Computational Biology of PIP3 signalling

Vladimir Kiselev

LeNovere Group — Babraham Institute

Signaling ISP Seminar, September 2013

- Background
 - PI3K signaling pathway
 - Phosphoinositides
 - Systems Biology
- System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-seq
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

1 Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology
- System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-sec
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

General View

Properties

- Interactions both on the cell membrane (2D) and in the cytoplasm (3D)
- Kinase and phosphatase activities
- Phosphoinositide (PIP2, PIP3 etc.) complexity

Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology
- System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- Gene Expression Analysis
 - RNA-sec
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

Isoform Complexity

- Each PI species has 6 isoforms
- In total 8 * 6 = 48 isoforms

Conversion Complexity

Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology
- 2 System Biology Modeling
 - Overview
 - Our Mode
 - Predictions
- 3 Gene Expression Analysis
 - RNA-seq
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

Computational Modeling

- Has been widely used in different biological disciplines
- Has been proved to be robust and reliable
- Helps tackling the complexity problem

1 Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology

2 System Biology Modeling

- Overview
 - Our Model
- Predictions

3 Gene Expression Analysis

- RNA-sec
- Our Data
- Preliminary Analysis
- Time-Course Analysis
- 4 Acknowledgments

Kinetic Modeling

- Deterministic use a set of ODE to describe evolution of the system
 - Assuming that the system is well stirred and spatially homogeneous
- Stochastic more general approach directly taking into account system fluctuations
 - Is required when number of particles in the systems is small
- Others (e.g. Rule Based Modeling)

1 Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology

2 System Biology Modeling

- Overview
- Our Model
- Predictions

3 Gene Expression Analysis

- RNA-sed
- Our Data
- Preliminary Analysis
- Time-Course Analysis
- 4 Acknowledgments

Design Overview

Mass-Spec Data

- PI, PIP, PIP2, PIP3 concentrations were measured using mass-spectrometry
- Impossible to distinguish between several species
- $[PI(4,5)P2] \gg [PI(3,4)P2]$ $[PI(4,5)P2] \gg [PI(3,5)P2]$
- $[PI(4)P] \gg [PI(3)P]$ $[PI(4)P] \gg [PI(5)P]$

Design 1 – without PI(3,4)P2

Analysis

Parameter Estimation

- 1000 runs
- Best 10 runs were considered

Parameter	Ranking value	From	To	Source	Value
pi3k	1+	-	-	literature	0.2
pip3_pi45p2_production.k1	1	0	1100	estimated	283.069
pi3k_activation.Kact	0.4092065232	0	1000	estimated	468.605
pi3k_activation.k	0.3528758625	0	10000	estimated	4510.44
rec	0.3332101512	-	-	literature	0.15
pip3_degradation.k1	0.3161319637	0	12	estimated	0.0638764
egfr_internalization.k1	0.2827946551	-	-	literature	0.0055
pi3k_deactivation.k1	0.2721791102	1	1000	estimated	203.269
pi3k_pi45p2_binding.k1	0.2721195867	0	100	estimated	8.44855
pten	0.2454299223	0	1	estimated	0.502768
pip3_pten_binding.k1	0.2454217573	0	10	estimated	0.103891
egfr_production.v	0.2136297575	0	0.0003	estimated	0.000181083
pi3k_pi45p2_binding.k2	0.1962720248	0	3000	estimated	632.48
pi3k_activation_basal.k1	0.1763170064	-	-	x	0.108887
egf_binding.k2	0.1549547047	-	-	literature	0.022
egf_binding.k1	0.1502826433	-	-	literature	29
egfr_dimerization.k2	0.1486302434	-	-	literature	0.3
egfr_phosphorylation.k2	0.1470041127	-	-	literature	0.08
egfr_dimerization.k1	0.1465098154	-	-	literature	10
egfr_phosphorylation.k1	0.1425294984	-	-	literature	1.33
pi45p2_pip3_production.k1	0.1240844428	-	-	x	7.14235
pip3_pten_binding.k2	0.0369564535	-	-	x	0.00941346
pi45p2	-	-	-	experimental	115
lig	-	-	-	experimental	0.00157
	I			-	

Results

1 Background

- PI3K signaling pathway
- Phosphoinositides
- Systems Biology

2 System Biology Modeling

- Overview
- Our Model
- Predictions

3 Gene Expression Analysis

- RNA-sed
- Our Data
- Preliminary Analysis
- Time-Course Analysis
- 4 Acknowledgments

SHIP1/SHIP2 Activity

SHIP1/SHIP2 Activity

FRET Data

 PI(3,4)P2 concentration was identified at the University of Dundee

SHIP1/SHIP2 Activity

Adding SHIP1/SHIP2 – In Progress

Future Plan

- Adding spatial dimension
- Stochastic reactions
- Single molecule representations rather than populations

- Background
 - PI3K signaling pathway
 - Phosphoinositides
 - Systems Biology
- 2 System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-seq
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

Brief Intro

Method

Read Alignment

- 1 Background
 - PI3K signaling pathway
 - Phosphoinositides
 - Systems Biology
- 2 System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-seq
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

Experiment Design

- Everything done by Veronique Juvin
 - Human, breast-derived MCF10a cell line
 - 4 conditions
 - WT
 - WT + p110α selective inhibitor (A66) KO below
 - PTEN -/- (both mutant alleles) PTEN below
 - p110 α H1047R/+ (1 WT allele / 1 mutant allele) KI below
 - RNA-seq time course measurements at 0m-15m-40m-90m-180m-300m
 - 3 replicates for each point

Expression Data

- Background
 - PI3K signaling pathway
 - Phosphoinositides
 - Systems Biology
- 2 System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-sed
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

Correlation Matrix

Principal Component Analysis

- 1 Background
 - PI3K signaling pathway
 - Phosphoinositides
 - Systems Biology
- 2 System Biology Modeling
 - Overview
 - Our Model
 - Predictions
- 3 Gene Expression Analysis
 - RNA-sec
 - Our Data
 - Preliminary Analysis
 - Time-Course Analysis
- 4 Acknowledgments

DE Analysis Tool

- DESeq package (from Bioconductor) takes into account all replicates
- FDR of 1%

Time Direction

Time Direction

Condition I

logFold change

				•		
	Δt_1	Δt_2	Δt_3	Δt_4	Δt_{5}	profile
gene l	2.16	0.1	3.18	1.01	-1.98	ususd
gene2	-3.26	0.57	-0.24	2.21	0.4	dssus
gene3	0.15	-0.64	0	-0.47	0.59	ssss

Time Profiles

Time Profiles

Condition Direction

Condition Direction

logFold change

	tı	t ₂	t ₃	t4	t ₅	t6	profile
gene I	2.16	0.1	3.18	1.01	-1.98	-1.6	ususdd
gene2	-3.26	0.57	-0.24	2.21	0.4	1.1	dssuss
gene3	0.15	-0.64	0	-0.47	0.59	0.37	<u> </u>

Condition Profiles

Future Plan

Identify unique EGF stimulation related genes

Acknowledgments

People

- Mouhannad Malek, Veronique Juvin
- Len Stephens, Phill Hawkins
- Nicolas Le Novere and the group
- Nicholas Luscombe and the LRI group
- Marija Jankovic, Sven Bergmann, Anne Segonds-Pichon, Simon Andrews
- Money
 - BBSRC grant
 - Babraham Institute

Note: this presentation was made with LATEX, Beamer + Wiki2Beamer

Source code: https://github.com/wikiselev/department-seminar

