Chapter 3, Section 12

April 17, 2025

1. Let Y be a scheme of finite type over an algebraically closed field k. Show that the function

$$\varphi(y) = \dim_k(\mathfrak{m}_y/\mathfrak{m}_y^2)$$

is upper semicontinuous on the set of closed points of Y.

- **2.** Let $\{X_t\}$ be a family of hypersurfaces of the same degree in \mathbb{P}^n_k . Show that for each i, the function $h^i(X_t, \mathcal{O}_{X_t})$ is a constant function of t.
- **3.** Let $X_1 \subseteq \mathbb{P}^4_k$ be the rational normal quartic curve (which is the 4-uple embedding of \mathbb{P}^1 in \mathbb{P}^4). Let $X_0 \subseteq \mathbb{P}^3_k$ be a nonsingular rational quartic curve, such as the one in (I, Ex. 3.18b). Use (9.8.3) to construct a flat family $\{X_t\}$ of curves in \mathbb{P}^4 , parameterized by $T = \mathbb{A}^1$, with the given fibers X_1 and X_0 for t = 1 and t = 0.

Let $\mathscr{I} \subseteq \mathscr{O}_{\mathbb{P}^4 \times T}$ be the ideal sheaf of the total family $X \subseteq \mathbb{P}^4 \times T$. Show that \mathscr{I} is flat over T. Then show that

$$h^{0}(t, \mathscr{I}) = \begin{cases} 0 & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$$

and also

$$h^{1}(t, \mathscr{I}) = \begin{cases} 0 & \text{for } t \neq 0\\ 1 & \text{for } t = 0. \end{cases}$$

This gives another example of cohomology groups jumping at a special point.

- **4.** Let Y be an integral scheme of finite type over an algebraically closed field k. Let $f: X \to Y$ be a flat projective morphism whose fibers are all integral schemes. Let \mathscr{L}, \mathscr{M} be invertible sheaves on X, and assume for each $y \in Y$ that $\mathscr{L}_y \cong \mathscr{M}_y$ on the fiber X_y . Then show that there is an invertible sheaf \mathscr{N} on Y such that $\mathscr{L} \cong \mathscr{M} \otimes f^* \mathscr{N}$.
- **5.** Let Y be an integral scheme of finite type over an algebraically closed field k. Let $\mathscr E$ be a locally free sheaf on Y, and let $X = \mathbb P(\mathscr E)$. Then show that $\operatorname{Pic} X \cong (\operatorname{Pic} Y) \times \mathbb Z$. This strengthens (II, Ex. 7.9).
- **6.** Let X be an integral projective scheme over an algebraically closed field k, and assume that $H^1(X, \mathcal{O}_X) = 0$. Let T be a connected scheme of finite type over k.
 - (a) If \mathscr{L} is an invertible sheaf on $X \times T$, show that the invertible sheaves \mathscr{L}_t on $X = X \times \{t\}$ are isomorphic, for all closed points $t \in T$.
 - (b) Show that $Pic(X \times T) = Pic X \times Pic T$.