

BSM 101 BİLGİSAYAR MÜHENDİSLİĞİNE GİRİŞ

İSMAİL ÖZTEL

~ Boole Cebri~

İÇERİK

- Boole cebri
- Mantıksal bağlaçlar
- Boole cebri teoremleri
- Doğruluk tabloları
- Lojik kapılar
- Lojik ifadelerin sadeleştirilmesi
- Maksimum minimum terimler
- Karnaugh diyagramları

Boole Cebri

- Boole cebri, önermeleri yada nesneler arasındaki ilişkileri ortaya koyan simgesel ve matematiksel bir mantık sistemidir.
- İlk olarak 1854 yılında George Boole tarafından geliştirilmiştir.
- Dijital bilgisayarlardaki devre tasarımlarının temelini oluşturur.
- Sayısal değerlerin değil doğruluk değerlerinin kullanıldığı durumlarda geçerlidir.
 - Doğruluk değeri → 1
 - Yanlışlık değeri →0

Mantıksal Bağlaçlar

x ve y iki önereme olsun, önermelerin doğru olduğu durumları doğru, yanlış olduğu durumları yanlış ile gösterelim. Bu önermelerin VE (∧) ile VEYA (v) işlemine tabi tutulması ile olası tüm sonuçlar:

X	У	х∧у	х v у
doğru	doğru	doğru	doğru
doğru	yanlış	yanlış	doğru
yanlış	doğru	yanlış	doğru
yanlış	yanlış	yanlış	yanlış

Mantıksal Bağlaçlar

 Bilgisayarlarda sıfır ve birler kullanıldığı düşünülürse doğruluk tablosu aşağıdaki gibi olur.

x	У	х∧у	хvy
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

Mantıksal Bağlaçlar

- Boole cebri mantıksal değişimler arasındaki ilişkiyi inceler.
- Giriş değişkenleri yalnızca iki durumda olabilir: 0, 1
- Bir eşitliğin giriş değişkenleri üzerindeki VE işlemi çarpımları, VEYA işlemi ise toplamları gösterir.
- Bir değişkenin tümleyeni ise DEĞİL işlemi ile gösterilir.

- Değişme kuralı
 - x + y = y + x
 - x.y=y.x
- Birleşme kuralı
 - x + y + z = (x + y) + z = x + (y + z)
 - $x \cdot y \cdot z = (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- Dağılma kuralı
 - $x \cdot (y + z) = x \cdot y + x \cdot z$
 - $x + y \cdot z = (x + y) \cdot (x + z)$

- Özdeşlik kuralı
 - $\bullet \qquad \mathsf{X} + \mathsf{X} = \mathsf{X}$
 - $x \cdot x = x$
- VE kuralı
 - x . 1 = x
 - $x \cdot 0 = 0$
- VEYA kuralı
 - x + 1 = 1
 - x + 0 = x

- Tamamlayıcı kuralı
 - x + x' = 1
 - $x \cdot x' = 0$

- Tersin tersi kuralı
 - (x')'=x
 - ((x + y)')' = x + y
 - ((x . y)')' = x . y

- De Morgan kuralı
 - (x . y)' = x' + y'
 - $(x + y)' = x' \cdot y'$
- Yutma kuralı
 - $x + x \cdot y = x$
 - x(x+y)=x

- x . (x+y') ifadesinin eşdeğeri nedir?
 - x.(x+y') = x.x + x.y' = x + x.y' = x(1+y') = x
- x . y + x . y' ifadesinin eşdeğeri nedir?
 - $x \cdot y + x \cdot y' = x (y + y') = x$

Sadeleştirme örnekleri

•
$$F = x \cdot y + x' \cdot y + y' = y(x + x') + y' = y + y' = 1$$

•
$$F = x \cdot y \cdot z + x \cdot y \cdot z' + x' \cdot y = x \cdot y (z + z') + x' \cdot y = x \cdot y + x' \cdot y = y \cdot (x + x') = y$$

•
$$F = x \cdot (x' + y) = x \cdot x' + x \cdot y = x \cdot y$$

Doğruluk Tabloları

- Girişlerin alabileceği farklı durumlarda çıkış durumlarını bulmak için doğruluk tablosu kullanılır.
- Tabloda VE, VEYA ve DEĞİL işlemlerinin doğruluk tablosu verilmiştir.

x	У	х.у	x + y	x ′
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Doğruluk Tabloları

x . y + x fonksiyonunun doğruluk tablosu:

X	У	х.у	x .y+x
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

- Sayısal devrelerin temelini oluşturur.
- Diyot, transistör, direnç gibi devre elemanları içerirler.
 - VE kapısı
 - VEYA kapısı
 - DEĞİL kapısı
 - VE DEĞİL kapısı
 - VEYA DEĞİL kapısı
 - YA DA kapısı
 - YA DA DEĞİL kapısı

VE kapısı ve doğruluk tablosu

X	У	F
0	0	0
0	1	0
1	0	0
1	1	1

VEYA kapısı ve doğruluk tablosu

X	У	F
0	0	0
0	1	1
1	0	1
1	1	1

Üç girişli VEYA kapısı ve doğruluk tablosu

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

DEĞİL kapısı ve doğruluk tablosu

x	F
0	1
1	0

VE DEĞİL kapısı ve doğruluk tablosu

X	У	F
0	0	1
0	1	1
1	0	1
1	1	0

VEYA DEĞİL kapısı ve doğruluk tablosu

X	у	F
0	0	1
0	1	0
1	0	0
1	1	0

YA DA kapısı ve doğruluk tablosu

X	У	F
0	0	0
0	1	1
1	0	1
1	1	0

YA DA DEĞİL kapısı ve doğruluk tablosu

X	У	F
0	0	1
0	1	0
1	0	0
1	1	1

• Lojik kapılardan matematiksel ifadelerin elde edilmesi

$$f1 = x . y$$

 $F = f1 + z = x . y + z$

Lojik kapılardan matematiksel ifadelerin elde edilmesi

$$f1 = x + y = x' \cdot y + x \cdot y'$$

 $f2 = x \cdot y = x \cdot y + x' \cdot y'$
 $F = f1 + f2$
 $= x' \cdot y + x \cdot y' + x \cdot y + x' \cdot y'$
 $= x' (y + y') + x (y' + y)$
 $= x' + x = 1$

• Lojik kapılardan matematiksel ifadelerin elde edilmesi

f1 = (x.y)'
f2 = f1 + y = x' + y' + y = x' + 1 = 1
f3 = f2
$$\odot$$
y = 1 \odot y
= 1.y + 1'.y' = y + 0 = y

Matematiksel ifadelerden lojik diyagram elde edilmesi

$$F = (a' . b)' . (a + b')$$

$$= ((a')' + b') . (a + b')$$

$$= (a + b') . (a + b') = (a + b')$$

Matematiksel ifadelerden lojik diyagram elde edilmesi

$$F = ((a' + a. b). (b' + a. b))'$$

$$= (a' + a. b)' + (b' + a. b)'$$

$$= (a')'. (ab)' + (b')'. (ab)'$$

$$= a. (a' + b') + b. (a' + b')$$

$$= a. a' + a.b' + b. a' + b. b'$$

$$= 0 + a.b' + b. a' + 0 = a \oplus b$$

- Mantıksal fonksiyonlar kullanılarak elde edilen mantıksal devrelerde devre elemanlarının sayısının azaltılması önemli bir problemdir.
- Mantıksal fonksiyonların eşdeğeri olan ve en az eleman içeren fonksiyonun bulunması gerekir.
- Aşağıdaki fonksiyon çarpımlar toplamı olarak ifade edilir ve eşdeğeri:

$$F(x,y,z) = x \cdot y \cdot z + x \cdot y' \cdot z$$

= x \cdot z (y + y') = x \cdot z

• İlk durumda birden fazla çarpma ve toplama işlemi varken eşdeğeri durumda sadece bir adet çarpama işlemi bulunmaktadır.

- Mantıksal ifadelerin karmaşık olması durumunda Boole Cebri kuralları ile sadeleştirme yapmak zorlaşır.
- Bu durumda Karnaugh diyagramları sadeleştirme yapmak için daha kullanışlı bir yöntemdir.
- Karnaugh diyagramlarını öğrenmeden önce minimum terimler ve maksimum terimler kavramlarının bilinmesi gerekmektedir.

- Minimum terimler (minterm)
 - İkili değişkenler tümleyen formunda bulunabilirler : x, x'
 - VE işlemi ile birleştirilmiş iki adet ikili değişken düşünüldüğünde olası 4 kombinasyon vardır: x . y , x' . y , x . y' , x' . y'
 - Bu dörtlünün her biri minterm ya da standart çarpım diye adlandırılır.
 - Benzer şekilde n adet ikili değişken birleştirilerek 2^n adet minterm elde edilir.

- Minimum terimler (minterm)
 - Tabloda x,y ikili değişkenleri için mintermler gösterilmiştir.
 - Değişkene karşılık gelen bit sıfır ise değişken tümleyen işareti ile gösterilir (x').
 - Her bir minterm için m_i şeklinde bir sembol kullanılır.

x . y	minterm	Minterm simgesi
00	x' . y'	m_0
01	x' . y	m_1
10	x . y'	m_2
11	x . y	m_3

- Minimum terimler (minterm)
 - Ör: x . y + x .y' ifadesinin minterm karşılığı: $m_2 + m_3 = \sum (2,3)$
 - Ör: x'. y' + x. y' + x. y ifadesinin minterm karşılığı: m_0 + m_2 + m_3 = $\sum (0,2,3)$

- Maksimum terimler (maksterm)
 - İkili değişkenler tümleyen formunda bulunabilirler : x, x'
 - VEYA işlemi ile birleştirilmiş iki adet ikili değişken düşünüldüğünde olası 4 kombinasyon vardır: x + y, x' + y, x + y', x' + y'
 - Bu dörtlünün her biri maksterm ya da standart toplam diye adlandırılır.
 - Benzer şekilde n adet ikili değişken birleştirilerek 2^n adet maxterm elde edilir.

- Maksimum terimler (maksterm)
 - Tabloda x,y ikili değişkenleri için makstermler gösterilmiştir.
 - Değişkene karşılık gelen bit bir ise değişken tümleyen işareti ile gösterilir (x').
 - Her bir maksterm için M_i şeklinde bir sembol kullanılır.

x + y	maksterm	maksterm simgesi
00	x + y	M_0
01	x + y'	M_1
10	x' + y	M_2
11	x' + y'	M_3

- Karnaugh diyagramları n adet değişken için 2^n adet hücre içerir.
- Her bir hücre, bir mintermi temsil eder.
- Örneğin x ve y ikilisi için karnaugh diyagramı

• Ör: $x \cdot y + x' \cdot y$ ifadesinin sadeleştirilmiş hali:

• Ör: x . y' + x . y ifadesinin sadeleştirilmiş hali:

• Ör: x + x'. y ifadesinin sadeleştirilmiş hali:

$$x + x' \cdot y = x \cdot (y + y') + x' \cdot y = x \cdot y + x \cdot y' + x' \cdot y$$

Üç değişkenli Karnaugh Diyagramları

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

• Ör: x'.y.z + x.y.z + x.y'.z' + x.y.z' ifadesinin sadeleştirilmiş hali:

m_0	m_1	m_2	m_3
m_4	m_5	m_6	m_7

• Ör: x . y' . z + x' . y . z' + x . y' . z' + x' . y . z ifadesinin sadeleştirilmiş hali:

m_0	m_1	m_2	m_3
m_4	m_5	m_6	m_7

• Ör: x' + x . y . z' + y . z ifadesinin sadeleştirilmiş hali:

• Ör: y . z + x' . y + x . y' . z + x' . z ifadesinin sadeleştirilmiş hali:

