Stanford CS224n HW A2

David Chen

August 2020

Written Questions

(a) Since y is a one-hot encoded vector, it has zeros everywhere, and 1 where w = o. Thus, the only non-zero term in the sum is $-y_o \log(\hat{y_o})$, which is the RHS.

(b)

$$\begin{aligned} \boldsymbol{J}_{\text{naive-softmax}}(\mathbf{v}_c, o, \mathbf{U}) &= -\log P(O = o, C = c) \\ &= -\log(\frac{\exp{(\mathbf{u}_o^{\top} \mathbf{v}_c)}}{\sum_{w \in \text{Vocab}} \exp{(\mathbf{u}_w^{\top} \mathbf{v}_c)}}) \\ &= \log(\sum_{w \in \text{Vocab}} \exp{(\mathbf{u}_w^{\top} \mathbf{v}_c)}) - \mathbf{u}_o^{\top} \mathbf{v}_c \end{aligned}$$

We have $\frac{\partial}{\partial \mathbf{v}_c} \mathbf{u}_o^{\top} \mathbf{v}_c = \mathbf{u}_o$, where we take the transpose of \mathbf{u}_o^{\top} to keep the same shape as \mathbf{v}_c . The derivative of the left side is as follows:

$$\begin{split} \frac{\partial}{\partial \mathbf{v}_c} \log (\sum_{w \in \text{Vocab}} \exp(\mathbf{u}_w^\top \mathbf{v}_c)) &= \frac{1}{\sum_{w \in \text{Vocab}} \exp(\mathbf{u}_w^\top \mathbf{v}_c)} \sum_{x \in \text{Vocab}} \frac{\partial}{\partial \mathbf{v}_c} \exp(\mathbf{u}_x^\top \mathbf{v}_c) \\ &= \frac{\sum_{x \in \text{Vocab}} \exp(\mathbf{u}_x^\top \mathbf{v}_c) \mathbf{u}_x}{\sum_{w \in \text{Vocab}} \exp(\mathbf{u}_w^\top \mathbf{v}_c)} \\ &= \sum_{x \in \text{Vocab}} P(O = x, C = c) \mathbf{u}_x \end{split}$$

Therefore,

$$\frac{\partial \boldsymbol{J}_{\text{naive-softmax}}(\mathbf{v}_c, o, \mathbf{U})}{\partial \mathbf{v}_c} = (\sum_{\boldsymbol{x} \in \text{Vocab}} \mathbf{\hat{y}_x} \mathbf{u_x}) - \mathbf{u}_o$$

This can be interpreted as a difference of (expected - actual).

Let $\theta = U^{\top} \mathbf{v}_c$, and let the prediction function be $\hat{y} = softmax(\theta)$

$$\frac{\partial J}{\partial \theta} = (\hat{y} - y)^{\top}$$

$$\begin{split} \frac{\partial J}{\partial \mathbf{v}_c} &= \frac{\partial J}{\partial \theta} \frac{\partial \theta}{\partial \mathbf{v}_c} \\ &= (\hat{y} - y)^\top \frac{\partial U^\top \mathbf{v}_c}{\partial \mathbf{v}_c} \\ &= U(\hat{y} - y)^\top \end{split}$$

(c) Again, let $\theta = U^{\top} \mathbf{v}_c$, and let the prediction function be $\hat{y} = softmax(\theta)$

$$\frac{\partial J}{\partial U} = \frac{\partial J}{\partial \theta} \frac{\partial \theta}{\partial U}$$
$$= (\hat{y} - y) \frac{\partial U^{\top} \mathbf{v}_c}{\partial U}$$
$$= (\hat{y} - y) \mathbf{v}_c$$

Therefore, $\frac{\partial J}{\partial \mathbf{u}_w}$ is the wth row of $\frac{\partial J}{\partial U}$.

(d)

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$
$$\frac{d\sigma(x)}{dx} = \frac{0 - (-e^{-x})}{(1 + e^{-x})^2} = \frac{e^{-x}}{1 + e^{-x}} \sigma(x) = \sigma(x)(1 - \sigma(x))$$

(e) Let $f(x) = -\log(\sigma(x))$. Then we have:

$$f'(x) = \frac{\partial}{\partial x} [-\log(\sigma(x))] = -\frac{1}{\sigma(x)} \sigma(x) (1 - \sigma(x)) = \sigma(x) - 1$$

Let $a = \mathbf{u}_o^{\top} \mathbf{v}_c$ and $b = -\mathbf{u}_k^{\top} \mathbf{v}_c$. Then,

$$J = f(a) + \sum_{k=1}^{K} f(b)$$

Thus, $\frac{\partial J}{\partial a} = f'(a)$ and $\frac{\partial J}{\partial b} = \sum_{k=1}^{K} f'(b)$. Additionally, we have $\frac{\partial a}{\partial \mathbf{v}_c} = \mathbf{u}_o$ and $\frac{\partial b}{\partial \mathbf{v}_c} = -\mathbf{u}_k$. We can now calculate

$$\frac{\partial J}{\partial \mathbf{v}_c} = \frac{\partial J}{\partial a} \frac{\partial a}{\partial \mathbf{v}_c} + \frac{\partial J}{\partial b} \frac{\partial b}{\partial \mathbf{v}_c} = [\sigma(\mathbf{u}_o^\top \mathbf{v}_c) - 1] \mathbf{u}_o + \sum_{k=1}^K [1 - \sigma(-\mathbf{u}_k^\top \mathbf{v}_c)] \mathbf{u}_k$$

Finally, $\frac{\partial a}{\partial \mathbf{u}_o} = \mathbf{v}_c$ and $\frac{\partial b}{\partial \mathbf{u}_k} = -\mathbf{v}_c$, so

$$\begin{split} \frac{\partial J}{\partial \mathbf{u}_o} &= \frac{\partial J}{\partial a} \frac{\partial a}{\partial \mathbf{u}_o} = [\sigma(\mathbf{u}_o^\top \mathbf{v}_c) - 1] \mathbf{v}_c \\ \frac{\partial J}{\partial \mathbf{u}_k} &= \frac{\partial J}{\partial b} \frac{\partial b}{\partial \mathbf{u}_k} = [1 - \sigma(\mathbf{u}_k^\top \mathbf{v}_c)] \mathbf{v}_c, \forall k \in [1, K] \end{split}$$

Negative sampling loss is much more efficient that naive softmax loss because it only iterates over K negative examples, instead of looping over the entire vocabulary.

(f)

$$\begin{split} \frac{\partial \boldsymbol{J}_{\text{skip-gram}}}{\partial \boldsymbol{U}} &= \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \frac{\partial \boldsymbol{J}(\mathbf{v}_c, w_{t+j}, \boldsymbol{U})}{\partial \boldsymbol{U}} \\ \frac{\partial \boldsymbol{J}_{\text{skip-gram}}}{\partial \mathbf{v}_c} &= \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \frac{\partial \boldsymbol{J}(\mathbf{v}_c, w_{t+j}, \boldsymbol{U})}{\partial \boldsymbol{v}_c} \\ \frac{\partial \boldsymbol{J}_{\text{skip-gram}}}{\partial \mathbf{v}_w} (w \neq c) = 0 \end{split}$$

This last gradient is 0 since these vectors are not used to calculate the loss function, and thus have no influence on the loss.

Code Questions

At first glance, it seems that this 2D visualization has destroyed a lot of spatial relationships between word vectors: for example, hail is very far away from the similar words snow and rain. However, certain small clusters seem to be accurate: amazing, wonderful, and great are nearby, and tea and coffee are close. Finally, the king - queen = male - female analogy holds.