Periew. (Exam 1)
1) Generating Functions from recursions.
@ Catalan / Motzkin paths:
Required multiplication of power series
/ An
$\left(\sum_{n=0}^{\infty} a_n \times n\right) \left(\sum_{n=0}^{\infty} b_n \times n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} a_k b_{n-k}\right) \times n$
(b) Solve using ODEs/PDEs.
Memorite
Thereting Functions from Exponential Formula. (Unordered, Ordered) Best examples: restricted set partitions,
@ Best examples; restricted set partitions,
permutations ul cycle structure,
graphs.
3) Extracting information from Generating Functions.
@ Exact formulas using: partial fractions,
known sprips. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$
Menorite $\Rightarrow e^* = \underbrace{\sum_{i=1}^{n}}_{n_i}$
$\int_{\Omega} \int_{\Omega} \left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} \frac{x^n}{n}$
$4) (1+x)^{\alpha} = \sum_{n \in \mathcal{O}} {\binom{\alpha}{n}} x^n$
(5) Generate examples (small coefficients of x") w/ software.
@ Used bivariate Generating Functions: A(x, y)
is averages (expected number) ; partial derivatives.
by probability
is lick out even lodd terms: $\frac{1}{1} + (-1)^n = \{0, if n odd.$
Slick out even lodd terms: $\frac{1^{n}+(-1)^{n}}{2} = \begin{cases} 0, & \text{if } n \text{ odd.} \\ 1, & \text{if } n \text{ even.} \end{cases}$
d) As a statical
New (i) $\Gamma(q+1) \sim \overline{\iota_{R} q} \left(\frac{q}{e}\right)^{q}$; $\Gamma(n+1) = n!$ for $n \in \mathbb{Z}$. New (i) $\lim_{x \to R} (R - x)^{q} \cdot f(x) = C$ to, $a \in \mathbb{Z}$ $e^{n+q} \Gamma(q)$
Memor (i) lim (p-x) 4 f(x) = C to, a. => 9, ~ cnq-1
$R^{n+\alpha}\Gamma(\alpha)$
(Recall assumptions)

- 9 Basic Combinatorial Structures. 6 Set Partitions 6 Permutations is Notation: Cycle, one-line C Lattice paths (in xy-plane) ureg. Catalan Motzkin (5) Permutation Statistics. @ des(0), exc(0), inv(0), maj(0) (b) [n], [n]!, [n]
 - ((n)! = \sum q inv(o)

Cards = Labeled Trees => Hards = Forest.

(Add a condition to the cards.)

In exponential formula, have cards which are labeled trees with one distinguished vertex.

Ex. A cord when n=6:

A hand of size n corresponds to a labeled tree with n+1 vertices.

Becomes a card of size utl.

Assume there are n^{-2} labeled trees.

The exponential formula (taking y=1) says: $\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$ $\frac{\sum_{n=0}^{\infty} \left(\frac{1}{n} + \frac{1}{n} \right) \frac{x^n}{n!} = C$

Ex. What is the average # of cycles in a permutation of n with no cycles of length 4 or more?

By exponential formula: $\sum_{n=0}^{\infty} \left(\sum_{\sigma \in S_n} y \text{ the Golds in } \sigma \right) \frac{x^n}{n!} = e^{y\left(\frac{1}{1!} \times + \frac{1}{2!} \times^2 + \frac{2}{3!} \times^3\right)}$ The Galactic formula: $\frac{x^n}{n!} = e^{y\left(x + \frac{x^2}{2} + \frac{x^3}{3}\right)}$ $= e^{y\left(x + \frac{x^2}{2} + \frac{x^3}{3}\right)}$ The formula:

"The number of permytations $\sigma \in S_n$ with needed property is the coefficient of $\frac{x^n}{n!}$ in $e^{x+x^n/2+x^n/3}$ (plug y=1)

"The total number of cycles in such or is the coefficient of $\frac{x^n}{n!}$ in $\frac{\partial}{\partial y} \left(e^{y(x+\frac{x^2}{2} + \frac{x^3}{3})} \right) \Big|_{y=1}$

 $\frac{F_{x}}{F_{ind}}$ maj (3 14 2 6 5) position: 1 + 3 + 5 = 9