习题 1-1 (50分)

网络的结构如下图所示, 主机 A 与主机 B 之间通过 3 段链路和 2 台路由器 (R1 与 R2) 连接, 每条链路的长度和传输速率在图中标出,R1 与 R2 采用存储转发机制,主机 B 向主机 A 发送一个长度为 9000 字节的报文。设电磁波在有线链路与无线链路中的传播速度分别为 2×10^8 米/秒与 3×10^8 米/秒,忽略 R2 与 AP 之间连接使用的链路,忽略报文在 R1 与 R2 的路由决策与排队的延时。

请回答以下3个问题:

(1)如果采用报文交换模式,请计算报文传输的最小端到端延时(从主机 B 传输报文第一位开始,到主机 A 接收到报文最后一位所用的时间)(20分)

(1) 传播的延 + 传输 的延
$$= \frac{0.1 \times 10^{3}}{3 \times 10^{8}} + \frac{50 \times 10^{3}}{2 \times 10^{8}} + \frac{0.5 \times 10^{3}}{2 \times 10^{8}} + \frac{9000 \times 8}{1 \times 10^{5} \times 10^{6}} \times 2 + \frac{9000 \times 8}{54 \times 10^{6}}$$

$$= 175.02 \times 10^{-5}5$$

$$= 1.7302 \text{ m/s}$$

报文传输的最小端到端延时为 1.7302ms

(2) 如果将报文平均分成 3 个分组依次传输,请计算完成报文传输的最小端到端延时(忽略报文封装成分组的开销)(20 分)

(2) 每个为组 9000 ÷ 3 = 3000 5 节
附近 =
$$\frac{3000 \times 8}{54 \times 10^5} \times 3 + \frac{0.5 \times 10^3}{2 \times 10^8} + \frac{3000 \times 8}{1000 \times 10^5} + \frac{50 \times 10^3}{2 \times 10^8}$$

$$+ \frac{3000 \times 8}{1000 \times 10^5} + \frac{0.1 \times 10^3}{3 \times 10^8}$$

$$\approx 1.63 \text{ m}$$

报文传输的最小端到端延时为 1.63ms

(3)如果考虑报文在路由器中的路由决策与排队过程,那么端到端延时不确定性的来源及 影响最大的因素(10分)

端到端延时的不确定性主要来源于以下几点:

- **1.队列排队延时:** 这是影响最大的因素,取决于路由器的流量负载和拥塞情况。高流量时排队延时会显著增加。
- **2.路由决策时间:**路由器查找路由表并确定转发路径所需的时间,通常较短,但在复杂路由表或高负载情况下可能增加。
 - **3.链路竞争与重传:**特别是在无线链路中,冲突和重传会导致延时不确定性。
 - 4.网络动态变化:如拓扑变化或链路拥塞,会导致路径调整或延时波动。

其中**,队列排队延时**是影响延时不确定性的最大因素,因为它直接与流量负载和网络拥塞程度相关,并且在高负载情况下可能出现指数级增长的延时。

习题 1-2 (50分)

通过 Windows 命令行模式下的 nslookup 命令查询 www.163.com,同时打开 Wireshark 软件捕获上述 nslookup 相关的 DNS 报文。

请回答以下3个问题:

(1) 提供 nslookup 查询结果截图,并对查询结果进行全面分析(20分)

nslookup 查询结果截图:

```
C:\Users\lenovo>nslookup www.163.com
服务器: 41.45.30.222.in-addr.arpa
Address: 222.30.45.41
名称: www.163.com.w.kunluncan.com
Addresses: 2408:8710:1020:fd00:3::3f8
2408:8710:1020:fd00:3::3f9
             125.39.43.219
125.39.43.240
             125.39.43.239
             125.39.135.217
             125.39.43.214
             125.39.135.215
111.161.79.235
             125.39.43.215
             111.161.79.232
             111.161.79.233
             125.39.135.186
125.39.43.217
             111.161.79.234
              125.39.43.218
             125.39.135.216
             125.39.43.216
             www.163.com
Aliases:
             www.163.com.163jiasu.com
```

查询结果分析:

①服务器信息:

执行 DNS 查询时使用的 DNS 服务器是 41.45.30.222.in-addr.arpa (通常是反向 DNS 查找的域名形式), 其 IP 地址为 222.30.45.41。

41.45.30.222.in-addr.arpa 这种 DNS 名称看起来与反向查找(即 IP 地址转为域名)相关,可能表示这是一个反向 DNS 解析服务器的响应。

②非权威应答:

说明这是一个中继查询的结果,查询结果并非来自 www.163.com 的权威 DNS 服务器,而是从其他 DNS 服务器获取的缓存信息。

解析结果中的 www.163.com.w.kunluncan.com 表明 www.163.com 可能与域名 w.kunluncan.com 关联,或这个域名被用作某种代理或转发服务。这有时可能是由于 DNS 劫持或中间 DNS 服务器做了某些重定向。

③地址信息:

图中是 www.163.com 解析出的多个 IP 地址。

Pv6 地址: 2408:8710:1020:fd00:3::3f8 和 2408:8710:1020:fd00:3::3f9 是 IPv6 地址,显示了该网站也支持通过 IPv6 协议访问。

IPv4 地址:列出了多个 IPv4 地址,包括 125.39.43.219,125.39.43.240,125.39.43.239 等。 多个 IP 地址表明该域名使用了负载均衡技术,可能分布在不同的服务器或数据中心,提供更好的访问性能和容错性。这些 IP 地址可能属于不同地理区域或网络,进一步优化网站的响应时间和可用性。

④别名:

www.163.com 有一个别名,指向 www.163.com.163jiasu.com。这种别名通常是由 CNAME 记录(别名记录)实现的,这表示 www.163.com 可能通过一个 CDN (内容分发 网络)或代理服务器来实现访问。

通过以上信息我们总结出:

DNS 查询服务器返回的是非权威应答,DNS 服务器可能是一个中继或缓存服务;域名www.163.com 使用了负载均衡技术,并同时提供 IPv4 和 IPv6 地址; www.163.com 有一个 CNAME 别名,指向 www.163.com.163jiasu.com,可能与 CDN 或代理服务器有关。

(2) 提供 Wireshark 捕获结果截图(仅过滤出 DNS 报文),并说明每条 DNS 报文的用途(20 分)

il das					
Vo.	Time	Source	Destination	Protoco	Lengt Info
+	15 6.377958	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x38d0 A www.msftconnecttest.com
	16 6.380750	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0x38d0 A www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftncsi
	17 6.381497	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x660a AAAA www.msftconnecttest.com
	18 6.383789	222.30.45.41	10.136.239.255	DNS	254 Standard query response 0x660a AAAA www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftnc.
	48 13.489733	10.136.239.255	222.30.45.41	DNS	82 Standard query θx13d3 A cdnfiles.52songshu.com
	49 13.489733	10.136.239.255	222.30.45.41	DNS	82 Standard query ΘxΘ4Θ2 A movipapi.52songshu.com
	50 13.497721	222.30.45.41	10.136.239.255	DNS	230 Standard query response 0x13d3 A cdnfiles.52songshu.com CNAME cdnfiles.52songshu.com.trpcdn.net CNAME u999.v.t.
	51 13.497721	222.30.45.41	10.136.239.255	DNS	98 Standard query response 0x0402 A movipapi.52songshu.com A 134.175.215.145
	52 13.498058	10.136.239.255	222.30.45.41	DNS	82 Standard query 0xfcb4 AAAA cdnfiles.52songshu.com
	53 13.498060	10.136.239.255	222.30.45.41	DNS	82 Standard query θxbfa9 AAAA movipapi.52songshu.com
	54 13.499932	222.30.45.41	10.136.239.255	DNS	203 Standard query response 0xfcb4 AAAA cdnfiles.52songshu.com CNAME cdnfiles.52songshu.com.trpcdn.net CNAME u999
	55 13.500008	222.30.45.41	10.136.239.255	DNS	157 Standard query response 0xbfa9 AAAA movipapi.52songshu.com SOA overcast.dnspod.net
	99 24.861845	10.136.239.255	222.30.45.41	DNS	78 Standard query 0x11c3 AAAA msdl.microsoft.com
	100 24.865574	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0x11c3 AAAA msdl.microsoft.com CNAME msdl.microsoft.akadns.net CNAME msdl-microsoft-co.
	112 36.889631	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x93cb A www.msftconnecttest.com
	113 36.893543	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0x93cb A www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftncsi
	114 36.893814	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x3bdb AAAA www.msftconnecttest.com
	115 36.897448	222.30.45.41	10.136.239.255	DNS	254 Standard query response 0x3bdb AAAA www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftnc.
	162 67.449724	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x1b47 A www.msftconnecttest.com
	163 67.454140	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0x1b47 A www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftncsi
	164 67.454439	10.136.239.255	222.30.45.41	DNS	83 Standard query 0x6027 AAAA www.msftconnecttest.com
	165 67.457265	222.30.45.41	10.136.239.255	DNS	254 Standard query response 0x6027 AAAA www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftnc.
	196 80.874773	10.136.239.255	222.30.45.41	DNS	78 Standard query 0x2888 A osfsr.lenovomm.com
	197 80.877852	222.30.45.41	10.136.239.255	DNS	114 Standard query response 0x2888 A osfsr.lenovomm.com CNAME fsrcn.lenovomm.com A 120.133.65.232
	198 80.878138	10.136.239.255	222.30.45.41	DNS	78 Standard query 0x7c47 AAAA osfsr.lenovomm.com
	199 80.880160	222.30.45.41	10.136.239.255	DNS	171 Standard query response 0x7c47 AAAA osfsr.lenovomm.com CNAME fsrcn.lenovomm.com SOA ns1.dnsv5.com
	219 84.921437	10.136.239.255	222.30.45.41	DNS	78 Standard query 0xcedf AAAA msdl.microsoft.com
	220 84.926039	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0xcedf AAAA msdl.microsoft.com CNAME msdl.microsoft.akadns.net CNAME msdl-microsoft-co.
	228 92.750791	10.136.239.255	222.30.45.41	DNS	88 Standard query 0xdc16 A contile.services.mozilla.com
	229 92.753951	222.30.45.41	10.136.239.255	DNS	104 Standard query response 0xdc16 A contile.services.mozilla.com A 34.117.188.166
	230 92.754283	10.136.239.255	222.30.45.41	DNS	88 Standard query 0xcd00 AAAA contile.services.mozilla.com
	231 92.756044	222.30.45.41	10.136.239.255	DNS	169 Standard query response 0xcd00 AAAA contile.services.mozilla.com SOA ns-679.awsdns-20.net
	232 92.757704	10.136.239.255	222.30.45.41	DNS	88 Standard query 0xe93a A contile.services.mozilla.com
	234 92.760341	222.30.45.41	10.136.239.255	DNS	104 Standard query response 0xe93a A contile.services.mozilla.com A 34.117.188.166
	235 92.760811	10.136.239.255	222.30.45.41	DNS	88 Standard query 0xe3f0 AAAA contile.services.mozilla.com
	236 92.762448	222.30.45.41	10.136.239.255	DNS	169 Standard query response 0xe3f0 AAAA contile.services.mozilla.com SOA ns-679.awsdns-20.net
	278 97.917450	10.136.239.255	222.30.45.41	DNS	83 Standard query 0xd02a A www.msftconnecttest.com
	279 97.922258	222.30.45.41	10.136.239.255	DNS	227 Standard query response 0xd02a A www.msftconnecttest.com CNAME ncsi-geo.trafficmanager.net CNAME www.msftncsi

• 报文 15

用途:标准查询报文,请求解析域名 www.msftconnecttest.com 的 A 记录,即查询目标域名的 IPv4 地址。

这是典型的域名解析查询报文,用户向 DNS 服务器发送请求,期望获得目标域名对应的 IPv4 地址。此类报文常用于确定服务器的网络位置。

• 报文 16

用途:这是 DNS 服务器返回的响应报文,包含 www.msftconnecttest.com 的 A 记录 查询结果。

服务器成功解析了目标域名,并将对应的 IPv4 地址返回给客户端,完成一次完整的 DNS 查询过程。

•报文17

用途:这是一个 DNS 查询报文,客户端向 DNS 服务器请求解析www.msftconnecttest.com 的 AAAA 记录 (IPv6 地址)。

客户端尝试获取目标域名的 IPv6 地址。如果支持 IPv6,客户端可能优先使用 IPv6 建立连接。

•报文18

用途:这是 DNS 服务器返回的响应报文,包含 www.msftconnecttest.com 的 AAAA 记

录查询结果。

服务器返回了目标域名的 IPv6 地址(如果有),或者表示该域名不支持 IPv6。

• 报文 45

用途:标准查询报文,请求解析域名 4.cnfiles.52songshu.com 的 A 记录。

这是另一个域名的解析请求,目的是获取该域名的 IPv4 地址。此类报文通常是因为用户访问某些网站时,涉及第三方资源(如广告、服务请求)的域名解析。

• 报文 47

用途:DNS 服务器返回域名 4.cnfiles.52songshu.com 的解析结果(A记录)。

DNS 服务器将解析到的 IPv4 地址返回给客户端,表示该域名的解析成功。客户端会使用返回的地址与目标服务器通信。

• 报文 51

用途:标准查询报文,请求解析域名 4.cnfiles.52songshu.com 的 AAAA 记录。

这条报文是针对 4.cnfiles.52songshu.com 的 IPv6 地址(AAAA 记录)进行查询。如果服务器支持 IPv6,客户端可能优先使用 IPv6 地址。

• 报文 73

用途:标准查询报文,请求解析域名 fsrcn.lenovomm.com 的 A 记录。

该报文表明用户尝试访问 Lenovo 的某项服务, DNS 查询请求目标是获取 fsrcn.lenovomm.com 的 IPv4 地址。

• 报文 77

用途:DNS 服务器返回域名 fsrcn.lenovomm.com 的解析结果(A记录)。

这是针对前一条报文的响应,DNS 服务器返回了 fsrcn.lenovomm.com 的 IPv4 地址。客户端随后会使用该地址进行数据交互。

• 报文 231

标准查询报文,请求解析域名 contile.services.mozilla.com 的 A 记录。

用户访问 Mozilla 的服务时需要进行域名解析,查询目标是获取该服务的 IPv4 地址。

•报文 233: DNS 服务器返回域名 contile.services.mozilla.com 的解析结果(A记录)。

这是 DNS 服务器解析的响应结果,返回目标域名的 IPv4 地址。客户端随后会使用解析到的地址与目标服务器建立连接。

•报文 279

用途:查询 www.msftconnecttest.com 的 CNAME 记录 和 A 记录。

这是一个组合查询,既请求目标域名的 CNAME (别名记录),也请求其 A 记录 (IPv4 地址)。如果域名设置了别名,CNAME 会指向最终的目标地址。返回的 A 记录表示实际使用的 IPv4 地址。

通过分析以上 DNS 报文,可以归纳其用途为以下几点:

- ① 查询报文:责向 DNS 服务器请求解析域名,返回域名对应的 IP 地址或别名。 查询类型包括: A 记录(IPv4 地址); AAAA 记录(IPv6 地址); CNAME 记录(别名记录)。
 - ② 响应报文:负责从 DNS 服务器返回查询结果,供客户端使用。如果查询成功,则返回目标域名的 IP 地址;如果失败,则返回错误信息或 NXDOMAIN(域名不存在)。
- (3) 提供某个 DNS 报文详细信息截图,说明 DNS 服务使用哪种传输层协议,以及哪些措施可提高 DNS 服务可靠性(10分)

```
v Frame 280: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on interface \Device\NPF_{64C755D2-CAD4-4C41-8EFB-F7FDE34ACEBE}, id 0 ■
    Section number: 1
> Interface id: 0 (\Device\NPF {64C755D2-CAD4-4C41-8EFB-F7FDE34ACEBE})
       Encapsulation type: Ethernet (1)
       Arrival Time: Dec 24, 2024 13:57:34.247854000 中国标准时间
UTC Arrival Time: Dec 24, 2024 05:57:34.247854000 UTC
       Epoch Arrival Time: 1735019854.247854000
       [Time shift for this packet: 0.000000000 seconds]
       [Time delta from previous captured frame: 0.000818000 seconds]
       [Time delta from previous displayed frame: 0.000818000 seconds]
       [Time since reference or first frame: 97.923076000 seconds] Frame Number: 280
       Frame Length: 83 bytes (664 bits)
Capture Length: 83 bytes (664 bits)
       [Frame is marked: False]
[Frame is ignored: False]
       [Protocols in frame: eth:ethertype:ip:udp:dns]
[Coloring Rule Name: UDP]
[Coloring Rule String: udp]

> Ethernet II, Src: Intel_4c:9e:0b (38:7a:0e:4c:9e:0b), Dst: IETF-VRRP-VRID_08 (00:00:5e:00:01:08)
      Destination: IETF-VRRP-VRID_08 (00:00:5e:00:01:08)
    > Source: Intel 4c:9e:0b (38:7a:0e:4c:9e:0b)
       Type: IPv4 (0x0800)
       [Stream index: 1]
v Internet Protocol Version 4, Src: 10.136.239.255, Dst: 222.30.45.41
     0100 .... = Version: 4
     .... 0101 = Header Length: 20 bytes (5)
      Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 69
      Identification: 0xe8ba (59578)
      000. .... = Flags: 0x0
...0 0000 0000 0000 = Fragment Offset: 0
      Time to Live: 128
Protocol: UDP (17)
      Header Checksum: 0x0000 [validation disabled]
[Header checksum status: Unverified]
Source Address: 10.136.239.255
      Destination Address: 222.30.45.41
[Stream index: 3]

V User Datagram Protocol, Src Port: 50420, Dst Port: 53
      Source Port: 50420
Destination Port: 53
       Length: 49
      Checksum: 0x0612 [unverified]
[Checksum Status: Unverified]
       [Stream index: 1]
      [Stream Packet Number: 15]
[Timestamps]
  UDP payload (41 bytes)
Domain Name System (query)
Transaction ID: 0x0034
   > Flags: 0x0100 Standard query
Questions: 1
      Answer RRs: 0
      Authority RRs: 0
Additional RRs: 0
      Queries
       [Response In: 281]
```

DNS 服务在这次查询中使用了 UDP 作为传输层协议。

以下措施可提高 DNS 服务可靠性:

- 1.部署主从 DNS 服务器: 配置多台 DNS 服务器(主服务器和从服务器)以防止单点故障。当主服务器无法工作时,从服务器可以继续提供域名解析服务。例如,在权威 DNS 配置中,可以使用多个 NS 记录(Name Server)来定义多台权威服务器。
- 2.启用 DNS 缓存: 在客户端和本地 DNS 服务器中启用缓存,减少对权威 DNS 服务器的直接查询压力。DNS 缓存可以提高查询速度,并降低网络延迟。同时可以设置合理的 TTL (生存时间) 值,确保缓存信息及时更新,避免陈旧数据影响解析。
- 3.使用负载均衡和地理分布式 DNS: 通过负载均衡将查询分散到多个 DNS 服务器,防止某一台服务器因流量过载而宕机。部署地理分布式的 DNS 服务器,让用户访问离自己最近的 DNS 节点,减少延迟并提高服务响应速度。
- **4.DNSSEC (DNS Security Extensions):** 实施 DNSSEC 来增强 DNS 数据的完整性和 真实性,防止攻击者篡改解析结果(如 DNS 劫持)。通过数字签名验证 DNS 数据的来源,确保查询返回的记录是权威可信的。
- **5.启用 Anycast 技术:** 使用 Anycast 将同一个 DNS IP 地址广播到多个服务器,用户的查询会自动路由到最近或最快的服务器。提高容灾能力,当某个节点故障时,流量会自动切换到其他节点。
- **6.定期监控和健康检查:**对 DNS 服务器的运行状态进行实时监控,发现问题及时修复。 设置健康检查机制,自动检测服务器的可用性,失效时快速切换到备用服务器。
- 7.保护 DNS 服务器的安全性:限制不必要的开放端口,只允许必要的 DNS 流量通过。 配置防火墙规则,防止未经授权的访问。实施防 DDoS (分布式拒绝服务) 攻击的措施,例 如启用 DDoS 防护服务。
- 8.支持 DoH (DNS over HTTPS) 或 DoT (DNS over TLS): 通过加密 DNS 查询,保护用户隐私,防止 DNS 数据被窃听或篡改。DoH 使用 HTTPS 协议,DoT 使用 TLS 协议,这两种方式均可提高 DNS 查询的安全性。
- **9.合理的超时设置:** 在 DNS 查询中设置合理的超时时间(Timeout),防止查询长时间等待无响应。结合重试机制,当某台服务器失效时,快速切换到其他服务器查询。
- **10.冗余网络连接:** 为 DNS 服务器配置冗余的网络路径,避免网络单点故障影响解析服务的可用性。使用多个 ISP 提供商,确保网络的多路径连接性。