Plano de Ensino

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Campus Taguatinga

1 Identificação da Disciplina

- Nome da Disciplina: Estruturas de Dados e Algoritmos;
- Curso: Computação (ABI);
- Pré-requisitos: Algoritmos e Programação de Computadores;
- Carga Horária: 72 h/a.
- Período: 2023/1;
- Professor: Daniel Saad Nogueira Nunes.

2 Bases Tecnológicas (Ementa)

Listas lineares e suas generalizações: listas ordenadas, listas encadeadas, pilhas e filas. Aplicações de listas. Árvores e suas generalizações: árvores binárias, árvores de busca, árvores balanceadas (AVL), árvores B e B+. Aplicações de árvores. Algoritmos para pesquisa e ordenação em memória principal e secundária. Tabelas de Hash. Introdução a grafos.

3 Objetivos e Competências

- Estudar e projetar estruturas de dados lineares, árvores e grafos;
- Entender os diversos métodos de ordenação e busca em memória principal e secundária;

- Projetar estruturas de dados e aplicá-las na resolução de problemas;
- Analisar a complexidades das operações inerentes à cada estrutura de dados.

4 Habilidades Esperadas

- Ser capaz de projetar estruturas de dados para resolução de problemas;
- Detalhar e projetar métodos de ordenação para memória primária e secundária;
- Selecionar estruturas de dados compatíveis de acordo com a sua complexidade para resolução de problemas.

5 Conteúdo Programático

6 Metodologias de Ensino

Aulas expositivas e avaliação baseada em projetos.

7 Recursos de Ensino

Os recursos de ensino baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Ambiente virtual de aprendizagem.

8 Avaliação

A nota da disciplina é calcula através da média ponderada das notas da prova e dos exercícios, de acordo com a seguinte fórmula:

$$N_f = \frac{\bar{P} \cdot 7 + \bar{E} \cdot 3}{10}$$

, em que \bar{P} corresponde à média das provas e \bar{E} corresponde à média dos exercícios. Caso $\bar{P}<5$, o aluno poderá ser convocado para defender os exercícios feitos.

O aluno é considerado aprovado se, e somente se, obtiver $N_f \ge 6.0$ e presença $\ge 75\%$.

9 Observações

Será atribuída nota **ZERO** aos envolvidos de qualquer avaliação em que for detectado plágio.

10 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

Tabela 1: Cronograma

Dia	Conteúdo	Total de Horas
22/mar	Introdução à Disciplina	2
24/mar	Ponteiros	2
29/mar	Ponteiros	2
31/mar	Ordenação	2
05/abr	Ordenação	2
07/abr	_	0
12/abr	Ordenação	2
14/abr	Ordenação laboratório	2
19/abr	Ordenação laboratório	2
21/abr	_	0
26/abr	Busca	2
28/abr	Busca laboratório	2
03/mai	Busca laboratório	2
05/mai	Prova 1	2
10/mai	Listas	2
12/mai	Listas laboratório	2
17/mai	Pilhas	2
19/mai	Pilhas laboratório	2
24/mai	Filas	2
26/mai	Filas laboratório	2
31/mai	Filas de Prioridade	2
02/jun	Filas de Prioridade laboratório	2
07/jun	Deques	2
09/jun	_	0
14/jun	Deques laboratório	3
16/jun	Prova 2	2
21/jun	Árvores	2
23/jun	Árvores	2
28/jun	Árvores AVL	2
30/jun	Árvores AVL	2
05/jul	Árvores Laboratório	2
07/jul	Árvores Laboratório	2
12/jul	Árvores Laboratório	2
14/jul	Hashing	2
19/jul	Hashing Laboratório	2
21/jul	Prova 3	3
26/jul	Encerramento	4
	Total	72

Total 72

Bibliografia

- [CCR04] Waldemar Celes, Renato Cerqueira, and José Lucas Rangel, *Introdução a Estruturas de Dados: com técnicas de programação em C*, Elsevier, 2004.
- [CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to algorithms*.
- [LdMC07] Fabiana Lorenzi, Patrícia Noll de Mattos, and Tanisi Pereira Carvalho, *Estruturas de dados*, Thomson Learning, 2007.
- [Nun17] Daniel Saad Nogueira Nunes, *Material online*, https://github.com/danielsaad/EDA-IFB-CC, 2017.
- [Ziv04] Nivio Ziviani, Projeto de algoritmos: com implementações em Pascal e C, vol. 2, Luton: Thomson, 2004.