Отчет по лабораторной работе №6

Модель эпидемии - вариант 35

Альсид Мона НФИбд-03-18

Содержание

1. Цель работы	3
2. Задание	3
3. Выполнение лабораторной работы	4
4. Выводы	6

1 Цель работы

Изучить модель эпидемии SIR

2 Задание

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \le I^\square$, $I(0) > I^\square$

3 Выполнение лабораторной работы

3.1 Теоретические сведения

скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S & \text{,если } I(t) > I^{\square} \\ 0 & \text{,если } I(t) \leq I^{\square} \end{cases}$$

Постоянные пропорциональности α , β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \le I^\square$ и $I(0) > I^\square$

3.2 Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12300) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=140, А число здоровых людей с иммунитетом к болезни R(0)=54. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1. $I(0) \le I^\square$ 2. $I(0) > I^\square$

```
import numpy as np
from scipy. integrate import odeint
import matplotlib.pyplot as plt
import math

N = 12300
I0 = 140
R0 = 54
S0 = N-I0-R0

a = 0.01
b = 0.02

x0 = [S0, I0, R0]

def syst(y, t):
    y1, y2, y3 = y
    return [0, -b*y2, b*y2]
```

```
def syst2(y, t):
    y1, y2, y3 = y
     return [-a*y1, a*y1-b*y2, b*y2]
t = np.arange(0, 200, 0.01)
y1 = odeint(syst, x0, t)
y1s = y1[:,0]
y1i = y1[:,1]
y1r = y1[:,2]
fig = plt.figure(facecolor='white')
plt.plot(t, y1s, linewidth=2, label='S(t)')
plt.plot(t, y1i, linewidth=2, label='I(t)')
plt.plot(t, y1r, linewidth=2, label='R(t)') plt.ylabel("численность")
plt.xlabel("t")
plt.grid(True)
plt.legend()
plt.show()
fig.savefig('1.png', dpi = 600)
y2 = odeint(syst2, x0, t)
y2s = y2[:,0]
y2i = y2[:,1]
y2r = y2[:,2]
fig2 = plt.figure(facecolor='white')
plt.plot(t, y2s, linewidth=2, label='S(t)')
plt.plot(t, y2i, linewidth=2, label='I(t)')
plt.plot(t, y2r, linewidth=2, label='R(t)')
plt.ylabel("численность")
plt.xlabel("t")
plt.grid(True)
plt.legend()
plt.show()
fig2.savefig('2.png', dpi = 600)
```


Figure 1: Графики численности в случае $I(0) {\leq} I^{\square}$

Figure 2: Графики численности в случае $I(0) > I^\square$

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эпидемии и построены графики.