Corso di Laurea in Informatica AA 2018/19

Esercitazione 7

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(7,0) e B=(2,12). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B e determinarne il modulo. Verificare se il vettore $\vec{v}=24\vec{i}+10\vec{j}$ sia perpendicolare o no al vettore \vec{r}_{AB} . $\left[\vec{r}_{AB}=-5\vec{i}+12\vec{j};|\vec{r}_{AB}|=13;s\right]$

Esercizio 2

Si considerino due cariche puntiformi poste lungo l'asse x di un piano cartesiano (x, y): la prima carica vale 18Q e si trova nel punto di coordinate (-d, 0), la seconda carica vale 2Q e si trova nel punto di coordinate (+d, 0). Sia inoltre presente una terza carica puntiforme $q_0 = Q$ di massa m anch'essa posta lungo l'asse x.

Determinare:

- a) il punto (p,0) compreso tra le cariche 18Q e 2Q in cui la forza totale che agisce su q_0 è nulla;
- b) il valore dell'energia potenziale di q_0 nel punto (p,0) assumendo che l'energia potenziale di q_0 all'infinito sia nulla;
- c) la velocità minima che dovrebbe avere q_0 nel punto (p,0) per raggiungere il punto sull'asse x di coordinate (-p,0).

$$p = \frac{d}{2}; U(p,0) = k_e \frac{16Q^2}{d}; |v_{\min}| = 8|Q| \sqrt{\frac{2k_e}{md}}$$

Esercizio 3

Consideriamo il piano xy. Al tempo t=0 nel punto (R,0) vi è la particella P_1 con massa m e carica Q mentre nel punto (-R,0) vi è la particella P_2 con massa 2m e carica 2Q. Le due particelle ruotano nel piano xy attorno all'origine, in senso antiorario e con modulo della velocità angolare ω . Calcolare:

- a) il modulo della velocità della particella P_1 (2 punti)
- b) il vettore velocità \vec{v}_2 della particella P_2 quando essa si trova in (R,0)
- c) l'accelerazione centripeta della particella P_1 quando essa si trova in (0, R)
- d) la forza elettrostatica che agisce sulla particella P_1 dovuta alla particella P_2 nell'istante in cui P_1 ha raggiunto il punto (0,R)

$$|\vec{v}_1| = \omega R; \vec{v}_2 = \omega R \vec{j}; \vec{a}_1 = -\omega^2 R \vec{j}; \vec{F}_{21} = \frac{k_e Q^2}{2R^2} \vec{j}$$