Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0624 – Laboratorio 4 III ciclo 2023

Título: STM32: GPIO, ADC, comunicaciones, Iot.

Estudiantes:

Kevin Campos Campos Josué Salmerón Córdoba

Grupo 1

Profesor: Marco Villalta

1 de febrero de 2024

Índice

1.	Resumen	1
2.	Nota teórica	2
3.	Desarrollo/Análisis	7
4.	Conclusiones y recomendaciones	8
5	Δ nevos	10

Índice de figuras

1.	Diagrama de bloques del STM32F429 . Tomado de [1]	3
2.	Diagrama de pines del STM32F429. Tomado de [1]	3
3.	Detalles del voltaje del mcu. Tomado de [1]	4
4.	Detalles de la corriente en el mcu. Tomado de [1]	4
5.	Diagrama de fluio del circuito.	6

Índice	de	tab	las
HIGH	$\mathbf{a}\mathbf{c}$	uab.	ias

1. Resumen

2. Nota teórica

En esta sección se describen los componentes principales que se utilizaron para el desarrollo de un sismógrafo.

STM32F429 Discovery kit

Este microcontrolador permite a los usuarios desarrollar fácilmente aplicaciones de alto desempeño. Incluye un ST-LINK/V2 embebido como una herramienta de depuración, una SRAM externa de 64-Mbit, un ST MEMS giroscopio, un USB OTG conector AB, LEDs y botones. Algunas de las características generales se resumen a continuación.

Características generales

Las características más importantes de este mou se mencionan a continuación:

- 2.4 QVGA TFT LCD.
- 64-Mbit SDRAM.
- USB OTG con conector Micro-AB.
- Header para LQFP144 I/Os.
- Sensor de movimiento I3G4250D, Giroscopio ST MEMS de 3-ejes-
- On-board ST-LINK/V2-B.
- Alimentación por USB o fuente externa de 3 V o 5 V.
- 2 push-button (Usuario y reset).
- Core: ARM 32 bits Cortex-M4 con FPU (RISC).
- Debug: SWD, JTAG.
- Trabaja en frecuencia de 180 MHz
- 168 I/O con capacidad de interrupción.
- 2MB flash, 256 KB SRAM.

- Controlador LCD-TFT.
- 21 interfaces de comunicaciones(I2C,USART,SPI,SAI,CAN).
- Low Power.
- Conectividad avanzada USB 2.0.
- Intefaz de camara.
- 2x12bit convertidor D/A.
- True RNG.
- CRC.
- 6 LEDS: LD1 (USB Comms), LD2(3.3V PowerOn, 2 LEDS de ususario (LD3 y LD4), 2 LEDS USB OTG (LD5 y LD6).
- Controladores DMA.
- 17 timers: 12 timers de 16bit, 2 de 32bit de hasta 180MHz, c/u con 4IC/OC/PWM.

Diagrama de bloques

En la figura 1 se muestra el diagrama de bloques del STM32F429.

Figura 1: Diagrama de bloques del STM32F429 . Tomado de [1].

Diagrama de pines

Luego, el diagrama de pines de este mou se presenta en la figura 2

Figura 2: Diagrama de pines del STM32F429. Tomado de [1].

Características eléctricas

Las siguientes tablas resumen las características eléctricas de este microcontrolador.

Symbol	Ratings	Min	Max	Unit	
V _{DD} -V _{SS}	External main supply voltage (including $\mathrm{V}_{\mathrm{DDA}},\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{VBAT})^{(1)}$	- 0.3	4.0		
	Input voltage on FT pins ⁽²⁾	V _{SS} - 0.3	V _{DD} +4.0	V	
V _{IN}	Input voltage on TTa pins	V _{SS} - 0.3	4.0		
VIN	Input voltage on any other pin	V _{SS} - 0.3	4.0		
	Input voltage on BOOT0 pin	V _{SS}	9.0		
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50		
V _{SSX} -V _{SS}	Variations between all the different ground pins including V_{REF} .	-	50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section Absolute in ratings (ele sensitivity)	naximum		

Figura 3: Detalles del voltaje del mcu. Tomado de [1].

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	270	
Σ I _{VSS}	Total current out of sum of all V _{SS_x} ground lines (sink) ⁽¹⁾	- 270	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	- 100	
	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current sourced by any I/Os and control pin	- 25	mA
21	Total output current sunk by sum of all I/O and control pins (2)	120	
ΣI_{IO}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT pins (4)		
I _{INJ(PIN)} (3)	Injected current on NRST and BOOT0 pins (4)	- 5/+0	
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{INJ(PIN)}^{(5)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

Figura 4: Detalles de la corriente en el mcu. Tomado de [1].

Periféricos utilizados

Componentes electrónicos complementarios

Es un circuito que lo compone una electrónica básica (así lo resume la tabla 1), solo se usó una protoboard y 3 resistencias en total, una batería de 9 V, esto para realizar un divisor de tensión con el objetivo de alimentar a la placa STM32249 Discovery Kit con 5 V. Así, se sabe que $v_{out} \approx 5$ V

- $R_1 = 20 \,\mathrm{k}\Omega$
- $R_2 = 18 \,\mathrm{k}\Omega$
- $v_{in} = 9 \, \text{V}$

Aplicando el divisor de tensión se tiene que:

$$v_{out} = 9 \,\mathrm{V} \cdot \frac{20 \,\mathrm{k}\Omega}{20 \,\mathrm{k}\Omega + 18 \,\mathrm{k}\Omega} \approx 4,737 \,\mathrm{V} \tag{1}$$

De la ecuación 1, se demuestra que con estas magnitudes es posible alimentar la placa sin sobrepasar el umbral.

Lista de componentes

La lista de componentes fueron consultados en [?] disponibles

Tabla 1: Lista de equipos

Componente	Cantidad	Precio
STM32F429 Discovery Kit	1	83\$
Resistencias $20 \mathrm{k}\Omega$	2	0.4\$
Resistencias $18 \mathrm{k}\Omega$	1	0.2\$
Protoboard	1	10\$
Broche porta pila	1	0.5\$
Baterías 9 V	2	2\$
Total		96.1\$

Diseño del circuito

El diagrama mostrado en la figura 5, resume el funcionamiento del sismógrafo.

Figura 5: Diagrama de flujo del circuito.

3. Desarrollo/Análisis

4. Conclusiones y recomendacione	\mathbf{S}
----------------------------------	--------------

Referencias

[1] STmicroelectronics. Stm32f427xx stm32f429xx datasheet. STmicroelectronics, https://www.st.com/content/st_com/en.html, Febrero 2018. Accedido en enero de 2024.

5. Anexos

Aquí van las hojas del fabricante de los componentes usados para este laboratorio.