K. Wiegand, T. Stalljohann, T. WittSommersemester 2025Heidelberg, 10. Juni 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 9

Stichworte: Differentialformen

Notation: Eine k-Form ω heißt geschlossen, wenn $d\omega = 0$. Eine (k-1)-Form η heißt Primitive für ω , wenn $d\eta = \omega$. Die Form ω heißt exakt, wenn es eine Primitive für ω gibt.

Aufgabe 1 Rechnen mit Formen (2+2 Punkte)

- a) Definiere $F:(0,+\infty)\times\mathbb{R}/2\pi\mathbb{Z}\times\mathbb{R}\to\mathbb{R}^3$, $(r,\varphi,z)\mapsto(r\cos\varphi,\,r\sin\varphi,\,z)$. Zeigen Sie, dass F ein Diffeomorphismus auf sein offenes Bild ist. Für $\omega,\eta\in\Omega^2(\mathbb{R}^3)$, definiert durch $\omega_{(x,y,z)}:=xy\,dx\wedge dy$ und $\eta_{(x,y,z)}:=(x^2+y^2+z^2)\,dx\wedge dy$ für $(x,y,z)\in\mathbb{R}^3$, berechnen Sie $F^*\omega$ und $F^*\eta$. Sind $F^*\omega$ bzw. $F^*\eta$ geschlossene Formen?
- b) Gemäß dem Poincaré-Lemma sind alle geschlossenen Formen auf \mathbb{R}^2 exakt. Gegeben die 1-Form $\omega = f \, dx + g \, dy$ auf \mathbb{R}^2 . Zeigen Sie, dass ω geschlossen ist, genau dann wenn $\partial_y f = \partial_x g$ auf \mathbb{R}^2 . Finden Sie explizit eine Primitive für geschlossenes ω .

Aufgabe 2 Äußeres Differential (2+2 Punkte)

a) Sei $\omega \in \Omega^k(M)$ und X_1, \ldots, X_{k+1} Vektorfelder auf M. Zeigen Sie die in der VL behauptete Formel

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \mathcal{L}_{X_i}(\omega(X_1, \dots, \widehat{X}_i, \dots, X_{k+1})) + \sum_{1 \le i < j \le k+1} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_{k+1}) .$$

($\hat{\cdot}$ bedeutet wie üblich das Auslassen des entsprechenden Eintrags.) Hinweis: Cartans magische Formel + Induktion

b) In $\Omega^*(M) = \bigoplus_{k=0}^\infty \Omega^k(M)$ zeigen Sie, dass die geschlossenen Formen (genauer gesagt: $\bigoplus_{k=0}^\infty \{\omega \in \Omega^k(M) \mid d\omega = 0\}$) ein Unterring bezüglich des Wedge-Produkts sind. Zeigen Sie auch, dass die exakten Formen ein Ideal im Unterring der geschlossenen Formen sind. Hinweis: Es genügt nachzurechnen, dass $d(\omega \wedge \eta) = 0$ für ω und η geschlossen und dass $\omega \wedge \eta$ und $\eta \wedge \omega$ exakt sind für ω geschlossen und η exakt.

 $^{{}^{1}}F^{-1}$ heißt auch Zylinderkoordinaten.

Aufgabe 3 Linienintegrale (1+1+1+1 Punkte)

Sei $\eta = f dt$ eine 1-Form auf dem Intervall [a, b]. Dann definieren wir

$$\int_{[a,b]} \eta := \int_a^b f(t) dt .$$

Fü $\omega \in \Omega^1(M)$ und einen glatten Pfad $\gamma : [a,b] \to M$ definieren wir $\int_{\gamma} \omega := \int_{[a,b]} \gamma^* \omega$.

- a) Gegeben ein Diffeomorphismus $\varphi : [c, d] \to [a, b]$ mit $\varphi(t_1) < \varphi(t_2)$ (bzw. $\varphi(t_2) > \varphi(t_1)$) für alle $t_1 < t_2$. Zeigen Sie, dass $\int_{\gamma \circ \varphi} \omega = \int_{\gamma} \omega$ (bzw. $\int_{\gamma \circ \varphi} \omega = -\int_{\gamma} \omega$).
- b) Sei $F: M \to \mathbb{R}$ eine Funktion (natürlich glatt). Zeigen Sie $\int_{\gamma} dF = F(\gamma(b)) F(\gamma(a))$.
- c) Sei M zusammenhängend. Zeigen Sie, dass ω exakt ist genau dann wenn $\int_{\gamma} \omega = 0$ für alle geschlossenen Kurven $\gamma:[a,b] \to M$ (d.h. $\gamma(a) = \gamma(b)$). Hinweis: Für die Rückrichtung definieren Sie eine Funktion $F:M \to \mathbb{R}$ wie folgt: Fixieren Sie $p_0 \in M$ und definieren Sie $F(p) := \int_{\gamma} \omega$ für einen beliebig gewählten Pfad $\gamma:[a,b] \to M$ mit $\gamma(a) = p_0$ und $\gamma(b) = p$. Argumentieren Sie, dass F wohldefiniert
- d) Betrachten Sie $\alpha \in \Omega^1(\mathbb{R}^2 \{0\})$ definiert durch

$$\alpha_{(x,y)} := \frac{1}{x^2 + y^2} (-y \, dx + x \, dy) \qquad \forall (x,y) \in \mathbb{R}^2 - \{0\} .$$

Zeigen Sie, dass α geschlossen ist und nicht exakt.

Aufgabe 4 Liouville 1-Form (1+2+1 Punkte)

und eine Primitive von ω ist.

Sei M eine n-Mannigfaltigkeit und $T^*M = \bigsqcup_{n \in M} T_n^*M$ sein Kotangentialbündel.

a) Für eine fixierte Karte (U,q) von M mit induzierten 1-Formen dq^1,\ldots,dq^n definiere den Homöomorphismus $\Phi_{(U,q)}:T^*M|_U\to q(U)\times\mathbb{R}^n\subseteq\mathbb{R}^n\times\mathbb{R}^n$ durch

$$\Phi_{(U,q)}^{-1}(a,b) = \Phi_{(U,q)}^{-1}(a_1,\ldots,a_n,b_1,\ldots,b_n) := (q^{-1}(a),\sum_{i=1}^n b_i (dq^i)_{q^{-1}(a)})$$

Zeigen Sie, dass $\{(T^*M|_U, \Phi_{(U,q)})\}_{(U,q)}$ ein glatter Atlas für T^*M ist, wobei die Indexmenge über alle Karten (im Maximalatlas) von M läuft.

Mit der obigen glatten Struktur wird $\pi: T^*M \to M$ (die offensichtliche Projektion) zum glatten Vektorbündel über M. Gegeben eine Karte $(U,q)=(U,(q^1,\ldots,q^n))$ für M schreiben wir unpräzise² auch $(q^1,\ldots,q^n,p^1,\ldots p^n)$ für die Komponentenfunktionen der induzierten Karte $(T^*M|_U,\Phi_{(U,q)})$.

b) Definiere den (a priori nicht notwendigerweise glatten) Schnitt $\lambda: M \to T^*M$ durch

$$\lambda_{(x,\alpha)}(\xi) := \alpha(d\pi_{(x,\alpha)}(\xi)) \qquad \forall (x,\alpha) \in T^*M \,,\, \xi \in T_{(x,\alpha)}(T^*M) \,.$$

Zeigen Sie, dass λ ein glatter Schnitt ist und, gegeben eine fixierte Karte (U,q) von M, dass bezüglich der Koordinaten $(T^*M|_U, \Phi_{(U,q)}) = (T^*M|_U, (q,p))$ gilt

$$\lambda = \sum_{i=1}^{n} p^i \, dq^i \ .$$

 λ heißt die Liouville 1-Form und $\omega := d\lambda \in \Omega^2(T^*M)$ die kanonische symplektische Form.

c) Zeigen Sie, dass ω^n eine Volumenform auf T^*M ist. Folgern Sie, dass T^*M orientierbar ist.

Abgabe bis Dienstag, 17. Juni 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.

²Das ist natürlich streng genommen falsch und ein klassisches Beispiel für *abuse of notation*.