Solutions to Haynes Miller's $Lectures\ on\ Algebraic\ Topology$

Patrick Borse

 $\label{eq:ABSTRACT.} \text{ This document contains solutions to the exercises of Haynes Miller's } \textit{Lectures on Algebraic Topology}.$

Contents

Chapt	er 1. Singular homology	5
1.	Introduction: singular simplices and chains	5
2.	Homology	5
3.	Categories, functors, and natural transformations	5
4.	Categorical language	5
5.	Homotopy, star-shaped regions	5
6.	Homotopy invariance of homology	5
7.	Homology cross product	6
8.	Relative homology	6
9.	Homology long exact sequence	6
10.	Excision and applications	6
11.	Eilenberg-Steenrod axioms and the locality principle	6
12.	Subdivision	6
13.		6
Chapt	er 2. Computational methods	7
14.	CW complexes I	7
15.	CW complexes II	7
16.	Homology of CW complexes	7
17.	Real projective space	7
18.		7
19.	Coefficients	7
20.	Tensor Product	7
22.	Fundamental theorem of homological algebra	7
23.	Hom and Lim	8
24.	Universal coefficient theorem	8
25.	Künneth and Eilenberg-Zilber	8
Chapt	er 3. Cohomology and duality	9
26.		9
27.	Ext and UCT	9
28.	Products in cohomology	9
29.	Cup product, continued	9
30.	Surfaces and nondegenerate symmetric bilinear forms	9
31.	Local coefficients and orientations	9
33.	A plethora of products	9
34.	Cap product and Čech cohomology theory	9

CONTENTS

36.	Fully relative cap product	10
37.	Poincaré duality	10
38.	Applications	10
Chapte	er 4. Basic homotopy theory	11
39.	Limits, colimits, and adjunctions	11
40.	Cartesian closure and compactly generated spaces	11
41.	Basepoints and the homotopy category	
42.		
43.	Fibrations, fundamental groupoid	
44.	Cofibrations	11
45.	Cofibration sequences and coexactness	
46.		
47.	Homotopy long exact sequence and homotopy fibers	
Chapte	er 5. The homotopy theory of CW complexes	
49.	Connectivity and approximation	
51.	Hurewicz, Eilenberg, Mac Lan, and Whitehead	13
53.	Obstruction theory	13
Chante	er 6. Vector bundles and principal bundles	1/
54.	Vector bundles	
55.	Principal bundles, associated bundles	
56.	G -CW complexes and the I -invariance of Bun_G	
57.	The classifying space of a group	
58. 59.	Simplicial sets and classifying spaces	
<i>99.</i>	The Cech Category and Classifying maps	14
Chapte	er 7. Spectral sequences and Serre classes	15
61.	Spectral sequence of a filtered complex	15
62.	Serre spectral sequence	15
63.	Exact couples	15
64.	Gysin sequence, edge homomorphisms, and transgression	15
65.	Serre exact sequence and the Hurewicz theorem	
66.	Double complexes and the Dress spectral sequence	
67.	Cohomological spectral sequences	
68.	Serre classes	
70.	Freudenthal, James, and Bousfield	
CI.		1.5
	er 8. Characteristic classes, Steenrod operations, and cobordism	
71.	Chern classes, Stiefel-Whitney classes, and the Leray-Hirsch theorem	
72.	$H^*(BU(n))$ and the splitting principle	17
73.	Thom class and Whitney sum formula	17
74.	Closing the Chern circle, and Pontryagin classes	17
75.	Steenrod operations	17
76.	Cobordism	17
77.	Hopf algebras	18
78.	Applications of cobordism	18

Singular homology

1. Introduction: singular simplices and chains **Exercise 1.8.** (a) (b) (c) (d) (e) (f) 2. Homology Exercise 2.2. Exercise 2.3. 3. Categories, functors, and natural transformations Exercise 3.7. Exercise 3.8. 4. Categorical language **Exercise 4.10.** (a) (b) (c) (d) 5. Homotopy, star-shaped regions **Exercise 5.15.** (a) (b) Exercise 5.16. 6. Homotopy invariance of homology

Exercise 6.3.

7. Homology cross product Exercise 7.3. Exercise 7.4. 8. Relative homology Exercise 8.8. Exercise 8.9. 9. Homology long exact sequence Exercise 9.8. Exercise 9.9. Exercise 9.10. Exercise 9.11. 10. Excision and applications **Exercise 10.10.** (a) (b) (c) (d) (e) (f) **Exercise 10.11.** (a) (b) (c) (d) 11. Eilenberg-Steenrod axioms and the locality principle Exercise 11.7. **Exercise 11.8.** (a) (b) Exercise 11.9. 12. Subdivision **Exercise 12.2.** (a)

13. Proof of the locality principle

(b)

Exercise 13.6.

Computational methods

	14. CW complexes I
Exercise 14.10.	
Exercise 14.11.	
	15. CW complexes II
Exercise 15.7.	
Exercise 15.8.	
	16. Homology of CW complexes
Exercise 16.7.	
Exercise 16.8.	
	17. Real projective space
Exercise 17.2.	
	18. Euler characteristic and homology approximation
Exercise 18.7.	
	19. Coefficients
Exercise 19.2.	
Exercise 19.3.	
	20. Tensor Product
Exercise 20.12.	
Exercise 20.13.	
	22. Fundamental theorem of homological algebra
Exercise 22.5.	

23. Hom and Lim

Exercise 23.16.

Exercise 23.17. (a)

(b)

(c)

(d)

24. Universal coefficient theorem

Exercise 24.3.

Exercise 24.4.

Exercise 24.5.

25. Künneth and Eilenberg-Zilber

Exercise 25.18. (a)

(b)

Exercise 25.19.

Cohomology and duality

	26. Coproducts, cohomology
Exercise 26.9.	
	27. Ext and UCT
Exercise 27.6.	
Exercise 27.7.	
Exercise 27.8.	
	28. Products in cohomology
Exercise 28.3.	
	29. Cup product, continued
Exercise 29.6.	
Exercise 29.7.	
	30. Surfaces and nondegenerate symmetric bilinear forms
Exercise 30.9.	
Exercise 30.10.	
Exercise 30.11.	
	31. Local coefficients and orientations
Exercise 31.15.	
Exercise 31.16.	
Exercise 31.17.	
	33. A plethora of products
Exercise 33.4.	
	34. Cap product and Čech cohomology theory
Exercise 34.6.	

36. Fully relative cap product

Exercise 36.3.

37. Poincaré duality

Exercise 37.8.

38. Applications

Exercise 38.14.

Basic homotopy theory

	39. Limits, colimits, and adjunctions
Exercise 39.14.	
Exercise 39.15.	
Exercise 39.16.	
Exercise 39.17.	
Exercise 39.18.	
	40. Cartesian closure and compactly generated space
Exercise 40.8.	
Exercise 40.9.	
Exercise 40.10. (b)	(a)
Exercise 40.11.	
Exercise 40.12.	
	41. Basepoints and the homotopy category
Exercise 41.5.	
Exercise 41.6.	
	42. Fiber bundles
Exercise 42.8.	
	43. Fibrations, fundamental groupoid
Exercise 43.10.	
Exercise 43.11.	
	44. Cofibrations

Exercise 44.5.

45. Cofibration sequences and coexactness

Exercise 45.4.	(a)
(b)	

46. Weak equivalences and Whitehead's theorems

Exercise 46.12.

Exercise 46.13.

Exercise 46.14.

47. Homotopy long exact sequence and homotopy fibers

Exercise 47.8.

Exercise 47.9.

Exercise 47.10. (a)

(b)

(c)

Exercise 47.11.

The homotopy theory of CW complexes

49. Connectivity and approximation

Exerci	ise 4	49.	.9.

51. Hurewicz, Eilenberg, Mac Lan, and Whitehead

Exercise 51.5.

Exercise 51.6.

Exercise 51.7. (a)

(b)

Exercise 51.8.

53. Obstruction theory

Exercise 53.7.

Exercise 53.8.

Exercise 53.9. (a)

(b)

Exercise 53.10.

Vector bundles and principal bundles

54. Vector bundles

Exercise	54.11.		
Exercise	54.12.		
Exercise	54.13.		
Exercise	54.14.		
			55. Principal bundles, associated bundles
Exercise	55.8.		
Exercise (b)	55.9.	(a)	
		!	56. G-CW complexes and the I-invariance of Bund
Exercise (b) (c)	56.4.	(a)	
Exercise	56.5.		
			57. The classifying space of a group
Exercise	57.6.		
Exercise	57.7.		
			58. Simplicial sets and classifying spaces
Exercise	58.7.		
Exercise (b) (c)	58.8.	(a)	
			59. The Čech category and classifying maps
Exercise	59.6.		

Spectral sequences and Serre classes

61. Spectral sequence of a filtered complex

Exercise 61.5. (b) (c)	(a)
Exercise 61.6.	
	62. Serre spectral sequence
Exercise 62.3. (b)	(a)
Exercise 62.5.	
Exercise 62.6.	
Exercise 62.7.	
	63. Exact couples
Exercise 63.3.	
Exercise 63.4.	
Exercise 63.5.	
Exercise 63.6. (b) (c) (d)	(a)
	64. Gysin sequence, edge homomorphisms, and transgression
Exercise 64.6. (b)	(a)
	65. Serre exact sequence and the Hurewicz theorem
Exercise 65.8. (b)	(a)
	66. Double complexes and the Dress spectral sequence
Exercise 66.1.	

67. Cohomological spectral sequences

Exercise 67.5.

Exercise 67.6.

Exercise 67.7.

68. Serre classes

Exercise 68.11.

Exercise 68.12.

70. Freudenthal, James, and Bousfield

Exercise 70.11.

Characteristic classes, Steenrod operations, and cobordism

71. Chern classes, Stiefel-Whitney classes, and the Leray-Hirsch t	heorem
Exercise 71.10.	
Exercise 71.11.	
72. $H^*(BU(n))$ and the splitting principle	
Exercise 72.6.	
73. Thom class and Whitney sum formula	
Exercise 73.5.	
74. Closing the Chern circle, and Pontryagin classes	
Exercise 74.6.	
Exercise 74.7. (a) (b)	
Exercise 74.8. (a) (b)	
Exercise 74.9.	
Exercise 74.10.	
Exercise 74.11.	
Exercise 74.12. (a) (b) (c) (d) (e)	
75. Steenrod operations	
Exercise 75.12.	
76. Cobordism	
Exercise 76.10.	

77. Hopf algebras

Exercise 77.10.

Exercise 77.11.

Exercise 77.12.

78. Applications of cobordism

Exercise 78.4.

Exercise 78.5.

Exercise 78.6.

Exercise 78.7.