Teoria da Informação e Codificação Faculdade de Ciências do Porto, 2014/2015

Exercícios¹

- 1. Seja $S = \{s_1, s_2, s_3\}$ um espaço de amostragem com distribuição de probabilidades dada por $P(s_1) = 0.2$, $P(s_2) = 0.3$ e $P(s_3) = 0.5$. Seja $f: S \to \mathbb{R}$ a função definida por $f(s_1) = 5$, $f(s_2) = -2$ e $f(s_3) = 1$. Qual é valor esperado para f?
- 2. Seja $S = \{s_1, s_2\}$ um espaço de amostragem com distribuição de probabilidades dada por $P(s_1) = 0.7$ e $P(s_2) = 0.3$. Seja $f: S \to \mathbb{R}^2$ a função definida por $f(s_1) = (2,3)$ e $f(s_2) = (5,-4)$. Qual é valor esperado para f?
- 3. Suponha que um dado (cúbico) equilibrado é lançado. Qual é o valor esperado de pontos na face voltada para cima quando o dado pára? Este valor esperado pode ser alguma vez obtido?
- 4. Seja $S = \{s_1, s_2, s_3, s_4\}$ um espaço de amostragem com distribuição de probabilidades dada por $P(s_1) = 0.5$, $P(s_2) = 0.25$ e $P(s_3) = P(s_4) = 0.125$. Há 16 eventos possíveis sobre este espaço de amostragem. Determine a probabilidade e a surpresa de cada um deles.
- 5. Seja $S = \{s_1, \ldots, s_N\}$ um espaço de amostragem com N elementos. Determine a entropia de cada uma das seguintes distribuições de probabilidade sobre S:
 - (a) N = 3, $P(s_1) = 0.5$, $P(s_2) = P(s_3) = 0.25$;
 - (b) N = 4, $P(s_1) = 0.5$, $P(s_2) = 0.25$, $P(s_3) = P(s_4) = 0.125$;
 - (c) N = 5, $P(s_1) = 0.5$, $P(s_2) = P(s_3) = P(s_4) = P(s_5) = 0.125$;
 - (d) N = 5, $P(s_1) = P(s_2) = P(s_3) = 0.25$, $P(s_4) = P(s_5) = 0.125$;
 - (e) N = 5, $P(s_1) = P(s_5) = 0.0625$, $P(s_2) = 0.125$, $P(s_3) = 0.25$, $P(s_4) = 0.5$.
- 6. Sejam $S = \{s_1, s_2\}$ e $T = \{t_1, t_2, t_3\}$ e seja P a distribuição de probabilidade conjunta no espaço de amostragem $S \times T$ dada por $P(s_1, t_1) = 0.5$, $P(s_1, t_2) = 0.25$, $P(s_1, t_3) = 0.125$, $P(s_2, t_1) = 0.0625$, e $P(s_2, t_2) = P(s_2, t_3) = 0.03125$. Determine as distribuições marginais P_S e P_T e as entropias H(P), $H(P_S)$ e $H(P_T)$. Determine também as entropias condicionadas $H(P_{S|T})$ e $H(P_{T|S})$.
- 7. (a) Represente o diagrama da fonte de Markov com alfabeto $\{0,1\}$, conjunto de estados $\Sigma = \{\sigma_1, \sigma_2, \sigma_3\}$ e as seguintes transições: $\sigma_1 \to \sigma_2$, com etiqueta 1 e P(2|1) = 0.4; $\sigma_1 \to \sigma_3$, com etiqueta 0 e P(3|1) = 0.6; $\sigma_2 \to \sigma_1$, com etiqueta 0 e P(1|2) = 0.8; $\sigma_2 \to \sigma_3$, com etiqueta 1 e P(3|2) = 0.2; e $\sigma_3 \to \sigma_1$, com etiqueta 1 e P(1|3) = 1.
 - (b) Esta fonte pode gerar sequências de símbolos incluindo a subpalavra 000? Questão idêntica para a subpalavra 111.
 - (c) Indique a matriz de transição desta fonte e mostre que ela é regular. Determine a sua única distribuição estacionária.
 - (d) Calcule a entropia da fonte de Markov.
- 8. Considere os 1-grama e 2-grama sobre o alfabeto $\{A,B,C\}$ com as seguintes distribuições de probabilidades: P(A) = P(B) = P(C) = 1/3, P(AA) = P(BB) = P(CC) = 0, P(AB) = P(BC) = P(CA) = 1/5 e P(AC) = P(CB) = P(BA) = 2/15. Seja M a fonte de Markov (de ordem 1) que eles determinam. Represente o seu diagrama. Mostre que a sua matriz de transição é regular e determine a única distribuição estacionária. Calcule a entropia.

 $^{^1}$ Muitos destes exercícios são extraídos das fontes bibliográficas recomendadas.

- 9. Considere a fonte de Markov de ordem 3 sobre o alfabeto $\{0,1\}$ dada por P(010) = P(101) = P(1010) = P(0101) = 0.5. Represente o seu diagrama. Mostre que a sua matriz de transição não é regular mas tem uma única distribuição estacionária (de multiplicidade 2). Calcule a entropia.
- 10. Seja $A = (a_{ij})_{i,j=1,...,n}$ uma matriz não negativa. A matriz A determina um grafo dirigido D_A com conjunto de vértices $\{1,2,\ldots,n\}$ e uma aresta $i \to j$ se e só se $a_{i,j} \neq 0$. Note que existe um caminho em D_A de i a j de comprimento r se e só se a entrada (i,j) da potência A^r for não nula.

Um grafo dirigido D diz-se fortemente conexo se, para quaisquer vértices u e v, existir um caminho (dirigido) de u para v. Por um ciclo entendemos um caminho fechado simples, ou seja que não repete vértices intermédios. O grafo D diz-se aperi'odico se o máximo divisor comum dos comprimentos dos seus ciclos for 1.

- (a) Mostre que, se a matriz A é regular, então a potência A^k é positiva para todo o k suficientemente grande. [Sugestão: observe que, se A^k é positiva, então A^{k+1} também o é.]
- (b) Mostre que a matriz A é regular se e só se o grafo dirigido D_A for fortemente conexo e aperiódico. [Sugestão: prove que, se D_A é fortemente conexo. então D_A é aperiódico se e só se existe m tal que em todo o vértice há caminhos fechados de comprimentos m e m+1.]
- 11. Seja M uma fonte de Markov de primeira ordem. Mostre que a sua n-ésima extensão M^n satisfaz a fórmula $H(M^n) = nH(M)$.
- 12. Considere a distribuição de probabilidades no conjunto dos inteiros positivos dada por $P(n) = 2^{-n}$. Qual é o valor esperado da função $f(n) = (-1)^{n+1}$?
- 13. Seja u a função de densidade de probabilidade da distribuição uniforme no intervalo fechado limitado [a,b], ou seja $u(x)=\frac{\chi_{[a,b]}(x)}{b-a}$, onde χ_S representa a função caraterística do subconjunto S de \mathbb{R} . Calcule a média, a variância, e a entropia (em nits) de u.
- 14. Prove o seguinte análogo contínuo do Lema 1.1: se f e g são funções de densidade de probabilidade em \mathbb{R} , então $\int_{-\infty}^{\infty} f(x) \ln g(x) \, dx \le \int_{-\infty}^{\infty} f(x) \ln f(x) \, dx$ se ambos os integrais convergirem, tendo-se então a igualdade se e só se f = g exceto num conjunto de medida nula.
- 15. Seja f uma função de densidade de probabilidade com média μ e variância σ^2 e seja g densidade Gaussiana com a mesma média e a mesma variância. Mostre que $-\int_{-\infty}^{\infty} f(x) \ln g(x) \, dx = \ln(\sqrt{2\pi e} \, \sigma)$. Deduza que entre as densidades com uma dada variância, as Gaussianas têm entropia máxima.
- 16. Calcule a a entropia da função de densidade de probabilidade duma distribuição uniforme num intervalo fechado limitado. Verifique que o seu valor é inferior ao duma distribuição Gaussiana com a mesma variância.
- 17. Sejam P e Q distribuições de probabilidade no espaço de amostragem $S = \{s_1, \ldots, s_N\}$, e sej
m $p_i = P(s_i)$ e $q_i = Q(s_i)$ $(i = 1, \ldots, N)$. A divergência de Kullback-Leibler de P e Q é definida por

$$D(P,Q) = \sum_{i=1}^{N} p_i \log \frac{p_i}{q_i}.$$

- (a) Calcule D(P,Q) e D(Q,P) quando N=4, $p_i=1/4$ ($i=1,\ldots,4$), $q_1=1/2$, $q_2=1/4$ e $q_3=q_4=1/8$.
- (b) Mostre que $D(P,Q) \ge 0$, verificando-se a igualdade se e só se P = Q.
- (c) Mostre que, sendo $R(s_i) = r_i$ (i = 1, ..., N) uma terceira distribuição de probabilidade, tem-se D(P,R) = D(P,Q) + D(Q,R) se e só se $\sum_{i=1}^{N} (p_i q_i) \log \frac{q_i}{r_i}.$