Pionowa charakterystyka promieniowania układu anten

Mateusz Franków 259740

Model i metoda obliczeniowa

$$A_1 = A_2 = \dots = A_N = 1$$

$$\vartheta_n = (n-1)\vartheta$$

$$u = \frac{1}{2}(kd\cos\Theta + \vartheta) = \frac{\pi d}{\lambda}\cos\Theta + \frac{\vartheta}{2}$$

$$F(u) = \left| \frac{\sin Nu}{N \sin u} \right|$$

 θ - kąt padania

ϑ - przesunięcie fazowe

N - liczba źródeł izotropowych

d - odległość pomiędzy elementami

λ- długość fali

Jeśli d<λ występuje jeden listek główny

d=0.5λ, N=6, $\vartheta=0[°]$, f=1GHz

Poziom listków bocznych określa zależność:

$$F_{b max} \approx \frac{1}{N \sin \frac{2n+1}{2N} \pi}, \quad \underline{n} = 1, 2, ..., N-2$$

Dla d<λ: występuje jeden listek główny

 $d=0.75\lambda$, N=6, $\vartheta=0[°]$, f=1GHz

Jeśli d>=λ to zaczynają występować wtórne maxima dyfrakcyjne

 $d=1\lambda$, N=6, $\vartheta=0[^{\circ}]$, f=1GHz

Jeśli d>=λ to zaczynają występować wtórne maxima dyfrakcyjne

 $d=1.25\lambda$, N=6, $\vartheta=0[°]$, f=1GHz

Pochylenie głównego listka pionowej charakterystki anteny

$$u = \frac{1}{2}(kd\cos\Theta + \vartheta) = \frac{\pi d}{\lambda}\cos\Theta + \frac{\vartheta}{2}$$

$$\theta = ?$$

$$\cos\theta = \frac{\left(u - \frac{\vartheta}{2}\right)\lambda}{\pi * d}$$

$$\theta = \arccos(\frac{\left(u - \frac{\vartheta}{2}\right)\lambda}{\pi * d})$$

Jeśli elementy układu są pobudzane z jednostajną progresją fazy (ϑ =/=0), to kierunek maksymalnego promieniowania ulega odchyleniu od normalnej do osi układu.

Pochylenie głównego listka o 5 stopni

 $d=0.25\lambda$, N=6, $\vartheta=8[°]$, f=1GHz

Wartość pobudzenia anteny izotropowej -0,083

 θ =5[°]

Bez przesunięcia:

Pochylenie głównego listka o 10 stopni

 $d=0.25\lambda$, N=6, $\vartheta=15[^{\circ}]$, f=1GHz

Wartość pobudzenia anteny izotropowej

-0,190

 θ =10[°]

Bez przesunięcia:

Pochylenie głównego listka o 5 stopni

 $d=0.5\lambda$, N=6, $\vartheta=15[^{\circ}]$, f=1GHz

Wartość pobudzenia anteny izotropowej -0,096

 θ =5[°]

Bez przesunięcia:

Pochylenie głównego listka o 10 stopni

 $d=0.5\lambda$, N=6, $\vartheta=30[°]$, f=1GHz

Wartość pobudzenia anteny izotropowej -0,190

 $\theta = 10[°]$

Bez przesunięcia:

Pochylenie głównego listka o 5 stopni

d=0.75λ, N=6, $\vartheta=25[°]$, f=1GHz

Wartość pobudzenia anteny izotropowej

-0,074

 θ =5[°]

Bez przesunięcia:

Pochylenie głównego listka o 10 stopni

d=0.75λ, N=6, $\vartheta=45[°]$, f=1GHz

Wartość pobudzenia anteny izotropowej -0,190

 θ =10[°]

Bez przesunięcia:

Charakterystyka, a ilość źródeł izotropowych (d=0.5λ, N=x, ϑ=0[°], f=1GHz)

Podsumowanie

- Pochylenie głównego listka anteny zależne jest od przesunięcia fazowego i odległości pomiędzy elementami.
- Kluczowa jest odległość pomiędzy elementami:
- o d<lambda listki główne
- d>=lambda wtórne maxima dyfrakcyjne
- Im większa odległość pomiędzy elementami (zakładając zakres 0<d<lambda) tym większe potrzebne przesunięcie fazowe do pochylenia listka głównego anteny.
- Wyznaczenie charakterystyki promieniowania układu anten pozwala nam na dopasowanie się do konkretnego zastosowania anteny i zwiększenia jakości usług.

Bibliografia

Literatura: D. Bem – Anteny i rozchodzenie się fal radiowych – rozdział 2.4.1 i 2.4.2