FIG. 1A

60 120 180	(17	300	360	420	(97 4 80	(109	600 660 720 780
GGCCCCCTCTAGAACTAGTGGATCCCCCGGCCTGCAGAATTCGGCACGAGCTGGAGG GTGGTCGGAGAAGTAGGAACCTCCTGCCGGGCTCGTGGCGGCTTCTGTCGGCTCCGCGGA GGGAAGCGCCTTCCCCACAGGACATCAATGCAAGCTTGAATAAGAAAAAAAA	M A Y Q L Y R N T T L G N S L Q E TCCTAAAGCCATGGCATATCAGTTATACAGAAATACTACTTTGGGAAACAGTTTTAAGAA	S L D E L I Q S Q Q I T P Q L A L Q V L AGCCTAGATGAGCTCATCAACAGATCACCCCCAACTTGCCCTTCAAGTTCTA	L Q F D K A I N A A L A Q R V R N R V N CTTCAGTTTGATAAGGCTATAAATGCAGCACTGGCTCAGAGGGTCAGGAACAGAGTCAAT	FRGSLNTYRFCDNVWTFVUL	D V E F R E V T E L I K V D K V K I V A GATGTTGAATTCAGAGGTGACAGAACTTATTAAAGTGGATAAAGTGAAAATTGTAGCC	C D G K N T G S N T T E * TGTGATGGTAAAAATACTGGGCTCCAATACTACAGAATGAAT	TACACCATCTTCTGTTATTCATTGCTTTTGAAGAGGAAGCATAGAAGAGACTTTTTATTTTATTTA

FIG. 1B

Human	ч	MAYQLYRNTTLGNSLQESLDELIQSQQITPQLALQVLLQFDKAINAALAQR	51
Yeast	н		22
Human	52	VRNRVNFRGSLNTYRFCDNVWTF-VLNDVE-FREVTELIKVDKV	93
Yeast	26	:: :	110
Human	94	KIVACDGKNTGSNTTE 109	
Yeast	111	: : : : : : : : :	

FIG. 1C

TFIIA subunits

FIG. 2A

₹[+ γ [+] × [+]. ¥[+ IIA: -TBP: -

ď.

Probe

FIG. 2B

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 4C