Numerical Solver Method

Jeffrey Rutledge

The function titled CrankNicolson is the solver method intended for use, and explained here. The other functions use different schemes.

Problem

The PDE this solver numerically approximates is,

$$\frac{\partial c_g}{\partial t} = D_e \frac{\partial^2 c_g}{\partial z^2} - V_e \frac{\partial c_g}{\partial z} - \lambda c_g$$

where c_g is the concentration of the tracer in the gas phase, z is the depth under the surface, D_e is the effective diffusion constant, V_e is the effective velocity, λ is the decay constant, and t is time. The boundary at the surface, $c_g(t, z = 0)$, is the measured atmospheric concentration of the tracer gas. The initial boundary, $c_g(t = 0, z)$, and the boundary at the max depth of 200 meters, $c_g(t, z = 200)$, are both assumed to be zero.

Solution

The PDE is approximated using a scheme similar to the Crank Nicolson method, an implicit finite difference scheme. Let u_j^m be the approximation of $c_g(t,z)$ at $t=m\Delta t$ and $z=j\Delta z$. The partial with respect to time is approximated using the forward difference approximation,

$$\frac{\partial c_g}{\partial t} \approx \frac{u_j^{m+1} - u_j^m}{\Delta t},$$

The partials with respect to depth are approximated using central differences averaged between the (m+1)th time step and the mth time step,

$$\frac{\partial^2 c_g}{\partial z^2} \approx \frac{1}{2} \left(\frac{u_{j+1}^{m+1} - 2u_j^{m+1} + u_{j-1}^{m+1}}{\Delta x^2} + \frac{u_{j+1}^m - 2u_j^m + u_{j-1}^m}{\Delta x^2} \right),$$

and

$$\frac{\partial c_g}{\partial z} \approx \frac{1}{2} \left(\frac{u_{j+1}^{m+1} - u_{j-1}^{m+1}}{2\Delta x} + \frac{u_{j+1}^m - u_{j-1}^m}{2\Delta x} \right).$$

The decay term is approximated with an average between the concentrations at the (m+1)th time step and the mth time step,

$$c_g \approx \frac{1}{2} \left(u_j^{m+1} + u_j^m \right).$$

When substituted into the original equation these approximations yield the equation,

$$\frac{u_j^{m+1} - u_j^m}{\Delta t} = \frac{1}{2} \left(D_e \frac{u_{j+1}^{m+1} - 2u_j^{m+1} + u_{j-1}^{m+1} + u_{j+1}^m - 2u_j^m + u_{j-1}^m}{\Delta x^2} - V_e \frac{u_{j+1}^{m+1} - u_{j-1}^{m+1} + u_{j+1}^m - u_{j-1}^m}{2\Delta x} - \lambda (u_j^{m+1} + u_j^m) \right).$$

This can be and rearranged into the equation,

$$(-2D_{e} - V_{e}\Delta x)u_{j-1}^{m+1} + \left(4\frac{\Delta x^{2}}{\Delta t} + 4D_{e} + \lambda\right)u_{j}^{m+1} + (-2D_{e} + V_{e}\Delta x)u_{j+1}^{m+1} =$$

$$(2D_{e} + V_{e}\Delta x)u_{j-1}^{m} + \left(4\frac{\Delta x^{2}}{\Delta t} - 4D_{e} - \lambda\right)u_{j}^{m} + (2D_{e} - V_{e}\Delta x)u_{j+1}^{m}.$$

$$(1)$$

This gives a system of equations that may be solved using a tridiagonal matrix.

Accuracy

The depth approximations are both central differences, which are second order, so their error is $O(\Delta x^2)$. The time approximation is a forward difference which is only first order, but because the depth approximations are averaged over the (m+1)th and the mth time steps the error in time is $O(\Delta t^2)$. Thus the approximation is second order in the time and depth steps.

Stability

To use von Neumann stability we will make the substitution,

$$u_j^m = Q^m e^{ij\Delta xk},$$

where Q^m is the magnitude at the mth time step, k is frequency, and i is $\sqrt{-1}$.

Substituting this into the equation (1),

$$(-2D_e - V_e \Delta x)Q^{m+1}e^{i(j-1)k} + \left(4\frac{\Delta x^2}{\Delta t} + 4D_e + \lambda\right)Q^{m+1}e^{ijk} + (-2D_e + V_e \Delta x)Q^{m+1}e^{i(j+1)k} = (2D_e + V_e \Delta x)Q^m e^{i(j-1)k} + \left(4\frac{\Delta x^2}{\Delta t} - 4D_e - \lambda\right)Q^m e^{ijk} + (2D_e - V_e \Delta x)Q^m e^{i(j+1)k}.$$

This can be simplified into,

$$Q^{m+1} = Q^m a,$$

where a is the amplification factor,

$$a = \frac{(2D_e + V_e \Delta x)e^{-i\Delta xk} + (2D_e - V_e \Delta x)e^{i\Delta xk} + 4\frac{\Delta x^2}{\Delta t} - 4D_e - \lambda}{(-2D_e - V_e \Delta x)e^{-i\Delta xk} + (-2D_e + V_e \Delta x)e^{i\Delta xk} + 4\frac{\Delta x^2}{\Delta t} + 4D_e + \lambda}.$$

Now we can reduce this further using Euler's formula to,

$$a = \frac{4D_e \cos \Delta x k - i2V_e \Delta x \sin \Delta x k + 4\frac{\Delta x^2}{\Delta t} - 4D_e - \lambda}{-4D_e \cos \Delta x k + i2V_e \Delta x \sin \Delta x k + 4\frac{\Delta x^2}{\Delta t} + 4D_e + \lambda}$$

and finally to,

$$a = \frac{1 - \lambda \frac{\Delta t}{\Delta x^2} - D_e \frac{\Delta t}{\Delta x^2} (1 - \cos \Delta x k)}{1 + \lambda \frac{\Delta t}{\Delta x^2} + D_e \frac{\Delta t}{\Delta x^2} (1 - \cos \Delta x k)} - i.$$

Since the imaginary term is always -1 for the magnitude of a to be less than 1 the real part must be zero. This is not possible, so von Neumann Stability Analysis says the method is always unstable.