

YILDIZ TEKNİK ÜNİVERSİTESİ

Mekatronik Mühendisliği Bölümü

Helikopter Elektronik Eyleyici Tasarımı – Kontrol Final Raporu

18067011 – İsmail Altay Ataman

Danışman: Asst. Prof. Mehmet İŞCAN

1. Sistem Tanımı

Sistem elektronik ve mekanik olmak üzere iki alt-sistemden oluşmaktadır. Mekanik Alt-Sistem kapsamında 4 dişli parçadan oluşan bir dişli sistemi bulunmaktadır. Bu dişli sisteminin amacı DC Motordan gelen girdiyi çıkış şaftına aktarmaktır.

Elektronik Alt-Sistem kapsamında ise STM32 Kontrolcüsü, Elektronik Hız Kontrolü Devresi ve Enkoder bulunmaktadır.

Alt-Sistemlerin elemanları aşağıda sıralanarak özetlenmiştir:

- Elektronik Alt Sistem: DC Motor, Elektronik Hız Kontrolcüsü, Enkoder
- **Mekanik Alt Sistem:** DC Motor Şaftı, Motor Düz Dişlisi, Sonsuz Dişli, Damper Şaft Pinyonu, Dilim Dişli, Çıkış Şaftı, Yay

Şekil 1 – Mekanik Alt-Sistem Diyagramı

Şekil 2 – Mekanik Alt-Sistem Diyagramı

2. Sistem Denklemleri

1.1 Mekanik Alt-Sistem Denklemleri

Mekanik Alt-Sistemin Denklemlerini birbirine bağlı bir şekilde çıkarmak için ilk önce DC Motor tarafından üretilen tork bulunacak daha sonra bu tork değerinin dişliler arasında aktarımı incelenecektir.

Euler'in Dönme Denklemlerine göre bir sistemin ürettiği tork sistemin ataletsel momenti ve açısal ivmesinin çarpımına eşittir.

$$\tau = J \cdot \ddot{\theta}$$

Bu eşitlik her bir dişli için ayrı olarak yazılabilir:

$$\begin{split} \tau_{BLDC} = & \left(J_m + J_{MDD} \right) * \ddot{\theta}_1 + \tau_{SD} \\ \tau_{SD} = & \left(\frac{1}{N_1^2} * J_{SD} \right) * \ddot{\theta}_1 + \tau_{DSP} \\ n_{SD} * \tau_{DSP} = & \left(\frac{1}{N_1^2 * N_2^2} * J_{DSP} \right) * \ddot{\theta}_1 + \left(\frac{c}{N_1 * N_2} \right) * \dot{\theta}_1 + \tau_{DD} \\ \tau_{DD} = & \left(\frac{1}{N_1^2 * N_2^2 * N_3^2} * J_{DD} \right) * \ddot{\theta}_1 + \left(\frac{k}{N_1 * N_2 * N_3} \right) * \theta_1 \end{split}$$

Dişliler birbirleri ile etkileşim içerisinde oldukları için denklemlerden de göründüğü üzere dişlilerin denklemleri birbirine bağlıdır. Bu sayede tüm denklemler tek bir denklem üzerinde birleştirilebilir. Ancak bu adımı gerçekleştirilmeden önce denklemi sadeleştirmek amacı ile belirli ifadeler yeni değişkenlerle ifade edilecektir.

$$x_{6} = (J_{m} + J_{MDD})$$

$$x_{5} = \left(\frac{1}{N_{1}^{2}} * J_{SD}\right)$$

$$x_{4} = \left(\frac{1}{N_{1}^{2} * N_{2}^{2}} * J_{DSP}\right)$$

$$x_{3} = \left(\frac{c}{N_{1} * N_{2}}\right)$$

$$x_{2} = \left(\frac{1}{N_{1}^{2} * N_{2}^{2} * N_{3}^{2}} * J_{DD}\right)$$

$$x_{1} = \left(\frac{k}{N_{1} * N_{2} * N_{3}}\right)$$

Atanan yeni değişkenlerin kullanımı ile ifadeler yeni formlarına getirilir:

$$\tau_{BLDC} = x_6 * \ddot{\theta}_1 + \tau_{SD}$$

$$\tau_{SD} = x_5 * \ddot{\theta}_1 + \tau_{DSP}$$

$$R_{SD} * \tau_{DSP} = x_4 * \ddot{\theta}_1 + x_3 * \dot{\theta}_1 + \tau_{CDD}$$

$$\tau_{DD} = x_2 * \ddot{\theta}_1 + x_1 * \theta_1$$

Daha sonra tüm ifadeler tek bir denklem olarak birleştirilir:

$$\tau_{BLDC} = x_6 * \ddot{\theta}_1 + x_5 * \ddot{\theta}_1 + \frac{1}{R_{SD}} \left(x_4 * \ddot{\theta}_1 + x_3 * \dot{\theta}_1 + x_2 * \ddot{\theta}_1 + x_1 * \theta_1 \right)$$
$$\ddot{\theta}_1 * \left(x_6 + x_5 + \frac{x_4 + x_2}{R_{SD}} \right) + \dot{\theta}_1 * \left(\frac{x_3}{R_{SD}} \right) + \theta_1 * \left(\frac{x_1}{R_{SD}} \right)$$

Daha sonrasında tekrardan denklemin sadeleştirilmesi için yeni değişkenler ile işlem yapılır:

$$y_1 = \left(x_6 + x_5 + \frac{x_4 + x_2}{R_{SD}}\right)$$
$$y_2 = \left(\frac{x_3}{R_{SD}}\right)$$
$$y_3 = \left(\frac{x_1}{R_{SD}}\right)$$

Yapılan değişiklikler sonrası sadeleştirilmiş denklem elde edilir:

$$\tau_{BLDC} = \ddot{\theta}_1 * y_1 + \dot{\theta}_1 * y_2 + \theta_1 * y_3$$

Sistem, sadeleştirilmiş denklem ile kolay anlaşılır bir halde gösterilebilir hale gelmiştir. Laplace dönüşümü uygulanabilir ve kolaylıkla üzerinde çalışılabilir haldedir.

1.1 Elektronik Alt-Sistem Denklemleri

Şekil 3 – DC Motor Model Şematiği

DC Motorlar modelleriken elektronik ve mekanik olmak üzere iki ayrı kısıma ayrılırlar. Bu iki kısımdan gelen 2 denklem birleştirilerek genel bir denklem elde edilir. Elektronik kısmın denklemlerinin çıkarılmasında Kirchhoff Yasaları kullanılırken, mekanik kısmın denklemlerinin çıkarılmasında ise Euler'in Dönme Denklemi kullanılır.

Bahsi geçen hesaplarda kullanılan parametreleri aşağıdaki gibidir:

Parametre Adı	Sembolü	Birimi
Motor Armatür Direnci	R	Ω
Motor Armatür İndüktansı	L	Н
Rotor Eylemsizlik Momenti	J	$kg \cdot m^2$
Elektromotor Kuvvet Katsayısı	k_e	V/(m/s)
Motor Tork Katsayısı	k_{t}	$N \cdot m/A$
Motor Viskoz Sürtünme Katsayısı	$b_{\it m}$	$N \cdot m \cdot s$

Tablo 1 – DC Motor Parametreleri

DC Motorun Elektronik Denklemlerinin eldesi için motorun iç elemanlarına Kirchhoff Gerilim Kanunu uygulanır ve aşağıdaki eşitlik elde edilir:

$$V(t) = L \cdot \left(\frac{di(t)}{dt}\right) + R \cdot i(t) + k_e \cdot \omega(t)$$

Mekanik Denklemlerinin eldesi için ise Euler'in Dönme Denklemi kullanılır:

$$T = J \cdot \alpha(t) + b \cdot \omega(t) = J \cdot \left(\frac{d\omega(t)}{dt}\right) + b \cdot \omega(t)$$

1.2 Elektronik Alt Sistem Denklemi Laplace Dönüşümü

Sistemin bütünleşik transfer fonksiyonunu elde etmek için ilk önce elektronik ve mekanik sistemler için çıkarılan denklemlerin Laplace dönüşümlerinin yapılması gerekir.

DC Motor Mekanik Sistem Laplace Dönüşümü:

$$\mathcal{L}\left[T(t) = J \cdot \left(\frac{d\omega(t)}{dt}\right) + b \cdot \omega(t)\right] = T(s) = J \cdot s \cdot \omega(s) + b \cdot \omega(s)$$

$$\omega(s) = \frac{T(s)}{J \cdot s + b}$$

DC Motor Elektronik Sistem Laplace Dönüşümü:

$$\mathcal{L}\left[V(t) = L \cdot \left(\frac{di(t)}{dt}\right) + R \cdot i(t) + k_e \cdot \omega(t)\right] = V(s) = L \cdot s \cdot I(s) + R \cdot I(s) + k_e \cdot \omega(s)$$

$$I(s) = \frac{V(s) - k_e \cdot \omega(s)}{L \cdot s + R}$$

Elde edilen Laplace Dönüşüm Çıktıları ile transfer fonksiyonunu elde edilmesi Mekanik Alt-Sistem Transfer Fonksiyonunun elde edilmesinden sonra yapılacaktır. Bunun nedeni iki alt-sistemin transfer fonksiyonlarında seçilen girdi ve çıktı parametrelerinin bütünleşik transfer fonksiyonu etkileyecek olmasıdır.

1.2 Mekanik Alt-Sistem Denklemi Laplace Dönüşümü

Sistemin bütünleşik transfer fonksiyonunu oluşturan diğer bir parça olan Mekanik Alt-Sistem Transfer Fonksiyonunun eldesi için gerekli işlemler aşağıdaki gibidir.

$$\mathcal{L}[\tau_{BLDC}] = \mathcal{L}[\ddot{\theta}_1 * y_1 + \dot{\theta}_1 * y_2 + \theta_1 * y_3]$$

$$T(s) = y_1 \cdot s^2 \cdot \theta(s) + y_2 \cdot s \cdot \theta(s) + y_3 \cdot \theta(s)$$

$$T(s) = \theta(s) \cdot (s^2 \cdot y_1 + s \cdot y_2 + y_3)$$

Bu şekilde Mekanik-Alt Sistem Denklemi Laplace Dönüşümü de elde edilir. Bir sonraki adımda bu

iki alt-sistemin denklemlerini birleştirilecek ve manalı bir transfer fonksiyonu elde edilecektir.

1.3 Bütünleşik Transfer Fonkiyonu Eldesi

Sistem Elektronik ve Mekanik olmak üzere iki alt-sistemden oluştuğu için bütünleşik transfer fonksiyonu da bu iki alt sistemin transfer fonksiyonlarının çarpımı ile elde edilmelidir. Sistemde girdi olarak gerilim verileceği için ve açısal pozisyon değeri kontrol elde edileceği için sistemin transfer fonksiyonunun $\theta(s)/V(s)$ olması gerekmektedir.

Şekil 4 – Bütünleşik Sistem Diyagramı

İki alt-sistemin çarpımından $\theta(s)/V(s)$ elde edilmesi için Elektronik Alt-Sistem'den T(s)/V(s), Mekanik Alt-Sistem'den ise $\theta(s)/T(s)$ transfer fonksiyonları elde edilebilir ve bu iki transfer fonksiyonunun çarpımı ile istenilen bütünleşik transfer fonksiyonu elde edilebilir.

$$\frac{T(s)}{V(s)} \cdot \frac{\theta(s)}{T(s)} = \frac{\theta(s)}{V(s)}$$

1.3.1 Elektronik Alt-Sistem Transfer Fonkiyonu Eldesi

İstenilen bütünleşik transfer fonksiyonon elde edilebilmesi için ilk önce Elektronik Alt-Sistem Transfer Fonksiyonu elde edilecektir. Elektronik Alt-Sistem Transfer Fonksiyonunun elde edilebilmesi için DC Motor denklemlerinden mekanik ve elektronik denklemlerin birleştirilmesi gerekir.

$$I(s) = \frac{V(s) - k_e \cdot \omega(s)}{L \cdot s + R}$$

$$\omega(s) = \frac{T(s)}{J \cdot s + b}$$

DC motorlarda tork, akımın k_t olarak gösterilen bir katsayı ile çarpımı doğru orantılıdır. Bu kuraldan gelen eşitlik aşağıdaki gibidir:

$$T(t)=k_t\cdot i(t)$$

Bu eşitliğin Laplace Dönüşümü alınır ise:

$$T(s) = k_t \cdot I(s)$$

Eşitliği elde edilir. Bu eşitlikte *I*(*s*) yerine DC Motor Elektronik Denklemi koyulur.

$$T(s) = k_t \cdot I(s) = k_t \cdot \left(\frac{V(s) - k_e \cdot \omega(s)}{L \cdot s + R} \right)$$

DC Motor Mekanik Denkleminden yola çıkılarak $\omega(s)$ yerine $\frac{T(s)}{J \cdot s + b}$ yazılır ise:

$$V(s) = k_t \cdot \left(\frac{V(s) - k_e \cdot \left(\frac{T(s)}{J \cdot s + b} \right)}{L \cdot s + R} \right)$$

Elde edilen denklem ile V(s)ve I(s)eşitlikte bulunan tek fonksiyonlar olur ve bu da T(s)/V(s)eşitliğinin elde edilebeceği demektir. Birkaç düzenlemeden sonra Elektronik Alt-Sistem Transfer Fonksiyonu aşağıdaki gibi elde edilir:

$$\frac{T(s)}{V(s)} = \frac{k_t \cdot (J \cdot s + b)}{(L \cdot s + R) \cdot (J \cdot s + b) + k_e \cdot k_t}$$

1.3.2 Mekanik Alt-Sistem Transfer Fonkiyonu Eldesi

Bütünleşik transfer fonksiyonunun elde edilebilmesi için Mekanik Alt-Sistem Denklemlerinden $\theta(s)/T(s)$ formunda bir transfer fonksiyonu elde edilmesi gerekir.

$$T(s) = \theta(s) \cdot (s^2 \cdot y_1 + s \cdot y_2 + y \cdot 3)$$

Denklemde hazır olarak bulunan fonksiyonların T(s)ve $\theta(s)$ olmaları sayesinde istenilen transfer fonksiyonu kolayca elde edilebilir.

$$\frac{\theta(s)}{T(s)} = \frac{1}{s^2 \cdot y_1 + s \cdot y_2 + y_3}$$

1.3.3 Alt-Sistem Transfer Fonkiyonlarının Birleştirilmesi

Elde edilen iki alt-sistemin transfer fonksiyonlarının çarpımı ile bütünleşik transfer fonksiyonu elde edilir.

$$\frac{\theta(s)}{V(s)} = \frac{T(s)}{V(s)} \cdot \frac{\theta(s)}{T(s)} = \frac{\left(L \cdot s - k_t\right) \cdot \left(J \cdot s + b\right)}{k_e \cdot k_t} \cdot \frac{1}{s^2 \cdot y_1 + s \cdot y_2 + y_3}$$

Birkaç düzenlemeden sonra düzenlenmiş bütünleşik transfer fonksiyonu aşağıdaki gibi son halini alır:

$$\frac{\theta(s)}{V(s)} = \frac{k_t}{\left(J \cdot s^2 + b_m \cdot s + k_t \cdot k_e\right) \cdot \left(y_1 \cdot s^2 + y_2 \cdot s + y_3\right)}$$