Minh Nguyen

CS 225

4.3 Recursive Definitions

7th edition 5.3: {2(a,b), 8, 24, 26a, 28a, 32a}

2) a)
$$f(n+1) = -2f(n)$$

 $f(1) = -2f(0) = -2*3 = -6$
 $f(2) = -2f(1) = -2*-6 = 12$
 $f(3) = -2f(2) = -2*12 = -24$
 $f(4) = -2f(3) = -2*-24 = 48$
 $f(5) = -2f(4) = -2*48 = --96$

8) a)
$$a_n = 4n - 2$$

base case: $a(1) = (4(1)-2 = 2$
Recursive step: $a_n = 4(n+1) - 2$
 $= 4n + 4 - 2$
 $= 4n - 2 + 4$
 $= a_n + 4$

b)
$$a_n=1+(-1)^n$$

base case: $a_1=1+(-1)^1=2$
 $a(n+1)=a(n)+?$
 $?=a_{n+1}-a_n$
 $=1+(-1)^{n+1}-1+(-1)^n$
 $=-(1)^{n+1}-1^n$
 $=-2$
 $a(n+1)=a^n-2$

c)
$$a_n = n(n+1)$$

base case: $a_1 = 1(1+1) = 2$
 $a_{n+1} = a_n + ?$
? = $a_{n+1} - a_n$
= $(n+1)(n+2) - n(n+1)$
= $n^2 + 3n + 2 - n^2 - n$
? = $2n + 2$
= $a_n + 2n + 2$

d)
$$a_n = n^2$$

base case: $a_1 = 1^2 = 1$
 $a_{n+1} = a_n + ?$
 $? = (n+1)^2 - n^2$
 $= n^2 + 2n + 1 - n^2$
 $? = 2n + 1$
 $= a_n + 2n + 1$

24) a) Set of odd integers

Basis step: $1 \in S$

Recursive step: if $x \in S$, then $x+2 \in S$

b) Set of positive integer power of 3

basis step: $3 \in S$

Recursive step: if $x \in S$, then $3x \in S$

c) Set of polynomials with integer coefficients

basis step: $0 \in S$

Recursive step: $A(n) \in S$, then $A(n) + B(n)^k \in S$, $B \in Z$, $k \in Z$

Z is the set of integers.

26) a)

28 a)

basis step: $(0,0) \in S$

Recursive step: if $(a,b) \in S$, then $(a,b+2) \in S$, $(a+2,b) \in S$, $(a+1,b+1) \in S$

32a) Basis step: ones(λ) = 0, λ is the empty string

Recursive step = if $x \in S$, and $w \in \Sigma^*$, then ones(wx) = ones(w) + x