/home/nicole/Jupyter/JG3/Data/0.5a0/M/6

```
;ls
In [4]:
        Correlation.G5.M.C*.txt
        Correlation.G5.M.JC*.txt
        Correlation.G5.M.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        MarNFCenter.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.C*.txt
        Regression.G5.M.JC*.txt
        Regression.G5.M.JC.txt
        all.ID
        alphaEstimatesJC
        alphaEstimatesLeggaraC
        alphaEstimatesLeggaraJC
        epsiEstimatesJC
        epsiEstimatesLeggaraC
        epsiEstimatesLeggaraJC
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]:
        ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
In [7]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]:
        ;awk '{print $1,$2}' Phe.txt > sim.phenotype
In [9]: | ;awk '{print $1,$3}' PheAll.txt > sim.bv
```

```
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]:
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [21]:
In [22]:
         ; join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ; join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
          200
               200 1200 GO.Genotype.ID
          200
               200 1200 G1.Genotype.ID
               200 1200 G2.Genotype.ID
          200
              200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
          8000 8000 48000 G5.Genotype.ID
```

```
;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
In [29]:
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
                                                                                  # wit
         M Mats = make MMats(df, A Mats, ped, center=true);
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no
         nothing
In [31]: | vRes
                = 0.262
                = 0.262
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2419.582417 seconds (23.03 G allocations: 723.542 GB, 7.60% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          3.9344
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
          -0.0327775
           0.0589898
          -0.0416216
            0.134936
            0.0289284
            0.142516
          -0.0572099
           0.0905098
            0.016595
           0.126871
           0.0363999
          -0.0494101
           0.0187501
           0.0559754
          -0.0166528
           0.0206073
          -0.0528322
            0.0274357
            0.00445261
            0.0251064
           0.00560335
           0.0135382
          -0.00424674
           -0.064075
          -0.00737744
In [34]: writedlm("alphaEstimatesC",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45916-element Array{Float64,1}:
           0.00894302
           0.282518
           0.116586
           0.109935
          -0.228626
          -0.666905
          -0.141198
          -0.0793656
           0.26768
           0.022218
           0.614078
          -0.00459963
           0.0199401
          -0.201653
          -0.0403917
          -0.153395
           0.177139
          -0.270526
          -0.0922261
          -0.151216
           0.378605
          -0.0966845
           0.0716378
           0.497098
           0.749825
In [36]: writedlm("epsiEstimatesC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
              j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.863
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.929
Out[39]: 0.863305037926921
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 0.07274270249469854
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.753
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.906
Out[41]: 0.7525064216087489
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 0.7299384866587477
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.827
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.888
Out[43]: 0.8268790728385467
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: -0.07891786308162058
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.541
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.526
Out[45]: 0.5412017490800003
```

```
In [46]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: -0.7213877923662544
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.938
Out[47]: 0.742702755218587
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: -0.3521624244104612
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.753
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.004
Out[49]: 0.7532444853800275
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: -0.01963527758011574
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.749
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.010
Out[51]: 0.7485551957655625
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 0.25309567944881733
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.967
Out[53]: 0.7301975803151247
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 0.5225752185052398
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.715
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.839
Out[55]: 0.7145832551485852
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 0.7539708113709653
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.1061332357814266
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          -0.352162
          -0.0196353
           0.253096
           0.522575
           0.753971
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          4.1077
          0.83911
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.11941028389732539
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.16465454857343112
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.10019834929854343
In [63]: b=Cov/VarGEBV
Out[63]: 0.8391098825683951
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.785
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.001
Out[64]: 0.7848753448310952
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 0.07932924764507655
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
                                                              0.795
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.966
Out[66]: 0.7949208481417114
```

```
In [67]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[67]: 0.37878306499805886
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation =
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.929
Out[68]: 0.7671898097632586
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 0.5419352384754387
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.765
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.805
Out[70]: 0.7649492985849993
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 0.7640858353658949
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.589
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.625
Out[72]: 0.5891463147441858
```

```
GEBV = aHat1[posAi]
In [73]:
         mean(GEBV)
Out[73]: 0.9242660583205813
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.839
Out[74]: 0.7145832551485852
In [75]: writedlm("Correlation.G5.M.C.txt",cor13)
In [76]: | writedlm("Regression.G5.M.C.txt",reg13)
In [77]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[77]: 0.7539708113709653
In [78]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.523
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.516
Out[78]: 0.5225772256488732
In [79]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[79]: -0.741918998520391
```

```
In [80]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.726
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.940
Out[80]: 0.7264835583442457
In [81]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[81]: -0.37090461644657713
In [82]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.741
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.005
Out[82]: 0.7411011172657753
In [83]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[83]: -0.034034521581540196
In [84]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.735
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.004
Out[84]: 0.7350642312457265
In [85]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[85]: 0.23999336775863586
```

```
In [86]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
    posAi = getPos(ped,IDs)
    cor17 = cor(a[posAi],aHat1[posAi])[1,1]
    reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1'
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
    JCAll = cor17

    SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.722
    SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.962

Out[86]: 0.7219271232856767

In [87]: GEBV = aHat1[posAi]
    mean(GEBV)

Out[87]: 0.5122754533817695

In [88]: numSSBayes

Out[88]: SSBR.NumSSBayes(54916,45916,9000,40000,39000,1000,150)
```