Week 2 Lesson 5

DATE: 2020-08-28

ANNOUNCEMENTS:

Exam date will be updeated on Blackboard today. **Assignment: first homework due Wednesday**

0.0.1 Trace of a Matrix

Definition 1 (Trace). If A is a square matrix, then the trace of the matrix, dentoed by tr(A) is the sum of the entries on the main diagonal.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$tr(A) = 15$$

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 5 & 9 \end{bmatrix}$$

$$tr(A) \text{ not defined}$$

0.0.2 Linear Combinations

Definition 2 (Linear combination). If A_1, A_2, \ldots, A_r are matrices of the same size and if C_1, C_2, \ldots, C_r are scalars, then an expression of the form

$$C_1A_1 + C_2A_2 + \ldots + C_rA_r$$

is called a linear combination of A_1, A_2, \ldots, A_r with coefficients C_1, C_2, \ldots, C_r .

Theorem 1 (1.3.1). If A is an $m \times n$ matrix and if x is an $n \times 1$ column vector, then the product Ax can be expressed as a linear combination of the column vectors in A in which the coefficients are the entries of x.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 5 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 16 & 32 \\ 37 & 68 \end{bmatrix}$$

We begin thinking about this in different ways.

$$= \begin{bmatrix} 16 & 32 \\ 37 & 68 \end{bmatrix} \implies \begin{bmatrix} A_{b_1} & A_{b_2} \end{bmatrix}$$

In general:

$$AB = A[b_1b_2 \dots b_n] = [Ab_1Ab_2 \dots Ab_n]$$

Nothing says you can't partition differently.

Week 2 Lesson 5

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 5 & 9 \end{bmatrix}$$

$$\implies \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} B$$

$$= \begin{bmatrix} a_1 B \\ a_2 B \end{bmatrix}$$

0.1 Inverse and Algebraic Properties of Matrices

The idea behind this section is we want to see these matrices like numbers in arithmetic.

Definition 3 (zero matrix). a matrix of all zero's.

Definition 4 (identity matrix). An $n \times n$ identity matrix is a square matrix with 1's on the main diagonal and 0's everywhere else.

Definition 5 (Additive inverse).

$$A + (-A) = 0$$

Definition 6 (multiplication inverse). A^{-1}