PEDRAM ROSTAMI

DISTRIBUTED MACHINE LEARNING SYSTEMS EFFICIENCY

TABLE OF CONTENTS

01 Introduction 02 Systems 03 Comparison Conclusion 05 References

LARGE SCALE MODELS ARE BETTER

Gpipe: Efficient training of giant neural networks using pipeline parallelism

LARGE SCALE MODELS 2012 VS 2022

Distbeleif (2012)

- I.7B parameters
- Trained on tens of thousands CPU cores

BLOOM (2022)

- 176B parameters
- Trained on 384 A100 80GB GPU (48 nodes)
- GPU memory: 640GB per node
- CPU memory: 512GB per node

ONLY BIG TECH COMPANIES

GPIPE

GPIPE

NVIDIA GPUs (8GB each)	Naive-1	Pipeline-1	Pipeline-2	Pipeline-4	Pipeline-8
AmoebaNet-D (L, D)	(18, 208)	(18, 416)	(18, 544)	(36, 544)	(72, 512)
# of Model Parameters	82M	318M	542M	1.05B	1.8B
Total Model Parameter Memory	1.05GB	3.8GB	6.45GB	12.53GB	24.62GB
Peak Activation Memory	6.26GB	3.46GB	8.11GB	15.21GB	26.24GB
Cloud TPUv3 (16GB each)	Naive-1	Pipeline-1	Pipeline-8	Pipeline-32	Pipeline-128
Transformer-L	3	13	103	415	1663
# of Model Parameters	282.2M	785.8M	5.3B	21.0B	83.9B
Total Model Parameter Memory	11.7G	8.8G	59.5G	235.1G	937.9G
Peak Activation Memory	3.15G	6.4G	50.9G	199.9G	796.1G

TPU	AmoebaNet			Transformer		
K =	2	4	8	2	4	8
M=1	1	1.13	1.38	1	1.07	1.3
M = 4	1.07	1.26	1.72	1.7	3.2	4.8
M = 32	1.21	1.84	3.48	1.8	3.4	6.3

MEGATRON-LM

(b) Self-Attention

7/15

MEGATRON-LM

- Training GPT-2 models
- All GPUs are V100 32GB
- 64-way data parallelism

		Number	Number	Model	Model
Hidden	Attention	of	of	parallel	+data
Size	heads	layers	parameters	GPUs	parallel
			(billions)		GPUs
1536	16	40	1.2	1	64
1920	20	54	2.5	2	128
2304	24	64	4.2	4	256
3072	32	72	8.3	8	512

DEEPSPEED (ZERO)

ZeRO-DP

- Optimizer State partitioning
- Gradient partitioning
- Parameter partitioning

ZeRO-R

- Optimize activation memory
- Reduce temporary buffers
- Memory management for preventing memory fragmentation

DEEPSPEED (ZERO)

DEEPSPEED (ZERO)

$_{ m MP}$	GPUs	Max	Theoretic	cal Mode	Measured Model Size		
	Baseline	P_{os}	P_{os+g}	P_{os+g+p}	Baseline	$ZeRO$ -DP (P_{os})	
1	64	2B	7.6B	14.4B	128B	1.3B	6.2B
2	128	4B	15.2B	28.8B	256B	2.5B	12.5B
4	256	8B	30.4B	57.6B	0.5T	5B	25B
8	512	16B	60.8B	115.2B	1T	10B	50B
16	1024	32B	121.6B	230.4B	2T	20B	100B

OTHERS

COMPARISON

	Released Year	Released Co.	Platform	Community
Gpipe	2019	Google	Tensorflow	Inactive
Megatron-LM	2019	Nvidia	PyTorch	Large
DeepSpeed	2020	Microsoft	PyTorch	Large and Active
fairScale	2022	Meta (Facebook AI)	PyTorch	Small
Accelerate	2022	Hugging Face	Transformers	Small

CONCLUSION

Introduction

Large Scale Models

Large Scale DMLSs

Systems

GPipe

Megatron-LM

DeepSpeed

Others

Comparison

Compared Systems

REFERENCES

- Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc'aurelio Ranzato et al.
 "Large scale distributed deep networks." Advances in neural information processing systems 25 (2012).
- Huang, Yanping, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Yonghui Wu. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).
- Shoeybi, Mohammad, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
 "Megatron-Im: Training multi-billion parameter language models using model parallelism." arXiv preprint arXiv:1909.08053 (2019).
- Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. "Zero: Memory optimizations toward training trillion parameter models." In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.
- https://github.com/facebookresearch/fairscale
- https://huggingface.co/docs/accelerate

Thanks for your attention and time!