1.1 A sequence of binary digits is transmitted in a certain communication system. Any given digit is received erroneously with probability p and received correctly with probability 1-p. Errors occur independently from digit to digit. Out of a sequence of p digits transmitted, what is the probability that no more than p digits are received erroneously?

Solution:

Assume the number of erroneous digits is X. Obviously, $X \sim B(n,p)$

$$P(X \le j) = \sum_{i=0}^{j} P(X = i) = \sum_{i=0}^{j} \mathrm{C}_n^i p^i (1-p)^{n-i}$$

1.2 Suppose that X_1 and X_2 are Gaussian random variables with means μ_1 and μ_2 , respectively. Assume that $\mu_1 \neq \mu_2$. The variance for each of the two random variables is σ^2 . Find the value of x for which $f_{X_1}(x) = f_{X_2}(x)$.

Solution:

As
$$X_1\sim N(\mu_1,\sigma), X_2\sim N(\mu_2,\sigma)$$
, their $p.~d.~fs$ is $f_{X_1}(x)=rac{1}{\sqrt{2\pi}\sigma}\mathrm{exp}\left(-rac{(x-\mu_1)^2}{2\sigma^2}
ight), f_{X_2}(x)=rac{1}{\sqrt{2\pi}\sigma}\mathrm{exp}\left(-rac{(x-\mu_2)^2}{2\sigma^2}
ight)$ Let $f_{X_1}(x)=f_{X_2}(x)\Rightarrow (x-\mu_1)^2=(x-\mu_2)^2\Rightarrow x=rac{\mu_1+\mu_2}{2}$

What is the characteristic function of an exponential random variable X? Find $E[X^3]$.

Solution:

The $p.\,d.\,fs$ of exponential random variable is $f(x)=egin{cases} \lambda e^{-\lambda x}, x\geq 0 \ 0, x<0 \end{cases}$

It's characteristic function:
$$\phi(t)=\int_0^\infty e^{itx}\lambda e^{-\lambda x}\mathrm{d}x=rac{\lambda}{\lambda-it}$$

$$E[X^3] = \frac{1}{i^3}\phi^{(3)}(0) = \frac{1}{i^3}\left(\frac{\lambda}{\lambda - it}\right)^{(3)}\Big|_{t=0} = \frac{6}{\lambda^3}$$

What is the probability generating function of an binomial random variable?

Solution:

Assume an binomial random variable $X \sim B(n,p)$

The probability generating function can be calculated as follow:

$$P_X(z) = a^g(z) = \sum_{k=0}^n P(X=ki) z^k = \sum_{k=0}^n \mathrm{C}_n^k p^k (1-p)^{n-k} z^k$$

Consider a clock powered by a single AAA battery. When a battery fails, the owner replaces the failed battery by one chosen randomly from two different brands. With probability p one of brand 1 is chosen, and with probability 1-p one of brand 2 is chosen. Let X_i denote the lifetime of a brand i battery. For i=1 and i=10, we assume that i=11 and i=12, we denote the lifetime of the battery in use. Find i=13 and i=14 and i=15 and i=15

Solution:

$$X = pX_1 + (1-p)X_2$$

$$E[X] = pE[X_1] + (1-p)E[X_2] = p\mu_1 + (1-p)\mu_2$$
 $Var[X] = p^2Var[X_1] + (1-p)^2Var[X_2] = p^2\sigma_1^2 + (1-p)^2\sigma_2^2$