A FIRST COURSE IN

LINEAR ALGEBRA

A FIRST COURSE

IN

LINEAR ALGEBRA

MAT2040 Notebook

Prof. Tom Luo

The Chinese University of Hongkong, Shenzhen

Prof. Ruoyu Sun

University of Illinois Urbana-Champaign

Copyright ©2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

```
Survey Methodology / Robert M. Groves . . . [et al.].

p. cm.—(Wiley series in survey methodology)

"Wiley-Interscience."

Includes bibliographical references and index.

ISBN 0-471-48348-6 (pbk.)

1. Surveys—Methodology. 2. Social

sciences—Research—Statistical methods. I. Groves, Robert M. II. Series.
```

HA31.2.S873 2004

001.4′33—dc22

2004044064

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Cont	ributors	v
Forev	word	vii
Prefa	ace	ix
Ackn	nowledgments	xi
Acro	nyms	xiii
1	Week1	1
1.1	Tuesday	1
1.1.1	Introduction	1
1.1.2	Gaussian Elimination	3
1.1.3	Complexity Analysis	11
1.1.4	Brief Summary	12
1.2	Thursday	14
1.2.1	Row-Echelon Form	14
1.2.2	Matrix Multiplication	16
1.2.3	Special Matrices	19
1.3	Friday	21
1.3.1	Matrix Multiplication	21
1.3.2	Elementary Matrix	22
1.3.3	Properties of Matrix	24
1.3.4	Permutation Matrix	26
1.3.5	LU decomposition	29
1.3.6	LDU decomposition	33
1.3.7	LU Decomposition with row exchanges	35
1.4	Assignment One	36

2	Week2	39
2.1	Tuesday	39
2.1.1	Review	39
2.1.2	Special matrix multiplication case	41
2.1.3	Inverse	44
2.2	Wednesday	49
2.2.1	Remarks on Gaussian Elimination	49
2.2.2	Properties of matrix	50
2.2.3	matrix transpose	53
2.3	Assignment Two	55
2.4	Friday	56
2.4.1	symmetric matrix	56
2.4.2	Interaction of inverse and transpose	57
2.4.3	Vector Space	58
2.5	Assignment Three	68
3	Week3	71
3.1	Tuesday	71
3.1.1	Introduction	71
3.1.2	Review of 2 weeks	72
3.1.3	Examples of solving equations	73
3.1.4	How to solve a general rectangular	78
3.2	Thursday	83
3.2.1	Review	83
3.2.2	Remarks on solving linear system equations	86
3.2.3	Linear dependence	88
3.2.4	Basis and dimension	90
3.3	Friday	96

3.3.2	Wore on basis and dimension	
3.3.3	What is rank?	99
3.4	Assignment Four 1	10
4	Midterm	13
11	Cample From	10
4.1	Sample Exam 1	13
4.2	Midterm Exam 1	20
5	Week4	27
5.1	Friday 1	27
5.1.1	Linear Transformation	127
5.1.2	Example: differentiation	129
5.1.3	Basis Change	134
5.1.4	Determinant	136
5.2	Assignment Five 1	44
6	Week5	47
6.1	Tuesday 1	47
6.1.1	Formulas for Determinant	147
6.1.2	Determinant by Cofactors	152
6.1.3	Determinant Applications	153
6.1.4	Orthogonality	156
6.2	Thursday 1	60
6.2.1	Orthogonality	160
6.2.2	Least Squares Approximations	166
6.2.3	Projections	169
6.3	Friday 1	72
6.3.1	Orthonormal basis	172
6.3.2	Gram-Schmidt Process	176

6.3.3	The Factorization $A = QR$	181
6.3.4	Function Space	183
6.3.5	Fourier Series	185
6.4	Assignment Six	186
7	Week6	187
7.1	Tuesday	187
7.1.1	Summary of last two weeks	187
7.1.2	Eigenvalues and eigenvectors	191
7.1.3	Products and Sums of Eigenvalue	196
7.1.4	Application: Page Rank and Web Search	197
7.2	Thursday	200
7.2.1	Review	200
7.2.2	Similarity and eigenvalues	200
7.2.3	Diagonalization	203
7.2.4	Powers of A	208
7.2.5	Nondiagonalizable Matrices	209
7.3	Friday	210
7.3.1	Review	210
7.3.2	Fibonacci Numbers	210
7.3.3	Imaginary Eigenvalues	212
7.3.4	Complex Numbers	214
7.3.5	Complex Vectors	214
7.3.6	Spectral Theorem	220
7.3.7	Hermitian matrix	221
7.4	Assignment Seven	223
8	Week7	227
8.1	Tuesday	227
811	Quadratic form	227

8.1.2	Positive Definite Matrices	232
8.2	Thursday	241
8.2.1	SVD: Singular Value Decomposition	241
8.2.2	Remark on SVD decomposition	245
8.2.3	Best Low-Rank Approximation	253
8.3	Assignment Eight	255
9	Final Exam	257
9.1	Sample Exam	257
9.2	Final Exam	264
10	Solution	271
10.1	Assignment Solutions	271
10.1.1	Solution to Assignment One	271
10.1.2	Solution to Assignment Two	277
10.1.3	Solution to Assignment Three	280
10.1.4	Solution to Assignment Four	286
10.1.5	Solution to Assignment Five	297
10.1.6	Solution to Assignment Six	303
10.1.7	Solution to Assignment Seven	311
10.1.8	Solution to Assignment Eight	321
10.2	Midterm Exam Solutions	328
10.2.1	Sample Exam Solution	328
10.2.2	Midterm Exam Solution	338
10.3	Final Exam Solutions	346
10.3.1	Sample Exam Solution	346
10.3.2	Final Exam Solution	357

A	This is Appendix Title	371
A .1	This is First Level Heading	371
A.1.1	This is Second Level Heading	. 372

Contributors

ZHI-QUAN LUO, Shenzhen Research Institute of Big Data, Lecturer RUOYU SUN, Industrial and Enterprise Systems Engineering, Lecturer JIE WANG, The Chinese University of Hongkong, Shenzhen, Typer

Foreword

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

place

date

Acknowledgments

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

I. R. S.

Acronyms

ASTA Arrivals See Time Averages

BHCA Busy Hour Call Attempts

BR Bandwidth Reservation

b.u. bandwidth unit(s)

CAC Call / Connection Admission Control

CBP Call Blocking Probability(-ies)

CCS Centum Call Seconds

CDTM Connection Dependent Threshold Model

CS Complete Sharing

DiffServ Differentiated Services

EMLM Erlang Multirate Loss Model

erl The Erlang unit of traffic-load

FIFO First in - First out

GB Global balance

GoS Grade of Service

ICT Information and Communication Technology

IntServ Integrated Services

IP Internet Protocol

ITU-T International Telecommunication Unit – Standardization sector

LB Local balance

LHS Left hand side

LIFO Last in - First out

MMPP Markov Modulated Poisson Process

MPLS Multiple Protocol Labeling Switching

MRM Multi-Retry Model

MTM Multi-Threshold Model

PASTA Poisson Arrivals See Time Averages

PDF Probability Distribution Function

pdf probability density function

PFS Product Form Solution

QoS Quality of Service

r.v. random variable(s)

RED random early detection

RHS Right hand side

RLA Reduced Load Approximation

SIRO service in random order

SRM Single-Retry Model

STM Single-Threshold Model

TCP Transport Control Protocol

TH Threshold(s)

UDP User Datagram Protocol

6.3. Friday

This lecture has two goals. The first is to see how orthogonality makes it easy to find the projection matrix P and the projection $\operatorname{Proj}_{\mathcal{C}(A)} b$. The key idea is that Orthogonality makes the product $A^{T}A$ a diagonal matrix. The second goal is to show how to **construct orthogonal basis of** C(A). For matrix $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$, the columns may not be orthogonal. We intend to convert a_1, \ldots, a_n to orthogonal vectors, which will be the columns of a new matrix Q.

6.3.1. Orthonormal basis

The vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ are **orthogonal** when their inner product $\langle \mathbf{q}_i, \mathbf{q}_j \rangle$ are zero. $(i \neq j.)$ With one more step-each vector is just divided by its length, then the collection of vectors become orthogonal unit vectors. Their lengths are all 1. Then this basis is called orthonormal.

Definition 6.15 [orthonormal] The collection of vectors $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^m$ is said to be:

- orthogonal if $\langle \pmb{q}_i, \pmb{q}_j \rangle = 0$ for all i, j with $i \neq j$ orthonormal if $\|\pmb{q}_i\|_2 = 1$ for all i and $\langle \pmb{q}_i, \pmb{q}_j \rangle = 0$ for all i, j with $i \neq j$, or equivalently,

$$\langle \boldsymbol{q}_i, \boldsymbol{q}_j \rangle = \begin{cases} 0 & \text{when } i \neq j & \text{(orthogonal vectors),} \\ 1 & \text{when } i = j & \text{(unit vectors: } \|\boldsymbol{q}_i\| = 1). \end{cases}$$

Moreover, if q_1, \ldots, q_n are **orthonormal**, then the basis $\{q_1, \ldots, q_n\}$ is called **orthonormal**

■ Example 6.6 Given a collection of unit vectors

$$m{e}_1 = egin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad m{e}_2 = egin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad m{e}_n = egin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},$$

then $\{m{e}_1,\ldots,m{e}_n\}$ forms an *orthonormal basis* for $\mathbb{R}^n.$

If we want to express vector \boldsymbol{b} as the linear combination of arbitrary basis (may not be orthogonal) $\{\boldsymbol{q}_1,\boldsymbol{q}_2,\ldots,\boldsymbol{q}_n\}$, what should we do?

Answer: Solve the system Ax = b, where $A = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}$

What if $\{q_1, q_2, ..., q_n\}$ is an **orthogonal** basis? How to find solution \boldsymbol{x} s.t.

$$\mathbf{b} = x_1 \mathbf{q}_1 + x_2 \mathbf{q}_2 + \dots + x_n \mathbf{q}_n? \tag{6.11}$$

Answer: We just do the inner product of each q_i with b to get the coefficient x_i :

$$\langle \boldsymbol{q}_{i}, \boldsymbol{b} \rangle = x_{1} \langle \boldsymbol{q}_{i}, \boldsymbol{q}_{1} \rangle + x_{2} \langle \boldsymbol{q}_{i}, \boldsymbol{q}_{2} \rangle + \dots + x_{n} \langle \boldsymbol{q}_{i}, \boldsymbol{q}_{n} \rangle$$

$$= x_{i} \langle \boldsymbol{q}_{i}, \boldsymbol{q}_{i} \rangle = x_{i}$$
(6.12)

By substituting Eq.(6.12) into Eq.(6.11), we could express \boldsymbol{b} as:

$$b = \sum_{i=1}^{n} \langle \boldsymbol{q}_i, \boldsymbol{b} \rangle \boldsymbol{q}_i.$$

In this case, from Eq.(6.12) we can see that if columns of \boldsymbol{A} are orthogonal, we could easily obtain the solution to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$:

$$x_i = \langle \boldsymbol{q}_i, \boldsymbol{b} \rangle, \quad i = 1, 2, \dots, n.$$

Definition 6.16 [matrix with orthonormal columns] Given a collection of **orthonormal** vectors ${\pmb q}_1,\ldots,{\pmb q}_n$, the matrix

$$\mathbf{Q} = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}$$

is said to be a matrix with **orthonormal** columns.

Note that a matrix with **orthonormal** columns is often denoted as Q.

Or equivalently, a matrix Q is with **orthonormal** columns if and only if

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \begin{pmatrix} \mathbf{q}_{1}^{\mathrm{T}} \\ \mathbf{q}_{2}^{\mathrm{T}} \\ \dots \\ \mathbf{q}_{n}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \end{pmatrix} = \begin{pmatrix} \mathbf{q}_{1}^{\mathrm{T}}\mathbf{q}_{1} & & \\ & \ddots & \\ & & \mathbf{q}_{n}^{\mathrm{T}}\mathbf{q}_{n} \end{pmatrix} = \mathbf{I}.$$
(6.13)

Note that a matrix Q with orthonormal columns is not required to be square! Moreover, $\{q_1, \dots, q_n\}$ in Q is not required to form a basis.

Definition 6.17 [orthogonal matrix] A matrix Q is said to be **orthogonal** if it is square and its columns are orthonormal.

Question: Why we call it an orthogonal matrix, but not an orthonormal matrix?

Answer: Orthogonal matrix usually transform an orthogonal basis into another orthogonal basis by matrix multiplication. This special property requires its column to be **orthonormal**.

- Example 6.7 If Q is an orthogonal matrix, while \hat{Q} is a matrix with orthonormal columns that is **not square**. Do the products QQ^T and $\hat{Q}\hat{Q}^T$ always be *identity matrix*? Answer:
 - ullet $oldsymbol{Q}oldsymbol{Q}^{\mathrm{T}}$ is always *identity matrix*. According to equation (6.13), we have $oldsymbol{Q}^{\mathrm{T}}oldsymbol{Q}=oldsymbol{I}$.

Hence Q^T is the left inverse of square matrix Q, which implies

$$Q^{-1} = Q^{T} \implies QQ^{T} = QQ^{-1} = I.$$

Moreover, solving $m{Q}m{x} = m{b}$ is equivalent to $m{x} = m{Q}^{-1}m{b} = m{Q}^{\mathrm{T}}m{b}$, which is exactly

$$oldsymbol{x} = egin{bmatrix} \langle oldsymbol{q}_1, oldsymbol{b}
angle \ \langle oldsymbol{q}_2, oldsymbol{b}
angle \ \langle oldsymbol{q}_n, oldsymbol{b}
angle \end{bmatrix}.$$

• Although $\hat{Q}^T\hat{Q} = I$, the product $\hat{Q}\hat{Q}^T$ will never be identity matrix for nonsquare \hat{Q} . We can verify it by the its rank:

Assume $\hat{Q} \in \mathbb{R}^{m \times n} (m \neq n)$. Then it's easy to verify that $\operatorname{rank}(\hat{Q}\hat{Q}^{\mathrm{T}}) = \operatorname{rank}(\hat{Q})$. Since \hat{Q} has orthonormal columns, the columns of \hat{Q} are independent, i.e., $\operatorname{rank}(\hat{Q}) = n$. But $\operatorname{rank}(\hat{Q}\hat{Q}^{\mathrm{T}}) = \operatorname{rank}(\hat{Q}) = n \neq m = \operatorname{rank}(\mathbf{I}_m)$.

Moreover, if \hat{Q} has only one column \hat{q} , then $\hat{Q}\hat{Q}^T = \hat{q}\hat{q}^T = \operatorname{rank}(1) \neq \operatorname{rank}(I_m)$.

Proposition 6.2

If **Q** has orthonormal columns, then it *leaves lengths unchanged*, in other words,

Same length ||Qx|| = ||x|| for every vector x.

Also, **Q** preserves inner products for vectors, i.e., :

 $\langle Qx,Qy\rangle = \langle x,y\rangle$ for every vectors x and y.

Proofoutline. $\|\mathbf{Q}\mathbf{x}\|^2 = \|\mathbf{x}\|^2$ because

$$\langle Qx, Qx \rangle = x^{\mathrm{T}}Q^{\mathrm{T}}Qx = x^{\mathrm{T}}(Q^{\mathrm{T}}Q)x$$

= $x^{\mathrm{T}}Ix = x^{\mathrm{T}}x$

Hence we have $\|Qx\| = \|x\|$. Just using $Q^TQ = I$, we can derive $\langle Qx,Qy \rangle = \langle x,y \rangle$.

Orthogonal matrices are excellent for computations, since the inverse of matrices could usually be converted into transpose.

When Least Squares Meet Orthogonality. In particular, if $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns, the least square problem is easy:

Although Qx = b may not have a solution, but the normal equation

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{Q}\hat{\boldsymbol{x}} = \boldsymbol{Q}^{\mathrm{T}}\boldsymbol{b}$$

must have the unique solution $\hat{x} = \mathbf{Q}^{\mathrm{T}}\mathbf{b}$. Why? Since $\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$, we derive

$$\hat{x} = (\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{Q})^{-1}\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{b} = \boldsymbol{Q}^{\mathrm{T}}\boldsymbol{b}.$$

6.3.1.1. Summary

Hence the **least squares solution** to Qx = b is $\hat{x} = Q^Tb$. In other words, $QQ^Tb \approx b$. The **projection matrix is** $P = QQ^T$. Note that the projection $\text{Proj}_{\mathcal{C}(Q)}(b) = QQ^Tb$ doesn't equal to b in general.

For general matrix A, the projection matrix is more complicated:

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}.$$

6.3.2. Gram-Schmidt Process

"Orthogonal is good". So our goal for this section is: *Given a collection of independent vectors, how to make them orthonormal?*

We start with three independent vectors \mathbf{a} , \mathbf{b} , \mathbf{c} in \mathbb{R}^3 . In order to construct orthonormal vectors, firstly we construct three **orthogonal** vectors \mathbf{A} , \mathbf{B} , \mathbf{C} . Secongly we divide \mathbf{A} , \mathbf{B} , \mathbf{C} by their lengths to get three **orthonormal** vectors $\mathbf{q}_1 = \frac{\mathbf{A}}{\|\mathbf{A}\|}$, $\mathbf{q}_2 = \frac{\mathbf{B}}{\|\mathbf{B}\|}$, $\mathbf{q}_3 = \frac{\mathbf{C}}{\|\mathbf{C}\|}$.

• Firstly we set A = a.

• The next vector \mathbf{B} must be perpendicular to \mathbf{A} . Look at the figure (6.4) below, We find that $\mathbf{B} = \mathbf{b} - \operatorname{Proj}_{\mathbf{A}}(\mathbf{b})$. Or equivalently,

First Gram-Schmidt step
$$B = b - \frac{\langle A, b \rangle}{\langle A, A \rangle} A$$
.

Figure 6.4: Subtract projection to get $\mathbf{B} = \mathbf{b} - \text{Proj}_{\mathbf{A}} \mathbf{b}$.

You can take inner product between \boldsymbol{A} and \boldsymbol{B} to verify that \boldsymbol{A} and \boldsymbol{B} are orthogonal in Figure (6.4). Note that \boldsymbol{B} is not zero (otherwise \boldsymbol{a} and \boldsymbol{b} would be dependent. We will show it later.)

Then we want to construct another vector *C*. Most likely *c* is not perpendicular to
 A and *B*. What we do is to subtract *c* off its projections onto the column space
 of *A* and *B* to get *C*:

$$C = c - \operatorname{Proj}_{\operatorname{span}\{A,B\}}(c)$$
Next Gram-Schmidt step $= c - \operatorname{Proj}_A(c) - \operatorname{Proj}_B(c)$
 $= c - \frac{\langle A,c \rangle}{\langle A,A \rangle} A - \frac{\langle B,c \rangle}{\langle B,B \rangle} B.$

Figure 6.5: Subtract *c* off its projections onto the column space of *A* and *B* to get *C*

• Finally we get orthogonal vectors \mathbf{A} , \mathbf{B} , \mathbf{C} . Orthonormal vectors \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 are obtained by dividing their lengths (shown in Figure (6.6)):

Figure 6.6: Final Gram-Schmidt step

Next we show an example of Gram-Schmidt step:

■ Example 6.8 How to construct orthonormal vectors from

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{c} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}?$$

• Firstly we set
$$\mathbf{A} = \mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

$$B = b - \operatorname{Proj}_{A}(b) = b - \frac{\langle A, b \rangle}{\langle A, A \rangle} A$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} 2^{-1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}$$

$$C = c - \operatorname{Proj}_{A}(c) - \operatorname{Proj}_{B}(c) = c - \frac{\langle A, c \rangle}{\langle A, A \rangle} A - \frac{\langle B, c \rangle}{\langle B, B \rangle} B$$

$$= \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^{T} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} 2^{-1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}^{T} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} (\frac{1}{2})^{-1} \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Hence we obtain our orthonormal vectors:

$$\mathbf{q}_{1} = \frac{\mathbf{A}}{\|\mathbf{A}\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \mathbf{q}_{2} = \frac{\mathbf{B}}{\|\mathbf{B}\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \mathbf{q}_{3} = \frac{\mathbf{C}}{\|\mathbf{C}\|} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

And we derive the orthogonal matrix Q:

$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

When will the Gram-Schmidt process "fail"? Let's describle this process in general case first, then we answer this question.

6.3.2.1. Gram-Schmidt process in general case

Algorithm: Gram-Schmidt Process

Input: a collection of vectors $a_1, ..., a_n$, presumably linear independent.

Firstly construct orthogonal vectors $A_1, ..., A_n$.

$$\mathbf{A}_1 = \mathbf{a}_1.$$

To construct A_j , $j \in \{2,...,n\}$, we compute a_j minus its projection in the column space spanned by $\{A_1,A_2,...,A_{j-1}\}$:

$$\begin{aligned} \boldsymbol{A}_{j} &= \boldsymbol{a}_{j} - \operatorname{Proj}_{\operatorname{span}\{\boldsymbol{A}_{1},\boldsymbol{A}_{2},\dots,\boldsymbol{A}_{j-1}\}}(\boldsymbol{a}_{j}) \\ &= \boldsymbol{a}_{j} - \operatorname{Proj}_{\boldsymbol{A}_{1}}(\boldsymbol{a}_{j}) - \operatorname{Proj}_{\boldsymbol{A}_{2}}(\boldsymbol{a}_{j}) - \dots - \operatorname{Proj}_{\boldsymbol{A}_{j-1}}(\boldsymbol{a}_{j}) \\ &= \boldsymbol{a}_{j} - \frac{\langle \boldsymbol{A}_{1}, \boldsymbol{a}_{j} \rangle}{\langle \boldsymbol{A}_{1}, \boldsymbol{A}_{1} \rangle} \boldsymbol{A}_{1} - \frac{\langle \boldsymbol{A}_{2}, \boldsymbol{a}_{j} \rangle}{\langle \boldsymbol{A}_{2}, \boldsymbol{A}_{2} \rangle} \boldsymbol{A}_{2} - \dots - \frac{\langle \boldsymbol{A}_{j-1}, \boldsymbol{a}_{j} \rangle}{\langle \boldsymbol{A}_{j-1}, \boldsymbol{A}_{j-1} \rangle} \boldsymbol{A}_{j-1} \end{aligned}$$

Secondly, after getting $A_1, ..., A_n$, we can construct orthonormal vectors:

$$\mathbf{q}_j = \frac{\mathbf{A}_j}{\|\mathbf{A}_j\|}$$
 for $j = 1, 2, \dots, n$.

So when do this process fail? When $\exists j$ such that $A_j = \mathbf{0}$, we cannot continue this process anymore:

Proposition 6.3 $A_j \neq \mathbf{0}$ for $\forall j$ if and only if a_1, a_2, \dots, a_n are indendent.

Proofoutline. $\mathbf{A}_j = \mathbf{0} \iff \mathbf{a}_j = \operatorname{Proj}_{\operatorname{span}\{\mathbf{A}_1,\dots,\mathbf{A}_{j-1}\}}(\mathbf{a}_j)$. It suffices to prove $\exists j \text{ s.t. } \mathbf{A}_j = \mathbf{0}$ if and only if $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n$ are dependent.

Sufficiency. Given $\mathbf{A}_j = \mathbf{0}$, then $\mathbf{a}_j = \operatorname{Proj}_{\operatorname{span} \mathbf{A}_1, \dots, \mathbf{A}_{j-1}}(\mathbf{a}_j) \in \operatorname{span}\{\mathbf{A}_1, \dots, \mathbf{A}_{j-1}\}$. It's easy to verify that $\operatorname{span}\{\mathbf{A}_1, \dots, \mathbf{A}_{j-1}\} = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{j-1}\}$. Hence $\mathbf{a}_j \in \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{j-1}\}$. Hence $\mathbf{a}_1, \dots, \mathbf{a}_j$ are dependent. Thus $\mathbf{a}_1, \dots, \mathbf{a}_n$ are dependent.

Necessity. Given dependent vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$, obviously, $\mathbf{a}_n \in \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{n-1}\}$. It's easy to verify that $\mathbf{a}_n = \operatorname{Proj}_{\operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{n-1}\}}(\mathbf{a}_n)$. Thus $\mathbf{a}_n = \operatorname{Proj}_{\operatorname{span}\{\mathbf{A}_1, \dots, \mathbf{A}_{n-1}\}}(\mathbf{a}_n) \Longrightarrow \mathbf{A}_n = \mathbf{0}$.

6.3.3. The Factorization A = QR

We know that Gaussian Elimination leads to *LU decomposition*; in fact, Gram-Schmidt process leads to *QR factorization*. These two decomposition methods are quite important in Linear Algebra, let's discuss QR factorization briefly:

Given a matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{bmatrix}$, we finally end with a matrix $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$. How are these two matrices related?

Answer: Since the linear combination of a, b, c leads to q_1 , q_2 , q_3 (vice versa), there must be a third matrix connecting A to Q. This third matrix is the triangular R such that A = QR.

Let's discuss a specific example to show how to do QR factorization.

■ Example 6.9 Given $A = \begin{bmatrix} a & b & c \end{bmatrix}$, whose columns are independent, then we can use Gram-Schmidt process to obtain the corresponding orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ from a,b,c. As a result, we can write A as:

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 & \boldsymbol{q}_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_1^T \boldsymbol{a} & \boldsymbol{q}_1^T \boldsymbol{b} & \boldsymbol{q}_1^T \boldsymbol{c} \\ 0 & \boldsymbol{q}_2^T \boldsymbol{b} & \boldsymbol{q}_2^T \boldsymbol{c} \\ 0 & 0 & \boldsymbol{q}_3^T \boldsymbol{c} \end{bmatrix}$$

We define
$$\mathbf{R} \triangleq \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \mathbf{a} & \mathbf{q}_1^{\mathrm{T}} \mathbf{b} & \mathbf{q}_1^{\mathrm{T}} \mathbf{c} \\ 0 & \mathbf{q}_2^{\mathrm{T}} \mathbf{b} & \mathbf{q}_2^{\mathrm{T}} \mathbf{c} \\ 0 & 0 & \mathbf{q}_3^{\mathrm{T}} \mathbf{c} \end{bmatrix}$$
, $\mathbf{Q} \triangleq \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix}$. Hence \mathbf{A} could be factorized into:

$$A = QR$$

where ${\it R}$ is upper triangular, ${\it Q}$ is a matrix with orthonormal columns.

QR factorization holds for every matrix with independent columns:

Theorem 6.6 Every $m \times n$ matrix **A** with ind. columns can be factorized as

$$A = QR$$

where Q is a matrix with orthonormal columns, R is an upper triangular matrix (always square).

We omit the proof of this theorem. Now we show that the inverse of R always exists:

Proof. suppose
$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$$
, $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \end{bmatrix}$. Thus we derive

$$\mathbf{R} = \mathbf{Q}^{-1} \mathbf{A} = \mathbf{Q}^{\mathrm{T}} \mathbf{A} = \begin{bmatrix} \mathbf{q}_{1}^{\mathrm{T}} \mathbf{a}_{1} & \mathbf{q}_{1}^{\mathrm{T}} \mathbf{a}_{2} & \dots & \mathbf{q}_{1}^{\mathrm{T}} \mathbf{a}_{n} \\ 0 & \mathbf{q}_{2}^{\mathrm{T}} \mathbf{a}_{2} & \dots & \mathbf{q}_{2}^{\mathrm{T}} \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{q}_{n}^{\mathrm{T}} \mathbf{a}_{n} \end{bmatrix}$$

For every step j we have

$$\mathbf{A}_j = \mathbf{a}_j - \operatorname{Proj}_{\operatorname{span}\{a_1,\dots,a_{j-1}\}}(\mathbf{a}_j), \qquad \mathbf{q}_j = \frac{\mathbf{A}_j}{\|\mathbf{A}_j\|}.$$

Since $\langle \boldsymbol{A}_{j}, \boldsymbol{a}_{j} \rangle = \langle \boldsymbol{a}_{j}, \boldsymbol{a}_{j} \rangle - \langle \operatorname{Proj}_{\operatorname{span}\{a_{1}, \dots, a_{j-1}\}}(\boldsymbol{a}_{j}), \boldsymbol{a}_{j} \rangle = \|a_{j}\|^{2} - \|\operatorname{Proj}_{\operatorname{span}\{a_{1}, \dots, a_{j-1}\}}(\boldsymbol{a}_{j})\|^{2} > 0$ 0, we have $\langle \boldsymbol{q}_j, \boldsymbol{a}_j \rangle = \frac{\langle \boldsymbol{A}_j, \boldsymbol{a}_j \rangle}{\|\boldsymbol{A}_j\|} > 0$. Hence the diagonal of \boldsymbol{R} are all positive. Hence this triangular matrix is invertible.

Proposition 6.4 If A = QR, then the least squares solution is given by:

$$\mathbf{x} = (\mathbf{R}^{\mathrm{T}}\mathbf{R})^{-1}\mathbf{R}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}}\mathbf{b} = \mathbf{R}^{-1}\mathbf{Q}^{\mathrm{T}}\mathbf{b}.$$

Explain: Since we have

$$A^{\mathrm{T}}Ax = R^{\mathrm{T}}Q^{\mathrm{T}}QRx = R^{\mathrm{T}}Rx$$

$$A^{\mathrm{T}}b = R^{\mathrm{T}}Q^{\mathrm{T}}b$$

it's equivalent to solve $\mathbf{R}^{\mathrm{T}}\mathbf{R}\mathbf{x} = \mathbf{R}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}}\mathbf{b}$.

Sicne **R** is *invertible*, we solve by back substitution to get

$$\mathbf{x} = (\mathbf{R}^{\mathrm{T}}\mathbf{R})^{-1}\mathbf{R}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}}\mathbf{b} = \mathbf{R}^{-1}\mathbf{Q}^{\mathrm{T}}\mathbf{b}.$$

6.3.4. Function Space

Sometimes we may also discuss orthonormal basis and Gram-Schmidt process on function space. There is a simple example:

■ Example 6.10 For subspace $\mathrm{span}\{1,x,x^2\}\subset\mathcal{C}[-1,1]$, firstly, how to define orthogonal for the basis $\{1,x,x^2\}$?

Pre-requisite Knowledge: Inner product.

$$\langle f,g\rangle = \int_a^b fg \, \mathrm{d}x \text{ for } f,g \in C[a,b]. \qquad ||f||^2 = \int_a^b f^2 \, \mathrm{d}x$$

If we have defined inner product, then we can talk about *orthogonality* for $\{1, x, x^2\}$. It's easy to verify that

$$\langle 1, x \rangle = 0 \quad \langle x, x^2 \rangle = 0 \quad \langle 1, x^2 \rangle = \frac{2}{3}.$$

If we do the Gram-Schmidt Process similarly, we obtain:

$$A = 1$$
, $B = x$, $C = x^2 - \frac{\langle 1, x^2 \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle x, x^2 \rangle}{\langle x, x \rangle} x = x^2 - \frac{1}{3}$

where A,B,C are orthogonal. We can divide their length to obtain orthonormal basis:

$$q_{1} = \frac{A}{\|A\|} = \frac{1}{\sqrt{\int_{-1}^{1} 1^{2} dx}} = \frac{1}{2}$$

$$q_{2} = \frac{B}{\|B\|} = \frac{x}{\sqrt{\int_{-1}^{1} x^{2} dx}} = \frac{x}{2/3} = \frac{3}{2}x$$

$$q_{3} = \frac{C}{\|C\|} = \frac{x^{2} - \frac{1}{3}}{\sqrt{\int_{-1}^{1} (x^{2} - \frac{1}{3})^{2} dx}} = \frac{x^{2} - \frac{1}{3}}{\frac{8}{45}} = \frac{45x^{2} - 15}{8}$$

Hence $\{q_1,q_2,q_3\}$ is the orthonormal basis for $\{1,x,x^2\}$.

Example 6.11 Consider the collection \mathcal{F} of functions defined on $[0,2\pi]$, where

$$\mathcal{F} := \{1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos mx, \sin mx, \dots\}$$

Using various trigonometric identities, we can show that if f and g are **distinct**(different) functions in \mathcal{F} , we have $\int_0^{2\pi} f g \, \mathrm{d}x = 0$. For example,

$$\langle \sin x, \sin 2x \rangle = \int_0^{2\pi} \sin x \sin 2x \, \mathrm{d}x = \int_0^{2\pi} \frac{1}{2} (\cos x - \cos 3x) \, \mathrm{d}x = 0.$$

And moreover, if f=g, we have $\int_0^{2\pi} f^2 \, \mathrm{d}x = \pi.$ For example,

$$\langle \sin 5x, \sin 5x \rangle = \int_0^{2\pi} \sin^2 5x \, dx = \int_0^{2\pi} \frac{1}{2} (1 + \cos 10x) \, dx = \pi.$$

In conclusion, the collection of functions $\{1,\sin mx,\cos mx\}$ for $k=1,2,\ldots$ are orthogonal in $\mathcal{C}[0,2\pi]$. Note that this set is **not orthonormal**.

This example gives a motivation of the fourier transformation:

6.3.5. Fourier Series

Since we have shown the orthogonality of \mathcal{F} in Example.(6.11), our question is that what kind of function can be written as the linear combination of functions from \mathcal{F} .

The Fourier series of a function is its expansion into sines and cosines:

$$f(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots$$

where $f(x) \in C[0,2\pi]$. So our question turns into what kind of function could be expressed as fuourier series?

Theorem 6.7 If a function f have the finite length in its function space C[a,b], then it could be expressed as *fourier series*.

But how to compute the coefficients $a_i's$ and $b_j's$? The key is orthogonality! For example, in order to get a_1 , we just do the inner product between f(x) and $\cos x$:

Figure 6.7: Enjoy fourier series!

$$\langle f(x), \cos x \rangle = a_1 \langle \cos x, \cos x \rangle + 0 \implies a_1 = \frac{\langle f(x), \cos x \rangle}{\langle \cos x, \cos x \rangle} = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos x \, dx$$

Similarly we derive

$$a_m = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos mx \, dx$$
 $b_m = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin mx \, dx.$