Space-bounded quantum state testing via space-efficient quantum singular value transformation

François Le Gall, Yupan Liu, Qisheng Wang

Nagoya University

Available at arXiv:2308.05079

Tsinghua University, Aug 2023

- $\mbox{\Large 1}$ Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- **6** Proof overview: $GAPQSD_{log} \in BQL$ and $\overline{CERTQSD}_{log} \in coRQ_UL$
- **6** Open problems

- $\textbf{0} \ \, \text{Quantum state testing: } \ell_1 \ \, \text{norm vs. } \ell_2 \ \, \text{norm}$ What is quantum state testing
 - Time-bounded quantum state testing
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- **6** Proof overview: $GAPQSD_{log} \in BQL$ and $\overline{CERTQSD}_{log} \in coRQUL$
- **6** Open problems

What is quantum state testing

Task: Quantum state testing (with two-sided error).

Given two quantum devices Q_0 and Q_1 that prepare $\operatorname{poly}(n)$ -qubit (mixed) quantum states $\rho_0 \in \mathbb{C}^{N \times N}$ and $\rho_1 \in \mathbb{C}^{N \times N}$, respectively, which may be viewed as "sample access" to ρ_0 and ρ_1 . Decide whether $\operatorname{dist}(\rho_0, \rho_1) \leq \epsilon_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \epsilon_2$.

The one-sided error variant and the classical counterpart are as follows.

- Quantum state certification [Bădescu-O'Donnell-Wright'19]: Given "sample access" to ρ_0 and ρ_1 , decide whether $\rho_0 = \rho_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \epsilon$.
- ▶ Distribution testing (a.k.a. closeness testing of distributions, see [Canonne'20]): Given sample accesses to probability distributions D_0 and D_1 , decide whether $\operatorname{dist}(D_0,D_1) \leq \epsilon_1$ or $\operatorname{dist}(D_0,D_1) \geq \epsilon_2$.

Goal. Minimize the number of required copies (sample complexity) of ρ_0 and ρ_1 .

Quantum state testing: sample complexity perspective

Classical and quantum distances that are considered:

	Quantum	Classical	
ℓ_1 norm	trace distance $\operatorname{td}(ho_0, ho_1) := rac{1}{2} ho_0 - ho_1 $	total variation distance (a.k.a., statistical distance)	
ℓ_2 norm	Hilbert-Schmidt distance $HS^2(\rho_0,\rho_1):=\tfrac{1}{2}(\rho_0-\rho_1)^2$	Euclidean distance	
Entropy	von Neumann entropy $S(ho) := -{ m Tr}(ho \ln ho)$	Shannon entropy	

Sample complexity for distribution testing and quantum state testing:

	ℓ_1 norm	ℓ_2 norm	Entropy
Classical	$\operatorname{poly}(N, 1/\epsilon)$	$poly(1/\epsilon)$	$\operatorname{poly}(N, 1/\epsilon)$
Sample complexity Quantum	$\frac{[CDVV14]}{poly(N, 1/\epsilon)}$	$\frac{[CDVV14]}{poly(1/\epsilon)}$	$\frac{[\text{JVHW15, WY16}]}{\text{poly}(N, 1/\epsilon)}$
sample complexity	[BOW19]	[BOW19]	[AISW20, OW21]

 $\mbox{\bf 1}$ Quantum state testing: ℓ_1 norm vs. ℓ_2 norm

What is quantum state testing

Time-bounded quantum state testing

- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- **6** Proof overview: $GAPQSD_{log} \in BQL$ and $\overline{CERTQSD}_{log} \in coRQUL$
- **6** Open problems

Time-bounded quantum state testing: ℓ_1 norm scenario

Task 1.1 (Time-bounded quantum state testing). Given two polynomial-size quantum circuits Q_0 and Q_1 that prepare $\operatorname{poly}(n)$ -qubit (mixed) states ρ_0 and ρ_1 , respectively, with access to their "source codes".

Time-bounded distribution testing: Given two efficiently samplable distributions D_0 and D_1 , decide whether $\operatorname{dist}(D_0,D_1) \leq \beta$ or $\operatorname{dist}(D_0,D_1) \geq \alpha$.

Computational hardness of these tasks w.r.t. ℓ_1 norm:

Decide whether $\operatorname{dist}(\rho_0, \rho_1) \leq \beta$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \alpha$.

- ► Statistical Difference Problem (SDP) is SZK-complete when *constant* $\alpha^2 \beta > 0$. [Sahai-Vadhan'03, Goldreich-Sahai-Vadhan'98]
- ▶ Quantum State Distinguishability Problem (QSDP) is QSZK-complete when constant $\alpha^2 \beta > 0$. [Watrous'02, Watrous'09]
- ▶ Open problem: (α, β) -QSDP is in QSZK when $\alpha(n) \beta(n) \ge 1/\text{poly}(n)$.

Structural complexity-theoretic results regarding QSZK:

- ▶ BQP \subseteq QSZK \subseteq QIP(2) \subseteq PSPACE. [Watrous'02, Watrous'09]
- $\blacktriangleright \ \exists \mathcal{O} \ \mathsf{s.t.} \ \mathsf{QSZK}^{\mathcal{O}} \not\subseteq \mathsf{PP}^{\mathcal{O}}. \ [\mathsf{Bouland\text{-}Chen\text{-}Holden\text{-}Thaler\text{-}Vasudevan'19}]$

Time-bounded quantum state testing: ℓ_2 norm scenario

- **1** Toss two random coins $r_0, r_1 \in \{0, 1\}$;
- **2** Perform the SWAP test on quantum states according to r_0 and r_1 .

BQP hardness [Agarwal-Rethinasamy-Sharma-Wilde'21]. Consider a BQP circuit C_x , we can construct $C_x':=C_x^\dagger X_0^\dagger \mathrm{CNOT}_{0\to \mathsf{F}} X_0 C_x$ with an ancillary qubit on F such that $\Pr[C_x' \text{ accepts}] = \|(|\bar{0}\rangle\langle\bar{0}|\otimes|0\rangle\langle0|_{\mathsf{F}})C_x'(|\bar{0}\rangle\otimes|0\rangle_{\mathsf{F}})\|_2^2 = \Pr^2[C_x \text{ accepts}].$ By defining two pure states $\rho_0:=|\bar{0}\rangle\langle\bar{0}|\otimes|0\rangle\langle0|_{\mathsf{F}}$ and $\rho_1:=C_x'(|\bar{0}\rangle\langle\bar{0}|\otimes|0\rangle\langle0|_{\mathsf{F}})$, we have $\Pr[C_x' \text{ accepts}] = \Pr(\rho_0\rho_1) = 1 - \operatorname{HS}^2(\rho_0,\rho_1)$.

Takeaways: Computational hardness of Task 1.1 depends on distance

- ▶ Time-bounded quantum state testing w.r.t. ℓ_1 norm (QSZK-complete) is seemingly *much harder* than only preparing these states (in BQP).
- ▶ Time-bounded quantum state testing w.r.t. ℓ_2 norm (BQP-complete) is as easy as only preparing these states (in BQP).

- ① Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- **6** Proof overview: $GAPQSD_{log} \in BQL$ and $\overline{CERTQSD}_{log} \in coRQ_UL$
- **6** Open problems

Main result: Space-bounded quantum state testing (two-sided error scenario)

Task 2.1 (Space-bounded quantum state testing). Given two polynomial-size $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit (mixed) states ρ_0 and ρ_1 , respectively, with access to their "source codes". Decide whether $\operatorname{dist}(\rho_0,\rho_1) \leq \beta$ or $\operatorname{dist}(\rho_0,\rho_1) \geq \alpha$.

Theorem 2.2 (Space-bounded quantum state testing is BQL-complete). The following (log)space-bounded quantum state testing problems are BQL-complete. For any α, β s.t. $\alpha(n) - \beta(n) \geq 1/\mathrm{poly}(n)$ or any $g(n) \geq 1/\mathrm{poly}(n)$, decide whether

- GAPQSD_{log}: $td(\rho_0, \rho_1) \ge \alpha$ or $td(\rho_0, \rho_1) \le \beta$;
- **2** GapQED_{log}: $S(\rho_0) S(\rho_1) \ge g$ or $S(\rho_1) S(\rho_0) \ge g$;
- $\textbf{ 3} \ \mathrm{GAPQJS}_{\mathsf{log}} \colon \, \mathrm{QJS}_2(\rho_0,\rho_1) \geq \alpha \ \text{or} \ \mathrm{QJS}_2(\rho_0,\rho_1) \leq \beta;$

Here, quantum Jensen-Shannon divergence QJS is defined as $O_1S_1(q_0,q_1) := S_2(\frac{\rho_0+\rho_1}{2}) = \frac{1}{2}(S_2(q_0) + S_2(q_1))$ where $S_2(q_1) := S_2(\frac{\rho_0+\rho_1}{2})$

$$\mathrm{QJS}_2(\rho_0, \rho_1) := S_2\Big(\frac{\rho_0 + \rho_1}{2}\Big) - \frac{1}{2}(S_2(\rho_0) + S_2(\rho_1)) \text{ where } S_2(\rho) := -\mathrm{Tr}(\rho \log_2 \rho).$$

Summary: Time-bounded and space-bounded quantum state testing

Computational hardness of Time-bounded and space-bounded quantum state testing:

	ℓ_1 norm	ℓ_2 norm	Entropy
Classical	SZK-complete	BPP-complete	SZK-complete
Time-bounded	[SV03,GSV98]	Folklore	[GV99,GSV98]
Quantum	QSZK-complete	BQP-complete	QSZK-complete
Time-bounded	[Wat02,Wat09]	[BCWdW01, ARSW21]	[BASTS10]
Classical Space-bounded	BPL-hard [†]	BPL-complete [†] Folklore	BPL-complete [†] [ABIS19]
Quantum	BQL-complete	BQL-complete [BCWdW01] and this work	BQL-complete
Space-efficient	This work		This work

Remark[†]. Space-bounded distribution testing can be viewed as a "white-box" version of *streaming distribution testing* with i.i.d. samples.

<u>Takeaways</u>. For (log)space-bounded state testing and certification problems, the computational hardness of these problems is *as easy as* only preparing quantum states, which is **independent of the choice** of aforementioned distance-like measures.

Main result: Space-bounded state certification (one-sided error scenario)

Task 2.3 (Space-bounded quantum state certification). Given two polynomial-size $O(\log n)$ -qubit quantum circuits Q_0 and Q_1 that prepare $O(\log n)$ -qubit (mixed) states ρ_0 and ρ_1 , respectively, with access to their "source codes". Decide whether $\rho_0 = \rho_1$ or $\operatorname{dist}(\rho_0, \rho_1) \geq \alpha$.

Theorem 2.4 (Space-bounded quantum state certification is $coRQ_UL$ -complete).

The following space-bounded quantum state certification problems are $coRQ_UL$ -complete. For any $\alpha(n) \geq 1/\mathrm{poly}(n)$, decide whether

- $\overline{\mathrm{CERTQSD}}_{\mathsf{log}}$: $\rho_0 = \rho_1$ or $\mathrm{td}(\rho_0, \rho_1) \geq \alpha(n)$;

<u>Remark</u>. $coRQ_UL$ is a complexity class with *perfect completeness*, namely the acceptance probability $p_{acc}=1$ for *yes* instances whereas $p_{acc}\leq 1/2$ for *no* instances.

- $\ensuremath{\textbf{0}}$ Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- $\textbf{ 5} \ \, \mathsf{Proof} \ \, \mathsf{overview} \colon \ \, \mathsf{GAPQSD}_{\mathsf{log}} \in \mathsf{BQL} \ \, \mathsf{and} \ \, \overline{\mathsf{CERTQSD}}_{\mathsf{log}} \in \mathsf{coRQ}_{\mathsf{U}} \mathsf{L}$
- **6** Open problems

BQL and BQ_UL : Two-sided error space-bounded quantum computation

BQL (and BQ_UL if only allow *unitary* gates), defined in [Watrous'99, Watrous'03], captures quantum computation that performs by a *logspace-uniform* $O(\log n)$ -qubit quantum circuit. This class admits the following properties:

- ▶ Quadratic advantage in space (?): BQL \subseteq DSPACE[log²(n)] [Wat99, Wat03].
- ► Gateset-indep.: Space-efficient Solovay-Kitaev theorem [van Melkebeek-Watson'12].
- ► Error reduction for BQUL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16].
- ► Intermediate measurements are useless: BQL = BQUL [Fefferman-Remscrim'21].

History of the only family of (natural) BQL-complete problem:

- Inverting a well-conditioned matrix is in BQL [Ta-Shma'13], whereas it only has DSPACE[log²(n)] containment without the help of quantum.
- ► Inverting a well-conditioned matrix is BQ_UL-complete [Fefferman-Lin'18].
- ➤ A well-conditioned version of DET*-complete problems are BQL-complete [Fefferman-Remscrim'21], such as well-conditioned integer determinant, well-conditioned matrix powering, well-conditioned iterative matrix product.

<u>Takeaway.</u> This work (Theorem 2.2) presents a new family of natural BQL-complete problems that emerge from quantum property testing.

RQ_UL and $coRQ_UL$: One-sided error space-bounded quantum computation

RQ_UL and coRQ_UL, defined in [Watrous'01], capture *one-sided error* quantum computation that performs by a *logspace-uniform* $O(\log n)$ -qubit quantum circuits. These classes admit the following properties:

- ► Error reduction for RQ_UL and coRQ_UL [Watrous'01].
- ▶ Gateset-dependence which is because of perfect completeness or soundness.
- ▶ Undirected graph connectivity (USTCON) is in RQ_UL \cap coRQ_UL [Watrous'01], although USTCON is actually in L [Reingold'08] .

Open problems on RQUL and coRQUL:

- ► A (natural) complete problem for the class RQ_UL or coRQ_UL remains *unknown*.

 A "verification" version of well-conditioned iterative matrix product problem is coRQL-hard [Fefferman-Remscrim'21] while there is no containment (*hard direction*).
- ► $RQ_UL \stackrel{?}{=} RQL$ and $coRQ_UL \stackrel{?}{=} coRQL$.

 $\overline{\text{Takeaway.}}$ This work (Theorem 2.4) demonstrates the first family of natural $\overline{\text{coRQ}_{\text{U}}\text{L-complete}}$ problems that arise from quantum property testing as well.

- ① Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- $\mbox{\bf 6}$ Proof overview: ${\rm GAPQSD}_{log} \in \mbox{BQL}$ and $\overline{{\rm CERTQSD}}_{log} \in \mbox{coRQ}_{U} L$
- 6 Open problems

Quantum singular value transformation in a nutshell

QSVT [Gilyén-Su-Low-Wiebe'19] is a systematic approach to (Time-boundedly) $\label{eq:manipulating singular values} \{\sigma_i\}_i \text{ of an Hermitian matrix } A \text{ using a corresponding projected unitary encoding } A = \tilde{\Pi}U\Pi \text{ for projectors } \tilde{\Pi} \text{ and } \Pi.$

Quantum singular value transformation, revisited

Given a singular value decomposition $A=\sum_i \sigma_i |\tilde{\psi}_i\rangle \langle \psi_i|$ associated with an s(n)-qubit projected unitary encoding, we can approximately implement a QSVT $f^{(\mathrm{SV})}(A)=\sum_i f(\sigma_i)|\tilde{\psi}_i\rangle \langle \psi_i|$ by employing a polynomial \hat{P}_d of degree $d=O\left(\frac{1}{\delta}\log\frac{1}{\epsilon}\right)$ satisfying that

- $\hat{P}_d \text{ well-approximates } f \text{ on the interval of interest } \mathcal{I} \colon \\ \max_{x \in \mathcal{I} \setminus \mathcal{I}_\delta} |\hat{P}_d(x) f(x)| \leq \epsilon \text{ where } \mathcal{I}_\delta \subseteq \mathcal{I} \subseteq [-1,1] \text{ and typically } \mathcal{I}_\delta := (-\delta,\delta).$
- \hat{P}_d is bounded: $\max_{x \in [-1,1]} |\hat{P}_d(x)| \leq 1$.

Moreover, all coefficients of \hat{P}_d (namely, classical pre-processing) can be computed in deterministic $\operatorname{poly}(d)$ time (and thus space). Hence, the transformation $\hat{P}_d^{(\mathrm{SV})}(A)$ can be implemented by a $\operatorname{poly}(d)$ -size quantum circuit acts on $O(\max\{\log d, s(n)\})$ qubits.

<u>Question 4.1</u>. Can we implement a degree-d QSVT for any s(n)-qubit projected unitary encoding with $d \leq 2^{O(s(n))}$, using only O(s(n)) space in both classical pre-processing and quantum circuit implementation?

Space-efficient quantum singular value transformation

Theorem 4.2 (Space-bounded QSVT) [Metger-Yuen'23]. Implement a degree-d QSVT associated with sign function or square-root function for any $O(\log n)$ qubit block-encoding with $d \leq \operatorname{poly}(n)$ requires $O(\operatorname{poly}\log n)$ space for classical pre-processing and $O(\log n)$ qubits in quantum circuit implementation.

Remark. Theorem 4.2 can be easily extended to continuous functions bounded on [-1,1].

Theorem 4.3 (Space-efficient QSVT). Implement a degree-d QSVT associated with piecewise-smooth functions for any $O(\log n)$ qubit bitstring indexed encoding with $d \leq \operatorname{poly}(n)$ requires (randomized) $O(\log n)$ space for classical pre-processing and $O(\log n)$ qubits in quantum circuit implementation.

Moreover, the implementation requires $O(d^2\|\mathbf{c}\|_1)$ uses of U, U^{\dagger} , $C_{\Pi}NOT$, $C_{\tilde{\Pi}}NOT$, among with other gates, where \mathbf{c} is the coeffs of *Chebyshev interpolation polynomial*.

E.g. Normalized log function $\ln_{\beta}(x) := \frac{2\ln(1/x)}{2\ln(2/\beta)}$ on the interval $\mathcal{I} = [\beta, 1]$ for any $\beta \geq 1/\mathrm{poly}(n)$. **Proof Sketch.**

- For bounded functions, we mainly follow the construction in [MY23] with a careful analysis;
- ▶ For piecewise-smooth functions, we adapt the construction (i.e., a reduction to a linear combination of bounded functions) in [van Apeldoorn-Gilyén-Gribling-de Wolf'20].
 The main challenge can be boiled down to stochastic matrix powering problem which is crucial for the BPL vs. L problem [Saks-Zhou'99, Cohen-Doron-Sberlo-Ta-Shma'23, Putterman-Pyre'23].

- ① Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- $\textbf{ 6} \text{ Proof overview: } \mathrm{GAPQSD}_{log} \in \mathsf{BQL} \text{ and } \overline{\mathrm{CERTQSD}}_{log} \in \mathsf{coRQ}_{U}\mathsf{L}$
- **6** Open problems

Proof overview

Proof of Theorem 2.2 ①: $GAPQSD_{log} \in BQL$

Inspired by the approach in [Gilyén-Poremba'22, Wang-Zhang'23], note that $\mathrm{sgn}(x) \approx_{\epsilon, \delta} P_d^{\mathrm{sgn}}(x)$ and $td(\rho_0, \rho_1) = \frac{1}{2} Tr|\rho_0 - \rho_1| = \frac{1}{2} \left(Tr\left(sgn^{(SV)}\left(\frac{\rho_0 - \rho_1}{2}\right)\rho_0\right) - Tr\left(sgn^{(SV)}\left(\frac{\rho_0 - \rho_1}{2}\right)\right)\rho_1 \right).$ $\Diamond Q_i (i=0,1)$ prepares the state ρ_i . $\diamond~$ We implement $U_{P^{\mathrm{sgn}}(\underline{\rho_0-\rho_1})}$ by the space-efficient QSVT $|0\rangle$ associated with P_d^{sgn} (Thm 4.3). \diamond "Acceptance probability" of ρ_i : Pr[outcome = 0] = $\frac{1}{2}\left(1+\operatorname{Tr}\left(P_d^{\operatorname{sgn}}\left(\frac{\rho_0-\rho_1}{2}\right)\right)\rho_i\right).$ \diamond For $i \in \{0,1\}$, estimating Q_i $\operatorname{Tr}\left(P_d^{\operatorname{sgn}}(\frac{\rho_0-\rho_1}{2})\rho_i\right)\pm\varepsilon$ using $O(1/\varepsilon^2)$ repetitions.

Proof of Theorem 2.4 ①: $\overline{\mathrm{CERTQSD}}_{log} \in \mathsf{coRQ}_{\mathsf{U}}\mathsf{L}$

- \diamond If $\rho_0 = \rho_1$, $\Pr[\text{outcome} = 0] = \frac{1}{2}$. Then we obtain an algorithm $\mathcal A$ accept with certainty via exact amplitude amplification [Boyer-Brassard-Høyer-Tapp'98, Brassard-Høyer-Mosca-Tapp'02].
- $\diamond \ \ \mathsf{lf} \ \mathsf{td}(\rho_0,\rho_1) \geq \alpha, \ |\Pr[\mathsf{outcome} = 0] \tfrac{1}{2}| \geq \Omega(\alpha).$ Make sure the algorithm $\mathcal A$ accepts w.p. at most $1 \Omega(\alpha^2)$ by a direct calculation.

- $\ensuremath{\textbf{0}}$ Quantum state testing: ℓ_1 norm vs. ℓ_2 norm
- 2 Main result: Space-bounded quantum state testing and certification
- 3 Implications on space-bounded quantum computation
- 4 Proof technique: Space-efficient quantum singular value transformation
- **6** Proof overview: $GAPQSD_{log} \in BQL$ and $\overline{CERTQSD}_{log} \in coRQ_UL$
- 6 Open problems

Conclusions and open problems

Take-home messages on our work

- Space-bounded quantum state testing problems w.r.t. common distances (i.e., trace distance, Hilbert-Schmidt distance, entropy difference, quantum Jensen-Shannon divergence) are BQL-complete (Theorem 2.2).
- Space-bounded quantum state certification problems w.r.t. trace distance and Hilbert-Schmidt distance are coRQ_UL-complete (Theorem 2.4).

This is the first family of natural coRQ_UL-complete problem!

Quantum singular value transformation on bitstring indexed encoding can be done in quantum logspace, with a randomized classical pre-processing (Theorem 4.3).

Open problems

- Space-efficient QSVT with O(d) queries instead of $O(d^2\|\mathbf{c}\|_1)$ in Theorem 4.3, as well as make the pre-processing deterministic rather than randomized.
- Are space-bounded state testings with respect to other (proper) quantum analogs of symmetric f-divergence also in BQL?
- Is space-bounded distribution testing problem w.r.t. the total variation distance BPL-complete? What about the streaming distribution testing counterpart?

