SVMRANKER: A General Termination Aalysis Framework of Loop Programs via SVM Presentation & Demonstration

Xie Li, Yi Li, Yong Li, Xuechao Sun, Andrea Turrini and Lijun Zhang Presentor:

June 19, 2020

Outline

- 1. Introduction to Ranking Functions
- 2. Overview of SVMRANKER
- 3. Demonstration of the Tool in Command Line.

Single Path Linear Constraint Loop

Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

Let B = (-1, 0, 1), $\mathbf{x} = (x, y, z)^T$, $\mathbf{b} = 0$. Let $\mathbf{x}'' = (x, y, z, x', y', z')$,

$$A = \begin{bmatrix} 1 & 1 & 0 - 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$
 (1)

and $\mathbf{c} = (0, 0, 1)^T$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

Ranking Functions

Definition (Single Linear Ranking Function(LRF))

$$f(x_1,\ldots,x_n)=a_1x_1+\ldots a_nx_n+a_0$$
, such that

- ▶ $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- ▶ $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-5$

LRF: f(x) = ax + b.

- $ax + b \ge 0 \Rightarrow x \ge -\frac{b}{a} = 1.$
- $ax + b (ax' + b) = a(x x') = 5a \Rightarrow 5a \ge 1$

A possible SLRF: f(x) = x - 1

Limitation of SLRF

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

Assume there is a LRF for this loop, say $f(q, y) = a_1 q + a_2 y + b$

$$f(q, y) - f(q', y') = a_1 y + a_2$$

Since y is not bounded, we cannot guarantee $\Delta f(q,y,q',y')>0$ The loop does not has a SLRF, however, it does terminate. We still wish to use q for ranking function, but to distinguish different "phase" of q base on either $y\geq 0$ or y<0

Nested RF

Definition (Nested Ranking Function)

A tuple $\langle f_1,\dots,f_d\rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}''\in T$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x''}) - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Let
$$f_0 = 0$$
.

Example: Nested RF

$$f_d(\mathbf{x}) \ge 0$$

 $(\Delta f_i(\mathbf{x''}) - 1) + f_{i-1}(\mathbf{x}) \ge 0$ for all $i = 1, \dots, d$.

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

▶ Above loop has Nested RF $\langle 1-y, q+1 \rangle$

Linear Loop Program

Definition

A linear loop program LOOP(x, x') is a binary relation defined by a formula with the free variables x and x' of the form

$$\bigvee_{i \in I} \left(A_i \begin{pmatrix} x \\ x' \end{pmatrix} \le b_i \land C_i \begin{pmatrix} x \\ x' \end{pmatrix} < d_i \right)$$

for some finite index set I.

Example

while
$$(q>0)\{\text{if }(y>0): q'=q-y-1; \text{else }: q'=q+y-1\}$$

can be represented by

$$(q > 0 \land y > 0 \land y' = y \land q' = q - y - 1)$$

 $\lor (q > 0 \land y < 0 \land y' = y \land q' = q + y - 1)$

Limitation of Nested RF

Example

while
$$(q>0 \lor y>0)$$

$$\{\text{if } (y>0): y'=y-1; q'=q; \text{else }: q'=q-1\}$$

This program does not have a nested ranking function for we require $f_d \geq 0$ but the guard is $q > 0 \lor y > 0$.

Howerver, this loop does terminate. Then we use a "multi-phase" ranking function $\langle y,q\rangle$ to prove the termination.

$$f_d(\mathbf{x}) \ge 0$$

 $(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$ for all $i = 1, \dots, d$.

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \le i \cdot \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i \cdot f_j(\mathbf{x}) \le 0.$$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

x	y	z	z+1	y+1	x
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Example: Multiphase Ranking Function

while
$$(x>-z)$$
do $x'=x+y, y'=y+z, z'=z-1$ $\langle z+1, y+1, x \rangle$

 \mathbf{x}'' is ranked by f_k when i=k. In this example, $f_1(x,y,z)=z+1$, $f_2(x,y,z)=y+1$ and $f_3(x,y,z)=x$

