

Database Concepts & Relational Model

2016-1학기

권동섭

DATABASE CONCEPTS

- DB / DBMS란 무엇인가?
- 왜 DBMS를 사용하는가?

데이터베이스

Database (DB)

 한 조직의 여러 응용 시스템들이 공용(Shared)하기 위해 통합(Integrated), 저장(Stored)한 운영 데이타(Operational data) 의 집합

• 특징

- 컴퓨터 시스템과 무관.
- 데이터의 구조적 집합 (종이, 장부 등도 DB라고 할 수 있음)
- 일반적으로 컴퓨터 시스템을 이용하여 구축하여둔 데이터의 집 합을 의미
- 데이터 모델에 따라 데이터베이스의 구조는 달라질 수 있음

Database Management System (DBMS)

- DB관리를 위한 컴퓨터 시스템
 - 전사적인 정보 관리
 - 관련된 데이터의 집합
 - 데이터에 접근하는 프로그램 집합
 - 효율적이고 편한 사용을 위한 환경
- DBMS 응용의 예:
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions

Database System

DBMS의 목적

- 왜 Databae관리를 위한 별도의 시스템이 필요한가?
- 파일 시스템 등의 저장소를 이용하여 직접 Database 관리 프로그램을 짜면 더 효율적이고, 응용 프로그램에 적합하게 제작할 수 있지 않을까?
- 초기 데이터 응용에서는 프로그래머가 직접 모든 프로그램을 작성
 - OS의 파일 시스템 등을 이용

파일 시스템의 문제점 (1/2)

- 데이터의 중복(Redundancy) 와 일관성(Consistency) 문제
 - Multiple file formats, duplication of information in different files
- 데이터 접근의 어려움
 - 각 작업마다 별도의 프로그램 작성
 - 각각 별도의 방법이 필요할 수 있음
- 데이터 종속성 (Dependency)
 - 데이터의 포맷이나 접근 방법 등이 프로그램 코드에 종속됨.
 - 프로그램의 변경이나 데이터 형태, 종류 등의 변경이 불가능
- 데이터 독립성 (Isolation)
 - 여러 프로그램에서 동시에 데이터를 수정하면?
 - 하나의 수정 작업이 다른 작업에 영향을 줄 수 있음

파일 시스템의 문제점 (2/2)

- 변경의 원자성(Atomicity) 문제
 - 일련의 작업 중 시스템의 failure가 발생하면??
 - 예) 계좌이체 중 내 계좌에서 돈이 나갔는데, 다른 계좌에 가기 전에 정전이 일 어난다면?
- 동시 사용성(Concurrency) 제어 문제
 - 동시에 일련의 작업들이 이루어질 경우 올바른 수행을 보장할 수 있는가? (일관성에 문제)
 - 예) 두 명이 동시에 한계좌에서 돈을 인출하려고 하면?
- 데이터 무결성 (Integrity) 문제
 - Integrity constraints (예. account balance > 0) 가 프로그램 코드 속에 기술
 - 프로그램 코드를 복잡하게 만들고 유지 보수를 어렵게 함
 - 제약조건 변경이나 추가 등이 힘들다.
- 보안
 - 보안을 보장하기 힘듬: 다양한 파일, 다양한 접근 경로, 다양한 프로그램의 이용

DBMS

- 데이터의 종속성과 중복성의 문제 해결
- 데이터베이스를 공용할 수 있도록 관리하는 시스템

DBMS의 장단점

- 장점
 - 데이타 중복(redundancy)의 최소화
 - 데이타의 공용(sharing)
 - 일관성(consistency) 유지
 - 무결성(integrity) 유지
 - 보안(security) 보장
 - 표준화(standardization) 용이
 - 전체 데이타 요구의 조정
- 단점
 - 비용: H/W, DBMS, 운영비, 교육비, 개발비
 - 프로그램의 복잡화
 - 성능상의 오버헤드

Data Independence Property

DBMS Architecture

DBMS의 과거와 현재

데이터베이스 역사

- 1950s and early 1960s:
 - 펀치카드, 테이프(순차적 접근만 가능)등을 이용한 데이터 처리
 - File System
- Late 1960s and 1970s:
 - HDD 사용
 - Network & hierarchical data models
 - Ted Codd가 relational data model 정의
 - ACM Turing Award 수상
 - IBM Research: System R prototype
 - UC Berkeley: Ingres prototype
 - 고성능 트랜잭션 처리

데이터베이스 역사 (계속)

- 1980s:
 - RDBMS가 상용화 됨 (Oracle)
 - SQL이 표준으로 제정됨
 - 병렬, 분산 Database
 - OO-DBMS 소개됨
- 1990s:
 - OR-DBMS
 - 대규모 의사결정 시스템 및 Data Mining 응용
 - 수 TB 규모의 데이터 웨어하우스
 - 웹 시스템과 결합
- 2000s:
 - XML & XQuery, 스트림 처리, GIS, Grid, 내장형, Real-Time DB, 자동화된 DB 관리, NoSQL
- 2010s: Big data, NoSQL

DBMS 제품

- BIG 3
 - Oracle: RDBMS 최초 상용화, RDBMS 시장 점유율 가장 높음 (국내 점유 율 특히 높음)
 - IBM DB2: RDBMS 최초개발, 메인프레임등에서 점유율 높음
 - MS-SQL Server: Sybase 코드에 기반
- 기타
 - Teradata, Informix, Sybase
 - MySQL, PostgreSQL, Firebird, Cubrid
 - Main-Memory(Real-time) DB : Altibase, TimesTen
 - Embedded DB: SQLite, BerkeleyDB

Source: Gartner Dataquest

DBMS 성능

- 현재 DB 성능의 한계는?
 - 과연 현재 사용 시스템의 성능은 어느 정도인가?
 - 가격은 어느 정도 인가?
- DBMS 벤치마크 사이트: http://www.tpc.org
 - 데이터베이스 시스템의 성능 벤치마크
 - DBMS + H/W System + Middle Ware System ...
 - 분류
 - TPC-C / TPC-E: 트랜잭션 시스템 (OLTP)
 - TPC-H: 의사결정 시스템 (OLAP)
 - TPCx-HS: Big Data (Hadoop)

	Rank	Company	System	Performance (tpmC)	Price/tpm	ıC Watts/Kt	nmC	ystem ilability		Database		Operating Syste	m TP F	lonitor	Date Submitted
TPC-C	1	ORACLE	SPARC T5-8 Server	8,552,523	.55 US	D NR		09/25/13		g Release 2 Enterprise le Partitioning	Edition	Oracle Solaris 11.1	Oracle CFSR	Tuxedo	03/26/13
11 0 0	2	SAP®	Dell PowerEdge T620	112,890	.19 US	D NR	:	11/25/14 S	SQL Anyv	vhere 16		Microsoft Windows 20 Standard x64)12 Micros		11/25/14
	Rank	Company	System		rmance Pri	ice/tpsE Wa	tts/tpsE	System Availabilit		Database	Oper	ating System	Process Cores / T		Date ubmitted
	1	Lenovo.	Lenovo System > X6	x3950	11,059 14	3.91 USD	NR	12/17/1	5 I	oft SQL Server 2014 rise Edition	Microsoft W R2 Standare	indows Server 2012 d Edition	8 / 144 /	288	12/17/15
TPC-E	2	CHINTCH	FUJITSU Server PRIMEQUEST 280	00E2	10,058 18	7.53 USD	NR	11/11/1	5 I	oft SQL Server 2014 rise Edition	Microsoft W R2 Standare	indows Server 2012 d Edition	8 / 128 /	256	11/11/15
	3	Lenovo.	System x3950 X	6	9,145 19	2.38 USD	NR	11/25/14	4 I	oft SQL Server 2014 rise Edition	Microsoft W Standard Ed	indows Server 2012 lition	8 / 120 /	240	11/25/14
	3,00	0 GB Resul	ts	•	•	•			-		-	-		•	
	Rank	Company	Syst	em	QphH	Price/QphH	Watts/K	OnbH *	ystem ilability	Databas	e	Operating Sy	stem	Date Submitte	Cluster
TPC-H	1	DELL	Dell PowerEdge I EXASolution 5.0	R720xd using	7,808,386	.15 USD	NR		09/24/14	EXASOL EXASolution	5.0	EXASOL EXACluster	OS 5.0	09/23/1	14 Y
	2	cisco	Cisco UCS C460	M4 Server	725,686	1.08 USD	NR	(07/14/15	Microsoft SQL Server Enterprise Edition	2014	Microsoft Windows 2 Standard Edition	012 R2	07/13/1	.5 N

	10 TB Results										
	Rank	Company	System	HSph	Price/HSph	Watts/KHSph	System Availability	Apache Hadoop Compatible Software	Operating System	Date Submitted	Cluster
TPCx-HS	1	DELL	Dell PowerEdge 730/730xd	9.07	38,101.22 USD	NR	10/19/15	· ·	Red Hat Enterprise Linux Server 6.5	10/16/15	Y
	2		Cisco UCS Integrated Infrastructure for Big Data	5.77	106,524.27 USD	NR	01/09/15	MapR M5 Edition 4.0.1	Red Hat Enterprise Linux 6.4	01/08/15	Y

	System	TPC-E TM 1.14.0 TPC Pricing 1.7.0		
Lenovo.	Microsoft [®] S(System x [®] 3950 X6 Microsoft [®] SQL Server [®] 2014 Report Date: December 17, 2015		
			Revision Date: December 17, 2015	
TPC-E Throughput 11,058.99 tpsE	Price/Performance \$143.91 USD per tpsE TM	Availability Date December 17, 2015	Total System Cost \$1,591,485 USD	
	Database Se	erver Configuration		
Operating System Microsoft Windows Server* 2012 R2 Standard Edition	Database Manager Microsoft SQL Server 2014 Enterprise Edition	Processors/Cores/ Threads 8/144/288	Memory 4096GB	

System x3650 M5, with: 2 x Intel® Xeon® Processor E5-2699 v3 2.30GHz

- 64GB Memory

- 2 x 300GB SFF SAS (RAID-1)
- 1 x ServeRAID M5210
- Onboard Quad Gb Ethernet

- 2 x Dual 10Gb-T Ethernet

System x3950 X6, with: 8 x Intel Xeon Processor E7-8890 v3 2.50GHz (2 Procs/36 Cores/72 Threads) (8 Procs/144 Cores/288 Threads)

- 4096GB Memory

- 2 x 900GB 10K SAS (RAID-1)
- 6 x 800GB SAS SSD (RAID-10)
- 1 x ServeRAID M5210
- 8 x ServeRAID M5225

- 4 x Dual 10Gb-T Ethernet

104 Total External Drives

12 x Lenovo E1024 JBOD

(6 x 17-drive RAID-5)

(1 x 2-drive RAID-1)

- 104 x 800GB 2.5" SAS SSD

Enclosures, with:

Redundancy Level: 1 Storage Initial Database Size RAID-10 Log 2 x 900GB 2.5" 10K SAS 47,222 GB RAID-5 Data 6 x 800GB 2.5" SAS SSD RAID-1 tempdb 104 x 800GB 2.5" SAS SSD

Clients

16 Sun Server X3-2 2 Intel® Xeon® E5-2690 2.93GHz 64GB Memory 2 600GB SAS disk

SPARC T5-8 Server 8 SPARC T5 3.6GHz **4TB Memory** 2 600GB 10K RPM SAS 12 8Gb/s FC HBA, 2 port 10GbE SFP+

Storage

54 DATA COMSTAR

Sun Server X3-2L w/ 2 Intel® Xeon® E5-2609 2.4GHz 16GB DDR3 46 w/ 1 3TB 7.2K RPM SAS

8 w/ 2 3TB 7.2K RPM SAS 4 F40 PCI-E 400GB SSD

2 REDO COMSTAR

Sun Server X3-2L w/ 2 Intel® Xeon® E5-2609 2.4GHz 16GB DDR3 12 3TB 7.2K RPM SAS

System Component		nch Server Node	Each Client		
Processors/Cores/Threads and cache	8/128/1024	SPARC T5 3.6GHz 8MB L3 Cache	2/16/32	Intel® Xeon® E5-2690 12MB Smart Cache	
Memory		4TB		64GB	
Disk Controllers	12	8Gb/s FC HBA 2 Port	1	8 port Internal SAS	
OS Disks (each system)	2	600GB 10K RPM SAS	2	600GB 10K RPM SAS	
External Storage	216	Flash Accelerator F40 PCI-E 400GB eMLC			
	86	3TB 7.2K RPM SAS			
Total Storage		344.4TB			

RELATIONAL MODEL

- Schema란?
- Relational Model이란?
- 주요개념: Domain, Attribute, Tuple, Relation, NULL, Key

Data Model

- Data를 어떻게 표현할 것인가???
- 예)
 - List?
 - Tree?
 - Graph?
 - Array?
- DBMS마다 Data Model이 다를 수 있음

주요 Data Model

- Relational data model
- Entity-Relationship(E-R) data model
 - 데이터베이스 설계에 주로 이용됨
- Object-based data models
 (Object-Oriented and Object-Relational)
 - RDBMS의 한계점 극복 위해 제안
 - OO-DBMS의 장점이 부각되자, 대형 RDBMS Vendor들이 OR-DBMS 발표
 - 현재 대부분의 RDBMS는 실질적으로 ORDBMS
- 기타
 - Network(네트워크) model , Hierarchical(계층) model: RDBMS 이전에 주로 사용되었던 모델.

Relational model

- 가장 널리 이용됨. 대표적 Data Model
- Relation (Table)에 기반한 모델, 사용 편리, 성능 우수
- Oracle, IBM DB2, MS-SQL Server 등 대부분 DBMS가 RDBMS
- SQL제공: High-level language

customer-id	customer-name	customer-street	customer-city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

account-number	balance
A-101	500
A-215	700
A-102	400
A-305	350
A-201	900
A-217	750
A-222	700

customer-id	account-number
192-83-7465	A-101
192-83-7465	A-201
019-28-3746	A-215
677-89-9011	A-102
182-73-6091	A-305
321-12-3123	A-217
336-66-9999	A-222
019-28-3746	A-201

Relational Model의 주요 개념

- Domain (type): Attribute가 가질 수 있는 값의 집합
- Attribute (column)
- Tuple (row, record): set of values for attributes
- Relation (table): set of tuples
- Database: set of relations

 학변
 학년
 학과

 1
 정성진
 1
 컴퓨터

 2
 박현진
 2
 수학

 3
 홍길동
 4
 물리

 ...
 ...
 ...

Domain(학년) = {1, 2, 3, 4}

Relation(Table)

Table vs. Relation

Table-oriented	Set-oriented	Record-oriented
Table	Relation	Record-type, file
Row	Tuple	Record
Column	Attribute	Field

- Relation은 수학적 개념:
 - 튜플간, 애트리뷰트 간 순서가 없음.
 - 동일한 튜플이 존재할 수 없음(집합이므로)
- 실제 DBMS의 테이블은 순서, 중복 등이 존재

Schema & Instance

Schema

- the logical structure of the database
- type information of a variable in a program
- Physical schema: database design at the physical level
- Logical schema: database design at the logical level

Instance

- actual contents at a particular point in time
- the value of a variable

Example

• Scheme (schema)

 고객ID
 이름
 주소
 전화번호
 계좌번호
 계좌종류
 잔고

Instance

2011/2/20/12:00

고객

2011/3/5/12:00 고객

고객ID	이름	주소	전화번호
CE1	박현민	••••	••••
CE2	이강선	••••	••••
CE3	권동섭		••••

고객ID	이름	주소	전화번호
CE1	박현민	••••	••••
CE4	김상균	••••	••••
CE5	한승철		

NULL

- special value for "unknown" or "undefined"
- 숫자 0, 빈 문자열 "" 등과는 다름
- 모든 Domain은 NULL값을 포함 함

Key

- Key: Tuple을 구별하기 위한 Attribute 집합
 - Relation은 동일한 tuple이 있을 수 없음
- Superkey (수퍼키)
 - Relation에서 Tuple을 식별할 수 있는 **Unique**한 Attribute의 집합
- Candidate Key (후보키)
 - Superkey 중에서 **Minimal** 한 Key
 - Minimal: 하나의 Attribute라도 빼면 더 이상 Key가 아님
- Primary Key (기본키, PK)
 - Candidate Key 중 하나 (Relation을 정의할 때 선택)
 - Entity Integrity : NULL이 될 수 없음
- Foreign Key (참조키, FK)
 - 타 relation을 참조하는 attribute
 - 참조하는 relation에서 key는 아니지만, 참조되는 relation에서 primary key임.
 - Referential Integrity: 반드시 참조된 relation의 PK 값에 존재하거나 NULL이어야 함

Example

학생 교수 학과

학번	이름	주민등록번호	주소	지도교수
60072345	한승연	8816XXXXX	서울	11215

(M) (M)				

교번	이름	학과
11215	권동섭	컴퓨터공학과
	-	

7-1	
학과명	학과장
컴퓨터공학과	11277
•••	
***	-

• Superkey, Candidate key, Primary key, Foreign key??

정리

- DB란 무엇인가?
- DBMS란 무엇인가?
- 왜 DBMS를 사용하는가?
- Relational Model이란 무엇인가?
- 다음 개념을 설명하라
 - Domain, Attribute, Tuple, Relation
 - Schema vs. Instance
 - NULL
 - Superkey, Candidate Key, Primary Key, Foreign Key

