Złożoność obliczeniowa algorytmów Inne modele obliczeń

Kordian A. Smoliński

Wydział Fizyki i Informatyki Stosowanej

2024/2025

Część I

Maszyny rejestrowe

- Maszyna o dostępie swobodnym
 - Złożonosć obliczeniowa dla RAM
- Maszyna z zapamiętanym programem
 - Złożoność obliczeniowa RASP
- 🗿 RAM i RASP a maszyna Turinga
 - Złożoność RAM i maszyny Turinga

Rejestr

Komórka pamięci posiadająca:

Rejestr

Komórka pamięci posiadająca:

adres jednoznaczny identyfikator (równoważny liczbie naturalnej),

Rejestr

Komórka pamięci posiadająca:

adres jednoznaczny identyfikator (równoważny liczbie naturalnej),

zawartość pojedyncza liczba naturalna (dowolnej wielkości).

Rejestr

Komórka pamięci posiadająca:

adres jednoznaczny identyfikator (równoważny liczbie naturalnej),

zawartość pojedyncza liczba naturalna (dowolnej wielkości).

Zbiór rejestrów maszyny nazywamy pamięcią.

Rejestr

Komórka pamięci posiadająca:

adres jednoznaczny identyfikator (równoważny liczbie naturalnej),

zawartość pojedyncza liczba naturalna (dowolnej wielkości).

Zbiór rejestrów maszyny nazywamy pamięcią.

Zapis

[r] zawartość rejestru o adresie r;

Rejestr

Komórka pamięci posiadająca:

adres jednoznaczny identyfikator (równoważny liczbie naturalnej),

zawartość pojedyncza liczba naturalna (dowolnej wielkości).

Zbiór rejestrów maszyny nazywamy pamięcią.

Zapis

```
[r] zawartość rejestru o adresie r;
```

 $r \leftarrow v$ załadowanie do rejestru o adresie r wartości v.

2024/2025

Random Access Machine (RAM)

Maszyna o dostępie swobodnym (RAM)

Maszyna o dostępie swobodnym składa się z:

Random Access Machine (RAM)

Maszyna o dostępie swobodnym (RAM)

Maszyna o dostępie swobodnym składa się z:

programu — skończonego ciągu rozkazów;

Random Access Machine (RAM)

Maszyna o dostępie swobodnym (RAM)

```
Maszyna o dostępie swobodnym składa się z:
```

```
programu — skończonego ciągu rozkazów;
```

```
pamięci — nieograniczonej liczby rejestrów r_0, r_1, r_2, \ldots;
```


Random Access Machine (RAM)

Maszyna o dostępie swobodnym (RAM)

```
Maszyna o dostępie swobodnym składa się z:

programu — skończonego ciągu rozkazów;

pamięci — nieograniczonej liczby rejestrów r_0, r_1, r_2, \ldots;

taśm wejścia i wyjścia z komórkami mogącymi zawierać

liczby naturalne, ruch taśm jest jednostronny — po

przeczytaniu/zapisaniu komórki nie można do niej wrócić;
```


Random Access Machine (RAM)

Maszyna o dostępie swobodnym (RAM)

```
Maszyna o dostępie swobodnym składa się z: programu — skończonego ciągu rozkazów; pamięci — nieograniczonej liczby rejestrów r_0, r_1, r_2, \ldots; taśm wejścia i wyjścia z komórkami mogącymi zawierać liczby naturalne, ruch taśm jest jednostronny — po przeczytaniu/zapisaniu komórki nie można do niej wrócić; licznika rozkazów — rejestru i przechowującego numer następnej instrukcji programu do wykonania, początkowo [i] = 0.
```


Tabela: Przykładowa lista rozkazów

```
13
                                                                          SUB = n
                                                                                            r_0 \leftarrow \max([r_0] - n, 0)
       LOAD = n
                       r_0 \leftarrow n
       LOAD n r_0 \leftarrow [r_n]

LOAD \uparrow n r_0 \leftarrow [r_{[r_n]}]

STORE n r_n \leftarrow [r_0]
                                                                          SUB n r_0 \leftarrow \max([r_0] - [r_n], 0)
                                                                  14
                                                                          SUB ↑n
                                                                                            r_0 \leftarrow \max([r_0] - [r_{[r_n]}], 0)
                                                                  15
                                                                          MUL = n
                                                                                           r_0 \leftarrow [r_0] \cdot n
                                                                 16
                                                                         MUL n r_0 \leftarrow [r_0] \cdot [r_n]

MUL \uparrow n r_0 \leftarrow [r_0] \cdot [r_{[r_n]}]
 5
       STORE \uparrow n r_{[r_n]} \leftarrow [r_0]
                                                             17
                        r_n \leftarrow [in]
       READ n
                                                             18
                                                                          DIV = n
       READ \uparrow n r_{[r_n]} \leftarrow [in]
                                                                                            r_0 \leftarrow |[r_0]/n|
 7
                                                              19
                                                          20 DIV n r_0 \leftarrow \lfloor [r_0]/[r_n] \rfloor
21 DIV \uparrow n r_0 \leftarrow \lfloor [r_0]/[r_{[r_n]}] \rfloor
 8
                    out \leftarrow [r_n]
       WRITE n
       WRITE \uparrow n out \leftarrow [r_{[r_n]}]
 9
      10
11
        ADD \uparrow n  r_0 \leftarrow [r_0] + [r_{[r_n]}]
                                                                  24 JNZERO n [r_0] \neq \Longrightarrow i \leftarrow n
12
                                                                i \leftarrow 0
                                                        T.TAH
```

O ile nie zaznaczono inaczej, dla każdej operacji $i \leftarrow [i] + 1$.

Przykład (algorytm Euklidesa)

- READ 1
- READ 2
- 3 LOAD 2
- JNZERO 18
- SUB 1
- JNZERO 11
- LOAD 1
- 8 SUB 2
- 9 STORE 1
- 10 JUMP 3
- 11 LOAD 2
- 12 STORE 3
- 13 LOAD 1
- 14 STORE 2
- LOAD 3 15
- STORE 1 16
- 17 JUMP 3
- 18 WRITE 1
- 19 HALT

Przykład (algorytm Euklidesa)

```
READ 1
     READ 2
                            Require: a, b \in \mathbb{N}
 3
    LOAD 2
                            Ensure: nwd(a, b) \in \mathbb{N}
     JNZERO 18
                               nwd(a, b)
     SUB 1
                               function nwd(a, b)
     JNZERO 11
                                   while b \neq 0 do
    LOAD 1
8
     SUB 2
                                        if a \geqslant b then
     STORE 1
                                            a \leftarrow a - b
10
    JUMP 3
                                        else
11
    LOAD 2
                                            c \leftarrow b
12
     STORE 3
                                            b \leftarrow a
13 LOAD 1
14
     STORE 2
                                            a \leftarrow c
15 LOAD 3
                                        end if
16
     STORE 1
                                   end while
17
     JUMP 3
                                   return a
18
     WRITE 1
                               end function
     HALT
19
```

Złożonosć obliczeniowa dla RAM

Kryterium kosztu jednostajnego

czas wykonania rozkazu jest ustalony.

Złożonosć obliczeniowa dla RAM

Kryterium kosztu jednostajnego

czas wykonania rozkazu jest ustalony.

pamięć to jest liczba rejestrów, do których odwołał się program w trakcie działania.

Złożonosć obliczeniowa dla RAM

Kryterium kosztu jednostajnego

czas wykonania rozkazu jest ustalony.

pamięć to jest liczba rejestrów, do których odwołał się program w trakcie działania.

Kryterium kosztu logarytmicznego

czas wykonania rozkazu na liczbie n jest proporcjonalny do $\log n + 1$.

Złożonosć obliczeniowa dla RAM

Kryterium kosztu jednostajnego

czas wykonania rozkazu jest ustalony.

pamięć to jest liczba rejestrów, do których odwołał się program w trakcie działania.

Kryterium kosztu logarytmicznego

czas wykonania rozkazu na liczbie n jest proporcjonalny do $\lfloor \log n \rfloor + 1$.

czas dostępu do rejestru r_k w adresowaniu pośrednim jest proporcjonalny do $\lfloor \log k \rfloor + 1$.

Złożonosć obliczeniowa dla RAM

Kryterium kosztu jednostajnego

czas wykonania rozkazu jest ustalony.

pamięć to jest liczba rejestrów, do których odwołał się program w trakcie działania.

Kryterium kosztu logarytmicznego

- czas wykonania rozkazu na liczbie n jest proporcjonalny do $\lfloor \log n \rfloor + 1$.
- czas dostępu do rejestru r_k w adresowaniu pośrednim jest proporcjonalny do $|\log k| + 1$.
- pamięć to suma logarytmów maxymalnych wartości wszystkich rejestrów, do których odwołał się program w trakcie działania.

Random-access stored-program (RASP)

Odpowiednik uniwersalnej maszyny Turinga dla maszyn o dostępie swobodnym.

Random-access stored-program (RASP)

Odpowiednik uniwersalnej maszyny Turinga dla maszyn o dostępie swobodnym.

Maszyna z zapamiętanym programem

Maszyna o dostępie swobodnym wczytująca program i dane z taśmy wejściowej do pamięci; rozkazy RAM są zakodowane w postaci liczb naturalnych.

Random-access stored-program (RASP)

Odpowiednik uniwersalnej maszyny Turinga dla maszyn o dostępie swobodnym.

Maszyna z zapamiętanym programem

Maszyna o dostępie swobodnym wczytująca program i dane z taśmy wejściowej do pamięci; rozkazy RAM są zakodowane w postaci liczb naturalnych.

Licznik rozkazów

Każda (prawie) instrukcja RASP jest zakodowana w postaci dwóch liczb naturalnych: kodu rozkazu i argumentu rozkazu, zatem dla większosci instrukcji mamy $i \leftarrow [i] + 2$.

Złożoność obliczeniowa RASP

Złożoność czasową i pamięciową dla RASP definiujemy podobnie jak dla RAM.

Twierdzenie

Jeżeli koszt instukcji jest jednostajny lub logarytmiczny, to

Złożoność obliczeniowa RASP

Złożoność czasową i pamięciową dla RASP definiujemy podobnie jak dla RAM.

Twierdzenie

Jeżeli koszt instukcji jest jednostajny lub logarytmiczny, to

• dla każdego programu RAM o złożoności czasowej $T_1(n)$ istnieje równoważny program RASP o złożoności czasowej $\Theta(T_1(n))$;

Złożoność obliczeniowa RASP

Złożoność czasową i pamięciową dla RASP definiujemy podobnie jak dla RAM.

Twierdzenie

Jeżeli koszt instukcji jest jednostajny lub logarytmiczny, to

- ① dla każdego programu RAM o złożoności czasowej $T_1(n)$ istnieje równoważny program RASP o złożoności czasowej $\Theta(T_1(n))$;
- ② dla każdego programu RASP o złożoności czasowej $T_2(n)$ istnieje równoważny program RAM o złożoności czasowej $O(T_2(n))$.

 RAM może symulować maszynę Turinga przechowując i-tą komórkę taśmy TM w rejestrze i + c, gdzie c dobieramy tak, aby zapewnić RAM "pamięć roboczą".

- RAM może symulować maszynę Turinga przechowując i-tą komórkę taśmy TM w rejestrze i + c, gdzie c dobieramy tak, aby zapewnić RAM "pamięć roboczą".
- Dla dowolnego obliczenia RAM, którego koszt logarytmiczny jest k, można zbudować maszynę Turinga symulującą to obliczenie w $O(k^2)$ krokach.

2024/2025

Złożoność RAM i maszyny Turinga

Definicja

Niech $f_1, f_2 : \mathbb{N} \to \mathbb{R}$. f_1 i f_2 są równoważne wielomianowo jeżeli istnieją wielomiany $p_1, p_2 : \mathbb{R} \to \mathbb{R}$ takie, że

$$\forall n \in \mathbb{N} \colon f_1(n) \leqslant p_1(f_2(n)) \land f_2(n) \leqslant p_2(f_1(n)).$$

Złożoność RAM i maszyny Turinga

Definicja

Niech $f_1, f_2 : \mathbb{N} \to \mathbb{R}$. f_1 i f_2 są równoważne wielomianowo jeżeli istnieją wielomiany $p_1, p_2 : \mathbb{R} \to \mathbb{R}$ takie, że

$$\forall n \in \mathbb{N} \colon f_1(n) \leqslant p_1(f_2(n)) \land f_2(n) \leqslant p_2(f_1(n)).$$

Twierdzenie

RAM i RASP z kosztem logarytmicznym oraz maszyna Turinga są równoważnymi wielomianowo modelami obliczeń.

Część II

Obwody logiczne

- Obwody logiczne
 - Złożoność w modelu obwodów logicznych

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

wejściem o stopniu wejściowym 0;

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

wejściem o stopniu wejściowym 0;

wyjściem o stopniu wejściowym 1 i stopniu wyjściowym 0;

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

```
wejściem o stopniu wejściowym 0;
```

wyjściem o stopniu wejściowym 1 i stopniu wyjściowym 0;

koniunkcją o stopniu wejściowym 2;

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

```
wejściem o stopniu wejściowym 0;
```

wyjściem o stopniu wejściowym 1 i stopniu wyjściowym 0;

koniunkcją o stopniu wejściowym 2;

alternatywą o stopniu wejściowym 2;

Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

```
wejściem o stopniu wejściowym 0;
```

```
wyjściem o stopniu wejściowym 1 i stopniu wyjściowym 0;
```

```
koniunkcją o stopniu wejściowym 2;
```

```
alternatywą o stopniu wejściowym 2;
```

```
negacją o stopniu wejściowym 1.
```


Obwód logiczny

Acykliczny graf skierowany, w którym każdy wierzchołek jest albo:

```
wejściem o stopniu wejściowym 0;
```

wyjściem o stopniu wejściowym 1 i stopniu wyjściowym 0;

koniunkcją o stopniu wejściowym 2;

alternatywą o stopniu wejściowym 2;

negacją o stopniu wejściowym 1.

Jeżeli obwód logiczny ma m wejść i n wyjść, to określa funkcję typu

$$f: \{0, 1\}^m \to \{0, 1\}^n$$
.

Przykład (kontrawalencja (XOR)) $x \oplus y = [x \wedge (\neg y)] \vee [(\neg x) \wedge y]$ $x \oplus y = [x \wedge (\neg y)] \vee [(\neg x) \wedge y]$

Złożoność w modelu obwodów logicznych

Definicja

Niech $\mathcal R$ będzie rodziną obwodów logicznych taką, że dla każdego $n\in\mathbb N$ rodzina $\mathcal R$ zawiera dokładnie jeden obwód o n węzłach wejściowych. Funkcja $f\colon\mathbb N\to\mathbb N$ przyporządkowująca $n\in\mathbb N$ liczbę węzłów wewnętrznych (bramek) w obwodzie z rodziny $\mathcal R$ o n wejściach to miara złożoności ilościowej.

Złożoność w modelu obwodów logicznych

Definicja

Niech $\mathcal R$ będzie rodziną obwodów logicznych taką, że dla każdego $n \in \mathbb N$ rodzina $\mathcal R$ zawiera dokładnie jeden obwód o n węzłach wejściowych. Funkcja $f \colon \mathbb N \to \mathbb N$ przyporządkowująca $n \in \mathbb N$ liczbę węzłów wewnętrznych (bramek) w obwodzie z rodziny $\mathcal R$ o n wejściach to miara złożoności ilościowej.

Twierdzenie

Jeżeli M jest maszyną Turinga działającą na słowie wejściowym w o długości n w czasie T(n), to istnieje rodzina obwodów logicznych \mathcal{R} , symulująca działanie M, o złożoności ilościowej $O(T(n)^2)$.

