Foundations of Data Science and Machine Learning – *Homework 5*Isaac Martin

Last compiled April 12, 2023

EXERCISE 1. Suppose **A** is a $n \times d$ full-rank matrix, with n < d, and fix $\mathbf{b} \in \mathbb{R}^n$. Consider minimizing the least squares objective $F(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ Note that in this setting, the solution space $\mathcal{S} = \{x : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ is an affine subspace of \mathbb{R}^d . We use gradient descent with constant step-size:

$$\mathbf{x} = \mathbf{x}_{k-1} - \eta \nabla F(\mathbf{x}_{k-1}).$$

- (a) Give an upper bound for the step-size η such that gradient descent is guaranteed to converge for η below this threshold.
- (b) Suppose that gradient descent is initialized at $\mathbf{x}_0 = 0$. Show that when gradient descent converges, it must converge to the least-norm solution $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathcal{S}} \|\mathbf{x}\|_2^2$.

Proof:

(a) In class, we showed that if ∇F is Lipschitz with Lipschitz constant L, then choosing $\eta=1/L$ guarantees the convergence of gradient descent. In particular, any $\eta \leq 1/L$ will guarantee the convergence of gradient descent, so we need only find L. We have

$$\|\nabla F(\mathbf{x}) - \nabla F(\mathbf{y})\|_2 = \|2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) - 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{y} - \mathbf{b})\|_2$$
$$= \|2\mathbf{A}^{\top}\mathbf{A}(\mathbf{x} - \mathbf{y})\|_2$$
$$\leq 2\|\mathbf{A}^{\top}\mathbf{A}\| \cdot \|\mathbf{x} - \mathbf{y}\|_2$$

where $\|\cdot\|$ denotes the operator norm. Hence choosing $\eta \leq (2\|\mathbf{A}^{\top}\mathbf{A}\|)^{-1}$ will guarantee the convergence of gradient descent for any initialization.

(b) Let us first prove the hint, namely, that if $\mathbf{x} \in \operatorname{img} \mathbf{A}^{\top}$ (i.e. if \mathbf{x} is in the rowspan of \mathbf{A}) then so is $A\mathbf{x} - \eta \nabla F(\mathbf{x})$. Suppose then that $\mathbf{x} = \mathbf{A}^{\top} \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$. Then

$$\mathbf{y} = \mathbf{A} \cdot \mathbf{A}^{\top} \mathbf{u} - \nabla F(\mathbf{A}^{\top} \mathbf{u}) = \mathbf{A} \cdot \mathbf{A}^{\top} \mathbf{u} - \nabla 2 A^{\top} (\mathbf{A} \mathbf{A}^{\top} \mathbf{u} - \mathbf{u})$$

$$= \mathbf{A}^{\top} u - 2 \eta \mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{u} - 2 \mathbf{A}^{\top} \mathbf{b}$$

$$= \mathbf{A}^{\top} \left(\mathbf{u} - 2 \eta \mathbf{A} \mathbf{A}^{\top} \mathbf{u} - 2 \mathbf{b} \right) \implies \mathbf{y} \in \operatorname{img} \mathbf{A}^{\top}.$$

Because the update rule is continuous and the image of affine linear transformations is closed, we can further conclude that an initialization \mathbf{x}_0 is in the rowspan of \mathbf{A} if and only if the point \mathbf{x}^* it converges to is in the rowspan of \mathbf{A} , provided η is chosen small enough to guarantee convergence.

Now we prove that any two points initialized in the rowspan of \mathbf{A} converge to the same point. Take $\mathbf{x}_0 = \mathbf{A}^\top \mathbf{u}_0$ to be an initialization for some $\mathbf{u}_0 \in \mathbb{R}^n$. By what we have previously shown, $\mathbf{x}^* = \mathbf{A}^\top \mathbf{u}^*$ for some $\mathbf{u}^* \in \mathbb{R}^n$, supposing we have chosen η to be small enough. Since \mathbf{x}^* is a stable point of the

update rule, we get that $\nabla F(\mathbf{x}^*) = 0$ and hence

$$\nabla F(\mathbf{A}^{\top}\mathbf{u}^{*}) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\top}\mathbf{u}^{*} - \mathbf{b}) = 0$$

$$\implies \mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\top}\mathbf{u}^{*} - \mathbf{b}) = 0$$

$$\implies \mathbf{A}^{\top}\mathbf{u}^{*} - \mathbf{b} = 0$$

since \mathbf{A} is full rank with n < d (so $\ker A^{\top} = 0$). This means $\mathbf{u}^* = (\mathbf{A}\mathbf{A}^{\top})^{-1}\mathbf{b}$, noting that the inverse $(\mathbf{A}\mathbf{A}^{\top})^{-1}$ exists again because \mathbf{A} is fully rank with n < d. Using this expression for \mathbf{u}^* gives us that $\mathbf{x}^* = \mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\top})^{-1}\mathbf{b}$, which notably does not depend on the initialization, implying that any two points initialized in the rowspan of \mathbf{A} converge to the same point.

Finally, consider two different initialization $\mathbf{y}_0 \in \mathbb{R}^d \setminus \operatorname{img}(A^\top)$ and $\mathbf{x}_0 \in \operatorname{img}(A^\top)$. As before, $\mathbf{x}_0 = \mathbf{A}^\top \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$. Since \mathbf{y}_0 is not in the rowspan of \mathbf{A} , the stable point \mathbf{y}^* of the update rule to which \mathbf{y}_0 converges is also not in $\operatorname{img}(\mathbf{A}^\top)$. Hence $\mathbf{y}^* = \mathbf{A}^\top \mathbf{u}^* + \mathbf{v}$ for some $\mathbf{v} \notin \operatorname{img} \mathbf{A}^\top$, where \mathbf{u}^* is as above. The stability condition $\nabla F(\mathbf{y}^*) = 0$ gives us $\mathbf{A}\mathbf{A}^\top \mathbf{u}^* + \mathbf{A}\mathbf{v} - \mathbf{b} = 0$ repeating the calculation from the last paragraph. But $\mathbf{A}\mathbf{A}^\top \mathbf{u}^* - \mathbf{b} = 0$, so $\mathbf{A}\mathbf{v} = 0$. This means

$$\|\mathbf{y}^*\|_2^2 = (\mathbf{A}^\top \mathbf{u}^* + \mathbf{v})^\top (\mathbf{A}^\top \mathbf{u}^* + \mathbf{v})$$

$$= \mathbf{u}^\top \mathbf{A}^\top \mathbf{A} \mathbf{u} + \mathbf{u}^\top \mathbf{A} v + (\mathbf{A} \mathbf{v})^\top \mathbf{u} + \mathbf{v}^\top \mathbf{v}$$

$$= \mathbf{u}^\top \mathbf{A}^\top \mathbf{A} \mathbf{u} + 0 + 0 + \mathbf{v}^\top \mathbf{v}$$

$$\geq \mathbf{u}^\top \mathbf{A}^\top \mathbf{A} \mathbf{u}$$

$$= \|\mathbf{x}^*\|_2^2.$$

Thus, $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{S}} \|\mathbf{x}\|_2^2$. Any point in the rowspan of \mathbf{A} converges to \mathbf{x}^* under the update rule; in particular, the initialization $\mathbf{x}_0 = 0$ converges to \mathbf{x}^* , proving the desired result.

Exercise 2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. It satisfies the PL-inequality if there exists a constant $\mu > 0$ such that for all $w \in \mathbb{R}^d$ it holds

$$\frac{1}{2} \|\nabla f(w)\|_2^2 \ge \mu(f(w) - f^*).$$

By contrast we say f is *invex* if there exists a function $\eta: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ such that for all $x, y \in \mathbb{R}^d$ it holds

$$f(y) \ge f(x) + \nabla f(x)^{\top} \eta(x, y).$$

- (a) Show that if f satisfies the PL-inequality then f is invex.
- (b) Show that any stationary point of an invex function is a global minimizer.

Proof:

(a) Since f satisfies the PL-inequality, for some $\mu>0$

$$\frac{1}{2} \|\nabla f(w)\|_2^2 \ge \mu(f(w) - f^*)$$

for all $w \in \mathbb{R}^d$, where f^* is the global minimum of f. Rearranging, we get

$$\frac{1}{2} \|\nabla f(w)\|_2^2 \ge \mu(f(w) - f^*)$$

$$\implies \nabla f(w)^\top \nabla f(w) \ge 2\mu f(w) - 2\mu f^*$$

$$\implies -\nabla f(w)^\top \nabla f(w) \le 2\mu f^* - 2\mu f(w) \le f(w) \le 2\mu f(u) - 2\mu f(w)$$

for any $w, u \in \mathbb{R}^d$, since f^* is the global minimum of f. This in turn implies that

$$2\mu f(w) - \nabla f(w)^{\top} \nabla f(w) \le 2\mu f(u),$$

so if we set $\eta(x,y) = -\frac{1}{2\mu} \nabla f(x)$ then we get

$$f(x) = \nabla f(x)^{\top} \cdot \eta(x, y) \le f(y)$$

for all $x, y \in \mathbb{R}^d$. This proves that f is invex.

(b) A point x is a stationary point of f if $\nabla f(x) = 0$. If f is invex, then we get

$$f(y) \ge f(x) + \nabla f(x)^t op\eta(x, y) = f(x)$$

for all $y \in \mathbb{R}^d$. Hence any stationary point of f is a global minima. Combining with part (a) we see that any function which satisfies the PL-inequality is easily optimized.

Exercise 3. In your favorite programming language, implement stochastic gradient-descent for the linear least squares loss $f(\mathbf{w}) = \frac{1}{2} \|\mathbf{A}\mathbf{W} - \mathbf{b}\|_2^2$. Provide convergence plots to validate the convergence guarantees for SGD discussed in class. Specifically, compare empirical and theoretical convergence rates when $\mathbf{A} \in \mathbb{R}^{10,000 \times 1,000}$ has iid $\mathcal{N}(0, 1/\sqrt{1000})$ Gaussian entries and $\mathbf{b} = \mathbf{A}\mathbf{1} + \varepsilon$ where $\mathbf{1}$ is the all-ones vector and ε has iid Gaussian antries with variance 1, then 0.1, then 0.01 and finally 0. Repeat the comparisons but now consider $\mathbf{A} \in \mathbb{R}^{10000 \times 1000}$ whose jth row has iid $\mathcal{N}(0, 1/\sqrt{1000j})$ Gaussian entries. (Note your answer should include 8-plots, because there are two choices of \mathbf{A} and four different choices of ε .)

EXERCISE 4. Consider a three-state Markov chain with stationary probabilities $(\frac{1}{2}, \frac{1}{3}, \frac{1}{6})$. consider the Metropolis-Hastings algorithm with G the complete graph on these three vertices. For each edge and each direction, what is the expected probability that we would actually make a move along the edge?

Proof: Recall that the Metropolis transition probabilities are

$$p_{xy} = \frac{1}{r} \min\left(1, \frac{\pi(y)}{\pi(x)}\right)$$

if x and y are distinct but adjacent and

$$p_{xx} = 1 - \sum_{y \neq x} p_{xy}.$$

Let a, b and c be the vertices of the graph. Then

$$p_{ab} = \frac{1}{2} \frac{2}{1} \cdot \frac{1}{3} = \frac{1}{3}$$

$$p_{ac} = \frac{1}{2} \frac{2}{1} \cdot \frac{1}{6} = \frac{1}{6}$$

$$p_{aa} = 1 - \frac{1}{3} - \frac{1}{6} = \frac{1}{2}.$$

The other transition probabilities are

$$p_{ba} = \frac{1}{2}, \quad p_{bc} = \frac{1}{4}, \quad p_{bb} = \frac{1}{4}$$

and

$$p_{ca} = \frac{1}{2}, \quad p_{cb} = \frac{1}{3}, \quad p_{cc} = \frac{1}{6}.$$

EXERCISE 5. Consider the probability distribution $p(\mathbf{x})$ where $\mathbf{x} \in \{0,1\}^{100}$ such that $p(0) = \frac{1}{2}$ and $p(\mathbf{x}) = \frac{1/2}{2^{100}-1}$. How does Gibbs sampling behave here?

Proof: The Gibbs transition probabilities are given by

$$p_{xy} = \begin{cases} \frac{1}{d}\pi(y_i \mid x_1,...,\hat{x}_i,...,x_d) & \text{ if } \mathbf{x} \text{ and } \mathbf{y} \text{ differ only in } i \\ 0 & \text{ otherwise} \end{cases}.$$

Let \hat{e}_i denote the element of $\{0,1\}^{100}$ whose ith component is 1 and is 0 elsewhere. We have three cases to examine.

If we are currently at 0, then

- there is a $\frac{1}{100} \frac{\frac{1/2}{2^{100}-1}}{\frac{1}{2} + \frac{1/2}{2^{100}-1}} \approx \frac{1}{100} \cdot \frac{1}{2^{100}-1}$ chance of moving to \hat{e}_i for any $i \in \{1, ..., 100\}$. Altogether, we have a 1 in $2^{100} 1$ chance of leaving 0 at all.
- We have a $1 \frac{1}{2^{100} 1} \approx 1$ chance of remaining at zero.

Hence, if we ever reach 0 then we will stay at zero, since $2^{100} - 1$ is a huge number.

If we are currently at \hat{e}_i , then we

- have a $\frac{1}{100} \frac{1/2}{\frac{1}{2} + \frac{1/2}{2^{100} 1}} \approx \frac{1}{100}$ chance of moving to 0.
- have a $\frac{1}{100} \frac{\frac{1/2}{2^{100}-1}}{\frac{1/2}{2^{100}-1} + \frac{1/2}{2^{100}-1}} \approx \frac{1}{200}$ chance of moving to some other nonzero point, of which there are 99 adjacent to \hat{e}_i giving us an approximately $\frac{1}{2}$ chance point of moving to a point which is not 0

• have an approximately $1-\frac{1}{100}-\frac{1}{2}=\frac{1}{2}-\frac{1}{100}$ chance of remaining at \hat{e}_i .

If we are currently at $\mathbf{x} \neq \hat{e}_i, \mathbf{0}$, then we

- have a $\frac{1}{100} \frac{\frac{\frac{1}{2}100}{2^{100}-1}}{\frac{\frac{1}{2}12}{2^{100}-1} + \frac{1}{2^{100}-1}} \approx \frac{1}{200}$ chance of moving to any individual neighbor of \mathbf{x} , or altogether a 1 in 2 chance of leaving \mathbf{x} to *some* other point
- have an $1-100\cdot\frac{1}{200}\approx\frac{1}{2}$ chance of remaining at x.

If we initialize a random walk on G at $\mathbf{0}$ then we will remain there functionally forever. If we initialize it at any other point, then we have a $\frac{1}{2}$ chance to leave and a $\frac{1}{2}$ chance to remain. The situation is slightly different at a point neighboring $\mathbf{0}$, where we have twice the chance of transitioning to $\mathbf{0}$ than to any other point. Thus, a random walk on G will visit a variety of points, transitioning to a new point every 2 steps on average, unless it reaches $\mathbf{0}$, in which case it will remain there indefinitely. However, the chance of reaching $\mathbf{0}$ from a random initialization is just as small as the chance of leaving $\mathbf{0}$, since there are 2^{100} points in total.