Mass Defect and Binding Energy

Mass Defect:

- The difference between the sum of the masses of the individual nucleons and the actual mass.

Binding Energy:

- The energy difference between the separated nucleons and the assembled nucleus.
- represents the energy required to hold protons and neutrons together in a nucleus.
- If the binding energy is <u>zero</u>, it indicates that <u>there is no net attractive force</u> acting to keep the nucleons (protons and neutrons) together.

Extra Points:

- a <u>nucleon</u> has a proton and neutron.
- <u>Strong nuclear force</u> holds proton in the nucleus.
- Relationship between mass and energy : E = mc²

Formula:

Total mass = $Z \times m_H + N \times m_n$

- Z: atomic no. (number of protons)
- **m**_H: mass of hydrogen
- N: number of neutrons (A Z)
- $\mathbf{m}_{\mathbf{n}}$: mass of neutron

 $\Delta m = T.m - M_{atom}$ (actual measured mass in *Given*)

B.E.(in MeV) = Δ m(in u) × 931.494 MeV/u

Binding Energy per Nucleon (B.E./A)

- B.E. / A = Total Binding Energy/ Mass Number
- mhydrogen atom 1.007825 u
- mneutron 1.008665 u
- mdeuterium atom 2.014102 u
- mhelium atom 4.002603 u

Nuclear Decay and Reactions

Radioactive decay:

- is the emission of energy in the form of ionizing radiation.

Radiation:

- is the energy that comes from a source and travels through space at the speed of light.

3 modes of nuclear decay: *you go in-terms of the Atomic No.

- 1. Alpha decay: Helium nuclei; alpha particles(42He) being emitted.
- Mass no.: Decreases by 4; and Atomic no.: decreases by 2

Example:

Emitted	Bombarded
$^{238}_{92}\text{U} \Rightarrow _{90}^{234}\text{Th} + _{2}^{4}\text{He}$	$_{86}^{222}$ Rn + $_{2}^{4}$ He \Rightarrow $_{88}^{226}$ Ra

- 2. Beta decay: Antineutrino and β -particles($_{-1}$) are being emitted.
- Mass no.: does not change; and Atomic no.: increases by 1(Bc changing of 1 neutron to portion)

Example:

Emitted	Bombarded
$_{7}^{14}\text{N+}\beta^- + \nu_e^- \Rightarrow _{6}^{14}\text{C}$	$_{6}^{14}C \Rightarrow _{7}^{14}N + \beta^{-} + \nu_{e}^{-}$

- 3. Gamma Decay: Redistribution of energy with nucleus. $\Rightarrow \gamma$ | Results in no isotope change
- *Mass no.* and *Atomic no.*: do not change.

Example:

Emitted	Bombarded
$^{99m}_{43}\text{Tc} \Rightarrow_{43}^{99}\text{Tc} + \gamma$	$_{43}^{99}\text{Tc} + \gamma \Rightarrow {}^{99\text{m}}_{43}\text{Tc}$

Nuclear Decay Series

- This is an application/solving Lesson
- '∠' ⇒ Alpha Decay; '→' ⇒ βeta Decay
- The previous product becomes the next reactant.
- The are 8 alpha decays, and 6 beta decays.

Half Life

Half life: *denoted by t

- The time required for half of the atoms in any given quantity of a radioactive isotope for decay.

Practical Applications of Half life: *momerize 4

- Radioactive Dating
- Nuclear Medicine
- Pharmacology
- Environmental Science
- Nuclear Power
- Food Preservation

Formulas:

t = No. of days passed / Half life

Remaining = original (1/2)^t

Units of Radioactivity:

- Curie: corresponds to activity of 1 gram of Radium 226
- Original unit
 - 1 Curie = 3.7 x 1010 radioactive decay per second
- SI unit is Becquerel
 - 1 Bq = 1 radioactive decay per second = 2.703 x 10-11 Ci
 - Also as a measure of quantity of radioactive material
 - o i.e. the no. of atoms that will produce 1 Ci of radiation is

$$N = 3.7 \times 10^{10} / \lambda$$

Nuclear Fission and Fusion

Nuclear Fission: *decomposition of nucleus

- the division nucleus into 2 or more fragments.
- How it happens:
 - Large nucleus is bombarded with a small particle.
 - The nucleus splits into smaller nuclei and several neutrons.
 - Large amounts of energy are released
- The released energy is around 173 MeV
- Central rods absolve fast neutrons to make them slower and reduce their speed to initiate nuclear fission.
 - Because fast neutrons don't cause nuclear fission.
- A moderator slows down fast neutrons.

Nuclear Fission Equation:

- $n + {}_{92}{}^{235}U \rightarrow {}_{92}{}^{236}U \rightarrow {}_{56}{}^{142}Ba + {}_{36}{}^{91}Kr + 3n + Energy$

Chain Reaction:

- occurs when a critical mass of uranium undergoes fission.

^{*}speed of neutrons; $c = 3x10^8$

Fast Neutrons	Slow Neutrons
c/7	c/8

Nuclear Power Plants:

- Fission is used to produce energy
- control rods in the reactor absorb neutrons to slow and control the chain reactions of fission.

Nuclear Fusion: *occurs at extremely high temps (10M C)

- Light-mass nuclei combine to form a beavier, more
- Fusion releases more energy than Fission.

Nuclear Fusion Equation:

• Proton proton cycle

$$_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + n + energy$$

$Physics\ Summary\ Final\ {\it The\ bookwidget\ is\ really\ important}$