Generative Models - DRE7053 Lecture 4

NORA Summer School 2024

Rogelio A Mancisidor Assistant Professor Department of Data Science and Analytics BI Norwegian Business School

June 10-14, 2024

Outline

- Diffusion Models
 - Denoising Diffusion Models
 - Forward Diffusion Process
 - Backward Diffusion Process

- 2 The Objecttive Function
 - Deriving the ELBO

Outline

- Diffusion Models
 - Denoising Diffusion Models
 - Forward Diffusion Process
 - Backward Diffusion Process

- 2 The Objecttive Function
 - Deriving the ELBO

Forward and Backward steps

- Denoissing diffusion models has two steps:
 - The forward diffusion process
 - The backward process, which learns to generate the data

Data

The Joint Distribution of the Diffusion Process

At each step in the forward diffusion process we have

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1-\beta_t}\mathbf{x}_{t-1},\beta_t\mathbf{I})$$

• Hence, the joint probability of the entire process from x_0 (original sample) to x_t is

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
 (1)

where the variance β_t increases with t

- Note that each step depends only on the its previous state (a Markovian process!)
- Which is similar to the inference model in hierarchical VAEs

The Joint Distribution of the Diffusion Process

• At each step, we use the same sampling mechanism as in VAEs:

Hence we can sample at each t from

$$\mathbf{x}_t \sim \mathcal{N}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$
 (2)

• β_t schedule is designed such that $\bar{\alpha}_T \to 0$, so $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{0}, \mathbf{1})$

Forward Diffusion Process

- Note that
 - In the forward step we do not train any neural network
 - ullet The distribution $q({m x}_T|{m x}_0)$ is the same as the prior distribution in VAEs

Intuition

- The forward diffusion process is an iterative procedure that transforms the input data \mathbf{x}_0
- We add *noise* to **x**₀ such that at time T

$$oldsymbol{x}_{\mathcal{T}} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

- That is, the mean and variance of x_0 moves gradually towards 0 and 1
- The unknown distribution of \mathbf{x}_0 should be more complex than $\mathcal{N}(\mathbf{0}, \mathbf{I})$

Backward Diffusion Process - I

- We want to undo the forward diffusion process
- Ideally, we want to estimate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ recursively
- However,

$$egin{aligned} q(\pmb{x}_{t-1}|\pmb{x}_t) = & rac{q(\pmb{x}_t|\pmb{x}_{t-1})q(\pmb{x}_{t-1})}{q(\pmb{x}_t)} \ & \propto & q(\pmb{x}_t|\pmb{x}_{t-1}) \int q(\pmb{x}_{t-1}|\pmb{x}_0)q(\pmb{x}_0)d\pmb{x}_0 \end{aligned}$$

it is intractable (for similar reasons as in VAEs)

Backward Diffusion Process - II

- We approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ directly and create an iterative noise-reduction process $p(\mathbf{x}_{t-1}|\mathbf{x}_t) \approx q(\mathbf{x}_{t-1}|\mathbf{x}_t)$
- ullet The approximation holds if eta_t is small in the forward diffusion step
- We learn the paramaters of $p(\mathbf{x}_{t-1}|\mathbf{x}_t)$, using neural networks (just as we did in VAEs), i.e.

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\boldsymbol{\mu} = f_{\theta}(\mathbf{x}_t, t), \boldsymbol{\sigma}^2 = f_{\theta}(\mathbf{x}_t, t))$$

• $f_{\theta}(\cdot)$ is commonly a U-net

Backward Diffusion Process - III

The joint probability of the reverse process is

$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})$$
(3)

where $p(\mathbf{x}_T) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Note that this is similar to the generative process in hierarchical VAEs

Data

Outline

- Diffusion Models
 - Denoising Diffusion Models
 - Forward Diffusion Process
 - Backward Diffusion Process

- 2 The Objecttive Function
 - Deriving the ELBO

Deriving the (last!) ELBO

- We start by defining an objective function that maximizes the likelihood of x_0 assign by the model p_θ
- Specifically, we optimize

$$\log p(\mathbf{x}_0) \geq \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_T) \prod_{t=1}^T p(\mathbf{x}_{t-1}|\mathbf{x}_t)}{\prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right]$$
(4)

which circumvents the marginal distributions that are intractable.

Easier ELBO Formulation

 Note that the expectation of a function of a subset of variables is given by taking the expectation only over the subset!

$$\mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)}[f(\boldsymbol{x}_{a:b})] = \mathbb{E}_{q(\boldsymbol{x}_{a:b}|\boldsymbol{x}_0)}[f(\boldsymbol{x}_{a:b})]$$