5. Multidimensional integrals

We solve the problems together in the exercise sessions. Note that these problems are optional and for learning purposes: solving these does not provide extra points. Actual home assignments (giving you extra points) are given separately.

It is advised to take a look of the problems beforehand. Note that some of the problems might be very challenging, so do not feel bad if you are unable to solve them independently: we will go through the solutions together!

Problems for the session

- **5.1** Compute the integral $\int \int_D \frac{1}{(1+x+y)^2} dx dy$, where D is a rectangle with corners (0,0), (1,0), (1,2), and (0,2).
- **5.2** Compute the integral $\int \int_D x e^{-(x^2+y^2)} dx dy$, where $D = \{(x,y) : |x|, |y| \le 1\}$.
- **5.3** Compute the integral $\int \int_D e^{-y^2} dx dy$, where $D = \{(x,y) : |x| \le y, 0 \le y \le 1\}$.
- **5.4** Compute the integral $\int \int_D xy\sqrt{x^2+y^2}dxdy$, where
 - (a) $D = \{(x, y) : 0 \le y \le x, 0 \le x \le 1\}.$
 - (b) $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}.$
- **5.5** Compute the integral $\int \int_D (x^2 y^2)^{10} dx dy$, where $D = \{(x, y) : |x| + |y| \le 1\}$.
- **5.6** Compute the integral $\int \int_D \log(1+x^2+y^2) dx dy$, where $D = \{(x,y) : 1 \le x^2+y^2 \le 2\}$.
- **5.7** Compute the integral $\int \int_D (x^4 y^4) dx dy$, where D is defined through x < 0, y > 0, $1 < x^2 y^2 < 4$, and $\sqrt{17} < x^2 + y^2 < 5$.

Problems for individual practice

In addition to the problems below, one can get routine by solving similar exercises from the exercise-book "övningar i flerdimensionell analys".

- **5.1** Compute the integral $\int \int_D y \sin(y+xy) dx dy$, where $D = \{(x,y) : 0 \le x \le 1, -\pi/2 \le y \le \pi/2\}$.
- **5.2** Compute the integral $\int \int_D e^{xy} (1+xy) dx dy$, where $D = \{(x,y) : 0 \le x \le 1, 1 \le y \le 2\}$.
- **5.3** Compute the integral $\int \int_D \frac{xy}{(1+y^2)^2} dx dy$, where $D = \{(x,y) : x, y \ge 0, x^2 + y^2 \le 1\}$.
- **5.4** Compute the integral $\int \int_D x^2 e^{x^2+y^2} dx dy$, where $D = \{(x,y) : x^2 + y^2 \le 25, y \ge |x|\}$.
- **5.5** Compute the integral $\int \int_D (x^2 y^2) e^{2xy} dx dy$, where $D = \{(x, y) : x^2 + y^2 \le 1, -x \le y \le x, x \ge 0\}$.
- **5.6** Compute the integral $\int \int_D (x^2 + y^2) dx dy$, where $D = \{(x, y) : x^2/4 + y^2/9 \le 1\}$.