Práctica 2

Mario Santos Heredia

29 de octubre de 2022

Ejercicio 1

Vamos a construir un DFA que sea capaz de reconocer el lenguaje {a,b} y que contenga la cadena 'a' y rechace toda cadena que no pertenezca al lenguaje.

Un DFA es una 5-tupla (K,Σ,δ,s,F) , que aplicado a este ejercicio quedaría así $(\{q0,q1,q2\},\{a,b\},\delta,q0,\{q1\})$.

Nuestra función de transición (δ) sería la siguiente:

$\delta(q,\sigma)$	a	b
q_0	q_1	q_2
q_1	q_1	q_2
q_2	q_2	q_2

Ahora podremos construir el DFA en **JFLAP** y comprobar que es correcto:

Input	Result
a	Accept
ab	Reject
aaaaabababaaa	Reject
aaaaaaaaabaa	Reject
b	Reject
aaaaaaaaaaaa	Accept

Ejercicio 2

Para el ejercicio 2 usaremos **Octave**, y probaremos si el autómata generado y su configuración es correcta.

Primero meteremos la configuración en el archivo **finiteautomata.json**, como se puede ver aquí:

```
"name" : "Ej2",

"representation" : {

    "K" : ["q0", "q1","q2"],

    "A" : ["a", "b"],

    "F" : ["q1"],

    "t" : [["q0", "a", "q1"],

        ["q1", "a", "q2"],

        ["q1", "b", "q2"],

        ["q1", "b", "q2"],

        ["q2", "a", "q2"],

        ["q2", "b", "q2"],
```

Ahora, ejecutamos el script en **Octave** y observamos que nos muestra si las cadenas pertenecen o no:

```
SH = (\(\(\{\text{Q}\), \\(\{\alpha}\), \\(\{\
```