Maximum Flow

Flow networks, flow, and max flow problem.

Residual networks, Ford-Fulkerson algorithm.

Cuts and max-flow min-cut theorem.

Edmonds-Karp algorithm.

Matching in bipartite graphs – application of max flow.

Flow Networks

Directed graph G = (V, E).

Edge capacities $c(u,v) \ge 0$ for all $u, v \in V$.

Source vertex s.

Sink vertex t.

Every vertex is reachable from s. Every vertex can reach t.

Flow

Flow: Real-valued function $f: V \times V \rightarrow R$ satisfying:

Capacity constraint: $0 \le f(u,v) \le c(u,v)$ for all $u, v \in V$

Flow conservation: $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$ for all $u \in V$ -

{ s,t }

Flow value:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Droblem, Nevimine flow, value subject to the constraints

Assigning Workers to Machines

High Speed Railroad Network

Multiple Sorces and/or Sinks

Multiple Sorces and/or Sinks

Ford-Fulkerson Method

initialize flow f to 0-flow.

while there is a flow augmenting path do augment f.

Ford-Fulkerson Method

initialize flow f to 0-flow.

while there is a flow augmenting path do augment f.

Something is Wrong!

Residual Networks

Flows in residual and original networks

Let f be a flow in network G = (V, E)

Let f' be a flow in the residual network G_f of G induced by the flow f.

Let (f + f')(u,v) = f(u,v) + f'(u,v) - f'(v,u) for all (u,v) in E. f + f' is a flow in G with value |f+f'| = |f| + |f'|.

f + f' is a flow

- Capacity constrant: Prove that $(f + f')(u,v) \le c(u,v)$
- Conservation constraint: Prove that

$$\sum_{v \in V} (f + f')(u, v) = \sum_{v \in V} (f + f')(v, u)$$

- Flow value: Prove that | f + f' | = | f | + | f' |
- These follow directly from the definitions, see Cormen et al., Lemma 26.1

Flow Between Subset

- Let G = (V, E) be a flow network.
- Let X and Y be two subsets of V.
- Let f be a flow in G.
- Define

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y) - \sum_{x \in X} \sum_{y \in Y} f(y,x)$$

Cut of Flow Network

Let G=(V,E), $S\subseteq V$, T=V-S, $s\in S$, $t\in T$.

Partition (S, T) of V is then called a cut.

Net flow across the cut (S,T) for a flow f is defined to be f(S,T).

Capacity c(S,T) of the cut (S,T) is defined to be

$$\sum_{u \in S, v \in T} c(u, v)$$

Minimum cut of a flow network is a cut of minimum capacity (over all cuts of the network).

