QUIC and Satellite Open Stakeholder Meeting Accelerating Start-up

Nicolas KUHN

nicolas.kuhn@cnes.fr

Typical GEO satellite-based Internet access

- Solution #1 : adapt the end-to-end protocols
- Solution #2: inform end point of the path characteristics

Solution #1: adapt the end-to-end protocols

Utilised platform for tests

QUIC SERVER

Delay / capacity limitation Losses

QUIC CLIENT

picoquic/picoquic (h3-25/24/23)

or

h2o/quicly(h3-25)

End-to-end path without split

picoquic/picoquic (h3-25/24/23) or curl/ngtcp2 (h3-25)

Multiple paths with split

IPERF3 SERVER

Default Kernel 4.15 Ubuntu 16.04 iperf3 v3.6 PEPSal

Delay / capacity limitation

PEPSal

Losses

IPERF3 CLIENT

Default; Kernel 4.4 Same configuration on both PEP client and PEP server

	TCP_WMEM_MAX (MB)	TCP_RMEM_MAX (MB)	CORE_WMEM_MA X CORE_RMEM_MA X (MB)	ICWND IRWND (packets)
NO PEP	4	6	0,2	10
PEP A	4	6	0,2	10
PEP B	4	6	0,2	100
PEP C	33	33	33	10
PEP D	33	33	33	100

Default Kernel 4.15 Ubuntu 16.04 iperf3 v3.6

Solution #1: adapt the end-to-end protocols

Focus on the 50 Mbps / 10 Mbps use-case

With TCP-Proxy:

- Capacity to reach channel capacity
- Reduced transmission time

Proposed objectives:

• 2MB: 3 sec

10 MB: 5 sec

100MB: 20 sec

Solution #1: adapt the end-to-end protocols

Focus on the 50 Mbps / 10 Mbps use-case

- PICO-QUIC (Version v0.24d) client
 - PICO-QUIC server (Version v0.24d) : the objectives are met
 - H20 server (2.3.0-DEV@9f65c27): the objectives are not met
- CURL client (Version 7.69.0-DEV (x86_64-pc-linux-gnu) libcurl/7.69.0-DEV OpenSSL/1.1.1d zlib/ 1.2.8 brotli/1.0.4 ngtcp2/0.1.0-DEV nghttp3/0.1.0-DEV)(any server)
 - The objectives are not met

Solution #1 : adapt the end-to-end protocols

- Designing a CC that is relevant for all deployment cases may not be relevant
- Knowing about the path characteristics can help in adapting the CC in specific deployment scenarios
 - Tuning RTT_INIT
 - Tuning flow control parameters (MAX_STREAM_DATA)
- Issue in CC convergence in SATCOM use cases

Solution #2: inform end point of the path characteristics

- The objective: inform end point of the path characteristics
 - Based on previous connections
 - During a connection:
 - Both peers measure BDP (rtt * bytes_in_flight)
 - The server sends to the client the information that has been measured
 - When reconnecting:
 - Client sends a 0-RTT token for faster connection establishment
 - The idea: add the information from previous BDP to the server
- See draft-kuhn-quic-0rtt-bdp-07 for how it could be done in QUIC
 - There is also a strawman algorithm in the draft on how to safely jump to the available capacity
 - The results showed here:
 - No safe jump
 - The server uses directly previously measured BDP

Solution #2: inform end point of the path characteristics VIVERIS

- Focus on the 50 Mbps / 10 Mbps use-case
- Time needed to download 10 MB

Solution #2: inform end point of the path characteristics VIVERIS

- Focus on the 250 Mbps / 3 Mbps use-case
- Time needed to download 10 MB

Summary

- We are working at IETF on this
 - If you are interested, please join the ETOSAT list: https://www.ietf.org/mailman/listinfo/Etosat
 - Or discuss our drafts
 - draft-kuhn-quic-0rtt-bdp-07
 - draft-kuhn-quic-4-sat-06
- On the median case
 - 0-RTT-BDP improves by approx. 25% cases with no 0-RTT
 - 0-RTT-BDP improves by approx. 10% cases with *just* 0-RTT
- The CC has been simply modified
 - More specific optimization could be imagined
- What is going on ?
 - What are the impacts of RRM mechanisms or various satellite-based (variable delay in mega constellation, etc.) or losses, etc on the end-to-end performance of QUIC?
 - What are the performance of application level designs? Do they need specific tuning or implementations?

Appendix – impact of losses

VIVERIS
Innover. Simplifier. Partager.

ISAE server (picoquic)

TABLE I
END-TO-END LOSS-RELATED METRICS FROM EXPERIMENTS WITH A
WIRED AND WIRELESS ACCESS POINTS.

Method	$loss_{uni}$	P(g g)	P(g b)	P(b b)	P(b g)	B_{max}
Wired	0.017	0.983	0.935	0.065	0.017	15
Wi-Fi	0.028	0.982	0.645	0.355	0.018	47

Appendix – impact of losses

HTTP2 Server over TCP

Gateway

Satellite Terminal

End User

Loss ratio	Time needed to download 1 GB (s)	Goodput (Mbps)	Loss impact (1- Goodput- loss/Goodput-noloss)	
0	797	10	0	
0.0001	935	8.5	0.15	
0.0005	1528	5.2	0.48	
0.001	1863	4.2	0.58	
0.005	7140	1.1	0.89	

Appendix – impact of losses

