PowerLogic

Alimentatore modulare da banco per Hobbisti

PL V1.0

Cos'è PowerLogic?

PowerLogic è un sistema modulare per il controllo e la gestione intelligente dell'alimentazione nei banchi di test elettronici. Progettato per offrire **massima affidabilità e protezione attiva**, PowerLogic si compone di tre moduli indipendenti ma perfettamente integrabili:

- PLS Power Logic Supply: fornisce tutte le tensioni ausiliarie necessarie per il funzionamento del sistema di controllo (PLC), con raffreddamento dinamico gestito da una NTC.
- PLC Power Logic Control: cuore del sistema di protezione, limita la corrente al carico grazie al potenziometro di regolazione e monitora in tempo reale corrente e potenza, intervenendo tramite relè per prevenire guasti.
- PLM Power Logic Main: Modulo di potenza, sfrutta tre LM317 per il ramo positivo e tre LM337 al negativo, per gestire tensioni superiori al limite massimo di ingresso/uscita (40Vmax) permesse da un singolo LM, suddividendo equamente le differenze di tensioni IN/OUT a soli 20V. Fornisce corrente al carico con il supporto di un MJH11021G sul ramo positivo e un MJH11022G sul ramo negativo. Un ulteriore MJH11022G pilotato dal PLC gestisce le correnti in uscita garantendo stabilità e sicurezza.

Pensato per hobbisti evoluti e studenti, PowerLogic unisce **precisione analogica** e **logica di protezione smart**, offrendo uno strumento potente e flessibile per ogni laboratorio elettronico.

I moduli PLS e PLC possono essere integrati singolarmente su sistemi già esistenti per offrire tutta la protezione di Power Logic.

Moduli Principali

PLS – Power Logic Supply

- Generazione delle tensioni di servizio (±15V, +12V, +5V)
- Raffreddamento proporzionale alla temperatura (NTC + ventola)

PLC - Power Logic Control

- Gestione soglie di corrente e potenza
- Controllo corrente tramite operazionale differenziale
- Distacco carico con intervento a relè
- · LED di segnalazione limite raggiunto

PLM – Power Logic Main

- Regolazione di tensione con tre coppie di LM317/LM337 in cascata.
- Erogazione e gestione corrente tramite Darlington.
- Sistema di alimentazione duale da $\pm 1,5$ V a ± 60 V (fino a 120V in serie)

Dati Tecnici Generali

Tensione ingresso	65	Vdc
Tensione uscita	Variabile fino ±60 max(duale)/120 max(serie)	Vdc
Corrente MAX erogabile	10	A
Potenza MAX erogabile	500	W
Protezioni integrate	Sovracorrente, supero potenza, cortocircuito, gestione adattiva temperatura	/
Temperatura operativa	-10 / +60	°C
Raffreddamento	Attivo con ventola su NTC	/

SCHEDA DI COLLAUDO - MODULI PLS e PLC

⊘Obiettivo del collaudo

Verificare:

- · il corretto valore delle alimentazioni
- · il corretto funzionamento della gestione delle temperature
- · il corretto valore delle Vref di soglia
- · la corretta segnalazione luminosa di superamento soglie

Modulo: PLS (Power Logic Supply)

1. Verifica visiva preliminare:

- · Controllo corretto posizionamento componenti
- Corrette serigrafie e polarità di diodi/condensatori

2. Alimentazione

- Collegare alimentazione 65V da V-Aux e verificare assorbimento iniziale basso
- Verificare presenza delle seguenti tensioni avendo come riferimento di massa VGnd:
 - $V+\approx +15V$
 - $V-\approx -15V$
 - VCC = +12V
 - VDD = +5V

3. Verifica ventola

- Scaldare con asciuga capelli o accendino protetto la NTC
- · Verificare partenza graduale della ventola proporzionale alla temperatura

Modulo: PLC (Power Logic Control)

1. Verifica visiva preliminare:

- · Controllo corretto posizionamento componenti
- Corrette serigrafie e polarità di diodi/condensatori

2. Alimentazione

• Collegare le alimentazioni provenienti dal PLS

3. Taratura soglia corrente e potenza

- Posizionare il voltmetro sugli appositi pad sonda Vref. A e Vref. W avendo il pad sonda VGnd come riferimento di massa
- Agire sul trimmer R12 per impostare la soglia della corrente massima fino ad avere un valore Vref_A di 1V (corrispondente a 10A)
- Agire sul trimmer R15 per impostare la soglia della potenza massima fino ad avere un valore Vref W di 0,5V (corrispondente a 500W)

4. Verifica LED e comparatore

- Simulare superamento soglie potenza (>500W) e corrente (>10A)
- · Verificare accensione dei LED corrispondenti

5. Uscite verso relè

- · Verificare presenza di segnale alto su uscita del comparatore quando soglie superate
- Verificare che il transistor di comando sia attivo

Check finale

Verifica	OK?
Tensioni PLS corrette a vuoto	[]
Corretto funzionamento ventola	[]
Tensioni PLS stabili a PLC collegato	[]
Nessun surriscaldamento anomalo	[]
Corretta taratura Vref_A	[]
Corretta taratura Vref_W	[]
Cambio di stato comparatore	[]
Corretta segnalazione LED soglia corrente	[]
Corretta segnalazione LED soglia potenza	[]

Note:

SCHEDA DI COLLAUDO – PLM (Power Logic Main)

⊘Obiettivo del collaudo

Verificare:

- la corretta suddivisione della tensione tra i regolatori LM317/LM337
- · la stabilità delle uscite a vuoto
- il comportamento sotto carico moderato
- · il corretto funzionamento dei trimmer di bilanciamento

1. Verifica visiva preliminare:

- · Controllo corretto posizionamento componenti
- Corrette serigrafie e polarità di diodi/condensatori

2. Collegamenti iniziali

- Ingresso: Collegare una tensione di 65Vdc
- Carico: Nessun carico nelle prime fasi di collaudo.
- GND: Collegare la massa del generatore al GND del circuito.

3. Taratura iniziale a vuoto

Con potenziometro principale (triplo) al minimo:

Coppia	Uscita attesa	Descrizione
1 ^a	~40V	Prima coppia LM317/LM337
2ª	~20V	Seconda coppia LM317/LM337
3ª	~3V	Terza coppia LM317/LM337

Agire sui trimmer per bilanciare ogni coppia (317/337) in modo che ciascun regolatore fornisca la tensione come in tabella.

4. Test sotto carico moderato

- Collegare una resistenza di potenza adeguata in uscita (es. 100Ω 10W o simili).
- Verificare che le tensioni restino stabili.
- Controllare con multimetro la **caduta di tensione su ciascun regolatore** per confermare il bilanciamento.

5. Verifica pulsante sgancio relè

- · Attivare relè con segnale di superamento soglia
- Premere pulsante di sgancio
- Verificare che il relè si disattivi correttamente

6. Controlli di sicurezza

- Monitorare la temperatura degli LM e dei darlighton ti potenza durante il test.
- Verifica che non ci siano oscillazioni visibili con un oscilloscopio all'uscita.

Check finale

Verifica	OK?
Tensioni corrette a vuoto	[]
Tensioni stabili sotto carico	[]
Nessun surriscaldamento anomalo	[]
Nessuna oscillazione rilevata	[]
Corretto sgancio e riarmo relè	[]

Note:

Dopo la validazione del PLM:

- Collegarlo al PLC (Power Logic Control) per test in configurazione reale dopo aver effettuato il collaudo.
- Simulare condizioni reali di funzionamento con il PLC (Power Logic Control).