MPLS Data Plane Encapsulation for In-situ OAM Data

draft-gandhi-mpls-ioam-sr-05

```
Rakesh Gandhi - Cisco Systems (rgandhi@cisco.com) - Presenter
```

Zafar Ali - Cisco Systems (zali@cisco.com)

Clarence Filsfils - Cisco Systems (cfilsfil@cisco.com)

Frank Brockners - Cisco Systems (fbrockne@cisco.com)

Bin Wen - Comcast (<u>Bin_Wen@cable.comcast.com</u>)

Voitek Kozak - Comcast (<u>Voitek_Kozak@comcast.com</u>)

Agenda

- Requirements and Scope
- Summary
- Next Steps

Requirements and Scope

Requirements:

Transport In-situ OAM (IOAM) data fields with MPLS Encapsulation

Scope:

- Using data fields defined in:
 - draft-ietf-ippm-ioam-data
 - draft-ietf-ippm-ioam-direct-export
 - draft-ietf-ippm-ioam-flags
- Edge-to-edge (E2E) IOAM
- Hop-by-hop (HbH) IOAM

IOAM Data Field Encapsulation in MPLS Header

```
6\ 7\ 8\ 9\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 0\ 1
0 0 0 1 | Version | Reserved
                      IOAM G-ACh
| Block Number | IOAM-OPT-Type | IOAM HDR Length |
IOAM Option and Data Space
            Payload + Padding
         Figure: IOAM Encapsulation in MPLS Header
```

IOAM G-ACh Header

- New Generic Associated Channel (G-ACh) Type (value TBA3) defined for IOAM
- Protocol value 0001b allows to avoid incorrect IP header based hashing over ECMP paths
- Block Number can be used to:
 - Aggregate IOAM data collected in data plane, e.g. compute measurement metrics for each block of a flow
 - Correlate IOAM data from different nodes

IOAM Indicator Label

- "IOAM Indicator Label" is used to indicate the presence of the IOAM data fields after EOS in the MPLS header.
- Separate Indicator Labels are used for E2E IOAM (edge nodes) and HbH IOAM (that includes edge and transit nodes) to optimize IOAM processing on transit nodes.

E2E IOAM Encapsulation in MPLS Header

```
E2E IOAM Indicator Label
| 0 0 0 1 | Version | Reserved
                     IOAM G-ACh
           Block Number
                     IOAM-OPT-Type | IOAM HDR Length |
 Reserved
IOAM Option and Data Space
                                          М
           Payload + Padding
      Figure: E2E IOAM Encapsulation in MPLS Header
```

E2E Indicator Label Allocation Methods

- 1. Extension Label (15) and Label assigned by IANA with value TBA1
 - From Extended Special Purpose Labels (eSPL) range
- 2. Global Label allocated by a controller
 - The controller provisions the label on encapsulating and decapsulating nodes
- 3. The IOAM Enabled Label allocated by the decapsulating node
 - Signaling/advertisement extensions needed to convey the label to all encapsulating nodes (out of scope)

E2E Indicator Label Allocation Methods

	Method	Extra Label Stack Size (Note 2)	Location on Stack
1	eSPL Labels	+2 (Note 1)	Bottom
2	Global Label	+1	Bottom
3	Signal/Advertise Label	+1 (compared to PHP)	Bottom

- 1. This is true for any mechanism that we are defining using eSPL
 - SFC: https://tools.ietf.org/html/rfc8595
 - E2E: draft-cheng-mpls-inband-pm-encapsulation
- 2. IOAM data packets may require Entropy label for ECMP

E2E IOAM Procedure

- 1. The encapsulating node inserts an E2E Indicator Label and one or more IOAM data field(s) in the MPLS header.
- 2. The transit (intermediate) nodes do not process IOAM data.
- 3. The decapsulating node "punts the timestamped copy" of the data packet including IOAM data field(s).
 - a. The decapsulating node for E2E IOAM also pops the IOAM Indicator Label and the IOAM data field(s) from the MPLS header.
 - b. The decapsulating node processes IOAM data field(s).
 - c. The decapsulating node forwards the data packet downstream.

HbH IOAM Encapsulation in MPLS Header

```
HbH IOAM Indicator Label
| 0 0 0 1 | Version | Reserved
| Block Number | IOAM-OPT-Type | IOAM HDR Length
IOAM Option and Data Space
         Payload + Padding
     Figure: HbH IOAM Encapsulation in MPLS Header
```

HbH Indicator Label Allocation Methods

- 1. Extension Label (15) and Label assigned by IANA with value TBA2
 - From Extended Special Purpose Labels (eSPL) range
- 2. Global Label allocated by a controller
 - The controller provisions the label on encapsulating, transit and decapsulating nodes
- 3. The IOAM Enabled Label allocated by the transit and decapsulating nodes
 - Signaling/advertisement extensions needed to convey the label to all encapsulating nodes (out of scope)

HbH Indicator Label Allocation Methods

	Method	Extra Label Stack Size (Note 4)	Location on Stack	Scan Label Stack (Notes 3)	Different FIB Entry for Local Label
1	eSPL Labels	+2	Bottom (Note 1)	Yes (Note 2)	No
2	Global Label	+1	Bottom	Yes (Note 2)	No
3	Signal/Advertise Label (like SFL)	+0	Incoming Packet with Top Label	No	Yes

- 1. eSPL at top of the label stack breaks MPLS forwarding in heterogenous network environment with and without IOAM capable nodes
- 2. Entropy Label similarly also requires transit nodes to scan label stack, however, entropy label processing is optional whereas IOAM processing is not optional.
- 3. A transit node may have a limit on how many labels it can scan. With any indicator scheme, the node will have to look past EOS into the packet to find the IOAM data that needs to be processed
- 4. IOAM data packets may require Entropy label for ECMP

HbH IOAM Procedure

- 1. The encapsulating node inserts a HbH Indicator Label and one or more IOAM data field(s) in the MPLS header.
- 2. The transit (intermediate) node processes HbH IOAM data field(s) and forwards the data packet including updated IOAM data field(s).
 - a. Transit node (intermediate) may punt the timestamped copy of the data packet for further IOAM processing
- 3. The decapsulating node "punts the timestamped copy" of the data packet including IOAM data field(s).
 - a. The decapsulating node for E2E IOAM also pops the IOAM Indicator Label and the IOAM data field(s) from the MPLS header.
 - b. The decapsulating node processes IOAM data field(s).
 - c. The decapsulating node forwards the data packet downstream.

IOAM Encapsulation Example with SR-MPLS Header

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      Label(1)
                  S
Label(n)
PSID
 IOAM Indicator Label
0 0 0 1 | Version | Reserved
             IOAM G-ACh
Block Number | IOAM-OPT-Type | IOAM HDR Length |
IOAM Option and Data Space
Payload + Padding
Figure: IOAM Encapsulation Example with SR-MPLS Header
```

Next Steps

- Welcome your comments and suggestions
- Requesting MPLS WG adoption

Thank you

Open Review Comments

IOAM Data After EOS

- Applicable to E2E and HbH cases
- What if the LSP is carrying a PW or is DetNet?
- What if it is a MS-PW?
- In all these cases there is a CW immediately after EOS
- Then there is the universal fragmentation idea that is floating about that also wants to follow EOS

Reply:

✓ This is a generic issue applicable to all G-ACH mechanisms used for data traffic

Thank you