1) Inverse RL
like imititation having, we learn from expert demonstrations. The rather that heaving the experts policy, IRL rather that heaving the experts policy, IRL thes to learn the reward function
1) (mitotion via verous succint/transferrable - reward for is more succint/transferrable
2) Scientific Inglivy - modelling human/animal behavior
3) Multiagent setting-model other agents
Setting: (Pknown) M= 58 ft. P. v. H. u?
- Reward function r(s,a) is unknown and signal re is unobserved
- Observe trajectories trum expert wi aprimar jung in
Basic Idea: Find a reward function which is consistent with the optimality of the expert police find r s.t. E[r(s,a)] * E[r(s,a)] * IT r: Sxft > [0,1] S, and y s, and y estimate from expert trajectories
Problems w/ Formulation: 1) Need to consider all ASH policies

2) Ambiguity: more than one reward function may satisfy (r=0) Reframe: Find a policy that is as good Key assumption: $E[r(s,a)] = \Theta_{*}^{T} \varphi(s,a)$ linear reward wit features

ex- $\varphi(s,a) = \begin{cases} \mathbb{P}(building) \\ \mathbb{P}(sidewalk) \\ \mathbb{P}(road) \end{cases}$ \Leftrightarrow weighs negatives hitting building)

(driving on sidewalk) hitting building)

by positives (road) We can write the policy consistency problem: Find TI s.t. \(\mathbb{E} \left[\P(s,a) \right] = \mathbb{E} \left[\P(s,a) \right] \\
\Ti \S \times \D(s) \\
\text{S, and } \text{y} \\
\text{S, and } \\
\text{S, estimate from $\sum_{i=1}^{N} \varphi(s_i, a_i)$ TO solve the cumbiquity problem, we will use the "maximum entropy principle" The Max Entropy IRL method:
max Entropy TT 4 $\mathbb{T}_{s,t} = \mathbb{E}[\varphi(s,a)] = \mathbb{E}[\varphi(s,a)]$ 2) Maximum Entropy Principle Def (Entropy) Distribution $P(x) \in \Delta(X)$ $Ent(P) = \underset{x \sim P}{\mathbb{E}} [-log(P(x))] = \underset{x \in X}{\sum} P(x) log(P(x))]$

```
P(x) & [0,1], Entropy is positive
   ex - deterministic distribution X=x w.p. 1
                 Px(x) = 1 {x=x0}
Ent(Px<sub>0</sub>) = -20. tog(0) + -1. log(1)<sup>0</sup>
x \neq x_0
ex- uniform distribution over |X|=N elements

\uparrow Ent(U) = -\sum_{x \in X} \frac{1}{N} \log(\frac{1}{N}) = -\log(\frac{1}{N})

= \log N
 Max Ent Principle:
         "Among consistent distributions,
                                             Choose the one w/ the
                                            most uncertainty, ie.
        W/ contraints ausing
           from observation,
                                          the highest entropy.
            mean, variance
The max-ent IZL approach:
                                                              - E [ [log(T[(a|s))]]
sady
 max E[ Ent(T(1s))] = max -
                  = \min_{\substack{T \in S, \text{and}_{M}^{T} \\ S, \text{and}_{M}^{T}}} \mathbb{E}\left[\log \left(T(a|s)\right)\right]
= \min_{\substack{T \in S, \text{and}_{M}^{T} \\ S, \text{and}_{M}^{T}}} \mathbb{E}\left[\log \left(T(a|s)\right)\right]
= \min_{\substack{T \in S, \text{and}_{M}^{T} \\ S, \text{and}_{M}^{T}}} \mathbb{E}\left[\log \left(T(a|s)\right)\right]
= \min_{\substack{T \in S, \text{and}_{M}^{T} \\ S, \text{and}_{M}^{T}}} \mathbb{E}\left[\log \left(T(a|s)\right)\right]
   S.t. Courtraints
```

3) Constrained optimization Consider the Constrained optimization problem: 1980) $x^* = \underset{x}{\operatorname{argmin}} f(x) \text{ st. } g(x) = 0$ Lagrange Formulation: min max f(x) + w.g(x) if $g(x)\neq 0$, $W\rightarrow \pm \infty$ so inner max is ∞ if g(x)=0, inner maximitating f(x) $\max_{w} f(x) + w_{g}(x) = \begin{cases} \infty & g(x) \neq 0 \\ f(x) & g(x) = 0 \end{cases}$ $X' = \underset{x}{\operatorname{argmin}} \max_{w} f(x) + w \cdot g(x)$ example: min x+y = 1win max $x+y+w(x^2+y^2-1)$, x,y w f(x,y,w) $\nabla d = 1 + 2xw$ $\Rightarrow x^* = \frac{1}{2w^*}$ $\nabla yd = 1 + 2yw$ $\Rightarrow y^* = -1$ $\Rightarrow \nabla wd = x^* + y^* - 1 \Rightarrow x^* + (y^*)^2 = 1$ $(-1)^2 + (-1)^2 = 1 = 7 \quad W_x = -1 \sqrt{2} = \frac{1}{2}$ Critical points: (-1/2) and (1/2)

Initialize Wo

For t=0,-,T-1 $X_t = \underset{X}{\operatorname{arg\,min}} f(x) + W_t g(x)$ (Best response) $W_{t+1} = W_t + Mg(x_t)$ (incremental update)

Return $X = \frac{1}{t} \underset{t=0}{\overset{t-1}{\sum}} x_t$, $X \to x^*$ as $T \to \infty$ If f,g are convex