CSF 2021, June 22, Session 4, 15:00-15:45

Cooking Cryptographers: Secure Multiparty Computation Based on Balls and Bags

<u>Daiki Miyahara^{1,2}</u> Yuichi Komano³ Takaaki Mizuki^{1,2} Hideaki Sone¹

- 1. Tohoku University, Email: daiki.miyahara.q4[at]alumni.tohoku.ac.jp
- 2. National Institute of Advanced Industrial Science and Technology (AIST)
- 3. Toshiba Corporation

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

What is Cooking Cryptographers Problem?

Analog of the Dining Cryptographers problem^[1]

✓ Assume that Alice and Bob are cooking Borscht soup

What is Cooking Cryptographers Problem?

Analog of the Dining Cryptographers problem^[1]

✓ Assume that Alice and Bob are cooking Borscht soup

✓ Prepared ingredients either paid out of pockets or funded by NFSA‡

What is Cooking Cryptographers Problem?

Analog of the Dining Cryptographers problem^[1]

✓ Assume that Alice and Bob are cooking Borscht soup

- ✓ Prepared ingredients either paid out of pockets or funded by NFSA‡
- ✓ Respect each other's ideology to have a relation to NFSA, but...

Analog of the Dining Cryptographers problem^[1]

✓ Assume that Alice and Bob are cooking Borscht soup

- ✓ Prepared ingredients either paid out of pockets or funded by NFSA‡
- ✓ Respect each other's ideology to have a relation to NFSA, but...
- ✓ Wonder if they eat food funded by NFSA

✓ They are in the kitchen, and there are the ingredients and saucepans

- ✓ They are in the kitchen, and there are the ingredients and saucepans
- ✓ Each of them has their private bit:

Funded by NFSA = 0, Paid out of pocket = 1

- ✓ They are in the kitchen, and there are the ingredients and saucepans
- ✓ Each of them has their private bit:
 - Funded by NFSA = 0, Paid out of pocket = 1
- ✓ The goal: obtain $a \land b$ without revealing any information about a and b

- ✓ They are in the kitchen, and there are the ingredients and saucepans
- ✓ Each of them has their private bit:
 - Funded by NFSA = 0, Paid out of pocket = 1
- ✓ The goal: obtain $a \land b$ without revealing any information about a and b

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

1. Alice puts ingredients into saucepans depending on the value of a (so that Bob cannot see them):

2. Bob puts ingredients into saucepans depending on the value of *b* (so that Alice cannot see them):

3. Shuffle the order of the three saucepans

- 3. Shuffle the order of the three saucepans
- Enjoy eating the cooked Borscht soup:
 If there is a saucepan only with carrots, then a∧b=1 (pockets); otherwise, a∧b=0 (NFSA)

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

Change the Settings from Kitchen to Using Balls and Bags

√ Replace: ingredients → balls, saucepans → bags

Change the Settings from Kitchen to Using Balls and Bags

√ Replace: ingredients → balls, saucepans → bags

✓ Balls and bags are easy to prepare, and they are also familiar tools
for learning Probability in high school

Change the Settings from Kitchen to Using Balls and Bags

✓ It also performs the secure computation if we replace ingredients and saucepans with balls and bags, respectively

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

Contribution: Secure computations using balls and bags

- ✓ Employ a property that the order of balls in a bag is disordered
- ✓ Extend our two-input AND to the *multi-input* AND

Contribution: Secure computations using balls and bags

- ✓ Employ a property that the order of balls in a bag is disordered
- ✓ Extend our two-input AND to the *multi-input* AND
- √ Formalize secure computation using balls and bags
- ✓ Construct a protocol for any Boolean function

Outline

- 1. Introduction: Cooking Cryptographers Problem
- 2. Our Proposed Protocol
- 3. Changing the Settings
- 4. Contribution
- 5. Conclusion

Merits of cryptographic protocols using physical objects

- ✓ Employ physical properties that can be intuitively understood^[2]
 - ✓ Correctness and security are clear even for non-experts
 - √The notion of secure multiparty computations can be illustrated^[3,4]

^[2] T. Moran et al., Polling with Physical Envelopes: A Rigorous Analysis of a Human-Centric Protocol, EUROCRYPT 2006, vol. 4004, pp. 88–108, 2006

^[3] A. Marcedone et al., Secure Dating with Four or Fewer Cards, Cryptology ePrint Archive, Report 2015/1031, 2015

^[4] R. Pass et al., A Course in Cryptography, 2010

^[5] S. Izmalkov et al., Rational Secure Computation and Ideal Mechanism Design, FOCS 2005, pp. 585–594, 2005

^[6] M. Lepinksi et al., Collusion-free protocols, STOC 2005, pp. 543-552, 2005

Merits of cryptographic protocols using physical objects

- ✓ Employ physical properties that can be intuitively understood^[2]
 - √ Correctness and security are clear even for non-experts
 - √The notion of secure multiparty computations can be illustrated^[3,4]

- ✓ Implement stronger cryptographic notions
 - ✓ Ballot boxes can be used to implement *rational* secure computations^[5]
 - √The use of envelopes is essential to realize collusion-free protocols^[6]

^[2] T. Moran et al., Polling with Physical Envelopes: A Rigorous Analysis of a Human-Centric Protocol, EUROCRYPT 2006, vol. 4004, pp. 88–108, 2006

^[3] A. Marcedone et al., Secure Dating with Four or Fewer Cards, Cryptology ePrint Archive, Report 2015/1031, 2015

^[4] R. Pass et al., A Course in Cryptography, 2010

^[5] S. Izmalkov et al., Rational Secure Computation and Ideal Mechanism Design, FOCS 2005, pp. 585–594, 2005

^[6] M. Lepinksi et al., Collusion-free protocols, STOC 2005, pp. 543-552, 2005