CSI - 3105 Design & Analysis of Algorithms Course 19

Jean-Lou De Carufel

Fall 2019

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

$$x \in L \iff y = f(x) \in L' \iff g(y) \in L''$$

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

$$x \in L \iff y = f(x) \in L' \iff g(y) \in L''$$

Thus,

$$x \in L \iff g(f(x)) \in L''$$

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

$$\begin{array}{c|c} \text{Input } x \\ \text{for } L \end{array} \longrightarrow \begin{array}{c|c} f \\ \hline y = f(x) \\ \text{for } L' \end{array} \longrightarrow \begin{array}{c|c} \text{Input} \\ g(y) \\ \text{for } L'' \end{array}$$

$$x \in L \iff y = f(x) \in L' \iff g(y) \in L''$$

Thus,

$$x \in L \iff g(f(x)) \in L''$$

The reduction from L to L'' is given by the function $g \circ f$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

The relation \leq_P is transitive:

$$L \leq_P L'$$
 and $L' \leq_P L''$ \Longrightarrow $L \leq_P L''$

Proof:

$$\begin{array}{c|c}
\text{Input } x \\
\text{for } L
\end{array}
\longrightarrow
\begin{array}{c|c}
f \\
y = f(x) \\
\text{for } L'
\end{array}
\longrightarrow
\begin{array}{c|c}
g \\
g(y) \\
\text{for } L''
\end{array}$$

$$x \in L \iff y = f(x) \in L' \iff g(y) \in L''$$

Thus,

$$x \in L \iff g(f(x)) \in L''$$

The reduction from L to L'' is given by the function $g \circ f$. Given x, $(g \circ f)(x) = g(f(x))$ can be computed in time that is polynomial in the length of x (do you see why?)

The language *L* is *NP-Hard* if

• For all $L' \in NP$, $L' \leq_P L$.

The language L is NP-Hard if

• For all $L' \in NP$, $L' \leq_P L$.

The language *L* is *NP-Complete* if

- L ∈ NP
- and for all $L' \in NP$, $L' \leq_P L$.

The language L is NP-Hard if

• For all $L' \in NP$, $L' <_P L$.

The language L is NP-Complete if

- L ∈ NP
- and for all $L' \in NP$, $L' <_{P} L$.

Intuitively, this means that L belongs to the most difficult problems in NP.

This is what we were looking for in $\S6.2$.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

 $[\Longrightarrow]$ Assume that $L \in P$. We have to show that P = NP.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

 $[\Longrightarrow]$ Assume that $L \in P$. We have to show that P = NP.

We know that $P \subseteq NP$ (one of the previous theorems).

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

 $[\Longrightarrow]$ Assume that $L \in P$. We have to show that P = NP.

We know that $P \subseteq NP$ (one of the previous theorems). To show that $NP \subset P$. let $L' \in NP$.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

 $[\Longrightarrow]$ Assume that $L \in P$. We have to show that P = NP.

We know that $P \subseteq NP$ (one of the previous theorems). To show that $NP \subset P$. let $L' \in NP$.

Since L is NP-Complete, $L' \leq_P L$.

Assume that L is NP-Complete. Then

$$L \in P \iff P = NP.$$

Intuition:

- If $L \in P$, L is easy.
- L is NP-Complete, so L belongs to the most difficult problems in NP.
- Well... if the most difficult problem in NP turns out to be easy, then all problems in NP are easy!

PROOF: $[\Leftarrow]$ Assume that P = NP.

Since L is NP-Complete, $L \in NP$. Thus, $L \in P$.

 $[\Longrightarrow]$ Assume that $L \in P$. We have to show that P = NP.

We know that $P \subseteq NP$ (one of the previous theorems). To show that $NP \subset P$, let $L' \in NP$.

Since *L* is *NP*-Complete, $L' \leq_P L$. Since $L \in P$, then $L' \in P$ (one of the previous theorems).

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

5 / 19

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L' is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L' is NP-Complete}$$

Intuition:

- L is NP-Complete, so L belongs to the most difficult problems in NP.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

- $L' \in NP$.
- For each $L'' \in NP$, we must have $L'' <_P L'$.

$$\left.egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array}
ight.
ight. \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

- $L' \in NP$. This is given in the statement of the theorem!
- For each $L'' \in NP$, we must have $L'' \leq_P L'$.

$$\left.egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array}
ight.
ight. \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

- $L' \in NP$. This is given in the statement of the theorem!
- For each $L'' \in NP$, we must have $L'' \leq_P L'$. Why is this true?

$$\left.egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array}
ight.
ight. \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

- $L' \in NP$. This is given in the statement of the theorem!
- For each $L'' \in NP$, we must have $L'' \leq_P L'$. Why is this true? Since L is NP-Complete, $L'' \leq_P L$.

$$\left.egin{array}{ll} \textit{L is NP-Complete} \ \textit{L} \leq_{\textit{P}} \textit{L}' \ \textit{L}' \in \textit{NP} \end{array}
ight.
ight.
ight. \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

PROOF: To show that L' is NP-Complete, we have to show

- $L' \in NP$. This is given in the statement of the theorem!
- For each $L'' \in NP$, we must have $L'' \leq_P L'$. Why is this true? Since L is NP-Complete, $L'' \leq_P L$. We are given $L \leq_P L'$.

4 D > 4 D > 4 E > 4 E > E 99 C

$$\left. \begin{array}{l} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Intuition:

- *L* is NP-Complete, so *L* belongs to the most difficult problems in *NP*.
- L' is at least as difficult as L.
- Then L' also belongs to the most difficult problems in NP.

- $L' \in NP$. This is given in the statement of the theorem!
- For each $L'' \in NP$, we must have $L'' \leq_P L'$. Why is this true? Since L is NP-Complete, $L'' \leq_P L$. We are given $L \leq_P L'$. Then, by transitivity, we have $L'' \leq_P L'$.

Theorem

Here is how to use this theorem:

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Here is how to use this theorem: To show that L' is NP-Complete,

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Here is how to use this theorem: To show that L' is NP-Complete,

• Show that $L' \in NP$.

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Here is how to use this theorem: To show that L' is NP-Complete,

- Show that $L' \in NP$.
- ② Look for a problem L that is "similar" to L' and that is known to be NP-Complete.

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Here is how to use this theorem: To show that L' is NP-Complete,

- Show that $L' \in NP$.
- ② Look for a problem L that is "similar" to L' and that is known to be NP-Complete.
- **3** Show that $L \leq_P L'$.

4□ > 4□ > 4 = > 4 = > = 90

Theorem

$$egin{aligned} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{aligned} \implies \begin{array}{c} L' \ \textit{is NP-Complete} \\ \end{array}$$

Here is how to use this theorem: To show that L' is NP-Complete,

- **1** Show that $L' \in NP$.
- ② Look for a problem L that is "similar" to L' and that is known to be NP-Complete.
- **3** Show that $L \leq_P L'$.

In order to apply this, we need a first NP-Complete problem.

We need a first NP-Complete problem. So we need one language L in NP such that...

 $HAMCYCLE \leq_P L$

$$HAMCYCLE \leq_P L$$

 $TSP \leq_P L$

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$
 $CLIQUE \leq_P L$

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$
 $CLIQUE \leq_P L$
 $INDEP - SET \leq_P L$

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$
 $CLIQUE \leq_P L$
 $INDEP - SET \leq_P L$
 $VERTEX - COVER \leq_P L$

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$
 $CLIQUE \leq_P L$
 $INDEP - SET \leq_P L$
 $VERTEX - COVER \leq_P L$
 $3SAT \leq_P L$

7 / 19

$$HAMCYCLE \leq_P L$$
 $TSP \leq_P L$
 $SUBSET - SUM \leq_P L$
 $CLIQUE \leq_P L$
 $INDEP - SET \leq_P L$
 $VERTEX - COVER \leq_P L$
 $3SAT \leq_P L$
 \vdots

$$HAMCYCLE \leq_{P} L$$
 $TSP \leq_{P} L$
 $SUBSET - SUM \leq_{P} L$
 $CLIQUE \leq_{P} L$
 $INDEP - SET \leq_{P} L$
 $VERTEX - COVER \leq_{P} L$
 $3SAT \leq_{P} L$
 \vdots

It is not even clear whether such a problem exists!!!

7 / 19

- 1971: Stephen Cook proved that SAT is NP-Complete.
- 1972: (independently in Russia) Leonid Levin proved that a certain tiling problem is NP-Complete.

1971: Stephen Cook proved that SAT is NP-Complete.

1972: (independently in Russia) Leonid Levin proved that a certain tiling problem is NP-Complete.

We will show that CIRCUIT-SAT is NP-Complete.

8 / 19

input: A Boolean circuit.

- Directed acyclic graph, where vertices are gates
- AND-gates and OR-gates have indegree 2
- Known input gates have indegree 0 and are labeled TRUE or FALSE.
- Unknown input gates have indegree 0 and are labeled "?".
- There is one output gate (whose outdegree is 0).

question: Is it possible to assign a truth-value to each unknown input gate, such that the output of the circuit is TRUE?

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, we get OUTPUT = 0.

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, we get OUTPUT = 0.

With $x_1 = 0$, $x_2 = 1$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, we get OUTPUT = 0. With $x_1 = 0$, $x_2 = 1$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, we get OUTPUT = 0. With $x_1 = 0$, $x_2 = 1$, $x_3 = 1$,

With $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, we get OUTPUT = 0.

With $x_1 = 0$, $x_2 = 1$, $x_3 = 1$, we get OUTPUT = 1.

 $CIRCUIT - SAT = \{B \mid B \text{ is a Boolean circuit for which}$ there exist truth values for the unknown input gates such that the ouput of B is TRUE $\}$

 $\mathit{CIRCUIT} - \mathit{SAT} = \{B \mid B \text{ is a Boolean circuit for which}$ there exist truth values for the unknown input gates such that the ouput of B is TRUE $\}$

To show that CIRCUIT-SAT is NP-Complete, we have to show two things:

 $CIRCUIT - SAT = \{B \mid B \text{ is a Boolean circuit for which}$ there exist truth values for the unknown input gates such that the ouput of B is TRUE $\}$

To show that CIRCUIT-SAT is NP-Complete, we have to show two things:

O CIRCUIT-SAT is in NP.

 $\mathit{CIRCUIT} - \mathit{SAT} = \{B \mid B \text{ is a Boolean circuit for which}$ there exist truth values for the unknown input gates such that the ouput of B is TRUE $\}$

To show that CIRCUIT-SAT is NP-Complete, we have to show two things:

- CIRCUIT-SAT is in NP.
- ② Show that for all L in NP, $L \leq_P CIRCUIT SAT$

 $\mathit{CIRCUIT} - \mathit{SAT} = \{B \mid B \text{ is a Boolean circuit for which} \\ \text{there exist truth values for the unknown} \\ \text{input gates such that the ouput of } B \text{ is TRUE} \}$

To show that CIRCUIT-SAT is NP-Complete, we have to show two things:

- CIRCUIT-SAT is in NP.
- ② Show that for all L in NP, $L \leq_P CIRCUIT SAT$

The first item is easy:

Certificate: sequence of truth values for the unknown input gates.

Certificate: sequence of truth values for the unknown input gates.

Verification: evaluate the circuit

Certificate: sequence of truth values for the unknown input gates.

Verification: evaluate the circuit (evaluate the gates in topological order.)

Let $L \in NP$. We need a function f such that

Let $L \in NP$. We need a function f such that

• If takes any input x for L and produces an input B = f(x) for CIRCUIT - SAT.

Let $L \in NP$. We need a function f such that

- If takes any input x for L and produces an input B = f(x) for CIRCUIT - SAT.
- arrow $x \in L \iff B \in CIRCUIT SAT$

Let $I \in NP$. We need a function f such that

- If takes any input x for L and produces an input B = f(x) for CIRCUIT - SAT.
- arrow $x \in L \iff B \in CIRCUIT SAT$
- \odot The time time to compute B is poylnomial in the length of x.

We know that $L \in NP$. So there is a verification algorithm V such that

We know that $L \in NP$. So there is a verification algorithm V such that

- The input to V is (x, y), where x is an input for L and y is a certificate.
- For every input x to L,

 $x \in L \iff$ there exists a certificate y such that

- $|y| < |x|^c$
- $\cdot V(x, y)$ returns YES
- · and the running time of V(x, y) is at most $|x|^{c'}$.

We now define the function f.

We now define the function f. Let x be an input for L. Define a new algorithm V_x :

We now define the function f. Let x be an input for L. Define a new algorithm V_{\times} :

- input is a string y of length at most $|x|^c$
- $V_x(y)$ runs V(x,y)
- If V(x, y) terminates in at most $|x|^{c'}$ steps, then $V_x(y)$ terminates and returns the output of V(x, y).
- If V(x,y) has not terminated after $|x|^{c'}$ steps, then $V_x(y)$ terminates and returns NO.

We now define the function f. Let x be an input for L. Define a new algorithm V_{\times} :

- input is a string y of length at most $|x|^c$
- $V_x(y)$ runs V(x,y)
- If V(x, y) terminates in at most $|x|^{c'}$ steps, then $V_x(y)$ terminates and returns the output of V(x, y).
- If V(x,y) has not terminated after $|x|^{c'}$ steps, then $V_x(y)$ terminates and returns NO.

Observe:

- Running time of Algorithm V_x is at most $|x|^{c'}$.
- •

 $x \in L \iff$ there exists an input y for Algorithm V_x such that $V_x(y)$ returns YES

The algorithm V_x is a program that can be run on a computer.

The algorithm V_x is a program that can be run on a computer.

Therefore, V_x can be represented by a Boolean circuit B.

Therefore, V_x can be represented by a Boolean circuit B.

size of B: $O\left(|x| + |y| + |x|^{c'}\right)$ $= O\left(|x| + |x|^{c} + |x|^{c'}\right)$ = polynomial in x!

The algorithm V_x is a program that can be run on a computer.

Therefore, V_x can be represented by a Boolean circuit B.

The functions f maps x to B!

 $x \in L \iff ext{There exists } y ext{ such that } V_x(y) ext{ returns TRUE}$ $(ext{definition of } V_x)$

 $x \in L \iff \mathsf{There} \; \mathsf{exists} \; y \; \mathsf{such} \; \mathsf{that} \; V_x(y) \; \mathsf{returns} \; \mathsf{TRUE}$ (definition of V_x)

 \iff There exists y such that the output of B is TRUE

(definition of B)

 $x \in L \iff \mathsf{There} \ \mathsf{exists} \ y \ \mathsf{such} \ \mathsf{that} \ V_x(y) \ \mathsf{returns} \ \mathsf{TRUE}$ (definition of V_x)

 \iff There exists y such that the output of B is TRUE (definition of B)

 \iff $B \in CIRCUIT - SAT$

 $x \in L \iff ext{There exists } y ext{ such that } V_x(y) ext{ returns TRUE}$ $(\text{definition of } V_x)$ $\iff ext{There exists } y ext{ such that the output of } B ext{ is TRUE}$

$$\iff$$
 $B \in CIRCUIT - SAT$

Conclusion: CIRCUIT-SAT is NP-COMPLETE!

(definition of B)

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Theorem

$$egin{aligned} L \ \textit{is NP-Complete} \ L \leq_P L' \ L' \in \textit{NP} \end{aligned}
ightarrow egin{aligned} \Longrightarrow & L' \ \textit{is NP-Complete} \ \end{bmatrix}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

Theorem

$$egin{aligned} L \ \textit{is NP-Complete} \ L \leq_P L' \ L' \in \textit{NP} \end{aligned}
ightarrow egin{aligned} \Longrightarrow & \textit{L' is NP-Complete} \ \end{bmatrix}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete.

Theorem

$$\left. egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete.

Theorem

$$egin{aligned} L \ \textit{is NP-Complete} \ L \leq_P L' \ L' \in \textit{NP} \end{aligned}
ightarrow egin{aligned} \Longrightarrow & \textit{L' is NP-Complete} \ \end{bmatrix}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete. It is sufficient to show that

- 3SAT is in NP.
- 2 CIRCUIT SAT $\leq_{P} 3SAT$

Theorem

$$\left. egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete. It is sufficient to show that

- 3SAT is in NP.
- 2 CIRCUIT SAT $\leq_{P} 3SAT$

The first item is easy: for a given truth-assignment of the variables, we can verify in polynomial time if the Boolean formula is true.

It remains to show that $CIRCUIT - SAT \leq_P 3SAT$.

It remains to show that $CIRCUIT - SAT \leq_P 3SAT$. We need a function f such that

- f transforms any input (Boolean circuit) B for CIRCUIT SAT and produces an input $\phi = f(B)$ (Boolean formula) for 3SAT.
 - There exist truth-values for the unknown input gates such that B's output is true

$$\iff$$

There exist truth-values for the variables such that ϕ is true

 $\bullet = f(B)$ can be computed in time that is polynomial in the size of B.