Index

Note: Page numbers followed by "f" indicate figures, "t" indicates tables and "b" indicates boxes.

A	Bernoulli population, 201	one-way ANOVA, 379b, 382-386
Absolute error loss function, 423	Bernoulli random variable, 182-183,	population means, 377
Alternative hypothesis, 254	204-205	p-value approach, 380–382
Analysis of variance (ANOVA)	probability function of, 90-108	SSE, 378
angular transformation, 412	Best linear unbiased estimator (BLUE), 311	unbiased estimator, 379
assumption, 578–587	Beta-binomial distribution, 421	within-groups variability, 377
F-test, 413	Binomial distribution, normal approximation,	Composite hypothesis testing, 255-256
linear models, 413–414	169-171	Computers and statistics, 30
logarithmic transformation, 412	Binomial experiment, 91	Conditional probability
Minitab, 403–405	Binomial formula, 182–183	definition, 55
missing observations, 413	Binomial probability distribution, 90-94	law of total probability, 57b
multiple comparisons, 396–399	Binomial random variables, 201	properties of, 55b
multiple regressions, 331–332	expected value of, 98	Conditional probability distributions,
R code, 401–403	Binomial theorem, 91	114-116
regression, 318–320	Birthday problem, 52-53	Confidence intervals
SAS, 406–411	Bivariate data, 591-593	computer examples, 242-246
simple regression, 318–320	Bivariate probability distributions, 120	confidence coefficient, 215
SPSS, 405	Blinding, 347	degrees of freedom, 216
square root transformation, 412	Blocking, 348	interval estimation, 214
treatments, 371–375	Bootstrap methods, 535-540	large sample, 468
Angular transformation, ANOVA, 412	R code, 562-567	normal population, 215
Area sampling, 8	SAS, 568	one sample, 220-227
Average deviation, 22–23	Box plot, 25–27, 25b	pivotal quantity, 215-216
Average weight loss estimation, 215	outliers, 575-576	population variance, 232-234
		probability density, pivot, 217–219, 217f
В	C	proportion, 222–225
	Cauchy distribution, 200	sample mean, 215
Bar graph	Central limit theorem (CLT), 215, 221–222	sampling distributions, 219, 249–250
definition, 10 Pareto chart, 10–11, 11f	Chapman—Kolmogorov equation, 621b	shortest length confidence interval, 216
Bayesian decision theory, 439	Chi-square distribution, 154–158, 232	Tukey's method, 396b
decision-making process, 437–438	degrees of freedom, 154–155	two population parameters, 235–239
statistical theory, 437	density, 232f	upper and lower confidence limits, 214–215
Bayesian hypothesis testing	probabilities, 636t	Conjugate prior, 421
Jeffreys' hypothesis testing criterion, 435	random variable, 107	Contingency table, chi-square tests
null hypothesis, 434	Chi-square tests	definition, 462–466
posterior odds ratio, 435	contingency tables, 462–466	independence factors, 472–474
posterior probability, 435	multinomial distribution, 463, 470b, 472	sensitivity, 464–465
prior odds ratio, 435	one-way analysis, 469–472	two-way, 472–474
Bayesian inference, 416	Pearson's, 477–480	Continuity correction factor, 478–480
Bayesian point estimation	Cluster sampling, 8	Continuous random variable, 65
Bayes' rule, 417	Coefficient of determination, 309, 340–341	Control plot, Taguchi methods, 361, 361f
criteria for finding Bayesian estimate,	Comma separated value (CSV), 32-34	Correlation analysis
422–429	Common probability distribution, 625	Fisher z-transform, 325
likelihood function, 416	Complement set, 616, 617f	independent variables, 324–326
marginal distribution, 418	Completely randomized design	maximum likelihood estimator, 324–325
population proportion, 418	ANOVA decomposition, 378, 379f	simple linear regression model, 324–326
posterior distribution, 417	assumption testing, 382–386	Countably infinite 617
probability distribution, 417	between-groups variability, 377	Counting random variable, 04, 05
Bayes' rule, 55–60	correction factor, 377	Counting random variable, 94–95 Covariance, 119
Bayes, Thomas, 415f	decomposition of SS, 378, 378f	Credible intervals
Bell-shaped curve, 25	null hypothesis, 377	conditional distribution, 431
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Conditional distribution, 731

conditional distribution, 431

Credible intervals (Continued)	Error probability distribution, 195	side-by-side box plots, 571
definition, 431–433	Error variance estimation, 312	stem-and-leaf plot, 12, 13t
posterior distribution, 431-432, 432f	Estimation theory, 180	Greco-Latin square, 354-355
Cross-sectional data, 4	Expectation maximization (EM) algorithm,	Grouped data, numerical measures, 23–25
Cumulative binomial probabilities,	540-548 Production 562 567	
630t-633t Cumulative distribution function (cdf), 64,	R code, 562–567 Experimental error, 347	Н
66, 251	Exponential family of probability	Hardy-Weinberg law, 92
Cumulative probability distribution, 193, 477	distributions, 211 Exponential power, 192, 195	Highest posterior density (HPD) interval, 433
_	Exponential probability distribution, 106	Histogram, 579f
D	Exponential probability distribution, 100	of data, 582f
Data	F	definition, 14
bivariate, 591–593	F	guidelines, 14b
collection, 2–3, 2b	Factorial design	Homoscedasticity, 333
cross-sectional, 4	fractional, 358 full, 358	Hypothesis testing
graphical representation, 10–15 nominal, 4–5	one-factor-at-a-time design, 356–357	categorical data analysis, 468–474 composite, 256
numerical description, 20–27	F-distribution, 161–163	level of significance, 255–256
ordinal, 4–5	Finite set, 615	likelihood ratio tests, 267–271
quantitative, 4	Finite variance, 201, 212	Neyman—Pearson Lemma, 262—266
time series, 4	Fisher z-transform, 325	<i>p</i> -value, 271–273
transformation, 581-583	Fractional factorial design, 358	sample size, 256, 258, 260-261
types of, 4–6	Friedman test	simple, 256
Data collection, 40	Minitab, 523-525	single parameter, 271–278
Dealer cost, 598t-599t	R code, 523–525	two samples, 280–289
Degrees of freedom, 154–155, 232	treatment effects, 516–519	type I error, 256
de Moivre, Abraham, 147f	Friedman tests, 661t—666t	type II error, 256
Descriptive point estimates, 242–244 Descriptive statistics, 4	Full conditionals, 558	
Design of experiments (DOE)	Full factorial design, 358	I
basic terminology, 345–347		Independent variables, 345-347
factorial design, 356–358	G	Inferential statistics, 4
Minitab, 366	Galton, Francis, 301f	Infinite set, 615
optimal design, 359-360	Gamma probability distribution, 104–108,	Informative priors, 419–420
R code, 364–365	183, 192 Gauss, Carl Friedrich, 89f	Interquartile range (IQR), 21
replication, randomization, and blocking,	Gaussian distribution, 98	Invariance property, 196–197
347-349	Gaussian distribution, 48 Gaussian probability distribution, 477	_
sample size and power, 367–368	Gauss—Markov theorem, 333	J
SAS, 366–367	Geometric distribution, 187–189, 208–209	Jackknife method, 532–534
specific designs, 349–355 Taguchi methods, 360–363	Gibbs algorithm (Gibbs sampler), 557-560	R code, 562–567
temperature effect, 368	Goodness-of-fit tests	SAS, 568
Digamma function, 192–193	Anderson-Darling test, 483-484	Jeffreys' hypothesis testing criterion, 435
Discrete distribution, 209–210	categorical data estimation, 467-468	Joint density function, 209–211 Joint probability distributions, 112–120
Discrete random variable, 94	chi-square tests, 462, 469–472, 477–480	bivariate distributions, 112–120
Discrete uniform distribution, 470-472	contingency tables, 462–466	conditional expectation, 117–119
Distribution-free tests, 575	Kolmogorov—Smirnov test, 480—483 multinomial distribution, 463, 470b, 472	covariance and correlation, 119–120
income distribution of families, 492, 492f	P–P plots, 485–487	marginal pmf, 113
nonparametric confidence interval, 493-495	probability calculations, 462–466	Joint probability mass function, 186
outliers, 575	probability distribution, 476–487	
parametric tests, 493	Q-Q plots, 485–487	K
projects for, 527–530 Distribution function, 64	Shapiro-Wilk normality test, 484-485	Kolmogorov, Andrei Nikolaevich, 41f
Dobson units, 226–227	Simpson's paradox, 490	Kolmogorov–Smirnov test, one sample test
Dotplot, 571, 571f, 579f	Graphical representation	statistics, 670
Double-blind treatment method, 347	bar graph, 10	Kronecker Delta function, 423
	dotplot, 571, 571f, 579f	Kruskal—Wallis test
E	frequency table, 13, 14b	asymptotic distribution, 514
	grouped data, 13	chi-square distribution, 514
Elementary statistics, 221. , <i>See also</i> Statistics course	histogram, 14, 14b pie chart, 11, 12f	description, 514–516
Empty set (null set), 615	quantile-quantile (QQ) plot, 572–573	Minitab, 523–525
Equality of variances, 583–587	relative frequency, 13	R code, 521–523
Ergodic theorem, 623	scatter plot, 571–572, 571f	SAS, 527 SPSS, 526
-	1 / · · ·	51 55, 520

L	transition probabilities, 619	Multifactor experiments, 346
Large sample approximations, 169–170	transition/stochastic matrix, 620	Multinomial distribution, 463, 470b, 472
Large-sample confidence intervals, 250	Matrix notation	Multiphase sampling, 9
Latin square design	independent observations, 327	Multiple comparisons, ANOVA
definition, 352	least-squares estimators, 329	studentized range distribution, 396
Greco-Latin square, 354-355	linear equations, 328	Tukey's method, 396b
R code, 364–365	multiple regression model, 329	Multiple linear regression model
Least-squares equations, 305	Maximum likelihood equations (MLE),	ANOVA table, 331–332, 331t
Least-squares estimators	186-190	definition, 302–304
definition, 304	definition, 190–191	
Gauss—Markov theorem, 333	log-likelihood function, 187—191, 194	N
inferences, 315–320	optimization, 192	Negative binomial distribution, 198
properties of, 309–311	parameter values, 192 probability distributions, 192–196	Neyman, Jerzy, 253f
Least-squares line, 304	Mean	Neyman—Pearson Lemma, 262—266
Least-squares, method of, 304–305	binomial random variable, 93b	Nightingale, Florence, 569f
Least-squares regression line, 303, 303f	chi-square random variable, 107b	Noise, 345
Least-squares regression model, 333	exponential random variable, 106b	Nominal data, 4–5
Level of significance, hypothesis testing, 256	gamma random variable, 104b	Noninformative priors, 419-420
Likelihood ratio tests (LRT), 267–271	normal random variable, 99b	Nonparametric analysis vs. parametric,
Limit theorems, 130—137 central limit theorem, 134b	poisson random variable, 94b	594-595
Chebyshev's theorem, 131b	uniform random variable, 97b	Nonparametric confidence interval
law of large numbers, 133b	Mean square error (MSE), 203, 373	binomial distribution, 493
Linear regression models	Mean square treatment (MST), 373	central limit theorem, 493
ANOVA, 413–414	Median test	ordered sample, 494, 494f
coefficient of determination, 340–341	hypergeometric distribution, 507	population median, 494
correlation analysis, 324–326	hypothesis testing procedure, 507	Nonparametric hypothesis tests
least-squares estimators, 315–320	large sample, 508b	for one sample, 497–505
matrix notation, 327–332	Minitab, 523-525	for two samples, 506–512 Normal approximation to binomial
Minitab, 337–338	sample median, 507, 507t	distribution, 169–171
outliers and high leverage points, 341	Method of moments, 181–185	Normal distribution, 181
particular value prediction, 321-323	Metropolis algorithm	Normality, assumption, 578–581
regression diagnostics, 333-334	continuous case, 552b	Normal probability distribution, 98–104
SAS, 338–340	discrete case, 552b	Normal probability plots, 579, 580f—582f, 597f
scatterplots, 340	random-walk, 554	for ANOVA, 383f
simple, 302–312	Metropolis-Hastings (M-H) algorithm,	Nuisance variables, 345
SPSS, 338	554–557	Null hypothesis, 254
Logarithmic transformation, ANOVA, 412	continuous case, 555b discrete case, 554b	Numerical description, data
Log-likelihood function, 187–191, 194	Minimal sufficient statistics, 181	average deviation, 22-23
Loss function, Taguchi methods, 361, 361f	Minimum variance unbiased estimator	bell-shaped curve, 25
Lower confidence limit, 214–219, 217b	(MVUE), 196	grouped data, numerical measures, 23-25
	Minitab	interquartile range (IQR), 21
M	ANOVA, 403–405	lower quartile, 21
Maclaurin's expansion, with Poisson random	design of experiments, 366	median, 21
variable, 95	goodness-of-fit tests, 489	mode, 21
Marginal pmf/pdf, 113	linear regression models, 337–338	sample mean (empirical mean), 20
Margin of error and sample size, 223-225	nonparametric tests, 523-525	sample standard deviation, 20
Markov chain Monte Carlo (MCMC)	statistical estimation, 244-245	sample variance, 20
methods, 549-560	<i>t</i> -test, 295–296	upper quartile, 21
issues in, 560	Model	
Metropolis algorithm, 552–554	issues in, 589-593	O
R code, 562–567	for univariate data, 589-590	Observables
Markov chains, 619	Moment-generating function (MGF)	for Bayesian decision theory, 437-441
aperiodic, 622b	of Bernoulli random variable, 93b	definition, 439
Ergodic theorem, 623	binomial random variable, 93b	predicting future, 458-459
homogeneous, 619	chi-square random variable, 107b	Observational experiment, 346
irreducible, 622b	exponential random variable, 106b	One-factor-at-a-time design, 356-357
periodic, 622b	gamma random variable, 104b	One-parameter Weibull distribution,
positive transition matrix, 622b random walk chain, 620b	moments and, 71–80	213-214
steady state, 623	normal random variable, 99b	One sample confidence intervals
stochastic/random process, 619	poisson random variable, 94b	large sample, 220–222
transient, 622b–623b	properties, 80b	proportion, 223
transferre, 0220 0230	uniform random variable, 97b	small sample, 225–227

One-tailed test, 255	Power transformation, 591	functions of, 126
One-way ANOVA, 347	Prior odds ratio, 435	pdf, 124
k ³ 2 populations, 379b	Probability density, 196f, 197, 217–219,	probability integral transformation, 126
Minitab, 403–405	217f Probability density function (ndf) 65	transformation method, 127–128
model for, 386 R code, 401–403	Probability density function (pdf), 65 Probability distribution, 476–487	Random-walk metropolis, 554 Rao, C.R, 180f
SAS, 406–411	common, 625	Rayleigh distribution, 214
SPSS, 405	Probability distribution function (PDF), 64,	Rayleigh PDF, 192, 195
Optimal design	90–108, 180–181, 192–196	R code
choice of optimal sample size, 359–360	references for, 90	Bayesian estimation inference, 456–458
sequential design, 359-360	Probability function (pf), Bernoulli random	design of experiments, 364-365
simultaneous experiment design, 359	variable, 93b	goodness-of-fit tests, 489
Optimization, 192	Probability mass function, 181	linear regression models, 335–337
Order statistics, 165–168	Probability tables	nonparametric tests, 521–523
Ordinal data, 4–5	chi-square probabilities, 636t	one-way ANOVA, 401–403
Orthogoal Latin squares, 354–355	cumulative binomial probabilities,	statistical estimation, 242–244
Outliers	630t-633t	two-way ANOVA, 401–403
box plot, 575–576	Friedman tests, 661t–666t	Regression diagnostics, 333–334
distribution-free test, 575	Kolmogorov—Smirnov test, one sample test	Rejection region (critical region), 262
and high leverage points, 341 modified z-score, 575	statistics, 670 percentage point of F-distributions,	Relative frequency, 13 Replication
value, 574	637t—646t	definition, 347
z-score, 575	standard norms table, 634t	procedure for randomized complete block
Z score, 575	studentized range q table, 667t–669t	design, 350b
D	t-table, 635t	Response variable, 345–347
P	Wilcoxon signed rank test, 647t–652t	R language, 627
Paired comparison tests, 504–505	Probability theory	Robust estimation, 247
Parametric analysis, nonparametric analysis	concept of, 42	,
vs., 594–595	counting techniques and calculation of,	S
Pareto chart, 10—11, 11f Pareto distribution, 200	49-53	Sampling
Pearson, Karl, 461f	experiment, defined, 42	area, 8
Pearson's chi-square tests	mutually exclusive/disjoint, 43	biased, 6
cumulative probability distribution, 477	origin of, 42	4B simulation experiments, 177
Gaussian probability distribution, 477	probability, defined, 43b–44b	chi-square distribution, 154–155
Percentage point of F-distributions,	special distribution functions, 90–108	cluster, 8
637t-646t	trial, 42	defined, 3
Pie chart, 11, 12f	p-value approach, 380–382	distribution, 148
Placebo, 347	hypothesis testing, 271–273	errors in, 9
Point estimators	hypothesis testing, 271 275	F-distribution, 161–163
method of maximum likelihood, 186-196		finite population correction factor, 150-151
method of moments, 181-185	Q	Minitab examples, 174–175
sufficiency, 204–212	Quadratic loss function, 362, 362f, 423	multiphase, 9
unbiased estimators, 200–204	Quality of regression, 308–309	normal approximation to binomial
Poisson distribution, 185, 187–189, 213	Quantile-quantile (QQ) plot, 572–573	distribution, 169–171
Poisson probability distribution, 94–96	Quantitative data, 4	order statistics, 165–168
discrete random variable and, 94		population distribution, 153–163
Poisson random variables, 185 definition of, 94–95	R	R code, 172–174
Poisson, Siméon-Denis, 94–95	Random assignment procedure, 348b	representative, 6 sample, defined, 148
Pooled sample variance, 236	Randomization, 348	SAS examples, 175–176
Pooled <i>t</i> -test, 281b, 282–285	Randomized complete block design	simple random, 6
Population 2010, 2011	definition, 349–350	size, 9
defined, 3	R code, 364–365	SPSS examples, 175
standard deviation, 224	replications, 350–351	standard error, 149
Population variance, confidence interval	SAS, 366–367	statistic, 148
chi-square density, 232f	Randomness test	stratified, 7, 7b
chi-square distribution, 232-234	asymptotic normal distribution, 528–530	student <i>t</i> -distribution, 158–161
Positive transition matrix, 622b	Minitab, 529	systematic, 7
Posterior distribution	nonparametric procedure, 528 Random variables	SAS
Bayesian point estimation, 417-429	counting, 94–95	ANOVA, 406–411
definition, 417	and probability distributions, 63–69	design of experiments, 366–367
Posterior mean, 423	Random variables functions, 124–128	linear regression models, 338–340
Posterior odds ratio, 435	distribution functions method, 124–125	nonparametric tests, 527
Power exponential PDF, 192, 195		<i>t</i> -test, 297–298

Scatter diagram, 233-234, 302, 303f	concepts of, 3-6	Truncated exponential distribution, 214
Scatter plot, 303, 303f, 340, 571-572, 571f	descriptive, 4	t-table, 635t
Set theory	inferential, 4	t-test
complement, 616, 617f	population, 3	assumptions, 578
countably infinite, 617	sampling, 3	Minitab, 295–296
difference, 616–617	Statistical decision, 254	one-sample, 292–295
disjoint/mutually exclusive, 616	making, 438–439	paired samples, 295–296
elements/members, 615	Statistical estimation	pooled, 281b, 282–285
empty set (null set), 615	asymptotic properties, 246–247	SAS, 297—298
finite, 615	averaged squared errors, 248	SPSS, 297
infinite, 615	empirical distribution function, 249	Tukey, John W., 369f
intersection, 616, 616f	Newton—Raphson in one dimension,	Tukey—Kramer method, 399
one-to-one correspondence, 617	248—249	Tukey's method
properties, 617	numerical unbiasedness and consistency, 248	calculations of, 397, 397t
set, defined, 615		confidence intervals, 396
subset, 615	robust estimation, 247	Minitab, 403—405 R code, 401—403
symmetric difference, 616–617	Statistical hypotheses, 254	SAS, 406–411
union, 615, 616f universal set, 615	Stem-and-leaf plot, 12, 13t Sticker price, 598t, 599f, 599t, 600f	SPSS, 405
Venn diagram, 615, 616f	Stratified sample	Two random samples, hypothesis testing,
Shortest length confidence interval, 216	definition, 7	280–289
Side-by-side box plots, 571	selection procedure, 7b	dependent samples, 287–289
one-way ANOVA, 382–386, 383f	uses of, 8b	independent samples, 280–287
Sign test	Studentized range distribution, 396	Two-way ANOVA, 347
binomial distribution, 497–498	Studentized range distribution, 556 Studentized range q table, 667t–669t	computational procedure for, 392b
hypothesis testing procedure, 497–500	Student <i>t</i> -distribution, 158–161, 232	nonrandom effect, 390
large random sample, 499	Subjective probability, 416	null hypothesis, 391
Minitab, 523–525	Subset, 615	R code, 401–403
null hypothesis testing, 497	proper subset, 615	step-by-step computational procedure,
population distribution, 497–500	Sufficient estimator, 204–205	392–393
R code, 521–523	conditional probability, 206	sums of squares, 391
z-transform, 499	definition, 204–205	two-way classification, 390, 390t
Simple hypothesis testing, 256	density functions, 211	unbiased estimator, 392
Simple linear regression models	factorization criterion, 208–209	Two-way contingency table, 472-474
definition, 303	Sum of squares of errors (SSE), 372, 378	Type I error, hypothesis testing,
derivation of $\beta0$ and $\beta1$, $305-308$	Systematic sampling	656
error variance estimation, 312	definition, 7	Type II error, hypothesis testing, 256
least-squares estimators, 309-311	selection procedure, 7b	
least-squares, method of, 304-305		U
least-squares regression line, 303, 303f	Т	_
quality of regression, 308-309	-	Ulam, Stanislaw, 531f
Scatter diagram, 302, 303f	Taguchi, Genichi, 343f	Unbiased estimators
Simple random sampling	Taguchi methods	definition, 200
advantages, 6b	control plot, 361, 361f	mean square error, 203
definition, 6	design parameters, 362 engineering designs, 360	sample mean, 201 variance, 201
Simple regression line, 306–307, 307f	goal post mentality, 361	Uniform maximum likelihood estimation,
Single-factor experiments, 346	loss function, 361, 361f	242—244
Skewness and Kurtosis, 76–80, 579	quadratic loss function, 362, 362f	Uniform probability distribution, 96–98
Smith-Satterthwaite procedure, 282–285	quality control, 360	Univariate data, 589–590
SPSS	Test of independence, 587	Upper confidence limit, 214–219, 217b
ANOVA, 405	Test statistics (TS), 254b	epper confidence mint, 211 219, 2176
linear regression models, 338	Three-parameter gamma PDF, 192	• /
nonparametric tests, 526	Time series data, 4	V
statistical estimation, 246	Time to failure and/or time between failure	Variance
<i>t</i> -test, 297	(TBF), 595–601	of Bernoulli random variable, 93b
Squared error loss function, 423	Transformation	binomial random variable, 93b
Square root transformation, ANOVA, 412	power, 591	chi-square random variable, 107b
Standard error, 149	Transformation(s)	exponential random variable, 106b
Standard normal tensity, 211	for ANOVA, 411–413	gamma random variable, 104b
Standard normal random variable, 99	Transition probabilities, 619	normal random variable, 99b
Standard norms table, 634t Standard pivotal quantity, 215—216	function, 551	poisson random variable, 94b
Standard pivotal quantity, 215–216 Stationary, 619	n-step, 621b	uniform random variable, 97b
Statistic(s)	Treatment variables, 345	Venn diagram, 615, 616f
Samsuo(3)		

Wald—Wolfowitz test. See Randomness test Weibull PDF, 192–194 Wilcoxon rank sum test hypothesis testing procedure, 510b large sample, 511b R code, 521–523 SAS, 527 SPSS, 526
Wilcoxon signed rank test, 647t–652t
hypothesis testing procedure, 500–504
large samples, 503b
Minitab, 523–525
R code, 521–523
Wilcoxon tests vs. normal approximation,
527–528

Wolfowitz, Jacob, 491f World Wide Web, 40

Z

z-score test, 575 Z-transform, 325