Lógica

33. Sejam p e q as proposições "Joguei no totoloto" e "Ganhei o *jackpot*", respectivamente. Exprima cada uma das seguintes proposições compostas como uma frase em Português.

(a) ¬p

(d) $p \rightarrow q$

(b) p ∧ q

(e) $q \rightarrow p$

(c) $\neg p \vee \neg q$

(f) $\neg p \rightarrow \neg q$

34. Construa tabelas de verdade para cada uma das seguintes proposições.

(a) $p \rightarrow p$

(f) $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$

(b) $\neg(p \rightarrow q)$

(g) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$

(c) $\neg q \land (p \rightarrow q)$ (d) $(p \lor q) \rightarrow (p \land q)$

(h) $(p \oplus q) \land (p \land q)$

(e) $p \rightarrow (\neg p \rightarrow q)$

(i) $(p \oplus q) \rightarrow \neg (p \land q)$

35. Usando tabelas de verdade ou álgebra boleana, mostre as seguintes equivalências entre proposições.

(a) $p \rightarrow q \Leftrightarrow \neg p \lor q$

(b) $\neg p \rightarrow q \Leftrightarrow \neg q \rightarrow p$

(c) $p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \rightarrow r)$

(d) $(p \rightarrow q) \rightarrow p \Leftrightarrow p$

(e) $(p \lor q) \to r \Leftrightarrow (p \to r) \land (q \to r)$

(f) $(p \land q) \lor (\neg p \land \neg q) \Leftrightarrow \neg (p \oplus q)$

- **36.** Mostre que $(p \to q) \land (q \to r) \to (p \to r)$ é uma tautologia.
- 37. Mostre que $(p \to q) \to r$ e $p \to (q \to r)$ não são equivalentes.
- 38. Atribuindo valores de verdade a p, q e r investigue quantas das disjunções $p \lor \neg q$, $\neg p \lor q$, $q \lor r$, $q \lor \neg r$, $\neg q \lor \neg r$ podem ser simultaneamente verdade.
- 39. Exprima as proposições seguintes usando conectivas lógicas, quantificadores e comparações e operações aritméticas; considere como universo o conjunto $\mathbb Z$ dos números inteiros.
 - (a) A soma de dois inteiros negativos é negativa.
 - (b) A diferença entre dois inteiros negativos não é necessariamente negativa.
 - (c) A soma de dos quadrados de dois inteiros é maior ou igual ao quadrado da sua soma.
 - (d) O módulo do produto de dois inteiros é igual ao produto dos seus módulos.
- 40. Traduza cada uma das seguintes proposições por uma frase em Português; considere como universo o conjunto $\mathbb R$ dos números reais.

(a) $\exists x \forall y (x + y = y)$

(b) $\forall x \forall y (((x > 0) \land (y < 0)) \rightarrow (x - y > 0))$

```
(c) \exists x \exists y (((x \le 0) \land (y \le 0)) \rightarrow (x - y > 0))
```

(d)
$$\forall x \forall y (((x \neq 0) \land (y \neq 0)) \leftrightarrow (x \times y \neq 0))$$

- 41. Determine o valor de verdade da proposição $\forall x \exists y (x \times y = 1)$, considerando os universos seguintes.
 - (a) o conjunto $\mathbb{Z} \setminus \{0\}$ dos inteiros diferentes de zero.
 - (b) o conjunto $\mathbb{R} \setminus \{0\}$ dos números reais diferentes de zero.
 - (c) o conjunto \mathbb{R}^+ dos números reais positivos.
- 42. Escreva cada uma das proposições seguintes de forma a que as negações só apareçam sobre predicados (ou seja, nenhuma negação esteja sobre um quantificador ou uma expressão envolvendo conectivas).
 - (a) $\neg \exists y \exists x P(x, y)$
 - (b) $\neg \forall x \exists y P(x, y)$
 - (c) $\neg \exists y (Q(y) \land \forall x \neg R(x,y))$
 - (d) $\neg \exists y (\exists x R(x,y) \lor \forall x S(x,y))$
 - (e) $\neg \exists y (\forall x \exists z T(x, y, z) \lor \exists x \forall z U(x, y, z))$
- \star 43 Formule cada uma das seguintes afirmações como uma única proposição ou predicado, usando apenas notação matemática e lógica. Ou seja, é permitido o uso de quantificadores e conectivas lógicas, operações aritméticas, de teoria de conjuntos e de teoria dos números, assim como os conjuntos \mathbb{Q} , \mathbb{R} , etc., mas não o uso da linguagem natural.
 - (a) Qualquer inteiro maior do que 5 pode ser escrito como soma de um múltiplo de 2 e de um múltiplo de 3.
 - (b) Qualquer inteiro múltiplo de 4 pode ser escrito como a diferença de dois quadrados perfeitos.
 - (c) Existe um número natural entre 100 e 130 que é um número primo.
 - (d) Existe uma infinidade de números primos.
 - (e) Dois inteiros são primos relativos se e só se qualquer inteiro pode ser escrito como a sua combinação linear.
 - (f) O princípio de indução.
 - (g) Conjectura de Goldbach. ("Qualquer inteiro par maior que 2 pode ser escrito como a soma de dois primos.")
- ★ 44 Escreva a negação de cada uma das afirmações lógicas definidas no exercício anterior, de forma a que o símbolo ¬ não apareça nas afirmações. (Ou seja, eliminando os quantificadores negados e as fórmulas compostas, e substituindo afirmações como ¬(a|b) por afirmações como a /b.) Escreva as afirmações obtidas em Português.
- * 45 Sejam p, q e r proposições lógicas. Qual das seguintes afirmações são tautologias, quais são contradições e quais não são nenhuma das duas? Para cada uma das fórmulas que pensem não ser uma tautologia ou uma contradição, indiquem uma atribuição de valores que torna a fórmula verdadeira e outra que torna a fórmula falsa.
 - (a) $(p \lor q) \rightarrow (p \land q)$
 - (b) $(p \vee \neg q) \wedge (\neg p \wedge q)$

(c)
$$((p \lor q) \land r) \leftrightarrow ((p \land r) \lor (q \land r))$$

(d)
$$)(p \leftrightarrow q) \land (q \leftrightarrow r) \land \neg(p \leftrightarrow r)$$

- * 46 Quais das seguintes afirmações são válidas? Demonstre.
 - (a) $(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow (p \rightarrow (q \land r))$
 - (b) $(p \rightarrow r) \land (q \rightarrow r) \Leftrightarrow ((p \land q) \rightarrow r)$
 - (c) $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$
- \star 47 Conjuntos de conectivas
 - (a) Mostre que as conectivas lógicas $\{\neg, \lor\}$ são um conjunto universal. Ou seja, proposições da forma $p \to q$, $p \leftrightarrow q$, e $p \land q$ podem ser escritas usando apenas as conectivas \neg e \lor .
 - (b) Mostre que ¬, ⊕ não são definem um conjunto universal.
 - (c) Defina uma nova conectiva $\overline{\wedge}$ da seguinte forma:

p	q	p⊼q
V	V	F
V	F	V
F	V	V
F	F	V

Mostre que as proposições $\neg p$, $p \land q$, e $p \lor q$ podem ser escritas usando apenas a conectiva $\overline{\land}$. Conclua que $\overline{\land}$ é universal.

- 48. Use regras de inferência lógica e as hipóteses "O João trabalha arduamente", "Se o João trabalha arduamente então recebe um aumento" e "Se o João for aumentado, então compra um carro novo" para mostrar a conclusão "O João compra um carro novo".
- 49. Usando regras de inferência lógica, construa uma prova da conclusão "Choveu" apartir das hipóteses "Se não chover ou se não houver nevoeiro, então a competição de vela vai decorrer e a demonstração de salvamento vai ser efectuada", "Se a competição de vela decorrer então o troféu vai ser atribuído" e "O troféu não foi atribuído".
- 50. Alguns dos seguintes argumentos são válidos e outros não. Use símbolos para escrever a forma lógica de cada um deles. Se o argumento for válido, identifique a regra de inferência.
 - (a) Se o Luís resolver correctamente os exercícios, vai viajar para os Açores. O Luís vai viajar para os Açores. Logo, o Luís resolveu correctamente os exercícios.
 - (b) Se x é maior do que 2, então o seu quadrado é maior do que 4. O número x não é maior do que 2. Logo, o quadrado de x não é maior do que 4.
 - (c) Se o programa P está correcto, então executando P com o exemplo obtemos o resultado correcto. Executando P com o exemplo obtemos o resultado correcto. Logo, o programa P está correcto.
 - (d) Se eu for ao cinema, não resolvo os exercícios. Se eu não resolver os exercícios vou reprovar a matemática. Logo, se eu for ao cinema vou reprovar a matemática.
- 51. Use as regras de inferência estudadas na aula teórica para completar os seguintes argumentos de forma a que sejam válidos.
 - (a) Se a matemática é difícil, então o Pai Natal existe. O Pai Natal não existe. Logo...
 - (b) Se a matemática é difícil, então o Pai Natal existe. A matemática é difícil. Logo...
- 52. Faça corresponder a cada uma das seguintes tautologias um dos argumentos lógicos.

Tautologias

- (1) $p \vee \neg p$
- (2) $p \wedge q \rightarrow p$
- (3) $p \rightarrow p \lor q$
- (4) $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
- (5) $((p \rightarrow q) \land (\neg p \rightarrow q)) \rightarrow q$
- (6) $(((p \lor q) \rightarrow r) \land p) \rightarrow r$

Argumentos

- (a) Se x é um número real tal que $0 \le x \le 1$, então $x \le 1$.
- (b) Seja n um natural tal que n é divisível por 3. Logo, n é divisível por 2 ou n é divisível por 3.
- (c) O João obtém frequência se fizer o trabalho em C ou em Java. O João fez o trabalho em C. Logo o João obteve frequência.
- (d) Seja x um número real; temos x < 0 ou $x \ge 0$.
- (e) Seja n inteiro; se n é divisível por 4 então n é divisível por 2. Logo, se n não é divisível por 2, então não é divisível por 4.
- (f) Seja n inteiro; se n é par, então $n^2 n = (n-1)n$ é par; se n é impar, então $n^2 n = (n-1)n$ é par. Logo, $n^2 n$ é sempre par.

* 53 Dada

$$(t \to (r \lor p)) \to ((\neg r \lor k) \land \neg k).$$

Mostre que implica $\neg r$. Escreva uma prova usando regras de inferência. Crie regras de inferência a partir de tautologias se necessário.

54. Complete o seguinte argumento com uma conclusão válida e indique as regras de inferência usadas.

Para obter frequência, o João tem de fazer o trabalho prático e ir às aulas. Se o João obtiver frequência e estudar, então tem aprovação no exame. O João fez o trabalho prático e foi às aulas, mas não teve aprovação no exame. Logo...

- 55. Determine a forma normal disjuntiva da proposição $((p \lor q) \land r) \to (p \land \neg q)$.
- 56. Mostre que:
 - (a) Se $p \to (q \lor r)$, $q \to s$ e $r \to t$, então $p \to (s \lor t)$.
 - (b) Se $p \to (q \land r)$, $q \lor s \to t$ e $p \lor s$, então t.
- 57. Mostre que:
 - (a) das hipóteses $\forall x (P(x) \to Q(x))$ e $\forall x P(x)$ podemos concluir $\forall x Q(x)$;
 - (b) das hipóteses $\exists x (P(x) \to Q(x)) \in \forall x P(x)$ podemos concluir $\exists x Q(x)$.

Será que de $\exists x (P(x) \to Q(x))$ e $\exists x P(x)$ podemos concluir $\exists x Q(x)$? Justifique.

- 58. Construa provas para os seguintes argumentos:
 - (a) De $\forall x \forall y \forall z (xRy \land yRz \rightarrow xRz)$ e $\forall x \neg xRx$ concluimos $\forall x \forall y (xRy \rightarrow \neg yRx)$;
 - (b) De $\forall x \forall y (xRy \rightarrow \neg yRx)$ concluimos $\forall x \neg xRx$;
 - (c) De $\forall x \, \forall y \, (xRy \land x \neq y \rightarrow \neg yRx)$ concluimos $\forall x \, \forall y \, (xRy \land yRx \rightarrow x = y)$.

Leis da álgebra boleana

$a \wedge 0 = 0$	elemento absorvente \wedge
$\alpha \lor 1 = 1$	elemento absorvente \vee
$\alpha \wedge 1 = \alpha$	elemento neutro \wedge
$a \lor 0 = a$	elemento neutro \vee
$a \land \neg a = 0$	elemento complementar \wedge
$a \lor \neg a = 1$	elemento complementar \vee
$\mathfrak{a} \wedge \mathfrak{a} = \mathfrak{a}$	$idempot$ ência \wedge
$\mathfrak{a}\vee\mathfrak{a}=\mathfrak{a}$	idempotência \vee
$a \wedge b = b \wedge a$	comutatividade \wedge
$a \lor b = b \lor a$	comutatividade \vee
$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	associatividade \wedge
$(a \lor b) \lor c = a \lor (b \lor c)$	associatividade \vee
$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$	distributividade \land, \lor
$\mathbf{a} \vee (\mathbf{b} \wedge \mathbf{c}) = (\mathbf{a} \vee \mathbf{b}) \wedge (\mathbf{a} \vee \mathbf{c})$	distributividade \vee, \wedge
$\neg(a \land b) = \neg a \lor \neg b$	lei de DeMorgan
$\neg(a \lor b) = \neg a \land \neg b$	lei de DeMorgan
$\neg(\neg a) = a$	dupla negação

Equivalências

$$\begin{array}{lll} a \rightarrow b & \Leftrightarrow \neg a \vee b & \text{implicação} \\ a \rightarrow b & \Leftrightarrow \neg b \rightarrow \neg a & \text{contraposição} \\ a \leftrightarrow b & \Leftrightarrow (a \rightarrow b) \wedge (b \rightarrow a) & \text{dupla implicação} \\ a \oplus b & \Leftrightarrow (a \vee b) \wedge \neg (a \wedge b) & \text{ou-exclusivo} \\ \neg \forall x \ P(x) & \Leftrightarrow \ \exists x \neg P(x) \\ \neg \exists x \ P(x) & \Leftrightarrow \ \forall x \neg P(x) \end{array}$$