For the Interested reador?

January 11, 2022 11:27 AM

Derivation of the result
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{0}^{\infty} \frac{1}{p-1} \qquad P>1 \qquad convergent$$

$$\int_{X}^{\infty} \frac{1}{x} dx = \int_{X}^{\infty} \frac{1}{p} dx = \int_{X}^{\infty} \frac{1}{p} dx = \int_{Y}^{\infty} \frac{1}{p} dx$$

We have seen that
$$\int_{X}^{\infty} \frac{1}{2} dx$$
 diverges \Rightarrow for $p=1$ divergent

For $p \neq 1$, $\int_{X}^{\infty} \frac{1}{2} dx = \int_{X}^{\infty} \frac{1}{2} dx = \int_{P+1}^{\infty} \frac{1}{2} \frac{1}{2} dx = \int_{P+1}^{\infty} \frac{1}{2} dx = \int_$

$$= \begin{cases} \sqrt{p-1} & p > 1 \\ \infty & p < 1 \end{cases}$$

recall for
$$p=1$$

— divergent

— $p>1$ conv.

 $p \leq 1$ div.