Name: Elle Nguyen

Daniel B. Szyld

30 November 2023

Due Tuesday 5 December 2023, 11 AM

Linear Algebra, Math 2101-003 Homework set #9

- 1. Consider a vector space with inner product $\langle .,. \rangle$ (e.g., \mathbb{R}^n with the Euclidean inner product). Consider the norm induced by the inner product, that is, $||x|| = \sqrt{\langle x, x \rangle}$. Prove that if two vectors x, y have the same norm, i.e., ||x|| = ||y||, then their sum is orthogonal to their difference, i.e., $x + y \perp x - y$.
- **2.** Consider the subspace S spanned by the following three vectors in \mathbb{R}^4 ,

$$x_1 = egin{bmatrix} -1 & & -1 & & -3 & \ 0 & , & x_2 = & 0 & , & x_3 = & -1 \ 1 & & -1 & & 1 \ \end{bmatrix}.$$

Construct an orthonormal basis of S.

- **3.** Given an $n \times n$ matrix A whose column sums are all one. Show that one is an eigenvalue of A
- Need to show that $\langle x+y, x-y\rangle = 0$

Consider
$$\langle x+y, x-y \rangle$$

$$= \langle x, x - y / + \langle y, x - y / + \langle y, x \rangle - \langle y, y \rangle$$

$$= \langle x, x \rangle - \langle x, y \rangle + \langle y, x \rangle - \langle y, y \rangle$$

$$= \|x\|^{2} - \langle x, y \rangle + \langle x, y \rangle - \|y\|^{2}$$

 $= \langle x, x-y \rangle + \langle y, x-y \rangle \qquad \text{by linearity of } 1^{\text{St}} \text{ component}$ $= \langle x, x \rangle - \langle x, y \rangle + \langle y, x \rangle - \langle y, y \rangle \text{ by linearity of } 2^{\text{nd}} \text{ component}$ $= \|x\|^2 - \langle x, y \rangle + \langle x, y \rangle - \|y\|^2 \qquad \text{by commutative property } 2^{\text{definition of norm}}$ $= \|x\|^2 - \|y\|^2 = 0 \qquad \|x\| = \|y\| \rightarrow \|x\|^2 = \|y\|^2$

$$= \|x\|^2 - \|y\|^2 = 0$$

$$\langle x_2, u_1 \rangle = (-1)(\frac{-1}{\sqrt{2}}) + 0 + 0 + (-1)\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0$$

$$W_{2} = X_{2} - \langle X_{2}, u_{1} \rangle u_{1} = \begin{vmatrix} -1 \\ -2 \\ 0 \end{vmatrix} - Ou_{1} = \begin{vmatrix} -1 \\ -2 \\ 0 \end{vmatrix} \rightarrow u_{2} = \frac{W_{2}}{\|W_{2}\|} = \frac{1}{\sqrt{6}} \begin{vmatrix} -1 \\ -2 \\ 0 \end{vmatrix}$$

$$\langle x_3, u_1 \rangle = (-3)(\frac{-1}{\sqrt{2}}) + 0 + 0 + \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

 $\langle x_3, u_2 \rangle = (-3)(\frac{-1}{\sqrt{6}}) + (-1)(\frac{-2}{\sqrt{6}}) + 0 - \frac{1}{\sqrt{6}} = \frac{3}{\sqrt{6}} + \frac{2}{\sqrt{6}} - \frac{1}{\sqrt{6}} = \frac{4}{\sqrt{6}}$

W3= x3-<x3,u1>u1-<x3,u2>u2

$$\begin{vmatrix} -3 \\ -1 \end{vmatrix} - 2\sqrt{2} \frac{1}{\sqrt{2}} \begin{vmatrix} -1 \\ 0 \end{vmatrix} - \frac{4}{\sqrt{6}} \frac{1}{\sqrt{6}} \begin{vmatrix} -2 \\ 0 \end{vmatrix} - \frac{1}{\sqrt{2}} \begin{vmatrix} -3 \\ -1 \end{vmatrix} - \frac{2\sqrt{3}}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}} \begin{vmatrix} -1/3 \\ -1/3 \end{vmatrix} - \frac{1}{\sqrt{3}} \end{vmatrix} - \frac{1}{\sqrt{3}$$

Verify: Q. R =
$$0 - \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}}$$

3 Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 where $\sum_{i=1}^{n} a_{i*} = 1 \cdot A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}$

	lι	1	_a	0	a	111	İ	$ a_{ii}+a_{ni}+ + a_{ni} $		I
Consider v=		∴ A ^T v=	012	021.	anz		=	a ₁₁ + a ₂₁ + + a _{n1} a ₁₂ + a ₂₂ + + a _{n2} a _{1n} + a _{2n} + + a _{nn}	=	
	 '									
			lain	azn.	annl			ain + a2n + + ann		Ш
Consider $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\therefore A^{T}v = \begin{bmatrix} a_{11} & a_{21} & & a_{n1} \\ a_{12} & a_{22} & & a_{n2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} + a_{21} + + a_{n1} \\ a_{12} + a_{22} + + a_{n2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vdots A^{T}v = v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $ $\vdots A^{T}v = \begin{bmatrix} 1 \\ 1 $										

= V = 1.V .. $\lambda = 1$ is an eigenvalue of A

Consider $\det(A - \lambda I) = \det(A^T - \lambda I^T) = \det(A^T - \lambda I)$ by $\det A = \det A^T$: A & A^T have the same eigenvalue : $\lambda = 1$ is an eigenvalue of A QED!