Symulacja procesów rzadkich przy pomocy równania typu Master, algorytm Gillespie

Metody Monte Carlo w Fizyce

Julia Potempa (411073)

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

23. kwietnia 2025r.

Cel ćwiczenia

Celem ćwiczenia jest implementacja i analiza algorytmu Gillespie'go do symulacji procesu reakcji chemicznych:

$$\emptyset \xrightarrow{k_1} x_1, \quad \emptyset \xrightarrow{k_2} x_2, \quad x_1 + x_2 \xrightarrow{k_3} x_3, \quad x_3 \xrightarrow{k_4} \emptyset$$

i porównanie dynamiki zmiennych stochastycznych $x_1(t)$, $x_2(t)$ oraz $x_3(t)$ dla różnych liczebności prób (P_{max}) na podstawie średnich i odchyleń standardowych.

1 Wstęp teoretyczny

Reakcje chemiczne przy małej liczbie cząsteczek wymagają opisu stochastycznego, a ich ewolucję opisuje równanie typu Master. Algorytm Gillespie'go generuje trajektorie tego procesu iteracyjnie:

1. Oblicza się sumę szybkości zdarzeń $\Gamma_{\rm tot} = \sum_i \Gamma_i$, gdzie poszczególne szybkości opisane są wzorami:

$$\Gamma_1 = k_1, \ \Gamma_2 = k_2, \ \Gamma_3 = k_3 x_1 x_2, \ \Gamma_4 = k_4 x_3.$$

- 2. Generuje się czas do następnego zdarzenia $\Delta t = \frac{-\ln(U_1)}{\Gamma_{\rm tot}}, U_1 \sim U(0,1).$
- 3. Wybiera się zdarzenie wg. $U_2 \sim U(0,1)$ i dystrybuanty skumulowanej $\frac{\sum \Gamma_i}{\Gamma_{\text{tot}}}$.
 - $\Gamma_1: x_1 \to x_1 + 1$,
 - $\Gamma_2: x_2 \to x_2 + 1$,
 - $\Gamma_3: x_1 \to x_1 1, x_2 \to x_2 1, x_3 \to x_3 + 1,$
 - $\Gamma_4: x_3 \to x_3 1$.
- 4. Aktualizuje się stan (x_1, x_2, x_3) i czas symulacji.

Proces powtarzamy do czasu maksymalnego t_{max} , a symulacje wielokrotne pozwalają uzyskać statystyki średniej i odchylenia standardowego stanu układu w zadanych przedziałach czasowych.

2 Metodyka

- Parametry symulacji przyjęto: $k_1 = k_2 = 1$, $k_3 = 0,001$, $k_4 = 0,01$, początkowe stany $x_1(0) = 120$, $x_2(0) = 80$, $x_3(0) = 1$, $t_{\text{max}} = 200$.
- Podział przedziału czasu na N=50 binów o szerokości $\Delta t = \frac{t_{\text{max}}}{N}$.
- Przeprowadzono symulacje dla trzech zestawów liczności prób: $P_{max}=1,\,5,\,100.$
- Dla $P_{max} = 1$ i 5 zapisano trajektorie $(x_1(t), x_2(t), x_3(t))$; dla $P_{max} = 100$ obliczono średnie i odchylenie standardowe $\sigma_{x_3}(t)$ w każdym binie.

- Kod zaimplementowano w języku C++ i wyniki eksportowano do plików tekstowych.
- Wykresy zostały sporządzone za pomocą języka Python.

3 Wyniki

Na rysunku 1 przedstawiono przebieg zmiennych x_1 , x_2 , x_3 dla pojedynczej trajektorii ($P_{max} = 1$). Rysunek 2 ilustruje pięć niezależnych trajektorii dla $P_{max} = 5$. Wykres zależności średniej i odchylenia standardowego $x_3(t)$ dla $P_{max} = 100$ pokazano na rysunku 3.

Rysunek 1: Trajektoria $x_1(t)$, $x_2(t)$, $x_3(t)$ dla $P_{max} = 1$.

Rysunek 2: Trajektorie x_1, x_2, x_3 dla $P_{max} = 5$.

Rysunek 3: Średnia i odchylenie standardowe $x_3(t)$ dla $P_{max}=100$.

4 Wnioski

- $\bullet\,$ Dla $P_{max}=1$ trajektorie silnie fluktuują i nie dają obrazu trendu.
- Przy $P_{max}=5$ nadal występują odchylenia, ale można zaobserwować przybliżone zachowanie średnie.
- \bullet Dla $P_{max}=100$ statystyki zapewniają gładką krzywą średniej z niewielkim odchyleniem standardowym.
- Można zauważyć, że fluktuacje mają istotny wpływ na dynamikę układu przy małej liczbie prób.