Розрахунково-графічне завдання

РОЗРАХУНОК ОДНОФАЗНОГО КОЛА СИНУСОЇДНОГО СТРУМУ.

В електричному колі (*Puc. 76*) діє джерело синусоїдної EPC $e = \sqrt{2E}\sin(\omega t + \psi)$. Всі параметри кола наведені в таблицях №1 і №2.

Для електричного кола без взаємної індукції:

- в) розрахувати всі струми комплексним методом, визначити покази вольтметоа:
- б) скласти баланс активних Р і реактивних Q потужностей кола;
- в) побудувати векторну діаграму струмів і топографічну діаграму напруг;
- г) прийняти опір R₂ = 0 і, вважаючи реактивний опір цієї вітки невідомим, визначити його за умовою резонансу струмів;
- д) розрахувати струми для резонасного стану кола; <u>визначити покази вольт</u> метра;
- є) перевірити правильність розрахунків за балансом потужностей;
- ж) видаливши із кола активні опори, записати частотну характеристику (ЧХ) вхідного опору кола і побудувати її, знайшовши нулі і полюси.

<u>Увага!</u> Активні опори віток, з'єднані паралельно з ємністю чи індуктивністю розірвати ($R = \infty$), всі інші закоротити (R = 0).

11. При наявності магнітного зв'язку між індуктивними елементами L_1 , L_2 (однойменні кінці елементів відмічені на схемі точками):

- перетворивши схему до двох незалежних контурів, розрахувати струми у всіх вітках схеми методом контурних струмів, визначити покази вольтметра;
- б) перевірити правильність розрахунків за балансом потужностей, визначити вктивну і реактивну потужності магнітного зв'язку для кожної з індуктивно звязаних котушок;
- в) побудувати векторну діаграму струмів і топографічну діаграму напрут (на діаграмі показати напрути взаємної індукції).
- пі. Відкинувши крайню вітку між полюсами 2, 2', зробити розв'язок магнітного зв'язку. Одержану схему розглядяти як чотириполюсник з полюсами 1, 1' і 2, 2':
- а) розрахувати коєфіцієнти A, B, C, D (A_{11} , A_{12} , A_{21} , A_{22}) 4-полюсника;
- б) визначити ЕРС É та струм Î₁ на вході 4-полюсника, при яких на його виході U₂=100(B), I₂=1(A), а кут зсуву фаз між синусоїдами напруги і струму φ₂=30°. Зробити перевірку, навантаживши 4-полюсник на відповідний опір.
- в) розрахувати параметри R. L. С віток (Т чи П) схеми заміщення;
- г) визначити вторинні параметри чотириполюсника (характеристичні опори Z_{C1} , Z_{C2} , сталу передачі γ).

- д) в узгодженому режимі чотириполюсника за вторянними параметрами визначити комплекси напруги \dot{U}_2 і струму \dot{I}_2 (на виході чотириполюсника) при заданій *EPC* на вході. Зробити перевірку для схеми заміщення.
 - Увага! 1. Параметри елементів кола нанести на ехему.

Всі кінцеві вирази для комплексів давати у в алгебраїчній і показниковій формах.

Примітка. Варіант даних для розрахунку вибрати згідно з тризначним шифром (№1, №2, №3). Перша цифра відповідає номеру колонки таблиці №1, друга - номеру колонки таблиці №2, третя - номеру схеми. Шифр задається викладачем.

Таблици №1

Параметр	1	2	3	4	5	6	7	8	9	0
E (B)	100	120	140	160	18	200	220	240	260	280
W.	-20	-30	-45	-60	25	35	50	70	80	90
R_1 (OM)	5	7	9	11	12	14	16	18	20	22
R_2 (OM)	7	9	11	13	10	12	14	16	18	21
R ₃ (O _M)	9	11	13	15	8	10	12	14	16	6
R4 (OM)	12	13	15	17	6	8	10	12	11	19

Таблиця №2

Параметр	1	2	3	4	5	6	7	8	9	0
$X_{L1}(O_M)$	30	35	40	45	50	40	55	60	45	37
$X_{L2}(Om)$	35	40	45	50	40	35	45	50	30	27
$X_{L3}(O_M)$	40	45	50	55	35	25	30	43	25	20
$X_{C1}(OM)$	10	15	20	25	20	15	17	20	15	13
$X_{C2}(O_M)$	15	20	25	30	15	10	13	15	12	10
$X_{\mathfrak{S}}(O_{M})$	20	25	30	35	12	8	10	13	8	6
X_M (OM)	20	23	25	27	30	20	22	32	20	15
f(Ty)	50	60	50	60	100	50	60	100	60	50
Тип схеми заміщення	T	П	Т	п	T	П	Т	Π	т	Ð

Puc. 76

CHRUK BERUPEL IRBUT INTEPRTYPE

Нейман Л. Р., Демирчян К. С. "Теоретические основы электротехники". Т. 1. – М.: Высшая Школа, 1981.

Зевеке Г. В., Ионкин П. А., Нетушил А. В., Страхов С. В. "Основы теории цепей". – М.: Энергоятомиздат, 1989.

Шебес М. Р. "Задачник по теории линейных электрических цепей". – М.: Высшая, Школа, 1982.

Антамонов В.Х., Курило И.А. "Избранные задачи по линейным электрическим цепям": Учебное пособие.-К.,: НМК ВО, 1993. – 96 с.

Бойко В, С., Бойко В, В., Видолоб Ю. Ф., Курило І. А., Шеховцов В. І., Шидловська Н. А. "Теоретичні основи електротехніки".Т. 1.- К.: "Політехніка",2004. — 269 с.