

Convolutional Neural Network

Systems Programming

Department of Computer Science and Engineering

Sogang University

Image Classification

Image classification

MNIST Classification

Use "04.MNIST.ipynb"

http://yann.lecun.com/exdb/mnist/

MNIST

The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.

Import modules and tuning parameters

```
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras, lavers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils.vis_utils import model_to_dot
from IPvthon, display import SVG
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import pandas as pd
import seaborn as sns
epochs = 10
learning_rate=0.01
batch_size = 128
num_classes = 10
```

```
[ ] def plot_images(x, y_true, y_pred=None, size=(5, 5)):
         assert len(x) == len(y_true) == size[0] * size[1]
         fig, axes = plt.subplots(size[0], size[1])
         fig.subplots_adjust(hspace=0.5, wspace=0.1)
         for i, ax in enumerate(axes.flat):
             if x[i].shape[-1] == 1:
               ax.imshow(x[i].reshape(x[i].shape[0], x[i].shape[1]))
             else:
               ax.imshow(x[i])
             if y_pred is None:
                 xlabel = "True: {0}".format(y_true[i].argmax())
                 xlabel = "True: {0}, Pred: {1}".format(y_true[i].argmax(),
                                                        y_pred[i].argmax())
             ax.set_xlabel(xlabel)
             ax.set_xticks([])
             ax.set_yticks([])
         plt.show()
```


Loading and reshaping the data

x_train shape: (60000, 28, 28, 1) 60000 train samples 10000 test samples

Creating the model

keras.layers.Conv2D(filter, kernel_size, strides, padding, activation,)

2D convolution layer.

Arguments: filters, kernel_size, strides, padding, activation and so on.

model.add(Conv2D(64, (3, 3), activation='relu'))

keras.layers.MaxPooling2D(pool_size, strides, padding,)

Max pooling operation for spatial data.

Arguments: pool_size, strides, padding and so on.

model.add(MaxPooling2D((2, 2))

keras.layers.Dropout(rate,)

Applies Dropout to the input.

keras.layers.Flatten(⋯⋯)

Flattens the input.

Compiling and training the model

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [=======] - 21s 346us/step - loss: 1.0488 - acc: 0.6583 - val_loss: 0.2787 - val_acc: 0.9176
Epoch 2/10
60000/60000 [======== ] - 16s 260us/step - loss: 0.3841 - acc: 0.8827 - val_loss: 0.1955 - val_acc: 0.9439
Epoch 3/10
60000/60000 [======== ] - 16s 260us/step - loss: 0.3117 - acc: 0.9061 - val_loss: 0.1772 - val_acc: 0.9465
Epoch 4/10
60000/60000 [------] - 16s 259us/step - loss: 0.2573 - acc: 0.9223 - val_loss: 0.1290 - val_acc: 0.9620
Epoch 5/10
60000/60000 [======== - 15s 256us/step - loss: 0.2223 - acc: 0.9344 - val_loss: 0.1118 - val_acc: 0.9664
Epoch 6/10
60000/60000 [======== ] - 15s 256us/step - loss: 0.1886 - acc: 0.9439 - val_loss: 0.0942 - val_acc: 0.9711
Epoch 7/10
60000/60000 [=======] - 15s 257us/step - loss: 0.1658 - acc: 0.9505 - val_loss: 0.0806 - val_acc: 0.9753
Epoch 8/10
Epoch 9/10
60000/60000 [======= ] - 15s 254us/step - loss: 0.1307 - acc: 0.9616 - val_loss: 0.0662 - val_acc: 0.9785
Epoch 10/10
```


Evaluating and prediction the model

```
[] score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

[] y_pred = model.predict(x_test)

[] plot_images(x=x_test[:25], y_true=y_test[:25], y_pred=y_pred[:25])

[] y_result = confusion_matrix(y_test.argmax(axis=1), y_pred.argmax(axis=1))
    sns.heatmap(pd.DataFrame(y_result, range(10), range(10)), annot=True, fmt='g')
```


CIFAR-10 Classification

Use "05.CIFAR10.ipynb"

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

Here are the classes in the dataset, as well as 10 random images from each:

The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

600

450

300

150

Result of basic code

Test Toss: 1.3167947158813476

Test accuracy: 0.5386

0	598	52	59	31	18	18	20	31	109	64
₽	33	705	10	11	4	9	15	24	37	152
2	69	22	330	86	152	126	85	89	20	21
co	22	19	53	392	40	258	107	71	5	33
4	42	10	90	69	424	109	99	126	12	19
2	13	7	57	186	40	550	41	86	11	9
9	6	15	48	128	110	57	584	26	2	24
7	19	14	33	73	39	107	28	646	7	34
80	160	91	19	31	10	21	14	15	548	91
6	41	185	9	20	7	16	28	48	37	609
	0	1	2	3	4	5	6	7	8	9

How to get higher accuracy

You can try the following:

- Stack more layers. (A key way to achieve higher accuracy!)
 - Core Layers: https://keras.io/layers/core/
 - Convolution Layers: https://keras.io/layers/convolutional/
 - Pooling Layers: https://keras.io/layers/pooling/
- Increase the epoch. (Do not run too many epochs.)
- Adjust the learning rate. (Between 0 to 1.)
- Use other optimizer. (<u>https://keras.io/optimizers/</u>)
- Change different activation function. (https://keras.io/activations/)

There are many other ways. Try to find it!

If you want to know more, go to: https://keras.io/examples/cifar10_cnn/