© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°10

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 Evident.

2 On trouve

$$\begin{split} & \phi_{\mathbf{A}}(\mathbf{E}_{1,1}) = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix} = -b\mathbf{E}_{1,2} + c\mathbf{E}_{2,1} \\ & \phi_{\mathbf{A}}(\mathbf{E}_{2,2}) = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix} = b\mathbf{E}_{1,2} + c\mathbf{E}_{2,1} \\ & \phi_{\mathbf{A}}(\mathbf{E}_{1,2}) = \begin{pmatrix} -c & a - d \\ 0 & c \end{pmatrix} = -c\mathbf{E}_{1,1} + (a - d)\mathbf{E}_{1,2} + c\mathbf{E}_{2,2} \\ & \phi_{\mathbf{A}}(\mathbf{E}_{2,1}) = \begin{pmatrix} b & 0 \\ (d - a) & -b \end{pmatrix} = b\mathbf{E}_{1,1} + (d - a)\mathbf{E}_{2,1} - b\mathbf{E}_{2,2} \end{split}$$

On en déduit que la matrice de Φ_A dans la base $(E_{1,1},E_{2,2},E_{1,2},E_{2,1})$ est

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & -c & b \\ 0 & 0 & c & -b \\ -b & b & a-d & 0 \\ c & -c & 0 & d-a \end{pmatrix}$$

1

© Laurent Garcin MP Dumont d'Urville

3 On trouve

$$\chi_{A} = \det(XI_{4} - M) = \begin{vmatrix} X & 0 & c & -b \\ 0 & X & -c & b \\ b & -b & X - a + d & 0 \\ -c & c & 0 & X - d + a \end{vmatrix}$$

$$= X \begin{vmatrix} 1 & 0 & c & -b \\ 1 & X & -c & b \\ 0 & -b & X - a + d & 0 \\ 0 & c & 0 & X - d + a \end{vmatrix} \qquad C_{1} \leftarrow C_{1} + C_{2} \text{ puis factorisation}$$

$$= X \begin{vmatrix} 1 & 0 & c & -b \\ 0 & X & -2c & 2b \\ 0 & -b & X - a + d & 0 \\ 0 & c & 0 & X - d + a \end{vmatrix} \qquad L_{2} \leftarrow L_{2} - L_{1}$$

$$= X \begin{vmatrix} X & -2c & 2b \\ -b & X - a + d & 0 \\ c & 0 & X - d + a \end{vmatrix}$$

$$= X (X(X - a + d)(X - d + a) - 2bc(X - a + d) - 2bc(X - d + a)) \qquad \text{d'après la règle de Sarrus}$$

$$= X^{2} [X^{2} - ((d - a)^{2} + 4bc)]$$

4 Posons $\Delta = (d-a)^2 + 4bc$ de sorte que $\chi_{\Phi_A} = X^2(X^2 - \Delta)$.

Si Δ < 0, χ_A n'est pas scindé dans $\mathbb R$ donc Φ_A n'est pas diagonalisable.

Si $\Delta=0, \chi_{\Phi_A}=X^4$ donc $Sp(\Phi_A)=\{0\}$. Si Φ_A était diagonalisable, il serait nul, ce qui n'est pas. Ainsi Φ_A n'est pas diagonalisable.

Si $\Delta > 0$, alors $\chi_{\Phi_A} = X^2(X - \delta)(X + \delta)$ en posant $\delta = \sqrt{\Delta}$. Donc $Sp(\Phi_A) = \{0, \delta, -\delta\}$ (en particulier, $\delta \neq -\delta$). En considérant les multiplicités de δ et $-\delta$ dans χ_{Φ_A} , on a dim $E_{\delta}(\Phi_A) = \dim E_{-\delta}(\Phi_A) = 1$. Enfin, I_2 et A appartiennent à Ker Φ_A et ne sont pas colinéaires par hypothèse donc dim $E_0(\Phi) = \dim \operatorname{Ker} \Phi_A \geq 2$. En considérant la multiplicité de 0 dans χ_{Φ_A} , on a donc dim $E_0(\Phi) = 2$. Ainsi $\sum_{\lambda \in Sp(\Phi_A)} \dim E_{\lambda}(\Phi_A) = 4 = \dim \mathcal{M}_2(\mathbb{R})$ donc Φ_A est diagonalisable.

Par conséquent, Φ_A est diagonalisable si et seulement si $\Delta>0$.

Remarquons que $\chi_A = X^2 - tr(A)X + det(A) = X^2 - (a+d)X + (ad-bc)$. Notamment le discriminant de χ_A vaut $(a+d)^2 - 4(ad-bc) = (a-d)^2 + 4bc = \Delta$.

Si Δ < 0, χ_A n'est pas scindé donc A n'est pas diagonalisable.

Si $\Delta = 0$, alors $\chi_A = X^2$ et Sp(A) = $\{0\}$. A nouveau, si A était diagonalisable, elle serait nulle, ce qui est exclu par hypothèse.

Si $\Delta > 0$, χ_A est scindé à racines simples donc A est diagonalisable.

Finalement, A est diagonalisable si et seulement si $\Delta>0$ i.e. si et seulement si Φ_A est diagonalisable.

6 6.a On trouve $DE_{i,j} - E_{i,j}D = (\lambda_i - \lambda_j)E_{i,j}$.

6.b Soit $(i, j) \in [1, n]^2$. D'après l'énoncé, $A = PDP^{-1}$. Comme $B_{i,j} = PE_{i,j}P^{-1}$

$$\Phi_{\mathbf{A}}(\mathbf{B}_{i,j}) = \mathbf{A}\mathbf{B}_{i,j} - \mathbf{B}_{i,j}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{E}_{i,j}\mathbf{P}^{-1} - \mathbf{P}\mathbf{E}_{i,j}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\left(\mathbf{D}\mathbf{E}_{i,j} - \mathbf{E}_{i,j}\mathbf{D}\right)\mathbf{P}^{-1} = (\lambda_i - \lambda_j)\mathbf{P}\mathbf{E}_{i,j}\mathbf{P}^{-1} = (\lambda_i - \lambda_j)\mathbf{B}_{i,j}\mathbf{P}^{-1} = (\lambda_i - \lambda_j)\mathbf{P}\mathbf{E}_{i,j}\mathbf{P}^{-1} = (\lambda_i - \lambda_j)\mathbf{B}_{i,j}\mathbf{P}^{-1} = (\lambda_i - \lambda_j)\mathbf{B}_{i,j$$

Ainsi $B_{i,j}$ est bien un vecteur propre de Φ_A .

6.c L'application $\varphi \colon M \in \mathcal{M}_n(\mathbb{R}) \mapsto PMP^{-1}$ est un automorphisme de $\mathcal{M}_n(\mathbb{R})$. En effet, cette application est clairement linéaire et on vérifie qu'en posant $\psi \colon M \in \mathcal{M}_n(\mathbb{R}) \mapsto P^{-1}MP$, on a bien $\psi \circ \varphi = \varphi \circ \psi = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$. On en déduit notamment que l'image de la base $(E_{i,j})$ de $\mathcal{M}_n(\mathbb{R})$, à savoir la famille $(B_{i,j})$, est une base de $\mathcal{M}_n(\mathbb{R})$. Ainsi il existe une base de $\mathcal{M}_n(\mathbb{R})$ formée de vecteurs propres de $\Phi_A : \Phi_A$ est diagonalisable.

7.a 7.a.i Comme Φ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$, ses valeurs propres sont réelles. 7.a.ii Il suffit de constater que

$$\gamma_{\Delta T} = \det(XI_n - A^T) = \det((XI_n - A)^T) = \det(XI_n - A)$$

On conclut en invoquant le fait que les valeurs propres sont les racines du polynôme caractéristique.

© Laurent Garcin MP Dumont d'Urville

7.a.iii

$$\Phi_{\Delta}(XY^{\mathsf{T}}) = AXY^{\mathsf{T}} - XY^{\mathsf{T}}A = zXY^{\mathsf{T}} - X(A^{\mathsf{T}}Y)^{\mathsf{T}} = zXY^{\mathsf{T}} - \overline{z}XY^{\mathsf{T}} = (z - \overline{z})XY^{\mathsf{T}}$$

Comme X et Y ne sont pas nuls, il existe $(i,j) \in [[1,n]]^2$ tel que $X_i \neq 0$ et $Y_j \neq 0$. Alors $(XY^T)_{i,j} = X_iY_j \neq 0$ donc $XY^T \neq 0$. On en déduit que $z - \overline{z}$ est bien une valeur propre de Φ_A .

7.b A possède au moins une valeur propre complexe z car χ_A est scindé dans \mathbb{C} . Comme $\chi_A \in \mathbb{R}[X]$, \overline{z} est également valeur propre de A. D'après la question précédente, $z - \overline{z} = 2i \operatorname{Im}(z)$ est également valeur propre de Φ_A . Mais toutes les valeurs propres de Φ_A sont réelles donc Im(z) = 0 puis $z \in \mathbb{R}$. Ainsi A possède au moins une valeur propre réelle.

REMARQUE. On a également montré que toutes les valeurs propres de A étaient réelles.

7.c Soit $(i, j) \in [1, n]^2$. Par définition, $\Phi_A(P_{i,j}) = \lambda_{i,j}P_{i,j}$ ou encore $AP_{i,j} - P_{i,j}A = \lambda_{i,j}P_{i,j}$. On en déduit que

$$AP_{i,j}X = (\lambda_{i,j}P_{i,j} + P_{i,j}AX) = (\lambda_{i,j} + \lambda)P_{i,j}X = \mu_{i,j}P_{i,j}X$$

en posant $\mu_{i,j} = \lambda + \lambda_{i,j}$.

7.d L'application linéaire $\begin{cases} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_{n,1}(\mathbb{R}) \\ \mathbf{M} & \longmapsto & \mathbf{M}\mathbf{X} \end{cases}$ est surjective. En effet, comme X est non nul, il existe $i \in \llbracket 1, n \rrbracket$

tel que $X_i \neq 0$. Si on se donne $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, alors en considérant la matrice M dont la $i^{\text{ème}}$ colonne est Y/X_i et dont les autres colonnes son nulles, on a bien MX = Y.

L'image de la base $(P_{i,j})$ de $\mathcal{M}_n(\mathbb{R})$, à savoir la famille $(P_{i,j}X)$ est donc une famille génératrice de $\mathcal{M}_{n,1}(\mathbb{R})$. On peut alors en extraire une base de $\mathcal{M}_{n,1}(\mathbb{R})$. D'après la question précédente, cette base est composée de vecteurs propres de A. La matrice A est donc diagonalisable.

Tout d'abord, (I_n, A, \dots, A^{m-1}) est bien une famille de $\mathbb{R}[A]$. Soit $(\lambda_0, \dots, \lambda_{m-1}) \in \mathbb{R}^m$ tel que $\sum_{k=0}^{m-1} \lambda_k A^k = 0$. Alors $P = \sum_{k=0}^{m-1} \lambda_k X^k$ est un polynôme annulateur de A. Par conséquent, π_A divise P. Or deg $P \le m-1 < m = \deg \pi_A$ donc P = 0 puis $(\lambda_0, \dots, \lambda_{m-1}) = (0, \dots, 0)$. Ainsi (I_n, A, \dots, A^{m-1}) est

libre.

Enfin, soit $M \in \mathbb{R}[A]$. Il existe donc $P \in \mathbb{R}[X]$ tel que M = P(A). Notons R le reste de la division euclidienne de P par π_A . Alors M = P(A) = R(A) et deg $R < \deg \pi_A = d$ donc $M \in \text{vect}(I_n, A, \dots, A^{m-1})$. La famille (I_n, A, \dots, A^{m-1}) est génératrice.

Ainsi $(I_n, A, ..., A^{m-1})$ est bien une base de $\mathbb{R}[A]$.

9 Comme $\mathbb{R}[A]$ est une algèbre commutative, $\mathbb{R}[A] \subset \operatorname{Ker} \Phi_A$. On en déduit que dim $\operatorname{Ker} \Phi_A \geq \dim \mathbb{R}[A] = d$.

10 10.a Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n \lambda_i e_i = 0$ i.e. $\sum_{i=1}^n \lambda_i u^{n-i}(y) = 0$. Supposons que $(\lambda_1, \dots, \lambda_n)$ ne soit pas nul.

Notons alors $j = \max\{i \in [1, n], \ \lambda_i \neq 0\}$. Ainsi $\lambda_j = 0$ pour tout j > i. Donc $\sum_{i=1}^{j} \lambda_i u^{n-i}(y) = 0_E$. En appliquant, u^{j-1} à cette égalité, on obtient $\lambda_j u^{n-1}(y) = 0_E$, ce qui est contradictoire. Ainsi $(\lambda_1, \dots, \lambda_n)$ est nul et (e_1, \dots, e_n) est libre. Comme dim $\mathbb{R}^n = n$, (e_1, \dots, e_n) est une base de \mathbb{R}^n $\dim \mathbb{R}^n = n, (e_1, \dots, e_n)$ est une base de \mathbb{R}^n .

10.b Comme $B \in \text{Ker } \Phi_A$, A et B commutent. Par conséquent, u et v commutent également. On en déduit aisément que u et v^k commutent pour tout $k \in \mathbb{N}$. Ainsi

$$\begin{aligned} \forall j \in \llbracket 1, n \rrbracket, \ v(e_j) &= v \circ u^{n-j}(y) = u^{n-j} \circ v(y) = u^{n-j} \left(\sum_{i=1}^n \alpha_i e_i \right) = u^{n-j} \left(\sum_{i=1}^n \alpha_i u^{n-i}(y) \right) \\ &= \sum_{i=1}^n \alpha_i u^{n-j} \circ u^{n-i}(y) = \sum_{i=1}^n \alpha_i u^{n-i} \circ u^{n-j}(y) = \sum_{i=1}^n \alpha_i u^{n-i}(e_j) = \left(\sum_{i=1}^n \alpha_i u^{n-i} \right) (e_j) \end{aligned}$$

Ainsi les endomorphismes v et $\sum_{i=1}^{n} \alpha_i u^{n-i}$ coïncident sur la base (e_1, \dots, e_n) de \mathbb{R}^n : ils sont égaux.

10.c La question précédente montre que si $B \in \operatorname{Ker} \Phi_A$, alors $v \in \mathbb{R}[u]$ i.e. $B \in \mathbb{R}[A]$. Ainsi $\operatorname{Ker} \Phi_A \subset \mathbb{R}[A]$. Mais on a vu précédemment que $\mathbb{R}[A] \subset \operatorname{Ker} \Phi_A$ donc $\operatorname{Ker} \Phi_A = \mathbb{R}[A]$ par double inclusion.

11 | 11.a Remarquons tout d'abord que $B \in \text{Ker } \Phi_A$ si et seulement si u et v commutent.

Si u et v commutent, on sait que les sous-espaces propres de u sont stables par v.

Réciproquement, supposons que tous les sous-espaces propres de u soient stables par v. Fixons $k \in [1, p]$ et $x \in E_u(\lambda_k)$. Alors, d'une part, $v \circ u(x) = v(\lambda_k x) = \lambda_k v(x)$ et d'autre part, $u \circ v(x) = \lambda_k v(x)$ car $v(x) \in E_u(\lambda_k)$. On en déduit que $u \circ v$ et $v \circ u$ coïncident sur $E_u(\lambda_k)$. Comme u est diagonalisable, ses sous-espaces propres sont supplémentaires dans E. On en déduit que $u \circ v = v \circ u$.

© Laurent Garcin MP Dumont d'Urville

11.b On en déduit que $B \in \operatorname{Ker} \Phi_A$ si et seulement si la matrice de v dans une base adaptée à la décomposition en somme directe des sous-espaces propres de u est diagonale par blocs, chaque bloc diagonal ayant même taille que la dimension du sous-espace propre respectif, c'est à-dire de la forme

$$\begin{pmatrix}
B_1 & 0 & \cdots & 0 \\
0 & B_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & B_r
\end{pmatrix}$$

avec $B_k \in \mathcal{M}_{m_k}(\mathbb{R})$.

11.c L'isomorphisme qui à un endomorphisme associe sa matrice dans une base donnée nous permet d'affirmer que $\text{Ker }\Phi_A$ a la même dimension que le sous-espace vectoriel des matrices diagonales par blocs de la forme précédente. Comme

l'application qui à
$$(B_1, \dots, B_p) \in \prod_{k=1}^p \mathcal{M}_{m_k}(\mathbb{R})$$
 associe la matrice
$$\begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B_r \end{pmatrix}$$
 est clairement un isomorphisme, on

en déduit que

$$\dim \operatorname{Ker} \Phi_{\mathbf{A}} = \dim \prod_{k=1}^{p} \mathcal{M}_{m_{k}}(\mathbb{R}) = \sum_{k=1}^{p} m_{k}^{2}$$

11.d Il s'agit d'envisager toutes les décompositions de 7 comme sommes d'entiers naturels non nuls. Passionnant! Un peu de Python.

```
>>> def partitions(n, I=1):
...     yield (n,)
...     for i in range(I, n//2 + 1):
...         for p in partitions(n-i, i):
...         yield (i,) + p
...
>>> set([sum(k**2 for k in p) for p in partitions(7)])
{37, 7, 9, 11, 13, 15, 49, 17, 19, 21, 25, 27, 29}
```

12 Remarquons déjà que $AB - BA = \alpha B$.

On procède ensuite par récurrence. Le résultat est évident pour k=0. Supposons-le vrai pour un certain $k \in \mathbb{N}$. Alors $AB^k - B^kA = \alpha kB^k$ puis

$$AB^{k+1} - B^{k+1}A = (\alpha kB^k + B^kA)B - B^{k+1}A = \alpha kB^{k+1} + B^k(AB - BA) = \alpha(K+1)B^{k+1}$$

Par récurrence, le résultat est établi pour tout $k \in \mathbb{N}$.

13 Ecrivons P = $\sum_{k=0}^{+\infty} a_k X^k$. Par linéarité de Φ_A ,

$$\Phi(\mathbf{P}(\mathbf{B})) = \Phi\left(\sum_{k=0}^{+\infty} a_k \mathbf{B}^k\right) = \sum_{k=0}^{+\infty} a_k \Phi_{\mathbf{A}}(\mathbf{B}^k) = \sum_{k=0}^{+\infty} a_k \alpha k \mathbf{B}^k = \alpha \mathbf{B} \sum_{k=1}^{+\infty} k a_k \mathbf{B}^{k-1} = \alpha \mathbf{B} \mathbf{P}'(\mathbf{B})$$

14 En appliquant la relation précédente à $P = \pi_B$, on obtient

$$0 = \Phi_{A}(\pi_{B}(B)) = \alpha B \pi'_{B}(B)$$

Ainsi $\alpha X \pi_B'$ est un polynôme annulateur de B. Par conséquent, π_B divise $\alpha X \pi_B'$. Comme ces deux polynômes ont même degré ($\alpha \neq 0$), ils sont associés i.e. il existe $\lambda \in \mathbb{R}^*$ tel que $\lambda \pi_B = \alpha X \pi_B'$. En observant les coefficients dominants de ces deux polynômes, on obtient $\lambda = d\alpha$ de sorte que $X \pi_B' - d\pi_B = 0$.

Posons $\pi_{\mathrm{B}} = \mathrm{X}^d + \sum_{k=0}^{d-1} b_k \mathrm{X}^k$. L'égalité $\mathrm{X}\pi_{\mathrm{B}}' = d\pi_{\mathrm{B}}$ donne $kb_k = db_k$ pour tout $k \in [\![0,d-1]\!]$. On en déduit que $b_k = 0$ pour tout $k \in [\![0,d-1]\!]$. Ainsi $\pi_{\mathrm{B}} = \mathrm{X}^d$. Comme π_{B} est un polynôme annulateur de B , $\mathrm{B}^d = 0$.