G1) Want to show
$$P(x>mtn \mid x>m) = P(x>n)$$
 for $X \sim Leom(p)$.

For x , $P(x=k) = (1-p)^{k-1}p$.

() Find $P(x>n)$. $P(x>n) = 1-P(x\leq n)$

Geometric CP^+ : $P(x\leq n) = 1-(1-p)^n$ so $P(x>n) = 1-(1-(1-p)^n)$

This inabos sense as for # of-times to be $= (1-p)^n$.

(i) Find $P(x>mtn \mid x>m)$.

(i) Find $P(x>mtn \mid x>m)$.

P(x>mtn | x>m) = $P(x>mtn \mid x>m)$
 $P(x>mtn \mid x>m) = P(x>mtn \mid x>m)$
 $P(x>mtn \mid x>m) = P(x>mtn \mid x>m)$

Using result from (i), $P(x>mtn \mid x>m) = P(x>mtn)$.

Using result from (i), $P(x>mtn \mid x>m) = P(x>mtn)$.

We have shown $P(x>mtn \mid x>m) = P(x>mtn) = (1-p)^m$

we have shown $P(x>mtn \mid x>m) = P(x>mtn) = (1-p)^m$

we have shown $P(x>mtn \mid x>m) = P(x>mtn) = (1-p)^m$

For first prize drawn, will definitely be new type, so $P(x>mtn) = P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For first prize drawn, will definitely be new type, so expected # of hoes to get new type $P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For third prize, there is $P(x>mtn \mid x>m) = P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For third prize, there is $P(x>mtn \mid x>m) = P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For third prize, there is $P(x>mtn \mid x>m) = P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For third prize, there is $P(x>mtn \mid x>m) = P(x>m) = P(x>m) = P(x>m) = P(x>m) = P(x>m)$

For third prize, there is $P(x) = P(x>mtn \mid x>m) = P(x>m) =$

E Lin type = $\frac{n}{n-(k-1)}$

Scanned with CamScanner

Q3)a) (I) ven parameter λ for Posson distribution is the average rate of tomadoes in a specified time interval, i.e. a year, then $\lambda = 0.03 \times 365 = 10.95$.

b) For $X \sim P_{0.3}(x)$, $P(X=k) = \frac{\lambda^{x}e^{-\lambda}}{x!}$ where x is the # of events observed. so . For $X \sim P_{0.3}(10.95)$, $P(X=12) = \frac{10.95^{12}e^{-10.95}}{2} \sim P_{0.109}$.

For $X^{n}P_{03}(10.95)$, $P(X=12) = \frac{10.95^{12}e^{-10.95}}{12!}$ $X_{12}P_{0.109}$. () $P(X=11) = \frac{10.95^{12}e^{-10.95}}{11!}$ $X_{0.119}P_{0.119}P_{0.119} = \frac{10.95^{10}e^{-10.95}}{10!}$ $X_{0.120}$. So more likely to observe exactly to tornadoes in 365 days.

Q4a) For Binomial Distribution, X & Binom (100, 0.08) & Y & Binom (100, 0.15)

b) We can approximate the Binomial Distribution with Poisson for large $n = 100 \times 10^{-1}$ small p values where $\lambda = 10^{-1}$ so, $\lambda_x = 100 \times 0.08 = 8$, $\lambda_y = 100 \times 0.15 = 15$, thus $\lambda_z = \lambda_x + \lambda_y = 8 + 15 = 223$.

c) To find
$$P(\overline{t}=20)$$
 for $\lambda_{\overline{t}}=23$, $P(\overline{t}=20)=\frac{13^{20}e^{-23}}{20!}$ $\frac{1}{20!}$ $\frac{1}{20!}$ $\frac{1}{20!}$

d) For Binomial Pistribution, Var(X)=np(1-p)

Var(x) + Var(y) = 20.11

For ROLLAN X ~ Pois (1), Var(x) = 1, so Var(2) = 23.

Variance using Poisson distribution is larger than the sum of variances of XZY.

Intuitive Explanation:

-Pobson is just an approximation when it is large & p is small. It does give good approximation but variance of combined variable Z=X+Y assumes all variance is due to Poisson occurrence itself, without considering seperate X ZY variances.

-ie, Poisson en approximation to binomial tends to slightly overestimate variance when aggregating multiple binomial variables because it captures overall event rate (1) without distinguishing between sources of variance.

Scanned with CamScanner

Find probability B wins. B was if B gets 3 treats before A gets 6 heads.

ie B has to see 3 tails within next 8 flips. If Player B wms on the both

k # of thes	Probability & wins on the 1th flip	
0	0	
1	0	
2	0	
3	$\left(\frac{1}{2}\right)^3$	$= (\frac{1}{2})^3$
1 H 3 T MM 4	(1) × (1) × (1) × (1) × (1) × (1) ×	(2)4
2H 3T/194	$\binom{4}{2}$ × $(\frac{1}{2})^2$ × $(\frac{1}{2})^2$ × $(\frac{1}{2})^2$	$= 6 \times (\frac{1}{4})^5$
6 3H3T	(5) × (½) × (½) × (½)	$= (0 \times (\frac{2}{4})^{4})$
4437	場(も)×(元)4×(元) ×(元) ×(元) ×(元)	$= (5 \times (\frac{c}{2})^7)$
5H37 8	(5) x(1) 5 x (1) 2 x (1).	$=21\times\left(\frac{1}{2}\right)^{8}$

Probability of B winning is a Pr(B wins on both flip) from the OSK <8.

This sum equates to
$$(1+\frac{3}{2}+\frac{6}{4}+\frac{10}{8}+\frac{15}{16}+\frac{21}{32})\times(\frac{1}{2})^3\approx0.855$$

SO P(B win) = 0.855 and thus P(A win)=1-0.855=0.145
Thus Player & should get 0.855×\$100=\$85.5 and
Player A should get 0.145×\$100=\$14-5
Was for the split.

Scanned with CamScanner