

WYPEŁNIA ZDAJĄCY		Miejsce na naklejkę.	
KOD	PESEL	Sprawdź, czy kod na naklejce to M-100.	
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.	

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy			
ARKUSZ POKAZOWY	WYPEŁNIA ZESPÓŁ NADZORUJĄCY		
TERMIN: 4 marca 2022 r. Czas pracy: 180 minut Liczba punktów do uzyskania: 46	Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenia zaznaczeń na kartę.		

MMAP-P0-**100**-2203

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 31 stron (zadania 1–30). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Symbol proposition zamieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi.
- 6. Odpowiedzi do zadań zamkniętych zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 7. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 8. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 9. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

Zadanie 1. (0–1) □□□□ /

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $6^{100} + 6^{100} + 6^{100} + 6^{100} + 6^{100} + 6^{100}$ jest równa

- **A.** 6⁶⁰⁰
- **B.** 6^{101}
- **C.** 36^{100}
- **D.** 36⁶⁰⁰

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $\log_7 98 - \log_7 2$ jest równa

- **A.** 7
- **B.** 2
- **C.** 1
- **D.** (-1)

Zadanie 3. (0–1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wszystkich liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym nie występuje cyfra 2, jest

- **A.** 900
- **B.** 729
- **C.** 648
- **D.** 512

Zadanie 4. (0–1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej liczby rzeczywistej a wartość wyrażenia $(3+4a)^2-(3-4a)^2$ jest równa

- **A.** $32a^2$
- **B.** 0

- **C.** 48*a*
- **D.** $8a^2$

Zadanie 5. (0-2)

Dane są dwie przecinające się proste. Miary kątów utworzonych przez te proste zapisano za pomocą wyrażeń algebraicznych (zobacz rysunek).

Dokończ zdanie. Wybierz <u>dwie</u> odpowiedzi, tak aby dla każdej z nich dokończenie poniższego zdania było prawdziwe.

Układem równań, w którym zapisano prawidłowe zależności między miarami kątów utworzonych przez te proste, jest układ

A.
$$\begin{cases} (\alpha + \beta) + \beta = 90^{\circ} \\ \alpha + \beta = 2\alpha - \beta \end{cases}$$

B.
$$\begin{cases} (\alpha + \beta) + \beta = 180^{\circ} \\ \alpha + \beta = 2\alpha - \beta \end{cases}$$

c.
$$\begin{cases} (\alpha + \beta) + \beta = 180^{\circ} \\ \beta = 2\alpha - \beta \end{cases}$$

D.
$$\begin{cases} \alpha + \beta = 90^{\circ} \\ \beta = 2\alpha - \beta \end{cases}$$

E.
$$\begin{cases} \alpha + \beta = 2\alpha - \beta \\ 180^{\circ} - (2\alpha - \beta) = \beta \end{cases}$$

$$\mathbf{F.} \begin{cases} 3\alpha + 2\beta = 360^{\circ} \\ 2\alpha - \beta = 2\beta \end{cases}$$

Zadanie 6. (0–1) **□□□□** Ø

Dany jest wielomian

$$W(x) = 3x^3 + kx^2 - 12x - 7k + 12$$

gdzie k jest pewną liczbą rzeczywistą. Wiadomo, że liczba (-2) jest pierwiastkiem tego wielomianu.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba k jest równa

A. 2

B. 4

C. 6

D. 8

Zadanie 7. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Równanie

$$\frac{(4x-6)(x-2)^2}{2x(x-1,5)(x+6)} = 0$$

ma w zbiorze liczb rzeczywistych

A. dokładnie jedno rozwiązanie: x = 2.

B. dokładnie dwa rozwiązania: x = 1,5, x = 2.

C. dokładnie trzy rozwiązania: x = -6, x = 0, x = 2.

D. dokładnie cztery rozwiązania: x = -6, x = 0, x = 1.5, x = 2.

Spośród rysunków A–D wybierz ten, na którym prawidłowo zaznaczono na osi liczbowej zbiór wszystkich liczb rzeczywistych spełniających nierówność:

$$|x+1| \leq 2$$

D.
$$-6 -5 -4 -3 -2 -1 0 1 2 3 4 x$$

Zadanie 9. (0-2)

Wykaż, że dla każdej liczby całkowitej nieparzystej $\,n\,$ liczba $\,n^2+2023\,$ jest podzielna przez 8.

Wypełnia egzaminator	Nr zadania	9.
	Maks. liczba pkt	2
	Uzyskana liczba pkt	

Zadanie 10.

Dana jest funkcja kwadratowa f, której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych (x,y) na rysunku obok. Wierzchołek paraboli, która jest wykresem funkcji f, oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.

Zadanie 10.1. (0-1)

Funkcja g jest określona za pomocą funkcji f następująco: g(x) = f(x-2).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wykres funkcji *g* przedstawiono na rysunku

A.

В.

C.

D.

Zadanie 10.2. (0-1)

Wyznacz i zapisz w miejscu wykropkowanym poniżej zbiór wszystkich rozwiązań nierówności:

$$f(x) \leq 0$$

Zadanie 10.3. (0-3)

Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej. Zapisz obliczenia.

Wypełnia egzaminator	Nr zadania	10.2.	10.3.
	Maks. liczba pkt	1	3
	Uzyskana liczba pkt		

Zadanie 11. (0–1)

Dana jest funkcja liniowa f określona wzorem f(x) = ax + b, gdzie a i b są liczbami rzeczywistymi. Wykres funkcji f przedstawiono w kartezjańskim układzie współrzędnych (x,y) na rysunku obok.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Współczynniki a i b we wzorze funkcji f spełniają warunki

A.
$$a > 0$$
 i $b > 0$.

B.
$$a > 0$$
 i $b < 0$.

C.
$$a < 0$$
 i $b > 0$.

D.
$$a < 0$$
 i $b < 0$.

Firma przeprowadziła badania rynkowe dotyczące wpływu zmiany ceny P swojego produktu na liczbę Q kupujących ten produkt. Z badań wynika, że każdorazowe zwiększenie ceny o 1 jednostkę powoduje spadek liczby kupujących o 3 jednostki. Ponadto przy cenie równej 5 jednostek liczba kupujących jest równa 12 jednostek.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Funkcja, która opisuje zależność liczby kupujących ten produkt od jego ceny, ma wzór

A.
$$Q = -0.9P^2 + 6.9$$

B.
$$Q = -3P + 27$$

C.
$$P = -0.9Q^2 + 6.9$$

D.
$$P = -3Q + 27$$

Zadanie 13.

Czas T półtrwania leku w organizmie to czas, po którym masa leku w organizmie zmniejsza się o połowę – po przyjęciu jednorazowej dawki.

Przyjmij, że po przyjęciu jednej dawki masa $\,m\,$ leku w organizmie zmienia się w czasie zgodnie z zależnością wykładniczą

$$m(t) = m_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}}$$

gdzie:

 m_0 – masa przyjętej dawki leku

T - czas półtrwania leku

t − czas liczony od momentu przyjęcia dawki.

W przypadku przyjęcia kilku(nastu) dawek powyższa zależność pozwala obliczyć, ile leku pozostało w danym momencie w organizmie z każdej poprzednio przyjętej dawki. W ten sposób obliczone masy leku z przyjętych poprzednich dawek sumują się i dają informację o całkowitej aktualnej masie leku w organizmie.

Pacjent otrzymuje co 4 dni o tej samej godzinie dawkę $m_0=100\,$ mg leku $\,$ L. Czas półtrwania tego leku w organizmie jest równy $\,$ $\,$ $\,$ $\,$ $\,$ 4 doby.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wykres zależności masy M leku L w organizmie tego pacjenta od czasu t, liczonego od momentu przyjęcia przez pacjenta pierwszej dawki, przedstawiono na rysunku

Zadanie 13.2. (0–3) Oblicz masę leku $\, {
m L} \,$ w organizmie tego pacjenta tuż przed przyjęciem jedenastej dawki tego leku. Wynik podaj w zaokrągleniu do $\, 0,1\,$ mg. Zapisz obliczenia.

Zadanie 14. (0–1)

Klient wpłacił do banku 20 000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 3% od kwoty bieżącego kapitału znajdującego się na lokacie.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Po 2 latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa

A. $20\ 000 \cdot (1,12)^2$ **B.** $20\ 000 \cdot 2 \cdot 1,03$ **C.** $20\ 000 \cdot 1,06$

D. $20\ 000 \cdot (1,03)^2$

Zadanie 15. (0-1)

Dany jest ciąg (a_n) określony wzorem $a_n = -3n + 5$ dla każdej liczby naturalnej $n \ge 1$.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Liczby $2, (-1), (-4)$ są trzema kolejnymi początkowymi wyrazami ciągu (a_n) .	Р	F
(a_n) jest ciągiem arytmetycznym o różnicy równej $ 5. $	Р	F

	Nr zadania	13.2.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 16. (0-1)

Dany jest trójkąt ABC, w którym |AB| = 6, |BC| = 5, |AC| = 10.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F - jeśli jest fałszywe.

Cosinus kąta ABC jest równy $(-0,65)$.	P	F
Trójkąt ABC jest rozwartokątny.	Р	F

Zadanie 17. (0–1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dany jest okrąg o środku S = (2, -5) i promieniu r = 3.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Równanie tego okręgu ma postać

A.
$$(x-2)^2 + (y+5)^2 = 9$$
 B. $(x+2)^2 + (y-5)^2 = 3$

B.
$$(x+2)^2 + (y-5)^2 = 3$$

C.
$$(x-2)^2 + (y+5)^2 = 3$$

D.
$$(x+2)^2 + (y-3)^2 = 9$$

Zadanie 18. (0-1)

Odcinki AD i BC przecinają się w punkcie O. W trójkątach ABO i ODC zachodzą związki: |AO|=5, |BO|=3, |OC|=10, $|\angle OAB|=|\angle OCD|$ (zobacz rysunek).

Oblicz długość boku *OD* trójkąta *ODC*. Zapisz obliczenia.

Wypełnia egzaminator	Nr zadania	18.
	Maks. liczba pkt	1
	Uzyskana liczba pkt	

Zadanie 19. (0-2)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dana jest prosta ko równaniu y = -3x + 1.

Dokończ zdania. Wybierz odpowiedź spośród A-D oraz odpowiedź spośród E-H.

19.1. Jedną z prostych równoległych do prostej k jest prosta o równaniu

A.
$$y = 3x + 2$$

B.
$$y = -3x + 2$$

C.
$$y = \frac{1}{3}x + 1$$

A.
$$y = 3x + 2$$
 B. $y = -3x + 2$ **C.** $y = \frac{1}{3}x + 1$ **D.** $y = -\frac{1}{3}x + 1$

19.2. Jedną z prostych prostopadłych do prostej k jest prosta o równaniu

E.
$$y = \frac{1}{3}x + 2$$

E.
$$y = \frac{1}{3}x + 2$$
 F. $y = -\frac{1}{3}x + 2$ **G.** $y = 3x + 1$ **H.** $y = -3x + 1$

G.
$$y = 3x + 1$$

H.
$$y = -3x + 1$$

Zadanie 20. (0-1)

W kartezjańskim układzie współrzędnych (x, y) dany jest kwadrat ABCD. Wierzchołki A = (-2,1) i C = (4,5) są końcami przekątnej tego kwadratu.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość przekątnej kwadratu ABCD jest równa

B.
$$2\sqrt{13}$$

B.
$$2\sqrt{13}$$
 C. $2\sqrt{10}$

Zadanie 21. (0–1)

Odcinek AB jest średnicą okręgu o środku w punkcie O i promieniu

r=8 (zobacz rysunek). Cięciwa AC ma długość $8\sqrt{3}$.

Dokończ zdanie.

Wybierz właściwą odpowiedź spośród podanych.

Miara kąta BAC jest równa

Zadanie 22. (0-1)

Kąt α jest ostry oraz $4 \operatorname{tg} \alpha = 3 \sin^2 \alpha + 3 \cos^2 \alpha$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Tangens kata α jest równy

- **A.** $\frac{3}{4}$

D. 4

Zadanie 23. (0–1)

Dane są dwa trójkąty podobne ABC i KLM o polach równych – odpowiednio – P oraz 2P. Obwód trójkąta ABC jest równy x.

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A albo B oraz jej uzasadnienie 1., 2. albo 3.

Obwód trójkąta *KLM* jest równy

A.	$\sqrt{2} \cdot x$, popioważ stosupok	1.	kwadratowi stosunku pól tych trójkątów.	
		ponieważ stosunek obwodów trójkątów	2.	pierwiastkowi kwadratowemu ze stosunku pól tych trójkątów.
B.	podobnych jest równy $-2x$,	3.	stosunkowi pól tych trójkątów.	

Zadanie 24. (0-1)

Punkty A oraz B leżą na okręgu o środku O. Proste k i l są styczne do tego okręgu w punktach – odpowiednio – A i B. Te proste przecinają się w punkcie S i tworzą kąt o mierze 76° (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Miara kąta *OBA* jest równa

- **A.** 52°
- **B.** 26° **C.** 14° **D.** 38°

Zadanie 25. (0-1)

Powierzchnię boczną graniastosłupa prawidłowego czworokątnego rozcięto wzdłuż krawędzi bocznej graniastosłupa i rozłożono na płaszczyźnie. Otrzymano w ten sposób prostokąt ABCD, w którym bok BC odpowiada krawędzi rozcięcia (wysokości graniastosłupa). Przekątna AC tego prostokąta ma długość 16 i tworzy z bokiem BC kąt o mierze 30° (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość krawędzi podstawy tego graniastosłupa jest równa

- **A.** 8
- **B.** $8\sqrt{3}$
- **C.** $2\sqrt{3}$
- **D.** 2

Zadanie 26. (0-1)

Dany jest ostrosłup prawidłowy trójkątny ABCS o podstawie ABC. Punkty D, E i F są środkami – odpowiednio – krawędzi bocznych AS, BS i CS (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Stosunek objętości ostrosłupa DEFS do objętości ostrosłupa ABCS jest równy

- **A.** 3:4
- **B.** 1:4 **C.** 1:8 **D.** 3:8

Zadanie 27. (0-1)

Dany jest graniastosłup prawidłowy trójkątny *ABCDEF* (zobacz rysunek obok).

Na którym z rysunków prawidłowo narysowano, oznaczono i podpisano kąt α pomiędzy ścianą boczną ACFD i przekątną AE ściany bocznej ABED tego graniastosłupa? Wybierz właściwą odpowiedź spośród podanych.

A. $\alpha = \angle EAG$

B.
$$\alpha = 4EAD$$

C. $\alpha = \angle EAF$

D.
$$\alpha = \angle EAC$$

Zadanie 28. (0-3)

W pojemniku znajdują się losy loterii fantowej ponumerowane kolejnymi liczbami naturalnymi od 1000 do 9999. Każdy los, którego numer jest liczbą o sumie cyfr równej 3, jest wygrywający. Uczestnicy loterii losują z pojemnika po jednym losie.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że pierwszy los wyciągnięty z pojemnika był wygrywający. Zapisz obliczenia.

Wypełnia egzaminator	Nr zadania	28.
	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 29. (0-4)

Rozważamy wszystkie równoległoboki o obwodzie równym 200 i kącie ostrym o mierze 30°.

Podaj wzór i dziedzinę funkcji opisującej zależność pola takiego równoległoboku od długości x boku równoległoboku.

Oblicz wymiary tego z rozważanych równoległoboków, który ma największe pole, i oblicz to największe pole.

Zapisz obliczenia.

Wypełnia egzaminator	Nr zadania	29.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 30.

W pewnej grupie 100 uczniów przeprowadzono sondaż dotyczący dziennego czasu korzystania z komputera. Wyniki sondażu przedstawia poniższy diagram. Na osi poziomej podano – wyrażony w godzinach – dzienny czas korzystania przez ucznia z komputera. Na osi pionowej przedstawiono liczbę uczniów, którzy dziennie korzystają z komputera przez określony czas.

Dzienny czas korzystania z komputera (w godzinach)

Zadanie 30.1. (0-1)

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Mediana dziennego czasu korzystania przez ucznia z komputera jest równa 2,25 godziny.	Р	F
Połowa z tej grupy uczniów korzysta dziennie z komputera przez mniej niż 2,5 godziny.	Р	F

Zadanie 30.2. (0–1) **□ □ □**

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dominanta dziennego czasu korzystania przez ucznia z komputera jest równa

- **A.** 2,25 godziny.
- **B.** 2,50 godziny. **C.** 2,75 godziny.
- **D.** 1,50 godziny.

BRUDNOPIS (nie podlega ocenie)

