many countries (see, e.g., Hagemann, Hobolt, and Wratil 2017). To address the lack of cross-national and longitudinal data on many topics, a number of works have presented latent variable models that harmonize available but incomparable survey items (see Caughey, O'Grady, and Warshaw 2019; Claassen 2019; Kołczyńska et al. 2024; McGann, Dellepiane-Avellaneda, and Bartle 2019; Solt 2020). Along this line, DCPO not only provides latent variable measurements but also automatized and reproducible data collection (Solt 2020), which has been applied in a complete pipeline for a variety of topics such as gender egalitarianism (Woo, Goldberg, and Solt 2023), political interest (Hu and Solt 2024), and support for gay rights (Woo et al. 2024), among other aspects of public opinion and open it freely for global researchers (see more updated data collections at https://dcpo.org/).

In the following sections we first address the common challenges for the phases of data wrangling and explain how our routine can help deal with it illustrated with the data wrangling processes of the SWIID and DCPO projects.

2.1 Step 1: Team-Based Construct Building and Data Selection

Large scale of data selection and cleaning is almost always tedious, as something to be delegated to research assistants, to someone—indeed anyone, but usually research assistants (RA)—else (see Torres 2017). This manual procedure is easy to make mistakes and errors. Haegemans, Snoeck, and Lemahieu (2019, 1) has demonstrated examples of misrouted financial transactions and airline flights. In a more systematic examination, Barchard and Pace (2011) found that RA assigned in an experiment to carefully enter data manually, even those instructed to double-check their entries against the original, had error rates approaching 1% in just a single roughly half-hour session. The consequences of such errors can be pernicious.

Our antidote for this issue is a combination of team work and automation. We will focus more on the team work and discuss the latter in OSM 2.2. The goal here is to have consistent understanding on conceptualized construct, select valid data for later

measurement and/or analyses, and reduce biases caused by inconsistent human judgment. A team work framework for this end requires a deliberative set and a dual-entry process.

A deliberative set requires the members in a research team—regardless several coauthors or a primary author with one or two RAs—to have a clear and coherent understanding of the reseach questions and associated data goals. These understandings will help the team members identify the right data to collect and discover extra useful data sources that are not in the initial plan.

In the SWIID program, for example, we told RAs that the goal of the research is to generate comparable statistics of country-level economic inequality. We provide a list of sources mainly from national statistic bureaus for them to start, but we also told them that update statistics for some countries may come from academic papers, published documents, and other sources and they are free to add them in while making sure a valid link of the new sources are also recorded.

Ensuring team members to understand how the data would used later is also important, as they could have a better sense of what data are analyticable and a forward perspective of how many situations would the later entry part need to take care. In the SWIID project, we told the RAs that the inequality statistics be recorded in four formats: Gini index in disposable (post-tax, post-transfer) income, Gini in market (pre-tax, pre-transfer) income, absolute redistribution (market-income inequality minus net-income inequality), or relative redistribution (market-income inequality minus net-income inequality, divided by market-income inequality). So, for later unification work, they need not only to record the digits but also seek documents to explain the methods of the statistics.

In the DCPO project, clearly defining and agreeing upon the latent construct among team members is a critical first step for ensuring theoretical comparability across countries and over time (Koc and Kołczyńska 2025). This process begins with a shared conceptual foundation established through literature review and corresponding pre-defined potential dimensions of the latent opinion. Each team member is then assigned survey datasets from specific geographic regions and tasked with identifying potentially relevant items and potential dimensions based on both general theoretical guidance and region-specific knowledge. This structure ensures that the construct is informed by both global theory and local context.

Before data selection begins, team members undergo hands-on training on how the

method work and what type of data and detail they need to collect, such as data format and weighting types, which provide a valuable help of later build the automative data preparation software.

Following the initial round of item selection and collection, the dural-entry section comes in. In this stage, each team member reviews and re-codes the survey data originally handled by another member. The independently coded versions are then compared to detect discrepancies, which may arise from misinterpretations of the construct, ambiguous item wording, or common entry errors.

Disputed cases are flagged for group discussion. Some mismatches may indicate items that may not be conceptually equivalent across cultures or regions, and others suggest multidimensionality that requires theoretical disaggregation. For the latter, we either categorize such items into pre-defined dimensions and/or revise the codebook accordingly to add new dimensions—an iterative process aimed at improving construct validity, intercoder reliability, and reducing oversimplification of target variable (Slomczynsi, Tomescu-Dubrow, and Wysmulek 2025).

Therefore, we broke down the cross-check step into several lab meetings interspersed during the data selection to collect new insights from each members' selection works and make sure everyone were on the same page through the whole process. The process ends with a systemic cross-check of the final selected data among members.

In the SWIID project, the dataset requires update for almost every year and we also often hire new RAs. Therefore, the cross-check is often done in a rolling basis usually by the rookies who are in charge of checking the old data and updating malfunctional links. This is both a learning process and a way to improve data accuracy.

2.2 Step 2: Data Entry Automation

Formating data is arguably the easiest step to involve manual errors and controversies. The best solution is to automate the entry process taken the advantages of the programming languages and application programming interfaces (APIs) of the data source.

In the DCPO case, the entire data entry process accumulating the survey responses is fully automated through the use of the R-based software, DCPOtools (Solt, Hu, and Tai 2018). This software processes the raw survey files directly—rather than relying on potentially inaccurate codebooks—ensuring that data entry is reproducible. Specifically,

DCPOtools reads in each recorded survey dataset (including legacy formats such as ASCII or portable .por files), converts them to R-readable objects, extracts the variable of interest, reorders the response values for this variable from least to most of the concept investigated, applies survey weights, and then aggregates the weighted number of respondents in each of the reordered response categories in each country for each year based on the actual survey fieldwork dates. To further address the concerns about theoretical comparability, using a data-driven approach, DCPO projects employ a conservative filtering process. Items that appear in fewer than five country-years in countries surveyed at least three times are removed through a two-round checking process (Tai and Solt 2025; Woo et al. 2024). This approach aims to minimize the risk of sacrificing comparability for the sake of regional or temporal coverage (Koc and Kołczyńska 2025).

DCPOtools also automatically ensures that country names are standardized using the excellent Arel-Bundock, Enevoldsen, and Yetman (2018)'s excellent countrycode and that the years accurately reflect actual fieldwork dates using internal crosswalk tables. The aggregated number of respondents for each observed response-item-country-year then serve as the source data for the latent variable model where data is harmonized at the country-year level.

Figure 1: Income Inequality Observations by Method of Collection

While coding datasets and items into structured spreadsheets facilitates automation, this is still not the the complete version of data entry automation. An even better version starts the automation since the data selection step via programming and APIs. As shown in Figure 1, the current version of SWIID grapes 76% of the observations through API. When no API is available, the automation script downloads and reads any available spreadsheets (see Wickham 2016). In the absence of a spreadsheet, the

process of scraping the data either directly from the web or, preferably, from a pdf file (see Sepulveda 2024) is automated. Together the collection of 90% of the source data is scripted. This means not only that the possibility of errors introduced by hand entry for a vast majority of observations is eliminated but also that the updates and revisions that are frequent in these data are automatically incorporated as they become available.¹

For data sources, such as those from academic articles or books, that have to be entered in hand, there is still rooms for automation. For the remaining 10% of the SWIID observations, for instance, we collected them using Sepulveda's tabulapdf R package to avoid data-entry errors as long as they are in pdf (Sepulveda 2024). The advanced Optical Character Recognition (OCR) can extend this method on data sources even in hard copies.

And finally, one source of SWIID contains crucial information encoded in the typeface of its tables (see Mitra and Yemtsiv 2006, 6); this information would be lost if the tables were read directly into R. We reapplied the approach from the data selection here to enter them twice into separate spreadsheets.² The dual-entry process allows for automated cross-checks of the newly entered data that increase the chances that errors are identified and corrected (see Barchard and Pace 2011).

2.3 Step 3: "Second-Order" Opening

Since the replication crisis, replication files for analytical results in academic articles has become a standard requirement for top-tier journals in political science (Chang and Li 2015; Open Science Collaboration 2015). Nevertheless, the continual raising controversies on the researcher degrees of freedom indicated that current open is still not adequate.³ Especially in relation with data harmonization, we eager researchers to conduct a, what we called, the "second-order" opening. That is, not only opening analytical steps (the "first-order") but also the data generation process (the "second-order"), including data collection, data cleaning, and data wrangling, as mentioned above.

If researchers applied our suggestions of team-based construct building, systematic data selection, and automated data entry, the second-order opening becomes both feasible and efficient. Along with a clearly conceptualized theoretical framework, researchers can simply share their programming scripts for data downloading, formatting, and wrangling, ensuring that the full pipeline is documented and reproducible.

With developed scientific and technical publishing system, such as Quarto or R mark-down, and version control platforms (e.g., Github) and open collaboration platforms (e.g., Open Science Framework, OSF), researchers can integrate the entire workflow—from raw data collection to final analysis—within a single, publicly trackable archive. We reached at this step for all the DCPO projects so far. Readers can find a Github repo for the research from scratch, and every wave of data update in the corresponding OSF project.

3 Discussion

Harmonization projects are often data-intensive efforts, data-wrangling is often substantial, and data-entry errors are particularly dangerous to these undertakings. These errors would be rarely uncovered by merely examining the data and their distribution (Barchard and Pace 2011, 1837–38). Our routine—as fully demonstrated in Figure 2 —provide an approach to both minimize the manual errors during the wrangling process and provide transparent records for checking the errors and replications.

To accomplish the routine—like similar open-science prescriptions—undoubtedly take effort (see Engzell and Rohrer 2021).

While the double-entry method is labor intensive, experiments have shown that it reduces error rates by thirty-fold even when done immediately after the initial collection and by the same person (Barchard and Pace 2011, 1837); this payoff justifies the extra effort. Teamwork cuts the other way. For any project involving identifying data by hand, splitting the task up among team members lessens the probability of errors due to fatigue arising in the first place, and coupled with the double-entry method, allows discrepancies to be noted, discussed, and resolved correctly.

Fortunately, social scientists today benefit from growing efforts to standardize harmonization workflows (Slomczynsi, Tomescu-Dubrow, and Wysmulek 2025) and automate data processing and linkage (Kritzinger, Lutz, and Boomgaarden 2025). Researchers can increasingly reuse high-quality harmonized datasets in new projects, enhancing research efficiency and comparability.

Moreover, as the examples of the API packages used by the SWIID and DCPOtools demonstrate, many common janitor-work chores already have been packaged as open-source software to make researchers' task even easier and more straightforward. With the

Figure 2

development of large language models, in the near future perhaps some parts of the routine can be accomplished by intelligent agents—which would definitely push our automation recommendation to another level, potentially fulfilling calls to push automation to the next level (Kritzinger, Lutz, and Boomgaarden 2025).

A final point we would like to clarify is that, in our three-step routine, researchers remain central to the harmonization process. As shown Figure 2 and illustrated in the SWIID and DCPO examples, the researchers have the responsibility for all the important decisions from clarifying the research question, building theoretical constructs, and specifying data demands at the beginning to conducting version controls and developing a full-pack replication folder in the end. Early and critical steps—such as construct development and codebook refinement—must be conducted iteratively and collaboratively to achieve high intercoder reliability. Even when data entry is automated, human validation remains essential. Researchers must verify that variables conform to expected formats (e.g., string, numeric) and that values fall within plausible ranges. To minimize system-related discrepancies, the computing environment used should also be documented (Liu and Salganik 2019).

For any ex-post data harmonization project, careful attention to the pre-harmonization stages—construct building, data identification, collection, and entry—substantially contributes to the overall quality of the harmonized dataset. While some level of error is inevitable even under best practices, following systematic procedures can mitigate risks. Nonetheless, with researchers' responsiblee attention, not only can the threat of dataentry errors to our 'janitor work', our efforts at data harmonization, and our understanding of the world be minimized, but the transparency, openness, and credibility of our research can continue to grow.

Notes

¹ The R community has often built software to ease the access of APIs and make the batch work for multiple waves of data in a more comfortable and efficient way (see Blondel 2018; Lahti et al. 2017; Lugo 2017; Magnusson, Lahti, and Hansson 2014; Wickham, Hester, and Ooms 2018).

²Most often this has been done by two different investigators, but sometimes sequentially by a single researcher.

³See a summary of the "researcher degrees of freedom" literature in Hu, Tai, and Solt (2024).

References

Arel-Bundock, Vincent, Nils Enevoldsen, and C. J. Yetman. 2018. "countrycode: Convert Country Names and Country Codes." *Journal of Open Source Software* 3(28): 848–49.

Barchard, Kimberly A., and Larry A. Pace. 2011. "Preventing Human Error: The Impact of Data Entry Methods on Data Accuracy and Statistical Results." Computers in Human Behavior 27(5): 1834–39.

Blondel, Emmanuel. 2018. "rsdmx: Tools for Reading SDMX Data and Metadata."

- Caughey, Devin, Tom O'Grady, and Christopher Warshaw. 2019. "Policy Ideology in European Mass Publics, 1981–2016." *American Political Science Review*: 1–20. doi:10.1017/S0003055419000157.
- Chang, Andrew, and Phillip Li. 2015. "Is Economics Research Replicable? Sixty Published Papers from Thirteen Journals Say 'Usually Not'." Finance and Economics Discussion Series 7: 1–25.
- Claassen, Christopher. 2019. "Estimating Smooth Country–Year Panels of Public Opinion." *Political Analysis* 27(1): 1–20.
- Engzell, Per, and Julia M. Rohrer. 2021. "Improving Social Science: Lessons from the Open Science Movement." *PS: Political Science & Politics* 54(2): 297–300. doi:10.1017/S1049096520000967.

- Haegemans, Tom, Monique Snoeck, and Wilfried Lemahieu. 2019. "A Theoretical Framework to Improve the Quality of Manually Acquired Data." *Information & Management* 56(1): 1–14.
- Hagemann, Sara, Sara B. Hobolt, and Christopher Wratil. 2017. "Government Responsiveness in the European Union: Evidence from Council Voting." *Comparative Political Studies* 50(6): 850–76.
- Hu, Yue, and Fredrick Solt. 2024. "Macrointerest Across Countries." In Shenzhen.
- Hu, Yue, Yuehong Cassandra Tai, and Frederick Solt. 2024. "Revisiting the Evidence on Thermostatic Response to Democratic Change: Degrees of Democratic Support or Researcher Degrees of Freedom?" *Political Science Research and Methods*: 1–7. doi:10.1017/psrm.2024.16.
- Koc, Piotr, and Marta Kołczyńska. 2025. "Modeling Trends in Public Opinion: An Overview of Approaches, Assumptions and Trade-Offs." Working Paper.
- Kołczyńska, Marta, Paul-Christian Bürkner, Lauren Kennedy, and Aki Vehtari. 2024. "Modeling Public Opinion over Time and Space: Trust in State Institutions in Europe, 1989-2019." Survey Research Methods 18(1): 1–19.
- Kritzinger, Sylvia, Georg Lutz, and Hajo Boomgaarden. 2025. "Visions for the Future: Challenges and Opportunities for Creating Sustainable Scholarly Infrastructures for Data Harmonization." Working Paper.
- Lahti, Leo, Janne Huovari, Markus Kainu, and Przemysław Biecek. 2017. "Retrieval and Analysis of Eurostat Open Data with the Eurostat Package." *The R Journal* 9(1): 385–92.
- Liu, David M, and Matthew J Salganik. 2019. "Successes and Struggles with Computational Reproducibility: Lessons from the Fragile Families Challenge." Socius 5:

2378023119849803.

- Lohr, Steve. 2014. "For Data Scientists, 'Janitor Work' Is Hurdle to Insights." New York Times: B4.
- Lugo, Marco. 2017. "CANSIM2R: Directly Extracts Complete CANSIM Data Tables."
- Magnusson, Mans, Leo Lahti, and Love Hansson. 2014. "pxweb: R Tools for PX-WEB API."
- McGann, Anthony, Sabastian Dellepiane-Avellaneda, and John Bartle. 2019. "Parallel Lines? Policy Mood in a Plurinational Democracy." *Electoral Studies* 58: 48–57.
- Mitra, Pradeep, and Ruslan Yemtsiv. 2006. "Increasing Inequality in Transition Economies: Is There More to Come?"
- Open Science Collaboration. 2015. "Estimating the Reproducibility of Psychological Science." Science 349(6251): aac4716.
- Sepulveda, Mauricio Vargas. 2024. "tabulapdf: Extract Tables from PDF Documents."
- Slomczynsi, Kazmierz M., Irina Tomescu-Dubrow, and Ilona Wysmulek. 2025. "Navigating Complexities of Ex-Post Harmonization of Cross-National Survey Data: Insights from the Survey Data Recycling, SDR, Project." Working Paper.
- Solt, Frederick. 2009. "Standardizing the World Income Inequality Database." Social Science Quarterly 90(2): 231–42.
- Solt, Frederick. 2015. "On the Assessment and Use of Cross-National Income Inequality Datasets." *Journal of Economic Inequality* 13(4): 683–91.
- Solt, Frederick. 2016. "The Standardized World Income Inequality Database." Social

Science Quarterly 97(5): 1267–81.

Solt, Frederick. 2020. "Measuring Income Inequality Across Countries and over Time: The Standardized World Income Inequality Database." Social Science Quarterly 101(3, 3): 1183–99. doi:10.1111/ssqu.12795.

Solt, Frederick, Yue Hu, and Yuehong Tai. 2018. "DCPOtools: Tools for Dynamic Comparative Public Opinion."

Tai, Yuehong Cassandra, and Frederick Solt. 2025. "Trust in Civil Servants: A Cross-National Dataset for Public Policy Research, 1986–2022."

Torres, Rachel. 2017. "Me: Shouldn't There Be Someone in a Basement That We Just Pay to Do All This Awful Data Cleaning? Advisor: That's Who You Are."

Wickham, Hadley. 2016. "rvest: Easily Harvest (Scrape) Web Pages."

Wickham, Hadley, James Hester, and Jeroen Ooms. 2018. "xml2: Parse XML."

Woo, Byung-Deuk, Lindsey A. Goldberg, and Frederick Solt. 2023. "Public Gender Egalitarianism: A Dataset of Dynamic Comparative Public Opinion Toward Egalitarian Gender Roles in the Public Sphere." *British Journal of Political Science* 53(2): 766–75. doi:10.1017/S0007123422000436.

Woo, Byung-Deuk, Hyein Ko, Yuehong Cassandra Tai, Yue Hu, and Frederick Solt. 2024. "Public Support for Gay Rights Across Countries and over Time." *Social Science Quarterly* 106(1): e13478. doi:10.1111/ssqu.13478.