Nonlinear Programming

Optimality conditions for unconstrained and linearly-constrained problems

Marcello Sanguineti marcello.sanguineti@unige.it DIBRIS – Università di Genova

Unconstrained and constrained NLP

f: real function of n real variables

$$\begin{cases} \min f(x) & f \\ x \in \Omega \subseteq \mathbb{R}^n \end{cases}$$

f nonlinear and/or

 Ω defined by constraints, at least one of which is nonlinear

- If $\Omega = \mathbb{R}^n$: unconstrained (or free) NLP
- If $\Omega \subset \mathbb{R}^n$: constrained NLP
 - Only equality constraints
 - Equality constraints and inequality constraints

Minimum and maximum points

Given a set $\Omega \subseteq \mathbb{R}^n$ and a function $f: \Omega \to \mathbb{R}$, a point $x^* \in \Omega$ is a **global** minimum if

$$f(x^*) \le f(x) \qquad \forall x \in \Omega.$$

A point $\bar{x} \in \Omega$ is a **local minimum** if $\exists \epsilon > 0$:

$$f(\bar{x}) \le f(x) \qquad \forall x \in \Omega \cap D(\bar{x}, \epsilon)$$

where

$$D(\bar{x}, \epsilon) = \{ y \in \mathbb{R}^n : ||\bar{x} - y|| \le \epsilon \}$$

The role of convexity

Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ with Ω nonempty convex set; f is **convex** if for all $x, y \in \Omega$, $\lambda \in [0, 1]$ one has

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Property. Every convex function is continuous in the interior of Ω . It is not necessarily differentiable.

If a function f is differentiable $\Rightarrow f$ is convex iff $\forall x \in \Omega$ one has

Property. If f is twice differentiable with continuity $\Rightarrow f$ is convex iff its Hessian matrix is positive semi-definite, i.e., letting

$$\nabla^2 f(x) := \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]$$

one has

$$v^T \nabla^2 f(x) v \ge 0 \qquad \forall v \in \mathbb{R}^n$$

or, equivalently, all the eigenvalues of $\nabla^2 f(x)$ are ≥ 0 .

Example. For a **quadratic** function (A: symmetric):

we get

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

$$\nabla f(x) = Ax + b$$
 $\nabla^2 f(x) = A$

 \Rightarrow f is convex iff A is positive semi-definite.

Fundamental property of convex functions.

If Ω is convex and nonempty and f is convex, then every local minimum is also a global minimum.

Proof. By contradiction, let \overline{x} be a local minimum and x^* a global minimum with $f(x^*) < f(\overline{x})$. By definition, $\exists \epsilon : f(\overline{x}) \leq f(y)$ if $y \in D(\overline{x}, \epsilon) \cap \Omega$. Convexity implies that for all $\lambda \in [0, 1]$ one has

$$f(\lambda x^* + (1 - \lambda)\bar{x}) \leq \lambda f(x^*) + (1 - \lambda)f(\bar{x})$$
$$< \lambda f(\bar{x}) + (1 - \lambda)f(\bar{x})$$
$$= f(\bar{x})$$

Picking λ small enough, we have

$$\lambda x^* + (1 - \lambda)\bar{x} \in D(\bar{x}, \epsilon) \cap \Omega$$

from which the contradiction follows.

Admissible directions

Let $\Omega \neq 0$ and let $x \in \Omega$. A vector $d \in \mathbb{R}^n$ is called **admissible direction** in x if $\exists \overline{\alpha} > 0$ such that for all $\alpha \in [0, \overline{\alpha})$ one has

$$x + \alpha d \in \Omega$$

If x is an internal point in Ω , then every direction is admissible in x

If $\Omega \equiv \mathbb{R}^n$, then every direction is admissible $\forall x$.

A vector d is called **admissible descent direction** in $x \in \Omega$ for the function f if $\exists \bar{\lambda} > 0$ such that for all $\lambda \in (0, \bar{\lambda})$ one has

$$f(x + \lambda d) < f(x), x + \lambda d \in \Omega$$

First-order necessary optimality conditions

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R}$, $x^* \in \mathbb{R}^n$, S be an open set of \mathbb{R}^n containing x^* , and $f \in C^1(S)$. If x^* is a local minimum, then for every admissible direction d one has $d^T \nabla f(x^*) \geq 0$

Proof. Let d be an admissible direction; the Taylor series stopped at the first order is:

$$f(x^* + \alpha d) = f(x^*) + (x^* + \alpha d - x^*)^T \nabla f(x^*) + o$$
$$= f(x^*) + \alpha d^T \nabla f(x^*) + o(\alpha)$$

If α is "small enough" \Rightarrow

The theorem state that in a local minimum no descent direction exist.

Particular case: unconstrained problem

In this case, $\mathcal{Q} = \mathbb{R}^{n}$. So

$$d^{T}\nabla f(x^{\star}) \geq 0 \qquad \forall d \in \mathbb{R}^{n} \Rightarrow$$

$$e_{i}^{T}\nabla f(x^{\star}) = [\nabla f(x^{\star})]_{i} \geq 0 \qquad \text{and}$$

$$-e_{i}^{T}\nabla f(x^{\star}) = -[\nabla f(x^{\star})]_{i} \geq 0 \qquad \Rightarrow$$

$$[\nabla f(x^{\star})]_{i} = 0 \qquad i = 1, \dots, n$$

Hence:

in unconstrained problems the local minimum points are **stationary points**, i.e.,

$$\nabla f(x^{\star}) = 0$$

So, we proved the following result.

Theorem (I order necessary optimality condition for unconstrained NLP). Let $f: \mathbb{R}^n \to \mathbb{R}$, $x^* \in \mathbb{R}^n$, S be an open set of \mathbb{R}^n containing x^* , and $f \in C^1(S)$.

Then in order for x^* to be local minimum of f it has to be $\nabla f(x^*) = 0$.

Warning: the condition $\nabla f(x^*) = 0$ is **merely necessary**.

It must be satisfied by every local minimum point, but it can be satisfied also by maximum or inflection points.

Particular case: linear equality constraints

In this case, we have $\Omega = \{x \in \mathbb{R}^n : Ax = b\}$ with A matrix (m,n)

We compute the admissible directions

Let x be admissible and $d \in \mathbb{R}^n$, $\alpha > 0$. Then

$$\alpha, d: A(x + \alpha d) = b \Leftrightarrow$$

$$Ax + \alpha Ad = b \Leftrightarrow$$

$$\alpha Ad = 0 \Leftrightarrow$$

$$Ad = 0 \equiv d \perp \text{rows of } A$$

If A has maximum rank, equal to the number of its rows, let A_R be a basis matrix (invertible square submatrix (m,m)):

$$A = \begin{bmatrix} A_B & A_N \end{bmatrix} \det(A_B) \neq 0$$
 $Ad = 0 \Leftrightarrow$
 $A_B d_B + A_N d_N = 0$
 $d_B = -A_B^{-1} A_N d_N$
 $d = \begin{bmatrix} -A_B^{-1} A_N \end{bmatrix} d_N$
non serve tutta la slide
 $Z = \begin{bmatrix} -A_B^{-1} A_N \end{bmatrix}$

Let

$$Z = \begin{bmatrix} -A_B^{-1} A_N \\ I \end{bmatrix}$$

Z is a matrix (n, n-m). Then

$$Ad = 0 \Leftrightarrow$$

$$d = Zd_N$$

 $Ad = 0 \Leftrightarrow d = Zd_N$ for some $d_N \in \mathbb{R}^{n-m}$.

Necessary condition of the first order:

$$d^T
abla f(x^\star) \geq 0$$
 $otag$ admissible d
 $(Zd_N)^T
abla f(x^\star) \geq 0$ $otag d_N \in \mathbb{R}^{n-m}$
 $d_N^T Z^T
abla f(x^\star) \geq 0$ $otag d_N \in \mathbb{R}^{n-m}$
 $d_N^T Z^T
abla f(x^\star) \geq 0$ $otag d_N \in \mathbb{R}^{n-m}$

 $Z^T \nabla f(x^*) \in \mathbb{R}^{n-m}$: projected gradient of f in x^* .

Hence:

when there are only linear equality constraints, in the local minimum points the projected gradient is equal to zero.

Example

$$\min_{x+y=1} x^2 + y^2$$

$$\Omega = \{(x,y) : x+y=1\}$$

$$= \{(x,y) : \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1\}$$

$$A_B = \begin{bmatrix} 1 \end{bmatrix} \qquad A_N = \begin{bmatrix} 1 \end{bmatrix}$$

$$Z = \begin{bmatrix} -1^{-1} \cdot 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$d = \begin{bmatrix} d_x \\ d_y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} d_y$$

$$Z^T \nabla f(x,y) = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 2x \\ 2y \end{bmatrix} = 2(y-x)$$

BY enforcing the first-order necessary condition and the admissibility, we

get
$$2(y-x) = 0, x+y=1 \Rightarrow$$

$$x = y = 1/2$$

Lagrange multipliers for linear equality constraints

If A has maximum rank equal to $m \Rightarrow m$ linearly indep. rows (vectors in \mathbb{R}^n). Z: n-m linearly indipendent **columns**. Each of them is a vector of \mathbb{R}^n .

Each **row** of *A* is orthogonal to each **column** of *Z*- Indeed:

$$AZ = [A_B \quad A_N] \begin{bmatrix} -A_B^{-1} A_N \\ I \end{bmatrix} = A_B \cdot (-A_B^{-1} A_N) + A_N \cdot I = 0$$

Orthogonality \Rightarrow indipendence, hence the set of n vectors (m rows, n-m columns) $a_1, \dots, a_m, Z_1, \dots, Z_{n-m}$

is a set of n linearly indipendent vectors, hence a basis for \mathbb{R}^n

 \Rightarrow any element of \mathbb{R}^n can be written in a unique way as a linear combination of such vectors:

$$\forall v \in \mathbb{R}^n, \quad \exists! \quad \lambda_1, \dots, \lambda_m, \mu_1, \dots, \mu_{n-m} :$$

$$v = \sum_{i=1}^m \lambda_i a_i + \sum_{i=1}^{n-m} \mu_i Z_i$$

This means that $\exists \lambda \in \mathbb{R}^n$, $\mu \in \mathbb{R}^{n-m}$ such that

$$v = A^T \lambda + Z\mu$$

In particular, $\nabla f(x^*) \in \mathbb{R}^n$. So, $\exists \lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^{n-m}$ such that

$$\nabla f(x^*) = A^T \lambda + Z\mu$$

By the first-order necessary condition, we have

$$Z^{T}\nabla f(x^{\star}) = 0 \Rightarrow$$

$$Z^{T}(A^{T}\lambda + Z\mu) = 0 \Rightarrow$$

$$(AZ)^{T}\lambda + Z^{T}Z\mu = 0 \Rightarrow$$

$$(Z^{T}Z)\mu = 0$$

Let us verify that Z^TZ is invertible. We have

$$v^T Z^T Z v = (Zv)^T (Zv) = 0$$
 iff $Zv = 0$,

but Zv=0 iff v=0, because all the columns of Z are independent. So Z^TZ is **positive definite**, i.e., all its eigenvalues are positive \Rightarrow strictly positive determinant \Rightarrow invertible. So

$$Z^TZ \mu = 0$$
 iff $\mu = 0$.

Summing up, we conclude that the first-order necessary condition is

$$\exists \lambda \in \mathbb{R}^m : \nabla f(x^*) = A^T \lambda$$

We introduce the **Lagrangian function**:

$$L(x,\lambda) = f(x) - \lambda^{T}(Ax - b)$$

In terms of the Lagrangian function, we have the following:

The first-order condition is equivalent to the stationarity of the Lagrangian function:

$$\frac{\partial L}{\partial x} = \nabla f(x) - A^T \lambda := 0$$

$$\frac{\partial L}{\partial \lambda} = (Ax - b) := 0$$

 λ : Lagrange multipliers

Geometric interpretation: in a minimum point the gradient is a linear combination of the rows of A.

Given a linear constraint

$$\alpha^T x = b$$

the vector α is orthogonal to the hyperplane $\alpha^T x = b$ and points towards the half-space $\alpha^T x \ge b$.

So, the first-order necessary condition is verified in x iff x is an admissible solution and in x the gradient can be obtained by a linear combination of vectors that are orthogonal to the constraints.

Back to the example

$$\min_{x+y=1} x^2 + y^2$$

$$\Omega = \{(x,y) : x+y=1\}$$

$$= \{(x,y) : \begin{bmatrix} \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1\}$$

$$\exists ? \lambda \in \mathbb{R} : \nabla f(x, y) = A^T \lambda$$

$$\begin{bmatrix} 2x \\ 2y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \lambda \Rightarrow$$

$$\lambda = 1$$

$$x = y = 1/2$$

Back to LP: dual variables as Lagrange multipliers

Linear Programming with only equality constraints (=standard form)

$$\min_{x} c^{T} x$$

$$Ax = b$$

Dual problem:

$$\max_{\lambda} \lambda^T b$$

$$\lambda^T A = c^T$$

The dual constraint can be written as

$$A^T \lambda = c = \nabla(c^T x)$$

So, the Lagrange multipliers are the variables of the dual problem.

The necessary condition for optimality is the existence of an admissible solution for the dual.

Alternative method to obtain the first-order necessary conditions for problems with linear equality constraints.

$$d^{T} \nabla f(x^{\star}) \geq 0 \quad \forall d : Ad = 0$$
$$0 = \min_{d} \nabla^{T} f(x^{\star}) d$$
$$Ad = 0$$

Dual problem:

$$\max_{\lambda} \lambda^T 0$$

$$\lambda^T A = \nabla^T f(x^*)$$

The necessary condition of the I order holds in x^* iff

$$\exists \, \lambda : A^T \lambda = \nabla f(x^*).$$

Particular case: linear inequality constraints

$$\Omega = \{ x \in \mathbb{R}^n : Ax \ge b \}$$

Given x^* admissible, let $A_=$ be the submatrix of A corresponding to the active constraints in x^* (subset of the rows of A). Let $b_=$ be the vector of the corresponding right-hand sides. Similarly, let us define $A_>$ and $b_>$:

$$A = x^* = b =$$

$$A > x^* > b >$$

The inactive constraints do not bind the choice of the admissible direction. Therefore, a direction d is admissible iff

$$A = x^* + \alpha A = d \geq b = \text{i.e.,}$$

$$\alpha A = d \geq b = -A = x^* = 0$$

$$A = d \geq 0$$

First-order necessary condition:

$$d^{T} \nabla f(x^{*} = \geq 0 \quad \forall d : A = d \geq 0$$
$$0 = \min_{d: A = d \geq 0} \nabla^{T} f(x^{*}) d$$

Dual problem:

$$\max \lambda^T 0$$

$$\lambda^T A_{=} = \nabla^T f(x^*)$$

$$\lambda \ge 0$$

⇒ the first-order necessary condition is equivalent to

$$\exists \lambda \geq 0 : A_{\underline{=}}^T \lambda = \nabla f(x^*).$$

Geometric interpretation: the gradient is a linear combination with non-negative coefficients of the vectors normal to the **active** constraints.

Example.

$$\min(x-1)^2 + (y-1)^2$$

$$-x - y \ge -1$$

$$x, y \ge 0$$

First-order necessary condition:

$$\nabla f(x,y) = \begin{bmatrix} 2(x-1) \\ 2(y-1) \end{bmatrix}$$

We have to analyze the following cases:

- 1. (x,y) internal point
- 2. $(x,y) \in (A,B)$
- 3. $(x,y) \equiv A$
- 4. $(x, y) \in (O, A)$
- 5. $(x, y) \equiv 0$
- 6. $(x, y) \in (O, B)$
- 7. $(x,y) \equiv B$

1. Internal point

$$\begin{bmatrix} 2(x-1) \\ 2(y-1) \end{bmatrix} = 0$$

from which x = y = 1, not admissible.

2. $(x,y) \in (A,B)$. Active constraint: $-x-y \ge -1 \Rightarrow 1$ order necessary condition:

$$\exists \lambda \in \mathbb{R}^+ : \begin{bmatrix} 2(x-1) \\ 2(y-1) \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \lambda \Rightarrow \\ -x-y = -1 \Rightarrow \\ x = y = 1/2 \\ \lambda = -2(1/2-1) > 0$$

The point (1/2, 1/2) satisfies the necessary condition.

3.
$$(x,y) = (0,1)$$
. Active constraints: $-x-y \ge 0$, $x \ge 0$. So, $A_{=} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} -2 \\ 0 \end{bmatrix} &= \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \lambda \qquad \Rightarrow$$

$$-\lambda_1 + \lambda_2 &= -2$$

$$-\lambda_1 &= 0 \qquad \qquad \text{from which we obtain}$$

$$\lambda^T &= \begin{bmatrix} 0 & -2 \end{bmatrix}$$

Lagrange multipliers ≥ 0 .

4. $(x,y) \in (O,A)$. Active constraint: $x \ge 0 \Rightarrow$

$$\begin{bmatrix} -2 \\ 2(y-1) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \lambda$$
$$x = 0$$
$$y \in (0,1)$$

which is impossible.

5. (x,y) = (0,0). Active constraints: $x \ge 0$, $y \ge 0$.

$$\begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \lambda$$
$$\lambda = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \not\geq 0$$

6. etc.