Day 1 Introduction to UNIX in RNA-seq Data Analysis

Zahra Tavakol October 2025

Outline

- Setup & Troubleshooting
 - UNIX availability check
 - Fix PATH / permissions

- Module 1 GEO Basics
 - Accession types
 - Common files
 - FTP/HTTPS & Data Download

- Module 2 UNIX Basics
 - File management and navigation
 - File inspection
 - Pipes and redirects
 - Text search

https://github.com/QLS-MiCM/Intro-to-UNIX/tree/main

R Troubleshooting (if time)

Setup & Troubleshooting

pwd mkdir -p ~/workshop/data && cd ~/workshop which bash zsh curl wget gzip tar || true

```
ztava@Zahra:~/workshop$ cd ~
ztava@Zahra:~$ pwd
/home/ztava
ztava@Zahra:~$ mkdir -p ~/workshop/data && cd ~/workshop
ztava@Zahra:~/workshop$ which bash zsh curl wget gzip tar || true
/usr/bin/bash
/usr/bin/curl
/usr/bin/gzip
/usr/bin/dar
```

```
wsl -l -v
                                        sudo apt update -y
 wsl -d Ubuntu
                                        sudo apt install -y curl wget gzip tar grep gawk sed
exit or Ctrl+D \rightarrow To exit
PS C:\Users\ztava> wsl --install -d Ubuntu
Downloading: Ubuntu
Installing: Ubuntu
Distribution successfully installed. It can be launched via 'wsl.exe -d Ubuntu'
Launching Ubuntu...
Provisioning the new WSL instance Ubuntu
This might take a while...
Create a default Unix user account: ztava
New password:
Retype new password:
No password has been supplied.
New password:
Retype new password:
passwd: password updated successfully
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
ztava@Zahra:/mnt/c/Users/ztava$
```

wsl --unregister "Ubuntu"

wsl --install -d Ubuntu

Module 1 GEO Basics

GEO (Gene Expression Omnibus)

Series GSE251845 Query DataSets for GSE251845

GSE251845

Status Public on Apr 11, 2024

Title Identification of unique gene expression and splicing events in early-onset

colorectal cancer

Organism Homo sapiens

Experiment type Expression profiling by high throughput sequencing

Summary

Background: The incidence of colorectal cancer (CRC) has been steadily increasing in younger individuals over the past several decades for reasons that are incompletely defined. Identifying differences in gene expression profiles, or transcriptomes, in early-onset colorectal cancer (EOCRC, <50 years old) patients versus later-onset colorectal cancer (LOCRC, >50 years old) patients is one approach to understanding molecular and genetic features that distinguish EOCRC.

Methods: We performed RNA-sequencing (RNA-seq) to characterize the transcriptomes of patient-matched tumors and adjacent, uninvolved (normal) colonic segments from EOCRC (n=21) and LOCRC (n=22) patients. The EOCRC and LOCRC cohorts were matched for demographic and clinical characteristics. We used The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database for validation. We used a series of computational and bioinformatic tools to identify EOCRC-specific differentially expressed genes, molecular pathways, predicted cell populations, differential gene splicing events, and predicted neoantigens.

Results: We identified an eight-gene signature in EOCRC comprised of ALDOB, FBXL16, IL1RN, MSLN, RAC3, SLC38A11, WBSCR27 and WNT11, from which we developed a score predictive of overall CRC patient survival. On the entire set of genes identified in normal tissues and tumors, cell type deconvolution analysis predicted a differential abundance of immune and non-immune populations in EOCRC versus LOCRC. Gene set enrichment analysis identified increased expression of splicing machinery in EOCRC. We further found differences in alternative splicing (AS) events, including one within the long non-coding RNA, HOTAIRM1. Additional analysis of AS found seven events specific to EOCRC that encode potential neoantigens.

Conclusion: Our transcriptome analyses identified genetic and molecular features specific to EOCRC which may inform future screening, development of prognostic indicators, and novel drug targets.

Overall design Gene expression profiles of 22 surgically resected tumors and patient-matched

adjacent colonic segments from colorectal cancer patients were generated with RNA-sequencing.

Web link https://doi.org/10.3389/fonc.2024.1365762

GEO accessions: GSE (series), GSM (samples), GPL (platform)

Processed data: Series Matrix / SOFT / tabular files

Raw count data: in supplementary file

Raw reads: usually in SRA/ENA as $SRR... \rightarrow *.fastq.qz$

> Raw (FASTQ): larger; needed for alignment/QC

Contributor(s) Marx OM, Yochum GS, Koltun WA, Mankarious MM Citation(s) Marx OM, Mankarious MM, Koltun WA, Yochum GS, Identification of differentially expressed genes and splicing events in early-onset colorectal cancer. Front Oncol 2024;14:1365762. PMID: 38680862 NIH grant(s)

Grant ID Grant title Affiliation Name PENNSYLVANIA STATE Gregory S. R03 Wnt/beta-catenin CA279861 signaling in early-onset UNIV HERSHEY MED CTR Yochum colorectal cancer

Analyze with GEO2R **Download RNA-seq counts**

Submission date Dec 21, 2023 Last update date Apr 04, 2025 Contact name Gregory Yochum

E-mail(s) gyochum@pennstatehealth.psu.edu Organization name Penn State College of Medicine Department Biochemistry, Colorectal Surgery Street address 700 HMC Crescent Road

Hershey City State/province PA ZIP/Postal code 17033 USA Country

GPL24676 Illumina NovaSeq 6000 (Homo sapiens) Platforms (1)

Samples (44) GSM7988989 24C ■ More... GSM7988990 24N

GSM7988991 27C

Relations

BioProject PRJNA1055547

Download family	Format
SOFT formatted family file(s)	SOFT ?
MINIML formatted family file(s)	MINIML 2
Series Matrix File(s)	TXT 🖸

Supplementary file	Size	Download	File type/resource
GSE251845_RAW.tar	9.0 Mb	(http)(custom)	TAR (of TXT)
GSE251845_htseq_raw_counts.csv.gz	2.1 Mb	(ftp)(http)	CSV
SRA Run Selector 2			

☑ ×	▲ Run	♦ BioSample	<pre>age_at_surgery</pre>	♦ Bases	\$ Bytes	Experiment	Library Name	create_date	Sample Name	source_name	tissue	tumor_stage
_ 1	SRR27320655	SAMN39058850	88.75	2.30 G	830.65 Mb	SRX22997924	GSM7989032	2023-12-21 21:33:00Z	GSM7989032	Rectum	Rectum	NA
2	CDD272206E6	CAMMISONE DOE 1	00.75	2 40 0	1 16 Ch	CDV22007022	CCM7000024	2022 12 21 24:26:007	CCM7090024	Doctum	Doctum	4

2 SRR27320656 SAMN39058851 88.75 3.40 G 1.16 Gb SRX22997923 GSM7989031 2023-12-21 21:36:00Z GSM7989031 Rectum 1

SRR27320657 SAMN39058852 4.74 G 1.63 Gb SRX22997922 GSM7989030 2023-12-21 21:38:00Z GSM7989030 Hepatic flexure Hepatic flexure NA 3.06 G 1.06 Gb SRX22997921 GSM7989029 2023-12-21 21:34:00Z GSM7989029 Hepatic flexure SRR27320658 SAMN39058853 Hepatic flexure

Supplementary file	Size	Download	File type/resource
GSE251845_RAW.tar	9.0 Mb	(http)(custom)	TAR (of TXT)
GSE251845_htseq_raw_counts.csv.gz	2.1 Mb	(ftp)(http)	CSV

SRA Run Selector 2

Raw data are available in SRA

Custom GSE251845_RAW.tar archive:

Supplementary	file	File size
GSM7988989_24C_htseq.out.txt.gz		210.5 Kb
GSM7988990_24N_htseq.out.txt.gz		211.3 Kb
GSM7988991_27C_htseq.out.txt.gz		209.0 Kb
GSM7988992_27N_htseq.out.txt.gz		206.9 Kb
GSM7988993_29C_htseq.out.txt.gz		214.4 Kb
GSM7988994_29N_htseq.out.txt.gz		205.9 Kb
GSM7988995_30C_htseq.out.txt.gz		204.9 Kb
GSM7988996_30N_htseq.out.txt.gz		207.2 Kb
GSM7988997_31C_htseq.out.txt.gz		214.6 Kb
GSM7988998_31N_htseq.out.txt.gz		210.4 Kb
GSM7988999_32C_htseq.out.txt.gz		208.7 Kb
GSM7989000_32N_htseq.out.txt.gz		208.3 Kb
GSM7989001_33C_htseq.out.txt.gz		208.7 Kb
GSM7989002_33N_htseq.out.txt.gz		206.4 Kb
GSM7989003_34C_htseq.out.txt.gz		210.6 Kb
GSM7989004_34N_htseq.out.txt.gz		208.2 Kb
GSM7989005_35c_htseq.out.txt.gz		206.3 Kb
GSM7989006_35N_htseq.out.txt.gz		210.2 Kb
GSM7989007_36C_htseq.out.txt.gz		206.5 Kb
CCM7000000 26N btrog out tyt az		205 8 Kh ♥
☐ Select All	Cancel Download	1 file(s), 210.5 Kb

Exercise 1.1

Pick any GSE you like (or use the example on the slide). Using your browser only, download one of:

- Processed matrix the Series Matrix (or SOFT) from the GSE page.
- Counts table (if provided) a Supplementary file named like *_counts.txt, htseq_counts, or featureCounts (tab/CSV).
- Raw reads (one run) a single small SRR FASTQ (from SRA Run Selector or the ENA "Run" page).

FTP / HTTPS Download

Pick one tool: curl -L -0 <URL> or wget <URL>

```
ztava@Zahra:~/workshop$ wget https://ftp.ncbi.nlm.nih.gov/geo/series/GSE251nnn/GSE251845/suppl/GSE251845%5Fhtseg%5Fraw%5Fcounts.csv.gz
--2025-10-06 17:26:09-- https://ftp.ncbi.nlm.nih.gov/geo/series/GSE251nnn/GSE251845/suppl/GSE251845%5Fhtseq%5Fraw%5Fcounts.csv.gz
Resolving ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)... 130.14.250.12, 130.14.250.7, 130.14.250.31, ...
Connecting to ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)|130.14.250.12|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2185236 (2.1M) [application/x-gzip]
Saving to: 'GSE251845_htseg_raw_counts.csv.gz'
in 0.5s
2025-10-06 17:26:10 (4.47 MB/s) - 'GSE251845_htseq_raw_counts.csv.gz' saved [2185236/2185236]
ztava@Zahra:~/workshop$ curl -L -O https://ftp.ncbi.nlm.nih.gov/geo/series/GSE251nnn/GSE251845/suppl/GSE251845%5Fhtseq%5Fraw%5Fcounts.csv.gz
           % Received % Xferd Average Speed
                                          Time
                                                 Time
                                                         Time Current
 % Total
                            Dload Upload
                                          Total
                                                 Spent
                                                         Left Speed
100 2134k 100 2134k
                             793k
                                      0 0:00:02
                                                0:00:02 --:-- 793k
```

Exercise 1.2

Recreate your manual download using a command:

In your data folder:

1. Run one:

```
curl -C - -L -0 "<URL-from-Exercise-1.1>"
wget -c "<URL-from-Exercise-1.1>"
```

2. Verify:

Module 2 Unix Basics

File system structure

Keyboard shortcuts

Unix commands

Programs built in the shell that perform specific actions

Basic commands

history clear top man See active Shows the List your Clear your processes and manual page of previous terminal the resources a command commands window they're using % man Is % htop % man cd % history % clear % man htop

Basic commands

Special characters

File permissions

File management commands

chmod touch mkdir echo Change file Prints Creates a new Creates a new chmod [ugo][+-][rwx] something to file directory the terminal % chmod o-w % echo "hello % mkdir % touch f1.txt world" ~/intro_unix f1.txt

File management commands

ср cat zcat mv Print the Print the Move a file or contents of a contents of a Copy a file rename it file(s) to the zipped file(s) to terminal the terminal % cp f1.txt % mv f1 copy.txt % cat f1.txt % zcat f1.txt.gz f1 copy.txt f1.txt

How to edit files in the terminal

File management commands

gzip gunzip tar rm **Bundle files** Decompress a with Compress a file Removes file(s) file (optional) % tar -cvzf % gunzip * % gzip cars.tsv % rm cars.tsv cars.tgz f*

File management commands

head tail more WC Count words, Print the first N Print the last N View contents characters lines lines of a file lines of a file of a file or bytes % head -3 cars.tsv % tail -3 cars.tsv % more cars.tsv % wc cars.tsv

Text processing commands

cut sort uniq paste Extract Order Get set of uniq Paste two files columns of file elements elements column-wise % cut -f1 cars.csv % paste col1.txt % sort cars.tsv > % uniq cars.sort.tsv > col1.tsv cars.sort.tsv cars.tsv

Exercise 2

- 1. Print the current directory and list all the contents of the directory
- 2. Create a directory named intro_unix in the home directory
- 3. Create a directory called data within intro_unix and sub-directories ho1 ho2 and ho3
- 4. Create a directory called folder1 under data/ho1
- 5. Go into folder1 and create two files: f1.txt and .f2.txt
- 6. Write the numbers from 1 to 10 in f1.txt (one number per line)
- 7. Change the name of .f2.txt to f2.txt
- 8. Write only the first 10 lines of f1.txt and all the lines in f2.txt to a new file called f3.txt

Pipes

- A way to connect the end of something with the start of something else
- They are specified with the control operator " | "

% cat cars.tsv | head -10

Redirect output

Pattern matching

grep

Search a pattern in a file

% grep Male happiness.csv Country Gender Mean N=

AT Male 7.3 471

AT Female 7.3 570

AT Both 7.3 1041

BE Male 7.8 468

BE Female 7.8 542

BE Both 7.8 1010

BG Male 5.8 416

BG Female 5.8 555

BG Both 5.8 971

Regular expressions

Groups and ranges

	Any character except new line (\n)
(a b)	a or b
()	Group
(?:)	Passive (non-capturing) group
[abc]	Range (a or b or c)
[^abc]	Not (a or b or c)
[a-q]	Lower case letter from a to q
[A-Q]	Upper case letter from A to Q
[0-7]	Digit from 0 to 7
\x	Group/subpattern number "x"

Character classes

\s	White space
\S	Not white space
\d	Digit
\D	Not digit
\w	Word
\W	Not word

Regular expressions

Anchors

۸	Start of string, or start of line in multi-line pattern
\A	Start of string
\$	End of string, or end of line in multi- line pattern
١Z	End of string
\b	Word boundary
\B	Not word boundary
\<	Start of word
\>	End of word

Quantifiers

*	0 or more	{3}	Exactly 3	
+	1 or more	{3,}	3 or more	
?	0 or 1	{3,5}	3, 4 or 5	

Special characters

٨]		\$	
{	*	(1	
+)	1	?	
<	>			

Example

All lines that start with a letter

```
% grep -E "^[A-Z]+" happiness.csv
```

Lines that do not start with a letter

```
% grep -v -E "^[A-Z]+" happiness.csv
% grep -E "^\W" happiness.csv
```

Lines with a country from the list

```
% grep -f countries.txt happiness.complete.tsv
```

awk

Scripting language that provides much more flexibility for text processing

Built-in functions

- length(string)
- tolower(string)
- toupper(string)
- match(string,pattern)

Built-in variables

- Entire line \$0
- Fields (specified by delimiter) \$1,\$2,...

Example

Print the 3rd column and then the 1st column

```
% awk '{print $3 "\t" $1}' happiness.complete.txt
```

Print columns 1,3 and 2 if they contain the word "Female"

```
% awk '/Female/ {print $1 "\t" $3 "\t" $2}' happiness.complete.txt
```

Count the number of characters in "Female" entries only

```
% awk -F "," '/Female/ { print length($0) "\t" $1 "\t" $2}' happiness.complete.csv
```

sed

Command or streamline editor with multiple text processing functionalities

Built-in functions

- s/search/replace/ for pattern substitutions
 - /g replace all occurrences
 - /1,/2,... specifying which occurrence to replace
 - /I Ignore case
 - /w write to a file with /w filename
- -e to run multiple commands
 - sed -e 's/a/A/' -e 's/b/B/'

Examples

Delete the first line

```
% ls -l | sed 1d
```

Replace capital A for lowercase a

```
% sed 's/A/a/g' happiness.complete.txt | head
```

Print the first line every 3 lines

```
% awk 'NR % 3 == 0' happiness.csv
```

Exercise 3.1

- 1. Preview & row count (zcat/ gunzip)
 - Show the first 10 and last 5 lines.
 - Report the number of data rows (exclude header).
- 2. Print the header with column indices so you can choose sample columns.

 $zcat\ GSE251845_htseq_raw_counts.csv.gz \mid head -n\ 1 \mid awk\ -F','\ '\{for(i=1;i <= NF;i++)\ printf("%d\t%s\n",\ i,\ \$i)\}'$

- 3. Pick & extract
 - Choose two sample columns (your choice) plus the gene ID column.
 - Save to subset_cols.csv.
- 4. Sort (*sort -t',' -k3,3nr*)
 - Sort subset_cols.csv descending by one of your sample columns.
 - Keep the header; save as sorted_subset.csv.

Exercise 3.1

5. Low-information checks

• ANY-zero genes: genes with at least one zero across samples.

```
awk -F',' 'NR>1 && ($2==0 || $3==0){c++} END{print c}' # ANY-zero
```

- ALL-zero genes: genes with all zeros across samples.
- Also report highly expressed genes for one chosen sample column (e.g., counts ≥ 1000).

Exercise 3.2

Move/copy your downloaded * . fastq files into your working directory.

Count reads (headers) — no decompression needed (hint: @)

Find how many reads contain ambiguous base 'N'

Top 10 most common 6-mers at the 5' end

Motif search (choose a short motif, e.g., ACGTAC)

Take the first 100 reads