Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 2$ $a_3 = 10$	2p
	$a_3 = 10$	3 p
2.	$f(m) = 3 \Leftrightarrow 4m - 9 = 3$	3p
	m=3	2p
3.	$2^{2x} = 2^{3x-2} \Longrightarrow 2x = 3x-2$	3 p
	x=2	2p
4.	$\frac{40}{100} \cdot x = 80$, unde x este numărul total de concurenți	3p
	x = 200 de concurenți	2p
5.	M(2,2) este mijlocul segmentului AB	2p
	M este mijlocul segmentului $OC \Rightarrow \frac{0+a}{2} = 2$, de unde obținem $a = 4$	3p
6.	$AC = \sqrt{BC^2 - AB^2} = 8$	2p
	CM = 8, $AM = 8$, deci triunghiul AMC este echilateral	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$3 \circ 3 = 3(3 \cdot 3 - 2 \cdot 3 - 2 \cdot 3) + 14 = 5$	2p
	$1 \circ 1 = 3(1 \cdot 1 - 2 \cdot 1 - 2 \cdot 1) + 14 = 5 \Longrightarrow 3 \circ 3 = 1 \circ 1$	3 p
2.	$x \circ 2 = 3(x \cdot 2 - 2 \cdot x - 2 \cdot 2) + 14 =$	3p
	=-12+14=2, pentru orice număr real x	2 p
3.	$x \circ \frac{7}{3} = 3\left(x \cdot \frac{7}{3} - 2x - 2 \cdot \frac{7}{3}\right) + 14 = 7x - 6x - 14 + 14 = x$, pentru orice număr real x	2p
	$\frac{7}{3}$ ° $x = 3\left(\frac{7}{3} \cdot x - 2 \cdot \frac{7}{3} - 2x\right) + 14 = 7x - 14 - 6x + 14 = x$, pentru orice număr real x , deci $e = \frac{7}{3}$	3 p
	este elementul neutru al legii de compoziție "°"	
4.	$x \circ x = 3x^2 - 12x + 14$, pentru orice număr real x	2 p
	$3x^2 - 12x + 14 = 5$, deci $x^2 - 4x + 3 = 0$, de unde obținem $x = 1$ sau $x = 3$	3 p
5.	$x \ge 2$ şi $y \ge 2 \Rightarrow x - 2 \ge 0$ şi $y - 2 \ge 0$, deci $(x - 2)(y - 2) \ge 0$	2p
	$x \circ y = 3(x-2)(y-2) + 2 \Rightarrow x \circ y \ge 2$, pentru orice numere reale $x \ge 2$ şi $y \ge 2$	3 p
6.	$m \circ n = 8 \Leftrightarrow 3(m-2)(n-2) + 2 = 8$	3 p
	(m-2)(n-2)=2 şi, cum m şi n sunt numere naturale nenule, obţinem $m=4$ şi $n=3$ sau $m=3$ şi $n=4$, deci $m+n=7$	2p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 3 & 6 \\ -1 & -2 \end{vmatrix} = 3 \cdot (-2) - 6 \cdot (-1) =$	3p
	=-6+6=0	2 p
2.	$A \cdot A = \begin{pmatrix} 3 \cdot 3 + 6 \cdot (-1) & 3 \cdot 6 + 6 \cdot (-2) \\ -1 \cdot 3 + (-2) \cdot (-1) & -1 \cdot 6 + (-2) \cdot (-2) \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix} = A$	2 p
3.	$X(a) = \begin{pmatrix} 1+3a & 6a \\ -a & 1-2a \end{pmatrix} \Rightarrow \det(X(a)) = 1+a$	3 p
	$1+a=2a^2$, de unde obținem $a=-\frac{1}{2}$ sau $a=1$	2 p
4.	$A \cdot X(a) = A \cdot (I_2 + aA) = A \cdot I_2 + a \cdot A \cdot A = A + aA =$	3p
	=(a+1)A, pentru orice număr real a	2 p
5.	$X(m) \cdot X(n) = (I_2 + mA)(I_2 + nA) = I_2 + mA + nA + mnA =$	3 p
	$=I_2+(m+n+mn)A=X(m+n+mn)$, pentru orice numere reale m și n	2 p
6.	$X(2a+a^2) = X(2b+b^2) \Leftrightarrow 2a+a^2 = 2b+b^2$	2p
	(a-b)(a+b+2)=0 și, cum a și b sunt numere reale distincte, obținem $a+b+2=0$	3p