TXMY S.
$$f:X \rightarrow Y$$
 $f:X \rightarrow Y$
 $f:X \rightarrow Y$

[alg. integrable]

Useder fields: in C', take

 $V = f(x,y) \partial_x + g(x,y) \partial_y \sim_Y J = 0_{XY}$

SATURADNESS $f(x,y) = g(x,y) = 0$ has coolin 2

WE BRA CKET $f(x,y) = g(x,y) = 0$

MHE DIATE: $f(x,y) = 0$

DESTABILIZING BUNDLES: X smooth

J C Tx not stable

SATURAD

(1)

(1)

(1)

(1)

smoth / named.

SATUR A DIESS V By max lity.

[J, J] -> Tx/y stability.

quem-0 silve +1xT (E)

THM (Miyara) X is not univeled, smooth, projective. Then Il'x is generically semi-positive [i.e., fix H_{1,---}, Hduix-1 m_{1,---}, m_{ohi}x-1 ample divisors 1 m; >> 0 vitegers $C = H_1 \cap \dots \cap H_{\text{obs}} \times -1$ Hie miHi general generically suripositive Six c >> 'y tersion free dup y > 0 Equivalently: Tx/e , $g' \subseteq T_{x} |_{c} \text{ dieg } g' \leq 0$.

THM [Miyoska, Sopherd-Bornson] X smooth projective. Assure that $\exists \mathcal{E} \subseteq T_X$ $c_1(\xi) > 0$ There $\exists \mathcal{F} \subseteq T_X$ softwarteal [satisfies the l.B. paperty] s.t. c,(3/6) > 0 & R rot'l ave through a peneric x ∈ X s.t.! -R is smooth e xex

- TR, x C Jx - B&B viequelity: H.R < 2di X (H.C)/c,(7). C

More general Migoroka & THM J∈Tx is a folition which is alp. uitegrable W/RCC leaves $J \subseteq T_X$ $J' \subseteq J$ f: X ----> Y, H = JJ'Sulfoliation f: X ----> Y = JJ'sulfoliation algebraically uitegrable if I is wex by obg. wit.
[AD, Jone foliotiers] => It is completely trause,

let X be a smooth, projective variety of general type Green - Griffiths: [Kod(Kx) = dm X] Kx is laig Then JZ & X alg. subvariety ;s.t. Af: C hol. X $f(C) \subseteq Z$ entire curves w/ for deve / image Ton particular, \$

KNOWN RESULTS: in dui 2 GNJ HOLDS for a large class of gen'l type surfaces $(1337 \, C_1^2(x) > 9 \, C_2(x))$

[Lu-Vau, Dem, GG]: Joshy frontely many rat'l & eliptic assues on X gen't type surface

COUNTEREX. To 66 CONJ. vill come from Zeristi deuse entire curves.

THM1[Ma] X gent type surface, $c_1^2(x) > c_2(x)$ $f: \mathbb{C} \longrightarrow X$ entire arre [deuse niege] => 3 2 => X, 2 smoth pen'l type
projective, Λ $J J = T_z$ s, t, Tr.g= f (2) (3) is tangent to 4) (3(6) is a leaf

To prove GG voi due med s to prove J' Zariski deute entrire arres [] [mcQ] Loriski deure entire leures on a pen'l type surface THM2[M'Q] Let Z be a smooth gen't type. Assume $JJ \subseteq T_2$. Them Jg: C > 2 deuxe entire leaves for 2

X smooth proj surface, $f \subseteq T_X$ fliction. How to classify (X, F)? [un analogy u/ Enrique, Sev., Koolonise choss.]

- (1) Understound how to hoursfour fliations when hirst I waps [FASY]
- Define viæ downer of foliated suig's

 [Resolution does not hold for foliations]

 [We'll book also of MMP-type suig's for foliation)
- (3) Run the ourlegous of the MMP for (X, F) singularties & show that this is well-behaved, and terminates w/good outs.