Perceptron

Facundo Astiz (58333) Miguel Di Luca (58460)

Perceptrón no lineal

- Función de activación tangente hiperbólica
- Error cuadrático medio final: 0.034552
- Paso = 0.0001

Nota: los valores del output fueron divididos por el output más grande

Perceptrón multicapa

- Función de activación tangente hiperbólica
- Error cuadrático medio final: 1.70x10⁻⁵
- Paso = 0.2

Nota: los valores del output fueron divididos por el output más grande

A partir del conjunto de data para el ejercicio 2 crearon dos particiones; una de test y otra de training. Se tomó como training el 80% del dataset.

Las particiones de llenaron con elementos elegidos al azar y se repitió 10 veces para estimar mejor el error.

Perceptrón no lineal

- Función de activación tangente hiperbólica
- Error cuadrático medio final: 0.034552
- Paso = 0.0001

Errores cuadráticos medios para cada simulación:

- 0.10164793971694933
- 0.18718911633056848
- 0.038775284474972416
- 0.08072194708980523
- 0.136546235995884
- 0.057848224646699364
- 0.3723044191497745
- 0.10037898670406328
- 0.11611410167206855
- 0.3220883867054497

Media: 0.15136146424862348

Desvío estándar: 0.10591974431699015

Exclusive or

Simple

Multicapa

Números primos

Se determinó que la capacidad de generalización no es buena, ya que no es un parámetro útil la forma de los números para determinar si estos son primos o no.

Por ejemplo, en el caso en el que se entrena al número 7 pero no se entrena al número 1, se puede ver que el 1 se considera primo, ya que su forma es similar a la del número 7.