Notación asintótica y conteo de instrucciones ADA - Práctica

López del Álamo, Christian Asistente: Guillén Dávila, Carlos Asistente: Guzmán Rodríguez, Renato

1. Ordenar las siguientes por tasa de crecimiento asintótico en forma ascendente

$lg(lg^*n)$	2^{lg^*n}	$\sqrt{2}^{lg(n)}$	n^2	n!	(lg n)!
$\left(\frac{3}{2}\right)^n$	n^3	lg^2n	lg(n!)	2^{2^n}	$n^{1/lgn}$
$\ln \ln n$	lg^*n	$n \cdot 2^n$	$n^{\lg \lg n}$	$\ln n$	1
$2^{\lg n}$	$(\lg n)^{\lg n}$	e^n	$4^{\lg n}$	(n+1)!	$\sqrt{\lg n}$
$\lg^*(\lg n)$	$2^{\sqrt{2 \lg n}}$	n	2^n	$n \lg n$	$2^{2^{n+1}}$

2. Para la siguiente tabla decidir si f(n) = O(g(n)) o si g(n) = O(f(n)) (justificar):

f(n)	g(n)
10n	$\sqrt{n^2+5}$
n^3	$n^2 \log^3 n$
$n \log_2 n$	$n + \ln(n^5)$
$5^{\log_2 n}$	$5^{\ln n}$
$\log(\log n)$	$\ln(\sqrt{n})$
2^n	16^{n}
2^{n^2}	n^{2^n}
$\cos n$	$\sin n$
n^2	$(n\cos n)^2$

3. Decidir si los siguientes enunciados son verdaderos o falsos (justificar):

- 1. Sean f y g funciones as intóticamente no negativas. Entonces al menos alguna de las relaciones: f = O(g), g = O(f) deberá cumplirse siempre.
- 2. Para cualquier par de funciones positivas f y g, Si g(n) = O(n) entonces f(g(n)) = O(f(n))
- 3. Sean $f(n) = \sqrt{n^e}$ y $g(n) = n \cdot (n \mod 100)$. Entonces f(n) = O(g(n)).
- 4. Sean f(n)y g(n) dos funciones as intóticamente positivas. Si $f(n) = \Theta(n)$ entonces $|f(n) - g(n)| = \Theta(f(n) + g(n))$
- 5. Si f tiene cota superior polinómica. Entonces se cumple $\log(f(n)) = O(\log n)$
- 6. La función $\lceil \log n \rceil!$ tiene cota superior polinómica.
- 7. La función $\lceil \log \log n! \rceil$ tiene cota superior polinómica
- 8. Sea F_k el kth número de Fibonacci computado en un tiempo $O(\log n)$. Entonces el n^2 th número de Fibonacci F_{k^2} es computado en tiempo $O(\log^2 n)$.

4. Probar las siguientes sumatorias:

```
1. \sum_{i=0}^{n} i = O(n^2)

2. \sum_{i=0}^{n} i^2 = O(n^3)

3. \sum_{i=0}^{n} \frac{1}{i} = O(\log n)

4. \sum_{i=0}^{n} a^i = O(1), donde 0 \le a < 1
```

5. Conteo de instrucciones

1. Analiza y realiza el conteo de instrucciones del siguiente código. Indica a qué algoritmo se hace referencia.

2. Analiza y realiza el conteo de instrucciones del siguiente código.

```
int fun (int n, int k) {
    int d = 0;
    while(n/k) {
        d += n / k;
        n = n / k + n %k;
    }
    return d;
}
```

3. Analiza y realiza el conteo de instrucciones. Indica qué retorna.

```
pair < string , int > fun (int n) {
    string r;
    while (n) {
        r = char((n & 1)+'0')+r;
        n >>= 1;
    }
    return r;
}
```

4. Analiza y realiza el conteo de instrucciones del siguiente código e indica qué hace.

```
int fun(vector<int> &V) {
    set<int> C;
    int n = V.size();
    while(n--)
    C[V[n]]++;
    return C.size();
}
```

5. Analiza y realiza el conteo de instrucciones del siguiente código e indica a qué algoritmo se hace referencia.

```
void fun(vector <int> &V) {
    for (int i = 1; i < V.size(); ++i) {
        int index = V[i], j;
        for (j = i-1; j >= 0 && V[j] > index; --j)
            V[j+1] = V[j];
        V[j+1] = index;
        }
}
```

6. Analiza y realiza el conteo de instrucciones del siguiente código. Qué hace la función?

7. Analiza y realiza el conteo de instrucciones. Intenta averiguar que estructura retorna (Teoría de números (primos)).

8. Se
a ${\cal B}$ una base y ${\cal P}$ su exponente. Analiza y realiza el conte
o de instrucciones. Averigua que retorna.

```
long long fun(long long B, long long P, long long M) {
   long long r = 1;
   while (P > 0) {
        if (P & 1) {
            r = (r * B) %M;
        }
        B = (B * B) %M;
        P >>= 1;
   }
   return r;
}
```

9. Analiza y realiza el conteo de instrucciones. ¿Qué figura se grafica?

10. Sea M una matriz triangular superior de la forma:

```
\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}
```

Analiza y realiza el conteo de instrucciones.

```
int fun(vector < vector < int > > &M) {
           int m = M. size();
           int n = M[0].size();
           vector<vector<int> > AC = vector<vector<int> > (m, vector<int> (n));
           for(int i = 0; i < m; ++i)
           for (int j = 0; j < n; ++j)

AC[i][j] = M[i][j] ? i ? (AC[i-1][j] + 1) : 1 : 0;
           int accumulator = 0, k;
           \label{eq:for_int} \mbox{for} (\, \mbox{int} \  \  \, i \, = \, 0 \, ; \  \, i \, < m; \, +\!\!\! +\!\! i \, ) \  \, \{ \,
                     for (int j = 0; j < n; ++j) {
 k = j;
                                 int maxprevious = AC[i][k];
                                 while (AC[i][k] && k+1) {
                                            accumulator += maxprevious;
                                            \mathbf{if}(\mathbf{maxprevious} > AC[\mathbf{i}][\mathbf{k}])
                                                       maxprevious = AC[i][k];
                                 }
           return accumulator;
}
```