Math CS 122A HW9

Zih-Yu Hsieh

March 9, 2025

1

Question 1 Ahlfors Pg. 154 Problem 2:

Hwo many roots of the equation $z^4 - 6z + 3 = 0$ have their modulus between 1 and 2?

Pf:

For the disk |z| < 1, consider the function -6z + 3: It has one zero in |z| < 1, namely $z = \frac{1}{2}$. On the other hand, for circle |z| = 1, the following inequalities are true:

$$|(z^2 - 6z + 3) - (-6z + 3)| = |z|^4 = 1$$

$$|-6z+3| \ge |6|z|-3| = 6-3 = 3$$

So, since $|(z^2 - 6z + 3) - (-6z + 3)| = 1 \le 3 \le |-6z + 3|$ for all z on |z| = 1, then by Rouche's Theorem, the two polynomials have the same number of zeroes enclosed by the circle |z| = 1.

Since -6z + 3 only has one zero in this region, then $z^4 - 6z + 3$ also has one zero in this region.

Now, consider the disk |z| < 2, and the function z^4 : It has four zeros in |z| < 2 counting multiplicity (namely z = 0).

On the other hand, for circle |z|=2, the following inequalities are true:

$$|(z^2 - 6z + 3) - z^4| = |-6z + 3| \le 6|z| + 3 = 15$$

$$|z^4| = |z|^4 = 16$$

So, since $|(z^4 - 6z + 3) - z^4| = 15 < 16 = |z^4|$ for all z on |z| = 2, by Rouche's Theorem again, the two polynomials have the same number of zeroes enclosed by the circle |z| = 2. Since z^4 has four zeroes in this region, then $z^4 - 6z + 3$ also has four zeroes in this region.

Then, since 4 zeroes has modulus less than 2, while 1 zero has modulus less than 1, counting the ones with modulus between 1 and 2, we have total of 4 - 1 = 3 zeroes.

Question 2 Ahlfors Pg. 161 Problem 5:

Complex integration can sometimes be used to evaluate area integrals. As an illustration, show that if f(z) is analytic and bounded for |z| < 1 and if $|\zeta| < 1$, then

$$f(\zeta) = \frac{1}{\pi} \int \int_{|z|<1} \frac{f(z)dxdy}{(1-\bar{z}\zeta)^2}$$

Pf:

If convert the above integral to polar coordinates, we get the following:

$$\frac{1}{\pi} \int \int_{|z|<1} \frac{f(z) dx dy}{(1-\bar{z}\zeta)^2} = \frac{1}{\pi} \int_{r=0}^1 \int_{\theta=0}^{2\pi} \frac{f(re^{i\theta})r}{(1-\zeta re^{-i\theta})^2} d\theta dr = \frac{1}{\pi} \int_{r=0}^1 \int_{\theta=0}^{2\pi} \frac{f(re^{i\theta})(e^{i\theta})^2 \cdot r}{(e^{i\theta}-r\zeta)^2} d\theta dr$$

Then, define C to have parametrization $z = e^{i\theta}$ with $\theta \in [0, \pi]$, the inner part of the integral becomes:

$$\frac{1}{\pi} \int_{\theta=0}^{2\pi} \frac{f(re^{i\theta})(e^{i\theta})^2 r}{(e^{i\theta} - r\zeta)^2} d\theta = 2 \cdot \frac{1}{2\pi i} \int_0^{\pi} \frac{f(re^{i\theta})re^{i\theta}}{(e^{i\theta} - r\zeta)^2} ie^{i\theta} d\theta = 2 \cdot \frac{1}{2\pi i} \int_C \frac{f(rz)rz}{(z - r\zeta)^2} dz$$

Recall that for any analytic function $\phi(z)$ at a point a, by Cauchy's Integral formula, we get:

$$\phi'(a) = \frac{1!}{2\pi i} \int_C \frac{\phi(z)}{(z-a)^2} dz$$

So, given that $z = r\zeta$ (which with $r \in [0,1]$ and $|\zeta| < 1$, $r\zeta$ is strictly in the unit disk, so integrate over C given above is valid), let $\phi(z) = f(rz)rz$ (which $\phi'(z) = f'(rz)r^2z + f(rz)r$), we have:

$$f'(r(r\zeta))r^{2}(r\zeta) + f(r(r\zeta))r = \frac{1!}{2\pi i} \int_{C} \frac{f(rz)rz}{(z-r\zeta)^{2}} dz$$

$$2 \cdot \frac{1}{2\pi i} \int_C \frac{f(rz)rz}{(z - r\zeta)^2} dz = 2\left(f'(r^2\zeta)r^3\zeta + f(r^2\zeta)r\right)$$

Hence, the original integral can be rewrite as:

$$\frac{1}{\pi} \int_{r=0}^{1} \int_{\theta=0}^{2\pi} \frac{f(re^{i\theta})(e^{i\theta})^2 \cdot r}{(e^{i\theta} - r\zeta)^2} d\theta dr = \int_{r=0}^{1} 2\left(f'(r^2\zeta)r^3\zeta + f(r^2\zeta)r\right) dr$$

Now, consider the function $f(\zeta r^2)r^2$, which has derivative $f'(\zeta r^2)r^2 \cdot 2r\zeta + f(\zeta r^2) \cdot 2r = 2(f'(r^2\zeta)r^3\zeta + f(r^2\zeta)r)$. Then, the above integral can be rewrite as:

$$\int_{r=0}^{1} 2\left(f'(r^{2}\zeta)r^{3}\zeta + f(r^{2}\zeta)r\right)dr = f(\zeta r^{2})r^{2}\Big|_{r=0}^{1} = f(\zeta)$$

Hence, we can claim that for f(z) that's analytic and bounded on |z| < 1, and given $|\zeta| < 1$, the integral is true:

$$f(\zeta) = \frac{1}{\pi} \int \int_{|z|<1} \frac{f(z)dxdy}{(1-\bar{z}\zeta)^2}$$

Question 3 Stein and Shakarchi Pg. 64 Problem 1:

Prove that

$$\int_0^\infty \sin(x^2)dx = \int_0^\infty \cos(x^2)dx = \frac{\sqrt{2\pi}}{4}$$

Pf:

Consider the function e^{-z^2} , and the integration over a sector with origin at 0 and radius R. Which, this can be parametrized by three curves: γ_1 - a straight line on real axis with $x \in [0, R]$, γ_2 - a circular arc with radian $\frac{\pi}{4}$ and radius R (parametrized by $z = Re^{i\theta}$, where $\theta \in [0, \frac{\pi}{4}]$), and γ_3 - another straight line of $z = re^{i\frac{\pi}{4}}$ (where $r \in [0, R]$). The orientation is given as follow:

Figure 14. The contour in Exercise 1

If consider the integral over this closed curve, since e^{-z^2} is analytic on the whole plane, then the line integral is 0. So, $\int_{\gamma_1+\gamma_2+\gamma_3} e^{-z^2} dz = 0$.

For $\int_{\gamma_1} e^{-z^2} dz$, it is parametrized by $\int_0^R e^{-x^2} dx$, which $\lim_{R\to\infty} \int_0^R e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (since e^{-x^2} is even, while $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$).

For $\int_{\mathbb{R}^2} e^{-z^2} dz$, it is parametrized by the following:

$$\int_{\gamma_2} e^{-z^2} dz = \int_0^{\frac{\pi}{4}} \exp\left(-(Re^{i\theta})^2\right) iRe^{i\theta} d\theta = \int_0^{\frac{\pi}{4}} \exp(-R^2e^{i2\theta}) iRe^{i\theta} d\theta$$
$$= \int_0^{\frac{\pi}{4}} \exp(-R^2(\cos(2\theta) + i\sin(2\theta))) iRe^{i\theta} d\theta = \int_0^{\frac{\pi}{4}} e^{-R^2\cos(2\theta)} e^{-iR^2\sin(2\theta)} iRe^{i\theta} d\theta$$

Which, consider the modulus, the following inequality is true:

$$\left| \int_{\gamma_2} e^{-z^2} dz \right| \le \int_0^{\frac{\pi}{4}} |e^{-R^2 \cos(2\theta)}| \cdot |e^{-iR^2 \sin(2\theta)}| \cdot |iRe^{i\theta}| d\theta = \int_0^{\frac{\pi}{4}} Re^{-R^2 \cos(2\theta)} d\theta$$
$$\left| \int_{\gamma_2} e^{-z^2} dz \right| \le \frac{1}{2} \int_0^{\frac{\pi}{2}} Re^{-R^2 \cos(u)} du$$

(Note: the second line is done by the parametrization $u = 2\theta$).

Now, since in the domain $[0, \frac{\pi}{2}]$, $1 - \frac{2}{\pi}u \le \cos(u)$, then $e^{-R^2\cos(u)} \le e^{-R^2(1-\frac{2}{\pi}u)}$ (given that $-R^2 < 0$, while the two functions are positive on the given domain). Then, we can further bound the integral by:

$$\left| \int_{\gamma_2} e^{-z^2} dz \right| \leq \frac{1}{2} \int_0^{\frac{\pi}{2}} Re^{-R^2 \cos(u)} du \leq \frac{1}{2} \int_0^{\frac{\pi}{2}} Re^{-R^2 (1 - \frac{2}{\pi}u)} du = \frac{1}{2} \int_0^{\frac{\pi}{2}} Re^{R^2 \cdot \frac{2}{\pi}u - R^2} du$$

$$\leq \frac{R}{2} \cdot \frac{\pi}{2R^2} e^{R^2 \cdot \frac{2}{\pi} u - R^2} \bigg|_0^{\frac{\pi}{2}} = \frac{\pi}{4R} (e^{R^2 \cdot \frac{2}{\pi} \cdot \frac{\pi}{2} - R^2} - e^{R^2 \cdot \frac{2}{\pi} \cdot 0 - R^2}) = \frac{\pi}{4R} (1 - e^{-R^2})$$

Then, since $\lim_{R\to\infty} \frac{\pi}{4R} = 0$, $\lim_{R\to\infty} (1 - e^{-R^2}) = 1$, then:

$$0 \le \lim_{R \to \infty} \left| \int_{\gamma_2} e^{-z^2} dz \right| \le \lim_{R \to \infty} \frac{\pi}{4R} (1 - e^{-R^2}) = 0$$

Hence, we can claim that $\lim_{R\to\infty} \int_{\gamma_2} e^{-z^2} dz = 0$.

Lastly, for $\int_{\gamma_3} e^{-z^2} dz$, it is parametrized by $\int_R^0 \exp(-(re^{i\frac{\pi}{4}})^2) e^{i\frac{\pi}{4}} dr$. Which, can be modified as:

$$\int_{R}^{0} \exp(-r^{2}e^{i\frac{\pi}{2}})e^{i\frac{\pi}{4}}dr = e^{i\frac{\pi}{4}} \int_{R}^{0} e^{-ir^{2}}dr = e^{i\frac{\pi}{4}} \left(\int_{R}^{0} \cos(r^{2})dr - i \int_{R}^{0} \sin(r^{2})dr \right)$$
$$= -e^{i\frac{\pi}{4}} \left(\int_{0}^{R} \cos(r^{2})dr - i \int_{0}^{R} \sin(r^{2})dr \right)$$

Now, because $\int_{\gamma_1 + \gamma_2 + \gamma_3} e^{-z^2} dz = 0$, then $\int_{\gamma_3} e^{-z^2} dz = -(\int_{\gamma_1} e^{-z^2} dz + \int_{\gamma_2} e^{-z^2} dz)$. Hence:

$$\lim_{R \to \infty} \int_{\gamma_3} e^{-z^2} dz = \lim_{R \to \infty} -\left(\int_{\gamma_1} e^{-z^2} dz + \int_{\gamma_2} e^{-z^2} dz\right) = -\frac{\sqrt{\pi}}{2}$$

$$\lim_{R \to \infty} -e^{i\frac{\pi}{4}} \left(\int_0^R \cos(r^2) dr - i \int_0^R \sin(r^2) dr\right) = -\frac{\sqrt{\pi}}{2}$$

Hence, we can claim the following:

$$\int_0^\infty \cos(r^2)dr - i \int_0^\infty \sin(r^2)dr = \frac{\sqrt{\pi}}{2}e^{-i\frac{\pi}{4}} = \frac{\sqrt{2\pi}}{4}(1-i)$$

Then, take the real and imaginary part respectively, we get:

$$\int_0^\infty \cos(r^2)dr = Re\left(\frac{\sqrt{2\pi}}{4}(1-i)\right) = \frac{\sqrt{2\pi}}{4}$$
$$\int_0^\infty \sin(r^2)dr = -Im\left(\frac{\sqrt{2\pi}}{4}(1-i)\right) = \frac{\sqrt{2\pi}}{4}$$

Hence, the two integrals evaluated to be $\frac{\sqrt{2\pi}}{4}$.

Question 4 Stein and Shakarchi Pg. 65 Problem 4:

Prove that for all $\zeta \in \mathbb{C}$ we have

$$e^{-\pi\zeta^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x \zeta} dx$$

Pf:

Given $\zeta = u + iv$ for some $u, v \in \mathbb{R}$. Consider the function $e^{-\pi z^2}$ which is analytic on \mathbb{C} . There are three cases:

(1) When u > 0, given R > 0, consider the parallelagram generated by the points -R, $R + i\zeta$, $-R + i\zeta$ with counterclockwise orientation. The orientation is as follow:

insert graph

Then, the integral of $e^{-\pi z^2}$ on the contour is 0 (since it is analytic on the whole plane). Which, it can be broken down into the sum of following integrals:

First, for the one on the real axis, it is parametrized by $\int_{-R}^{R} e^{-\pi x^2} dx$, where $\lim_{R\to\infty} \int_{-R}^{R} e^{-\pi x^2} dx = 1$ (Gauss Integral).

For the ones on the side, since the sides are parametrized by $R + i\zeta t$ and $-R + i\zeta t$ for $t \in [0, 1]$ respectively, then the first integral is given by:

$$\int_{0}^{1} e^{-\pi (R+i\zeta t)^{2}} \cdot i\zeta dt = \int_{0}^{1} e^{-\pi (R^{2}+i\cdot 2R\zeta t - \zeta^{2}t^{2})} \cdot i\zeta dt$$

$$= \int_{0}^{1} e^{-\pi (R^{2}-2Rvt)} \cdot e^{i\cdot 2Rut - \zeta^{2}t^{2}} \cdot i\zeta dt = e^{-\pi R^{2}} \int_{0}^{1} e^{R\cdot 2\pi vt} \cdot e^{i\cdot 2Rut} \cdot e^{-\zeta^{2}t^{2}} \cdot i\zeta dt$$

Which, taking the modulus, it is bounded by:

$$\left| \int_0^1 e^{-\pi (R+i\zeta t)^2} \cdot i\zeta dt \right| \le e^{-\pi R^2} \int_0^1 e^{R\cdot 2\pi vt} \cdot |e^{i\cdot 2Rut}| \cdot |e^{-\zeta^2 t^2}| \cdot |i\zeta| dt$$

$$\leq e^{-\pi R^2} \int_0^1 e^{R \cdot |2\pi v|} \cdot |e^{-\zeta^2 t^2}| \cdot |\zeta| dt = e^{-\pi R^2 + R \cdot |2\pi v|} \int_0^1 \cdot |e^{-\zeta^2 t^2}| \cdot |\zeta| dt$$

(Note: the above is given by $R \cdot 2\pi vt \leq R \cdot |2\pi v| \cdot t \leq R \cdot |2\pi v|$, since $t \in [0,1]$).

Then, since $\lim_{R\to\infty} -\pi R^2 + R|2\pi v| = -\infty$, so $\lim_{R\to\infty} e^{-\pi R^2 + R|2\pi v|} = 0$, then since $\int_0^1 \cdot |e^{-\zeta^2 t^2}| \cdot |\zeta| dt$ is a constant, then:

$$\lim_{R \to \infty} e^{-\pi R^2 + R \cdot |2\pi v|} \int_0^1 \cdot |e^{-\zeta^2 t^2}| \cdot |\zeta| dt = 0$$

So, we can conclude the following:

$$\lim_{R \to \infty} \int_0^1 e^{-\pi (R + i\zeta t)^2} \cdot i\zeta dt = 0$$

5

Similar concepts applied on the line $-R + i\zeta t$ (since $-\pi(-R + i\zeta t)^2$ is then given by $-\pi(R^2 + 2Rvt) - \pi(-i \cdot 2Rut - \zeta^2 t^2)$, so the same inequality still applies). Hence:

$$\lim_{R \to \infty} \int_0^1 e^{-\pi(-R+i\zeta t)^2} \cdot i\zeta dt = 0$$

Lastly, the translated line is parametrized by $x + i\zeta$ for $x \in [-R, R]$, then the integral is given by:

$$\int_{-R}^{R} e^{-\pi(x+i\zeta)^2} dx = \int_{-R}^{R} e^{-\pi(x^2+2ix\zeta-\zeta^2)} dx = e^{\pi\zeta^2} \int_{-R}^{R} e^{-\pi x^2} \cdot e^{-2\pi ix\zeta} dx$$

Now, summing up all the path integrals with right orientation, we get the following:

$$\int_{-R}^{R} e^{-\pi x^{2}} dx + \int_{0}^{1} e^{-\pi (R+i\zeta t)^{2}} \cdot i\zeta dt - \int_{0}^{1} e^{-\pi (-R+i\zeta t)^{2}} \cdot i\zeta dt - \int_{-R}^{R} e^{-\pi (x+i\zeta)^{2}} dx = 0$$

$$\int_{-R}^{R} e^{-\pi (x+i\zeta)^{2}} dx = \int_{-R}^{R} e^{-\pi x^{2}} dx + \int_{0}^{1} e^{-\pi (R+i\zeta t)^{2}} \cdot i\zeta dt - \int_{0}^{1} e^{-\pi (-R+i\zeta t)^{2}} \cdot i\zeta dt$$

So, take $R \to \infty$, the first term on the right approaches 1, while the next two terms converges to 0 (from the above statements), then the limit becomes:

$$\lim_{R\to\infty}\int_{-R}^R e^{-\pi(x+i\zeta)^2}dx = \lim_{R\to\infty} e^{\pi\zeta^2}\int_{-R}^R e^{-\pi x^2}\cdot e^{-2\pi ix\zeta}dx = 1$$

So, we can conclude that $\int_{-\infty}^{\infty} e^{-\pi x^2} \cdot e^{-2\pi i x \zeta} dx = e^{-\pi \zeta^2}$.

(2) When u < 0, similar constructions can be made, but instead using $R, -R, -R - i\zeta, R - i\zeta$ as the four points instead.

insert graph

Using similar concept, we can prove the exact same result.

(3) When u = 0, since $\zeta = iv$, then $\zeta^2 = -v^2$. So, the proposed integral becomes:

$$\int_{-R}^{R} e^{-\pi x^{2}} \cdot e^{2\pi i x \zeta} dx = \int_{-R}^{R} e^{-\pi x^{2}} \cdot e^{2\pi i x \cdot i v} dx = \int_{-R}^{R} e^{-\pi x^{2}} \cdot e^{-2\pi v x} dx$$

Which, by completing the square, we get:

$$\int_{-R}^{R} e^{-\pi x^2} \cdot e^{2\pi i x \zeta} dx = e^{\pi v^2} \int_{-R}^{R} e^{-\pi x^2} \cdot e^{-2\pi v x} \cdot e^{-\pi v^2} dx = e^{\pi v^2} \int_{-R}^{R} e^{-\pi (x^2 + 2v x + v^2)} dx = e^{\pi v^2} \int_{-R}^{R} e^{-\pi (x + v)^2} dx$$

Then, as $R \to \infty$, we get:

$$\lim_{R \to \infty} \int_{-R}^{R} e^{-\pi x^2} \cdot e^{2\pi i x \zeta} dx = \lim_{R \to \infty} e^{\pi v^2} \int_{-R}^{R} e^{-\pi (x+v)^2} dx = e^{\pi v^2} \int_{-\infty}^{\infty} e^{-\pi (x+v)^2} dx = e^{\pi v^2}$$

And, since $e^{\pi v^2} = e^{-\pi \zeta^2}$, then:

$$e^{-\pi\zeta^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} \cdot e^{2\pi i x \zeta} dx$$

So, regardless of the case, we can say that the following integral is true:

$$e^{-\pi\zeta^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} \cdot e^{2\pi i x \zeta} dx$$

Question 5 Stein and Shakarchi Pg. 103 Problem 5:

Use contour integration to show that for all ζ real

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \zeta}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi|\zeta|) e^{-2\pi|\zeta|}$$

Pf:

Residue at i, -i:

Consider the function $f(z) = e^{-2\pi i \zeta z}/(1+z^2)^2 = e^{-2\pi i \zeta z}/((z-i)(z+i))^2$, which it has poles at $z=\pm i$, each with order 2 (since $(z^2+1)^2=(z-i)^2(z+i)^2$).

Then, to show its residue at i, consider the derivative of $\phi_i(z) = e^{-2\pi i \zeta z}/(z+i)^2$:

$$\phi_i'(z) = \frac{-2\pi i \zeta e^{-2\pi i \zeta z} \cdot (z+i)^2 - 2(z+i)e^{-2\pi i \zeta z}}{(z+i)^4}, \quad \phi_i'(i) = \frac{-2\pi i \zeta e^{2\pi \zeta} (-4) - 2(2i)e^{2\pi \zeta}}{16} = -\frac{1}{4}(1-2\pi \zeta)ie^{2\pi \zeta}$$

Then, we can expand $\phi_i(z)$ as the following term:

$$\phi_i(z) = \phi_i(i) + \phi'_i(i)(z-i) + \phi_{i,2}(z)(z-i)^2$$

The above term has $\phi_{i,2}(z)$ being analytic at i. Hence, f(z) can be represented as:

$$f(z) = \frac{\phi_i(z)}{(z-i)^2} = \frac{\phi_i(i)}{(z-i)^2} + \frac{\phi_i'(i)}{(z-i)} + \phi_{i,2}(z)$$

Because the first term has antiderivative, while the third term is analytic at i, then for sufficiently small circle C centered at i, the residue is given by:

$$Res_{z=i}f(z) = \frac{1}{2\pi i} \int_C \frac{\phi_i'(i)}{(z-i)} dz = n(C,i) \cdot \phi_i'(i) = -\frac{1}{4} (1 - 2\pi \zeta) i e^{2\pi \zeta}$$

Now, apply similar concept for z=-i, the derivative of $\phi_{-i}(z)=e^{-2\pi i\zeta z}/(z-i)^2$ is given as:

$$\phi_{-i}'(z) = \frac{-2\pi i \zeta e^{-2\pi i \zeta z} \cdot (z-i)^2 - 2(z-i)e^{-2\pi i \zeta z}}{(z-i)^4}, \quad \phi_{-i}'(-i) = \frac{-2\pi i \zeta e^{-2\pi \zeta}(-4) - 2(-2i)e^{-2\pi \zeta}}{16} = \frac{1}{4}(1+2\pi\zeta)ie^{-2\pi\zeta}(1+2$$

Then, expand $\phi_{-i}(z)$ as follow:

$$\phi_{-i}(z) = \phi_{-i}(-i) + \phi'_{-i}(-i)(z+i)^2 + \phi_{-i,2}(z)(z+i)^2$$

Then, the above term has $\phi_{-i,2}(z)$ being analytic at i. Hence, f(z) can again be represented as:

$$f(z) = \frac{\phi_{-i}(z)}{(z+i)^2} = \frac{\phi_{-i}(-i)}{(z+i)^2} + \frac{\phi'_{-i}(-i)}{(z+i)} + \phi_{-i,2}(z)$$

Therefore, based on similar reason as above (where the first and third terms are analytic or has antiderivative), with a sufficiently small circle C centered at -i, the residue at -i is given as:

$$Res_{z=-i}f(z) = \frac{1}{2\pi i} \int_C \frac{\phi'_{-i}(-i)}{(z+i)} dz = n(C,-i)\phi'_{-i}(-i) = \frac{1}{4}(1+2\pi\zeta)ie^{-2\pi\zeta}$$

Integration for $\zeta \geq 0$:

Choose a radius R > 1, and consider a semicircle C_R in lower half plane parametrized by $z = Re^{-i\theta}$ with $\theta \in [0, \pi]$, and another straight line with $-R \le x \le R$ with the following orientation:

Insert Graph

Since it encloses only z = -i, if we integrate f(z) along the contour of the semicircle, we'll get:

$$\int_{R}^{-R} f(x) dx + \int_{C_{R}} f(z) dz = 2\pi i \cdot Res_{z=-i} f(z) = 2\pi i \cdot (\frac{1}{4} (1 + 2\pi \zeta) i e^{-2\pi \zeta}) = -\frac{\pi}{2} (1 + 2\pi \zeta) e^{-2\pi \zeta}$$

Now, consider the second integral above with the parametrization:

$$\int_{C_R} f(z)dz = \int_{\pi}^{0} \frac{e^{-2\pi i \zeta R e^{-i\theta}}}{(1 + (Re^{-i\theta})^2)^2} \cdot (-iR)e^{-i\theta}d\theta$$

Since $Re^{-i\theta} = R\cos(\theta) - i \cdot R\sin(\theta)$, then the exponential part could be rewrite as:

$$e^{-2\pi i \zeta R e^{-i\theta}} = e^{-2\pi i \zeta (R\cos(\theta) - i \cdot R\sin(\theta))} = e^{-2\pi R \zeta \sin(\theta)} \cdot e^{-i \cdot 2\pi R \zeta \cos(\theta)}$$

Hence, if we take the modulus, the following inequality is true:

$$\left| \int_{C_R} f(z)dz \right| = \left| -\int_0^{\pi} \frac{e^{-2\pi i \zeta Re^{-i\theta}}}{(1 + (Re^{-i\theta})^2)^2} \cdot (-iR)e^{-i\theta}d\theta \right|$$

$$\leq \int_0^{\pi} \frac{|e^{-2\pi i \zeta R e^{-i\theta}}|}{|1 + (Re^{-i\theta})^2|^2} \cdot |-iRe^{-i\theta}| d\theta \leq \int_0^{\pi} \frac{e^{-2\pi R \zeta \sin(\theta)}}{(R^2 - 1)^2} R d\theta$$

Since $2\pi R\zeta\sin(\theta) \geq 0$ for $\theta \in [0,\pi]$ (since $\zeta \geq 0$ in this section), $e^{-2\pi R\zeta\sin(\theta)} \leq 1$. Then the above integral can then be bounded by:

$$\left| \int_{C_R} f(z) dz \right| \le \int_0^{\pi} \frac{R}{(R^2 - 1)^2} d\theta = \frac{\pi R}{(R^2 - 1)^2}$$

So, as R grows indefinitely, we get:

$$0 \le \lim_{R \to \infty} \left| \int_{C_R} f(z) dz \right| \le \lim_{R \to \infty} \frac{\pi R}{(R^2 - 1)^2} = 0$$

Hence, $\lim_{R\to\infty} \int_{C_R} f(z)dz = 0$.

So, we can claim that $\lim_{R\to\infty} \int_R^{-R} f(x) dx + \int_{C_R} f(z) dz = \int_{\infty}^{-\infty} f(x) dx = -\frac{\pi}{2} (1 + 2\pi\zeta) e^{-2\pi\zeta}$, so $\int_{-\infty}^{\infty} f(x) dx = \frac{\pi}{2} (1 + 2\pi\zeta) e^{-2\pi\zeta}$.

Since $\zeta \geq 0$, then it can also be characterized as:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{e^{-2\pi i x \zeta}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi|\zeta|) e^{-2\pi|\zeta|}$$

Integration for $\zeta < 0$:

Choose a radius R > 1, and the semicircle C_R in the upper half plane parametrized by $z = Re^{i\theta}$ with $\theta \in [0, \pi]$, and again consider a straight line with $-R \le x \le R$ with the following orientation:

Insert Graph

Since it encloses only z = i, if integrate f(z) along the contour of the semicircle, we'll get:

$$\int_{-R}^{R} f(x)dx + \int_{C_{R}} f(z)dz = 2\pi i \cdot Res_{z=i} f(z) = 2\pi i \cdot (-\frac{1}{4}(1 - 2\pi\zeta)ie^{2\pi\zeta}) = \frac{\pi}{2}(1 - 2\pi\zeta)e^{2\pi\zeta}$$

Then, using similar technique from previous part, we can prove that $\lim_{R\to\infty}\int_{C_R}f(z)dz=0$.

Hence, $\lim_{R\to\infty}\int_{-R}^R f(x)dx = \int_{-\infty}^\infty f(x)dx = -2\pi(1-2\pi\zeta)e^{2\pi\zeta}$. Since $\zeta<0$, then it is then characterized as:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{e^{-2\pi i x \zeta}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\zeta|) e^{-2\pi |\zeta|}$$

So, regardless of the sign of ζ , the following integral is always true:

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \zeta}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\zeta|) e^{-2\pi |\zeta|}$$

Question 6 Stein and Shakarchi Pg. 104 Problem 10:

Show that if a > 0, then

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi}{2a} \log a$$

Pf:

Choose $0 < \epsilon < a$, and R > a. Construct the semicircle C_{ϵ} and C_R for upper half plane, with C_r being characterized by $z = re^{i\theta}$ with $\theta \in [0, \pi]$. Along with two straight lines γ on real axis parametrized by $\epsilon \le |x| \le R$, we can create a contour with the following orientation:

Insert Graph

Before starting, we need to redefine the logarithmic function, so that the region we're integrating over has a single-valued branch. Define the domain to be $\mathbb{C} \setminus \{ix \mid x \leq 0\}$, and for all z in the domain, $\log(z) = \ln|z| + i \arg(z)$, where $\arg(z) \in (-\frac{\pi}{2}, \frac{3\pi}{2})$ (so we can cover the whole real axis except for 0).

Then, for all x < 0, $\log(x) = \ln|x| + i\arg(x) = \ln|x| + i\pi$.

Now, if we consider the integral of $f(z) = \frac{\log(z)}{z^2 + a^2} = \frac{\log(z)}{(z - ia)(z + ia)}$, the contour is enclosing the point ia. Notice that since $\frac{\log(z)}{(z + ia)}$ is analytic at ia, then choose a sufficiently small circle C centered at ia, the residue at ia is given as:

$$Res_{z=ia}f(z) = \frac{1}{2\pi i} \int_C \frac{\log(z)}{(z+ia)} \cdot \frac{1}{(z-ia)} dz = n(C,ia) \cdot \frac{\log(ia)}{(ia+ia)} = \frac{\ln(a) + i\frac{\pi}{2}}{2ia}$$

So, integrating over the contour with the chosen orientation, we get:

$$\int_{\gamma - C_{\epsilon} + C_R} f(z)dz = \left(\int_{-R}^{-\epsilon} f(x)dx + \int_{\epsilon}^{R} f(x)dx \right) - \int_{C_{\epsilon}} f(z)dz + \int_{C_R} f(z)dz$$
$$= 2\pi i \cdot Res_{z=ia} f(z) = 2\pi i \cdot \frac{\ln(a) + i\frac{\pi}{2}}{2ia} = \frac{\pi}{a} \ln(a) + i\frac{\pi^2}{2a}$$

Integral over C_R :

Given the parametrization $z = Re^{i\theta}$ with $\theta \in [0, \pi]$ for C_R , then the integral is given by:

$$\int_{C_R} f(z) dz = \int_0^\pi \frac{\log(Re^{i\theta})}{(Re^{i\theta}) + a^2} \cdot iRe^{i\theta} d\theta = \int_0^\pi \frac{\ln(R) + i\theta}{(Re^{i\theta})^2 + a^2} \cdot iRe^{i\theta} d\theta$$

Since $0 \le \theta \le \pi$ for variable θ , then the modulus of the integral can be bounded by:

$$\left| \int_{C_R} f(z) dz \right| \le \int_0^{\pi} \frac{|\ln(R) + i\theta|}{|(Re^{i\theta})^2 + a^2|} |iRe^{i\theta}| d\theta \le \int_0^{\pi} \frac{\sqrt{(\ln(R))^2 + \theta^2}}{|Re^{i\theta}|^2 - |a|^2} R d\theta \le \int_0^{\pi} \frac{\sqrt{(\ln(R))^2 + \pi^2}}{R^2 - a^2} R d\theta$$

$$\le \int_0^{\pi} \frac{|\ln(R)| + |\pi|}{R^2 - a^2} R d\theta = \frac{\pi(|\ln(R)| + \pi)}{R^2 - a^2} R$$

WLOG, can assume the initial choice of $R \ge 1$, hence $\ln(R) \ge 0$, so $|\ln(R)| = \ln(R)$.

Then, as $R \to \infty$, we get:

$$0 \leq \lim_{R \to \infty} \left| \int_{C_R} f(z) dz \right| \leq \lim_{R \to \infty} \frac{\pi(\ln(R) + \pi)R}{R^2 - a^2} = \lim_{R \to \infty} \frac{\pi(\ln(R) + 1 + \pi)}{2R} = \lim_{R \to \infty} \frac{\pi/R}{2} = 0$$

(Note: the above limit is given by L'hopital's Rule).

Hence, $\lim_{R\to\infty} \int_{C_R} f(z)dz = 0$.

Integral over C_{ϵ} :

Given the parametrization $z = \epsilon e^{i\theta}$ with $\theta \in [0, \pi]$ for C_{ϵ} , then the integral is given by:

$$\int_{C_{\epsilon}} f(z)dz = \int_{0}^{\pi} \frac{\log(\epsilon e^{i\theta})}{(\epsilon e^{i\theta})^{2} + a^{2}} i\epsilon e^{i\theta} d\theta = \int_{0}^{\pi} \frac{\ln(\epsilon) + i\theta}{(\epsilon e^{i\theta})^{2} + a^{2}} i\epsilon e^{i\theta} d\theta$$

Based on similar argument, the modulus of the integral can be bounded by:

$$\left| \int_{C_{\epsilon}} f(z)dz \right| \leq \int_{0}^{\pi} \frac{|\ln(\epsilon) + i\theta|}{|(\epsilon e^{i\theta})^{2} + a^{2}|} |i\epsilon e^{i\theta}| d\theta \leq \int_{0}^{\pi} \frac{\sqrt{(\ln(\epsilon))^{2} + \theta^{2}}}{||\epsilon e^{i\theta}|^{2} - a^{2}|} \epsilon d\theta \leq \int_{0}^{\pi} \frac{|\ln(\epsilon)| + |\theta|}{a^{2} - \epsilon^{2}} \epsilon d\theta$$

$$\leq \int_{0}^{\pi} \frac{|\ln(\epsilon)| + |\pi|}{a^{2} - \epsilon^{2}} \epsilon d\theta \leq \frac{\pi(|\ln(\epsilon)| + \pi)}{a^{2} - \epsilon^{2}} \epsilon = \frac{\pi|\ln(\epsilon)|\epsilon + \pi^{2}\epsilon}{a^{2} - \epsilon^{2}}$$

WLOG, can assume $\epsilon < 1$, hence $\ln(\epsilon) < 0$, or $|\ln(\epsilon)| = -\ln(\epsilon)$ for simplicity.

Then, as $\epsilon \to 0$, the following limits are true:

$$\lim_{\epsilon \to 0^+} \frac{1}{a^2 - \epsilon^2} = \frac{1}{a^2}, \quad \lim_{\epsilon \to 0^+} \pi^2 \epsilon = 0, \quad \lim_{\epsilon \to 0^+} -\pi \ln(\epsilon) \epsilon = \lim_{\epsilon \to 0^+} -\pi \frac{\ln(\epsilon)}{1/\epsilon} = \lim_{\epsilon \to 0^+} -\pi \frac{1/\epsilon}{-1/\epsilon^2} = \lim_{\epsilon \to 0^+} \pi \epsilon = 0$$

Hence:

$$\lim_{\epsilon \to 0^+} \frac{\pi |\ln(\epsilon)|\epsilon + \pi^2 \epsilon}{a^2 - \epsilon^2} = \lim_{\epsilon \to 0^+} \frac{-\pi \ln(\epsilon)\epsilon + \pi^2 \epsilon}{a^2 - \epsilon^2} = \frac{0+0}{a^2} = 0$$

So, $\lim_{\epsilon \to 0^+} \int_{C_{\epsilon}} f(z) dz = 0$.

Original Integral:

To retrieve the original integral $\int_0^\infty \frac{\log(x)}{x^2+a^2} dx$, we need $R \to \infty$ and $\epsilon \to 0^+$. So, the following is true:

$$\lim_{R \to \infty} \lim_{\epsilon \to 0^+} \left(\int_{-R}^{-\epsilon} f(x) dx + \int_{\epsilon}^{R} f(x) dx \right) - \int_{C_{\epsilon}} f(z) dz + \int_{C_{R}} f(z) dz$$

$$= \int_{-\infty}^{0^-} f(x) dx + \int_{0^+}^{\infty} f(x) dx - \lim_{\epsilon \to 0^+} \int_{C_{\epsilon}} f(z) dz + \lim_{R \to \infty} \int_{C_{R}} f(z) dz$$

$$= \int_{-\infty}^{0^-} f(x) dx + \int_{0^+}^{\infty} f(x) dx$$

Input the function f(z), we get:

$$\int_{-\infty}^{0^{-}} f(x)dx + \int_{0^{+}}^{\infty} f(x)dx = \int_{-\infty}^{0^{-}} \frac{\log(x)}{x^{2} + a^{2}} dx + \int_{0^{+}}^{\infty} \frac{\log(x)}{x^{2} + a^{2}} dx$$

$$= \int_{-\infty}^{0^{-}} \frac{\ln|x| + i\pi}{x^{2} + a^{2}} dx + \int_{0^{+}}^{\infty} \frac{\ln|x|}{x^{2} + a^{2}} dx = \left(\int_{-\infty}^{0^{-}} \frac{\ln|x|}{x^{2} + a^{2}} dx + \int_{0^{+}}^{\infty} \frac{\ln|x|}{x^{2} + a^{2}} dx\right) + i \int_{-\infty}^{0^{-}} \frac{\pi}{x^{2} + a^{2}} dx$$

Also, recall that the above quantity equals to $\frac{\pi}{a} \ln(a) + i \frac{\pi^2}{2a}$ by Residue Formula. Then:

$$\left(\int_{-\infty}^{0^{-}} \frac{\ln|x|}{x^2 + a^2} dx + \int_{0^{+}}^{\infty} \frac{\ln|x|}{x^2 + a^2} dx \right) = Re\left(\frac{\pi}{a} \ln(a) + i \frac{\pi^2}{2a} \right) = \frac{\pi}{a} \ln(a)$$

Lastly, since the function $\frac{\ln|x|}{x^2+a^2}$ is in fact an even function, then $\int_{0+}^{\infty} \frac{\ln|x|}{x^2+a^2} dx$ is half of the above quantity, or $\frac{\pi}{2a} \ln(a)$. Hence:

$$\int_0^\infty \frac{\ln(x)}{x^2 + a^2} dx = \frac{\pi}{2a} \ln(a)$$

7 (second part not done)

Question 7 Stein and Shakarchi Pg. 104 Problem 11:

Show that if |a| < 1, then

$$\int_0^{2\pi} \log|1 - ae^{i\theta}| d\theta = 0$$

Then, prove that the above result remains true if we assume only that $|a| \leq 1$.

Pf:

When |a| < 1:

Consider the integral of $\log(1-z)/iz$ along a circle C of radius |a|<1 centered at 0. With the parametrization $z=ae^{i\theta}$ ($\theta\in[0,2\pi]$), it can be expressed as:

$$I = \int_C \frac{\log(1-z)}{iz} dz = \int_0^{2\pi} \frac{\log(1-ae^{i\theta})}{iae^{i\theta}} (iae^{i\theta}) d\theta = \int_0^{2\pi} \log(1-ae^{i\theta}) d\theta$$

Which, define the domain to be $\mathbb{C} \setminus \{x \ge 1\}$, and $\log(1-z) = \ln|1-z| + i \arg(1-z)$, it can also be expressed as:

$$I = \int_0^{2\pi} \log(1 - ae^{i\theta}) d\theta = \int_0^{2\pi} \ln|1 - ae^{i\theta}| d\theta + i \int_0^{2\pi} \arg(1 - ae^{i\theta}) d\theta$$

Going back to the original integral, since the function $-\frac{\log(1-z)}{i}$ is analytic on the domain $\mathbb{C}\setminus\{x\geq 1\}$, so on the disk enclosed by C, the only Pole is generated by $\frac{1}{z}$ (at the origin). Hence, let $\phi(z)=\frac{\log(1-z)}{i}$, the integral is then characterized by Cauchy's Integral Formula:

$$\int_C \frac{\log(1-z)}{iz} dz = \int_C \frac{\phi(z)}{z} dz = 2\pi i \cdot n(C,0)\phi(0)$$

With n(C,0) = 1 (winding number 1 by our construction), and $\phi(0) = \log(1-0)/(i\cdot 1) = 0$, then such integral is evaluated to be 0.

Now, since $Re(I) = \int_0^{2\pi} \log |1 - ae^{i\theta}| d\theta$, while I = 0, then this integral must also evaluated to be 0.

Case when |a| = 1: