Zusammenfassung – Mathematik

Version: 1.0.0

Study: 3. Semester, Bachelor in Business and Computer Science

School: Hochschule Luzern - Wirtschaft

Author: Janik von Rotz (http://janikvonrotz.ch)

License:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Skalierungen

Skalierung	Beschreibung	Beispiel
Nominal	Ausprägung der Merkmale haben keine Reihenfolge	Zivilstand, Geschlecht,
		Autofarbe
Ordinalskala	Die Merkmalausprägung hat eine Reiehenfolge	Preis, Leistung
Intervallskalla	Es exisitiert kein echter Nullpunkt. Wird in Masseinheit gemessen	Zeit, Temperatur
Verhältnisskala	Intervallskala mit absoulten Nullpunkt	Gewinn, Kosten, Anzahl
		Mitarbeiter
Metrisch	Hat Intervall- oder verhältnisskalierte Auspräungen. Nomal- und	
	ordinalskalierte Merkmale sind nichtmertrische Merkmale.	
Diskret	Metrisch skalierte erkmal kann nur bestimmte Werte annehmen.	1n Kinder, nicht 1,5
Stetig	Jeder Wert ist möglich	BIP in CHF
qualtiativ	Nominal	
quantitativ	Ordinal, Intervall, Verhältnis	
	·	

Mittelwerte

Verteilung mit Klassen

	L1	L2	L3			
Altersklasse	Klassenmitte	Anzahl Personen	rel. Häufigkeit	Klassenbreite	kum. rel. Häufigkeit	Dichte
18 < 20	19	3	9.38%	2	9.38%	4.69%
20 < 25	22.5	15	46.88%	5	56.25%	9.38%
25 < 30	27.5	5	15.63%	5	71.88%	3.13%
30 < 40	35	5	15.63%	10	87.50%	1.56%
40 < 65	52.5	4	12.50%	25	1	0.50%
		32				

rel. Häufigkeit=Anzahl Pesonen/32

Dichte= rel. Häufigkeit/Klassenbreite

Berechnung durchschnittliches Alter: 1-Var Stat L1, L2

x=28,66

L1	L2
Alterobergrenze	kum. rel. Häufigkeit
20	9.38%
25	56.25%

Berechnung mittlere Alter: LinReg L2, L1

f(50)=24.33

Streuung

Beschreibt die Streuung von gemessenen Daten.

Spannweite	Spannweite = Maximum - Minimum				
Quartilsabstand	Quartilsabstand = 3.Quartil - 1.Quartil				
	Quartil ist das mediale Merkmal an 1/4	4 Stelle einer Datenreihe			
Varianz und Standardabweichung	Beschreibt den Durchschnitt von	Empirische Varianz			
_	Abständen einer Messreihe vom	$\sum_{i=1}^{n} (x_i - \overline{x})^2$			
	Mittelwert dieser Messreihe.	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$			
		Empirische Standardabweichung			
	Varianz	$\sum_{n=1}^{\infty} (n - \overline{n})^2$			
	$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$			
		$\sqrt{n-1}$			
	Standardabweichung:	Empirisch -> Stichproben			
	$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$				
Variationskoeffizient	V	$V_{\sigma} \approx \frac{s}{-}$			

Indexzahlen

Jahr	1999	2000	2001	2002	2003	2004	2004
Arbeitslose	98602	71987	67197	100504	145687	153091	148537
Index 2000=100	137.0	100	93.3	139.6	202.4	212.7	206.3

Berechnung	Formel	Beispiel
Prozentuale Veränderung	$p = \sqrt[n]{rac{Wert_n}{Wert_0} - 1}$ $n = Anzahl Jahre$	Senkung Arbeitslosenzahlen von 1999-2001 $p = \sqrt[2]{\frac{67197}{98602} - 1} = -17.4\%$

Der zusammengesetzte Index

$$I_{t} = \frac{\sum_{i=1}^{n} (aktueller\ Preis_{i} * Basismenge)}{\sum_{n=1}^{n} (Basispreis_{i} * Basismenge_{i})} * 100\ n\ G\"{u}ter\ i = 1, ..., n; aktuelle\ Periode = t$$

Basispreis ist der Preis t0

Bivariate Statistik

Kovarianz	Verhältniss aus der durchschnittlichen Standardabweichung
	$i \sum_{n=1}^{\infty}$
	$cov(x, y) = \sigma_{xy} = \frac{i}{n} \cdot \sum_{i} (x_i - \bar{x}) \cdot (y_i - \bar{y})$
	<i>i</i>
Korrelationskoeffitient	Kovarianz ohne Merkmalsprägung.
Bestimmtheitsmass	R^2
Variant totale Varianz = erklärbare Varianz + nicht erklärbare Varianz	

r (linearer Zusammenhang)	Stärke des funktion. Zusammenhangs	R^2
0		0%
	kein nachweisbarer funktionaler Zusammenhang (sehr schwach)	
+-0.25		5%
	schwach	
+-0.5		25%
	mittel	
+-0.75		50%
	stark	
+-1		100%

Regression

Modell	Formel	TS
Lineares Modell	y = ax + b	LinReg ax+b
Polynom-Modell	$y = \sum_{i=0}^{n} a_i x^i$	Excel
Quadratisches Modell	$y = ax^2 + bx + c$	Quadratic Reg
Kubisches Modell	$y = ax^3 + bx^2 + cx + d$	Cubic Reg
Logarithmisches Modell	y = a + b * ln(x)	LnReg a+blnx
Potenz-Modell	$y = a * x^b$	PwrReg ax^b
Exponentielles Modell	$y = a * b^x$	ExpReg ab^x
Exponentielles Modell	$y = a * e^{c*x} = a(e^c)^x$	Excel

Zeitreihen

Der zusammengestzte Index	$\sum_{i=1}^{n} Preisindex_i * Wert_i$
	$\sum_{n=1}^{n} Wert_i$
Komponenten der Zeitreihen	Y: Zeitreihe
	F: Konjunkturkomponente
	S: Saisonkomponente
	E: Restkomponente
Additive Verbundheit	$Y_t = F_t + S_t + E_t$
Multiplikative Verbundheit	$Y_t = F_t * S_t * E_t$

Saisonbereinigung

Berech	hnung				3. Ordnung	LinReg		L2-	Vergleich
						L1,L2		Saisonkonstanten	Vortrimester
Liste			L1	L2		L3=f(L1)	L1=L2-L3		
Jahr		Trimester	Nr.	Anzahl	gleitender	linearer	Abweichung	Saisonbereinigt	Wachstumsrate
				Fahrgäste	Durchschnitt	Trend			
	2012	Haupt	1	639		484	155	407	
	2012	Zwischen	2	396	433	499	-103	484	19%
	2012	Neben	3	265	508	515	-250	525.5	9%
	2013	Haupt	4	864	534	530	334	632	20%
	2013	Zwischen	5	472	542	545	-73	560	-11%
	2013	Neben	6	289	514	560	-271	549.5	-2%
	2014	Haupt	7	782		575	207	550	0%

Saisonkonstante

Н	232	(155+334+207)/3
Z	-88	
N	-260.5	

Damit Trendwerte Berechnen: Anzahlfahrgäste=Saisonkomponente*linearer Trend

Im multiplikativen Modell gilt:

Abweichuung: L1=L2/L3

Saisonkonstanten: $H: \sqrt[3]{155 * 344 * 207} = 1.431$ Saisonbereinigt: Anzahl Fahrgäste/Saisonkonstante

Taschenrechner

<Actions>; Keys and values

Variationskoeffizient berechnen

```
Data + <Eingabe Daten> + 2nd + Data + 1-Var Stats
<Select> Sx + Enter
2nd + Data + 1-Var Stats
<Select> X + Enter
<Calculate> Sx/x
```

Berechnen Median

Data + <Eingabe Daten relative Häufigkeit; letzer Wert unter 50% erster Wert über 50%> 2nd + Data + 4: LingReg L1, L2, One, YES

Berechnen des Durchschnits Einkommen

Data + <Eingabe Daten> + 2nd + Data + 2-Var + Freq: L2 + Enter

Berechnen der relativen Häufigkeit in ganze Promille

Data + <L3 wählen> + sto-> + data + 2 + <Formel einfügen, bsp L2/Durchschnitt> + Enter

Löschen Data

Data + Data + <Auswahl treffen>

interpolieren mit Zweisatz / Dreisatz

Data + <Eingabe Daten>

2nd + Data + 4: LinReg + <X und Y Achsen anpassen>

Anstatt Achsen anpassen

2nd + Data + StatVars + x'(+ <Wert eingeben>

Standardabweichung

<Daten eingeben> + 1-Var stats 11,12

Listen kopieren

L1 auswählen + sto -> + Data + L1 auswählen

Prozentuale Veränderung

L2 = L1, dann Formeln löschen (data, Pfeiltaste rechts, 5) den ersten Eintrag in L1 sowie den letzten Eintrag in L2 löschen L3 = L1 / L2 - 1, dann Formeln löschen (data, Pfeiltaste rechts, 5)