Modelli di Programmazione Lineare Intera

Variabili binarie per il soddisfacimento di vincoli

Riepilogo

• Date due variabili $x_1 \in \{0,1\}$ e $x_2 \in \{0,1\}$ relative a due proposizioni logiche A e B possiamo modellare

$$A \Rightarrow B$$

attraverso il vincolo

$$x_1 \leq x_2$$

• Data una variabile continua $x \ge 0$ e una variabile binaria $\delta \in \{0,1\}$ possiamo modellare

$$x > 0 \quad \Rightarrow \quad \delta = 1$$

attraverso il vincolo

$$x - M\delta < 0$$

Più in generale

• Dato un vincolo $\Phi(x) \ge 0$ e una variabile binaria $\delta \in \{0,1\}$ possiamo modellare

$$\Phi(x) > 0 \quad \Rightarrow \quad \delta = 1$$

attraverso il vincolo

$$\Phi(x) - M\delta \leq 0$$

soddisfacimento dei vincoli

Supponiamo di voler modellare l'implicazione

$$\Phi(x) > \alpha \quad \Rightarrow \quad \delta = 1 \tag{1}$$

Supponiamo che esista M>0 tale che $\Phi(x)\leq M$ è un vincolo ridondante per il modello

Vogliamo quindi modellare le seguenti implicazioni

$$\delta = 0 \Rightarrow \Phi(x) \leq \alpha$$

$$\delta = 1 \Rightarrow \Phi(x) \leq M$$

Quindi, il vincolo che può modellare (1) è

$$\Phi(x) \le M + (\alpha - M)(1 - \delta)$$

soddisfacimento dei vincoli

Supponiamo di voler modellare l'implicazione

$$\delta = 1 \quad \Rightarrow \quad \Phi(x) > \alpha \tag{2}$$

Inserire nel modello disuguaglianze strette è problematico perché:

- potrebbero portare a definire insiemi ammissibili non chiusi
- numericamente può essere difficile capire se due quantità sono distinte se la loro differenza è estremamente piccola

Al posto della (2) consideriamo

$$\delta = 1 \quad \Rightarrow \quad \Phi(x) \ge \alpha + \epsilon$$

soddisfacimento dei vincoli - Caso 2

Supponiamo che esista $m>0,\ m\leq\alpha$ tale che $\Phi(x)\geq m$ è un vincolo ridondante per il modello

Vogliamo quindi modellare le seguenti implicazioni

$$\delta = 1 \Rightarrow \Phi(x) \ge \alpha + \epsilon$$

$$\delta = 0 \Rightarrow \Phi(x) \geq m$$

Quindi, il vincolo che può modellare (2) è

$$\Phi(x) \ge m + (\alpha + \epsilon - m)\delta$$

Esempio

Introdurre una variabile $\delta \in \{0,1\}$ per indicare soddisfacimento del vincolo

$$5x_1+3x_2\leq 2$$

sapendo che x_1 e x_2 sono variabili continue tali che

$$0 \le x_1 \le 2$$
 $0 \le x_2 \le 2$

	\ \ \ \	010	(Se		5	X,	+ 3	ЗХ	2	<u>८</u>	2		< =	= >		-) <u>e</u>	£ 0										
Ų	00	lio			WC	de	lar	2													X		=	5 X,	+	3 χ	ર						
														۷						α	= (
i	i)		5	Χı	+	3	Χz			2		├ >		δ	=	1																	
)	9	<u> </u>	X)	۷	1 ^	-	+	(,	<u> </u>	- /^	ι)	S			(Ca	<u> </u>	as N	l Mr	mo to	ር የ	Mo fa	V	aro D	le (x])							
																0		5)			X	2.	دِ	16		Ą	Χ,	, X	. ∈	J .	2ر0	.J	
ii)])(x)	1	M	+		(d	+	۔ ع	- M)((1	- 0	r)			0	ΩÓ				1										
																		m poi	che	0		alo:		•									
																ŧ											da	(Þζ	×)	е,	` (ο.