高等数学(理工科)标准化作业参考答案

第一章 函数与极限

第1节

1. (1) [0,3]; (2) [-5,5) 2. (1) [-1,1]; (2) $\bigcup [2n\pi, (2n+1)\pi]$, $(n \in \mathbb{Z})$. 3. $f[g(x)] = \begin{cases} 1, & x < 0, \\ 0, & x = 0, \\ -1, & x > 0. \end{cases}$

第2节

1-2. 略

第3节

1. 略

$$2. \lim_{x \to 0^{-}} f(x) = -1; \lim_{x \to 0^{+}} f(x) = 1. \lim_{x \to 0^{-}} g(x) = -\frac{\pi}{2}; \lim_{x \to 0^{+}} g(x) = \frac{\pi}{2}.$$

$$\lim_{x \to 0^{-}} h(x) = 0; \lim_{x \to 0^{+}} h(x) = +\infty.$$

第4节

1. (1) ∞ ; 0. (2) 0^- ; 0^+ . 2. 略.

第5节

1. (1) $3x^2$; (2) $\frac{3}{4}$; (3) $\frac{1}{4}$; (4) 8; (5) 3; (6) $-\frac{1}{3}$; (7) $-\frac{1}{2}$; (8) 2.

2. (1) 0; (2) 0; (3) 0.

第6节

1. (1) 0; (2) 1; (3) 1; (4) 2; (5) 2; (6) 8.

2. (1) e^{-2} ; (2) e^{-1} ; (3) e; (4) \sqrt{e} . 3. $\lim_{x \to \infty} x_n = 1$. 4. $\lim_{x \to \infty} x_n = 1$.

第7节

1. (1) 2; (2) $\frac{1}{2}$; (3) -1; (4) 1; (5) 3; (6) $\frac{1}{2}$.

2. $a = -\frac{3}{2}$.

第 8-9 节

1. (1) x = 1为第二类无穷间断点;

(2) x = 0 为第一类跳跃间断点; x = 1 为第一类可去间断点; x = -1 为第二类 (无穷) 间断点.

(3) $x = 0, x = k\pi + \frac{\pi}{2}(k = 0, \pm 1, \pm 2, \cdots)$ 为第一类可去间断点; $x = k\pi(k = \pm 1, \pm 2, \cdots)$ 为第二类无穷间断点.

(4) x=0 为第一类跳跃间断点.

2. a = 1, b = 2. 3. a = e, 第二类无穷间断点.

第 10 节 略

第二章 导数与微分

第1节

3. (1) 1; (2) 12. 4. a = 2, b = -1.

5. 连续且可导. 6. $f(x) = \begin{cases} \frac{1}{1+x}, & x \ge 0, \\ 1, & x < 0. \end{cases}$

第2节

1. (1) $2x \ln x + x + 2a^x \ln a$; (2) $-2 \tan 2x$; (3) $2x \sec(x^2) \tan(x^2) + \frac{1}{x} \sec^2 \ln x$;

(4) $\frac{2(1-x^2)}{(1+x^2)^2} - \frac{2}{\sqrt{1-x^2}};$ (5) $\frac{e^x}{\sqrt{1+e^{2x}}};$ (6) $\frac{1}{2(1+x^2)}.$

2. (1) 3; (2) 1. 3. (1) $3x^2f'(x^3)$; (2) $\frac{f'(\arctan x)}{1+x^2} + \frac{f'(x)}{\sqrt{1+f^2(x)}}$;

(3) $e^{f(x)}f'(x) + 2e^x f(e^x)f'(e^x);$ (4) $\sin 2x f'(\sin^2 x) - \sin x f'(\cos x) - \frac{f'(x)}{f(x)}.$

第3节

1. (1) $-2\sin 2x - 2x\cos 2x$; (2) $-\frac{x}{(1+x^2)^{\frac{3}{2}}}$; (3) $4e^{4x}f''(e^{2x}) + 4e^{2x}f'(e^{2x})$;

(4) $\frac{f''(x)f(x) - f'(x)^2}{f^2(x)}$.

 $2. (-1)^n 4^n$.

3. $(-1)^n e^{-x} [x^2 - 2(n-1)x + (n-1)(n-2)]$. 4. $\frac{\sqrt{2}}{2} n!$

第4节

1. (1) $\frac{y - e^y}{1 - x + xe^y}$; (2) $\frac{y^2 - 2x\cos(x^2 + y^2) - e^x}{2y\cos(x^2 + y^2) - 2xy}$; (3) $1 - \frac{\pi}{2}$.

2. (1) $y\left(\frac{\ln x}{1+x^2} + \frac{\arctan x}{x}\right)$; (2) $y\left(\frac{1}{2(x+2)} - \frac{4}{3-x} - \frac{5}{x+1}\right)$; (3) $\frac{y^2 + xy}{xy - 3x^2}$.

3. $\frac{2}{t}$. 4. $\frac{1}{e^t(1+t)^3}$.

第5节

1. (1) dx; (2) (e+1) dx.

2. (1) $\frac{\mathrm{d}x}{\sqrt{x^2 + a^2}}$; (2) $\frac{\sec^2\frac{x}{2}}{4\sqrt{\tan\frac{x}{2}}} \,\mathrm{d}x$; (3) $(3\mathrm{e}^{3x}\cos 2x - 2\mathrm{e}^{3x}\sin 2x) \,\mathrm{d}x$; (4) $\frac{-1}{1 + \mathrm{e}^x} \,\mathrm{d}x$.

2

3. $\frac{x+y}{x-y} dx$. 4. $\left(\frac{f'(\ln x)}{x} + f'(\sin^2 x)\sin 2x\right) dx$.

5. $(3t^2 + \sec t \cdot \tan t) \frac{\sqrt{1 - t^4}}{2t} dx$. 6. $\triangle y = 0.0802, dy = 0.08$.

第三章 微分中值定理与导数的应用

第1节略

第2节

1. $(1) \frac{4}{e}$; (2) 1; (3) 2; (4) 1; $(5) \frac{1}{2}$; $(6) +\infty$; (7) 1; $(8) e^{-\frac{1}{6}}$. 2. 4

第3节

1. $\sqrt{x} = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{16}\xi^{-\frac{5}{2}}(x-4)^3$, ξ 介于 4 与 x 之间.

2. $\frac{1}{x} = -1 - (x+1) - (x+1)^2 - (x+1)^3 + \xi^{-5}(x+1)^4$, $\xi \uparrow f - 1 \neq x \not \gtrsim \emptyset$.

3. $xe^x = x + x^2 + \frac{1}{2}x^3 + \dots + \frac{1}{(n-1)!}x^n + o(x^n)$.

第4节

1.~(1) 单调增区间 $(-\infty,-1),(3,+\infty);$ 单调减区间 (-1,3);

(2) 单调增区间 $(-\infty,0),(1,+\infty)$; 单调减区间 (0,1). 2. 略

3. (1) 凹区间: $(-\infty,0)$, $(1,+\infty)$; 凸区间: (0,1); 拐点: (0,1), (1,0).

(2) 凹区间: $(2, +\infty)$; 凸区间: $(-\infty, 2)$; 拐点: $(2, 2e^{-2})$.

第5节

1. (1) x = 0 处, y 取得极小值 0.

(2) $x = -\frac{\pi}{6}$ 时, y 取得极小值 $-\frac{\sqrt{3}}{2} + \frac{\pi}{6}$; $x = \frac{\pi}{6}$ 时, y 取得极大值 $\frac{\sqrt{3}}{2} - \frac{\pi}{6}$.

2. $a=2, f\left(\frac{\pi}{3}\right)=\sqrt{3}$ 是极大值. 3. $y_{\text{max}}=11, y_{\text{min}}=-14.$

4. 最大项 $\{\sqrt[3]{3}\}$. 5. $\sqrt{2}a, \sqrt{2}b$. 6. $h = r = \sqrt[3]{\frac{V}{\pi}}$.

第6节

1. 铅直渐近线 x = 1, 斜渐近线 $y = \frac{1}{4}x - \frac{5}{4}$. 2. 略.

第7节

1. $K = \frac{1}{13\sqrt{26}}, \rho = 13\sqrt{26}.$

第四章 不定积分

第1节

1. (1) $\frac{1}{3}e^{3x} + C$; (2) $-\frac{1}{x} + C$; (3) $\frac{1}{a(n+1)}(ax+b)^{n+1}$.

2. (1) $\frac{1}{3}x^3 - x + \arctan x + C$; (2) $\frac{1}{3}(x-a)^3 + C$; (3) $\frac{6}{11}x^{\frac{11}{6}} + \frac{3}{4}x^{\frac{4}{3}} - \frac{2}{3}x^{\frac{3}{2}} - x + C$;

(4) $-4\cot x + C$; (5) $\sin x + \cos x + C$; (6) $\frac{1}{2}e^{2x} + \frac{2}{\ln 2 + 1}(2e)^x + \frac{4^x}{\ln 4} + C$;

(7) $\tan x - x + C$; (8) $x < 0, -\frac{1}{2}x^2 + C$; $x \ge 0, \frac{1}{2}x^2 + C$.

3. $x \ge 0, e^x + C; \quad x < 0, \frac{1}{2}x^2 + x + 1 + C.$

第2节

1. (1)
$$-\frac{1}{6057}(2-3x)^{2019} + C;$$
 (2) $-\frac{1}{2}e^{-x^2} + C;$ (3) $\frac{1}{9}\tan^9 x + C;$ (4) $\ln|\ln x| + C;$

(5)
$$\arctan e^x + C;$$
 (6) $\frac{1}{\sqrt{2}}\arctan\left(\frac{x\ln x}{\sqrt{2}}\right) + C;$ (7) $\ln\left|\frac{1-\sqrt{1-x^2}}{x}\right| + C;$

(8)
$$\frac{1}{2} \ln |x^2 - 2x + 3| + \frac{1}{\sqrt{2}} \arctan \frac{x - 1}{\sqrt{2}} + C;$$
 (9) $\sqrt{x^2 - 4} - 2 \arccos \frac{2}{x} + C;$

(10)
$$\arcsin x + \sqrt{1 - x^2} + C$$
. 2. $-\frac{1}{2} (1 - x^2)^2 + C$.

第3节

1. (1)
$$-x\cos x + \sin x + C$$
; (2) $x\arcsin x + \sqrt{1-x^2} + C$; (3) $2x\tan x + 2\ln|\cos x| + C$;

(4)
$$x \ln(1+x^2) - 2x + 2 \arctan x + C;$$
 (5) $\left(\sqrt{x} - \frac{1}{2}\right) e^{2\sqrt{x}} + C;$

(6)
$$-\frac{1}{2}x^2 + x \tan x + \ln|\cos x| + C;$$
 (7) $-\sqrt{1-x^2} \cdot \arccos x - x + C;$

(8)
$$-(e^{-x}+1)\ln(1+e^x) + x + C;$$
 (9) $-\frac{1}{2}\sec x \cot x + \frac{1}{2}\ln|\sec x + \tan x| + C;$

(10)
$$(x+1) \arctan \sqrt{x} - \sqrt{x} + C$$
.

2.
$$-x\sin x - \cos x + C$$
; $-x\cos x + \sin x + C$.

盆 4 节

1. (1)
$$\frac{1}{2} \ln|x+1| - \ln|x+2| + \frac{1}{2} \ln|x+3| + C;$$
 (2) $\frac{1}{4} \ln\left|\frac{x-1}{x+1}\right| - \frac{1}{2} \arctan x + C;$

(3)
$$\frac{1}{2}(x-1)^2 + \ln|x+1| + C;$$
 (4) $-x + \frac{1}{2}\ln(x^2 + x + 1) - \sqrt{3}\arctan\frac{2x+1}{\sqrt{3}} + C;$

(5)
$$\ln|1+x| - \arctan x + C;$$
 (6) $\frac{1}{2}\ln(1+x^2) + \frac{1}{2(1+x^2)} + C;$

(7)
$$\frac{2\sqrt{3}}{3} \arctan \frac{2\tan\frac{x}{2}+1}{\sqrt{3}} + C;$$
 (8) $\frac{2}{5} \ln|\cos x + 2\sin x| + \frac{1}{5}x + C;$

(9)
$$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(1 + \sqrt[6]{x}) + C;$$
 (10) $x - 4\sqrt{x+1} + 4\ln(1 + \sqrt{1+x}) + C.$

第五章 定积分及其应用

第1节

1.
$$(1) \frac{9}{2}\pi;$$
 $(2) 0.$

2. (1)
$$\int_0^1 e^x dx \ge \int_0^1 (1+x)dx$$
; (2) $\int_0^1 \ln x dx \le \int_0^1 (\ln x)^2 dx$.

3. (1)
$$\frac{\pi}{9} \le \int_{\frac{\sqrt{3}}{3}}^{\sqrt{3}} x \arctan x dx \le \frac{2}{3}\pi;$$
 (2) $-2e^2 \le \int_2^0 e^{x^2 - x} dx \le -2e^{-\frac{1}{4}}.$

第2节

1. (1) $y' = 2x\sqrt{1+x^4}$; (2) $y' = \int_{x^2}^{\sin x} \ln(1+t^2) dt + x \ln(1+\sin^2 x) \cos x - 2x^2 \ln(1+x^4)$.

2. (1) 1; (2) 12.

3. (1) $1 + \frac{\pi}{4}$; (2) $\frac{3}{2}$; (3) $\frac{2\pi}{3} - \sqrt{3}$; (4) 4; (5) $\frac{4}{5}$. 4. $\frac{8}{3}$. 5. $\frac{1}{5}$ 8.

第3节

1. (1) $\frac{31}{10}$; (2) $\frac{\pi}{6} - \frac{\sqrt{3}}{8}$; (3) $\frac{1}{\sqrt{e}} - \frac{1}{e}$; (4) $\sqrt{3} - \frac{\pi}{3}$; (5) $\frac{a^3}{3}$; (6) $4 - 2 \arctan 2$.

2. (1) $\frac{1}{4}e^2 + \frac{1}{4}$; (2) $\frac{\pi}{4} - \frac{1}{2}$; (3) $\frac{1}{2}(e\sin 1 - e\cos 1 + 1)$; (4) $2 - \frac{2}{e}$.

3. (1) 0; (2) $\frac{2}{3} \left(\sin \frac{1}{2} \right)^3$. 4. $2 \ln 2 + 1 - \ln(e+1)$.

第4节

1. $\frac{\pi}{2}$; (2) π ; (3) $\frac{\pi}{2}$; (4) 发散. 2. $c = \frac{5}{2}$.

第六章 定积分的应用

第2节

1. 9. 2. $\frac{3}{8}\pi a^2$. 3. $\frac{\pi}{6} + \frac{1-\sqrt{3}}{2}$. 4. $\pi(e-2)$, $\frac{\pi}{2}(e^2+1)$. 5. 8a.

第3节

1. $\sqrt{2} - 1$. 2. 17.3 N. 3. $\overrightarrow{F} = \left(\frac{Gm\rho l}{a\sqrt{a^2 + l^2}}, Gm\rho \left[\frac{1}{a} - \frac{1}{\sqrt{a^2 + l^2}}\right]\right)$.

第七章 向量代数与空间解析几何

第1节

1. $(x_0, y_0, 0), (0, y_0, z_0), (x_0, 0, z_0), (x_0, 0, 0), (0, y_0, 0), (0, 0, z_0).$

2. (1) (a, b, -c), (-a, b, c), (a, -b, c);

(2) (a, -b, -c), (-a, b, -c), (-a, -b, c); (3) (-a, -b, -c). 3. (0, 1, -2).

4. 模 $\left|\overrightarrow{M_1M_2}\right|=2;$ 方向余弦 $\cos\alpha=-\frac{1}{2},$ $\cos\beta=-\frac{\sqrt{2}}{2},$ $\cos\gamma=\frac{1}{2};$ 方向角 $\alpha=\frac{2\pi}{3},$ $\beta=\frac{3\pi}{4},$ $\gamma=\frac{\pi}{3}.$

5. z = -4, 最小值为 $\frac{\pi}{4}$. 3. $\mathbf{c}^o = \pm \frac{\sqrt{6}}{6}(2, 1, 1)$.

6. $\overrightarrow{PC} = \lambda \overrightarrow{PA} + (1 - \lambda) \overrightarrow{PB}$ (λ 为任意实数). 7. 略.

第2节

1. $\overrightarrow{AB} \cdot \boldsymbol{a} = 8$; $\overrightarrow{AB} \times \boldsymbol{a} = 4\boldsymbol{i} + 2\boldsymbol{j}$; $(\overrightarrow{AB})_{\boldsymbol{a}} = \frac{8}{\sqrt{6}}$.

2. (1) 原式= $|a|^2 |b|^2$; (2) 原式= $a \times c$. 4. $\sqrt{\frac{21}{5}}$. 3. 略.

第3节

1. 2x - 6y + 2z - 7 = 0.

2. (1) $4(x^2 + y^2) = (3z - 1)^2$; (2) $x^2 + z^2 = 4y$; (3) $\frac{y^2}{4} - \frac{x^2 + z^2}{9} = 1$.

3. (1) $z = e^{-x^2 - y^2}$; (2) 双叶双曲面, 中心轴为 x 轴. 4-5. 略.

第4节

2. 曲线 Γ 在 xOy 面上的投影: $\begin{cases} x^2+y^2=ax, \\ z=0. \end{cases}$ 在 xOz 面上的投影: $\begin{cases} z^2+ax=a^2, \\ y=0. \end{cases}$ 在 yOz 面上的投影: $\begin{cases} z^4+a^2\left(y^2-z^2\right)=0, \\ x=0. \end{cases}$

3. $\begin{cases} x = \sqrt{2}\cos\theta, \\ y = \sqrt{2}\cos\theta, \quad (0 \le \theta \le 2\pi). \end{cases}$ 4. $\{(x,y)|2x^2 + y^2 \le 1\}.$ $z = 2\sin\theta,$

第5节

1. x - 3y - 2z = 0. 2. 2x + 3y + z = 6. 3. x + 3y = 0 \cancel{x} 3x - y = 0. 4. $d = \sqrt{3}$.

第6节

1. $\left(-\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$. 2. $\frac{x-4}{2} = y+1 = \frac{z-3}{5}$

3. 8x - 9y - 22z = 59. 4. $l': \begin{cases} y - z - 1 = 0 \\ x + y + z = 0 \end{cases}$.

第7节

1-2. 略.