

MULTIPITCH ESTIMATION USING A PCLA-BASED MODEL: IMPACT OF PARTIAL USER ANNOTATION

Camila de Andrade Scatolini, Gaël Richard, Benoit Fuentes

Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI

40th IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, April 2015

1. Introduction

- Context: Multipitch estimation in musical recordings based on a probabilistic framework (PLCA).
- Applications: Main melody extraction, cover song identification, music transcription.
- Objective:
- Can we improve performance with partial annotation of the musical recording?
- How can we better take into account the user inputs?

2. The BHAD Model [1]

|CQT(x)| : modeled as a probability distribution P(f,t).

The model:

$$P(f,t) = P(c = h)P_h(f,t) + P(c = n)P_n(f,t)$$

with:

- $P_h(f,t) = \sum_i P_h(i,t) P_h(f|i,t)$,
- $\bullet P_h(f|i,t) = \sum_{z} P_h(z|i,t) P_h(f-i|z)$

Polyphonic harmonic model

Noise model

Some characteristics:

- Entirely unsupervised
- Control convergence rates by using a "brake"
- Use of priors (*Resemblance prior* on spectral envelopes for each pitch; *Sparseness prior* on time-frequency activations)

3. Note initialisation

Annotated notes: For each note, the average of all occurrences of this given note.

Three strategies for Non-annotated notes:

- Keep the original slope initialisation,
- Copy previous notes templates,
- Interpolate neighbour notes' templates.

Copy strategy

Interpolate strategy.

4. Convergence rate

Goal: controlling the convergence rate of the well initialised spectral envelopes.

Idea: convergence rate coefficient $\beta_{brake}(n)$ depends on the notes n:

$$\beta_{brake}(n) = \begin{cases} \beta_1, & \text{if } i_n \in \text{learning base} \\ \beta_0, & else \end{cases}, \beta_1 > \beta_0$$

5. Results

Options	Unsup.	Semi-Guided		
		Slope	Copy	Interp.
NO	67.68	68.38	65.00	43.68
S	73.91	75.07	71.44	52.07
R	66.46	68.28	64.13	47.05
RS	69.51	72.30	67.60	52.35
В	77.85	78.63	75.88	50.90
SB	74.64	76.54	72.47	45.68
RB	77.39	79.49	73.89	50.79
RSB	74.85	77.02	70.52	47.00

ke	Brake annotated notes

	$\beta_{0,1} = 0$	$\beta_1 = 0.1$	$\beta_1 = 1$	$\beta_1 = 10$
В	68,38	68,25	66,43	62,93
SB	75,07	74,84	74,29	72,74
RB	68,28	68,53	69,20	69,16
RSB	72,30	72,35	72,53	72,66

Mean F-Measure

	Even	Brake all notes		
	$\beta_{0,1} = 10$	$\beta_1 = 10.1$	$\beta_1 = 11$	$\beta_1 = 20$
В	78,63	78,63	78,66	78,66
SB	76,54	76,54	76,55	76,55
RB	79,49	79,49	79,51	79,61
RSB	77,02	77,02	77,03	76,98

Mean F-Measure

NO: no prior

S: Sparseness prior

R: Resemblance prior

No bra

B: Break

Results for the non-annotated notes (symbols) and the unsupervised approach without and with brake coefficients ($\beta_1 = 20$ and $\beta_0 = 10$).

6. Conclusions

Contributions:

- Better initialisation of the model parameters using partial annotation
- Up to 3% improvement in terms of F-measure in a task of multipitch estimation.

Future work:

- Alternative strategies for the user annotation
- Involve the user in a more interactive way

References:

[1] B.Fuentes, R. Badeau & G. Richard, "Blind harmonic adptive decomposition applied to supervised source separation", EUSIPCO 2012