

PROBLEM STATEMENT:

With the development of quantum computing, current cryptographic systems, such as the BLS signatures used in Ethereum's proof-of-stake, will no longer be secure.

As BLS relies on the discrete logarithm problem in elliptic curve groups, while being infeasible to solve with classical computers, quantum computers can solve DLPs using Shor's algorithm, allowing us to compute BLS private keys from public keys in effective time.

The paper "Hash-Based Multi-Signatures for Post-Quantum
Ethereum" proposes an alternative based on quantum resistant cryptographic hash functions that remain secure as they do not rely on elliptical curves for security.

Although researchers have created a Rust based proof of concept, it is heavily plagued with performance and compatibility issues. This project aims to implement the scheme in C to maximise on chain performance and compatibility, serving as a successor for Ethereum's current BLS security.

OUR TEAM:

Achintha Namaratne	z5413821
Sam Marinovich	z5480700
Yifei Jia	z5665143
Zihan Xu	z5489858
Jinye Hu	z5513840

HASH-BASED MULTI-SIGNATURES FOR POST-QUANTUM ETHEREUM

By Quantum Shield

TENTATIVE TIMELINES

Week	ltem
Week 5	Analysing the initial paper and further research on the topic.
Week 6	Designing and coding our C based implementation using pre-existing hashing libraries with proven security such as, Libkeccak.
Week 7	
Week 8	Benchmarking using Supercop and final design verification using Valgrind.
Week 9	Complete and finalise our findings in the report
Week 10	Buffer to account for any unexpected issues

RESPONSIBILITIES

Team member	Role
Achintha Namaratne	Base implementation
Sam Marinovich	Algorithm Optimizations
Jinye Hu	Performance Optimizations
Yifei Jia	Testing and Performance Evaluation
Zihan Xu	Reporting