## ТПОЭ - 23/24

Лекция 6

# В предыдущих сериях... "Статистическая" классификация

#### Средняя

 User Average Metrics (ARPU/ ARPPU/etc)

#### Ratio

- User-level Conversion Metrics (Retention / etc)
- Page-level Conversion Metrics (Global CTR / etc)

#### Квантиль

• Ну тут просто квантиль (.99 latency / перцентиль чека)

#### Абсолюты

• Метрики (GMV / Выручка / Просмотры)

## Вот у нас есть дерево метрик

Выручка WAU **ARPU** X X **ARPPU** Old Conv. New + C1 X CN Prev Week Retention ---... ---------

### Аксессуары для ванной для повышения среднего чека

#### 1. Предпосылка

Аналитика показывает, что средний чек покупки увеличивается на 20%, когда клиенты добавляют в корзину товары из категории "Аксессуары для ванны". Интервью с пользователями выявили, что многие не замечают эту категорию при обычном посещении магазина.

#### 2. Возможность

Ввести функцию персонализированных рекомендаций аксессуаров для ванны на странице оформления заказа мыла.

#### 3. Кого коснется

Покупатели, оформляющие заказ мыла и заинтересованные в улучшении своего опыта ванны.

#### 4. Мотивация

Предложение аксессуаров для ванны на этапе оформления заказа мыла удобно для пользователей, так как позволяет дополнить их покупку, не отвлекаясь на поиск этих товаров отдельно.

#### 5. Эффект, который мы ожидаем

Увеличение среднего чека на 15% за счет добавления аксессуаров для ванны к заказу мыла, что приведет к росту ARPU.

### Pacтим ARPU с помощью рекомендаций аксессуаров

#### 1. Формулировка гипотезы с сформулированным ожидаемым размером эффекта

Предложение мыла с подборкой популярных аксессуаров на основе анализа предпочтений покупателей и данных о самых продаваемых товарах увеличит средний доход на пользователя (ARPU) на 20%.

#### 2. Описание аудитории

Покупатели онлайн-магазина мыла, включая как новых, так и возвращающихся пользователей.

#### 3. Описание вариантов с размером каждой группы

Контрольная группа (А): Покупателям предлагается стандартный ассортимент без акцентов на комплекты.

**Экспериментальная группа (В)**: Покупателям активно предлагаются комплекты мыла с популярными ароматами на главной странице и в разделе рекомендаций.

Размер каждой группы составляет 50% от общего числа посетителей в период эксперимента.

#### 4. Ожидаемые исходы и метрики

**Основная метрика**: Увеличение ARPU в экспериментальной группе по сравнению с контрольной.

Второстепенные метрики: Увеличение среднего размера заказа, конверсии в покупку комплектов.

#### 5. Продолжительность

Эксперимент продлится 4 недели, чтобы собрать достаточно данных для статистически значимых результатов, учитывая недельные колебания трафика и поведения покупателей.

#### 6. Результаты

TBD

В чем может быть проблема тестирования ARPU?

## ARPU состоит из разных частей

**ARPU ARPPU** X Conv Purchase Avg. order CN C1 frequency amount ---------. . . . . . Как лучше подобрать метрики, чтобы избавиться от шума?

### Переходим на более низкоуровневые метрики в дизайне

#### 1. Формулировка гипотезы с сформулированным ожидаемым размером эффекта

Предложение комплектов мыла с подборкой популярных ароматов на основе анализа предпочтений покупателей и данных о самых продаваемых товарах увеличит средний доход на пользователя (ARPU) на 20%.

#### 2. Описание аудитории

Покупатели онлайн-магазина мыла, включая как новых, так и возвращающихся пользователей.

#### 3. Описание вариантов с размером каждой группы

Контрольная группа (А): Покупателям предлагается стандартный ассортимент без акцентов на комплекты.

**Экспериментальная группа (В)**: Покупателям активно предлагаются комплекты мыла с популярными ароматами на главной странице и в разделе рекомендаций.

Размер каждой группы составляет 50% от общего числа посетителей в период эксперимента.

#### 4. Ожидаемые исходы и метрики

Основная метрика: Увеличение среднего чека в экспериментальной группе по сравнению с контрольной.

Контрметрика: Не падение конверсии в покупку

#### 5. Продолжительность

Эксперимент продлится 4 недели, чтобы собрать достаточно данных для статистически значимых результатов, учитывая недельные колебания трафика и поведения покупателей.

#### 6. Результаты

TBD

Чем будем тестировать средний чек? Как размер выборки считать?

## Почему t-test не работает?

### Зависимые данные ломают t-test

При наличии зависимых данных оценка дисперсии в тесте Стьюдента ломается. Это приводит к повышению вероятности ошибки первого рода

#### Пример:

Мы в нашем магазине мыла проводим эксперимент, чтобы понять увеличивают ли наши рекомендации средней чек. У нас есть разные юзеры, некоторые из них могут купить несколько раз за эксперимент. **Данные в выборке в таком случае являются зависимыми** 

## Rookie mistake подход

Усредним средние чеки по пользователям и потом проведем тест





## Как изменится средний чек?





## Как изменится средний чек?





## А среднее средних пользователей?





## Среднее средних это не путь

### Сонаправленность не соблюдается

При использовании среднего средних мы не обеспечиваем сонаправленность изменений. По сути, это означает, что в любом тесте мы можем сказать, что изменение есть, хотя его нет или наоборот



## Reminder: свойства прокси метрик

Прокси метрика - косвенная метрика целевой метрики, с которой она сильно коррелирует и с которой есть причинно-следственная связь.

Корреляция

Высоко скоррелирована с основной метрикой

Казуальная связь

Имеет причинно-следственную связь с целевой метрикой

Интерпретируемая

Метрику может объяснить каждый сотрудник



Чувствительная

Насколько долго нужно ждать, чтобы увидеть изменения в метрике

Достоверная

Можно ли получить точное подтверждение из данных?

Как нам оценить дисперсию метрики отношения в таком случае?

## T-test для ratio метрик Определяем ratio метрику

#### Введем обозначения для ratio метрик:

$$R_{C} = \frac{X_{1}^{C} + \dots + X_{N}^{C}}{Y_{1}^{C} + \dots + Y_{N}^{C}}$$

$$R_{T} = \frac{X_{1}^{T} + \dots + X_{N}^{T}}{Y_{1}^{C} + \dots + Y_{N}^{T}}$$

## T-test для ratio metric Определяем ratio метрику

#### В более общем виде:

$$R_{C} = \frac{X_{1}^{C} + \dots + X_{N}^{C}}{Y_{1}^{C} + \dots + Y_{N}^{C}} = \frac{\sum_{u \in C} X(u)}{\sum_{u \in C} Y(u)}$$

$$R_{T} = \frac{X_{1}^{T} + \dots + X_{N}^{T}}{Y_{1}^{T} + \dots + Y_{N}^{T}} = \frac{\sum_{u \in T} X(u)}{\sum_{u \in T} Y(u)}$$

## T-test для ratio metric Формулируем нулевую гипотезу

#### В классическом случае:

$$H_0: \theta = \mu_C - \mu_T = 0$$

$$H_1: \theta = \mu_C - \mu_T \neq 0$$

#### В нашем случае:

$$H_0: \theta = R_C - R_T = 0$$

$$H_1: \theta = R_C - R_T \neq 0$$

## T-test для ratio metric Записываем тест статистику

Запишем тест статистику T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

## Какие проблемы со статистикой у нас есть?

## T-test для ratio metric Записываем тест статистику

Запишем тест статистика T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

#### Главные вопросы, на которые нужно найти ответ:

- 1. Как выглядит дисперсия ratio метрики?
- 2. Как выглядит распределение Т?

## Pасчет дисперсии ratio метрики Записываем тест статистику

Запишем тест статистика T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

#### Главные вопросы, на которые нужно найти ответ:

- 1. Как выглядит дисперсия ratio метрики?
- 2. Как выглядит распределение Т?

## Pасчет дисперсии ratio метрики Начинаем с математического ожидания

Наша метрика является более сложным случаем вот такого соотношения:

$$R = \frac{X}{Y}$$

В функциональной форме легко записать:

$$f(X,Y) = \frac{X}{Y}$$

## Pасчет дисперсии ratio метрики Начинаем с математического ожидания

Одним из способов для нахождения некоторого приближения математического ожидания является работа с аппроксимацией функции f в точке  $\theta = (EX, EY) = (\mu_{\chi}, \mu_{\chi})$ 

$$f(X, Y) = f(\theta) + f'_{x}(\theta)(X - \mu_{x}) + f'_{y}(\theta)(Y - \mu_{y}) + R$$

Посчитаем математическое ожидание штуки выше:

$$E[f(X,Y)] = E[f(\theta) + f_{x}'(\theta)(X - \mu_{x}) + f_{y}'(\theta)(Y - \mu_{y}) + R]$$

## Pасчет дисперсии ratio метрики Начинаем с математического ожидания

#### Посчитаем математическое ожидание штуки выше:

$$E[f(X,Y)] = E[f(\theta) + f_{x}'(\theta)(X - \mu_{x}) + f_{y}'(\theta)(Y - \mu_{y}) + R]$$

Эту штуку можно разложить на слагаемые и вынести  $f(\theta)$  за скобки:

$$E[f(X,Y)] = E[f(\theta)] + f'_{x}(\theta)E[(X - \mu_{x})] + f'_{y}(\theta)E[(Y - \mu_{y})]$$

Тогда можем записать:

$$E[f(X, Y)] = E[f(\theta)] + 0 + 0 = \frac{\mu_x}{\mu_y} = f(\theta)$$

# Расчет дисперсии ratio метрики Имеем математическое ожидание, переходим к дисперсии

Мы получили математическое ожидание:

$$E[f(X, Y)] = \frac{\mu_x}{\mu_y}$$

Перейдем теперь к дисперсии:

$$V[f(X, Y)] = E\{(f(X, Y) - E[f(X, Y)])^2\}$$

Можем заменить E[f(X,Y)] на  $f(\theta)$  (считали на прошлом слайде):

$$V[f(X, Y)] = E\{(f(X, Y) - f(\theta))^{2}\}\$$

# Расчет дисперсии ratio метрики Имеем математическое ожидание, переходим к дисперсии

#### Имея такой вид дисперсии:

$$V[f(X, Y)] = E\{(f(X, Y) - f(\theta))^{2}\}\$$

Пришло самое время ее расписать:

$$V[f(X, Y)] = E\{(f(\theta) + f_{x}'(\theta)(X - \theta_{x}) + f_{y}'(\theta)(Y - \theta_{y}) - f(\theta))^{2}\}\$$

Немного можно упростить:

$$V[f(X, Y)] = E\{(f_x'(\theta)(X - \theta_x) + f_y'(\theta)(Y - \theta_y))^2\}$$

# Pacчет дисперсии ratio метрики Имеем математическое ожидание, переходим к дисперсии

Ииии, никакого трюка нет, надо это расписывать:

$$V[f(X, Y)] = E\{(f'(\theta)(X - \theta_{x}) + f'(\theta)(Y - \theta_{y}))^{2}\}\$$

УПРОЩАЕМ:

$$V[f(X,Y)] = E\left[f'_{x}(\theta)^{2}(X - \theta_{x})^{2} + 2f'_{x}(\theta)f'_{y}(\theta)(X - \theta_{x})(Y - \theta_{y}) + f'_{y}(\theta)^{2}(Y - \theta_{y})^{2}\right]$$

Посмотрим внимательно:

$$E[(X - \theta_x)^2] = V(X)$$

$$E[(X - \theta_x)(Y - \theta_y)] = Cov(X, Y)$$

$$E[(Y - \theta_y)^2] = V(Y)$$

# Расчет дисперсии ratio метрики Имеем математическое ожидание, переходим к дисперсии

#### Учитывая этот факт:

$$E[(X - \theta_x)^2] = V(X)$$

$$E[(X - \theta_x)(Y - \theta_y)] = Cov(X, Y)$$

$$E[(Y - \theta_y)^2] = V(Y)$$

#### Запишем снова дисперсию:

$$V[f(X,Y)] = f_x^{'2}(\theta)V(X) + 2f_x'(\theta)f_y'(\theta)cov(X,Y) + f_y^{'2}(\theta)V(Y)$$

#### Если посчитать все производные, то получим:

$$V(\frac{X}{Y}) \approx \frac{1}{\mu_y^2} V(X) - 2 \frac{\mu_x}{\mu_y^3} cov(X, Y) + \frac{\mu_x^2}{\mu_y^4} V(Y)$$

## Pacчет дисперсии ratio метрики Давайте обобщим на чуть более общий случай

В более общем случае, возвращаясь к нашей ratio метрике:

$$V(R) = V\left(\frac{X_1 + \dots + X_N}{Y_1 + \dots + Y_N}\right) = V\left(\frac{\bar{X}}{\bar{Y}}\right)$$

Возвращаясь к формуле с предыдущего слайда:

$$\frac{1}{\mu_y^2}V(\bar{X}) - 2\frac{\mu_x}{\mu_y^3}cov(\bar{X}, \bar{Y}) + \frac{\mu_x^2}{\mu_y^4}V(\bar{Y})$$

И тут просто упрощается:

$$V(R) = \frac{1}{N\mu_v^2}V(X) - 2\frac{\mu_x}{N\mu_v^3}cov(X,Y) + \frac{\mu_x^2}{N\mu_v^4}V(Y)$$

## T-test для ratio metric Записываем тест статистику

Запишем тест статистика T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

#### Главные вопросы, на которые нужно найти ответ:

1. Как выглядит дисперсия ratio метрики?

$$E[R] = \frac{\mu_x}{\mu_y}$$

$$V(R) = \frac{1}{N\mu_y^2} V(X) - 2 \frac{\mu_x}{N\mu_y^3} cov(X, Y) + \frac{\mu_x^2}{N\mu_y^4} V(Y)$$

2. Как выглядит распределение Т?

Что говорит ваша интуиция? Какое распределение у Т?

# T-test для ratio metric Вспоминаем дельта метод

Если существует последовательность случайных величин  $X_n$  , удовлетворяющая:

$$\sqrt{n}(X_n - \theta) \to^D N(0, \sigma^2)$$

где  $\sigma^2$  и  $\theta$  - конечные константы, а D обозначает сходимость по распределению, то верно:

$$\sqrt{n}(g(X_n) - g(\theta)) \to^D N(0, \sigma^2[g'(\theta)]^2)$$



# T-test для ratio metric Попробуем применить дельта метод

Запишем тест статистика T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

Для оценки дисперсии  $R_C$  и  $R_T$  мы применили многомерный дельта метод. Исходя из этого, можно предположить, что они асимптотически имеют нормальное распределение. Тогда при верности нулевой гипотезы:

$$R_C - R_T \sim N(0, \sigma(R_C)^2 + \sigma(R_T)^2)$$

## А теперь? Какое распределение у Т?

# T-test для ratio metric Попробуем применить дельта метод

Тест статистика в данном случае имеет следующее распределение при верности нулевой гипотезы:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}} \sim N(0,1)$$

## T-test для ratio metric Записываем тест статистику

Запишем тест статистика T нашего теста в случае ratio метрик:

$$T = \frac{R_C - R_T}{\sqrt{\frac{\sigma^2(R_C)}{N_C} + \frac{\sigma^2(R_T)}{N_T}}}$$

#### Главные вопросы, на которые нужно найти ответ:

1. Как выглядит дисперсия ratio метрики?

$$E[R] = \frac{\mu_x}{\mu_y}$$

$$V(R) = \frac{1}{N\mu_y^2} V(X) - 2 \frac{\mu_x}{N\mu_y^3} cov(X, Y) + \frac{\mu_x^2}{N\mu_y^4} V(Y)$$

2. Как выглядит распределение Т?

$$T \sim N(0,1)$$

# Смотрим на три типа метрик Две из них уже свели к нормальному распределению

#### Средняя

 User Average Metrics (ARPU/ ARPPU/etc)

#### Ratio

- User-level Conversion Metrics (Retention / etc)
- Page-level Conversion Metrics (Global CTR / etc)

#### Квантиль

• Ну тут просто квантиль (.99 latency / перцентиль чека)

#### Абсолюты

• Метрики (GMV / Выручка / Просмотры)

# Мы можем пользоваться той же формулой Потому что свели все к t-test и нормальному распределению

$$n \ge \frac{2(F^{-1}(1 - \frac{\alpha}{2}) - F^{-1}(\beta))^2 s^2}{MDE^2}$$

### Итого

- 1. Узнали, какие проблемы могут быть с ratio метриками
- 2. Вспомнили дельта метод
- 3. Посмотрели как свести все к нормальному распределению
- 4. Чуть не умерли от формул (дальше опять продолжение будет)