ITWS-4250/6250 Database Applications and Systems

Lab 1

This lab will focus on the use of relational algebra to query a relational schema, as well as concepts related to functional dependencies.

You will have twenty to thirty minutes of time during the scheduled lecture period to complete it, but it's not due on Submitty until **4:30pm on Thursday September 10**.

You may work in teams of up to three (3).

1. Assume the existence of a database with the following relations:

```
Ingredient(\underline{name}, calories, cost, contains Nuts) \\ Recipe(\underline{name}, \underline{ingredientName}, amount) \\ Menu(recipeName, season) \\
```

which is used by a restaurant to manage its menu items. Assume that all amounts are in the same unit (e.g., grams) and that:

```
\pi_{ingredientName}Recipe \subseteq \pi_{name}Ingredient
\pi_{recipeName}Menu \subseteq \pi_{name}Recipe
```

Two facts that may be helpful to remember:

- the natural join (\bowtie with no condition) will pair tuples that agree on attributes with the *same name*, regardless of the semantic meaning of that name.
- recipes that contain nuts may also contain some ingredients without nuts

Write relational algebra expressions for the following:

(a) (3 points) List the names of all recipes on the menu for either the Summer or Fall seasons

(b) (3 points) List the names of the recipes on the Fall menu that contain nuts

(c)	(4 points)	List t	the name	es of the	e recipes	on the	Winter	menu	that	do not	contain	nuts
(d)	(3 points)	List t	the name	es of rec	cipes tha	t conta	in more	than 4	1 unit	s of sa	lt	
Assu	and the relation $ab \to c$	ation	R(a,b,c,	(d, e, f)	with the	e follow	ing FDs	: :				
	$c \to de$											
	$f \to ac$ $be \to f$											
(a)	(4 points)	Find	the key	(s) of R								

2.

(b) (1 point) Why isn't $\{f,b,e\}$ a key?

(c)	(2 points)	Compute $\{ac\}+$.	Show your work.	
(d)	(2 points)	Comput $\{b,d\}+$.	Show your work	
(e)	(3 points)	Would $ac \to d$ for	rm part of a minimal basis?	Why or why not?