UFBA - IME - DMAT —- MATEMÁTICA DISCRETA I(MATA42) - PROFA: ISAMARA LISTA DE EXERCÍCIOS.3 - RELAÇÕES

- 1. Classifique \Re em reflexiva, irreflexiva, simétrica, assimétrica, anti-simétrica, transitiva e conectada.
 - (a) Seja a relação $\Re := \{ \langle x; y \rangle \in \mathbb{N} \times \mathbb{N} \mid x + y \text{ \'e impar } \}.$
 - (b) Seja a relação $\Re := \{ \langle x; y \rangle \in \mathbb{Z} \times \mathbb{Z} \mid x = 2y \}.$
 - (c) Seja a relação $\Re := \{ \langle x; y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = -y \}.$
 - (d) Seja a relação $\Re := \{ \langle x; y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = y + 1 \}.$
- 2. Para cada relação do exercício anterior, determine os fechos REFLEXIVO, SIMÉTRICO e TRANSITIVO.
- 3. Sejam $\Re := \{\langle x; y \rangle \mid x + y \text{ \'e par }\} \in \mathcal{S} := \{\langle x; y \rangle \mid x \text{ \'e m\'ultiplo de } y\} \text{ em } A := \{3, 5, 7\}.$
 - (a) Ache as inversas: $\widetilde{\Re}$, $\widetilde{\Re \cup \mathcal{S}}$, $\widetilde{\widetilde{\mathcal{S}}}$.
 - (b) Ache as complementares: $\overline{\Re}$, $\overline{\Re \cup S}$, $\overline{\overline{\Re}}$
 - (c) Determine as compostas: $S \circ \Re$, $\Re \circ S$, \Re^2 , S^3 .
 - (d) Determine, se possível, os Conjuntos quocientes: $[A]_{\Re}$, $[A]_{\mathcal{S}}$.
- 4. Seja a seguinte partição do conjunto A: $\mathcal{P} = \{\{0,6,8\},\{2,4\},\{10\}\}.$
 - (a) Determine uma cobertura para A.
 - (b) Ache a relação de equivalência \Re em A determinada por esta partição \mathcal{P} .
- 5. Seja \Re uma relação de equivalência em A dada por $\Re := \{\langle 1;1\rangle\,,\langle 1;3\rangle\,,\langle 1;5\rangle\,,\langle 3;1\rangle\,,\langle 3;3\rangle\,,$ $\langle 3;5\rangle\,,\langle 5;1\rangle\,,\langle 5;3\rangle\,,\langle 5;5\rangle\,,\langle 7;7\rangle\,,\langle 9;9\rangle\,,\langle 9;11\rangle\,,\langle 11;9\rangle\,,\langle 11;11\rangle\,,\langle 13;13\rangle\}.$ É possível determinar por \Re uma partição de A? (justifique sua resposta) Em caso afirmativo, determine a partição de A.
- 6. Sejam $A := \{0, 1, 2, 3\}$ e $\Re := \{\langle x; y \rangle \mid x + y \text{ \'e par }\}$ uma relação em A. É possível determinar por \Re uma partição de A? (justifique sua resposta) Em caso afirmativo, determine a partição de A.

- 7. Seja \Re a relação congruência módulo 4 em \mathbb{Z} .
 - (a) Determine as classes de equivalência em \Re e o conjunto quociente de \mathbb{Z} por \Re .
 - (b) Determine uma cobertura para \mathbb{Z} .
 - (c) Ache uma partição \mathcal{P} de \mathbb{Z} determinada por \Re .
- 8. Seja \Re uma relação definida no conjunto de todas as pessoas. Classifique \Re em REFLEXIVA, IRREFLEXIVA, SIMÉTRICA, ASSIMÉTRICA, ANTI-SIMÉTRICA, TRANSITIVA E CONECTADA.
 - (a) $\Re := \{ \langle x; y \rangle \mid x \text{ \'e mais alto que } y \}.$
 - (b) $\Re := \{ \langle x; y \rangle \mid x \in y \text{ nasceram no mesmo dia } \}.$
 - (c) $\Re := \{\langle x; y \rangle \mid x \in y \text{ tem um avô em comum } \}.$
- 9. Seja ℜ uma relação definida no conjunto de todas as páginas WEB. Classifique ℜ em REFLEXIVA, IRREFLEXIVA, SIMÉTRICA, ASSIMÉTRICA, ANTI-SIMÉTRICA, TRANSITIVA e CONECTADA.
 - (a) $\Re := \{ \langle x; y \rangle \mid \text{ Todos que visitaram a página } x \text{ também visitaram a página } y \}.$
 - (b) $\Re := \{\langle x; y \rangle \mid \text{ Não existem links em comum na página } x \text{ e na página } y\}.$
 - (c) $\Re := \{\langle x; y \rangle \mid \text{ Existe pelo menos um link em comum nas duas páginas } x \in y\}.$
- 10. Assinale V ou F em cada afirmação abaixo se for verdadeira ou falsa, respectivamente. (justifique cada resposta!)
 - () Seja \Re uma relação em A. \Re é REFLEXIVA se, e somente se, $\nexists x$ tal que $x \in A \land \langle x; x \rangle \notin \Re$.
 - () Seja $\Re:=\{\langle 1;1\rangle,\langle 1;2\rangle,\langle 2;2\rangle,\langle 2;1\rangle\}$ uma relação em $A=\{1,2,3\}$; então \Re é REFLEXIVA e ref(\Re) = \Re .
 - () Seja \Re uma relação em A. Se \Re não é REFLEXIVA então \Re é IRREFLEXIVA e ref(\Re) = $\Re \cup \triangle_A$.
 - () Seja $\mathcal S$ uma relação em A. Se $\mathcal S$ é SIMÉTRICA então $\mathcal S$ não é ASSIMÉTRICA e $\mathcal S$ não é ANTI-SIMÉTRICA.
 - () Se uma relação \Re em A for REFLEXIVA então \Re também será ANTI-SIMÉTRICA.
 - () Seja \Re uma relação de equivalência em A; então $\operatorname{ref}(\Re) = \sin(\Re) = \operatorname{tra}(\Re)$.

- () A relação $\Re:=\{\langle x;y\rangle\in\mathbb{Z}\times\mathbb{Z}\mid x\leq y\}$ é conectada.
- () Seja \Re uma relação em A. Então a relação $S:=\operatorname{ref}(\Re)\cup\operatorname{sim}(\Re)\cup\operatorname{tra}(\Re)$ é uma relação de EQUIVALÊNCIA.
- 11. Mostre ou refute(apresente um contra exemplo) as afirmações a seguir:
 - (i) Seja A um conjunto e $\{A_i\}_{\{i\in I\}}$ uma FAMÍLIA de subconjuntos não vazios de A. Então, esta FAMÍLIA é uma COBERTURA de A.
 - (ii) Seja A um conjunto. Então, uma COBERTURA de A também será uma PARTIÇÃO de A.
 - (iii) Seja A um conjunto. Então, toda relação \Re definida em A determina uma PARTIÇÃO de A.
- 12. Sejam \mathcal{R} e \mathcal{S} relações de equivalências num mesmo conjunto A. Mostre ou refute as afirmações a seguir:
 - (i) $\mathcal{R} \cup \mathcal{S}$ é relação de equivalência.
 - (ii) $\mathcal{R} \cap \mathcal{S}$ é relação de equivalência.
 - (iii) $\mathcal{R} \mathcal{S}$ é relação de equivalência.
 - (iv) SoR é relação de equivalência.
 - (v) \mathcal{R}^m ; $m \in \mathbb{N}^*$ é relação de equivalência.