WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/40, 15/82, 5/10, C07K 14/08, A01H 5/00

(11) International Publication Number:

WO 96/21018

(43) International Publication Date:

11 July 1996 (11.07.96)

(21) International Application Number:

PCT/US95/07234

A1

(22) International Filing Date:

7 June 1995 (07.06.95)

(30) Priority Data:

08/367,789

30 December 1994 (30.12.94) US (74) Agent: PERRY, Lawrence, S.; Fitzpatrick, Cella, Harper & Scinto, 277 Park Avenue, New York, NY 10172 (US).

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/367,789 (CIP)

30 December 1994 (30.12.94)

(71) Applicant (for all designated States except US): ASGROW SEED COMPANY [US/US]; 2605 East Kilgore Road,

Kalamazoo, MI 49002 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOESHORE, Maury, L. [US/US]; 8901 North 24th Street, Kalamazoo, MI 49004 (US). McMASTER, J., Russell [US/US]; 9432 East Main Street, Galesburg, MI 49053 (US). TRICOLI, David, M. [US/US]; 2332 South Rose Street, Kalamazoo, MI 49001 (US). REYNOLDS, John, F. [US/US]; 14815 Trillium Drive, Augusta, MI 49012 (US). CARNEY, Kim, J. [US/US]; 8607 East B Avenue, Richland, MI 49083 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, ARIPO patent (KE, MW, SD, SZ, UG), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PLANTS RESISTANT TO C STRAINS OF CUCUMBER MOSAIC VIRUS

(57) Abstract

Coat protein genes of cucumber mosaic virus strains V27, V33, V34 and A35 (CMV V27, CMV V33, CMV V34, and CMV A35 respectively) are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	, MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbudos	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	TE.	Ireland	NZ	New Zealand
BG	Bulgaria	rr .	Italy	PL	Poland
BJ	Benin	JP	Јарал	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belanus	KG	Kyrgystan	RU .	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	\$ E	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	IJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	L T	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
			·		

- 1 ·

TITLE

PLANTS RESISTANT TO C STRAINS OF CUCUMBER MOSAIC VIRUS

Field of the Invention

This invention relates to coat protein genes derived from cucumber mosaic virus strains V27, V33, V34, and 5 A35 (CMV V27, CMV V33, CMV V34, and CMV A35, respectively). More specifically, the invention relates to the genetic engineering of plants and to a method for conferring viral resistance to a plant using an expression cassette encoding V27, V33, V34, or A35 strains of cucumber mosaic virus.

Background of the Invention

Many agriculturally important crops are susceptible to
infection by plant viruses, particularly cucumber
mosaic virus, which can seriously damage a crop, reduce
its economic value to the grower, and increase its cost
to the consumer. Attempts to control or prevent
infection of a crop by a plant virus such as cucumber
mosaic virus have been made, yet viral pathogens
continue to be a significant problem in agriculture.

Scientists have recently developed means to produce virus resistant plants using genetic engineering techniques. Such an approach is advantageous in that the genetic material which provides the protection is 5 incorporated into the genome of the plant itself and can be passed on to its progeny. A host plant is resistant if it possesses the ability to suppress or retard the multiplication of a virus, or the development of pathogenic symptoms. "Resistant" is the 10 opposite of "susceptible," and may be divided into: (1) high, (2) moderate, or (3) low resistance, depending upon its effectiveness. Essentially, a resistant plant shows reduced or no symptom expression, and virus multiplication within it is reduced or 15 negligible. Several different types of host resistance to viruses are recognized. The host may be resistant to: (1) establishment of infection, (2) virus multiplication, or (3) viral movement.

20 Cucumber mosaic virus (CMV) is a single-stranded (+)
RNA plant virus that has a functionally divided genome.
The virus genome contains four RNA species designated
RNAs 1-4. RNAs 3 and 4 encode the coat protein which
is a protein that surrounds the viral RNA and protects
the viral RNA from being degraded. Only RNAs 1-3 are
required for infectivity because the coat protein,
which is encoded by RNA 4, is also encoded by RNA 3.

Several strains of cucumber mosaic virus have been

classified using serology, host range, peptide mapping, nucleic acid hybridization, and sequencing analyses.

These CMV strains can be divided into two groups, which are designated "WT" (also known as subgroup I) and "S" (also known as subgroup II). The S group consists of at least three members. The WT group is known to contain at least 17 members.

25

- 3 **-**

Expression of the coat protein genes from tobacco mosaic virus, alfalfa mosaic virus, cucumber mosaic virus, and potato virus X, among others, in transgenic plants has resulted in plants which are resistant to 5 infection by the respective virus. Heterologous protection can also occur. For example, the expression of coat protein genes from watermelon mosaic virus-2 or zucchini yellow mosaic virus in transgenic tobacco plants has been shown to confer protection against six 10 other potyviruses: bean yellow mosaic virus, potato virus Y, pea mosaic virus, clover yellow vein virus, pepper mottle virus, and tobacco etch virus. However, expression of a preselected coat protein gene does not reliably confer heterologous protection to a plant. 15 For example, transgenic squash plants containing the CMV C coat protein gene, a subgroup I virus, which have been shown to be resistant to the CMV C strain are not protected to the same degree against several highly virulent strains of CMV: CMV V27, CMV V33, CMV V34, and CMV A35 which are all subgroup I viruses. 20

Thus, a need exists for plants resistant to CMV V27, CMV V33, CMV V34, and CMV A35.

SUMMARY OF THE INVENTION

This invention provides: an isolated and purified DNA molecule that encodes the coat protein for the V27 strain of cucumber mosaic virus (CMV V27), and a chimeric expression cassette comprising this DNA molecule; an isolated and purified DNA molecule that encodes the coat protein for the V33 strain of cucumber mosaic virus (CMV V33), and a chimeric expression cassette comprising this DNA molecule; and an isolated and purified DNA molecule that encodes the coat protein for the V34 strain of cucumber mosaic virus (CMV V34), and a chimeric expression cassette comprising this DNA

35

molecule; and an isolated and purified DNA molecule that encodes the coat protein for the A35 strain of cucumber mosaic virus (CMV A35), and a chimeric expression cassette comprising the DNA molecule. 5 Another embodiment of the invention is exemplified by the insertion of multiple virus gene expression cassettes into one purified DNA molecule, e.g., a plasmid. Each of these cassettes also includes a promoter which functions in plant cells to cause the 10 production of an RNA molecule, and at least one polyadenylation signal comprising 3' nontranslated DNA which functions in plant cells to cause the termination of transcription and the addition of polyadenylated ribonucleotides to the 3' end of the transcribed mRNA sequences, wherein the promoter is operably linked to the DNA molecule, and the DNA molecule is operably linked to the polyadenylation signal. Preferably, these cassettes include the promoter of the 35S gene of cauliflower mosaic virus and the polyadenylation signal of the cauliflower mosaic virus 35S gene. 20

Also provided are bacterial cells, and transformed plant cells, containing the chimeric expression cassettes comprising the coat protein genes derived from the CMV V27, CMV V33, CMV V34, or CMV A35 strains, and preferably the 35S promoter of cauliflower mosaic virus and the polyadenylation signal of the cauliflower mosaic virus 35S gene. Plants are also provided, wherein the plants comprise a plurality of transformed 30 cells containing the chimeric coat protein gene expression cassettes derived from the CMV V27, CMV V33, CMV V34, or CMV A35 stains, and preferably the cauliflower mosaic virus 35S promoter and the polyadenylation signal of the cauliflower mosaic virus gene. Transformed plants of this invention include tobacco, beets, corn, cucumber, peppers, potatoes, melons, soybean, squash, and tomatoes. Especially

- 5 -

preferred are members of the *Cucurbitaceae* (e.g., squash and cucumber,) and *Solanaceae* (e.g., peppers and tomatoes) family.

5 Another aspect of the present invention is a method of preparing a CMV-resistant plant, such as a dicot, comprising: transforming plant cells with a chimeric expression cassette comprising a promoter functional in plant cells operably liked to a DNA molecule that

10 encodes a coat protein as described above; regenerating the plant cells to provide a differentiated plant; and identifying a transformed plant that expresses the CMV coat protein at a level sufficient to render the plant resistant to infection by the specific strains of CMV disclosed herein.

As used herein, with respect to a DNA molecule or "gene," the phrase "isolated and purified" is defined to mean that the molecule is either extracted from its context in the viral genome by chemical means and 20 purified and/or modified to the extent that it can be introduced into the present vectors in the appropriate orientation, i.e., sense or antisense. As used herein, the term "chimeric" refers to the linkage of two or 25 more DNA molecules which are derived from different sources, strains or species (e.g., from bacteria and plants), or the linkage of two or more DNA molecules, which are derived from the same species and which are linked in a way that does not occur in the native genome. As used herein, "expression" is defined to 30 mean transcription or transcription followed by translation of a particular DNA molecule.

BRIEF DESCRIPTION OF THE DRAWINGS

35

Fig. 1. The nucleotide sequence of the coat protein gene of cucumber mosaic virus V27 [SEQ ID NO:1]. The

10

- 6

deduced amino acid sequence of the encoded open reading frame is shown below the nucleotide sequence [SEQ ID NO:2].

- Fig. 2. The nucleotide sequence of the coat protein gene of cucumber mosaic virus V33 [SEQ ID NO:3]. The deduced amino acid sequence of the encoded open reading frame is shown below the nucleotide sequence [SEQ ID NO:4].
- Fig. 3. The nucleotide sequence of the coat protein gene of cucumber mosaic virus V34 [SEQ ID NO:5]. The deduced amino acid sequence of the encoded open reading frame is shown below the nucleotide sequence [SEQ ID NO:6].
- Fig. 4. The alignment the nucleotide sequences of the coat protein genes from 5 CMV strains [SEQ ID NOS:1, 3, 5, 9, and 10]. Ccp and Cmvw1[SEQ ID NO:9 and 10] are described in Quemada et al. (J. Gen. Virol., 70, 1065 (1989)). Alignments were obtained with the use of the UWGCG Pileup program. The dots represent either the lack of sequence information at the 5' end of the coat protein gene or gaps in homology in sequences relative to others in the alignment. The positions of primers RMM351 and RMM352 are shown [SEQ ID NOS:7 and 8].
- Fig. 5. The alignment of the amino acid sequences deduced from the nucleotide sequences of CMV strains V27, V33, V34, CMV-C (shown in Fig. 4 [SEQ ID NO:1, 3, 5, 9 and 10]) and CMV strain Cmvq3 (Quemada et al., J. Gen. Virol., 70, 1065 (1989)) [SEQ ID NO:2, 4, 6, 11 and 12]. Alignments were performed by the UWGCG Pileup program. Differences among the "C" type viruses are underlined and highlighted with asterisks. The dots represent gaps in homology in sequences relative to others in the alignment.

- 7 -

Fig. 6. (A) Assembly of CMV strain V27 coat protein expression cassette. PCR products of CMV V27 were installed into pCRII and subsequently inserted into pUC18cpexpress by routine methods. The bolded lines and 5 arrows which are a part of the circle represent CaMV (B) Insertion of a CMV V27 coat 35S sequences. protein expression cassette BamHI fragment into the BglII site of pEPG204 and pEPG205 to produce pEPG239 and pEPG240, respectively. (C) Restriction map of 10 pEPG239. This binary plasmid includes the coat protein expression cassettes for PRV (melon, long), CMV V27, ZYMV, and WMVII. For further information on PRV coat protein genes, refer to Applicants' Assignees copending Patent Application Serial No. 08/366,881 entitled "Papaya Ringspot Virus Coat Protein Gene" filed on 15 December 30, 1994, incorporated by reference herein. For further information on ZYMV and WMVII coat protein genes, refer to Applicants' Assignees copending Patent Application Serial No. 08/232,846 filed on April 25, 1994 entitled "Potyvirus Coat Protein Genes and Plants 20 Transformed Therewith", incorporated by reference (D) Restriction map of pEPG240. This binary plasmid includes the coat protein expression cassettes for PRV (melon, short), CMV V27, ZYMV, and WMVII.

25

Fig. 7. (A) Assembly of CMV strain V33 coat protein expression cassette. PCR products of CMV V33 were installed into pUC1318cpexpress by routine methods.

(B) Insertion of a CMV V33 coat protein expression

30 cassette BamHI fragment into the BglII site of pEPG204 and pEPG205 to produce pEPG196 and pEPG197, respectively. (C) Restriction map of pEPG196. This binary plasmid includes the coat protein expression cassettes for PRV (melon, long), CMV V33, ZYMV, and

35 WMVII. Arrows indicate CaMV 35S promoter fragments.

(D) Restriction map of pEPG197. This binary plasmid

includes the coat protein expression cassettes for PRV (melon, short), CMV V33, ZYMV, and WMVII.

- Fig. 8. The nucleotide sequence of the coat protein gene of cucumber mosaic virus A35 [SEQ ID NO:14]. The deduced amino acid sequence of the encoded open reading frame is shown below the nucleotide sequence [SEQ ID NO:15].
- 10 Fig. 9. The alignment of the amino acid sequences deduced from the nucleotide sequences of the six CMV strains shown in Fig. 10 [SEQ ID NO:2, 4, 6, 11, 12 and 15]. Differences among the "C" type viruses are underlined and highlighted with asterisks. The dots represent gaps in homology in sequences relative to others in the alignment.
- Fig. 10. The alignment the nucleotide sequences of the coat protein genes from 6 CMV strains [SEQ ID NOS:1, 3, 5, 9, 10 and 14]. The dots represent either the lack of sequence information at the 5' end of the coat protein gene or gaps in homology in sequences relative to others in the alignment.

25

DETAILED DESCRIPTION OF THE INVENTION

- Cucumber mosaic virus (CMV) is a single-stranded (+)
 RNA plant virus that has a functionally divided genome.
 The virus genome contains four RNA species designated
 RNAs 1-4; 3389 nucleotides (nt), 3035 nt, 2193 nt, and
 1027 nt, respectively (Peden et al., <u>Virol.</u>, <u>53</u>, 487
- 35 (1973); Gould et al., <u>Eur. J. Biochem.</u>, <u>126</u>, 217 (1982); Rezaian et al., <u>Eur. J. Biochem.</u>, <u>143</u>, 227 (1984); Rezaian et al., <u>Eur. J. Biochem.</u> 150, 331

PCT/US95/07234

- 9

(1985)). Only RNAs 1-3 are required for infectivity
 (Peden et al., Virol., 53, 487 (1973)) because the coat
 protein, which is encoded by RNA 4, is also encoded by
 RNA 3. Translations of CMV RNAs yield a 95 kD
 polypeptide from RNA 1, a 94 kD polypeptide from RNA 2
 (Gordon et al., Virol., 123, 284 (1983)), and two
 polypeptides from RNA 3: its 5' end encodes a 35 kD
 polypeptide, and its 3' end encodes a 24.5 kD
 polypeptide (Gould et al., Eur. J. Biochem., 126, 217
 (1982)). The 24.5 kD polypeptide is identical to that
 encoded by RNA 4 and is the coat protein.

Several strains of cucumber mosaic virus have been classified using serology, host range, peptide mapping, nucleic acid hybridization, and sequencing. These CMV 15 strains can be divided into two groups, which are designated "WT" (also known as subgroup I) and "S" (also known as subgroup II). CMV subgroup I includes CMV-C, CMV-V27, CMV-V33, CMV-V34, CMV-M, CMV-O, CMV-Y, and CMV-A35 while subgroup II includes CMV-Q, CMV-WL, 20 and CMV-LS (Zaitlin et al., Virol., 201, 200 (1994)). Protection against a strain in one group does not necessarily provide protection against all strains in that group. For example, transgenic squash plants protected with coat protein genes from the CMV strain C are not protected against the CMV strains V27, V33, In addition, Zaitlin et al. (Virol., V34, or A35. 201, 200 (1994)) report that tobacco plants transgenic for a CMV-FNY replicase gene show protection against 30 challenge from subgroup I strains but show no protection against challenge from subgroup II Thus, the present invention is directed challenges. to providing plants with resistance to CMV strains V27, V33, V34, and/or A35.

35

To practice the present invention, a viral gene must be isolated from the viral genome and inserted into a

Thus, the present invention provides isolated vector. and purified DNA molecules that encode the coat proteins of the V27, V33, or V34 strains of CMV. As used herein, a DNA molecule that encodes a coat protein gene includes nucleotides of the coding strand, also referred to as the "sense" strand, as well as nucleotides of the noncoding strand, complementary strand, also referred to as the "antisense" strand, either alone or in their base-paired configuration. Thus, a DNA molecule that encodes the coat protein of the V27 strain of CMV, for example, includes the DNA molecule having the nucleotide sequence of Figure 1 [SEQ ID NO:1], a DNA molecule complementary to the nucleotide sequence of Figure 1 [SEQ ID NO:1], as well as a DNA molecule which also encodes a CMV coat protein and its complement which hybridizes with a CMV V27specific DNA probe in hybridization buffer with 6XSSC, 5X Denhardt's reagent, 0.5% SDS and 100 μ g/ml denatured, fragmented salmon sperm DNA and remains bound when washed at 68°C in 0.1XSSC and 0.5% SDS (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed. (1989)). Moreover, the DNA molecules of the present invention can include non-CMV coat protein nucleotides that do not interfere with 25 expression of the CMV coat protein gene. Preferably, the isolated and purified DNA molecules of the present invention comprise a single coding region for the coat protein. Thus, preferably the DNA molecules of the present invention are those "consisting essentially of" 30 DNA that encodes the coat protein.

These CMV genes are used to produce the coat proteins, which are believed to confer resistance to viruses.

Another molecular strategy to provide virus resistance in transgenic plants is based on antisense RNA. As is well known, a cell manufactures protein by transcribing the DNA of the gene encoding that protein to produce

RNA, which is then processed to messenger RNA (mRNA) (e.g., by the removal of introns) and finally translated by ribosomes into protein. This process may be inhibited in the cell by the presense of antisense The term antisense RNA means an RNA sequence which is complementary to a sequence of bases in the mRNA in question in the sense that each base (or the majority of bases) in the antisense sequence (read in the 3' to 5' sense) is capable of pairing with the corresponding base (G with C, A with U) in the mRNA 10 sequence read in the 5' to 3' sense. It is believed that this inhibition takes place by formation of a complex between the two complementary strands of RNA, thus preventing the formation of protein. How this 15 works is uncertain: the complex may interfere with further transcription, processing, transport or translation, or degrade the mRNA, or have more than one of these effects. This antisense RNA may be produced in the cell by transformation of the cell with an 20 appropriate DNA construct arranged to transcribe the non-template strand (as opposed to the template strand) of the relevant gene (or of a DNA sequence showing substantial homology therewith).

The use of antisense RNA to downregulate the expression of specific plant genes is well known. Reduction of gene expression has led to a change in the phenotype of the plant: either at the level of gross visible phenotypic difference, e.g., lack of anthocyanin production in flower petals of petunia leading to colorless instead of colored petals (van der Krol et al., Nature, 333:866-869 (1988)); or at a more subtle biochemical level, e.g., change in the amount of polygalacturonase and reduction in depolymerization of pectin during tomato fruit ripening (Smith et al., Nature, 334:724-726 (1988)).

Another more recently described method of inhibiting gene expression in transgenic plants is the use of sense RNA transcribed from an exogenous template to downregulate the expression of specific plant genes

5 (Jorgensen, Keystone Symposium "Improved Crop and Plant Products through Biotechnology", Abstract X1-022 (1994)). Thus, both antisense and sense RNA have been proven to be useful in achieving downregulation of gene expression in plants, which are encompassed by the present invention.

The CMV coat protein gene does not contain the signals necessary for its expression once transferred and integrated into a plant genome. Accordingly, a vector must be constructed to provide the regulatory sequences such that they will be functional upon inserting a desired gene. When the expression vector/insert construct is assembled, it is used to transform plant cells which are then used to regenerate plants. These transgenic plants carry the viral gene in the expression vector/insert construct. The gene is expressed in the plant and increased resistance to viral infection is conferred thereby.

25 Several different methods exist to isolate a viral gene. To do so, one having ordinary skill in the art can use information about the genomic organization of cucumoviruses to locate and isolate the coat protein gene. The coat protein gene is located near the 3', end 30 of RNA 3. Using methods well known in the art, a quantity of virus is grown and harvested. The viral RNA is then separated by gel electrophoresis. A cDNA library is created using the viral RNA, by methods known to the art. The viral RNA is incubated with primers that hybridize to the viral RNA and reverse transcriptase, and a complementary DNA molecule is produced. A DNA complement of the complementary DNA

molecule is produced and that sequence represents a DNA copy (cDNA) of the original viral RNA molecule. The DNA complement can be produced in a manner that results in a single double stranded cDNA or polymerase chain reactions can be used to amplify the DNA encoding the cDNA with the use of oligomer primers specific for viral sequences. These primers can include novel restriction sites used in subsequent cloning steps. Thus, a double stranded DNA molecule is generated which 10 contains the sequence information of the viral RNA. These DNA molecules can be cloned in E. coli plasmid vectors after the additions of restriction enzyme linker molecules by DNA ligase. The various fragments are inserted into cloning vectors, such as well-15 characterized plasmids, which are then used to transform E. coli and create a cDNA library.

CMV coat protein genes from previously isolated strains can be used as hybridization probes to screen the cDNA library to determine if any of the transformed bacteria contain DNA fragments with sequences coding for a CMV coat protein. Alternatively, plasmids which harbor CMV coat protein sequences can be determined by restriction enzyme digestion of plasmids in bacterial transformants. The cDNA inserts in any bacterial colonies which contain this region can be sequenced. The coat protein gene is present in its entirety in colonies which have sequences that extend 5' to the sequence which encodes the ATG start codon and sequences that extend 3' of the stop codon.

Alternatively, cDNA fragments can be inserted in the sense orientation into expression vectors. Antibodies against the coat protein can be used to screen the cDNA expression library and the gene can be isolated from colonies which express the protein.

In the present invention, the DNA molecules encoding the coat protein (CP) genes of the cucumber mosaic virus strains V27, V33, V34, and A35 have been determined and the genes have been inserted into 5 expression cassettes. These expression cassettes can be individually placed into a vector that can be transmitted into plants, preferably a binary vector. Alternatively, two or more of the CMV CP genes can each be present in an expression cassette which can be placed into the same binary vector, or any of the CMV CP expression cassettes of the present invention can be placed into a binary vector with one or more viral gene expression cassettes. The expression vectors contain the necessary genetic regulatory sequences for 15 expression of an inserted gene. The coat protein gene is inserted such that those regulatory sequences are functional and the genes can be expressed when incorporated into a plant genome. For example, vectors of the present invention can contain combinations of expression cassettes that include DNA from a 20 heterologous CMV coat protein gene (i.e., one from another CMV isolate), papaya ringspot virus coat protein gene, a zucchini yellow mosaic virus coat protein gene, and a watermelon mosaic virus-2 coat protein gene. 25

Moreover, when combinations of viral gene expression cassettes are placed in the same binary plasmid, and that multigene cassette containing plasmid transformed into a plant, the viral genes all preferably exhibit substantially the same degrees of efficacy when present in transgenic plants. For example, if one examines numerous transgenic lines containing two different intact viral gene cassettes, the transgenic line will be immune to infection by both viruses. Similarly, if a line exhibits a delay in symptom development to one virus, it will also exhibit a delay in symptom

development to the second virus. Finally, if a line is susceptible to one of the viruses it will be susceptible to the other. This phenomenon is unexpected. If there were not a correlation between 5 the efficacy of each gene in these multiple gene constructs this approach as a tool in plant breeding would probably be prohibitively difficult to use. Even with single gene constructs, one must test numerous transgenic plant lines to find one that displays the appropriate level of efficacy. The probability of finding a line with useful levels of expression can range from 10-50% (depending on the species involved). For further information refer to Applicants' assignees copending Patent Application Serial No. 08/367,788 15 entitled "Transgenic Plants Expressing DNA Constructs Containing a Plurality of Genes to Impart Virus Resistance" filed on December 30, 1994, Encorporated by reference herein.

20 In order to express the viral gene, the necessary genetic regulatory sequences must be provided. In the present invention, the coat protein genes are inserted into vectors which contain cloning sites for insertion 3' of the initiation codon and 5' of the poly(A)

25 signal. The promoter is 5' of the initiation codon such that when genes are inserted at the cloning site, a functional unit is formed in which the inserted genes are expressed under the control of the various genetic regulatory sequences.

30

The segment of DNA referred to as the promoter is responsible for the regulation of the transcription of DNA into mRNA. A number of promoters which function in plant cells are known in the art and can be employed in the practice of the present invention. These promoters can be obtained from a variety of sources such as plants or plant viruses, and can include, but are not

limited to, promoters isolated from the caulimovirus group such as the cauliflower mosaic virus 35S promoter (CaMV 35S), the enhanced cauliflower mosaic virus 35S promoter (enh CaMV35S), the figwort mosaic virus fulllength transcript promoter (FMV35S), and the promoter isolated from the chlorophyll a/b binding protein. Other useful promoters include promoters which are capable of expressing the cucumovirus proteins in an inducible manner or in a tissue-specific manner in certain cell types in which the infection is known to occur. For example, the inducible promoters from phenylalanine ammonia lyase, chalcone synthase, hydroxyproline rich glycoprotein, extensin, pathogenesis-related proteins (e.g. PR-1a), and woundinducible protease inhibitor from potato may be useful. 15

Preferred promoters for use in the present CPcontaining cassettes include the constitutive promoters from CaMV, the Ti genes nopaline synthase (Bevan et al., Nucleic Acids Res. II, 369 (1983)) and octopine synthase (Depicker et al., J. Mol. Appl. Genet., 1, 561 (1982)), and the bean storage protein gene phaseolin. The poly(A) addition signals from these genes are also suitable for use in the present cassettes. particular promoter selected is preferably capable of causing sufficient expression of the DNA coding sequences to which it is operably linked, to result in the production of amounts of the proteins or RNA effective to provide viral resistance, but not so much as to be detrimental to the cell in which they are 30 expressed. The promoters selected should be capable of functioning in tissues including, but not limited to, epidermal, vascular, and mesophyll tissues. The actual choice of the promoter is not critical, as long as it has sufficient transcriptional activity to accomplish 35 the expression of the preselected proteins or their

respective RNAs and subsequent conferral of viral resistance to the plants.

The nontranslated leader sequence can be derived from
any suitable source and can be specifically modified to
increase the translation of the mRNA. The 5'
nontranslated region can be obtained from the promoter
selected to express the gene, an unrelated promoter,
the native leader sequence of the gene or coding region
to be expressed, viral RNAs, suitable eucaryotic genes,
or a synthetic gene sequence. The present invention is
not limited to the constructs presented in the
following examples.

15 The termination region or 3' nontranslated region which is employed is one which will cause the termination of transcription and the addition of polyadenylated ribonucleotides to the 3' end of the transcribed mRNA sequence. The termination region can be native with the promoter region, native with the gene, or can be derived from another source, and preferably include a terminator and a sequence coding for polyadenylation. Suitable 3' nontranslated regions of the chimeric plant gene include but are not limited to: (1) the 3' transcribed, nontranslated regions containing the polyadenylation signal of Agrobacterium tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene; and (2) plant genes like the soybean 7S storage protein genes.

30

Preferably, the expression cassettes of the present invention are engineered to contain a constitutive promoter 5' to its translation initiation codon (ATG) and a poly(A) addition signal (AATAAA) 3' to its translation termination codon. Several promoters which function in plants are available, however, the preferred promoter is the 35S constitutive promoters

- 18 -

from cauliflower mosaic virus (CaMV). The poly (A) signal can be obtained from the CaMV 35S gene or from any number of well characterized plant genes, i.e., nopaline synthase, octopine synthase, and the bean 5 storage protein gene phaseolin. The constructions are similar to that used for the expression of the CMV C coat protein in PCT Patent Application PCT/US88/04321, published on June 29, 1989 as WO 89/05858, claiming the benefit of U.S. SN 135,591, filed December 21, 1987, entitled "Cucumber Mosaic Virus Coat Protein Gene", and the CMV WL coat protein in PCT Patent Application PCT/US89/03288, published on March 8, 1990 as WO 90/02185, claiming the benefit of U.S. SN 234,404, filed August 19, 1988, entitled "Cucumber Mosaic Virus Coat Protein Gene." 15

Selectable marker genes can be incorporated into the present expression cassettes and used to select for those cells or plants which have become transformed. The marker gene employed may express resistance to an antibiotic, such as kanamycin, gentamycin, G418, hygromycin, streptomycin, spectinomycin, tetracyline, chloramphenicol, and the like. Other markers could be employed in addition to or in the alternative, such as, for example, a gene coding for herbicide tolerance such 25 as tolerance to glyphosate, sulfonylurea, phosphinothricin, or bromoxynil. Additional means of selection could include resistance to methotrexate, heavy metals, complementation providing prototrophy to 30 an auxotrophic host, and the like.

The particular marker employed will be one which will allow for the selection of transformed cells as opposed to those cells which are not transformed. Depending on the number of different host species one or more markers can be employed, where different conditions of selection would be useful to select the different host,

and would be known to those of skill in the art. A screenable marker such as the β -glucuronidase gene can be used in place of, or with, a selectable marker. Cells transformed with this gene can be identified by the production of a blue product on treatment with 5-bromo-4-chloro-3-indoyl- β -D-glucuronide (X-Gluc).

In developing the present expression construct, i.e., expression cassette, the various components of the

10 expression construct such as the DNA molecules, linkers, or fragments thereof will normally be inserted into a convenient cloning vector, such as a plasmid or phage, which is capable of replication in a bacterial host, such as E. coli. Numerous cloning vectors exist that have been described in the literature. After each cloning, the cloning vector can be isolated and subjected to further manipulation, such as restriction, insertion of new fragments, ligation, deletion, resection, insertion, in vitro mutagenesis, addition of polylinker fragments, and the like, in order to provide a vector which will meet a particular need.

For Agrobacterium-mediated transformation, the expression cassette will be included in a vector, and flanked by fragments of the Agrobacterium Ti or Ri plasmid, representing the right and, optionally the left, borders of the Ti or Ri plasmid transferred DNA (T-DNA). This facilitates integration of the present chimeric DNA sequences into the genome of the host plant cell. This vector will also contain sequences that facilitate replication of the plasmid in Agrobacterium cells, as well as in E. coli cells.

All DNA manipulations are typically carried out in E. coli cells, and the final plasmid bearing the cucumovirus expression cassette is moved into Agrobacterium cells by direct DNA transformation,

conjugation, and the like. These Agrobacterium cells will contain a second plasmid, also derived from Ti or Ri plasmids. This second plasmid will carry all the vir genes required for transfer of the foreign DNA into plant cells. Suitable plant transformation cloning vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, as generally disclosed in Glassman et al. (U.S. Pat. No. 5,258,300), or Agrobacterium rhizogenes.

10

A variety of techniques are available for the introduction of the genetic material into or transformation of the plant cell host. However, the particular manner of introduction of the plant vector into the host is not critical to the practice of the present invention, and any method which provides for efficient transformation can be employed. In addition to transformation using plant transformation vectors derived from the tumor-inducing (Ti) or root-inducing (Ri) plasmids of Agrobacterium, alternative methods 20 could be used to insert the DNA constructs of the present invention into plant cells. Such methods may include, for example, the use of liposomes, electroporation (Fromm et al., Proc. Natl. Acad. Sci. USA, 82, 824 (1984)), chemicals that increase the free uptake of DNA (Paszkowski et al., EMBO J., 3, 2717 (1984)), DNA delivery via microprojectile bombardment (Klein et al., Nature, 327, 70 (1987)), microinjection (Crossway et al., Mol. Gen. Genet., 202, 179 (1985)), and transformation using viruses or pollen. 30

The choice of plant tissue source or cultured plant cells for transformation will depend on the nature of the host plant and the transformation protocol. Useful

tissue sources include callus, suspension culture cells, protoplasts, leaf segments, stem segments, tassels, pollen, embryos, hypocotyls, tuber segments,

- 21 -

meristematic regions, and the like. The tissue source is regenerable, in that it will retain the ability to regenerate whole, fertile plants following transformation.

5

The transformation is carried out under conditions directed to the plant tissue of choice. The plant cells or tissue are exposed to the DNA carrying the present viral gene expression cassette(s) for an effective period of time. This can range from a less-than-one-second pulse of electricity for electroporation, to a two-to-three day co-cultivation in the presence of plasmid-bearing Agrobacterium cells. Buffers and media used will also vary with the plant tissue source and transformation protocol. Many transformation protocols employ a feeder layer of suspended culture cells (tobacco or Black Mexican Sweet Corn, for example) on the surface of solid media plates, separated by a sterile filter paper disk from the plant cells or tissues being transformed.

Following treatment with DNA, the plant cells or tissue may be cultivated for varying lengths of time prior to selection, or may be immediately exposed to a selective agent such as those described hereinabove. Protocols involving exposure to Agrobacterium will also include an agent inhibitory to the growth of the Agrobacterium cells. Commonly used compounds are antibiotics such as cefotaxime and carbenicillin. The media used in the selection may be formulated to maintain transformed callus or suspension culture cells in an undifferentiated state, or to allow production of shoots from callus, leaf or stem segments, tuber disks, and the like.

35

30

Cells or callus observed to be growing in the presence of normally inhibitory concentrations of the selective

```
agents are presumed to be transformed and may be
                                                                                                                                                                                                                                                                                                                                                                                              SUDCULTURED BEVERALLED LO DE L'ALIBLOTTINEU AND MAY DE MAN DE L'ALIBLOTTINE MAN DE L'ALIBRATION DE L'ALIBRA
                                                                                                                                                                                                                                                                                                                                                                                     to temore as a solution of the same ments of the same of the same ments of the same 
                                                                                                                                                                                                                                                                                                                                                                          Can then be assayed for the presence of the viral gene of the viral gene
                                                                                                                                                                                                                                                                                                                                                           cassette, or can be subjected to known plant
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PCT/US95/07234
                                                                                                                                                                                                                                                                                                                                                    tedeuetation blotocola inholhina the season of caperre. Or caperre.
                                                                                                                                                                                                                                                                                                                                        direct production of shoots, those shoots appearing on and the transformed and the tra
                                                                                                                                                                                                                                                                                                                              the selective media are presumed to be transformed and on the product of the presumed and t
                                                                                                                                                                                                                                                                                                                    Can be excised and tooted, either on selective wedimen and construction of the presention of transformen and constructive setective medium
                                                                                                                                                                                                                                                                                                    anitable tor the broduction of roots, or ph simply and appropriate for the and rooted, extract on aexerctive intention of the analysis of the simple for the analysis of the simple for the analysis of the simple for t
                                                                                                                                                                                                                                                                                           dibbing the excised shoot in a roof, of oh stubing any in the excised shoot of tools, of oh stubing any the excised broadciton of tools.
                                                                                                                                                                                                                                                                                   and directly planting it in vermiculite.
                                                                                                                                                                                                                                                           In order to produce transgenic plants exhibiting viral reason in into the
                                                                                                                                                                                                                                             Tesistance, the viral genes must be taken up into the vial of the viral share continued the vira
                                                                                                                                                                                                                                      plant cell and stably integrated within the plant tearer up the plant
                                                                                                                                                                                                                            Genome. Diant cells and tissness selected for their brain their brain their
                                                                                                                                                                                                                  genome.

tesistance to an inhibitory agent are presumed to have

an inhibitory agent are presumed to have
                                                                                                                                                                                                        acquired the selectable marker gene encoding this
                                                                                                                                                                                          registance during the transformation treatment.
                                                                                                                                                                                the Marker gene is commonly linked to the viral since have eimilari.
                                                                                                                                                                   it can be assumed that the viral genes have similarly hon analveic
                                                                                                                                                         been acquired. Char the viral genes have similarly and the viral viral viral on analysis
                                                                                                                                                Deen acquired.

Waing a probe southern Diot nyorial zation analysis

That the foreign range can then be
                                                                                                                                  used to Confirm that the foreign genes can then be into the mannme of the have been taken
                                                                                                                          Up and integrated into the genome of the plant cell.
                                                                                                               This technique may also give some indication of the
                                                                                                      number of copies of the gene that have been
                                                                                           incorporated. Successful transcription of the foreign
                                                                            blot hybridization analysis of total cellular RNA
                                                        and/or cellular kill that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been enriched in a mount of the that has been en
                                           polyadenylated rum that has been entrolled in a source formula and source for the source of the sour
                                   within the scope of the invention are those which that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which the polyament that the scope of the invention are those which is the scope of the invention are the scope of the scope of the invention are the scope of the scope o
                      Contain vital specific sequences derived from the vital contain the vital contains the vital 
           Genes Dresent in the transformed vector which are of
the same polarity as that of the viral genomic RNA such
```

specific RNA of the opposite polarity to that of viral genomic RNA under conditions described in Chapter 7 of Sambrook et al. (1989). Moreover, mRNA molecules encompassed within the scope of the invention are those which contain viral specific sequences derived from the viral genes present in the transformed vector which are of the opposite polarity as that of the viral genomic RNA such that they are capable of base pairing with viral genomic RNA under conditions described in Chapter 7 in Sambrook et al. (1989).

The presence of a viral gene can also be detected by immunological assays, such as the double-antibody

15 sandwich assays described by Namba et al., Gene, 107, 181 (1991) as modified by Clark et al., J. Gen. Virol., 34, 475 (1979). See also, Namba et al., Phytopathology, 82, 940 (1992). Cucumovirus resistance can also be assayed via infectivity studies as

20 generally disclosed by Namba et al., ibid., wherein plants are scored as symptomatic when any inoculated leaf shows veinclearing, mosaic or necrotic symptoms.

Seed from plants regenerated from tissue culture is
grown in the field and self-pollinated to generate true
breeding plants. The progeny from these plants become
true breeding lines which are evaluated for viral
resistance in the field under a range of environmental
conditions. The commercial value of viral-resistant
plants is greatest if many different hybrid
combinations with resistance are available for sale.
The farmer typically grows more than one kind of hybrid
based on such differences as maturity, color or other
agronomic traits. Additionally, hybrids adapted to one
part of a country are not adapted to another part
because of differences in such traits as maturity,
disease and insect tolerance. Because of this, it is

necessary to breed viral resistance into a large number of parental lines so that many hybrid combinations can be produced.

The invention will be further described by reference to the following detailed examples. Enzymes were obtained from commercial sources and were used according to the vendor's recommendations or other variations known in the art. Other reagents, buffers, etc., were obtained from commercial sources, such as Sigma Chemical Co., St. Louis, MO, unless otherwise specified.

Most of the recombinant DNA methods employed in
practicing the present invention are standard
procedures, well known to those skilled in the art, and
described in detail in, for example, in European Patent
Application Publication Number 223,452, published
November 29, 1986, which is incorporated herein by
reference. General references containing such standard
techniques include the following: R. Wu, ed., Methods
in Enzymology, Vol. 68 (1979); J.H. Miller, Experiments
in Molecular Genetics (1972); J. Sambrook et al.,
Molecular Cloning: A Laboratory Manual, 2nd ed.
(1989); and D.M. Glover, ed., DNA Cloning Vol. II
(1982).

Figures 6 and 7 are presented to illustrate the constructions of this invention.

30

Example I.

A. Isolation of CMV RNAs

Zucchini squash plants (20-day old) were inoculated with CMV strains V27, V33, or V34; after 7-10 days, infected leaves were harvested and CMV virus particles

Were isolated. The procedure used was based on brotocola trom for et al. Annala of bhytobatholoak. 4.

brotocola trom for et al. Annala of bhytobatholoak. 4.

mere rantaren. St (1972), Francki et at., Amara vi enanchi

19701 and Bahili and and B Plant Virusee, (July, 1979), and Habili and Francki,

Annroximatoly 100 a of fre Vitology, 57, 292 (1974), and madell and readcrease in an emial volume (w/v) of fresh of 0.5 M PCT/US95/07234 Jeaves were extracted in an equal volume (w/v) of 0.5 M

Leaves were extracted in an equal volume (w/v) of 0.5 M

Jeaves were extracted in an equal volume (w/v) of 0.5 M Wa-cittate (bH e-2) containing 2 WM EDLY and 100 W of who arrave are are containing 2 WM EDLY and 100 W of was a reason were extracted in an education of the containing that the containing the containing that the containing the containing that the containing the containing the containing that the containing the containing the containing the containing the containing the containing that the containing that the containing th chloroform. After centrifugation of the extract at chloroform. And contrifugation of the extract at the contribution of the extract at the contribution of the contrib cive and to to minites, bolivething or the extract are controlling. Sigma Chemical Co. PEG-8000, Every territorial molecular Weight, Research Grade) Was added to the supernatant to a final concentration of 10% and the suspension was minimum at 0 non suspension was made the suspension was a timal concentration of the analogue and the state of th Was centrifuged at 12,000 x g for 10 minutes, and the market and t Dellet Was resuspended in 40-50 mL of 5 mM Na-borate

The contraining of 5 mM Na-borate putter was resuspendent in an on an analy of the resuspendent in an one of the resuspendent in the resuspe Mag then added to the the virus particle suspension to an incarrant on a final concentration of 2s and stirred on ice for 30 minutes. This suspension was then centrifused at a range of the contribution of the co 19,000 X 9 for 15 minutes, and the supernature was at 10c 000 x at 10c 000 x Collected and Subsequently Centrifuged at 105,000 x g tor 3 hours and and pellet was collected and for the contraction of th tesuspended in about 2 mL of 5 mm Na-borate buffer (pfl g. 0) Containing 0.5 mm EDTA. The resuspended virus preparation was applied onto a step sucrose gradient

'ne 'ne gradient Consisting of 5 layers: 5%, 10%, 15%, 20% grautent hnffer in 1 nm Na nhara hnffer in 2 1 hnffer in 1 nm Na nhara hnffer in 1 nm ant white the state of the stat 7.5). Gradients were centrifuged at 37,000 ton in a minned to a mi Sorvall TH641 swinging bucket rotor for 45 minutes. After Centrifugation, the virus band was harvested, the Atter centration was distance name was narrest. buffer, and bicl was alaryzed against wa-oorate

'''''''' nrowinitation to

'''''''' nrowinitation to lyse the virions and to precipitate viral RWA. Was dissolved and reprecipitated with ethanol and dissolved in Mater. By agarose gel electrophoresis, the expected four RNA species were observed.

25

B. Cloning CMV Coat Protein Genes

(a) CMV V27

The first cDNA strand of CMV V27 was synthesized with the use of Perkin-Elmer RT-PCR kit reagents and the 5 primer RMM352 (shown in Figure 4, [SEQ ID NO:8]); immediately in the same reaction tube, a polymerase chain reaction (PCR) was carried out with the use of oligonucleotide primers RMM351 and RMM352 (shown in Figure 4, [SEQ ID NOS:7 and 8] following the manufacturer's protocol. The ATG translation start is included in the NcoI site present in primer RMM351. Individual PCR product molecules were cloned using the TA Cloning Kit (Invitrogen Corp., San Diego, CA) into pCRII (included in the TA Cloning kit as a linearized 15 plasmid with single 3' dT overhangs at the ends of the molecule). Three clones were isolated for further study: CMVV27TA21, CMVV27TA23, and CMVV27TA26. With the use of a kit (Sequenase 2 purchased from USB, Cleveland, Ohio), the CMV V27 insert in clone CMVV27TA21 was sequenced.

CMMV27 was compared to 11 different CMV isolates: Cmvbaul, Cmvq3, Cmvw1, Cmvtrk7, Cmvfc, Cmvi17f, Cmvc, Cmvpr50, Cmvv27, Cmvp6, Cmvo, Cmvm, and Cmvy. CMVV27 25 coat protein is similar to CMV-Y in that it contains a serine at position 29 while other strains have an alanine at this position. However, CMV-Y contains a leucine at position 18 while CMVV27 contains a proline at position 18. In addition, CMVV27 has a methionine at position 206, no other CMV-C group viruses have a methionine at this position (Baulcombe, D., "Mutational analysis of CMV RNA3: Effects on RNA3 accumulation, RNA4 synthesis and plant infection." Unpublished Direct Submission. Submitted (19-JUN-1992) 35 David Baulcombe, The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR2 7UH, United Kingdom; Hayakawa et al., <u>Gene</u>, <u>71</u>, 107 (1988);

Hayakawa et al., <u>J. Gen. Virol.</u> 70, 499 (1989); Owen et al., <u>J. Gen. Virol.</u>, 71, 2243 (1990); Pappu et al., "The nucleotide and the deduced amino acid sequences of coat protein genes of three Puerto Rican isolates of cucumber mosaic virus." Unpublished (1992). This sequence is included in the GeneBank sequence data base; Salanki et al., "Complete nucleotide sequence of RNA 3 from cucumber mosaic virus strain Trk 7." Unpublished (1993). This sequence is included in the GeneBank data base; Shintaku, <u>J. Gen. Virol.</u> 72, 2587 (1991)).

(b) <u>CMV V33</u>

CMV V33 was purified and viral RNA extracted from a 15 virion preparation as described above; subsequently single stranded cDNA was synthesized using Perkin-Elmer RT-PCR kit reagents and oligomer primer RMM352 [SEQ ID NO:8]. The coat protein gene of strain V33 was amplified using PCR as described above for V27 with the use of oligomer primers RMM351 and RMM352 (Figure 4, [SEQ ID NOS:7 and 8, respectively]). The V33 CP gene PCR product was digested with NcoI and directly cloned into the expression cassette cpexpress installed into pUC1318 (see Kay and McPherson, Nucleic Acid Research, 25 <u>15</u>, 2779 (1987) for pUC1318; Slightom, <u>Gene 100</u>, 251 (1991) for cpexpress; pUC1318cpexpress is the cpexpress described in Slightom, however it is installed into the HindIII site of the modified pUC plasmid pUC1318 described in detail in Kay and McPherson), rather than into the intermediate vector pCRII. By colony hybridization with a CMV coat protein probe, a number of clones were identified for further analysis: V33cel, V33ce2, V33ce7, and V33ce9. The CMV V33 insert in clone V33ce7 was sequenced with the use of a kit 35 (Sequenase 2 purchased from USB, Cleveland, Ohio).

CMMV33 was compared to 11 different CMV isolates: Cmvbaul, Cmvq3, Cmvw1, Cmvtrk7, Cmvfc, Cmvi17f, Cmvc, Cmvpr50, Cmvv27, Cmvp6, Cmvo, Cmvm, and Cmvy. CMVV33 has a serine at position 67 while all other CMV strains compared included a proline at this position. At position 196, both CMVV33 and CMV-Y have a valine residue; all other members of the CMV-C group contains isoleucine at this position. However, at position 184, CMVV33 has an alanine residue while CMV-Y has a threonine residue. Therefore, CMVV33 coat protein is 10 unique (Baulcombe, D., "Mutational analysis of CMV RNA3: Effects on RNA3 accumulation, RNA4 synthesis and plant infection. "Unpublished Direct Submission. Submitted (19-JUN-1992) David Baulcombe, The Sainsbury Laboratory, Norwich Research Park, Colney Lane, 15 Norwich, NR2 7UH, United Kingdom; Hayakawa et al., Gene, 71, 107 (1988); Hayakawa et al., J. Gen. Virol. 70, 499 (1989); Owen et al., <u>J. Gen. Virol.</u>, <u>71</u>, 2243 (1990); Pappu et al., "The nucleotide and the deduced amino acid sequences of coat protein genes of three 20 Puerto Rican isolates of cucumber mosaic virus." (1992). This sequence is included in the Unpublished GeneBank sequence data base; Salanki et al., "Complete nucleotide sequence of RNA 3 from cucumber mosaic virus Unpublished (1993). This sequence is strain Trk 7." 25 included in the GeneBank data base; Shintaku, J. Gen. <u>Virol.</u> 72, 2587 (1991)).

(c) CMV V34

30 CMV V34 RNA was prepared as described above.

Subsequently, the first cDNA strand was synthesized using CMV V34 template in a reaction that included the following: approximately 2 μg CMV V34 RNA, 1 x buffer for Superscript Reverse Transcriptase (supplied by BRL-35 GIBCO, Grand Island, NY), 2 mM dNTPs, oligomer primer RMM352 (37.5 μg/mL, SEQ ID NO:8), 1.5 μL RNasin, and 1 μL Superscript Reverse Transcriptase (BRL-GIBCO) in a

 $20-\mu L$ reaction. After this reaction was allowed to proceed for 30 minutes, an aliquot of the first strand reaction was used as a template in a polymerase chain reaction to amplify the CMV V34 coat protein gene. CMV V34 coat protein gene PCR product was cloned into the pCRII vector included in the TA Cloning Kit supplied by Invitrogen Corp. Two clones were isolated for further study: TA17V34 and TA112V34. The CMV V34 insert of clone TA17V34 was sequenced with the use of a kit (Sequenase 2 purchased from USB, Cleveland, Ohio). 10 Comparative sequence analysis of the CMVV34 coat protein gene with other CMV coat protein genes (Cmvbaul, Cmvq3, Cmvw1, Cmvtrk7, Cmvfc, Cmvi17f, Cmvc, Cmvpr50, Cmvv27, Cmvp6, Cmvo, Cmvm, and Cmvy) showed that the CMVV34 coat protein gene is unique (Baulcombe, D. Mutational analysis of CMV RNA3: Effects on RNA3 accumulation, RNA4 synthesis and plant Unpublished Direct Submission. Submitted infection. (19-JUN-1992) David Baulcombe, The Sainsbury 20 Laboratory, Norwich Research Park, Colney Lane, Norwich, NR2 7UH, United Kingdom; Hayakawa et al Gene, 71, 107 (1988); Hayakawa et al., J. Gen. Virol. 70, 499 (1989); Owen et al., <u>J. Gen. Virol.</u>, <u>71</u>, 2243 (1990); Pappu et al., (1992) The nucleotide and the 25 deduced amino acid sequences of coat protein genes of three Puerto Rican isolates of cucumber mosaic virus. Unpublished. This sequence is included in the GeneBank sequence data base; Salanki et al., Complete nucleotide sequence of RNA 3 from cucumber mosaic virus 30 strain Trk 7. Unpublished (1993) This sequence is included in the GeneBank data base; Shintaku, J. Gen. <u>Virol.</u> 72, 2587 (1991)).

C. Engineering CMV Coat Protein Genes

35 (a) <u>CMV V27</u>

The NcoI fragment in CMVV27TA21 that harbors CMVV27 CP coding sequences was excised from CMVV27TA21 and

inserted into the plant expression cassette cpexpress in pUC18 to give CMVV27TA21ce42. The resulting expression cassette was isolated as a partial HindIII fragment and inserted into the binary vector pGA482G [The parent binary plasmid was pGA482, constructed by An (Plant Physiol., 81, 86 (1986)). This binary vector contains the T-DNA border sequences from pTiT37, the selectable marker gene Nos-NPT II (which contains the plant-expressible nopaline gene promoter fused to the bacterial NPT II gene obtained from Tn5), a multiple cloning region, and the cohesive ends of phage lambda (An, Plant Physiol., 81, 86 (1986))] to yield pEPG191 and pEPG192. Subsequently, a PRV coat protein expression cassette was installed to obtain a binary vector that included both CMV V27 CP and PRV CP expression cassettes.

Alternatively, the CMV V27 CP NcoI fragment obtained from CMV V27TA21 was installed into pUC1318cp express (see Kay et al., Nucleic Acid Research, 15, 2779 (1987) for pUC1318; Slightom, Gene 100, 251 (1991) 20 for cpexpress; pUC1318cpexpress is the cpexpress described in Slightom, however it is installed into the HindIII site of the modified pUC plasmid pUC 1318 described in detail in Kay et al.) to give the plasmid CMVV27TA21CE13 (similar to CMVV27TA21ce42). The plasmid pUC1318 provided additional sites (e.g., BamHI and Xbal) with which the cassette could be inserted into the binary vector pGA482G Subsequently, the bacteria-derived gentamicin-(3)-N-acetyl-transferase gene (Allmansberger et al., Mol. Gen. Genet., 198, 514 30 (1985)) was installed into a SalI site outside of the T-DNA region, adjacent to the left border (B1)). The BamHI fragment harboring the CMV strain V27 CP expression cassette was isolated and inserted into the BglII site of the binary plasmid pEPG205 35 (PRV34/Z72/WMBN22) to give pEPG240 (CMVV27/PRV34/Z72/WMBN22). The BamHI fragment was also installed into the BgIII site of the binary plasmid
pEPG204 (PRV16/Z72/WMBN22) to yield pEPG239
(CMVV2716/PRV16/Z72/WMBN22) (Table 1). For further
information on PRV coat protein genes, refer to
5 Applicants' assignees copending Patent Application
Serial No. 08/366,881 entitled "Papaya Ringspot Virus
Coat Protein Gene" filed on December 30, 1994,
incorporated by reference herein. For further
information on ZYMV and WMVII coat protein genes, refer
10 to Applicants' assignees copending Patent Application
Serial No. 08/232,846 filed on April 25, 1994 entitled
"Potyvirus Coat Protein Genes and Plants Transformed
Therewith", incorporated by reference herein.

15 Table 1

WO 96/21018

•	Binary	Parental Plasmid	<u>Site</u>	CMVcp Cassette	pEPG#
20	pGA482G	pGA482G	HindIII	CMVV27cpexpress	191 or 192
	PPRBN	pEPG204 (P16sZW)	BglII	CMVV27cpexpress	239
	pPRBN	pEPG204 (P16sZW)	BglII	CMVV27cpexpress	240
25	PPRBN	pEPG106 (ZW)	HindIII	CMVV27cpexpress	243
30	pGA482G	pGA482G	HindIII	CMVV33ce7	198
	pPRBN	pEPG106 (ZW)	HindIII	CMVV33ce7	244
	pPRBN	pEPG204 (P16sZW)	BglII	CMVV27ce7	196
	pPRBN	pEPG205 (P34sZW)	BglII	CMVV27ce7	197
35	pGA482G	pGA482G	HindIII	17V34cpexp113	190

(b) <u>CMV V33</u>

Subsequently, both HindIII and BamHI fragments were

40 excised from clone V33ce7; these fragments carried the
complete expression cassette for CMV V33 CP gene. The
BamHI fragment (V33 CP expression cassette) was
inserted into the BglII site of pEPG204
(PRV16/ZY72/WMBN22) to obtain pEPG196. The BamHI

45 fragment was also inserted into the BglII site of
pEPG205 (PRV34/ZY72/WMBN22) to obtain pEPG197
(V3329/PRV34/ZY72/WMBN22). The HindIII fragment

50

D.

```
harboring the V33 Cp cassette was installed into
                                                                                                                                                                                                                                                                         PGA482G to Obtain PEPG198 (Table 1).
                                                                                                                                                                                                                                              An Ncol fragment excised from clone TAITV34 was
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PCT/US95/07234
                                                                                                                                                                                                                                          installed into the Mool site of bacing coexpress.

The property of the Mool site of the restingular man invitable of the restingular
                                                                                                                                                                                                                                 resulting plasmid that includes the CMV V34 coding Ncol

resulting in the appearance of put 115 coding Ncol
                                                                                                                                                                                                                            fragment inserted in the sense orientation is
                                                                                                                                                                                                                  TANSA/Chesten in the sense orientarion is ineralled the tangent is ineralled interesting the
                                                                                                                                                                                                      Plasmid 17V34/Cpexpl13. A partlar minding tragment from the nknc10n /rahla 11 installed into
                                                                                                                                                                                                   PGA482G to Yield PEPG190 (Table 1).
                                                                                                                                                                           The binary plasmids described here, such as ppren (for
                                                                                                                                                                     further information on these plasmids, refer to

your name of these plasmids, refer to
                                                                                                                                                             Applicants, Assignees copending patent Application
                                                                                                                                                      Selial No. 08/366' 301 entitled "Light tearent what tearing to blanks

entitled "Light tearing tearing the properties of the properties of
                                                                                                                                               Expressing DMA Constructs Containing a plurality of the policy of the po
                                                                                                                                      Genes to Impart Virus Containing a Flurality or reference herein; or rheir
                                                                                                                      derivatives, can be transferred into Agrobacterium

LA334,

CAM DE TRANSFERRED DE LARSTON AGROBACTERIUM

CARRANA ANA CARRANA AGROBACTERIUM
                                                                                                                 SETAINS A208, C58, LBAA404. C582707, A4RS,
                                                                                                       A4RS (DR1278b), Loo, Looky ava, Looky v, A4RS, are available from Arro A208, C58,
                                                                                                 LIBAAAOA, AND AARS ARE AVAILABLES.

Donobraillo Marrian ATCC, 12301
                                                                                        Parklawn Drive, Rockville, Maryland, Marce, 14301

Caooo Dolhart On Agre (pri278b)

Drive of the price of the
                                                                                   Was obtained from Dr. F. Casse-Delbart, C.N.R.A., Route

France CERTING CERTIN
                                                                             de Saint Cyr, F78000, Versailles, France.
                                                              Illinois, Urbana, Illinois, Mog301 was obtained from
                                                    Mogen NV, Leiden, Netherlands.
                                                                           Transfer of CMV Coat Protein Genes to Tobacco
                         In order to test whether the CMV Cp gene constructs
                                                                                                                                                                                                                                                                                                                                                                                                                  C582707 Was
                 described herein confer protection against one
         challenge with homologous strains, some of the pinary

observation of the pinary

observation of the pinary
plasmids listed above (e.g., pEpGl98, pEpG239, pEpG239,
```

and pEPG240) have been used to insert these novel CMV coat protein genes into Nicotiana tobacum.

Agrobacterium-mediated transfer of the plant expressible CMV coat protein genes described herein was done using the methods described in PCT published application WO 89/05859, entitled "Agrobacterium Mediated Transformation of Germinating Plant Seeds".

Five R₁ progeny lines of Nicotiana t. transformed with
the binary plasmid pEPG239 and five R₁ progeny lines of
Nicotiana t. transformed with the binary plasmid
pEPG240 have been obtained. These binary plasmids
include the coat protein gene of CMV strain V27. The
ten R₀ parental plants of these lines were assayed for
NPTII protein expression by ELISA. They each expressed
NPTII protein by ELISA. Furthermore, these ten lines
were assayed for both the NPTII and CMV V27 coat
protein genes by PCR analysis. PCR analysis detected
both genes in all ten R₀ plants.

20

The binary plasmid pEPG198 was used to obtain 11 R_0 transgenic Nicotiana t. plants. By PCR analysis, the CMV V33 CP gene was detected in nine of the eleven R_0 plants tested.

25

Cloning and engineering CMV A35 CP Gene

20-day-old zucchini squash plants in the greenhouse were inoculated with CMV strain A35; after 7-10 days infected leaves were harvested. Total RNA was isolated from these infected plants by the use of Tri-Reagent and the instructions provided with the reagent (Molecular Research Center, inc., Cincinnati, OH). Single-stranded cDNA was synthesized using total RNA template. The reaction included 1 X first Strand cDNA Synthesis Buffer (GIBCO-BRL), 1mM dNTP's (Pharmacia), 2 uL oligonucleotide primer RMM352 (150ug/mL), 2 uL

RNasin (Promega), and 1uL RTase SuperscriptII (GIBCO-BRL) in a 20uL reaction volume. The CMV A35 coat protein gene was PCR amplified with the use of CMV coat protein-specific primers RMM351 and 352 [SEQ ID NOS:7 and 8]. The PCR included 3uL of the cDNA synthesis reaction described above, 8 uL of each primer RMM351 and RMM352 (150 ug/uL stock), 5uL 10X reaction buffer, 4uL dNTP's (10mM), 1.5 uL MgCl₂ (50mM), and 0.5 uL Taq polymerase (BRL-GIBCO). PCR conditions were carried out as follows: 93° 45 sec, 50° 45 sec, then 72° 180 sec for 30 cycles, then 72° for 5 min, then hold at 4°. PCR products were visualized by agarose gel electrophoresis and subsequently cloned.

- 15 PCR product molecules were cloned into the pCRII vector supplied with the TA cloning kit (Invitrogen Corp.)

 Four clones were identified and restriction mapped, however, none were sequenced for further analysis.
- 20 Alternatively, an aliquot of the CMV A35 PCR product was digested with NcoI and ligated it into the NcoI site of pUC19B2 cp express to give the plasmid CMV A35cpexp33. The cost protein insert of this plasmid was sequenced with the use of the Sequenase II Kit supplied by USBiochemical (Figure 8). Sequence analysis reveals that CMV A35 coat protein sequence differs form the coast protein sequences of CMV C, V27, V33, V34, and WL (Figures 9 and 10). For example, A35 differs from other CMV C strains at amino acid position #26 (Figure 9). Examination of the nucleotide sequence comparisons differs from other CMV coat protein genes characterized (Figure 10).
- A BamHI/BIIII fragment was excised from A35cpexp33 and installed into the unique BgIII site of pGA482G. The plasmid pUC19B2cpexp provides a BamHI site at the 5' end of the cpexp cassette and a BgIII site at the 3'

end of the expression cassette. Upon insertion into a Bg1II site, the unique Bg1II site of the binary plasmid pGA482 is maintained for subsequent insertions of gene cassettes. Binary plasmids that include the CMV A35 expression cassette are being transformed into various Agrobacterium strains (eg., C58Z707, Mog301, and LBA4404). These Agrobacterium strains are used to transform plants to impart resistance to CMV CARNA5.

10 All publications, patents and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

WHAT IS CLAIMED IS:

- 1. In isolated and purified DNA molecule consisting essentially of DNA encoding the coat protein of the V27 strain of cucumber mosaic virus.
- 2. The isolated and purified DNA molecule of claim 1 wherein the DNA molecule has the nucleotide sequence shown in Figure 1 [SEQ ID NO:1].
- 3. A vector comprising a chimeric expression cassette comprising the DNA molecule of claim 1, a promoter and a polyadenylation signal, wherein the promoter is operably linked to the DNA molecule, and the DNA molecule is operably linked to the polyadenylation signal.
- 4. The vector of claim 3 wherein the promoter is the cauliflower mosaic virus 35S promoter.
- 5. The vector of claim 4 wherein the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 6. A bacterial cell comprising the vector of claim 3.
- 7. The bacterial cell of claim 6 wherein the bacterial cell is selected from the group consisting of an Agrobacterium tumefaciens cell and an Agrobacterium rhizogenes cell.
- 8. A transformed plant cell transformed with the vector of claim 3.
- 9. The transformed plant cell of claim 8 wherein the promoter is cauliflower mosaic virus 35S promoter and

the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.

- 10. A plant selected from the family Cucurbitaceae comprising a plurality of the transformed cells of claim 8.
- 11. A plant selected from the family Solanaceae comprising a plurality of the transformed cells of claim 8.
- 12. An isolated and purified DNA molecule consisting essentially of DNA encoding the coat protein of the V33 strain of cucumber mosaic virus.
- 13. The isolated and purified DNA molecule of claim 12 wherein the DNA

molecule has the nucleotide sequence shown in Figure 2 [SEQ ID NO:3].

- 14. A vector comprising a chimeric expression cassette comprising the DNA molecule of claim 12, a promoter and a polyadenylation signal, wherein the promoter is operably linked to the DNA molecule, and the DNA molecule is operably linked to the polyadenylation signal.
- 15. The vector of claim 14 wherein the promoter is the cauliflower mosaic virus 35S promoter.
- 16. The vector of claim 15 wherein the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 17. A bacterial cell comprising the vector of claim 14.

- 18. The bacterial cell of claim 17 wherein the bacterial cell is selected from the group consisting of an Agrobacterium tumefaciens cell and an Agrobacterium rhizogenes cell.
- 19. A transformed plant cell transformed with the vector of claim 14.
- 20. The transformed plant cell of claim 19 wherein the promoter is cauliflower mosaic virus 35S promoter and the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 21. A plant selected from the family Cucurbitaceae comprising a plurality of the transformed cells of claim 19.
- 22. A plant selected from the family Solanaceae comprising a plurality of the transformed cells of claim 19.
- 23. An isolated and purified DNA molecule consisting essentially of DNA encoding the coat protein of the V34 strain of cucumber mosaic virus.
- 24. The isolated and purified DNA molecule of claim 23 wherein the DNA

molecule has the nucleotide sequence shown in Figure 3 [SEQ ID NO:5].

25. A vector comprising a chimeric expression cassette comprising the DNA molecule of claim 24, a promoter and a polyadenylation signal, wherein the promoter is operably linked to the DNA molecule, and the DNA molecule is operably linked to the polyadenylation signal.

- 26. The vector of claim 25 wherein the promoter is cauliflower mosaic virus 35S promoter.
- 27. The vector of claim 26 wherein the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 28. A bacterial cell comprising the vector of claim 23.
- 29. The bacterial cell of claim 28 wherein said bacterial cell is selected from the group consisting of an Agrobacterium tumefaciens cell and an Agrobacterium rhizogenes cell.
- 30. A transformed plant cell transformed with the vector of claim 25.
- 31. The transformed plant cell of claim 30 wherein the promoter is cauliflower mosaic virus 35S promoter and the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 32. A plant selected from the family Cucurbitaceae comprising a plurality of the transformed cells of claim 30.
- 33. A plant selected from the family Solanaceae comprising a plurality of the transformed cells of claim 30.
- 34. A method of preparing a cucumber mosaic viral resistant plant comprising:
- (a) transforming plant cells with a chimeric expression cassette comprising a promoter functional in plant cells operably linked to a DNA molecule that encodes a coat protein; wherein the DNA molecule is

derived from a cucumber mosaic virus strain selected from the group consisting of V27, V33, and V34;

- (b) regenerating the plant cells to provide a differentiated plant; and
- (c) identifying a transformed plant that expresses the cucumber mosaic virus coat protein at a level sufficient to render the plant resistant to infection by the cucumber mosaic virus strain.
- 35. The method of claim 34 wherein the plant is a dicot.
- 36. The method of claim 35 wherein the dicot is selected from the family Cucurbitaceae.
- 37. The method of claim 35 wherein the dicot is selected from the family Solanaceae.
- 38. A vector comprising a chimeric expression cassette comprising the DNA

molecule of claim 1 and at least one chimeric expression cassette

comprising a heterologous CMV coat protein gene, a papaya ringspot

virus coat protein gene, a zucchini yellow mosaic virus coat protein gene,

or a watermelon mosaic virus-2 coat protein gene, wherein each

expression cassette comprises a promoter and a polyadenylation signal,

wherein the promoter is operably linked to the DNA molecule, and the

DNA molecule is operably linked to the polyadenylation signal

39. A bacterial cell comprising the vector of claim 38.

- 40. A transformed plant cell transformed with the vector of claim 38.
- 41. The transformed plant cell of claim 40 wherein the promoter is cauliflower mosaic virus 35S promoter and the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.
- 42. A vector comprising a chimeric expression cassette comprising the DNA

molecule of claim 12 and at least one chimeric expression cassette

comprising a heterologous CMV coat protein gene, a papaya ringspot

virus coat protein gene, a zucchini yellow mosaic virus coat protein gene,

or a watermelon mosaic virus-2 coat protein gene, wherein each

expression cassette comprises a promoter and a polyadenylation signal,

wherein the promoter is operably linked to the DNA molecule, and the

DNA molecule is operably linked to the polyadenylation signal

- 43. A bacterial cell comprising the vector of claim 42.
- 44. A transformed plant cell transformed with the vector of claim 42.
- 45. The transformed plant cell of claim 44 wherein the promoter is cauliflower mosaic virus 35S promoter and the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.

46. A vector comprising a chimeric expression cassette comprising the DNA

molecule of claim 23 and at least one chimeric expression cassette

comprising a heterologous CMV coat protein gene, a papaya ringspot

virus coat protein gene, a zucchini yellow mosaic virus coat protein gene,

or a watermelon mosaic virus-2 coat protein gene, wherein each

expression cassette comprises a promoter and a polyadenylation signal,

wherein the promoter is operably linked to the DNA molecule, and the

DNA molecule is operably linked to the polyadenylation signal

- 47. A bacterial cell comprising the vector of claim 46.
- 48. A transformed plant cell transformed with the vector of claim 46.
- 49. The transformed plant cell of claim 48 wherein the promoter is cauliflower mosaic virus 35S promoter and the polyadenylation signal is the polyadenylation signal of the cauliflower mosaic 35S gene.

1	CCATGCACAATCTGATCCAGTGCTGGTCGTTCGTCGTCGTCGTCGTCGTCGTG MetAspLysSerGluSerThrSerAlaGlyArgAsnArgArgArgArgArgArgG M D K S E S T S A G R N R R R P R G	0 9
61	GTTCCCCCTCCTCCTCCTCGATGCTAACTTTAGAGTCTTGTCGCAGCAGCTTT lySerArgSerAlaSerSerSerAspAlaAsnPheArgValLeuSerGlnGlnLeuS S R S A S S S D A N F R V L S Q Q L S	120
121	CGCGACTTAACAAGACGTTGGTCGTCCAACTATTAACCACCCAACCTTTGTAG erArgLeuAsnLysThrLeuAlaAlaGlyArgProThrlleAsnHisProThrPheValG R L N K T L A A G R P T I N H P T F V G	180
181	GGAGTGAACGCTGAAACCTGGGTACACGTTCAATTTACCCTAAAAGCCACCAAAAA lySerGluArgCysLysProGlyTyrThrPheThrSerIleThrLeuLysProProLysI S E R C K P G Y T F T S I T L K P P K I	240
241	TAGACCGTGGGTATAAAGGTTGTTATTACCTGATTCAGTCACGGAATATG leAspArgGlySerTyrTyrGlyLysArgLeuLeuLeuProAspSerValThrGluTyrA D R G S Y Y G K R L L L D P D S V T E Y D	300
301	ATAAGAAGCTTGTTTCGCGCATTCAAATTCGAGTTAATCCTTTGCCGAAATTTGATTCTA spLysLysLeuValSerArgIleGInIleArgValAsnProLeuProLysPheAspSerT K K L V S R I Q I R V N P L P K F D S T	360

720

TCCGTGTTCCCAGAACCCTCCCTCCGATTTCTGTGGCGGGGGCTGAGTTGGCAGTTCTGC
TATAAACTGTCTGAAGTCACTAAACGTTTTCACGGTGAACGGGTTGTCCATGG 772

661 721

m

420	480	. 540	009	099
361 CCGTGTGGGTAACTTCCTGCCTCCTCGGACTTATCCGTTGCCGCCATCT hrValTrpValThrValArgLysValProAlaSerSerAspLeuSerValAlaAlaIleS V w V T V R K V P A S S D L S V A A I S	421 CTGCTATGTTCGCGGAGGCCTCACCGGTACTGGTTTATCAGTATGCTGCATCTGGAG eralaMetPheAlaAspGlyAlaSerProValLeuValTyrGlnTyrAlaAlaSerGlyV A M F A D G A S P V L V Y Q Y A A S G V	481 TCCAAGCTAACAATTGTTTGATCTTTCGGCGATGCGCGCTGATATAGGTGACA alginalaasnLysLeuLeuTyraspLeuSeralaMetArgAlaAspIleGlyAspM Q A N N K L L Y D L S A M R A D I G D M	541 TGAGAAAGTACGCCGTCCTCGTATTCAAAAGACGATGCGCTCGAGACGACGACGACTAG etArgLysTyralaValLeuValTyrSerLysAspAspAlaLeuGluThrAspGluLeuV R K Y A V L V Y S K D D A L E T D E L V	601 TACTTCATGTTGACATCCACCTATTTCCCACGTCTGGGATGCTCCCAGTCTGAT alLeuHisValAspIleGluHisGlnArgIleProThrSerGlyMetLeuProValEnd L H V D I E H Q R I P T S G M L P V *
M		7,	J,	_

4

ᆏ	CCATGGACAAATCAACCAGTGCTGGTCGTAACCGTCGACGTCGTCGTCGTG MetAspLysSerGluSerThrSerAlaGlyArgAsnArgArgArgArgProArgArgG M D K S E S T S A G R N R R R R R G	09
61	GTTCCCGCTCCCCTCCGCGGATGCCAACTTTAGAGTCTTGTCGCAGCAGCTTTT 1ySerArgSerAlaProSerSerAlaAspAlaAsnPheArgValLeuSerGlnGlnLeuS S R S A P S S A D A N F R V L S Q Q L S	120
121	CGCGACTTAATAAGACGTTGTTGGTCGTCCAACTATTAACCACCCAACCTTTGTAG erArgLeuAsnLysThrLeuSerAlaGlyArgProThrIleAsnHisProThrPheValG R L N K T L S A G R P T I N H P T F V G	180
181	GGAGTGAGCGTTGTACACGTTCACATCTATTACCCTAAAGCCGCCGAAAA lySerGluArgCysLysSerGlyTyrThrPheThrSerIleThrLeuLysProProLysI S E R C K S G Y T F T S I T L K P P K I	240
241	TAGACCGTGGGTCTTATTATGGTAAAGGTTGTTATTACCTGATTCACACAGATATG leAspArgGlySerTyrTyrGlyLysArgLeuLeuLeuProAspSerValThrGluTyrA D R G S Y Y G K R L L L P D S V T E Y D	300
301	ATAAGAAACTTGTTTCGCGCATTCAAATTCGAGTTAATCCCTTGCCGAAATTTGATTCTA SpLysLysLeuValSerArgileGlnIleArgValAsnProLeuProLysPheAspSerT K K L V S R I Q I R V N P L P K F D S T	360
361	CCGTGTGGGTGACAGTCCGTGCCTCCTCGGACTTATCCGTTGCCGCCATCT hrvaltrpValThrValArgLysValProAlaSerSerAspLeuSerValAlaAlaAlaIleS v w v T v R K v P A S S D L S v A A T S	420

421	CTGCTATGTTTGCGGACGGAGCCTCACCGGTACTGGTTTATCAGTACGCTGCATCTGGAG	480
	erAlaMetPheAlaAspGlyAlaSerProValLeuValTyrGlnTyrAlaAlaSerGlyV A M F A D G A S P V L V Y Q Y A A S G V	
	TCCAAGCTAACAAATTGTTGTATGATCTTTCGGCGATGCGCGCTGATATAGGCGACA alGlnAlaAsnAsnLysLeuLeuTyrAspLeuSerAlaMetArgAlaAspileGlyAspM Q A N N K L L Y D L S A M R A D I G D M	540
541	TGAGAAAGTACGCCGTCCTCGTATTCAAAAGACGATGCACTCGAGACGGACG	009
	TACTTCATGTTGACGTCCACCAACGCATTCCCACGTCTGGGGTGCTCCCAGTATAAT alLeuHisValAspValGluHisGlnArgIleProThrSerGlyValLeuProValEnd 'L H V D V E H Q R I P T S G V L P V *	099
	TCTGTGCTTTCCAGAACCCTCCCTCCGATTTCTGTGGCGGGAGCTGAGTTGGCAGTTCTG	720

FIG. 3

10(
PAG.	Ar	ρς.	
TTT	Phe	[I+	
AAC	Asn	z	
3CT	Ala	Æ	
3AT(4sb	0	
rcg(Seri		
GGTTCCCGCTCCTCCTCTTCGGATGCTAACTTTAG	lySerArgSerAlaSerSerSerAspAlaAsnPheA	SRSASSONFR	
ည်	Ser!		
ည်	erg		
CTI	las	رن	
D D D	erA	A,	
GCT	rgS	Ω.	
SSS	erA	<u>ac.</u> .	
GTT	lys		
GTG	てつ	O	
GTC	rgA	DC;	
CGC	roa	DC,	
3TC	rgP	₽ .	
3TC	(gA)	C C	
BACC	gAn	民	
TCC	gAi	œ.	
D D D	nAr	DC;	
TAA	gAs	Z	
TCG	yAr	ο:,	
TGG	aGl	ပ	
TGC	rA1	K	
CAG	rSe	ω .	
GAATCAACCAGTGCTGGTCGTAACCGTCGACGTCGTCGCGCGTCGT	GluSerThrSerAlaGlyArgAsnArgArgArgArgProArgArg	ESTSAGRNRRRRPRG	
TC.	ıse	ഗ	
rGAJ	rGI	ங	
ATCT(Se	ເນ	
AAATO	pLys	5 43	
ATGGACA		Ω	
CCATG	MetAs	Σ	
-			

20(
TTAACCACCCAACCTTTGTAGGGAGTGAACGCTGTAGACCT	lnLeuSerArgLeuAsnLysThrLeuAlaAlaGlyArgProThrIleAsnHisProThrPheValGlySerGluArgCysArgPro	<u>р</u> ,
PAG.	Arc	D
TGI	ζζ	O.
1000	ıArç	6 %
GA.	rGI	团
3AG	/Se	ഗ
AGG(161	NHPTFVGSERCRP
IGT/	eVa	>
	rPh	[x.
AAC(oTh	₽
	SPr	ρ,
CCA(nHi	x
TAA	eAsı	z
TAT	rIl	
AGCTTTCGCGACTTAACAAGACGTTAGCAGCTGGTCGTCCAACTAT	oTh	LSRLNKTLAAGRPTI
TCC	gPr	a.
TCG	yAr	œ
TGG	aG1	G
AGC	aA1	æ
AGC	uAl	æ
GTT	rLe	ᆸ
GAC	sTh	₽
CAA	nty	×
TAA	uAs	z
ACT	gLe	
gag	rAr	œ
TTC	uSe	ഗ
GCT	nLe	J
GCA	~	O ^z
AGTCTTGTCGCAGC	LeuSerGln	o
GTC	uSe	တ
CTT	11.e	Ļ
AGT	gVall	>
101		

30		
ပ္	Æ	Ω
TAI	3	> 4
GAA	Glu	[1]
ACG	Thr	E
GTC	Val	>
17.	Ser	ស
GAI	Asp	۵
CCI	Pro	ت
CTA	Leu	ᆸ
CGGTAAAAGGTTGTTACTACCTGATTCAGTCACGGAATATG	Leu	SITLKPPKIDRGSYYGKRLLLPDSVTEYD
TTG	Lev	L.
AGG	Arg	£ :
PA.	Ĺ	×
GGI	Gly	ပ
TAC	Tyr	> -
TAC	7.	>-
TCI	Ser	တ
000	Gly	Ö
SATCTATTACCCTAAAGCCACCAAAAATAGACCGCGGGTCTTACTA (Arg	œ
AGAC	eAs _I	Ω
AT/	3116	—
AAA	olys	×
ACC	oPr	മ
300	SPr	Ω.
AZA	uLy	×
CCT	rLe	L
TAC	eTh	H
TAT	rIl	щ
ATC	rSe	တ
CAC	eTh	€
STT	rPh	ĹL,
CAC	YrThrPheTh	7. T. F
GGTACACGTTCAC	Ϋ́	>+
ପ୍ର	G	S S
201		

40(
ATAAGAAGCTTGTTTCGCGCATTCAAATTCGAGTTAATCCTTTGCCGAAATTTGATTCTACCGTGTGGGTGACAGTTCGTAAAGTTCCTGCCTCCTCGGA 40	spLysLysLeuValSerArgIleGlnIleArgValAsnProLeuProLysPheAspSerThrValTrpValThrValArgLysValProAlaSerSerAs	KKLVSRIQIRVNPLPKFDSTVWTVRKVPASSD
301		

5/33

500		
TTG	rGlnTyrAlaAlaSerGlyValGlnAlaAsnAsnLysLeu	⊢ ⊒
AAA	Lys	*
AAC	Asn	z
GCCATCTCTGCTATGTTCGCGGACGGAGCCTCACCGGTACTGGTTTATCAGTATGCTGCATCTGGAGTTCAAGCTAACAAATTG	aAsn	QYAASGVQANNKL
CCO	Ala	æ
CA	Glr	ŏ
GTT	'Va]	>
GGA	:G1y	ပ
ATCI	aSeı	ഗ
TGC	aAl	Ø
TGC	rAl	æ
GTA	nTy	>
TCA	rGl	o
TTA	177	>-
GGT	ùVa	>
ACT	lLe	
GGT	oVa	>
ACC	rPr	ب۵
CTC	aSe	ស
AGC	yAl	æ
CGG	pG1	ပ
GGA	aAs	Ω
၁၅၁	eA1	æ
GTT	t.Ph	ÇL.,
TAT	аМе	×
TGC	rAl	ø
CTC	.alleSerAlaMetPheAlaAspGlyAlaSerProValLeuValTyr	ISAMFADGASPVLVY
CAT	aIl	 4
၁၅၁		Æ
TGC	lal	ø
CGT	erValAlaA	>
TTATCCGTTGCC	LeuSe	ഗ
CTT	pLe	H
401		

009		
AG	ηŅ	>
GCT	uLe	口
CGA	93	ы
3GA(rAsj	Ω
STGTATTCAAAAGACGATGCACTCGAGACGGACGAGCTAG	alTyrSerLysAspAspAlaLeuGluThrAspGluLeuV	YSKDDALETDELV
CGA	uG]։	Ŀ
ACT	aLe	_
JGC,	pAl	æ
CGA	pAsı	
AGA(sAsj	Ω
AAA	rLy	ᆇ
ITC.	rSe	ß
GTA'	114	>-
CGT	uVa	>
CCT	lLe	<u>.</u>
CGT	aVa	>
၁၅၁	rAl	¥
GTA	sTy	>-
AAA(gLy	×
GAG	tAr	æ
CAT	рме	Σ
TGA	yAs	
AGG	eG]	ပ
TAT	pil	\mapsto
TGA	aAs	Ω
ညည	gAl	æ
SCG	tAr	α.
GCGATGCGCGCTGATATAGGTGACATGAGAAAGTACGCCGTCCTCG	AlaMetArgAlaAspIleGlyAspMetArgLysTyrAlaValLeuV	A M R A D I G D M R K Y A V L V
\mathbf{O}	rAl	A
TIC	uSe	ល
ICT	olle	ب
TGA	rAsı	Ω
TGTATGATCTTT	uTy	>-
ŢŢ	Le	ᄓ
501		

700		
. TACTICATGITGACATCGAGCACCAACGCATTCCCACGICIGGGGIGCICCCAGTITGAITCCGIGITCCAGAACCCTCCCTCCGAITTCIGIGGCGGA	alLeuHisValAspIleGluHisGlnArgIleProThrSerGlyValLeuProValEnd	LHVDIEHQRIPTSGVLPV*
601		

GCTGAGTTGGCAGTTCTGCTATAAACTGTCTGAAGTCACTAAACGTTTTACGGTGAACGGTTGTCCATGG 701

FIG. 4A

											,														
420	CGTCGGCGTC	CGTCGACGTC	CGTCGACGTC	CATCGACGTC	TCCCGGCGTC	480	AGAGTCTTGT	AGAGTCTTGT	AGAGICTIGI	AGAGTCTTGT	CGTGCTTTGA		540	ATTAACCACC	ATTAACCACC	ATTAACCACC	ATTAACCACC	CTTAACCACC	C C	ななけいしてなかける		A11ACCC1AA	ATTACCCTAA	ATTACCCTAA	ATTACCCTGA
	TGGTCGTAAC	TGGTCGTAAC	TGGTCGTAAC	TGGTCGTAAC	TAGTAGAACC		TGCTAACTTT	TGCCAACTTT	TGCTAACTTT	TGCTAACTTT	TGCAGGGTTG			TCGTCCAACT	TCGTCCAACT	TCGTCCAACT	TCGTCCAACT	TCGTCCCACT		上し上々しなりませい	おくまべてべくませて	1714747119	GTTCACATCT	GTTCACATCT	TTTCACATCT
	CAACCAGTGC	CAACCAGTGC	CAACCAGTGC	CAACCAGTGC	CTCCCAATGC		CCTCCTCGGA	CCTCCGCGGA	CCTCTTCGGA	CCTCCGCGGA	CTGGTGCGGA			TAGCAGCTGG	TGTCAGCTGG	TAGCAGCTGG	TAGCAGCTGG	TCGCCATTGG	•		じゃじゃ E C C C E C	フェング・ログクロン	CTGGGTACAC	CTGGGTACAC	CCGGTTACAC
, ,	AAATCTGAAT	AAATCTGAAT	AAATCTGAAT	AAATCTGAAT	AAATCTGGAT		TCCGCCTCCT	TCCGCCCCCT	TCCGCTTCCT	TCCGCCCCCT	CGGTCCGCTT	•		AACAAGACGT	AATAAGACGT	AACAAGACGT	AATAAGACGT	AATAGAACCC			日本本本をしたして		CGCTGTAGAC	CGCTGTAGAC	AGCTGTAAAC
NCOI	CCATGGAC		CCATGGAC	AGTCATGGAC	GCCTATGGAC	,	TGGTTCCCGC	TGGTTCCCGC	TGGTTCCCGC	TGGTTCCCGC	TAGAGGTTCT			TTCGCGACTT	TTCGCGACTT	TTCGCGACTT	TTCGCGACTT	GCTGAAAĊTC		するといるないとして	これで見りべしている	りより、こうようりりょ	AGGGAGTGAA	AGGGAGTGAA	GGGTAGTGAA
RMM351 5' CGTAGAATTCAGTCG		•	•	AATTGAGTCG	GTCTTAGTGT	21	r TCCGCGTCG	GTCCGCGTCG	GTCCGCGTCG	GTCCGCGTCG	GTCGCCCGCG		481	CGCAGCAGCT	CGCAGCAGCT	CGCAGCAGCT	CGCAGCAGCT	CTCÁGCAGAT	נעע	1 まり 日本			CAACCTTTGT	CAACCTTTGT	CAACCTTCGT
RMM35	V27cp	V33cp	Cmvv34	CCD	Cmvwl		V27.:p	V33cp	Cmvv34	Ccp	Cmvw1			V27cp	V33cp	Cmvv34	Cap	Cmvwl		W27CV	17 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V 5 5 C P	Cmvv34	Ccp	Cmvwl

G. 4B

099	CCTGATTCAG	CCTGATTCAG	CCTGATTCAG	CCTGATTCAG	CCAGATTCAG	720	CCTTTGCCGA	CCCTTGCCGA	CCTTTGCCGA	CCTTTGCCGA	CCTTTGCCGA	780	GACTTATCCG	GACTTATCCG	GACTTATCCG	GACTTATCCG	GATCTTTCCG	840	TATCAGT	TATCAGTACG	TATCAGTATG	TATCAGTATG	TATCAGTATG
	GTTGTTATTA	GTTGTTATTA	GTTGTTACTA	GTTGTTACTA	GTTGTCTTTG		TCGAGTTAAT	TCGAGTTAAT	TCGAGTTAAT	TCGAGTTAAT	CAGGGTTAAT		TGCCTCCTCG	TGCCTCCTCG	TGCCTCCTCG	TGCCTCCTCG	TTCATCATCC		GGTACTGGTT	GGTACTGGTT	GGTACTGGTT	GGTACTGGTT	GGTTTTGGTT
	ACGGTAAAAG	ATGGTAAAAG	ACGGTAAAAG	ACGGTAAAAG	TTGGTAGAAG		GCATTCAAAT	GCATTCAAAT	GCATTCAAAT	GCATTCAAAT	GCATTCAAAT		GTAAAGTTCC	GTAAAGTTCC	GTAAAGTTCC	GTAAAGTTCC	GGAAAGTACC		GAGCCTCACC	GAGCCTCACC	GAGCCTCACC	GAGCCTCACC	GTAATTCACC
	GGGTCTTATT	GGGTCTTATT	GGGTCTTACT	GAGTCTTATT	GGTTCATATT		CTTGTTTCGC	CTIGITICGC	CTTGTTTCGC	CTTGTTTCGC	CTTGTTTCGC		GTAACAGTCC	GTGACAGTCC	GTGACAGTTC	GTGACAGTCC	GTTACAGTTC		TTCGCGGACG	TTTGCGGACG	TTCGCGGACG	TTCGCGGACG	TTTGGCGATG
	AATAGACCGT	AATAGACCGT	AATAGACCGC	AATAGACCGT	AATTGAGAAA		TGATAAGAAG	TGATAAGAAA	TGATAAGAAG	TGATAAGAAG	TGATAAGAAG		TACCGTGTGG	TACCGTGTGG	TACCGTGTGG	TACCGTGTGG	TACCGTGTGG		CTCTGCTATG	CTCTGCTATG	CTCTGCTATG	CTCTGCTATG	CTCTGCTATG
601	AGCCACCAAA	AGCCGCCGAA	AGCCACCAAA	AGCCACCAAA	AACCGCCTGA	661	TCACGGAATA	TCACAGAATA	TCACGGAATA	TCACGGAATA	TCACGGACTA	721	AATTTGATTC	AATTTGATTC	AATTTGATTC	AATTTGATTC	AATTTGATTC	781	TTGCCGCCAT	TTGCCGCCAT	TTGCCGCCAT	TTGCCGCCAT	TCGCCGCCAT
	V27cp	V33cp	Cmvv34	Çcp	Cmvw1		V27cp	V33 :p	Cmvv34	CCD	Cmvwl		V27cp	V33cp	Cmvv34	Ccp	Cmvwl		V27cp	V33cp	Cmvv34	CCD	Cmvw1

7/33

SUBSTITUTE SHEET (RULE 26)

ပ

									•													,	.
ATGCGCGCTG	ATGCGCGCTG	ATGCGCGCTG	ATGCGCGCTG	ATGCGTGCTG	096	GCGCTCGAGA	GCACTCGAGA	GCACTCGAGA	GCGCTCGAGA	AAACTAGAGA		1020	TCTGGGATGC	TCTGGGGTGC	TCTGGGGTGC	TCTGGAGTGC	TCACGGATGC	1080	TTTCTGTGGC	TTTCTGTGGC	TTTCTGTGGC	TCTCTGTGGC	TCTCAATCGC
TCTTTCGGCG	TCTTTCGGCG	TCTTTCGGCG	TCTTTCGGCG	CCTGTCCGAG		AAAAGACGAT	AAAAGACGAT	AAAAGACGAT	AAAAGACGAT	GAAAGACGAT			TATTCCCACG	CATTCCCACG	CATTCCCACG	CATTCCCACA	AATTCCTATC		T.CCCTCCGA	T. CCCTCCGA	T. CCCTCCGA	T. CCCTCCGA	TAAACTACAC
TGTTGTATGA	TGTTGTATGA	TGTTGTATGA	TGTTGTTTGA	TACTTTATGA		TCGTGTATTC	TCGTGTATTC	TCGTGTATTC	TCGTGTATTC	TGGTTTACTC			AGCACCAACG	AGCACCAACG	AGCACCAACG	AGCACCAACG	AGCATCAACG		CCCAGAACCC	TCCAGAACCC	CCAGAACCC	CCCAGAACCC	CCGAGAACGT
AACAACAAAT	AACAACAAAT	AACAACAAAT	AACAACAAAC	AACAATAAGT		TACGCCGTCC	TACGCCGTCC	TACGCCGTCC	TACGCCGTCC	TACGCCGTCC			GITGACATCG	GITGACGICG	GTTGACATCG	GTTGACATCG	GTCGACGTCG		TICCGIG. II	TTCTGTGCTT	TICCGIG. II	TTCCGTG. TT	TTACCGGCGT
AGTCCAAGCT	AGTCCAAGCT	AGTTCAAGCT	AGTCCAAGCC	AGTTCAGGCC		CATGAGAAAG	CATGAGAAAG	CATGAGAAAG	CATGAGAAAG	CATGCGTAAG		,	AGTACTTCAT	AGTACTTCAT	AGTACTTCAT	AGTACTTCAT	TGCACTTCAT		CAGTCTGA	CAGTATAA	CAGTTTGA	CAGTCTGA	GTCCGTGTGT
CTGCATCTGG	CTGCATCTGG	CTGCATCTGG	CCGCATCTGG	crecerces	901	ATATAGGTGA	ATATAGGCGA	ATATAGGTGA	ATATAGGTGA	ATATCGGCGA		961	CGGACGAGCT	CGGACGAGCT	CGGACGAGCT	CGGACGAGCT	AGGACGAGAT	1021	TCC	TCC	TCC	TCC	TCCCGACTTA
V27cp	V33cp	Cmvv34	Ocp	Cmvw1		V27cp	V33cp	Cmvv34	CCP	Cmvwl	•		V27cp	V33cp	Cmvv34	Ccp	Cmvw1		V27cp	V33cp	Cmvv34	COD	Cmvw1

IG. 4D

		_	GCTCACCAG 5	CGAATGCCGAGCTCACCAG	CAGGTACCT	RMM352>3	
				GCTTACGGCT	TGTCCATCCA	GGGGAACGGG	Cmvw1
				GCTTACGGCT	TGTCCATCCA	GTGAACGGGT	Ccp
					TGTCCATGG	GTGAACGGGT	mvv34
					TGTCCATGG	GTGAACGGGT	V33cp
					TGTCCATGG	GTGAACGGGT	V27cp
	1200					1141	
	GTTGTTGCGC	CCCTAAACGT	TGCCTGAAGT	TGCTTCAAAC	TTGGTAGTAT	GAGTGCTGAC	Cmvw1
	TTTACG	CACTAAACGT	TGTCTGGAGT	TACTACAAAC	TTGGCAGTTC	GGGAGCTGAG	Cap
	TTTACG	CACTAAACGT	TGTCTGAAGT	TGCTATAAAC	TTGGCAGTTC	GGGAGCTGAG	1mvv34
	TTTACG	CACTAAACGT	TGTCTGAAGT	TGCTGTAAAC	TTGGCAGTTC	GGGAGCTGAG	V33cp
•	TTCACG	CACTAAACGT	TGTCTGAAGT	TGCTATAAAC	TTGGCAGTTC	GGGAGCTGAG	V27cp
	1140					1081	

				_															•			
0 *	SRLNKTLAAG	SRLNKTLAAG	SRLNKTLAAG	SRLNKTLSAG	LRLNKTLAIG	LKLNRTLAIG	•	OOT	LLLPDSVTEY	LLLPDSVTEY	LLLPDSVTEY	LLLPDSVTEY	LSLPDSVTDY	LSLPDSVTDY	150	SAMFADGASP	SAMFADGASP	SAMFADGASP	SAMFADGASP	SAMFGDGNSP	SAMFGDGNSP	-
	ANFRVLSQQL	ANFRVLSQQL	ANFRVLSQQL	ANFRVLSQQL	AGLRALTQQM	AGLRALTQQM	-	ť	IDRGSYYGKR	IDRGSYYGKR	IDRESYYGKR	IDRGSYYGKR	IEKGSYFGRR	IEKGSYFGRR		ASSDLSVAAI	ASSDLSVAAI	ASSDLSVAAI	ASSDLSVAAI	SSSDLSVAAI	SSSDLSVAAI	
*	GSRSASSSD	GSRSASSSD	GSRSAPSSAD	GSRSARSAD	GSRSA. SGAD	GSRSA.SGAD			FTSITLKPPK	FTSITLKPPK	FTSITLKPPK	FTSITLKPPK	FTSITLKPPE	FTSITLKPPE		TVWVTVRKVP	TVWVTVRKVP	TVWVTVRKVP	TVWVTVRKVP	TVWVTVRKVP	TVWVTVRKVP	
*	R.NRRRRPRR	R.NRRRPRR	R.NHRRRPRR	R.NRRRPRR	RTSRRRRPRR	RTSRRRRPRR	4	c c	GSERCREGYT	GSERCKPGYT	GSERCREGYT	GSERCKSGYT	GSESCKPGYT	GSESCKPGYT	-	RVNPLPKFDS	RVNPLPKFDS	RVNPLPKFDS	RVNPLPKFDS	RINPLPKFDS	RVNPLPKFDS	
	MDKSESTSAG	MDKSESTSAG	MDKSESTSAG	MDKSESTSAG	MDKSGSPNAS	MDKSGSPNAS	T L	70	RPTINHPTFV	RPTINHPTFV	RPTINHPTFV	RPTINHPTFV	RPTLNHPTFV	RPTLNHPTFV	101	DKKLVSRIQI	DKKLVSRIQI	DKKLVSRIQI	DKKLVSRIQI	DKKLVSRIQI	DKKLVSRIQI	
	Cmvv34	Cmvv27	Cmvc	V33cp	Cmvq3	Cmvwl			Cmvv34	Cmvv27	Cmvc	V33cp	Cmvq3	Cmvw1		Cmvv34	Cmvv27	Cmvc	V33cp	Cmvq3	Cmvwl	
							•															

*	VLVYQYAASG VQANNKLL <u>YD</u> LSAMRADIGD MRKYAVLVYS KDDALETDEL	VLVYQYAASG VQANNKLL <u>YD</u> LSAMRADIGD MRKYAVLVYS KDDALETDEL	VLVYQYAASG VQANNKLLED LSAMRADIGD MRKYAVLVYS KDDALETDEL	VLVYQYAASG VQANNKLL <u>YD</u> LSAMRADIGD MRKYAVLVYS KDDALETDEL	VLVYQYAASG VQANNKLLYD LSEMRADIGD MRKYAVLVYS KDDKLEKDEI	VLVYQYAASG VQANNKLLYD LSEMRADIGD MRKYAVLVYS KDDKLEKDEI	201 * * 250	VLHVDIEHQR IPTSGVLPV*	VLHVDIEHQR IPTSGMLPV*	VLHVDIEHQR IPTSGVLPV*	VLHVDVEHQR IPTSGVLPV*	· VLHVDVEHQR IPISRMLPT*	ALHVDVEHOR IPISRMLPT*
151	VLVYC	VLVYÇ	VLVYC	VLVYÇ	VLVYÇ	DYVIV	201	VLHVI	VLHVI	VLHVI	VLHVE	VLHVE	AI,HVI
	Cmvv34	Cmvv27	CMVC	V33cp	Cmvq3	Cmvw1		Cmvv34	Cmvv27	Cmvc	V33cp	Cmvq3	Cmvw1

SUBSTITUTE SHEET (RULE 26)

13/33

FIG. 6B

FIG. 6C

15/33 **FIG. 6D**

16/33 **FIG. 7A**

WO 96/21018 PCT/US95/07234

17/33

FIG. 7B

FIG. 7C

19/33

FIG. 7D

009 480 240 AATTCGAGTTAATCCTTTGCCGAAATTTGATTCTA 3 I I R V N P L P K F D S T CTGCCTCCTCGGACTTATCCGTTGCCGCATCTT 4 I P K F D S I S D L S V A A I S S D L S V A A I S S D L S V A A I S CGGTACTGGTATCCGCGCTCGATCTGGAG 4 I P V V Q Y A B S G D I G D

-1G. 9A

	£1700	
DANFRVLSQQL Majority 40 DANFRVLSQQL CMV CAA SEQ DANFRVLSQQL CMV CARNA5 AA SEQ DANFRVLSQQL CMV V27 AA SEQ DANFRVLSQQL CMV V33 AA SEQ DANFRVLSQQL CMV V34 AA SEQ DANFRVLSQQL CMV V34 SEQ DANFRVLSQQM CMV WLAA SEQ	TFTSITLKPPK Majority TFTSITLKPPK CMV CARNAS AA SEQ TFTSITLKPPK CMV V37 AA SEQ TFTSITLKPPK CMV V33 AA SEQ TFTSITLKPPK CMV V34 AA SEQ TFTSITLKPPEC CMV W1 AA SEQ TFTSITLKPPEC CMV W1 AA SEQ	110 110 110 110 110 110 110 110
R S A S S A S S A S S A S S A S S A S S A S S S A S S S A S S S A S S S S A S S S S S A S	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	X X X X X X X X X X X X X X X X X X X
R R R	H P T F G H F F T F G G S G S G S G S G S G S G S G S G S	S V T E Y D K S V T E Y D K S V T E Y D K S V T E Y D K S V T E Y D K S V T E Y D K
A G R - N R R R R R R R R R R R R R R R R R	A G R P T I N A G R P T I N A G R P T I I N A G R P T I I N A G R P T I I N I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I I I I N I	X X L L L P D 90
M M M M M M M M M M M M M M M M M M M	S R L N K T L A S S R L N K T L A S R L N K T L A S R L N K T L A S R L N K T L A S T	IDRGSYYGIDRGSYYGIDRGSYYGGIDRGSYYGGIDRGSYYGGIDRGSYYGGIDRGSYYGGINAGSYYGGINGSYYGGINGSYYGGINGSYFG
	4 4 4 4 4 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

FIG. 9B

-		22/33	
ority	CMV C AA SEQ CMV CARNA5 AA SEQ CMV V27 AA SEQ CMV V33 AA SEQ CMV V34 AA SEQ CMV W1 AA SEQ	Majority CMV C AA SEQ CMV CARNA5 AA SEQ CMV V33 AA SEQ CMV V34 AA SEQ CMV W1 AA SEQ	Majority CMV C AA SEQ CMV CARNA5 AA SEQ CMV V27 AA SEQ CMV V33 AA SEQ CMV V34 AA SEQ CMV WL AA SEQ
TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAA 130 140 150	TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASG TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASG TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASG TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASG TVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASG	V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L 170 180 180 190 200 V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S AM R A D I G D M R K Y A V L V Y S K D D A L E T D E L V Q A N N K L L Y D L S E M R A D I G D M R K Y A V L V Y S K D D A L E T D E L	VLHVDIEHQRIPTSGVLPV- 210 220 VLHVDIEHQRIPTSGVLPV VLHVDIEHQRIPTSGVLPV VLHVDIEHQRIPTSGVLPV VLHVDVEHQRIPTSGVLPV VLHVDVEHQRIPTSGVLPV OVLHVDVEHQRIPTSGVLPV OVLHVDVEHQRIPTSGVLPV
(120 120 120 120 120	160 160 160 160	7000 7000 7000 7000

SUBSTITUTE SHEET (RULE 26)

FIG. 10A

	X	X	Х	X	Х	X	X	X	X	Х	Х	X	х	Х	X	X	Х	X	X	X	Majority
	•								-	33()								3	40	
1	-		•			•	•		•		•	•			•	•	•		•	•	carna5 cp cpexp33.seq
321	T	A	G	A	G	A	G	T	G	T	G	T	G	T	G	C	T	G	T	G	New ccp.seq15
1	-	•	•		•		•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	New cmvv34.seq5
247	•		•	•		•	•	•	•	T	G	A	G	T	C	G	T	G	T	G	New cmvwl.seql
1	•	•	-	•	•	•	•	-	-	٠.	•	•	•	•	•	•	•	•	•	•	New v27cp.seq5
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	New v33cp.seq8
·																					
	x	x	x	x	x	x	x	X	Х	х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Majority
										1										60	
_								<u> </u>	·	350) —						_			1	
1		•	•	•		•	•		•	•	•	•		•	•	•		•	•	•	carna5 cp cpexp33.seq
341	T	T	T	T	C	T	C	T	T	T	T	G	T	G	T	C	G	Ţ	A	G	New ccp.seq15
1	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	-	-	New cmvv34.seq5
258	T	T	T	T	G	T	A	T	T	T	T	G	C	G	T	C	T	T	A	G	New cmvwl.seq1
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	New v27cp.seq5
1	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	New v33cp.seq8
																٠				-	
	v	Y	y	¥	x	x	x	x	x	x	x	X	С	С	A	Т	G	G	Α	С	Majority
	<u> </u>									Ţ		 -								1	-
	•								_	37() ——								ڊ 	80	
1					-	•	•		•	•	•		<u>C</u>	С	A	T	G	G	A	C	carna5 cp cpexp33.seq
361	A	A	T	T	G	A	G	T	C	G	A				A						New ccp.seq15
1		-		-	-	•	•	•	•	•	•									C	New cmvv34.seq5
278	-	•	•	T	G	T	G	C	•		•	•	C	T	A	T	G	G	A		New cmvwl.seq1
1	•	-	-	-	•	•	•	•	•	•	•	•								C	New v27cp.seq5
1	-	•	•	-	•	•	•	•	•	•	•	•	C	<u>C</u>	<u>A</u>	T	<u>G</u>	G	A	C	New v33cp.seq8
					_	_	_	_					3	C	~	70	_	m	_	~	Majoritu
	<u>A</u>	<u>A</u>	<u>A</u>	<u>T</u>	C	<u>T'</u>	G	<u>A</u>	A	<u>. I.</u>	<u></u>	A	<u>A</u>		<u>C</u>	A	G	1	<u></u>	+	Majority
									-	390	0								4	100	
9	Α	À	Α	ፐ	<u></u>	T	G	A	A	T	С	A	A	С	С	A	G	T	G	C	carna5 cp cpexp33.seq
381	A														С						New ccp.seq15
9	A	Α	Α	T	С	T	G	Α	Α	T	C	Α	A	C	C	A	G	T	G	C	New cmvv34.seq5
291	A	Α	Α	T	C	T	G	G	Α	T	C	T	C	C	C	Α	A	T	G	C	New cmvwl.seql
9	A	A	Α	T	C	T	G	A	Α	T	C	A	A	C	C	A	G	T	G	C	New v27cp.seq5
9	A	A	A	T	C	T	G	A	A	T	C	A	<u>A</u>	<u>C</u>	<u>.C</u>	Α	G	<u>T</u>	G	C	New v33cp.seq8

FIG. 10B

TGGTCGTAACCGTCGACGTC Majority	
410 420	
	cpexp33.seq
401 TGGTCGTAACCATCGACGTC New ccp.s	
29 TGGTCGTAACCGTCGACGTC New Cmvv3 311 TAGTAGAACCTCCCGGCGTC New cmvv3	-
29 TGGTCGTAACCGTCGGCGTC New v27cg	
29 TGGTCGTAACCGTCGACGTC New v33cr	o.seq¤
GTCXXXCGCGTCGTGGTTCC Majority	7
430 440	
49 GTCCGCGTCGTGGTTCC carna5 cr	cpexp33.seq
421 GTC CGCGTCGTGGTTCC New ccp.s	
49 GTCCGCGTCGTGGTTCC New cmvv3	-
331 GTCGCCGCGTAGAGGTTCT New cmvwl 49 GTCCGCGTCGTGGTTCC New v27cr	
49 GTCCGCGTCGTGGTTCC New v33cr	_
CGCTCCGCCCCTCCTCCGC Majority	
	cpexp33.seq
438 CGCTCCGCCCCCCTCCTCGC New ccp.s 66 CGCTCCGCTTCCTCTTC New cmvv3	
351 CGGTCCGCTTCTGGTGC New cmvwl	-
66 CGCTCCTCTTCCTC New v27cp	
66 CGCTCCGCCCCTCCTCGC New v33cp	o.seq8
GGATGCTAACTTAGAGTCT Majority	
GGATGCTAACTTAGAGTCT Majority 470 480	·
470 480	cpexp33.seq
470 480 86 GGATGCTAACTTTAGAGTCC carna5 cr 458 GGATGCTAACTTTAGAGTCT New ccp.s	seg15
470 86 GGATGCTAACTTTAGAGTCC carna5 cr 458 GGATGCTAACTTTAGAGTCT New ccp.s 86 GGATGCTAACTTTAGAGTCT New cmvv3	seg15 4.seg5
470 480 86 GGATGCTAACTTTAGAGTCC carna5 cr 458 GGATGCTAACTTTAGAGTCT New ccp.s	seg15 4.seq5 .seg1

FIG. 10C

	T G T C G C A G C A G C T T T C G C G A	Majority
	490 500	
106	TGTCGCAGCTTTCGCGA	carna5 cp cpexp33.seq
478	TGTCGCAGCTTTCGCGA	New ccp.seq15
106	TGTCGCAGCTTTCGCGA	New cmvv34.seq5
388	T GACTCAGCAGATGCTGAAA	New cmvwl.seql New v27cp.seq5
106	T G T C G C A G C A G C T T T C G C G A G C A G C A G C T T T C G C G A	New v33cp.seq8
106	IGICGCAGCAGCATT	
		•
	C T T A A T A A G A C G T T A G C A G C	Majority
	510 520	
126	CTTAATAAGACGTTAGCAGC	carna5 cp cpexp33.seq
498	CTTAATAAGACGTTAGCAGC	New ccp.seq15
126	CTTAACAAGACGTTAGCAGC	New cmvv34.seq5
408	CTCAATAGAACCCTCGCCAT	New cmvwl.seql
126	CTTAACAAGACGTTAGCAGC	New v27cp.seq5
126	CTTAATAAGACGTTGTCAGC	New Agach.sede
-		
	TGGTCCAACTATTAACC	Majority
	530 540	
		carnat en chevn33 sed
146	TGGTCGAACTATTAACC	carna5 cp cpexp33.seq
518	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15
518 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5
518 146 428	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C	New ccp.seq15
518 146 428 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1
518 146 428	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5
518 146 428 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
518 146 428 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
518 146 428 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C C A C T C T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
518 146 428 146 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C A C C C A A C T A T T A A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
518 146 428 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T	New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8 Majority carna5 cp cpexp33.seq New ccp.seq15
518 146 428 146 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8 Majority carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5
518 146 428 146 146 146	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T	New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8 Majority carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvv34.seq5 New cmvw1.seq1
518 146 428 146 146 146 538 166	T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C T G G T C G T C C A A C T A T T A A C C A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T A C C C A A C C T T T G T A G G G A G T	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8 Majority carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5

FIG. 10D

	GA	_A	С	G	С	T	G	Т	Α	G	A	С	С	T	G	G	G	T	A	Majority
								Ę	570)								5.5	30	
186 558 186 468 186 186	G A G A G A G A G A	A A A A	C C A C	G G G G	0000	T T T	G G G	T T T T	A A A	G G A A	A A A	0000	C C C	T T C	G G G	G G G	G G F G	T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	A A A	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	C A	C	G	T	T	С	Α		<u>A</u>		C	Т	Α	T	T	A	C	C (1	Majority
206 578 206 488 206 206	C A C A C A C A	CCCC	G G F G	T T T T T	T T T	C C C C	A A A	00000	A A A A A	T T T T	00000	T T T T T	A A A A A	T T T T	T T T T T	A A A A	CCC			carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	TA	A	A	G	С	С	A		C 510		A	Α	A	A	T	A	G	A (Majority
226 598 226 508 226 226	T A T A T G T A T A	A A A A	A A A	G G A G	C C C C	C C C C	A A G A	C C C	0000	A A T A	A A G A	A A A	A A A A	A A A A	T T T	A A T A	G G G G	A (A (A (A (carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	<u>C G</u>	T	G	G	G	<u>T</u>	С		т 530		Т	T	<u>A</u>	С	G	G	T	A A		Majority
246 618 246 528 246 246	C G C G A A C G C G	T C A T	G G G	A G G G	G G F G	T T T	CCC	T A T	T T T	A A A	T C T T	T T T	A T A	CFC	G G G G	G G G	T T T	A A	A A A	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 10E

	AAGGTTGTTATTACCTGATT	Majority
	650 660	
266 638 266 548 266 266	A A G G T T G T T A C T A C C T G A T T A A G G T T G T T A C T A C C T G A T T A A G G T T G T T A C T A C C T G A T T A A G G T T G T C T T T G C C A G A T T A A G G T T G T T A T T A C C T G A T T A A G G T T G T T A T T A C C T G A T T	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	<u>C A G T C A C G G A A T A T G A T A A G</u> 670 680	Majority
286 568 286 568 286 286	C A G T C A C A G A A T A T G A T A A G C A G T C A C G G A A T A T G A T A A G C A G T C A C G G A A T A T G A T A A G C A G T C A C G G A C T A T G A T A A G C A G T C A C G G A A T A T G A T A A G C A G T C A C G G A A T A T G A T A A G C A G T C A C A C A G A A T A T G A T A A G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	AAGCTTGTTTCGCGCATTCA 690 700	Majority
306 678 306 588 306 306	A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A A A G C T T G T T T C G C G C A T T C A	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	<u>AATTCGAGTTAATCCTTTGC</u> 710 720	Majority
326 698 326 608 326 326	A A T T C G A G T T A A T T C T T T G C A A T T C G A G T T A A T C C T T T G C A A T T C G A G T T A A T C C T T T G C A A T C A G G G T T A A T C C T T T G C A A T T C G A G T T A A T C C T T T G C A A T T C G A G T T A A T C C T T T G C	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 10F

	CGAAATTTGATTCTACCGTG	Majority
	730 740	
346 718 346 628 346 346	C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G C G A A A T T T G A T T C T A C C G T G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8
	<u>TGGGTGACAGTCCGTAAAGT</u> 750 760	Majority
266 738 366 648 366 366	T G G G T G A C A G T C C G T A A A G T T G G G T G A C A G T C C G T A A A G T T G G G T G A C A G T T C G T A A A G T T G G G T A A A G T T C G G A A A G T T G G G T A A A G T T G G G T A A A G T T G G G T A A A G T T G G G T A A A G T T G G G T A A A G T T G G G T G A C A G T C C G T A A A G T	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	<u>TCCTGCCTCGGACTTAT</u> 770 780	Majority
386 758 386 668 386 386	T C C T G C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T A T C C T C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T T C C T G C C T C C T C G G A C T T A T	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8
	CCGTTGCCGCCATCTCTGCT 790 800	Majority
406 778 406 688 406 406	C C G T T G C C G C C A T C T C T G C T C C G C G C A T C T C T G C T C T G C T C C G C C A T C T C T G C T C T G C T C C G C C A T C T C T G C T C C G C C A T C T C T G C T C C C G C C A T C T C T G C T C C C G C C A T C T C T G C T C C C C C C A T C T C T G C T C C C C C C A T C T C T C T G C T C C C C C A T C T C T C T C T C T C	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 10G

	A	T	G	T	T	С	G	С	G	G	A	C	G	G	A	G	С	С	T C	_	Majority	
							-		8	310)								82	0.		
426 798 426 708 426 426	A A A A	T T T	G G G G	T T T	T	000000	G	0000	G	G G G G	A A A A	с с <u>Е</u> С	G	G G G G	A A T A	G A G	C A C	C C F C	T C T C T C		carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8	
	A	C_	C	G	G	T	A	C		G G		Т	T	T	A	T	С	A	G T		Majority	
446 818 446 728 446 446	A A A	C C C	CCCC	G G G G	G G G G	T	A		T T T T	G G G G	G G G G	T T T T	T	T T T T T		T	0000	A	G T G T G T		carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8	
	A	T	G_	С	T	G	С	A	_	<u>C</u>		G	G	A	G	T	C	C	A A		Majority	
466 838 466 748 466 466	A A	T T T	G G G G	0 0 0 0	C T T	G G G	C C C C	A A G A	T T T	C C C	T T C	G G G	G G G	A A A A	G G G	T T T	OFF F	C C C	A A A A A A A		carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8	
	G	<u>C</u> _	T	A	A	C	A	A	· · · · · · ·	A 370		A	T	T	G	T	T	G	T A	<u> </u>	Majority	
486 858 486 768 486 486	666666	c c c	CTCT	A A A A	A A A	C C C	A A A A	A A A A	O OFF O	A A A	A A A A	A G A	T T	T T T	G G A G	T T	T T T	G G FF G	T A T A T A T A		Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8	

FIG. 10H

	TGZ	<u> </u>	С	T	T T	C	Ģ	G	C	G I	T	G	C	G	СĢ	Majority
						ļ	890)							900	
506 878 506 788 506 506	T G A T G A T G A T G A T G A	AT AT AC AT	0 0 0	T T T	TT	C	G G C G	G G G G	C (A)	G A G A G A	T A T A T A	G G G	0000	G G G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	CTC	<u> </u>	<u>T</u>	Α '	<u>Ť_A</u>		<u> </u>		G į	<u>A</u> (<u> </u>	Т	G	A	G A 920	Majority
526 898 526 808 526 526	C T C C T C C T C	G A G A G A	T T T	A 'A 'A '	T A T A T C T A T A	G G G G	G G G G	T T C	G Z G Z G Z	A C	A A A	T T T	G G G	A	GAGTGA	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	AAC	3 T	Α	<u>C (</u>	G C	C	Ģ	T (<u>C (</u>	<u> </u>	, <u>C</u>	<u>G</u> _	T	G	TA	Majority
							930		•		,				940	
546 918 546 828 546 546	A A C A A C A A C A A C A A C	G T G T G T	A A A A		G C G C G C	C C C	G G G	T (T		T C T	0 0 0 0 C	G G G G	T T T	G G F G	T A T A	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	TTC	<u> </u>	A	<u>A</u> /	A G		<u>Ç</u> 950		<u>A</u>	<mark>г</mark> G	C	G	С	Т	<u>C G</u> 960	Majority
566 938 566 848 566 566	T T C T T C T T C T T C	A A G A	A A A	A A A A A	A G A G A G A G	A A A	C C C	G A G A G A	A	9 1 9 1 A F	CA	G A G	0000	T T T	C G C G A G C G	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 101

	AGACGGACGAGCTAGTACTT	Majority
	970 980	
586 958 586 868 586 586	A G A C G G A C G A G C T A G T A C T T A G A C G G A C G A G C T A G T A C T T A G A C G A G C T A G T A C T T A G A C G A G C T A G T A C T T A G A G A C G A G C T A G T A C T T A G A C G A C G A G C T A G T A C T T A G A C G A C G A G C T A G T A C T T A G A C G A C G A G C T A G T A C T T A G A C G A C G A G C T A G T A C T T	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	CATGTTGACATCGAGCACCA	
	990 1000	,
606 978 906 888 606 606	C A T G T T G A C A T C G A G C A C C A C A C A T G T T G A C A T C G A G C A C C A C A T G A T G T T G A C A T C G A G C A C C A C A C A T G T T G A C A T C G A G C A T C A C A T C A A C A T C G A G C A C C A C A C A T G T T G A C A T C G A G C A C C A C A C A T G T T G A C G T C G A G C A C C A C A C A T G T T G A C G T C G A G C A C C A C A C A T G T T G A C G T C G A G C A C C	New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	ACGCATTCCCACGTCTGGGG	Majority
	1010 1020	
626 998 626 908 626 626	A C G C A T T C C C A C G T C T G G A G A C G C A T T C C C A C A T C T G G A G A C G T C T G G A G A C G T C T G G G G G A C G T C T G G G G G A C G T C T G G G G A C G T C T G G G G A C G T C T G G G G A C G T C T G G G G A C G T C T G G G G A C G C G T C T G G G G G G A C G C G T C T G G G G G G G G G G G G G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 /New v27cp.seq5 New v33cp.seq8
	TGCTCCCAGTCTGATTCXTG	Majority
,	1030 1040)
646 1018 646 928 646 646	T G C T C C C A G T C T G A T T C . T G T G C T C C C A G T C T A T T C . C G T G C T C C C A G T T T A G T C C G G T G C T C C C A G T C T A G T C C G T G T G C T C C C A G T A T A A T T C . C G T G C T C C C A G T A T A A T T C . T G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 10J

	Т	G 2	<u>r 7</u>	Т	C	С	С	Х	X	X	X	X	X	Х	X	A	G	A	A	Majority
								1	05	0								10	60	
665 1037 665 948 665 665	T T T T T	G G G	r	_	A C	С	C					· · · ·			•	A A A	G G G	A A A A A	A A A A	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	С	C (Т	C	C	X	С	T	С	С	G	A	Т	Т	T	C	Т	G	T_	Majority
								10	07	0						·		10	80	
676 1048 675 968 676 677	c c c	C C	T T T	CCCACC	C C A	A	C C C	T T T	C C A C	C C C	G G A	A A C A	T T T	C T C	T T T	C C C	T A T	G G A	T T T	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	G	G (. G	G	G	A	G	С	Т	G	Α	G_	Т	Т	G	G	С	A	G	Majority
			-	- , -				10	9	0								11	00	
695 1067 694 988 695 696	G G	G C G C G C	G G G	G A G	G G G	A A T A	G G G	C C C	T T T	G G G	A A A	ဖ ပြေ ပ	T T T	T T T	G G G	G G G	C C T C	A A A A A	G G G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	T	r c	<u> </u>	G	С	T	A	T	Α	Α	Α	С	Т	G	T	С	Т	G.	A	Majority
								13	110	0								11	20	
715 1087 714 1008 715 716	T T T T T	T C	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	A G G	0000	T T T	A A T A	10H0H	A A A	A A A	A A A	0000	T T T	G G G G	T T C	C C C	T T T	G . G .	G A A A	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

FIG. 10K

	A	G	T	C	<u>A</u>	С	T	A	A	A	C	G	T	T	T	T	A	X	<u> X</u>	X	Majority
									1	13	0								1	140	-
735 1107 734 1028 735 736	A A A	G G G	T T T	C C C	A A C	0000	T T T	A A A	A A A A A	A A A A	C C C	G G G	T T T	TTGT	TT	T T C		т].	· · · ·		carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
														• .							
	<u>X</u>	Х	C	G	G	T	G	Α	A	Ç	G	G	G	T	T	G	T	C	C	<u>A</u> 1	Majority
			•						1	15	0								1	160	
752 1124 751 1048 752 736	G	•	0000	G G G	G G G	T T G T	G G G	A A A	A A A	C C C	G G G	G G G G	G G G G	T T T	T T T	G G G	T T T T	C C C C	C C C	A A A	Carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvw1.seq1 New v27cp.seq5 New v33cp.seq8
	\mathbf{T}_{-}	X	X	X _	х	X	X	Х	X	X	X	Х	X	X	X	X	X	X	X	X	Majority
		•								٦ 17										180	
770 1142 769 1067 770 771	Т				•	•	T	T·	A A	C	G G G	G G G	C . C .	T T	A A	A	A A	A A	T • T	G	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8
	X	X	X	X	X	X	X	X		Х 19		X	X	X	X	<u>x</u>	<u>X</u> _	X		<u>¥</u> 200	Majority
772 1162 770 1087 771 772	•	٠	•	-		•	•	•	•	-	•	•	•	•	•		•	•	-	-	carna5 cp cpexp33.seq New ccp.seq15 New cmvv34.seq5 New cmvwl.seq1 New v27cp.seq5 New v33cp.seq8

Intermonal Application No PC./US 95/07234

A. CLASSIFICATION OF SUBJECT MATTER A01H5/00 CO7K14/08 C12N5/10 C12N15/82 C12N15/40 IPC 6 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C07K A01H IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-36 BIOTECHNOLOGY, vol. 10, December 1992 pages 1562-1570, GONSALVES, D., ET AL. 'COMPARISON OF COAT PROTEIN-MEDIATED AND GENETICALLY-DERIVED RESISTANCE IN CUCUMBERS TO INFECTION BY CUCUMBER MOSAIC VIRUS UNDER FIELD CONDITIONS WITH NATURAL CHALLENGE INOCULATIONS BY VECTORS' see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. 'P" document published prior to the international filing date but "&" document member of the same patent family ister than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 01-02-96 23 October 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tx. 31 651 epo ni, Maddox, A Fax (+31-70) 340-3016

International Application No. PC., US 95/07234

		PC., US 95/U/234
(Continua	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PHYTOPATHOLOGY, vol. 81, no. 7, 1991 pages 794-802, QUEMADA, H.D., ET AL. 'EXPRESSIONOF COAT PROTEIN GENE FROM CUCUMBER MOSAIC VIRUDS STRAIN C IN TOBACCO: PROTECTION AGAINST INFECTIONS BY CMV STRAINS TRANSMITTED MECHANICALLY OR BY APHIDS' see the whole document	1-37
A	GENE, vol. 107, 1991 pages 181-188, NAMBA, S., ET AL. 'EXPRESSION OF THE GENE ENCODING THE COAT PROTEIN OF CUCUMBER MOSAIC VIRUS (CMV) STRAIN WL APPEARS TO PROVIDE PROTECTION TO TOBACCO PLANTS AGAINST INFECTION BY SEVERAL DIFFERENT CMV STRAINS' see the whole document	1-37
	J. GEN. VIROL, vol. 74, 1993 pages 319-322, NAKAJIMA, M., ET AL 'PROTECTION AGAINST CUCUMBER MOSAIC VIRUS (CMV) STRAINS O AND Y AND CHRYSANTHEMUM MILD MOTTLE VIRUS IN TRANSGENIC TOBACCO PLANTS EXPRESSING CMV-O COAT PROTEIN' see the whole document	1-37
۸.	EP,A,O 412 912 (BIOSEM) 13 February 1991 see the whole document	1-37
4	EMBL ACC. NO. M98501. REL.33, 13-8-1992. CUCMBER MOSAIC VIRUS COAT PROTEIN (CP) RNA PAPPU, S.S., ET AL. see sequence	1-37
•	WO,A,89 05858 (UPJOHN CO) 29 June 1989	10,11, 21,22, 32,33, 36,37
	see claims 5-7	
	EP,A,O 480 310 (TAKEDA CHEMICAL INDUSTRIES) 15 April 1992 see the whole document	11,22, 33,37
•	WO,A,91 04332 (UPJOHN CO) 4 April 1991	10,21, 32,36
	see the whole document	
	-/	
		j

Interr mal Application No PCI/US 95/07234

		PC1/03 95/0/234
C.(Continu	IBON) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	J. CELL. BIOCHEM. SUPPL., vol. 16F, 1992 page 222 TRICOLI, D. M., ET AL. 'TRANSGENIC SQUASH PLANTS EXHIBIT COAT PROTEIN MEDIATED PROTECTION UNDER FIELD CONDITIONS' see abstract Y232	38-49
A	J. CELL. BIOCHEM. SUPPL., vol. 18A, 1994 page 91 TRICOLI, D.M., ET AL. 'FIELD TRAIL RESULTS OF TRANSGENIC SQUASH AND CANTALOUPE PLANTS CONTAINING MULTIPLE VIRUS RESISTANCE' see abstract X1-126	38-49
A	WO,A,90 02184 (UPJOHN CO ;CORNELL RES FOUNDATION INC (US)) 8 March 1990 see the whole document	38-49
•		

ormation on patent family members

Interr Const Application No
PC 1/US 95/07234

Patent document cited in search report	Publication date		t family iber(s)	Publication date
EP-A-0412912	13-02-91	FR-A-	2651504	08-03-91
		DE-D-	69007370	21-04-94
		DE-T-	69007370	06-10-94
		ES-T-	2063312	01-01-95
		JP-A-	3103127	30-04-91
		US-A-	5422259	06-06-95
WO-A-8905858	29~06~89	AT-T-	107361	15-07-94
		AU-B-	2927689	19-07-89
	•	DE-D-	3850261	21-07-94
		DE-T-	3850261	27-10-94
		EP-A-	0391972	17-10-90
		JP-T-	3501680	18-04-91
EP-A-480310	15-04-92	JP-A-	5192054	03-08-93
WO-A-9104332	04-04-91	AT-T-	114720	15-12-94
	•	AU-B-	6284090	18-04-91
		DE-D-	69014644	12-01-95
•		DE-T-	69014644	04-05-95
		EP-A-	0491733	01-07-92
		ES-T-	2065545	16 - 02-95
		JP-T-	5500308	28-01-93
WO-A-9002184	08-03-90	AU-B-	639891	12-08-93
		AU-B-	3970489	23-03-90
		AU-B-	634168	18-02-93
		AU-B-	3987089	23 - 03-90
		CA-A-	1332718	25-10-94
		CA-A-	1329561	17-05-94
		DE-D-	68915282	16-06-94
		DE-T-	68915282	29-09-94
		EP-A-	0429478	05-06-91
	,	EP-A-	0429483	05-06-91
		JP-T-	4500151	16 - 01-92
	·	JP-T-	4500152	1 6- 01-92
		WO-A-	9002189	08-03-90