CBCS SCHEME

USN 4VI

BCS402

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Microcontrollers

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module 1	M	L	C	
Q.1	a.	Explain the major design rules to implement the RISC design philosophy.	08	L2	CC)1
Q.1			04	L2	CO	01
	b.	Differentiate between RISC and CISC processors.	04			
		Explain ARM core data flow model, with neat diagram.	08	L2	C	01
	c.					-
		OR Status	08	L2	C	01
Q.2	a.	With the help of bit layout diagram, explain Current Program Status Register (CPSR) of ARM.	00			
	1.	With an example, explain the pipeline in ARM.	05	L2	C	01
	b.	With an example, explain the pipeline in 1 devi-				
	-	Discuss the following with diagrams:	07	L2	: \ C	CO1
	c.	(i) Von-Neuman architecture with cache				
		(ii) Harvard architecture with TCM	-			
	- gata	Module – 2		1 -		~~~
Q.3	a.	Explain the different data processing instructions in ARM.	08	L	2 (CO2
	1	Explain the different branch instructions of ARM.	04	L	2 (C O2
	b.	Explain the different orange instructions of Table				~ ~ ~
	c.	Explain the following ARM instructions:	08		2 (CO ₂
		(i) MOV r_1 , r_2 (ii) ADDS r_1 , r_2 , r_4 (iii) BIC r_3 , r_2 , r_5				
		(iv) CMP r_3 , r_4 (v) UMLAL r_1 , r_2 , r_3 , r_4				
		OR OR				
Q.4	a.	Explain the different load store instructions in ARM.	08	8 L	.2	CO2
	b.	With an example, explain full descending stack operations.	0	7 I	.2	CO2
	0.	With the example, explain full descending states of				
	c.	Develop an ALP to find the sum of first 10 integer numbers.	0	5 I	_3	CO2
	"	Bevelop unities to find the sum of most to inveges assessed				
	1	Module – 3				
Q.5	a.	List out basic C data types used in ARM. Develop a C program to obtain	$n \mid 0$	8	L2	CO
Q.S	۵.	checksums of a data packet containing 64 words and write the compile				
		output for the above function.				
		output for the above function.				
	b.	Explain the C looping structures in ARM.	()8	L2	CO
		▼		- 1		
	c.	Explain pointer aliasing in ARM.)4	L2	CO

			BCS402		
		. OR			
Q.6	a.	With an example, explain function calls in ARM.	08	L2	CO3
	b.	Explain register allocation in ARM.	07	L2	CO3
	c.	Write a brief note on portability issues when porting C code to ARM.	05	L2	CO3
		Module – 4			
Q.7	a.	Explain the ARM processor exceptions and modes, vector table and exception priorities.	10	L2	CO4
	b.	Explain the interrupts in ARM.	10	L2	CO4
		OR		,	
Q.8	a.	Explain the ARM firmware suite and red hat redboot.	10	L2	CO4
	b.	Explain the sandstone directory layout and sandstone code structure.	10	L2	CO4
		Module – 5	1.0		00.
Q.9	a.	Explain the basic architecture of a cache memory and basic operation of a cache controller.	10	L2	CO5
	_	AVD Comment and sixting cooks	10	L2	CO5
	b.	With a neat diagram, explain a 4 KB, four way set associative cache.	10	LZ	COS
	No. godin	OR			
Q.10	a.	Explain the write buffers and measuring cache efficiency.	08	L2	CO5
	b.	Explain the cache policy.	12	L2	CO5
		Explain the cache policy. *****			