#### Review

王昊翔: <u>hxwang@scut.edu.cn</u>

School of Computer Science & Engineering , SCUT





### Chapter 1 Introduction

- **□** What is computer network?
- Network category
- Reference model
  - TCP/IP VS. OSI
  - Benefits of layered structure
  - PDU names
- □ Service VS. Protocol





# Chapter 2 Physical Layer

- **□** Bandwidth Fourier Series
  - Hz and bps
- **□** Nyquist theorem

 $MaxDataRate = 2H \log_2 V \ bits / sec$ 

☐ Shannon theory

$$SNR_{dB} = 10\log_{10}(\frac{S}{N}) \text{ dB}$$

$$MaxDataRate = H \log_2(1 + \frac{S}{N}) bits / sec$$







### Chapter 2 Physical Layer(cont'd)

- □ UTP
- ☐ Copper wires and Optical fiber
- ☐ Understand modem
  - Amplitude modulation(AM)
  - Frequency modulation(FM)
  - Quadrature Phrase shift keying (QPSK)





### Chapter 2 Physical Layer(cont'd)

- ☐ Master trunk multiplex technology
  - **■** Frequency Division Multiplexing
  - Time Division Multiplexing
- ☐ Master circuit-switching, message switching and packet switching
- understand mobile-phone system
  - Code division multiple Access (CDMA)





### Chapter 3 data link layer

- Master framing
  - Character count(字符计数法)
  - Flag bytes with byte stuffing(带字符填充的首尾 界符法)
  - Starting and ending flags, with bit stuffing(帶位 填充的首尾标志法)
  - Physical layer coding violations(物理层编码违例 法)





### Chapter 3 data link layer(cont'd)

- Master error detection and correction
  - Haimming distance (definition)
  - Error correction: hamming code
    - ☐ Correct one bit error:

$$m+r+1 \le 2^r$$

- Error detection:CRC
- □ The error-detecting and error-correcting properties of a code depend on its Hamming distance.
  - In order to *detect* d errors, we need a distance of d+1.
  - In order to *correct* d errors, we need a distance of 2d+1



# Error correcting and detecting

☐ Hamming code



### Chapter 3 data link layer(cont'd)

- Master 6 dll's basic protocol
  - Utopia
  - Stop and wait
  - PAR (positive acknowledgement with retransmission) or ARQ (automatic repeat request)
  - One-bit sliding window
  - Go back n
  - Selective repeat
  - Max window sizes!





# Chapter 4 MAC sublayer(cont'd)

- ☐ Multiple Access Protocols
  - ALOHA
    - □ Pure ALOHA
    - □ Slotted ALOHA
  - Carrier Sense Multiple Access Protocols
    - ☐ 1-persistent CSMA
    - **□** Non-persistent CSMA
    - □ p-persistent CSMA
    - □ CSMA/CD (CSMA with Collision Detection)("先听后发、边发边听")
  - **Ethernet and IEEE802.3**
  - Min frame length





# Chapter 4 MAC sublayer(cont'd)

- □ Bit stream encoding methods
  - Manchester Encoding
  - Differential Manchester Encoding
  - Question Bit stream is 1001101001, sketch three waves:







#### The MAC address

#### MAC Address Format







### Working principle of swithing

- □ Flooding
- Backward learning



### Chapter 5 network layer

- □ Routing Protocol
  - IGP
    - □ DV:RIP
    - ☐ LS:OSPF
- □ Routed Protocol
  - **■** IPv4
  - IPv6
- □ BGP





# Routing algorithm

- Routing algorithm
  - Static routing algorithm
    - □ Dijkstra
    - □ flooding
  - Dynamic routing algorithm
    - $\square$  DV



#### IPv4

- ☐ Main function of router
- ☐ Learn IP
  - IP packet format
  - IP address and it's classification
- ☐ Reserved IPv4 address



# Other protocol and technology

- ☐ Subnet and subnetting
- ☐ The idea of CIDR
- ☐ The principle of NAT/PAT





## Sup.: IPv6

- ☐ Advantage of IPv6
- ☐ Differences with IPv4



### Chapter 6 transport layer

- □ UDP (segment)
- ☐ TCP (segment)
- ☐ Pseudo header
- □ Socket

Comparation



# Chapter 7 Application layer

□ DNS





☐ THANKS!

□ hxwang@scut.edu.cn



