

PrivacyRaven: Comprehensive Privacy Testing for Deep Learning

Suha S. Hussain | Empire Hacking | August 2020

whoami

Suha S. Hussain (@suhackerr)

- Second-Year CS Major at Georgia Tech
 - Threads: Theory & People
- Security Engineering Intern at Trail of Bits
 - Cryptography Team

Auditing Deep Learning

How can this system be attacked?

- Purpose: Detect a brain bleed from images of a scan
 - Black-box
 - Binary result
- Use PrivacyRaven to simulate privacy attacks

Privacy Violations

Intellectual Property

A substitute model was created from a **model extraction** attack.

Data Reconstruction

The adversary launched a **model inversion** attack.

Re-identification

A **membership inference** attack was executed.

Motivation

- Lack of assurance tools
- Targets
 - Intellectual property of the model
 - Confidentiality of the training data

Threat Model

Affordances

- Determine the susceptibility of a model to different privacy attacks
- Evaluate privacy preserving machine learning techniques
- Develop novel privacy metrics and attacks
- Repurpose attacks for data provenance auditing and other use cases

Model Extraction

TRAJL BITS

Attack Objectives

Model with High Accuracy

This attack is typically **financially motivated**.

Avoid paying for the target model in the future or profit off of extracted model.

Model with High Fidelity

This attack is typically reconnaissance-motivated.

Learn more about the original model and launch other classes of attacks.

A Framework for Model Extraction Attacks

Model extraction attacks can be partitioned into **multiple phases**.

Extract an MNIST model

Launch an attack in under 15 lines of code

```
model = train_mnist_victim()
def query_mnist(input_data):
    return get_target(model, input_data)
emnist_train, emnist_test = get_emnist_data()
test = ModelExtractionAttack(query_mnist, 100000,
    (1, 28, 28, 1),
    10,
    (1, 3, 28, 28),
    "knockoff",
    ImagenetTransferLearning,
    1000,
    emnist_train,
    emnist_test,
```

Extraction Results

- Target Model Statistics
- Synthetic Dataset Details
- Substitute Model Statistics
- Accuracy Metrics
- Fidelity Metrics

Membership Inference

TRAJL BITS

An Overview of Membership Inference Attacks

Objective: Re-identification

- Less reliable than extraction
- Integrates the extraction API
- Unique threat model

A Framework for Membership Inference

Attacks

Membership inference attacks can also be partitioned into **multiple phases**.

Model Inversion

TRAJL

An Overview of Model Inversion Attacks

Objective: Obtain memorized data

- More nebulous area of work
- Integrates the extraction API
- Trains an "inverse" network

Upcoming Features

- New interface for metrics visualizations
- Automated hyperparameter optimization
- Certifiable differential privacy verification
- Privacy thresholds and metric calculations
- Side channel and property inference attacks
- Federated learning and generative model attacks
- Built-in victim models implementing PPML techniques

Thank you for your time!

Suha S. Hussain Empire Hacking August 2020 Make sure to check out the **OpenMined Privacy Conference** and the **DEF CON AI Village Journal Club!**

Contact:

suha.hussain@trailofbits.com james.miller@trailofbits.com

GitHub Repository:

github.com/trailofbits/PrivacyRaven

TRAIL OF BITS