Student

Total Points

97 / 101 pts

Question 1

(no title) **21** / 21 pts

1.1 (no title) 6 / 6 pts

→ + 6 pts Correct

X	y	\mathbf{z}	E	F	\mathbf{G}
0	0	0	0	0	1
0	0	1	d	\mathbf{d}	\mathbf{d}
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	\mathbf{d}	\mathbf{d}
1	1	1	d	\mathbf{d}	\mathbf{d}

1.2 (no title) 8 / 8 pts

$$E = x + y$$

$$F = x$$

$$G = x'y' + x'z$$

$$G = x'y' + yz$$

1.3 (no title) 7 / 7 pts

→ + 7 pts Correct

Question 2 (no title) **20** / 20 pts **12** / 12 pts 2.1 (no title) ✓ - 0 pts Correct (x'z' + xz) (no title) 8 / 8 pts 2.2 ✓ - 0 pts Correct K-Map and results (x'z + xz) Question 3 (no title) **1** / 1 pt Question 4 (no title) **31** / 31 pts 4.1 (no title) **10** / 10 pts ✓ + 10 pts Correct **7** / 7 pts 4.2 (no title) ✓ - 0 pts Correct **7** / 7 pts 4.3 (no title) ✓ - 0 pts Correct **7** / 7 pts (no title) 4.4

Question 5 (no title) **24** / 28 pts **7** / 7 pts (no title) 5.1 → + 7 pts Correct (no title) **3** / 7 pts 5.2 Click here to replace this description. \checkmark +2 pts Computed D_A , D_B but not A_{n+1} , B_{n+1} → + 1 pt Correct output z **7** / 7 pts (no title) 5.3 → + 7 pts Correct (no title) **7** / 7 pts 5.4

- **1.** Design a combinational circuit with three inputs: x, y, z and three outputs: E, F, G, such that,
 - When the binary input xyz represents the decimal digits 2, 3, or 4, the binary output EFG should represent the decimal digit that is 2 greater than the input: that is 4, 5, or 6 respectively.
 - Similarly, when the binary input represents the digits 0 or 5, the binary output should represent the digit that is 1 greater than the input.
 - The remaining three, binary representations of the decimal digits 1, 6, and 7 never occur.
 - a) Start by drawing the truth table for the functions E, F, and G.

11	2	E	F	61	1
0	0	0	0	T	-
13	11	1	19	f	
(1)	0	t	0	0	1
d	0	1	0	1	I
0	0	1	1	0	-
1	10	1	1	1	
	7 0 0 1 00 1	J Z 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J Z E 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	J Z E F 0 0 0 0 0 1 d d 1 0 1 0 0 0 1 1	JZEF6 00001 0100 10100 1100

b) Next, using K-Maps find all minimal forms of the three functions.

c) Finally, draw a circuit with three inputs and three outputs, representing a minimal form of the functions.

2. a)	Find all minimal	forms of the functi	on below using the	Tabulation Me	ethod and the Prime	Implicant Table.
-------	------------------	---------------------	--------------------	---------------	---------------------	------------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 111 7
Index Binary Picinal 0 0-0 0,2 1-1-15,7-1 XZ+X'Z' XZ+X'Z' XZ-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X
b) Now use a K-Map to confirm your results in 2.a).
3. Draw a full-adder using two half-adders, and one more simple gate only.

. a) Draw a simple S-R-Flip-Flop using two gates and inverters, and show the truth table for this flip-flop.

111 doesn't ecunt 8

b) Draw a Clocked (controlled) S-R-Flip-Flop using an existing simple S-R-Flip-Flop and additional gates.

c) Draw a T-Flip-Flop using an existing Clocked S-R-Flip-Flop and wires only.

d) Draw the Racing Problem solution for a Clocked S-R-Flip-Flop using two existing Clocked S-R-Flip-Flops.

5. A sequential circuit with two clocked D-flip-flops A and B, one input x, and one output z is specified by the following input equations:

$$D_A = B * x$$
, $D_B = A * x + B$, $z = A + B$

Previous	State	Input	Next	State	output
<u> </u>	B	X	DA	83	2
C	O	0	0	3	0
0	0	. 1	0	0	0
0	1	0	0	1	
0				4 1 4 5	
1	0	0	0	10	
1	0	1	0	1	
		O	0.		1
1	- 1		1	+ 1	1 1

c) Derive the state diagram.

finite state machine? Check the appropriate box. or a Moore d) Is this a Mealy