

INFO 251: Applied Machine Learning

Regression and Impact Evaluation

Announcements

- PS2 posted
- Enrollment updates
- Note: please have a pen and paper handy for today's lecture, in order to do some basic calculations

About the class

What field/discipline is your degree in?

MIMS 2022	3 respondents	3 %
MIMS 2023	29 respondents	29 %
Public Policy	4 respondents	4 %
Social Science	5 respondents	5 %
Natural Science / Engineering	24 respondents	24 %
Haas	6 respondents	6 %
Statistics	12 respondents	12 %
Other	26 respondents	26 %

What was your undergraduate major?

Math / Statistics	27 respondents	27 %	/
Computer Science	20 respondents	20 %	
Engineering	28 respondents	28 %	
Social Science	17 respondents	17 %	
Humanities	3 respondents	3 %	
Natural Sciences	9 respondents	9 %	
Other	15 respondents	15 %	

About the class

Experimental methods for causal inference (impact evaluation, A-B testing)	31 respondents	31 %
Non-experimental methods for causal inference (instrumental variables, regression discontinuity)	11 respondents	11 %
Nearest neighbors and instance-based learning	9 respondents	9 %
Gradient descent	12 respondents	12 %
Regularization and linear models	6 respondents	6 %
Naive Bayes	11 respondents	11 %
Decision trees and random forests	16 respondents	16 %
Neural networks	38 respondents	38 %
"Deep" learning	33 respondents	33 %
Reinforcement learning	25 respondents	25 %
Practical issues with machine learning (features, missing/imbalanced data, multi-label classification)	36 respondents	36 %
Cluster analysis	13 respondents	13 %
Dimensionality reduction	11 respondents	11 %
Recommender systems	24 respondents	24 %
Natural language processing	14 respondents	14 %
Map-Reduce and Hadoop	10 respondents	10 %
Machine learning for causal inference	26 respondents	26 %

Random breakout session #2

- You will be randomly divided into groups of 3-4
 - This breakout room will only last a few minutes
 - Introduce yourselves
 - Name, program, something you look forward to in 2022
 - Are you potentially looking for study partners?
 - Consider exchanging contact information!

Course Outline

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Neural models
 - Unsupervised Learning
 - Practicalities, Fairness, Bias
- Special topics

Key Concepts (last lecture)

- Random selection and assignment
- Internal and external validity
- Counterfactuals
- Identifying assumptions
- Control groups
- Statistical Power

- Single difference design
- Pre vs. Post research design
- Difference-in-Difference
 (Double Difference) design
- Differential Trends
- Multiple hypothesis testing, and adjustments

Outline

- Lecture 1 wrap-up: Multiple hypothesis testing
- A complete impact evaluation example: Progresa
- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- (Fixed effects and Normalization)

Key Concepts (today's lecture)

- Progresa
- Interpreting regression coefficients
- Dummy variables, "one-hot" vectors
- Heterogeneous treatment effects
- Regression and impact evaluation
 - Estimating treat vs. control
 - Interaction variables
 - Estimating difference-in-difference

- Cross-sectional vs. panel data
- Between vs. within variation
- Difference regressions
- Normalization
- Fixed effects

Outline

- A complete impact evaluation example: Progresa
- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Progresa

- Goals of Progresa?
 - Increase education of the poor
 - Improve living conditions of the poor
- How to do it?
 - "Conditional cash transfers"
 - Provide subsidies to poor households if they send their children to school
- Why would this work?
 - Credit constraints
 - Reducing the cost of schooling is fundamental to many policies designed to improve educational outcomes

Progresa: Details

- Distinguishing features of Progresa
 - Targeted to poor households with primary school children
 - Money given to women in household
 - Randomized evaluation built in
 - 506 villages randomly assigned to treatment and control
- Scale and scope
 - Started in 1997, continues today (first as Oportunidades, now as Prospera)
 - Now covers 3 million people, 0.3% of Mexico GDP
 - More broadly, CCT's have now been used in dozens of countries
 - Fiszbein, A.S., Norbert R., 2009. Conditional Cash Transfers: Reducing Present and Future Poverty.
 - Baird et al. 2013. Relative Effectiveness of Conditional and Unconditional Cash Transfers for Schooling Outcomes in Developing Countries: A Systematic Review.

Progresa: Eligibility

- Eligibility for Progresa was established at the household level, following a two-step targeting procedure
 - Must live in a "poor rural village"
 - These communities were selected on the basis of a marginality index, established in 1995 using information from the Census
 - For the impact evaluation, a subset of these communities were selected to be eligible for Progresa before other communities (these are the "treatment villages")
 - Household must be a "poor household" (within a poor village)
 - In treatment villages, a household census was conducted prior to program launch
 - The census collected a wealth index, which was used to identify poor households
 - The details of this welfare index were kept secret. Why?

Progresa: Eligibility

 Camacho, A., Conover, E., 2011. Manipulation of Social Program Eligibility. American Economic Journal: Economic Policy 3, 41–65.

- Nationwide, 50,000 communities were selected to receive Progresa
 - 78% of the households in the selected communities were deemed eligible
- For the impact evaluation, which occurred prior to the national roll-out, a subset of 506 communities in 7 states were selected to participate (i.e., ~1% of all communities)
 - Program was rolled out to 320 ("treatment") communities in May 1998
 - Program was rolled out to remaining 186 ("control") communities in late 1999
 - This is a classic example of a "staggered roll-out design"
 - 97 percent take-up among households

Figure 1: Program Evaluation Design

- How to measure effect of Progresa on enrollment, assuming we only have access to (post-intervention) data from 1998?
 - Compare poor in Treatment to poor in Control (i.e., C D)

Figure 1: Program Evaluation Design

- The counterfactual (for enrollment of poor in treated villages) is...
 - Enrollment of poor in control villages (in absence of Progresa)
- The key identifying assumption is...
 - In the absence of treatment, enrollment in C would have been same as enrollment in D
- Does this assumption reasonable in this context?
- What evidence might we provide to support using this identifying assumption?

Progresa: Externalities

Figure 1: Program Evaluation Design

- The "basic" treat-vs-control design measures the treatment effect by looking at outcomes among the poor, and ignores the non-poor
- What if we observe differences in the outcomes of the non-poor?
 - 1. Perhaps treatment and control villages were different to begin with (i.e., randomization failed)
 - 2. Perhaps there were spillover effects from poor to non-poor in treated villages

Progresa: Diff-in-Diff

- What if we have two rounds of survey data: baseline data (before intervention) and endline data (after intervention)?
 - We can assess whether treatment and control villages differed before Progresa
- Difference-in-difference design for evaluating Progresa
 - 1. Focusing on poor, how do changes between 97 and 98 compare between T and C villages?
 - 2. Focusing on endline, how do differences between Poor and Non-Poor compare between T and C?
 - What are the identifying assumptions of these two designs?

1997 ("Baseline")			
Treatment	Control		
E	F		
Non-Poor	Non-poor		
G	H		
Poor (Beneficiary)	Poor		

Outline

- A complete impact evaluation example: Progresa
- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Regression and Impact Evaluation

- Thus far we've used cross-tabs to "eyeball" the impact of a treatment
- Advantages
 - Very simple to compute
 - Easily interpretable
- Disadvantages
 - How to measure statistical precision?
 - How to deal with known confounds (e.g., differential trends)?
 - How to estimate treatment effect heterogeneity?
 - May be unbiased, but may not be precise controlling for additional factors may increase precision

Random breakout session #1

- You will be randomly divided into groups of 3-4
 - This breakout room will only last a few minutes
 - It will be awkward, but that's okay
 - Introduce yourselves
 - Name, program, something you look forward to in 2022
 - Are you potentially looking for study partners?
 - Consider exchanging contact information!
 - This will just last a few minutes...

Regression: Quick Recap

 Linear regression offers a concise summary of the mean of one variable as a function of the other variable through two parameters: the slope and the intercept of the regression line

Causality often implied, rarely justified

	Education	Age	Income
[1,]	8	35	30942.35
[2,]	8	23	37323.89
[3,]	8	58	49381.84
[4,]	5	41	31680.86
[5 ,]	13	35	81147.84
[6 ,]	9	43	38682.86
[7 ,]	8	35	34632.30
[8,]	7	56	14394.98
[9,]	11	62	22243.85
[10,]	1	4 24	51831.79
[11,]	12	2 25	23963.90
[12,]	12	2 32	66780.27
[13,]	4	4 41	26979.73
[14,]	8	8 49	38837.48
[15,]	10	21	40726.37
[16,]	8	3 3 3	40269.51
[17,]	4	4 36	34293.32
[18,]	10	38	61158.98
[19,]	1.	1 36	64329.59
[20,]	9	9 48	51069.77

Relationship between income and education

Regression: Quick Recap

- Simple bivariate (linear) regression
 - The regression model

$$wages_i = \alpha + \beta *education_i + error_i$$

The fitted model

$$wages_i = 12409 + 3310*education_i + error_i$$

- Intuition check
 - What does β tell us?
 - What is 12409?
 - What are the expected wages be for someone with 14 years of education?
 - **12409 + 14*3310= 58,749**

Regression: Quick Recap

- Regression with binary predictor/independent variables
 - The regression model

$$wages_i = \alpha + \beta *isForeign_i + error_i$$

The fitted model

$$wages_i = 54212 - 2710*isForeign_i + error_i$$

Multiple (linear) regression

$$wages_i = \alpha + \beta *education_i + \gamma *isForeign_i + error_i$$

Regression: Categorical variables

- What if our control variables are categorical?
 - Example: We want to study the relationship between wages and education, controlling for country
 - $Wages_i = \alpha + \beta Education_i + \gamma Country_i + \epsilon_i$
- How to deal with a categorical predictor?
 - Convert to a single binary variable:
 - $Wages_i = \alpha + \beta Education_i + \gamma USA_i + \epsilon_i$
 - $USA_i = 1$ iff worker i is from USA, $USA_i = 0$ otherwise
 - Makes sense if we care about the effect of one category relative to others
 - Convert to a set of binary variables:
 - $Wages_i = \beta Education_i + \gamma_1 USA_i + \gamma_2 CHINA_i + \cdots + \gamma_M Country_m + \epsilon_i$
 - $Wages_i = \beta Education_i + \sum_{c=1}^{M} \gamma_c \mathbf{1}(Country_i = c) + \epsilon_i$
 - $Wages_i = \beta Education_i + Country_i + \epsilon_i$ \leftarrow this is an abuse of notation, but it is very common

Regression: "Dummy" variables

- Converting levels to a series of binary variables
 - $Y_i = \alpha + \beta Education_i + Country_i + \epsilon_i$
 - Country_i is a "dummy variable" or "one-hot vector" or "fixed effect"
- Interpretation
 - Equivalent to creating a country-specific intercept
 - Each of the Country coefficients indicates average wage for workers from that particular country (when $Education_i = 0$), relative to the reference country
 - With M countries, we have (M-1) coefficients and an intercept α
 - Alternatively, estimate with no intercept and M coefficients
 - $Y_i = \beta Education_i + Country_i + \epsilon_i$
 - Intuition check: Will the coefficients for "country" dummies be the same in both cases?

Outline

- A complete impact evaluation example: Progresa
- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Regression and Impact: Basics

- How to measure the effect of treatment T on outcome Y in a regression?
 - The regression equation:

$$Y_i = \alpha + \beta T_i + \epsilon_i$$

- Example: We estimate the effect of eating a cookie on happiness on a scale of 1-10. We estimate $\hat{\alpha}=4.1, \hat{\beta}=1.3$. What does this mean?
- If T is randomly assigned, $\hat{\beta}$ is an estimate of the *causal impact* of T on Y

Regression: "Control" variables

How to simultaneously measure the effect of a treatment T and a nonexperimental control variable X on an outcome Y in a regression setting?

$$Y_i = \alpha_1 + \beta_1 T_i + \gamma X_i + e_i$$

How is this different from a version without control variables?

$$Y_i = \alpha_2 + \beta_2 T_i + \epsilon_i$$

- In a perfectly randomized experiment...
 - What, if anything, can we say about $Cor(T_i, X_i)$?
 - What, if anything, can we say about our estimates of β_1 and β_2 ?
 - What, if anything, can we say about γ ?

Control variables: Example

- Example: We are estimating the effect of eating a cookie (T_i) on happiness (Y_i) on a scale of 1-10, while controlling for years in grad school (X_i)
- Regression equation?

$$Y_i = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

- Coefficient estimates
 - $\hat{\alpha} = 3.4, \hat{\beta} = -0.5, \hat{\gamma} = 1.2$
 - What do these results mean?

Outline

- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Treatment effect heterogeneity

- How to simultaneously measure the effect on an outcome Y of: (i) a treatment T; and (ii) a non-experimental control variable X; and (iii) allow for the treatment effect to vary with the control variable?
 - Example: Tall students may respond differently to cookies than short students
 - The treatment effect is different for different types of people (where "type" is measured with X_i)
 - We can estimate this with a regression:

$$Y_i = \alpha + \beta T_i + \gamma X_i + \delta (T_i * X_i) + \epsilon_i$$

Treatment effect heterogeneity: Binary X

- Example 1: We want to estimate the effect of eating a cookie (T) on happiness (Y), while controlling for height (X) and the interaction (T*X)
 - $Y_i = \alpha + \beta T_i + \gamma X_i + \delta (T_i * X_i) + \epsilon_i$
 - $\hat{\alpha} = 1.4, \hat{\beta} = -1.0, \hat{\gamma} = 0.8, \hat{\delta} = 0.6$
 - What do these results mean?
 - What is the expected happiness for:
 - A short student with a cookie
 - A tall student with a cookie
 - A short student without a cookie
 - A tall student without a cookie

Treatment effect heterogeneity: Continuous X

- Example 2: We want to estimate the effect of eating a cookie on happiness, while controlling for years in grad school (a continuous variable) and the interaction effect.
 - Note: this is identical to the last example, except now our X variable is continuous, not binary

•
$$Y_i = \alpha + \beta T_i + \gamma X_i + \delta (T_i * X_i) + \epsilon_i$$

•
$$\hat{\alpha} = 1.4, \hat{\beta} = -1.0, \hat{\gamma} = 0.8, \hat{\delta} = 0.6$$

- What do these results mean?
- How to visualize?

Outline

- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Regression and Impact: Diff-in-Diff

- In a typical double-difference setting, data is collected at baseline (pretreatment) and at endline (post-treatment)
- Very similar to a situation where you have a treatment T and a nonexperimental binary control variable X and a differential effect of treatment by a binary control variable
- In this case, the control variable is time!
 - Instead of a (continuous) X_i we have a binary $Post_i$

Regression and Impact: Diff-in-Diff

For example, our data look like this:

ID	Y	Post?	Treatment?	Post * Treat	
1	12	o (PRE)	ı (Treat)	0	
1	14	1 (POST)	ı (Treat)	1	
2	11	o (PRE)	o (Control)	0	
2	11	1 (POST)	o (Control)	0	
3	24	o (PRE)	o (Control)	0	
12419					•••

	Control	Treat	
Pre	Α	В	
Post	C	D	

Write down the regression equation:

$$Y_i = \alpha + \beta T_i + \gamma Post_i + \delta (T_i * Post_i) + \epsilon_i$$

Regression and Impact: Diff-in-Diff

Let's return to Progresa (Shultz, 2004: page 209)

$$S_i = \alpha_0 + \alpha_1 P_i + \alpha_2 E_i + \alpha_3 P_i E_i + \sum_{k=1}^K \gamma_{ki} C_{ki} + \sum_{j=1}^J \beta_j X_{ji} + e_i \quad i = 1, 2 \dots, n$$
 (1)

- P_i = Progresa village ("T")
- E_i = Eligible (poor) household ("X")
- $P_i E_i$ = Difference-in-difference estimator
- C_{ki} = Dummy variable for grade of child
 - Controls for fact that enrollment rates vary across grades
- X_{jj} = Other control variables (I think?)

Regression and Impact: Summary

Double Difference

$$Y_i = \alpha + \beta T_i + \gamma Post_i + \delta (T_i * Post_i) + \epsilon_i$$

Simple difference

$$Y_i = \alpha + \beta T_i + \epsilon_i$$

- (Estimated only in Post period)
- Pre vs. Post

$$Y_i = \alpha + \gamma Post_i + \epsilon_i$$

(Estimated only on treatment group)

Outline

- Regression recap
- Regression and Impact Evaluation
- Heterogeneous treatment effects
- Double-Difference via Regression
- Fixed effects and Normalization

Fixed Effects and Normalization

- Cross-sectional data: Data from several units at a single point in time
 - Schooling outcomes in 1998
 - Happiness of students on Jan 20
 - Number of logins per person in March
- Time series (panel) data: Multiple observations for each unit over time
 - Schooling outcomes in 1997 and 1998
 - Happiness of students on Jan 20 and Jun 20
 - Number of logins per person in each month of 2010

Between and Within Variation

- Cross-sectional data:
 - Variation is between/across units

Location	Year	Price	Quantity sold (per capita)
Chicago	2003	\$75	2.0
Seattle	2003	\$50	1.0
Milwaukee	2003	\$60	1.5
Madison	2003	\$55	0.8

- What do you notice about relationship between price and quantity?
 - Across the four cities, price and quantity are positively correlated
 - This is not what we would expect omitted variables likely matter

Between and Within Variation

Panel data:

 Variation is between/across units and within units over time

- What do you notice about relationship between price and quantity?
 - Within each of the four cities, price and quantity are inversely correlated (as expected with downward sloping demand)

Location	Year	Price	Quantity
Chicago	2003	\$75	2.0
Chicago	2004	\$85	1.8
Seattle	2003	\$50	1.0
Seattle	2004	\$48	1.1
Milwaukee	2003	\$60	1.5
Milwaukee	2004	\$65	1.4
Madison	2003	\$55	0.8
Madison	2004	\$60	0.7

Exploiting Within-Unit Variation

- How to isolate changes in outcomes correlated with changes within a unit?
 - e.g., Changes in demand caused by changes in price within a given city (over time)

Exploiting Within-Unit Variation

- One (familiar?) approach: "difference" regressions
 - Isolate differences over time in X and Y
 - Instead of: $Y_{it} = \alpha + \beta X_{it} + \epsilon_{it}$
 - $(Y_{it} Y_{i(t-1)}) = \alpha + \beta (X_{it} X_{i(t-1)}) + \epsilon_{it}$
 - Are changes in Y related to changes in X?
- Another approach: normalization
 - Instead of: $Y_{it} = \alpha + \beta X_{it} + \epsilon_{it}$
 - $(Y_{it} \overline{Y}_i) = \alpha + \beta (X_{it} \overline{X}_i) + \epsilon_{it}$

Exploiting Within-Unit Variation

- A third (closely related) approach: Fixed effects
- Basic idea (refer to lecture notes for details)
 - Instead of: $(Y_{it} \overline{Y}_i) = \alpha + \beta (X_{it} \overline{X}_i) + \epsilon_{it}$
 - Add "dummy" variables for each i: $Y_{it} = \alpha + \beta X_{it} + (\mu_i + \dots + \mu_N) + \epsilon_{it}$
 - Conceptually the same as the "country fixed effect" example from slide 27
 - More formally: $Y_{it} = \alpha + \beta X_{it} + \sum_{j=1}^{N} \mu_j \mathbf{1}(ID_i = j) + \epsilon_i$
 - Equivalent to adding an intercept for each i
 - Shorthand: $Y_{it} = \alpha + \beta X_{it} + \mu_i + \epsilon_{it}$
- Note: we can also "normalize" for time FE's
 - $Y_{it} = \alpha + \beta X_{it} + \mu_i + \pi_t + \epsilon_{it}$

Fixed Effects: Digging Deeper

- Key advantage of Fixed Effects
 - Fixed effects control for <u>unobserved heterogeneity</u>
 - They remove the effect of time-invariant characteristics to assess the net effect of the predictors on the outcome
- Extensions
 - Time trends
 - Region-specific slopes

Additional Resources

Beginner → Advanced

For Next Class:

Read Chapters 6 and 7:

Get started on problem set 2!

Handbook on Impact Evaluation

Quantitative Methods and Practices

Shahidur R. Khandker Gayatri B. Koolwal Hussain A. Samad