

OBJECTIVE

Present an advanced model for optimization, evaluation and interpretation.

PROBLEM STATEMENT

Inaccuracy when assessing how effectively building renovations impact energy consumption.

HOW BIG THE PROBLEM IS?

The **health care** sector is one of the largest segments of the U.S. economy (17% of U.S.GDP)

The average hospital uses 2.5 times the amount of energy as other commercial buildings, adding up to 836 trillion Btu or \$5 billion annually

Source: ASHRAE and Department of Energy (DOE)

PROPOSED SOLUTION

Promote efficient building renovations through the implementing of the BECP ML model.

This model **predicts energy consumption** by considering building features and weather conditions.

The average hospital energy cost annually

ENERGY EFFICIENCY

Higher-efficiency equipment can reduce energy use by 50% (\$2.5 billion annual savings)

Source: U.S Department of Energy

ENERGY USAGE IN A HEALTH CARE BUILDING

DATASET

https://www.kaggle.com/competitions/ashrae-energy-prediction/

3 x

20M rows

DATASET DETAILS

Target variable

Features

Meter reading

meter
meter timestamp
primary use
square feet
year built
floor count

weather timestamp
air temperature
cloud coverage
dew temperature
precip depth 1 hr
sea level pressure
wind direction
wind speed

PREPROCESSING

NULL VALUES

PREPROCESSING

year_built, cloud_coverage, precipitation, primary_use, floor_count, meter_timestamp, timestamp 0.13% (515 rows) sea_level_pressure wind_direction wind_speed air_temperature dew_temperature

FINDINGS FROM EDA

BUILDING AND METER TYPES

BUILDING ELECTRICITY

FINDINGS FROM EDA

Electricity for Building 1282

Electricity consumption for building 1282 in 2016

MODELLING

Baseline

AR

ARIMA

XGboost Regressor Random Forest Regressor Multivariate time series analysis

Mean

Auto-Regressive

Auto-Regressive Integrated Moving Average

BASELINE: FORECASTING

Train and Test data for the weekly change in Electricity consumption

Train MAE = 908.7

Test MAE = 867.5

AUTO-REGRESSIVE (AR) MODEL

Train MAE = 667.6 (27% lower than baseline) Test MAE = 859.4 (1% lower than baseline)

ARIMA: AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL

Train MAE = 659.8 (1% lower than AR) Test MAE = 863.9 (1% higher than AR)

TIME SERIES MODEL COMPARISON

TIME SERIES + ENSEMBLE METHODS COMPARISON

MODEL INTERPRETATION

MODEL INTERPRETATION

= quite comfortable

REAL WORLD USE OF THE MODEL

LIFE CHANGER FOR:

Patients are more comfortable, potentially aiding in faster recovery.

Healthcare staff improve productivity and well-being.

Environment with lower carbon emissions.

REAL WORLD USE OF THE MODEL

WHAT PRODUCTS OR SERVICES IS IT GOING TO CHANGE:

- Lighting systems.
- HVAC.
- Energy management systems.
- Renewable energy products.
- Improved maintenance.

PROBLEM TIMELINE

NEXT STEPS

RNN

Neural network

