Une approximation de π par la méthode de Monte Carlo

Kopangoye Guenolé Wariol Étudiant en Mathématiques Appliquées

September 6, 2025

Introduction

La méthode de Monte Carlo est une technique probabiliste qui permet d'approcher des valeurs numériques grâce à la génération de nombres aléatoires. Ici, nous allons l'utiliser pour approximer π en générant des points aléatoires dans le carré $[0,1] \times [0,1]$ et en comptant ceux qui tombent à l'intérieur d'un quart de cercle inscrit.

Idée de la méthode

- Considérons un cercle de rayon r = 1 centré à l'origine et un carré de côté 1.
- Nous ne considérons qu'un quart de cercle dans le carré.
- L'aire du cercle est $A_{\text{cercle}} = \pi r^2$ et l'aire du quart de cercle est $\frac{\pi r^2}{4}$.
- Nous générons un nombre N de points aléatoires (x, y) avec $x, y \in [0, 1]$.
- ▶ Un point est dans le quart de cercle si $x^2 + y^2 \le 1$.
- ▶ La proportion de points à l'intérieur du quart de cercle par rapport au nombre total de points N est approximativement égale à $\frac{\pi}{4}$.
- ▶ On obtient alors une approximation de π :

$$\pi \approx 4 \times \frac{\text{nombre de points dans le cercle}}{\textit{N}}$$

Visualisation

Exemple : points aléatoires dans le quart de cercle

Code Python pour approximer π

```
import random
2
 def approx_pi(N):
      count = 0
      for _ in range(N):
5
          x = random.uniform(0,1)
6
          y = random.uniform(0,1)
7
          if x**2 + y**2 <= 1:
8
               count += 1
9
     pi_estimate = 4 * count / N
10
      return pi_estimate
11
12
13 # Exemple avec 100000 points
_{14}|N = 100000
pi_approx = approx_pi(N)
16 print ("Approximation de pi : ", pi_approx)
```

Conclusion

La méthode de Monte Carlo permet d'approximer π avec une précision qui augmente avec le nombre de points générés. C'est une approche simple mais efficace, particulièrement utile lorsque les méthodes analytiques sont difficiles à appliquer.