Model-theoretic Semantics: Names and verbs

Models

A model M for predicate logic is an ordered pair $\langle U, \llbracket \cdot \rrbracket \rangle$, in which:

- U is a a nonempty set of individuals:
- $[\![\cdot]\!]$ is an interpretation function.

Ling-exp \longrightarrow $\llbracket \cdot \rrbracket$ \longrightarrow some object built from U

A sample model

 $U = \{a, b, c\}$

a: a girl named Ada

b: a girl named Becky

c: a girl named Cindy

Facts

- a, b and c are girls.
- a and b danced, but c didn't.
- a saw b, but b didn't see a.
- c saw a, and a saw c, too.
- a and c are Americans, but b is a British.

Names

[Ada] = a

[Beckv] = b

 $\llbracket \text{Cindv} \rrbracket = \mathsf{c}$

Type e

Intransitive verbs

 $\llbracket \text{dance} \rrbracket = \{x \mid x \text{ dances}\} = \{\mathsf{a}, \mathsf{b}\} \subseteq U$

Characteristic functions

$$[dance] = \begin{vmatrix} a & \cdots & 1 \\ b & \cdots & 0 \end{vmatrix}$$

Type $e \rightarrow t$

Transitive verbs

 $[see] = {\langle x, y \rangle \mid x \text{ saw } y}$ $= \{ \langle \mathsf{a}, \mathsf{b} \rangle, \langle \mathsf{c}, \mathsf{a} \rangle, \langle \mathsf{a}, \mathsf{c} \rangle \} \subseteq U \times U$

Characteristic functions

Characteristic functions
$$\begin{bmatrix} \langle \mathsf{a},\mathsf{b}\rangle & \to 1 \\ \langle \mathsf{a},\mathsf{c}\rangle & & \\ \langle \mathsf{c},\mathsf{a}\rangle & & \\ \langle \mathsf{c},\mathsf{a}\rangle & & \\ \langle \mathsf{c},\mathsf{c}\rangle & & \\ \langle \mathsf{b},\mathsf{c}\rangle & \to 0 \end{bmatrix} = \begin{bmatrix} \mathsf{a} & \to & \begin{bmatrix} \mathsf{a} & 1 \\ \mathsf{b} & & \\ \mathsf{c} & & 0 \end{bmatrix} \\ \mathsf{b} & \to & \begin{bmatrix} \mathsf{a} & \to & 1 \\ \mathsf{b} & & \\ \mathsf{c} & \to & 0 \end{bmatrix} \\ \mathsf{b} & \to & \begin{bmatrix} \mathsf{a} & \to & 1 \\ \mathsf{b} & & \\ \mathsf{c} & \to & 0 \end{bmatrix} \end{bmatrix}$$
Type $e \to e \to t$

Type $e \rightarrow e \rightarrow t$

Combination

Becky

Functional Application

$$\frac{f :: a \to b \qquad x :: a}{f(x) :: b}$$

- 1. [Ada danced] = [danced]([Ada])
- 2. [Ada saw Becky] = [saw]([Becky])([Ada])

Formal concepts

Set "a collection of distinct objects, considered as an object in its own right" (thanks wiki) Defining sets

- Extensionally: {a, b, c}
- Intensionally: $\{x \mid x \text{ is a girl}\}$

Empty set: \emptyset or $\{\}$

Relations between sets

- Proper subset: $A \subset B$ iff $A \subseteq B$ and $B \not\subseteq A$
- Equivalence: A = B iff $A \subseteq B$ and $B \subseteq A$
- Superset: $B \supseteq A$ iff $A \subseteq B$

Power sets $\wp(A) = \{B \mid B \subseteq A\}$

Pairs $\langle a, b \rangle \neq \langle b, a \rangle$ n-tuples $\langle a, b, c, ... \rangle$

Relations as sets of pairs (Cartesian products)

$$A \times B := \{ \langle x, y \rangle \mid x \in A \text{ and } y \in B \}$$

Function any relation where each input is paired with at most one output

injection

bijection

surjection

Type a 'name tag' of a set (D_e, D_t)

Basic types: e (individuals); t (truth values)

Function types: $a \rightarrow b$

Currying

'In mathematics and computer science, **currying** is the technique of converting a function that takes multiple arguments into a sequence of functions that each take a single argument.'

(thanks wiki)

Given a function $f:(X\times Y)\to Z$,

currying constructs a new function: $h: X \to Y \to Z$

NB: The operation **currying** is named after Haskell Curry, an American mathematician and logician,

Exponential notation of functions $f \in Y^X$

Given $X = \{a, b, c\}$ and $Y = \{1, 0\}$,

- 1. For each x in X, there are two mappings from $\{x\}$ to Y $S_{\mathsf{a}} = \{[\mathsf{a} \mapsto 1], [\mathsf{a} \mapsto 0]\}; \quad S_{\mathsf{b}} = \{[\mathsf{b} \mapsto 1], [\mathsf{b} \mapsto 0]\}; \quad S_{\mathsf{c}} = \{[\mathsf{c} \mapsto 1], [\mathsf{c} \mapsto 0]\}$
- 2. Possible functions from X to Y:

$$\begin{bmatrix} \mathsf{a} \mapsto 1, \\ \mathsf{b} \mapsto 1, \\ \mathsf{c} \mapsto 0 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 1, \\ \mathsf{b} \mapsto 0, \\ \mathsf{c} \mapsto 0 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 0, \\ \mathsf{b} \mapsto 0, \\ \mathsf{c} \mapsto 0 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 1, \\ \mathsf{b} \mapsto 1, \\ \mathsf{c} \mapsto 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{a} \mapsto 1, \\ \mathsf{b} \mapsto 0, \\ \mathsf{c} \mapsto 1 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 0, \\ \mathsf{b} \mapsto 1, \\ \mathsf{c} \mapsto 1 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 0, \\ \mathsf{b} \mapsto 0, \\ \mathsf{c} \mapsto 1 \end{bmatrix} \quad \begin{bmatrix} \mathsf{a} \mapsto 0, \\ \mathsf{b} \mapsto 1, \\ \mathsf{c} \mapsto 0 \end{bmatrix}$$

- 3. The total number of the functions $X \mapsto Y$ is: $2 \times 2 \times 2$
- 4. $|Y^X| = |Y|^{|X|} = 2^3$

$$\begin{aligned} \textbf{Proof of Currying} \quad |Z^{(X \times Y)}| &= |Z|^{|X \times Y|} & |Z^{(X \times Y)}| &= |Z|^{|X \times Y|} \\ &= |Z|^{|X| \times |Y|} & = |Z|^{|X| \times |Y|} \\ &= (|Z|^{|Y|})^{|X|} & = (|Z|^{|X|})^{|Y|} \\ &= |(Z^Y)^X| & = |(Z^X)^Y| \end{aligned}$$

Currying *n*-ary relations

$$[\![see]\!] = \left[\begin{array}{c} \langle \mathsf{a}, \mathsf{b} \rangle \mapsto 1, \\ \langle \mathsf{a}, \mathsf{c} \rangle \mapsto 1, \\ \langle \mathsf{a}, \mathsf{a} \rangle \mapsto 0, \\ \langle \mathsf{b}, \mathsf{a} \rangle \mapsto 0, \\ \langle \mathsf{b}, \mathsf{c} \rangle \mapsto 0, \\ \langle \mathsf{b}, \mathsf{b} \rangle \mapsto 0, \\ \langle \mathsf{c}, \mathsf{a} \rangle \mapsto 1, \\ \langle \mathsf{c}, \mathsf{b} \rangle \mapsto 0, \\ \langle \mathsf{c}, \mathsf{c} \rangle \mapsto 0 \end{array} \right]$$

Turning n-ary relations to n-place functions

$$\begin{bmatrix} \mathbf{a} \mapsto \begin{pmatrix} \mathbf{a} \mapsto 0, \\ \mathbf{b} \mapsto 0, \\ \mathbf{c} \mapsto 1 \end{bmatrix} \\ \mathbf{b} \mapsto \begin{bmatrix} \mathbf{a} \mapsto 1, \\ \mathbf{b} \mapsto 0, \\ \mathbf{c} \mapsto 0 \end{bmatrix} \\ \mathbf{c} \mapsto \begin{bmatrix} \mathbf{a} \mapsto 1, \\ \mathbf{b} \mapsto 0, \\ \mathbf{c} \mapsto 0 \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a} \mapsto \begin{pmatrix} \mathbf{a} \mapsto 0, \\ \mathbf{b} \mapsto 0, \\ \mathbf{c} \mapsto 0 \end{bmatrix} \\ \mathbf{c} \mapsto \begin{bmatrix} \mathbf{a} \mapsto 1, \\ \mathbf{b} \mapsto 0, \\ \mathbf{c} \mapsto 0 \end{bmatrix} \end{bmatrix}$$

Right to Left

Left to Right

Model-theoretical Semantics: Connectives

Connectives

Negation: Tom didn't leave.

Conjunction: Tom danced and Andy sang.

Disjunction: Tom danced or Andy sang.

Conditional: If Andy sang, then Tom danced.

Truth table

p	q	$p\vee q$	p	q	$p \wedge q$	p	q	$p \to q$
1	1	1	1	1	1	1	1	1
1	0	1	1	0	0	1	0	0
0	1	1	0	1	0	0	1	1
0	0	0	0	0	0	0	0	1

p	$\neg p$	\overline{p}	q	$p \leftrightarrow q$
1	0	1	1	1
0	1	1	0	0
		0	1	0
		0	0	1

Meaning

$$[\![\mathrm{and}]\!] = \begin{bmatrix} 1 \mapsto \begin{bmatrix} 1 \mapsto 1 \\ 0 \mapsto 0 \end{bmatrix} \\ 0 \mapsto \begin{bmatrix} 1 \mapsto 0 \\ 0 \mapsto 0 \end{bmatrix} \end{bmatrix} \qquad [\![\mathrm{not}]\!] = \begin{bmatrix} 1 \mapsto 0 \\ 0 \mapsto 1 \end{bmatrix}$$

$$\llbracket \text{or} \rrbracket = \begin{bmatrix} 1 \mapsto \begin{bmatrix} 1 \mapsto 1 \\ 0 \mapsto 1 \end{bmatrix} \\ 0 \mapsto \begin{bmatrix} 1 \mapsto 1 \\ 0 \mapsto 0 \end{bmatrix} \end{bmatrix}$$

 $\llbracket \mathrm{not} \rrbracket \, :: t \to t$

 $\mathbf{Type} \quad \llbracket \mathrm{and} \rrbracket :: t \to t \to t$

[or] :: $t \to t \to t$

Composition

Logical equivalences

- 1. Double negation elimination
- $\bullet \ \neg \neg p = p$
- 2. Distributive laws
- $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) = (p \lor q) \land (p \lor r)$
- 3. Associative laws
- $(p \land q) \land r = p \land (q \land r)$
- $\bullet \ (p \lor q) \lor r = p \lor (q \lor r)$
- 4. DeMorgan's laws

- 5. Eliminability of the material conditional
- $p \to q = \neg p \lor q$

A sample proof

$$(p \land q) \rightarrow r = p \rightarrow (q \rightarrow r)$$
Proof: $(p \land q) \rightarrow r = \neg (p \land q) \lor r$ (5)
$$= (\neg p \lor \neg q) \lor r$$
 (4)
$$= \neg p \lor (\neg q \lor r)$$
 (3)

$$= p \to (\neg q \lor r) \quad (5)$$

$$= p \rightarrow (q \rightarrow r)$$
 (5) \square

Operations on sets

Intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

Union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

Complementation $\overline{A} := \{x \mid x \notin A\}$

Difference $A - B := \{x \mid x \in A \text{ and } x \notin B\}$

Exclusive union $A \underline{\cup} B := (A \cup B) - (A \cap B)$

Different kinds of meaning: Presupposition

What is taken for granted

Possessives

- (1)Emma's son is smart.
 - \rightsquigarrow Emma has a son.

Factive verbs

(2)Becky **knows** Alex is tall. \rightsquigarrow Alex is tall.

Additive adverbs

- (3)Kelly wore a hat, **too**.
 - \rightsquigarrow Someone else wore a hat.

Definites

- (4)The student is smart.
 - \rightsquigarrow There is a unique student.

Gender feature

- (5)**She** is knowledgable.
 - \rightsquigarrow The person referred to by *she* is female.

What are you protesting

- (6)A: Is Emma's son smart?
 - B: No. he isn't.
 - B': #No. Emma doesn't have a son.
 - B": Hey wait a minute. I didn't know Emma has a son.

Projection

- Emma's son is **not** smart. (negation) \rightsquigarrow Emma has a son.
- (8)**Is** Emma's son smart? (question) \rightsquigarrow Emma has a son.
- Maybe Emma's son is smart. (9)(modal) \rightsquigarrow Emma has a son.
- If Emma's son is smart, then he can resolve (10)this puzzle. (conditional) \rightsquigarrow Emma has a son.

Definition

Presuppositions are inferences backgrounded and taken for granted (Redundancy).

- 1. A sentence can be felicitously uttered only in contexts where its presupposition is true.
- 2. Expressions triggering presuppositions are presupposition triggers.

Three value logic (weak Kleene)

A sentence is neither true (1) nor false (0), but undefined (#) iff its presupposition is false.

φ	ψ	$\neg \phi$	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \rightarrow \psi$
1	1	0	1	1	1
1	0	0	0	1	0.
1	#	0	#	#	#
0	1	1	0	1	1
0	0	1	0	0	1
0	#	1	#	#	#
#	1	#	#	#	#
#	0	#	#	#	#
#	#	#	#	#	#

Filtering

In a sentence consisting of multiple sub-clauses,

- 1. the presupposition of a sub-clause may be satisfied locally;
- 2. the whole sentence does not have the presupposition.

Conjunction

(11)Emma has a son and her son is very smart. $\not \rightarrow$ Emma has a son.

Conditional

- (12)If Emma has a son, she would send her son to that school.
 - $\not \sim$ Emma has a son.

Disjunction

- Either Emma doesn't have a son, or her son (13)doesn't live with her.
 - $\not \rightarrow$ Emma has a son.

Definedness condition

[Emma's son] = aType: edefined only if Emma has a son

- $[smart] = x \mapsto x \in \{y \mid y \text{ is smart}\}$ Type: $e \to t$
- [Emma's son is smart] = [smart]([Emma's son]) $= a \in \{y \mid y \text{ is smart}\}\$ defined only if Emma has a son

At issue meaning: $a \in \{y \mid y \text{ is smart}\}$

Non-at-issue meaning: the definedness condition

Other types of non-at-issue meanings

Scalar implicature (Cancelable)

- Emma ate three apples. (14) \rightarrow Emma ate **only** three apples.
- (15)Emma ate three apples. In fact, she ate four.

Supplement (non-at-issue but new)

- (16)Did Alex, who you mistreated, press charges?
- (17)A: Alex is incompetent. B: Does Alex knows he is? B': #Is Alex, who is incompetent, aware of this?

Variables and assignments: Pronouns and (FOL) quantifiers

Pronouns and quantifiers

Pronoun: She is smart.

Quantification: Every girl is smart.

Some boy is silly.

Multiple quantifiers: Every girl saw a boy.

What do a pronoun or a quantifier denote?

Variables

A pronoun does not have a deterministic meaning. Its value varies among different contexts.

- (1) Ada resolved the puzzle. She is smart.
- (2) Becky got an A. She is smart.

Formally, variables do not have deterministic values, either.

Universal quantification

[[everyone is smart]] $^{M,g} = \forall x.\mathsf{smart}(x)$

" $\forall x.\mathsf{smart}(x)$ " means:

 $\operatorname{smart}(g^{x\mapsto \mathsf{a}}(x)) \wedge \operatorname{smart}(g^{x\mapsto \mathsf{b}}(x)) \wedge \operatorname{smart}(g^{x\mapsto \mathsf{c}}(x))$

Assignment (function)

$$g = \left[\begin{array}{c} x \mapsto \mathsf{a} \\ y \mapsto \mathsf{b} \\ z \mapsto \mathsf{c} \end{array} \right] \qquad \qquad g = \left[\begin{array}{c} x \mapsto \mathsf{a} \\ y \mapsto \mathsf{a} \\ z \mapsto \mathsf{c} \end{array} \right]$$

$$[\![\operatorname{she}_x]\!]^{M,g} = g(x)$$

The concrete value of g is **contextually** determined.

• For (1), g(x) = a

$$[\![\mathbf{she}_x \text{ is smart}]\!]^{M,g} = [\![\mathbf{smart}]\!]^{M,g} ([\![\mathbf{she}_x]\!]^{M,g})$$
$$= \mathsf{smart}(g(x))$$
$$= \mathsf{smart}(\mathbf{a})$$

• For (2), g(x) = b

$$[\![\mathbf{she}_x \text{ is smart}]\!]^{M,g} = [\![\mathbf{smart}]\!]^{M,g} ([\![\mathbf{she}_x]\!]^{M,g})$$

$$=$$

Existential quantification

[someone is silly] $^{M,g} = \exists x.silly(x)$

$$g^{x \mapsto \mathbf{a}} = \begin{bmatrix} x \mapsto \mathbf{a} \\ y \mapsto \mathbf{b} \\ z \mapsto \mathbf{c} \end{bmatrix}$$

$$g = \begin{bmatrix} x \mapsto \mathbf{a} \\ y \mapsto \mathbf{b} \\ z \mapsto \mathbf{c} \end{bmatrix}$$

$$g^{x \mapsto \mathbf{b}} = \begin{bmatrix} x \mapsto \mathbf{b} \\ y \mapsto \mathbf{b} \\ z \mapsto \mathbf{c} \end{bmatrix}$$

$$g^{x \mapsto \mathbf{c}} = \begin{bmatrix} x \mapsto \mathbf{c} \\ y \mapsto \mathbf{b} \\ z \mapsto \mathbf{c} \end{bmatrix}$$

 $\exists x.silly(x)$ means:

$$\mathsf{silly}(g^{x \mapsto \mathsf{a}}(x)) \vee \mathsf{silly}(g^{x \mapsto \mathsf{b}}(x)) \vee \mathsf{silly}(g^{x \mapsto \mathsf{c}}(x))$$

Multiple quantifiers

[everyone saw someone] $^{M,g} = \forall x \exists y. see(y)(x)$

 $\forall x \exists y . see(y)(x)$ means:

$$\left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{a}}(y))(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{a}}(x) \\ \operatorname{see}(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{b}}(y))(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{b}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{a}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{a}}(y))(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{a}}(x) \\ \operatorname{see}(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{b}}(y))(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{b}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{b}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{a}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{a}}(x) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{b}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{b}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{b}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{b}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{b}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y))(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \\ \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(x)) \end{array} \right\} \\ \downarrow \left\{ \begin{array}{l} \bigvee \left\{ \begin{array}{l} \operatorname{see}(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x \mapsto \mathsf{c}, y \mapsto \mathsf{c}}(y)(g^{x$$

How about the other meaning: $\exists y \forall x.see(y)(x)$

Bound pronouns

[no one likes their_x school]]^{M,g} = $\neg \exists x.$ like(school-of-x)(x)

The value of $their_x$ co-varies with $\exists x$

Lambda calculus: Relative clauses

λ -notation

Consider a function:

$$f: \mathbb{N} \to \mathbb{N}$$
 for every $x \in \mathbb{N}$. $f(x) = x + 1$

The function can be expressed as follows:

$$f = \lambda x : x \in \mathbb{N}.x + 1$$

The (smallest) function which maps every x such that $x \in \mathbb{N}$ to x + 1

Semantic types of λ -terms

If x is type of a and E is type of b, then $\lambda x.E$ is type of $a \to b$.

Intransitive verbs

$$[\![dance]\!]^{M,g} = \begin{bmatrix} \mathsf{a} & \underset{\bullet}{\cdots} & 1 \\ \mathsf{b} & \underset{\bullet}{\cdots} & \\ \mathsf{c} & \underset{\bullet}{\cdots} & 0 \end{bmatrix} \quad \begin{array}{c} f: D_e \mapsto D_t \\ \text{i.e., for every } x, f(x) = 1 \\ \text{iff } x \text{ dance} \end{array}$$

$$[\![\mathrm{dance}]\!]^{M,g} = \lambda x :\in D_e. \, \mathrm{dance}(x)$$

Transitive verbs

$$\begin{bmatrix} \mathsf{a} \mapsto 0 \\ \mathsf{b} \mapsto 0 \\ \mathsf{c} \mapsto 1 \end{bmatrix}, \mathsf{b} \mapsto \begin{bmatrix} \mathsf{a} \mapsto 1 \\ \mathsf{b} \mapsto 0 \\ \mathsf{c} \mapsto 0 \end{bmatrix}, \mathsf{c} \mapsto \begin{bmatrix} \mathsf{a} \mapsto 1 \\ \mathsf{b} \mapsto 0 \\ \mathsf{c} \mapsto 0 \end{bmatrix}$$

$$[see]^{M,g} = f : D_e \mapsto D_{e \to t}$$

for every $x, f(x) = f' : D_e \mapsto D_t$
for every $y, f'(y) = 1$
iff y see x

$$[see]^{M,g} = \lambda x : x \in D_e \lambda y : y \in D_e. \underbrace{see(x)(y)}_{t}$$

λ -reduction

 η -equivalence

$$f = \lambda x. f(x)$$

Two functions are equivalent iff they return the same values for every argument

$$[dance]^{M,g} = dance = \lambda x.dance(x)$$

 β -reduction

$$(\lambda x.E_1)(E_2) = E_1[E_2/x]$$

" $E_1[E_2/x]$ " is the expression just like E_1 , but where every free occurrence of x has been replaced by E_2 .

$$\begin{aligned} [\![\mathrm{dance}]\!]^{M,g} ([\![\mathrm{Ada}]\!]^{M,g}) &= [\lambda x. \mathsf{dance}(x)](\mathsf{a}) \\ &= \mathsf{dance}(\mathsf{a}) \end{aligned}$$

 α -equivalence

$$\lambda x.E = \lambda y.E[y/x]$$

A specific choice of a bound variable doesn't matter.

$$\llbracket \mathrm{dance} \rrbracket^{M,g} = \lambda x. \mathsf{dance}(x) = \lambda y. \mathsf{dance}(y)$$

λ -abstraction

If A is branching node with daughters $n \in \mathbb{N}$ and B of type b, then A has type $a \to b$ and for any assignment g, $[\![A]\!]^{M,g} = \lambda x. [\![B]\!]^{g^{n \to x}}$

$$\begin{bmatrix}
1 & [\text{Ada met } t_1] \end{bmatrix}^{M,g} \\
= \lambda x. [\![\text{Ada met } t_1]\!]^{M,g^{1\mapsto x}} \\
= \lambda x. [\![\text{met}]\!]^{M,g^{1\mapsto x}} ([\![t_1]\!]^{M,g^{1\mapsto x}}) ([\![\text{Ada}]\!]^{M,g^{1\mapsto x}}) \\
= \lambda x. \mathsf{met}(g(1))(\mathsf{a}) = \lambda x. \mathsf{met}(x)(\mathsf{a})$$

Relative clauses

(1) the man that Ada met

- 1. $[t_1]^{M,g} = g(1)$ (the same as a pronoun)
- 2. $[S']^{M,g} = \lambda x . [S]^{M,g^{1 \mapsto x}} = \lambda x . \mathsf{met}(x)(\mathsf{a})$
- 3. [the]]^{M.g} = λP .the entity y s.t. P(y) defined only if $\exists y. [P(y) \land \forall x. P(x) \to x = y]$

Predicate Modification

$$\frac{P :: e \to t \qquad Q :: e \to t}{\lambda x. P(x) \land Q(x) :: e \to t}$$

- $$\begin{split} 1. \ \ [\![\mathbf{NP}]\!]^{M,g} &= \lambda x. [\![\mathbf{man}]\!]^{M,g}(x) \wedge [\![\mathbf{S}']\!]^{M,g}(x) \\ &= \lambda x. \mathsf{man}(x) \wedge \mathsf{met}(x) (\mathsf{a}) \end{split}$$
- 2. $[DP]^{M,g} = [the]^{M,g}([NP]^{M,g})$ =

Generalized quantifiers: Basics

Quantification in FOL

(1) Every lady danced. (2) A cat danced.

Suppose that we have two ladies, one boy and one cat

- Ada and Becky danced
- Carl also danced.
- The cat Kitty didn't dance.

Given the fact,

(1) should be translated as: $\forall x. \mathsf{lady}(x) \to \mathsf{dance}(x)$

How about (2)?

Problem

(3) Most ladies danced.

Suppose there're three ladies, one boy and one cat:

Scenario I: (3) is true

- Ada danced and Becky, but Cindy didn't
- Donald didn't danced.
- The cat Kitty didn't dance.

Scenario II: (3) is false

- Ada danced, but Becky and Cindy didn't
- Donald danced.
- The cat Kitty didn't dance.

Consider the following formulas:

- 1. $most \ x.lady(x) \rightarrow dance(x)$
- 1 in I; 1 in II
- 2. most $x.\mathsf{lady}(x) \land dance(x)$
- 0 in I; 0 in II
- 3. most $x.\mathsf{lady}(x) \lor dance(x)$
- $1 \text{ in I; } \boxed{1} \text{ in II}$

Operations on sets

What are quantifiers

Suppose there're three ladies and two boys:

- Ada, Becky, Cindy and Donald danced
- $\bullet\,$ Ada, Becky, Cindy and Eric sang

$$\begin{aligned} \text{dance} &= \{a,b,c,d\} \\ \text{lady} &= \{a,b,c\} \subseteq & \text{lady} &= \{a,b,c\} \\ & \text{sing} &= \{a,b,c,e\} \end{aligned}$$

 $[\![\mathrm{every}\ \mathrm{lady}]\!] = \{\{a,b,c,d\},\{a,b,c\},\{a,b,c,e\}\}$

- 1. $[[every lady is a lady]] = [[lady]] \in [[every lady]]$
- 2. $[[every lady danced]] = [[dance]] \in [[every lady]]$
- 3. $[[every lady sang]] = [[sang]] \in [[every lady]]$

$$\llbracket \text{every lady} \rrbracket = \lambda P.\mathsf{lady} \subseteq P \qquad \qquad \mathsf{Type:} \ (e \to t) \to t$$

Boolean compounds

- (4) Every lady and at least one boy danced.
- (5) Every lady **or** at least one boy danced.
- (6) Every lady **but** not every boy danced.

Suppose that we have two ladies and two boys:

- Ada and Becky danced and sang.
- Carl danced but not sing.
- Donald sang but not dance.
- Ada and Carl wore a hat.
- Becky and Carl are tall.
- Ada and Donald likes swimming.
- Becky and Donald wore a scarf.

(the picture credited to Szabolcsi 2010)

[every lady and at least one boy]

Logical Form

Object quantifiers

(1) Ada saw every boy.

Logical Form (LF)

Y-model of grammar:

Logical Form Phonological Form

- 1. LF is a **SYNTACTIC** component.
- 2. An LF product serves as the input of $[\cdot]$.

Movement

(2) Who did Ada see?

D-Structure: [S Ada [VP see who]]

S-Structure: [s''] Who [s'] did [s] Ada see [t]

A deep structure is transformed to a surface structure via movement.

Quantifier Raising (QR)

- $1. \ \llbracket \mathbf{S} \rrbracket^{M,g} = \sec(g(1))(\mathbf{a})$
- 2. $[S']^{M,g} = \lambda x.see(x)(a)$
- 3. $[S'']^{M,g} = [\text{every boy}]^{M,g}(\lambda x.\text{see}(x)(a))$ = $\{x \mid \text{boy}(x)\} \subseteq \{x \mid \text{see}(x)(a)\}$

Two quantifiers

(2) A boy saw every lady.

 $[a \text{ boy}]^{M,g} (\lambda x. [every lady]^{M,g} (\lambda y. see(y)(x)))$

- $= [a boy]^{M,g} (\lambda x.\{y \mid \mathsf{lady}(y)\} \subseteq \{y \mid \mathsf{see}(y)(x)\})$
- $= \{x \mid \mathsf{boy}(x)\} \cap \{x \mid \{y \mid \mathsf{lady}(y)\} \subseteq \{y \mid \mathsf{see}(y)(x)\}\} \neq \emptyset$

LF: [[every lady] [2 [a boy] [1 [
$$t_1$$
 saw t_2]]]] \uparrow

[every lady] M,g (λy .[a boy] M,g (λx .see(y)(x)))

- = $\llbracket \text{every lady} \rrbracket^{M,g} (\lambda y. \{x \mid \text{boy}(x)\} \cap \{x \mid \text{see}(y)(x)\} \neq \emptyset)$
- $= \{y \mid \mathsf{lady}(y)\} \subseteq \{y \mid \{x \mid \mathsf{boy}(x)\} \cap \{x \mid \mathsf{see}(y)(x)\} \neq \emptyset\}$

Scope ambiguity

Assuming three boys, Peter, Tom, and Carl, and two ladies, Ada and Becky:

- (3) Ada **didn't** see **every** boy.
- not > every: a saw t, but not p and c.
- every > not: a didn't see t, p and c.
- (4) At most two boys saw every lady.
- at most two > every: p and t both saw a and b.
- every > at most two: p and t saw a, and t saw b.

Scope islands

It is not always the case that a quantifier can take wide scope.

- (3) No boy thought that [every lady could dance].
- no > every: there were some boys who thought some ladies could dance.
- #every > no: for every lady x, there was no boy who thought x could dance.
- (4) John dated a woman [who loves every man].
- \bullet a > every: there is one lady such that she loves every man.
- #every > a: for any man x, there is a (different) woman who loves x.

QR is clause bounded.

Exceptional scope

- (5) **Each** boy believes that [a paper of mine contains an error].
- each > a: for any boy x, there's a different paper of mine y s.t. x believes y contains an error.
- a > every: there is a paper of mine y s.t. for any boy x, x believes y contains an error.

Empirical properties of quantifiers: Monotonicity

Any

- 1. *Ann ate any fish last night.
- 2. *A lady ate any fish last night.
- 3. Ann didn't eat **any** fish last night.
- 4. No lady ate **any** fish last night.
- *Every lady who read a book talked to any professor.
- 6. Every lady who read **any** book talked to a professor.

Monotonic increasing

Suppose we have three ladies, Ann, Becky, and Cindy, and one body, Donald,

- Ann, Cindy, and Donald walked.
- Ann, Becky, and Cindy talked.

$$(\mathsf{walk} \cap \mathsf{talk}) \subseteq \mathsf{walk} \subseteq (\mathsf{walk} \cup \mathsf{talk})$$

- 1. More than one lady walked and talked.
- 2. More than one lady walked.
- 3. More than one lady walked or talked.

1 entails $2,\,2$ entails $3,\,\mathrm{and}\ 1$ entails 3

[more than one lady] =

The generalized quantifier GQ is monotonically increasing iff whenever X is an element of GQ, all supersets of X are elements of GQ.

Monotonic decreasing

Suppose we have two ladies, Ann and Becky, and two boys, Carl and Donald

- Ann and Becky jogged.
- Carl walked.
- Carl and Donald talked.

$$(\mathsf{walk} \cap \mathsf{talk}) \subseteq \mathsf{walk} \subseteq (\mathsf{walk} \cup \mathsf{talk})$$

- 1. No lady walked and talked.
- 2. No lady walked.
- 3. No lady walked or talked.

3 entails 2, 2 entails 1, and 3 entails 1

[no lady] =

The generalized quantifier GQ is **monotonically decreasing** iff whenever X is an element of GQ, all subsets of X are elements of GQ.

Non-monotonic

1. Exactly two ladies jogged.

[exactly two ladies] =

Downward and upward entailing

- 1. Every lady who read a book talked to a professor.
- 2. Every lady who read a novel talked to a professor.
- novel \subseteq book;
- $\{x \mid x \text{ read a novel}\} \subseteq \{x \mid x \text{ read a book}\}$
- $\llbracket 1 \rrbracket = \{x \mid x \text{ read a novel}\} \subseteq \{x \mid x \text{ talk to prof}\};$
- $[2] = \{x \mid x \text{ read a book}\} \subseteq \{x \mid x \text{ talk to prof}\};$
- [2] entails [1]
- 1. Every lady who read a book talked to a teacher.
- 2. Every lady who read a book talked to a professor.
- professor ⊆ teacher;
- $\{x \mid x \text{ talk to prof}\} \subseteq \{x \mid x \text{ talk to teacher}\}$
- $[2] = \{x \mid x \text{ read book}\} \subseteq \{x \mid x \text{ talk to prof}\};$
- $\llbracket 1 \rrbracket = \{x \mid x \text{ read book}\} \subseteq \{x \mid x \text{ talk to teacher}\};$
- [1] entails [2]

The maximality problem

- 1. At least two ladies walked. = There is a set of men with cardinality at least two such that all its elements walk.
- 2. At most two ladies walked. ≠ There is a set of men with cardinality at most two such that all its elements walk.
- 3. Exactly two ladies talked. \neq There is a set of men with cardinality exactly two such that all its elements walk.

Sentence 1, but not 2 and 3, is true in a situation in which more than two ladies walked.

The diagrams in this handout are credited to Szabolcsi (2010).

Empirical properties of quantifiers: Witnesses and conservativity

Topic set

Suppose that we have three ladies, Annie, Becky, and Cindy, and one boys, Donald:

$$\begin{aligned} [\![\text{more than one lady}]\!] &= \lambda P. |\mathsf{lady} \cap P| > 1 \\ &= \{P \mid |\mathsf{lady} \cap P| > 1\} \end{aligned}$$

Topic set = the smallest live-on set:

A generalized quantifier Q lives on a set of entities L if, for any set of entities $X, X \in Q$ iff $(X \cap L) \in Q$.

Then, what is the topic set of more than one lady?

Which syntactic phrase corresponds to the topic set of more than one lady?

Witness set

W is a witness set of a generalized quantifier \mathcal{Q} iff (a) $W \in \mathcal{Q}$; (b) $W \subseteq L$ and L is \mathcal{Q} 's topic set.

The witness sets of more than one lady:

(the picture credited to Szabolcsi 2010)

- If a generalized quantifier Q is monotonic increasing, for any $X, X \in Q$ iff $\exists W.W \subseteq X$;
- If a generalized quantifier \mathcal{Q} is monotonic decreasing, for any $X, X \in \mathcal{Q}$ iff $\exists W.(X \cap L) \subseteq W$.

Conservativity

Consider four subsets of the universe of discourse:

(the picture credited to Szabolcsi 2010)

- 1. [some]: (ii) is not empty
- 2. [more than one]: (ii) has more than one element
- 3. [every]: (i) is empty
- 4. [most]: $\frac{(ii)}{(i) \cup (ii)} = \frac{1}{2}$

A quantificational determiner does not make reference to (iii) and (iv).

A quantificational determiner \mathcal{D} is conservative iff $\mathcal{D}(A)(B) = \mathcal{D}(A)(A \cap B)$

- 1. Every lady is smart \leftrightarrow Every lady is a smart lady
- 2. Some boy is smart \leftrightarrow Some boy is a smart boy
- 3. Most ladies got an A \leftrightarrow Most ladies are ladies who got an A

Symmetry

- 1. Some ladies are smart \leftrightarrow some smart people are ladies
- 2. At least two ladies got an A \leftrightarrow at least two people who got an A are ladies
- 3. No ladies are silly \leftrightarrow No silly people are ladies
- 4. Most ladies are smart \nleftrightarrow most smart people are ladies

A quantificational determiner is symmetric iff $\mathcal{D}(A)(B) = \mathcal{D}(B)(A)$

Pair-list answers

- Which book did every boy read?
 <u>Pair-list answer</u>: Max read Moby Dick; Kyle The Great Gatsby; Sam Oliver Twister.
- 2. Which book did **no boy** read?
 #Pair-list answer: Max didn't read Moby Dick;
 Kyle didn't read The Great Gatsby; Sam didn't read Oliver Twister.
- 3. Which book did **at most two boys** read?
 #Pair-list answer: Max read Moby Dick; Kyle The
 Great Gatsby.
- 4. Which book did **two of the boys** read? ?(?) Pair-list answer: Max read *Moby Dick*; Kyle *The Great Gatsby*.

Quantifier	Minimal witness set
every boy	$\{m,k,s\}$
two of the boys	$\{m,k\},\{k,s\},\{m,s\}$
no boy	\emptyset
at most two boys	Ø

Is every determiner conservative

- 1. Huáwéi gù-le 75% de nǚshēng. Huawei hire-ASP 30% woman
 - a. 'Huawei hired 30% women.'
 - b. 'Huawei hired 30% of the women.'

(the picture credited to Ahn & Sauerland 2018)

Conservative: [75%] (woman)(λx .hire(x)(h))

- $= [75\%](\mathsf{woman})(\lambda x.\mathsf{woman}(x) \land \mathsf{hire}(x)(\mathsf{h}))$
- =75% of the women are the ones hired by Huawei.

Non-conservative: $[75\%](\lambda x.\mathsf{hire}(x)(\mathsf{h}))(\mathsf{woman})$

- = $[75\%](\lambda x.\operatorname{hire}(x)(h))(\lambda x.\operatorname{woman}(x) \wedge \operatorname{hire}(x)(h))$
- =75% of the people hired by Huawei are women.

Event semantics

What are events

(1) Brutus stabbed Caesar yesterday.

The event described by (1):

Agent : b
Patient : c

Nature : stabbing

Runtime: yesterday

Truth condition:

- (1) is true in M if and only if $\langle b, c \rangle \in [\![stab]\!]^M$
- (1) is true if and only if (1) describes an event e s.t.
 - the agent of e is Brutus,
 - the patient of e is Caesar,
 - -e is stabbing,
 - the runtime of e is yesterday.

Adding events to a standard model: $\langle D_e, D_v, \llbracket \cdot \rrbracket \rangle$

A sentence expresses quantification over eventualities, which describes eventualities.

 $(1) \rightsquigarrow \exists e.\mathsf{stab}(e) \land \mathsf{ag}(e,\mathsf{b}) \land \mathsf{pa}(e,\mathsf{c}) \land \tau(e,\mathsf{yesterday})$

Diamond entailment

- 1. Brutus stabbed Caesar in the back with a knife.
- 2. Brutus stabbed Caesar in the back.
- 3. Brutus stabbed Caesar with a knife.
- 4. Brutus stabbed Caesar.
- 1. I've got big black cars.
- 2. I've got big cars.
- 3. I've got black cars.
- 4. I've got cars.

- $\bullet \ \exists x.\mathsf{cars}(x) \land \mathsf{big}(x) \land \mathsf{black}(x) \land \mathsf{get}(x)(\mathsf{spk}) \\$
- $\exists e.\mathsf{stab}(e) \land \mathsf{ag}(e,\mathsf{b}) \land \mathsf{c} \land \mathsf{in}(e,\mathsf{bk}) \land \mathsf{inst}(e,\mathsf{k})$

Different types of eventualities

process	state	${\it accomplishment}$	achievement
run	know	$make\ a\ chair$	recognize
walk	believe	$paint\ a\ picture$	reach
swim	have	$build\ a\ house$	find
:	:	:	:

Telicity $[\pm \text{ natural ending point}]$

- Achievement and accomplishment are telic.
- Sue made a chair in/*for an hour.
- Kate reached the peak in/*for an hour.
- Process and state are atelic.
 - Max ran/walked/swam for/*in an hour.
 - Owen believed the story for/*in his entire life.

Describing eventualities

- 1. Caesar knows Brutus.
 - $\rightsquigarrow \exists s. \mathsf{know}(s) \land \mathsf{ho}(s,\mathsf{c}) \land \mathsf{th}(s,\mathsf{b})$
- 2. Peter made Karl cry.
 - $\rightarrow \exists e \exists e'. \mathsf{ag}(e, \mathsf{p}) \land \mathsf{cry}(e') \land \mathsf{ag}(e', \mathsf{k}) \land \mathsf{cause}(e, e')$
- 3. In every burning, oxygen is consumed.
 - $\begin{tabular}{ll} \leadsto & \forall e. \mathsf{burn}(e) & \to & \exists e'. \mathsf{consume}(e') \land \mathsf{th}(e', \mathsf{O}_2) \land \\ \mathsf{in}(e', e) & \end{tabular}$

Tense

A simple existential treatment of tense (anchoring the runtime of an event):

- 1. John saw Mary. (Past) $\rightsquigarrow \exists e \exists t.t < \mathsf{now} \land \tau(e) \subseteq t \land \mathsf{see}(e) \land \mathsf{ag}(e,\mathsf{j}) \land \mathsf{th}(e,\mathsf{m})$
- 2. Owen reaches the peak. (Present) $\rightsquigarrow \exists e \exists t.t = \mathsf{now} \land \tau(e) \subseteq t \land \mathsf{reach}(e) \land \mathsf{ag}(e, \mathsf{o}) \land \mathsf{th}(e, \mathsf{p})$

The narrowest scope

- 1. Each boy hugged Sue.
 - $\forall x.\mathsf{boy}(x) \to \exists e.\mathsf{hug}(e) \land \mathsf{ag}(e,x) \land \mathsf{th}(e,\mathsf{s})$
 - $\exists e. \forall x. \mathsf{boy}(x) \to \mathsf{hug}(e) \land \mathsf{ag}(e, x) \land \mathsf{th}(e, \mathsf{s})$
- 2. Max didn't love Sue.
 - $\neg(\exists e.\mathsf{love}(e) \land \mathsf{ag}(e,\mathsf{m}) \land \mathsf{th}(e,\mathsf{s}))$
 - $\exists e. \neg (\mathsf{love}(e) \land \mathsf{ag}(e, \mathsf{m}) \land \mathsf{th}(e, \mathsf{s}))$
- 3. Exactly one boy hugged Mary.
 - $|\mathsf{boy} \cap \{x : \exists e.\mathsf{hug}(e) \land \mathsf{ag}(e, x) \land e, \mathsf{m}\}| = 1$
 - $\bullet \ \exists e. |\mathsf{boy} \cap \{x : \mathsf{hug}(e) \land \mathsf{ag}(e,x) \land e, \mathsf{m}\}| = 1 \qquad \textbf{\textit{X}}$
- 4. Brutus stabbed Caesar and Leo stabbed Hamlet.
 - $(\exists e.\mathsf{ag}(e,\mathsf{b}) \land \mathsf{stab}(e) \land \mathsf{pt}(e,\mathsf{c})) \land (\exists e'.\mathsf{ag}(e',\mathsf{I}) \land \mathsf{stab}(e') \land \mathsf{pt}(e',\mathsf{h}))$
 - $\qquad \exists e. \mathsf{ag}(e,\mathsf{b}) \land \mathsf{stab}(e) \land \mathsf{pt}(e,\mathsf{c}) \land \mathsf{ag}(e,\mathsf{I}) \land \mathsf{stab}(e) \land \\ \mathsf{pt}(e,\mathsf{h}) \qquad \qquad \pmb{\mathsf{X}}$

Composition

$$\begin{split} & [\![\mathrm{stab}]\!] = \lambda x \lambda y \lambda e. \\ & \mathrm{stab}(e) \wedge \mathrm{ag}(e,x) \wedge \mathrm{pt}(e,y) \\ & [\![\mathbb{E} \mathbb{X}]\!] = \lambda V \exists e. V(e) \end{split}$$

