Durée: 2H

Examen Semestriel

L'usage da la calculatrice et du mobile est interdit.

N.B.

- 1- Il sera tenu compte de la présentation de la copie.
- 2- Les réponses doivent être justifiées.

Exercice 1: (9 pts)

Dans toute la suite, si $x \in \mathbb{C}$ alors \overline{x} désigne le conjugué de x dans \mathbb{C} .

I/

1- Soit $n, m \in \mathbb{N}^*$ et $M = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} \in M_{n,m}(\mathbb{C})$ et $v = (x_k)_{1 \le k \le m}$ un vecteur de \mathbb{C}^m .

On note par:

$$\overline{M} = \left(\overline{a_{ij}}\right)_{\substack{1 \le i \le n \\ 1 \le j \le m}} \in M_{n,m}\left(\mathbb{C}\right) \text{ et } \overline{v} = \left(\overline{x_k}\right)_{1 \le k \le m} \in \mathbb{C}^m.$$

Montrer que : $\overline{M.v} = \overline{M}.\overline{v}$.

2- Soit $n \in \mathbb{N}^*$ et $M = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$. Supposons que M admet une valeur propre $\lambda \in \mathbb{C} \setminus \mathbb{R}$ et que $v \in \mathbb{C}^n$ est un vecteur propre de M associé λ .

Montrer que $\overline{\lambda}$ est une valeur propre de M de vecteur propre associé $\overline{v} \in \mathbb{C}^n$.

II- Soit la matrice à coefficients dans \mathbb{R} :

$$A = \left(\begin{array}{ccc} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{array}\right).$$

- **1-** Calculer le polynôme caractéristique de A.
- **2-** Est ce que A est inversible?. Justifier.
- **3-** Dire pourquoi A n'est pas diagonalisable sur \mathbb{R} .
- **4-** Dire pourquoi A est diagonalisable sur \mathbb{C} .
- **5-** On note les valeurs propres de A sur \mathbb{C} par : α, β et δ où $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{C} \setminus \mathbb{R}$ de partie imaginaire positive.
 - a- Déterminer un vecteur propre non nul v associé à la valeur propre β .
 - **b-** En déduire un vecteur propre non nul w associé à la valeur propre δ .
 - \mathbf{c} Déterminer une matrice inversible P telle que :

$$P^{-1}.A.P = \left(\begin{array}{ccc} \alpha & 0 & 0\\ 0 & \beta & 0\\ 0 & 0 & \delta \end{array}\right).$$

Exercice 2: (9 pts)

Soit la matrice:

$$A_m = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1- Déterminer le déterminant de A_m .
- **2-** Soient a, b et $c \in \mathbb{R}$ et soit le système linéaire (S) suivant : $A_m.X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.
- **a-** Pour quelles valeurs de a, b, c et m le système (S) est-il de Cramer.
- **b-** Pour quelles valeurs de a, b, c et m le système (S) est-il incompatible.
- **c-** Pour quelles valeurs de a, b, c et m le système (S) admet-il une infinité de solutions. Résoudre le système (S) dans ce cas.
 - **3-** Déterminer les valeurs propres de A_m .
 - **4-** Discuter, suivant les valeurs de m, la diagonalisation de A_m .

Exercice 3: (2 pts)

Soit $n \in \mathbb{N}^*$ et $M \in M_n(\mathbb{R})$ telle que n est impair et M est antisymétrique. Déterminer $\det M$.