### Pocket Al and IoT:



Use Machine Learning and Sensors to Turn Your Phone into a Smart Fitness Tracker

## Please introduce yourself in the chat using the following information:

- -What is your name?
- -Where are you located?
- -What do you hope to learn from this workshop?



### Pocket AI and IoT:

# Use Machine Learning and Sensors to Turn Your Phone into a Smart Fitness Tracker



Shruti Karulkar Quality Engineering Manager



Sarah Mohamed
Statistics and Machine Learning
Software Engineer



Louvere Walker-Hannon Application Engineering Senior Team Lead

### Set Up Workshop Environment – Part I Mathworks \*\*\*



#### MATLAB & Simulink

#### Access MATLAB for your Hands-On Workshop

MathWorks is pleased to provide a special license to you as a course participant to use for your Hands-On Workshop. This is a limited license for the duration of your course and is intended to be used only for course work and not for government, research, commercial, or other organization use.

| Course Name:  | Pocket AI and IoT Workshop for NSBE Boston |
|---------------|--------------------------------------------|
| Organization: | MathWorks                                  |
| Starting:     | 19 Jan 2022                                |
| Ending:       | 02 Feb 2022                                |



https://tinyurl.com/NSBE2022

### 

**Access workshop files in MATLAB Drive** 

https://tinyurl.com/FS4WIDSSept2021

### Set Up Workshop Environment – Part III MathWorks MathWorks

**Download the MATLAB Mobile app** 

Log into the MATLAB Mobile App

Follow the instructions in the handout for your mobile devices



The link below contains the pre-work and handout https://github.com/mohamedsarah/NSBEBostonPocketAlAndIoTJan2022

# A fitness tracker uses sensors, Artificial Intelligence (AI), and Internet of Things (IoT)



## Get ready to cut through the hype and build a smart fitness tracker!



### These are the technologies we will use



### Let's start with sensors



### Sensors are everywhere!



# An accelerometer detects acceleration, vibration, and tilt



# You will use your phone's accelerometer to count steps



# You will use MATLAB Mobile to record and analyze your accelerometer data





**Accelerometer** 

Android 8 or later

iOS 13 or later

### It is simple to navigate and run code



### Collect the accelerometer data as you walk



```
= mobiledev;
m.AccelerationSensorEnabled = true;
```

## We will count steps by finding peaks in our acceleration data



```
[a, t] = accellog(m);
mag = sqrt(sum(x.^2 + y.^2 + z.^2, 2));
[pks, locs] = findpeaks(maqNoG, ...
    <u> MINDEAKHEIGHT!</u>
numSteps = numel(pks);
    minreakheight),
```

### The command window displays your step count



### Exercise 1: Let's calculate your step count Get ready to walk!

1. Open **Ex1\_CountSteps.m** and press Run



- 2. Press RETURN \_\_\_\_ when prompted to start logging data
- 3. WALK for 20 seconds
- 4. View your step count
- If you have time, try again and review the code

### Did you get the results you expected?

How accurate were your results?

If they were not accurate, why?

 What are some other sensors you could collect data from?

# Now that you've collected data, how can you analyze it?



# What do you think Artificial Intelligence (AI) is all about? Can you provide some examples of AI?







### Machine Learning is used to help implement Al





Artificial Intelligence

Machine Learning

## Machine Learning teaches a model to do a task (like classifying objects) using data



Machine Learning Model



## Machine Learning teaches a model to do a task using data by training this model





## Machine learning can be used to classify human activity data



# We will use machine learning to classify your activity



## We will use training data to build a machine model for classification



```
[X,Y,dataMin,dataRange] = getTrainingData();
mdl = fitcknn(X,Y);
knnK = 10; %num of nearest neighbors
mdl.NumNeighbors = knnK;
[frameActivity, frameScore] = ...
   predict(mdl, frameFeatures);
```

Click on the plot to see a breakdown of your activities over time



### Exercise 2: Let's use machine learning to classify your activity



1. Open Ex2 ClassifyActivity.m and press Run



- 2. Press RETURN when prompted to start logging
- 3. MOVE (Walk, Run, Idle) for 30 seconds
- 4. View the breakdown of your fitness activity

If you have time, try again and review the code

### Did you get the results you expected?



# How can we collect our activity data and send to the cloud?



# Internet of Things (IoT) analyzes and acts on data from a network of devices









### We will collect our activity data on the cloud



### You will use an open IoT platform



### You will aggregate your team's activity time



```
thingSpeakWrite(fitnessChallengeChannelID, ...
    {tWalkSum, tRunSum, tIdleSum, teamID},...
    'WriteKey', fitnessChallengeWriteAPIKey);
    fitnessChallengeChannelID, ...
    'NumMinutes', numMins, ...
    [ThisData.WalkData ThisData.RunData];
  = bar(sum(y,1), 'FaceColor', 'flat');
```

# You can examine the figure to view everyone's combined time walking and running



## Exercise 3: Let's view your team's total active time

- 1. Open **Ex3** ThingSpeak Fitness.m and press Run
- 2. Type Team ID and press RETURN
- 3. Press RETURN when prompted to start logging
- 4. MOVE (Walk, Run, Idle) for 30 seconds
- 5. View the fitness activity from all teams

If you have time, log more data!

## Let's compare the classified activity states across teams...

Fitness Channel

### Did you get the results you expected?

- What else could you do with the data you have aggregated?
- Can you think of other applications in your day to day life where you see machine learning and IoT come together?

# Congratulations! You've explored how a fitness tracker is designed!



### YOU + Sensors + AI + IoT = Innovation!



### Get Started for Free with Onramp Courses



#### MATLAB Onramp

Get started quickly with the basics of MATLAB<sup>®</sup>.

Details and launch



#### Simulink Onramp

Get started quickly with the basics of Simulink<sup>6</sup>.

Details and launch



#### Image Processing Onramp

Learn the basics of practical image processing techniques in MATLAB.

Details and launch



#### Signal Processing Onramp

An interactive introduction to practical signal processing methods for spectral analysis.

Details and launch



#### Machine Learning Onramp

An interactive introduction to practical machine learning methods for classification problems.

Details and launch



#### Deep Learning Onramp

Get started quickly using deep learning methods to perform image recognition.

Details and launch



#### Stateflow Onramp

Learn the basics of creating, editing, and simulating state machines in Stateflow<sup>6</sup>.

Details and launch



#### Control Design Onramp with Simulink

Get started quickly with the basics of feedback control design in Simulink.

Details and launch