Optimal Backward Error and the Leaky Bucket or. Variations on a Theme of Euler

Robert M. Corless

Dept. of Applied Mathematics

rcorless@uwo.ca

SIMIODE
Systemic Initiative for Modeling Investigations and Opportunities with Differential Equations

https://www.youtube.com/watch?v=6cUuNUjlaPI

Data collection: Torricelli's Law

au (s)	h (cm)
10.306	11.20
15.184	10.15
20.265	9.15
25.241	8.20
30.117	7.30
35.402	6.45
40.026	5.70
45.205	4.90
50.286	4.26
55.472	3.60
60.144	3.05
65.425	2.50
70.202	2.05
75.489	1.65

We are neglecting:

- friction/dissipation
- change in momentum of the fluid in the bucket

$$\frac{1}{2}(\rho Ah)\left[\left(\frac{dh}{d\tau}+\Delta\frac{dh}{d\tau}\right)^2-\left(\frac{dh}{d\tau}\right)^2\right]$$

In time, $\Delta \tau$, water level falls $\Delta h.$ Loss of potential energy is

 \therefore kinetic energy of leaking water $=\frac{1}{2}(\rho A\Delta v)v^2$

 $(\rho A \Delta h) h q$

Continuity $\rho A \Delta h = \rho a \Delta v$

$$\therefore \frac{dv}{d\tau} = \frac{A}{a} \frac{dh}{d\tau}$$

$$\therefore gh = \frac{1}{2}v^2 = \frac{1}{2}\left(\frac{A}{a}\right)^2 \left(\frac{dh}{d\tau}\right)^2 \text{ or } \left(\frac{dh}{d\tau}\right)^2 = \left(\frac{a}{A}\right)^2 2gh$$

$$\therefore \frac{dh}{d\tau} = -\left(\frac{a}{A}\right)\sqrt{2g}\sqrt{h}$$

Nondimensionalizing: $y=\frac{h}{H}$ $t=\frac{a}{A}\sqrt{\frac{2g}{H}}\tau$

$$\frac{dy}{dt} = -\sqrt{y} \qquad y(0) = 1 \quad \text{brim}$$

$$\frac{dy}{dt} = -\sqrt{y} \qquad y(0) = 1 \quad \text{brim full}$$

Nondimensionalizing: $y = \frac{h}{H}$ $t = \frac{a}{A} \sqrt{\frac{2g}{H}} \tau$

$$\frac{dy}{dt} = -\sqrt{y}$$
 $y(0) = 1$ brim full

Analytical solution:

$$y = \begin{cases} (\sqrt{y_0} - \frac{t}{2})^2 & 0 \le t \le 2\sqrt{y_0} \\ 0 & 2\sqrt{y_0} \le t \end{cases}$$

- Not Lipschitz continuous at y = 0
- Solutions not unique looking backwards "when was the bucket full?"

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

Take $\Delta t = 1$.

Then $y_1 = 1 - 1 \cdot \sqrt{1} = 0$ and the bucket empties in one step.

Possibly this Δt is too large.

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

Take
$$\Delta t = \frac{2}{1+\sqrt{5}} = 0.618 \cdots$$
.

Then
$$y_1 = 1 - \frac{2}{1+\sqrt{5}}\sqrt{1} = \frac{4}{(1+\sqrt{5})^2}$$

and
$$y_2 = \frac{4}{(1+\sqrt{5})^2} - \frac{2}{1+\sqrt{5}} \cdot \frac{2}{1+\sqrt{5}} = 0.$$

So the bucket empties in **two** steps.

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

Take instead
$$\Delta t = \frac{2}{1+\sqrt{7+2\sqrt{5}}}$$
.

I claim that the bucket empties in three steps.

With
$$\Delta t = \frac{2}{1+\sqrt{9+2\sqrt{7+2\sqrt{5}}+2\sqrt{5}}}$$
, the bucket empties in four steps.

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

Now try $\Delta t = 1/2$:

$$y_1 = 1 - \frac{1}{2}\sqrt{1} = \frac{1}{2}$$

 y_4

$$\sqrt{\frac{1}{2}} \doteq 0.146446$$

$$y_2 = \frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{2}} \doteq 0.146446$$

 $y_3 \doteq -0.04489$ oops, a negative amount of fluid...

$$y_{n+1} = y_n - \Delta t \sqrt{y_n} \qquad y_0 = 1$$

In fact, for almost all choices of Δt , eventually $y_n < \Delta t^2$ for some n; then $y_{n+1} < 0$ and $y_{n+1} \notin \mathbb{R}!$

Forward Euler **generically** terminates this way for this problem.

Backward Euler is much better:

$$y_{n+1} = y_n - \Delta t \sqrt{y_{n+1}} \quad \Leftrightarrow \quad y_{n+1} = \frac{4y_n^2}{(\Delta t + \sqrt{(\Delta t)^2 + 4y_n})^2}$$

- Always > 0 mathematically
- Ultimately $y_{n+1} \propto y_n^2$ (like error in Newton's method)
- Eventually underflows to zero (e.g. $y_n \doteq 10^{-160}$, $y_{n+1} \equiv 0$).

The problem $\dot{y} = -\sqrt{y}$ is indeed stiff for small y.

$$\frac{dz}{dt} = -\sqrt{z(t)}(1 + \delta(t))$$
$$-\frac{1}{z(t)}\frac{dz}{dt} - 1 = \delta(t)$$

$$-\frac{1}{\sqrt{z}}\frac{dz}{dt} - 1 = \delta($$

$$-\frac{1}{\sqrt{z}}\frac{dz}{dt} - 1 = \delta(t)$$

$$\int_{s=t_n}^{t_{n+1}} -\frac{1}{\sqrt{z(s)}}\dot{z}(s) \ ds - \int_{s=t_n}^{t_{n+1}} 1 \ ds = \int_{s=t_n}^{t_{n+1}} \delta(s) \ ds$$

with equality if

$$-\frac{1}{\sqrt{z}}\frac{1}{dt}$$

 $-\frac{1}{\sqrt{z}}\frac{dz}{dt} - 1 = \delta(t)$

 $\delta_n = \frac{2}{\Delta t} (\sqrt{y_n} - \sqrt{y_{n+1}}) - 1.$

 $2\sqrt{y_n} - 2\sqrt{y_{n+1}} - \Delta t = \int_{s-t}^{t_{n+1}} \delta(s) ds$

 $|2\sqrt{y_n} - 2\sqrt{y_{n+1}} - \Delta t| = \Big| \int_{\cdot}^{t_{n+1}} \delta(s) ds \Big| \le \Delta t \cdot \|\delta(t)\|_{\infty}$

The method of modified equations (Griffiths & Sanz-Serna 1986, and also Corless & Fillion 2013)

- Start with a discrete scheme, e.g., $y_{n+1} = y_n \Delta y \sqrt{y_n}$.
- Interpolate with z(t), the solution of a **functional** equation

$$z(t + \Delta t) = z(t) - \Delta t \sqrt{z(t)}.$$

 Convert the functional equation to a singular-perturbed infinite-order ODE by Taylor series:

$$z(t) + \dot{z}(t)\Delta t + \frac{1}{2}\ddot{z}(t)(\Delta t)^{2} + \dots = z(t) - \Delta t\sqrt{z(t)}$$
$$\dot{z}(t) + \frac{1}{2}\ddot{z}(t)\Delta t + \dots = -\sqrt{z(t)}$$

- Truncate, differentiate & substitute to get a (finite order) modified equation.
- Other series operations, e.g. reciprocation, are useful.

Forward Euler: Euler Backward:
$$\left(-\frac{1}{\sqrt{z}} + \frac{\Delta t}{4z}\right)\frac{dz}{dt} = 1 \qquad \left(-\frac{1}{\sqrt{z}} - \frac{\Delta t}{4z}\right)\frac{dz}{dt} = 1$$
 Both accurate to
$$O(\Delta t)^3$$
 Solutions:
$$2\sqrt{y_0} - 2\sqrt{z(t)} \pm \frac{\Delta t}{4}\ln\left(\frac{z(t)}{y_0}\right) = t$$

$$z(t) \to 0^+ \quad \Leftrightarrow \quad t \to \infty \text{ if } -\text{ sign is used.}$$

$$z(t) o 0^+ \quad \Leftrightarrow \quad t o \infty \ ext{if } - ext{sign is used}.$$

Back to the physics

Two "refinements" to the model (the first from Blasone et al., EJP, 2015, 36, "Discharge time of a cylindrical leaking bucket")

$$h\frac{d^2h}{d\tau^2} \ + \frac{1}{2}\left(1-\left(\frac{A}{a}\right)^2\right)\left(\frac{dh}{d\tau}\right)^2 + gh = 0$$
 correction for difference in velocity top to bottom correction for accelerating the fluid in the bucket itself

or a crude dissipation model (friction \propto velocity):

$$gh = \frac{1}{2}v^2 - \varepsilon v \quad \Rightarrow \quad -\left(\frac{\sqrt{\mu^2 + y}}{y} + \frac{\mu}{y}\right)\frac{dy}{dt} = 1 \qquad \mu = \frac{\varepsilon}{\sqrt{2gH}}$$

up to $O(\mu^2)$, similar in form to Backward Euler with $\mu=\Delta t/4$.

$$h\ddot{h} - \frac{1}{2}\beta\dot{h}^2 + gh = 0$$
 $h(0) = H, \dot{h} = 0$ (unmotivated)

Blasone et al. say "solve this numerically"

(Argh! Irreproducible science)

(Argh! Irreproducible science) (Still not Lipschitz cts at h=0)

$$h\ddot{h} - \frac{1}{2}\beta\dot{h}^2 + gh = 0$$
 $h(0) = H, \dot{h} = 0$ (unmotivated)

We can solve this analytically! (by Maple)

Take
$$y = \frac{h}{H}$$
 and $t = \sqrt{\frac{2g}{(\beta - 1)H}}\tau$.

$$\frac{dy}{dt} = -\sqrt{y - y^{\beta}} \qquad \beta = \left(\frac{A}{a}\right)^{2} - 1$$

$$\frac{1}{dt} = -\sqrt{y} - y^{\beta} \qquad \beta = \left(\frac{1}{a}\right) - 1$$

$$\Rightarrow t + 2\sqrt{y}F\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2(\beta - 1)} \\ 1 + \frac{1}{2(\beta - 1)} \end{array} \middle| y^{\beta - 1}\right) - 2F\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2(\beta - 1)} \\ 1 + \frac{1}{2(\beta - 1)} \end{array} \middle| 1\right)$$

Discharge time (y=0) at

 $t_e = 2F\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2(\beta-1)} \\ 1 + \frac{1}{2(\beta-1)} \end{array} \right| 1\right) \sim 2 + 2\ln 2\frac{1}{\beta} + O(\frac{1}{\beta^2})$

 $\dot{y} = \sqrt{y - y^{\beta}}$ is indistinguishable from $\dot{y} = -\sqrt{y}$.

Typically $\beta \sim 10^4$ ish; for y < 0.999, $y^{\beta} < 10^{-11}$ and so

Concluding remarks:

ullet Can 'close off' modified equations by seeking optimal backward error δ_n such that

$$\left(-\frac{1}{\sqrt{z}} - \frac{\Delta t}{4z}\right) \frac{dz}{dt} = 1 + \delta_n(t) \qquad z(t_n) = y_n, z(t_{n+1}) = y_{n+1}$$

Numerical solution is the exact solution of

$$\left(-\frac{1}{\sqrt{y}} - \frac{\Delta t}{4y}\right) \frac{dy}{dt} = 1 + \delta_n(t) \qquad t_n \le t \le t_{n+1}$$

Typically, δ_n is piecewise constant, $O(\Delta t)^3$ in size.

 The numerical error has been put on the same footing as modelling error.

- Forward Euler introduces "negative dissipation" or energy injection — of course the bucket will empty faster if you shake it.
- The model equations are very bad when y is small. We'd be
- better with "thin film" theory (uses lubrication theory), so numerical errors here are hardly more significant.

• If adaptive stepsizes used, $\Delta t_n \to 0$ as the solution approaches empty. "That's a feature, not a bug."

Thanks!

Acknowledgements Julia E. Jankowski, Robert Moir, and Nic Fillion