Negation (¬)

Chaitanya LEENA
SUBRAMANIAM
"Dr. C"/"Dr. L.S."
(subbing for
Mike SHOLMAN)

What is the logical operator?	
If P is a statement,	then TP is one too.
7P is read "not P"	
7P is true when P is	not true
Truth table of -P:	

Example (i)
$$P = "3$$
 is an even number"

$$\neg P = "3 \text{ is not an even number}"$$
(2) $x \in Birds = "x \text{ is a bird}"$

$$P(x) = "x \text{ can fly}"$$
(a) $\neg (\forall x \in Birds, P(x)) = "\text{not all birds can fly}"$

(b)
$$\forall x \in Birds, \neg P(x) = "no bird can fly"$$

Properties of

1) 7 is a unary operator

("whenever P is a statement, 7 P is a statement")

unlike The binary operators V, A, =>

("whenever P and Q are statements, PAQ is a statement")

Analogy: ¬P is like the negative number -3

$$\neg A \lor B = (\neg A) \lor B$$

Analogy:
$$-3+5 = (-3)+5$$

$$\neg B \land \neg C = (\neg B) \land (\neg C)$$

Analogy:
$$-3 \times -5 = (-3) \times (-5)$$

$$7A \Rightarrow 7B = (7A) \Rightarrow (7B)$$

Analogy:
$$-(-3) = 3$$

How to prove 7P "Assume P and prove 1

Why in Olorin, the box [] 7P 7P

Looks exactly like [] 7P 1

Consequence: So to prove 77P, we assume 7P and we prove 1. Since 77P = P, This gives us the mathematical principle of PROOF BY CONTRADICTION "To prove any mathematical statement P, it's enough to assume -1P and arrive at a contradiction."

In Latin: "reductio ad absurdum" In Olorin: P

Example: N2 is irrational Proof: Assume that 12 is vational. So $\sqrt{2} = \frac{m}{n}$ where m and n are integers whose greatest common divisor is 1 So $(\sqrt{2})^2 = m^2$, i.e. $m^2 = 2n^2$ so 2 divides m², but this means 2 divides m i.e. m = 2a. So $(2a)^2 = 2n^2$, i.e. $4a^2 = 2n^2$, i.e. $n^2 = 2a^2$ so 2 divides both m and n -> a contradiction!
Hence $\sqrt{2}$ is irrational.

How to use 7P

"If we know IP and we know P, then we have L"

In Olorin, 7P-/7 — 1 Looks like $P \Rightarrow Q = P \Rightarrow Q$

Algebra of negation (De Morgan's)
$$\frac{1}{1}(P \vee Q) = \frac{1}{1}P \vee \frac{1}{1}Q$$

$$\frac{1}{1}(P \wedge Q) = \frac{1}{1}P \wedge \frac{1}{1}Q$$

$$\frac{1}{1}P \wedge \frac{1}{1}Q$$

$$\frac$$

 $\neg \left(\exists x \in A, P(x) = \forall x \in A, \neg P(x) \right)$

Example: I irrational numbers a and b such that ab is rational. JaeA, JyeA, P(z,y) Proof. Assume the negation $\forall x \in A, \forall y \in A, \neg P(x,y)$ i.e. for every irrational a and b, a is irrational. Since we know $\sqrt{2}$ is irrational, let $a = b = \sqrt{2}$. Then $(\sqrt{2})^{1/2}$ is irrational. Hence $((\sqrt{2})^{\sqrt{2}})^{\sqrt{2}}$ is irrational. But $((\sqrt{2})^{\sqrt{12}})^{N2} = (\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$ which is a rational number. Thus we have a contradiction. Mence we condude FreA, Fly