Models of computation

Gabriel Le Dain

March 2025

1 Finite automata

1.1 Finite automata

Definition 1.1 (Finite automaton)

A finite automaton, or finite state machine (sometimes just state machine) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- (i) Q is a finite set called the states
- (ii) Σ is a finite set called the *alphabet*
- (iii) $\delta: Q \times \Sigma \to \Sigma$ is the transition function
- (iv) $q_0 \in Q$ is the start state
- (v) $F \subseteq Q$ is the set of final states or accept states

Notation 1.2 (Words over an alphabet)

Let Σ be a set. The set of all words over Σ is denoted by Σ^* . This set of words always contains the empty string.

Notation 1.3 (Augmentation of an alphabet)

For any alphabet Σ , we define the **augmentation** of Σ as

$$\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$$

where ε is a formal symbol not in Σ . We think of ε as the empty string.

Definition 1.4 (Augmentation map)

For any alphabet Σ , we define the augmentation map by

$$\operatorname{aug}: \Sigma_{\varepsilon} * \to \Sigma^*$$

 $aug(\varepsilon)$ = the empty string

$$aug(a) = a$$
 for all $a \in \Sigma$

extended to words over Σ in the obvious way.

Definition 1.5 (Language)

A language over a set Σ is some subset of Σ^*

Definition 1.6 (Accept)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automation and $w = w_1 w_2 \dots w_n$ be a word over Σ . We say that M accepts w if there exist r_0, r_1, \dots, r_n in Q such that

- (i) $r_0 = q_0$
- (ii) $r_{i+1} = \delta(r_i, w_{i+1})$ for all $i = 0, 1, \dots, n-1$
- (iii) $r_n \in F$

Definition 1.7 (Recognise)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton. We say that M recognises the language

$$L(M) := \{ w \in \Sigma^* : M \text{ accepts } w \}$$

1.2 Regular languages

Definition 1.8 (Regular language)

We say that a language A over a set Σ is a **regular language** if there exists some finite automation M with Σ as its alphabet such that M recognises A.

Definition 1.9

Non-deterministic finite automaton A non-deterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- (i) Q is a finite set called the states
- (ii) Σ is a finite set called the *alphabet*
- (iii) $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ is the transition function
- (iv) $q_0 \in Q$ is the start state
- (v) $F \subseteq Q$ is the set of final states or accept states

Definition 1.10 (Accept)

et $M = (Q, \Sigma, \delta, q_0, F)$ be a non-deterministic finite automaton and $w = w_1 w_2 \dots w_n$ be a word over Σ . We say that M accepts w if there exist r_0, r_1, \dots, r_n in Q such that

- (i) $r_0 = q_0$
- (ii) $r_{i+1} \in \delta(r_i, w_{i+1})$ for all i = 0, 1, ..., n-1
- (iii) $r_n \in F$

Definition 1.11 (ε -Non-deterministic finite automaton)

An ε -non-deterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- (i) Q is a finite set called the states
- (ii) Σ is a finite set called the *alphabet*

- (iii) $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function
- (iv) $q_0 \in Q$ is the start state
- (v) $F \subseteq Q$ is the set of final states or accept states

Definition 1.12 (Accept)

Let $M:=(Q,\Sigma,\delta,q_0,F)$ be an ε -nondeterministic finite automaton. We say that M accepts a word $w\in \Sigma^*$ if there exists $w':=w_0w_1\dots w_n\in \Sigma^*_{\varepsilon}$ and $r_0,r_1,\dots,r_n\in Q$ such that $\operatorname{aug}(w')=w$ and

- (i) $r_0 = q_0$
- (ii) $r_{i+1} \in \delta(r_i, w_{i+1})$ for all $i = 0, 1, \dots, n-1$
- (iii) $r_n \in F$

Definition 1.13 (Accept)

Let $M:=(Q,\Sigma,\delta,q_0,F)$ be an ε -nondeterministic finite automaton. We say that M accepts a word $w\in\Sigma^*$ if there exists $w:=w_1w_2\dots w_n\in\Sigma^*, k_1,k_2,\dots,k_n\in\mathbb{N}$ and $r_0,\dots,r_n\in Q$ such that

- (i) $r_0 = q_0, k_1 = 1$
- (ii) For all $i = 0, 1, \ldots, n 1$, we have one of:
 - (a) $r_{i+1} \in \delta(r_i, w_{k_{i+1}})$ and $k_{i+1} = k_i + 1$
 - (b) $r_{i+1} \in \delta(r_i, \varepsilon)$ and $k_{i+1} = k_i$
- (iii) $r_n \in F$

Remark

The definitions 1.13 and 1.12 are equivalent by thinking about them for a second or two. However 1.13 is more suited to implementation in a programming language.

Definition 1.14 (Regular operations)

Let Σ be some alphabet. We define three **regular operations** on languages:

- (i) Union: $A \cup B$
- (ii) Concatenation: $A \circ B := \{ab : a \in A, b \in B\}$
- (iii) Kleene star: $A^* := \{x_a x_2 \dots x_n \text{ where } x_1, x_2, \dots, x_n \in A\}$

Note 1.15

Note that the definition of the Kleene star on a language above is compatible with its use to denote the set of words over some alphabet.

Proposition 1.16 (Unions of regular languages are regular)

Let A, B be regular languages over the same alphabet Σ . Then $A \cup B$ is also regular.

Proof. Since A, B are regular, they are recognised by finite automata $M^1 := (Q^1, \Sigma, \delta^1, q_0^1, F^1)$ and $M^2 := (Q^2, \Sigma, \delta^2, q_0^2, F^2)$. Define $M^3 := (Q^3, \Sigma, \delta^3, q_0^3, F^3)$ where:

- $Q^3 := Q^1 \times Q^2$
- $\delta^3((s^1, s^2), a) = (\delta^1(s^1, a).\delta^2(s^2, a))$
- $q_0^3 = (q_0^1, q_0^2)$
- $F^3 := (F^1 \times Q^2) \cup (Q^1 \times F^2)$

Then M_3 recognises $A \cup B$.

Proposition 1.17 (Intersections of regular languages are regular)

Let A, B be regular languages over the same alphabet Σ . Then $A \cap B$ is also regular.

Proof. Since A,B are regular, they are recognised by finite automata $M^1:=(Q^1,\Sigma,\delta^1,q^1_0,F^1)$ and $M^2:=(Q^2,\Sigma,\delta^2,q^2_0,F^2)$. Define $M^3:=(Q^3,\Sigma,\delta^3,q^3_0,F^3)$ where:

- $\bullet \ Q^3 := Q^1 \times Q^2$
- $\delta^3((s^1, s^2), a) = (\delta^1(s^1, a).\delta^2(s^2, a))$
- $q_0^3 = (q_0^1, q_0^2)$
- $F^3 := F^1 \times F^2$

Then M_3 recognises $A \cap B$.