# 50.042 FCS Summer 2024 Lecture 11 – Key Establishment

Felix LOH
Singapore University of Technology and Design





### Preamble

- So far, we have discussed a several ciphers in detail:
  - Shift ciphers
  - Substitution ciphers
  - DES, AES
  - Block ciphers
- These ciphers all assume that the keys have been securely transmitted between the parties involved (like Alice and Bob)
- In reality, ensuring that the keys are transmitted securely over an insecure channel is a non-trivial task
- In this lecture, we will discuss how the keys can be securely distributed

## Key establishment

- The task of key establishment is one of the most important parts of a security system
- It deals with establishing a shared secret between two or more parties

- Key establishment is strongly related to the issue of identification
  - The attacker Oscar/Eve may attempt to join the key establishment protocol with the aim of impersonating either Alice or Bob
  - To prevent such attacks, each legitimate member must be assured of the identity of the other members

- Suppose we want to implement a secure chat application for students at SUTD (including students Alice and Bob)
  - Chat application needs to satisfy the confidentiality and integrity requirements
- Assume that it uses some wireless channel
- Users are identified by their student ID
  - Chat application uses the student IDs to determine the source and destination of a message
- How can we implement this chat application in a secure way?
  - What kind of infrastructure is required?
  - How many (and what kind of) messages need to be exchanged?
  - What happens when a new student enrols at SUTD?



- A simple but insecure way to implement the application:
- Alice wants to send a plaintext message  $x_A$  to Bob...
  - She computes the message digest or hash of  $x_A$ , i.e.  $z_A = h(x_A)$ , then broadcasts the message and hash pair  $(x_A, z_A)$  over the wireless channel
  - Bob receives the message and hash pair  $(x_A, z_A)$ , then he computes  $z_B = h(x_A)$  to check that  $z_A = z_B$  and verify the integrity of  $x_A$
- The major problem with this method:
  - No confidentiality whatsoever all other users on the chat application can read the message  $x_A$  that's only meant for Bob
- We need some way to distribute secret keys amongst the users so that we can encrypt messages

- A simple secure method use pre-shared keys:
- One shared secret key for each pair of users
- Assume that the keys have been distributed via some secure channel
- Alice wants to send a plaintext message  $x_A$  to Bob...
  - She retrieves her shared secret key with Bob,  $k_{AB}$ 
    - She computes the MAC, i.e.  $m_A = MAC_{k_{AB}}(x_A)$
    - She uses a cipher (say AES with key  $k_{AB}$ ) to encrypt  $x_A$ , obtaining the ciphertext  $y_A$ , then broadcasts the ciphertext and MAC pair  $(y_A, m_A)$  over the wireless channel
    - Bob receives  $(y_A, m_A)$ , decrypts  $y_A$  to obtain  $x_A$ , then he computes  $m_B = MAC_{k_{AB}}(x_A)$  to check that  $m_A = m_B$  and verify the integrity of  $x_A$



## Pre-shared keys: comments

- This method can be a logistical nightmare, particularly for a large number of users
- Each user needs to store a key for every other user (recall that we need one shared key for each pair of users)
- The total number of keys needed for n users of the application is  $n \cdot (n+1) / 2$ 
  - For example, with 1000 users, we have 500500 keys in total
- When a new user joins, every other existing user needs to obtain and store an additional new key

- A better secure method use a centralized server for session key distribution (i.e. a KDC key distribution center):
- Each user has a pre-shared secret key (e.g.  $k_{AS}$ ) with the server ('S'), distributed via some secure channel
  - These keys are long-term keys; different from the session keys
- Alice wants to send a plaintext message  $x_A$  to Bob...
  - Using her pre-shared key  $k_{AS}$ , Alice securely requests the server for a new session key  $k_{AB}$  (this is also a secret key)
  - The server then distributes the encrypted session key  $k_{AB}$  to both Alice and Bob (they decrypt the session key by using their respective pre-shared secret keys)
  - Alice uses the session key  $k_{AB}$  to compute the MAC for  $x_A$  and to encrypt  $x_A$  with AES, then broadcasts the ciphertext and MAC pair  $(y_A, m_A)$  over the wireless channel
  - Bob decrypts the ciphertext  $y_A$  and verifies its integrity



## Key distribution center (KDC): comments

- The total number of long-term keys needed for *n* users is *n* (much better and more feasible than the other method)
- The KDC can create a short-term shared session key and send this key to the appropriate pair of users
- The Kerberos protocol is one real-life example of such a scheme
- Some shortcomings:
  - There is a single point of failure (the server)
  - If the server is compromised, the long-term secret keys can be revealed
  - There is some communication overhead
  - Still needs a secure channel to distribute the pre-shared keys (but this is generally a one-time procedure)

## Key establishment over an insecure channel

- From our brief overview of the above two secure methods, we can see that it is possible to provide both confidentiality and integrity using the concepts we learned so far
- Both methods require a secure channel to distribute the secret keys

 It would be nice if we can somehow distribute the secret keys over an insecure medium or channel...

## Key establishment over an insecure channel

- Fortunately, we can achieve that goal using asymmetric (public-key) algorithms, like RSA and Diffie-Hellman key exchange (DHKE)
  - In this lecture, we'll discuss DHKE in more detail
  - RSA will be covered in the next lecture

- Note: we also need to authenticate the channel when distributing the keys – this means verifying the identity of the source of the public keys
  - This prevents man-in-the-middle attacks
  - This can be achieved using digital signatures and certificates we will discuss that topic in a future lecture

## Key establishment

- The techniques for key establishment can be classified into two main groups:
  - Key transport methods
  - Key agreement methods



## Key establishment examples

 Examples of a key transport method are the KDC method we described earlier, as well as RSA

• On the other hand, an example of a key agreement method is DHKE

### More modular arithmetic...

- Before we discuss DHKE, we need to cover some additional modular arithmetic concepts needed for understanding DHKE
- Particularly the concept of cyclic groups

- We will need these concepts to understand discrete logarithm publickey algorithms, of which DHKE is one
  - These algorithms are based on the discrete logarithm problem, which is a very difficult problem to solve if the *domain parameters* are sufficiently large
  - We'll explain domain parameters later, when we describe DHKE

## Group: definition (recap)

- A group  $G = (S, \circ)$  is a set of elements, S, together with an operation  $\circ$  which combines two elements of S. A group **must** have the following four properties:
- The group is **closed**, i.e.  $a \circ b = c \in S$  for all  $a, b \in S$
- The group operation is **associative**, i.e.  $a \circ (b \circ c) = (a \circ b) \circ c$  for all  $a, b, c \in S$
- There is an **identity** element  $i \in S$  with respect to the operation  $\circ$ , such that  $i \circ a = a \circ i = a$  for all  $a \in S$
- For each  $a \in S$ , there exists an **inverse** element  $a^{-1} \in S$ , such that  $a \circ a^{-1} = a^{-1} \circ a = i$

## Commutative group (recap)

• A group  $G = (S, \circ)$  is considered to be **commutative** if, in addition to the aforementioned four required properties, the group possesses the following property:

 $a \circ b = b \circ a$  for all  $a, b \in S$ 

## Order of a finite group (recap)

- We have seen sets with an infinite number of elements, such as  $\mathbb Z$  and  $\mathbb R$
- In cryptography, we are generally more interested in sets with a finite number of elements (i.e. finite sets) such as the set  $\mathbb{Z}_m$ , which has m elements
- The order |G| of a finite group G is the number of elements in G

• E.g. the order of the group  $G = (\mathbb{Z}_m, +)$  is  $|G| = |\mathbb{Z}_m| = m$ 

## Order of an element in a finite group (recap)

• The order ord(a) of an element  $a \in S$  in a group  $G = (S, \circ)$  is the smallest positive integer k, such that

$$a^k = a \circ a \circ a \dots a \circ a = i,$$

k times

where  $i \in S$  is the identity element with respect to the operation  $\circ$ 

- E.g.
  - The order of the element 1 in  $G = (\mathbb{Z}_6, +) = (\{0, 1, 2, 3, 4, 5\}, +)$  is 6, since  $1^6 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0$  mod 6, with element 0 being the additive identity element
  - The order of the identity element 0 in  $G = (\mathbb{Z}_6, +)$  is 1, since  $0^1 \equiv 0 \mod 6$
  - The order of the element 2 in  $G = (\mathbb{Z}_6, +)$  is 3, since  $2^3 = 2 + 2 + 2 \equiv 0 \mod 6$
  - The order of the element 1 in  $G = (\mathbb{Z}_m, +)$  is m

## Euler's phi function



- The number of integers in the set  $\mathbb{Z}_m$  that are *relatively prime* to m is denoted by  $\Phi(m)$ 
  - An integer j is relatively prime to m if gcd(j, m) = 1
- E.g.
  - When m = 6, we have  $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ . Then, we have gcd(0, 6) = 6; gcd(1, 6) = 1; gcd(2, 6) = 2; gcd(3, 6) = 3; gcd(4, 6) = 2 and gcd(5, 6) = 1. So, there are two integers that are relatively prime to 6 and thus,  $\Phi(6) = 2$
  - When m = 5, we have  $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ . Then, we have gcd(0, 5) = 5; gcd(1, 5) = 1; gcd(2, 5) = 1; gcd(3, 5) = 1 and gcd(4, 5) = 1. So, there are four integers that are relatively prime to 5 and thus,  $\Phi(5) = 4$

## Euler's phi function: comments

- For large m, calculating Euler's phi function  $\Phi(m)$  by going through all elements of the set  $\mathbb{Z}_m$  and computing the greatest common divisor is extremely slow
- However, if we know the factorization of m, then there is a much faster method to compute  $\Phi(m)$
- This property is critical to the RSA algorithm we'll revisit this issue when we discuss RSA in the next lecture
- Meanwhile, for this lecture we'll limit ourselves to the portions of Euler's phi function that are relevant to DHKE

## Fast method to compute Euler's phi function

- Let *m* have the following *factorized* form:
  - $m=p_1^{e_1}\cdot p_2^{e_2}\cdot ...\cdot p_n^{e_n}$ , where the  $p_j$  are distinct prime numbers and the  $e_j$  are positive integers
- Then we have  $\Phi(m) = \prod_{j=1}^{n} (p_j^{e_j} p_j^{e_j-1})$
- E.g. when  $m = 240 = 2^4 \cdot 3 \cdot 5$ , we have  $\Phi(240) = (2^4 2^3) \cdot (3^1 3^0) \cdot (5^1 5^0) = 8 \cdot 2 \cdot 4 = 64$
- Note that computing  $\Phi(240)$  by computing the gcd 240 times would have been much slower than using the formula above; but the formula requires that we know the factorization of m

# The finite group $\mathbb{Z}^*_m$

- The set  $\mathbb{Z}^*_m$  consists of all integers j=1,...,m-1 for which gcd(j,m)=1
  - In other words,  $\mathbb{Z}^*_m$  consists of all integers from 1 to m-1 that are relatively prime to m
- $\mathbb{Z}^*_m$  forms a **commutative group** under <u>multiplication modulo m</u>, and the multiplicative identity element is 1
- The order of  $\mathbb{Z}^*_m$  is  $\Phi(m)$

• Note:  $\mathbb{Z}^*_m$  is basically ( $\mathbb{Z}^*_m$ , ·) and we use these two terms interchangeably (i.e. both terms refer to the group  $\mathbb{Z}^*_m$ )

# The finite group $\mathbb{Z}^*_m$ : example

- When m = 9, the group  $\mathbb{Z}_9^*$  consists of the integers  $\{1, 2, 4, 5, 7, 8\}$
- The multiplication table for  $\mathbb{Z}^*_9$  is as follows:

| $\times$ mod 9 | 1 2 4 5 7 8                                              |
|----------------|----------------------------------------------------------|
| 1              | 1 2 4 5 7 8                                              |
| 2              | 1 2 4 5 7 8<br>2 4 8 1 5 7                               |
| 4              | 487215                                                   |
| 5              | 5 1 2 7 8 4                                              |
| 7              | 7 5 1 8 4 2                                              |
| 8              | 4 8 7 2 1 5<br>5 1 2 7 8 4<br>7 5 1 8 4 2<br>8 7 5 4 2 1 |

- The multiplication modulo 9 operation satisfies the closure, associativity, identity, inverse and commutativity requirements
- The order of  $\mathbb{Z}^*_9$  is  $\Phi(9) = 3^2 3^1 = 6$ , which is consistent with the number of elements in the set:  $\{1, 2, 4, 5, 7, 8\}$

## Cyclic groups

• A group G which contains an element  $\alpha$  that has <u>maximum order</u>, i.e.  $ord(\alpha) = |G|$ , is called a *cyclic group*.

- Elements with maximum order are known as *generators* or *primitive* elements
  - Such an element is called a generator, because <u>every</u> element in the cyclic group can be generated by that element
  - i.e. if an element  $\alpha \in G$  is a generator of the cyclic group G, then every element  $a \in G$  can be written as  $\alpha^k = a$  for some positive integer k

## Cyclic groups: example

Cyclic Broup: == 1.

- $\mathbb{Z}^*_{11}$  is an example of a cyclic group
- This group consists of the integers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the order of the group is 10
- One generator of this group is 2, i.e. we have  $\alpha = 2$
- Let's check that  $\alpha = 2$  is indeed a generator, by checking the elements that are generated by powers of  $\alpha = 2$ :

$$\alpha = 2$$
;  $\alpha^2 = 4$ ;  $\alpha^3 = 8$ ;  $\alpha^4 \equiv 5 \mod 11$ ;  $\alpha^5 \equiv 10 \mod 11$ ;  $\alpha^6 \equiv 9 \mod 11$ ;  $\alpha^7 \equiv 7 \mod 11$ ;  $\alpha^8 \equiv 3 \mod 11$ ;  $\alpha^9 \equiv 6 \mod 11$ ; and  $\alpha^{10} \equiv 1 \mod 11$ 

• From the last result for  $\alpha^{10}$ , we can see that  $ord(\alpha) = 10$  and so,  $\alpha = 2$  is a generator of  $\mathbb{Z}^*_{11}$ . Also, observe that  $\alpha = 2$  is able to generate all elements of  $\mathbb{Z}^*_{11}$ .

# The finite group $\mathbb{Z}^*_{\rho}$

• There is an important theorem concerning  $\mathbb{Z}^*_m$  when m=p, where p is a prime integer:

For every prime integer p, ( $\mathbb{Z}^*_p$ , ·) is a commutative finite cyclic group.

#### Notes:

- This theorem basically states that the multiplicative group of <u>every</u> prime field is cyclic, and that such a group has at least one generator
- The order of  $\mathbb{Z}^*_p$  is  $\Phi(p) = p 1$

# The discrete logarithm problem (DLP) in $\mathbb{Z}^*_{\rho}$

• Description of the problem:

Given a commutative finite cyclic group of  $\mathbb{Z}^*_p$  of order p-1, a generator  $\alpha \in \mathbb{Z}^*_p$ , and another element  $\beta \in \mathbb{Z}^*_p$ , the DLP is the problem of determining an integer x, with  $1 \le x \le p-1$ , such that  $\alpha^x \equiv \beta \mod p$ 

- In other words, in the DLP, we are attempting to find  $x \equiv \log_{\alpha} \beta \mod p$
- The integer x is called the discrete logarithm of  $\beta$  to the base  $\alpha$
- The integer x must exist because α is a generator, but finding such an integer x is very, very difficult if p is sufficiently large

## One-way functions (w.r.t. asymmetric crypto)

- A function *f*() is a one-way function if:
  - 1) y = f(x) is computationally easy, and
  - 2)  $x = f^{-1}(y)$  is computationally infeasible.
- Important note:
  - The 'one-way function' defined here for asymmetric cryptosystems is not the same as a 'one-way function' defined in the context of hash functions
  - In the case of a hash function, the 'one-way function' refers to a non-invertible function f(x) where the inverse  $f^{-1}(y)$  does **not** mathematically exist
  - In the case of asymmetric cryptosystems, the inverse of a one-way function does exist, but is extremely difficult to compute
- Most asymmetric crypto schemes of practical use, including RSA and DHKE, are based on a one-way function

## One-way functions: examples

- The discrete logarithm problem (or equivalently, modular exponentiation) is an example of a one-way function
- Given  $\alpha$ , x and p, computing  $\beta$  for which  $\beta \equiv \alpha^x \mod p$  is relatively easy
- Conversely, given  $\alpha$ ,  $\beta$  and p, computing x for which  $\alpha^x \equiv \beta \mod p$  is really difficult, for a large p

 Another example of a one-way function is the integer factorization problem; this is used as a mathematical basis for RSA

- DHKE is an asymmetric (public-key) cryptoalgorithm
  - The first asymmetric scheme
  - Proposed by Whitfield Diffie and Martin Hellman in 1976
  - It is used in many cryptographic protocols, like SSH, TLS and IPSec

- The fundamental idea behind DHKE:
  - Modular exponentiation in  $\mathbb{Z}^*_p$ , where p is a large prime integer, is a one-way function and modular exponentiation is commutative, i.e.
    - $k = (\alpha^x)^y \equiv (\alpha^y)^x \mod p$ , where k is the shared secret key between the two parties Alice and Bob
- This is the discrete logarithm problem in the group  $\mathbb{Z}^*_{p}$ 
  - In other words, the discrete logarithm problem in  $\mathbb{Z}^*_p$  forms the mathematical basis for DHKE

• DHKE actually consists of two protocols (can think of these as phases): setup and key exchange

- a. Diffie-Hellman setup phase (picking of domain parameters):
  - 1. Choose a large prime *p*
  - 2. Choose a generator  $\alpha \in \{2, 3, ..., p-2\}$
  - 3. Publish the domain parameters p and  $\alpha$  (for Alice and Bob to use in the next phase key exchange)

#### Alice

choose  $a = k_{pr,A} \in \{2, ..., p-2\}$ compute  $A = k_{pub,A} \equiv \alpha^a \mod p$ 

#### Bob

choose  $b = k_{pr,B} \in \{2, ..., p-2\}$ compute  $B = k_{pub,B} \equiv \alpha^b \mod p$ 

$$\xrightarrow{k_{pub,A}=A} \xrightarrow{k_{pub,B}=B}$$

$$k_{AB} = k_{pub,B}^{k_{pr,A}} \equiv B^a \mod p$$

$$k_{AB} = k_{pub,A}^{k_{pr,B}} \equiv A^b \mod p$$

- b. Diffie-Hellman key exchange phase (generate a joint secret key  $k_{AB}$ ):
  - 1. Alice picks a private key,  $k_{pr,A} = a \in \{2, 3, ..., p-2\}$  and computes her public key  $k_{pub,A} = A \equiv \alpha^a \mod p$ , then sends the public key over to Bob
  - 2. Likewise, Bob picks a private key,  $k_{pr, B} = b \in \{2, 3, ..., p-2\}$  and computes his public key  $k_{pub, B} = B \equiv \alpha^b \mod p$ , then sends the public key over to Alice
  - 3. Upon receiving each other's public key, Alice computes the joint secret key  $k_{AB} = (k_{pub, B})^a \equiv \alpha^{ba} \mod p$  and Bob computes  $k_{AB} = (k_{pub, A})^b \equiv \alpha^{ab} \mod p$

## DHKE: example

#### Alice

choose 
$$a = k_{pr,A} = 5$$
  
 $A = k_{pub,A} = 2^5 \equiv 3 \mod 29$ 

 $k_{AB} = B^a \equiv 7^5 = 16 \mod 29$ 

#### Bob

choose 
$$b = k_{pr,B} = 12$$
  
 $B = k_{pub,B} = 2^{12} \equiv 7 \mod 29$ 

A=3

B=7

$$k_{AB} = A^b = 3^{12} \equiv 16 \mod 29$$

### **DHKE:** comments

- The joint secret key  $k_{AB}$  computed separately by Alice and Bob is the same, since modular exponentiation is commutative in  $\mathbb{Z}^*_p$ , that is,  $\alpha^{ab} \mod p \equiv \alpha^{ba} \mod p$
- Only the public keys of Alice and Bob are transmitted over the insecure channel
- With a sufficiently large p, Eve/Oscar will have extreme difficulty in computing  $k_{AB}$ , despite knowing  $\alpha$ , p, and the public keys A, B
- This joint secret key can then be used by Alice and Bob as the key for a symmetric cipher, such as 3DES and AES
  - Truncate the bits of the joint secret key as necessary for the required key length of the symmetric cipher

### **DHKE:** comments

- Note that by itself, DHKE is not really a cipher; it doesn't have an encryption and decryption function
- But it can be extended to offer this functionality with extensions, it becomes the *Elgamal* encryption scheme (we'll discuss this scheme in the next lecture)
- The discrete logarithm problem in  $\mathbb{Z}^*_p$  is the one-way function used in DHKE; this problem can be generalized over any cyclic group
  - The one-way function used by elliptic curve cryptosystems is the generalized discrete logarithm problem over a cyclic group formed by an elliptic curve

## Security of DHKE

- How might the attacker Eve/Oscar compromise the security of DHKE?
- The attacker only knows  $\alpha$ , p, A and B
- The attacker can try the following:
  - 1. Solve the DLP by finding a value a such that  $a \equiv \log_a A \mod p$
  - 2. Then compute the joint secret key  $k_{AB} \equiv B^a \mod p$
- ullet As mentioned earlier, this is generally a difficult process for a large enough p

## Security of DHKE

Suppose Eve/Oscar wishes to solve the DLP to find the value a. There
are a few methods available to the attacker who want to solve this
problem:

### Brute Force Search

- Keep trying values of a, in sequence, together with the generator  $\alpha$  until the attacker obtains  $\alpha^a = A \mod p$
- To defeat a brute force attack using today's computer technology, the order of  $\mathbb{Z}^*_p$  needs to be around  $2^{80}$
- Recall that  $|\mathbb{Z}^*_p| = p-1$
- This implies that at the bare minimum, we require p to be at least 80 bits long
- But there are more powerful methods, listed in the next slide, which will increase the minimum length of *p* needed for security

## Security of DHKE

- Shanks' Baby-step Giant-step Method
- Pollard's Rho Method
- Pohlig-Hellman Algorithm
- The Index-Calculus Method
  - This attack is powerful enough that in order to ensure that Eve/Oscar has to perform at least  $2^{80}$  runs of this method, we require p to be at least 1024 bits long

## Security of asymmetric cryptosystems

• In general, an asymmetric cryptosystem will require significantly more bits to achieve a similar security level as a symmetric cipher, as shown in the table below:

| Algorithm Family      | Cryptosystems    | Security Level (bit) |          |          |           |
|-----------------------|------------------|----------------------|----------|----------|-----------|
|                       |                  | 80                   | 128      | 192      | 256       |
| Integer factorization | RSA              | 1024 bit             | 3072 bit | 7680 bit | 15360 bit |
| Discrete logarithm    | DH, DSA, Elgamal | 1024 bit             | 3072 bit | 7680 bit | 15360 bit |
| Elliptic curves       | ECDH, ECDSA      | 160 bit              | 256 bit  | 384 bit  | 512 bit   |
| Symmetric-key         | AES, 3DES        | 80 bit               | 128 bit  | 192 bit  | 256 bit   |

- One more thing before we conclude our discussion of DHKE...
- Consider the modular exponentiation operation for the legitimate parties Alice and Bob
  - They know a and b, and need to calculate  $\alpha^a \mod p$ ,  $\alpha^b \mod p$  and  $\alpha^{ab} \mod p$
- As we saw in the previous slide, the bit length of the operands need to be rather long, for security (1024 bits at a minimum)
  - This has a consequence on the computation time of the modular exponentiation operation
  - CPUs do **not** have an exponentiation instruction
  - The values a and b used in DHKE are on the order of 1024 bits; performing the multiplication operation of  $\alpha$  by itself a and/or b times would require around  $2^{1024}$  multiplications that's infeasible
  - Fortunately, there is a much faster way the square and multiply algorithm

- Broadly speaking, the algorithm works on  $x^e \mod m$  as follows:
- 1. Initialize the result to x
- 2. Convert the exponent e to an unsigned binary number  $b_e$
- 3. Scan the bit of  $b_e$  from the left to right (excluding the MSB), i.e. from the MSB (exclusive) to the LSB (inclusive) each bit scanned counts as one iteration
  - a. If the bit scanned is a '0': just square the current result (i.e. multiply the current result by itself), modulo m
  - b. Otherwise, the bit scanned is a '1': square the current result modulo *m*, then multiply the new result by *x*, modulo *m*
- 4. Return the final result

• A simple Python function that implements this algorithm :

return result

 The modulus operation is applied after every squaring operation and after every multiply operation to keep the intermediate results small

- As an exercise, try applying the square and multiply algorithm to the following exponentiations:
  - 3<sup>5</sup> mod 11 (result is 1 mod 11)
  - 5<sup>18</sup> mod 13 (result is 12 mod 13)
- Let's work through the algorithm for 3<sup>5</sup> mod 11:
  - Initialize the result to 3
  - We have  $5_{10} = 101_2$ , and thus two iterations to execute
  - First iteration:
    - Bit is a '0', so just square the current result:  $3 \cdot 3 \mod 11 \equiv 9 \mod 11$
  - Second iteration:
    - Bit is a '1', so square the current result, then multiply by 3:
    - $9 \cdot 9 \mod 11 \equiv 81 \mod 11 \equiv 4 \mod 11 \rightarrow 4 \cdot 3 \mod 11 \equiv 12 \mod 11 \equiv 1 \mod 11$
  - We obtain  $3^5 \mod 11 \equiv 1 \mod 11$  as our final result