Exploring Data With R

Abhishek Kumar ItsAbhishekKumar.com @MeAbhishekKumar

Outline

Overall structure

Continuous data

Categorical data

Types of Data

Categorical data

Colors

Use factor

Continuous data

Mileage

Overall Structure

Number of observationsNumber of featuresData typesSample data

Dataset

Iris dataset

50 samples

Iris-setosa

50 samples

Iris-virginca

50 samples

Iris-versicolor

Features: sepal length, sepal width, petal length, petal width

Available in datasets package

Analysis of Continuous Data

Central Spread tendency or dispersion

Central Tendency

Mean (Average)

Set A

$$Mean = \frac{Sum of all values}{Number of values}$$

$$Mean = 75$$

Central Tendency

Median

Set A

Median = 77.5

Central Tendency

Why Not Sufficient?

Set A

Mean = 75

Median = 77.5

Set B

Mean = 75

Median = 77.5

Range

Set A

Range = maximum - minimum

Range = 90 - 60 = 30

Range

Set A

$$Mean = 75$$

$$Median = 77.5$$

Range =
$$90 - 60 = 30$$

Set B

$$Mean = 75$$

$$Median = 77.5$$

Range =
$$100 - 25 = 75$$

Quartiles

Set A

Quartiles

Set A

60

90

85

80

Five point summary (min, Q1, Q2, Q3, max)

Box Plot (Box – Whisker Plot)

max

Box Plot

Box Plot

Histogram

Set A

Range	Count
51-61	2
61-71	1
71-81	3
81-91	2

Variance & Standard deviation

Set A

Variance & Standard Deviation

$$Mean = 75$$

Set A

Median = 77.5

Std. deviation = ~ 10.3

Variance = **106.25**

$$Mean = 75$$

Set B

Median = 77.5

Std. deviation = ~ 22.9

Variance = **525**

Analysis of Categorical Data

Frequency distribution

Category statistics

Frequency Distribution

Set A

Category	Count	Proportion
Male	3	3/8 = 0.375
Female	5	5/8 = 0.625

Category Statistics

Category	Values	Mean
Male	{ 60, 80, 80)	~ 73.3
Female	{ 70, 75, 85, 60, 90 }	76

Set A

Summary

