1.2. Методи до визначення рухливості у кремнії

Задача оцінки рухливості електронів μ_n та дірок μ_p у напівпровіднику за певних умов є достатньо поширеною у різноманітних фізичних дослідженнях. Один з варіантів її вирішення полягає у використанні загального підходу, згідно з яким

$$\mu = \frac{e\tau_p}{m_\sigma} \,, \tag{1.1}$$

де e — елементарний заряд, au_p — середній час вільного пробігу носія заряду, m_σ — ефективна маса електропровідності.

Час вільного пробігу обмежується розсіянням носіїв заряду, яке може бути викликане декількома причинами, пов'язаними з порушеннями періодичності потенціалу. Зокрема виділяють розсіяння на коливаннях ґратки (акустичних та оптичних фононах), заряджених та нейтральних домішках, дислокаціях, границях зерен та інших неоднорідностях структури, поверхнях та межах розділу, інших носіях. Кожен із цих механізмів має свою залежність від температури, рівня легування та розміру напівпровідникової структури і може бути визначальним для величини рухливості за певних умов. Проте найчастіше необхідно враховувати декілька можливих шляхів розсіяння носіїв заряду. В такому випадку для оцінки рухливості використовується правило Матіссена:

$$\mu^{-1} = \sum_{i} \mu_i^{-1} \,, \tag{1.2}$$

де сумування відбувається за механізмами розсіяння, μ_i — рухливість носіїв за наявності лише i-го механізму розсіяння. Для оцінки μ_i можна використовувати вирази, аналогічні формулі (1.1), розрахувавши відповідний час вільного пробігу.

Для переважної більшості механізмів розсіяння вирази для оцінки рухливості відомі. Так, при розсіянні на іонізованих домішках нерідко використовується вираз Брукса-Херрінга