- Suppose someone gives you a randomized policy π in a continuing reinforcement learning programming problem and claims it is optimal. How would you construct a deterministic policy π which is optimal?

 Justify your answer.
- Is it always true that $J_{\pi}(s) \leq \max_{a} Q_{\pi}(s,a)$?
- Suppose all the rewards in a continuing reinforcement learning problem are in [0,1] and we have $\gamma=0.9$.

As in the lecture notes, we use J^* to denote the rewards-to-go under the optimal policy. First, give an upper bound on $||J^*||_{\infty}$.

- Second, how many iterations does it take until we can guarantee that value iteration produces J_t with $||J_t J^*||_{\infty} \le 0.01$ starting from $J_0 = \mathbf{0}$?
- Look at Eq. (*) in the lecture notes on Q-learning. It was derived under the assumption that the policy π is deterministic. What should the corresponding equation be when the policy is randomized?

Consider an MDP with two states, A and B. In A, there are two actions you can take. Action 1 keeps you in state A, with a reward of one.
 Action 2 moves you to B, with a reward of zero. In state B, there is only one action to take, which keeps you in B with a reward of 2.

You want to use temporal difference learning to evaluate the rewardsto-go of the "choose at random" policy.

You generate the following two sample paths:

$$s_1 = A, a_1 = 1, s_2 = A, a_2 = 2, s_3 = B$$

 $s_1 = A, a_1 = 2, s_2 = B, a_2 = 1, s_3 = B, a_3 = 1, s_4 = B$

Use temporal difference learning to come up with estimates of the rewards-to-go from both states starting from [16,16].

• Consider an MDP with two states, A and B. In A, there are two actions you can take. Action 1 keeps you in state A, with a reward of one. Action 2 moves you to B, with a reward of zero. In state B, there is only one action to take, which keeps you in B with a reward of 2.

(i) Suppose you start from [16,16,16]. Starting at state A, write out the first three iterations of Q-learning with $\epsilon=0$ starting from

$$s_1 = A$$
, $a_1 = 1$, $s_2 = A$, $a_2 = 2$, $s_3 = B$, $a_3 = 1$

(ii) Write code to implement Q-learning to find the optimal Q-values in this example.