

Рисунок 2 — Схема прямого прикосновения в системе TN

Рисунок 3 — Схема прямого прикосновения при замыкании фазы ${\it C}$ на землю

Расчет напряжения прикосновения:

По экспериментальным результатам проведем анализ условий опасности заземления корпусов при непрямом прикосновении. Экспериментальные результаты представим в таблице 2. Расчет напряжения прикосновения произведем по формуле (1). Схему непрямого прикосновения представим на рисунке 4.

Таблица 2 – Значения параметров при непрямом прикосновении к заземленному корпусу

Значения сопротивлений					Напряжения корпусов и фаз относительно земли					
R_A , кОм	R_{B} , кОм	R_C , кОм	R_{3a3} , Om	$R_{\scriptscriptstyle \rm 3AM}$, OM	$U_{\scriptscriptstyle A01}, \mathrm{B}$	$U_{{\scriptscriptstyle B}01},{ m B}$	U_{C01} , B	U_{K1}, U_0, B	$U_{{\scriptscriptstyle K2}},{ m B}$	U_{K3}, U_h, \mathbf{B}
150	150	150	-	-	25	26	23	0	0	25
150	150	150	-	4	11	36	33	14	14	11
150	150	150	-	100	23	28	24	2	2	22

Расчет напряжений прикосновения:

Рисунок 4 – Заземление корпусов при непрямом прикосновении

1. По экспериментальным результатам проведем анализ принципа действия зануления. Экспериментальные результаты представим в таблице 3. Схему действия принципа зануления изобразим на рисунке 5.

Таблица 3 – Значения параметров при наличии зануления

Значения сопротивлений					Напряжения корпусов и фаз относительно земли					
R_A , кОм	R_{B} , кОм	R_C , кОм	R_{3a3} , Om	$R_{_{3\mathrm{aM}}}$, OM	$U_{\scriptscriptstyle A01}, \mathrm{B}$	$U_{{\scriptscriptstyle B}01},{ m B}$	U_{C01} , B	U_{K1}, U_0, \mathbf{B}	$U_{{\scriptscriptstyle K2}},{ m B}$	U_{K3}, U_h, \mathbf{B}
150	150	150	-	-	0	0	0	0	0	0

Рисунок 5 – Схема работы принципа зануления

По полученным данным для K-1 и K-2, мы подтвердили что зануление действительно работает. Также измерили напряжение прикосновения и напряжение на фазах, они равны нулю.

2. По экспериментальным результатам проведем анализ условий опасности зануления корпусов при непрямом прикосновении. Рассмотрим три возможных случая. Экспериментальные результаты представим в таблице 4. Схему случая обрыва нулевого провода или неверной установки выключателя представим на рисунке 6. Схему обрыва цепи при наличии замыкания на землю представим на рисунке 7.

Таблица 4 – Значения параметров при непрямом прикосновении к зануленному корпусу

Значения сопротивлений					Напряжения корпусов и фаз относительно земли					
R_A , кОм	R_{B} , кОм	R_C , кОм	R_{3a3} , Om	$R_{\scriptscriptstyle \rm 3AM}$, OM	$U_{\scriptscriptstyle A01}, \mathrm{B}$	$U_{{\scriptscriptstyle B}01},{ m B}$	U_{C01} , B	U_{K1}, U_0, \mathbf{B}	$U_{{\scriptscriptstyle K2}},{ m B}$	U_{K3}, U_h, \mathbf{B}
150	150	150	-	-	26	26	22	15	15	-
150	150	150	-	-	26	26	22	0	0	-
150	150	150	-	-	26	26	22	0	22	-
150	150	150	-	-	30	30	16	5	11	-
150	150	150	100	1	43	43	0	22	22	-
150	150	150	100	-	28	28	18	3	3	-

Рисунок 6 — Схема обрыва нулевого провода или неправильной установки в нем выключателя нагрузки

При введении повторного заземления нулевого провода уменьшается опасность поражения на зануленных корпусах в период замыкания фазы на корпус. В случае обрыва — уменьшает напряжение.

Рисунок 7 — Схема обрыва цепи заземления нейтрали источника при наличии замыкания фазы на землю

При введении повторного заземления напряжение уменьшилось.

вывод:

Лабораторная работа позволила изучить различные сценарии однофазного прикосновения человека к электрооборудованию и оценить степень их опасности.

Прямое однофазное прикосновение: Этот тип прикосновения опасен из-за воздействия полного фазного напряжения, поскольку низкое сопротивление рабочего заземления нейтрали (4 Ом) делает напряжение прикосновения практически равным фазному напряжению и слабо зависящим от сопротивления тела человека относительно

земли. Ток, протекающий через тело и рабочее заземление, может достигать опасных значений.

	U_{np}, B	I _{h,} мA
Переменный:		
50 Гц	2	0,3 (0,5)
400 Гц	3	0,4
Постоянный	8	1,0

Замыкание фазы на землю: В этом случае напряжение прикосновения может превышать фазное, что делает этот режим более опасным по сравнению с прямым прикосновением.

Эффективность защитного заземления: При использовании защитного заземления, соответствующего нормативным требованиям (Rзаз = 4 Oм), напряжение прикосновения можно снизить максимум вдвое. Однако, если заземление выполнено на элементы со случайной связью с землей и высоким сопротивлением (Rзаз = 100 Oм), то напряжение прикосновения практически не отличается от фазного.

Замыкание фазы на корпус зануленного приемника: В такой ситуации возникает короткое замыкание (Ікз) по контуру "фаза-ноль", что должно приводить к немедленному срабатыванию защиты и обесточиванию цепи.

Неправильная установка защиты: Если установка максимальной токовой защиты выбрана некорректно, ток короткого замыкания (Ікз) может оказаться недостаточным для срабатывания защиты. В этом случае поврежденный электроприемник не отключается, напряжение остается на корпусе, а также появляется опасное напряжение на

нулевом проводе и на корпусах других, исправных электроприемников. Прикосновение к нулевому проводу в такой ситуации становится крайне опасным.

Обрыв заземления нейтрали: В случае обрыва заземления нейтрали источника и одновременного замыкания фазы на корпус, на нулевом проводе и на корпусах всех исправных электроприемников появляется опасное, высокое напряжение. Подключение повторного заземления создает контур "фаза-земля-Rповт-ноль", что приводит к снижению напряжения на нулевом проводе и корпусах.

Обрыв нулевого провода: В случае обрыва нулевого провода, наступает нарушении симметрии напряжений на фазах (напряжения начнут значительно отличаться друг от друга). Также будет непредсказуемое распределение токов, что может вызвать перегрузку отдельных фаз, что приведет к срабатыванию защиты.