Tiempo total: 2 horas 20 minutos (Cuestiones 35 min.-25%-, Problemas 105 min.-75%-) Test monorespuesta con penalización por respuesta incorrecta de 1/3.

Código de prueba: 230 11511 01 1 00

1	La relación d	lel lóbulo principal a s	ecundario de una agruj	pación uniforme de tres	elementos,		100 E)
	separados λ	/2, con desfase progres	sivo $\alpha = 0^{\circ}$ vale:		FA (4) =	sen	13 60
	a) 0 dB	b) 4.8 dB	(c) 9.5 dB	d) 13.4 dB	201010	SE 19	M
4			<u> </u>		CAINLE 2		2

¿Cuál de las siguientes antenas de dimensión máxima L_0 y frecuencia de funcionamiento f_0 , posee una zona de Fraunhofer de radio mayor?

a) $L_0=0.5m$, $f_0=12$ GHz (20)

c) $L_0=2m$, $f_0=3$ GHz >> 80

b) $L_0 = 1m$, $f_0 = 6$ GHz $\times 2.40$ $L_0 = 4m$, $f_0 = 1.5$ GHz $\times 2.46$ $\times 2.10^2$ f

En una bocina sectorial plano H óptima, si escribimos la eficiencia de iluminación de la bocina (η_i) como producto de las eficiencias de las distribuciones en plano $E(\eta_{ilE})$ y en plano $H(\eta_{ilH})$ como: $\eta_{il} = \eta_{ilE} x \eta_{ilH}$, ¿cuál de las siguientes afirmaciones es cierta?

d) ninguna de las anteriores

Una agrupación con corrientes $1e^{-j45^\circ}$: $1:1e^{j45^\circ}$, frecuencia de trabajo de 3 GHz y espaciado entre elementos de 4cm, produce un máximo de radiación orientado en una dirección que forma con el eje de la agrupación un ángulo de:

a) 36°

b) 72°

La impedancia de entrada aproximada a la frecuencia de funcionamiento de la antena resonante representada en la figura es:

b) $Z_a = 70 \Omega$

 $d)Z_a=280 \Omega$

¿Cuál de las siguientes expresiones para el diagrama de plano H del campo radiado por un dipolo eléctrico corto, situado en el origen y orientado según el eje x, es correcta?

a) $|E_{\theta}| = E_o$ b) $|E_{\theta}| = E_o \sin \theta$ c) $|E_{\phi}| = E_o$

La resistencia de radiación de una ranura doblada resonante de anchura a y dimensiones $a << L = 0.95 \lambda/2$ está comprendida entre los valores:

(a) entre 75Ω y 150Ω c) entre 300Ω y 600Ω

b) entre 150Ω y 300Ω

d) entre 600Ω y 1200Ω

¿Un dipolo en $\lambda 2$ se sitúa paralelo y a una distancia s del eje de un reflector diédrico de 90°. ¿Cuál es el valor óptimo de s para maximizar el campo radiado?

a) 0.25\lambda

(b) 0.50X

d) 1.0x

Un reflector parabólico simétrico está alimentado por una bocina cónica óptima. Al