## **Tutorial:1** (Electrodynamics, PYL-205)

**Problem 1:** Find the value of integral  $\int_{-\pi/2}^{\pi/2} dx \int_{-1}^{1} dy \, \delta(\sin 2x) \delta(x-y)$ .

**Problem 2:** Find the value of integral  $\int_{-\infty}^{\infty} dx \, e^{-\frac{|x|}{\pi}} \delta(\sin x)$ , where  $\delta(x)$  is the Dirac delta function.

**Problem 3:** Calculate the value of a and b for which the force  $\vec{F} = (axy + z^3)\hat{i} + x^2\hat{j} + bxz^2\hat{k}$ is conservative.

**Problem 4:** Find the value of integral  $\oint \vec{A} \cdot \vec{dl}$ , where  $\vec{A} = \hat{i} yz + \hat{j}xz + \hat{k}xy$  along the perimeter of a rectangular are bounded by x=0, x=a and y=0, y=b.

**Problem 5:** Given  $\vec{F} = \vec{r} \times \vec{B}$  where  $\vec{B} = B_0(\hat{i} + \hat{j} + \hat{k})$  is constant vector and  $\vec{r}$  is the position vector. Find the value of  $\oint \vec{F} \cdot \overrightarrow{dr}$ , along the circle of unit radius at origin.



**Problem 6:** Evaluate the following integrals

(a) 
$$\int_{1}^{5} (4x^3 - 5x - 3) \, \delta(x - 3) dx$$
  
(b)  $\int_{-3}^{3} (8x + 3) \, \delta(4x) dx$ 

(b) 
$$\int_{-3}^{3} (8x+3) \, \delta(4x) dx$$

(c) 
$$\int_0^3 t^2 \, \delta(3t - 6) dt$$

**Problem 7:** Evaluate the following integrals

(a) 
$$\int_0^5 \tan x \, \delta(x-\pi) dx$$

(b) 
$$\int_{-\infty}^{\infty} \ln(x+3) \, \delta(x+2) dx$$

(a) 
$$\int_0^5 \tan x \, \delta(x - \pi) dx$$
  
(b)  $\int_{-\infty}^{\infty} \ln(x + 3) \, \delta(x + 2) dx$   
(c)  $\int_{-\infty}^{\infty} (x^2 + 1) \, \delta(x^2 - 3x + 2) dx$   
(d)  $\int_0^{\infty} dx \, e^{-x} \delta(\sin x)$ 

(d) 
$$\int_0^\infty dx \, e^{-x} \delta(\sin x)$$

**Problem 8:** Find the value of the integral

(a) 
$$\int_{-\infty}^{+\infty} dx \, \delta(x^2 - \pi^2) \sin x$$
  
(b) 
$$\int_{-\infty}^{+\infty} dx \, \delta(x^2 - \pi^2) \cos x$$

(b) 
$$\int_{-\infty}^{+\infty} dx \, \delta(x^2 - \pi^2) \cos x$$

(c) 
$$\pi \int_{-\infty}^{+\infty} \exp(-|x|) \delta(\sin(\pi x)) dx$$

**Problem 9:** If  $f(x) = \alpha \delta(x) + \beta \delta'(x) + \gamma \delta''(x) + \mu \delta'''(x)$ , where  $\delta(x)$  is Dirac-delta function and prime represent derivative. Find the value of integral  $\int_{-\infty}^{+\infty} f(x)e^{ikx}dx$ .

**Problem 10:** Calculate the divergence of the following vector functions

(a) 
$$V_a = x^4 \hat{x} + 3yz^3 \hat{y} - 2x^2z\hat{z}$$
  
(b)  $V_b = xy\hat{x} + 2yz\hat{y} + 5zx\hat{z}$ 

(b) 
$$V_b = xy\hat{x} + 2yz\hat{y} + 5zx\hat{z}$$

**Problem 11:** Evaluate the following integral

(a)  $\int_v [r^4 + r^2(\mathbf{r}.\mathbf{c}) + c^4] \, \delta^3(\mathbf{r} - \mathbf{c}) d\tau$ , where v is a sphere of radius 6 about the origin,  $\mathbf{c} = 5\hat{x} + 3\hat{y} + 2\hat{z}$ , and  $\mathbf{c}$  is its magnitude.

**Problem 12:** A fluid motion is given by

$$\mathbf{v} = (y\sin z - \sin x)\hat{\mathbf{x}} + (x\sin z + 2yz)\hat{\mathbf{y}} + (xy\cos z + y^2)\hat{\mathbf{z}}$$

Check this motion is rotational or irrotational. If irrotational, find the velocity potential.

**Problem 13:** Derive Coulomb's law of electrostatics with the help of Maxwell's first equation.

**Problem 14:** Find the value of a, if the vector  $\mathbf{A} = x\hat{\imath} + \alpha y\hat{\jmath} + 3z\hat{k}$  is solenoidal.

**Problem 15:** Calculate the flux of a vector  $x^3\hat{\imath} + y^3\hat{\jmath} + z^3\hat{k}$  over the surface of a sphere of radius R with its center at the origin also verify the result by divergence theorem.

**Problem 16:** Evaluate  $x^2 \sin 5z \hat{\imath} + xe^y \hat{\jmath} + 4y\hat{k}$  using Stoke's theorem over a circle of radius 2 in yz-plane whose center is located at (0,2,2).

**Problem 17:** Find the charge density that gives rise to the Electric field in some region to be  $E = kr^3\hat{r}$ , in spherical coordinates (where k is a constant).

**Problem 18:** Check the divergence theorem using the function  $A = y^2 \hat{x} + (2xy + Z^2)\hat{y} + (2yz)\hat{z}$  and a unit cube at the origin.

Problem 19: Prove that the divergence of a curl is always zero. Check it for the given functions

(a) 
$$v_a = x^2 \hat{x} + 3xz^2 \hat{y} - 2xz\hat{z}$$

(b) 
$$v_b = xy\hat{x} + 2yz\hat{y} + 3zx\hat{z}$$

**Problem 20:** Calculate the surface integral of  $\mathbf{v} = 2xz\hat{x} + (x+2)\hat{y} + y(z^2-3)\hat{z}$  over five sides (excluding the bottom) of the cubical box (side 2). (Let "upward and outward" be the positive direction, as indicated by the arrows).



**Problem 21:** Calculate the volume integral of  $T = xyz^2$  over the prism given below.



**Problem22:** Compute the line integral of

$$\mathbf{v} = (r\cos^2\theta)\hat{r} - (r\cos\theta\sin\theta)\hat{\theta} + 3r\hat{\varphi}$$

around the path shown in Fig. below (the points are labeled by their Cartesian coordinates). Do it either in cylindrical or in spherical coordinates. Check your answer, using Stokes' theorem.



**Problem 23:** Check the divergence theorem for the function

$$\mathbf{v} = r^2 \sin\theta \hat{r} + 4r^2 \cos\theta \hat{\theta} + r^2 \tan\theta \hat{\varphi}$$

using the volume of the "ice-cream cone" shown in Fig. below (the top surface is spherical, with radius R and centered at the origin).



**Problem 24:** Check Stokes' theorem for the function  $v = y\hat{z}$ , using the triangular surface shown in Figure below.

