Functional and logic programming written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- A. Let G be LISP function and given the following definition (DEFUN F(L) (COND ((NULL L) 0) (> (G L) 2) (+(G L) (F (CDR L)))) (T (G L))

Rewrite the definition in order to avoid the repeated call **(G L)**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF.Justify your answer.

B. Given a numerical linear list, write a SWI-Prolog program that builds a list of lists such that: the first element is the initial list, and then, each element is represented by the previous list in which the increasing sequences of numbers were reversed. The last element of the list will be the list in which all elements are sorted increasingly. For example, for the list [1,3,6,5,2] the result will be: [[1, 3, 6, 5, 2], [6, 3, 1, 5, 2], [6, 3, 5, 1, 2], [6, 5, 3, 2, 1]].

C. Given a list made of integer numbers, generate using PROLOG the list of arrangements with even number of elements, having the sum an odd number. Write mathematical models and flow models for the predicates used. For example, for the list $L=[2,3,4] \Rightarrow [[2,3],[3,2],[3,4],[4,3]]$ (not necessarily in this order).

D. An n-ary tree is represented in Lisp as (node subtree1 subtree2 ...). Write a Lisp function to verify whether a node x occurs on an even level of the tree. The root level is assumed zero. A MAP function shall be used.

Example for the tree (a (b (g)) (c (d (e)) (f)))

a) x=g => T **b)** x=h => NIL