Notes - On Topological Cyclic Homology

Johnson Tan

August 28, 2022

Contents

1	Cyclotomic Spectra 1.1 Cyclotomic spectra and TC	1 1
2	Topological Hochschild Homology 2.1 The Tate Diagonal	2
\mathbf{A}	Equivariant Stable Homotopy Theory	2
	A.1 Genuine G-Spectra	3
	A.2 Restriction, Induction, and the Wirthmüller Isomorphism	3
	A.3 Homotopy Fixed Points	
	A.4 Geometric Fixed Points	4
	A.5 Comparison of Fixed Points	5
	A.6 $G = C_{n^{\infty}}$ or \mathbb{T}	5

1 Cyclotomic Spectra

1.1 Cyclotomic spectra and TC

Definition 1.1. A cyclotomic spectrum is a spectrum X with a \mathbb{T} -action together with \mathbb{T} -equivariant maps $\varphi_p \colon X \to X^{tC_p}$. For p a fixed prime, a p-cyclotomic spectrum is a spectrum X with a $C_{p^{\infty}}$ -action and a $C_{p^{\infty}}$ -equivariant map $\varphi_p \colon X \to X^{tC_p}$.

Remark 1. Here we are using the identification $\mathbb{T} \simeq \mathbb{T}/C_p$ (resp. $C_{p^{\infty}} \simeq C_{p^{\infty}}/C_p$) via the map $x \mapsto [x^{1/p}]$ to identify the residual \mathbb{T}/C_p -action (resp. $C_{p^{\infty}}/C_p$ -action) of X^{tC_p} .

Example 1. Let $S^0 \in \mathbf{Sp}^{B\mathbb{T}}$ with trivial \mathbb{T} -action and $f \colon B\mathbb{T} \to B(\mathbb{T}/C_p)$. Then we the following composition of maps

$$S^0 \to f_* f^*(S^0) \to (f^*(S^0))^{tC_p}$$

in $\mathbf{Sp}^{B(\mathbb{T}/C_p)} \simeq \mathbf{Sp}^{B\mathbb{T}}$. It will later be shown that as a cyclotomic spectra, $S^0 \simeq \mathrm{THH}(S^0)$.

Remark 2. In the notes they worried about the equivariant equivalence of the map a little more. Not quite sure why they do this...

Definition 1.2. The ∞ -category of cyclotomic spectra, denoted \mathbf{CycSp} , is defined as the lax equalizer

$$\mathbf{CycSp} := \mathrm{LEq}((\mathrm{id})_p, ((-)^{tC_p})_p \colon \mathbf{Sp}^{B\mathbb{T}} \rightrightarrows \prod_p \mathbf{Sp}^{B\mathbb{T}}).$$

Similarly for a fixed prime p the ∞ -category of p-cyclotomic spectra, denoted \mathbf{CycSp}_p , is defined as the lax equalizer

$$\mathbf{CycSp}_p := \mathrm{LEq}(\mathrm{id}, (-)^{tC_p} \colon \mathbf{Sp}^{BC_{p^\infty}} \rightrightarrows \mathbf{Sp}^{BC_{p^\infty}}).$$

Both \mathbf{CycSp} and \mathbf{CycSp}_p are presentable stable ∞ -categories. The forgetful functors $\mathbf{CycSp} \to \mathbf{Sp}$ and $\mathbf{CycSp}_p \to \mathbf{Sp}$ reflect equivalences, are exact, and preserve all small colimits.

Definition 1.3. Let $(X, (\varphi_p)_p) \in \mathbf{CycSp}$ (resp. $(X, \varphi_p) \in \mathbf{CycSp}_p$) be a cyclotomic (resp. p-cyclotomic) spectrum. The integral (resp. p-typical) topological cyclic homology, denoted $\mathrm{TC}(X)$ (resp. $\mathrm{TC}(X, p)$) is the mapping spectrum

$$\operatorname{MapSp}_{\mathbf{CycSp}}(S^0, X)(resp.\operatorname{MapSp}_{\mathbf{CycSp}_n}(S^0, X)).$$

Let $R \in \mathbf{Alg}_{\mathbb{E}_1}(\mathbf{Sp})$, then $\mathrm{TC}(R) := \mathrm{TC}(\mathrm{THH}(R))$ and $\mathrm{TC}(R,p) := \mathrm{TC}(\mathrm{THH}(R),p)$.

Remark 3. It will be shown later that THH(R) has a canonical structure of a cyclotomic spectrum.

Proposition 1. Let $(X, (\varphi_p)_p)$. There is a functorial fiber sequence

$$\mathrm{TC}(X) \to X^{h\mathbb{T}} \xrightarrow{(\varphi_p^{h\mathbb{T}} - \mathrm{can})_p} \prod_p (X^{tC_p})^{h\mathbb{T}}$$

where can: $X^{h\mathbb{T}} \simeq (X^{hC_p})^{h(\mathbb{T}/C_p)} \simeq (X^{hC_p})^{h\mathbb{T}} \to (X^{tC_p})^{h\mathbb{T}}$.

2 Topological Hochschild Homology

2.1 The Tate Diagonal

Goal. Produce a substitute for the diagonal map of spaces in the category of spectra.

Proposition 2. Let p be a prime. The functor $T_p \colon \mathbf{Sp} \to \mathbf{Sp}$ given by $X \mapsto (X^{\otimes p})^{tC_p}$ is exact, where $X^{\otimes p}$ denotes the p-fold self tensor product with the C_p -action given by the cyclic permutation of the factors.

Recall that there is an equivalence $\mathbf{Fun}^{\mathrm{Ex}}(\mathbf{Sp},\mathbf{Sp}) \simeq \mathbf{Fun}^{\mathrm{lex}}(\mathbf{Sp},\mathbf{Spc})$ given by composing with Σ^{∞} . Since $\mathrm{id}_{\mathbf{Sp}}$ corresponds to Ω^{∞} under this correspondence, by the Yoneda lemma, we have an equivalence between the space of natural transformations $\mathbf{Map_{Fun}^{\mathrm{Ex}}(\mathbf{Sp},\mathbf{Sp})}(\mathrm{id}_{\mathbf{Sp}},F)$ and the mapping space $\mathbf{Map_{Sp}}(S^0,F(S^0))$.

Definition 2.1. The Tate diagonal is the natural transformation

$$\Delta_p \colon \mathrm{id}_{\mathbf{Sp}} \to T_p \colon X \to (X^{\otimes p})^{tC_p}$$

corresponding to the map $S^0 \to (S^0)^{tC_p}$ associated to the free cyclotomic structure of S^0 .

Theorem 1. Let $X \in \mathbf{Sp}$ be bounded below. Then the map Δ_p exhibits $(X^{\otimes p})^{tC_p}$ as the p-completion of X.

Remark 4. Note that the existence of Δ_p uses the universal characterization of \mathbf{Sp} as the stabilization of \mathbf{Spc} . In particular there is no lax symmetric monoidal transformation $C \to (C^{\otimes p})^{tC_p}$ as functors $\mathcal{D}(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$.

A Equivariant Stable Homotopy Theory

Goal. Reproduce as much of the required theory regarding spectra with G-action and genuine G-spectra with spectral mackey functors. In particular:

- All the different kinds of fixed points in GSp.
- Describe the fixed point functors for $C_{p^{\infty}}\mathbf{Sp} := \lim_{n} C_{p^{n}}\mathbf{Sp}$ via forgetful maps.
- Similarly for $\mathbb{T}\mathbf{Sp}_{\mathcal{F}}$ and furthermore achieve this using cyclonic spectra.

A.1 Genuine G-Spectra

Definition A.1. The ∞ -category of genuine G-spectra is $G\mathbf{Sp} := \mathbf{Fun}^{\oplus}(\mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_G), \mathbf{Sp})$. For $H \leq G$ and $X \in G\mathbf{Sp}$, the genuine H-fixed point spectrum of X is defined as $X^H := X(G/H) \simeq \mathrm{MapSp}(\Sigma^{\infty}_+ G/H, X)$.

Proposition 3. The ∞ -category $G\mathbf{Sp}$ is stable with t-structure where $X \in G\mathbf{Sp}$ is connective if it is pointwise connective. In particular $G\mathbf{Sp}^{\heartsuit}$ is equivalent to the classical category of mackey functors. There is an adjunction

$$\Sigma^{\infty} \dashv \Omega^{\infty} : G\mathbf{Spc}_{*} \leftrightarrows G\mathbf{Sp}$$

where $\Omega^{\infty}(E) = \Omega^{\infty} \circ E \circ j$ and $j \colon \mathbf{O}_{G}^{\mathrm{op}} \to \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{G})$ is the obvious inclusion. For $I \in \mathbf{Fin}_{G}$, the suspension spectra $\Sigma_{+}^{\infty}I$ is self dual in $G\mathbf{Sp}$.

Remark 5. In [NS] they define equivalences of G-spectra using geometrix fixed points. This is equivalent to equivalences detected by genuine fixed points.

Todo

 \bullet Add in detail about $\mathbf{A}^{\mathrm{eff}}$ and its self duality

A.2 Restriction, Induction, and the Wirthmüller Isomorphism

Let H be a subgroup of G, we will construct an ambidextrous adjunction

$$\operatorname{res}_H^G \colon G\mathbf{Sp} \leftrightarrows H\mathbf{Sp} \colon \operatorname{ind}_H^G$$
.

To construct the above adjunction, we define adjunctions at the following steps:

- Finite G sets \mathbf{Fin}_G .
- Span categories $\mathbf{A}^{\text{eff}}(\mathbf{Fin}_G)$.
- Spectral Mackey Functors $\mathbf{Fun}^{\oplus}(\mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{G}), \mathbf{Sp}).$

Let $\operatorname{res}_H^G \colon \mathbf{Fin}_G \to \mathbf{Fin}_H$ denote the forgetful functor. Then the left adjoint is denoted by $\operatorname{ind}_H^G \colon \mathbf{Fin}_H \to \mathbf{Fin}_G$ which sends a finite H-set X to the G-set $G \times_H X := (G \times X)/H$ where H acts by $h(g,x) = (gh^{-1}, hx)$. In particular, ind_H^G sends H/K to G/K. Since both res_H^G and ind_H^G preserve pullbacks both extend to functors $\operatorname{res}_H^G \colon \mathbf{A}^{\operatorname{eff}}(\mathbf{Fin}_G) \to \mathbf{A}^{\operatorname{eff}}(\mathbf{Fin}_H)$ and $\operatorname{ind}_H^G \colon \mathbf{A}^{\operatorname{eff}}(\mathbf{Fin}_G)$. Furthermore they are still adjoints at this level, i.e. $\operatorname{res}_H^G \dashv \operatorname{ind}_H^G$.

Remark 6. Adjointness is nontrivial and does not follow immediately from \mathbf{A}^{eff} being functorial.

In fact by self duality of $\mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{G})$, we have that $\mathrm{ind}_{H}^{G}\dashv \mathrm{res}_{H}^{G}$. Finally we define $\mathrm{res}_{H}^{G}\colon G\mathbf{Sp}\to H\mathbf{Sp}$ by precomposition with $\mathrm{ind}_{H}^{G}\colon \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{H})\to \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{G})$ and similarly for ind_{H}^{G} .

Remark 7. Observe that for $X \in G\mathbf{Sp}$ and K < H < G, we have that

$$(\operatorname{res}_{H}^{G}X)^{K} = (\operatorname{res}_{H}^{G}X)(H/K)$$
$$= X(\operatorname{ind}_{H}^{G}(H/K))$$
$$= X(G/K)$$
$$= X^{K}.$$

That is the genuine K-fixed points for $K \leq H$ do not change.

Todo

- Why do ind, res preserve pullbacks?
- \bullet Lol if deranged enough then explaning why adjoints at the level of $\mathbf{A}^{\mathrm{eff}}$.

A.3 Homotopy Fixed Points

Recall that for a spectra with G-action $X \in \mathbf{Sp}^{BG} := \mathbf{Fun}(BG, \mathbf{Sp})$, the homotopy fixed points of X is $X^{hG} := \lim_{BG} X$. For a genuine G-spectra forgetting to the underlying spectra with G-action is encoded by the functor $u_G : G\mathbf{Sp} \to \mathbf{Fun}(BG, \mathbf{Sp})$ given by restriction along $BG \hookrightarrow \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_G)$. Then the homotopy G-fixed point functors are given by forgetting to \mathbf{Sp}^{BG} then taking the usual homotopy fixed points. We can similarly define the homotopy H-fixed point functors by taking a further restriction to \mathbf{Sp}^{BH} or equivalently by initially applying res_H^G to land in $H\mathbf{Sp}$.

By a result of Saul Glasman we have an alternate way of defining the homotopy fixed points. Let $\mathbf{Fin}_G^{\text{free}} \subset \mathbf{Fin}_G$ denote the full subcategory of finite free G-sets.

Theorem 2. The functor $G\mathbf{Sp}^{\text{free}} := \mathbf{Fun}^{\oplus}(\mathbf{A}^{\text{eff}}(\mathbf{Fin}_G^{\text{free}}), \mathbf{Sp}) \to \mathbf{Fun}(BG, \mathbf{Sp})$ given by precomposition with the inclusion induces an equivalence of ∞ -categories.

Remark 8. Here the inclusion is given by sending $* \in BG$ to $G/e \in \mathbf{O}_G \subset \mathbf{Fin}_G^{\text{free}} \subset \mathbf{A}^{\text{eff}}(\mathbf{Fin}_G^{\text{free}})$. In particular, $\mathbf{A}^{\text{eff}}(\mathbf{Fin}_G^{\text{free}})$ is the free semiadditive ∞ -category generated by BG.

Proof. Can be proved via Lawvere theory, we refer to notes by Maxime Ramzi.

On the other hand we may also consider the restriction map $u_G : G\mathbf{Sp} \to G\mathbf{Sp}^{\text{free}}$ induced by the inclusion $\mathbf{Fin}_G^{\text{free}} \subset \mathbf{Fin}_G$. It is not hard to see that composing u_G with the equivalence from before is the same as directly restricting to BG. Define the Borel completion which we denote by b_G as the right adjoint to u_G .

Remark 9. Abusing notation and conflating $G\mathbf{Sp}^{\text{free}}$ with \mathbf{Sp}^{BG} , we may define the homotopy H-fixed point functor as $X \mapsto (u_G X)^{hH}$. Equivalently we first restrict to H-spectra than apply the corresponding functor, i.e. $X \mapsto (u_H \operatorname{res}_H^G X)^{hH}$.

Theorem 3. For $X \in G\mathbf{Sp}^{\text{free}}$, there is an equivalence $X^{hH} \simeq (b_G X)^H$ for all $H \leq G$.

Proof. First suppose that this is true for H = G. As shown above both adjoints u_G and b_G commute with restrictions. Then

$$(b_GX)^{hH} = (\operatorname{res}_H^G u_G b_GX)^{hH} \simeq (u_H b_H \operatorname{res}_H^G X)^{hH} \simeq (\operatorname{res}_H^G X)^{hH} \simeq (b_H \operatorname{res}_H^G X)^H \simeq (\operatorname{res}_H^G b_G X)^H \simeq (b_G X)^H.$$

Thus it remains to prove the case H = G.

Theorem 4. The functor b_G is fully faithful and the essential image consists of the full subcategory of $X \in G\mathbf{Sp}$ such that the natural map $X^H \to X^{hH}$ is an equivalence for all $H \leq G$ which we refer to as Borel-complete G-spectra.

Todo

- Give proof for homotopy fixed points = genuine fixed points.
- Replace the above remark with proof that restriction and adjoints commute.
- Why is it true that $(u_H b_H \operatorname{res}_H^G X)^{hH} \simeq (\operatorname{res}_H^G X)^{hH}$?

A.4 Geometric Fixed Points

We now construct the geometrix fixed point functors. Let \mathcal{F} be a family of subgroups closed under conjugation and subgroups. Then define

$$(E\mathcal{F})^K \begin{cases} * & k \in \mathcal{F} \\ \varnothing & k \notin \mathcal{F} \end{cases} \in G\mathbf{Spc}.$$

Example 2. Fix a subgroup $H \subseteq G$, then define \mathcal{F}_H to be the collection of subgroups which do not contain a conjugate of H as a subgroup.

Remark 10. We could alternatively describe such a collection of subgroups as a sieve in \mathbf{O}_G . In particular, the above example can be described as the maximal sieve not containing G/H.

We will also be interested in the unreduced suspension of $E\mathcal{F}$. That is

$$E\mathcal{F}_* \to S^0 \to \widetilde{E\mathcal{F}},$$

in particular

$$(\widetilde{E\mathcal{F}})^K = \begin{cases} * & K \in \mathcal{F} \\ S^0 & K \notin \mathcal{F}. \end{cases}$$

In the case \mathcal{F} consists of only the trivial subgroup, then $E\mathcal{F} = EG$ and $\widetilde{E\mathcal{F}} = \widetilde{EG}$.

Lemma 1. Let $E \in G\mathbf{Spc}$, then $(E \wedge \Sigma^{\infty}\widetilde{EF})^{K} \simeq 0$ if $K \in \mathcal{F}$ and $E^{K} \to (E \wedge \Sigma^{\infty}\widetilde{EF})^{K}$ is an equivalence if $K \notin \mathcal{F}$.

Remark 11. The equivalences in the lemma above are induced by the map $S^0 \to \widetilde{EF}$ from the cofiber sequence.

Theorem 5. There is a smashing localization such that the local objects are G-spectra concentrated away from \mathcal{F} , i.e. $E \to E \wedge \Sigma^{\infty} \widetilde{E\mathcal{F}}$ is an equivalence.

Remark 12. This is immediate from the lemma and that \widetilde{EF} is idempotent from looking at the fixed points. Let $\mathbf{Fin}_{\mathcal{F}^c} \subseteq \mathbf{Fin}_G$ denote the full subcategory of those fintie G-sets whose stabilizers are not in \mathcal{F} .

Theorem 6. The category of G-spectra concentrated away from \mathcal{F} is equivalent to $\mathbf{Fun}^{\oplus}(\mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{\mathcal{F}^{c}}), \mathbf{Sp})$ and the inclusion of the precomposition with the map $\Psi \colon \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{G}) \to \mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{\mathcal{F}^{c}})$ that sends every $I \in \mathbf{Fin}_{G}$ to the subset of points with stabilizers in \mathcal{F} .

Remark 13. Fix $H \leq G$ and consider \mathcal{F} as in the previous example. Observe that $K \notin \mathcal{F}$ if and only if there is a map of G-sets $G/H \to G/K$. In the case that H is a normal subgroup of G, then $\mathbf{Fin}_{\mathcal{F}^c}$ is the category of finite (G/H) - sets. Indeed $\mathbf{Fin}_{\mathcal{F}^c}$ would be all finite G-sets whose stabilizers are subgroups of H.

In particular, the localization functor is given by left Kan extension along Ψ , i.e.

$$\Psi_! \colon G\mathbf{Sp} \to \mathbf{Fun}^{\oplus}(\mathbf{A}^{\mathrm{eff}}(\mathbf{Fin}_{\mathcal{F}^c}), \mathbf{Sp}).$$

We call $\Phi_!$ the geometric H-fixed point functor and denote it by Φ^H or $(-)^{\Phi H}$. In the case H is normal, then this functor takes values in (G/H)-spectra.

Remark 14. The geometric H-fixed point functors are symmetric monoidal.

A.5 Comparison of Fixed Points

A.6
$$G = C_{p^{\infty}}$$
 or \mathbb{T}

Todo

- Specify a bit more about genuine fixed points
 - In particular where the natural transformation $(-)^H \to (-)^{\Phi H}$ comes from.
 - Also the composability of geometric fixed points, i.e. something like $\Phi^{H'/H} \circ \Phi^H \to \Phi^{H'}$ is an equivalence.
 - Mention how the geometric fixed points form a localization and what the corresponding reflective subcategory is.
- Do the same for homotopy fixed points
 - In particular how there is NO DIRECT relation with geometric fixed points.
- Write about the $C_{p^{\infty}}$ and \mathbb{T} equivariant variants of the theory
 - In particular what results hold "essentially" analogously.
- Also specify how we can get borel G-spectra using spectral mackey functors.