Machine Learning 2 – MAP569

Stéphane Gaïffas

Don't forget to sign up on slack

Using the following link

https://map569.slack.com/signup

Today

- Again binary classification
- The linear SVM
- Construction of the hinge loss
- Kernels methods

Setting

- Binary classification problem
- We observe a training dataset D of pairs (x_i, y_i) for i = 1, ..., n
- Features $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$
- Aim is to learn a classification rule that generalizes well
- Given a features vector $x \in \mathbb{R}^d$, we want to predict the label y
- Without overfitting

Linear classification. Why?

- Let's start simple!
- On very large datasets (n is large, say $n \ge 10^7$), no other choice (training complexity)
- Big data paradigm: lots of data ⇒ simple methods are enough

A linear classifier

Learn $\hat{w} \in \mathbb{R}^d$ and \hat{b} such that

$$\hat{y} = \text{sign}(\langle x, \hat{w} \rangle + \hat{b})$$

is a good classifier

A dataset is **linearly separable** if we can find an hyperplane \boldsymbol{H} that puts

- ullet Points $x_i \in \mathbb{R}^d$ such that $y_i = 1$ on one side of the hyperplane
- Points $x_i \in \mathbb{R}^d$ such that $y_i = -1$ on the other
- H do not pass through a point x_i

An hyperplane

$$H = \{ x \in \mathbb{R}^d : \langle w, x \rangle + b = 0 \}$$

is a translation of a set of vectors orthogonal to w

- ullet $w \in \mathbb{R}^d$ is a non-zero vector normal to the hyperplane
- $b \in \mathbb{R}$ is a scalar

Definition of H is invariant by multiplication of w and b by a non-zero scalar

If H do not pass through any sample point x_i , we can scale w and b so that

$$\min_{(x,y)\in D}|\langle w,x\rangle+b|=1$$

For such w and b, we call H the canonical hyperplane

The distance of any point $x' \in \mathbb{R}^d$ to H is given by

$$\frac{|\langle w, x' \rangle + b|}{\|w\|}$$

So, if H is a canonical hyperplane, its **margin** is given by

$$\min_{(x,y)\in D}\frac{|\langle w,x\rangle+b|}{\|w\|}=\frac{1}{\|w\|}.$$

In summary: if D is strictly linearly separable, we can find a canonical separating hyperplane

$$H = \{x \in \mathbb{R}^d : \langle w, x \rangle + b = 0\}.$$

that satisfies

$$|\langle w, x_i \rangle + b| \ge 1$$
 for any $i = 1, \dots, n$,

which entails that a point x_i is correctly classified if

$$y_i(\langle x_i, w \rangle + b) \geq 1.$$

The margin of H is equal to 1/||w||.

Linear SVM: separable case

From that, we deduce that a way of classifying D with maximum margin is to solve the following problem:

$$\begin{split} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 \ \text{ for all } \ i = 1, \dots, n \end{split}$$

Note that:

- This problem admits a unique solution
- It is a "quadratic programming" problem, which is easy to solve numerically
- Dedicated optimization algorithms can solve this on a large scale very efficiently

Some tools from constrained optimization

Consider a constrained optimization problem

$$\min_{x \in \mathbb{R}^d} f(x)$$
 subject to $g_i(x) \leq 0$ for all $i = 1, \ldots, n$

where $f, g_1, \ldots, g_n : \mathbb{R}^d \to \mathbb{R}$

- We denote $P^* = f(x^*)$ the minimum of this objective (minimum of the **primal**)
- ullet The associated **Lagrangian** is the function given on $\mathbb{R}^d imes \mathbb{R}^n_+$ by

$$L(x,\alpha) = f(x) + \sum_{i=1}^{n} \alpha_i g_i(x)$$

for Lagrange or dual variables $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_+$

• The **Lagrange dual** function is defined by

$$D(\alpha) = \inf_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}, \alpha) = \inf_{\mathbf{x} \in \mathbb{R}^d} \left(f(\mathbf{x}) + \sum_{i=1}^n \alpha_i g_i(\mathbf{x}) \right)$$

for $\alpha \in \mathbb{R}^n_+$

- D is always concave, as the infimum of linear functions
- We denote $D^* = D(\alpha^*) = \max_{\alpha \geq 0} D(\alpha)$ the optimal value of the dual. It is a convex problem (maximum of a concave function)
- For any **feasible** x and any $\alpha \geq 0$ we have $D(\alpha) \leq f(x)$, hence

$$D^* \leq P^*$$

This is called the weak duality inequality and always holds

• Something that does not always holds is **strong duality**:

$$D^* = P^*$$

Strong duality holds under **constraint qualitications** (sufficient but not necessary)

Probably the best known one is **strong duality**:

- The primal problem is **convex**: f, g_1, \ldots, g_n are convex
- **Slater**'s condition holds: there is some strictly feasible point $x \in \mathbb{R}^d$ such that

$$g_i(x) < 0$$
 for all $i = 1, \ldots, n$

• Slater's condition is obvious for affine functions: inequality no longer strict, reduces to the original constraint $g_i(x) \le 0$

Now, a fundamental tool: KKT theorem (Karush-Kuhn-Tucker)

- Assume that f, g_1, \ldots, g_n are **differentiable**, assume **strong duality**.
- Then, $x^* \in \mathbb{R}^d$ is a solution of the primal problem if and only if there is $\alpha^* \in \mathbb{R}^n_+$ such that

$$\nabla_{x}L(x^{*},\alpha^{*}) = \nabla f(x^{*}) + \sum_{i=1}^{n} \alpha_{i}^{*}\nabla g_{i}(x^{*}) = 0$$

$$g_{i}(x^{*}) \leq 0 \quad \text{for any } i = 1,\dots,n$$

$$\alpha_{i}^{*}g_{i}(x^{*}) = 0 \quad \text{for any } i = 1,\dots,n$$

- These are known as the KKT conditions
- The last one is called **complementary slackness**

In summary: if

- primal problem is convex and
- constraint functions satisfy the **Slater**'s conditions

then

strong duality holds.

If in addition we have that

• functions f, g_1, \ldots, g_n are **differentiable**

then

KKT conditions are necessary and sufficient for optimality

Back to the Linear SVM. The problem has the form

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} f(w)$$
 subject to $g_i(w, b) \leq 0$ for all $i = 1, \dots, n$

where

• $f(w) = \frac{1}{2} ||w||_2^2$ is **strongly convex**, since

$$\nabla^2 f(w) = I_d \succ 0$$

• Constraints are $g_i(w, b) \leq 0$ with **affine** functions

$$g_i(w,b) = 1 - y_i(\langle x_i, w \rangle + b)$$

so that the constraints are qualified

We can apply the KKT theorem

Use this theorem to obtain a condition at the optimum

- It will lead to crucial properties on the SVM
- Allow to obtain the dual formulation of the problem

Lagragian

- Introduce dual variables $\alpha_i \geq 0$ for i = 1, ..., n corresponding to the constraints $g_i(w, b) \leq 0$
- For $w \in \mathbb{R}^d$, $b \in \mathbb{R}$ and $\alpha = (\alpha_1, \dots \alpha_n) \in \mathbb{R}^n_+$, introduce the Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\langle w, x_i \rangle + b))$$

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i (\langle w, x_i \rangle + b))$$

KKT conditions

Set the gradient to zero

$$\nabla_w L(w, b, \alpha) = w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \quad \text{namely} \quad w = \sum_{i=1}^n \alpha_i y_i x_i$$
$$\nabla_b L(w, b, \alpha) = -\sum_{i=1}^n \alpha_i y_i = 0 \quad \text{namely} \quad \sum_{i=1}^n \alpha_i y_i = 0$$

Write the complementary slackness condition

$$\alpha_i (1 - y_i (\langle w, x_i \rangle + b)) = 0$$
 namely $\alpha_i = 0$ or $y_i (\langle w, x_i \rangle + b) = 1$ for all $i = 1, \dots, n$

This entails the following properties at the optimum

• There are **dual** variables $\alpha_i \geq 0$ such that the **primal** solution (w, b) satisfies

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

We have that

$$\alpha_i \neq 0$$
 iff $y_i(\langle w, x_i \rangle + b) = 1$

This means that

- w writes as a linear combination of the features vectors x_i that belong to the marginal hyperplanes $\{x \in \mathbb{R}^d : \langle w, x \rangle + b = \pm 1\}$
- These vectors x_i are called **support vectors**

The support vectors fully define the maximum-margin hyperplane, hence the name **Support Vector Machine**

Dual optimization problem

Lagrangian is

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\langle w, x_i \rangle + b))$$

Plug $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ in it to obtain

$$L(w, b, \alpha) = \frac{1}{2} \left\| \sum_{i=1}^{n} \alpha_i y_i x_i \right\|_2^2 + \sum_{i=1}^{n} \alpha_i - b \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

Recalling that $\sum_{i=1}^{n} \alpha_i y_i = 0$ and doing some algebra we arrive at the dual formulation

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$
 subject to $\alpha_i \geq 0$ and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

Remarks

- As in the primal formulation, it is again a quadratic programming problem
- At optimum, we have (using KKT conditions) that the decision function is expressed using the dual variables as

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

ullet The intercept b can be expressed for any support vector x_i as

$$b = y_i - \sum_{j=1}^n \alpha_j y_j \langle x_i, x_j \rangle$$

This allows to write the margin as a function of the dual variables

• Multiplying the last equality by $\alpha_i y_i$ and summing entails

$$\sum_{i=1}^{n} \alpha_i y_i b = \sum_{i=1}^{n} \alpha_i y_i^2 - \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

• Namely recalling that at optimum $\sum_{i=1}^{n} \alpha_i y_i = 0$ and $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ we get

$$0 = \sum_{i=1}^n \alpha_i = \|w\|_2^2, \quad \text{namely}$$

$$\mathsf{margin} = \frac{1}{\|w\|_2^2} = \frac{1}{\sum_{i=1}^n \alpha_i} = \frac{1}{\|\alpha\|_1}$$

• Okay, this is a nice theory, but...

Have you ever seen a dataset that looks that this?

Datasets are **not** linearly separable!

Keep cool and relax!

Replace the constraints

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 for all $i = 1, ..., n$,

that are too strong, by the relaxed ones

$$y_i(\langle w, x_i \rangle + b) \ge 1 - s_i$$
 for all $i = 1, ..., n$,

for slack variables $s_1, \ldots, s_n \ge 0$

Slack rope

Linear SVM: non-separable case

Relax, but keep the slacks s_i as small as possible (goodness-of-fit)

Replace the original problem

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

by the relaxed one using slack variables:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \ \text{ and } \ s_i \geq 0 \ \text{ for all } \ i = 1, \dots, n \end{aligned}$$

where C > 0 is the "goodness-of-fit strength"

- The slack $s_i \ge 0$ measures the distance by which x_i violates the desired inequality $y_i(\langle x_i, w \rangle + b) \ge 1$
- A vector x_i with $0 < y_i(\langle x_i, w \rangle + b) < 1$ is correctly classified but is an outlier, since $s_i > 0$
- If we omit outliers, training data is correctly classified by the hyperplane $\{x \in \mathbb{R}^d : \langle x, w \rangle + b = 0\}$ with a margin $1/\|w\|_2^2$
- The margin $1/||w||_2^2$ is called a **soft-margin** (in the non-separable case), while it is a **hard-margin** in the separable case

Linear SVM: non-separable case

So, we arrived at:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \quad \text{and} \quad s_i \geq 0 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

Once again:

- This problem admits a unique solution
- It is a quadratic programming problem

The constant C > 0 is chosen using V-fold cross-valiation

Lagrangian

$$L(w, b, s, \alpha, \beta) = \frac{1}{2} ||w||_{2}^{2} + C \sum_{i=1}^{n} s_{i}$$

$$+ \sum_{i=1}^{n} \alpha_{i} (1 - s_{i} - y_{i} (\langle w, x_{i} \rangle + b)) - \sum_{i=1}^{n} \beta_{i} s_{i}$$

At optimum, let's again:

- ullet set the gradients ∇_w , ∇_b and ∇_s to zero
- write the complementary conditions

$$\nabla_{w}L(w,b,s,\alpha,\beta) = w - \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i} = 0 \quad \text{i.e.} \quad w = \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i}$$

$$\nabla_{b}L(w,b,s,\alpha,\beta) = -\sum_{i=1}^{n} \alpha_{i}y_{i} = 0 \quad \text{i.e.} \quad \sum_{i=1}^{n} \alpha_{i}y_{i} = 0$$

$$\nabla_{s}L(w,b,s,\alpha,\beta) = C - \alpha_{i} - \beta_{i} = 0 \quad \text{i.e.} \quad \alpha_{i} + \beta_{i} = C$$

and the complementary condition

$$lpha_iig(1-s_i-y_i(\langle w,x_i
angle+b)ig)=0$$
 i.e. $lpha_i=0$ or $y_i(\langle w,x_i
angle+big)=1-s_i$ $eta_is_i=0$ i.e. $eta_i=0$ or $s_i=0$

for all $i = 1, \ldots, n$

This means that

- $w = \sum_{i=1}^{n} \alpha_i y_i x_i$
- If $\alpha_i \neq 0$ we say that x_i is a support vector and in this case $y_i(\langle w, x_i \rangle + b) = 1 s_i$
 - If $s_i = 0$ then x_i belongs to a margin hyperplane
 - If $s_i \neq 0$ then x_i is an outlier and $\beta_i = 0$ and then $\alpha_i = C$

Support vectors either belong to a marginal hyperplane, or are outliers with $\alpha_i = \mathcal{C}$

Dual problem

• Plugging $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ in $L(w, b, s, \alpha, \beta)$ leads to the same formula as before

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

with the constraints

$$\alpha_i \ge 0, \quad \beta_i \ge 0, \quad \sum_{i=1}^n \alpha_i y_i = 0, \alpha_i + \beta_i = C$$

that can be rewritten for as

$$0 \leq \alpha_i \leq C, \quad \sum_{i=1}^n \alpha_i y_i = 0$$

for all $i = 1, \ldots, n$

Leading to the following dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

 This is the same problem as before, but with the extra constraint

$$\alpha_i \leq C$$

It is again a convex quadratic program

As in the linearly separable case, the label prediction is expressed using the dual variables as

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \langle x, x_{i} \rangle + b\right)$$

The intercept b can be expressed for a support vector x_i such that $0 < \alpha_i < C$ as

$$b = y_i - \sum_{i=1}^n \alpha_j y_j \langle x_i, x_j \rangle$$

A very important remark

The dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction (using dual variables)

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

depends only on the features x_i via their **inner products** $\langle x_i, x_j \rangle$!

This will be particularly important next week: kernel methods

The hinge loss

Going back to the primal problem

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \quad \text{and} \quad s_i \geq 0 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

We remark that it can be rewritten as

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \max \Big(0, 1 - y_i \big(\langle x_i, w \rangle + b \big) \Big).$$

Introducing the hinge loss

$$\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_+,$$

the problem can be written as

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b).$$

Leads to an alternative understanding of the linear SVM.

Another natural loss is the 0/1 loss given by

$$\ell_{0/1}(y,z) = \mathbf{1}_{yz \leq 0}.$$

Instead of the Linear SVM, it would be nice to consider

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \mathbf{1}_{y_i(\langle x_i, w \rangle + b) \leq 0},$$

but impossible numerically (NP-hard)

Hinge loss is a **convex surrogate** for the 0/1 loss

The losses we've seen so far for classification

$$\begin{split} \ell_{0-1}(y,y') &= \mathbf{1}_{yy' \leq 0} \quad \ell_{\mathsf{hinge}}(y,y') = (1-yy')_+ \\ \ell_{\mathsf{logistic}}(y,y') &= \log(1+e^{-yy'}). \end{split}$$

Grandmother's recipe:

Grandmother's recipes for logistic regression vs linear SVM

Logistic regression

- Logistic regression has a nice probabilistic interpretation
- Relies on the choice of the logit link function

SVM

No model, only aims at separating points

No one is not better than the other in general. Depends on the data.

Once again, what is always important though is the **construction of the features** you'll use for training

Thank you!