Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

CIRCUITOS DIGITALES AVANZADOS

Practica 2 (parte 1) Circuito Secuenciales de los Modelos Moore y Mealy

Docente: Lara Camacho Evangelina

Alumno:

Gómez Cárdenas Emmanuel Alberto 1261509

LABORATORIO DE CIRCUITOS DIGITALES

INDICE

OBJETIVO	3
EQUIPO	
FUNDAMENTO TEORICO	3
DESARROLLO	4
Modelo Moore	4
Diagrama de estados (Entrada/Salida)	4
Tabla de Asignación de estados	
Tablas de Transición de estados	
Mapas de Karnaugh	6
Circuito implementado en Logisim	7
CONCLUSIONES	7

OBJETIVO

Diseñar y construir circuitos detectores de secuencia modelos Moore y Mealy utilizando flip-flops D.

EQUIPO

Computadora personal con el software Logisim.

FUNDAMENTO TEORICO

Continuando con la definición de máquinas de estado (autómatas finitos deterministas) presentada en la Práctica 1, además de la función de transición δ , existe la función de salida ω que puede ser de dos tipos:

- Modelo Mealy: $z = \omega$ (r, a).
- Modelo Moore: $z = \omega(r)$.

Sea r un estado de Q y sea α un símbolo del alfabeto Σ . Si el autómata es Mealy y está en el estado r y lee el símbolo α , entonces la salida es $z = \omega$ (r, α). Si el autómata es Moore y está en el estado r, entonces la salida es $z = \omega(r)$.

Al implementar la máquina de estados, la función de salida ω es una función combinacional que depende del estado actual y si es tipo Mealy también depende de la entrada. La Fig. 1 muestra los bloques funcionales de una máquina de estados. En una máquina Moore, la salida ${\bf z}$ solo depende del estado actual ${\bf r}$, en una Mealy, ${\bf z}$ también depende de la entrada ${\bf a}$.

Figura 1. Bloques funcionales de una máquina de estados.

DESARROLLO

Diseñe un detector de secuencia con una entrada X y dos salidas, Z1 y Z2, que detecte la aparición de las secuencias 11011 y 11001 en la entrada. La salida Z1 es 1 cada vez que se recibe la secuencia 11011, mientras que la salida Z2 es 1 cada vez que 11001 es recibida. El detector debe ser con traslape. Utilice flip-flops D en su diseño.

Diseñe el detector de secuencia descrito como una máquina de estados modelo Moore.

Modelo Moore

Diagrama de estados (Entrada/Salida)

Tabla de Asignación de estados.

Estado	q2q1q0
S0	000
S1	001
S2	010
S 3	011
S4	100
S5	101
S6	110
S7	111

Tablas de Transición de estados.

Flip-Flop D0

Flip-Flop D1

Transicion de estados		
Y0	X = 0	X = 1
Y2Y1Y0	Y0	Y0
000	0	1
001	0	0
010	1	0
011	0	0
100	0	1
101	1	0
110	0	1
111	0	0

Transicion de estados			
Y1	X = 0	X = 1	
Y2Y1Y0	Y1	Y1	
000	0	0	
001	0	1	
010	1	1	
011	1	0	
100	0	0	
101	1	1	
110	0	1	
111	0	1	

Flip-Flop D2

Salida

Transicion de estados		
Y2	X = 0	X = 1
Y2Y1Y0	Y2	Y2
000	0	0
001	0	0
010	0	0
011	1	1
100	0	1
101	0	0
110	0	1
111	0	0

Salida		
Actual	Salida	
Q2 Q1 Q0	Z1 Z0	
000	00	
001	00	
010	00	
011	00	
100	00	
101	01	
110	00	
111	10	

Mapas de Karnaugh

Las Ecuaciones obtenidas con los mapas son:

Para los flip-flops

Y2 (Y2, Y1, Y0, X) = Y2'Y1Y0 + Y2Y0'X

Y1 (Y2, Y1, Y0, X) = Y1'Y0X + Y2'Y1X' + Y2Y1'Y0 + Y2'Y1Y0' + Y2Y1X

 $Y_0(Y_2, Y_1, Y_0, X) = Y_1'Y_0'X + Y_2'Y_1Y_0'X' + Y_2Y_1'Y_0X' + Y_2Y_0'X$

Para las salidas

Z1(Y2, Y1, Y0) = Y2Y1Y0

Z0(Y2, Y1, Y0) = Y2Y1'Y0

Circuito implementado en Logisim

CONCLUSIONES

Gómez Cárdenas Emmanuel Alberto:

En esta práctica aprendimos lo sencillo unir dos detectores de secuencias, siempre y cuando las secuencias sean lo más parecido posible, ya que la dificultad comienza a duplicarse desde el momento que estas difieren. Lo más complicado de esta práctica fue crear el diagrama de estados, después de esto el procedimiento fue exactamente igual que las anteriores.