CSE 426: Cryptography Prof. Stefano Tessaro

Homework 2

Posted: Wednesday, October 11, 2023 – 11:59pm Due: Wednesday, October 18, 2023 – 11:59pm

Task 1 – Negligible Functions

(10 points)

The goal of this task is to develop a better sense about negligible functions. Let $\mathbb{R}_{\geq 0}$ be the set of non-negative real numbers. Recall that a function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ being *negligible* means that for all $d \geq 1$, there exists k_0 (dependent on d) such that for all $k > k_0$, it holds that $f(k) < k^{-d}$.

a) [4 points] Is the function

$$f(k) = k^{-\log^2(k)}$$

negligible? Prove your answer. (The logarithm has base 2.)

b) [6 points] Let $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be negligible functions and c > 0 a positive constant. Prove that the following functions are also negligible:

(i)
$$h_1(k) = f(k) + g(k)$$
, (ii) $h_2(k) = k^c f(k)$.

Task 2 – Block Ciphers

(10 points)

The purpose of this task is to illustrate that it is always possible to break a block cipher (and as you will see later, most cryptographic objects) with a *huge* amount of computing resources.

Consider a block cipher $E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, and the following distinguisher D for distinguishing KF[E] from RP[n]:

```
\frac{\textbf{distinguisher }D^{\mathsf{O}}:}{Y_0 \leftarrow \mathsf{O}.\mathsf{Eval}(0^n)} \\ Y_1 \leftarrow \mathsf{O}.\mathsf{Eval}(1^n) \\ \textbf{for all } K' \in \{0,1\}^n \ \textbf{do} \\ \textbf{if } \mathsf{E}(K',0^n) = Y_0 \ \text{and } \mathsf{E}(K',1^n) = Y_1 \ \textbf{then} \\ \textbf{return } 1 \\ \textbf{return } 0 \ (\text{if the loop ends without returning})
```

- a) [2 points] What is the probability that D outputs 1 when given access to the oracle O = KF[E] which evaluates the block cipher E under a random uniform key?
- **b)** [6 points] Give an upper bound on the probability that D outputs 1 when given oracle access to O = RP[n]. What is the advantage $Adv_F^{prp}(D)$?
 - **Hint:** What is the probability that $E(K', 0^n) = Y_0$ and $E(K', 1^n) = Y_1$ for *some* $K' \in \{0,1\}^n$ when D interacts with O = RP[n]? For how many $Y_0, Y_1 \in \{0,1\}^n$ does there exist a key K' with $E(K', 0^n) = Y_0$ and $E(K', 1^n) = Y_1$?
- c) [2 points] Explain why the above distinguisher does not contradict the existence of secure pseudorandom permutations.

Task 3 – IND-CPA Security

(9 points)

Let $\Pi = (Kg, Enc, Dec)$ be a symmetric encryption scheme with *deterministic* Enc, whose message space is the set of *n*-bit strings.

- a) [5 points] Show that Π *cannot* be IND-CPA secure. In particular, explicitly describe an efficient distinguisher D for which $Adv_{\Pi}^{ind-cpa}(D) = 1$.
- b) [3 points] Argue that perfect secrecy of Π implies $Adv_{\Pi}^{ind-cpa}(D) = 0$ for all one-query distinguishers, even inefficient ones.
- c) [1 points] Given the one-time pad is deterministic, why does b) not contradict a)?

Task 4 - More IND-CPA Security

(8 points)

Let $\Pi = (Kg, Enc, Dec)$ be an IND-CPA secure symmetric encryption scheme with message space \mathcal{M} . Define a new symmetric encryption scheme $\Pi' = (Kg', Enc', Dec')$ with Kg' = Kg and Enc'(K, M) first running Enc(K, M) to obtain C then outputting $C' = C \parallel 0$, where \parallel denotes string concatenation.

- a) [2 points] Describe a suitable Dec' so that Π' is correct (assuming Π is correct).
- **b)** [6 points] Show that Π' is IND-CPA secure.

Hint: Show that for every distinguisher D (against the IND-CPA security of Π'), there exists a distinguisher D' (against the IND-CPA security of Π) such that D' is roughly as efficient as D and they have the same advantage, i.e., $\mathsf{Adv}^{\mathsf{ind-cpa}}_{\Pi'}(D) = \mathsf{Adv}^{\mathsf{ind-cpa}}_{\Pi}(D')$.

Task 5 – Pseudorandom Functions

(8 points)

Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a PRF and define the keyed function

Prove that *H* is *not* a PRF. To this end, solve the following two sub-tasks.

a) [3 points] Find $(x_1, x_2, x_3) \neq (x'_1, x'_2, x'_3)$ such that

$$\mathsf{H}(K_1 \| K_2, x_1 \| x_2 \| x_3) = \mathsf{H}(K_1 \| K_2, x_1' \| x_2' \| x_3')$$

for all $K_1, K_2 \in \{0, 1\}^k$.

b) [5 points] Use a) to devise a distinguisher D such that $Adv_H^{prf}(D)$ is large.