Pós-Graduação em Ciência de Dados

Professora Cecília Pereira de Andrade

e

Professor Ricardo Sovat

► Tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais.

Variáveis são vetores

Chamadas funções vetoriais

ightharpoonup T: $V \rightarrow W$

► Cada $v \in V$ tem um só vetor imagem $w \in T$, indicado por w=T(v).

Exemplo: Seja T: $\mathbb{R}^2 \to \mathbb{R}^3$, definida por

$$T(x,y)=(3x, -2y, x-y).$$

$$T(2,1)=(3.2, -2.1, 2-1)=(6,-2,1)$$

Sejam V e W espaços vetoriais. Uma aplicação T: V → W é chamada transformação linear de V em W se:

i)
$$T(u+v)=T(u)+T(v)$$

ii)
$$T(\alpha u) = \alpha T(u)$$

para todo u, v \in V e para todo $\alpha \in \mathbb{R}$.

► OBS: T: V → V é chamado **operador linear.**

Exemplo: T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x,y)=(3x,-2y,x-y) é linear.

De fato, sejam $u=(x_1,y_1)$ e $v=(x_2,y_2)$ vetores de \mathbb{R}^2 .

- T(u+v) = T(x_1 + x_2 , y_1 + y_2) T(u+v) = (3(x_1 + x_2), -2(y_1 + y_2), (x_1 + x_2)-(y_1 + y_2)) T(u+v) = (3 x_1 + 3 x_2 , -2 y_1 -2 y_2 , x_1 + x_2 - y_1 - y_2) T(u+v) = (3 x_1 , -2 y_1 , x_1 - y_1) + (3 x_2 ,-2 y_2 , x_2 - y_2) T(u+v) = T(u) + T(v).
- ▶ Para todo $\alpha \in \mathbb{R}$ e para qualquer $(x_1,y_1) \in \mathbb{R}$

$$T(\alpha u) = T(\alpha x_1, \alpha y_1)$$
 $T(\alpha u) = (3 \alpha x_1, -2 \alpha y_1, \alpha x_1 - \alpha y_1)$
 $T(\alpha u) = \alpha (3x_1, -2y_1, x_1 - y_1)$
 $T(\alpha u) = \alpha T(u)$

▶ Obs: Se T é uma transformação linear, então T(0)=0.

De fato, se considerarmos α =0 em ii), temos:

$$T(0)=T(0.v)=0.T(v)=0.$$

A recíproca não é verdadeira.

Exemplo: T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x,y)=(x²,3y).

Exemplos:

- ▶ I: $V \rightarrow V$, I(v)=v (identidade);
- ightharpoonup T: V ightharpoonup W, T(v)=0 (nula);
- ► T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(v)= -v (simetria);
- ► T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(v)= (x,y,0) (projeção ortogonal)
- ► Seja o espaço $V=P_n$, dos polinômios de grau $\le n$. A aplicação D: $P_n \to P_n$, que leva f $\in P_n$, em sua derivada f' é linear.

Exemplos:

Considere $A=\begin{bmatrix}1&2\\-2&3\\0&4\end{bmatrix}$. Essa matriz determina a transformação $T_A\colon\mathbb{R}^2\to\mathbb{R}^3$, T(v)=Av, que é linear.

Seja
$$v=(x,y) \in \mathbb{R}^2$$
,

$$\begin{bmatrix} 1 & 2 \\ -2 & 3 \\ 0 & 4 \end{bmatrix} v = \begin{bmatrix} x + 2y \\ -2x + 3x \\ 4y \end{bmatrix}$$
e portanto, $T_A(x,y) = (x+2y, -2x+3y, 4y)$

Núcleo de uma transformação linear

► Chama-se núcleo de uma transformação linear T: $V \rightarrow W$ ao conjunto de todos os vetores $v \in V$ que são transformados em $0 \in W$.

►Notação: N(T) ou ker(T)

$$\triangleright$$
N(T) = {v \in V | T(v) = 0}

Núcleo de uma transformação linear

Exemplo:

Determine o núcleo da transformação T: $\mathbb{R}^2 \to \mathbb{R}^2$, T(x,y)=(x+y,2x-y).

T(x,y)=(0,0) implica que (x+y,2x-y)=(0,0)

Logo,
$$\begin{cases} x + y = 0 \\ 2x - y = 0 \end{cases}$$
 e daí x = 0 e y=0.

Portanto, $N(T) = \{(0,0)\}.$

Imagem de uma transformação linear

► Chama-se imagem de uma transformação linear T: $V \rightarrow W$ ao conjunto dos vetores $w \in W$ que são imagens de pelo menos um vetor $V \in V$.

►Notação: Im(T) ou T(v)

►Im(T)={w \in W|T(v)=w, para algum v \in V}

Imagem de uma transformação linear

Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z)= (x,y,0) a projeção ortogonal do \mathbb{R}^3 sobre o plano xy.

A imagem de T é o próprio plano xy.

Im(T)=
$$\{(x,y,0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\}$$

$$N(T) = \{(0,0,z) | z \in \mathbb{R} \}$$

Seja V um espaço vetorial de dimensão finita
 e T: V → W uma transformação linear. Então:

 $\dim N(T) + \dim Im(T) = \dim V$

Exemplo: determinar o núcleo e a imagem do operador linear

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
, T(x,y,z)=(x+2y-z, y+2z,x+3y+z).

► N(T) = { $(x,y,z) \in \mathbb{R}^3 \mid T(x,y,z)=(0,0,0)$ }.

De
$$(x+2y-z, y+2z,x+3y+z) = (0,0,0)$$

temos a solução geral $(5z, -2z, z), z \in \mathbb{R}$.

Logo,

$$N(T) = \{ (5z,-2z,z) \mid z \in \mathbb{R} \}$$

$$= \{ z(5,-2,1) \mid z \in \mathbb{R} \}$$

$$= [(5,-2,1)].$$

Note que dim (N(T)) = 1. Logo, pelo teorema, dim (Im(T)) deverá ser 2.

► Im(T) = { (a,b,c) $\in \mathbb{R}^3 \mid T(x,y,z)=(a,b,c)$ }

ightharpoonup (a,b,c) $m \in Im(T)$ se existe (x,y,z) $m \in \mathbb{R}^3$ tal que

$$(x+2y-z, y+2z,x+3y+z) = (a,b,c)$$

O sistema só terá solução se a + b - c = 0.

Logo, Im(T) =
$$\{(a,b,c) \in \mathbb{R}^3 \mid a+b-c=0\}$$

 \triangleright O vetor imagem T(x,y,z) pode ser expresso como:

$$(x+2y-z, y+2z,x+3y+z) = (x,0,x)+(2y,y,3y)+(-z,2z,z)$$

ou

$$(x+2y-z, y+2z,x+3y+z) = x(1,0,1)+y(2,1,3)+z(-1,2,1)$$

Portanto, Im(T) = [(1,0,1), (2,1,3), (-1,2,1)].

Sejam T: V → W uma transformação linear, A uma base de V e B uma base de W.

► SPG, vamos assumr dim V=2 e dim W = 3.

$$Arr$$
 A = { v_1, v_2 } e B = { w_1, w_2, w_3 }

 $V = X_1V_1 + X_2V_2 \text{ ou } V_{\Delta} = (X_1, X_2)$

$$T(v) = y_1w_1 + y_2w_2 + y_3w_3$$
 ou $T(v)_B = (y_1, y_2, y_3)$

▶ Por outro lado,

$$T(v) = T(x_1v_1 + x_2v_2) = x_1T(v_1) + x_2T(v_2)$$

► Como T(v₁) e T(v₂) são vetores de W

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + a_{31}w_3$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + a_{32}w_3$$

Substituindo em $T(v) = x_1T(v_1) + x_2T(v_2)$ temos

$$T(v) = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(a_{12}w_1 + a_{22}w_2 + a_{32}w_3)$$

$$T(v) = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(v a_{12}w_1 + a_{22}w_2 + a_{32}w_3)$$

$$T(v) = w_1(a_{11}x_1 + a_{12}x_2) + w_2(a_{21}x_1 + a_{22}x_2) + w_3(a_{31}x_1 + a_{32}x_2)$$

- ► Comparando com $T(v) = y_1w_1 + y_2w_2 + y_3w_3$ temos:
- $y_1 = a_{11}x_1 + a_{12}x_2$
- $y_2 = a_{21}x_1 + a_{22}x_2$
- $y_1 = a_{31}x_1 + a_{32}x_2$

Matricialmente:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Simbolicamente:

$$[\mathsf{T}(\mathsf{v})]_{\mathsf{B}} = [\mathsf{T}]_{B}^{A}[\mathsf{v}]_{\mathsf{A}}$$

▶ Observações:

1) A matriz $[T]_B^A$ é de ordem 3x2 quando dim V=2 e dim W = 3.

2) As colunas da matriz $[T]_B^A$ são componentes das imagens dos vetores da base A em relação à base B.

Exemplo: Seja T: $\mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z)=(2x-y+z, 3x+y-2z), linear. Consideremos as bases $A=\{v_1,v_2,v_3\}$, com $v_1=(1,1,1)$, $v_2=(0,1,1)$, $v_3=(0,0,1)$ e $B=\{w_1,w_2\}$, sendo $w_1=(2,1)$ e $w_2=(5,3)$.

- T(v₁) = T(1,1,1) = (2,2) = $a_{11}(2,1) + a_{21}(5,3)$ Portanto, a_{11} = -4 e a_{21} = 2.
- T(v₂) = T(0,1,1) = (0,-1) = $a_{12}(2,1) + a_{22}(5,3)$ Portanto, a_{12} = 5 e a_{22} = -2.
- T(v₃) = T(0,0,1) = (1,-2) = $a_{13}(2,1) + a_{23}(5,3)$ Portanto, a_{13} = 13 e a_{23} = -5.

Portanto,

$$[T]_B^A = \begin{bmatrix} -4 & 5 & 13 \\ 2 & -2 & -5 \end{bmatrix}.$$

Adição

Sejam $T_1: V \to W$ e $T_2: V \to W$. Chama-se **soma** das transformações lineares T_1 e T_2 à transformação linear

$$T_1 + T_2 : V \to W, (T_1 + T_2)(v) = T_1(v) + T_2(v), \forall v \in V.$$

$$[T_1 + T_2]_B^A = [T_1]_B^A + [T_2]_B^A$$

Multiplicação por escalar

Sejam T: $V \to W$ e $\alpha \in \mathbb{R}$. Chama-se **produto** de T pelo escalar α à transformação linear

$$(\alpha T)(v) = \alpha T(v), \forall v \in V.$$

$$[\alpha T]_B^A = \alpha [T]_B^A$$

Composição

Sejam $T_1: V \to W$ e $T_2: W \to U$. Chama-se aplicação composta de T_1 com T_2 , à transformação linear

$$(\mathsf{T}_1 \circ \mathsf{T}_2)(\mathsf{v}) = \mathsf{T}_2(\mathsf{T}_1(\mathsf{v})), \ \forall \ \mathsf{v} \in \mathsf{V}.$$

$$[\mathsf{T}_1 \circ \mathsf{T}_2]_C^A = [\mathsf{T}_2]_C^A \times [\mathsf{T}_1]_B^A$$

Exemplo 1:

Sejam $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ transformações lineares definidas por

$$T_1(x,y) = (x+2y, 2x-y,x) e T_2(x,y) = (-x,y,x+y).$$

$$T_1 + T_2$$

$$(T_1 + T_2)(x,y) = T_1(x,y) + T_2(x,y)$$

$$(T_1 + T_2)(x,y) = (x+2y, 2x-y,x) + (-x,y,x+y) = (2y, 2x,2x+y)$$

Exemplo1:

►
$$3T_1 - 2T_2$$

 $(3T_1 - 2T_2)(x,y) = (3T_1)(x,y) - (2T_2)(x,y)$
 $(3T_1 - 2T_2)(x,y) = 3T_1(x,y) - 2T_2(x,y)$
 $(3T_1 - 2T_2)(x,y) = 3(x+2y, 2x-y,x) - 2(-x,y,x+y)$
 $(3T_1 - 2T_2)(x,y) = (5x+6y, 6x-5y, x-2y)$

Exemplo 2:

Sejam S e T operadores lineares no \mathbb{R}^3 definidos por S(x,y) = (2x,y) e T(x,y)=(x,x-y).

 $ightharpoonup S \circ T$ (S o T)(x,y) = S(T(x,y)) = S(x,x-y) = (2x, x-y)

To S $(T \circ S)(x,y) = T(S(x,y)) = T(2x,y) = (2x, 2x-y).$

Transformações Lineares Planas

Entende-se por transformações lineares planas as transformações de \mathbb{R}^2 em \mathbb{R}^2 .

► Veremos algumas de especial importância e suas interpretações geométricas.

Transformações Lineares Planas

- ▶ Reflexões
- Reflexão em torno do eixo dos x

Leva cada ponto (x,y) para sua imagem (-x,-y), simétrica em relação ao eixo x

simétrica em relação ao eixo x.

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (x, -y)
(x,y) \mapsto (x,-y)

Matriz canônica:
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflexão em torno do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-x, y)
(x,y) \mapsto (-x,y)

Matriz canônica: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Reflexão na origem

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-x, -y)
(x,y) \mapsto (-x,-y)

Matriz canônica:
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflexão em torno da reta y=x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (y, x)
(x,y) \mapsto (y,x)

Matriz canônica: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

▶ Reflexão em torno da reta y=-x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 ou T(x,y) = (-y, -x)
(x,y) \mapsto (-y,-x)

Matriz canônica: $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

- ▶ Dilatações e Contrações
- ▶ Dilatação ou contração na direção do vetor

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 $(x,y) \mapsto \alpha(x,y)$, $\alpha \in \mathbb{R}$

Matriz canônica: $\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$

- ▶ Dilatações e Contrações
- ▶ Dilatação ou contração na direção do vetor
- ► Se $|\alpha| > 1$, T dilata o vetor.
- ► Se $|\alpha|$ < 1, T contrai o vetor.
- ► Se $|\alpha|$ = 1, T é a identidade I.
- ► Se α <0, T troca o sentido do vetor.

▶ Dilatação ou contração na direção do eixo dos x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (\alpha x,y), \alpha > 0$$

▶ Dilatação ou contração na direção do eixo dos x

Note que:

se α > 1, T dilata o vetor

se $0 < \alpha < 1$, T contrai o vetor

Matriz canônica: $\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$

▶ Dilatação ou contração na direção do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x, α y), $\alpha > 0$

Matriz canônica: $\begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$

▶ Dilatação ou contração na direção do eixo dos y

Note que, se α = 0, temos a projeção ortogonal do plano sobre o eixo dos x.

$$(x,y) \mapsto (x, 0)$$

- ▶ Cisalhamentos
- ► Cisalhamento na direção do eixo dos x

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x + α y, y)

Matriz canônica:

$$\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$$

► Cisalhamento na direção do eixo dos y

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (x, y+ α x)

Matriz canônica: $\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}$

▶ Rotação

A rotação do plano em torno da origem, que faz cada ponto descrever um ângulo θ , determina

$$\mathsf{T}_{\theta}:\mathbb{R}^2\to\mathbb{R}^2$$

 $(x,y) \mapsto (x\cos \theta - y\sin \theta, x\sin \theta + y\cos \theta)$

▶ Rotação

Matriz da transformação:

$$[\mathsf{T}_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

▶ Rotação

Desejamos a imagem do vetor v=(4,2) pela rotação de $\theta = \pi/2$

$$[T(4,2)] = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$[T(4,2)] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
 ou $[T(4,2)] = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$

ightharpoonup São as transformações de \mathbb{R}^3 em \mathbb{R}^3 .

Examinaremos as reflexões e as rotações.

- ▶ Reflexões
- ► Reflexões em relação aos planos coordenados

A reflexão em relação ao plano xOy leva cada ponto (x,y,z) na sua imagem (x,y,-z), simétrica em relação ao plano xOy.

$$T(x,y,z) = (x,y,-z)$$

▶Reflexões em relação aos planos coordenados

► Reflexões em relação aos eixos coordenados

A reflexão em relação ao eixo x é o operador linear definido por

$$T(x,y,z) = (x,-y,-z)$$

Matriz canônica: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Reflexões na origem

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y) \mapsto (-x, -y, -z)$$

Matriz canônica = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

▶ Rotação

Vamos mostrar a rotação do espaço em torno do eixo dos x, que faz cada ponto descrever um ângulo θ .

$$T_{\theta}: \mathbb{R}^3 \to \mathbb{R}^3$$

(x,y,z) \mapsto (xcos θ - ysen θ , xsen θ + ycos θ ,z)

▶ Rotação

Matriz da transformação:

$$[\mathsf{T}_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

