

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 December 2001 (20.12.2001)

PCT

(10) International Publication Number
WO 01/96334 A2

(51) International Patent Classification⁷: C07D 471/00

SPANGLER, Dale, P. [US/US]; 30 Kimberly Court, Deerfield, IL 60015 (US). BOYS, Mark, Laurence [GB/US]; 1906 E Kiowa Ln, Mount Prospect, IL 60056 (US). CHANDRAKUMAR, Nizal, Samuel [US/US]; 15 Montgomery Lane, Vernon Hills, IL 60061 (US). LU, Hwang-Fun [—/US]; 1723 Rosslaire Court, Manchester, MO 63021 (US).

(21) International Application Number: PCT/US01/19375

(22) International Filing Date: 15 June 2001 (15.06.2001)

(25) Filing Language: English

(74) Agent: POLSTER, Rachel, A.; Pharmacia Corporation, Corporate Patent Dept., 800 N. Lindbergh Boulevard, Mail Zone O4E, St. Louis, MO 63167 (US).

(26) Publication Language: English

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(71) Applicant (for all designated States except US): PHARMACIA CORPORATION [—/US]; Corporate Patent Dept., 800 N. Lindbergh Boulevard, Mail Zone O4E, St. Louis, MO 63167 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants and

Published:

(72) Inventors: NAGARAJAN, Srinivasan, Raj [US/US]; 16209 Forest Meadows Drive, Chesterfield, MO 63005 (US). KHANNA, Ish, Kumar [US/US]; 1821 S. Falcon Drive, Libertyville, IL 60048 (US). TOLLEFSON, Michael, B. [—/US]; 357 Big Horn Drive, Hainesville, IL 60030 (US). MOHLER, Scott, B. [US/US]; Apartment #1, 3704 North Bosworth, Chicago, IL 60613 (US). CHEN, Barbara [US/US]; 3286 Highland Road, Northbrook, IL 60062 (US). RUSSELL, Mark [GB/US]; 475 Cross Rode, Gurnee, IL 60031 (US). DEVADAS, Balekudru [US/US]; 2175 Parasol Drive, Chesterfield, MO 63017 (US). PENNING, Thomas, D. [US/US]; 374 Larch, Elmhurst, IL 60126 (US). SCHRETMAN, Lori, A. [US/US]; 5820 Hancock Lane, Gurnee, IL 60031 (US).

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/96334 A2

(54) Title: HETEROARYLALKANOIC ACIDS AS INTEGRIN RECEPTOR ANTAGONISTS

(57) Abstract: The present invention relates to a class of compounds represented by formula (I) or a pharmaceutically acceptable salt thereof, pharmaceutical compositions comprising compounds of Formula (I), and methods of selectively antagonizing the $\alpha\beta_3$ and/or the $\alpha\beta_5$ integrin without significantly antagonizing the IIb/IIIa integrin.

HETEROARYLALKANOIC ACIDS AS INTEGRIN RECEPTORII ANTAGONISTS

The present application claims priority under Title 35, United States Code, §119 of United States Provisional application Serial No. 60/211,781
5 filed June 15, 2000 and United States Provisional application Serial No. 60/211,782 filed June 15, 2000.

Field of the Invention

The present invention relates to pharmaceutical agents which are
10 $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrin antagonists and as such are useful in pharmaceutical compositions and in methods for treating conditions mediated by $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrins.

Background of the Invention

15 The integrin $\alpha_v\beta_3$ (also known as vitronectin receptor), is a member of the integrin family of heterodimeric transmembrane glycoprotein complexes that mediate cellular adhesion events and signal transduction processes. Integrin $\alpha_v\beta_3$ is expressed in number of cell types and has been shown to mediate several biologically relevant processes, including
20 adhesion of osteoclasts to the bone matrix, vascular smooth muscle cell migration and angiogenesis.

The integrin $\alpha_v\beta_3$ has been shown to play a role in various conditions or disease states including tumor metastasis, solid tumor growth (neoplasia), osteoporosis, Paget's disease, humoral hypercalcemia of
25 malignancy, osteopenia, angiogenesis, including tumor angiogenesis and lymphangiogenesis, retinopathy including macular degeneration, arthritis, including rheumatoid arthritis, periodontal disease, psoriasis and smooth muscle cell migration (e.g. restenosis atherosclerosis). The compounds of the present invention are $\alpha_v\beta_3$ antagonists and can be used, alone or in
30 combination with other therapeutic agents, in the treatment or modulation of various conditions or disease states described above. Additionally, it has been found that such agents would be useful as antivirals, antifungals and antimicrobials.

The integrin $\alpha_v\beta_5$ is thought to play a role in neovascularization.

M.C. Friedlander, *et al.*, *Science*, 270, 1500-1502 (1995) disclose that a monoclonal antibody for $\alpha_v\beta_5$ inhibits VEGF-induced angiogenesis in the rabbit cornea and the chick chorioallantoic membrane model. Therefore 5 compounds which act as antagonists of the $\alpha_v\beta_5$ integrin will inhibit neovascularization and will be useful for treating and preventing angiogenesis metastasis, tumor growth, macular degeneration and diabetic retinopathy.

Certain compounds may antagonize both the $\alpha_v\beta_5$ and the $\alpha_v\beta_3$ receptor and therefore are referred to as "mixed $\alpha_v\beta_5/\alpha_v\beta_3$ antagonists" or "dual $\alpha_v\beta_3/\alpha_v\beta_5$ antagonists". Such dual or mixed antagonists are useful for 10 treating or preventing angiogenesis, tumor metastasis, tumor growth, diabetic retinopathy, macular degeneration, atherosclerosis and osteoporosis.

15 It has been shown that the $\alpha_v\beta_3$ integrin and other α_v containing integrins bind to a number of Arg-Gly-Asp (RGD) containing matrix macromolecules. Compounds containing the RGD sequence mimic extracellular matrix ligands so as to bind to cell surface receptors. However, it is also known that RGD peptides in general are non-selective 20 for RGD dependent integrins. For example, most RGD peptides which bind to $\alpha_v\beta_3$ also bind to $\alpha_v\beta_5$, $\alpha_v\beta_1$ and $\alpha_{IIb}\beta_3$. Antagonism of platelet $\alpha_{IIb}\beta_3$ (also known as the fibrinogen receptor) is known to block platelet aggregation in humans. In order to avoid bleeding side-effects when 25 treating the conditions or disease states associated with the integrin $\alpha_v\beta_3$, it would be beneficial to develop compounds which are selective antagonists of $\alpha_v\beta_3$ as opposed to $\alpha_{IIb}\beta_3$.

Tumor cell invasion occurs by a three step process: 1) tumor cell attachment to extracellular matrix; 2) proteolytic dissolution of the matrix; and 3) movement of the cells through the dissolved barrier. This process 30 can occur repeatedly and can result in metastases at sites distant from the original tumor.

Seftor *et al.* (*Proc. Natl. Acad. Sci. USA*, Vol. 89 (1992) 1557-1561)

have shown that the $\alpha_v\beta_3$ integrin has a biological function in melanoma cell invasion. Montgomery *et al.*, (*Proc. Natl. Acad. Sci. USA*, Vol. 91 (1994) 8856-60) have demonstrated that the integrin $\alpha_v\beta_3$ expressed on human 5 melanoma cells promotes a survival signal, protecting the cells from apoptosis. Mediation of the tumor cell metastatic pathway by interference with the $\alpha_v\beta_3$ integrin cell adhesion receptor to impede tumor metastasis would be beneficial.

Further, with the discovery that $\alpha_v\beta_3$ plays a role in the process of 10 lymphatic dissemination via adhesion of melanoma cells to lymph node by binding the vitronectin receptor (Nip *et al.*, *J Clin Invest* 1992, 90, 1406), inhibitors of $\alpha_v\beta_3$ may also be useful for making alterations in lymphatic endothelial-tumor cell adhesion, thereby further reducing the potential for tumor metastasis.

15 Brooks *et al.* (*Cell*, Vol. 79 (1994) 1157-1164) have demonstrated that antagonists of $\alpha_v\beta_3$ provide a therapeutic approach for the treatment of neoplasia (inhibition of solid tumor growth) since systemic administration of $\alpha_v\beta_3$ antagonists causes dramatic regression of various histologically distinct human tumors.

20 The compounds of the present invention are useful for the treatment, including prevention of angiogenic disorders. The term angiogenic disorders include conditions involving abnormal neovascularization. The growth of new blood vessels, or angiogenesis, also contributes to pathological conditions such as diabetic retinopathy including macular degeneration 25 (Adamis *et al.*, *Amer. J. Ophthal.*, Vol. 118, (1994) 445-450) and rheumatoid arthritis (Peacock *et al.*, *J. Exp. Med.*, Vol. 175, (1992), 1135-1138). Therefore, $\alpha_v\beta_3$ antagonists would be useful therapeutic agents for treating such conditions associated with neovascularization (Brooks *et al.*, *Science*, Vol. 264, (1994), 569-571).

30 It has been reported that the cell surface receptor $\alpha_v\beta_3$ is the major integrin on osteoclasts responsible for attachment to bone (for a review, see Rodan and Rodan, 1997, *J. Endocrinol.* 154, S47, Nakamura *et al.*, *J. Cell*

Science, 1999 112, 3985). Osteoclasts cause bone resorption and when such bone resorbing activity exceeds bone forming activity it leads to an increased number of bone fractures, incapacitation and increased mortality. Antagonists of $\alpha_v\beta_3$ have been shown to be potent inhibitors of osteoclastic activity both *in vitro* (Sato *et al.*, *J. Cell. Biol.*, Vol. 111 (1990) 1713-1723) and *in vivo* (Fisher *et al.*, *Endocrinology*, Vol. 132 (1993) 1411-1413). Antagonism of $\alpha_v\beta_3$ leads to decreased bone resorption and therefore restores a normal balance of bone forming and resorbing activity. Thus it would be beneficial to provide antagonists of osteoclast $\alpha_v\beta_3$ which are effective inhibitors of bone resorption and therefore are useful in the treatment or prevention of osteoporosis.

The role of the $\alpha_v\beta_3$ integrin in smooth muscle cell migration also makes it a therapeutic target for prevention or inhibition of neointimal hyperplasia which is a leading cause of restenosis after vascular procedures (Choi *et al.*, *J. Vasc. Surg.* Vol. 19(1) (1994) 125-34). Prevention or inhibition of neointimal hyperplasia by pharmaceutical agents to prevent or inhibit restenosis would be beneficial.

White (*Current Biology*, Vol. 3(9)(1993) 596-599) has reported that adenovirus uses $\alpha_v\beta_3$ for entering host cells. The integrin appears to be required for endocytosis of the virus particle and may be required for penetration of the viral genome into the host cell cytoplasm. Thus compounds which inhibit $\alpha_v\beta_3$ would find usefulness as antiviral agents.

Summary of the Invention

The compounds of this invention are 1) $\alpha_v\beta_3$ integrin antagonists; or 2) $\alpha_v\beta_5$ integrin antagonists; or 3) mixed or dual $\alpha_v\beta_3/\alpha_v\beta_5$ antagonists. The present invention includes compounds which inhibit the respective integrins and also includes pharmaceutical compositions comprising such compounds. The present invention further provides for methods for treating or preventing conditions mediated by the $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ receptors in a mammal in need of such treatment comprising administering a therapeutically effective amount of the compounds of the present invention and pharmaceutical compositions of the present invention.

Administration of such compounds and compositions of the present invention inhibits angiogenesis, tumor metastasis, tumor growth, osteoporosis, Paget's disease, humoral hypercalcemia of malignancy, retinopathy, macular degeneration, arthritis, periodontal disease, smooth muscle cell migration, including restenosis and atherosclerosis, and viral diseases.

The present invention relates to a class of compounds represented by the Formula I

20

I

or a pharmaceutically acceptable salt thereof, wherein

is a 4-8 membered monocyclic or a 7-12 membered bicyclic ring,
25 containing 1 to 5 heteroatoms, selected from the group consisting of O, N or S; optionally saturated or unsaturated, optionally substituted with one or more substituents selected from the group consisting of

alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, nitro, alkoxy, hydroxyalkyl, thioalkyl, amino, alkylamino, arylamino, alkylsulfonamide, acyl, acylamino, alkylsulfone, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, 5 carboxamide, cyano, and -(CH₂)_mCOR wherein m is 0-2 and R is hydroxy, alkoxy, alkyl or amino; with the proviso that when Y⁴ in formula I is H, the ring A may not be an oxazole, with X-Y containing side-chain connected at the carbon-2 as in

10

; The ring A may further contain a carboxamide, sulfone, sulfonamide or an acyl group.

15

A¹ is a 5-9 membered monocyclic or 8-14 membered polycyclic heterocycle of the formula

20

containing at least one nitrogen atom and optionally 1 to 4 heteroatoms or groups, selected from O, N, S, SO₂ or CO; optionally saturated or unsaturated; optionally substituted by one or more R^k selected from the group consisting of hydroxy, alkyl, alkoxy, alkoxyalkyl, thioalkyl, haloalkyl, cyano, amino, alkylamino, halogen, acylamino, sulfonamide and -COR wherein R is hydroxy, alkoxy, alkyl or amino;

25 or A¹ is

wherein Y¹ is selected from the group consisting of N-R², O, and S;

- 5 R² is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; amido; alkylcarbonyl; arylcarbonyl; alkoxy carbonyl; aryloxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl;
- 10 R² taken together with R⁷ forms a 4-12 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, thioalkyl, alkylamino, hydroxy, keto, alkoxy, halo, phenyl, amino, carboxyl or carboxyl ester;
- 15 or R² taken together with R⁷ forms a 4-12 membered heterocycle containing one or more heteroatom selected from O, N and S
 optionally unsaturated;
- 20 or R² taken together with R⁷ forms a 5 membered heteroaromatic ring fused with a aryl or heteroaryl ring;
- 25 20 R⁷ (when not taken together with R²) and R⁸ are independently selected from the group consisting of H; alkyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxy carbonyl; aryloxy; aryloxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl;
- 30 or NR⁷ and R⁸ taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom selected from the group consisting of O, N and S;

R^5 is selected from the group consisting of H and alkyl;

or

5

A^1 is

1

wherein Y^2 is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles;

10 Z_1 is selected from the group consisting of CH_2 , CH_2O , O, NH, CO, S, SO, $\text{CH}(\text{OH})$ and SO_2 ;

15 Z_2 is a 1-5 carbon linker optionally containing one or more heteroatom selected from the group consisting of O, S and N; alternatively $Z_1 - Z_2$ may further contain a carboxamide, sulfone, sulfonamide, alkenyl, alkynyl, or acyl group;

20 wherein the carbon and nitrogen atoms of $Z_1 - Z_2$ are optionally substituted by alkyl, alkoxy, thioalkyl, alkylsulfone, aryl, alkoxyalkyl, hydroxy, alkylamino, heteroaryl, alkenyl, alkynyl, carboxyalkyl, halogen, haloalkyl or acylamino;

25 Additionally, $Z_1 - Z_2$ may contain a 5- or 6-membered aryl or heteroaryl ring optionally substituted with R^c , wherein the heteroaryl ring may contain 1-3 heteroatoms selected from the group consisting of O, N and S; R^c is selected from the group consisting of H, alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, 30 alkoxy, carboxamide, or cyano.

X is selected from the group consisting of $-\text{CHR}^e-$, $-\text{NR}^f-$, $-\text{O}-$,

-S-, -SO₂-, and -CO- wherein R^e is H, lower alkyl, alkoxy, cycloalkyl, alkoxyalkyl, hydroxy, alkynyl, alkenyl, haloalkyl, thioalkyl or aryl; wherein when R^e is hydroxy, the hydroxy group can optionally form a lactone with the carboxylic acid function of the chain; wherein R^f is selected from the group consisting of H, alkyl, aryl, aralkyl, and haloalkyl;

Y is selected from the group consisting of (CH₂)_p, -CHR^g-, -NR^g-, CO and SO₂, wherein R^g is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, hydroxy, alkoxy, and carboxyalkyl; wherein p is 0 or 1.

optionally the group X-Y can contain a moiety selected from the group consisting of acyl, alkyl, sulfonyl, amino, ether, thioether, carboxamido, sulfonamido, aminosulfonyl and olefins;

Y³ and Y⁴ are independently selected from the group consisting of H, alkyl, haloalkyl, halogen, aryl, arakyl, heteroaralkyl, heteroaryl, hydroxyalkyl, alkenes, and alkyne; wherein the alkyl chain may be straight or branched and optionally containing one or more heteroatoms selected from the group consisting of N, O, and S, and may further contain a sulfone, sulfonamide, nitrile, carboxamide, carboalkoxy or carboxyl group; wherein aryl and heteroaryl rings may be monocyclic or bicyclic optionally containing 1-5 heteroatoms and wherein said ring may be saturated or unsaturated, and such rings may optionally be substituted by one or more substituent selected from the group consisting of alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, nitro, alkoxy, hydroxyalkyl, thioalkyl, amino, alkylamino, arylamino, alkylsulfonamide, acyl, acylamino, alkylsulfone, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, carboxamide, cyano, and -(CH₂)_mCOR wherein m is 0-2 and R is hydroxy, alkoxy, alkyl or amino;

With the proviso that when Y^3 or Y^4 is H, Y^5 may be C or N,
otherwise Y^5 is C;

- or Y^3 taken together with Y^4 forms a 3-8 membered monocyclic or a 7-
5 11 membered bicyclic ring B,

IA

- optionally containing one or more double bonds, optionally containing
one or more heteroatom or functional group selected from O, NR⁹, S,
CO or SO₂, optionally substituted with one or more substituent
10 selected from the group consisting of alkyl, hydroxy, halogen,
haloalkyl, alkoxy, alkyne, cyano, alkylsulfone, sulfonamide,
carboalkoxy and carboxyalkyl;

- or X taken together with Y^3 forms a 3-7 membered monocyclic ring C,
15

IB

- optionally containing one or more double bonds, optionally containing
one or more heteroatom or functional group selected from O, NR⁹, S,
CO or SO₂, optionally substituted with one or more substituent
20 selected from the group consisting of alkyl, halogen, alkoxy,
haloalkyl, hydroxyalkyl, or alkoxyalkyl;

- R^b is $X_2 - R^h$ wherein X_2 is selected from the group consisting of O, S
25 and NR^j wherein R^h and R^j are independently selected from the
group consisting of H, alkyl, aryl, aralkyl, acyl and alkoxyalkyl; and

It is another object of the invention to provide pharmaceutical compositions comprising compounds of the Formula I. Such compounds and compositions are useful in selectively inhibiting or antagonizing the $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrins and therefore in another embodiment the present invention relates to a method of selectively inhibiting or antagonizing the $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrin. The invention further involves treating or inhibiting pathological conditions associated therewith such as osteoporosis, humoral hypercalcemia of malignancy, Paget's disease, tumor metastasis, solid tumor growth (neoplasia), angiogenesis, including tumor angiogenesis, retinopathy including macular degeneration and diabetic retinopathy, arthritis, including rheumatoid arthritis, periodontal disease, psoriasis, smooth muscle cell migration and restenosis in a mammal in need of such treatment. Additionally, such pharmaceutical agents are useful as antiviral agents, and antimicrobials. The compounds of the present invention may be used alone or in combination with other pharmaceutical agents.

20

Detailed Description

The present invention relates to a class of compounds represented by the Formula I, described above.

is a

In another embodiment of the present invention
25 heteroaryl substituted by one or more substituents selected from lower alkyl, alkynyl, alkenyl, halogen, alkoxy, hydroxy, cyano, amino, alkylamino, dialkylamino or methylsulfonamide. More specifically, some examples of heteroaryl include oxadiazole, pyridine, pyrimidine, imidazole, thiadiazole, triazole, tetrazole, and thiazole.

30

Other embodiments of

include the following heterocyclic ring systems containing at least one nitrogen atom:

5

B2

B3

B4

- 10 wherein Z_a is H, alkyl, alkoxy, hydroxy, amine, alkylamine, dialkylamine, carboxyl, alkoxycarbonyl, hydroxyalkyl, halogen or haloalkyl and R¹ is H, alkyl, alkoxyalkyl, acyl, haloalkyl or alkoxycarbonyl. More specifically some examples include pyridylamino, imidazolylamino, morpholinopyridine, tetrahydronaphthyridine, oxazolylamino, thiazolylamino, pyrimidinylamino,
- 15 quinoline, tetrahydroquinoline, imidazopyridine, benzimidazole, pyridone or quinolone.

The following heteroaryls include the ring systems described above.

For the pyridyl derived heterocycle, the substituents X_4 and X_5 are selected from the group consisting of H, alkyl, branched alkyl, alkylamino,

- 5 alkoxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano or acylamino groups.

In another embodiment of the invention, the substituents X_4 and X_5 can be methyl, methoxy, amine, methylamine, trifluoromethyl, dimethylamine, hydroxy, chloro, bromo, fluoro and cyano. X_6 may

- 10 preferentially be H, alkyl, hydroxy, halogen, alkoxy and haloalkyl.

Alternately, the pyridyl ring can be fused with a 4 - 8 membered ring, optionally saturated or unsaturated. Some examples of these ring systems include tetrahydronaphthyridine, quinoline, tetrahydroquinoline, azaquinoline, morpholinopyridine, imidazopyridine and the like. The

- 15 monocyclic ring systems such as imidazole, thiazole, oxazole, pyrazole, and

the like, may contain an amino or alkylamino substituent at any position within the ring.

In another embodiment of the present invention, when Z_1 of Formula I is CO or SO_2 , the linkage $A^1\text{-}Z_2$ of Formula I includes the heterocycle 5 derived ring systems such as: pyridine, imidazole, thiazole, oxazole, benzimidazole, imidazopyridine and the like.

Other heterocycles for $A^1\text{-}Z_2$ of the present invention include

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
10 $R = \text{H, Me}$

wherein X_4 is as defined above.

In another embodiment, Y^3 or Y^4 is an aryl or a heteroaryl group
15 selected from phenyl, benzofuran, benzothiophene, indole, quinoline, isoquinoline, benzimidazole, benzoxazole, 1,3-benzodioxole, 1,4-benzodioxane, benzopyran, quinolone, imidazopyridine, tetrahydro-quinoline, benzotriazole, dihydroindole, dihydrobenzofuran, furan, thiophene, phenyl, oxazole, thiazole, isoxazole, pyrazole, imidazole, pyrrole,
20 pyridine, pyrimidine, pyridone, triazole, thiadiazole and the like. The aryl

system can be optionally substituted at one or more positions with alkyl, alkoxy, hydroxy, cyano, halogen or haloalkyl.

- In another embodiment of the present invention, Y^3 or Y^4 may be an amine, alkylamine, acylamine, aminosulfone ($NHSO_2R$), arylamine, 5 alkoxyalkylamine, aralkylamine, or heterocyclic amine.

In another embodiment of the present invention, Y^3 taken together with Y^4 forms a 3-8 membered monocyclic or a 7-11 membered bicyclic ring B,

IA

- 10 optionally containing one or more double bonds, optionally containing one or more heteroatoms or functional groups selected from O, NR^g, S, CO or SO₂, optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, halogen, haloalkyl, alkoxy, alkyne, cyano, alkylsulfone, sulfonamide, carboalkoxy and carboxyalkyl; wherein R^g
15 is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, aryl, heteroaryl, aralkyl, and carboxyalkyl.

- In another embodiment of the present invention, X taken together
20 with Y^3 forms a 3-7 membered monocyclic ring C,

IB

- 25 optionally containing one or more double bonds, optionally containing one or more heteroatom or functional group selected from O, NR^g, S, CO or SO₂, optionally substituted with one or more substituent selected from the

group consisting of alkyl, halogen, alkoxy, haloalkyl, hydroxyalkyl, or alkoxyalkyl; wherein R⁹ is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, aryl, heteroaryl, aralkyl, and carboxyalkyl.

5

The invention further relates to pharmaceutical compositions containing therapeutically effective amounts of the compounds of Formula I.

- The invention also relates to a method of selectively inhibiting or antagonizing the $\alpha_v \beta_3$ integrin and/or the $\alpha_v \beta_5$ integrin and more specifically relates to a method of inhibiting bone resorption, periodontal disease, osteoporosis, humoral hypercalcemia of malignancy, Paget's disease, tumor metastasis, solid tumor growth (neoplasia), angiogenesis, including tumor angiogenesis, retinopathy including macular degeneration and diabetic retinopathy, arthritis, including rheumatoid arthritis, smooth muscle cell migration and restenosis by administering a therapeutically effective amount of a compound of the Formula I to achieve such inhibition together with a pharmaceutically acceptable carrier. More specifically it has been found that it is advantageous to administer compounds which are $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ selective and that such selectivity is beneficial in reducing unwanted side-effects:

The following is a list of definitions of various terms used herein:

- As used herein, the terms "alkyl" or "lower alkyl" refer to a straight chain or branched chain hydrocarbon radicals having from about 1 to about 10 carbon atoms, and more preferably 1 to about 6 carbon atoms.
- Examples of such alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, hexyl, isohexyl, and the like.

As used herein the terms "alkenyl" or "lower alkenyl" refer to unsaturated acyclic hydrocarbon radicals containing at least one double bond and 2 to about 6 carbon atoms, which carbon-carbon double bond may have either cis or trans geometry within the alkenyl moiety, relative to groups substituted on the double bond carbons. Examples of such groups are ethenyl, propenyl, butenyl, isobutenyl, pentenyl, hexenyl and the like.

As used herein the terms "alkynyl" or "lower alkynyl" refer to acyclic hydrocarbon radicals containing one or more triple bonds and 2 to about 6 carbon atoms. Examples of such groups are ethynyl, propynyl, butynyl, pentynyl, hexynyl and the like.

- 5 The term "cycloalkyl" as used herein means saturated or partially unsaturated cyclic carbon radicals containing 3 to about 8 carbon atoms and more preferably 4 to about 6 carbon atoms. Examples of such cycloalkyl radicals include cyclopropyl, cyclopropenyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-cyclohexen-1-yl, and the like.
- 10 The term "aryl" as used herein denotes aromatic ring systems composed of one or more aromatic rings. Preferred aryl groups are those consisting of one, two or three aromatic rings. The term embraces aromatic radicals such as phenyl, pyridyl, naphthyl, thiophene, furan, biphenyl and the like.
- 15 As used herein, the term "cyano" is represented by a radical of the formula $\text{---} \begin{smallmatrix} \text{C} \\ \text{N} \end{smallmatrix} \text{---}$.

The terms "hydroxy" and "hydroxyl" as used herein are synonymous and are represented by a radical of the formula $\text{---} \begin{smallmatrix} \text{O} \\ \text{H} \end{smallmatrix} \text{---}$.

- 20 The term "lower alkylene" or "alkylene" as used herein refers to divalent linear or branched saturated hydrocarbon radicals of 1 to about 6 carbon atoms.

- 25 As used herein the term "alkoxy" refers to straight or branched chain oxy containing radicals of the formula $-\text{OR}^{20}$, wherein R^{20} is an alkyl group as defined above. Examples of alkoxy groups encompassed include methoxy, ethoxy, n-propoxy, n-butoxy, isopropoxy, isobutoxy, sec-butoxy, t-butoxy and the like.

- 30 As used herein the terms "arylalkyl" or "aralkyl" refer to a radical of the formula $\text{---} \begin{smallmatrix} \text{R}^{22} \\ \text{R}^{21} \end{smallmatrix} \text{---}$ wherein R^{21} is aryl as defined above and R^{22} is an alkylene as defined above. Examples of aralkyl groups include benzyl, pyridylmethyl, naphthylpropyl, phenethyl and the like.

As used herein the term "nitro" is represented by a radical of the

As used herein the term "halo" or "halogen" refers to bromo, chloro, fluoro or iodo.

- 5 As used herein the term "haloalkyl" refers to alkyl groups as defined above substituted with one or more of the same or different halo groups at one or more carbon atom. Examples of haloalkyl groups include trifluoromethyl, dichloroethyl, fluoropropyl and the like.

- 10 As used herein the term "carboxyl" or "carboxy" refers to a radical of the formula -COOH.

As used herein the term "carboxyl ester" refers to a radical of the formula -COOR²³ wherein R²³ is selected from the group consisting of H, alkyl, aralkyl or aryl as defined above.

As used herein the term "carboxyl derivative" refers to a radical of the

- 15 formula wherein Y⁶ and Y⁷ are independently selected from the group consisting of O, N or S and R²³ is selected from the group consisting of H, alkyl, aralkyl or aryl as defined above.

- As used herein the term "amino" is represented by a radical of the formula -NH₂.

- 20 As used herein the term "alkylsulfonyl" or "alkylsulfone" refers to a

radical of the formula wherein R²⁴ is alkyl as defined above.

As used herein the term "alkylthio" refers to a radical of the formula -SR²⁴ wherein R²⁴ is alkyl as defined above.

As used herein the term "sulfonic acid" refers to a

- 25
radical of the formula wherein R²⁵ is alkyl as defined above.

As used herein the term "sulfonamide" or "sulfonamido" refers to a

As used herein the term "fused aryl" refers to an aromatic ring such

- 5 as the aryl groups defined above fused to one or more phenyl rings.

Embraced by the term "fused aryl" is the radical naphthyl and the like.

As used herein the terms "monocyclic heterocycle" or "monocyclic heterocyclic" refer to a monocyclic ring containing from 4 to about 12 atoms, and more preferably from 5 to about 10 atoms, wherein 1 to 3 of the atoms

- 10 are heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur with the understanding that if two or more different heteroatoms are present at least one of the heteroatoms must be nitrogen. Representative of such monocyclic heterocycles are imidazole, furan, pyridine, oxazole, pyran, triazole, thiophene, pyrazole, thiazole, thiadiazole, and the like.

- 15 As used herein the term "fused monocyclic heterocycle" refers to a monocyclic heterocycle as defined above with a benzene fused thereto.

Examples of such fused monocyclic heterocycles include benzofuran, benzopyran, benzodioxole, benzothiazole, benzothiophene, benzimidazole and the like.

20

As used herein the term "methylenedioxy" refers to the radical

and the term "ethylenedioxy" refers to the radical

- 25 As used herein the term "4-12 membered dinitrogen containing

heterocycle refers to a radical of the formula

- 5 wherein m is 1 or 2 and R¹⁹ is H, alkyl, aryl, or aralkyl and more preferably refers to 4-9 membered ring and includes rings such as imidazoline.

As used herein the term "5-membered optionally substituted heteroaromatic ring" includes for example a radical of the formula

- 10 and "5-membered heteroaromatic ring fused with a phenyl" refers to such a "5-membered heteroaromatic ring" with a phenyl fused thereto. Representative of such 5-membered heteroaromatic rings fused with a phenyl is benzimidazole.

As used herein the term "bicycloalkyl" refers to a bicyclic

- 15 hydrocarbon radical containing 6 to about 12 carbon atoms which is saturated or partially unsaturated.

As used herein the term "acyl" refers to a radical of the formula

- wherein R²⁶ is alkyl, alkenyl, alkynyl, aryl or aralkyl and optionally substituted thereon as defined above. Encompassed by such radical are 20 the groups acetyl, benzoyl and the like.

As used herein the term "thio" refers to a radical of the formula

As used herein the term "sulfonyl" refers to a radical of the formula

- wherein R²⁷ is alkyl, aryl or aralkyl as defined above.
- As used herein the term "haloalkylthio" refers to a radical of the formula -S-R²⁸ wherein R²⁸ is haloalkyl as defined above.

As used herein the term "aryloxy" refers to a radical of the formula ---OR^{29} wherein R²⁹ is aryl as defined above.

As used herein the term "acylamino" refers to a radical of the formula

5 $\text{R}^{30}\text{---C}(=\text{O})\text{---NH---}$ wherein R³⁰ is alkyl, aralkyl or aryl as defined above.

As used herein the term "amido" refers to a radical of the formula

As used herein the term "alkylamino" refers to a radical of the formula -NHR³² wherein R³² is alkyl as defined above.

10 As used herein the term "dialkylamino" refers to a radical of the formula -NR³³R³⁴ wherein R³³ and R³⁴ are the same or different alkyl groups as defined above.

As used herein the term "trifluoromethyl" refers to a radical of the formula ---CF_3 .

15 As used herein the term "trifluoroalkoxy" refers to a radical of the formula $\text{F}_3\text{C---R}^{35}\text{---O---}$ wherein R³⁵ is a bond or an alkylene as defined above.

As used herein the term "alkylaminosulfonyl" or "aminosulfonyl"

refers to a radical of the formula $\text{R}^{36}\text{---H---N---S}(=\text{O})_2\text{---}$ wherein R³⁶ is alkyl as defined above.

20 As used herein the term "alkylsulfonylamino" or "alkylsulfonamide"

refers to a radical of the formula $\text{R}^{36}\text{---S}(=\text{O})_2\text{---NH---}$ wherein R³⁶ is alkyl as defined above.

As used herein the term "trifluoromethylthio" refers to a radical of the

As used herein the term "trifluoromethylsulfonyl" refers to a radical

5

As used herein the term "4-12 membered mono-nitrogen containing monocyclic or bicyclic ring" refers to a saturated or partially unsaturated monocyclic or bicyclic ring of 4-12 atoms and more preferably a ring of 4-9 atoms wherein one atom is nitrogen. Such rings may optionally contain

- 10 additional heteroatoms selected from nitrogen, oxygen or sulfur. Included within this group are morpholine, piperidine, piperazine, thiomorpholine, pyrrolidine, proline, azacycloheptene and the like.

As used herein the term "benzyl" refers to the radical

15

As used herein the term "phenethyl" refers to the radical

As used herein the term "4-12 membered mono-nitrogen containing monosulfur or monooxygen containing heterocyclic ring" refers to a ring consisting of 4 to 12 atoms and more preferably 4 to 9 atoms wherein at least one atom is a nitrogen and at least one atom is oxygen or sulfur. Encompassed within this definition are rings such as thiazoline and the like.

As used herein the term "arylsulfonyl" or "arylsulfone" refers to a

As used herein the terms "alkylsulfoxide" or "arylsulfoxide" refer to

As used herein the term "arylthio" refers to a radical of the formula

As used herein the term "monocyclic heterocycle thio" refers to a

As used herein the terms "monocyclic heterocycle sulfoxide" and

10 "monocyclic heterocycle sulfone" refer, respectively, to radicals of the

heterocycle radical as defined above.

15 As used herein the term "alkylcarbonyl" refers to a radical of the

As used herein the term "arylcarbonyl" refers to a radical of the

As used herein the term "alkoxycarbonyl" refers to a radical of the

As used herein the term "aryloxycarbonyl" refers to a radical of the

As used herein the term "haloalkylcarbonyl" refers to a radical of the

- 5 As used herein the term "haloalkoxycarbonyl" refers to a radical of

As used herein the term "alkylthiocarbonyl" refers to a radical of the

As used herein the term "arylthiocarbonyl" refers to a radical of the

- 10 formula $R^{51}-S-C(=O)O-$ — wherein R^{51} is aryl as defined above.

As used herein the term "acyloxymethoxycarbonyl" refers to a radical

- 15 As used herein the term "aryl amino" refers to a radical of the formula $R^{51}-NH-$ wherein R^{51} is aryl as defined above.

As used herein the term "acyloxy" refers to a radical of the formula $R^{55}-O-$ wherein R^{55} is acyl as defined above.

- 20 As used herein the term "alkenylalkyl" refers to a radical of the formula $R^{50}-R^{57}$ — wherein R^{50} is an alkenyl as defined above and R^{57} is alkylene as defined above.

As used herein the term "alkenylene" refers to a linear hydrocarbon radical of 1 to about 8 carbon atoms containing at least one double bond.

- 25 As used herein the term "alkoxyalkyl" refers to a radical of the formula $R^{56}-R^{57}-$ — wherein R^{56} is alkoxy as defined above and R^{57} is alkylene as defined above.

As used herein the term "alkynylalkyl" refers to a radical of the formula R⁵⁹—R⁶⁰— wherein R⁵⁹ is alkynyl as defined as above and R⁶⁰ is alkylene as defined as above.

5 As used herein the term "alkynylene" refers to divalent alkynyl radicals of 1 to about 6 carbon atoms.

As used herein the term "allyl" refers of a radical of the formula —CH₂CH=CH₂.

As used herein the term "aminoalkyl" refers to a radical of the formula H₂N-R⁶¹ wherein R⁶¹ is alkylene as defined above.

10 As used herein the term "benzoyl" refers to the aryl radical C₆H₅-CO-.

As used herein the term "carboxamide" or "carboxamido" refer to a radical of the formula -CO-NH₂.

As used herein the term "carboxyalkyl" refers to a radical HOOC--R⁶²—wherein R⁶² is alkylene as defined as above.

15 As used herein the term "carboxylic acid" refers to the radical —COOH.

As used herein the term "ether" refers to a radical of the formula R⁶³—O— wherein R⁶³ is selected from the group consisting of alkyl, aryl and heteroaryl.

20 As used herein the term "haloalkylsulfonyl" refers to a radical of the

formula wherein the R⁶⁴ is haloalkyl as defined above.

As used herein the term "heteroaryl" refers to an aryl radical contain at least one heteroatom.

25 As used herein the term "hydroxyalkyl" refers to a radical of the formula HO—R⁶⁵— wherein R⁶⁵ is alkylene as defined above.

As used herein the term "keto" refers to a carbonyl group joined to 2 carbon atoms.

As used herein the term "lactone" refers to an anhydro cyclic ester produced by intramolecular condensation of a hydroxy acid with the 30 elimination of water.

As used herein the term "olefin" refers to an unsaturated hydrocarbon radical of the type C_nH_{2n} .

As used herein the term "sulfone" refers to a radical of the formula

5 As used herein the term "thioalkyl" refers to a radical of the formula

As used herein the term "thioether" refers to a radical of the formula

10 As used herein the term "trifluoroalkyl" refers to an alkyl radical as defined above substituted with three halo radicals as defined above.

The term "composition" as used herein means a product which results from the mixing or combining of more than one element or ingredient.

15 The term "pharmaceutically acceptable carrier", as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a chemical agent.

20 The term "therapeutically effective amount" shall mean that amount of drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system or animal that is being sought by a researcher or clinician.

The following is a list of abbreviations and the corresponding meanings as used interchangeably herein:

25 1H -NMR = proton nuclear magnetic resonance

AcOH = acetic acid

BOC = *tert*-butoxycarbonyl

BuLi = butyl lithium

Cat. = catalytic amount

CDI = Carbonyldiimidazole

30 CH₂Cl₂ = dichloromethane

CH₃CN = acetonitrile

CH₃I = iodomethane

CHN analysis = carbon/hydrogen/nitrogen elemental analysis

35 CHNCl analysis = carbon/hydrogen/nitrogen/chlorine elemental analysis

CHNS analysis = carbon/hydrogen/nitrogen/sulfur elemental

	analysis
	DEAD = diethylazodicarboxylate
	DIAD = diisopropylazodicarboxylate
	DI water = deionized water
5	DMA = <u>N,N</u> -dimethylacetamide
	DMAC = N,N-dimethylacetamide
	DMF = <u>N,N</u> -dimethylformamide
	EDC = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
10	Et = ethyl
	Et ₂ O = diethyl ether
	Et ₃ N = triethylamine
	EtOAc = ethyl acetate
	EtOH = ethanol
15	FAB MS = fast atom bombardment mass spectroscopy
	g = gram(s)
	HOBT = 1-hydroxybenzotriazole hydrate
	HPLC = high performance liquid chromatography
	i-Pr = iso propyl
20	i-Prop = iso propyl
	K ₂ CO ₃ = potassium carbonate
	KMnO ₄ = potassium permanganate
	KOH = potassium hydroxide
	KSCN = potassium thiocyanate
25	L = Liter
	LiOH = lithium hydroxide
	Me = methyl
	MeOH = methanol
	mg = milligram
30	MgSO ₄ = magnesium sulfate
	ml = milliliter
	mL = milliliter
	MS = mass spectroscopy
	NaH - sodium hydride
35	NaHCO ₃ = sodium bicarbonate
	NaOH = sodium hydroxide
	NaOMe = sodium methoxide
	NH ₄ ⁺ HCO ₃ ⁻ = ammonium formate
	NMR = nuclear magnetic resonance
40	Pd = palladium
	Pd/C = palladium on carbon
	Ph = phenyl
	Pt = platinum
	Pt/C = platinum on carbon
45	RPHPLC = reverse phase high performance liquid chromatography
	RT = room temperature
	t-BOC = <u>tert</u> -butoxycarbonyl
	TFA = trifluoroacetic acid

THF = tetrahydrofuran
TLC - thin layer chromatography
TMS = trimethylsilyl
 Δ = heating the reaction mixture

5

The compounds as shown above can exist in various isomeric forms and all such isomeric forms are meant to be included. Tautomeric forms are also included as well as pharmaceutically acceptable salts of such isomers and tautomers.

10

In the structures and formulas herein, a bond drawn across a bond of a ring can be to any available atom on the ring.

The term "pharmaceutically acceptable salt" refers to a salt prepared by contacting a compound of Formula I with an acid whose anion is generally considered suitable for human consumption. For use in medicine,

15

the salts of the compounds of this invention are non-toxic "pharmaceutically acceptable salts." Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid. Representative salts include the following:

20

benzenesulfonate, hydrobromide and hydrochloride. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g.,

25

quaternary ammonium salts. All of the pharmacologically acceptable salts may be prepared by conventional means. (See Berge *et al.*, *J Pharm. Sci.*, 66(1), 1-19 (1977) for additional examples of pharmaceutically acceptable salts.)

The compounds of the present invention can have chiral centers and occur as racemates, racemic mixtures, diastereomeric mixtures, and as individual diastereomers or enantiomers, with all isomeric forms included in the present invention. Therefore, where a compound is chiral, the separate enantiomers or diastereomers, substantially free of the other, are included within the scope of the present invention; further included are all mixtures of the enantiomers or diastereomers. Also included within the scope of the

invention are polymorphs, or hydrates or other modifiers of the compounds of invention.

The present invention includes within its scope prodrugs of the compounds of this invention. In general, such prodrugs will be functional derivatives of the compounds of this invention which are readily convertible *in vivo* into the required compound. For example, prodrugs of a carboxylic acid may include an ester, an amide, or an ortho-ester. Thus, in the methods of treatment of the present invention, the term "administering" shall encompass the treatment of the various conditions described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the compound of Formula I *in vivo* after administration to the patient. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs," ed. H. Bundgaard, Elsevier, 1985, which is incorporated by reference herein in its entirety. Metabolites of these compounds include active species produced upon introduction of compounds of this invention into the biological milieu.

For the selective inhibition or antagonism of $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrins, compounds of the present invention may be administered orally, parenterally, or by inhalation spray, or topically in unit dosage formulations containing conventional pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes, for example, subcutaneous, intravenous, intramuscular, intrasternal, transmuscular infusion techniques or intraperitoneally.

The compounds of the present invention are administered by any suitable route in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. Therapeutically effective doses of the compounds required to prevent or arrest the progress of or to treat the medical condition are readily ascertained by one of ordinary skill in the art using preclinical and clinical approaches familiar to the medicinal arts.

Accordingly, the present invention provides a method of treating conditions mediated by selectively inhibiting or antagonizing the $\alpha_v\beta_3$ and/or

$\alpha_v \beta_5$ cell surface receptor which method comprises administering a therapeutically effective amount of a compound selected from the class of compounds depicted in the above formulas, wherein one or more compound is administered in association with one or more non-toxic, 5 pharmaceutically acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and if desired other active ingredients.

In another embodiment, the present invention provides a method for selective antagonism of the $\alpha_v \beta_3$ and/or $\alpha_v \beta_5$ cell surface receptors over 10 $\alpha_{IIb} \beta_3$.

The present invention provides a method for inhibiting bone resorption, treating osteoporosis, inhibiting humoral hypercalcemia of malignancy, treating Paget's disease, inhibiting tumor metastasis, inhibiting neoplasia (solid tumor growth), inhibiting angiogenesis including tumor 15 angiogenesis, treating retinopathy including macular degeneration and diabetic retinopathy, inhibiting arthritis, psoriasis and periodontal disease, and inhibiting smooth muscle cell migration including restenosis.

Based upon standard laboratory experimental techniques and procedures well known and appreciated by those skilled in the art, as well 20 as comparisons with compounds of known usefulness, the compounds of Formula I can be used in the treatment of patients suffering from the above pathological conditions. One skilled in the art will recognize that selection of the most appropriate compound of the invention is within the ability of one with ordinary skill in the art and will depend on a variety of factors including 25 assessment of results obtained in standard assay and animal models.

Some *in vivo* models of angiogenesis include the CAM (chick chorioallantoic membrane) assay (Vu *et al.*, *Lab Invest.* 1985, 53, 4), the gelatin sponge/chorioallantoic membrane assay (Ribatti *et al.*, *J. Vasc. Res.* 1997, 34, 6), the rabbit corneal micropocket assay (Gimbrone *et al.*, *J Natl 30 Cancer Inst* 52, 413) and the insertion of tumor cells in mice (Robertson *et al.*, *Cancer Res.* 1999, 51, 1339). For a review of angiogenesis assays, see Auerbach *et al.*, *Pharmacol Ther* 1991, 51, 1.

Treatment of a patient afflicted with one of the pathological conditions comprises administering to such a patient an amount of compound of the Formula I which is therapeutically effective in controlling the condition or in prolonging the survivability of the patient beyond that expected in the absence of such treatment. As used herein, the term "inhibition" of the condition refers to slowing, interrupting, arresting or stopping the condition and does not necessarily indicate a total elimination of the condition. It is believed that prolonging the survivability of a patient, beyond being a significant advantageous effect in and of itself, also indicates that the condition is beneficially controlled to some extent.

As stated previously, the compounds of the invention can be used in a variety of biological, prophylactic or therapeutic areas. It is contemplated that these compounds are useful in prevention or treatment of any disease state or condition wherein the $\alpha_v\beta_3$ and/or $\alpha_v\beta_5$ integrin plays a role.

The compounds of the invention may also be used in combination therapies. For instance, an $\alpha_v\beta_3$ inhibitor may be administered with a cytotoxic agent such as a toxin, radionuclide, or a chemotherapeutic to promote tumor regression.

The dosage regimen for the compounds and/or compositions containing the compounds is based on a variety of factors, including the type, age, weight, sex and medical condition of the patient; the severity of the condition; the route of administration; and the activity of the particular compound employed. Thus the dosage regimen may vary widely. Dosage levels of the order from about 0.01 mg to about 100 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions.

Oral dosages of the present invention, when used for the indicated effects, will range between about 0.01 mg per kg of body weight per day (mg/kg/day) to about 100 mg/kg/day, preferably 0.01 to 10 mg/kg/day, and most preferably 0.1 to 1.0 mg/kg/day. For oral administration, the compositions are preferably provided in the form of tablets containing 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 200 and 500 milligrams of the active ingredient for the symptomatic adjustment of the

dosage to the patient to be treated. A medicament typically contains from about 0.01 mg to about 500 mg of the active ingredient, preferably, from about 1mg to about 100 mg of active ingredient. Intravenously, the most preferred doses will range from about 0.1 to about 10 mg/kg/minute during a 5 constant rate infusion. Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, preferred compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal 10 vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

15 For administration to a mammal in need of such treatment, the compounds in a therapeutically effective amount are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. The compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, 20 stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulphuric acids, gelatin, acacia, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and tableted or encapsulated for convenient administration. Alternatively, the compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, 25 cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

The pharmaceutical compositions useful in the present invention may be subjected to conventional pharmaceutical operations such as sterilization 30 and/or may contain conventional pharmaceutical adjuvants such as preservatives, stabilizers, wetting agents, emulsifiers, buffers, etc.

The general synthetic sequences for preparing the compounds useful in the present invention are outlined in Schemes 1-12. Both an explanation

of, and the actual procedures for, the various aspects of the present invention are described where appropriate. The following Schemes and Examples are intended to be merely illustrative of the present invention, and not limiting thereof in either scope or spirit. Those with skill in the art will readily understand that known variations of the conditions and processes described in the Schemes and Examples can be used to synthesize the compounds of the present invention.

SCHEME 1

10

15

20

34

SCHEME 1

- 5 The compounds of formula A₁₃, wherein the ring A is preferentially a 6-member heteroaryl or a bicyclic heteroaryl, can be prepared by reacting an intermediate of formula A₁₁ with a compound of the formula A₁₂. For example, when Z₃ is OH, SH or NHR, A₁₂ may be alkylated with A₁₁ (Z₄ = Br or OMs) using base such as (sodium hydride, potassium hydride) preferably
10 in a solvent such as dimethylsulfoxide or DMF. These reactions may preferentially be carried at 0 °C to approx. 40 °C. Alternately, when Z₃ and Z₄ are both OH, the ether formation to product A₁₃ may be accomplished by using Mitsunobu reaction. This reaction may preferentially be carried out using triarylphosphine (such as triphenylphoshine) and azodicarboxylate
15 (such as diethyl azodicarboxylate, di-tert-butyl azodicarboxylate, diisopropyl azodicarboxylate) in solvents such as DMF, methylene chloride, THF and the like. When Z₃ carries a carboxylic acid and Z₄ is an amine, the standard coupling conditions may be used to synthesize the carboxamide (CONH) containing targets A₁₃
- 20 Alternately, the compounds of formula A₁₃ may be prepared by starting with compounds of general formula A₁₄. For example, when Z₅ in A₁₄ is NH₂, cyclic or acyclic guanidino containing compounds of formula A₁₃ may be synthesized by adopting the methodologies discussed in e. g. U. S. Patent 5,852, 210, U. S. Patent 5,773,646. Similarly, compounds of formula
25 A₁₄ (Z₅ = CHO) may be treated with amino containing heteroaromatic system (such as 2-aminopyridine) to give the target compounds A₁₃. This reaction may preferentially be carried out by reductive amination procedures using reducing agents such as sodium triacetoxyborohydride, sodium cyanoborohydride or sodium borohydride.

30

SCHEME 2

5

SCHEME 2

Compounds of the formula A₁₈ containing an oxadiazole ring may be prepared by starting with intermediates A₁₅. The reaction of A₁₅ with hydroxylamine hydrochloride in the presence of base (such as sodium methoxide, sodium ethoxide) using solvents such as methanol, ethanol gives the amidoxime intermediate A₁₆. The reaction of A₁₆ with a carboxylic acid containing intermediate A₁₇ in the presence of a coupling reagent such as carbonyldiimidazole gives the compounds of formula A₁₈.

SCHEME 3

SCHEME 3

Intermediates of the formula A₁₅ (scheme 2), containing a heteroarylamine can be prepared as shown in scheme 3. The reductive amination of arylamine (A₁₉) with an aliphatic aldehyde (A₂₀) gives the intermediate A₁₅ containing the aliphatic chain. This reaction may preferentially be carried out by using sodium triacetoxyborohydride, sodium cyanoborohydride or sodium borohydride as reducing agent and using methylene chloride, ethyl alcohol or tetrahydrofuran as solvent. Commercially accessible heteroarylamine such as 2-amnopyridine could be used directly. In certain cases, protected heteroaryls such as imidazole and pyrazole derived amines may be used as shown above. The reaction described in scheme 3 may also be used to synthesize other variants of Z₁-Z₂ in A₁₅ (scheme 2)

SCHEME 4

SCHEME 4

Intermediates of the formula A₁₅ (Scheme 2), containing an aliphatic chain may be prepared by reacting the heteroaryl bromides with organometallic reagents in a cross coupling reaction, as shown in scheme 4. The coupling conditions described in e.g.; Heterocycles, 18, 117-121 (1982) and Tetrahedron 38, 3347-3354 (1982) may be used to accomplish the synthesis of A₂₂.

SCHEME 5

SCHEME 5

The compounds containing a triazole and a tetrazole ring system can be prepared as shown in scheme 5. The nitrile **1** obtained using the literature procedure (WO 99/30709) can be protected on nitrogen to give **2**. Reaction with hydrazine would give aminoamidine **3**. This can be reacted with a variety of cyclic anhydrides or activated esters to obtain, after deprotection, 1,2,4-triazoles **4a** or **4b**. Alternatively, nitrile **2** can be reacted with sodium azide to give tetrazole **5**. This can be alkylated with bromide **6** (which is readily available from the respective cyclic anhydride) to give, after deprotection, tetrazole **7**.

SCHEME 6

SCHEME 6

Nitrile **2** can be hydrolyzed and esterified to give ester **8**. Reaction with hydrazine would give acylhydrazine **9**, which could be reacted with a variety of cyclic anhydrides or activated esters to give, after deprotection, 1,3,4-oxadiazoles **10a** or **10b**.

SCHEME 7

SCHEME 7

The compounds containing a tetrazole ring system can be prepared as shown in scheme 7. The aldehyde **11** obtained using the literature procedure (WO 01/34602) can be homologated, and the resultant ester reduced and tosylated to give tosylate **12**. Mono acids **13a** or **13b** can be converted to the corresponding nitriles via dehydration of the primary amides. Reaction of the nitriles with sodium azide would provide tetrazole **14a** or **14b**. Reaction of **14a** or **14b** with tosylate **12** would provide, after deprotection, tetrazoles **15a** or **15b**.

SCHEME 8

SCHEME 8

Nitrile **2** can be converted to methyl ketone **16** using methyl magnesium bromide. Reaction with base, followed by a cyclic anhydride or activated ester would provide diketone **17a** or **17b**. Reaction with hydrazine would provide, after deprotection, pyrazole **18a** or **18b**. Alternatively, reaction of **17a** or **17b** with hydroxylamine would provide, after deprotection, isoxazoles **19a** and **20a** or **19b** and **20b**.

SCHEME 9

SCHEME 9

Methyl ketone **16** can be reacted with DMF-dimethylacetal to give enaminoketone **21**. Reaction with hydrazine would provide pyrazole **22**. Alkylation with bromide **6** would give, after deprotection, pyrazole **23**. Alternatively, ketone **16** could be brominated to give bromoketone **24**. Reaction with S-benzylthiourea would provide, after desulfurization with Raney nickel, imidazole **25**. Alkylation with **6** and deprotection would provide imidazole **26**. Bromoketone **24** could also be reacted with thioamides **27a** or **27b** (both readily accessible from the corresponding acids) to provide, after deprotection, thiazole **28a** or **28b**.

SCHEME 10

SCHEME 10

A cyclic anhydride can be reacted with the lithium anion of ethyl acetate to give keto-ester **29**. This can be reacted with hydroxylamine or hydrazine to give hydroxyisoxazole **30a** or hydroxypyrazole **30b**. Alkylation with tosylate **31** (which is available via homologation, reduction and tosylation of aldehyde **11**) would provide, after deprotection, **32a** or **32b**.

SCHEME 11

SCHEME 11

Aldehyde **11** can be homologated, reduced and coupled to N,O-dimethylhydroxylamine to give amide **33**. Reaction with a protected imidazole Grignard reagent would provide, after deprotection, acylimidazole **34**. Alkylation with bromide **6** would give, after deprotection, acylimidazole **35**. Reduction would provide the corresponding alcohol **36**. Further reduction would provide imidazole analog **26**.

SCHEME 12

SCHEME 12

Aldehyde **11** can be reacted with the lithium anion of TMS-acetylene to provide, after removal of the TMS group, acetylene **37**. Palladium-catalyzed coupling with a halo-imidazole or pyrazole would provide **38** or **39**. Alkylation with bromide **6** would give, after deprotection, **40** or **41**. Selective partial reductions of these propargyl alcohols would provide alcohols **42a** or **42b**, allylic alcohols **43a** or **43b**, and alkenes **44a** or **44b**.

EXAMPLE A

(1Z)-N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide (A).

STEP 1

4-(1,3-dioxolan-2-yl)-butanenitrile:

A mixture of 2-(3-chloropropyl)-1,3-dioxolane (15.88 g; 0.1054 moles), sodium cyanide (6.46 g; 0.132 moles) and sodium iodide (1.57 g; 0.0105 moles) in DMF (100 mL) was heated at 80 °C, with magnetic stirring, under a nitrogen atmosphere for 15 hours. The mixture was allowed to cool, added to water (300 mL) and extracted with ethyl acetate (3x200 mL). The combined extracts were washed with water (200 mL) and saturated aqueous sodium chloride solution (100 mL) and then dried over sodium sulfate. Filtration and evaporation of solvent gave a crude yellow oil which was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:2). Removal of solvent under vacuum gave the product 4-(1,3-dioxolan-2-yl)-butanenitrile (11.28 g; 76 %) as a colorless oil. ^1H NMR (CDCl_3) δ 4.89-4.91 (1H, m), 3.92-4.01 (2H, m), 3.82-3.90 (2H, m), 2.40-2.46 (2H, m), 1.77-1.85 (4H, m).

STEP 2

5-(pyridin-2-ylamino)pentanenitrile:

4-(1,3-Dioxolan-2-yl)butanenitrile (6.26g; 0.0443moles) was dissolved in a mixture of acetone (50 mL) and water (50 mL) under nitrogen. p-Toluene-sulfonic acid (843 mg; 0.00443 moles) was added followed by sodium periodate (9.67 g; 0.0452 moles) and the mixture was heated at 40 °C for 32 hours with magnetic stirring. The mixture was filtered, washing the filter cake with ethyl acetate (100 mL). The filtrate was mixed with aqueous sodium bicarbonate solution (50 mL) and the phases were separated. The aqueous phase was extracted with ethyl acetate (3x100 mL). The combined organic phases were dried over sodium sulfate and filtered. Removal of solvent under vacuum gave the crude product (5-oxopentanenitrile). This material was dissolved in methylene chloride (150 mL). 2-Aminopyridine (4.17 g; 0.0443 moles) was added and the reaction mixture was magnetically stirred under nitrogen for 30 minutes. Sodium triacetoxyborohydride (14.1 g; 0.0665 moles) was added and the reaction mixture was stirred for 4 hours. The reaction mixture was added to aqueous sodium bicarbonate solution (50 mL) and the phases were separated. The aqueous phase was extracted with ethyl acetate (4x50 mL). The combined organic phases were dried over sodium sulfate and filtered. Removal of solvent under vacuum gave crude product which was purified by chromatography on silica gel, eluting with methylene chloride followed by methylene chloride/acetone (10:1). Removal of solvent under vacuum gave the product, 5-(pyridin-2-ylamino)pentane-nitrile, as an off white solid (4.30 g; 55 %). ^1H NMR (CDCl_3) δ 8.05-8.10 (1H, m), 7.38-7.43 (1H, m), 6.55-6.60 (1H, m), 6.38 (1H, d, $J=8.5\text{Hz}$), 4.38-4.58 (1H, br), 3.30-3.40 (2H, m), 2.35-2.45 (2H, m), 1.70-1.85 (4H, m).

STEP 3

(1Z)-N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide :

5-(Pyridin-2-ylamino)pentanenitrile (1.00g ; 5.71 mmoles) was dissolved in methanol (10 mL) and hydroxylamine (1.4 mL of a 50 % aqueous solution; 22.83 mmoles) was added. The reaction mixture was stirred at 40 °C under nitrogen for 2 days. The solvent was removed under vacuum and the resulting oil was placed under vacuum at 40 °C for 6 hours. The product

(1Z)-N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide (**A**) (1.16 g ; 98 %) was obtained as a pale yellow oil. ^1H NMR (DMSO-d₆) δ 8.68 (1H, s, br), 7.91-7.95 (1H, m), 7.29-7.35 (1H, m), 6.35-6.45 (3H, m), 5.25-5.35 (2H, s, br), 3.15-3.23 (2H, m), 1.97 (2H, t, $J=7.5\text{Hz}$), 1.45-1.60 (4H, m).

EXAMPLE 1

3-methyl-4-(3-{3-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoic acid

STEP 1

3-[(tetrahydro-2H-pyran-2-yloxy)methyl]benzonitrile:

3-(Hydroxymethyl)benzonitrile (5.00 g; 37.6 mmoles) and 3,4-Dihydro-2H-pyran (3.77 mL; 41.4 mmoles) were dissolved in methylene chloride (25 mL) under nitrogen and the solution was cooled to 5 °C. p-Toluenesulfonic acid monohydrate (74 mg; 0.37 mmoles) was added and the mixture was stirred for 2 hours at 25 °C. The reaction mixture was diluted with methylene chloride (25 mL). The solution was washed with aqueous sodium bicarbonate solution (30 mL) and aqueous sodium chloride solution (30 mL). The solution was dried over sodium sulfate and filtered. The solvent was removed under vacuum to give the product, 3-[(tetrahydro-2H-pyran-2-yloxy)methyl]benzo-nitrile (7.34 g; 89 %) as an oil. ¹H NMR (400MHz)

CDCl₃ δ 7.68-7.70 (1H, m), 7.54-7.61 (2H, m), 7.42-7.48 (1H, m), 4.82 (1H, d, J=12.5Hz), 4.72 (1H, t, J=3.3Hz), 4.53 (1H, d, J=12.5Hz), 3.84-3.92 (1H, m), 3.53-3.60 (1H, m), 1.60-1.95 (6H, m).

STEP 2

N'-hydroxy-3-[(tetrahydro-2H-pyran-2-yloxy)methyl]benzenecarboximidamide:

The product from the previous reaction (4.0 g; 18.4 mmoles) was dissolved in methanol (20 mL) under nitrogen with stirring. Hydroxylamine hydrochloride (1.92 g; 27.6 mmoles) was added followed by sodium methoxide (6.3 mL of a 25 wt% solution; 27.6 mmoles). The mixture was heated to 65 °C for 4 hours and allowed to cool. The mixture was filtered and the methanol was removed under vacuum. The residue was dissolved in ethyl acetate and passed through a pad of silica gel. Following removal of solvent, the product, N'-hydroxy-3-[(tetrahydro-2H-pyran-2-yloxy)methyl]-benzenecarboximidamide (4.50 g; 98 %) was obtained. ¹H NMR (400MHz) CDCl₃ δ 8.10 (1H, br, s), 7.62-7.64 (1H, m), 7.53-7.58 (1H, m), 7.42-7.46 (1H, m), 7.35-7.41 (1H, m), 4.91 (2H, br, s), 4.81 (1H, d, J=12.5Hz), 4.72 (1H, t, J=3.3Hz), 4.52 (1H, d, J=12.5Hz), 3.88-3.96 (1H, m), 3.52-3.59 (1H, m), 1.50-1.95 (6H, m).

STEP 3

Methyl 3-methyl-4-(3-{3-[(tetrahydro-2H-pyran-2-yloxy)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate:

The product from the previous reaction (3.75 g; 15.0 mmoles) and 3-methyl glutaric anhydride (1.92 mg; 15.0 mmoles) were dissolved in 1,4-dioxane (20 mL) under nitrogen and the mixture was heated to 95 °C for 24 hours. After allowing the mixture to cool, the solvent was removed under vacuum. The residue was dissolved in DMF (15 mL) under nitrogen. Potassium carbonate (2.50 g; 18.0 mmoles) and methyl iodide (1.10 mL; 18.0 mmoles)

were added and the mixture was stirred for 24 hours at ambient temperature. The DMF was removed under reduced pressure and the residue was dissolved in ethyl acetate (50 mL) and filtered. The solution was washed with 1N aqueous potassium hydrogen sulfate (25 mL) and aqueous sodium bicarbonate (25 mL) and then dried over sodium sulfate and filtered. The solvent was removed under vacuum. The resulting product was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1). Removal of solvent gave the product, methyl 3-methyl-4-(3-{3-[(tetrahydro-2H-pyran-2-yloxy)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate (3.70 g; 64 %) as an oil. ^1H NMR (400MHz) CDCl_3 δ 8.07-8.09 (1H, m), 7.98-8.02 (1H, m), 7.51-7.55 (1H, m), 7.43-7.49 (1H, m), 4.85 (1H, d, $J=12.5\text{Hz}$), 4.74 (1H, t, $J=3\text{Hz}$), 4.57 (1H, d, $J=12.5\text{Hz}$), 3.89-3.97 (1H, m), 3.69 (3H, s), 3.53-3.61 (1H, m), 3.00-3.07 (1H, m), 2.89-2.97 (1H, m), 2.60-2.72 (1H, m), 2.48-2.55 (1H, m), 2.32-2.40 (1H, m), 1.50-1.96 (6H, m), 1.11 (3H, d, $J=6\text{Hz}$).

STEP 4

Methyl 4-{3-[3-(hydroxymethyl)phenyl]-1,2,4-oxadiazol-5-yl}-3-methylbutanoate:

The product from the previous reaction (2.00 g; 5.10 mmoles) was dissolved in methanol (25 mL) under nitrogen. p-Toluenesulfonic acid monohydrate (980 mg; 5.10 mmoles) was added and the mixture was stirred at 25 °C for 3 hours. The mixture was added to aqueous sodium bicarbonate solution (25 mL) and the methanol was removed under vacuum. The mixture was extracted with ethyl acetate (3x25 mL). The combined extracts were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate and filtered. The solvent was removed under vacuum to give the product, methyl 4-{3-[3-(hydroxymethyl)phenyl]-1,2,4-oxadiazol-5-yl}-3-methylbutanoate (1.53 g; 98 %) as an oil. ^1H NMR (400MHz) CDCl_3 δ 8.07-8.09 (1H, m), 7.98-8.02 (1H, m), 7.45-7.55 (2H, m), 4.79 (2H, s), 3.69 (3H, s), 3.00-3.07 (1H, m), 2.89-2.96 (1H, m), 2.60-2.72 (1H, m), 2.48-2.55 (1H, m), 2.32-2.40 (1H, m), 1.11 (3H, d, $J=6\text{Hz}$).

STEP 5

Methyl 4-[3-(3-formylphenyl)-1,2,4-oxadiazol-5-yl]-3-methylbutanoate:

The product from the previous reaction (750 mg; 2.50 mmoles) was dissolved in methylene chloride (15 mL) under nitrogen. N-Methylmorpholine-N-oxide (435 mg; 3.70 mmoles) and powdered 4Å molecular sieves were added and the mixture was cooled to 5 °C with stirring. Tetra-n-propylammonium perruthenate (44 mg; 0.13 mmoles) was added and the mixture was stirred at ambient temperature for 2 hours. The mixture was diluted with methylene chloride (50 mL) and filtered through a pad of silica gel. The solvent was removed under vacuum to give the product, methyl 4-[3-(3-formylphenyl)-1,2,4-oxadiazol-5-yl]-3-methylbutanoate (650 mg) which was used directly in the next step without purification.

STEP 6

3-methyl-4-(3-[3-[(pyridin-2-ylamino)methyl]phenyl]-1,2,4-oxadiazol-5-yl)butanoic acid trifluoroacetate :

The material was dissolved in methylene chloride (10 mL) with stirring under nitrogen. 2-Aminopyridine (222 mg; 2.37 mmoles) was added and the mixture was stirred for 30 minutes. Sodium triacetoxyborohydride (684 mg; 3.23 mmoles) was added and stirring was continued for 5 hours. The mixture was added to aqueous sodium bicarbonate solution (25 mL) and extracted into ethyl acetate (3x2 mL). The combined extracts were washed with saturated aqueous sodium chloride solution (20mL) and dried over sodium sulfate. The solution was filtered and the solvent was evaporated. The residue was purified by chromatography on silica gel eluting with ethyl acetate/hexane (1:1). Solvent was removed and the resulting material, methyl 4-[3-(3-formylphenyl)-1,2,4-oxadiazol-5-yl]-3-methylbutanoate, was dissolved in tetrahydrofuran (3 mL). Aqueous sodium hydroxide (1N, 3 mL) was added and the mixture was stirred at ambient temperature for 12 hours. Hydrochloric acid (1N, 3 mL) was added and the solvent was removed

under vacuum. The residue was purified by reverse phase HPLC (C18 column, eluting with water/acetonitrile, 9:1 to 1:1 gradient, TFA buffer). After removal of solvent the product, 3-methyl-4-(3-{3-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoic acid trifluoroacetate (175 mg) was obtained. ^1H NMR (400MHz) DMSO-d6 δ 8.05 (1H, s), 7.93-8.00 (2H, m), 7.82-7.91 (1H, m), 7.55-7.63 (1H, m), 7.00-7.08 (1H, m), 6.82-6.89 (1H, m), 4.65-4.70 (2H, m,), 3.03-3.11 (1H, m), 2.91-2.99 (1H, m), 2.20-2.53 (3H, m), 0.98 (3H, d, $J=6\text{Hz}$). HPLC retention time 1.25 minutes (Column: YMC CombiScreen ODS-A, 50x4.6mm I.D., particle s-5 μm , 12nm; Eluent: Acetonitrile/ phosphoric acid buffer, gradient 10:90 to 90:10).

EXAMPLE 2

sodium 3-methyl-4-(3-{4-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate

STEP 1

4-(hydroxymethyl)benzonitrile:

A stirred suspension of 4-formylbenzonitrile (10.0 g; 0.0763 moles) in methanol (100 mL) under nitrogen was cooled to 5 °C. Sodium borohydride (1.45 g; 0.0382 moles) was added. After 30 minutes the mixture was added to water (300 mL) and extracted with ethyl acetate (4x100 mL). The combined extracts were washed with aqueous sodium chloride solution (50 mL) and dried over sodium sulfate. Following filtration and removal of solvent under vacuum the product, 4-(hydroxymethyl)benzonitrile, (9.44 g; 93 %) was obtained as a white solid. ¹H NMR (400MHz) CDCl₃ δ 7.61-7.66 (2H, m), 7.45-7.50 (2H, m), 4.78 (2H, d, J=5.5Hz), 2.27 (1H, t, J=5.5Hz).

STEP2

4-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]benzonitrile:

The product from the previous reaction (9.26 g; 0.0695 moles) and 3,4-Dihydro-2*H*-pyran (7.0 mL; 0.077 mole) were dissolved in methylene chloride (100mL) under nitrogen and the solution was cooled to 5 °C. p-Toluene-sulfonic acid monohydrate (670 mg; 3.50 mmoles) was added and the mixture was stirred for 2 hours at 25 °C. The solution was washed with aqueous sodium bicarbonate solution (30mL) and aqueous sodium chloride solution (30 mL). The solution was dried over sodium sulfate and filtered. The solvent was removed under vacuum to give the crude product, which was purified by chromatography on silica gel eluting with hexane/ethyl acetate (4:1). Following removal of solvent the product, 4-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]benzonitrile (13.98 g; 92%) was obtained as a straw colored oil. ¹H NMR (400MHz) CDCl₃ δ 7.62-7.67 (2H, m), 7.45-7.50 (2H, m), 4.84 (1H, d, J=12.5Hz), 4.72 (1H, t, J=3Hz), 4.57 (1H, d, J=12.5Hz), 3.84-3.92 (1H, m), 3.52-3.59 (1H, m), 1.50-1.95 (6H, m).

STEP 3**N'-hydroxy-4-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]benzenecarboximidamide:**

A solution of hydroxylamine hydrochloride (4.80 g; 0.0691 moles) in methanol (50 mL) under nitrogen was cooled to 5 °C. Sodium methoxide (15.8 mL of a 25 wt% solution; 0.0691 moles) was added with stirring. The product from the previous reaction (10.0 g; 0.0460 moles) in methanol (50 mL) was added. The mixture was heated to 65 °C for 8 hours and allowed to cool. Methanol was removed under vacuum. The material was suspended in ether (100mL) and filtered through celite. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel eluting with ether/methanol (10:1). The material was further purified by chromatography on silica gel, eluting with ether. Following removal of solvent the product, N'-hydroxy-4-[(tetrahydro-2*H*-pyran-2-yloxy)-methyl]benzenecarboximidamide (8.69 g; 75 %) was obtained as a white

solid. ^1H NMR (400MHz) DMSO-d₆ δ 9.62 (1H, s), 7.63-7.68 (2H, m), 7.31-7.36 (2H, m), 5.80 (1H, br, s), 4.65-4.70 (2H, m), 4.43-4.48 (1H, m), 3.75-3.83 (1H, m), 3.44-3.51 (1H, m), 1.60-1.80 (2H, m), 1.40-1.58 (4H, m).

STEP 4

Methyl 3-methyl-4-(3-{4-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate:

The product from the previous reaction (1.14 g; 4.54 mmoles) was dissolved in 1,4-dioxane (20 mL) under nitrogen. 3-Methyl glutaric anhydride (582 mg; 4.53 mmoles) was added and the mixture was stirred for one hour at ambient temperature and then heated to 95 °C for 30 hours. After allowing the mixture to cool, the solvent was removed under vacuum. The residue was dissolved in DMF (25 mL) under nitrogen. Potassium carbonate (879 mg; 6.36 mmoles) followed by methyl iodide (297 μ L; 4.77 mmoles) was added and the mixture was stirred for 24 hours at ambient temperature. The mixture was diluted with water and extracted with ethyl acetate (3x50 mL). The combined extracts were washed with water (2x50 mL) and saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered and the solvent was removed under vacuum. The resulting product was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (4:1). Removal of solvent gave the product, methyl 3-methyl-4-(3-{4-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]phenyl}-1,2,4-oxadiazol-5-yl)-butanoate (1.528 g; 90 %) as a colorless oil. ^1H NMR (400MHz) CDCl₃ δ 8.03-8.08 (2H, m), 7.45-7.50 (2H, m), 4.85 (1H, d, J =12.5Hz), 4.73 (1H, t, J =3.7Hz), 4.57 (1H, d, J =12.5Hz), 3.89-3.97 (1H, m), 3.69 (3H, s), 3.52-3.60 (1H, m), 2.89-3.07 (2H, m), 2.60-2.72 (1H, m), 2.48-2.55 (1H, m), 2.32-2.40 (1H, m), 1.50-1.96 (6H, m), 1.11 (3H, d, J =6Hz).

STEP 5

Methyl 4-{3-[4-(hydroxymethyl)phenyl]-1,2,4-oxadiazol-5-yl}-3-methylbutanoate:

The product from the previous reaction (1.49 g; 3.98 mmoles) was dissolved in methanol (20 mL) under nitrogen. p-Toluenesulfonic acid monohydrate (76m g; 0.40 mmoles) was added and the mixture was stirred at 25 °C for 3 hours. The mixture was added to aqueous sodium bicarbonate solution (20 mL) and extracted into ethyl acetate (3x50 mL). The combined extracts were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate and filtered. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1 to 1:1). Following removal of solvent the product, methyl 4-{3-[4-(hydroxymethyl)phenyl]-1,2,4-oxadiazol-5-yl}-3-methylbutanoate (1.13 g; 98 %) was obtained as a colorless oil. ¹H NMR (400MHz) CDCl₃ δ 8.04-8.09 (2H, m), 7.46-7.51 (2H, m), 4.78 (1H, d, J=5.5Hz), 4.57 (1H, d, J=12.5Hz), 3.69 (3H, s), 3.00-3.07 (1H, m), 2.89-2.96 (1H, m), 2.60-2.72 (1H, m), 2.48-2.55 (1H, m), 2.32-2.40 (1H, m), 1.87 (t, J=5.8Hz), 1.11 (3H, d, J=6Hz).

STEP 6

Methyl 4-[3-(4-formylphenyl)-1,2,4-oxadiazol-5-yl]-3-methylbutanoate:

The product from the previous reaction (350 mg; 1.21 mmoles) was dissolved in methylene chloride (20 mL) under nitrogen. Magtrieve™(CrO₂) (1.8 g; 21.7 mmoles) was added and the mixture was mechanically stirred with heating to reflux for 6 hours. The mixture was diluted with ethyl acetate (100 mL) and filtered through a plug of silica and celite, washing with ethyl acetate. The solvent was removed under vacuum to give the product, methyl 4-[3-(4-formylphenyl)-1,2,4-oxadiazol-5-yl]-3-methylbutanoate (325 mg; 94 %) as a colorless oil. ¹H NMR (400MHz) CDCl₃ δ 10.10 (1H, s), 8.24-8.29 (2H, m), 8.98-8.02 (2H, m), 3.69 (3H, s), 3.03-3.10 (1H, m), 2.92-2.99 (1H, m), 2.61-2.73 (1H, m), 2.48-2.56 (1H, m), 2.33-2.42 (1H, m), 1.12 (3H, d, J=6Hz).

STEP 7

Methyl 3-methyl-4-(3-{4-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate:

The product from the previous reaction (318 mg; 1.10 mmoles) was dissolved in methylene chloride (5 mL) under nitrogen. 2-Aminopyridine (114 mg; 1.21 mmoles) was added and the mixture was stirred for 30 minutes. Sodium triacetoxyborohydride (408 mg; 1.93 mmoles) was added and stirring was continued for 5 hours. The mixture was added to aqueous ammonium chloride solution (50 mL) and extracted into ethyl acetate (3x20 mL). The combined extracts were washed with saturated aqueous sodium chloride solution (20 mL) and dried over sodium sulfate. The solution was filtered and the solvent was evaporated. The residue was purified by chromatography on silica gel eluting with methylene chloride/acetonitrile (10:1). After removal of solvent the product, methyl 3-methyl-4-(3-{4-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate (188 mg; 47 %) was obtained as a colorless oil. ^1H NMR (400MHz) CDCl_3 δ 8.10-8.14 (1H, m), 8.02-8.07 (2H, m), 7.45-7.50 (2H, m), 7.38-7.44 (1H, m), 6.59-6.63 (1H, m), 6.38 (1H, d, $J=8.5\text{Hz}$), 4.92-5.02 (1H, br, m), 4.59 (2H, d, $J=5.5\text{Hz}$), 3.69 (3H, s), 2.99-3.06 (1H, m), 2.88-2.95 (1H, m), 2.59-2.72 (1H, m), 2.47-2.54 (1H, m), 2.32-2.40 (1H, m), 1.10 (3H, d, $J=6\text{Hz}$).

STEP 8

Sodium 3-methyl-4-(3-{4-[(pyridin-2-ylamino)methyl]phenyl}-1,2,4-oxadiazol-5-yl)butanoate:

The product from the previous reaction (164 mg; 0.448 mmoles) was dissolved in methanol (5 mL) under nitrogen. Aqueous sodium hydroxide solution (1.5 mL of a 1M solution ; 1.5 mmoles) was added and the mixture was stirred for 5 hours at 25 °C and then for 30 minutes at 45 °C. The mixture was allowed to cool and then adjusted to pH 7 by addition of

hydrochloric acid (1N). The solvent was removed under vacuum and the residue was suspended in ethyl acetate/methanol (10:1) (20 mL). The inorganic salts were removed by filtration through celite. Removal of solvent gave the product, sodium 3-methyl-4-(3-{4-[(pyridin-2-ylamino)methyl]-phenyl}-1,2,4-oxadiazol-5-yl)butanoate as a white solid (167 mg; 100 %). ^1H NMR (400MHz) DMSO-d₆ δ 7.92-7.97 (2H, m), 7.47-7.52 (2H, m), 7.33-7.40 (1H, m), 7.17 (1H, t, $J=6.3\text{Hz}$), 6.45-6.55 (2H, m), 4.55 (2H, d, $J=5\text{Hz}$), 3.08-3.15 (1H, m), 2.75-2.83 (1H, m), 2.31-2.44 (1H, m), 1.92-2.10 (2H, m), 0.92 (3H, d, $J=6\text{Hz}$). Anal. Calcd. for C₁₉H₁₉N₄O₃Na.0.3CH₃OH.0.8 H₂O: C, 58.19; H, 5.52; N, 14.06. Found C, 58.28; H, 5.68; N, 13.70.

EXAMPLE 3

3,3-dimethyl-4-[4-(pyridin-2-ylamino)butyl]-1,3-thiazol-2-yl]butanoic acid

5-Amino-3,3-dimethyl-5-oxopentanoic acid was prepared according to the published procedure by Arrizabalaga, Philippe; Castan, Paule; Laurent, Jean-Pierre; J.Amer.Chem.Soc.; 106; 16; 1984; 4814-4818.

STEP1

Methyl 5-amino-3,3-dimethyl-5-oxopentanoate:

5-Amino-3,3-dimethyl-5-oxopentanoic acid (10.9 g; 68.6 mmoles) was dissolved in DMF (50 mL). Potassium carbonate (14.2 g; 103 mmoles) and methyl iodide (8.5 mL; 137.2 mmoles) were added and the reaction mixture was stirred overnight at room temperature. The reaction mixture was filtered, washing the filter cake with DMF. The DMF was removed under vacuum and the residue was suspended in ethyl acetate. The solids were removed by filtration and the ethyl acetate was removed under vacuum to give the product, methyl 5-amino-3,3-dimethyl-5-oxopentanoate, as a yellow

oil (11.5g; 97%). ^1H NMR (400MHz) DMSO-d6 δ 7.22 (1H, s, br), 6.73 (1H, s, br), 3.58 (3H, s), 2.39 (2H, s), 2.09 (2H, s), 1.02 (6H, s).

STEP 2

Methyl 4-cyano-3,3-dimethylbutanoate:

Trifluoromethanesulfonic anhydride (5.4 mL; 31.8mmoles) was added to an ice cooled solution of methyl 5-amino-3,3-dimethyl-5-oxopentanoate (5.00 g; 28.9 mmoles) in methylene chloride (250 mL) and triethylamine (8 mL; 57.8 mmoles), under nitrogen while keeping the temperature below 5 °C. The reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. Water (125 mL) was added and the phases were separated. The aqueous phase was extracted with methylene chloride (100 mL). The organic phases were combined, washed with saturated aqueous sodium chloride solution and dried over sodium sulfate. The solution was filtered and the solvent was removed under vacuum to give the product, methyl 4-cyano-3,3-dimethylbutanoate (3.1 g; 69 %). ^1H NMR (400MHz) DMSO-d6 δ 3.60 (3H, s), 2.61 (2H, s), 2.35 (2H, s), 1.07 (6H, s).

STEP 3

Methyl 5-Amino-3,3-Dimethyl-5-Thioxopentanoate:

Methyl 4-cyano-3,3-dimethylbutanoate (6.00 g; 38.7mmoles) was dissolved in pyridine (15 mL) and triethylamine (1.5 mL). Hydrogen sulfide was bubbled into the solution until saturated, the flask was sealed and allowed to stand at ambient temperature for 12 days. The solvent was removed under a stream of nitrogen and the residue was dissolved in ethyl acetate and passed through a pad of silica gel. Removal of solvent under vacuum gave crude product which was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1). Following evaporation of solvent the product, methyl 5-amino-3,3-dimethyl-5-thioxopentanoate was obtained as

an orange oil (1.4 g; 19 %). ^1H NMR (400MHz) DMSO-d₆ δ 3.58 (3H, s), 2.59 (2H, s), 2.46 (2H, s), 1.06 (6H, s).

STEP 4

Methyl 4-{4-[4-(acetoxy)butyl]-1,3-thiazol-2-yl}-3,3-dimethylbutanoate:

Methyl 5-amino-3,3-dimethyl-5-thioxopentanoate (500 mg; 2.64 mmoles) was dissolved in 1,4-dioxane (10 mL) under nitrogen and magnesium carbonate hydroxide pentahydrate (640 mg; 1.32 mmoles) was added. 6-Chloro-5-oxohexyl acetate (685 mg ; 3.56 mmoles; Rieke, R.D. ; Brown, J.D. ; Wu, X. Synth. Commun. 1995, 25(23), 3923.) was added and the mixture was magnetically stirred for 10 hours with heating to 60 °C. The mixture was allowed to cool, diluted with ethyl acetate and filtered. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1). Following removal of solvent the product, methyl 4-{4-[4-(acetoxy)butyl]-1,3-thiazol-2-yl}-3,3-dimethylbutanoate, was obtained as pale yellow oil. (820 mg). The material was impure, containing some 6-Chloro-5-oxohexyl acetate. ^1H NMR (400MHz) CDCl₃ δ 6.76 (1H, s), 4.04-4.11 (2H, m), 3.68 (3H, m), 3.05 (2H, s), 2.78 (2H, t, $J=7.5\text{Hz}$), 2.33 (2H, s), 2.04 (3H, s), 1.61-1.82 (4H, m), 1.10 (6H, s).

STEP 5

Methyl 4-[4-(4-hydroxybutyl)-1,3-thiazol-2-yl]-3,3-dimethylbutanoate:

The product from the previous reaction (800 mg; 2.44 mmoles) was dissolved in methanol and cooled to 5 °C. Potassium carbonate (405 mg; 2.93 mmoles) was added and the mixture was magnetically stirred under nitrogen for 5 hours. The mixture was diluted with ethyl acetate (100 mL) and the mixture was filtered through celite. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1). Solvent was removed to give the product, methyl 4-[4-(4-hydroxybutyl)-1,3-thiazol-2-yl]-3,3-dimethylbutanoate

(220 mg; 32 %) as an oil. ^1H NMR (400MHz) CDCl_3 δ 6.77 (1H, s), 3.68 (3H, s), 3.65-3.70 (2H, m), 3.04 (2H, s), 2.79 (2H, t, $J=7.5\text{Hz}$), 2.33 (2H, s), 1.75-1.85 (2H, m), 1.59-1.68 (2H, m), 1.10 (6H, s). (Starting material, 41% was also isolated).

STEP 6

Methyl 3,3-dimethyl-4-[4-(4-oxobutyl)-1,3-thiazol-2-yl]butanoate:

To a solution of DMSO (165 μL ; 2.32 mmoles) in dry methylene (5 mL) chloride under nitrogen at -70°C was added oxalyl chloride (0.55 mL of a 2.0 M solution in methylene chloride; 1.11 mmoles). The mixture was magnetically stirred for 1 hour. A solution of the product from the previous reaction (210 mg; 0.736 mmoles) in methylene chloride (5 mL) was added. After stirring for 40 minutes triethylamine (670 μL ; 4.80 mmoles) was added and the reaction mixture was allowed to warm to ambient temperature. The mixture was diluted with ethyl acetate (50 mL) and the solution was washed with water (20 mL) and saturated sodium chloride solution (20 mL). The combined aqueous phases were extracted with methylene chloride (2x50 mL) and ethyl acetate (50 mL). The combined organic phases were dried over magnesium sulfate and filtered. The solvent was removed under vacuum to give the crude product as yellow oil. The material was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1). Following removal of solvent the product, methyl 3,3-dimethyl-4-[4-(4-oxobutyl)-1,3-thiazol-2-yl]butanoate, was obtained as a pale yellow oil (162 mg; 78 %). ^1H NMR (400MHz) CDCl_3 δ 9.77 (1H, t, $J=1.7\text{Hz}$), 6.78 (1H, s), 3.68 (3H, s), 3.04 (2H, s), 2.79 (2H, t, $J=7.5\text{Hz}$), 2.49 (2H, dt, $J=1.7, 7.3\text{Hz}$), 2.33 (2H, s), 2.01-2.09 (2H, m), 1.10 (6H, m).

STEP 7

Methyl 3,3-dimethyl-4-[4-[4-(pyridin-2-ylamino)butyl]-1,3-thiazol-2-yl]butanoate:

The product from the previous reaction (160 mg; 0.565 mmoles) was dissolved in methylene chloride (10 mL) under nitrogen. 2-Aminopyridine (60 mg; 0.62 mmoles) was added and the mixture was magnetically stirred for 30 minutes. Sodium triacetoxyborohydride (180 mg; 0.85 mmoles) was added and stirring was continued for 4 hours. The reaction mixture was added to aqueous sodium bicarbonate solution (30 mL) and then extracted with ethyl acetate (3x30 mL). The combined extracts were washed with aqueous sodium chloride solution (10 mL) and dried over sodium sulfate. Following filtration, the solvent was removed under vacuum. The resulting product was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1 to 1:2). The product, methyl 3,3-dimethyl-4-{4-[4-(pyridin-2-ylamino)butyl]-1,3-thiazol-2-yl}butanoate, was obtained as a pale yellow oil (153 mg; 75 %). ^1H NMR (400MHz) CDCl_3 δ 8.04-8.08 (1H, m), 7.37-7.42 (1H, m), 6.75 (1H, s), 6.52-6.57 (1H, m), 6.36 (1H, d, $J=8\text{Hz}$), 4.47-4.57 (1H, br), 3.68 (3H, s), 3.25-3.33 (2H, m), 3.04 (2H, s), 2.80 (2H, t, $J=7.5\text{Hz}$), 2.33 (2H, s), 1.77-1.87 (2H, m), 1.60-1.75 (2H, m), 1.10 (6H, m).

STEP 8

3,3-Dimethyl-4-{4-[4-(pyridin-2-ylamino)butyl]-1,3-thiazol-2-yl}butanoic acid:

The product from the previous reaction (150 mg; 0.415 mmoles) was dissolved in methanol (5 mL). Aqueous sodium hydroxide (1.5 mL of a 1M solution; 1.5 mmoles) was added and the mixture was stirred under nitrogen for 5 hours at ambient temperature and then heated at 40 °C for 5 hours. The mixture was allowed to cool and then the pH of the solution was adjusted to pH 7 by the addition of hydrochloric acid (2M). The solution was evaporated under vacuum and then dissolved in ethyl acetate/methanol (20:1, 30 mL) and filtered through celite. The solvent was removed under vacuum and the residue was dissolved in ethyl acetate and filtered to remove fine particulates. Removal of solvent under vacuum gave the product, 3,3-dimethyl-4-{4-[4-(pyridin-2-ylamino)butyl]-1,3-thiazol-2-yl}butanoic acid, as a pale yellow oil (153mg; 92%). It contains 50 mole% ethyl acetate by NMR and analyzes for 0.2 HCl. ^1H NMR (400MHz) DMSO-

d6 δ 7.90-7.94 (1H, m), 7.29-7.34 (1H, m), 7.11 (1H, s), 6.38-6.45 (3H, m), 3.18-3.25 (2H, m), 2.99 (2H, s), 2.69 (2H, t, $J=7.5\text{Hz}$), 2.20 (2H, s), 1.64-1.73 (2H, m), 1.48-1.58 (2H, m), 1.00 (6H, s). Anal. Calc. for $\text{C}_{18}\text{H}_{25}\text{N}_3\text{O}_2\text{S}$ 0.5 ethyl acetate.0.2HCl: C, 60.23; H, 7.38; N, 10.54. Found C, 60.47; H, 7.13; N, 10.36.

EXAMPLE 4

[1-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]-acetic acid

STEP 1

5-(pyridin-2-ylamino)pentanenitrile :

To a stirred solution of 2-aminopyridine (8.7 g, Aldrich) in DMF (75 mL) was added potassium hydride (12.6 g, 30 wt.% dispersion in mineral oil, Aldrich). After 1 hr, 4-bromobutyronitrile (15 g, Aldrich) was added. The mixture was heated to 60°C for 16 hr. The mixture was quenched with water and the volatiles were removed in vacuo. The residue was extracted with ethyl acetate. The extract was filtered through a bed of silica gel and distilled in vacuo. The fraction boiling at 150°C to 170°C was collected to provide the title product as a white solid. ^1H (CDCl_3) δ 1.78 (4H, m); 2.41 (2H, t); 3.36 (2H, q); 4.53(2H, broad t); 6.38 (1H, dt); 6.57 (1H, ddd); 7.42 (1H, ddd); 8.08 (1H, ddd).

STEP 2 (alternate procedure to STEP 3, EXAMPLE A)

(1Z)-N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide :

To a solution of sodium (2.7g, Aldrich) in methanol (100 mL) was added hydroxylamine hydrochloride (8.2 g, Aldrich). The mixture was stirred for 1 hr and filtered. To the filtrate was added the product of STEP1 (3 g). The solution was heated to 41°C for 48 hrs. The volatiles were removed and the residue was extracted with ethyl acetate and aqueous saturated sodium bicarbonate solution. The organic phase was dried over MgSO₄ and concentrated in vacuo to provide the title product as a white solid. ¹H (DMSO_d₆) δ 1.53 (4H, m); 1.97 (2H, t);(3.19, 2H, q);(5.31, 2H, s);(.42, 3H, m);(7.32, 1H, ddd);(.93, 1H, dd) ;(8.78, 1H, s).

STEP 3

[1-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]acetic acid trifluoroacetate:

A stirred mixture of the product of STEP2 (100 mg), 3,3-tetramethylene-glutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ¹H (CD₃OD) δ 1.65 (8H, m); 1.77(2H, p); 1.89(2H, p); 2.43 (2H, s); 2.81 (2H, t); 3.15 (2H, s); 3.39 (2H, t); 6.86 (1H, t); 7.03 (1H, d); 7.80 (1H, d); 7.88 (1H, t).

EXAMPLE 5

4-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

EXAMPLE 6

2-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The procedure for the preparation of the product of EXAMPLE 4, STEP 3 was repeated using 2-phenylglutaric anhydride (Aldrich) in the place of 3,3-tetramethyleneglutaric anhydride to provide a 55:45 mixture of the title products as a gum. ^1H (CD_3OD) δ 1.78, 2H, p; 1.88 (2H, m); 2.15-2.36 (2H, comp. band); 2.42-2.54 (1H, comp. band); 2.75-2.90 (3H, comp. band); 3.39 (2H, t); 3.67 (4.38, 1H, t) ; 6.86 (1H, td) ; 7.03, 1H, d); 7.24-7.38 (5H, complex band); 7.80 (1H, d) ; 7.87 (1H, t).

EXAMPLE 7

3,3-dimethyl-4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

3-(2-methyl-1,8-naphthyridin-3-yl)propanenitrile:

A mixture of 5-oxo-hexanenitrile (5 mL, TCI-US), 2-amino-3-formylpyridine (7 g, J. Org. Chem. 1983, vol.48, p3401) and ethanol (100 mL) was heated to reflux for 12 hours. Following evaporation of the solvent, the residue was chromatographed (silica gel, ethyl acetate) to give 4-[1,8]naphthyridin-2-ylbutyronitrile and the title product as colorless solids. ^1H (CDCl_3) δ 2.29 (3H, s); 2.83 (2H, t); 3.18 (2H, t); 7.48 (1H, dd); 8.04 (1H, s); 8.20 (1H, dd); 9.03 (1H, dd).

STEP 2

3-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)propanenitrile:

A mixture of the product of STEP1 (2 g), 10% Pd/C (250 mg) and ethanol (15 mL) was stirred under a balloon of hydrogen gas for 2 hr. Filtration and

evaporation produced the title product. ^1H (CDCl_3) δ 1.83 (2H, p); 2.24 (3H, s); 2.43 (2H, t); 2.62 (2H, t); 2.73 (2H, t); 3.31 (2H, m); 4.81 (1H, broad s); 6.88 (1H, s).

STEP 3

(1Z)-N'-hydroxy-3-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-propanimidamide:

The procedure for the preparation of EXAMPLE 4, STEP 2 was repeated using the product of STEP 2 to provide the title compound as a colorless solid. ^1H (DMSO-d_6) δ 1.74 (2H, p); 2.09 (2H, t); 2.18 (3H, s); 2.58 (4H, m); 3.20 (2H, m); 5.38 (2H, s); 6.04 (1H, s); 6.91 (1H, s); 8.72 (1H, s).

STEP 4

3,3-dimethyl-4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)-ethyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

A stirred mixture of the product of STEP 3 (100 mg), 3,3-dimethylglutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ^1H (CD_3OD) δ 1.10 (6H, s); 1.92 (2H, p); 2.35 (2H, s); 2.40 (3H, s); 2.77 (2H, t); 2.97 (2H, t); 3.01, 2H, t); 3.05 (2H, s); 3.46 (2H, t); 7.51 (1H, s).

EXAMPLE 8

[1-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}methyl]cyclopentyl]acetic acid

CF₃COOH

A stirred mixture of the product of EXAMPLE7, STEP3 (100 mg), 3,3-tetramethyleneglutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ¹H (CD₃OD) δ 1.66 (8H, m); (1.93, 2H, p); 2.40 (3H, s); 2.42 (2H, s); 2.77 (2H, t); 2.97 (2H, t); 3.00 (2H, t); 3.14 (2H, s); 3.46 (2H, t); 7.51 (1H, s).

EXAMPLE 9

4-[3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl]-4-phenylbutanoic acid

EXAMPLE 10

4-[3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl]-2-phenylbutanoic acid

The procedure for the preparation of the product of EXAMPLE 8 was repeated using 2-phenylglutaric anhydride (Aldrich) in the place of 3,3-tetramethylenegluaric anhydride to provide a 55:45 mixture of the title products as a gum. ^1H (CD_3OD) δ 1.90 (2H, m); 2.15-2.35 (2H, comp. band); 2.32/2.40 (3H, s); 2.42-2.53 (1H, comp. band); 2.69/2.76 (2H, t);; 2.85 (1H, m) ; 2.92-3.04 (4H, comp. band); 3.45 (2H, t); 3.66/4.39, (1H, t); 7.23-7.40 (5H, comp. band), 7.44/7.52 (1H, s).

EXAMPLE 11

4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}-2-phenylbutanoic acid

CF_3COOH

A stirred mixture of the product of EXAMPLE 7, STEP 3, (100 mg), 3-methyl-3-phenyl-glutaric anhydride (80 mg, Bruice,T.C.; Bradbury,W.C.; J.Amer.Chem.Soc.; EN; 87; 21; 1965; 4838-4845.) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ^1H (CD_3OD) δ 1.60 (3H, s 1.92, 2H, p); 2.32 (3H, s); 2.75 (2H, t); 2.83 (1H, d); 2.85-2.95 (4H, comp. band); 3.12 (1H, d) 3.47 (2H, t) ; 3.48 (1H, d); 3.52 (1H, d); 7.18 (1H, t); 7.28 (2H, t); 7.36 (2H, d); 7.44 (1H, s).

EXAMPLE 12

3,3-dimethyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

A stirred mixture of (1Z)-N'-hydroxy-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanimidamide (100 mg, WO 99/30709), 3,3-dimethylglutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ^1H (CD_3OD) δ 1.12 (6H, s); 1.96 (2H, p); 2.14 (2H, p); 2.36 (2H, s); 2.80 (6H, m); 3.05 (2H, s); 3.50 (2H, t); 6.63 (1H, d); 7.57 (1H, d).

EXAMPLE 13

[1-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]acetic acid

A stirred mixture of (1Z)-N'-hydroxy-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanimidamide (100 mg, WO 99/30709), 3,3-tetramethyleneglutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting mixture was purified by HPLC to provide the title compound as a gum. ^1H (CD_3OD) δ 1.68 (8H, m); 1.95 (2H, p); 2.13 (2H, p); 2.45 (2H, s); 2.80 (6H, m); 3.15 (2H, s); 3.50 (2H, t); 6.63 (1H, d);

EXAMPLE 14

4-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

EXAMPLE 15

2-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

A stirred mixture of (1Z)-N'-hydroxy-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanimidamide (100 mg, WO 99/30709), 2-phenylglutaric anhydride (80 mg, Aldrich) and 1,4-dioxane (2 mL, Aldrich) was heated to 100°C for 16 hrs. The resulting solution was purified by HPLC to provide the title compound as a gum. ^1H (CD_3OD) δ 1.93 (2H, p); 2.12 (2H, m); 2.18-2.37 (2H, comp. band); 2.42-2.55 (1H, comp. band); 2.74-2.90 (7H, comp. band); 3.48 (2H, t); 3.66/4.38 (1H, t); 6.60/6.62 (1H, d); 7.23-7.39 (5H, comp. band); 7.51/7.55 (1H, d).

EXAMPLE 16

3-(1,3-benzodioxol-5-yl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP1

Diethyl 2-(1,3-benzodioxol-5-yl)-4-hydroxy-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

Following the procedure of Brown, E.; Dhal, R.; Papin, N.; Tetrahedron, 1995, 51, 13061-13072: piperonal (22.5 g; 150 mmoles), ethyl acetoacetate (38.24 ml; 300 mmoles), and piperidine (1.5 ml) were combined in a 500 ml round bottom flask and stirred at room temperature. After 72 hours, the mixture solidified and was re-crystallized using ethanol to give 42.4 g. of product (72%). ^1H NMR (DMSO-d_6) δ 6.95 (m, 1H), 6.8 (m, $J = 7.5$ Hz, 1H), 6.71 (m, $J = 7.5$ Hz, 1H), 5.97 (s, 2H), 4.9 (s, 1H), 4.0-3.7 (m, 6H), 3.25 (d, $J = 11$ Hz, 1H), 2.9 (d, $J = 14$ Hz, 1H), 2.35 (d, $J = 14$ Hz, 1H), 1.23 (s, 3H), 1.0 (t, 3H), 0.92 (t, 3H).

STEP 2

3-(1,3-benzodioxol-5-yl)pentanedioic acid:

Diethyl 2-(1,3-benzodioxol-5-yl)-4-hydroxy-4-methyl-6-oxocyclohexane-1,3-dicarboxylate (19 g) was suspended in ethanol (140 ml) and an aqueous solution of NaOH (50%, 270 ml). The mixture was heated at reflux for one hour. After the mixture was cooled to room temperature, the ethanol was

removed under reduced pressure. Then, concentrated HCl was added until pH 1 was achieved while maintaining the temperature below 50°C. The mixture was filtered. The solid was washed with ether. The two layers were separated. The aqueous layer was extracted with ether (3x). The ether layers were combined, dried, and concentrated to give product. ¹H NMR (DMSO-d₆) δ 12.06 (br s, 2H), 6.88-6.68 (m, 3H), 5.98 (s, 2H), 3.4-3.3 (m, 1H), 2.62-2.42 (m, 4H).

STEP 3

4-(1,3-benzodioxol-5-yl)dihydro-2H-pyran-2,6(3H)-dione:

3-(1,3-benzodioxol-5-yl)pentanedioic acid (2 g, 7.9 mmoles) was suspended in acetic anhydride (50 ml) and refluxed for two hours. The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The residue was triturated with ether to give the product (1.3 g, 70%). ¹H NMR (DMSO-d₆) δ 6.91(m, 1H), 6.89 (m, 1H), 6.72 (m, 1H), 6.01 (s, 2H), 3.53-3.41 (m, 1H), 3.07-2.89 (m, 4H).

STEP 4

3-(1,3-benzodioxol-5-yl)-4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)-propyl]-1,2,4-oxadiazol-5-yl]butanoic acid trifluoroacetate:

The title compound was prepared using the following general procedure:

100 mg of the amide oxime (prepared according to the method as described in WO 99/30709) was added to an equivalent of the anhydride suspended in dioxane (5ml). The reaction mixture was heated to 95°C overnight, the solvent was removed and the residue purified on HPLC (Gilson) using acetonitrile gradient 10-50% in 12 minutes for all compounds except the pyridine and quinoline derivatives used a gradient 5-35% in 12 minutes. ^1H NMR (DMSO-d₆) δ 12.2 (br s, 1H), 8.13 (br s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 6.91-6.52 (m, 4H), 5.91 (s, 2H), 3.52-3.39 (m, 3H), 3.3-3.14 (m, 2H), 2.77-2.56 (m, 8H), 1.99-1.90 (m, 2H), 1.88-1.76 (m, 2H). Anal. Calcd. for C₂₄H₂₆N₄O₅ plus 1.2 CF₃CO₂H and 1.0 H₂O: C, 52.38; H, 4.86; N, 9.26. Found: C, 52.47; H, 4.47; N, 9.27.

EXAMPLE 17

3-(1,3-benzodioxol-5-yl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

3-(1,3-benzodioxol-5-yl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate amide oxime: ^1H NMR (DMSO- d_6) δ 12.15 (br s, 1H), 8.65 (br s, 1H), 7.92-7.82 (m, 2H), 7.00 (d, $J = 9.5$ Hz, 1H), 6.9 (m, 1H), 6.83 (t, 1H), 6.73 (d, $J = 7.5$ Hz, 1H), 6.63-6.61 (m, 1H), 5.93 (s, 2H), 3.55-3.15 (m, 5H), 2.76-2.55 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.52 (m, 2H). Mass Spectrum: $(\text{MH}^+) = 425$.

EXAMPLE 18

3-quinolin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

Diethyl 4-hydroxy-4-methyl-6-oxo-2-quinolin-3-ylcyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 8.85 (m, 1H), 8.33 (m, 1H), 8.0 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.6 (t, J = 7.5 Hz, 1H), 4.21 (d, J = 14 Hz, 1H), 4.12 (t, J = 14 Hz, 1H), 3.95-3.7 (m, 5H), 3.55 (d, J = 10.5 Hz, 1H), 3.01 (d, J = 14 Hz, 1H), 2.43 (d, J = 14 Hz, 1H), 1.32 (s, 3H), 0.9 (t, 3H), 0.74 (t, 3H).

STEP 2

3-quinolin-3-ylpentanedioic acid :

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2 : ^1H NMR (DMSO- d_6) δ 12.2 (br s, 2H), 8.85 (m, 1H), 8.23 (m, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 3.68-3.59 (m, 1H), 2.84-2.66 (m, 4H).

STEP 3 :

4-quinolin-3-ylidihydro-2H-pyran-2,6(3H)-dione :

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3 : ^1H NMR (DMSO-d₆) δ 8.91 (m, 1H), 8.26 (m, 1H), 8.02-7.97 (m, 2H), 7.8-7.74 (m, 1H), 7.66-7.6 (m, 1H), 3.9-3.8 (m, 1H), 3.28-3.1 (m, 4H).

STEP 4**3-quinolin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid bis trifluoroacetate:**

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.2 (br s, 1H), 8.86 (m, 1H), 8.31 (m, 1H), 7.98-7.82 (m, 3H), 7.74-7.69 (m, 1H), 7.6-7.52 (m, 2H), 6.49 (d, J = 7.5 Hz, 1H), 3.85-3.75 (m, 1H), 3.5-3.39 (m, 4H), 3.0-2.82 (m, 2H), 2.78-2.7 (m, 2H), 2.65-2.59 (m, 2H), 2.55-2.5 (m, 2H), 1.9-1.78 (m, 4H). Anal. Calcd. for C₂₆H₂₇N₅O₃ plus 2.0 CF₃CO₂H: C, 52.56; H, 4.26; N, 10.22. Found: C, 52.42; H, 4.28; N, 10.38

EXAMPLE 19

3-quinolin-3-yl-4-[3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl]-butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.3 (br s, 1H), 8.83 (m, 1H), 8.68 (br s, 1H), 8.3 (m, 1H), 8.0-7.82 (m, 4H) 7.72-7.68 (m, 1H), 7.61-7.53 (m, 1H), 7.01 (d, J = 14 Hz, 1H), 6.83 (t, J = 7.5 Hz, 1H), 3.82-3.78 (m, 1H), 3.24-3.20 (m, 2H), 3.0-2.8 (m, 2H), 2.68-2.61 (m, 4H), 1.69-1.60 (m, 2H), 1.55-1.45 (m, 2H). Mass Spectrum: (M^+) = 432.

EXAMPLE 20

3-(3-methoxyphenyl)-4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl]butanoic acid

STEP 1

Diethyl 4-hydroxy-2-(3-methoxyphenyl)-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 7.18 (t, 1H), 6.87 (m, 2H), 6.75 (m, 1H), 4.9 (s, 1H), 4.0-3.78 (m, 6H), 3.7 (s, 3H), 3.3 (d, J = 10.5 Hz, 1H), 2.92 (d, J = 14 Hz, 1H), 2.32 (d, J = 14 Hz, 1H), 1.22 (s, 3H), 0.96 (t, 3H), 0.85 (t, 3H).

STEP 2

3-(3-methoxyphenyl)pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.08 (br s, 2H), 7.19 (t, J = 7.5 Hz, 1H), 6.83-6.72 (m, 3H), 3.71 (s, 3H), 3.48-3.32 (m, 1H), 2.65-2.46 (m, 4H).

STEP 3

4-(3-methoxyphenyl)dihydro-2H-pyran-2,6(3H)-dione:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3: ^1H NMR (DMSO-d₆) δ 7.28 (t, 7.5 Hz, 1H), 6.88-8.82 (m, 3H), 3.75 (s, 3H), 3.56-3.48 (m, 1H), 3.1-2.92 (m, 4H).

STEP 4

3-(3-methoxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)-propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.19 (br s, 1H), 7.99 (br s, 1H), 7.6 (d, J = 7.5 Hz, 1H), 7.15 (t, 1H), 6.82-6.7 (m, 3H), 6.54 (d, J = 7.5 Hz, 1H), 3.68 (s, 3H), 3.58-3.39 (m, 5H), 3.32-3.19 (m, 2H), 2.80-2.60 (m, 6H), 1.99-1.89 (m, 2H), 1.85-1.76 (m, 2H). Anal. Calcd. for C₂₄H₂₈N₄O₄ plus 1.0 CF₃CO₂H and 1.0 H₂O: C, 54.93; H, 5.50; N, 9.85. Found: C, 55.19; H, 5.93; N, 9.43.

EXAMPLE 21

3-(3-methoxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.18 (br s, 1H), 8.65 (br s, 1H), 7.92-7.81 (m, 2H), 7.13 (d, J = 9.5 Hz, 2H), 6.99 (d, J = 9.5 Hz, 1H), 6.84-6.70 (m, 4H), 3.69 (s, 3H), 3.55-3.45 (m, 1H), 3.32-3.18 (m, 4H), 2.81-2.59 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.52 (m, 2H). Anal. Calcd. for $C_{22}\text{H}_{26}\text{N}_4\text{O}_4$ plus 1.45 $\text{CF}_3\text{CO}_2\text{H}$: C, 51.94; H, 4.81; N, 9.73. Found: C, 52.27; H, 4.96; N, 9.33.

EXAMPLE 22

3-(4-methoxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

Diethyl 4-hydroxy-2-(4-methoxyphenyl)-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 7.21 (d, $J = 7.5$ Hz, 2H), 6.81 (d, $J = 7.5$ Hz, 2H), 4.85 (s, 1H) 3.95-3.78 (m, 6H), 3.7 (s, 3H), 3.26 (d, $J = 10.5$ Hz, 1H), 2.91 (d, $J = 14$ Hz, 1H), 2.32 (d, $J = 14$ Hz, 1H), 1.23 (s, 3H), 0.97 (t, 3H), 0.88 (t, 3H).

STEP 2

3-(4-methoxyphenyl)pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.02 (br s, 2H), 7.17 (d, $J = 9.5$ Hz, 2H), 6.81 (d, $J = 9.5$ Hz, 2H), 3.71 (s, 3H), 3.45-3.35 (m, 1H), 2.63-2.41 (m, 4H).

STEP 3

4-(4-methoxyphenyl)dihydro-2H-pyran-2,6(3H)-dione:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3: ^1H NMR (DMSO-d₆) δ 7.21 (d, J = 9.5 Hz, 2H), 6.91 (d, J = 9.5 Hz, 2H), 3.71 (s, 3H), 3.55-3.45 (m, 1H), 3.06-2.9 (m, 4H).

STEP 4

3-(4-methoxyphenyl)-4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)-propyl]-1,2,4-oxadiazol-5-yl]butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.19 (br s, 1H), 7.86 (br s, 1H), 7.6 (d, J = 7.5 Hz, 1H), 7.15 (d, J = 9.5 Hz, 2H), 6.79 (d, J = 9.5 Hz, 2H), 6.55 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H), 3.54-3.39 (m, 5H), 3.31-3.16 (m, 2H), 2.73-2.55 (m, 6H), 1.99-1.89 (m, 2H), 1.85-1.76 (m, 2H). Mass Spectrum: (MH⁺) = 437.

EXAMPLE 23

3-(4-methoxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

CF_3COOH

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.15 (br s, 1H), 8.65 (br s, 1H), 7.9-7.82 (m, 2H), 7.13 (d, J = 9.5 Hz, 2H), 7.01 (d, J = 9.5 Hz, 1H), 6.82 (t, 1H), 6.79 (d, J = 9.5 Hz, 2H), 3.7 (s, 3H), 3.55-3.45 (m, 1H), 3.32-3.15 (m, 4H), 2.87-2.55 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.52 (m, 2H). Anal. Calcd. for $\text{C}_{22}\text{H}_{26}\text{N}_4\text{O}_4$ plus 1.4 $\text{CF}_3\text{CO}_2\text{H}$: C, 52.25; H, 4.84; N, 9.83. Found: C, 52.08; H, 4.85; N, 9.61.

EXAMPLE 24

3-(3-fluorophenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

Diethyl 2-(3-fluorophenyl)-4-hydroxy-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: Mixture of diastereoisomers: ^1H NMR (DMSO- d_6) δ 7.38-7.1 (m, 4H), 4.7-4.5 (m, 1H), 4.0-3.79 (m, 6H), 3.32-3.28 (m, 1H), 2.94-2.89 (m, 1H), 2.38-2.30 (m, 1H), 1.25 (s, 3H), 0.95 (t, 3H), 0.86 (t, 3H).

STEP 2

3-(3-fluorophenyl)pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.02 (br s, 2H), 7.33-7.29 (m, 1H), 7.15-7.11 (m, 2H), 7.0 (t, 1H), 3.47-3.38 (m, 1H), 2.7-2.5 (m, 4H).

STEP 3

4-(3-fluorophenyl)dihydro-2H-pyran-2,6(3H)-dione: The compound was prepared according to the method as described for preparing EXAMPLE 16,
STEP 3: ^1H NMR (DMSO-d₆) δ 7.41 (m, 1H), 7.2-7.09 (m, 3H), 3.66-3.56 (m, 1H), 3.11-2.94 (m, 4H).

STEP 4

3-(3-fluorophenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.28 (br s, 1H), 7.79 (br s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.31-7.24 (m, 1H), 7.18-6.96 (m, 3H), 6.55 (d, J = 7.5 Hz, 1H), 3.61-3.55 (m, 2H), 3.4-3.2 (m, 5H), 2.82-2.6 (m, 6H), 1.99-1.89 (m, 2H), 1.86-1.78 (m, 2H). Mass Spectrum: (MH⁺) = 425.

EXAMPLE 25

3-(3-fluorophenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ¹H NMR (DMSO-d₆) δ 12.25 (br s, 1H), 8.69 (br s, 1H), 7.92-7.81 (m, 2H), 7.31-7.25 (m, 1H), 7.19-6.95 (m, 4H), 6.87-6.8 (m, 1H), 3.61-3.52 (m, 1H), 3.36-3.2 (m, 4H), 2.83-2.61 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.51 (m, 2H). Anal. Calcd. for C₂₁H₂₃N₄O₃F plus 1.0 CF₃CO₂H and 1.0 H₂O: C, 52.08; H, 4.94; N, 10.56. Found: C, 52.34; H, 4.56; N, 10.42.

EXAMPLE 26

3-(4-fluorophenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate

STEP 1

Diethyl 2-(4-fluorophenyl)-4-hydroxy-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 7.36-7.31 (m, 2H), 7.17-7.08 (m, 2H), 4.94 (s, 1H), 4.0-3.77 (m, 6H), 2.91 (d, J = 14 Hz, 1H), 2.35 (d, J = 14 Hz, 1H), 2.34 (d, J = 14 Hz, 1H), 1.24 (s, 3H), 0.94 (t, 3H), 0.86 (t, 3H).

STEP 2

3-(4-fluorophenyl)pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.09 (br s, 2H), 7.30 (dd, J = 7.5, 2.5 Hz, 2H), 7.1 (t, J = 7.5 Hz, 2H), 3.45-3.35 (m, 1H), 2.68-2.47 (m, 4H).

STEP 3

4-(4-fluorophenyl)dihydro-2H-pyran-2,6(3H)-dione:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3: ^1H NMR (DMSO-d₆) δ 7.35-7.08 (m, 4H), 3.65-3.55 (m, 1H), 3.1-2.9 (m, 4H).

STEP 4

3-(4-fluorophenyl)-4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl]butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.28 (br s, 1H), 7.72 (br s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.31-7.26 (m, 2H), 7.11-7.02 (m, 2H), 6.55 (d, J = 7.5 Hz, 1H), 3.61-3.55 (m, 2H), 3.4-3.2 (m, 5H), 2.82-2.6 (m, 6H), 1.99-1.89 (m, 2H), 1.86-1.78 (m, 2H). Anal. Calcd. for C₂₃H₂₅N₄O₃F·1.2 CF₃CO₂H: C, 54.35; H, 4.70; N, 9.98. Found: C, 54.02; H, 4.57; N, 9.66.

EXAMPLE 27

3-(4-fluorophenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.22 (br s, 1H), 8.65 (br s, 1H), 7.92-7.81 (m, 2H), 7.32-7.25 (m, 2H), 7.10-6.99 (m, 3H), 6.82 (t, J = 7.5 Hz, 1H), 3.61-3.52 (m, 1H), 3.33-3.19 (m, 4H), 2.83-2.61 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.51 (m, 2H). Anal. Calcd. for $\text{C}_{21}\text{H}_{23}\text{N}_4\text{O}_3\text{F} \cdot 1.2 \text{ CF}_3\text{CO}_2\text{H}$: C, 52.51; H, 4.56; N, 10.47. Found: C, 52.21; H, 4.39; N, 10.20.

EXAMPLE 28

4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}-3-[3-(trifluoromethyl)phenyl]butanoic acid

STEP 1

Diethyl 4-hydroxy-4-methyl-6-oxo-2-[3-(trifluoromethyl)phenyl]cyclohexane-1,3-dicarboxylate :

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 7.7-7.51 (m, 4H), 5.03 (s, 1H), 4.1-3.83 (m, 4H), 3.80 (q, 2H), 3.41 (d, $J = 10.5$ Hz, 1H), 2.94 (d, $J = 14$ Hz, 1H), 2.38 (d, 14 Hz, 1H), 1.27 (s, 3H), 0.91 (t, 3H), 0.80 (t, 3H).

STEP 2

3-[3-(trifluoromethyl)phenyl]pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.15 (br s, 2H), 7.64-7.48 (m, 4H), 3.57-3.45 (m, 1H), 2.82-2.57 (m, 4H).

STEP 3

4-[3-(trifluoromethyl)phenyl]dihydro-2H-pyran-2,6(3H)-dione:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3: ^1H NMR (DMSO-d₆) δ 7.7-7.5 (m, 4H), 3.96-3.89 (m, 1H), 3.16-2.96 (m, 4H).

STEP 4

4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}-3-[3-(trifluoromethyl)phenyl]butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-d₆) δ 12.29 (br s, 1H), 7.92 (br s, 1H), 7.64-7.47 (m, 5H), 6.55 (d, J = 7.5 Hz, 1H), 3.61-3.55 (m, 1H), 3.4-3.2 (m, 4H), 2.82-2.6 (m, 8H), 1.99-1.89 (m, 2H), 1.86-1.78 (m, 2H). Anal. Calcd. for C₂₄H₂₅F₃N₄O₃ plus 1.2 CF₃CO₂H and 1.1 H₂O : C, 50.24; H, 4.54; N, 8.88. Found: C, 50.26; H, 4.25; N, 8.90.

EXAMPLE 29

4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-3-[3-(trifluoromethyl)-phenyl]butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.26 (br s, 1H), 8.55 (br s, 1H), 7.91 (d, J = 5.5 Hz, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.61-7.46 (m, 4H), 6.99 (d, J = 7.5 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H), 3.7-3.6 (m, 1H), 3.45-3.23 (m, 4H), 2.9-2.61 (m, 4H), 1.7-1.61 (m, 2H), 1.60-1.50 (m, 2H). Anal. Calcd. for $\text{C}_{22}\text{H}_{23}\text{F}_3\text{N}_4\text{O}_3$ plus 1.2 $\text{CF}_3\text{CO}_2\text{H}$: C, 50.07; H, 4.17; N, 9.57. Found: C, 50.29; H, 4.00; N, 9.21.

EXAMPLE 30

3-(3-hydroxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

Diethyl 4-hydroxy-2-(3-hydroxyphenyl)-4-methyl-6-oxocyclohexane-1,3-dicarboxylate:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 1: ^1H NMR (DMSO- d_6) δ 9.26 (s, 1H), 7.03 (t, 1H), 6.74-6.6 (m, 2H), 6.58 (m, 1H), 4.86 (s, 1H), 3.98-3.71 (m, 6H), 3.24 (d, J = 11 Hz, 1H), 2.93 (d, J = 14 Hz, 1H), 2.31 (d, J = 14 Hz, 1H), 1.23 (s, 3H), 0.98 (t, 3H), 0.89 (t, 3H).

STEP 2

3-(3-hydroxyphenyl)pentanedioic acid:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 2: ^1H NMR (DMSO- d_6) δ 12.1 (br s, 2H), 9.27 (s, 1H), 7.05 (t, 1H), 6.70-6.55 (m, 3H), 3.3 (m, 1H), 2.61-2.42 (m, 4H).

STEP 3

4-(3-hydroxyphenyl)dihydro-2H-pyran-2,6(3H)-dione

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3 (acetate form): ^1H NMR (DMSO- d_6) δ 7.41

(t, 1H), 7.2 (m, 1H), 7.1-7.03 (m, 2H), 3.65-3.55 (m, 1H), 3.1-2.95 (m, 4H), 2.28 (s, 3H).

STEP 4

3-(3-hydroxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)-propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride with minor modification: Amide oxime (100 mg) was added to an equivalent of the anhydride suspended in dioxane (5ml). The reaction mixture was heated to 95°C overnight and then the solvent was removed. The residue was dissolved in 1N NaOH (2 mL), MeOH (2 mL), and THF (2 mL) and stirred at room temperature until no more acetylated product was seen by LC/MS. The reaction was then neutralized with 1N HCl (2 mL), the solvent was removed under reduced pressure, and the residue was purified by reverse phase HPLC (Gilson): ^1H NMR (DMSO-d₆) δ 7.81 (br s, 1H), 7.6 (d, J = 7.5 Hz, 1H), 7.1 (t, J = 14Hz, 1H), 6.66-6.55 (m, 4H), 3.61-3.55 (m, 1H), 3.4-3.15 (m, 4H), 2.77-2.55 (m, 8H), 1.99-1.89 (m, 2H), 1.86-1.78 (m, 2H). Mass Spectrum: (MH⁺) = 423.

EXAMPLE 31

3-(3-hydroxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride with minor modification: Amide oxime (100 mg) was added to an equivalent of the anhydride suspended in dioxane (5ml). The reaction mixture was heated to 95°C overnight and then the solvent was removed. The residue was dissolved in 1N NaOH (2 mL), MeOH (2 mL), and THF (2 mL) and stirred at room temperature until no more acetylated product was seen by LC/MS. The reaction was then neutralized with 1N HCl (2 mL), the solvent was removed under reduced pressure, and the residue was purified by reverse phase HPLC (Gilson). ^1H NMR (DMSO-d₆) δ 9.3 (br s, 1H), 8.73 (br s, 1H), 7.91-7.85 (m, 2H), 7.05-6.98 (m, 2H), 6.84 (t, J = 7.5 Hz, 1H), 6.63-6.53 (m, 3H), 3.52-3.4 (m, 1H), 3.33-3.14 (m, 4H), 2.71-2.54 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.51 (m, 2H). Mass Spectrum: (MH⁺) = 397.

EXAMPLE 32

3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

STEP 1

3-pyridin-3-ylpentanedioic acid :

The diacid for this compound was synthesized according to the procedures outlined in Furschtatowa et al.; Zh.Obshch.Khim.; 28; 1958; 668, 670; engl. Ausg. S. 650, 652.

STEP 2

4-pyridin-3-yldihydro-2H-pyran-2,6(3H)-dione:

The compound was prepared according to the method as described for preparing EXAMPLE 16, STEP 3: ^1H NMR (DMSO- d_6) δ 8.83-8.77 (m, 2H), 8.35 (d, $J = 7.5$ Hz, 1H), 7.95-7.89 (m, 1H), 3.9-3.78 (m, 1H), 3.26-3.08 (m, 4H).

STEP 3

3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid bis(trifluoroacetate):

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO-

d_6) δ 12.29 (br s, 1H), 8.55 (m, 1H), 8.5-8.46 (m, 1H), 7.92 (m, 2H), 7.61 (d, J = 7.5 Hz, 1H), 7.5-7.4 (m, 1H), 6.57 (d, J = 7.5 Hz, 1H), 3.70-3.55 (m, 1H), 3.47-2.60 (m, 4H), 2.77-2.55 (m, 8H), 1.99-1.89 (m, 2H), 1.86-1.78 (m, 2H). Anal. Calcd. for $C_{22}H_{25}N_5O_3$ plus 2.0 CF_3CO_2H and 1.0 H_2O : C, 47.78; H, 4.47; N, 10.72. Found: C, 47.36; H, 4.30; N, 10.67.

EXAMPLE 33

3-pyridin-3-yl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.25 (br s, 1H), 8.78 (br s, 1H), 8.58 (m, 1H), 8.52-8.49 (m, 1H), 8.1-7.98 (m, 1H) 7.93-7.83 (m, 2H), 7.52-7.48 (m, 1H), 7.02 (d, $J = 7.5$ Hz, 1H), 6.82 (t, $J = 7.5$ Hz, 1H), 3.7-3.6 (m, 1H), 3.42-3.28 (m, 4H), 2.91-2.62 (m, 4H), 1.71-1.62 (m, 2H), 1.60-1.51 (m, 2H). Anal. Calcd. for $\text{C}_{20}\text{H}_{23}\text{N}_5\text{O}_3$ plus 2.0 $\text{CF}_3\text{CO}_2\text{H}$ and 1.0 H_2O : C, 45.94; H, 4.34; N, 11.16. Found: C, 45.53; H, 4.27; N, 11.27.

EXAMPLE 34

3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate

STEP 1

4-phenyldihydro-2H-pyran-2,6(3H)-dione:

This compound was synthesized according to procedures outlined in Tokoroyama, Takashi; Kusaka, Hisashi; Can.J.Chem.; 74; 12; 1996; 2487-2502.

STEP 2

3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid trifluoroacetate:

The title compound was prepared according to the method as described for preparing EXAMPLE 16 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.19 (br s, 1H), 7.81 (br s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 5 Hz, 4H), 7.20-7.12 (m, 1H), 6.55 (d, J = 7.5 Hz, 1H), 3.61-3.52 (m, 1H), 3.4-3.2 (m, 4H), 2.81-2.6 (m, 8H), 1.98-1.88 (m, 2H), 1.84-1.78 (m, 2H). Mass Spectrum: (M^+) = 407.

EXAMPLE 35

3-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (DMSO- d_6) δ 12.15 (br s, 1H), 8.71 (br s, 1H), 7.92-7.84 (m, 2H), 7.29-7.12 (m, 5H), 7.02 (d, J = 14 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 3.60-3.51 (m, 1H), 3.45-3.19 (m, 4H), 2.81-2.60 (m, 4H), 1.73-1.63 (m, 2H), 1.61-1.51 (m, 2H). Mass Spectrum: (M^+) = 381.

EXAMPLE 36

3-methyl-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)pentanoic acid

CF_3COOH

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.91 (m, 1 H), 7.84 (d, 1 H), 7.06 (d, 1 H), 6.89 (m, 1 H), 3.42 (t, 2 H), 3.09 (dd, 2 H), 2.84 (t, 2 H), 2.39 (s, 2 H), 1.92 (m, 2 H), 1.80 (m, 2 H), 1.51 (m, 2 H), 1.09 (s, 3 H), 0.95 (t, 3 H); HRMS for $\text{C}_{18}\text{H}_{26}\text{N}_4\text{O}_3$ m/z found 347.2066 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 347.2083

EXAMPLE 37

[1-{[3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl]cyclohexyl]-acetic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.89 (m, 1 H), 7.83 (d, 1 H), 7.05 (d, 1 H), 6.88 (m, 1 H), 3.41 (t, 2 H), 3.37 (s, 1 H), 3.19 (s, 2 H), 2.82 (t, 2 H), 2.44 (s, 2 H), 1.91 (m, 2 H), 1.78 (m, 2 H), 1.62-1.42 (series of m, 10 H);); HRMS for $\text{C}_{20}\text{H}_{28}\text{N}_4\text{O}_3$ m/z found 373.2230 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 373.2240.

EXAMPLE 38

3-methyl-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-hexanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.89 (m, 1 H), 7.84 (d, 1 H), 7.05 (d, 1 H), 6.88 (m, 1 H), 3.41 (t, 2 H), 3.37 (s, 1 H), 3.07 (dd, 2 H), 2.83 (t, 2 H), 2.38 (s, 2 H), 1.92 (m, 2 H), 1.80 (m, 2 H), 1.49 (m, 4 H), 1.08 (s, 3 H), 0.92 (m, 3 H); HRMS for $\text{C}_{19}\text{H}_{28}\text{N}_4\text{O}_3$ m/z found 361.2252 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 361.2240.

EXAMPLE 39

3,4-dimethyl-3-(3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl)methyl)-
pentanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.85 (d, 1 H), 7.81 (m, 1 H), 6.95 (d, 1 H), 6.81 (m, 1 H), 3.38 (t, 2 H), 3.37 (s, 1 H), 3.15 (m, 2 H), 2.82 (t, 2 H), 2.48 (d, 1 H), 2.41 (m, 2 H), 1.93-1.73 (series of m, 4 H), 1.06 (s, 3 H), 0.98-0.90 (series of m, 6 H); HRMS for $\text{C}_{19}\text{H}_{28}\text{N}_4\text{O}_3$ m/z found 361.2260 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 361.2240

EXAMPLE 40

3-ethyl-3-((3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl)methyl)-pentanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.88 (d, 1 H), 7.47 (m, 1 H), 6.60-6.55 (series of m, 2 H), 3.08 (s, 2 H), 2.78 (t, 2 H), 2.37 (s, 2 H), 1.36 (m, 2 H), 1.68 (m, 2 H), 1.48 (m, 4 H), 0.91 (t, 6 H); HRMS for $\text{C}_{19}\text{H}_{28}\text{N}_4\text{O}_3$ m/z found 361.2242 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 361.2240.

EXAMPLE 41

4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.88 (m, 1 H), 7.83 (d, 1 H), 7.03 (d, 1 H), 6.87 (m, 1 H), 3.41 (t, 2 H), 3.37 (s, 1 H), 2.97 (t, 2 H), 2.82 (t, 2 H), 2.45 (t, 2 H), 2.07 (m, 2 H), 1.90 (m, 2 H), 1.80 (m, 2 H); HRMS for $\text{C}_{15}\text{H}_{20}\text{N}_4\text{O}_3$ m/z found 305.1611 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 305.1614.

EXAMPLE 42

3-methyl-3-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (CD_3OD) δ 7.87 (m, 1 H), 7.83 (d, 1 H), 7.42-7.35 (series of m, 2 H), 7.28 (t, 2 H), 7.17 (t, 1 H), 7.02 (d, 1 H), 6.87 (m, 1 H), 3.50 (m, 2 H), 3.38-3.33 (series of m, 3 H), 2.90 (s, 2 H), 2.73 (t, 2 H), 1.79 (m, 2 H), 1.68 (m, 2 H), 1.63 (s, 3 H); HRMS for $\text{C}_{22}\text{H}_{26}\text{N}_4\text{O}_3$ m/z found 395.2089 ($\text{M}+\text{H})^+$. m/z calc ($\text{M}+\text{H})^+$ 395.2083.

EXAMPLE 43

3-Methyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid

The title compound was prepared using the following general procedure:

Amide oxime (100mg) was added to an equivalent of the anhydride suspended in dioxane (2mL). The reaction mixture was heated to 95°C for 16 hours. The reaction mixture was purified by reverse phase HPLC (Gilson, 5% to 70% acetonitrile in 0.05% aqueous trifluoroacetic acid, 12 minutes). ^1H NMR (400 MHz, CD₃OD) δ 0.95 (t, 3 H), 1.09 (s, 3 H), 1.50 (m, 2 H), 1.97 (m, 2 H), 2.38 (m, 2 H), 2.83 (m, 6 H), 3.09 (dd, 2 H), 3.37 (s, 1 H), 3.53 (m, 2 H), 6.63 (d, 1 H), 7.59 (d, 1 H); MS (ESI+) for C₂₀H₂₈N₄O₃ m/z 373.2230 (M+H)⁺.

EXAMPLE 44

3-Methyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid

STEP 1

4-Methyl-2,6-dioxo-4-propyl-piperidine-3,5-dicarbonitrile:

Following the procedure of Vogel, A. I.; J. Chem. Soc., 1934; 1758-1765: Pentan-2-one, ethyl cyanoacetate, and saturated ethanolic ammonia were combined in a 250 mL round bottomed flask. The flask was sealed with a rubber septum and allowed to sit at 0°C. After 120 hrs, the mixture had solidified and was filtered. The solid was dissolved in a minimum of hot water and acidified with concentrated hydrochloric acid. After 16 hours the crystals were collected. MS (ESI+) for $C_{11}H_{13}N_3O_2$ m/z 220.2 ($M+H$)⁺.

STEP 2

4-Methyl-4-propyl-dihydro-pyran-2,6-dione:

Following the procedure of Vogel, A. I.; J. Chem. Soc., 1934; 1758-1765: 4-Methyl-2,6-dioxo-4-propyl-piperidine-3,5-dicarbonitrile was dissolved in 50 mL of sulfuric acid and stirred for 16 hrs. Water (50mL) was added and the solution was refluxed for 18 hrs. Upon cooling, the crystals were collected. The crystals were suspended in 10mL of acetic anhydride. The suspension was heated to 130°C and stirred for 16 hrs. The solvent was removed under reduced pressure. The residue was partitioned between saturated

aqueous sodium bicarbonate and diethyl ether. The ether fraction was treated with anhydrous magnesium sulfate and concentrated under reduced pressure to give the product MS (ESI+) for $C_9H_{14}O_3$ m/z 171.2 ($M+H$)⁺.

STEP 3

3-Methyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. 1H NMR (400 MHz, CD₃OD) δ 0.93 (m, 3 H), 1.11 (s, 3 H), 1.40 (m, 4 H), 1.97 (m, 2 H), 2.15 (m, 2 H), 2.40 (s, 2 H), 2.83 (m, 8 H), 3.09 (dd, 2 H), 3.53 (m, 2 H), 6.63 (d, 1 H), 7.59 (d, 1 H); MS (ESI+) for $C_{21}H_{30}N_4O_3$ m/z 387.2393 ($M+H$)⁺

EXAMPLE 45

3-Ethyl-3-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl]-pentanoic acid

STEP 1

4,4-Diethyl-2,6-dioxo-piperidine-3,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for $C_{11}H_{13}N_3O_2$ *m/z* 220.2 ($M+H$)⁺.

STEP 2

4,4-Diethyl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_9H_{14}O_3$ *m/z* 171.2 ($M+H$)⁺.

STEP 3

3-Ethyl-3-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl]-pentanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (400 MHz, CD₃OD) δ 0.95 (m, 8 H), 1.84 (m, 1 H), 1.95 (m, 2 H), 2.15 (m, 2 H), 2.43 (m, 2 H), 2.83 (m, 6 H), 3.15 (m, 2 H), 3.37 (s, 2 H), 3.52 (m, 2 H), 6.63 (d, 1 H), 7.59 (d, 1 H); MS (ESI+) for C₂₁H₃₀N₄O₃ *m/z* 387.2413 (M+H)⁺.

EXAMPLE 46

3,4-Dimethyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid

STEP 1

4-Isopropyl-4-methyl-2,6-dioxo-piperidine-3,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for $C_{11}H_{13}N_3O_2$ *m/z* 220.2 ($M+H$)⁺.

STEP 2

4-Isopropyl-4-methyl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_9H_{14}O_3$ *m/z* 171.2 ($M+H$)⁺.

STEP 3

3,4-Dimethyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ¹H NMR (400 MHz, CD₃OD) δ 0.93 (t, 6 H), 1.50 (m, 4 H), 1.97 (m, 2 H), 2.15 (m, 2 H), 2.39 (s, 2 H), 2.83 (m, 6 H), 3.09 (s, 2

H), 3.37 (s, 1 H), 3.52 (m, 2 H), 6.63 (d, 1 H), 7.59 (d, 1 H); MS (ESI+) for C₂₁H₃₀N₄O₃ *m/z* 387.2379 (M+H)⁺.

EXAMPLE 47

3-Methyl-3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

STEP 1

4-Methyl-4-phenyl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{12}H_{12}O_3$ m/z 205.2 ($M+H$)⁺.

STEP 2

3-Methyl-3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ¹H NMR (400 MHz, CD₃OD) δ 1.65 (s, 3 H), 1.99 (m, 2 H), 2.07 (m, 2 H), 2.70 (m, 4 H), 2.83 (m, 2 H), 2.92 (s, 2 H), 3.38 (s, 2 H), 3.52 (m, 4 H), 6.56 (d, 1 H), 7.18 (m, 1 H), 7.28 (m, 2 H), 7.39 (m, 2 H), 7.58 (d, 1 H); MS (ESI+) for $C_{24}H_{28}N_4O_3$ m/z 421.2227 ($M+H$)⁺.

EXAMPLE 48

3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid

STEP 1

4-Ethyl-4-phenyl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{13}H_{14}O_3$ *m/z* 219.2 ($M+H$)⁺.

STEP 2

3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ¹H NMR (400 MHz, CD₃OD) δ 0.72 (t, 3 H), 1.95 (m, 6 H), 2.59 (m, 2 H), 2.68 (t, 2 H), 2.74 (m, 2 H), 2.82 (d, 1 H), 3.01 (d, 1 H), 3.40 (m, 2 H), 3.63 (d, 1 H), 3.77 (d, 1 H), 6.43 (d, 1 H), 7.17 (m, 1 H), 7.29 (m, 2 H), 7.38 (m, 3 H); MS (ESI+) for $C_{25}H_{30}N_4O_3$ *m/z* 435.2386 ($M+H$)⁺.

EXAMPLE 49

3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid

STEP 1

4-Phenyl-4-propyl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for C₁₄H₁₆O₃ *m/z* 233.2 (M+H)⁺.

STEP 2

3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ¹H NMR (400 MHz, CD₃OD) δ 0.83 (t, 3 H), 1.14 (m, 2 H), 1.95 (m, 6 H), 2.59 (t, 2 H), 2.69 (t, 2 H), 2.76 (m, 2 H), 2.83 (d, 1 H), 3.01 (d, 1 H), 3.43 (m, 2 H), 3.59 (d, 1 H), 3.72 (d, 1 H), 6.48 (d, 1 H), 7.18 (m, 1 H), 7.31 (m, 2 H), 7.38 (m, 1 H), 7.41 (m, 1 H); MS (ESI+) for C₂₆H₃₃N₄O₃ *m/z* 449.2552 (M+H)⁺.

EXAMPLE 50

4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid :

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (400 MHz, DMSO- d_6) δ 1.82 (m, 2 H), 1.92 (m, 2 H), 2.01 (m, 2 H), 2.34 (t, 2 H), 2.72 (m, 6 H), 2.92 (t, 2 H), 3.41 (m, 3 H), 6.59 (d, 1 H), 7.58 (d, 1 H), 8.26 (s, 1 H); MS (ESI+) for $\text{C}_{17}\text{H}_{22}\text{N}_4\text{O}_3$ m/z 331.5 ($\text{M}+\text{H})^+$.

EXAMPLE 51

3-Methyl-3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

STEP 1

2-Cyano-3-pyridin-3-yl-but-2-enoic acid ethyl ester

1-Pyridin-3-yl-ethanone, ethyl cyanoacetate, benzene, ammonium acetate, and acetic acid were refluxed for 16 hrs in a 250 mL round bottomed flask fitted with a Dean-Stark trap. The solutions were washed with water and brine, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel chromatography to yield the product as an oil. MS (ESI+) for $C_{12}H_{12}N_2O_2$ m/z 217.2 ($M+H$)⁺.

STEP 2

4'-Methyl-2',6'-dioxo-1',2',3',4',5',6'-hexahydro-[3,4']bipyridinyl-3',5'-dicarbonitrile

Cyanoacetamide was stirred with sodium ethoxide in ethanol for 30 minutes. 2-Cyano-3-pyridin-3-yl-but-2-enoic acid ethyl ester was added and allowed to sit for 16 hours. The solution was acidified to pH 4 and partially concentrated under reduced pressure, causing precipitation of product. The product was filtered and allowed to dry. MS (ESI+) for $C_{13}H_{10}N_4O_2$ m/z 255.2 ($M+H$)⁺.

STEP 3

3,4,5-Trimethyl-4-pyridin-3-yl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{11}H_{11}NO_3$ *m/z* 206.2 ($M+H$)⁺.

STEP 4

3-Methyl-3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ¹H NMR (400 MHz, CD₃CN) δ 1.62 (s, 3 H), 1.96 (m, 2 H), 2.05 (m, 2 H), 2.68 (m, 4 H), 2.79 (m, 2 H), 2.96 (d, 1 H), 3.11 (d, 1 H), 3.49 (m, 4 H), 6.47 (d, 1 H), 7.48 (d, 1 H), 7.70 (dd, 1 H), 8.27 (m, 1 H), 8.61 (m, 1 H), 8.78 (m, 1 H), 9.62 (m, 1 H); MS (ESI+) for $C_{23}H_{27}N_5O_3$ *m/z* 422.5 ($M+H$)⁺.

EXAMPLE 52

(1-Acetyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid

STEP 1

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for $C_{13}H_{14}N_4O_3$ m/z 275.3 ($M+H$)⁺.

STEP 2

9-Acetyl-3-oxa-9-aza-spiro[5.5]undecane-2,4-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{11}H_{15}NO_4$ m/z 226.3 ($M+H$)⁺.

STEP 3

(1-Acetyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. 1H NMR (400 MHz, CD₃CN) δ 1.6 (m, 4 H), 1.92

(m, 2 H), 2.02 (s, 3 H), 2.11 (m, 2 H), 2.48 (s, 2 H), 2.77 (m, 2 H), 3.19 (s, 2 H), 3.5 (m, 6 H), 6.49 (d, 1 H), 7.46 (d, 1 H); MS (ESI+) for C₂₃H₃₁N₅O₄ m/z 442.6 (M+H)⁺.

EXAMPLE 53

[4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-1-(2,2,2-trifluoro-acetyl)-piperidin-4-yl]-acetic acid

STEP 1

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for C₁₃H₁₄N₄O₃ m/z 275.3 (M+H)⁺.

STEP 2

9-(2,2,2-Trifluoro-acetyl)-3-oxa-9-aza-spiro[5.5]undecane-2,4-dione

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile was dissolved in concentrated hydrochloric acid and refluxed for 18 hrs. Upon cooling, the crystals were collected. The crystals were suspended in 10mL of trifluoroacetic anhydride. The suspension was refluxed and stirred for 16 hrs. The solvent was removed under reduced pressure to give the product.

¹H NMR (CDCl₃) δ 1.66 (m, 4 H), 2.79 (m, 4 H), 3.64 (m, 2 H), 3.72 (m, 2 H);

STEP 3

[4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-1-(2,2,2-trifluoro-acetyl)-piperidin-4-yl]-acetic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (CDCl_3) δ 1.78 (m, 5 H), 1.93 (m, 2 H), 2.08 (m, 2 H), 2.53 (s, 2 H), 2.78 (m, 6 H), 3.23 (s, 2 H), 3.47 (m, 2 H), 3.58-3.85 (m, 5 H), 6.59 (d, 1 H), 7.53 (d, 1 H); MS (ESI+) for $\text{C}_{23}\text{H}_{28}\text{F}_3\text{N}_5\text{O}_4$ m/z 496.6 ($\text{M}+\text{H})^+$.

EXAMPLE 54

(1-Benzoyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid

STEP 1

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for $C_{13}H_{14}N_4O_3$ m/z 275.3 ($M+H$)⁺.

STEP 2

(4-Ethoxycarbonylmethyl-piperidin-4-yl)-acetic acid ethyl ester

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile was dissolved in concentrated hydrochloric acid and refluxed for 18 hrs. Upon cooling, the crystals were collected. The crystals were refluxed for 18 hours with 4 M HCl in Dioxane (5mL) and ethanol (50 mL). The solution was concentrated to yield an oil. 1H NMR (CD_3OD) δ 1.18 (t, 6 H), 1.81 (m, 4 H), 2.54 (s, 4 H), 3.08 (m, 4 H), 4.04 (q, 4 H).

STEP 3

The oil, polystyrene bound diisopropylethylamine, benzoyl chloride and dichloromethane were combined and stirred for 18 hours. The solution was

filtered and concentrated to yield an oil. The oil, 4 M NaOH, and methanol were combined and stirred overnight. The solution was acidified with 1M HCl and extracted with ethyl acetate. The organic layer was dried with magnesium sulfate and concentrated to yield an oil. The oil and acetic anhydride were combined, heated (130°C) and stirred for 18 hours. The solution was concentrated to yield product.

STEP 4

(1-Benzoyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (CD_3OD) δ 1.70-1.96 (m, 4 H), 2.03 (m, 2 H), 2.21 (m, 2 H), 2.64 (s, 2 H), 2.88 (m, 6 H), 3.44 (s, 2 H), 3.58 (m, 4 H), 3.83 (m, 1 H), 3.98 (m, 1 H), 6.71 (d, 1 H), 7.48 (m, 2 H), 7.55 (m, 3 H), 7.65 (m, 1 H); MS (ESI+) for $\text{C}_{28}\text{H}_{33}\text{N}_5\text{O}_4$ m/z 504.7 ($\text{M}+\text{H})^+$.

EXAMPLE 55

4-Carboxymethyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidine-1-carboxylic acid tert-butyl ester

STEP 1

9-Acetyl-2,4-dioxo-3,9-diaza-spiro[5.5]undecane-1,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for C₁₃H₁₄N₄O₃ m/z 275.3 (M+H)⁺.

STEP 2

(4-Ethoxycarbonylmethyl-piperidin-4-yl)-acetic acid ethyl ester

The compound was prepared as EXAMPLE 54, STEP 2

STEP 3

2,4-Dioxo-3-oxa-9-aza-spiro[5.5]undecane-9-carboxylic acid tert-butyl ester

The oil, polystyrene bound diisopropylethylamine, di-t-butyl dicarbonate and dichloromethane were combined and stirred for 18 hours. The solution was filtered and concentrated to yield an oil. The oil, 4 M NaOH, and methanol were combined and stirred overnight. The solution was acidified with 1M

HCl and extracted with ethyl acetate. The organic layer was dried with magnesium sulfate and concentrated to yield an oil. The oil and acetic anhydride were combined, heated (130°C) and stirred for 18 hours. The solution was concentrated to yield product.

STEP 4

4-Carboxymethyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidine-1-carboxylic acid tert-butyl ester

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (CD_3OD) δ 1.47 (s, 9 H), 1.57-1.73 (m, 3 H), 1.98 (m, 3 H), 2.14 (m, 2 H), 2.50-2.69 (m, 3 H), 2.83 (m, 6 H), 3.27 (s, 2 H), 3.40-3.62 (m, 4 H), 6.64 (d, 1 H), 7.60 (d, 1 H); MS (ESI+) for $\text{C}_{26}\text{H}_{37}\text{N}_5\text{O}_5$ m/z 500.7 ($\text{M}+\text{H})^+$.

EXAMPLE 56

(1-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-cyclohexyl)-acetic acid

STEP 1

2,4-Dioxo-3-aza-spiro[5.5]undecane-1,5-dicarbonitrile

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 1: MS (ESI+) for $C_{12}H_{13}N_3O_2$ *m/z* 232.2 ($M+H$)⁺.

STEP 2

3-Oxa-spiro[5.5]undecane-2,4-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{10}H_{14}O_3$ *m/z* 183.2 ($M+H$)⁺.

STEP 3

(1-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-cyclohexyl)-acetic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. 1H NMR (400 MHz, CD₃OD) δ 1.55 (m, 10 H), 1.97 (m, 2 H), 2.15 (m, 2 H), 2.45 (s, 2 H), 2.82 (m, 6 H), 3.19 (s, 2 H), 3.37 (s, 2

H), 3.52 (m, 2 H), 6.63 (d, 1 H), 7.59 (d, 1 H); MS (ESI+) for C₂₂H₃₀N₄O₃ m/z 399.2392 (M+H)⁺.

EXAMPLE 57

3-Methyl-3-pyridin-3-yl-4-[3-[4-(pyridin-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid

STEP 1

2-Cyano-3-pyridin-3-yl-but-2-enoic acid ethyl ester

The compound was prepared as in EXAMPLE 51, STEP1

STEP 2

4'-Methyl-2',6'-dioxo-1',2',3',4',5',6'-hexahydro-[3,4']bipyridinyl-3',5'-dicarbonitrile

The compound was prepared as in EXAMPLE 51, STEP2

STEP 3

3,4,5-Trimethyl-4-pyridin-3-yl-dihydro-pyran-2,6-dione

The compound was prepared according to the method as described for preparing EXAMPLE 44, STEP 2: MS (ESI+) for $C_{11}H_{11}NO_3$ m/z 206.2 ($M+H$)⁺.

STEP 4

3-Methyl-3-pyridin-3-yl-4-{3-[4-(pyridin-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound was prepared according to the method as described for preparing EXAMPLE 43. ^1H NMR (400 MHz, CD₃CN) δ 1.60 (m, 5 H), 1.72 (m, 2 H), 2.68 (t, 2 H), 2.92 (d, 1 H), 3.05 (d, 1 H), 3.32 (m, 2 H), 3.45 (dd, 2 H), 6.79 (m, 1 H), 6.95 (d, 1 H), 7.55 (dd, 1 H), 7.78 (m, 1 H), 7.88 (m, 1 H), 8.18 (m, 1 H), 8.53 (m, 1 H), 8.67 (m, 1 H); MS (ESI+) for C₂₁H₂₅N₅O₃ *m/z* 396.5 (M+H)⁺.

EXAMPLE 58

4-(benzyloxy)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-butanoic acid

4-(benzyloxy)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-butanoic acid trifluoroacetate :

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride: ^1H NMR (400 MHz, CD₃OD) δ 7.88 (m, 1 H), 7.37-7.24 (m, 5 H), 7.04 (d, 1 H), 6.88 (t, 1 H), 4.46 (s, 2 H), 3.50 (m, 2 H), 3.38 (t, 2 H), 3.09 (dd, 1 H), 3.01 (dd, 1 H), 2.77 (t, 2 H), 2.70 (m, 1 H), 2.53 (dd, 1 H), 2.46 (dd, 1 H), 1.85 (m, 2 H), 1.76 (m, 2 H); MS (ESI+) for *m/z* 425 (M+H)⁺.

EXAMPLE 59

4-[4-(N-pyridin-2-yl-beta-alanyl)piperazin-1-yl]butanoic acid

STEP 1

Methyl 4-(4-benzylpiperazin-1-yl)but-2-enoate :

To a ice chilled solution of 1-benzylpiperazine (25.0 g, 0.14 moles) in 140 mL dimethylformamide was added potassium carbonate (24.0 g, 1.25 eq.) and methyl 4-bromocrotonate (18.6 mL, 0.99 eq.). The solution was warmed to room temperature and stirred 24 h. The solution was filtered. Water was added and extracted with ethyl acetate. The organics were washed with water twice and brine, dried over sodium sulfate, filtered and evaporated to afford methyl 4-(4-benzylpiperazin-1-yl)but-2-enoate (35.2 g, 92 %) as a brown-orange liquid. MS (ESI+) for m/z 275 ($M+H$)⁺.

STEP 2

Methyl 4-(4-benzylpiperazin-1-yl)butanoate :

A solution of methyl 4-(4-benzylpiperazin-1-yl)but-2-enoate (10.2 g, 0.04 moles) in methanol was added to 20% palladium hydroxide on carbon and placed under 40 psi hydrogen gas for 7 h. The resulting solution was filtered through celite and evaporated to afford methyl 4-(4-benzylpiperazin-1-yl)butanoate (6.70g, 97%). MS (ESI+) for m/z 187 ($M+H$)⁺.

STEP 3

Methyl 4-{4-[N-(tert-butoxycarbonyl)-beta-alanyl]piperazin-1-yl}butanoate :

To a suspension of PS-carbodiimide (1.7 g, 1.5 mmoles) in dichloromethane (2 mL) was added 4-(tert-butoxycarbonylamino)butyric acid (305 mg, 1.5 mmoles) and HOBT (230 mg, 1.7 mmoles). After 20 min 186 mg of methyl 4-(4-benzylpiperazin-1-yl)butanoate (186 mg, 1.0 mmol) was added to the reaction mixture and stirred 24 h. PS-trisamine (1.08 g, 5 eq.) was added and stirred 16 h. The reaction mixture was filtered and evaporated to afford methyl 4-{4-[N-(tert-butoxycarbonyl)-beta-alanyl]piperazin-1-yl}butanoate (290 mg, 77%).

STEP 4

Methyl 4-(4-beta-alanyl)piperazin-1-yl)butanoate :

To methyl 4-{4-[N-(tert-butoxycarbonyl)-beta-alanyl]piperazin-1-yl}-butanoate (290 mg, 0.8 mmoles) in 2 mL dichloromethane was added 2 mL trifluoroacetic acid. After 1 hour the solvents were evaporated. The residue was dissolved in 10% DMF/DCM and MP-carbonate (0.8 g) was added. After 16 h the solution was filtered and evaporated to afford methyl 4-(4-beta-alanyl)piperazin-1-yl)butanoate (87 mg, 41 %) as an oil. MS (ESI+) for m/z 272 ($M+H$)⁺.

STEP 5

4-[4-(N-pyridin-2-yl-beta-alanyl)piperazin-1-yl]butanoic acid bis(trifluoroacetate) :

A solution of methyl 4-(4-beta-alanyl)piperazin-1-yl)butanoate, 2-fluoropyridine (2.5 mL) and diisopropylethylamine (125 uL) was heated to 105 °C for 22 h. The solvents were evaporated and methanol (2 mL) and 1M aq. NaOH (3 mL) were added. Adjusted to neutral pH with 12M HCl and evaporated. Purified by RP-HPLC to afford 4-[4-(N-pyridin-2-yl-beta-alanyl)-piperazin-1-yl]butanoic acid bis(trifluoroacetate) (38.9 mg). ¹H NMR (400 MHz, CD₃CN) δ 7.92 (m, 1 H), 7.81 (d, 1 H), 7.02 (d, 1 H), 6.82 (t, 1 H), 3.63 (t, 4 H), 3.10 (dd, 4 H), 2.73 (t, 2 H), 2.44 (t, 4 H), 1.95 (m, 4 H); MS (ESI+) for *m/z* 321 (M+H)⁺.

EXAMPLE 60

4-{4-[3-(pyridin-2-ylamino)propyl]piperazin-1-yl}butanoic acid

STEP 1

Methyl 4-(4-{3-[(tert-butoxycarbonyl)amino]propyl}piperazin-1-yl)butanoate :

To a solution of methyl 4-(4-benzylpiperazin-1-yl)butanoate (500 mg, 2.68 mmoles) in dichloromethane (5 mL) was added tert-butyl 4-oxobutyl-carbamate (505 mg, 2.68 mmoles) and sodium triacetoxyborohydride (900 mg, 1.5 eq) and stirred 20 h. To the reaction mixture water was added followed by 1M aqueous sodium bicarbonate solution. The solution was extracted with ethyl acetate. The organics were evaporated to afford methyl 4-(4-{3-[(tert-butoxycarbonyl)amino]propyl}-piperazin-1-yl)butanoate (0.72 g, 75 %). MS (ESI+) for *m/z* 358 (M+H)⁺.

STEP 2

4-{4-[3-(pyridin-2-ylamino)propyl]piperazin-1-yl}butanoic acid tris(trifluoroacetate) :

Prepared in an analogous manner to 4-[4-(N-pyridin-2-yl-beta-alanyl)-piperazin-1-yl]butanoic acid bis(trifluoroacetate) using methyl 4-(4-{3-[(tert-butoxycarbonyl)amino]propyl}piperazin-1-yl)butanoate in the place of methyl 4-{4-[N-(tert-butoxycarbonyl)-beta-alanyl]piperazin-1-yl}butanoate. ¹H NMR (400 MHz, CD₃CN) δ 7.91 (dt, 1 H), 7.82 (d, 1 H), 6.97 (d, 1 H), 6.86 (m, 1 H), 3.60-3.42 (m, 8 H), 3.19-3.03 (m, 6 H), 2.44 (t, 2 H), 2.08 (t, 2 H), 1.95 (d, 2 H); MS (ESI+) for *m/z* 307 (M+H)⁺.

EXAMPLE 61

β,β -dimethyl-3-[5-(2-pyridinylamino)pentyl]-1,2,4-oxadiazole-5-butanoic acid

Step 1

5-chloro-pentan-1-ol (25 g, 0.204 moles), potassium cyanide (15.94 g, 0.248 moles), and potassium iodide (1.69 g, 0.01 moles) were dissolved in ethanol (200 mL) and heated. After two days, an additional amount of potassium cyanide (2.66 g, 0.041 moles) was added, and the reaction was heated for another two days. The reaction mixture was then diluted with ether (200 mL) and filtered through celite. The solvent was removed under reduced vacuum. Water was added to the residue and extracted with ether (6 x 200 mL). The aqueous phase was concentrated, diluted with brine (200 mL) and further extracted with ether (3 x 100 mL). The ether fractions were combined, dried (Na_2SO_4), and concentrated. The crude product was purified by flash chromatography (2:1 hexane:ethyl acetate) to give a pale yellow oil (13.13 g, 57%). ^1H NMR (400 MHz, CDCl_3) 3.7-3.6 (m, 2H), 2.38 (t, 2H), 1.8-1.5 (m, 6H).

Step 2

A solution of dihydropyran (11.5mL, 0.126 moles) in methylene chloride (80mL) was added to an ice-cooled solution of 6-hydroxyhexanenitrile as prepared in Step 1 (13 g, 0.115 moles) and p-toluenesulfonic

acid (50 mg) in methylene chloride (100 mL). The reaction mixture was allowed to warm up to room temperature and stirred overnight. The solvent was removed under vacuum. The residue was partitioned between ether (100 mL) and aqueous sodium bicarbonate (100mL). The aqueous layer was extracted with ether (100 mL). The combined organic layers were washed with brine (50 mL) and dried (Na_2SO_4). The crude product was purified by flash chromatography (3:1 hexane:ethyl acetate) to give an oil (19.9 g, 88%). ^1H NMR (400 MHz, CDCl_3) δ 4.6 (t, 1H), 3.9-3.7 (m, 2H), 3.55-3.35 (m, 2H), 2.35 (t, 2H), 1.9-1.5 (m, 12H).

Step 3

To the compound produced in Step 2 in methanol (25 mL) was added hydroxylamine hydrochloride (2.74 g, 39.5 mmoles) and sodium methoxide 25% wt. solution in methanol (9 mL, 39.5 mmoles). The reaction mixture was heated at 60°C overnight. The solvent was removed under vacuum. The residue was dissolved in ethyl acetate (150 mL) and extracted with brine (50 mL), dried (Na_2SO_4), and concentrated. The crude product was purified by flash chromatography (1:1 hexane:ethyl acetate to 100% ethyl acetate) to give an oil (3.1 g, 53%). ^1H NMR (400 MHz, DMSO) δ 8.65 (s, 1H), 5.3 (bs, 2H), 4.55 (t, 1H), 3.75-3.7 (m, 1H), 3.62-3.55 (m, 1H), 3.42-3.38 (m, 1H), 3.32-3.28 (m, 1H), 1.95 (t, 2H), 1.72-1.25 (m, 12H).

Step 4

To 3,3-dimethyl-glutaric acid monomethyl ester (1.2 g, 6.9 mmoles) in DMF (7mL) was added carbonyldiimidazole (1.1 g, 6.8 mmoles) and the mixture was stirred for twenty minutes at room temperature. Then, a

solution of the compound produced in Step 3 (1.5 g, 6.8 mmoles) in DMF (5 mL) was added. The reaction mixture was stirred overnight. The solvent was removed under vacuum. Ethyl acetate (100 mL) was added to the residue and washed with saturated sodium bicarbonate, 1N KHSO₄, and brine. The organic layer was separated, dried (Na₂SO₄), and concentrated. The crude product was purified by flash chromatography (1:1 hexane:ethyl acetate to 100% ethyl acetate) to give an oil (2 g, 80%). ¹H NMR (400 MHz, DMSO) δ 6.25 (bs, 2H), 4.55 (t, 1H), 3.75-3.7 (m, 1H), 3.62-3.55 (m, 1H), 3.58 (s, 3H), 3.42-3.38 (m, 1H), 3.32-3.28 (m, 1H), 2.39 (s, 2H), 2.38 (s, 2H), 2.2 (t, 2H), 1.72-1.3 (m, 12H) 1.02 (s, 6H). The product (1.9 g, 5 mmol) was dissolved in dioxane (30mL) and refluxed for 5 days. The reaction mixture was then cooled to room temperature and the solvent removed under vacuum. The residue was dissolved in ethyl acetate and passed through a pad of silica to give the product (1.74g, 97% yield). ¹H NMR (400 MHz, DMSO) δ 4.55 (t, 1H), 3.75-3.7 (m, 1H), 3.62-3.55 (m, 1H), 3.58 (s, 3H), 3.42-3.38 (m, 1H), 3.32-3.28 (m, 1H), 2.9 (s; 2H), 2.68 (t, 2H), 2.38 (s, 2H), 1.72-1.3 (m, 12H) 1.02 (s, 6H).

Step 5

To a solution of the compound produced in Step 4 in methanol (15 mL) was added p-toluenesulfonic acid (890 mg, 4.7 mmoles) and the reaction mixture was stirred at room temperature for three hours. The solvent was removed and the residue was dissolved in ethyl acetate. The ethyl acetate was washed with saturated sodium bicarbonate, brine, and dried (Na₂SO₄). The ethyl acetate was removed to give the product (1.23 g, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 3H), 3.68-3.6 (m, 2H), 3.0 (s, 2H), 2.73 (t, 2H), 2.38 (s, 2H), 1.85-1.75 (m, 2H), 1.65-1.59 (m, 2H), 1.5-1.37 (m, 2H), 1.12 (s, 6H).

Step 6

To a solution of the compound produced in Step 5 (500 mg, 1.8 mmoles), N-methyl morpholine N-oxide (317 mg, 2.7 mmoles), and 4A molecular sieves (900 mg) in methylene chloride (20 mL) was added tetrapropylammonium perruthenate (32 mg, 0.9 mmoles). The reaction mixture was stirred at room temperature until no starting material present by TLC. The reaction mixture was then diluted with methylene chloride (100 mL) and passed through a pad of silica. The methylene chloride was removed under vacuum to give product (450 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 3.68 (s, 3H), 3.0 (s, 2H), 2.73 (t, 2H), 2.49 (t, 2H), 2.38 (s, 2H), 1.85-1.68 (m, 4H), 1.12 (s, 6H).

Step 7

A solution of the compound produced in Step 6 (440 mg, 1.6 mmoles) in methylene chloride (3 mL) was cooled in an ice bath and 2-aminopyridine (165 mg, 1.8 mmoles) was added followed by the addition of sodium triacetoxyborohydride (510 mg, 2.4 mmoles). The ice bath was removed and the reaction mixture was stirred at room temperature overnight. The reaction mixture was then poured into a saturated solution of sodium bicarbonate (10 mL) and extracted with ethyl acetate. The ethyl acetate was dried (Na₂SO₄), filtered, and concentrated under vacuum to give the product (485 mg, 87% yield) which was not purified further. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (m, 1H), 7.45-7.38 (m, 1H), 6.63-6.53 (m, 1H), 6.52-6.33 (m, 1H), 3.68 (s, 3H), 3.3-3.2 (m, 2H), 3.0 (s, 2H), 2.73 (t, 2H), 2.38 (s, 2H), 1.85-1.78 (m, 2H), 1.7-1.6 (m, 2H), 1.52-1.45 (m, 2H), 1.12 (s, 6H).

Step 8

β,β -dimethyl-3-[5-(2-pyridinylamino)pentyl]-1,2,4-oxadiazole-5-butanoic acid, mono(trifluoroacetate)

The compound produced in Step 7 was dissolved in CH₃OH (2.5mL), THF (2.5 mL), 1N NaOH (2.5 mL) and stirred at room temperature until hydrolysis complete. The reaction mixture was then diluted with 1N HCl (2.5 mL) and the solvent removed under vacuum. The crude product was purified by reverse phase HPLC to give the product (470 mg, 78% yield).

¹H NMR (400 MHz, DMSO) 7.9-7.8 (m, 2H), 7.1 (d, 1H), 6.83 (t, 1H), 3.3-3.2 (m, 2H), 3.0 (s, 2H), 2.7 (t, 2H), 2.25 (s, 2H), 1.75-1.58 (m, 4H), 1.45-1.35 (m, 2H), 1.02 (s, 6H). The compound was analyzed for (C₁₈H₂₆N₄O₃TFA·0.9H₂O): C 50.40, H 6.09, N 11.75. Found: C 50.72, H 6.05, N 11.44.

EXAMPLE 62

β,β -dimethyl-3-[4-(2-pyridinylamino)butyl]-1,2,4-oxadiazole-5-butanoic acid

Step 1

2-(4-bromo-butoxy)-tetrahydro-pyran

The above compound was prepared in analogous fashion to the published procedure in Snider, Barry B.; Lu, Qing; J.Org.Chem.; 61; 8; 1996; 2839-2844.

Step 2

5-(tetrahydro-pyran-2-yloxy)-pentanenitrile

A mixture of the bromide of Step 1 (27.0g, 0.114 moles) and sodium cyanide (6.4 2g, 0.131 moles) in DMF (200 mL) was heated under nitrogen at 80 °C for 16 hours with magnetic stirring. After allowing to cool the majority of the DMF was removed under vacuum by rotary evaporation (oil pump vacuum, 50 °C). The mixture was partitioned between water (100 mL) and ether (100 mL). The phases were separated and the aqueous phase was further extracted with ether (2 x 50 mL). The combined organic

phases were washed with water (2 x 50 mL), and brine (50 mL) and then dried over sodium sulfate. The solution was filtered and evaporated under vacuum to give a yellow oil (22 g). Purification by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) gave a straw colored oil (17.65 g, 85% yield). ^1H NMR (400MHz) CDCl_3 δ 4.55-4.60 (m, 1H), 3.74-3.90 (m, 2H), 3.48-3.55 (m, 1H), 3.40-3.48 (m, 1H), 2.41 (dd, $J=6.0, 7.5\text{Hz}$, 2H), 1.65-1.90 (m, 6H), 1.45-1.63 (m, 4H).

Step 3

5-(tetrahydro-pyran-2-yloxy)-N-hydroxy-pentaneamidine (3)

To a suspension of hydroxylamine hydrochloride (1.14 g, 0.0164 moles) under nitrogen at 0 °C was added a solution of sodium methoxide (3.75 mL of a 25 wt.% solution, 0.0164 moles) with magnetic stirring. A solution of the nitrile produced in Step 2 (3.00 g, 0.0164 moles) in methanol (10 mL) was added. After stirring at 25 °C for 1 day and at 40 °C for 1 day the mixture was heated at 65 °C for 2 days and then allowed to cool. The methanol was removed by rotary evaporation. The mixture was diluted with ether and filtered. Removal of the ether gave a crude oil (3.34 g). Purification by chromatography on silica gel eluting with ether followed by ether/methanol (10:1) gave a colorless oil (2.73 g, 77%). ^1H NMR (400MHz) DMSO-d₆ δ 8.68 (s, 1H), 5.30 (br, s, 2H), 4.50-4.55 (m, 1H), 3.68-3.77 (m, 1H), 3.56-3.64 (m, 1H), 3.38-3.46 (m, 1H), 3.28-3.36 (m, 1H), 1.91-1.99 (m, 2H), 1.35-1.78 (m, 10H).

Step 4

To a solution of the compound produced in Step 3 (1.732 g, 8.008 mmoles) in 1,4-dioxane (30 mL) under nitrogen was added a solution of 3,3-dimethylglutaric anhydride (1.138 g, 8.008 mmoles) in 1,4-dioxane (10 mL) with magnetic stirring at ambient temperature (20°C). After 1 hour the mixture was heated to 95 °C for 48 hours. The mixture was allowed to cool and the solvent was removed by rotary evaporation. The residue was dissolved in DMF (40 mL) and potassium carbonate (1.55 g, 11.2 mmoles) was added. The mixture was magnetically stirred under nitrogen. Methyl iodide (523 µL, 8.41 mmoles) was added and the mixture was stirred for 24 hours at 20 °C. The reaction mixture was added to water (100 mL) and extracted into ethyl acetate (3 x 50 mL). The combined extracts were washed with water (3 x 20 mL) and saturated sodium chloride solution (20 mL). The solution was dried over sodium sulfate, filtered and evaporated under vacuum to give a crude oil. The product was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give a pale yellow oil (2.52 g; 89 % yield). ^1H NMR (400MHz) CDCl_3 δ 4.55-4.60 (m, 1H), 3.81-3.90 (m, 1H), 3.73-3.81 (m, 1H), 3.68 (s, 3H), 3.47-3.53 (m, 1H), 3.38-3.47 (m, 1H), 3.00 (s, 2H), 2.77 (t, $J=7.5\text{Hz}$, 2H), 2.39 (s, 2H), 1.45-1.90 (m, 10H), 1.12 (s, 6H).

Step 5

To a solution of the compound produced in Step 4 (2.47 g, 6.97 mmoles) in methanol (40 mL) was added p-toluenesulfonic acid monohydrate (133 mg, 0.700 mmoles). The mixture was magnetically stirred under nitrogen at 20 °C for 2 hours. The majority of the methanol was removed by rotary evaporation. The mixture was diluted with water (40 mL) and saturated sodium bicarbonate solution (10 mL). The mixture was extracted with ethyl acetate (3 x 30 mL), and the combined extracts were washed with saturated sodium chloride solution (20 mL). The solution was dried over sodium

sulfate, filtered and evaporated under vacuum to give a residual oil which was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (4:1 to 1:2). This gave a colorless oil (1.642 g, 87 %). ¹H NMR (400MHz) CDCl₃ δ 3.65-3.72 (m, 2H), 3.69 (s, 3H), 3.00 (s, 2H), 2.78 (t, J=7.5Hz, 2H), 2.40 (s, 2H), 1.80-1.90 (m, 2H), 1.60-1.70 (m, 2H), 1.52 (t, J=5Hz, 1H,), 1.12 (s, 6H).

Step 6

To a solution of the compound produced in Step 5 (500 mg, 1.85 mmoles) in methylene chloride (10 mL) was added powdered 4A molecular sieves (925 mg) and N-methylmorpholine-N-oxide (325 mg, 2.78 mmoles). The mixture was cooled to 10°C under nitrogen with magnetic stirring.

Tetrapropylammonium perruthenate (33 mg, 0.093 mmoles) was added and the mixture was stirred for 2 hours at 22° C. The mixture was diluted with ethyl acetate/hexane (2:1, 40 mL) and filtered through a pad of silica gel, washing with ethyl acetate/hexane (2:1). The solvent was removed under vacuum to give a pale yellow oil (390 mg; 79 % yield). ¹H NMR (400MHz) CDCl₃ δ 9.79 (t, J=1.2Hz, 1H), 3.69 (s, 3H), 3.01 (s, 2H), 2.79 (t, J=7.5Hz, 2H), 2.58 (td, J=7.5, 1.2Hz, 2H), 2.40 (s, 2H), 2.05-2.13 (m, 2H), 1.12 (s, 6H).

Step 7

To a solution of the compound produced in Step 6 (380 mg, 1.42 mmoles) in methylene chloride (10 mL) was added 2-aminopyridine (147 mg, 1.56 mmoles). The mixture was magnetically stirred under nitrogen for 30 minutes. Sodium triacetoxyborohydride (450 mg, 2.12 mmoles) was added and the mixture was stirred at 20 °C for 4.5 hours. The mixture was added to aqueous sodium bicarbonate solution (30 mL) and extracted into ethyl acetate (3 x 30 mL). The combined extracts were washed with saturated sodium chloride solution (30 mL), dried over sodium sulfate and filtered. The solvent was removed under vacuum to give a crude oil which was purified by chromatography on silica gel, eluting with ethyl acetate/hexane (2:1). The product was obtained as a colorless oil (343 mg, 70%). ¹H NMR (400MHz) CDCl₃ δ 8.05-8.09 (m, 1H), 7.38-7.43 (m, 1H), 6.53-6.58 (m, 1H),

6.37 (d, J=8.7Hz, 1H), 4.49 (br, m, 1H), 3.69 (s, 3H), 3.31 (dt, J=6.2, 6.2Hz, 2H), 3.00 (s, 2H), 2.79 (t, J=7.5Hz, 2H), 2.39 (s, 2H), 1.82-1.92 (m, 2H), 1.65-1.75 (m, 2H), 1.12 (s, 6H).

Step 8

β,β -dimethyl-3-[4-(2-pyridinylamino)butyl]-1,2,4-oxadiazole-5-butanoic acid

To a solution of the compound produced in Step 7 (307 mg, 0.886 mmoles) in methanol (10 mL) was added 1N sodium hydroxide solution (3 mL) and the mixture was stirred at 20°C for 16 hours. 2N hydrochloric acid was added to adjust the pH to 7.0 and the solvent was then removed under vacuum. The material was put under high vacuum to remove residual water. The remaining gum was dissolved in a mixture of ethyl acetate/methanol (10:1) and the inorganic salts were removed by filtration through celite. The solvent was removed under vacuum. The material was placed under high vacuum at 65 °C for 16 hours to yield a pale yellow gum (320 mg). This material contains 20mole% ethyl acetate. ^1H NMR (400MHz) DMSO-d₆ δ 7.90-7.93 (m, 1H), 7.29-7.34 (m, 1H), 6.45-6.52 (br, m, 1H), 6.39-6.44 (m, 2H), 3.22 (br, q, J=5Hz, 2H), 3.05 (s, 2H), 2.70 (t, J=7.5Hz, 2H), 2.11 (s, 2H), 1.65-1.77 (br, m, 2H), 1.49-1.59 (br, m, 2H), 0.99 (s, 6H). The material was analyzed as follows: Found C, 57.81; H, 6.93; N, 15.07 C₁₇H₂₄N₄O₃ + 0.45HCl + 0.2H₂O + 0.2ethyl acetate requires C, 57.78; H, 7.20; N, 15.14

EXAMPLE 63

β,β -dimethyl-3-[[[2-(2-pyridinylamino)ethyl]thio]methyl]-1,2,4-oxadiazole-5-butanoic acid

STEP 1

A solution of 3,3-dimethyl glutaric anhydride (4.0 g, 28.1 mmoles) in MeOH (30 mL) was heated to reflux overnight. The solution was concentrated to afford a colorless liquid (4.84g; 99% yield). ^1H NMR (CDCl_3) δ 3.57 (3H, s), 2.40 (2H, s), 2.3 (2H, s), 1.05 (6H, s).

STEP 2

To a solution of the product of Step 1 (207 mg, 1.18 mmoles) in DMF (3 mL) was added solid CDI (193 mg, 1 equivalent). The reaction was stirred at ambient temperature for 15 minutes and a solution of A* (207 mg, 1 equivalent) [produced as described in Showell, Graham A.; Gibbons, Tracey L.; Kneen, Clare O.; MacLeod, Angus M.; Merchant, Kevin; et al.; J.Med.Chem.;34; 3; 1991; 1086-1094] in DMF (0.5 mL) was added. The reaction was stirred at ambient temperature for 16 hours, diluted with water

and extracted with ethyl acetate (3X). The combined organic extracts were washed with water, 1N NaHCO₃ and brine and dried over Na₂SO₄. The solution was filtered and concentrated to afford a colorless oil (375 mg; 95% yield). This material was taken up in dioxane (5 mL) and heated to 100° C for 16 hours. The mixture was concentrated and purified by flash chromatography (SiO₂, hexanes : ethyl acetate, 7:1) to afford an oil (173 mg; 49% yield). ¹H NMR (DMSO-d₆) δ 4.75 (1H, t), 4.69 (1H, d, *J*=13 Hz), 4.61 (1H, d, *J*=13 Hz), 3.75 (1H, m), 3.59 (3H, s), 3.46 (1H, m), 3.04 (2H, s), 2.40 (2H, s), 1.75-1.11 (6H, m), 1.04 (6H, s).

STEP 3

To a solution of the product of Step 2 (2.1 g, 6.72 mmoles) in MeOH (10 mL) was added p-toluenesulfonic acid (1.27 g, 1 equivalent). The mixture was stirred at room temperature for 1 hour. The reaction was concentrated, diluted with water and extracted with ethyl acetate (3X). The combined extracts were washed with 1N NaHCO₃, water and brine and dried (Na₂SO₄). After concentrating, the resulting residue was purified by flash chromatography (SiO₂, hexane: ethyl acetate, 2:1) to afford a colorless oil (1.42 g; 93% yield). ¹H NMR (DMSO-d₆) δ 5.65 (1H, t, *J*=11 Hz), 4.53 (2H, d, *J*=10Hz), 3.59 (3H, s), 3.02 (2H, s), 2.40 (2H, s), 1.05 (6H, s).

STEP 4

A solution of the product of Step 3 (1.41 g, 6.18 mmoles) and TEA (0.95 mL, 1.1 equivalent) in CH₂Cl₂ (10 mL) was cooled to 5°C in an ice bath and methanesulfonyl chloride (0.53 mL, 1.1 equivalent) was added dropwise. The resulting mixture was stirred at ambient temperature overnight. The

reaction was applied to a SiO_2 column and the product was eluted with hexane:ethyl acetate (4:1) to afford a colorless oil (1.24g; 82% yield). ^1H NMR (CDCl_3) δ 4.60 (2H, s), 3.68 (3H, s), 3.07 (2H, s), 2.40 (2H, s), 1.15 (6H, s); MS s/z 247 (MH^+).

STEP 5

To a solution of N-Boc aminoethanethiol (517 mg, 1 eq.) in MeOH (5 mL) was added NaOMe (25% wt solution in MeOH, 0.68 mL). The reaction stirred at room temperature for 5 minutes followed by the addition of the product of Step 4 (720 mg, 2.92 mmoles). After 10 minutes, the mixture was diluted with water and extracted with ethyl acetate (3X). The combined organics were washed with water and brine and dried over Na_2SO_4 . The resulting residue (1.1 g) was taken up in ethyl acetate (15 mL) and cooled to 5°C in an ice bath. HCl (gas) was bubbled until saturated. The solution was stirred at 5°C for 30 minutes, concentrated and the residue triturated with hexane. The supernatant liquid was decanted and the resulting residue was dried under vacuum to afford the above compound (902mg; 98% yield) as the HCl salt. ^1H NMR (DMSO-d_6) δ 3.92 (2H, s), 3.60 (3H, s), 3.07-2.90 (2H, s, 2H m), 2.79 (2H, t, $J=7.5$ Hz), 2.40 (2H, s), 1.05 (6H, s).

STEP 6

β,β -dimethyl-3-[[[2-(2-pyridinylamino)ethyl]thio]methyl]-1,2,4-oxadiazole-5-butanoic acid, monohydrochloride

A mixture of the product of Step 5 (323 mg, 1mmoles), 4-methyl-morpholine (0.92 mL, 2 equivalents) and 2-fluoropyridine (3 mL) was heated to 105 °C for 16 hours. The reaction was cooled to room temperature and concentrated to remove the excess 2-fluoropyridine. The residue was applied to a short bed of SiO₂, washed with hexane and then eluted with ethyl acetate. The ethyl acetate fraction was concentrated to afford a slightly yellow oil (270 mg; 74% yield). This material was taken up in THF (2 mL) and water (2 mL) and 1N NaOH (0.5 mL) was added. The mixture was stirred at room temperature for 14 hours. Purification of the material by RPHPLC afforded the above compound as the HCl salt (210 mg; 84% yield). Calculated for C₁₆H₂₂N₄O₃S HCl 1.5 H₂O: C 46.43, H 6.33, N 13.54; Found: C 46.74, H 6.24, N 13.40. ¹H NMR (CD₃OD) δ 7.95-7.7.84 (2H, m), 7.16-6.91 (2H m), 3.90 (2H, s), 3.68 (2H, t, J=6.25 Hz), 3.09 (2H, s), 2.96 (2H, t, J=7.5 Hz), 2.38 (2H, s), 1.13 (6H, s).

EXAMPLE 64

2-methyl-6-[3(2-pyridylamino)propoxy]-3-pyridinebutanoic acid

STEP 1

Ethyl-3-methyl-3-butenoate:

An oven dried Fisher-Porter bottle was charged with 3-chloro-2-methyl propene (15.7 g, 173.4 mmol), potassium carbonate (13.0 g, 93.5 mmol), and ethanol (13.0 mL). The bottle was capped with a pressure head and the system was degassed on the vacuum line. The bottle was opened under an atmosphere of nitrogen and Pd(OAc)₂ (0.6 g, 2.67 mmol) was added. The system was capped and evacuated. The system was pressurized with carbon monoxide to 30 psi and the reactants were stirred at 10 °C. After 30 minutes, the reaction mixture was stirred at room temperature for 2.5 hours. The system was then opened. The reaction mixture was diluted with ether (100 mL), and filtered. The yellow colored filtrate was concentrated under reduced pressure and the residue was purified by silica gel flash chromatography using 10% EtOAc in hexane to afford ethyl-3-methyl-3-butenoate (9.0 g) as a yellow liquid. ¹H-NMR and mass spectral data were consistent with the structure.

STEP 2

5-Bromo-2-[(3-tetrahydro-2H-pyran-2-yl)propoxy] pyridine.

To a solution of 3-tetrahydropyranloxy-1-propanol (1.0 g, 6.25 mmol) in DMF (10.0 mL) was added NaH (0.17 g, 95%) and stirred at 0°C. After 30 minutes, 2,5 dibromopyridine (1.0 g, 4.22 mmol) was added and the mixture was stirred at room temperature for 2 hours. The mixture was then poured into 5% cold citric acid (10.0 mL) and extracted with EtOAc (3 x 15 mL). The combined organic extracts were washed with water (3 x 15 mL), dried

(Na₂SO₄), and concentrated to dryness. The resulting material was purified by silica gel flash chromatography using 20% EtOAc in hexane containing 0.5 % triethyl amine. The appropriate fractions (monitored by TLC in 30% EtOAc in hexane) were combined and concentrated to give the desired product (1.1g) as a colorless syrup. ¹H-NMR and mass spectral data were consistent with the structure.

HRMS: Calcd. for C₁₃H₁₉NO₃Br, 316.0553(MH⁺),
found 316.0548.

STEP 3

An oven-dried Fisher-Porter bottle was charged with 5-bromo-2-[(3-tetrahydro-2H-pyran-2-yl)propoxy] pyridine (0.8 g, 2.54 mmol), ethyl-3-methyl-3-butenoate (0.5 g, 3.9 mmol), and propionitrile (20 mL). The bottle was capped with a pressure head and the system was degassed on the vacuum line. The system was opened under an atmosphere of nitrogen, and Pd(db_a)₂ (.025 g), P(o-tol)₃ (0.07 g), and triethyl amine (0.4 ml) were added. The bottle was again capped with the pressure head, degassed, pressurized with nitrogen up to 5 psi, and heated at 100°C for 20 hours. The dark reaction mixture was cooled and concentrated to dryness. The residue was purified by flash chromatography using 30% EtOAc in hexane as the eluent to provide the desired product (0.45 g, MH⁺ m/z = 366) as a pale yellow syrup. This material was dissolved in EtOH (15.0 mL), and hydrogenated at 50 psi in the presence of Pd/C (10%, 0.5 g) for 3 hours at room temperature. The mixture was filtered and the filtrate was concentrated to dryness. The resulting residue was dissolved in EtOH (5.0 mL), and p-toluenesulphonic acid (0.1 g) was added, and the reaction mixture was stirred at 50°C for 3 hours. During this period the removal of the tetrahydropyranyl group was complete. The solution was concentrated

to dryness under reduced pressure and the residue was treated with water (15 mL), NaHCO₃ (0.5 g), and extracted with EtOAc (2 x 15 mL). The combined organic extracts were washed with water (2 x 10 mL), dried (Na₂SO₄) and concentrated to dryness under reduced pressure to give ethyl β-methyl-6-(3-hydroxypropoxy)-3-pyridinebutanoate (0.17 g) as a pale yellow syrup. ¹H-NMR and mass spectral data were consistent with the structure.

HRMS: Calcd. for C₁₅H₂₄NO₄, 282.1705 (MH⁺), found 282.1705.

STEP 4

To a solution of the product of Step 3 (0.39 g, 1.39 mmol) in dichloromethane (7 mL), and THF (2.0 mL) at 0°C, 2,2,6,6-tetramethyl-1-piperidinyloxy-radical, (TEMPO) (0.005g), KBr (16.7 mg), NaHCO₃ (0.015 g), and 18-crown-6 (0.005 g) were added. To this reaction mixture, was added dropwise a solution of NaOCl (5%, 2.5 mL) and then stirred at 0°C for 1 hour. After stirring for 1 hour at room temperature, sodium bisulphite solution (5%, 1 mL), dichloromethane (20 mL), and water (10 mL) were added. The organic phase was washed with water (2 x 20 mL), dried (Na₂SO₄), and concentrated to dryness under reduced pressure to give ethyl β-methyl-6-(3-oxopropoxy)-3-pyridinebutanoate as a light brown liquid (0.34 g). ¹H-NMR and mass spectral data were consistent with the structure. This material was used without purification in the following step.

STEP 5

A solution of the crude aldehyde produced in Step 3 (0.4 g, 1.43 mmoles) and 2-aminopyridine (0.16 g, 1.7 mmoles) in EtOH (5.0 mL) containing p-toluenesulfonic acid (0.005 g) was heated to reflux for 4 hours. The reaction mixture was cooled, sodium borohydride (0.06 g) was added and the reactants were stirred at room temperature for 3 hours. The mixture was then cooled, glacial acetic acid (1.0 mL) was added, and the mixture was concentrated under reduced pressure. The resulting residue was purified by reverse-phase HPLC using 5-70% CH₃CN/H₂O (30 min gradient) at flow rate of 70 mL/min. The appropriate fractions as revealed by ES-mass-spectra of fractions [m/z 358 (MH⁺)] were combined and lyophilized to give the desired ester (0.09g). This material was treated with 1M LiOH (1.0 mL), CH₃CN (2.0 mL), and heated at 70°C for 1.5 hours. The solution was cooled, diluted with water (5.0 mL), acidified with trifluoroacetic acid, and the desired product was isolated by reverse-phase HPLC using 5-50% CH₃CN/H₂O (30 min gradient) at flow rate of 70 mL/min. The appropriate fractions as revealed by ES-mass-spectra of fractions [m/z 330 (MH⁺)] were combined and lyophilized to give β-methyl-6-[3(2-pyridylamino)propoxy]-3-pyridinebutanoic acid mono(trifluoroacetate) as a glassy substance (0.035g). ¹H-NMR and mass spectral data were consistent with the structure.

HRMS: Calcd. for C₁₈H₂₄N₃O₃ (MH⁺), 330.1818,
found 330.1826.

EXAMPLE 65

4-(phenylthio)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)butanoic acid

STEP 1

tert-butyl (5-oxotetrahydrofuran-3-yl)acetate:

Tetrahydrofuran (50 mL) and Lithium diisopropylamide mono tetrahydrofuran complex (20 mL of 1.5 M in cyclohexane) was cooled in a dry ice/isopropanol bath for 10 min. Tert-butyl acetate (3.5 mL 26 mmoles) was added via syringe and stirred at -78°C for 30 min. 2(5H)-Furanone (1.59 g, 19 mmoles) was added dropwise and the reaction was stirred for 1 h at -78°C. The reaction was poured into water and extracted with ether 2 x 150 mL. The ether extracts were combined and washed with water 100 mL then brine 3 x 100 mL, dried and the ether removed under reduced pressure to give 2.74 g of product (72%). MS (ESI+) for $C_{10}H_{16}O_4$ m/z 223 ($M+Na$)⁺.

STEP 2

5-tert-butoxy-5-oxo-3-[(phenylthio)methyl]pentanoic acid:

The product from step 1 (200 mg, 1.0 mmoles) and thio phenol (110 mg, 1 mmoles) were combined in dimethyl formamide (1.5 mL) at room temperature. Lithium (bis trimethyl silyl) amide (1.25 mL of a 1M solution in THF) was added and the reaction heated at 80°C for 18 h. Reaction was diluted with water, made acidic with acetic acid and extracted with dichloromethane 2 x 40 mL. The combined extracts were washed with water

2 x 50 mL, brine 1 x 50 mL, dried and the solvent removed under pressure. The crude was chromatographed to give the product 108 mg (35%). MS (ESI+) for $C_{16}H_{22}O_4S$ m/z 333 ($M+Na$)⁺.

STEP 3

tert-butyl 4-(phenylthio)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)butanoate

The product from step 2 (54 mg, 0.175 mmoles), N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide (40 mg, 0.192 mmoles) and carbonyl diimidazole (45 mg, 0.28 mmoles) were combined in DMF 1.5 mL and stirred at RT for 4 h then heated at 65°C overnight. N'-hydroxy-5-(pyridin-2-ylamino)pentanimidamide (36 mg 0.175 mmoles) and carbonyl diimidazole (50 mg, 0.31 mmoles) were added in and reaction was stirred at RT for 2 h followed by heating to 80°C for 24 h. Reaction was cooled, diluted with a sodium bicarbonate solution (6ml, 1:1 saturated bicarbonate solution and water) and extracted with ethyl acetate 3 x 3 mL. The combined organics were washed with water 2 x 3 mL, brine 3 mL, dried and passed through a pad of silica eluting with a further 10 mL of ethyl acetate. The solvent was removed under reduced pressure to give the product 50.4 mg (60 %). MS (ESI+) for $C_{26}H_{34}N_4O_3S$ m/z 483 ($M+H$)⁺.

STEP 4

4-(phenylthio)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)butanoic acid trifluoroacetate

The product from step 3 (50.4 mg, 0.10 mmoles) was stirred at RT in 1:1 mix of TFA and dichloromethane (2 mL) for 30 min. The solvent was removed under reduced pressure to give the product 56.2 mg (99 %). ¹H NMR (CD_3OD) δ 7.84-7.79 (m, 2 H), 7.39-7.35 (m, 2 H), 7.32-7.26 (m, 2 H), 7.22-7.17 (t, 1 H), 6.95 (d, 1 H), 6.82 (t, 1 H), 3.37 (t, 2 H), 3.22-3.02 (series

of m, 4 H), 2.81 (t, 2 H), 2.65-2.57 (series of m, 2 H), 2.49 (t, 1 H), 1.92-1.82 (series of m, 2 H), 1.80-1.72 (series of m, 2 H); MS (ESI+) for C₂₂H₂₆N₄O₃S
m/z 427 (M+H)⁺

EXAMPLE 66

4-(phenylthio)-3-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl)methyl)butanoic acid

STEP 1

tert-butyl 4-(phenylthio)-3-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl)methyl)butanoate

The compound was prepared according to the method in step 3 in the previous example substituting *N'*-hydroxy-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanimidamide for *N'*-hydroxy-5-(pyridin-2-ylamino)pentanimidamide. MS (ESI+) for C₂₈H₃₆N₄O₃S m/z 509 (M+H)⁺.

STEP 2

4-(phenylthio)-3-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl)methyl)butanoic acid trifluoroacetate

The compound was prepared according to the method in step 4 in the previous example.¹H NMR (CD₃OD) δ 7.55 (d, 1 H), 7.41-7.38 (m, 2 H), 7.32-7.28 (m, 2 H), 7.22-7.18 (m, 1 H), 6.61 (d, 1 H), 3.48 (t, 2 H), 3.26-3.00 (series of m, 4 H), 2.83-2.73 (series of m, 6 H), 2.67-2.59 (m, 2 H), 2.49-2.42 (m, 1 H), 2.16-2.08 (m, 2 H), 1.98-1.92 (m, 2 H); MS (ESI+) for C₂₄H₂₈N₄O₃S m/z 453 (M+H)⁺.

EXAMPLE 67

3-hydroxy-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

A solution of 3-(tert-butyldimethylsilyloxy)glutaric anhydride (0.50 g, 2.0 mmol) and (1Z)-N'-hydroxy-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanimidamide (479 mg, 2.0 mmol) in 1,4-dioxane (5 mL) was heated at 100 C for 16 h. The sample was filtered and partially concentrated. The solution was purified by RPHPLC (5-75 % acetonitrile/water(TFA)) and the solvent evaporated to afford a yellow oil (0.22 g). The oil was treated with trifluoroacetic acid (4 mL) and water (0.1 mL) and allowed to stand 16 h. The solvents were evaporated to afford 0.21 g of the product as a yellow oil (30%). ^1H NMR (400 MHz, CD₃OD) δ 7.58 (d, 1 H), 6.63 (d, 1 H), 4.52 (m, 1 H), 3.52 (dd, 2 H), 3.17 (dd, 1 H), 3.10 (dd, 1 H), 2.70 (m, 6 H), 2.66 (dd, 1 H), 2.59 (dd, 1 H), 2.15 (m, 2 H), 1.98 (m, 2 H); MS (ESI+) for *m/z* 347 (M+H)⁺.

EXAMPLE 68

3-hydroxy-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared by a method analogous to the method described for Example PHA-665009E. ^1H NMR (400 MHz, CD_3OD) δ 7.9 (m, 1 H), 7.83 (d, 1 H), 7.08 (d, 1 H), 6.89 (m, 1 H), 4.51 (m, 1 H), 3.42 (t, 2 H), 3.19 (dd, 1 H), 3.1 (dd, 1 H), 2.82 (t, 2 H), 2.65 (dd, 1 H), 2.6 (dd, 1 H), 1.9 (m, 2 H), 1.81 (m, 2 H); MS (ESI+) for m/z 321 ($\text{M}+\text{H})^+$.

EXAMPLE 69

3-methyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride. ^1H NMR (400MHz) DMSO-d₆ δ 8.83 (1H, s, br), 7.82-7.92 (2H, m), 7.05 (1H, d, J =9.5Hz), 6.80-6.86 (1H, m), 3.35-3.43 (2H, m), 2.91-2.99 (1H, m), 2.78-2.87 (1H, m), 2.74 (2H, t, J =7.5Hz), 2.30-2.40 (1H, m), 2.15-2.25 (1H, m), 1.71-1.82 (2H, m), 1.59-1.70 (2H, m), 0.92 (3H, d, J =6Hz). The material analyzed as follows: Found C, 51.79; H, 6.79; N, 14.77; C₁₆H₂₂N₄O₃ + HCl + H₂O requires C, 51.54; H, 6.76; N, 15.03

EXAMPLE 70

3-methyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

The title compound was prepared according to the method as described for preparing EXAMPLE 17 using the appropriate anhydride. ^1H NMR (DMSO- d_6) 12.2 (br s, 1H), 7.92 (s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 7.5 Hz, 1H), 3.5-3.3 (m, 2H), 3.0-2.8 (m, 2H), 2.78-2.7 (m, 6H), 2.4-2.13 (m, 3H), 2.06-1.98 (m, 2H), 1.87-1.79 (m, 2H), 0.93 (d, J = 7.5 Hz, 3H). Anal. Calcd. for $\text{C}_{18}\text{H}_{24}\text{N}_4\text{O}_3$ plus 1.2 $\text{CF}_3\text{CO}_2\text{H}$ and 1.0 H_2O : C, 49.08; H, 5.49; N, 11.22. Found: C, 49.30; H, 5.23; N, 11.12.

EXAMPLE 71

((1*S*,2*R*)-2-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}cyclopropyl)acetic acid

STEP 1

Tert-butyl (1*S*,2*R*)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylate and Tert-butyl (1*S*,2*S*)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylate

The compounds were prepared according to the procedure of Choi, S.; Newcomb, M.; Tetrahedron, 1995, 51, 657-663. The compounds were purified by flash chromatography 9:1 hexane: ethyl acetate. The trans isomer was isolated as a 20:1 mixture. ^1H NMR (DMSO-d₆) δ 3.70 (s, 3H), 2.46-2.16 (m, 2H) 1.68-1.6 (m, 1H), 1.44 (s, 9H), 1.43-1.36 (m, 1H), 1.21-1.15 (m, 1H), 0.76-0.69 (m, 1H). The cis isomer was isolated as a 10:1 mixture. ^1H NMR (DMSO-d₆) δ 3.68 (s, 3H), 2.71-2.56 (m, 2H) 1.77-1.69 (m, 1H), 1.55-1.48 (m, 1H), 1.44 (s, 9H), 1.10-1.02 (m, 1H), 0.92-0.88 (m, 1H).

STEP 2

(1*S*,2*R*)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylic acid

Tert-butyl (1S,2R)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylate was dissolved in a mixture of trifluoroacetic acid:methylene chloride (7:3) and stirred at room temperature until the t-butyl ester was removed. The solvent was removed under reduced pressure to give product. ^1H NMR (CDCl_3) δ 3.70 (s, 3H), 2.35 (d, $J = 7.5$ Hz, 2H) 1.85-1.70 (m, 1H), 1.52-1.49 (m, 1H), 1.39-1.30 (m, 1H), 0.93-0.87 (m, 1H).

STEP 3

(1S,2S)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylic acid

The compound was prepared using the same procedure as described above. ^1H NMR (CDCl_3) δ 3.68 (s, 3H), 2.75-2.6 (m, 2H), 1.87-1.79 (m, 1H), 1.70-1.59 (m, 1H), 1.27-1.19 (m, 1H), 1.06-0.99 (m, 1H).

STEP 4

((1S,2R)-2-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl)cyclopropyl)acetic acid hydrochloride

(1S,2R)-2-(2-methoxy-2-oxoethyl)cyclopropanecarboxylic acid (100 mg, 0.64 mmoles) was dissolved in DMF (4 ml) and carbonyldiimidazole (105 mg, 0.64 mmoles) was added. The mixture was stirred at room temperature for 30 minutes and then the amide oxime (150 mg, 0.64 mmoles) was added. The mixture was stirred at room temperature overnight. Then, the mixture was heated to 90 °C overnight. LC/MS: (MH^+) = 357. The solvent

was removed and the residue dissolved in MeOH (2 mL), THF (2 mL), and 1N NaOH (2 mL) and stirred at room temperature overnight. 1N HCl (2 mL) was added and the solvent was removed. The residue was purified by reverse phase HPLC. ^1H NMR (DMSO-d₆) δ 7.95 (s, 1H), 7.6 (d, J = 7.5 Hz, 1H), 6.6 (d, J = 7.5 Hz, 1H), 3.43-3.39 (m, 2H), 2.77-2.62 (m, 6H), 2.5-2.31 (m, 2H), 2.21-2.18 (m, 1H), 2.03-1.97 (m, 2H), 1.82-78 (m, 2H), 1.71-1.61 (m, 1H), 1.31-1.25 (m, 1H), 1.20-1.14 (m, 1H). Mass Spectrum: (MH⁺) = 343.

EXAMPLE 72

((1S,2S)-2-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}cyclopropyl)acetic acid

The title compound was prepared according to the procedure as described for EXAMPLE 69: ^1H NMR (DMSO-d₆) δ 12.13 (br s, 1H), 7.89 (s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 6.58 (d, J = 7.5 Hz, 1H), 3.50-3.45 (m, 2H), 2.75-2.62 (m, 6H), 2.6-2.30 (m, 3H), 2.08-1.93 (m, 2H), 1.86-1.70 (m, 3H), 1.48-1.4 (m, 1H), 1.05-0.99 (m, 1H). Mass Spectrum: (MH⁺) = 343.

EXAMPLE 73

STEP 1

Preparation of 1-(5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)-methanol

A mixture of 5,6,7,8-tetrahydro-[1,8]naphthyridine-2-carboxaldehyde 1 (0.5 g) and lithium borohydride (3.0 mL, 2.0 M) in THF (5.0 mL) was stirred at 5 °C for 1 h. The reaction mixture was then allowed to warm to room temperature over a period of another hour, quenched with acetic acid (2.0 mL) and concentrated under reduced pressure. The residue was partitioned between 1N NaOH (20.0 mL) and EtOAc (25 mL). The organic phase was washed with brine (2 x 10 mL), dried (Na₂SO₄), and concentrated to dryness. The resulting residue was purified by silica gel flash chromatography using EtOAc containing 10% methanol to give 0.3 g of the title compound as a pale yellow solid: ¹H-NMR δ (CD₃OD) 7.18 (d, 1H, J = 7.6 Hz), 6.58 (d, 1H, J = 7.6 Hz), 4.40 (s, 2H), 3.34 (m, 2H), 2.69 (t, 2H, J = 6.0 Hz), 1.85 (t, 2H, J = 6.0 Hz); ES-MS, m/z = 165 (MH⁺).

STEP 2

2-(5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)-methyleneoxy-acetonitrile

To a solution of 1-(5,6,7,8-Tetrahydro-1,8-naphthyridin-2-yl)-methanol (0.5 g) in THF (10.0 mL) at 0 °C, was added NaH (0.08 g) and stirred for 15 min. Then added dropwise, a solution of bromoacetonitrile (0.25 mL) in THF (5.0 mL). The resulting mixture was stirred at 0 °C for 1 h and at room temperature for another 1 h. The reaction mixture was concentrated to dryness and the residue was purified by reverse-phase HPLC using 5-90%

acetonitrile/water gradient at flow rate of 100 mL/min. The appropriate fractions were combined and freeze dried to give 0.5 g of the title compound: ^1H - NMR δ (CDCl₃) 7.37 (d, 1H, J = 9.6 Hz), 6.56 (d, 1H, 9.6 Hz), 4.62 (s, 2H), 4.46 (s, 2H), 3.52 (t, 2H, J = 7.2 Hz), 2.79 (t, 2H, J = 9.2 Hz), 1.94 (m, 2H); ES-MS, m/z = 204 (MH⁺).

STEP 3

To a mixture of Compound from step 2 (0.1 g), and hydroxylamine hydrochloride (0.07 g) in dry EtOH (3.0 mL) was added NaH (0.04 g) and stirred at 5 °C under argon for 30 min. The reaction mixture was then stirred at room temperature for 3 h, and added acetic acid (0.5 mL). The resulting mixture was concentrated to dryness and the amidoxime was isolated by reverse-phase HPLC uusinf 10-90% acetonitrile/water gradient at flow rate of 70 mL/min. The appropriate fractions (MH⁺ m/z = 237) were combined and frezze dried to give (0.025 g) the desired product: : ^1H - NMR δ (CD₃OD) 7.61 (d, 1H, J = 7.5 Hz), 6.73 (d, 1H, J = 7.5 Hz), 4.62 (s, 2H), 4.41 (s, 2H), 3.5 (t, 2H, J = 6.0 Hz), 2.85 (t, 2H, J = 6.0 Hz), and 1.96 (m, 2H), ES-MS: MH⁺ m/z = 237.

STEP 4

3-(1,3-benzodioxol-5-yl)-4-[3-[(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methoxy]methyl]-1,2,4-oxadiazol-5-yl]butanoic acid, trifluoroacetate.

A mixture of amidoxime (0.174 g, 0.737 mmol) and anhydride (0.189, 0.8107 mmol) in dioxane (5 mL) was heated overnight under argon at 95 °C. The reaction was monitored by electro spray MS ($M+H$ 453). The reaction mixture was cooled to room temperature, diluted with acetonitrile (5 mL) and purified by RP HPLC using a gradient of 90-10 % H₂O/acetonitrile/0.05 % TFA in 30 min, to afford the title compound (60 mg), m/z = 453 (MH^+).

Example 74

3,3-dimethyl-4-{5-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-3-yl}butanoic acid trifluoroacetate

Step 1:

5-tert-butoxy-3,3-dimethyl-5-oxopentanoic acid

3,3-Dimethylglutaric anhydride (6.5 g, 45.7 mmol) was dissolved in THF (7 mL) and the t-BuOK, 1M in THF (52.5 mL, 52.5 mmol) was added and the mixture was stirred at room temperature for one hour. The reaction mixture was then diluted with ether, washed with 1N HCl, brine (3x), dried (MgSO_4), and concentrated to give 6.8 g (69%) of the desired product as a colorless oil. ^1H NMR (DMSO-d_6) 12.0 (br s, 1H), 2.22 (s, 4H), 1.39 (s, 9H), 1.03 (s, 6H).

Step 2:

Tert-butyl 5-amino-3,3-dimethyl-5-oxopentanoate

5-Tert-butoxy-3,3-dimethyl-5-oxopentanoic acid (6 g, 27.8 mmol) was dissolved in DMF (111 mL) and benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate (21.68 g, 41.7

mmol), 1-hydroxybenzotriazole (5.6 g, 41.7 mmol), diisopropylethylamine (19.3 mL, 111 mmol) and ammonium chloride (3 g, 55.6 mmol) were added. The mixture was stirred at room temperature for two hours. The DMF was removed under reduced pressure and the residue dissolved in ethyl acetate. The ethyl acetate was washed with 1N KHSO₄, saturated sodium bicarbonate, brine, dried (Na₂SO₄) and concentrated. The residue was again dissolved in ethyl acetate, washed with 0.1N HCl, 0.1N NaOH, H₂O, dried (Na₂SO₄), passed through a pad of silica and concentrated to give 4.9 g (82%) of the desired product. ¹H NMR (DMSO-d₆) 7.19 (br s, 1H), 6.71 (br s, 1H), 2.23 (s, 2H), 2.08 (s, 2H), 1.4 (s, 9H), 1.02 (s, 6H).

Step 3:

Tert-butyl 4-cyano-3,3-dimethylbutanoate

Tert-butyl 5-amino-3,3-dimethyl-5-oxopentanoate (3.17 g, 14.7 mmol) was dissolved in dioxane (32 mL) containing pyridine (8 mL) and the solution was cooled to 0°C. Trifluoroacetic anhydride was added dropwise over 25 minutes keeping the temperature between 0-5°C. The mixture was stirred at 0°C for one hour and then at room temperature overnight. A few chips of ice were added, followed by ethyl acetate (250 mL). The ethyl acetate was washed with brine, dried (Na₂SO₄) and removed under reduced pressure. The residue was purified by flash chromatography 7:3 (hexane:ethyl acetate) to give 2.1 g (72%) of the desired product. ¹H NMR (CDCl₃) 2.44 (s, 2H), 2.21 (s, 2H), 1.39 (s, 9H), 1.10 (s, 6H).

Step 4:

Tert-butyl-5-amino-5-(hydroxyimino)-3,3-dimethylpentanoate

Hydroxylamine hydrochloride (353 mg, 5 mmol) and NaOMe 25% in MeOH (1.14 mL, 5 mmol) were mixed together in MeOH (3 mL), filtered, and washed with MeOH (2 mL). Tert-butyl 4-cyano-3,3-dimethylbutanoate (500 mg, 2.5 mmol) was dissolved in the above solution. The mixture was refluxed overnight. The solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate, passed through a pad of silica, concentrated, and used directly in next reaction. Mass Spectrum: (MH^+) = 231.

Step 5 :

Methyl 5-hydroxypentanoate

This compound was synthesized following the procedure of: Fleming, I.; Higgins, D.; Journal Chemical Society Perkin Trans. 1, 1998, 17, 2673-2678.

Step 6:

Methyl 5-oxopentanoate

This compound was synthesized following the procedure of: Fleming, I.; Higgins, D.; Journal Chemical Society Perkin Trans. 1, 1998, 17, 2673-2678.

Step 7:

Methyl 5-(pyridin-2-ylamino)pentanoate

To a solution of methyl 5-oxopentanoate (3.0 g, 23 mmol) in methylene chloride (75 mL) was added 2-aminopyridine (2.38 g, 25.3 mmol). The mixture was stirred at room temperature for 30 minutes. Then, the sodium triacetoxy borohydride (7.31 g, 34.5 mmol) was added and the mixture was stirred at room temperature for 4.5 hours. A saturated solution of sodium bicarbonate (40 mL) was added and the reaction mixture was extracted with ether (4x 30 mL). The organic layer was washed with 0.1N NaOH, water (2x 40 mL), dried (MgSO_4) and concentrated. The residue was purified by flash chromatography 1:1 (Acetone: methylene chloride) to obtain 2.31 g (48%) of the product. ^1H NMR (CDCl_3) 8.09-8.06 (m, 1H), 7.42-7.38 (m, 1H), 6.59-6.52 (m, 1H), 6.37 (d, $J = 9$ Hz, 1H), 4.52 (br s, 1H), 3.68 (s, 3H), 3.29 (q, $J = 6$ Hz, 2H), 2.40-2.31 (m, 2H), 1.8-1.61 (m, 4H).

Step 8:

Methyl 5-[*(tert*-butoxycarbonyl)](pyridin-2-yl)amino]pentanoate

To a mixture of methyl 5-(pyridin-2-ylamino)pentanoate (300 mg, 1.44 mmol) in methylene chloride (10 mL) was added DMAP (17.6 mg, 0.144 mmol) and di-tert-butyl dicarbonate (1.57 g, 7.2 mmol). The mixture was stirred at room temperature overnight. The reaction was diluted with water and the organic layer separated, dried (MgSO_4), and concentrated. The residue was purified by flash chromatography 1:2 (ethyl acetate:hexane) to obtain 213 mg (48%) of the product as a colorless oil. ^1H NMR (CDCl_3) 8.36-8.34 (m, 1H), 7.65-7.55 (m, 2H), 7.02-6.98 (m, 1H), 3.97-3.92 (m, 2H), 3.65 (s, 3H), 2.36-2.30 (m, 2H), 1.67-1.62 (m, 4H), 1.51 (s, 9H).

Step 9:

5-[(tert-butoxycarbonyl)(pyridin-2-yl)amino]pentanoic acid

NaOH (240 mg, 6 mmol) was dissolved in water (3 mL) and MeOH (10 mL). This solution was added to methyl 5-[(tert-butoxycarbonyl)(pyridin-2-yl)amino]pentanoate (200 mg, 0.64 mmol) dissolved in MeOH (15 mL). The mixture was stirred at room temperature overnight. The reaction mixture was neutralized with 2N HCl to pH 7. The solvent was removed under reduced pressure. A citric acid solution (10 mL) was added and the mixture was extracted with ethyl acetate, dried (MgSO_4) and concentrated to give 128 mg (68%) of the product. ^1H NMR (CDCl_3) 8.36-8.34 (m, 1H), 7.65-7.52 (m, 2H), 7.02-6.98 (m, 1H), 3.97-3.91 (m, 2H), 2.38-2.32 (m, 2H), 1.69-1.62 (m, 4H), 1.50 (s, 9H).

Step 10:

3,3-dimethyl-4-{5-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-3-yl}butanoic acid trifluoroacetate

5-[Tert-butoxycarbonyl](pyridin-2-yl)amino]pentanoic acid (128 mg, 0.44 mmoles) was dissolved in DMF (4 mL) and carbonyldiimidazole (71 mg, 0.64 mmoles) was added. The mixture was stirred at room temperature for 30 minutes and then tert-butyl-5-amino-5-(hydroxyimino)-3,3-dimethylpentanoate (151 mg, 0.66 mmoles) was added. The mixture was stirred at room temperature overnight. Then, the solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate, and passed through a pad of silica. The ethyl acetate was removed under reduced pressure and the residue was dissolved in dioxane (5 mL). The mixture was heated at 90°C overnight. LC/MS: (MH⁺) = 489. The solvent was removed and the residue was purified by flash chromatography 7:3 (hexane: ethyl acetate). The desired fractions were combined and the residue was dissolved in a 7:3 mixture of trifluoroacetic acid: methylene chloride (10 mL) and stirred at room temperature for one hour. The solvent was removed to give 70 mg(36%) of the desired product. ¹H NMR (DMSO-d₆) 8.82 (br s, 1H), 7.92-7.84 (m, 2H), 7.04 (d, J = 9.5 Hz, 1H), 6.88-6.81 (m, 1H), 3.39-3.30 (m, 2H), 2.97 (t, J = 6 Hz, 2H), 2.75 (s, 2H), 2.25 (s, 2H), 1.87-1.78 (m, 2H), 1.70-1.60 (m, 2H), 1.01 (s, 6H). Mass Spectrum: (MH⁺) = 333.

EXAMPLE 75

3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 76

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 77

3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 78

3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 79

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 80

(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 6.

EXAMPLE 81

3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 6.

EXAMPLE 82

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 6.

EXAMPLE 83

3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 6.

EXAMPLE 84

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 6.

EXAMPLE 85

(2-[2-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl]-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 86

3-Phenyl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 87

3-(2,3-Dihydro-benzofuran-6-yl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 88

3-(3-Fluoro-phenyl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 89

3-Pyridin-3-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 90

3-Benzo[1,3]dioxol-5-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 7.

EXAMPLE 91

(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 92

3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 93

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 94

3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 95

3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 96

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 97

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 98

3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 99

3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 100

3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 101

3-Benzo[1,3]dioxol-5-yl-4-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 102

3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 103

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 104

3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 105

3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 106

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 107

(2-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 108

(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 8.

EXAMPLE 109

(2-{4-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-cyclopropyl)-acetic acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 110

3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 111

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 112

3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 113

3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 114

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 115

3-Phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 116

3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 117

3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 118

3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 119

3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 120

3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 121

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 122

3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 123

3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 124

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 9.

EXAMPLE 125

3-Phenyl-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 126

3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 127

3-(3-Fluoro-phenyl)-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 129

3-Benzo[1,3]dioxol-5-yl-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 130

3-(3-Fluoro-phenyl)-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 131

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 132

3-Phenyl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 133

3-Pyridin-3-yl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 134

3-Benzo[1,3]dioxol-5-yl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 10.

EXAMPLE 135

3-Phenyl-4-[4-(3,5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 136

3-(2,3-Dihydro-benzofuran-6-yl)-4-[4-(3,5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propionyl]-imidazol-1-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 137

3-(3-Fluoro-phenyl)-4-[4-(3,5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 138

3-Pyridin-3-yl-4-[4-(3,5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 139

3-Benzo[1,3]dioxol-5-yl-4-[4-(3,5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 140

4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 141

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 142

3-(3-Fluoro-phenyl)-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 143

4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 144

4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

3-Benzo[1,3]dioxol-5-yl-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 11.

EXAMPLE 145

4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 146

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 147

3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 148

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 149

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 150

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 151

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 153

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 154

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 155

4-[4-{3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl}-pyrazol-1-yl]-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 156

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 157

3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 158

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 159

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 160

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 161

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 162

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 163

3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 164

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 165

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 166

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 167

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 168

3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 169

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 170

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 171

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-3-phenyl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 172

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 173

3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 174

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 175

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-3-pyridin-3-yl-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 177

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 178

3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 179

3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 180

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 181

3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 182

3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 183

3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 184

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 185

3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 12.

EXAMPLE 186

3-Benzo[1,3]dioxol-5-yl-4-{3-[4-(1*H*-imidazol-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 3 and using the intermediate and the methodology shown in Example 16

EXAMPLE 187

3-(3-Fluoro-phenyl)-4-{3-[4-(1*H*-imidazol-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 3 and using the intermediate and the methodology shown in Example 26.

EXAMPLE 188

3-Benzo[1,3]dioxol-5-yl-4-{3-[4-(2*H*-pyrazol-3-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 3 and using the intermediate and the methodology shown in Example 16

EXAMPLE 189

3-(3-Fluoro-phenyl)-4-{3-[4-(2*H*-pyrazol-3-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 3 and using the intermediate and the methodology shown in Example 26

EXAMPLE 190

3-Benzo[1,3]dioxol-5-yl-4-{3-[4-(3*H*-imidazol-4-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 3 and using the intermediate and the methodology shown in Example 16

EXAMPLE 192

3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(6-methylamino-pyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 16

EXAMPLE 193

3-(3-Fluoro-phenyl)-4-{3-[3-(6-methylamino-pyridin-2-yl)-propyl]-
[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 4 and using
the intermediate and the methodology shown in Example 26

EXAMPLE 195

3-(3-Fluoro-phenyl)-4-(3-{3-[6-(2-methoxy-ethylamino)-pyridin-2-yl]-propyl}-[1,2,4]oxadiazol-5-yl)-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 196

3-(3-Fluoro-phenyl)-4-(3-{3-[6-(3-methoxy-propylamino)-pyridin-2-yl]-propyl}-[1,2,4]oxadiazol-5-yl)-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 197

3-(3-Fluoro-phenyl)-4-(3-{3-[6-(2,2,2-trifluoro-ethylamino)-pyridin-2-yl]-propyl}-[1,2,4]oxadiazol-5-yl)-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 198

3-(3-Fluoro-phenyl)-4-{3-[3-(5-oxo-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 199

4-{3-[3-(5,5-Dimethyl-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-3-(3-fluoro-phenyl)-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 200

4-{3-[3-(5,5-Difluoro-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}-3-(3-fluoro-phenyl)-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

EXAMPLE 201

3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-4H-[1,2,4]triazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 202

3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-4H-[1,2,4]triazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 203

3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-4H-[1,2,4]triazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 204

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-4H-[1,2,4]triazol-3-yl}-butyric acid

The title compound is prepared according to the general procedures described in SCHEME 5.

EXAMPLE 205

3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]oxazin-6-yl)-propyl}-[1,2,4]oxadiazol-5-yl}-butyric acid

The title compound is prepared following the general Scheme 4 and using the intermediate and the methodology shown in Example 26

The activity of the compounds of the present invention was tested in the following assays. Compounds of the present invention antagonize the $\alpha_v\beta_3$ integrin with an IC₅₀ between 0.1nM to 100 μ M in the 293-cell assay. Similarly these compounds antagonize the $\alpha_v\beta_5$ integrin with an IC₅₀ of < 50 μ M in the cell adhesion assay.

VITRONECTIN ADHESION ASSAY

MATERIALS

Human vitronectin receptors $\alpha_v\beta_3$ and $\alpha_v\beta_5$ were purified from human placenta as previously described [Pytela et al., Methods in Enzymology, 144:475-489 (1987)]. Human vitronectin was purified from fresh frozen plasma as previously described [Yatohgo et al., Cell Structure and Function, 13:281-292 (1988)]. Biotinylated human vitronectin was prepared by coupling NHS-biotin from Pierce Chemical Company (Rockford, IL) to purified vitronectin as previously described [Charo et al., J. Biol. Chem., 266(3):1415-1421 (1991)]. Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St. Louis, MO). Anti-biotin antibody was obtained from Sigma (St. Louis, MO). Nalge Nunc-Immuno microtiter plates were obtained from Nalge Company (Rochester, NY).

METHODS

Solid Phase Receptor Assays

This assay was essentially the same as previously reported [Niiya et al., Blood, 70:475-483 (1987)]. The purified human vitronectin receptors $\alpha_v\beta_3$ and $\alpha_v\beta_5$ were diluted from stock solutions to 1.0 μ g/mL in Tris-buffered saline containing 1.0 mM Ca⁺⁺, Mg⁺⁺, and Mn⁺⁺, pH 7.4 (TBS⁺⁺⁺). The diluted receptors were immediately transferred to Nalge Nunc-Immuno microtiter plates at 100 μ L/well (100 ng receptor/well). The plates were

sealed and incubated overnight at 4°C to allow the receptors to bind to the wells. All remaining steps were at room temperature. The assay plates were emptied and 200 µL of 1% RIA grade BSA in TBS⁺⁺⁺ (TBS⁺⁺⁺/BSA) were added to block exposed plastic surfaces. Following a 2 hour incubation, the assay plates were washed with TBS⁺⁺⁺ using a 96 well plate washer. Logarithmic serial dilution of the test compound and controls were made starting at a stock concentration of 2 mM and using 2 nM biotinylated vitronectin in TBS⁺⁺⁺/BSA as the diluent. This premixing of labeled ligand with test (or control) ligand, and subsequent transfer of 50 µL aliquots to the assay plate was carried out with a CETUS Propette robot; the final concentration of the labeled ligand was 1 nM and the highest concentration of test compound was 1.0×10^{-4} M. The competition occurred for two hours after which all wells were washed with a plate washer as before. Affinity purified horseradish peroxidase labeled goat anti-biotin antibody was diluted 1:2000 in TBS⁺⁺⁺/BSA and 125 µL was added to each well. After 45 minutes, the plates were washed and incubated with OPD/H₂O₂ substrate in 100 mM/L Citrate buffer, pH 5.0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum-binding control wells reached an absorbance of about 1.0, the final A₄₅₀ were recorded for analysis. The data were analyzed using a macro written for use with the EXCEL spreadsheet program. The mean, standard deviation, and %CV were determined for duplicate concentrations. The mean A₄₅₀ values were normalized to the mean of four maximum-binding controls (no competitor added)(B-MAX). The normalized values were subjected to a four parameter curve fit algorithm [Rodbard et al., Int. Atomic Energy Agency, Vienna, pp 469 (1977)], plotted on a semi-log scale, and the computed concentration corresponding to inhibition of 50% of the maximum binding of biotinylated vitronectin (IC₅₀) and corresponding R² was reported for those compounds exhibiting greater than 50% inhibition at the highest concentration tested; otherwise the IC₅₀ is reported as being greater than the highest concentration tested. β-[[2-[[5-[(aminoiminomethyl)amino]-1-oxopentyl]amino]-1-oxoethyl]amino]-3-pyridinepropanoic acid [US 5,602,155

Example 1] which is a potent $\alpha_v\beta_3$ antagonist (IC_{50} in the range 3-10 nM) was included on each plate as a positive control.

PURIFIED IIb/IIIa RECEPTOR ASSAY

MATERIALS

Human fibrinogen receptor (IIb/IIIa) was purified from outdated platelets. (Pytela, R., Pierschbacher, M.D., Argraves, S., Suzuki, S., and Rouslahti, E. "Arginine-Glycine-Aspartic acid adhesion receptors", Methods in Enzymology 144(1987):475-489.) Human vitronectin was purified from fresh frozen plasma as described in Yatohgo, T., Izumi, M., Kashiwagi, H., and Hayashi, M., "Novel purification of vitronectin from human plasma by heparin affinity chromatography," Cell Structure and Function 13(1988):281-292. Biotinylated human vitronectin was prepared by coupling NHS-biotin from Pierce Chemical Company (Rockford, IL) to purified vitronectin as previously described. (Charo, I.F., Nannizzi, L., Phillips, D.R., Hsu, M.A., Scarborough, R.M., "Inhibition of fibrinogen binding to GP IIb/IIIa by a GP IIIa peptide", J. Biol. Chem. 266(3)(1991): 1415-1421.) Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St. Louis, MO). Anti-biotin antibody was obtained from Sigma (St. Louis, MO). Nalge Nunc-Immuno microtiter plates were obtained from (Rochester, NY). ADP reagent was obtained from Sigma (St. Louis, MO).

METHODS

Solid Phase Receptor Assays

This assay is essentially the same reported in Niiya, K., Hodson, E., Bader, R., Byers-Ward, V. Koziol, J.A., Plow, E.F. and Ruggeri, Z.M., "Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation: Relationships to the binding of fibrinogen and platelet aggregation", Blood 70(1987):475-483. The purified human fibrinogen receptor (IIb/IIIa) was diluted from stock solutions to 1.0 μ g/mL in Tris-buffered saline containing 1.0 mM Ca⁺⁺, Mg⁺⁺, and Mn⁺⁺, pH

7.4 (TBS⁺⁺⁺). The diluted receptor was immediately transferred to Nalge Nunc-Immuno microtiter plates at 100 µL/well (100 ng receptor/well). The plates were sealed and incubated overnight at 4°C to allow the receptors to bind to the wells. All remaining steps were at room temperature. The assay plates were emptied and 200 µL of 1% RIA grade BSA in TBS⁺⁺⁺ (TBS⁺⁺⁺/BSA) were added to block exposed plastic surfaces. Following a 2 hour incubation, the assay plates were washed with TBS⁺⁺⁺ using a 96 well plate washer. Logarithmic serial dilution of the test compound and controls were made starting at a stock concentration of 2 mM and using 2 nM biotinylated vitronectin in TBS⁺⁺⁺/BSA as the diluent. This premixing of labeled ligand with test (or control) ligand, and subsequent transfer of 50 µL aliquots to the assay plate was carried out with a CETUS Propette robot; the final concentration of the labeled ligand was 1 nM and the highest concentration of test compound was 1.0×10^{-4} M. The competition occurred for two hours after which all wells were washed with a plate washer as before. Affinity purified horseradish peroxidase labeled goat anti-biotin antibody was diluted 1:2000 in TBS⁺⁺⁺/BSA and 125 µL were added to each well. After 45 minutes, the plates were washed and incubated with ODD/H₂O₂ substrate in 100 mM/L citrate buffer, pH 5.0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum-binding control wells reached an absorbance of about 1.0, the final A₄₅₀ were recorded for analysis. The data were analyzed using a macro written for use with the EXCELJ spreadsheet program. The mean, standard deviation, and %CV were determined for duplicate concentrations. The mean A₄₅₀ values were normalized to the mean of four maximum-binding controls (no competitor added)(B-MAX). The normalized values were subjected to a four parameter curve fit algorithm, [Robard et al., Int. Atomic Energy Agency, Vienna, pp 469 (1977)], plotted on a semi-log scale, and the computed concentration corresponding to inhibition of 50% of the maximum binding of biotinylated vitronectin (IC₅₀) and corresponding R² was reported for those compounds exhibiting greater than 50% inhibition at the highest concentration tested; otherwise the IC₅₀ is reported as being greater than the highest concentration tested. β-[2-[[5-

[(aminoiminomethyl)amino]-1-oxopentyl]amino]-1-oxoethyl]amino]-3-pyridinepropanoic acid [US 5,602,155 Example 1] which is a potent $\alpha_v\beta_3$ antagonist (IC_{50} in the range 3-10 nM) was included on each plate as a positive control.

Human Platelet Rich Plasma Assays

Healthy aspirin free donors were selected from a pool of volunteers. The harvesting of platelet rich plasma and subsequent ADP induced platelet aggregation assays were performed as described in Zucker, M.B., "Platelet Aggregation Measured by the Photometric Method", Methods in Enzymology 169(1989):117-133. Standard venipuncture techniques using a butterfly allowed the withdrawal of 45 mL of whole blood into a 60 mL syringe containing 5 mL of 3.8% trisodium citrate. Following thorough mixing in the syringe, the anti-coagulated whole blood was transferred to a 50 mL conical polyethylene tube. The blood was centrifuged at room temperature for 12 minutes at 200 xg to sediment non-platelet cells. Platelet rich plasma was removed to a polyethylene tube and stored at room temperature until used. Platelet poor plasma was obtained from a second centrifugation of the remaining blood at 2000 xg for 15 minutes. Platelet counts are typically 300,000 to 500,000 per microliter. Platelet rich plasma (0.45 mL) was aliquoted into siliconized cuvettes and stirred (1100 rpm) at 37°C for 1 minute prior to adding 50 uL of pre-diluted test compound. After 1 minute of mixing, aggregation was initiated by the addition of 50 uL of 200 uM ADP. Aggregation was recorded for 3 minutes in a Payton dual channel aggregometer (Payton Scientific, Buffalo, NY). The percent inhibition of maximal response (saline control) for a series of test compound dilutions was used to determine a dose response curve. All compounds were tested in duplicate and the concentration of half-maximal inhibition (IC_{50}) was calculated graphically from the dose response curve for those compounds which exhibited 50% or greater inhibition at the highest concentration tested; otherwise, the IC_{50} is reported as being greater than the highest concentration tested.

NOT FURNISHED UPON FILING

NO PRESENTADO(A) EN EL MOMENTO DE LA PRESENTACIÓN

NON SOUMIS(E) AU MOMENT DU DÉPÔT

NOT FURNISHED UPON FILING

NO PRESENTADO(A) EN EL MOMENTO DE LA PRESENTACIÓN

NON SOUMIS(E) AU MOMENT DU DÉPÔT

What is claimed is:

1. A compound of the Formula I

or a pharmaceutically acceptable salt thereof, wherein

is a 4-8 membered monocyclic or a 7-12 membered bicyclic ring containing 1 to 4 heteroatoms, selected from the group consisting of O, N or S; optionally saturated or unsaturated, optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, nitro, alkoxy, hydroxyalkyl, thioalkyl, amino, alkylamino, arylamino, alkylsulfonamide, acyl, acylamino, alkylsulfone, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, carboxamide, cyano, and $-(\text{CH}_2)_m\text{COR}$ wherein m is 0-2 and R is hydroxy, alkoxy, alkyl or amino; with the proviso that when Y^4 in formula I is H, the ring A may not be an oxazole, with X-Y containing side-chain connected at the carbon-2 as in

; The ring A may further contain a carboxamide, sulfone, sulfonamide or a acyl group.

A^1 is a 5-9 membered monocyclic or 7-14 membered polycyclic heterocycle of the formula

containing at least one nitrogen atom and optionally 1 to 4 heteroatoms or groups selected from O, N, S, SO₂ or CO; optionally saturated or unsaturated; optionally substituted by one or more R^k selected from the group consisting of hydroxy, alkyl, alkoxy, alkoxyalkyl, thioalkyl, haloalkyl, cyano, amino, alkylamino, halogen, acylamino, sulfonamide and -COR wherein R is hydroxy, alkoxy, alkyl or amino;

include the following heterocyclic ring systems containing at least one nitrogen atom:

B2

B3

B4

wherein Z_a is H, alkyl, alkoxy, hydroxy, amine, alkylamine, dialkylamine, carboxyl, alkoxycarbonyl, hydroxyalkyl, halogen or haloalkyl and R¹ is H, alkyl, alkoxyalkyl, acyl, haloalkyl or alkoxycarbonyl. More specifically some examples of embodiments include pyridylamino, imidazolylamino, morpholinopyridine, tetrahydronaphthyridine, oxazolylamino, thiazolylamino, pyrimidinylamino, quinoline, isoquinoline, tetrahydroquinoline, imidazopyridine, benzimidazole, pyridone or quinolone.

The following heteroaryls include the ring systems described above.

For the pyridyl derived heterocycle, the substituents X_4 and X_5 are selected from the group consisting of H, alkyl, branched alkyl, alkylamino, alkoxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano or acylamino groups. In another embodiment of the invention, the substituents X_4 and X_5 can be methyl, methoxy, amine, methylamine, trifluoromethyl, dimethylamine, hydroxy, chloro, bromo, fluoro and cyano. X_6 may preferentially be H, alkyl, hydroxy, halogen, alkoxy and haloalkyl. Alternately, the pyridyl ring can be fused with a 4 - 8 membered ring, optionally saturated or unsaturated. Some examples of these ring systems include tetrahydronaphthyridine, quinoline,

tetrahydroquinoline, azaquinoline, morpholinopyridine, imidazopyridine and the like. The monocyclic ring systems such as imidazole, thiazole, oxazole, pyrazole, and the like, may contain an amino or alkylamino substituent at any position within the ring.

In another embodiment of the present invention, when Z_1 of Formula I is CO or SO_2 , the linkage A^1-Z_2 of Formula I includes the heterocycle derived ring systems such as: pyridine, imidazole, thiazole, oxazole, benzimidazole, imidazopyridine and the like.

Other heterocycles for A^1-Z_2 of the present invention include

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
 $R = \text{H, Me}$

$B = \text{NH, O, S}$
 $R = \text{H, Me}$

$B = \text{N, CH}$
 $R = \text{H, Me}$

wherein X_4 is as defined above.

or A^1 is

wherein Y^1 is selected from the group consisting of N-R^2 , O, and S;

R^2 is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; amido; alkylcarbonyl; arylcarbonyl; alkoxycarbonyl;

aryloxy carbonyl; haloalkyl carbonyl; haloalkoxy carbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl;

R^2 taken together with R^7 forms a 4-12 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, thioalkyl, alkylamino, hydroxy, keto, alkoxy, halo, phenyl, amino, carboxyl or carboxyl ester;

- or R^2 taken together with R^7 forms a 4-12 membered heterocycle containing one or more heteroatom selected from O, N and S optionally unsaturated;
- or R^2 taken together with R^7 forms a 5 membered heteroaromatic ring fused with an aryl or a heteroaryl ring;

R^7 (when not taken together with R^2) and R^8 are independently selected from the group consisting of H; alkyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxycarbonyl; aryloxy; aryloxy carbonyl; haloalkyl carbonyl; haloalkoxy carbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl;

- or NR^7 and R^8 taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom selected from the group consisting of O, N and S;

R^5 is selected from the group consisting of H and alkyl;

or

wherein Y² is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles;

Z₁ is selected from the group consisting of CH₂, O, CH₂O, NH, CO, S, SO, CH(OH) and SO₂;

Z₂ is a 1-5 carbon linker optionally containing one or more heteroatom selected from the group consisting of O, S and N; alternatively Z₁ - Z₂ may further contain a carboxamide, sulfone, sulfonamide, alkenyl, alkynyl, or acyl group;

wherein the carbon and nitrogen atoms of Z₁ - Z₂ are optionally substituted by alkyl, alkoxy, thioalkyl, alkylsulfone, aryl, alkoxyalkyl, hydroxy, alkylamino, heteroaryl, alkenyl, alkynyl, carboxyalkyl, halogen, haloalkyl or acylamino;

Additionally, Z₁ - Z₂ may contain a 5- or 6-membered aryl or heteroaryl ring optionally substituted with R^c, wherein the heteroaryl ring may contain 1-3 heteroatoms selected from the group consisting of O, N and S.

X is selected from the group consisting of -CHR^e-, -NR^f-, -O-, -S-, -SO₂-, and -CO- wherein R^e is H, lower alkyl, alkoxy, cycloalkyl, alkoxyalkyl, hydroxy, alkynyl, alkenyl, haloalkyl, thioalkyl or aryl; wherein when R^e is hydroxy, the hydroxy group can optionally form a lactone with the carboxylic acid function of the chain; wherein R^f is selected from the group consisting of H, alkyl, aryl, benzyl and haloalkyl;

Y is selected from the group consisting of $(CH_2)_p$, $-CHR^g-$, $-NR^g-$, CO and SO_2 , wherein R^g is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, hydroxy, alkoxy, and carboxyalkyl; wherein p is 0 or 1.

optionally the group X-Y can contain a moiety selected from the group consisting of acyl, alkyl, sulfonyl, amino, ether, thioether, carboxamido, sulfonamido, aminosulfonyl and olefins;

Y^3 and Y^4 are independently selected from the group consisting of H, alkyl, haloalkyl, halogen, aryl, arakyl, heteroaralkyl, heteroaryl, alkenes, hydroxyalkyl, and alkyne; wherein alkyl chain may be straight or branched and optionally containing one or more heteroatoms selected from the group consisting of N, O, and S, and may further contain a sulfone, sulfoamide, nitrile, carboxamide, carboalkoxy or carboxyl group; wherein aryl and heteroaryl rings may be monocyclic or bicyclic optionally containing 1-5 heteroatoms and wherein said ring may be saturated or unsaturated, and such rings may optionally be substituted by one or more substituent R^c;

With the proviso that when Y^3 or Y^4 is H, Y^5 may be C or N, otherwise Y^5 is C;

or Y^3 taken together with Y^4 forms a 3-8 membered monocyclic or a 7-11 membered bicyclic ring B,

IA

optionally containing one or more double bonds, optionally containing one or more heteroatom or functional group selected from O, NR^g, S, CO or SO_2 , optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, halogen,

haloalkyl, alkoxy, alkyne, cyano, alkylsulfone, sulfonamide, carboalkoxy and carboxyalkyl;

or X taken together with Y³ forms a 3-7 membered monocyclic ring C,

optionally containing one or more double bonds, optionally containing one or more heteroatom or functional group selected from O, NR^g, S, CO or SO₂, optionally substituted with one or more substituent selected from the group consisting of alkyl, halogen, alkoxy, haloalkyl, hydroxyalkyl, or alkoxyalkyl;

R^b is X₂ - R^h wherein X₂ is selected from the group consisting of O, S and NR^j wherein R^h and R^j are independently selected from the group consisting of H, alkyl, aryl, aralkyl, acyl and alkoxyalkyl.

2. A compound according to claim 1, wherein

A¹, Z₁, Z₂, Y³, Y⁴ and ring A are defined as in claim 1;

X is of -CHR^e-, wherein R^e is H ;

Y is -(CH₂)_p wherein p = 0;

Y⁵ is a carbon;

R^b is OH.

3. A compound according to Claim 2, wherein ring A

is selected from the group consisting of oxadiazole, thiazole, isooxazole, imidazole, pyrazole, thiadiazole, triazole, tetrazole, pyridine or pyrimidine.

4. A compound according to Claim 2, wherein Y3 or Y4 is independently selected from the the group consisting of:

R₁ = H, alkyl, OMe,
OH, halogen, amino, CN

X = CH₂, O

R₁ = H, alkyl, OMe,
OH, halogen, amino, CN

R₁ = H, alkyl, OMe,
OH, halogen

X = NH, NMe, O, S

H, alkyl, CH₂B₁R (B₁ = O, SO₂, S, CO; R = alkyl, aryl), CH₂OH, ~~~R
(R = alkyl, aryl, alkoxyalkyl)

5. A compound according to Claim 2, wherein A¹ is selected from the group consisting of

$X = \text{CH}_2, \text{O}, \text{S}, \text{SO}_2, \text{CO},$
 $\text{CF}_2, \text{CMe}_2$
 $R = \text{H, Me, OMe, OH, NR}_2$

$X = \text{CH}_2, \text{O}, \text{S}, \text{SO}_2, \text{CO},$
 $\text{CF}_2, \text{CMe}_2$
 $R = \text{H, Me, OMe, OH, NR}_2$

$X = \text{CH}_2, \text{O}, \text{S}, \text{SO}_2, \text{CO}, \text{CMe}_2$
 $R = \text{H, Me, OMe, OH}$

$X = \text{H, alkyl, acyl,}$
 $\text{alkoxyalkyl, haloalkyl}$
 $R = \text{H, Me, OH, OMe, NR}_2$

$R = \text{H, Me, NR}_2$
 OMe, OH

6. A compound according to claim 2, wherein ring A is selected from the group consisting of oxadiazole, thiazole or a pyridine.
7. A compound according to claim 6, wherein Y^3 or Y^4 is independently selected from the group consisting of

H, Me, Ph, Et, Pr, i-Pr, $\text{CH}_2\text{OCH}_2\text{Ph}$

8. A compound according to claim 6, wherein A^1 is

9. A compound according to claim 1, wherein

Y^3 taken together with Y^4 forms a 3-8 membered monocyclic or a 7-11 membered bicyclic ring B (formula IA),

IA

optionally containing one or more double bonds, optionally containing one or more heteroatom or functional group selected from O, NR^g, S, CO or SO₂, optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, halogen, haloalkyl, alkoxy, alkyne, cyano, alkylsulfone, sulfonamide, carboalkoxy and carboxyalkyl; wherein R^g is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, aryl, heteroaryl, aralkyl, and carboxyalkyl.

A^1 , Z_1 , Z_2 , and ring A are defined as in claim 1;

X is of -CHR^e-, wherein R^e is H ;

Y is -(CH₂)_p wherein p = 0;

Y^5 is a carbon;

R^b is OH.

10. A compound according to claim 9, wherein ring A is an oxadiazole

11. A compound according to claim 10, wherein ring B is a five or six membered spiro system

12. A compound according to claim 11, wherein A¹ is

13. A compound according to claim 1, wherein X taken together with Y³ forms a 3-7 membered monocyclic ring C (formula IB),

optionally containing one or more double bonds, optionally containing one or more heteroatom or functional group selected from O, NR⁹, S, CO or SO₂, optionally substituted with one or more substituent selected from the group consisting of alkyl, halogen, alkoxy,

haloalkyl, hydroxyalkyl, or alkoxyalkyl; wherein R^g is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, hydroxy, alkoxy, and carboxyalkyl;

A¹, Z₁, Z₂, Y⁴, and ring A are defined as in claim 1;

X is selected from the group consisting of -CR^e- wherein R^e is H, lower alkyl, alkoxy, cycloalkyl, alkoxyalkyl, hydroxy, alkynyl, alkenyl, haloalkyl, thioalkyl or aryl;

Y is -(CH₂)_p wherein p = 0 or 1;

Y⁵ is a carbon;

R^b is OH.

14. A compound according to claim 13, wherein ring A is an oxadiazole and ring C is a cyclopropyl ring (formula IC).

IC

15. The method according to Claim 1 wherein the compound selected from the group consisting of

3-methyl-4-(3-{(pyridin-2-ylamino)methyl}phenyl)-1,2,4-oxadiazol-5-yl)butanoic acid

3-methyl-4-(3-{4-{(pyridin-2-ylamino)methyl}phenyl}-1,2,4-oxadiazol-5-yl)butanoic acid

3,3-dimethyl-4-{4-(pyridin-2-ylamino)butyl}-1,3-thiazol-2-yl)butanoic acid

[1-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]-acetic acid
4-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-butanoic acid
2-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-butanoic acid
3,3-dimethyl-4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}butanoic acid
[1-({3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]acetic acid
4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}-4-phenylbutanoic acid
4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}-2-phenylbutanoic acid
4-{3-[2-(2-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)ethyl]-1,2,4-oxadiazol-5-yl}-2-phenylbutanoic acid
3,3-dimethyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
[1-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}methyl)cyclopentyl]acetic acid
4-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
2-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(1,3-benzodioxol-5-yl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(1,3-benzodioxol-5-yl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-quinolin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-quinolin-3-yl 4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-butanoic acid
3-(3-methoxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid

3-(3-methoxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(4-methoxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(4-methoxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(3-fluorophenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(3-fluorophenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(4-fluorophenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(4-fluorophenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}-3-[3-(trifluoromethyl)phenyl]butanoic acid
4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-3-[3-(trifluoromethyl)-phenyl]butanoic acid
3-(3-hydroxyphenyl)-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-(3-hydroxyphenyl)-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-pyridin-3-yl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-methyl-3-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}pentanoic acid
[1-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl)methyl}-cyclohexyl]acetic acid

3-methyl-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}-methyl)-hexanoic acid
3,4-dimethyl-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-pentanoic acid
3-ethyl-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-pentanoic acid
4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-methyl-3-phenyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid
3-Methyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid
3-Methyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid
3,4-Dimethyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid
3-Ethyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid
3-Methyl-3-phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}butyric acid
3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-pentanoic acid
3-Phenyl-3-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-hexanoic acid
4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}butyric acid
3-Methyl-3-pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl}butyric acid
(1-Acetyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid
(1-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)propyl]-[1,2,4]oxadiazol-5-ylmethyl}-cyclohexyl)-acetic acid
3-Methyl-3-pyridin-3-yl-4-{3-[4-(pyridin-2-ylamino)butyl]-[1,2,4]oxadiazol-5-yl}butyric acid

4-(benzyloxy)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)-butanoic acid
4-[4-(N-pyridin-2-yl-beta-alanyl)piperazin-1-yl]butanoic acid
4-{4-[3-(pyridin-2-ylamino)propyl]piperazin-1-yl}butanoic acid
2-methyl-6-[3(2-pyridylamino)propoxy]-3-pyridinebutanoic acid
 β,β -dimethyl-3-[5-(2-pyridinylamino)pentyl]-1,2,4-oxadiazole-5-butanoic acid
 β,β -dimethyl-3-[4-(2-pyridinylamino)butyl]-1,2,4-oxadiazole-5-butanoic acid
 β,β -dimethyl-3-[[2-(2-pyridinylamino)ethyl]thio]methyl]-1,2,4-oxadiazole-5-butanoic acid
4-Carboxymethyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidine-1-carboxylic acid tert-butyl ester
(1-Benzoyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-piperidin-4-yl)-acetic acid
[4-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-ylmethyl}-1-(2,2,2-trifluoroacetyl)-piperidin-4-yl]-acetic acid
4-(phenylthio)-3-({3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}methyl)butanoic acid
4-(phenylthio)-3-({3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}methyl)butanoic acid
3-methyl-4-{3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl}butanoic acid hydrochloride
3-methyl-4-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}butanoic acid
((1S,2R)-2-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}cyclopropyl)acetic acid
((1S,2S)-2-{3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl}cyclopropyl)acetic acid
3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-4H-[1,2,4]triazol-3-yl}-butyric acid

3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-tetrazol-2-yl}-butyric acid
(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,3,4]oxadiazol-2-yl}-butyric acid
(2-{2-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-Pyridin-3-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid

3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
(2-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-cyclopropyl)-acetic acid
(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-cyclopropyl)-acetic acid
(2-{4-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid

3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-Phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid3-Phenyl-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid
3-Pyridin-3-yl-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid

3-Benzo[1,3]dioxol-5-yl-4-{3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-Phenyl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-Pyridin-3-yl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-Phenyl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-Pyridin-3-yl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-3-phenyl-butyric acid

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-Pyridin-3-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{2-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-2H-tetrazol-5-yl}-butyric acid
(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-Pyridin-3-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid

3-Benzo[1,3]dioxol-5-yl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-butyric acid
3-Phenyl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-Pyridin-3-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-butyric acid
(2-{3-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-isoxazol-5-yl}-cyclopropyl)-acetic acid
(2-{5-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-1H-pyrazol-3-yl}-cyclopropyl)-acetic acid
(2-{4-[3-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-cyclopropyl)-acetic acid
3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-thiazol-2-yl}-butyric acid
3-Phenyl-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid

3-Pyridin-3-yl-4-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl]-butyric acid
3-Pyridin-3-yl-4-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl]-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-[3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl]-butyric acid
3-Phenyl-4-[4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-[4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
3-Pyridin-3-yl-4-[4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-[4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
3-Phenyl-4-[3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl]-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-[3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl]-butyric acid
3-Pyridin-3-yl-4-[3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl]-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-[3-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-isoxazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl]-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-[5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl]-butyric acid
3-Phenyl-4-[5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl]-butyric acid
3-Pyridin-3-yl-4-[5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl]-butyric acid

3-Benzo[1,3]dioxol-5-yl-4-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-2H-pyrazol-3-yl}-butyric acid
3-Phenyl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-Pyridin-3-yl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-[4-(3-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-propionyl)-imidazol-1-yl]-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-[4-[1-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl]-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
4-{4-[1-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-imidazol-1-yl}-butyric acid

4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-3-pyridin-3-yl-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-prop-1-ynyl]-pyrazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-3-phenyl-butyric acid

3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-3-pyridin-3-yl-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-imidazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-3-phenyl-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-butyric acid
4-{4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-pyrazol-1-yl}-3-pyridin-3-yl-butyric acid
3-(3-Fluoro-phenyl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-(2,3-Dihydro-benzofuran-6-yl)-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-imidazol-1-yl}-butyric acid
3-Benzo[1,3]dioxol-5-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
3-Pyridin-3-yl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid
3-Phenyl-4-{4-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propenyl]-pyrazol-1-yl}-butyric acid

3-hydroxy-4-[3-[4-(pyridin-2-ylamino)butyl]-1,2,4-oxadiazol-5-yl]butanoic acid
3-hydroxy-4-[3-[3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl]-1,2,4-oxadiazol-5-yl]butanoic acid
3-Benz[1,3]dioxol-5-yl-4-[3-[4-(1*H*-imidazol-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[4-(1*H*-imidazol-2-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-Benz[1,3]dioxol-5-yl-4-[3-[4-(2*H*-pyrazol-3-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[4-(2*H*-pyrazol-3-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-Benz[1,3]dioxol-5-yl-4-[3-[4-(3*H*-imidazol-4-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[4-(3*H*-imidazol-4-ylamino)-butyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-Benz[1,3]dioxol-5-yl-4-[3-[3-(6-methylamino-pyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[3-(6-methylamino-pyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-butyric acid4-[3-[3-(6-Ethylamino-pyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-3-(3-fluoro-phenyl)-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[3-[6-(2-methoxy-ethylamino)-pyridin-2-yl]-propyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
3-(3-Fluoro-phenyl)-4-(3-[3-[6-(3-methoxy-propylamino)-pyridin-2-yl]-propyl]-[1,2,4]oxadiazol-5-yl)-butyric acid
3-(3-Fluoro-phenyl)-4-(3-[3-[6-(2,2,2-trifluoro-ethylamino)-pyridin-2-yl]-propyl]-[1,2,4]oxadiazol-5-yl)-butyric acid
3-(3-Fluoro-phenyl)-4-[3-[3-(5-oxo-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-butyric acid
4-[3-[3-(5,5-Dimethyl-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-3-(3-fluoro-phenyl)-butyric acid
4-[3-[3-(5,5-Difluoro-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-[1,2,4]oxadiazol-5-yl]-3-(3-fluoro-phenyl)-butyric acid

3-(1,3-benzodioxol-5-yl)-4-{3-[(5,6,7,8-tetrahydro-1,8-naphthyridin-2-ylmethoxy)methyl]-1,2,4-oxadiazol-5-yl}butanoic acid.

16. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
17. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claims 2-15 and a pharmaceutically acceptable carrier.
18. A pharmaceutical composition comprising a therapeutically effective amount of at least one compound of Claim 1 and a pharmaceutically acceptable carrier/or additive and optionally a cytotoxic agent.
19. A pharmaceutical composition comprising a therapeutically effective amount of atleast one compound of Claims 2-17 and a pharmaceutically acceptable carrier/or additive and optionally a cytotoxic agent.
20. A method for treating conditions mediated by the $\alpha_v\beta_3$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_v\beta_3$ inhibiting amount of a compound of Claim 1.
21. A method for treating conditions mediated by the $\alpha_v\beta_3$ integrin in a mammal in need of such treatment compirising administering an effective $\alpha_v\beta_3$ inhibiting amount of a compound of Claims 2-19.
22. The method according to Claim 16 wherein the condition treated is tumor metastasis.
23. The method according to Claim 17 wherein the condition treated is tumor metastasis.

24. The method according to Claim 18 wherein the condition treated is tumor metastasis.
25. The method according to Claim 20 wherein the condition treated is tumor metastasis.
26. The method according to Claim 16 wherein the condition treated is solid tumor growth.
27. The method according to Claim 17 wherein the condition treated is solid tumor growth.
28. The method according to Claim 18 wherein the condition treated is solid tumor growth.
29. The method according to Claim 20 wherein the condition treated is solid tumor growth.
30. The method according to Claim 16 wherein the condition treated is angiogenesis.
31. The method according to Claim 17 wherein the condition treated is angiogenesis.
32. The method according to Claim 18 wherein the condition treated is angiogenesis.
33. The method according to Claim 20 wherein the condition treated is angiogenesis.
34. The method according to Claim 16 wherein the condition treated is osteoporosis.

35. The method according to Claim 17 wherein the condition treated is osteoporosis.
36. The method according to Claim 20 wherein the condition treated is osteoporosis.
37. The method according to Claim 21 wherein the condition treated is osteoporosis.
38. The method according to Claim 16 wherein the condition treated is humoral hypercalcemia of malignancy.
39. The method according to Claim 17 wherein the condition treated is humoral hypercalcemia of malignancy.
40. The method according to Claim 20 wherein the condition treated is humoral hypercalcemia of malignancy.
41. The method according to Claim 21 wherein the condition treated is humoral hypercalcemia of malignancy.
42. The method according to Claim 16 wherein the condition treated is smooth muscle cell migration.
43. The method according to Claim 17 wherein the condition treated is smooth muscle cell migration.
44. The method according to Claim 20 wherein the condition treated is smooth muscle cell migration.
45. The method according to Claim 21 wherein the condition treated is smooth muscle cell migration.

46. The method according to Claim 16 wherein restenosis is inhibited.
47. The method according to Claim 17 wherein restenosis is inhibited.
48. The method according to Claim 20 wherein restenosis is inhibited.
49. The method according to Claim 21 wherein restenosis is inhibited.
50. The method according to Claim 16 wherein atheroscelerosis is inhibited.
51. The method according to Claim 17 wherein atheroscelerosis is inhibited.
52. The method according to Claim 20 wherein atheroscelerosis is inhibited.
53. The method according to Claim 21 wherein atheroscelerosis is inhibited.
54. The method according to Claim 16 wherein macular degeneration is inhibited.
55. The method according to Claim 17 wherein macular degeneration is inhibited.
56. The method according to Claim 20 wherein macular degeneration is inhibited.
57. The method according to Claim 21 wherein macular degeneration is inhibited.
58. The method according to Claim 16 wherein retinopathy is inhibited.

59. The method according to Claim 17 wherein retinopathy is inhibited.
60. The method according to Claim 20 wherein retinopathy is inhibited.
61. The method according to Claim 21 wherein retinopathy is inhibited.
62. The method according to Claim 16 wherein arthritis is inhibited.
63. The method according to Claim 17 wherein arthritis is inhibited.
64. The method according to Claim 20 wherein arthritis is inhibited.
65. The method according to Claim 21 wherein arthritis is inhibited.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 December 2001 (20.12.2001)

PCT

(10) International Publication Number
WO 01/096334 A3

(51) International Patent Classification⁷: C07D 413/12,
417/12, 471/04, 413/14, 213/74, 413/06, 498/04, A61K
31/4245, 31/4439, 31/425, 31/4375, A61P 9/10, 19/10,
35/00 // (C07D 471/04, 221:00, 221:00) (C07D 498/04,
265:00, 221:00)

[US/US]; 374 Larch, Elmhurst, IL 60126 (US). SCHRET-
ZMAN, Lori, A. [US/US]; 5820 Hancock Lane, Gurnee,
IL 60031 (US). SPANGLER, Dale, P. [US/US]; 30
Kimberly Court, Deerfield, IL 60015 (US). BOYS, Mark,
Laurence [GB/US]; 1906 E Kiowa Ln, Mount Prospect,
IL 60056 (US). CHANDRAKUMAR, Nizal, Samuel
[US/US]; 15 Montgomery Lane, Vernon Hills, IL 60061
(US). LU, Hwang-Fun [—/US]; 1723 Rosslaire Court,
Manchester, MO 63021 (US).

(21) International Application Number: PCT/US01/19375

(74) Agent: POLSTER, Rachel, A.; Pharmacia Corporation,
Corporate Patent Dept., 800 N. Lindbergh Boulevard, Mail
Zone O4E, St. Louis, MO 63167 (US).

(22) International Filing Date: 15 June 2001 (15.06.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— with international search report

(30) Priority Data:
60/211,781 15 June 2000 (15.06.2000) US
60/211,782 15 June 2000 (15.06.2000) US

(88) Date of publication of the international search report:
12 September 2002

(71) Applicant (for all designated States except US): PHAR-
MACIA CORPORATION [—/US]; Corporate Patent
Dept., 800 N. Lindbergh Boulevard, Mail Zone O4E, St.
Louis, MO 63167 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(72) Inventors; and
(75) Inventors/Applicants (for US only): NAGARAJAN,
Scrinivasan, Raj [US/US]; 16209 Forest Meadows Drive,
Chesterfield, MO 63005 (US). KHANNA, Ish, Kumar
[US/US]; 1821 S. Falcon Drive, Libertyville, IL 60048
(US). TOLLEFSON, Michael, B. [US/US]; 357 Big
Horn Drive, Hainesville, IL 60030 (US). MOHLER,
Scott, B. [US/US]; Apartment #1, 3704 North Bosworth,
Chicago, IL 60613 (US). CHEN, Barbara [US/US]; 3286
Highland Road, Northbrook, IL 60062 (US). RUSSELL,
Mark [GB/US]; 475 Cross Rode, Gurnee, IL 60031 (US).
DEVADAS, Balekudru [US/US]; 2175 Parasol Drive,
Chesterfield, MO 63017 (US). PENNING, Thomas, D.

WO 01/096334 A3

(54) Title: HETEROARYLALKANOIC ACIDS AS INTEGRIN RECEPTOR ANTAGONISTS

(57) Abstract: The present invention relates to a class
of compounds represented by formula (I) or a phar-
maceutically acceptable salt thereof, pharmaceutical
compositions comprising compounds of Formula
(I), and methods of selectively antagonizing the
 $\alpha\beta_3$ and/or the $\alpha\beta_5$ integrin without significantly
antagonizing the IIb/IIIa integrin.

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/US 01/19375

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C07D413/12	C07D417/12	C07D471/04	C07D413/14	C07D213/74
	C07D413/06	C07D498/04	A61K31/4245	A61K31/4439	A61K31/425
	A61K31/4375	A61P9/10	A61P19/10	A61P35/00	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 26945 A (DU PONT PHARM CO) 3 June 1999 (1999-06-03) page 1, line 6 - line 16 page 16, line 13 -page 18, line 20 claims 1,4,7,10	1,16,20, 22,26, 30,34, 38,42, 46,50, 54,58,62
X	WO 99 30709 A (MEISSNER ROBERT S; DUGGAN MARK E (US); MERCK & CO INC (US); PERKIN) 24 June 1999 (1999-06-24) cited in the application claims 1-4,16-38	1-3,5,6, 16-65

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *U* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

13 June 2002

Date of mailing of the International search report

21/06/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hass, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/19375

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 // (C07D471/04, 221:00, 221:00), (C07D498/04, 265:00, 221:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 849 736 A (DEGRADO WILLIAM FRANK ET AL) 15 December 1998 (1998-12-15) column 4, line 43 – line 52; claims 1,5-7,10,14-16,26-29; tables 4,7,9,14	1,16,22, 30,34, 50,58,62
X	WO 94 08577 A (MERCK & CO INC; HARTMAN GEORGE D (US); PRUGH JOHN D (US); EGBERTSO) 28 April 1994 (1994-04-28) compounds 1-12, 1-13, 3-8, 3-9, 3-10, 4-6, 4-7, 4-8, 5-4, 5-5, 5-6, 10-3, 10-4; page 81; claims 1,10	1,16
A	WO 97 44333 A (BERNOTAT DANIELOWSKI SABINE; MERCK PATENT GMBH (DE); GANTE JOACHIM) 27 November 1997 (1997-11-27) claims 1-9	1-65

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *Z* document member of the same patent family

Date of the actual completion of the international search

13 June 2002

Date of mailing of the international search report

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Hass, C

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/19375

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 20-65 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 1-4, 7, 9-11, 13, 14, 16-65 (all partly) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-4, 7, 9-11, 13, 14, 16-65 (all partly)

Present claims 1-4, 6, 7, 9-11, 13, 14 relate to an extremely large number of possible compounds/products. In fact, the claims contain so many options and variables that a lack of clarity and conciseness within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible.

Especially the definition of A1, because of the terms "include" (used several times), "in another embodiment of the (present) invention" (used twice) and "and the like", are unclear with regard to the heterocycles actually comprised. Therefore, all claims where A1 is not defined more exactly than in claim 1 lack clarity. Consequently, the search has been carried out for those parts of the application which do appear to be clear and concise, namely compound claims 5, 8, 12, 15 and the examples given in the description.

The claims directed to the pharmaceutical use of the claimed compounds (claims 16-65) have thus been searched as far as they refer to compound claims 5, 8, 12, 15 and the examples.

In claims 22-24, 26-28, 30-32, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63 another inconsistency arises which makes these claims unclear within the meaning of Article 6 PCT: These claims, directed to methods for medical treatment, are formulated as to be dependent of claim 16, 17 or 18, which, however, are directed to pharmaceutical compositions, not to methods for medical treatment. For the purpose of search, the claims in question have been considered therefore as to be dependent of claim 20 or 21 instead.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/19375

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9926945	A 03-06-1999	AU 1523199 A CA 2309204 A1 EP 1049693 A1 JP 2001524481 T WO 9926945 A1 US 6153628 A	15-06-1999 03-06-1999 08-11-2000 04-12-2001 03-06-1999 28-11-2000
WO 9930709	A 24-06-1999	AU 736026 B2 AU 1725799 A AU 741769 B2 AU 1914499 A BG 104601 A BR 9813574 A CA 2315189 A1 CA 2315370 A1 CN 1284955 T EE 200000360 A EP 1047425 A1 EP 1040111 A1 HU 0100178 A2 JP 2002508323 T JP 2002508374 T NO 20003113 A PL 341095 A1 SK 9162000 A3 TR 200001752 T2 WO 9930709 A1 WO 9931099 A1 US 6066748 A US 6017926 A US 6066648 A US 6268378 B1 ZA 9811500 A	26-07-2001 05-07-1999 06-12-2001 05-07-1999 31-01-2001 10-10-2000 24-06-1999 24-06-1999 21-02-2001 17-12-2001 02-11-2000 04-10-2000 28-11-2001 19-03-2002 19-03-2002 16-08-2000 26-03-2001 12-03-2001 21-12-2000 24-06-1999 24-06-1999 23-05-2000 25-01-2000 23-05-2000 31-07-2001 17-06-1999
US 5849736	A 15-12-1998	AU 723577 B2 AU 6024396 A BR 9609151 A CA 2222147 A1 CN 1202893 A CZ 9703743 A3 EE 9700312 A EP 0832076 A1 HU 9900102 A2 JP 11504651 T LT 97182 A ,B LV 12046 A LV 12046 B NZ 309944 A PL 323835 A1 SI 9620071 A SK 162097 A3 TW 454007 B WO 9638426 A1 US 6114328 A ZA 9604486 A AT 198748 T AU 695853 B2 AU 1098095 A	31-08-2000 18-12-1996 29-06-1999 05-12-1996 23-12-1998 16-12-1998 15-06-1998 01-04-1998 28-05-1999 27-04-1999 27-07-1998 20-05-1998 20-09-1998 28-10-1999 27-04-1998 31-12-1998 13-04-1999 11-09-2001 05-12-1996 05-09-2000 01-12-1997 15-02-2001 27-08-1998 13-06-1995

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/19375

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 5849736	A		BR 9408137 A CA 2174838 A1 CZ 9601419 A3 DE 69426604 D1 DE 69426604 T2 DK 730590 T3 EP 0730590 A1 EP 0970950 A2 ES 2154326 T3 FI 962184 A HR 940952 A1 HU 74690 A2 IL 111721 A JP 9505590 T NO 962096 A NZ 276633 A NZ 329604 A PL 314591 A1 PT 730590 T RU 2149871 C1 SK 66696 A3 WO 9514683 A1	12-08-1997 01-06-1995 13-11-1996 22-02-2001 10-05-2001 19-03-2001 11-09-1996 12-01-2000 01-04-2001 23-05-1996 30-04-1997 28-01-1997 01-06-2000 03-06-1997 23-05-1996 27-04-1998 27-03-2000 16-09-1996 31-05-2001 27-05-2000 06-11-1996 01-06-1995
WO 9408577	A	28-04-1994	AU 674553 B2 AU 5357894 A CA 2144762 A1 EP 0667773 A1 JP 8502486 T WO 9408577 A1 US 5786373 A	02-01-1997 09-05-1994 28-04-1994 23-08-1995 19-03-1996 28-04-1994 28-07-1998
WO 9744333	A	27-11-1997	DE 19620041 A1 AU 2957997 A WO 9744333 A1 ZA 9704234 A	29-01-1998 09-12-1997 27-11-1997 11-12-1997
US 5773646	A	30-06-1998	AT 204857 T AU 2337097 A CA 2250464 A1 DE 69706407 D1 DE 69706407 T2 DK 889877 T3 EP 0889877 A1 ES 2162676 T3 JP 2000506538 T PT 889877 T WO 9736862 A1	15-09-2001 22-10-1997 09-10-1997 04-10-2001 29-05-2002 01-10-2001 13-01-1999 01-01-2002 30-05-2000 28-02-2002 09-10-1997
US 5852210	A	22-12-1998	AU 2337197 A CA 2250690 A1 EP 0894084 A1 JP 2000510098 T WO 9736860 A1	22-10-1997 09-10-1997 03-02-1999 08-08-2000 09-10-1997