

BLANK PAGE

Indian Standard GLOSSARY OF SHIPS' HYDRODYNAMIC TERMS PART II SHIP GEOMETRY

UDG 629.12: 532.5: 001.4

© Copyright 1977

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Indian Standard GLOSSARY OF SHIPS' HYDRODYNAMIC TERMS PART II SHIP GEOMETRY

Shipbuilding Sectional Committee, MCPD 1

Chairman

Representing

SHRI S. PARMANANDHAN

Ministry of Defence (NHQ)

Members

CDR S. P. AGARWALA

SHRI N. CHAKRABORTY

SHRI S. RAGHAVAN (Alternate) MECHANICAL ENGINEER. CHIEF

CALCUTTA PORT TRUST CHIEF MECHANICAL ENGINEER.

BOMBAY PORT TRUST (Alternate) SHRI V. G. DAMLE

> SHRI R. D. PARALKAR (Alternate) AFCO Ltd, Bombav SHRI A. T. JOSEPH (Alternate) SHRI I. N. PRADHAN (Alternate)

SHRI R. S. SACHDEV (Alternate) DIRECTOR OF NAVAL CONSTRUCTION

SHRI V. P. GOYAL SHRI SUDARSHAN KUMAR (Alternate)

SHRI D. B. IRANI

SHRI G. K. KURIYAN SHRI M. VELU (Alternate)

SHRI M. G. KUTTY SHRI I. N. PRADHAN PRESIDENT

SHRI P. C. KUMAR (Alternate)

SHRI T. S. RAJAN SHRI H. S. RAO CAPT D. S. RUPA

SHRI S. SUNDARAM (Alternate)

SHRI R. SARANGARAJAN

Ministry of Defence (DGI)

Ministry of Shipping and Transport

Port Consultative Organization, New Delhi

AFCO Ltd, Bombay; and Institute of Marine Technologists, Bombay

Institute of Marine Technologists, Bombay

Ministry of Defence (NHQ)

Mukand Iron & Steel Works Ltd. Bombay

Directorate General of Shipping, Bombay Central Institute of Fisheries Technology, Cochin

Indian Engineering Association, Bombay Indian National Shipowners' Association, Bombay Institute of Marine Engineers, Bombay

Ericson & Richards, Bombay Indian Register of Shipping, Bombay Shipping Corporation of India Ltd, Bombay

Directorate General of Technical Development, New Delhi

(Continued on page 2)

© Copyright 1977

INDIAN STANDARDS INSTITUTION

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)

SHRI B. R. SAWARKAR

Members

SHRI P. R. GOVIL (Alternate)
SHRI W. R. D. SAXTON
SHRI D. MADHOK (Alternate)
SHRI S. G. SCHAEFFER
SHRI K. SHARMA (Alternate)
SHRI A. K. SEN
SHRI D. S. SHETII
SHRI M. G. KUTTY (Alternate)
SHRI G. SINHA
SHRI H. SVENSSON (Alternate)
SHRI T. N. SUJAN
SHRI P. S. DAS,

Director (MCPD)

Representing

Cochin Shipyard Ltd, Cochin

Lloyd's Register of Shipping, Bombay

American Bureau of Shipping, Bombay

Garden Reach Workshops Ltd, Calcutta Hindustan Shipyard Ltd, Visakhapatnam

SF India Ltd, Calcutta

Larsen & Toubro Ltd, Bombay Director General, ISI (Ex-officio Member)

Secretary

Shri V. K. Sehgal Assistant Director (MCPD), ISI

Indian Standard GLOSSARY OF SHIPS' HYDRODYNAMIC TERMS PART II SHIP GEOMETRY

O. FOREWORD

- **0.1** This Indian Standard (Part II) was adopted by the Indian Standards Institution on 27 October 1976, after the draft finalized by the Shipbuilding Sectional Committee had been approved by the Marine, Cargo Movement and Packaging Division Council.
- **0.2** The object of this standard is to specify the technical and scientific terms used in ship geometry, hydrostatic and hydrodynamic terms and to facilitate the exchange of information particularly at international level, and the ease of understanding as regards to documents relating to naval architecture.
- **0.3** The terms are represented by symbols which have been arranged in alphabetical order for ease of interpretation.
- **0.4** No rules are laid down as to whether subscripts are to be shown by capital or lower case letters, although the letters shown in this standard are in the preferred style.
- **0.5** When required, the suffixes M and S should be introduced to distinguish between quantities referring to model and ship respectively.
- **0.6** This standard is being issued in six parts. The other parts in the series are:

Part I Basic quantities

Part III Resistance and propulsion

Part IV Sea keeping

Part V Manoeuvrability

Part VI Strength and vibration

0.7 While preparing this standard, current work by ISO/TC 8 on 'Terminology of profiles and hydrodynamic terms' and International Towing Tank Conference (ITTC) has also been considered.

1. SCOPE

1.1 This standard (Part II) deals with terms related to geometry of ship.

2. TERMINOLOGY

SL No.	Symbol	Term	Definition	Symbol of SI Unit
2.1	A_{A}	After perpendicular area section	Ship transverse cross-sectional area at the aft perpendicular	m^2
2.2	A_{BL}	Area of ram bow in longitudinal plane	The area of the ram projected on the middle line plane forward of the fore perpendicular*	m^2
2.3	${f A_{BT}}$	Area of transverse cross- section of a bulbous bow (full area port and star- board)	The cross-sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular, A _{BT} is measured by continuing the area curve forward to the perpendicular, ignoring the final rounding*	m²
2.4	$A_{\mathbf{r}}$	Forward perpendicular area section	Ship transverse cross-sectional area at the fore perpendi- cular	m²
2.5	A_{M}	Area, midship section	Area of the immersed midship section, midway between fore and aft perpendiculars	m^2
2.6	$A_{\mathtt{T}}$	Area of transom (full area port and starboard)	Cross-sectional area of tran- som stern below the load waterline	m^2
2.7	$A_{\mathbf{v}}$	Area exposed to wind	Area of portion of ship above waterline projected nor- mally to the direction of relative wind	m^2
2.8	$A_{\mathbf{w}}$	Area, waterplane	Horizontal plane area en- closed between the inter- section line of free water surface with the ship hull	m^2
2.9	A_x	Area, maximum transverse section	Ship transverse cross-section having the maximum im- mersed area	m^2
2.10	ĀB†	Centre of buoyancy from aft perpendicular	Distance of centre of buoyan- cy from aft perpendicular	m
2.11	Ā F †	Centre of waterplane from aft perpendicular	Distance of centre of water- plane from aft perpendicu- lar	m

^{*}Below the load waterline the stem contour sometimes recedes aft of the fore perpendicular before projecting forward to define the outline of the ram or fore end of the bulb. In such instances, this area should be calculated using as datum the aftermost vertical tangent to the contour instead of the fore perpendicular.

[†]Alternatively, the position of the centre of buoyancy B may be expressed in terms of the co-ordinate axes with an appropriate suffix, for example, X_B, Y_B and Z_B. The position of other items, such as the centre of gravity G, metacentre M and centre of flotation F could also be treated in the same way.

SL No.	Symbol	Term	DEFINITION	Symbol of SI Unit
2.12	ĀĞ∗	Centre of gravity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
2.13	В	Beam (or breadth) moulded of ship	Maximum moulded breadth at maximum transverse section measured at right angle with the plane of symmetry	m
2.14	В	Centre of buoyancy	Centre of gravity of water displaced	
2.15	$B_{\mathbf{M}}$	Breadth of midship section	Breadth measured on the de- signed waterline at the section, midway between fore and aft perpendi- culars	
2.16	B _x	Breadth of maximum transverse section	Breadth measured on the de- signed waterline at the maximum transverse sec- tion	_
2.17	B	R. E. Froude's breadth co- efficient	$\frac{\triangle^{\frac{3}{4}}}{B}$	
2.18	<u>B</u> M *	Metacentre above centre of buoyancy	Distance from the centre of buoyancy B to the trans- verse metacentre M	m
2.19	$\overline{\mathrm{BM}}_{\mathrm{L}}^{*}$	Longitudinal metacentre above centre of buoyancy		m
2.20	Св, δ	Block coefficient	<u>∇</u>	
2.21	\mathbf{C}^{1r}	Coefficient of inertia of water- plane, longitudinal	$\frac{12~{ m I_L}}{{ m BL}^3}$	_
2.22	$\mathbf{C}_{\mathbf{rr}}$.	Coefficient of inertia of waterplane, transverse	$\frac{12~\mathrm{I}_{\mathrm{T}}}{\mathrm{B}^{\mathrm{3}}\mathrm{L}}$	_
2.23	C_{M} , β	Midship section coefficient (midway between forward and after perpendiculars)	$\frac{A_{_{M}}}{B_{_{M}} T_{_{M}}}$	-
2.24	C_p , ϕ	Longitudinal prismatic† co-	∇/A_x L (or ∇/A_m L)	
2.25	C_{PA}, ϕ_{Λ}	Prismatic coefficient† after- body	∇ (afterbody)/ $\frac{1}{2}$ A_x L [or ∇ (afterbody)/ $\frac{1}{2}$ A_x L]	
2.26	C_{PE}, ϕ_{E}	Prismatic coefficient† entrance	∇ (entrance)/ A_x L_E [or ∇ (entrance)/ A_m L_E]	
2.27	C_{PF}, ϕ_F	Prismatic coefficient† fore- body	$orall$ (forebody)/ $rac{1}{2}$ A_x L [or ∇ (forebody)/ $rac{1}{2}$ A_y L]	

^{*}Alternatively, the position of the centre of buoyancy B may be expressed in terms of the co-ordinate axes with an appropriate suffix, for example, X_B, Y_B and Z_B. The position of other items, such as the centre of gravity G, metacentre M and centre of flotation F could also be treated in the same way.

†The prismatic coefficient should generally be based upon maximum-section area rather than on midsection area, but it should be clearly stated which area has been used. Whatever ship length considered appropriate may be used for this and other coefficients,

S _L No.	Symbol	TERM	Definition	Symbol of SI Unit
2.28	C_{PR}, ϕ_{R}	Prismatic coefficient* run	$\bigtriangledown (\operatorname{run})/\operatorname{A}_{\mathtt{x}} \operatorname{L}_{\mathtt{R}} \ [\operatorname{or} \ \bigtriangledown \ (\operatorname{run})/\operatorname{A}_{\mathtt{M}} \operatorname{L}_{\mathtt{R}}]$	_
2.29	C_{VP}, ϕ_V	Prismatic coefficient* vertical	$\frac{igtriangledown}{f A_{f w} \ f T}$	
2.30	C _{wp} , 4	Designed load waterline co- efficient	$\frac{\mathbf{A_w}}{\mathbf{LB}}$	
2.31	C_s	Non dimensional wetted surface coefficient	$C_s = \frac{s}{\sqrt{\nabla L}}$	
2.32	$C_{\mathbf{x}}$	Maximum transverse section coefficient	$C_{\boldsymbol{x}} = \frac{A_{\boldsymbol{x}}}{B_{\boldsymbol{x}} T_{\boldsymbol{x}}}$	
2.33	$C_{f w}_s$	Wetted surface coefficient of Taylor	$\mathrm{C}_{w_S} = \frac{S}{\sqrt{\bigtriangledown L}}$	-
2.34	\mathbf{C}_{∇}	Volumetric coefficient	$rac{ extstyle extstyle$	
2.35	D	Depth, moulded, of a ship hull	Vertical height at midship from base line to the upper deck beam line	m
2.36	F	Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
2.37	F	Position of centre of flotation	Centroid of waterplane at which the vessel floats	
2.38	$\overline{\mathrm{FF}}$	Centroid of waterplane from forward perpendicular	Distance of centroid of water plane from forward per- pendicular	. m
2.39	· FB†	Centre of buoyancy from forward perpendicular	Distance of centre of buoy- ancy from forward per- pendicular	m
2.40	FG †	Centre of gravity from forward perpendicular	Distance of centre of gravity from forward perpendi- cular	m
2.41	$f_{_{\mathbf{BL}}}$	Area coefficient for ram bow	$\mathrm{f_{_{BL}}}=rac{\mathrm{A_{_{BL}}}}{\mathrm{LT}}$	m
2.42	f_{BT}	Taylor sectional area coefficient for bulbous bow	$ m f_{BT} = rac{A_{BT}}{A_{T}}$	_
2.43	G	Centre of gravity	Point at which the weight of the ship is supposed to act	

^{*}The prismatic coefficient should generally be based upon maximum-section area rather than on midsection area, but it should be clearly stated which area has been used. Whatever ship length considered appropriate may be used for this and other coefficients, but this length should be clearly indicated and stated.

[†]Alternatively, the position of the centre of buoyancy B may be expressed in terms of the co-ordinate axes with an appropriate suffix, for example, X_B, Y_B and Z_B. The position of other items, such as the centre of gravity G, metacentre M and centre of flotation F could also be treated in the same way.

SL No.	Symbol	Term	Definition	Symbol of SI Unit
2.44	ŒM*	Metacentric height	Distance from the centre of gravity G to the transverse metacentre M	m
2.45	$\widehat{\mathrm{GM}}_{\mathrm{L}}^*$	Longitudinal metacentric height	Distance from the centre of gravity G to the longitudinal metacentre M _L	m
2.46	\overline{GZ}	Righting arm or lever		m
2.47	$\tilde{i}_{\mathbf{g}}$	Angle of entrance, half	Angle of waterline at the bow with reference to centre- plane, neglecting local shape at stem	-
2.48	i _R	Angle of run, half	Angle of waterline at stern with reference to centre- plane, neglecting local shape at stern frame	m4
2.49	$I_{\mathbf{L}}$	Longitudinal moment of inertia of water plane	About transverse axis through centre of flotation	m^4
2.50	IP	Polar moment of inertia	Second polar moment of area of a plane-surface related to a point in the plane	m^4
2.51	$\Gamma_{\mathbf{r}}$	Transverse moment of inertia of water plane	About longitudinal axis through centre of flotation	m ⁴
2.52	KB*	Centre of buoyancy above moulded base or keel	Distance from the centre of buoyancy B to the moulded base or keel K	m
2.53	KG*	Centre of gravity above moulded base or keel	Distance from the centre of gravity G to the moulded base or keel K	m
2.54	KM*	Metacentre above moulded base or keel	Distance from the transverse metacentre M to the moulded base or keel K	m
2.55	$\overline{\mathrm{KM}_{\mathtt{L}}}^{*}$	Longitudinal metacentre above moulded base or keel	-	\mathbf{m}
2.56	L	Length of a ship	Reference length of a ship (generally between the perpendiculars)	m
2.57	$\mathbf{L}_{\mathbf{A}}$	Length of afterbody	Length of the shipbody from midship section to after end	m
2.58	$L_{\mathtt{E}}$	Length of entrance	From the forward perpendi- cular to the forward end of parallel middle body, or	m
2.59	$L_{\mathbf{F}}$	Length of forebody	maximum section Length of the shipbody from midship section to forward end	m
2.60	L_{oA}	Length, overall		m

^{*}Alternatively, the position of the centre of buoyancy B may be expressed in terms of the co-ordinate axes with an appropriate suffix, for example, X_B , Y_B and Z_B . The position of other items such as the centre of gravity G, metacentre M and centre of flotation F could also be treated in the same way.

SL No.	Symbol	Term	Definition	Symbol of SI Unit
2.61	L_{os}	Overall submerged length		m
2.62	Lp	Length of parallel middle body	Length of constant transverse section	m
2.63	L_{pp}	Length between perpendiculars		m
2.64	$L_{\mathbf{R}}$	Length of run	From section of maximum area or after end of parallel middle body to WL termi- nation or other designated point	m
2.65	$L_{\mathbf{w}_{\mathbf{L}}}$	Length of waterline in general	Longitudinal distance be- tween extreme points of a waterline for a particular draught and trim	m
2.66	L_{DWL}	Length on designed water- line	Length at the waterline cor- responding to the maxi- mum load condition in calm water	m
2.67	Ω	R. E. Froude's length coeffi-	L	
2.07	M	cient or length displace- ment ratio	$\frac{\nabla^{\frac{1}{8}}}{\nabla^{\frac{1}{8}}}$	
2.68	M	Transverse metacentre	Point where a vertical line, drawn through the centre of buoyancy when a ship is heeled, intersects the vertical line through the centre of gravity when it is floating in equilibrium. Transverse metacentre is approximately constant for angles of heel up to 10° and is generally known as 'initial metacentre'	
2.69	$\mathbf{M_{L}}$	Longitudinal metacentre	A metacentre which exists for longitudinal inclination and is analogous to trans- verse metacentre	
2.70	S	Wetted surface		m^2
2.71	(S)	R. E. Froude's wetted surface coefficient	$\frac{\mathbf{S}}{igtriangledown^2}$	
2.72	t	Taylor tangent to the area curve	The intercept of the tangent to the sectional area curve at the bow on the midship ordinate expressed as a ra- tio of the midship ordinate*	
2.73	T	Draught, moulded, of ship		m

^{*}If the sectional area at the end ordinate is not zero (for example, when there is a bulbous bow) both intercepts should be diminished by that area in evaluating t.

Sı No.	Symbol	Term	DEFINITION	SYMBOL OF SI UNIT
2.74	T_A	Draught, aft	Draught measured at the in- tersection of the after perpendicular with the baseline (if the ship has a sloped or raked keel, it is measured at the inter- section with the keel line)	m
2.75	$T_{\mathbf{E}}$	Draught extreme	Draught measured at the lowest part of the ship or its appendages	m
2.76	$T_{\mathbf{F}}$	Draught, forward	Draught measured at the in- tersection of the forward perpendicular with the baseline (or the keel line if the ship has a sloped or raked keel)	m
2.77	$T_{\mathtt{m}}$	Draught, mean or mid-length	Draught measured at the mid-section. For a ship with straight keel $T_{\text{M}} = \frac{T_{\text{F}} + T_{\text{A}}}{2}$	m
2.78	T	R. E. Froude's draught coefficient	$\frac{\mathrm{T}}{ riangledown^{rac{1}{3}}}$	_
2.79	Δ	Displacement weight	▽ . W	N
2.80	λ	Scale ratio	Ship dimension/model di- mension	
2.81	∇	Displacement volume		m^{3}
2.82	$\overset{\cdot}{\mu}$	Permeability volume	The ratio of the volume of water entering a compart- ment to the volume of the compartment	

INDIAN STANDARDS

ON

SHIPS' HYDRODYNAMIC TERMS

IS:

8214 (Part I)-1976 Glossary of ships' hydrodynamic terms: Part I Basic quantities 8214 (Part II)-1976 Glossary of ships' hydrodynamic terms: Part II Ship geometry 8214 (Part IV)-1976 Glossary of ships' hydrodynamic terms: Part IV Sea keeping 8214 (Part V)-1976 Glossary of ships' hydrodynamic terms: Part V Manoeuvrability 8214 (Part VI)-1976 Glossary of ships' hydrodynamic terms: Part VI Strength and vibration 8215-1976 Glossary of ships' propellers