Universidade Estadual de Maringá Departamento de Estatística Trabalho de Conclusão de Curso

Avaliação de métodos não paramétricos para predição em modelos aditivos

Orientador(a): Prof^o Dr^o George Lucas Moraes Pezzott

Aluno(a): Marco Aurelio Valles Leal

RA: 103159

Maringá, 9 de maio de 2022

Conteúdo

Introdução

Objetivos

Metodologia

Resultados e Discussão

Aplicações

Introdução

A análise de regressão tem como objetivo descrever a relação entre uma variável resposta de interesse (y) e um conjunto de p variáveis preditoras. A variável resposta está relacionada às coariáveis na seguinte relação linear:

$$y = \beta_0 + \sum_{j=1}^{p} \beta_j x_j + \varepsilon \tag{1}$$

- Os modelos de regressão linear múltipla são vistos como modelos empíricos ou funções aproximadas;
- A relação existente entre a variável resposta e cada uma das covariáveis pode não ser linear;
- Os modelos aditivos são um caso particular de uma classe mais geral denominada modelos aditivos generalizados (HASTIE & TIBSHIRANI, 1990), definido por,

$$y = \alpha + \sum_{j=1}^{p} f_j(x_j) + \varepsilon \tag{2}$$

- ▶ Observa-se que um modelo de regressão linear múltiplo é obtido adotando $f_j(x_j) = \beta_j x_j$;
- ightharpoonup As funções f_j devem ser estimadas por meio de suavizadores, que estimam uma tendênica menos variável e descreve sua dependência em relação à variável resposta.

Objetivos

- ▶ O objetivo deste trabalho é estudar algumas das principais técnicas de estimação do modelo aditivo no contexto não paramétrico.
- Em particular, serão abordados os suavizadores *Kernel*, *Loes* e *Splines* de regressão considerando apenas uma covariável, e seus desempenhos serão comparados com foco principal na predição.
 - Apresentar algumas das principais técnicas de suavização da literatura para estimar funções não paramétricas presentes nos modelos aditivos, identificando suas principais características;
 - ▶ Introduzir uma métrica para estimar o parâmetro de suavização de cada técnica;
 - ▶ Adotar uma métrica para estimar avaliar a qualidade de estimação e predição;
 - Realizar um estudo de simulação para comparar a qualidade do ajuste e predição dos modelos em alguns cenários, tendo em vista os modelos aditivos;
 - Aplicar a metodologia estudada a um conjunto de dados reais, comparando modelos e técnicas de estimação e predição.

Metodologia - Suavizadores

Considerar-se-á para o estudo da relação entre uma variável resposta (y) e uma variável explicativa (x) a partir de um modelo aditivo (HASTIE & TIBSHIRANI, 1990) da seguinte forma,

$$y = \alpha + f(x) + \varepsilon \tag{3}$$

- A função f(x) do componente sistemático pode ser estimada a partir de um suavizador (smoother).
- ightharpoonup Um suavizador pode ser definido como uma ferramenta para resumo da tendência das medidas y como função de uma (ou mais medidas) x.
- ► Chama-se a estimativa produzida por um suavizador de "smooth". No caso de uma variável preditora é chamado de suavizador em diagrama de dispersão.
- Os suavizadores possuem dois usos principais:
 - Descrição;
 - Estimação.

Metodologia - Suavizadores

- suavizador mais simples é o caso dos preditores categóricos;
- ightharpoonup Para suavizar y podemos simplesmente realizar a médias de seus valores cada categoria.
- ightharpoonup Este processo captura a tendência de y em x.

Colocar uma figura exemplificando o suavizador categórico

- Esta média é feita nas vizinhanças em torno do valor alvo. Nesse caso, têm-se duas decisões a serem tomadas:
- O quão grande a vizinhança deve ser;
- Como realizar a média dos valores da resposta y em cada vizinhança.
- O tamanho da vizinhança a ser tomada é, normalmente, expressa em forma de um parâmetro (parâmetro suavizador).
- A questão de como realizar a média em uma vizinhança é a questão de qual tipo de suavizador utilizar;

Metodologia - Suavizadores

- O suavizador *bin*;
- ► A média móvel (running mean);
- ► Linha Móvel;

Metodologia - Suavizador Loess

- ► Também chamado de *Lowess*, essa técnica pode ser vista como uma linha móvel com pesos locais;
- \triangleright Os k vizinhos próximos de x_i são identificados e denotados por N_{x_0} ;
- ▶ É computada a distância do vizinho-próximo mais distante de $x_0, \Delta(x_0) = \max_{x \in N_{x_0}} |x_0 x|;$
- lacktriangle Os pesos w_i são designados para cada ponto em N_{x_0} , usando a função de peso tri-cúbica:

$$w_i = W\left(\frac{|x_0 - x_i|}{\Delta(x_0)}\right)$$

onde

$$W(u) = \begin{cases} (1 - u^3)^3, & 0 \le u \le 1\\ 0, & \text{caso contrário} \end{cases}$$

Considerando a i-ésima observação, ajusta-se uma regressão linear, levando em conta a função de peso tri-cúbica, que deve ser incorporada no modelo. A estimativa para $s(x_i)$, para i-ésima observação, será o valor predito de x_i em relação a seu i-ésimo modelo de regressão linear.

Metodologia - Suavizador Kernel

- ightharpoonup Um suavizador kernel usa pesos que decrescem suavemente enquanto se distância do ponto de interesse x_0 .
- ▶ Um suavizador Kernel pode ser definido da forma

$$\hat{y}_i = \frac{\sum_{j=1}^n y_i K\left(\frac{x_i - x_j}{b}\right)}{\sum_{j=1}^n K\left(\frac{x_i - x_j}{b}\right)}$$

Metodologia - Suavizador Splines de Regressão

- ▶ Um Spline pode ser visto como uma função definida por um polinômio por partes.
- ▶ Pontos distintos são escolhidos no intervalo das observações (nós) e um polinômio é definido para cada intervalo.
- Além disso, o *spline* permite modelar um comportamento atípico dos dados, o que não seria possível com apenas uma função.
- Existem várias diferentes configurações para um *spline*, mas uma escolha popular é o *spline* cúbico;
- Para qualquer grupo de nós, o *spline* de regressão é ajustado a partir de mínimos quadrados em um grupo apropriado de vetores base.
- Quando trabalha-se com splines, existe uma dificuldade em escolher a localização e quantidade ideal dos nós.

Metodologia - Seleção de parâmetros - Função de Risco

Para elaborar boas funções de predição, cria-se um critério para mensurar o desempenho que determinada função predição; valendo-se, por exemplo, do do risco quadrático (IZBICKI E SANTOS, 2020).

$$R_{pred}(g) = E\left[(Y - g(X))^2 \right].$$

- ightharpoonup Constata-se que (X,Y) é uma observação nova não utilizada ao se estimar g. Sendo assim, melhor será a função de predição g, quanto menor for o risco..
- ▶ Usualmente ajusta-se distintos modelos para a função de regressão e encontrar qual deles apresenta um melhor poder preditivo;
- ightharpoonup O método de seleção de modelos pretende selecionar uma boa função g.
- O risco observado, conhecido como erro quadrático médio em relação aos dados, e determinado por,

$$EQM(g) = \frac{1}{n}E\sum_{i=1}^{n} [(Y_i - g(X_i))^2],$$

Metodologia - Seleção de parâmetros - Validação Cruzada

- ▶ Usualmente, é comum dividir os dados em dois conjuntos, um de treinamento e validação;
- ▶ Algumas variações podem ser realizadas como o processo k-fold cross validation, ou ainda, leave-one-out cross validation (LOOCV);
- ▶ O processo para seleção do melhor parâmetro de suavização por meio do *leave one out* cross-validation é descrito:
- 1. Supondo o parâmetro suavizador, denotado por p (tamanho do span ou número de nós), para cada valor possível de seu domínio faça:
 - $1.1\,$ Considerando um conjunto de dados de tamanho n, para cada observação contidas no conjunto de dados faça:
 - 1.1.1 Divida o conjunto de dados, em dados de treino e validação;
 - 1.1.2 Construa (ajuste) o modelo utilizando apenas os dados de treino;
 - 1.1.3 Utilize o modelo para predizer o valor da resposta $(\hat{y}_i = g(x_i))$, considerando a observação que compoe os dados de validação e calcule a distância $(y_i \hat{y}_i)^2$.
 - $1.2\,$ Repita o processo (1.1) n vezes até que todas as observações sejam "vistas" como dados de validação.

$$EQM(p) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

2. Repita a etapa (1), para todo o domínio do parâmetro suavizador.

Metodologia - Seleção das técnicas de suavização

- ▶ Após selecionado o melhor parâmetro de suavização, ter-se-á um parâmetro considerado ótimo;
- (i) EQM_c : Erro quadrático médio "completo": Após a escolha do parâmetro de suaviazação e tendo em vista todos as observações do conjuntos dados, ajusta-se o modelo. Para cada observação, considere a predição $\hat{y}_i = g(x_i)$, para todo $i = 1, 2, \dots, n$. Em seguida, calcula-se o EQM:

$$EQM_c = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

(ii) EQM_{loocv} : Erro quadrático médio "LOOCV": Essa métrica será exatamente o EQM durante a escolha do parâmetro suavizador.

Estudo de Simulação

- Serão utilizadas simulações de dados;
- ▶ Analisar-se-a as performances dos resultados obtidos, de quatro técnicas de suavização sendo elas: o suavizador de kernel, Loess, splines de regressão de linear e cúbico.;
- o parâmetro suavizador é indicado, usualmente, pela largura da banda ou span.
- Realizar-se-ão ajustes para o primeiro cenário, considerando distintos parâmetros de suavização;
- Em seguida, adotando o método de data splitting, leave one out cross-validation;
- Posteriormente, este procedimento será repetido para cada cenário em mil amostras;
- ightharpoonup Será realizado escolha do melhor parâmetro de suavização selecionados por meio da métrica EQM_{loocv} .
- ightharpoonup Em seguida, comparar-se-á dentro dos mesmos cenários, avaliando por meio da métrica EQM_c ;
- ▶ Vale ressaltar, que serão empregados dois comportamentos, um proveniente de uma função senoidal e outra de uma função Gamma: Cenário 1 e Cenário 2.

Cenário 1 - Introdução

ightharpoonup Valores de X uma sequência de 0 a 50;

$$y = 10 + 5sen\pi \frac{x}{24} + \varepsilon \tag{4}$$

- \triangleright ε é um termo aleatório, normalmente, distribuído com média zero e variância constante;
- ➤ Tamanos amostrais utilizados serão iguais a 150, 250 e 350;
- ➤ Valores de desvio padrão, utilizado nos erros, 0.5, 1 e 2.

Figura 1: Gráfico de dispersão dos dados simulados e curva real, para o Cenário 1. (A) DP = 0.5, (B) DP = 1 e (C) DP = 2.

Cenário 1 - Ajustes suavizados

Figura 2: Comparação entre diferentes ajustes (Cenário 1), com parâmetros de suavização distintos, considerando os suavizadores, (A) Kernel, (B) Loess, (C) Splines de Regressão Linear e (D) Splines de Regressão Cúbico.

Cenário 1 - Seleção dos parâmetros EQM_{loocv}

Figura 3: Erro quadrático médio (EQM_{loocv}) versus parâmetro de suavização (Cenário 1) pós aplicação do Leave One Out Cross-Validation. (A) Kernel, (B) Loess, (C) Splines de Regressão Linear e (D) Splines de Regressão Cúbico.

Tabela 1: Erro Quadrático Médio (EQM_{loocv}) , para os suavizadores Kernel, Loess e Splines de Regressão Linear e Cúbico.

Suavizador	Parâm. Suavizador	EQM
Kernel	0,23	4,22
Loess	0,26	4,23
Sp. Reg. Linear	5	4,16
Sp. Reg. Cúbico	2	4,15

Tabela 2: Erro Quadrático Médio (EQM_c) , para os suavizadores Kernel, Loess e Splines de Regressão Linear e Cúbico.

Suavizador	Parâm. Suavizador	EQM
Kernel Loess	$0,23 \\ 0.26$	0,2652 $0,2634$
Sp. Reg. Linear	5	$0,\!2674$
Sp. Reg. Cúbico	2	0,2723

Cenário 1 - Resultados do EQM_{loocv} em 1000 amostras

Tabela 3: Percentual do Erro quadrático médio EQM_{loocv} mínimo, obtidos por meio de aplicação do Procedimento 1, para seleção do melhor parâmetro de suavização, considerando cada suavizador em 1000 amostras.

Sub-Cenário	Tamanho	Desvio Padrão	Kernel	Loess	Sp. Reg. Linear	Sp. Reg. Cúbico
1	150	0,5	0,9%	$5,\!3\%$	19,7%	74,1%
2	150	1,0	$1,\!4\%$	$8,\!4\%$	31,1%	$59{,}1\%$
3	150	2,0	$1,\!4\%$	$10,\!8\%$	$48,\!0\%$	$39{,}8\%$
4	250	0,5	0.7%	$3,\!8\%$	16,9%	$78,\!6\%$
5	250	1,0	1,1%	$7{,}0\%$	$23{,}5\%$	$68,\!4\%$
6	250	2,0	1,7%	$13,\!1\%$	$35{,}8\%$	$49,\!4\%$
7	350	0,5	0.8%	$3,\!7\%$	15,8%	$79{,}7\%$
8	350	1,0	$1,\!3\%$	$7,\!0\%$	$20,\!5\%$	$71,\!2\%$
9	350	2,0	1,8%	$11{,}7\%$	$33{,}5\%$	53,0%

Cenário 1 - Comportamento dos EQM_{loocv}

Figura 4: Comparação do erro quadrático para as 1000 amostras para cada suavizador. (A) DP = 0.5, (B) DP = 1 e (C) DP = 2

Resultados do EQMc em 1000 amostras, pós seleção dos parâmetros

Tabela 4: Percentual do Erro quadrático médio EQM_{loocv} mínimo, considerando os ajustes provenientes dos melhores parâmetros obtidos por meio de aplicação do Procedimento 1, para cada suavizador em 1000 amostras.

Sub-Cenário	Tamanho	Desvio Padrão	Kernel	Loess	Sp. Reg. Linear	Sp. Reg. Cúbico
1	150	0,5	65,3%	15,4%	11,7%	7,6%
2	150	1,0	$61,\!3\%$	$11,\!8\%$	$14,\!6\%$	$12,\!3\%$
3	150	2,0	$63,\!2\%$	$11,\!2\%$	$11,\!3\%$	$14,\!3\%$
4	250	0,5	$67,\!2\%$	17,1%	11,0%	4,7%
5	250	1,0	66,1%	$14,\!0\%$	$12{,}7\%$	$7{,}2\%$
6	250	2,0	$56,\!2\%$	$12,\!5\%$	13,9%	$17{,}4\%$
7	350	0,5	$79,\!9\%$	$8,\!8\%$	8,7%	$2{,}6\%$
8	350	1,0	$63,\!3\%$	$16,\!8\%$	$13,\!1\%$	6,8%
9	350	2,0	$56,\!2\%$	$12,\!4\%$	13,8%	$17{,}6\%$

Comportamento para os EQM_c

Figura 5: Comparação do erro quadrático para as 1000 amostras para cada suavizador. (A) DP = 0.5, (B) DP = 1 e (C) DP = 2

Cenário 2 - Introdução

- \triangleright Valores de X uma sequência de 0.1 a 2;
- $y = f(x) + \varepsilon$, com $f(x) \sim Gamma(6, 10)$;
- $ightharpoonup \varepsilon \sim N(0, \sigma^2);$
- Tamanos amostrais utilizados serão iguais a 150, 250 e 350;
- ➤ Valores de desvio padrão, utilizado nos erros, 0.05, 0.1 e 0.15.

Figura 6: Gráfico de dispersão dos dados simulados e curva real, para o Cenário 2. (A) DP = 0.05, (B) DP = 0.10 e (C) DP = 0.15.

Cenário 2 - Resultados dos EQM_{loocv}

Tabela 5: Percentual do Erro quadrático médio EQM_{loocv} mínimo, considerando os ajustes provenientes dos melhores parâmetros obtidos por meio de aplicação do Procedimento 1, para cada suavizador em 1000 amostras.

Sub-Cenário	Tamanho	Desvio Padrão	Kernel	Loess	Sp. Reg. Linear	Sp. Reg. Cúbico
1	150	0,05	$0,\!6\%$	$2,\!6\%$	$7{,}4\%$	89,4%
2	150	$0,\!10$	0.7%	$6,\!3\%$	$13,\!5\%$	$79{,}5\%$
3	150	$0,\!15$	0,7%	$9,\!1\%$	$20,\!6\%$	$69{,}6\%$
4	250	0,05	$0,\!4\%$	1,7%	8,2%	89,7%
5	250	$0,\!10$	0,7%	$3,\!4\%$	$10,\!3\%$	$85{,}6\%$
6	250	$0,\!15$	0.8%	$6,\!5\%$	$12{,}7\%$	80,0%
7	350	0,05	$0,\!2\%$	$2,\!0\%$	$5{,}9\%$	$91{,}9\%$
8	350	$0,\!10$	$0,\!6\%$	$2,\!5\%$	8,9%	88,0%
9	350	0,15	1,0%	4,7%	11,4%	82,9%

Cenário 2 - Comportamento para os EQM_{loocv}

Figura 7: Comparação do erro quadrático médio (EQM_{loocv}) em 1000 amostras para cada suavizador. (A) DP = 0.05, (B) DP = 0.1 e (C) DP = 0.15

Cenário 2 - Resultados para o EQM_c , pós seleção dos parâmetros

Tabela 6: Percentual do Erro quadrático médio EQM_{loocv} mínimo, considerando os ajustes provenientes dos melhores parâmetros obtidos por meio de aplicação do Procedimento 1, para cada suavizador em 1000 amostras.

Sub-Cenário	Tamanho	Desvio Padrão	Kernel	Loess	Sp. Reg. Linear	Sp. Reg. Cúbico
1	150	0,5	90,1%	6,0%	$3,\!8\%$	0,1%
2	150	1,0	$71,\!1\%$	$9,\!3\%$	16,3%	3,3%
3	150	2,0	$49,\!1\%$	$13,\!5\%$	$25{,}6\%$	11,8%
4	250	0,5	$91,\!9\%$	$4,\!2\%$	3,5%	$0,\!4\%$
5	250	1,0	$79{,}9\%$	$7{,}6\%$	$10{,}7\%$	1,8%
6	250	2,0	$61{,}9\%$	$10,\!6\%$	$20,\!3\%$	7,2%
7	350	0,5	$91,\!9\%$	3,7%	$3{,}7\%$	0.7%
8	350	1,0	$82,\!0\%$	$7{,}6\%$	8,7%	1,7%
9	350	2,0	$65{,}4\%$	$10,\!3\%$	$20,\!3\%$	4,0%

Cenário 2 - Comportamento para os EQM_c

Figura 8: Comparação do erro quadrático médio (EQM_c) , para as 1000 amostras para cada suavizador. (A) DP = 0.05, (B) DP = 0.1 e (C) DP = 0.15

Aplicação 1

- Os dados é referente à expansão térmica de cobre.
- ➤ A variável resposta é o coeficiente de expansão térmica e a variável preditora é a temperatura em graus kelvin.
- Considerando o modelo aditivo da seguinte forma

$$y = \alpha + f(x) + \varepsilon,$$

• onde os erros ϵ são independentes, com $E(\varepsilon) = 0$ e $var(\varepsilon) = \sigma^2$.

Figura 9: Gráfico de dispersão referente ao estudo de espansão térmica do cobre versus a temperatura em graus Kelvin.

Avaliando os EQM_{loocv} e os EQM_c

Tabela 7: Erro Quadrático Médio (EQM_{loocv}) para os suavizadores Loess, Kernel e Splines de Regressão Linear e Cúbico (Aplicação 1).

Suavizador	Parâm. Suavizador	EQM
Kernel	0,1	0,0091
Loess	0,1	0,0078
Sp. Reg. Linear	20,0	0,0078
Sp. Reg. Cúbico	14,0	0,0065

Tabela 8: Erro Quadrático Médio (EQM_c) para os suavizadores Loess, Kernel e Splines de Regressão Linear e Cúbico.

Suavizador	Parâm. Suavizador	EQM
Kernel	0.1	0,000200
Loess	0.1	0,000211
Sp. Reg. Linear	20	0,000211
Sp. Reg. Cúbico	14	0,000171
Polinômio Cúbico		0,031052

Comparação dos Ajustes

Figura 10: Comparação entre os ajustes, considerando parâmetros de suavização obtidos por meio da validação cruzada. (A) Kernel - Parâm. 0,1. (B) Loess - Parâm. 0,1. (C) Splines de Regressão Linear - Parâm. 20. (D) Splines de Regressão Cúbico - Parâm. 14. (E) Regressão Polinômial Cúbica.

Aplicação 2

- Os dados são referentes ao preço mediano de casas de Boston.
- A variável resposta y, medv, que representa o valor mediano das casas ocupadas pelos proprietários em 1000 dolars.
- Para a variável preditora x, lstat, representa o percentual de status baixo da população.
- Considerando o modelo aditivo da seguinte forma,

$$y = \alpha + f(x) + \varepsilon,$$

• onde os erros ε são independentes, com $E(\varepsilon) = 0$ e $var(\varepsilon) = \sigma^2$. A f(x).

Figura 11: Gráfico de dispersão referente ao preço mediano de casas versus o percentual de status baixos na população.

Avaliando os EQM_{loocv} e os EQM_c

Tabela 9: Erro Quadrático Médio (EQM_{loocv}) para os suavizadores Loess, Kernel e Splines de Regressão Linear e Cúbico (Aplicação 1).

Suavizador	Parâm. Suavizador	EQM
Kernel	0,21	27,1909
Loess	0,18	27,2788
Sp. Reg. Linear	5,00	27,1191
Sp. Reg. Cúbico	5,00	27,3552

Tabela 10: Erro Quadrático Médio (EQM_c) para os suavizadores Loess, Kernel e Splines de Regressão Linear e Cúbico.

Suavizador	Parâm. Suavizador	EQM
Kernel	0.21	0,307130
Loess	0.18	0,308202
Sp. Reg. Linear	5	0,315720
Sp. Reg. Cúbico	5	0,314639
Polinômio Cúbico		0,342152

Comparação dos ajustes

Figura 12: Comparação entre os ajustes, considerando parâmetros de suavização obtidos por meio da validação cruzada. (A) Kernel - Parâm. 0,21. (B) Loess - Parâm. 0,18. (C) Splines de Regressão Linear - Parâm. 5 (D) Splines de Regressão Cúbico - Parâm. 5 (E) Regressão Polinômial Cúbica.

Considerações Finais

- As técnicas de suavização *kernel*, *loess* e splines de regressão, em particular, os de grau um e grau três foram apresentadas, que são utilizadas para estimar as funções presentes em modelos aditivos.
- Fora introduzido um método para obtenção do melhor parâmetro suavizador, realizado por meio de método de validação cruzada.
- Duas métricas foram abordadas: uma para verificar a qualidade de predição, erro quadrático médio obtidos por validação cruzada, leave one out cross validation (EQM_{loocv}) e a outra para apurar a qualidade dos ajustes, erro quadrático médio completo (EQM_c) .
- Para validar a metodologia estudada, foram realizadas análises em dados simulados e dados reais.
- Ainda, verificou-se que o ajuste mais adequado para descrever o comportamento dos dados não obtém necessariamente o melhor poder preditivo.

Considerações Finais

- Por meio das métricas, (EQM_{loocv}) e (EQM_c) , o suavizador que obteve o melhor poder preditivo foi o *splines* de regressão cúbico. Levando em consideração o método com melhor qualidade de ajustes, os suavizadores com *kernel* se destacou em ambos os cenários.
- ▶ Ressalta-se que para a Aplicação 1, a técnica que obteve o melhor poder preditvo e o melhor ajuste fora o *splines* de regressão cúbico.
- ▶ Para a Aplicação 2, o suavizador que se destacou por obter o melhor poder preditivo (menor EQM_{loocv} entre os suavizadores) foi *splines* de regressão linear. Em contrapartida, o que denotou melhor qualidade de ajuste (menor EQM_c dentre os suavizadores) foi o método kernel gaussiano.

Considerações Finais - Sugestões para trabalhos futuros

- ▶ Métricas para validação da qualidade de predição e adequabilidade dos modelos podem ser adotadas.
- Técnicas que podem ser adotadas para seleção dos parâmetros de suavização.
- Para os suavizadores *splines* de regressão, além da seleção da quantidade de nós, a localização dos nós pode ser avaliada a fim de obter um melhor ajuste.
- ▶ Ainda as discussões podem ser extendidas, quando mais de uma covariável está disponível para predizer a resposta. Frequentemente, utiliza-se o algoritmo de retroajuste (backfitting, HASTIE & TIBSHIRANI, 1990) para estimar cada função suave f_j em um cenário não paramétrico.

Referências

BUJA, A., HASTIE, T. & TIBSHIRANI, R. (1989). Linear smoothers and additive models. The Annals of Statistics, 17, 453-510.

CLEVELAND, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829-836.

DELICADO, P., 2008 Curso de Modelos no Paramétricos p. 200.

 $\rm EUBANK,\,R.\,L(1999)$ Nonparametric Regression and Spline Smoothing. Marcel Dekker, 20 edição. Citado na pág. 1, 2, 29

FAHRMEIR, L. & TUTZ, G. (2001) Multivariate Statistical Modelling Based on Generalized Linear Models. Springer, 20 edição. Citado na pág. 15

GREEN, P. J. & YANDELL, B. S. (1985) Semi-parametric generalized linear models. Lecture Notes in Statistics, 32:4455. Citado na pág. 15

Referências

GREEN P. J. & SILVERMAN B. W. (1994). Nonparametric regression and generalized linear models: a roughness penalty approach. Chapman & Hall, London.

HASTIE, T. J. & TIBSHIRANI, R. J. (1990). **Generalized additive models**, volume 43. Chapman and Hall, Ltd., London. ISBN 0-412-34390-8.

MONTGOMERY, D. C. & PECK, E. A. & VINING, G. G. Introduction to Linear Regression Analysis. 5th Edition. John Wiley & Sons, 2012.

IZBICK, R. & SANTOS, T. M. Aprendizado de máquina: uma abordagem estatística. ISBN 978-65-00-02410-4.

TEAM, R. CORE. R: A language and environment for statistical computing. (2013).

Fim

Obrigado!

"Sem números, não há vantagem nem probabilidades; sem vantagens e probabilidades, o único meio de lidar com o Risco é apelar para os deuses e o destino. Sem números, o RISCO é uma questão de pura CORAGEM." (Peter L. Bernstein).