

B. Tech (ECE) Project-I (BECE497J) Review-2

FEDERATED LEARNING AND XAI FOR SEMICONDUCTOR FAULT DETECTION

Team Members Details

AFFAN AHMAD(22BEC0644)

DEVASHISH NARAYAN(22BEC0178)

ATUL KUMAR(22BEC0610)

Project Guide:

Dr. Sumathi G,

Professor Sr. Grade 1,

School of Electronics Engineering

School of Electronics Engineering, Vellore Institute of Technology.

OUTLINE:

- Design Objectives
- Software Details
- Code Block 1
- Code Block 2
- Code Block 3
- Code Block 4
- Code Block 5
- Result
- References

Design objectives:

1. Privacy-Preserving Model Training

Implement **Federated Learning** so wafer defect data remains at each client location and is never shared directly.

2. Lightweight yet Accurate Model

Use **MobileNetV2** to ensure low computational cost while maintaining high classification accuracy.

3. Integration of Explainability

Apply **Grad-CAM** to visualize important image regions influencing the model's predictions.

4.XAI-Guided Model Improvement

Use explainability feedback to reweight training and improve focus on defect regions.

Software Details:

We are using **Python** as the primary programming language along with Google Colab for free GPU-based model training and federated learning simulation. TensorFlow Federated (TFF) is employed to implement a simple 3-4 client FL setup, while **TensorFlow 2.x/Keras** is used to build and train a lightweight CNN model such as MobileNetV2. Data handling and preprocessing are done using NumPy and Pandas, with Grad-CAM integrated for generating explainability heatmaps as part of the training feedback loop.

Block 1 Enhanced Data Preprocessing for Federated Learning

Preprocessing Wafer Data for Federated Learning

- Function: preprocess wafer npz federated
- Goal: Load wafer .npz dataset, preprocess images, split into Train/Val/Test, and create federated client datasets (IID & Non-IID).

Steps:

- Load & Map Data Load images/labels, convert one-hot \rightarrow class IDs, analyze class distribution.
- Split Dataset Stratified split into Train/Val/Test with balanced classes.
- Image Preprocessing Normalize $[0-2] \rightarrow [0-1]$, resize (224×224), convert grayscale \rightarrow RGB, adjust contrast.
- Federated Client Creation
 - IID: Equal random distribution.
 - Non-IID: Each client gets dominant "primary classes" + few secondary classes (simulating fab specialization).

Outputs:

- clients data → datasets for each client
- val_ds, test_ds → centralized validation & testing
- num_classes, train_ids, client_class_distributions

Block 2 Enhanced MobileNetV2 Model for Federated Learning

Federated MobileNetV2 Model (with XAI-ready design)

 Purpose: Build a MobileNetV2-based CNN optimized for federated learning with strong augmentation & explainability support.

Pipeline:

- Input & Augmentation: Random rotation, flips, contrast, brightness for better generalization
- Base Model: MobileNetV2 (no pretrained weights, include top=False), trainable backbone
- Feature Processing: Global Average Pooling → compact features; BatchNorm & Dropout to reduce overfitting
- Dense Layers: Dense(512) → BN → Dropout; Dense(256) →
 Dropout for non-linear decision-making
- Output: Dense(num_classes, softmax) for multiclass wafer classification
- Compilation: Adam (LR=0.001); loss: categorical_crossentropy; metrics: accuracy, top-3 accuracy, precision, recall

Benefit: Lightweight, robust, and federated/XAI-compatible CNN for wafer defect detection.

Block 3 -XAI **Analyzer** with Grad-CAM

Purpose: Explain wafer defect classification with Grad-CAM.

Features:

- **Setup**: Loads model, applies ReplaceToLinear(), configures Grad-CAM (tf-keras-vis).
- Heatmaps: Uses last conv layer (out_relu in MobileNetV2); fixes class index handling; visualizes model focus.
- Analysis: Samples client data, runs predictions, applies Grad-CAM; computes Focus Ratio (max/mean activation) and Defect Coverage (defect vs edges).
- Outputs: Dictionary with focus_score (attention concentration) and defect_coverage (overlap with defect zones).

Benefit: Verifies the model predicts accurately and attends to wafer defects, improving trust.

Block 4 Federated Learning Framework

Goal: Train wafer defect models using FedAvg with Grad-CAM feedback.

Core Workflow:

- Initialization
 - Global MobileNetV2 model + WaferXAIAnalyzer.
- Federated Round
 - Each client trains locally → uploads weights.
 - Metrics: loss, accuracy, focus score, defect coverage (via XAI).
 - Aggregation: weighted averaging by client data size.
- Global Evaluation
 - Update global model with aggregated weights & Validate on centralized data.
- Full Training Loop
 - Repeat for multiple rounds.
 - Early stop if accuracy > 90%.
 - Periodic XAI feedback to assess attention focus.

Outputs: Final global model, training history (client + global), XAI insights on model focus.

Block 5 -Main Execution Pipeline

Purpose: Run the **complete federated learning workflow** with XAI feedback for wafer defect detection.

Steps:

- Data Prep: Load .npz dataset, preprocess images, split into non-IID clients, validation, and test sets
- FL Init: Create FederatedWaferLearning, set number of clients & classes
- Training Loop: Run 15 federated rounds; clients train locally
 → FedAvg aggregation; Grad-CAM evaluates focus & defect
 coverage
- Final Model: Save global model (federated_wafer_defect_model.h5); return model, training history, and federated learner

Outcome:

- Federated global model optimized for wafer defect detection.
- XAI insights guide model attention across clients.

Result:

Round	Train	Validation	
1	16.37	13.21	
2	43.22	39.14	
3	51.39	50.47	
4	58.66	56.93	
5	68.21	65.28	
6	73.49	72.34	
7	75.8	73.26	
8	79.18	78.11	
9	82.76	80.01	
10	83.31	81.98	

Summary & Benefits

 Objective: Train a robust wafer defect classification model across multiple clients while providing explainable AI (XAI) insights.

Pipeline Overview:

- Data Preparation
 - Load .npz wafer maps.
 - Preprocess: resize, normalize, augment, convert to RGB.
 - Split into non-IID federated clients, centralized validation, and test sets.
- Model Architecture
 - MobileNetV2 backbone (trainable).
 - Dense layers + BatchNorm + Dropout.
 - Softmax output for multiclass classification.
- Federated Learning
 - Each client trains locally → FedAvg aggregation.
 - Multiple rounds with optional XAI feedback for attention/focus.
 - Early stopping if global accuracy > 90%.

XAI Integration

- Grad-CAM heatmaps to analyze model focus.
- Metrics: focus_score, defect_coverage.
- Guides attention and improves trust in predictions.

Outputs

- Global federated model (.h5)
- Training history per round & per client
- XAI-driven insights on model attention

Key Benefit:

Combines **federated learning** and **explainability**, ensuring accurate and interpretable wafer defect detection across distributed fab data.

References:

- [1]Md Meftahul Ferdaus et al., "Significance of activation functions in developing an online classifier for semiconductor defect detection," Knowledge-Based Systems, vol. 248, pp. 108818–108818, Apr. 2022, doi: https://doi.org/10.1016/j.knosys.2022.108818. [2]F. López de la Rosa, J. L. Gómez-Sirvent, R. Morales, R. Sánchez-Reolid, and A. Fernández-Caballero, "A deep residual neural network for semiconductor defect classification in imbalanced scanning electron microscope datasets," Applied Soft Computing, vol. 131, no. C, p. 109743, Oct. 2022, doi: https://doi.org/10.1016/j.asoc.2022.109743.
- [3]Y. Yang and M. Sun, "Semiconductor Defect Pattern Classification by Self-Proliferation-and-Attention Neural Network," IEEE Transactions on Semiconductor Manufacturing, vol. 35, no. 1, pp. 16–23, Feb. 2022, doi: https://doi.org/10.1109/tsm.2021.3131597. [4]T. Patel, Ramalingam Murugan, Gokul Yenduri, R. H. Jhaveri, Hichem Snoussi, and T. Gaber, "Demystifying Defects: Federated Learning and Explainable AI for Semiconductor Fault Detection," IEEE Access, vol. 12, pp. 116987–117007, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3425226.
- [5]Pedram Tabatabaeemoshiri, N. Kumar, Anis, D. Ting, and Vivek Regeev, "A Novel Approach to Test-induced Defect Detection in Semi-conductor Wafers, Using Graph-Based Semi-Supervised Learning (GSSL)," IEEE Access, vol. 13, pp. 1–1, Jan. 2025, doi: https://doi.org/10.1109/access.2025.3535103.
- [6]S. L. Yuen et al., "GENSS: Defect Classification Method on Extremely Small Datasets for Semiconductor Manufacturing," International Computer Science and Engineering Conference (ICSEC), pp. 419–424, Sep. 2023, doi: https://doi.org/10.1109/icsec59635.2023.10329633.
- [7]F.-L. Chen and S.-F. Liu, "A neural-network approach to recognize defect spatial pattern in semiconductor fabrication," IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 3, pp. 366–373, Aug. 2000, doi: https://doi.org/10.1109/66.857947. [8]R. K. Vankayalapati, Z. Yasmeen, A. Bansal, V. Dileep, and N. Abhireddy, "Advanced Fault Detection in Semiconductor Manufacturing Processes Using Improved AdaBoost RT Model," 2024 9th International Conference on Communication and Electronics Systems (ICCES), pp. 467–472, Dec. 2024, doi: https://doi.org/10.1109/icces63552.2024.10859691.
- [9]B. Haddad, S. Yang, L. J. Karam, J. Ye, N. Patel, and M. Braun, "Multifeature, Sparse-Based Approach for Defects Detection and Classification in Semiconductor Units," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 145–159, Jan. 2018, doi: https://doi.org/10.1109/tase.2016.2594288.

Thank You