

Digital Systems Design ELEGISTAN/47e3 Exam Help

https://tutorcs.com

WeChat: cstutorcs

Logic Analysers for Digital Circuit Debugging

Prof J.S. Smith Room A515;

E-mail: j.s.smith@liv.ac.uk

What is a Logic Analyser?

- A tool to examine how a digital system operates
 - Creates waveforms to visualize output
- Can find system errors and instabilities
- Better at analysing the itality stement an oscilloscope
 - An oscilloscope will show continuous voltage
 - Most new oscilloscopes are now digital and show a sampled voltage from an ADC.
 - A logic analyser shows discrete logic levels

Logic Analyser vs. Oscilloscope

- A digital oscilloscope samples incoming signal at regular time intervals.
 - Stores sample significate as \$750 Fize bit Hardinal value.
 - Preserves amplitude information
 - Signal is analogue in nature WeChat: cstutorcs
- Logic Analyser monitors multiple channels simultaneously
 - Signal is digital in nature
 - Provides timing relationship information
- Both are powerful analysis and troubleshooting tools

Oscilloscope or logic analyzer?

When to use a scope:

- When it is required to observe small voltage excursions on the signal. Assignment Project Exam Help
- When high time-interval accuracy is required.
 https://tutorcs.com

When to use a logic analyzer:

- When one wishes towestern mantosignals at the same time.
- When it's necessary to look at signals in the system the same way hardware does.
- When it's required to trigger on a pattern of highs and lows on several lines and see the results.

HP (Agilent) Logic Analysers

HP 1662A Logic Analyser 68 Channels 250MHz Sampling

Probes for Logic Analysers

Connecting to Individual IC Pins, Test Points, Browsing or Solder Attach to Components, Traces or VIAs

Connecting to all the Pins of a Specific Package

Designing Connectors Directly into the Target System

Logic Analyser Operation

The threshold voltage is normally programmable

Logic Analyser Operation (2)

- Clocks control when data is sampled
- Types of clocking
 - External (synchronous) listing data

 External (synchronous) listing data
 - clock source extetpat to utogics. Analyser
 - useful for obtaining state aspects of data WeChat: cstutorcs
 Internal (asynchronous) waveform data
 - data may be lost between clocks
 - asynchronous provides all data
 - useful for obtaining timing aspects of data

Logic Analyser Operation (3)

- Acquiring data
 - Logic Analyser samples data from probes
 - Sample taken when clock occurs Help
- Triggering https://tutorcs.com
 - Trigger program to get sampled data for specific events and then takes specified action
 - Also provides storage qualification conditions.
 - If met, allows data to be stored in memory

Waveform Data Concepts

- Use Logic Analyser to observe timing relationship between signals
- All waveforms are time time time to have a lighed horizontally and displayed in same time per division.//tutorcs.com
- Can display waveforms or magnitude mode.
 - Provides hexadecimal value of multi-channel bus

Waveform Data Concepts (2)

- Sampling resolution
 - Waveform accuracy depends on sample clock rate used to record incoming signals (recipe in beauty)
 - If sampled too slaw saliasing will accur
- Logic Analyser has fixed memory WeChat: cstutores
 - Trade-off between resolution of recorded signal and its duration
 - A faster sample clock will record a smaller portion of the signal

Altera's SignalTap II ELA (Embedded Logic Analyser)

- Captures the logic state of FPGA internal signals using a defined clock signal

 Assignment Project Exam Help

 Gives designers the ability to monitor buried signals
- Connects to Qualtus II/through TPGA JTAG pins
- Captures real-time data: cstutorcs
 - Up to 200 MHz

How Does It Work?

- 1. Configure ELA
- 3. ELA Samples Internal Signals
- 4. Quartus II Communicates with **ELA through JTAG**

Cyclone Resource Usage

Number of	Logic Elements						
Channels	Trigger Level 1	Trigger Level 2	Trigger Level 3				
8 As	ssignment Proi	ect Exam Help	426				
32	566	773	981				
256	https://tutorc	S.CO14528	6156				

33,216 Logic Elements of the EP2C35 ton your DE2 board

Number of	M4Ks Based on Sample Depth								
Channels	256	512	2K	8K	32K				
8	< 1	1	4	16	64				
32	2	4	16	64	256				
256	16	32	128	512					

Modes of Operation

- Three different configurations
 - Internal RAM ELA configuration
 - Debug port Asaigomfigurationect Exam Help
- Hybrid approach https://tutorcs.com
 Provides flexibility based on available device resources
 - Memory resources early almiteutores
 - Use Debug port configuration
 - Pin resources are limited
 - Use internal RAM configuration

Logic Analyser Interface (LAI)

Uses external Logic Analyser with signal multiplexed to reduce pin count.

SignalTap II Key Features

- Setup
- Data Triggeringssignment Project Exam Help
- Data Capture https://tutorcs.com
- Data Analysis
 WeChat: cstutorcs

Setup Features

- Up to 1024 Data Channels
- Multiple analysers in one device

 Assignment Project Exam Help

 Supports analysis of multiple clock domains

 - Each analyser can hutpsimultaneouslyn

WeChat: cstutorcs Status LEs: 1183 Small: 0/0 Medium: 9/105 Large: 0/0 Instance ELA Coun24 546 cells 32768 bits 0 blocks 8 blocks 0 blocks Not running ELA Coun24 1 Not running 637 cells 3328 bits 0 blocks 1 blocks 0 blocks

Resource usage estimation

Data Triggering Features

- Up to 10 trigger levels per channel
 - Allows application of simple (Basic) & complex (Advanced) triggering schemes
 - Defines a sequential topote interference of the property of the p
 - Each trigger level is logically ANDED
 - If (L1 then L2 ... then L10) == TRUE → Data Capture

trigger: 2	2003.	/10/01 18:44:12 #1	Lock mode:	_		▼								
Node		Incremental	Debug Port	Data Enable	ta Enable Trigger Enable Trigger Levels									
Type Ali	lias	Name	Route	Out	11/15	7/15	1 V Basic ▼	2 ▼ Basic	- 3√ Basic	- 4√ Basic	▼ 5▼ Basic	- 6 ▼ Basic	- 7▼ Basic -	8▼ Basic -
⊚		⊟- TEN_SEG	V	-60	▽	V	zero_tens	one	two	three	four	five	six	seven
•		TEN_SEG[6]	Incremental	Route	▽	V	1	1	0	0	1	0	0	0
•		TEN_SEG[5]	V	-453	▽	V	1	0	0	0	0	1	1	0
•		TEN_SEG[4]	V	-453	▽	V	1	0	1	0	0	0	0	0
•		TEN_SEG[3]	V	-453	▽	V	1	T	0	0	1	0	0	1
•		TEN_SEG[2]	V	-453	▽	V	1	T	0	1	1	1	0	1
•		TEN_SEG[1]	V	-453	▽	V	1	T	1	1	0	0	0	1
•		- TEN_SEG[0]	V	-453	▽	V	1	T	0	0	0	0	0	1
€		ix:wysi_counter safe_q[3]	V	-453	▽									
◎		ix:wysi_counter safe_q[2]	V	-103	⊽									
◎		ix:wysi_counter safe_q[1]	V	-153	⊽									
◎		ix:wysi_counter safe_q[0]	V	-453	⊽									

Data Triggering Features (Cont.)

Three main trigger positions

- Trigger input
 - Setup External Trigger to Mggerthat A Cantistion CS
- Trigger output
 - Signifies Trigger Event Occurred with SignalTap II
- Use one ELA's trigger output as trigger input for another ELA

Data Capture Features

- Up to 128K samples per channel
 - Increases chance of catching target event.
 Assignment Project Exam Help
 Two methods of data acquisition
- - https://tutorcs.com Circular
 - Segmented WeChat: cstutorcs
- **Mnemonic Tables**
 - Create user-defined labels for bit sequences (Ex. State Machine)

Using STP File

- 1. Create .STP File
 - Assign sample clock
 - Specify sample depth Project Exam Help
 - Assign signals hot ST/Puftlercs.com
 - Specify triggering Chat: cstutorcs
 - Setup JTAG
- 2. Save .STP File & compile with design
- 3. Program device
- 4. Acquire data

1) Creating a New .STP File

- To Create a .STP File
 - Select New (President Project Exam Height Sys System File Sys System File Sys System File Sys System File System F
 - Verification/DebugginguFiles.com
 - SignalTap II Logic Analyser File
- Default file name will be \$191.515

Main .STP File Components

.STP File

JTAG Chain Configuration

Instance Manager

- Instance Manager

 - Selects current ELA to Setup/View
 Displays the current status of each instance
 - Displays size (resuproetursage)comELA

	$-W_{\mathbf{C}}$	ast cetu	torce			
Instance	Status	LEs: 1346	Memory: 37376	Small: 0/0	Medium: 10/105	Large: 0/0
ELA_Coun24	Not running	533 cells	32768 bits	0 blocks	8 blocks	0 blocks
ELA_Test	Not running	441 cells	4096 bits	0 blocks	1 blocks	0 blocks
ELA_high_bits	Not running	372 cells	512 bits	0 blocks	1 blocks	0 blocks

Assign Sample Clock

- Use global clock for best results
- Data written to memory on every sample clock rising edge

 Party of the project Exam sample clock rising edge

 Sample depth: 128 RAM type: 2 64 sample segments

 Type: Continuous
- Clock signal cannot be monitored as data
- External Clock pin created tutorcs automatically if clock unassigned
 - auto_stp_external_clock
 - ELA expects external signal to be connected to clock pin

Specify Sample Depth

Sample Depth

 Set number of samples stored for each data signal

Set number of samples stored for each data signal

- 0 to 128K sample depth://tutorcs.com
 - 0 selected when external analyser is used
 WeChat: cstutorcs
- Select RAM type for Stratix & Stratix II Devices
 - Useful when preserving a specific memory type is necessary

Data Capture

Specify Trigger Position

Pre Assignment Project Exam Hesting qualifier: 2 64 sample segments

Center

https://tutorcs.com

Post

WeChat: cstutorcs

Segmented

Specify Segment Depth

Triggering

- Trigger levels
 - Indicate up to 10 trigger conditions
- Trigger-In
 - Any I/O pin can trigger the Signal Tap II https://tutorcs.com Analyser
 - Generates auto_stp_trigger_inat. Pintutorcs
- Trigger-Out
 - Indicates when a trigger pattern occurs
 - Delayed 5 clock cycles after actual trigger event

Waveform Viewer

- Setup Tab Describes the Signal Settings
 - Data Signals vs. Trigger Signals
 - Sets up Each Friggering Project (Exam Help
- Data Tab Displaysh@apturedcDatan

WeChat: cstutorcs

STP File Waveform Viewer

Basic Triggering

All signals must be true for level to cause data capture

Right-Click to Set Value

Advanced Triggering

Bus outa is Greater than or Equal to Bus outb

Bus outa is Greater than or Equal to Bus outb and enable has rising edge

Debug Port

- Routes data signals to spare I/O pins for capture by external Logic Analyser
- Quartus II Automatically Centerates am Help auto_stp_debug_qutpm/throres.com
 - M Represents the Instance Number of the Analyser
 - n Represents the Order the Bebug Fort Pin Occurs in the Signal List

trigger: 2003/10/01 18:44:12 #1 Lock r				🚅 Allow all changes	▼						
Node			Incremental	Debug Port	Data Enable	Trigger Enable	Trigger Levels				
Туре	Alias	Name	Route	Out	11/15	7/15	1√ Basic -	2 V Basic ▼	3▼ Basic 🔻		
□		⊕- TEN_SEG	M	-457	굣	☑	zero_tens	one	two		
4 B		ix:wysi_counter safe_q[3]	V	- □ auto_stp_debug_out_1_1	V						
•		ix:wysi_counter safe_q[2]	V	- □ auto_stp_debug_out_1_2	V						
4 B		ix:wysi_counter safe_q[1]	V	·*iii	le Debug Port						
•		ix:wysi_counter safe_q[0]	V	.2252	ole Debug Port Debug Port						

Mnemonic Table

Allows a set of bit patterns to be assigned user-defined patterns to be

Right-Click in the setup view of an STP file & select Mnenhattics setuptores.

Select Add Table

Select Add Entry

Ex. State Machines or Decoders/Encoders

JTAG Chain Configuration

- Select programming hardware
- Scan Chain button automatically determines devices physically connected to the chain Exam Help
 - Detects Non-Alterapde vices & displays them as unknown

WeChat: cstutorcs

2) Save .STP File & Compile

- SignalTap II Logic Analyser control in Compiler Settings
 - Assignments Project Exam Help
 - Specify the Stille to Compile with Project

3) Program Device(s)

- Use Quartus II Programmer or STP File
 - Program Button in the Signal Tap II interface only configures the selected device in the chain
 - Use Quartus https://www.to.program multiple devices
 - Can create a Sechation state of State of Chain

4) Acquire Data

SignalTap II Toolbar & STP file controls

- Run
 https://tutorcs.com
- Autorun
- Stop

WeChat: cstutorcs

Read Data (Reads in Data from Last Analysis)

Displaying Acquired Data

- Display signal as bar or line chart
- Export to other tools for viewing or analysis (File Menu)
 - Creates .VWF, .TBL, .CSV, .VCD, .JPG or .BMP File

Example – 24 bit counter with enable

Preserving buried wires

```
module threeInputAnd(SW, LEDR, CLOCK 50);
     module threeInputAnd(SW, LEDR, CLOCK 50);
                                                        input CLOCK 50;
        input CLOCK 50;
        input [2:0] SW;
        output reg [0:0] LEDR;
        Assignment Project Exam Help
                                                        assign ab=SW[0]&SW[1];
        assign ab=SW[0]&SW[1];
                           tps://tutorcs.com
                                                        assign abc=ab&SW[2];
10
                                                        always @ (posedge CLOCK_50)
11
        always @ (posedge CLOCK 50)
                                                           begin
12
          begin
             LEDR[0] <= abc WeChat: cstutorcs
                                                             LEDR[0]<=abc;
13
14
          end
                                                     endmodule
15
     endmodule
```


Using STP File Review

- Create .STP File
 - Assign Sample Clock
 - Specify Sample Depth Project Exam Help
 - Assign SignalshtopS:7/Pultiples.com
 - Specify Triggering Chat: cstutorcs
 - Setup JTAG
- Save .STP File & Compile with Design
- 3. Program Device
- 4. Acquire Data

Summary

- Design should be fully simulated before programming
- When the actual hardware does not follow the simulation, Logic Analysers can provide valuable information on debugging the designs://tutorcs.com
- Altera's SignalTap II embedded logic analyser provides a low cost method of debugging designs in Altera FPGAs.