Solucions comentades

1. Considera els següents conjunts:

$$A = \{a, b, \{c\}, d\}, B = \{a, \{b\}, c, d\}, C = \{\emptyset, a, b, c\}$$

- (a) Troba $(A \setminus B) \times C$
- **(b)** Troba $A \setminus \mathcal{P}(B)$

Digues raonadament si són certes o falses les següents afirmacions:

- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$
- (d) $\{\emptyset\} \in \mathcal{P}(C)$
- (e) $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cap (B \times A))$
- **(f)** $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cup (B \times A))$
- (g) $\{\{(\{c\},\emptyset),(a,b)\}\}\in\mathcal{P}(\mathcal{P}(A\times C))$
- (a) Per calcular $(A \setminus B) \times C$ primer tobarem $A \setminus B$ que no és altra cosa que $\{x \in A : x \notin B\}$. Mirant en les definicions per extensió dels conjunts A i B veiem que $a \in A$ i $a \in B$; $b \in A$ i $b \notin B$; $\{c\} \in A$ i $\{c\} \notin B$; $d \in A$ i $d \in B$ tenim que $A \setminus B = \{b, \{c\}\}$. Ara recordem la definició de producte cartesià, $(A \setminus B) \times C = \{(x,y) : x \in (A \setminus B) \ y \in C\}$. Per tant $(A \setminus B) \times C = \{(b,\emptyset), (b,a), (b,b), (b,c), (\{c\},\emptyset), (\{c\},b), (\{c\},c)\}$.
- **(b)** Partim de nou de la definició $A \setminus \mathcal{P}(B) = \{ x \in A : x \notin \mathcal{P}(B) \}$, a més recordem que $\mathcal{P}(B) = \{ D : D \subseteq B \}$. Ara raonem i no farà falta que calculem tot $\mathcal{P}(B)$. Observem que $\{c\} \in A$ i $\{c\} \subseteq B$ ja que tots el elements que pertanyen a $\{c\}$, és a dir c pertany també a B. Els altres elements d' A no són subconjunts de B, ja que no són conjunts formats per elements de B. Així $A \setminus \mathcal{P}(B) = \{a, b, d\}$.
- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$ si i només si $\{\emptyset\} \subseteq \mathcal{P}(C)$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq \mathcal{P}(C)$ sii $\emptyset \in \mathcal{P}(C)$ per la definició de subconjunt. I això és el mateix que dir que $\emptyset \subseteq C$. Aquesta última expressió és certa, ja que per tot conjunt $X, \emptyset \subseteq X$, per tant la primera expressió és també certa.
- (d) $\{\emptyset\} \in \mathcal{P}(C)$ si i només si $\{\emptyset\} \subseteq C$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq C$ sii $\emptyset \in C$ per la definició de subconjunt. Ara bé, aquesta expressió és certa, ja que \emptyset apareix explícitament a la llista que defineix C per extensió.
- (e) $\{(a,c),(a,b)\}\in \mathcal{P}((A\times B)\cap (B\times A))$ sii $\{(a,c),(a,b)\}\subseteq (A\times B)\cap (B\times A)$ per definició de conjunt de les parts. $\{(a,c),(a,b)\}\subseteq (A\times B)\cap (B\times A)$ sii $(a,c),(a,b)\in (A\times B)\cap (B\times A)$ per la definició de subconjunt. Però això és el mateix que dir $(a,c)\in (A\times B)\cap (B\times A)$ i $(a,b)\in (A\times B)\cap (B\times A)$. Aquesta expressió és equivalent a $(a,c)\in (A\times B)$ i $(a,c)\in (B\times A)$ i $(a,b)\in (A\times B)$ i $(a,b)\in (B\times A)$ per la definició de intersecció de conjunts. Ara bé, aquesta expressió és falsa ja que $(a,b)\notin A\times B$ per la definició de producte cartesià, perquè $b\notin B$ ja que no el trobem a la llista de la definició per extensió. (Nota: $b\neq \{b\}$). Com aquesta expressió és falsa, també ho és la primera.
- (f) $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cup (B \times A))$ sii $\{(a,c),(a,b)\} \subseteq (A \times B) \cup (B \times A)$ per definició de conjunt de les parts. $\{(a,c),(a,b)\} \subseteq (A \times B) \cup (B \times A)$ sii $(a,c),(a,b) \in (A \times B) \cup (B \times A)$ per la definició de subconjunt. Però això es el mateix que dir $(a,c) \in (A \times B) \cup (B \times A)$ i $(a,b) \in (A \times B) \cup (B \times A)$. Aquesta expressió és equivalent a $(a,c) \in (A \times B)$ o $(a,c) \in (B \times A)$ i $(a,b) \in (A \times B)$ o $(a,b) \in (B \times A)$ per la definició de unió de conjunts. Ara observem que aquesta expressió és certa ja que ambdues disjuncions son certes: $(a,c) \in A \times B$ per la definició de producte cartesià, perquè $a \in A$ i $c \in B$ -els trobem a la llista de la definició per extensió- i $(a,b) \in B \times A$ per la definició de producte cartesià, perquè $a \in B$ i $b \in A$. Per tant la primera expressió és també certa.
- (g) $\{\{(c,\{\emptyset\}),(a,b)\}\}\in \mathcal{P}(\mathcal{P}(A\times C))\ \text{sii}\ \{\{(\{c\},\emptyset),(a,b)\}\}\subseteq \mathcal{P}(A\times C)\ \text{per definició de conjunt de les parts.}$ $\{\{(\{c\},\emptyset),(a,b)\}\}\subseteq \mathcal{P}(A\times C)\ \text{sii}\ \{(\{c\},\emptyset),(a,b)\}\in \mathcal{P}(A\times C)\ \text{per definició de subconjunt.}$ $\{(\{c\},\emptyset),(a,b)\}\in \mathcal{P}(A\times C)\ \text{sii}\ \{(\{c\},\emptyset),(a,b)\}\subseteq A\times C\ \text{altra vegada per definició de les parts d'un conjunt.}$

 $\{(\{c\},\emptyset),(a,b)\}\subseteq A\times C \text{ sii } (\{c\},\emptyset),(a,b)\in A\times C \text{ és a dir } (\{c\},\emptyset)\in A\times C \text{ i } (a,b)\in A\times C.$ Així veiem que és certa, perquè els dos parells ordenats pertanyen a $A\times C$ ja que $\{c\},a\in A$ i $\emptyset,b\in C.$ Com aquesta expressió és certa i equivalent a la primera, tenim que aquella també ho és.

2. En el conjunt dels nombres reals \mathbb{R} definim les relacions E i G de la forma següent:

Per tot $x, y \in \mathbb{R}$, xEy si i només si y - x és racional.

Per tot $x, y \in \mathbb{R}$, xGy si i només si y - x és enter parell.

Es demana

(a) Demostra $G \subseteq E$.

Per demostrar $G \subseteq E$, hem de veure que per tot $(a,b) \in \mathbb{R} \times \mathbb{R}$, si $(a,b) \in G$, aleshores $(a,b) \in E$. Sigui $(a,b) \in \mathbb{R} \times \mathbb{R}$ arbitrari. Si $(a,b) \in G$, aleshores b-a és un enter parell, en particular $b-a \in \mathbb{Z}$. Com que $\mathbb{Z} \subseteq \mathbb{Q}$, aleshores $b-a \in \mathbb{Q}$ i per tant $(a,b) \in E$ com volíem demostrar.

(b) Demostra que *G* és relació d'equivalència.

Recordem que una relació és d'equivalència si i només si és reflexiva, transitiva i simètrica.

- Reflexiva Sigui $a \in \mathbb{R}$ arbitrari. Com que $a a = 0 = 2 \cdot 0$ i $0 \in \mathbb{Z}$ tenim que a a és enter parell i per tant aGa. Com que a és un real arbitrari, hem demostrat que per tot $x \in \mathbb{R}$, xGx, és a dir que G és reflexiva.
- Transitiva Siguin $a,b,c\in\mathbb{R}$ tals que aGb i bGc. Com que aGb, aleshores hi ha $k\in\mathbb{Z}$ tal que b-a=2k, anàlogament de bGc obtenim que hi ha $s\in\mathbb{Z}$ tal que c-b=2s. Observem doncs que c-a=c-b+b-d=2s+2k=2(s+k) i com que $s+k\in\mathbb{Z}$ ja que $s,k\in\mathbb{Z}$, aleshores c-a és un enter parell i per tant aGc. Com que a,b,c són reals arbitraris, hem demostrat que per tot $x,y,z\in\mathbb{R}$, si xGy i yGz, aleshores xGz; és a dir que G és transitiva.
- Simètrica Siguin $a,b \in \mathbb{R}$ tals que aGb. Com que aGb, aleshores hi ha $k \in \mathbb{Z}$ tal que b-a=2k, Observem doncs que a-b=-(b-a)=-2k=2(-k) i com que $-k \in \mathbb{Z}$ ja que $k \in \mathbb{Z}$, aleshores a-b és un enter parell i per tant bGa. Com que a,b són reals arbitraris, hem demostrat que per tot $x,y \in \mathbb{R}$, si xGy aleshores yGx; és a dir que G és simètrica.
 - (c) Calcula les classes d'equivalència respecte $G: \overline{-1}, \overline{\frac{1}{3}}, \overline{1}$ i $\overline{\pi}$.

$$\overline{-1} = \{x \in \mathbb{R} : xG - 1\} = \{x \in \mathbb{R} : -1Gx\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - (-1) = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k - 1)\} = \{x \in \mathbb{Z} : x \text{ és senar}\}.$$

$$\overline{\frac{1}{3}} = \{x \in \mathbb{R} : \frac{1}{3}Gx\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - \frac{1}{3} = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + \frac{1}{3})\} = \{2k + \frac{1}{3} : k \in \mathbb{Z}\}.$$

$$\overline{1} = \{x \in \mathbb{Z} : x \text{ és senar}\} = \overline{-1} \text{ ja que } -1G1 \text{ perquè } 1 - (-1) = 2 = 2 \cdot 1 \text{ i } 1 \in \mathbb{Z}.$$

$$\overline{\pi} = \{x \in \mathbb{R} : \pi G x\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - \pi = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + \pi)\} = \{2k + \pi : k \in \mathbb{Z}\}.$$

(d) Calcula la classe d'equivalència respecte a G d'un element arbitrari $a \in \mathbb{R}$.

$$\overline{a} = \{x \in \mathbb{R} : aGx\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - a = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + a)\} = \{2k + a : k \in \mathbb{Z}\}.$$

(e) Dóna la partició associada a G, és a dir, el conjunt quocient \mathbb{R}/G .

$$\mathbb{R}/G =_{\operatorname{def}} \{\overline{a} \subseteq \mathbb{R} : a \in \mathbb{R}\} = \{\overline{a} \subseteq \mathbb{R} : a \in [0,2)\}.$$

Per demostrar la igualtat cal demostrar les dues inclusions.

Com que $[0,2) \subseteq \mathbb{R}$, trivialment $\{\overline{a} \subseteq \mathbb{R} : a \in [0,2)\} \subseteq \{\overline{a} \subseteq \mathbb{R} : a \in \mathbb{R}\}.$

Per veure l'altra inclusió hem de veure que per tot $b \in \mathbb{R}$, $\bar{b} \in \{\bar{a} \subseteq \mathbb{R} : a \in [0,2)\}$.

Sigui $b \in \mathbb{R}$, denotem per [b] la part entera d'b, és a dir $[b] = \max\{n \in \mathbb{Z} n \leqslant b\}$. Observem que $0 \leqslant b - [b] < 1$. Si [b] és enter parell aleshores b - (b - [b]) = [b] és un enter parell i per tant $\bar{b} = \overline{b - [b]}$ i com que $b - [b] \in [0,1) \subseteq [0,2)$, $\bar{b} \in \{\bar{a} \subseteq \mathbb{R} : a \in [0,2)\}$.

Si [b] és un enter senar aleshores b-(b-[b]+1)=[b]-1 és un enter parell i per tant $\bar{b}=\overline{b-[b]+1}$ i com que $b-[b]+1\in[1,2)\subseteq[0,2)$, $\bar{b}\in\{\bar{a}\subseteq\mathbb{R}:a\in[0,2)\}$.

Observem també que $\{\bar{a} \subseteq \mathbb{R} : a \in [0,2)\}$ és una bona representació de \mathbb{R}/G , és a dir que per qualssevol $x,y \in [0,2)$, $\bar{x}=\bar{y}$ implica x=y.

Siguin $a,b \in [0,2)$ tals que $\bar{a} = \bar{b}$. Com que $a,b \in [0,2)$, aleshores |a-b| < 2. Si suposem que $\bar{a} = \bar{b}$, aleshores b-a i a-b són enters parells que és equivalent a dir que |a-b| és natural parell. Ara bé si |a-b| < 2 i |a-b| és natural parell, aleshores |a-b| = 0 i per tant a=b.

- **3.** Examina les següents relacions entre $\mathbb{N} \times \mathbb{N}$ i $\mathbb{Q}^+ \cup \{0\}$:
 - (a) $S_1 = \left\{ \left((1,2), \frac{1}{2} \right), \left((0,5), 0 \right), \left((10^9, 10^{10}), 0.1 \right), \left((2,4), \frac{2}{4} \right), \left((1,0), 1 \right), \left((2,20), \frac{1}{10} \right), \left((3,7), 3 \right), \left((7,3), 7 \right) \right\}.$
 - **(b)** $S_2 = \{((n,m), \frac{n}{m}) : n, m \in \mathbb{N}, m \neq 0\}.$
 - (c) $S_3 = \{((n,m), n+m) : n, m \in \mathbb{N}\}.$

Calcula el seu domini i la seva imatge. Digues quines són funcions. De les que ho siguin digues si són injectives i si són exhaustives.

(a) $dom(S_1) = \{(x,y) \in \mathbb{N} \times \mathbb{N} : existeix z \in \mathbb{Q}^+ \cup \{0\} \text{ tal } que((x,y),z) \in S_1\} = \{(1,2),(0,5),(10^9,10^{10}),(2,4),(1,0),(2,20),(3,7),(7,3)\},$

$$rec(S_1) = \{z \in \mathbb{Q}^+ \cup \{0\} : existeix (x,y) \in \mathbb{N} \times \mathbb{N} \text{ tal } que((x,y),z) \in S_1\} = \{0.5,0,0.1,1,3,7\}.$$

S₁ és funció, doncs cada element del domini de S1 és relaciona amb un únic element del recorregut de S1.

 S_1 no és injectiva, perquè hi ha elements diferents del domini de S_1 que tenen la mateixa imatge. Per exemple: $(1,2) \neq (2,4)$ i ((1,2),0.5) i ((2,4),0.5) són elements de S_1 .

 S_1 no és exhaustiva, perquè el recorregut de P_1 és un conjunt finit i el conjunt final $\mathbb{Q}^+ \cup \{0\}$ és infinit.

(b) dom $(S_2) = \mathbb{N} \times (\mathbb{N} \setminus \{0\}),$

$$rec(S_2) = \mathbb{Q}^+ \cup \{0\}.$$

 S_2 és funció, perquè per cada parell $(n,m) \in \mathbb{N} \times (\mathbb{N} \setminus \{0\})$ el quocient n/m està univocament determinat.

 S_2 no és injectiva, perquè per tot n, m, k nombres naturals amb n, m, k > 1, els parells (n, m) i $(n \cdot k, m \cdot k)$ són diferents i tenen la mateixa imatge.

 S_2 és exhaustiva, perquè $rec(S_2) = \mathbb{Q}^+ \cup \{0\}$.

(c) $dom(S_3) = \mathbb{N} \times \mathbb{N}$,

$$rec(S_3) = \mathbb{N}$$
.

 S_3 és funció, perquè per cada parell $(n,m) \in \mathbb{N} \times \mathbb{N}$ la suma n+m està unívocament determinada.

 S_3 no és injectiva, perquè per tot $n, m \in \mathbb{N}$ tals que $n \neq m$, els parells (n, m) i (m, n) són diferents i tenen la mateixa imatge.

 S_3 no és exhaustiva, perquè $\operatorname{rec}(S_3) = \mathbb{N}$ està estrictament contingut en el conjunt final $\mathbb{Q}^+ \cup \{0\}$.