Il Workshop on computational modelling of behavioral data

June 9-10, 2025

CIMCYC

University of Granada

Schedule and people

Monday morning

Drift Diffusion model

----- lunch -----

Monday afternoon

Reinforcement Learning

---- Free time -----

Tuesday morning

Deep neural networks

All slides and materials in our website: https://wobc.github.io/cmb_website/

Francesco Juan Eloy

Javier

Carlos

Fran

What is modelling and why do we care?

Making a formal, **mathematical** representation of a theory (here, about cognitive processes)

(...) modelling is a tool to help construct **better** theories of cognition and behavior (...)

(...) it provides a formal language that helps build *more precise* theories.

Verguts, T. (2022). *Introduction to modeling* cognitive processes. MIT Press.

Three key reasons:

- -They require *explicit* and *precise* definitions.
- -They require us to think (speak) in computational terms.
- -They enable formal comparison of different models.

Critical for (good) theory building

"What I cannot create, I do not understand"

- Richard Feynman

What is modelling?

In the broader sense:

Initial conditions

<Set of equations>

"This is how the phenomenon works"

Stimuli Trial info

Event sequence

Activity pattern

Actual data

Predicted data

RT

Acc

Activity pattern

Learning

What is modelling?

In the broader sense:

Initial conditions

<Set of equations>

?

Stimuli

Trial info

Event sequence

Activity pattern

Actual data

Predicted data

RT

Acc

Activity pattern

Learning

Enter:

Francesco Juan Eloy

...and hopefully all of you after this workshop!

Which models should I use?

Modeling of different natural phenomena takes very different forms

Computation Willy (problem)

Depending on your goal, your model can aim to be cognitively, neurally or biologically plausible

feathers

flight

Enter levels of modelling

Model diversity

- Different models allow answering different questions
- Everyone has a different idea of what's a "good model"

- A "good model" is what best answers the question with minimal assumptions
- Thus model diversity is good!

Useful

Model diversity

Useful Normative

What nobody teaches you

You can read thousands of papers about cool modeling results

vague thoughts about cognition/computation

happens here?

sit down to write a model

But nobody ever tells you how to identify the space of models that you should consider in the first place.

Does X model make sense for my research?

- Reflect on **goal** of the model (what? why? how?)
- Select output variable(s)
 (think about level of abstraction, detail, etc.)

Goal: Explaining vs predicting

Models are useful for predicting and explaining, and these two virtues typically trade off with complexity

So, how do I know where to start?

