Universidade Federal do Ceará – UFC Centro de Ciências – CC Mestrado e Doutorado em Ciências da Computação - MDCC Estruturas de Dados Avançadas

ALUNO: EDER JACQUES PORFIRIO FARIAS LISTA DE EXERCÍCIOS - LISTA 2 (RESPOSTAS)

QUESTÃO 1

f(n)	O()	ordem
$5 + 0.001n^3 + 0.025n$	$O(n^3)$	9
$500n + 100n^{1.5} + 50n \log_{10} n$	$O(n^{1.5})$	5
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	$O(n^{1.75})$	6
$n^2\log_2 n + n(\log_2 n)^2$	$O(n^2 \log n)$	8
$n\log_3 n + n\log_2 n$	$O(n \log n)$	2
$3\log_8 n + \log_2 \log_2 \log_2 n$	$O(\log n)$	1
$100n + 0.01n^2$	$O(n^2)$	7
$0.01n + 100n^2$	$O(n^2)$	7
$2n + n^{0.5} + 0.5n^{1.25}$	$O(n^{1.25})$	4
$0.01n\log_2 n + n(\log_2 n)^2$	$O(n(\log n)^2)$	3
$100n \log_3 n + n^3 + 100n$	$O(n^3)$	9
$0.003\log_4 n + \log_2\log_2 n$	$O(\log n)$	1

QUESTÃO 2 - a)

Linha 1 - log_2n

Linha 2 - $(log_2n)^2$

Linha 3.
$$n + n/2 + n/4 + ... + n/2^{logn}$$
 $n(log n)^2$

Linha 4.
$$0 + n/4 + n/8 + ... + n/2^{logn-1}$$

$$f(n) = \log_2 n + (\log_2 n) + n(\log_2 n)^2 = O(n(\log n)^2)$$

QUESTÃO 2 - b)

Linha 1 - n + 1

Linha 2 -
$$n + (n - 1) + (n - 2) + ... + 1$$

Linha
$$3 - 1 + 2 + ... + n$$

Linha 4 - 1 + 2 + ... +
$$n$$

$$f(n) = n + 1 + \frac{(1+n)n}{2} + \frac{2(1+n)^2n}{2}$$
$$f(n) = n + 1 + \frac{(n=n^2)}{2} + \frac{2n+2n^3}{2} = O(n^3)$$

OUESTÃO 3

$$a(n) = n^2 - n + 549$$

$$b(n) = 49n + 49$$

$$n^2 + 50n + 500 \le 0$$

$$n' = 25 - 5\sqrt{5} \cong 13,82$$

 $n' = 25 + 5\sqrt{5} \cong 36,18$

R. A é a melhor que B para valores entre 13,82 e 36,18.

QUESTÃO 4

Assumindo m > n

Melhor Caso : Quando P é encontrado na primeira posição de T. São feitas m comparações. O(m)

Pior Caso: Quando P está na posição m-n de T. São feitas m-n comparações. O(n)

QUESTÃO 5

Esperança
$$E = \sum x f(x)$$

$$E_1 = n^2$$

$$E_2 = (n * 0.9) + (n^3 * 0.1)$$

Quando
$$E_2 > E_1$$

$$0.9n + 0.1n^3 > n^2 \qquad (\frac{10}{n})$$

$$n^2 - 10n + 9 = 0$$

$$n' = 1$$

$$n'' = 9$$

R. O algoritmo 2 se mostra melhor que o 1 apenas para entrada entre 1 e 9. Para todas as outras entradas o algoritmo 1 é preferível. Melhor escolha algoritmo 1.

QUESTÃO 6

Para encontrar a porta um algoritmo aceitável seria :

- Na primeira tentativa 1 passo para esquerda retorna a origem, 1 passo para a direita e retorna a origem.
- Depois daríamos o dobro dos passos para a esquerda, retorna a origem e o dobro de passos para a direita e retorna a origem.
- Repetir até encontro a porta.

Etapa 1 -
$$2^0E + 2^1D + 2^0E = 4$$

Etapa 2 -
$$2^1E + 2^2D + 2^1E = 8$$

Etapa i -
$$2^{i-1}E + 2^iD + 2^{i-1}E = 2^{i+1}$$
 (Etapa anterior a etapa final)

Etapa j -
$$2^{j-1}E + 2 \cdot 2^{j-1}D = 3 \cdot 2^{j-1}$$
 (Etapa final - pior caso $n \le 2^{j-1}$)

$$p = \sum_{i=1}^{j-1} 2^{i+1} + 3 \cdot 2^{j-1}$$

$$= 2^2 + 2^3 + \ldots + 2^j + 3 \cdot 2^{j-1}$$

$$= \frac{4(2^{j-1}-1)}{2-1} + 3 \cdot 2^{j-1} \quad \text{pior caso } n \le 2^{j-1}$$

$$f(n) = 7n - 4 \Rightarrow O(n)$$