${\bf Magic Mirror\text{-}GBM}$

Documento dei requisiti ver. 6.0

20 Aprile 2021

Indice

1	Premesse del progetto			
	1.1	Obiettivi e scopo del progetto	1	
	1.2	Contesto di business	1	
	1.3	Stakeholders	1	
2	Servizi del sistema			
	2.1	Requisiti funzionali	2	
	2.2	Requisiti informativi	2	
3	Vincoli di sistema			
	3.1	Requisiti di interfaccia	3	
	3.2	Requisiti tecnologici	3	
	3.3	Requisiti di prestazione	4	
	3.4	Requisiti di sicurezza	4	
	3.5	Requisiti operativi	4	
	3.6	Requisiti politici e legali	4	
	3.7	Vincoli API esterne	4	
Gl	Glossario			

1 Premesse del progetto

1.1 Obiettivi e scopo del progetto

Piattaforma Open Source modulare per trasformare un classico specchio in un sistema digitale multifunzione.

1.2 Contesto di business

Nella continua evoluzione tecnologica degli ultimi anni si è rilevata sempre più utile l'integrazione della domotica e della tecnologia in strumenti di uso quotidiano.

1.3 Stakeholders

Le figure che influenzano lo sviluppo del sistema software sono:

• Committente: NonSoloTelefonia Lab

• Clienti: Human-centered design

• Developers (analisti, progettisti)

2 Servizi del sistema

2.1 Requisiti funzionali

- 2.1.1 Il sistema dovrà consentire la modifica delle impostazioni del sistema software stesso.
 - 2.1.1.1 Il sistema dovrà consentire la gestione delle impostazioni di connettività.
 - 2.1.1.2 Il sistema dovrà permettere il reset del sistema stesso.
 - 2.1.1.3 Il sistema dovrà permettere la modifica della lingua dei singoli componenti del sistema che supportano la suddetta funzione.
 - 2.1.1.4 Il sistema dovrà permettere la regolazione del volume.
- 2.1.2 Il sistema dovrà integrare il modulo MMM-AirQuality.
- 2.1.3 Il sistema dovrà integrare il modulo MMM-DHT-Sensor.
- 2.1.4 Il sistema dovrà integrare il modulo **newsfeed**.
- 2.1.5 Il sistema dovrà integrare il modulo MMM-AVStock.
- 2.1.6 Il sistema dovrà integrare il modulo clock.
- 2.1.7 Il sistema dovrà integrare il modulo weather.
- 2.1.8 Il sistema dovrà integrare il modulo weatherforecast.
- 2.1.9 Il sistema dovrà integrare il modulo calendar.
- $2.1.10\,$ Il sistema dovrà integrare il modulo **MMM-MD**.
- $2.1.11\,$ Il sistema dovrà integrare il modulo MMM-Screencast.
- 2.1.12 Il sistema dovrà integrare il modulo MMM-Mail.
- 2.1.13 Il sistema dovrà integrare il modulo MMM-Online-State.
- 2.1.14 Il sistema dovrà integrare il modulo MMM-ip.
- 2.1.15 Il sistema dovrà integrare il modulo MMM-PIR-Sensor

2.2 Requisiti informativi

Il linguaggio utilizzato per lo scambio di informazioni tra le componenti interne ed esterne del sistema è il JSON.

3 Vincoli di sistema

3.1 Requisiti di interfaccia

L'interfaccia proposta dal sistema è stata appositamente studiata per garantire una fruizione di contenuti intuitiva ed immediata.

3.1.1 Interfaccia principale

- 3.1.1.1 Visualizzazione della qualità dell'aria per la zona specificata.
- 3.1.1.2 Visualizzazione della temperatura e dell'umidità locali (usa sensore: DHT22).
- 3.1.1.3 Visualizzazione delle news più recenti.
- 3.1.1.4 Visualizzazione degli aggiornamenti relativi alle quotazioni in borsa.
- 3.1.1.5 Visualizzazione della data e dell'ora correnti.
- 3.1.1.6 Visualizzazione delle previsioni meteo.
- 3.1.1.7 Visualizzazione di un calendario interattivo.
- 3.1.1.8 Visualizzazione delle annotazioni.
- 3.1.1.9 Visualizzazione delle email in entrata.
- 3.1.1.10 Visualizzazione dello stato della connessione.
- 3.1.1.11 Visualizzazione dell'indirizzo ip.
- 3.1.1.12 Visualizzazione dello stato di rilevamento della presenza.

3.1.2 Interfaccia modulo MMM-Screencast

- 3.1.2.1 Visualizzazione di contenuti multimediali.
- 3.1.3 Interfaccia IP

3.2 Requisiti tecnologici

L'intero progetto è stato realizzato utilizzando i seguenti strumenti:

- Raspberry Pi modello 2 o superiore
- Casse audio
- Schermo con interfaccia HDMI
- Telaio specchio
- Two-way mirror
- Sensore rilevatore di temperatura ed umidità locali (DHT22)
- Sensore di movimento P.I.R. (hc-sr501)

3.3 Requisiti di prestazione

Non si registrano particolari esigenze in questo ambito.

3.4 Requisiti di sicurezza

Non si registrano particolari esigenze in questo ambito.

3.5 Requisiti operativi

L'intero progetto è stato realizzato utilizzando i seguenti linguaggi:

- JavaScript
- \bullet CSS
- HTML
- PHP

L'intero progetto è basato sulle seguenti piattaforme:

- npm + Node.js v10.x o superiore
- Electron

Si relaziona con sistemi operativi Raspberry Pi OS (full version).

3.6 Requisiti politici e legali

Il sistema software open source è rilasicato sotto la licenza Apache-2.0.

3.7 Vincoli API esterne

L'utilizzo di API esterne è soggetto a limitazioni poste dai fornitori delle API stesse. Pertanto si invita ad una consultazione dei regolamenti di utilizzo delle singole API.

Glossario

- **Human-centered design** approccio di problem solving che coinvolge la prospettiva del cliente in tutti gli step della risoluzione stessa.
- Sensore di movimento P.I.R. acronimo di *Passive InfraRed* è un sensore elettronico che rileva la radiazione infrarossa (IR) irradiata dagli oggetti nel suo campo visivo.
- Two-way mirror particolare tipo di specchio che da un lato riflette la luce mentre dall'altro ne permette il passaggio.