am2.md 2025-05-27

Calculus 2

Course description

Basic information

Field of study: Analytical Computer Science

Path:-

Organizational unit: Faculty of Mathematics and Computer Science

Education level: first-cycle

Form of study: full-time studies

Study profile: general academic

Mandatory status: compulsory

Education cycle: 2022/23

Course code: UJ.WMIIANS.120.02909.22

Language of instruction: Polish

Disciplines: Mathematics

ISCED classification: 0541 Mathematics

USOS code: WMI.TCS.AM2.OL

Course coordinator

Rafał Pierzchała

Course instructor

Rafał Pierzchała

Period Semester 2

Form of verification of learning outcomes

exam

Teaching format and hours

lecture: 30 tutorials: 30

Number of ECTS credits 6.0

Learning outcomes for the course

Code Outcomes in terms of Directional Verification learning methods outcomes

am2.md 2025-05-27

Code	Outcomes in terms of	Directional learning outcomes	Verification methods
Knowledge – The student knows and understands:			
W1	theorems covered in the lecture, listed in the "Course content" field	IAN_K1_W01, IAN_K1_W12	written exam, graded credit
Skills – The student can:			
U1	provide examples of applications of theorems learned during the lecture and solve typical problems related to these theorems	IAN_K1_U02	written exam, graded credit
Social competences – The student is ready to:			
K1	precisely formulate questions for the analysis of a given topic	IAN_K1_K01	graded credit

ECTS credits balance

Student activity form	Average number of hours* dedicated to completed activity types	
lecture	30	
tutorials	30	
preparation for tutorials	90	
exam preparation	28	
exam participation	2	
Total student workload	Number of hours 180	ECTS 6.0

^{*} hour (lesson) means 45 minutes

Course content

am2.md 2025-05-27

No.	Program content	Learning outcomes for the course
1.	Basic topological concepts. Limits and continuity of multivariate functions. Function sequences and series. Theorems on continuity, integrability, and differentiability of function sequence limits. Power series. Partial derivatives. Differentiability. Taylor's formula. Extrema of multivariate functions. Implicit function theorem. Local diffeomorphism theorem. Integration of multivariate functions. Fubini's theorem. Change of variables theorem.	W1, U1, K1

Extended information

Teaching methods:

conventional lecture, subject tutorials

Class type	Credit forms	Course credit conditions
lecture	written exam	Positive exam grade.
graded Oral or written test		Oral or written tests. Problems to solve independently. Activity during classes.

Prerequisites and additional requirements

Completed Calculus course. Attendance at tutorials is mandatory.

Literature

Required

- 1. F. Leja, Rachunek różniczkowy i całkowy, Państwowe Wydawnictwo Naukowe, Warszawa 1969.
- 2. W. Rudin, Podstawy analizy matematycznej, Państwowe Wydawnictwo Naukowe, Warszawa 1982.
- 3. G.M. Fichtenholz, Rachunek różniczkowy i całkowy (tomy I, II i III), PWN Warszawa 1995.
- 4. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, część I i II, Wydawnictwo Naukowe PWN, Warszawa 2006.