

Program	Bachelor of Technology (BTech)	Semester - 6
Type of Course	-	
Prerequisite	Electrical Measurements & Measuring Instruments, and Microcontroller and Interfacing.	
Course Objective	This subject focuses on the study of different components of different practical controllers and by using them in practical applications by using different communication tools such as interned or others and connections of Sensors.	•

Teaching Scheme (Contact Hours)				Examination Scheme					
Locture	Tutorial	Dreatical	Oundia	Theory Marks		Practical Marks		Total	
Lecture	Tutorial	Practical	Credit	SEE (T)	CIA (T)	SEE (P)	CIA (P)	Marks	
3	0	2	4	70	30	25	25	150	

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cour	se Content	T - Teaching Hours W -	Wei	ghtage
Sr.	Topics		Т	W
1	Introduction to	Internet of Things	5	20
	Communication	Characteristics of IoT, Sensors, Actuators, Physical Design of IoT – IoT Protocols, IoT communication mod APIs, IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Embedded Systems, IoT c IoTs – Home, City, Environment, Energy, Agriculture, and Industry.		
2	IoT Physical De	vices and Endpoints	6	20
	Introduction to gadgets, contro	chine to Machine, Difference between IoT and M2M, Software define Network, IoT Data Acquisition & Platf Arduino and Raspberry Pi- Installation, Programming — Arduino and Raspberry Pi with focus on interfacir Illing output and reading input from pins.	g ext	ernal
3	Sensors, Micro	controllers and interfacing	6	20
	sensor, ADC and	unication and Interfaces — Serial communication, SPI, I2C, MQTT, Sensor : Light sensor, Temperature sen d DAC, Temperature and Humidity Sensor-DHT11, Motion Detection Sensor, Level Sensor, Ultrasonic Tran or, Colour Sensor.		
4	Controlling Har	dware	6	20
	1), Buzzer, Controlling AC Power devices with Relay, Controlling - Servo Motor, DC Motor, Unipolar and Bipo oth Module, Zigbee Module.	lar S	teppe
5	Domain specific	c applications of IoT	7	20
		on; Industry applications; Surveillance applications; Other IoT applications. Introduction to Python, Introducts. Dis, Developing applications through IoT tools, Developing sensor-based application through processing to		n to
	•	Total	30	100

Suggested Distri	bution Of Theory M	larks Using Bloom'				
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	20	40	40	0	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Printed on: 24-09-2024 10:41 AM Page 1 of 3

_		_				
I.VI	ırse	п	ш	α	m	AC
GUL	II SE	u	ul	LU	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

At the	At the end of this course, students will be able to:		
CO1	CO1 understand basic concepts and structure of IoT.		
C02	apply IoT for developing real life applications using Arduino and Raspberry Pi programming.		
CO3	CO3 analyze sensors and its interfacing with development boards.		
C04	CO4 illustrate functioning of hardware devices used with IoT.		
CO5	discuss specific industry based application used by IoT.		

Reference Books

Here	Telice books	
1.		gs - A Hands-on Approach hga and Vijay Madisetti Oxferd Universities Press
2.		gs : Architecture and Design Principles McGraw Hill Publication
3.		ookbook, Software and Hardware Problems and solutions O'Reilly Publications
4.	-	to talk Designing IoT solutions with the IoT Architecture Reference Model Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van Kranenburg, Sebastian Lange, Springer Open
5.	_	with Raspberry Pi dson & Shawn Wallace O'Reilly Publications

List of Practical

1. To study the functionality of the Arduino Uno board and Arduino IDE

- 1. Installlation of the Arduino IDE.
- 2. Power up Arduino Uno Board
- 3. Uploading a program to the Arduino UNO

2. To study the functionality of Node MCU with installation of Arduino packages

- 1. To study the Pin-diagram of the NodeMCU
- 2. Arduino IDE package Installation for the ESP8266 support
- 3. Uploading a program to Node MCU

3. To demonstrate digital input of Arduino board with push button

- 1. To read status of Push button using NodeMCU
- 2. Toggle the state of LED with Push Button
- 3. To read multiple digital input simultaneously

4. To demonstrate digital output of Arduino board with LED control

- 1. To control built-in LED
- 2. To blink LED with 1 sec. delay
- 3. To perform Traffic Light signal with Red, Yellow and Green LEDs.

5. To demonstrate Analog Input of Arduino board with potentiometer

- 1. To read the value of Potentiometer
- 2. To map the value of Analog input into required range
- 3. To perform interfacing of Moisure module with Arduino for Soil moisture measurement
- 4. To perform interfacing of MQ-XX module with Arduino for gas detection

6. To demonstrate Analog Output of Arduino board with LED fading

Printed on: 24-09-2024 10:41 AM Page 2 of 3

2.

	1. To study the Pulse Width Modulation and PWM pins.
	2. To perform Analog Output with LED fading
	3. To control the brightness of LED using potentiometer
7.	To study and perform Serial communication with Arduino board
	1. To demonstrate serial communication methods for Arduino
	2. To demonstrate sending and receiving of data via serial communicaton pins
8.	To study and perform Serial Peripheral Interface with Arduino board
	1. To perform SPI communication between Two Arduino boards
	2. To perform one Master and multiple Slave communication between Arduino boards
9.	Hands on practice for the interfacing of sensor and actuators with Arduino board
	1. To perform interfacing of Ultrasonic sound sensor module with Arduino board for distance measurement
	2. To perform interfacing of LDR module with Arduino board for light intensity measurement
	3. To perform interfacinng of DC motor with Arduino board
	4. To perform interfacing of Servo motor with Arduino board
10.	To demonstrate Smart Home application with IoT Cloud
	1. To demonstrate the account creation on IoT cloud
	2. To demonstrate the integration of various IoT node with IoT cloud
	3. To design the IoT Dashboard for Smart Home application
	4. To perform the data integration between IoT dashboard, Mobile application and IoT nodes
11.	To demonstrate the functionality of General Purpose Input-Output pins of Raspberry Pi
	1. To demonstrate digital Input and Output with Raspberry pi
	2. To demonstrate Analog Input and Outout with Raspberry pi
12.	To perform smart farming application with MQTT
	1. To connect Node MCU with MQTT server.
	2. To send and receive data with MQTT server.
	3. To develop IoT Smart farming application
13.	To demonstrate interfacing of Arduino board with wireless Radio Frequency module
	1. To demonstrate Arduino board interfacing with Bluetooth Module
1	

To demonstrate Arduino board interfacing with Zigbee Module

Printed on: 24-09-2024 10:41 AM Page 3 of 3