交换机转发实验

学号: 2021K8009929010

姓名: 贾城昊

实验任务一 (hub)

一、 实验任务:

了解广播网络的原理,实现节点广播的 broadcast_packet 函数。验证广播网络能够正常运行,并通过 iperf 测试广播网络的效率,掌握其运行特点。最后构建环形拓扑网络,验证该拓扑下节点广播会产生数据包环路。

二、 实验流程

- 1. 根据广播网络的原理,实现节点广播的 broadcast_packet 函数。
- 2. 测试三个节点互相连通,验证广播网络能正常运行。
- 3. 验证广播网络效率,并对结果进行解释。
 - 1) 在 three_nodes_bw.py 进行 iperf 测量
 - 2) 两种场景:

H1: iperf client; H2, H3: servers (h1 同时向 h2 和 h3 测量)

H1: iperf server; H2, H3: clients (h2和h3同时向h1测量)

4. 构建环形拓扑网络,验证该拓扑下节点广播会产生数据包环路。

三、 实验结果与分析

(一) 实现节点广播

1. 广播节点设计思路

广播节点的逻辑较为简单,即每次收到网络包消息时,遍历与之相邻的每个网络端口, 只要不是发送该网络包的端口,就将网络包广播到这个端口。

而上述遍历过程可以通过现成的链表操作实现,具体代码如下:

2. 结果验证

三个节点各自向其它两个节点发送消息,验证其两两相互连通。

h1 节点的验证结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.2 -c 4
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.110 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.058 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.059 ms
64 butes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.069 ms
--- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.058/0.074/0.110/0.021 ms
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.3 -c 4
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=0.142 ms
64 bytes from 10.0.0.3; icmp_seq=2 ttl=64 time=0.046 ms
64 bytes from 10.0.0.3; icmp_seq=3 ttl=64 time=0.053 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.061 ms
--- 10.0.0.3 ping statistics
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.046/0.075/0.142/0.039 ms
```

可以看到, h1 和另外两个节点连通。

h2 节点的验证结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.1 -c 4
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.117 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.051 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.053 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.070 ms
--- 10.0.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2998ms
rtt min/avg/max/mdev = 0.051/0.072/0.117/0.028 ms
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.3 -c 4
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=0.146 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.051 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.055 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.063 ms
--- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.051/0.078/0.146/0.040 ms
```

可以看到, h2 和另外两个节点连通。

h3 节点的验证结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.1 -c 4
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.114 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.048 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.054 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.059 ms
 -- 10.0.0.1 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.048/0.068/0.114/0.028 ms
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# ping 10.0.0.2 -c 4
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.119 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.053 ms
64 bytes from 10.0.0.2; icmp_seq=3 ttl=64 time=0.053 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.063 ms
--- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 2998ms
rtt min/avg/max/mdev = 0.053/0.072/0.119/0.027 ms
```

可以看到, h3 和另外两个节点连通。

综上,三个节点两两连通,广播网络能够正常运行

(二) 广播网络传输效率

1. h1 向 h2 和 h3 同时传输

网络的拓扑结构如下所示:

h1 同时向 h2 和 h3 发送数据,测试传输速率(一共做了三次实验):

第一次实验结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# iperf -c 10.0.0.2 -t
Client connecting to 10.0.0.2, TCP port 5001
TCP window size: 85.3 KByte (default)
  13] local 10.0.0.1 port 39180 connected with 10.0.0.2 port 5001
  ID] Interval
                     Transfer
                                  Bandwidth
      0.0-30.3 sec 23.1 MBytes 6.40 Mbits/sec
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# iperf -c 10.0.0.3 -t
30
Client connecting to 10.0.0.3, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.1 port 50390 connected with 10.0.0.3 port 5001
[ ID] Interval
                     Transfer
                                  Bandwidth
      0.0-30.1 sec 11.9 MBytes 3.31 Mbits/sec
```

第二次实验结果如下:

第三次实验结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# iperf -c 10.0.0.2 -t
30
Client connecting to 10.0.0.2, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.1 port 39196 connected with 10.0.0.2 port 5001
ID] Interval
                     Transfer
                                  Bandwidth
[ 13] 0.0-30.2 sec 22.4 MBytes 6.22 Mbits/sec
root@Computer:~/workspace/Network/lab4/04-hub+switch/hub# iperf -c 10.0.0.3 -t
Client connecting to 10.0.0.3, TCP port 5001
TCP window size: 85.3 KByte (default)
 13] local 10.0.0.1 port 50406 connected with 10.0.0.3 port 5001
  ID] Interval
                     Transfer
                                  Bandwidth
  13] 0.0-30.1 sec 13.5 MBytes 3.76 Mbits/sec
```

从上面的几张图我们可以看出, h1 到 h2 实际传输速率和 h1 到 h3 实际传输速率都小于 h2/h3 到 b1 的带宽 (10.0Mb/s)。同时我们也能注意到两者速率加起来差不多正好达到 b1 到 h2/h3 的带宽 (10.0Mb/s)。

这是由于 h1 发给 h2 的数据在 b1, 会同时广播给 h2 和 h3, 这样给 h2 的数据

也会占据 h3 的传输带宽。同理, h1 发给 h3 的数据也会占据 b1 到 h2 的传输带宽。于是 b1 到 h2 和 b1 到 h3 两条传输通路都会传输 h1 发送给 h2 和 h3 的全部数据。因此 h1 到 h2 的传输速率与 h1 到 h3 的传输速率都会小于 b1 到 h2/h3 的带宽 10Mb/s。

理论上来说, b1 到 h2 和 b1 到 h3 两条通路的效率应都为 50%左右。但实际中 h1 到 h2 的速率与 hl 到 h3 的速率有些差异,本人认为这是受到了先后启动的影响,测试进程先启动的一方 TCP 窗口更大,速率会略大一些。但无论如何两者速率之和上限 只有 10Mb/s,传输速率远没有达到带宽,可以看出广播网络效率低下。

2. h2 和 h3 向 h1 同时传输

这次由 h2、h3 同时向 h1 发送数据,测试实际传输速率(一共三次实验)。

第一次实验结果如下:

第二次实验结果如下:

第三次实验结果如下:

我们可以看到,三次实验中 h2 到 h1 和 h3 到 h1 的实际传输速率都接近 10Mb/s,与 h2/h3 到 b1 的带宽一致。

这是因为, h2 发给 h1 的数据在 b1 处, 会同时广播给 h1 和 h3; 而 h3 发给 h1 的数据也会在 b1 处, 同时广播给 h1 和 h2。但是这时数据并不是竞争关系,而是

处于链路的两个不同方向。h2 给 h1 的数据从 b1 传到 h3,而 h3 给 h1 的数据从 h3 传到 b1,虽然他们都使用了 b1-h3 链路,但却是不同方向,互不影响,所以能达到链路最大带宽。而 b1 到 h1 链路带宽为 20Mb/s,刚好可以接收 2 个同时满带宽的 10Mb/s数据。因此在,路上的每一个链路带宽都被完全利用了,广播网络的效率达到最高。

但总的来说,广播网络的效率不稳定,受传输的节点数量与传输方向影响很大。不管怎么说,广播的方式会产生很多无用的数据传输,会引起带宽利用率降低、无用数据抢占资源等问题。

3. 数据包在环路中不断广播

对 three_nodes_bw.py 文件进行更改,将网络改为由 2 个主机节点、3 个 Hub 节点构成的环状网络。

其中,除了增加 b2 和 b3 节点的声明及相关定义外,最重要的是重新构建节点间的互联关系,以实现实验要求的环形拓扑。如下图所示,需要建立共计 5 条连接: b1 和 b2 和 b3 互相的连接、b1 和 h1 的连接、b2 和 h2 的连接。

```
class BroadcastTopo(Topo):
    def build(self):
        h1 = self.addHost('h1')
        h2 = self.addHost('b2')
        b1 = self.addHost('b2')
        b2 = self.addHost('b2')
        b3 = self.addHost('b3')

    self.addLink(h1, b1, bw=10)
    self.addLink(h2, b2, bw=10)
    self.addLink(b1, b2, bw=10)
    self.addLink(b1, b3, bw=10)
    self.addLink(b1, b3, bw=10)
```

由 h1 向 h2 发送 ping 消息,用 wireshark 抓包结果的部分截图如下。

```
260 0.026695733
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
261 0.026696201
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
262 0.026696530
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                  26:9c:5d:0e:52:13
                                                              ARP
263 0.026697254
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
264 0.026697648
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
265 0.026698263
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
266 0.026698701
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
267 0.026699069
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
268 0.026699525
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
269 0.026700081
                  26:9c:5d:0e:52:13
                                                              ARP
270 0.026700556
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
271 0.026700971
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                              ARP
272 0.026701336
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
273 0.026701727
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
274 0.026702167
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
275 0.026702516
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                              ARP
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
276 0.026702833
                  26:9c:5d:0e:52:13
                                                              ARP
277 0.026703358
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
278 0.026703789
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
279 0.026704241
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
280 0.026705045
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
281 0.026705514
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                  26:9c:5d:0e:52:13
282 0.026705976
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                  26:9c:5d:0e:52:13
                                                              ARP
283 0.026706411
284 0.026706807
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
285 0.026707181
                  26:9c:5d:0e:52:13
                                                              ARP
286 0.026707597
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
287 0.026708054
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
288 0.026708606
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
289 0.026709155
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
                                                              ARP
                                                                          42 10.0.0.2 is at 26:9c:5d:0e:52:13
290 0.026763022
                  26:9c:5d:0e:52:13
                                        4e:23:0c:13:b2:03
```

	1135	82.639417224	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is	at 4e:23:	0c:13:b2:03	
		82.639454228	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is	at 4e:23:	0c:13:b2:03	
		82.639484947	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
		82.639566195	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			_
		82.639604928	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
		82.639683463	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
		82.639710544	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
		82.639786620	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
		82.639819344	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1=64
		82.639896534	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
		82.639931168	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1=64
		82.640009814	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
		82.640157231	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	LLT=64
		82.640157544	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			++1-64
		82.640157878 82.640244565	10.0.0.2 4e:23:0c:13:b2:03	10.0.0.1 26:9c:5d:0e:52:13	ICMP ARP	98 Echo (ping) 42 10.0.0.1 is		id=0x312e, seq=1/256,	LL1-64
		82.640273700	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	++1-64
		82.640348351	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			111-04
		82.640384377	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1-64
		82.640470577	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			CCI-04
			10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1=64
		82.640573235	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			221-04
		82.640603862	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1=64
		82.640682363	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			CC1-04
		82.640717964	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	tt1=64
		82.640796370	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
			10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
		82.640914562	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
			10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
	1135	82.641025083	4e:23:0c:13:b2:03	26:9c:5d:0e:52:13	ARP	42 10.0.0.1 is			
	1949	163.597175904	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)	replv	id=0x312e, seq=1/256	ttl=64
		163.597252511		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
		163.597333746		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
		163.597411133		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
	1949	163.597489670	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
	1949	163.597569815	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
	1949	163.597644545	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
	1949	163.597726130	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	ttl=64
	1949	163.597803324	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)	reply	id=0x312e, seq=1/256,	ttl=64
	1949	163.597883290	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)	reply	id=0x312e, seq=1/256,	ttl=64
	1949	163.597958835	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)	reply	id=0x312e, seq=1/256	
		163.598038094		10.0.0.1	ICMP	98 Echo (ping)	reply	id=0x312e, seq=1/256,	
	1949	163.598116310	10.0.0.2	10.0.0.1	ICMP	98 Echo (ping)	reply	id=0x312e, seq=1/256	
		163.598194882		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598272846		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
		163.598352329		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598426293		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598504648		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598586332		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598664340		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598739977		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.598854203		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
		163.598903156		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256	
		163.598981869 163.599060640		10.0.0.1 10.0.0.1	ICMP ICMP	98 Echo (ping)		id=0x312e, seq=1/256, id=0x312e, seq=1/256,	
		163.599139391		10.0.0.1	ICMP	98 Echo (ping)			
		163.599139391		10.0.0.1	ICMP	98 Echo (ping) 98 Echo (ping)		id=0x312e, seq=1/256, id=0x312e, seq=1/256,	
		163.599296442		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256, id=0x312e, seq=1/256,	
		163.599374282		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.599461682		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
		163.599539301		10.0.0.1	ICMP	98 Echo (ping)		id=0x312e, seq=1/256,	
						- , , ,			

可以看到, h1 节点频繁收到来自 h2 的相同的信息,这是因为其在网络中不断循环广播,一直重复(即数据包在 b1, b2, b3 中进行循环,所以 h1 不断从 b1 中收到来自 b2 的相同的信息)。

造成这种数据包环路现象的原因是网络中 Hub 节点构成了一个环。由于广播网络的工作模式,当网络包从 h2 达到 b2 后,b2 将数据包广播到 b3、b1。而下一时刻,b3 又将数据包广播到 b1,b1 又将数据包广播到 b3。之后它们又将数据包传回 b2,然后在 hub 环中重复上面的过程,这使得数据包的传输在网络中不断循环转发。

四、实验总结

通过本次实验,我对广播网络有了更多的了解。在本次实验中,我更加深入的明白了广播 网络的工作方式,并直接体会到了广播网络的效率特点,知道了数据传输方向对其的影响,也 明白了广播的方式效率不高。而在最后一个实验中,我深刻认识到广播网络有着致命的弱点。 其要求拓扑结构不能有环路,否则会造成数据包在环路中不断被转发,占据资源,冬儿对网络产生极大破坏。

实验任务二 (switch)

一、 实验任务:

了解交换机的转发原理和转发表的构建方式,理解交换机如何学习和维护转发表。实现转发表的数据结构,支持转发表的查询、插入、老化操作,完成一个能自动学习转发表的交换机。使用 iperf 和给定的拓扑进行测试,对比交换机转发与之前集线器广播的性能差异。

二、 实验流程

1. 实现对数据结构 mac_port_map 的所有操作,以及数据包的转发和广播操作

```
iface_info_t *lookup_port(u8 mac[ETH_ALEN]);
void insert_mac_port(u8 mac[ETH_ALEN], iface_info_t *iface);
int sweep_aged_mac_port_entry();
void broadcast_packet(iface_info_t *iface, const char *packet, int len);
void handle_packet(iface_info_t *iface, char *packet, int len);
```

2. 使用 iperf 和给定的拓扑进行实验,对比交换机转发与集线器广播的性能

三、 实验结果与分析

(一) 实现交换机转发

1. 转发表的查询操作

转发表为了快速查询了转发表中端口对应的 256 (ETH_ALEN) 个链表,在查询时先对 MAC 地址 hash,根据 key 值找到所对应链表。然后遍历该链表,查看有无与输入 MAC

地址相同的表项。若有,查询成功,并返回该表项中端口结构 iface;若无,则查询失败,返回 NULL。

由于交换机转发过程中,会存在另一个线程进行超时表项的清理工作,因此查找操作需要加上锁来确保原子性。

具体的代码现实如下:

```
// lookup the mac address in mac_port table
iface_info_t *lookup_port(u8 mac[ETH_ALEN])
{
    // TODO: implement the lookup process here
    //fprintf(stdout, "TODO: implement the lookup process here.\n");
    int idx = (int)hash8((char*)mac, ETH_ALEN);
    mac_port_entry_t *entry;
    pthread_mutex_lock(&mac_port_map.lock);

    list_for_each_entry(entry, &(mac_port_map.hash_table[idx]), list){
        if (memcmp(entry->mac, mac, ETH_ALEN) == 0) {
            pthread_mutex_unlock(&mac_port_map.lock);
            return entry->iface;
        }
    }
    pthread_mutex_unlock(&mac_port_map.lock);
    return NULL;
}
```

2. 转发表的插入操作

该操作的目的是当转发表中没有源 mac 地址和对应的 iface 的映射表项时,将源 mac 地址与该 iface 插入到转发表当中。

首先根据源 mac 地址在转发表中查找表项, 如果找到, 那么更新表项、更新访问时

间;如果没有找到,那么将源地址与端口的映射关系写入转发表。

同样的,由于交换机转发过程中,会存在另一个线程进行超时表项的清理工作,因此插入操作同样需要加上锁来确保原子性。

具体的代码现实如下:

```
// insert the mac -> iface mapping into mac port table
void insert mac port(u8 mac[ETH ALEN], iface info t *iface)
    // TODO: implement the insertion process here
    int idx = (int)hash8((char*)mac, ETH ALEN);
    mac port entry t *entry;
    time t now = time(NULL);
    pthread mutex lock(&(mac port map.lock));
    list for each entry(entry, &(mac port map.hash table[idx]), list){
        if (memcmp(entry->mac, mac, ETH ALEN) == 0) {
            if(entry->iface!=iface)
                entry->iface = iface;
            entry->visited = now;
            pthread mutex unlock(&mac port map.lock);
            return ;
    mac port entry t *new = malloc(sizeof(mac port entry t));
    new->iface = iface;
    new->visited = now;
    for(int i=0;i<ETH ALEN;i++)</pre>
        new->mac[i] = mac[i];
    list add head(&new->list, &(mac port map.hash table[idx]));
    pthread mutex unlock(&(mac port map.lock));
```

3. 转发表的老化操作

该操作的作用是: 当转发表中的表项超过 30s 没有被查询,则删除冗旧的表项

执行老化操作时遍历整个转发表,查看当前时间与每个表项访问时间之差是否超过 30 秒,如果超过就删除掉该表项。

同样的,由于交换机转发过程中,会存在另一个线程进行超时表项的清理工作,因此插入操作同样需要加上锁来确保原子性。

具体的代码现实如下:

```
// sweeping mac port table, remove the entry which has not been visited in the
// last 30 seconds.
int sweep aged mac port entry()
   // TODO: implement the sweeping process here
   //fprintf(stdout, "TODO: implement the sweeping process here.\n");
   int n = 0;
   mac port entry t *entry, *q;
   time t now = time(NULL);
   pthread mutex lock(&mac port map.lock);
    for(int i=0;i<HASH 8BITS;i++){</pre>
        list for each entry safe(entry, q, &mac port map.hash table[i], list){
            if((int)(now - entry->visited) > MAC PORT TIMEOUT){
                list delete entry(&entry->list);
                free(entry);
                n++;
    pthread mutex unlock(&mac port map.lock);
    return n;
```

4. 广播操作

该操作的作用是:广播收到的包,代码复用实验任务一的广播代码即可。

5. 交换机的处理操作

交换机需要完成 3 种操作,查询操作、插入操作、老化操作。其中老化操作由单独线程处理,在初始化转发表时(init_mac_port_table 函数)就封装调用了上面的sweep_aged_mac_port_entry函数,这里不再赘述了。

而 handle_packet 函数中需要完成的,就是查询操作和插入操作。查询操作对目的 MAC 地址进行查询,先调用 lookup_port 函数,检查目的 mac 与端口的映射有无在映射表中。若存在,则根据这个表项进行发包,否则就广播该数据包。而插入操作对源 MAC 地址进行查询,如果查到相应条目,更新访问时间;如果没有查到,那么将该地址与端口的映射关系写入到转发表(这里只需要调用已经写好的 insert_mac_port 函数即可)。

具体的代码实现如下

```
void handle_packet(iface_info_t *iface, char *packet, int len)
{
    // TODO: implement the packet forwarding process here
    //fprintf(stdout, "TODO: implement the packet forwarding process here.\n");

    struct ether_header *eh = (struct ether_header *)packet;
    //log(DEBUG, "the dst mac address is " ETHER_STRING ".\n", ETHER_FMT(eh->ether)

    iface_info_t * dest_iface = lookup_port(eh->ether_dhost);
    if (dest_iface) {
        // log(DEBUG, "Send this packet to %s.", dest_iface->name);
        iface_send_packet(dest_iface, packet, len);
    } else {
        // log(DEBUG, "Broadcast this packet.");
        broadcast_packet(iface, packet, len);
}

// log(DEBUG, "Insert into mac_port_map: " ETHER_STRING " -> %s.", ETHER_FMT(einsert_mac_port(eh->ether_shost, iface);

free(packet);
}
```

(二)测量交换机转发性能

在测试性能前先注释掉代码中的 debug 打印信息,避免打印占据较多时间而对传输速率产生影响。

1. h1 向 h2 和 h3 同时传输

网络的拓扑结构与上个实验任务一致(b1 节点名称改为了 s1,在本质上没有区别),如下所示:

h1 同时向 h2 和 h3 发送数据,测试传输速率(一共做了三次实验):

第一次实验结果如下:

第二次实验结果如下:

第三次实验结果如下:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.3
-t 30
-t 30
Client connecting to 10.0.0.3, TCP port 5001
TCP window size: 85.3 KByte (default)

[ 13] local 10.0.0.1 port 50608 connected with 10.0.0.3 port 5001
[ ID] Interval Transfer Bandwidth
[ 13] 0.0-30.1 sec 34.5 MBytes 9.62 Mbits/sec
```

从上面几张图我们可以看到, h1 到 h2 平均传输速率为 9.63Mb/s, 而 h1 到 h3 平均传输速率为 9.62Mb/s, 都基本接近各自带宽。可以说各自链路都充分利用了各自带宽。

可以发现,在 h1 同时向 h2 和 h3 发送数据的情况下,交换机节点中转的效率明显高于广播节点。这是因为广播节点必须同时向两条带宽上限为 10Mbps 的数据通路分发数据包,严重影响了数据包传输的效率(具体分析见实验任务一);而在交换机的情况下,除了第一次通讯时由于转发表为空需要广播数据包以外,由于服务端会发送响应包,所以,从第二个数据包开始,交换机就直接只向对应的端口进行转发,使得连接 h2 和 h3 的两条通路可以相对独立地进行数据收发。这样带宽得到了充分的利用,此时,只有交换机转的软件处理的时间(如交换表查询等操作)可能影响传输的效率。

2. h2 和 h3 向 h1 同时传输

这次由 h2、h3 同时向 h1 发送数据,测试实际传输速率(一共三次实验)。

三次的实验结果如下:

h2 节点向 h1 节点的三次测量结果:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.2 port 40540 connected with 10.0.0.1 port 5001
 ID] Interval
                    Transfer
                                  Bandwidth
[ 13] 0.0-30.2 sec 34.4 MBytes 9.56 Mbits/sec
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.2 port 40544 connected with 10.0.0.1 port 5001
[ ID] Interval
                     Transfer
                                  Bandwidth
[ 13] 0.0-30.2 sec 34.4 MBytes 9.56 Mbits/sec
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.2 port 40548 connected with 10.0.0.1 port 5001
 ID] Interval
                     Transfer
                                  Bandwidth
 13]
     0.0-30.2 sec 34.4 MBytes 9.56 Mbits/sec
```

h3 节点向 h1 节点的三次测量结果:

```
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.3 port 45452 connected with 10.0.0.1 port 5001
 ID] Interval
                    Transfer
                                Bandwidth
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.3 port 45456 connected with 10.0.0.1 port 5001
[ ID] Interval
                    Transfer
                                Bandwidth
[ 13] 0.0-30.2 sec 34.5 MBytes 9.60 Mbits/sec
root@Computer:~/workspace/Network/lab4/04-hub+switch/switch# iperf -c 10.0.0.1
-t 30
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.3 KByte (default)
[ 13] local 10.0.0.3 port 45460 connected with 10.0.0.1 port 5001
 ID] Interval
                    Transfer
                                Bandwidth
      0.0-30.1 sec
 13]
                   34.4 MBytes
                                9.57 Mbits/sec
```

从上面几张图我们可以看到, h1 到 h2 平均传输速率为 9.56Mb/s, 而 h1 到 h3 平均传输速率为 9.58Mb/s,都基本接近各自带宽,可以说各自链路都充分利用了各自带宽。而具体原因与上一个测量实验(h1 向 h2 和 h3 同时传输)一致,这里不进行赘述了,这种情况下广播网络也能充分利用各自的带宽,具体原因可见实验任务一。

3. 交换机转发与集线器广播性能对比

对于集线器广播方式,从实验任务一中可以得知, h1 向 h2 和 h3 发送时,平均速率为 6.27Mb/s、3.58Mb/s,总体速率远小于其对应的带宽。这是因为广播方式会将数据包向所有端口发送,占用其他链路的带宽。交换机在第一次转发时,也是广播方式。但之后学习到 MAC 地址和端口的对应关系之后,就只向目的端口发送数据包,只占用该链路带宽。因此总体上利用率可以拉满,实际传输速率接近满带宽。

而对于 h2 和 h3 同时向 h1 发送数据时,集线器和交换机没有什么差异,都能完全利用带宽(具体分析可参见前文)。

但总的来说,交换机的性能较好,它在学习完毕后可以定向发送数据包,没有无用数据挤占带宽。同时它不受传输方向的影响,上下行效率一致。而集线器效率受传输方向影响很大,上下行不对等,坏的情况下效率很低。此外在节点更多后无用数据会更加挤占带宽,性能受到局限。

四、实验总结

通过本次实验,我对交换机及其工作原理有了更加深入的了解。首先,我学到了交换机的工作方式,即通过转发表来学习 MAC 地址与端口的对应关系,以此优化转发。其次,我知道了转发表的组织结构,明白了转发表的一些基本操作,并且本次实验中,我实现了转发表和交换机,并对比分析了集线器和交换机的性能差异,这让我对交换机的优势以及其巧妙的设计有了更准确的认识,这让我对交换机有了更深的理解。