

Linear and Discrete Optimization

Paths, Cycles and Flows

- Weighted directed graphs
- Shortest paths
- Bellman-Ford Algorithm

Weighted directed graphs

Let D = (V, A) be a directed graph (without self loops). Let $\ell : A \to \mathbb{R}$ be the *lengths* of the arcs. The *length* of a walk $W = v_0, \dots, v_k$ is the sum of the lengths of its arcs:

$$\ell(W) = \sum_{i=1}^{k} \ell(v_{i-1}, v_i).$$

The *distance* between two nodes s and t is the length of a *shortest path* from s to t.

Shortest path problem

The shortest path problem (single source)

Given a directed graph with edge lengths and a designated node s, compute d(s, v) for each $v \in V$.

- Is NP-complete in general.
- ► Can be solved in polynomial time, if there are no negative cycles.

A *cycle* is a walk v_0, v_1, \ldots, v_k with $v_0 = v_k$.

$$\ell(C) = \sum_{i=0}^{k-1} \ell(U_i, U_{i+1})$$

The Bellman-Ford method

A method to compute minimum length walks.

Given: D = (V, A) (no self-loops), $\ell : A \to \mathbb{R}$ and designated node $s \in V$

Goal: Compute shortest path distances from s to all other nodes

Assumption: Each node is reachable from s

For $k \ge 0$ and $t \in V$:

 $d_k(t) = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$

For $k \ge 0$ and $t \in V$:

 $d_k(t) = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$

$$d_o(s) = 0$$
, $d_0(t) = \infty$, $t \neq s$

For $k \ge 0$ and $t \in V$:

$$\underline{d_k(t)} = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$$

Suppose $d_i(t)$ is known for each $i \le k$ and each $t \in V$.

For $k \ge 0$ and $t \in V$:

 $d_k(t) = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$

Suppose $d_i(t)$ is known for each $i \le k$ and each $t \in V$.

Now: Compute $d_{k+1}(t)$: for each $t \in V$.

Case 1: The shortest walk traversing at most k + 1 arcs traverses exactly k + 1 arcs.

For $k \ge 0$ and $t \in V$:

 $d_k(t) = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$

Suppose $d_i(t)$ is known for each $i \le k$ and each $t \in V$.

Now: Compute $d_{k+1}(t)$: for each $t \in V$.

Ą

Case 2: The shortest walk traversing at most k + 1 arcs traverses at most k arcs.

$$d_{o}(s) = 0, \quad d_{0}(t) = \infty, t \neq s$$

$$k \geq 0, t \in V: d_{k+1}(t) = \min\{d_{k}(t), \min_{(u,t) \in A}\{d_{k}(u) + \ell(u,t)\}\}.$$

$$- \text{ Coor ferm is a valid upper bound on }$$

$$d_{u,t}(t)$$

$$- \text{ At least one of these terms IS } d_{u,t}(t)$$

$$d_o(s) = 0, \quad d_0(t) = \infty, t \neq s$$

$$k \ge 0, t \in V: d_{k+1}(t) = \min\{d_k(t), \min_{(u,t) \in A} \{d_k(u) + \ell(u,t)\}.$$

Procedure to compute the values $d_{k+1}(t)$ assuming values $d_k(t)$ are pre-computed:

for each
$$t \in V$$
:
$$d_{k+1}(t) := \underline{d_k(t)}$$
 for each $(u,t) \in A$
$$\text{if: } d_k(u) + \ell(u,t) < d_{k+1}(t)$$

$$d_{k+1}(t) := \underline{d_k(u)} + \ell(u,t)$$
 Correct!

$$\frac{Quiz}{dx(b)=\infty}$$
 to be updated?

S

a

b

de

& = O

$$\infty$$
 $\parallel d_0$

for each $t \in V$:

for each $(u, t) \in A$

 $d_{k+1}(t) := d_k(t)$

if: $d_k(u) + \ell(u, t) < d_{k+1}(t)$ $d_{k+1}(t) := d_k(u) + \ell(u, t)$

 $d_0(s) + l(s, a) = 0 + 3 < \infty = d_0(a)$

do (s)+0(sic)=0+4 < 00 = d4(c)

do (a) + L(a,b) = 00 +1 = 00 = dx(b)

e

 ∞

c

R=1

for each $t \in V$:

$$d_{k+1}(t) := d_k(t)$$

for each $(u, t) \in A$ if: $d_{\ell}(u) + \ell(u, t) < d_{\ell+1}(t)$

if:
$$d_k(u) + \ell(u, t) < d_{k+1}(t)$$

 $d_{k+1}(t) := d_k(u) + \ell(u, t)$

	3	4	4	00	∞	d2
0	3	∞	4	∞	∞	$\parallel d_1$
0	∞	∞	∞	∞	∞	d_0
S	а	b	С	d	e	

		3	4	X2	7	6	
	0	3	4	4	∞	∞	$\parallel d_2$
	0	3	∞	4	∞	∞	d_1
	0	∞	∞	∞	∞	∞	d_0
-	S	а	b	С	d	e	

for each $t \in V$:

$$d_{k+1}(t) := d_k(t)$$

for each $(u, t) \in A$

if:
$$d_k(u) + \ell(u, t) < d_{k+1}(t)$$

 $d_{k+1}(t) := d_k(u) + \ell(u, t)$

	0	3	4	2	7	2	d 6
-	0	3	4	2	7	2	$\parallel d_4$
	0	3	4	2	7	6	d_3
	0	3	4	4	∞	∞	d_2
	0	3	∞	4	∞	00	d_1
	0	∞	∞	∞	∞	∞	d_0
	S	а	b	С	\overline{d}	e	

Negative cycles

Theorem

Given $D=(V,A), s\in V, \ell:A\to\mathbb{R}$, one has $d_n=d_{n-1}$ for n=|V| iff D does not have a cycle of negative length that is reachable from s.

Proof: = Suppose
$$U_{0}, U_{1}, U_{2},, U_{k_{1}}, U_{0}$$
 is a cycle macheble from S

$$\frac{d_{M_{1}}(M_{1}) < \infty}{d_{N_{1}}(M_{1}) + l(M_{1}, U_{1})}$$

$$\frac{d_{M_{1}}(M_{1}) < \infty}{d_{N_{1}}(M_{1}) + l(M_{1}, U_{1})}$$

$$\frac{d_{M_{1}}(M_{1}) - d_{N_{1}}(U_{1})}{d_{N_{1}}(M_{1})}$$

$$\frac{d_{M_{1}}(M_{1}) - d_{N_{1}}(M_{1})}{d_{N_{1}}(M_{1})}$$

Negative cycles

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, one has $d_n = d_{n-1}$ for n = |V| iff D does not have a cycle of negative length that is reachable from s.

Negative cycles

Theorem

Given D=(V,A), $s\in V$, $\ell:A\to\mathbb{R}$, one has $d_n=d_{n-1}$ for $n\ge |V|$ iff D does not have a cycle of negative length that is reachable from s.

$$\begin{array}{lll}
\mathcal{N}_{1} & S = W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n} = t \\
\mathcal{N}_{2} & S = W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n} = t \\
\mathcal{N}_{3} & S = W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n} = t \\
\mathcal{N}_{4} & S = W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n} = t \\
\mathcal{N}_{5} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} \\
\mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} & \mathcal{N}_{6} \\
\mathcal{N}_{7} & \mathcal{N}_{7} \\
\mathcal{N}_{7} & \mathcal{N}_$$

Shortest paths

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, and suppose that no negative cycle is reachable from s. Then for each $t \in V$ $d_{n-1}(t)$ is the distance between s and t.

Aroaf: Suppose ann(t) < length of shorted path from s to t. Let W be a shortest wolk from s to Lusing at most n-1 arcs and with a minimal number of arcs.

$$e(W) < e(W_2)$$

$$\ell(\nabla J) = \ell(\nabla J_2) + \ell(G)$$

$$= 2 \ell(G) < 0 \qquad \forall \qquad \exists$$

Computing shortest paths

Compute the values $d_{k+1}(t)$ and the predecessor $\underline{\pi_{k+1}}(t)$ assuming values $d_k(t)$ and $\underline{\pi_k}(t)$ have been pre-computed:

$$\begin{aligned} &\text{for each } t \in V \colon \\ &d_{k+1}(t) := d_k(t) \\ &\pi_{k+1}(t) := \pi_k(t) \end{aligned} \\ &\text{for each } (u,t) \in A \\ &\text{if: } d_k(u) + \ell(u,t) < d_{k+1}(t) \\ &d_{k+1}(t) := d_k(u) + \ell(u,t) \\ &\pi_{k+1}(t) := \boxed{ } \ \ \end{aligned}$$

The shortest path tree

Theorem

Let D=(V,A) be a directed graph and suppose that each node is reachable from s. The directed graph T=(V,A') with $A'=\{(\pi(u),u)\colon u\in V\setminus \{s\}\}$ is a directed tree with root s. The unique path from s to any vertex t in T is a shortest path from s to t in D.

Running time of Bellman-Ford

Running time of Bellman-Ford (cont.)

Theorem

Let D=(V,A) be a directed graph with lengths ℓ and suppose that each node is reachable by $s\in V$, then Bellman-Ford runs in time $O(|V|\cdot |A|)$