Phys 2110-5 11/26/12

Note Title 11/26/2012

Harmonic Wave () ave s

Particular waves M = mass density

of string (h)/m) = tension in string Convertly waves in any solid material, V = N Elastic proporty
Mass proporty

Disches power of a wave on string

Arg power

 $\overline{P} = \frac{1}{2} M w^2 A^2 V$ $\frac{1}{m} \frac{m^2 m}{s^2}$

 $W = 2\pi f$

 $\frac{1}{5} = W$ $\frac{\log m^2}{5^3} = W$

Energy Time

p. 229

Can have waves in 3D Make wave Transmited energy: Must use: Maxima MINIMA Area, Time

Isotropic source Spherical Waves (A) most like plane wares far avay.) Consider entire sphere at readings V. Rate of enong) crossing entire sphere SOUV Le

Examples I, Wm

Sound Wayes

Sound of jet direcraft: 10 m²

Light, at earth or bit

(from sun) 1368 m²

M-wares in own

600 m²

Region of larger density than
not and travel through
a mass of giv.
number associat

Formula get: Nix = 15 Halms

P pressure

P pressure

P gas

Sownd Waves Human he avive can com 10-12 W threshold of hearing Jet amplane 10. log10 = B

Intensity: Energy Avra Time Heaving "works bogasithmically

Heaving B=0 = 3=100 Fregumey range of human heaving P. 231 20 Hz - 10,000 Hz With age - 15,000 HZ Arimals Lass - 30,000 Hz.
bats - 100,000 Hz Thresh of hearing not some for all freq.

This covers pure wares Interference of waves Superposition
poperty.