COMP9020 assignment 2

November 20, 2019

1 Problem 1

 \mathbf{a}

let $\varphi_1, \varphi_2, \varphi_3 \in F$

φ_1	φ_2	φ_3	$\varphi_1 \leftrightarrow \varphi_2$	$\varphi_2 \leftrightarrow \varphi_1$	$\varphi_2 \leftrightarrow \varphi_3$	$\varphi_1 \leftrightarrow \varphi_3$					
F	F	F	T	T	T	T					
F	F	Т	Т	Т	F	F					
F	Т	F	F	F	F	Т					
F	Т	Т	F	F	Т	F					
Т	F	F	F	F	Т	F					
Т	F	Т	F	F	F	Т					
Т	Т	F	Т	Т	F	F					
Т	Т	Т	Т	Т	Т	Т					

 $\varphi_1 \equiv \varphi_1$

For all $\varphi_1 \equiv \varphi_2$, there is $\varphi_2 \equiv \varphi_1$

For all $\varphi_1 \equiv \varphi_2 and \varphi_2 \equiv \varphi_3$, there is $\varphi_1 \equiv \varphi_3$

Based on the truth assignment table we can see the relation \equiv is reflexive, symmetric and transive. Hence logical equivalence relation, \equiv , is an equivalence relation on F.

b

- 1. $(\bot \lor \bot)$
- 2. $(\bot \land \top)$
- 3. $(\bot \land \bot)$
- 4. ¬¬⊥

C

Since
$$\varphi \equiv \varphi^{'}, \psi \equiv \psi^{'}$$
, we can get $\varphi \leftrightarrow \varphi^{'} \Rightarrow (\neg \varphi \lor \varphi^{'}) \land (\neg \varphi^{'} \lor \varphi)$ $\psi \leftrightarrow \psi^{'} \Rightarrow (\neg \psi \lor \psi^{'}) \land (\neg \psi^{'} \lor \psi)$

φ	ψ	$\varphi^{'}$	ψ'	$\neg \varphi'$	$\varphi \wedge \psi$	$\varphi' \wedge \psi'$
F	F	F	F	Т	F	F
F	Т	F	Т	Т	F	F
Т	F	Т	F	F	F	F
Т	Т	Т	Т	F	Т	Т

(i)
$$(\neg \varphi \lor \varphi') \land (\neg \varphi' \lor \varphi)$$

$$\Rightarrow (\neg\varphi^{'}\vee\varphi)\wedge(\neg\varphi\vee\varphi^{'})$$

$$\Rightarrow (\varphi \vee \neg \varphi') \wedge (\varphi' \vee \neg \varphi)$$

$$\Rightarrow (\neg \neg \varphi \lor \neg \varphi') \land (\neg \neg \varphi' \lor \neg \varphi)$$

$$\Rightarrow \neg \varphi \leftrightarrow \neg \varphi^{'}$$

$$\Rightarrow \neg \varphi \equiv \neg \varphi'$$

\mathbf{d}

see picture how to form a boolean algebra zero = \bot , one = \top

2 Problem 2

a

let
$$v_0 - > v_5, v_1 - > v_6, v_2 - > v_7, v_3 - > v_8, v_4 - > v_9$$

b

As graph shows.

3 Problem 3

a

vertices stand for the subjects, edges stand for the adjcent vertices are non-conflict.

The graph problem here is to find maximum clique.

b

From the graph we can see that the maximum clique is 2, hence the maximum number of classes he can take is 2.

4 Problem 4

a

From the definition of T(n) we can derive a recurrence equation

Base case:

If it is an empty tree T(0) = 0

If it has only one node then it only has 1 structure T(1) = 0

Recurrence:

For an arbitrary tree with n nodes, the root has a left subtree of i nodes and a right subtree of n-i-1 nodes.

right subtree of n-i-1 nodes. then we can have $\mathrm{T(n)} = \sum_{i=0}^{n-1} T(i) T(n-i-1)$

b

- 1. total = leaves + internals. leaves = internals + 1. Hence total = internals * 2 + 1 which is odd.
- 2. Induction

 \mathbf{c}

$$B(n) = T((n-1)/2)$$

\mathbf{d}

n = leaves

internals = leaves -1 = n-1

$$F(n) = T(n-1) * n! * 2^n * 2^(n-1)$$

5 Problem 5

a

$$p_1(n+1) = \frac{1}{3}p_2(n) + \frac{1}{3}p_4(n)$$

$$p_2(n+1) = \frac{1}{2}p_1(n) + \frac{1}{2}p_3(n) + \frac{1}{3}p_4$$

$$p_3(n+1) = \frac{1}{3}p_2(n) + \frac{1}{3}p_4(n)$$

$$p_4(n+1) = \frac{1}{2}p_1(n) + \frac{1}{2}p_3(n) + \frac{1}{3}p_2$$

b

When
$$p_i(n+1) = p_i(n)$$
 we can get $p_1 = \frac{1}{3}p_2 + \frac{1}{3}p_4$

$$p_2 = \frac{1}{2}p_1 + \frac{1}{2}p_3 + \frac{1}{3}p_4$$

$$p_3 = \frac{1}{3}p_2 + \frac{1}{3}p_4$$

$$p_4 = \frac{1}{2}p_1 + \frac{1}{2}p_3 + \frac{1}{3}p_2$$

$$p_1 + p_2 + p_3 + p_4 = 1$$

Solve the equation

$$p_1 = p_3 = 0.2, p_2 = p_4 = 0.3$$