The Cantor and Baire space

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino)

The Cantor and Baire space

AA 2024–2025

1/34

Consider $A \neq \emptyset$ with the discrete topology and $A^{\mathbb{N}}$ with the product topology.

 $A^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} A^n$ is the set of finite sequences of elements of A. $\mathrm{lh}(s)$ is the **length** of $s \in A^{<\mathbb{N}}$, the unique $n \in \mathbb{N}$ such that $s \in A^n$. A basis for the topology of $A^\mathbb{N}$ is $\{N_s \mid s \in A^{<\mathbb{N}}\}$

$$N_s = \{x \in A^{\mathbb{N}} \mid x \upharpoonright \mathrm{lh}(s) = s\}.$$

If two basic open sets intersect, then one is contained in the other, and $N_s \subseteq N_t$ if and only if $t \subseteq s$. The space $A^{\mathbb{N}}$ is second-countable (and thus separable) if and only if A is (at most) countable.

 $A^{\mathbb{N}}$ is completely metrizable, as witnessed by the complete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 2^{-(n+1)} & \text{if } x \neq y \text{ and } n \text{ is least s.t. } x(n) \neq y(n) \end{cases}$$
 (1.1)

The sets N_s are exactly the nonempty open balls with respect to d.

A Andretta (Torino)

The Cantor and Baire space

The metric d from (1.1) is actually an **ultrametric**: for all $x, y, z \in A^{\mathbb{N}}$

$$d(x,y) \le \max\{d(x,z), d(z,y)\}.$$

This implies that $A^{\mathbb{N}}$ is also **zero-dimensional**, i.e. it admits a basis consisting only of clopen sets. In fact each N_s is clopen.

Here are some basic facts (EXERCISE!) on $A^{\mathbb{N}}$

• For $x_n, x \in A^{\mathbb{N}}$

$$x_n \to x \Leftrightarrow \forall i \in \mathbb{N} (x_n(i) \to x(i))$$

 $\Leftrightarrow \forall i \in \mathbb{N} (x_n(i) = x(i) \text{ for all but finitely many } n).$

- The finite products $(A^{\mathbb{N}})^n$ (for $n \geq 1$) and the countable product $(A^{\mathbb{N}})^{\mathbb{N}}$ are all homeomorphic to $A^{\mathbb{N}}$.
- If A has more than one point, the space $A^{\mathbb{N}}$ is **perfect**, i.e. it has no isolated points.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

3 / 34

- If $d(x,z) \neq d(y,z)$, then $d(x,y) = \max\{d(x,z),d(y,z)\}$ ("all triangles are isosceles with legs longer than or equal to the basis").
- The "open" balls $B_d(x,\varepsilon) = \{y \in A^{\mathbb{N}} \mid d(x,y) < \varepsilon\}$ and the "closed" balls $B_d^{\mathrm{cl}}(x,\varepsilon) = \{y \in A^{\mathbb{N}} \mid d(x,y) \leq \varepsilon\}$ are both clopen.
- If $y \in B_d(x, \varepsilon)$, then $B_d(y, \varepsilon) = B_d(x, \varepsilon)$ ("all elements of an open ball are centers of it").
- If two open (closed) balls intersect, then one is contained in the other one.
- A sequence $(x_n)_{n\in\mathbb{N}}$ is d-Cauchy if and only if $d(x_n,x_{n+1})\to 0$.

Definition 1.3.2

A tree on $A \neq \emptyset$ is a $T \subseteq A^{<\mathbb{N}}$ s.t. $s \in T \Rightarrow s \upharpoonright n \in T$ for $n \leq \mathrm{lh}(s)$.

A tree is pruned if it has no terminal nodes (also called leafs).

s is terminal if there is no t such that $s \subset t$.

The **body** of T is

$$[T] = \{ x \in A^{\mathbb{N}} \mid \forall n \in \mathbb{N} (x \upharpoonright n \in T) \}.$$

A tree T is **well-founded** if $[T] = \emptyset$, otherwise it is **ill-founded**.

Proposition 1.3.3 [Kec95, Proposition 2.4]

The map $T \mapsto [T]$ is a bijection between pruned trees on A and closed subsets of $A^{\mathbb{N}}$. Its inverse is given by

$$F \mapsto T_F = \{x \upharpoonright n \mid x \in F \land n \in \mathbb{N}\}.$$

We call T_F the **tree** of F.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

5 / 34

Proof

$[T] \subseteq A^{\mathbb{N}}$ is closed

If $x \notin [T]$ then $x \upharpoonright n \notin T$ for some $n \in \mathbb{N}$, so $x \in \mathbb{N}_{x \upharpoonright n}$ is disjoint from [T].

$T \mapsto [T]$ is injective.

Assume that $s \in S \setminus T$. As S is pruned, recursively define $(s_n)_{n \in \mathbb{N}}$ such that $s_0 = s$, $s_{n+1} \supset s_n$, and $s_n \in S$. Then $x = \bigcup_{n \in \mathbb{N}} s_n \in [S] \setminus [T]$.

$T \mapsto [T]$ is surjective.

 $F \mapsto T_F$ is the inverse of $T \mapsto [T]$.

$F = [T_F]$

 $F\subseteq [T_F]$ is obvious. For the other inclusion consider an arbitrary $x\in [T_F]$. For every $n\in \mathbb{N}$ there is $y_n\in F$ such that $x\upharpoonright n=y_n\upharpoonright n$. But then $y_n\to x$, whence $x\in F$ because F is closed.

Remark 1.3.4

The proof shows that if $C \subseteq A^{\mathbb{N}}$ is an arbitrary set, then the body of $T_C = \{x \mid n \mid x \in C \land n \in \mathbb{N}\}$ coincides with the closure Cl(C) of C.

The following notion of A-scheme is used to build continuous functions from the space $A^{\mathbb{N}}$ to some metrizable space X. In [Kec95], 2-schemes (respectively, \mathbb{N} -schemes) satisfying the hypothesis of Lemma 1.3.6(b) are called **Cantor schemes** (respectively, **Lusin schemes**) with vanishing diameters.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024–2025

7 / 34

Definition 1.3.5

Let $A \neq \emptyset$. An A-scheme on a metric space (X, d) is a family $S = \{B_s \mid s \in A^{\leq \mathbb{N}}\}$ of subsets of X such that

(i)
$$B_{s^{\smallfrown}a} \subseteq B_s$$
;

(Monotonicity)

(ii) diam
$$(B_{x \upharpoonright n}) \to 0$$
.

(Vanishing diameters)

(The latter will often be ensured by requiring that $diam(B_s) \leq 2^{-\ln(s)}$.) Every A-scheme induces a function. Set

$$D_{\mathcal{S}} = \{ x \in A^{\mathbb{N}} \mid \bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n} \neq \emptyset \}$$

and

$$f_{\mathcal{S}} \colon D_{\mathcal{S}} \to X, \qquad x \mapsto f_{\mathcal{S}}(x) \in \bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n}.$$

Condition (ii) in Definition 1.3.5 implies in particular that $\bigcap_{n\in\mathbb{N}} B_{x\upharpoonright n}$ contains at most one point, thus $f_{\mathcal{S}}$ is well-defined.

A Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

Lemma 1.3.6

 $\mathcal{S} = \{B_s \mid s \in A^{<\mathbb{N}}\}$ an A-scheme on (Y,d), and $f \colon D \to Y$ its induced function. Then

- (a) f is continuous and $f(N_s \cap D) \subseteq B_s \cap f(D)$.
- (b) If $B_{s^{\smallfrown}a} \cap B_{s^{\smallfrown}a'} = \emptyset$ for $a \neq a'$, then f is injective. Moreover

$$f(N_s \cap D) = B_s \cap f(D)$$
 (1.2) $f(D) = \bigcap_{n \in \mathbb{N}} \bigcup_{s \in A^n} B_s$ (1.3)

- (c) If $B_{s \cap a} \cap B_{s \cap a'} = \emptyset$ for $a \neq a'$ and every B_s is open in f(D), then f is a (topological) embedding, i.e. f is a homeomorphism between D and f(D).
- (d) If $B_s = \bigcup_{a \in A} B_{s \cap a}$ for all $s \in A^{<\mathbb{N}}$, then $f(N_s \cap D) = B_s$. Thus $f(D) = B_\emptyset$ so if $B_\emptyset = Y$ then f is surjective.
- (e) If (Y,d) is complete and $\mathrm{Cl}(B_{s^{\smallfrown}a})\subseteq B_s$, then D=[T] with $T=\{s\in A^{<\mathbb{N}}\mid B_s\neq\emptyset\}$, thus D is a closed subset of $A^{\mathbb{N}}$. If moreover each B_s is nonempty, then $D=A^{\mathbb{N}}$.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

9 / 34

Proof of part (a) of Lemma 1.3.6

f is continuous and $f(N_s \cap D) \subseteq B_s \cap f(D)$.

Proof.

If $x \in \mathbb{N}_s \cap D$ then $f(x) \in \bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n} \subseteq B_s$, so $f(\mathbb{N}_s \cap D) \subseteq B_s \cap f(D)$ holds.

Let $V\subseteq Y$ open neighborhood of f(x). Let $\varepsilon>0$ such that $B_d(f(x),\varepsilon)\subseteq V$. By (ii) in Definition 1.3.5 (vanishing diameters), there is n such that $\operatorname{diam}(B_{x{\upharpoonright} n})<\varepsilon$. Since $f(x)\in B_{x{\upharpoonright} n}$ by definition of f, we have $B_{x{\upharpoonright} n}\subseteq B_d(f(x),\varepsilon)\subseteq V$. Thus the open neighborhood $N_{x{\upharpoonright} n}\cap D$ of x is such that $f(N_{x{\upharpoonright} n}\cap D)\subseteq B_{x{\upharpoonright} n}\cap f(D)\subseteq V$.

Proof of part (b) of Lemma 1.3.6

 $B_{s^{\smallfrown}a} \cap B_{s^{\smallfrown}a'} = \emptyset$ implies f is injective.

Proof.

Given distinct $x,x'\in D\subseteq A^{\mathbb{N}}$, let $n\in\mathbb{N}$ be least such that $x(n)\neq x'(n)$. Then setting $s=x\upharpoonright n=x'\upharpoonright n$ one has $B_{s^\smallfrown\langle x(n)\rangle}\cap B_{s^\smallfrown\langle x'(n)\rangle}=\emptyset$ by our assumption on the scheme: since by definition of f we have $f(x)\in B_{x\upharpoonright(n+1)}=B_{s^\smallfrown\langle x(n)\rangle}$ and $f(x')\in B_{x'\upharpoonright(n+1)}=B_{s^\smallfrown\langle x'(n)\rangle}$, it follows that $f(x)\neq f(x')$.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

11 / 34

Proof of part (b) of Lemma 1.3.6

$$f(\mathbf{N}_s \cap D) = B_s \cap f(D) \quad (1.2)$$

Proof.

 $f(N_s \cap D) \subseteq B_s \cap f(D)$ follows from part (a). Suppose $x \in D$ is such that $f(x) \in B_s$, and consider $t = x \upharpoonright \mathrm{lh}(s)$, so that $f(x) \in B_t$. Since they have the same length, if $s \neq t$ then $B_s \cap B_t = \emptyset$ by the previous argument, against $f(x) \in B_s \cap B_t$. Therefore $s = t = x \upharpoonright \mathrm{lh}(s)$, whence $x \in N_s$ and $f(x) \in f(N_s \cap D)$.

Proof of part (b) of Lemma 1.3.6

$$f(D) = \bigcap_{n \in \mathbb{N}} \bigcup_{s \in A^n} B_s$$
 (1.3)

Proof.

 $f(D)\subseteq \bigcap_{n\in\mathbb{N}}\bigcup_{s\in A^n}B_s$ holds, so it is enough to prove the reverse inclusion. Let $y\in \bigcap_{n\in\mathbb{N}}\bigcup_{s\in A^n}B_s$. By this and our hypothesis on the scheme, for each $n\in\mathbb{N}$ there is a *unique* $s_n\in A^n$ such that $y\in B_{s_n}$, so that $s_n\subseteq s_m$ whenever $n\le m$. Thus $x=\bigcup_{n\in\mathbb{N}}s_n$ is such that $y\in \bigcap_{n\in\mathbb{N}}B_{x\upharpoonright n}$ which entails both $x\in D$ and f(x)=y, i.e. $y\in f(D)$.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

13 / 34

Proof of part (c) of Lemma 1.3.6

If $B_{s^{\smallfrown}a} \cap B_{s^{\smallfrown}a'} = \emptyset$ for $a \neq a'$ and every B_s is open in f(D), then f is a (topological) embedding, i.e. f is a homeomorphism between D and f(D).

Proof.

Let $U=N_s\cap D$ (with $s\in A^{<\mathbb{N}}$) be an arbitrary basic open set of D. Since the hypothesis of part (b) is satisfied, by (1.2) we have $f(U)=B_s\cap f(D)$: by our hypothesis on B_s , the set f(U) is then open in f(D).

Proof of part (d) of Lemma 1.3.6

If $B_s = \bigcup_{a \in A} B_{s \cap a}$ for all $s \in A^{<\mathbb{N}}$, then $f(N_s \cap D) = B_s$. Thus $f(D) = B_\emptyset$ so if $B_\emptyset = Y$ then f is surjective.

Proof.

It is enough to show that $B_s\subseteq f(N_s\cap D)$. Fix any $y\in B_s$ and set $n=\mathrm{lh}(s)$. For i< n, set also $x_i=s(i)$. Since $B_s=\bigcup_{a\in A}B_{s^\smallfrown a}$, by hypothesis there is $x_n\in A$ such that $y\in B_{s^\smallfrown\langle x_n\rangle}=B_{\langle x_0,\dots,x_n\rangle}$. Since $B_{s^\smallfrown\langle x_n\rangle}=\bigcup_{a\in A}B_{s^\smallfrown\langle x_n\rangle^\smallfrown a}$ we then get that $y\in B_{s^\smallfrown\langle x_n,x_{n+1}\rangle}=B_{\langle x_0,\dots,x_{n+1}\rangle}$ for some $x_{n+1}\in A$. Continuing this process, we recursively construct a sequence $x=(x_k)_{k\in\mathbb{N}}\in A^\mathbb{N}$ such that $s\subseteq x$ and $y\in B_{\langle x_0,\dots,x_{k-1}\rangle}=B_{x\restriction k}$ for all $k\in\mathbb{N}$. Therefore y witnesses that $x\in D$, and f(x)=y by definition of f. Thus x witnesses $y\in f(N_s\cap D)$.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

15 / 34

Proof of part (e) of Lemma 1.3.6

If (Y,d) is complete and $\mathrm{Cl}(B_{s^{\smallfrown}a})\subseteq B_s$, then D=[T] with $T=\{s\in A^{<\mathbb{N}}\mid B_s\neq\emptyset\}$, thus D is a closed subset of $A^{\mathbb{N}}$.

Proof.

Enough to show that $\forall x \in A^{\mathbb{N}}[x \in D \Leftrightarrow \forall n \in \mathbb{N}(B_{x \upharpoonright n} \neq \emptyset)]$. The \Rightarrow direction follows from definition of D. Assume that $y_n \in B_{x \upharpoonright n} \neq \emptyset$. We claim that $(y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in (Y,d). Given $\varepsilon > 0$, pick $N \in \mathbb{N}$ such that $\operatorname{diam}(B_{x \upharpoonright N}) < \varepsilon$. For all $n,m \geq N$, we have $y_n \in B_{x \upharpoonright n} \subseteq B_{x \upharpoonright N}$ and $y_m \in B_{x \upharpoonright m} \subseteq B_{x \upharpoonright N}$, therefore $d(y_n,y_m) < \varepsilon$. Let $y = \lim_n y_n$: we claim that $y \in \bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n}$, whence $x \in D$. Given any $n \in \mathbb{N}$, the sequence $(y_m)_{m > n}$ is contained in $B_{x \upharpoonright (n+1)}$, and thus

$$y = \lim_{n} y_n = \lim_{m > n} y_m \in \operatorname{Cl}(B_{x \upharpoonright (n+1)}) \subseteq B_{x \upharpoonright n}.$$

Since $n \in \mathbb{N}$ was arbitrary, this shows $y \in \bigcap_{n \in \mathbb{N}} B_{x \mid n}$, as desired.

Given two families $S = \{B_s \mid s \in A^{<\mathbb{N}}\}$ and $S' = \{B'_s \mid s \in A^{<\mathbb{N}}\}$ of subsets of a metric space (X,d), we write $S \sqsubseteq S'$ if $B_s \subseteq B'_s$ for all $s \in A^{<\mathbb{N}}$.

Moreover, we set $Cl(\mathcal{S}) = \{Cl(B_s) \mid s \in A^{<\mathbb{N}}\}$. Obviously, $\mathcal{S} \sqsubseteq Cl(\mathcal{S})$.

Lemma 1.3.7

Let $S = \{B_s \mid s \in A^{<\mathbb{N}}\}$ and $S' = \{B'_s \mid s \in A^{<\mathbb{N}}\}$ be two A-schemes on the same metric space (X, d).

- ① If $S \sqsubseteq S'$, then $f_{S'}$ extends f_{S} , that is, $D_{S} \subseteq D_{S'}$ and $f_{S'}(x) = f_{S}(x)$ for every $x \in D_{S}$.
- 2 The family $\mathrm{Cl}(\mathcal{S})$ is an A-scheme, so $f_{\mathrm{Cl}(\mathcal{S})}$ extends $f_{\mathcal{S}}$. If moreover (X,d) is complete, then $D_{\mathrm{Cl}(\mathcal{S})}$ is closed and hence contains $\mathrm{Cl}(D_{\mathcal{S}})$.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

17 / 34

Proof.

- ① The inclusion $D_{\mathcal{S}} \subseteq D_{\mathcal{S}'}$ immediately follows that for every $x \in A^{\mathbb{N}}$ we have $\bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n} \subseteq \bigcap_{n \in \mathbb{N}} B'_{x \upharpoonright n}$. It follows that if $x \in D_{\mathcal{S}}$, then $f_{\mathcal{S}}(x) \in \bigcap_{n \in \mathbb{N}} B_{x \upharpoonright n} \subseteq \bigcap_{n \in \mathbb{N}} B'_{x \upharpoonright n} = \{f_{\mathcal{S}'}(x)\}$, thus $f_{\mathcal{S}}(x) = f_{\mathcal{S}'}(x)$.
- ② Since $B_{s^{\smallfrown}a} \subseteq B_s$ implies $\operatorname{Cl}(B_{s^{\smallfrown}a}) \subseteq \operatorname{Cl}(B_s)$ and $\operatorname{diam}(B_s) = \operatorname{diam}(\operatorname{Cl}(B_s))$, the family $\operatorname{Cl}(\mathcal{S})$ is an A-scheme. Such an A-scheme automatically satisfies the condition in Lemma 1.3.6(e) because its elements are closed, thus $D_{\operatorname{Cl}(\mathcal{S})}$ is closed.

A Andretta (Torino)

Remark 1.3.8

It follows that not all continuous partial functions from $A^{\mathbb{N}}$ into a (complete) metric space X are induced by a scheme. For example, set $A=2,\ X=\mathbb{N}^{\mathbb{N}}$, and consider the inverse f of the embedding from Remark 1.2.3. If it where induced by a 2-scheme \mathcal{S} , then f could be extended to a total continuous function $g\colon 2^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ by Lemma 1.3.72 and the fact that the domain of f is dense in f0. But this would imply that f1.3 compact, and since f2 was already onto f2 and the latter is not compact we get a contradiction.

In the opposite direction, given a continuous function $f\colon C\to X$ with $C\subseteq A^{\mathbb{N}}$ and X a metric space one can canonically reconstruct a family $\mathcal{S}_f=\{B_s\mid s\in A^{<\mathbb{N}}\}$ by setting $B_s=f(C\cap N_s)$. It turns out that when C is closed, the family \mathcal{S}_f is an A-scheme inducing exactly the function f, and that the properties of f translate to properties of the scheme.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

19 / 34

Lemma 1.3.9

Let $f\colon C\to X$ be a continuous function from a closed set $C\subseteq A^{\mathbb{N}}$ to a metric space (X,d).

- ① The family S_f is an A-scheme inducing f, i.e. it is such that $D_{S_f} = C$ and $f_{S_f}(x) = f(x)$ for all $x \in C$.
- ② The function f is injective if and only if $B_{s^{\smallfrown}a} \cap B_{s^{\smallfrown}a'} = \emptyset$ for all $s \in A^{<\mathbb{N}}$ and distinct $a, a' \in A$.
- **3** The function f is a (topological) embedding if and only if $B_{s \cap a} \cap B_{s \cap a'} = \emptyset$ for all $s \in A^{<\mathbb{N}}$ and distinct $a, a' \in A$ and each B_s is open relatively to f(C).
- **5** Every A-scheme S' such that $S_f \sqsubseteq S' \sqsubseteq \operatorname{Cl}(S_f)$ induce the function f, i.e. $f_{S'} = f$.

Proof of of Lemma 1.3.9

 \mathcal{S}_f is an A-scheme inducing f, i.e. $D_{\mathcal{S}_f} = C$ and $\forall x \in C(nf_{\mathcal{S}_f}(x) = f(x))$

As $N_{s^\smallfrown a}\subseteq N_s$ then $B_{s^\smallfrown a}=f(C\cap N_{s^\smallfrown a})\subseteq f(C\cap N_s)=B_s.$ Moreover as f is continuous and with closed domain then $\mathrm{osc}_f(x)=0$ for all $x\in A^{<\mathbb{N}}$. Since $\mathrm{diam}(B_{x\!\upharpoonright n})$ decreases when n gets larger and the $N_{x\!\upharpoonright n}$ form a neighborhood basis of x, it follows that $\mathrm{diam}(B_{x\!\upharpoonright n})\to 0$. By construction, if $x\in C$ then $f(x)\in \bigcap_{n\in\mathbb{N}}B_{x\!\upharpoonright n}$, thus $C\subseteq D_{\mathcal{S}_f}$ and $f_{\mathcal{S}_f}$ extends f. Finally, assume that $x\in D_{\mathcal{S}_f}$, so that, in particular, $B_{x\!\upharpoonright n}\neq\emptyset$ for all n. Then for each n there is $y_n\in C\cap N_{x\!\upharpoonright n}$, hence $y_n\to x$ and so $x\in C$ because C is closed.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

21 / 34

Proof of 2 and 3 of Lemma 1.3.9

f is injective iff $B_{s^{\smallfrown}a} \cap B_{s^{\smallfrown}a'} = \emptyset$ for all $s \in A^{<\mathbb{N}}$ and distinct $a, a' \in A$.

One direction follows from part (a) and Lemma 1.3.6(b). The other direction easily follows from the fact that $N_{s^{\smallfrown}a} \cap N_{s^{\smallfrown}a'} = \emptyset$ if $a \neq a'$ and the fact that by definition $B_s = f(C \cap N_s)$.

The function f is a (topological) embedding if and only if $B_{s \cap a} \cap B_{s \cap a'} = \emptyset$ for all $s \in A^{<\mathbb{N}}$ and distinct $a, a' \in A$ and each B_s is open relatively to f(C).

The backward direction follows from part ① and Lemma 1.3.6(c), the forward direction follows from part ② and the definition of B_s .

Proof of parts • and • of Lemma 1.3.9

$$B_s = \bigcup_{a \in A} B_{s^{\smallfrown} a}$$
, and $B_\emptyset = X$ iff f is surjective.

If $y \in B_s = f(C \cap N_s)$ then there is $s \subseteq x \in A^{\mathbb{N}}$ such that $x \in C$ and f(x) = y. But then $y = f(x) \in f(C \cap N_{s \cap x(\operatorname{lh}(s))})$. So $B_s \subseteq \bigcup_{a \in A} B_{s \cap a}$. The remaining parts are trivial.

Any
$$S'$$
 such that $S_f \sqsubseteq S' \sqsubseteq \operatorname{Cl}(S_f)$ induces f , i.e. $f_{S'} = f$.

By Lemma 1.3.7 it is enough to consider the case $\mathcal{S}' = \mathrm{Cl}(\mathcal{S}_f)$ and prove that $D_{\mathrm{Cl}(\mathcal{S}_f)} = C$. This easily follows from $C = D_{\mathcal{S}_f} \subseteq D_{\mathrm{Cl}(\mathcal{S}_f)}$ and by $\mathrm{Cl}(B_s) \neq \emptyset \Leftrightarrow B_s \neq \emptyset$ we get

$$D_{\mathrm{Cl}(\mathcal{S}_f)} \subseteq \{ x \in A^{\mathbb{N}} \mid \forall n \, (\mathrm{Cl}(B_{x \upharpoonright n}) \neq \emptyset) \}$$
$$= \{ x \in A^{\mathbb{N}} \mid \forall n \, (B_{x \upharpoonright n} \neq \emptyset) \} \subseteq C,$$

where the last inclusion follows from the final part of the proof of part 1.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

23 / 34

Definition 1.3.10

A closed set F in a topological space X is a **retract** of X if there is a continuous function $f \colon X \to F$ (called **retraction**) such that f(x) = x for all $x \in F$ (in particular, f is surjective).

Proposition 1.3.11 [Kec95, Proposition 2.8]

Every nonempty closed subset F of $A^{\mathbb{N}}$ is a retract of it.

Corollary

Let (X,d) be a complete metric space. Let A be a nonempty set, $C\subseteq A^{\mathbb{N}}$, and $f\colon C\to X$. Then f is continuous if and only if there is a total continuous function $g\colon A^{\mathbb{N}}\to X$ such that $g\upharpoonright C=f$.

Proof of Proposition 1.3.11

Let T_F be the tree of F. Define $\varphi \colon A^{<\mathbb{N}} \to A^{<\mathbb{N}}$ by recursion on $\mathrm{lh}(s)$:

- 2 if $s \subseteq t$ then $\varphi(s) \subseteq \varphi(t)$ (φ is monotone);
- \bullet if $s \in T_F$, then $\varphi(s) = s$.
- **1** and **2** imply that φ is **increasing**.

Set $\varphi(\emptyset) = \emptyset$. Let $s = t {^\smallfrown} a$ and assume that $\varphi(t)$ has been already defined. Define $\varphi(s)$ as follows: if $s \in T_F$, then set $\varphi(s) = s$. If $s \notin T_F$, then let $\varphi(s)$ be any sequence $\varphi(t) {^\smallfrown} b \in T_F$, which exists since T_F is pruned and $\varphi(t) \in T_F$ by condition ${\color{red} \bullet}$.

(continues)

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

25 / 34

Proof of Proposition 1.3.11 (continued)

 $\varphi \colon A^{<\mathbb{N}} \to T_F$ is increasing, and it is the identity on T_F :

- 2 if $s \subseteq t$ then $\varphi(s) \subseteq \varphi(t)$;
- \bullet if $s \in T_F$, then $\varphi(s) = s$.

Equip F with the restriction of the metric on $A^{\mathbb{N}}$ and observe that it is still a complete metric on F. Consider the A-scheme $\{B_s \mid s \in A^{<\mathbb{N}}\}$ on F defined by $B_s = N_{\varphi(s)} \cap F$: we claim that the induced map f is the desired retraction of $A^{\mathbb{N}}$ onto F. Conditions \mathbf{O} — \mathbf{O} guarantee that the definition of the B_s 's yields to an A-scheme (whence f is a continuous map), condition \mathbf{O} and the fact that B_s is clopen guarantee that f is defined on the whole $A^{\mathbb{N}}$ (in fact, $\varphi(s) \in T_F$ ensures $B_s \neq \emptyset$), while condition \mathbf{O} guarantees that f(x) = x for every $x \in F$.

Theorem 1.3.13 [Kec95, Theorem 7.8]

Every zero-dimensional separable metrizable space can be embedded into both $\mathbb{N}^{\mathbb{N}}$ and $2^{\mathbb{N}}$. Every zero-dimensional Polish space is homeomorphic to a closed subspace of $\mathbb{N}^{\mathbb{N}}$ and to a \mathbf{G}_{δ} subspace of $2^{\mathbb{N}}$.

Arguing as in Corollary 1.2.5

Corollary 1.3.14

Every G_{δ} of $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to a closed set, $F_h(\mathbb{N}^{\mathbb{N}}) = G_{\delta}(\mathbb{N}^{\mathbb{N}})$.

Corollary

Every closed subset of a zero-dimensional Polish X is a retract of it.

Proof.

Let F be closed in X. By Theorem 1.3.13, W.L.O.G. X and F are closed in $\mathbb{N}^{\mathbb{N}}$. By Proposition 1.3.11 there is a retraction f of $\mathbb{N}^{\mathbb{N}}$ onto F. It follows that $f \upharpoonright X$ is a retraction of X onto F.

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

27 / 34

Proof of Theorem 1.3.13

 $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to a G_{δ} subset of $2^{\mathbb{N}}$, so it is enough to show that every zero-dimensional metric space (X,d) with $d \leq 1$ can be embedded in $\mathbb{N}^{\mathbb{N}}$.

Construct an \mathbb{N} -scheme $\{B_s \mid s \in \mathbb{N}^{<\mathbb{N}}\}$ on (X,d) such that B_s is clopen, $\operatorname{diam}(B_s) \leq 2^{-\operatorname{lh}(s)}$, $B_{s^{\smallfrown}i} \cap B_{s^{\smallfrown}j} = \emptyset$ for $i \neq j$, $B_{\emptyset} = X$ and $B_s = \bigcup_{i \in \mathbb{N}} B_{s^{\smallfrown}i}$.

By Lemma 1.3.6, this yields a homeomorphism between $D \subseteq \mathbb{N}^{\mathbb{N}}$ and X; moreover, when d is complete (i.e. X is Polish) then D is closed. Set $B_{\emptyset} = X$.

Cover B_s with clopen sets $B'_{s^{\smallfrown i}}$ in the countable basis of X so that $\operatorname{diam}(B'_{s^{\smallfrown i}}) \leq 2^{-(\operatorname{lh}(s)+1)}$, and then recursively set $B_{s^{\smallfrown 0}} = B'_{s^{\smallfrown 0}} \cap B_s$ and $B_{s^{\smallfrown (i+1)}} = (B'_{s^{\smallfrown (i+1)}} \setminus \bigcup_{j \leq i} B'_{s^{\smallfrown j}}) \cap B_s = (B'_{s^{\smallfrown (i+1)}} \setminus \bigcup_{j \leq i} B_{s^{\smallfrown j}}) \cap B_s$. \square

The Cantor and the Baire space are surjectively universal.

Theorem [Kec95, Theorem 4.18]

Every nonempty compact metrizable space is a continuous image of $2^{\mathbb{N}}$.

Proof.

 $f(x) = \sum_{n=0}^{\infty} x(n) 2^{-(n+1)} \text{ maps } 2^{\mathbb{N}} \text{ continuously onto } [0;1], \text{ so } y \mapsto (f(y(i)))_{i \in \mathbb{N}} \text{ is a continuous surjection } g \colon (2^{\mathbb{N}})^{\mathbb{N}} \to [0;1]^{\mathbb{N}}. \text{ As } (2^{\mathbb{N}})^{\mathbb{N}} \text{ and } 2^{\mathbb{N}} \text{ are homeomorphic we have a continuous surjection } 2^{\mathbb{N}} \to [0;1]^{\mathbb{N}}. \text{ As every compact metrizable space } X \text{ is homeomorphic to a } K \in \mathcal{K}([0;1]^{\mathbb{N}}), \ F = g^{-1}(K) \subseteq 2^{\mathbb{N}} \text{ continuously surjects onto } X. \text{ Compose this surjection with a retraction of } 2^{\mathbb{N}} \text{ onto } F.$

Theorem 1.3.17 [Kec95, Theorem 7.9]

Let X be a Polish space. Then there is a closed set $F \subseteq \mathbb{N}^{\mathbb{N}}$ and a continuous bijection $f \colon F \to X$. In particular, if X is nonempty, then there is a continuous surjection $g \colon \mathbb{N}^{\mathbb{N}} \to X$ (extending f).

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

29 / 34

Proof of Theorem 1.3.17

Every Polish space is homeomorphic to a closed subspace of $\mathbb{R}^{\mathbb{N}}$, so it is enough to show that there is a continuous bijection $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$.

Claim 1.3.17.1

For a < b in \mathbb{R} there is a continuous bijection between $\mathbb{N}^{\mathbb{N}}$ and [a;b).

Assume the Claim for now. Fix a bijection $\varphi \colon \mathbb{N} \to \mathbb{Z}$ and continuous bijections $f_k \colon \mathbf{N}_{\langle k \rangle} \to [\varphi(k); \varphi(k) + 1)$.

 $f = \bigcup_{k \in \mathbb{N}} f_k \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{R}$ is a continuous bijection.

If $U\subseteq\mathbb{R}$ is open, then $f^{-1}(U)=\bigcup_{k\in\mathbb{N}}f_k^{-1}(U)$, and since $f_k^{-1}(U)$ is open in the clopen set $N_{\langle k\rangle}$, then $f^{-1}(U)$ is open in $\mathbb{N}^\mathbb{N}$.

Thus there is a continuous bijection $\mathbb{N}^{\mathbb{N}} \approx (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ so we are done, modulo the Claim.

Proof of the claim

Let $\{B_s \mid s \in \mathbb{N}^{<\mathbb{N}}\}$ be an \mathbb{N} -scheme on [a;b] such that:

- $B_s = [a_s; b_s)$ for some $a \le a_s < b_s \le b$;
- $a_{\emptyset} = a$ and $b_{\emptyset} = b$ (i.e. $B_{\emptyset} = [a;b)$);
- $Cl(B_{s^{\smallfrown}n}) = [a_{s^{\smallfrown}n}; b_{s^{\smallfrown}n}] \subseteq [a_s; b_s) = B_s \text{ with } a_s \le a_{s^{\smallfrown}n} < b_{s^{\smallfrown}n} < b_s;$
- \bullet $a_{s^{\smallfrown}0=a_s}$ and $b_{s^{\smallfrown}n}=a_{s^{\smallfrown}(n+1)}$;
- $\lim_n b_{s^{\smallfrown} n} = b_s$.

The induced map h is a continuous injection $\mathbb{N}^{\mathbb{N}} \to [a;b]$. As $B_s \subseteq [a;b)$ then $\mathrm{rng}(h) \subseteq [a;b)$. Moreover, for the same reason the \mathbb{N} -scheme above can also be construed as an \mathbb{N} -scheme on [a;b), and the above conditions ensure that, when construed in this way, the scheme satisfies also condition (d) of Lemma 1.3.6, whence the induced map h is onto [a;b).

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

31 / 34

Remark

If X perfect then we can take $F=\mathbb{N}^\mathbb{N}$, that is, there is a continuous bijection $f\colon \mathbb{N}^\mathbb{N} \to X$. The converse holds as well: if $f\colon \mathbb{N}^\mathbb{N} \to X$ is a continuous bijection, then no $x\in X$ can be isolated in it, otherwise $f^{-1}(x)$ would be isolated in $\mathbb{N}^\mathbb{N}$, which is clearly impossible.

Remark 1.3.19

In general, the inverse of the continuous bijection f is not continuous. However, the continuous bijection $f\colon \mathbb{N}^\mathbb{N} \to \mathbb{R}$ constructed in the previous proof is such that $f(N_s)$ is an half-open interval. Thus the resulting continuous bijection $\mathbb{N}^\mathbb{N} \to \mathbb{R}^\mathbb{N}$ maps open sets to \mathbf{F}_σ sets, and therefore we can conclude that the same is true for arbitrary Polish spaces, that is: For any Polish space X there is a continuous bijection $f\colon F \to X$ with $F\subseteq \mathbb{N}^\mathbb{N}$ closed such that f maps open sets to \mathbf{F}_σ sets.

Exercise

Observe that the continuous bijection constructed in the proof of Claim 1.3.17.1 is actually an isomorphism between the linear orders $(\mathbb{N}^{\mathbb{N}}, \leq_{\mathrm{lex}})$, where \leq_{lex} is the lexicographic ordering, and $([0;1),\leq)$, where \leq is the usual ordering on \mathbb{R} . Infer that $(\mathbb{N}^{\mathbb{N}}, \tau_{\mathrm{lex}})$, where τ_{lex} is the topology generated by the open \leq_{lex} -intervals, is homeomorphic to [0;1), so it is a Polish space and it is of dimension 1. Argue that τ_{lex} is coarser than the usual product topology on $\mathbb{N}^{\mathbb{N}}$, and that each basic open set N_s is both F_{σ} and G_{δ} with respect to τ_{lex} , so that every open set in the usual product topology on $\mathbb{N}^{\mathbb{N}}$ is F_{σ} with respect to τ_{lex} .

A. Andretta (Torino)

The Cantor and Baire space

AA 2024-2025

33 / 34

More applications of schemes.

Theorem (Brouwer) [Kec95, Theorem 7.4]

The Cantor space $2^{\mathbb{N}}$ is the unique, up to homeomorphism, nonempty, compact metrizable (hence Polish) zero-dimensional space without isolated points.

Theorem (Alexandrov-Urysohn) [Kec95, Theorem 7.7]

The Baire space $\mathbb{N}^{\mathbb{N}}$ is the unique, up to homeomorphism, nonempty Polish zero-dimensional space for which all compact subsets have empty interior.

Theorem 1.3.26 (Hurewicz) [Kec95, Theorem 7.10]

Let X be Polish. Then X contains a closed subspace homeomorphic to $\mathbb{N}^{\mathbb{N}}$ iff and only if X is not K_{σ} , i.e. X cannot be written as a countable union of compact sets.

A Andretta (Torino)