CS 3133 Foundations of Computer Science A term 2022

Homework 1

Due date: September 12th, 2022

Finite Automata and Regular Languages.

Every homework will receive a grade between 0 to 100. The (maximal) grade of every question is identical and the sum of grades is the final grade. Typesetting your homework is highly recommended.

- 1. Let L be a **finite** set of binary strings. Prove that L is regular.
- 2. Let $s = \sigma_1 \dots \sigma_k$ be a binary string of length k > 0. We say that a binary string $w = w_1 \dots w_n$ contains s as a subsequence if there are k indices $1 \le i_1 < i_2, \dots < i_k \le n$ such that $w_{i_r} = s_r$ for every $1 \le r \le k$. For example, if s = 11 then 10001, 1010 and 110 contain s as a subsequence whereas 000 and 1000 do not. Prove that the language of all binary strings containing a fixed binary string s of length k as a subsequence is a regular language.
- 3. Exercise 1.6 from the book: Solve items b. c. d.
- 4. Exercise 1.20 from the book: Solve items b. c. d. and e.
- 5. Let Σ be an alphabet with n > 1 symbols. Give an NFA that recognizes the language L of all strings w for which there exists a letter $\sigma \in \Sigma$ such that $w = u\sigma$ with $u \in (\Sigma \setminus \sigma)^*$. In words, L is the set of all strings ending a letter σ that only occurs in the last position in the string. For example if $\Sigma = \{a, b, c\}$ then abababc and cba belong to L but ababa, abca do not belong to L.