

Recap: Histogram Equalization

Example. 64 × 64 input image.

- $M \times N = 64 \times 64 = 4096.$
- 3 bits/pixel.
- Gray levels range from 0 to L-1, where $L=2^3=8$.

r _k	n _k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Recap: Histogram Equalization

Example. 64×64 input image.

- $M \times N = 64 \times 64 = 4096.$
- 3 bits/pixel.
- gray levels range from 0 to L-1, where $L=2^3=8$.

	N	ormalized H	CDF	$s_r = T_r = (L-1)^* P_c(r_k)$
r_k	n _k	$p_r(r_k)$	$P_c(r_k)$	T(r)
$r_0 = 0$	790	0.19	0.19	1
$r_1 = 1$	1023	0.25	0.44	3
$r_2 = 2$	850	0.21	0.65	5
$r_3 = 3$	656	0.16	0.81	6
$r_4 = 4$	329	0.08	0.89	6
$r_5 = 5$	245	0.06	0.95	7
$r_6 = 6$	122	0.03	0.98	7
$r_7 = 7$	81	0.02	1.00	7

Recap: Histogram Equalization

- To calculate hist. of transformed image H_s (s);
 - for each value of s,
 - find values of r where s = T(r)
 - sum H_r (r) for those values
- Example. Take s = T(r) = 6
 - T(r) = 6 for r = 3,4
 - H_s (6) = H_r (3)+ H_r (4) = 656+329 = 985

r_k	n_k	$p_r(r_k)$	$P_c(r_k)$	T(r)
$r_0 = 0$	790	0.19	0.19	1
$r_1 = 1$	1023	0.25	0.44	3
$r_2 = 2$	850	0.21	0.65	5
$r_3 = 3$	656	0.16	0.81	6
$r_4 = 4$	329	0.08	0.89	6
$r_5 = 5$	245	0.06	0.95	7
$r_6 = 6$	122	0.03	0.98	7
$r_7 = 7$	81	0.02	1.00	7

	1 0 0 0 0
s_k	$H_{\rm s}(s)$
$s_0 = 0$	0
$s_1 = 1$	790
$s_2 = 2$	0
$s_3 = 3$	1023
$s_4 = 4$	0
$s_5 = 5$	850
$s_6 = 6$	985
$s_7 = 7$	448