

Rehab@Home

- Remote physiotherapy monitoring for rehabilitation -

This demo shows an exercise session for patients in rehabilitation after shoulder, hip or knee surgery by using the Kinect sensor device and Kinect for Windows SDK (C#).

Natalia Díaz Rodríguez, Frank Wickström, Johan Lilius

Turku Centre for Computer Science (TUCS),

Dept. of Information Technologies, Åbo Akademi University, Turku, Finland

Marion Karppi

Turku School of Applied Science, Well-being Services

Olmo León, M.P. Cuéllar & Miguel Delgado Calvo-Flores

Dept. of Computer Science and Artificial Intelligence, University of Granada, Spain

August 2013

User interface

Allows recording new patterns from new users realizing exercises for the system to learn to recognize them:

- **Record** and **Replay**: Records a session for training the system. Audio option activates and ends recording via voice ("Record", "Stop")
- **Stabilities**: Indicates the degree of stability of the skeleton tracked.
- Capture and Delete Gesture: Adds (and deletes) a template gesture to a gesture learning model.
- Capture T: adds a template posture to a posture learning model.
- View Depth/View color: Shows depth/color image
- Exercises to be trained &recognized:
 - In FRONT position with the camera:
 - Left and RightHipAbduction
 - Left and RightKneeExtension
 - In PROFILE position with the camera:
 - Left and RightHipExtension
 - Sit and Stand

Background

- The context of our project falls within one of today's key problems in society: the ageing of the population.
- New technological solutions are needed to allow more independent living, at the same time as easier and more accessible healthcare and wellbeing.
- Our project supports this paradigm not only providing a general physiotherapy and rehabilitation remote solution for home but also, in the future, other use case scenarios, such as human activity recognition in different Smart Spaces (home, office, hospital, etc.).
- The business opportunities for our framework are multiple and versatile: in health-care (for care-takers, at home) in industry processes or in any Smart Space for remote monitoring. We consider commercialization after development.

Future Directions

- Integration with semantic Smart Space Architecture
 - Eg. To obtain long-term evolution/changes
- Extension of exercises and precision.

More information:

Natalia Díaz Rodríguez

ndiaz@abo.fi

Embedded Systems Lab. Department of Information Technologies Åbo Akademi University, Turku, Finland TUCS (Turku Centre for Computer Science)

Department of Computer Science and Artificial Intelligence University of Granada, Spain

