Chapitre 6: introduction à la diagonalisation

Dans tout le chapitre le symbole $\mathbb K$ désigne indifféremment l'ensemble $\mathbb R$ des nombres réels ou l'ensemble $\mathbb C$ des nombres complexes.

1 Introduction

Soit $f \in \mathcal{L}(\mathbb{K}^n)$. L'objectif est de trouver une base \mathcal{B} de \mathbb{K}^n telle que la matrice $\mathrm{mat}_{\mathcal{B}}(f)$ soit diagonale. Dans ce cas, on dit que f est diagonalisable.

De manière similaire, on dira qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si son endomorphisme canoniquement associé

$$\begin{array}{ccc} \mathbb{K}^n & \to & \mathbb{K}^n \\ x & \mapsto & Ax \end{array}$$

est diagonalisable. Cela signifie qu'il existe une matrice inversible P telle que $D := P^{-1}AP$ est diagonale. Diagonaliser A, c'est déterminer ces matrices P et D. La factorisation $A = PDP^{-1}$ permet de simplifier bon nombre de calculs et raisonnements.

2 Eléments propres d'un endomorphisme

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Définition 1 Soit $\lambda \in \mathbb{K}$. On dit que λ est une valeur propre de A s'il existe un vecteur colonne $x \in \mathbb{K}^n$, $x \neq 0$, tel que $Ax = \lambda x$. Un tel x est appelé vecteur propre associé à la valeur propre λ .

Proposition 1 L'application

$$\mathbb{K} \to \mathbb{K}$$
$$\lambda \mapsto P_A(\lambda) := \det(A - \lambda I_n)$$

est un polynôme de degré n. On l'appelle polynôme caractéristique de A.

Proposition 2 Soit $\lambda \in \mathbb{K}$. Alors λ est une valeur propre de A si et seulement si $P_A(\lambda) = 0$.

Définition 2 Soit λ une valeur propre de A. On appelle sous-espace propre de A associé à la valeur propre λ l'ensemble

$$E_A(\lambda) = \{x \in \mathbb{K}^n \ t.q. \ Ax = \lambda x\}.$$

Notons que, si f est l'endomorphisme canoniquement associé à A, on a $E_A(\lambda) = \ker(f - \lambda \operatorname{Id}_{\mathbb{K}^n})$, donc c'est un sous-espace vectoriel de \mathbb{K}^n . Les vecteurs propres associés à la valeur propre λ sont les éléments non nuls de $E_A(\lambda)$.

3 Diagonalisation

Proposition 3 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si et seulement si il existe une base $\mathcal{B} = (e_1, ..., e_n)$ telle que chaque e_i est un vecteur propre associé à une valeur propre λ_i de A. Dans ce cas, l'endomorphisme f canoniquement associé à A admet pour matrice

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} =: \operatorname{diag}(\lambda_1, ..., \lambda_n).$$

Remarque 1 1. Les λ_i ne sont pas nécessairement deux à deux distincts.

2. Si C est la base canonique de \mathbb{K}^n et P_{CB} est la matrice de passage de C à B, on a

$$P_{\mathcal{CB}}^{-1}AP_{\mathcal{CB}} = diag(\lambda_1, ..., \lambda_n).$$

Proposition 4 Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Corollaire 5 Si $A \in \mathcal{M}_n(\mathbb{K})$ admet n valeurs propres distinctes alors A est diagonalisable.

4 Caractérisation des matrices diagonalisables

Commençons par quelques compléments sur les polynômes.

Définition 3 Soit P un polynôme à coefficients dans \mathbb{K} et $\lambda \in \mathbb{K}$. Si $P(\lambda) = 0$ on dit que λ est une racine de P. Si $P(\lambda) = P'(\lambda) = \dots = P^{(k-1)}(\lambda) = 0$ et $P^{(k)}(\lambda) \neq 0$ on dit que λ est une racine d'ordre de multiplicité k de P.

Proposition 6 Si P est un polynôme de degré n, la somme des ordres de multiplicité des racines de P est toujours inférieur ou égal à n.

Définition 4 Un polynôme de degré n est dit scindé si la somme des ordres de multiplicité de ses racines est égal à n.

Pour dire si un polynôme est scindé il est important de préciser si ses racines sont recherchées sur \mathbb{R} ou \mathbb{C} . Evidemment, il est plus facile pour un polynôme d'être scindé sur \mathbb{C} que sur \mathbb{R} .

Théorème 7 (D'Alembert-Gauss) Tout polynôme à coefficients sur \mathbb{C} est scindé sur \mathbb{C} .

On peut maintenant énoncer une caractérisation classique des matrices diagonalisables.

Théorème 8 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si et seulement si son polynôme caractéristique est scindé et, pour chaque valeur propre λ_i , la dimension du sous-espace propre associé à λ_i est égale à l'ordre de multiplicité de λ_i en tant que racine du polynôme caractéristique.

On a donc tout intérêt à chercher à diagonaliser A sur \mathbb{C} , même si A est à coefficients réels. Un cas particulier important est le suivant.

Théorème 9 Si A est symétrique réelle, alors A est diagonalisable à l'aide de valeurs et vecteurs propres réels.

5 Un exemple d'application : puissance de matrices

Proposition 10 Si $A = PDP^{-1}$ avec $D = diag(\lambda_1, ..., \lambda_n)$ alors pour tout $k \in \mathbb{N}$ on a $A^k = PD^kP^{-1}$ avec $D^k = diag(\lambda_1^k, ..., \lambda_n^k)$.