

Chapter 9: Subnetting IP Networks

Introduction to Networks

Cisco Networking Academy® Mind Wide Open™

- 9.0 Introduction
- 9.1 Subnetting an IPv4 Network
- 9.2 Addressing Schemes

9.1 Subnetting an IPv4 Network

Cisco Networking Academy® Mind Wide Open®

Subnetting is the process of segmenting a larger network into multiple smaller networks called subnetworks or subnets.

Reasons for Subnetting:

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
 - Control traffic by containing broadcast traffic within each subnetwork.
 - Reduce overall network traffic and improve network performance.

Network Segmentation Subnetting

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

Planning the Network

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Subnetting an IPv4 Network

Basic Subnetting

- Subnets are created by using one or more of the host bits as network bits.
- This is done by borrowing some of the bits from the host portion of the address.
- The more host bits borrowed, the more subnets can be created.
- For each bit borrowed, the number of subnetworks available is doubled.
- For example, if 1 bit is borrowed, 2 subnets can be created. If 2 bits, 4 subnets are created, if 3 bits are borrowed, 8 subnets are created, and so on (2ⁿ; where n is the number of borrowed bits).
- However, with each bit borrowed, fewer host addresses are available per subnet.

Let's examine the example in Section 9.1.3.1.

Subnetting an IPv4 Network

Subnetting Formulas

Subnetting an IPv4 Network Subnets in Use

Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25

192.168.1.128/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential