- Indução estrutural
- Cálculo Proposicional
 - Sintaxe
 - Semântica
 - Dedução Natural
 - Correção e completude
- Cálculo de Predicados de Primeira Ordem
 - Sintaxe
 - Semântica

L-estruturas

Definição

Uma *L*-estrutura é um par $E = (D, \overline{})$ onde:

- D é um conjunto não vazio, chamado o domínio de E e notado por dom(E);
- 2 é uma função de domínio $\mathcal{F} \cup \mathcal{R}$, chamada a função interpretação de E, tal que:
 - a cada constante c ∈ F de L,
 faz corresponder um elemento c̄ pertencente a D;
 - a cada símbolo de função $f \in \mathcal{F}$ de L de aridade $n \ge 1$ faz corresponder uma função n-ária $\overline{f}: D^n \longrightarrow D$;
 - a cada símbolo de relação $R \in \mathcal{R}$ de L de aridade $n \ge 1$ faz corresponder uma relação n-ária $\overline{R} \subseteq D^n$.

Para cada símbolo $s \in \mathcal{F} \cup \mathcal{R}$, \overline{s} chama-se a *interpretação* de s em E.

Exemplo 1

Recorde-se o tipo de linguagem $L_{Arit} = (\{0, s, +, *\}, \{=, <\}, \mathcal{N})$ onde $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(*) = 2$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(<) = 2$.

Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:

- 0 é o número inteiro zero;
- $\overline{s}: \mathbb{N}_0 \to \mathbb{N}_0$ é a função de *sucessor* em \mathbb{N}_0 ; $n \mapsto n+1$
- $\overline{+}: \mathbb{N}_0^2 \to \mathbb{N}_0$ é a função de *adição* em \mathbb{N}_0 ; $(n,m) \mapsto n+m$
- $\overline{*}: \mathbb{N}_0^2 \to \mathbb{N}_0$ é a função de *multiplicação* em \mathbb{N}_0 ; $(n,m) \mapsto n \times m$
- \equiv é a relação de igualdade $\{(n, n) \mid n \in \mathbb{N}_0\}$;
- $\overline{<}$ é a relação $\{(n,m) \in \mathbb{N}_0^2 \mid n < m\}$, de *menor* em \mathbb{N}_0 .

Então, E_{Arit} é uma L_{Arit} -estrutura.

Exemplo 2

É também uma L_{Arit} -estrutura o par ($\{0,1\}$, $^-$), em que:

- \bullet $\overline{0} = 0;$
- $\begin{array}{cccc} \bullet & \overline{s}: \{0,1\} & \rightarrow & \{0,1\} \ ; \\ & 0 & \mapsto & 1 \\ & 1 & \mapsto & 0 \end{array}$
- $\overline{+}: \{0,1\}^2 \rightarrow \{0,1\}$ $(x,y) \mapsto \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$
- $\overline{*}: \{0,1\}^2 \rightarrow \{0,1\}$ $(x,y) \mapsto \begin{cases} 1 & \text{se } x = y = 1 \\ 0 & \text{senão} \end{cases}$
- \equiv é a relação $\{(0,0),(1,1)\};$

Atribuições

Definição

Seja $E=(D,\overline{})$ uma L-estrutura. Uma $\underline{}$ atribuição $\underline{}$ e $\underline{}$ é uma função

$$a: \mathcal{V} \longrightarrow D$$
,

que a cada variável de $\mathcal V$ faz corresponder um elemento do domínio D da L-estrutura E.

Exemplo

A função

$$a^{ind}: \mathcal{V} \rightarrow \mathbb{N}_0$$

 $x_i \mapsto i$

é uma atribuição na L_{Arit} -estrutura $E_{Arit} = (\mathbb{N}_0, \overline{}).$

Valores de L-termos

Definição

Seja a uma atribuição numa L-estrutura $E=(D,\overline{\ })$ e seja $t\in \mathcal{T}_L$ um L-termo.

O *valor de t para a atribuição a*, denotado por $t[a]_E$ ou simplesmente por t[a] (quando não há dúvidas quanto à L-estrutura em causa), é o elemento de D definido, por recursão estrutural em t, como:

- \bigcirc para cada $x \in \mathcal{V}$, x[a] = a(x);
- 2 para cada $c \in C$, $c[a] = \overline{c}$;
- 3 para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer termos $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$f(t_1,\ldots,t_n)[a]=\overline{f}(t_1[a],\ldots,t_n[a]).$$

Exemplo

Considere-se o L_{Arit} -termo $t = x_2 * (0 + s(x_3))$ e a atribuição

$$a^{ind}: V \rightarrow \mathbb{N}_0$$

 $x_i \mapsto i$

na L_{Arit} -estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$. Então,

$$(x_{2}*(0+s(x_{3})))[a^{ind}] = x_{2}[a^{ind}] \overline{*} (0+s(x_{3}))[a^{ind}]$$

$$= a^{ind}(x_{2}) \overline{*} (0[a^{ind}] \overline{+} s(x_{3})[a^{ind}])$$

$$= 2 \overline{*} (\overline{0} \overline{+} \overline{s}(x_{3}[a^{ind}]))$$

$$= 2 \overline{*} (\overline{0} \overline{+} \overline{s}(a^{ind}(x_{3})))$$

$$= 2 \overline{*} (\overline{0} \overline{+} \overline{s}(3))$$

$$= 2 \times (0+4)$$

$$= 8 \in \mathbb{N}_{0}.$$

Proposição

Seja t um L-termo e sejam a_1 e a_2 duas atribuições numa L-estrutura $E = (D, ^-)$. Se $a_1(x) = a_2(x)$ para toda a variável $x \in VAR(t)$, então $t[a_1] = t[a_2]$.

Demonstração: Por indução estrutural em t. Suponhamos que $a_1(x) = a_2(x)$ para toda a variável $x \in VAR(t)$.

- ① Caso $t = x_i \in \mathcal{V}$. Então, $x_i \in VAR(t)$ e, por hipótese, $a_1(x_i) = a_2(x_i)$. Assim, $t[a_1] = x_i[a_1] = a_1(x_i) = a_2(x_i) = x_i[a_2] = t[a_2]$
- ② Caso $t = c \in C$. Então, $t[a_1] = c[a_1] = \overline{c} = c[a_2] = t[a_2]$.
- 3 Caso $t = f(t_1, \ldots, t_n)$, onde $f \in \mathcal{F}_L$, $\mathcal{N}(f) = n \ge 1$ e $t_1, \ldots, t_n \in \mathcal{T}_L$. Então $VAR(t_i) \subseteq VAR(t)$ pelo que, por hipótese de indução, $t_i[a_1] = t_i[a_2]$ para todo $i \in \{1, \ldots, n\}$. Assim, vem que

$$t[a_1] = f(t_1, \dots, t_n)[a_1]$$

$$= \overline{f}(t_1[a_1], \dots, t_n[a_1])$$

$$= \overline{f}(t_1[a_2], \dots, t_n[a_2]) \text{ por H.I., pois VAR}(t_i) \subseteq \text{VAR}(t)$$

$$= f(t_1, \dots, t_n)[a_2]$$

$$= t[a_2].$$

Definição

Seja a uma atribuição numa L-estrutura $E=(D,\overline{\ })$, seja x_i uma variável e seja $d\in D$. Denotamos por $a\binom{x_i}{d}$ a atribuição

$$a inom{x_i}{d} : \mathcal{V} \rightarrow D$$
 $x_j \mapsto \left\{ egin{array}{ll} d & ext{se } i = j \\ a(x_j) & ext{se } i \neq j \end{array} \right.$

Proposição

Sejam t e u dois L-termos, x uma variável e a uma atribuição numa L-estrutura. Então $t[u/x][a] = t[a\binom{x}{u[a]}]$.

Demonstração: Fazer como exercício usando indução estrutural em t.

Valores lógicos de *L*-fórmulas

Definição

Sejam a uma atribuição numa L-estrutura $E=(D, \overline{})$ e $\varphi\in\mathcal{F}_L$ uma L-fórmula.

O valor lógico de φ para a atribuição a, denotado por $\varphi[a]_E$ ou simplesmente por $\varphi[a]$ (quando não há dúvidas quanto à L-estrutura em causa), é o valor lógico do conjunto $\{0,1\}$ definido, por recursão estrutural em L-fórmulas, por:

- (a) $\perp [a] = 0$;
- (b) Para todo o símbolo de relação R de aridade n e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$R(t_1,...,t_n)[a] = 1 \text{ sse } (t_1[a],...,t_n[a]) \in \overline{R};$$

(c) Para cada $\psi \in \mathcal{F}_L$, $(\neg \psi)[a] = 1 - \psi[a]$;

(continua)

Valores lógicos de *L*-fórmulas

Definição (Continuação)

- (d) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \wedge \sigma)[a] = min\{\psi[a], \sigma[a]\}$;
- (e) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \vee \sigma)[a] = max\{\psi[a], \sigma[a]\}$;
- (f) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \to \sigma)[a] = 0$ sse $\psi[a] = 1$ e $\sigma[a] = 0$;
- (g) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \leftrightarrow \sigma)[a] = 1$ sse $\psi[a] = \sigma[a]$;
- (h) Para cada $\psi \in \mathcal{F}_L$ e cada $x \in \mathcal{V}$, $(\exists_x \psi)[a] = 1 \quad \text{sse} \quad \text{existe } d \in D \ \psi[a \binom{x}{d}] = 1$ $\text{sse} \quad \max\{\psi[a \binom{x}{d}] \ | \ d \in D\} = 1;$
- (i) Para cada $\psi \in \mathcal{F}_L$ e cada $x \in \mathcal{V}$, $(\forall_x \psi)[a] = 1$ sse para todo o $d \in D$ $\psi[a {x \choose d}] = 1$ sse $min\{\psi[a {x \choose d}] \mid d \in D\} = 1$.

Exemplo

$$\forall_{x_1}(x_1=x_0\vee\exists_{x_2}(x_1=s(x_2)))[a^{ind}]=1$$
 sse para todo $n_1\in\mathbb{N}_0(x_1=x_0\vee\exists_{x_2}(x_1=s(x_2)))[a^{ind}\binom{x_1}{n_1}]=1$ sse para todo $n_1\in\mathbb{N}_0$ $(x_1=x_0)[a^{ind}\binom{x_1}{n_1}]=1$ ou $(\exists_{x_2}(x_1=s(x_2)))[a^{ind}\binom{x_1}{n_1}]=1$ sse para todo $n_1\in\mathbb{N}_0$ $x_1[a^{ind}\binom{x_1}{n_1}]=x_0[a^{ind}\binom{x_1}{n_1}]$ ou
$$\text{existe } n_2\in\mathbb{N}_0 \text{tal que } (x_1=s(x_2))[a^{ind}\binom{x_1}{n_1}\binom{x_2}{n_2}]=1$$
 sse para todo $n_1\in\mathbb{N}_0$ $n_1=a^{ind}(x_0)$ ou
$$\text{existe } n_2\in\mathbb{N}_0 \text{ tal que } x_1[a^{ind}\binom{x_1}{n_1}\binom{x_2}{n_2}]=s(x_2)[a^{ind}\binom{x_1}{n_1}\binom{x_2}{n_2}]$$
 sse para todo $n_1\in\mathbb{N}_0$ $n_1=0$ ou existe $n_2\in\mathbb{N}_0 \text{ tal que } n_1=\overline{s}(x_2[a^{ind}\binom{x_1}{n_1}\binom{x_2}{n_2}])$ sse para todo $n_1\in\mathbb{N}_0$ $n_1=0$ ou existe $n_2\in\mathbb{N}_0 \text{ tal que } n_1=\overline{s}(n_2)$ sse para todo $n_1\in\mathbb{N}_0$ $n_1=0$ ou existe $n_2\in\mathbb{N}_0 \text{ tal que } n_1=n_2+1$.

Como esta última afirmação é verdadeira, então

$$\forall x_1(x_1 = x_0 \vee \exists x_2(x_1 = s(x_2)))[a^{ind}] = 1.$$

Satisfação de L-fórmulas

Definição

Seja a uma atribuição numa L-estrutura $E=(D,\overline{\ })$ e seja $\varphi\in\mathcal{F}_L$ uma L-fórmula. Diz-se que:

- E satisfaz φ para a atribuição a, e escreve-se $E \models \varphi[a]$, se o valor lógico de φ em E para a é 1, i.e., se $\varphi[a]_E = 1$.
- E não satisfaz φ para a atribuição a, e escreve-se $E \not\models \varphi[a]$, se $\varphi[a]_E = 0$.

Exemplo

$$E_{Arit} \models \forall_{x_1}(x_1 = x_0 \vee \exists_{x_2}(x_1 = s(x_2)))[a^{ind}].$$

pois
$$\forall_{x_1}(x_1 = x_0 \vee \exists_{x_2}(x_1 = s(x_2)))[a^{ind}] = 1.$$

Lema

Seja a uma atribuição numa L-estrutura $E = (D, \overline{})$. Então,

- (i) $E \models (\exists_x \varphi)[a]$ se e só se existe $d \in D$ tal que $E \models \varphi[a \binom{x}{d}]$.
- (ii) $E \models (\forall_x \varphi)[a]$ se e só se para todo $d \in D$ $E \models \varphi[a \binom{x}{d}]$.
- (iii) $E \not\models (\exists_x \varphi)[a]$ se e só se para todo $d \in D$ $E \not\models \varphi[a \binom{x}{d}]$.
- (iv) $E \not\models (\forall_x \varphi)[a]$ se e só se existe $d \in D$ tal que $E \not\models \varphi[a \binom{x}{d}]$.

Demonstração:

- (i) $E \models (\exists_x \varphi)[a]$ sse $(\exists_x \varphi)[a]_E = 1$ sse existe $d \in D$ tal que $\varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]_E = 1$ sse existe $d \in D$ tal que $E \models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$.
- (i)-(iv) Exercício.

Exemplo

$$E_{Arit} \models \exists_{x_1} \forall_{x_0} (s(x_0) = x_0 + x_1)[a^{ind}]$$

sse existe
$$n_1 \in \mathbb{N}_0$$
 tal que $E_{Arit} \models \forall_{x_0} (s(x_0) = x_0 + x_1)[a^{ind} \binom{x_1}{n_1}]$

sse existe
$$n_1 \in \mathbb{N}_0$$
 tal que para todo $n_0 \in \mathbb{N}_0$

$$E_{Arit} \models (s(x_0) = x_0 + x_1)[a^{ind} {x_1 \choose n_1} {x_0 \choose n_0}]$$

sse existe
$$n_1 \in \mathbb{N}_0$$
 tal que para todo $n_0 \in \mathbb{N}_0$
$$(s(x_0) = x_0 + x_1)[a^{ind} \binom{x_1}{n_1} \binom{x_0}{n_0}] = 1.$$

$$(s(x_0)=x_0+x_1)[a^{ind}\binom{x_1}{n_1}\binom{x_0}{n_0}]=1.$$

sse existe
$$n_1 \in \mathbb{N}_0$$
 tal que para todo $n_0 \in \mathbb{N}_0$ $n_0 + 1 = n_0 + n_1$

Esta afirmação é verdadeira (basta tomar $n_1 = 1$).

Conclui-se então que
$$E_{Arit} \models \exists_{x_1} \forall_{x_0} (s(x_0) = x_0 + x_1)[a^{ind}].$$

Teorema

Seja φ uma L-fórmula e sejam a_1 e a_2 atribuições numa L-estrutura $E = (D, ^{-}).$

- **1** Se $a_1(x) = a_2(x)$ para toda a variável $x \in LIV(\varphi)$, então $E \models \varphi[a_1]$ se e só se $E \models \varphi[a_2]$.
- 2 Se x é uma variável tal que $x \notin LIV(\varphi)$, então

$$E \models \varphi[a_1]$$
 se e só se para todo $d \in D E \models \varphi[a_1 {x \choose d}]$.

Se φ é uma L-sentença, então

$$E \models \varphi[a_1]$$
 se e só se $E \models \varphi[a_2]$.

Demonstração:

- Por inducão estrutural em φ (Exercício).
- (2)-(3) Imediatas por (1).

Teorema

Sejam φ uma L-fórmula, $E=(D,\overline{\ })$ uma L-estrutura, a uma atribuição em E e x uma variável substituível por um L-termo t em φ . Então,

$$E \models \varphi[t/x][a]$$
 se e só se $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$.

Demonstração:

Se $x \notin LIV(\varphi)$, então $\varphi[t/x] = \varphi$. Logo,

$$\begin{split} E &\models \varphi[t/x][a] \quad \text{sse} \quad E \models \varphi[a] \\ \quad \text{sse} \quad E &\models \varphi[a \binom{x}{t[a]}] \quad \text{pelo teorema anterior.} \end{split}$$

No caso de $x\in \mathrm{LIV}(\varphi)$, a demonstração é feita por indução estrutural em φ (Exercício).

Validade de L-fórmulas

Definição

Sejam φ uma L-fórmula e E uma L-estrutura.

- Diz-se que φ é válida em E, e escreve-se $E \models \varphi$, se $E \models \varphi[a]$ para toda a atribuição a em E.
- Caso contrário, ou seja, se existe alguma atribuição a em E tal que E ≠ φ[a], diz-se que φ não é válida em E, e escreve-se E ≠ φ.

Validade de L-fórmulas

Definição

Seja φ uma *L*-fórmula. Diz-se que:

- φ é (universalmente) válida, e escreve-se $\models \varphi$, se φ é válida em todas as L-estruturas, ou seja, se $E \models \varphi$ para toda a L-estrutura E;
- φ não é (universalmente) válida, e escreve-se $\not\models \varphi$ caso contrário.

Exemplo

A LArit-fórmula

$$\varphi = \forall_{x_1}(x_1 = s(x_1)),$$

 $n\tilde{a}o$ é válida na L_{Arit} -estrutura E_{Arit} pois, por exemplo,

$$E_{Arit} \not\models \varphi[a^{ind}].$$

Consequentemente, φ não é (universalmente) válida.

No entanto φ é válida em algumas L_{Arit} -estruturas. Por exemplo, φ é válida numa L_{Arit} -estrutura de domínio D que interprete o símbolo de relação = como sendo a relação D^2 (ou seja, a relação universal em D).

Equivalência lógica

Definição

Sejam φ e ψ L-fórmulas. Diz-se que φ é logicamente equivalente a ψ , e escreve-se $\varphi \Leftrightarrow \psi$, quando $\models \varphi \leftrightarrow \psi$.

Lema

A relação de equivalência lógica é uma relação de equivalência em \mathcal{F}_{I} .

Demonstração: Exercício.

Indução estrutural

Teorema

Sejam φ e ψ duas L-fórmulas e sejam x e y duas variáveis. As seguintes afirmações são válidas:

(i)
$$\neg \forall_x \varphi \Leftrightarrow \exists_x \neg \varphi$$

(i')
$$\neg \exists_{\mathsf{X}} \varphi \Leftrightarrow \forall_{\mathsf{X}} \neg \varphi$$

(ii)
$$\forall_{\mathsf{X}} (\varphi \wedge \psi) \Leftrightarrow \forall_{\mathsf{X}} \varphi \wedge \forall_{\mathsf{X}} \psi$$

(ii')
$$\models \exists_{x}(\varphi \wedge \psi) \rightarrow (\exists_{x}\varphi \wedge \exists_{x}\psi)$$

 $\not\models (\exists_{x}\varphi \wedge \exists_{x}\psi) \rightarrow \exists_{x}(\varphi \wedge \psi)$

(iii)
$$\models (\forall_{x} \varphi \lor \forall_{x} \psi) \rightarrow \forall_{x} (\varphi \lor \psi)$$

 $\not\models \forall_{x} (\varphi \lor \psi) \rightarrow (\forall_{x} \varphi \lor \forall_{x} \psi)$

(iii')
$$\exists_{\mathbf{x}}(\varphi \lor \psi) \Leftrightarrow \exists_{\mathbf{x}}\varphi \lor \exists_{\mathbf{x}}\psi$$

(iv)
$$\forall_{x}\forall_{y}\varphi \Leftrightarrow \forall_{y}\forall_{x}\varphi$$

(iv')
$$\exists_x \exists_y \varphi \Leftrightarrow \exists_y \exists_x \varphi$$

$$(\mathsf{v}) \models \exists_{\mathsf{x}} \forall_{\mathsf{v}} \varphi \rightarrow \forall_{\mathsf{v}} \exists_{\mathsf{x}} \varphi$$

(v')
$$\not\models \forall_{x} \exists_{y} \varphi \rightarrow \exists_{y} \forall_{x} \varphi$$

(vi)
$$\forall_x \varphi \Leftrightarrow \varphi$$
 se $x \notin LIV(\varphi)$

(vi')
$$\exists_x \varphi \Leftrightarrow \varphi$$
 se $x \notin LIV(\varphi)$

(vii)
$$\forall_x \varphi \Leftrightarrow \forall_y \varphi[y/x]$$
 se (*)

(vii')
$$\exists_x \varphi \Leftrightarrow \exists_y \varphi [y/x]$$
 se (*)

(*)
$$y \notin LIV(\varphi)$$
 e x é substituível por y em φ

Demonstração:

Indução estrutural

(i) Sejam $E = (D, \overline{})$ uma L-estrutura e a uma atribuição em E, arbitrárias. Queremos provar que

$$E \models (\neg \forall_x \varphi)[a]$$
 se e só se $E \models (\exists_x \neg \varphi)[a]$.

$$E \models (\neg \forall_x \varphi)[a]$$
sse $(\neg \forall_x \varphi)[a]_E = 1$ por def. de satisfação sse $(\forall_x \varphi)[a]_E = 0$ por def. de valor lógico sse $E \not\models (\forall_x \varphi)[a]$ por def. de satisfação sse existe $d \in D$ tal que $E \not\models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$ por um lema anterior sse existe $d \in D$ tal que $E \models (\neg \varphi)[a \begin{pmatrix} x \\ d \end{pmatrix}]$ sse $E \models (\exists_x \neg \varphi)[a]$ pelo lema já referido.

Assim, a prova de i) está concluída.

Exercício. (ii)-(vii) e (i')-(vii')

Instâncias de fórmulas do Cálculo Proposicional

Definição

Sejam ψ uma L-fórmula e φ uma fórmula do Cálculo Proposicional. Diz-se que ψ é uma instância de φ , se $VAR(\varphi) = \{p_{i_1}, \ldots, p_{i_n}\}$, existem n L-fórmulas, ψ_1, \ldots, ψ_n , e ψ é a L-fórmula obtida de φ substituindo, em simultâneo, cada p_{i_j} por ψ_j $(j=1,\ldots,n)$. Em caso afirmativo, escreve-se

$$\psi = \varphi[\psi_1/p_{i_1}; \ldots; \psi_n/p_{i_n}].$$

Exemplo

Seja ψ a seguinte L_{Arit} -fórmula:

$$(\forall_{x_1}(s(x_1) = x_1 + 0) \rightarrow (x_1 = x_2)) \leftrightarrow (\neg(x_1 = x_2) \rightarrow \neg \forall_{x_1}(s(x_1) = x_1 + 0))$$
.

 ψ é uma instância da fórmula do Cálculo Proposicional

$$\varphi = (p_1 \to p_3) \leftrightarrow (\neg p_3 \to \neg p_1).$$

De facto,

$$\psi = \varphi[\forall_{x_1}(s(x_1) = x_1 + 0)/p_1; (x_1 = x_2)/p_3].$$

Teorema

Uma instância de uma tautologia é válida em qualquer L-estrutura.

Exemplo

A fórmula

$$(p_1 \rightarrow p_3) \leftrightarrow (\neg p_3 \rightarrow \neg p_1)$$

é uma tautologia, logo, a L_{Arit} -fórmula,

$$(\forall_{x_1}(s(x_1) = x_1 + 0) \rightarrow (x_1 = x_2)) \leftrightarrow (\neg(x_1 = x_2) \rightarrow \neg \forall_{x_1}(s(x_1) = x_1 + 0))$$

é válida em qualquer *L*-estrutura, pois é uma instância de uma tautologia.

Observação

Note-se que existem *L*-fórmulas válidas que não são instâncias de tautologias do Cálculo Proposicional.

Por exemplo, a L_{Arit}-fórmula

$$\psi = \exists_{x_0} ((s(x_0) = x_0) \lor \neg (s(x_0) = x_0))$$

é válida em todas as L_{Arit} -estruturas. No entanto, as únicas fórmulas do Cálculo Proposicional das quais ψ é uma instância são as variáveis proposicionais, que não são tautologias.

Consistência semântica

Definição

Seja Γ um conjunto de L-fórmulas e seja (E,a) um par tal que E é uma L-estrutura e a é uma atribuição em E. Diz-se que (E,a) é uma realização de Γ , se $E \models \varphi[a]$ para qualquer $\varphi \in \Gamma$.

Exemplo

O par (E_{Arit}, a^{ind}) é uma realização do conjunto

$$\{\forall_{x_0}(s(x_0) = x_0 + s(0)), \ \forall_{x_0} \exists_{x_1}(x_0 < x_1)\}$$

de L_{Arit}-fórmulas, mas não é uma realização do conjunto

$$\{\forall_{x_0}(s(x_0) = x_0 + s(0)), \exists_{x_1} \forall_{x_0}(x_0 < x_1)\}$$

de L_{Arit} -fórmulas.

Consistência semântica

Definição

Um conjunto Γ de *L*-fórmulas diz-se *semanticamente consistente* ou *realizável*, se existe uma realização de Γ .

Exemplos

O conjunto

$$\{\forall_{x_0}(s(x_0) = x_0 + s(0)), \ \forall_{x_0} \exists_{x_1}(x_0 < x_1)\}$$

de L_{Arit} -fórmulas é semanticamente consistente.

Caso contrário, Γ diz-se *semanticamente inconsistente*.

O conjunto

$$\{\forall_{x_0} \neg (s(x_0) = x_0), s(0) = 0\}$$

de L_{Arit}-fórmulas é semanticamente inconsistente.

Modelos de conjuntos de L-fórmulas

Definicão

Sejam E uma L-estrutura e Γ um conjunto de L-fórmulas. Diz-se que E é um modelo de Γ se (E,a) realiza Γ para toda a atribuição a em E, ou seja, se toda a L-fórmula de Γ é válida em E.

Teorema

Sejam Γ um conjunto de L-sentenças, E uma L-estrutura e a uma atribuição em E. Então, E é um modelo de Γ se e só se (E,a) é uma realização de Γ .

Demonstração: Exercício.

Exemplo

A L_{Arit} -estrutura E_{Arit} é um modelo do conjunto formado pelas seguintes L_{Arit} -sentenças:

$$\forall_{x_0} \neg (0 = s(x_0));$$

$$\forall_{x_0} \forall_{x_1} ((s(x_0) = s(x_1)) \rightarrow (x_0 = x_1));$$

$$\forall_{x_0} \neg (s(x_0) < 0);$$

$$\forall_{x_0} \forall_{x_1} ((x_0 < s(x_1)) \rightarrow ((x_0 < x_1) \lor (x_0 = x_1))));$$

$$\forall_{x_0} (x_0 + 0 = x_0);$$

$$\forall_{x_0} \forall_{x_1} (s(x_0) + x_1 = s(x_0 + x_1));$$

$$\forall_{x_0} (x_0 * 0 = 0);$$

$$\forall_{x_0} \forall_{x_1} (s(x_0) * x_1 = (x_0 * x_1) + x_1).$$

A axiomática de Peano para a Aritmética é constituída por estas fórmulas e por um princípio de indução sobre os números naturais.

Consequência semântica

Definição

Sejam φ uma L-fórmula e Γ um conjunto de L-fórmulas. Diz-se que φ é uma consequência semântica de Γ , e escreve-se $\Gamma \models \varphi$, se $E \models \varphi[a]$ para toda a realização (*E*, *a*) de Γ.

Exemplo

A L_{Arit} -fórmula

0 < s(0) é uma consequência semântica do conjunto de L_{Arit} -fórmulas

$$\Gamma = \{ \forall_{x_1} (x_1 < s(x_1)) \}.$$

pois se (E, a) é uma realização de Γ , então

para todo
$$n_1 \in D(n_1, \overline{s}(n_1)) \in \overline{<}$$

donde, $(\overline{0}, \overline{s}(\overline{0})) \in \overline{<} e \quad E \models (0 < s(0))[a].$

Teorema

Seja Γ um conjunto de L-fórmulas, sejam φ e ψ duas L-fórmulas, sejam x e y duas variáveis e seja t um L-termo.

- **①** Se Γ $\models \forall_x \varphi$ e x é substituível por t em φ , então Γ $\models \varphi[t/x]$.
- **2** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$ (*i.e.*, $\forall_{\gamma \in \Gamma} x \notin LIV(\gamma)$), então $\Gamma \models \forall_x \varphi$.
- 3 Se Γ $\models \varphi[t/x]$ e x é substituível por t em φ , então Γ $\models \exists_x \varphi$.
- **③** Se $\Gamma \models \exists_x \varphi$ e $\Gamma, \varphi[y/x] \models \psi$ e $y \notin LIV(\Gamma \cup \{\psi\})$, então $\Gamma \models \psi$.

Demonstração:

- (1) Seja (E,a) uma realização de Γ . Queremos provar que $E \models \varphi[t/x][a]$. Como por hipótese, $\Gamma \models \forall_x \varphi, E \models \forall_x \varphi[a]$ e então, para todo $d \in dom(E)$, $E \models \varphi[a \binom{x}{d}]$. Em particular, $E \models \varphi[a \binom{x}{t[a]}]$ pois $t[a] \in dom(E)$. Dado que por hipótese x é substituível por t em φ , deduzimos que $E \models \varphi[t/x][a]$.
- (2)-(4) Exercício.