Оценка пространственной модели по российским данным

Борис Демешев 13 December 2014

Подгружаем пакеты:

```
library("ggplot2")
library("MCMCpack")
library("pander")
library("dplyr")
library("MHadaptive")
library("mvtnorm")
library("psych")
library("pander")
library("pander")
library("library("library("library("microbenchmark") # test speed of various approaches
```

Загружаем результаты симуляций:

```
pars <- readRDS("./estimation/pars_chain.Rds")
pars <- as.data.frame(pars)
# pars <- dplyr::filter(pars, q>0) # was ist das?

n_sim_done <- nrow(pars)
pars <- mutate(pars, t = 1:n_sim_done)</pre>
```

Всего было 15000 симуляций. График для ρ весь:

```
qplot(data=pars, t, rho, geom="line")
```


Отберем с 100-го наблюдения:

 $pars <- dplyr::filter(pars,\,t{>}100)$

qplot(data=pars, rho, geom="density")

qplot(data=pars, alpha, geom="density")

qplot(data=pars, beta, geom="density")

qplot(data=pars, theta, geom="density")

qplot(data=pars, s2, geom="density")

qplot(data=pars, q, geom="density")

 ${\tt qplot(data=pars,\,t,\,rho,\,geom="line")}$

qplot(data=pars, t, alpha, geom="line")

qplot(data=pars, t, beta, geom="line")

qplot(data=pars, t, theta, geom="line")

qplot(data=pars, t, s2, geom="line")

qplot(data=pars, t, q, geom="line")

Апостериорные средние и медианы:

```
pars_sel <- dplyr::select(pars, rho, alpha, beta, theta, s2, q) short_summ <- describe(pars_sel)[,2:5] class(short_summ) <- "data.frame" pander(short_summ)
```

	n	mean	sd	median
rho	14900	0.1503	0.1894	0.1531
alpha	14900	-0.01833	0.1298	-0.02052
beta	14900	0.003518	0.016	0.003347
theta	14900	0.04755	0.03888	0.04753
s2	14900	0.0002227	6.026 e - 05	0.000215
\mathbf{q}	14900	6.018	2.696	5.502

HPD-интервалы:

$pander(HPDinterval(mcmc(pars_sel)))$

	lower	upper
rho	-0.2069	0.5233
alpha	-0.2639	0.2515

	lower	upper
beta	-0.02797	0.03516
theta	-0.0306	0.1227
s2	0.0001172	0.0003437
q	1.854	11.31

Наличие бимодального распределения для бета:

```
\label{eq:continuity} \begin{split} & \text{files} <-\text{c("./estimation/pars\_chain.Rds","./estimation/pars\_chain2.Rds","./estimation/pars\_chain3.Rds")} \\ & \text{for (f in files) } \{\\ & \text{pars} <-\text{readRDS}(f)\\ & \text{pars} <-\text{as.data.frame(pars)}\\ & \# \text{pars} <-\text{dplyr::filter(pars, q>0)} \ \# \text{ was ist das?} \\ & \text{n\_sim\_done} <-\text{nrow(pars)}\\ & \text{pars} <-\text{mutate(pars, t = 1:n\_sim\_done)}\\ & \text{pars} <-\text{dplyr::filter(pars, t>100)} \\ & \text{g} <-\text{qplot(data=pars, beta, geom="density", main=f)}\\ & \text{print(g)} \\ \} \end{split}
```


