AI20BTECH11006 Assignment-2 AI2000

Assignment -2

1)
$$L_{p} = \|\mathbf{w}\|^{2} + \mathbf{S} = \sum_{\mathbf{x}_{i}} (y_{i}(\mathbf{x}_{i}^{\mathsf{T}}\mathbf{u}_{i}+b_{i}) - \mathbf{S} + \mathbf{m}) - \mathbf{S} = \mathbf{S} =$$

As Bigging

LD=82 &1 - 2 & & & yiyi(x: Tx;)

The solution (d) to the above by sangian is just &x where a is the solution when 8=1 : 6=82 (Ex - = = Ex (aj yiy, (xitxj))

.. wy = 8w

2 30 (S) A (S) A Now since $\alpha_{K} = \delta \alpha$, the support vectors are the same

> :. y; (x; Twy + by) = Y for all support vectors clearly [by = 76] Tod proces

. The solution set rumains same.

05 stab (5120) x (5) ((1) 1/1/1/1

2)
$$\alpha_i(y_i(x_i+b)) = 0$$
 $\forall i$
 $\omega^T(\alpha_i y_i x_i) + \alpha_i y_i b - \alpha_i = 0$

summing over all i
 $\omega^T \sum \alpha_i y_i x_i + b \sum \alpha_i y_i - \sum \alpha_i = 0$
 $\omega^T \omega = \sum \alpha_i$
 $||w||^2 = \sum \alpha_i$
 $||w||^2 = \sum \alpha_i$
 $||w||^2 = \sum \alpha_i$

3)
a)
$$K(x,z) = k_1(x,z) + k_2(x,z)$$
 $K_1(x,z)$, $K_2(x,z)$ or valid kurnuls,

 $K_1(x,z)$, $K_2(x,z)$ both satisfy nurcon condition

$$\int J(x)f(y) K(x,z)dxdz > 0$$

$$\int J(x)f(y) K_2(x,z)dxdz > 0$$
adding both

$$\int J(x)f(y)(K_1(x,z)+K_2(x,z))dxdz > 0$$

$$\int J(x)f(y)(K_1(x,z)+K_2(x,z))dxdz > 0$$

$$\int J(x)f(y)(K_1(x,z)+K_2(x,z))dxdz > 0$$

$$\int J(x)f(y)(K_1(x,z)+K_2(x,z))dxdz > 0$$

b) would functions can be written as dot products

$$k_1(x,z) = \phi_1(x)^T \phi_1(z)^T$$

$$k_2(x,z) = \phi_2(x)^T \phi_2(z)$$

$$k_1(x,z)k_2(x,z) = \left(\phi_1(x)^T \phi_2(x)\right) \left(k(x,z) = k_1(x,z) k_2(x,z)\right)$$

$$= \phi_1(x)^T \phi_1(z) \phi_2(x)^T \phi_2(z)$$

$$= \left(\phi_1(x)^T \phi_2(x)\right) \left(\phi_1(z)^T \phi_2(z)\right)$$

$$= constant consta$$

() $K(x_1z) = h(k_1(x_1z))$

using (a) & (b), we can argue that k(x,z) is a valid kernel, because all the terms would be sum of product of some power of kernel functions

d) $k(x,z) = e \times p(k_1(x,z))$ $\exp(k_1(x,z))$ can be expanded as $1 + k_1(x,z) + k_1^2(x,z) + \dots$

Jollowing from G, we can infer that $\exp(k_i(x,z))$ is a ralid hernel

1)
$$k(z,z) = exp\left(-\frac{||x-z||_2^2}{\sigma_z^2}\right)$$
 $|xp\left(-\frac{|x-z|^2}{\sigma_z^2}\right)|$
 $|xp\left(-\frac{||x||^2}{\sigma_z^2}\right)| = exp\left(-\frac{||x||^2}{\sigma_z^2}\right)| = exp\left(-\frac{||x-z||^2}{\sigma_z^2}\right)| = exp\left(-\frac$

(x, x) = (x, x) + (

tall regions so so () rearly gaturallet

A)

The accuracy is 0.9787735849056604 Number of support vectors is 28

B)

for first 50 data points
The accuracy is 0.9811320754716981
Number of support vectors is 2

for first 100 data points
The accuracy is 0.9811320754716981
Number of support vectors is 4

for first 200 data points
The accuracy is 0.9811320754716981
Number of support vectors is 8

for first 800 data points
The accuracy is 0.9811320754716981
Number of support vectors is 14

C)

- i) false
- ii) true
- iii) false
- iv) false

The values are given below

C: 0.000100 ,degree = 2
The training accuracy is 0.7463164638052531
The test accuracy is 0.7429245283018868
Number of support vectors is 1112

C: 0.000100 ,degree = 5 The training accuracy is 0.9814221652786675The test accuracy is 0.9716981132075472Number of support vectors is 188

C: 0.001000 ,degree = 2 The training accuracy is 0.985906470211403The test accuracy is 0.9740566037735849Number of support vectors is 456

C: 0.001000 , degree = 5

The training accuracy is 0.9935938500960922 The test accuracy is 0.9811320754716981 Number of support vectors is 72

C: 0.010000 ,degree = 2 The training accuracy is 0.9948750800768738The test accuracy is 0.9811320754716981Number of support vectors is 132

C: 0.010000 ,degree = 5 The training accuracy is 0.9955156950672646The test accuracy is 0.9834905660377359Number of support vectors is 34

C: 1.000000 ,degree = 2 The training accuracy is 0.9955156950672646The test accuracy is 0.9787735849056604Number of support vectors is 28

C: 1.000000 ,degree = 5
The training accuracy is 0.9961563100576554
The test accuracy is 0.9764150943396226
Number of support vectors is 25

D)

The lowest training error is obtained for $\text{C=}10^6$ The lowest test error is obtained for C=100

Here are all the obtained values

C = 0.010000The training error is 0.0038436899423446302The test error is 0.02358490566037741Number of support vectors is 406

C = 1.000000The training error is 0.004484304932735439The test error is 0.021226415094339646Number of support vectors is 31

C = 100.000000The training error is 0.0032030749519538215The test error is 0.018867924528301883 Number of support vectors is 22

C = 10000.000000

The training error is 0.002562459961563124The test error is 0.02358490566037741Number of support vectors is 19

C = 1000000.000000

The training error is 0.0006406149903908087 The test error is 0.02358490566037741 Number of support vectors is 17

5)

- b) The rbf kernel yields lower training error Here are the values obtained RBF

The training error is : 0.0
The validation error is : 0.5

Number of support vectors is 6000

Polynomial

The training error is : 0.0004999999999999449
The validation error is 0.020000000000000018
Number of support vectors is 1332