Лекция 13

6. Линейное программирование

6.1. Постановка задач линейного программирования

Общая задача линейного программирования может быть сформулирована следующим образом: минимизировать функцию

$$f(\boldsymbol{x}) = \sum_{j=1}^{n} c_j x_j = \langle \boldsymbol{c}, \boldsymbol{x} \rangle, \tag{1.1}$$

при условиях

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, k,$$
(1.2)

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, \quad i = k+1, \dots, m,$$
(1.3)

$$x_j \ge 0, \quad j = 1, \dots, s, \tag{1.4}$$

где $c_j, b_i, a_{ij}, i = 1, \ldots, m, j = 1, \ldots, n,$ — заданные числа.

Функция (1.1) называется *целевой функцией*, условия (1.2) — *ограничениями типа неравенств*, условия (1.3) — *ограничениями типа равенств*. Условия (1.4) неотрицательности переменных тоже являются ограничениями типа неравенств, но их принято выделять отдельно. В задаче (1.1) — (1.4) не исключаются случаи, когда в (1.1) — (1.4) отсутствуют ограничения типа неравенств или типа равенств.

Точка (x_1, \ldots, x_n) , удовлетворяющая всем условиям (1.2) - (1.4), называется *пла*ном (или *допустимой* точкой) задачи (1.1) - (1.4). Множество всех допустимых точек будет называться *допустимым множеством* и обозначаться через X.

Пусть $f_* = \inf_{x \in X} f(x)$ — нижняя грань функции f(x) на множестве X. Точку $x_* \in X$ называют решением задачи (1.5), если $f(x_*) = f_*$. Множество решений этой задачи обозначим через X_* . Таким образом,

$$X_* = \{x \in X : f(x) = f_*\}.$$

Задача (1.1) – (1.4) называется разрешимой, если $X \neq \emptyset$, $f_* > -\infty$ и $X_* \neq \emptyset$.

Для обозначения задачи минимизации функции f(x) на множестве X часто пользуются следующей краткой записью:

$$f(x) \to \min, \quad x \in X.$$
 (1.5)

Задача максимизации функции f(x) на множестве X записывается в виде

$$f(x) \to \max, \quad x \in X.$$
 (1.6)

Для задачи (1.6) введём обозначения: $f^* = \sup_{x \in X} f(x)$ — верхняя грань функции f(x) на множестве $X; X^* = \{x \in X: \ f(x) = f^*\}$ — множество решений задачи (1.6). Эта задача равносильна задаче минимизации

$$h(x) = -f(x) \to \min, \quad x \in X, \tag{1.7}$$

т. е. всякое решение задачи (1.7) является решением задачи (1.6) и обратно.

Пусть $A \in \text{Mat}(m, n), \boldsymbol{b} \in \mathbb{R}^m, \boldsymbol{c} \in \mathbb{R}^n$.

Основной задачей ЛП называется задача:

$$\langle c, x \rangle \to \min, \quad Ax \leq b.$$
 (1.8)

Основная задача получается из общей при s = 0, k = m.

 $\mathit{Стандартной}$ задачей ЛП называется задача:

$$\langle c, x \rangle \rightarrow \min, \quad Ax \leq b, \quad x \geq 0.$$
 (1.9)

Стандартная задача получается из общей при s = n, k = m.

Kанонической задачей ЛП называется задача:

$$\langle \boldsymbol{c}, \boldsymbol{x} \rangle \to \min, \quad A\boldsymbol{x} = \boldsymbol{b}, \quad \boldsymbol{x} \ge \boldsymbol{0}.$$
 (1.10)

Каноническая задача получается из общей при s = n, k = 0.

1. Ограничение-неравенство

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i$$

добавлением в левую часть дополнительной неотрицательной переменной преобразуется в ограничение-равенство

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n + x_{n+1} = b_i, \quad x_{n+1} \ge 0.$$

2. Ограничение-равенство

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i$$

можно записать в виде системы ограничений-неравенств

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i \\ -a_{i1}x_1 - a_{i2}x_2 - \ldots - a_{in}x_n \le -b_i. \end{cases}$$

3. Если переменная x_k не подчинена условию неотрицательности, то её можно заменить двумя неотрицательными переменными u_k , v_k , приняв $x_k = u_k - v_k$.

Преобразования 1, 2, 3 позволяют любую задачу ЛП на максимум или минимум представить в любой из указанных форм.

Пример 1. Записать в форме канонической задачи на минимум следующую задачу:

$$F = 3x_1 - 2x_2 - 5x_4 + x_5 \rightarrow \max$$

при условиях

$$\begin{cases} 2x_1 + x_3 - x_4 + x_5 \le 2\\ x_1 - x_3 + 2x_4 + x_5 \le 3\\ 2x_2 + x_3 - x_4 + 2x_5 \le 6.\\ x_1, x_2, x_3, x_4, x_5 \ge 0. \end{cases}$$

Используя (1.7) и преобразование 2, получим

$$-3x_1 + 2x_2 + 5x_4 - x_5 \to \min$$

$$\begin{cases}
2x_1 + x_3 - x_4 + x_5 + x_6 = 2 \\
x_1 - x_3 + 2x_4 + x_5 + x_7 = 3 \\
2x_2 + x_3 - x_4 + 2x_5 + x_8 = 6.
\end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \ge 0$$

6.2. Примеры задач линейного программирования

Задача планирования производства

Пусть некоторое предприятие производит n типов товаров, затрачивая при этом m типов ресурсов. Известны следующие параметры:

 a_{ij} — количество i-го ресурса, необходимое для производства единичного количества j-го товара, $a_{ij} \ge 0$ $(i = 1, \ldots, m; j = 1, \ldots, n);$

 b_i — запас *i*-го ресурса на предприятии, $b_i > 0$;

 c_{j} — цена единичного количества j-го товара, $c_{j} > 0$.

Предполагается, что технология производства линейна, т.е. затраты ресурсов растут прямо пропорционально объёму производства. Пусть число x_j показывает планируемый объём производства j-го товара. Тогда допустимым является только такой набор производимых товаров $\mathbf{x} = (x_1, \dots, x_n)$, при котором суммарные затраты каждого i-го ресурса не превосходят его запаса:

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m,$$
(2.1)

Кроме того, имеем следующее естественное ограничение:

$$x_j \ge 0, \quad j = 1, \dots, n. \tag{2.2}$$

Стоимость набора товаров \boldsymbol{x} выражается величиной

$$\sum_{j=1}^{n} c_j x_j. \tag{2.3}$$

Задача планирования производства ставится следующим образом: среди всех векторов \boldsymbol{x} , удовлетворяющих ограничениям (2.1), (2.2), найти такой, при котором величина (2.3) принимает наибольшее значение. Таким образом, мы получаем задачу ЛП в стандартной форме (1.9) с той лишь спецификой, что матрица $A = (a_{ij})$ здесь неотрицательна, а векторы $\boldsymbol{b} = (b_i)$ и $\boldsymbol{c} = (c_i)$ положительны.

Задача о рационе

При организации питания больших коллективов людей, например в армии, больницах и т. п., возникает задача о наиболее экономном рационе питания, удовлетворяющем определённым медицинским требованиям. Пусть имеется n продуктов питания (хлеб, мясо, молоко, картофель и т. п.), в которых учитывается m полезных веществ (жиры, белки, углеводы, витамины и т. п.). Известны следующие параметры:

 a_{ij} — содержание i-го вещества в единичном количестве j-го продукта, $a_{ij} \ge 0$ $(i = 1, \ldots, m; j = 1, \ldots, n);$

 b_i — минимальное количество i-го вещества, которое должно потребляться индивидуумом в расчёте, скажем, на месяц, $b_i > 0$;

 c_i — цена единичного количества *j*-го продукта, $c_i > 0$.

Задача о рационе формулируется следующим образом:

$$\sum_{j=1}^{n} c_j x_j \to \min.$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, \quad i = 1, \dots, m,$$

$$x_{j} \ge 0, \quad j = 1, \dots, n.$$
(2.4)

где x_j обозначает количество j-го продукта, потребляемого индивидуумом в течение месяца. Иными словами, среди всех рационов питания $\mathbf{x} = (x_1, \dots, x_n)$, покрывающих минимальные потребности индивидуума в полезных веществах, необходимо выбрать наиболее дешевый.

Отметим, что (2.4) — это просто стандартная задача ЛП на минимум с неотрицательными параметрами.

Транспортная задача

Пусть некоторый однородный продукт (уголь, кирпич, картофель и т.п.) хранится на m складах и потребляется в n пунктах. Известны следующие параметры:

 a_i — запас продукта на i-м складе, $a_i > 0 \ (i = 1, ..., m);$

 b_{j} — потребность в продукте в j-м пункте, $b_{j} > 0 \ (j = 1, ..., n);$

 c_{ij} — стоимость перевозки единичного количества продукта с i-го склада в j-й пункт, $c_{ij}>0$.

При этом суммарные запасы равны суммарным потребностям:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j. \tag{2.5}$$

Транспортная задача ставится как каноническая задача ЛП следующего специального вида:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min.$$

$$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$
(2.6)

где x_{ij} показывает количество продукта, перевозимого с i-го склада в j-й пункт. Иными словами, требуется так организовать перевозки продукта со складов в пункты потребления, чтобы при полном удовлетворении потребностей минимизировать суммарные транспортные расходы. Заметим, что условие (2.5) является необходимым и достаточным для существования по крайней мере одной матрицы перевозок $X = (x_{ij})$, удовлетворяющей ограничениям задачи (2.6).

Лекция 14

6.3. Геометрическая интерпретация задачи ЛП

Задачу ЛП с двумя переменными можно решить геометрически.

Пусть, например, дана основная задача ЛП (1.8) при n=2. Тогда необходимо прежде всего изобразить на плоскости допустимое множество этой задачи

$$X = \{ \boldsymbol{x} \in \mathbb{R}^2 : A\boldsymbol{x} \leq \boldsymbol{b} \}.$$

Линии уровня её целевой функции представляют собой семейство параллельных прямых

$$\langle c, x \rangle = \alpha, \quad \alpha \in \mathbb{R},$$

причём их общая нормаль \boldsymbol{c} смотрит в сторону возрастания функции $<\boldsymbol{c},\boldsymbol{x}>$. Поиск решения задачи сводится к нахождению максимального числа α^* среди всех α , при которых прямая $<\boldsymbol{c},\boldsymbol{x}>=\alpha$ имеет непустое пересечение с X. Если такое (конечное) α^* существует, то оно является значением задачи. При этом любая точка на прямой $<\boldsymbol{c},\boldsymbol{x}>=\alpha^*$, лежащая в X, служит решением задачи. Решение x^* может быть как единственным, так и неединственным. Если при всех достаточно больших α пересечение прямой $<\boldsymbol{c},\boldsymbol{x}>=\alpha$ с X непусто, то значение задачи бесконечно, и, следовательно, она не имеет решения.

Пример 1. Минимизировать функцию

$$z = -3x_1 - 4x_2$$

при ограничениях $x_1 \ge 0, x_2 \ge 0,$

$$\begin{cases} x_1 + x_2 \le 20 \\ -x_1 + 4x_2 \le 20 \\ x_1 \ge 10 \\ x_2 \ge 5. \end{cases}$$

Допустимой областью, изображённой на рисунке, является четырёхугольник PQRS. Функция z убывает в направлении вектора

$$-\nabla z = (3,4)^t.$$

Минимальное значение функции z = -68 и достигается в точке R(12,8).

Пример 2. Минимизировать функцию

$$z = -6x_1 - 2x_2$$

при ограничениях $x_1 \ge 0, x_2 \ge 0,$

$$\begin{cases} 2x_1 + 4x_2 \le 9\\ 3x_1 + x_2 \le 6. \end{cases}$$

На рисунке четырёхугольник ОАВС изображает допустимую область. Вектор

$$-\nabla z = (6,2)^t$$

указывает направление убывания функции z. Любая точка на отрезке [B,C] является оптимальным решением.

Произвольная точка отрезка [B,C] представляется формулой

$$\theta\left(\frac{3}{2}, \frac{3}{2}\right) + (1 - \theta)(2, 0) = \left(2 - \frac{\theta}{2}, \frac{3\theta}{2}\right) = \left(\frac{4 - \theta}{2}, \frac{3\theta}{2}\right),$$

где $0 \le \theta \le 1$. Для каждой такой точки значение функции z равно

$$-6 \cdot \frac{4-\theta}{2} - 2 \cdot \frac{3\theta}{2} = -12.$$

Пример 3. Максимизировать функцию

$$z = x_1 + x_2$$

при ограничениях $x_1 \ge 0, x_2 \ge 0,$

$$\begin{cases} x_1 - x_2 \ge 1 \\ x_2 \le 2. \end{cases}$$

Допустимая область, изображенная на рисунке, не ограничена в направлении, в котором функция z возрастает, т. е. в допустимой области не существует конечной точки, в которой функция z достигала бы максимума. Решение, как и максимальное значение функции z, не ограничено.

Однако некоторые задачи с неограниченными допустимыми областями имеют конечные решения. Например, задача максимизации функции $z'=x_2$ при ограничениях из примера 3 имеет конечное решение. Разумеется, если бы задача состояла в минимизации функции $z=x_1+x_2$ при тех же ограничениях, то минимум достигался бы в единственной точке $(z_{min}=1$ в вершине допустимой области A(1,0)).

Пример 4. Минимизировать функцию

$$z = 2x_1 + 3x_2$$

при ограничениях $x_1 \ge 0, x_2 \ge 0,$

$$\begin{cases} x_1 + x_2 \ge 10 \\ 3x_1 + 5x_2 \le 15. \end{cases}$$

Ограничения задачи противоречивы, поэтому нет допустимых решений.

