環論 (第11回)の解答

問題 11-1

(1) $a \sim b$ とする. a = ub $(u \in A^{\times})$ と表せるので

$$(a) = (ub) = (u)(b) = (1)(b) = (b).$$

逆に (a) = (b) とすると, a = bu, b = av $(u, v \in A)$ と表せる. よって

$$a = bu = avu$$
.

従って vu = 1 より $u \in A^{\times}$. よって $a \sim b$.

(2) π を素元とする. $\pi \not\in A^{\times}$ より $(\pi) \neq A$ である. $ab \in (\pi)$ とすると, $\pi \mid ab$ であり, π は素元だから $\pi \mid a$ または $\pi \mid b$. 従って $a \in (\pi)$ または $b \in (\pi)$. よって (π) は素イデアル.

逆に (π) は素イデアルとする. $(\pi) \neq A$ より $\pi \notin A^{\times}$. $\pi \mid ab$ とする. $ab \in (\pi)$ より $a \in (\pi)$ または $b \in (\pi)$. 従って $\pi \mid a$ または $\pi \mid b$. よって π は素元である.

問題 11-2

 $(1) (1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 \text{ } \text{$\ $^{\circ}$} 1 + \sqrt{-5} \mid 6. \text{ } \text{$\ $^{\circ}$}$

$$\frac{1+\sqrt{-5}}{1-\sqrt{-5}} = \frac{-2}{3} + \frac{1}{3}\sqrt{-5} \not\in A.$$

よって $1 - \sqrt{-5} \nmid 1 + \sqrt{-5}$.

 $(2) \pm 1 \in A^{\times}$ である. 逆に $\alpha \in A^{\times}$ とし,

$$\alpha = a + b\sqrt{-5} \quad (a, b \in \mathbb{Z})$$

と表す. 定理 3-2 の写像 $N: A \to \mathbb{Z} (x + y\sqrt{-5} \mapsto x^2 + 5y^2)$ を考えると, $\alpha \in A^{\times}$ より

$$\pm 1 = N(\alpha) = a^2 + 5b^2$$
.

よって $(a,b) = (\pm 1,0)$ より, $\alpha = \pm 1$. 以上より $A^{\times} = \{\pm 1\}$.

(3) $\alpha \mid 1 + \sqrt{-5}$ とする. $1 + \sqrt{-5} = \alpha \beta$ を満たす $\beta \in A$ がとれる. ここで,

$$\alpha = a + b\sqrt{-5}, \quad \beta = c + d\sqrt{-5} \quad (a, b, c, d \in \mathbb{Z})$$

と置く. このとき,

$$6 = N(1 + \sqrt{-5}) = N(\alpha)N(\beta) = (a^2 + 5b^2)(c^2 + 5d^2).$$

よって $a^2 + 5b^2$ は 1, 2, 3, 6 のいずれか. 従って

$$(a,b) = (\pm 1,0), (\pm 1,1), (\pm 1,-1).$$

よって α は ± 1 , $\pm 1 + \sqrt{-5}$, $\pm 1 - \sqrt{-5}$ のいずれか. (1) より $\pm (1 - \sqrt{-5})$ は $1 + \sqrt{-5}$ を割らない. よって α は ± 1 , $\pm (1 + \sqrt{-5})$ のいずれか. よって $\alpha \in A^{\times}$ または $\alpha \sim 1 + \sqrt{-5}$. 従って $1 + \sqrt{-5}$ は既約元である.

(4)
$$(1+\sqrt{-5})(1-\sqrt{-5})=6=2\cdot3$$
 より $1+\sqrt{-5}\mid 2\cdot 3$. 一方,

$$\frac{2}{1+\sqrt{-5}} = \frac{1}{3} - \frac{\sqrt{-5}}{3} \not\in A, \qquad \frac{3}{1+\sqrt{-5}} = \frac{1}{2} - \frac{\sqrt{-5}}{2} \not\in A.$$

より、 $1+\sqrt{-5}$ は 2、3 を割らない. 従って $1+\sqrt{-5}$ は素元でない.

問題 11-3

 π を既約元とする. A は UFD なので

$$\pi = \lambda_1 \lambda_2 \cdots \lambda_n \quad (\lambda_i : \overline{\mathbf{x}}, \overline{\mathbf{x}})$$

と表せる. $\lambda_1 \mid \pi$ より $\lambda_1 \in A^{\times}$ または $\pi \sim \lambda_1$ である. λ_1 は素元より $\pi \sim \lambda_1$. 従って π は素元.

[補足]

整域 $A=\{a+b\sqrt{-5}\mid a,b\in\mathbb{Z}\}$ で考える. 問題 11-2 より $1+\sqrt{-5}$ は既約元であるが、素元でない. これと問題 11-3 から A は UFD でないことが分かる.