Erweiterungen des R-Baums für räumliche Datenbankanfragen

Der R*-Baum

Patrick Schulz & Simon Hötten

Seminar Geodatenbanken
Dozent: Prof. Dr.-Ing. Jan-Henrik Haunert
Institut für Geoinformatik und Fernerkundung
Universität Osnabrück
Sommersemester 2015

Schlüsselwörter: Geodatenbanken, R*, Spatial Access

- 1 Motivation
- 2 Prinzipien eines R-Baums
- 3 Optimierungskriterien

Bei dem herkömmlichen R-Baum wird, sowohl beim Hinzufügen neuer Elemente als auch beim Split, lediglich die Fläche der umschließenden Rechtecke minimiert (vgl. Guttman, 1984, S. 50-51). Einige der daraus resultierenden Probleme wurden bereits im vorherigen Abschnitt dargelegt. Im Folgenden werden weitere mögliche Optimierungen und ihre Wechselwirkungen aufgeführt.

3.1 Flächenausnutzung maximieren

Die Fläche, welche von dem umschließenden Rechteck, aber nicht von den in ihm enthaltenen Rechtecken, überdeckt wird, soll minimiert werden. Es soll also möglichst wenig Platz "verschwendet" werden.

3.2 Überlappung minimieren

Die Überlappung der umschließenden Rechtecke soll minimiert werden.

- 4 Der R*-Baum
- 5 Fazit

Anhang

${\bf Abk\"{u}rzungsverzeichnis}$

SAM Spatial access methods PAM Point access methods

MBR Minimum bounding Rectangle

Literatur

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider und Bernhard Seeger (1990). "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles". In: *Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data*. SIGMOD '90. Atlantic City, New Jersey, USA: ACM, S. 322–331. DOI: 10.1145/93597.98741.

Guttman, Antonin (1984). "R-trees: a dynamic index structure for spatial searching". In: *Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data*. SIGMOD '84. New York, NY, USA: ACM, S. 47–57. DOI: 10.1145/602259.602266 (siehe S. 1).