Nonlinear Control Theory

Bing Zhu

The Seventh Research Division Beihang University, Beijing, P.R.China

2020 Spring

Control based on Lyapunov Function

B. Zhu (SRD BUAA) 2020 Spring 2 / 14

Control based on Lyapunov Function

Consider the single input nonlinear system

$$\dot{x} = f(x) + g(x)u,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}$; f(x) and g(x) are locally Lipschitz with f(0) = 0.

Suppose there exists a locally Lipschitz state feedback control $u = \chi(x)$, such that the origin of

$$\dot{x} = f(x) + g(x)\chi(x)$$

is asymptotically stable. According to converse Lyapunov theorem, there exists a smooth Lyapunov function V(x) such that

$$\frac{\partial V}{\partial x}[f(x)+g(x)\chi(x)]<0, \quad \forall x\neq 0.$$

B. Zhu (SRD BUAA) 2020 Spring 3 / 14

Moreover, if the origin of $\dot{x} = f(x) + g(x)\chi(x)$ is globally asymptotically stable, then V(x) is radially unbounded, and the inequality

$$\frac{\partial V}{\partial x}[f(x)+g(x)\chi(x)]<0$$

holds globally.

Definition

A continuously differentiable positive definite function V(x) is a Control Lyapunov Function (CLF) for $\dot{x} = f(x) + g(x)u$, if

$$\frac{\partial V}{\partial x}g(x) = 0 \text{ for } x \in D, \ x \neq 0 \quad \Rightarrow \quad \frac{\partial V}{\partial x}f(x) < 0. \tag{1}$$

It is a Global CLF if it is radially unbounded and (1) holds with $D = R^n$.

SEIHANG UNIVERSITY

B. Zhu (SRD BUAA) 2020 Spring 4 / 14

 $\dot{x} = f(x) + g(x)u$ is asymptotically stabilizable only if it has a CLF.

Is it also sufficient? YES!

Sontag's Formula:

$$u = \phi(x) = \begin{cases} -\frac{\frac{\partial V}{\partial x} f + \sqrt{\left(\frac{\partial V}{\partial x} f\right)^2 + \left(\frac{\partial V}{\partial x} g\right)^4}}{\frac{\partial V}{\partial x} g}, & \text{if } \frac{\partial V}{\partial x} g \neq 0, \\ 0, & \text{if } \frac{\partial V}{\partial x} g = 0. \end{cases}$$

- If $\frac{\partial V}{\partial x}g=0$, then $\dot{V}=\frac{\partial V}{\partial x}f<0$.
- If $\frac{\partial V}{\partial x}g \neq 0$, then

$$\dot{V} = \frac{\partial V}{\partial x} f - \left[\frac{\partial V}{\partial x} f + \sqrt{\left(\frac{\partial V}{\partial x} f \right)^2 + \left(\frac{\partial V}{\partial x} g \right)^4} \right] = -\sqrt{\left(\frac{\partial V}{\partial x} f \right)^2 + \left(\frac{\partial V}{\partial x} g \right)^4} < 0.$$

It indicates that the origin is A.S.. If V(x) is a global CLF, then the origin is G.A.S.

B. Zhu (SRD BUAA) 2020 Spring 5 / 1

To guarantee that $\phi(x)$ is an effective controller, it must be sufficiently smooth.

Lemma (9.6)

If f(x), g(x) and V(x) are smooth, then $\phi(x)$ will be smooth for $x \neq 0$. If they are of class C^{l+1} for $l \geq 1$, then $\phi(x)$ will be of class C^l . Continuity at x = 0:

• $\phi(x)$ is continuous at x=0, if V(x) has the small control property; namely, given any $\epsilon>0$, there exists $\delta>0$ such that if $x\neq 0$ and $\|x\|<\delta$, then there is u with $\|u\|<\epsilon$ such that

$$\frac{\partial V}{\partial x}\left[f(x)+g(x)u\right]<0.$$

• $\phi(x)$ is locally Lipschitz at x = 0, if there is a locally Lipschitz function $\chi(x)$, with $\chi(0) = 0$, such that

$$\frac{\partial V}{\partial x}[f(x)+g(x)\chi(x)]<0, \text{ for } x\neq 0.$$

B. Zhu (SRD BUAA) 2020 Spring 6 / 14

How can we find a CLF?

If we know of any stabilizing control with a corresponding Lyapunov function V, then V is a CLF.

Feedback Linearization

$$z = T(x), u = -Kz \Rightarrow \dot{z} = (A - BK)z,$$

 $P(A - BK) + (A - BK)^T P = -Q, Q = Q^T > 0,$

Then $V = z^T P z = T^T(x) P T(x)$ is a CLF.

Backstepping

B. Zhu (SRD BUAA) 2020 Spring 7 / 14

Example

Consider the system

$$\dot{x}=x-x^3+u.$$

The feedback linearization control

$$u = \chi(x) = -x + x^3 - \alpha x$$

with $\alpha>0$ is capable of asymptotically stabilizing the system. The closed-loop system is now given by

$$\dot{\mathbf{x}} = -\alpha \mathbf{x},$$

and the corresponding Lyapunov function $V(x) = \frac{1}{2}x^2$ is a CLF with

$$\frac{\partial V}{\partial x}g = x$$
, $\frac{\partial V}{\partial x}f = x(x - x^3)$.

B. Zhu (SRD BUAA) 2020 Spring 8 / 14

By Sontag's Formula,

$$u = \phi(x) = -\frac{\frac{\partial V}{\partial x}f + \sqrt{(\frac{\partial V}{\partial x}f)^2 + (\frac{\partial V}{\partial x}g)^4}}{\frac{\partial V}{\partial x}g}$$
$$= -x + x^3 - x\sqrt{(1 - x^2)^2 + 1}.$$

Compare with feedback linearization control

$$u = \chi(x) = -x + x^3 - \alpha x$$

B. Zhu (SRD BUAA) 2020 Spring 9/14

Figure: Comparison of CLF and feedback linearization in u and $\dot{x} = f$ with $\alpha = \sqrt{2}$

Robustness Property

Lemma (9.7)

Suppose

- f, g, and V satisfy the conditions of Lemma 9.6;
- ullet ϕ is given by Sontag's formula.

Then,

- the origin of $\dot{x} = f(x) + g(x)k\phi(x)$ is asymptotically stable for all $k \ge \frac{1}{2}$.
- If V is a global CLF, then the origin is globally asymptotically stable.

Proof: Let

$$q(x) = \frac{1}{2} \left[-\frac{\partial V}{\partial x} f + \sqrt{\left(\frac{\partial V}{\partial x} f\right)^2 + \left(\frac{\partial V}{\partial x} g\right)^4} \right]$$

Since V(x) is positive definite and smooth,

$$\frac{\partial V}{\partial x}(0)=0 \quad \Rightarrow \quad q(0)=0.$$

For $x \neq 0$,

$$\frac{\partial V}{\partial x}g \neq 0 \quad \Rightarrow \quad q > 0;$$
$$\frac{\partial V}{\partial x}g = 0 \quad \Rightarrow \quad q = -\frac{\partial V}{\partial x}f > 0.$$

q(x) is positive definite.

B. Zhu (SRD BUAA) 2020 Spring 12 / 14

$$u = k\phi(x) \Rightarrow \dot{x} = f(x) + g(x)k\phi(x),$$

 $\Rightarrow \dot{V} = \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial x}gk\phi.$

For $x \neq 0$,

•
$$\frac{\partial V}{\partial x}g = 0 \Rightarrow \dot{V} = \frac{\partial V}{\partial x}f < 0.$$

• $\frac{\partial V}{\partial x}g \neq 0$,

$$\dot{V} = -q + q + \frac{\partial V}{\partial x} f + \frac{\partial V}{\partial x} g k \phi
= -q - \left(k - \frac{1}{2}\right) \left[\frac{\partial V}{\partial x} f + \sqrt{\left(\frac{\partial V}{\partial x} f\right)^2 + \left(\frac{\partial V}{\partial x} g\right)^4}\right] < 0.$$

The origin is A.S., if $k \ge \frac{1}{2}$. If V(x) is a global CLF, then the origin is G.A. S

Example

Reconsider $\dot{x} = x - x^3 + u$. Compare $u = \chi(x)$ with $u = \phi(x)$.

- By Lemma 9.7 the origin of $\dot{x} = x x^3 + k\phi(x)$ is G.A.S. for all $k \ge \frac{1}{2}$.
- The origin of

$$\dot{x} = x - x^3 + k\chi(x) = -[k(1+\alpha) - 1]x + (k-1)x^3$$

is not G.A.S. for any k > 1. It is locally E.S. for $k > \frac{1}{1+\alpha}$ with region of attraction

$$\left\{|x|<\sqrt{1+\frac{k\alpha}{k-1}}\right\} \ \to \ \left\{|x|<\sqrt{1+\alpha}\right\} \ \text{as } k\to\infty.$$

B. Zhu (SRD BUAA) 2020 Spring 14 / 14