Another Sequence Detector Example

Mealy Machine Model

The Mealy Machine

- The Mealy machine was named after George Mealy
- It has the characteristic of associating its outputs with the arcs
 - The outputs are represented within the arcs or in close proximity to the arc

Mealy Machine State Graph and State Table

Present State	Next State		Z	
	X = 0	X = 1	X = 0	X = 1
S0	S0	S1	0	1
S1	S1	S0	1	0

FSM Design Concepts

A Sequence Detector

The Mealy Machine Example

What's a Sequence Detector, Yul?

- A sequence detector is a FSM that produces a logic 1 when a specific binary sequence has been observed
- When the FSM does not observe the sequence in the observed binary sequence, it emits a logic 0
- Let's get started!

Macro View of the Sequence Detector

This sequence detector will be designed to recognize the pattern "110". The behavior of the machine calls for the Z output to equal 1 whenever the programmed pattern is observed in the input bit stream X.

Example:

X = 0011011001010100

Z = 0000010000010100

Source: Fundamentals of Logic Design by Charles H. Roth

Design Strategy

- For the design of the sequence detector, we will select the Mealy machine model
- For this design, we will use the following process:
 - 1. Generate the state graph
 - 2. Create the state table
 - 3. Create the state transition table
 - 4. Generate the input expressions for the DFF
 - 5. Realize the final logic design

Generate the State Graph

Create the state table

Present State	Next State		Z	
	X = 0	X = 1	X = 0	X = 1
S0	S0	S1	0	0
S1	S0	S2	0	0
S2	S0	S1	1	0

Create the State Transition Table

Let
$$S0 = 00$$

 $S1 = 01$
 $S2 = 10$

Generate the Input Expressions for the DFF

Present State	Next State		Z	
	X =	0 X = 1		
AB	A+B+A+B+		X = 0 X = 1	
00	00	01	0	0
01	00	10	0	0
10	00	01	1	0

$$D_A = XB$$

$$D_{B} = X'B + XB'$$

Z-Map

$$Z = X'A$$

Realize the final logic design

Sequence Detector based on the Mealy Machine model