

MOTOROLA INC.

RECTIFIERS AND ZENER DIODES DATA

Index and Cross-Reference
Selector Guides
Rectifier Data Sheets

Zener Diode Data Sheets

MOTOROLA

RECTIFIERS AND ZENER DIODES DATA BOOK

Prepared by Technical Information Center

This book presents technical data for the broad line of Motorola Silicon Rectifiers and Zener Diodes. Complete specifications for the individual devices are provided in the form of data sheets. In addition, a comprehensive selector guide and industry cross-reference guide are included to simplify the task of choosing the best set of components required for a specific application.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and A are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Motorola, Inc. general policy does not recommend the use of its components in life support applications wherein a failure or malfunction of the component may directly threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola components in life support applications assumes all risks of such use and indemnifies Motorola against all damages.

Series C ©MOTOROLA INC., 1985 Previous Edition ©1984 "All Rights Reserved"

Designer's, PowerTap, Su	iperbridges, Surmetic,	and Switchmode are t	rademarks of Motorola Inc.

ij

1

Index and Cross Reference

Pages

Rectifiers .. 1-2 to 1-29 Zener Diodes .. 1-30 to 1-62

RECTIFIER INDEX CROSS-REFERENCE

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1M353 1N253 1N254		1N1204B 1N1200B 1N1202B	3-4 3-4 3-4	1N535 1N536 1N537		1N4005 1N4001 1N4002	3-32 3-32 3-32
1N255 1N256 1N316,A 1N317,A 1N318,A		1N1204B 1N1206B 1N4001 1N4002 1N4003	3-4 3-4 3-32 3-32 3-32	1N538 1N539 1N540 1N547 1N560		1N4003 1N4004 1N4004 1N4005 1N4006	3-32 3-32 3-32 3-32 3-32
1N319,A 1N320,A		1N4004 1N4005	3-32 3-32	1N561 1N562		1N4007 MR1128	3-32 3-233
1N321,A 1N322,A 1N323,A 1N324,A 1N325,A 1N326,A 1N327,A		1N4007 1N4007 1N4001 1N4002 1N4003 1N4004 1N4006	3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N563 1N596 1N597 1N598 1N599,A 1N600,A 1N601,A		MR1130 1N4005 1N4006 1N4007 1N4001 1N4002 1N4003	3-233 3-32 3-32 3-32 3-32 3-32 3-32
1N328,A 1N329,A 1N332		1N4007 1N4007 1N1204B	3-32 3-32 3-4	1N602,A 1N603,A 1N604,A		1N4003 1N4004 1N4004	3-32 3-32 3-32
1N333 1N334 1N335 1N336 1N337		1N1204B 1N1204B 1N1204B 1N1202B 1N1202B	3-4 3-4 3-4 3-4 3-4	1N605,A 1N606,A 1N607,A 1N608,A 1N609,A		1N4005 1N4005 1N1199B 1N1200B 1N1202B	3-32 3-32 3-4 3-4 3-4
1N338 1N339 1N340 1N341 1N342		1N1200B 1N1200B 1N1200B 1N1204B 1N1204B	3-4 3-4 3-4 3-4 3-4	1N610,A 1N611,A 1N612,A 1N613,A 1N614,A		1N1202B 1N1204B 1N1204B 1N1206B 1N1206B	3-4 3-4 3-4 3-4
1N343 1N344 1N345 1N346 1N347 1N348 1N349 1N350 1N351 1N352		1N1204B 1N1204B 1N1202B 1N1202B 1N1200B 1N1200B 1N1200B 1N1200B 1N1200B 1N1204B	3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-4	1N1095 1N1096 1N1100 1N1101 1N1102 1N1103 1N1104 1N1105 1N1115 1N1116		1N4005 1N4005 1N4002 1N4003 1N4004 1N4004 1N4005 1N4006 1N1200B 1N1202B	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-4 3-4
1N354 1N355 1N359,A 1N360,A 1N361,A 1N362,A 1N363,A 1N364,A 1N365,A 1N440,B		1N1206B 1N1206B 1N4001 1N4002 1N4003 1N4004 1N4006 1N4007 1N4007 1N4007	3-4 3-4 3-32 3-32 3-32 3-32 3-32 3-32 3-	1N1117 1N1118 1N1119 1N1120 1N1124,A 1N1125,A 1N1126,A 1N1127,A 1N1128,A 1N1169,A		1N1204B 1N1204B 1N1206B 1N1206B MR1122 MR1124 MR1124 MR1126 MR1126 1N4004	3-4 3-4 3-4 3-233 3-233 3-233 3-233 3-233 3-32
1N441,B 1N442,B 1N443,B 1N444,B 1N445,B		1N4003 1N4004 1N4004 1N4005 1N4005	3-32 3-32 3-32 3-32 3-32	1N1183* 1N1183A* 1N1184* 1N1184A* 1N1186*	1N1183 1N1183A 1N1184 1N1184A 1N1186		- - -
1N530 1N531 1N532 1N533 1N534		1N4002 1N4003 1N4004 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32	1N1186A* 1N1188* 1N1188A* 1N1190* 1N1190A*	1N1186A 1N1188 1N1188A 1N1190 1N1190A		

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1199 1N1199A 1N1199B 1N1199C 1N1200 1N1200A 1N1200B 1N1202 1N1202A 1N1202B	1N1199 1N1199A 1N1199B 1N1200 1N1200A 1N1200B 1N1202 1N1202A 1N1202B	1N1199B	3-2 3-3 3-4 3-4 3-2 3-3 3-4 3-2	1N1434 1N1435 1N1436 1N1437 1N1438 1N1443,A,B 1N1444,A,B 1N1446 1N1486 1N1487		1N1183A 1N1184A 1N1186A 1N1188A 1N1190A 1N4007 MR1130 1N4005 1N4005 1N4002 1N4003	 3-32 3-233 3-32 3-32 3-32 3-32
1N1204 1N1204A 1N1204B 1N1206 1N1206A 1N1206B 1N1206C 1N1217,A,B 1N1218,A,B 1N1219,A,B	1N1204 1N1204A 1N1204B 1N1206 1N1206A 1N1206B	1N1206B 1N4001 1N4002 1N4003	3-2 3-3 3-4 3-2 3-3 3-4 3-4 3-32 3-32 3-	1N1489 1N1490 1N1491 1N1492 1N1537 1N1538 1N1539 1N1540 1N1541 1N1541		1N4004 1N4004 1N4005 1N4005 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B	3-32 3-32 3-32 3-32 3-4 3-4 3-4 3-4 3-4 3-4
1N1220, A, B 1N1221, A, B 1N1222, A, B 1N1223, A, B 1N1224, A, B 1N1225, A, B 1N1226, A, B 1N1227, A, B 1N1228, A, B 1N1229, A, B		1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N1199B 1N1200B 1N1202B	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-4 3-4 3-4	1N1543 1N1544 1N1551 1N1552 1N1553 1N1554 1N1555 1N1556 1N1557 1N1558		1N1206B 1N1206B 1N1200B 1N1202B 1N1204B 1N1204B 1N1204B 1N1206B 1N4002 1N4003 1N4004	3-4 3-4 3-4 3-4 3-4 3-4 3-32 3-32 3-32
1N1230,A,B 1N1231,A,B 1N1232,A,B 1N1233,A,B 1N1234,A,B 1N1235,A,B 1N1236,A,B 1N1251 1N1252 1N1253		1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1128 MR1128 1N4001 1N4002 1N4003	3-4 3-4 3-4 3-4 3-233 3-233 3-32 3-32 3-	1N1559 1N1560 1N1581 1N1582 1N1583 1N1584 1N1585 1N1586 1N1587 1N1612		1N4004 1N4005 1N1199B 1N1200B 1N1202B 1N1204B 1N1204B 1N1204B 1N1206B MR1120,1N1199	3-32 3-32 3-4 3-4 3-4 3-4 3-4 3-4 3-4 3-2,3-233
1N1254 1N1255, A 1N1256 1N1257 1N1258 1N1259 1N1260 1N1261 1N1301 1N1302		1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 1N4007 1N1183A 1N1184A	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N1613 1N1614 1N1615 1N1616 1N1644 1N1645 1N1646 1N1647 1N1648 1N1649		MR1121,1N1200 MR1122,1N1202 MR1124,1N1204 MR1126,1N1206 1N4001 1N4003 1N4003 1N4004 1N4004 1N4004	3-2,3-233 3-2,3-233 3-2,3-233 3-2,3-233 3-32 3-32
1N1304 1N1306 1N1341,AB 1N1342,AB 1N1343,AB 1N1344,AB 1N1345,AB 1N1346,AB 1N1346,AB 1N1348,AB		1N1186A 1N1188A MR1120,1N1199B MR1121,1N1200B MR1122,1N1202B MR1122,1N1202B MR1124,1N1204B MR1124,1N1204B MR1126,1N1206B MR1126,1N1206B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233	1N1650 1N1651 1N1652 1N1653 1N1692 1N1693 1N1694 1N1695 1N1696 1N1697		1N4004 1N4005 1N4005 1N4005 1N4005 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

E

industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1701 1N1702 1N1703 1N1704 1N1705 1N1706 1N1707 1N1707 1N1708 1N1709 1N1710		1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4001 1N4001 1N4002 1N4003 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N2086 1N2103 1N2104 1N2105 1N2106 1N2107 1N2108 1N2116 1N2117 1N2154		1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4004 1N4006 1N1183	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
1N1711 1N1712 1N1763 1N1764 1N1907 1N1908 1N1909 1N1910 1N1911 1N1911		1N4004 1N4005 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N2155 1N2156 1N2157 1N2158 1N2159 1N2160 1N2216 1N2218 1N2220 1N2222,A		1N1184 1N1186 1N1188 1N1188 1N1190 1N1190 1N1199B 1N1206B 1N1206B MR1128	
1N1913 1N1914 1N1915 1N1916 1N2013 1N2014 1N2015 1N2016 1N2017 1N2018		1N4005 1N4006 1N4006 1N4007 1N4001 1N4002 1N4003 1N4003 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N2224, A 1N2226, A 1N2228, A 1N2230, A 1N2232, A 1N2234, A 1N2236, A 1N2238, A 1N2240, A 1N2242, A		MR1130 SPECIAL 1N1199B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1128 MR1130	3-233 3-4 3-4 3-4 3-4 3-233 3-233
1N2019 1N2020 1N2021 1N2022 1N2023 1N2023 1N2024 1N2025 1N2026 1N2027 1N2028		1N4004 1N4004 1N1186 1N1188 1N1188 1N1188 1N1188 1N1199B 1N11202B 1N1204B	3-32 3-32 — — — — — 3-4 3-4 3-4	1N2244, A 1N2246A 1N2248A 1N2250A 1N2252A 1N2254A 1N2256A 1N2258A 1N2260A 1N2262A		SPECIAL 1N1199B 1N1200B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1128 MR1130	3-4 3-4 3-4 3-4 3-4 3-4 3-233 3-233
1N2029 1N2030 1N2031 1N2069,A 1N2070,A 1N2071,A 1N2072 1N2073 1N2074 1N2075		1N1204B 1N1206B 1N1206B 1N4003 1N4004 1N4005 1N4001 1N4002 1N4003	3-4 3-4 3-32 3-32 3-32 3-32 3-32 3-32 3-	1N2266 1N2268 1N2270 1N2282 1N2283 1N2284 1N2285 1N2286 1N2287 1N2348		1N1199B 1N1206B 1N1206B 1N1188 1N1188 1N1190 1N1190 1N3766 1N3768 MR1120	3-4 3-4 3-4 — — — — — — 3-233
1N2076 1N2077 1N2078 1N2079 1N2080 1N2081 1N2082 1N2083 1N2083 1N2084 1N2085		1N4004 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	1N2349 1N2350 1N2446 1N2447 1N2448 1N2449 1N2450 1N2451 1N2452 1N2453		MR1121 MR1122 1N1183 1N1184 1N1186 1N1186 1N1188 1N1188 1N1188 1N1188 1N1188	3-233 3-233 — — — — — —

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N2454		1N1190	_	1N2864,A		1N5397	3-41
1N2455		1N1190	-	1N2865		1N4007	3-32
1N2456		1N3766		1N3072		1N4001	3-32
1N2457		1N3766	-	1N3073		1N4002	3-32
1N2458	ł	1N1183	l	1N3074		1N4003	3-32
1N2459		1N1184	-	1N3075		1N4003	3-32
1N2460		1N1186	_	1N3076		1N4004	3-32
1N2461	1	1N1186		1N3077	-	1N4004	3-32
1N2462		1N1188	_	1N3078		1N4004	3-32
1N2463		1N1188	·	1N3079	1	1N4004	3-32
1N2464	ļ	1N1188	_	1N3080		1N4005	3-32
1N2465	}	1N1188		1N3081		1N4005	3-32
1N2466	l .	1N1190	_	1N3082	1	1N5393	3-41
1N2467	l	1N1190	_	1N3083	1	1N5395	3-41
1N2468	j	1N3766	_	1N3084		1N5397	3-41
1N2469		1N3766	-	1N3106		1N4006	3-32
1N2482		1N4003	3-32	1N3189	1	1N4003	3-32
1N2483	1	1N4004	3-32	1N3190		1N4004	3-32
1N2484	1	1N4005	3-32	1N3191		1N4005	3-32
1N2485		1N5393	3-41	1N3192	1	SPECIAL	1 002
1N2486	1	l .	, ,	1		1	2.20
1N2486 1N2487	Ī	1N5395	3-41	1N3193	1	1N4003	3-32
1N2488		1N5395	3-41	1N3194		1N4004	3-32
1N2489	!	1N5397	3-41	1N3195	1	1N4005	3-32
1N2489 1N2491	i	1N5397	3-41	1N3196	1110000	1N4006	3-32
1N2491 1N2492		1N1199B	3-4	1N3208	1N3208		3-5
		1N1200B	3-4	1N3209	1N3209	1	3-5
1N2493		1N1202B	3-4	1N3210	1N3210	j	3-5
1N2494		1N1204B	3-4	1N3212	1N3212		3-5
1N2495		1N1204B	3-4	1N3214	1N3214	1114000	1
1N2496		1N1206B	3-4	1N3253	ļ	1N4003	3-32
1N2497	l	1N1206B	3-4	1N3254	1	1N4004	3-32
1N2501	1	1N4006	3-32	1N3255	j	1N4005	3-32
1N2502		1N4007	3-32	1N3256]	1N4006	3-32
1N2505		1N4006	3-32	1N3486	1	1N4007	3-32
1N2506		1N4007	3-32	1N3491	1N3491	[3-6
1N2512	ļ	1N1200B	3-4	1N3492	1N3492		3-6
1N2513	ļ	1N1202B	3-4	1N3493	1N3493	i	3-6
1N2514	1	1N1204B	3-4	1N3495	1N3495		3-6
1N2515		1N1204B	3-4	1N3563	- [1N4007	3-32
1N2516	1	1N1206B	3-4	1N3569		MR1121	3-233
1N2517)	1N1206B	3-4	1N3570	1	MR1122	3-233
1N2609		1N4001	3-32	1N3571	1	MR1124	3-233
1N2610	l	1N4002	3-32	1N3572		MR1124	3-233
1N2611	}	1N4003	3-32	1N3573	1	MR1126	3-233
1N2612	1	1N4004	3-32	1N3574		MR1126	3-233
1N2613		1N4004	3-32	1N3611		1N4003	3-32
1N2614	1	1N4005	3-32	1N3612		1N4004	3-32
1N2615	ļ	1N4005	3-32	1N3613		1N4005	3-32
1N2616	1	1N4006	3-32	1N3614		1N4006	3-32
1N2617	1	1N4007	3-32	1N3615	1	MR1120	3-233
1N2786	1	1N1186	-	1N3616	ŀ	MR1121	3-233
1N2787	1	1N1188	-	1N3617	1	MR1122	3-233
1N2788		1N1186	-	1N3618		MR1122	3-233
1N2789	1	1N1188	-	1N3619		MR1124	3-233
1N2858,A	1	1N5391	3-41	1N3620		MR1124	3-233
1N2859,A	1	1N5392	3-41	1N3621	}	MR1126	3-233
1N2860,A	1	1N5393	3-41	1N3622		MR1126	3-233
1N2861,A	ì	1N5395	3-41	1N3623	Į.	MR1128	3-233
1N2862,A	1	1N5395	3-41	1N3624	1	MR1130	3-233
1N2863,A	I	1N5397	3-41	1N3639	1	1N5393	3-41

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3640 1N3641 1N3642 1N3649 1N3650 1N3650 1N3660 1N3661 1N3663 1N3671,A 1N3671,A 1N3673,A 1N3766 1N3766 1N3768 1N3866	1N3659 1N3660 1N3661 1N3663 1N3766	1N5395 1N5397 1N5398 MR1128 MR1128 MR1128 MR1128 MR1130 MR1130 MR1130	3-41 3-41 3-233 3-233 3-10 3-10 3-10 3-10 3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233	1N4012 1N4013 1N4014 1N4015 1N4139 1N4140 1N4141 1N4142 1N4143 1N4144 1N4145 1N4245 1N4246 1N4247 1N4248 1N4249 1N4364	TOPIOGENOII	MR1128 MR1128 MR1130 MR1130 1N4719,MR750 1N4720,MR751 1N4721,MR752 1N4722,MR754 1N4723,MR756 1N4724,MR758 1N4725,MR760 1N4003 1N4004 1N4005 1N4005 1N4006 1N4007 1N4002	3-233 3-233 3-233 3-233 3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196 3-32 3-32 3-32 3-32 3-32 3-32 3-32
1N3868 1N3869 1N3879	1N3879	1N4005 1N4007	3-32 3-32 3-12	1N4365 1N4366 1N4367	,	1N4003 1N4004 1N4004	3-32 3-32 3-32
1N3879A 1N3880 1N3880A 1N3881	1N3880 1N3881	1N3879 1N3880	3-12 3-12 3-12 3-12	1 N4368 1 N4369 1 N4506 1 N4507		1N4005 1N4005 SPECIAL SPECIAL	3-32 3-32 — —
1N3881A 1N3883 1N3883A 1N3889 1N3889A	1N3883 1N3889	1N3881 1N3883 1N3889	3-12 3-12 3-12 3-17 3-17	1N4508 1N4719 1N4720 1N4721 1N4722	1N4719 1N4720 1N4721 1N4722	SPECIAL	3-33 3-33 3-33 3-33
1N3890 1N3890A 1N3891 1N3891A 1N3893 1N3893A 1N3898 1N3898	1N3890 1N3891 1N3893	1N3890 1N3891 1N3893 1N5221B	3-17 3-17 3-17 3-17 3-17 3-17 — 3-22	1N4723 1N4724 1N4725 1N4816 1N4816GP 1N4817 1N4817GP	1N4723 1N4724 1N4725	1N5391 1N5391 1N5392 1N5392	3-33 3-33 3-33 3-41 3-41 3-41
1N3900 1N3901 1N3903	1N3900 1N3901 1N3903		3-22 3-22 3-22	1N4818 1N4818GP 1N4819 1N4819GP		1 N5393 1 N5393 1 N5395 1 N5395	3-41 3-41 3-41 3-41
1N3909 1N3910 1N3911 1N3913 1N3924 1N3938 1N3939 1N3940 1N3981 1N3982	1N3909 1N3910 1N3911 1N3913	MR1130 SPECIAL SPECIAL SPECIAL 1N4003 1N4004	3-27 3-27 3-27 3-27 3-233 3-32 3-32	1N4820 1N4820GP 1N4821 1N4821GP 1N4822 1N4822GP 1N4933GP 1N4934GP 1N4935GP 1N4936GP	1N4933 1N4934 1N4935 1N4936	1N5395 1N5395 1N5396 1N5396 1N5397 1N5397	3-41 3-41 3-41 3-41 3-41 3-35 3-35 3-35 3-35
1N3983 1N3987 1N3989 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006	1N4001 1N4002 1N4003 1N4004 1N4005 1N4006	1N4005 MR1128 MR1130	3-32 3-233 3-233 3-32 3-32 3-32 3-32 3-	1N4937GP 1N4942 1N4943 1N4944 1N4945 1N4946 1N4947 1N4948 1N4997	1N4937	1N4935 1N4936 1N4936 1N4937 1N4937 MR817 MR818	3-35 3-35 3-35 3-35 3-35 3-35 3-200 3-200
1N4007	1N4007	by Materala but	3-32	1N4998	noult Footony		

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Pana #
Part Number 1N4999 1N5000 1N5001 1N5002 1N5002 1N5003 1N5004 1N5005 1N5006 1N5007 1N5052 1N5053 1N5054 1N5055 1N5056 1N5057 1N5058 1N5059P 1N5060GP 1N5061GP 1N5061GP 1N5061GP 1N507 1N5170 1N5171 1N5172 1N5173 1N5174 1N5175 1N5176 1N5177 1N5178 1N5188,GP 1N5188,GP 1N5189,GP 1N5189,GP 1N5199,GP 1N5198	Replacement	Replacement 1N5392 1N5393 1N5395 1N5395 1N5397 1N5398 1N5398 1N5399 1N4934 1N4935 1N4936 1N4937 MR5059 MR5060 MR5061 MR5062 1N5391 1N5391 1N5391 1N5395 1N5395 1N5397 1N5397 1N5397 1N5397 1N5398 1N5399 MR850 MR851 MR850 MR851 MR850 MR851 MR856 MR856 MR856 MR856 MR856 MR856 MR856 MR856 MR856	Page #	Part Number 1N5415 1N5416 1N5416 1N5417 1N5418 1N5419 1N5420 1N5614GP 1N5615GP 1N5617GP 1N5619GP 1N5619GP 1N5621GP 1N5620GP 1N5623GP 1N5623GP 1N5623GP 1N5625,GP 1N5821	MUR2505 MUR2505 MUR2510 MUR2510 MUR2515 1N5817 1N5818 1N5820 1N5820 1N5821 1N5822 1N5823 1N5824 1N5825 1N5826 1N5826 1N5827 1N5828	Replacement MR850 MR851 MR852 MR854 MR856 MR856 1N4003 1N4935 1N4004 1N4936 1N4005 1N4937 1N4006 MR817 1N4007 MR818 MR502 MR504 MR502 MR504 MR508	3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-32 3-35 3-32 3-35 3-32 3-200 3-190 3-190 3-190 3-190 3-291
1N5199 1N5200 1N5201 1N5206 1N5391GP 1N5392	1N5392	MR502 MR504 MR506 1N4936 1N5391	3-190 3-190 3-190 3-35 3-41 3-41	1N5829 1N5830 1N5831 1N5832 1N5833 1N5834	1N5829 1N5830 1N5831 1N5832 1N5833		3-64 3-64 3-64 3-68 3-68 3-68
1N5392 1N5392GP 1N5393 1N5393GP 1N5394GP 1N5395 1N5395GP 1N5396GP	1N5393 1N5395	1N5392 1N5393 1N5394 1N5395 1N5396	3-41 3-41 3-41 3-41 3-41 3-41 3-41	1N5834 1N5898 1N5899 1N5900 1N5901 1N5902 1N5903 1N5904	1N5834		3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196 3-33,3-196
1N5397 1N5397GP 1N5398 1N5398GP 1N5399 1N5399GP 1N5400 1N5401 1N5402 1N5406	1N5397 1N5398 1N5399 1N5400 1N5401 1N5402 1N5406	1N5397 1N5398 1N5399	3-41 3-41 3-41 3-41 3-41 3-41 3-45 3-45 3-45 3-45	1N6095 1N6096 1N6097 1N6098 1N6457 1N6458 1N6459 1N6460 2/A4 2AF1	1N6095 1N6096 1N6097 1N6098	MBR12045CT MBR12045CT MBR12045CT MBR12045CT 1N4004 MR501	3-72 3-72 3-76 3-76 3-148 3-148 3-148 3-148 3-32 3-190

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
2AF2 2AF3 2AF4 2AF6 2AF8 2AF10 2AFR1		MR502 MR504 MR504 MR506 MR508 MR510 MR851	3-190 3-190 3-190 3-190 3-190 3-190 3-215	3F10 3F20 3F30 3F40 3F50 3F60 3F80		MR1121 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128	3-233 3-233 3-233 3-233 3-233 3-233 3-233
2AFR2 2AFR3 2AFR4 2AFR6		MR852 MR854 MR854 MR856	3-215 3-215 3-215 3-215	3F100 3L03 3L05 3N246	3N246	MR1130 MR850 MR850	3-233 3-215 3-215 3-156
3A1 3A2 3A4 3A05 3A6 3A8 3A15 3A30 3A50		MR501 MR502 MR504 MR501 MR506 MR508 MR501 MR501 MR501	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190	3N247 3N248 3N249 3N250 3N251 3N252 3N252 3N253 3N254 3N255	3N247 3N248 3N249 3N250 3N251 3N252 3N253 3N254 3N255		3-156 3-156 3-156 3-156 3-156 3-156 3-158 3-158 3-158
3A100 3A200 3A300 3A400 3A500 3A600 3A800 3A1000 3AF1 3AF2		MR501 MR502 MR504 MR504 MR506 MR506 MR508 MR510 MR501 MR501 MR502	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190	3N256 3N257 3N258 3N259 3S11 3S12 3S14 3S16 3S105 3SF1	3N256 3N257 3N258 3N259	MR501 MR502 MR504 MR506 MR501 MR851	3-158 3-158 3-158 3-158 3-190 3-190 3-190 3-190 3-190 3-215
3AF3 3AF4 3AF6 3AF8 3AF10 3AFR1 3AFR2 3AFR3 3AFR3 3AFR4 3AFR6		MR504 MR504 MR506 MR508 MR510 MR851 MR852 MR854 MR854 MR856	3-190 3-190 3-190 3-190 3-190 3-215 3-215 3-215 3-215 3-215	3SF2 3SF4 3SM0 3SM2 3SM4 3SM6 3SM8 4D4 4D6 4FB5		MR852 MR854 MR510 MR502 MR504 MR506 MR508 1N4004 1N4005 1N4933	3-215 3-215 3-190 3-190 3-190 3-190 3-32 3-32 3-35
3BF1 3BF2 3BF3 3BF4 3BF6 3BF8 3BF10 3BFR1 3BFR2 3BFR3	,	MR501 MR502 MR504 MR504 MR506 MR508 MR510 MR851 MR851 MR852 MR854	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-215 3-215 3-215	4FB10 4FB20 4FB30 4FB40 4FC 4FC5 4FC10 4FC20 4FC30 4FC40		1N4934 1N4935 1N4936 1N4936 1N4934 1N4933 1N4934 1N4935 1N4936 1N4936	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35
3BFR4 3BFR6 3CFS10 3E1 3E2 3E4 3E05 3E6 3E8 3E10		MR854 MR856 1N4007 MR501 MR502 MR504 MR501 MR506 MR506 MR508 MR510	3-215 3-215 3-32 3-190 3-190 3-190 3-190 3-190 3-190 3-190	5A 5A1 5A2 5A3 5A4 5A5 5A6 5A8 5A10 6A6F		1N4004 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 MR1366	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
6A8F 6A10F 6A700 6A800 6A900 6A1000 6AL1 6AL2 6AL3 6AL4 6AL6 6ALR1 6ALR3 6ALR4 6ALR3 6ALR4 6ALR3 6F50A,B 6F20A,B 6F20A,B 6F20A,B 6F20A,B 6F50A,B 6F50A,B 6F50A,B 6F50A,B 6F50A,B 6F50A,B 6F50A,B 6F70A		SPECIAL SPECIAL MR1128 MR1128 MR1130 MR1130 MR751 MR752 MR754 MR752 MR754 MR756 MR821 MR822 MR824 MR824 MR824 MR826 MR1120,1N1199B MR1121,1N1204B MR1122,1N1204B MR1124,1N1204B MR1126,1N1206B MR1128 MR1128 MR1128 MR1130 MR1130 MR1306 MR1138 MR1366 MR1366 MR1366 1N3879 1N3883 1N3883 MR1366	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-233 3-233 3-233 3-233 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-13 3-12 3-13 3-13 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-19 3-19 3-19 3-10 3-10 3-10 3-11 3-12 3-12 3-12 3-12 3-13 3-13 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-19 3-19 3-10	10C1 10C2 10C3 10C4 10C5 10C6 10C8 10C10 10D1 10D2 10D3 10D4 10D5 10D6 10D8 10D10 10H3P 10HR3P 10T0020 10T0035 10T0040 10T0045 12A6F 12A8F 12A10F 12A700 12A800 12C1Q030 12CTQ030 12CTQ030 12CTQ035 12CTQ035 12CTQ035 12CTQ035 12CTQ036 12CTQ036 12CTQ036 12CTQ037 12CTQ038 12CTQ038 12CTQ038 12CTQ038 12CTQ038 12CTQ040 12CTQ045 12F50,A,B 12F50,A,B 12F50,A,B 12F50,A,B 12F60,A,B	MBR1035 MBR1045 MBR1045 MBR1535CT MBR1535CT MBR1545CT MBR1545CT	1N4002,1N5391 1N4003,1N5393 1N4004,1N5395 1N4004,1N5395 1N4005,1N5397 1N4005,1N5397 1N4006,1N5398 1N4007,1N5399 1N5392 1N5393 1N5394 1N5395 1N5396 1N5397 1N5398 1N5399 MR1121 1N3880 MBR1035 MR1376 SPECIAL SPECIAL MR1128 MR1130 MR11200B MR1120,1N1199B MR1121,1N1200B MR1122,1N1202B MR1124,1N1204B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B MR1176 MR1376 MR3891 1N3893	3-32,3-41 3-32,3-41 3-32,3-41 3-32,3-41 3-102 3-93 3-92 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-102 3-103 3-4,3-233 3-17

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
12FT50 12FT60 12FV5 12FV10 12FV20 12FV30 12FV40 12FV50 12FV60 16F5		MR1376 MR1376 1N3889 1N3890 1N3891 1N3893 1N3893 MR1376 MR1376 MR1120	3-17 3-17 3-17 3-17 3-17 3-17 3-17 3-17	20F20 20F30 20F40 20F40 20F0020 20F0035 20F0040 20F0045 20H3P 20HR3P	MBR3520 MBR3535 MBR3535 MBR3545 MBR3545	MR1122 MR1124 MR1124 MR1122 MR1122 1N3881	3-233 3-233 3-233 3-122 3-122 3-122 3-122 3-233 3-12
16F10 16F15 16F20 16F30 16F40 16F50 16F60 16F80 16F100 18FA5		MR1121 MR1122 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128 MR1130 1N4933	3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-35	21F0030 21F0035 21F0040 21F0045 25F0010 25F0015 25F0020 25F0025 25F0030 25PW5	MBR3535 MBR3535 MBR3545 MBR3545	1N5829 1N5829 1N5829 1N5820 1N5830 1N5830 1N3491	3-122 3-122 3-122 3-122 3-64 3-64 3-64 3-64 3-64 3-64
18FA 10 18FA 20 18FA 30 18FA 40 18FB 5 18FB 10 18FB 20 18FB 30 18FB 40 18FC 5		1N4934 1N4935 1N4936 1N4936 1N4933 1N4934 1N4935 1N4936 1N4936 1N4933	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35	25PW10 25PW20 25PW30 25PW40 25PW50 25PW60 30A6F 30A8F 30A10F 30B		1N3492 1N3493 1N3494 1N3495 MR328 MR328 MR1396 SPECIAL SPECIAL MR1123	3-6 3-6 3-6 3-6 3-6 3-27 — 3-233
18FC10 18FC20 18FC30 18FC40 20A1 20A2 20A3 20A4 20A5 20A6		1N4934 1N4935 1N4936 1N4936 1N4002 1N4003 1N4004 1N4004 1N4005	3-35 3-35 3-35 3-35 3-32 3-32 3-32 3-32	30BR 30CTQ030 30CTQ035 30CTQ040 30CTQ045 30DQ02 30DQ02 30DQ03 30DQ04 30FQ030	MBR2535CT MBR2535CT MBR2545CT MBR2545CT MBR2545CT 1N5820,MBR320P 1N5821,MBR330P 1N5822,MBR340P	1N3882 1N4004 MBR3535	3-12 3-32 3-114 3-114 3-114 3-51 3-51 3-51 3-122
20A6F 20A8 20A8F 20A10 20A10F 20B 20BR 20CTQ030 20CTQ035 20CTQ040	MBR2035CT MBR2035CT MBR2045CT	MR1386 1N4006 SPECIAL 1N4007 SPECIAL MR1122 1N3881	3-22 3-32 — 3-32 — 3-233 3-12 3-106 3-106 3-106	30F030A 30F035A 30F040A 30F0045 30F045A 30H3P 30HR3P 300HC030 30QHC045 30S1		SPECIAL SPECIAL SPECIAL MBR3545 SPECIAL MR1123 1N3882 SPECIAL SPECIAL MR501	 3-122 3-233 3-12 3-190
20CTQ045 20D1 20D2 20D3 20D4 20D5 20D6 20D8 20D10 20F10	MBR2045CT	1N5392 1N5393 1N5394 1N5395 1N5396 1N5397 1N5398 1N5399 MR1121	3-106 3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-233	30S2 30S3 30S4 30S5 30S6 30S8 30S10 40A50 40A100 40A200		MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N1183A 1N1184A 1N1186A	3-190 3-190 3-190 3-190 3-190 3-190 3-190

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
40A400 40A600 40B 40BR 40C 40D1 40D2 40D4 40D6 40D8		1N1188A 1N1190A MR1124 1N3883 1N4004 1N5401 1N5402 1N5404 1N5406 1N5407		80B 80C 80H3P 80SQ030 80SQ035 80SQ040 80SQ045 100B 100C 100H3P		MR1128 1N4006 MR1128 1N5824,SPECIAL 1N5825,SPECIAL 1N5825,SPECIAL 1N5825,SPECIAL 1N5825,SPECIAL MR1130 1N4007 MR1130	3-233 3-32 3-233 3-25 3-25 3-25 3-25 3-2
40H3P 40HF5 40HF10 40HF15 40HF20 40HF30 40HF40 40HF50 40HF60 40HR3P		MR1124 1N1183A 1N1184A 1N1186A 1N1186A 1N1188A 1N1188A 1N1190A 1N1190A 1N3883	3-233 	363A 363B 363D 363F 363H 363K 363M 388A 388B 388C		MR850 MR851 MR852 MR854 MR856 MR856 1N4933 1N4934 1N4935	3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-35 3-35 3-35
40SL01 40SL02 40SL04 40SL05 40SL06 50H3P 50H0020 50H0030 50H0035 50H0040	MBR6020 MBR6035 MBR6035 MBR6045	MR851,MR821 MR852,MR822 MR854,MR824 MR850,MR820 MR856,MR826 MR1125	3-215,233 3-215,233 3-215,233 3-215,233 3-215,233 3-233 — 3-130 3-130 3-130	388D 388F 388H 388K 388M 407A 407B 407C 407D 407F		1N4935 1N4936 1N4936 1N4937 1N4937 MR1120,1N1199B MR1121,1N1200B MR1122,1N1202B MR1122,1N1202B MR1124,1N1204B	3-35 3-35 3-35 3-35 3-35 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233
50H0045 51H0045 52H0030 52H0035 52H0040 52H0045 60B 60B 60C 60CR	MBR6045 MBR6035 MBR6035 MBR6045 MBR6045	MBR6045 MR1126 MR1366 1N4005 1N4937	3-130 3-130 3-130 3-130 3-130 3-130 3-233 3-12 3-32 3-35	407H 407K 407M 408A 408B 408C 408D 408F 408H 408K		MR1124,1N1204B MR1126,1N1206B MR1126,1N1206B MR1120,1N1199B MR1121,1N1200B MR1122,1N1202B MR1122,1N1202B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233
60H3P 60HF10 60HF20 60HF30 60HF40 60HF50 60HF60 60HR3P 60S1 60S2		MR1126 1N1184A 1N1186A 1N1187A 1N1188A 1N1189A 1N1190A MR1366 MR751,MR501 MR752,MR502	3-233 3-12 3-190,3-196 3-190,3-196	408M 409A 409B 409C 409D 409F 409H 409K 409M 417F		MR1126,1N1206B MR1120,1N1199B MR1121,1N1200B MR1122,1N1202B MR1122,1N1202B MR1124,1N1204B MR1124,1N1204B MR1126,1N1206B MR1126,1N1206B 1N1196	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-233 3-233
60S3 60S4 60S5 60S6 60S8 60S10 75HQ030 75HQ035 75HQ040 75HQ045		MR754, MR504 MR754, MR504 MR756, MR506 MR756, MR506 MR758, MR508 MR760, MR510 MBR7530 MBR7535 MBR7540 MBR7545	3-190,3-196 3-190,3-196 3-190,3-196 3-190,3-196 3-190,3-196 3-142 3-142 3-142 3-142 3-142	417H 417K 417M 418A 418B 418C 418D 418F 418H 418K		1N1196 1N1198 1N1198 1N1198 1N1183 1N1184 1N1186 1N1186 1N1188 1N1188 1N1190	

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Doct Number	Motorola Direct	Motorola Similar		Industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
418M 419A 419B		1N1190 1N1183A 1N1184A	_	A40B A40C A40C	1N3211	1N1194 1N1195	 3-5
419C 419D 419F		1N1186A 1N1186A 1N1188A	_	A40D A40D A40E	1N3212 1N3213	1N1196	3-5 — —
419H 419K 419M		1N1188A 1N1190A 1N1190A	_	A40E A40F A40F	1N3208	1N1197 1N1191	- 3-5 -
40108 40109		MR1120,1N1199B MR1121,1N1200B	3-4,3-233 3-4,3-233	A40M A40M	1N3214	1N1198	_
40110 40111 40112 40113		MR1122,1N1202B MR1123,1N1204B MR1124,1N1204B MR1125,1N1206B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233	A44A A44B A44C A44D		1N3492 1N3493 1N3494 1N3495	3-6 3-6 3-6 3-6
40114 40115 40208		MR1126,1N1206B MR1128 1N248B		A44E A44E A44F A44M		MR327 1N3491 MR328	3-6 3-6 3-6 3-6
40209 40210		1N249B 1N250B	_	A50 A100		1N4001 1N4002	3-32 3-32
40211 40212 40213		1N1196 1N1196 1N1198	- -	A114A A114B A114C		1N4934 1N4935 1N4936	3-35 3-35 3-35
40214 40266 40267		1N1198 MR501 MR502	 3-190 3-190	A114D A114E A114F		1N4936 1N4937 1N4933	3-35 3-35 3-35
40642 40643 40644 40956		MR817 MR817 MR817 MR870	3-200 3-200 3-200 3-228	A114M A114N A115A A115B		1N4937 MR817 MR851 MR852	3-35 3-200 3-215 3-215
40957 40958 40959		MR871 MR872 MR874	3-228 3-228 3-228	A115C A115D A115E		MR854 MR854 MR856	3-215 3-215 3-215
40960 A14A A14B A14C		MR876 1N4002 1N4003 1N4004	3-228 3-32 3-32 3-32	A115F A115M A129E A129M		MR850 MR856 MR1376	3-215 3-215 3-17
A14D A14E A14F		1N4004 1N4004 1N4005 1N4001	3-32 3-32 3-32 3-32	A139E A139M A300		MR1376 MR1386 MR1386 1N4004	3-17 3-22 3-22 3-32
A14M A14N A14P		1N4005 1N4006 1N4007	3-32 3-32 3-32	A327A A327B A327C		MR1121 MR1122 MR1124	3-233 3-233 3-233
A15A A15B A15C		MR501 MR502 MR504	3-190 3-190 3-190	A327F A500 A800		MR1120 1N4005 1N4006	3-233 3-32 3-32
A15D A15E A15F		MR504 MR506 MR501	3-190 3-190 3-190	A1000 AA50 AA100		1N4007 1N4001 1N4002	3-32 3-32 3-32
A15M A15N		MR506 MR508	3-190 3-190	AA200 AA300		1N4003 1N4004	3-32 3-32
A18A A28A A28B		1N3890 1N3890 1N3891	3-17 3-17 3-17	AA400 AA500		1N4004 1N4005	3-32 3-32
A28C A28D		1N3892 1N3893	3-17 3-17	AA600 AA800 AA1000		1N4005 1N4006 1N4007	3-32 3-32 3-32
A28F A40A A40A	1N3209	1N3889 1N1192	3-17 3-5 —	AB50 AB100 AB200		MR501 MR501 MR502	3-190 3-190 3-190
A40B	1N3210		3-5	AB300		MR504	3-190

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
AB400 AB500 AB600 AB800 AB1000 AC50 AC100 AC200 AC300		MR504 MR506 MR506 MR508 MR510 MR501 MR501 MR502 MR502	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190	BF5-20L BF5-40L BF5-60L BF5-80L BF5-100L BF6-05L BF6-10L BF6-20L BF6-40L		MR502 MR504 MR506 MR508 MR510 MR501 MR501 MR502 MR504	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190
AC400 AC500 AC600 AC800 AC880 AC1000 AR16 AR17 AR18 AR19 AR20		MR504 MR506 MR506 MR508 MR508 MR510 1N4001 1N4002 1N4003 1N4004	3-190 3-190 3-190 3-190 3-190 3-32 3-32 3-32 3-32 3-32 3-32	BF6-60L BF6-80L BF6-100L BY18 BY101 BY102 BY106 BY107 BY111 BY111 BY112 BY113		MR506 MR508 MR510 1N3882 BYX79,MR1124 1N4003 BY126,1N5398 BY126,1N5398 1N4001 1N4004 1N4003	3-190 3-190 3-190 3-12 — — 3-41 3-41 3-32 3-32 3-32
AR21 AR22 AR23 AR24 AR25A AR25B AR25D AR25F AR25G AR25H		1 N4005 1 N4005 1 N4006 1 N4007 MR2500 MR2501 MR2502 MR2504 MR2504 MR2504 MR2506	3-32 3-32 3-32 3-32 3-246 3-246 3-246 3-246 3-246	BY114 BY116 BY117 BY118 BY121 BY123 BY124 BY125 BY126 BY128		BY126,1N5398 1N4004 BY126,1N5398 BY126,1N5398 1N4001 1N4003 1N4004 1N4004 1N4006 1N4007	3-41 3-32 3-41 3-41 3-32 3-32 3-32 3-32 3-32 3-32
AR25J AR25K AR25M B50 B100 B200 B300 B400 B500 B600		MR2506 MR2508 MR2510 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-246 3-246 3-246 3-32 3-32 3-32 3-32 3-32 3-32 3-32	BY141 BY201 BY202 BY203 BY204 BY205 BY206 BY207 BY208 BY209		1N4001 BYX75,MR1120 BYX76,MR1121 BYX77,MR1122 BYX78,MR1124 BYX79,MR1126 BYX79,MR1126 BYX80,MR1128 BYX81,MR1130	3-32 3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233
B800 B1000 BA50 BA100 BA200 BA300 BA400 BA500 BA600 BA600		1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	BY211 BY212 BY213 BY214 BY215 BY216 BY217 BY218 BY219 BY229-200		BYX75,MR1120 BYX76,MR1121 BYX77,MR1122 BYX78,MR1124 BYX79,MR1124 BYX79,MR1126 BYX79,MR1126 BYX80,MR1128 BYX81,MR1130 MUR820	3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233
BA1000 BF4-05L BF4-10L BF4-20L BF4-40L BF4-60L BF4-80L BF4-100L BF5-05L BF5-10L		1N4007 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 MR501 MR501	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-190 3-190	BY229-400 BY229-600 BY229-800 BY239-200 BY239-400 BY239-600 BY239-600 BY239-1000 BY2001 BY2002		MUR840 MUR860 MUR880 MR2402 MR2404 MR2406 C.F. C.F. BYX81,MR1130 BYX81,MR1130	

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

	Motorola	Motorola			Motorola	Motorola	
Industry Part Number	Direct Replacement	Similar Replacement	Page #	Industry Part Number	Direct Replacement	Similar Replacement	Page #
BY2101 BY2102 BY2201 BY2202 BYV19-30 BYV19-40 BYV19-45 BYV32-50 BYV32-50	MBR1035 MBR1035 MBR1045 MBR1045 BYV32-50	BYX81,MR1130 BYX81,MR1130 BYX81,MR1130 BYX81,MR1130	3-233 3-233 3-233 3-233 3-92 3-92 3-92 3-286	BYX38-1200,R BYX42-300,R BYX42-600,R BYX42-900,R BYX42-1200,R BYX48/300 BYX48/600 BYX48/900 BYX20200R BYX21100		MR1130 MR1122 MR1124 MR1126 MR1128 MR1124 MR1126 MR1130 11N3493R 11N3492	3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-6
BYV32-100 BYV32-100 BYV32-150 BYV32-150 BYV32-200 BYV32-200 BYV33-30 BYV33-40 BYV33-45 BYV43-30 BYV43-30 BYV43-40 BYV43-45	BYV32-100 BYV32-150 BYV32-200 MBR2035CT MBR2035CT MBR2045CT MBR2545CT MBR2535CT MBR2535CT MBR2545CT MBR2545CT	MUR1610CT MUR1615CT MUR1620CT	3-286 3-286 3-286 3-106 3-106 3-106 3-106 3-106 3-106 3-106	BYX21200 BYX21200R BYX36150 BYX36300 BYX36600 BYX216400 BYY20 BYY20/200 BYY21/200 BYY31 BYY32 BYY33 BYY33 BYY34 BYY35		1N3493 1N3493R 1N4003 1N4003 1N4004 1N3495 1N3493R 1N3493R 1N3493R 1N4003 1N4003 1N4004 1N4004 BY127,1N5397	3-6
BYW29-50 BYW29-50 BYW29-100 BYW29-100 BYW29-150 BYW29-150	BYW29-50 BYW29-100 BYW29-150	MUR805 MUR810 MUR815	3-100 3-275 3-275 3-275	BYY36 BYY37 CER67,A,B,C CER68,A,B,C CER69,A,B,C CER70,A,B,C		BY126,1N5399 BY127,1N5399 BY127,1N5399 1N4001 1N4002 1N4003 1N4004	3-41 3-41 3-32 3-32 3-32 3-32
BYW29-600 BYW29-700 BYW29-800 BYW30-50 BYW30-150 BYW31-50 BYW31-150 BYW31-150 BYW51-50	MUR860 MUR870 MUR880 MUR1605CT	SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL	3-275 3-275 3-275 — — — — — — — 3-286	CER71,A,B,C CER72,A,B,C,D CER73,A,B,C,D CER500,A,B,C D50 D100 D300 D500 D800 D1000		1N4005 1N4006 1N4007 1N4005 1N4001 1N4002 1N4004 1N4005 1N4006 1N4007	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
BYW51-100 BYW51-150 BYW80-50 BYW80-50R BYW80-100 BYW80-150 BYW80-150 BYW80-150R BYW80-200 BYX21L100	MUR1610CT MUR1615CR MUR805 MUR810 MUR815 MUR820	MUR805R MUR810R MUR815R 1N3492	3-286 3-286 3-275 3-275 3-275 3-275 3-275 3-275 3-275 3-6	D1201A D1201B D1201D D1201F D1201M D1201N D1201P D2201A D2201B D2201D		1N4002 1N4003 1N4004 1N4001 1N4005 1N4006 1N4007 1N4934 1N4935 1N4936	3-32 3-32 3-32 3-32 3-32 3-32 3-6 3-6 3-6
BYX21L200 BYX21L400R BYX30-200,R BYX30-300,R BYX30-400,R BYX30-500,R BYX30-600,R BYX38-300,R BYX38-600,R BYX38-600,R		1N3493 1N3495R 1N3901 1N3902 1N3903 MR1386 MR1386 MR1122 MR1126 MR1130	3-6 — 3-22 3-22 3-22 3-22 3-22 3-233 3-233 3-233	D2201F D2201M D2201N D2406A D2406B D2406C D2406D D2406F D2406M D2412A		1N4933 1N4937 MR816 1N3880 1N3881 1N3882 1N3883 1N3879 MR1366 1N3890	3-6 3-200 3-12 3-12 3-12 3-12 3-12 3-17

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry	Motorola Direct	Motorola Similar		Industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
D2412B D2412C D2412D D2412F D2412F D212M D2520A D2520B D2520C D2520C D2520C		1N3891 1N3892 1N3893 1N3889 MR1376 1N3900 1N3901 1N3902 1N3903 1N3899	3-17 3-17 3-17 3-17 3-17 3-22 3-22 3-22 3-22 3-22	ED8307 ED8310 EM501 EM502 EM503 EM504 EM505 EM506 EM508 EM510		MR1366 MR1376 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007	3-12 3-17 3-32 3-32 3-32 3-32 3-32 3-32 3-32
D2520M D2540A D2540B D2540C D2540D D2540F D2540F D2540M D2601A D2601B		MR1386 1N3910 1N3911 1N3912 1N3913 1N3909 MR1396 MR811 MR812 MR814	3-22 3-27 3-27 3-27 3-27 3-27 3-200 3-200 3-200	ER1 ER2 ER4 ER6 ER11 ER21 ER31 ER41 ER51 ER61		1N4001 1N4935 1N4936 1N4937 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-32 3-35 3-35 3-35 3-32 3-32 3-32 3-32
D2601F D2601M D2601N DI-42 DI-44 DI-46 DI-48 DI-52 DI-54 DI-56		MR810 MR816 MR818 1N4003 1N4004 1N4005 1N4006 1N4003 1N4004 1N4005	3-200 3-200 3-200 3-32 3-32 3-32 3-32 3-	ER81 ER181 ER182 ER183 ER184 ER185 ER186 ER187 ER2000 ER2001		1N4006 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 MR501 MR501	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-190 3-190
DI-58 DI-72 DI-74 DI-76 OI-78 DI-410 DI-510 DI-710 DSR1201 DSR1201		1N4006 1N4003 1N4004 1N4005 1N4006 1N4007 1N4007 1N4007 MR501 MR504	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-190 3-190	ER2002 ER2003 ER2004 ER2005 ER2006 ESAB82-4 ESAC25-02 ESAC25-04 ESAC82-4 ESAC83-4		MR502 MR504 MR504 MR506 MR506 MR506 MBR1545CT MUR820 MUR840 MBR1545CT MBR3045PT	3-190 3-190 3-190 3-190 3-190 3-102 3-275 3-275 3-102 3-120
DSR1205 DT230A DT230F DT230G DT230H E1 E2 E3 E4 E6		MR506 1N4002 1N4001 1N4003 1N4004 1N4002 1N4003 1N4004 1N4004 1N4005	3-190 3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-3	ESM980-100 ESM980-200 ESM980-300 ESM980-400 F1 F2 F3 F4 F5 F6	MUR1510 MUR1520 MUR1530 MUR1540	1N4934 1N4935 1N4004 1N4004 1N4937 1N4005	3-281 3-281 3-281 3-281 3-35 3-35 3-35 3-32 3-32 3-35 3-32
E8 E10 EASD83-4 ED3100 ED3101 ED3102 ED3104 ED3106 ED3108 ED3110		1N4006 1N4007 MBR3045PT 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007	3-32 3-32 3-120 3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-	F8 F10 F12100B FE8A FE8B FE8C FE8D FE8F FE8G FE16A	MUR805 MUR810 MUR815 MUR820 MUR830 MUR840 MUR1605CT	1N4006 1N4007 MR1130	3-32 3-32 3-233 3-275 3-275 3-275 3-275 3-275 3-286

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
FE16B FE16C FE16D FE16F FE16G FR1 FR2 FR3 FR4 FR6	MUR1610CT MUR1615CT MUR1620CT MUR1640CT MUR1640CT	1N4934 1N4935 1N4936 1N4936 1N4937	3-286 3-286 3-286 3-286 3-286 3-35 3-35 3-35 3-35 3-35	GER4001 GER4002 GER4003 GER4004 GER4005 GER4006 GER4007 GI500 GI501 GI502	MR500 MR501 MR502	1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007	3-32 3-32 3-32 3-32 3-32 3-32 3-190 3-190 3-190
FRP805 FRP810 FRP815 FRP820 FRP1605 FRP1605CC FRP1610 FRP1610CC FRP1615 FRP1615CC	MUR805 MUR810 MUR815 MUR820 MUR1505 MUR1505CT MUR1510 MUR1510CT MUR1515 MUR1515		3-275 3-275 3-275 3-275 3-281 — 3-281 — 3-281	GI504 GI506 GI508 GI510 GI751 GI752 GI754 GI756 GI758	MR504 MR506 MR508 MR510 MR750 MR751 MR752 MR754 MR756 MR758		3-190 3-190 3-190 3-190 3-196 3-196 3-196 3-196 3-196
FRP1620 FRP1620CC G1 G1A G1B G1D G1F G1G G1H G1J	MUR1520 MUR1520CT	1N4002 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-281 — 3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	GI810 GI811 GI812 GI814 GI816 GI817 GI818 GI820 GI821 GI822	MR810 MR811 MR812 MR814 MR816 MR817 MR818 MR820 MR821 MR822		3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-206 3-206 3-206
G1K G1M G2A G2B G2D G2G G2J G2K G2M G3A		1N4006 1N4007 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 MR500	3-32 3-32 3-41 3-41 3-41 3-41 3-41 3-41 3-190	GI824 GI826 GI850 GI851 GI852 GI854 GI856 GI910 GI911 GI912	MR824 MR826 MR850 MR851 MR852 MR854 MR856 MR910 MR911		3-206 3-206 3-215 3-215 3-215 3-215 3-215 —
G3B G3D G3F G3G G3H G3J G3K G3M G6 G8		MR501 MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N4005 1N4006	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-32 3-32	GI914 GI916 GI917 GI918 GI1401 GI1402 GI1403 GI1404 GI2401 GI2402	MR914 MR916 MR917 MR918 MUR805 MUR810 MUR815 MUR820 MUR1605 MUR1605		
G10 G100A G100B G100D G100F G100G G100H G100J G100K G100M		1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	GI2403 GI2404 GI2500 GI2501 GI2502 GI2504 GI2506 GI2508 GI2510 GP10A	MUR1615 MUR1620 MR2500 MR2501 MR2502 MR2504 MR2506 MR2508 MR2510	1N4001	3-286 3-286 3-246 3-246 3-246 3-246 3-246 3-246 3-32

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
GP10B GP10D GP10G GP10J GP10K GP10M GP15A GP15B GP15D GP15G		1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5391 1N5392 1N5393 1N5395	3-32 3-32 3-32 3-32 3-32 3-32 3-41 3-41 3-41	HC71 HC72 HC73 HC300 HC500 HFR-5 HFR-10 HFR-150 HFR-200 HGR-5		1N4005 1N4006 1N4007 1N4722 1N4723 1N4933 1N4934 1N4935 1N4935 1N4935 1N4901	3-32 3-32 3-32 3-33 3-33 3-35 3-35 3-35
GP15J GP15K GP15M GP20A GP20B GP20D GP20G GP20G GP20J GP20K GP20M		1N5397 1N5398 1N5399 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399	3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-41	HGR-10 HGR-20 HGR-30 HGR-40 HGR-60 HR100 HR200 HR400 HR600 HRF100		1N4002 1N4003 1N4004 1N4004 1N4005 1N5401 1N5402 1N5404 1N5406 MR851	3-32 3-32 3-32 3-32 3-45 3-45 3-45 3-45 3-215
GP25A GP25B GP25D GP25G GP25J GP25K GP25M GP30A GP30B GP30D		MR500 MR501 MR502 MR504 MR506 MR508 MR510 MR500 MR501 MR501	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-190	HRF200 HRF400 HRF600 ITS5817 ITS5818 ITS5819 ITS5823 ITS5824 ITS5825 J-1	1N5817 1N5818 1N5819	MR852 MR854 MR856 1N5823 1N5824 1N5825 1N4002	3-215 3-215 3-215 3-47 3-47 3-47 3-55 3-55 3-55 3-32
GP30G GP30J GP30K GP30M GP80A GP80B GP80D GP80G GP80J GP80K		MR504 MR506 MR508 MR510 MR2400 MR24401 MR2402 MR2404 MR2406 MR2408	3-190 3-190 3-190 3-190 3-236 3-236 3-236 3-236 3-236	J-2 J-4 J-05 J-6 J-8 J-10 M0 M2 M4 M6		1N4003 1N4004 1N4001 1N4005 1N4006 1N4007 1N4007 1N4003 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
GP80M GR1 GR2 GR4 GR6 H800 H1000 HB50 HB100 HB200		MR2410 1N4934 1N4935 1N4936 1N4937 1N4006 1N4007 MR501 MR501 MR501	3-35 3-35 3-35 3-35 3-35 3-32 3-190 3-190 3-190	M8 M67,A,B,C M68,A,B,C M69,A,B,C M70,A,B,C M71,A,B,C M72,A,B,C M73,A,B,C M100A M100B		1N4006 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N4001 1N4001	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
HB300 HB400 HB500 HB600 HB800 HB1000 HC67 HC68 HC69 HC70		MR504 MR504 MR506 MR506 MR508 MR510 1N4001 1N4002 1N4003 1N4004	3-190 3-190 3-190 3-190 3-190 3-190 3-32 3-32 3-32 3-32	M100D M100F M100G M100H M100J M100K M100M M500,A,B,C MB214 MB215		1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4005 1N4934 1N4935	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-35 3-35

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MB217 MB218 MB219 MB220 MB221 MB222 MB224 MB225 MB225 MB226 MB228		1N4936 1N4937 1N4937 MR817 1N4934 1N4935 1N4936 1N4937 1N4937 MR501	3-35 3-35 3-200 3-35 3-35 3-35 3-35 3-35 3-190	MBR1635 MBR1645 MBR2035CT MBR2045CT MBR2520 MBR2530 MBR2530 MBR2535CT MBR2535CT MBR2545CT MBR3020CT	MBR1635 MBR1645 MBR2035CT MBR2045CT MBR2520 MBR2530 MBR2540 MBR2535CT MBR2545CT MBR3020CT		3-104 3-104 3-106 3-106 3-110 3-110 3-114 3-114 3-116
MB229 MB230 MB231 MB232 MB233 MB233 MB235 MB235 MB236 MB237 MB238		MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N4002 1N4003 1N4004	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-32 3-32 3-32 3-32	MBR3035CT MBR3035PT MBR3045CT MBR3045PT MBR3520 MBR3535 MBR3545,H,H1 MBR4020 MBR4030 MBR4040	MBR3035CT MBR3035PT MBR3045CT MBR3045PT MBR3520 MBR3535 MBR3545,H,H1 MBR4020 MBR4030 MBR4040		3-116 3-120 3-116 3-120 3-122 3-122 3-122 3-126 3-126 3-126
MB239 MB240 MB241 MB242 MB243 MB244 MB245 MB245 MB246 MB247 MB248	·	1N4004 1N4005 1N4005 1N4006 1N4007 1N4002 1N4003 1N4004 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	MBR5825,H,H1 MBR5831,H,H1 MBR6035,B MBR6035PF MBR6045,B MBR6045,H,H1 MBR6045PF MBR6535 MBR6535 MBR6545 MBR7520	MBR5825,H,H1 MBR5831,H,H1 MBR6035 MBR6035PF MBR6045 MBR6045,H,H1 MBR6045PF MBR6535 MBR6535 MBR6545 MBR7520		3-59 3-64 3-130 3-134 3-130 3-130 3-134 3-138 3-138 3-142
MB249 MB250 MB251 MBR030 MBR040 MBR115P MBR120P MBR130P MBR140P MBR320	MBR030 MBR040 MBR115P MBR120P MBR130P MBR140P MBR320	1N4005 1N4006 1N4007	3-32 3-32 3-32 3-80 3-80 3-47 3-47 3-47 3-47 3-82	MBR7530 MBR7535 MBR7545 MBR8035 MBR8045 MBR12035CT MBR12045CT MBR12050CT MBR12060CT MBR20035CT	MBR7530 MBR7535 MBR7545 MBR8035 MBR8045 MBR12035CT MBR12045CT MBR12050CT MBR12050CT MBR12050CT		3-142 3-142 3-142 3-144 3-144 3-148 3-148 3-148 3-150
MBR320M MBR320P MBR330 MBR330M MBR330P MBR340 MBR340M MBR340M MBR340P MBR350 MBR350	MBR320M MBR320P MBR330 MBR330M MBR330P MBR340 MBR340M MBR340P MBR350 MBR350		3-86 3-51 3-82 3-86 3-51 3-82 3-86 3-51 3-82 3-82	MBR20045CT MBR20050CT MBR20060CT MBR30035CT MBR30045CT MBRL030/040 MDA100A MDA101A MDA102A MDA104A	MBR20045CT MBR20050CT MBR20060CT MBR30035CT MBR30045CT MBRL030/040 MDA100A MDA101A MDA101A MDA102A MDA104A		3-150 3-150 3-150 3-152 3-152 3-154 3-156 3-156 3-156
MBR735 MBR745 MBR1035 MBR1045 MBR1060 MBR1520 MBR1530 MBR1540 MBR1535CT MBR1545CT	MBR735 MBR745 MBR1035 MBR1045 MBR1060 MBR1520 MBR1530 MBR1530 MBR1540 MBR1535CT MBR1545CT		3-90 3-90 3-92 3-92 3-96 3-98 3-98 3-102 3-102	MDA106A MDA108A MDA110A MDA200A MDA201A MDA202A MDA204A MDA206A MDA208A MDA210A	MDA106A MDA108A MDA110A MDA200A MDA201A MDA201A MDA204A MDA206A MDA206A MDA208A MDA210A		3-156 3-156 3-158 3-158 3-158 3-158 3-158 3-158 3-158 3-158

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct	Motorola Similar	Page #	Industry Port Number	Motorola Direct	Motorola Similar	Dec #
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
MDA920A1 MDA920A2 MDA920A3 MDA920A4 MDA920A6 MDA920A7	MDA920A1 MDA920A2 MDA920A3 MDA920A4 MDA920A6 MDA920A7		3-160 3-160 3-160 3-160 3-160 3-160	MR600 MR750 MR751 MR752 MR754 MR756	MR750 MR751 MR752 MR754 MR756	1N5397	3-41 3-196 3-196 3-196 3-196 3-196
MDA920A8 MDA920A9 MDA970A1 MDA970A2	MDA920A8 MDA920A9 MDA970A1 MDA970A2		3-160 3-160 3-164 3-164	MR758 MR760 MR800 MR801		1N5398	 3-41
MDA970A3 MDA970A5 MDA970A6 MDA980-1 MDA980-2 MDA980-3 MDA980-4 MDA980-5 MDA980-6 MDA990-1	MDA970A3 MDA970A5 MDA970A6 MDA980-1 MDA980-2 MDA980-3 MDA980-4 MDA980-5 MDA980-6 MDA990-1		3-164 3-164 3-168 3-168 3-168 3-168 3-168 3-168 3-168 3-168	MR802 MR804 MR806 MR810 MR811 MR812 MR814 MR816 MR817 MR818	MR810 MR811 MR812 MR814 MR816 MR817 MR818		3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200
MDA990-2 MDA990-3 MDA990-4 MDA990-5 MDA990-6 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506	MDA990-2 MDA990-3 MDA990-4 MDA990-5 MDA990-6 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506		3-168 3-168 3-168 3-168 3-168 3-173 3-173 3-173 3-173	MR820 MR821 MR822 MR824 MR826 MR830 MR831 MR832 MR832 MR834 MR834	MR820 MR821 MR822 MR824 MR826 MR830 MR831 MR832 MR834 MR836		3-206 3-206 3-206 3-206 3-206 3-214 3-214 3-214 3-214
MDA2550 MDA2551 MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA3510 MDA3550	MDA2550 MDA2551 MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA3510 MDA3550		3-177 3-177 3-181 3-181 3-181 3-181 3-181 3-181 3-181 3-185	MR850 MR851 MR852 MR854 MR856 MR860 MR861 MR862 MR864 MR864	MR850 MR851 MR852 MR854 MR856 MR860 MR861 MR862 MR864 MR866		3-215 3-215 3-215 3-215 3-215 3-223 3-223 3-223 3-223 3-223
MDA3551 MLL4001 MLL4002 MLL4003 MLL4004 MPR10 MR100 MR200 MR327 MR328	MDA3551 MLL4001 MLL4002 MLL4003 MLL4004 MR327 MR328	1N4007 1N5392 1N5393	3-185 3-189 3-189 3-189 3-189 3-32 3-41 3-41 3-6 3-6	MR870 MR871 MR872 MR874 MR876 MR910 MR911 MR912 MR914 MR916	MR870 MR871 MR872 MR874 MR876 MR910 MR911 MR912 MR914 MR916		3-228 3-228 3-228 3-228 3-228
MR330 MR331 MR400 MR500 MR501 MR502 MR504 MR506 MR508 MR510	MR330 MR331 MR500 MR501 MR502 MR504 MR506 MR508 MR510	1N5395	3-6 3-6 3-41 3-190 3-190 3-190 3-190 3-190 3-190 3-190	MR917 MR918 MR1000 MR1120 MR1121 MR1122 MR1124 MR1126 MR1128 MR1130	MR917 MR918 MR1120 MR1121 MR1122 MR1124 MR1126 MR1128 MR1130	1N5399	3-41 3-233 3-233 3-233 3-233 3-233 3-233 3-233

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MR1366 MR1376 MR1386 MR1396 MR2400 MR2400F MR2401 MR2401F MR2402 MR2402F	MR1366 MR1376 MR1386 MR1396 MR2400 MR2400F MR24011 MR2401F MR2402 MR2402F		3-12 3-17 3-22 3-27 3-236 3-240 3-236 3-240 3-236 3-240	MUR620CT MUR805 MUR810 MUR815 MUR820 MUR830 MUR840 MUR850 MUR860 MUR860 MUR870	MUR620CT MUR805 MUR810 MUR815 MUR820 MUR830 MUR840 MUR850 MUR860 MUR860		3-273
MR2404 MR2404F MR2406 MR2406F MR2500,M MR2501 MR2502 MR2504 MR2506 MR2508	MR2404 MR2404F MR2406F MR2500,M MR2501 MR2502 MR2504 MR2506 MR2508		3-236 3-240 3-236 3-240 3-246 3-246 3-246 3-246 3-246 3-246	MUR880 MUR890 MUR1100 MUR1505 MUR1510 MUR1515 MUR1520 MUR1530 MUR1550 MUR1560	MUR880 MUR890 MUR1100 MUR1505 MUR1510 MUR1515 MUR1520 MUR1530 MUR1550 MUR1560		3-275 3-275 — 3-281 3-281 3-281 3-281 3-281 3-281
MR2510 MR2520L MR2525L MR5005 MR5010 MR5020 MR5030 MR5030 MR5040 MR5059 MR5060	MR2510 MR2520L MR2525L MR5005 MR5010 MR5020 MR5030 MR5030 MR5059 MR5060		3-246 3-252 3-252 3-258 3-258 3-258 3-258 3-258 3-260 3-260	MUR1605CT MUR1610CT MUR1615CT MUR1620CT MUR1630CT MUR1640CT MUR1650CT MUR1660CT MUR2505 MUR2510	MUR1605CT MUR1610CT MUR1615CT MUR1620CT MUR1630CT MUR1640CT MUR1650CT MUR1660CT MUR2505 MUR2510		3-286 3-286 3-286 3-286 3-286 3-286 3-286 3-286 3-291
MR5061 MUR005 MUR010 MUR020 MUR040 MUR105 MUR110 MUR115 MUR120 MUR130	MR5061 MUR005 MUR010 MUR020 MUR040 MUR105 MUR110 MUR115 MUR120 MUR130		3-260 ————————————————————————————————————	MUR2515 MUR2520 MUR3005PT MUR3010PT MUR3015PT MUR3020PT MUR3030PT MUR3040PT MUR4100 MUR4100	MUR2515 MUR2520 MUR3005PT MUR3010PT MUR3015PT MUR3020PT MUR3030PT MUR3040PT MUR4100		3-291 3-294 3-294 3-294 3-294 3-294 3-294 3-298
MUR140 MUR150 MUR160 MUR170 MUR180 MUR190 MUR405 MUR410 MUR415 MUR415 MUR420	MUR140 MUR150 MUR150 MUR160 MUR170 MUR180 MUR190 MUR405 MUR410 MUR415 MUR410 MUR415		3-263 3-263 3-263 3-263 3-263 3-263 3-268 3-268 3-268	MUR5005 MUR5010 MUR5015 MUR5020 MUR8100 MUR10005CT MUR10010CT MUR10015CT MUR10020CT MUR20005CT MUR20005CT	MUR5005 MUR5010 MUR5015 MUR5020 MUR8100 MUR10005CT MUR10010CT MUR10015CT MUR10020CT MUR20005CT MUR20005CT		3-298 3-298 3-298 3-301 3-301 3-301 3-301 3-303 3-303
MUR430 MUR440 MUR450 MUR460 MUR470 MUR480 MUR490 MUR605CT MUR610CT MUR615CT	MUR430 MUR440 MUR450 MUR460 MUR470 MUR480 MUR490 MUR605CT MUR610CT MUR615CT		3-268 3-268 3-268 3-268 3-268 3-268 3-268 3-273 3-273 3-273	MUR20015CT MUR20020CT NS500 NS501 NS502 NS504 NS505 NS506 NS1000 NS1001	MUR20015CT MUR20020CT	1N4933 1N4934 1N4935 1N4936 1N4937 1N4937 1N4933 1N4934	3-303 3-303 3-35 3-35 3-35 3-35 3-35 3-3

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
NS1002 NS1004 NS1005 NS1006 NS2000 NS2001 NS2002 NS2002 NS2003 NS2004 NS2005		1N4935 1N4936 1N4937 1N4937 MR850 MR851 MR852 MR854 MR854 MR854 MR856	3-35 3-35 3-35 3-215 3-215 3-215 3-215 3-215 3-215	PHS2402 PHS2403 PHS2404 PS405 PS410 PS415 PS420 PS425 PS425 PS430 PS435	MUR1610CT MUR1615CT MUR1620CT	1N4001 1N4002 1N4003 1N4003 1N4004 1N4004	3-286 3-286 3-286 3-32 3-32 3-32 3-32 3-32 3-32 3-32
NS2006 NS2006 NS3000 NS3001 NS3002 NS3003 NS3004 NS3005 NS3006 NS6000 NS6001		MR856 MR850 MR851 MR852 MR854 MR854 MR856 MR856 1N3879 1N3880	3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-12	PS440 PS450 PS460 PT505 PT510 PT515 PT520 PT525 PT530 PT540		1N4004 1N4005 1N4005 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
NS6002 NS6003 NS6004 NS6005 NS6006 NS12006 NS30000 NS30001 NS30002 NS30002 NS30003		1N3881 1N3882 1N3883 MR1366 MR1366 MR1376 1N3909 1N3910 1N3911 1N3912	3-12 3-12 3-12 3-12 3-12 3-17 3-27 3-27 3-27 3-27 3-27	PT550 PT560 PT580 PZ-140B PZ-140D PZ-140F R200 R400 R600 R710XPT	R710XPT	1N4004 1N4005 1N4005 1N4006 1N3493 1N3495 MR328 1N4003 1N4004 1N4005	3-32 3-32 3-32 3-6 3-6 3-6 3-32 3-32 3-3
NS30004 P100A P100B P100D P100G P100J P100K P100M P300A P300B		1N3913 1N5391 1N5392 1N5393 1N5395 1N5397 1N5397 1N5398 1N5399 MR500 MR501	3-27 3-41 3-41 3-41 3-41 3-41 3-41 3-190 3-190	R711XPT R712XPT R714XPT R800 R1000 R302506 R302512 R1420010 R1420110 R1420210	R711XPT R712XPT R714XPT	1N4006 1N4007 MR1366 MR1376 1N4933 1N4934 1N4935	3-32 3-32 3-12 3-17 3-35 3-35 3-35
P300D P300F P300G P300H P300J P300K P300M PA305 PA310 PA315		MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N4001 1N4002 1N4003	3-190 3-190 3-190 3-190 3-190 3-190 3-190 3-32 3-32 3-32 3-32	R1420410 R1420610 R3020606 R3020612 R3400006 R3400106 R3400206 R3400306 R3400406 R3400506		1N4936 1N4937 MR1366 MR1376 MR750 MR751 MR752 MR754 MR754 MR754 MR754	3-35 3-35 3-12 3-17 3-196 3-196 3-196 3-196 3-196 3-196
PA320 PA325 PA330 PA340 PA350 PA360 PHBR1635 PHBR1640 PHBR1645 PHS2401	MBR1635 MBR1645 MBR1645 MUR1605CT	1N4003 1N4004 1N4004 1N4004 1N4005 1N4005	3-32 3-32 3-32 3-32 3-32 3-32 3-104 3-104 3-286	R3400606 R3400706 R3400806 R3400906 R3401006 R4020530 R4020620 R4020630 RG1-A RG1-B		MR756 MR756 MR758 MR760 MR760 MR1396 MR1386 MR1396 1N4933,MR810	3-196 3-196 ————————————————————————————————————

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct	Motorola Similar Benjacement	Page #	Industry	Motorola Direct	Motorola Similar	Dags "
	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
RG1-D RG1-G RG1-J RG1-K RG1-M RG1A RG1B RG1D RG1F RG1G			3-35,3-200 3-35,3-200 3-35,3-200 3-200 3-200 3-35 3-35 3-35 3-35 3-35 3-35	RGP25M RGP30A RGP30B RGP30D RGP30F RGP30G RGP30H RGP30J RGP30K RGP30K		MR918 MR850 MR851 MR852 MR854 MR854 MR856 MR856 MR917 MR918	3-200 3-215 3-215 3-215 3-215 3-215 3-215 3-200 3-200
RG1H RG1J RG1K RG1M RG3-A RG3A RG3B RG3D RG3F RG3G		1N4937 1N4937 MR817 MR818 MR850 MR850 MR851 MR852 MR854 MR854	3-35 3-35 3-200 3-200 3-215 3-215 3-215 3-215 3-215 3-215	RGP80A RGP80B RGP80D RGP80G RGP80J RGP80K RGP80M RIV020 RIV040 RIV060		MR2400F MR2401F MR2402F MR2404F MR2406F C.F. C.F. MR852 MR854 MR856	3-240 3-240 3-240 3-240 3-240 ————————————————————————————————————
RG3H RG3J RG3K RG3M RG1122 RG1123 RGP10A RGP10B RGP10D RGP10F		MR856 MR856 MR917 MR918 1N4001 1N4002 1N4933 1N4934 1N4935 1N4936	3-215 3-215 3-200 3-200 3-32 3-32 3-35 3-35 3-35 3-35	RL005 RL010 RL020 RL040 RL060 RL080 RL100 RMC005 RMC010 RMC020		1N4933 1N4934 1N4935 1N4936 1N4937 MR817 MR818 1N4933 1N4934 1N4935	3-35 3-35 3-35 3-35 3-200 3-200 3-35 3-35 3-35
RGP10G RGP10H RGP10J RGP10K RGP15A RGP15B RGP15D RGP15F RGP15G RGP15H		1N4936 MR818 1N4937 MR817 1N4933 1N4934 1N4935 1N4936 1N4936 1N4937	3-35 3-200 3-35 3-200 3-35 3-35 3-35 3-35 3-35 3-35 3-35	RMC040 RMC060 RMC080 RMC100 RT05 RT10 RT20 RT30 RT40 RT60		1N4936 1N4937 MR817 MR818 1N3889 1N3890 1N3891 1N3892 1N3893 MR1376	3-35 3-35 3-200 3-200 3-17 3-17 3-17 3-17 3-17
RGP15J RGP15K RGP15M RGP20A RGP20B RGP20D RGP20F RGP20G RGP20H RGP20J		1N4937 MR817 MR818 1N4933 1N4934 1N4935 1N4936 1N4936 1N4937	3-35 3-200 3-200 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-	RUR805 RUR810 RUR815 RUR820 RURD805 RURD810 RURD815 RURD820 SOF SOM	MUR805 MUR810 MUR815 MUR820 MUR1605CT MUR1615CT MUR1620CT	MR818 1N4007	3-275 3-275 3-275 3-275 3-286 3-286 3-286 3-286 3-200 3-32
RGP20K RGP20M RGP25A RGP25B RGP25D RGP25F RGP25G RGP25H RGP25J RGP25K		MR817 MR818 MR850 MR851 MR852 MR854 MR854 MR856 MR856 MR917	3-200 3-200 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-200	\$1A1F \$1A2F \$1A3F \$1A4F \$1A5F \$1A10F \$1A12F \$1ABF \$1AGF \$2F		1N4934 1N4935 1N4936 1N4936 1N4937 MR818 SPECIAL MR817 1N4937 1N4935	3-35 3-35 3-35 3-35 3-35 3-200 — 3-200 3-35 3-35

 $^{^*}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
\$2M \$3A1 \$3A1F \$3A2F \$3A2F \$3A3F \$3A3F \$3A4F \$3A4F \$3A5 \$3A5F \$3A6 \$3A6F \$3A6 \$3A6F \$3A7 \$3A8 \$3A8F \$3A8F \$3A9 \$3A10F \$3A10F \$3A12F \$3A025 \$4F \$4M \$5A1 \$5A1F \$5A2 \$5A2F \$5A3F		1N4003 1N5401 MR851 1N5402 MR852 1N5403 MR854 1N5403 MR854 1N5405 MR856 1N5406 MR856 MR508 MR508 MR508 MR917 MR510 MR918 SPECIAL 1N5400 1N4936 1N4004 MR501 MR501 MR501 MR501 MR501 MR502 MR822/MR852 MR504 MR824/MR854	3-32 3-45 3-215 3-45 3-215 3-45 3-215 3-45 3-215 3-45 3-215 3-45 3-215 3-190 3-190 3-190 3-190 3-190 3-3-35 3-32 3-32 3-39 3-206,3-215 3-190 3-206,3-215 3-190 3-206,3-215	\$40A1 \$40A2 \$40A3 \$40A4 \$40A5 \$40A6 \$40A8 \$40A10 \$1010 \$1020 \$1030 \$1040 \$1050 \$1060 \$1070 \$1080 \$1090 \$10100 \$-3A1 \$-3A2 \$-3A3 \$-3A4 \$-3A5 \$-3A6 \$-3A6 \$-3A1 \$-5A2 \$-5A1 \$-5A2 \$-5A3		1N1184A 1N1186A 1N1187A 1N1188A 1N1189A 1N1190 1N3766 1N3768 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 MR501 MR502 MR504 MR504 MR506 MR506 MR508 MR510 MR508 MR510 MR751 MR752	
\$5A4 \$5A4F \$5A5 \$5A5F \$5A6 \$5A6F \$5A8F \$5A10 \$5A10F \$5A12F \$5A025 \$6A1 \$6A2 \$6A3 \$6A4 \$6A5		MR504 MR824/MR854 MR506 MR826/MR856 MR506 MR826/MR856 MR508 MR917 MR510 MR918 SPECIAL MR500 MR751 MR752 MR754 MR754 MR756	3-190 3-206,3-215 3-190 3-206,3-215 3-190 3-206,3-215 3-190 3-190 3-190 3-196 3-196 3-196 3-196 3-196	S-5A4 S-5A5 S-5A6 SB820 SB830 SB840 SB850 SB860 SB800 SB1020 SB1020 SB1035 SB1045 SB1620 SB1620 SB1650 SB1650 SB1660	MBR735 MBR735 MBR745 SPECIAL SPECIAL C.F. MBR1035 MBR1035 MBR1045 MBR1535CT MBR1535CT MBR1645CT SPECIAL SPECIAL	MR754 MR756 MR756	3-196 3-196 3-196 3-90 3-90 3-92 3-92 3-102 3-104
\$6A6 \$6A8 \$6A10 \$6F \$8M \$25A1 \$25A3 \$25A4 \$25A4 \$25A05 \$25A6 \$25A8 \$25A10		MR756 MR758 MR760 1N4937 1N4905 MR817 1N4006 1N1184 1N1187 1N1188 1N1183 1N1190 1N3766 1N3768	3-196 3-35 3-32 3-200 3-32 	SB1680 SD1 SD2 SD4 SD05 SD6 SD8 SD31 SD32 SD41 SD51 SD71 SD72 SD75	C.F. SD41 SD51	1N4002 1N4003 1N4004 1N4004 1N4005 1N4006 MBR3545 MBR3545 MBR7545 MBR7545 MBR7545	3-32 3-32 3-32 3-32 3-32 3-122 3-72 3-76 3-142 3-142 3-142

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
SD241 SEN105 SEN105FR SEN110 SEN110FR SEN120 SEN120FR SEN130 SEN140 SEN140FR	SD241	1N4001 1N4933 1N4002 1N4934 1N4003 1N4936 1N4004 1N4004 1N4936	3-116 3-32 3-35 3-32 3-35 3-32 3-35 3-32 3-32	SES5601C SES5602C SES5603C SES5701 SES5702 SES5703 SES5801 SES5801 SES5802 SES5803 SGR100		SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL 11M4002	 3-32
SEN150 SEN150FR SEN160 SEN160FR SEN180 SEN205 SEN205FR SEN210 SEN210FR SEN220		1N4005 1N4937 1N4005 1N4937 1N4006 MR501 MR850 MR501 MR851 MR851 MR502	3-32 3-35 3-32 3-35 3-32 3-190 3-215 3-190 3-215 3-190	SGR200A SGR400A SGR600A SGR800A SGR1000A SI1 SI2 SI3 SI4 SI5		1N4003 1N4004 1N4005 1N4006 1N4007 1N5392 1N5393 1N5394 1N5395 1N5396	3-32 3-32 3-32 3-32 3-32 3-41 3-41 3-41 3-41
SEN220FR SEN230FR SEN240 SEN240FR SEN250FR SEN260 SEN260FR SEN280 SEN300 SEN300 SEN305		MR852 MR854 MR504 MR854 MR856 MR506 MR856 MR508 MR504 MR501	3-215 3-215 3-190 3-215 3-215 3-190 3-215 3-190 3-190	SI6 SI7 SI8 SI9 SI10 SI-1A SI-2A SI-3A SI-4A SI-5A		1N5397 1N5398 1N5398 1N5399 1N5399 MR501 MR502 MR504 MR504 MR506	3-41 3-41 3-41 3-41 3-190 3-190 3-190 3-190 3-190
SEN305FR SEN310 SEN310FR SEN320 SEN320FR SEN330FR SEN340 SEN340 SEN340FR SEN350 SEN350FR		MR850 MR501 MR851 MR502 MR852 MR854 MR504 MR854 MR506 MR856	3-215 3-190 3-215 3-190 3-215 3-215 3-190 3-215 3-190 3-215	SI-6A SI-8A SI-10A SI-50E SI-100E SI-200E SI-300E SI-400E SI-500E SI-600E		MR506 MR508 MR508 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-190 3-190 3-190 3-32 3-32 3-32 3-32 3-32 3-32 3-32
SEN360 SEN360FR SEN380 SEN1100 SEN2100 SEN3100 SES5001 SES5002 SES5003 SES5301		MR506 MR856 MR508 1N4007 MR510 MR510 MUR105 MUR115 SPECIAL	3-190 3-215 3-190 3-32 3-190 3-190 3-263 3-263 3-263	SI-800E SI-1000E SL3 SL5 SL8 SL10 SL50 SL91 SL92 SL93		1N4006 1N4007 MR1123 MR1125 MR1128 MR1130 MR1120 1N4002 1N4003 1N4004	3-32 3-233 3-233 3-233 3-233 3-233 3-233 3-32 3-32
SES5302 SES5303 SES5401 SES5401C SES5402 SES5402C SES5403 SES5403 SES5404 SES5404C	MUR805 MUR1605CT MUR810 MUR1610CT MUR815 MUR1615CT MUR820 MUR1620CT	SPECIAL SPECIAL	3-275 3-286 3-275 3-286 3-275 3-286 3-275 3-286	SL100 SL200 SL300 SL400 SL500 SL600 SL608 SL610 SL710		MR1121 MR1122 MR1123 MR1124 MR1125 MR1126 1N4006 1N4007 1N4007 1N4007	3-233 3-233 3-233 3-233 3-233 3-233 3-32 3-32 3-32 3-32

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
SL800 SL800X SL1000 SL1000X		MR1128 MR1128 MR1130 MR1130	3-233 3-233 3-233 3-233	SRS160 SRS180 SRS205 SRS210	-	1N4005 1N4006 MR501 MR501	3-32 3-32 3-190 3-190
SLA5191 SLA5198 SLA5199 SLA5200 SLA5201		MR501 MR501 MR502 MR504 MR506	3-190 3-190 3-190 3-190 3-190 3-32	SRS220 SRS240 SRS260 SRS280 SRS305 SRS310		MR502 MR504 MR506 MR508 MR501 MR501	3-190 3-190 3-190 3-190 3-190 3-190
SLA-11 SLA-12 SLA-13 SLA-14 SLA-15 SLA-16		1N4001 1N4002 1N4003 1N4004 1N4004 1N4005	3-32 3-32 3-32 3-32 3-32 3-32	SRS310 SRS320 SRS360 SRS380 SRS1100 SRS2100		MR502 MR506 MR508 1N4007 MR510	3-190 3-190 3-190 3-32 3-190
SLA-17 SLA-18 SLA-19 SLA-21 SLA-22		1N4005 1N4006 1N4007 MR501 MR501	3-32 3-32 3-32 3-190 3-190	SRS3100 SRSFR105 SRSFR110 SRSFR120 SRSFR140		MR510 1N4933 1N4934 1N4935 1N4936	3-190 3-35 3-35 3-35 3-35
SLA-23 SLA-24 SLA-25 SLA-26 SLA-27 SLA-28 SLA-29 SR710 SR710F		MR502 MR504 MR504 MR506 MR506 MR508 MR510 SPECIAL R710X	3-190 3-190 3-190 3-190 3-190 3-190 3-190 	SRSFR150 SRSFR160 SRSFR180 SRSFR205 SRSFR210 SRSFR220 SRSFR230 SRSFR240 SRSFR250 SRSFR250 SRSFR250		1N4937 1N4937 MR817 MR850 MR851 MR852 MR854 MR854 MR856 MR856	3-35 3-35 3-200 3-215 3-215 3-215 3-215 3-215 3-215
SR711 SR711F SR712F SR713 SR713F SR714F SR714F SR716F SR716F SR2462		SPECIAL R711X SPECIAL R712X SPECIAL R714X SPECIAL R714X SPECIAL SPECIAL SPECIAL 1N4004	 3-32	SRSFR305 SRSFR310 SRSFR320 SRSFR330 SRSFR340 SRSFR360 SRSFR360 SRSFR1100 STZFR10P STZFR10P		MR850 MR851 MR852 MR854 MR854 MR856 MR856 MR818 1N3890 1N3891	3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-217 3-17
SR3502 SR3512 SR3946 SR5005 SR5010 SR5020 SR5030 SR5030 SR5040 SR6134 SR6323		1N4002 1N4001 1N4005 MR5005 MR5010 MR5020 MR5030 MR5040 1N4003 1N4001	3-32 3-32 3-32 3-258 3-258 3-258 3-258 3-258 3-32 3-32	ST2FR30P ST2FR40P ST2FR60P ST4FR10P ST4FR20P ST4FR30P ST4FR60P ST4FR60P ST210E ST210E		1N3892 1N3893 MR1376 MR861 MR862 MR864 MR864 MR866 1N3209 MR1121	3-17 3-17 3-17 3-223 3-223 3-223 3-223 3-5 3-233
SR6385 SR6404 SR6560 SR6569 SR6592 SR6593		1N4003 1N4006 1N4002 1N4004 1N4006 1N4007	3-32 3-32 3-32 3-32 3-32 3-32	ST220E ST220P ST230E ST230P ST240E ST240P		1N3210 MR1122 1N3211 MR1123 1N3212 MR1124	3-5 3-233 3-5 3-233 3-5 3-233
SRS105 SRS110 SRS120 SRS140		1N4001 1N4002 1N4003 1N4004	3-32 3-32 3-32 3-32	ST250E ST250P ST260E ST260P		1N3213 MR1125 1N3214 MR1126	3-233 — 3-233

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
ST280P ST410P ST420P ST430P ST440P ST450P ST450P ST2100P SV800 SV1000		MR1128 1N1184A 1N1186A 1N1187A 1N1188A 1N1189A 1N1190A MR1130 MR330 MR331	3-233 3-233 3-190 3-190	TFR1205 TFR1210 TFR1220 TFR1240 TG84 TG86 TG88 TG284 TG286 TG286 TG288	MUR840 MUR860 MUR880 MUR1640CT C.F. C.F.	1N3889 1N3890 1N3891 1N3893	3-17 3-17 3-17 3-17 3-275 3-275 3-275 3-286
T12A6F T20A6F T30A6F T800 T1000 T3889 T3890 T3891 T3892 T3893		SPECIAL SPECIAL SPECIAL 1N400 1N4007 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL	3-32 - - - - - - -	TIR101A TIR101B TIR101C TIR101D TIR102A TIR102B TIR102C TIR102D TIR102D TIR201A TIR201B		SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL	
T3899 T3900 T3901 T3902 T3903 T3909 T3910 T3911 T3912 T3913		SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL		TIR201C TIR201D TIR202A TIR202B TIR202C TIR202D TK5 TK10 TK11 TK20		SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL 1N4001 1N4002 1N4002 1N4003	
TA5 TA10 TA20 TA40 TA50 TA60 TA80 TA100 TA200 TA300		1N4001 1N4002 1N4003 1N4004 1N4001 1N4005 1N4006 1N4007 1N4003 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	TK21 TK30 TK40 TK41 TK50 TK60 TK61 TKF5 TKF10 TKF20		1N4003 1N4004 1N4004 1N4004 1N4005 1N4005 1N4005 1N4933 1N4934 1N4935	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-35 3-35
TA400 TA500 TA600 TA800 TA1000 TA9225A TA9225B TA9225C TFR105 TFR110	MUR1510 MUR1515 MUR1520	1N4004 1N4005 1N4005 1N4006 1N4007 1N3879 1N3880	3-32 3-32 3-32 3-32 3-32 3-281 3-281 3-12 3-12	TKF40 TKF50 TKF60 TKF80 TKF100 TM1 TM2 TM3 TM4 TM5		1N4936 1N4937 1N4937 MR817 MR817 MR1120,1N1199B MR1120,1N1199B	3-35 3-35 3-35 3-200 3-200 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233
TFR120 TFR140 TFR305 TFR310 TFR320 TFR340 TFR605 TFR610 TFR620 TFR640		1N3881 1N3883 1N3879 1N3880 1N3881 1N3883 1N3879 1N3880 1N3881 1N3881	3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12	TM7 TM8 TM9 TM11 TM12 TM13 TM17 TM18 TM19 TM21		MR1120,1N1199B MR1120,1N1199B MR1120,1N1199B MR1121,1N1200B MR1121,1N1200B MR1121,1N1200B MR1121,1N1200B MR1121,1N1200B MR1121,1N1200B MR1122,1N1200B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
TM22 TM23 TM24 TM27 TM28 TM29 TM31 TM32 TM33 TM34		MR1122,1N1202B MR1122,1N1202B MR1122,1N1202B MR1122,1N1202B MR1122,1N1202B MR1122,1N1202B MR1123,1N1204B MR1123,1N1204B MR1123,1N1204B MR1123,1N1204B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233	TR302 TR303 TR351 TR352 TR353 TR400 TR401 TR402 TR402 TR403 TR503		1N3211 1N1187 1N3212 1N1196 1N1188A 1N1196 1N3212 1N1196 1N1188A 1N1189	3-5 — 3-5 — — — 3-5 —
TM37 TM38 TM39 TM41 TM42 TM43 TM44 TM47 TM48 TM48		MR1123,1N1204B MR1123,1N1204B MR1123,1N1204B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B MR1124,1N1204B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233	TR600 TR601 TR602 TR603 TR1120 TR1121 TR1122 TR1122 TR1123 TR1124 TR1125		1N1198 1N1198 1N1198 1N1190 MR1120 MR1121 MR1122 MR1123 MR1124 MR1125	3-233 3-233 3-233 3-233 3-233 3-233 3-233
TM51 TM52 TM53 TM61 TM62 TM63 TM64 TM65 TM66 TM66		MR1125,1N1206B MR1125,1N1206B MR1125,1N1206B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B MR1126,1N1206B	3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233 3-4,3-233	TR1126 TR1128 TR1130 TS3 TS5 TS10 TS20 TS40 TS50 TS60		MR1126 MR1128 MR1130 1N4933 1N4933 1N4934 1N4935 1N4936 1N4937 1N4937	3-233 3-233 3-233 3-35 3-35 3-35 3-35 3-
TM68 TM69 TM74 TM75 TM76 TM78 TM79 TM84 TM85 TM85		MR1126.1N1206B MR1126.1N1206B MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128	3-4,3-233 3-4,3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233 3-233	TS80 TS-1 TS-2 TS-4 TS-05 TS-6 TS-8 TSV TW5 TW10		MR817 1N4002 1N4003 1N4004 1N4001 1N4005 1N4006 1N4933 1N4001 1N4002	3-200 3-32 3-32 3-32 3-32 3-32 3-200 3-32 3-32
TM88 TM89 TM104 TM105 TM106 TR50 TR53 TR100 TR103 TR150		MR1128 MR1128 MR1130 MR1130 MR1130 11248B 111183A 111249B 111184 111250B	3-233 3-233 3-233 3-233 	TW20 TW30 TW40 TW50 TW60 TW80 TW100 UES701 UES702 UES702 UES703		1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 SPECIAL SPECIAL SPECIAL	3-32 3-32 3-32 3-32 3-32 3-32 3-32
TR151 TR152 TR153 TR200 TR203 TR251 TR252 TR252 TR253 TR300 TR301		1N3210 1N250B 1N1186A 1N1194 1N1188A 1N3211 1N3211 1N1188A 1N3211 1N13211	3-5 — — — 3-5 3-5 — 3-5 3-5	UES801 UES802 UES803 UES1001 UES1002 UES1003 UES1101 UES1102 UES1103 UES1301		SPECIAL SPECIAL SPECIAL MUR105 MUR110 MUR115 MUR105 MUR110 MUR115 SPECIAL	3-263 3-263 3-263 3-263 3-263 3-263 3-263

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry	Motorola Direct	Motorola Similar		Industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
UES1302 UES1303 UES1401 UES1402 UES1403 UES2401 UES2402 UES2403 UES2601 UES2602		SPECIAL SPECIAL MUR805 MUR810 MUR815 MUR1605CT MUR1610CT MUR1615CT SPECIAL		UT236 UT237 UT242 UT244 UT245 UT247 UT249 UT251 UT252 UT252		1N4002 1N4005 1N4003 1N4004 1N4005 1N4005 1N4002 1N4002 1N4002 1N4003 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32
UES2603 USD320C USD335C USD345C USD420 USD435 USD445 USD520 USD535 USD535		SPECIAL MBR3020CT MBR3035CT MBR3045CT MBR3520 MBR3535 MBR3545 MBR7520 MBR7535 MBR7545	3-116 3-116 3-116 3-122 3-122 3-122 3-142 3-142 3-142	UT257 UT258 UT261 UT262 UT264 UT265 UT267 UT268 UT338 UT347		1N4005 1N4006 MR501 MR502 MR504 MR506 MR506 MR508 1N4005 1N4007	3-32 3-39 3-190 3-190 3-190 3-190 3-190 3-32 3-32
USD620 USD620C USD635 USD635C USD640 USD640C USD645 USD645C USD720 USD720C	MBR735 MBR1535CT MBR735 MBR1535CT MBR745 MBR1545CT MBR745 MBR1545CT MBR735 MBR1535CT		3-90 3-92 3-90 3-92 3-90 3-92 3-90 3-102 3-90 3-102	UT361 UT362 UT363 UT364 UT2005 UT2010 UT2020 UT2040 UT2060 UT4005		1N4006 1N4006 1N4007 1N4007 MR501 MR501 MR502 MR504 MR506 MR501	3-32 3-32 3-32 3-190 3-190 3-190 3-190 3-190
USD735 USD735C USD740 USD740C USD745C USD745C USD820 USD835 USD840 USD845	MBR735 MBR1535CT MBR745 MBR1545CT MBR745 MBR1545CT MBR1035 MBR1035 MBR1045 MBR1045		3-90 3-102 3-90 3-102 3-90 3-102 3-92 3-92 3-92 3-92 3-92	UT4010 UT4020 UT4040 UT4060 UTR01 UTR02 UTR10 UTR11 UTR12 UTR20		MR501 MR502 MR504 MR506 1N4933 1N4933 1N4934 1N4934 1N4934 1N4935	3-190 3-190 3-190 3-190 3-35 3-35 3-35 3-35 3-35 3-35
USD920 USD935 USD940 USD945 UT111 UT112 UT113 UT114 UT115 UT117	MBR1635 MBR1635 MBR1645 MBR1645	1N4001 1N4002 1N4003 1N4004 1N4004 1N4005	3-102 3-102 3-102 3-102 3-32 3-32 3-32 3-32 3-32 3-32	UTR21 UTR22 UTR40 UTR41 UTR42 UTR50 UTR51 UTR52 UTR60 UTR61		1N4935 1N4935 1N4936 1N4936 1N4936 1N4937 1N4937 1N4937 1N4937 1N4937	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35
UT118 UT119 UT211 UT212 UT213 UT213 UT214 UT215 UT225 UT225 UT234 UT235		1N4005 1N4006 1N4004 1N4004 1N4004 1N4005 1N4005 1N4005 1N4003 1N4004	3-32 3-32 3-32 3-32 3-32 3-32 3-32 3-32	UTR62 UTR2305 UTR2310 UTR2320 UTR2340 UTR2350 UTR2360 UTR3305 UTR3310 UTR3320		1N4937 MR850 MR851 MR852 MR854 MR856 MR856 MR850 MR851 MR852	3-35 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
UTR3340 UTR3350 UTR4305 UTR4310 UTR4320 UTR4340 UTR4350 UTR4360 UTX3105 UTX3110		MR854 MR856 MR850 MR851 MR852 MR854 MR856 MR856 MR856 MR850	3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215 3-215	VSK1045 VSK1520 VSK1530 VSK1540 VSK2020 VSK2035 VSK2045 VSK2445 VSK2445	MBR1045 MBR3520 MBR3535 MBR3545 MBR2035CT MBR2035CT MBR2045CT MBR2535CT MBR2535CT MBR2535CT		3-92 3-122 3-122 3-122 3-106 3-106 3-106 3-114 3-114
UTX3115 UTX3120 UTX4105 UTX4110 UTX4115 UTX4120 V330 V330X V331 V331X	MR500 MR850 MR501 MR851	MR852 MR852 MR850 MR851 MR852 MR852	3-215 3-215 3-215 3-215 3-215 3-215 3-190 3-215 3-215	VSK3020S VSK3020T VSK3030S VSK3030T VSK3040S VSK3040T VSK4020 VSK4020 VSK4040	MBR3520 MBR3020CT MBR3535 MBR3035CT MBR3545 MBR3045CT MBR6020 MBR6035 MBR6045		3-122 3-116 3-122 3-116 3-122 3-116 — 3-130 3-130
V332 V332X V334 V334X V336 V336X V338 V500 V600 V800	MR502 MR852 MR504 MR854 MR506 MR856 MR508	MR328 MR328 MR330	3-190 3-215 3-190 3-215 3-190 3-215 3-190 3-6 3-6 3-6				
V1000 V3310 VHE1401 VHE1402 VHE1403 VHE1404 VHE2401 VHE2402 VHE2403 VHE2404	MR510 MUR805 MUR810 MUR815 MUR820 MUR1605CT MUR1610CT MUR1615CT MUR1620CT	MR331	3-6 3-190 3-275 3-275 3-275 3-275 3-286 3-286 3-286				
VSK12 VSK13 VSK14 VSK51 VSK62 VSK63 VSK64 VSK140 VSK320	MBR1535CT MBR1535CT MBR1545CT SD51 MBR735 MBR735 MBR745 1N5819,MBR140P 1N5820,MBR320P	MBR6045	3-102 3-102 3-102 3-76 3-130 3-90 3-90 3-90 3-47 3-51				
VSK330 VSK340 VSK520 VSK530 VSK540 VSK920 VSK945 VSK945 VSK1020 VSK1035	1N5821,MBR330P 1N5822,MBR340P MBR1635 MBR1635 MBR1645 MBR1035 MBR1035	1N5823 1N5824 1N5825	3-51 3-55 3-55 3-55 3-104 3-104 3-104 3-92 3-92				

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
.4T5.6,A,B THRU	.5M5.6AZ,10,5 THRU		-	1.5KE200,A 1.5KE220	1.5KE200,A 1.5KE220		4-74 4-74
.4T12,A,B .4T6.8,A,B THRU	.5M12AZ,10,5 .5M6.8Z,10,5 THRU		_	1.5KE250 1.5R6.8,A,B THRU	1.5KE250	MZG41-6.8A,B THRU	4-74 —
.4T110,A,B .4Z6.8D,10,5 THRU	.5M110Z,10,5 .5M6.8Z,10,5 THRU		_	1.5R200,A,B 1.5Z6.8,A,B,C,D THRU		MZG41-200A,B MZG41-6.8A,B THRU	_
.4Z110D,10,5 .5M2.4ZS10,5 THRU	.5M110Z,10,5 .5M2.4AZ,10,5		_	1.5Z200,A,B,C,D 1.5Z6.8D,10,5	1.5M6.8Z,10,5	MZG41-200A,B	<u> </u>
.5M110ZS10,5 .7JZ6.8,A,B,C,D THRU	THRU .5M110Z,10,5 1M6.8ZS,10,5,1,2 THRU		<u> </u>	THRU 1.5Z200D,10,5 1/2R6.8,A,B THRU	THRU 1.5M200Z,10,5 .5M6.8Z,10,5 THRU		- -
THRU	1M200ZS,10,5,1,2 1M6.8ZS,10,5,1,2 THRU		_	1/2R110,A,B 1/4LZ2.2D,10,5 1/4LZ6.8D,10,5	.5M110Z,10,5	.5M2.2AZ10,5 .5M6.8AZ10,5	_
.7ZM200,A,B,C,D .25T5.6,A THRU	1M200ZS,10,5,1,2	.5M5.6Z10,5 THRU	_	1/4M2.4AZ10 1/4M2.7AZ10 1/4M3.0AZ10	1/4M2.4AZ10 1/4M2.7AZ10 1/4M3.0AZ10		4-2 4-2 4-2
.25T110,A 1.5JZ6.8,A,B,C,D THRU		.5M110Z10,5 MZG41-6.8A,B THRU	_	1/4M3.3AZ10 1/4M3.6AZ10 1/4M3.9AZ10	1/4M3.3AZ10 1/4M3.6AZ10 1/4M3.9AZ10		4-2 4-2 4-2
1.5JZ200,A,B,C,D 1.5KE6.8,A 1.5KE7.5,A 1.5KE8.2,A 1.5KE9.1,A 1.5KE10,A	1.5KE6.8,A 1.5KE7.5,A 1.5KE8.2,A 1.5KE9.1,A 1.5KE10,A	MZG41-200A,B	 4-74 4-74 4-74 4-74 4-74	1/4M4.3AZ10 1/4M4.7AZ10 1/4M5.1AZ10 1/4M5.6AZ10 1/4M6.2AZ10	1/4M4.3AZ10 1/4M4.7AZ10 1/4M5.1AZ10 1/4M5.6AZ10 1/4M6.2AZ10		4-2 4-2 4-2 4-2 4-2
1.5KE11,A 1.5KE11,A	1.5KE10,A 1.5KE11,A 1.5KE12,A		4-74 4-74 4-74	1/4M6.8AZ10 1/4M7.5AZ10 1/4M8.2AZ10	1/4M6.8AZ10 1/4M7.5AZ10 1/4M8.2AZ10		4-2 4-2 4-2
1.5KE13,A 1.5KE15,A 1.5KE16,A 1.5KE18,A 1.5KE20,A 1.5KE22,A 1.5KE24,A 1.5KE27,A 1.5KE27,A	1.5KE13, A 1.5KE15, A 1.5KE16, A 1.5KE18, A 1.5KE20, A 1.5KE22, A 1.5KE22, A 1.5KE27, A 1.5KE27, A		4-74 4-74 4-74 4-74 4-74 4-74 4-74	1/4M9.1AZ10 1/4M10AZ10 1/4M11AZ10 1/4M12AZ10 1/4M13AZ10 1/4M14AZ10 1/4M15AZ10 1/4M15AZ10 1/4M15AZ10	1/4M9.1AZ10 1/4M10AZ10 1/4M11AZ10 1/4M12AZ10 1/4M13AZ10 1/4M14AZ10 1/4M15AZ10 1/4M15AZ10 1/4M15AZ10 1/4M17AZ10		4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2
1.5KE33,A 1.5KE36,A 1.5KE39,A 1.5KE43,A 1.5KE47,A 1.5KE51,A 1.5KE56,A	1.5KE33,A 1.5KE36,A 1.5KE39,A 1.5KE43,A 1.5KE47,A 1.5KE51,A 1.5KE56,A		4-74 4-74 4-74 4-74 4-74 4-74	1/4M18AZ10 1/4M19AZ10 1/4M20AZ10 1/4M22AZ10 1/4M22AZ10 1/4M25AZ10 1/4M25AZ10 1/4M27AZ10	1/4M18AZ10 1/4M19AZ10 1/4M20AZ10 1/4M22AZ10 1/4M24AZ10 1/4M25AZ10 1/4M27AZ10		4-2 4-2 4-2 4-2 4-2 4-2
1.5KE62,A 1.5KE68,A 1.5KE75,A	1.5KE62,A 1.5KE68,A 1.5KE75,A		4-74 4-74 4-74	1/4M30AZ10 1/4M33AZ10 1/4M36AZ10	1/4M30AZ10 1/4M33AZ10 1/4M36AZ10		4-2 4-2 4-2 4-2
	1.5KE82,A 1.5KE91,A 1.5KE100,A 1.5KE110,A		4-74 4-74 4-74 4-74	1/4M39AZ10 1/4M43AZ10 1/4M45AZ10	1/4M39AZ10 1/4M43AZ10 1/4M45AZ10		4-2 4-2 4-2
1.5KE120,A 1.5KE130,A	1.5KE110,A 1.5KE120,A 1.5KE130,A 1.5KE150,A		4-74 4-74 4-74 4-74	1/4M47AZ10 1/4M50AZ10 1/4M52AZ10 1/4M56AZ10	1/4M47AZ10 1/4M50AZ10 1/4M52AZ10 1/4M56AZ10		4-2 4-2 4-2 4-2
	1.5KE160,A 1.5KE170,A 1.5KE180,A		4-74 4-74 4-74	1/4M62AZ10 1/4M68AZ10 1/4M75AZ10	1/4M62AZ10 1/4M68AZ10 1/4M75AZ10		4-2 4-2 4-2 4-2

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1/4M82AZ10 1/4M91AZ10 1/4M100AZ10 1/4M105Z10 1/4Z6.8D,10,5 THRU 1/4Z110D,10,5 1D3.3,A,B THRU 1D6.2,A,B 1D6.8,A,B THRU 1D200,A,B 1EZ110D5 1EZ120D5 1EZ130D5 1EZ140D5 1EZ140D5 1EZ150D5 1EZ150D5 1EZ150D5 1EZ170D5 1EZ170D5 1EZ180D5 1EZ190D5 1EZ190D5	1/4M82AZ10 1/4M91AZ10 1/4M100AZ10 1/4M105Z10 1/4M105Z10 1/4M105Z10 1/4M10ZS5 1M120ZS5 1M130ZS5 1M150ZS5 1M160ZS5 1M160ZS5 1M170ZS5 1M180ZS5 1M190ZS5 1M200ZS5	.5M6.8Z10,5 THRU .5M110Z10,5 1M3.3ZS,10,5 THRU 1M6.2ZS,10,5 1M6.8ZS,10,5 THRU 1M200ZS,10,5	4-2 4-2 4-2 	1N469 1N469A 1N470A 1N470A 1N664 1N665 1N666 1N667 1N668 1N669 1N670 1N671 1N672 1N674 1N675 1N702* THRU 1N745 1N702A-0* THRU 1N702A-9 1N703A-0* THRU	1N702 THRU 1N745 1N702A-0 THRU 1N702A-9 1N703A-0 THRU	1N5232B 1N5232B 1N5235B 1N5235B 1N5237A 1N5242A 1N5245B 1N5245B 1N5245A 1N5251A 1N5254A 1N5254A 1N5271A 1N5271A 1N5276A 1N5230A	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54
1M110ZS10 1M120ZS10 1M130ZS10 1M150ZS10 1M160ZS10 1M170ZS10 1M180ZS10	1M110ZS10 1M120ZS10 1M130ZS10 1M150ZS10 1M160ZS10 1M170ZS10 1M180ZS10		 	1N703A-6 1N704A-0* THRU 1N704A-5 1N705A-0* THRU 1N705A-8	1N703A-6 1N704A-0 THRU 1N704A-5 1N705A-0 THRU 1N705A-8		_ _ _ _
1M200ZS10 1N370 1N371 1N372 1N373 1N374 1N375 1N376 1N377 1N378	1M200ZS10	1N5221B 1N5221A 1N5225A 1N5227A 1N5227A 1N5229A 1N5230A 1N5233A 1N5236A 1N5238A		1N706A-0* THRU 1N706A-9 1N707A-0* THRU 1N707A-7 1N746 1N747 1N748 1N749	1N706A-0 THRU 1N706A-9 1N707A-0 THRU 1N707A-7 1N746 1N747 1N748 1N749		— — — 4-4 4-4 4-4
1N379 1N380 1N381 1N382 1N383 1N384 1N385 1N386 1N387 1N430		1N5240A 1N5243A 1N5246A 1N5249A 1N5252A 1N5255A 1N5255A 1N5258A 1N5260A 1N5261A 1N3156	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54	1N750 1N751 1N752 1N753 1N754 1N755 1N756 1N757 1N758 1N759	1N750 1N751 1N752 1N753 1N754 1N755 1N756 1N757 1N758 1N759		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N430A 1N430B 1N465 1N465A 1N466 1N466A 1N467 1N467A 1N468 1N468A		1N3157 1N3157A 1N5223A 1N5223B 1N5226A 1N5226B 1N5228B 1N5228B 1N5230A 1N5230B	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54	1N761,-1,-2* 1N761-69* 1N762,-1,-2* 1N763,-1,-2,-3* 1N764,-1* THRU 1N764,-4 1N765,-1,-2* 1N766,-1,-2,-3* et available — Co	1N761,-1,-2 1N761-69 1N762,-1,-2 1N763,-1,-2,-3 1N764,-1 THRU 1N764,-4 1N765,-1,-2 1N766,-1,-2,-3 1N767,-1,-2,-3		- - - - - -

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N768,-1,-2,-3* 1N769,-1*	1N768,-1,-2,-3 1N769,-1		_ _	1N976A 1N977A	1N976A 1N977A		4-4 4-4
THRU 1N769,-4 1N816	THRU 1N769,-4	M70000	_	1N978A 1N979A	1N978A 1N979A		4-4 4-4
1N821	1N821	MZ2360	4-114 4-10	1N980A 1N981A	1N980A 1N981A		4-4 4-4
1N821A 1N823	1N821A 1N823		4-10 4-10	1N982A 1N983A	1N982A 1N983A		4-4 4-4
1N823A 1N825	1N823A 1N825		4-10 4-10	1N984A 1N985A	1N984A 1N985A		4-4 4-4
1N825A 1N826	1N825A	1N825	4-10 4-10	1N986A 1N987A	1N986A 1N987A		4-4 4-21
1N827 1N827A	1N827 1N827A		4-10 4-10	1N988A 1N989A	1N988A 1N989A		4-21 4-21
1N828 1N829	1N829	1N827	4-10 4-10	1N990A 1N991A	1N990A 1N991A		4-21 4-21
1N829A 1N935	1N829A 1N935		4-10 4-13	1N992A 1N1313	1N992A	1N4102	4-21 4-42
1N935A 1N935B	1N935A 1N935B		4-13 4-13 4-13	1N1313A 1N1314		1N4102 1N4102 1/4M10.5Z10	4-42 4-42 4-2
1N936 1N936A	1N936 1N936A		4-13 4-13	1N1314A 1N1315		1/4M10.5Z5 1/4M12.75Z10	4-2 4-2
1N936B 1N937	1N936B 1N937		4-13 4-13	1N1315A 1N1316		1/4M12.75Z5 1/4M15.75Z10	4-2 4-2
1N937A	1N937A		4-13	1N1316A		1/4M15.75Z5	4-2
1N937B 1N938	1N937B 1N938		4-13 4-13	1N1317 1N1317A		1N4113 1N4113	4-42 4-42
1N938A 1N938B	1N938A 1N938B		4-13 4-13	1N1318 1N1318A		1/4M23.5Z10 1/4M23.5Z5	4-2 4-2
1N939 1N939A	1N939 1N939A		4-13 4-13	1N1319 1N1319A		1/4M28.5Z10 1/4M28.5Z5	4-2 4-2
1N939B 1N941	1N939B 1N941		4-13 4-17	1N1320 1N1320A		1/4M34.5Z10 1/4M34.5Z5	4-2 4-2
1N941A 1N941B	1N941A 1N941B		4-17 4-17	1N1321 1N1321A		1/4M41Z10 1/4M41Z5	4-2 4-2
1N942 1N942A	1N942 1N942A		4-17 4-17	1N1322 1N1322A	Ì	1/4M45.5Z1 1/4M48.5Z5	4-2 4-2
1N942B 1N943	1N942B 1N943		4-17 4-17	1N1323 1N1323A		1/4M58Z10 1/4M58Z5	4-2 4-2
1N943A	1N943A		4-17	1N1324		1/4M71Z10	4-2
1N943B 1N944	1N943B 1N944		4-17 4-17	1N1324A 1N1325		1/4M71Z5 1/4M87.5Z10	4-2 4-2
1N944A 1N944B	1N944A 1N944B		4-17 4-17	1N1325A 1N1326		1/4M87.5Z5 .4M105Z10	4-2 —
1N945 1N945A	1N945 1N945A	F	4-17 4-17	1N1326A 1N1327		.4M105Z5 .4M127.5Z10	_
1N945B 1N957A	1N945B 1N957A		4-17 4-4	1N1327A 1N1351		.4M127.5Z5 1N2974A	— 4-27
1N958A 1N959A	1N958A 1N959A		4-4 4-4	1N1351A 1N1352		1N2974B 1N2975A	4-27 4-27
1N960A 1N961A	1N960A 1N961A		4-4 4-4	1N1352A 1N1353		1N2975B 1N2976A	4-27 4-27
1N962A 1N963A	1N962A 1N963A		4-4 4-4	1N1353A 1N1354		1N2976B 1N2977A	4-27 4-27
1N964A 1N965A	1N964A 1N965A		4-4 4-4	1N1356 1N1356A		1N2980A 1N2980B	4-27 4-27 4-27
1N966A	1N966A	Į.	4-4	1N1357	}	1N2982A	4-27
1N967A THRU	1N967A THRU		4-4	1N1357A 1N1358		1N2982B 1N2984A	4-27 4-27
1N975A	1N975A	L	4-4	1N1358A	L	1N2984B	4-27

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1359 1N1359A 1N1360 1N1360A		1N2985A 1N2985B 1N2986A 1N2986B	4-27 4-27 4-27 4-27	1N1509 1N1509A 1N1510 1N1510A		1N4734 1N4734A 1N4736 1N4736A	4-50 4-50 4-50 4-50
1N1361 1N1361A 1N1362 1N1362A 1N1363		1N2988A 1N2988B 1N2989A 1N2989B 1N2990A	4-27 4-27 4-27 4-27 4-27	1N1511 1N1511A 1N1512 1N1512A 1N1513		1N4738 1N4738A 1N4740 1N4740A 1N4742	4-50 4-50 4-50 4-50 4-50
1N1363A 1N1364		1N2990B 1N2991A	4-27 4-27	1N1513A 1N1514	1	1N4742A 1N4744	4-50 4-50
1N1364A 1N1365 1N1365A 1N1366		1N2991B 1N2992A 1N2992B 1N2993A	4-27 4-27 4-27 4-27	1N1514A 1N1515 1N1515A 1N1516		1N4744A 1N4746 1N4746A 1N4748	4-50 4-50 4-50 4-50
1N1366A 1N1367 1N1367A 1N1368		1N2993B 1N2995A 1N2995B 1N2997A	4-27 4-27 4-27 4-27	1N1516A 1N1517 1N1517A 1N1518		1N4748A 1N4750 1N4750A 1N4730	4-50 4-50 4-50 4-50
1N1368A 1N1369 1N1369A		1N2997B 1N2999A 1N2999B	4-27 4-27 4-27	1N1518A 1N1519 1N1519A		1N4730A 1N4732 1N4732A	4-50 4-50 4-50
1N1370 1N1370A 1N1371 1N1371A		1N3000A 1N3000B 1N3001A 1N3001B	4-27 4-27 4-27 4-27	1N1520 1N1520A 1N1521 1N1521A		1N4734 1N4734A 1N4736 1N4736A	4-50 4-50 4-50 4-50
1N1372 1N1372A 1N1373		1N3002A 1N3002B 1N3003A	4-27 4-27 4-27	1N1522 1N1522A 1N1523		1N4738 1N4738A 1N4740	4-50 4-50 4-50
1N1373A 1N1374 1N1374A 1N1375		1N3003B 1N3004A 1N3004B 1N3005A	4-27 4-27 4-27 4-27	1N1523A 1N1524 1N1524A 1N1525		1N4740A 1N4742 1N4742A 1N4744	4-50 4-50 4-50 4-50
1N1375A 1N1416 1N1417		1N3005B 1N2972B 1N2976B	4-27 4-27 4-27	1N1525 1N1525A 1N1526 1N1526A		1N4744 1N4744A 1N4746 1N4746A	4-50 4-50 4-50
1N1418 1N1419 1N1420 1N1421		1N2979B 1N2982B 1N2985B 1N2988B	4-27 4-27 4-27 4-27	1N1527 1N1527A 1N1528 1N1528A		1N4748 1N4748A 1N4750 1N4750A	4-50 4-50 4-50 4-50
1N1422 1N1423 1N1424		1N3001B 1N3005B 1N3011B	4-27 4-27 4-27	1N1530 1N1530A 1N1588		1N3156 1N3157 1N3993A	4-29 4-29 4-40
1N1425 1N1426 1N1427 1N1428		1N4738A 1N4742A 1N4744A 1N4746A	4-50 4-50 4-50 4-50	1N1588A 1N1589 1N1589A 1N1590		1N3993A 1N3995A 1N3995A 1N3997A	4-40 4-40 4-40 4-40
1N1429 1N1430 1N1431		1N4748A 1N4750A 1N4760A	4-50 4-50 4-50 4-50	1N1590 1N1590A 1N1591 1N1591A		1N3997A 1N3997A 1N2970RA 1N2970RB	4-40 4-40 4-27 4-27
1N1432 1N1433 1N1482 1N1483		1N4764A 1M150ZS5 1N3995A 1N3998A	4-50 4-40 4-40	1N1592 1N1592A 1N1593 1N1593A		1N2972RA 1N2972RB 1N2974RA 1N2974RB	4-27 4-27 4-27 4-27
1N1484 1N1485 1N1507 1N1507A		1N4732A 1N4735A 1N4730 1N4730A	4-50 4-50 4-50 4-50	1N1594 1N1594A 1N1595 1N1595A		1N2976RA 1N2976RB 1N2979RA 1N2979RB	4-27 4-27 4-27 4-27
1N1508 1N1508A		1N4730A 1N4732 1N4732A	4-50 4-50 4-50	1N1596A 1N1596A		1N2982RA 1N2982RB	4-27 4-27 4-27

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1597A 1N1598 1N1598A 1N1599		1N2985RB 1N2988RA 1N2988RB 1N3993A	4-27 4-27 4-27 4-40	1N1780 1N1780A 1N1781 1N1781A	·	1N4749 1N4749A 1N4750 1N4750A	4-50 4-50 4-50 4-50
1N1599A 1N1600 1N1600A 1N1601 1N1601A		1N3993A 1N3995A 1N3995A 1N3997A 1N3997A	4-40 4-40 4-40 4-40 4-40	1N1782 1N1782A 1N1783 1N1783A 1N1784		1N4751 1N4751A 1N4752 1N4752A 1N4753	4-50 4-50 4-50 4-50 4-50
1N1602 1N1602A 1N1603 1N1603A		1N2970RA 1N2970RB 1N2972RA 1N2972RB	4-27 4-27 4-27 4-27	1N1784A 1N1785 1N1785A 1N1786		1N4753A 1N4754 1N4754A 1N4755	4-50 4-50 4-50 4-50
1N1604 1N1604A 1N1605 1N1605A 1N1606 1N1606A		1N2974RA 1N2974RB 1N2976RA 1N2976RB 1N2979RA 1N2979RB	4-27 4-27 4-27 4-27 4-27 4-27	1N1786A 1N1787 1N1787A 1N1788 1N1788A 1N1789		1N4755A 1N4756 1N4756A 1N4757 1N4757A 1N4758	4-50 4-50 4-50 4-50 4-50 4-50
1N1607 1N1607A 1N1608 1N1608A 1N1609		1N2982RA 1N2982RB 1N2985RA 1N2985RB 1N2988RA	4-27 4-27 4-27 4-27 4-27	1N1789A 1N1790 1N1790A 1N1791 1N1791A		1N4758A 1N4759 1N4759A 1N4760 1N4760A	4-50 4-50 4-50 4-50 4-50
1N1609A 1N1735 1N1736 1N1736A 1N1743 1N1744		1N2988RB 1N823 1N941A 1N942A 1N2974A 1N4740	4-27 4-10 4-17 4-17 4-27 4-50	1N1792 1N1792A 1N1793 1N1793A 1N1794 1N1794A		1N4761 1N4761A 1N4762 1N4762A 1N4763 1N4763A	4-50 4-50 4-50 4-50 4-50 4-50
1N1765 1N1765A 1N1766 1N1766A 1N1767 1N1767A 1N1768 1N1768A		1N4734 1N4734A 1N4735 1N4735A 1N4736 1N4736A 1N4737 1N4737A	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50	1N1795 1N1795A 1N1796 1N1796A 1N1797 1N1797A 1N1798 1N1798A		1N4764 1N4764A 1M110ZS10 1M110ZS5 1M120ZS10 1M120ZS5 1M130ZS10 1M130ZS5	4-50 4-50 — — — — — —
1N1769 1N1769A 1N1770 1N1770A 1N1771 1N1771A		1N4738 1N4738A 1N4739 1N4739A 1N4740	4-50 4-50 4-50 4-50 4-50	1N1799 1N1799A 1N1800 1N1800A 1N1801		1M150ZS10 1M150ZS5 1M160ZS10 1M160ZS5 1M180ZS10	- - - -
1N1771A 1N1772 1N1772A 1N1773 1N1773A 1N1774 1N1774A		1N4740A 1N4741 1N4741A 1N4742 1N4742A 1N4743 1N4743A	4-50 4-50 4-50 4-50 4-50 4-50 4-50	1N1801A 1N1802 1N1802A 1N1803 1N1803A 1N1804 1N1804A		1M180ZS5 1M200ZS10 1M200ZS5 1N3997RA 1N3997RA 1N3998RA 1N3998RA	4-40 4-40 4-40 4-40 4-40
1N1775 1N1775A 1N1776 1N1776A 1N1777		1N4744 1N4744A 1N4745 1N4745A 1N4746	4-50 4-50 4-50 4-50 4-50	1N1805 1N1805A 1N1806 1N1806A 1N1807		1N2970A 1N2970B 1N2971A 1N2971B 1N2972A	4-27 4-27 4-27 4-27 4-27
1N1777A 1N1778 1N1778A 1N1779 1N1779A		1N4746A 1N4747 1N4747A 1N4748 1N4748A	4-50 4-50 4-50 4-50 4-50	1N1807A 1N1808 1N1808A 1N1809 1N1809A		1N2972B 1N2973A 1N2973B 1N3007A 1N3007B	4-27 4-27 4-27 4-27 4-27

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1810 1N1810A 1N1811 1N1811A 1N1812 1N1812A 1N1813A 1N1813A 1N1813A 1N1814 1N1814A 1N1815A 1N1815A 1N1816		1N3008A 1N3008B 1N3009A 1N3009B 1N3011A 1N3011B 1N3012A 1N3012B 1N3014A 1N3014B 1N3015A 1N3015B 1N3015B	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N1828 1N1828A 1N1828C 1N1828CA 1N1829 1N1829A 1N1829C 1N1829CA 1N1830 1N1830A 1N1830C 1N1830CA 1N1831		1N2993A 1N2993B 10M43ZZ10 10M43ZZ5 1N2995A 1N2995B 10M47ZZ10 10M47ZZ5 1N2997A 1N2997B 10M51ZZ10 10M51ZZ10 10M51ZZ5 1N2999A	4-27 4-27
1N1816A 1N1816C 1N1816CA 1N1817 1N1817A 1N1817C 1N1817CA		1N2977B 10M13ZZ10 -10M13ZZ5 1N2979A 1N2979B 10M15ZZ10 10M15ZZ5	4-27 — 4-27 4-27 — —	1N1831A 1N1831C 1N1831CA 1N1832 1N1832A 1N1832C 1N1832CA		1N2999B 10M56ZZ10 10M56ZZ5 1N3000A 1N3000B 10M62ZZ10 10M62ZZ5	4-27 — 4-27 4-27 — —
1N1818 1N1818A 1N1818C 1N1818CA 1N1819 1N1819A 1N1819C 1N1819CA 1N1820 1N1820A		1N2980A 1N2980B 10M16ZZ10 10M16ZZ5 1N2982A 1N2982B 10M18ZZ10 10M18ZZ5 1N2984A 1N2984B	4-27 4-27 4-27 4-27 4-27 4-27	1N1833 1N1833A 1N1833C 1N1833CA 1N1834 1N1834A 1N1834C 1N1834CA 1N1835 1N1835		1N3001A 1N3001B 10M68ZZ10 10M68ZZ5 1N3002A 1N3002B 10M75ZZ10 10M75ZZ5 1N3003A 1N3003B	4-27 4-27 — 4-27 4-27 — — 4-27 4-27
1N1820C 1N1820CA 1N1821 1N1821A 1N1821C 1N1821CA 1N1822 1N1822A 1N1822C 1N1822C		10M20ZZ10 10M20ZZ5 1N2985A 1N2985B 10M22ZZ10 10M22ZZ5 1N2986A 1N2986B 10M24ZZ10 10M24ZZ10	 4-27 4-27 4-27 4-27 	1N1835C 1N1835CA 1N1836 1N1836A 1N1836C 1N1836CA 1N1876 1N1877 1N1877 1N1878		10M82ZZ10 10M82ZZ5 1N3004A 1N3004B 10M91ZZ10 10M91ZZ5 1N4740 1N4742 1N4744 1N4746	
1N1823 1N1823A 1N1823C 1N1823CA 1N1824 1N1824A 1N1824A 1N1824CA 1N1825 1N1825		1N2988A 1N2988B 10M27ZZ10 10M27ZZ5 1N2989A 1N2989B 10M30ZZ10 10M30ZZ5 1N2990A 1N2990B	4-27 4-27 4-27 4-27 4-27 4-27	1N1880 1N1881 1N1882 1N1883 1N1884 1N1885 1N1886 1N1887 1N1888 1N1888		1N4748 1N4750 1N4752 1N4754 1N4756 1N4756 1N4760 1N4762 1N4764 1M120ZS10	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N1825C 1N1825CA 1N1826 1N1826A 1N1826C 1N1826CA 1N1827 1N1827A 1N1827C 1N1827CA		10M33ZZ10 10M33ZZ5 1N2991A 1N2991B 10M36ZZ10 10M36ZZ5 1N2992A 1N2992B 10M39ZZ10 10M39ZZ5	 4-27 4-27 4-27 4-27 	1N1890 1N1891 1N1892 1N1893 1N1894 1N1895 1N1896 1N1897 1N1898 1N1899		1M150ZS10 1N2972A 1N2974A 1N2976A 1N2979A 1N2982A 1N2985A 1N2988A 1N2990A 1N2992A	

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1900	nopiacomon.	1N2995A	4-27	1N1992	портасотнени	1N5257A	4-54
1N1901		1N2999A	4-27	1N1993	1	1N5259A	4-54
1N1902		1N3001A	4-27	1N1994		1N5261A	4-54
1N1903		1N3003A	4-27	1N1995	Ì	1N5263A	4-54
1N1904 1N1905		1N3005A	4-27	1N1996		1N5266A	4-54
1N1905 1N1906		1N3008A 1N3011A	4-27 4-27	1N1997 1N1998	}	1N5268A	4-54 4-54
1N1927		1N5228A	4-54	1N1999	1	1N5271A 1N5273A	4-5 4 4-60
1N1928		1N5230A	4-54	1N2000		1N5276A	4-60
1N1929		1N5232A	4-54	1N2001		1N5279A	4-60
1N1930		1N5235A	4-54	1N2008		1N3005A	4-27
1N1931		1N5237A	4-54	1N2008C		10M100ZZ10	
1N1932		1N5240A	4-54	1N2008CA		10M100ZZ5	
1N1933		1N5242A	4-54	1N2009		1N3007A	4-27
1N1934		1N5245A	4-54	1N2009C]	10M110ZZ10	_
1N1935		1N5248A	4-54	1N2009CA		10M110ZZ5	_
1N1936		1N5251A	4-54	1N2010		1N3008A	4-27
1N1937 1N1938		1N5254A 1N5257A	4-54 4-54	1N2010C 1N2010CA		10M120ZZ10	_
1N1939		1N5257A 1N5259A	4-54 4-54	1N2010CA	[10M120ZZ5 1N3009A	 4-27
1N1940		1N5261A	4-54				4-21
1N1941		1N5261A 1N5263A	4-54 4-54	1N2011C 1N2011CA		10M130ZZ10 10M130ZZ5	_
1N1942		1N5266A	4-54	1N2011CA		1N3011A	4-27
1N1943		1N5268A	4-54	1N2012A,AR		1N3011B	4-27
1N1944		1N5271A	4-54	1N2012C		10M150ZZ10	-
1N1945		1N5273A	4-60	1N2012CA		10M150ZZ5	_
1N1946		1N5276A	4-60	1N2032		1N4732	4-50
1N1947		1N5279A	4-60	1N2033		1N4734	4-50
1N1954		1N5228A	4-54	1N2034	Į	1N4736	4-50
1N1955		1N5230A	4-54	1N2035		1N4739	4-50
1N1956		1N5232A	4-54	1N2036		1N4740	4-50
1N1957		1N5235A	4-54	1N2037	ĺ	1N4743	4-50
1N1958 1N1959		1N5237A	4-54	1N2038		1N4745	4-50
1N1960		1N5240A 1N5242A	4-54 4-54	1N2039		1N4747	4-50
1N1961		1N5242A 1N5245A	4-54 4-54	1N2040 1N2041	1	1N4749 1N3995A	4-50 4-40
1N1962		1N5248A	4-54	1N2041		1N3997A	4-40
1N1963		1N5251A	4-54	1N2043		1N2970RA	4-27
1N1964		1N5254A	4-54	1N2044	1	1N2973RA	4-27
1N1965		1N5257A	4-54	1N2045		1N2974RB	4-27
1N1966		1N5259A	4-54	1N2046		1N2977RA	4-27
1N1967		1N5261A	4-54	1N2047	ļ	1N2980RA	4-27
1N1968		1N5263A	4-54	1N2048		1N2983RA	4-27
1N1969		1N5266A	4-54	1N2049		1N2986RA	4-27
1N1970 1N1971		1N5268A 1N5271A	4-54	1N2387	[1N4751	4-50
1N1972		1N5271A 1N5273A	4-54 4-60	1N2498 1N2498A		1N2974A	4-27
1N1973		1N5276A 1N5276A	4-60 4-60	1N2498A 1N2498C	1	1N2974B 10M10ZZ10	4-27
1N1974		1N5270A 1N5279A	4-60	1N2498CA		10M10ZZ10	
1N1981		1N5228A	4-54	1N2499		1N2975A	4-27
1N1982		1N5230A	4-54	1N2499A	1	1N2975B	4-27
1N1983		1N5232A	4-54	1N2499C	{	10M11ZZ10	
1N1984		1N5235A	4-54	1N2499CA		10M11ZZ5	
1N1985		1N5237A	4-54	1N2500		1N2976A	4-27
1N1986		1N5240A	4-54	1N2500A		1N2976B	4-27
1N1987		1N5242A	4-54	1N2500C		10M12ZZ10	-
1N1988		1N5245A	4-54	1N2500CA	1	10M12ZZ5	
1N1989		1N5248A 1N5251A	4-54	1N2625		1N937	4-13
1N1990 1N1991		1N5251A 1N5254A	4-54 4-54	1N2625A 1N2625B		1N937A	4-13
1141001		114020474	4-34	INZOZOB		1N937B	4-13

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N2626 1N2626A 1N2626B 1N2765 1N2765A 1N2766 1N2766A 1N2766A 1N2783 1N2790 1N2804A	1N2804A 1N2804RA	1N938 1N938A 1N938B 1N823A 1N825A 1N1736A 1N1736A 1N3000A 1N3156	4-13 4-13 4-13 4-10 4-10 — 4-27 4-29 4-23 4-23	1N2829RA 1N2830A 1N2830RA 1N2831A 1N2831RA 1N2832A 1N2832RA 1N2833A 1N2833RA 1N2833RA 1N2834RA	1N2829RA 1N2830A 1N2830RA 1N2831A 1N2831RA 1N2832A 1N2832RA 1N2833A 1N2833RA 1N2833RA 1N2834A 1N2834RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N2805A 1N2805A 1N2805A 1N2806A 1N2806RA 1N2807A 1N2807RA 1N2807RA 1N2808RA 1N2808RA 1N2809A	1N2805A 1N2805A 1N2805A 1N2806A 1N2806A 1N2807A 1N2807RA 1N2808A 1N2808RA 1N2809A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N2835A 1N2835A 1N2835RA 1N2836A 1N2836RA 1N2837A 1N2837RA 1N2838A 1N2838RA 1N2838RA	1N2835A 1N2835RA 1N2835RA 1N2836A 1N2836RA 1N2837A 1N2837RA 1N2838A 1N2838RA 1N2839A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N2809RA 1N2810A 1N2810RA 1N2811A 1N2811RA 1N2812A 1N2812RA 1N2812RA 1N2813RA 1N2813RA 1N2813RA 1N2814A	1N2809RA 1N2810A 1N2810RA 1N2811A 1N2811RA 1N2812A 1N2812RA 1N2813RA 1N2813RA 1N2813RA 1N2814A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N2839RA 1N2840A 1N2840RA 1N2841A 1N2841RA 1N2842A 1N2842RA 1N2843A 1N2843RA 1N2843RA	1N2839RA 1N2840A 1N2840RA 1N2841A 1N2841RA 1N2842A 1N2842RA 1N2843A 1N2843RA 1N2843RA 1N2844A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N2814RA 1N2815A 1N2815RA 1N2816A 1N2816RA 1N2817A 1N2817RA 1N2817RA 1N2818A 1N2818A 1N2818RA 1N2818RA	1N2814RA 1N2815A 1N2815RA 1N2816A 1N2816RA 1N2817A 1N2817RA 1N2818RA 1N2818RA 1N2818RA 1N2819A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N2844RA 1N2845A 1N2845RA 1N2846A 1N2846RA 1N2937 1N2970A 1N2970RA 1N2971A 1N2971RA	1N2844RA 1N2845A 1N2845RA 1N2846A 1N2846RA 1N2970A 1N2970RA 1N2971A 1N2971RA	1N2996A	4-23 4-23 4-23 4-23 4-23 4-27 4-27 4-27 4-27 4-27
1N2819RA 1N2820A 1N2820RA 1N2821A 1N2821RA 1N2822A 1N2822RA 1N2822RA 1N2823A 1N2823RA 1N2823RA 1N2824A	1N2819RA 1N2820A 1N2820RA 1N2821A 1N2821RA 1N2822RA 1N2822RA 1N2822RA 1N2823A 1N2823RA 1N2823RA 1N2824A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N2972A 1N2972RA 1N2973A 1N2973RA 1N2974A 1N2974RA 1N2975A 1N2975RA 1N2976A 1N2976RA	1N2972A 1N2972RA 1N2973A 1N2973RA 1N2974A 1N2974RA 1N2975A 1N2975RA 1N2976A 1N2976A		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N2824RA 1N2825A 1N2825RA 1N2826A 1N2826RA 1N2827A 1N2827RA 1N2828A 1N2828RA 1N2829A	1N2824RA 1N2825A 1N2825RA 1N2826A 1N2826RA 1N2827A 1N2827RA 1N2827RA 1N2828A 1N2828RA 1N2829A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N2977A 1N2977RA 1N2978RA 1N2978RA 1N2979RA 1N2979RA 1N2980RA 1N2980RA 1N2981A* 1N2981RA*	1N2977A 1N2977RA 1N2978A 1N2978RA 1N2979A 1N2979RA 1N2980A 1N2980RA 1N2981A 1N2981RA		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N2982A 1N2982RA 1N2983A 1N2983RA 1N2984A 1N2984A 1N2985A 1N2985RA 1N2985RA 1N2986A 1N2986A	1N2982A 1N2982RA 1N2983A 1N2983RA 1N2984A 1N2984A 1N2985A 1N2985R 1N2985RA 1N2986A 1N2986A		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3012A 1N3012RA 1N3013A* 1N3013RA* 1N3014A 1N3014A 1N3015A 1N3015RA 1N3016A 1N3017A	1N3012A 1N3012RA 1N3013A 1N3013RA 1N3014A 1N3014RA 1N3015A 1N3015RA 1N3016A 1N3017A		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N2987A* 1N2987RA* 1N2988A 1N2988RA 1N2989A 1N2989RA 1N2990A 1N2990RA 1N2991A 1N2991RA	1N2987A 1N2987RA 1N2988A 1N2988RA 1N2989RA 1N2989RA 1N2990A 1N2990RA 1N2991RA		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3018A 1N3019A 1N3020A 1N3021A 1N3022A 1N3023A 1N3024A 1N3025A 1N3026A 1N3027A	1N3018A 1N3019A 1N3020A 1N3021A 1N3022A 1N3023A 1N3024A 1N3025A 1N3026A 1N3027A		4-34 4-34 4-34 4-34 4-34 4-34 4-34 4-34
1N2992A 1N2992RA 1N2993A 1N2993RA 1N2994A* 1N2994RA* 1N2995A* 1N2995RA* 1N2996A 1N2996RA	1N2992A 1N2992RA 1N2993A 1N2993RA 1N2994A 1N2994RA 1N2995A 1N2995RA 1N2996A 1N2996RA		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3028A 1N3029A 1N3030A 1N3031A 1N3032A 1N3033A 1N3035A 1N3035A 1N3036A 1N3037A	1N3028A 1N3029A 1N3030A 1N3031A 1N3032A 1N3033A 1N3034A 1N3035A 1N3036A 1N3037A		4-34 4-34 4-34 4-34 4-34 4-34 4-34 4-34
1N2997A 1N2997RA 1N2998A 1N2998RA 1N2999A* 1N2999RA* 1N3000A 1N3000RA 1N3001RA	1N2997A 1N2997RA 1N2998A 1N2998RA 1N2999A 1N2999RA 1N3000A 1N3000RA 1N3001A 1N3001RA		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3038A 1N3039A 1N3040A 1N3041A 1N3042A 1N3043A 1N3044A 1N3045A 1N3045A 1N3047A	1N3038A 1N3039A 1N3040A 1N3041A 1N3042A 1N3043A 1N3044A 1N3045A 1N3046A 1N3047A		4-34 4-34 4-34 4-34 4-34 4-34 4-34 4-34
1N3002A 1N3002RA 1N3003A 1N3003RA 1N3004RA 1N3004RA 1N3005A 1N3005RA 1N3006A 1N3006RA	1N3002A 1N3002RA 1N3003A 1N3003RA 1N3004A 1N3004RA 1N3005A 1N3005RA 1N3006A 1N3006RA		4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3048A 1N3049A 1N3050A 1N3051A 1N3098,A 1N3099,A 1N3100,A 1N3101,A 1N3102,A 1N3103,A	1N3048A 1N3049A 1N3050A 1N3051A	1N3046A 1N3048A 1N3050A 1N3051A 1N3008A 1N30011A	4-34 4-34 4-34 4-34 4-34 4-34 4-34 4-27 4-27
1N3007A 1N3007RA 1N3008A 1N3008RA 1N3009A 1N3009RA 1N3010A 1N3010RA 1N3011A 1N3011RA	1N3007A 1N3007RA 1N3008A 1N3008RA 1N3009A 1N3009RA 1N3010A 1N3010RA 1N3011A 1N3011RA	·	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N3104,A 1N3105,A 1N3112 1N3148 1N3154 1N3154A 1N3155 1N3155A 1N3156	1N3154 1N2977B 1N3155 1N3155A 1N3156 1N3156A	1N3014A 1N3015A 1N4737A 1N3155A	4-27 4-27 4-50 4-29 4-29 4-27 4-29 4-29 4-29 4-29

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3157 1N3157A 1N3181 1N3198 1N3199 1N3200 1N3201 1N3202 1N3222A 1N3222RA 1N3223A	1N3157 1N3157A 1N3257A 1N3222A 1N3222RA 1N3223A	1N5237A 1N5221B 1N3155 1N3156 1N3156 1N3156 1N3157	4-29 4-54 4-54 4-29 4-29 4-29 4-29 	1N3324A 1N3324RA 1N3325A 1N3325RA 1N3326A 1N3326RA 1N3327A 1N3327RA 1N3327RA 1N3328A 1N3328RA	1N3324A 1N3324RA 1N3325A 1N3325RA 1N3325RA 1N3326RA 1N3327A 1N3327RA 1N3327RA 1N3328A 1N3328RA 1N3329A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N3223RA 1N3224A 1N3224RA 1N3225A 1N3225RA 1N3226A 1N3226RA 1N3227A 1N3227RA	1N3223RA 1N3224A 1N3224RA 1N3225A 1N3225RA 1N3226A 1N3226RA 1N3227A 1N3227RA			1N3329RA 1N3330A 1N3330RA 1N3331A 1N3331RA 1N3332R 1N3332RA 1N3333RA	1N3329RA 1N3330A 1N3330RA 1N3331A 1N3331RA 1N3332RA 1N3332RA 1N3333RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N3228A 1N3228RA 1N3305A 1N3305RA 1N3306A 1N3306RA 1N3307A 1N3307RA 1N3308A 1N3308RA	1N3228A 1N3228RA 1N3305A 1N3305RA 1N3306RA 1N3306RA 1N3307A 1N3307RA 1N3308A 1N3308RA		 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N3334A 1N3334RA 1N3335A 1N3335RA 1N3336A 1N3336RA 1N3337A 1N3337RA 1N3337RA 1N3338RA	1N3334A 1N3334RA 1N3335A 1N3335RA 1N3336A 1N3336RA 1N3337A 1N3337RA 1N3337RA 1N3338A 1N3338RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N3309A 1N3309RA 1N3310A 1N3310RA 1N3311A 1N3311RA 1N3312A 1N3312A 1N3313A 1N3313A	1N3309A 1N3309RA 1N3310A 1N3310RA 1N3311A 1N3311RA 1N3312A 1N3312RA 1N3313A 1N3313RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N3339A 1N3339RA 1N3340A 1N3340RA 1N3341A 1N3341RA 1N3342A 1N3342RA 1N3342RA 1N3343RA	1N3339A 1N3339RA 1N3340A 1N3340RA 1N3341A 1N3341RA 1N3342RA 1N3342RA 1N3343A 1N3343RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N3314A 1N3314RA 1N3315A 1N3315RA 1N3316A 1N3316RA 1N3317A 1N3317A 1N3317RA 1N3318A 1N3318RA	1N3314A 1N3314RA 1N3315A 1N3315RA 1N3316A 1N3316RA 1N3317A 1N3317RA 1N3318A 1N3318RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N3344A 1N3344RA 1N3345A 1N3345RA 1N3346A 1N3346RA 1N3347A 1N3347RA 1N3347RA 1N3348RA	1N3344A 1N3344RA 1N3345A 1N3345RA 1N3346A 1N3346A 1N3347A 1N3347RA 1N3347RA 1N3348A 1N3348A		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23
1N3319A 1N3319RA 1N3320A 1N3320RA 1N3321A 1N3321RA 1N3322A 1N3322RA 1N3323A 1N3323RA	1N3319A 1N3319RA 1N3320A 1N3320RA 1N3321A 1N3321RA 1N3322A 1N332RA 1N3323A 1N3323RA		4-23 4-23 4-23 4-23 4-23 4-23 4-23 4-23	1N3349A 1N3349RA 1N3350A 1N3350RA 1N3411 1N3412 1N3413 1N3414 1N3415 1N3416	1N3349A 1N3349RA 1N3350A 1N3350RA	1N5234A 1N5235A 1N5236A 1N5237A 1N5240A 1N5242A	4-23 4-23 4-23 4-23 4-54 4-54 4-54 4-54 4-54

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry	Motorola	Motorola		In description	Motorola	Motorola	
Industry Part Number	Direct Replacement	Similar Replacement	Page #	Industry Part Number	Direct Replacement	Similar Replacement	Page #
1N3417		1N5245A	4-54	1N3508		1N5228B	4-54
1N3418		1N5248A	4-54	1N3509	i	1N5229B	4-54
1N3419		1N5251A	4-54	1N3510	j	1N5230B	4-54
1N3420		1N5254A	4-54	1N3511	Ì	1N5231B	4-54
1N3421		1N5256A	4-54	1N3512		1N5232B	4-54
1N3422 1N3423		1N5257A 1N5259A	4-54 4-54	1N3513	ļ	1N5234B	4-54
1N3424		1N5261A	4-54 4-54	1N3514 1N3515		1N5235B	4-54 4-54
1N3425		1N5263A	4-54 4-54	1N3516	İ	1N5236B 1N5237B	4-54 4-54
1N3426	1	1N5266A	4-54	1N3517	į	1N5239B	4-54
1N3427		1N5268A	4-54	1N3518	İ	1N5240B	4-54
1N3428		1N5271A	4-54	1N3519	1	1N5240B	4-54
1N3429		1N5273A	4-60	1N3520		1N5242B	4-54
1N3430		1N5276A	4-60	1N3521	ì	1N5243B	4-54
1N3431		1N5279A	4-60	1N3522		1N5245B	4-54
1N3432		1N5281A	4-60	1N3523	İ	1N5246B	4-54
1N3433		1N4738	4-50	1N3524	ļ	1N5248B	4-54
1N3434 1N3435		1N4740 1N4742	4-50 4-50	1N3525	1	1N5250B	4-54
1N3436		1N4742 1N4744	4-50 4-50	1N3526 1N3527		1N5251B 1N5252B	4-54 4-54
1N3430 1N3437		1N4744 1N4746	4-50 4-50			1	ľ
1N3438		1N4746 1N4748	4-50 4-50	1N3528		1N5254B	4-54
1N3439		1N4746 1N4750	4-50 4-50	1N3529 1N3530	į	1N5256B	4-54 4-54
1N3440		1N4752	4-50	1N3530 1N3531	Ì	1N5257B 1N5258B	4-54 4-54
1N3441	ì	1N4754	4-50	1N3532	[1N5250B 1N5259B	4-54 4-54
1N3442		1N4756	4-50	1N3533	ł	1N5260B	4-54
1N3443		1N4735	4-50	1N3534		1N5261B	4-54
1N3444	}	1N4736	4-50	1N3553	}	1N821	4-10
1N3445		1N4738	4-50	1N3580		1N941	4-17
1N3446		1N4740	4-50	1N3580A	ļ	1N941A	4-17
1N3447		1N4742	4-50	1N3580B	}	1N941B	4-17
1N3448		1N4744	4-50	1N3581	j	1N942	4-17
1N3449		1N4746	4-50	1N3581A	į.	1N942A	4-17
1N3450 1N3451	Ì	1N4748 1N4750	4-50 4-50	1N3581B	1	1N942B	4-17
1N3452		1N4751	4-50 4-50	1N3582 1N3582A	İ	1N943 1N943A	4-17 4-17
1N3453		1N4752	4-50	1N3582B	1	1N943B	4-17
1N3454	1	1N4754	4-50	1N3583]	1N944	4-17
1N3455	1	1N4756	4-50	1N3583A	ł	1N944A	4-17
1N3456		1N4758	4-50	1N3583B	ļ	1N944B	4-17
1N3457	1	1N4760	4-50	1N3584	1	1N945	4-17
1N3458	1	1N4762	4-50	1N3584A	1	1N945A	4-17
1N3459	į.	1N4764	4-50	1N3584B		1N945B	4-17
1N3460		1M120ZS10		1N3675	1N4736		4-50
1N3461 1N3462	J	1M150ZS10 1M180ZS10	-	1N3675A	1N4736]	4-50
1N3463	1	1M200ZS5		1N3675B 1N3676	1N4736A 1N4737		4-50 4-50
1N3477		1N5221A	4-54	1N3676A	1N4737	1	4-50 4-50
1N3477A	1	1N5221B	4-54	1N3676B	1N4737A	1	4-50
1N3496		1N823	4-10	1N3677	1N4738		4-50
1N3497	i	1N825	4-10	1N3677A	1N4738		4-50
1N3498	1	1N827	4-10	1N3677B	1N4738A		4-50
1N3499	1	1N829	4-10	1N3678	1N4739		4-50
1N3500		1N821	4-10	1N3678A	1N4739		4-50
1N3501 1N3502	1	MZ640	4-111	1N3678B	1N4739A		4-50
1N3502 1N3503	l	MZ620 MZ610	4-111 4-111	1N3679	1N4740	}	4-50
1N3504	Į.	MZ605	4-111	1N3679A 1N3679B	1N4740 1N4740A		4-50 4-50
1N3504 1N3506	1	1N5226B	4-111	1N3679B 1N3680	1N4740A 1N4741		4-50 4-50
1N3507	1	1N5227B	4-54	1N3680A	1N4741	ļ	4-50
L	L			et available — Co	L	L	

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3680B	1N4741A	портисотноги	4-50	1N3700B	1N4761A	nopiacoment	4-50
1N3681	1N4742		4-50		1N4761A	ļ	4-50
1N3681A	1N4742 1N4742		4-50 4-50	1N3701		1	
				1N3701A	1N4762	1	4-50
1N3681B	1N4742A		4-50	1N3701B	1N4762A	1	4-50
1N3682	1N4743		4-50	1N3702	1N4763	1	4-50
1N3682A	1N4743		4-50	1N3702A	1N4763	ł	4-50
1N3682B	1N4743A		4-50	1N3702B	1N4763A	ł	4-50
1N3683	1N4744	1	4-50	1N3703	1N4764		4-50
1N3683A	1N4744		4-50	1N3703A	1N4764		4-50
1N3683B	1N4744A		4-50	1N3703B	1N4764A	ì	4-50
1N3684	1N4745		4-50	1N3704	1M110ZS10	1	
1N3684A	1N4745		4-50	1N3704A	1M110ZS10	1	_
1N3684B	1N4745A		4-50		1M110ZS5		_
1N3685	1N4746		4-50	1N3704B		1	l
1N3685A	1N4746		4-50	1N3705	1M120ZS10	1	_
				1N3705A	1M120ZS10]	_
1N3685B	1N4746A		4-50	1N3705B	1M120ZS5	1	_
1N3686	1N4747		4-50	1N3706	1M130ZS10		-
1N3686A	1N4747		4-50	1N3706A	1M130ZS10		-
1N3686B	1N4747A		4-50	1N3706B	1M130ZS5		l –
1N3687	1N4748		4-50	1N3707	1M150ZS10	i	
1N3687A	1N4748		4-50	1N3707A	1M150ZS10	1	_
1N3687B	1N4748A		4-50	1N3707B	1M150ZS5	1	
1N3688	1N4749		4-50	1N3707B	1M160ZS10		
	1N4749				1		-
1N3688A			4-50	1N3708A	1M160ZS10	1	-
1N3688B	1N4749A		4-50	1N3708B	1M160ZS5		-
1N3689	1N4750		4-50	1N3709	1M180ZS10	1	-
1N3689A	1N4750		4-50	1N3709A	1M180ZS10	ì	-
1N3689B	1N4750A		4-50	1N3709B	1M180ZS5	1	-
1N3690	1N4751		4-50	1N3710	1M200ZS10		l –
1N3690A	1N4751		4-50	1N3710A	1M200ZS10	ł	l —
1N3690B	1N4751A		4-50	1N3710B	1M200ZS5	1	
1N3691	1N4751A		4-50	1N3779	111120200	1N821A	4-10
1N3691A	1N4752		4-50	1N3780	1	1N821A	4-10
			4-50 4-50	1N3781		1N823A	4-10
1N3691B	1N4752A			1N3782			
1N3692	1N4753		4-50			1N825A	4-10
1N3692A	1N4753		4-50	1N3783		1N827A	4-10
1N3692B	1N4753A		4-50	1N3784	41107054	1N829A	4-10
1N3693	1N4754		4-50	1N3785A	1N3785A	1	4-32
1N3693A	1N4754		4-50	1N3786A	1N3786A		4-32
1N3693B	1N4754A		4-50	1N3787A	1N3787A	ì	4-32
1N3694	1N4755		4-50	1N3788A	1N3788A	}	4-32
1N3694A	1N4755		4-50	1N3789A	1N3789A	l	4-32
1N3694B	1N4755A		4-50	1N3790A	1N3790A	1	4-32
1N3695	1N4756		4-50	1N3791A	1N3791A	1	4-32
1N3695A	1N4756		4-50	1N3792A	1N3792A		4-32
1N3695B			4-50	1N3793A	1N3793A	ì	4-32
	1N4756A						
1N3696	1N4757		4-50	1N3794A	1N3794A	1	4-32
1N3696A	1N4757		4-50	1N3795A	1N3795A	1	4-32
1N3696B	1N4757A		4-50	1N3796A	1N3796A		4-32
1N3697	1N4758		4-50	1N3797A	1N3797A	1	4-32
1N3697A	1N4758		4-50	1N3798A	1N3798A	1	4-32
1N3697B	1N4758A		4-50	1N3799A	1N3799A	1	4-32
1N3698	1N4759		4-50	1N3800A	1N3800A	ĺ	4-32
	1N4759		1 1	1N3801A	1N3801A	1	4-32
1N3698A			4-50		1N3802A		
1N3698B	1N4759A		4-50	1N3802A		i	4-32
1N3699	1N4760		4-50	1N3803A	1N3803A	1	4-32
1N3699A	1N4760		4-50	1N3804A	1N3804A	1	4-32
1N3699B	1N4760A	1	4-50	1N3805A	1N3805A		4-32
1N3700	1N4761		4-50	1N3806A	1N3806A		4-32
1N3700A	1N4761	l .	4-50	1N3807A	1N3807A		4-32

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3808A 1N3809A 1N3810A 1N3811A 1N3812A 1N3813A 1N3815A 1N3815A 1N3816A 1N3817A 1N3818A 1N3819A 1N3820A	1N3808A 1N3809A 1N3810A 1N3811A 1N3812A 1N3813A 1N3815A 1N3816A 1N3816A 1N3817A 1N3818A 1N3819A 1N3820A		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32	1N4020B 1N4021 1N4021A 1N4021B 1N4022 1N4022A 1N4022B 1N4023 1N4023A 1N4023B 1N4024 1N4024A 1N4024B		1N2976B 1N2977A 1N2977A 1N2977B 1N2979B 1N2979A 1N2979B 1N2980A 1N2980A 1N2980B 1N2980B 1N2982A 1N2982A 1N2982B	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3821 1N3822 1N3823 1N3824 1N3825 1N3826 1N3827	1N3821 1N3822 1N3823 1N3824 1N3825 1N3826 1N3827		4-34 4-34 4-34 4-34 4-34 4-34	1N4025 1N4025A 1N4025B 1N4026 1N4026A 1N4026B 1N4027		1N2984A 1N2984A 1N2984B 1N2985A 1N2985A 1N2985B 1N2986A	4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3828 1N3829 1N3830 1N3949 1N3950 1N3951 1N3984 1N3985 1N3986 1N3993	1N3828 1N3829 1N3830 1N3830	1N2984B 1N3796B 1.5M25Z5 1N3997A 1N3998A 1N3998A	4-34 4-34 4-34 4-27 4-32 — 4-40 4-40 4-40 4-40	1N4027A 1N4027B 1N4028 1N4028A 1N4028B 1N4029 1N4029A 1N4029B 1N4030 1N4030A		1N2986A 1N2986B 1N2988A 1N2988A 1N2988B 1N2989A 1N2989A 1N2989B 1N2990A 1N2990A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3993R 1N3994 1N3994R 1N3995 1N3995R 1N3996 1N3996R 1N3997 1N3997R 1N3998	1N3993R 1N3994 1N3994R 1N3995 1N3995 1N3996 1N3996R 1N3997 1N3997R 1N3998		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N4030B 1N4031 1N4031A 1N4031B 1N4032 1N4032A 1N4032B 1N4033 1N4033A 1N4033B		1N2990B 1N2991A 1N2991A 1N2991B 1N2992A 1N2992A 1N2992B 1N2993A 1N2993A 1N2993B	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3998R 1N3999 1N3999R 1N4000 1N4000R 1N4010 1N4016 1N4016A 1N4016B 1N4017	1N3998R 1N3999 1N3999R 1N4000 1N4000R	1N821 1N2972A 1N2972A 1N2972B 1N2973A	4-40 4-40 4-40 4-40 4-40 4-10 4-27 4-27 4-27 4-27	1N4034 1N4034A 1N4034B 1N4035 1N4035A 1N4035B 1N4036 1N4036A 1N4036B 1N4037		1N2995A 1N2995A 1N2995B 1N2997A 1N2997A 1N2997B 1N2999A 1N2999A 1N2999B 1N3000A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N4017A 1N4017B 1N4018 1N4018A 1N4018B 1N4019 1N4019A 1N4019B 1N4020 1N4020A		1N2973A 1N2973B 1N2974A 1N2974A 1N2974B 1N2975A 1N2975B 1N2976A 1N2976A	4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4037A 1N4037B 1N4038 1N4038A 1N4038B 1N4039 1N4039A 1N4039B 1N4040A		1N3000A 1N3000B 1N3001A 1N3001A 1N3001B 1N3002A 1N3002A 1N3002B 1N3003A 1N3003A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page :
1N4040B		1N3003B	4-27	1N4161B		1N4739A	4-50
1N4041	}	1N3004A	4-27	1N4162	1	1N4740	4-50
1N4041A	1	1N3004A	4-27	1N4162A]	1N4740	4-50
1N4041B	1	1N3004B	4-27	1N4162B	j	1N4740A	4-50
1N4042	ł	1N3005A	4-27	1N4163	J	1N4741	4-50
1N4042A	1	1N3005A	4-27	1N4163A]	1N4741	4-50
1N4042B	1	1N3005B	4-27	1N4163B	1	1N4741A	4-50
1N4094	1	1N2624B	''	1N4164	j	1N4742	4-50
1N4095		1N5231A	4-54	1N4164A	j	1N4742	4-50
1N4096		1N4763A	4-50	1N4164B		1N4742A	4-50
	1	1	1 1	1			1
1N4097		1N4764A	4-50	1N4165	1	1N4743	4-50
1N4098	1	1M150ZS5	-	1N4165A		1N4743	4-50
1N4099	1N4099	1	4-42	1N4165B	1	1N4743A	4-50
1N4100	1N4100	1	4-42	1N4166	1	1N4744	4-50
1N4101	1N4101	Į.	4-42	1N4166A	1	1N4744	4-50
1N4102	1N4102	l	4-42	1N4166B	}	1N4744A	4-50
N4103	1N4103		4-42	1N4167]	1N4745	4-50
N4104	1N4104	1	4-42	1N4167A	j	1N4745	4-50
N4105	1N4105		4-42	1N4167B		1N4745A	4-50
N4106	1N4106	l	4-42	1N4168	}	1N4746	4-50
	1	1	1)	1	1	i .	j
N4107	1N4107	}	4-42	1N4168A	1	1N4746	4-50
N4108	1N4108	l	4-42	1N4168B]	1N4746A	4-50
N4109	1N4109	1	4-42	1N4169		1N4747	4-50
N4110	1N4110		4-42	1N4169A		1N4747	4-50
N4111	1N4111		4-42	1N4169B	1	1N4747A	4-50
N4112	1N4112		4-42	1N4170	1	1N4748	4-50
N4113	1N4113	1	4-42	1N4170A		1N4748	4-50
N4114	1N4114		4-42	1N4170B	1	1N4748A	4-50
N4115	1N4115		4-42	1N4171		1N4749	4-50
IN4116	1N4116	ļ.	4-42	1N4171A	1	1N4749	4-50
IN4117	1N4117	1	4-42	l .	1	1N4749A	4-50
				1N4171B			
IN4118	1N4118	1	4-42	1N4172	1	1N4750	4-50
IN4119	1N4119	l	4-42	1N4172A	1	1N4750	4-50
N4120	1N4120	Ì	4-42	1N4172B		1N4750A	4-50
N4121	1N4121	j	4-42	1N4173	1	1N4751	4-50
N4122	1N4122	l	4-42	.1N4173A	1	1N4751	4-50
N4123	1N4123		4-42	1N4173B		1N4751A	4-50
N4124	1N4124		4-42	1N4174	1	1N4752	4-50
N4125	1N4125		4-42	1N4174A	1	1N4752	4-50
N4126	1N4126		4-42	1N4174B	İ	1N4752A	4-50
N4127	1N4127		4-42	1	1	1N4753	4-50
N4127	1N4127 1N4128	1	4-42	1N4175		1N4753	4-50
	1N4120 1N4129	,	4-42	1N4175A	-		
N4129 N4130		l .		1N4175B		1N4753A	4-50
	1N4130		4-42	1N4176	1	1N4754	4-50
N4131	1N4131		4-42	1N4176A	1	1N4754	4-50
N4132	1N4132	1	4-42	1N4176B	1	1N4754A	4-50
N4133	1N4133		4-42	1N4177	İ	1N4755	4-50
N4134	1N4134	j	4-42	1N4177A	1	1N4755	4-50
N4135	1N4135	1	4-42	1N4177B	1	1N4755A	4-50
N4158]	1N4736	4-50	1N4178	Ì	1N4756	4-50
N4158A	1	1N4736	4-50	1N4178A	1	1N4756	4-50
N4158B		1N4736A	4-50	1N4178B		1N4756A	4-50
N4159	1	1N4737	4-50	1N41766 1N4179		1N4757	4-50
N4159A	1	1N4737	4-50 4-50		1		4-50
				1N4179A	1	1N4757	
N4159B	1	1N4737A	4-50	1N4179B	1	1N4757A	4-50
N4160	1	1N4738	4-50	1N4180	i	1N4758	4-50
N4160A	1	1N4738	4-50	1N4180A		1N4758	4-50
N4160B	1	1N4738A	4-50	1N4180B		1N4758A	4-50
IN4161	1	1N4739	4-50	1N4181	1	1N4759	4-50
IN4161A		1N4739	4-50	1N4181A	1	1N4759	4-50

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4181B 1N4182 1N4182A 1N4182B 1N4183 1N4183A 1N4183B 1N4183B		1N4759A 1N4760 1N4760 1N4760A 1N4761 1N4761 1N4761A 1N4762	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50	1N4208B 1N4209 1N4209A 1N4209B 1N4210 1N4210A 1N4210B		1N2984B 1N2985A 1N2985A 1N2985B 1N2986A 1N2986A 1N2986B	4-27 4-27 4-27 4-27 4-27 4-27
1N4184A 1N4184B		1N4762 1N4762A	4-50 4-50	1N4211 1N4211A 1N4211B		1N2987A 1N2987A 1N2987B	4-27 4-27 4-27
1 N4185 1 N4185A 1 N4185B 1 N4186 1 N4186A 1 N4186B 1 N4194 1 N4194A 1 N4194B 1 N4195		1N4763 1N4763 1N4763A 1N4764 1N4764 1N4764A 1N2970A 1N2970A 1N2970B 1N2971A	4-50 4-50 4-50 4-50 4-50 4-50 4-27 4-27 4-27 4-27	1N4212 1N4212A 1N4212B 1N4213 1N4213A 1N4213B 1N4214 1N4214A 1N4214B 1N4214B		1N2988A 1N2988B 1N2988B 1N2989A 1N2989A 1N2989B 1N2990A 1N2990A 1N2990B 1N2991A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N4195A 1N4195B 1N4196 1N4196A 1N4196B 1N4197 1N4197A 1N4197B 1N4198 1N4198A		1N2971A 1N2971B 1N2972A 1N2972A 1N2972B 1N2973A 1N2973A 1N2973B 1N2974A 1N2974A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4215A 1N4215B 1N4216 1N4216A 1N4216B 1N4217 1N4217A 1N4217B 1N4218 1N4218A		1N2991A 1N2991B 1N2992A 1N2992A 1N2992B 1N2993A 1N2993A 1N2993B 1N2994A 1N2994A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N4198B 1N4199 1N4199A 1N4199B 1N4200 1N4200A 1N4200B 1N4201 1N4201A 1N4201B		1N2974B 1N2975A 1N2975A 1N2975B 1N2976A 1N2976A 1N2976B 1N2977A 1N2977A 1N2977B	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4218B 1N4219 1N4219A 1N4219B 1N4220 1N4220A 1N4220B 1N4220B 1N4221 1N4221A 1N4221B		1N2994B 1N2995A 1N2995A 1N2995B 1N2996A 1N2996A 1N2996B 1N2997A 1N2997A 1N2997B	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N4202 1N4202A 1N4202B 1N4203 1N4203A 1N4203B 1N4204 1N4204 1N4204A 1N4204B 1N4205		1N2978A 1N2978A 1N2978B 1N2979A 1N2979A 1N2979B 1N2980A 1N2980A 1N2980B 1N2981A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4222 1N4222A 1N4222B 1N4223 1N4223A 1N4223B 1N4224 1N4224 1N4224A 1N4224B 1N4225		1N2998A 1N2998B 1N2999B 1N2999A 1N2999A 1N2999B 1N3000A 1N3000A 1N3000B 1N3001A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N4205A 1N4205B 1N4206 1N4206A 1N4206B 1N4207 1N4207A 1N4207B 1N4208 1N4208A		1N2981A 1N2981B 1N2982A 1N2982A 1N2982B 1N2983A 1N2983A 1N2983B 1N2984A 1N2984A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4225A 1N4225B 1N4226 1N4226A 1N4226B 1N4227 1N4227A 1N4227B 1N4228 1N4228		1N3001A 1N3001B 1N3002A 1N3002A 1N3002B 1N3003A 1N3003A 1N3003B 1N3004A 1N3004A	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry	Motorola Direct	Motorola Similar		Industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N4228B		1N3004B	4-27	1N4266B		1N2979B	4-27
1N4229		1N3005A	4-27	1N4267		1N2980A	4-27
1N4229A		1N3005A	4-27	1N4267A	1	1N2980A	4-27
1N4229B		1N3005B	4-27	1N4267B		1N2980B	4-27
1N4230		1N3006A	4-27	1N4268		1N2982A	4-27
1N4230A	}	1N3006A	4-27	1N4268A	1	1N2982A	4-27
1N4230B		1N3006B	4-27	1N4268B		1N2982B	4-27
1N4231		1N3007A	4-27	1N4269		1N2984A	4-27
1N4231A	1	1N3007A	4-27	1N4269A		1N2984A	4-27
1N4231B	į	1N3007B	4-27	1N4269B	1	1N2984B	4-27
1N4232		1N3008A	4-27	1N4270		1N2985A	4-27
1N4232A	ļ	1N3008A	4-27	1N4270A		1N2985A	4-27
1N4232B	j	1N3008B	4-27	1N4270B		1N2985B	4-27
1N4233		1N3009A	4-27	1N4271		1N2986A	4-27
1N4233A		1N3009A	4-27	1N4272A		1N2988A	4-27
1N4233B		1N3009B	4-27	1N4272B		1N2988B	4-27
1N4234		1N3010A	4-27	1N4273		1N2989A	4-27
1N4234A		1N3010A	4-27	1N4273A		1N2989A	4-27
1N4234B		1N3010B	4-27	1N4273B		1N2989B	4-27
1N4235		1N3011A	4-27	1N4274		1N2990A	4-27
1N4235A		1N3011A	4-27	1N4274A		1N2990A	4-27
1N4235B		1N3011B	4-27	1N4274B		1N2990B	4-27
1N4236		1N3012A	4-27	1N4275	1	1N2991A	4-27
1N4236A	}	1N3012A	4-27	1N4275A		1N2991A	4-27
1N4236B		1N3012B	4-27	1N4275B	ì	1N2991B	4-27
1N4237		1N3013A	4-27	1N4276	1	1N2992A	4-27
1N4237A		1N3013A	4-27	1N4276A		1N2992A	4-27
1N4237B		1N3013B	4-27	1N4276B		1N2992B 1N2993A	4-27 4-27
1N4238		1N3014A	4-27	1N4277			4-27
1N4238A		1N3014A	4-27	1N4277A	1	1N2993A	l .
1N4238B		1N3014B	4-27	1N4277B		1N2993B	4-27
1N4239		1N3015A	4-27	1N4278		1N2995A	4-27
1N4239A		1N3015A	4-27	1N4278A		1N2995A	4-27
1N4239B		1N3015B	4-27	1N4278B		1N2995B	4-27
1N4258		1N2970A	4-27	1N4279	i	1N2997A	4-27
1N4258A		1N2970A	4-27	1N4279A		1N2997A 1N2997B	4-27 4-27
1N4258B		1N2970B	4-27	1N4279B		1N2999A	4-27
1N4259		1N2971A	4-27	1N4280 1N4280A		1N2999A 1N2999A	4-27
1N4259A		1N2971A	4-27	1N4280B		1N2999B	4-27
1N4259B	ļ	1N2971B	4-27	1		1	
1N4260		1N2972A	4-27	1N4281		1N3000A	4-27
1N4260A	}	1N2972A	4-27	1N4281A		1N3000A	4-27
1N4260B		1N2972B	4-27	1N4281B		1N3000B 1N3001A	4-27 4-27
1N4261		1N2973A	4-27	1N4282		1N3001A	4-27
1N4261A		1N2973A	4-27	1N4282A 1N4282B	1	1N3001A	4-27
1N4261B 1N4262		1N2973B	4-27	1N4283	1	1N3001B	4-27
	Ì	1N2974A	4-27	1N4283A		1N3002A	4-27
1N4262A 1N4262B	1	1N2974A 1N2974B	4-27 4-27	1N4283B		1N3002B	4-27
1N4263	1	1N2974B 1N2975A	4-27	1N4284	1	1N3003A	4-27
				1			4-27
1N4263A		1N2975A	4-27	1N4284A		1N3003A 1N3003B	4-27 4-27
1N4263B	1	1N2975B	4-27	1N4284B	1	1N3003B	4-27
1N4264	l	1N2976A	4-27	1N4285	I	1N3004A	4-27
1N4264A	l	1N2976A	4-27	1N4285A		1N3004A 1N3004B	4-27
1N4264B	1	1N2976B	4-27	1N4285B 1N4286		1N3004B	4-27
1N4265		1N2977A	4-27	1N4286A	1	1N3005A 1N3005A	4-27
1N4265A	1	1N2977A	4-27	1N4286B	1	1N3005B	4-27
1N4265B 1N4266		1N2977B 1N2979A	4-27 4-27	1N4287	1	1N3003B	4-27
1N4266A		1N2979A 1N2979A	4-27 4-27	1N4287A		1N3007A	4-27
IIITLUUM	I	INCOLOR	4-21	11172017	1	1	ı · -

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Direct	Similar		Industry	Motorola Direct	Motorola Similar	
	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N4287B		1N3007B	4-27	1N4336A		1N4749	4-50
1N4288		1N3008A	4-27	1N4336B		1N4749A	4-50
1N4288A		1N3008A	4-27	1N4337	1	1N4750	4-50
1N4288B		1N3008B	4-27	1N4337A		1N4750	4-50
1N4289		1N3009A	4-27	1N4337B	ĺ	1N4750A	4-50
1N4289A		1N3009A	4-27	1N4338	1	1N4751	4-50
1N4289B		1N3009B	4-27	1N4338A	ł	1N4751	4-50
1N4290		1N3011A	4-27	1N4338B		1N4751A	4-50
1N4290A 1N4290B		1N3011A	4-27 4-27	1N4339		1N4752	4-50
	-	1N3011B		1N4339A		1N4752	4-50
1N4291		1N3012A	4-27	1N4339B		1N4752A	4-50
1N4291A		1N3012A	4-27	1N4340		1N4753	4-50
1N4291B		1N3012B	4-27	1N4340A	į	1N4753	4-50
1N4292 1N4292A		1N3014A	4-27	1N4340B 1N4341	ĺ	1N4753A	4-50
1N4292B		1N3014A 1N3014B	4-27 4-27	1N4341 1N4341A		1N4754	4-50
1N42925 1N4293		1N3014B 1N3015A	4-27	1N4341A 1N4341B	1	1N4754 1N4754A	4-50 4-50
1N4293A		1N3015A 1N3015A	4-27	1N4341B 1N4342		1N4754A 1N4755	4-50 4-50
1N4293B		1N3015B	4-27	1N4342A	1	1N4755	4-50
1N4321		5M50ZS10		1N4342B		1N4755A	4-50
1N4323		1N4736	4-50	1N4343	l	1N4756	4-50
1N4323 1N4323A		1N4736 1N4736	4-50	1N4343 1N4343A	ĺ	1N4756 1N4756	4-50 4-50
1N4323B		1N4736A	4-50	1N4343A 1N4343B		1N4756A	4-50 4-50
1N43236 1N4324		1N4730A 1N4737	4-50	1N4343B 1N4344		1N4756A 1N4757	4-50 4-50
1N4324A		1N4737	4-50	1N4344A		1N4757 1N4757	4-50
1N4324B		1N4737A	4-50	1N4344B		1N4757A	4-50
1N4325		1N4738	4-50	1N4345		1N4758	4-50
1N4325A		1N4738	4-50	1N4345A		1N4758	4-50
1N4325B	J	1N4738A	4-50	1N4345B		1N4758A	4-50
1N4326		1N4739	4-50	1N4346		1N4759	4-50
1N4326A		1N4739	4-50	1N4346A		1N4759	4-50
1N4326B		1N4739A	4-50	1N4346B	1	1N4759A	4-50
1N4327		1N4740	4-50	1N4347		1N4760	4-50
1N4327A		1N4740	4-50	1N4347A	1	1N4760	4-50
1N4327B		1N4740A	4-50	1N4347B		1N4760A	4-50
1N4328		1N4741	4-50	1N4348	1	1N4761	4-50
1N4328A		1N4741	4-50	1N4348A		1N4761	4-50
1N4328B		1N4741A	4-50	1N4348B	1	1N4761A	4-50
1N4329		1N4742	4-50	1N4349		1N4762	4-50
1N4329A		1N4742	4-50	1N4349A	\	1N4762	4-50
1N4329B		1N4742A	4-50	1N4349B		1N4762A	4-50
1N4330		1N4743	4-50	1N4350	}	1N4763	4-50
1N4330A 1N4330B		1N4743 1N4743A	4-50 4-50	1N4350A 1N4350B		1N4763	4-50
1N4330B 1N4331		1N4743A 1N4744	4-50 4-50			1N4763A	4-50
1N4331A		1N4744 1N4744	4-50 4-50	1N4351 1N4351A		1N4764 1N4764	4-50 4-50
1N4331B		1N4744A	4-50	1N4351A 1N4351B	[1N4764A	4-50 4-50
1N4332		1N4745	4-50	1N4352		1M110ZS10	
1N4332A		1N4745	4-50	1N4352A		1M110ZS10	_
1N4332B		1N4745A	4-50	1N4352B		1M110ZS5	_
1N4333		1N4746	4-50	1N4353		1M120ZS10	
1N4333A		1N4746	4-50	1N4353A		1M120ZS10	_
1N4333B		1N4746A	4-50	1N4353B	1	1M120ZS5	_
1N4334		1N4747	4-50	1N4354	1	1M130ZS10	
1N4334A		1N4747	4-50	1N4354A		1M130ZS10	_
1N4334B		1N4747A	4-50	1N4354B		1M130ZS5	
1N4335		1N4748	4-50	1N4355	1	1M150ZS10	_
1N4335A		1N4748	4-50	1N4355A		1M150ZS10	_
1N4335B		1N4748A	4-50	1N4355B	1	1M150ZS5	_
1N4336	I	I 1N4749	4-50	1N4356	l	1M160ZS10	_

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
	Портаболных	nopiacement	raye #	Tare Number	nepiacement	пертасептент	rayer
1N4356A		1M160ZS10	_	1N4472	1	1N4747A	4-50
1N4356B		1M160ZS5		1N4473		1N4748A	4-50
1N4357		1M180ZS10	_	1N4474		1N4749A	4-50
1N4357A		1M180ZS10	_	1N4475		1N4750A	4-50
1N4357B		1M180ZS5	_	1N4476		1N4751A	4-50
1N4358		1M200ZS10		1N4477]	1N4752A	4-50
1N4358A		1M200ZS10	_	1N4478		1N4753A	4-50
1N4358B		1M200ZS5		1N4479		1N4754A	4-50
1N4360		1N4370A	_	1N4480		1N4755A	4-50
1N4370	1N4370			1N4481		1N4756A	4-50
1N4371	1N4371			1N4482		1N4757A	4-50
1N4372	1N4372			1N4483		1N4758A	4-50
1N4400	1114372	1N4736	4-50				4-50
1N4401		1N4737	4-50 4-50	1N4484		1N4759A 1N4760A	4-50
1N4402		1N4737 1N4738	4-50 4-50	1N4485	İ		4-50
				1N4486		1N4761A	
1N4403		1N4739	4-50	1N4487		1N4762A	4-50
1N4404		1N4740	4-50	1N4488		1N4763A	4-50
1N4405		1N4741	4-50	1N4489		1N4764A	4-50
1N4406		1N4742	4-50	1N4490		1M110ZS5	-
IN4407	1	1N4743	4-50	1N4491	1	1M120ZS5	-
IN4408	1	1N4744	4-50	1N4492		1M130ZS5	-
N4409		1N4745	4-50	1N4493		1M150ZS5	-
IN4410		1N4746	4-50	1N4494		1M160ZS5	l –
IN4411		1N4747	4-50	1N4495		1M180ZS5	l –
N4412		1N4748	4-50	1N4496	l	1M200ZS5	_
N4413		1N4749	4-50	1N4499		1N4735A	4-50
1N4414		1N4750	4-50	1N4503		1N4752	4-50
1N4415		1N4751	4-50	1N4504	1	1N5388A	4-66
1N4416	{	1N4752	4-50	1N4549A	1N4549A	Ì	4-23
1N4417		1N4753	4-50	1N4549RA	1N4549RA		4-23
1N4418		1N4754	4-50	1N4550A	1N4550A		4-23
1N4419		1N4755	4-50	1N4550RA	1N4550RA		4-23
1N4420	į	1N4756	4-50	1N4551A	1N4551A		4-23
1N4421		1N4757	4-50	1N4551RA	1N4551RA		4-23
N4422	İ	1N4758	4-50	1N4552A	1N4552A	l	4-23
N4423		1N4759	4-50	1N4552RA	1N4552RA		4-23
N4424		1N4760	4-50	1N4553A	1N4553A		4-23
N4425		1N4761	4-50	1N4553RA	1N4553RA		4-23
IN4426		1N4762	4-50	1N4554A	1N4554A	i	4-23
N4427		1N4763	4-50	1N4554RA	1N4554RA		4-23
N4428		1N4764	4-50	1N4555A	1N4555A	1	4-23
N4429		1M110ZS10	4-30	1N4555RA	1N4555A 1N4555RA		4-23
N4430		1M120ZS10		1N4556A	1N4556A	1	4-23
N4431	ľ	1M130ZS10	_	1N4556RA	1N4556RA		4-23
N4432		1M150ZS10	_	1N4557A	1N4557A	İ	4-23
N4433		1M160ZS10	_	1N4557A	1N4557A		4-23
N4434		1M180ZS10		1	1N4557RA 1N4558A	1	4-23
		1		1N4558A			
N4435 N4460	1	1M200ZS10 1N4735A	4-50	1N4558RA	1N4558RA 1N4559A	ļ	4-23 4-23
N4460 N4461	1	1N4736A	4-50 4-50	1N4559A 1N4559RA	1N4559A 1N4559RA		4-23
	1					1	ı
N4462		1N4737A	4-50	1N4560A	1N4560A		4-23
N4463		1N4738A	4-50	1N4560RA	1N4560RA	İ	4-23
N4464		1N4739A	4-50	1N4561A	1N4561A	1	4-23
N4465		1N4740A	4-50	1N4561RA	1N4561RA	1	4-23
N4466	1	1N4741A	4-50	1N4562A	1N4562A		4-23
N4467	[1N4742A	4-50	1N4562RA	1N4562RA		4-23
N4468		1N4743A	4-50	1N4563A	1N4563A		4-23
N4469	1	1N4744A	4-50	1N4563RA	1N4563RA		4-23
1N4470		1N4745A	4-50	1N4564A	1N4564A		4-23
IN4471	1	1N4746A	4-50	1N4564RA	1N4564RA	I	4-23

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4565 1N4565A 1N4566A 1N4566A 1N4567 1N4567A 1N4568 1N4568A 1N4569 1N4569A 1N4570 1N4570A 1N4571A 1N4571A	1N4565 1N4565A 1N4566 1N4566A 1N4567 1N4567A 1N4568 1N4568A 1N4569 1N4569 1N4570 1N4570 1N4571A 1N4571A	inopraceilloin.	4-46 4-46 4-46 4-46 4-46 4-46 4-46 4-46	1N4622 1N4623 1N4624 1N4625 1N4625 1N4626 1N4627 1N4628 1N4629 1N4630 1N4631 1N4632 1N4633 1N4634 1N4635 1N4635	1N4622 1N4623 1N4624 1N4625 1N4625 1N4627	1N4736A 1N4737A 1N4738A 1N4739A 1N4740A 1N4741A 1N4741A 1N4742A 1N4743A 1N4744A	4-42 4-42 4-42 4-42 4-42 4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4572 1N4572A 1N4573 1N4573A 1N4574 1N4574A	1N4572 1N4572A 1N4573 1N4573A 1N4574 1N4574A		4-46 4-46 4-46 4-46 4-46 4-46	1N4636 1N4637 1N4638 1N4639 1N4640 1N4641		1N4744A 1N4745A 1N4746A 1N4747A 1N4748A 1N4749A	4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4575A 1N4576 1N4576A 1N4577 1N4577A 1N4577B 1N4578 1N4579 1N4579	1N4575A 1N4576 1N4576A 1N4577 1N4577A 1N4577B 1N4578 1N4579 1N4579		4-46 4-46 4-46 4-46 4-46 4-46 4-46 4-46	1N4643 1N4644 1N4645 1N4646 1N4647 1N4648 1N4649 1N4650 1N4651		1N4751A 1N4752A 1N4753A 1N4754A 1N4755A 1N4756A 1N4728A 1N4729A 1N4730A	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1 N4580 1 N4580A 1 N4581 1 N4581A 1 N4582 1 N4582A 1 N4583 1 N4583A 1 N4584 1 N4584A	1N4580 1N4580A 1N4581 1N4581A 1N4582 1N4582A 1N4583 1N4583A 1N4584 1N4584		4-46 4-46 4-46 4-46 4-46 4-46 4-46 4-46	1N4652 1N4653 1N4654 1N4655 1N4656 1N4657 1N4658 1N4659 1N4660 1N4661		1N4731A 1N4732A 1N4733A 1N4734A 1N4735A 1N4736A 1N4737A 1N4737A 1N4738A 1N4739A 1N4740A	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4611 1N4611A 1N4611B 1N4611C 1N4612 1N4612A 1N4612B 1N4612C 1N4613 1N4613A		1N4576A 1N4577A 1N4578A 1N4579A 1N4581A 1N4582A 1N4583A 1N4584A 1N4581A 1N4581A	4-46 4-46 4-46 4-46 4-46 4-46 4-46 4-46	1N4662 1N4663 1N4664 1N4665 1N4666 1N4667 1N4668 1N4669 1N4670 1N4671		1N4741A 1N4742A 1N4744A 1N4745A 1N4745A 1N4746A 1N4747A 1N4748A 1N4749A 1N4750A	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4613B 1N4613C 1N4614 1N4615 1N4616 1N4617 1N4618 1N4619 1N4620 1N4621	1N4614 1N4615 1N4616 1N4617 1N4618 1N4619 1N4620 1N4621	1N4583A 1N4584A	4-46 4-46 4-42 4-42 4-42 4-42 4-42 4-42	1N4672 1N4673 1N4674 1N4675 1N4676 1N4677 1N4678 1N4679 1N4680 1N4681	1N4678 1N4679 1N4680 1N4681	1N4751A 1N4752A 1N4753A 1N4754A 1N4755A 1N4756A	4-50 4-50 4-50 4-50 4-50 4-50 4-48 4-48 4-48

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

1N4683 1N4684 1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4692 1N4693 1N4694 1N4695 1N4696	Replacement 1N4682 1N4683 1N4684 1N4685 1N4686 1N4687 1N4688 1N4699 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696 1N4697 1N4698	Replacement	4-48 4-48 4-48 4-48 4-48 4-48 4-48 4-48	1N4753, A 1N4754, A 1N4755, A 1N4756, A 1N4757, A 1N4758, A 1N4759, A 1N4760, A 1N4761, A 1N4762, A 1N4763, A 1N4764, A 1N4765	Replacement 1N4753,A 1N4754,A 1N4755,A 1N4756,A 1N4757,A 1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A 1N4764,A	Replacement	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4683 1N4684 1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4692 1N4693 1N4694 1N4695 1N4696	1N4683 1N4684 1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4693 1N4694 1N4695 1N4696 1N4697		4-48 4-48 4-48 4-48 4-48 4-48 4-48 4-48	1N4754,A 1N4755,A 1N4756,A 1N4757,A 1N4759,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A 1N4764,A	1N4754,A 1N4755,A 1N4756,A 1N4757,A 1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A		4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696	1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696 1N4696 1N4697		4-48 4-48 4-48 4-48 4-48 4-48 4-48 4-48	1N4756,A 1N4757,A 1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A 1N4764,A	1N4756,A 1N4757,A 1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A		4-50 4-50 4-50 4-50 4-50 4-50 4-50
1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696	1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696 1N4697		4-48 4-48 4-48 4-48 4-48 4-48 4-48 4-48	1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A 1N4764,A	1N4758,A 1N4759,A 1N4760,A 1N4761,A 1N4762,A 1N4763,A		4-50 4-50 4-50 4-50 4-50
1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696	1N4689 1N4690 1N4691 1N4692 1N4693 1N4693 1N4694 1N4695 1N4696 1N4697		4-48 4-48 4-48 4-48 4-48 4-48	1N4760,A 1N4761,A 1N4762,A 1N4763,A 1N4764,A	1N4760,A 1N4761,A 1N4762,A 1N4763,A		4-50 4-50 4-50
1N4691 1N4692 1N4693 1N4694 1N4695 1N4696	1N4691 1N4692 1N4693 1N4694 1N4695 1N4696 1N4697		4-48 4-48 4-48 4-48	1N4762,A 1N4763,A 1N4764,A	1N4762,A 1N4763,A		4-50
1N4693 1N4694 1N4695 1N4696	1N4693 1N4694 1N4695 1N4696 1N4697		4-48 4-48	1N4764,A			4.50
1N4695 1N4696	1N4695 1N4696 1N4697			184765	INTIUT, A	1	4-50 4-50
1N4696	1N4697		4-48	1N4765A	1N4765 1N4765A		4-46 4-46
			4-48 4-48	1N4766 1N4766A	1N4766 1N4766A		4-46 4-46
1N4698	11/1600		4-48	1N4767	1N4767		4-46
1N4700	1N4699 1N4700 1N4701		4-48 4-48 4-48	1N4767A 1N4768	1N4767A 1N4768		4-46 4-46 4-46
1N4702	1N4702		4-48	1N4768A 1N4769	1N4768A 1N4769		4-46
1N4704	1N4703 1N4704		4-48 4-48	1N4769A 1N4770	1N4769A 1N4770		4-46 4-46
1N4706	1N4705 1N4706		4-48 4-48	1N4770A 1N4771	1N4770A 1N4771		4-46 4-46
	1N4707 1N4708		4-48 4-48	1N4771A 1N4772	1N4771A 1N4772		4-46 4-46
	1N4709 1N4710		4-48 4-48	1N4772A 1N4773	1N4772A 1N4773		4-46 4-46
	1N4711 1N4712		4-48 4-48	1N4773A	1N4773A		4-46 4-46
1N4713	1N4713 1N4714		4-48 4-48	1N4774 1N4774A	1N4774 1N4774A		4-46
1N4715	1N4715		4-48	1N4775 1N4775A	1N4775 1N4775A		4-46 4-46
1N4717	1N4716 1N4717		4-48 4-48	1N4776 1N4776A	1N4776 1N4776A		4-46 4-46
	1N4728,A 1N4729,A		4-50 4-50	1N4777 1N4777A	1N4777 1N4777A		4-46 4-46
	1N4730,A 1N4731,A		4-50 4-50	1N4778 1N4778A	1N4778 1N4778A		4-46 4-46
	1N4732,A 1N4733,A		4-50 4-50	1N4779 1N4779A	1N4779 1N4779A		4-46 4-46
1N4734,A	1N4734,A 1N4735,A		4-50 4-50	1N4780 1N4780A	1N4780 1N4780A		4-46 4-46
1N4736,A	1N4736,A 1N4737,A		4-50 4-50	1N4781	1N4781		4-46 4-46
1N4738,A	1N4738,A		4-50	1N4781A 1N4782	1N4781A 1N4782		4-46
1N4740,A	1N4739,A 1N4740,A		4-50 4-50	1N4782A 1N4783	1N4782A 1N4783		4-46 4-46
	1N4741,A 1N4742,A		4-50 4-50	1N4783A 1N4784	1N4783A 1N4784		4-46 4-46
1N4743,A	1N4743,A 1N4745,A		4-50 4-50	1N4784A 1N4831	1N4784A	1N4739	4-46 4-50
1N4746,A	1N4746,A 1N4747,A		4-50 4-50	1N4831A 1N4831B		1N4739 1N4739A	4-50 4-50
1N4748,A	1N4748,A		4-50	1N4832		1N4740	4-50
1N4750,A	1N4749,A 1N4750,A		4-50 4-50	1N4832A 1N4832B		1N4740 1N4740A	4-50 4-50
	1N4751,A 1N4752,A		4-50 4-50	1N4833 1N4833A		1N4741 1N4741	4-50 4-50

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4833B		1N4741A	4-50	1N4853B		1N4761A	4-50
1N4834		1N4742	4-50	1N4854		1N4761A	4-50
1N4834A		1N4742	4-50	1N4854A	l	1N4762	4-50
1N4834B		1N4742A	4-50	1N4854B		1N4762A	4-50 4-50
1N4835		1N4743	4-50				4-50 4-50
1N4835A	Į.	1N4743	4-50 4-50	1N4855	l	1N4763	
1N4835B	ł	1N4743A	4-50	1N4855A		1N4763	4-50
1N4836		1N4744	4-50	1N4855B	İ	1N4763A	4-50
1N4836A		1N4744	4-50	1N4856 1N4856A		1N4764	4-50
1N4836B		1N4744A	4-50	1N4856B	l	1N4764	4-50
		1				1N4764A	4-50
1N4837		1N4745	4-50	1N4857		1M110ZS10	_
1N4837A		1N4745	4-50	1N4857A		1M110ZS10	_
1N4837B		1N4745A	4-50	1N4857B		1M110ZS5	_
1N4838		1N4746	4-50	1N4858	I	1M120ZS10	_ _ _ _
1N4838A	-	1N4746	4-50	1N4858A		1M120ZS10	_
1N4838B		1N4746A	4-50	1N4858B		1M120ZS5	
1N4839		1N4747	4-50	1N4859		1M130ZS10	_
1N4839A		1N4747	4-50	1N4859A		1M130ZS10	_
1N4839B		1N4747A	4-50	1N4859B		1M130ZS5	_
1N4840		1N4748	4-50	1N4860		1M150ZS10	_
1N4840A		1N4748	4-50	1N4860A	l	1M150ZS10	_
1N4840B		1N4748A	4-50	1N4860B		1M150ZS5	
1N4841		1N4749	4-50	1N4881		1N4747	4-50
1N4841A		1N4749	4-50	1N4882		1N4753	4-50
1N4841B		1N4749A	4-50	1N4883	1	1N4742A	4-50
1N4842		1N4750	4-50	1N4884		1N4747A	4-50
1N4842A		1N4750	4-50	1N4889		1N3000B	4-27
1N4842B	l	1N4750A	4-50	1N4890		MZ640	4-111
1N4843		1N4751	4-50	1N4890A	Ì	MZ640	4-111
1N4843A		1N4751	4-50	1N4891		MZ640	4-111
1N4843B		1N4751A	4-50	1N4891A		MZ640	4-111
1N4844		1N4752	4-50	1N4892		MZ620	4-111
1N4844A		1N4752	4-50	1N4892A	l	MZ620	4-111
1N4844B		1N4752A	4-50	1N4893		MZ620	4-111
1N4845	1	1N4753	4-50	1N4893A		MZ620 MZ620	4-111
1N4845A		1N4753	4-50	1N4894		MZ610	4-111
1N4845B	ļ	1N4753A	4-50	1N4894A		MZ610	4-111
1N4846		1N4754	4-50	1N4895		MZ610 MZ610	4-111
1N4846A		1N4754	4-50	1N4895A	į.	MZ610 MZ610	4-111
1N4846B		1N4754A	4-50	1N4954		1N5342B	4-66
1N4847		1N4755	4-50	1N4955	Į.	i	
1N4847A		1N4755	4-50			1N5343B	4-66
1N4847B		1N4755A	4-50	1N4956 1N4957		1N5344B 1N5346B	4-66 4-66
1N4848		1N4756	4-50	1N4957 1N4958			
1N4848A		1N4756	4-50	1N4959		1N5347B	4-66
1N4848B		1N4756A	4-50	1N4959 1N4960		1N5348B	4-66
1N4849		1N4757	4-50	1N4960 1N4961		1N5349B 1N5350B	4-66
1N4849A		1N4757	4-50	1N4961 1N4962			4-66
1N4849B		1N4757A	4-50		1	1N5352B	4-66
1N4850		1N4758	4-50	1N4963 1N4964		1N5353B 1N5355B	4-66 4-66
1N4850A	1	1N4758	4-50	i			ł
1N4850B		1N4758A	4-50 4-50	1N4965		1N5357B	4-66
1N4851		1N4759	4-50	1N4966	l .	1N5358B	4-66
1N4851A		1N4759	4-50	1N4967		1N5359B	4-66
1N4851B		1N4759A	4-50 4-50	1N4968		1N5361B	4-66
1N4852		1N4760	4-50	1N4969		1N5363B	4-66
1N4852A		1N4760	4-50	1N4970		1N5364B	4-66
1N4852B		1N4760A	4-50	1N4971		1N5365B	4-66
1N4853		1N4761	4-50	1N4972		1N5366B	4-66
1N4853A		1N4761	4-50	1N4973		1N5367B	4-66
	1	1		1N4974		1N5368B	4-66

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
4114075		41/50000	1.00	41150004		10147474	4.50
1N4975		1N5369B	4-66	1N5030A	i	1N4747A	4-50
1N4976		1N5370B	4-66	1N5031		1N4748	4-50
1N4977	1	1N5372B	4-66	1N5031A		1N4748A	4-50
1N4978	İ	1N5373B	4-66	1N5032	İ	1N4749	4-50
1N4979	1	1N5374B	4-66	1N5032A	1	1N4749A	4-50
1N4980	1	1N5375B	4-66	1N5033]	1M25ZS10	_
1N4981		1N5377B	4-66	1N5033A	1	1M25ZS5] _
1N4982		1N5378B	4-66	1N5034		1N4750	4-50
1N4983		1N5379B	4-66	1N5034A	j	1N4750A	4-50
1N4984	İ	1N5380B	4-66	1N5035	}	1N4751	4-50
	1	1	l I	i			l
1N4985		1N5381B	4-66	1N5035A	l	1N4751A	4-50
1N4986	1	1N5383B	4-66	1N5036		1N4752	4-50
1N4987		1N5384B	4-66	1N5036A	j	1N4752A	4-50
1N4988		1N5386B	4-66	1N5037	İ	1N4753	4-50
1N4989	Ì	1N5388B	4-66	1N5037A	l	1N4753A	4-50
1N5008		1N4728	4-50	1N5038		1N4754	4-50
1N5008A	1	1N4728A	4-50	1N5038A	1	1N4754A	4-50
1N5009		1N4729	4-50	1N5039		1N4755	4-50
1N5009 1N5009A	1	1N4729A	4-50	1N5039A	1	1N4755A	4-50
					1		4-30
1N5010	1	1N4730	4-50	1N5040	1	1M45ZS10	-
1N5010A		1N4730A	4-50	1N5040A	1	1M45ZS5	_
IN5011	1	1N4731	4-50	1N5041		1N4756	4-50
1N5011A		1N4731A	4-50	1N5041A	l	1N4756A	4-50
1N5012	ì	1N4732	4-50	1N5042	1	1M50ZS10	_
1N5012 1N5012A	1	1N4732A	4-50	1N5042A	1	1M50ZS5	l _
1N5012A 1N5013			4-50	1N5042A	1	1N4757	4-50
		1N4733			1		
1N5013A	1	1N4733A	4-50	1N5043A	1	1N4757A	4-50
1N5014		1N4734	4-50	1N5044)	1M52ZS10	
1N5014A		1N4734A	4-50	1N5044A		1M52ZS5	_
1N5015	1	1N4735	4-50	1N5045	<u> </u>	1N4758	4-50
1N5015A		1N4735A	4-50	1N5045A		1N4758A	4-50
1N5016		1N4736	4-50	1N5046		1N4759	4-50
1N5016A	}	1N4736A	4-50	1N5046A	İ	1N4759A	4-50
	1		4-50		}	1N4760	4-50
1N5017	1	1N4737		1N5047	1		
1N5017A		1N4737A	4-50	1N5047A	i	1N4760A	4-50
1N5018	1	1N4738	4-50	1N5048		1N4761	4-50
1N5018A		1N4738A	4-50	1N5048A	1	1N4761A	4-50
1N5019	1	1N4739	4-50	1N5049	l	1N4762	4-50
1N5019A		1N4739A	4-50	1N5049A		1N4762A	4-50
N5020	1	1N4740	4-50	1N5050	1	1N4763	4-50
IN5020A	ł	1N4740A	4-50	1N5050A	ļ	1N4763A	4-50
N5021	ł	1N4741	4-50	1N5051	l	1N4764	4-50
N5021A		1N4741A	4-50	1N5051A		1N4764A	4-50
N5021A		1N4742	4-50	1N5063	1	1N4736A	4-50
N5022A		1N4742A	4-50	1N5064	Ì	1N4737A	4-50
N5023		1N4743	4-50	1N5065	1	1N4738A	4-50
N5023A	1	1N4743A	4-50	1N5066	l	1N4739A	4-50
N5024	1	1M14ZS10	- 1	1N5067	ł	1N4740A	4-50
N5024A	ŧ	1M14ZS5		1N5068	İ	1N4741A	4-50
N5025	i	1N4744	4-50	1N5069	1	1N4743A	4-50
N5025A		1N4744A	4-50	1N5070	1	1M14ZS5	
N5025A N5026		1N4745	4-50	1N5070	1	1N4744A	4-50
	1			1	1		
N5026A	1	1N4745A	4-50	1N5072	j	1N4745A	4-50
N5027	1	1M17ZS10	-	1N5073	1	1N4746A	4-50
N5027A		1M17ZS5		1N5074		1N4748A	4-50
N5028		1N4746	4-50	1N5075	1	1N4749A	4-50
N5028A		1N4746A	4-50	1N5076	1	1N4750A	4-50
N5029		1M19ZS10	_	1N5077	l	1N4751A	4-50
1N5029A		1M19ZS5		1N5078	1	1N4752A	4-50
1N5030	ì	1N4747	4-50	1N5079		1N4753A	4-50
	1	1		1	l	1	

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Pane #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
Part Number 1N5080 1N5081 1N5082 1N5083 1N5084 1N5086 1N5086 1N5087 1N5088 1N5099 1N5090 1N5091 1N5092 1N5093 1N5094 1N5095 1N5096 1N5097 1N5098 1N5099 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5107 1N5108 1N5101 1N5105 1N5106 1N5107 1N5108 1N5107 1N5108 1N5109 1N5110 1N5110 1N5110 1N5110 1N5110 1N5110 1N5110 1N5110 1N5110 1N5111 1N5112 1N5113 1N5114 1N5115 1N5116 1N5118 1N5122 1N5126 1N5127 1N5128 1N5221 1N5222 1N5223 1N5224 1N5225 1N5226 1N5227 1N5228 1N5229	1N5221 1N5221 1N5222 1N5223 1N5224 1N5225 1N5226 1N5227 1N5228 1N5229		Page # 4-50 — 4-50 — 4-50 4-50 4-50 4-50 4-50 4-50 4-50 — 4-50 4-50 — 4-50 4-50 — 4-50 4-50 — 4-50 4-50 — 4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50	Industry Part Number 1N5239 1N5240 1N5241 1N5242 1N5243 1N5244 1N5245 1N5246 1N5247 1N5248 1N5250 1N5251 1N5252 1N5253 1N5254 1N5255 1N5256 1N5257 1N5258 1N5256 1N5260 1N5261 1N5261 1N5262 1N5263 1N5264 1N5263 1N5264 1N5263 1N5264 1N5263 1N5264 1N5265 1N5265 1N5267 1N5268 1N5267 1N5268 1N5269 1N5270 1N5271 1N5272 1N5273 1N5275 1N5276 1N5277 1N5278 1N5277 1N5278 1N5277 1N5288 1N5281 1N5283 1N5284 1N5283 1N5284 1N5288 1N5288 1N5288 1N5288			Page # 4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-
1N5221 1N5222 1N5223 1N5224 1N5225 1N5226 1N5227	1N5222 1N5223 1N5224 1N5225 1N5226 1N5227	1N5387B	4-54 4-54 4-54 4-54 4-54 4-54	1N5281 1N5283 1N5284 1N5285 1N5286 1N5287 1N5288	1N5281 1N5283 1N5284 1N5285 1N5286 1N5287 1N5288		4-60 4-62 4-62 4-62 4-62 4-62 4-62
1N5228	1N5228		4-54	1N5289	1N5289		4-62

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct	Motorola Similar	Page #	Industry Boot Number	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N5300	1N5300		4-62	1N5378A	1N5378A	1	4-66
1N5301	1N5301	:	4-62	1N5379A	1N5379A		4-66
1N5302	1N5302		4-62	1N5380A	1N5380A		4-66
1N5303	1N5303		4-62	1N5381A	1N5381A	1	4-66
1N5304	1N5304		4-62	1N5383A	1N5383A		4-66
1N5305	1N5305		4-62	1N5384A	1N5384A		4-66
1N5306	1N5306		4-62	1N5385A	1N5385A		4-66
1N5307	1N5307		4-62	1N5386A	1N5386A	1	4-66
1N5308	1N5308		4-62	1N5387	1N5387		4-66
1N5309	1N5309		4-62	1N5388A	1N5388A		4-66
1N5310	1N5310		4-62	1N5518A,B	1N5518A,B		4-70
1N5311	1N5311		4-62	1N5519A,B	1N5519A,B		4-70
1N5312	1N5312		4-62	1N5520A,B	1N5520A,B		4-70
1N5313	1N5313		4-62	1N5521A,B	1N5521A,B		4-70
1N5314	1N5314		4-62	1N5522A,B	1N5522A,B		4-70
1N5333A	1N5333A		4-66	1N5523A,B	1N5523A,B		4-70
1N5334A	1N5334A		4-66	1N5524A,B	1N5524A,B	ł	4-70
1N5335A	1N5335A		4-66	1N5525A,B	1N5525A,B		4-70
1N5336A	1N5336A		4-66	1N5526A,B	1N5526A,B		4-70
1N5337A	1N5337A		4-66	1N5527A,B	1N5527A,B		4-70
1N5338A	1N5338A		4-66	1N5528A,B	1N5528A,B	İ	4-70
1N5339A	1N5339A		4-66	1N5529A.B	1N5529A.B		4-70
1N5340	1N5340		4-66	1N5530A,B	1N5530A,B		4-70
1N5341A	1N5341A		4-66	1N5531A,B	1N5531A,B		4-70
1N5342A	1N5342A		4-66	1N5532A,B	1N5532A,B		4-70
1N5343A	1N5343A		4-66	1N5533A,B	1N5533A,B		4-70
1N5344A	1N5344A		4-66	1N5534A,B	1N5534A,B	İ	4-70
1N5345A	1N5345A		4-66	1N5535A,B	1N5535A,B	1	4-70
1N5346A	1N5346A		4-66	1N5536A,B	1N5536A,B		4-70
1N5347A	1N5347A		4-66	1N5537A,B	1N5537A,B		4-70
1N5348A	1N5348A		4-66	1N5538A,B	1N5538A,B	1	4-70
1N5349A	1N5349A		4-66	1N5539A.B	1N5539A.B		4-70
1N5350A	1N5350A		4-66	1N5540A,B	1N5540A,B		4-70
1N5351A	1N5351A		4-66	1N5541A,B	1N5541A,B		4-70
1N5352A	1N5352A		4-66	1N5542A,B	1N5542A,B	1	4-70
1N5353A	1N5353A		4-66	1N5543A,B	1N5543A,B		4-70
1N5354A	1N5354A		4-66	1N5544A,B	1N5544A,B		4-70
1N5355A	1N5355A		4-66	1N5545A,B	1N5545A,B		4-70
1N5356A	1N5356A		4-66	1N5546A,B	1N5546A,B	ŀ	4-70
1N5357A	1N5357A		4-66	1N5555	I	1N6283	4-74
1N5358A	1N5358A		4-66	1N5556		1N6283A	4-74
1N5359A	1N5359A		4-66	1N5557	1	1N6289A	4-74
1N5360A	1N5360A		4-66	1N5558		1N6303A	4-74
1N5361A	1N5361A		4-66	1N5629		1N6267	4-74
1N5362A	1N5362A		4-66	1N5629A	}	1N6267A	4-74
1N5363A	1N5363A		4-66	1N5630		1N6268	4-74
1N5364A	1N5364A		4-66	1N5630A		1N6268A	4-74
1N5365A	1N5365A		4-66	1N5631		1N6269	4-74
1N5366A	1N5366A		4-66	1N5631A	1	1N6269A	4-74
1N5367A	1N5367A		4-66	1N5632		1N6270	4-74
1N5368A	1N5368A		4-66	1N5632A		1N6270A	4-74
1N5369A	1N5369A		4-66	1N5633		1N6271	4-74
1N5370A	1N5370A		4-66	1N5633A		1N6271A	4-74
1N5371A	1N5371A		4-66	1N5634		1N6272	4-74
1N5372A	1N5372A		4-66	1N5634A	1	1N6272A	4-74
1N5373A	1N5373A		4-66	1N5635	1	1N6273	4-74
1N5374A	1N5374A		4-66	1N5635A		1N6273A	4-74
1N5375A	1N5375A		4-66	1N5636		1N6274	4-74
1N5376A	1N5376A		4-66	1N5636A		1N6274A	4-74
1N5377A	1N5377A		4-66	1N5637	I	1N6275	4-74

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Part Number Replacement Replacement Page # Part Number	Replacement	Replacement	
		Hopiacomont	Page #
1N5637A		1N5246B 1N5248B	4-54 4-54
1N5638A		1N5250B 1N5251B	4-54 4-54
1N5639A 1N6277A 4-74 1N5745B	<u> </u>	1N5251B 1N5252B	4-54
1N5640		1N5254B 1N5256B	4-54 4-54
1N5641 1N6279 4-74 1N5748B		1N5250B 1N5257B	4-54
1N5641A		1N5258B 1N5259B	4-54 4-54
1N5642A 1N6280A 4-74 1N5751 1N5643 1N6281 4-74 1N5752		1N5760B 1N5261B	4-54 4-54
1N5643A 1N6281A 4-74 1N5753		1N5262B	4-54
1N5644		1N4370 .5M2.5AZ10	4-4 —
1N5645 1N6283 4-74 1N5839		1N4371	4-4
1N5645A		.5M2.8AZ10 1N4372	 4-4
1N5646A 1N6284A 4-74 1N5842		1N746	4-4 4-4
1N5651 1N6289A 4-74 1N5843		1N747	4-4
1N5652		1N748 1N749	4-4 4-4
1N5653 1N6291 4-74 1N5846		1N750	4-4
1N5653A		1N751 1N752	4-4 4-4
1N5654A 1N6292A 4-74 1N5849		.5M6.0AZ10	_
1N5655		1N753 1N754	4-4 4-4
1N5656 1N6294 4-74 1N5852	İ	1N755	4-4
1N5656A 1N6294A 4-74 1N5853		1N756	4-4
1N5657		.5M8.7AZ10 1N757	4-4
1N5658 1N6296 4-74 1N5856		1N758	4-4
1N5658A	1	.5M11AZ10 1N759	4-4
1N5659A 1N6297A 4-74 1N5859		1N964A	4-4
1N5660		.5M14Z10 1N965A	<u> </u>
1N5661 1N6299 4-74 1N5862		1N966A	4-4
1N5661A 1N6299A 4-74 1N5863		.5M17Z10	_
1N5662		1N967A .5M19Z10	4-4 —
1N5663 1N6301 4-74 1N5866		1N968A	4-4
1N5663A		1N969A 1N970A	4-4 4-4
1N5664A 1N6302A 4-74 1N5869	1	.5M25Z10	_
1N5665		1N971A .5M28Z10	4-4
1N5728 1N5230B 4-54 1N5872		1N972A	4-4
1N5729		1N973A	4-4
1N5730		1N974A 1N975A	4-4 4-4
1N5732B 1N5235B 4-54 1N5876		1N976A	4-4
1N5733B	l	1N977A 1N978A	4-4 4-4
1N5735B 1N5239B 4-54 1N5879]	1N979A	4-4
1N5736B		.5M60Z10 1N980A	 4-4
1N5739B 1N5243B 4-54 1N5882		1N981A	4-4
1N5740B 1N5245B 4-54 1N5883		1N982A	4-4

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry	Motorola Direct	Motorola Similar		industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N5884		1N983A	4-4	1N5985A	1N5985A		4-83
1N5885 1N5886		.5M87Z10 1N984A	_ 4-4	1N5986 1N5986A	1N5986A	1N5223	4-54 4-83
1N5887		1N985A	4-4	1N5987	INOSOUA	1N5225	4-54
1N5888		1N986A	4-4	1N5987A	1N5987A	1115000	4-83
1N5889 1N5890	}	1N987A 1N988A	4-21 4-21	1N5988 1N5988A	1N5988A	1N5226	4-54 4-83
1N5891		.4M140Z10	_	1N5989	MOSCOA	1N5227	4-54
1N5892		1N989A	4-21	1N5989A	1N5989A	1115000	4-83
1N5893 1N5894		1N990A .4M170Z10	4-21	1N5990	1N5990A	1N5228	4-54 4-83
1N5895		1N991A	4-21	1N5990A 1N5991	INSSSUA	1N5229	4-63 4-54
1N5896		.4M190Z10	_	1N5991A	1N5991A		4-83
1N5897 1N5908	1N5908	1N992A	4-21 4-74	1N5992 1N5992A	1N5992A	1N5230	4-54 4-83
1N5913A	1N5913A		4-80	1N5993	11139924	1N5231	4-63 4-54
1N5914A	1N5914A		4-80	1N5993A	1N5993A		4-83
1N5915A 1N5916A	1N5915A 1N5916A	Ì	4-80 4-80	1N5994 1N5994A	1N5994A	1N5232	4-54 4-83
1N5917A	1N5917A		4-80	1N5995	111000471	1N5234	4-54
1N5918A	1N5918A	l	4-80	1N5995A	1N5995A		4-83
1N5919A	1N5919A		4-80	1N5996	11150001	1N5235	4-54
1N5920A 1N5921A	1N5920A 1N5921A		4-80 4-80	1N5996A 1N5997	1N5996A	1N5236	4-83 4-54
1N5922A	1N5922A		4-80	1N5997A	1N5997A		4-83
1N5923A 1N5924A	1N5923A 1N5924A		4-80 4-80	1N5998 1N5998A	11150001	1N5237	4-54 4-83
1N5924A 1N5925A	1N5924A 1N5925A		4-80	1N5990A 1N5999	1N5998A	1N5239	4-63 4-54
1N5926A	1N5926A	Ì	4-80	1N5999A	1N5999A		4-83
1N5927A	1N5927A		4-80	1N6000		1N5240	4-54
1N5928A 1N5929A	1N5928A 1N5929A		4-80 4-80	1N6000A 1N6001	1N6000A	1N5241	4-83 4-54
1N5930A	1N5930A		4-80	1N6001A	1N6001A	1140241	4-83
1N5931A	1N5931A		4-80 4-80	1N6002	11100004	1N5242	4-54
1N5932A 1N5933A	1N5932A 1N5933A		4-80 4-80	1N6002A 1N6003	1N6002A	1N5243	4-83 4-54
1N5934A	1N5934A		4-80	1N6003A	1N6003A	1110210	4-83
1N5935A	1N5935A 1N5936A		4-80 4-80	1N6004	1NC0044	1N5245	4-54 4-83
1N5936A 1N5937A	1N5937A		4-80 4-80	1N6004A 1N6005	1N6004A	1N5246	4-63 4-54
1N5938A	1N5938A		4-80	1N6005A	1N6005A		4-83
1N5939A	1N5939A		4-80	1N6006	1	1N5248	4-54
1N5940A 1N5941A	1N5940A 1N5941A	İ	4-80 4-80	1N6006A 1N6007	1N6006A	1N5250	4-83 4-54
1N5942A	1N5942A		4-80	1N6007 1N6007A	1N6007A	1143230	4-83
1N5943A	1N5943A		4-80	1N6008	41100004	1N5251	4-54
1N5944A 1N5945A	1N5944A 1N5945A		4-80 4-80	1N6008A 1N6009	1N6008A	1N5252	4-83 4-54
1N5946A	1N5946A		4-80	1N6009A	1N6009A	1140202	4-83
1N5947A	1N5947A		4-80	1N6010	İ	1N5254	4-54
1N5948A	1N5948A		4-80	1N6010A	1N6010A	1NEGE6	4-83
1N5949A 1N5950A	1N5949A 1N5950A		4-80 4-80	1N6011 1N6011A	1N6011A	1N5256	4-54 4-83
1N5951A	1N5951A	1	4-80	1N6012		1N5257	4-54
1N5952A 1N5953A	1N5952A 1N5953A		4-80 4-80	1N6012A 1N6013	1N6012A	1N5258	4-83 4-54
1N5953A 1N5954A	1N5954A	1	4-80 4-80	1N6013A	1N6013A	1100200	4-54 4-83
1N5955A	1N5955A		4-80	1N6014		1N5259	4-54
1N5956A 1N5985	1N5956A	1N5221	4-80 4-54	1N6014A 1N6015	1N6014A	1N5260	4-83 4-54
	L	L		eet available — Co	l	1110200	

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N6015A 1N6016	1N6015A	1N5261	4-83 4-54	1N6300	1N6300		4-74
1N6016A 1N6017	1N6016A	1N5261 1N5262	4-54 4-83 4-54	1N6301 1N6302 1N6303	1N6301 1N6302 1N6303		4-74 4-74 4-74
1N6017A 1N6018	1N6017A	1N5263	4-83 4-54	1N6373 1N6374	1N6373 1N6374		4-74 4-74 4-74
1N6018A 1N6019	1N6018A	1N5265	4-83 4-54	1N6375 1N6376	1N6375 1N6376		4-74 4-74
1N6019A 1N6020	1N6019A	1N5266	4-83 4-54	1N6377 1N6378	1N6377 1N6378		4-74 4-74
1N6020A 1N6021	1N6020A	1N5267	4-83 4-54	1N6379 1N6380	1N6379 1N6380		4-74 4-74
1N6021A 1N6022 1N6022A	1N6021A 1N6022A	1N5268	4-83 4-54 4-83	1N6381 1N6382	1N6381 1N6382		4-74 4-74
1N6022A 1N6023 1N6023A	1N6022A	1N5270	4-63 4-54 4-83	1N6383 1N6384 1N6385	1N6383 1N6384 1N6385		4-74 4-74 4-74
1N6024 1N6024A	1N6024A	1N5271	4-54 4-83	1N6386 1N6387	1N6386 1N6387		4-74 4-74
1N6025 1N6025A	1N6025A	1N5272	4-54 4-83	1N6388 1N6389	1N6388 1N6389		4-74 4-74
1N6026 1N6027		1N5273 1N5274	4-60 4-60	1S2030,A THRU	.5M3.3AZ10,5 THRU		_
1N6028 1N6029		1N5276 1N5277	4-60 4-60	1S2160,A 1S3006,A	.5M16Z10,5 1M6.8ZS10,5		_
1N6030 1N6031 1N6267	1N6267	1N5279 1N5281	4-60 4-60 4-74	THRU 1S3200,A 1S7030,A	THRU 1M200ZS10,5 1.5M3.3AZ10,5		_
1N6268 1N6269	1N6268 1N6269		4-74 4-74	THRU 1S7160,A	THRU .5M16Z10,5		_
1N6270 1N6271	1N6270 1N6271		4-74 4-74	1T5.6 THRU	.01110210,0	1M5.6AZ THRU	-
1N6272 1N6273	1N6272 1N6273		4-74 4-74	1T100 1T6.8,A,B	1M6.8Z10,5	1M100Z	
1N6274 1N6275	1N6274 1N6275		4-74 4-74	THRU 1TA200,A,B	THRU 1M200Z,10,5		-
1N6276 1N6277 1N6278	1N6276 1N6277 1N6278		4-74 4-74 4-74	1Z3.9T20,10,5 THRU	1M3.9AZ,10,5 THRU		
1N6279	1N6279		4-74	1Z30T20,10,5 1ZS3.3	1M30Z,10,5 1M3.3ZS		_
1N6280 1N6281 1N6282	1N6280 1N6281 1N6282		4-74 4-74 4-74	THRU 1ZS100 2VR6.2	THRU 1M100ZS 1M6.2ZS10		_
1N6283 1N6284	1N6283 1N6284		4-74 4-74	THRU 2VR200	THRU 1M200ZS10		_
1N6285 1N6286	1N6285 1N6286		4-74 4-74	3/4LZ3.3D,10,5 THRU	1M3.3AZ,10,5 THRU		_
1N6287 1N6288	1N6287 1N6288		4-74 4-74	3/4LZ7.5D,10,5 3/4Z6.8D,10,5	1M7.5AZ,10,5 1M6.8Z,10,5		_ '
1N6289 1N6290	1N6289 1N6290		4-74 4-74	THRU 3/4Z200D,10,5	THRU 1M200Z,10,5		_
1N6291 1N6292 1N6293	1N6291 1N6292 1N6293		4-74 4-74 4-74	3EZ6.8D,10,5 THRU 3EZ200D,10,5	5M6.8ZS,10,5 THRU 5M200ZS,10,5		_
1N6294 1N6295	1N6294 1N6295		4-74 4-74 4-74	3R7.5,A,B THRU	51VIZUUZ3, TU,3	5M7.5ZS,10,5 THRU	_
1N6296 1N6297	1N6296 1N6297		4-74 4-74	3R200,A,B 3TZ7.5,A,B,C,D		5M200ZS,10,5 5M7.5ZS,10,5,1,2	_
1N6298 1N6299	1N6298 1N6299		4-74 4-74	THRU 3TZ200,A,B,C,D		THRU 5M200ZS,10,5,1,2	_

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
		· · · · · · · · · · · · · · · · · · ·			 	пориссинен	. ugo #
3VR6,A THRU		5M6.8ZS10,5 THRU	_	BZX79-C4V7 THRU	BZX79-C4V7 THRU	[
3VR150,A		5M150ZS10,5		BZX79-C9V1	BZX79-C9V1		
3Z3.9T20,10,5	10M3.9AZ,10,5	3W1302310,3		BZX79-C10	BZX79-C10		
THRU	THRU			THRU	THRU		
3Z30T20,10,5	10M30Z,10,5		_	BZX79-C75	BZX79-C75		_
5EZ3.3D,10,5	5M3.3ZS,10,5			BZY88-C3V3		.5M3.3AZ5	_
THRU	THRU			THRU		THRU	
5EZ200D,10,5	5M200ZS,10,5		-	BZY88-C30		.5M30Z5	-
5Z8.2G(R),A,B	10M8.2Z(R),10,5		_	BZY91-C7V5		50M7.5ZS5	-
THRU	THRU			THRU		THRU	
5Z100G(R),A,B	10M100Z(R),10,5		_	BZY91-C75		50M75ZS5	
5Z5338	1N5338A		-	BZY93-C7V5		10M7.5Z5	-
THRU	THRU	,		THRU	İ	THRU	
5Z5364	1N5364A		_	BZY93-C75		10M75Z5	_
5ZS3.3,A,B THRU	5M3.3ZS,10,5 THRU		-	BZY96-C4V7		1M4.7AZ5 THRU	_
5ZS100,A,B	5M100ZS,10,5		_	THRU BZY96-C75	Í	1M75Z5	
10LZ3.3D5	10M3.3AZ5		_	C0DI6041		MZ2360	4-114
THRU	THRU			C0DI6045	İ	MZ2360	4-114
10LZ7.5D5	10M7.5AZ5			C0DI6042		MZ2361	4-114
10PZ6.8,A,B,C,D	10M7.3A23		_	C0D16042		MZ2361	4-114
THRU	THRU			C0D16049		MZ2360	4-114
10PZ200,A,B,C,D	10M200Z,10,5,1,2			C0D16050		MZ2361	4-114
10R6.8,A,B	10M6.8Z,10,5			C4011		1N746-1N759	4-4
THRU	THRU			THRU	j	THRU	
10R200,A,B	10M200Z,10,5		_	C4029		1N957-1N973	4-4
10RZ6.8,A,B,C,D	10M6.8Z,10,5,1,2		-	C6012	!	MZC2.7A10	-
THRU	THRU		ĺ	THRU		THRU	
10RZ200,A,B,C,D	10M200Z,10,5,1,2		-	C6032		MZC47A10	_
10T6.8,A,B	10M6.8Z,10,5			CD3168	1N5262		4-60
THRU	THRU			THRU	THRU		
10T200,A,B	10M200Z,10,5			CD3174	1N5268		4-60
10Z3.9,A,B	10M3.9AZ,10,5 THRU		-	CD4112	1N3154		4-29
THRU 10Z200,A,B	10M200Z,10,5		_	THRU CD4115	THRU 1N3157		4-29
10Z6.8D(R),10,5	10M6.8Z(R),10,5		_	CD3100001	1110101	1N4728	4-29
THRU	THRU			THRU		THRU	7 30
10Z200D(R),10,5	10M200Z(R),10,5			CD3100025		1N4753	4-50
50LZ3.9D(R)5	50M3.9AZ(R)5		_	CD3112016	ļ	1N4736	4-50
THRU	THRU			THRU		THRU	
50LZ7.5D(R)5	50M7.5AZ(R)5		_	CD3112032	j	1N4752	4-50
50SLZ3.9D(R)5	50M3.9ASZ(R)5		- 1	CD3212048		1M8.2ZS	_
THRU	THRU			THRU		THRU	
50SLZ7.5D(R)5	50M7.5ASZ(R)5		-	CD3212062		1M33ZS	_
	50M6.8SZ(R),10,5			CD3214738		1M8.2ZS	-
THRU	THRU			THRU		THRU	
50SZ200D(R),10,5			_	CD3214752	4440.07	1M33ZS	
50T6.8 THRU	50M6.8ZS10 THRU		-	CD3907562	.4M8.2Z		_
I				THRU	THRU		
50T200	50M200ZS10		-	CD3909732	.4M33Z	1115007	4.00
50Z6.8D(R),10,5	50M6.8Z(R),10,5 THRU			CL1020		1N5297	4-62
THRU 50Z200D(R),10,5	50M200Z(R),10,5			CL1520		1N5302	4-62 4-62
BZX61-C7V5	301V12002(11), 10,3	1M7.5ZS5	_	CL2210 CL2220		1N5283 1N5306	4-62 4-62
THRU		THRU		CL3310		1N5287	4-62
BZX61-C75		1M75ZS5	_	CL3320		1N5310	4-62
BZX70-C10		5M10ZS5	-	CL4710		1N5290	4-62
TUDII !		THRU	l i	CL4720	ł	1N5314	4-62
THRU BZX70-C75		5M75ZS5		00		1N5293	

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
CZ3.9,A,B,C,D THRU CZ200,A,B,C,D DI-746 DI-759 DI-957 DI-976 DSZ3006 THRU DSZ3100 EVR6,A THRU EVR150,A G4Z7.5 THRU G4Z110 GA4Z2.4 THRU GA4Z12.0	1M3.9ZS,10,5,1,2 THRU 1M200ZS,10,5,1,2 1N746 1N759 1N957A 1N976A 5M6.0ZS5 THRU 5M100ZS5	1M6.8ZS10,5 THRU 1M150ZS10,5 .5M7.5Z10 THRU .5M110Z10 .5M2.4AZ THRU .5M12AZ	 4-4 4-4 4-4 	THRU JZ200,A,B,C,D LMZ3.3,A THRU LMZ200,A LPM7.5,A THRU LPM200,A LPZ7.5,A THRU LPZ200,A LPZT8.2 THRU LPZ133 LVA43,A,B,C THRU LVA100,A,B,C LVA343,A,B,C THRU	THRU 1M200ZS,10,5,1,2 1M3.3ZS10,5 THRU 1M200ZS10,5 1M7.5ZS10,5 THRU 1M200ZS10,5 1M7.5ZS10,5 THRU 1M200ZS10,5 1M8.2ZZ10 THRU 1M33ZZ10	1N5521A,B,C,D THRU 1N5530A,B,C,D 1N5521A,B,C,D THRU	
GARE SERIES GLAZ2.6A THRU GLAZ6.8A GLZ7.0A THRU GLZ24A GLZ7.5A THRU GLZ100A GRE11.7 SERIES		1N821 SERIES 1N702A THRU 1N710A 1N763A THRU 1N769A 1N711A THRU 1N738A 1N941 SERIES	4-10 4-17	LVA3100,A,B,C M4Z7.5,A THRU M4Z110,A MC6007,A THRU MC6030,A MC6107,A THRU MC6130,A MC61400,MC6401		1N5530A,B,C,D .5M7.5Z10,5 THRU .5M110Z10,5 1N746-1N759 THRU 1N957A-1N977A 1M6.8ZS10,5 THRU 1M47ZS10,5 1N821	4-70 — — — — — — 4-10
GRE SERIES GW6.8,A,B THRU GW200,A,B HM6.8 THRU HM200 HW6.8,A,B THRU HW200,A,B	1N746-1N759 THRU 1N957-1N992	1N935 SERIES 1M6.8ZS,10,5 THRU 1M200ZS,10,5 1M6.8ZS,10,5 THRU 1M200ZS,10,5	4-13 — 4-4 4-4 —	MC6402,MC6403 MC6404,MC6405 MC6406,MC6407 MC6416 MC6417 MC6418 MC6419 MC6420 MC6421 MC6421		1N823 1N825 1N827 1N935 1N935A 1N936 1N936A 1N937 1N937A 1N938	4-10 4-10 4-13 4-13 4-13 4-13 4-13 4-13 4-13
ICT-5 ICT-8 ICT-10 ICT-12 ICT-15 ICT-18 ICT-22 ICT-36 ICT-45 ICT-5	ICTE-5	ICTE-5 ICTE-8 ICTE-10 ICTE-12 ICTE-15 ICTE-18 ICTE-22 ICTE-36 ICTE-45	4-74 4-74 4-74 4-74 4-74 4-74 4-74 4-74	MC6423 MC6424,MC6425 MC6428 MC6429 MCL1300 MCL1301 MCL1302 MCL1303 MCL1304 (M)GLA28	MCL1300 MCL1301 MCL1302 MCL1303 MCL1304	1N939A 1N829 1N937 1N939A 1N5518 SERIES	4-13 4-10 4-13 4-13 4-86 4-86 4-86 4-86 4-70
ICTE-5C ICTE-8 ICTE-10 ICTE-12 ICTE-15 ICTE-18 ICTE-22 ICTE-36 ICTE-45 JZ3.9.A,B,C,D	ICTE-5C ICTE-8 ICTE-10 ICTE-12 ICTE-15 ICTE-18 ICTE-22 ICTE-36 ICTE-45 1M3.9ZS,10,5,1,2	L	4-74 4-74 4-74 4-74 4-74 4-74 4-74 4-74	THRU (M)GLA100 (M)HLA328 THRU (M)HLA3100 (M)LLA328 THRU (M)LLA3100 MLL746 THRU eet available — Co	MLL746 THRU	THRU 1N5518 SERIES 1N5518 SERIES THRU 1N5518 SERIES 1N5518 SERIES THRU 1N5518 SERIES THRU 1N5518 SERIES	4-70 4-70 4-70 4-70 4-70 4-87

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MLL759 MLL957A THRU	MLL759 MLL957A THRU		4-87 4-87	MR2525L MTC821,A SERIES MTC935,A,B SERIES	MR2525L	1N821,A SERIES 1N935,A,B SERIES	 4-10 4-13
MLL986A MLL4099 THRU	MLL986A MLL4099 THRU		4-87 4-92	MTC940,A,B SERIES MTZ607,A THRU	1N746-1N759 THRU	1N940,A,B SERIES	4-17 4-4 4-4
MLL4135 MLL4370 THRU	MLL4135 MLL4370 THRU		4-92 4-87	MTZ630,A MZ7.5,A THRU MZ92-2.4	1N957-1N977 10M7.5,10,5 THRU		4 -4 —
MLL4372 MLL4614 THRU	MLL4372 MLL4614 THRU		4-87 4-92	MZ92-2.4 MZ92-2.5 MZ92-2.7 MZ92-2.8	1N4370	.5M2.5AZ10 1N4371 .5M2.8AZ10	 4-4
MLL4627 MLL4678 THRU	MLL4627 MLL4678 THRU		4-92 4-96	MZ92-3.0 MZ92-3.3 MZ92-3.6		1N4372 1N746 1N747	4-4 4-4 4-4
MLL4717 MLL4728 THRU	MLL4717 MLL4728 THRU		4-96 4-98	MZ92-3.9 MZ92-4.3 MZ92-4.7		1N748 1N749 1N750	4-4 4-4 4-4
MLL4764 MLL5221 THRU	MLL4764 MLL5221 THRU		4-98 4-103	MZ92-5.1 MZ92-5.6 MZ92-6.0		1N751 1N752 .5M6.0AZ10	4-4 4-4 —
MLL5270 MLV746A THRU	MLL5270	1N746A THRU	4-103 4-4	MZ92-6.2 MZ92-6.8 MZ92-7.5 MZ92-8.2		1N753 1N754 1N755 1N756	4-4 4-4 4-4 4-4
MLV759A MLV4370A THRU MLV4372A		1N759A 1N4370A THRU 1N4372A	4-4 —	MZ92-8.7 MZ92-9.1 MZ92-10		.5M8.7AZ10 1N757 1N758	 4-4 4-4
MMZ7.5,A THRU MMZ200,A	1M7.5ZS10,5 THRU 1M200ZS10,5	1114372A	_	MZ92-11 MZ92-12 MZ92-13		.5M11AZ10 1N759 1N964A	 4-4 4-4
MPT-5 MPT-8 MPT-10	110/2002510,5	MPTE-5 MPTE-8 MPTE-10	4-74 4-74 4-74	MZ92-14 MZ92-15 MZ92-16		.5M14Z10 1N965A 1N966A	 4-4 4-4
MPT-12 MPT-15 MPT-18		MPTE-12 MPTE-15 MPTE-18	4-74 4-74 4-74	MZ92-17 MZ92-18 MZ92-19 MZ92-20		1.5M17Z10 1N967A .5M19Z10 1N968A	 4-4 4-4
MPT-22 MPT-36 MPT-45		MPTE-22 MPTE-36 MPTE-45	4-74 4-74 4-74	MZ92-22 MZ92-24 MZ92-25		1N969A 1N970A .5M25Z10	4-4 4-4
MPTE-5 MPTE-8 MPTE-10 MPTE-12	MPTE-5 MPTE-8 MPTE-10 MPTE-12		4-74 4-74 4-74 4-74	MZ92-27 MZ92-28 MZ92-30		1N971A .5M28Z10 1N972A	4-4 — 4-4
MPTE-15 MPTE-18 MPTE-22	MPTE-15 MPTE-18 MPTE-22		4-74 4-74 4-74	MZ92-33 MZ92-36 MZ92-39		1N973A 1N974A 1N975A	4-4 4-4
MPTE-36 MPTE-45 MPZ5-16A	MPTE-36 MPTE-45 MPZ5-16A		4-74 4-74 4-109	MZ92-43 MZ92-47 MZ92-51		1N976A 1N977A 1N978A	4-4 4-4 4-4
MPZ5-16B MPZ5-32A MPZ5-32B	MPZ5-16B MPZ5-32A MPZ5-32B		4-109 4-109 4-109	MZ92-56 MZ92-60 MZ92-62		1N979A .5M60Z10 1N980A	4-4 4-4
MPZ5-32C MPZ5-180A MPZ5-180B	MPZ5-32C MPZ5-180A MPZ5-180B		4-109 4-109 4-109	MZ92-68 MZ92-75 MZ92-82 MZ92-87		1N981A 1N982A 1N983A .5M87Z10	4-4 4-4 4-4
MPZ5-180C	MPZ5-180C		4-109	MZ92-91		1N984A	4-4

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MZ92-100 MZ92-110 MZ92-120 MZ92-130 MZ92-140 MZ92-140 MZ92-160 MZ92-170 MZ92-180 MZ92-190 MZ92-190 MZ92-200 MZ120 THRU MZ122 MZ200,A MZ220 THRU MZ222 MZ220,A MZ220 THRU MZ222 MZ240 THRU	10M200Z10,5	1N985A 1N986A 1N987A 1N988A 4M140Z10 1N989A 1N990A 4M170Z10 1N991A 4M190Z10 1N992A 5M200ZS5 THRU 5M110ZSB5 5M200ZS10 THRU 5M10ZSB10 5M200ZSB10 THRU	44 44 421 421 - 421 421 - 421 - 421 - - 4-21 - -	MZ500-37 MZ500-38 MZ500-39 MZ500-40 MZ605 MZ610 MZ620 MZ623-9 MZ623-9A MZ623-9B MZ623-12A MZ623-12B MZ623-14A MZ623-14B MZ623-14B MZ623-14B MZ623-18B MZ623-18B MZ623-18B	MZ605 MZ610 MZ620	1N5267A 1N5268A 1N5270A 1N5271A 1N4743A 1N4743A 1N4743A 1N4745A 1N4745A 1N4745A 1N4746A 1N4746A 1N4746A 1N4746A 1N4749A 1N4749A 1N4749A	4-54 4-54 4-54 4-54 4-111 4-111 4-111 4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
MZ322 MZ320 THRU MZ340 MZ500-1 MZ500-2 MZ500-3 MZ500-4 MZ500-5 MZ500-6		5M110ZSB20 5M200ZS20 THRU 5M200ZSB20 1N5221A 1N5223A 1N5225A 1N5225A 1N5226A 1N5227A	 4-54 4-54 4-54 4-54 4-54 4-54	MZ623-25A MZ623-25B MZ640 MZ706 THRU MZ806 MZ906 MZ1000-1 MZ1000-2 MZ1000-3	MZ640	1N4755A 1N4755A 5M6.8ZS5 THRU 5M6.8ZS10 5M6.8ZS20 1N4728 1N4729 1N4730	4-50 4-50 4-50 4-111 — — — 4-50 4-50 4-50
MZ500-7 MZ500-8 MZ500-9 MZ500-10 MZ500-11 MZ500-12 MZ500-13 MZ500-14 MZ500-15 MZ500-16		1N5229A 1N5230A 1N5231A 1N5232A 1N5234A 1N5235A 1N5236A 1N5237A 1N5239A 1N5239A	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54	MZ1000-4 MZ1000-5 MZ1000-6 MZ1000-7 MZ1000-8 MZ1000-9 MZ1000-10 MZ1000-11 MZ1000-12 MZ1000-13		1N4731 1N4732 1N4733 1N4734 1N4736 1N4736 1N4737 1N4738 1N4739 1N4740	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
MZ500-17 MZ500-18 MZ500-19 MZ500-20 MZ500-21 MZ500-22 MZ500-23 MZ500-24 MZ500-25 MZ500-26		1N5241A 1N5242A 1N5243A 1N5245A 1N5246A 1N5246A 1N5250A 1N5251A 1N5251A 1N5252A	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54	MZ1000-14 MZ1000-15 MZ1000-16 MZ1000-17 MZ1000-18 MZ1000-19 MZ1000-20 MZ1000-21 MZ1000-22 MZ1000-23		1N4740 1N4742 1N4743 1N4744 1N4745 1N4746 1N4747 1N4748 1N4749 1N4750	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50
MZ500-27 MZ500-28 MZ500-29 MZ500-30 MZ500-31 MZ500-32 MZ500-33 MZ500-34 MZ500-35 MZ500-36	tra manufactured	1N5256A 1N5257A 1N5258A 1N5259A 1N5260A 1N5261A 1N5262A 1N5263A 1N52663A 1N5266A	4-54 4-54 4-54 4-54 4-54 4-54 4-54 4-54	MZ1000-24 MZ1000-25 MZ1000-26 MZ1000-27 MZ1000-28 MZ1000-29 MZ1000-30 MZ1000-31 MZ1000-32 MZ1000-33		1N4751 1N4752 1N4753 1N4754 1N4756 1N4756 1N4757 1N4758 1N4759 1N4760	4-50 4-50 4-50 4-50 4-50 4-50 4-50 4-50

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MZ1000-34 MZ1000-35 MZ1000-36 MZ1000-37 MZ2360 MZ2361 MZ5210 THRU MZ5220 MZ5222 THRU MZ5220	MZ2360 MZ2361	1N4761 1M86ZG10 1N4763 1N4764 5M100ZS10 THRU 5M200ZS10 5M110ZSB10 THRU 5M200ZSB10	4-50 	P6KE120 P6KE130 P6KE150 P6KE160 P6KE170 P6KE180 P6KE200 PD6000,A THRU PD6020,A PD6041,A THRU	P6KE120 P6KE130 P6KE150 P6KE160 P6KE170 P6KE180 P6KE200	1N746-1N759 THRU 1N957A-1N968A 1N746-1N759 THRU	4-116 4-116 4-116 4-116 4-116 4-116 4-116 4-4 4-4
MZ5555 MZ5556 MZ55567 MZ5558 MZ5806 THRU MZ5890 MZP5221,A,B	1N5221,A,B	1N6283A 1N6287A 1N6289A 1N6303A 5M6.8ZS10 THRU 5M90ZS10	4-74 4-74 4-74 4-74 — — — 4-54	PD6061,A PD6201,A,B,C THRU PD6210,A,B,C PR6105-PR6450 PR6105A-PR6450A PR9110-PR9450 PR9110A-PR9450A	1N825 1N827 1N937 1N938	1N957A-1N968A 1N5521A,B,C,D THRU 1N5530A,B,C,D	4-4 — 4-10 4-13 4-13
MZP5270,A,B MZT2970 THRU MZT3015 MZT3305 THRU MZT3350 MZT4549	1N5270,A,B MZT2970 THRU MZT3015 MZT3305 THRU MZT3350 MZT4549		4-54 — — — — —	PRD105 PRD110 PRD120 PRD140 PRD160 PS3535 THRU PS3539	MZ605 MZ610 MZ620 MZ640 MZ640 1N4570A THRU 1N4573A		4-111 4-111 4-111 4-111 4-111 4-46
THRU MZT4554 P6KE6.8 P6KE7.5 P6KE8.2 P6KE9.1 P6KE10 P6KE11 P6KE12	THRU MZT4554 P6KE6.8 P6KE7.5 P6KE8.2 P6KE9.1 P6KE10 P6KE11 P6KE11	·	4-116 4-116 4-116 4-116 4-116 4-116 4-116	PS3546 THRU PS3549 SG1910 THRU SG1912 SG1920 SG1922 SS1	1N4565A THRU 1N4568A	MZ2360 THRU MZ2360 MZ2361 MZ2361 MZ2360	4-46 4-46 4-114 4-114 4-114 4-114
P6KE13 P6KE15 P6KE16 P6KE18 P6KE20 P6KE22	P6KE13 P6KE15 P6KE16 P6KE18 P6KE20 P6KE22	·	4-116 4-116 4-116 4-116 4-116 4-116	SS1-2 STB567 SV7401 SVR4732,A THRU SVR4764,A		MZ2361 MZ2361 MZ605 1M4.7ZS10,5 THRU 1M100ZS10,5 1M30ZS5	4-114 4-114 4-111 —
P6KE24 P6KE27 P6KE30 P6KE33 P6KE36 P6KE39 P6KE43	P6KE24 P6KE27 P6KE30 P6KE33 P6KE36 P6KE39 P6KE43		4-116 4-116 4-116 4-116 4-116 4-116 4-116	SX30 THRU SX120 SZ2.4,A THRU SZ16.0,A TZ3.9,A,B,C,D	1M2.4ZS10,5 THRU 1M16ZS10,5 1M3.9ZS,10,5,1,2	THRU 1M120ZS5	- - -
P6KE47 P6KE51 P6KE56 P6KE62 P6KE68 P6KE75	P6KE47 P6KE51 P6KE56 P6KE62 P6KE68 P6KE75		4-116 4-116 4-116 4-116 4-116 4-116	THRU TZ200,A,B,C,D UZ120 THRU UZ220 UZ122	THRU 1M200ZS,10,5,1,2	5M200ZS5 THRU 5M200ZS10 5M110ZSB5	_ _ _
P6KE82 P6KE91 P6KE100 P6KE110	P6KE82 P6KE91 P6KE100 P6KE110	hy Materala hut	4-116 4-116 4-116 4-116	THRU UZ222 UZ140 THRU eet available — Co	noult Footow	THRU 5M100ZSB10 5M200ZSB5 THRU	_

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
UZ240 UZ706 UZ806 UZ3016,A,B UZ3051,A,B UZ3235,A,B THRU UZ3281,A,B UZ3470,A,B UZ3515,A,B		5M200ZSB10 5M6.8ZS5 5M6.8ZS10 1N3016A,B 1N3051A,B 1N5235,A,B THRU 1N5281,A,B 1N2970A,B 1N3015A,B	 4-34 4-34 4-27 4-27	ZCC6.8,A,B,C,D,E THRU ZCC200,A,B,C,D,E ZD3.3,A,B THRU ZD62,A,B ZD3.9 THRU ZD200 ZD6.8,A,B	1M3.9ZS,10,5 THRU 1M200ZS,10,5	5M6.8ZS,10,5,1,2 THRU 5M200ZS,10,5,1,2 1M3.3ZS,10,5 THRU 1M6.2ZS,10,5	1 11 11
UZ4116,A,B UZ4706,A,B UZ4736,A THRU UZ4764,A UZ5120 THRU UZ5220 UZ5122 THRU		1N5384A,B 1N5342A,B 1N4736,A THRU 1N4764,A 5M200ZS5 THRU 5M200ZS10 5M110ZSB5 THRU	 4-50 4-50 	THRU ZD200,A,B ZM3.9,A,B,C,D THRU ZM200,A,B,C,D ZS4.7,A,B THRU ZS36,A,B	1M3.9ZS,10,5,1,2 THRU 1M200ZS,10,5,1,2	THRU 1M200ZS,10,5 1M4.7ZS,10,5 THRU 1M36ZS,10,5	11 11
UZ5222 UZ5140 THRU UZ5240 UZ5706 THRU UZ5806 UZ7110 THRU UZ7210		5M110ZSB10 5M200ZSB5 THRU 5M200ZSB10 5M6.8ZS5 THRU 5M6.8ZS10 10M100Z5 THRU 10M100Z10	-				
UZ7706 THRU UZ7806 UZ8120 THRU UZ8220 UZ8706 THRU UZ8806		10M6.8Z5 THRU 10M6.8Z10 1M200ZS5 THRU 1M200ZS10 1M6.8ZS5 THRU 1M6.8ZS10	- - -				
VR6.2 THRU VR200 Z4X5.1B,A THRU Z4X14B,A ZA6.8,A,B THRU	1M6.2ZS10 THRU 1M200ZS10 1M5.1AZ10,5 THRU 1M14Z10,5	1M6.8ZS,10,5 THRU					
ZA82,A,B ZAC68,A,B THRU ZAC200,A,B ZB68,A,B THRU ZB200,A,B ZBC68,A,B,C,D,E		1M82ZS,10,5 5M6 8ZS,10,5 THRU 5M200ZS,10,5 1M6.8ZS,10,5 THRU 1M200ZS,10,5 1M6.8,10,5,1,2,3	- - - -				
THRU ZBC200,A,B,C,D,E ZC6.8,A,B,C,D,E THRU ZC200,A,B,C,D,E		THRU 1M200,10,5,1,2,3 5M6.8ZS,10,5,1,2 THRU 5M200ZS,10,5,1,2	_ 	eet available — Co			

 $^{{}^{\}star}$ These devices are manufactured by Motorola but no data sheet available — Consult Factory.

RECTIFIERS

Motorola is the world's leading supplier of rectifiers, including those for use in switching power supplies. Wafer fabrication technology has constantly improved, leading to the product offering outlined in this selector guide. Today's Motorola rectifiers embody the same precision technology as the most advanced ICs, and are capable of passing stringent environmental testing, including under the hood of an automobile.

In addition to improved quality, rectifier product trends are toward higher operating temperature, faster switching times, plastic packages (translate lower cost) and use of dual rectifier modules.

ZENER DIODES

Motorola's standard Zeners and Avalanche Regulator diodes comprise the largest inventoried line in the industry. Continuous development of improved manufacturing techniques have resulted in computerized diffusion and test, as well as critical process controls learned from surface-sensitive MOS fabrication. Resultant high yields lower factory costs. Check the following features for application to your specific requirements:

 Wide selection of package materials and styles:

Plastic (Surmetic) for low cost, mechanical ruggedness

Glass for highest reliability, lowest cost Metal for highest power

- Power ratings from 0.25 to 50 Watts
- Breakdown voltages from 1.8 to 200 V in approximately 10% steps
- Available tolerances from 10% (low cost) to a tight as 1% (critical applications) with off-theshelf delivery
- Special selection of electrical characteristics available at low cost due to high-volume lines (check your Motorola sales representative for special quotations)
- JAN/JANTX(V) availability
- Special glass now used in DO-35 type packages is compatible with low temperature alloy processes, yielding sharper breakdown and low leakage.

Contents

	F	a	ge
Schottky			2
Ultrafast Recovery Rectifiers			6
Rectifier Bridges			8
Fast Recovery Rectifiers			9
General-Purpose Rectifiers			11

Selector Guides

Zener and Avalanche
Regulator Diodes 13-15
General-Purpose Regulator Diodes 13–15
Selected Zener
Diode Options 16
Special Purpose Regulators 17 Field-Effect Current
Regulator Diodes 17
Low-Voltage Regulators 17
Temperature Compensated Reference Devices 18 Precision Reference Diodes 19
Transient Suppressors 19-21
Automotive Transient Suppressors 21
Lead Tape Packaging Standards for Axial-Lead Components 22 & 23
Surface Mount Tape and Reel 23

Rectifiers

Schottky Rectifiers

SWITCHMODE Schottky Power Rectifiers with the high speed and low forward voltage drop characteristic of Schottky's metal/silicon junctions are produced with ruggedness and temperature performance comparable to silicon-junction rectifiers. Ideal for use in low voltage, high frequency power supplies and as very fast clamping diodes, these devices feature switching times less than 10 ns, and are offered in current ranges from 0.5 to 300 amperes, and reverse voltages to 60 volts.

In some current ranges, devices are available with junction temperature specifications of 125°C, 150°C, 175°C. Devices with higher T_J ratings can have significantly lower leakage currents, but higher forward-voltage specifications. These parameter tradeoffs should be considered when selecting devices for applications that can be satisfied by more than one device type number. Detailed specifications are available on the individual data sheets.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information.

		l _i	, AVERAGE F	RECTIFIED FO	RWARD CURF	ENT (Amperes	s)	
	0	.5	1.0	3	.0	5.0	7.5	10
	362-01 Glass	299-02 (DO-204AH)	59-04	267		60	221B-01 (TO-220AC) Plastic	
VRRM	Leadless Glass		Plastic	Plastic		Metal	Plastic	
(Volts)			1N5817	1N5820	MBR320	1N5823		
30	MBRL030	MBR030	1N5818	1N5821	MBR330	1N5824		
35							MBR735	MBR1035
40	MBRL040	MBR040	1N5819	1N5822	MBR340	1N5825	MBR740	MBR1040
45							MBR745	MBR1045
50			MBR150††		MBR350			
60			MBR160††		MBR360			MBR1060
I _{FSM} (Amps)	5.0	5.0	25	80	80	500	150	150
†T _C @ Rated I _O (°C)					100 E		105	135
†T _L @ Rated I _O (°C)	75	75	90	95		80		
Tj (Max) (°C)	150	150	125	125	150	125	150	150
Max V _F @ I _{FM} = I _O	*0.65 T _L = 25°C	*0.65 T _L = 25°C	*0.60 T _L = 25°C	*0.525 T _L = 25°C	***0.740 T _L = 25°C	*0.38 T _C = 25°C	0.57 T _C = 125°C	0.57 Tc = 125°C

TX versions available.

Values are for the 40-Volt units. The lower voltage parts provide lower limits and higher voltage units provide slightly higher limits.

^{**} IO is total device output.

^{***} Values are for 60 volt units. The lower voltages parts ≤40 volts provide lower limits.

[†] Must be derated for reverse power dissipation. See Data Sheet.

tt TJ (Max) = 150°C

SCHOTTKY RECTIFIERS (continued)

There are many other standard features in Motorola Schottky rectifiers that give added performance and reliability.

- 1. GUARDRINGS are included in all Schottky die for reverse voltage stress protection from high rates of dv/dt to virtually eliminate the need for snubber networks. The guardring also operates like a zener and avalanches when subjected to voltage transients.
- 2. MOLYBDENUM DISCS on both sides of the die minimize fatigue from power cycling in all metal product. The plastic TO-220 devices have a special solder formulation for the same purpose.
- 3. QUALITY CONTROL monitors all critical fabrication operations and performs selected stress tests to assure constant processes.

	IO, AVERAGE	RECTIFIED FO	RWARD CURRE	NT (Amperes)		
1	5	16	20	2	5	
221A-02 (TO-220AB) Plastic	(TO-220AB) (DO-4) Plastic Metal		221A-02 (TO-220AB) Plastic	56-02 (DO-4) Metal		
Dual Diode**			Dual Diode**			
	1N5826			1N5829		
	1N5827			1N5830	1N6095	
MBR1535CT		MBR1635	MBR2035CT			
MBR1540CT	1N5828	MBR1640	MBR2040CT	1N5831	1N6096	
MBR1545CT		MBR1645	MBR2045CT			
150	500	300	150	800	400	
105	85	125	135 pogland 135 po	85	70	
150	125	150	150	125	125	
0.72 @ 15 A T _C = 125°C	*0.50 T _C = 25°C	0.57 T _C = 125°C	0.72 @ 20 A TC = 125°C	*0.48 T _C = 25°C	0.86 @ 78.5 A T _C = 70°C	

TX versions available.

^{*} Values are for the 40-Volt units. The lower voltage parts provide lower limits.

^{**} IO is total device output.

		IO, AVERA	GE RECTIFIED FOR	WARD CURRENT	(Amperes)	
	1.5	30		35	40	50
	11-03 (TO-3) Metal	221A-02 (TO-220AB) Plastic	340-01 (TO-218AC) Plastic	56-02 (DO-4) Metal	(De	57 O-5) etal
V _{FRM} (Volts)	Dual Diode** (40 Mil Pins)	Dual Diode**	Dual Diode**			
(Vons)	(40 Mili Pilis)	Dual Diode	Duai Diode		1N5832	1
30					1N5833	1N6097
35	MBR3035CT	MBR2535CT	MBR3035PT	MBR3535		
40	MBR3040CT	MBR2540CT	MBR3040PT	MBR3540	1N5834	1N6098
45	SD241 MBR3045CT	MBR2545CT	MBR3045PT	SD41 MBR3545		
50						
60						
IFSM (Amps)	400	300	400	600	800	800
†T _C @ Rated I _O (°C)	105	125	105	90	75	70
†TL @ Rated IO (°C)	Section 2					
T _J (Max) (℃)	150	150	150	150	125	125
Max VF @ IFM = IO	0.72 @ 30 A T _C = 125°C	0.73 @ 30 A T _C = 125°C	0.72 @ 30 A T _C = 125°C	0.55 T _C = 25°C	*0.59 T _C = 25°C	0.86 @ 157 A T _C = 70°C

TX versions available.

* Values are for the 40-Volt units. The lower voltage parts provide lower limits.

Values are for the 40-voit units. The lower voltage parts provide
 Io is total device output.
 Must be derated for reverse power dissipation. See Data Sheet.

IO, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)						
60	65	75	80	120	200	300
257 (DO-5) Metal				357B-01 Plastic POWER TAP		
				•	Dual Diode**	
					Duai Diode	
MBR6035	MBR6535	MBR7535	MBR8035	MBR12035CT	MBR20035CT	MBR30035CT
MBR6040	MBR6540	MBR7540				MBR30040CT
SD51 MBR6045	MBR6545	MBR7545	MBR8045	MBR12045CT	MBR20045CT	MBR30045CT
				MBR12050CT	MBR20050CT	
				MBR12060CT	MBR20060CT	
800	800	1000	1000	1500	1,500	2500
90	120 Maria	90	120 (s s s s s s s s s s s s s s s s s s s	140	And the state of t	440
150	175	150	man or have been successful to the successful to	175	175	An experimental and the second and t
*0.6 T _C = 125°C	0.62 T _C = 150°C	0.60 T _C = 125°C	0.59 TC = 150°C	0.68 T _C = 125°C	0.71 TC = 125°C	0.64 T _C = 125°C

TX versions available.

** Io is total device output.

Ultrafast Recovery Rectifiers

EXPANDING the SWITCHMODE Rectifier family are these ultrafast devices with reverse recovery times of 25 to 100 nanoseconds. They complement the broad Schottky offering for use in the higher voltage outputs and internal circuitry of switching power supplies as operating frequencies increase from 20 kHz to 250 kHz. Additional package styles and operating current levels are planned.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information.

		IO, AVERA	GE RECTIFIED FOR	RWARD CURRENT	(Amperes)	
	1.0	4.0	6.0	8.0	15	16
	59-04 (DO-41) Plastic	267-01	221A-02 (TO-220AB)	(TO-2	B-01 20AC) istic	221A-02 (TO-220AB) Plastic
	Plastic	Plastic	Plastic	Pla	ISTIC	Plastic
VRRM (Volts)			Dual Diode**		·	Dual Diode**
50	MUR105	MUR405	MUR605CT	MUR805	MUR1505	MUR1605CT
100	MUR110	MUR410	MUR610CT	MUR810	MUR1510	MUR1610CT
150	MUR115	MUR415	MUR615CT	MUR815	MUR1515	MUR1615CT
200	MUR120	MUR420	MUR620CT	MUR820	MUR1520	MUR1620CT
300	MUR130	MUR430		MUR830	MUR1530	MUR1630CT
400	MUR140	MUR440		MUR840	MUR1540	MUR1640CT
500	MUR150	MUR450		MUR850	MUR1550	MUR1650CT
600	MUR160	MUR460		MUR860	MUR1560	MUR1660CT
700	MUR170	MUR470		MUR870		
800	MUR180	MUR480		MUR880		
900	MUR190	MUR490		MUR890		
1000	MUR1100	MUR4100		MUR8100		
IFSM (Amps)	35	125	75	100	200	100
TA @ Rated IO (°C)	50	80				100.48
T _C @ Rated I _O (°C)		49	130	150	150	150
T _J (Max) (°C)	175	175	175	175	175	175
t _{rr} ns	25/50/75	25/50/75	35	35/60/100	35/60	35

^{**} IO is total device output.

ULTRAFAST RECOVERY RECTIFIERS (continued)

9.50 9.50	lį, AVERA	GE RECTIFIED FOR	RWARD CURRENT	(Amperes)		
25		30	50	100	200	
56-02 (DO-4)		I0-01 218AC)	257 (DO-5)	357	B-01	
Metal		astic	Metal	Plastic		
19		~		Powe	R TAP	
				→	&	
	•					
				1 0		
(*)	Dual	Diode**	S	Dual D	Diode**	
MUR2505	R710XPT	MUR3005PT	MUR5005	MUR10005CT	MUR20005CT	
MUR2510	R711XPT	MUR3010PT	MUR5010	MUR10010CT	MUR20010CT	
MUR2515		MUR3015PT	MUR5015	MUR10015CT	MUR20015CT	
MUR2520	R712XPT	MUR3020PT	MUR5020	MUR10020CT	MUR20020CT	
		MUR3030PT			MUR20030CT	
	R714XPT	MUR3040PT			MUR20040CT	
500	150	400	600	400	800	
	The second secon					
145	100	150	125	140	95	
175	150	175	175	175	175	
50 N Bel Ma	100	35	50	50	50	

^{**} IO is total device output.

Rectifier Bridges

Motorola SUPERBRIDGES offer cost effectiveness and reliability in single phase applications. Chip/leadframe techniques are used for lower-current types, while the higher current assemblies combine pretested "button" rectifier cells for low assembly cost and high yields. Performance of four individual diodes is achieved with reliability of the whole assembly comparable to that of a single unit. The higher current assemblies feature versatile slip-on/solder/wire wrap terminals.

			O, DC OUTPUT C	URRENT (Amperes)	
	1.0	1.5	2.0	4.0/8.0	25	35
	312-02	109-03	312-02	117A-02 Note 1	309A-03	309A-02
	0.6"	0.25	0.6"	0.9"	\\ \rac{1}{1"}	> 200
V _{RRM} (Volts)	0.15	0.15	0.4" 0.15 SU	0.20"	so 71	1-3/8" SQ ~ S V
50	3N246 MDA100A	MDA920A2	3N253 MDA200	MDA970A1	MDA2500	MDA3500
100	3N247 MDA101A	MDA920A3	3N254 MDA201	MDA970A2	MDA2501	MDA3501
200	3N248 MDA102A	MDA920A4	3N255 MDA202	MDA970A3	MDA2502	MDA3502
400	3N249 MDA104A	MDA920A6	3N256 MDA204	MDA970A5	MDA2504	MDA3504
600	3N250 MDA106A	MDA920A7	3N257 MDA206	MDA970A6	MDA2506	MDA3506
800	3N251 MDA108A	MDA920A8	3N258 MDA208	CF		MDA3508
1000	3N252 MDA110A	MDA920A9	3N259 MDA210	CF		MDA3510
IFSM (Amps)	30	45	60	100	400	400
TA @ Rated IO (°C)	75	50	55	25 @ 4.0 A		
T _C @ Rated I _O (°C)				55 @ 8.0 A	55	55
T _J (Max) (°C)	150	175	175	150	175	175

CF: Consult Factory.

RECOGNIZED E61980

Dimensions given are nominal

Note 1. The MDA970A series replaces the MDA970 in the new Case 117A-02, which has minor changes over the old Case 117.

Fast Recovery Rectifiers

... available for designs requiring a power rectifier having maximum switching times ranging from 200 ns to 750 ns. These devices are offered in current ranges of 1.0 to 50 amperes and in voltages to 1000 volts.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information.

	I _O , AVERAGE RECTIFIED FORWARD CURRENT (Amperes)									
	1.	0		3.0		5.0				
	59-04 Plastic		60 Metal		7-01 stic	194-04 Plastic				
VRRM (Volts)						•				
50	†1N4933	MR810	MR830	MR850	MR910	MR820				
100	†1N4934	MR811	MR831	MR851	MR911	MR821				
200	†1N4935	MR812	MR832	MR852	MR912	MR822				
400	†1N4936	MR814	MR834	MR854	MR914	MR824				
600	†1N4937	MR816	MR836	MR856	MR916	MR826				
800		MR817			MR917					
1000		MR818			MR918					
ÎFSM (Amps)	30	30	100	100	100	300				
TA @ Rated IO (°C)	75	75		*90	*90	*55				
T _C @ Rated I _O (°C)		100	100							
T _J (Max) (°C)	150	150	150	175	175	175				
[†] π (μs)	0.2	0.75	0.2	0.2	0,75	0.2				

^{*} Must be derated for reverse power dissipation. See Data Sheet.

[†] Package Size: 0.120" Max Diameter by 0.260" Max Length.

		Io, Al	/ERAGE RECTI	FIED FORWARD	CURRENT (Amp	eres)	
	6.0	12	20	24	30	40	50
1 3 5 1 5 5 1	24		42A	339	42A	257	
	(DC Me		(DO-5) Metal	Plastic Note 1	(DO-5) Metal		D-5) etal
	ME	rtai	Metai	Note 1	ivietai	ME	etai
海山		0	The second second	6.5	(S)		(1)
		<u> </u>					
三连基	Ob.			· //	4 3		7
VRRM		Ly .					7
(Volts)			~,	·	9		
50	1N3879	1N3889	1N3899	MR2400F	1N3909	MR860	MR870
100	1N3880	1N3890	1N3900	MR2401F	1N3910	MR861	MR871
200	1N3881	1N3891	1N3901	MR2402F	1N3911	MR862	MR872
400	1N3883	1N3893	1N3903	MR2404F	1N3913	MR864	MR874
600	MR1366	MR1376	MR1386	MR2406F	MR1396	MR866	MR876
800							
1000							
IFSM (Amps)	150	200	250	300	300	350	400
TA @ Rated IO (°C)						Bred B	
T _C @ Rated I _O (°C)	100	100	100	125	100	100	100
T」(max) (°C)	150	150	150	175	150	160	160
t _{rr} μs	0.2	0.2	0.2	0.2	0.2	0.2	0.2

TX versions available.

Note 1. Meets mounting configuration of TO-220 outline.

General-Purpose Rectifiers

Motorola offers a wide variety of low-cost devices, packaged to meet diverse mounting requirements. Avalanche capability is available in the axial lead 1.5,3 and 6 amp packages shown below to provide protection from transients.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information.

- 1181111111111111	and the second	IO, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)									
	0.5	1	0	1.5		3.0	AL 14 14 17 17 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	6.0			
20-bit for A Probability of the Control of the Cont	362-01 Glass Leadless	362B-01 Glass Leadless	(DC	-04 0-15) istic	60 Metal		67 astic	194-04 Plastic			
was as the street home and the street of the											
50	MRL005	MLL4001	†1N4001	**1N5391	1N4719	**MR500	1N5400	**MR750			
100	MRL010	MLL4002	†1N4002	**1N5392	1N4720	**MR501	1N5401	**MR751			
200	MRL020	MLL4003	†1N4003	1N5393 *MR5059	1N4721	**MR502	1N5402	**MR752			
400	MRL040	MLL4004	†1N4004	1N5395 *MR5060	1N4722	**MR504	1N5404	**MR754			
600			†1N4005	1N5397 *MR5061	1N4723	**MR506	1N5406	**MR756			
800			†1N4006	1N5398	1N4724	MR508		MR758			
1000			†1N4007	1N5399	1N4725	MR510		MR760			
IFSM (Amps)	O construction of the cons	20	30	50	300	100	200	400			
T _A @ Rated l _O (°C)	75	75	75	T _L = 70	75	95	T _L = 105	60			
T _C @ Rated I _O (°C)	Annual of State of St	A CONTROL OF THE PROPERTY OF T	And the second s	Section 1 - Sectio			14 p. 4 p. 4 p. 4 p. 4 p. 4 p. 4 p. 4 p.	September 1990 - Septem			
Tງ (Max) (°C)	175	175	175	175	175	175	175	175			

[†] Package Size: 0.120" Max Diameter by 0.260" Max Length.

^{* 1}N5059 series equivalent Avalanche Rectifiers.

^{**} Avalanche versions available, consult factory.

			O, AVERAGE F	ECTIFIED FO	RWARD CURR	ENT (Ampere		and govern Commonwell (1990). The compression of t
	12	20	24	25	3	0	40	50
	24		339	193-03		-02	42A	43-04
	(DC Me		Plastic Note 1	Plastic Note 2		l-21) etal	(DO-5) Metal	Metal
VRRM (Volts)		B B				\$?		G
50	MR1120 1N1199,A,B	MR2000	MR2400	MR2500	1N3491	1N3659	1N1183A	MR5005
100	MR1121 1N1200,A,B	MR2001	MR2401	MR2501	1N3492	1N3660	1N1184A	MR5010
200	MR1122 1N1202,A,B	MR2002	MR2402	MR2502	1N3493	1N3661	1N1186A	MR5020
400	MR1124 1N1204,A,B	MR2004	MR2404	MR2504	1N3495	1N3663	1N1188A	MR5040
600	MR1126 1N1206,A,B	MR2006	MR2406	MR2506	MR328	Note 3	1N1190A	Note 3
800	MR1128 1N3988	MR2008		MR2508	MR330	Note 3	Note 3	Note 3
1000	MR1130 1N3990	MR2010		MR2510	MR331	Note 3	Note 3	Note 3
IFSM (Amps)	300	400	400	400	300	400	800	600
T _A @ Rated I _O (°C)								
T _C @ Rated I _O (°C)	150	150	125	150	130	100	150	150
Tj (Max) (°C)	190	175	175	175	175	175	190	195

Note 1. Meets mounting configuration of TO-220 outline.

Note 2. Request Data Sheet for Mounting Information.

Note 3. Available on special order.

Zener and Avalanche Regulator Diodes

General-Purpose Regulator Diodes

	250 mW	250 mW	250 mW	250 mW	350	mW	400 mW Low Noise		500 mW	
Nominal Zener	Low Level Cathode = Polarity Mark	Low Noise Cathode = Polarity Mark	Low Level Cathode = Polarity Mark	Low Noise Cathode = Polarity Mark	Cathada — I	Polarity Mark	Low Leakage Cathode =		thode = Polarity	Mark State
(*Note 1)		2,3,14)	(*Notes 2,3)	(*Notes 2,3)		2,6,17)	Polarity Mark (*Notes 2,4)	(*Notes 2,5)	(*Notes 2,6)	(*Notes 1,2,13)
	Q	>	Case 299-02		.9	5	Case 299-02			
	Gla Case	ass 362-01		Glass DO-204AH (DO-35)	Sty	8-02,-03 le 8 0-236AA/AB)	,	DO-:	lass 204AH D-35)	
1.8	MLL4678 MLL4679	MLL4614 MLL4615	1N4678 1N4679	1N4614 1N4615		I				
2.0 2.2 2.4 2.5 2.7	MLL4680 MLL4681	MLL4616 MLL4617	1N4680 1N4681	1N4616 1N4617				1N4370	1N5221	1N5985A
2.7 2.8	MLL4682	MLL4618	1N4682	1N4618				1N4371	1N5223	1N5986A
3.0 3.3	MLL4683 MLL4684	MLL4619 MLL4620	1N4683 1N4684	1N4619 1N4620	MMBZ5226		1N5518A	1N4372 1N746	1N5225 1N5226	1N5987A 1N5988A
3.6	MLL4685 MLL4686	MLL4621 MLL4622	1N4685 1N4686	1N4621 1N4622	MMBZ5227 MMBZ5228		1N5519A 1N5520A	1N747 1N748	1N5227 1N5228	1N5989A 1N5990A
3.9 4.3	MLL4687	MLL4623 MLL4624	1N4687 1N4688	1N4623 1N4624	MMBZ5229 MMBZ5230	BZX84C4V7	1N5221A 1N5522A	1N749 1N750	1N5229 1N5230	1N5991A 1N5992A
4.7 5.1	MLL4688 MLL4689	MLL4625	1N4689	1N4625	MMBZ5231	BZX84C5V1	1N5522A 1N5523A	1N750 1N751	1N5230 1N5231	1N5992A 1N5993A
5.6 6.0 6.2	MLL4690 MLL4691	MLL4626 MLL4627	1N4690 1N4691	1N4626 1N4627	MMBZ5232 MMBZ5233 MMBZ5234	BZX84C6V2	1N5524A 1N5525A	1N752 1N753	1N5232 1N5234	1N5994A 1N5995A
6.8	MLL4691 MLL4692	MLL4099	1N4692	1N4099	MMBZ5235	BZX84C6V8	1N5526A	1N754	1N5234	1N5996A
7,5	MLL4693	MLL4100	1N4693	1N4100	MMBZ5236	BZX84C7V5	1N5527A	1N957A 1N755	1N5236	1N5997A
8.2	MLL4694	MLL4101	1N4694	1N4101	MMBZ5237	BZX84C8V2	1N5228A	1N958A 1N756	1N5237	1N5998A
	1411.4005		4114005	20114.00	144075000			1N959A	415000	-
8.7 9.1	MLL4695 MLL4696	MLL4102 MLL4103	1N4695 1N4696	1N4102 1N4103	MMBZ5238 MMBZ5239	BZX84C9V1	1N5529A	1N757	1N5238 1N5239	1N5999A
10	MLL4697	MLL4104	1N4697	1N4104	MMBZ5240	BZX84C10	1N5530A	1N960A 1N758	1N5240	1N6000A
11	MLL4698	MLL4105	1N4698	1N4105	MMBZ5241	BZX84C11	1N5531A	1N961A 1N962A	1N5241	1N6001A
12	MLL4699	MLL4106	1N4699	1N4106	MMBZ5242	BZX84C12	1N5532A	1N759 1N963A	1N5242	1N6002A
13	MLL4700	MLL4107	1N4700	1N4107	MMBZ5243	BZX84C13	1N5533A	1N963A	1N5243	1N6003A
14 15	MLL4701 MLL4702	MLL4108 MLL4109	1N4701 1N4702	1N4108 1N4109	MMBZ5244 MMBZ5245	BZX84C15	1N5334A 1N5335A	1N965A	1N5244 1N5245	1N6004A
16 17	MLL4703 MLL4704	MLL4110 MLL4111	1N4703	1N4110 1N4111	MMBZ5246 MMBZ5247	BZX84C16	1N5336A 1N5337A	1N966A	1N5246	1N6005A
17	MLL4704 MLL4705	MLL4111 MLL4112	1N4704 1N4705	1N4111 1N4112	MMBZ5247 MMBZ5248	BZX84C18	1N5337A 1N5338A	1N967A	1N5247 1N5248	1N6006A
19	MLL4706	MLL4113	1N4706	1N4113	MMBZ5249		1N5539A		1N5249	
20 22 24 25 27	MLL4707 MLL4708	MLL4114 MLL4115	1N4707 1N4708	1N4114 1N4115	MMBZ5250 MMBZ5251	BZX84C20 BZX84C22	1N5540A 1N5541A	1N968A 1N969A	1N5250 1N5251	1N6007A 1N6008A
24 25	MLL4709 MLL4710	MLL4116 MLL4117	1N4709 1N4710	1N4116 1N4117	MMBZ5252 MMBZ5253	BZX84C24	1N5542A 1N5543A	1N970A	1N5252 1N5253	1N6009A
27	MLL4711	MLL4118	1N4711	1N4118	MMBZ5254	BZX84C27	Постол	1N971A	1N5254	1N6010A
28	MLL4712 MLL4713	MLL4119 MLL4120	1N4712 1N4713	1N4119 1N4120	MMBZ5255 MMBZ5256	BZX84C30	1N5544A 1N5545A	1N972A	1N5255 1N5256	1N6011A
28 30 33 36 39 43	MLL4714	MLL4121	1N4714	1N4121	MMBZ5257	BZX84C30	1N5546A	1N973A	1N5257	1N6012A
36 39	MLL4715 MLL4716	MLL4122 MLL4123	1N4715 1N4716	1N4122 1N4123				1N974A 1N975A	1N5258 1N5259	1N6013A 1N6014A
	MLL4717	MLL4124	1N4717	1N4124				1N976A	1N5260	1N6015A
47 51		MLL4125 MLL4126		1N4125 1N4126				1N977A 1N978A	1N5261 1N5262	1N6016A 1N6017A
51 56 60 62		MLL4127 MLL4128		1N4127 1N4128				1N979A	1N5263 1N5264	1N6018A
62 68		MLL4129 MLL4130		1N4129 1N4130				1N980A 1N981A	1N5264 1N5265 1N5266	1N6019A 1N6020A
75		MLL4131		1N4131				1N982A	1N5267	1N6021A
82 87		MLL4132 MLL4133		1N4132 1N4133				1N983A	1N5268 1N5269	1N6022A
91 100		MLL4134 MLL4135		1N4134 1N4135				1N984A 1N985A	1N5270 1N5271	1N6023A 1N6024A
110								1N986A	1N5272	1N6025A
120 130)		†1N987A †1N988A	1N5273# 1N5274#	
140 150	:							†1N989A	1N5275# 1N5276#	
160								1N990A	1N5277#	
170 180								†1N991A	1N5278# 1N5279#	
200		L	L		<u> </u>	<u> </u>	l	†1N992A	1N5281#	

[□] JAN JANTX(V) available, ±5% only. # 1N5273−1N5281 supplied in Surmetic DO-7 plastic package. † 1N987−1N992 supplied in DO-7 glass package. * See Notes on page 20.

General-Purpose Regulator Diodes (continued)

Nominal Zener Voltage	500 Cathol Polarity	de =	Cath	Watt ode = ty Mark	1 Watt Cethode to Case	1.5 Watt Cathode = Polarity Mark	1.5 Watt Cathode to Case	5 Watt Cathode = Polarity Mark
(*Note 1)	(*Notes 2,5,14)	(*Notes 2,6,14)	(*Notes 2,7)	(*Notes 2,7,15)	(*Notes 2,8)	(*Notes 2,9)	(*Notes 2,10)	(*Notes 2,11)
	Gla Case 3		Glass Case 59 (DO-41)	Glass Case 362B-01	Metal Case 52 (DO-13)	Surmetic 30 Case 59 (DO-41)	Metal Case 55	Surmetic 40 Case 17
1.8 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.3	MLL4370 MLL4371 MLL4372 MLL746	MLL5221 MLL5222 MLL5223 MLL5224 MLL5225 MLL5225	1N4728	MLL4728	1N3821	1N5913A		1N5333A
	MLL747 MLL748	MLL5227 MLL5228	1N4729 1N4730	MLL4729 MLL4730	1N3822 1N3823	1N5914A 1N5915A		1N5334A 1N5335A
3,6 3.9 4.3 4.7	MLL749	MLL5229	1N4731	MLL4731	1N3824	1N5916A		1N5336A
D. T.	MLL750 MLL751	MLL5230 MLL5231	1N4732 1N4733	MLL4732 MLL4733	1N3825 1N3826	1N5917A 1N5918A		1N5337A 1N5338A
5.6 6.0	MLL752	MLL5232 MLL5233	1N4734	MLL4734	1N3827	1N5919A		1N5339A
6.2	MLL753	MLL5234	1N4735	MLL4735	1N3828	1N5920A		1N5341A
6.8	MLL754 MLL957A	MLL5235	1N4736	MLL4736	1N3829 1N3016A	1N5921A	1N3785A	1N5342A
7.5	MLL755 MLL958A	MLL5236	1N4737	MLL4737	1N3830 1N3017A	1N5922A	1N3786A	1N5343A
8.2	MLL756 MLL959A	MLL5237	1N4738	MLL4738	1N3018A	1N5923A	1N3787A	1N5344A
B.7		MLL5238						1N5345A
9.1	MLL757 MLL960A	MLL5239	1N4739	MLL4739	1N3019A	1N5924A	1N3788A	1N5346A
10	MLL758 MLL961A	MLL5240	1N4740	MLL4740	1N3020A	1N5925A	1N3789A	1N5347A
.11	MLL962A	MLL5241	1N4741	MLL4741	1N3021A	1N5926A	1N3790A	1N5348A
12	MLL759 MLL963A	MLL5242	1N4742	MLL4742	1N3022A	1N5927A	1N3791A	1N5349A
13	MLL964A	MLL5243 MLL5244	1N4743	MLL4743	1N3023A	1N5928A	1N3792A	1N5350A 1N5351A
14 15 16 17	MLL965A MLL966A	MLL5244 MLL5245 MLL5246 MLL5247	1N4744 1N4745	MLL4744 MLL4745	1N3024A 1N3025A	1N5929A 1N5930A	1N3793A 1N3794A	1N5351A 1N5352A 1N5353A 1N5354A
18 35 5	MLL967A	MLL5248	1N4746	MLL4746	1N3026A	1N5931A	1N3795A	1N5355A
19 20 22 24 26 27	MLL968A MLL969A MLL970A	MLL5249 MLL5250 MLL5251 MLL5252 MLL5253	1N4747 1N4748 1N4749	MLL4747 MLL4748 MLL4749	1N3027A 1N3028A 1N3029A	1N5932A 1N5933A 1N5934A	1N3796A 1N3797A 1N3798A	1N5356A 1N5357A 1N5358A 1N5359A 1N5360A
259	MLL971A	MLL5254 MLL5255	1N4750	MLL4750	1N3030A	1N5935A	1N3799A	1N5361A 1N5362A
28 90 93 98 99 43	MLL972A MLL973A MLL974A MLL975A MLL976A	MLL5256 MLL5257 MLL5258 MLL5259	1N4751 1N4752 1N4753 1N4754 1N4755	MLL4751 MLL4752 MLL4753 MLL4754 MLL4755	1N3031A 1N3032A 1N3033A 1N3034A	1N5936A 1N5937A 1N5938A 1N5939A 1N5940A	1N3800A 1N3801A 1N3802A 1N3803A 1N3804A	1N5363A 1N5364A 1N5365A 1N5366A
47	MLL977A	MLL5260 MLL5261	1N4756	MLL4756	1N3035A 1N3036A	1N5941A	1N3805A	1N5367A 1N5368A
51 56 60 62	MLL978A MLL979A	MLL5262 MLL5263 MLL5264	1N4757 1N4758	MLL4751 MLL4758	1N3037A 1N3038A	1N5942A 1N5943A	1N3806A 1N3807A	1N5369A 1N5370A 1N5371A
62 68	MLL980A MLL981A	MLL5265 MLL5266	1N4759 1N4760	MLL4759 MLL4760	1N3039A 1N3040A	1N5944A 1N5945A	1N3808A 1N3809A	1N5372A 1N5373A
75 82 87	MLL982A MLL983A	MLL5267 MLL5268 MLL5269	1N4761 1N4762	ML())61 MLL4762	1N3041A 1N3042A	1N5946A 1N5947A	1N3810A 1N3811A	1N5374A 1N5375A 1N5376A
91 100 110	MLL984A MLL985A MLL986A	MLL5269 MLL5270	1N4763 1N4764 ♦1M110ZS10	MLL4763 MLL4764	1N3043A 1N3044A 1N3045A	1N5958A 1N5949A 1N5950A	1N3812A 1N3813A 1N3814A	1N5376A 1N5377A 1N5378A 1N5379A
120 130 150 160 170 175			♦ 1M120ZS10 ♦ 1M130ZS10 ♦ 1M150ZS10 ♦ 1M160ZS10 ♦ 1M170ZS10		1N3046A 1N3047A 1N3048A 1N3049A	1N5951A 1N5952A 1N5953A 1N5954A	1N3815A 1N3816A 1N3817A 1N3818A	1N5380A 1N5831A 1N5383A 1N5384A 1N5385A
190 200			♦1M180ZS10 ♦1M200ZS10	10 Series supplie	1N3050A 1N3051A	1N5955A 1N5956A	1N3819A 1N3820A	1N5386A 1N5388A

^{♦ 1}M110ZS10 Series supplied in Surmetic (Plastic) DO-41 package.

General-Purpose Regulator Diodes (continued)

Nominal Zener Voltage	10 W Cathode I = 1N3993 & MZ Anode to = 1N2970	o Case 72970 Series	12	50 Wat Cathole to Case = M274549 Series Anode to Case = 1445574 Series				
(*Note 1)	(*Notes 2,10,12)	(*Notes 2,16)	(*Notes 2,16)	(*Notes 2,10,12)	(*Notes 2,10,12)			
	Metal	221		Metal	Metal			
	Case 56 (DO-4)	(10-2 Pla	20AC) stic	Case 54 (TO-3)	Case 58 (DO-5 Type)			
1.8 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.3								
3.6 3.9 4.3 4.7 5.1 5.6 6.0	1N3993&R 1N3994&R 1N3995&R 1N3996&R 1N3997&R		MZT4549 MZT4550 MZT4551 MZT4552 MZT4553	1N4557A&RA 1N455BA&RA 1N4559A&RA 1N4560A&RA 1N4561A&RA	1N4549A&RA 1N4550A&RA 1N4551A&RA 1N4552A&RA 1N4553A&RA			
6.2	1N3998&R		MZT4554	1N4562A&RA	1N4554A&RA			
8.8	1N3999&R 1N2970A&RA	MZT2970	MZT3305	1N4563A&RA 1N2804A&RA	1N4555A&RA 1N3305A&RA			
7.5	1N4000&R 1N2971A&RA	MZT2971	MZT3306	1N4564A&RA 1N2805A&RA	1N4556A&RA 1N3306A&RA			
8.2	1N2972A&RA	MZT2972	MZT3307	1N2806A&RA	1N3307A&RA			
8.7					58.58			
9.1	1N2973A&RA 1N2974A&RA	MZT2973	MZT3308 MZT3309	1N2807A&RA	1N3308A&RA			
11	1N2974A&RA 1N2975A&RA	MZT2974 MZT2975	MZT3309 MZT3310	1N2808A&RA 1N2809A&RA	1N3309A&RA 1N3310A&RA			
12	1N2976A&RA	MZT2976	MZT3311	1N2810A&RA	1N3311A&RA			
13 14 15 16 17 18	1N2977A&RA 1N2878A&RA 1N2979A&RA 1N2980A&RA 1N2982A&RA	MZT2977 MZT2978 MZT2979 MZT2980 MZT2981	MZT3312 MZT3313 MZT3314 MZT3315 MZT3316 MZT3317	1N2811A&RA 1N2812A&RA 1N2813A&RA 1N2813A&RA 1N2815A&RA 1N2816A&RA	1N3312A&RA 1N3313A&RA 1N3314A&RA 1N3315A&RA 1N3316A&RA 1N3317A&RA			
19 20 22 24 25 27	1N2983A&RA 1N2984A&RA 1N2985A&RA 1N2986A&RA 1N2986A&RA	MZT2982 MZT2983 MZT2984 MZT2986 MZT2987	MZT3318 MZT3319 MZT3320 MZT3321 MZT3322 MZT3323	1N2817A&RA 1N2818A&RA 1N2819A&RA 1N2820A&RA 1N2821A&RA 1N2821A&RA	1N3318A&RA 1N3319A&RA 1N3320A&RA 1N3321A&RA 1N3322A&RA 1N3323A&RA			
26 30 33 36 39 43	1N2989A&RA 1N2990A&RA 1N2991A&RA 1N2992A&RA 1N2993A&RA	MZT2988 MZT2989 MZT2990 MZT2992 MZT2993	MZT3324 MZT3325 MZT3326 MZT3327 MZT3328	1N2823A&RA 1N2824A&RA 1N2825A&RA 1N2825A&RA 1N2826A&RA 1N2827A&RA	1N3324A&RA 1N3325A&RA 1N3326A&RA 1N3327A&RA 1N3328A&RA			
47 50 51 52 56 60 82	1N2996A&RA 1N2997A&RA 1N2999A&RA	MZT2995 MZT2996 MZT2997 MZT2998 MZT2999	MZT3330 MZT3331 MZT3332 MZT3333 MZT3334	1N2829A&RA 1N2831A&RA 1N2832A&RA	1N33330A&RA 1N3332A&RA 1N3334A&RA 1N3335A&RA			
62 68	1N3000A&RA 1N3001A&RA	MZT3000 MZT3001	MZT3335 MZT3336	1N2833A&RA 1N2834A&RA	1N3336A&RA			
75 82	1N3002A&RA 1N3003A&RA	MZT3002 MZT3003	MZT3337 MZT3338	1N2835A&RA 1N2836A&RA	1N3337A&RA 1N3338A&RA			
87 91 100 105 110	1N3004A&RA 1N3005A&RA 1N3007A&RA	MZT3004 MZT3005 MZT3006 MZT3007	MZT3339 MZT3340 MZT3341 MZT3342	1N2837A&RA 1N2838A&RA 1N2840A&RA	1N3339A&RA 1N3340A&RA 1N3342A&RA			
120 130	1N3008A&RA 1N3009A&RA	MZT3008 MZT3009	MZT3343 MZT3344	1N2841A&RA 1N2842A&RA	1N3343A&RA 1N3344A&RA			
140 150 160 170	1N3011A&RA 1N3012A&RA	MZT3010 MZT3011	MZT3345 MZT3347	1N2843A&RA 1N2844A&RA	1N3345A&RA 1N3346A&RA 1N3347A&RA			
175 180 200	1N3014A&RA 1N3015A&RA	MZT3012 MZT3014 MZT3015	MZT3348 MZT3349 MZT3350	1N2845A&RA 1N2846A&RA	1N3349A&RA 1N3350A&RA			

NOTES

- 1. The Zener Voltage is measured at approximately 1/4 the rated power, with the following exceptions: the 1N4678-4717 is measured with $I_{ZT}=50~\mu Adc;$ the 1N4614/1N4099 is measured with $I_{ZT}=250~\mu Adc;$ the 1N4370/1N746 and the 1N5221–5242 are measured with IZT = 20 mAdc; the 1N5985A-6012A is measured with $I_{ZT} = 5.0$ mA; 1N6013A-6023A is measured with $I_{ZT} =$ 2.0 mA; 1N6024-6025 is measured with $I_{ZT} = 1.0 \text{ mA}.$
- Contact your Motorola representative for information on intermediate voltages and tighter tolerances.

Tolerances

- 3. No suffix = $\pm 5\%$
- 4. A Suffix = ±10% -- with guaranteed limits on Vz, VF, and IR only
 B suffix = ±5%
 C suffix = ±2%

D suffix = $\pm 1\%$

5. MLL4370/1N4370/1N746 series: No suffix = $\pm 10\%$ A suffix = $\pm 5\%$

MLL957/1N957 series: A suffix = $\pm 10\%$

B suffix $= \pm 5\%$ Military parts in 1N4370/746/962 series and standard 1N987-1N992 supplied in DO-7. Military parts in 1N4370/746/962 are also available in the cost effective DO-204AH (DO-35) package as the -1 version. This version can be ordered by inserting a 1 between the part number and the JAN, JTX or JTXV suffix, i.e. 1N746A1JAN. MIL-STD 19500/117 and 127 state the -1 version is a direct substitute for the non -1 version. The -1 versions appear on MIL-STD 701 as the preferred parts for new designs. Military parts in 1N4614, 1N4099 and

6. No suffix = $\pm 10\%$ with guaranteed limits on Vz, VF and IR only. A suffix = ±10%

B suffix = $\pm 5\%$

1N5518A series supplied in DO-7.

7. No suffix = $\pm 10\%$ A suffix = $\pm 5\%$

8. 1N3821 series: No suffix = $\pm 10\%$ A suffix $= \pm 5\%$ 1N3016 series: A suffix = $\pm 10\%$

9. A suffix = $\pm 10\%$ B suffix = $\pm 5\%$ C suffix = ±2% D suffix = $\pm 1\%$

10. A^{σ} suffix = $\pm 10\%$ B suffix = $\pm 5\%$

Exception:

1N3993-1N4000: No suffix = ±10% A suffix $= \pm 5\%$

B suffix = $\pm 5\%$

- 11. A suffix = ±10% B suffix = $\pm 5\%$
- 12. RA and RB = Reverse Polarity Types Available
- 13. A suffix = $\pm 10\%$ B suffix = $\pm 5\%$
- 14. Available in 8 mm Tape and Reel T1 Cathode Facing Sprocket Holes T2 Anode Facing Sprocket Holes
- Available in 12 mm Tape and Reel T1 Cathode Facing Sprocket Holes T2 Anode Facing Sprocket Holes
- 16. The type numbers shown indicate a tolrance of \pm 20% with guaranteed limits on only V_Z and I_B as shown. \pm 10% tolerance is available by adding suffix "A," and \pm 5% is available by adding suffix "B."
- 17. Available in 8 mm tape and reel, both T1 and T2 options.

Selected Zener Diode Options

In cases where standard specifications do not meet application requirements, an appropriate device can be selected and ordered from the following options. This coding system is provided as a means of communicating a specific requirement to Motorola. Certain voltages, tolerances and packages may not be available. Contact your Motorola sales representative for availability, price, and minimum order quantities.

NON-STANDARD ZENER DIODES SPECIAL VOLTAGE AND TOLERANCE RATINGS

JEDEC "1N" type numbers denote a specific Zener voltage, power rating, and tolerance. For example, JEDEC type 1N4728 is a standard 1 watt diode, rated at 3.3 volts \pm 10%. A suffix "A" on this type number indicates a \pm 5% voltage tolerance.

Special Motorola devices, with a choice of voltages and tolerances, are also available. The following diagram explains the Motorola coding system:

For example, the code for a special 10 watt Zener diode with a voltage of 41 volts and a tolerance of \pm 1% would be: 10M41Z1.

Following is a list of other standard Motorola symbols for special Zener device orders (X's indicate nominal Zener voltage):

Basic Motorola Type	**Electrically Similar Series	Device Description
1/4MXXAZXX	1/4M2.4AZ10 series	250 mW, Glass, DO-35
1/4MXXXZXX	1.4M6.8Z10 series	250 mW, Glass, DO-35
.4MXXAZXX	1N4370 & 1N746 series	400 mW/500 mW, Glass, DO-35
.4MXXXZXX	1N957 series	400 mW/500 mW, Glass, DO-35
.5MXXAZXX	1N4370 & 1N746 series	400 mW/500 mW, Glass, DO-35
.5MXXXZXX	1N957 series	400 mW/500 mW, Glass, DO-35
1MXXAZXX	1N3821 series	1 Watt, Metal DO-13
1MXXXZXX	1N3016 series	1 Watt, Metal, DO-13
1MXXXZGXX	1N4728 series	1 Watt, Glass, DO-41
1MXXXZSXX	1N4728 series	1 Watt, Surmetic-30, DO-41
1.5MXXXZXX	1N3785 series	1.5 Watt Metal Can
5MXXXZSXX	1N5333 series	5 Watt Surmetic-40
10MXXAZXX	1N3993 series	10 Watt, Stud, DO-4
10MXXXZXX	1N2970 series	10 Watt, Stud. DO-4
50MXXAZXX	1N4557 series	50 Watt, TO-3
50MXXXZXX	1N2804 series	50 Watt, TO-3
50MXXAZSXX	1N4549 series	50 Watt, Stud. DO-5
50MXXXZSXX	1N3305 series	50 Watt, Stud. DO-5
MZG35-YYZ	1N5985 series	500 mW, Glass, DO-35
MZG41-YYZ	1N5913 series	1.5 Watt, Surmetic-30

^{**}Electrical parameters shall be tested per the similar series listed. Test currents for non-standard voltages will be linearly interpoled between the test currents for standard parts on either side. For reverse polarity devices (10 W and 50 W) insert an "B" hefore tolerance.

1N5518 thru 1N5546 — This series may be ordered in $\pm 2\%$ and $\pm 1\%$ tolerance by adding the following suffix:

 $C = \pm 2\%$ $D = \pm 1\%$

For example the 1N5518D would be the same as the 1N5518B except $V_7 = 3.3 \pm 1\%$.

MATCHED SETS OF ZENER DIODES

Zener diodes can also be obtained in sets consisting of two or more matched devices. The method for specifying such matched sets is similar to the one described for specifying units with a special voltage and/or tolerance except that two extra suffixes are added to the code number described above.

These units are marked with code letters to identify the matched sets and in addition, each unit in a set is marked with the same serial number which is different for each set being ordered.

*Code:

B - Two devices in series

C — Three devices in series

D - Four devices in series

E — Five devices in series

F — Six devices in series

G — Seven devices in seriesH — Eight devices in series

X — Two devices; one standard polarity, the other reverse polarity. (10 and 50 watts only)

i.e., 10M51Z5B1 is for two 10 watt zeners, each of 51 volts, \pm 5%, matched to a total voltage of 102 volts \pm 1%.

ZENER CLIPPERS

Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomenclature:

This nomenclature is applicable to all packages and power ratings as restricted in the above paragraphs.

Special Purpose Regulators

Field-Effect Current Regulator Diodes

High impedance diodes whose "constant current source" characteristic complements the "constant voltage" of the zener line. Currents are available from 0.22 to 4.7 mA, with usable voltage range from a minimum limit of 1.0 to 2.5 V, up to a voltage compliance of 100 V, for the 1N5283 series, or 70 V, for the MCL1300 series.

	Glass Case 51-02 DO-204AA (DO-7)								
Reg. Current lp @V _T = 25 V mA Nom	Device Type	Knee Imp Z _K @V _K = 6.0 V MΩ Min	Limiting Voltage @i_ = 0.8 lp Volts Max						
0.22	1N5283	2.75	1.00						
0.24	1N5284	2.35	1.00						
0.27	1N5285	1.95	1.00						
0.30	1N5286	1.60	1.00						
0.33	1N5287	1.35	1.00						
0.39	1N5288	1.00	1.05						
0.43	1N5289	0.870	1.05						
0.47	1N5290	0.750	1.05						
0.56	1N5291	0.560	1.10						
0.62	1N5292	0.470	1.13						
0.68	1N5293	0.400	1.15						
0.75	1N5294	0.335	1.20						
0.82	1N5295	0.290	1.25						
0.91	1N5296	0.240	1.29						
1.00	1N5297	0.205	1.35						
1.10	1N5298	0.180	1.40						
1.20	1N5299	0.155	1.45						
1.30	1N5300	0.135	1.50						
1.40	1N5301	0.115	1.55						
1.50	1N5302	0.105	1.60						
1.60	1N5303	0.092	1.65						
1.80	1N5304	0.074	1.75						
2.00	1N5305	0.061	1.85						
2.20	1N5306	0.052	1.95						
2.40	1N5307	0.044	2.00						
2.70	1N5308	0.035	2.15						
3.00	1N5309	0.029	2.25						
3.30	1N5310	0.024	3.35						
3.60	1N5311	0.020	2.50						
3.90	1N5312	0.017	2.60						
4.30	1N5313	0.014	2.75						
4.70	1N5314	0.012	2.90						
0.5±.03	MCL1300	0.500	1.00						
1.0±0.6	MCL1301	0.200	1.50						
2.0±0.6	MCL1302	0.100	2.00						
3.0±0.6	MCL1303	0.050	2.00						
4.0 ± 0.6	MCL1304	0.025	2.50						

JAN/JANTX (V) availability

Low-Voltage Regulators

High-conductance silicon diodes designed as stable forward-reference sources for transistor amplifier biasing and similar applications. Available in high reliability glass construction or economic plastic packaging.

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted).

Fon Refer Volt	rence	l F Test Current	Cur	rent VR	Device	
Min	Max	mA	μΑ	Voits	Type	Case
0.63	0.71	10	10	5.0	MZ2360	59 Surmetic
1.24	1.38	10	10	5.0	MZ2361	51 Surmetic

Temperature Compensated Reference Devices

For applications where output voltage must remain within narrow limits during changes in input voltage, load resistance and temperature. Motorola guarantees all References Devices to fall within the specified maximum voltage variations, ΔV_Z , at the specifically indicated test temperatures and test current (JEDEC Standard #5). Temperature Coefficient is also specified but should be considered as a reference only — not a maximum rating.

Devices in this table are hermetically sealed structures. Includes JAN, JANTX and JTXV Devices.

	41.00		5 (1946)	AVER	AGE TEMPER	ATURE	COEFFICIEN	IT OVE	THE OPER	ATING F	RANGE		
			0.01 %	°C	0.005 %	/°C	0.002 %	/°C	0.001 %	/°C	0.0005 %	./°C	
VZ Voits	Test Current mAdc	Test Temp Points	Device Type	Δ VZ Max Volts	Device Type	Δ Vz Max Volts	Device Type	A VZ Max Volts	Device Type	A VZ Max Volts	Device Type	Δ VZ Max Volts	Case
6.2 A 6.2 A	7.5 7.5	A A	1N821 1N821A	0.096 0.096	1N823 1N823A	0.048 0.048	1N825 1N825A	0.019 0.019	1N827 1N827A	0.009 0.009	1N829 1N829A	0.005 0.005	299-02
6.4	0.5 0.5 1.0 1.0 2.0 2.0 4.0 4.0	B A B A B A B	1N4565 • 1N4565A 1N4570A 1N4570A 1N4575A 1N4580A 1N4580A	0.018 0.099 0.048 0.099 0.048 0.099 0.048 0.099	1N4566 1N4566A 1N4571 1N4571A 1N4576 1N4576A 1N4581	0.024 0.050 0.024 0.050 0.024 0.025 0.024 0.050	1N4567 1N4567A 1N4572 1N4572A 1N4577 1N4577A 1N4582 1N4582A	0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020	1N4568 1N4568A 1N4573 1N4573A 1N4578A 1N4578A 1N4583A	0.005 0.010 0.005 0.010 0.005 0.010 0.005	1N4569 1N4569A 1N4574 1N4574A 1N4579 1N4579A 1N4584A	0.002 0.005 0.002 0.005 0.002 0.005 0.002	DO-204AH (DO-35)
8.4	10 10	A C	1N3154 1N3154A	0.130 0.072	1N3155 1N3155A	0.065 0.085	1N3156 1N3156A	0.026 0.034	1N3157 1N3157A	0.013 0.017			51-02
8.5	0.5 0.5 1.0 1.0	B A B A	1N4775 1N4775A 1N4780 1N4780A	0.064 0.132 0.064 0.132	1N4776 1N4776A 1N4781 1N4781A	0.032 0.066 0.032 0.066	1N4777 1N4777A 1N4782 1N4782A	0.013 0.026 0.013 0.026	1N4778 1N4778A 1N4783 1N4783A	0.006 0.013 0.006 0.013	1N4779 1N4779A 1N4784 1N4784A	0.003 0.007 0.003 0.007	DO-204AA (DO-7)
9.0	7.5 7.5 7.5	B A C	1N935 1N935A 1N935B	0.067 0.139 0.184	1N936 1N936A 1N936B	0.033 0.069 0.092	1N937 1N937A 1N937B	0.013 0.027 0.037	1N938 1N938A 1N938B	0.006 0.013 0.018	1N939 1N939A 1N939B	0.003 0.007 0.009	
9.1	0.5 0.5 1.0 1.0	8 A B A	1N4765 1N4765A 1N4770 1N4770A	0.068 0.141 0.068 0.141	1N4766 1N4766A 1N4771 1N4771A	0.034 0.070 0.034 0.070	1N4767 1N4767A 1N4772 1N4772A	0.014 0.028 0.014 0.028	1N4768 1N4768A 1N4773 1N4773A	0.007 0.014 0.007 0.014	1N4769 1N4769A 1N4774 1N4774A	0.003 0.007 0.003 0.007	
11.7	7.5 7.5 7.5	8 4 C	1N941 1N941A 1N941B	0.088 0.081 0.239	1N942 1N942A 1N942B	0.044 0.090 0.120	1N943 1N943A 1N943B	0.018 0.036 0.047	1N944 1N944A 1N944B	0.009 0.018 0.024	1N945 1N945A 1N945B	0.004 0.009 0.012	51-02 DO-204AA (DO-7)

 \triangle Non-suffix — $Z_{ZT} = 15$, "A" Suffix — $Z_{ZT} = 10$

JAN/JANTX(V) available, ±5% only, Military part in the 1N821 and 1N4565 series and supplied in the DO-7 package.

	Test Temperature Points
Α	-55, 0, +25, +75, +100
В	0, +25, +75
C	-55, 0, +25, +75, +100, +150
D	0, +25, +70
E	-55, 0, +25, +75, +125
F	-55, 0, +75, +125, +185
G	+25, +75, +100

Temperature Compensated Reference Devices (continued)

Precision Reference Diodes

Designed, manufactured and tested for ultra-high stability of voltage with time and temperature change. Use of special measurement equipment and voltage standards provide calibration directly traceable to the National Bureau of Standards.

			erature ollity	CER	TIFIED VOI		E STABILIT (Parts/Milli			OF OPERA	TION
				<5 PPM	/1000 HR	<10 PPN	1/1000 HR	<20 PPN	/1000 HR	<40 PPM	/1000 HR
Reference Voltage Volts	Test Current mA	Δ VZ (mV)	OP Temp Range °C	Device Type	Change μV Max	Device Type	Change μV Max	Device Type	Change µV Max	Device Type	Change μV Max
6.2±5%	7.5	2.5	25,75,100	MZ605	30	MZ610	60	MZ620	120	MZ640	240

Transient Suppressors

Transient suppressors are designed for applications requiring protection of voltage sensitive electronic devices in danger of destruction by high energy voltage transients. Select from standard factory available types or design the suppressor to meet specific needs by paralleling cells. For specific options, i.e., non-standard voltage, higher power capacity, and package configurations, consult factory.

PEAK POWER DISSIPATION @ 1.0 ms = 600 WATTS

Breakdow	n Voltage		IRSM	VRSM	
V _(BR) Volts Nom	@l Ţ mA	Device Type	Maximum Reverse Surge Current Amp	Maximum Reverse Voltage @ IRSM Volts	Case
6.8	10	P6KE6.8	56	10.8	17-02
7.5	10	P6KE7.5	51	11.7	1
8.2	10	P6KE8.2	48	12.5	
9.1	1.0	P6KE9.1	44	13.8	
10	1.0	P6KE10	40	15	
11	1.0	P6KE11	37	16.2	
12	1.0	P6KE12	35	17.3	
13	1.0	P6KE13	32	19	
15	1.0	P6KE15	27	22	1
16	1.0	P6KE16	26	23.5	1
18	1.0	P6KE18	23	26.5	
20	1.0	P6KE20	21	29.1	
22	1.0	P6KE22	19	31.9	
24	1.0	P6KE24	17	34.7	
27	1.0	P6KE27	15	39.1	
30	1.0	P6KE30	14	43.5	
33	1.0	P6KE33	12.6	47.7	
36	1.0	P6KE36	11.6	52	
39	1.0	P6KE39	10.6	56.4	ł
43	1.0	P6KE43	9.6	61.9	İ
47	1.0	P6KE47	8.9	67.8	
51	1.0	P6KE51	8.2	73.5	
56	1.0	P6KE56	7.4	80.5	
62	1.0	P6KE62	6.8	89	1
68	1.0	P6KE68	6.1	98	ı
75	1.0	P6KE75	5.5	108	1
82	1.0	P6KE82	5.1	118	1
91	1.0	P6KE91	4.8	131	
100	1.0	P6KE100	4.2	144	1
110	1.0	P6KE110	3.8	158	₩

Breakdown Voltage for Standard is ±10% Tolerance; ±5% version is available by adding "A", i.e., P6KE6.8A. Clipper (back to back) versions are available by ordering with a "C" or "CA" suffix, i.e., P6KE6.8C or P6KE6.8CA.

TRANSIENT SUPPRESSORS (continued)

PEAK POWER DISSIPATION @ 1.0 ms = 600 WATTS (continued)

Breakdow	vn Voltage		IRSM	VRSM	
V(BR) Volts Nom	@tŢ mA	Device Type	Maximum Reverse Surge Current Amp	Maximum Reverse Voltage @ IRSM Volts	Case
120	1.0	P6KE120	3.5	173	17-02
130	1.0	P6KE130	3.2	187	1
150	1.0	P6KE150	2.8	215	1 1
160	1.0	P6KE160	2.6	230	
170	1.0	P6KE170	2.5	244	
180	1.0	P6KE180	2.3	258	
200	1.0	P6KE200	2.1	287	▼

PEAK POWER DISSIPATION @ 1.0 ms = 1500 WATTS

Breakdown Voltage			ACCOUNT OF THE	IRSM	VRSM	
V(BR) Volts Nom	@l _T mA	Devic	e Type	Maximum Reverse Surge Current Amp	YHSM Maximum Reverse Voltage @ IRSM Volts	Case
6.0	1.0	1N5908		120	8.5	41-11
6.8	10	1N6267	1.5KE6.8	139	10.8	1 1
7.5	10	1N6268	1.5KE7.5	128	11.7	1
8.2	10	1N6269	1.5KE8.2	120	12.5	
9.1	1.0	1N6270	1.5KE9.1	109	13.8	1 1
10	1.0	1N6271	1.5KE10	100	15.0	
11	1.0	1N6272	1.5KE11	93	16.2	
12	1.0	1N6273	1.5KE12	87	17.3	
13	1.0	1N6274	1.5KE13	79	19.0	
15	1.0	1N6275	1.5KE15	68	22.0	
16	1.0	1N6276	1.5KE16	64	23.5	1 1
18	1.0	1N6277	1.5KE18	56.5	26.5	1 1
20	1.0	1N6278	1.5KE20	51.5	29.1	
22	1.0	1N6279	1.5KE22	47.0	31.9	
24	1.0	1N6280	1.5KE24	43.0	34.7	1 1
27	1.0	1N6281	1.5KE27	38.5	39.1	
30	1.0	1N6282	1.5KE30	34.5	43.5	
33	1.0	1N6283	1.5KE33	31.5	47.7	
36	1.0	1N6284	1.5KE36	29.0	52	
39	1.0	1N6285	1.5KE39	26.5	56.4	
43	1.0	1N6286	1.5KE43	24	61.9	1 1
47	1.0	1N6287	1.5KE47	22.2	67.8	
51	1.0	1N6288	1.5KE51	20.4	73.5	
56	1.0	1N6289	1.5KE56	18.6	80.5	1 1
62	1.0	1N6290	1.5KE62	16.9	89	1 1
68	1.0	1N6291	1.5KE68	15.3	98	
75	1.0	1N6292	1.5KE75	13.9	108	1
82	1.0	1N6293	1.5KE82	12.7	118	1 1
91	1.0	1N6294	1.5KE91	11.4	131	
100	1.0	1N6295	1.5KE100	10.4	144	
110	1.0	1N6296	1.5KE110	9.5	158	1 1
120	1.0	1N6297	1.5KE120	8.7	173	1 1
130	1.0	1N6298	1.5KE130	8.0	187	1 1
150	1.0	1N6299	1.5KE150	7.0	215	
160	1.0	1N6300	1.5KE160	6.5	230	1 1
170	1.0	1N6301	1.5KE170	6.2	244	
180	1.0	1N6302	1.5KE180	5.8	258	1 1
200	1.0	1N6303	1.5KE200	5.2	287	1 1
220	1.0		1.5KE220	4.3	344	1 1
250	1.0	4	1.5KE250	5.0	360	\ \

Breakdown Voltage for Standard is ±10% Tolerance; ±5% version is available by adding "A", i.e., 1N6267A, 1.5KE6.8A. Clipper (back to back) versions are available by ordering the 1.5KE series with a "C" or "CA" suffix, i.e., 1.5KE6.8C or 1.5KE6.8CA.

TRANSIENT SUPPRESSORS (continued)

PEAK POWER DISSIPATION @ 1.0 ms = 1500 WATTS

VRWM Working Peak Reverse Voltage (Blocking or Stand-Off Voltage)	Device Type	Clipper (Back To Back) Version	IRSM Maximum Reverse Surge Current Amp	VRSM Maximum Reverse Voltage @ IRSM Volta	Case
5.0	1N6373 / ICTE-5 / MPTE-5	ICTE-5C	160	9.4	41-11
8.0	1N6374 / ICTE-8 / MPTE-8	1N6382	100	15	
10	1N6375 / ICTE-10 / MPTE-10	1N6383	90	16.7	
12	1N6376 / ICTE-12 / MPTE-12	1N6384	70	21.2	
15	1N6377 / ICTE-15 / MPTE-15	1N6385	60	25	
18	1N6378 / ICTE-18 / MPTE-18	1N6386	50	30	
22	1N6379 / ICTE-22 / MPTE-22	1N6387	40	37.5	
36	1N6380 / ICTE-36 / MPTE-36	1N6388	23	65.2	
45	1N6381 / ICTE-45 / MPTE-45	1N6389	19	78.9	\ \

PEAK POWER DISSIPATION @ 1.0 ms = 8000 WATTS

	R g Voltage		I _R Reverse Current		Vz vn Voltage	V ₍ Clamping		V Forward	F Voltage	
Nom Vdc	V(RMS)	Device Type	μA	Min Volts	IZT @ mA	Max Volts @	lpp Amp	Voits (lF 9 Amp	Case
14	10	MPZ5-16A	50	16	0.4	24	200	1.5	10	119-01
14	10	MPZ5-16B	1	16	0.4	20	200		İ	
28	20	MPZ5-32A		32	0.2	50	100			
28	20	MPZ5-32B		32	0.2	45	100			
28	20	MPZ5-32C		32	0.2	40	100			
165	117	MPZ5-180A		180	0.03	250	20			
165	117	MPZ5-180B	1 1	180	0.03	225	20			
165	117	MPZ5-180C	\	180	0.03	205	20	\ \	\	🔻

Automotive Transient Suppressors

Automotive Transient Suppressors are designed for protection against over-voltage conditions in the auto electrical system including the "LOAD DUMP" phenomenon that occurs when the battery open circuits while the car is running.

	AUTOMOTIVE TRAN	SIENT SUPPRESSOR					
VRRM (Volts)	296-03	194-01					
	MR2525 MR2525R	MR2525L	MR2520L	MR2530L			
IO (Amp)	25	6	6	6			
V _(BR) (Volts)	24–32	24-32	24-32	24–32			
IRSM* (Amp)	110	110	68	125			
T _C @ Rated I _O (°C)	150	150	150	150			
7 (°C)	175	175	175	175			

^{*} Time Constant = 10 ms, Duty Cycle \leq 1.0%, T_C = 25°C.

Lead Tape Packaging Standards for Axial-Lead Components

1.0 SCOPE — This document covers packaging requirements for the following axial-lead components' use in automatic testing and assembly equipment: Motorola Case 51 (DO-7), Case 52 (DO-13), Case 59 (DO-41), Case 267, Case 299 (DO-35), Case 59-04 and Case 17. Packaging, as covered in this document, shall consist of axial-lead components mounted by their leads on pressure-sensitive tape, wound onto a reel.

2.0 PURPOSE — This document establishes Motorola standard practices for lead-tape packaging of axial-lead components and meets the requirements of EIA Standard RS-296-D "Lead-taping of components on axial lead configuration for automatic insertion," level

3.0 REQUIREMENTS

3.1 Component Leads

- **3.1.1** Component leads shall not be bent beyond dimension E from their nominal position. See Figure 2.
- 3.1.2 The "C" dimension shall be governed by the overall length of the reel packaged component. The distance between flanges shall be 0.059 inch to 0.315 inch greater than the overall component length. See Figures 2 and 3.
- **3.1.3** Cumulative dimension "A" tolerance shall not exceed 0.059 over 5 in consecutive components.

ORIENTATION — All polarized components must be oriented in one direction. The cathode lead tape shall be blue, and the anode tape shall be white. See Figure 1.

3.3 Reeling

- **3.3.1** Components on any reel shall not represent more than two date codes when date code identification is required.
- **3.3.2** Components leads shall be positioned perpendicularly between pairs of 0.250 inch tape. See Figure 2.
- **3.3.3** A minimum 1 inch leader of tape shall be provided before the first and last component on the reel.

3.3.4 — 50 lb. Kraft paper is wound between layers of components as far as necessary for component protection. Width of paper is 0.062 inch to 0.750 inch less than "C" dimension of reel. See Figure 3.

3.3.5 — Components shall be centered between tapes such that the difference between D1 and D2 does not exceed 0.055.

- 3.3.6 Staple shall not be used for splicing. No more than 4 layers of tape shall be used in any splice area and no tape shall be offset from another by more than 0.031 inch noncumulative. Tape splices shall overlap at least 6 inches for butt joints and at least 3 inches for lap joints, and shall not be weaker than unspliced tape.
- 3.3.7 Quantity per reel shall be as indicated in Table 1. Orders for tape and reeled product will only be processed and shipped in full reel increments. Scheduled orders must be in releases of full reel increments or multiples thereof. High volume orders and releases (item numbers 6 through 10 excepted) may be reeled on 14.00 inch reels at Motorola's option, therefore making the quantity per reel twice that shown for the 10.50 inch reels.
- 3.3.8 A maximum of 0.25% of the components per reel quantity may be missing without consecutive missing per level 1 of RS-296-D.

3.3.9 — The single face roll pad shall be placed around the finished reel and taped securely. Each reel shall then be placed in an appropriate container.

3.4 MARKING — Minimum reel and carton marking shall consist of the following: See Figure 3.

Part number

Purchase order number

Quantity

Date of reeling (when applicable)

Manufacturer's name

Electrical value (when applicable)

Date codes (when applicable; see note 3.3.1)

Tape (when applicable)

4.0 — Requirements differing from this Motorola standard shall be negotiated with the factory.

The packages indicated in the following table are suitable for lead tape packaging. The table indicates the specific devices (rectifiers and/or zeners) that can be obtained from Motorola in reel packaging, and provides the appropriate packaging specification.

TABLE 1 — PACKAGING DETAILS (ALL DIMENSIONS IN INCHES)

	Product	Quantity Per Reel	Component	Tape	Reel Dimensions		Max Off Alignment	Item
Case Type	Category	(Item 3.3.7)	Spacing A	Spacing B	C	D (max)	E	Number
Case 51 (DO-7)	All	3000	0.200 ± 0.020	2.062 ± .059	3.00	10.50	0.047	1
Case 299 (DO-35)	Zeners	3000	0.200 ± 0.020	2.062 ± .059	3.00	10.50		2
Case 17	Zeners	2000	0.200 ± 0.015	2.062 ± .059	3.00	10.50		3
Case 59-03 (DO-41)	Zeners	3000	0.200 ± 0.015	2.062 ± .059	3.00	10.50		4
Case 59-01 (DO-41)	Zeners	3000	0.200 ± 0.015	2.062 ± .059	3.00	10.50		5
Case 59-01 (DO-41)	Rectifiers	6000	0.200 ± 0.020	2.062 ± .059	3.00	14.00		6
Case 59-04	Rectifiers	5000	0.200 ± 0.020	2.062 ± .059	3.00	14.00		7
Case 52 (DO-13)	Zeners	1500	0.400 ± 0.020	2.500 ± .059	3.81	14.00		8
Case 267	Rectifiers	1500	0.400 ± 0.020	2.062 ± .059	3.00	14.00		9
Case 41-11	Zeners	1500	0.400 ± 0.020	2.500 ± .059	3.81	14.00	Ì	10
Case 194-01	Rectifiers	900	0.500 ± 0.020	1.875 ± .059	3.00	14.00	l	11
Case 194-05	Rectifiers	900	0.400 ± 0.020	1.875 ± .059	3.00	14.00		12

LEAD TAPE PACKAGING STANDARDS FOR AXIAL-LEAD COMPONENTS (continued)

FIGURE 1 - REEL PACKING

FIGURE 2 — COMPONENT SPACING

FIGURE 3 — REEL DIMENSIONS

SURFACE MOUNT TAPE AND REEL

In conjunction with the industry trend to use automatic placement equipment for microminiature components, Motorola offers MLL34 and SOT-23 devices in the industry accepted 8 mm tape and reel format. MLL41 devices are offered in 12 mm tape. The current packaging method is plastic tape with embossed cavities, which serve as a pocket for the individual device. A sealing tape is then applied to retain the device.

- Device Orientation: Either in T1 (Option 1) or T2 (Option 2) configuration.
- Quantity Per Reel: 3,000 devices for MLL34.
 6,000 devices for MLL41.
 3,000 devices for SOT-23.
- Minimum Order Quantity: 1 reel.

For ordering information, please contact your local Motorola representative. (See listing on back cover.)

Tape & Reel Options MLL34, MLL41

Polarity band indicates cathode.

Option 1 = T1 Designator, Cathode Facing Sprocket Holes Option 2 = T2 Designator, Anode Facing Sprocket Holes

Tape & Reel Options SOT-23

EIA Std RS481

Option 1 = T1 Designator Option 2 = T2 Designator

3

Rectifier Data Sheets

1N1199 thru 1N1206

MEDIUM-CURRENT SILICON RECTIFIERS

Silicon rectifiers for medium-current applications requiring:

- High Current Surge —
 240 Amperes @ T₁ = 190°C
- Peak Performance at Elevated Temperature —
 12 Amperes @ T_C = 150°C

SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

MEDIUM-CURRENT

DIFFUSED JUNCTION

*MAXIMUM RATINGS

Characteristic	Symbol	1N 1199	1N 1200	1N 1202	1N 1204	1N 1206	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	600	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	ю	12					Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	IFSM	_	 240	(for 1 o	cycle) -	-	Amp
Operating Junction Temperature Range	TJ	-		5 to +1	90	>	°c

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	2.0	°C/W

*ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (iF = 40 A, T _C = 25°C)	٧F	1.8	Volts
Maximum Instantaneous Reverse Current (Rated voltage, T _C = 150°C)	iR	10	mA

^{*}Indicates JEDEC registered data.

MECHANICAL CHARACTERISTICS

Case: Welded, hermetically sealed

Finish: All external surfaces are corrosion-resistant and the terminal lead is

readily solderable

Polarity: Cathode to case (reverse polarity units are available and designed by

an "R" suffix, i.e., 1N1202R)

Mounting Positions: Any

Stud Torque: 15 in/lbs max

Maximum Terminal Temperature for Soldering Purposes:

275°C for 10 seconds at 3 kg tension.

Weight: 6 grams (approx)

	MILLIMETERS		INC	HES
DIM	MIN	MIN MAX		MAX
Α	10.77	11.10	0.424	0.437
C	-	10.29	-	0.405
D	_	6.35	-	0.250
E	1.91	4.45	0.075	0.175
F	1.52	-	0.060	-
J	10.72	11.51	0.422	0.453
K	_	20.32	-	0.800

CASE 245 DO-203AA (DO-4)

1N1199A thru 1N1206A

MEDIUM-CURRENT SILICON RECTIFIERS

Silicon rectifiers for medium-current applications requiring:

- ◆ High Current Surge —240 Amperes @ T_J = 200°C
- Peak Performance at Elevated Temperature —
 12 Amperes @ T_C = 150°C

MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

DIFFUSED JUNCTION

*MAXIMUM RATINGS

Characteristic	Symbol	1N 1199A	1 N 1200A	1 N 1202A	1N 1204A	1N 1206A	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	VRSM	100	200	350	600	800	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	Ю	12					Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	IFSM	240 (for 1 cycle)				Amp	
Operating and Storage Junction Temperature Range	TJ, T _{Stg}	-	-6	5 to +2	00 —		°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	2.0	°C/W

*ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (i _F = 40 A, T _C = 25°C)	٧F	1.35	Volts
Maximum Average Reverse Current at Rated Conditions 1N1199A 1N1200A 1N1202A 1N1204A 1N1206A	IRO	3.0 2.5 2.0 1.5	mA

^{*}Indicates JEDEC registered data.

MECHANICAL CHARACTERISTICS

Case: Welded, hermetically sealed

Finish: All external surfaces are corrosion-resistant and the terminal lead is

readily solderable

Polarity: Cathode to case (reverse polarity units are available and designed by

an "R" suffix, i.e., 1N1202RA)

Mounting Positions: Any

Stud Torque: 15 in/lbs max

Maximum Terminal Temperature for Soldering Purposes:

275°C for 10 seconds at 3 kg tension.

Weight: 6 grams (approx)

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	10.77 11.10		A 10.77 11.1		0.424	0.437
C	-	10.29	-	0.405		
D	-	6.35	-	0.250		
E	1.91	4.45	0.075	0.175		
F	1.52		0.060	-		
J	10.72	11.51	0.422	0.453		
K		20.32	-	0.800		

CASE 245 DO-203AA (DO-4)

1N1199B thru 1N1206B

MEDIUM-CURRENT SILICON RECTIFIERS

Compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge -250 Amperes @ T_J = 200°C
- Peak Performance at Elevated Temperature 12 Amperes @ T_C = 150°C

MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

DIFFUSED JUNCTION

*MAXIMUM RATINGS

Characteristic	Symbol	1N 1199B	1 N 1200B	1 N 1202 B	1N 1204B	1N 1206B	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	VRSM	100	200	350	600	800	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	Ю	12				-	Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	IFSM	250 (for 1 cycle)					Amp
Operating and Storage Junction Temperature Range	and Storage Junction TJ, Tstg -65 to +200						°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	2.0	°C/W

*FLECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (iF = 40 A, T _C = 25°C)	٧F	1.2	Volts
Maximum Reverse Current (Rated dc voltage, T _C = 150°C)	IR	1.0	mA
Maximum Average Reverse Current at Rated Conditions	I _{RO}	0.9	mA
DC Forward Voltage (I _F = 12 A, T _C = 25°C)	V _F	1.1	Volts
Reverse Recovery Time (IFM = 40 Å, di/dt = 25 Å/ μ s to IFM = 0, $t_p \ge 4.0 \mu$ s, 60 pulses/second, 25°C)	t _{rr}	5.0	μs

^{*}Indicates JEDEC registered data.

MECHANICAL CHARACTERISTICS

Case: Metal hermetically sealed

Finish: All external surfaces are corrosion-resistant and the terminal lead is

readily solderable

Polarity: Cathode to case (reverse polarity units are available and designed by an "R" suffix, i.e., 1N1202RB)

Mounting Positions: Any Stud Torque: 15 in/lbs max

Maximum Terminal Temperature for Soldering Purposes:

275°C for 10 seconds at 3 kg tension.

Weight: 6 grams (approx)

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	10.77	11.10	0.424	0.437		
C	- 10.29		-	0.405		
D	-	6.35	-	0.250		
E	1.91	4.45	0.075	0.175		
F	1.52	_	0.060			
J	10.72	11.51	0.422	0.453		
K	_	20.32	_	0.800		

CASE 245 DO-203AA (DO-4)

1N3208 thru 1N3212

MEDIUM-CURRENT RECTIFIERS

. . . for applications requiring low forward voltage drop and rugged construction.

- High Surge Handling Ability
- Rugged Construction
- Reverse Polarity Available; Eliminates Need for Insulating Hardware in Many Cases
- Hermetically Sealed

15-AMP RECTIFIERS

SILICON **DIFFUSED-JUNCTION**

*MAXIMUM RATINGS

Rating	Symbol	1N3208 1N3208R	1N3209 1N3209R	1N3210 1N3210R	1N3211 1N3211R	1N3212 1N3212R	Unit
DC Blocking Voltage	VR	50	100	200	300	400	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current With Resistive Load	10**	15	15	15	15	15	Amp
Peak One Cycle Surge Current (60 Hz and 25°C Case Temperature)	IFSM	250	250	250	250	250	Amp
Operating Junction Temperature	TJ	-65 to +175					°C
Storage Temperature	T _{stg}	-65 to +175					

*ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature

Characteristic	Symbol	Value	Unit
Maximum Forward Voltage at 40 Amp DC Forward Current	VF	1.5	Volts
Maximum Reverse Current at Rated DC Reverse Voltage	IR	1.0	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Typical	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1.7	°C/W

*Indicates JEDEC registered data.
**T_C = 150°C

MECHANICAL CHARACTERISTICS

CASE: Welded hermetically sealed construction

FINISH: All external surfaces corrosion-resistant and the terminal lead is readily solderable

WEIGHT: 25 grams (approx.)

POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix R, ie: 1N3212R)

MOUNTING POSITION: Any

1N3491 thru 1N3495 MR327 MR330 MR328 MR331

Designers Data Sheet

MEDIUM-CURRENT SILICON RECTIFIERS

 \ldots compact, highly efficient silicon rectifiers for medium-current applications.

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing device characteristics boundaries — are given to facilitate "worst case" design.

SILICON RECTIFIERS 25 AMPERE

50-1000 VOLTS DIFFUSED JUNCTION

*MAXIMUM RATINGS

Rating	Symbol	1N3491	1N3492	1N3493	1N3494	1N3495	MR327	MR328	MR330	MR331	Unit
Peak Repetitive Reverse Voltage	VRRM										•
Working Peak Reverse Voltage	V _{RWM}	50	100	200	300	400	500	600	800	1000	Volts
DC Blocking Voltage	VR]								
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	210	280	350	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, see Figure 3) T _C = 100°C	I _O					_ 25					Amp
Nonrepetitive Peak Surge Current (surge applied at rated load conditions, see Figure 5)	İFSM				300 (for 1/2 cyc	ele) ———				Amp
Operating and Storage Junction Temperature Range	T _J , T _{stg}				-6	55 to +175	-				°C

THERMAL CHARACTERISTICS

1	Characteristic	Symbol Symbol	Max	Unit
	Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.2	°C/Watt

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction.

FINISH: All external surfaces corrosion-resistant and the terminal lead is readily solderable.

POLARITY: CATHODE TO CASE (reverse polarity units are available upon request and are designated by an "R" suffix i.e. MR327R or 1N3491R).

MOUNTING POSITIONS: Any.

^{*}Indicates JEDEC registered data for 1N3491-1N3495

1N3491 thru 1N3495, MR327, MR328, MR330, MR331

*ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Instantaneous Forward Voltage Drop (i _F = 57 Amps, T _J = 25°C)	٧F	1.7	Volts
Full Cycle Average Reverse Current (18 Amp AV and V_r , single phase, 60 Hz, T_C = 150°C)	I _{R(AV)}		mA
1N3491		10	
1N3492		10	
1N3493		8.0	
1N3494		6.0	
1N3495		4.0	
MR327		3.0	
MR328		2.5	
MR330		2.0	
MR331		1.5	
DC Reverse Current	I _R		mA
(Rated V _R , T _C = 25°C)		1.0	

FIGURE 2 - MAXIMUM FORWARD POWER DISSIPATION

1N3491 thru 1N3495, MR327, MR328, MR330, MR331

FIGURE 4 - MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE

FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT

1N3491 thru 1N3495, MR327, MR328, MR330, MR331

TYPICAL DYNAMIC CHARACTERISTICS

MOUNTING PROCEDURES

MR327-MR331 and 1N3491-1N3495 rectifiers are designed to be press-fitted in a heat sink in order to attain full device ratings. Recommended procedures for this type of mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 ± .001 inch in diameter.
- 2. Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.

 The depth and width of the break should be 0.010 inch maximum to retain maximum heat sink
- surface contact.
- 4. To prevent damage to the rectifier during press-in, the pressing force should be applied only on
- the shoulder ring of the rectifier case as shown in the figure.

 5. The pressing force should be applied evenly about the shoulder ring to avoid tilting or canting of the rectifier case in the hole during the press-in operation. Also, the use of a light industrial lubricant will be of considerable aid.

1N3659 thru 1N3663

LOW COST RECTIFIERS FOR MEDIUM CURRENT INDUSTRIAL AND COMMERCIAL APPLICATIONS

- High Surge Handling Ability
- Rugged Construction for Operation Under Severe Conditions
- Reverse Polarity Available; Eliminates Need for Insulation Hardware in Many Cases
- Hermetically Sealed

30-AMP RECTIFIERS

SILICON DIFFUSED-JUNCTION

*MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RRM} V _R	50	100	200	300	400	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current with Resistive Load @ 100°C case @ 150°C case	10			30 25			Amp Amp
Peak One Cycle Surge Current (150°C case temp, 60 Hz)	IFSM						Amp
Operating Junction Temperature	TJ	-		-65 to +175			°C
Storage Temperature	T _{stg}	-		-65 to +200			°C

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Unit
Maximum Forward Voltage at 25 Amp DC Forward Current	VF	1.2	1.2	1.2	1.2	1.2	Volts
Instantaneous Forward Voltage Drop (i _F = 78.5 Amps, T _J = 25°C)	٧F			1.4			Volts
Maximum Full Cycle Average Reverse Current @ Rated PIV and Current (as half-wave rectifier, resistive load, 150°C)	IR(AV)	5.0	4.5	4.0	3.5	3.0	mA

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1.2	°C/W

^{*}Indicates JEDEC registered data.

MECHANICAL CHARACTERISTICS

CASE: Welded hermetically sealed construction

FINISH: All external surfaces corrosion resistant, terminals readily solderable

WEIGHT: 9 grams (approx.)

 $\textbf{POLARITY:} \ \ \text{Cathode connected to case (reverse polarity available denoted by Suffix R,}$

i.e.: 1N3660R)

MOUNTING POSITION: Any

1N3659-1N3663 rectifiers are designed for press-fitted mounting in a heat sink. Recommended procedures for this type of mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 \pm .001 inch in diameter.
- 2. Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.
- 3. The depth of the break should be 0.010 inch maximum to retain maximum heat sink surface contact with the knurled rectifier surface.
- 4. Width of the break should be 0.010 inch as shown.

These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier-heat sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.

These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink plate which is mounted in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional heat sink capacity.

THIN-CHASSIS MOUNTING

1N3879 thru 1N3883 **MR1366**

Designers **Data Sheet**

STUD MOUNTED **FAST RECOVERY POWER RECTIFIERS**

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS **6 AMPERES**

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.77	11.10	0.424	0.437
C		10.29	-	0.405
D	-	6.35	_	0.250
E	1.91	4.45	0.075	0.175
F	1.52	_	0.060	-
J	10.72	11.51	0.422	0.453
K	-	20.32	-	0.800

CASE 245-01 DO-4

Designer s Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N3879	1N3880	1N3881	1N3882	1N3883	MR 1366	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	350	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	10	6.0				-	Amps	
Non-Repetitive Peak Surge Current (surge applied at rated load continuous)	IFSM	150 (one cycle)					-	Amps
Operating Junction Temperature Range	Tj	-		65 to	+150		-	°С
Storage Temperature Range	T _{stg}	-		65 to	+175 —		-	°c

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	oC/M

Motorola guarantees the listed value, although parts having higher values of thermal resistance will meet the current rating. Thermal resistance is not required by the JEDEC registration.

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (%= = 19 Amp, T _J = 150 ^O C)	٧F	_	1.2	1.5	Volts
Forward Voltage (I _F = 6.0 Amp, T _C = 25°C)	VF	_	1.0	1.4	Volts
Reverse Current (rated dc voltage) T _C = 25°C T _C = 100°C	I _R	=	10 0.5	15 1.0	μA mA

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time *(IFM = 1.0 Amp to V _R = 30 Vdc, Figure 16) (IFM = 36 Amp, di/dt = 25 A/µs, Figure 17)	t _{rr}	-	150 200	200 400	ns
Reverse Recovery Current *(IF = 1.0 Amp to VR = 30 Vdc, Figure 16)	IRM(REC)	-	-	2.0	Amp

^{*}Indicates JEDEC Registered Data for 1N3879 Series.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case

WEIGHT: 5.6 Grams (approximately) MOUNTING TORQUE: 15 in-lbs max. 200

100

70 50

30

20

10

7.0 5.0

3.0

2.0

1.0

0.7

0.3

0.2

0.4

if, INSTANTANEOUS FORWARD CURRENT (AMP)

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see Note 3). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of Tc, the junction temperature may be determined by:

TJ = TC + . TJC

where TJC is the increase in junction temperature above the case temperature. It may be determined by:

 $\triangle \mathsf{TJC} = \mathsf{P}_{\mathsf{pk}} \cdot \mathsf{R}_{\theta} \mathsf{JC} \left[\mathsf{D} + (\mathsf{1} - \mathsf{D}) \cdot \mathsf{r}(\mathsf{t}_{\mathsf{1}} + \mathsf{t}_{\mathsf{p}}) + \mathsf{r}(\mathsf{t}_{\mathsf{p}}) - \mathsf{r}(\mathsf{t}_{\mathsf{1}}) \right]$

nere r(t) = normalized value of transient thermal resistance at time, t, from Figure 3, i.e.: $r\left(t_1+t_p\right)$ = normalized value of transient thermal resistance at time t_1+t_p .

3.2

SINE WAVE INPUT

FIGURE 6 - CURRENT DERATING

FIGURE 8 - TYPICAL REVERSE CURRENT

SQUARE WAVE INPUT

FIGURE 7 - CURRENT DERATING

FIGURE 9 - NORMALIZED REVERSE CURRENT

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 16 - REVERSE RECOVERY CIRCUIT

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_{\rm F}=1.0$ A, $V_{\rm R}=30$ V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}C$, $75^{\rm o}C$, $100^{\rm o}C$, and $150^{\rm o}C$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current (I_{RM(REC)}) can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \text{ x} \left[\frac{\Omega_R}{\text{di/dt}} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

1N3889 thru 1N3893 MR1376

Designers Data Sheet

STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N3889	1N3890	1N3891	1N3892	1N3893	MR 1376	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	350	450	650	Voits
RMS Reverse Voltage	VR (RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	0	12					Amps	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	^I FSM						Amp	
Operating Junction Temperature Range	TJ	-65 to +150					°C	
Storage Temperature Range	T _{stg}	-65 to +175				°C		

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	2.0	°C/W

Motorola guarantees the listed value, although parts having higher values of thermal resistance will meet the current rating. Thermal resistance is not required by the JEDEC registration.

*ELECTRICAL CHARACTERISTICS

Characteristic		Symbol	Min	Тур	Max	Unit	
Instantaneous Forward Voltage (iF = 38 Amp, T _J = 150 ^o C)		٧F	-	1.2	1.5	Volts	
Forward Voltage (I _F = 12 Amp, T _C = 25°C)		VF	-	1.0	1.4	Volts	
Reverse Current (rated dc voltage) T _C	= 25°C = 100°C	I _R	-	10 0.5	25 3.0	μA mA	

*REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (I _F = 1.0 Amp to V_R = 30 Vdc, Figure 16) (I _{FM} = 36 Amp, di/dt = 25 A/ μ s, Figure 17)	t _{rr}	-	150 200	200 400	ns
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16)	¹ RM(REC)	-	_	2.0	Amp

^{*}Indicates JEDEC Registered Data for 1N3889 Series.

FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 12 AMPERES

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.77	11.10	0.424	0.437
C	_	10.29	_	0.405
D		6.35	_	0.250
Е	1.91	4.45	0.075	0.175
F	1.52	-	0.060	_
J	10.72	11.51	0.422	0.453
K	-	20.32	_	0.800

CASE 245-01

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion

resistant and readily solderable

POLARITY: Cathode to Case
WEIGHT: 5.6 grams (approximately)

MOUNTING TORQUE: 15 in-lbs max.

SINE WAVE INPUT

TC, CASE TEMPERATURE (°C)

130

140 150

ō

80

FIGURE 6 - CURRENT DERATING

SQUARE WAVE INPUT

3

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 16 - REVERSE RECOVERY CIRCUIT

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A,\ V_R=30\ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}C,\ 75^{\rm o}C,\ 100^{\rm o}C,$ and $150^{\rm o}C.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

1N3899 thru 1N3903 MR1386

Designers Data Sheet

STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N3899	1N3900	1N3901	1N3902	1N3903	MR 1386	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts	
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	350	450	650	Volts	
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	210	280	420	Volts	
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	lo	-	20						
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	FSM	-	250						
Operating Junction Temperature Range	ТЈ	-65 to +150							
Storage Temperature Range	Tstg	_			+175 —			°c	

*THERMAL CHARACTERISTICS

Character ⁱ stic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _∂ JC	1.8	°C/W

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (ig = 63 Amp, T = 150°C)	٧F	1	1.2	4.5	Volts
			1.2	1.5	
Forward Voltage) V _F		İ		Volts
(I _F = 20 Amp, T _C = 25°C)		_	1.1	1.4	l
Reverse Current (rated dc voltage) T _C = 25°C	1 _B	_	10	50	μА
T _C = 100 ^o C		-	0.5	6.0	mA

*REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	t _{rr}				ns
(IF = 1.0 Amp to VR = 30 Vdc, Figure 16)	"		150	200	
(I _{FM} = 36 Amp, di/dt = 25 A/μs, Figure 17)	1	-	200	400	
Reverse Recovery Current	IRM(REC)				Amp
(I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16)	1(1.12.5)	-	-	3.0	

^{*}Indicates JEDEC Registered Data for 1N3899 Series.

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 20 AMPERES

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case

WEIGHT: 17 Grams (Approximately)
MOUNTING TORQUE: 25 in-lbs max.

SINE WAVE INPUT

FIGURE 8 - TYPICAL REVERSE CURRENT

SQUARE WAVE INPUT

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - CURRENT DERATING

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 12 - TJ = 25°C 1.0 IFM = 20 A OR, RECOVERED STORED CHARGE (μc) 20.0 2 40 A

10

di/dt (AMP/μs)

20

50

STORED CHARGE DATA

100

5.0

1.0

FIGURE 16 - REVERSE RECOVERY CIRCUIT A - TEKTRONIX 545A, K PLUG IN PRE-AMP, P6000 PROBE OR EQUIVALENT R₁ 3 Ω 25 W 10 k 30 Ω 115 Vac 2 W 50 W 60 Hz R_1 - ADJUSTED FOR 1.4 Ω BETWEEN NON-INDUCTIVE POINT 2 OF RELAY AND RECTIFIER 0 UNIT INDUCTANCE $\approx 38 \mu H$ UNDER TEST R2 - TEN-1 W, 10 Ω, 1% CARBON CORE (a) A IN PARALLEL C.P. CLARE HPG 1002 1 AMP $T_A = 25 + 10 \, _0$ C FOR RECTIFIER SLO-BLO R₂ \$10 W (MAKE BEFORE BREAK) MINIMIZE ALL LEAD LENGTHS FUSE 30 Vdc O 1.0 Adc FROM CONSTANT VOLTAGE SUPPLY C1 NON-INDUCTIVE C1 1.0 µF RIPPLE = 3 mVrms MAX CONSTANT VOLTAGE 1.0 uF 300 V SUPPLY 0+ 300 V Z_{out} = 1½ Ω MAX, DC to 2 kHz

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A,\ V_R=30\ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}C,\ 75^{\rm o}C,\ 100^{\rm o}C,$ and $150^{\rm o}C.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current ($l_{RM(REC)}$) can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

Designers Data Sheet

STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics -- are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N3909	1N3910	1N3911	1N3912	1N3913	MR1396	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	350	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	10	30						Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	^I FSM	300						Amp
Operating Junction Temperature Range	Tj	-65 to +150						°C
Storage Temperature Range	T _{stg}			65 t	o +175			°c

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.2	°C/W

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (iF = 93 Amp, T _J = 150 ^o C)	٧F	-	1.2	1.5	Volts
Forward Voltage (I _F = 30 Amp, T _C = 25°C)	VF	-	1.1	1.4	Volts
Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	1 _R	-	10 0.5	25 1.0	μA mA

*REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (IF = 1.0 Amp to V _R = 30 Vdc, Figure 16) (IF _M = 36 Amp, di/dt = 25 A/µs, Figure 17)	t _{rr}	_	150 200	200 400	ns
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16)	RM(REC)	-	1.5	2.0	Amp

^{*}Indicates JEDEC Registered Data for 1N3909 Series.

1N3909 thru 1N3913 MR1396

FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 30 AMPERES

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case

WEIGHT: 17 Grams (Approximately)
MOUNTING TORQUE: 25 in-lbs max.

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended: $\ \ \, .$

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see Note 3). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of Tig., the junction temperature may be determined by

 $T_J = T_C + \triangle \, T_{JC}$

where \triangle TJC is the increase in junction temperature above the case temperature. It may be determined by:

 $\triangle T_{JC} = P_{pk} \cdot R_{\theta JC} \left[D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1)\right]$

where
r(t) = normalized value of transient thermal resistance at time, t, from Figure

t(t) = 10 marzed value of transient thermal resistance at time, t, from Figure 3, i.e.: $r(t_1 + t_p) = normalized value of transient thermal resistance at time <math>t_1 + t_p$.

FIGURE 3 - THERMAL RESPONSE

SINE WAVE INPUT

IF(AV), AVERAGE FORWARD CURRENT (AMP)

TC, CASE TEMPERATURE (°C)

SQUARE WAVE INPUT

F(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - CURRENT DERATING

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 16 - REVERSE RECOVERY CIRCUIT

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A,\ V_R=30\ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^0C,\ 75^0C,\ 100^0C,$ and $150^0C.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rf}) and peak reverse recovery current $(l_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

1N4001 thru 1N4007

GENERAL-PURPOSE RECTIFIERS

 \ldots subminiature size, axial lead mounted rectifiers for general-purpose low-power applications.

LEAD MOUNTED SILICON RECTIFIERS

50-1000 VOLTS DIFFUSED JUNCTION

*MAXIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	V _{RSM}	60	120	240	480	720	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, see Figure 8, T _A = 75°C)	'0	1.0						Amp	
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, see Figure 2)	IFSM	30 (for 1 cycle) —						Amp	
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-		- -6	5 to +1	75 —		-	°C

*ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (iF = 1.0 Amp, $T_J = 25^{\circ}C$) Figure 1	٧F	0.93	1,1	Volts
Maximum Full-Cycle Average Forward Voltage Drop ($I_O = 1.0$ Amp, $T_L = 75^{\circ}C$, 1 inch leads)	VF(AV)	-	0.8	Volts
Maximum Reverse Current (rated dc voltage) $ \begin{array}{c} T_J = 25^{\circ}C \\ T_J = 100^{\circ}C \end{array} $	1R	0.05 1.0	10 50	μА
Maximum Full-Cycle Average Reverse Current (I _O = 1.0 Amp, T _L = 75°C, 1 inch leads	¹R(AV)	-	30	μА

^{*}Indicates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Cathode indicated by color band

WEIGHT: 0.40 Grams (approximately)

NOTES:

- POLARITY DENOTED BY CATHODE

 RAND
- 2. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94	-	1.100	

CASE 59-04

(Does not meet DO-41 outline)

1N4719 thru 1N4725

LEAD MOUNTED POWER RECTIFIERS

... having low forward voltage drop and hermetic metal packages. High surge current capability and good thermal characteristics provide reliable operation.

• ROJA = 30°C/W

SILICON RECTIFIERS

3.0 AMPERES 50-1000 VOLTS DIFFUSED JUNCTION

*MAXIMUM RATINGS (Both Package Types) Ta = 25°C unless otherwise noted.

Rating	Symbol	1N4719	1N4720	1N4721	1N4722	1N4723	1N4724	1N4725	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
Nonrepetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	VRSM	100	200	300	500	720	1000	1200	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	10	3.0							Amp
Nonrepetitive Peak Surge Current (superimposed on rated current at rated voltage, T _A = 75°C)	IFSM	300 (for 1/2 cycle) —					Amp		
Operating and Case Temperature	T _J , T _{stg}	-			-65 to +175	· ———			°C

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Max Limit	Unit
*Instantaneous Forward Voltage (i _F = 3.0 A, T _J = 75°C, Half Wave Rectifier)	v _F	1.0	Volts
*Full Cycle Average Reverse Current (IO = 3.0 Amps and Rated V _R ,T _A = 75°C, Half Wave Rectifier)	I _{R(AV)}	1.5	mA
DC Reverse Current (Rated V _R , T _A = 25°C)	IR	0.5	mA

^{*}Indicates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces corrosion-resistant and leads readily solderable.

POLARITY: CATHODE TO CASE **MOUNTING POSITIONS:** Any.

Designers Data Sheet

AXIAL-LEAD, FAST-RECOVERY RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing device characteristics boundaries — are given to facilitate "worst case" design.

Rating	Symbol	1N4933	1N4934	1N4935	1N4936	1N4937	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage RMS Reverse Voltage	VRSM VR(RMS)	75 35	150 70	250 140	450 280	650 420	Volts Volts
Average Rectified Forward Current (Single phase, resistive load, $T_A = 75^{\circ}C$)	10	1.0					
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions)	İFSM	30					
Operating Junction Temperature Range Storage Temperature Range	T _J T _{stq}	-		65 to +15		-	°c °c

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R∂JC	65	°C/W
(Typical Printed Circuit-Board Mounting)			1

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
*Instantaneous Forward Voltage (i _F = 3.14 Amp, T _J = 150 ^o C)	٧F	-	1.0	1.2	Volts
Forward Voltage (I _F = 1.0 Amp, T _A = 25°C)	VF	-	1.0	1.1	Volts
*Reverse Current (Rated dc Voltage) T _A = 25°C T _A = 100°C	¹ R	-	1.0 50	5.0 100	μА

*REVERSE RECOVERY CHARACTERISTICS

Symbol	Min	Тур	Max	Unit
trr	-	150	200	ns
	-	175	300	
IRM(REC)		1.0	2.0	Amp
	trr	t _{rr} -	t _{rr} - 150 - 175	t _{rr} - 150 200 - 175 300

1N4933 thru 1N4937

FAST RECOVERY RECTIFIERS

50-600 VOLTS 1 AMPERE

NOTES:

- ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- APPLY.
 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

	MILLIN	METERS	RS INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.97	6.60	0.235	0.260	
В	2.79	3.05	0.110	0.120	
D	0.76	0.86	0.030	0.034	
К	27 94	_	1 100	_	

CASE 59-04

(Does not meet DO-41 outline)

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

FINISH: External leads are readily solderable

POLARITY: Cathode indicated by polarity band

WEIGHT: 0.4 Gram (approximately)

MAXIMUM CURRENT RATINGS

SINE WAVE INPUT
FIGURE 6 – EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD

SQUARE WAVE INPUT FIGURE 7 — EFFECT OF LEAD LENGTHS,

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

FIGURE 9 - 1/8" LEAD LENGTHS, VARIOUS LOADS

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,

FIGURE 13 - THERMAL RESISTANCE 80 70 BOTH LEADS TO HEAT SINK **EQUAL LENGTH** 30LL, THERMAL RESISTANCE JUNCTION TO LEAD (°C/W) OS CS OF CS OS MAXIMUM TYPICAL 10 1/8 1/4 3/8 1/2 5/8 3/4 7/8 LEAD LENGTH (INCHES)

FIGURE 14 - THERMAL CIRCUIT MODEL (For Heat Conduction Through The Leads)

occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

TA = Ambient Temperature Res = Thermal Resistance, Heat Sink to Ambient R_0 = Thermal Resistance, Lead to Heat Sink O-Amo R_0 = Thermal Resistance, Lead to Heat Sink R_0 = T_C = Case Temperature R_0 = Thermal Resistance, Junction to Case R_0 = Thermal Resistance, Junction to Case R_0 = Thermal Resistance, Junction to Case R_0 = Thermal Resistance, Lead to Heat Sink R_0 = Thermal Resistance, Lead (Subscripts A and K refer to anode and cathode sides respectively.) Values for thermal resistance components are: $R_{\theta L} = 112^{9} \text{C/M/iN}$. Typically and 128^{9}C/M/iM Maximum $R_{\theta J} = 18^{9} \text{C/M Typically and } 30^{9} \text{C/M Maximum}$ The maximum lead temperature may be calculated as follows: $T_{L} = 150^{9} - 4T_{JL}$ ΔT_{JL} can be calculated as shown in NOTE 1 or it may be approximated as follows:

 $\Delta T_{JL} \approx R_{\theta JL} \bullet P_F$; P_F may be formulated for sine-wave operation from Figure 3 or from Figure 4 for square-wave operation.

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGED DATA

RECOVERY TIME

FIGURE 21 – REVERSE RECOVERY

FIGURE 22 - JEDEC REVERSE RECOVERY

NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than-10% peak reverse current.

recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

current prior to the application of reverse voltage. For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time to fall Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_{\rm F}=1.0$ A, $V_{\rm R}=30$ V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/ldf for various levels of forward current and for junction temperatures of $25^{\circ}{\rm C}$, $75^{\circ}{\rm C}$, $100^{\circ}{\rm C}$, and $150^{\circ}{\rm C}$.

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorole fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

Designers Data Sheet

"SURMETIC" RECTIFIERS

... subminiature size, axial lead-mounted rectifiers for general-purpose, low-power applications.

Designers Data for "Worst Case" Conditions

The Designers Data Sheets permit the design of most circuits entirely from the information presented. Limits curves—representing boundaries on device characteristics—are given to facilitate "worst-case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N5391	1N5392	1N5393	1N5395	1N5397	1N5398	1N5399	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
Nonrepetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	VRSM	100	200	300	525	800	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, T _L = 70°C, 1/2" From Body)	ю	1.5							Amp
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions, See Figure 2)	IFSM	50 (for 1 cycle)					Amp		
Storage Temperature Range	T _{stg}	-		 -6	5 to ·	+175			οС
Operating Temperature Range	TL	-65 to +170					-	οС	
DC Blocking Voltage Temperature	TL	-			- 150) —		-	°C

*ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (i _F = 4.7 Amp Peak, T _L = 170°C, 1/2 Inch Leads)	٧F	-	1.4	Volts
Maximum Reverse Current (Rated dc Voltage) (T _L = 150°C)	IR	250	300	μА
Maximum Full-Cycle Average Reverse Current (1) (I _O = 1.5 Amp, T _L = 70°C, 1/2 Inch Leads)	IR(AV)	-	300	μА

*Indicates JEDEC Registered Data.

solderable

NOTE 1: Measured in a single-phase, halfwave circuit such as shown in Figure 6.25 of EIA RS-282, November 1963. Operated at rated load conditions I_O = 1.5 A, V_r = V_{RWM} , T_L = $70^{\circ}C$.

MECHANICAL CHARACTERISTICS

CASE: Transfer molded plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 240°C,

1/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily

POLARITY: Cathode indicated by color band

WEIGHT: 0.40 grams (approximately)

1N5391 thru 1N5399

LEAD-MOUNTED SILICON RECTIFIERS

50-1000 VOLTS DIFFUSED JUNCTION

NOTES:

- ALL RULES AND NOTES ASSOCIATED
 WITH JEDEC DO-41 OUTLINE SHALL
 APPLY
- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

	MILLIN	ILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94		1.100	

CASE 59-04

Dimensions Within JEDEC DO-15 Outline.

FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE

The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-

state conditions are achieved. Using the measured value of T_L , the junction temperature may be determined by:

$$T_J = T_L + \triangle T_{JL}$$
.

FIGURE 13 - RECTIFICATION WAVEFORM EFFICIENCY FOR SINE WAVE

FIGURE 14 – RECTIFICATION WAVEFORM EFFICIENCY FOR SQUARE WAVE

RECTIFIER EFFICIENCY NOTE

The rectification efficiency factor σ shown in Figures 13 and 14 was calculated using the formula:

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V^2_{O}(dc)}{R_L}}{\frac{V^2_{O}(rms)}{R_L}} \bullet 100\% = \frac{V^2_{O}(dc)}{V^2_{O}(ac) + V^2_{O}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input $V_m sin$ (ωt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes 40%; for a square wave input of amplitude V_m , the efficiency factor becomes 50%. (A full wave circuit has twice these efficiencies).

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 11) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current thereby reducing the value of the efficiency factor σ_c as shown in Figures 13 and 14.

It should be emphasized that Figures 13 and 14 show waveform efficiency only; they do not account for diode losses. Data was obtained by measuring the ac component of V_Q with a true rms voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for the Figures.

1N5400 thru 1N5406

LEAD MOUNTED STANDARD RECOVERY RECTIFIERS

... designed for use in power supplies and other applications having need of a device with the following features:

- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Economical Plastic Package
- Available in Volume Quantities

STANDARD RECOVERY RECTIFIERS

50-1000 VOLTS 3 AMPERE

MAXIMUM RATINGS

Rating	Symbol	1N5400	1N5401	1N5402	1N5404	1N5406	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM}	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	100	200	300	525	800	Volts
Average Rectified Forward Current (Single Phase Resistive Load, (1/2" Leads, T _L = 105°C)	ю		Amp				
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	IFSM	-		Amp			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-		င			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Unit
Thermal Resistance, Junction to Ambient (PC Board Mount, 1/2" Leads)	R_{θ} JA	53	°C/W

*ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (1) (iF = 9.4 Amp)	٧F	_	-	1.2	Volts
Average Reverse Current (1) DC Reverse Current (Rated dc Voltage, T _L = 150°C)	I _{R(AV)}	_	-	500 500	μΑ

*JEDEC Registered Data.

(1) Measured in a single-phase half-wave circuit such as shown in Figure 6.25 of EIA RS-282, November 1963. Operated at rated load conditions T_L=105°C, I_O=3.0 A, V_r=V_{RWM}.

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic Finish: External Leads are Plated, Leads are readily Solderable Polarity: Indicated by Cathode Band Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for Soldering Purposes: 240°C, ½" from case for 10 s at 5.0 lb. tension

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS) NOTE 1 - AMBIENT MOUNTING DATA Data shown for thermal resistance junction-to-ambient (R g_{JA}) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured. TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR LEAD LENGTH, L (IN) MOUNTING METHOD Reja 1/2 3/4 1/4 °C/W °C/W MOUNTING METHOD 1 P.C. Board Where Available Copper Surface area is small MOUNTING METHOD 3 P.C. Board with 1-1/2" x 1-1/2" Copper Surface L = 1/2' MOUNTING METHOD 2 Vector Push-In Terminals T-

1N5817 MBR115P 1N5818 MBR120P 1N5819 MBR130P MBR140P

AXIAL LEAD RECTIFIERS

... employing the Schottky Barrier principle in a large area metal-tosilicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency

*MAXIMUM RATINGS

Rating	Symbol	MBR115P	1N5817 MBR120P	1N5818 MBR130P	1N5819 MBR140P	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	20	30	40	V
Non-Repetitive Peak Reverse Voltage	VRSM	15	24	36	48	>
RMS Reverse Voltage	VR(RMS)	10	14	21	28	V
Average Rectified Forward Current (2) (VR(equiv) \leq 0.2 VR(dc), TL = 90°C, R _B JA = 80°C/W, P.C. Board Mounting, see Note 2, TA = 55°C)	10	1.0				A
Ambient Temperature (Rated $V_R(dc)$, $P_{F(AV)} = 0$, $R_{\theta JA} = 80^{O}C/W$)	TA	90	85	80	75	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase 60 Hz, T _L = 70°C)	^I FSM	_	25 (for c	ne cycle) —	А
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-	— −65 to	+125 •	_	°C
Peak Operating Junction Temperature (Forward Current applied)	T _{J(pk)}	-	1!	50		°C

*THERMAL CHARACTERISTICS (Note 2)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	80	°C/W

*ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (2)

Characteristic	Symbol	1N5817	1N5818	1N5819	MBR115P MBR120P MBR130P	MBR140P	Unit
Maximum Instantaneous Forward Forward Voltage (1)	٧F						٧
(ip = 0.1 A)		0.320	0.330	0.340	0.350	0.350	
(i _F = 1.0 A)		0.450	0.550	0.600	0.550	0.600	
(i _F = 3.0 A)		0.750	0.875	0.900	0.850	0.900	
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1)	iR						mA
(T _L = 25°C)		1.0	1.0	1.0	1.0	1.0	
(T _L = 100 ^o C)		10	10	10	10	10	

- (1) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.
- (2) Lead Temperature reference is cathode lead 1/32" from case. *Indicates JEDEC Registered Data for 1N5817-19.

SCHOTTKY BARRIER RECTIFIERS

1 AMPERE 15, 20, 30, 40 VOLTS

	MILLIN	METERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94	-	1.100	-

MECHANICAL CHARACTERISTICS

CASE Transfer molded plastic
FINISH All external surfaces
corrosion-resistant and the terminal leads are readily solderable
POLARITY Cathode indicated by polarity band
MOUNTING POSITIONS Any
SOLDERING

case for ten seconds

1N5817. 1N5818. 1N5819. MBR115P. MBR120P. MBR130P. MBR140P

NOTE 1 - DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 VRWM. Proper derating may be accomplished by use of equation (1).

$$T_{A(max)} = T_{J(max)} - R_{\theta JA}P_{F(AV)} - R_{\theta JA}P_{R(AV)} \quad ($$
 where
$$T_{A(max)} = \text{Maximum allowable ambient temperature}$$

$$T_{J(max)} = \text{Maximum allowable junction temperature}$$

$$(125^{\circ}\text{C or the temperature at which thermal runaway occurs, whichever is lowest)}$$

PF(AV) = Average forward power dissipation PR(AV) = Average reverse power dissipation

 $R_{\theta JA}$ = Junction-to-ambient thermal resistance

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

equation (2).

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where $T_{.1}$ = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits. Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

$$V_{R(equiv)} = V_{in}(PK) \times F$$
 (4)

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

EXAMPLE: Find TA(max) for 1N5818 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that $I_{DC} = 0.4 \text{ A } (I_{F(AV)} = 0.5 \text{ A}), I_{(FM)}/I_{(AV)} = 10, Input Voltage$ = 10 V_(rms), R_{θ JA} = 80°C/W.

Step 1. Find
$$V_{R(equiv)}$$
 Read F = 0.65 from Table 1,

... V_{R(equiv)} = (1.41)(10)(0.65) = 9.2 V.

Step 2. Find T_R from Figure 2. Read T_R = 109°C

© $V_R = 9.2 \text{ V}$ and $R_{\theta JA} = 80^{\circ} \text{C/W}$. Step 3. Find $P_{F(AV)}$ from Figure 4. **Read $P_{F(AV)} = 0.5 \text{ W}$

$$@ \frac{I(FM)}{I(AV)} = 10$$
 and $I_{F(AV)} = 0.5$ A.

Step 4. Find TA(max) from equation (3).

 $T_{A(max)} = 109 - (80)(0.5) = 69^{\circ}C.$

**Values given are for the 1N5818. Power is slightly lower for the 1N5817 because of its lower forward voltage, and higher for the 1N5819. Variations will be similar for the MBR-prefix devices. using PF(AV) from Figure 7.

TABLE 1 - VALUES FOR FACTOR F

Circuit	Half Wave		ı	Wave, dge	ľ	Wave, Fapped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

*Note that VR(PK) ≈ 2.0 Vin(PK). †Use line to center tap voltage for Vin.

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE

VR, DC REVERSE VOLTAGE (VOLTS)

1N5817, 1N5818, 1N5819, MBR115P, MBR120P, MBR130P, MBR140P

THERMAL CHARACTERISTICS

FIGURE 5 - THERMAL RESPONSE

NOTE 2 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR

Mounting		Lead Length, L (in)					
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$		
1	52	65	72	85	°C/W		
2	67	80	87	100	°C/W		
3		5	°C/W				

1-1/2" × 1-1/2" copper surface. Mounting Method 2

Mounting Method 1

P.C. Board with

P.C. Board with
1-1/2" X 1-1/2"
copper surface.
L = 3/8"

Mounting Method 3

4 N

NOTE 3 - THERMAL CIRCUIT MODEL (For heat conduction through the leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

T_A = Ambient Temperature

T_C = Case Temperature

T_L = Lead Temperature

T_J = Junction Temperature

 $R_{\theta S}^-$ = Thermal Resistance, Heat Sink to Ambient

 $R_{\theta L}$ = Thermal Resistance, Lead to Heat Sink

 $R_{\theta} = 1$ Thermal Resistance, Lead to Heat Sir $R_{\theta} = 1$ Thermal Resistance, Junction to Case

 P_D = Power Dissipation

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:

 $R_{\theta \, L}$ = 100°C/W/in typically and 120°C/W/in maximum $R_{\theta \, J}$ = 36°C/W typically and 46°C/W maximum.

| NOLL A | Square Wave | Squa

FIGURE 6 - FORWARD POWER DISSIPATION

1N5817-19

(WATTS) 3.0

0.05

Sine Wave

0.4 0.6 0.8 1.0 2.0

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - FORWARD POWER DISSIPATION

NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to jucntion diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capactiance, which lowers the dc output voltage.

1N5820 MBR320P 1N5821 MBR330P 1N5822 MBR340P

Designers Data Sheet

AXIAL LEAD RECTIFIERS

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low vp
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority Carrier Conduction

Designer's Data for Worst-Case Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves—representing boundaries on device characteristics—are given to facilitate worst-case design.

*MAXIMUM RATINGS

Rating	Symbol	1N5820 MBR320P	1N5821 MBR330P	1N5822 MBR340P	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	V
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	V
RMS Reverse Voltage	VR(RMS)	14	21	28	V
$\label{eq:average_reconstruction} \begin{split} \text{Average Rectified Forward Current(2)} \\ \text{VR}(\text{equiv}) &\leq 0.2 \ \text{VR}(\text{dc}), \text{TL} = 95^{\circ}\text{C} \\ (\text{R}_{\theta} \text{JA} = 28^{\circ}\text{C/W}, \text{P.C. Board} \\ \text{Mounting, see Note 2)} \end{split}$	10		3.0 —	•	А
Ambient Temperature Rated $V_{R(dc)}$, $P_{F(AV)} = 0$ $R_{\theta JA} = 28^{\circ}C/W$	TA	90	85	80	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load condi- tions, half wave, single phase 60 Hz, T _L = 75 ^O C)	^I FSM	80	(for one cy	cle)	А
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-	-65 to +12	5 ———	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	— 150 —		°C

*THERMAL CHARACTERISTICS (Note 2)

Characteristic	Symbol	Max	Unit			
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	28	oC/W			

*ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (2)

Characteristic	Symbol	1N5820	1N5821	1N5822	MBRP	Unit
Maximum Instantaneous	٧F					V
Forward Voltage (1)	1	ł	1			l
(i _F = 1.0 Amp)		0.370	0.380	0.390	0.400	
(i _F = 3.0 Amp)	ĺ	0.475	0.500	0.525	0.550	
(i _F = 9.4 Amp)		0.850	0.900	0.950	0.950	
Maximum Instantaneous	İR					mA
Reverse Current @ Rated	l	l	Ì	l]	
dc Voltage (1)		l		1		
T _L = 25 ⁰ C	ł	2.0	2.0	2.C	2.0	
T _L = 100°C		20	20	20	20	

- (1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
- (2) Lead Temperature reference is cathode lead 1/32" from case.
- *Indicates JEDEC Registered Data for 1N5820-22.

SCHOTTKY BARRIER RECTIFIERS

3.0 AMPERES 20, 30, 40 VOLTS

	MILLI	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	9.65	0.370	0.380	
В	4.83	5.33	0.190	0.210	
D	1.22	1.32	0.048	0.052	
K	26.97	27.23	1.062	1.072	

CASE 267-01

MECHANICAL CHARACTERISTICS

POLARITY Cathode indicated by polarity band

1N5820, 1N5821, 1N5822, MBR320P, MBR330P, MBR340P

NOTE 1 - DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 VRWM. Proper derating may be accomplished by use of equation (1).

$$T_{A(max)} = T_{J(max)} - R_{\theta JA}P_{F(AV)} - R_{\theta JA}P_{R(AV)}$$
 (1)

where TA(max) = Maximum allowable ambient temperature T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal

runaway occurs, whichever is lowest)

PF(AV) = Average forward power dissipation PR(AV) = Average reverse power dissipation

R_{θ JA} = Junction-to-ambient thermal resistance

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

equation (2).

$$T_{A(max)} = T_{B} - R_{\theta}JA^{P}F(AV)$$

Inspection of equations (2) and (3) reveals that Tp is the ambient temperature at which thermal runaway occurs or where $T_J = 125^{\circ}C$, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

$$V_{R(equiv)} = V_{(FM)} \times F$$
 (4)

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

EXAMPLE: Find TA(max) for 1N5821 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that $I_{DC} = 2.0 \text{ A } (I_{F(AV)} = 1.0 \text{ A}), I_{(FM)}/I_{(AV)} = 10, Input Voltage$ = 10 V_(rms), R_{θ JA} = 40°C/W.

Step 1. Find VR(equiv). Read F = 0.65 from Table 1,

 \therefore V_R(equiv) = (1.41)(10)(0.65) = 9.2 V.

Step 2. Find T_R from Figure 2. Read T_R = 108°C

@ $V_R = 9.2 \text{ V}$ and $R_{\theta JA} = 40^{\circ} \text{C/W}$. Step 3. Find $P_{F(AV)}$ from Figure 6. **Read $P_{F(AV)} = 0.85 \text{ W}$

Step 4. Find TA(max) from equation (3).

 $T_{A(max)} = 108 - (0.85)(40) = 74^{\circ}C.$

**Values given are for the 1N5821. Power is slightly lower for the 1N5820 because of its lower forward voltage, and higher for the 1N5822. Variations will be similar for the MBR-prefix devices, using PF(AV) from Figure 7.

TABLE 1 - VALUES FOR FACTOR F

Circuit	Half Wave			Wave, dge		Wave, 「apped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

^{*}Note that VR(PK) ≈ 2.0 Vin(PK). †Use line to center tap voltage for Vin.

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE

1N5820, 1N5821, 1N5822, MBR320P, MBR330P, MBR340P

100

t, TIME (ms)

FIGURE 6 - FORWARD POWER DISSIPATION 1N5820-22 PF(AV), AVERAGE POWER DISSIPATION (WATTS) 7.0 5.0 Sine Wave I(FM) 3.0 # (Resistive Load) I(AV) 2.0 1.0 Capacitive Loads 0.7 0.5 125⁰0 0.3 0.2 0.1 0.1 0.7 1.0

IF(AV), AVERAGE FORWARD CURRENT (AMP) FIGURE 7 — FORWARD POWER DISSIPATION MBR320P-340P

NOTE 2 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient (R_{θ} JA) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR BOILD IN STILL AIR

Mounting Method	Lead Length, L (in)				
	1/8	1/4	1/2	3/4	ROJA
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28				°C/W

NOTE 3 - APPROXIMATE THERMAL CIRCUIT MODEL

20 k

5 0 k

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

T_A = Ambient Temperature T_L = Lead Temperature T_C = Case Temperature

T_J = Junction Temperature

 $R_{\theta S}$ = Thermal Resistance, Heat Sink to Ambient

 $R_{\theta L}$ = Thermal Resistance, Lead to Heat Sink

 $R_{\theta}J$ = Thermal Resistance, Junction to Case

 P_D = Total Power Dissipation = $P_F + P_R$

PF = Forward Power Dissipation

P_R = Reverse Power Dissipation

(Subscripts (A) and (K) refer to anode and cathode sides, respec-

tively.) Values for thermal resistance components are:

 $R_{\theta} L = 42^{\circ} C/W/in$ typically and $48^{\circ} C/W/in$ maximum

 $R_{\theta}J = 10^{\circ}$ C/W typically and 16° C/W maximum

The maximum lead temperature may be found as follows:

$$T_L = T_{J(max)} - \Delta T_{JL}$$
 where $\Delta T_{JL} \approx R_{\theta} JL \cdot P_D$

Mounting Method 1

Mounting Method 2 Vector Push-In Terminals T-28

Mounting Method 3 P.C. Board with with 2-1/2" X 2-1/2" copper surface. L = 1/2"

NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11.)

1N5823, 1N5824 1N5825 MBR5825,H, H1

Designers Data Sheet

HOT CARRIER POWER RECTIFIERS

... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact (deally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low vp
- High Surge Capacity
- Low Stored Charge, Majority Carrier Conduction
- TX Version Available
- Low Power Loss/ High Efficiency

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

SCHOTTKY BARRIER RECTIFIERS

5 AMPERE 20, 30, 40 VOLTS

*MAXIMUM RATINGS

Rating	Symbol	1N5823	1N5824	1N5825 MBR5825H, H1	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
RMS Reverse Voltage	V _{R(RMS)}	14	21	28	Volts
Average Rectified Forward Current $ \begin{array}{l} VR(equiv) \leqslant 0.2 \ VR \ (dc), \ T_C = 75^{\circ}\text{C} \\ VR(equiv) \leqslant 0.2 \ VR \ (dc), \ T_L = 80^{\circ}\text{C} \\ R_{\theta}JA = 25^{\circ}\text{C}/W, P.C. Board \\ Mounting, See Note 3) \end{array} $	10		15 5.0	-	Amp
Ambient Temperature Rated VR (dc). PF(AV) = 0 R _{ØJA} = 25°C/W	ТА	65	60	55	°C
Non-Repetitive ¹ Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase 60 Hz)	^I FSM		Amp		
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	TJ, T _{stg}	-	°C		
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	4		°C	

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	3.0	°C/W

*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	1N5823	1N5824	1N5825 MBR5825H, H1	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 3.0 Amp) (iF = 5.0 Amp) (iF = 15.7 Amp)	VF	0.330 0.360 0.470	0.340 0.370 0.490	0.350 0.380 0.520	Volts
Maximum Instantaneous Reverse Current @ rated dc Voltage T _C = 25°C T _C = 100°C	iR	10 75	10 75	10 75	mA

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0% *Indicates JEDEC Registered Data for 1N5823-1N5825

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V $_{RWM}$. Proper derating may be accomplished by use of equation (1):

$$T_A(max) = T_J(max) - R_{\theta}JAP_F(AV) - R_{\theta}JAP_R(AV)$$
 (1) where

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta}JA$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

 $TA(max) = TR - R_{\theta}JA^{P}F(AV)$ (3) Inspection of equations (2) and (3) reveals that T_{R} is the ambient temperature at which thermal runaway occurs or where $T_{J} = 125^{\circ}C$, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

 $V_{R(equiv)} = V_{IN(PK)} \times F$ (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_{A(max)}$ for 1N5825 operated in a 12-Volt do supply using a bridge circuit with capacitive filter such that $I_{DC}=10$ A ($I_{F(AV)}=5$ a.), $I_{PK}/I_{(AV)}=10$, Input Voltage = 10 V(rms), $R_{\theta}J_A=10^{9}$ C/W.

Step 1: Find VR(equiv). Read F = 0.65 from Table 1...

VR(equiv) = (1.41)(10)(0.65) = 9.2 V

Step 2: Find T_{R} from Figure 3. Read T_{R} = 113 $^{\circ}$ C @ V_{R} = 9.2 V & $R_{\theta JA}$ = 10 $^{\circ}$ C/W.

Step 3: Find P_{F(AV)} from Figure 4. **Read P_{F(AV)} = 5.5 W

@ (PK) = 10 & |F(AV) = 5 A

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 113-(10)$ (5.5) = 58°C.

**Value given are for the 1N5825. Power is slightly lower for the other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wave, Bridge			II Wave, er Tapped *†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

^{*}Note that VR(PK) ~ 2 Vin(PK)

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5823

FIGURE 3 — MAXIMUM REFERENCE TEMPERATURE 1N5825 AND MBR5825H, H1

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5824

FIGURE 4 -- FORWARD POWER DISSIPATION

 $[\]dagger$ Use line to center tap voltage for V_{in} .

THERMAL CHARACTERISTICS

NOTE 2 - FINDING JUNCTION TEMPERATURE

NOTE 3 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient (RAJA) for the mountings shown is to be used as typical guideline values for preliminary engineering.

TYPICAL VALUES FOR RAIA IN STILL AIR

	LEAD LEN		
MOUNTING METHOD	1/4	1	$R_{\theta JA}$
1	55	60	°C/W
2	65	70	°C/W
3	25		°C/W

Vector pin mounting

FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL

Use of the above model permits calculation of average junction temperature for any mounting situation. Lowest values of thermal resistance will occur when the cathode lead is brought as close as possible to a heat dissipator; as heat conduction through the anode lead is small. Terms in the model are defined as follows:

*Case temperature reference is at cathode end.

TEMPERATURES

TA = Ambient

TAA = Anode Heat Sink Ambient

TAK = Cathode Heat Sink Ambient

T_{LA} = Anode Lead T_{LK} = Cathode Lead

T_J = Junction

THERMAL RESISTANCES

 $R_{\theta CA}$ = Case to Ambient

Resa = Anode Lead Heat Sink to Ambient $R_{\theta SK}$ = Cathode Lead Heat Sink to Ambient $R_{\theta LA}$ = Anode Lead

 $R_{\theta LK}$ = Cathode Lead

 $R\theta CL$ = Case to Cathode Lead $R\theta JC$ = Junction to Case

 $R_{\theta JA}$ = Junction to Anode Lead (S bend)

NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10).

Rectification efficiency measurements show that operation will be a stisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction.

FINISH: All external surfaces corrosion-resistant and the terminal leads are readily solderable.

WEIGHT: 2.4 grams (approximately).

POLARITY: Cathode to case.
MOUNTING POSITONS: Any

1N5826 1N5827 1N5828

Designers Data Sheet

HOT CARRIER POWER RECTIFIER

. . . employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

SCHOTTKY BARRIER RECTIFIERS

15 AMPERE 20,30,40 VOLTS

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N5826	1N5827	1N5828	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current $V_{R(equiv)} \le 0.2 V_{R(dc)}, T_C = 85^{\circ}C$	10	-	15	-	Amp
Ambient Temperature Rated $V_{R(dc)}$, $P_{F(AV)} = 0$, $R_{\theta JA} = 5.0^{\circ}C/W$	ТА	95	90	85	°C
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, halfwave, single phase, 60 Hz)	¹ FSM	500	O (for 1 cy	cle) —>	Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied)	T _J ,T _{stg}	-	-65 to +12	5 ——	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	<u> </u>		°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	2.5	°C/W

*ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	1N5826	1N5827	1N5828	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(i _F = 8.0 Amp) (i _F = 15 Amp) (i _F = 47.1 Amp)		0.380 0.440 0.670	0.400 0.470 0.770	0.420 0.500 0.870	
Maximum Instantaneous Reverse Current @ rated dc Voltage (1) T _C = 100 ^O C	İR	10 75	10 75	10 75	mĄ

*Indicates JEDEC Registered Data.

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal leads are readily solderable.

POLARITY: Cathode to Case
MOUNTING POSITION: Any
STUD TORQUE: 15 in. lb. max

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ where

TA(max) = Maximum allowable ambient temperature

 $T_{J(max)}$ = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta,JA}$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_R - R_{\theta JA} P_{F(AV)}$$
 (

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

 $V_{R(equiv)} = V_{in(PK)} \times F$

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_{A(max)}$ for 1N5828 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that I_{DC} = 10 A ($I_{F(AV)}$ = 5 A), $I_{(PK)}/I_{(AV)}$ = 20, Input Voltage = 10 V(rms), $R_{\theta JA}$ = 5° C/W.

Step 1: Find VR(equiv). Read F = 0.65 from Table I : $V_{R(equiv)} = (1.41)(10)(0.65) = 9.18 V$

Find TR from Figure 3. Read TR = 121°C @ VR = 9.18 Step 2: & R₀JA = 5°C/W

Find PF(AV) from Figure 4.** Read PF(AV) = 10 W Step 3: | (PK) = 20 & | F(AV) = 5 A @|<u>'(AV)</u>

Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 121-(5)(10)$ Sten 4 = 71°C

** Value given are for the 1N5828. Power is slightly lower for the other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wave, Bridge			Wave, Tapped * †
Load	Resistive	Capacitive *	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

^{*}Note that VR(PK) ≈ 2 Vin(PK)

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE -- 1N5826

^{*†}Use line to center tap voltage for Vin.

^{*}No external heat sink.

NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

1N5829, 1N5830 1N5831 MBR5831,H, H1

Designers Data Sheet

HOT CARRIER POWER RECTIFIERS

. . . employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority
 High Surge Capacity

 - Carrier Conduction
- TX Version Available

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N 5829	1N 5830	1N 5831 MBR 5831H,H1	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
Average Rectified Forward Current VR(equiv) ≤ 0.2 VR (dc), TC = 85°C	lo	-	25		Amp
Ambient Temperature Rated VR (dc), PF(AV) = 0 R ₀ JA = 3.5°C/W	TA	90	85	80	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase 60 Hz)	IFSM	800 (for 1 cycle)			Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied	Г _Ј , Т _{stg}	-65 to +125			°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	•	 150		°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta}$ JC	1.75	°C/W

*FLECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Characteristic	Symbol	1 N 5829	1N 5830	1N 5831 MBR 5831H, H1	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(if = 10 Amp)		0.360	0.370	0.380	
(i _F = 25 Amp)		0.440	0.460	0.480	
(i _F = 78.5 Amp)		0.720	0.770	0.820	
Maximum Instantaneous Reverse	İR				mA
Current @ Rated dc Voltage (1)		20	20	20	
(T _C = 100°C)		150	150	150	

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0% *Indicates JEDEC Registered Data for 1N5829-1N5831

SCHOTTKY BARRIER RECTIFIERS

25 AMPERE 20, 30, 40 VOLTS

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and terminal leads are readily solderable.

POLARITY: Cathode to Case MOUNTING POSITIONS: Any STUD TORQUE: 15 in. lb. Max

1N5829, 1N5830, 1N5831, MBR5831H, H1

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 V_{RWM}. Proper derating may be accomplished by use of equation (1):

$$T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$$
 (1)
where

TA(max) = Maximum allowable ambient temperature

 $T_{J(max)}$ = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta,JC}$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

 $T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

$$V_{R(equiv)} = V_{in(PK)} \times F$$
 (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find TA(max) for 1N5831 operated in a 12-Volt dc example: The A(max) for INDOSI operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that I_{DC} = 16 A ($I_{F(AV)}$ = 8 A), $I_{(PK)}/I_{(AV)}$ = 20, Input Voltage = 10 V(rms), $R_{\theta JA} = 5^{\circ}C/W$.

Find V_{R(equiv)}. Read F = 0.65 from Table I ... Sten 1

 $V_{R(equiv)} = (1.41)(10)(0.65) = 9.18 V$

Step 2: Find T_R from Figure 3. Read T_R = 113°C @ V_R = 9.18 & $R_{\theta}JA = 5^{\circ}C/W$

Find PF(AV) from Figure 4.**Read PF(AV) = 12.8 W Step 3: (PK) = 20 & I_F(AV) = 8 A @|(AV)

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 113-(5)$ $(12.8) = 49^{\circ}C$

** Value given are for the 1N5828. Power is slightly lower for the other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

(3)

Circuit	Half Wave		cuit Half Wave Full Wave, Bridge		Full Wave, Center Tapped * †	
Load	Resistive	Capacitive *	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

*Note that $V_{R(PK)} \approx 2 V_{in(PK)}$

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5829

(O₀) REFERENCE TEMPERATURE

4.0 VR. REVERSE VOLTAGE (VOLTS) FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE

 $R_{\theta}JA(^{\circ}C/W) = 50$

30

85

75

Ę,

1N5831 AND MBR5831H. H1 O 11 1.75 TR, REFERENCE TEMPERATURE 10 75 R_θJA = (°C/W) = 50

VR, REVERSE VOLTAGE (VOLTS) *No external heat sink

7.0

5.0

4.0

*†Use line to center tap voltage for Vin. FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5830

FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - TYPICAL FORWARD VOLTAGE

FIGURE 6 - MAXIMUM SURGE CAPABILITY

FIGURE 7 - CURRENT DERATING

FIGURE 11 - CAPACITANCE ennr 4000 宣3000 , CAPACITANCE (12000 1000 1N5829 1000 800 600 MBR5831H H1 0.04 0.06 0.1 10 20 0.4 0.6 1.0 2.0 4.0 6.0 40 VR, REVERSE VOLTAGE (VOLTS)

NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

. employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low vp
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

SCHOTTKY BARRIER **RECTIFIERS**

40 AMPERE 20,30,40 VOLTS

TERM.1 D 1/4-28 UNF-2A TERM.2

NOTES:

- 1. DIM "P" IS DIA.
- 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
- OF HEXAGONAL BASE IS OPTIONAL.
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94	_	0.667
C		11.43	_	0.450
D	-	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K		25.40	_	1.000
L	3.86		0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	_	0.794
S		2.26	-	0.089

CASE 257-01

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	1N5832	1N5833	1N5834	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
Average Rectified Forward Current $V_{R(equiv)} \le 0.2 V_{R(dc)}, T_{C} = 75^{\circ}C$	10	40			Amp
Ambient Temperature Rated $V_{R(dc)}$, $P_{F(AV)} = 0$, $R_{\theta JA} = 2.0^{O}C/W$	TA	100	95	90	°C
Non-Repetitive Peak Surge Current (surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	→ 800 (for 1 cycle) →			Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied)	T _J ,T _{stg}	-65 to +125			°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150			°C

*THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1.0	oC/M

*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	1N5832	1N5833	1N5834	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(ip = 10 Amp)	1	0.360	0.370	0.380	
(i _F = 40 Amp)	1	0.520	0.550	0.590	
(i _F = 125 Amp)		0.980	1.080	1.180	
Maximum Instantaneous Reverse Current @ rated dc Voltage (1) T _C = 100°C	iR	20 150	20 150	20 150	mA

*Indicates JEDEC Registered Data.

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 V_{RWM}. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ (1)
where

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs whichever is lowest)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta,JC}$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

 $T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$ (3)

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J=125^{\circ}C_c$ when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

 $V_{R(equiv)} = V_{in(PK)} \times F$ (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_{A(max)}$ for 1N5834 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that I_{DC} = 30 A ($I_{F(AV)}$ = 15A), $I_{P(AV)}$ /(I_{AV}) = 10, Input Voltage = 10 V(rms), $R_{\theta JA} = 3^{\circ}C/W$.

Step 1: Find $V_{R(equiv)}$. Read F = 0.65 from Table I :: $V_{R(equiv)}$ = (10)(1.41)(0.65) = 9.18 V

Step 2: Find T_R from Figure 3. Read $T_R = 118^{\circ}$ C @ $V_R = 9.18 \text{ V}$ & $R_{\theta JA} = 3^{\circ}$ C/W

Step 3: Find $P_{F(AV)}$ from Figure 4. †Read $P_{F(AV)} = 20 \text{ W}$ $\bigotimes_{I(AV)} \frac{I(PK)}{I_{(AV)}} = 10 \& I_{F(AV)} = 15 \text{ A}$

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 118-(3)(20)$ = 58°C

†Values given are for the 1N5834. Power is slightly lower for the other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		rcuit Half Wave Full Wave, Bridge		Full Wave, Center Tapped ^{(1),(2)}		
Load	Resistive	Capacitive (1)	Resistive	Capacitive	Resistive	Capacitive	
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3	
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5	

(1) Note that VR(PK) ≈ 2 Vin(PK)

(2)Use line to center tap voltage for Vin-

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5833

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - 1N5834

*No external heat sink.

NOTE 2: HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case
MOUNTING POSITION: Any
STUD TORQUE: 25 in. lb. Max
SOLDER HEAT: See Note 3

NOTE 3: SOLDER HEAT

The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

1N6095 1N6096 SD41

SWITCHMODE POWER RECTIFIERS

 \dots using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature Capability
- Guaranteed Reverse Avalanche

SCHOTTKY BARRIER RECTIFIERS

25 and 30 AMPERES 30 to 45 VOLTS

MAXIMUM RATINGS

Rating	Symbol	1N6095*	1N6096*	SD41	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	30	40	45 35 45	Volts
Average Rectified Forward Current (Rated V_R)	10	25 T _C = 70°C	25 T _C = 70°C	30 T _C = 105°C	Amps
Case Temperature (Rated V_R)	тс	105	105		°C
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	400	400	600	Amp
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 10. (1)	IRRM	2.0	2.0	2.0	Amps
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to + 125	-65 to + 125	-55 to + 150°C	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150	150	150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	_	_	700	V/μs

THERMAL CHARACTERISTICS

	Characteristic	Symbol	1N6095*	1N6096*	SD41	Unit
i	Maximum Thermal Resistance, Junction to Case	R _θ JC	-	2.0		°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1N6095*	1N6096*	SD41	Unit
Maximum Instantaneous Forward Voltage (2) (i _F = 30 Amp, T _C = 125°C)	٧F		_	0.55	Volts
(i _F = 78.5 Amp, T _C = 70°C) Maximum Instantaneous Reverse Current (2)	iR	0.86 250	0.86 250	125	mA
(Rated dc Voltage, T _C = 125°C) Capacitance	Ct	6000	6000	@ V _R = 35 V	pF
$(100 \text{ kHz} \geqslant f \geqslant 1.0 \text{ MHz})$		V _R = 1.0 V	V _R = 1.0 V	V _R = 5.0 V	

*Indicates JEDEC Registered Data.

(1) Not JEDEC requirement, but a Motorola product capability.

(2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$

FIGURE 1 -- TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 3 — MAXIMUM SURGE CAPABILITY

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficienty is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers.

First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not required. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead is also stress-reliefed.

These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ μ s and reverse avalanche.

1N6097 1N6098 SD51

SWITCHMODE POWER RECTIFIERS

... using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Guardring for Stress Protection
- Low Power Loss/High Efficiency
- 150°C Operating Junction Temperature Capability
- High Surge Capacity

SCHOTTKY BARRIER RECTIFIERS

60 AMPERES 20 to 45 VOLTS

CASE 257 DO-5

MAXIMUM RATINGS

Rating	Symbol	1N6097*	1N6098*	SD51	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	30	40	45 35 45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	¹ FRM `	_		120 T _C = 90°C	Amps
Average Rectified Forward Current (Rated V _R)	lo	50 T _C = 70°C	50 T _C = 70°C	-	Amps
Case Temperature (Rated V _R)	тс	115	115	-	°C
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	-	Amps		
Peak Repetitive Reverse Surge Current (2) (2.0 μ s, 1.0 kHz) See Figure 10.	IRRM	4	Amps		
Operating Junction Temperature Range (Reverse Voltage Applied)	TJ	-65 to +125	-65 to +125	-65 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +125	-65 to +125	-65 to +165	°C
Voltage Rate of Change (Rated V _R)	dv/dt	_		700	V/µs

THERMAL CHARACTERISTICS

Characteristic	Symbol	1N6097*	1N6098*	SD51	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$		1.0 —		°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	1N6097*	1N6098*	SD51	Unit
Maximum Instantaneous Forward Voltage (2)	٧F				Volts
(i _F = 157 Amp, T _C = 70°C)		0.86	0.86	_	
(i _F = 60 Amp)				0.70	
(i _F = 60 Amp, T _C = 125°C)		-		0.60	
(i _F = 120 Amp, T _C = 125°C)				0.84	
Maximum Instantaneous Reverse Current (2)	İR			200	mA
(Rated Voltage, T _C = 125°C)		250	250	50	
(Rated Voltage, T _C = 25°C)		-		@ V _R = 35 V	
DC Reverse Current	I _R	250	250	_	mA
(Rated Voltage, T _C = 115°C)					
Maximum Capacitance	Ct	7000	7000	4000	pF
$(100 \text{ kHz} \leqslant f \leqslant 1.0 \text{ MHz})$	l	V _R = 1.0 Vdc	V _R = 1.0 Vdc	VR = 5.0 Vdc	

^{*}Indicates JEDEC Registered Data.

⁽¹⁾ Not a JEDEC requirement, but of Motorola product capability.

⁽²⁾ Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/us and reverse avalanche.

FIGURE 10 - TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

NOTES:

- - OF HEXAGONAL BASE IS OPTIONAL
- ANGULAR ORIENTATION AND CONTOUR OF
- TERMINAL ONE IS OPTIONAL.
- THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5 1973

	MILLI	LIMETERS INC		HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94	-	0.667
C	-	11.43	-	0.450
D	-	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	-	25.40	-	1.000
L	3.86	-	0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	_	0.794
S	_	2.26	-	0.089

CASE 257-01 (DO-5)

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable

POLARITY: Cathode-to-Case

MOUNTING POSITION: Any

STUD TORQUE: 25 in.-lb Max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eye-let and the body during any soldering operation.

MBR030 MBR040

Advance Information

SWITCHMODE RECTIFIERS

... designed for use in switching power supplies, inverters, and as free wheeling diodes, these devices have the following features:

- Low Forward Voltage
- Low Leakage Current
- DO-204AH (DO-35) Glass Package

MAXIMUM RATINGS

Rating	Symbol	MBR030	MBR040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	40	Volts
Average Rectified Forward Current (Rated V _R) T _L = 75°C, L = 3/6" T _A = 50°C, L = 3/6", (Mt. Method #1)	[†] F(AV)	← 0	.5 	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	FSM	◄ ——5	.0———	Amps
Operating Junction and Storage Temperature	T _J , T _{stg}	- 65 to	+ 150	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Lead = 3/8"	R _€ JL	180	190	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Foward Voltage (1)	٧F			Volts
$(i_F = 0.1 \text{ A}, T_J = 25^{\circ}\text{C})$	1	0.460	0.500	
$(i_F = 0.5 \text{ A}, T_J = 25^{\circ}\text{C})$		0.610	0.650	
Reverse Current	iR			mA
(Rated dc Voltage, T _J = 125°C)		0.6	1.0	
(Rated dc Voltage, T _J = 25°C)		0.003	0.005	

(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

Switchmode is a trademark of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

SCHOTTKY RECTIFIERS

0.5 AMPERE 30-40 VOLTS

MECHANICAL CHARACTERISTICS

CASE: Glass

FINISH: External leads are plated and are readily solderable

POLARITY: Cathod indicated by polarity band.

WEIGHT: 0.2 Gram (approximately).

MAXIMUM LEAD TEMPERATURE FOR SOLD-ERING PURPOSES: 230°C, 1/8" from case for 10 seconds.

FIGURE 1 — TYPICAL FORWARD VOLTAGE

FIGURE 3 — TYPICAL CAPACITANCE

FIGURE 4 — CURRENT DERATING, LEAD TEMPERATURE

FIGURE 5 — FORWARD POWER DISSIPATION

NOTE 1

MBR320 MBR340 MBR330 MBR350 MBR360

AXIAL LEAD RECTIFIERS

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Low Stored Charge, Majority Carrier Conduction

SCHOTTKY BARRIER RECTIFIERS

3.0 AMPERES 20, 30, 40, 50, 60 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR320	MBR330	MBR340	MBR350	MBR360	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	50	60	٧
Average Rectified Forward Current $T_A = 65^{\circ}C$ ($R_{\theta,JA} = 28^{\circ}C/W$, P.C. Board Mounting, see Note 3)	IO	3.0					Α
Nonrepetitive Peak Surge Current (2) (Surge applied at rated load conditions, half wave, single phase 60 Hz, T _L = 75°C)	IFSM	80					Α
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	−65 to 150°C				°C	
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}			150			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Ambient, (see Note 3, Mounting Method 3)	$R_{\theta J A}$	28	°C/W	

ELECTRICAL CHARACTERISTICS ($T_L = 25^{\circ}C$ unless otherwise noted)(2)

Characteristic	Symbol	MBR320	MBR330	MBR340	MBR350	MBR360	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 1.0 Amp) (iF = 3.0 Amp) (iF = 9.4 Amp)	VF		0.500 0.600 0.850		0.	600 740 080	V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) $T_L = 25^{\circ}C$ $T_L = 100^{\circ}C$	iR			0.60 20			mA

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.

⁽²⁾ Lead Temperature reference is cathode lead 1/32" from case.

Q

MBR320, 330 AND 340

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if Vp is sufficiently below rated Vp.

MBR350 AND 360

FIGURE 7 — TYPICAL REVERSE CURRENT* 150°C 10 5.0 2.0 IR, REVERSE CURRENT (mA) 100°C 1.0 0.50 75°C 0.20 0.10 The curves shown are typical for the highest voltage 0.05 device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from 0.02 these same curves if V_R is sufficiently below rated V_R. 0.01 0.005 0.002 10 30

VR, REVERSE VOLTAGE (VOLTS)

3

NOTE 3 — MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ($R_{\mbox{\it BJA}}$) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR RAIA IN STILL AIR

Mounting	L				
Method	1/8	1/4	1/2	3/4	ROJA
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3		2	8		°C/W

Mounting Method 1

P.C. Board where available copper surface is small.

Mounting Method 2

Vector Push-In Terminals T-28

Mounting Method 3

P.C. Board with 2-1/2" × 2-1/2" copper surface.

OUTLINE DIMENSIONS

MECHANICAL CHARACTERISTICS

CASE......Void free, transfer molded
FINISH......All external surfaces
corrosion-resistant and the terminal
leads are readily solderable
POLARITY.....Cathode indicated by
polarity band
MOUNTING POSITIONS......Any
SOLDERING......220°C 1/16" from case
for ten seconds

MBR115P MBR120P MBR130P MBR140P See Page 3-47

MBR320M MBR330M MBR340M

SCHOTTKY BARRIER RECTIFIERS

3 AMPERE 20, 30, 40 VOLTS

HOT CARRIER POWER RECTIFIERS

. . . employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

MAXIMUM RATINGS

Rating	Symbol	MBR320M	MBR330M	MBR340M	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current VR(equiv) $\leq 0.2 \text{VR} (\text{de})$, $T_{\text{C}} = 65^{\circ}\text{C}$ VR(equiv) $\leq 0.2 \text{VR} (\text{de})$, $T_{\text{L}} = 90^{\circ}\text{C}$ ($R_{\theta} J_{\text{A}} = 25^{\circ}\text{C/W}$, P.C. Board Mounting, See Note 3)	ю	15 3.0			Amp
Ambient Temperature Rated V_R (dc), $P_F(AV) = 0$ $R_{\theta JA} = 25^{\circ}C/W$	ТА	65	60	55	°C
Non-Repetitive Peak Surge Current (surge applied at rated load condi- tions, halfwave, single phase 60 Hz)	^I FSM	500 (for 1 cycle)			Amp
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J ,T _{stg}	-65 to +125			°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	— 150 —		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta}JC$	3.0	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(i _F = 5.0 Amp)		_	-	0.450	1
Maximum Instantaneous Reverse Current @ rated dc Voltage (1)	iR				mA
T _C = 25°C	1	-	-	10	1
T _C = 25°C T _C = 100°C		-	-	75	

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction.

FINISH: All external surfaces corrosion-resistant

and the terminal leads are readily solderable.

POLARITY: Cathode to case.

MOUNTING POSITIONS: Any

MBR320M, MBR330M, MBR340M

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V_{RWM} . Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ (1)

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta}JA$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J = 125^{\circ}C$,

when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

 $V_{R(equiv)} = V_{IN(PK)} \times F$ (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_{\dot{A}(max)}$ for MBR340M operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that $1_{DC}=10.0$ A ($1_{F(AV)}=5.0$), $1_{F(K)}/1_{AV}=10$, Input Voltage = 10 V(rms), $R_{\dot{\theta}JA}=10^{9}$ C/W.

Step 1: Find $V_{R(equiv)}$. Read F = 0.65 from Table I \therefore $V_{R(equiv)}$ = (1.41)(10)(0.65) = 9.2 V

2: Find T_R from Figure 3. Read T_R = 117°C @ V_R =

9.2 V & $R_{\theta JA} = 10^{9} \text{C/W}$. Step 3: Find $P_{F(AV)}$ from Figure 4. Read $P_{F(AV)} = 6.3 \text{ W}$ $@ \frac{I(PK)}{2} = 10 \text{ & } I_{F(AV)} = 5 \text{ A}$

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 117$ -(10) (6.3) = 54°C.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wav	re, Bridge		Wave, apped (1), (2)
Load	Resistive	Capacitive (1)	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

(1) Note that VR(PK)≈2 Vin(PK)

(2)Use line to center tap voltage for V_{in} .

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR340M

FIGURE 4 - FORWARD POWER DISSIPATION

THERMAL CHARACTERISTICS

FIGURE 5 - THERMAL RESPONSE

NOTE 2 - FINDING JUNCTION TEMPERATURE

TJ = TC + - TJC

where A TJC is the increase in junction temperature above the case temperature. It may be determined by:

 $\triangle \mathsf{TJC} = \mathsf{Ppk} \cdot \mathsf{R}_{\theta} \mathsf{JC} \left[\mathsf{D} + (\mathsf{1} - \mathsf{D}) \cdot \mathsf{r}(\mathsf{t}_1 + \mathsf{t}_p) + \mathsf{r}(\mathsf{t}_p) - \mathsf{r}(\mathsf{t}_1) \right]$

r(t) = normalized value of transient thermal resistance at time, t, from Figure $r(t_1 + t_p) = normalized$ value of transient thermal resistance at time $t_1 + t_p$.

NOTE 3 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient (RAJA) for the mountings shown is to be used as typical guideline values for preliminary engineering.

TYPICAL VALUES FOR ROLA IN STILL AIR

	LEAD LENGTH, L (IN)		
MOUNTING METHOD	1/4	1	$R_{\theta JA}$
1	55	60	OC/W
2	65	70	°C/W
3	25		oC/W

Board Ground

Plane

FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL

Use of the above model permits calculation of average junction temperature for any mounting situation. Lowest values of thermal resistance will occur when the cathode lead is brought as close as possible to a heat dissipator; as heat conduction through the anode lead is small. Terms in the model are defined as follows:

*Case temperature reference is at cathode end.

TEMPERATURES

TA = Ambient

TAA = Anode Heat Sink Ambient TAK = Cathode Heat Sink Ambient

T_{LA} = Anode Lead

T_{LK} = Cathode Lead T_J = Junction

THERMAL RESISTANCES

 $R_{\theta CA}$ = Case to Ambient

 $R_{\theta SA}$ = Anode Lead Heat Sink to Ambient

Resk = Cathode Lead Heat Sink to Ambient

Rθ LA = Anode Lead Rθ LK = Cathode Lead

RecL = Case to Cathode Lead

 $R_{\theta JC}$ = Junction to Case

R_{θJA} = Junction to Anode Lead (S bend)

FIGURE 8 - MAXIMUM SURGE CAPABILITY

FIGURE 9 - TYPICAL REVERSE CURRENT

NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

MBR320P MBR330P MBR340P See Page 3-54

MBR735 MBR745

SCHOTTKY BARRIER RECTIFIERS

7.5 AMPERES 35 and 45 VOLTS

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

CROSS-REFERENCE GUIDE						
MOTOROLA	GI	UNITRODE	VARO			
MBR735	SB820	USD620, USD720	VSK62			
MBR735	SB830	USD635, USD735	VSK63			
MBR745	SB840	USD640, USD740	VSK64			
MBR745	SB850	USD645, USD745	_			

MAXIMUM RATINGS

Rating	Symbol	MBR735	MBR745	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	35	45	Volts
Average Rectified Forward Current (Rated V_R) $T_C = 105^{\circ}C$	I _{F(AV)}	7.5	7.5	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 105°C	FRM	15	15	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	IRRM	1.0	1.0	Amps
Operating Junction Temperature	TJ	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	R_{θ} JA	60	60	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) (i $_F$ = 7.5 Amp, T_C = 125°C) (i $_F$ = 15 Amp, T_C = 125°C) (i $_F$ = 15 Amp, T_C = 25°C)	٧F	0.57 0.72 0.84	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T_C = 125°C) (Rated dc Voltage, T_C = 25°C)	İR	15 0.1	15 0.1	mA

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$

MBR1035 MBR1045

SWITCHMODE POWER RECTIFIERS

 \dots using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, V0 at 1/8"

SCHOTTKY BARRIER RECTIFIERS

10 AMPERES 20 to 45 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR1035	MBR1045	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated V_R) $T_C = 135^{\circ}C$	I _{F(AV)}	10	10	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 135°C	IFRM	20	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 12	IRRM	1.0	1.0	Amps
Operating Junction Temperature	TJ	-65 to + 150	-65 to + 150	°C
Storage Temperature	T _{stg}	-65 to +175	~65 to +175	°C
Voltage Rate of Change (Rated VR)	dv/dt	1000	1000	V/μs

THERMAL CHARACTERISTICS

Characteristic	Symbol	MBR1035	MBR1045	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta}JC$	2.0	2.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	MBR1035	MBR1045	Unit
Maximum Instantaneous Forward Voltage (1) (i _F = 10 A, T _C = 125°C) (i _F = 20 A, T _C = 25°C) (i _F = 20 A, T _C = 25°C)	٧F	0.57 0.72 0.84	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	İR	15 0.1	15 0.1	mA

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%

FIGURE 2 —TYPICAL FORWARD VOLTAGE

FIGURE 3 — MAXIMUM REVERSE CURRENT

FIGURE 4 — MAXIMUM SURGE CAPABILITY

FIGURE 5 — CURRENT DERATING, INFINITE HEATSINK

FIGURE 6 — CURRENT DERATING, $R_{\theta JA} = 16^{\circ} \text{ C/W}$

FIGURE 7 — FORWARD POWER DISSIPATION

FIGURE 8 — CURRENT DERATING, FREE AIR

FIGURE 9 - THERMAL RESPONSE

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficieny is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 10 — CAPACITANCE 1500 1000 700 CAPACITANCE 500 Typical 300 200 150 0.05 0.1 0.2 2.0 10 20 50 N 5 1 በ 5 N VR. REVERSE VOLTAGE (VOLTS)

FIGURE 11 — SCHOTTKY RECTIFIER

Schottky Chip - View A-A

Motorola builds quality and reliability into its Schottky Rectifiers

First is the chip, which has an interface metal between the barrier metal and aluminum-contact metal to eliminate any possible interaction between the two. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb over-voltage transients

Second is the package. The Schottky chip is bonded to the copper heat sink using a specially formulated solder. This gives the unit the capability of passing 10,000 operating thermalfatigue cycles having a ΔT_J of 100°C. The epoxy molding compound is rated per UL 94, V0 @ 1/8". Wire bonds are 100% tested in assembly as they are made.

Third is the electrical testing, which includes 100% dv/dt at 1600 V/μs and reverse avalanche as part of device characterization.

OUTLINE DIMENSIONS

TO-220AC

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.11	15.75	0.595	0.620
В	9.65	10.29	0.380	0.405
C	4.06	4.82	0.160	0.190
D	0.64	0.89	0.025	0.035
F	3.61	3.73	0.142	0.147
G	4.83	5.33	0.190	0.210
Н	2.79	3.30	0.110	0.130
J	0.36	0.56	0.014	0.022
K	12.70	14.27	0.500	0.562
L	1.14	1.27	0.045	0.050
Q	2.54	3.04	0.100	0.120
R	2.04	2.79	0.080	0.110
S	1.14	1.39	0.045	0.055
T	5.97	6.48	0.235	0.255
U	0.76	1.27	0.030	0.050

STYLE 1: PIN 1. CATHODE

2. N/A 3. ANODE 4. CATHODE

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

SCHOTTKY BARRIER RECTIFIER

10 AMPERES 60 VOLTS

CASE 221B-01 TO-220AC

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	Volts
Average Rectified Forward Current (Rated V _R) T _C = 133°C	F(AV)	10	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	IFRM	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	IRRM	1.0	Amps
Operating Junction Temperature	TJ	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	V/μs
THERMAL CHARACTERISTICS			
Maximum Thermal Resistance, Junction to Case	R _θ JC	2.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	60	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (1) (iF = 10 Amp, T _C = 125°C) (iF = 20 Amp, T _C = 125°C) (iF = 20 Amp, T _C = 25°C)	٧F	0.70 0.85 0.95	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	25 0.10	mA

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

Switchmode is a trademark of Motorola Inc.

MBR1520 MBR1530 MBR1540

HOT CARRIER POWER RECTIFIER

. . . employing the Schottky Barrier principle in a large area metalto-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

SCHOTTKY BARRIER RECTIFIERS

15 AMPERE 20,30,40 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR 1520	MBR1530	MBR1540	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current (VR(equiv)≤0.2 VR(dc), TC = 80°C	10	-	15		Amp
Ambient Temperature Rated $V_{R(dc)}$, $P_{F(AV)} = 0$, $R_{\theta JA} = 5.0^{\circ}C/W$	ТА	95	90	85	°C
Non-Repetitive Peak Surge Current (surge applied at rated load condi- tions, halfwave, single phase, 60 Hz)	^I FSM	→ 500 (for 1 cycle) →			Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied)	T _J ,T _{stg}	-65 to +125			°C
Peak Operating Junction Tempera- ture (Forward Current Applied)	T _{J(pk)}	-	— 150 —		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	2.5	oC/M

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(i _F = 15 Amp)		_	-	0.550	
Maximum Instantaneous Reverse	iR				mA
Current @ rated dc Voltage (1)		_	-	10	İ
T _C = 100 ^o C		-	-	75	

(1) Pulse Test: Pulse Width = $300 \,\mu\text{s}$, Duty Cycle = 2.0%.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case
MOUNTING POSITION: Any

STUD TORQUE: 15 in. lb. max

MBR1520, MBR1530, MBR1540

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$

TA(max) = Maximum allowable ambient temperature

 $T_{J(max)}$ = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

R_{0.1A} = Junction-to-ambient thermal resistance Figures 1, 2 and 3 permit easier use of equation (1) by taking

reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta} J_{A} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that Tp is the ambient temperature at which thermal runaway occurs or where T₁ = 125°C. when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design: i.e.:

VR(equiv) = Vin(PK) x F

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find T_{A(max)} for MBR1540 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that IDC = 10 A (IF(AV) = 5 A), I(PK)/I(AV) = 20, Input Voltage = V(rms), $R_{\theta JA} = 5^{\circ}C/W$.

Step 1: Find VR(equiv). Read F = 0.65 from Table I ... VR(equiv) = (1.41)(10)(0.65) = 9.18 V

Find T_R from Figure 3. Read $T_R = 121^{\circ}C @ V_R = 9.18$ Step 2: & R0JA = 5°C/W

Find PF(AV) from Figure 4. Read PF(AV) = 10.5 W Step 3: (PK) = 20 & IF(AV) = 5 A I(AV)

Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 121-(5)$ (10.5) = 68.5°C). Sten 4

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wav	ve, Bridge		Wave, Tapped (1) (2)
Load	Resistive	Capacitive(1)	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

(1) Note that VR(PK) ≈ 2 Vin(PK)

(2) Use line to center tap voltage for Vin

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - MBR1520 FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR1530

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR1540

FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 6 - MAXIMUM SURGE CAPABILITY

FIGURE 7 - CURRENT DERATING

FIGURE 8 - THERMAL RESPONSE

NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority certier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitiance, which lowers the dc output voltage.

MBR1535CT MBR1545CT

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

SCHOTTKY BARRIER RECTIFIERS

15 AMPERES 35 and 45 VOLTS

CROSS-REFERENCE GUIDE MOTOROLA G.1. IR UNITRODE VARO MBR1535CT SB1620 12CTQ030 USD620, USD720C VSK12 SB1630 12CTQ035 USD635C, USD735C MBR1535CT VSK13 MBR1545CT SB1640 12CTQ040 USD640C, USD740C VSK14 MBR1545CT SB1645 12CTQ045 USD645C, USD745C

MAXIMUM RATINGS

Rating		Symbol	MBR1535CT	MBR1545CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	35	45	Volts
Average Rectified Forward Current T _C = 105°C (Rated V _R)	Per Diode Per Device	I _{F(AV)}	7.5 15	7.5 15	Amps
Peak Repetitive Forward Current, $T_C = 105$ °C (Rated V_R , Square Wave, 20 kHz) Per Diode		IFRM	15	15	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)		IRRM	1.0	1.0	Amps
Operating Junction Temperature		TJ	-65 to +150	-65 to +150	°C
Storage Temperature		T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)		dv/dt	1000	1000	V/µs

THERMAL CHARACTERISTICS PER DIODE

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	R ₀ JA	60	60	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

Maximum Instantaneous Forward Voltage (1)	٧F			Volts
$(i_F = 7.5 \text{ Amp, } T_C = 125^{\circ}C)$		0.57	0.57	
(i _F = 15 Amp, T _C = 125°C)		0.72	0.72	1
$(i_F = 15 \text{ Amp, } T_C = 25^{\circ}C)$		0.84	0.84	
Maximum Instantaneous Reverse Current (1)	iR			mA
(Rated dc Voltage, T _C = 125°C)		15	15	
(Rated dc Voltage, T _C = 25°C)		0.1	0.1	1

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$

MBR1635 MBR1645

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

SCHOTTKY BARRIER RECTIFIERS

16 AMPERES 35 and 45 VOLTS

MAXIMUM RATINGS		,		
Rating	Symbol	MBR1635	MBR1645	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated V_R) $T_C = 125^{\circ}C$	lF(AV)	16	16	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 125°C	IFRM	32	32	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	IRRM	1.0	1.0	Amps
Operating Junction Temperature	TJ	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	R_{θ} JC	1.5	1.5	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) ($i_F = 16$ Amp, $T_C = 125$ °C) ($i_F = 16$ Amp, $T_C = 25$ °C)	٧F	0.57 0.63	0.57 0.63	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	40 0.2	40 0.2	mA

MBR2035CT MBR2045CT

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

SCHOTTKY BARRIER RECTIFIERS

20 AMPERES 35 and 45 VOLTS

CROSS-REFERENCE GUIDE					
MOTOROLA	IR	FUJI			
MBR2035CT	20CTQ030	_			
MBR2035CT	20CTQ035	_			
MBR2045CT	20CTQ040	ESAC83-4			
MBR2045CT	20CTQ045	ESAD83-4			

MAXIMUM RATINGS

Rating	Symbol	MBR2035CT	MBR2045CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated V _R) T _C = 135°C	I _{F(AV)}	20	20	Amps
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz) T _C = 135°C	^I FRM	20	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 11	IRRM	1.0	1.0	Amps
Operating Junction Temperature	TJ	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/μs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance Junction to Case	Roje	2.0	2.0	°C/W

Maximum Thermal Resistance, Junction to Case	R_{θ} JC	2.0	2.0	°C/W	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (1) (i $_{\rm F}$ = 10 Amp, T _C = 125°C) (i $_{\rm F}$ = 20 Amp, T _C = 125°C) (i $_{\rm F}$ = 20 Amp, T _C = 25°C)	٧F	0.57 0.72 0.84	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (1)	iR			mA
(Rated dc Voltage, T _C = 125°C)	l	15	15	1
(Rated dc Voltage, T _C = 25°C)		0.1	0.1]

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%

FIGURE 5 — CURRENT DERATING, INFINITE HEATSINK

FIGURE 6 — CURRENT DERATING, $R_{\theta JA} = 16^{\circ} \text{ C/W}$

FIGURE 7 — FORWARD POWER DISSIPATION

FIGURE 8 — CURRENT DERATING, FREE AIR

FIGURE 9 - THERMAL RESPONSE

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficieny is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 11 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

- UTES:

 1. DIMENSIONS L AND H APPLIES TO ALL LEADS.
 2. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
 3. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5 1973
- 4. CONTROLLING DIMENSION: INCH.

	MILLIN	METERS	INC	HES	STYLE 6:
DIM	MIN	MAX	MIN	MAX	PIN 1. ANODE 1
Α	15.11	15.75	0.595	0.620	2. CATHODE
В	9.65	10.29	0.380	0.405	
C	4.06	4.82	0.160	0.190	3. ANODE 2
D	0.64	0.89	0.025	0.035	4. CATHODE
F	3.61	3.73	0.142	0.147	
G	2.41	2.67	0.095	0.105	
н	2.79	3.30	0.110	0.130	
J	0.36	0.56	0.014	0.022	
K	12.70	14.27	0.500	0.562	
Ĺ	1.14	1.27	0.045	0.050	
N	4.83	5.33	0.190	0.210	
Q	2.54	3.04	0.100	0.120	
R	2.04	2.79	0.080	0.110	
S	1.14	1.39	0.045	0.055	
Ť	5.97	6.48	0.235	0.255	
U	0.76	1.27	0.030	0.050	CASE 221A-02
٧	1.14		0.045		0
Z	-	2.03	_	0.080	TO-220AB

MBR2520 MBR2530 MBR2540

HOT CARRIER POWER RECTIFIER

. . . employing the Schottky Barrier principle in a large area metal-tosilicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low vp
- Low Power Loss/High Efficiéncy
- Low Stored Charge, Majority
 - **Carrier Conduction**
- High Surge Capacity

SCHOTTKY BARRIER RECTIFIERS

25 AMPERE 20, 30, 40 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR2520	MBR2530	MBR2540	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
Average Rectified Forward Current VR(equiv.) ≤ 0.2 VR(dc), TC = 80°C	10	-	25		Amp
Ambient Temperature Rated $V_{R(dc)}$, $P_{F(AV)} = 0$ $R_{\theta JA} = 3.5^{O}C/W$	TA	90	85	80	°C
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, halfwave, single phase, 60 Hz)	^I FSM	80	Amp		
Operating and Storage Junction Temperature Range (Reverse voltage applied)	TJ, T _{stg}	-65 to +125			°C
Peak Operating Junction Temperature (Forward Current Applied)	TJ (pk)	-	— 150 —	-	°c

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	1.75	ocw

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 25 Amp)	٧F	_	_	0.550	Volts
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) ($T_C = 100^{\circ}C$)	iR	-	-	20 150	mA

(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistance and terminal lead is readily solderable.

POLARITY: Cathode to Case MOUNTING POSITIONS: Any STUD TORQUE: 15 in. lb. Max

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1)

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$

TA(max) = Maximum allowable ambient temperature

 $T_{J(max)} = Maximum allowable junction temperature (125°C)$ or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta,IC}$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_R = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

VR(equiv) = Vin(PK) x F

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find $T_A(max)$ for MBR2540 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that I_{DC} 16 A $(I_{F(AV)} = 8 \text{ A})$, $I_{(PK)}/I_{(AV)} = 20$, Input Voltage = 10 V(rms), $R_{\theta}JA = 5^{\circ}C/W$.

Step 1: Find V_{R(equiv)}. Read F = 0.65 from Table I ...

 $V_{R(equiv)} = (1.41)(10)(0.65) = 9.18 V$

Find T_R from Figure 3. Read $T_R = 113^{\circ}$ C @ $V_R = 9.18$ & R₀JA = 5°C/W

Find PF(AV) from Figure 4. Read PF(AV) = 14.8 W Step 3:

 $@^{\frac{1}{(PK)}} = 20 & I_{F(AV)} = 8 A$

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 113-(5)$

 $(14.8) = 39^{\circ}C$

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wave, Bridge			Wave, oped (1), (2)
Load	Resistive	Capacitive (1)	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

(1) Note that VR(PK) ≈ 2 Vin(PK)

(2) Use line to center tap voltage for Vin.

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR2540

*No external heat sink

NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 35 and 45 VOLTS

CROSS-REFERENCE GUIDE

ſ	MOTOROLA	IR	FUJI
	MBR2535CT	30CTQ030	
	MBR2535CT	30CTQ035	PRODE
ſ	MBR2545CT	30CTQ040	ESAC83-4
Ī	MBR2545CT	30CTQ045	ESAD83-4

MAXIMUM RATINGS

Rating	Symbol	MBR2535CT	MBR2545CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	45	Volts
Average Rectified Forward Current (Rated V_R) $T_C = 130^{\circ}C$	I _F (AV)	30	30	Amps
Peak Repetitive Forward Current Per Diode Leg (Rated V_R , Square Wave, 20 kHz) T_C = 130°C	IFRM	30	30	Amps
Nonrepetitive Peak Surge Current per Diode Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	İFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	IRRM	1.0	1.0	Amps
Operating Junction Temperature	Tj	-65 to + 150	-65 to + 150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/µs

THERMAL CHARACTERISTICS PER DIODE LEG Maximum Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER DIODE LEG				
Maximum Instantaneous Forward Voltage (1) (i _F = 30 Amp, T _C = 125°C) (i _F = 30 Amp, T _C = 25°C)	٧F	0.73 0.82	0.73 0.82	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	40 0.2	40 0.2	mA

 $R_{\theta}JC$

1.5

1.5

°C/W

(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%

R

MBR3020CT MBR3035CT MBR3045CT SD241

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

CROSS-REFERENCE GUIDE							
MOTOROLA TRW UNITRODE VARO							
SD241	SD241	SD241	_				
MBR3020CT		_	VSK3020T	60CDQ020			
MBR3035CT	_		VSK3030T	60CDQ035			
MBR3045CT	SD241	_	VSK3040T	60CDQ045			

SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 20 to 45 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR3020CT	MBR3035CT	MBR3045CT	SD241	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	20	35	45	45	Volts
Average Rectified Forward Current Per Device (Rated V_R) $T_C = 105^{\circ}C$ Per Diode	ю	30 15	30 15	30 15	30 15	Amps
Peak Repetitive Forward Current, Per Diode (Rated V _R , Square Wave, 20 kHz)	^I FRM	30	30	30	30	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	400	400	400	400	Amps
Peak Repetitive Reverse Current, Per Diode (2.0 μs, 1.0 kHz) See Figure 8	IRRM	2.0	2.0	2.0	2.0	Amps
Operating Junction Temperature	TJ	-65 to + 150	-65 to + 150	-65 to + 150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	-65 to +175	-65 to +175	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _J (pk)	175	175	175	175	°C
	dv/dt	1000	1000	1000	1000	V/µs

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.4	1.4	1.4	1.4	°C/W
--	-----------------	-----	-----	-----	-----	------

ELECTRICAL CHARACTERISTICS PER DIODE

Maximum Instantaneous Forward Voltage (1)	VF €	1				Volts
(i _F = 10 Amp, T _C = 125°C)		-			0.47	
(i _F = 20 Amp, T _C = 125°C)	1	0.60	0.60	0.60	0.60	1
(i _F = 30 Amp, T _C = 125°C)	į	0.72	0.72	0.72	_	1
(i _F = 30 Amp, T _C = 25°C)	1	0.76	0.76	0.76	_	
Maximum Instantaneous Reverse Current (1)	İR					mA
(Rated dc Voltage, T _C = 125°C)	1	60	60	60	100	l
(Rated dc Voltage, T _C = 25°C)		1.0	1.0	1.0	V _R = 35 V	
Capacitance	Ct	2000	2000	2000	2000	pF

⁽¹⁾ Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leqslant 2.0\%$

FIGURE 1 — TYPICAL FORWARD VOLTAGE

FIGURE 2 — TYPICAL REVERSE CURRENT

FIGURE 3 - MAXIMUM SURGE CAPABILITY

FIGURE 4 — CURRENT DERATING

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 6 - THERMAL RESPONSE PER DIODE LEG

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 7.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficieny is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 7 — CAPACITANCE

FIGURE 8 — TEST CIRCUIT FOR REPETITIVE REVERSE CURRENT

MBR3020CT, MBR3035CT, MBR3045CT, SD241

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers

First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not required. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The pin-to-chip aluminum leadwire

provides stress relief. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. Copper-core steel pins match the expansion coefficient of the glass and are long enough (0.440 in. min.) to reach through a heat sink to a printed circuit board.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/µs and reverse avalanche

			۲۰
1			
E SEATING -	/	D	Ţ
PLAN	U		
	F	J	
Ч	211		R
	Ů		G

INC	HES	NOT
BIRI	MAAV	

DIM	MIN	MAX	MIN	MAX	
A	_	39.37	-	1.550	
В	_	22.23	-	0.875	
C	6.35	11.43	0.250	0.450	
D	0.97	1.09	0.038	0.043	
E	-	3.43	-	0.135	
F	30.1	5 BSC	1.18	7 BSC	
G	10.9	2 BSC	0.43	O BSC	
Н	5.4	6 BSC	0.21	5 BSC	
J	16.8	9 BSC	0.66	5 BSC	
K	11.18	12.19	0.440	0.480	
0	3.84	4.09	0.151	0.161	
R	-	26.67	-	1.050	
٧	3.84	4.09	0.151	0.161	

MILLIMETERS

CASE 11-03 TO-204AA

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed.

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case. MOUNTING POSITION: Any.

TES:

- DIAMETERS Q, V AND SURFACE T ARE DATUMS.
- 2. POSITIONAL TOLERANCE FOR HOLE Q:
 - ⊕ Ø 0.25 (0.010) ⊗ T V ⊗
- 3. POSITIONAL TOLERANCE FOR LEADS: (0 Ø 0.30 (0.012) ⋈ T V ⋈ Q ⋈
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

STYLE 4:

PIN 1. ANODE 1

2. ANODE 2 CASE. COMMON CATHODE

MBR3035PT MBR3045PT

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction Terminals 1 and 3 May Be Connected For Parallel Operation At Full Rating
- Guardring For Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 35 to 45 VOLTS

RATINGS

Rating		Symbol	Maximum	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR3035PT MBR3045PT	V _{RRM} V _{RWM} V _R	35 45	Volts
Average Rectified Forward Current (Rated V _R) T _C = 105°C	Per Device Per Diode	^I F(AV)	30 15	Amps
Peak Repetitive Forward Current, Per Diode (Rated V _R , Square Wave, 20 kHz)		İFRM	30	Amps
Nonrepetitive Peak Surge Current (Surge Applied at rated load conditions halfwave, single phase, 60 Hz)		IFSM	200	Amps
Peak Repetitive Reverse Current, Per Diode (2.0 μs, 1.0 kHz) See Figure 6		IRRM	2.0	Amps
Operating Junction Temperature		TJ	-65 to +150	°C
Storage Temperature		T _{stg}	-65 to +175	°C
Peak Surge Junction Temperature (Forward Current Applied)		T _{J(pk)}	175	°C
Voltage Rate of Change (Rated V _R)		dv/dt	1000	V/μs

THERMAL CHARACTERISTICS PER DIODE

Thermal Resistance, Junction to Case	$R_{\theta}JC$	1.4	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	40	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

Instantaneous Forward Voltage (1) (iF = 20 Amp, T _C = 125°C) (iF = 30 Amp, T _C = 125°C) (iF = 30 Amp, T _C = 25°C)	٧F	0.60 0.72 0.76	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	İR	100 1.0	mA

(1) Pulse Test: Pulse Width = 300 $\mu s, \, Duty \, Cycle \leqslant 2.0\%$ Switchmode is a trademark of Motorola Inc.

- 1. ANODE 1 2. CATHODE(S)
- 2. CATHUDE(S)
 3. ANODE 2
- 4. CATHODE(S)

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	0.830
В	15,49	15.90	0.610	0.626
C	4.19	5.08	0.165	0.200
D	1.02	1.65	0.040	0.065
E	1.35	1.65	0.053	0.065
G	5.21	5.72	0.205	0.225
Н	2.41	3.20	0.095	0.126
J	0.38	0.64	0.015	0.025
K	12.70	15.49	0.500	0.610
L	15.88	16.51	0.625	0.650
N	12.19	12.70	0.480	0.500
Q	4.04	4.22	0.159	0.166

CASE 340-01 TO-218AC

FIGURE 6 — TEST CIRCUIT FOR REPETITIVE

MBR3520 MBR3535 MBR3545, H, H1

SWITCHMODE POWER RECTIFIERS

. . . using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guardring for dv/dt Stress Protection
- Guaranteed Reverse Surge Current/Avalanche
- 150°C Operating Junction Temperature

SCHOTTKY BARRIER RECTIFIERS

35 AMPERES 20 to 45 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR3520	MBR3535	MBR3545, H, H1*	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	35	45	Volts
Peak Repetitive Forward Current (Rated VR, Square Wave, 20 kHz, TC = 110°C)	IFRM	70			Amps
Average Rectified Forward Current (Rated VR, TC = 110°C)	I _F (AV)	35			Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 8	IRRM	2.0		Amps	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	600		Amps	
Operating Junction Temperature	TJ	-65 to + 150		°C	
Storage Temperature	T _{stg}	-65 to +175		°C	
Voltage Rate of Change (Rated V _R)	dv∕dt	1000		V/μs	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	R_{θ} JC	1.3	1.5	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (1)	٧F			Volts
(i _F = 35 Amp, T _C = 125°C)		0.49	0.55	Ì
(i _F = 35 Amp, T _C = 25°C)		0.55	0.63	
(i _F = 70 Amp, T _C = 125°C)	ì	0.60	0.69	1
Instantaneous Reverse Current (1)	İR			mA
(Rated Voltage, T _C = 125°C)		60	100	
(Rated Voltage, T _C = 25°C)	ļ	0.1	0.3	
Capacitance ($V_R = 1.0 \text{ Vdc}$, 100 kHz > f > 1.0 MHz, $T_C = 25^{\circ}\text{C}$)	Ct	3000	3700	pF

^{*}H and H1 devices include extra testing. See Figure 10.

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%

20

0**L**

(Capacitive Load)

80

I_{pk} I_{AV}

= 20, 10, 5

T_C, CASE TEMPERATURE (°C)

50

70 100

50

40

PF(AV). AVERAGE POWER DISSIPATION WATTS) 20 Square Wave π (Resistive Load) 30 40 I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS)

160

140

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 7.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

MBR3520, MBR3535, MBR3545, H, H1

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead is also stress-reliefed to prevent damage during assembly. These two features give the

unit the capability of passing powered thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ μ s and reverse avalanche. Devices are also 100% reverse scope tested for trace anomalies.

FIGURE 10 - HI-REL PROGRAM OPTIONS

MBR4020 **MBR4030 MBR4040**

HOT CARRIER POWER RECTIFIER

. . employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passiva-tion and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

SCHOTTKY BARRIER **RECTIFIERS**

40 AMPERE 20,30,40 VOLTS

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	_	16.94		0.667
C	-	11.43	-	0.450
D	~	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	-	25.40	-	1.000
L	3.86		0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	_	20.16		0.794
S	_	2.26	-	0.089

NOTES:

- DIM "P" IS DIA.
 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS. OF HEXAGONAL BASE IS OPTIONAL.
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL. 4. THREADS ARE PLATED.

- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

CASE 257-01 DO-5

MAXIMUM RATINGS

Rating	Symbol	MBR4020	MBR4030	MBR4040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	48	Volts
Average Rectified Forward Current VR(equiv) ≤ 0.2 VR(dc), TC = 70°C	ю	40		Amp	
Ambient Temperature Rated VR(dc), PF(AV) = 0, R _{θJA} = 2.0°C/W	TA	100	95	90	°c
Non-Repetitive Peak Surge Current (surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	≪— 800 (for 1 cycle) ——			Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied)	TJ,T _{stg}	-65 to +125		°C	
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	— 150 —	-	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta}JC$	1.0	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(iF = 40 Amp)		_	-	0.630	
Maximum Instantaneous Reverse	iR				mA
Current @ rated dc Voltage (1)		-		20	
T _C = 100 ^o C		_	_	150	

(1) Pulse Test: Pulse Width = 300 \(\mu \)s, Duty Cycle = 2.0%.

MBR4020, MBR4030, MBR4040

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ where

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JC}$ = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{B} - R_{\theta JA} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design: i.e.

 $\bar{V}_{R(equiv)} = V_{in(PK)} \times F$

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find TA(max) for MBR4040 operated in a 12-Volt do supply using a bridge circuit with capacitive filter such that IDC = 30 A (IF(AV) = 15 A), I(PK)/I(AV) = 10, Input Voltage = 10 V(rms), $R_{\theta,JA} = 3^{9}C/W$.

Step 1: Find V_R(equiv). Read F = 0.65 from Table I ∴

 $V_{R(equiv)} = (10)(1.41)(0.65) = 9.18 V$

Find T_R from Figure 3. Read $T_R = 118^{\circ}C @ V_R = 9.18 V$ & R0JA = 3°C/W

Find $P_{F(AV)}$ from Figure 4. Read $P_{F(AV)} = 25 \text{ W}$ Step 3: (PK) = 10 & I_F(AV) = 15 A

@ (A V)

Step 4: Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 118-(3)$ (25) = 43° C.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		uit Half Wave Full Wave, Bridge		Full Wave, Center Tapped (1),(2)		
Load	Resistive	Capacitive (1)	Resistive	Capacitive	Resistive	Capacitive	
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3	
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5	

(1) Note that VR(PK) ≈ 2 Vin(PK)

(2) Use line to center tap voltage for Vin.

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR 4040

*No external heat sink VR, REVERSE VOLTAGE (VOLTS)

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR4030

(AV), AVERAGE FORWARD POWER DISSIPATION (WATTS) 64 SINE WAVE RESISTIVE 56 LOAD SINE WAVE CAPACITIVE 20 10 5.0 LOADS 32 SQUARE 24 ≈ 125°(

24

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 11 - CAPACITANCE 8000 6000 $T_{\rm J} = 25^{\rm o}$ 4000 <u>을</u> 3000 CAPACITANCE 2000 1500 MBR4020 1000 800 600 MBR4040 400 0.04 0.06 0.1 04 06 10 VR, REVERSE VOLTAGE (VOLTS)

NOTE 2: HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case MOUNTING POSITION: Any STUD TORQUE: 25 in. lb. Max

NOTE 3: SOLDER HEAT

The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

MBR5825H, H1 See Page 3-59 MBR5831H, H1 See Page 3-64

MBR6035 MBR6045, H, H1

SCHOTTKY RECTIFIERS

60 AMPERES 35 AND 45 VOLTS

CASE 257-01

SWITCHMODE POWER RECTIFIERS

. . . using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 150°C Operating Junction Temperature
- Low Forward Voltage

MAXIMUM RATINGS

Rating	Symbol	MBR6035 MBR6035B	MBR6045, H, H1* MBR6045B	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 100°C	IFRM	120	-	Amps
Average Rectified Forward Current (Rated V _R) T _C = 100°C	10	60	-	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 7	IRRM.	2.0	-	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800	-	Amps
Operating Junction Temperature	TJ	-65 to +	150	°C
Storage Temperature	T _{stg}	-65 to +	175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000) —	V/µs

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.85	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (1)	VF			Volts
(i _F = 60 Amp, T _C = 25°C)		0.65	0.70	1
(i _F = 60 Amp, T _C = 125°C)		0.57	0.60	
(i _F = 120 Amp, T _C = 125°C)		0.70	0.76	ŧ
Instantaneous Reverse Current (1)	İR			mA
(Rated Voltage, T _C = 25°C)		0.1	0.3	Ì
(Rated Voltage, T _C = 125°C)		55	100	1
Capacitance	C _t	3000	3700	pF
(V _R = 1.0 Vdc, 100 kHz ≤ 1.0 MHz)				

^{*}H and H1 devices include extra testing. (1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2.0%

50

if, INSTANTANEOUS FORWARD CURRENT (AMPS)

20

0.01

10

FIGURE 2 — TYPICAL REVERSE CURRENT

VR, REVERSE VOLTAGE (VOLTS)

40

NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 7 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $T_{\rm C}$, the junction temperature may be determined by:

determined by: $T_J = T_C + \Delta \, T_{JC}$ where $\Delta \, T_C$ is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} = P_{pk} \cdot R_{\theta,JC} [D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1)]$ where r(t) = normalized value of transient thermal resistance at time, t, from Figure 8, i.e.:

 $r(t_1 + t_p)$ = normalized value of transient thermal resistance at time $t_1 + t_p$.

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ μs and reverse avalanche.

HI-REL PROGRAM OPTIONS

The MBR6045 is also available with two levels of extra testing similar to "TX" screening and including Group A and B inspection programs. Both the MBR6045H and MBR6045H1 go through 100% screening consisting of high temperature storage, temperature cycling, constant acceleration and hermetic seal testing

prior to a sample being submitted to Group A and B inspection. After completion of Group B inspection, the MBR6045H is available without additional screening. MBR6045H1 devices are further processed through a high temperature reverse bias (HTRB) and forward burn-in. Consult factory for details.

	MILLI	WETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	_	16.94	-	0.667
C	-	11.43	-	0.450
D	-	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	-	25.40	-	1.000
L	3.86	-	0.156	
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	-	0.794
S	_	2.26	-	0.089

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode-to-Case

MOUNTING POSITION: Any

STUD TORQUE: 25 in.-lb Max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorole suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

NOTES:

- 1. DIM "P" IS DIA.
- 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
 OF HEXAGONAL BASE IS OPTIONAL
- 3. ANGULAR ORIENTATION AND CONTOUR OF
- TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

Case 257-01 (DO-5)

MBR6035PF MBR6045PF

SWITCHMODE POWER RECTIFIERS

... using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectfiers in low-voltage, high frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 150°C Operating Junction Temperature
- Low Forward Voltage

SCHOTTKY RECTIFIERS

60 AMPERES 35 and 45 VOLTS

MAXIMUM RATINGS

Rating	Symbol	MBR6035PF	MBR6045PF	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 100°C	IFRM	◄ 1:	20	Amps
Average Rectified Forward Current (Rated V _R) T _C = 100°C	10	← 6	50 	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 7	IRRM	2.0		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	₹	00 ──►	Amps
Operating Junction Temperature	Tj	-65 to	+ 150	°C
Storage Temperature	T _{stg}	-65 to	o +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10	>>>	V/μs

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.77	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (1)	٧F	_	_	Volts
(i _F = 60 Amp, T _C = 25°C)		0.65	0.70	1
(i _F = 60 Amp, T _C = 125°C)	1	0.57	0.60	
(i _F = 120 Amp, T _C = 125°C)		0.70	0.76	
Instantaneous Reverse Current (1)	iR	_	_	mA
(Rated Voltage, T _C = 25°C)		0.1	0.3	
(Rated Voltage, T _C = 125°C)		55	100	
Capacitance (V _R = 1.0 Vdc, 100 kHz ≤ 1.0 MHz)	Ct	3000	3700	pF

⁽¹⁾ Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leqslant 2.0\%$

NOTE 1
HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

NOTE 2 Ppk DUTY CYCLE, D = tp/t1 PEAK POWER, Ppk, 1s peak of an equivalent square power pulse.

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the case should be measured using a thermocouple

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $T_{\rm C}$, the junction temperature may be determined by:

determined by: $T_J = T_C + \Delta \, T_{JC}$ where $\Delta \, T_C$ is the increase in junction temperature above the case temperature. It may be determined by:

$$\begin{split} \Delta T_{JC} = P_{pk} * R_{\theta JC} (D + (1 - D) * r(t_1 + t_p) + r(t_p) - r(t_1)] \text{ where } \\ r(t) = \text{normalized value of transient thermal resistance at time, } t, \text{ from Figure 8, } i.e.: \\ r(t_1 + t_p) = \text{normalized value of transient thermal resistance at time } t_1 + t_p. \end{split}$$

FIGURE 7 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

FIGURE 9 - SCHOTTKY RECTIFIER

MBR6035PF, MBR6045PF

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case
MOUNTING POSITION: Any
WEIGHT: 9 grams (Approximately)

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ μ s and reverse avalanche.

MOUNTING INFORMATION

Recommended procedures for mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 ± 0.001 inch in diameter.
- Break the hole edge as shown to provide a guide into the hole and prevent shearing off the knurled side of the rectifier.
- The depth and width of the break should be 0.010 inch maximum to retain maximum heat sink surface contact.
- To prevent damage to the rectifier during press-in, the pressing force should be applied only on the shoulder ring of the rectifier case.
- The pressing force should be applied evenly about the shoulder ring to avoid tilting or canting of the rectifier case in the hole during the press-in operation. Also, the use of a thermal lubricant such as D.C. 340 will be of considerable aid.

For more information see: Mounting Techniques for Metal Packaged Power Semiconductors, AN-599.

THIN-CHASSIS MOUNTING

MBR6535 MBR6545

SWITCHMODE POWER RECTIFIERS

... using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 175°C Operating Junction Temperature
- Low Forward Voltage

HIGH TEMPERATURE SCHOTTKY RECTIFIERS

65 AMPERES 35 and 45 VOLTS

CROSS-REFERENCE GUIDE

MOTOROLA	IR
MBR6535	60CDQ030
MBR6535	60CDQ035
MBR6545	60CDQ040
MBR6545	60CDQ045

MAXIMUM RATINGS

Rating	Symbol	MBR6535	MBR6545	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 120°C	IFRM	130	130	Amps
Average Rectified Forward Current (Rated V _R) T _C = 120°C	lo	65	65	Amps
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 7	IRRM	2.0	2.0	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800	800	Amps
Operating Junction Temperature and Storage Temperature	TJ, T _{Stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/μs

THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Case	R_{θ} JC	1.0	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (1)	V _F			Volts
(i _F = 65 Amp, T _C = 25°C)		0.78	0.78	İ
(i _F = 65 Amp, T _C = 150°C)		0.62	0.62	
(i _f = 130 Amp, T _C = 150°C)		0.73	0.73	
Maximum Instantaneous Reverse Current (1)	İR			mA
(Rated Voltage, T _C = 25°C)		0.07	0.07	
(Rated Voltage, T _C = 150°C)		125	125	
Capacitance $(V_R = 1.0 \text{ Vdc}, 100 \text{ kHz} \le f \le 1.0 \text{ MHz})$	Ct	3700	3700	pF

⁽¹⁾ Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leqslant 2.0\%$

NOTE 1
HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 5 — FORWARD CURRENT DERATING

FIGURE 6 - POWER DISSIPATION

FIGURE 7 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of ${\sf T}_{\sf C}$, the junction temperature may be determined by:

determined by: $T_J = T_C + \Delta T_{JC}$ where ΔT_C is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} = P_{pk} \cdot R_{\theta JC} [D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1)] \text{ where } r(t) = \text{normalized value of transient thermal resistance at time, } t, \text{ from } t \in \mathbb{R}^{n}$

 $r(t_1 + t_p)$ = normalized value of transient thermal resistance at time $t_1 + t_p$.

FIGURE 9 - SCHOTTKY RECTIFIER

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/µs and reverse avalanche.

NOTES:

- 1. DIM "P" IS DIA.
- CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
- OF HEXAGONAL BASE IS OPTIONAL.
 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLI	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94	_	0.667
C	_	11.43	-	0.450
D		9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	-	25.40	-	1.000
L	3.86	-	0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	-	0.794
S	-	2.26	_	0.089

CASE 257-01 DO-203AB (DO-5)

2. CATHODE (CASE)

STYLE 2: TERM. 1. ANODE

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable

POLARITY: Cathode-to-Case **MOUNTING POSITION: Any** STUD TORQUE: 25 in.-lb Max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

MBR7520 MBR7530 MBR7535 MBR7540 MBR7545

SWITCHMODE POWER RECTIFIERS

... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/ High Efficiency
- High Surge Capacity

SCHOTTKY BARRIER RECTIFIERS

75 AMPERES 20 to 45 VOLTS

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosionresistant and terminal lead is readily solderable. POLARITY: Cathode to case MOUNTING POSITIONS: Any STUD TORQUE: 25 in. lb. max

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	_	16.94	_	0.667
c	-	11.43	-	0.450
D	_	9.53	_	0.375
E	2.92	5.08	0.115	0.200
F		2.03		0.080
J	10.72	11.51	0.422	0.453
K		25.40	-	1.000
L	3.86	_	0.156	
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	_	0.794
S		2.26	-	0.089

NOTES:

- 1. DIM "P" IS DIA.
- 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL.
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

CASE 257-01 DO-5

MBR7520, MBR7530, MBR7535, MBR7540, MBR7545

MAXIMUM RATINGS

Rating	Symbol	MBR7520	MBR7530	MBR7535	MBR7540	MBR7545	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	35	40	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	^I FRM						Amp
Average Rectified Forward Current (Rated V _R)	10	70 T _C =90°C					Amp
Non-repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	^I FSM	1000					Amp
Operating and Storage Junction Temperature Range	TJ, T _{stg}	g -65 to +150 -					°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-		 175			°C
Voltage Rate of Change (Rated V _R)	dv/dt	-		— 1000 —			V/μs

THERMAL CHARACTERISTICS

Characteristic	Symbol	MBR7520	MBR7530	MBR7535	MBR7540	MBR7545	Unit
Thermal Resistance, Junction to Case	R _∂ JC	0.8				°C/W	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	MBR7520	MBR7530	MBR7535	MBR7540	MBR7545	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 60 Amp, $T_C = 125^{\circ}C$) (iF = 220 Amp, $T_C = 125^{\circ}C$)	٧F	0.60			Volts		
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C = 125^{\circ}C$)	İR	100	125	150	200	250	mA
Capacitance (V _R = 5.0 Vdc, 100 kHz ≤ f ≤ 1.0 MHz)	Ct	4000			pF		

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.

MBR8035 MBR8045

SWITCHMODE POWER RECTIFIERS

. . . using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 175°C Operating Junction Temperature
- Low Forward Voltage

CROSS-REFERENCE GUIDE MOTOROLA IR TRW UNITRODE VARO MBR8035 75HQ030, 85HQ030 USD520 MBR8035 75HQ035, 85HQ035 USD535 MBR8045 SD71 VSK71 75HQ040, 85HQ040 USD545 MBR8045 75HQ045, 85HQ045 SD72 VSK72

SCHOTTKY RECTIFIERS

80 AMPERES 35 and 45 VOLTS

CASE 257-01 DO-203AB (DO-5)

MAXIMUM RATINGS

Rating	Symbol	MBR8035	MBR8045	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 120°C	IFRM	160	160	Amps
Average Rectified Forward Current (Rated V_R) $T_C = 120$ °C	10	80	80	Amps
Peak Repetitive Reverse Surge Current (2.0 μ s, 1.0 kHz) See Figure 7	IRRM	2.0	2.0	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	FSM	1000	1000	Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{Stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				•
Maximum Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.80	0.80	°C/W
ELECTRICAL CHARACTERISTICS				-
Maximum Instantaneous Forward Voltage (1) (i $_F$ = 80 Amp, T $_C$ = 25°C) (i $_F$ = 80 Amp, T $_C$ = 150°C) (i $_F$ = 160 Amp, T $_C$ = 150°C)	٧F	0.72 0.59 0.67	0.72 0.59 0.67	Volts
Maximum Instantaneous Reverse Current (1) (Rated Voltage, $T_C = 25^{\circ}C$) (Rated Voltage, $T_C = 150^{\circ}C$)	İR	1.0 150	1.0 150	mA
Capacitance (V _R = 1.0 Vdc, 100 kHz \leq f \leq 1.0 MHz)	Ct	5000	5000	pF
(1) Bulga Tasti Bulga Midth = 200 as Duty Cycle < 2.0%				

⁽¹⁾ Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leqslant 2.0\%$

NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

FIGURE 5 — FORWARD CURRENT DERATING

FIGURE 7 - TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of ${\rm T_{C}}$, the junction temperature may be determined by:

determined by: $T_{J} = T_{C} + \Delta T_{JC}$ where ΔT_{C} is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} = P_{pk} * R_{\theta,JC} |D + (1-D) * r(t_1 + t_p) + r(t_p) - r(t_1)| \ where \\ r(t) = normalized value of transient thermal resistance at time, t, from Figure 8, i.e.:$

 $r(t_1 + t_p)$ = normalized value of transient thermal resistance at time $t_1 + t_p$.

FIGURE 9 - SCHOTTKY RECTIFIER

STYLE 2: TERM, 1. ANODE

2. CATHODE (CASE)

CASE 257-01 DO-203AB (DO-5)

Motorola builds quality and reliability into its Schottky Rectifiers. First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/us and reverse avalanche

NOTES:

- 1. DIM "P" IS DIA.
- 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
- OF HEXAGONAL BASE IS OPTIONAL.

 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLI	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94	-	0.667
C	_	11.43	~	0.450
0	-	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	_	25.40	-	1.000
L	3.86	-	0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	-	0.794
S	-	2.26	-	0.089

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable

POLARITY: Cathode-to-Case **MOUNTING POSITION: Any** STUD TORQUE: 25 in.-lb Max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests aheat sink be clamped between the eyelet and the body during any soldering operation.

MBR12035CT MBR12045CT MBR12050CT MBR12060CT

POWERTAP

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

MAXIMUM RATINGS

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR12035CT MBR12045CT MBR12050CT MBR12060CT	V _{RRM} V _{RWM} V _R	35 45 50 60	Volts
Average Rectified Forward Current (Rated V _R) T _C = 140°C		lF(AV)	120 60	Amps
Peak Repetitive Forward Current, P (Rated V _R , Square Wave, 20 kHz)	IFRM	120	Amps	
Nonrepetitive Peak Surge Current (Surge applied at rated load con- halfwave, single phase, 60 Hz)	FSM	800	Amps	
Peak Repetitive Reverse Current, Po (2.0 μs, 1.0 kHz) See Figure 6	er Leg	IRRM	2.0	Amps
Operating Junction and Storage Te	emperature	TJ,Tstg	-65 to +175	°C
Voltage Rate of Change (Rated VR)		dv/dt	1000	V/μs

THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	R ₀ JC	0.85	°C/W	

ELECTRICAL CHARACTERISTICS PER LEG

Instantaneous Forward Voltage (1) (iF = 60 Amp, TJ = 125°C) (iF = 120 Amp, TJ = 175°C)	٧F	0.590 0.620	Volts
(i _F = 120 Amp, T _J = 125°C) (i _F = 120 Amp, T _J = 25°C)		0.680 0.830	
Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 125°C) (Rated dc Voltage, T _J = 25°C)	iR	25 0.25	mA

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. PowerTap and Switchmode are trademarks of Motorola Inc.

SCHOTTKY BARRIER RECTIFIERS

120 AMPERES 35 to 60 VOLTS

25-50 lb.-in. 30-40 lb.-in.

Terminal Torque

Mounting Base Torque

MBR12035CT, MBR12045CT, MBR12050CT, MBR12060CT

MBR20035CT MBR20045CT MBR20050CT MBR20060CT

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher **Current Output**
- Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

MAXIMUM RATINGS

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR20035CT MBR20045CT MBR20050CT MBR20060CT	VRRM VRWM VR	35 45 50 60	Volts
Average Rectified Forward Current (Rated V _R) T _C = 140°C	Per Device Per Leg	lF(AV)	200 100	Amps
Peak Repetitive Forward Current, F (Rated V _R , Square Wave, 20 kHz		^I FRM	200	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load con halfwave, single phase, 60 Hz)	ditions	FSM	1500	Amps
Peak Repetitive Reverse Current, P (2.0 μs, 1.0 kHz) See Figure 6	er Leg	IRRM	2.0	Amps
Operating Junction and Storage To	emperature	T _J ,T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated VR)	dv/dt	1000	V/μs

THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, J	lunction to Ca	se	$R_{\theta JC}$	0.5	°C/W

ELECTRICAL CHARACTERISTICS PER LEG

Instantaneous Forward Voltage (1) (iç = 200 Amp, T _J = 175°C) (iç = 200 Amp, T _J = 125°C) (iç = 100 Amp, T _J = 125°C) (iç = 100 Amp, T _J = 25°C)	٧F	0.650 0.825 0.710 0.800	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 125°C) (Rated dc Voltage, T _J = 25°C)	iR	50 0.5	mA

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. PowerTap and Switchmode are trademarks of Motorola Inc.

SCHOTTKY BARRIER RECTIFIERS

200 AMPERES 35 to 60 VOLTS

- NOTES:

 1. DIMENSIONS A AND B ARE DATUMS AND TIS A DATUM SURFACE AND SEATING PLANE.

 POSITIONAL TOLERANCE FOR N HOLES:

 \$\begin{align*}
 \$\begin{align*}
 \$\delta\$ 13 (0.090 & | \begin{align*}{1} A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 70 (0.910 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} B \otimes \end{align*}
 \$\delta\$ 1.0000 & | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \otimes | \begin{align*}{0} T A \o

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	-	92.20	-	3.630
В	1.77	2.32	0.700	0.800
C	-	15.87	-	0.625
E	3.05	3.30	0.120	0.130
F	12.45	12.95	0.490	0.510
G	34.92	BSC	1.375 BSC	
Н	-	1.27	-	0.050
N	-	-	1/4-20	UNC
Q	6.86	7.11		0.280
R	80.01	BSC	3.150	BSC
U	15.24	-	0.600	-
٧	8.38	8.89	0.330	0.350
W	4.32	4.83	0.170	0.190
Y	40.00	BSC	1.575	BSC

CASE 357B-01

Terminal Penetration Terminal Torque Mounting Base Torque 0.280 in. Max. 25-75 lb.-in. 30-40 lb.-in.

MBR20035CT, MBR20045CT, MBR20050CT, MBR20060CT

FIGURE 5 — CAPACITANCE, PER LEG

FIGURE 6 — TEST CIRCUIT FOR REPETITIVE REVERSE CURRENT

MBR30035CT MBR30045CT

Advance Information

SWITCHMODE POWER RECTIFIERS

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher **Current Output**
- Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

SCHOTTKY BARRIER RECTIFIERS

300 AMPERES 35 to 45 VOLTS

MAXIMUM RATINGS

Rating		Symbol	Maximum	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR30035CT MBR30045CT	V _{RRM} V _R WM V _R	35 45	Volts
Average Rectified Forward Current (Rated V _R) T _C = 140°C	Per Device Per Leg	¹ F(AV)	300 150	Amps
Peak Repetitive Forward Current, P. (Rated VR, Square Wave, 20 kHz)	•	IFRM	300	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		^I FSM	2500	Amps
Peak Repetitive Reverse Current, Po (2.0 μs, 1.0 kHz) See Figure 6	er Leg	IRRM	2.0	Amps
Operating Junction and Storage Te	mperature	Tj, Tstg	-65 to +175	%
Voltage Rate of Change (Rated VR)		dv/dt	1000	V/μs

THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.4	°C/W
ELECTRICAL CHARACTERISTICS PE	R LEG		
Instantaneous Forward Voltage (1)	٧F		Volts
(i _F = 150 Amp, T _C = 125°C)	1	0.570	
(i _F = 300 Amp, T _C = 125°C)		0.615	
(i _F = 300 Amp, T _C = 25°C)		0.780	
Instantaneous Reverse Current (1)	iR		mA
(Rated dc Voltage, T _C = 125℃)		75	
(Rated dc Voltage, T _C = 25°C)		0.8	1

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$ Power Tap and Switchmode are trademarks of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

		AETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	-	92.20	-	3.630
8	1.77	2.32	0.700	0.800
C	-	15.87	-	0.625
E	3.05	3.30	0.120	0.130
F	12.45	12.95	0.490	0.510
G	34.92	BSC	1,375	BSC
H		1.27		0.050
N	-	-		UNC
Q	6.86	7.11	0.270	0.280
R	80.0	BSC	3.150	BSC
U	15.24	-	0.600	-
V	8.38	8.89	0.330	0.350
W	4.32	4.83	0.170	0.190
TY.	40.00	BSC	1.575	BSC

CASE 357B-01

Terminal Penetration Terminal Torque Mounting Base Torque

0.280" Max. 25-75 lb.-in. 30-40 lb.-in.

FIGURE 1 — TYPICAL FORWARD VOLTAGE (PER LEG)

FIGURE 2 — TYPICAL REVERSE CURRENT (PER LEG)

FIGURE 3 — CURRENT DERATING (PER LEG)

FIGURE 4 - POWER DISSIPATION (PER LEG)

FIGURE 5 — CAPACITANCE (PER LEG)

FIGURE 6 — TEST CIRCUIT FOR REPETITIVE REVERSE CURRENT

MBRL030 MBRL040

Advance Information

LEADLESS SCHOTTKY RECTIFIERS

0.5 AMPERE 30-40 VOLTS

SWITCHMODE RECTIFIERS

... designed for use in switching power supplies, inverters, and as free wheeling diodes, these devices have the following features:

- Low Forward Voltage
- Low Leakage Current
- Leadless Package for Surface Mount Technology

CASE 362-01

MAXIMUM RATINGS

Rating	Symbol	MBRL030	MBRL040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	40	Volts
Average Rectified Forward Current (Rated V _R) T _C = 75°C, T _A = 50°C, Mounting Per Note 1	IF(AV)	1	.5 .5	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	İFSM	5	.0	Amps
Operating Junction and Storage Temperature	T _J , T _{stg}	- 65 to	+ 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to End Cap	R _Ø JC	180	190	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Foward Voltage (1)	٧F			Volts
(if = 0.1 A, T _{.1} = 25°C)		0.460	0.500	
$(i_F = 0.5 \text{ A}, T_J = 25^{\circ}\text{C})$		0.610	0.650	1
Reverse Current	iR			mA
(Rated dc Voltage, T _J = 125°C)	''	0.6	1.0	
(Rated dc Voltage, T _J = 25°C)		0.003	0.005	

(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

Switchmode is a trademark of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MECHANICAL CHARACTERISTICS

CASE: Glass

FINISH: End caps are plated and are readily

solderable

POLARITY: Cathod indicated by polarity

band.

WEIGHT: 0.2 Gram (approximately).

MAXIMUM LEAD TEMPERATURE FOR SOL-DERING PURPOSES: 230°C, @ end cap for 10

seconds.

MBRL030, MBRL040

NOTE 1

MDA100A series (3N246 thru 3N252)

MINIATURE INTEGRAL DIODE ASSEMBLIES

 \ldots , with silicon rectifier chips interconnected and encapsulated into voidless rectifier bridge circuits.

- High Resistance to Shock and Vibration
- · High Dielectric Strength
- Built-In Printed Circuit Board Stand-Offs
- UL Recognized
- RO_{JA} = 60°C/W

MAXIMUM RATINGS Rating (Per Diode)	Symbol	3N246 MDA100A	3N247 MDA101A	3N248 MDA102A	3N249 MDA104A	3N250 MDA106A	3N251 MDA108A	3N252 MDA110A	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc Vdc	32 50	64 100	1	255 400		510 800	640 1000	Volts Volts
Sine Wave RMS Input Voltage	VR(RMS)	35	70	140	280	420	5 6 0	700	Volts
Average Rectified Forward Current (single phase bridge operation, resistive load, 60 Hz, TA = 75°C)	10	1.0						Amp	
Non-Repetitive Peak Surge Current (Preceded and followed by rated current and voltage, TA = 75°C)	^I FSM	30 (for 1 cycle)				Amp			
Operating and Storage Junction Temperature Range	T _J ,T _{stg}			 -5	5 to -	+150			°c

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) $(i_F = 1.57 \text{ Amp}, T_J = 25^{\circ}\text{C})$	٧F	1.15	1.3	Volts
Reverse Current (Per Diode) (Rated V _R , T _A = 25°C)	I _R	_	10	μА

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic POLARITY: Terminal-designation on case

Pin 1 (+) for DC output Pin 4 (-) for DC output Pins 2 and 3 (AC) for AC input MOUNTING POSITION: Any WEIGHT: 1.8 grams (approx) TERMINALS: Readily solderable connections, corrosion resistant.

SINGLE-PHASE FULL-WAVE BRIDGE

1.0 AMPERE 50-1000 VOLTS

STYLE 1: TERM 1. POS 2. AC 3. AC 4. NEG

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	14.99	15.49	0.590	0.610
В	4.57	5.08	0.180	0.200
C	-	20.57	-	0.810
D	0.76	1.02	0.030	0.040
F	1.02	1.27	0.040	0.050
G	3.68	3.94	0.145	0.155
J	0.56	0.71	0.022	0.028
K	~	9.02	-	0.355
L	1.78	2.03	0.070	0.080
N	2.54	2.79	0.100	0.110
R	9.40	10.03	0.370	0.395

CASE 312-02

MAXIMUM RATINGS, BRIDGE OPERATION

SINGLE DIODE CHARACTERISTICS

MDA200 series (3N253 thru 3N259)

MINIATURE INTEGRAL DIODE ASSEMBLIES

 \dots with silicon rectifier chips interconnected and encapsulated into voidless rectifier bridge circuits.

- High Resistance to Shock and Vibration
- High Dielectric Strength
- Built-In Printed Circuit Board Stand-Offs
- UL Recognized
- ROJA = 60°C/W

MAXIMUM RATINGS Rating (Per Diode)	Symbol	3N253 MDA200	3N254 MDA201	3N255 MDA202	3N256 MDA204	3N257 MDA206	3N258 MDA208	3N259 MDA210	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc Vdc	32 50	64 100	_	255 400		510 800	640 1000	Volts Volts
Sine Wave RMS Input Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase bridge operation, resistive load, 60 Hz, TA = 55°C)	10	2.0					-	Amp	
Non-Repetitive Peak Surge Current (Preceded and followed by rated current and voltage, TA = 55°C)	IFSM	60 (for 1 cycle)					Amp		
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	_		— -5	5 to	+165			°c

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (ip = 3.14 Amp, T _J = 25 ^o C)	٧F	1.0	1.1	Volts
Reverse Current (Per Diode) (Rated V _R , T _A = 25 ⁰ C)	IR	_	10	μА

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic
POLARITY: Terminal-designation on case

Pin 1 (+) for DC output Pin 4 (-) for DC output Pins 2 and 3 (AC) for AC input MOUNTING POSITION: Any WEIGHT: 1.8 grams (approx) TERMINALS: Readily solderable connections, corrosion resistant.

SINGLE-PHASE FULL-WAVE BRIDGE

2.0 AMPERES 50-1000 VOLTS

	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	14.99	15.49	0.590	0.610	
В	4.57	5.08	0.180	0.200	
С	-	20.57	-	0.810	
D	0.76	1.02	0.030	0.040	
F	1.02	1.27	0.040	0.050	
G	3.68	3.94	0.145	0.155	
J	0.56	0.71	0.022	0.028	
K	-	9.02	-	0.355	
L	1.78	2.03	0.070	0.080	
N	2.54	2.79	0.100	0.110	
R	9 40	10.03	0.370	0.395	

CASE 312-02

MAXIMUM RATINGS, BRIDGE OPERATION

FIGURE 2 - POWER DISSIPATION

FIGURE 3 - SURGE CURRENT

SINGLE DIODE CHARACTERISTICS

FIGURE 4 - MAXIMUM FORWARD VOLTAGE

FIGURE 5 - FORWARD RECOVERY TIME

FIGURE 6 - REVERSE RECOVERY TIME

MDA920A1 thru MDA920A9

Designers Data Sheet

MINIATURE INTEGRAL DIODE ASSEMBLIES

. . . passivated, diffused-silicon dice interconnected and transfer molded into voidless hybrid rectifier circuit assemblies.

- Large Inrush Surge Capability 45 A (For 1.0 Cycle)
- Efficient Thermal Management Provides Maximum Power Handling in Minimum Space

Designers Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

MAXIMUM RATINGS											
Rating (Per Leg)	Symbol	Α1	A2	А3	A4	A5.	A6	A7	A8	A9	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage	V _{RRM} V _{RWM}	25	50	100	200	300	400	600	800	1000	Volts
DC Blocking Voltage	VR	l		ļ		1	1				
DC Output Voltage Resistive Load Capacitative Load	Vdc Vdc					1			500 800	620 1000	Volts Volts
Sine Wave RMS Input Voltage	V _{R(RMS)}	18	35	70	140	210	280	420	560	700	Volts
Average Rectified Forward Current (single phase bridge resistive load, 60 Hz, see Figure 6, T _A = 50°C	10	1.5						Amp			
Non-Repetitive Peak Surge Current, (see Figure 2) rated load, T _J = 175 ^O C	^I FSM	45 for 1 cycle					Amp				
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +175						_	°C		

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage Drop (Per Leg) (iF = 2.4 Amp, $T_J = 25^{\circ}$ C) Figure 1	٧F	1.2	Volts
Maximum Reverse Current (Rated dc Voltage across ac terminals, T _J = 25°C)	1 _R	20	μА

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Effective Bridge Thermal Resistance, Junction to Ambient (Full-Wave Bridge Operation, Typical Printed Circuit Board Mounting)	R_{θ} JA	50	°C/W

MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic encapsulation.
POLARITY: Terminal-designation embossed
on case +DC output

-DC output -DC input MOUNTING POSITION: Any WEIGHT: 1.0 gram (approx) TERMINALS: Readily solderable connections, corrosion resistant.

SINGLE-PHASE FULL-WAVE BRIDGE

1.5 AMPERES 25-1000 VOLTS

NOTES:

- 1. LEAD DIM "D" TO BE MEASURED WITHIN "F"
- 2. LEADS FORMED TO FIT INTO HOLE 0.94 mm (0.037) MIN.

	MILLIN	IETERS	INC	HES		
DIM	MIN MAX		MIN	MAX		
Α	6.10	6.73	0.240	0.265		
В	2.29	2.79	0.090	0.110		
D	0.51	0.94	0.020	0.037		
F	3.56	6.35	0.140	0.250		
G	3.68	3.94	0.145	0.155		
Н	1.02	1.27	0.040	0.050		
K	6.60	10.16	0.260	0.400		
L	19.30	27.05	0.760	1.065		

CASE 109-03

FIGURE 6 - CURRENT DERATING FULL WAVE BRIDGE OPERATION $(I_A = I_B)$ DC OUTPUT CURRENT (AMP) RESISTIVE INDUCTIVE LOADS 1.2 APACITIVE LOADS 0.8 1_{pk} = 5.0 1_{avg} Ipk = 10 lavg 0.4 ف_ Ipk = 20 Iavg (PER LEG) 0 20 40 60 100 120 140 180

FIGURE 7 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

TA, AMBIENT TEMPERATURE (°C)

APPLICATION NOTE

The Data of Figure 4 applies for typical wire terminal or printed circuit board mounting conditions in still air. Under these or similar conditions, the thermal resistance between the diode junctions and the leads at the edge of the case is a small fraction of the thermal resistance from junction to ambient. Consequently, the lead temperature is very close to the junction temperature. Therefore, it is recommended that the lead temperature be measured when the diodes are operating in prototype equipment, in order to determine if operation is within the diode temperature ratings. The lead having the highest thermal resistance to the ambient will yield readings closest to the junction temperature. By measuring temperature as outlined, variations of junction to ambient thermal resistance, caused by the amount of surface area of the terminals or printed circuit board and the degree of air convection, as well as proximity of other heat sources cease to be important design considerations.

Bridge rectifiers are used in two basic circuit configurations as shown by circuits A and B of Figure 7. The current derating data of Figure 6 applies to the standard bridge circuit (A), where $I_A = I_B$. The derating data considers the thermal response of the junction and is based upon the criteria that the junction temperature must not exceed rated $T_{J(max)}$ when peak reverse voltage is applied. However, because of the slow thermal response and the close ther

mal coupling between the individual semiconductor die in the MDA920A assembly, the maximum ambient temperature is given closely by

$$T_A = T_{J(max)} - R_{\theta JA} P_T$$

where \mathbf{P}_{T} is the total average power dissipation in the assembly.

For the circuit of Figure B, use of the above formula will yield suitable rating information. For example to determine $T_{A(max)}$ for the conditions:

From Figure 5: For I_A, read P_{TA} \approx 0.8 W For I_B, read P_{TB} \approx 2.2 W

$$P_{T} = (P_{TA} + P_{TB}) \div 2 = 1.5 \text{ W}$$

(Division by 2 is necessary as data from Figure 5 is for full-wave bridge operation.) \therefore TA(max) = 175° – (50) (1.5) = 100°C.

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

FIGURE 11 - CAPACITANCE

VR. REVERSE VOLTAGE (VOLTS)

RECTIFIER EFFICIENCY NOTE

FIGURE 12 – SINGLE-PHASE FULL-WAVE BRIDGE RECTIFIER CIRCUIT

The rectification efficiency factor $\boldsymbol{\sigma}$ shown in Figure 10 was calculated using the formula:

$$\sigma = \frac{\frac{P(dc)}{P(rms)}}{\frac{P(cms)}{P(cms)}} = \frac{\frac{\frac{V^{2}_{o}(dc)}{R_{L}}}{\frac{V^{2}_{o}(rms)}{R_{L}}} \cdot 100\% = \frac{V^{2}_{o}(dc)}{V^{2}_{o}(ac) + V^{2}_{o}(dc)} \cdot 100\% (1)$$

For a sine wave input V_{m} sin (ωt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{4V^2_{\text{m}}}{\pi^2 R_{\text{L}}}}{\frac{V^2_{\text{m}}}{2R_{\text{L}}}} \cdot 100\% = \frac{8}{\pi^2} \cdot 100\% = 81.2\%$$
 (2)

For a square wave input of amplitude V_m, the efficiency factor becomes:
$$\sigma(\text{square}) = \frac{\frac{V^2 \text{m}}{R_L}}{\frac{V^2 \text{m}}{R_L}} \cdot 100\% = 100\% \quad (3)$$

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across RL which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ , as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_0 with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

MDA970A1 thru **MDA970A6**

Data Sheet Designers

INTEGRAL DIODE ASSEMBLIES

. . . diffused silicon dice interconnected and transfer molded into rectifier circuit assemblies for use in application where high output current/size ratio is of prime importance. These devices feature:

- Void-free, Transfer-molded Encapsulation to Assure High Resistance to Schock, Vibration, and Temperature Extremes
- High Dielectric Strength
- Simple, Compact Structure for Trouble-free Performance
- High Surge Capability 100 Amps

Designers Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics - are given to facilitate "worst case" design.

SINGLE-PHASE **FULL-WAVE BRIDGE**

4 AMPERES 50-600 VOLTS

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	MDA970A1	MDA970A2	MDA970A3	MDA970A5	MDA970A6	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	280	420	Volts
DC Output Voltage Resistive Load Capactive Load	Vdc Vdc	31 50	62 100	124 200	248 400	372 600	Volts
Average Rectified Forward Current TA = 25°C TC = 55°C	ю			4.0			Amp
Nonrepetitive Peak Surge Current (surge applied at rated load conditions, T _J = 150°C)	IFSM			100		-	Amp
Operating and Storage Junction Temperature Range	TJ, T _{Stg}	-		— -65 to +150 -		-	°C

THERMAL CHARACTERISTICS

Characteristics		Symbol	Max (Per Die)	Unit
Thermal Resistance, Junction to Case	Each Die	$R_{\theta}JC$	10	°C/W
1	Effective Bridge	R ₀ (EFF)	7.75	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Instaneous Forward Voltage (Per Diode)	VF	-		Vdc
$(i_F = 6.28 \text{ Amp}, T_J = 25^{\circ}\text{C})$		_	1.1	
$(i_F = 6.28 \text{ Amp, T}_J = 150^{\circ}\text{C})$	1	_	1.0	
Reverse Current	I _R	_	1.0	mA
(Rated V _{RM} applied to ac terminals,				
+ and – terminals open, T _A = 25°C)	1			

CASE: Transfer-molded plastic encapsulation.

FINISH: All external surfaces are corrosion-resistant. Leads are readily solderable. DC output = +

POLARITY: Embossed symbols

AC input = ~

MOUNTING POSITION: Any WEIGHT (Approximately): 7.5 Grams
MOUNTING TORQUE: 5 in.-lb. Max

DC output = -

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)

IF(AV), AVERAGE FORWARD CURRENT (AMP)

NOTE 1: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$

Where ΔT_{J1} is the change in junction temperature of diode 1 R₆₁ thru 4 is the thermal resistance of diodes 1 through 4 P_{D1} thru 4 is the power dissipated in diodes 1 through 4

60 thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

where: PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2} P_{D2} + K_{\theta 3} P_{D3} + K_{\theta 4} P_{D4})$$

For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4$ PD equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta} 1(1 + K_{\theta} 2 + K_{\theta} 3 + K_{\theta} 4)/4$$

For this rectifier assembly, thermal coupling between opposite diodes is 65% and between adjacent diodes is 72.5% when the case temperature is used as a reference. When the ambient temperature is used as the reference, the coupling is a function of the mounting conditions and is essentially the same for opposite and adjacent diodes.

The effective bridge thermal resistance, junction to ambient, is (from equation 4).

(5)
$$R_{\theta}(EFF)JA = R_{\theta}JA(1 + 3K_{\theta}(AV)JA)/4$$

Where: $K_{\theta}(AV)JA \approx (K_{\theta}(AV)JCR_{\theta}JC^{+}R_{\theta}CA)/R_{\theta}JA$ and $K_{\theta}(AV)JC$ is approximately 70%. $R_{\theta}CA$ is the case to ambient thermal resistance.

FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

CIRCUIT B

NOTE 2: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 12. The current derating data of Figures 5 and 6 apply to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A \neq I_B$, derating information can be calculated as follows:

(6)
$$T_{R(MAX)} = T_{J(MAX)} - \triangle T_{J1}$$

Where $T_{R(MAX)}$ is the reference temperature (either case or ambient)

△T j1 can be calculated using equation (3) in Note 1.

For example, to determine $T_{C(MAX)}$ for the following load conditions:

IA = 3.1 A average with a peak of 11.2 A

I_B = 1.55 A average with a peak of 6.8 A

First calculate the peak to average ratio for I_A. $I_{(PK)}/I_{(AV)} = 11.2/1.55 = 7.23$ (Note that the peak to average ratio is on a per diode basis.)

From Figure 11, for an average current of 3.1 A and an $I_{\{PK\}}/I_{\{AV\}} = 7.23$ read $P_{T\{AV\}} = 4.8$ watts or 1.2 watts/diode $\therefore P_{D1} = P_{D3} = 1.2$ watts.

Similarly, for a load current IB of 1.55 A, diode #2 and diode #4 each see 0.775 A average resulting in an I(PK)/I(AV) \approx 8.8.

Thus, the package power dissipation for 1.55 A is 2.3 watts or 0.575 watts/diode \therefore PD2 = PD4 = 0.575 watts.

The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1 $\Delta T_{J1} = 9[1.2 + .65(.575) + .725(1.2) + .725(.575)]$

 $_{\Delta T_{J1}} \approx 26^{o} \text{C}$

Thus T_{C(MAX)} = 150-26 = 124°C

The total package dissipation in this example is:

 $P_J = 2 \times 1.2 + 2 \times 0.575 \approx 3.6$ watts

(Note that although maximum $R_{\theta,JC}$ is 10^{o} C/watt, 9^{o} C/watt is used in this example and on the derating data as it is unlikely that all four die in a given package would be at the maximum value.)

NOTE 3

Under typical wire terminal or printed circuit board mounting conditions, the thermal resistance between the diode junctions and the leads at the edge of the case is a small fraction of the thermal resistance from junction to ambient. Consequently, the lead temperature is very close to the junction temperature. Therefore, it is recommended that the lead temperature be measured when the diodes are operating in prototype equipment, in order to determine

if operation is within the diode temperature ratings. The lead having the highest thermal resistance to the ambient will yield readings closest to the junction temperature. By measuring temperature as outlined, variations of junction to ambient thermal resistance, caused by the amount of surface area of the terminals or printed circuit board and the degree of air convection, as well as proximity of other heat sources cease to be important design considerations.

MDA980-1 thru MDA980-6 MDA990-1 thru MDA990-6

Designers Data Sheet

RECTIFIER ASSEMBLY

. . . utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base
- Cost Effective in Lower Current Applications

Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

SINGLE-PHASE FULL-WAVE BRIDGE

12 and 30 AMPERES 50 thru 600 VOLTS

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating		Symbol	-1	-2	-3	-4	-5	-6	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		VRRM VRWM VR	50	100	200	300	400	600	Volts
RMS Reverse Voltage		V _R (RMS)	35	70	140	210	280	420	Volts
DC Output Voltage Resistive Load Capacitive Load Average Rectified Forward Current		Vdc Vdc	30 50	62 100	124 200	185 300	250 400	380 600	Volts
(Single phase bridge resistive load, 60 Hz, T _C = 55°C)	MDA980 MDA990	,0	-			30			Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)		^I FSM	300					Amp	
Operating and Storage Junction Temperature Range		T _J ,T _{stg}	-		— -65 to	+175 —			°C

THERMAL CHARACTERISTICS

Character	istic		Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	F + 5:	MDA980	ReJC	8.5	11	°C/W
	Each Die	MDA990		4.5	6.0	İ
	Effective Bridge	MDA980	Rθ(EFF)	_	6.05	°C/W
	l	MD A990		_	2.28	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode)		٧F				Volts
(iF = 18.9 A)	MD A980	1	_	0.88	0.97	!
(if = 47 A)	MDA990		-	0.98	1.07	l
(if = 18.9 A, T _J = 175 ⁰ C)	MDA980			_	0.85	
$(i_F = 47 \text{ A}, T_J = 175^{\circ}\text{C})$	MDA990		_	_	0.98	
Reverse Current		1 _R				mA
(Rated V _{RM} applied to ac terminals, + and - terminals open)			-	-	0.5	

70 100

FIGURE 11 - POWER DISSIPATION

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 12 - CURRENT VERSUS AMBIENT TEMPERATURE

NOTE 1 – THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\Delta T_{J1} = R_{\theta 1} P_{D2} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$

Where $\triangle T_{J1}$ is the change in junction temperature of diode 1

R_{θ1} thru 4 is the thermal resistance of diodes 1 through 4.

 P_{D1} thru 4 is the power dissipated in diodes 1 through 4 $K_{\theta\,2}$ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

Where: PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\triangle T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the condition where $P_{D1} = P_{D2} = P_{D3} = P_{D4}, P_{DT} = 4P_{D1}$
equation (3) can be further simplified and by substituting into

equation (2) results in
(4)
$$R_{\theta}(EFF) = R_{\theta,1} (1 + K_{\theta,2} + K_{\theta,3} + K_{\theta,4})/4$$

For the MDA980 rectifier assembly, thermal coupling between opposite diodes is 42% and between adjacent diodes is 50% when the case temperature is used as a reference. Similarly for the MDA990, thermal coupling between opposite diodes is 12% and between adjacent diodes is 20%.

NOTE 2 -- SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown in circuits A and B of Figure 13. The current derating data of Figures 5 and 6 apply to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A \neq I_B$, derating information can be calculated as follows:

(5)
$$T_{R(MAX)} = T_{J(MAX)} - \triangle T_{J1}$$

Where $T_{R(MAX)}$ is the reference temperature (either case or ambient)

△T J1 can be calculated using equation (3) in Note 1.

For example, to determine $T_{C(MAX)}$ for the MDA990 with the following capacitive load conditions:

IA = 20 A average with a peak of 86 A

 $I_B = 10 A$ average with a peak of 72 A

First calculate the peak to average ratio for I_A . $I_{\{PK\}}/I_{\{AV\}} = 86/10 = 8.6$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10A average).

From Figure 11, for an average current of 20 A and an I $_{\{PK\}}$ / I $_{\{AV\}}$ = 8.6 read $_{PDT}$ $_{\{AV\}}$ = 40 watts or 10 watts/diode. Thus $_{PD1}$ = $_{PD3}$ = 10 watts.

Similarly, for a load current I_B of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an I (PK)/I (AV) \approx 14.4

Thus, the package power dissipation for 10 Å is 20.2 watts or 5.05 watts/diode. .: P_{D2} = P_{D4} = 5.05 watts.

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1 ΔT_{J1} = 5.6 [10 + 0.12 (5.05) + 0.2 (10) + 0.2 (5.05)].

Thus T_{C(MAX)} = 175-76 = 99°C

The total package dissipation in this example is:

 $P_J = 2 \times 10 + 2 \times 5.05 \approx 30.1$ watts

(Note that although maximum $R_{\theta,JC}$ is 6^{o} C/W, 5.6^{o} C/watt is used in this example and on the derating data as it is unlikely that all four die in a given package would be at the maximum value).

FIGURE 13 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

D2 D3 Load 2

CIRCUIT B

MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic encapsulation

POLARITY: Terminal-designation embossed on case

+DC output
-DC output
AC not marked

MOUNTING POSITION: Bolt down-highest heat transfer efficiency accom-

plished through the surface opposite the terminals.

WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections, readily solderable connections,

corrosion resistant.

MOUNTING TORQUE: 20 in. lb. Max.

OUTLINE DIMENSIONS

RECTIFIER ASSEMBLY

... utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base
- UL Recognized
- 1800 Volt Heat Sink Isolation

MDA2500 series

SINGLE-PHASE **FULL-WAVE BRIDGE**

> 25 AMPERES 50-600 VOLTS

NOTES:

- 1. DIMENSION "Q" SHALL BE MEASURED ON HEATSINK SIDE OF PACKAGE.
- 2. DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	25.65	26.16	1.010	1.030
C	12.44	13.97	0.490	0.550
D	6.10	6.60	0.240	0.260
F	10.01	10.49	0.394	0.413
G	19.99	21.01	0.787	0.827
J	0.71	0.86	0.028	0.034
K	9.52	11.43	0.375	0.450
L	1.52	2.06	0.060	0.081
P	2.79	2.92	0.110	0.115
Q	4.42	4.67	0.174	0.184

CASE 309A-03

MAXIMUM RATINGS

				MDA			
Rating (Per Diode)	Symbol	2500	2501	2502	2504	2506	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc	30 50	62 100	124 200	250 400	380 600	Volts
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	ю	-		- 25 -			Amp
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	-		— 400 ·		-	Amp
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-		65 to + 1	175 —	-	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$			°C/W
Each Die		8.0	10	
Total Bridge	}	2.0	2.8	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (iF = 40 A)	٧F	-	0.95	1.05	Volts
Reverse Current (Per Diode) (Rated V _R)	I _R	_	_	0.10	mA

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum

POLARITY: Terminal designation embossed on case:

+DC output -DC output AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accom-

plished through the surface opposite the terminals. Use silicone heat sink compound on mounting

surface for maximum heat transfer.

WEIGHT: 25 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for

applications greater than 15 amperes.

MOUNTING TORQUE: 20 in. lb. max.

FIGURE 6 - TYPICAL THERMAL RESPONSE

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

processor a recommendary of the case should be measured using a thermocouple placed on the case at the temperature of the case at the temperature reference point tisse thoughts of the case at the temperature reference point tisse thoughts of the time and the standard throughts of the case is instrumentally large enough to that or with one specification through the standard on the diode as a result of puised operation once ready state conditionary are achieved. Using the measured value of TC, the junction temperature may be determined by an experimental or the standard of the standard

 $T_J=T_C+\triangle T_{JC}$ where $\triangle T_{JC}$ is the increase in junction temperature above the case temperature. It may be determined by

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6. i.e., $r(t_1+t_p)$ = normalized value of transient thermal resistance at time t_1+t_p

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

AMBIENT TEMPERATURE DERATING INFORMATION

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1) $\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$ where ΔT_{J1} is the change in junction temperature of diode 1, $R_{\theta 1}$ through 4 is the thermal resistance of diodes 1 through 4, P_{D1} through 4 is the power dissipated in diodes 1 through 4, $K_{\theta 2}$ through 4 is the thermal coupling between diode 1, and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

where $P_{\mbox{\footnotesize{DT}}}$ is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4$ P_{D1} , equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta 1}(1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

When the case is used as a reference point, coupling between opposite die is negligible for the MDA2500, and coupling between adjacent die is approximately 6%.

FIGURE 10B - IERC HEAT SINK UP3

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A = I_B$, derating information can be calculated as follows:

(6)
$$T_{R(max)} = T_{J(max)} - \Delta T_{J1}$$

Where $T_{\hbox{R(max)}}$ is the reference temperature (either case or ambient), ΔT_{J1} can be calculated using equation (3) in Note 2.

For example, to determine $T_{\mbox{C(max)}}$ for the MDA2500 with the following capacitive load conditions:

IA = 20 A average with a peak of 60 A,

IB = 10 A average with a peak of 70 A,

first calculate the peak to average ratio for I_A . $I_{(PK)}/I_{(AV)} = 60/10 = 6.0$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average.)

From Figure 5, for an average current of 20 A and an I $_{\{PK\}}/_{\{AV\}} = 6.0$, read $P_{DT}(_{AV}) = 40$ watts or 10 watts/diode. Thus $P_{D1} = P_{D3} = 10$ watts.

Similarly, for a load current I_B of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an $I_{(PK)}/I_{(AV)}$ = 14.

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode. Therefore, $P_{D2} = P_{D4} = 5.0$ watts.

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1,

$$\Delta T_{J1} = 10[10 + 0(5) + 0.06(10) + 0.06(5)]$$

 $\Delta T_{J1} \approx 109^{\circ}C.$

Thus, $T_{C(max)} = 175 - 109 = 66^{\circ}C$.

The total package dissipation in this example is

 $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30$ watts,

which must be considered when selecting a heat sink.

FIGURE 11 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

Circuit B

MDA2550 MDA2551

RECTIFIER ASSEMBLY

. . . utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base 1800 Volts

SINGLE-PHASE **FULL-WAVE BRIDGE**

25 AMPERES 50-100 VOLTS

MAXIMUM RATINGS

		M	DA	
Rating (Per Diode)	Symbol	2550	2551	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc	30 50	62 100	Volts
Sine Wave RMS Input Voltage	VR(RMS)	35	70	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	10	2	5	Amp
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions)	¹ FSM	400		Amp
Operating and Storage Junction Temperature Range	TJ, T _{stg}	→ -65 to	+175	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$			°C/W
Each Die		8.0	10	1
Total Bridge		2.0	2.8	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (iF = 55 A)	٧F	-	0.95	1.05	Volts
Reverse Current (Per Diode) (Rated V _R)	IR	_		0.50	mA

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal-designation embossed on case

- +DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicon heat sink compound on mounting surface for maximum heat transfer.

WEIGHT: 25 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes.

MOUNTING TORQUE: 20 in. lb. max.

- MEASURED ON HEATSINK SIDE OF PACKAGE.
- 2. DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	25.65	26.16	1.010	1.030
C	12.44	13.97	0.490	0.550
D	6.10	6.60	0.240	0.260
F	10.01	10.49	0.394	0.413
G	19.99	21.01	0.787	0.827
J	0.71	0.86	0.028	0.034
K	9.52	11.43	0.375	0.450
L	1.52	2.06	0.060	0.081
P	2.79	2.92	0.110	0.115
Q	4,42	4.67	0.174	0.184

CASE 309A-03

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The therman ass connected to the case is normally large en TJ = TC + ATJC

where Δ T $_{\rm JC}$ is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} \approx P_{DK} \bullet R_{\partial JC} (D + (1 - D) \bullet r(t_1 + t_D) + r(t_D) - r(t_1))$

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e.,

r (t $_1$ + $_p$) = normalized value of transient thermal resistance at time t $_1$ + $_p$.

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

AMBIENT TEMPERATURE DERATING INFORMATION

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$
 where ΔT_{J1} is the change in junction temperature of diode 1, $R_{\theta 1}$ through 4 is the thermal resistance of diodes 1 through 4, P_{D1} through 4 is the power dissipated in diodes 1 through 4, $K_{\theta 2}$ through 4 is the thermal coupling between diode 1, and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

where PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4$ P_{D1} , equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta} 1 (1 + K_{\theta} 2 + K_{\theta} 3 + K_{\theta} 4)/4$$

When the case is used as a reference point, coupling between opposite die is negligible for the MDA2550, and coupling between adjacent die is approximately 6%.

FIGURE 108 - JERC HEAT SINK UP3

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A = I_B$, derating information can be calculated as follows:

(6)
$$T_{R(max)} = T_{J(max)} - \Delta T_{J1}$$

Where $T_{R(max)}$ is the reference temperature (either case or ambient), ΔT_{J1} can be calculated using equation (3) in Note 2. For example, to determine $T_{C(max)}$ for the MDA2550 with the following capacitive load conditions:

 $I_A = 20 A$ average with a peak of 60 A,

IB = 10 A average with a peak of 70 A,

first calculate the peak to average ratio for I_A . $I(p_K)/I(AV) = 60/10 = 6.0$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average.)

From Figure 5, for an average current of 20 A and an $I_{(PK)}/I_{(AV)}=6.0$, read $P_{DT}(AV)=40$ watts or 10 watts/diode. Thus $P_{D1}=P_{D3}=10$ watts.

Similarly, for a load current I_B of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an $I_{PK}/I_{(AV)} = 14$. Thus, the package power dissipation for 10 A is 20 watts or

5.0 watts/diode. Therefore, $P_{D2} = P_{D4} = 5.0$ watts.

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1,

$$\Delta T_{J1} = 10[10 + 0(5) + 0.06(10) + 0.06(5)]$$

 $\Delta T_{J1} \approx 109^{\circ}C.$

Thus, $T_{C(max)} = 175 - 109 = 66^{\circ}C$.

The total package dissipation in this example is

 $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30 \text{ watts},$

which must be considered when selecting a heat sink.

FIGURE 11 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

MDA3500 series

RECTIFIER ASSEMBLY

... utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base -1800 Volts
- UL Recognized
- Cost Effective in Lower Current Applications

SINGLE-PHASE FULL-WAVE BRIDGE

> 35 AMPERES 50-1000 VOLTS

			MDA								
Rating (Per Diode)	Symbol	3500	3501	3502	3504	3506	3508	3510	Unit		
Peak Repetitive Reverse Voltage	VRRM										
Working Peak Reverse Voltage	VRWM	50	100	200	400	600	800	1000	Volts		
DC Blocking Voltage	٧R										
DC Output Voltage Resistive Load Capacitive Load	Vde Vdc	30 50	62 100	124 200	250 400	380 600	500 800	630 1000	Volts Volts		
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts		
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	10	35					Amp				
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	^I FSM	400					Amp				
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-			5 to +1	-65 to +175					

THERMAL CHARACTERISTICS (Total Bridge)

Characteristic		Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.4	1.87	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (i _F = 55 A)	٧F	_	1.0	1.1	Volts
Reverse Current (Per Diode) (Rated V _R)	I _R	-	-	0.10	mA

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal-designation embossed on case

+DC output -DC output

AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accom-

plished through the surface opposite the terminals.
Use silicon grease on mounting surface for maxi-

mum heat transfer.

WEIGHT: 40 grams (approx.)
TERMINALS: Suitable for

NALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for appli-

cations greater than 15 Amperes.

MOUNTING TORQUE: 20 in. lb. Max.

- 1. DIM "Q" SHALL BE MEASURED ON HEATSINK SIDE OF
- 2. DIMENSIONS F AND G SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIMETERS		INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	34.80	35.18	1.370	1.385			
C	12.44	13.97	0.490	0.550			
D	6.10	6.60	0.240	0.260			
F	13.97	14.50	0.550	0.571			
G	28.00	29.00	1.100	1.142			
J	0.71	0.86	0.028	0.034			
K	9.52	11.43	0.375	0.450			
L	1.52	2.06	0.060	0.081			
P	2.79	2.92	0.110	0.115			
a	4.32	4.83	0.170	0.190			
	CASE 309A-02						

FIGURE 2 - NON REPETITIVE SURGE CURRENT

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE COEFFICIENT

FIGURE 4 - CURRENT DERATING

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 6 - TYPICAL THERMAL RESPONSE

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of 1°C, the junction temperature may be determined by:

$$T_J=T_C+\triangle T_{JC}$$
 where $\triangle T_{JC}$ is the increase in junction temperature above the case temperature. It may be determined by:

 $\triangle T_{JC} = P_{pk} \bullet R_{\theta JC} [D + (1 - D) \bullet r(t_1 + t_p) + r(t_p) - r(t_1)]$

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e., $r(t_1 + t_p) =$ normalized value of transient thermal resistance at time $t_1 + t_p$.

FIGURE 7 – CAPACITANCE

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

AMBIENT TEMPERATURE DERATING INFORMATION

FIGURE 10A - THERMALLOY HEATSINK 6005B

FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\triangle T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3}$$

+ R04 K04 PD4 Where ATJ1 is the change in junction temperature of diode 1 Re1 thru 4 is the thermal resistance of diodes 1 through 4

PD1 thru 4 is the power dissipated in diodes 1 through 4 Ke2 thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

Where: PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1)

(3) $\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2} P_{D2} + K_{\theta 3} P_{D3} + K_{\theta 4} P_{D4})$

For the condiitons where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4 P_{D1}$, equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

When the case is used as a reference point, coupling between die is neglegible for the MDA3500. When the bridge is used without a heatsink, coupling between die is approximately 70% and $R_{\theta\,1}$ is $30^{\circ}\,C/W,$

 $\therefore R_{\theta(EEE)} = 30 [1 + (3) (.7)]/4 = 23^{\circ}C/W$

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where IA = IB. For circuit B where IA = IB, derating information can be calculated as follows:

Where TR(Max) is the reference temperature (either case or ambient)

△T_{J1} can be calculated using equation (3) in Note 2.

For example, to determine TC(Max) for the MDA3500 with the following capacitive load conditions.

 $I_{\Delta} = 20 \text{ A average with a peak of 60 A}$

IB = 10 A average with a peak of 70 A

First calculate the peak to average ratio for I_A . $I_{(PK)}/I_{(AV)} =$ 60/10 = 6.0. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average).

From Figure 5, for an average current of 20 A and an I(PK)/ $I_{(AV)}$ = 6.0 read $P_{DT(AV)}$ = 40 watts or 10 watts/diode. Thus P_{D1} = P_{D3} = 10 watts.

Similarly, for a load current IB of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14.

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode \therefore PD2 = PD4 = 5.0 watts. The maximum junction temperature occurs in diode #1 and #3.

From equation (3) for diode #1 ΔT_{J1} = (7.5) (10), since coupling is negligible.

△TJ1 ≈ 75°C

Thus $T_{C(Max)} = 175 - 75 = 100^{\circ}C$ The total package dissipation in this example is:

 $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30$ watts, which must be considered when selecting a heat sink.

FIGURE 11- BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

MDA3550 MDA3551

RECTIFIER ASSEMBLY

... utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

400 Ampere Surge Capability

MAXIMUM RATINGS

- Electrically Isolated Base 1800 Volts
- Cost Effective in Lower Current Applications

SINGLE-PHASE **FULL-WAVE BRIDGE**

35 AMPERES 50-100 VOLTS

MDA Rating (Per Diode) Symbol 3550 3551 Peak Repetitive Reverse Voltage VRRM 50 100 Volts Working Peak Reverse Voltage **VRWM** DC Blocking Voltage V_{R} DC Output Voltage Vdc Volts Resistive Load 30 62 Canacitive Load 50 100 Sine Wave RMS Input Voltage 35 70 Volts VR(RMS) Average Rectified Forward Current 35 Amp

60 Hz, T_C = 55°C) Nonrepetitive Peak Surge Current **IFSM** 400 -Amp (Surge applied at rated load conditions)

lo

- -65 to +175 → Operating and Storage Junction TJ, Tstg Temperature Range

THEDMAN	CHARACTERISTICS	(Takal Daidea)

(Single phase bridge resistive load,

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta}$ JC	1.4	1.87	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (iF = 55 A)	٧F	_	1.0	1.1	Volts
Reverse Current (Per Diode) (Rated V _R)	IR	_	_	0.50	mA

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal-designation embossed on case

- +DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicon grease on mounting surface for maximum heat transfer.

WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes.

MOUNTING TORQUE: 20 in. lb. max.

- MEASURED ON HEATSINK SIDE OF PACKAGE.
- 2. DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

1	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	25.65	26.16	1.010	1.030
C	12.44	13.97	0.490	0.550
D	6.10	6.60	0.240	0.260
F	10.01	10.49	0.394	0.413
G	19.99	21.01	0.787	0.827
J	0.71	0.86	0.028	0.034
K	9.52	11.43	0.375	0.450
L	1.52	2.06	0.060	0.081
P	2.79	2.92	0.110	0.115
Q	4.42	4.67	0.174	0.184

CASE 309A-03

٥C

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - NON REPETITIVE SURGE CURRENT

FIGURE 3 – FORWARD VOLTAGE TEMPERATURE COEFFICIENT

FIGURE 4 - CURRENT DERATING

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 6 - TYPICAL THERMAL RESPONSE

NOTE 1

procedure or recommender of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of TC, the junction temperature may be determined by: $TJ = TC + \Delta T_{JC}$

where \triangle T_{JC} is the increase in junction temperature above the case temperature. It may be

determined by $\triangle \mathsf{TJC} = \mathsf{Ppk} \, \bullet \, \mathsf{R}_{\theta \, \mathsf{JC}} \, \left[\mathsf{D} + (\mathsf{1} - \mathsf{D}) \, \bullet \, \mathsf{r}(\mathsf{t}_1 + \mathsf{t}_p) + \mathsf{r}(\mathsf{t}_p) - \mathsf{r}(\mathsf{t}_1) \right]$

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e., $r(t_1 + t_p) = normalized$ value of transient thermal resistance at time $t_1 + t_p$.

FIGURE 7 - CAPACITANCE

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

AMBIENT TEMPERATURE DERATING INFORMATION

FIGURE 10A - THERMALLOY HEATSINK 6005B

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\triangle T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$

Where $^{\Delta}T_{J1}$ is the change in junction temperature of diode 1 $R_{\theta 1}$ thru 4 is the thermal resistance of diodes 1 through 4 P_{D1} thru 4 is the power dissipated in diodes 1 through 4 $K_{\theta 2}$ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

Where: PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\triangle T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the condiitons where P_{D1} = P_{D2} = P_{D3} = P_{D4} , P_{DT} = 4 P_{D1} , equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

When the case is used as a reference point, coupling between die is neglegible for the MDA3550. When the bridge is used without a heatsink, coupling between die is approximately 70% and $R_{\rm H\,1}$ is 30°C/W,

$$\therefore R_{\theta(EFF)} = 30 [1 + (3) (.7)]/4 = 23^{\circ}C/W$$

FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where $I_A=I_B$. For circuit B where $I_A=I_B$, derating information can be calculated as follows:

(6)
$$T_{R(Max)} = T_{J(Max)} - \triangle T_{J1}$$

Where $T_{R(Max)}$ is the reference temperature (either case or ambient)

△T_{J1} can be calculated using equation (3) in Note 2.

For example, to determine $T_{C(Max)}$ for the MDA3550 with the following capacitive load conditions.

IA = 20 A average with a peak of 60 A

IB = 10 A average with a peak of 70 A

First calculate the peak to average ratio for I_A. $I(p_K)/I(AV) = 60/10 = 6.0$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average).

From Figure 5, for an average current of 20 A and an $I_{\{PK\}}/I_{\{AV\}}=6.0$ read $P_{DT}(AV)=40$ watts or 10 watts/diode. Thus $P_{D1}=P_{D3}=10$ watts.

Similarly, for a load current I_B of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14.

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode \therefore P_{D2} = P_{D4} = 5.0 watts.

The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1 $\triangle T_{J1}$ = (7.5) (10), since coupling is negligible.

 $\Delta T_{J1} \approx 75^{\circ} C$

Thus $T_{C(Max)} = 175 - 75 = 100^{\circ}C$

The total package dissipation in this example is:

 $PDT(AV) = 2 \times 10 + 2 \times 5.0 = 30$ watts, which must be considered when selecting a heat sink.

FIGURE 11- BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

Circuit A

MLL4001 thru MLL4004

Advance Information

LEADLESS SURFACE MOUNTED RECTIFIERS

... subminiature size, surface mounted rectifiers for general-purpose low-power applications.

LEADLESS SURFACE MOUNTED SILICON RECTIFIERS

50-400 VOLTS DIFFUSED JUNCTION

MAXIMUM RATINGS

Datina	Cumbal		Unit			
Rating	Symbol	4001	4002	4003	4004	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	Volts
Nonrepetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	VRSM	60	120	240	480	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	280	Volts
Average Rectified Forward Current (single phase, resis- tive load, 60 Hz, T _A = 75°C)	Ю	1.0				Amp
Nonrepetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	20 (for 1 cycle)			Amp	
Operating and Storage Junction Temperature Range	TJ, T _{stg}		-65 to	+175		°C

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (iF = 1.0 Amp, TJ = 25°C)	VF	0.95	1.1	Volts
Maximum Full-Cycle Average Forward Voltage Drop (IO = 1.0 Amp, T _C = 75°C)	V _F (AV)	_	0.8	Volts
Maximum Reverse Current (rated dc voltage) T _J = 25°C T _J = 100°C	I _R	0.05 1.0	10 100	μА
Maximum Full-Cycle Average Reverse Current (IO = 1.0 Amp, TC = 75°C)	I _{R(AV)}	_	30	μΑ

	MILLIM	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.20	0.189	0.205	
В	2.44	2.54	0.096	0.100	
R	3.71	4.59	0.146	0.181	
U	0.36	0.50	0.014	0.020	

CASE 362B-01

MECHANICAL CHARACTERISTICS

CASE: Glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C @

end caps for 10 seconds

FINISH: All external surfaces are corrosion-resistant, end caps are readily solderable

POLARITY: Cathode indicated by color band

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MR327 MR328 MR330 MR331 See Page 3-6

MR500 MR501 MR502 MR504 MR506 MR508 MR510

Designers Data Sheet

MINIATURE SIZE, AXIAL LEAD MOUNTED STANDARD RECOVERY POWER RECTIFIERS

. . . designed for use in power supplies and other applications having need of a device with the following features:

- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Economical Plastic Package
- Available in Volume Quantities

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design.

STANDARD RECOVERY POWER RECTIFIERS

50-1000 VOLTS 3 AMPERE

MAXIMUM RATINGS

Rating	Symbol	MR500	MR501	MR502	MR504	MR506	MR508	MR510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	850	1050	Volts
Average Rectified Forward Current (Single phase resistive load, T _Z = 95°C, PC Board Mounting) (1) (EIA Standard Conditions L = 1/32", T _L = 85°C)	10				3.0 8.0			-	Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	100 (one cycle)							Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{Stg}				-65 to +175	5			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mounting, See Note 2 on Page 4).	R _θ JA	28	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (3)	٧F				Volts
(ig = 9.4 Amp, T _{.l} = 175°C)	'	_	0.9	1.0	
(i _F = 9.4 Amp, T _J = 25°C)	1 1	_	1.04	1.1	
Reverse Current (rated dc voltage) (3)	I _R				μΑ
T _J = 25 ^o C			0.1	5.0	İ
T _J = 100 ^o C			2.8	25	
•			1		l .

- (1) Derate for reverse power dissipation. See Note on Page 2.
- (2) Derate as shown in Figure 1.
- (3) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Indicated by Cathode Band

Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for

Soldering Purposes:

300°C, 1/8" from case for 10 s at 5.0 lb. tension

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 200 volts. Proper derating may be accomplished by use of equation (1):

$$T_{A(\text{max})} = T_{J(\text{max})} - R_{\theta JA}P_{F(AV)} - R_{\theta JA}P_{R(AV)}$$
(1)

TA(max) = Maximum allowable ambient temperature

T_J(max) = Maximum allowable junction temperature (175°C or the temperature at which thermal runaway occurs, whichever is lowest.)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

R_{0.1} = Junction-to-ambient thermal resistance

Figure 1 permits easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figure solves for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J = 175^{\circ}C$,

when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figure 1 as a difference in the rate of change of the slope in the vicinity of 165°C. The data of Figure 1 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, i.e.:

$$V_{R(equiv)} = V_{in}(PK) \times F \tag{4}$$

The Factor F is derived by considering the properties of the various rectifier circuits and the rectifiers reverse characteristics.

Example: Find $T_{A(max)}$ for MR510 operated in a 400 Volt dc supply using a full wave center-tapped circuit with capacitive filter such that $I_{DC} = 6.0 \text{ A}$, $(I_{F(AV)}) = 3.0 \text{ A}$, $I_{(PK)}/I_{(AV)} = 10$, Input Voltage = 283 V(rms) (line to center tap), $R_{gJA} = 28^{\circ}\text{C/W}$.

Step 1: Find $V_{R(equiv)}$. Read F = 1.11 from Table 1 : $V_{R(equiv)}$ = 1.41)(283)(1.11) = 444 V

Step 2: Find T_R from Figure 1. Read T_R = 167°C @

 $V_R = 444 \text{ V & R}_{\theta \text{JA}} = 28^{\circ} \text{C/W}.$

Step 3: Find $P_{F(AV)}$ from Figure 8. Read $P_{F(AV)} = 4 \text{ W}$

$$@ \frac{IPK}{IAV} = 10 & IF(AV) = 3.0 A$$

Step 4: Find $T_{A(max)}$ from equation (3), $T_{A(max)} = 167-(28)$ (4) = 55°C.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wave, Bridge		1	Wave Tapped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.45	1.11	0.45	0.55	0.90	1.11
Square Wave	0.61	1.22	0.61	0.61	1.22	1.22

^{*}Note that $V_{R(PK)} \approx 2 V_{in(PK)}$

[†]Use line to center tap voltage for Vin-

CURRENT DERATING

(Reverse Power Loss Neglected)

FIGURE 4 - SEVERAL LEAD LENGTHS

FIGURE 5 - 1/8" LEAD LENGTH

FIGURE 6 - MAXIMUM FORWARD VOLTAGE

FIGURE 7 – FORWARD VOLTAGE TEMPERATURE COEFFICIENT

THERMAL CHARACTERISTICS

FIGURE 10 - THERMAL RESPONSE

FIGURE 11 - STEADY-STATE THERMAL RESISTANCE

FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL

TYPICAL DYNAMIC CHARACTERISTICS

 $(T_J = 25^{\circ}C)$

MR500, MR501, MR502, MR504, MR506, MR508, MR510

RECTIFIER EFFICIENCY NOTE

FIGURE 17 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT

The rectification efficiency factor σ shown in Figure 15 was calculated using the formula:

$$\sigma = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{o}^{2}(dc)}{R_{L}}}{\frac{V_{o}^{2}(rms)}{R_{L}}} \cdot 100\% = \frac{V_{o}^{2}(dc)}{V_{o}^{2}(ac) + V_{o}^{2}(dc)} \cdot 100\% (1)$$

For a sine wave input V_m sin (ωt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{V_{\text{m}}^2}{\pi^2 R_L}}{\frac{V_{\text{m}}^2}{4R_L}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude V_m, the efficiency factor becomes:

$$\sigma_{\text{(square)}} = \frac{\frac{V^2_{\text{m}}}{2R_{\text{L}}}}{\frac{V^2_{\text{m}}}{R_{\text{L}}}} \cdot 100\% = 50\% \text{ (3)}$$

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 14) becomes significant, resulting in an increasing ac voltage component across R_{\perp} which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ , as shown on Figure 15.

It should be emphasized that Figure 15 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_0 with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for the figure.

OUTLINE DIMENSIONS

MR750 MR751 MR752 MR754 MR756

Designers Data Sheet

HIGH CURRENT LEAD MOUNTED RECTIFIERS

- Current Capacity Comparable To Chassis Mounted Rectifiers
- Very High Surge Capacity
- Insulated Case

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

HIGH CURRENT LEAD MOUNTED SILICON RECTIFIERS

50-600 VOLTS DIFFUSED JUNCTION

MAXIMUM RATINGS

Characteristic	Symbol	MR750	MR751	MR752	MR754	MR756	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz.) See Figures 5 and 6.	10			60°C, 1/8" Lea 60°C, P.C. Board			Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	400 (for 1 cycle)					Amp
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-		65 to +175			°C

ELECTRICAL CHARACTERISTICS

Characteristic ar	Symbol	Max	Unit	
Maximum Instantaneou Drop (i _F = 100 Amp,	٧F	1.25	Volts	
Maximum Forward Voli (I _F = 6.0 Amp, T _A = 2	VF	0.90	Volts	
Maximum Reverse Current (rated dc voltage) $T_J = 25$ =C $T_J = 100$ °C		IR	0.25 1.0	mA

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8'' from case for 10 seconds at 5.0 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Indicated by diode symbol

WEIGHT: 2.5 Grams (approx.)

	MILLIN	METERS	INCHES!		
DIM	MIN	MAX	MIN	MAX	
Α	8.43	8.68	0.322	0.342	
В	5.94	6.25	0.234	0.246	
D	1.27	1.35	0.050	0.053	
K	25.15	25.65	0.990	1.010	

CASE 194-05

FIGURE 5 - MAXIMUM CURRENT RATINGS

FIGURE 6 - MAXIMUM CURRENT RATINGS

FIGURE 7 - POWER DISSIPATION

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify:

TA = Ambient Temperature

Res = Thermal Resistance, Heat Sink to Ambient

TL = Lead Temperature T_C = Case Temperature

RθL = Thermal Resistance, Lead to Heat Sink R_{θ J} = Thermal Resistance, Junction to Case P_F = Power Dissipation

T_J = Junction Temperature P_F = Power Dissipation (Subscripts A and K refer to anode and cathode sides respectively.)

Values for thermal resistance components are

R_{θ L} = 40°C/W/IN. Typically and 44°C/W/IN Maximum

RaJ = 2°C/W Typically and 4°C/W Maximum

Since RaJ is so low, measurements of the case temperature, Tc, will be approximately equal to junction temperature in practical lead mounted applications. When used as a 60 Hz rectifier, the slow thermal response holds TJ(PK) close to $T_{J(AVG)}$. Therefore maximum lead temperature may be found from: $T_{L} = 175^{O} - R_{\theta,1}$ PF. PF may be found from Figure 7.

The recommended method of mounting to a P.C. board is shown on the sketch, where RgJA is approximately 25°C/W for a 1.1/2" x 1.1/2" copper surface area. Values of 40°C/W are typical for mounting to terminal strips or P.C. boards where available surface area is small.

FIGURE 8 - STEADY STATE THERMAL RESISTANCE

K

TYPICAL DYNAMIC CHARACTERISTICS

R_L V₀

The rectification efficiency factor σ shown in Figure 9 was calculated using the formula:

$$\sigma = \frac{P(dc)}{P(rms)} = \frac{\frac{V_{o}^{2}(dc)}{R_{L}}}{\frac{V_{o}^{2}(rms)}{R_{L}}} \cdot 100\% = \frac{V_{o}^{2}(dc)}{V_{o}^{2}(ac) + V_{o}^{2}(dc)} \cdot 100\% (1)$$

For a sine wave input V_{Π} sin (ωt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{V^2 \text{m}}{\pi^2 \text{R}_L}}{\frac{V^2 \text{m}}{4 \text{R}_L}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude V_m , the efficiency factor becomes: $\sigma(square) = \frac{V_m^2}{2R_L} \cdot 100\% = 50\% (3)$

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant, resulting in an increasing ac voltage component across R $_{\rm L}$ which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor $\sigma_{\rm r}$ as shown on Figure 9.

It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_{0} with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 9.

MR810 thru MR814 MR816 thru MR818

Designers Data Sheet

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

... designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free-wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 350 nanoseconds providing high efficiency at frequencies to 100 kHz.

DESIGNER'S DATA FOR "WORST CASE" CONDITIONS

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing device characteristic boundaries — are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	MR810	MR811	MR812	MR813	MR814	MR816	MR817	MR818	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse	V _{RRM} V _{RWM}	50	100	200	300	400	600	800	1000	Volts
Voltage DC Blocking Voltage	V _R									
Non-Repetitive Peak Reverse Voltage	VRSM	100	200	300	400	500	800	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	560	700	Volts
Average Rectified Forward Current (Single phase, resistive load, TA = 75°C)	10	_	1.0							Атр
Non-Repetitive Peak Surge Current (surge applied at rated load conditions) (T _A = 75°C)	^I FSM	•	30						Amps	
Operating Junction Temperature Range	Тј	-	-65 to +150						°c	
Storage Temperature Range	T _{stg}	-			65 t	o +175 —				°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Typical Primted Circuit Board Mounting)	R _{θJA}	65	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 3.14 Amp, T _J = 150 ^O C)	٧F	_	1.1	1.2	Volts
Forward Voltage (I _F = 1.0 Amp, T _A = 25 ^O C)	VF	_	1.0	1.2	Volts
Reverse Current (rated dc voltage) $T_A = 25^{\circ}C$ $T_A = 100^{\circ}C$	I _R	=	1.0 50	10 100	μА

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time $(I_F=1.0 \text{ Amp to V}_R=30 \text{ Vdc})$ (Figure 21) $(I_F=20 \text{ mA}, I_R=2.0 \text{ mA}, \text{Tektronix S-Plug-In})$ (Figure 22)	t _{rr}	- -	350 1.5	750 3.0	ns μs
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc)(Figure 21)	IRM(REC)	-	1	3.0	Amp

FAST RECOVERY POWER RECTIFIERS 50-1000 VOLTS 1 AMPERE

	MILLIN	NETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
К	27.94	_	1.100	_

CASE 59-04

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic
FINISH: External leads are plated

and are readily solderable **POLARITY**: Cathode indicated by

Polarity band

WEIGHT: 0.4 Grams (Approximately)

MAXIMUM CURRENT RATINGS (SEE NOTES 1 and 2)

SQUARE WAVE INPUT

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS

90

100

TL, LEAD TEMPERATURE(°C)

120 130

60 70

150

140

FIGURE 10 – PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS

FIGURE 12 - THERMAL RESPONSE

NOTE 1

To determine maximum junction temperature of the diode in a given situation. the following procedure is recommended:

The temperature of the case should be measured using a thermocouple placed on the case as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value of TC, the junction temperature may be determined by:

where $\triangle \mathsf{TJC}$ is the increase in junction temperature above the case temperature. It may be determined by:

$$\Delta T_{JC} = P_{pk} \cdot R_{\theta JC} \left[D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1) \right]$$
where

r(t) = normalized value of transient thermal resistance at time, t, from Figure

 $r(t_1 + t_p)$ = normalized value of transient thermal resistance at time $t_1 + t_p$

NOTE 2

Data shown for thermal resistance junction-to-ambient (θ_{JA}) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Vector pin mounting

FIGURE 14 - THERMAL CIRCUIT MODEL

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

Res = Thermal Resistance, Heat Sink to Ambient T_A ≈ Ambient Temperature T_= Lead Temperature R $_{\theta}$ = Thermal Resistance, Jead to Heat Sink to Ambi T_= Lead Temperature R $_{\theta}$ = Thermal Resistance, Junction to Case PD= Power Dissipation T_L = Lead Temperature T_C = Case Temperature

(Subscripts A and K refer to anode and cathode sides respectively.)

Values for thermal resistance components are: $R_{\theta} L = 112^{\circ}$ C/W/IN. Typically and 128°C/W/IN Maximum $R_{\theta} J = 18^{\circ}$ C/W Typically and 30°C/W Maximum

The maximum lead temperature may be calculated as follows: TL = 150° - △TJL

△TJL can be calculated as shown in NOTE 1 or it may be approximated

 $\Delta T_{JL} \approx R_{\theta JL} \bullet P_F$; PF may be formulated for sine-wave operation from Figure 3 or from Figure 4 for square-wave operation.

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA (SEE NOTE 3)

FIGURE 21 - REVERSE RECOVERY CIRCUIT

FIGURE 22 - JEDEC REVERSE RECOVERY CIRCUIT

NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using I $_{\rm F}=1.0$ A, $V_{\rm R}=30$ V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of 25°C, 75°C, 100°C, and 150°C.

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \text{ x} \left[\frac{Q_R}{\text{di/dt}} \right]^{-1/2}$$

IRM(REC) = 1.41 x [QR x di/dt] 1/2

VR, REVERSE VOLTAGE (VOLTS)

MR820 MR821 MR822 MR824 MR826

Designers Data Sheet

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED **FAST RECOVERY POWER RECTIFIERS**

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	MR820	MR821	MR822	MR824	MR826	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, TA = 55°C) (1)	10	-		5.0		-	Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	^I FSM	-		— 300 —			Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{stg}	-		-65 to +17	5		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board	R _θ JA	25	°C/W
Mounting, See Note 6, Page 8)			

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage	٧F				Volts
(i _F = 15.7 Amp, T _J = 150 ^o C)		_	0.75	1.05	
Forward Voltage	VF				Volts
(I _F = 5.0 Amp, T _J = 25°C)			0.9	1./1	
Maximum Reverse Current, (rated dc voltage) T _J = 25°C	1 _R	_	5.0	25	μА
T _J = 100 ^o C		-	0.4	1.0	mA

REVERSE RECOVERY CHARACTERISTICS

Symbol	Min	Тур	Max	Unit
t _{rr}				ns
	_	150 150	300 300	
IRM(REC)			20	Amp
	t _{rr}	t _{rr}	t _{rr} – 150 – 150	t _{rr} – 150 200 – 150 300

- (1) Must be derated for reverse power dissipation. See Note 3

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 5.0 AMPERES

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	5.94	6.25	0.234	0.246
D	1.27	1.35	0.050	0.053
K	25.15	25.65	0.990	1.010

CASE 194-04

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic FINISH: External Surfaces are Cor-

rosion Resistant

POLARITY: Indicated by Diode Symbol

WEIGHT: 2.5 Grams (Approximately) MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

350°C, 3/8" from case for 10 s at 5.0 lb. tension.

MAXIMUM CURRENT AND TEMPERATURE RATINGS

FIGURE 1 — MAXIMUM ALLOWABLE JUNCTION TEMPERATURE

NOTE 1 MAXIMUM JUNCTION TEMPERATURE DERATING

When operating this rectifier at junction temperatures over approximately 85°C , reverse power dissipation and the possibility of thermal runaway must be considered. The data of Figure 1 is based upon worst case reverse power and should be used to derate $T_{J(\text{max})}$ from its maximum value of 175°C. See Note 3 for additional information on derating for reverse power dissipation.

When current ratings are computed from $T_{J(max)}$ and reverse power dissipation is also included, ratings vary with reverse voltage as shown on Figures 2 thru 5.

RESISTIVE LOAD RATINGS PRINTED CIRCUIT BOARD MOUNTING — SEE NOTE 6, PAGE 8

FIGURE 3 - SQUARE WAVE INPUT

TA, AMBIENT TEMPERATURE (°C)

TA, AMBIENT TEMPERATURE (°C)

MAXIMUM CURRENT RATINGS

NOTE 2

Current derating data is based upon the thermal response data of Figure 29 and the forward power dissipa-tion data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11, addi-tional derating for reverse voltage and for junction to ambient thermal resistance must be applied. See Note 3.

SQUARE WAVE INPUT

FIGURE 7 - EFFECT OF LEAD LENGTHS,

TI, LEAD TEMPERATURE (°C)

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

TL, LEAD TEMPERATURE (°C)

FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS

TL, LEAD TEMPERATURE (°C)

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS

TA, AMBIENT TEMPERATURE (°C)

MR820, MR821, MR822, MR824, MR826

REVERSE POWER DISSIPATION AND CURRENT

NOTE 3 DERATING FOR REVERSE POWER DISSIPATION

In this rectifier, power loss due to reverse current is generally not negligible. For reliable circuit design, the maximum junction temperature must be limited to either 175°C or the temperature which results in thermal runaway. Proper derating may be accomplished by use of equation 1 or equation 2.

Equation 1 TA = T1 - (175 - TJ(max)) - PR ReJA

T₁ = Maximum Allowable Ambient Temperature neglecting reverse power dissipation (from Figures 10 or 11)

 $T_{J(max)}$ * Maximum Allowable Junction Temperature to prevent thermal runaway or 175 $^{\rm O}$ C, which ever is lower. (See Figure 1).

 P_R = Reverse Power Dissipation (From Figure 12 or 13, adjusted for $T_{J(max)}$ as shown below)

R_{BJA} = Thermal Resistance, Junction to Ambient.

When thermal resistance, junction to ambient, is over $20^{\rm OC/W}$, the effect of thermal response is negligible. Satisfactory derating may be found by using:

Equation 2 TA = TJ(max) - (PR + PF) ReJA

PF = Forward Power Dissipation (See Figures 19 & 20) Other terms defined above

The reverse power given on Figures 12 and 13 is calculated for $T_J=150^{\circ}C$. When T_J is lower, P_R will decrease; its value can be found by multiplying P_R by the normalized reverse current from Figure 14 at the temperature of interest. The reverse power data is calculated for half wave rectification

circuits. For full wave rectification using either a bridge or a center-tapped transformer, the data for resistive loads is equiva-

lent when Vp is the line to line voltage across the rectifiers. Fo capacitive loads, it is recommended that the dc case on Figure 13 capacitive loads, it is recommended that the dc case on Figure 13 be used, regardless of input waveform, for bridge circuits. For capacitively loaded full wave center-tapped circuits, the 20.1 data of Figure 12 should be used for sine wave inputs and the capacitive load data of Figure 13 should be used for square wave inputs regardless of $I_{\{pk\}}/I_{\{a\psi\}}$. For these two cases, ∇p is the voltage across one leg of the transformer.

Find Maximum Ambient Temperature for I $_{AV}$ = 2 A, Capacitive Load of I $_{PK}/I_{AV}$ = 20, Input Voltage = 120 V (rms) Sine Wave, R $_{\theta JA}$ = 25°C/W, Half Wave Circuit. Solution 1:

Step 1: Find Vp; Vp = $\sqrt{2}$ Vin = 169 V, V_{R(pk)} = 338 V Step 2: Find T_{J(max)} from Figure 1. Read T_{J(max)} = 119°C. Step 3: Find PR(max) from Figure 12. Read PR = 770 mW @ 140°C

Step 4: Find I_R normalized from Figure 14. Read I_R (norm) = 0.4
Step 5: Correct P_R to T_J(max). P_R = I_R(norm) × P_R (Figure 12)
P_R = 0.4 × 770 = 310 mW.

Step 6: Find Pr from Figure 19. Read Pr = 2.4 W.

Step 7: Compute T_A from $T_A = T_{J(max)} \cdot (P_R + P_F) R_{\theta JA}$ $T_A = 119 \cdot (0.31 + 2.4)(25)$ TA = 510C

Solution 2:

Stens 1 thru 5 are as above.

Step 6: Find $T_A = T_1$ from Figure 10. Read $T_A = 115^{\circ}$ C. Step 7: Compute T_A from $T_A = T_1 \cdot (175 \cdot (T_J|_{max})) \cdot P_R R_{gJA}$ $T_A = 115 \cdot (175 \cdot 119) \cdot (0.31) (25)$ TA = 51°C

At times, a discrepancy between methods will occur because thermal response is factored into Solution 2.

FIGURE 12 - SINE WAVE INPUT DISSIPATION

Vp. PEAK APPLIED VOLTAGE (VOLTS)

FIGURE 13 - SQUARE WAVE INPUT DISSIPATION

VP, PEAK APPLIED VOLTAGE (VOLTS)

TJ, JUNCTION TEMPERATURE (°C)

FIGURE 15 - TYPICAL REVERSE CURRENT

VR, REVERSE VOLTAGE (VOLTS)

0.2 0.4

0.6

STATIC CHARACTERISTICS

200 Maximum - - Typical 100 70 50 if, INSTANTANEOUS FORWARD CURRENT (AMPS) Tj = 150°C 20 2.0 1 0 0. 0.5

FIGURE 17 - MAXIMUM SURGE CAPABILITY

FIGURE 18 - FORWARD VOLTAGE TEMPERATURE COEFFICIENT

MAXIMUM FORWARD POWER DISSIPATION

1.0

1.2 vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

IF(AV), AVERAGE FORWARD CURRENT (AMP)

3

TYPICAL RECOVERED STORED CHARGE DATA (See Note 4)

NOTE 4

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F \ = \ 1.0 \ A, \ V_R \ = \ 30 \ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}{\rm C},\ 75^{\rm o}{\rm C},\ 100^{\rm o}{\rm C},\ {\rm and}\ 150^{\rm o}{\rm C}.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \text{ x} \left[\frac{\Omega_R}{\text{di/dt}} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

DYNAMIC CHARACTERISTICS

FIGURE 25 - REVERSE RECOVERY CIRCUIT

FIGURE 26 - JEDEC REVERSE RECOVERY CIRCUIT

THERMAL CHARACTERISTICS

FIGURE 29 - THERMAL RESPONSE

NOTE 5

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $T_{\rm L}$, the junction temperature may be determined by:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{L} + \triangle \mathsf{T}_\mathsf{J} \mathsf{L}$$

where \triangle T_{JL} is the increase in junction temperature above the lead temperature. It may be determined by:

 \triangle T_{JL} = P_{pk} • R_{θJL} {D + (I - D) • r(t₁ + t_p) + r(t_p) - r(t₁)} where r(t) = normalized value of transient thermal resistance at time t from Figure 29, i.e.:

 $r(t_1+t_p)=$ normalized value of transient thermal resistance at time t_1+t_p .

FIGURE 30 - STEADY-STATE THERMAL RESISTANCE

NOTE 6 RUSA RULA RUJA RUJA RUJK RUKK RUSK TAK

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify:

 T_A = Ambient Temperature $R_{\theta S}$ = Thermal Resistance, Heat sink to Ambient

 T_{\perp} = Lead Temperature $R_{\theta \perp}$ = Thermal Resistance, Lead to Heat Sink $R_{\theta \perp}$ = Thermal Resistance, Junc-

tion to Case $T_{J} = \text{Junction Temperature} \qquad P_{D} = \text{Power Dissipation} = P_{F} + P_{D}$

PR
PF = Forward Power Dissipation
PR = Reverse Power Dissipation

(Subscripts A and K refer to anode and cathode sides respectively). Values for thermal resistance components are:

 $R_{\theta\,L}$ = 40°C/W/IN. Typically and 44°C/W/IN Maximum. $R_{\theta\,J}$ = 2°C/W Typically and 4°C/W Maximum.

Since $R_{\theta J}$ is so low, measurements of the case temperature, T_{C} , will be approximately equal to junction temperature in practical lead mounted applications. When used as a 60 Hz rectifier, the slow thermal response holds $T_{J}(p_{K})$ close to $T_{J}(\Delta V)$. Therefore maximum lead temperature may be found as follows:

$$T_L = T_{J(max)} - \Delta T_{JL}$$

where

 ΔT_{JL} can be approximated as follows:

 $\Delta T_{JL} \approx R_{\beta JL} \cdot P_D$; P_D is the sum of forward and reverse power dissipation shown in Figures 12 & 19 for sine wave operation and Figures 13 & 20 for square wave operation.

The recommended method of mounting to a P.C. board is shown on the sketch, where $R_{\theta, JA}$ is approximately 25° C/W for a $1-1/2'' \times 1-1/2''$ copper surface area. Values of 40° C/W are typical for mounting to terminal strips or P.C. boards where available surface area is small.

MR830 MR831 MR832 MR834 **MR836**

HERMETICALLY SEALED, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies. inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 3 AMPERES

MAXIMUM RATINGS

Rating	Symbol	MR830	MR831	MR832	MR834	MR836	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Average Rectified Forward Current (Single phase, resistive load, $T_C = 100^{\circ}C$)	10	3.0					Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	^I FSM	100					Amps
Operating Junction Temperature Range	TJ	-		-65 to +15	50	-	°C
Storage Temperature Range	T _{stg}	-		-65 to +1	75		°c

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Forward Voltage (I _F = 3.0 Adc, T _A = 25°C)	VF	-	1.1	Volts
Reverse Current (rated DC Voltage) $T_{A} = 25^{\circ}C$	1 _R	-	0.05	mA
T _A = 100°C	-	-	1.5	

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	t _{rr}				
(I _F = 1.0 Amp to V _R = 30 Vdc)	"	-	150	200	ns
(I _{FM} = 15 Amp, di/dt = 25 A/μs)		-	150	300	ns
Reverse Recovery Current	IRM(REC)				Amı
(IF = 1.0 Amp to VR = 30 Vdc)	1	- 1	-	2.0	Ì

MILLIN	NETERS	INCHES	
MIN	MAX	MIN	MAX
_	11.43	-	0.450
_	8.89	-	0.350
_	7.62	-	0.300
1.17	1.42	0.046	0.056
24.89	_	0.980	_
	MIN - - - 1.17	MIN MAX - 11.43 - 8.89 - 7.62 1.17 1.42	MIN MAX MIN - 11.43 8.89 7.62 - 1.17 1.42 0.046

CASE 60-1

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion

resistant and leads readily solderable

POLARITY: Cathode to Case WEIGHT: 2.4 Grams (Approximately)

Designers Data Sheet

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics — are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	MR850	MR851	MR852	MR854	MR856	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase resistive load, TA = 90°C) (1)	10	3.0					Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	¹ FSM	100 (one cycle)					Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{stg}	-		-65 to +17	5		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mouting, See Note 6, Page 8)	R _{ØJA}	28	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 9.4 Amp, T _J = 175 ^O C)	٧F	-	0.9	1.1	Volts
Forward Voltage (IF = 3.0 Amp, Tj = 25°C)	VF	-	1.04	1.25	Volts
Reverse Current (rated dc voltage) T _J = 25°C / MR850	¹R	-	2.0	10 150	μΑ
$T_{\rm J} = 100^{\rm o} {\rm C}$ MR851	- [-	60	150 200	
MR854 MR856		-	100	250 300	

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	t _{rr}				ns
(I _F = 1.0 Amp to V _R = 30 Vdc, Figure 25)		-	150	200	
(I _F = 15 Amp, di/dt = 10 A/μs, Figure 26)		~	200	300	
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc, Figure 25)	IRM(REC)	-	-	2.0	Amp

(1) Must be derated for reverse power dissipation. See Note 2, Page 4.
(2) Derate as shown in Figure 1

MR850 MR851 MR852 MR854 MR856

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 3 AMPERE

	MILLI	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	9.65	0.370	0.380	
В	4.83	5.33	0.190	0.210	
D	1.22	1.32	0.048	0.052	
K	26.97	27.23	1.062	1.072	

CASE 267-01

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic Finish: External Leads are Plated, Leads are readily Solderable

Polarity: Cathode Indicated by Polarity Band

Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for Soldering Purposes:

300°C, 1/8" from case for 10 s

at 5.0 lb. tension

3

MAXIMUM CURRENT AND TEMPERATURE RATINGS

FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION TEMPERATURE

NOTE 1 MAXIMUM JUNCTION TEMPERATURE DERATING

When operating this rectifier at junction temperatures over 120^{9}C , reverse power dissipation and the possibility of thermal runaway must be considered. The data of Figure 1 is based upon worst case reverse power and should be used to derate $T_{J(\text{max})}$ from its maximum value of 175°C. See Note 2 for additional information on derating for reverse power dissipation.

When current ratings are computed from $T_{J(max)}$ and reverse power dissipation is also included, ratings vary with reverse voltage as shown on Figures 2 thru 5.

RESISTIVE LOAD RATINGS

Printed Circuit Board Mounting - See Note 6, Page 8

FIGURE 3 - SQUARE WAVE INPUT

MAXIMUM CURRENT RATINGS

Current derating data is based upon the thermal response data of Figure 29 and the forward power dissipa-tion data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11, addi-tional derating for reverse voltage and for junction to ambient thermal resistence must be applied. See Note 2.

SINE WAVE INPUTS

FIGURE 6 – EFFECT OF LEAD LENGTHS, RESISTIVE LOAD

SQUARE WAVE INPUTS

FIGURE 7 - EFFECT OF LEAD LENGTHS,

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,

FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS

REVERSE POWER DISSIPATION AND CURRENT

NOTE 2 DERATING FOR REVERSE POWER DISSIPATION

In this rectifier, power loss due to reverse current is generally not negligible. For reliable circuit design, the maximum junction temperature must be limited to either 175°C or the temperature which results in thermal runaway. Proper derating may be accomplished by use of equation 1 or equation 2.

Equation 1 TA = T1 - (175 - TJ(max)) - PR ROJA

Where:

T₁ = Maximum Allowable Ambient Temperature neglecting reverse power dissipation (from Figures 10 or 11)

 $T_{J(max)}$ = Maximum Allowable Junction Temperature to prevent thermal runaway or 175°C, which ever is lower. (See Figure 1).

PR = Reverse Power Dissipation (From Figure 12 or 13, adjusted for T_J(max) as shown below)

 $R_{\theta JA}$ = Thermal Resistance, Junction to Ambient.

When thermal resistance, junction to ambient, is over 20°C/W, the effect of thermal response is negligible. Satisfactory derating may be found by using:

Equation 2 TA = TJ(max) - (PR + PF) ReJA

P_F = Forward Power Dissipation (See Figures 19 & 20) Other terms defined above.

The reverse power given on Figures 12 and 13 is calculated for $T_J=150^9\mathrm{C}$. When T_J is lower, P_R will decrease; its value can be found by multiplying P_R by the normalized reverse current from Figure 14 at the temperature of interest.

The reverse power data is calculated for half wave rectification circuits. For full wave rectification using either a bridge or a center-tapped transformer, the data for resistive loads is equivalent when Vp is the line to line voltage across the rectifiers. For capacitive loads, it is recommended that the dc case on Figure 13 be used, regardless of input waveform, for bridge circuits. For

capacitively loaded full wave center-tapped circuits, the 20:1 data of Figure 12 should be used for sine wave inputs and the capacitive load data of Figure 13 should be used for square wave inputs regardless of $I_{(p_k)}/I_{(aV)}$. For these two cases, Vp is the voltage across one leg of the transformer.

Example 1 Find maximum ambient temperature for I $_{AV}=2$ A, capacitive load of I $_{PK}/I_{AV}=20$, Input Voltage = 60 V (rms), sine wave, R $_{\theta JA}=28^{o}$ C/W, half wave circuit.

Solution 1 (using Equation 1)

Step 1: Find Vp; $V_P = \sqrt{2} V_{in} = 85 V$, $V_{R(pk)} = 170$

Step 2: Find T_{J(max)} from Figure 1. Read T_{J(max)} =

Step 3: Find P_{R(max)} from Figure 12. Read P_R = 360 mW @ 150°C

Step 4: Find I R normalized from Figure 14. Read I R (norm)

Step 5: Correct Parto Turanta Pare Interest Y Pa

Step 5: Correct P_R to $T_{J(max)}$. $P_R = I_{R(norm)} \times P_R$ (Figure 12) $P_R = 1.5 \times 360 = 540 \text{ mW}$

Step 6: Find T_A = T₁ from Figure 10. Read T₁ = 94° C Step 7: Compute T_A from T_A = T₁ - (175 - T_J(max) - P_R R_θJ_A

T_A = 94 - (175 - 157) - (0.54) (28) T_A = 61°C

Solution 2 (using Equation 2)

Steps 1 thru 5 are as Solution 1

Step 6: Find P_F from Figure 19. Read P_F = 3.0 W

Step 7: Compute T_A from $T_A = T_{J(max)} \cdot (P_R + P_F) R_{\theta JA}$ $T_A = 157 \cdot (0.54 + 3)28$ $T_A = 58^{\circ}C$

The discrepancy occurs because thermal response is factored into solution 1, and advantage is taken of the cooling time after the power pulse and before reverse voltage achieves its maximum. 61°C is a satisfactory ambient temperature.

STATIC CHARACTERISTICS

SQUARE WAVE INPUT

3

TYPICAL RECOVERED STORED CHARAGE DATA

NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A,\ V_B=30\ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}C,\ 75^{\rm o}C,\ 100^{\rm o}C,$ and $150^{\rm o}C.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current ($l_{RM(REC)}$) can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

DYNAMIC CHARACTERISTICS

FIGURE 25 - REVERSE RECOVERY CIRCUIT

MINIMIZE ALL LEAD LENGTHS

- A TEKTRONIX 545A, K PLUG IN PRE-AMP, P6000 PROBE OR EQUIVALENT
- R_1 ADJUSTED FOR 1.4 Ω BETWEEN POINT 2 OF RELAY AND RECTISIER INDUCTANCE ≈ 38 µH
- R2 TEN-1 W, 10 Ω, 1% CARBON CORE IN PARALLEL
- $T_A = 25 + 10_{-0}$ oc for rectifier

FIGURE 26 - JEDEC REVERSE RECOVERY CIRCUIT

- R1 = 50 Ohms R2 = 250 Ohms D1 = 1N4723 D2 = 1N4001

- D3 = 1N4934 SCR1 = MCR729-10 C1 = 0.5 to 50 μF
- $C2 \approx 4000 \,\mu\text{F}$ L1 = 1.0 27 μH
- T1 = Variac Adjusts I(PK) and di/dt
- T3 = 1:1 (to trigger circuit)

1/2 5/8

L, LEAD LENGTH (INCHES)

3/4 7/8

NOTE 4

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L, the junction temperature may be determined by:

$$T_J = T_L + \triangle T_{JL}$$

where \triangle T_{JL} is the increase in junction temperature above the lead temperature. It may be determined by:

$$\triangle T_{JL} = P_{pk} \cdot R_{\theta JL} \left[D + (i - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1) \right]$$

where r(t) = normalized value of transient thermal resistance at time t from Figure 29, i.e.:

1/8 1/4 3/8

 $r(t_1 + t_p)$ = normalized value of transient thermal resistance at time $t_1 + t_p$.

NOTE 5

Use of the above model permits junction to lead thermal restance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

 T_A = Ambient Temperature $R_{\theta S}$ = Thermal Resistance, Heat

T_L = Lead Temperature

T_C = Case Temperature

C -----

T_J = Junction Temperature

 ${\cal H}_{\theta S}=$ Inermal Hesistance, Heat Sink to Ambient ${\cal R}_{\theta L}=$ Thermal Resistance, Lead to Heat Sink ${\cal R}_{\theta J}=$ Thermal Resistance, Junction to Case

tion to Case
PD = Total Power Dissipation =
PF + PR
PF = Forward Power Dissipation
PR = Reverse Power Dissipation

(Subscripts A and K refer to anode and cathode sides respectively.)

Values for thermal resistance components are: $R_{\theta\,L} = 46^{\circ} C/W/IN. \ \ \, Typically and 48^{\circ} C/W/IN \ \, Maximum. \\ R_{\theta\,J} = 10^{\circ} C/W \ \, Typically and 16^{\circ} C/W \ \, Maximum.$

The maximum lead temperature may be found as follows:

where

△T_{JL} can be approximated as follows:

 $\Delta T_{JL} \approx R_{BJL} \cdot P_D$; P_D is the sum of forward and reverse power dissipation shown in Figures 2 and 4 for sine wave operation and Figures 3 and 5 for square wave operation.

THERMAL CIRCUIT MODEL (For Heat Conduction Through the Leads)

NOTE 6

Data shown for thermal resistance junction-to-ambient ($R_{\beta,j,k}$) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR BOININ STILL AIR

MOUNTING	G LEAD LENGTH, L (IN)							
METHOD	1/8	1/4	1/2	3/4	ReJA			
1	50	51	53	55	°C/W			
2	58	59	61	63	°C/W			
3		2	8		°C/W			

MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.

2

MOUNTING METHOD 2 Vector Pin Mounting

MOUNTING METHOD 3

MR860 MR861 MR862 MR864 **MR866**

Data Sheet Designers

STUD MOUNTED **FAST RECOVERY POWER RECTIFIERS**

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	MR860	MR861	MR862	MR864	MR866	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100 ⁰ C)	10	40					Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	İFSM	350					Amps
Operating Junction Temperature Range	Τj	-65 to +160					°C
Storage Temperature Range	T _{stg}	-		-65 to +17	'5		°C

THERMAL CHARACTERISTICS

THE THIRTE OF THIRTH OF EITHORISO			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.85	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 125 Amp, T _J = 150°C)	٧F	-	1.3	1.6	Volts
Forward Voltage (IF = 40 Amp, T _C = 25°C)	VF	-	1.0	1.4	Volts
Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	İR		25 1.0	50 2.0	μA mA

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (IF = 1.0 Amp to VR = 30 Vdc, Figure 16) (IFM = 36 Amp, di/dt = 25 A/us, Figure 17)	trr		150 200	200 400	ns
Reverse Recovery Current (Is = 1.0 Amp to Vp = 30 Vdc. Figure 16)	RM(REC)	-	2.0	3.0	Amp

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

POLARITY: Cathode to Case

FINISH: All external surfaces corrosion resistant and readily solderable WEIGHT: 17 Grams (Approximately) STUD TORQUE: 25 in. lbs.

FAST RECOVERY POWER RECTIFIERS

> 50-600 VOLTS **40 AMPERES**

	MILLI	METERS	INC	HES
DIM	MIN	MAX MIN		MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94		0.667
C	-	11.43	_	0.450
D		9.53	_	0.375
E	2.92	5.08	0.115	0.200
F	~	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K		25.40	_	1.000
L	3.86	-	0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	_	0.794
S	-	2.26		0.089

- 1. DIM "P" IS DIA. 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
 - OF HEXAGONAL BASE IS OPTIONAL.
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

CASE 257-01 DO-5

NOTE 1

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see Note 3). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steedy-state conditions are achieved. Using the measured value of T.C., the junction temperature may be determined by:

TJ = TC + 4 TJC

where \triangle T $_{\mbox{\scriptsize IC}}$ is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta \, \mathsf{TJC} = \mathsf{P}_{\mathsf{DK}} \, \cdot \mathsf{R}_{\mathsf{\theta} \, \mathsf{JC}} \, [\, \mathsf{D} \, + \, (\mathsf{1} \, - \, \mathsf{D}) \, \cdot \mathsf{r}(\mathsf{t}_1 + \mathsf{t}_p) \, + \, \mathsf{r}(\mathsf{t}_p) \, - \, \mathsf{r}(\mathsf{t}_1) \,]$

r(t) = normalized value of transient thermal resistance at time, t, from Figure

 $t_1 + t_2 = t_1 + t_2$ = normalized value of transient thermal resistance at time $t_1 + t_2$.

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 16 - REVERSE RECOVERY CIRCUIT

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0~\text{A},~V_R=30~\text{V}.~$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm O}\text{C},~75^{\rm O}\text{C},~100^{\rm O}\text{C},$ and $150^{\rm O}\text{C}.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rr}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

$$I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$$

MR870 MR871 MR872 MR874 **MR876**

Designers Data Sheet

STUD MOUNTED **FAST RECOVERY POWER RECTIFIERS**

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	MR870	MR871	MR872	MR874	MR876	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, $T_C = 100^{\circ}C$)	10	-		— 50 —		-	Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	¹ FSM	-		- 400			Amps
Operating Junction Temperature Range	Т	-		-65 to +16	io		°C
Storage Temperature Range	T _{stq}	-		-65 to +17	5		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.8	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit	
Instantaneous Forward Voltage (i _F = 157 Amp, T _J = 160 ^O C)	٧F	-	1.3	1.6	Volts	
Forward Voltage (I _F = 50 Amp, T _C = 25°C)	VF	-	1.1	1.4	Volts	
Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _R	_	25 1.0	50 2.0	μA mA	

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	t _{rr}	_	150	200	ns
(I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16) (I _{FM} = 36 Amp, di/dt = 25 A/µs, Figure 17)		_	240	400	
Reverse Recovery Current	RM(REC)		2.0	3.0	Amp
(I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16)					

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces

corrosion resistant and readily solderable POLARITY: Cathode to Case WEIGHT: 17 grams (approximately) STUD TORQUE: 25 in. lbs.

FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS **50 AMPERES**

	MILLI	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
В	-	16.94	-	0.667
C	_	11.43		0.450
D	_	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F		2.03	-	0.080
J	10.72	11.51	0.422	0.453
K	-	25.40	-	1.000
L	3.86	_	0.156	_
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	-	0.794
S	_	2.26	- 0.08	

NOTES:

- 1. DIM "P" IS DIA. 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
- OF HEXAGONAL BASE IS OPTIONAL.
 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

CASE 257-01 DO-5

SINE WAVE INPUT - FORWARD POWER DISS

SQUARE WAVE INPUT

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL RECOVERED STORED CHARGE DATA

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT

NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A_{\rm c}\ V_R=30\ V_{\rm c}$. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}{\rm C},\ 75^{\rm o}{\rm C},\ 100^{\rm o}{\rm C},\ {\rm and}\ 150^{\rm o}{\rm C}.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{ff}) and peak reverse recovery current (I_{RM(REC)}) can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

$$I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$$

MR1120 thru MR1126 MR1128 MR1130

MEDIUM-CURRENT SILICON RECTIFIER

Medium-current silicon rectifiers feature high surge current capacity, and low forward voltage drop.

MEDIUM-CURRENT SILICON RECTIFIERS

50-1000 VOLTS 12 AMPERES

MAXIMUM RATINGS

WAAMOW NATINGS											
Rating	Symbol	MR 1120	MR 1121	MR 1122	MR 1123	MR 1124	MR 1125	MR 1126	MR 1128	MR 1130	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	500	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	VRSM	100	200	300	400	500	600	720	100	1200	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	210	280	350	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _C = 150°C)	10	12						Amp			
Peak Repetitive Forward Current (T _C = 150°C)	IFRM	75							Amp		
Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, T _C = 150°C)	IFSM	300 (for 1/2 cycle)						Amp			
12 t Rating (non-repetitive, 1 ms $<$ t $<$ 8.3 ms)	l ² t	375						A _(rms) 2			
Maximum Junction Operating and Storage Temperature Range	TJ, T _{stg}	-	-65 to +190							°C	

ELECTRICAL CHARACTERISTICS (All Types)

Characteristic	Symbol	Max	Unit
Full Cycle Average Forward Voltage Drop ($I_O = 12$ Amps and Rated V_r , $T_C = 150^{\circ}C$, Half Wave Rectifier)	VF(AV)	0.55	Volts
DC Forward Voltage Drop (I _F = 12 Adc, T _C = 25°C)	V _F	1.0	Volts
Full Cycle Average Reverse Current ($I_O = 12$ Amps and Rated V_r , $T_C = 150^{\circ}$ C, Half Wave Rectifier)	I _{R(AV)}	1.5	mA
DC Reverse Current (Rated V _R , T _C = 25°C)	I _R	0.5	mA

MR1120 thru MR1126, MR1128, MR1130

THERMAL CHARACTERISTICS

Maximum Steady State DC Thermal Resistance, R_{6JC}: 2.5°C/Watt

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction.

FINISH: All external surfaces corrosion-resistant and the terminal lug is readily solderable.

POLARITY: CATHODE-TO-CASE (reverse polarity units are available upon request and are designated by an

"R" suffix i.e. MR1120R).

MOUNTING POSITIONS: Any
STUD TORQUE: 15 in-lbs maximum.

MR1366 See Page 3-12 MR1376 See Page 3-17 MR1386 See Page 3-22 MR1396 See Page 3-27

MR2400 thru MR2406

TAB-MOUNTED MEDIUM-CURRENT SILICON RECTIFIERS

... compact, highly efficient silicon rectifiers for medium current applications requiring:

- High Current Surge 400 Amperes @ T_J = 175°C
- Peak Performance @ Elevated Temperature 24 Amperes @ T_C = 150°C
- Low Cost
- Same Mounting as a TO-220AB

MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 24 AMPERES

MAXIMUM RATINGS

Rating	Symbol	MR2400	MR2401	MR2402	MR2404	MR2406	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage (half wave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	ю	24					Amp
Nonrepetitive Peak Surge Current (surge applied @ rated load conditions, half wave, single phase, 60 Hz)	IFSM	400 (for 1 cycle)					Amp
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-		65 to +175			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.8	°C/W
Thermal Resistance, Junction to Air PC Board Mount, Perpendicular to Surface	$R_{\theta}JA$	55	°C/W

ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (i _F = 75.4 Amp, T _C = 25°C)	VF	1.18	Volts
Maximum Reverse Current (rated dc voltage) T _C = 25°C T _C = 100°C	IR	100 500	μА

MECHANICAL CHARACTERISTICS

CASE: Plastic encapsulated, metal tabs.

FINISH: All external surfaces are corrosion resistant and the leads are readily solderable.

POLARITY: Cathode to tab with hole; Reverse polarity available by adding "R" Suffix, MR2402R.

MOUNTING TORQUE: 8 in-1b, max.

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds.

WEIGHT: 3.6 Grams (Approximately).

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measureed using a thermocouple placed on the case at the temperature reference point. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

where $\Delta {\rm TJC}$ is the increase in junction temperature above the case temperature. It may be determined by:

$$\Delta T_{JC} = P_{pk} \bullet R_{\theta JC} [D + (1 - D) \bullet r(t1 + t_p) + r(t_p) - r(t1)]$$
 where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 3, i.e.:

 $r(t1+t_p)$ = normalized value of transient thermal resistance at time $t1+t_p$.

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

RECTIFICATION EFFICIENCY NOTE

The rectification efficiency factor σ shown in Figure 10 was calculated using the formula:

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V_{O}^{2}(dc)}{R_{L}}}{\frac{V_{O}^{2}(rms)}{R_{L}}} \bullet 100\% = \frac{V_{O}^{2}(dc)}{V_{O}^{2}(dc) + V_{O}^{2}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input V_{m} sin (ωt) to the diode, assume lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\{\text{sine}\}} = \frac{\frac{\sqrt{2}_{\text{m}}}{\pi^{2}R_{L}}}{\sqrt{2}_{\text{m}}} \bullet 100\% = \frac{4}{\pi^{2}} \bullet 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude $V_{\mbox{\scriptsize m}}$, the efficiency factor becomes:

$$\sigma_{\text{(square)}} = \frac{\frac{V^2_{\text{m}}}{2R_{\text{L}}}}{\frac{V^2_{\text{m}}}{R_{\text{L}}}} \bullet 100\% = 50\% \tag{3}$$

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across R_{\perp} which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor $\sigma_{\rm c}$ as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of $V_{\rm O}$ with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	14.22	15.88	0.560	0.625	
В	9.65	10.67	0.380	0.420	
С	7,21	7.87	0.284	0.310	
D	0.64	1.14	0.025	0.045	
F	1.52	2.29	0.060	0.090	
G	4.32	5.33	0.170	0,210	
Н	2.03	2.92	0.080	0.115	
J	0.58	0.74	0.023	0.029	
K		14.27	_	0.562	
L	_	30.15	-	1.187	
N	5.84	6.86	0.230	0.270	
Р	2.54	3.05	0.100	0.120	
Q	3.53	3.73	0.139	0.147	
R	- '	5.08	_	0.200	

CASE 339-02 (Meets TO-220AB except dimension "C")

MR2400F thru MR2406F

TAB-MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

- Same Mounting as a TO-220AB
- Cost Effective in Low Current Applications
- Lead or Chassis Mounted
- High Surge Current Capability

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS

24 AMPERES

MAXIMUM RATINGS

Rating	Symbol	MR2400F	MR2401F	MR2402F	MR2404F	MR2406F	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 125°C)	10	24					Amp
Nonrepetitive Peak Surge Current (surge applied @ rated load conditions)	IFSM	-300 (for 1 cycle)					Amp
Operating Junction Temperature Range	TJ	-65 to +150					°C
Storage Temperature Range	T _{stg}	-65 to +175				°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	0.8	°C/W
Thermal Resistance, Junction to Air, PC Board Mount; Perpendicular to Surface	$R_{\theta JA}$	55	°C/W

ELECTRICAL CHARACTERISTICS

Symbol	Min	Тур	Max	Unit
٧F	_	1.15	1.29	Volts
VF		1.00	1.15	Volts
I _R	_	10 0.5	25 1.0	μA mA mA
	v _F	v _F —	VF — 1.15 VF — 1.00 IR — 10	VF — 1.15 1.29 VF — 1.00 1.15 IR — 10 25 — 0.5 1.0

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recover Time — Soft Recovery $(IF = 1.0 \text{ Amp to V}_R = 30 \text{ Vdc}$, Figure 19) $(IFM = 36 \text{ Amp, di/dt} = 25 \text{ A/}\mu\text{s}$, Figure 20)	t _{rr}	_	150 200	200 300	ns
Reverse Recovery Current (IF = 1.0 Amp to VR = 30 Vdc, Figure 19)	IRM(REC)	_	_	4.0	Amp

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measureed using a thermocouple placed on the case at the temperature reference point. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:

$$T_J \approx T_C + \Delta T_{JC}$$

where ΔT_{JC} is the increase in junction temperature above the case temperature. It may be determined by:

$$\Delta TJC = P_{pk} \bullet R_{\theta JC} [D + (1 - D) \bullet r(t1 + t_p) + r(t_p) - r(t1)]$$
 where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 3, i.e.:

 $r(t1 + t_p)$ = normalized value of transient thermal resistance at time t1 + t_p.

3

0

110

115

CHASSIS MOUNT RATING DATA

Sine Wave Input

Square Wave Input

40 30 CRESISTIVE LOAD CAPACITIVE LOADS | (PK) | = 5.0 | | (AV) | = 10 | | = 20 | |

TC, CASE TEMPERATURE (°C)

FIGURE 6 - CURRENT DERATING

FIGURE 7 — CURRENT DERATING

PRINTED CIRCUIT BOARD RATING DATA

150

140

145

TYPICAL DYNAMIC CHARACTERISTICS

TYPICAL MOUNTING DATA

Figure 14 shows the current carrying capability of a device mounted on a printed circuit board with a typical TO-220 type heatsink having a sink-to-air thermal resistance of 12°C/W. Allowing another 2°C/W for $R_{\theta JC}$ plus $R_{\theta CS}$ (case-to-sink) puts the total at 14°C/W as indicated. The unit and heatsink were mounted perpendicular to the

printed circuit board for this data.

NOTE 2

2

TYPICAL RECOVERED STORED CHARGE DATA (See Note 3)

NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using $I_F=1.0\ A,\ V_R=30\ V.$ In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of $25^{\rm o}C,\ 75^{\rm o}C,\ 100^{\rm o}C,$ and $150^{\rm o}C.$

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.

From stored charge curves versus di/dt, recovery time (t_{rf}) and peak reverse recovery current $(I_{RM(REC)})$ can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[\frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$

С

FIGURE 19 - MOTOROLA REVERSE RECOVERY CIRCUIT

FIGURE 21 — REVERSE RECOVERY CHARACTERISTIC

MECHANICAL CHARACTERISTICS

T3 = 1:1 (to trigger circuit)

CASE: Plastic Encapsulated, Metal Tabs.

FINISH: All external surfaces are corrosion resistant and are readily solderable.

POLARITY: Cathode to Tab with hole; Reverse polarity available by adding "R" Suffix, MR2402FR.

WEIGHT: 3.6 Grams (Approximately).
MOUNTING TORQUE: 8 in-lbs max.

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds.

MR2500,M Series

MEDIUM-CURRENT SILICON RECTIFIERS

... compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge 400 Amperes @ T_J = 175°C
- Peak Performance @ Elevated Temperature 25 Amperes @ T_C = 150°C
- Low Cost
- Compact, Molded Package For Optimum Efficiency in a Small Case Configuration
- · Available With a Single Lead Attached

MAXIMUM RATINGS

Characteristic	Symbol	MR 2500	MR 2501	MR 2502	MR 2504	MR 2506	MR 2508	MR 2510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	960	1200	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	ю	25					_	Amp	
Non-Repetitive Peak Surge Current (surge applied @ rated load conditions, half wave, single phase, 60 Hz)	^I FSM	400 (for 1 cycle)					Amp		
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-	-65 to +175					•	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.0	°C/W
(Single Side Cooled)			

ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (i _F = 78.5 Amp, T _C = 25 ⁰ C)	٧F	1.18	Volts ,
Maximum Reverse Current (rated dc voltage)	^I R	400	μА
$T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$		100 500	

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

FINISH: All External Surfaces are Corrosion Resistant and the Contact Areas Readily

Solderable.

POLARITY: Indicated by dot on Cathode Side

MOUNTING POSITIONS: Any

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 250°C

WEIGHT: 1.8 Grams (Approximately)

MEDIUM-CURRENT SILICON RECTIFIERS

50 - 1000 VOLTS 25 AMPERES DIFFUSED JUNCTION

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	4.19	4.45	0.165	0.175
D	5.54	5.64	0.218	0.222
F	5.94	6.25	0.234	0.246
M	50 t	MON	50 1	MOM

CASE 193-04 MR2500M SERIES

	MILLIN	TERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	10.03	10.29	0.395	0.405	
В	4.19	4.45	0.165	0.175	
D	5.54	5.64	0.218	0.222	
F	5.94	6.25	0.234	0.246	
M	5º NOM		5º NOM		

CASE 139-03 MR2500 SERIES

FIGURE 7 - CAPACITANCE

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

RECTIFICATION EFFICIENCY NOTE

FIGURE 11 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT

The rectification efficiency factor $\boldsymbol{\sigma}$ shown in Figure 10 was calculated using the formula:

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V^2_{O}(dc)}{R_L}}{\frac{V^2_{O}(rms)}{R_L}} \bullet 100\% = \frac{V^2_{O}(dc)}{V^2_{O}(ac) + V^2_{O}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input $V_{\mbox{\scriptsize m}}$ sin (ωt) to the diode, assume lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\{\text{sine}\}} = \frac{\frac{V_{\text{m}}^2}{\pi^2 R_L}}{\frac{V_{\text{m}}^2}{4R_L}} \bullet 100\% = \frac{4}{\pi^2} \bullet 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude $V_{\mbox{\scriptsize m}}$, the efficiency factor becomes:

$$v_{\text{(square)}} = \frac{\frac{V_{\text{m}}^2}{2R_{\text{L}}}}{\frac{V_{\text{m}}^2}{R_{\text{L}}}} \bullet 100\% = 50\%$$
 (3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ , as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_Q with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

ASSEMBLY AND SOLDERING INFORMATION

There are two basic areas of consideration for successful implementation of button rectifiers:

- 1. Mounting and Handling
- 2. Soldering

each should be carefully examined before attempting a finished assembly or mounting operation.

MOUNTING AND HANDLING

The button rectifier lends itself to a multitude of assembly arrangements but one key consideration must always be included:

One Side of the Connections to the Button Must Be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer — but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015" is suggested.

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.

Common

Materials Steel Low Cost; relatively low heat conductivity Copper High Cost; high heat conductivity Aluminum Medium Cost; medium heat conductivity Relatively expensive to plate and not all platers can process aluminum.

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

 Compression
 32 lbs.
 142.3 Newton

 Tension
 32 lbs.
 142.3 Newton

 Torsion
 6-inch lbs.
 0.68 Newton-meters

 Shear
 55 lbs.
 244.7 Newton

MECHANICAL STRESS

Exceeding these recommended maximums can result in electrical degradation of the device.

SOLDERING

The button rectifier is basically a semiconductor chip bonded between two nickel-plated copper heat sinks with an encapsulating material of thermal-setting silicone. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 250°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 96.5% tin, 3.5% silver; Melting point is 221°C (this particular eutetic is used by Motorola for its button rectifier assemblies).
- 2. 63% tin, 37% lead; Melting point 183°C (eutetic). Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metals involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively light-weight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part.

Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

HEATING TECHNIQUES

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- Belt Furnaces readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. Flame Soldering involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-cooling-unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature control but requires sophisticated temperature monitoring systems such as infrared.

MR2500 Series. MR2500M Series

ASSEMBLY AND SOLDERING INFORMATION (continued)

- 3. Ovens are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. Hot Plates are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used

SOLDER PROCESS EVALUATION

Characteristics to look for when setting up the soldering process:

- Overtemperature is indicated by any one or all three of the following observations.
 - Remelting of the solder inside the button rectifier shows the temperature has exceeded 285°C and is noted by "islands" of shiny solder and solder dewetting when a unit is broken apart.
 - Cracked die inside the button may be observed by a moving reverse oscilloscope trace when pressure is applied to the unit.
 - Cracked plastic may be caused by thermal shock as well as overtemperature so cooling rate should also be checked.
- II Cold soldering gives a grainy appearance and solder build-up without a smooth continuous solder fillet. The temperature must be adjusted until the proper solder fillet is obtained within the maximum temperature limits.
- III Incomplete solder fillets result from insufficient solder or parts not making proper contact.
- IV Tilted buttons can cause a void in the solder between the heatsink and button rectifier which will result in poor heat transfer during operation. An eight degree tilt is a suggested maximum value.
- V Plating problems require a knowledge of plating operations for complete understanding of observed deficiencies.

- Peeling or plating separation is generally seen when a button is broken away for solder inspection. If heatsink or terminal base metal is present the plating is poor and must be corrected.
- Thin plating allows the solder to penetrate through to the base metal and can give a poor connection.
 A suggested minimum plating thickness is 300 microinches
- 3. Contaminated soldering surfaces may out-gas and cause non-wetting resulting in voids in the solder connection. The exact cause is not always readily apparent and can be because of:
 - (a) improper plating
 - (b) mishandling of parts
 - (c) improper and/or excessive storage time

SOLDER PROCESS MONITORING

Continuous monitoring of the soldering process must be established to minimize potential problems. All parts used in the soldering operation should be sampled on a lot by lot basis by assembly of a controlled sample. Evaluate the control sample by break-apart tests to view the solder connections, by physical strength tests and by dimensional characteristics for part mating.

A shear test is a suggested way of testing the solder bond strength.

POST SOLDERING OPERATION CONSIDERATIONS

After soldering, the completed assembly must be unloaded, washed and inspected.

Unloading must be done carefully to avoid unnecessary stress. Assembly fixtures should be cooled to room temperature so solder profiles are not affected.

Washing is mandatory if an acid flux is used because of its ionic and corrosive nature. Wash the assemblies in agitated hot water and detergent for three to five minutes. After washing; rinse, blow off excessive water and bake 30 minutes at 150°C to remove trapped moisture.

Inspection should be both electrical and physical. Any rejects can be reworked as required.

SUMMARY

The Button Rectifier is an excellent building block for specialized applications. The prime example of its use is the output bridge of the automative alternator where millions are used each year. Although the material presented here is not all inclusive, primary considerations for use are presented. For further information, contact the nearest Motorola Sales Office or franchised distributor.

MR2525L

OVERVOLTAGE TRANSIENT SUPPRESSORS

. . . designed for applications requiring a diode with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power zener diodes and will protect expensive mobile transceivers, radios and tape decks from over-voltage conditions.

- High Power Capability
- Economical
- Increased Capacity by Parallel Operation

MAXIMUM RATINGS

Rating	Symbol	Limit	Unit
DC Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	23	Volts
Repetitive Peak Reverse Surge Current MR2520L MR2525L (Time Constant = 10 ms, Duty Cycle ≤ 1.0%, T _C = 25°C)	^I RSM	68 110	Amp
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Reverse Current	I _R			μAdc
(V _R = 20 Vdc, T _C = 25°C)		_	50	l .
(V _R = 20 Vdc, T _C = 100°C)			300	İ
Breakdown Voltage (I _R = 100 mAdc, T _C = 25°C)	V _(BR)	24	32	Volts
Breakdown Voltage (1) MR2525L only (I _R = 40 Amp, T _C = 85°C)	V(BR)	_	40	Volts

(1) Pulse Test: Pulse Width ≤ 10 ms, Duty Cycle ≤ 2.0%.

THERMAL CHARACTERISTICS

Characteristic	Lead Length	Symbol	Max	Unit
Thermal Resistance, Junction	1/4"	R _{OJL}	7.5	°C/W
to Lead @ Both Leads to Heat Sink,	3/8"		10	
Equal Length	1/2"		13	

(1) Pulse Test: Pulse Width ≤ 10 ms, Duty Cycle ≤ 2.0%.

MECHANICAL CHARACTERISTICS:

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Indicated by diode symbol or cathode band

WEIGHT: 2.5 Grams (approx.)

OVERVOLTAGE TRANSIENT SUPPRESSORS

2.5K-10K WATTS

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.03	10.29	0.395	0.405
В	5.94	6.25	0.234	0.246
D	1.27	1.35	0.050	0.053
K	25.15	25.65	0.990	1.010

CASE 194-01 MR2525L

	MILLIN	METERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	8.43	8.68	0.332	0.342	
В	5.94	6.25	0.234	0.246	
D	1.27	1.35	0.050	0.053	
K	25.15	25.65	0.990	1.010	

CASE 194-05 (MR2520L)

REVERSE SURGE DESIGN LIMITS

NOTE 1 — TRANSIENTS IN THE AUTOMOTIVE ELECTRICAL SYSTEM

The introduction of electronics into the automobile has brought with it the interesting sidelight of characterizing the automotive electrical system for transients.

Since most electro-mechanical systems exhibit a wearout phenomenon as electrical stresses are increased. there has been no need to separately define transients from the normal load conditions. Any transient condition was simply accounted for by increasing contact ratings, etc. The introduction of semiconductors changes the picture since they exhibit a different sensitivity to transients. Semiconductors tend to have a black and white failure characteristic when exposed to transients in that no damage is caused below a certain level and total failure results above a certain level. Unfortunately these two levels are separate and the problem is further complicated by the fact that the energy tolerance of semiconductors is normally subject to a production distribution. This leaves solid state systems open to problems which are discovered only after many units are in the field.

SUMMARY OF TRANSIENTS

Transients in the automotive electrical system have widely varying energy levels occurring over widely varing times, but most become insignificant compared to the worst transient known as "Load Dump". Load dump happens when the battery becomes disconnected while the alternator is supplying charging current, or the disconnection of some other load with no battery present. Load dump transients generally are of 200 to 500 milliseconds duration, having an exponential decay from a worst case peak voltage of 80–120 volts. A clamped load dump, it should be noted, will be of considerably shorter duration.

Although the possibility of the battery becoming disconnected while the engine is running may seem remote, it is not reasonable this occurrence should result in the total failure of the electrical system of a car.

The following table lists some of the transients the automotive electronic designer must consider and should cause him to provide some level of protection.

Power Source	Available Transients
Battery Line	1. ±200 Volts for microseconds

2. +Load Dump
Ignition Line and 1. -300 Volts for milliseconds

Accessory Line 2. ±200 Volts for microseconds
3. +Load Dump

Note: All transients are exponential decay.

The voltages and times shown are reasonable values from many on-car measurements. Since the nonload-dump transients are of low energy, but high voltage, it is recommended they be clamped rather than blocked. It is imperative that source impedances also be known to allow proper selection of clamp devices.

STOPPING THE TRANSIENTS AT THE SOURCE

Figure 4 shows the most straight forward method of preventing large negative transients from disrupting the accessory and ignition busses. At the instant the switch is opened, the current flowing in the inductance will transfer to the diode producing about 1 volt negative on that particular buss. This condition will remain until the current in the inductance decays at a rate determined by the L/R time constant for the circuit. It can be shown that the peak currents and transient durations available in the car can easily be absorbed by a 1N4003 diode.

FIGURE 4

Figure 5 shows the most straight forward scheme for protecting against the series L-C type of transient. The forward biased diode action to protect the negative transient is similar to the action described for Figure 4. An avalanche device is required to clip off the positive portion.

Just applying these two techniques and calling the result a master suppressor, overlooks the result of mutual coupling. Because of this effect, it becomes apparent that

protecting against positive inductive transients at one spot is useless. Using the technique shown in Figure 5 to protect the various lines, would not be money well spent, since the same level of protection would still be required at each module anyway, due to mutual coupling. The best central suppressor for negative transients, then, is shown in Figure 6.

FIGURE 6

To complete the job, protection is needed against load dump. The easiest method is to simply clamp the output of the alternator with an avalanche device, as shown in Figure 7. The completed suppressor would then appear as in Figure 8. It could easily be more cost effective to incorporate the load dump suppressor into the alternator itself. The end effect would be identical to Figure 7,

however, the implementation would require placing 3 avalanche devices in place of the present 3 diodes in the ground side of the diode bridge in the alternator.

FIGURE 8

REVERSE BATTERY

Installing a battery with the terminals reversed today causes total failure of the charging system. Usually a fuse link fails, however, some cars suffer alternator failure. This condition is caused by a large current in-rush through the diode bridge which is forward biased during reverse battery condition. The master suppressor proposed in Figure 8 will suffer the same fate. While a suppressor can easily be devised, which will not drain current during -12 V condition, it is apparent that this defeats the purpose of the suppressor. In order to make this concept feasible, a circuit breaker must be inserted in series with the main battery lead.

PARALLEL OPERATION

Higher surge current capabilities can be obtained by paralleling the basic suppressor cells. Contact Motorola Semiconductor Products Division through the nearest sales office or authorized distributor for more information on number of cells required and package configurations available.

THERMAL CIRCUIT MODEL (For Heat Conduction Through The Leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify:

 T_A = Ambient Temperature R θ S = Thermal Resistance, Heat Sink to Ambient

 T_L = Lead Temperature $R_{\theta L}$ = Thermal Resistance, Lead to Heat Sink

 T_C = Case Temperature $R_{\theta}J$ = Thermal Resistance, Junction to Case

T_J = Junction Temperature P_F = Power Dissipation (Subscripts A and K refer to anode and cathode sides respectively.)

Values for thermal resistance components are: $R_{\theta L} = 40^{\circ} C/W/IN$. Typically and $44^{\circ} C/W/IN$ Maximum $R_{\theta J} = 2^{\circ} C/W$ Typically and $4^{\circ} C/W$ Maximum

Since $R_{\theta J}$ is so low, measurements of the case temperature, T_C will be approximately equal to junction temperature in practical lead mounted applications. When used as 60 Hz rectifier, the slow thermal response holds $T_{J(PK)}$ close to $T_{J(AVG)}$. Therefore maximum lead temperature may be found from: $T_L = 175^{\circ}C - R_{\theta JL} P_F$.

The recommended method of mounting to a P.C. board is shown on the sketch, where R_{BJA} is approximately 25°C/W for a 1-1/2"×1-1/2"copper surface area. Values of 40°C/W are typical for mounting to terminal strips or P.C. boards when available surface area is small.

NOTE 2 — METHOD FOR CALCULATING ENERGY DISSIPATED IN A SURGE SUPPRESSOR DURING CAPACITIVE DISCHARGE TESTS

One of the major parameters of interest in the rating of a diode surge suppressor is the energy dissipated in the device during an exponentially decaying transient pulse. Surge suppressor diodes are usually characterized using a capacitive discharge test, as shown in Figures 11 and 12. Calculation of the energy, peak power and the R-C time constant of the capacitive discharge power pulse is described in the material that follows and correlates with both of the circuits.

EMPIRICAL PARAMETER DETERMINATION

Figure 13 shows the instantaneous current and voltage applied to the DUT as obtained with a dual trace memory oscilloscope during pulse testing using the circuit of Figure 11. Points on the instantaneous power curve can be found by multiplying the instantaneous current by the instantaneous voltage at various points in time

From equation (1):
$$p(t) = Pm e^{-t/\tau}$$
 (4)

FIGURE 11 — AUTOMOTIVE LOAD DUMP TEST CIRCUIT

FIGURE 12 - CAPACITIVE DISCHARGE TEST CIRCUIT

THEORETICAL ENERGY CALCULATION

Assuming that the instantaneous power dissipated in the DUT (Diode Under Test) can be represented as an exponential decay represented by

$$p(t) = Pm e^{-t/T}$$

where Pm is the peak power at t = 0 and τ is the R-C time constant of the test circuit, then the energy dissipated in the DUT can be calculated as:

$$W = \int_{0}^{\infty} \operatorname{Pm} e^{-t/\tau} dt$$
 (2)

$$\therefore W = \tau \operatorname{Pm}$$
 (3)

Empirical determination of Pm and τ will allow calculation of the energy in the pulse using expression (3) above.

FIGURE 13 — REPRESENTATION OF CURRENT AND VOLTAGE APPLIED TO TEST DIODE

$$thus, Inp(t) = In \ Pm - \frac{t}{\tau} \tag{5}$$
 Calculation of p(t) and Inp(t) using data points off Figure 3

tabulates as follows:

t (ms)	v(t) (Volts)	i(t) (Amps)	p(t) (Watts)	Inp(t)
0.5	36.0	80.0	2880	7.965
1.5	37.5	54.0	2025	7.613
2.5	37.0	50.0	1850	7.523
3.5	36.5	42.0	1533	7.335
4.5	36.0	38.0	1368	7.221
9.5	34.5	22.0	759	6.632
19.5	32.0	8.0	256	5.545
29.5	30.0	2.0	60	4.094

Expression (5) is the equation form for a straight line

$$y = mx + b \tag{6}$$

Where m is the slope and b is the intercept

For expression (5) $\frac{-1}{x}$ is the slope and lnPm is the intercept

thus,
$$\tau = \frac{-1}{m}$$
 (7
$$Pm = In^{-1}(b)$$
 (8

$$Pm = In^{-1}(b)$$
 (8)

Accurately fitting a straight line to the Inp(t) vs. t data points allows determination of Pm and au for use in equation (3).

REGRESSION APPROACH

The method of least squares can be used to determine the slope and intercept of the line which best fits the data points Inp(t) vs. t calculated above. Least squares regression routines are available on most time sharing computer systems as well as on many scientific calculators

A least squares regression for the above data points shows the intercept and slope to be 7.8588 and -0.12429 respectively, and from (6) and (7).

$$Pm = In^{-1}(b) = In^{-1}(7.8588) = 2588.4 Watts$$

$$\tau = \frac{-1}{m} = \frac{-1}{-0.12499} = 8.046 \text{ ms}$$

Finally, the energy dissipated in the DUT is:

$$W = \tau Pm = 20.825 Joules$$

The multiple correlation coefficient of the regression for this example was 0.994 indicating a 99.4% accuracy of the fit to the theoretical equation (1). In general, accuracies above 97% can be obtained.

SUMMARY:

The energy dissipated in a diode in a capacitive discharge test can be calculated from data obtained from a dual trace memory oscilloscope using the following procedure:

- 1. Record the current and voltage pulses simultaneously on a dual trace memory oscilloscope using appropriate scales to utilize the entire scope to display the decay.
- 2. Pick off approximately five voltage and current data points across the decay (do not use t = 0 as a data point since the voltage across the DUT is initially very low, the current is at its peak and the energy dissipated is negligible).
- 3. Multiply these instantaneous current and voltage values and take the natural logrithm of the product.
- 4. Perform a least squares regression of Inp(t) vs. t to determine the slope and intercept of the "best fitting" straight line. The R2 (correlation coefficient) should be above 90% for good accuracy.
- 5. Calculate τ and Pm using equations (7) and (8).
- Calculate the energy using equation (3).

COMMENTS:

Using this method, the time constant derived will be slightly larger than the R-C product of the capacitor and resistor used in the circuit. This occurs due to the series resistance of the DUT and the Thyristor in the firing circuit. The peak energy calculated from this method will be less than what is indicated by the current and voltage traces at t = 0. This difference is of little consequence, however, because of the short duration during which it exists. In the example used, the current and voltage at t = 0 are 100 A and 30 Volts. These conditions exist for 0.5 ms or less and thus the energy dissipated is less than 1.5 Joules or 7% of the calculated energy. This 7% difference is a typical value.

Perhaps more accuracy could be obtained by adding 7% to the calculated energy, however, without the 7% "adder" this method can be used as a comparison of different transient suppressors.

MR5005 MR5010 MR5020 MR5030 MR5040

INDUSTRIAL PRESSFIT SILICON POWER RECTIFIERS

. . . designed for use in all medium-current applications or for higher current industrial alternators and chassis mounted power supply rectifiers.

- 50 Amp @ T_C = 150°C
- 600 Amp Surge Capability
- Reverse Polarity Available
- Rugged Construction

SILICON POWER RECTIFIERS

50-400 VOLTS 50 AMPERE

MAXIMUM BATINGS

Rating	Symbol	MR5005	MR5010	MR5020	MR5030	MR5040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	400	450	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	210	280	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 150°C	10	50				Amp	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	600			Amp		
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-		-65 to +19!	5 ———	-	°C

THERMAL CHARACTERISTICS

Characteristic

Thermal Resistance, Junction to Case	R_{θ} JC		0.8		ocw.
ELECTRICAL CHARACTERISTICS					
Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 157 Amp, T _J = 25°C) (i _F = 50 Amp, T _J = 25°C)	٧F	-	1.10 0.95	1.18 1.00	Volts
Reverse Current (rated dc voltage) $(T_C = 25^{\circ}C)$ $(T_C = 150^{\circ}C)$	I _R	_	0.05 1.0	0.2 2.0	mA

Symbol

MECHANICAL CHARACTERISTICS

CASE: Welded hermetically sealed construction

FINISH: All external surfaces corrosion resistant, terminals readily solerable

WEIGHT: 9 grams (approx.)

POLARITY: Cathode connected to case (reverse polarity available denoted

by Suffix R, i.e.: MR5030R)

MOUNTING POSITION: Any

NOTES:

1. 50 TPI STRAIGHT KNURL. 2. POLARITY, INK MARKED ON PACKAGE

	MILLI	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.49	16.26	0.610	0.640
В	12.73	12.83	0.501	0.505
C	5.08	6.35	0.200	0.250
D	2.46	2.62	0.097	0.103
E	2.03	4.83	0.080	0.190
Н	5.08	6.35	0.200	0.250
J	_	3.56	_	0.140
ĸ	-	15 24	-	0.600

CASE 43-04

Unit

t, TIME (ms)

Recommended procedures for mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 ± 0.001 inch in diameter
- Break the hole edge as shown to provide a guide into the hole and prevent shearing off the knurled side of the rectifier.
 The depth and width of the break should be 0.010 inch
- maximum to retain maximum heat sink surface contact.
- To prevent damage to the rectifier during press-in, the pressing force should be applied only on the shoulder ring of the rectifier case as shown.
- The pressing force should be applied evenly about the shoulder ring to avoid tilting or canting of the rectifier case in the hole during the press-in operation. Also, the use of a thermal lubricant such as D.C. 340 will be of considerable aid.

MR5059 MR5060 MR5061

AVALANCHE RECTIFIERS

... subminiature size, axial lead-mounted rectifiers for general-purpose, low-power applications requiring avalanche protection.

- Avalanche power capability
 - 1000 Watts at 20 μs
 - 450 Watts at 100 μs
- Low Forward Voltage
- Low Cost

Cross Reference Guide					
Motorola	JEDEC	G.I.			
MR5059	1N5059	1N5059GP			
MR5060	1N5060	1N5060GP			
MR5061 1N5061 1N5061GF					

MAXIMUM RATINGS

Rating	Symbol	MR5059	MR5060	MR5061	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	VRSM	300 525		800	Volts
RMS Reverse Voltage	VR(RMS)	140	280	420	Volts
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz , $T_L = 70^{\circ}\text{C}$, $1/2^{\circ}$ From Body)	10				
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	^I FSM	50	Amp		
Junction & Storage Temperature Range	TJ, T _{stg}		°C		
Nonrepetitive Peak Reverse Surge Power (t = 20 μs)	PRM		1000		Watts

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (if = 1.5 Amp, T _J = 25°C)	٧F	0.93	1.04	Volts
Reverse Current $T_J = 150^{\circ}$ C (Rated dc Voltage) $T_J = 25^{\circ}$ C	IR	250 3.0	300 5.0	μА

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Lead	$R_{\theta JL}$			°C/W
1/4"	, , , ,	21	38	
1/2"		31	50	

MECHANICAL CHARACTERISTICS

CASE: Void free, transfer molded plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

240°C, 1/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily

solderable

POLARITY: Cathode indicated by color band **WEIGHT:** 0.40 grams (approximately)

LEAD-MOUNTED AVALANCHE RECTIFIERS

200-400-600 VOLTS 1.5 AMPS

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94	-	1.100	-

CASE 59-04
Dimensions Within JEDEC DO-15 Outline.

FIGURE 1 - FORWARD VOLTAGE INSTANTANEOUS FORWARD CURRENT (AMPS) 5.0 3.0 2.0 Maximum İvoical 1.0 0.5 0.3 -Tj = 25°C 0.2 0.1 0.05 0.6 0.7 0.9 1.0 VE, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

MRL005 MRL010 MRL020 MRL040

Advance Information

LEADLESS SURFACE MOUNTED RECTIFIERS

... subminiature size, surface mounted rectifiers for general-purpose low-power applications.

LEADLESS SURFACE MOUNTED SILICON RECTIFIERS

50-400 VOLTS DIFFUSED JUNCTION

MAXIMUM RATINGS

Rating	Symbol		MRL						
nating	Symbol	005	010	020	040	Unit			
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	Volts			
Nonrepetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	VRSM	60	120	240	480	Volts			
RMS Reverse Voltage	V _R (RMS)	35	70	140	280	Volts			
Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	10		Amp						
Nonrepetitive Peak Surge Current (surge applied at rated load conditions)	^I FSM	10 (for 1 cycle)				Amp			
Operating and Storage Junction Temperature Range	TJ, T _{stg}		°C						

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (i _F = 0.5 Amp, T _J = 25°C)	٧F	0.95	1.1	Volts
Maximum Full-Cycle Average Forward Voltage Drop (I _O = 0.5 Amp, T _C = 75°C)	V _{F(AV)}	_	0.8	Volts
Maximum Reverse Current (rated dc voltage) $T_J = 25$ °C $T_J = 100$ °C	IR	0.05 1.0	10 100	μА
Maximum Full-Cycle Average Reverse Current (I _O = 0.5 Amp, T _C = 75°C)	I _{R(AV)}	-	30	μА

MECHANICAL CHARACTERISTICS

CASE: Glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C @ end caps for 10 seconds

FINISH: All external surfaces are corrosion-resistant, end caps are readily solderable POLARITY: Cathode indicated by color band

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and $\stackrel{\bullet}{\mathbb{M}}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

	MILLIM	IETERS	INCHES					
DIM	MIN	MAX	MIN	MAX				
Α	3.30	3.70	0.130	0.146				
В	1.60	1.70	0.063	0.067				
R	2.49	2.59	0.098	0.102				
- 11	0.41	0.55	0.016	0.022				

CASE 362-01

MUR105 MUR150 MUR110 MUR160 MUR115 MUR170 MUR120 MUR180 MUR130 MUR190 MUR140 MUR1100

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

ULTRAFAST RECTIFIERS

1.0 AMPERE 50-1000 VOLTS

MAXIMUM RATINGS

		MUR												
Rating	Symbol	105	110	115	120	130	140	150	160	170	180	190	1100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 1)	lF(AV)	1.0 @ T _A = 1.0 @ T _A = 120°C 1.0 @ T _A = 95				5°C	Amps							
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	FSM		35							Amps				
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-65 to +175							°C					

THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Ambient	R _€ JA	See Note 1					
ELECTRICAL CHARACTERISTICS							
Maximum Instantaneous Forward Voltage (1) (ip=1.0 Amp, T _J =150°C) (ip=1.0 Amp, T _J =25°C)	٧F	0.710 0.875	1.05 1.25	1.50 1.75	Volts		
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 150°C) (Rated dc Voltage, T _J = 25°C)	iR	50 2.0	150 5.0	600 10	μА		
Maximum Reverse Recovery Time (I _F =1.0 Amp, di/dt=50 Amp/μs) (I _F =0.5 Amp, i _R =1.0 Amp, I _{REC} =0.25 A)	t _{rr}	35 25	75 50	100 75	ns		
Maximum Forward Recovery Time (I _F =1.0 A, di/dt = 100 A/μs, I _{REC} to 1.0 V)	tfr	25	50	75	ns		

(1)Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2.0% Switchmode is a trademark of Motorola Inc.

MUR105, 110 AND 115

MUR120, 130, 140, 150, 160

FIGURE 11 — TYPICAL FORWARD VOLTAGE

FIGURE 12 — TYPICAL REVERSE CURRENT*

FIGURE 13 — CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)

FIGURE 14 — POWER DISSIPATION

FIGURE 15 — TYPICAL CAPACITANCE

NOTE 1 -- AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient (R_{AJA}) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\mbox{\em ω}\mbox{\em A}}$ IN STILL AIR

MOUNTING	MOUNTING		LEAD LENGTH, L						
METHOD		1/8	1/4	1/2	UNITS				
1		52	65	72	°C/W				
2	R _Ø JA	67	80	87	°C/W				
3			50		°C/W				

MOUNTING METHOD 1

MOUNTING METHOD 2

Vector Pin Mounting

MOUNTING METHOD 3

P.C. Board with 1-1/2" x 1-1/2" Copper Surface

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic

Finish: External Leads are Plated, Leads are

readily Solderable

Polarity: Indicated by Cathode Band Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for Soldering

Purposes: 240°C, 1/8" from case for 10 seconds at 5.0 lbs. tension.

OUTLINE DIMENSIONS

MUR405 MUR450 MUR410 MUR460 MUR415 MUR470 MUR420 MUR480 MUR430 MUR490 MUR440 MUR4100

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

ULTRAFAST RECTIFIERS

4.0 AMPERES 50-1000 VOLTS

MAXIMUM RATINGS

		MUR												
Rating	Symbol	405	410	415	420	430	440	450	460	470	480	490	4100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 1)	lF(AV)	4.0 @ T _A = 80°C		4.0 @ T _A = 40°C				;	4.0 @ T _A = 35°C				Amp	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	125 70					Amp							
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-65 to +175						°C						

THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	See Note 1					
ELECTRICAL CHARACTERISTICS							
Maximum Instantaneous Forward Voltage (1) (i _F =3.0 Amp, T_J =150°C) (i _F =3.0 Amp, T_J =25°C) (i _F =4.0 Amp, T_J =25°C)	٧F	0.710 0.875 0.890	1.05 1.25 1.28	1.53 1.75 1.85	Volts		
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 150°C) (Rated dc Voltage, T _J = 25°C)	iR	150 5.0	250 10	900 25	μΑ		
Maximum Reverse Recovery Time (I _F =1.0 Amp, di/dt=50 Amp/ μ s) (I _F =0.5 Amp, I _R =1.0 Amp, I _{REC} =0.25 Amp)	t _{rr}	35 25	75 50	100 75	ns		
Maximum Forward Recovery Time (I _F =1.0 A, di/dt = 100 A/μs, Recovery to 1.0 V)	tfr	25	50	75	ns		

(1)Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2.0% Switchmode is a trademark of Motorola Inc.

MUR405, 410 AND 415

MUR420, 430, 440, 450 AND 460

MUR470, 480, 490, 4100

FIGURE 11 — TYPICAL FORWARD VOLTAGE

FIGURE 12 — TYPICAL REVERSE CURRENT*

FIGURE 13 — CURRENT DERATING (MOUNTING METHOD #3 PER NOTE 1)

FIGURE 14 — POWER DISSIPATION

FIGURE 15 - TYPICAL CAPACITANCE

NOTE 1 -- AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient $(R_{\beta,JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR

MOU	NTING	LEA	LEAD LENGTH, L (IN)						
MET		1/8	1/4	1/2	3/4	UNITS			
1		50	51	53	55	°C/W			
2	R _{ØJA}	58	59	61	63	°C/W			
3			2	8		°C/W			

MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.

MOUNTING METHOD 2

Vector Push-In Terminals T-28

MOUNTING METHOD 3

P.C. Board with 1-1/2" x 1-1/2" Copper Surface

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic

Finish: External Leads are Plated, Leads are

readily Solderable

Polarity: Indicated by Cathode Band Weight: 1.1 Grams (Approximately)

Maximum Lead Temperature for Soldering

Purposes:

300°C, 1/8" from case for 10 s

OUTLINE DIMENSIONS

MUR605CT MUR610CT MUR615CT MUR620CT

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package

ULTRAFAST RECTIFIERS

6 AMPERES 50-200 VOLTS

Maximum

Unit

MAXIMUM RATINGS

Rating	Symbol	MUR605CT	MUR610CT	MUR615CT	MUR620CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	150	200	Volts
Average Rectified Forward Current (Rated VR) T _C = 130°C Per Diode Total Device	lF(AV)		-	.0	-	Amps
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz) T _C = 130°C	FRM	-	Amps			
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	-		75		Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-	65 to	+ 175		°C

THERMAL CHARACTERISTICS PER DIODE LEG Rating

Thermal Resistance, Junction to Case	R _θ JC	5.0-6.0	7.0	°C/W
ELECTRICAL CHARACTERISTICS PER DIOI	DE LEG			
Instantaneous Forward Voltage (1) (iF = 3.0 Amp, $T_C = 150^{\circ}C$) (iF = 3.0 Amp, $T_C = 25^{\circ}C$)	VF	0.80 0.94	0.895 0.975	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	iR	2.0-10 0.01-3.0	250 5.0	μΑ
Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs)	t _{rr}	20-30	35	ns

Typical

Symbol

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. Switchmode is a trademark of Motorola Inc.

FIGURE 2 — TYPICAL REVERSE CURRENT 100 40 20 Tj = 175°C 4.0 2.0 1.0 IR, REVERSE CURRENT (MA) 150°C 0.4 100°C 0.1 0.04 0.02 25°C 0.004 0.002 0.001 20 180 200 0 40 VR, REVERSE VOLTAGE (VOLTS)

MUR805 MUR850 MUR810 MUR860 MUR815 MUR870 MUR820 MUR880 MUR830 MUR890 MUR840 MUR8100

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

ULTRAFAST RECTIFIERS

8 AMPERES 50-1000 VOLTS

MAXIMUM RATINGS

							M	UR						
Rating	Symbol	805	810	815	820	830	840	850	860	870	880	890	8100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	IF(AV)		8.0								Amps			
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	FM		16								Amps			
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM		100								Amps			
Operating Junction Temperature and Storage Temperature	TJ, T _{stg}						65 to	+ 175	;					°C

THERMAL CHARACTERISTICS

	·				١.
Maximum Thermal Resistance, Junction	$R_{\theta JC}$	3.0	2.0	°C/W	ł
to Case				ĺ	ı

FLECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS						
Maximum Instantaneous Forward Voltage (1) (iF = 8.0 Amp, T _C = 150°C) (iF = 8.0 Amp, T _C = 25°C)	٧F	0.895 0.975	1.00 1.30	1.20 1.50	1.5 1.8	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	iR	250 5.0	500 10	500 10	500 25	μΑ
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amp/μs) (IF = 0.5 Amp, iR = 1.0 Amp,	t _{rr}	35	60		100	ns
IREC = 0.25 Amp)	1 1	25	50		75	

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

Switchmode is a trademark of Motorola Inc.

MUR805, 810 AND 815

20

40

0

100 120 140 160 180

TA, AMBIENT TEMPERATURE (°C)

MUR820, 830 AND 840

4.0 5.0

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

1.0

0 20 40

MUR850 AND 860

0 1.0

4.0 5.0

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

160 180 200

100 120 140

TA, AMBIENT TEMPERATURE (°C)

3

MUR870, 880, 890 AND 8100

FIGURE 22 — TYPICAL CAPACITANCE

FIGURE 23 — OUTLINE DIMENSIONS

MUR1505 MUR1530 MUR1510 MUR1540 MUR1515 MUR1550 MUR1520 MUR1560

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures

ULTRAFAST RECTIFIERS

15 AMPERES 50-600 VOLTS

MAXIMUM RATINGS

			MUR							
Rating	Symbol	1505	1510	1515	1520	1530	1540	1550	1560	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	300	400	500	600	Volts
Average Rectified Forward Current (Rated V _R)	F(AV)	15 15 0°C 0°C 150°C 0°C 150°C						_	Amps	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	IFRM	30 30 @ T _C = 150°C @ T _C = 145°C							Amps	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	200 150							Amps	
Operating Junction Temperature and Storage Temperature	TJ, T _{stg}				-65 to	+ 175				°C

THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Case	R _€ JC			°C/W	
ELECTRICAL CHARACTERISTICS					
Maximum Instantaneous Forward Voltage (1) (iF = 15 Amp, T _C = 150°C) (iF = 15 Amp, T _C = 25°C)	٧F	0.85 1.05	1.12 1.25	1.20 1.50	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	iR	500 10		1000 10	μА
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs)	t _{rr}	35	60		ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

Switchmode is a trademark of Motorola Inc.

MUR1505, 1510, and 1515

FIGURE 1 — TYPICAL FORWARD VOLTAGE

FIGURE 2 -- TYPICAL REVERSE CURRENT*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

FIGURE 3 - CURRENT DERATING, CASE

MUR1520, 1530, 1540

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

8.0

1.0 VF, INSTANTANEOUS VOLTAGE (VOLTS)

0.1 0.2

0.4

MUR1550, 1560

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if $V_{\rm R}$ is sufficiently below rated $V_{\rm R}$.

MUR1605CT MUR1630CT MUR1610CT MUR1640CT MUR1615CT MUR1650CT MUR1620CT MUR1660CT

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy meets UL94, VO @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures

8 AMPERES 50-600 VOLTS

MAXIMUM RATINGS

		1			M	UR				
Rating	Symbol	1605CT	1610CT	1615CT	1620CT	1630CT	1640CT	1650CT	1660CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	300	400	500	600	Volts
Average Rectified Forward Current Per Leg Total Device, (Rated V _R), T _C = 150°C Total Device	lF(AV)	8.0 16						Amps		
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	IFM	16						Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	100						Amps		
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}				- 65 to	+ 175				°C

THERMAL CHARACTERISTICS, PER DIODE LEG

Maximum Thermal Resistance, Junction to Case	R _€ JC	3.0	2.0	2.0		
ELECTRICAL CHARACTERISTICS, PER DIODE LEG						
Maximum Instantaneous Forward Voltage (1) (iF = 8.0 Amp, T _C = 150°C) (iF = 8.0 Amp, T _C = 25°C)	٧F	0.895 0.975	1.00 1.30	1.20 1.50	Volts	
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	İR	250 5.0	500 10	500 10	μΑ	
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amp/µs) (IF = 0.5 Amp, i _R = 1.0 Amp, I _{REC} = 0.25 Amp)	t _{rr}	35 25	60 50		ns	

(1)Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0% Switchmode is a trademark of Motorola Inc.

MUR1605CT, 1610CT AND 1615CT

MUR1620CT, 1630CT AND 1640CT

3

MUR1650CT AND 1660CT

FIGURE 17 — TYPICAL CAPACITANCE, PER LEG

OUTLINE DIMENSIONS

MUR2505 MUR2510 MUR2515 MUR2520

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 50 Nanosecond Recovery Time
- Low Forward Voltage Drop

• Hermetically Sealed Metal DO-203AA (DO-4) Package

MAXIMUM RATINGS

5			M	UR			
Rating	Symbol	2505	2510	2515	2520	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	Volts	
Nonrepetitive Peak Reverse Voltage	VRSM	55	110	165	220	Volts	
Average Forward Current T _C = 145°C	I _{F(AV)}		Amps				
Nonrepetitive Peak Surge Forward Current (half cycle, 60 Hz, Sinusoidal Waveform)	IFSM 500			500			
Operating Junction and Storage Temperature	T _J , T _{stg}		-65 to	+175		°C	

THERMAL CHARACTERISTICS

Rating	Symbol	All Devices	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.3	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage Drop	٧F		Volts
(i _F = 25 Amp, T _J = 25°C)		0.95	
(i _F = 25 Amp, T _J = 125°C)]	0.80	1
(i _F = 50 Amp, T _J = 125°C)	1	0.88	
Maximum Reverse Current @ DC Voltage	l _R		
(T _J = 25°C)	İ	10	μΑ
(T _J = 125°C)		1.0	mA
Maximum Reverse Recovery Time	trr	50	ns
$(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s, V}_R = 30 \text{ V,}$			İ
T _J = 25°C)			1

Switchmode is a trademark of Motorola Inc.

ULTRAFAST RECTIFIERS

25 AMPERES 50 to 200 VOLTS

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.77	11.10	0.424	0.437
C	-	10.29	_	0.405
D	-	6.35	-	0.250
E	1.91	4.45	0.075	0.175
F	1.52	-	0.060	-
J	10.72	11.51	0.422	0.453
K		20.32	-	0.800

CASE 245-01 DO-203AA (DO-4)

MECHANICAL CHARACTERISTICS

Case: Welded, hermetically sealed

Finish: All external surface corrosion resistant and terminal leads are readily solderable

Polarity: Cathode to Case Mounting Positions: Any Stud Torque: 15 in/lb. Max

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

VR, REVERSE VOLTAGE (VOLTS)

MUR2505, MUR2510, MUR2515, MUR2520

3

MUR3005PT MUR3020PT MUR3010PT MUR3015PT MUR3040PT

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-218 Package
- High Voltage Capability to 400 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction

ULTRAFASTRECTIFIERS

30 AMPERES 50-400 VOLTS

MAXIMUM RATINGS

			MUR						
Rating		Symbol	3005PT	3010PT	3015PT	3020PT	3030PT	3040PT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		VRRM VRWM VR	50	100	150	200	300	400	Volts
Average Rectified Forward Current (Rated V _R) @ T _C = 150°C	Per Leg Per Device	lF(AV)	/) 15 30			Amps			
Peak Repetitive Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz), T _C = 150°C		FRM	30			Amps			
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Per Leg		IFSM	SM 200 150			Amps			
Operating Junction Temperature and Storage Temperature		T _J , T _{stg}	tg -65 to +175			°C			

THERMAL CHARACTERISTICS PER DIODE LEG

Maximum Thermal Resistance, Junction to Case	R _Ø JC	1.5	°C/W
Junction to Ambient	$R_{\theta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE LEG

Maximum Instantaneous Forward Voltage (1)	٧F			Volts
(i _F = 15 Amp, T _C = 150°C) (i _F = 15 Amp, T _C = 25°C)		0.85 1.05	1.12 1.25	
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	iR	5	μА	
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs)	t _{rr}	35	60	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%

Switchmode is a trademark of Motorola Inc.

MUR3005PT, 3010PT, and 3015PT

FIGURE 2 — TYPICAL REVERSE CURRENT (PER LEG)*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

FIGURE 3 — CURRENT DERATING, CASE (PER LEG)

FIGURE 5 - POWER DISSIPATION (PER LEG)

MUR3020PT, 3030PT, and 3040PT

FIGURE 7 — TYPICAL REVERSE CURRENT (PER LEG)*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

FIGURE 8 — CURRENT DERATING, CASE (PER LEG)

FIGURE 10 -- POWER DISSIPATION (PER LEG)

MUR5005 MUR5010 MUR5015 MUR5020

SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 50 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Hermetically Sealed Metal DO-203AB (DO-5) Package

MAXIMUM RATINGS MUR Unit Rating Symbol 5005 5010 5015 5020 Peak Repetitive Reverse Voltage VRRM Working Peak Reverse Voltage VRWM 50 100 150 200 Volts DC Blocking Voltage VR 165 Nonrepetitive Peak Reverse 110 220 Volts **VRSM** 55 Voltage Average Forward Current IF(AV) 50 Amps T_C = 125°C Nonrepetitive Peak Surge 600 Amps ^IFSM Forward Current (half cycle, 60 Hz, Sinusoidal Waveform) Operating Junction and Storage TJ, Tsta -55 to +175 °C Temperature

THERMAL CHARACTERISTICS

Rating	Symbol	All Devices	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage Drop	v _F		Volts
(i _F = 50 Amp, T _J = 25°C)	·	1.15	
(i _F = 50 Amp, T _J = 125°C)		0.95	
(i _F = 100 Amp, T _J = 125°C)		1.10	
Maximum Reverse Current @ DC Voltage	IR		
(T _J = 25°C)		10	μA
(T _J = 125°C)		1.0	mA
Maximum Reverse Recovery Time	t _{rr}	50	ns
$(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s, VR} = 30 \text{ V,}$			
T _{.1} = 25°C)			

Switchmode is a trademark of Motorola Inc.

ULTRAFAST RECTIFIERS

50 AMPERES 50 to 200 VOLTS

- IOTES:

 1. DIM "P" IS DIA.

 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS
 OF HEXAGONAL BASE IS OPTIONAL.

 3. ANGULAR ORIENTATION AND CONTOUR OF
 TERMINAL ONE IS OPTIONAL.

 4. THREADS ARE PLATED.

 5. DIMENSIONING AND TOLERANCING PER
 ANSI Y14, 5, 1973.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0.669	0.687
8	-	16.94	-	0.667
C	-	11.43	-	0.450
D	-	9.53	-	0.375
E	2.92	5.08	0.115	0.200
F	-	2.03	-	0.080
J	10.72	11.51	0.422	0.453
K		25.40	-	1.000
L	3.86	-	0.156	-
P	5.59	6.32	0.220	0.249
Q	3.56	4.45	0.140	0.175
R	-	20.16	-	0.794
S	-	2.26	-	0.089

CASE 257-01 DO-203AB (DO-5)

MECHANICAL CHARACTERISTICS

Case: Welded, hermetically sealed

Finish: All external surface corrosion resistant and terminal leads are readily solderable

Polarity: Cathode to Case Mounting Positions: Any Stud Torque: 25 in/lb. Max

MUR5005, MUR5010, MUR5015, MUR5020

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.

MUR10005CT MUR10010CT MUR10015CT MUR10020CT

Advance Information

ULTRAFAST SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters, and as free wheeling diodes. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving POWERTAP® Package

MAXIMUM RATINGS			М	UR		
Rating	Symbol	10005CT	10010CT	10015CT	10020CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	Volts
Average Rectified Forward Current, (Rated V _R), T _C = 140°C Per Device Per Leg	lF(AV)	100 50				Amps
Peak Repetitive Forward Current, Per Leg, (Rated V _R , Square Wave, 20 kHz), T _C = 140°C	IFRM	100				Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	400				Amps
Operating Junction and Storage Temperature	T _J ,T _{stg}		- 65 to	+ 175		°C

THERMAL CHARACTERISTICS PER LEG

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _Ø JC	1.0	°C/W

ELECTRICAL CHARACTERISTICS PER LEG

Instantaneous Forward Voltage (1) (iF = 50 Amp, T _C = 25°C)	٧F	1.10	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	250 25	μА
Maximum Reverse Recovery Time (I _F = 1.0 Amps, di/dt = 50 Amps/μs)	t _{rr}	50	ns

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

POWERTAP and Switchmode are trademarks of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ULTRAFAST RECTIFIERS

100 AMPERES 50 TO 200 VOLTS

Terminal Torque Mounting Base Torque 50-100 lb.-in.

30-40 lb.-in.

MUR10005CT, MUR10010CT, MUR10015CT, MUR10020CT

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves, if V_R is sufficiently below rated V_R.

MUR20005CT MUR20010CT MUR20015CT MUR20020CT

Advance Information

ULTRAFAST SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters, and as free wheeling diodes. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher **Current Output**
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving PowerTap® Package

MAXIMUM RATINGS MUR Symbol 20005CT 20010CT 20015CT 20020CT Unit Rating Peak Repetitive Reverse 100 150 200 Volts Voltage **VRRM** Working Peak Reverse Voltage **VRWM** DC Blocking Voltage ٧R Average Rectified Forward IF(AV) Amps Current, (Rated VR), T_C = 95°C 200 Per Device Per Leg 100 200 Peak Repetitive Forward FRM Amps Current, Per Leg, (Rated VR, Square Wave, 20 kHz), $T_C = 95^{\circ}C$ Nonrepetitive Peak Surge 800 Amps **IFSM** Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Operating Junction and -65 to +175 °C T_{J}, T_{sta} Storage Temperature

THERMAL CHARACTERISTICS PER LEG

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.70	°C/W
ELECTRICAL CHARACTERISTICS PER LE	G		
Instantaneous Forward Voltage (1) (iF = 100 Amp, $T_C = 25^{\circ}C$)	٧F	1.25	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	500 50	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amps, di/dt = 50 Amps/μs)	t _{rr}	50	ns

 Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%. PowerTap and Switchmode are trademarks of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ULTRAFAST **RECTIFIERS**

200 AMPERES **50 TO 200 VOLTS**

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	-	92.20	-	3.630	
8	17.78	20.32	0.700	0.800	
C	-	15.87	-	0.625	
E	3.05	3.30	0.120	0.130	
F	12.45	12.95	0.490	0.510	
G	34.92 BSC		1.375 BSC		
н	-	1.27	-	0.050	
N	_		1/4-20 UNC		
Q	6.86	7.11	0.270	0.280	
R	80.01 BSC		3.150 BSC		
U	15.24	-	0.600		
٧	8.38	8.89	0.330	0.350	
W	4.32	4.82	0.170	0.190	
Y	46.10 BSC		1.815 BSC		

CASE 357B-01

Terminal Penetration Terminal Torque Mounting Base Torque

0.300 Max 50-100 lb.-in. 30-40 lb.-in.

FIGURE 1 -- TYPICAL FORWARD VOLTAGE (PER LEG)

VF, INSTANTANEOUS VOLTAGE (VOLTS)

FIGURE 2 — TYPICAL REVERSE CURRENT*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves, if V_R is sufficiently below rated VR.

FIGURE 5 — CAPACITANCE (PER LEG)

SD41 See Page 3-72 SD51 See Page 3-76 SD241 See Page 3-116

R710XPT R712XPT R711XPT R714XPT

FAST RECOVERY RECTIFIERS

30 AMPERES 50 to 400 VOLTS

- 1. ANODE 1
- 2. CATHODE(S) 3. ANODE 2
- 4. CATHODE(S)

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	20.32	21.08	0.800	0.830		
В	15.49	15.90	0.610	0.626		
С	4.19	5.08	0.165	0.200		
D	1.02	1.65	0.040	0.065		
E	1.35	1.65	0.053	0.065		
G.	5.21	5.72	0.205	0.225		
Н	2.41	3.20	0.095	0.126		
J	0.38	0.64	0.015	0.025		
K	12.70	15.49	0.500	0.610		
L	15.88	16.51	0.625	0.650		
N	12.19	12.70	0.480	0.500		
Q	4.04	4.22	0.159	0.166		
	CASE 340-01					

TO-218AC

SWITCHMODE POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 50 kHz.

- Dual Diode Construction
- 150°C Operating Junction Temperature

CROSS-REFERENCE GUIDE		
MOTOROLA	VARO	
R710XPT	_	
R711XPT	R711X	
R712XPT	R712X	
R714XPT	R714X	

MAXIMUM RATINGS

Rating		Symbol	Maximum	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	R710XPT R711XPT R712XPT R714XPT	V _{RRM} V _R WM V _R	50 100 200 400	Volts
Average Rectified Forward Current (Rated V _R) T _C = 100°C	Per Device Per Diode	Ю	30 15	Amps
Peak Repetitive Forward Current, Per Diode (1 Second at 60 Hz, T _C = 100°C)		IFRM	50	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		^I FSM	150	Amps
Operating Junction and Storage Temperature		T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Maximum	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	1.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Maximum	Unit
Instantaneous Forward Voltage (1) (i _F = 15 Amp, T _C = 25°C)	٧F	1.30	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 100°C) (Rated dc Voltage, T _C = 25°C)	İR	1.0 0.015	mA
Reverse Recovery Time (I _F = 1.0 Ampere to V _R = 30 Vdc)	t _{rr}	100	ns

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leqslant 2.0\%$

Switchmode is a trademark of Motorola Inc.

R710XPT, R711XPT, R712XPT, R714XPT

4

Zener Diode Data Sheets

1/4M2.4AZ10 thru 1/4M105Z10

1/4 WATT SILICON ZENER DIODES

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be positive with respect to anode end when operated in the zener region. These devices are in the same 400 mW glass package as the 1N746 and 1N957 Series, but designated 1/4 Watt to allow characterization at a different test current level.

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C DC Power Dissipation: 1/4 Watt (Derate 1.67 mW/°C Above 25°C)

The type numbers specified have a standard voltage (Vz) tolerance of $\pm 10\%$. For closer tolerances, add suffix "5" for $\pm 5\%$, (3%, 2%, 1% tolerances also available).

1/4 WATT SILICON ZENER DIODES 2.4-105 VOLTS

NOTES:

- PACKAGE CONTOUR OPTIONAL WITHIN A AND B. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR I RREGUTINISH BUILDUP AND MINOR I RREGUTINISH BUILDUP AND MINOR I RREGUTINISH BUILDUP AND MINOR I RREGUTINISH BUILDUP AND THE DE W. CATHODE BAND.
- DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5, 1973.

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	3.05	5.08	0.120	0.200
В	1.52	2.29	0.060	0.090
D	0.46	0.56	0.018	0.022
F	-	1.27	-	0.050
K	25.40	38.10	1.000	1.500

CASE 299-02 DO-204AH (DO-35)

ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1.5 V max @ 100 mA)

	Nominal Zener	Test	Maximum Zener Impedance	Maximum DC Zener	Reverse Leakage Curre		ent
Type No.	Voltage @ IZT (VZ) Volts	Current (IZT) mA	(Z _{ZT}) @ I _{ZT}	Current (IZM) mA	I _R Max (μA)	Test Volt	age Vdc*
1/4M2.4AZ10	2.4	10	60	70	75	1	1
1/4M2.7AZ10	2.7	10	60	65	75	1	1
1/4M3.0AZ10	3.0	10	55	60	50	1	1
1/4M3.3AZ10	3.3	10	55	55	50	1	1
1/4M3.6AZ10	3.6	10	50	52	50	1	1

^{*}V_{R1} — Test Voltage for 5% Tolerance Device

VR2 — Test Voltage for 10% Tolerance Device

1/4M2.4AZ10 thru 1/4M105Z10

ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1.5 V max @ 100 mA)

	Nominal	_	Maximum Zener	Maximum	Reverse I	eakage Current	
	Zener Voltage @ I _{ZT}	Test Current	Impedance (Z _{ZT}) @ I _{ZT}	DC Zener Current	IR Max		
Type No.	(V _Z) Volts	(IZT) mA	Ohms	(IZM) mA	(μ Α)	V _{R1}	V _{R2}
1/4M3.9AZ10	3.9	10	50	49	25	1	1
1/4M4.3AZ10	4.3	10	45	46	25	1.5	1.5
1/4M4.7AZ10	4.7	10	35	42	10	1.5	1.5
1/4M5.1AZ10	5.1	10	25	39	5	1.5	1.5
1/4M5.6AZ10	5.6	10	20	36	5	1.5	1.5
1/4M6.2AZ10	6.2	10	15	33	5	3.5	3.5
1/4M6.8Z10	6.8	9.2	7.0	33	150	5.2	4.9
1/4M7.5Z10	7.5	8.3	8.0	30	75	5.7	5.4
1/4M8.2Z10	8.2	7.6	9.0	26	50	6.2	5.9
1/4M9.1Z10	9.1	6.9	10	24	25	6.9	6.6
1/4M10Z10	10	6.3	11	21	10	7.6	7.2
1/4M11Z10	11	5.7	13	19	5	8.4	8.0
1/4M12Z10	12	5.2	15	18	5	9.1	8.6
1/4M13Z10	13	4.8	18	16	5	9.9	9.4
1/4M14Z10	14	4.5	20	15	5	10.6	10.1
1/4M15Z10	15	4.2	22	14	5	11.4	10.8
1/4M16Z10	16	3.9	24	13	5	12.2	11.5
1/4M17Z10	17	3.7	26	12.5	5	13.0	12.2
1/4M18Z10	18	3.5	28	11.5	5	13.7	13.0
1/4M19Z10	19	3.3	30	11.0	5	14.4	13.7
1/4M20Z10	20	3.1	33	10.5	5	15.2	14.4
1/4M22Z10	22	2.8	40	9.5	5	16.7	15.8
1/4M24Z10	24	2.6	46	9.0	5	18.2	17.3
1/4M25Z10	25	2.5	50	8.0	5	19.0	18.0
1/4M27Z10	27	2.3	58	7.5	5	20.6	19.4
1/4M30Z10	30	2.1	70	7.0	5	22.8	21.6
1/4M33Z10	33	1.9	85	6.5	5	25.1	23.8
1/4M36Z10	36	1.7	100	6.0	5	27.4	25.9
1/4M39Z10	39	1.6	120	5.0	5	29.7	28.1
1/4M43Z10	43	1.5	140	4.8	5	32.7	31.0
1/4M45Z10	45	1.4	150	4.5	5	34.2	32.4
1/4M47Z10	47	1.3	160	4.3	5	35.8	33.8
1/4M50Z10	50	1.2	180	4.1	5	38.0	36.0
1/4M52Z10	52	1.2	200	4.0	5	39.5	37.4
1/4M56Z10	56	1.1	230	3.8	5	42.6	40.3
1/4M62Z10	62	1.0	290	3.3	5	47.1	44.6
1/4M68Z10	68	0.92	350	3.0	5	51.7	49.0
1/4M75Z10	75	0.83	450	2.8	5	56.0	54.0
1/4M82Z10	82	0.76	550	2.5	5	62.2	59.0
1/4M91Z10	91	0.69	700	2.3	5	69.2	65.5
1/4M100Z10	100	0.63	900	2.0	5	76.0	72.0
1/4M105Z10	105	0.60	1000	1.9	5	79.8	75.6

^{*}VR1 — Test Voltage for 5% Tolerance Device

 $V_{\mbox{\scriptsize R2}}$ — Test Voltage for 10% Tolerance Device

SPECIAL SELECTIONS AVAILABLE INCLUDE:

- 1 Nominal zener voltages between those shown.
- 2 Matches sets: (Standard Tolerances are ±5.0%, ±3.0%, ±2.0%, ±1.0%) depending on voltage per device.
 - a. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make possible higher zener voltages and provide lower temperature coefficients, lower dynamic impedance and greater power handling ability.
- b. Two or more units matched to one another with any specified tolerance.
- 3 Tight voltage tolerances: 1.0%, 2.0%, 3.0%.

GLASS ZENER DIODES 500 MILLIWATTS

2.4-110 VOLTS

Designers Data Sheet

500-MILLIWATT HERMETICALLY SEALED **GLASS SILICON ZENER DIODES**

- Complete Voltage Range − 2.4 to 110 Volts
- DO-35 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die

Designer's Data for "Worst Case" Conditions

The Designer's Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L ≤ 50 ^o C, Lead Length = 3/8"	PD		
*JEDEC Registration		400	mW
*Derate above T _L = 50 ^o C		3.2	mW/ ^O C
Motorola Device Ratings		500	mW
Derate above T _L = 50°C		3.33	mW/ ^o C
Operating and Storage Junction	TJ, T _{stq}		°C
Temperature Range	1		ł
*JEDEC Registration		-65 to +175	1
Motorola Device Ratings		-65 to +200	

^{*}Indicates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads.

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any

- 1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- 3. POLARITY DENOTED BY CATHODE BAND.
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIMETERS		INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	3.05	5.08	0.120	0.200			
В	1.52	2.29	0.060	0.090			
D	0.46	0.56	0.018	0.022			
F	-	1.27	-	0.050			
K	25.40	38.10	1.000	1.500			
ΔII.	All JEDEC dimensions and notes apply.						

CASE 299-02 DO-204AH (DO-35)

ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1.5 V max at 200 mA for all types)

	Nominal			*Max	imum	Maximum Reverse	Leakage Current
Type Number (Note 1)	Zener Voltage VZ @ IZT (Note 2) Volts	Test Current IZT mA	Maximum Zener Impedance Z _{ZT} @ I _{ZT} (Note 3) Ohms	l ₂ (No	r Current IM te 4)	Τ _A = 25 ^o C I _R @ V _R = 1 V μA	T _A = 150 ^o C I _R @ V _R = 1 V μA
1N4370	2.4	20	30	150	190	100	200
1N4371	2.7	20	30	135	165	75	150
1N4372	3.0	20	29	120	150	50	100
1N746	3.3	20	28	110	135	10	30
1N747	3.6	20	24	100	125	10	30
1N748	3.9	20	23	95	115	10	30
1N749	4.3	20	22	85	105	2	30
1N750	4.7	20	19	75	95	2	30
1N751	5.1	20	17	70	85	1	20
1N752	5.6	20	11	65	80	1	20
1N753	6.2	20	7	60	70	0.1	20
1N754	6.8	20	5	55	65	0.1	20
1N 755	7.5	20	6	50	60	0.1	20
1N 756	8.2	20	8	45	55	0.1	20
1N 757	9.1	20	10	40	50	0.1	20
1N 758	10	20	17	35	45	0.1	20
1N 759	12	20	30	30	35	0.1	20

Type	Nominal Zener Voltage Vz	Test Current	Maxim	um Zener Imp (Note 3)	oedance	*Maximum DC Zener Curre	nt Maxim	um Revers	se Current
Number	(Note 2)	IZT	ZZT @ IZT	ZZK @ IZK	IZK	(Note 4)	IR Maximum	Test '	Voltage Vdc
(Note 1)	Volts	mA	Ohms	Ohms	mA	mA	μ Α	5%	V _R 10%
1N957A	6.8	18.5	4.5	700	1.0	47 61	150	5.2	4.9
1N958A	7.5	16.5	5.5	700	0.5	42 55	75	5.7	5.4
1N959A	8.2	15	6.5	700	0.5	38 50	50	6.2	5.9
1N960A	9.1	14	7.5	700	0.5	35 45	25	6.9	6.6
1N961A	10	12.5	8.5	700	0.25	32 41	10	7.6	7.2
1N962A	11	11.5	9.5	700	0.25	28 37	5	8.4	8.0
1N963A	12	10.5	11.5	700	0.25	26 34	5	9.1	8.6
1N964A	13	9.5	13	700	0.25	24 32	5	9.9	9.4
1N965A	15	8.5	16	700	0.25	21 27	5	11.4	10.8
1N966A	16	7.8	17	700	0.25	19 37	5	12.2	11.5
1N967A	18	7.0	21	750	0.25	17 23	5	13.7	13.0
1N968A	20	6.2	25	750	0.25	15 20	5	15.2	14.4
1N969A	22	5.6	29	750	0.25	14 18	5	16.7	15.8
1N970A	24	5.2	33	750	0.25	13 17	5	18.2	17.3
1N971A	27	4.6	41	750	0.25	11 15	5	20.6	19.4
1N972A	30	4.2	49	1000	0.25	10 13	5	22.8	21.6
1N973A	33	3.8	58	1000	0.25	9.2 12	5	25.1	23.8
1N974A	36	3.4	70	1000	0.25	8.5 11	5	27.4	25.9
1N975A	39	3.2	80	1000	0.25	7.8 10	5	29.7	28.1
1N976A	43	3.0	93	1500	0.25	7.0 9.6	5	32.7	31.0
1N977A	47	2.7	105	1500	0.25	6.4 8.8	5	35.8	33.8
1N978A	51	2.5	125	1500	0.25	5.9 8.1	5	38.8	36.7
1N979A	56	2.2	150	2000	0.25	5.4 7.4	5	42.6	40.3
1N980A	62	2.0	185	2000	0.25	4.9 6.7	5	47.1	44.6
1N981A	68	1.8	230	2000	0.25	4.5 6.1	5	51.7	49.0
1N982A	75	1.7	270	2000	0.25	1.0 5.5	5	56.0	54.0
1N983A	82	1.5	330	3000	0.25	3.7 5.0	5	62.2	59.0
1N984A	91	1.4	400	3000	0.25	3.3 4.5	5	69.2	65.5
1N985A	100	1.3	500	3000	0.25	3.0 4.5	5	76	72
1N986A	110	1.1	750	4000	0.25	2.7 4,1	5	83.6	79.2

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

Tolerance Designation

The type numbers shown have tolerance designations as follows:

1N4370 series: ±10%, suffix A for ±5% units. 1N746 series: ±10%, suffix A for ±5% units. 1N957 series: suffix A for ±10% units, suffix B for ±5% units.

Voltage Designation

To designate units with zener voltages other than those listed, the Motorola type number should be modified as shown below. Unless otherwise specified, the electrical characteristics other than the nominal voltage (Vz) and test voltage for leakage current will conform to the characteristics of the next higher voltage type shown in the table.

EXAMPLE: 1N746 series, 1N4370 series variations М 3.7

0.5

M 59 Tolerance (±%) Power Rating Motorola Zener Diode

Matched Sets for Closer Tolerances or Higher Voltages

Series matched sets make zener voltages in excess of 100 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Matched Sets or other special circuit requirements, contact your Motorola Sales Representative.

NOTE 2. ZENER VOLTAGE (Vz) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead temperature of $30^{\circ}\text{C} \pm 1^{\circ}\text{C}$ and 3/8'' lead length.

NOTE 3. ZENER IMPEDANCE (ZZ) DERIVATION

 Z_{ZT} and Z_{ZK} are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $I_{Z}(ac) = 0.1 I_{Z}(dc)$ with the ac frequency = 60 Hz.

NOTE 4. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on the maximum voltage of a 10% 1N746 type unit or a 20% 1N957 type unit. For closer tolerance units (10% or 5%) or units where the actual zener voltage (VZ) is known at the operating point, the maximum zener current may be increased and is limited by the derating curve.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_L , should be determined from:

$$T_L = \theta_{LA}P_D + T_A$$

 θ_{LA} is the lead-to-ambient thermal resistance ($^{\text{OC}/\text{W}}$) and P_D is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30-40 $^{\text{OC}/\text{W}}$ for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$

 $\triangle T_{JL}$ is the increase in junction temperature above the lead temperature and may be found from Figure 1 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of $T_J(\Delta T_J)$ may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta V Z \Delta T J$$

 $\theta_{\mbox{\scriptsize VZ}},$ the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 3 — TEMPERATURE COEFFICIENTS
(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

This graph represents 90 percentil data points.

For worst-case design characteristics, multiply surge power by 2/3.

FIGURE 8 – EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE

FIGURE 9 - TYPICAL NOISE DENSITY

FIGURE 10 - NOISE DENSITY MEASUREMENT METHOD

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS

1N821,A 1N823,A 1N825,A 1N827,A 1N829,A

Designers Data Sheet

TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Temperature-compensated zener reference diodes utilizing a nitride passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically sealed structure.

Designer's Data for "Worst-Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristic boundaries — are given to facilitate "worst-case" design.

MAXIMUM RATINGS

Junction Temperature .55 to +175 $^{\circ}$ C Storage Temperature: -65 to +175 $^{\circ}$ C DC Power Dissipation: 400 mW @ T_A = 50 $^{\circ}$ C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 Gram (approx)

MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted. $V_Z = 6.2 \text{ V} \pm 5.0\%^* \text{ @ } I_{ZT} = 7.5 \text{ mA}$)

JEDEC Type No.	Maximum Voltage Change [△] V _Z (Volts) (Note 1)	Ambient Test Temperature °C ±1°C	Temperature Coefficient %/°C (Note 1)	Maximum Dynamic Impedance Z _{ZT} Ohms (Note 2)
1N821	0.096	-55, 0, +25, +75, +100	0.01	15
1N823	0.048	1	0.005	1
1N825	0.019		0.002	1
1N827	0.009		0.001	1
1N829	0.005		0.0005	1 🕴
1N821A	0.096		0.01	10
1N823A	0.048	1	0.005	1 ı
1N825A	0.019	1	0.002	1
1N827A	0.009		0.001	1
1N829A	0.005	*	0.0005	1 ∤

^{*}Tighter-tolerance units available on special request.

TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES 6.2 V, 400 mW

1N821, A, 1N823, A, 1N825, A, 1N827, A, 1N829, A

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE

ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE

(At Specified Temperatures) (See Note 4)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.

MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT

(See Note 2)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.

FIGURE 5 - 1N821A SERIES 800 600 22, MAXIMUM ZENER IMPEDANCE (OHMS) 200 100 40 10 8.0 60 4.0 2.0 1.0 2.0 40 6.0 8.0 10 60 80 100 Iz, ZENER CURRENT (mA)

NOTE 1:

Voltage Variation (AV2) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation (ΔV_Z) over the specified temperature range, at the specified test current (I_{ZT}) , verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_Z between the highest and lowest values must not exceed the maximum ΔV_Z given. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability — by means of temperature coefficient — accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 2:

The dynamic zener impedance, Z_{ZT} , is derived from the 60-Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current, I_{ZT} , is superimposed on I_{ZT} . Curves showing the variation of zener impedance with zener current for each series are given in Figures 4 and 5.

NOTE 3:

These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from 0 to +50°C will cause a voltage change no greater than +31 mV or -31 mV for 1N821 or 1N821A, as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values. For greater resolution, an expanded view of the shaded area in Figure 1a is shown in Figure 1b.

NOTE 4

The maximum voltage change, ΔV_Z , Figures 2 and 3 is due entirely to the impedance of the device. If both temperature and I_{ZT} are varied, then the total voltage change may be obtained by graphically adding ΔV_Z in Figure 2 or 3 to the ΔV_Z in Figure 1 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 2 or 3 on Figure 1. For a more detailed explanation see AN-437 (Application Note).

4

1N935,A,B thru 1N939,A,B

Designers Data Sheet

TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically sealed structure.

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristic boundaries — are given to facilitate "worst case" design.

MAXIMUM RATINGS

Junction Temperature: -55 to +175°C Storage Temperature. -65 to +175°C DC Power Dissipation: 500 mW @ $T_{\Delta} = 25$ °C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are readily

solderable and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted V_Z = 9.0 V $\pm 5.0\%$ * @ I_{ZT} = 7.5 mA)

JEDEC Type No. (Note 1)	Maximum Voltage Change ∆Vz (Volts) (Note 2)	Ambient Test Temperature °C ±1°C	Temperature Coefficient %/°C (Note 2)	Maximum Dynamic Impedance Z _{ZT} (Ohms) (Note 3)
1N935	0.067		0.01	
1N936	0.033		0.005	
1N937	0.013	0,+25,+75	0.002	20
1 N938	0.006		0.001	
1N939	0.003		0.0005	
1N935A	0.139		0.01	
1N936A	0.069	-55, 0, +25,	0.005	
1N937A	0.027	+75, +100	0.002	20
1N938A	0.013	175,1100	0.001	
1N939A	0.007		0.0005	
1N935B	0.184		0.01	
1N936B	0.092	-55, 0, +25,	0.005	
1N937B	0.037	+75, +100, +150	0.002	20
1N938B	0.018	775, 7100, 7150	0.001	
1N939B	0.009		0.0005	

^{*}Tighter-tolerance units available on special request.

TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES

9.0 V, 500 mW

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5.84	7.62	0.230	0.300
В	2.16	2.72	0.085	0.107
D	0.46	0.56	0.018	0.022
F	-	1.27	-	0.050
K	25.40	38.10	1.000	1.500

All JEDEC dimensions and notes apply

CASE 51 DO-7

NOTES:

- 1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

٤.

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE

(with IZT = 7.5 mA ±0.01 mA) (See Note 4)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE

(with $I_{ZT} = 7.5 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4) 1N935A thru 1N939A FIGURE 2a FIGURE 2b 150 1N935A 1N936A 1N935A IZT = 7.5 mA 40 100 1N937A 1N936A △VZ, MAXIMUM VOLTAGE CHANGE (mV) (Reference to -55°C) 20 50 1N938A 1N937A 1N939A 1N938A 1N939A 1N938A 1N939A -10 1N937A 1N938A -50 -20 1N936A 1N937A -30 -100 -40 1N935A 1N936A 1N935A -150 -50 150 TA, AMBIENT TEMPERATURE (°C)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE

(with $I_{ZT} = 7.5 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4)

FIGURE 4 — ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (at specified temperatures) (See Note 5)

FIGURE 5 – MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT

1N935, A, B thru 1N939, A, B

NOTE 1:

Types 1N935B, 1N937B, and 1N939B are available to MIL-S-19500/ 156 and MEG-A-LIFE II, Levels 1, 2, & 3, specifications.

NOTE 2

Voltage Variation (AVZ) and Temperature Coefficient.

All reference diodes are characterized by the "box method": This guarantees a maximum voltage variation $(\triangle VZ)$ over the specified temperature range, at the specified test current (IZT), verified by tests at indicated temperature points within the range. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability — by means of temperature coefficient — accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 3:

Zener Impedance Derivation

The dynamic zener impedance, Z_{ZT} , is derived from the 60-Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current, I_{ZT} , is superimposed on I_{ZT} .

Curves showing the variation of zener impedance with zener current for each series are given in Figure 5. A cathode-ray tube curve-trace test on a sample basis is used to ensure that each zener characteristic has a sharp and stable knee region.

NOTE 4

These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from +25 to +50°C will cause a voltage change no greater than +22 mV or -22 mV for 1N935, as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values. For greater resolution, expanded views of the shaded areas in Figures 1a, 2a, and 3a are shown in Figures 1b, 2b, and 3b respectively.

NOTE 5

The maximum voltage change, $\triangle V_Z$, in Figure 4 is due entirely to the impedance of the device. If both temperature and I_{ZT} are varied, then the total voltage change may be obtained by adding $\triangle V_Z$ in Figure 4 to the $\triangle V_Z$ in Figure 1, 2, or 3 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 4 on Figure 1, 2, or 3.

Designers Data Sheet

TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically sealed structure.

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristic boundaries — are given to facilitate "worst case" design.

MAXIMUM RATINGS

Junction Temperature: -55 to +175 $^{\circ}$ C Storage Temperature: -65 to +175 $^{\circ}$ C DC Power Dissipation: 500 mW @ T_{Δ} = 25 $^{\circ}$ C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are readily

solderable and weldable.

POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted $V_Z = 11.7~V \pm 5.0\%^*$ @ $I_{ZT} = 7.5$ mA)

		_		
JEDEC Type No. (Note 1)	Maximum Voltage Change △VZ (Volts) (Note 2)	Ambient Test Temperature °C ±1°C	Temperature Coefficient %/°C (Note 2)	Maximum Dynamic Impedance Z _{ZT} (Ohms) (Note 3)
1N941	0.088		0.01	
1N942	0.044		0.005	
1N943	0.018	0, +25, +75	0.002	30
1N944	0.009		0.001	
1N945	0.004		0.0005	
1N941A	0.181		0.01	
1N942A	0.090	55.0 :05	0.005	
1N943A	0.036	-55, 0, +25,	0.002	30
1N944A	0.018	+75,+100	0.001	
1N945A	0.009		0.0005	
1N941B	0.239		0.01	
1N942B	0.120	FF 0 10F	0.005	
1N943B	0.047	-55, 0, +25, +75, +100, +150	0.002	30
1N944B	0.024	+75,+100,+150	0.001	
1N945B	0.012		0.0005	

^{*}Tighter-tolerance units available on special request.

1N941,A,B thru 1N945,A,B

TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES

11.7 V, 500 mW

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.84	7.62	0.230	0.300	
В	2.16	2.72	0.085	0.107	
D	0.46	0.56	0.018	0.022	
F	_	1.27	-	0.050	
K	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply

CASE 51-02

NOTES

- 1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE

(With $I_{ZT} = 7.5 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE

(With $I_{ZT} = 7.5 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4)

MAXIMUM VOLTAGE CHANGE versus TEMPERATURE

(with $I_{ZT} = 7.5 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4)

FIGURE 4 — ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (At specified temperatures)

FIGURE 5 — MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT

FIGURE 6 - DISTRIBUTION OF MAXIMUM GENERATED NOISE

NOTE 1:

Types 1N941B, 1N943B, and 1N944B are available to MIL-S-19500/157 and MEG-A-LIFE II, Levels 1, 2, & 3, specifications.

NOTE 2:

Voltage Variation (AVZ) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation (ΔV_Z) over the specified temperature range, at the specified test current (I_{ZT}), verified by tests at indicated temperature points within the range. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability — by means of temperature coefficient — accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 3:

Zener Impedance Derivation

The dynamic zener impedance, Z_{ZT} , is derived from the 60-Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current, I_{ZT} , is superimposed on I_{ZT} .

Curves showing the variation of zener impedance with zener current for each series are given in Figure 5. A cathode-ray tube curve-trace test on a sample basis is used to ensure that each zener characteristic has a sharp and stable knee region.

NOTE 4:

These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from +25 to +50°C will cause a voltage change no greater than +29 mV or -28 mV for 1N941, as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values. For greater resolution, expanded views of the shaded areas in Figures 1a, 2a, and 3a are shown in Figures 1b, 2b, and 3b respectively.

NOTE 5:

The maximum voltage change, ΔV_Z , in Figure 4 is due entirely to the impedance of the device. If both temperature and I_{ZT} are varied, then the total voltage change may be obtained by adding ΔV_Z in Figure 4 to the ΔV_Z in Figure 1, 2, or 3 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 4 on Figure 1, 2, or 3.

1N957A thru 1N986A See Page 4-4

Advance Information

1N987A thru 1N992A

CONSTANT-VOLTAGE REFERENCES FOR 120 thru 200-VOLT APPLICATIONS

- 400-Milliwatt
- Guaranteed Low Zener Impedance
- Guaranteed Low Leakage Current
- Controlled Forward Characteristics
- Temperature Range: -65 to +175°C
- No Heat Sink Required

400-MILLIWATT

SILICON ZENER DIODES

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 50 ^o C Derate above T _L = 50 ^o C	PD	400 3.2	mW mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed all glass case.

DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant with readily solderable leads.

POLARITY: Cathode end indicated by color band. When operated in zener region, the cathode end will be positive with respect to anode end.

WEIGHT: 0.2 grams (approx.) MOUNTING POSITION: Any

This document contains information on a new product. Specifications and information herein are subject to change without notice.

- PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A: HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

	MILLIN	METERS	INC	INCHES			
DIM	MIN	MAX	MIN	MAX			
A	5.84	7.62	0.230	0.300			
В	2.16	2.72	0.085	0.107			
D	0.46	0.56	0.018	0.022			
F	_	1.27	-	0.050			
K	25.40	38.10	1.000	1.500			

All JEDEC dimensions and notes apply **CASE 51-02** DO-204AA

(DO-7)

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_F = 1.5 V max at 200 mA for all types)

Type	Nominal Zener Voltage Test Type Vz Current		Maxim	um Zener Imp (Note 3)	edance	Maximum DC Zener Current IZM	Maximum Reverse Current (Note 5)			
Number (Note 1)	(Note 2) Volts	IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	(Note 4) mA	I _R Maximum μA	Test V 5%	oltage Vdc V _R 10%	
1N987A	120	1.0	900	4500	0.25	2.5	5.0	91.2	86.4	
1N988A	130	0.95	1100	5000	0.25	2.3	5.0	98.8	93.6	
1N989A	150	0.85	1500	6000	0.25	2.0	5.0	114	108	
1N990A	160	0.80	1700	6500	0.25	1.9	5.0	121.6	115.2	
1N991A	180	0.68	2200	7100	0.25	1.7	5.0	136.8	129.6	
1N992A	200	0.65	2500	8000	0.25	1.5	5.0	152	144	

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

Tolerance Designation

The tolerance designations are as follows:

Suffix A: ±10% Suffix B: ±5%

Voltage Designation

To designate units with zener voltages other than those listed, a Motorola type number should be used, as shown below. Unless otherwise specified, the electrical characteristics other than the norminal voltage (V_Z) and test voltage for leakage current will conform to the characteristics of the next higher voltage type shown in the table.

EXAMPLE:

Matched Sets for Closer Tolerances or Higher Voltages

Series matched sets make zener voltages in excess of 200 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Parallel Matched Sets or other special circuit requirements, contact your Motorola Representative.

NOTE 2 - ZENER VOLTAGE (Vz) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of 25°C.

NOTE 3 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT}) is superimposed on I_{ZT} .

A cathode ray oscilloscope curve test is used to insure that each zener diode breakdown region begins at a low current level and that zener voltage remains nearly constant to a current level in excess of I7M.

NOTE 4 - MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on the maximum voltage of a 20% unit. For closer tolerance units (10% or 5%) or units where the actual zener voltage (V_Z) is known at the operating point, the maximum zener current may be increased and is limited by the derating curve.

NOTE 5 - REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed only for 5% and 10% 400 mW silicon zener diodes and are measured at V_R as shown on the table.

ZENER DIODES

Units are available with anode-to-case and cathode-to-case connections (standard and reverse polarity). For reverse polarity. add suffix "R" to type number.

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.

DC Power Dissipation: 50 Watts. (Derate 0.5 W/°C above 75°C).

TOLERANCE DESIGNATION: The type numbers shown have a standard tolerance of ±20% on the nominal zener voltage. Add suffix "A" for $\pm\,10\%$ units or "B" for $\pm\,5\%$ units. (2% and 1% tolerance also

CASE 54 APPLICATIONS INFORMATION: If these units are used with a socket, the unregulated line should be connected to one pin through a suitable current limiting resistor and the load should be connected to the other pin. The load will now be disconnected from the line if the unit is removed from the socket.

Typical circuit connections for anode-to-case and cathode-to-case polarities (standard and reverse polarities, respectively) are shown

1N2804 thru 1N2846 6.8V thru 200V (Case 54)

1N3305 thru 1N3350

6.8V thru 200V (Case 58)

1N4549 thru 1N4556

1N4557 thru 1N4564 3.9V thru 7.5V (Case 54)

> **50 WATTS** ZENER DIODES

(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLT-AGES SHOWN AND TIGHTER VOLTAGE TOLERANCES:

To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances ($\pm 3\%$, $\pm 2\%$, $\pm 1\%$), the Motorola type number should be used.

Device Motorola Nominal Tolerance Description Voltage Stud Diode (±%) Example: 50M90ZS3

(B) MATCHED SETS: (Standard Tolerances are ±5.0%, ± 2.0%, ± 1.0%).

Zener diodes can be obtained in sets consisting of two or more matched devices. The method for specifying such matched sets similar to the one described in (A) for specifying units with a special voltage and/or tolerance except that two extra suffixes are added to the code number described.

These units are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number which is different for each set being ordered.

(C) ZENER CLIPPERS: (Standard Tolerance ±10% and

Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomenclature:

1N2804 thru 1N2846, 1N3305 thru 1N3350, 1N4549 thru 1N4564

ELECTRICAL CHARACTERISTICS (T_C = 30 °C unless otherwise specified, V_F = 1.5 V max @ 10 A on all types.)

		Nominal Zener	Test		ner Impedance	Max DC Zener Current		Reverse*		Typical Zener
50 Watt Case 54	50 Watt Case 58	Voltage @ IZT	Current (IZT)			75°C Case Temp (IZM)mA				Voltage Temp. Coeff.
		(V _Z) Volts	mA	Z _{ZT @ IZT ohms}	Z _{ZK} @ I _{ZK} = 5mA ohms		IRMax (μA)	V _{R1}	V _{R2}	%/°C
1N4557	1N4549	3.9	3200	0.16	400	11900	150	0.5	0.5	025
1N4558	1N4550	4.3	2900	0.16	500	10650	150	0.5	0.5	025
1N4559	1N4551	4.7	2650	0.12	600	9700	100	1.0	1.0	.010
1N4560	1N4552	5.1	2450	0.12	650	8900	20	1.0	1.0	.015
1N4561	1N4553	5.6	2250	0.12	900	8100	20	1.0	1.0	.030
1N4562	1N4554	6.2	2000	0.14	1000	7300	20	2.0	2.0	.040
1N2804	1N3305	6.8	1850	0.2	70	6600	150	4.5	4.3	.040
1N4563	1N4555	6.8	1850	0.16	200	6650	10	2.0	2.0	.045
1N2805	1N3306	7.5	1700	0.3	70	5900	75	5.0	4.7	.045
1N4564	1N4556	7.5	1650	0.24	100	6050	10	3.0	3.0	.053
1N2806	1N3307	8.2	1500	0.4	70	5200	50	5.4	5.2	.048
1N2807	1N3308	9.1	1370	0.5	70	4800	25	6.1	5.7	.051
1N2808	1N3309	10	1200	0.6	80	4300	10	6.7	6.3	.055
1N2809	1N3310	11	1100	0.8	80	3900	5	8.4	8.0	.060
1N2810	1N3311	12	1000	1.0	80	3600	5	9.1	8.6	.065
1N2811	1N3312	13	960	1.1	80	3300	5	9.9	9.4	.065
1N2812	1N3313	14	890	1.2	80	3000	5	10.6	10.1	.070
1N2813	1N3314	15	830	1.4	80	2800	5	11.4	10.8	.070
1N2814	1N3315	16	780	1.6	80	2650	5	12.2	11.5	.070
1N2815	1N3316	17	740	1.8	80	2500	5	13.0	12.2	.075
1N2816	1N3317	18	700	2.0	80	2300	5	13.7	13.0	.075
1N2817	1N3318	19	660	2.2	80	2200	5	14.4	13.7	.075
1N2818	1N3319	20	630	2.4	80	2100	5	15.2	14.4	.075
1N2819	1N3320	22	570	2.5	80	1900	5	16.7	15.8	.080
1N2820	1N3321	24	520	2.6	80	1750	5	18.2	17.3	.080
1N2821	1N3322	25	500	2.7	90	1550	5	19.0	18.0	.080
1N2822	1N3323	27	460	2.8	90	1500	5	20.6	19.4	.085
1N2823	1N3324	30	420	3.0	90	1400	5	22.8	21.6	.085
1N2824	1N3325	33	380	3.2	90	1300	5	25.1	23.8	.085
1N2825	1N3326	36	350	3.5	90	1150	5	27.4	25.9	.085
1N2826	1N3327	39	320	4.0	90	1050	5	29.7	28.1	.090
1N2827	1N3328	43	290	4.5	90	975	5	32.7	31.0	.090
1N2828	1N3329	45	280	4.5	100	930	5	34.2	32.4	.090
1N2829	1N3330	47	270	5.0	100	880	5	35.8	33.8	.090
1N2830	1N3331	50	250	5.0	100	830	5	38.0	36.0	.090
1N2831	1N3332	51	245	5.2	100	810	5	38.8	36.7	.090
	1N3333	52	240	5.5	100	790	5	39.5	37.4	.090
1N2832	1N3334	56	220	6	110	740	5	42.6	40.3	.090
1N2833	1N3335	62	200	7	120	660	5	47.1	44.6	.090
1N2834	1N3336	68	180	8	140	600	5	51.7	49.0	.090
1N2835	1N3337	75	170	9	150	540	5	56.0	54.0	.090
1N2836	1N3338	82	150	11	160	490	5	62.2	59.0	.090
1N2837	1N3339	91	140	15	180	420	5	69.2	65.5	.090
1N2838	1N3340	100	120	20	200	400	5	76.0	72.0	.090
1N2839	1N3341	105	120	25	210	380	5	79.8	75.6	.095
1N2840	1N3342	110	110	30	220	365	5	83.6	79.2	.095
1N2841	1N3343	120	100	40	240	335	5	91.2	86.4	.095
1N2842	1N3344	130	95	50	275	310	5	98.8	93.6	.095
1112072	1N3345	140	90	60	325	290	5	106.4	100.8	.095
1N2843	1N3345	150	85	75	400	270	5	114.0	100.8	.095
1N2844	1N3346	ı	80	(li .	I	l .	1	1
1112044	1N3347	160 175	70	80 85	450 500	250 230	5 5	121.6 133.0	115.2 126.0	.095 .095
1N2845	1N3348	1	68	l .	i e	1	5	136.8	1	I .
	i .	180		90	525	220			129.6	.095
1N2846	1N3350	200	65	100	600	200	5	152.0	144.0	.100

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

^{*}V_{R1} — Test Voltage for 5% Tolerance Device

V_{R2} — Test Voltage for 10% Tolerance Device

No Leakage Specified as 20% Tolerance Device

Vz, BREAKDOWN VOLTAGE (VOLTS)

TE NOMINAL BREAKBOTH TOLINGE TOE

1N2970 thru 1N3015

ZENER DIODES

Diffused-junction zener diodes for both military and highreliability industrial applications. Available with anode-to-case and cathode-to-case connections (standard and reverse polarity), i.e., 1N2970 and 1N2970R. Supplied with mounting hardware.

The type numbers shown have a standard tolerance of $\pm 20\%$ on the nominal zener voltage. Add suffix "A" for $\pm 10\%$ units or "B" for $\pm 5\%$ units. (2% and 1% tolerance also available.)

MAXIMUM RATINGS

Junction and Storage Temperature: -65 $^{\circ}\text{C}$ to + 175 $^{\circ}\text{C}.$

DC Power Dissipation: 10 Watts. (Derate 83.3 mW/°C above 55°C).

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted, $V_F = 1.5$ V max @ $I_F = 2$ amp on all types.)

10 WATTS ZENER DIODES

	Nominal	Test	Max	Zener Impedano	0	Max DC Zener	Max	. Reverse Currer	ıt*
Type No.	Zener Voltage V _Z @ I _{ZT} Volts	Current IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	Current IZM mA	I _R Max (μA)	V _{R1}	V _{R2}
1N2970	6.8	370	1.2	500	1.0	1,320	150	5.2	4.9
1N2971	7.5	335	1.3	250	1.0	1,180	75	5.7	5.4
1N2972	8.2	305	1.5	250	1.0	1,040	50	6.2	5.9
1N2973	9.1	275	2.0	250	1.0	960	25	6.9	6.6
1N2974	10	250	3	250	1.0	860	10	7.6	7.2
1N2975	11	230	3	250	1.0	780	5	8.4	8.0
1N2976	12	210	3	250	1.0	720	5	9.1	8.6
1N2977	13	190	3	250	1.0	660	5	9.9	9.4
1N2978	14	180	3	250	1.0	600	5	10.6	10.
1N2979	15	170	3	250	1.0	560	5	11.4	10.8

*V_{R1} — Test Voltage for 5% Tolerance Device. V_{R2} — Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance Device.

ELECTRICAL CHARACTERISTICS (T_C = 25 °C unless otherwise noted, V_F = 1.5 V max @ I_F = 2 amp on all types.)

	Nominal Zener Voltage	Test Current	Max	Zener Impedano	:е	Max DC Zener Current	Ма	x. Reverse Curren	t*
Type No.	V _Z @ I _{ZT}	IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	I _{ZM} mA	I _R Max (μA)	V _{R1}	V _{R2}
1N2980	16	155	4	250	1.0	530	5	12.2	11.5
1N2982	18	140	4	250	1.0	460	5	13.7	13.0
1N2983	19	130	4	250	1.0	440	5	14.4	13.7
1N2984	20	125	4	250	1.0	420	5	15.2	14.4
1N2985	22	115	5	250	1.0	380	5	16.7	15.8
1N2986	24	105	5	250	1.0	350	5	18.2	17.3
1N2988	27	95	7	250	1.0	300	5	20.6	19.4
1N2989	30	85	8	300	1.0	280	5	22.8	21.6
1N2990	33	75	9	300	1.0	260	5	25.1	23.8
1N2991	36	70	10	300	1.0	230	5	27.4	25.9
1N2992	39	65	11	300	1.0	210	5	29.7	28.1
1N2993	43	60	12	400	1.0	195	5	32.7	31.0
1N2995	47	55	14	400	1.0	175	5	35.8	33.8
1N2996	50	50	15	500	1.0	165	5	38.0	36.0
1N2997	51	50	15	500	1.0	163	5	38.8	36.7
1N2998	52	50	15	500	1.0	160	5	39.5	37.4
1N2999	56	45	.16	500	1.0	150	5	42.6	40.3
1N3000	62	40	17	600	1.0	130	5	47.1	44.6
1N3001	68	37	18	600	1.0	120	5	51.7	49.0
1N3002	75	33	22	600	1.0	110	5	56.0	54.0
1N3003	82	30	25	700	1.0	100	5	62.2	59.0
1N3004	91	28	35	800	1.0	85	5	69.2	65.5
1N3005	100	25	40	900	1.0	80	5	76.0	72.0
1N3006	105	25	45	1,000	1.0	75	5	79.8	75.6
1N3007	110	23	55	1,100	1.0	72	5	83.6	79.2
1N3008	120	20	75	1,200	1.0	67	5	91.2	86.4
1N3009	130	19	100	1,300	1.0	62	5	98.8	93.6
1N3010	140	18	125	1,400	1.0	58	5	106.4	100.8
1N3011	150	17	175	1,500	1.0	54	5	114.0	108.0
1N3012	160	16	200	1,600	1.0	50	5	121.6	115.2
1N3014	180	14	260	1,850	1.0	45	5	136.8	129.6
1N3015	200	12	300	2,000	1.0	40	5	152.0	144.0

^{*}V_{R1} — Test Voltage for 5% Tolerance Device. V_{R2} — Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance Device.

(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLT-AGES SHOWN AND TIGHTER VOLTAGE TOLERANCES:

To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances ($\pm 3\%$, $\pm 2\%$, $\pm 1\%$), the Motorola type number should be used.

(B) MATCHED SETS: (Standard Tolerances are ±5.0%, ± 2.0%, ± 1.0%).

Zener diodes can be obtained in sets consisting of two or more matched devices. The method for specifying such matched sets is similar to the one described in (A) for specifying units with a special voltage and/or tolerance except that two extra suffixes are added to the code number described.

These units are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number, which is different for each set being ordered.

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

B — Two devices in series C — Three devices in series

D - Four devices in series

Example: 10M51Z5B1

(C) ZENER CLIPPERS: (Standard Tolerance ±10% and

Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomenclature:

Example: 10M20ZZ10

1N3016 thru 1N3051 See Page 4-34

1N3154,A thru 1N3157,A

TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES

8.9 V, 500 mW

TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES

Temperature-compensated zener reference diodes utilizing an oxide-passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically sealed structure.

MAXIMUM RATINGS

Junction Temperature: -55 to +175 °C Storage Temperature: -65 to +175 °C DC Power Dissipation: 500 mW @ T_A = 25 °C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all glass.

DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 Grams (approx) **MOUNTING POSITION:** Any

ELECTRICAL CHARACTERISTICS ($T_A = 25\,^{\circ}\text{C}$ unless otherwise noted $V_Z = 8.4~V~\pm 5.0\%^*~@~I_{ZT} = 10~\text{mA}$)

JEDEC Type No. (Note 1)	Maximum Voltage Change ΔV _Z (Volts) (Note 2)	Ambient Test Temperature °C ±1°C	Temperature Coefficient %/°C (Note 2)	Maximum Dynamic Impedance Z _{ZT} (Ohms) (Note 3)
1N3154	0.130		0.01	
1N3155	0.065	-55, 0, +25, +75,	0.005	15
1N3156	0.026	+ 100	0.002	15
1N3157	0.013		0.001	
1N3154A	0.172		0.01	
1N3155A	0.086	-55, 0, +25, +75,	0.005	15
1N3156A	0.034	+ 100, + 150	0.002	15
1N3157A	0.017	l	0.001	

*Tighter-tolerance units available on special request. CAPACITANCE (C) = 20 to 180 pF @ 90% of V_Z FORWARD BREAKDOWN VOLTAGE (V_f) = 100 to 800 V

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.84	7.62	0.230	0.300	
В	2.16	2.72	0.085	0.107	
D	0.46	0.56	0.018	0.022	
F	-	1.27	-	0.050	
K	25.40	38 10	1.000	1 500	

All JEDEC dimensions and notes apply

CASE 51 DO-7

NOTES:

- I. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE

(with $I_{ZT} = 10 \text{ mA} \pm 0.01 \text{ mA}$) (See Note 4)

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE

FIGURE 3 — ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (at specified temperatures) (See Note 5)

FIGURE 4 – MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT (See Note 3)

FIGURE 5 - DISTRIBUTION OF MAXIMUM GENERATED NOISE

NOTE 1:

Types 1N3154 thru 1N3157 are available to MIL-S-19500/158 and MEG-A-LIFE II, Levels 1, 2, & 3, specifications.

NOTE 2:

Voltage Variation (AVZ) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation (aVZ) over the specified temperature range, at the specified test current (IZT), verified by tests at indicated temperature points within the range. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability — by means of temperature coefficient — accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 3

Zener Impedance Derivation

The dynamic zener impedance, Z_{ZT} , is derived from the 60-Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current, I_{ZT} , is superimposed on I_{ZT} .

Curves showing the variation of zener impedance with zener current for each series are given in Figure 4. A cathode-ray tube curve-trace test on a sample basis is used to ensure that each zener characteristic has a sharp and stable knee region.

NOTE 4:

These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from 0 to +50°C will cause a voltage change no greater than +42 mV or -42 mV for 1N3154, as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values. For greater resolution, expanded views of the shaded areas in Figures 1a and 2a are shown in Figures 1b and 2b respectively.

NOTE 5:

The maximum voltage change, $\triangle V_Z$, in Figure 3 is due entirely to the impedance of the device. If both temperature and I_{ZT} are varied, then the total voltage change may be obtained by adding $\triangle V_Z$ in Figure 3 to the $\triangle V_Z$ in Figure 1 or 2 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 3 on Figure 1 or 2.

ZENER DIODES

Low silhouette single-ended package for printed circuit or socket mounting. Cathode connected to case.

1.5 WATTS ZENER DIODES

STYLE 1 PIN 1. CATHODE 2. ANODE

		METERS				
DIM	MIN	MAX	MIN	MAX		
Α		10.59		0.417		
В	-	8.59		0.338		
С	-	6.50	-	0.256		
D	0.99	1.09	0.039	0.043		
E	-	1.19	-	0.047		
G	2.92	3.43	0.115	0.135		
K	22.35	25.40	0.880	1.000		

CASE 55

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C. DC Power Dissipation: 1.5 Watts at 25°C Ambient. (Derate 10 mW/°C).

The type numbers shown have a standard tolerance of $\pm 20\%$ on the zener voltage. Standard tolerances of $\pm 10\%$ and $\pm 5\%$ on individual units are also available and are indicated by suffixing "A" for $\pm 10\%$ and "B" for $\pm 5\%$ units to the standard type number.

ELECTRICAL CHARACTERISTICS (TA = $25\,^{\circ}$ C unless otherwise noted, VF = $1.5\,$ V max @ 300 mA)

	Nominal	Test Current	Max Z	ener Impedan	ce	Reverse Leakage Current		Reverse Leakage Current*		rrent* Zener Voltage	
Туре No.	Zener Voltage @ I _{ZT} (V _Z) Volts		Z _{ZT @ I_{ZT} Ohms}	Z _{ZK} @ I _{ZK} Ohms	IZK mA	Current (I _{ZM}) mA	I _R Max (μA)	V _{R1}	V _{R2}	Temp. Coeff. %/°C	
1N3785	6.8	55	2.7	700	1.0	195	150	5.2	4.9	.040	
1N3786	7.5	50	3.0	700	0.5	175	75	5.7	5.4	.045	
1N3787	8.2	46	3.5	700	0.5	155	50	6.2	5.9	.048	
1N3788	9.1	41	4.0	700	0.5	140	25	6.9	6.6	.051	
1N3789	10	37	5	700	0.25	125	10	7.6	7.2	.055	
1N3790	11	34	6	700	0.25	115	5	8.4	8.0	.060	
1N3791	12	31	7	700	0.25	105	5	9.1	8.6	.065	
1N3792	13	29	8	700	0.25	98	5	9.9	9.4	.065	
1N3793	15	25	10	700	0.25	85	5	11.4	10.8	.070	
1N3794	16	23	11	700	0.25	80	5	12.2	11.5	.070	

*V_{R1} — Test Voltage for 5% Tolerance Device. V_{R2} — Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance Device.

ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted, VF = 1.5 V max @ 300 mA)

	Nominal	Test Current	Max Z	ener Impedan	ice	Max DC Zener	Reverse Le	eakage Ci	urrent*	Typical Zener Voltage
Type No.	Zener Voltage @ I _{ZT} (V _Z) Volts	(I _{ZT}) mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	Current (I _{ZM}) mA	I _R Max (μA)	V _{R1}	V _{R2}	Temp. Coeff. %/°C
1N3795	18	21	13	750	0.25	70	5	13.7	13.0	.075
1N3796	20	19	15	750	0.25	62	5	15.2	14.4	.075
1N3797	22	17	16	750	0.25	56	5	16.7	15.8	.080
1N3798	24	16	17	750	0.25	51	5	18.2	17.3	.080
1N3799	27	14	20	750	0.25	46	5	20.6	19.4	.085
1N3800	30	12	25	1,000	0.25	41	5	22.8	21.6	.085
1N3801	33	11	30	1,000	0.25	38	5	25.1	23.8	.085
1N3802	36	10	35	1,000	0.25	35	5	27.4	25.9	.085
1N3803	39	10	40	1,000	0.25	31	5	29.7	28.1	.090
1N3804	43	9.0	45	1,500	0.25	28	5	32.7	31.0	.090
1N3805	47	8.0	55	1,500	0.25	26	5	35.8	33.8	.090
1N3806	51	7.4	65	2,000	0.25	24	5	38.8	36.6	.090
1N3807	56	6.7	75	2,000	0.25	22	5	42.6	40.3	.090
1N3808	62	6.0	85	2,000	0.25	20	5	47.1	44.6	.090
1N3809	68	5.5	95	2,000	0.25	18	5	51.7	49.0	.090
1N3810	75	5.0	110	2,000	0.25	16	5	56.0	54.0	.090
1N3811	82	4.5	130	3,000	0.25	14	5	62.0	59.0	.090
1N3812	91	4.1	150	3,000	0.25	13	5	69.2	65.5	.090
1N3813	100	3.7	200	3,000	0.25	12.0	5	76.0	72.0	.090
1N3814	110	3.4	300	4,000	0.25	11.0	5	83.6	79.2	.095
1N3815	120	3.1	350	4,500	0.25	10.5	5	91.2	86.4	.095
1N3816	130	2.9	400	5,000	0.25	9.0	5	98.8	93.6	.095
1N3817	150	2.5	700	6,000	0.25	8.0	5	114.0	108.0	.095
1N3818	160	2.3	750	6,500	0.25	8.0	5	121.8	115.0	.095
1N3819	180	2.1	800	7,000	0.25	7.0	5	137.0	130.0	.095
1N3820	200	1.9	1,000	8,000	0.25	6.0	5	152.0	144.0	.100

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

- 1 Nominal zener voltages between those shown.
- 2- Matched sets: (Standard Tolerances are $\pm 5.0\%$, $\pm 3.0\%$, $\pm 2.0\%$, $\pm 1.0\%$) depending on voltage per device.
- a. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make possible higher zener voltages and
 provide lower temperature coefficients, lower dynamic impedance and greater power handling ability.
- b. Two or more units matched to one another with any specified tolerance.
- 3 Tight voltage tolerances: 1.0%, 2.0%, 3.0%.

 $^{^{\}rm v}{\rm N}_{\rm 1}$ — Test Voltage for 5% Tolerance Device. ${\rm V}_{\rm R2}$ — Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance Device.

Designers Data Sheet

1.0 WATT METAL SILICON ZENER DIODES

. . . a complete series of 1.0 Watt Zener Diodes with limits and operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, metal package offering protection in all common environmental conditions.

- To 100 Watts Surge Rating @ 10 ms
- Maximum Limits Guaranteed on Five Electrical Parameters
- Power Capability to MIL-S-19500 Specifications

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C (See Figure 1)	PD	1.0 6.67	Watt mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

Lead Temperature 230°C at a distance not less than 1/16" from the case for 10 seconds.

MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed metal and glass.

DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion-resistant and leads are readily solderable

and weldable.

POLARITY: Cathode connected to the case. When operated in zener mode, cathode will be positive with respect to anode.

WEIGHT: 1.4 Grams (approx)
MOUNTING POSITION: Any

^{*}Indicates JEDEC Registered Data.

1.0 WATT ZENER REGULATOR DIODES

3.3-200 VOLTS

MILLIMETERS INCHES										
			INCHES							
DIM	MIN	MAX	MIN	MAX						
Α	7.44	9.07	0.293	0.357						
В	5.46	5.97	0.215	0.235						
C	-	14.48	-	0.570						
D	0.64	0.89	0.025	0.035						
F	-	4.78	-	0.188						
J	1.14	2.54	0.045	0.100						
K	25.40	41.28	1.000	1.625						
1	25.40	41 28	1 000	1 625						

All JEDEC dimensions and notes apply

CASE 52-03 DO-13

NOTE:

ALL RULES AND NOTES ASSOCIATED
 WITH DO-13 OUTLINE SHALL APPLY.

1N3821 thru 1N3830, 1N3016 thru 1N3051

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

VF = 1.5 V max @ IF = 200 mA for all types

(Fiangeless) Voits IZT ZZT@IZT ZZK@IZK IZK IRMax VR1 VR2 IZM m4	JEDEC Type No.			*Max Zener Impedance (Note 4)		Max Reverse Current (Note 5)		*Max DC Zener Current		
113822 3.6 69 10 400 1.0 1.00 1.0 1.0 252 1.3823 3.9 64 9.0 400 1.0 1.0 1.0 1.0 253 1.3824 4.3 58 9.0 400 1.0 1.0 1.0 1.0 213 1.3825 4.7 53 8.0 500 1.0 1.0 1.0 1.0 1.0 213 1.3826 5.1 49 7.0 550 1.0 1.0 1.0 1.0 1.0 1.7 1.0	(Flangeless)									IZM mA (Note 6)
1N3823										
1 1 1 1 1 2 3 3 4 5 700 1.0										
N3825										
1 1 1 1 2 2 2 2 2 2	1N3824	4.3	58	9.0		1.0	*10		1	
1 1 1 1 2 2 2 2 2 2										
1N3828										
1N3829										
1N3830										
1N3016										
1N3017	1N3830	7.5	34	1.5	250	1.0	1 -10	-3.0	3.0	121
1N3017	1N3016	6.8	37	3.5	700	1.0	٠,,	5.2	4.9	140
1	1N3017	7.5	34	4.0	700	0.5		5.7	5.4	125
183019	1N3018	8.2	31	4.5	700	0.5		6.2	5.9	115
183020	1N3019	9.1	28	5.0	700	0.5		6.9	6.6	105
183021										
1N3023 13 19 10 700 0.25 1.0 9.9 9.4 74 1N3024 15 17 14 700 0.25 1.0 11.4 10.8 63 1N3025 16 15.5 16 700 0.25 1.0 11.4 10.8 63 1N3027 20 12.5 22 750 0.25 0.5 13.7 13.0 52 1N3027 20 12.5 22 750 0.25 0.5 15.2 14.4 47 1N3028 22 11.5 23 750 0.25 0.5 16.7 15.8 43 1N3029 24 10.5 25 750 0.25 0.5 16.7 15.8 43 1N3030 27 9.5 35 750 0.25 0.5 16.7 15.8 43 1N3030 3 8.5 40 100 0.25 0.5 18.2 17.3 40 1N3030 3 8.5 40 100 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 22.8 21.6 31 1N3034 39 6.5 60 1000 0.25 0.5 25.1 23.8 28 1N3034 39 6.5 60 1000 0.25 0.5 25.1 23.8 28 1N3035 43 6.0 70 150 0.25 0.5 32.7 4 25.9 26 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3039 56 4.5 110 2000 0.25 0.5 33.8 38. 19 1N3039 56 4.5 110 2000 0.25 0.5 33.8 33.8 19 1N3039 62 4.0 125 2000 0.25 0.5 33.8 33.8 19 1N3039 62 4.0 125 2000 0.25 0.5 42.6 40.3 17 1N3040 68 3.7 150 2000 0.25 0.5 55.7 44.6 15 1N3041 75 3.3 175 2000 0.25 0.5 55.0 54.0 17 1N3042 82 3.0 200 3000 0.25 0.5 55.0 55.0 54.0 17 1N3044 100 2.5 33.9 3000 0.25 0.5 55.0 56.0 54.0 12 1N3044 100 2.5 33.9 3000 0.25 0.5 56.0 54.0 12 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 98.8 93.6 6.9	1N3021	11	23	8.0	700	0.25		8.4	8.0	85
183024 16							2.0			
1N3025 16 15.5 16 700 0.25 1.0 12.2 11.5 60 1N3026 18 14 20 750 0.25 0.5 13.7 13.0 52 1N3027 20 12.5 22 750 0.25 0.5 15.2 14.4 47 1N3028 22 11.5 23 750 0.25 0.5 16.7 15.8 43 1N3030 27 9.5 35 750 0.25 0.5 18.2 17.3 40 1N3031 30 8.5 40 1000 0.25 0.5 22.8 21.6 31 11.3032 33 7.5 45 1000 0.25 0.5 22.8 21.6 31 11.3032 33 7.5 45 1000 0.25 0.5 22.8 21.6 31 11.3032 33 7.5 45 1000 0.25 0.5 25.1 23.8 28 28										
18							1.0			
1	1N3025	16	15.5	16	700	0.25	1.0	12.2	11.5	60
1N3028 22 11.5 23 750 0.25 0.5 16.7 15.8 43 1N3030 24 10.5 25 750 0.25 0.5 18.2 17.3 40 1N3030 27 9.5 35 750 0.25 0.5 20.6 19.4 34 1N3031 30 8.5 40 1000 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 22.1 23.8 28 1N3034 39 6.5 60 1000 0.25 0.5 22.7 25.9 26 1N3035 43 6.0 70 1500 0.25 0.5 32.7 31.0 21 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3037 51 5.0 95 1500 0.25 0.5 38.8							0.5			
1N3029 24 10.5 25 750 0.25 0.5 18.2 17.3 40 1N3030 27 9.5 35 750 0.25 0.5 20.6 19.4 34 1N3031 30 8.5 40 1000 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 22.1 23.8 28 1N3034 39 6.5 60 1000 0.25 0.5 32.7 31.0 21 1N3036 43 6.0 70 1500 0.25 0.5 32.7 31.0 21 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3037 51 5.0 95 1500 0.25 0.5 38.8 38.8 19 1N3038 56 4.5 110 2000 0.25 0.5 42.6										
1N3030 27 9.5 35 750 0.25 0.5 20.6 19.4 34 1N3031 30 8.5 40 1000 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 25.1 23.8 28 1N3033 36 7.0 50 1000 0.25 0.5 25.1 23.8 28 1N3033 36 7.0 50 1000 0.25 0.5 27.4 25.9 26 1N3036 43 6.0 70 1500 0.25 0.5 27.4 25.9 26 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3037 51 5.0 95 1500 0.25 0.5 33.8 33.8 19 1N3037 51 5.0 95 1500 0.25 0.5 38.8 33.8 36.7 18 1N3039 62 4.5 1000 0.25 0.5 32.7 31.0 21 1N3039 62 4.5 1000 0.25 0.5 38.8 36.7 18 1N3039 62 4.0 125 2000 0.25 0.5 38.8 36.7 18 1N3039 62 4.0 125 2000 0.25 0.5 14.1 44.6 15 1N3040 68 3.7 150 2000 0.25 0.5 17 49.0 14.1 1N3041 75 3.3 175 2000 0.25 0.5 56.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 56.0 54.0 12 1N3043 91 2.8 250 3000 0.25 0.5 60.2 59.0 11 1N3044 100 2.5 350 3000 0.25 0.5 60.5 60.2 59.0 11 1N3044 100 2.5 36 0.0 3000 0.25 0.5 60.5 60.5 60.5 10 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 10 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 10 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 11 10 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 110 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 110 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 60.5 110 1N3044 110 2.3 480 4000 0.25 0.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5										
1N3031 30 8.5 40 1000 0.25 0.5 22.8 21.6 31 1N3032 33 7.5 45 1000 0.25 0.5 22.1 23.8 28 1N3033 36 7.0 50 1000 0.25 0.5 27.4 25.9 26 1N3035 43 6.0 70 1500 0.25 0.5 22.7 21.0 21 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3038 56 4.5 110 2000 0.25 0.5 35.8 33.8 19 1N3039 62 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3042 82 3.0 200 3000 0.25 0.5 62.2<					1					
1N3032 33 7.5 45 1000 0.25 0.5 25.1 23.8 28 1N3034 39 6.5 60 1000 0.25 0.5 27.4 25.9 26 1N3035 43 6.0 70 1500 0.25 0.5 32.7 31.0 21 1N3036 47 5.5 80 1500 0.25 0.5 32.7 31.0 21 1N3039 56 4.5 110 2000 0.25 0.5 38.8 36.7 18 1N3039 62 4.0 125 2000 0.25 0.5 42.6 40.3 17 1N3040 68 3.7 150 2000 0.25 0.5 47.1 44.6 15 1N3041 75 3.3 175 2000 0.25 0.5 51.7 49.0 14 1N3043 91 2.8 280 300 0.25 0.5 56.0<										
1N3033 36 7.0 50 1000 0.25 0.5 27.4 25.9 26 1N3034 39 6.5 60 1000 0.25 0.5 29.7 28.1 23 1N3035 43 6.0 70 1500 0.25 0.5 32.7 21.0 21 1N3036 47 5.5 80 1500 0.25 0.5 35.8 33.8 19 1N3038 56 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3049 68 3.7 150 2000 0.25 0.5 47.1 44.6 15 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3042 82 3.0 200 3000 0.25 0.5 62.2 59.0 11 1N3043 91 2.8 250 3000 0.25 0.5 69.2										
1N3034 39 6.5 60 1000 0.25 0.5 29.7 28.1 23 1N3035 43 6.0 70 1500 0.25 0.5 32.7 31.0 21 1N3036 47 5.5 80 1500 0.25 0.5 33.8 33.8 19 1N3038 56 4.5 110 2000 0.25 0.5 38.8 36.7 18 1N3039 62 4.0 125 2000 0.25 0.5 42.6 40.3 17 1N3040 68 3.7 150 2000 0.25 0.5 47.1 44.6 15 1N3041 75 3.3 175 2000 0.25 0.5 51.7 49.0 14. 1N3042 82 3.0 200 3000 0.25 0.5 56.0 54.0 12 1N3043 91 2.8 250 3000 0.25 0.5 66.0 54.0 12 1N3044 101 0.2 28 350 3000 0.25 0.5 66.0 55.0 11 1N3044 101 0.2 8 250 3000 0.25 0.5 69.2 69.5 10 1N3044 101 0.2 8 350 3000 0.25 0.5 69.2 69.5 10 1N3044 101 0.2 8 350 3000 0.25 0.5 69.2 69.5 10 1N3044 101 0.2 8 350 3000 0.25 0.5 69.2 69.5 8.1 10 1N3044 101 0.2 8 350 3000 0.25 0.5 69.2 69.5 8.1 10 1N3044 100 2.5 3450 4000 0.25 0.5 63.6 79.2 8.3 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7										
1N3035 43 6.0 70 1500 0.25 0.5 32.7 31.0 21 1N3036 47 5.5 80 1500 0.25 0.5 33.8 38.8 36.7 18 1N3037 51 5.0 95 1500 0.25 0.5 38.8 36.7 18 1N3038 56 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3041 75 3.3 175 2000 0.25 0.5 56.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 62.2 59.0 11 1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0										1
1N3036 47 5.5 80 1500 0.25 0.5 35.8 33.8 19 1N3038 56 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3039 62 4.0 125 2000 0.25 0.5 47.1 44.6 15 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3041 75 3.3 175 2000 0.25 0.5 55.7 55.0 51.7 1N3042 82 3.0 200 3000 0.25 0.5 62.2 55.0 12 1N3044 100 2.5 350 3000 0.25 0.5 69.2 65.5 10 1N3045 110 2.3 480 4000 0.25 0.5 83.6 79.2 8.3 1N3047 130 1.9 700 5000 0.25 0.5										
IN3037 51 5.0 95 1500 0.25 0.5 38.8 36.7 18 1N3038 56 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3039 62 4.0 125 2000 0.25 0.5 47.1 44.6 15 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3041 75 3.3 175 2000 0.25 0.5 56.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 62.2 59.0 11 1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 76.0 72.0 9.0 1N3045 110 2.3 450 4000 0.25 0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1N3038 56 4.5 110 2000 0.25 0.5 42.6 40.3 17 1N3039 62 4.0 125 2000 0.25 0.5 47.1 44.6 15 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3041 75 3.3 175 2000 0.25 0.5 55.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 55.0 54.0 12 1N3043 91 2.8 250 3000 0.25 0.5 62.2 59.0 11 1N3044 100 2.5 350 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 69.2 65.5 10 1N3045 110 2.3 450 4000 0.25 0.5 69.2 65.5 10 1N3046 120 2.0 550 4500 0.25 0.5 83.6 79.2 8.3 1N3047 130 1.9 700 5000 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7										
1N3039 62 4.0 125 2000 0.25 0.5 47.1 44.6 15 15 1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14. 1N3041 75 3.3 175 2000 0.25 0.5 55.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 66.0 54.0 12 1N3043 91 2.8 250 3000 0.25 0.5 66.2 59.0 11 1N3044 100 2.5 350 3000 0.25 0.5 69.2 65.5 10 1N3044 110 2.3 450 4000 0.25 0.5 63.6 72.0 9.0 1N3045 110 2.3 450 4000 0.25 0.5 63.6 79.2 8.3 1N3046 120 2.0 550 4500 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 91.2 86.4 8.0 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3048 150 1.6 116 1100 6500 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 114.0 108.0 5.7										17
1N3040 68 3.7 150 2000 0.25 0.5 51.7 49.0 14 1N3041 75 3.3 175 2000 0.25 0.5 56.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 62.2 59.0 11 1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 69.2 65.5 10 1N3045 110 2.3 450 4000 0.25 0.5 76.0 72.0 9.0 1N3046 120 2.0 550 4500 0.25 0.5 98.8 93.6 79.2 8.3 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3047 130 1.9 700 5000 0.25 0.5 114.0 108.0 5.7 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4										
1N3041 75 3.3 175 2000 0.25 0.5 56.0 54.0 12 1N3042 82 3.0 200 3000 0.25 0.5 62.2 59.0 11 1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 76.0 72.0 9.0 1N3045 110 2.3 450 4000 0.25 0.5 83.6 79.2 8.3 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 12.6 115.2 5.4										
1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 76.0 72.0 9.0 1N3045 110 2.3 480 4000 0.25 0.5 83.6 79.2 8.3 1N3046 120 2.0 550 4500 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 114.0 108.0 5.7										12
1N3043 91 2.8 250 3000 0.25 0.5 69.2 65.5 10 1N3044 100 2.5 350 3000 0.25 0.5 76.0 72.0 9.0 1N3045 110 2.3 450 4000 0.25 0.5 83.6 79.2 8.3 1N3046 120 2.0 550 4500 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.6 1100 6500 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4	1N3042	82	3.0	200	3000	0.25	0.5	62.2	59.0	11
1N3044 100 2.5 350 3000 0.25 0.5 76.0 72.0 9.0 1N3045 110 2.3 450 4000 0.25 0.5 83.6 79.2 8.3 1N3046 120 2.0 550 4500 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6500 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4		91	2.8	250	3000	0.25	0.5	69.2	65.5	
1N3046 120 2.0 550 4500 0.25 0.5 91.2 86.4 8.0 1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4		100								
1N3047 130 1.9 700 5000 0.25 0.5 98.8 93.6 6.9 1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4										
1N3048 150 1.7 1000 6000 0.25 0.5 114.0 108.0 5.7 1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4							0.5			
1N3049 160 1.6 1100 6500 0.25 0.5 121.6 115.2 5.4										
1N3051 200 1.2 1500 8000 0.25 0.5 152.0 144.0 4.6										

^{*} JEDEC Registered Data on 1N3821 thru 1N3830 and 1N3016 thru 1N3051

NOTE 1 - TOLERANCE AND TYPE NUMBER DESIGNATION

1N3821 thru **1N3830** — The JEDEC type numbers shown have a standard tolerance for the nominal zener voltage of $\pm 10\%$. A standard tolerance of $\pm 5\%$ for individual units is also available and is indicated by adding suffix "A" to the standard type number.

1N3016 thru 1N3051 — The JEDEC type numbers shown have a standard tolerance of $\pm 20\%$ for the nominal zener voltage. Suffix "A" for $\pm 10\%$ units or "B" for $\pm 5\%$ units.

NOTE 2 - SPECIALS AVAILABLE INCLUDE:

(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLT-AGES SHOWN AND TIGHTER VOLTAGE TOLER-ANCES: To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances (±3%, ±2%, ±1%), the Motorola type number should be used.

EXAMPLE 1M5.1AZ3

(B) MATCHED SETS: (Standard Tolerances are $\pm 5.0\%$, $\pm 2.0\%$, $\pm 1.0\%$).

Zener diodes are available in sets consisting of two or more matched devices. The method for specifying matched sets is similar to the one described in (A) except that two additional suffixes are added to the code number described.

These devices are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number, which is different for each set ordered.

D - Four devices in series

(C) ZENER CLIPPERS: (Standard Tolerance ±10% and ±5%). Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomen-

Example:

1M7.5AZZ10

NOTE 3 - ZENER VOLTAGE (VZ) MEASUREMENT

Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T_L) at $30^{o}\text{C}\pm1^{o}\text{C},$ 3/8" from the diode body.

NOTE 4 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK} .

NOTE 5 - REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed only for 5% and 10% zener diodes and are measured at V_R as shown in the Electrical Characteristics Table

NOTE 6 - MAXIMUM ZENER CURRENT RATINGS (IZM)

1N3821 thru 1N3830 — Maximum zener current ratings are based on maximum voltage of 10% tolerance units.

1N3016 thru 1N3051 — Maximum zener current ratings are based on maximum voltage of 5% tolerance units.

NOTE 7 - SURGE CURRENT (ir)

Surge current is specified as the maximum allowable peak, nonrecurrent square-wave current with a specified pulse width, PW. The data presented in Figures 8 and 9 may be used to find the maximum surge current for a square wave of any pulse width between 0.01 ms and 1000 ms.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_L, should be determined from:

$$T_L = \theta_{LA} P_D + T_A$$

 θ_{LA} is the lead-to-ambient thermal resistance ($^{O}C/W$) and ^{P}D is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30-40 $^{O}C/W$ for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL_{L} , the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$

 ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 6 for a train of power pulses (L = 3/8 inch) or from Figure 7 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of IZ, limits of PD and the extremes of TJ(Δ TJ) may be estimated. Changes in voltage, Vz, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{\mbox{\scriptsize VZ}}$, the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Data of Figure 6 should not be used to compute surge capability. Surge limitations are given in Figure 8. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 8 be exceeded.

1N3821 thru 1N3830, 1N3016 thru 1N3051

TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION

(90% OF THE UNITS ARE IN THE RANGES INDICATED)

FOR UNITS TO 12 VOLTS

FIGURE 2 ~ TEMPERATURE COEFFICIENT-RANGE

8.0

7.0 6.0

5.0

4.0 3.0

-2.0

1.0 0 -1.0 -2.0

3.0

5.0

9VZ, TEMPERATURE COEFFICIENT (mV/°C) @ 1ZT

FIGURE 3 – TEMPERATURE COEFFICIENT-RANGE FOR UNITS 10 TO 220 VOLTS

VZ, ZENER VOLTAGE @ IZT (VOLTS)

FIGURE 4 - TYPICAL VOLTAGE REGULATION

VZ, ZENER VOLTAGE AT IZT (VOLTS)

FIGURE 6 - TYPICAL THERMAL RESPONSE L, LEAD LENGTH = 3/8 INCH 9JL, JUNCTION-TO-LEAD THERMAL RESISTANCE (9C/M) 10 3.0 3.0 D = 0.5 D = 0.2 D = 0.1 D = 0.05 DUTY CYCLE, D = t1/t2 РРК SINGLE PULSE $\Delta T_{JL} = \theta_{JL}(t)PPK$ REPETITIVE PULSES $\Delta T_{JL} = \theta_{JL}(t, D)PPK$ D = 0.02 Below 0.1 Second, Thermal Response Curve is Applicable D = 0.01 to any Lead Length (L) SINGLE PULSE 1.0 0.003 0.005 0.01 0.03 0.05 0.1 0.3 0.5 3.0 5.0 10 30 50 100 200

t, TIME (SECONDS)

FIGURE 8 - MAXIMUM NON-REPETITIVE SURGE CURRENT

 $v_{Z}, {\tt ZENER} \ voltage \ (volts)$

1N3821 thru 1N3830, 1N3016 thru 1N3051

SQUARE WAVE PULSE WIDTH (ms)

FIGURE 10 - TYPICAL CAPACITANCE

1N3993 thru 1N4000

ZENER DIODES

Low-voltage, alloy-junction zener diodes in hermetically sealed package with cathode connected to case. Supplied with mounting hardware.

10 WATTS ZENER DIODES

MAXIMUM RATINGS

Junction and Storage Temperature: -65 °C to +175 °C. DC Power Dissipation: 10 Watts. (Derate 83.3 mW/°C above 55 °C).

The type numbers shown in the table have a standard tolerance on the nominal zener voltage of $\pm\,10\%$. A standard tolerance of $\pm\,5\%$ on individual units is also available and is indicated by suffixing "A" to the standard type number.

ELECTRICAL CHARACTERISTICS $(T_B = 30 \, ^{\circ}C \pm 3)$

 $V_F = 1.5 \text{ max } @ I_F = 2 \text{ amp for all units}$

	Nominal Zener Voltage	Test Current	Max Zener Impedance		Max DC Zener Current	Reve Leakage	
Type No.	V _Z @ I _{ZT} Volts	IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} = 1.0 mA Ohms	IZM mA	l _R μΑ	V _R Volts
1N3993	3.9	640	2.0	400	2380	100	0.5
1N3994	4.3	580	1.5	400	2130	100	0.5
1N3995	4.7	530	1.2	500	1940	50	1.0
1N3996	5.1	490	1.1	550	1780	10	1.0
1N3997	5.6	445	1.0	600	1620	10	1.0
1N3998	6.2	405	1.1	750	1460	10	2.0
1N3999	6.8	370	1.2	500	1330	10	2.0
1N4000	7.5	335	1.3	250	1210	10	3.0

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	11.94	12.83	0.470	0.505
В	10.77	11.10	0.424	0.437
C		10.29		0.405
D	-	6.35	_	0.250
E	1.91	4.45	0.075	0.175
F	1.52	-	0.060	-
J	10.72	11.51	0.422	0.453
K	_	20.32	-	0.800
P	4.14	4.80	0.163	0.189
Q	1.52	-	0.060	-
R		10.77		0.424

All JEDEC dimensions and notes apply

CASE 56 DO-4 (A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLTAGES SHOWN AND TIGHTER VOLTAGE TOLERANCES:

To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances ($\pm 3\%$, $\pm 2\%$, $\pm 1\%$), the Motorola type number should be used.

Example: 10M5.0AZ3

(B) MATCHED SETS: (Standard Tolerances are ±5.0%, ±2.0%, ±1.0%).

Zener diodes can be obtained in sets consisting of two or more matched devices. The method for specifying such matched sets is similar to the one described in (A) for specifying units with a special voltage and/or tolerance except that two extra suffixes are added to the code number described.

These units are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number, which is different for each set being ordered.

*Code:

- B Two devices in series C — Three devices in series
- D Four devices in series

Example: 10M5.1AZ5B1

(C) ZENER CLIPPERS: (Standard Tolerance ±10% and ±5%).

Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomenclature:

requirement)

Example: 10M4.7AZZ10

1N4099 thru 1N4135 1N4614 thru 1N4627

LOW-LEVEL SILICON PASSIVATED ZENER DIODES

 \ldots designed for 250 mW applications requiring low leakage, low impedance, and low noise.

- Voltage Range from 1.8 to 100 Volts
- First Zener Diode Series to Specify Noise 50% Lower than Conventional Diffused Zeners
- Zener Impedance and Zener Voltage Specified for Low-Level Operation at I_{ZT} = 250 μ A
- Low Leakage Current In from 0.01 to 10 μA over Voltage Range

SILICON ZENER DIODES

(±5.0% TOLERANCE)

250 MILLIWATTS 1.8-100 VOLTS

SILICON OXIDE PASSIVATED JUNCTION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1.43	mW mW∕°C
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +200	°C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass. DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 gram (approx.)
MOUNTING POSITION: Any

NOTES:

- PACKAGE CONTOUR OPTIONAL WITHIN A
 AND B. HEAT SLUGS, IF ANY, SHALL BE
 INCLUDED WITHIN THIS CYLINDER, BUT
 NOT SUBJECT TO THE MINIMUM LIMIT
 OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- 3. POLARITY DENOTED BY CATHODE BAND.
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	3.05	5.08	0.120	0.200	
В	1.52	2.29	0.060	0.090	
D	0.46	0.56	0.018	0.022	
F	_	1.27	_	0.050	
K	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply.

CASE 299-02 DO-204AH (DO-35)

1N4099 thru 1N4135, 1N4614 thru 1N4627

ELECTRICAL CHARACTERISTICS

(At 25°C Ambient temperature unless otherwise specified) $I_{ZT} = 250 \,\mu\text{A}$ and $V_F = 1.0 \,V$ max @ $I_F = 200 \,\text{mA}$ on all Types

Type Number (Note 1)	Nominal Zener Voltage VZ (Note 1) (Volts)	Max Zener Impedance ZZT (Note 2) (Ohms)	Max Reverse Current IR (μA)	@ (Note 4)	Test Voltage VR (Volts)	Max Noise Density At I _{ZT} = 250 µA ND (Fig 1) (micro-volts per Square Root Cycle)	Max Zener Current I ZM (Note 3) (mA)
1N4614	1.8	1200	7.5		1.0	1.0	120
1N4615	2.0	1250	5.0		1.0	1.0	110
1N4616	2.2	1300	4.0	1	1.0	1.0	100
1N4617	2.4	1400	2.0	-	1.0	1.0	95
1N4618	2.7	1500	1.0	1	1.0	1.0	90
1N4619	3.0	1600	0.8		1.0	1.0	85
1N4620	3.3	1650	7.5		1.5	1.0	80
1N4621	3.6	1700	7.5		2.0	1.0	75
1N4622 1N4623	3.9 4.3	1650	5.0 4.0		2.0 2.0	1.0 1.0	70 65
1N4623	4.3	1600 1550	10		3.0	1.0	60
1N4625	5.1	1500	10		3.0	2.0	55
1N4626	5.6	1400	10	1	4.0	4.0	50
1N4627	6.2	1200	10	ł	5.0	5.0	45
1N4099	6.8	200	10		5.2	40	35
1N4100	7.5	200	10	l	5.7	40	31.8
1N4101	8.2	200	1.0		6.3	40	29.0
1N4102	8.7	200	1.0		6.7	40	27.4
1N4103	9.1	200	1.0		7.0	40	26.2
1N4104	10	200	1.0		7.6	40	24.8
1N4105	11	200	0.05	1	8.5	40	21.6
1N4106	12	200	0.05		9.2	40	20.4
1N4107	13	200	0.05	ļ.	9.9	40	19.0
1N4108	14	200	0.05	1	10.7	40	17.5
1N4109	15	100	0.05	ı	11.4	40	16.3
1N4110	16	100	0.05		12.2	40	15.4
1N4111	17	100	0.05		13.0	40 40	14.5 13.2
1N4112	18 19	100	0.05	j	13.7 14.5	40	13.2
1N4113 1N4114	20	150 150	0.05 0.01		15.2	40	11.9
1N4115	20	150	0.01		16.8	40	10.8
1N4116	24	150	0.01	-	18.3	40	9.9
1N4117	25	150	0.01		19.0	40	9.5
1N4118	27	150	0.01	ł	20.5	40	8.8
1N4119	28	200	0.01		21.3	40	8.5
1N4120	30	200	0.01	ļ	22.8	40	7.9
1N4121	33	200	0.01		25.1	40	7.2
1N4122	36	200	0.01		27.4	40	6.6
1N4123	39	200	0.01	1	29.7	40	6.1
1N4124	43	250	0.01		32.7	40	5.5
1N4125	47	250	0.01		35.8	40	5.1
1N4126	51	300	0.01		38.8	40	4.6
1N4127	56	300	0.01		42.6	40	4.2
1N4128	60	400	0.01		45.6	40	4.0
1N4129	62	500	0.01		47.1	40	3.8
1N4130	68	700	0.01		51.7	40	3.5
1N4131	75	700	0.01		57.0	40	3.1
1N4132	82	800	0.01		62.4	40	2.9
1N4133	87 91	1000	0.01		66.2 69.2	40 40	2.7 2.6
1N4134		1200	0.01		76.0		
1N4135	100	1500	0.01	1	70.0	40	2.3

NOTE 1: TOLERANCE AND VOLTAGE DESIGNATION

The type numbers shown have a standard tolerance of $\pm 5.0\%$ on the nominal zener voltage.

NOTE 2: ZENER IMPEDANCE (ZZT) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT}) is superimposed on I_{ZT} .

NOTE 3: MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on maximum zener voltage of the individual units.

NOTE 4: REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed and are measured at $\ensuremath{V_{R}}$ as shown on the table.

4

ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. This microplasma noise is generally considered "white" noise with equal amplitude for all frequencies from about zero cycles to approximately 200,000 cycles. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes. The rating of microvolts RMS per square root cycle enables calculation of the maximum RMS noise for any bandwidth.

Noise density decreases as zener current increases. This can be seen by the graph in Figure 2 where a typical noise density is plotted as a function of zener current.

The junction temperature will also change the zener noise levels. Thus the noise rating must indicate bandwidth, current level and temperature.

The block diagram given in Figure 1 shows the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

FIGURE 1 - NOISE DENSITY MEASUREMENT METHOD

1N4099 thru 1N4135, 1N4614 thru 1N4627

LOW-LEVEL TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Highly reliable reference sources utilizing a nitride/oxidepassivated junction for long-term voltage stability. Glass construction provides a rugged, hermetically sealed structure.

- Low Power Drain Devices Specified @ 0.5 mA, 1.0 mA, 2.0 mA, and 4.0 mA
- Maximum Voltage Change Specified over Test Temperature Range
- Temperature Compensation Guaranteed over Two Standard Operating Temperature Ranges:

0 to 75°C -55 to 100°C

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	400 3.2	mW mW/°(
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass. DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are readily solder-

able and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 gram (approx.)
MOUNTING POSITION: Any

1N4565 thru 1N4584 1N4765 thru 1N4784

REFERENCE DIODES

LOW LEVEL
TEMPERATURE-COMPENSATED
ZENER

1N4565 thru 1N4584, 1N4775 thru 1N4784, 1N4765 thru 1N4774

			st Temperature rature Coefficient for Reference				
TYPE	Volts Max	°C	%/°C (Note 1)	Ohms Max (Note 2)			
	V _Z = 6	.4 Volts ±5% (I	ZT = 0.5 mA)				
1N4565	0.048		0.01				
1N4566	0.024		0.005				
1N4567	0.010	0, +25,	0.002	200			
1N4568	0.005	+ 75	0.001				
1N4569	0.002		0.0005				
1N4565A	0.099		0.01				
1N4566A	0.050	- 55, 0,	0.005				
1N4567A	0.020	+ 25, + 75,	0.002	200			
1N4568A	0.010	+ 100	0.001				
1N4569A	0.005		0.005				
V _Z = 6.4 Volts ±5% (I _{ZT} = 1.0 mA)							
1N4570	0.048		0.01				
1N4571	0.024		0.005				
1N4572	0.010	0, +25,	0.002	100			
1N4573	0.005	+ 75	0.001				
1N4574	0.002		0.0005				
1N4570A	0.099		0.01				
1N4571A	0.050	- 55, 0,	0.005				
1N4572A	0.020	+ 25, + 75,	0.002	100			
1N4573A	0.010	+ 100	0.001				
1N4574A	0.005		0.0005				
	V _Z = 6	.4 Volts ±5% (I	ZT = 2.0 mA)				
1N4575	0.048		0.01				
1N4576	0.024		0.005				
1N4577	0.010	0, +25,	0.002	50			
1N4578	0.005	+ 75	0.001				
1N4579	0.002		0.0005				
1N4575A	0.099		0.01				
1N4576A	0.050	- 55, 0,	0.005				
1N4577A	0.020	+ 25, + 75,	0.002	50			
1N4578A	0.010	+ 100	0.001				
1N4579A	0.005		0.0005				
	V _Z = 6	.4 Volts ±5% (I	ZT = 4.0 mA)				
1N4580	0.048		0.01				
1N4581	0.024		0.005				
1N4582	0.010	0, +25,	0.002	25			
1N4583	0.005	+ 75	0.001				
1N4584	0.002		0.0005				
1N4580A	0.099		0.01				
1N4581A	0.050	- 55, 0,	0.005				
1N4582A	0.020	+ 25, + 75,	0.002	25			
1N4583A	0.010	+ 100	0.001	1			
1N4584A	0.005		0.0005				

,	∆V _Z ((Note 1)	7 Test 7 Temperature	Temperature Coefficient for Reference	Dynamic Imped. Ohms	
TYPE	Voits Max	°C _	%/°C (Note 1)	Max (Note 2)	
	V _Z = 8	3.5 Volts ±5% (I	_{ZT} = 0.5 mA)		
1N4775	0.064		0.01		
1N4776	0.032		0.005		
1N4777	0.013	0, +25,	0.002	200	
1N4778	0.006	+ 75	0.001		
1N4779	0.003		0.0005		
1N4775A	0.132		0.01		
1N4776A	0.066	- 55, 0,	0.005		
1N4777A	0.026	+ 25, + 75,	0.002	200	
1N4778A	0.013	+ 100	0.001		
1N4779A	0.007		0.0005		
	V _Z = 8	3.5 Volts ±5% (I	_{ZT} ≈ 1.0 mA)		
1N4780	0.064		0.01		
1N4781	0.032		0.005		
1N4782	0.013	0, +25,	0.002	100	
1N4783	0.006	+ 75	0.001		
1N4784	0.003		0.0005		
1N4780A	0.132		0.01		
1N4781A	0.066	- 55, 0,	0.005		
1N4782A	0.026	+ 25, + 75,	0.002	100	
1N4783A	0.013	+ 100	0.001		
1N4784A	0.007		0.0005		
	V _Z = 9).1 Volts ±5% (I	_{ZT} = 0.5 mA)		
1N4765	0.068		0.01		
1N4766	0.034		0.005		
1N4767	0.014	0, +25,	0.002	350	
1N4768	0.007	+ 75	0.001		
1N4769	0.003		0.0005		
1N4765A	0.141		0.01		
1N4766A	0.070	- 55, 0,	0.005		
1N4767A	0.028	+ 25, + 75,	0.002	350	
1N4768A	0.014	+ 100	0.001		
1N4769A	0.007		0.0005		
	V _Z = 9).1 Volts ±5% (I	ZT = 1.0 mA)	,	
1N4770	0.068		0.01		
1N4771	0.034		0.005		
1N4772	0.014	0, +25,	0.002	200	
1N4773	0.007	+ 75	0.001		
1N4774	0.003		0.0005		
1N4770A	0.141		0.01		
1N4771A	0.070	- 55, 0,	0.005		
1N4772A	0.028	+ 25, + 75,	0.002	200	
1N4773A 1N4774A	0.014	+ 100	0.001		
174//4A	0.007	l	0.0005	i	

NOTE 1: Voltage Variation (ΔV_Z) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation (ΔV_Z) over the specified temperature range, at the specified test current (I_ZT), verified by tests at indicated temperature points within the range. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability—by means of temperature coefficient—accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 2:

The dynamic zener impedance, Z_{ZT} , is derived from the 60 Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current, I_{ZT} is superimposed on I_{ZT} . A cathode-ray tube curve-trace test on a sample basis is used to ensure that the zener has a sharp and stable knee region.

1N4614 thru 1N4627 See Page 4-42

1N4678 thru 1N4717

ZENER REGULATOR DIODES

250 MILLIWATTS

ZENER REGULATOR DIODES

Low level nitride passivated zener diodes for applications requiring extremely low operating currents, low leakage, and sharp breakdown voltage.

- Zener Voltage Specified @ IZT = 50 μA
- Maximum Delta V_Z Given from 10 to 100 μA

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ $T_A = 50^{\circ}$ C Derate above $T_A = 50^{\circ}$ C	PD	250 1,67	mW mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed all glass case.

DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant with readily

solerable leads.

POLARITY: Cathode end indicated by color band. When operated in zener region, the cathode end will be positive with respect to anode

end.

WEIGHT: 0.2 grams (approx.)

MOUNTING POSITION: Any.

NOTES:

- PACKAGE CONTOUR OPTIONAL WITHIN A
 AND B. HEAT SLUGS, IF ANY, SHALL BE
 INCLUDED WITHIN THIS CYLINDER, BUT
 NOT SUBJECT TO THE MINIMUM LIMIT
 OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.
- 3. POLARITY DENOTED BY CATHODE BAND.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	3.05	5.08	0.120	0.200
В	1.52	2.29	0.060	0.090
D	0.46	0.56	0.018	0.022
F	-	1.27	-	0.050
K	25.40	38.10	1.000	1.500

All JEDEC dimensions and notes apply.

CASE 299-02 DO-204 AH

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_F = 1.5 \text{ V max at } I_F = 100 \text{ mA for all types}$)

Туре		Zener Voltage /Z @ IZT = 50 μΑ	\	Maximum Reverse Current	Test Voltage	Maximum Zener Current	Maximum Voltage Change
Number		Volts		IR μA	V _R Volts	IZM mA	△Vz Volts
(Note 1)	Nom (Note 1)	Min	Max	(Note		(Note 2)	(Note 4)
1N4678	1.8	1.710	1.890	7.5	1.0	120	0.70
1N4679	2.0	1.900	2.100	5.0	1.0	110	0.70
1N4680	2.2	2.090	2.310	4.0	1.0	100	0.75
1N4681	2.4	2.280	2.520	2.0	1.0	95	0.80
1N4682	2.7	2.565	2.835	1.0	1.0	90	0.85
1N4683	3.0	2.850	3.150	0.8	1.0	85	0.90
1N4684	3.3	3.135	3.465	7.5	1.5	80	0.95
1N4685	3.6	3.420	3.780	7.5	2.0	75	0.95
1N4686	3.9	3.705	4.095	5.0	2.0	70	0.97
1N4687	4.3	4.085	4.515	4.0	2.0	65	0.99
1N4688	4.7	4.465	4.935	10	3.0	60	0.99
1N4689	5.1	4.845	5.355	10	3.0	55	0.97
1N4690	5.6	5.320	5.880	10	4.0	50	0.96
1N4691	6.2	5.890	6.510	10	5.0	45	0.95
1N4692	6.8	6.460	7.140	10	5.1	35	0.90
1N4693	7.5	7.125	7.875	10	5.7	31.8	0.75
1N4694	8.2	7.790	8.610	1.0	6.2	29.0	0.50
1N4695	8.7	8.265	9.135	1.0	6.6	27.4	0.10
1N4696	9.1	8.645	9.555	1.0	6.9	26.2	0.08
1N4697	10	9.500	10.50	1.0	7.6	24.8	0.10
1N4698	11	10.45	11.55	0.05	8.4	21.6	0.11
1N4699	12	11.40	12.60	0.05	9.1	20.4	0.12
1N4700	13	12.35	13.65	0.05	9.8	19.0	0.13
1N4701	14	13.30	14.70	0.05	10.6	17.5	0.14
1N4702	15	14.25	15.75	0.05	11.4	16.3	0.15
1N4703	16	15.20	16.80	0.05	12.1	15.4	0.16
1N4704	17	16.15	17.85	0.05	12.9	14.5	0.17
1N4705	18	17.10	18.90	0.05	13.6	13.2	0.18
1N4706	19	18.05	19.95	0.05	14.4	12.5	0.19
1N4707	20	19.00	21.00	0.01	15.2	11.9	0.20
1N4708	22	20.90	23,10	0.01	16.7	10.8	0.22
1N4709	24	22.80	25.20	0.01	18.2	9.9	0.24
1N4710	25	23.75	26.25	0.01	19.0	9.5	0.25
1N4711	27	25.65	28.35	0.01	20.4	8.8	0.27
1N4712	28	26.60	29.40	0.01	21.2	8.5	0.28
1N4713	30	28.50	31.50	0.01	22.8	7.9	0.30
1N4714	33	31.35	34.65	0.01	25.0	7.2	0.33
1N4715	36	34.20	37.80	0.01	27.3	6.6	0.36
1N4716	39	37.05	40.95	0.01	29.6	6.1	0.39
1N4717	43	40.85	45.15	0.01	32.6	5.5	0.43

NOTES: 1. TOLERANCE AND VOLTAGE DESIGNATION (VZ)

The type numbers shown have a standard tolerance of $\pm\,5\%$ on the nominal Zener voltage.

2. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum Zener current ratings are based on maximum Zener voltage of the individual units.

3. REVERSE LEAKAGE CURRENT (IR)

Reverse leakage currents are guaranteed and measured at VR as shown on the table.

4. MAXIMUM VOLTAGE CHANGE (△VZ)

Voltage change is equal to the difference between V_Z at 100 μA and V_Z at 10 μA .

ONE WATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 3.3 to 100 Volts
- DO-41 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die

Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	1.0 6.67	Watt mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C , $1/16^{\prime\prime}$ from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads,

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any

^{*}Indicates JEDEC Registered Data

1.0 WATT ZENER REGULATOR DIODES 3.3-100 VOLTS

	MILLIN	INC	HES	
DIM	MIN	MAX	MIN	MAX
Α	4.07	5.20	0.160	0.205
В	2.04	2.71	0.080	0.107
D	0.71	0.86	0.028	0.034
F	_	1.27	_	0.050
K	27.94	-	1.100	-

CASE 59-03 DO-41

NOTES:

- 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE
- BAND.
 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

*ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted) $V_F = 1.2 \text{ V max}$, $I_F = 200 \text{ mA}$ for all types

JEDEC	Nominal Zener Voltage Vz @ IzT	Maximum Zanar Impedance (Note 4) Laskage Curr				Current	Surge Current @ TA = 25°C	
Type No. (Note 1)	Volts (Notes 2 and 3)	IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	I _R μΑ Max	V _R Volts	i _r – mA (Note 5)
1N4728	3.3	76	10	400	1.0	100	1.0	1380
1N4729	3.6	69	10	400	1.0	100	1.0	1260
1N4730	3.9	64	9.0	400	1.0	50	1.0	1190
1N4731	4.3	58	9.0	400	1.0	10	1.0	1070
1N4732	4.7	53	8.0	500	1.0	10	1.0	970
1N4733	5.1	49	7.0	550	1.0	10	1.0	890
1N4734	5.6	45	5.0	600	1.0	10	2.0	810
1N4735	6.2	41	2.0	700	1.0	10	3.0	730
1N4736	6.8	37	3.5	700	1.0	10	4.0	660
1N4737	7.5	34	4.0	700	0.5	10	5.0	605
1N4738	8.2	31	4.5	700	0.5	10	6.0	550
1N4739	9.1	28	5.0	700	0.5	10	7.0	500
1N4740	10	25	7.0	700	0.25	10	7.6	454
1N4741	1 11	23	8.0	700	0.25	5.0	8.4	414
1N4742	12	21	9.0	700	0.25	5.0	9.1	380
1N4743	13	19	10	700	0.25	5.0	9.9	344
1N4744	15	17	14	700	0.25	5.0	11.4	304
1N4745	16	15.5	16	700	0.25	5.0	12.2	285
1N4746	18	14	20	750	0.25	5.0	13.7	250
1N4747	20	12.5	22	750	0.25	5.0	15.2	225
1N4748	22	11.5	23	750	0.25	5.0	16.7	205
1N4749	24	10.5	25	750	0.25	5.G	18.2	190
1N4750	27	9.5	35	750	0.25	5.0	20.6	170
1N4751	30	8.5	40	1000	0.25	5.0	22.8	150
1N4752	33	7.5	45	1000	0.25	5.0	25.1	135
1N4753	36	7.0	50	1000	0.25	5.0	27.4	125
1N4754	39	6.5	60	1000	0.25	5.0	29.7	115
1N4755	43	6.0	70	1500	0.25	5.0	32.7	110
1N4756	47	5.5	80	1500	0.25	5.0	35.8	95
1N4757	51	5.0	95	1500	0.25	5.0	38.8	90
1N4758	56	4.5	110	2000	0.25	5.0	42.6	80
1N4759	62	4.0	125	2000	0.25	5.0	47.1	70
1N4760	68	3.7	150	2000	0.25	5.0	51.7	65
1N4761	75	3.3	175	2000	0.25	5.0	56.0	60
1N4762	82	3.0	200	3000	0.25	5.0	62.2	55
1N4763	91	2.8	250	3000	0.25	5.0	69.2	50
	100	2.5						

*Indicates JEDEC Registered Data.

NOTE 1 — **Tolerance and Type Number Designation.** The JEDEC type numbers listed have a standard tolerance on the nominal zener voltage of $\pm 10\%$. A standard tolerance of $\pm 5\%$ on individual units is also available and is indicated by suffixing "A" to the standard type number.

NOTE 2 - Specials Available Include:

- A. Nominal zener voltages between the voltages shown and tighter voltage tolerances,
- B. Matched sets

For detailed information on price, availability, and delivery, contact your nearest Motorola representative.

capabili APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

$$T_L = \theta_{LAPD} + T_A$$

 θ_{LA} is the lead-to-ambient thermal resistance (O C/W) and P D is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30 to 40 O C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$
.

NOTE 3 — Zener Voltage (V_Z) Measurement. Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T_L) at 30°C \pm 1°C, 3/8″ from the diode body.

NOTE 4 — Zener Impedance ($\mathbb{Z}_{\mathbb{Z}}$) Derivation. The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ($\mathbb{I}_{\mathbb{Z}^{+}}$ or $\mathbb{I}_{\mathbb{Z}^{+}}$) is superimposed on $\mathbb{I}_{\mathbb{Z}^{+}}$ or $\mathbb{I}_{\mathbb{Z}^{+}}$.

NOTE $5-Surge\ Current\ (i_F)\ Non-Repetitive.$ The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, 1/2/7, per 1/20 EDEC registration; however, actual device capability is as described in Figure 5.

 ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found as follows:

$$\Delta T_{JL} = \theta_{JL}P_{D}$$

 θ_{JL} may be determined from Figure 3 for dc power conditions. For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of $T_J(\Delta T_J)$ may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta V Z \Delta T_J$$

 $\theta_{\mbox{\scriptsize VZ}}$, the zener voltage temperature coefficient, is found from Figure 2

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 5. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 5 be exceeded.

FIGURE 2 - TEMPERATURE COEFFICIENTS

 $(-55^{\circ}C$ to $+150^{\circ}C$ temperature range; 90% of the units are in the ranges indicated.)

This graph represents 90 percentile data points. For worst-case design characteristics, multiply surge power by 2/3.

2.0

0.1

0.2

1.0

5.0

IZ, ZENER CURRENT (mA)

50 100

1N5272

1N4765 thru 1N4784 See Page 4-46

MOTOROLA

Designers Data Sheet

500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 2.4 to 110 Volts**
- DO-35 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die

Designer's Data for "Worst Case" Conditions

The Designer's Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L ≤ 75 ⁰ C	PD		
Lead Length = 3/8"		500	mW
Derate above T _L = 75 ^o C		4.0	mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

*Indicates JEDEC Registered Data

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable

leads
POLARITY: Cathode indicated by color band. When operated in zener mode,

CLARITY: Cathode indicated by color band, when operated in zener mode cathode will be positive with respect to anode

MOUNTING POSITION: Any

NOTES

- PACKAGE CONTOUR OPTIONAL WITHIN A
 AND B. HEAT SLUGS, IF ANY, SHALL BE
 INCLUDED WITHIN THIS CYLINDER, BUT
 NOT SUBJECT TO THE MINIMUM LIMIT
 OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- POLARITY DENOTED BY CATHODE BAND.
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLI	METERS	INC	HES				
DIM	MIN	MAX	MIN	MAX				
Α	3.05	5.08	0.120	0.200				
В	1.52	2.29	0.060	0.090				
D	0.46	0.56	0.018	0.022				
E		1 27		0.050				

K 25.40 38.10 1.000 1.500
All JEDEC dimensions and notes apply.

CASE 299-02 DO-204AH (DO-35)

^{**}See 1N5273 thru 1N5281 for devices > 110 volts.

1N5221 thru 1N5272

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}\text{C} \text{ unless otherwise noted. Based on dc measurements at thermal equilibrium; lead length = 3/8"; thermal resistance of heat sink = 30°C/W) V_F = 1.1 max @ I_F = 200 mA for all types.$

= 30°C/W) V _F = 1.1 max @ I _F = 200 mA for all types. Max Zener Imperiance Max Reverse Leakage Current										
	Nominal			Zener Impedance nd B Suffix only		B Suffi		Non-Suffix	Max Zener Voltage	
	Zener Voltage	Test	A ar	Ia B Suttix only					Temperature Coeff.	
JEDEC	Vz@!zT	Current	.	- 01 005 1	IR μA	@ V ₁		IR @ VR Used	(A and B Suffix only)	
Type No.	Voits (Note 2)	IZT	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK} = 0.25 mA Ohms	μΑ,	□ A	В	for Suffix A μA	θ V Z (%/ ^O C) (Note 3)	
(Note 1)	2.4	mA		1200	100	0.95		200	-0.085	
1N5221	2.4	20	30 30		100	0.95	1.0	200	-0.085 -0.085	
1N5222 1N5223	2.5	20 20	30	1250	75	0.95	1.0	150	-0.080	
1N5223	2.7	20	30	1300 1400	75	0.95	1.0	150	-0.080	
1N5224 1N5225	3.0	20	29	1600	50	0.95	1.0	100	-0.075	
1	l					1		i		
1N5226	3.3	20 20	28 24	1600 1700	25 15	0.95 0.95	1.0	100 100	-0.070 -0.065	
1N5227 1N5228	3.6 3.9	20	24	1900	10	0.95	1.0 1.0	75	-0.060	
1N5228 1N5229	4.3	20	23	2000	5.0	0.95	1.0	50	± 0.055	
1N5229 1N5230	4.7	20	19	1900	5.0	1.9	2.0	50	± 0.030	
	1		i						{	
1N5231	5.1	20	17	1600	5.0	1.9	2.0	50	± 0.030	
1N5232	5.6	20	11	1600	5.0	2.9	3.0	50	+0.038	
1N5233	6.0	20	7.0	1600	5.0	3.3	3.5	50	+0.038	
1N5234	6.2	20	7.0	1000	5.0	3.8	4.0	50	+0.045 +0.050	
1N5235	6.8	20	5.0	750	3.0	4.8	5.0	30		
1N5236	7.5	20	6.0	500	3.0	5.7	6.0	30	+0.058	
1N5237	8.2	20	8.0	500	3.0	6.2	6.5	30	+0.062	
1N5238	8.7	20	8.0	600	3.0	6.2	6.5	30	+0.065	
1N5239	9.1	20	10	600	3.0	6.7	7.0	30	+0.068	
1N5240	10	20	17	600	3.0	7.6	8.0	30	+0.075	
1N5241	11	20	22	600	2.0	8.0	8.4	30	+0.076	
1N5242	12	20	30	600	1.0	8.7	9.1	10	+0.077	
1N5243	13	9.5	13	600	0.5	9.4	9.9	10	+0.079	
1N5244	14	9.0	15	600	0.1	9.5	10	10	+0.082	
1N5245	15	8.5	16	600	0.1	10.5	11	10	+0.082	
1N5246	16	7.8	17	600	0.1	11.4	12	10	+0.083	
1N5247	17	7.4	19	600	0.1	12.4	13	10	+0.084	
1N5248	18	7.0	21	600	0.1	13.3	14	10	+0.085	
1N5249	19	6.6	23	600	0.1	13.3	14	10	+0.086	
1N5250	20	6.2	25	600	0.1	14.3	15	10	+0.086	
1N5251	22	5.6	29	600	0.1	16.2	17	10	+0.087	
1N5252	24	5.2	33	600	0.1	17.1	18	10	+0.088	
1N5253	25	5.0	35	600	0.1	18.1	19	10	+0.089	
1N5254	27	4.6	41	600	0.1	20	21	10	+0.090	
1N5255	28	4.5	44	600	0.1	20	21	10	+0.091	
1N5256	30	4.2	49	600	0.1	22	23	10	+0.091	
1N5257	33	3.8	58	700	0.1	24	25	10	+0.092	
1N5258	36	3.4	70	700	0.1	26	27	10	+0.093	
1N5259	39	3.2	80	800	0.1	29	30	10	+0.094	
1N5260	43	3.0	93	900	0.1	31	33	10	+0.095	
1N5261	47	2.7	105	1000	0.1	34	36	10	+0.095	
1N5262	51	2.5	125	1100	0.1	37	39	10	+0.096	
1N5263	56	2.2	150	1300	0.1	41	43	10	+0.096	
1N5264	60	2.1	170	1400	0.1	44	46	10	+0.097	
1N5265	62	2.0	185	1400	0.1	45	47	10	+0.097	
1N5266	68	1.8	230	1600	0.1	49	52	10	+0.097	
1N5267	75	1.7	270	1700	0.1	53	56	10	+0.098	
1N5268	82	1.5	330	2000	0.1	59	62	10	+0.098	
1N5269	87	1.4	370	2200	0.1	6 5	68	10	+0.099	
1N5270	91	1.4	400	2300	0.1	66	69	10	+0.099	
1N5271	100	1.3	500	2600	0.1	72	76	10	+0.110	
1N5272	110	1.1	750	3000	0.1	80	84	10	+0.110	

NOTE 1. Tolerance — The JEDEC type numbers shown indicate a tolerance of $\pm 10\%$ with guaranteed limits on only V_Z , I_R and V_F as shown in the electrical characteristics table. Units with guaranteed limits on all six parameters are indicated by suffix "A" for $\pm 10\%$ tolerance and suffix "B" for $\pm 5.0\%$ units.

NOTE 2. Special Selections† Available Include:

- 1. Nominal zener voltages between those shown.
- 2. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
 - 3. Nominal voltages at non-standard test currents.

[†]For more information on special selections contact your nearest Motorola representative.

NOTE 3. Temperature Coefficient (θ_{VZ}) — Test conditions for temperature coefficient are as follows:

a. $I_{ZT} = 7.5 \text{ mA}, T_1 = 25^{\circ}\text{C},$

 $T_2 = 125^{\circ}C$ (1N5221A,B through 1N5242A,B).

b. IZT = Rated IZT, T1 = 25°C,

 $T_2 = 125^{\circ}C$ (1N5243A,B through 1N5272A,B).

Device to be temperature stabilized with current applied prior to reading breakdown voltage at the specified ambient temperature.

NOTE 4. Zener Voltage (Vz) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead temperature of $30^{\circ}\text{C} \pm 1^{\circ}\text{C}$ and 3/8'' lead length.

NOTE 5. Zener Impedance (Z_Z) Derivation — Z_{ZT} and Z_{ZK} are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $I_Z(ac) = I_Z(dc)$ with the ac frequency = 60 Hz.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, TL, should be determined from:

$$T_L = \theta_{LA}P_D + T_A$$
.

 θ_{LA} is the lead-to-ambient thermal resistance (°C/W) and PD is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30 to 40°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$
.

 ΔTJL is the increase in junction temperature above the lead temperature and may be found from Figure 1 for dc power:

$$\Delta T_{JL} = \theta_{JL} P_{D}$$
.

For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of $I_J(\Delta I_J)$ may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta \, \text{VZ},$ the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junc-

tion temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 3 — TEMPERATURE COEFFICIENTS (-55 $^{\circ}$ C to +150 $^{\circ}$ C temperature range; 90% of the units are in the ranges indicated.)

This graph represents 90 percentil data points.

For worst-case design characteristics, multiply surge power by 2/3.

FIGURE 8 – EFFECT OF ZENER VOLTAGE

FIGURE 9 - TYPICAL NOISE DENSITY

FIGURE 10 -- NOISE DENSITY MEASUREMENT METHOD

The input voltage and load resistance are high so that the zener diode is driven from a constant current source. The amplifier is low noise so that the amplifier noise is negligible compared to that of the test zener. The filter bandpass is known so that the noise density can be calculated from the formula shown.

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS

1N5273 thru 1N5281

Advance Information

500 MILLIWATT SURMETIC 20 SILICON ZENER DIODES (SILICON OXIDE PASSIVATED)

... in answer to the Circuit Design and Component Engineers' many requests — A complete new series of Zener Diodes in the popular DO-204AA case with higher ratings, tighter limits, better operating characteristics and a full set of designers' curves that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.

- Proven Capability to MIL-S-19500 Specifications
- 10 Watt Surge Rating
- Weldable Leads
- Maximum Limits Guaranteed on Six Electrical Parameters

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 75°C,	PD		
Lead Length = 3/8"		500	mW
Derate above T _L = 75 ⁰ C		4.0	mW/ ^O C
Surge Power	T -	10	Watts
(Non-Recurrent Square Wave @ PW = 8.3 ms, T _J = 55 ⁰ C)	1		
Operating and Storage Temperature Range	Tj, Tstg	-65 to +200	°C

Lead Temperature not less than 1/16" from the case for 10 seconds: 230°C.

MECHANICAL CHARACTERISTICS

CASE: Void free, transfer molded, thermosetting plastic.

FINISH: All external surfaces are corrosion resistant. Leads are readily solderable and weldable.

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any.

WEIGHT: 0.18 gram (approximately).

This document contains information on a new product. Specifications and information herein are subject to change without notice.

500 MILLIWATT ZENER REGULATOR DIODES

120~200 VOLTS

NOTES:

- PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

1	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
) A	5.84	7.62	0.230	0.300
В	2.16	2.72	0.085	0.107
D	0.46	0.56	0.018	0.022
F	_	1.27		0.050
K	25.40	38.10	1.000	1.500

All JEDEC dimensions and notes apply

CASE 51-02 DO-204AA (DO-7)

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}\text{C} \text{ unless otherwise noted}$. Based on dc measurements at thermal equilibrium; lead length = 3/8"; thermal resistance of heat sink = 30°C/W). $V_F = 1.1 \text{ max } @ I_F = 200 \text{ mA}$ for all types.

	Nominal		Max	Max Zener Impedance			rse Lea	kage Current	Max Zener Voltage
	Zener Voltage	Test	A an	A and B Suffix Only		B Suffi	x Only	Non-Suffix	Temperature Coefficient
JEDEC Type No.	Vz @ IZT Volts	Current	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK} = 0.25 mA	IR μA	@	V _R Volts	IR @ VR Used For Suffix A	(A and B Suffix Only) θVZ (%/ ^O C)
(Note 1)	(Notes 2 & 4)	mA	Ohms	Ohms		Α	В	μ Α	(Note 3)
1N5273	120	1,0	900	4000	0.1	86	91	10	+ 0.110
1N5274	130	0.95	1100	4500	0.1	94	99	10	+ 0.110
1N5275	140	0.90	1300	4500	0.1	101	106	10	+ 0.110
1N5276	150	0.85	1500	5000	0.1	108	114	10	+ 0,110
1N5277	160	0.80	1700	5500	0.1	116	122	10	+ 0.110
1N5278	170	0.74	1900	5500	0.1	116	129	10	+ 0,110
1N5279	180	0.68	2200	6000	0.1	130	137	10	+ 0.110
1N5280	190	0.66	2400	6500	0.1	137	144	10	+ 0.110
1N5281	200	0.65	2500	7000	0.1	144	152	10	+ 0.110

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

Tolerance Designation — The JEDEC type numbers shown indicate a tolerance of $\pm 10\%$ with guaranteed limits on only V_Z , I_R , and V_F as shown in the above table. Units with guaranteed limits on all six parameters are indicated by suffix "A" for $\pm 10\%$ tolerance and suffix "B" for $\pm 5.0\%$ units.

Non-Standard Voltage Designation - To designate units with zener voltages other than those assigned JEDEC numbers, the Motorola type number should be used.

NOTE 2. SPECIAL SELECTIONS AVAILABLE INCLUDE:

- 1. Nominal zener voltages between those shown.
- 2. Matched sets (standard tolerances are $\pm 5.0\%$, $\pm 2.0\%$, $\pm 1.0\%$).
- a. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
- b. Two or more units matched to one another with any specified tolerance.
 - 3. Tight voltage tolerances: 1.0%, 2.0%, 3.0%.

NOTE 3. TEMPERATURE COEFFICIENT (θ_{VZ})

Test conditions for temperature coefficient are as follows:

Device to be temperature stabilized with current applied prior to reading breakdown voltage at the specified ambient temperature,

NOTE 4. ZENER VOLTAGE (VZ) MEASUREMENT

Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T $_L$) at 30^{o}C $\pm 1^{\text{o}}\text{C}$, $3/8^{\prime\prime}$ from the diode body.

1N5283 thru 1N5314

CURRENT REGULATOR DIODES

Field-effect current regulator diodes are circuit elements that provide a current essentially independent of voltage. These diodes are especially designed for maximum impedance over the operating range. These devices may be used in parallel to obtain higher currents.

CURRENT REGULATOR DIODES

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Operating Voltage (T _J = -55° C to +200°C)	POV	100	Volts
Steady State Power Dissipation @ T _L = 75 °C	PD	600	mW
Derate above T _L = 75 °C	Ì	4.8	mW/°C
Lead Length = 3/8" (Forward or Reverse Bias)			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 55 to + 200	°C

	MILLI	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.84	7.62	0.230	0.300	
В	2.16	2.72	0.085	0.107	
D	0.46	0.56	0.018	0.022	
F		1.27	_	0.050	
K	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply

CASE 51 DO-7

NOTES

- 1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)

	Regulator Current Ip (mA) @ V _T = 25 V		Minimum Dynamic Impedance @ V _T = 25 V	Minimum Knee Impedance @ V _K = 6.0 V	Maximum Limiting Voltage @ I1 = 0.8 Ip (min)	
Type No.	nom	min	max	Z _T (MΩ)	Z _K (MΩ)	V ₁ (Volts)
1N5283	0.22	0.198	0.242	25.0	2.75	1.00
1N5284	0.24	0.216	0.264	19.0	2.35	1.00
1N5285	0.27	0.243	0.297	14.0	1.95	1.00
1N5286	0.30	0.270	0.330	9.0	1.60	1.00
1N5287	0.33	0.297	0.363	6.6	1.35	1.00
1N5288	0.39	0.351	0.429	4.10	1.00	1.05
1N5289	0.43	0.387	0.473	3.30	0.870	1.05
1N5290	0.47	0.423	0.517	2.70	0.750	1.05
1N5291	0.56	0.504	0.616	1.90	0.560	1.10
1N5292	0.62	0.558	0.682	1.55	0.470	1.13
1N5293	0.68	0.612	0.748	1.35	0.400	1.15
1N5294	0.75	0.675	0.825	1.15	0.335	1.20
1N5295	0.82	0.738	0.902	1.00	0.290	1.25
1N5296	0.91	0.819	1.001	0.880	0.240	1.29
1N5297	1.00	0.900	1.100	0.800	0.205	1.35
1N5298	1.10	0.990	1.210	0.700	0.180	1.40
1N5299	1.20	1.08	1.32	0.640	0.155	1.45
1N5300	1.30	1.17	1.43	0.580	0.135	1.50
1N5301	1.40	1.26	1.54	0.540	0.115	1.55
1N5302	1.50	1.35	1.65	0.510	0.105	1.60
1N5303	1.60	1.44	1.76	0.475	0.092	1.65
1N5304	1.80	1.62	1.98	0.420	0.074	1.75
1N5305	2.00	1.80	2.20	0.395	0.061	1.85
1N5306	2.20	1.98	2.42	0.370	0.052	1.95
1N5307	2.40	2.16	2.64	0.345	0.044	2.00
1N5308	2.70	2.43	2.97	0.320	0.035	2.15
1N5309	3.00	2.70	3.30	0.300	0.029	2.25
1N5310	3.30	2.97	3.63	0.280	0.024	2.35
1N5311	3.60	3.24	3.96	0.265	0.020	2.50
1N5312	3.90	3.51	4.29	0.255	0.017	2.60
1N5313	4.30	3.87	4.73	0.245	0.014	2.75
1N5314	4.70	4.23	5.17	0.235	0.012	2.90

FIGURE 1 — TYPICAL CURRENT REGULATOR CHARACTERISTICS

VAK, ANODE-CATHODE VOLTAGE (VOLTS)

SYMBOLS AND DEFINITIONS

In - Diode Current.

II - Limiting Current: 80% of In minimum used to determine Limiting voltage, Vi.

Ip - Pinch-off Current: Regulator current at specified Test Voltage, V_T.

POV - Peak Operating Voltage: Maximum voltage to be applied to device.

 V_{A} — Another Temperature Coefficient. V_{AK} — Anode-to-cathode Voltage. V_{K} — Knee Impedance Test Voltage: Specified voltage used to establish Knee Impedance, Z_K.

V_L — Limiting Voltage: Measured at I_L. V_L, together with Knee AC Impedance, Z_K, indicates the Knee characteristics of the device.

V_T - Test Voltage: Voltage at which I_P and Z_T are specified.

 Z_K — Knee AC Impedance at Test Voltage: To test for Z_K , a 90 Hz signal V_K with RMS value equal to 10% of test voltage, V_K , is superimposed on V_K:

 $Z_K = v_K/i_K$

where ik is the resultant ac current due to vk

To provide the most constant acturent throw the diode, Z_K should be as high as possible; therefore, a minimum value of Z_K is specified. $Z_T - AC$ Impedance at Test Voltage: Specified as a minimum value. To test for Z_T , a 90 Hz signal with RMS value equal to 10% of Test Voltage, V_T, is superimposed on V_T.

FIGURE 2 — TYPICAL THERMAL RESISTANCE

L. LEAD LENGTH (INCHES)

APPLICATION NOTE

As the current available from the diode is temperature dependent, it is necessary to determine junction temperature, T_J, under specific operating conditions to calculate the value of the diode current. The following procedure is recommended:

Lead Temperature, TL, shall be determined from:

 $T_L = \theta_{LA} P_D + T_A$

where θ_{LA} is lead-to-ambient thermal resistance and P_D is power dissipation.

 θ_{LA} is generally 30-40°C/W for the various clips and tie points in common use, and for printed circuit-board wiring.

Junction Temperature, T_J, shall be calculated from:

 $T_J = T_L + \theta_{JL} P_D$ θ_{JL} is taken from Figure 2.

where n_{JL} is taken invitingue 2. For circuit design limits of V_{AK} , limits of P_D may be estimated and extremes of T_J may be computed. Using the information on Figures 4 and 5, changes in current may be found. To improve current regulation, keep V_{AK} low to reduce P_D and keep the leads short, especially the cathode lead, to reduce θ_{JL} .

FIGURE 3 — TYPICAL FORWARD CHARACTERISTICS

 $^{\circ}90\%$ of the units will be in the ranges shown.

1N5333 thru 1N5388

Designers Data Sheet

5.0 WATT SURMETIC 40 SILICON ZENER DIODES (SILICON OXIDE PASSIVATED)

...... a complete series of 5.0 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.

- Up to 180 Watt Surge Rating @ 8.3 ms
- Maximum Limits Guaranteed on Seven Electrical Parameters

5M3.3ZS10 thru 5M200ZS10 1N5333A thru 1N5388A

5M3.3ZS5 thru 5M200ZS5 1N5333B thru 1N5388B

5.0 WATT ZENER REGULATOR DIODES

3.3 - 200 VOLTS

Junction and Stora

Junction and Storage Temperature: -65 to +200 °C

Lead Temperature not less than 1/16" from the case for 10 seconds: 230 $^{\circ}\text{C}$

DC Power Dissipation: 5.0 W @ $T_L = 75$ °C, Lead Length = 3/8" (Derate 40 mW/°C above 75 °C)

MECHANICAL CHARACTERISTICS

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant. Leads are

readily solderable

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any **WEIGHT:** 0.7 gram (approx)

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.38	8.89	0.330	0.350	
В	3.30	3.68	0.130	0.145	
D	0.94	1.09	0.037	0.043	
F	-	1.27	-	0.050	
K	25.40	31.75	1.000	1.250	

CASE 17

NOTE: 1. LEAD DIAMETER & FINISH NOT CONTROLLED WITHIN DIM "F".

ELECTRICAL CHARACTERISTICS ($T_A = 25 \,^{\circ}\text{C}$ unless otherwise noted, $V_F = 1.2 \,\text{Max}$ @ $I_F = 1.0 \,\text{A}$ for all types)

JEDEC Type No. (Note 1 & 2)	Nominal Zener Voltage Vz @ IZT Volts (Note 3)	Current le IZT ZT mA	Max Zener Impedance A & B Suffix Only		Max	Reverse Leaf	kage	Applies to all Suffix	A & B Suffix Only	Maximum Regulator
			Z _{ZT} @ I _{ZT} Ohms (Note 3)	Z _{ZK} @ I _{ZK} = 1.0 mA Ohms (Note 3)	I _R μΑ	@ Non & A Suffix	V _R Volts B-Suffix	Max Surge Current i _r , Amps (Note 4)	Max Voltage Regulation △ Vz, Volts (Note 5)	Current IZM mA (Note 6)
1N5333	3.3	380	3.0	400	300	1.0	1.0	20.0	0.85	1440
1N5334	3.6	350	2.5	500	150	1.0	1.0	18.7	0.80	1320
1N5335	3.9	320	2.0	500	50	1.0	1.0	17.6	0.54	1220
1N5336	4.3	290	2.0	500	10	1.0	1.0	16.4	0.49	1100
1N5337	4.7	260	2.0	450	5.0	1.0	1.0	15.3	0.44	1010
1N5338	5.1	240	1.5	400	1.0	1.0	1.0	14.4	0.39	930
1N5339	5.6	220	1.0	400	1.0	2.0	2.0	13.4	0.25	865
1N5340	6.0	200	1.0	300	1.0	3.0	3.0	12.7	0.19	790
1N5341	6.2	200	1.0	200	1.0	3.0	3.0	12.4	0.10	765
1N5342	6.8	175	1.0	200	10	4.9	5.2	11.5	0.15	700
1N5343	7.5	175	1.5	200	10	5.4	5.7	10.7	0.15	630
1N5344	8.2	150	1.5	200	10	5.9	6.2	10.0	0.20	580
1N5345	8.7	150	2.0	200	10	6.3	6.6	9.5	0.20	545
1N5346	9.1	150	2.0	150	7.5	6.6	6.9	9.2	0.22	520
1N5347	10	125	2.0	125	5.0	7.2	7.6	8.6	0.22	475
IN5348	11	125	2.5	125	5.0	8.0	8.4	8.0	0.25	430
1N5349	12	100	2.5	125	2.0	8.6	9.1	7.5	0.25	395
1N5350	13	100	2.5	100	1.0	9.4	9.9	7.0	0.25	365
1N5351	14	100	2.5	75	1.0	10.1	10.6	6.7	0.25	340
1N5352	15	75	2.5	75	1.0	10.8	11.5	6.3	0.25	315
1N5353	16	75	2.5	75	1.0	11.5	12.2	6.0	0.30	295
1N5354	17	70	2.5	75	0.5	12.2	12.9	5.8	0.35	280
1N5355	18	65	2.5	75	0.5	13.0	13.7	5.5	0.40	264
1N5356	19	65	3.0	75	0.5	13.7	14.4	5.3	0.40	250
1N5357	20	65	3.0	75	0.5	14.4	15.2	5.1	0.40	237
1N5358	22	50	3.5	75	0.5	15.8	16.7	4.7	0.45	216
1N5359	24	50	3.5	100	0.5	17.3	18.2	4.4	0.55	198
1N5360	25	50	4.0	110	0.5	18.0	19.0	4.3	0.55	190
1N5361	27	50	5.0	120	0.5	19.4	20.6	4.1	0.60	176
1N5362	28	50	6.0	130	0.5	20.1	21.2	3.9	0.60	170
1N5363	30	40	8.0	140	0.5	21.6	22.8	3.7	0.60	158
1N5364	33	40	10	150	0.5	23.8	25.1	3.5	0.60	144
1N5365	36	30	11	160	0.5	25.9	27.4	3.3	0.65	132
1N5366	39	30	14	170	0.5	28.1	29.7	3.1	0.65	122
1N5367	43	30	20	190	0.5	31.0	32.7	2.8	0.70	110
1N5368	47	25	25	210	0.5	33.8	35.8	2.7	0.80	100
1N5369	51	25	27	230	0.5	36.7	38.8	2.5	0.90	93.0
1N5370	56	20	35	280	0.5	40.3	42.6	2.3	1.00	86.0
1N5371	60	20	40	350	0.5	43.0	45.5	2.2	1.20	79.0
1N5372	62	20	42	400	0.5	44.6	47.1	2.1	1.35	76.0
1N5373	68	20	44	500	0.5	49.0	51.7	2.0	1.50	70.0
1N5374	75	20	45	620	0.5	54.0	56.0	1.9	1.60	63.0
1N5375	82	15	65	720	0.5	59.0	62.2	1.8	1.80	58.0
1N5376	87	15	75	760	0.5	63.0	66.0	1.7	2.00	54.5
1N5377	91	15	75	760	0.5	65.5	69.2	1.6	2.20	52.5
1N5378	100	12	90	800	0.5	72.0	76.0	1.5	2.50	47.5
1N5379	110	12	125	1000	0.5	79.2	83.6	1.4	2.50	43.0
1N5380	120	10	170	1150	0.5	86.4	91.2	1.3	2.50	39.5
1N5381	130	10	190	1250	0.5	93.6	98.8	1.2	2.50	36.6
1N5382	140	8.0	230	1500	0.5	101	106	1.2	2.50	34.0
1N5383	150	8.0	330	1500	0.5	108	114	1.1	3.00	31.6
1N5384	160	8.0	350	1650	0.5	115	122	1.1	3.00	29.4
1N5385	170	8.0	380	1750	0.5	122	129	1.0	3.00	28.0
1N5386	180	5.0	430	1750	0.5	130	137	1.0	4.00	26.4
1N5387	190	5.0	450	1850	0.5	137	144	0.9	5.00	25.0
1N5388	200	5.0	480	1850	0.5	144	152	0.9	5.00	23.6

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

TOLERANCE DESIGNATION — The JEDEC type numbers shown indicate a tolerance of $\pm 20\%$ with guaranteed limits on only V_Z, I_R, i_r, and V_F as shown in the electrical characteristics table. Units with guaranteed limits on all seven parameters are indicated by suffix "A" for $\pm 10\%$ tolerance and suffix "B" for $\pm 5.0\%$ units.

NOTE 2 - SPECIALS AVAILABLE INCLUDE:

(A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLT-AGES SHOWN AND TIGHTER VOLTAGE TOLERANCES: To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances (±3%, ±2%, ±1%), the Mfg. type number should be used.

Example: 5

5M90ZS3

(B) MATCHED SETS: (Standard Tolerances are ±5.0%, ±2.0%, ±1.0%).

Zener diodes can be obtained in sets consisting of two or more matched devices. The method for specifying such matched sets is similar to the one described in (A) for specifying units with a special voltage and/or tolerance except that two extra suffixes are added to the code number described.

These units are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number, which is different for each set being ordered.

(C) ZENER CLIPPERS: (Standard Tolerance ±10% and ±5%). Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomen-

clature:

5 M 20, Z Z 10 Device Nominal Voltage Clipper Manufacturer Zener Diodes (not a matching requirement)

Example:

5M20ZZ10

NOTE 3 – ZENER VOLTAGE (Vz) AND IMPEDANCE (Zzt & Zzk)

Test conditions for Zener voltage and impedance are as follows: I_Z is applied 40 \pm 10 ms prior to reading. Mounting contacts are located 3/8" to 1/2" from the inside edge of mounting clips to the body of the diode. (T_A = 25°C $^{+8}_{-2}$ °C).

NOTE 4 - SURGE CURRENT (ir)

Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width,PW, of 8.3 ms. The data given in Figure 6 may be used to find the maximum surge current for a square wave of any pulse width between 1.0 ms and 1000 ms by plotting the applicable points on logarithmic paper. Examples of this, using the 3.3 V and 200 V zeners, are shown in Figure 7. Mounting contact located as soecified in Note 3. (TA = 25°C $^{+80}_{-2}$ C).

NOTE 5 - VOLTAGE REGULATION (△VZ)

Test conditions for voltage regulation are as follows: V_Z measurements are made at 10% and then at 50% of the I_Z max value listed in the electrical characteristics table. The test currents are the same for the 5% and 10% tolerance devices. The test current time duration for each V_Z measurement is 40 ± 10 ms. $(T_A=25^{\circ}\text{C}+8^{\circ}\text{C})$. Mounting contact located as specified in Note 3.

NOTE 6 - MAXIMUM REGULATOR CURRENT (IZM)

The maximum current shown is based on the maximum voltage of a 5% type unit, therefore, it applies only to the B-suffix device. The actual I_{ZM} for any device may not exceed the value of 5.0 watts divided by the actual V_Z of the device. $T_1 = 75$ C at 3/8 maximum from the device body.

TEMPERATURE COEFFICIENTS

FIGURE 2 — TEMPERATURE COEFFICIENT-RANGE FOR UNITS 3.0 TO 10 VOLTS

FIGURE 3 – TEMPERATURE COEFFICIENT-RANGE FOR UNITS 10 TO 220 VOLTS

FIGURE 4 - TYPICAL THERMAL RESPONSE

FIGURE 5 - TYPICAL THERMAL RESISTANCE

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions, in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_L, should be determined from:

$$T_L = \theta_{LA} P_D + T_A$$

 θ_{LA} is the lead-to-ambient thermal resistance and P_D is the power dissipation.

Junction Temperature, T.J., may be found from:

$$T_J = T_L + \triangle T_{JL}$$

 ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 4 for a train of power pulses or from Figure 5 for dc power.

$$\triangle T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ(Δ TJ) may be estimated. Changes in voltage, Vz, can then be found from:

$$\triangle V = \theta_{VZ} \triangle T_J$$

 θ_{VZ} , the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

FIGURE 6 — MAXIMUM NON-REPETITIVE SURGE CURRENT versus NOMINAL ZENER VOLTAGE

FIGURE 7 — PEAK SURGE CURRENT versus PULSE WIDTH

Data of Figure 4 should not be used to compute surge capability. Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 6 be exceeded.

1N5518A,B thru 1N5546A,B

LOW VOLTAGE AVALANCHE SILICON OXIDE PASSIVATED ZENER REGULATOR DIODES

Highly reliable silicon regulators utilizing an oxide-passivated junction for long-term voltage stability. Double slug construction provides a rugged, glass-enclosed, hermetically sealed structure.

- Low Zener Noise Specified
- Low Maximum Regulation Factor
- Low Zener Impedance
- Low Leakage Current
- Controlled Forward Characteristics
- Temperature Range: -65 to + 200°C

LOW VOLTAGE AVALANCHE ZENER DIODES

400 MILLIWATTS 3.3 THRU 33 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	400 3.2	mW mW/ ^o C
DC Power Dissipation @ T _L = 50°C Lead Length = 1/8" Derate above 50°C (Figure 1)	PD	500 3.3	mW mW/ ^o C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

MECHANICAL CHARACTERISTICS

CASE.

Hermetically sealed, all-glass

DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable and weldable.

POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 Gram (approx) MOUNTING POSITION: Any

FIGURE 1 – POWER-TEMPERATURE DERATING CUP	₹VE
0.9	

- 1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- 3. POLARITY DENOTED BY CATHODE BAND.
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

1	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	3.05	5.08	0.120	0.200		
В	1.52	2.29	0.060	0.090		
D	0.46	0.56	0.018	0.022		
F	-	1.27	-	0.050		
K	25.40	38.10	1.000	1.500		
All JEDEC dimensions and notes apply.						

CASE 299-02 DO-204 AH

1N5518A, B thru 1N5546A, B

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}\text{C} \text{ unless otherwise noted})$. Based on dc measurements at thermal equilibrium; $V_F = 1.1 \text{ Max } @ \text{ I}_F = 200 \text{ mA}$ for all types)

	Nominal Zener Voltage	Test	Max Zener Impedance B-C-D Suffix	Max Reverse Leakage Current			B-C-D Suffix Maximum DC Zener Current	B-C-D Suffix Max Noise Density at I _Z = 250 μA N _D (Figure 1)	Regulation Factor △Vz	Low Vz Current
JEDEC VZ@IZT		Current	ZZT @ IZT	I IR	V _R - Volts		^I ZM			
Type No. (Note 1)	Volts (Note 2)	IZT mAdc	Ohms (Note 3)	μAdc (Note 4)	Non & A- Suffix	B-C-D Suffix	mAdc (Note 5)	(micro-volts per square root cycle)	Volts (Note 6)	IZL mAdc
1N5518A	3.3	20	26	5.0	0.90	1.0	115	0.5	0.90	2.0
1N5519A	3.6	20	24	3.0	0.90	1.0	105	0.5	0.90	2.0
1N5520A	3.9	20	22	1.0	0.90	1.0	98	0.5	0.85	2.0
1N5521A	4.3	20	18	3.0	1.0	1.5	88	0.5	0.75	2.0
1N5522A	4.7	10	22	2.0	1.5	2.0	81	0.5	0.60	1.0
1N5523A	5.1	5.0	26	2.0	2.0	2.5	75	0.5	0.65	0.25
1N5524A	5.6	3.0	30	2.0	3.0	3.5	68	1.0	0.30	0.25
1N5525A	6.2	1.0	30	1.0	4.5	5.0	61	1.0	0.20	0.01
1N5526A	6.8	1.0	30	1.0	5.5	6.2	56	1.0	0.10	0.01
1N5527A	7.5	1.0	35	0.5	6.0	6.8	51	2.0	0.05	0.01
1N5528A	8.2	1.0	40	0.5	6.5	7.5	46	4.0	0.05	0.01
1N5529A	9.1	1.0	45	0.1	7.0	8.2	42	4.0	0.05	0.01
1N5530A	10.0	1.0	60	0.05	8.0	9.1	38	4.0	0.10	0.01
1N5531A	11.0	1.0	80	0.05	9.0	9.9	35	5.0	0.20	0.01
1N5532A	12.0	1.0	90	0.05	9.5	10.8	32	10	0.20	0.01
1N5533A	13.0	1.0	90	0.01	10.5	11.7	29	15	0.20	0.01
1N5534A	14.0	1.0	100	0.01	11.5	12.6	27	20	0.20	0.01
1N5535A	15.0	1.0	100	0.01	12.5	13.5	25	20	0.20	0.01
1N5536A	16.0	1.0	100	0.01	13.0	14.4	24	20	0.20	0.01
1N5537A	17.0	1.0	100	0.01	14.0	15.3	22	20	0.20	0.01
1N5538A	18.0	1.0	100	0.01	15.0	16.2	21	20	0.20	0.01
1N5539A	19.0	1.0	100	0.01	16.0	17.1	20	20	0.20	0.01
1N5540A	20.0	1.0	100	0.01	17.0	18.0	19	20	0.20	0.01
1N5541A	22.0	1.0	100	0.01	18.0	19.8	17	20	0.25	0.01
1N5542A	24.0	1.0	100	0.01	20.0	21.6	16	20	0.30	0.01
1N5543A	25.0	1.0	100	0.01	21.0	22.4	15	20	0.35	0.01
1N5544A	28.0	1.0	100	0.01	23.0	25.2	14	20	0.40	0.01
1N5545A	30.0	1.0	100	0.01	24.0	27.0	13	20	0.45	0.01
1N5546A	33.0	1.0	100	0.01	28.0	29.7	12	20	0.50	0.01

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

The JEDEC type numbers shown are $\pm 10\%$ with guaranteed limits for V_Z I_R, and V_F. Units with guaranteed limits for all six parameters are indicated by a "B" suffix for $\pm 5.0\%$ units, "C" suffix for $\pm 2.0\%$ and "D" suffix for $\pm 1.0\%$.

NOTE 2 – ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of $25^{\mbox{\scriptsize oC}}.$

NOTE 3 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 Hz ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT}) is superimposed on I_{ZT} .

NOTE 4 - REVERSE LEAKAGE CURRENT (IR)

Reverse leakage currents are guaranteed and are measured at V_R as shown on the table.

NOTE 5 - MAXIMUM REGULATOR CURRENT (IZM)

The maximum current shown is based on the maximum voltage of a 5.0% type unit, therefore, it applies only to the "B" suffix device. The actual $I_{\rm ZM}$ for any device may not exceed the value of 400 milliwatts divided by the actual $V_{\rm Z}$ of the device.

NOTE 6 — MAXIMUM REGULATION FACTOR (ΔV_Z)

 ΔV_Z is the maximum difference between V_Z at I_{ZT} and V_Z at I_{ZL} measured with the device junction in thermal equilibrium.

4

ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes, a bandwidth of 2.0 kHz and a center frequency of 2.0 kHz.

Noise density decreases as zener current increases. The junction temperature will also change the zener noise levels, thus the noise rating must indicate frequency, bandwidth, current level and temperature.

The block diagram shown in Figure 2 represents the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter frequency and bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

FIGURE 2 - NOISE DENSITY MEASUREMENT METHOD

1N5518A, B thru 1N5546A, B

FIGURE 5 - ZENER DIODE CHARACTERISTICS AND SYMBOL IDENTIFICATION

1N5908

1N6373/ICTE-5, C MPTE-5, C thru 1N6389/ICTE-45, C MPTE-45, C

1N6267, A/1.5KE6.8, A thru 1N6303, A/1.5KE200, A

MOSORBS ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS

5.0-200 VOLT 1500 WATT PEAK POWER 5.0 WATTS STEADY STATE

ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR

Mosorb devices are designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are Motorola's exclusive, costeffective, highly reliable Surmetic axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

SPECIFICATION FEATURES

- Standard Voltage Range 5.0 to 200 V
- Peak Power 1500 Watts @ 1.0 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5.0 µA above 10 V
- Standard Back to Back Versions Available

NOTE:

 LEAD FINISH AND DIA UNCONTROLLED IN AREA "F".

1		MILLIN	IETERS	INCHES			
	DIM	MIN	MAX	MIN	MAX		
I	A	9.14	9.52	0.360	0.375		
[В	4.83	5.21	0.190	0.205		
[D	0.97	1.07	0.038	0.042		
ſ	F	-	1.27	-	0.050		
	K	27.94	-	1.100			

CASE 41-11

MAXIMUM RATINGS

Rating	Symbol	Value	Units
Peak Power Dissipation (1) @ T _L ≤ 25 ^o C	PPK	1500	Watts
Steady State Power Dissipation © T _L < 75°C, Lead Length = 3/8" Derated above T _L = 75°C	PD	5.0 50	Watts mW/ ^O C
Forward Surge Current (2) @ T _A = 25 ^o C	¹ FSM	200	Amps
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +175	၀

Lead Temperature not less than 1/16" from the case for 10 seconds: 230°C

MECHANICAL CHARACTERISTICS

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode

MOUNTING POSITION: Any

NOTES: 1. Nonrepetitive Current Pulse per Figure 4 and Derated above $T_{\Delta} = 25^{O}C \text{ per Figure 2}.$

 1/2 Square Wave (or equivalent), PW = 8.3 ms, Duty Cycle = 4 Pulses per minute maximum.

*ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted) $V_F\# = 3.5 \text{ V max}$, $I_F^{\bullet \bullet} = 100 \text{ A}$

						Clamping Voltage		
		down tage	Maximum Reverse	Maximum	Maximum Reverse Voltage	Peak Pulse Current @	Peak Pulse Current @	
Device	V _{BR} (Volts) Min	@ I _T (mA)	Stand-Off Voltage VRWM*** (Volts)	Reverse Leakage @ VRWM IR (μΑ)	@ IRSM† = 120 A (Clamping Voltage) VRSM (Volta)	I _{pp1+} = 30 A VC1 (Volts max)	I _{pp2†} = 60 A VC2 (Volts max)	
1N5908	6.0	1.0	5.0	300	8.5	7.6	8.0	

ELECTRICAL CHARACTERISTIC ($T_A = 25^{\circ}$ C unless otherwise noted) $V_F \# = 3.5 \text{ V max}$, $I_F^{**} = 100 \text{ A}$) (C suffix denotes standard back to back versions. Test both polarities)

				Maximum		Maximum	Maximum Reverse	Clamping	g Voltage
			down tage	Reverse Stand-Off	Maximum Reverse	Reverse Surge	Voltage @ IRSM†	Peak Pulse Current @	Peak Pulse Current @
JEDEC Device	Device	V _{BR} Volts Min	@ I _T (mA)	Voltage VRWM*** (Volts)	Leakage @ VRWM I _R (μΑ)	Current IRSM† (Amps)	(Clamping Voltage) VRSM(Volts)	I _{pp1†} = 1.0 A VC1 (Volts max)	i _{pp2†} = 10 A V _{C2} (Volts max)
1N6373	ICTE-5/MPTE-5	6.0	1.0	5.0	300	160	9.4	7.1	7.5
_	ICTE-5C/MPTE-5C	6.0	1.0	5.0	300	160	9.4	8.1	8.3
1N6374	ICTE-8/MPTE-8	9.4	1.0	8.0	25	100	15.0	11.3	11.5
1N6382	ICTE-8C/MPTE-8C	9.4	1.0	8.0	25	100	15.0	11.4	11.6
1N6375	ICTE-10/MPTE-10	11.7	1.0	10	2.0	90	16.7	13.7	14.1
1N6383	ICTE-10C/MPTE-10C	11.7	1.0	10	2.0	90	16.7	14.1	14.5
1N6376	ICTE-12/MPTE-12	14.1	1.0	12	2.0	70	21.2	16.1	16.5
1N6384	ICTE-12C/MPTE-12C	14.1	1.0	12	2.0	70	21.2	16.7	17.1
1N6377	ICTE-15/MPTE-15	17.6	1.0	15	2.0	60	25.0	20.1	20.6
1N6385	ICTE-15C/MPTE-15C	17.6	1.0	15	2.0	60	25.0	20.8	21.4
1N6378	ICTE-18/MPTE-18	21.2	1.0	18	2.0	50	30.0	24.2	25.2
1N6386	ICTE-18C/MPTE-18C	21.2	1.0	18	2.0	50	30.0	24.8	25.5
1N6379	ICTE-22/MPTE-22	25.9	1.0	22	2.0	40	37.5	29.8	32.0
1N6387	ICTE-22C/MPTE-22C	25.9	1.0	22	2.0	40	37.5	30.8	32.0
1N6380	ICTE-36/MPTE-26	42.4	1.0	36	2.0	23	65.2	50.6	54.3
1N6388	ICTE-36C/MPTE-36C	42.4	1.0	36	2.0	23	65.2	50.6	54.3
1N6381	ICTE-45/MPTE-45	52.9	1.0	45	2.0	19	78.9	63.3	70.0
1N6389	ICTE-45C/MPTE-45C	52.9	1.0	45	2.0	19	78.9	63.3	70.0

		Breakdown Voltage VBR @ IT			Reverse Rever	Maximum Reverse Leakage	erse Surge	Maximum Reverse Voltage @ IRSM (Clamping	Maximum Temperature	
JEDEC		VBR Volts		(mA)	Voltage VRWM	@ VRWM	Current IRSM+	Voltage) VRSM	Coefficient of VBR	
Device	Device	Min	Nom	Max	1	(Volts)	I _R (μA)	(Amps)	(Volts)	(%/°C)
1N6267	1.5KE6.8	6.12	6.8	7.48	10	5.50	1000	139	10.8	0.057
1N6267A	1.5KE6.8A	6.45	6.8	7.14	10	5.80	1000	143	10.5	0.057
1N6268	1.5KE7.5	6.75	7.5	8.25	10	6.05	500	128	11.7	0.061
1N6268A	1.5KE7.5A	7.13	7.5	7.88	10	6.40	500	132	11.3	0.061
1N6269	1.5KE8.2	7.38	8.2	9.02	10	6.63	200	120	12.5	0.065
1N6269A	1.5KE8.2A	7.79	8.2	8.61	10	7.02	200	124	12.1	0.065
1N6270	1.5KE9.1	8.19	9.1	10.0	1.0	7.37	50	109	13.8	0.068
1N6270A	1.5KE9.1A	8.65	9.1	9.55	1.0	7.78	50	112	13.4	0.068
1N6271	1.5KE10	9.00	10	11	1.0	8.10	10	100	15.0	0.073
1N6271A	1.5KE10A	9.50	10	10.5	1.0	8.55	10	103	14.5	0.073
1N6272	1.5KE11	9.90	11	12.1	1.0	8.92	5.0	93.0	16.2	0.075
1N6272A	1.5KE11A	10.5	11	11.6	1.0	9.40	5.0	96.0	15.6	0.075

*ELECTRICAL CHARACTERISTICS (Continued)

				n Voltage	•	Working Peak Reverse	Maximum Reverse	Maximum Reverse Surge	Maximum Reverse Voltage @ IRSM (Clampling	Maximum Temperature
JEDEC			V _{BR} Volts	T	@ l _T (mA)	Voltage VRWM	Leakage @ VRWM	Current IRSM†	Voltage) VRSM	Coefficient of VBR
Device	Device	Min	Nom	Max		(Volts)	I _R (μA)	(Amps)	(Volts)	(%/°C)
1N6273	1.5KE12	10.8	12	13.2	1.0	9.72	5.0	87.0	17.3	0.078
1N6273A	1.5KE12A	11.4	12	12.6	1.0	10.2	5.0	90.0	16.7	0.078
1N6274	1.5KE13	11.7	13	14.3	1.0	10.5	5.0	79.0	19.0	0.081
1N6274A	12.4	13	13.7	1.0	11.1	5.0	82.0	18.2	0.081	
1N6275	1.5KE15	13.5	15	16.5	1.0	12.1	5.0	68.0	22.0	0.084
1N6275A	1.5KE15A	14.3	15	15.8	1.0	12.8	5.0	71.0	21.2	0.084
N6276	1.5KE16	14.4	16	17.6	1.0	12.9	5.0	64.0	23.5	0.086
1N6276A	1.5KE16A	15.2	16	16.8	1.0	13.6	5.0	67.0	22.5	0.086
	ı	1					1			
1N6277	1.5KE18	16.2	18	19.8	1.0	14.5	5.0	56.5	26.5	0.088
1N6277A	1.5KE18A	17.1	18	18.9	1.0	15.3	5.0	59.5	25.2	0.088
1N6278	1.5KE20	18.0	20	22.0	1.0	16.2	5.0	51.5	29.1	0.090
1N6278A	1.5KE20A	19.0	20	21.0	1.0	17.1	5.0	54.0	27.7	0.090
1N6279	1.5KE22	19.8	22	24.2	1.0	17.8	5.0	47.0	31.9	0.092
1N6279A	1.5KE22A	20.9	22	23.1	1.0	18.8	5.0	49.0	30.6	0.092
1N6280	1.5KE24	21.6	24	26.4	1.0	19.4	5.0	43.0	34.7	0.094
1N6280A	1.5KE24A	22.8	24	25.2	1.0	20.5	5.0	45.0	33.2	0.094
1N6281				ì	1					
	1.5KE27	24.3	27	29.7	1.0	21.8	5.0	38.5	39.1	0.096
1N6281A	1.5KE27A	25.7	27	28.4	1.0	23.1	5.0	40.0	37.5	0.096
N6282	1.5KE30	27.0	30	33.0	1.0	24.3	5.0	34.5	43.5	0.097
N6282A	1.5KE30A	28.5	30	31.5	1.0	25.6	5.0	36.0	41.4	0.097
1N6283	1.5KE33	29.7	33	36.3	1.0	26.8	5.0	31.5	47.7	0.098
1N6283A	1.5KE33A	31.4	33	34.7	1.0	28.2	5.0	33.0	45.7	0.098
1 N6284	1.5KE36	32.4	36	39.6	1.0	29.1	5.0	29.0	52.0	0.099
1N6284A	1.5KE36A	34.2	36	37.8	1.0	30.8	5.0	30.0	49.9	0.099
1N6285	1.5KE39	35.1	39	42.9	1.0	31.6	5.0	26.5		
1N6285A	1.5KE39 1.5KE39A	37.1	39	41.0	1.0	33.3	5.0	28.0	56.4	0.100
1 N6286	1.5KE43	38.7	43	47.3	1.0	34.8	5.0	28.0	53.9	0.100
1N6286A	1.5KE43A	40.9	43	47.3	1.0	36.8	5.0		61.9	0.101
	i	1 1			1.0	36.8	5.0	25.3	59.3	0.101
1N6287	1.5KE47	42.3	47	51.7	1.0	38.1	5.0	22.2	67.8	0.101
1N6287A	1.5KE47A	44.7	47	49.4	1.0	40.2	5.0	23.2	64.8	0.101
1N6288	1.5KE51	45.9	51	56.1	1.0	41.3	5.0	20.4	73.5	0.102
1N6288A	1.5KE51A	48.5	51	53.6	1.0	43.6	5.0	21.4	70.1	0.102
1N6289	1.5KE56	50.4	56	61.6	1.0	45.4	5.0	18.6	80.5	0.103
1N6289A	1.5KE56	53.2	56	58.8	1.0	47.8	5.0	19.5	77.0	0.103
N6290	1.5KE62	55.8	62	68.2	1.0	50.2	5.0	16.9	89.0	0.103
N6290A	1.5KE62A	58.9	62	65.1	1.0	53.0	5.0	17.7	85.0	0.104
		1		!		ļ				
1N6291	1.5KE68	61.2	68	74.8	1.0	55.1	5.0	15.3	98.0	0.104
N6291A	1.5KE68A	64.6	68	71.4	1.0	58.1	5.0	16.3	92.0	0.104
N6292	1.5KE75	67.5	. 75	82.5	1.0	60.7	5.0	13.9	108.0	0.105
IN6292A	1.5KE75A	71.3	75	78.8	1.0	64.1	5.0	14.6	103.0	0.105
1N6293	1.5KE82	73.8	82	90.2	1.0	66.4	5.0	12.7	118.0	0.105
1N6293A	1.5KE82A	77.9	82	86.1	1.0	70.1	5.0	13.3	113.0	0.105
N6294	1.5KE91	81.9	91	100.0	1.0	73.7	5.0	11.4	131.0	0.106
N6294A	1.5KE91A	86.5	91	95.50	1.0	77.8	5.0	12.0	125.0	0.106
N6295	l	1 1		1	l	l .				
	1.5KE100	90.0	100	110.0	1.0	81.0	5.0	10.4	144.0	0.106
N6295A	1.5KE100A	95.0	100	105.0	1.0	85.5	5.0	11.0	137.0	0.106
N6296	1.5KE110	99.0	110	121.0	1.0	89.2	5.0	9.5	158.0	0.107
N6296A	1.5KE110A	105.0	110	116.0	1.0	94.0	5.0	9.9	152.0	0.107
N6297	1.5KE120	108.0	120	132.0	1.0	97.2	5.0	8.7	173.0	0.107
N6297A	1.5KE120A	114.0	120	126.0	1.0	102.0	5.0	9.1	165.0	0.107
N6298	1.5KE130	117.0	130	143.0	1.0	105.0	5.0	8.0	187.0	0.107
1N6298A	1.5KE130A	124.0	130	137.0	1.0	111.0	5.0	8.4	179.0	0.107
1 N6299	1.5KE150	135.0	150	165.0	1.0		5.0	1	ł	
N6299 N6299A					1.0	121.0	5.0	7.0	215.0	0.108
	1.5KE150A	143.0	150	158.0	1.0	128.0	5.0	7.2	207.0	0.108
N6300 N6300A	1.5KE160 1.5KE160A	144.0 152.0	160	176.0	1.0	130.0	5.0	6.5	230.0	0.108
	L L DK F Lb()A	1 1520	160	168.0	1.0	136.0	5.0	6.8	219.0	0.108

*ELECTRICAL CHARACTERISTICS (Continued)

			Breakdov VBR	vn Voltage	@ l _T	Working Peak Reverse Voltage	Maximum Reverse Leakage	Maximum Reverse Surge Current	Maximum Reverse Voltage @ IRSM (Clampling Voltage)	Maximum Temperature Coefficient
JEDEC			Volts		(mA)	VRWM	@ VRWM	^I RSM†	VRSM	of VBR
Device	Device	Min	Nom	Max		(Volts)	I _R (μA)	(Amps)	(Volts)	(%/°C)
1N6301	1.5KE170	153.0	170	187.0	1.0	138.0	5.0	6.2	244.0	0.108
1N6301A	1.5KE170A	162.0	170	179.0	1.0	145.0	5.0	6.4	234.0	0.108
1N6302	1.5KE180	162.0	180	198.0	1.0	146.0	5.0	5.8	258.0	0.108
1N6302A	1.5KE180A	171.0	180	189.0	1.0	154.0	5.0	6.1	246.0	0.108
1N6303 1N6303A	1.5KE200 1.5KE200A	180.0 190.0	200 200	220.0 210.0	1.0 1.0	162.0 171.0	5.0 5.0	5.2 5.5	287.0 274.0	0.108 0.108

[†]Surge Current Waveform per Figure 4 and Derate per Figure 2.

#Vr applies to Non-C suffix devices only.

To order clipper-bidirectional device in 1N6267 series, add a "C" suffix to 1.5KE device title, i.e., 1.5KE7.5CA.

FIGURE 3 — CAPACITANCE versus BREAKDOWN VOLTAGE

^{*}Indicates JEDEC Registered Data.

^{**1/2} Square Equivalent Sine Wave, PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute maximum.

^{***}A Transient Suppressor is normally selected according to the maximum reverse stand-off voltage (VRWM), which should be equal to or greater than the do or continuous peak operating voltage level.

C suffix denotes standard back-to-back versions. Test both polarities.

FIGURE 6 - DYNAMIC IMPEDANCE

APPLICATION NOTES

SPECIAL DEVICES

Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative.

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure A.

The inductive effects in the device are due to actual

turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure B. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

TYPICAL PROTECTION CIRCUIT

1N5913 A thru 1N5956 A

1.5 WATT SURMETIC 30 SILICON ZENER DIODES

- \ldots . A complete line of 1.5-Watt Zener Diodes offering the following advantages:
- Complete Voltage Range 3.3 to 200 Volts
- DO-41 Package Smaller than Conventional Metal Devices
- Metallurgically Bonded Construction
- JEDEC Registered Parameters
- Oxide Passivated Diode

1.5 WATTS ZENER DIODES

3.3 - 200 VOLTS

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 75 ⁰ C, Lead Length = 3/8"	PD	1.5	Watts
Derate above 75 ^o C		12	mW/ ^o C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-55 to +200	°C

^{*}Indicates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS

CASE: Double slug type, surmetic 30 void-free, transfer-molded, thermosetting-plastic MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.07	5.20	0.160	0.205		
В	2.04	2.71	0.080	0.107		
D	0.71	0.86	0.028	0.034		
F	_	1.27	-	0.050		
K	27.94	_	1.100	_		

CASE 59-03 DO-41

NOTES:

1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.

- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

*ELECTRICAL CHARACTERISTICS (T_L = 30°C unless otherwise noted. V_F= 1.5 Volts Max @ I_F = 200 mAdc for all types.)

	Nominal	T	Max	Zener Impedan	ce	1		Maximum DC
Motorola Type	Zener Voltage	Test Current				Max. R Leakage	leverse Current	Zener Current
Number (Note 1)	Vz ^{@ I} ZT Volts (Note 2)	IZT mA	ZZT @ IZT Ohms	Z _{ZK} Ohms	^{@ I} ZK mA	I _R μΑ	® VR Volts	IZM mAdc
1N5913A	3.3	113.6	10	500	1.0	100	1.0	454
1N5914A	3.6	104.2	9.0	500	1.0	75	1.0	416
1N5915A	3.9	96.1	7.5	500	1.0	25	1.0	384
1N5916A	4.3	87.2	6.0	500	1.0	5.0	1.0	348
1N5917A	4.7	79.8	5.0	500	1.0	5.0	1.5	319
1N5918A	5.1	73.5	4.0	350	1.0	5.0	2.0	294
1N5919A	5.6	66.9	2.0	250	1.0	5.0	3.0	267
1N5920A	6.2	60.5	2.0	200	1.0	5.0	4.0	241
1N5921A	6.8	55.1	2.5	200	1.0	5.0	5.2	220
1N5922A	7.5	50.0	3.0	400	0.5	5.0	6.8	200
1N5923A	8.2	45.7	3.5	400	0.5	5.0	6.5	182
1N5924A	9.1	41.2	4.0	500	0.5	5.0	7.0	164
1N5925A	10	37.5	4.5	500	0.25	5.0	8.0	150
1N5926A	11	34.1	5.5	550	0.25	1.0	8.4	136
1N5927A	12	31.2	6.5	550	0.25	1.0	9.1	125
1N5928A	13	28.8	7.0	550	0.25	1.0	9.9	115
1N5929A	15	25.0	9.0	600	0.25	1.0	11.4	100
1N5930A	16	23.4	10	600	0.25	1.0	12.2	93
1N5931A	18	20.8	12	650	0.25	1.0	13.7	83
1N5932A	20	18.7	14	650	0.25	1.0	15.2	75
1N5933A	22	17.0	17.5	650	0.25	1.0	16.7	68
1N5934A	24	15.6	19	700	0.25	1.8	18.2	62
1N5935A	27	13.9	23	700	0.25	1.0	20.6	55
1N5936A	30	12.5	26	750	0.25	1.0	22.8	50
1N5937A	33	11.4	33	800	0.25	1.0	25.1	45
1N5938A	36	10.4	38	850	0.25	1.0	27.4	41
1N5939A	39	9.6	45	900	0.25	1.0	29.7	38
1N5940A	43	8.7	53	950	0.25	1.0	32.7	34
1N5941A	47	8.0	67	1000	0.25	1.0	35.8	31
1N5942A	51	7.3	70	1100	0.25	1.0	38.8	29
1N5943A	56	6.7	86	1300	0.25	1.0	42.6	26
1N5944A	62	6.0	100	1500	0.25	1.0	47.1	24
1N5945A	68	5.5	120	1700	0.25	1.0	51.7	22
1N5946A	75	5.0	140	2000	0.25	1.0	56.0	20
1N5947A	82	4.6	160	2500	0.25	1.0	62.2	18
1N5948A	91	4.1	200	3000	0.25	1.0	69.2	16
1N5949A	100	3.7	250	3100	0.25	1.0	76.0	15
1N5950A	110	3.4	300	4000	0.25	1.0	83.6	13
1N5951A	120	3.1	380	4500	0.25	1.0	91.2	12
1N5952A	130	2.9	450	5000	0.25	1.0	98.8	11
1N5953A	150	2.5	600	6000	0.25	1.0	114	10
1N5954A	160	2.3	700	6500	0.25	1.0	121.6	9.0
1N5955A	180	2.1	900	7000	0.25	1.0	136.8	8.0
1N5956A	200	1.9	1200	8000	0.25	1.0	152	7.0
					L	L	L	L

^{*}Indicates JEDEC Registered Data.

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation — Device tolerances of \pm 10% are indicated by an "A" suffix, \pm 5% by a "B" suffix, \pm 2% by a "C" suffix, \pm 1% by a "D" suffix.

Non-Standard voltage designation — To designate units with zener voltages other than those assigned the Motorola type number should be used.

EXAMPLE:

NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE:

- (a) Nominal zener voltages between those shown.
- (b) Matched sets: (Standard Tolerances are ±5.0%, ±2.0%, ±1.0%) a. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
 - b. Two or more units matched to one another with any specified tolerance.

TYPICAL CHARACTERISTICS

TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range)

ZENER IMPEDANCE

1N5985A thru 1N6025A

500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

. . . A complete line of 500 mW Zener Diodes offering the following advantages:

- Complete Voltage Range 2.4 to 110 Volts
- DO-35 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- JEDEC Registered
- Oxide Passivated Die

500 MILLIWATT GLASS ZENER DIODES 2.4-110 VOLTS

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L ≤ 50 ⁰ C, Lead Length = 3/8"	PD	500	mW
Derate above 50°C		3.33	mW/ ^O C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-55 to +200	°C

^{*}Indicates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C. 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads. POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any

- 1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF B.
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- 3. POLARITY DENOTED BY CATHODE BAND.
- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	3.05	5.08	0.120	0.200	
В	1.52	2.29	0.060	0.090	
D	0.46	0.56	0.018	0.022	
F	-	1.27	-	0.050	
К	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply. CASE 299-02 DO-204AH (DO-35)

*ELECTRICAL CHARACTERISTICS (T₁ = 30°C unless otherwise noted.) (V_F = 1.5 Volts Max @ I_F = 100 mAdc for all types.)

			Max. Z	Zener Impe	dance (No	ote 4)	Max	. Reverse l	Leakage Cu	rrent	
Motorola	Nominal Zener Voltage	Test		D IZT	Z _{ZK} (^{@ I} ZK ⁼ 0.25 mA	† Γ			/R olts	Max. DO Zener
Type Number (Note 1)	VZ @ IZT Volts (Note 2)	Current IZT mA	B Suffix	A, Non- Suffix	B Suffix	A, Non- Suffix	B Suffix	A, Non- Suffix	B Suffix	A, Non- Suffix	Current IZM (Note 3
1N5985A	2.4	5.0	100	110	1800	2000	100	100	1.0	0.5	208
1N5986A	2.7	5.0	100	110	1900	2200	75	100	1.0	0.5	185
1N5987A	3.0	5.0	95	100	2000	2300	50	100	1.0	0.5	167
1N5988A	3.3	5.0	95	100	2200	2400	25	75	1.0	0.5	152
1N5989A	3.6	5.0	90	95	2300	2500	15	50	1.0	0.5	139
1N5990A	3.9	5.0	90	95	2400	2500	10	25	1.0	1.0	128
1N5991A	4.3	5.0	88	90	2500	2500	5.0	15	1.0	1.0	116
1N5992A	4.7	5.0	70	90	2200	2500	3.0	10	1.5	1.0	106
1N5993A	5.1	5.0	50	88	2050	2500	2.0	5.0	2.0	1.0	98
1N5994A	5.6	5.0	25	70	1800	2200	2.0	3.0	3.0	1.5	89
1N5995A	6.2	5.0	10	50	1300	2050	1.0	2.0	4.0	2.0	81
1N5996A	6.8	5.0	8.0	25	750	1800	1.0	2.0	5.2	3.0	74
1N5997A	7.5	5.0	7.0	10	600	1300	0.5	1.0	6.0	4.0	67
1N5998A	8.2	5.0	7.0	15	600	750	0.5	1.0	6.5	5.2	61
1N5999A	9.1	5.0	10	18	600	600	0.1	0.5	7.0	6.0	55
1N6000A	10	5.0	15	22	600	600	0.1	0.5	8.0	6.5	50
1N6001A	11	5.0	18	25	600	600	0.1	0.1	8.4	7.0	45
1N6002A	12	5.0	22	32	600	600	0.1	0.1	9.1	8.0	42
1N6003A	13	5.0	25	36	600	600	0.1	0.1	9.9	8.4	38
1N6004A	15	5.0	32	42	600	600	0.1	0.1	11	9.1	33
1N6005A	16	5.0	36	48	600	600	0.1	0.1	12	9.9	31
1N6006A	18	5.0	42	55	600	600	0.1	0.1	14	11	28
1N6007A	20	5.0	48	62	600	600	0.1	0.1	15	12	25
1N6008A	22	5.0	55	70	600	600	0.1	0.1	17	14	23
1N6009A	24	5.0	62	78	600	600	0.1	0.1	18	15	21
1N6010A	27	5.0	70	88	600	700	0.1	0.1	21	17	19
1N6011A	30	5.0	78	95	600	700	0.1	Ó.1	23	18	17
1N6012A	33	5.0	88	110	700	800	0.1	0.1	25	21	15
1N6013A	36	5.0	95	130	700	900	0.1	0.1	27	23	14
1N6014A	39	2.0	130	170	800	1000	0.1	0.1	30	25	13
1N6015A	43	2.0	150	180	900	1100	0.1	0.1	33	27	12
1N6016A	47	2.0	170	200	1000	1300	0.1	0.1	36	30	11
1N6017A	51	2.0	180	225	1300	1400	0.1	0.1	39	33	9.8
1N6018A	56	2.0	200	240	1400	1600	0.1	0.1	43	36	8.9
1N6019A	62	2.0	225	265	1400	1700	0.1	0.1	47	39	8.0
1N6020A	68	2.0	240	280	1600	2000	0.1	0.1	52	43	7.4
1N6021A	75	2.0	265	300	1700	2300	0.1	0.1	56	47	6.7
1N6022A	82	2.0	280	350	2000	2600	0.1	0.1	62	52	6.1
1N6023A	91	2.0	300	400	2300	3000	0.1	0.1	69	56	5.5
1N6024A	100	1.0	500	800	2600	4000	0.1	0.1	76	62	5.0
1N6025A	110	1.0	650	950	3000	4500	0.1	0.1	84	69	4.5

^{*}Indicates JEDEC Registered Data.

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation - Device tolerances of ±10% are indicated by an "A" suffix, $\pm 5\%$ by a "B" suffix, $\pm 2\%$ by a "C" suffix, $\pm 1\%$ by a "D" suffix.

Non-Standard voltage designation - To designate units with zener voltages other than those assigned the Motorola type number should be used.

NOTE 2 – SPECIAL SELECTIONS AVAILABLE INCLUDE: $^{(\pm\%)}$

- (a) Nominal Zener voltages between those shown.
- (b) Matched sets: (Standard Tolerances are ±5.0%, ±2.0%, ±1.0%)
 - a. Two or more units for series connection with specified

tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability

b. Two or more units matched to one another with any specified tolerance.

NOTE 3:

This data was calculated using nominal voltages. In order to determine the maximum current handling capability on a worst case basis the following formula must be used:

 I_{zm} (worst case) = $\frac{330 \dots}{V_z(nom) + tolerance}$ 500 mW

NOTE 4:

ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $I_7(ac) = 0.1 I_7(dc)$ with the ac frequency = 1.0 kHz.

TYPICAL CHARACTERISTICS

TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range)

FIGURE 3 -- EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE

1N6267,A thru 1N6303,A 1N6373 thru 1N6389 ICTE-5,C thru ICTE-45,C See Page 4-74

MCL1300 thru MCI 1304

CURRENT LIMITING DIODES

CURRENT LIMITING DIODES

Field-effect current limiting diodes designed for applications requiring a current reference or a constant current over a specified voltage range.

CURRENT-LIMITER CHARACTERISTICS AND SYMBOL IDENTIFICATION

MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)

Junction and Storage Temperature: -65°C to +200°C

Peak Operating Voltage: See Table

ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)

	Nominal Pinch-Off Current Note 1 Ip (mA)	Tol. (mA)	Test Volt. Note 2 V _T (Volts)	Limiter Imped. Note 3 Z _T (min) (Megohms)	Knee Imped. at 6 V Note 4 Z _K (min) (Megohms)	Limiting Voltage Note 5 V _L (max) (Volts)	Peak Operating Voltage Note 6 VPO (Volts)
MCL1300	0.5	± 0.3	25	4.000	0.500	1.0	75
MCL1301	1.0	± 0.6	25	0.800	0.200	1.5	75
MCL1302	2.0	± 0.6	25	0.400	0.100	2.0	75
MCL1303	3.0	± 0.6	25	0.300	0.050	2.0	75
MCL1304	4.0	± 0.6	25	0.250	0.025	2.5	75
					ľ		l

These specifications are preliminary. Selections may be made to obtain nominal currents between those shown, as well as tighter tolerance units.

SYMBOL DEFINITIONS:

NOTE 1 Ip - The pinch-off current is the guaranteed current at a specified V_T. Ip is specified as a nominal with a tolerance.

NOTE 2 VT - The test voltage for measurement of Ip.

Z_T - The impedance at the test voltage, V_T, specified. To provide the most constant current Z_T should be as high as possible; thus a minimum Z_T is specified. Z_T is derived from the 90 cycle per second current which results when an AC voltage having an RMS value equal to 10% of the test voltage (V_T) is superimposed on V_T.

NOTE 4 Z_K - Knee impedance is specified as a minimum also since again the highest value is desired. V_K is established as 6.0 V for convenience

NOTE 5 V_L - Limiting Voltage. This specification is provided with Z_K to indicate the sharp knee of the device. The specification is analogous to I_R and Z_K of a zener diode. V_L a maximum specification is measured at 80% on I_P tolerance.

NOTE 6 VpO - The peak-operating voltage is provided and indicates the maximum voltage to be applied to the device. The specification is necessary since the device is either power limited or breakdown limited beyond this specified voltage.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	5.84	7.62	0.230	0.300		
В	2.16	2.72	0.085	0.107		
D	0.46	0.56	0.018	0.022		
F	-	1.27	-	0.050		
K	25.40	38.10	1.000	1.500		

All JEDEC dimensions and notes apply

CASE 51 DO-7

NOTES:

1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.

2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 2.4 to 110 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die
- Available in 8 mm Tape and Reel
 T1 Cathode Facing Sprocket Holes
 T2 Anode Facing Sprocket Holes

MLL746 thru MLL759

MLL957A thru MLL986A

MLL4370 thru MLL4372

LEADLESS
GLASS ZENER DIODES

500 MILLIWATTS 2.4-110 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A ≤ 50°C Derate above T _A = 50°C	PD	500 3.3	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily solderable POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_F = 1.5 \text{ V}$ Max @ 200 mA for all types)

	Nominal	Test				Maximum Revers	e Leakage Current
Type Number (Note 1)	Zener Voltage VZ @ IZT (Notes 1,2,3) Volts	Current IZT (Note 2) mA	Maximum Zener Impedance Z _{ZT} @ I _{ZT} (Note 4) Ohms	Maximum DC Zener Current IZM mA		T _A = 25°C I _R @ V _R = 1 V μA	T _A = 150°C I _R @ V _R = 1 V μA
MLL4370	2.4	20	30	150	190	100	200
MLL4371	2.7	20	30	135	165	75	150
MLL4372	3.0	20	29	120	150	50	100
MLL746	3.3	20	28	110	135	10	30
MLL747	3.6	20	24	100	125	10	30
MLL748	3.9	20	23	95	115	10	30
MLL749	4.3	20	22	85	105	2	30
MLL750	4.7	20	19	75	95	2	30
MLL751	5.1	20	17	70	85	1	20
MLL752	5.6	20	11	65	80	1	20
MLL753	6.2	20	7	60	70	0.1	20
MLL754	6.8	20	5	55	65	0.1	20
MLL755	7.5	20	6	50	60	0.1	20
MLL756	8.2	20	8	45	55	0.1	20
MLL757	9.1	20	10	40	50	0.1	20
MLL758	10	20	17	35	45	0.1	20
MLL759	12	20	30	30	35	0.1	20

	Nominal Zener Voltage	Test Current	(Zener Imped Note 4)	ance		imum	Maximum R	everse Cur	rent
Type Number (Note 1)	V _Z (Notes 1,2,3) Volts	I _{ZT} (Note 2) mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	12	er Current ZM nA	I _R Maximum μA	1	tage Vdc /R 10%
MLL957A	6.8	18.5	4.5	700	1.0	47	61	150	5.2	4.9
MLL958A	7.5	16.5	5.5	700	0.5	42	55	75	5.7	5.4
MLL959A	8.2	15	6.5	700	05	38	50	50	6.2	5.9
MLL960A	9.1	14	7.5	700	0.5	35	45	25	6.9	6.6
MLL961A	10	12.5	8.5	700	0.25	32	41	10	7.6	7.2
MLL962A	11	11.5	9.5	700	0.25	28	37	5	8.4	8.0
MLL963A	12	10.5	11.5	700	0.25	26	34	5	9.1	8.6
MLL964A	13	9.5	13	700	0.25	24	32	5	9.9	9.4
MLL965A	15	8.5	16	700	0.25	21	27	5	11.4	10.8
MLL966A	16	7.8	17	700	0.25	19	37	5	12.2	11.5
MLL967A	18	7.0	21	750	0.25	17	23	5	13.7	13.0
MLL968A	20	6.2	25	750	0.25	15	20	5	15.2	14.4
MLL969A	22	5.6	29	750	0.25	14	18	5	16.7	15.8
MLL970A	24	5.2	33	750	0.25	13	17	5	18.2	17.3
MLL971A	27	4.6	41	750	0.25	11	15	5	20.6	19.4
MLL972A	30	4.2	49	1000	0.25	10	13	5	22.8	21.6
MLL973A	33	3.8	58	1000	0.25	9.2	12	5	25.1	23.8
MLL974A	36	3.4	70	1000	0.25	8.5	11	5	27.4	25.9
MLL975A	39	3.2	80	1000	0.25	7.8	10	5	29.7	28.1
MLL976A	43	3.0	93	1500	0.25	7.0	9.6	5	32.7	31.0
MLL977A	47	2.7	105	1500	0.25	6.4	8.8	5	35.8	33.8
MLL978A	51	2.5	125	1500	0.25	5.9	8.1	5	38.8	36.7
MLL979A	56	2.2	150	2000	0.25	5.4	7.4	5	42.6	40.3
MLL980A	62	2.0	185	2000	0.25	4.9	6.7	5	47.1	44.6
MLL981A	68	1.8	230	2000	0.25	4.5	6.1	5	51.7	49.0
MLL982A	75	1.7	270	2000	0.25	1.0	5.5	5	56.0	54.0
MLL983A	82	1.5	330	3000	0.25	3.7	5.0	5	62.2	59.0
MLL984A	91	1.4	400	3000	0.25	3.3	4.5	5	69.2	65.5
MLL985A	100	1.3	500	3000	0.25	3.0	4.5	5	76	72
MLL986A	110	1.1	750	4000	0.25	2.7	4.1	5	83.6	79.2

NOTE 1. Tolerance Designation — The type numbers shown have tolerance designations as follows:

MLL4370 series: \pm 10%, suffix A for \pm 5% units. MLL746 series: \pm 10%, suffix A for \pm 5% units. MLL957 series: suffix A for \pm 10% units, suffix B for \pm 5% units.

NOTE 2. Special Selections† Available Include:

- 1. Nominal zener voltages between those shown.
- Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible awell as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
 - 3. Nominal voltages at non-standard test currents.

NOTE 3. Zener Voltage (VZ) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of 30° C $\pm\,1^{\circ}$ C.

NOTE 4. Zener Impedance (Z_Z) Derivation — Z_{ZT} is measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $I_Z(ac) = 0.1 \times I_Z(dc)$ with the ac frequency = 1.0 kHz.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Case Temperature, T_C, should be determined from:

$$T_C = \theta_{CA}P_D + T_A.$$

 θ_{CA} is the case-to-ambient thermal resisstance (°C/W) and P_D is the power dissipation. The value for θ_{CA} will vary and depends on the device mounting method. θ_{CA} is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

 ΔT_{JC} is the increase in junction temperature above the case temperature and may be found by using:

$$\Delta T_{JC} = \theta_{JC} P_{D}$$

For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of $T_J(\Delta T_J)$ may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta_{\mbox{\scriptsize VZ}},$ the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 1 — TYPICAL LEAKAGE CURRENT

[†]For more information on special selections contact your nearest Motorola representative.

FIGURE 2 — TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

This graph represents 90 percentil data points.
For worst-case design characteristics, multiply surge power by 2/3.

FIGURE 8 - TYPICAL NOISE DENSITY 10 000 IZ = 250 μA 5000 TA = 25°C 2000 (€ 1000 NOISE DENSITY (µV.\. 500 200 100 50 20 10 Ň 5.0 1.0 20 VZ, ZENER VOLTAGE (VOLTS)

noise density can be calculated from the formula shown.

FIGURE 10 — TYPICAL FORWARD CHARACTERISTICS 1000 Minimum 500 Maximum FORWARD CURRENT (mA) 100 50 20 10 5.0 ŭ. N 7 0.8 10 VF, FORWARD VOLTAGE (VOLTS)

LOW NOISE LEVEL SILICON PASSIVATED ZENER DIODES

... designed for 250 mW applications requiring low leakage, low impedance, and low noise.

- Leadless Package for Surface Mount Technology
- Voltage Range from 1.8 to 100 Volts
- First Leadless Zener Diode Series to Specify Noise 50% Lower than Conventional Diffused Zeners
- Zener Impedance and Zener Voltage Specified for Low-Level Operation at I_{ZT} = 250 μA
- \bullet Low Leakage Current IR from 0.01 to 10 μA over Voltage Range
- Available in 8mm Tape and Reel
 T1 Cathode Facing Sprocket Holes
 T2 Anode Facing Sprocket Holes

SILICON LEADLESS GLASS ZENER DIODES

(±5.0% TOLERANCE)

250 MILLIWATTS 1.8-100 VOLTS

SILICON NITRIDE PASSIVATED JUNCTION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1.43	mW mW/°C
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +200	°C

MECHANICAL CHARACTERISTICS

CASE: Double slug, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

230°C for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily

solderable

POLARITY: Cathode indicated by color band. When operated in the zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any

DIM	MILLIN	ETERS	INCHES			
	MIN	MAX	MIN	MAX		
Α	3.30	3.70	0.130	0.146		
В	1.60	1.70	0.063	0.067		
R	2.49	2.59	0.098	0.102		
U	0.41	0.55	0.016	0.022		

CASE 362-01

4

MLL4099 thru MLL4135, MLL4614 thru MLL4627

ELECTRICAL CHARACTERISTICS

(At 25°C Ambient temperature unless otherwise specified) I_{7T} = 250 μA and V_F = 1.0 V max @ I_F = 200 mA on all Types

Type Number (Note 1)	Zener Voltage V _Z (Note 1) (Volts)	Max Zener Impedance ZZT (Note 2) (Ohms)	Max Reverse Current I _R (μA)	(Note 3)	Test Voltage V _R (Volts)	At I _{ZT} = 250 μA N _D (Fig 1) (micro-volts per Square Root Cycle)	Max Zener Current IZM (Note 4) (mA)
MLL4614	1.8	1200	7.5		1.0	1.0	120
MLL4615	2.0	1250	5.0		1.0	1.0	110
MLL4616	2.2	1300	4.0	- 1	1.0	1.0	100
MLL4617	2.4	1400	2.0	1	1.0	1.0	95
MLL4618	2.7	1500	1.0	1	1.0	1.0	90
MLL4619	3.0	1600	0.8		1.0	1.0	85
MLL4620	3.3	1650	7.5		1.5	1.0	80
MLL4621	3.6	1700	7.5		2.0	1.0	75
MLL4622	3.9	1650	5.0		2.0	1.0	70
MLL4623	4.3	1600	4.0		2.0	1.0	65
MLL4624	4.7	1550	10		3.0	1.0	60
MLL4625	5.1	1500	10		3.0	2.0	55
MLL4626	5.6	1400	10	ŀ	4.0	4.0	50
MLL4627	6.2	1200	10		5.0	5.0	45
MLL4099	6.8	200	10		5.2	40	35
MLL4100	7.5	200	10		5.7	40	31.8
MLL4101	8.2	200	1.0		6.3	40	29.0
MLL4102	8.7	200	1.0	ł	6.7	40	27.4
MLL4103	9.1	200	1.0		7.0	40	26.2
MLL4104	10	200	1.0	- 1	7.6	40	24.8
MLL4105	11	200	0.05		8.5	40	21.6
MLL4106	12	200	0.05		9.2	40	20.4
MLL4107	13	200	0.05		9.9	40	19.0
MLL4108	14	200	0.05		10.7	40	17.5
MLL4109	15	100	0.05		11.4	40	16.3
MLL4110	16	100	0.05		12.2	40	15.4
MLL4111	17	100	0.05		13.0	40	14.5
MLL4112	18	100	0.05		13.7	40	13.2
MLL4113	19	150	0.05		14.5	40	12.5
MLL4114	20	150	0.01		15.2	40	11.9
MLL4115	22	150	0.01		16.8	40	10.8
MLL4116	24	150	0.01	1	18.3	40	9.9
MLL4117	25	150	0.01		19.0	40	9.5
MLL4118	27	150	0.01		20.5	40	8.8
MLL4119	28	200	0.01		21.3	40	8.5
MLL4120	30	200	0.01		22.8	40	7.9
MLL4121	33	200	0.01		25.1	40	7.2
MLL4122	36	200	0.01		27.4	40	6.6
MLL4123	39	200	0.01		29.7	40	6.1
MLL4124	43	250	0.01		32.7	40	5.5
MLL4125	47	250	0.01		35.8	40	5.1
MLL4126	51	300	0.01		38.8	40	4.6
MLL4127	56	300	0.01		42.6	40	4.2
MLL4128	60	400	0.01		45.6	40	4.0
MLL4129	62	500	0.01		47.1 51.7	40	3.8
MLL4130	68 75	700	0.01		51.7	40	3.5
MLL4131	75 82	700	0.01		57.0	40	3.1
MLL4132	82 87	800	0.01		62.4	40 40	2.9
MLL4133	87 91	1000	0.01		66.2 69.2	40	2.7 2.6
MLL4134 MLL4135	100	1200 1500	0.01		76.0	40	2.6

NOTE 1: TOLERANCE AND VOLTAGE DESIGNATION

The type numbers shown have a standard tolerance of $\pm\,5.0\%$ on the nominal zener voltage.

NOTE 2: ZENER IMPEDANCE (ZZT) DERIVATION

The zener impedance is derived from the 1000 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT}) is superimposed on I_{ZT} .

NOTE 3: REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed and are measured at $\mbox{\ensuremath{V_{R}}}$ as shown on the table.

NOTE 4: MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on maximum zener voltage of the individual units.

MLL4099 thru MLL4135. MLL4614 thru MLL4627

ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. This microplasma noise is generally considered "white" noise with equal amplitude for all frequencies from about zero cycles to approximately 200,000 cycles. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes. The rating of microvolts

RMS per square root cycle enables calculation of the maximum RMS noise for any bandwidth.

Noise density decreases as zener current increases. This can be seen by the graph in Figure 2 where a typical noise density is plotted as a function of zener current.

The junction temperature will also change the zener noise levels. Thus the noise rating must indicate bandwidth, current level and temperature.

The block diagram given in Figure 1 shows the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

FIGURE 1 — NOISE DENSITY MEASUREMENT METHOD

MLL4099 thru MLL4135, MLL4614 thru MLL4627

5.0 10 20 V_Z, ZENER VOLTAGE (VOLTS)

50

C, CAPACITANCE (pF)

5.0

2.0

1.0

1.0

2.0

FIGURE 3 — TYPICAL CAPACITANCE

1000 500 MINIMUM MAXIMUM 200 IF, FORWARD CURRENT (mA) 100 50 20 10 5.0 2.0

0.7 VF, FORWARD VOLTAGE (VOLTS)

0.6

1.0

FIGURE 4 — TYPICAL FORWARD CHARACTERISTICS

4-95

MLL4678 thru MLL4717

250 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

Low level nitride passivated zener diodes for applications requiring extremely low operating currents, low leakage, and sharp breakdown voltage.

- Complete Voltage Range 1.8 to 43 Volts
- Zener Voltage Specified @ I_{ZT} = 50 μA
- Leadless Package for Surface Mount Technology
- Maximum Delta V_Z Given from 10 to 100 μA
- Available in 8 mm Tape and Reel
 T1 Cathode Facing Sprocket Holes
 T2 Anode Facing Sprocket Holes

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above T _A = 50°C	PD	250 1.67	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +175	°C

MECHANICAL CHARACTERISTICS

CASE: Double slug, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily

solderable

POLARITY: Cathode end indicated by color band. When operated in zener mode, the cathode will be positive with respect to

anode

MOUNTING POSITION: Any

FIGURE 1 — POWER TEMPERATURE DERATING CURVE

LEADLESS GLASS ZENER DIODES

250 MILLIWATTS

DIM	MILLIN	ETERS	INCHES			
	MIN	MAX	MIN	MAX		
Α	3.30	3.70	0.130	0.146		
В	1.60	1.70	0.063	0.067		
R	2.49	2.59	0.098	0.102		
U	0.41	0.55	0.016	0.022		

CASE 362-01

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_F = 1.5 \text{ V max at I}_F = 100 \text{ mA for all types}$)

Type Number	v	Zener Voltage Z @ I _{ZT} = 50 μΑ Volts	1	Maximum Reverse Current I _R µA	Test Voltage V _R Volts	Maximum Zener Current I _{ZM} mA	Maximum Voltage Change ΔV _Z Volts	
(Note 1)	Nom (Note 1)	Min	Max	(Note		(Note 2)	(Note 4)	
MLL4678	1.8	1.710	1.890	7.5	1.0	120	0.70	
MLL4679	2.0	1.900	2.100	5.0	1.0	110	0.70	
MLL4680	2.2	2.090	2.310	4.0	1.0	100	0.75	
MLL4681	2.4	2.280	2.520	2.0	1.0	95	0.80	
MLL4682	2.7	2.565	2.835	1.0	1.0	90	0.85	
MLL4683	3.0	2.850	3.150	0.8	1.0	85	0.90	
MLL4684	3.3	3.135	3.465	7.5	1.5	80	0.95	
MLL4685	3.6	3.420	3.780	7.5	2.0	75	0.95	
MLL4686	3.9	3.705	4.095	5.0	2.0	70	0.97	
MLL4687	4.3	4.085	4.515	4.0	2.0	65	0.99	
MLL4688	4.7	4.465	4.935	10	3.0	60	0.99	
MLL4689	5.1	4.845	5.355	10	3.0	55	0.97	
MLL4690	5.6	5.320	5.880	10	4.0	50	0.96	
MLL4691	6.2	5.890	6.510	10	5.0	45	0.95	
MLL4692	6.8	6.460	7.140	10	5.1	35	0.90	
MLL4693	7.5	7.125	7.875	10	5.7	31.8	0.75	
MLL4694	8.2	7.790	8.610	1.0	6.2	29.0	0.50	
MLL4695	8.7	8.265	9.135	1.0	6.6	27.4	0.10	
MLL4696	9.1	8.645	9.555	1.0	6.9	26.2	0.08	
MLL4697	10	9.500	10.50	1.0	7.6	24.8	0.10	
MLL4698	11	10.45	11.55	0.05	8.4	21.6	0.11	
MLL4699	12	11.40	12.60	0.05	9.1	20.4	0.12	
MLL4700	13	12.35	13.65	0.05	9.8	19.0	0.13	
MLL4701	14	13.30	14.70	0.05	10.6	17.5	0.14	
MLL4702	15	14.25	15.75	0.05	11.4	16.3	0.15	
MLL4703	16	15.20	16.80	0.05	12.1	15.4	0.16	
MLL4704	17	16.15	17.85	0.05	12.9	14.5	0.17	
MLL4705	18	17.10	18.90	0.05	13.6	13.2	0.18	
MLL4706	19	18.05	19.95	0.05	14.4	12.5	0.19	
MLL4707	20	19.00	21.00	0.01	15.2	11.9	0.20	
MLL4708	22	20.90	23.10	0.01	16.7	10.8	0.22	
MLL4709	24	22.80	25.20	0.01	18.2	9.9	0.24	
MLL4710	25	23.75	26.25	0.01	19.0	9.5	0.25	
MLL4711	27	25.65	28.35	0.01	20.4	8.8	0.27	
MLL4712	28	26.60	29.40	0.01	21.2	8.5	0.28	
MLL4713	30	28.50	31.50	0.01	22.8	7.9	0.30	
MLL4714	33	31.35	34.65	0.01	25.0	7.2	0.33	
MLL4715	36	34.20	37.80	0.01	27.3	6.6	0.36	
MLL4716	39	37.05	40.95	0.01	29.6	6.1	0.39	
MLL4717	43	40.85	45.15	0.01	32.6	5.5	0.43	

NOTES: 1. TOLERANCE AND VOLTAGE DESIGNATION (VZ)

The type numbers shown have a standard tolerance of $\pm 5\%$ on the nominal zener voltage.

2. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum Zener current ratings are based on maximum Zener voltage of the individual units.

3. REVERSE LEAKAGE CURRENT (IR)

Reverse leakage currents are guaranteed and are measured at V_R as shown on the table.

4. MAXIMUM VOLTAGE CHANGE (ΔVZ)

Voltage change is equal to the difference between Vz at 100 μ A and Vz at 10 μ A.

MLL4728 thru MLL4764

1.0 WATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 3.3 to 100 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die
- Available in 12 mm Tape and Reel
 T1 Cathode Facing Sprocket Holes
 T2 Anode Facing Sprocket Holes

LEADLESS GLASS ZENER DIODES

1.0 WATT 3.3-100 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
DC Power Dissipation @ T _A ≤ 50°C Derate above T _A = 50°C	PD	1.0 6.67	W mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 230°C, for 10

seconds

FINISH: All external surfaces are corrosion resistant and readily solderable

POLARITY: Cathode indicated by color band. When operated in zener mode,

cathode will be positive with respect to anode

MOUNTING POSITION: Any

CASE 362B-01

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}\text{C}$ unless otherwise noted. Based on dc measurements at thermal equilibrium; case temperature maintained at $30\pm2^{\circ}\text{C}$. V_F = 1.2 V max @ I_F = 200 mA for all types.)

	Nominal Zener Voltage						Current	Surge Current @	
Type No. (Note 1)	V _Z @ I _{ZT} Volts (Notes 2 and 3)	Current IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	I _R μΑ Μαχ	V _R Volts	T _A = 25°C i _r – mA (Note 5)	
MLL4728	3.3	76	10	400	1.0	100	1.0	1380	
MLL4729	3.6	69	10	400	1.0	100	1.0	1260	
MLL4730	3.9	64	9.0	400	1.0	50	1.0	1190	
MLL4731	4.3	58	9.0	400	1.0	10	1.0	1070	
MLL4732	4.7	53	8.0	500	1.0	10	1.0	970	
MLL4733	5.1	49	7.0	550	1.0	10	1.0	890	
MLL4734	5.6	45	5.0	600	1.0	10	2.0	810	
MLL4735	6.2	41	2.0	700	1.0	10	3.0	730	
MLL4736	6.8	37	3.5	700	1.0	10	4.0	660	
MLL4737	7.5	34	4.0	700	0.5	10	5.0	605	
MLL4738	8.2	31	4.5	700	0.5	10	6.0	550	
MLL4739	9.1	28	5.0	700	0.5	10	7.0	500	
MLL4740	10	25	7.0	700	0.25	10	7.6	454	
MLL4741	11	23	8.0	700	0.25	5.0	8.4	414	
MLL4742	12	21	9.0	700	0.25	5.0	9.1	380	
MLL4743	13	19	10	700	0.25	5.0	9.9	344	
MLL4744	15	17	14	700	0.25	5.0	11.4	304	
MLL4745	16	15.5	16	700	0.25	5.0	12.2	285	
MLL4746	18	14	20	750	0.25	5.0	13.7	250	
MLL4747	20	12.5	22	750	0.25	5.0	15.2	225	
MLL4748	22	11.5	23	750	0.25	5.0	16.7	205	
MLL4749	24	10.5	25	750	0.25	5.0	18.2	190	
MLL4750	27	9.5	35	750	0.25	5.0	20.6	170	
MLL4751	30	8.5	40	1000	0.25	5.0	22.8	150	
MLL4752	33	7.5	45	1000	0.25	5.0	25.1	135	
MLL4753	36	7.0	50	1000	0.25	5.0	27.4	125	
MLL4754	39	6.5	60	1000	0.25	5.0	29.7	115	
MLL4755	43	6.0	70	1500	0.25	5.0	32.7	110	
MLL4756	47	5.5	80	1500	0.25	5.0	35.8	95	
MLL4757	51	5.0	95	1500	0.25	5.0	38.8	90	
MLL4758	56	4.5	110	2000	0.25	5.0	42.6	80	
MLL4759	62	4.0	125	2000	0.25	5.0	47.1	70	
MLL4760	68	3.7	150	2000	0.25	5.0	51.7	65	
MLL4761	75	3.3	175	2000	0.25	5.0	56.0	60	
MLL4762	82	3.0	200	3000	0.25	5.0	62.2	55	
MLL4763	91	2.8	250	3000	0.25	5.0	69.2	50	
MLL4764	100	2.5	350	3000	0.25	5.0	76.0	45	

NOTE 1. Tolerance and Type Number Designation — The type numbers listed have a standard tolerance on the nominal zener voltage of \pm 10%. A standard tolerance of \pm 5% on individual units is also available and is indicated by suffixing "A" to the standard type number.

NOTE 2. Special Selections† Available Include:

- 1. Nominal zener voltages between those shown.
- Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
 - 3. Nominal voltages at non-standard test currents.

NOTE 3. Zener Voltage (V_Z) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of 30°C ±2°C.

NOTE 4. Zener Impedance (Z_Z) Derivation — Z_{ZT} and Z_{ZK} are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $|z(ac)| = 0.1 \times |z(dc)|$ with the ac frequency = 1.0 kHz.

†For more information on special selections contact your nearest Motorola representative.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Case Temperature, T_C, should be determined from:

$$T_C = \theta_{CA}P_D + T_A$$

 θ_{CA} is the case-to-ambient thermal resistance (°C/W) and PD is the power dissipation. The value for θ_{CA} will vary and depends on the

FIGURE 1 — TYPICAL LEAKAGE CURRENT

device mounting method. θ_{CA} is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $T_{\rm C}$, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

 $\Delta T_{\mbox{\scriptsize JC}}$ is the increase in junction temperature above the case temperature and may be found by using:

$$\Delta T_{JC} = \theta_{JC}P_{D}$$

For worst-case design, using expected limits of I_Z, limits of P_D and the extremes of $T_J(\Delta T_J)$ may be estimated. Changes in voltage, V_Z, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta_{\mbox{\scriptsize VZ}},$ the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

NOTE 5. Surge Current (i_r) Nonrepetitive — The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, I_{ZT}, per JEDEC registration; however, actual device capability is as described in Figures 4 and 6.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 2 — TYPICAL LEAKAGE CURRENT

FIGURE 3 — TEMPERATURE COEFFICIENTS @ IZT

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

FIGURE 4 — EFFECT OF ZENER CURRENT +6.0 -7.0

This graph represents 90 percentil data points. For worst-case design characteristics, multiply surge power by 2/3.

FIGURE 7 — EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE

FIGURE 8 — EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE

FIGURE 9 — TYPICAL NOISE DENSITY

FIGURE 10 — NOISE DENSITY MEASUREMENT METHOD

the test zener. The filter bandpass is known so that the noise density can be calculated from the formula shown.

FIGURE 11 — TYPICAL FORWARD CHARACTERISTICS

MLL5221 thru MLL5270

500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 2.4 to 91 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die

LEADLESS GLASS ZENER DIODES

500 MILLIWATTS 2.4-110 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
DC Power Dissipation @ $T_A \le 50^{\circ}$ C Derate above $T_A = 50^{\circ}$ C	PD	500 3.3	mW mW/°C	
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to +200	°C	

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily solderable

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any

	MILLIM	ETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	3.30	3.70	0.130	0.146		
В	1.60	1.70	0.063	0.067		
R	2.49	2.59	0.098	0.102		
U	0.41	0.55	0.016	0.022		

CASE 362-01

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted. Based on dc measurements at thermal equilibrium; case temperature maintained at 30 ± 2 °C. V_F = 1.1 max @ I_F = 200 mA for all types.)

		Max Zener Impedance Max Reverse Leakage Curr						cage Current			
Nominal Zener Voltage		Test	A and B Suffix only		A and B Suffix only			Non-Suffix	Max Zener Voltage Temperature Coeff.		
Type No. (Note 1)	V _Z @ I _{ZT} Volts	Current IZT mA	ZZT @ IZT	Z _{ZK} @ I _{ZK} = 0.25 mA	IR μA	@ V _R Volts		@ V _R Wolts		IR @ VR Used for Suffix A	(A and B Suffix only) θVz (%/°C)
	(Note 2)		Ohms	Ohms		Α	В	μ A	(Note 3)		
MLL5221	2.4	20	30	1200	100	0.95	1.0	200	-0.085		
MLL5222	2.5	20	30	1250	100	0.95	1.0	200	-0.085		
MLL5223	2.7 2.8	20 20	30 30	1300 1400	75 75	0.95 0.95	1.0 1.0	150 150	-0.080 -0.080		
MLL5224 MLL5225	3.0	20	29	1600	50	0.95	1.0	100	-0.075		
MLL5226	3.3	20	28	1600	25	0.95	1.0	100	-0.070		
MLL5227	3.6	20	24	1700	15	0.95	1.0	100	-0.065		
MLL5228	3.9	20	23	1900	10	0.95	1.0	75	-0.060		
MLL5229	4.3	20	22	2000	5.0	0.95	1.0	50	±0.055		
MLL5230	4.7	20	19	1900	5.0	1.9	2.0	50	±0.030		
MLL5231	5.1	20	17	1600	5.0	1.9	2.0	50	±0.030		
MLL5232	5.6	20	11	1600	5.0	2.9	3.0	50	+0.038		
MLL5233	6.0	20	7.0	1600	5.0	3.3	3.5	50	+0.038		
MLL5234	6.2 6.8	20 20	7.0 5.0	1000 750	5.0 3.0	3.8 4.8	4.0 5.0	50 30	+0.045		
MLL5235							ļ		+0.050		
MLL5236	7.5 8.2	20 20	6.0 8.0	500 500	3.0 3.0	5.7 6.2	6.0 6.5	30 30	+0.058 +0.062		
MLL5237 MLL5238	8.7	20	8.0	600	3.0	6.2	6.5	30	+0.065		
MLL5239	9.1	20	10	600	3.0	6.7	7.0	30	+0.068		
MLL5240	10	20	17	600	3.0	7.6	8.0	30	+0.075		
MLL5241	11	20	22	600	2.0	8.0	8.4	30	+0.076		
MLL5242	12	20	30	600	1.0	8.7	9.1	10	+0.077		
MLL5243	13	9.5	13	600	0.5	9.4	9.9	10	+0.079		
MLL5244 MLL5245	14 15	9.0 8.5	15 16	600 600	0.1	9.5 10.5	10 11	10 10	+0.082 +0.082		
MLL5246	16	7.8	17	600	0.1	11.4	12	10	+0.083		
MLL5247	17	7.4	19	600	0.1	12.4	13	10	+0.084		
MLL5248	18	7.0	21	600	0.1	13.3	14	10	+0.085		
MLL5249	19	6.6	23	600	0.1	13.3	14	10	+0.086		
MLL5250	20	6.2	25	600	0.1	14.3	15	10	+0.086		
MLL5251	22	5.6	29	600	0.1	16.2	17	10	+0.087		
MLL5252	24 25	5.2 5.0	33 35	600 600	0.1	17.1 18.1	18 19	10 10	+0.088 +0.089		
MLL5253 MLL5254	25	4.6	41	600	0.1	20	21	10	+0.089		
MLL5255	28	4.5	44	600	0.1	20	21	10	+0.091		
MLL5256	30	4.2	49	600	0.1	22	23	10	+0.091		
MLL5257	33	3.8	58	700	0.1	24	25	10	+0.092		
MLL5258	36	3.4	70	700	0.1	26	27	10	+0.093		
MLL5259	39	3.2	80	800	0.1	29	30	10	+0.094		
MLL5260	43	3.0	93	900	0.1	31	33	10	+0.095		
MLL5261	47 51	2.7	105 125	1000 1100	0.1	34 37	36 39	10 10	+0.095		
MLL5262 MLL5263	56	2.5 2.2	150	1300	0.1	41	43	10	+0.096 +0.096		
MLL5264	60	2.1	170	1400	0.1	44	46	10	+0.090		
MLL5265	62	2.0	185	1400	0.1	45	47	10	+0.097		
MLL5266	68	1.8	230	1600	0.1	49	52	10	+0.097		
MLL5267	75	1.7	270	1700	0.1	53	56	10	+0.098		
MLL5268	82	1.5	330	2000	0.1	59	62	10	+0.098		
MLL5269	87	1.4	370	2200	0.1	65	68	10	+0.099		
MLL5270	91	1.4	400	2300	0.1	66	69	10	+0.099		

MLL5221 thru MLL5270

NOTE 1. Tolerance — The type numbers shown indicate a tolerance of $\pm 20\%$ with guaranteed limits on only Vz. IR and VF as shown in the electrical characteristics table. Units with guaranteed limits on all six parameters are indicated by suffix "A" for $\pm 10\%$ tolerance and suffix "B" for $\pm 5.0\%$ units.

NOTE 2. Special Selections† Available Include:

- 1. Nominal zener voltages between those shown.
- Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
 - 3. Nominal voltages at non-standard test currents.

NOTE 3. Temperature Coefficient (θ_{VZ}) — Test conditions for temperature coefficient are as follows:

- a. I_{ZT} = 7.5 mA, T₁ = 25°C,
- T₂ = 125°C (MLL5221A,B through MLL5242A,B).
- b. I_{ZT} = Rated I_{ZT}, T₁ = 25°C,
- T₂ = 125°C (MLL5243A, B through MLL5270A,B).

Device to be temperature stabilized with current applied prior to reading breakdown voltage at the specified ambient temperature.

NOTE 4. Zener Voltage (Vz) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of 30°C +1°C.

NOTE 5. Zener Impedance (Z_Z) Derivation — Z_{ZT} and Z_{ZK} are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for $I_Z(ac) = 0.1 \times I_Z(dc)$ with the ac frequency = 1.0 kHz.

†For more information on special selections contact your nearest Motorola representative.

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Case Temperature, T_C, should be determined from:

$$T_C = \theta_{CA}P_D + T_A$$

 θ_{CA} is the case-to-ambient thermal resistance (°C/W) and P_D is the power dissipation. The value for θ_{CA} will vary and depends on the device mounting method. θ_{CA} is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of $T_{\rm C}$, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

 $\Delta T_{\mbox{\scriptsize JC}}$ is the increase in junction temperature above the case temperature and may be found by using:

$$\Delta T_{JC} = \theta_{JC} P_D$$
.

For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of $T_J(\Delta T_J)$ may be estimated. Changes in voltage, V_Z , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{VZ},$ the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 1 - TYPICAL LEAKAGE CURRENT

FIGURE 2 - TYPICAL LEAKAGE CURRENT

FIGURE 3 — TEMPERATURE COEFFICIENTS

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

For worst-case design characteristics, multiply surge power by 2/3

4

FIGURE 7 — EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE

FIGURE 8 — EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE

FIGURE 9 - TYPICAL NOISE DENSITY

FIGURE 10 - NOISE DENSITY MEASUREMENT METHOD

The input voltage and load resistance are high so that the zener diode is driven from a constant current source. The amplifier is low noise so that the amplifier noise is negligible compared to that of the test zener. The filter bandpass is known so that the noise density can be calculated from the formula shown.

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS

SILICON POWER TRANSIENT SUPPRESSOR

. . . designed for applications requiring protection of voltage sensitive electronic devices in danger of destruction by high energy voltage transients. Individual cells are matched to insure current-sharing under high current pulse conditions.

- Peak Surge Power Capacity Given From 0.1 ms To 10 Seconds
- Low Clamping Factor Assures Low Voltage Overshoot
- Negligible Power Loss
- Small Size and Weight
- Following Variations are Available:
 - Non-Standard Voltages
 - Higher Power Capacity
 - Other Package Configurations

MAXIMUM RATINGS

Transient Power Dissipation: 40 kW Pulse Width: 0.1ms, (See Figure 1)

DC Power Dissipation: 350 Watts @ $T_C = 25$ °C

(Derate 2.33 W/°C above 25°C)

Operating Junction & Storage Temperature Range:

-65°C to +175°C

MECHANICAL CHARACTERISTICS

POLARITY: Anode-to-Case is Standard. Cathode-to-Case Available

Upon Request.

MPTE-5,C thru MPTE-45,C See Page 4-74

MPZ5-16 Series MPZ5-32 Series MPZ5-180 Series

SILICON POWER TRANSIENT SUPPRESSOR

ELECTRICAL CHARACTERISTICS (TA = 25 °C, VF = 1.5 V max @ 10 A for all types)

	Nominal Operating Voltage (Note 1)		Operating Voltage Factor Minimum Zener Voltage		Maximum Zener Voltage Pulse Width = 1.0 ms			Maximum Reverse Current ¹ R (max)	Typical Capacitance C (typ)		
Туре	VOP(PK) Vdc	VOP(RMS) V rms	VZ @ IZT (Note 2)	VZ(min) Vdc	@	IZT Adc	VZ(max) Vdc	@	IZ(pulse) Adc	@ VR = VOP(PK) μAdc	@ VR = VOP(PK) μF
MPZ5-16A	14	10	1.25	16		0.4	24	Γ	200	50	0.025
-16B	14	10	1.25	16		0.4	20	Į	200	†	0.025
-32A	28	20	1.25	32		0.2	50	- 1	100		0.011
-32B	28	20	1.25	32	1	0.2	45		100		0.011
-32C	28	20	1.25	32	Ì	0.2	40		100	i	0.011
-180A	165	117	1.14	180		0.03	250		20	1	0.0012
-180B	165	117	1.14	180	1	0.03	225	- 1	20	Ļ	0.0012
-180C	165	117	1.14	180		0.03	205		20	50	0.0012

FIGURE 1 - MAXIMUM NON-REPETITIVE SURGE POWER

FIGURE 2 – TYPICAL DYNAMIC ZENER VOLTAGE CHARACTERISTICS (Note 2)

NOTE 1: Nominal operating voltage is defined as normal input voltage to device for non-operating condition. If non-sinusoidal wave or dc input is present, peak voltage input values VOP(PK) should be used to select device type.

NOTE 2: The maximum device clamping factor C_F is a ratio of V_Z measured at I_Z (pulse) given in the Electrical Characteristics Table divided by V_Z measured at I_{ZT} under steady state conditions. This value guarantees the sharpness of the voltage breakdown of individual devices. Figure 2 demonstrates the typical sharpness of the breakdown, and indicates the voltage regulation over a wide range of currents.

MZ600 Series

6.2 VOLTS

PRECISION REFERENCE DIODES

... designed, manufactured and tested for applications requiring a precision voltage reference with ultra-high stability of voltage with time and temperature change.

Special test laboratory uses precision measurement equipment, four-terminal (separate contacts for current and voltage) measurement techniques and voltage standards to provide calibration directly traceable to the National Bureau of Standards.

PRECISION REFERENCE
DIODES
with
CERTIFIED
ZENER VOLTAGE-TIME
STABILITY

NOTES:

- PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
- 2. LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS.

	MILLIM	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.84	7.62	0.230	0.300	
В	2.16	2.72	0.085	0.107	
D	0.46	0.56	0.018	0.022	
F	-	1.27	_	0.050	
K	25.40	38.10	1.000	1.500	

All JEDEC dimensions and notes apply

CASE 51-02 DO-204AA (DO-7)

OPERATING TEMPERATURE RANGE:* 25 to 100 °C.

MZ600 SERIES (Voltage 6.2V \pm 5%, IZT = 7.5 mAdc†, \triangle VZ = 2.5 mVdc**)

Type No.	Voltags-Time Stability (μV/1000 Hours)	Parts Per Million Change (ppm/1000 Hours)
MZ605	31 Maximum	< 5
MZ610	62 Maximum	<10
MC620	124 Maximum	<20
MZ640	248 Maximum	<40

DYNAMIC IMPEDANCE: 10 Ohms at $I_{ZT} = 7.5$ mAdc, $I_{ac} = 0.75$ mA.

NOTES

†TEST CURRENT

For certification testing of time stability, Motorola maintains I_{ZT} constant and repeatable to $\pm\,0.05~\mu A$ tolerance. For voltage tolerance, impedance and voltage temperature stability I_{ZT} needs to be held to 0.01 tolerance only.

- *Maximum limits for use as a precision reference device. Limits are well below the maximum thermal limits.
- **VOLTAGE-TEMPERATURE STABILITY: Maximum allowable voltage change between voltages recorded at 25, 75 and 100°C ambient.

VOLTAGE-TIME STABILITY

(△Vz/1000 Hours).

The device voltage is read and recorded initially and at 168 hour intervals through 1000 hours. The maximum change of voltage between readings, taken at any of the seven points, must be less than the maximum voltage change per 1000 hour specified as Voltage-Time Stability.

TURN-ON CHARACTERISTICS

Precision Reference Diodes have been tested to determine the behavior of the device under interrupted power operation. To insure specified performance, adequate time must be allowed for the device and its environment to reach thermal equilibrium. "Warm-up" time may range from 8 to 24 hours. Thermal equilibrium is reached when the chamber is cycling at the required temperature with the device energized.

After this "warm-up" period, the device voltage will be between the minimum and the maximum voltage of those recorded at the seven points of the Voltage-Time Stability certification.

MOUNTING

Excellent results have been obtained by using a mechanical mounting. If necessary, the device may be soldered into a circuit using a heat sink between the heat source and the body of the diode. A low thermal EMF solder is recommended.

SPECIAL NOTE

Voltage tolerance less than 5.0% is available upon special request.

Precision Reference Diodes capable of meeting special requirements for standard voltages regardless of required test current, temperature range, or test temperatures are available. Custom requirements of particular devices for specific applications are also available.

MZ600 Series

VOLTAGE-CURRENT STABILITY CHARACTERISTICS

For verification of time stability, and for repeatable operation, I_{ZT} should be maintained with a tolerance of $\pm\,0.1~\mu\text{A}$. Figure 1 will assist in design where the supply current stability cannot be maintained to better than 0.2 μA deviation.

FIGURE 1 – MAXIMUM VOLTAGE CHANGE, IN μV AND PPM, DUE TO CURRENT SUPPLY STABILITY

ΔIz, CURRENT STABILITY (μA)

VOLTAGE-TEMPERATURE CHARACTERISTICS

CHOICE OF OPERATING TEMPERATURE

The stability certification is performed at $65^{\circ}\text{C} \pm 0.02^{\circ}\text{C}$. The operating temperature can be selected within the operating temperature range. If the desired temperature is not 65°C , the precise voltage of the device will be different but the certified stability will still be observed.

VOLTAGE TEMPERATURE STABILITY

For verification of time stability and/or repeatable operation, the ambient temperature should be controlled to $\pm 0.1\,^{\circ}\text{C}$.

Figure 2 will assist in designs where ambient temperature cannot be controlled to better than 0.2°C deviation.

FIGURE 2 – TYPICAL VOLTAGE CHANGE, IN µV AND PPM, DUE TO AMBIENT TEMPERATURE STABILITY

△TA, AMBIENT TEMPERATURE STABILITY (°C)

MZ2360 MZ2361

CONSTANT-VOLTAGE REFERENCE DIODES FOR LOW-VOLTAGE APPLICATIONS

...high-conductance silicon diodes designed as a stable forward reference source for biasing transistor amplifiers and similar applications.

- Guaranteed Forward Voltage Range
- Temperature Effects Provided

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 30 °C ± 3 °C, Lead Length = 3/8"	P _D	400	mW
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to + 175	°C

MECHANICAL CHARACTERISTICS

CASE: Surmetic

DIMENSIONS: See outline drawings

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable and weldable

POLARITY: Cathode indicated by polarity band. Cathode negative for

forward reference application.

WEIGHT: 0.2 Gram (approximate)

MOUNTING POSITIONS: Any

FORWARD REFERENCE DIODES STABISTORS

IRREGULARITIES OTHER THAN HEAT SLUGS.

ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)

Type Number	Forward F Voltag	ge (1)	Currer	Leakage nt (Max) @	Package	Case
	V _F Volts Min/Max	mA IF	IR μA	V _R Volts		
MZ2360	0.63/0.71	10	10	5.0	Surmetic	59
MZ2361	1.24/1.38	10	10	5.0	Surmetic	51

⁽¹⁾ Motorola guarantees the forward reference voltage when measured at 90 seconds while maintaining the lead temperature (T_L) at 30 °C ± 1 °C, 3/8" from the diode body.

TYPICAL FORWARD VOLTAGE CHARACTERISTICS

TYPICAL TEMPERATURE COEFICIENT

P6KE6.8,A thru **P6KE200.A**

ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR

The P6KE6.8 series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The P6KE6.8 series is supplied in Motorola's exclusive, cost-effective, highly reliable surmetic axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/ consumer applications.

SPECIFICATION FEATURES

- Standard Zener Voltage Range 6.8 to 200 V
- Peak Power 600 Watts @ 1.0 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5.0 μA above 10 V
- Maximum Temperature Coefficient Specified

ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS

6.8-200 VOLT **600 WATT PEAK POWER** 5.0 WATTS STEADY STATE

MAXIMUM RATINGS

Rating	Symbol	Value	Units
Peak Power Dissipation (1) @ T _L ≤ 25 ^o C	PPK	600	Watts
Steady State Power Dissipation © $T_L \le 75^{\circ}C$, Lead Length = 3/8" Derated above $T_L = 75^{\circ}C$	PD	5.0 50	Watts mW/ ^O C
Forward Surge Current (2) @ T _A = 25 ^o C	¹ FSM	100	Amps
Operating and Storage Temperature Range	T _J , T _{sta}	-65 to +175	°C

Lead Temperature not less than 1/16" from the case for 10 seconds: 230°C

MECHANICAL CHARACTERISTICS

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode

MOUNTING POSITION: Any

NOTES: 1. Non-Repetitive Current Pulse per Figure 4 and Derated above $T_A = 25^{\circ}C$ per Figure 2.

> 2. 1/2 Square Wave (or equivalent), PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute maximum.

NOTE: 1. LEAD DIAMETER & FINISH NOT CONTROLLED WITHIN DIM "F".

PIN 1. ANODE 2. CATHODE

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.38	8.89	0.330	0.350	
В	3.30	3.68	0.130	0.145	
D	0.94	1.09	0.037	0.043	
F	-	1.27	_	0.050	
K	25.40	31.75	1.000	1.250	

CASE 17-02

P6KE6.8,A thru P6KE200,A

ELECTRICAL CHARACTERISTIC ($T_A = 25^{\circ}C$ unless otherwise noted) $V_F = 3.5 \text{ V max}$, $I_F^{**} = 50 \text{ A}$ for all types.

	Br	reakdow	n Voltage	, *	Working Peak	Maximum	Maximum	Maximum Reverse	Maximum
		V _{BR} (Volts	١	@ I _T (mA)	Reverse Voltage	Reverse Leakage	Reverse Surge	Voltage @ IRSM	Temperature
Device	Min	Nom	Max	\A/	V _{RWM} (Volts)	® V _{RWM} I _R (μΑ)	Current IRSM† (Amps)	(Clamping Voltage) VRSM (Volts)	Coefficient of V _{BR} (%/ ^o C)
P6KE6.8	6.12	6.8	7.48	10	5.50	1000	56	10.8	0.057
P6KE6.8A	6.45	6.8	7.14	10	5.80	1000	57	10.5	0.057
P6KE7.5	6.75	7.5	8.25	10	6.05	500	51	11.7	0.061
P6KE7.5A	7.13	7.5	7.88	.10	6.40	500	53	11.3	0.061
P6KE8.2	7.38	8.2	9.02	10	6.63	200	48	12.5	0.065
P6KE8.2A	7.79	8.2	8.61	10	7.02	200	50	12.1	0.065
P6KE9.1	8.19	9.1	10.0	1.0	7.37	50	44	13.8	0.068
P6KE9.1A	8.65	9.1	9.55	1.0	7.78	50	45	13.4	0.068
P6KE10	9.00	10	11.0	1.0	8.10	10	40	15.0	0.073
P6KE10A	9.50	10	10.5	1.0	8.55	10	41	14.5	0.073
P6KE11	9.90	11	12.1	1.0	8.92	5.0	37	16.2	0.075
P6KE11A	10.5	11	11.6	1.0	9.40	5.0	38	15.6	0.075
P6KE12	10.8	12	13.2	1.0	9.72	5.0	35	17.3	0.078
P6KE12A	11.4	12	12.6	1.0	10.2	5.0	36	16.7	0.078
P6KE13	11.7	13	14.3	1.0	10.5	5.0	32	19.0	0.081
P6KE13A	12.4	13	13.7	1.0	11.1	5.0	33	18.2	0.081
P6KE15	13.5	15	16.5	1.0	12.1	5.0	27	22.0	0.084
P6KE15A	14.3	15	15.8	1.0	12.8	5.0	28	21.2	0.084
P6KE16	14.4	16	17.6	1.0	12.9	5.0	26	23.5	0.086
P6KE16A	15.2	16	16.8	1.0	13.6	5.0	27	22.5	0.086
P6KE18	16.2	18	19.8	1.0	14.5	5.0	23	26.5	0.088
P6KE18A	17.1	18	18.9	1.0	15.3	5.0	24	25.2	880.0
P6KE2O	18.0	20	22.0	1.0	16.2	5.0	21	29.1	0.090
P6KE20A	19.0	20	21.0	1.0	17.1	5.0	22	27.7	0.090
P6KE22	19.8	22	24.2	1.0	17.8	5.0	19	31.9	0.092
P6KE22A	20.9	22	23.1	1.0	18.8	5.0	20	30.6	0.092
P6KE24	21.6	24	26.4	1.0	19.4	5.0	17	34.7	0.094
P6KE24A	22.8	24	25.2	1.0	20.5	5.0	18	33.2	0.094
P6KE27	24.3	27	29.7	1.0	21.8	5.0	15	39.1	0.096
P6KE27A	25.7	27	28.4	1.0	23.1	5.0	16	37.5	0.096
P6KE30	27.0	30	33.0	1.0	24.3	5.0	14	43.5	0.097
P6KE30A	28.5	30	31.5	1.0	25.6	5.0	14.4	41.4	0.097
P6KE33	29.7	33	36.3	1.0	26.8	5.0	12.6	47.7	0.098
P6KE33A	31.4	33	34.7	1.0	28.2	5.0	13.2	45.7	0.098
P6KE36	32.4	36	39.6	1.0	29.1	5.0	11.6	52.0	0.099
P6KE36A	34.2	36	37.8	1.0	30.8	5.0	12	49.9	0.099
P6KE39	35.1	39	42.9	1.0	31.6	5.0	10.6	56.4	0.100
P6KE39A	37.1	39	41.0	1.0	33.3	5.0	11.2	53.9	0.100
P6KE43	38.7	43	47.3	1.0	34.8	5.0	9.6	61.9	0.101
P6KE43A	40.9	43	45.2	1.0	36.8	5.0	10.1	59.3	0.101
P6KE47	42.3	47	51.7	1.0	38.1	5.0	8.9	67.8	0.101
P6KE47A	44.7	47	49.4	1.0	40.2	5.0	9.3	64.8	0.101
P6KE51	45.9	51	56.1	1.0	41.3	5.0	8.2	73.5	0.102
P6KE51A	48.5	51	53. 6	1.0	43.6	5.0	8.6	70.1	0.102
P6KE56	.50.4	56	61.6	1.0	45.4	5.0	7.4	80.5	0.103
P6KE56A	53.2	56	58.8	1.0	47.8	5.0	7.8	77.0	0.103
P6KE62	55.8	62	68.2	1.0	50.2	5.0	6.8	89.0	0.104
P6KE62A	58.9	62	65.1	1.0	53.0	5.0	7.1	85.0	0.104
P6KE68	61.2	68	74.8	1.0	55.1	5.0	6.1	98.0	0.104
P6KE68A	64.6	68	71.4	1.0	58.1	5.0	6.5	92.0	0.104
P6KE75	67.5	75	82.5	1.0	60.7	5.0	5.5 5.0	108.0	0.105
P6KE75A	71.3	75	78.8	1.0	64.1	5.0	5.8	103.0	0.105
P6KE82	73.8	82	90.2	1.0	66.4	5.0	5.1	118.0	0.105
P6KE82A	77.9	82	86.1	1.0	70.1	5.0	5.3 4.8	113.0	0.105
P6KE91 P6KE91A	81.9	91	100.0	1.0	73.7	5.0	4.8 4.8	131.0	0.106 0.106
FORESTA	86.5	91	95.50	1.0	77.8	5.0	4.0.	125.0	0.106

ELECTRICAL CHARACTERISTICS (continued)

	Breakdown Voltage			ge	Working Peak	Maximum	Maximum	Maximum Reverse	Maximum
	V _{BR} (Volts)		@ I _T (mA)	Reverse Voltage VRWM	Reverse Leakage @ V _{RWM}	Reverse Surge Current I _{RSM} †	Voltage @ IRSM (Clamping Voltage)	Temperature Coefficient of V _{BR}	
Device	Min	Nom	Max		(Volts)	I _R (μA)	(Amps)	V _{RSM} (Volts)	(%/°C)
P6KE100	90.0	100	110.0	1.0	81.0	5.0	4.2	144.0	0.106
P6KE100A	95.0	100	105.0	1.0	85.5	5.0	4.4	137.0	0.106
P6KE110	99.0	110	121.0	1.0	89.2	5.0	3.8	158.0	0.107
P6KE110A	105.0	110	116,0	1.0	94.0	5.0	4.0	152.0	0.107
P6KE120	108.0	120	132.0	1.0	97.2	5.0	3.5	173.0	0.107
P6KE120A	114.0	120	126.0	1.0	102.0	5.0	3.6	165.0	0.107
P6KE130	117.0	130	143.0	1.0	105.0	5.0	3.2	187.0	0.107
P6KE130A	124.0	130	137.0	1.0	111.0	5.0	3.3	179.0	0.107
P6KE150	135.0	150	165.0	1.0	121.0	5.0	2.8	215.0	0.108
P6KE150A	143.0	150	158.0	1.0	128.0	5.0	2.9	207.0	0.108
P6KE160	144.0	160	176.0	1.0	130.0	5.0	2.6	230.0	0.108
P6KE160A	152.0	160	168.0	1.0	136.0	5.0	2.7	219.0	0.108
P6KE170	153.0	170	187.0	1.0	138.0	5.0	2.5	244.0	0.108
P6KE170A	162.0	170	179.0	1.0	145.0	5.0	2.6	234.0	0.108
P6KE180	162.0	180	198.0	1.0	146.0	5.0	2.3	258.0	0.108
P6KE180A	171.0	180	189.0	1.0	154.0	5.0	2.4	246.0	0.108
P6KE200	180.0	200	220.0	1.0	162.0	5.0	2.1	287.0	0.108
P6KE200A	190.0	200	210.0	1.0	171.0	5.0	2.2	274.0	0.108

[†]Surge Current Waveform per Figure 4 and Derate per Figure 2.

 $^{^*}V_{BR}$ measured after IT applied for 300 μs , IT = Square Wave Pulse or equivalent.

4

^{*1/2} Square or Equivalent Sine Wave, PW = 8.3 ms, Duty Cycle = 4 Pulses per Minute maximum.

P6KE6.8,A thru P6KE200,A

APPLICATION NOTES

SPECIAL DEVICES

Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative,

For a bidirectional device use a C or CA suffix (i.e. P6KE6.8CA). Electrical characteristics apply in both directions except for VF.

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method.

The capactive affect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure A.

The inductive affects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive affect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure B. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The P6KE6.8 series has very good response time, typically < 1.0 ns and negligible inductance. However, external inductive affects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

- 1 Index and Cross-Reference
- 2 Selector Guides
- 3 Rectifier Data Sheets
- Zener Diode Data Sheets

MOTOROLA Semiconductor Products Inc.

BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC