МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛЕХНІКА"

Інститут комп'ютерних наук та інформаційних технологій Кафедра систем штучного інтелекту

Лабораторна робота №1

3 дисципліни

«Дискретна математика»

Виконав:

Студент групи КН-113

Пантьо Ростислав

Викладач:

Мельникова Н.І.

Тема:

«Моделювання основних логічних операцій»

Мета:

Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинності значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведення.

Варіант №7

Додаток №1

Завдання 1

1. Формалізувати речення:

Багато непорозумінь між урядами України та Польщі, але ні Україна, ні Польща не втратили економічної співпраці.

Розв'язання:

Нехай:

х- Україна

у- Польща

Р- багато непорозумінь

Q- втратити економічну співпрацю

Отже рівняння набуває такого вигляду:

$$P(x,y) \land \neg Q(x,y)$$

2. Побудувати таблицю істинності для висловлювань:

$$((\bar{x} \leftrightarrow \bar{y}) \leftrightarrow ((z \rightarrow (x \lor y)) \rightarrow \bar{z}));$$

Розв'язання:

Нехай:

$$1\text{-}(\bar{x} \leftrightarrow \bar{y})$$

$$2$$
- $(x \lor y)$

$$3-(z \to (x \lor y))$$

$$4-((z \to (x \lor y)) \to \bar{z})$$

$$5-(\bar{x} \leftrightarrow \bar{y}) \leftrightarrow ((z \rightarrow (x \lor y)) \rightarrow \bar{z}))$$

X	y	Z	\overline{x}	\overline{y}	$\overline{oldsymbol{z}}$	1	2	3	4	5
0	0	0	1	1	1	1	0	1	1	1
0	0	1	1	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1	1	1	0
1	0	0	0	1	1	0	1	1	1	0
0	1	1	1	0	0	0	1	1	0	1
1	0	1	0	1	0	0	1	1	0	1
1	1	0	0	0	1	1	1	1	1	1
1	1	1	0	0	0	1	1	1	0	0

3. Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологією або протиріччям:

$$(\overline{(p \vee q)} \wedge \overline{(q \wedge r)}) \rightarrow (p \vee r);$$

Розв'язання:

Нехай:

$$1 - \overline{(p \lor q)}$$

$$2-\overline{(q \wedge r)}$$

$$3 \text{-} \overline{(p \vee q)} \wedge \overline{(q \wedge r)}$$

$$4$$
- $(p \lor r)$

$$5\text{-}(\overline{(p\vee q)}\wedge\overline{(q\wedge r)})\rightarrow (p\vee r)$$

р	q	r	1	2	3	4	5
0	0	0	1	1	1	0	0
0	0	1	1	1	1	1	1
0	1	0	0	1	0	0	1
1	0	0	0	1	0	1	1
0	1	1	0	0	0	1	1
1	0	1	0	1	0	1	1
1	1	0	0	1	0	1	1
1	1	1	0	0	0	1	1

Висловлювання не ϵ ні тавтологією, ні протиріччям.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологі ϵ ю висловлювання:

$$((p \to q) \land (p \to q)) \to (\bar{p} \to q);$$

Розв'язання:

Висловлювання не є тавтологією, якщо хоча б у одному з випадків воно буде хибним. Для цього $((p \to q) \land (p \to q))$ має дорівнювати 1, а $(\bar{p} \to q) - 0$.

$$((p \to q) \land (p \to q)) \to (\bar{p} \to q);$$

Так як, $(\bar{p} \rightarrow q)=0$ то $\bar{p}=1$ а q=0 отже:

$$\int_{q=0}^{p=0}$$

Отже
$$(p \to q)$$
=1.3 цього слідує, що $(p \to q) \land (p \to q)$ =1.

Оскільки існує інтерпретація коли висловлювання набуває 0, тому це висловлювання не ϵ тавтологією.

5. Довести що формули еквівалентні:

$$p \leftrightarrow (q \lor r) \text{ та } p \land (q \rightarrow r)$$

Розв'язання:

p	q	r	$(q \lor r)$	$p \leftrightarrow (q \lor r)$	$(q \rightarrow r)$	$p \wedge (q \rightarrow r)$	$p \leftrightarrow (q \lor r) \leftrightarrow p \land (q \rightarrow r)$
0	0	0	0	1	1	0	0
0	0	1	1	0	1	0	1
0	1	0	1	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	0	1	1	0
1	0	1	1	1	1	1	1
1	1	0	1	1	0	0	0
1	1	1	1	1	1	1	1

Додаток №2

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях, для наступних формул:

7.
$$((\bar{x} \leftrightarrow \bar{y}) \leftrightarrow ((z \rightarrow (x \lor y)) \rightarrow \bar{z}));$$

Розв'язання:

elem1=
$$(\bar{x} \leftrightarrow \bar{y})$$

elem2= $(x \lor y)$
elem3= $(z \to (x \lor y))$
elem4= $((z \to (x \lor y)) \to \bar{z})$

```
□ {
8
          setlocale(LC_ALL, "Ukrainian");
9
          bool elem1, elem2, elem3, elem4;
10
          int x, y, z; //визначення змінні x,y,z
          cout << "x= ";
11
12
          cin >> x;//gyutatu gminhy x
13
          while ((x != 0) \&\& (x != 1)) {
14
              cout << "Значення змінної неможливо. Введіть знову."<<endl;
15
              cout << "x= ";
16
              cin >> x;
17
          cout << "y= ";
18
          cin >> y;//днитати дмінну у
19
20
          while (y != 0 && y != 1)
21
22
              cout << "Значення змінної неможливо. Введіть знову." << endl;
23
              cout <<"v = ";
24
              cin >> y;
25
          cout << "z= ":
26
27
          cin >> z;//gwutatu gminhy z
28
          while (z != 0 && z != 1)
29
30
              cout << "Значення змінної неможливо. Введіть знову."<<endl;
31
              cout << "z= ";
32
              cin >> z;
33
          if (!x == !y) eleml = 1;//дерший едемент True або False
34
35
           else elem1 = 0;
          if (x == 1 || y == 1) elem2 = 1;//другий едемент True або False
36
37
          else elem2 = 0;
38
          if (z == 1 && elem2 == 0) elem3 = 0;//mpenim anamana True and False
39
          else elem3 = 1;
          if (elem3 == 1 && !z == 0) elem4 = 0;//четвертий елемент True або False
40
41
          else elem4 = 1;
          cout << "Result: ";
42
          if (eleml == elem4) cout << "True";//дарадьне рівняння True чи False
43
          else cout << "False";
44
```

Результати

Висновки:

Ми знайомились на практиці із основними поняттями математичної логіки, навчились будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїли методи доведень.