

FCC Test Report

FCC ID : XU8TEW820-821

Equipment : Wireless AC Easy-Upgrader

(Please refer to 1.1.1 for more details.)

Model No. : TEW-820AP

(Please refer to 1.1.1 for more details.)

Brand Name : TRENDnet

Applicant : TRENDnet, Inc.

Address : 20675 Manhattan Place, Torrance, CA 90501,

USA

Standard : 47 CFR FCC Part 15.247

Received Date : Mar. 20, 2014

Tested Date : Mar. 21 ~ Mar. 28, 2014

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

lac-MRA

Report No.: FR432006Al Report Version: Rev. 01 Page: 1 of 54

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	6dB and Occupied Bandwidth	15
3.3	RF Output Power	
3.4	Power Spectral Density	20
3.5	Unwanted Emissions into Restricted Frequency Bands	22
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	44
4	TEST LABORATORY INFORMATION	54

Release Record

Report No.	Version	Description	Issued Date
FR432006AI	Rev. 01	Initial issue	May 20, 2014

Report No.: FR432006AI Page: 3 of 54

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.513MHz 36.73 (Margin -9.27dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 320.03MHz 41.59 (Margin -4.41dB) - PK	Pass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 11a: 25.52 HT20: 25.22 HT40: 24.93 VHT20: 25.43 VHT40: 25.03 VHT80: 27.60	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR432006AI Page: 4 of 54

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name
TRENDnet	TEW-820AP	Wireless AC Easy-Upgrader
I RENDITE!	TEW-821AP	AC433 Wireless Access Point

All models are electrically identical, different model names are for marketing purpose.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
IEEE Std. 802.11	Frequency Range (MHz)	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
а	5725-5850	5745-5825	149-165 [5]	1	6-54 Mbps		
n (HT20)	5725-5850	5745-5825	149-165 [5]	1	MCS 0-7		
n (HT40)	5725-5850	5755-5795	151-159 [2]	1	MCS 0-7		
ac (VHT20)	5725-5850	5745-5825	149-165 [5]	1	MCS 0-8		
ac (VHT40)	5725-5850	5755-5795	151-159 [2]	1	MCS 0-9		
ac (VHT80)	5725-5850	5775	155 [1]	1	MCS 0-9		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

1.1.3 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	PCB	3	U.FL	

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 5Vdc from AC adapter
--

Report No.: FR432006AI Page: 5 of 54

The above models, model **TEW-820AP** was selected as a representative one for the final test and only its data was recorded in this report.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.5 Accessories

Accessories				
No.	Equipment	Description		
	AC Adapter 1	Brand Name: SHENZHEN FRECOM ELECTRONICS CO., LTD.		
		Model Name: F05W-050100SPAU		
1		Power Rating: I/P: 100-240Vac, 50-60Hz, 190mA O/P: 5Vdc, 1.0A		
		Power Line: 1.2m non-shielded cable w/o core		

1.1.6 Channel List

Frequency	band (MHz)	5725~5850		
802.11 a / H	T20 / VHT20	HT40 / VHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
149	5745	151	5755	
153	5765	159	5795	
157	5785	VHT 80		
161	5805	155	5775	
165	5825			

1.1.7 Test Tool and Duty Cycle

Test Tool	MP tool / Version: RTL819x 2.3-13/09/16			
	Mode	Duty cycle (%)	Duty factor (dB)	
	11a	100%	0.00	
Duty Cycle and Duty Factor	VHT20	100%	0.00	
	VHT40	100%	0.00	
	VHT80	100%	0.00	

Report No.: FR432006AI Page: 6 of 54

1.1.8 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11a	5745	63
11a	5785	63
11a	5825	63
HT20	5745	63
HT20	5785	63
HT20	5825	63
HT40	5755	63
HT40	5795	63
VHT20	5745	63
VHT20	5785	63
VHT20	5825	63
VHT40	5755	0
VHT40	5795	0
VHT80	5775	0

Report No.: FR432006AI

Page: 7 of 54

1.2 Local Support Equipment List

Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)
1	Notebook	DELL	E6430			RJ45, 10m non-shielded w/o core.

1.3 Test Setup Chart

Report No.: FR432006AI Page: 8 of 54

1.4 The Equipment List

Conducted Emission								
Conduction room 1 / (CO01-WS)								
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014				
SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 23, 2013	Nov. 22, 2014				
SCHWARZBECK	Schwarzbeck 8127	8127-666	Dec. 04, 2013	Dec. 03, 2014				
Woken	CFD200-NL	CFD200-NL-001	Apr. 24, 2013	Apr. 23, 2014				
NA	50	04	Apr. 22, 2013	Apr. 21, 2014				
	Conduction room 1 / (Manufacturer R&S SCHWARZBECK SCHWARZBECK Woken	Conduction room 1 / (CO01-WS) Manufacturer Model No. R&S ESCS 30 SCHWARZBECK Schwarzbeck 8127 SCHWARZBECK Schwarzbeck 8127 Woken CFD200-NL	Manufacturer Model No. Serial No. R&S ESCS 30 100169 SCHWARZBECK Schwarzbeck 8127 8127-667 SCHWARZBECK Schwarzbeck 8127 8127-666 Woken CFD200-NL CFD200-NL-001	Conduction room 1 / (CO01-WS) Manufacturer Model No. Serial No. Calibration Date R&S ESCS 30 100169 Oct. 15, 2013 SCHWARZBECK Schwarzbeck 8127 8127-667 Nov. 23, 2013 SCHWARZBECK Schwarzbeck 8127 8127-666 Dec. 04, 2013 Woken CFD200-NL CFD200-NL-001 Apr. 24, 2013				

Test Item	Radiated Emission								
Test Site	966 chamber 2 / (03CH02-WS)								
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Unti								
Spectrum Analyzer	R&S	FSV40	101499	Feb. 08, 2014	Feb. 07, 2015				
Receiver	R&S	ESR3	101657	Jan. 18, 2014	Jan. 17, 2015				
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Jan. 08, 2014	Jan. 07, 2015				
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Jan. 07, 2014	Jan. 06, 2015				
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Dec. 27, 2013	Dec. 26, 2014				
Preamplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014				
Preamplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014				
Preamplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 17, 2013	Dec. 16, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 17, 2013	Dec. 16, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 17, 2013	Dec. 16, 2014				
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 17, 2013	Dec. 16, 2014				
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 17, 2013	Dec. 16, 2014				
Note: Calibration Inter	val of instruments liste	d above is one year.							

Loop Antenna	R&S	HFH2-Z2 1003		Nov. 15, 2012	Nov. 14, 2014
Note: Calibration Interv	al of instruments listed	d above is two year.			

Report No.: FR432006AI Page: 9 of 54

Test Item	RF Conducted								
Test Site	(TH01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2014	Feb. 16, 2015				
Power Meter	Anritsu	ML2495A	1241002	Oct. 24, 2013	Oct. 23, 2014				
Power Sensor	Anritsu	MA2411B	1207366	Oct. 24, 2013	Oct. 23, 2014				
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.								

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2009

FCC KDB 558074 D01 DTS Meas Guidance v03r01

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±34.134 Hz						
Conducted power	±0.808 dB						
Frequency error	±34.134 Hz						
Power density	±0.463 dB						
Conducted emission	±2.670 dB						
AC conducted emission	±2.88 dB						
Radiated emission < 1GHz	±3.26 dB						
Radiated emission > 1GHz	±4.94 dB						
Time	±0.1%						
Temperature	±0.6 °C						

Report No.: FR432006AI Page: 10 of 54

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	16°C / 62%	Skys Huang
Radiated Emissions	03CH02-WS	18-24°C / 65-68%	Brad Wu Anderson Hong
RF Conducted	TH01-WS	25°C / 62%	Mark Liao

FCC site registration No.: 657002IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	VHT80	5775	MCS 0	
Radiated Emissions ≤1GHz	VHT80	5775	MCS 0	
	11a	5745 / 5785 / 5825	6 Mbps	
	HT20	5745 / 5785 / 5825	MCS 0	
RF Output Power	HT40	5755 / 5795	MCS 0	
The Guiput's ower	VHT20	5745 / 5785 / 5825	MCS 0	
	VHT40	5755 / 5795	MCS 0	
	VHT80	5775	MCS 0	
Dedicted Federica 4011	11a	5745 / 5785 / 5825	6 Mbps	
Radiated Emissions >1GHz 6dB bandwidth	VHT20	5745 / 5785 / 5825	MCS 0	
Power spectral density	VHT40	5755 / 5795	MCS 0	
,	VHT80	5775	MCS 0	

Report No.: FR432006AI Page: 11 of 54

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	60	50						
Note 1: * Decreases with the logarith	Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR432006AI Page: 12 of 54

3.1.4 Test Result of Conducted Emissions

Report No.: FR432006Al Page: 13 of 54

Report No.: FR432006AI Page : 14 of 54

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup

Report No.: FR432006AI Page: 15 of 54

3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation	N	Eron (MU=)			Limit (kHz)		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	LIIIIII (KMZ)
11a	1	5745	16.52				500
11a	1	5785	16.52				500
11a	1	5825	16.52				500
VHT20	1	5745	17.80				500
VHT20	1	5785	17.80				500
VHT20	1	5825	17.74				500
VHT40	1	5755	36.52				500
VHT40	1	5795	36.64				500
VHT80	1	5775	76.52				500

Report No.: FR432006AI Page: 16 of 54

Modulation	N	Eron (MU=)		99% Occupied E	Bandwidth (MHz)	
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3
11a	1	5745	17.44			
11a	1	5785	17.26			
11a	1	5825	17.15			
VHT20	1	5745	18.20			
VHT20	1	5785	18.13			
VHT20	1	5825	18.09			
VHT40	1	5755	36.99			
VHT40	1	5795	37.05			
VHT80	1	5775	75.90			

Report No.: FR432006Al Page: 17 of 54

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

Antenna gain > 6dBi

Non Fixed, point to point operations.
The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB

Fixed, point to point operations
Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

- Maximum Peak Conducted Output Power
 - Spectrum analyzer (For 11ac VHT80 mode)
 - 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
 - 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
 - 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.
 - Power meter (For 11a / HT20 / HT40 / VHT20 / VHT40)
 - A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power (For reference only)
 - Nower meter
 - A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR432006Al Page: 18 of 54

3.3.4 Test Result of Maximum Output Power

Modulation Mode	N _{TX}	Freq.	Maximu	Maximum Peak Conducted Output Power (dBm)			Total Power	Total Power	Limit
Wode		(IVITIZ)	Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)
11a	1	5745	25.52				356.451	25.52	30.00
11a	1	5785	25.41				347.536	25.41	30.00
11a	1	5825	25.22				332.660	25.22	30.00
HT20	1	5745	25.22				332.660	25.22	30.00
HT20	1	5785	25.11				324.340	25.11	30.00
HT20	1	5825	25.10				323.594	25.10	30.00
HT40	1	5755	24.93				311.172	24.93	30.00
HT40	1	5795	24.76				299.226	24.76	30.00
VHT20	1	5745	25.43				349.140	25.43	30.00
VHT20	1	5785	25.16				328.095	25.16	30.00
VHT20	1	5825	25.13				325.837	25.13	30.00
VHT40	1	5755	25.03				318.420	25.03	30.00
VHT40	1	5795	24.87				306.902	24.87	30.00
VHT80	1	5775	27.60				575.440	27.60	30.00

Modulation	N _{TX}	Freq.	Conduc	Conducted (average) output power (dBm)			Total Power	Total Power	Limit
Mode		(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)
11a	1	5745	20.53				112.980	20.53	30.00
11a	1	5785	20.10				102.329	20.10	30.00
11a	1	5825	19.58				90.782	19.58	30.00
HT20	1	5745	20.32				107.647	20.32	30.00
HT20	1	5785	19.98				99.541	19.98	30.00
HT20	1	5825	19.43				87.700	19.43	30.00
HT40	1	5755	19.88				97.275	19.88	30.00
HT40	1	5795	19.35				86.099	19.35	30.00
VHT20	1	5745	20.51				112.460	20.51	30.00
VHT20	1	5785	20.05				101.158	20.05	30.00
VHT20	1	5825	19.50				89.125	19.50	30.00
VHT40	1	5755	19.93				98.401	19.93	30.00
VHT40	1	5795	19.48				88.716	19.48	30.00
VHT80	1	5775	19.07				80.724	19.07	30.00

Note: Conducted average power is for reference only.

Report No.: FR432006Al Page: 19 of 54

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 3kHz, VBW = 10kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 30kHz, VBW = 100 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup

Report No.: FR432006AI Page: 20 of 54

3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
11a	1	5745	-7.70	8
11a	1	5785	-8.24	8
11a	1	5825	-8.61	8
VHT20	1	5745	-6.16	8
VHT20	1	5785	-6.91	8
VHT20	1	5825	-6.98	8
VHT40	1	5755	-9.48	8
VHT40	1	5795	-9.93	8
VHT80	1	5775	-12.17	8

Report No.: FR432006Al Page: 21 of 54

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit											
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)								
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300								
0.490~1.705	24000/F(kHz)	33.8 - 23	30								
1.705~30.0	30	29	30								
30~88	100	40	3								
88~216	150	43.5	3								
216~960	200	46	3								
Above 960	500	54	3								

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR432006AI Page: 22 of 54

3.5.3 Test Setup

Report No.: FR432006Al Page: 23 of 54

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR432006AI Page: 24 of 54

Modulation		V	HT80				Test Fre	eq. (MHz)	5775	5775		
Polarization	V	Vertical										
	90 Lev	el (dBuV/m)	- 6					18			
	80											
	00											
	70											
	60											
	2002									FCC CL	ASS-B	
	50				3 4							
	40		2		3 4	5	6		- 6			
	30											
	30											
	20											
	10				-							
	0											
	030	100.	200.	300). 40		00. 60 ency (MHz)	00. 700.	800.	900.	1000	
		-			12.24				D	ANT	Turn	
		Freq		vel	Limit	Margi	readin	Factor	Remark	Hig		
		MHz			dBuV/n	ı dB	dBuV	dB		cm	deg	
		-0700000	7 67 7 17856		Same and the same		Santo Contra		2	- 100000 - 100000		
	1	166.			43.50	-4.53	56.20		Peak	7.7		
	2	239.		.71	46.00	-9.29	54.87		Peak			
	3 4	320. 390.			46.00	-4.83 -6.49		-15.78 -13.98	Peak Peak			
	+ 5	478.				-10.79	47.26		Peak			
	5					-9.40	46.57		Peak	9 - -		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR432006AI Page: 25 of 54

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR432006AI Page: 26 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 27 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 28 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 29 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 30 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 31 of 54

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 32 of 54

Modulation			V	VHT20							Test Freq. (MHz) 5					5745			
Polarization	Vertical																		
	447	Leve	el (dBuV/m	1)															
	110																		
	90																		
	70					_									FC	CCLA	122-B		
						6								FC	C CLA	SS-B	(AVG)		
	50	2 1				-5									-		1007		
		3																	
	30	Ш											_						
	10	Ш																	
	0	Ш																	
		100	0 600	0.	1000	0.	14000.		000. reque	22000. ency (MHz)		000.	3000	00.	34000	•	4000		
			Fred	ı. E	miss	ion	Limit	Mai	rgin	SA	Fa	ctor	R	emar	k	ANT	Tui		
					leve					readin						High			
			MHz	<u> </u>	dBuV,	/m	dBuV/	m di	В	dBuV		dB				cm	de		
	1		1162.	99	37 ′	17	54.00	-16	83	45.88	_	8.71	Δ.	vera					
	2		1162.				74.00			56.94		8.71		eak	5°				
	3		2325.				54.00			43.40		3.07		vera	ge				
	4		2325.	00	51.4	41	74.00	-22	.59	54.48	-	3.07	P	eak					
	5		11490.	00	48.	31	54.00	-5	. 69	33.11	1	5.20	A	vera	ge				

46.22

15.20

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

11490.00 61.42 74.00 -12.58

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 33 of 54

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 34 of 54

Modulation	VHT	20		1	Test Fre	57	5785					
Polarization	Vertical											
117 Level	(dBuV/m)											
110												
90												
								F	CC CLA	SS-B		
70		6										
		l ĭ						FCC CL	ASS-B (AVG)		
50		5										
30												
10												
0 <mark>1000</mark>	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000.	30000.	3400	0.	40000		
	Freq. E	mission	Limit	Margin	SA	Factor	Rema	ark	ANT	Turn		
		level			reading				High			
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB			cm	deg		
1	1162.00	37.55	54.00	-16.45	46.26	-8.71	Avei	rage				
2	1162.00			-25.57	57.14	-8.71		_				
3	2325.00		54.00		43.88	-3.07		rage				
4 5	2325.00 11570.00				55.02 33.85	-3.07 15.15		k rage				
6	11570.00				47.08	15.15		_				

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 35 of 54

Report Version: Rev. 01

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 36 of 54

Modulation	VHT20							Test Freq. (MHz) 58							5825				
Polarization	Vertical																		
				•															
	117	Leve	el (dBu	I (dBuV/m)															
	110													_	_		+		
	90																		
	70															F	CC	CLAS	SS-B
	70					6													
		, 4													F	CC CL	ASS	S-B (<i>I</i>	AVG)
	50	Ī 3				1									\top		\top		
		1 1																	
	30	Н						\dashv						\rightarrow	+		\dashv		
	10							+						_	+		+		
	0	100	0 6	5000.	100	00	1400	<u> </u>	18000.	220	nn	260	000.	3000	<u> </u>	3400			40000
		100	•	,,,,,,	100	00.	1400	0.	Freque			200		3000	υ.	3400	υ.		40000
			Fi	req. [mis	sion	Lim:	it	Margin	9	Α	Fa	ctor	Re	emar	rk	Αl	NT	Turn
				•		/el					ding	3					H	igh	Table
			1	ИHz	dBu\	//m	dBu\	//m	dB	dE	uV		dB				cr	n	deg
	1		114	52.00	37	16	<u> </u>		16.84		.87	_	8.71	Α.	vons		_		
	2			52.00		. 52			25.48		.23		8.71		vera eak	ige			
	3			25.00					13.17		.90		3.07		vera	age			
	4		232	25.00	51	.77	74.0	90 -	22.23		.84	-	3.07		eak	_			
	5			50.00					-5.48		.41		5.11		vera	age			
	5		116	50.00	61	. 75	74.0	90 -	12.25	46	.64	1	5.11	Pe	eak				

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 37 of 54

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR432006AI Page: 38 of 54

l odulation	VHT	40		1	Test Fre	5755					
Polarization	Vertical										
117 Level	(dBuV/m)										
110											
90											
									ECC	CLAS	2 C D
70									100	CLA	33-0
		6						FCC C	1 4 6	e D //	we
502-4-								FCC C	LAS	2-B (\	400)
3											
30											
30											
40											
10											
1000	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000.	30000.	340	00.		40000
	Freq. E	mission	Limit	Margin	SA	Factor	Rema	ark	А	NT	Turn
		level			reading	3			Н	igh	Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB			C	m	deg
1	1162.00	36.87	54.00	-17.13	45.58	-8.71	Aver	age	-		
2	1162.00		74.00		56.66	-8.71	Peal	_			
3	2325.00			-13.88	43.19	-3.07		age			
4	2325.00				54.21	-3.07					
5	11510.00	46.15	54.00	-7.85	30.97	15.18	Aver	rage			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 39 of 54

Report Version: Rev. 01

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 40 of 54

Modulation	VH)		-	Test Freq. (MHz) 5						5795					
Polarization	Vertical															
	117	Leve	vel (dBuV/m)													
	110															
	90															
														FCC	CLA	SS-B
	70				6											
	50	2 4			- 5								FCC	CLAS	S-B (AVG)
		3														
	30															
	10	Ш														
	0		0 6000		10000.	14000). 1	18000.	22000.	26	000.	30000.	34	000.		40000
									ency (MHz)			00000	•			10000
			Freq.		ission level	n Limi	t M	largin			actor	Rem	ark		ANT	Turn
			MHz			dBuV	/m	dB	readin dBuV		dB				digh cm	Table deg
	1		1162.6	00	37.18	54.0	 0 -1	6.82	45.89	_	-8.71	Ave	rage	-		
	2		1162.6		48.22				56.93		-8.71	Pea				
	3		2325.6						43.60		-3.07		rage	!		
	4		2325.6			74.0					-3.07	Pea				
	5		11590.6	10	46.57	54.0	0 -	7.43	31.43	1	15.14	Ave	rage	!		

15.14

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

11590.00 60.00 74.00 -14.00

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 41 of 54

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006Al Page: 42 of 54

Modulation	V	'HT80)			Test F	rec	5775	5775						
Polarization		Vertical													
	117	Leve	el (dBuV/m	1)											
	110								_						
	90	\vdash							_			-			
													FCC	CLA	SS-B
	70	\vdash							_						
					6							FCC	CLAS	S-B (AVG)
	50	2 4			5				_				DEMO	, J ,	
		3													
	30	Ш							_						
	10	Ш													
	0	Ш													
		1000	0 600	0. 1	0000.	14000.		22000 ency (Mi		26000.	30000.	34	000.		40000
			Fred	ı. Emi	ssion	limit	: Margi			Factor	Rem	ark	L	ANT	Turn
					evel			read					_	digh.	
			MHz	dB	uV/m	dBuV/	m dB	dBu'	V	dB			(_m	deg
	1		1162.	00 3	6.89	E4 00	-17.11	45.	<u> </u>	-8.71	. <u> </u>	no.a-	-		
	2		1162.		8.43		-17.11	57.		-8.71 -8.71		rage k	!		
	3		2325.				-13.83	43.		-3.07		rage			
	4						-22.91			-3.07	Pea				
	5						-8.77			15.16		rage			
	6		11550.	00 5	8.87	/4.00	-15.13	43.	/1	15.16	Pea	K			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR432006AI Page: 43 of 54

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

Report No.: FR432006AI Page: 44 of 54

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

802.11a

Report No.: FR432006Al Report Version: Rev. 01

Report No.: FR432006AI Page: 46 of 54

Report No.: FR432006AI Page: 47 of 54

802.11n VHT20

Report No.: FR432006AI Page: 48 of 54

Report No.: FR432006AI Page: 49 of 54

Report No.: FR432006AI Page: 50 of 54

802.11n VHT40

Report No.: FR432006AI Page: 51 of 54

Report No.: FR432006AI Page: 52 of 54

802.11n VHT80

Report No.: FR432006AI Page: 53 of 54

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR432006AI Page: 54 of 54