

Team 1: Radiation Resilient Logic Circuit Study with WBG Devices Bi-Weekly Update 5

Nia Baireddy, Kaylee Choate, Nomar Lebron Sponsor: Sandia National Laboratories TA: Eric Robles

Project Summary and Solution

- Radiation effects on circuits are detrimental and must be mitigated for robust applications in space, military, and nuclear industries.
- Use radiation hardening by design techniques to modify various logic circuits for reliable operation in radiation environments.

Integrated System Diagram

Project Timeline

Kaylee Choate

Accomplishments since last update 10 hrs of effort	Ongoing progress/problems and plans until the next presentation				
Sent individual subsystems and user manuals to Sandia	Finish soldering integrated PCB				
Ordered and received integrated PCB	 Validation testing on integrated PCB 				
Began soldering integrated PCB	Receive radiation results from Sandia				

Kaylee Choate

7 Stage Ring Oscillator

Testing Equipment:

- DC Power Supply
- Oscilloscope
- · Set of power supply wires
- Set of oscilloscope wires
- Screwdriver

Board Layout:

Assembly Procedure:

- 1. Verify that the switch is in the downward position (initial condition).
- Connect a 5V DC power supply to the input power terminal block. (Dotted side: positive, Non-dotted side: negative)
- Connect the oscilloscope to the output terminal block. (Dotted side: positive, Non-dotted side: negative)
- 4. Testing assembly complete.
- 5. Apply 5V and 0.17A with the DC power supply.
- 6. Verify that the oscilloscope is reading a constant 5V output.
- Flip the switch to the upward position to begin oscillations. Expect the oscillation frequency to be in the 90-100kHz range.

Nia Baireddy

Accomplishments since last update 10 hrs of effort	Ongoing progress/problems and plans until the next presentation					
Set dates for radiation testing at Sandia: Apr 8-10	Finish soldering remainder of board					
Ordered and received integrated board	Specification and scenario validation					
Soldered SRAM array on integrated board	Receive radiation testing results from Sandia for report					

Nia Baireddy

Nomar Lebron

Accomplishments since last update 10 hrs of effort	Ongoing progress/problems and plans until the next presentation				
 Sent individual PCB and user manual to Sandia for radiation 	Finish soldering integrated PCB				
testing	 Perform validation tests on integrated PCB 				
 Ordered and received integrated PCB 	Receive radiation test data from Sandia for final report				
Ordered additional parts for integrated PCB					
Began soldering integrated PCB					

Nomar Lebron

Execution Plan

	1/17	1/24	1/31	2/7	2/14	2/21	2/28	3/6	3/20	3/27	4/3	4/10	4/17	4/24
Validate Subsystem Functionality														
Status Update 1														
Update Subsystem Designs														
Plan Integrated System Design														
Status Update 2														
Design Integrated System in LTSpice														
Order Individual PCBs and Parts														
Design Integrated Schematic in Altium														
Design Integrated PCB in Altium														
Status Update 3														
Assemble Individual PCBs														
Test and Validate Individual PCBs														
Create User Manual for Sandia														
Deliver Individual PCBs to Sandia														
Status Update 4														
Order Integrated PCB and Parts														
Assemble Integrated PCB														
Status Update 5														
Integrated PCB Testing and Validation														
Final Report														
Final Demo														
Completed														
In Progress														
Behind Schedule														
Not Started														

Validation Plan - Specifications

Ring Oscillator Task	Specification	Result (Sim)	Result (PCB)	Owner	Date
Voltage Input (max)	5V	Pass		Kaylee	3/27/2024
Square Wave	yes/no	Pass		Kaylee	3/27/2024
Frequency Range	100kHz	Pass		Kaylee	3/27/2024
Magnitude Variation	0-5V	Pass		Kaylee	3/27/2024
Power Consumption	~ 10 mW	Pass		Kaylee	3/27/2024
Supply Voltage Variation Test	Vdd +/- 10%	Pass		Kaylee	3/27/2024
Voltage Spike	50V	Pass		Kaylee	3/27/2024
Voltage Build Up	50V	Pass		Kaylee	3/27/2024
Current Spike	5A	Pass		Kaylee	3/27/2024
Current Build Up	5A	Pass		Kaylee	3/27/2024
1x4 SRAM Memory Cell Array Task	Specification	Result (Sim)	Result (PCB)	Owner	Date
Voltage Input Max (Vdd)	5V	Pass		Nia	3/27/2024
Read/Write Speed	~ 10 ns	Pass		Nia	3/27/2024
Read/Write Disturb	< 10 cycles	Pass		Nia	3/27/2024
Hold and Setup Time	~ 5 ns	Pass		Nia	3/27/2024
High/Low Voltage	Vdd +/- 10%	Pass		Nia	3/27/2024
Read/Write Stability Margin (Voltage)	Vdd +/- 10%	Pass		Nia	3/27/2024
Power Consumption (active)	~ 10 mW	Pass		Nia	3/27/2024
Power Consumption (idle)	~ 10 uW	Pass		Nia	3/27/2024
Data Recovery Test	~ 10 ms	Pass		Nia	3/27/2024
4:1 Multiplexer Task	Specification	Result (Sim)	Result (PCB)	Owner	Date
Voltage Input (max)	5V	Pass		Nomar	3/27/2024
Select Line Test	4 inputs	Pass		Nomar	3/27/2024
Data Stability	Vdd +/- 10%	Pass		Nomar	3/27/2024
High/Low Voltage	Vdd +/- 10%	Pass		Nomar	3/27/2024
Power Consumption Test	< 6W	Pass		Nomar	3/27/2024
User Interface Testing	Switches	Pass		Nomar	3/27/2024
User Interface Testing	LEDs on/off	N/A		Nomar	3/27/2024
Supply Voltage Variation Test	Vdd +/- 10%	Pass		Nomar	3/27/2024

Validation Plan - Scenarios

Scenario	Description	Test Procedure	Owner
1: Normal Operation	The circuit controls power distribution to other electronic subsystems (navigation, computing, data collection, etc.) in a low Earth orbit (LEO) satellite.	User will set up and operate the circuit as normal, first supplying VDD, then feeding the input signals to the memory cell array, then selecting one cell's data using the mux selector bits	Kaylee
2: Total Ionizing Dose	The LEO satellite passes through an ozone hole and is exposed to radiation for a significant time (2 min) User will attempt to disrupt \ with continuous voltage ar current injections significan higher or lower than rated va and record resulting circu behavior		Nomar
3: Single Event Upset	The LEO satellite has faulty radiation shielding that allows heavy ions through sporadically	User will attempt to disrupt VDD with voltage and current pulse injections higher or lower than rated value and record resulting circuit behavior	Nia

Thanks and Gig 'Em!

Questions?