~ Lista 1: Distern	or Whatrood	13 / 09 / 23
Λ.	Martiner de 200 Juinion - 2017 001,	\$50
(1) · (2) · Ā = A (drod	ujão)	
MA = 1- MA(X)		
NA = 1 - MA(X) =	1-(1-Ma(x)) =D Ma(x)= x-	Y + MA(X) = D(MA(X) = MAX)
6) · AU (ANB) = A	(Aboução)	
	[(x) 84, A) ALL Trim:	
AU(AUB): MAU(ANG	M] min , (x)AU] xrom = (x) (8	P(X) De (X)
ancel obstuser O	user cab cargo abog abourque	Italos:
1- Coso min Ly	a All const , EM = [(X) By, (X)A	ons valor maior. Assim, as colub
	CHAM, MB(MI' = MA	
2- No core de m	our [MA(X), MB(X)]= MA, colculor	mox Eug(XI, MB(XI), logo,
MAU (ANB) (X) =		
CI- ANA=Ø (Contro	dição)	
MA = 1- MA	µ¢=0	
mim = (X) ANAM	(X)AU) mim = ((X)AU).	(1- MAX)
	O	1 = 0 De MA(X)=O → Min (0,1)=0
	<u> </u>	0 = 0 De MA(X)= 2-PMin (1/0)=(
$= 0 = (x) \overline{A} \cap A \cup A$	/η φ (x)	
d) AUB = ANB (D	· Morgan)	
	A+ MA=1-MA(x), B+ MB=1-MB(X)	AUB-+MAUB= moon [MA(X), MB(X)]
	x) BM-1, (x) AM-1] mim = BD AM +- BD A	AUB -> MAUB = L-MAUB = L-mook [MA, MB]
MA(X)=0, MB(X)=0	= min[1,1] = 1	= L-max[0,0] z L
$y_{W}(x) = 0 + y_{W}(x) = F$	0=[0,1]mm =	= 1- mox [0,1]=0
MA(X) = 1, $MB(X) = 0$	z min [0, [] = 0	= 1- myox[1,0]=0
UA(X)ZZ, MB(X)Z L	0=[0,0] mm =	= 1 - max[1/1]=0

```
@ As propriedales são considerados, validos.
 3. (NT): N(D)=T N(T)=0
                                   (H2): N(O) > N(b) se a≤6
     N(0) = 7 - 0 = 7
                                        1-a >, 1-b
                                       1+5a
         1+5.0
                                                 1+Sh
                                    (1-0)(1+56) 7 (1-6)(1+50)
     N(T) = T - T = 0
                                  X+Sb- Q-956 7/ X+SQ-b-956
           1+2.1
                                         56+6 7/Sa+a
                                       6(5+1)7, a (5+1)
  (N4): N(N(Q)) = Q
                                            a \leq b
                               = Q(8+1) = Q
                                5+4
   1+5/1-a
                 L+ 50+5 = 50
                    1+5e
 (4). S(ab)= a+b-ab
 (51): S(0,0) = Q+0-0.0=0
                               (52): S(a, b) ≤ S(c,d) re Q € C a b € d
      5(A,0) = A+0-A.0=A
                                   a+b-ab & ctd-cd
     5 (O,A) = Q+ A - Q. Az A
                                        co ob < cd
 (53): 5(a,b) = 5(b,a) - e+b-ab=b+e-ba
 (S4): 5(0, 5(b,c)) = 5(5(a,b), c)
S(b,c) = b+c-bc
5(a,5(b,c)) = a+(b+c-bc)-a(b+c-bc) = a+b+c-bc-ab-ac+abc
5(a,b)= a+b-ab
5(5(04b),c)=(a+b-ab)+c-(a+b-ab)c=a+b-ab+c-ac-bc+abc
(5) - S(a_1b) = min(1, a+b)
(S1): S(0,0) = 0, S(0,0) = 5(0,0) = a
     S(0,0) = mim (1,0+0)=0, S(0,0) = mim (1, A+0) = A
     S(0,a) = min (1,0+A)=A
```

(52): 5(Q16) ≤ S(C10) x a≤C 10 h=	< d 101 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1
$S(a_ib) = mim(1,a+b) = a+b$	
S(c,d) = min (1,c+d) = c+d,	como a+b < c+d, S(Q1b) < S(C1d)
(53): S(a/b) = 5(b/e) -0 min (1,	a+b1 = min (1, b+a)
(54): S(a, S(b, c)) = S(S(a,b), c)	1
S(b,c)=b+c	
S(a, S(b, a) = imin (1, a+b+	
S(5(a,b), c) = min (1, a+b+c)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
6. T(a,b)=ab	
(a ₁ b) - ab	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
(+1): T(0,0) = 0, T(0,1) = T(1,0) = 0	
T(0,0) = 0	$T(Q_1b) \leq T(C_1d)$
$T(A_1) = A \cdot 1 = A$	· '
T(1,A)=1.A=A	
$(+3)$: $T(a_1b) = T(b_1a)$ $(+4)$:	T(a, T(b, c)) = T(T(a,b), c)
$ab = ba$ $T(a_1bc) = T(ab_1c)$	
	abc z abc
J)- (41): T(0,0)=0, T(0,1)=T(1,0)	z Q
max(0,0+0-1)	
max (0-1)=0	
www (0, a+1-1) = a	·
mark (0, 1+a-1) = a	
(+2): T(0,b) < T(c,d) ne a≤c eb≤	$(42) \cdot \pm (21) = \pm (12)$
$max(0,a+b-1) \leq max(0,c+d-1)$	
re (a+b) e (c+d) 7 L) max(a,a+b-1)= max(0,b+a-1)
a+b-1/ < c+d-/	
$a+b \leq z+d$	
0+00000	

$$T(b_{j}c) = mov(o_{j}b+c-1) = b+c-L \qquad T(T(a_{j}b)_{j}c)$$

$$T(b_{j}c) = mov(o_{j}b+c-1) = b+c-L \qquad T(T(a_{j}b)_{j}c) = T(a+b-1_{j}c)$$

$$T(a_{j}b+c-1) = mov(o_{j}a+b+c-1-1) \qquad = mov(o_{j}a+b+c-1-1)$$

$$N(b) = 1-a \qquad T(a_{j}b) = N(S(N(a)_{j}N(b)))$$

$$N(b) = 1-b \qquad = N(S(1-a_{j}1-b))$$

$$= N(1-a+b) - (1-a_{j}(1-b))$$

$$= N(1-ab)$$

$$= N(1-ab)$$

$$= 1-1+ab$$

$$T(a_{j}b) = ab$$

$$(a_{j}b) = ab$$