САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. ПЕТРА ВЕЛИКОГО

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт

по лабораторной работе №2 «Метод опорных векторов» по дисциплине «Системы искусственного интеллекта»

Студентка гр. $3630201/70101$	 О. В. Саксина
Преподаватель	 Л. В. Уткин

Содержание

1	Задание 1	3
	1.1 Постановка задачи	3
	1.2 Реализация	3
2	Задание 2	3
	2.1 Постановка задачи	3
	2.2 Реализация	
3	Задание 3	4
•	3.1 Постановка задачи	4
	3.2 Реализация	5
	3.2 геализация	J
4	Задание 4	7
	4.1 Постановка задачи	7
	4.2 Реализация	
		·
5	Задание 5	8
	5.1 Постановка задачи	8
	5.2 Реализация	
_	n a	_
b	Задание 6	9
	6.1 Постановка задачи	
	6.2 Реализация	9

1.1 Постановка задачи

Построить алгоритм метода опорных векторов типа "C-classification"с параметром C=1, используя ядро "linear". Визуализировать разбиение пространства признаков на области с помощью полученной модели. Вывести количество полученных опорных векторов, а также ошибки классификации на обучающей и тестовой выборках.

1.2 Реализация

Была обучена SVM-модель типа "C-classification"с параметром C=1 и ядром "linear". График разбиения пространства признаков тестовых данных на области представлен на Puc. 1. Получено по два опорных вектора на тестовой и обучающей выборках, и в обоих случаях ошибки классификации отсутствуют.

SVM classification plot

Рис. 1: Тестовая выборка

2 Задание 2

2.1 Постановка задачи

Используя алгоритм метода опорных векторов типа "C-classification"с линейным ядром, добиться нулевой опибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра С. Выбрать оптимальное значение данного параметра и объяснить свой выбор.

2.2 Реализация

На рис. 2 и 3 представлены разбиения пространства признаков на области обучающей и тестовой выборки соответственно моделью с параметром C=1.

Точность на обучающей выборке составила $96\,\%$, на тестовой – 100%. Точность на обучающей выборке не изменялась с повышением значения параметра C до 1000000, что можно объяснить спецификой распределения данных. Но значительное повышение C уменьшало точность на тестовой выборке, что говорит о переобучении модели.

SVM classification plot

Рис. 2: Обучающая выборка

SVM classification plot

Рис. 3: Тестовая выборка

3 Задание 3

3.1 Постановка задачи

Среди ядер "polynomial "radial" и "sigmoid "выбрать оптимальное в плане количества ошибок на тестовой выборке. Попробовать различные значения параметра degree для полиномиального ядра.

3.2 Реализация

На рис. 3-5 представлены разбиения пространства признаков на области моделями с радиальным, сигмоидным и полиномиальным ядрами. Наименьшее количество ошибок классификации получила модель с радиальным ядром, что показано на рис. 7. На рис. 8 — разбиения пространства признаков на области моделями с полиномиальным ядром, со степенью полинома 4, 5 и 10 соответственно. Наименьшее количество ошибок было получено применением модели с параметром degree, равном 2.

SVM classification plot

Рис. 4: Ядро radial

SVM classification plot

Рис. 5: Ядро sigmoid

SVM classification plot

Рис. 6: Ядро polynomial (degree = 2)

Рис. 7: Гистограмма распределения ошибок классификации по типам ядра

Рис. 8: Ядро polynomial с параметром degree 4, 5, 10

4.1 Постановка задачи

Среди ядер "polynomial "radial"и "sigmoid"выбрать оптимальное в плане количества ошибок на тестовой выборке.

4.2 Реализация

На рис. 9 представлены разбиения пространства признаков на области моделями с полиномиальным, радиальным и сигмоидным ядрами.

Полученное распределение ошибок классификации: полиномиальное -0.130, радиальное -0.110, сигмоидное -0.195. Результаты пименения всех моделей на тестовой выборке дали результаты классификации с точностью близкой к 100%.

Рис. 9: Ядро polynomial с параметром degree 4, 5, 10

Рис. 10: Зависимость ошибки классификации от типа ядра

5.1 Постановка задачи

Среди ядер "polynomial "radial"и "sigmoid"выбрать оптимальное в плане количества ошибок на тестовой выборке. Изменяя значение параметра gamma, продемонстрировать эффект переобучения, выполнить при этом визуализацию разбиения пространства признаков на области.

5.2 Реализация

На рис. 11 представлены разбиения пространства признаков на области моделями с полиномиальным, радиальным и сигмоидным ядрами с различными значениями параметра gamma. При gamma = 1 лучшую точность даёт модель с ядром radial (рис. 12). Точность модели достигает 96%, что является достаточно высоким значением и может говорить о переобучении. На графиках видно, как при увеличении gamma края областей всё больше изгибаются, форма области подгоняется под данные, что очевидно приводит к перееобучению модели в особенности для модеои с радиальным ядром. Данный вывод продемонстрирован на рис. 13.

Рис. 11: Разбиения пространства признаков на области

Рис. 12: Зависимость ошибки классификации от типа ядра

Рис. 13: Зависимость ошибки классификации от значения gamma в модели с ядром radial

6.1 Постановка задачи

Построить алгоритм метода опорных векторов типа "eps-regression"с параметром C=1, используя ядро "radial". Отобразить на графике зависимость среднеквадратичной ошибки на обучающей выборке от значения параметра ϵ .

6.2 Реализация

Для данных, представленных на рис. 13, была построена модель svm регрессии. По графику, изображённому на рис. 14, видно, что с ростом значения параметра ϵ среднеквадратичная ошибка увеличивается, т.к. при обучении модели ошибки, находящиеся на расстоянии ϵ от построенной линии регрессии игнорируются,.

Рис. 14: Распределение данных

Рис. 15: График зависимости среднеквадратичной ошибки от ϵ