Informed Novelty Detection in Sequential Data by Per-Cluster Modeling

Linara Adilova ¹
linara.adilova@rub.de

Siming Chen ² simingchen@fudan.edu.cn

Michael Kamp 1,3,4 michael.kamp@uk-essen.de

[1] Ruhr University Bochum, Germany

[4] Institute for AI in Medicine (IKIM), Germany

Cluster first, then model data!

Human interaction outperforms automatic clustering: informed clustering by experts via visual analytics.

Novelty detection in discrete sequences

Algorithm 1 Novelty Detection via Per-Cluster Modelling Input dataset $X \subset \mathcal{V}^*$, threshold $\theta \in \mathbb{R}$, sequence $s' \in \mathcal{V}^*$

Output $\{0,1\}$ (0 for a normal sequence, 1 for a novelty)

- 1: **Training:**
- 2: obtain clustering C with k clusters of X
- 3: **for** $G_i = \{s \in X \mid C(s) = i\}$ with i = 1, ..., k **do**
- 4: train process model h_i on \mathcal{G}_i
- 5: end for
- 6: **Inference:**
- 7: compute cluster C(s') of s'
- 8: if $PP(h_{C(s')}, s') > \theta$ then
- 9: **return** 1
- 10: **else**
- 11: **return** 0
- 12: **end if**

Expert-informed clustering

Distance Threshold: 0 1 Set Medicis

Evaluation

Cybersecurity dataset

Method	AUC	$\frac{\text{Sens.+Spec.}}{2}$	Sens.	Spec.
IC-LSTMs	0.93	0.89	0.89	0.89
Global LSTM	0.88	0.81	0.80	0.81
k-means Cluster LSTMs	0.89	0.81	0.83	0.78
LDA Cluster LSTMs	0.88	0.82	0.81	0.82

Fake reviews dataset

Method	AUC	$\frac{\text{Sens.+Spec.}}{2}$	Sens.	Spec.
IC-LSTMs	0.58	0.58	0.58	0.57
Global LSTM	0.55	0.54	0.53	0.55
k-means Cluster LSTMs	0.52	0.51	0.50	0.52
LDA Cluster LSTMs	0.58	0.57	0.57	0.57

CPU utilization timeseries

Method	AUC	$\frac{\text{Sens.+Spec.}}{2}$	Sens.	Spec.
IC-LSTMs	0.99	0.87	0.77	0.97
Global LSTM	0.96	0.86	0.77	0.94
k-means Cluster LSTMs	0.97	0.84	0.85	0.82
LDA Cluster LSTMs	0.98	0.87	0.77	0.97

