homeostasis & fluid compartements

basic organization of the body

- tissue types
 - muscle
 - nervous
 - connective
 - epithelium
- organ: functional unit
- organ system: several organs acting together

Fluid compartments

- intra cellular fluid compartement
 - bounded by plasma membrane
 - the largest, 2/3 of the total fluid of the body
 - high potassium K
 - low sodium Na
- extra cellular fluid compartement
 - -1/3 in size
 - High sodium Na
 - Low potassium K
 - Intravascular compartment
 - * has proteins
 - * 1/12
 - intrastitial fluid space (connecitve tissue)
 - * 3/12

self-regulating mechanisms

- equilibrium
 - equal amount of substance
 - no energy expenditure to maintain
 - no barrier to movements
 - no net transfer of substance or energy
- steady state
 - between extra and intra cellular space
 - constant amount of substance in compartements
 - input = output
 - requires energy to maintain
 - maintain gradient

what is homeostatis

- central theme of physiology
 - extracellular fluid is the buffer zoneA

- input/output analogy
- homeostatic control & reflex loops
 - sensor: detect stimulus -> send to integration center (brain) <- contains set points, evaluates incoming signal
 - effector: efferent path -> generates response to maintain normal condition
- high salt diet
 - NaCL -> diet == urine :: neutral balance
 - NaCL -> diet > urine :: positive balance
 - NaCL -> diet == urine :: neutral balance
 - Increased total amount of sodium
 - stays in the ECF; water also goes to the ECF
 - concentration is maintained at a cost
 - * vasculature: increased volume of blood (thus, increased pressure)

general concepts

- interdependent
- maintain internal environment
- homeostatis, balancing input and outputs
 - epithelium is leaky
- ATPase
 - uses energy to move 3 sodium / every 2 potassium entering
 - keep ions at a desequilibrium

Regulation of homeostasis

- local response
 - cell 1 -> chemical -> cell 2 (becomes activated) :: paracrine control
 - cell 1 -> chemical -> cell 1 (becomes activated) :: autocrine control
 - cell 1 -> physical connection (gap junction, nexus) -> cell 1 (becomes activated) :: gap junction
- endocrine system
 - endocrine cell -> chemical secreted to bloodstream -> target cell
 - neuron -> synapse (neurotransmitter) -> effector cell
- reflex components
 - stimulus -> sensor -> integration center -> effectors
- external change
 - stimulus::bodytemp=340 -> thermal sensors::peripheral & central
 integration center::hypothalamus (370 signal) -> effector::muscle shivering; vasoconstriction in skin) -> generate heat
 - FEVER, macrophage -> pyrogen -> hypothalamus 40c -> brain interprets body as being cold -> shivering + vasoconstriction in skin

negative feedback

• removes initializing stimulus

positive feedback

• increase

tonic control

- modulating the activity of a specfic cell
- hold specific state for longer muscle

antagonistic control

- parasympathetic
 - slow the heart rate
- sympathetic
 - increase the hear rate

circadian rhythms

- growth hormone -> released during early sleep
- cortisol -> increases just before waking up
- dictated by sleep/wake, not by light/dark

transporters pumps & channels

simple diffusion & gap junctions

- flux: random movement of molecules across a surface per unit time simple diffusion
- gap junctions: permits diffusion of ions between coupled cells

characteristic of simple diffusion

- from high to low concentration
- no energy
- rapidly over short distance, slow over long distances
- continues until equilibrium is reached
- directly related to temperature
- inversely related to the size of the molecule
- is dependent on the total surface area and thickness of the membrane barrier

facilitated diffusion

- not lipo-soluble, charged molecules, can't move through the plasma membrane through simple diffusion
- integral membrane protein
 - can change conformation to external or internal cellular space
 - glucose transporters -> net flux determined by gradient

SIMPLE VS FACILITATED DIFFUSION

- co-transporters
 - move more than one solute at any time
 - symporter -> move in same direction
 - antiporter -> move in different directions
- channels
 - aquaporine -> move water across the membrane
 - regulated opening is called gating
 - * if opened movement is due to diffusion
 - gating of channels
 - * ligand gating -requires binding of specific chemical to open
 - * voltage
 - · requires specific gradient of electrical charge
 - * mechanical
 - · requires specific tension to open
- pump mediate active transport
 - pumps actively moves solute against concentration gradient
 - pumps are ezyme, cleave atp -> undergo different conformation
- transcellular transport
 - movement across the cell into the bloodstream
 - secondary active transport
 - * transporter in the basal and apical side

- * glucose transported by the sodium Na+ gradient, 'free ride'
- general concepts
 - movement across the bi lipid layer is dependent in size, charge and solubility
 - net flux determined by gradient
 - permeable solute crosses the membrane by simple diffusion, moving down its concentration gradient
 - a non-permeable solute cross the membrane by facilitated diffusion, requires gradient, specific, and its saturable
 - primary active transport moves a solute against its concentration gradient, requires ATP, specific, and is saturable
 - secondary active transport couples the activity of a co-transporter with a pump. This is used for transcellular transport of a solute.

effective solutes & water transport

- concentration of water
 - osmosis
 - * change in compartment size when membrane is impermeable to solute
 - * occurs by diffusion only
 - * uses aquaporin channels
 - * has highest concentration when pure water
- important terms
 - molarity: mole/vol (1 $mole = 6 \times 10^2 3 molecules$)
 - osmolarity: (#molecule/vol) * (# particles/molecule)
 - osmolality: kg of water
- tonicity & cell volume
 - always comparative

_

non-penetrating molecules/volume

• changes in body fluid compartements