

Kryptologie

Klasická kryptografie: Substituční šifry I

Strategický projekt UTB ve Zlíně, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002204

Obsah prezentace

- Monoalfabetické šifry.
 - Pevný posun
 - Reverzní abeceda (ATBASH)
 - Náhodná abeceda
 - Lineární posun
 - Substituce s klíčovým slovem
- Polyalfabetické šifry.
 - Vigenerova šifra
- Homofonní substituční šifry.
- o Další přístupy pro ztížení prolomení substitučních šifer.

1. Monoalfabetické šifry

Monoalfabetické šifry: Pevný posun

Např. Caesarova šifra – příklad dle [1]

a	b	U	đ	e	f	g	h	i	j	k	l	m	r	0	p	q	r	S	t	3	>	W	X	y	Z
D	E	F	G	I		J	K	L	M	N	0	Ρ	Q	R	S	Т	כ	>	W	X	Y	Z	Α	В	С

- Posun (rotace) abecedy o zvolený počet míst (1-25).
 - Caesarova pouze o 3.
- Alternativně lze zahrnout do "utajení" i směr rotace abecedy.
- **Klíčem** je tedy velikost posunu *d* a směr rotace.
- Pozor nezaměnit s transpoziční šifrou sice se jedná o posun, nikoliv ale o transpozici znaků v textu, nýbrž v rámci substituční abecedy.

Monoalfabetické šifry: Pevný posun

- Šifry jsou označovány jako ROT(d), tedy Caesarova šifra je ROT3
- Velmi známým dalším příkladem je šifra ROT13 dochází zde k zrcadlení abecedy.

Algoritmizace šifry:

- Převedeme znaky na indexy 0 25 a aplikujeme jednoduchý vztah:
 (znak +d) mod 26.
- Jednoduché přičtení posunu d k ASCII kódu znaku (s kontrolou horní a spodní hranice rozsahu abecedy.
- Namapování vektorů abecedy OT a ŠT.

Monoalfabetické šifry: Reverzní abeceda (ATBASH)

šifra ATBASH [1]

a	b	U	đ	e	f	b 0	h	•	j	k	l	m	n	0	p	T	r	Ŋ	t	3	>	W	X	y	Z
Z	Y	X	W	٧	כ	–	S	R	Q	Ρ	0	Z	M	ا	K	–		Ι	G	L	Е	D	С	В	Α

- Nejstarší známá monoalfabetická šifra.
- Prostá reverze substitučních abeced
- Nemá klíč klíčem je samotný princip (název)
- Algoritmizace většinou namapováním abeced nebo algebraricky.

Monoalfabetické šifry: Náhodná abeceda

26! možností (4.03x10²⁶)

- Substituční abeceda je vytvořena jako jakákoliv náhodná permutace.
- Obrovský prostor možností abeced, což by z principu znemožnilo útok hrubou silou = zkoušení všech možností (permutací).
- Teoreticky zahrnuje i všechny zde uvedené příklady.
- o Není klíč klíčem je v podstatě znalost substituční abecedy [1].

Monoalfabetické šifry: Lineární posun

ax+b mod 26 neboli lineární posun

a	b	C	đ	e	f	g	h	i	j	k	l	m	n	0	p	q	r	S	t	3	V	w	X	y	Z
F		ل	0	R	J	X	Α	D	G	7	M	Ρ	S	>	Y	В	ш	Ξ	K	Z	Q	Z	W	Z	С

- Substituční abeceda je vytvořena jednoduchým vztahem.
- Klíčem jsou konstanty a,b.
- Při dešifrování je nutno dbát ohled na mod operaci tedy dokud nezískám při zpětném šifrování celé kladné číslo, je nutné inkrementovat hodnotu znaku o 26 (někdy i opakovaně). Alternativně opět namapovat vektory abeced.
- Zde uvedený příklad a = 3, b = 5 (indexy znaků 0 25) [1].

Monoalfabetické šifry: Substituce s klíčovým slovem

- o Další jednoduchý systém.
- o Nutno použít klíčové slovo, které obsahuje unikátní znaky (neopakující se).
- Klíčové slovo se napíše na začátek abecedy ŠT, dále se pokračuje výpisem abecedy s tím, že se přeskakují již použité znaky v klíčovém slově.
- o Není jednoznačná algoritmizace, mimo namapování vektorů.
- Příklad dle [1].

Frekvenční analýza

Statistická analýza četnosti znaků.

Jaká byla použita šifra?

Frekvenční analýza

Statistická analýza četnosti znaků.

CAESAROVA ŠIFRA – posun o 3 znaky "vpravo"

Frekvenční analýza

- Pomocí frekvenční analýzy lze rozhodnout zda se jedná o transpoziční či substituční systém.
- V případě substituce vede rychle k "prolinkování" abeced. I když je prostor možností obrovský (viz náhodná abeceda – tedy 26! a útok hrubou silou je prakticky nemožný), díky přímé substituci statistických vlastností je luštění poměrně rychlé a efektivní.
- V případě transpoziční šifry odpovídá analýza OT přesně analýze ŠT prosté "přeházení znaků nemá vliv na celkovou četnost.

2. Polyalfabetické šifry

Polyalfabetická šifra (Vigenérova)

- Založena na 26 monoalfabetických substitucích (v podstatě na 26 pevných posunech 0 - 25).
- Využívá klíčové slovo.
- o Klíčové slovo řídí používání (střídání) jednotlivých substitucí.
- Pro šifrování i dešifrování je nutná tabulka Vigenerův čtverec tzv. "Tabulka Recta" [1].

Polyalfabetická šifra (Vigenérova): Princip

 Vzhledem k symetričnosti tabulky a jednoznačné relaci na monoalfabetickou šifru platí i jednoduchý vztah pro rychlou algoritmizaci:

$$ŠT = (OT + klič) \mod 26$$

Dešifrování je pak jednoduchý proces:

$$OT = (ŠT - klíč) \mod 26$$

Polyalfabetická šifra (Vigenérova): Princip

- o Klíčové slovo se periodicky opakuje po celou délku OT.
- Hledáme průsečíky v Tabulce mezi znakem OT a znakem klíče (nebo použijeme jednoduchý vzorec).
- Frekvenční analýza není možná bez speciální a pracné celkové analýzy šifry.
 Musíme znát délku klíče a posléze provést náročnou n-násobnou frekvenční analýzu.

Polyalfabetické šifry - Vigenerova šifra: Příklad

Vigenerův čtverec (tabulka recta)

Příklad

KEY = střídání tří "monoalfabetických substitucí"

OT:	\equiv	ш	ш	\Box	0	Η		M
Klíč:	K	Ш	Υ	K	Ε	Υ	K	Ш
ŠT:	R	_	J	٧	S	R	S	0

3. Homofonní substituční šifry

Homofonní Substituce

- Homofonní substituce Je vylepšená monoalfabetická šifra, protože umožňuje šifrovat jedno písmeno z otevřené abecedy několika různými způsoby.
- Například písmeno "a" může být v ŠT zastoupeno několika různými symboly, čímž luštiteli efektivně znemožníme použití jednoduché frekvenční analýzy.

Homofonní Substituce: Příklad

Otevřený text: LAKOMÁ LOKOMOTIVA

O SUBSTITUČNÍ TABULKA:

A:	10 15 17	K: 18
0:	11 27 30	M: 07 54
l:	26	T: 01
L:	33 34	V: 09

- Šifruje se tak, že:
 - o za A je na výběr 10, 15, 17 => zvolí se třeba 17
 - za L 33 nebo 34 => zvolí se třeba 33
 - o a tak se postupuje až do konce.
- Šifrovaný text: 33 17 18 27 07 10 34 11 18 30 54 27 01 26 09 10

4. Další přístupy v substitučních šifrách

Ostatní Substituce - Nomenklátory a klamače

- Vybraným frekventovaným slovům se přiřadí speciální symbol. Tato kódová slova se nazývají nomenklátory [1].
- Klamač (nula) je dalším ztížení šifry, tyto znaky totiž nemají žádný význam, slouží pouze pro zmatení nepřítele [1].
- o Další komplikace, která stíží analýzu je použití úmyslně zkomoleného textu [1].

Ostatní Substituce - Nomenklátory a klamače

Příkladem může být šifra Marie Stuartovny [2]:

Seznam odkazů

- [1] HANŽL, Tomáš, Radek PELÁNEK a Ondřej VÝBORNÝ. Šifry a hry s nimi: kolektivní outdoorové hry se šiframi. Praha: Portál, 2007. ISBN 978-80-7367-196-9.
- [2] SINGH, Simon. Kniha kódů a šifer: tajná komunikace od starého Egypta po kvantovou kryptografii. 2. vyd. v českém jazyce. Přeložil Dita ECKHARDTOVÁ, přeložil Petr KOUBSKÝ. Praha: Dokořán, 2009. Aliter (Argo: Dokořán). ISBN 978-80-7363-268-7.

Děkuji za pozornost

Strategický projekt UTB ve Zlíně, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002204