PROJECT WORK

"Verilog Implementation of Digital Circuit Designs on FPGA using Vivado"

Topic: Traffic Light Controller Design using Verilog

Submitted by: Ashish Kumar (2300116)

2nd Year Electronics and Communications Engineering
Govind Ballabh Pant Institute of Engineering &
Technology, Ghurdauri, Pauri Garhwal

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to my guide Professor Vaishali Ma'am for their exemplary guidance, monitoring and constant encouragement throughout the course of this project.

The blessing, help and guidance given by her time to time shall carry me a long way in the journey of life on which I am about to embark.

My thanks and appreciations also go to my colleague of Codec Technologies in developing the project and people who have willingly helped me out with their abilities

PROBLEM STATEMENT

The aim of the project is to design FPGA –Based Traffic Light Controller with Priority System. Let's understand the problem statement through the image given below.

The six cases present here eventually turn to the six states.

This is the state diagram:

From the state diagram we for the state table:

State	Table:	ern o		5 E To	71	1
Present State ABC	Input	NS A+ B+C+	M± RYG	m ₂ RYG	BAT RYG	S
001	TMG	0010	001	001	too.	10.0
010	TY TY	010	001	010	100.	100
011	77G 77G	0 1 1	001	100	001	T00
100	TY TY	101	010	100	010	100
101	TSG TSG	101	100	100	100	001
110	TY	0.01	100	100	100	010
111	-	000	000	000	000	000

VERILOG CODE

```
`timescale 1ns / 1ps
// Company:
// Engineer:
// Create Date: 09.08.2025
// Design Name:
// Module Name: Traffic_Light_Controller
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module Traffic Light Controller(
  input clk,rst,
  output reg [2:0]light_M1,
  output reg [2:0]light S,
  output reg [2:0]light_MT,
```

```
output reg [2:0]light_M2
);
parameter S1=0, S2=1, S3=2, S4=3, S5=4,S6=5;
reg [3:0]count;
reg[2:0] ps;
parameter sec7=7,sec5=5,sec2=2,sec3=3;
always@(posedge clk or posedge rst)
  begin
  if(rst=1)
  begin
  ps \le S1;
  count<=0;
  end
  else
    case(ps)
       S1: if(count<sec7)
            begin
            ps<=S1;
            count<=count+1;</pre>
            end
         else
            begin
```

```
ps<=S2;
    count<=0;
     end
S2: if(count<sec2)
    begin
    ps<=S2;
    count<=count+1;</pre>
     end
  else
    begin
    ps<=S3;
    count \le 0;
     end
S3: if(count<sec5)
    begin
    ps<=S3;
    count<=count+1;</pre>
     end
  else
    begin
    ps<=S4;
    count<=0;
     end
S4:if(count<sec2)
    begin
    ps<=S4;
    count<=count+1;</pre>
     end
```

```
else
     begin
     ps<=S5;
     count \le 0;
     end
S5:if(count<sec3)
     begin
     ps<=S5;
     count<=count+1;</pre>
     end
  else
     begin
     ps<=S6;
     count \le 0;
     end
S6:if(count<sec2)
     begin
     ps<=S6;
     count<=count+1;</pre>
     end
  else
     begin
     ps<=S1;
     count<=0;
     end
default: ps<=S1;</pre>
```

```
endcase
end
always@(ps)
begin
  case(ps)
    S1:
    begin
      light_M1<=3'b001;
      light_M2<=3'b001;
      light_MT<=3'b100;
      light_S<=3'b100;
    end
    S2:
    begin
      light_M1<=3'b001;
      light_M2<=3'b010;
      light_MT<=3'b100;
      light_S<=3'b100;
    end
    S3:
    begin
      light_M1<=3'b001;
      light_M2<=3'b100;
      light_MT<=3'b001;
      light_S<=3'b100;
    end
    S4:
    begin
```

```
light_M1<=3'b010;
 light_M2<=3'b100;
 light_MT<=3'b010;
 light_S<=3'b100;
end
S5:
begin
 light_M1<=3'b100;
 light_M2<=3'b100;
 light_MT<=3'b100;
 light_S<=3'b001;
end
S6:
begin
 light_M1<=3'b100;
 light_M2<=3'b100;
 light_MT<=3'b100;
 light S<=3'b100;
end
default:
begin
 light M1<=3'b000;
 light M2<=3'b000;
 light_MT<=3'b000;
 light S<=3'b010;
end
endcase
```

endmodule

end

RTL-SCHEMATIC

TESTBENCH

'timescale 1ns / 1ps // Company: // Engineer: // // Create Date: 09.08.2025 // Design Name: // Module Name: Traffic_Light_Controller_TB // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision:

```
// Revision 0.01 - File Created
// Additional Comments:
//
module Traffic_Light_Controller_TB;
reg clk,rst;
wire [2:0]light_M1;
wire [2:0]light_S;
wire [2:0]light_MT;
wire [2:0]light_M2;
Traffic_Light_Controller dut(.clk(clk), .rst(rst), .light_M1(light_M1), .light_S(light_S)
,.light M2(light M2),.light MT(light MT) );
initial
begin
  clk=1'b0;
  forever #(100000000/2) clk=~clk;
end
initial
begin
  rst=0;
  #100000000;
  rst=1;
  #100000000;
  rst=0;
  #(1000000000*200);
  $finish;
  end
endmodule
```

SIMULATED WAVEFORM

Upon analysing the waveform we can clearly see that the FSM works perfectly.

IO PORT ASSIGNMENT

The ports are assigned from the ucf file.

SCHEMATIC AFTER SYNTHESIS

REPORTS AFTER SYNTHESIS

TIMING REPORT

NOISE REPORT

UTILIZATION REPORT

POWER REPORT

SCHEMATIC AFTER IMPLEMENTATION

DEVICE LAYOUT AFTER IMPLEMENTATION

ZOOM IN VIEW

REPORTS AFTER IMPLEMENTATION

TIMING REPORT

NOISE REPORT

UTILIZATION REPORT

POWER REPORT

.

REFERENCES:

- 1) Resources and Study Materials Provided by Codec Technologies.
- 2) Nptel lectures on Digital design by Prof. Srinivasan3) Basic Understanding by ChatGPT.
- 4) http://www.asic-world.com/tidbits/verilog_fsm.html