Assignment (4) Applications of Linear and Integer Programming Models

The Timetabling Problem

Suppose there are four professors x_1 , x_2 , x_3 , x_4 and five subjects y_1 , y_2 , y_3 , y_4 , y_5 to be taught. The teaching requirement matrix p is given below.

- Construct the line graph L(G) and the adjacency matrix of L(G).
- Model the problem as a classic Minimum Vertex Coloring problem, and use JuMP to find a minimum proper 4-coloring of the vertices of L(G).

p	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅
x_1	2	0	1	1	0
x_2	0	1	0	1	0
<i>x</i> ₃	0	1	1	1	0
x_4	0	0	0	1	1

Teaching requirement matrix