

at Northeastern University

Internet of Medical Things

Tyler McKean Christian Kuss Matthew Swenson Mohith Subbarayudu Bhupalam

Outline – Internet of Medical Things

- Internet of Medical Things Outline
 - Introduction
 - Emergent Technologies
 - Applications
 - Security Requirements
 - Challenges
 - Future Applications
 - Conclusions

Introduction – Internet of Medical Things

- Definition: a network of interconnected medical devices, hardware, and software used for healthcare applications.
 - Motivation: Improve the conventional healthcare infrastructure and equipment to provide a more costeffective system and improve the quality of life for patients

IoMT Challenges

- Regulations & red tape
- The human body is a lossy medium
- Humans are highly dynamic
- Cells are "fragile"
- Energy consumption

Wireless Body Area Networks (WBAN)

- Overcome the high attenuation
 - Use ultra-wideband (UWB) communication
 - Use ultra-sonic waves instead

- Five main modes that humans are in
 - Lying down
 - Standing
 - Sitting
 - Walking
 - Running
- How can we leverage the classification system to make more efficient transmission algorithms?

- Emerging Protocols for IoMT
 - Humans while in motion are periodic
 - Transmit and receive where the RSSI is at its peak
 - Predict human motion for maximized efficiency
 - BANMAC (Body Area Network MAC)
 - Built on IEEE 802.15.4
 - Flexible scheduling and no random channel access
 - Very low packet loss
 - HACMAC
 - Link quality-aware protocol to adapt mechanisms based on the link quality
 - DeepBAN uses a temporal convolution network (TCN) based deep learning approach to lower response time and increase efficiency by 15%

- Implantable Internet of Medical Things (IIoMT)
 - How to charge the device?
 - How to send/receive signals?
- Investigate usage of ultrasonic frequencies for communication as well as for wireless charging

U-Verse Implantable IoMT Device [1]

IoMT Applications

- Various Applications exist for IoMT can be split into two categories
 - Body-Centric: Physical devices attached to patients for monitoring of vital information
 - Heart Rate Monitoring
 - Sleep Monitoring
 - Glucose monitoring
 - Object-Centric: IoT devices used to enhance functionality of medical equipment
 - Electronic Health Record
 - Medical Device Tracking
 - Smart Ambulances

Overview of IoMT Applications [2]

IoMT Applications – Smart Hospitals

- Definition: Hospital that implements IoTtechnologies to optimize:
 - its management systems
 - medical equipment
 - infrastructure
- Goal: Administer a more effective healthcare service to those in need of medical assistance
 - Improving Quality of Life for patients
 - Reducing hospital occupancy via remote monitoring
 - Allowing for telehealth appointments with doctors

IoMT Applications – Smart Hospitals

Methods:

- Electronic Health Records
 - Appointment registrations and access to medical records for patient via smartphone or computer
 - Wi-Fi based smart tablets for doctors and nurses to access patient information
- RFID tagged medical equipment
 - quickly locate valuable equipment in hospital
 - Also used for inventory check to avoid overstocking equipment
- Remote Monitoring
 - Vital information collected from different sensors and transmitted to cloud server for doctors/nurses to observe health data remotely or respond during emergencies

Smart tablet with access to medical database

RFID tags on equipment, test samples, patient ID

IoMT Applications – Telehealth

Institute for the Wireless Internet of Things at Northeastern

- Definition: Allowing patients of any age to keep track of their own vital health data and own wellbeing
- Motivation: To provide remote solutions to increase healthcare accessibility outside the hospital setting
 - Benefits those who are incapable of getting themselves to hospital
 - Handicapped or elderly patients
- Ambient Assisted Living [3]
 - Monitored patient's heart rate, location in home, temperature, humidity, and CO2 levels

Smartphone Appointments with Doctors/Clinicians

Ambient Assisted Living System with IoT Gateway [3]

IoMT Applications – Remote Monitoring

- Main Areas utilized in Remote Monitoring:
 - Heart Rate Monitoring
 - Wireless body sensors and ECG wearables such as smart watches/bands
 - Stress levels can indicate hidden diseases like arrythmia
 - Diabetic Monitoring
 - Blood glucose sensors that measure patient's blood sugar, transmit data via Bluetooth to smartphone
 - Prescription Drug Monitoring
 - Prescriptions can be manually submitted into smartphone application tied to cloud server for doctors to verify patient's intake
 - Help combat adverse drug reactions and compliance

Architecture of Remote Monitoring Systems [1]

13

Security / Requirements of IoMT Devices

- Overview
 - Why is security so important?
 - Importance of authentication
 - Diffie-Hellman and Curve25519
 - Promises of smartphones as medical devices

Why is Security of IoMT Devices Important?

- HIPPA, GDPR
 - Organizational frameworks for protection and visibility of personal health data
 - Importance of data that is contained
- Importance of authentication
 - Authentication vs. Data transmission
 - Why does authentication matter so much?
 - Current industry trends

15

Diffie-Hellman Encryption and Curve25519

- What is the Diffie-Hellman protocol?
 - RSA encryption
- Modulus function and elliptic curves
 - Difficulty of prime number factoring
- Modern protocol variants on iOS, iPadOS, MacOS
 - Curve 25519

Smartphones as Medical Devices

- Smartphones are changing the way we think about medical devices
 - Bringing medical technologies to the masses
- Smartwatches improve health metric gathering
- FDA regulation and smartphone apps
- Reliability of AI in making medical decisions

- The are many challenges that IoMT Devices face
- For example:
 - Privacy and Security
 - Standardization Protocols
 - Accuracy and Risk of failure
 - Cost
 - Acceptability

- Privacy and Security:
 - Is my Data safe and Secure?
 - Cyber attacks
 - Implementation of Complex algorithms
 - National Institute of Standards and Technology
- Standardization Protocols:
 - What protocols does my system use?
 - Interoperability
 - Smooth Integration

The Healthcare Internet of Things (IoT) Market Map

- Accuracy and Risk of failure:
 - How accurate is my device?
 - What if my device fails
 - Software updates
- Cost:
 - Design and Development Cost
 - Cost of Implementation
 - Training staff

- Acceptability:
 - Is the general public ready?
 - True value of IoT
 - Acceptance of IoT

IoMT Future Tech & Conclusions

Future Tech

- Wearables
 - Many alternatives in the coming years focusing on miniaturization of devices for more comfortable and unobtrusive designs
- Implantable IoMT
 - Allow for ultrasonic based wireless transmissions and charging

Conclusions

- Providing alternative options than in-person healthcare are becoming more demanding
- Earlier prevention of diseases obtainable via remote monitoring
- More development needed to overcome security and FDA regulation

References

[1] Guida, Raffaele & Dave, Neil & Restuccia, Francesco & Demirors, Emrecan & Melodia, Tommaso. (2019). U-Verse: a miniaturized platform for end-to-end closed-loop implantable internet of medical things systems. 311-323. 10.1145/3356250.3360026.

[2] F. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, "Intelligence in the internet of medical things era: A systematic review of current and future trends," Computer Communications, vol. 150, pp. 644–660, 2020

[3] D. C. Yacchirema, C. E. Palau, and M. Esteve, "Enable IoT interoperability in ambient assisted living: Active and healthy aging scenarios," in Proc. 14th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, 2017, pp. 53–58

23

at Northeastern University

Internet of Medical Things

Tyler McKean Christian Kuss Matthew Swenson Mohith Subbarayudu Bhupalam