# Chap 2: The simple linear regression model

**Financial Econometrics** 

# 2.1 An economic model

### Fig 2.6: Data for the food expenditure example.

$$y = \beta_1 + \beta_2 x + e$$



Fig 2.2. The economic model: a linear relationship between average per person food expenditure and income.



# 2.2 An econometric model

#### Fig 2.3 Conditional probability densities for e and y



#### Fig 2.4. The random error



Fig 2.5 The conditional probability density function for y, food expenditure, at two levels of income.



# 2.3 Estimating the Regression Parameters

#### Reviewi

Economists are interested in studying relationship between variables

- 1. y: dependent variable (also known as target or response variable)
- 2. x: independent, explanatory variable. In a multiple regression,  $x = (x_1, \dots, x_p)$  indicate a vector of p dimensions.

### Recipe in fitting a model i

1. An economic model is of the following form,

$$y = f(x, \beta)$$
.

Suppose a functional form of  $f(x,\beta)$  is decided based on domain knowledge or explanatory data analysis.  $\beta$  is called the parameter.

2. Econometric model links the data in practice to the theoretic economic model by an error term:

$$y = f(x, \beta) + e,$$

where *e* is the random error.

### Recipe in fitting a model ii

- 3. Collect the data.
- 4. Estimate the parameter using one method from the following: least squares estimates (LSE), maximum likelihood estimate (MLE), Moment methods, others.
- 5. Perform model diagnostic to check model misspecification.
  - 5.1 Visualization tools: scatter plot (check weird pattern), density plot (check normality), qqplot (check normality).
  - 5.2 Goodness-of-fit test: Komogorove-Smirnov typed test, Others.
- 6. If Step (e) is passed, interpret the model parameters.
  - Otherwise, it is meaningless to do so.

#### A simple regression model i

A simple regression model is proposed by

$$y = \beta_1 + \beta_2 x + e,$$

where  $\beta_1$  is the intercept and  $\beta_2$  is the slope. Further assumptions:

- 1. The variable x is not random and must take at least two different values.
- 2. e are i.i.d.  $N(0, \sigma^2)$ .

#### Assumptions of the Simple Linear Regression Model

#### SR 1: Econometric model

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, i = 1,..., N.$$

SR 2: Strict Exogeneity. Let  $\mathbf{x} = (x_1, ..., x_N)$ ,  $E(e_i \mid \mathbf{x}) = 0$ 

SR 3: Conditional Homoskedasticity  $Var(e_i | \mathbf{x}) = \sigma^2$ 

SR 4: Conditional Uncorrelated Errors  $Cov(e_i, e_j | \mathbf{x}) = 0$ 

SR 5: Explainatory Variable Must Vary: The variable  $x_i$  is not random and must take at least two different values.

SR 6: Error Normality (optional)  $e_i \mid \mathbf{x} \sim N(0, \sigma^2)$ 

Fig 2.7 (a) The relationship among y,  $\hat{e}$ , and the fitted regression line, (b) The residuals from another fitted line.



#### Estimate parameters using LSE.

Define the sum of squares:

$$S(\beta_1, \beta_2) = \sum_{i=1}^{N} (y_i - \beta_1 - \beta_2 x_i)^2.$$

Least squares estimates  $b_1$ ,  $b_2$  satisfy

$$b_1, b_2 = \arg\min_{\beta_1, \beta_2} S(\beta_1, \beta_2).$$

Or, least squares estimates  $b_1$ ,  $b_2$  solve

$$\min S(\beta_1,\beta_2).$$

Fig. 2A.1: The sum of squares function and the minimizing values  $b_1$  and  $b_2$ 





<sup>•</sup> https://medium.com/@savannahar68/getting-started-with-regression-a39aca03b75f

The resulting estimators are:

$$b_2 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2},$$

$$b_1 = \bar{y} - b_2 \bar{x}.$$

Derivations to obtain  $b_1$  and  $b_2$  are deferred to the Appendix.

The estimated or fitted regression line is:

$$\hat{y}_i = b_1 + b_2 x_i.$$

### Fig 2.8. The fitted regression



#### Example: Food expenditure model

We have

$$\hat{y}_i = 83.42 + 10.21x_i$$

Interpretations on the parameters:

- 1. The intercept estimate  $b_1 = 83.42$  is an estimate of the weekly food expenditure on food for a household with zero income.
- 2. The value  $b_2 = 10.21$  is an estimate of  $\beta_2$ . We estimate that if the income goes up by \$100, expected weekly expenditure on food will increase approximately by \$10.21.

#### Elasticity

The elasticity of mean expenditure with respect to income is:

$$\varepsilon = \frac{\text{Percentage change in } y}{\text{percentage change in } x} = \frac{\triangle E(y)/E(y)}{\triangle x/x} = \frac{\triangle E(y)x}{\triangle xE(y)}$$
$$= \frac{\triangle E(y)}{\triangle x} \times \frac{x}{y} = \beta_2 \frac{x}{\beta_1 + \beta_2 x}$$

We estimate the elasticity by

$$\hat{\varepsilon} = b_2 \frac{\bar{x}}{\bar{y}} = 10.21 \times \frac{19.60}{283.57} = 0.71$$

#### Prediction

To predict weekly food expenditure for a household with a weekly income of \$2000, we plugging x = 20 into our estimated equation to obtained

$$\hat{y} = 83.42 + 10.21x_i = 83.42 + 10.21(20) = 287.61.$$

We *predict* that a household with a weekly income of \$2000 will spend \$287.61 per week on food.

#### R

```
# For details, see https://bookdown.org/ccolonescu/RPoE4/#
# plot the data
food = data(food);
plot(food$income, food$food_exp,
     ylim=c(0, max(food$food_exp)),
     xlim=c(0, max(food$income)),
     xlab="weekly income in $100",
     ylab="weekly food expenditure in $", type = "p")
```

```
# fit the model to the data: EXP = beta 1+ beta2 INCOME + e
mod1 <- lm(food_exp ~ income, data = food)</pre>
b1 <- coef(mod1)[[1]]
b2 <- coef(mod1)[[2]]
smod1 <- summary(mod1)</pre>
smod1
abline(b1,b2) # add the estimated (fitted) regression line
names (mod1)
names (smod1)
mod1$coefficients
smod1$coefficients
coef(mod1)
```

```
# retrieve the residuals and do a simple diagnostic test
r= resid(mod1)
plot(r) # scattor plot
hist(r) # histogram
plot(density(r)) # density plot
qqnorm(r) # qqplot
```

```
# prediction
newx <- data.frame(income = c(20, 25, 27))
yhat <- predict(mod1, newx)
names(yhat) <- c("income=$2000", "$2500", "$2700")
yhat # prints the result</pre>
```

# Appendix. Derivations of the LSE for $b_1$ and $b_2$ i

First-order-Condition requires the partial derivatives of  $S(\beta_1, \beta_2)$  to be zeros:

$$\frac{\partial S(\beta_1, \beta_2)}{\partial \beta_1} = -2 \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i) = 0,$$

$$\frac{\partial \beta_1}{\partial S(\beta_1, \beta_2)} = -2 \sum_{i=1}^{n} x_i (y_i - \beta_1 - \beta_2 x_i) = 0.$$

Simple math gives

$$\sum y_i = N\beta_1 + (\sum x_i)\beta_2, \tag{1}$$

$$\sum x_i y_i = (\sum x_i)\beta_1 + (\sum x_i^2)\beta_2.$$
 (2)

## Appendix. Derivations of the LSE for $b_1$ and $b_2$ ii

Multiply (1) by  $(\sum x_i)$  and multiply (2) by N, we have

$$(\sum x_i)(\sum y_i) = N(\sum x_i)\beta_1 + (\sum x_i)^2\beta_2,$$
 (3)

$$N(\sum x_i y_i) = N(\sum x_i)\beta_1 + N(\sum x_i^2)\beta_2.$$
 (4)

Let  $\bar{x} = (\sum x_i)/N$  and  $\bar{y} = (\sum y_i)/N$ . We have

$$b_2 = \frac{N(\sum x_i y_i) - (\sum x_i \sum y_i)}{N(\sum x_i)^2 - (\sum x_i)^2} = \frac{\sum x_i y_i - N\bar{x}\bar{y}}{\sum x_i^2 - N\bar{x}^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}.$$
 50)

Plug  $b_2$  in (5) into (1), we have

$$b_1 = \bar{y} - \bar{x}b_2.$$

## Appendix. Derivations of the LSE for $b_1$ and $b_2$ iii

For hand calculations, we obtain the following identities,

$$\sum (x_{i} - \bar{x})^{2} = \sum (x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2})$$

$$= \sum x_{i}^{2} - 2\bar{x}(N\bar{x}) + N\bar{x}^{2}$$

$$= \sum x_{i}^{2} - N\bar{x}^{2},$$

$$\sum (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum (x_{i}y_{i} - \bar{x}y_{i} - \bar{y}x_{i} + \bar{x}\bar{y})$$

$$= \sum x_{i}y_{i} - \bar{x}(N\bar{y}) - \bar{y}N\bar{x} + N\bar{x}\bar{y}$$

$$= \sum x_{i}y_{i} - N\bar{x}\bar{y}.$$

# 2.4 Assessing the Least Squares Estimators

# Expected values of $b_1$ and $b_2$

$$E(b_1 | \mathbf{x}) = \beta_1, E(b_2 | \mathbf{x}) = \beta_2.$$

| TABLE 2.2 | Estimates from 10 Hypothetical Samples |                       |
|-----------|----------------------------------------|-----------------------|
| Sample    | $b_1$                                  | <i>b</i> <sub>2</sub> |
| 1         | 93.64                                  | 8.24                  |
| 2         | 91.62                                  | 8.90                  |
| 3         | 126.76                                 | 6.59                  |
| 4         | 55.98                                  | 11.23                 |
| 5         | 87.26                                  | 9.14                  |
| 6         | 122.55                                 | 6.80                  |
| 7         | 91.95                                  | 9.84                  |
| 8         | 72.48                                  | 10.50                 |
| 9         | 90.34                                  | 8.75                  |
| 10        | 128.55                                 | 6.99                  |

Figure 1: Table 2.2. Estimates from 10 Hypothetical Samples

#### Variance and covariances

$$\begin{aligned} Var(b_1) &= \sigma^2 \frac{\sum x_i^2}{N \sum (x_i - \bar{x})^2}, \quad Var(b_2) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}, \\ \sigma_{b_1} &= \sqrt{Var(b_1)}, \quad \sigma_{b_2} = \sqrt{Var(b_2)}, \\ Cov(b_1, b_2) &= \sigma^2 \frac{-\bar{x}}{\sum (x_i - \bar{x})^2}. \end{aligned}$$

**Figure 2:** Fig2.10 Two possible probability density function for  $b_2$ 



**Figure 3:** Fig 2.11 The influence of variation in the explanatory variable *x* on precision of estimation: (a) lower *x* variation, low precision: (b) high *x* variation, high precision.

# 2.5 Gauss-Markov Theorem

#### Assumptions in p. 58

#### Assumptions of the Simple Linear Regression Model

SR1: Econometric Model All data pairs  $(y_i, x_i)$  collected from a population satisfy the relationship

$$y_i = \beta_1 + \beta_2 x_i + e_i, \quad i = 1, ..., N$$

SR2: Strict Exogeneity The conditional expected value of the random error  $e_i$  is zero. If  $\mathbf{x} = (x_1, x_2, \dots, x_N)$ , then

$$E(e_i|\mathbf{x}) = 0$$

If strict exogeneity holds, then the population regression function is

 $E(y_i|\mathbf{x}) = \beta_1 + \beta_2 x_i, \quad i = 1,...,N$ 

and

$$y_i = E(y_i|\mathbf{x}) + e_i, \quad i = 1, \dots, N$$

SR3: Conditional Homoskedasticity The conditional variance of the random error is constant.

$$var(e_i|\mathbf{x}) = \sigma^2$$

SR4: Conditionally Uncorrelated Errors The conditional covariance of random errors  $e_i$  and  $e_j$  is zero.

$$cov(e_i, e_j | \mathbf{x}) = 0$$
 for  $i \neq j$ 

SR5: Explanatory Variable Must Vary In a sample of data,  $x_i$  must take at least two different values.

SR6: Error Normality (optional) The conditional distribution of the random errors is normal.

$$e_i | \mathbf{x} \sim N(0, \sigma^2)$$

#### Gauss-Markov Theorem

Given x under the assumptions SR1-SR5 of the linear regression model, the estimators  $b_1$  and  $b_2$  have the smallest variance of all linear and unbiased estimators of  $\beta_1$  and  $\beta_2$ . They are the best linear unbiased estimators (BLUE) of  $\beta_1$  and  $\beta_2$ .

## 2.6 The Probability Distributions of Least Squares Estimators

#### Sampling distribution

If SR6 holds, we have:

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2 \sum x_i^2}{N \sum (x_i - \bar{x})^2}\right), \tag{1}$$

$$b_2 \sim N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right). \tag{2}$$

A Central Limit Theorem: If assumptions SR1-SR5 hold, and if the sample size *N* is sufficiently large, then the least square estimators have a distribution that approximate the normal distribution shown in (1) and (2).

### Why we need (1) and (2)?

- 1. Confidence interval
- 2. Hypothesis test

40

#### A simulation study

#### To show that $b_2$ has the distribution

$$N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$

Model:  $y = \beta_1 + \beta_2 x + \varepsilon$ ,  $\varepsilon \sim N(0, \sigma^2)$ 

- x are from food data
- $\beta_1 = 100$ ,  $\beta_2 = 10$ ,  $\sigma^2 = 2500$
- N = 40

```
# Demonstrate this part in class.
# Start from here Teng: 20240308
# (A) Calculate the theoretical distribution of b_2
x <- food$income
x
xbar <- mean(x)
sumx2 <- sum((x-xbar)^2)
varb2 <- sig2e/sumx2
sdb2 <- sqrt(varb2)
leftlim <- b2-3*sdb2
rightlim <- b2+3*sdb2
curve(dnorm(x, mean=b2, sd=sdb2), leftlim, rightlim)
abline(v=b2, lty=2)</pre>
```



```
# (B) Use x in the food dataset to generate price y.
# Check b1hat, b2hat, and seb2hat
# imagine we are the creator will produce data (x,y) using the model
# model: y = b1 + b2 *x + error
# Assume: b1, b2, x are known
set.seed(12345)
x <- food$income</pre>
y \leftarrow b1+b2*x+rnorm(N, mean=0, sd=sde)
plot(x, y) # simulated data
mod6 \leftarrow lm(y\sim x)
b1hat <- coef(mod6)[[1]]
b2hat <- coef(mod6)[[2]]
mod6summary <- summary(mod6) #the summary contains the standard errors</pre>
seb2hat <- coef(mod6summary)[2,2]</pre>
b1hat
b2hat
seb2hat
```



```
# (C) Use x in the food dataset and implement a simulation study
# to understand the sampling properties of b1, b2, and the erros.
N < -40
x <- food$income
nrsim <- 1000
sde <- 50
vb2 <- numeric(nrsim) #stores the estimates of b2
for (i in 1:nrsim){
  set.seed(12345+10*i)
 y \leftarrow b1+b2*x+rnorm(N, mean=0, sd=sde)
 mod7 \leftarrow lm(y\sim x)
 vb2[i] <- coef(mod7)[[2]]</pre>
mb2 \leftarrow mean(vb2)
seb2 \leftarrow sd(vb2)
plot(density(vb2))
curve(dnorm(x, b2, sdb2), col="red", add=TRUE)
abline(v = b2, col="red");
legend("topright", legend=c("true", "simulated"),
       lty=1, col=c("black", "red")) # modified by Teng on 2021/3/9
curve(dnorm(x, mean=b2, sd=sdb2), col="red", add=TRUE) #
```

#### density.default(x = vb2)



## 2.7 Estimating the Variance of the Error Term

How do we estimate  $Var(b_2 | x)$  in (2)? Need to estimate  $\sigma^2$ !

Note  $e_i \sim N(0, \sigma^2)$ . Thus, we have

$$E(e_i^2) = \sigma^2.$$

We use "a sample moment estimator" to estimate  $\sigma^2$ .



The residual approximates the error:

$$\hat{e}_i = y_i - \hat{y}_i = y_i - b_1 - b_2 x_i.$$

An unbiased estimator for  $\sigma^2$  is

$$\hat{\sigma}^2 = \frac{\sum (y_i - b_1 - b_2 x_i)^2}{N - 2},$$

We have  $E(\hat{\sigma}^2) = \sigma^2$ .

• Because  $e \sim N(0, \sigma^2)$ ,  $E[e^2] = \mu^2 + \sigma^2 = 0^2 + \sigma^2 = \sigma^2$ .

We obtain estimates:

$$\begin{split} \hat{Var}(b_1) &= \hat{\sigma}^2 \frac{\sum x_i^2}{N \sum (x_i - \bar{x})^2}, \quad \hat{Var}(b_2) = \frac{\hat{\sigma}^2}{\sum (x_i - \bar{x})^2}, \\ \hat{Cov}(b_1, b_2) &= \hat{\sigma}^2 \frac{-\bar{x}}{\sum (x_i - \bar{x})^2}, \\ \hat{\sigma}_{b_1} &= \sqrt{\hat{Var}(b_1)}, \quad \hat{\sigma}_{b_2} = \sqrt{\hat{Var}(b_2)} \; . \end{split}$$

Summarize the estimated variances and covariance as:

$$\left( \begin{array}{ccc} \hat{Var}(b_1) & \hat{Cov}(b_1, b_2) \\ \hat{Cov}(b_1, b_2) & \hat{Var}(b_2) \end{array} \right).$$

#### R

```
# Many applications require estimates of the
# variances and covariances of the
# regression coefficients.
# R stores them in the a matrix vcov():
varb1 <- vcov(mod1)[1, 1]
varb1
varb2 <- vcov(mod1)[2, 2]</pre>
varb2
covb1b2 <- vcov(mod1)[1,2]
covb1b2
vcov(mod1)
```

## 2.8 Estimating Nonlinear Relationships

#### Overview

Recall the linear model of house price:

$$PRICE = \beta_1 + \beta_2 SQFT + e$$
.

Many economic relationships are represented by curved lines, and are said to display *curvlinear* forms.

We may consider using  $SQFT^2$  or In(PRICE) as an alternative model.

For a general class of models, see chapter 4.1.

#### The quadratic model



FIGURE 2.13 A quadratic function,  $y = a + bx^2$ .



FIGURE 2.14 A fitted quadratic relationship.

#### The slope

Consider  $SQFT^2$  as the explanatory variable:

PRICE = 
$$\beta_1 + \beta_2 SQFT^2 + e$$
.

The slope is

$$m = \frac{dPRICE}{dSQFT} = 2\beta_2 SQFT.$$

We estimate the slope by

$$\hat{m} = 2b_2 SQFT$$
.

If  $b_2 > 0$ , a larger house have large slop, and larger estimated price per additional square foot.

#### The elasticity

The elasticity is

$$\varepsilon = \frac{\triangle y/y}{\triangle x/x} = \frac{\triangle y}{\triangle x} \frac{x}{y} = m \frac{SQFT}{PRICE}$$

$$= (2\beta_2 SQFT) \frac{SQFT}{PRICE} = 2\beta_2 \frac{SQFT^2}{PRICE} = 2\beta_2 \frac{SQFT^2}{\beta_1 + \beta_2 SQFT^2}.$$

Hence, we estimate the elasticity by

$$\hat{\varepsilon} = 2b_2 \frac{SQFT^2}{PRICE} = 2b_2 \frac{SQFT^2}{b_1 + b_2}$$

#### R

```
# PRICE = beta1+ beta2*SQFT^2 + e
mod3 <- lm(price~I(sqft^2), data=br)
summary(mod3)
b1 <- coef(mod3)[[1]]
b2 <- coef(mod3)[[2]]
sqftx=c(2000, 4000, 6000)
                             #given values for pricex=b1+b2*sqftx^2 #prices
corresponding to given sqft
DpriceDsqft <- 2*b2*sqftx.
                             # marginal effect of sqft on price
elasticity = DpriceDsqft*sqftx/pricex
curve(b1+b2*x^2, col="red", add=TRUE)
                                        # add the quadratic curve to the scatter plot
```

### Log transformation





FIGURE 2.16 (a) Histogram of PRICE. (b) Histogram of ln(PRICE).

### The log-linear model

#### Log-Linear equation:

$$\log(y) = \beta_1 + \beta_2 x$$

$$\log(y) = \beta_1 + \beta_2 x + \varepsilon$$





#### The slope

The log-linear equation:

$$log(PRICE) = \beta 1 + \beta 2SQFT$$
.

It is easy to see

$$PRICE = \exp(\beta_1 + \beta_2 SQFT)$$
.

The slope is

$$m = \frac{dy}{dx} = \beta_2 \exp(\beta_1 + \beta_2 SQFT),$$
  

$$\hat{m} = b_2 \exp(b_1 + b_2 SQFT).$$

Interpretations: When the size of the house is SQFT, the expected PRICE increases about  $\beta_2 exp(\beta_1 + \beta_2 SQFT)$  unit with an additional square foot.

#### The elasticity

The elasticity is

$$\varepsilon = \frac{\triangle y/y}{\triangle x/x}$$

$$= m\frac{x}{y}$$

$$= (\beta_2 \exp(\beta_1 + \beta_2 SQFT)) \frac{SQFT}{PRICE}$$

$$= \beta_2 SQFT,$$

We estimate the elasticity by

$$\hat{\varepsilon} = b_2 SQFT$$
.

Interpretations: While the size of the house is SQFT and it increases one percent, the expected RRICE increases about  $(b_2SQFT) \times 100\%$ .

#### R

```
# log(SQFT) = beta1 + beta2 SQFT + e_i
data(br)
hist(br$price, col='grey')
hist(log(br$price), col='grey')
mod4 <- lm(log(price)~sqft, data=br)</pre>
mod4
ordat <- br[order(br$sqft), ] #order the dataset
mod4 <- lm(log(price)~sqft, data=ordat)</pre>
mod4
plot(br$sqft, br$price, col="grey")
lines(exp(fitted(mod4))~ordat$sqft,
      col="blue", main="Log-linear Model")
```

### Choosing a functional form

#### A challenging question:

- Sum squared of residuals (SSE), essentially  $\hat{\sigma}^2$
- Informal way using visualization tools

## 2.9 Regression with Indicator Variables



FIGURE 2.18 Distributions of house prices.

House prices (\$1,000) in University Town

#### Dummy variable

Let

$$UTOWN = \begin{cases} 1, & \text{if a house is in University Town,} \\ 0, & \text{if a house is in G.} \end{cases}$$

Then, the model is

$$PRICE = \beta_1 + \beta_2 UTOWN + e$$
.

- $\beta_2$  is the difference between the population means for house prices in the two neighborhoods.
- The expected price in University Town is  $\beta_1 + \beta_2$ .
- The expected price in Golden Oaks is  $\beta_1$ .

The estimated regression is

$$PR\hat{I}CE = b_1 + b_2UTOWN = 215.7325 + 61.5091UTOWN$$
.

#### R

```
data(utown)
?utown
priceObar <- mean(utown$price[which(utown$utown==0)])</pre>
price1bar <- mean(utown$price[which(utown$utown==1)])</pre>
# See the difference
mod5 <- lm(price~utown, data=utown)</pre>
b1 <- coef(mod5)[[1]]
b2 <- coef(mod5)[[2]]
```

# Appendix: Sampling distributions of $b_1$ and $b_2$

### Setting

- Assume  $x_1, ..., x_N$  are known
- Model:  $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ , for i = 1, ..., N.
  - Parameters:  $\beta_1$ ,  $\beta_2$ , (unknown) non-random numbers.
  - $\varepsilon_i \stackrel{i.i.d.}{\sim} N(0,\sigma^2)$
- Another presentation (Generalized linear model):

$$y_i | x_i \sim N(\beta_1 + \beta_2 x_i, \sigma^2)$$

#### The sampling distributions of LSE

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2 \sum x_i^2}{N \sum (x_i - \bar{x})^2}\right),$$

$$b_2 \sim N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)$$

Theorem A: Linear combinations of independent normal distributions remain a normal distribution. Specifically, if  $X_i \sim N(\mu_i, \sigma^2)$  and  $X_i$  are independent, then

$$\sum a_i X_i \sim N\left(\sum a_i \mu_i, \sigma^2(\sum a_i^2)\right).$$

Derivations for 
$$b_2 \sim N(\beta_2, \frac{\sigma^2}{\sum (x_i - \bar{x})^2})$$
.

Because  $\sum (x_i - \bar{x}) = 0$ , we rewrite  $b_2$  by

$$b_2 = \sum \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \sum \frac{(x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}$$

$$= \sum \left(\frac{x_i - \bar{x}}{\sum (x_i - \bar{x})^2}\right) y_i = \sum w_i y_i,$$
where  $w_i = \frac{x_i - \bar{x}}{\sum (x_i - \bar{x})^2}$ .

 $b_2$  is a linear combination of normal distribution, and hence a normal distribution.

To find the expectation and variance of  $b_2$ , note the following identities:

1. 
$$\sum w_i = 0$$

2. 
$$\sum w_i x_i = \sum \frac{(x_i - \bar{x})x_i}{\sum (x_i - \bar{x})^2} = \sum \frac{(x_i - \bar{x})x_i - (x_i - \bar{x})\bar{x}}{\sum (x_i - \bar{x})^2} = \sum \frac{(x_i - \bar{x})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} = 1$$

3. 
$$\sum w_i^2 = \sum \left( \frac{(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} \right)^2 = \frac{1}{\sum (x_i - \bar{x})^2}$$

#### Rewrite

$$b_2 = \sum w_i(\beta_1 + \beta_2 x_i + e_i)$$

$$= \beta_1 \sum w_i + \beta_2 \sum w_i x_i + \sum w_i e_i$$

$$= \beta_2 + \sum w_i e_i.$$

Therefore,

$$var(b_2) = \sum_{i=1}^{n} w_i^2 \sigma^2 = \sigma^2 \frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

 $E(b_2) = \beta_2$ 

Derivations for 
$$b_1 \sim N(\beta_1, \sigma^2 \frac{\sum x_i^2}{N\sum (x_i - \bar{x})^2})$$
.

Now, we write

$$b_{1} = \bar{y} - b_{2}\bar{x}$$

$$= \sum_{i} (\frac{1}{N} - \bar{x}w_{i})y_{i}$$

$$= \sum_{i} (\frac{1}{N} - \bar{x}w_{i})(\beta_{1} + \beta_{2}x_{i} + e_{i})$$

$$= (\beta_{1} - \beta_{1}\bar{x}\sum_{i} w_{i}) + (\beta_{2}\bar{x} - \bar{x}\beta_{2}\sum_{i} x_{i}w_{i}) + \sum_{i} (\frac{1}{N} - \bar{x}w_{i})e_{i}$$

$$= \beta_{1} + \sum_{i} (\frac{1}{N} - \bar{x}w_{i})e_{i}.$$

Hence,  $b_1$  is a normal distribution.

To find the expectation and variance of  $b_1$ , it is easy that

$$E(b_1) = \beta_1 + \sum_i \left[ (\frac{1}{N} - \bar{x}w_i)0 \right] = \beta_1$$

$$var(b_1) = \sum_i (\frac{1}{N} - \bar{x}w_i)^2 \sigma^2$$

$$= \sigma^2 \left( \sum_i \frac{1}{N^2} - 2 \sum_i \frac{\bar{x}}{N} w_i + \bar{x}^2 \sum_i w_i^2 \right)$$

$$= \sigma^2 \left( \frac{1}{N} + \bar{x}^2 \frac{1}{\sum_i (x_i - \bar{x})^2} \right)$$

$$= \sigma^2 \frac{\sum_i (x_i - \bar{x})^2 + N\bar{x}^2}{N \sum_i (x_i - \bar{x})^2}$$

$$= \sigma^2 \frac{(\sum_i x_i^2 - 2N\bar{x}^2 + N\bar{x}^2) + N\bar{x}^2}{N \sum_i (x_i - \bar{x})^2} = \sigma^2 \frac{\sum_i x_i^2}{N \sum_i (x_i - \bar{x})^2}.$$