

Image Super-Resolution using Enhanced Sub-Pixel Convolutional Networks (ESPCN)

MISSION

CHRIST is a nurturing ground for an individual's holistic development to make effective contribution to the society in a dynamic environment

VISION

Excellence and Service

CORE VALUES

Faith in God | Moral Uprightness Love of Fellow Beings Social Responsibility | Pursuit of Excellence

Abstract

- **Problem Statement:** Super-resolution is crucial in enhancing image quality for applications like medical imaging, satellite photos, and security.
- Existing Methods:
 - Traditional Interpolation: Bicubic,
 Bilinear Fast but poor quality.
 - State-of-the-Art (e.g., Real-ESRGAN): High quality but computationally expensive.
- Our Approach:
 - We implement Efficient ESPCN, which balances performance and speed.
 - We compare results across different scaling factors (2x, 3x, 4x).
 - Also compare with and without augmentation for scale=2.

Picture of a planet 4 billion kilometres away

1. Introduction

• Existing Methods:

- Bicubic/Bilinear → Simple but low-quality
- Real-ESRGAN / EDSR → High quality, high cost

• ESPCN Motivation:

- Lightweight, real-time
- PixelShuffle-based upsampling
- Great for mobile, video,embedded or web use-cases.

2. Dataset – DIV2K (from Kaggle)

- **DIV2K Dataset**: Large, diverse collection of 2K resolution RGB images
- Train set: 800 HR images \rightarrow LR pairs for $\times 2, \times 3, \times 4$
- Validation set: 100 HR images, for feedback evaluation
- **Test set**: 100 diverse images (HR released post-challenge)
- Use case in this project:
 - Only the training HR images used to synthesize LR-HR pairs
 - Enables training of SR models on a wide variety of natural scenes

3. Proposed Methodology

Preprocessing & Augmentation

- **Bicubic downsampling** to create LR images from HR
- Augmentation:
 - HorizontalFlip (p=0.5)
 - \rightarrow Flips the image horizontally with 50% probability.
 - RandomBrightnessContrast (p=0.3)
 - → Randomly adjusts image brightness and contrast (30% chance).
 - GaussNoise (var_limit=(5.0, 20.0), p=0.3)
 - \rightarrow Adds Gaussian noise with variance between 5–20 (30% chance).
 - ImageCompression (quality_lower=85, quality_upper=100, p=0.4)
 - → Simulates JPEG compression artifacts with 85–100% quality (40% chance).
 - RandomGamma (p=0.3)
 - → Applies gamma correction to change brightness non-linearly (30% chance).
 - HueSaturationValue (p=0.3)
 - → Randomly modifies hue, saturation, and value (HSV) channels (30% chance).

3. Proposed Methodology

ESPCN Model Architecture

- Input \rightarrow Conv (ReLU) \rightarrow Conv (ReLU) \rightarrow Conv \rightarrow Pixel Shuffle
- Uses **depth-to-space** rearrangement (efficient upscaling)
- Trained separately for scale=2, 3, 4
- Optimized using Adam, Loss: MSE

4. Evaluation Metrics

PSNR (Peak Signal-to-Noise Ratio)

PSNR measures the **pixel-level fidelity** between the original (ground truth) and a distorted (processed) image. It's based on the **Mean Squared Error (MSE)** between the two images.

A higher PSNR generally indicates that the reconstructed image is closer to the original.

Characteristics:

- Range: Typically between 20 and 50 dB for lossy image compression.
- **Higher is better**: $PSNR \ge 30$ dB is considered good.
- Limitations:
 - Doesn't consider human visual perception.
 - Sensitive to small pixel-level changes.
 - o Two images may have high PSNR but look perceptually very different.

4. Evaluation Metrics

SSIM (Structural Similarity Index Measure)

SSIM evaluates the **perceptual similarity** between two images by considering:

- Luminance (brightness)
- Contrast
- Structure

Unlike PSNR, it aligns more closely with how humans perceive image quality.

Characteristics:

- Range: [-1, 1] (Usually reported between 0 and 1)
- **Higher is better**: SSIM = 1 means perfect structural similarity.
- More perceptually aligned than PSNR.

5. Results and Comparison

Without Augmentation:

5. Results and Comparison

With Augmentation:

5. Verdict

Metric	Before Augmentation	After Augmentation	Verdict
MSE	Low, stable	Low, slightly smoother	Equal / Slightly better
PSNR	Slightly noisy, larger gap	Smoother, reduced gap	Improved generalization
SSIM	More variance, lower early on	Smoother, higher convergence	Improved structural quality

THANK YOU

Project Presentation

bv

R. Jawahar (2448540)

Guide

Dr. Sandhiya B

Department of Computer Science CHRIST(Deemed to be University), Bengaluru-29

VISION

MISSION