

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Васильев Руслан Леонидович

Калибровка уверенности нейронных сетей

Calibration of Neural Networks

КУРСОВАЯ РАБОТА

Научный руководитель:

д.ф-м.н., профессор *А. Г. Дьяконов*

Содержание

1	Введение	2
2	Постановка задачи	2
3	Оценка откалиброванности	3
	3.1 Визуализация	3
	3.2 Метрики	5
4	Методы калибровки	6
	4.1 Постобработка	6
	4.1.1 Гистограммный биннинг (Histogram binning)	7
	4.1.2 Изотоническая регрессия (Isotonic regression)	7
	4.1.3 Калибровка Платта (Platt Calibration) и ее обобщения	7
	4.2 Калибровка на этапе обучения	9
	4.2.1 Сглаживание меток (Label smoothing)	9
	4.2.2 Фокальная ошибка (Focal loss)	9
5	Вычислительные эксперименты	10
	5.1 Дизайн экспериментов	10
	5.2 Результаты	11
6	Заключение	14
Сг	писок литературы	15
П	риложения	17
A	Качество классификации моделей	17
В	Биннинговые метрики	19
C	Скоринговые ошибки	25

1 Введение

Количество областей, в которых используется глубокое обучение, стремительно растет. Нейронные сети активно применяются для диагностики заболеваний по медицинским изображениям [1], используются в алгоритмах управления беспилотными автомобилями [2], а также для машинного перевода [3].

В подобных задачах обычно требуется обучить модель, которая будет выдавать не только корректное предсказание, но и надежную степень уверенности в нем. Под уверенностью понимается оценка вероятности прогноза. Например, если алгоритм для большой выборки пациентов предсказывает, что они здоровы с вероятностью 0.9, то мы ожидаем, что 90% из них действительно окажутся здоровыми. Модель, выдающая достоверные вероятности, называется откалиброванной. Наряду с интерпретацией предсказаний нейросетей, откалиброванность важна, когда вероятности используются на последующих этапах работы алгоритмов (например, в языковых моделях [4]).

Современные нейронные сети нередко оказываются плохо откалиброванными [5]. Тем не менее смещенные оценки уверенности выдают и многие другие алгоритмы машинного обучения [6, 7]. Для «классических» моделей были предложены различные техники калибровки, некоторые из которых получили развитие в нейронных сетях.

2 Постановка задачи

Пусть решается задача классификации объектов из множества X с классами $\mathcal{Y} = \{1, \ldots, K\}$. Предположим, что мы обучили модель – алгоритм, который для каждого $x \in X$ выдает вектор оценок – уверенностей (confidences) $\mathbf{a}(x) = (a_1(x), \ldots, a_K(x))$, $\sum_{j=1}^K a_j(x) = 1$. Далее объекту приписывается класс, соответствующий наибольшей уверенности:

$$\hat{y}(x) \coloneqq \underset{j \in \mathcal{Y}}{\operatorname{argmax}} a_j, \quad \hat{p}(x) \coloneqq a_{\hat{y}}.$$

Оценку \hat{p} мы бы хотели трактовать как вероятность того, что истинная метка y совпадает с предсказанной \hat{y} . Если наша оценка достаточно точна, то модель называют *откалиброванной*. Формально определение *откалиброванности* (в [5] – **perfect calibration**) можно записать следующим образом:

$$\mathbb{P}(y = \hat{y} \mid \hat{p} = p) = p \quad \forall p \in [0, 1]. \tag{1}$$

Существуют и более сильные определения откалиброванности модели, чем (1). Например, согласно [8] классификатор называется откалиброванным (в оригинале – well-calibrated), если

$$\mathbb{P}(y=j\mid a_i=p)=p\quad \forall j\in\mathcal{Y},\quad \forall p\in[0,1]\,,\tag{2}$$

то есть мы ожидаем, что уверенности, выдаваемые для каждого класса (а не только предсказанного), являются откалиброванными.

В случае реальных данных и моделей мы не можем напрямую проверить (1) и (2), поэтому на помощь приходят различные показатели качества, а также визуализации, которые будут рассмотрены в разд. 3.

В разд. 4 описываются методы, с помощью которых получаются откалиброванные модели. Во-первых, можно *откалибровать* уверенности, то есть найти функцию, отображающую смещенные оценки в откалиброванные. Поиск наилучшего отображения достаточно нетривиален. Во-вторых, можно применить различные техники на этапе обучения, среди которых выделяются специальные модификации функции потерь.

В разд. 5 проводится сравнение реализованных методов калибровки для современных архитектур нейронных сетей, а также показывается, как выбор функции потерь повлиять на откалиброванность.

3 Оценка откалиброванности

3.1 Визуализация

Покажем, как можно оценить откалиброванность модели в реальных задачах. Для начала упростим задачу до бинарной классификации: $\mathcal{Y} = \{0,1\}$ – пусть наша модель выдает уверенности \hat{p} в том, что объект принадлежит положительному классу (под положительным понимается y=1). Бинарная классификация чаще встречается при использовании «классических» алгоритмов машинного обучения: логистическая регрессия, решающий лес, градиентный бустинг над деревьями, наивный байесовский классификатор, метод опорных векторов и другие – проблемы их калибровки подробно рассматривались в [6,7].

Рис. 1: Варианты визуализации надежности алгоритма. Для наглядности были сгенерированы синтетические данные, в качестве модели использован метод опорных векторов (расстояния до разделяющей гиперплоскости отмасштабированы на [0, 1]).

Разобъем множество значений уверенностей [0,1] на M интервалов I_m равной

ширины:

$$I_1 = \left[0, \frac{1}{M}\right), \ I_2 = \left[\frac{1}{M}, \frac{2}{M}\right), \ \dots, \ I_{M-1} = \left[\frac{M-2}{M}, \frac{M-1}{M}\right), \ I_M = \left[\frac{M-1}{M}, 1\right].$$
 (3)

Обозначим B_m множество индексов тех объектов выборки, значение уверенности для которых лежит в пределах I_m . Будем взаимозаменяемо называть B_m и соответствующие им интервалы I_m бинами (bins).

В каждом бине B_m посчитаем долю объектов положительного класса A_m^1 (**positive frequency**) и среднюю уверенность C_m^1 (**confidence**) в том, что объект принадлежит положительному классу:

$$A_m^1 = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbb{1}(y_i = 1), \quad C_m^1 = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i.$$
 (4)

Далее построим график $(C_m^1, A_m^1)_{m=1}^M$, который называются *графиком надежности* [9, 6] (reliability plot/diagram) – рис. 1 (а). Также полученную кривую иногда называют *калибровочной кривой* (calibration curve). Хорошей откалиброванности соответствует кривая, близкая к диагональной.

Можно изобразить полученные оценки с помощью гистограммы, которую называют диаграммой надежности: на рис. 1 (b) красным показывается средняя уверенность, синим – доля объектов положительного класса, попавших в бин. Если красный столбец выше синего, то алгоритм выдает недостаточно уверенные оценки (underconfidence), если синий выше красного – слишком большие (overconfidence). Дополнительно на том же графике мы покажем зеленым вес бина (weight) – долю объектов (всех классов), попавших в бин.

В случае, когда классов n > 2, диаграммы надежности строятся иначе. Наиболее популярный подход соответствует пониманию откалиброванности в смысле (1). Для каждого бина B_m оценивается точность (доля правильных ответов, **accuracy**) A_m и средняя уверенность в предсказании C_m :

$$A_m = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbb{1}(y_i = \hat{y}_i), \quad C_m = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i.$$
 (5)

(4) и (5) отличаются тем, что в многоклассовом случае \hat{y}_i и \hat{p}_i соответствуют предсказанному классу и уверенности, в то время как в бинарном варианте все считается для положительного класса. Заметим, что A_m и C_m оценивают соответственно левую и правую части (1). Их можно изобразить на диаграмме надежности. Для двух классов такой подход проиллюстрирован на рис. 1 (c) – бины с границами < 0.5 оказываются пустыми, поскольку в бинарной классификации алгоритм относит объект к классу, уверенность в котором > 0.5.

В [10] также рассматриваются *поклассовые диаграммы надежности* (classwise-reliability diagrams): для этого мы каждый класс по отдельности объявляем положительным и строим n диаграмм надежности для бинарного случая. И хотя поклассовый подход более полный (2), для большого числа классов (например, 1000 в датасете

Imagenet [11]) строить так много графиков будет затруднительно. Поэтому почти всегда используются диаграммы надежности для предсказанных классов (5).

3.2 Метрики

Кроме визуализаций, оценить откалиброванность модели помогают различные *метрики* (под *метрикой* в данной работе понимается показатель качества). Одна из наиболее популярных — ECE (**Expected Calibration Error** [12]). Она приближает

$$\mathbb{E}_{\hat{p}} \left| \mathbb{P} \left(y = \hat{y} \mid \hat{p} \right) - \hat{p} \right|$$

с помощью разделения уверенностей по бинам (l - общее число объектов):

$$ECE = \sum_{m=1}^{M} \frac{|B_{m}|}{n} |A_{m} - C_{m}|$$

$$= \sum_{m=1}^{M} \frac{|B_{m}|}{n} \left| \frac{1}{|B_{m}|} \sum_{i \in B_{m}} \mathbb{1}(y_{i} = \hat{y}_{i}) - \frac{1}{|B_{m}|} \sum_{i \in B_{m}} \hat{p}_{i} \right|$$

$$= \frac{1}{n} \sum_{m=1}^{M} \left| \sum_{i \in B_{m}} \mathbb{1}(y_{i} = \hat{y}_{i}) - \sum_{i \in B_{m}} \hat{p}_{i} \right|.$$
(6)

Сравнивая (6) и диаграммы надежности для многоклассовой задачи, замечаем, что ЕСЕ в точности равна взвешенному среднему длин отрезков между красными и синими столбцами.

Существуют и другие метрики на основе разбиения уверенностей по бинам, хоть и используются значительно реже. Например, можно посчитать длину максимального разрыва между уверенностью и точностью [12]:

$$MCE = \max_{m} |A_m - C_m|, \qquad (7)$$

или же учитывать уверенности не только за предсказанный класс, но и за все остальные (classwise ECE) [10]:

cwECE =
$$\frac{1}{K} \sum_{j=1}^{K} \sum_{m=1}^{M} \frac{|B_m^j|}{n} |A_m^j - C_m^j|,$$
 (8)

где B_m^j, A_m^j, C_m^j — соответственно m-й бин, точность и уверенность, если мы выделяем j-й класс как положительный, а все остальные собираем в отрицательный (то есть метрика соответствует поклассовым диаграммам надежности).

Вместо равноширинных бинов (3) можно использовать равномощные бины — иногда таким образом строят диаграммы уверенности. В [13] предлагалось с помощью равномощных бинов считать описанные ранее метрики. Далее везде будет использоваться равноширинная схема. Также, кроме l_1 -нормы (т.е. усреднения модулей), можно использовать l_2 (брать среднеквадратическое) [14].

Помимо биннинговых метрик, для оценки откалиброванности модели можно использовать *скоринговые функции ошибки* (**proper scoring rules**). Мы будем измерять NLL (**Negative Log-Likelihood**):

$$NLL = -\frac{1}{l} \sum_{i=1}^{n} \log a_{i,y_i}, \tag{9}$$

где y_i – истинная метка класса i-го объекта, a_{i,y_i} – уверенность алгоритма в ней, n – общее число объектов, K – число классов.

Другая скоринговая функция ошибки, с помощью которой можно оценить откалиброванность модели — **Brier Score**:

BS =
$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K} (a_{ij} - \mathbb{1}(y_i = j))^2$$
. (10)

4 Методы калибровки

Методы калибровки можно разделить на две основные группы. Во-первых, можно сделать постобработку (post-hoc calibration methods) выходов модели. Для этого используется функция деформации (calibration map) — отображение, заменяющее смещенные оценки вероятности на откалиброванные. Ко второй группе относят методы, применяющиеся на этапе обучения модели.

4.1 Постобработка

Поиск функции деформации выполняется на отложенной выборке $(x_i, y_i)_{i=1}^n$. Обычно используется тот же набор данных, на котором валидируется модель и подбираются гиперпараметры.

Рис. 2: Визуализация различных функций деформации для бинарной классификации (те же данные и модель, что и на рис. 1).

4.1.1 Гистограммный биннинг (Histogram binning)

Изначально метод был предложен в [15] для калибровки решающих деревьев и наивного байесовского классификатора. Рассмотрим бинарный случай: ищется кусочнопостоянная функция деформации. А именно, множество значений выходных уверенностей разбивается на бины B_1, \ldots, B_M (обычно равноширинные (3) или равномощные) и оценки, попавшие в B_m , заменяются на общую для данного бина θ_m . Чтобы найти $\theta_1, \ldots, \theta_M$, решается следующая задача оптимизации:

$$\sum_{m=1}^{M} \sum_{i \in B_m} (\theta_m - y_i)^2 \to \min_{\theta_1, \dots, \theta_M}.$$
 (11)

В такой постановке θ_m будет равна доле объектов отложенной выборки положительного класса, попавших в бин B_m . Функция деформации проиллюстрирована на рис. 2 (a).

Метод обобщается на многоклассовый случай с помощью стратегии odun-противвесех (**one-vs-rest**): каждый класс по отдельности объявляется положительным и строится K кусочно-постоянных функций деформации. На этапе применения выходной вектор вероятностей нормализуется.

4.1.2 Изотоническая регрессия (Isotonic regression)

Метод предложен в [8]. Для бинарного случая по отложенной выборке тоже ищется кусочно-постоянная функция деформации, но число интервалов M и их границы оптимизируются, а на саму функцию дополнительно накладывается требование неубывания. Таким образом, решается следующая задача:

$$\sum_{m=1}^{M} \sum_{i \in \tilde{B}_m} (\theta_m - y_i)^2 \to \min_{\substack{\theta_1 \leqslant \dots \leqslant \theta_M \\ 0 = \alpha_0 \leqslant \alpha_1 \leqslant \dots \leqslant \alpha_{M-1} \leqslant \alpha_M = 1}}$$
(12)

где $\tilde{B}_1 = \{i : \alpha_0 \leqslant \hat{p}_i < \alpha_1\}, \ldots, \tilde{B}_m = \{i : \alpha_{m-1} \leqslant \hat{p}_i \leqslant \alpha_m\}$. Вид функции проиллюстрирован на рис. 2.

Изотоническая регрессия обобщается на многоклассовый случай так же, как и гистограммный биннинг.

4.1.3 Калибровка Платта (Platt Calibration) и ее обобщения

Изначально метод предложен в [16] для калибровки метода опорных векторов. Как видно на иллюстрациях рис. 1, рис. 2, если мы отшкалируем расстояния r(x) от объектов до разделяющей гиперплоскости на [0,1] и возьмем их в качестве уверенностей в положительном классе, то график надежности будет иметь форму сигмоиды:

$$\hat{p}(x) = \frac{1}{1 + e^{-(\alpha \cdot r(x) + \beta)}}.$$
(13)

Коэффициенты масштаба α и сдвига β оптимизируются на отложенной выборке с помощью метода максимального правдоподобия. В данном методе функция деформации оказывается непрерывной и допускает различные обобщения на многоклассовую задачу.

Последний линейный слой нейронной сети для объекта x выдает вектор *логитов* (**logits**): $\mathbf{z} = (z_1, \dots, z_K)$. Чтобы оценить вероятности классов, вектор логитов пропускают через **softmax**, $\sigma(\cdot)$:

$$\sigma(\mathbf{z}) = \frac{1}{\sum_{j=1}^{K} \exp(z_j)} (\exp(z_1), \dots, \exp(z_K)),$$

тогда обобщить калибровку Платта можно введением параметров масштаба и сдвига для логитов:

$$a(x) = \sigma(\mathbf{W} \cdot \mathbf{z} + \mathbf{b}). \tag{14}$$

Параметры **W** и **b** также оптимизируются с помощью метода максимального правдоподобия на отложенной выборке, что эквивалентно минимизации NLL (9). В зависимости от размерности **W** и **b**, можно получить разные обобщения:

1. Температурное шкалирование (temperature scaling):

$$\mathbf{W} = \frac{1}{T} \in \mathbb{R}, \ T > 0, \ \mathbf{b} = \mathbf{0}.$$

Обобщение калибровки Платта с единственным скалярным параметром. Метод является одним из наиболее часто используемых. Увеличение температуры *T* приводит к увеличению неопределенности — росту энтропии выходного распределения. Уменьшение, напротив, увеличивает уверенность в предсказанном классе. При этом сама классификация остается неизменной.

2. Векторное шкалировние (vector scaling):

$$\mathbf{W} = \mathrm{diag}(\mathbf{v}) \in \mathbb{R}^{K imes K}$$
 — диагональная матрица, $\mathbf{v} \in \mathbb{R}^K$.

В данном подходе для каждого класса оптимизируется свой коэффициент масштаба (и сдвига, если $\mathbf{b} \neq \mathbf{0}$ тоже оптимизируется).

3. Матричное шкалировние (matrix scaling):

$$\mathbf{W} \in \mathbb{R}^{K \times K}, \mathbf{b} \in \mathbb{R}^{K}$$
.

Матричное шкалирование является наиболее общей параметризацией в данной группе методов и эквивалентно логистической регрессии в пространстве логитов. Тем не менее при большом числе классов метод имеет слишком много параметров, что может привести к переобучению, а также проблемам со сходимостью.

Заметим, что для реализации любого из перечисленных вариантов достаточно добавить к обученной нейросети линейный слой (нужной размерности).

4.2 Калибровка на этапе обучения

Качество работы нейронных сетей сильно зависит от функции потерь, на которую они настраиваются. Чаще всего используется NLL (9). Для одного объекта x она равна кросс-энтропии между истинным вектором классификации y и предсказанным распределением a:

$$CE(\mathbf{y}, \mathbf{a}) = -\sum_{i=1}^{K} y_i \log a_i.$$
 (15)

Чтобы повысить откалиброванность модели, можно модифицировать саму функцию потерь.

4.2.1 Сглаживание меток (Label smoothing)

В данном методе вырожденное распределение вектора классификации подменяется более сглаженным. Сила сглаживания регулируется с помощью параметра $\alpha \in [0, 1]$:

$$\mathbf{y} = (y_1, \dots, y_K) \mapsto \left((1 - \alpha)y_1 + \frac{\alpha}{K}, \dots, (1 - \alpha)y_K + \frac{\alpha}{K} \right) = \mathbf{y}'. \tag{16}$$

С ростом α распределение \mathbf{y}' становится более равномерным. После данного преобразования минимизируется кросс-энтропия $CE(\mathbf{y}',\mathbf{a})$ между сглаженным вектором классификации и предсказанным распределением.

Хотя использование сглаженных меток при обучении классификатора не новая идея, для калибровки такой подход был предложен в [17].

4.2.2 Фокальная ошибка (Focal loss)

Рис. 3: Фокальная ошибка для одного объекта. \hat{p} — оценка вероятности для истинного класса

Изначально фокальная ошибка была использована для устранения проблемы дисбаланса классов [18]. С точки зрения калибровки уверенности идею впервые использовали

в [19]. Для объекта, принадлежащего j-му классу, фокальная ошибка имеет следующий вид:

$$FL = -(1 - a_i)^{\gamma} \cdot \log a_i, \quad \gamma \geqslant 0, \tag{17}$$

причем функция потерь совпадает с кросс-энтропией при $\gamma = 0$. С увеличением γ , как видим на рис. 3, уменьшается штраф за потери на объектах с уже высокой уверенностью в истинном классе. В то время как кросс-энтропия является верхней оценкой дивергенции Кульбака — Лейблера между истинным \mathbf{y} и предсказанным \mathbf{a} распределением, у фокальной ошибки из оценки вычитается энтропия предсказанного распределения $H(\mathbf{a})$ [19]:

$$CE(y, a) \ge KL(y||a), \qquad FL(y, a) \ge KL(y||a) - \gamma \cdot H(a).$$

Получается, оптимизация фокальной ошибки дополнительно увеличивает энтропию предсказанного распределения, то есть помогает в борьбе с переуверенностью.

5 Вычислительные эксперименты

5.1 Дизайн экспериментов

В экспериментах были использованы следующие наборы данных:

- CIFAR-10 [20]: Датасет содержит 60 000 цветных изображений 32×32 , каждое относится к одному из 10 классов. Разделение на *обучающую / валидационную / тестовую* выборки: $50\,000$ / $5\,000$ / $5\,000$ изображений.
- CIFAR-100 [20]: 60 000 цветных изображений 32 × 32, 100 классов. Обучение / валидация / тест: 50 000 / 5 000 / 5 000.
- **ImageNet 2012** [11]: Крупный датасет с изображениями, разбитыми на 1000 классов. *Обучение / валидация / тест*: 1.2 млн / 25 000 / 25 000.
- Tiny ImageNet [11]: $110\,000$ изображений 64×64 , разделенных на 200 классов. Является подмножеством предыдущего датасета. Обучение / валидация / тест: $100\,000$ / $5\,000$ / $5\,000$.

Для вычислений использовались предобученные нейронные сети с различными архитектурами из открытых репозиториев. В экспериментах модели и датасеты разбиты на две основные группы:

- 1. К первой группе отнесены нейронные сети, обученные на CIFAR-10, CIFAR-100, ImageNet. Веса для моделей были взяты соответственно из репозиториев [21, 22, 23]. Модели данной группы используются для сравнения методов калибровки, основанных на постобработке.
- 2. Ко второй группе отнесены предобученные нейросети из репозитория [24]. Здесь использованы датасеты CIFAR-10, CIFAR-100 и Tiny ImageNet. Данные нейросети

были обучены для статьи [19] — для части из них использовалась фокальная ошибка и сглаживание меток.

При обучении модели обучались на данных из *обучающей* выборки (или ее части), калибровались на *отложенной* (валидационной) выборке. Все построенные диаграммы надежности и метрики соответствуют *тестовой* выборке.

Все эксперименты, реализация методов калибровки и оценок были выполнены на языке Python. Температурное, векторное и матричное шкалирование настраивались на GPU и были реализованы с использованием библиотеки PyTorch, остальные методы и метрики реализованы с использованием библиотек SciPy и sklearn. При настройке гистограммного биннинга использовалось 20 бинов; ЕСЕ, сwECE и МСЕ считались с разбиением на 15 бинов.

5.2 Результаты

Полные таблицы с измерениями приведены в приложении к работе, диаграммы надежности для всех рассмотренных моделей можно найти в репозитории [25].

Puc. 4

Рассмотрим диаграммы надежности для ShuffleNetV2 (CIFAR-100, рис. 4): можно видеть «типичное» состояние откалиброванности нейросети — переуверенность. Калибровка помогает исправить ситуацию: в данном случае лучше с точки зрения всех метрик

лучше всего сработало температурное шкалирование. Гистограммный бинниг слишком агрессивно изменяет вероятности при большом числе классов (на отложенной выборке в бинах оказывается мало объектов).

Для малого числа классов, напротив, гистограммный биннинг работает лучше всего с точки зрения уверенности в предсказании (табл. 5, табл. 6 — почти для всех моделей на CIFAR-10). Но отметим, что здесь нейронные сети уже с очень высоким качеством решают задачу классификации. Почти все вероятности предсказанного класса близки к 1, как, например, на рис. 5. И с точки зрения МСЕ (табл. 9, табл. 10) — метрики, в которой не учитываются «веса» бинов — гистограммный биннинг дает низкое качество откалиброванности.

Puc. 5

Для матричного шкалирования мы не приводим диаграммы надежности: метод слишком сильно переобучается при большом числе классов. В итоге матричное шкалирование существенно ухудшает качество классификации (табл. 3, табл. 3) для всех датасетов, кроме, опять же, малоклассового CIFAR-10.

Одним из наиболее популярных методов калибровки нейросетей является температурное шкалирование. Метод действительно не оказывает влияния на классификацию, в то время как другие варианты калибровки почти всегда уменьшают точность (табл. 3, табл. 4).

С точки зрения NLL ожидаемо лучшими оказались температурное и векторное

шкалирование (ведь в процессе калибровки именно данная ошибки и оптимизировалась) — табл. 11, табл. 12. Для Brier Score лучшим методом калибровки во многих случаях становилась изотоническая регрессия — табл. 13, табл. 14.

Датасет	Модель	CE	FL 1	FL 2	FL 3	LS 0.05
CIFAR-10	DenseNet121	4.53	3.47	2.02	1.68	1.65
CIFAR-10	ResNet110	4.73	3.70	2.78	1.61	2.20
CIFAR-10	ResNet50	4.26	3.88	2.55	1.58	3.07
CIFAR-10	Wide-ResNet-26-10	3.25	2.66	1.57	1.98	4.33
CIFAR-100	DenseNet121	20.90	14.54	8.40	4.49	13.27
CIFAR-100	ResNet110	19.76	15.35	12.10	9.22	11.44
CIFAR-100	ResNet50	18.14	13.36	8.60	4.99	8.15
CIFAR-100	Wide-ResNet-26-10	16.28	9.12	4.22	2.20	5.27
TinyImageNet	ResNet50	15.98	7.87	3.32	1.93	15.73

Таблица 1: ECE, % – Expected Calibration Error, (меньше – лучше), 15 бинов без постобработки, столбцы соответствуют разным функциям

потерь

Датасет	Модель	CE	FL 1	FL 2	FL 3	LS 0.05
CIFAR-10	DenseNet121	0.948	0.755	0.514	0.524	0.576
CIFAR-10	ResNet110	0.990	0.804	0.660	0.505	0.673
CIFAR-10	ResNet50	0.941	0.836	0.625	0.524	0.766
CIFAR-10	Wide-ResNet-26-10	0.699	0.611	0.479	0.523	0.869
CIFAR-100	DenseNet121	0.458	0.364	0.280	0.254	0.315
CIFAR-100	ResNet110	0.433	0.372	0.321	0.281	0.299
CIFAR-100	ResNet50	0.412	0.337	0.282	0.256	0.271
CIFAR-100	Wide-ResNet-26-10	0.372	0.264	0.218	0.226	0.239
TinyImageNet	ResNet50	0.250	0.218	0.205	0.203	0.231

Таблица 2: cwECE, % — Classwise Expected Calibration Error (меньше — лучше), 15 бинов без постобработки, столбцы соответствуют разным функциям потерь

Puc. 6

Фокальная ошибка и сглаживание меток дают более откалибровнные модели, чем при настройке на стандартную кросс-энтропию — как с точки уверенности в предсказанном класса (табл. 1), так и с точки зрения поклассовых оценок (табл. 2). При этом далее

модели можно калибровать с помощью постобработки. В оригинальной работе [19] для калибровки моделей, обученных на фокальную ошибку, использовалось только температурное шкалирование. Хотя относительно ЕСЕ (табл. 6) такой подход действительно показывает высокие результаты, для поклассовой сwECE (табл. 8) лучше работает векторное шкалирование. Для моделей первой группы (табл. 7) векторное шкалирование тоже в основном минимизирует сwECE. Такие результаты вполне ожидаемы, поскольку векторное шкалирование находит отдельные коэффициенты деформации для каждого класса.

Рассмотрим также диаграммы калибровки для EfficientNet (рис. 6). Среди всех использованных моделей, у данной нейросети четче всего видна недоуверенность — большая часть оценок сосредоточена не на [0.9,1], а на [0.8,0.9). Причина такого поведения может быть как раз в особенности обучения: модель обучалась со сглаживанием меток ($\alpha = 0.1$) [23]. Все методы калибровки привели к заметному повышению уверенности в ответах.

6 Заключение

Таким образом, в данной работе мы сравнили основные методы калибровки уверенности, проведя эксперименты с различными архитектурами нейронных сетей.

Применимость того или иного метода существенно зависит от количества данных и выбранного критерия качества. Алгоритмы, в которых строятся отдельные функции деформации для каждого класса, хорошо работают только при достаточном объеме данных в отложенной выборке (обычно это можно обеспечить, когда число классов невелико). Стратегии, в основе которых лежит линейное преобразование логитов (например, температурное шкалирование), показывают высокое качество в задачах с большим числом классов, но подвержены переобучению при чрезмерной параметризации (матричное шкалирование).

Калибровка уверенности до сих пор остается открытой проблемой в машинном обучении, и даже выбор корректного показателя качества откалиброванности может оказаться затруднительным.

Список литературы

- 1. *Anwar S. M.* [et al.]. Medical image analysis using convolutional neural networks: a review // Journal of medical systems. 2018. Vol. 42, no. 11. P. 1–13.
- 2. *Grigorescu S.*, *Trasnea B.*, *Cocias T.*, *Macesanu G.* A survey of deep learning techniques for autonomous driving // Journal of Field Robotics. 2020. Vol. 37, no. 3. P. 362–386.
- 3. *Wu Y.* [et al.]. Google's neural machine translation system: Bridging the gap between human and machine translation // arXiv preprint: 1609.08144. 2016.
- 4. *Bengio Y.*, *Ducharme R.*, *Vincent P.*, *Janvin C.* A neural probabilistic language model // The journal of machine learning research. 2003. Vol. 3. P. 1137–1155.
- 5. *Guo C.*, *Pleiss G.*, *Sun Y.*, *Weinberger K. Q.* On calibration of modern neural networks // International Conference on Machine Learning. PMLR. 2017. P. 1321–1330.
- 6. *Niculescu-Mizil A.*, *Caruana R.* Predicting good probabilities with supervised learning // Proceedings of the 22nd international conference on Machine learning. 2005. P. 625–632.
- 7. *Caruana R.*, *Niculescu-Mizil A.* An empirical comparison of supervised learning algorithms // Proceedings of the 23rd international conference on Machine learning. 2006. P. 161–168.
- 8. *Zadrozny B.*, *Elkan C.* Transforming classifier scores into accurate multiclass probability estimates // Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002. P. 694–699.
- 9. *DeGroot M. H.*, *Fienberg S. E.* The comparison and evaluation of forecasters // Journal of the Royal Statistical Society: Series D (The Statistician). 1983. Vol. 32, no. 1/2. P. 12–22.
- 10. *Kull M.* [et al.]. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration // Advances in Neural Information Processing Systems. Vol. 32 / ed. by H. Wallach [et al.]. Curran Associates, Inc., 2019.
- 11. *Deng J.* [et al.]. Imagenet: A large-scale hierarchical image database // 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009. P. 248–255.
- 12. *Naeini M. P., Cooper G., Hauskrecht M.* Obtaining well calibrated probabilities using bayesian binning // Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 29. 2015.
- 13. *Nixon J.* [et al.]. Measuring Calibration in Deep Learning // arXiv preprint: 1904.01685. 2020.
- 14. *Kumar A.*, *Liang P.*, *Ma T.* Verified Uncertainty Calibration // Advances in Neural Information Processing Systems (NeurIPS). 2019.
- 15. *Zadrozny B.*, *Elkan C.* Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers // Icml. Vol. 1. Citeseer. 2001. P. 609–616.

- 16. *Platt J*. [et al.]. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods //. Vol. 10. Cambridge, MA, 1999. P. 61–74.
- 17. *Müller R.*, *Kornblith S.*, *Hinton G.* When does label smoothing help? //. 2019.
- 18. *Lin T.-Y.* [et al.]. Focal loss for dense object detection // Proceedings of the IEEE international conference on computer vision. 2017. P. 2980–2988.
- 19. *Mukhoti J.* [et al.]. Calibrating Deep Neural Networks using Focal Loss. 2020.
- 20. *Krizhevsky A.*, *Hinton G.* Learning multiple layers of features from tiny images // Master's thesis, Department of Computer Science, University of Toronto. 2009.
- 21. *Phan H.* huyvnphan/PyTorch_CIFAR10. Version v3.0.1. 01/2021. URL: https://doi.org/10.5281/zenodo.4431043.
- 22. chenyaofo. PyTorch CIFAR models. 2021. URL: https://github.com/chenyaofo/pytorch-cifar-models.
- 23. Wightman R. PyTorch Image Models. 2019. URL: https://github.com/rwightman/pytorch-image-models.
- 24. *Mukhoti J., Kulharia V.* Code for [19]. URL: https://github.com/torrvision/focal_calibration.
- 25. Vasilev R. Calibration (accompanying repository). URL: https://github.com/artnitolog/calibration.

Приложения

А Качество классификации моделей

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	93.92	93.52	93.72	93.92	93.84	93.80	93.80
CIFAR-10	DenseNet161	93.70	93.74	93.58	93.70	93.72	93.74	93.52
CIFAR-10	DenseNet169	94.08	93.44	93.84	94.08	94.02	93.94	93.78
CIFAR-10	GoogleNet	92.92	92.58	92.68	92.92	92.90	92.84	92.76
CIFAR-10	InceptionV3	93.32	93.12	93.28	93.32	93.22	93.32	93.26
CIFAR-10	MobileNetV2	93.42	93.40	93.42	93.42	93.26	93.36	93.36
CIFAR-10	ResNet18	92.54	92.14	92.34	92.54	92.48	92.40	92.18
CIFAR-10	ResNet34	93.24	92.74	92.92	93.24	93.14	93.16	92.94
CIFAR-10	ResNet50	93.44	93.10	93.22	93.44	93.40	93.38	93.24
CIFAR-10	VGG11_bn	91.96	91.66	91.84	91.96	91.86	91.80	91.98
CIFAR-10	VGG13_bn	93.86	93.40	93.74	93.86	93.92	93.82	93.68
CIFAR-10	VGG16_bn	93.52	93.38	93.42	93.52	93.36	93.36	93.36
CIFAR-10	VGG19_bn	93.76	93.36	93.62	93.76	93.70	93.84	93.56
CIFAR-100	MobileNetV2_x0_5	70.32	67.56	69.86	70.32	70.26	69.94	55.38
CIFAR-100	MobileNetV2_x1_0	73.34	70.74	72.98	73.34	73.20	73.50	59.24
CIFAR-100	MobileNetV2_x1_4	76.22	72.96	75.58	76.22	75.72	75.80	63.10
CIFAR-100	ResNet20	67.80	63.80	66.72	67.80	67.36	67.54	49.94
CIFAR-100	ResNet32	69.10	65.90	68.64	69.10	68.90	68.70	52.20
CIFAR-100	ResNet44	70.82	67.86	70.22	70.82	70.42	70.56	55.16
CIFAR-100	ResNet56	72.04	69.54	71.62	72.04	71.72	71.58	56.34
CIFAR-100	ShuffleNetV2_x0_5	66.86	64.22	66.68	66.86	66.98	66.58	50.02
CIFAR-100	ShuffleNetV2_x1_0	71.58	69.16	71.24	71.58	71.26	71.30	57.50
CIFAR-100	ShuffleNetV2_x1_5	73.60	70.90	73.34	73.60	73.72	73.80	61.30
CIFAR-100	ShuffleNetV2_x2_0	74.92	72.30	74.44	74.92	74.84	74.82	63.04
CIFAR-100	VGG11_bn	69.96	67.76	69.34	69.96	69.56	69.58	59.90
CIFAR-100	VGG13_bn	73.90	71.84	73.02	73.90	73.56	73.36	62.58
CIFAR-100	VGG16_bn	73.30	71.34	72.78	73.30	72.96	72.94	64.28
CIFAR-100	VGG19_bn	73.14	71.78	72.76	73.14	73.00	72.82	63.78
ImageNet	EfficientNet_b8	85.52	83.43	84.92	85.52	85.54	85.47	79.12
ImageNet	MobileNetV2_120d	77.68	73.57	76.79	77.68	77.36	77.16	59.84
ImageNet	RepVGG_b3	80.57	77.68	79.89	80.57	80.22	80.17	66.38
ImageNet	VGG19_bn	74.35	70.47	73.72	74.35	73.92	73.62	54.06

Таблица 3: Ассигасу, % (больше – лучше) – доля правильных ответов, группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	94.92	94.98	94.84	94.92	94.94	94.96	94.76
CIFAR-10	DenseNet121 (FL 1)	94.84	94.68	94.82	94.84	95.00	95.02	94.52
CIFAR-10	DenseNet121 (FL 2)	94.90	94.60	94.96	94.90	94.84	94.80	94.80
CIFAR-10	DenseNet121 (FL 3)	94.24	94.24	94.20	94.24	94.34	94.24	94.36
CIFAR-10	DenseNet121 (LS 0.05)	94.52	94.62	94.66	94.52	94.56	94.58	94.62
CIFAR-10	ResNet110 (CE)	94.82	94.70	94.76	94.82	94.84	94.86	94.90
CIFAR-10	ResNet110 (FL 1)	94.80	94.90	94.84	94.80	94.86	95.00	94.98
CIFAR-10	ResNet110 (FL 2)	94.82	94.82	94.96	94.82	94.96	94.90	94.84
CIFAR-10	ResNet110 (FL 3)	94.70	94.64	94.84	94.70	94.84	94.86	94.70
CIFAR-10	ResNet110 (LS 0.05)	94.36	94.36	94.48	94.36	94.32	94.32	94.40
CIFAR-10	ResNet50 (CE)	95.02	94.62	94.66	95.02	95.00	94.96	94.82
CIFAR-10	ResNet50 (FL 1)	94.58	94.34	94.52	94.58	94.60	94.52	94.58
CIFAR-10	ResNet50 (FL 2)	94.80	94.62	94.82	94.80	94.90	94.90	94.88
CIFAR-10	ResNet50 (FL 3)	94.52	94.48	94.66	94.52	94.58	94.60	94.44
CIFAR-10	ResNet50 (LS 0.05)	94.26	94.02	94.18	94.26	94.26	94.16	94.30
CIFAR-10	Wide-ResNet-26-10 (CE)	96.12	96.02	96.08	96.12	96.20	96.20	96.10
CIFAR-10	Wide-ResNet-26-10 (FL 1)	95.70	95.26	95.56	95.70	95.64	95.66	95.70
CIFAR-10	Wide-ResNet-26-10 (FL 2)	95.56	95.06	95.50	95.56	95.40	95.46	95.48
CIFAR-10	Wide-ResNet-26-10 (FL 3)	95.64	95.62	95.80	95.64	95.74	95.74	95.64
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	95.66	95.50	95.40	95.66	95.64	95.68	95.42
CIFAR-100	DenseNet121 (CE)	75.32	74.52	75.26	75.32	75.76	75.70	65.60
CIFAR-100	DenseNet121 (FL 1)	75.66	74.12	75.90	75.66	76.02	76.00	65.24
CIFAR-100	DenseNet121 (FL 2)	75.90	73.50	76.22	75.90	75.90	76.02	65.32
CIFAR-100	DenseNet121 (FL 3)	76.10	72.90	75.86	76.10	76.16	76.20	65.06
CIFAR-100	DenseNet121 (LS 0.05)	75.54	74.56	75.66	75.54	75.66	75.74	66.60
CIFAR-100	ResNet110 (CE)	76.44	76.02	76.50	76.44	76.80	76.88	66.20
CIFAR-100	ResNet110 (FL 1)	76.84	75.28	76.48	76.84	77.34	77.28	66.52
CIFAR-100	ResNet110 (FL 2)	76.74	74.48	76.68	76.74	77.04	76.90	67.00
CIFAR-100	ResNet110 (FL 3)	76.30	74.80	76.56	76.30	76.66	76.82	66.46
CIFAR-100	ResNet110 (LS 0.05)	75.96	74.48	75.68	75.96	76.10	76.18	66.66
CIFAR-100	ResNet50 (CE)	76.00	74.48	75.62	76.00	76.12	76.14	65.86
CIFAR-100	ResNet50 (FL 1)	76.38	74.22	76.36	76.38	76.66	76.46	66.32
CIFAR-100	ResNet50 (FL 2)	76.58	73.90	76.10	76.58	76.52	76.46	65.40
CIFAR-100	ResNet50 (FL 3)	77.08	74.44	76.42	77.08	76.86	76.94	64.62
CIFAR-100	ResNet50 (LS 0.05)	76.18	74.38	76.12	76.18	76.42	76.48	67.98
CIFAR-100	Wide-ResNet-26-10 (CE)	78.26	77.22	77.98	78.26	78.38	78.22	67.72
CIFAR-100	Wide-ResNet-26-10 (FL 1)	79.84	78.10	79.80	79.84	79.76	79.76	68.82
CIFAR-100	Wide-ResNet-26-10 (FL 2)	79.64	77.54	79.64	79.64	79.96	80.04	69.44
CIFAR-100	Wide-ResNet-26-10 (FL 3)	79.70	76.96	79.62	79.70	79.86	79.80	70.18
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	78.14	75.98	77.90	78.14	78.26	79.80	69.62
TinyImageNet	ResNet50 (CE)	49.98	73.98 44.92	49.10	49.98	49.44	49.24	32.66
TinyImageNet	ResNet50 (FL 1)	50.10	44.92 44.96	49.10	50.10	50.04	49.2 4 49.94	31.32
TinyImageNet		50.10 51.86	44.96 46.56	49.48 51.14	50.10	50.04	49.94 51.62	31.32
	ResNet50 (FL 3)						51.62	
TinyImageNet		51.06	44.56 47.19	50.18	51.06	50.82		32.08
ımyımagenet	ResNet50 (LS 0.05)	53.62	47.18	51.94	53.62	52.84	52.78	36.82

Таблица 4: Ассигасу, % (больше – лучше) – доля правильных ответов, группа 2

В Биннинговые метрики

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	1.86	1.08	2.10	1.64	1.67	1.58	1.49
CIFAR-10	DenseNet161	2.11	1.08	1.64	1.68	1.87	1.75	1.75
CIFAR-10	DenseNet169	2.04	1.42	1.87	1.72	1.64	1.62	1.64
CIFAR-10	GoogleNet	1.65	0.89	1.36	1.21	1.46	1.37	1.34
CIFAR-10	InceptionV3	2.06	1.35	1.91	1.88	1.99	1.91	1.86
CIFAR-10	MobileNetV2	2.92	1.45	1.74	1.87	2.09	1.95	1.78
CIFAR-10	ResNet18	2.51	1.60	2.03	2.13	1.98	1.93	2.16
CIFAR-10	ResNet34	2.67	1.44	2.09	1.96	1.70	1.88	1.75
CIFAR-10	ResNet50	2.50	1.06	1.70	1.67	1.72	1.59	1.62
CIFAR-10	VGG11_bn	1.87	2.21	1.65	1.83	1.88	1.90	1.76
CIFAR-10	VGG13_bn	1.41	1.42	1.54	1.44	1.44	1.43	1.72
CIFAR-10	VGG16_bn	1.86	1.08	1.61	1.71	1.93	1.81	1.74
CIFAR-10	VGG19_bn	2.15	1.02	1.34	1.87	2.00	1.98	2.14
CIFAR-100	MobileNetV2_x0_5	12.69	9.39	5.86	3.28	3.31	3.57	44.57
CIFAR-100	MobileNetV2_x1_0	11.77	10.13	6.02	3.78	3.46	3.69	40.68
CIFAR-100	MobileNetV2_x1_4	9.66	10.13	4.29	2.90	2.69	2.86	36.79
CIFAR-100	ResNet20	11.21	9.01	5.79	2.48	3.11	3.13	50.05
CIFAR-100	ResNet32	13.95	10.34	5.47	2.61	2.28	2.77	47.79
CIFAR-100	ResNet44	14.99	8.42	6.42	3.18	3.49	3.48	44.84
CIFAR-100	ResNet56	14.72	7.86	5.68	3.13	3.10	3.40	43.65
CIFAR-100	ShuffleNetV2_x0_5	12.93	9.62	5.38	2.22	2.38	2.80	49.77
CIFAR-100	ShuffleNetV2_x1_0	11.68	8.15	5.90	3.68	4.24	4.18	42.32
CIFAR-100	ShuffleNetV2_x1_5	9.86	8.94	5.44	4.56	4.88	4.64	38.44
CIFAR-100	ShuffleNetV2_x2_0	7.68	10.14	4.91	4.26	4.78	4.78	36.80
CIFAR-100	VGG11_bn	15.86	10.61	7.78	5.17	5.80	6.08	29.38
CIFAR-100	VGG13_bn	14.06	8.12	7.19	5.84	5.80	5.84	27.53
CIFAR-100	VGG16_bn	19.33	8.87	5.74	4.18	3.93	4.03	28.60
CIFAR-100	VGG19_bn	20.17	8.79	5.22	4.53	3.74	3.61	31.98
ImageNet	EfficientNet_b8	8.98	4.88	2.96	3.17	3.51	3.95	20.15
ImageNet	MobileNetV2_120d	6.85	7.02	1.96	1.61	2.11	2.90	38.18
ImageNet	RepVGG_b3	3.23	6.17	3.61	3.95	4.08	4.76	32.42
ImageNet	VGG19_bn	3.69	9.26	3.93	1.92	1.53	2.16	44.68

Таблица 5: ECE, % – Expected Calibration Error, (меньше – лучше), 15 бинов, группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	4.53	0.38	1.24	1.64	1.19	1.29	1.45
CIFAR-10	DenseNet121 (FL 1)	3.47	0.87	0.65	1.26	0.88	1.05	1.44
CIFAR-10	DenseNet121 (FL 2)	2.02	0.97	0.73	0.95	1.08	1.01	1.18
CIFAR-10	DenseNet121 (FL 3)	1.68	1.17	1.32	1.49	1.32	1.38	1.84
CIFAR-10	DenseNet121 (LS 0.05)	1.65	0.93	1.55	1.22	1.28	1.24	1.29
CIFAR-10	ResNet110 (CE)	4.73	1.01	1.11	1.23	1.36	1.39	1.25
CIFAR-10	ResNet110 (FL 1)	3.70	0.71	0.99	1.11	1.20	1.06	1.05
CIFAR-10	ResNet110 (FL 2)	2.78	0.55	1.20	1.03	0.94	0.96	1.07
CIFAR-10	ResNet110 (FL 3)	1.61	0.84	0.96	1.24	0.94	0.84	1.01
CIFAR-10	ResNet110 (LS 0.05)	2.20	1.77	0.90	1.56	1.07	0.88	0.72
CIFAR-10	ResNet50 (CE)	4.26	0.70	0.96	1.41	1.17	1.10	1.23
CIFAR-10	ResNet50 (FL 1)	3.88	1.88	1.46	1.58	1.65	1.67	1.85
CIFAR-10	ResNet50 (FL 2)	2.55	1.08	1.09	1.17	1.52	1.52	1.14
CIFAR-10	ResNet50 (FL 3)	1.58	0.78	0.98	1.11	1.16	1.01	1.56
CIFAR-10	ResNet50 (LS 0.05)	3.07	1.23	1.14	1.35	1.35	1.43	1.40
CIFAR-10	Wide-ResNet-26-10 (CE)	3.25	0.60	0.50	1.07	0.84	0.91	0.90
CIFAR-10	Wide-ResNet-26-10 (FL 1)	2.66	0.95	1.03	0.87	1.08	1.17	1.05
CIFAR-10	Wide-ResNet-26-10 (FL 2)	1.57	1.40	1.12	1.18	1.37	1.31	1.42
CIFAR-10	Wide-ResNet-26-10 (FL 3)	1.98	0.82	0.89	1.06	1.08	0.86	0.89
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	4.33	0.72	0.94	0.99	1.17	1.17	1.23
CIFAR-100	DenseNet121 (CE)	20.90	7.00	6.18	4.82	4.74	4.72	34.38
CIFAR-100	DenseNet121 (FL 1)	14.54	6.03	7.31	5.18	5.22	5.38	34.71
CIFAR-100	DenseNet121 (FL 2)	8.40	10.42	4.47	4.16	4.37	4.42	34.63
CIFAR-100	DenseNet121 (FL 3)	4.49	9.10	4.16	3.98	4.55	4.45	34.84
CIFAR-100	DenseNet121 (LS 0.05)	13.27	6.98	7.03	7.44	3.32	3.49	33.31
CIFAR-100	ResNet110 (CE)	19.76	3.99	6.09	5.63	5.37	5.44	33.74
CIFAR-100	ResNet110 (FL 1)	15.35	6.16	6.56	4.87	4.83	4.84	33.41
CIFAR-100	ResNet110 (FL 2)	12.10	8.50	5.92	5.48	5.51	5.61	32.91
CIFAR-100	ResNet110 (FL 3)	9.22	8.68	4.67	5.36	5.41	5.39	33.53
CIFAR-100	ResNet110 (LS 0.05)	11.44	6.95	5.86	4.41	4.50	4.66	33.25
CIFAR-100	ResNet50 (CE)	18.14	4.75	7.24	6.02	6.52	6.53	34.07
CIFAR-100	ResNet50 (FL 1)	13.36	5.81	7.06	5.29	5.44	5.61	33.62
CIFAR-100	ResNet50 (FL 2)	8.60	9.41	4.90	4.72	4.91	4.90	34.52
CIFAR-100	ResNet50 (FL 3)	4.99	7.73	4.07	3.39	3.83	3.98	35.30
CIFAR-100	ResNet50 (LS 0.05)	8.15	7.68	6.61	5.27	5.32	5.32	31.94
CIFAR-100	Wide-ResNet-26-10 (CE)	16.28	4.91	6.43	4.79	5.21	5.00	32.23
CIFAR-100	Wide-ResNet-26-10 (FL 1)	9.12	8.12	5.40	4.31	4.35	4.24	31.16
CIFAR-100	Wide-ResNet-26-10 (FL 2)	4.22	7.61	3.47	3.87	4.01	3.75	30.53
CIFAR-100	Wide-ResNet-26-10 (FL 3)	2.20	8.05	3.33	3.62	3.62	3.79	29.80
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	5.27	7.52	5.36	4.78	4.85	4.83	30.37
TinyImageNet	ResNet50 (CE)	15.98	9.96	10.06	6.67	7.26	7.83	65.77
TinyImageNet	ResNet50 (FL 1)	7.87	9.96 9.96	6.12	4.17	7.26 4.76	7.63 5.54	67.23
TinyImageNet	ResNet50 (FL 1)	3.32	9.96 9.49	6.12 4.94	4.17 2.98	3.63	3.82	66.81
TinyImageNet	ResNet50 (FL 3)							66.65
		1.93	9.88	3.13	1.77	2.61	2.70	
rmymagenet	ResNet50 (LS 0.05)	15.73	6.29	3.02	7.02	7.18	7.56	60.64

Таблица 6: ЕСЕ, % – Expected Calibration Error, (меньше – лучше), 15 бинов, группа 2

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	0.513	0.509	0.566	0.514	0.548	0.491	0.483
CIFAR-10	DenseNet161	0.646	0.536	0.534	0.629	0.531	0.527	0.536
CIFAR-10	DenseNet169	0.551	0.566	0.527	0.536	0.485	0.490	0.518
CIFAR-10	GoogleNet	0.641	0.579	0.543	0.559	0.544	0.520	0.545
CIFAR-10	InceptionV3	0.596	0.573	0.543	0.598	0.543	0.573	0.553
CIFAR-10	MobileNetV2	0.638	0.500	0.502	0.543	0.572	0.574	0.546
CIFAR-10	ResNet18	0.649	0.578	0.570	0.634	0.590	0.538	0.581
CIFAR-10	ResNet34	0.714	0.549	0.549	0.671	0.584	0.566	0.570
CIFAR-10	ResNet50	0.596	0.523	0.522	0.555	0.556	0.511	0.530
CIFAR-10	VGG11_bn	0.633	0.579	0.517	0.635	0.620	0.506	0.523
CIFAR-10	VGG13_bn	0.563	0.536	0.443	0.572	0.510	0.488	0.461
CIFAR-10	VGG16_bn	0.542	0.617	0.478	0.548	0.550	0.477	0.518
CIFAR-10	VGG19_bn	0.578	0.526	0.443	0.514	0.531	0.460	0.495
CIFAR-100	MobileNetV2_x0_5	0.364	0.325	0.289	0.260	0.270	0.266	0.893
CIFAR-100	MobileNetV2_x1_0	0.337	0.295	0.266	0.264	0.262	0.254	0.815
CIFAR-100	MobileNetV2_x1_4	0.305	0.297	0.254	0.246	0.251	0.245	0.737
CIFAR-100	ResNet20	0.357	0.338	0.287	0.270	0.274	0.276	1.001
CIFAR-100	ResNet32	0.383	0.309	0.285	0.262	0.267	0.274	0.956
CIFAR-100	ResNet44	0.398	0.303	0.283	0.263	0.274	0.270	0.897
CIFAR-100	ResNet56	0.391	0.285	0.275	0.260	0.272	0.262	0.873
CIFAR-100	ShuffleNetV2_x0_5	0.379	0.312	0.288	0.261	0.272	0.276	0.999
CIFAR-100	ShuffleNetV2_x1_0	0.343	0.315	0.281	0.253	0.269	0.266	0.849
CIFAR-100	ShuffleNetV2_x1_5	0.302	0.290	0.259	0.259	0.265	0.255	0.773
CIFAR-100	ShuffleNetV2_x2_0	0.274	0.291	0.256	0.252	0.261	0.245	0.738
CIFAR-100	VGG11_bn	0.399	0.286	0.272	0.271	0.285	0.262	0.678
CIFAR-100	VGG13_bn	0.359	0.262	0.272	0.264	0.267	0.254	0.639
CIFAR-100	VGG16_bn	0.448	0.244	0.249	0.252	0.259	0.244	0.645
CIFAR-100	VGG19_bn	0.462	0.237	0.244	0.254	0.266	0.246	0.696
ImageNet	EfficientNet_b8	0.035	0.025	0.022	0.023	0.024	0.023	0.042
ImageNet	MobileNetV2_120d	0.036	0.034	0.030	0.030	0.030	0.030	0.080
ImageNet	RepVGG_b3	0.028	0.030	0.027	0.028	0.028	0.028	0.067
ImageNet	VGG19_bn	0.032	0.036	0.031	0.032	0.032	0.032	0.091

Таблица 7: cwECE, % – Classwise Expected Calibration Error (меньше – лучше), 15 бинов, группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	0.948	0.478	0.530	0.548	0.485	0.455	0.461
CIFAR-10	DenseNet121 (FL 1)	0.755	0.487	0.376	0.462	0.430	0.416	0.540
CIFAR-10	DenseNet121 (FL 2)	0.514	0.488	0.424	0.462	0.419	0.431	0.428
CIFAR-10	DenseNet121 (FL 3)	0.524	0.489	0.474	0.532	0.508	0.483	0.517
CIFAR-10	DenseNet121 (LS 0.05)	0.576	0.376	0.446	0.514	0.410	0.317	0.392
CIFAR-10	ResNet110 (CE)	0.990	0.491	0.547	0.550	0.495	0.449	0.476
CIFAR-10	ResNet110 (FL 1)	0.804	0.483	0.404	0.517	0.511	0.449	0.458
CIFAR-10	ResNet110 (FL 2)	0.660	0.470	0.411	0.486	0.453	0.408	0.438
CIFAR-10	ResNet110 (FL 3)	0.505	0.436	0.400	0.500	0.417	0.418	0.425
CIFAR-10	ResNet110 (LS 0.05)	0.673	0.497	0.488	0.617	0.505	0.420	0.431
CIFAR-10	ResNet50 (CE)	0.941	0.469	0.493	0.524	0.454	0.435	0.428
CIFAR-10	ResNet50 (FL 1)	0.836	0.520	0.465	0.519	0.465	0.464	0.470
CIFAR-10	ResNet50 (FL 2)	0.625	0.506	0.457	0.511	0.485	0.465	0.455
CIFAR-10	ResNet50 (FL 3)	0.524	0.525	0.429	0.531	0.528	0.464	0.513
CIFAR-10	ResNet50 (LS 0.05)	0.766	0.520	0.455	0.634	0.525	0.459	0.440
CIFAR-10	Wide-ResNet-26-10 (CE)	0.699	0.399	0.388	0.440	0.404	0.371	0.382
CIFAR-10	Wide-ResNet-26-10 (FL 1)	0.611	0.442	0.399	0.412	0.402	0.400	0.375
CIFAR-10	Wide-ResNet-26-10 (FL 2)	0.479	0.443	0.436	0.462	0.428	0.437	0.429
CIFAR-10	Wide-ResNet-26-10 (FL 3)	0.523	0.401	0.377	0.452	0.400	0.373	0.407
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	0.869	0.417	0.424	0.502	0.458	0.400	0.415
CIFAR-100	DenseNet121 (CE)	0.458	0.210	0.239	0.258	0.252	0.226	0.688
CIFAR-100	DenseNet121 (FL 1)	0.364	0.231	0.249	0.267	0.261	0.237	0.695
CIFAR-100	DenseNet121 (FL 2)	0.280	0.278	0.241	0.256	0.252	0.239	0.694
CIFAR-100	DenseNet121 (FL 3)	0.254	0.283	0.248	0.252	0.258	0.244	0.698
CIFAR-100	DenseNet121 (LS 0.05)	0.315	0.223	0.238	0.252	0.223	0.206	0.668
CIFAR-100	ResNet110 (CE)	0.433	0.183	0.233	0.252	0.254	0.233	0.676
CIFAR-100	ResNet110 (FL 1)	0.372	0.231	0.243	0.262	0.257	0.229	0.669
CIFAR-100	ResNet110 (FL 2)	0.321	0.253	0.246	0.254	0.254	0.243	0.660
CIFAR-100	ResNet110 (FL 3)	0.281	0.257	0.245	0.258	0.258	0.241	0.671
CIFAR-100	ResNet110 (LS 0.05)	0.299	0.217	0.245	0.253	0.250	0.221	0.667
CIFAR-100	ResNet50 (CE)	0.412	0.215	0.250	0.259	0.259	0.240	0.683
CIFAR-100	ResNet50 (FL 1)	0.337	0.251	0.250	0.250	0.253	0.243	0.674
CIFAR-100	ResNet50 (FL 2)	0.282	0.272	0.251	0.250	0.244	0.234	0.692
CIFAR-100	ResNet50 (FL 3)	0.256	0.274	0.250	0.252	0.245	0.238	0.707
CIFAR-100	ResNet50 (LS 0.05)	0.271	0.222	0.239	0.258	0.243	0.225	0.640
CIFAR-100	Wide-ResNet-26-10 (CE)	0.372	0.198	0.229	0.230	0.241	0.219	0.645
CIFAR-100	Wide-ResNet-26-10 (FL 1)	0.264	0.238	0.229	0.223	0.219	0.210	0.624
CIFAR-100	Wide-ResNet-26-10 (FL 2)	0.218	0.245	0.211	0.216	0.215	0.208	0.611
CIFAR-100	Wide-ResNet-26-10 (FL 3)	0.226	0.260	0.216	0.228	0.220	0.215	0.596
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	0.239	0.222	0.229	0.240	0.238	0.219	0.608
TinyImageNet	ResNet50 (CE)	0.250	0.218	0.216	0.201	0.213	0.208	0.671
TinyImageNet	ResNet50 (FL 1)	0.218	0.226	0.199	0.205	0.216	0.212	0.684
TinyImageNet	ResNet50 (FL 2)	0.205	0.228	0.208	0.203	0.214	0.212	0.678
TinyImageNet	ResNet50 (FL 3)	0.203	0.227	0.202	0.204	0.217	0.209	0.677
	ResNet50 (LS 0.05)	0.231	0.210	0.202	0.200	0.217	0.203	0.628

Таблица 8: cwECE, % – Classwise Expected Calibration Error (меньше – лучше), 15 бинов, группа 2

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	42.22	32.98	80.26	41.59	25.41	29.82	36.27
CIFAR-10	DenseNet161	25.30	38.11	16.86	27.21	24.37	26.92	34.27
CIFAR-10	DenseNet169	20.25	34.25	16.18	22.95	41.38	36.91	26.38
CIFAR-10	GoogleNet	19.85	24.06	24.77	13.08	16.88	25.35	42.19
CIFAR-10	InceptionV3	31.42	80.60	17.31	31.74	20.06	33.00	28.17
CIFAR-10	MobileNetV2	33.59	68.23	25.32	24.74	32.21	74.59	27.27
CIFAR-10	ResNet18	34.79	28.21	17.80	28.45	76.02	24.15	24.30
CIFAR-10	ResNet34	23.94	42.79	18.42	24.47	31.98	25.98	21.92
CIFAR-10	ResNet50	26.73	41.10	19.27	24.68	24.24	16.52	31.25
CIFAR-10	VGG11_bn	23.38	16.46	16.86	23.40	18.33	16.37	25.19
CIFAR-10	VGG13_bn	33.53	25.74	14.47	36.17	40.39	25.12	23.99
CIFAR-10	VGG16_bn	43.19	34.06	19.88	43.57	26.82	22.98	20.03
CIFAR-10	VGG19_bn	35.49	33.63	18.37	22.27	36.65	24.40	19.50
CIFAR-100	MobileNetV2_x0_5	39.98	22.95	14.67	43.49	9.70	11.54	89.36
CIFAR-100	MobileNetV2_x1_0	28.71	25.03	17.36	9.74	7.37	9.69	77.00
CIFAR-100	MobileNetV2_x1_4	25.60	25.06	12.64	6.32	8.72	10.38	90.57
CIFAR-100	ResNet20	38.15	23.61	13.66	12.52	8.89	14.32	76.15
CIFAR-100	ResNet32	32.21	22.11	13.88	9.12	9.37	9.23	84.30
CIFAR-100	ResNet44	32.68	28.18	15.00	9.09	10.82	12.42	92.21
CIFAR-100	ResNet56	30.81	61.69	14.19	10.67	7.78	9.63	82.18
CIFAR-100	ShuffleNetV2_x0_5	23.82	21.63	12.26	8.51	7.89	8.38	76.58
CIFAR-100	ShuffleNetV2_x1_0	24.66	24.33	18.31	13.27	14.08	10.62	82.94
CIFAR-100	ShuffleNetV2_x1_5	24.47	24.70	14.58	17.98	13.47	12.31	71.59
CIFAR-100	ShuffleNetV2_x2_0	93.58	24.84	13.84	27.37	27.23	12.18	83.28
CIFAR-100	VGG11_bn	40.53	29.29	20.59	15.36	13.28	14.15	47.91
CIFAR-100	VGG13_bn	34.00	33.38	18.11	16.34	13.75	13.11	51.88
CIFAR-100	VGG16_bn	48.47	45.52	16.72	12.39	13.18	15.35	76.81
CIFAR-100	VGG19_bn	51.11	38.46	16.52	17.08	14.98	13.73	54.69
ImageNet	EfficientNet_b8	44.80	22.83	12.03	93.37	22.61	17.02	55.00
ImageNet	MobileNetV2_120d	12.31	18.22	6.16	3.75	5.92	5.65	63.64
ImageNet	RepVGG_b3	11.15	19.16	7.36	10.09	10.68	14.01	61.53
ImageNet	VGG19_bn	8.33	20.24	8.72	6.40	5.48	4.71	72.88

Таблица 9: МСЕ, % – Maximum Calibration Error, (меньше – лучше), 15 бинов, группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	46.58	53.58	23.62	22.26	29.52	23.21	67.72
CIFAR-10	DenseNet121 (FL 1)	36.54	37.23	26.98	29.38	31.21	70.77	22.20
CIFAR-10	DenseNet121 (FL 2)	27.80	35.64	10.22	66.85	29.08	28.61	29.06
CIFAR-10	DenseNet121 (FL 3)	77.08	38.19	38.07	76.59	74.49	19.89	23.57
CIFAR-10	DenseNet121 (LS 0.05)	55.74	56.99	80.80	70.26	57.18	66.81	40.70
CIFAR-10	ResNet110 (CE)	47.15	50.61	35.38	25.12	25.90	27.26	31.14
CIFAR-10	ResNet110 (FL 1)	73.35	61.93	26.03	49.35	19.64	42.96	29.91
CIFAR-10	ResNet110 (FL 2)	26.15	30.54	24.24	23.77	25.80	32.68	28.42
CIFAR-10	ResNet110 (FL 3)	25.15	30.68	29.37	38.39	30.89	69.55	30.64
CIFAR-10	ResNet110 (LS 0.05)	55.53	83.03	20.67	59.80	58.54	59.94	48.80
CIFAR-10	ResNet50 (CE)	42.08	55.72	22.08	20.49	32.80	18.27	31.52
CIFAR-10	ResNet50 (FL 1)	37.23	73.04	22.43	31.58	73.41	26.62	34.54
CIFAR-10	ResNet50 (FL 2)	25.00	41.04	74.60	67.95	76.43	29.61	32.46
CIFAR-10	ResNet50 (FL 3)	28.99	32.00	11.89	19.15	24.35	31.04	30.76
CIFAR-10	ResNet50 (LS 0.05)	50.21	45.06	21.05	74.74	51.06	76.52	43.41
CIFAR-10	Wide-ResNet-26-10 (CE)	48.03	63.54	25.41	30.04	30.41	31.41	32.78
CIFAR-10	Wide-ResNet-26-10 (FL 1)	26.49	48.07	18.55	75.41	24.17	31.02	21.96
CIFAR-10	Wide-ResNet-26-10 (FL 2)	33.49	74.05	23.92	31.05	29.04	24.23	37.53
CIFAR-10	Wide-ResNet-26-10 (FL 3)	28.18	19.14	18.52	69.02	31.10	17.94	29.90
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	39.10	36.02	19.03	31.45	71.21	36.22	42.35
CIFAR-100	DenseNet121 (CE)	54.14	29.97	21.75	28.70	12.36	12.84	77.88
CIFAR-100	DenseNet121 (FL 1)	35.37	36.84	17.62	16.51	14.52	14.35	86.25
CIFAR-100	DenseNet121 (FL 2)	26.13	24.50	15.21	12.86	14.74	15.88	82.62
CIFAR-100	DenseNet121 (FL 3)	14.76	23.33	11.81	12.16	13.74	9.81	76.96
CIFAR-100	DenseNet121 (LS 0.05)	46.99	30.43	22.79	60.42	12.61	11.28	75.69
CIFAR-100	ResNet110 (CE)	58.32	43.75	19.58	24.80	19.10	17.70	85.79
CIFAR-100	ResNet110 (FL 1)	38.23	41.78	20.14	18.67	20.87	17.51	70.51
CIFAR-100	ResNet110 (FL 2)	30.27	30.83	15.95	19.63	18.86	14.13	89.28
CIFAR-100	ResNet110 (FL 3)	25.44	23.25	16.91	21.06	16.78	15.19	69.21
CIFAR-100	ResNet110 (LS 0.05)	40.00	30.48	15.85	30.16	20.27	20.47	89.53
CIFAR-100	ResNet50 (CE)	47.19	47.37	20.20	16.26	20.44	22.76	83.57
CIFAR-100	ResNet50 (FL 1)	34.78	32.35	21.41	16.26	13.78	15.34	53.71
CIFAR-100	ResNet50 (FL 2)	23.83	25.69	14.62	14.00	15.24	16.00	91.02
CIFAR-100	ResNet50 (FL 3)	14.00	20.36	9.20	12.66	12.36	10.70	89.46
CIFAR-100	ResNet50 (LS 0.05)	31.28	29.37	94.39	23.55	21.02	18.71	69.93
CIFAR-100	Wide-ResNet-26-10 (CE)	55.83	46.57	21.84	15.99	14.89	14.20	83.06
CIFAR-100	Wide-ResNet-26-10 (FL 1)	27.40	30.07	16.22	12.96	14.48	13.07	72.31
CIFAR-100	Wide-ResNet-26-10 (FL 2)	16.16	27.35	11.15	12.62	13.02	26.94	88.77
CIFAR-100	Wide-ResNet-26-10 (FL 3)	9.90	24.61	13.33	12.65	16.52	44.60	80.98
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	26.84	32.39	20.92	27.45	24.19	18.73	75.74
TinyImageNet	ResNet50 (CE)	33.75	21.46	26.91	17.26	15.41	17.65	80.79
TinyImageNet	ResNet50 (FL 1)	33.75 18.63	14.14	17.73	9.08	12.43	17.03	78.34
TinyImageNet	ResNet50 (FL 1)	9.53	14.14 14.57	9.68	9.08 7.69	9.86	17.18	78.34 71.59
TinyImageNet	ResNet50 (FL 3)	9.53 6.39						
			14.29	10.00	6.21	7.30	11.51	77.58
ımyımagenet	ResNet50 (LS 0.05)	26.59	15.09	7.08	13.56	17.30	18.21	77.05

Таблица 10: МСЕ, % – Maximum Calibration Error, (меньше – лучше), 15 бинов, группа 2

С Скоринговые ошибки

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	0.257	0.427	0.354	0.257	0.258	0.255	0.256
CIFAR-10	DenseNet161	0.261	0.495	0.285	0.262	0.255	0.253	0.281
CIFAR-10	DenseNet169	0.245	0.559	0.309	0.245	0.242	0.242	0.258
CIFAR-10	GoogleNet	0.246	0.290	0.300	0.241	0.241	0.239	0.235
CIFAR-10	InceptionV3	0.265	0.550	0.349	0.266	0.264	0.264	0.264
CIFAR-10	MobileNetV2	0.241	0.494	0.309	0.239	0.239	0.237	0.239
CIFAR-10	ResNet18	0.269	0.616	0.327	0.269	0.265	0.263	0.269
CIFAR-10	ResNet34	0.269	0.508	0.317	0.265	0.261	0.260	0.265
CIFAR-10	ResNet50	0.255	0.589	0.289	0.253	0.252	0.251	0.258
CIFAR-10	VGG11_bn	0.257	0.410	0.342	0.257	0.255	0.252	0.254
CIFAR-10	VGG13_bn	0.207	0.487	0.249	0.207	0.205	0.202	0.206
CIFAR-10	VGG16_bn	0.233	0.522	0.276	0.232	0.230	0.229	0.237
CIFAR-10	VGG19_bn	0.248	0.553	0.291	0.245	0.244	0.242	0.250
CIFAR-100	MobileNetV2_x0_5	1.210	4.128	1.738	1.066	1.073	1.083	15.290
CIFAR-100	MobileNetV2_x1_0	1.102	4.019	1.480	0.979	0.986	0.986	13.881
CIFAR-100	MobileNetV2_x1_4	0.997	3.823	1.499	0.908	0.911	0.909	12.531
CIFAR-100	ResNet20	1.267	4.445	1.771	1.155	1.161	1.164	17.232
CIFAR-100	ResNet32	1.370	4.573	1.762	1.148	1.155	1.162	16.467
CIFAR-100	ResNet44	1.358	4.350	1.656	1.097	1.104	1.110	15.459
CIFAR-100	ResNet56	1.340	3.933	1.711	1.069	1.076	1.075	15.020
CIFAR-100	ShuffleNetV2_x0_5	1.342	4.479	1.795	1.196	1.199	1.206	16.835
CIFAR-100	ShuffleNetV2_x1_0	1.200	4.205	1.760	1.089	1.098	1.103	14.203
CIFAR-100	ShuffleNetV2_x1_5	1.109	3.727	1.594	1.052	1.053	1.054	12.794
CIFAR-100	ShuffleNetV2_x2_0	1.018	3.610	1.613	0.992	0.999	0.997	12.425
CIFAR-100	VGG11_bn	1.541	3.978	1.840	1.259	1.275	1.270	4.707
CIFAR-100	VGG13_bn	1.320	3.361	1.642	1.106	1.118	1.117	4.230
CIFAR-100	VGG16_bn	1.677	3.162	1.584	1.142	1.148	1.144	5.757
CIFAR-100	VGG19_bn	1.836	3.034	1.621	1.158	1.162	1.158	7.711
ImageNet	EfficientNet_b8	0.656	2.778	1.432	0.572	0.581	0.664	5.554
ImageNet	MobileNetV2_120d	0.946	4.282	1.917	0.894	0.900	0.931	10.508
ImageNet	RepVGG_b3	0.823	3.751	1.795	0.815	0.811	0.871	9.225
ImageNet	VGG19_bn	1.034	4.892	2.100	1.017	1.021	1.040	13.665

Таблица 11: Negative Log-Likelihood (меньше – лучше), группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	0.422	0.398	0.213	0.216	0.209	0.206	0.198
CIFAR-10	DenseNet121 (FL 1)	0.230	0.508	0.271	0.190	0.185	0.182	0.193
CIFAR-10	DenseNet121 (FL 2)	0.186	0.548	0.278	0.181	0.178	0.178	0.182
CIFAR-10	DenseNet121 (FL 3)	0.193	0.369	0.312	0.194	0.191	0.191	0.206
CIFAR-10	DenseNet121 (LS 0.05)	0.306	0.389	0.334	0.306	0.298	0.293	0.302
CIFAR-10	ResNet110 (CE)	0.512	0.454	0.227	0.230	0.224	0.222	0.228
CIFAR-10	ResNet110 (FL 1)	0.234	0.547	0.285	0.181	0.181	0.177	0.182
CIFAR-10	ResNet110 (FL 2)	0.195	0.477	0.261	0.179	0.177	0.174	0.176
CIFAR-10	ResNet110 (FL 3)	0.185	0.478	0.252	0.183	0.178	0.177	0.185
CIFAR-10	ResNet110 (LS 0.05)	0.301	0.434	0.302	0.301	0.294	0.289	0.290
CIFAR-10	ResNet50 (CE)	0.428	0.516	0.207	0.212	0.207	0.203	0.203
CIFAR-10	ResNet50 (FL 1)	0.253	0.604	0.246	0.193	0.187	0.184	0.188
CIFAR-10	ResNet50 (FL 2)	0.191	0.530	0.292	0.181	0.177	0.176	0.186
CIFAR-10	ResNet50 (FL 3)	0.190	0.485	0.237	0.188	0.186	0.185	0.199
CIFAR-10	ResNet50 (LS 0.05)	0.293	0.575	0.310	0.292	0.285	0.280	0.296
CIFAR-10	Wide-ResNet-26-10 (CE)	0.273	0.400	0.171	0.156	0.156	0.153	0.154
CIFAR-10	Wide-ResNet-26-10 (FL 1)	0.181	0.454	0.209	0.158	0.158	0.157	0.162
CIFAR-10	Wide-ResNet-26-10 (FL 2)	0.161	0.447	0.244	0.159	0.157	0.156	0.160
CIFAR-10	Wide-ResNet-26-10 (FL 3)	0.158	0.334	0.206	0.157	0.152	0.151	0.161
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	0.224	0.389	0.279	0.217	0.211	0.207	0.230
CIFAR-100	DenseNet121 (CE)	2.063	2.325	1.564	1.200	1.183	1.173	11.759
CIFAR-100	DenseNet121 (FL 1)	1.188	3.153	1.582	1.031	1.012	1.006	11.888
CIFAR-100	DenseNet121 (FL 2)	0.948	3.645	1.437	0.928	0.917	0.913	11.761
CIFAR-100	DenseNet121 (FL 3)	0.903	3.609	1.484	0.902	0.903	0.905	11.792
CIFAR-100	DenseNet121 (LS 0.05)	1.435	2.492	1.899	1.375	1.356	1.349	11.259
CIFAR-100	ResNet110 (CE)	1.843	2.391	1.382	1.074	1.076	1.070	11.560
CIFAR-100	ResNet110 (FL 1)	1.165	2.900	1.493	0.969	0.964	0.962	11.421
CIFAR-100	ResNet110 (FL 2)	1.006	3.352	1.507	0.942	0.937	0.935	11.200
CIFAR-100	ResNet110 (FL 3)	0.941	3.254	1.507	0.922	0.918	0.913	11.475
CIFAR-100	ResNet110 (LS 0.05)	1.363	2.603	1.847	1.325	1.325	1.313	11.344
CIFAR-100	ResNet50 (CE)	1.582	2.785	1.538	1.089	1.092	1.084	11.625
CIFAR-100	ResNet50 (FL 1)	1.094	3.426	1.625	0.969	0.969	0.965	11.530
CIFAR-100	ResNet50 (FL 2)	0.951	3.301	1.436	0.924	0.920	0.920	11.816
CIFAR-100	ResNet50 (FL 3)	0.897	3.491	1.514	0.893	0.887	0.885	12.042
CIFAR-100	ResNet50 (LS 0.05)	1.230	3.014	1.727	1.220	1.216	1.205	10.760
CIFAR-100	Wide-ResNet-26-10 (CE)	1.437	2.430	1.354	0.979	0.990	0.982	10.962
CIFAR-100	Wide-ResNet-26-10 (FL 1)	0.898	2.725	1.293	0.846	0.845	0.844	10.631
CIFAR-100	Wide-ResNet-26-10 (FL 2)	0.780	3.031	1.245	0.780	0.779	0.780	10.419
CIFAR-100	Wide-ResNet-26-10 (FL 3)	0.759	3.206	1.327	0.755	0.752	0.755	10.240
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	1.109	2.754	1.549	1.109	1.106	1.095	10.395
TinyImageNet	ResNet50 (CE)	2.325	6.905	3.478	2.199	2.213	2.214	21.369
TinyImageNet	ResNet50 (FL 1)	2.180	6.833	3.411	2.160	2.170	2.167	22.083
TinyImageNet	ResNet50 (FL 2)	2.033	6.626	3.158	2.100	2.170	2.107	21.973
TinyImageNet	ResNet50 (FL 3)	2.038	6.768	3.004	2.032	2.048	2.042	21.756
ıınyımageNet	ResNet50 (LS 0.05)	2.334	5.121	3.108	2.129	2.142	2.141	18.609

Таблица 12: Negative Log-Likelihood (меньше – лучше), группа 2

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121	0.102	0.106	0.099	0.102	0.102	0.102	0.101
CIFAR-10	DenseNet161	0.102	0.107	0.098	0.103	0.101	0.101	0.104
CIFAR-10	DenseNet169	0.098	0.106	0.095	0.099	0.098	0.098	0.100
CIFAR-10	GoogleNet	0.109	0.112	0.109	0.109	0.110	0.109	0.110
CIFAR-10	InceptionV3	0.108	0.115	0.105	0.109	0.109	0.108	0.109
CIFAR-10	MobileNetV2	0.102	0.106	0.099	0.103	0.103	0.102	0.103
CIFAR-10	ResNet18	0.117	0.124	0.113	0.116	0.115	0.115	0.117
CIFAR-10	ResNet34	0.113	0.116	0.106	0.111	0.110	0.110	0.111
CIFAR-10	ResNet50	0.107	0.112	0.102	0.106	0.105	0.105	0.106
CIFAR-10	VGG11_bn	0.118	0.122	0.115	0.118	0.118	0.117	0.118
CIFAR-10	VGG13_bn	0.092	0.102	0.091	0.093	0.093	0.092	0.094
CIFAR-10	VGG16_bn	0.100	0.108	0.097	0.100	0.099	0.099	0.101
CIFAR-10	VGG19_bn	0.102	0.109	0.098	0.101	0.101	0.100	0.102
CIFAR-100	MobileNetV2_x0_5	0.431	0.469	0.413	0.404	0.406	0.408	0.892
CIFAR-100	MobileNetV2_x1_0	0.387	0.431	0.373	0.365	0.367	0.368	0.814
CIFAR-100	MobileNetV2_x1_4	0.352	0.402	0.341	0.336	0.337	0.337	0.736
CIFAR-100	ResNet20	0.459	0.511	0.448	0.438	0.440	0.441	1.001
CIFAR-100	ResNet32	0.453	0.493	0.431	0.420	0.423	0.424	0.956
CIFAR-100	ResNet44	0.441	0.475	0.411	0.403	0.405	0.406	0.897
CIFAR-100	ResNet56	0.429	0.451	0.397	0.392	0.394	0.395	0.873
CIFAR-100	ShuffleNetV2_x0_5	0.468	0.510	0.450	0.442	0.443	0.445	0.996
CIFAR-100	ShuffleNetV2_x1_0	0.413	0.451	0.401	0.392	0.395	0.396	0.847
CIFAR-100	ShuffleNetV2_x1_5	0.384	0.426	0.377	0.373	0.373	0.374	0.770
CIFAR-100	ShuffleNetV2_x2_0	0.359	0.408	0.354	0.352	0.353	0.353	0.736
CIFAR-100	VGG11_bn	0.455	0.473	0.424	0.415	0.419	0.419	0.673
CIFAR-100	VGG13_bn	0.406	0.425	0.381	0.373	0.375	0.375	0.629
CIFAR-100	VGG16_bn	0.450	0.439	0.386	0.382	0.383	0.382	0.633
CIFAR-100	VGG19_bn	0.456	0.436	0.380	0.379	0.378	0.377	0.672
ImageNet	EfficientNet_b8	0.222	0.251	0.217	0.215	0.217	0.219	0.407
ImageNet	MobileNetV2_120d	0.323	0.379	0.324	0.314	0.319	0.322	0.776
ImageNet	RepVGG_b3	0.283	0.332	0.286	0.282	0.285	0.289	0.655
ImageNet	VGG19_bn	0.354	0.423	0.363	0.353	0.358	0.361	0.900

Таблица 13: Brier Score (меньше – лучше), группа 1

Датасет	Модель	До калибровки	Hist-binning	Isotonic	T-scaling	V-scaling	V-scaling-b	M-scaling-b
CIFAR-10	DenseNet121 (CE)	0.094	0.094	0.081	0.084	0.082	0.082	0.082
CIFAR-10	DenseNet121 (FL 1)	0.086	0.092	0.079	0.081	0.080	0.080	0.084
CIFAR-10	DenseNet121 (FL 2)	0.081	0.089	0.079	0.080	0.079	0.079	0.080
CIFAR-10	DenseNet121 (FL 3)	0.089	0.091	0.088	0.089	0.088	0.088	0.090
CIFAR-10	DenseNet121 (LS 0.05)	0.102	0.102	0.091	0.103	0.102	0.101	0.100
CIFAR-10	ResNet110 (CE)	0.097	0.098	0.086	0.087	0.086	0.086	0.086
CIFAR-10	ResNet110 (FL 1)	0.086	0.088	0.078	0.079	0.078	0.078	0.078
CIFAR-10	ResNet110 (FL 2)	0.082	0.087	0.079	0.079	0.078	0.078	0.079
CIFAR-10	ResNet110 (FL 3)	0.083	0.088	0.081	0.082	0.079	0.079	0.082
CIFAR-10	ResNet110 (LS 0.05)	0.103	0.103	0.092	0.103	0.102	0.101	0.099
CIFAR-10	ResNet50 (CE)	0.093	0.098	0.084	0.085	0.084	0.083	0.084
CIFAR-10	ResNet50 (FL 1)	0.091	0.098	0.083	0.084	0.083	0.083	0.083
CIFAR-10	ResNet50 (FL 2)	0.083	0.091	0.080	0.081	0.079	0.079	0.081
CIFAR-10	ResNet50 (FL 3)	0.085	0.092	0.084	0.084	0.084	0.084	0.088
CIFAR-10	ResNet50 (LS 0.05)	0.102	0.106	0.094	0.102	0.101	0.101	0.099
CIFAR-10	Wide-ResNet-26-10 (CE)	0.069	0.070	0.061	0.061	0.061	0.061	0.061
CIFAR-10	Wide-ResNet-26-10 (FL 1)	0.070	0.077	0.067	0.067	0.068	0.068	0.067
CIFAR-10	Wide-ResNet-26-10 (FL 2)	0.071	0.078	0.068	0.070	0.071	0.070	0.071
CIFAR-10	Wide-ResNet-26-10 (FL 3)	0.068	0.072	0.067	0.069	0.068	0.067	0.069
CIFAR-10	Wide-ResNet-26-10 (LS 0.05)	0.076	0.078	0.072	0.077	0.076	0.076	0.077
CIFAR-100	DenseNet121 (CE)	0.446	0.413	0.368	0.372	0.364	0.364	0.687
CIFAR-100	DenseNet121 (FL 1)	0.385	0.394	0.351	0.354	0.348	0.347	0.694
CIFAR-100	DenseNet121 (FL 2)	0.348	0.389	0.336	0.339	0.336	0.336	0.693
CIFAR-100	DenseNet121 (FL 3)	0.336	0.391	0.337	0.336	0.336	0.336	0.697
CIFAR-100	DenseNet121 (LS 0.05)	0.406	0.405	0.378	0.387	0.378	0.378	0.667
CIFAR-100	ResNet110 (CE)	0.421	0.393	0.347	0.349	0.346	0.345	0.675
CIFAR-100	ResNet110 (FL 1)	0.375	0.384	0.333	0.336	0.333	0.332	0.669
CIFAR-100	ResNet110 (FL 2)	0.358	0.387	0.334	0.339	0.337	0.336	0.658
CIFAR-100	ResNet110 (FL 3)	0.346	0.379	0.331	0.337	0.334	0.333	0.670
CIFAR-100	ResNet110 (LS 0.05)	0.386	0.401	0.366	0.372	0.372	0.371	0.665
CIFAR-100	ResNet50 (CE)	0.411	0.406	0.355	0.353	0.353	0.353	0.682
CIFAR-100	ResNet50 (FL 1)	0.365	0.393	0.341	0.337	0.335	0.334	0.673
CIFAR-100	ResNet50 (FL 2)	0.346	0.388	0.337	0.337	0.335	0.335	0.691
CIFAR-100	ResNet50 (FL 3)	0.331	0.382	0.332	0.329	0.328	0.328	0.706
CIFAR-100	ResNet50 (LS 0.05)	0.365	0.390	0.351	0.359	0.357	0.356	0.639
CIFAR-100	Wide-ResNet-26-10 (CE)	0.365	0.364	0.316	0.310	0.312	0.311	0.645
CIFAR-100	Wide-ResNet-26-10 (FL 1)	0.304	0.337	0.294	0.291	0.290	0.290	0.623
CIFAR-100	Wide-ResNet-26-10 (FL 2)	0.287	0.331	0.284	0.286	0.284	0.284	0.611
CIFAR-100	Wide-ResNet-26-10 (FL 3)	0.281	0.336	0.280	0.283	0.281	0.281	0.596
CIFAR-100	Wide-ResNet-26-10 (LS 0.05)	0.326	0.363	0.317	0.325	0.323	0.322	0.607
TinyImageNet	ResNet50 (CE)	0.677	0.720	0.661	0.646	0.652	0.654	1.324
TinyImageNet	ResNet50 (FL 1)	0.648	0.714	0.650	0.641	0.645	0.646	1.352
TinyImageNet	ResNet50 (FL 2)	0.620	0.688	0.630	0.620	0.627	0.627	1.343
TinyImageNet	ResNet50 (FL 3)	0.624	0.707	0.634	0.623	0.631	0.631	1.340
	ResNet50 (LS 0.05)	0.645	0.682	0.617	0.613	0.620	0.621	1.229

Таблица 14: Brier Score (меньше – лучше), группа 2