

REDES DE DATOS Introducción

Jhon Jairo Padilla Aguilar PhD. Ingeniería Telemática

Modelo de Comunicaciones Simplificado

(a) General block diagram

(b) Example

Jhon Jairo Padilla Aguilar Redes de Datos

Network Interface Card (NIC)

NIC

NIC celular

Modelo de Comunicaciones de datos simplificado

Codificación de bits

Técnicas de modulación digital

Transmisión síncrona y asíncrona

- Existe un problema de sincronización a nivel de bit y otro a nivel de trama
- Dos soluciones
 - Comunicación Asíncrona
 - Comunicación Síncrona

Comunicación Asíncrona

- Los datos se transmiten en forma de caracteres y se transmite uno a la vez
 - -5 to 8 bits
- Se requiere mantener la temporización sólo para un caracter
- Se resincroniza con el siguiente caracter

Comunicación Asíncrona

(a) Character format

(b) 8-bit asynchronous character stream

(c) Effect of timing error

Características comunicación asíncrona

- Simple
- Barata
- Sobrecarga de 2 o 3 bits por caracter (~20%)
- Bueno para datos con mucho tiempo entre ellos (teclado)

Comunicación síncrona

- Orientada a bits
- No hay bits de parada ni de inicio
- Métodos de sincronización de relojes
- Línea de reloj separada
 - Bueno para distancias cortas (es costosa)
- Señal de reloj implícita en la señal de datos
 - Uso de código manchester
 - Enviar una portadora de sincronismo (analógica)

Sincronización a nivel de trama

- Se usan preámbulo y postámbulo para inidicar inicio y final de trama
- Ejemplos
 - series de caracteres SYN (hex 16)
 - Patrones 11111111 para inicio y patrones 11111110 al final
- Más eficiente para tramas largas

Trama en comunicación síncrona

8-bit	Control	77	Control	8-bit
flag	fields	Data Field	 fields	flag

11

Modelo de Red Simplificado

Jhon Jairo Padilla Aguilar Redes de Datos

Tipos de redes según su cobertura

Fijas

Jhon Jairo Padilla Aguilar Redes de Datos

Redes de Area Local (LAN/MAN)

- Cobertura pequeña (empresa)/mediana(ciudad)
- Pertenece a una empresa
- Altas Velocidades de transmisión internas.
- Usan difusión en lugar de conmutación
- Tipos: Bus, estrella, anillo, árbol, inalámbricas

Redes de Area amplia (WAN)

- Redes públicas
- Cubren grandes zonas geográficas
- Compuestas por dispositivos de conmutación
- Tipos:
 - Conmutación de circuitos
 - Conmutación de paquetes:
 - Retransmisión de tramas (Frame Relay)
 - Retransmisión de celdas (ATM)
 - Multi-Protocol-Label-Switching (MPLS)

Internet

- Compuesta por muchas redes LAN y WAN
- Cubre todo el planeta

Organización de Internet

Tipos de Redes según el medio de transmisión

Alambradas (Fijas)

 Inalámbricas: (Fijas y Móviles)

Fibra Optica

Precios ESO PRI Proto De DOS 205 Fabruary 2009

Infrarrojo

Enlaces Radio

Jhon Jairo Padilla Aguilar

Redes de Datos

Topología de redes Fijas

Topología de bus

Topología de anillo:

Topología en estrella

Topología en Estrella jerárquica

Topología en Malla

Topologías en redes inalámbricas móviles Redes sin infraestructura (ad-hoc)

Redes con infraestructura

Tendencias de las Telecomunicaciones

Evolución Telecomunicaciones

Rango años	Tipos de redes/servicios	Forma de transmisión	Característic as adicionales
Hasta los 70's	TV, radio	Analógica	
	Telefonía	Analógica, Cx de circuitos	
	Datos	Aparición de Arpanet	
Años 80's	TV, radio	Analógica	
	Telefonía Fija + Datos	Digital, Cx de paquetes (X.25)	
	1G Telefonía celular	Analógica, Cx de circuitos	
Años 90's	TV, radio	Analógica	
	Telefonía Fija + Datos (Internet)	Digital, Cx de paquetes (FR, ATM)	Multimedia, concepto QoS
	2G Telefonía celular	Digital, Cx de circuitos	
Años 00's	Radio	Analógica, Digital (Internet)	
	TV	Analógica, Digital	
	3G, 4G Telefonía celular	Digital, cx de circuitos/paquetes	
	Nuevas redes de acceso inalámbricas (Internet)	Wi-Fi, WiMAX, WMESH	
	Telefonía (VoIP) + Datos (Internet) + TV	Digital, Cx de paquetes (FR, ATM, MPLS)	Arquitecturas de QoS en Internet

Tendencias (Número de suscriptores)

Evolución: Redes tradicionales

Servicios
Transporte & Acceso

Evolución: Redes emergentes

Redes Actuales

- Redes de TV Digital
- Redes de telefonía celular digitales (3G, 3.5G, 4.5G, 5G)
- Acceso a Internet:
 - Banda Ancha (xDSL)
 - Redes Inalámbricas: Wi-Fi, Wi-MAX, Celulares 4G y 5G
- Un proveedor ofrece tres servicios (Triple Play)
- Servicios:
 - VoIP
 - Video llamada
 - Multimedia
 - Web
 - E-mail

Access Transport & Switching Networks

Redes NGN

- NGN: Next Generation Networks
- Consiste en la interconexión de todo tipo de redes (Pero esto es una Internet....)
- Redes de Acceso fijas y móviles....pero eso ya existe....
- Aspectos novedosos:
 - El protocolo de Interconexión es IPv6
 - Se permite la movilidad de los usuarios para pasar de una red de acceso a otra sin perder continuidad en la comunicación (Hasta ahora se pierde la conexión)
 - Integra todo tipo de servicios (VoIP, IPTV, web, e-mail, FTP, etc) sobre el protocolo IPv6 (Esto requiere soporte de QoS)

Upfwers*deré Permi fa Bolitæri mer

Redes NGN: Movilidad Total + Redes MultiServicio

Evolución redes móviles

Evolución de la Telefonía Móvil

- * La información de velocidades es bajo ciertas características técnicas (Cantidad de espectro, usuarios conectados, SNR, modulación, etc.)
- * Los gráficos de terminales móviles son referenciales. La información de años corresponde a su primer despliegue comercial.
- *Información referencial simplificada para efectos prácticos.

Evolución de las redes Móviles

3G vs 4G

HOW 3G COMPARES TO 4G ACROSS A

Evolución redes móviles

Redes Móviles 5G

- 5G adelanta un verdadero mundo inalámbrico Wireless-World Wide Web (WWWW).
- Velocidad 1 a 10 Gbps.
- Ancho de Banda 1.000x ancho de banda por unidad de superficie.
- Frecuencia 3 a 300 GHz
- Tecnologías de multiplexación / Access CDMA y BDMA
- Estándares banda ancha IP LAN / WAN / PAN & WWW
- Características: rendimiento de tiempo real de respuesta rápida, de baja fluctuación, latencia y retardo
- Muy alta velocidad de banda ancha velocidades de datos Gigabit, cobertura de alta calidad, multi espectro
- Infraestructura virtualizada Software de red definido, sistema de costes escalable y bajo.
- Soporta Internet de las Cosas y M2M 100 veces más dispositivos conectados, Cobertura en interiores y eficiencia de señalización
- Reducción de alrededor del 90% en el consumo de energía a la red.
- Su tecnología de radio facilitará versión diferente de las tecnologías de radio para compartir el mismo espectro de manera eficiente.

Evolución Aplicaciones móviles

Analog Voice

Human-to-Human Early Mobile Phones **Digital Voice**

Low-Speed Data Voice and Some Text **Mobile Broadband**

High-Speed Data Internet Access

Faster/Better 3G

IP-Based Network High-Speed Internet, Streaming, Apps Interconnected Devices, Sensors, and Systems

For Consumers, Governments, and Businesss

Accelerating the expansion of 5G

New services, deployments, and spectrum bands

Continued eMBB enhancements, e.g., mobility, coverage, more

Unlicensed spectrum across all use cases

New spectrum above 52.6 GHz

More capable, flexible IAB

3GPP Rel-17

NR-Light for wearables, industrial sensors, and enhanced massive IoT

Positioning with cm-level accuracy

Extended reality

Enhancements to 5G NR IIoT

Expanded sidelink, e.g., V2X reliability, P2V

Rel-15 deployment learning, others

Continue to enhance the eMBB foundation

Foundational areas

Coverage, capacity, latency,

Expanded deployments

New spectrum, topologies,

New services

Latency, reliability, positioning,

Dedicated and reliable networks optimized for local services

Scalable wireless connectivity on a future proof platform

Capabilities for new use cases e.g. wireless Industrial Ethernet

3GPP Rel-16 Foundation

Private 5G network

Licensed, shared and unlicensed spectrum

Ultra-reliable low-latency communication (URLLC)

Time Sensitive Networking (TSN)

Positioning

Continued enhancements in 3GPP Release 17 to better support industrial IoT requirements

Evolving 5G NR positioning to fully meet 5G requirements

Rel-17 will expand on the LTE and 5G NR Rel-16 foundation

Tendencias en aplicaciones

Elementos funcionales IPTV

Cloud, Fog, Edge Computing

Objetivos:

Disminuir Retardos, Distribuir capacidad de procesamiento, Disminuir tráfico hacia los servidores centrales.

Internet of Things- IoT

IoT: Domótica

Jhon Jairo Padilla Aguilar Redes de Datos

IoT: Domótica

Jhon Jairo Padilla Aguilar Redes de Datos

IoT: Building Management Systems (BMS)

IoT: Building Management Systems (BMS)

INTEGRATED BUILDING MANAGEMENT SYSTEM ARCHITECTURE

IoT: Smart Cities

CITY CONNECTIVITY INFRASTRUCTURE

NEXT-GEN INFRASTRUCTURE

CITY DIGITAL INFRASTRUCTURE

CITY DIGITAL SECURITY INFRASTRUCTURE

DIGITAL ENABLING LEVERS

IoT: Smart Cities

Smart City: Multi-Layered Architecture

IoT: Smart Farming

IoT: Smart Farming

Closing the cyber-physical management cycle

Redes de Datos Industriales

