Blockchain Security Challenges and Solutions

B. RAMAMURTHY

©2025, ALL RIGHTS RESERVED

Fulbright Scholar 2025-26

Manning author: **Blockchain in action**

PROGRAM DIRECTOR, DATA-INTENSIVE COMPUTING PROGRAM

COURSERA INSTRUCTOR (Blockchain, DeFi)

DIRECTOR, BLOCKCHAIN THINKLAB

HTTP://WW.CSE.BUFFALO.EDU/FACULTY/BINA

COMPUTER SCIENCE AND ENGINEERING

Wallet Address (Ethereum): bina.eth

https://www.linkedin.com/in/bina-ramamurthy/

Introducing myself

Been in Buffalo, NY, USA for more than 40 years!

Ph.D. in Computer Engineering: Fault tolerance in distributed systems

Faculty at CSE and University at Buffalo (UB) for the past 3 decades

Launched a 4-courses certification on blockchain on Coursera MOOC (2018)

--More than 400,000 learners and 1,000,000 visitors from all over the world

Launched Decentralized Finance (DeFi) – a 3-course certification (2024).

Funding: National Science Foundation ((> 1 million), SUNY IITG, industrial

And private donations.

IEEE Region 1 Outstanding Teacher Award (2022)

Author of a technical book: <u>Blockchain in Action</u> (Manning.com)

Author of Blockchain, Cryptocurrency and DeFi (World Scientific)

Fulbright Scholar

- Now I am Fulbright Scholar at St. Polten University of Applied Science
- Expanding on my deep involvement in
- Blockchain, Cryptocurrency and Decentralized Applications.

Plan for the talk

- What is a blockchain? Why should you care?
- Blockchain ecosystem and its security challenges
- Subset of challenges facing participants
- Solutions to address these challenges

- ■We will discuss the above items with examples.
- ■My goal is to provide the audience of this talk with actionable takeaways from this talk.

Technical level of the talk

User/participant level

- Application level
- Code /programming level
- Algorithmic / Fundamental Protocol level

However, if you have any questions do not hesitate to ask me.

What is a blockchain? Structurally ...

Where is it stored? Here is just one node in a blockchain network of nodes.

Bitcoin¹ and Ethereum² are two leading blockchain protocols.

How to establish **trust?** Consider Hotel check in:

- 1. You arrive at the check-in counter.______
 Show your ID.
- 2. You show your reservation.
- з. Then you provide your credit card. _____

- 2. Check in clerk VERIFIES the reservation by looking it up on a database or ledger.
- 3. The clerk VALIDATEs the credit card and RECORDs it in the database or the ledger for the payment.

4. Hands the keys and shows you to your room.

Trust Intermediation

That's what a blockchain protocol and distributed ledger do. Verify Record Verify Validate

■ Verify ■ Validate ■ Record

Security Risk Analysis

Security Challenges

- Security challenges exists at various levels of the blockchain stack.
- User level
- Wallet level
- Application level
- Smart contract level
- Protocol level : Consensus

Wallet Artifacts (software wallet)

- A software wallet has cryptographically generated items called accounts, and it has a strong foundation in cryptography.
- It connects to **blockchain networks** (recall it is portal or entry point to the blockchain networks)

It has:

- Accounts: accounts identified by account numbers or decentralized identifiers (DelDs)
- Each account has a balance of cryptocurrency
- User specified password to lock the wallet
- Each account has underlying private key and public key (key-pair cryptography)
- Secret recovery phrase to generate, regenerate and recover a wallet.

Blockchain Wallet Security Challenges

- Here are some important practical challenges:
- 1. It is a **self-custody** wallet: you install it, you generate its account numbers and manage their balances.
- You set the wallet password that you will have to remember and recall. There is no "central" authority that can resend the password information.
- There is a **secret recovery phrase** (of 12 words for Ethereum) that can be used to repopulate/ regenerate the wallet if you forget the password.
- 4. Wallet has the **private keys** of the accounts, and these keys must be secured. If you give away the private key of an account, the account may be compromised.

39% of fraudulent loss³ is due to phishing attacks for private keys or recovery phrase.

Wallet security Solutions

- Now you have/know about 4 items of a wallet: account number, password, secret recovery phrase, and private keys.
- You can give the account number to anyone if they need it. This may be to transact with you.
- You set the password, and do not give way the password. If you forget the
 password to a wallet, you can "regenerate" the wallet using secret recovery
 phrase and reset a new password. But if you cannot recall the secret recovery
 phrase, your wallet and its contents are lost forever.
- Secret recovery phrase is an inherent and defining property of a wallet.
 Created cryptographically. Do not give away to anybody or embed the secret key phrase in code.

Wallet Security

- You as a decentralized participant is responsible for the security of the "password", "secret recovery phrase" and the "private keys".
- And "self-custody" of these wallet artifacts.
 - For the security of the wallet do not reveal these items to others.
- Here is my crypto wallet that I have using since 2017. My DeID is 0x3e6937bb87A66E3A4DbE5488A4863f5b29674cC3 and on Ethereum Namespace (ENS): bina.eth

Sample Wallet

I have a full chapter describing wallet details in my recent book:
 Blockchain, Cryptocurrency, and Decentralized Finance^{4.}

Blockchain Smart Contract Security Challenges

- Securing a smart contract is much more complex.
- Let's begin by understanding what is a smart contract.
- It is a piece of code: The format of the code is in object-oriented class and is called "contract".
- A smart contract class defines (i) data and (ii) functions.
- It is NOT compute-intensive code: but it codifies policies and rules.
- So, it is a gatekeeper, whereas a wallet is a gate!
- It is the "brain" or the "control center" of blockchain applications.
- Challenge: it is a piece of code: it can have bugs like any other code, it can be written to be malicious, it can result in "rug pulls". It is immutable once deployed.
- So how to address smart contract security problem?

Smart contract Security Solutions

- Code only what is needed lean coding techniques.
- No dynamic or large data structures. ...
- Smart contract has an address and can hold cryptocurrency balance and transfer it.
- Focus on secure coding practices.
- Security audits of smart contract help in checking the code if it does what it is expected to do. This is a big industry now.
 - Especially, Check the crypto transfer functions and policies controlling it.

Summary

- We learned about the blockchain structure and purpose and functions.
- We reviewed security from a participant point of view: at a high level.
- We examined wallet level, application level and smart control level security.
- We touched upon protocol level security with consensus algorithm.
- Depending on the level of the blockchain stack you are interested in, please explore the references provided.
- Understanding how to secure their wallets, participate in network decisions, and protect their digital assets.

References

- 1. <u>S. Nakamoto</u>, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf, 2008.
- 2. https://www.bankless.com/read/the-secs-project-crypto-is-uniquely-bullish-ethereum
- 3. https://www.certik.com/resources/blog/hack3d-the-web3-security-report-2024
- 4. B. Ramamurthy and K. Madurai. (2025). World Scientific Publishers. https://www.worldscientific.com/worldscibooks/10.1142/12818
- 5. B. Ramamurthy.(2020) <u>Blockchain in Action</u>, Manning Publications.