1. (6 points) Given the graph of f below, evaluate each of the following. Use ∞ , $-\infty$ or "does not exist" where appropriate.

(c)
$$f'(4)$$

(d)
$$\lim_{x \to \infty} f(x)$$

(e)
$$\lim_{h \to 0} \frac{f(6+h) - f(6)}{h}$$

(f)
$$\lim_{x \to 2} [f(x) - 2]^2$$

2. (10 points) Evaluate each of the following limits.

(a)
$$\lim_{x \to 5} \frac{50 - 2x^2}{2x^2 - 9x - 5}$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^6 - 9x}}{x^3}$$

(c)
$$\lim_{x \to \infty} (e^x - e^{2x})$$

(d)
$$\lim_{x \to 3^+} \frac{|6 - 2x|}{\sqrt{x - 3}}$$

(e)
$$\lim_{x \to 0} \frac{6x}{\sin 3x \cos 4x}$$

3. (5 points) Let

$$f(x) = \begin{cases} \frac{x^2 - 4}{x^2 - x - 6} & \text{if } x \le -1, \\ \frac{1}{4}x + 1 & \text{if } -1 < x < 5, \text{ and} \\ \frac{1}{x^2 - 10x - 24} & \text{if } x \ge 5. \end{cases}$$

Find the numbers at which f is not continuous. For each discontinuity that you find, specify whether the discontinuity is removable, jump or infinite.

4. (4 points) Use the limit definition of the derivative to find f'(x), where $f(x) = \frac{1}{x^2 + 1}$.

- **5.** (15 points) Find $\frac{dy}{dx}$ for each of the following.
 - (a) $y = 5^{\cot x} + \sec(4x^2) 2e^{\pi + 1}$
 - (b) $y = \tan^3(xe^x)$

(c)
$$y = \sqrt{\frac{x^3 \sin(2x)}{(x+1)^5}}$$

- (d) $e^{xy} 3x^2 3y^2 = 2$
- (e) $y = \left(\frac{2x-3}{\cos x}\right)^x$
- **6.** Consider the curve defined by $xy^2 x^3y = 6$.
 - (a) (2 points) Show that $\frac{dy}{dx} = \frac{3x^2y y^2}{2xy x^3}$.
 - (b) (3 points) Find all points on the curve whose x-coordinate is 1, and write an equation of the tangent line at each of these points.
- 7. Consider the function defined by $f(x) = x^3 7x 10$.
 - (a) (1 point) Use the Intermediate Value Theorem to show that a zero exists on the interval [-1, 4].
 - (b) (2 points) Find the number in (-1,4) that satisfies the conclusion of the Mean Value Theorem.
 - (c) (1 point) Use Rolle's Theorem to show that there is a number c in (-1,3) such that f'(c)=0.
- 8. (5 points) A conical tank, with its vertex down, has a diameter of 8 m and a depth of 16 m. Water flows into the tank at a rate of 5 m³ per minute. Find the rate at which the water is rising when the water level is 10 m deep. (The volume of a cone is $V = \frac{1}{3}\pi r^2 h$)
- **9.** (4 points) Find the absolute extrema of $f(x) = \frac{\ln x}{\sqrt{x}}$ on $[1, e^4]$.
- **10.** (10 points) Given

$$f(x) = \frac{(2x+3)(x-3)^2}{x^3} = \frac{2x^3 - 9x^2 + 27}{x^3}, \quad f'(x) = \frac{9(x^2-9)}{x^4} \quad \text{and} \quad f''(x) = \frac{18(18-x^2)}{x^5}, \text{ find all:}$$

- (a) x and y intercepts.
- (b) Vertical and horizontal asymptotes.
- (c) Intervals of which f(x) is increasing or decreasing.
- (d) Local (relative) extrema.
- (e) Intervals of upward and downward concavity.
- (f) Inflection points.
- (g) Find the coordinates of the point(s) where the graph of f intersects its horizontal asymptote.
- (h) Sketch the graph of f(x). Label all intercepts, asymptotes, extrema, and points of inflection.

The fact that $f(3\sqrt{2}) \approx 0.23$ and $f(-3\sqrt{2}) \approx 3.77$ may also be useful.

11. (4 points) The graph below is of a function f' on (0,6).

- (a) Give the interval(s) where f is decreasing.
- (b) Give the interval(s) where the graph of f is concave up.
- (c) Give the x-coordinate(s) of the local (relative) maximum of f.
- (d) Give the x-coordinate(s) of the point(s) of inflection of the graph of f.
- 12. (5 points) A closed cylindrical tank with a flat bottom and an inverted hemispherical top is to have a volume of 13π m³. Find the radius that will minimize the surface area of the tank. (The volume of a hemisphere of radius r is $\frac{2}{3}\pi r^3$ and its surface area is $2\pi r^2$.)

- **13.** (3 points) Find f(t) if $f''(t) = e^t 3\cos(t) + 6t$, f'(0) = 3 and f(0) = 1.
- 14. (12 points) Evaluate each of the following integrals.

(a)
$$\int (6e^x - \sqrt[3]{x^7} + \pi^5) dx$$

(b)
$$\int \frac{(x-1)^2}{x^3} dx$$

(c)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin^2 x + \cos x}{\sin^2 x} dx$$

(d)
$$\int_0^5 |x^2 - 9| \, dx$$

- **15.** (2 points) Find the derivative with respect to x of $y = \int_{\sqrt{x}}^{1} \frac{t}{t^2 + 1} dt$.
- **16.** (a) (1 point) Express the integral $\int_0^3 (x^2+3) dx$ as a limit of Riemann sums.

(b) (3 points) Use summation formulæ and basic properties of limits to evaluate the integral from Part a.

Note that
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
.

No marks if you use the Fundamental Theorem of Calculus to evaluate the integral.

- 17. (1 point) Evaluate the integral $\int_{-2}^{0} \sqrt{4-x^2} \, dx$ by interpreting it in terms of area.
- 18. (1 point) If $\lim_{x\to\infty} f'(x) = 0$, must the graph of f have a horizontal asymptote? Justify your answer.

Answers

$$1.(a)0 \quad (b)\infty \quad (c) DNE \quad (d)0 \quad (e)-1 \quad (f)1 \qquad 2.(a)-\tfrac{20}{11} \quad (b)-2 \quad (c)-\infty \quad (d)0 \quad (e) 2 = -\frac{1}{11} \quad (e) -\frac{1}{11} \quad$$

$$3.-2$$
 (removable), 5 (jump), 12 (infinite) $4.\frac{-2x}{(x^2+1)^2}$ $5.(a)5^{\cot x} \ln 5(-\csc^2 x) + 8x \sec(4x^2) \tan(4x^2)$

(b)
$$3e^x \tan^2(xe^x) \sec^2(xe^x)(x+1)$$
 (c) $\frac{1}{2} \sqrt{\frac{x^3 \sin(2x)}{(x+1)^5}} \left(\frac{3}{x} + 2\cot(2x) - \frac{5}{x+1}\right)$ (d) $\frac{6x - ye^{xy}}{xe^{xy} - 6y}$

$$(e)\left(\frac{2x-3}{\cos x}\right)^x \left[x\left(\frac{2}{2x-3} + \tan x\right) + \ln\left(\frac{2x-3}{\cos x}\right)\right] \qquad 6.(b)(1,3): \ y = 3; \ (1,-2): \ y = 2x - 4$$

7.(a)
$$f(x)$$
 is cont. on $[-1, 4]$, $f(-1) = -4 < 0 \& f(4) = 26 > 0$ (b) $\sqrt{\frac{13}{3}}$

$$\text{(c)} f(x) \text{ is cont. \& diff'able on } (-1,3), \ f(-1) = -4 = f(3) \\ 8.\frac{4}{5\pi} \, \text{m/min} \\ 9. \text{Min:} (1,0); \ \text{Max:} (e^2, \frac{2}{e})$$

10.

Page 4

11.(a)(0,2), (4,6) (b)(0,3) (c)
$$x = 4$$
 (d) $x = 3$ 12. $3^{1/3}$ m 13. $f(t) = e^t + 3\cos t + t^3 + 2t - 3\cos t$

$$14.(a)6e^{x} - \frac{3}{10}x^{10/3} + \pi^{5}x + C \quad (b)\ln|x| + \frac{2}{x} - \frac{1}{2x^{2}} + C \quad (c)\frac{\pi}{4} - 1 + \sqrt{2} \quad (d)\frac{98}{3} \qquad 15. - \frac{1}{2(x+1)}$$

16.(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n}$$
 (b) 18 17. π

18. No. Consider $f(x) = \sqrt{x}$, which has no horizontal asymptote, but for which $\lim_{x \to \infty} \frac{1}{2\sqrt{x}} = 0$.