CS 446/ECE 449: Machine Learning

A. G. Schwing

University of Illinois at Urbana-Champaign, 2020

L28: Markov Decision Processes

Goals of this lecture

- Getting to know reinforcement learning
- Getting to know Markov decision processes

Recap: What have we talked about so far?

Pattern recognition and machine learning frameworks

Machine learning paradigms

- Discriminative learning and its applications
- Generative learning and its applications
- Now: Reinforcement learning and its applications

Machine learning paradigms:

Discriminative learning:

Generative learning:

Reinforcement learning (RL)

Examples

Reinforcement learning examples:

- Fly stunt manoeuvres in a helicopter
- Play Atari games
- Defeat the world champion at Go
- Manage investment portfolio
- Control a power station
- Make a humanoid robot walk

How are those tasks formulated?

At each step t the agent

- Thinks/Knows about being in state s_t
- Performs action at
- Receives scalar reward $r_t \in \mathbb{R}$
- Finds itself in state s_{t+1}

Settings:

Formally: Markov Decision Process (MDP)

- A set of states $s \in S$
- A set of actions $a \in A_s$
- A transition probability P(s' | s, a)
- A reward function R(s, a, s') (sometimes just R(s) or R(s'))
- A start and maybe a terminal state

What is Markov about an MDP?

Given the present state, the future and the past are independent

$$P(S_{t+1} = s' \mid S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = \dots, S_0 = s_0)$$

= $P(S_{t+1} = s' \mid S_t = s_t, A_t = a_t)$

Pictorial representation of MDP:

What makes RL different from other paradigms?

- No supervisor, only reward signal
- Delayed feedback
- Actions affect received data

Given a description of an MDP, what do we want?

We want to perform actions according to a policy π^* so as to maximize the expected future reward.

How to encode the policy?

$$\pi(s): \mathcal{S} \to \mathcal{A}_s$$

How to find the best policy π^* ?

- Exhaustive search
- Policy iteration
- Value iteration

Exhaustive search for best policy π^* :

• How many policies?

$$\prod_{s\in\mathcal{S}}|\mathcal{A}_s|$$

- How to evaluate quality of π ? Compute expected future reward $V^{\pi}(s_0)$
- Choose policy π^* with largest expected future reward $V^{\pi^*}(s_0)$

Policy evaluation:

How to compute expected future reward $V^{\pi}(s)$ for a given policy?

Example: rewards & transition probabilities

$$\pi(s_0) = a_1, \, \pi(s_1) = a_1$$

Policy graph:

$$V^{\pi}(s_1) = 1, \ V^{\pi}(s_0) = 11$$

$\pi(s_0) = a_2, \, \pi(s_2) = a_1$

Policy graph:

$$V^{\pi}(s_1) = 1, V^{\pi}(s_2) = 1$$

 $V^{\pi}(s_0) = 6 \cdot (10 + 1) + .4 \cdot (5 + 1) = 9$

backpropagation

$$\pi(s_0) = a_2, \, \pi(s_2) = a_2$$

$$V^{\pi}(s_1) = 1$$

 $V^{\pi}(s_2) = 0.7 \cdot 1 + 0.3 V^{\pi}(s_0)$
 $V^{\pi}(s_1) = 0.4 \cdot (5 + V^{\pi}(s_1)) + 0.4 \cdot (5 + V^{\pi}(s_2)) + 0.4 \cdot (5 + V^{\pi}(s_1)) + 0.4 \cdot (5 + V^{\pi}(s_2)) + 0.4 \cdot (5 + V^{\pi}(s_1)) + 0.4 \cdot (5 + V^{\pi}(s_2)) + 0.4 \cdot (5 + V^{\pi}(s_1)) + 0.4 \cdot (5 + V^{\pi}(s_2)) + 0.4 \cdot (5 + V^{\pi}(s_2))$

$$V^{\pi}(s_0) = 0.4 \cdot (5 + V^{\pi}(s_2)) + 0.6 \cdot (10 + V^{\pi}(s_1))$$

linear system

easy

Exhaustive search: for each policy π

Policy evaluation requires to solve linear system of equations:

$$egin{array}{lcl} V^{\pi}(s) &= & 0 & ext{if } s \in \mathcal{G} \\ V^{\pi}(s) &= & \sum_{s' \in \mathcal{S}} P(s' \mid s, \pi(s)) \left[R(s, \pi(s), s') + V^{\pi}(s')
ight] \end{array}$$

Expensive

Instead of solving system of linear equations use iterative refinement:

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} P(s' \mid s, \pi(s)) \left[R(s, \pi(s), s') + V_i^{\pi}(s') \right]$$

But searching over all policies is still expensive.

Policy iteration:

- Initialize policy π
- Repeat until policy π does not change
 - Solve system of equations (e.g., iteratively)

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} P(s' \mid s, \pi(s)) \left[R(s, \pi(s), s') + V^{\pi}(s') \right]$$

Extract new policy π using

$$\pi(s) = \arg\max_{a \in \mathcal{A}_s} \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + V^{\pi}(s') \right]$$

Can we directly find the optimal value function V^* ?

Value Iteration:

- Changes search space (search over values, not over policies)
- Compute the resulting policy at the end

Bellman optimality principle:

$$V^*(s) = \max_{a \in \mathcal{A}_s} \underbrace{\sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + V^*(s') \right]}_{Q^*(s, a)}$$

$$Q^*(s, a) = \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + \max_{a' \in \mathcal{A}_{s'}} Q^*(s', a') \right]$$

Decoding policy:

$$\begin{array}{lcl} \pi(s) & = & \arg\max_{a \in \mathcal{A}_s} \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + V^*(s') \right] \\ \pi(s) & = & \arg\max_{a \in \mathcal{A}_s} Q^*(s, a) \end{array}$$

Bellman optimality principle:

$$V^*(s) = \max_{a \in \mathcal{A}_s} \underbrace{\sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + V^*(s') \right]}_{Q^*(s, a)}$$

How to solve for V^* ?

- Solve via linear program (for very small MDPs)
- Iteratively refine

$$V_{i+1}(s) \leftarrow \max_{a \in \mathcal{A}_s} \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[R(s, a, s') + V_i(s') \right]$$

Recap so far: Known MDP

- To compute V^* , Q^* , π^* : use policy/value iteration or exhaustive
- To evaluate fixed policy π : use policy evaluation

Quiz:

- What differentiates RL from supervised learning?
- What is a MDP?
- What differentiates policy iteration from policy evaluation?

Important topics of this lecture

- Getting a feeling for reinforcement learning
- Understanding how to use MDPs

What's next:

What to do if the MDP model is not known?