Theoretical and numerical aspects of the open source BEM solver NEMOH

Article · September 2015	
CITATION:	READS 6,676
2 autho	rs, including:
	A. Babarit Ecole Centrale de Nantes 208 PUBLICATIONS 4,574 CITATIONS SEE PROFILE
Some of the authors of this publication are also working on these related projects:	
Project	Sustainable fuel production from the far-offshore wind energy resource View project
Project	"Weakly Non-Linear Modeling of Oscillating Water Column, Wave Energy Converters" View project

Theoretical and numerical aspects of the open source BEM solver NEMOH

Aurelien.babarit@ec-nantes.fr

Gerard.delhommeau@ec-nantes.fr

Ecole Centrale de Nantes - CNRS

Context

- > BEM codes based on linear potential flow theory are still widely used for wave-structure interactions in numerical W2W models for WECs
 - Performance estimates, Design optimization,
 Development of control algorithms, Array effects
 - > Why: because they are extremely fast in comparison with other approaches
 - > BEM codes (WAMIT, Diodore, DIFFRACT, Hydrostar, Aquaplus, ...) used for computation of hydrodynamic coefficients are expensive (despite they were developed long time ago)
- > In Jan. 2014, ECN decided to release its BEM code in open source.

Motivation

- > To date, ~900 users registered on Nemoh's forum. Nemoh user community is growing quickly
- > Nemoh has been found very useful for many of its user but its full potential has not yet been realised because :
 - Documentation is poor
 - No verification and validation test cases
- > This paper → summary of the theoretical and numerical aspects of the open source BEM solver NEMOH

Free surface potential flow theory: assumptions

- > Inviscid fluid : v = 0
- > Incompressible and irrotational flow : $\{ \vec{\nabla} \cdot \vec{V} = 0 \}$
 - ightarrow Velocity derives from a velocity potential: $\vec{V} = \vec{\nabla} \Phi$
 - → Pressure is obtained from Bernoulli formula:

$$p + \rho gz + \frac{1}{2} (\vec{\nabla} \Phi)^2 + \rho \frac{\partial \Phi}{\partial t} = \text{Cste}$$

Interest: flow is completely described the velocity potential (scalar) $\boldsymbol{\Phi}$:

 \rightarrow 1 unknown Φ vs 4 unknowns (V_x , V_y , V_z and p)

The non linear boundary value problem

Approximations of the non linear BVP

- > 1st order (fully linear)
 - Small motion around mean position, small steepness
 - Linearized free surface equations, body conditions on mean position of body surface
 - BVP usually solved in frequency domain, robustness ++, CPU time, accuracy +- (but usually surprisingly good)
- > Fully non linear
 - No wave breaking
 - Time domain, robustness +-, CPU time +-, accuracy ++ (high order loads, springing, ringing)
- XWAVE, LAMP4, NWT LHS\

WAMIT.

Diodore.

Diffract.

Hvdrostar.

Aquaplus.

Nemoh, ...

MANAV, LAMP2....

- > Non linear Froude Krylov
 - Fourde-Krylov foce calculated on the instantaneous body surface (hydrostatic + dynamic), diffraction/radiation with linear BVP
 - Time domain, robustness +-, CPU time +, accuracy +-
 - Approach is not consistent: stretching
- > Weak-scatterer
 - Small pertubartion w.r.t to incident wave field → linearisation of FSC on instantaneous position of the incident wave
 - Time domain, robustness +, CPU time +, accuracy + (Consistent non linear Froude-Krylov)

Nemoh

 $\frac{\partial \Phi}{\partial n} = f(M) \qquad M \in \overline{S_B}$ $\frac{\partial \Phi}{\partial n} = 0 \qquad M \in S_{bottom}$ $\frac{\partial^2 \Phi}{\partial t^2} + g \frac{\partial \Phi}{\partial n} = 0 \qquad z = 0$

 $\sqrt{R}\left(\frac{\partial\Phi}{\partial n} - ik\right)(\Phi - \Phi_0) \to 0$

- > Linear BEM code (solves linear BVP)
- > Use of the generalized mode approach
- > Use of source distribution
- > Wave part of the Green funtion is calculated using interpolation in a look-up table
- > Outputs:
 - 1st order hydrodynamic coefficients (added mass, radiation damping, excitation force)
 - Far field coefficients (Kochin function)
 - Free surface elevation, pressure field
 - Removal of irregular frequencies (to be released soon)
 - 2nd order coefficients (QTF) → see paper by Philippe et al.
- > http://lheea.ec-nantes.fr/doku.php/emo/nemoh/start

Code structure

Nemoh is:

- >PreProcessor
- >Solver
- >postProcessor

Matlab wrappers and mesh generation in Matlab provided for convenience (not Nemoh)

Verification & Validation

> Pitch-pitch coefficients for an upright box hinged at sea bottom

Verification & Validation

> Pitch coefficient for the Wavestar absorber

WAMIT calculations by Morten Kramer

Verification & Validation

> Comparison of motion response for model scale of Wavestar absorber. Hydrodynamic coefficients calculated with Nemoh.

Calculations and experiments by Jarrah Orphin, Mats Sonderstup Rohe, Jonas Bjerg Thomsen

Applications

> Bulge motion of a flexible tube

$$\vec{V}.\vec{n} = \sin\left(\frac{x}{L}\right)$$

Applications

> Wave diffraction by a fixed offshore wind farm

Conclusions and perspectives

- Nemoh: open source BEM code for calculation of hydrodynamic coefficients
- > Perspectives
 - More documentation
 - Verification & validation test cases
 - Removal of irregular frequencies
 - Second order coefficients (QTFs)
 - Dipoles
 - Code acceleration (multiple scattering and/or use of diff equation for Green function)
 - Link to time domain
- > Interested ? Join the developer group!
- Acknowledgements: financial support of French National Research Agency (ANR, projects MONACOREV ANR-11-MONU-018-01 and LabexMER ANR-10-LABX-19-01)

