- (b) $s(A_2) < 0$ and $\|R(\lambda,A_2)\|$ is uniformly bounded in each semiplane $\{\lambda \in \mathbb{C} \text{ , } Re\lambda > s(A_2) + \epsilon\}$ with $\epsilon > 0$.
- (c) E_1 is a closed sublattice of E and T_1 is a periodic, irreducible, positive semigroup on E_1 . In particular, (E_1, T_1) is isomorphic to $(L, R_{\tau}(t))$ where L is a function lattice between $C(\Gamma)$ and $L^1(\Gamma)$ and $R_{\tau}(t)$ is the rotation group with period $\tau = 2\pi/\alpha$.

<u>Proof.</u> (a) has been derived above while (b) follows immediately from (2.10). The properties of T_1 mentioned in (c) have been stated above. Hence the representation of T_1 as a rotation group follows from C-III,Cor.3.9.

For Hilbert spaces $L^2(\mu)$ property (b) of the above lemma and A-III, Cor.7.11 imply that the growth bound $\omega(A_2)$ is less than zero. Therefore we obtain the following result on the asymptotic behavior of $\mathcal T$.

<u>Proposition</u> 2.13. Let $T = (T(t))_{t \geq 0}$ be a bounded, irreducible, positive semigroup on a Hilbert lattice $E = L^2(\mu)$. Assume that s(A) = 0 is a pole of the resolvent of the generator A and that $i\alpha \in \sigma(A)$ for some $0 \neq \alpha \in \mathbb{R}$. Then T behaves asymptotically as the rotation group $(R_{\tau}(t))_{t \geq 0}$ with period $\tau = 2\pi n/\alpha$ for some $n \in \mathbb{N}$ on $L^2(\Gamma)$.

More precisely, we can identify $L^2\left(\Gamma\right)$ with a sublattice of E , which is the range of a strictly positive projection Q and we find constants ϵ > 0 and M \geq 1 such that for every f ϵ E we have

(2.11) $\|T(t)f - R_{\tau}(t)g\| \le Me^{-\epsilon t} \|f\|$ for every $t \ge 0$ where g := Qf.

For L^p -spaces the analogous statement can be shown only for a weaker type of convergence. The proof of this result uses interpolation for operators, mainly the Riesz Convexity Theorem (see the remarks preceding Cor.1.2).

Theorem 2.14. Let $T=(T(t))_{t\geq 0}$ be a bounded, irreducible positive semigroup on a Banach lattice $E=L^p(\mu)$, $1\leq p<\infty$. Assume that s(A)=0 is a pole of the resolvent of the generator A and that $i\alpha\in\sigma(A)$ for some $0\neq\alpha\in\mathbb{R}$. Then T behaves asymptotically as the rotation group $(R_\tau(t))_{t\geq 0}$ with period $\tau>0$ on $L^p(\Gamma)$, i.e., we can identify $L^p(\Gamma)$ with a sublattice of E such that for every $f\in E$ there exists $g\in L^p(\Gamma)$ satisfying

(2.12)
$$\lim_{t\to\infty} \|T(t)f - R_{\tau}(t)g\| = 0 .$$