https://doi.org/10.15690/vsp.v20i5.2310

Н.Н. Мурашкин^{1, 2, 3}, Р.А. Иванов^{1, 3}, Э.Т. Амбарчян⁴, Р.В. Епишев¹, А.И. Материкин¹, Л.А. Опрятин¹, А.А. Савелова¹

- 1 Национальный медицинский исследовательский центр здоровья детей, Москва, Российская Федерация
- ² Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет), Москва, Российская Федерация
- ³ Центральная государственная медицинская академия, Москва, Российская Федерация
- 4 НИИ педиатрии и охраны здоровья детей ЦКБ РАН. Москва, Российская Федерация

Обоснование применения крема пимекролимус 1% для проактивной терапии атопического дерматита у детей

Контактная информация:

Мурашкин Николай Николаевич, доктор медицинских наук, заведующий отделением дерматологии с группой лазерной хирургии Центра детской дерматологии, заведующий лабораторией патологии кожи у детей отдела научных исследований в педиатрии НМИЦ здоровья детей, профессор кафедры дерматовенерологии и косметологии ЦГМА, профессор кафедры педиатрии и детской ревматологии Первого МГМУ им. И.М. Сеченова **Адрес:** 119296, Москва, Ломоносовский пр-т, д. 2, стр. 1, **тел.:** +7 (495) 967-14-20, **e-mail:** m_nn2001@mail.ru

Статья поступила: 12.07.2021, принята к печати: 22.10.2021

Атопический дерматит (АтД) является многофакторным воспалительным заболеванием кожи с высокой распространенностью в детской популяции. Согласно актуальным клиническим руководствам и экспертным докладам, для предупреждения обострений АтД необходимо проведение длительного поддерживающего лечения. В статье обобщены результаты основных исследований крема пимекролимус 1%. Показаны его эффективность и благоприятный профиль безопасности при длительной проактивной терапии АтД у детей.

Ключевые слова: атопический дерматит, пимекролимус, проактивная терапия, поддерживающая терапия, лимфома, атрофия, топические ингибиторы кальциневрина, дети

Для цитирования: Мурашкин Н.Н., Иванов Р.А., Амбарчян Э.Т., Епишев Р.В., Материкин А.И., Опрятин Л.А., Савелова А.А. Обоснование применения крема пимекролимус 1% для проактивной терапии атопического дерматита у детей. Вопросы современной педиатрии. 2021;20(5):376–382. doi: 10.15690/vsp.v20i5.2310

ОПРЕДЕЛЕНИЕ И ЭПИДЕМИОЛОГИЯ

Атопический дерматит (АтД) — многофакторное воспалительное заболевание кожи, в основе которого лежат генетическая предрасположенность, наличие дисфункции эпидермального барьера, иммунная дисрегуляция, а также уменьшение разнообразия микробиоты кожи и кишечника [1]. Болезнь характеризуется выраженным зудом и зачастую является предвестником

развития одного или нескольких аллергических заболеваний в рамках «атопического марша» [2, 3], возникновение которых значимо ухудшает качество жизни не только пациентов, но и их близких [4].

АтД выявляют приблизительно у 10-20% детей во всем мире, при этом первые симптомы в 45% случаев появляются в возрасте до 6 мес, в 60% выявляются до одного года, еще в 30% болезнь возникает в возрас-

Nikolay N. Murashkin^{1, 2, 3}, Roman A. Ivanov^{1, 3}, Eduard T. Ambarchian⁴, Roman V. Epishev¹, Alexander I. Materikin¹, Leonid A. Opryatin¹, Alena A. Savelova¹

- ¹ National Medical Research Center of Children's Health, Moscow, Russian Federation
- ² Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- ³ Central State Medical Academy, Moscow, Russian Federation
- ⁴ Research Institute of Pediatrics and Children's Health in "Central Clinical Hospital of the Russian Academy of Sciences", Moscow, Russian Federation

Substantiation of Using Pimecrolimus 1% Cream in Proactive Therapy of Children with Atopic Dermatitis

Atopic dermatitis (AtD) is multifactorial inflammatory skin disease with high prevalence in pediatric population. It is crucial to implement long-term maintenance therapy to prevent AtD exacerbations according to current clinical guidelines and expert reports. The article summarizes the results of the major studies on using pimecrolimus 1% cream. Its efficacy and safety in long-term proactive therapy of children with AtD are presented.

Keywords: atopic dermatitis, pimecrolimus, proactive therapy, maintenance therapy, lymphoma, atrophy, topical calcineurin inhibitor, children

For citation: Murashkin Nikolay N., Ivanov Roman A., Ambarchian Eduard T., Epishev Roman V., Materikin Alexander I., Opryatin Leonid A., Savelova Alena A. Substantiation of Using Pimecrolimus 1% Cream in Proactive Therapy of Children with Atopic Dermatitis. Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(5):376–382. (In Russ). doi: 10.15690/vsp.v20i5.2310

те от 1 года до 5 лет, лишь в каждом 10-м случае — от 6 лет и старше [5]. Анализ исследований распространенности АтД у детей от 13 до 14 лет демонстрирует, что наибольшее снижение данного показателя наблюдается в развитых странах Северо-Западной Европы. таких как Великобритания, Ирландия, Швеция, Германия, а также в Новой Зеландии, тогда как наибольший рост распространенности отмечается в развивающихся странах, таких как Мексика, Чили, Кения и Алжир, а также в нескольких странах Юго-Восточной Азии [6]. При оценке распространенности АтД у детей в возрасте от 6 до 7 лет обращает на себя внимание увеличение данного показателя в Западной Европе, Канаде, Южной Америке, Австралии и на Дальнем Востоке [6]. Все это свидетельствует о том, что распространенность АтД в европейских странах неодинакова. Так, например, среди подростков в возрасте 13-14 лет она варьирует от 1,5% в Литве до 15-18% в Дании, Болгарии, Финляндии и Венгрии. При этом в странах Западной и Северной Европы показатель распространенности АтД выше, чем в странах Центральной и Восточной Европы [5], а в последних выше, чем в среднем по миру (7,3%) [7].

ПАТОФИЗИОЛОГИЯ АТОПИЧЕСКОГО ДЕРМАТИТА

Патофизиология АтД многогранна и включает в себя сложное взаимодействие таких факторов, как дисфункция эпидермального барьера и дисрегуляция иммунного ответа, происходящее на фоне наследственной предрасположенности и действия на организм неблагоприятных условий внешней среды [1, 8]. Одним из основных компонентов эпидермального барьера является роговой слой, формирующийся за счет процессов дифференцировки и ороговения кератиноцитов, в ходе которых синтезируется ряд важных структурных белков (в частности, филаггрин, лорикрин, инволюкрин), участвующих в реализации барьерной функции кожи [9, 10]. Соответственно изменения нуклеотидной последовательности генов структурных белков приводят к дефектам эпидермального барьера, ведущим к повышению уровня рН и трансэпидермальной потери воды с последующим развитием ксероза, а также к нарушению пропорций и количества свободных жирных кислот, церамидов и триглицеридов кожи [9, 11]. В частности, мутация гена филаггрина (FLG) признана одним из значимых факторов риска развития АтД и сопутствующих аллергических заболеваний (особенно пищевой аллергии и бронхиальной астмы) [11, 12], а также ассоциирована с ранним началом и более тяжелым течением АтД [13].

Мутации генов структурных белков, белков межклеточных соединений или протеаз, помимо дисфункции эпидермального барьера, влекут за собой активацию иммунного ответа из-за деградации межклеточных связей, увеличения активности протеаз и, как следствие, повышения проницаемости эпидермиса для антигенов внешней среды (микроорганизмы, аллергены) [10]. Нарушение регуляции иммунного ответа в острой фазе АтД обусловлено преимущественно дифференцировкой наивных Т-лимфоцитов в ${\rm Th}_{2}$ - и ${\rm Th}_{22}$ -клетки, вырабатывающие значимые для патогенеза АтД провоспалительные интерлейкины (IL-4, -5, -13, -22 и -31) [8], а также формированием IgE-опосредованной гиперчувствительности [14]. Необходимо отметить, что острое воспаление при АтД, ведущее к повышенной продукции IL-4 и -13, вызывает еще большее снижение синтеза структурных белков кожи (в особенности филаггрина, кератина, лорикрина, инволюкрина), эпидермальных липидов (длинноцепочечных свободных жирных кислот и церамидов) и антимикробных пептидов (кателецидина, β-дефензинов) [15, 16].

Немаловажное значение в патофизиологии АтД занимает порочный круг «зуд – расчесывание». Показано. что в основе зуда лежит высокая экспрессия IL-31 активированными Т-лимфоцитами и тимусного стромального лимфопоэтина (TSLP) кератиноцитами с активацией ваниллоидного рецептора 1-го типа (TRPV1) в результате связывания IL-31 со своим рецептором (IL-31RA) на сенсорных нейронах [17-19]. TSLP, в свою очередь, может напрямую стимулировать первичные сенсорные нейроны, вызывая устойчивое чувство зуда независимо от лимфоцитов и тучных клеток; более того, TSLP активирует врожденные лимфоидные клетки 2-го типа (ILC2), индуцируя выделение ключевых провоспалительных цитокинов (IL-4, -5 и -13) [19]. Явление гиперестезии кожи усиливает удлинение и увеличение количества ветвлений сенсорных нервных волокон в эпидермисе, что клинически проявляется феноменом «сенсибилизации нейронов» повышением чувствительности кожи больных АтД к минимальным раздражителям и возникновением на этом фоне устойчивого чувства зуда [20-22]. Образование свежих экскориаций в результате расчесывания зудящей кожной поверхности создает дополнительные дефекты эпидермального барьера. Подобные дефекты являются входными воротами для аллергенов и инфекционных агентов (микроорганизмов, т.ч. Staphylococcus aureus, и их токсинов), которые, в свою очередь, вызывают активацию иммунной системы, способствуют присоединению вторичной инфекции, избыточной колонизации кожи S. aureus и хронизации воспалительного процесса. В конечном итоге все эти процессы оказывают стимулирующее и усиливающее кожный зуд действие, замыкая тем самым порочный круг «зуд – расчесывание» [23].

Происходящие при АтД изменения ассоциированы с высоким риском развития других аллергических заболеваний, таких как пищевая аллергия (которая зачастую становится отправной точкой так называемого «атопического марша»), бронхиальная астма и аллергический ринит [24]. Так, приблизительно 66% детей, страдающих АтД тяжелого течения, уже к трем годам жизни имеют как минимум одно сопутствующее аллергическое заболевание [25]. В основе развития атопических заболеваний у больных АтД лежит процесс транскутанной сенсибилизации к антигенам внешней среды, в норме являющимся безвредными [26]. Этот процесс происходит в результате прохождения антигенов через дефекты эпидермального барьера и их взаимодействия с иммунными клетками кожи на фоне дисрегуляции иммунной системы с преобладанием Th₂-иммунного ответа [26, 27]. Формирование на этом фоне сенсибилизации может быть причиной реакций гиперчувствительности немедленного типа с развитием анафилаксии [27, 28]. Данное обстоятельство подчеркивает важность проведения адекватной комплексной терапии детей с АтД.

ОСНОВЫ ЛЕЧЕНИЯ АТОПИЧЕСКОГО ДЕРМАТИТА

Актуальные клинические руководства [29] и экспертные доклады [30] по ведению детей с АтД отмечают, что незамедлительная терапия обострения заболевания с применением топических глюкокортикостероидов (тГКС) и топических ингибиторов кальциневрина (ТИК) в чувствительных зонах с целью быстрейшего купирования воспалительного процесса должна быть дополнена увлажняющими средствами на всех этапах лечения, а также средствами для поддерживающего лечения. В последнем случае речь идет о длительном применении тГКС или ТИК в интермиттирующем режиме для достижения и сохранения стойкой, продолжительной ремиссии забо-

левания [29, 30]. Уже не вызывает сомнений, что лечение только лишь во время обострения, без соблюдения принципов базисной и проактивной терапии приводит к более частым, повторяющимся обострениям АтД с кратковременными промежутками ремиссии заболевания [31, 32]. Необходимость проведения поддерживающей терапии обусловлена еще и тем, что внешне нормальная кожа больных АтД, в т.ч. после достижения ремиссии с применением тГКС, характеризуется сохранением дисфункции эпидермального барьера, а также наличием в эпидермисе признаков минимального воспалительного процесса [31]. Об этом свидетельствуют повышение трансэпидермальной потери воды, снижение содержания длинноцепочечных жирных кислот [33], низкая степень лимфоцитарной инфильтрации кожи, высокая плотность высокоаффинного IgE-рецептора (FcERI) на поверхности клеток Лангерганса и сохраняющееся высвобождение провоспалительных II-1β, -25, -33 и TSLP кератиноцитов [34]. Проактивная терапия направлена прежде всего на подавление остаточного, зачастую невидимого внешне (субклинического) воспаления и предотвращение дальнейшего его развития, а также на восстановление и поддержание нормального состояния эпидермального барьера, что позволяет снизить риск обострения кожного патологического процесса [35]. Именно такой подход дает возможность добиться контроля над заболеванием, увеличить период ремиссии и снизить риск развития осложнений АтД в дальнейшем [36].

ПРЕИМУЩЕСТВА ТОПИЧЕСКИХ ИНГИБИТОРОВ КАЛЬЦИНЕВРИНА В ПОДДЕРЖИВАЮЩЕЙ ТЕРАПИИ АТОПИЧЕСКОГО ДЕРМАТИТА

Схемы осуществления поддерживающей терапии зависят от индивидуальных особенностей (выраженности воспаления, возраста, локализации высыпаний). Возможно продолжение (на несколько месяцев) нанесения тГКС в интермиттирующем режиме в местах прежних наиболее выраженных и остающихся после курса активной терапии высыпаний [37]. Кроме того, может быть использована схема длительного (на срок до 1 года) назначения ТИК, что является более предпочтительным, поскольку продолжительное использование тГКС ограничено местными (атрофия кожи, телеангиэктазии, стрии, гипер- и гипопигментации) и системными (подавление функции гипоталамуса, гипофиза и надпочечников, редко — развитие синдрома Кушинга) побочными действиями [38, 39]. Кроме того, тГКС необходимо с осторожностью использовать на чувствительных участках кожи, таких как лицо, веки, сгибы, складки и область половых органов, где абсорбция препарата через кожу, особенно у детей, намного выше [40]. В частности, бесконтрольное использование тГКС в периорбитальной области у детей в редких случаях приводило к развитию такого серьезного осложнения, как вторичная открытоугольная глаукома [41]. Важно учитывать, что у пациентов с АтД абсорбционная способность кожи увеличивается по сравнению со здоровыми приблизительно в два раза [42]. Поэтому применение тГКС у пациентов с АтД чаще приводит к их появлению в системном кровотоке и, как результат, к развитию системных побочных эффектов. ТИК, молекулы которых обладают большими размерами, отличаются более высокой по сравнению с тГКС липофильностью и высоким сродством связывания с белками кожи [42, 43]. Одним из ограничений длительного применения тГКС является кортикофобия (стероидофобия), вызванная в большинстве случаев плохой информированностью пациентов или их родителей, а также бесконтрольным использованием высокоактивных тГКС и их неадекватным тяжести болезни дозированием [44].

ТИК, в частности мазь такролимус (0,03% и 0,1%) и крем пимекролимус 1%, являются достаточно эффективными нестероидными средствами с благоприятным профилем безопасности для длительной проактивной терапии детей с АтД. Противовоспалительный и иммуносупрессивный механизм действия ТИК обусловлен ингибированием активности кальциневрина посредством связывания активного вещества (такролимуса или пимекролимуса) с белком рецептора макрофилина 12 (FKBP-12) [45]. Это приводит к подавлению кальциневрин-зависимой активации и пролиферации Т-клеток, снижению синтеза и высвобождения ими провоспалительных цитокинов IL-2, -3, -4, -5, фактора некроза опухоли α, интерферона γ, а также к уменьшению высвобождения из тучных клеток и нейтрофилов других медиаторов воспаления, участвующих в патогенезе АтД [45]. Элидел (пимекролимус), 1% крем для наружного применения, владелец регистрационного удостоверения Меда Фарма ГмбХ и Ко.КГ (Германия), является производным макролактама аскомицина. Препарат разрешен в Российской Федерации для использования с 3-месячного возраста. Пимекролимус по сравнению с тГКС и такролимусом не влияет на функцию, жизнеспособность и количество иммунных клеток (дендритных клеток и клеток Лангерганса) в здоровой коже [46, 47]. Особый интерес вызывает тот факт, что пимекролимус, в отличие от тГКС, не только не вызывает атрофии кожи (поскольку не оказывает влияния на фибробласты), но и, напротив, может восстановить тГКС-индуцированнную атрофию. Так, C. Queille-Roussel и соавт. продемонстрировали, что использование в течение 4 нед триамцинолона ацетонида или бетаметазона-17-валерата по сравнению с кремом пимекролимус 1% приводит к значимому уменьшению толщины кожи приблизительно на 15 и 10% соответственно [48]. A D.F. Murrell и соавт. с помощью динамического дерматоскопического исследования показали значимое улучшение состояния атрофированной глюкокортикостероидами кожи (восстановление истонченной кожи) в группе использования пимекролимуса (46.5% пациентов) в течение 6 нед — в отличие от группы плацебо (17,6% пациентов) [49].

По некоторым данным, пимекролимус способствует восстановлению эпидермального барьера, что особенно важно при лечении больных АтД [50, 51]. Данное действие пимекролимуса реализуется за счет восстановления липидного биполярного слоя кожи и положительного влияния на экспрессию генов структурных белков кожи филаггрина и лорикрина, тогда как тГКС, напротив, приводят к значительному снижению экспрессии инволюкрина и небольших пролин-богатых белков, связывающихся с церамидами [51, 52]. Кроме того, пимекролимус обладает выраженным противозудным действием, что опосредовано не только его иммуносупрессивным и противовоспалительным эффектами, но и влиянием на нервные волокна за счет связывания TRPV1 [52]. Вызванные этим деполяризация нервных волокон кожи и высвобождение основного медиатора зуда — субстанции Р [52], а также других нейропептидов [53] проявляются возникновением кратковременного ощущения жжения, тепла или зуда в месте нанесения пимекролимуса. Однако именно таким путем кратковременного стимулирования высвобождения нейропептидов с последующим блокированием их повторного накопления (истощение медиаторов зуда) и десенсибилизации нервных волокон кожи обеспечивается противозудное действие препарата [53, 54].

Метаанализ более 40 рандомизированных контролируемых исследований противозудного эффекта различных топических методов лечения АтД показал, что при использовании ТИК наблюдалось снижение интенсивности зуда на 36%, тГКС — на 34%, топических антигистаминных препаратов — на 27% по сравнению с плацебо [55, 56]. Крем пимекролимус 1% значимо уменьшал чувство зуда в течение 48 ч после начала лечения более чем у половины пациентов (56%) по сравнению с 34% пациентов, получавших плацебо [57].

Эффективность и безопасность пимекролимуса по сравнению с тГКС у младенцев с АтД легкого и среднетяжелого течения (n = 2418) продемонстрированы в Petite Study — крупнейшем и наиболее продолжительном многоцентровом открытом рандомизированном клиническом исследовании в параллельных группах [58]. В течение 3 нед применения крема пимекролимус 1% в области лица у 61% пациентов был достигнут полный или почти полный регресс высыпаний, а к концу 5-летнего исследования этот показатель увеличился до 96,6% (61,8 и 97,2% детей в группе тГКС соответственно). После 5 лет лечения минимальная активность заболевания была отмечена у 89% пациентов (в группе пимекролимуса) и 92% (в группе тГКС), что свидетельствует о прогрессивном повышении эффективности лечения АтД с возрастом [58]. Кроме того, было отмечено, что 36% детей, длительно получающих крем пимекролимус 1%, не нуждались в использовании тГКС, а медиана длительности использования тГКС составила 7 сут в сравнении со 178 сут в группе детей, получавших только тГКС [58].

Снижение потребности пациентов с АтД в применении тГКС является первостепенной задачей, что обусловлено риском развития побочных эффектов при их длительном использовании, распространенной кортикофобией у пациентов и/или их родителей, приводящей к снижению комплаентности. В этой связи стероидсберегающий эффект пимекролимуса является дополнительным основанием целесообразности его использования после реактивной терапии обострения АтД с помощью тГКС. Так, в исследовании U. Wahn и соавт. было показано, что при применении крема пимекролимус 1% меньше пациентов нуждались в дополнительном применении тГКС по сравнению с детьми, использовавшими эмоленты и тГКС (35 против 63% через 6 мес и 43 против 68% через 12 мес соответственно). Из числа больных, получивших тГКС хотя бы раз за 12 мес исследования, около 40% как в группе пимекролимуса, так и в контрольной группе получали их в течение 1-14 сут, остальные — более 14 сут [59]. В этом же исследовании доля пациентов, завершивших наблюдение без обострения, независимо от исходной тяжести течения заболевания была почти вдвое выше в группе пимекролимуса по сравнению с контролем (61 против 34% через 6 мес и 51 против 28% через 12 мес) [59].

В нескольких исследованиях на фоне длительной поддерживающей терапии с применением крема пимекролимус 1% было зафиксировано снижение не только тяжести АтД, но и риска развития транскутанной сенсибилизации к пищевым и бытовым аллергенам. В частности, отмечены более низкие концентрации IgE к аллергенам и более быстрое снижение индекса распространенности и тяжести экземы (Eczema Area and Severity Index; EASI) в группе применения пимекролимуса по сравнению с тГКС [60, 61]. Все эти наблюдения позволяют использовать пимекролимус в качестве средства первой линии терапии АтД легкого и среднетяжелого течения у детей, а также демонстрируют значимую роль пимекролимуса в предот-

вращении прогрессирования заболевания, уменьшении частоты обострений и увеличении периода ремиссии.

Возвращаясь к оценке результатов пятилетнего исследования Petite [58], можно утверждать, что пимекролимус имеет благоприятный профиль безопасности, поскольку не оказывает на организм системного иммуносупрессивного действия. Так. лечение кремом пимекролимус 1% детей с АтД продолжительностью до двух лет не приводило к увеличению частоты системных или кожных инфекций, а после вакцинации титр антител достигал нормальных значений [62-64]. Низкая частота возникновения инфекций кожи при применении пимекролимуса была подтверждена и в открытом 6-месячном исследовании, проведенном в повседневной практике с участием более 900 пациентов в возрасте от 3 мес и старше с АтД [65]. Одними из наиболее «устрашающих» побочных эффектов, указанных в инструкции по применению и распространенных в открытых источниках информации, являются случаи возникновения на фоне использования ТИК лимфомы и немеланомного рака кожи. Однако данное утверждение имеет лишь теоретический характер и связано с предположением о возможном системном действии такролимуса или пимекролимуса при нанесении их на кожу, даже несмотря на отсутствие доказательств их системной абсорбции при местном использовании [55]. Здесь полезно напомнить, что АтД тяжелого течения является значимым фактором риска развития лимфомы [66]. К тому же последние исследования с участием более десятков и сотен тысяч пациентов с АтД продемонстрировали благоприятный профиль безопасности ТИК и не выявили связи между использованием препаратов данной лекарственной группы и риском возникновения злокачественных новообразований и лимфопролиферативных заболеваний [55]. Например, в ходе 10-летнего наблюдательного исследования с анализом более 40 тыс человеко-лет у более чем 7 тыс детей, получавших такролимус в течение 6 нед или более, не было обнаружено случаев лимфомы или немеланомного рака кожи [67].

Немаловажное значение для соблюдения пациентом режима лечения имеет индивидуальное восприятие определенных лекарственных форм, наносимых на кожу. Для поддержания высокого уровня комплаентности наносимое лекарственное средство в идеале не должно ограничивать жизнедеятельность пациента, должно легко наноситься, быстро впитываться, не оставлять следов на коже и одежде, а также не должно вызывать неприятных ощущений. Указанным требованиям, особенно при нанесении на кожу в чувствительных зонах, лучше всего соответствуют лекарственные средства в форме крема. Это подтверждается данными слепого рандомизированного исследования предпочтений при использовании в течение 6 нед у детей (n = 141) со среднетяжелым АтД крема пимекролимус 1% и мази такролимус 0,03%. Оказалось, что пациенты и ухаживающие за ними лица отдают предпочтение крему пимекролимус 1%, объясняя это более удобным нанесением и отсутствием ощущения «липкой кожи» после впитывания препарата [68].

В завершение следует отметить, что оптимально эффективной терапевтической схемой лечения детей с АтД является стадийный алгоритм, состоящий из проведения короткого курса реактивной терапии тГКС (при необходимости — в сочетании с антибиотикотерапией), направленной на купирование обострения кожного процесса и уменьшение выраженности воспаления, с последующим незамедлительным началом поддерживающей терапии, заключающейся в длительном применении крема пимекролимус 1% в сочетании с эмолентами в каче-

стве смягчающей/базисной терапии для поддержания барьерной функции кожи [69]. Продолжительность поддерживающей терапии, как и частота/периодичность нанесения лекарственных препаратов, должна определяться лечащим врачом с учетом тяжести АтД, длительности ремиссии и количества эпизодов обострения [70].

ЗАКЛЮЧЕНИЕ

Крем пимекролимус 1% имеет высокую эффективность, удобную лекарственную форму, хорошо переносится пациентами, может наноситься на чувствительные участки кожи и использоваться для профилактики развития транскутанной сенсибилизации к пищевым и бытовым аллергенам. Препарат обладает стероидсберегающим эффектом и благоприятным профилем безопасности, что делает его предпочтительным средством для осуществления длительной поддерживающей терапии АтД у детей.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Статья подготовлена при финансовой поддержке компании Viatris.

FINANCING SOURCE

The article has been funded by Viatris.

РАСКРЫТИЕ ИНТЕРЕСОВ

H.H. Мурашкин — получение исследовательских грантов от фармацевтических компаний Janssen, Eli Lilly, Novartis. Получение гонораров за научное консультирование от компаний Galderma, Pierre Fabre, Bayer, LEO Pharma, Pfizer, AbbVie, Amryt Pharma, 000 «Зелдис-Фарма».

А.И. Материкин, Р.В. Епишев — получение гонораров за научное консультирование от компаний Eli Lilly, Novartis, AbbVie, Amryt Pharma.

Э.Т. Амбарчян — получение гонораров за научное консультирование от компаний Eli Lilly, Novartis, AbbVie, Janssen, Amryt Pharma.

Остальные авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.

DISCLOSURE OF INTEREST

Nikolay N. Murashkin — receiving research grants from pharmaceutical companies Janssen, Eli Lilly, Novartis. Scientific consultant of Galderma, Pierre Fabre, Bayer, LEO Pharma, Pfizer, AbbVie, Amryt Pharma, Zeldis Pharma.

Alexander I. Materikin, Roman V. Epishev — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma.

Eduard T. Ambarchyan — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Janssen, Amryt Pharma.

The other contributors confirmed the absence of a reportable conflict of interests.

ORCID

Н.Н. Мурашкин

https://orcid.org/0000-0003-2252-8570

Р.А. Иванов

https://orcid.org/0000-0002-0081-0981

А.А. Савелова

https://orcid.org/0000-0001-6884-5171

Л.А. Опрятин

https://orcid.org/0000-0002-0858-8780

Э.Т. Амбарчян

https://orcid.org/0000-0002-8232-8936

А.И. Материкин

https://orcid.org/0000-0002-6034-8231

Р.В. Епишев

https://orcid.org/0000-0002-4107-4642

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

- 1. Maliyar K, Sibbald C, Pope E, et al. Diagnosis and Management of Atopic Dermatitis. *Adv Skin Wound Care*. 2018;31(12):538–550. doi: 10.1097/01.asw.0000547414.38888.8d
- 2. Asher MI, Montefort S, Björkstén B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. *Lancet*. 2006;368(9537):733–743. doi: 10.1016/s0140-6736(06)69283-0
- 3. Busse WW. The atopic march: Fact or folklore? *Ann Allergy Asthma Immunol.* 2018;120(2):116–118. doi: 10.1016/j.anai.2017.10.029
- 4. Kemp AS. Cost of Illness of Atopic Dermatitis in Children. Pharmacoeconomics. 2003;21(2):105–113. doi: 10.2165/00019053-200321020-00003
- 5. Kowalska-Olędzka E, Czarnecka M, Baran A, et al. Epidemiology of atopic dermatitis in Europe. *J Drug Assess*. 2019;8(1):126–128. doi: 10.1080/21556660.2019.1619570
- 6. Williams H, Stewart A, von Mutius E, et al. Is eczema really on the increase worldwide? *J Allergy Clin Immunol*. 2008;121(4):947–954. e15. doi: 10.1016/j.jaci.2007.11.004
- 7. Mallol J, Crane J, von Mutius E, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) phase three: a global synthesis. *Allergol Immunopathol (Madr)*. 2013;41(2):73–85. doi: 10.1016/j.aller.2012.03.001
- 8. David Boothe W, Tarbox JA, Tarbox MB. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2017;1027:21–37. doi: $10.1007/978-3-319-64804-0_3$
- 9. Cork MJ, Danby SG, Vasilopoulos Y, et al. Epidermal barrier dysfunction in atopic dermatitis. *J Invest Dermatol.* 2009;129(8):1892–1908. doi: 10.1038/jid.2009.133
- 10. Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. *Int J Mol Sci.* 2021;22(8):4130. doi: 10.3390/ijms22084130

- 11. Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. *J Allergy Clin Immunol.* 2011;127(3):661–667. doi: 10.1016/j.jaci.2011.01.031
- 12. Marenholz I, Kerscher T, Bauerfeind A, et al. An interaction between filaggrin mutations and early food sensitization improves the prediction of childhood asthma. *J Allergy Clin Immunol*. 2009;123(4):911–916. doi: 10.1016/j.jaci.2009.01.051
- 13. Weidinger S, Illig T, Baurecht H, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. *J Allergy Clin Immunol*. 2006;118(1):214–219. doi: 10.1016/j.jaci.2006.05.004
- 14. Matsunaga MC, Yamauchi PS. IL-4 and IL-13 Inhibition in Atopic Dermatitis. *J Drugs Dermatol*. 2016;15(8):925–929.
- 15. Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. *J Allergy Clin Immunol*. 2007;120(1):150–155. doi: 10.1016/j.jaci.2007.04.031
- 16. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. *Allergy Asthma Proc.* 2019;40(2):84–92. doi: 10.2500/aap.2019.40.4202
- 17. Sonkoly E, Muller A, Lauerma AI, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. *J Allergy Clin Immunol*. 2006;117(2):411–417. doi: 10.1016/j.jaci.2005.10.033 18. Meng J, Moriyama M, Feld M, et al. New mechanism underlying IL-31-induced atopic dermatitis. *J Allergy Clin Immunol*. 2018;141(1):1677–1689.e8. doi: 10.1016/j.jaci.2017.12.1002
- 19. Turner MJ, Zhou B. A new itch to scratch for TSLP. Trends Immunol. 2014;35(2):49-50. doi: 10.1016/j.it.2013.12.001
- 20. Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. *J Eur Acad Dermatol Venereol*. 2020;34(2):239–250. doi: 10.1111/jdv.15973
- 21. Fujii M. Current Understanding of Pathophysiological Mechanisms of Atopic Dermatitis: Interactions among Skin Barrier

- Dysfunction, Immune Abnormalities and Pruritus. *Biol Pharm Bull*. 2020;43(1):12–19. doi: 10.1248/bpb.b19-00088
- 22. Murota H, Katayama I. Exacerbating factors of itch in atopic dermatitis. *Allergol Int.* 2017;66(1):8–13. doi: 10.1016/j.alit.2016.10.005
 23. Rinaldi G. The Itch-Scratch Cycle: A Review of the Mechanisms. *Dermatol Pract Concept.* 2019;9(2):90–97. doi: 10.5826/dpc.0902a03
 24. Dharmage SC, Lowe AJ, Matheson MC, et al. Atopic dermatitis and the atopic march revisited. *Allergy.* 2013;69(1):17–27. doi:
- 10.1111/all.12268
 25. Kapoor R, Menon C, Hoffstad O, et al. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. *J Am Acad Dermatol*. 2008;58(1):68–73. doi: 10.1016/j.jaad.2007.06.041
- 26. Lack G. Update on risk factors for food allergy. *J Allergy Clin Immunol*. 2012;129(5):1187–1197. doi: 10.1016/j.jaci.2012.02.036
- 27. Kelleher MM, Dunn-Galvin A, Gray C, et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. *J Allergy Clin Immunol*. 2016;137(4):1111–1116.e8. doi: 10.1016/j.jaci.2015.12.1312
- 28. Mullins RJ, Wainstein BK, Barnes EH, et al. Increases in anaphylaxis fatalities in Australia from 1997 to 2013. *Clin Exp Allergy*. 2016;46(8):1099–1110. doi: 10.1111/cea.12748
- 29. Wollenberg A, Christen-Zäch S, Taieb A, et al. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. *J Eur Acad Dermatol Venereol*. 2020;34(12):2717–2744. doi: 10.1111/jdv.16892
- 30. Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. *J Eur Acad Dermatol Venereol*. 2018;32(6):850–878. doi: 10.1111/jdv.14888
- 31. Wollenberg A, Ehmann LM. Long term treatment concepts and proactive therapy for atopic eczema. *Ann Dermatol.* 2012;24(3):253–260. doi: 10.5021/ad.2012.24.3.253
- 32. Wollenberg A, Frank R, Kroth J, Ruzicka T. Proactive therapy of atopic eczema--an evidence-based concept with a behavioral background. *J Dtsch Dermatol Ges.* 2009;7(2):117–121. doi: 10.1111/j.1610-0387.2008.06772.x
- 33. Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. *J Invest Dermatol*. 2002;119(1):166–173. doi: 10.1046/j.1523-1747.2002.01833.x
- 34. Wollenberg A, Räwer HC, Schauber J. Innate immunity in atopic dermatitis. *Clin Rev Allergy Immunol*. 2011;41(3):272–281. doi: 10.1007/s12016-010-8227-x
- 35. Arakawa H, Shimojo N, Katoh N, et al. Consensus statements on pediatric atopic dermatitis from dermatology and pediatrics practitioners in Japan: Goals of treatment and topical therapy. *Allergol Int.* 2020;69(1):84–90. doi: 10.1016/j.alit.2019.08.006
- 36. Wollenberg A, Bieber T. Proactive therapy of atopic dermatitis an emerging concept. *Allergy*. 2009;64(2):276-278. doi: 10.1111/j.1398-9995.2008.01803.x
- 37. Peserico A, Stadtler G, Sebastian M, et al. Reduction of relapses of atopic dermatitis with methylprednisolone aceponate cream twice weekly in addition to maintenance treatment with emollient: a multicentre, randomized, double-blind, controlled study. *Br J Dermatol.* 2008;158(4):801–807. doi: 10.1111/j.1365-2133.2008.08436.x 38. Wollenberg A, Reitamo S, Atzori F, et al. Proactive treatment of atopic dermatitis in adults with 0.1% tacrolimus ointment. *Allergy.* 2008;63(7):742–750.
- 39. Carr WW. Topical Calcineurin Inhibitors for Atopic Dermatitis: Review and Treatment Recommendations. *Paediatr Drugs*. 2013;15(4):303–310. doi: 10.1007/s40272-013-0013-9
- 40. Ring J, Alomar A, Bieber T, et al. Guidelines for treatment of atopic eczema (atopic dermatitis) part I. *J Eur Acad Dermatol Venereol*. 2012;26(8):1045–1060. doi: 10.1111/j.1468-3083.2012.04635.x 41. Garrott HM, Walland MJ. Glaucoma from topical corticosteroids to the eyelids. *Clin Exp Ophthalmol*. 2004;32(2):224–226. doi: 10.1111/j.1442-9071.2004.00787.x
- 42. Gschwind H-P, Waldmeier F, Zollinger M, et al. Pimecrolimus: Skin disposition after topical administration in minipigs in vivo and in human skin in vitro. *Eur J Pharm Sci.* 2008;33(1):9–19. doi: 10.1016/j.ejps.2007.09.004
- 43. Weiss HM, Fresneau M, Moenius T, et al. Binding of pimecrolimus and tacrolimus to skin and plasma proteins: implications for systemic exposure after topical application. *Drug Metab Dispos*. 2008;36(9):1812–1818. doi: 10.1124/dmd.108.021915
- 44. Aubert-Wastiaux H, Moret L, Le Rhun A, et al. Topical corticosteroid phobia in atopic dermatitis: a study of its nature, ori-

- gins and frequency. *Br J Dermatol.* 2011;165(4):808-814. doi: 10.1111/j.1365-2133.2011.10449.x
- 45. Gutfreund K, Bienias W, Szewczyk A, KaszubaA. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. *Postepy Dermatol Alergol.* 2013;30(3):165–169. doi: 10.5114/pdia.2013.35619
- 46. Hoetzenecker W, Meingassner JG, Ecker R, et al. Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. *J Invest Dermatol*. 2004;122(3):673–684. doi:10.1111/j.0022-202X.2004.22324.x 47. Sambyal K, Singh RV. Bioprocess and genetic engineering aspects of ascomycin production: a review. *J Genet Eng Biotechnol*. 2020;18(1):73. doi: 10.1186/s43141-020-00092-0
- 48. Queille-Roussel C, Paul C, Duteil L, et al. The new topical ascomycin derivative SDZ ASM 981 does not induce skin atrophy when applied to normal skin for 4 weeks: a randomized, double-blind controlled study. *Br J Dermatol.* 2001;144(3):507–513. doi: 10.1046/j.1365-2133.2001.04076.x
- 49. Murrell DF, Calvieri S, Ortonne JP, et al. A randomized controlled trial of pimecrolimus cream 1% in adolescents and adults with head and neck atopic dermatitis and intolerant of, or dependent on, topical corticosteroids. *Br J Dermatol*. 2007;157(5):954–959. doi: 10.1111/j.1365-2133.2007.08192.x
- 50. Grzanka A, Zebracka-Gala J, Rachowska R, et al. The effect of pimecrolimus on expression of genes associated with skin barrier dysfunction in atopic dermatitis skin lesions. *Exp Dermatol.* 2012;21:184–188. doi: 10.1111/j.1600-0625.2011.01417.x
- 51. Jensen JM, Pfeiffer S, Witt M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. *J Allergy Clin Immunol.* 2009;123(5):1124–1133. doi: 10.1016/j.jaci.2009.03.032
- 52. Luger T, De Raeve L, Gelmetti C, et al. Recommendations for pimecrolimus 1% cream in the treatment of mild-to-moderate atopic dermatitis: from medical needs to a new treatment algorithm. *Eur J Dermatol*. 2013;23(6):758–766. doi: 10.1684/ejd.2013.2169
- 53. Ständer S, Schürmeyer-Horst F, Luger TA, Weisshaar E. Treatment of pruritic diseases with topical calcineurin inhibitors. *Ther Clin Risk Manag.* 2006;2(2):213–218. doi: 10.2147/tcrm.2006.2.2.213
- 54. Ständer S, Ständer H, Seeliger S, et al. Topical pimecrolimus and tacrolimus transiently induce neuropeptide release and mast cell degranulation in murine skin. *Br J Dermatol.* 2007;156(5):1020–1026. doi: 10.1111/j.1365-2133.2007.07813.x
- 55. Luger T, Paller AS, Irvine AD, et al. Topical therapy of atopic dermatitis with a focus on pimecrolimus. *J Eur Acad Dermatol Venereol*. 2021;35(7):1505–1518. doi: 10.1111/jdv.17272
- 56. Sher LG, Chang J, Patel IB, et al. Relieving the pruritus of atopic dermatitis: a meta-analysis. *Acta Derm Venereol*. 2012;92(5):455–461. doi: 10.2340/00015555-1360
- 57. Kaufmann R, Bieber T, Helgesen AL, et al. Onset of pruritus relief with pimecrolimus cream 1% in adult patients with atopic dermatitis: a randomized trial. *Allergy.* 2006;61(3):375–381. doi: 10.1111/j.1398-9995.2005.00977.x
- 58. Sigurgeirsson B, Boznanski A, Todd G, et al. Safety and efficacy of pimecrolimus in atopic dermatitis: a 5-year randomized trial. Pediatrics. 2015;135(4):597-606. doi: 10.1542/peds.2014-1990 59. Wahn U, Bos JD, Goodfield M, et al. Efficacy and safety of pimecrolimus cream in the long-term management of atopic dermatitis in children. Pediatrics. 2002;110(1 Pt 1):e2. doi: 10.1542/peds.110.1.e2 60. Мурашкин Н.Н., Макарова С.Г., Григорьев С.Г. и др. Профилактика развития транскутанной сенсибилизации к белкам коровьего молока при атопическом дерматите у детей первого года жизни: когортное исследование // Вопросы современной педиатрии. — 2020. — Т. 19. — $\mathbb{N}^{\!\scriptscriptstyle 0}$ 6. — С. 538–544. [Murashkin NN, Makarova SG, Grigorev SG, et al. Prevention of Transcutaneous Sensitization to Cow Milk Proteins in Infants with Atopic Dermatitis: Cohort Study. Voprosy sovremennoi pediatrii — Current Pediatrics. 2020;19(6):538-544. (In Russ).] doi: 10.15690/vsp.v19i6.2152
- 61. Федоров Д.В., Мурашкин Н.Н., Макарова С.Г., Иванов Р.А. Стратегии выбора терапевтической тактики снижения риска развития транскутанной сенсибилизации у детей первого года жизни, страдающих атопическим дерматитом: когортное ретроспективно-проспективное исследование // Педиатрическая фармакология. 2021. Т. 18. \mathbb{N}^2 1. C. 8–16. [Fedorov DV, Murashkin NN, Makarova SG., Ivanov RA. Strategies

for Selecting Therapeutic Tactics for Reducing Transcutaneous Sensibilisation Risk in Infants with Atopic Dermatitis: Cohort Retrospective Prospective Study. *Pediatricheskaya farmakologiya* — *Pediatric pharmacology*. 2021;18(1):8–16. (In Russ).] doi: 10.15690/pf.v18i1.2219

62. Paul C, Cork M, Rossi AB, et al. Safety and tolerability of 1% pimecrolimus cream among infants: experience with 1133 patients treated for up to 2 years. *Pediatrics*. 2006;117(1):e118–e128. doi: 10.1542/peds.2005-1188

63. Papp KA, Breuer K, Meurer M, et al. Long-term treatment of atopic dermatitis with pimecrolimus cream 1% in infants does not interfere with the development of protective antibodies after vaccination. *J Am Acad Dermatol*. 2005;52(2):247–253. doi: 10.1016/j.jaad.2004.08.046

64. Papp KA, Werfel T, Fölster-Holst R, et al. Long-term control of atopic dermatitis with pimecrolimus cream 1% in infants and young children: a two-year study. *J Am Acad Dermatol*. 2005;52(2):240–246. doi: 10.1016/j.jaad.2004.09.016

65. Lubbe J, Friedlander SF, Cribier B, et al. Safety, efficacy, and dosage of 1% pimecrolimus cream for the treatment of atopic dermatitis in daily practice. *Am J Clin Dermatol*. 2006;7(2):121–131. doi: 10.2165/00128071-200607020-00005

66. Legendre L, Barnetche T, Mazereeuw-Hautier J, et al. Risk of lymphoma in patients with atopic dermatitis and the role of topical treat-

ment: a systematic review and meta-analysis. *J Am Acad Dermatol*. 2015;72(6):992–1002. doi: 10.1016/j.jaad.2015.02.1116

67. Paller AS, Fölster-Holst R, Chen SC, et al. No evidence of increased cancer incidence in children using topical tacrolimus for atopic dermatitis. *J Am Acad Dermatol.* 2020;83(2):375–381. doi: 10.1016/j.jaad.2020.03.075

68. Kempers S, Boguniewicz M, Carter E, et al. A randomized investigator-blinded study comparing pimecrolimus cream 1% with tacrolimus ointment 0.03% in the treatment of pediatric patients with moderate atopic dermatitis. *J Am Acad Dermatol.* 2004;51(4):515–525. doi: 10.1016/j.jaad.2004.01.051

69. Reda AM, Elgendi A, Ebraheem AI, et al. A practical algorithm for topical treatment of atopic dermatitis in the Middle East emphasizing the importance of sensitive skin areas. *J Dermatol Treat*. 2019;30(4):366–373. doi: 10.1080/09546634.2018.1524823

70. Мурашкин Н.Н., Епишев Р.В., Фёдоров Д.В. и др. Синдром чувствительной кожи при атопическом дерматите у детей: особенности патогенеза и терапевтической тактики // Вопросы современной педиатрии. — 2019. — Т. 18. — № 4. — С. 285—293. [Murashkin NN, Epishev RV, Fedorov DV, et al. Sensitive Skin Syndrome in Children with Atopic Dermatitis: Pathogenesis and Management Features. Voprosy sovremennoi pediatrii — Current Pediatrics. 2019;18(4):285–293. (In Russ).] doi: 10.15690/vsp.v18i4.2046

ЛИХОРАДКА У ДЕТЕЙ

Серия «Болезни детского возраста от A до Я»

Авторы: А.А. Баранов, В.А. Булгакова, Е.А. Вишнева и др. М.: ПедиатрЪ, 2021. — 56 с.

медицинской помощью. Авторами руководства обобщены данные отечественной и зарубежной научной и методической литературы, освещающие современный взгляд на этиологию, патогенез и классификацию лихорадки. Детально рассмотрены способы измерения температуры тела, характеристики жаропонижающих препаратов и показания к их применению у детей. Отдельный раздел посвящен особенностям течения лихорадки в детском возрасте, таким как дегидратация, фебрильные судороги и др., а также представлены алгоритмы диагностики и лечения этих состояний у детей. В руководстве содержится актуальная информация, основанная на принципах доказательной медицины, по наблюдению детей с лихорадкой, что позволит избежать полипрагмазии и дать правильные рекомендации родителям для преодоления «пирофобии».

© ООО Издательство «ПедиатрЪ», 2021 • www.spr-journal.ru