

Processor

Batch 18
Saiteja Lakshmi Narasimha (
21EEB0A53)
Payasam Sai Rohan (21EEB0A54)
S.Krishna Vamshi (21EEB0A55)
Jerom Shobi K (21EEB0F04)

Table of contents

01 Introduction

MicroarchitectureDesign

RTL Design and Implementation

O4 Synthesis and Results

05 Conclusion

Abstract

This project implements a 16-bit RISC MIPS processor with Harvard architecture, utilizing a non-pipelined design to prioritize simplicity, cost, and power consumption. The compact instruction set, consisting of ADD, SUB, OR, AND, JZ, LOAD, and STORE operations, enables efficient arithmetic, logical, data transfer, and conditional operations.

01 Introduction

RISC Processor Features

- **Simple instruction set**: In a RISC machine, the instruction set contains simple, basic instructions, from which more complex instructions can be composed.
- Same length instruction: Each instruction is of the same length, so that it may be fetched in a single operation.
- Very few addressing modes and formats: This is unlike CISC processors, where the number of addressing modes are very high
- Load and Store architecture: The RISC architecture is primarily a Load and Store architecture, implying that all the memory accesses take place using Load or Store type operations.

02 Microarchitectural Features

- Interfaced to data memory of size 256 x 16 bits
- 8 bit address bus
- 16 registers, each of size 2 bytes (RA, RB...RP)
- ALU capable of 16 bit arithmetic operations
- Instruction memory of size **256** x **16** bits (ranging from 0 to 255)
- Opcode of **constant length** (16 bit for all instructions)
- A separate adder block was used to get the next value for program counter
- Jump instructions are added in their own 8 bit jump adder
- Zero flag (ZF) given as output with result from ALU which is used in JUMP instruction

Instruction Format

Jump Instruction • JZ: 0100

: 0100 Displacement ranges from 0 to 255 bytes

4 bits	4 bits	4 bits	4 bits
Opcode	Destination	Source 2	Source 1

• ADD: 0000

- SUB: 0001
- AND: 0010
- OR: 0011

The addresses for destination, source and source 2 range from RA to RP (16-bit registers)

4 bits Opcode	4 bits Data Read Register Address	4 bits Data Store Register Address	4 bits Data Memory Address
	Address	Address	

LOAD / STORE Instructions

- LOAD :0101
- STORE: 0110

Data Flow Path for Arithmetic Instructions

Data Flow Path for Jump Instruction

03 RTL Schematic of Processor

04 Result

Waveform for LOAD Instruction

Waveform for JUMP Instruction

05 Conclusion

· Simplified Design for Cost-Effectiveness

Compact Instruction Set for Efficient Execution

Applications in Embedded Systems