Funciones Complejas Período 2022-II

Práctico 4

Ej. 1 Verificar las siguientes igualdades:

1.
$$\exp(2 - 3\pi i) = -e^2$$

1.
$$\exp(2-3\pi i) = -e^2$$
, 2. $\exp(\frac{2+i\pi}{4}) = \sqrt{\frac{e}{2}} (1+i)$, 3. $\exp(z+\pi i) = -\exp z$.

$$3. \exp(z + \pi i) = -\exp z.$$

 $\mathbf{Ej.}\ \mathbf{2}\ \mathrm{Hallar}\ \mathrm{los}\ \mathrm{valores}\ \mathrm{de}\ z$ que satisfacen:

1.
$$e^z = -2$$

3.
$$e^{2z-1}=1$$
,

5.
$$Re(e^z) = 0$$
,

2.
$$e^z = 1 + \sqrt{3}i$$
,

4.
$$|e^{(-2z)}| < 1$$
,

6.
$$Im(e^z) = 0$$
,

Ej. 3 Verificar que
$$\overline{\exp(z)} = \exp(\overline{z})$$
 y mostrar que $f(z) = \exp(\overline{z})$ no es analítica en ningún punto.

Ej. 4 Sean a, b, c y d en \mathbb{R} constantes. Graficar la imagen por exp de los siguientes conjuntos:

1.
$$\{z \in \mathbb{C} : \mathfrak{Re}(z) = a\},\$$

4.
$$\{z \in \mathbb{C} : c \le \mathfrak{Im}(z) \le d\},\$$

2.
$$\{z \in \mathbb{C} : a \leq \mathfrak{Re}(z) \leq b\},\$$

5.
$$\{z \in \mathbb{C} : a \leq \Re \mathfrak{e}(z) \leq b \text{ y } c \leq \Im \mathfrak{m}(z) \leq d\},$$

3.
$$\{z \in \mathbb{C} : \mathfrak{Im}(z) = c\},\$$

6. La recta
$$\mathfrak{Im}(z) = a \, \mathfrak{Re}(z), \, (a \neq 0).$$

Ej. 5 Sea
$$r$$
 un real positivo y sea $A = \{\omega \mid \omega = \exp(1/z), \ 0 < |z| < r\}$. Determinar el conjunto A .

Ej. 6 Sean a y b números reales, con $|a| \le 1 y b > 0$. Hallar las soluciones de las siguientes ecuaciones:

1.
$$\cos(z) = a$$
,

$$5. \sin(z) = \cos z,$$

9.
$$\cosh(z) = i$$
,

2.
$$\tan(z) = b$$
,

$$6. \sin(\sin(z)) = 0,$$

10.
$$\cosh(z) = 1/2$$
,

3.
$$\cos(z) = 2$$
,

7.
$$\sin(z) + \cos(z) = i$$
, 11. $\cosh(z) = -2$,

11
$$\cosh(z) = -2$$

4.
$$\sin(z) = i$$
,

8.
$$\sin(z) = \cosh(4)$$
,

$$12. \ 2\cosh(z) + \sinh(z) = i.$$

Ej. 7 Sean z y w en $\mathbb C$ arbitrarios. Verificar las siguientes identidades:

1.
$$e^{iz} = \cos z + i \sin z$$
,

7.
$$\sinh(-z) = -\sinh(z)$$

$$2. \ \overline{\sin(z)} = \sin(\overline{z})$$

8.
$$\sinh(iz) = i\sin(z)$$

$$3. \sin(\pi/2 - z) = \cos z,$$

9.
$$\cosh^2(z) - \sinh^2(z) = 1$$

4.
$$\sin^2(z) + \cos^2(z) = 1$$
,

10.
$$\cosh^2(z) + \sinh^2(z) = \cosh(2z)$$

5.
$$\sin(z+w) = \sin z \cos w + \cos z \sin w$$
,

11.
$$\sinh(z+w) = \sinh(z)\cosh(w) + \cosh(z)\sinh(w)$$
.

6.
$$\cos(z+w) = \cos z \cos w - \sin z \sin w$$
.

12.
$$\coth(2z) = \frac{1}{2}(\tanh(z) + \coth(z))$$

Ej. 8 Considere la función $f(z) = \sin z$, y la región del plano complejo dada por

$$B = \{z = x + iy : -\pi/2 \le x \le \pi/2, \ y \ge 0\}.$$

- 1. Verificar que f manda la frontera de B inyectivamente sobre el eje real Im(z)=0.
- 2. Calcular y graficar las imágenes por f de una semirecta vertical $x=c, y \ge 0$, interior a la banda $\{x+iy: -\pi/2 \le x \le \pi/2\}$.
- 3. Probar que f manda B inyectivamente en la clausura del semiplano superior.
- 4. ¿Cuál es la imagen por f de una región rectangular $-\pi \le x \le \pi$, $a \le y \le b$ ubicada en el semiplano superior?

Ej. 9 Mostrar que:

- 1. Para cualquier $z \in \mathbb{C}$, $|\sinh(y)| \le |\cos(z)|$, $|\sin(z)| \le \cosh(y)$ donde $y = \mathfrak{Im}(z)$,
- 2. Para todo $z \in \mathbb{C}$, $|\sin(z)|^2 + |\cos(z)|^2 \ge 1$,
- 3. Si $\mathfrak{Im}(z) \ge 1$, $|\csc(z)| \le 2e/(e^2 1)$.
- 4. Si $\mathfrak{Im}(z) \ge b > 0$, $|\tan(z)|^2 \le 1 + 1/(\sinh(b))^2$.

¿Puede mejorar las cotas anteriores?

 $\mathbf{Ej.}$ 10 La función seno cardinal, denotada por $\mathrm{sinc}(z)$, es la función definida sobre todo el plano complejo por:

$$\operatorname{sinc}(z) = \begin{cases} \frac{\sin(z)}{z}, & \text{si } z \neq 0, \\ 1, & \text{si } z = 0. \end{cases}$$

- 1. Probar que dicha función es analítica.
- 2. Mostrar que para todo z en la circunferencia con centro en cero y radio r satisface

$$|\operatorname{sinc}(r) - 1| \le |\operatorname{sinc}(z) - 1| \le |\operatorname{sinc}(ir) - 1|,$$

 $|\operatorname{sinc}(r)| \le |\operatorname{sinc}(z)| \le |\operatorname{sinc}(ir)|.$

Ej. 11 Sea Log el logaritmo principal. Verificar que:

1. $Log(-ei) = 1 - \frac{\pi}{2}i$,

3. $Log[(1+i)^2] = 2Log(1+i)$,

2. $Log(1-i) = \frac{1}{2} \ln 2 - \frac{\pi}{4}i$,

4. $\text{Log}[(-1+i)^2] \neq 2 \text{Log}(-1+i)$.

Ej. 12 Usar las ecuaciones de Cauchy-Riemann polares para probar que Log es analítica en $\mathbb{C} - \ell$, donde ℓ es el semieje de los reales no positivos.

Ej. 13 Considerando valores principales de las potencias, verificar $\overline{\operatorname{Log}(z)} = \operatorname{Log}(\overline{z})$ y $\overline{z^{\lambda}} = \overline{z}^{\overline{\lambda}}$ para todo $z \in \mathbb{C} \setminus \ell$ donde ℓ es el semieje de los reales no positivos.

Ej. 14 Sea $A = \{z \in \mathbb{C} : \mathfrak{Re}(z) > 0\}$ y sea $f : A \subseteq \mathbb{C} \to \mathbb{C}$ la función definida por $f(z) = \text{Log}(z^2 + 1)$. Mostrar que f es inyectiva, dar la imagen de f y encontrar la función inversa f^{-1} .

Ej. 15 Verificar que $\text{Log}(1-z^2)$ es igual a Log(1-z) + Log(1+z) cuando |z| < 1. ¿Qué puede decir sobre Log((1-z)/(1+z)) cuando |z| < 1.

Ej. 16 Considerando valores principales de las potencias, dar un ejemplo de z y λ tal que $\text{Log}(z^{\lambda}) \neq \lambda \text{Log}(z)$. Asumiendo que λ es un número real positivo, determinar todos los números complejos z tales que $\text{Log}(z^{\lambda}) = \lambda \text{Log}(z)$.

 $\mathbf{Ej.}$ 17 Probar que para todo par de complejos z_1 y z_2 no nulos se cumple la identidad

$$Log(z_1 \cdot z_2) = Log z_1 + Log z_2 + 2N\pi i,$$

con $N \in \{-1,0,1\}$. Probar que si z_1 y z_2 pertenecen al primer cuadrante entonces N=0.

Ej. 18 Considerando valores principales de las potencias, mostrar que la ley de los exponentes $z^{\lambda}z^{\mu}=z^{\lambda+\mu}$ es válida para todo número complejo z diferente de cero y cualquier par de complejos λ y μ . Dar un ejemplo de números complejos z, λ y μ para los cuales no valga que $(z^{\lambda})^{\mu}$ sea igual a $z^{\lambda\mu}$.

Ej. 19 Considerando valores principales de las potencias, resolver:

- 4. $(-1)^{1/\pi}$, 7. i^{-i} ,

- 10. $(-e)^{\pi i}$, 13. $\log(i)(\sqrt{i})$,

- 2. $(1-i)^{4i}$ 5. $(-1)^{i}$, 8. i^{i} , 11. $(ie^{\pi/2})^{i}$, 14. $\text{Log}(i)(-e^{2})$, 3. $(1+i)^{i}$, 6. $(-1)^{1/n}$, $n \in \mathbb{Z}$, 9. $i^{\sqrt{2i}}$, 12. 2^{i+1} , 15. $(\sqrt{3}+i)^{6-i}$,

Ej. 20 Mostrar que $f(z) = \cos(\sqrt{z})$ define una función analítica sobre \mathbb{C} . ¿Qué puede decir de la función $f(z) = \sin(\sqrt{z})$?

Ej. 21 Resolver:

1. $\lim_{z\to 0} \exp(1/z^2)$,

9. $\lim_{z \to z} \frac{\cosh(z) - 1}{z},$

 $2. \lim_{z \to 0} \frac{1 - \exp(iz)}{z}$

3. $\lim_{z \to 0} z \operatorname{Log}(z)$

- 5. $\lim_{z \to 1} \frac{\text{Log}(z^2)}{z 1}$, 9. $\lim_{z \to z} \frac{\cosh(z)}{z}$,
 6. $\lim_{z \to 0} z^2 \sin(1/z)$, 10. $\lim_{z \to 0} \frac{\sinh(z)}{\sin(z)}$,
 7. $\lim_{z \to i} (z^4 1) \csc(z^2 + 1)$ 11. $\lim_{z \to 0} \frac{\sin(6z)}{\sin(2z)}$,

4. $\lim_{z \to 1} \frac{\operatorname{Log}(z)}{z - 1}$

8. $\lim_{z \to 0} \frac{\sinh(z)}{z}$,

12. $\lim_{z \to 0} \frac{\sin(z)}{z + \tan z}$