Numerical Optimization, 2020 Fall Homework 4

Due on 14:59, Oct. 15, 2020

- 1. 请按要求写出下列线性规划问题对应的对偶问题.
- (1) 请参考 Lecture 5 提供的原-对偶表格法, 写出如下问题对应的对偶问题并使用**图解法**求解. [15pts]

min
$$12x_1 + 8x_2 + 16x_3 + 12x_4$$

s.t. $-2x_1 - x_2 - 4x_3 \le -2$
 $-2x_1 - 2x_2 - 4x_4 \le -3$
 $x_i \ge 0, \quad i = 1, \dots, 4.$ (1)

(2) 请使用 Lagrange 方法写出如下问题对应的对偶问题. [10pts]

min
$$x_1 - x_2$$

s.t. $2x_1 + 3x_2 - x_3 + x_4 \le 0$
 $3x_1 + x_2 + 4x_3 - 2x_4 \ge 3$
 $-x_1 - x_2 + 2x_3 + x_4 = 6$
 $x_1 \le 0$
 $x_2, x_3 \ge 0$. (2)

2. 考虑如下的两阶段法中第一阶段的辅助问题

$$\min_{\substack{\boldsymbol{x} \in \mathbb{R}^n \\ \boldsymbol{y} \in \mathbb{R}^m}} \quad \sum_{i=1}^n y_i \\
\text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b} \\
\boldsymbol{x} \ge \boldsymbol{0}, \boldsymbol{y} \ge \boldsymbol{0}$$
(3)

其中 $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{c} \in \mathbb{R}^n$ 和 $\mathbf{b} \in \mathbb{R}^m$ 给定.

- (1) 写出问题 (3) 的对偶问题. [15pts]
- (2) 对于上述问题 (1) 中得到的对偶问题, 请问它有最优解吗? 请给出充分的理由. [15pts]
 - 3. 如图 1 示. 请解释: 为什么该定理成立? (提示: 利用强对偶定理.) [15pts]
- 4. 如图 2 示. 请解释: 如果初始单纯型表格含有单位阵, 为什么转轴完成后对应的最下方的位置是最优乘子? (注意: 回答需要针对一般的线性规划问题转轴, 不能仅仅解释给出的例子.) [15pts]
 - 5. 证明: 线性规划问题求解等价于求解一个线性可行性问题.(提示: 请参考 Lecture 5 第 14 页.) [15pts]

定理. 设标准形线性规划问题有最优解 x^* , B 是最优基本可行解对应的基,则

$$\lambda^* = (c_B^{\mathrm{T}} B^{-1})^T$$

是其对偶问题的最优解.

图 1: Lecture 5 第 11 页给出的定理.

		\boldsymbol{x}	1	r_2	x_3	x_4	x_5	5	$B^{-1}b$		
-		2	2	2	1	1	. ()	4		原问题
		-	1	2	2	0	1	L	6		最优解
r^{γ}	$oldsymbol{\Gamma}$	_ :	1 –	-4	-3	0	()	0		$x_1^* = 0$
_											$x_2^{\stackrel{1}{*}}=1$
_								_	2-11		_
		x_1	$\boldsymbol{x_2}$	${m x}$	3	x_4	$\boldsymbol{x_5}$	Ŀ	$3^{-1}b$		$x_3^*=2$
		1	1		$\frac{1}{2}$	$\frac{1}{2}$	0		2		· ·
		-1	0	1	_	$-\tilde{1}$	1		2		
,	r^{T}	3	0	_	_ 1	2	0		8		对偶问题
											最优解
_								_			TX DUNIT
_		x_1	x_2	x_3	\boldsymbol{x}	34	x_5	I	$B^{-1}b$		$\lambda_1^* = -1$
		$\frac{3}{2}$	1	0)	1	$-\frac{1}{2}$		1		$\lambda_2^* = -1$
		$-ar{1}$	0	1	_	1	$\bar{1}$		2		<i>7</i> .2 — 1
7	r^{T}	2	0	0	<u> </u>	1	1		10		
_					1						
										_why?	
数值最优	化				线	性规划				ShanghaiTech	-sist-cs 13

图 2: Lecture 5 第 13 页给出的单纯型表示例.