ALERT!

- 1. The objective of this lab is understanding sparse matrices and addressing formula.
- 2. This is an individual lab, you are strictly **NOT** allowed to discuss your solution with fellow colleagues, even not allowed asking how is he/she is doing, it may result in negative marking. You can ONLY discuss with your TAs or with me.
- 3. Beware of memory leaks and dangling pointers.
- 4. Pay attention to **GOOD coding conventions** e.g.
 - Proper indentation.
 - Meaning variable and function names.
 - Use camelCase naming convention
 - Use meaningful prompt lines/labels for all input/output
- 5. Anyone caught in act of plagiarism would be awarded an "F" grade in this Lab.

Task 01: [5+5 Marks]

When all elements either above or below the main diagonal of a square matrix are zero, then matrix is said to be triangular. Figure below shows a lower and an upper triangular matrix.

We have already discussed the above two (lower left and upper right) triangular matrices and their addressing formulae if the matrix is stored in a linear array in row major order. Now obtain an addressing formula for elements in the:

a) Lower right triangle if it is stored in row major order in a linear array with A[0][0] being the first element.

b) Upper left triangle if it is stored in row major order in a linear array with A[0][0] being the first element.

Issue Date: Oct 24, 2019

CMP 210 - Data Structures and Algorithms Fall 2019 LAB-5

Task 02: [10 Marks]

Develop a class for 2D matrices of any generic type (using templates), This class should store the elements of the 2-D matrix in a linear array of generic type created dynamically. Thus you will have to use a mapping formula to store and retrieve items.

Your class should support following operations:

1. Constructor, destructor, Copy-constructor.

You should always implement constructor, destructor and copy-constructor in case of dynamic memory allocation.

2. getElement (i, j)

Get the value of element stored at ith row and jth column.

3. setElement(i, j, val)

Set the value of element stored at ith row and jth column.

4. printMatrix()

This function should print the matrix on console (in 2D matrix form).

5. printMatrix(matrix)

This function should print the given matrix on console (in 2D matrix form).

6. transpose ()

This function should take the transpose of the matrix.

7. printSubMatrix(r1, r2, c1, c2)

This function should display the sub matrix specified by given arguments.

8. Overload + operator

To adds two matrices.

9. clear(n)

To clear the first n rows and columns of the matrix.

Write a main program providing menu to make it easy to use and test matrix class functionalities. No marks shall be given without this driver program.

Task 03: [5+5 Marks]

Write a function which prints the Row-Major based ND-array formula against a given number of dimensions. The header of the function is given bellow

void printND(int dimensions)

For example if the function is called for 3 dimensions i.e printND(3) then it should print

 $i_1D_2D_3+i_2D_3+i_3$

Here, i_1 , i_2 , i_3 represent the index set and D_1 , D_2 , D_3 represents dimension set. Also write a main program to test this function with appropriate messages.

Issue Date: Oct 24, 2019