

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

What Is Pattern Discovery?

□ What are patterns? การ ตันทา patterns ที่ช่อนอยู่

ลูกด้ามักชื่อ อุปรดู่ กันเรมอ

- Patterns: A set of items, subsequences, or substructures that occur(set of items) frequently together (or strongly correlated) in a data set
- Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples: เอาไปใช่ประโชชน์ อะไรได้ชาง

- Motivation examples: โอาโป โชประ)ชุธน์ มะไร โดชาว สมดังใจที่ลูกด้า มักจะชื่อสู่กันเสมอ ? What products were often purchased together? เพราะ ถึงรันรู้ รุ้งและได้ เพร่งม สินดังที่ ผู้ต่อกไว้เทิงๆก็จ

What are the subsequent purchases after buying an iPad? What code segments likely contain copy-and-paste bugs ? เป็นตัน กรังหลังใน อาจจิดโปรโขชั่นในลูกดัง

What word sequences likely form phrases in this corpus?

อาหามฟ คับนา แบง ข็วไม่เต็มด๊า เช่น

อันทา ซึ่งเร็นบร็อาก patters ไข้านตัว

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

ກາງກາດ ເປັນເວັງ ອີດສາເດ Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
- \square k-itemset: $X = \{x_1, ..., x_k\}$
- □ Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}:
 Frequency or the number of occurrences of an itemset X
 - □ Ex. sup{Beer} = 3 Absolute ไม่ดู้ เมลาให่ ู้ □
 - Ex. sup{Diaper} = 4 ^{↑+∧ ๒๑๐ๅโรก ทั้งพรก}
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

 $\frac{1}{30}$ relative who absolute (relative) support, $s\{X\}$: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

- \Box Ex. s{Beer} = 3/5 = 60%
- \Box Ex. s{Diaper} = 4/5 = 80%
- Ex. s{Beer, Eggs} = 1/5 = 20%

จุกล่า หลาย ต้อ เราตับ กำ ลือได้ เข้าใจการจามมของ Data Mining

Basic Concepts: Frequent Itemsets (Patterns)

An itemset (or a pattern) X is <i>frequent</i>
if the support of X is no less than a
minsup threshold σ,

Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset

All the	freque	ent 1-	items	ets:

□ Beer: 3/5 (60%); Nuts: 3/5 (60%)

□ Diaper: 4/5 (80%); Eggs: 3/5 (60%)

☐ All the frequent 2-itemsets: coffee 2/5 (40%) k-itemsets (patterns) for any k?

□ {Beer, Diaper}: 3/5 (60%)

All the frequent 3-itemsets?

None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

■ Why do these itemsets (shown on the left) form the complete set of frequent

Observation: We may need an efficient method to mine a complete

set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - □ Ex. Diaper → Beer ดนซึ่ง บโด per จะนำไปผู้การซื้อ Beer
 - ☐ Buying diapers may likely lead to buying beers
- ☐ How strong is this rule? (support, confidence)
 - □ Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets
 - □ Support, s: The probability that a transaction contains X ∪ Y
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 D
 - □ Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \square Ex. $c = \sup\{Diaper, Beer\}/\sup\{Diaper\} = \frac{3}{4} = 0.75$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: $\mathbf{X} \cup \mathbf{Y}$: the union of two itemsets

The set contains both X and Y

Mining Frequent Itemsets and Association Rules

hau รายา ตัวงกิมนอ mlsup, พโคเวลาร์ Association rule mining	Tid	Items bought
☐ Given two thresholds: <i>minsup</i> , <i>minconf</i>	10	Beer, Nuts, Diaper
☐ Find all of the rules, $X \rightarrow Y$ (s, c)	20	Beer, Coffee, Diaper
□ such that, $s \ge minsup$ and $c \ge minconf$	30	Beer, Diaper, Eggs
enoigen ornaini z support un controlent asse	40	Nuts, Eggs, Milk
□ Let <i>minsup</i> = 50%	50	Nuts, Coffee, Diaper, Eggs, Milk
 Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3 Freq. 2-itemsets: {Beer, Diaper}: 3 Let minconf = 50% Beer → Diaper (60%, 100%) 	n v	servations: Mining association rules and nining frequent patterns are rery close problems icalable methods are needed or mining large datasets

Efficient Pattern Mining Methods

The Downward Closure Property of Frequent Patterns
The Apriori Algorithm
Extensions or Improvements of Apriori
Mining Frequent Patterns by Exploring Vertical Data Format
FPGrowth: A Frequent Pattern-Growth Approach
Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

Observation: From TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 We get a frequent itemset: {a₁, ..., a₅₀}
 Also, its subsets are all frequent: {a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...
 There must be some hidden relationships among frequent patterns!
 The downward closure (also called "Apriori") property of frequent patterns
 If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 Apriori: Any subset of a frequent itemset must be frequent
 Efficient mining methodology
 If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!?

Apriori Pruning and Scalable Mining Methods

พลิกคร สำ ดิน

- □ Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm—An Example # tildsam millsup = 2 on support roundies One itembet 172 m faitemset of sup & 2 minsup = 2Itemset sup Database TDB **Itemset** sup 2 F_I {A} C_{I} Tid 2 {A} 3 {B} จรได้ยารา ปี แม่ ด้วน 10 3 A, C, D \{B} 3 {C} 1st scan 20 B, C, E \{C} 3 {D} {E} 30 A, B, C, E 3 3 {E} 40 B, E จกนึ้นขกษัช Support+รองเปลาดั **มายาจับ คู่** กับ C_2 แล้วนึง หางหม มาตัดอเก่อ จได้ C_2 Itemset **Itemset** {A, B} F_{2} Itemset sup {A, B} 2 {A, C} 2 {A, C} 2nd scan {A, C} {B, C} 2 {A, E} 1 {A, E} {B, C} 2 {B, E} 3 {B, C} {B, E} 3 {C, E} {B, E} {C, E} 2 ด้งนั้น two itemset ที่น่ามาใจจากตั้ง {C, E} **Itemset** C_3 **Itemset** F_3 3rd scan {B, C, E} {B, C, E} 2

10