VİTMO

Линейные системы автоматического управления

Свободное движение и устойчивость

Свободное движение (Свободная составляющая движения)

Свободное движение: определение

Свободное движение (Свободная составляющая движения)

- «переходной процесс автономной системы»

Переходной процесс – изменение во времени различных переменных системы Мирошник И. В. «Теория автоматического управления. Линейные системы.»

Свободное движение: определение

Свободное движение (Свободная составляющая движения)

- «переходной процесс автономной системы»

Зависит от полюсов системы и начальных условий

Переходной процесс – изменение во времени различных переменных системы Мирошник И. В. «Теория автоматического управления. Линейные системы.»

$$a_n p^n[y] + a_{n-1} p^{n-1}[y] + \dots + a_1 p[y] + a_0[y] = R(p)[u]$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

$$u = 0$$

$$a_n p^n[y] + a_{n-1} p^{n-1}[y] + \dots + a_1 p[y] + a_0[y] = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

однородное + линейное

Свободная составляющая (движения) $y_{cB}(t)$ соответствует решениям однородного дифференциального уравнения

Мирошник И. В. «Теория автоматического управления. Линейные системы.»

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), ..., y^{(n)}(0)$$

 $y(0),\dot{y}(0),...,y^{(n)}(0)$ Характеристическое уравнение

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), ..., y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\lambda^2 + 4 = 0$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u$$
,
 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$y(t) = (c - di)e^{0t}(\cos 2t + i \sin 2t)$$

 $+(c + di)e^{0t}(\cos 2t - i \sin 2t)$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = 0 \pm 2i$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

 $y(t) = 2c\cos 2t + 2d\sin 2t$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

Пример

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

 $y(0), \dot{y}(0), ..., y^{(n)}(0)$

$$y(t) = 2c\cos 2t + 2d\sin 2t$$

$$\dot{y}(t) = 4c(-\sin 2t) + 4d\cos 2t$$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$y(0) = 2c\cos 0 + 2d\sin 0$$

$$\dot{y}(0) = 4c(-\sin 0) + 4d\cos 0$$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

Пример

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\Diamond$$

$$\dot{y}(0) = 4d = 2$$

y(0) = 2c = 1

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u$$
,
 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$c = d = 0.5$$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u$$
,
 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$c = d = 0.5$$

$$y(t) = \cos 2t + \sin 2t$$

$$\lambda^2 + 4 = 0$$

$$\lambda_{1,2} = \pm 2i$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

Преобразование Лапласа и его свойства

$$\mathcal{L}{f(t)} = F(s)$$
$$F(s) = \int_{-0}^{+\infty} f(t)e^{-st}dt$$

Свойства:

- 1. Линейность
- 2. Дифференцирование
- 3. Интегрирование
- 4. Смещение
- 5. Подобие
- 6. Умножение (свертка)
- 7. Начальное значение
- 8. Предельное значение

$$\mathcal{L}\{\dot{f}(t)\} = sF(s) - f(-0)$$

$$\mathcal{L}\{\ddot{f}(t)\} = s^2F(s) - sf(-0) - \dot{f}(-0)$$

...

$$\mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - \sum_{k=0}^{n-1} s^k f^{(n-1-k)}(-0)$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\Rightarrow s^2 Y_{CB}(s) - sy(0) - \dot{y}(0) + 4Y_{CB}(s) = 0$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$
 корни (полюса!) λ_j и $y(0), \dot{y}(0), \dots, y^{(n)}(0)$ моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$\Rightarrow s^2 Y_{CB}(s) - sy(0) - \dot{y}(0) + 4Y_{CB}(s) = 0$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$(s^2 + 4)Y_{CB}(s) = sy(0) + \dot{y}(0)$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$Y_{\text{CB}}(s) = \frac{sy(0) + \dot{y}(0)}{(s^2 + 4)}$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

$$y(0), \dot{y}(0), \dots, y^{(n)}(0)$$

корни (**полюса**!)
$$\lambda_j$$
 и моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$Y_{\rm CB}(s) = \frac{s+2}{(s^2+4)}$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$Y_{\text{CB}}(s) = \frac{2}{(s^2 + 4)} + \frac{s}{(s^2 + 4)}$$

f(t) оригинал	F(S) изображение
sin(wt)	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

 $y(0), \dot{y}(0), \dots, y^{(n)}(0)$

корни (**полюса**!)
$$\lambda_j$$

и
моды $e^{\lambda_j t}$

$$\ddot{y} + 4y = 6\dot{u} - u,$$

 $y(0) = 1, \dot{y}(0) = 2$
 $y_{CB}(t) = ?$

$$y_{\rm CB}(t) = \sin(2t) + \cos(2t)$$

f(t) оригинал	F(S) изображение
sin(ωt)	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

$$x(0)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{\text{CB}}(t) = ?$$

$$e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} = ?$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} = ?$$

Существуют правила возведения экспоненты в матричную степень **Жордановых клеток**

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y = \begin{bmatrix} t \\ 0 \end{bmatrix},$$

$$S = egin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \ 0 & \lambda_i & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \ 0 & 0 & 0 & \cdots & \lambda_i \end{bmatrix}$$
 Для кратных корней

Существуют правила возведения экспоненты в матричную степень **Жордановых клеток**

$$\begin{bmatrix}
1 & t & \frac{t^2}{2} & \cdots & \frac{t^{(n-1)}}{(n-1)!} \\
0 & 1 & t & \cdots & \frac{t^{(n-2)}}{(n-2)!} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & t \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Существуют правила возведения экспоненты в матричную степень Жордановых клеток

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\lambda_{i,}\bar{\lambda}_{i} = \alpha_{i} \pm i\beta_{i}$$

$$S = \begin{bmatrix} \alpha_{i} & \beta_{i} \\ -\beta_{i} & \alpha_{i} \end{bmatrix}$$

$$\lambda_{i,}\lambda_{i} = \alpha_{i} \pm i\beta_{i}
S = \begin{bmatrix} \alpha_{i} & \beta_{i} \\ -\beta_{i} & \alpha_{i} \end{bmatrix} \qquad \Rightarrow \qquad e^{St} = e^{\alpha_{i}t} \begin{bmatrix} \cos\beta_{i}t & \sin\beta_{i}t \\ -\sin\beta_{i}t & \cos\beta_{i}t \end{bmatrix}$$

Для комплексносопряженных

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Существуют правила возведения экспоненты в матричную степень **Жордановых клеток**

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Нужно найти Жорданово разложение $A = PSP^{-1}$ и воспользоваться им $e^{At} = Pe^{St}P^{-1}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Также просто возвести в степень **диагональной матрицы**

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \Rightarrow e^{Dt} = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n t} \end{bmatrix}$$

Нужно найти Спектральное разложение $A = PDP^{-1}$ и воспользоваться им $e^{At} = Pe^{Dt}P^{-1}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Решение через диагональную матрицу: необходимо сначала найти спектральное разложение

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\det\left(I\lambda - \begin{bmatrix} -2 & 4\\ -2 & 2 \end{bmatrix}\right) = 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\det\begin{bmatrix} \lambda + 2 & -4 \\ 2 & \lambda - 2 \end{bmatrix} = 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$(\lambda + 2)(\lambda - 2) + 8 = 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\lambda^2 = -4$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\lambda_{1,2} = \pm 2i$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\lambda_1 = 2i$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \qquad \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = 2i \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\lambda_2 = -2i$$

$$\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = -2i \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\lambda_1 = 2i$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \qquad \begin{cases} -2a_1 + 4a_2 = 2ia_1 \\ -2a_1 + 2a_2 = 2ia_2 \end{cases}$$

$$\lambda_2 = -2i$$

$$\begin{cases} -2a_1 + 4a_2 = -2ia_1 \\ -2a_1 + 2a_2 = -2ia_2 \end{cases}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\lambda_1 = 2i$$

$$\begin{cases} a_2 = \frac{a_1 + ia_1}{2} \\ a_1 = a_1 \end{cases}$$

$$\lambda_{2} = -2i$$

$$\begin{cases} a_{2} = \frac{a_{1} - ia_{1}}{2} \\ a_{1} = a_{1} \end{cases}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\lambda_2 = -2i$$
 $\begin{cases} a_2 = rac{a_1 - ia_1}{2} \ a_1 - ext{любое число} \end{cases}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \qquad \nu_1 = \begin{bmatrix} 2 \\ 1+i \end{bmatrix}$$

$$\lambda_2 = -2i$$

$$\nu_1 = \begin{bmatrix} 2\\ 1-i \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \qquad \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} = \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} e^{2it} & 0 \\ 0 & e^{-2it} \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{-}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{\text{CB}}(t) = ?$$

$$\begin{aligned} e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} &= \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} e^{2it} & 0 \\ 0 & e^{-2it} \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1} \\ &= \frac{1}{2-2i-2-2i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \\ &= \frac{1}{-4i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \begin{bmatrix} (1+i)/4 & -i/2 \\ (1-i)/4 & i/2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} = \begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} e^{2it} & 0 \\ 0 & e^{-2it} \end{bmatrix} \begin{bmatrix} (1+i)/4 & -i/2 \\ (1-i)/4 & i/2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1} = \frac{1}{2-2i-2-2i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \frac{1}{2-2i-2-2i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1} = \frac{1}{2-2i-2-2i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} =$$

$$= \frac{1}{-4i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \frac{i}{4} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \begin{bmatrix} (1+i)/4 & -i/2 \\ (1-i)/4 & i/2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix}t} = \begin{bmatrix} 2e^{2it} & 2e^{-2it} \\ (1+i)e^{2it} & (1-i)e^{-2it} \end{bmatrix} \begin{bmatrix} (1+i)/4 & -i/2 \\ (1-i)/4 & i/2 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 2 \\ 1+i & 1-i \end{bmatrix}^{-1} = \frac{1}{2-2i-2-2i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} =$$
$$= \frac{1}{-4i} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \frac{i}{4} \begin{bmatrix} 1-i & -2 \\ -1-i & 2 \end{bmatrix} = \begin{bmatrix} (1+i)/4 & -i/2 \\ (1-i)/4 & i/2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$v_{cp}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \\ y = \begin{bmatrix} 1 & -1 \end{bmatrix} x, \\ x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ y_{\text{CB}}(t) = ?$$

$$x(t) = e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{(1+i)e^{2it}}{2} + \frac{(1-i)e^{-2it}}{2} \\ \frac{(1+i)^2e^{2it}}{4} + \frac{(1-i)^2e^{-2it}}{4} \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$x(t) = 2$$

$$x(t) = e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} (1+i)e^{2it} \\ 2 \\ \frac{2ie^{2it}}{4} + \frac{-2ie^{-2it}}{4} \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$x_{CB}(t) = e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{(1+i)(\cos 2t + i\sin 2t)}{2} + \frac{(1-i)(\cos 2t - i\sin 2t)}{2} \\ \frac{2i\cos 2t - 2\sin 2t}{4} + \frac{-2i\cos 2t - 2\sin 2t}{4} \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$x_{CB}(t) = e^{\begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} (1+i)(\cos 2t + i\sin 2t) + (1-i)(\cos 2t - i\sin 2t) \\ & \frac{2}{-4\sin 2t} \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$= \begin{bmatrix} 2\cos 2t - 2\sin 2t \\ 2 & -\sin 2t \end{bmatrix}$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$x_{\rm CB}(t) = \begin{bmatrix} \cos 2t - \sin 2t \\ -\sin 2t \end{bmatrix}$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$e^{(\alpha+\beta i)t} =$$

$$= e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x_{\text{CB}}(t) = \begin{bmatrix} \cos 2t - \sin 2t \\ -\sin 2t \end{bmatrix} = \cos 2t$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Пример

(Лаплас)

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Преобразование Лапласа и его свойства

$$\mathcal{L}{f(t)} = F(s)$$
$$F(s) = \int_{-0}^{+\infty} f(t)e^{-st}dt$$

Свойства:

- 1. Линейность
- 2. Дифференцирование
- 3. Интегрирование
- 4. Смещение
- 5. Подобие
- 6. Умножение (свертка)
- 7. Начальное значение
- 8. Предельное значение

$$\mathcal{L}\{\dot{f}(t)\} = sF(s) - f(-0)$$

$$\mathcal{L}\{\ddot{f}(t)\} = s^2F(s) - sf(-0) - \dot{f}(-0)$$

...

$$\mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - \sum_{k=0}^{n-1} s^k f^{(n-1-k)}(-0)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$sX_{\rm CB}(s) - x(0) = AX_{\rm CB}(s)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$(Is - A)X_{CB}(s) = x(0)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$X_{\rm CB}(s) = (Is - A)^{-1}x(0)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$X_{\text{CB}}(s) = (Is - A)^{-1}x(0)$$

 $Y_{\text{CB}}(s) = C(Is - A)^{-1}x(0)$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$X_{\text{CB}}(s) = \begin{pmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$Y_{\text{CB}}(s) = \begin{bmatrix} 1 & -1 \end{bmatrix} X_{\text{CB}}(s)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$X_{\text{CB}}(s) = \begin{bmatrix} s+2 & -4 \\ 2 & s-2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $Y_{\text{CB}}(s) = \begin{bmatrix} 1 & -1 \end{bmatrix} X_{\text{CB}}(s)$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$X_{CB}(s) = \frac{1}{(s+2)(s-2)+8} \begin{bmatrix} s-2 & 4 \\ -2 & s+2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$Y_{CB}(s) = \begin{bmatrix} 1 & -1 \end{bmatrix} X_{CB}(s)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$X_{CB}(s) = \frac{1}{s^2 + 4} \begin{bmatrix} s - 2 \\ -2 \end{bmatrix}$$
$$Y_{CB}(s) = \begin{bmatrix} 1 & -1 \end{bmatrix} X_{CB}(s)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$X_{\text{CB}}(s) = \begin{bmatrix} \frac{s-2}{s^2+4} \\ -2 \\ \hline s^2+4 \end{bmatrix}$$

Пример (Лаплас)
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \\ y = \begin{bmatrix} 1 & -1 \end{bmatrix} x, \\ x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ y_{CB}(t) = ?$$

$$X_{CB}(s) = \begin{bmatrix} \frac{s-2}{s^2+4} \\ -2 \\ \frac{s^2+4}{s^2+4} \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{CB}(t) = e^{At}x(0) \\ y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Пример (Лаплас)

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CR}(t) = ?$$

$$X_{CB}(s) = \begin{bmatrix} \frac{s-2}{s^2+4} \\ -2 \\ \frac{s^2+4}{s^2+4} \end{bmatrix}$$
$$Y_{CB}(s) = \frac{s}{s^2+4}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Пример

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

Пример (Лаплас)
$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x, \\ y = \begin{bmatrix} 1 & -1 \end{bmatrix} x, \\ x(0) = \begin{bmatrix} 1 \end{bmatrix}$$

$$X_{CB}(s) = \begin{bmatrix} \frac{s}{s^2 + 4} - \frac{2}{s^2 + 4} \\ -\frac{2}{s^2 + 4} \end{bmatrix}$$

$$Y_{\rm CB}(s) = \frac{s}{s^2 + 4}$$

f(t) оригинал	F(S) изображение
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$x(0)$$

Пример (Лаплас)

$$\dot{x} = \begin{bmatrix} -2 & 4 \\ -2 & 2 \end{bmatrix} x,$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x,$$

$$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$y_{CB}(t) = ?$$

$$x_{CB}(t) = \begin{bmatrix} \cos 2t - \sin 2t \\ -\sin 2t \end{bmatrix}$$
$$y_{CB}(t) = \cos 2t$$

f(t) оригинал	F(S) изображение
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \downarrow \\ & \chi_{CB}(t) = e^{At}x(0) \\ & y_{CB}(t) = Ce^{At}x(0) \end{cases}$$

Пример: Обратная задача!

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$
 $C = ?$
 $x(0) = ?$

Автономный объект (нет входа)!

Командный генератор, автономный генератор...

Пример (Жордан)

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$x(0) = ?$$

Какие собственные числа *A* нам нужны?

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = 0 + i$$

$$\lambda_4 = 0 - i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\chi(0) = ?$$

$$\lambda_{1} = -1$$

$$\lambda_{2} = -1$$

$$\lambda_{3} = 0 + i$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{A} \qquad \mathbf$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\Rightarrow e^{At} = \begin{bmatrix} e^{-t} & te^{-t} & 0 & 0 \\ 0 & e^{-t} & 0 & 0 \\ 0 & 0 & e^{0} \cos t & e^{0} \sin t \\ 0 & 0 & -e^{0} \sin t & e^{0} \cos t \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{\Box} \quad \begin{array}{c} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{array}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\Rightarrow e^{At} = \begin{bmatrix} e^{-t} & te^{-t} & 0 & 0 \\ 0 & e^{-t} & 0 & 0 \\ 0 & 0 & \cos t & \sin t \\ 0 & 0 & -\sin t & \cos t \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\Rightarrow$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$e^{At}x(0) = \begin{bmatrix} a_1e^{-t} + a_2te^{-t} \\ a_2e^{-t} \\ a_3\cos t + a_4\sin t \\ -a_3\sin t + a_4\cos t \end{bmatrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\Diamond$$

$$Ce^{At}x(0) =$$

$$= [c_1 \quad c_2 \quad c_3 \quad c_4] \begin{bmatrix} a_1e^{-t} + a_2te^{-t} \\ a_2e^{-t} \\ a_3\cos t + a_4\sin t \\ -a_3\sin t + a_4\cos t \end{bmatrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$Ce^{At}x(0) =$$

$$= a_1c_1e^{-t} + a_2c_1te^{-t} +$$

$$+a_2c_2e^{-t} +$$

$$+a_3c_3\cos t + a_4c_3\sin t -$$

$$-a_3c_4\sin t + a_4c_4\cos t$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$Ce^{At}x(0) = (a_1c_1 + a_2c_2)e^{-t} + a_2c_1te^{-t} + (a_3c_3 + a_4c_4)\cos t + (a_4c_3 - a_3c_4)\sin t$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$Ce^{At}x(0) = (a_1c_1 + a_2c_2)e^{-t} + a_2c_1te^{-t} + (a_3c_3 + a_4c_4)\cos t + (a_4c_3 - a_3c_4)\sin t$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\begin{vmatrix} a_1c_1 + a_2c_2 = 1 \\ a_2c_1 = 1 \\ a_3c_3 + a_4c_4 = 0 \\ a_4c_3 - a_3c_4 = 1 \end{vmatrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\begin{cases} a_1c_1 + a_2c_2 = 1 \\ a_2c_1 = 1 \\ a_3c_3 + a_4c_4 = 0 \\ a_4c_3 - a_3c_4 = 1 \end{cases} \Rightarrow \begin{cases} a_1 = ? \\ a_2 = ? \\ a_3 = ? \\ a_4 = ? \\ c_1 = ? \\ c_2 = ? \\ c_3 = ? \\ c_4 = ? \end{cases}$$

$$\begin{cases}
a_1 &=? \\
a_2 &=? \\
a_3 &=? \\
a_4 &=? \\
c_1 &=? \\
c_2 &=? \\
c_3 &=? \\
c_4 &=?
\end{cases}$$

Пример (Жордан)

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$\begin{vmatrix} a_1c_1 + a_2c_2 = 1 \\ a_2c_1 = 1 \\ a_3c_3 + a_4c_4 = 0 \\ a_4c_3 - a_3c_4 = 1 \end{vmatrix} \Rightarrow \begin{cases} a_1 = 0 \\ a_2 = 1 \\ a_3 = -1 \\ a_4 = 0 \\ c_1 = 1 \\ c_2 = 1 \\ c_3 = 0 \\ c_4 = 1 \end{cases}$$

Например

$$\begin{aligned}
 a_1 &= 0 \\
 a_2 &= 1 \\
 a_3 &= -1 \\
 a_4 &= 0 \\
 c_1 &= 1 \\
 c_2 &= 1 \\
 c_3 &= 0 \\
 c_4 &= 1
 \end{aligned}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$\lambda_1 = -1$$

$$\lambda_2 = -1$$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$x(0) = ?$$

$$\lambda_{1} = -1$$

$$\lambda_{2} = -1$$

$$\lambda_{3} = i$$

$$\lambda_{4} = -i$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, x(0) = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{A} \qquad \mathbf$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$\lambda_1 = -1$$

$$C = ?$$

$$C = ?$$
 $\lambda_2 = -1$

$$x(0) = ?$$
 $\lambda_3 = i$

$$\lambda_3 = i$$

$$\lambda_4 = -i$$

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$

$$C = ?$$

$$x(0) = ?$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{\nabla} \begin{array}{c} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

Пример (последовательное дифференцирование)

$$y(t) = e^{-t} + te^{-t} + \sin t$$

$$A = ?$$
 $C = ?$
 $x(0) = ?$

Выделяем компоненты выхода разного рода

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $G_2(t) = ?$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$ $g_2(t) = \sin t$
 $x(0) = ?$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$ Дифференцируем $A = ?$ $g_1(t) = e^{-t} + te^{-t}$ $C = ?$ $g_2(t) = \sin t$ $x(0) = ?$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$ $g_2(t) = \sin t$
 $x(0) = ?$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

 $\dot{x}_1 = -e^{-t} + (te^{-t})'$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$ $g_2(t) = \sin t$
 $x(0) = ?$ $g_1(t) + g_2(t)$ $g_1 = x_1 = e^{-t} + te^{-t}$
 $\dot{x}_1 = -e^{-t} + e^{-t} - te^{-t}$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

 $\dot{x}_1 = -e^{-t} + e^{-t} - te^{-t}$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$ $g_2(t) = \sin t$
 $x(0) = ?$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

 $\dot{x}_1 = -te^{-t}$

Пример (последовательное дифференцирование)

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$ $\dot{x}_1 = -te^{-t} = x_2$ $A = ?$ $g_1(t) = e^{-t} + te^{-t}$ $C = ?$ $g_2(t) = \sin t$ $x(0) = ?$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

 $\dot{x}_1 = -te^{-t} = x_2$

Новая координата вектора состояния

Пример (последовательное дифференцирование)

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$ $\dot{x}_1 = x_2 = -te^{-t}$
 $C = ?$ $g_2(t) = \sin t$ $\dot{x}_2 = -e^{-t} + te^{-t}$
 $\dot{x}_3 = x_2 = -te^{-t}$
 $\dot{x}_4 = x_2 = -te^{-t}$
 $\dot{x}_5 = -e^{-t} + te^{-t}$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

 $\dot{x}_1 = x_2 = -te^{-t}$
 $\dot{x}_2 = -e^{-t} + te^{-t}$

Дифференцируем

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $g_2(t) = ?$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$ $\dot{x}_1 = x_2 = -te^{-t}$ $\dot{x}_2 = -e^{-t} + te^{-t}$ $\dot{x}_2 = -e^{-t} + te^{-t}$ $\dot{x}_2 = -e^{-t} + te^{-t}$ $\dot{x}_3 = -e^{-t} + te^{-t}$ $\dot{x}_4 = x_2 = -te^{-t}$ $\dot{x}_5 = -e^{-t} + te^{-t}$ $\dot{x}_6 = -e^{-t} + te^{-t}$ $\dot{x}_7 = -e^{-t} + te^{-t}$ $\dot{x}_8 = -e^{-t} + te^{-t}$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$y(t) = g_1(t) + g_2(t)$$
 $g_1 = x_1 = e^{-t} + te^{-t}$
 $A = ?$ $g_1(t) = e^{-t} + te^{-t}$ $\dot{x}_1 = x_2 = -te^{-t}$
 $C = ?$ $g_2(t) = \sin t$ $\dot{x}_2 = -e^{-t} + te^{-t} = -x_1 - 2x_2$
 $x(0) = ?$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

$$\dot{x}_1 = x_2 = -te^{-t}$$

$$\dot{x}_2 = -e^{-t} + te^{-t} = -x_1 - 2x_2$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ & \\ & \\ & \\ \end{matrix} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = Ce^{At}x(0) \\ & \\ \end{matrix}$$

$$y(t) = g_{1}(t) + g_{2}(t)$$

$$A = ? g_{1}(t) = e^{-t} + te^{-t}$$

$$C = ? g_{2}(t) = \sin t$$

$$x(0) = ?$$

$$g_{1} = x_{1} = e^{-t} + te^{-t}$$

$$\dot{x}_{1} = x_{2} = -te^{-t}$$

$$\dot{x}_{2} = -e^{-t} + te^{-t} = -x_{1} - 2x_{2}$$

$$\begin{cases} g_{1} = [1 \quad 0] \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \\ \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$y(t) = g_{1}(t) + g_{2}(t)$$

$$A = ? g_{1}(t) = e^{-t} + te^{-t}$$

$$C = ? g_{2}(t) = \sin t$$

$$x(0) = ?$$

$$g_{1} = x_{1} = e^{-t} + te^{-t}$$

$$\dot{x}_{1} = x_{2} = -te^{-t}$$

$$\dot{x}_{2} = -e^{-t} + te^{-t} = -x_{1} - 2x_{2}$$

$$\begin{cases} g_{1} = [1 \quad 0] \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \\ \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = ?$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $G_2(t) = \sin t$

иример (последовательное дифференцирование)
$$y(t) = g_1(t) + g_2(t)$$

$$A = ? \qquad g_1(t) = e^{-t} + te^{-t}$$

$$C = ? \qquad g_2(t) = \sin t$$

$$x(0) = ?$$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

$$\dot{x}_1 = x_2 = -te^{-t}$$

$$\dot{x}_2 = -e^{-t} + te^{-t} = -x_1 - 2x_2$$

$$\begin{cases} g_1 = [1 \quad 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = ?$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G = ?$
 $G_2(t) = \sin t$
 $G_2(t) = ?$

$$y(t) = g_1(t) + g_2(t)$$

$$A = ? \qquad g_1(t) = e^{-t} + te^{-t}$$

$$C = ? \qquad g_2(t) = \sin t$$

$$x(0) = ?$$

$$g_1 = x_1 = e^{-t} + te^{-t}$$

$$\dot{x}_1 = x_2 = -te^{-t}$$

$$\dot{x}_2 = -e^{-t} + te^{-t} = -x_1 - 2x_2$$

$$\begin{cases} g_1 = x_1 = e^{-t} + te^{-t} \\ \dot{x}_1 = x_2 = -te^{-t} \end{cases}$$

$$\dot{x}_1(0) = x_2(0) = 0$$

$$\dot{x}_2 = -e^{-t} + te^{-t} = -x_1 - 2x_2$$

$$\begin{cases} g_1 = [1 \quad 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \quad 1 \\ -1 \quad -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \swarrow \qquad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{matrix} \qquad \begin{cases} g_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{cases}$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$
 $g_2(t) = \sin t$
 $x(0) = ?$

$$g_2 = x_3 = \sin t$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{\nabla} \begin{array}{c} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{cases}$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \mathbf{\Box} \quad \begin{matrix} x_{\text{CB}}(t) = e^{At}x(0) \\ y_{\text{CB}}(t) = Ce^{At}x(0) \end{matrix} \qquad \begin{cases} g_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y(t) = g_1(t) + g_2(t)$$
 $g_2 = x_3 = \sin t$ $\dot{x}_3 = x_4 = \cos t$ $\dot{x}_4 = -\sin t = -x_3$ $c = ?$ $g_2(t) = \sin t$ $x(0) = ?$

$$g_2 = x_3 = \sin t$$

$$\dot{x}_3 = x_4 = \cos t$$

$$\dot{x}_4 = -\sin t = -x_3$$

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{A} \qquad \mathbf{C}_{CB}(t) = e^{At}x \\ y_{CB}(t) = Ce^{At} \end{cases}$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$

$$g_2 = x_3 = \sin t$$

$$\dot{x}_3 = x_4 = \cos t$$

$$\dot{x}_4 = -\sin t = -x_3$$

$$y(t) = g_{1}(t) + g_{2}(t)$$

$$A = ? g_{1}(t) = e^{-t} + te^{-t}$$

$$C = ? g_{2}(t) = \sin t$$

$$x(0) = ?$$

$$\begin{cases} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{cases} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$y(t) = g_{1}(t) + g_{2}(t)$$

$$A = ? g_{1}(t) = e^{-t} + te^{-t}$$

$$C = ? g_{2}(t) = \sin t$$

$$x(0) = ?$$

$$y = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $g_1(t) = e^{-t} + te^{-t}$
 $C = ?$
 $g_2(t) = \sin t$
 $x(0) = ?$

$$y(t) = g_1(t) + g_2(t)$$

$$A = ?$$

$$C = ?$$

$$x(0) = ?$$

$$g_1(t) = e^{-t} + te^{-t}$$

$$C = [1 \ 0 \ 1 \ 0 \ 0]$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

$$C = [1 \ 0 \ 1 \ 0]$$

$$y(t) = g_1(t) + g_2(t)$$
 $A = ?$
 $G_1(t) = e^{-t} + te^{-t}$
 $G_2(t) = \sin t$
 $G_2(t) = ?$

- способность динамической системы возвращаться в равновесное состояние (положение равновесия) после окончания действия внешних факторов

- способность динамической системы возвращаться в равновесное состояние (положение равновесия) после окончания действия внешних факторов

Устойчивость это про свободное движение!

- способность динамической системы возвращаться в равновесное состояние (положение равновесия) после окончания действия внешних факторов

Строго говоря устойчивость – не свойство системы, а свойство точки равновесия...

- способность динамической системы возвращаться в равновесное состояние (положение равновесия) после окончания действия внешних факторов

Строго говоря устойчивость – не свойство системы, а свойство точки равновесия...

...но системы линейные динамические! Общая точка равновесия – 0 (т.к. линейные диффуры). Это позволяет говорить об устойчивости системы в целом!

- способность динамической системы возвращаться в равновесное состояние (положение равновесия) после окончания действия внешних факторов

Различают:

Математическую устойчивость (по состоянию); Техническую устойчивость (по выходу).

При определенных условиях они эквивалентны (см. Мирошника)

Мирошник И. В.

«Теория автоматического управления. Линейные системы.»

Система ... называется **устойчивой по Ляпунову**, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для всех начальных значений x(0) из области $||x(0)|| < \delta$ и для любых t > 0 выполняется $||x(t)|| < \varepsilon$

Система ... называется **неустойчивой**, если существует такое $\varepsilon > 0$, что для любых сколь угодно малых $\delta > 0$ найдется x(0) из области $||x(0)|| < \delta$ для которого условие $||x(t)|| < \varepsilon$ нарушается

Система ... называется асимптотически устойчивой, если ... устойчива по Ляпунова и выполняется условие аттрактивности (притяжения) ... $\lim ||x(t)|| = 0$

Система ... называется экспоненциально устойчивой, если найдутся положительные числа $\beta > 0$, $\alpha > 0$ такие, что для любых t > 0 выполняется $\|x(t)\| \le \beta e^{-\alpha t} \|x(0)\|$

Система ... называется **устойчивой по Ляпунову**, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для всех начальных значений x(0) из области $\|x(0)\| < \delta$ и для любых t > 0 выполняется $||x(t)|| < \varepsilon$

Система ... называется **неустойчивой**, если существует такое $\varepsilon > 0$, что для любых сколь угодно малых $\delta > 0$ найдется x(0) из области $||x(0)|| < \delta$ для которого условие $||x(t)|| < \varepsilon$ нарушается

Система ... называется асимптотически устойчивой, если ... устойчива по Ляпунова и выполняется условие аттрактивности (притяжения) ... $\lim ||x(t)|| = 0$

Система ... называется экспоненциально устойчивой, если найдутся положительные числа $\beta > 0$, $\alpha > 0$ такие, что для любых t > 0 выполняется $\|x(t)\| \le \beta e^{-\alpha t} \|x(0)\|$

Эквивалентны для линейных систем

Система ... называется **нейтрально устойчивой** ... если для любых $t \geq 0$ найдется $\varepsilon > 0$ такое, что выполняется $|y(t)| < \varepsilon$ (т.е. система остается в некоторой окрестности положения равновесия)

Система ... называется **неустойчивой** для любых $\varepsilon > 0$ найдется $t^* > 0$ такое, что при $t > t^*$ имеет место $|y(t)| > \varepsilon$

Система ... называется **устойчивой** если с течением времени (при $t \to \infty$) она возвращается в положение равновесия $\lim y(t) = 0$

Система ... называется **нейтрально устойчивой** ... если для любых $t \geq 0$ найдется $\varepsilon > 0$ такое, что выполняется $|y(t)| < \varepsilon$ (т.е. система остается в некоторой окрестности положения равновесия)

Система ... называется **неустойчивой** для любых $\varepsilon > 0$ найдется $t^* > 0$ такое, что при $t > t^*$ имеет место $|y(t)| > \varepsilon$

Система ... называется **устойчивой** если с течением времени (при $t \to \infty$) она возвращается в положение равновесия $\lim y(t) = 0$

Видны соответствия с определениями для мат. устойчивости...

Система ... называется **нейтрально устойчивой** ... если для любых $t \geq 0$ найдется $\varepsilon > 0$ такое, что выполняется $|y(t)| < \varepsilon$ (т.е. система остается в некоторой окрестности положения равновесия)

Система ... называется **неустойчивой** для любых $\varepsilon > 0$ найдется $t^* > 0$ такое, что при $t > t^*$ имеет место $|y(t)| > \varepsilon$

Система ... называется **устойчивой** если с течением времени (при $t \to \infty$) она возвращается в положение равновесия $\lim y(t) = 0$

Видны соответствия с определениями для мат. устойчивости...

...но эти определения противоречивы при рассмотрении не полностью наблюдаемых и нелинейных систем!

Система ... называется **нейтрально устойчивой** ... если для любых $t \geq 0$ найдется $\varepsilon > 0$ такое, что выполняется $|y(t)| < \varepsilon$ (т.е. система остается в некоторой окрестности положения равновесия)

Система ... называется **неустойчивой** для любых $\varepsilon > 0$ найдется $t^* > 0$ такое, что при $t > t^*$ имеет место $|y(t)| > \varepsilon$

Система ... называется **устойчивой** если с течением времени (при $t \to \infty$) она возвращается в положение равновесия $\lim y(t) = 0$

Видны соответствия с определениями для мат. устойчивости...

...но эти определения противоречивы при рассмотрении не полностью наблюдаемых и нелинейных систем!

В дальнейшем ориентируемся на мат. устойчивость, а понятие наблюдаемости будет во втором семестре

Мирошник И. В. «Теория автоматического управления. Линейные системы.»

Свободное движение и устойчив

$$e^{\lambda_j t}$$

$$\operatorname{Re}(\lambda_j) = \alpha < 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = 0$$

$$\operatorname{Re}(\lambda_j) = \alpha = 0$$
$$\lim_{t \to +\infty} e^{\alpha t} = 1$$

$$\operatorname{Re}(\lambda_j) = \alpha > 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = +\infty$$

$$e^{\lambda_j t}$$

$$\operatorname{Re}(\lambda_j) = \alpha < 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = 0$$

$$\operatorname{Re}(\lambda_j) = \alpha = 0$$
$$\lim_{t \to +\infty} e^{\alpha t} = 1$$

$$\operatorname{Re}(\lambda_j) = \alpha > 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = +\infty$$

$$\lim_{t\to+\infty}e^{\lambda_jt}=0$$

Речь про
$$\operatorname{Re}(\lambda_j)!$$

$$e^{\lambda_j t}$$
 ограничено

$$\lim_{t\to+\infty}e^{\lambda_jt}=+\infty$$

$$e^{\lambda_j t}$$

$$\operatorname{Re}(\lambda_j) = \alpha < 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = 0$$

Устойчиво асимптотически

Все корни должны соответствовать

$$\operatorname{Re}(\lambda_j) = \alpha = 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = 1$$

На границе устойчивости

$$\operatorname{Re}(\lambda_j) = \alpha > 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = +\infty$$

Неустойчиво

Достаточно одного корня

$$e^{\lambda_j t}$$

$$\operatorname{Re}(\lambda_j) = \alpha < 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = 0$$

Устойчиво асимптотически

Все корни должны соответствовать

$$\operatorname{Re}(\lambda_j) = \alpha = 0$$
$$\lim_{t \to +\infty} e^{\alpha t} = 1$$

На границе устойчивости

Без кратных корней, иначе **С**

По Ляпунову

$$\operatorname{Re}(\lambda_j) = \alpha > 0$$

$$\lim_{t \to +\infty} e^{\alpha t} = +\infty$$

Неустойчиво

Достаточно одного корня

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u$$

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u,$$

$$\lambda^3 + 3\lambda^2 + \lambda + 3 = 0$$

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u,$$

$$(\lambda^2 + 1)(\lambda + 3) = 0$$

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u,$$

$$(\lambda^2 + 1)(\lambda + 3) = 0,$$

$$\lambda_1 = -3, \lambda_2 = i, \lambda_3 = -i$$

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u,$$

$$(\lambda^2 + 1)(\lambda + 3) = 0,$$

$$\lambda_1 = -3, \lambda_2 = i, \lambda_3 = -i$$

$$Re(\lambda_1) = -3 < 0$$

$$Re(\lambda_2) = Re(\lambda_3) = 0$$

Пример

$$\ddot{y} + 3\ddot{y} + \dot{y} + 3 = u,$$

$$(\lambda^2 + 1)(\lambda + 3) = 0,$$

$$\lambda_1 = -3, \lambda_2 = i, \lambda_3 = -i$$

Какой тип устойчивости системы?

$$Re(\lambda_1) = -3 < 0$$

$${
m Re}(\lambda_2) = {
m Re}(\lambda_3) = 0$$
 но не кратные, а сопряженные

по Ляпунову, но не асимптотически (граница устойчивости)

$$a_{n}p^{n}[y] + a_{n-1}p^{n-1}[y] + \dots + a_{1}p[y] + a_{0}[y] = R(p)[u]$$

$$y = \frac{R(p)}{a_{n}p^{n} + a_{n-1}p^{n-1} + \dots + a_{1}p + a_{0}}[u] = \frac{R(p)}{Q(p)}[u]$$

$$y = rac{R(p)}{\prod_{i=1}^{n} (p - \lambda_i)} [u]$$
 Устойчивость определяется полюсами системы

Устойчивость: критерий Гурвица

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система асимптотически устойчива в том и только в том случае, если все ведущие угловые миноры этой матрицы положительны

Все **корни** (характеристического) полинома имеют отрицательные вещественные части тогда и только тогда, когда все *п* главных миноров матрицы (**определителей Гурвица**) положительны

Поляков К. Ю. «Теория автоматического управления для "чайников"»

Устойчивость: критерий Гурвица

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$
 Система асимптотически в том случ все ведущие угловые мин матрицы положительны

Система асимптотически устойчива

в том и только в том случае, если все ведущие угловые миноры этой

$$|a_{n-1}| > 0 \qquad \det \begin{bmatrix} a_{n-1} & a_{n-3} \\ a_n & a_{n-2} \end{bmatrix} > 0 \qquad \det \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} \\ a_n & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3} \end{bmatrix} > 0 \qquad \cdots$$

Устойчивость: критерий Гурвица

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система асимптотически устойчива в том и только в том случае, если все ведущие угловые миноры этой матрицы положительны

Можно чуть проще

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Критерий устойчивости Льенара-Шипара:

Если все коэффициенты a_i характеристического полинома системы положительны, то необходимо и достаточно, чтобы среди определителей Гурвица были положительными все ведущие угловые миноры с четными индексами или все ведущие угловые миноры с нечетными индексами

Теорема Стодолы:

Если система устойчива, то все коэффициенты a_i характеристического полинома системы строго положительны. Обратное справедливо только для систем не выше 2-го порядка

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система асимптотически устойчива в том и только в том случае, если все ведущие угловые миноры этой матрицы положительны

В противном случае система не устойчива?

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система асимптотически устойчива в том и только в том случае, если все ведущие угловые миноры этой матрицы положительны

В противном случае система не устойчива?

Не обязательно, ведь есть еще граничный случай (по Ляпунову, но не асимптотически)!

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система имеет корни на мнимой оси, если ее определитель (последний ведущий угловой минор) равен нулю

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система имеет корни на мнимой оси, если ее определитель (последний ведущий угловой минор) равен нулю

$$\det_n = \det_{n-1} \cdot a_0 = 0$$

Если $\det_{n-1} = 0$, но $a_0 \neq 0$ то говорят о чисто мнимых корнях (колебательные консервативные)

Если $a_0 = 0$, но $\det_{n-1} \neq 0$ то есть «нейтральная мода» (нулевой корень)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система имеет корни на мнимой оси, если ее определитель (последний ведущий угловой минор) равен нулю

Можно ли однозначно говорить об устойчивости $= \det_{n-1} \cdot a_0 = 0$ по Ляпунову?

$$= \det_{n-1} \cdot a_0 = 0$$

Если $\det_{n-1} = 0$, но $a_0 \neq 0$ то говорят о чисто мнимых корнях (колебательные консервативные)

Если $a_0 = 0$, но $\det_{n-1} \neq 0$ то есть «нейтральная мода» (нулевой корень)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix}$$

Система имеет корни на мнимой оси, если ее определитель (последний ведущий угловой минор) равен нулю

Можно ли однозначно говорить об устойчивости $= \det_{n-1} \cdot a_0$ Снова нет, т.к. нет охвата кратности корней по Ляпунову?

$$= \det_{n-1} \cdot a_0$$

Если $\det_{n-1} = 0$, но $a_0 \neq 0$ то говорят о чисто мнимых корнях (колебательные консервативные)

Если $a_0 = 0$, но $\det_{n-1} \neq 0$ то есть «нейтральная мода» (нулевой корень)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$egin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \ a_n & a_{n-2} & a_{n-4} & \dots & 0 \ 0 & a_{n-1} & a_{n-3} & \dots & 0 \ 0 & a_n & a_{n-2} & \dots & 0 \ dots & $

Простое правило: Гурвица стоит использовать, когда из него можно сделать однозначный вывод!

- 1. Либо система асимптотически устойчива (см. выше);
- 2. Либо система однозначно неустойчива (есть отрицательные коэффициенты a_i).

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

$$\begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \dots & 0 \\ a_n & a_{n-2} & a_{n-4} & \dots & 0 \\ 0 & a_{n-1} & a_{n-3} & \dots & 0 \\ 0 & a_n & a_{n-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_0 \end{bmatrix} \quad \begin{array}{c} \text{Пре} \\ \text{ког} \\ 1. \\ \vdots \\ 2. \end{array}$$

Простое правило: Гурвица стоит использовать, когда из него можно сделать однозначный вывод!

- 1. Либо система асимптотически устойчива (см. выше);
- 2. Либо система однозначно неустойчива (есть отрицательные коэффициенты a_i).

Если не выполняется ни одно из этих условий, то стоит воспользоваться другими критериями устойчивости (корневой, частотные и т.д.)!

Устойчивость: использование критериев

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

Когда использовать какой критерий (из моего обучения):

- 1. Если порядок $n \leq 4$, то рекомендуется использовать критерий Гурвица;
- 2. Если порядок $n \ge 4$, то рекомендуется использовать критерий **Payca (1877г)**;
- 3. Рекомендаций по корневому критерию не было.

Устойчивость: использование критериев

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

Когда использовать какой критерий (из моего обучения):

- 1. Если порядок $n \leq 4$, то рекомендуется использовать критерий Гурвица;
- 2. Если порядок $n \ge 4$, то рекомендуется использовать критерий **Рауса (1877г)**;
- 3. Рекомендаций по корневому критерию не было.

Архаика времен, когда корни характеристического уравнения считать было тяжело. Пользовались табличками на коэффициентах характеристических уравнений (Раус, Гурвиц)

Устойчивость: использование критериев

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = 0, \qquad a_n > 0.$$

- 1. Корневой критерий прост и позволяет быстро и наглядно определить устойчивость системы;
- 2. Гурвиц в ряде случаев позволяет сразу увидеть, устойчива ли система (для малых порядков), не считая корни. Также Гурвиц полезен для определения параметрических зависимостей, влияющих на устойчивость систем (границы устойчивости).

Считаем, что средства к вычислению корней у нас есть!

Пример:

Критический коэффициент усиления

$$W_1 = \frac{K_1}{1 + pT_1},$$

$$W_2 = \frac{K_2}{1 + pT_2},$$

$$W_3 = \frac{K_3}{1 + pT_3},$$

$$T_i > 0, K_i > 0,$$

$$K_{\text{КРИТ}} = K_1 K_2 K_3 = ?$$

при котором система останется асимптотически устойчивой

Пример:

Критический коэффициент усиления

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$T_i > 0, K_i > 0,$$

$$K_{
m kput} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

Пример:

Критический коэффициент усиления

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)}, \quad W_3 = \frac{\dots}{K_1 K_2 K_3 + (1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$T_i > 0, K_i > 0,$$

$$K_{\text{крит}} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

Пример:

Критический коэффициент усиления

$$g \longrightarrow W$$

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$T_i > 0, K_i > 0,$$

$$K_{
m kput} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

$$W_3 = \frac{\dots}{a_3 p^3 + a_2 p^2 + a_1 p + a_0},$$

$$\begin{cases} a_3 = T_1 T_2 T_3 \\ a_2 = T_1 T_2 + T_1 T_3 + T_2 T_3 \\ a_1 = T_1 + T_2 + T_3 \\ a_0 = K_1 K_2 K_3 + 1 \end{cases}$$

Пример:

Критический коэффициент усиления

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$T_i > 0, K_i > 0,$$

$$W_3 = \frac{m}{a_3 p^3 + a_2 p^2 + a_1 p + a_0},$$

$$a_1 a_2 - a_0 a_3 > 0$$

Если аккуратно раскрутить критерий Гурвица...

$$K_{
m крит} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

Пример:

Критический коэффициент усиления

$$g \longrightarrow W$$

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$W_3 = \frac{m}{a_3 p^3 + a_2 p^2 + a_1 p + a_0},$$

$$T_i > 0, K_i > 0,$$

$$(T_1T_2 + T_1T_3 + T_2T_3)(T_1 + T_2 + T_3) - T_1T_2T_3(K_{\text{KDMT}} + 1) > 0$$

$$K_{\text{крит}} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

Пример:

Критический коэффициент усиления

$$g \longrightarrow W$$

$$W = \frac{K_1 K_2 K_3}{(1 + pT_1)(1 + pT_2)(1 + pT_3)},$$

$$W_3 = \frac{\dots}{a_3 p^3 + a_2 p^2 + a_1 p + a_0},$$

$$T_i > 0, K_i > 0,$$

$$K_{\text{\tiny KPMT}} < \left(\frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3}\right) (T_1 + T_2 + T_3) - 1$$

$$K_{\text{крит}} = K_1 K_2 K_3 = ?$$
 при котором система останется асимптотически устойчивой

Фиксируя одни параметры системы можно смотреть диапазоны, в которых можно варьировать другие

Структурная неустойчивость

... – структурное свойство замкнутой системы, при наличии которого она не может быть сделана устойчивой не при каких изменениях параметров

Структурная неустойчивость

... – структурное свойство замкнутой системы, при наличии которого она не может быть сделана устойчивой не при каких изменениях параметров

Примеры

Данная система не может быть сделана устойчивой не при каких изменениях параметров K и T_i . Проверьте самостоятельно!