Winter semester 2013-2014

Exercise Sheet no.7

Analysis for CS

GROUPWORK:

(G 18)

Let $f : [\frac{1}{2}, 3] \to \mathbb{R}$, $f(x) = \sin(\sqrt{x})$. Write down:

- a) Taylor's polynomial $T_2(x, 1)$,
- b) the remainder term $R_2(x,1)$, for $x \in [\frac{1}{2},3] \setminus \{1\}$, according to Taylor's formula.

(G 19)

Consider the trigonometric functions sin, $\cos : \mathbb{R} \to \mathbb{R}$.

- a) Determine $\sin^{(n)}$ and $\cos^{(n)}$, for every $n \in \mathbb{N}$.
- b) Write down the Taylor polynomials $T_n(x,0)$, for every $n \in \mathbb{N}$, of these two functions.
- c) Show that both sin and cos may be expanded as Taylor series around 0 on \mathbb{R} , and find the corresponding Taylor series expansions.

(G 20)

Determine the following higher order derivatives:

a)
$$(e^{3x})^{(n)}$$
, $n \in \mathbb{N}$, b) $(x^2 \sin 2x)^{(100)}$, c) $((x^3 + 2x - 1)e^{2x})^{(n)}$, $n \in \mathbb{N}$.

Homework:

(H 18)

a) Show that the following equalities hold true for every $n \in \mathbb{N}$ and every $x \in \mathbb{R}$

$$\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right), \quad \cos^{(n)}(x) = \cos\left(x + n\frac{\pi}{2}\right).$$

b) Determine the higher order derivatives $(e^x \sin x)^{(n)}$ and $(e^{-2x} \cos x)^{(n)}$, $n \in \mathbb{N}$.

(H 19)

Let α , $\beta > 0$. Compute the following limits:

$$\text{a)} \lim_{x \to \infty} \frac{e^{\alpha x}}{x}, \quad \text{b)} \lim_{x \to \infty} \frac{e^{\alpha x}}{x^{\beta}}, \quad \text{c)} \lim_{x \to \infty} \frac{\ln x}{x^{\alpha}}, \quad \text{d)} \lim_{x \to \infty} \frac{(\ln x)^{\beta}}{x^{\alpha}}, \quad \text{e)} \lim_{\substack{x \to 0 \\ x > 0}} x^{\alpha} \ln x, \quad \text{f)} \lim_{\substack{x \to 0 \\ x > 0}} x^{x}.$$