

# POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

#### SISTEMI ENERGETICI PER INGEGNERIA FISICA

29/07/2019

## Allievi fisici

| Allegare alle soluzioni il presente testo indicando (in STAMPATELLO): |     |
|-----------------------------------------------------------------------|-----|
| NOME E COGNOME                                                        |     |
|                                                                       | ••• |

Tempo a disposizione: 2 ore 30 minuti

**Leggere attentamente le avvertenze**: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

**Punteggio:** Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

# Dati per la risoluzione dei quesiti

Costante universale dei gas  $\Re = 8314 \text{ J/(kmol\cdot K)}$ 

### □ ESERCIZIO 1 (punti 5)

La portata di acqua elaborata dalla turbina, nell'impianto riportato in figura, è pari a 50 m³/h. Il 30% della portata proveniente dal serbatoio 1 viene deviato in un condotto secondario (M2-S). Il tratto M4-M5 e i due tratti principali a monte della turbina M1-M2 e M2-M3 hanno tutti un diametro di 12.5 cm e lunghezza di 85 m. La differenza di quota tra i due bacini è 60 m. Il coefficiente di attrito si può assumere pari a 0.025 per tutti i tubi.

Ogni tubo ha una perdita di carico concentrata (k) pari a 7 altezze cinetiche. Sapendo che il rendimento idraulico della turbina è 80%, si chiede di:

Calcolare le velocità nei condotti

- -M2, M2
  M3

  M4

  M1

  -Bacino (dimensione infinita)
  -Pressione atmosferica
- Stimare le perdite dell'impianto nei tratti M1-M2, M2-M3 e M4-M5.
- Calcolare la potenza elettrica della turbina (rendimento meccanico-elettrico è 97.5%)

Densità dell'acqua: ρ=1000 kg/m<sup>3</sup>

#### □ ESERCIZIO 2 (punti 5)

Si ha a disposizione un dissipatore di calore in lega di alluminio (k=180 W/m/K) costituito da una base quadrata di lato 5 cm e spessore trascurabile. Sono presenti 25 alette di sezione circolare (d=0.5 cm) e altezza 5 cm. Il dissipatore è investito da una corrente d'aria a 25°C e velocità 2 m/s. Si assuma l'apice delle alette adiabatico.

Assumendo che il coefficiente di scambio termico convettivo della superficie non alettata è 30 W/m²/K e che il coefficiente di scambio termico convettivo delle alette può essere valutato tramite la correlazione per geometria cilindrica proposta in tabella, si chiede di calcolare:

- Il coefficiente di scambio termico convettivo delle alette
- L'efficienza dell'aletta
- La massima potenza del chip elettronico sul quale è posto il dissipatore, sapendo che la superficie di contatto tra dissipatore e chip non deve superare i 60°C.



<u>Correlazioni per geometria Cilindrica</u> (Dimensione caratteristica → Diametro del cilindro)

| Intervallo Numero Re | Convezione Forzata                             | Proprietà aria             |        |  |
|----------------------|------------------------------------------------|----------------------------|--------|--|
| 0.4-40               | Nu=0.989 Re <sup>0.33</sup> Pr <sup>1/3</sup>  |                            | Valore |  |
| 4-40                 | Nu=0.911 Re <sup>0.385</sup> Pr <sup>1/3</sup> | c <sub>p</sub> [J/kg/K]    | 1006   |  |
| 40-4000              | Nu=0.683 Re <sup>0.466</sup> Pr <sup>1/3</sup> | μ [10 <sup>-6</sup> Pa*s]  | 17.95  |  |
| 4000-40000           | Nu=0.193 Re <sup>0.618</sup> Pr <sup>1/3</sup> | k [10 <sup>-3</sup> W/m/K] | 25.04  |  |
| 40000-400000         | Nu=0.027 Re <sup>0.805</sup> Pr <sup>1/3</sup> | ρ <b>[kg/m</b> ³]          | 1.21   |  |

# □ ESERCIZIO 3 (punti 6)

Un processo industriale necessita di una potenza termica che viene fornita tramite la combustione di 10 kg/s di gas naturale con una portata di aria pari a 170 kg/s. La potenza termica contenuta nei fumi di scarico dell'impianto industriale, che si trovano a 350°C, viene utilizzata per produrre energia elettrica tramite un ciclo Rankine saturo (il fluido di lavoro è acqua). I fumi vengono raffreddati fino a 250°C. La temperatura massima del ciclo Rankine è pari a 240°C mentre la temperatura minima è pari a 45°C.

La turbina e la pompa possono essere assunte ideali.

Assumendo i gas combusti come gas perfetto con calore specifico a pressione costante pari a 1.08 [kJ/kg/K] (indipendente da T), si chiede di:

- Disegnare lo schema di impianto del sistema e riportare su un piano T-s il ciclo a vapore
- Calcolare la portata massica di fumi provenienti dalla combustione
- Calcolare la portata di vapore prodotta
- Calcolare il titolo di vapore allo scarico della TV e commentare il valore
- Calcolare la potenza elettrica netta del ciclo Rankine e il rendimento elettrico netto
- Assumendo una temperatura ambiente di 30°C:
  - Quale sarebbe la massima potenza elettrica producibile da un ciclo termodinamico che sfrutti i gas di scarico come sorgente termica?

Assumere l'acqua elaborata dalla pompa come un liquido incomprimibile (p=1000 kg/m³)

#### □ ESERCIZIO 4 (punti 4)

Una portata di olio ( $\rho$ =750 kg/m³, visc.cinematica=2.8E-4 m²/s) entra in tubo di sezione circolare (D1=50 mm) e lunghezza pari a 30 m.

La forza esercitata dalla parete del tubo sul fluido è pari in modulo a 500 N.

Assumendo che il moto sia laminare e che l'accelerazione di gravità abbia verso  $\overrightarrow{-z}$ , si chiede di:

- Calcolare la differenza di pressione tra 1 e 2
- Calcolare la velocità in ingresso (Sez. 1) e in uscita (Sez.2)
- Verificare se il regime di moto è laminare
- Calcolare il coefficiente di attrito



### □ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Ricavare il coefficiente di attrito per un flusso laminare completamente sviluppato. Identificare chiaramente le ipotesi adottate.
- 2- Descrivere un ciclo Joule-Brayton ideale e ricavare l'espressione del rendimento netto e del lavoro netto. Commentare l'effetto del rapporto di compressione sul rendimento e sul lavoro netto

# □ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 20 domande a risposta guidata. Segnare le <u>risposte corrette ad</u> <u>ogni domanda</u> (0.375 punto per risposta corretta, -0.125 punti se sbagliata).

| Implica P2 <p1< td=""><td>vero</td><td></td><td>falso</td></p1<>                                | vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| stato 1 allo stato 2): E' rappresentabile sempre da un'isoentalpic                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| Implica T2 <t1< td=""><td>□ vero</td><td></td><td>falso</td></t1<>                              | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| Per gas reale non può mai essere isoterma                                                       | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| A pari T <sub>max</sub> e P <sub>max</sub> , se P <sub>min</sub> ↑ η ↓                          | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| A pari P <sub>max</sub> e P <sub>min</sub> , se T <sub>max</sub> ↑, il titolo scarico della TV↑ | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| Se P <sub>cond</sub> ↓, T <sub>cond</sub> ↓                                                     | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| Lega il flusso termico con la differenza di T tra la                                            | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| piastra riscaldante e la T di saturazione                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| Definisce, con un unico grafico, il comportamento di                                            | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| tutti i fluidi in ebollizione statica                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| Per stesso fluido, la P operativa modifica il                                                   | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| 9                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| Mostra andamento monotono tra flusso termico e ΔT                                               | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| . ,                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| L'energia interna a t=0 s è proporzionale a ρ*c                                                 | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |  |
| Se Z→ 1, le isobare son curve esponenziali                                                      | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
| Per fluido incomprimibile le isobare collassano                                                 | □ vero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      | falso                                                                                                                               |  |
|                                                                                                 | E' rappresentabile sempre da un isoentalpica Implica T2 <t1 a="" essere="" gas="" isoterma="" mai="" non="" pari="" per="" può="" reale="" t<sub="">max e P<sub>max</sub>, se P<sub>min</sub>↑ η ↓ A pari P<sub>max</sub> e P<sub>min</sub>, se T<sub>max</sub>↑, il titolo scarico della TV↑ La rigenerazione ideale porta ad un η pari a ηc<sub>arnot</sub> Se P<sub>cond</sub> ↓, T<sub>cond</sub> ↓ Lega il flusso termico con la differenza di T tra la piastra riscaldante e la T di saturazione Definisce, con un unico grafico, il comportamento di tutti i fluidi in ebollizione statica Per stesso fluido, la P operativa modifica il diagramma Mostra andamento monotono tra flusso termico e ΔT Se Bi uguali, hanno lo stesso comportamento termico Se Bi=0.01, se c1=c2 e ρ1&gt; ρ2 allora dopo 5 s T1&gt;T2 Se Bi*Fou è uguale e Bi&lt;0.01, allora T(5s) è circa uguale per i due cubi L'energia interna a t=0 s è proporzionale a ρ*c Punto crit. è punto di tang. di una retta inclinata di 1/T Se Z→ 1, le isobare son curve esponenziali</t1> | E' rappresentabile sempre da un isoentalpica   vero   lmplica T2 <t1 td="" vero=""  =""  <=""><td>A pari <math>P_{max}</math> e <math>P_{min}</math>, se <math>T_{max}\uparrow</math>, il titolo scarico della <math>TV\uparrow</math> <math>\  \  \  \  \  \  \  \  \  \  \  \  \ </math></td></t1> | A pari $P_{max}$ e $P_{min}$ , se $T_{max}\uparrow$ , il titolo scarico della $TV\uparrow$ $\  \  \  \  \  \  \  \  \  \  \  \  \ $ |  |

Nella zona bifase le iso-T coincidono con le iso-P vero falso

# Proprietà termodinamiche dell'acqua alla saturazione (10°C - 270°C)

|      |         |         | Liquido satur | 0         | vapore saturo |            |          |
|------|---------|---------|---------------|-----------|---------------|------------|----------|
| Т    | р       | h       | <u> </u>      | V         | h             | S          | V        |
| [°C] | [bar]   | [kJ/kg] | [kJ/kg-°C]    | [m³/kg]   | [kJ/kg]       | [kJ/kg-°C] | [m³/kg]  |
| 10   | 0.01227 | 41.994  | 0.15099       | 0.0010003 | 2519.90       | 8.90196    | 106.43   |
| 15   | 0.01704 | 62.941  | 0.22432       | 0.0010008 | 2529.05       | 8.78257    | 77.978   |
| 20   | 0.02337 | 83.862  | 0.29630       | 0.0010017 | 2538.18       | 8.66840    | 57.838   |
| 25   | 0.03166 | 104.767 | 0.36701       | 0.0010029 | 2547.28       | 8.55916    | 43.402   |
| 30   | 0.04241 | 125.664 | 0.43651       | 0.0010043 | 2556.35       | 8.45456    | 32.929   |
| 35   | 0.05622 | 146.557 | 0.50486       | 0.0010060 | 2565.38       | 8.35434    | 25.245   |
| 40   | 0.07375 | 167.452 | 0.57212       | 0.0010078 | 2574.37       | 8.25826    | 19.546   |
| 45   | 0.09582 | 188.351 | 0.63832       | 0.0010099 | 2583.30       | 8.16607    | 15.276   |
| 50   | 0.12335 | 209.256 | 0.70351       | 0.0010121 | 2592.17       | 8.07757    | 12.046   |
| 55   | 0.15741 | 230.168 | 0.76772       | 0.0010145 | 2600.98       | 7.99255    | 9.5789   |
| 60   | 0.19920 | 251.091 | 0.83099       | 0.0010171 | 2609.71       | 7.91081    | 7.6785   |
| 65   | 0.25009 | 272.025 | 0.89334       | 0.0010199 | 2618.36       | 7.83217    | 6.2023   |
| 70   | 0.31162 | 292.973 | 0.95482       | 0.0010228 | 2626.92       | 7.75647    | 5.0463   |
| 75   | 0.38549 | 313.936 | 1.01544       | 0.0010259 | 2635.39       | 7.68353    | 4.1341   |
| 80   | 0.47360 | 334.916 | 1.07525       | 0.0010292 | 2643.75       | 7.61322    | 3.4091   |
| 85   | 0.57803 | 355.917 | 1.13427       | 0.0010326 | 2652.01       | 7.54537    | 2.8288   |
| 90   | 0.70109 | 376.940 | 1.19253       | 0.0010361 | 2660.14       | 7.47987    | 2.3613   |
| 95   | 0.84526 | 397.988 | 1.25005       | 0.0010399 | 2668.14       | 7.41658    | 1.9822   |
| 100  | 1.01325 | 419.065 | 1.30687       | 0.0010437 | 2676.01       | 7.35538    | 1.6730   |
| 105  | 1.20800 | 440.173 | 1.36301       | 0.0010477 | 2683.73       | 7.29616    | 1.4193   |
| 110  | 1.43266 | 461.316 | 1.41849       | 0.0010519 | 2691.31       | 7.23880    | 1.2099   |
| 115  | 1.69060 | 482.497 | 1.47334       | 0.0010562 | 2698.72       | 7.18321    | 1.0363   |
| 120  | 1.98543 | 503.719 | 1.52759       | 0.0010606 | 2705.96       | 7.12928    | 0.89152  |
| 125  | 2.32098 | 524.988 | 1.58126       | 0.0010652 | 2713.03       | 7.07693    | 0.77023  |
| 130  | 2.70132 | 546.306 | 1.63436       | 0.0010700 | 2719.90       | 7.02606    | 0.66814  |
| 135  | 3.13075 | 567.677 | 1.68693       | 0.0010750 | 2726.59       | 6.97659    | 0.58181  |
| 140  | 3.61379 | 589.105 | 1.73899       | 0.0010801 | 2733.07       | 6.92844    | 0.50849  |
| 145  | 4.15520 | 610.594 | 1.79055       | 0.0010853 | 2739.33       | 6.88153    | 0.44597  |
| 150  | 4.75997 | 632.150 | 1.84164       | 0.0010908 | 2745.37       | 6.83578    | 0.39245  |
| 155  | 5.43330 | 653.775 | 1.89227       | 0.0010964 | 2751.17       | 6.79112    | 0.34644  |
| 160  | 6.18065 | 675.475 | 1.94247       | 0.0011022 | 2756.73       | 6.74749    | 0.30676  |
| 165  | 7.00766 | 697.254 | 1.99225       | 0.0011082 | 2762.03       | 6.70481    | 0.27240  |
| 170  | 7.92023 | 719.117 | 2.04164       | 0.0011145 | 2767.06       | 6.66303    | 0.24255  |
| 175  | 8.92444 | 741.069 | 2.09064       | 0.0011209 | 2771.81       | 6.62207    | 0.21654  |
| 180  | 10.0266 | 763.116 | 2.13929       | 0.0011275 | 2776.27       | 6.58189    | 0.19380  |
| 185  | 11.2333 | 785.263 | 2.18760       | 0.0011344 | 2780.42       | 6.54242    | 0.17386  |
| 190  | 12.5512 | 807.517 | 2.23558       | 0.0011415 | 2784.26       | 6.50361    | 0.15632  |
| 195  | 13.9873 | 829.884 | 2.28326       | 0.0011489 | 2787.77       | 6.46541    | 0.14084  |
| 200  | 15.5488 | 852.371 | 2.33066       | 0.0011565 | 2790.94       | 6.42776    | 0.12716  |
| 205  | 17.2430 | 874.985 | 2.37779       | 0.0011644 | 2793.75       | 6.39062    | 0.11503  |
| 210  | 19.0774 | 897.734 | 2.42467       | 0.0011726 | 2796.20       | 6.35393    | 0.10424  |
| 215  | 21.0598 | 920.627 | 2.47133       | 0.0011811 | 2798.26       | 6.31765    | 0.094625 |
| 220  | 23.1983 | 943.674 | 2.51779       | 0.0011900 | 2799.92       | 6.28172    | 0.086038 |
| 225  | 25.5009 | 966.883 | 2.56406       | 0.0011992 | 2801.16       | 6.24610    | 0.078349 |
| 230  | 27.9760 | 990.266 | 2.61017       | 0.0012087 | 2801.97       | 6.21074    | 0.071450 |
| 235  | 30.6323 | 1013.83 | 2.65614       | 0.0012187 | 2802.33       | 6.17559    | 0.065245 |
| 240  | 33.4783 | 1037.60 | 2.70200       | 0.0012291 | 2802.21       | 6.14059    | 0.059654 |
| 245  | 36.5232 | 1061.58 | 2.74777       | 0.0012399 | 2801.59       | 6.10569    | 0.054606 |
| 250  | 39.7760 | 1085.78 | 2.79348       | 0.0012513 | 2800.43       | 6.07083    | 0.050037 |
| 255  | 43.2462 | 1110.23 | 2.83917       | 0.0012632 | 2798.72       | 6.03594    | 0.045896 |
| 260  | 46.9434 | 1134.94 | 2.88485       | 0.0012756 | 2796.42       | 6.00097    | 0.042134 |
| 265  | 50.8773 | 1159.93 | 2.93056       | 0.0012887 | 2793.48       | 5.96583    | 0.038710 |
| 270  | 55.0581 | 1185.23 | 2.97635       | 0.0013025 | 2789.87       | 5.93045    | 0.035588 |
|      |         |         |               |           |               |            |          |