Escola de Engenharia Elétrica, Mecânica e de Computação Universidade Federal de Goiás

Laboratório de Microprocessadores e Microcontroladores

Experimento 7:

Sensores e Transdutores

Alunos:	_ Matrícula:	
	_	
•	_	

Prof. Dr. José Wilson Lima Nerys

Goiânia, 1° semestre de 2019

SUMÁRIO

1	Sen	sores e Transdutores	3
	1.1	Analógicos	3
	1.2	Digitais	3
2	Ativ	idades do Experimento 7	5
	2.1	Medição de Distância com Sensor Ultrassônico	5
	2.2	Tomada de Decisão a partir da Distância Medida	7
	2.3	Medição de Temperatura com LM35	8

1 Sensores e Transdutores

1.1 Analógicos

O objetivo do presente experimento é estudar o uso de alguns sensores e transdutores com sistemas baseados em microcontroladores. Os termos sensor e transdutor muitas vezes se confundem e são usados como sendo equivalentes, mas, de um modo geral, um sensor é um elemento que converte uma grandeza física em sinal elétrico, por exemplo: sensor de temperatura LM35 (Figura 1), que apresenta uma variação de 10 mV/°C na saída. Um transdutor é normalmente composto apenas por um sensor, um sensor e um circuito de condicionamento de sinal (que ajusta o sinal de saída à entrada do equipamento de leitura) ou, ainda, um sensor, um circuito condicionador de sinal e um circuito transmissor. Exemplo de transdutor: transdutor de corrente de efeito Hall HA55 (Figura 2), que apresenta na saída uma corrente de 1 mA para cada 1 A no circuito primário.

Figura 1 – LM35 conectado para uma saída de 2°C a 150°C. (a) vista inferior; (b) conexão básica; (c) característica de saída

(a) vista frontal; (b) conexão básica com RM = 100Ω ; (c) característica de saída: 0.1V/A

O sensor e o transdutor apresentados nas Figuras 1 e 2 são analógicos e, assim, precisam de um conversor analógico/digital para serem lidos por um microcontrolador. Na seção seguinte é apresentado um transdutor com saída digital.

1.2 Digitais

A Figura 3 mostra o sensor ultrassônico HC-SR04, utilizado para medir distâncias de 2 cm a 4 m. Esse módulo da figura inclui um circuito transmissor de ultrassom e um circuito receptor.

Figura 3 – Sensor ultrassônico HC-SR04

O princípio básico de operação do sensor HC-SR04 é:

- (1) Envia-se um sinal de nível alto de, pelo menos 10 µs, para o pino de Trigger "Trig";
- (2) O módulo automaticamente (após o trigger) envia 8 pulsos de 40 kHz, através da unidade transmissora (T) e detecta o sinal de retorno (se há retorno do sinal), através da unidade receptora (R);
- (3) Se o sinal retornar (presença de obstáculo), com nível lógico alto, o tempo de duração de sinal alto (no pino Echo) corresponde ao tempo de envio e retorno do sinal.

Utiliza-se, então, a expressão a seguir, para obter a distância do obstáculo que provocou o retorno do sinal (a velocidade do som no ar é 340 m/s):

$$d = \frac{(intervalo \ de \ tempo \ de \ sinal \ alto \ \times velocidade \ do \ som)}{2}$$

Aplicando-se a expressão mostrada, chega-se ao valor de 5.882 µs para cada metro de distância detectada, ou 58,82 µs para cada centímetro.

A Figura 4 mostra o diagrama de temporização do módulo. Recomenda-se um ciclo de medida a cada 60 ms, no mínimo, para prevenir a interferência do sinal de trigger no sinal de retorno. Esse módulo opera em uma faixa de operação de 15°.

Fig. 4: Diagrama de temporização do módulo HC-SR04

O presente experimento consiste no uso do sensor ultrassônico para medir distâncias e para a tomada de decisões, de acordo com a distância do obstáculo.

2 Atividades do Experimento 7

Os programas das tarefas a seguir devem ser **digitados** e **compilados** em um simulador digital e **executados APENAS** no **kit didático real do microcontrolador 8051**.

2.1 Medição de Distância com Sensor Ultrassônico

O programa a seguir faz a leitura da distância de obstáculos a partir de sensor ultrassônico e mostra o resultado em um display LCD. No método utilizado o timer 0 gera pulsos aproximadamente a cada 58 µs, que corresponde a 1 cm de deslocamento do som.

Tabela 1: Programa que faz a leitura de um sensor ultrassônico

Linha	Label	Instruções
1		trigger BIT P2.0
2		echo BIT P2.1
3		LCD EQU P0
4		EN BIT P3.7
5		RW BIT P3.6
6		RS BIT P3.5
7		Offset EQU 10h
8		distancia EQU 11H
9		distancia EQC 1111
10		ORG 00H
11		
		LJMP INICIO
12		ODG 20H
13	DHGIO	ORG 30H
14	INICIO:	MOV SP,#2FH
15		CLR trigger
16		MOV R0,#10
17		MOV TMOD,#00010010B
18		MOV TL0,#201
19		MOV TH0,#201
20		LCALL ATRASO_LCD
21		LCALL INICIA_LCD
22		LCALL ATRASO_LCD
23		MOV OFFSET,#0
24		MOV DPTR,#MSG1
25		LCALL LINHA1
26		LCALL ATRASO_LCD
27		LCALL ATRASO_LCD
28		MOV DPTR,#MSG2
29		LCALL LINHA2
30		Bernes Brivinia
31	LOOP:	LCALL SENSOR
32	EGGI.	LCALL Mostra
33		LCALL ATRASO500MS
34		SJMP LOOP
35		SJWI LOOI
36	SENSOR:	MOV distancia ,#00
37	BENSUK:	SETB TRIGGER
38		LCALL DELAY1
		CLR TRIGGER
39		
40		JNB ECHO,\$
41		CLR TF0
42	DEFE	SETB TRO
43	REPETE:	JNB TF0,\$
44		CLR TF0
45		MOV A, distancia
46		ADD A,#01
47		DA A
48		MOV distancia ,A
49		JB ECHO,REPETE
50		CLR TR0

Linha	Label	Instruções
69	INICIA_LCD:	MOV A,#38H
70		LCALL INSTR WR
71		MOV A,#38H
72		LCALL INSTR_WR
73		MOV A,#0EH
74		LCALL INSTR_WR
75		MOV A,#06H
76		LCALL INSTR_WR
77		MOV A,#01H
78		LCALL INSTR_WR
79		RET
80		
81	INSTR_WR:	SETB EN
82	_	CLR RW
83		CLR RS
84		MOV LCD,A
85		LCALL ATRASO_LCD
86		CLR EN
87		RET
88		
89	TEXTO WR:	SETB EN
90		CLR RW
91		SETB RS
92		MOV LCD,A
93		CLR EN
94		LCALL ATRASO_LCD
95		RET
96		
97	LINHA2:	MOV A,#192
98		LCALL INSTR_WR
99		LCALL ATRASO_LCD
100		_
101	LINHA1:	MOV A,Offset
102		MOVC A,@A+DPTR
103		CJNE A,#0FFH,ENVIA
104		MOV Offset,#00
105		RET
106		
107	ENVIA:	LCALL TEXTO_WR
108		INC OFFSET
109		SJMP LINHA1
110		
111	ATRASO_LCD:	MOV R4,#10
112		V6:MOV R5,#80
113		DJNZ R5,\$
114		DJNZ R4,V6
115		RET
116		
117	DELAY1:	MOV R6,#4D
118	LABEL1:	DJNZ R6, LABEL1
119		RET

52		
53	MOSTRA:	MOV A,#203
54		LCALL INSTR_WR
55		LCALL ATRASO_LCD
56		MOV A,#0f0h
57		ANL A,distancia
58		SWAP A
59		ORL A,#30H
60		LCALL TEXTO_WR
61		LCALL ATRASO_LCD
62		
63		MOV A,#0fh
64		ANL A,distancia
65		ORL A,#30H
66		LCALL TEXTO_WR
67		LCALL ATRASO_LCD
68		RET

120		
121	ATRASO500MS:	MOV TH1,#HIGH(19455)
122		MOV TL1,#LOW(19455)
123		SETB TR1
124		JNB TF1,\$
125		CLR TF1
126		DJNZ R0,ATRASO500MS
127		MOV R0,#10
128		CLR TR1
129		RET
130		
131		
132		
133	MSG1:	DB 'Sensor Ultrassom', 0ffh
134	MSG2:	DB 'Distancia: cm', 0ffh
135		
136		END

Questão 1: Coloque um obstáculo em 3 diferentes distâncias, até 20 cm, e anote na tabela a distância escolhida e a leitura no LCD.

	Distância 1	Distância 2	Distância 3
Distância escolhida			
Leitura no LCD			

Questão 2: Qual a maior distância obtida com a montagem implementada?

Questão 3: Explique o funcionamento da subrotina "Sensor", da Linha 36 à Linha 51.

Questão 4: A recarga do temporizador zero, no modo 2, é 201. Explique o porquê dessa escolha.

2.2 Tomada de Decisão a partir da Distância Medida

O código a seguir faz a leitura digital da distância de um obstáculo e, a partir do resultado, acende Leds de alerta. O temporizador zero é usado na medição da distância de 1 cm; e o temporizador 1 é usado para gerar um tempo de atraso de 500 ms, necessário para não haver interferência entre sinal do trigger e o sinal do echo. Essa subrotina é também usada para piscar os Leds de alerta.

Tabela 2: Programa que faz a leitura digital de distância e toma decisões

7.1		ograma que faz a leitura digi
Linha	Label	
1		trigger BIT P2.0
2		echo BIT P2.1
3		distancia EQU 11H
4		
5		ORG 00H
6		LJMP INICIO
7		
8		ORG 30H
9	INICIO:	MOV SP,#2FH
10		CLR trigger
11		MOV R0,#10
12		MOV TMOD,#00010010B
13		MOV TL0,#201
14		MOV TH0,#201
15		
16	LOOP:	LCALL Sensor
17		LCALL Verifica
18		LCALL Atraso500ms
19		SJMP LOOP
20		
21	Sensor:	MOV distancia ,#00
22		SETB TRIGGER
23		LCALL Atraso10us
24		CLR TRIGGER
25		JNB ECHO,\$
26		CLR TF0
27		SETB TR0
28	Repete:	JNB TF0,\$
29		CLR TF0
30		MOV A, distancia
31		ADD A,#01
32		DA A
33		MOV distancia ,A
34		JB ECHO,Repete
35		CLR TR0
36		RET

Linha	Label	
37	Verifica:	CLR CY
38		MOV A,distancia
39		SUBB A,#10
40		JC Pisca_Led0
41		CLR CY
42		SUBB A,#30
43		JNC Pisca_Led7
44		RET
45		
46	Pisca_Led0:	CPL P1.0
47		LCALL Atraso500ms
48		CPL P1.0
49		RET
50		
51	Pisca_Led7:	CPL P1.7
52	V2:	LCALL Atraso500ms
53		CPL P1.7
54		RET
55		
56	Atraso10us:	MOV R6,#4
57		DJNZ R6,\$
58		RET
59		
60	Atraso500ms:	MOV TH1,#HIGH(19455)
61		MOV TL1,#LOW(19455)
62		SETB TR1
63		JNB TF1,\$
64		CLR TF1
65		DJNZ R0, Atraso500ms
66		MOV R0,#10
67		CLR TR1
68		RET
69		
70		END
71		
72		

Questão 5: A que distância o Led em P1.0 começa a piscar? E o Led em P1.7?

Questão 6: Como funciona a subrotina "Verifica"?

2.3 Medição de Temperatura com LM35

O código a seguir faz a leitura analógica da temperatura, por meio do transdutor LM35, e envia o resultado via porta serial. Nesse processo há a leitura da temperatura pelo conversor AD, a conversão do valor lido em valor decimal de temperatura em graus Celsius e o envio via porta serial. A expressão utilizada para a conversão do valor lido em valor de temperatura é:

$$T(\ ^{o}C) = \frac{5*100*leitura}{255}$$

No processamento, a divisão será por 256 (ao invés de 255), que consiste em rotacionar 8 vezes para a direita o resultado obtido com as multiplicações no numerador. O fator "5" do numerador corresponde à tensão de referência de 5 V; o fator "100" deve-se à variação de temperatura no LM35, que é de 10 mV/°C; isso equivale a dividir a leitura por 0,01, ou multiplicar por 100.

Para garantir que o valor mostrado nos Leds seja o mesmo valor convertido para graus Celsius, foi utilizada a interrupção externa zero; ao ser acionada, uma leitura de temperatura é feita e o valor lido é mostrado nos Leds da Porta P1 e, depois, é convertido para graus Celsius e enviado via serial. A taxa de comunicação é de 9600 bps.

Linha	Rótulo	Instruções
1		TEMP_H EQU 10H
2		TEMP_L EQU 11h
3		DEC_H EQU 13H
4		DEC_H EQU 13H DEC_L EQU 14H
5		
6		ORG 00H
7		LJMP INICIO
8		
9		ORG 03H
10		LJMP LEITURA
11		
12		ORG 30H
13	INICIO:	MOV SP,#2FH
14		MOV IE,#81H
15		MOV TCON,#01H
16		MOV SCON,#40H
17		MOV TMOD,#20H
18		MOV TH1,#0FDH
19		MOV TL1,#0FDH
20		SETB TR1
21		CLR TI
22		SJMP \$
23		
24	LEITURA:	MOV A,P2
25		MOV P1,A
26		MOV B,#100
27		MUL AB
28		MOV TEMP_H,B
29		MOV TEMP_L,A
30		LCALL VEZES5
31		MOV DEC_H,TEMP_H
32		MOV A,TEMP_L
33		MOV B,#100
34		MUL AB
35		MOV DEC_L,B
36		LCALL T_DEC
37		LCALL ENVIA

Linha	Rótulo	Instruções
55	T DEC:	MOV R7,DEC_H
56	T_DEC.	MOV DEC_H,#00
57	V3:	MOV A,DEC_H
58	٧٥.	ADD A,#01
59		DA A
60		MOV DEC_H,A
61		DJNZ R7,V3
62		DJNZ K/, V 3
63		MOV B7 DEC. I
64		MOV R7,DEC_L
65	V4:	MOV A DEC. I
66	V4:	MOV A,DEC_L
67		ADD A,#01
		DA A
68		MOV DEC_L,A
69		DJNZ R7,V4
70		RET
71		
72	ENVIA:	MOV A,DEC_H
73		ANL A,#0F0H
74		SWAP A
75		ORL A,#30H
76		LCALL SERIAL
77		
78		MOV A,DEC_H
79		ANL A,#0FH
80		ORL A,#30H
81		LCALL SERIAL
82		
83		MOV A,#2CH
84		LCALL SERIAL
85		
86		MOV A,DEC_L
87		ANL A,#0F0H
88		SWAP A
89		ORL A,#30H
90		LCALL SERIAL
91		

38		RETI
39		
40	VEZES5:	MOV A,TEMP_H
41		MOV B,#5
42		MUL AB
43		MOV TEMP_H,A
44		
45		MOV A,TEMP_L
46		MOV B,#5
47		MUL AB
48		
49		MOV TEMP_L,A
50		MOV A,B
51		ADD A,TEMP_H
52		MOV TEMP_H,A
53		RET
54		

92		MOV A,DEC_L
93		ANL A,#0FH
94		ORL A,#30H
95		LCALL SERIAL
96		
97		MOV A,#43H
98		LCALL SERIAL
99		
100		MOV A,#0DH
101		LCALL SERIAL
102		RET
103		
104	SERIAL:	MOV SBUF,A
105		JNB TI,\$
106		CLR TI
107		RET
108		END

Questão 7: Com auxílio de uma fonte externa de calor, provoque variações na Temperatura lida pelo LM35 e anote pelo menos 5 valores na Tabela a seguir. Use a expressão dada no início desta seção para o cálculo da Temperatura e anote o valor calculado na mesma Tabela. Calcule o erro entre os valores lido e medido.

Amostra	Temperatura Medida (°C)	Temperatura Calculada (°C)	$erro = \frac{Medido-Calculado}{Calculado} \ (\%)$
1			
2			
3			
4			
5			

Observações:

1. O conversor utilizado é de 8 bits e a referência de tensão usada é de 5 V. Nesse caso, o bit menos significativo do conversor corresponde a aproximadamente 20 mV:

$$LSB = \frac{5 V}{255} = 19,6 \, mV$$

No entanto, cada variação de 1 °C no LM35 corresponde a 10 mV. Ou seja, há variação na saída do conversor AD a cada 2 °C. Portanto, idealmente, deveria ser utilizado um conversor com uma quantidade maior de bits, ou uma tensão de referência menor; digamos, referência de 1,5 V, que corresponderia a um LSB de:

$$LSB = \frac{1.5 \, V}{255} = 5.88 \, mV$$

Esse valor de 5,88 mV seria mais adequado para a variação do LM 35.

Como o resultado da multiplicação dos fatores do numerador (5 x 100) é aproximadamente o
dobro do denominador (500/255 ≅ 1,96), a temperatura, neste caso em especial (usando fonte de
5 V), poderia ser calculada apenas pela multiplicação da leitura por 2, sem perda significativa de
precisão.