CSCI 2824 - Discrete Structures Homework 3

You MUST show your work. If you only present answers you will receive minimal credit. This homework is worth 100pts.

Due: Wednesday June 28

- 1. (4 points) For each of the following determine the number of elements in the given set.
 - (a) {}
 - (b) $\{\{\},\{\{\}\}\}\}.$
 - (c) $\{a, b, \{\}, \{\{\{\}\}\}\}\}$
 - (d) $\{a, b, \{a, b\}, \{a, c\}, \{a\}\}$
- 2. (5 points) For the following pairs of sets, determine which operator goes between the sets to make a true statement: \in , \ni , \subseteq , \supseteq , or none.
 - (a) $\{1,2\}, \{1,2,\{1,2\}\}$
 - (b) $\{1, 2\}, \mathbb{N}$
 - (c) $\{\mathbb{N}, \mathbb{R}\}, \{\mathbb{R}\}$
 - (d) $\{\mathbb{R}\}, \{1, 3, 4\}$
 - (e) $\mathbb{R}, \{1, \pi, \sqrt{2}, \sqrt{-1}\}$
- 3. (5 points) For each of the following determine whether or not it is a function, if not explain why not.
 - (a) $f: A \to B$ where $A = \{1, 2, 3, 4, 5\}$ and $B = \{b, x, t, m, z, y, a\}$ given by the following set $\{(1, a), (4, b), (2, b)(5, t), (2, a)\}.$
 - (b) $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = \tan(x)$.
 - (c) $h: \mathbb{N} \to \mathbb{Z}^{>0}$ given by h(x) = x 1
 - (d) $k: A \to B$ where $A = \{18, 38, 485, 382385, 25\}$ and $B = \{1, 2, 3, 4, 5\}$ given by the following set $\{(18, 1), (38, 1), (285, 1), (382385, 1), (25, 1)\}.$
 - (e) $l: \mathbb{R} \to \mathbb{R}$ given by $l(x) = \log(|x|)$.
- 4. (5 points) Prove that if $X \subseteq Y$ then $X \cap Z \subseteq Y \cap Z$ for all sets X, Y, Z.
- 5. (5 points) Prove that $\mathcal{P}(X) \cup \mathcal{P}(Y) \subseteq \mathcal{P}(X \cup Y)$. Are they equal? If not give a counterexample.
- 6. (20 points) For the following statements either give a proof or a counterexample. The sets X, Y, Z are subsets of a universal set U. Counter examples must also include the definition for U.
 - (a) For all sets X and Y, either $X \subseteq Y$ or $Y \subseteq X$.
 - (b) $\overline{Y \setminus X} = X \cup \overline{Y}$
 - (c) $X \cup (Y \setminus Z) = (X \cup Y) \setminus (X \cup Z)$
 - (d) $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$
- 7. (3 points) For the following problems a function definition is given. You must describe a domain and co-domain that ensures it is actually a function. The co-domain you provide need not be precisely the range.
 - (a) $m(x) = \log(x)$.
 - (b) n(x) = 12
 - (c) o(x) defined by the set $\{(1,2), (\pi,3), (12,3)\}$

- 8. (12 points) For the following functions determine whether they are one-to-one or onto or both or neither.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = n + 1
 - (b) $g: \mathbb{Z} \to \mathbb{Z}, g(n) = \lceil \frac{n}{2} \rceil$.
 - (c) $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, h(m, n) = m n.
 - (d) $j: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, j(m,n) = m^2 + n^2 + 2.$
- 9. (5 points) Give examples of functions from \mathbb{N} to \mathbb{N} that are:
 - (a) one-to-one, but not surjective
 - (b) surjective but not injective
 - (c) injective and surjective (but not the identity function)
 - (d) neither injective nor surjective.
- 10. (11 points) Prove that the function $f: \mathbb{Z}^{>0} \times \mathbb{Z}^{>0} \to \mathbb{Z}^{>0}$ defined by $f(m,n) = 2^m \cdot 3^n$ is injective but not surjective.
- 11. (10 points) Solve the following recurrence relations (provide a closed form solution):
 - (a) $a_n = -3a_{n-1}, a_0 = 4$
 - (b) $a_n = a_{n-1} + 1, a_0 = 12$
- 12. (10 points) Solve the following recurrence relations (provide a closed form solution):
 - (a) $a_n = 6a_{n-1} 8a_{n-2}, a_0 = 1, a_1 = 0.$
 - (b) $a_n = 2a_{n-1} + 8a_{n-2}$, $a_0 = 4$, $a_1 = 10$.
- 13. (5 points) Give an example of two uncountable sets A and B such that $A \cap B$ is:
 - (a) finite
 - (b) countably infinite
 - (c) uncountably infinite