数据结构—C++实现

沈俊

jshen@shu. edu. cn

上海大学 计算机工程与科学学院

2021年12月

第1章 绪论

- ◆(算法+数据结构)=程序
- ◆数据结构的基本概念
- ◆算法性能与复杂度

1.1 (算法+数据结构)=程序

图灵奖获得者N. Wirth给出过一个著名的公式:

算法+数据结构=程序

(算法+数据结构)=程序

1.2 数据结构的基本概念

表 1-1 人事登记表↓

编号₽	姓名₽	性别↩	出生日期。	婚否₽	基本工资₽
0001↩	王 军₽	男	1960/5/30₽	ì	650₽
0002₽	李 平↩	女	1953/6/2₽	ù	710₽
0003₽	周丽娟₽	女₽	1948/7/8₽	₽	980₽
0004₽	赵忠良↩	男	1950/12/2₽	₽	950₽
0005₽	张国庆₽	乳	1978/10/1₽	未~	500₽
ļρ	.3.	<u>.</u>	.3.	<u></u>	

1.2 数据结构的基本概念

数据 数据元素 数据项 数据对象 数据结构 逻辑结构 物理结构

1.3 算法性能与复杂度

- 一个算法应当具有以下特性:
- (1) 输入性
- (2) 输出性
- (3) 确定性
- (4) 有穷性
- (5) 有效性

1.3 算法性能与复杂度

评价算法性能的标准:

- (1) 正确性
- (2) 可用性
- (3) 可读性
- (4) 效率
- (5) 健壮性

算法的时间复杂度

```
for (i=0; i<n; i++)

for (j=0; j<n; j++) {

C[i, j]=0;

for (k=0; k<n; k++)

C[i][j]=C[i][j]+a[i][k]*b[k][j];
}
```

该算法的时间复杂度为O(n³)

算法的时间复杂度

```
(1) x = x + 1
                                 O(1)
(2) for (i=1; i < = n; i++)
                                 O(n)
         x=x+1
(3) for (i=1; i < =n; i++)
         for (j=1; j <= n; j++)
              x=x+1
                                 O(n^2)
```


算法的时间复杂度

有2^{T(n)}≤n,即有T(n)≤log₂n,所以O(log₂n)

算法的空间复杂度

空间复杂度(Space Complexity)作为算法所需存储空间的量度,记作: S(n)=O(f(n))

