Matchings & Covers (Ch.3)

I. Matchings

II. Covers

III. Independent Sets + Edge Corers

Matchings 4 Covers (Ch3)

I. Matchings

II. Covers

III. Independent Sets + Edge Corers

Matching in G: set of non-loop edges with no common endpants.

M = {wv, xz} is a matching in G

A vertex is M-saturated if it is the endpoint of an edge in M otherwise, M-unsaturated.

In the example above, w, v, x, and 2 are M - Saturated y and u are M - unsaturated

Problem: Given G, find largest possible matching.

(e.g. G models "compatability" of programmers)

Dreview:

- "Greedy" does not work
- but problem is solvable in polynomial time
- bipartite case is easier
- weighted versions are also polynomial!

M 13 maximal if M is not a proper subset of another matching in G. M 13 maximum if G has no larger matching than M.

M 13 maximal if M is not a proper subset of another matching in G. M 13 maximum if G has no larger matching than M.

not maximal

M 15 maximal if M 15 not a proper subset of another matching in G.
M 15 maximum if G has no larger matching than M.

M 15 maximal if M 15 not a proper subset of another matching in G. M 15 maximum if G has no larger matching than M.

not maximal

maximal, but not maximum

maximum /

Perfect matching in:

$$K_{n,m}$$
?

$$Q_k$$
?

K 3

K4

Perfect matching in:

$$K_n$$
?

K3,3

K2,3

Perfect matching in:

 K_n ?

 $K_{n,m}$?

yes /

Perfect matching in:

 K_n ?

 $K_{n,m}$?

 Q_k ?

 $oldsymbol{G}$ graph, $oldsymbol{M}$ matching in $oldsymbol{G}$

M-alternating path: path whose edges are alternately in M, not in M.

M-augmenting path: M-alternating path (of length ≥ 1) which starts and ends at M-unsaturated vertices.

M- alternating:

M-augmenting:

 $oldsymbol{G}$ graph, $oldsymbol{M}$ matching in $oldsymbol{G}$

M-alternating path: path whose edges are alternately in M, not in M.

M-augmenting path: M-alternating path (of length ≥ 1) which starts and ends at M-unsaturated vertices.

G, M

Why augmenting?

M-augmenting path:

Why augmenting?

M-augmenting path:

e f g

Matching of size 3

Reminder: symmetric différence of 2 sets

$$A \Delta B = (A \cup B) - (A \cap B)$$

$$= (A - B) \cup (B - A)$$

Proof. ⇒ (by contrapositive)

If P is an M-augmenting Path,

M & E(P) is Still a matching and

[M & E(P)] > [M] since

[E(P) N M] < |E(P) - M]

matched edges on p unmatched edges on p So, M is not a maximum. maxching.

Proof (by contrapositive)

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Proof (by contrapositive)

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Proof (by contrapositive)

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Each component of F is a path or an even cycle (why?).

Proof (by contrapositive)

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Each component of F is a path or an even cycle (why?).

Some component of F 1s an odd-length path (why?)

Why can't you just have this:

Each component of F is a path or an even cycle (why?).

Some component of F 1s an odd-length path (why?)

Proof (by contrapositive)

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Each component of F is a path or an even cycle (why?).

Some component of F 1s an

odd-length path (why?) / with more M'edges than Medges

Suppose M' is a matching in G with |M'|>|M|. Consider the spanning subgraph F of G with $E(F)=M\bigtriangleup M'$.

Each component of F is a path or an even cycle (why?)

this is an M-augmenting path

Some component of F 1s an

odd-length path (why?) with more M'edges than Medges

Given workers W_1, W_2, \ldots, W_n and jobs J_1, J_2, \ldots, J_m , and some specifications (W_i, J_j) indicating that W_i is qualified to do job J_j ;

Can each worker be assigned to a job for which she is qualified, if no two workers can be assigned the same job?

Given workers W_1, W_2, \ldots, W_n and jobs J_1, J_2, \ldots, J_m , and some specifications (W_i, J_j) indicating that W_i is qualified to do job J_j ;

Can each worker be assigned to a job for which she is qualified, if no two workers can be assigned the same job?

Given workers W_1, W_2, \ldots, W_n and jobs J_1, J_2, \ldots, J_m , and some specifications (W_i, J_j) indicating that W_i is qualified to do job J_j ;

Can each worker be assigned to a job for which she is qualified, if no two workers can be assigned the same job?

Given workers W_1, W_2, \ldots, W_n and jobs J_1, J_2, \ldots, J_m , and some specifications (W_i, J_j) indicating that W_i is qualified to do job J_j ;

Can each worker be assigned to a job for which she is qualified, if no two workers can be assigned the same job?

Given workers W_1, W_2, \ldots, W_n and jobs J_1, J_2, \ldots, J_m , and some specifications (W_i, J_j) indicating that W_i is qualified to do job J_j ;

Can each worker be assigned to a job for which she is qualified, if no two workers can be assigned the same job?

NO Because there 13 a subset 5 of W such that N(S) is smaller than S.

Bipartite G with bipartition (X, Y)

Theorem 3.1.11. [Hall 1935]: G has a matching saturating every vertex in X iff

$$|N(S)| \ge |S|$$

for all $S \subseteq X$.

Hall's Theorem

Bipartite G with bipartition (X,Y)

Theorem 3.1.11. [Hall 1935]: $m{G}$ has a matching saturating every vertex in $m{X}$ iff

$$|N(S)| \ge |S|$$

for all $S \subseteq X$.

Proof. (\Rightarrow) Let M be a matching in G saturating every unlex of X. Let $S \subseteq X$. Each unlex of S is matched to a distinct vertex of N(S). Therefore |N(S)| > |S|

Bipartite G with bipartition (X, Y)

Theorem 3.1.11. [Hall 1935]: G has a matching saturating every vertex in X iff

$$|N(S)| \ge |S|$$

for all $S \subseteq X$.

Proof

 (\Leftarrow) (by contrapositive)

Let M be a maximum matching and suppose $u \in X$ is M-unsaturated. Find $S \subseteq X$ such that |N(S)| < |S|.

/NS) > ISI for all S SX

13 a motiling satural regular

N(S) / < 151

Let Z be the set of vertices of G which are connected to \underline{u} by \underline{M} -alternating paths. Let:

$$S = Z \cap X; \quad T = Z \cap Y$$

Let Z be the set of vertices of G which are connected to \underline{u} by \underline{M} -alternating paths. Let:

$$S = Z \cap X; \quad T = Z \cap Y$$

Let Z be the set of vertices of G which are connected to \underline{u} by \underline{M} -alternating paths. Let:

$$\underline{S} = Z \cap X; \quad \underline{T} = Z \cap Y$$

Can show:

$$-|T|=|S|-1$$

- M matches $ar{T}$ with $ar{S}-u$
- So, $T\subseteq N(S)$
- Furthermore, $N(S) \subseteq T$
- Thus $|N(S)|=|\underline{T}|=|S|-1<|S|$.

Corollary 3.1.13. Every k-regular bipartite graph with k>0 has a perfect matching.

"The Marriage Theorem"

Proof. Let G be a b-regular graph with bipartition (X,Y).
Use Hall's theorem. Show that |N(S) = |S| for any SEX.

Corollary 3.1.13. Every k-regular bipartite graph with k>0 has a perfect matching.

"The Marriage Theorem"

Proof. Let G be a la-tegul or graph with bipartition (X,Y). Use Hall's theorem. Show that $|N(S)| \ge |S|$ for any $S \subseteq X$. Let Eg be the set of edges incident with vertices in S.

Let T = N(S).

Let Et be the set of edges incident with vertices in T.

Corollary 3.1.13. Every k-regular bipartite graph with k>0 has a perfect matching.

"The Marriage Theorem"

Proof. Let G be a la-regular graph with bipartition (X,Y). Use Hall's theorem. Show that $|N(S)| \ge |S|$ for any $S \subseteq X$. Let E_g be the set of edges incident with vertices in S. Let T = N(S).

Let Et be the set of edges incident with vertices in T.

Then $|E_S| = k |S|$ and $|E_T| = k |T|$

 $E_s \subseteq E_\tau$ So, $|E_s| \leq |E_\tau|$ and: $|S| \leq |T| = |N(s)|$.