Estatística para Ciência de Dados

Profa. Rebeca Valgueiro

Quem sou eu?

- Graduada em Engenharia Civil
- MBA em Gestão Empresarial
- Trabalho a mais de 4 anos no mercado de tecnologia atuando em projetos de:
 - Desenvolvimento web
 - Desenvolvimento desktop- windows
 - Data Science
 - IA e visão computacional

__

Estatística Descritiva

Imagine que você tem um conjunto de dados

- As alturas de todos os alunos da sua turma
- O número de vendas de um produto ao longo do último ano.

Estatística Descritiva

Conjunto de métodos que visam tornar os dados coletados mais fáceis de entender por meio de:

- → Organização;
- → Simplificação;
- → Descrição e
- → Apresentação de dados.

Usa tabelas, gráficos e medidas que resumem os dados brutos

- Medidas de Tendência Central
 - Média
 - Mediana
 - Moda
- Medidas de Dispersão
 - Amplitude
 - Variância
 - Desvio Padrão
 - Percentis e Quartis
- Visualizações de Dados
 - Histogramas
 - Gráficos de Barras
 - Gráficos de Pizza
 - Box Plots (Diagramas de Caixa)
 - Tabelas de Frequência

Medidas de Tendência Central

Servem para identificar um valor "típico" ou central em um conjunto de dados. São como um resumo rápido do nível geral dos seus dados.

Média Aritmética (ou Média)

É a medida de tendência central mais comum e intuitiva. Ela é calculada somando todos os valores do conjunto de dados e dividindo essa soma pelo número total de valores.

$$\overline{X} = \frac{(x_1 + x_2 + x_3 + \dots + x_n)}{n}$$

Média Aritmética (ou Média)

Vantagens:

- → É fácil de calcular e entender.
- → Utiliza todos os valores do conjunto de dados.
- → É amplamente utilizada em diversas análises estatísticas.

Desvantagens:

→ É muito sensível a valores extremos (outliers). Um único valor muito alto ou muito baixo pode distorcer significativamente a média, fazendo com que ela não represente bem o centro da maioria dos dados.

Média Aritmética (ou Média)

Exemplo

Considere as notas de um aluno em 5 provas: 7, 8, 6, 9, 5.

A média seria:

$$\frac{7+8+6+9+5}{5} = \frac{35}{5} = 7$$

Nesse caso, a nota média do aluno é 7.

__

Média Aritmética (ou Média)

Exemplo - Calcule a média salarial dos funcionários dessa empresa:

Funcionário 1	R\$ 2.500
Funcionário 2	R\$ 2.800
Funcionário 3	R\$ 3.000
Funcionário 4	R\$ 3.200
Funcionário 5	R\$ 3.500
SOMA	R\$ 15.000

MÉDIA =
$$\frac{15000}{5} = R\$3.000$$

Média Aritmética (ou Média)

Exemplo - Um novo CEO foi contratado, qual a nova média?

Funcionário 1	R\$ 2.500
Funcionário 2	R\$ 2.800
Funcionário 3	R\$ 3.000
Funcionário 4	R\$ 3.200
Funcionário 5	R\$ 3.500
Funcionário 6	R\$ 25.000
SOMA	R\$ 40.000

MÉDIA =

40000	~ /	D\$6 666	67
6	\approx	R\$6.666,	07

Mediana

A mediana é o valor central de um conjunto de dados que foi ordenado do menor para o maior (ou do maior para o menor).

Ela divide o conjunto de dados em duas metades iguais.

- 1 Ordene o seu conjunto de dados.
- 2 Se o número de valores (n) for ímpar, a mediana é o valor que está exatamente no meio da lista ordenada.
- 3 Se o número de valores (n) for par, a mediana é a média dos dois valores centrais da lista ordenada.

Mediana

Vantagens:

- → Não é afetada por valores extremos (outliers).
- → É útil para descrever a tendência central de dados assimétricos (onde a distribuição não é simétrica).

Desvantagens:

- → Não utiliza todos os valores do conjunto de dados no seu cálculo direto (apenas o(s) valor(es) central(is)).
- → Pode ser mais trabalhosa de calcular para conjuntos de dados muito grandes que precisam ser ordenados.

__

Mediana

Exemplo 1 - Considere as notas: 5, 6, 7, 8, 9.

MEDIANA = 7

Exemplo 2 - Considere as notas: 5, 6, 7, 8

MEDIANA =
$$\frac{6+7}{2}=6.5$$
.

Moda

A moda é o valor (ou valores) que ocorre com maior frequência em um conjunto de dados.

A moda nos diz qual o valor mais comum no nosso conjunto de dados.

Pode haver mais de uma moda (bimodal, trimodal, etc.) ou nenhuma moda (se todos os valores aparecerem a mesma quantidade de vezes).

Moda

Vantagens:

- → É fácil de identificar.
- → Pode ser usada para dados categóricos (não numéricos), como a cor de olhos mais comum em um grupo de pessoas.

Desvantagens:

- → Não utiliza todos os valores do conjunto de dados.
- Pode não ser uma boa representação da tendência central se a frequência mais alta for de um valor muito distante do resto dos dados.

Moda

Exemplo 1 (uma moda): Considere as idades: 20, 22, 25, 22, 28, 22, 30. A moda é 22, pois aparece 3 vezes, mais do que qualquer outra idade.

Exemplo 2 (duas modas - bimodal): Considere as alturas (em cm): 165, 170, 175, 170, 180, 165.

As modas são 165 e 170, pois ambas aparecem 2 vezes.

Exemplo 3 (sem moda - amodal): Considere os números: 1, 2, 3, 4, 5. Não há moda, pois todos os números aparecem apenas uma vez.

HORA DE PRATICAR!

Pontos Fortes:

- Eficiência para operações numéricas: NumPy é otimizado para cálculos numéricos em arrays multidimensionais.
- Foco em arrays: NumPy é a base para muitas outras bibliotecas de ciência de dados em Python.

Considerações:

 Menos flexível para dados mistos ou rotulados: NumPy arrays são geralmente homogêneos (todos os elementos do mesmo tipo). Se seus dados contiverem diferentes tipos (por exemplo, strings e números) ou se você precisar de rótulos para seus dados, o Pandas oferece estruturas mais adequadas.

Instalação pip install numpy

Importação import numpy as np

Característica v	NumPy v	Pandas v
Estrutura de Dados Principal	Array N-dimensional	Series , DataFrame
Tipos de Dados	Homogêneo (um único tipo por array)	Flexível, pode conter múltiplos tipos de dados por coluna (inteiros, floats, strings, booleanos, etc.)
Rótulos/Índices	Indexação numérica implícita (baseada na posição)	Rótulos para linhas e colunas
Tratamento de Dados Ausentes	Menos suporte nativo (usa NaN para floats)	Suporte robusto para dados ausentes (NaN)
Operações	Focado em operações matemáticas e numéricas eficientes em arrays	Ampla gama de operações para manipulação, limpeza, transformação, agrupamento e análise de dados tabulares e séries temporais
Analogia	Uma caixa de ferramentas com ferramentas matemáticas poderosas para trabalhar com números	Uma planilha avançada ou um banco de dados em memória, com funcionalidades para organizar, limpar e analisar dados

np.mean(a): Calcula a média aritmética dos elementos do array a.

```
import numpy as np
data = np.array([1, 2, 3, 4, 5])
media = np.mean(data) # Resultado: 3.0
```

np.median(a): Calcula a mediana dos elementos do array a.

```
data = np.array([1, 2, 3, 4, 10])
mediana = np.median(data) # Resultado: 3.0
```

Não há uma função direta para a moda na biblioteca base do NumPy: No entanto, para uma análise mais direta da moda, o Pandas (com sua função pd.Series(a).mode()) ou scipy.stats.mode() são geralmente mais convenientes.

lista_ocorrencias, contagem = np.unique(dados, return_counts = True) moda = lista_ocorrencias[contagem == np.max(contagem)] print(moda)

Biblioteca - Pandas

.mean(): Calcula a média aritmética dos valores na Series ou nas colunas do DataFrame.

```
data = pd.Series([1, 2, 3, 4, 5])
media = data.mean() # Resultado: 3.0
```

.median(): Calcula a mediana dos valores na Series ou nas colunas do DataFrame.

```
data = pd.Series([1, 2, 3, 4, 10])
mediana = data.median() # Resultado: 3.0
```

.mode(): Retorna a(s) moda(s) dos valores na Series ou nas colunas do DataFrame. Pode haver múltiplos valores de moda, então o resultado é uma Series.

```
data = pd.Series([1, 2, 2, 3, 3, 3])
moda = data.mode() # Resultado: Series([3], dtype: int64)
```

Exercício 01 - Medidas de Tendência Central

Uma pesquisa coletou o número de passageiros em 10 ônibus diferentes no Terminal Integrado de Passageiros (TIP) em um determinado horário de pico:

```
[45, 52, 38, 60, 48, 55, 40, 58, 50, 42]
```

- a) Calcule a média do número de passageiros.
- b) Calcule a mediana do número de passageiros.

```
import numpy as np

# Dados do número de passageiros
passageiros = np.array([45, 52, 38, 60, 48, 55, 40, 58, 50, 42])

# a) Calcular a média usando NumPy
media_passageiros = np.mean(passageiros)
print("A média do número de passageiros é: ", media_passageiros)

# b) Calcular a mediana usando NumPy
mediana_passageiros = np.median(passageiros)
print("A mediana do número de passageiros é: ",mediana_passageiros)
```

Exercício 02 - Medidas de Tendência Central

As temperaturas máximas (em graus Celsius) registradas em 7 dias consecutivos no Recife foram:

- a) Calcule a média
- b) Calcule a mediana
- c) Identifique a moda

[31.5, 32.0, 31.8, 32.5, 31.5, 33.0, 32.0]

```
import numpy as np
import pandas as pd

# Dados das temperaturas máximas
temperaturas_np = np.array([31.5, 32.0, 31.8, 32.5, 31.5, 33.0, 32.0])

# a) Calcular a média da temperatura usando NumPy
media_temperatura = np.mean(temperaturas_np)
print("A média da temperatura é: ", media_temperatura)

# b) Calcular a mediana da temperatura usando NumPy
mediana_temperatura = np.median(temperaturas_np)
print(f"A mediana da temperatura é: ",mediana_temperatura)

# c) Identificar a moda da temperatura usando Pandas
temperaturas_series = pd.Series(temperaturas_np)
moda_temperatura_pandas = temperaturas_series.mode()
print("A moda da temperatura (usando Pandas) é: ", moda_temperatura_pandas.tolist())
```

Exercício 03 - Medidas de Tendência Central

Um cientista de dados analisou o tempo de carregamento (em segundos) de um website acessado por 15 usuários em diferentes bairros do Grande Recife:

[2.1, 2.5, 1.8, 3.0, 2.2, 2.5, 2.8, 2.1, 2.3, 2.5, 3.5, 2.2, 2.7, 2.4, 2.5]

- a) Calcule a média
- b) Calcule a mediana
- c) Identifique a moda usando NumPy

Exercício 03 - Medidas de Tendência Central

```
import numpy as np

# Dados do tempo de carregamento
tempo_carregamento = np.array([2.1, 2.5, 1.8, 3.0, 2.2, 2.5, 2.8, 2.1, 2.3, 2.5, 3.5, 2.2, 2.7, 2.4, 2.5])

# a) Calcular a média do tempo de carregamento
media_tempo = np.mean(tempo_carregamento)
print("A média do tempo de carregamento
mediana_tempo = np.median(tempo_carregamento)
print(f"A mediana do tempo de carregamento)
print(f"A mediana do tempo de carregamento é: ", mediana_tempo)

# c) Identificar a moda do tempo de carregamento usando NumPy
valores_unicos, contagens = np.unique(tempo_carregamento, return_counts=True)
modas = valores_unicos[contagens == np.max(contagens)]
print("As modas do tempo de carregamento são: ", modas)
```

Exercício 04 - Medidas de Tendência Central

Uma pesquisa de opinião sobre a satisfação dos moradores de Olinda com os serviços públicos utilizou uma escala de 1 (muito insatisfeito) a 5 (muito satisfeito). As respostas de 20 participantes foram:

- a) Crie uma Series do Pandas com esses dados.
- b) Calcule a média da satisfação usando o método da Series.
- c) Calcule a mediana da satisfação usando o método da Series.
- d) Identifique a moda da satisfação usando o método da Series.

Exercício 04 - Medidas de Tendência Central

```
import pandas as pd
# Dados das respostas sobre satisfação
satisfacao = [3, 4, 4, 2, 5, 4, 3, 3, 4, 5, 2, 4, 3, 4, 4, 5, 3, 2, 4, 3]
# a) Crie uma Series do Pandas com esses dados.
series_satisfacao = pd.Series(satisfacao)
# b) Calcule a média da satisfação usando o método da Series.
media_satisfacao = series_satisfacao.mean()
print("A média da satisfação é: ", media satisfação)
# c) Calcule a mediana da satisfação usando o método da Series.
mediana satisfacao = series satisfacao.median()
print("A mediana da satisfação é:", mediana_satisfacao)
# d) Identifique a moda da satisfação usando o método da Series.
moda_satisfacao = series_satisfacao.mode()
print("A(s) moda(s) da satisfação é(são):",moda_satisfacao.tolist())
```

Medidas de Dispersão

Servem para nos mostrar o quão "espalhados" ou "variáveis" esses dados estão ao redor desse centro. Elas nos dão uma noção da homogeneidade ou heterogeneidade do conjunto de dados.

Medidas de Dispersão

```
X = {50, 50, 50, 50, 50} > média = 50
```

X = {10, 20, 50, 80, 90} > média = 50

Amplitude (ou Alcance)

A amplitude é a medida de dispersão mais simples. Ela é calculada como a diferença entre o maior e o menor valor do conjunto de dados.

 $Amplitude = Valor\ M\'{a}ximo - Valor\ M\'{i}nimo$

Amplitude (ou Alcance)

Vantagens:

→ É extremamente fácil de calcular e entender.

Desvantagens:

- → É muito sensível a outliers, pois apenas os valores extremos são considerados. Um único valor muito alto ou muito baixo pode inflacionar a amplitude sem refletir a variabilidade da maioria dos dados.
- → Não leva em consideração a distribuição dos valores entre o máximo e o mínimo.

Amplitude (ou Alcance)

Exemplo 1 - Considere os valores: 5, 6, 7, 8, 9.

A amplitude é 9-5-4

Exemplo 2 - Considere os valores: 5, 6, 7, 8, 9, 15.

A amplitude é 15-5=10

Variância

A variância mede o quão longe cada número no conjunto de dados está da média. Uma variância maior indica uma maior dispersão dos dados em torno da média.

É a média dos quadrados das diferenças entre cada valor e a média.

Variância Populacional (σ²)

$$\sigma^2 = rac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

Variância Amostral (s²)

$$s^2 = rac{\sum_{i=1}^n (x_i - ar{x})^2}{n-1}$$

Variância

Variância Populacional (σ²)

População: 4 estudantes. As idades deles são: 20, 22, 24, 26 anos.

$$\mu = rac{20 + 22 + 24 + 26}{4} = rac{92}{4} = 23 ext{ anos}$$

$$\sigma^2 = rac{(20-23)^2 + (22-23)^2 + (24-23)^2 + (26-23)^2}{4}$$

$$\sigma^2 = \frac{(-3)^2 + (-1)^2 + (1)^2 + (3)^2}{4}$$

$$\sigma^2 = rac{9+1+1+9}{4} = rac{20}{4} = 5 ext{ anos}^2$$

Variância Amostral (s²)

Amostra: 20, 22, 24 anos

$$ar{x} = rac{20 + 22 + 24}{3} = rac{66}{3} = 22 ext{ anos}$$

$$s_{ ext{incorreta}}^2 = rac{(20-22)^2 + (22-22)^2 + (24-22)^2}{3}$$

$$s_{ ext{incorreta}}^2 = rac{(-2)^2 + 0^2 + (2)^2}{3} = rac{4 + 0 + 4}{3} = rac{8}{3} pprox 2.67 ext{ anos}^2$$

$$s_{
m correta}^2 = rac{(-2)^2 + 0^2 + (2)^2}{2} = rac{4 + 0 + 4}{2} = rac{8}{2} = 4 ext{ anos}^2$$

_

Variância

Vantagens:

- → Considera todos os valores do conjunto de dados.
- → É fundamental para muitas técnicas estatísticas.

Desvantagens:

- → A unidade da medida é elevada ao quadrado, dificultando a interpretação em relação aos dados originais.
- → É sensível a outliers, pois as diferenças em relação à média são elevadas ao quadrado, ampliando o efeito de valores extremos.

Variância

Exemplo - Considere as notas: 6, 7, 8

$$s^2 = \frac{(6-7)^2 + (7-7)^2 + (8-7)^2}{3-1} = \frac{(-1)^2 + 0^2 + 1^2}{2} = \frac{1+0+1}{2} = 1$$

Desvio padrão

É a medida de dispersão mais utilizada e interpretável. Ele é simplesmente a raiz quadrada da variância.

Desvio padrão pequeno \rightarrow dados estão mais agrupados perto da média Desvio padrão grande \rightarrow maior dispersão.

Desvio Padrão Populacional (σ)

$$\sigma = \sqrt{\sigma^2} = \sqrt{rac{\sum_{i=1}^N (x_i - \mu)^2}{N}}$$

Desvio Padrão Amostral (s)

$$\sigma = \sqrt{\sigma^2} = \sqrt{rac{\sum_{i=1}^N (x_i - \mu)^2}{N}}$$

Desvio Padrão

Em seguida, calculamos o desvio de cada ponto da média: subtraindo a média de cada ponto:

2-6 = -4, 3-6 = -3, 7-6 = 1, 8-6 = 2, 10-6 = 4

Finalmente, calculamos o desvio padrão tomando [um tipo de] média desses desvios. Isso nos dá uma ideia de quanto os dados desviam da média, e assim, quanta variação há no conjunto de dados.

Desvio Padrão

Vantagens:

- → Está na mesma unidade dos dados originais, facilitando a interpretação.
- → Considera todos os valores do conjunto de dados.
- → É amplamente utilizado em análises estatísticas.

Desvantagens:

→ Também é sensível a outliers (embora menos que a variância, já que a raiz quadrada "suaviza" o efeito dos valores elevados ao quadrado).

_

Intervalo Interquartil (IIQ)

Medida de dispersão que foca na variabilidade da metade central dos seus dados. Diferentemente da amplitude, que é muito sensível a outliers, o IIQ nos dá uma visão mais robusta da dispersão, pois ignora os 25% inferiores e os 25% superiores dos dados.

$$IIQ = Q3 - Q1$$

_

Intervalo Interquartil (IIQ)

Quartis:

- Primeiro Quartil (Q1): É o valor abaixo do qual se encontram 25% dos dados quando estes estão ordenados do menor para o maior.
- Segundo Quartil (Q2): É o valor abaixo do qual se encontra 50% dos dados. O
 Q2 é, na verdade, a mediana do conjunto de dados.
- Terceiro Quartil (Q3): É o valor abaixo do qual se encontra 75% dos dados.

Intervalo Interquartil (IIQ)

Vantagens:

- Não é afetado por valores extremos (outliers). Como ele se concentra nos 50% centrais dos dados, valores muito altos ou muito baixos não influenciam seu cálculo.
- → IIQ é uma boa medida de dispersão para distribuições que não são simétricas (distribuições enviesadas), pois ele descreve a dispersão da parte central dos dados

Desvantagens:

- → Por focar na metade central, o IIQ não leva em consideração a dispersão dos 25% inferiores e dos 25% superiores dos dados. Portanto, ele não fornece uma imagem completa da variabilidade total do conjunto de dados.
- Para dados que seguem uma distribuição normal e não possuem outliers significativos, o desvio padrão geralmente é uma medida de dispersão mais eficiente, pois utiliza todos os valores do conjunto de dados.

Intervalo Interquartil (IIQ)

Exemplo

Vamos considerar o seguinte conjunto de dados de notas (ordenadas):

4, 5, 6, 7, 7, 8, 9, 10, 15

- \rightarrow Q1 (25%): O valor na posição (9+1)*1/4 = 2.5 \rightarrow média entre os valores nas posições 2 e 3 \rightarrow 5.5
- \rightarrow Q2 (Mediana, 50%): O valor na posição (9+1)*2/4 = 5 \rightarrow 7
- → Q3 (75%): O valor na posição $(9+1)*3/4 = 7.5 \rightarrow \text{média entre os valores nas posições 7 e 8 <math>\rightarrow$ 9.5

HORA DE PRATICAR!

Biblioteca - Numpy

np.std(a): Calcula o desvio padrão dos elementos do array a. Por padrão, calcula o desvio padrão populacional. Para calcular o desvio padrão da amostra (com a correção de Bessel), use o argumento ddof=1.

```
data = np.array([1, 2, 3, 4, 5])
desvio_padrao_populacional = np.std(data) # Resultado: 1.414...
desvio_padrao_amostral = np.std(data, ddof=1) # Resultado: 1.581...
```

np.var(a): Calcula a variância dos elementos do array a. Similar ao np.std(), por padrão calcula a variância populacional. Use ddof=1 para a variância da amostra.

```
data = np.array([1, 2, 3, 4, 5])
variancia_populacional = np.var(data) # Resultado: 2.0
variancia_amostral = np.var(data, ddof=1) # Resultado: 2.5
```

np.ptp(a): Calcula a amplitude (range) dos elementos do array a (valor máximo - valor mínimo).

```
data = np.array([1, 2, 3, 4, 10])
amplitude = np.ptp(data) # Resultado: 9
```

Biblioteca - Numpy

np.percentile(a, q): Calcula o percentil especificado q dos elementos do array a. q pode ser um único valor (entre 0 e 100).

- Primeiro Quartil (Q1): np.percentile(a, 25)
- Segundo Quartil (Q2) Mediana: np.percentile(a, 50) (equivalente a np.median(a))
- Terceiro Quartil (Q3): np.percentile(a, 75)

```
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
q1 = np.percentile(data, 25) # Resultado: 3.25
q3 = np.percentile(data, 75) # Resultado: 7.75
```

Intervalo Interquartil (IIQ): Pode ser calculado combinando np.percentile():

```
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)
iiq = q3 - q1 # Resultado: 4.5
```

Biblioteca - Pandas

.std(): Calcula o desvio padrão dos valores na Series ou nas colunas do DataFrame. Por padrão, calcula o desvio padrão da amostra (usa ddof=1). Para calcular o desvio padrão populacional, use o argumento ddof=0.

```
data = pd.Series([1, 2, 3, 4, 5])
desvio_padrao_amostral = data.std() # Resultado: 1.5811388300841898
desvio_padrao_populacional = data.std(ddof=0) # Resultado: 1.4142135623730951
```

.var(): Calcula a variância dos valores na Series ou nas colunas do DataFrame. Similar ao .std(), por padrão calcula a variância da amostra (ddof=1). Use ddof=0 para a variância populacional.

```
data = pd.Series([1, 2, 3, 4, 5])
variancia_amostral = data.var() # Resultado: 2.5
variancia_populacional = data.var(ddof=0) # Resultado: 2.0
```

Biblioteca - Pandas

```
.max(): Retorna o valor máximo. (para cálculo de amplitude)
.min(): Retorna o valor mínimo. para cálculo de amplitude)
Amplitude: calculado pela subtração do max pelo mínimo
.quantile(q=0.5): Calcula o quantil no valor especificado de q (entre 0 e 1). O valor padrão de q é 0.5 (a mediana).
Primeiro Quartil (Q1): .quantile(0.25)
Terceiro Quartil (Q3): .quantile(0.75)

data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    q1 = data.quantile(0.25) # Resultado: 3.25
    q3 = data.quantile(0.75) # Resultado: 7.75
```

Intervalo Interquartil (IIQ): Pode ser calculado combinando .quantile():

Biblioteca - Pandas X NumPy

Medida ~	Pandas ~	NumPy
Média	.mean()	np.mean()
Mediana	.median()	np.median()
Moda	.mode() (retorna uma Series)	
Desvio Padrão	.std(ddof=1) (amostral, padrão)	np.std(a, ddof=0) (populacional, padrão)
	.std(ddof=0) (populacional)	np.std(a, ddof=1) (amostral)
Variância	.var(ddof=1) (amostral, padrão)	np.var(a, ddof=0) (populacional, padrão)
	.var(ddof=0) (populacional)	np.var(a, ddof=1) (amostral)
Amplitude (Range)	.max()min()	np.ptp()
Percentis/Quartis	.quantile(q) (q entre 0 e 1)	np.percentile(a, q) (q entre 0 e 100)
Intervalo Interquartil (IIQ)	.quantile(0.75)quantile(0.25)	np.percentile(a, 75) - np.percentile(a, 25)

Exercício 01 - Medidas de Dispersão

Um analista de dados registrou o número de acidentes de trânsito por dia em um cruzamento movimentado da Avenida Agamenon Magalhães durante 10 dias:

- a) Calcule a amplitude do número de acidentes
- b) Calcule o desvio padrão amostral do número de acidentes

```
import numpy as np

# Dados do número de acidentes
acidentes = np.array([2, 0, 1, 3, 2, 2, 0, 1, 2, 4])

# a) Calcule a amplitude do número de acidentes usando NumPy.
amplitude_numpy = np.ptp(acidentes)
print("A amplitude do número de acidentes é: ", amplitude_numpy)

# b) Calcule o desvio padrão amostral do número de acidentes usando Pandas.
desvio_padrao = np.std(acidentes)
print("Desvio padrão do número de acidentes é: ", desvio_padrao)
```

Exercício 02 - Medidas de Dispersão

As notas de 8 alunos de uma turma de estatística da UFPE na primeira avaliação foram:

[7.5, 8.0, 6.5, 9.0, 7.0, 8.5, 6.0, 7.5]

- a) Calcule a variância populacional e amostral das notas
- b) Calcule o intervalo interquartil (IIQ) das notas.

Exercício 02 - Medidas de Dispersão

```
import numpy as np
# Dados das notas dos alunos
notas = np.array([7.5, 8.0, 6.5, 9.0, 7.0, 8.5, 6.0, 7.5])
# a) Calcule a variância populacional das notas
variancia_populacional = np.var(notas)
print("A variância populacional das notas é:", variancia_populacional)
variancia_amostral = np.var(notas, ddof=1)
print("A variância amostral das notas é:", variancia amostral)
# b) Calcule o intervalo interquartil (IIQ) das notas.
q1 = np.percentile(notas, 25)
q3 = np.percentile(notas, 75)
iiq = q3 - q1
print("0 intervalo interquartil (IIQ) das notas é: ",iiq)
```

Exercício 03 - Medidas de Dispersão

Um pesquisador mediu a altura (em metros) de 12 coqueiros em uma praia de Porto de Galinhas:

[15.2, 16.5, 14.8, 17.0, 15.5, 16.0, 15.8, 16.2, 15.0, 16.8, 17.5, 15.3]

- a) Calcule o desvio padrão populacional das alturas usando NumPy.
- b) Calcule o iiq das alturas usando Pandas

Exercício 03 - Medidas de Dispersão

```
import numpy as np
import pandas as pd
# Dados das alturas dos coqueiros
alturas = np.array([15.2, 16.5, 14.8, 17.0, 15.5, 16.0, 15.8, 16.2, 15.0, 16.8, 17.5, 15.3])
# a) Calcule o desvio padrão populacional das alturas usando NumPy.
desvio_padrao_populacional = np.std(alturas)
print(f"O desvio padrão populacional das alturas é:", desvio padrao populacional)
# b) Calcule o IIO das alturas usando Pandas
series_alturas = pd.Series(alturas)
q1_pandas = series_alturas.quantile(0.25)
q3 pandas = series alturas.quantile(0.75)
iiq_pandas = q3_pandas - q1_pandas
print(f"O Intervalo Interquartil (IIQ) das alturas é: ", iiq_pandas)
```

Exercício 04 - Medidas de Dispersão

Os tempos de espera (em minutos) de 15 clientes em uma famosa tapiocaria do Mercado da Boa Vista foram:

- a) Crie uma Series do Pandas com esses dados.
- b) Calcule a amplitude do tempo de espera usando Pandas
- c) Calcule o desvio padrão amostral do tempo de espera usando Pandas
- d) Calcule o intervalo interquartil (IIQ) do tempo de espera usando Pandas

Exercício 04 - Medidas de Dispersão

```
import pandas as pd
# Dados dos tempos de espera
tempos_espera = [3, 5, 2, 8, 4, 4, 6, 3, 5, 7, 9, 3, 5, 4, 6]
# a) Crie uma Series com esses dados.
series_espera = pd.Series(tempos_espera)
# b) Calcule a amplitude do tempo de espera
amplitude = series_espera.max() - series_espera.min()
print("A amplitude do tempo de espera é: ", amplitude)
# c) Calcule o desvio padrão amostral do tempo de espera
desvio padrao amostral = series espera.std()
print("O desvio padrão amostral do tempo de espera é: ", desvio_padrao amostral)
# d) Calcule o intervalo interquartil (IIQ) do tempo de espera
q1 = series_espera.quantile(0.25)
q3 = series_espera.quantile(0.75)
iiq = q3 - q1
print("O Intervalo Interquartil (IIQ) do tempo de espera é: ", iiq)
```

Exercício 05 - Desafio

Utilizando o dataset "temperaturas_recife2020.csv" calcule:

- a) Média
- b) Mediana
- c) Moda
- d) Amplitude
- e) Variância populacional e amostral
- f) Desvio padrão populacional e amostral
- g) Q1, Q2, Q3 e IQQ