TEK 5040/9040 Recurrent Neural Networks (RNNs)

Narada Warakagoda

What is a Recurrent Neural Network (RNN)?

- RNN is a neural network with a feedback loop.
- Suitable for processing sequential/serial data

background RNN Cells Configs LSTM Variants _ Implement 2 / 30

Why process data serially?

- Limited computational capability
- Limited storage capability
- Need a response immediately
- More efficient to divide task into sub-tasks
- Data sequences have arbitrary/variable lengths

background RNN Cells Configs LSTM Variants _ Implement 3 / 30

Example Applications

- Language modeling
- Sentiment analysis
- Machine translation
- Image captioning
- Time series analysis
- Speech/audio analysis
- Etc. etc...

background RNN Cells Configs LSTM Variants _ Implement

RNN Cell Models

Multiple ways to introduce feedback

- State transition function h
- Measurement function
- Feedback function with delay gD
- Dbackground

Delay only

RNN Cells

Configs

Current input \mathbf{X}_t

Current output \mathbf{y}_t

Current state

LSTM

Variants

Implement 5 / 30

RNN Cell Unfolding

Show the cell values at each time step

$$\mathbf{s}_t = h(\mathbf{x}_t, \mathbf{s}_{t-1}) = \tanh(\mathbf{W}_h[\mathbf{x}_t, \mathbf{s}_{t-1}] + \mathbf{b}_h)$$

background

RNN Cells

Configs

LSTM

Variants

Implement 6 / 30

Training

background RNN Cells Configs LSTM Variants Implement 7/30

RNN input/output configurations

- Multiple input- Single output
- Single input Multiple output
- Single input Single output
- No input Multiple output
- Multiple input- Multiple output
 - #inputs = #outputs
 - #inputs != #outputs

background RNN Cells Configs LSTM Variants _ Implement 8 / 30

Single input-Multiple output

- Conditional sequence generation
 - Eg: Image captioning

background RNN Cells Configs LSTM Variants _ Implement 9 / 30

Single input- Single output

Theoretically possible, but unusual

background RNN Cells Configs LSTM Variants

Implement 10 / 30

No input - Multiple output

- Generation of sequence samples (Auto-regressive)
 - Eg: Text generation

background RNN Cells Configs LSTM Variants

Implement 11/30

Multiple input- Single output

- Sequence classification
 - Eg; Sentiment analysis

background

RNN Cells

Configs

LSTM

Variants

Implement 12 / 30

Multiple input - Multiple output (#inputs = #outputs)

- Sequence transformation
 - Eg: noise removal of a time series

background RNN Cells Configs LSTM Variants _ Implement 13 / 30

Multiple input- Multiple output (#inputs!= #outputs)

- Unrestricted sequence transformation
- Encoder-Decoder architecture
 - Eg: Machine translation

background RNN Cells Configs LSTM Variants _ Implement 14 / 30

RNN Configurations I (stacked RNNs)

background

RNN Cells

Configs

LSTM

Variants

Implement 22 / 30

RNN Configurations II (Bidirectional single layer RNNs)

background

RNN Cells

Configs

LSTM

Variants

Implement 23 / 30

RNN Configurations III (Bidirectional multi-layer RNNs)

background

RNN Cells

Variants

Implement 24 / 30