Eine universelle Turingmaschine mit zwei Zuständen/Symbolen

Ein Paper von Claude E. Shannon

Sven Fiergolla

10. Juli 2017

1 / 15

Einführung

Formal definieren wir die Turingmaschine als Septupel $\mathbf{M}=(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{\Gamma}, \mathbf{q_0}, \delta, \Box, \mathbf{F})$ wobei:

 $\mathbf{Q} = \mathsf{die}$ endliche Zustandsmenge

 $oldsymbol{\Sigma}=\mathsf{das}$ endliche Eingabealphabet

 $\Gamma=$ das endliche Bandalphabet und es gilt $\Sigma\subset \Gamma$

 $\mathbf{q_0} = \mathsf{der} \; \mathsf{Anfangszustand}$

 $\delta = {\sf die}$ (partielle) Überführungsfunktion

 $\square =$ steht für das leere Feld (Blank)

 ${f F}=$ die Menge der akzeptierenden Endzustände

Beislpiel

Beispiel

Universelle Turingmaschinen

Formal ist eine universelle Turingmaschine eine Maschine UTM, die eine Eingabe w|x liest. Das Wort w ist hierbei eine die Beschreibung einer Turingmaschine M_w , die zu einer bestimmten Funktion mit Eingabe x die Ausgabe berechnet. UTM simuliert also das Verhalten von M_w mit Hilfe der Funktionsbeschreibung w und der Eingabe x.

5 / 15

Konstruktion

Turingmaschine $A: A_1, A_2, ..., A_m \in \Sigma_A$ die Symbole und $q_1, q_2, ...q_n \in Q_A$ die Zustände der Maschine. Maschine B besitzt:

- ▶ elementare Symbolen von Maschine $A: B_1, B_2, ..., B_m \in \Sigma_B$
- ▶ $m \cdot n \cdot 2 \cdot 2$ neue Symbole, welche Informationen über den Zustand und den Status der bouncing operation speichern: $B_{m,n,x,y} \in \Sigma_B$
 - $m = \text{Symbole von } A, |\Sigma_A|$
 - $ightharpoonup n = \mathsf{Zust"ande} \ \mathsf{von} \ A, |Q_A|$
 - x = + oder ob der Zustand des letzten Feldes in diese Feld übertragen wird oder aus diesem Feld stammt
- ightharpoonup y=R oder L ob die Information in das rechte oder linke Feld übertragen wird. Insgesammt besitzt Maschine B also m+4mn Symbole.

7ustände

Die Zustände von Maschine B werden α und β heißen.

Um die Information des aktuellen Zustands nach bearbeiten eines Symbols in der nächsten Zelle zur Verfügung zu haben, auch wenn die $TM\ B$ nur zwei Zustände hat, wird diese in den Symbolen gespeichert (Index n) und über die sogenannte bouncing operation in die nächste Zelle übertragen.

7 / 15

Übergänge

Nr.	Symbol	$Zustand \Rightarrow$	Symbol	Zustand	Richtung
(1)	B_i	α	$B_{i,1,-,R}$	α	R
(2)	B_i	β	$B_{i,1,-,L}$	α	L
(3)	$B_{i,j,-,x}$	lpha oder eta	$B_{i,(j+1),-,x}$	α	$x \in \{R, L\}$
(4)	$B_{i,j,+,x}$	lpha oder eta	$B_{i,(j-1),+,x}$	β	$x \in \{R, L\}$
(5)	$B_{i,1,+,x}$	lpha oder eta	B_i	α	$x \in \{R, L\}$

zusätzlich erhält Maschine B für jeden Übergang in A:

(6)
$$\delta(A_i, q_j) \to (A_k, q_l, {R \atop L}) \Rightarrow \delta(B_{i,j,-,x}, \alpha) \to (B_{k,l,+,{R \atop L}}, {\beta \atop \alpha}, {R \atop L})$$

Beispiel Maschine A

Maschine A:

$$...|\underbrace{A_3}|A_{13}|...$$

$$...|A_8|\underbrace{A_{13}}|...$$

Beispiel Maschine ${\cal B}$

Bandinhalt	Übergangsfunktion	Gleichung
$ \underline{B_{3,7,-,x}} B_{13} $	$\delta(B_{3,7,-,x},\alpha) = (B_{8,4,+,R},\beta,R)$	(6)
$ B_{8,4,+,R} \underbrace{B_{13}} $	$\delta(B_{13},\beta) = (B_{13,1,-,L},\alpha,L)$	(2)
$ \underline{B_{8,4,+,R}} B_{13,1,-,L} $	$\delta(B_{8,4,+,R},\alpha) = (B_{8,3,+,R},\beta,R)$	(4)
$ B_{8,3,+,R} \underbrace{B_{13,1,-,L}} $	$\delta(B_{13,1,-,L},\beta) = (B_{13,2,-,L},\alpha,L)$	(3)
$ \underline{B_{8,3,+,R}} B_{13,2,-,L} $	$\delta(B_{8,3,+,R},\alpha) = (B_{8,2,+,R},\beta,R)$	(4)
$ B_{8,2,+,R} \underbrace{B_{13,2,-,L}} $	$\delta(B_{13,2,-,L},\beta) = (B_{13,3,-,L},\alpha,L)$	(3)
$ \underbrace{B_{8,2,+,R}} B_{13,3,-,L} $	$\delta(B_{8,2,+,R},\alpha) = (B_{8,1,+,R},\beta,R)$	(4)
$ B_{8,1,+,R} \underbrace{B_{13,3,-,L}} $	$\delta(B_{13,3,-,L},\beta) = (B_{13,4,-,L},\alpha,L)$	(3)
$ \underline{B_{8,1,+,R}} B_{13,4,-,L} $	$\delta(B_{8,1,+,R},\alpha) = (B_8,\alpha,R)$	(5)
$ B_8 \underbrace{B_{13,4,-,L}} B_x $		(6)

UTM mit nur einem Zustand unmöglich

Beweis per () von Schannon:

Annahme: es existiert eine universelle Turingmaschine mit nur einem Zustand.

 $\sqrt{2}$ ist eine berechenbare irrationale Zahl und kann von einer TM berechnet werden. Dazu muss die TM kontinuierlich die Ziffern von $\sqrt{2}$ schreiben.

 $\sqrt{2}$ ist turingberechenbar \Rightarrow eine UTM kann $\sqrt{2}$ berechnen \Rightarrow eine TM mit einem Zustand kann $\sqrt{2}$ berechnen.

$\sqrt{2}$ mit nur einem Zustand berechnen

Fall 1 : doppelt unendliches Band

- ▶ 1.1 : Lesekopf liest $\square \Rightarrow$ Lesekopf bleibt im \square -Bereich
- ► 1.2 : Lesekopf verlässt □
 - ▶ 1.2.1: Lesekopf verlässt \square nach Links
 - ▶ 1.2.1.1 linke unendliche Seite des Bandes wird nicht betreten
 - ► 1.2.1.2 linke unendliche Seite des Bandes wird betreten
 - ▶ 1.2.2 : Lesekopf verlässt □ nach Rechts
- 1.1 Die TM wird nie mehr als ein \square der Eingabe verändern \Rightarrow das Eingabeband ist nur auf einem endlichen Teil beschrieben \Rightarrow das Band kann nach der Bearbeitung nicht $\sqrt{2}$ enthalten.
- 1.2.1.1 Die TM betritt nur eine Seite des Bandes \rightarrow wird in Fall 2 behandelt
- 1.2.1.2 Die TM geht unendlich weit nach Links \Rightarrow linke Seite des Bandes wird mit konstantem Symbol beschrieben und rechte unendliche Seite des Bandes nie betreten \Rightarrow Band kann nach der Bearbeitung nicht $\sqrt{2}$ enthalten.
- 1.2.2 analog zu 1.2.1.

reflection number

Fall 2: einseitig unendliches Band

Annahe: Band ist rechts der Eingabe unendlich.

Beweishilfe: "reflection number"

platziere den Lesekopf auf dem ersten

nach der Eingabe:

- ► Lesekopf wird sich zur Eingabe hin bewegen
- $\blacktriangleright \ ... |1|0| \ \Box \ |\Box \ \rightarrow ... |1| \ 0 \ |x|\Box$

wenn der Lesekopf die Eingabe betritt, platziere ihn wieder auf dem ersten \square wie oft man die Lesekopf so platzieren kann, nennt man $\mathit{reflection\ number},\ R\in N$

reflection number für $\sqrt{2}$

platziere den Lesekopf am Anfang der Eingabe

$$\blacktriangleright |\Box| \underline{A_1} |A_2| ... |A_m| \Box |\Box| ...$$

der Lesekopf wird die Eingabe verlassen

$$\blacktriangleright |\Box|A_1|A_2|...|A_m|\Box \Box|\Box|...$$

platziere den Lesekopf wieder am Anfang

$$\blacktriangleright |\Box| A_1 |A_2| ... |A_m| A_x |\Box| \Box| ...$$

dies nennen wir die $\mathit{reflection}$ number für $\sqrt{2} =: S$

$\sqrt{2}$ mit nur einem Zustand berechnen

Fall 2: einseitig unendliches Band

- $ightharpoonup 2.1 S < \inf \text{ und } S > R$
- 2.1 nach einer endlichen Anzahl an Schritten ist der Lesekopf im Bereich der Eingabe "gefangen" \Rightarrow Band ist nur auf endlichem Teil beschrieben. \Rightarrow Band kann nicht $\sqrt{2}$ enthalten.