FPSAC 2020 Online:

Crystal for stable Grothendieck polynomials

arXiv: 1911.08732

Joint with Jennifer Morse (UV), Wencin Poh and Anne Schilling

University of Virginia University of California, Davis

July 22, 2020

- 1 Stable Grothendieck Polynomials \mathfrak{G}_w
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

- 1 Stable Grothendieck Polynomials \mathfrak{G}_w
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

Stable Grothendieck Polynomials for w

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m} \dots h^{2}h^{1} \in \mathcal{H}_{w}^{m}} \beta^{\ell(h^{1}) + \dots + \ell(h^{m}) - \ell(w)} x_{1}^{\ell(h^{1})} \dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

 \mathcal{H}_{w}^{m} : Decreasing factorizations of 0-Hecke Monoid

Example

$$w = 132 \in \mathcal{H}_0(4)$$

Reduced Hecke words 132, 312

Decreasing factorizations for constant term:

$$\beta^0: (x_1^2x_2 + x_1^2x_3 + x_2^2x_3 + x_1x_2^2 + x_1x_3^2 + x_2x_3^2) + 2x_1x_2x_3 = s_{21}$$

Schur positivity

Schur positivity (Fomin, Greene 1998)

$$\mathfrak{G}_w(\mathbf{x},eta) = \sum_{\lambda} eta^{|\lambda|-\ell(w)} g_w^{\lambda} s_{\lambda}(x)$$

 $g_w^{\lambda} = |\{T \in SST^n(\lambda')| \text{ column reading of } T \equiv w\}|$

$$\mathfrak{G}_{132}(\mathbf{x},\beta) = s_{21} + \beta(2s_{211} + s_{22}) + \beta^2(3s_{2111} + 2s_{221}) + \cdots$$

- 🕕 Stable Grothendieck Polynomials 🗗
- Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

Crystal for F_w or \mathfrak{G}_w ?

Idea

Fix $w \in S_n$, create Graph B(w)

- \odot vertices are decreasing factorizations of w
- ② edges are imposed and colored by f_i , e_i
- ighest weights are vertices with no unpaired entries

Theorem (Morse, Schilling 2015)

B(w) is a crystal graph of type A_{ℓ}

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties Fl _n
cohomology	s_{λ}	$\mathfrak{S}_w \to F_w$
k-theory	\mathcal{G}_{λ}	$\mathcal{G}_{w} o \mathfrak{G}_{w}$

Grassmannian Grothendieck polynomials: \mathfrak{G}_{λ} Lascoux, Schützenberger 1982 Stable Grothendieck polynomials: \mathfrak{G}_{w} Fomin, Kirillov 1994

Combinatorial Approach?

- Crystal Structure on F_w (Morse & Schilling 2015)
- Nonlocal crystal structure on &_w
 (Monical & Pechenik & Scrimshaw 2018)

\star -Crystal Structure on $\mathcal{H}^{m,\star}$ (Morse, Pan, Poh, Schilling 2019)

Bracketing rule on $h^m ext{...} h^{i+1} h^i ext{...} h^1$

- Start with the **largest** letter b in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such a, then b is unpaired.
- ② Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x: largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

- $(1)(32) \xrightarrow{\text{bracket}} (1)(32) \xrightarrow{f_1^{\star}} (31)(2)$
- $(7532)(621) \xrightarrow{\text{bracket}} (7532)(621) \xrightarrow{f_1^*} (75321)(61)$

Vertices and Edges

$$w = 132, \ \beta^{1}$$

$$(3,1)(3,2)()$$

$$(3,1)(1)(2)$$

$$(3,1)(2)(2)$$

$$(3,1)(3)(2)$$

$$(3,1)(3)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,2)(2)$$

$$(1)(3,2)(2)$$

$$(3)(3,1)(2)$$

$$(3)(3,1)(2)$$

$$(3)(3,1)(2)$$

$$(3)(3,1)(2)$$

$$(3)(3,1)(2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

- 1 Stable Grothendieck Polynomials & w
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

The Residue Map

 $\mathcal{H}^{m,\star}$ = set of 321-avoiding decreasing factorizations with m factors

Definition: res(T)

- res : $\mathsf{SVT}^m(\lambda/\mu) \to \mathcal{H}^{m,\star}$
- Associate cell (i,j) with $\ell(\lambda) + j i$
- Form the *i*th factor h^i by taking the labels of all cells in T containing i in decreasing order

Example (m=5)

$$\begin{array}{c|c} \hline 34_{1} & 45_{2} \\ \hline & 12_{3} & 25_{4} \\ \hline \end{array} \xrightarrow{\text{res}} (42)(21)(1)(43)(3) \in \mathcal{H}^{5}, \mathcal{H}^{5,\star}$$

The Residue as an Crystal Isomorphism

Theorem (Morse, Pan, Poh, Schilling 2019)

The crystal on SVT defined by [MPS18] and the crystal on decreasing factorizations $\mathcal{H}^{m,\star}$ intertwine under the residue map. That is, the following f_k $\mathcal{H}^{m,\star}$ f_k lowing diagram commutes:

$$\mathsf{SVT}^m(\lambda/\mu) \xrightarrow{\mathsf{res}} \mathcal{H}^{m,\star} \\ \downarrow^{f_k} \qquad \qquad \downarrow^{f_k^\star} \\ \mathsf{SVT}^m(\lambda/\mu) \xrightarrow{\mathsf{res}} \mathcal{H}^{m,\star}.$$

- 🕕 Stable Grothendieck Polynomials 🗗
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

*-Insertion Algorithm (Morse, Pan, Poh, Schilling 2019)

Insert x into row R of a transpose of a semistandard tableau

- Try to append x to the right of R (terminate and record)
- 2 $x \notin R$, bump the minimal z > x (proceed to the next row)
- **3** $x \in R$, proceed to next row with y minimal such that $[y, x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} \mathbf{3} & \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{1} & \mathbf{1} \\ \mathbf{4} & \mathbf{2} & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{1} \end{bmatrix}$$

Association with *-crystal

Theorem (Morse, Pan, Poh, Schilling 2019)

Let $h \in \mathcal{H}^{m,\star}$ and $(P^{\star}(h), Q^{\star}(h)) = \star(h)$.

In other words, the following diagram commutes: $\mathcal{H}^{m,\star} \xrightarrow{Q^{\wedge}} SSYT^m$

The Hecke Insertion and the Residue Map

Theorem (Morse, Pan, Poh, Schilling 2019)

Let $T \in SVT(\lambda)$ and $[\mathbf{k}, \mathbf{h}]^t = res(T)$. Apply Hecke row insertion from the right on $[\mathbf{k}, \mathbf{h}]^t$ to obtain the pair of tableaux (P, Q). Then Q = T.

$$T = \begin{array}{|c|c|c|}\hline 2_1 & 4_2 \\ \hline 1_2 & 23_3 \end{array} \xrightarrow{\text{res}} (2)(3)(31)(2) = \begin{bmatrix} 4 & 3 & 2 & 2 & 1 \\ 2 & 3 & 3 & 1 & 2 \end{bmatrix}$$

- 1 Stable Grothendieck Polynomials & w
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

Uncrowding Algorithm

Uncrowding Operator (Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018)

- Identify the topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Result is a single-valued skew tableau.

Connection to the Uncrowding map

Theorem (Morse, Pan, Poh, Schilling, 2019)

Let
$$T \in SVT^m(\lambda)$$
, $(\tilde{P}, \tilde{Q}) = uncrowd(T)$, and $(P, Q) = \star \circ res(T)$. Then $Q = \tilde{P}$.

Thank you!

- 1 Stable Grothendieck Polynomials \mathfrak{G}_w
- 2 Crystal Theorem
- Residue map
- 4 Insertion Algorithms
- Uncrowding Algorithm
- 6 Complimentary slides
 - Basic Definitions
 - Set-Valued Tableaux
 - Hecke insertion algorithm
 - n = 3 solution
 - Counterexample at n = 4
 - Crystal short introduction

0-Hecke Monoid

Definition

The 0-Hecke monoid, denoted by $\mathcal{H}_0(n)$, where $n \in \mathbb{N}$, is the monoid of all finite words in $[n-1] := \{1,2,\ldots,n-1\}$, such that for all $p,q \in [n]$,

$$pp \equiv p, \quad pqp \equiv qpq,$$

if |p-q|>1 we also have $pq\equiv qp$.

Examples

- $2112 \equiv 212 \equiv 121$
- $2121 \equiv 1211 \equiv 121 \equiv 212$
- $31312 \equiv 3132 \equiv 312 \equiv 132$

Back to definition of stable Grothendieck polynomials

Decreasing factorizations in $\mathcal{H}_0(n)$

Definition

A decreasing factorization of $w \in \mathcal{H}_0(n)$ into m factors is a product of decreasing factors

$$\mathbf{h}=h^m\dots h^2h^1$$

such that $\mathbf{h} \equiv w$ in $\mathcal{H}_0(n)$.

 \mathcal{H}_{w}^{m} = set of decreasing factorizations of w in $\mathcal{H}_{0}(n)$ with m factors

Example

Decreasing factorizations for $132 \in \mathcal{H}_0(3)$ of length 5 with 3 factors:

$$(31)(31)(2)$$
 $(31)(32)(2)$ $(31)(1)(32)$ $(31)(3)(32)$ $(1)(31)(32)$ $(3)(31)(32)$

Back to definition of stable Grothendieck polynomials

321-avoiding Hecke words (braid-free, fully-commutative)

Definition

An element $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i+1 i for any $i \in [n-1] = \{1, 2, \dots, n-1\}$.

Examples

- $121 \equiv 212$ is not 321-avoiding
- $132 \equiv 312$ is 321-avoiding
- ullet 22132 \equiv 2132 \equiv 2312 is 321-avoiding

Denote $\mathcal{H}^{m,\star}(n)$ as the set of all 321-avoiding decreasing factorizations of $\mathcal{H}_0(n)$ with m factors.

- ()(1)(21) $\in \mathcal{H}^3, \notin \mathcal{H}^{3,\star}$.
- $(31)(2) \in \mathcal{H}^{2,\star}$

Stable Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} x_1^{\#\mathsf{of 1's}} x_2^{\#\mathsf{of 2's}} \dots \tag{\mathsf{Buch 2002}}$$

 ${
m SVT}(
u/\lambda)={
m set}$ of semistandard set-valued tableaux of shape u/λ Excess in T is ${
m ex}(T)$

Semistandard set-valued tableaux $\mathsf{SVT}(\nu/\lambda)$

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

$$C \mid A \mid B \mid \max(A) \leqslant \min(B), \max(A) < \min(C)$$

Example (Which one is a valid filling?)

√ 34 45	34 35	2 35
12 25	12456	14 56

Crystal Structure on SVT (Monical & Pechenik & Scrimshaw 2018)

A Signature Rule

Assign — to every column of T containing an i but not an i+1. Similarly, assign + to every column of T containing an i+1 but not an i. Then successively pair each + that is adjacent to a —.

Crystal Operator fi

- changes the rightmost unpaired i —to i + 1, except
- ullet if its right neighbor contains both i,i+1, then \emph{move} the \emph{i} over and turn it to be $\emph{i}+1$

$$\begin{array}{c|c}
34 \overline{45} & \xrightarrow{f_2} = \overline{3445}
\end{array}$$

The Hecke Insertion Algorithm (Buch 2008, Patrias, Pylyavskyy 2016)

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- Try to bump the smallest letter that is bigger than x (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P,Q)$$

A Solution to $\mathcal{H}^m(3)$

A Counterexample

Desired properties:

- f_i only changes the i-th and (i+1)-st factors;
- ② f_i is determined by the first (i+1) factors;
- f_i does not change w and excess.

Our crystal on $\mathcal{H}^m(3)$ has these properties.

However, we found a counter examle in $\mathcal{H}^4(4)$.

Pop Motivation: Why crystals?

ullet Irreducible representations V_{λ} and V_{μ}

•

$$V_{\lambda}\otimes V_{\mu}\cong igoplus_{
u}c_{\lambda\mu}^{
u}V_{
u}$$

Question: How to count multiplicities $c_{\lambda\mu}^{\nu}$?

- Crystals $\mathcal{B}_{\lambda} \longleftrightarrow V_{\lambda}$, $\mathcal{B}_{\mu} \longleftrightarrow V_{\mu}$
- •

$$\mathcal{B}_{\lambda}\otimes\mathcal{B}_{\mu}=igoplus_{
u}c_{\lambda\mu}^{
u}\mathcal{B}_{
u}$$

- $c_{\lambda\mu}^{\nu}=\#\{{
 m Yamanouchi\ tableaux\ of\ shape\ }
 u/\lambda\ {
 m and\ content\ } \mu\}$ Littlewood-Richardson Coefficients
- Character of crystal $\mathcal{B}_{\lambda} = s_{\lambda}$

An Illustration on Lie Algebra \$13

Figure: Std Rep of $\mathfrak{sl}_3:V_{(1,0)}$

Figure: Tensor Product

Characters:

- $x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + x_2x_3 + x_3^2 = s_2$
- $\bullet \ x_2x_1 + x_3x_1 + x_3x_2 = s_{11}$

Tensor Product Using Crystals

$$1 \xrightarrow{\quad 1\quad } 2 \xrightarrow{\quad 2\quad } 3$$