

COMP 2019

Week 5
Evolutionary Algorithms

Learning Objectives

Explain how evolutionary algorithms work (CO2)

Evolutionary Motivation

- Biological inspiration:
 - iterative optimisation by competition among a population of evolving candidate solutions.
 - competition isolates essential properties of good solutions encoded in building blocks.

EA Approach

- Keep a pool of prototypical individuals ("population")
- Select individuals to compete against each other
- Winner is more likely to contribute to next generation
- Performance is measured using a fitness function
- Obtain successor generation by recombining parts of the individuals that performed well

Source: http://www.engineering.lancs.ac.uk

Population Representation

Genetic Algorithm

```
population ← Initial_population
loop
  new_population \leftarrow \emptyset
  repeat Size(population) times
     p1 \leftarrow Select(population, EvalFn)
     p2 \leftarrow Select(population, EvalFn)
     child \leftarrow Reproduce(p1, p2)
     if (small probability) then child ← Mutate(child)
     new_population \leftarrow new_population \cup \{child\}
  end repeat
  population ← new_population
until (fit enough individual found) or (time limit reached)
return best individual in population
```


GA for State Space Search

- Represented as individuals in the population
- Encode state as features that describe potential solutions
 - Bit strings
 - Sequences of integers
 - Permutations
- Similar to chromosomes that encode characteristics of individuals

Fitness

- Determines how good a solution encoded in a chromosome is
 - Decode the representation to obtain a potential solution
 - Return a (normalised) number describing the quality of the solution
 - Penalise poor and invalid solutions

Initial Population and Stopping Criteria

- Initial population
 - Size (100-100k)
 - Distribution (random or seeded)
- Stopping criterion
 - An individual satisfies all desired criteria
 - Fixed number of iterations
 - Time limit
 - Manual inspection

Roulette Wheel Selection

- Fitness proportionate selection
 - Probability for selection is proportional to each individual's fitness

Tournament Selection

- Randomly select n individuals from population
- Sort according to decreasing fitness
- Choose k^{th} individual with probability $p(1-p)^{k-1}$

Crossover

- Combine the genes from two selected individuals to form a new individual ("offspring")
 - Swap components of the chromosome, reorder parts, etc
 - Strongly tied to the specific problem and its encoding as chromosomes

Crossover Operators

- 1 point crossover
- 2 point crossover
- Ordered crossover
- Uniform crossover
- •

Mutation

- Take a single candidate and randomly change it
- Should have low probability

Elitism

 Carry over the best individual(s) from the current population to the next generation

8-Queens Encoding

Fitness:

28 – (number of pairs attacking each other)

8-Queens Crossover & Mutation

1 point crossover

8-Queens Crossover & Mutation

1 point crossover

8-Queens Mutation

Change a position randomly

Traveling Salesman Example (TSP)

Chromosome:

Sequence of visited cities

Fitness:

Total Distance Travelled

TSP Crossover

- Ordered Crossover:
 - Pick a sequence S_A in chromosome A
 - Copy in order chromosome B, skipping any elements in S_A
 - Insert S_A at the same position in the copy of B

5 1 8 4 3 7 6 2

TSP Mutation

Swap two cities in the sequence at random

Learning to Walk

GA and Machine Learning

Summary

- Can solve very complex problems efficiently.
- Typically used for problems other search algorithms and mathematical optimisation theory cannot handle
- Idea is to distil building blocks that combine into good solutions
- Choice of parameters, representation, operators and probabilities is crucial.
- Optimality and completeness are <u>not</u> guaranteed, but results are often close to optimum.
- Anytime algorithm: can interrupt and ask for a solution at any time.

University of South Australia

Questions?