



## Time series Forecasting

The essential tools and concepts.

## Time series are the new fortune tellers!

This notebook is made in servance of a time series workshop for GDSC-ESI-SBA

November 19th 2022



#### A bit about me?

### Final year CS engineering student

- ESI-ALGER (Algiers, Algeria)
- Computer systems
- Masters and state-engineering degrees at preparation

#### Al R&D research assistant

- INFOLOGIC Engineering (Lyon, France)
- Working on predicting diffrent failures in datacenters and cloud systems using Al

#### **Entrepreneurial kiddo**

- Ex. dev team leader at ETIC
   Club
- Candidate for several engineerentrepreneur trainings







## What are time series anyways?

- Any data recorded with some fixed interval of time is called as time series data.
- In time series data, time will always be independent variable and there can be one or many dependent variable.



# The goal behind forecasting them?

 Objective of time series analysis is to understand how change in time affect the dependent variables and accordingly predict values for future time intervals.



#### 3 Main components

#### **Trend**

Trend represent the change in dependent variables with respect to time from start to end.

#### Seasonality

If observations repeats after fixed time interval then they are referred as seasonal observations.

#### Residuals

This is also called as noise. Strange dips and jump in the data are called as irregularities. They are caused by uncontrollable events

#### 3 Main components







#### Transform to stationary ts

#### The Principles of Stationarity



### Stationarity test-transformation

| ADF Test       | <ul> <li>p-value &gt; 0.05: non-stationary.</li> <li>p-value &lt;= 0.05: stationary.</li> </ul>                                                        |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Differencing   | <ul> <li>Removes trend and seasonality</li> <li>difference = previous observation - current observation</li> </ul>                                     |
| Transformation | <ul> <li>apply a power transformation to the time series. Log, square root, cube root are most commonly<br/>used transformation techniques.</li> </ul> |

### Stationarity test-transformation

| Moving Average           | • a new series is created by taking the averages of data points from original series.                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weighted moving average  | <ul> <li>The WMA is obtained by multiplying each number in the data set by a predetermined weight and summing up the resulting values.</li> <li>The weights privilge most recent data</li> </ul>        |
| Trailing Moving Averages | <ul> <li>instead of averaging over a window that is centered around a time period of interest, it simply takes         the average of the last w values.</li> <li>TMA(t) = mean(t-2, t-1, t)</li> </ul> |

# Correlation in time series data

- Values in TS exhibit correlation with previous ones
- Because the correlation of the time series observations is calculated with values of the same series at previous times, this is called an autocorrelation or serial correlation.

# Correlation in time series data

 All the past and future data points are related in time series and ACF and PACF functions help us to determine correlation in it.

#### Plot of PACF and ACF



### Steps tp conduct a forecasting

| Undestrand the trend and seasonality        | Make sure to use the whole data for prediction                  |
|---------------------------------------------|-----------------------------------------------------------------|
| Identify best way to make ts stationary     | Apply reverse transformation to get back to original data scale |
| Make sure the reverse transformation exists | Forecast future values                                          |
| Choose                                      |                                                                 |
| Choose the model performance metric         |                                                                 |

## Methods for TS Forecasting



# Thanks! Questions?

# CODE TIME FELLAS!



