AG News Topic Classification

CSML 1010 - Winter 2020 - Group 20

Tony Lee, Viswesh Krishnamurthy

PROBLEM SELECTION & DEFINITION

- A text classification problem was chosen from the website https://datasets.quantumstat.com/. We chose the AG News corpus dataset
- The goal of this project is to develop a text classifier model that can accept a news 'headline' and 'content' of the news to classify the news article into one of the 4 following categories
 - World (coded as 1)
 - > Sports (2)
 - Business (3)
 - ➤ Sci/Tech (4)

PROJECT MILESTONE 2 – 6th May 2020

MODELS

- With the previous SVM model as the baseline, the following models were built,
 - ► Logistic Regression
 - ► Naïve Bayes
 - Decision Trees

All the models were built using Word2Vec embedding. The embedding was trained using the 120,000 instances, the entire training set

MODELS - PERFORMANCE COMPARISON

Baseline Model – SVM

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300

iso-f1 curves micro-average Precision-recall (area = 0.92) Precision-recall for class 0 (area = 0.93) Precision-recall for class 1 (area = 0.97) Precision-recall for class 2 (area = 0.87) Precision-recall for class 3 (area = 0.89)

Logistic Regression

- 120,000 instances
- Min word count = 5
- No. of Dimensions = 300

MODELS - PERFORMANCE COMPARISON (Cont'd)

Baseline Model – SVM

- 1 20,000 instances
- Min word count = 5
- No.of Dimensions = 300

Naïve Bayes

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300

MODELS - PERFORMANCE COMPARISON (Cont'd)

Baseline Model – SVM

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300

iso-f1 curves micro-average Precision-recall (area = 0.63) Precision-recall for class 0 (area = 0.63) Precision-recall for class 1 (area = 0.78) Precision-recall for class 2 (area = 0.55) Precision-recall for class 3 (area = 0.55)

Decision Trees

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300

CROSS VALIDATION

We ran a 5 fold cross validation on the training dataset and re-ran all the models

The models on the "solo" runs were trained on the 120,000 instance training set and tested on a separate 7600 instance test set

The results of cross validation closely follow the previous "solo" runs

Logistic Regression & SVM compare very closely in terms of the metrics. However, SVM was very resource intensive

CROSS VALIDATION - COMPARISON OF RESULTS

algo

Gaussian Naive Bayes

SVM/Linear SVC

Decision Tree

Logistic Regression

CROSS VALIDATION - COMPARISON OF RESULTS

algo

Gaussian Naive Bayes

SVM/Linear SVC

Decision Tree

Logistic Regression

CROSS VALIDATION - COMPARISON OF RESULTS

Based on the previous metrics and comparison, Logistic Regression emerges as the model of choice

ENSEMBLE METHODS

► The following ensemble methods were used

- Bagging
 - ▶ The base estimator was chosen to be Logistic Regression
- Stacking
 - The initial estimators in stacking were chosen to be Naïve bayes and SVM. The meta learner was Logistic Regression
- Boosting
 - ► An Adaboost classifier was used for boosting in this iteration.

ENSEMBLE METHODS vs OTHERS

ENSEMBLE METHODS vs OTHERS

ENSEMBLE METHODS vs OTHERS

- Based on the metrics seen so far, it is clear that "Bagging" ensemble method is the algorithm of choice
- Stacking and Bagging perform almost similarly in terms of F1
 Score, ROC AUC, Precision & Recall
- However, in terms of Fit time, stacking took almost 25 minutes to fit, while bagging took just over 3.5 mins

