Theorem 1.1 Algebraic Properties of Vectors in \mathbb{R}^n

Let **u**, **v**, and **w** be vectors in \mathbb{R}^n and let *c* and *d* be scalars. Then

a.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

Commutativity

b.
$$(u + v) + w = u + (v + w)$$

Associativity

$$c. \ \mathbf{u} + \mathbf{0} = \mathbf{u}$$

d.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

e.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

Distributivity

f.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

Distributivity

g.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$h. 1u = u$$

p19 Theorem 1.2 Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n and let c be a scalar. Then

a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

Commutativity

b. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Distributivity

c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$

d. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

p20 Theorem 1.3 Let v be a

Let **v** be a vector in \mathbb{R}^n and let *c* be a scalar. Then

a.
$$\|\mathbf{v}\| = 0$$
 if and only if $\mathbf{v} = \mathbf{0}$

b.
$$||c\mathbf{v}|| = |c|||\mathbf{v}||$$

p22 **Theorem 1.4** The Cauch

The Cauchy-Schwarz Inequality

For all vectors **u** and **v** in \mathbb{R}^n ,

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

p22 **Theorem 1.5**

The Triangle Inequality

For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

p26 **Theorem 1.6**

Pythagoras' Theorem

For all vectors **u** and **v** in \mathbb{R}^n , $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if **u** and **v** are orthogonal.

p68	Theorem 2.1	Matrices <i>A</i> and <i>B</i> are row equivalent if and only if they can be reduced to the same row echelon form.
p72	Theorem 2.2	The Rank Theorem
		Let A be the coefficient matrix of a system of linear equations with n variables. If the system is consistent, then $\operatorname{number} \text{ of free variables } = n - \operatorname{rank}(A)$
p76	Theorem 2.3	If $[A \mid 0]$ is a homogeneous system of m linear equations with n variables, where $m < n$, then the system has infinitely many solutions.
p89	Theorem 2.4	A system of linear equations with augmented matrix $[A \mid \mathbf{b}]$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A .
p93	Theorem 2.5	Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ in \mathbb{R}^n are linearly dependent if and only if at least one of the vectors can be expressed as a linear combination of the others.
p95	Theorem 2.6	Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ be (column) vectors in \mathbb{R}^n and let A be the $n \times m$ matrix $[\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_m]$ with these vectors as its columns. Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly dependent if and only if the homogeneous linear system with augmented matrix $[A \mid 0]$ has a nontrivial solution.
p96	Theorem 2.7	Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be (row) vectors in \mathbb{R}^n and let A be the $m \times n$ matrix $\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \end{bmatrix}$ with
		these vectors as its rows. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly dependent if and only if $\operatorname{rank}(A) < m$.
p97	Theorem 2.8	Any set of m vectors in \mathbb{R}^n is linearly dependent if $m > n$.

p144 Theorem 3.1

Let A be an $n \times m$ matrix, \mathbf{e}_i a $1 \times m$ standard unit vector, and \mathbf{e}_i an $n \times 1$ standard unit vector. Then

- a. $\mathbf{e}_i A$ is the *i*th row of A and
- b. Ae_i is the *j*th column of A.

Theorem 3.2 p154

Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be matrices of the same size and let c and d be scalars. Then

a.
$$A + B = B + A$$

d. A + (-A) = O

b.
$$(A + B) + C = A + (B + C)$$

Commutativity Associativity

$$A + O = A$$

$$c. A + O = A$$

e.
$$c(A + B) = cA + cB$$

f. $(c + d)A = cA + dA$

Distributivity Distributivity

g.
$$c(dA) = (cd)A$$

h.
$$1A = A$$

Theorem 3.3 p158

Properties of Matrix Multiplication

Let A, B, and C be matrices (whose sizes are such that the indicated operations can be performed) and let k be a scalar. Then

a.
$$A(BC) = (AB)C$$

Associativity

b.
$$A(B+C) = AB + AC$$

Left distributivity

c.
$$(A + B)C = AC + BC$$

Right distributivity

d.
$$k(AB) = (kA)B = A(kB)$$

e.
$$I_m A = A = A I_n$$
 if A is $m \times n$

Multiplicative identity

p159 Theorem 3.4

Properties of the Transpose

Let A and B be matrices (whose sizes are such that the indicated operations can be performed) and let k be a scalar. Then

$$a. (A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c.
$$(kA)^T = k(A^T)$$

d.
$$(AB)^T = B^T A^T$$

e.
$$(A^r)^T = (A^T)^r$$
 for all nonnegative integers r

Theorem 3.5 p161

- a. If A is a square matrix, then $A + A^{T}$ is a symmetric matrix.
- b. For any matrix A, AA^T and A^TA are symmetric matrices.

p164 Theorem 3.6

If *A* is an invertible matrix, then its inverse is unique.

p165 Theorem 3.7

If A is an invertible $n \times n$ matrix, then the system of linear equations given by $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$ for any \mathbf{b} in \mathbb{R}^n .

p165 **Theorem 3.8**

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then A is invertible if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then *A* is not invertible.

p167 **Theorem 3.9**

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

b. If *A* is an invertible matrix and *c* is a nonzero scalar, then *cA* is an invertible matrix and

$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

c. If A and B are invertible matrices of the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

d. If A is an invertible matrix, then A^T is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

e. If A is an invertible matrix, then A^n is invertible for all nonnegative integers n and

$$(A^n)^{-1} = (A^{-1})^n$$

p171 **Theorem 3.10**

Let *E* be the elementary matrix obtained by performing an elementary row operation on I_n . If the same elementary row operation is performed on an $n \times r$ matrix A, the result is the same as the matrix EA.

p172 **Theorem 3.11**

Each elementary matrix is invertible, and its inverse is an elementary matrix of the same type.

p172 **Theorem 3.12**

The Fundamental Theorem of Invertible Matrices: Version 1 Let A be an $n \times n$ matrix. The following statements are equivalent:

a. A is invertible.

b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .

c. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

d. The reduced row echelon form of A is I_n .

e. A is a product of elementary matrices.

p174 **Theorem 3.13**

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

p175 **Theorem 3.14**

Let A be a square matrix. If a sequence of elementary row operations reduces A to I, then the same sequence of elementary row operations transforms I into A^{-1} .

p192	Theorem 3.19	Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . Then $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ is a subspace of \mathbb{R}^n .
p196	Theorem 3.20	Let <i>B</i> be any matrix that is row equivalent to a matrix <i>A</i> . Then $row(B) = row(A)$.
p196	Theorem 3.21	Let <i>A</i> be an $m \times n$ matrix and let <i>N</i> be the set of solutions of the homogeneous linear system $A\mathbf{x} = 0$. Then <i>N</i> is a subspace of \mathbb{R}^n .
p197	Theorem 3.22	Let <i>A</i> be a matrix whose entries are real numbers. For any system of linear equations $A\mathbf{x} = \mathbf{b}$, exactly one of the following is true: a. There is no solution. b. There is a unique solution. c. There are infinitely many solutions.
p202	Theorem 3.23	The Basis Theorem Let S be a subspace of \mathbb{R}^n . Then any two bases for S have the same number of vectors.
p204	Theorem 3.24	The row and column spaces of a matrix A have the same dimension.
p204	Theorem 3.25	For any matrix A , $rank(A^T) = rank(A)$
p205	Theorem 3.26	The Rank Theorem

If A is an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$

p206 Theorem 3.27 The Fundamental Theorem of Invertible Matrices: Version 2

Let *A* be an $n \times n$ matrix. The following statements are equivalent:

- a. *A* is invertible.
- b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d. The reduced row echelon form of A is I_n .
- e. A is a product of elementary matrices.
- f. rank(A) = n
- g. nullity(A) = 0
- h. The column vectors of A are linearly independent.
- i. The column vectors of *A* span \mathbb{R}^n .
- j. The column vectors of *A* form a basis for \mathbb{R}^n .
- k. The row vectors of *A* are linearly independent.
- 1. The row vectors of *A* span \mathbb{R}^n .
- m. The row vectors of *A* form a basis for \mathbb{R}^n .

Let A be an $m \times n$ matrix. Then:

- a. $rank(A^TA) = rank(A)$
- b. The $n \times n$ matrix $A^T A$ is invertible if and only if rank (A) = n.

p208 **Theorem 3.29**

Let *S* be a subspace of \mathbb{R}^n and let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for *S*. For every vector \mathbf{v} in *S*, there is exactly one way to write \mathbf{v} as a linear combination of the basis vectors in \mathcal{B} :

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

p214 **Theorem 3.30**

Let A be an $m \times n$ matrix. Then the matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(\mathbf{x}) = A\mathbf{x} \quad (\text{for } \mathbf{x} \text{ in } \mathbb{R}^n)$$

is a linear transformation.

p216 **Theorem 3.31**

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is a matrix transformation. More specifically, $T = T_A$, where A is the $m \times n$ matrix

$$A = [T(\mathbf{e}_1) : T(\mathbf{e}_2) : \cdots : T(\mathbf{e}_n)]$$

p220 **Theorem 3.32**

Let $T: \mathbb{R}^m \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^p$ be linear transformations. Then $S \circ T: \mathbb{R}^m \to \mathbb{R}^p$ is a linear transformation. Moreover, their standard matrices are related by

$$[S \circ T] = [S][T]$$

p222 **Theorem 3.33**

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Then its standard matrix [T] is an invertible matrix, and

$$[T^{-1}] = [T]^{-1}$$

p266 Theorem 4.1 The Laplace Expansion Theorem

The determinant of an $n \times n$ matrix $A = [a_{ij}]$, where $n \ge 2$, can be computed as

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

$$= \sum_{i=1}^{n} a_{ij}C_{ij}$$
(5)

(which is the cofactor expansion along the ith row) and also as

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

$$= \sum_{i=1}^{n} a_{ij}C_{ij}$$
(6)

(the cofactor expansion along the jth column).

p269 **Theorem 4.2**

The determinant of a triangular matrix is the product of the entries on its main diagonal. Specifically, if $A = [a_{ii}]$ is an $n \times n$ triangular matrix, then

$$\det A = a_{11}a_{22}\cdots a_{nn}$$

p269 **Theorem 4.3**

Let $A = [a_{ij}]$ be a square matrix.

- a. If *A* has a zero row (column), then $\det A = 0$.
- b. If B is obtained by interchanging two rows (columns) of A, then det $B = -\det A$.
- c. If A has two identical rows (columns), then det A = 0.
- d. If B is obtained by multiplying a row (column) of A by k, then det $B = k \det A$.
- e. If A, B, and C are identical except that the ith row (column) of C is the sum of the ith rows (columns) of A and B, then det C = det A + det B.
- f. If B is obtained by adding a multiple of one row (column) of A to another row (column), then det $B = \det A$.

p271 **Theorem 4.4**

Let *E* be an $n \times n$ elementary matrix.

- a. If *E* results from interchanging two rows of I_n , then det E = -1.
- b. If *E* results from multiplying one row of I_n by k, then det E = k.
- c. If E results from adding a multiple of one row of I_n to another row, then det E = 1.

p272 **Lemma 4.5**

Let B be an $n \times n$ matrix and let E be an $n \times n$ elementary matrix. Then

$$det(EB) = (det E)(det B)$$

p272 **Theorem 4.6**

A square matrix A is invertible if and only if det $A \neq 0$.

p272 **Theorem 4.7**

If *A* is an $n \times n$ matrix, then

$$\det(kA) = k^n \det A$$

Theorem 4.8 If *A* and *B* are $n \times n$ matrices, then

 $\det(AB) = (\det A)(\det B)$

p274 **Theorem 4.9** If *A* is invertible, then

 $\det(A^{-1}) = \frac{1}{\det A}$

p274 **Theorem 4.10** For any square matrix A,

 $\det A = \det A^T$

p275 **Theorem 4.11** Cramer's Rule

Let *A* be an invertible $n \times n$ matrix and let **b** be a vector in \mathbb{R}^n . Then the unique solution **x** of the system A**x** = **b** is given by

 $x_i = \frac{\det(A_i(\mathbf{b}))}{\det A}$ for $i = 1, \dots, n$

Theorem 4.12 Let *A* be an invertible $n \times n$ matrix. Then

 $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$

p277 **Lemma 4.13** Let A be an $n \times n$ matrix. Then

 $a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n} = \det A = a_{11}C_{11} + a_{21}C_{21} + \dots + a_{n1}C_{n1}$ (7)

Let A be an $n \times n$ matrix and let B be obtained by interchanging any two rows (columns) of A. Then

 $\det B = -\det A$

p295 **Theorem 4.15** The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 4.16 A square matrix *A* is invertible if and only if 0 is *not* an eigenvalue of *A*.

p296 **Theorem 4.17**

The Fundamental Theorem of Invertible Matrices: Version 3

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- c. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d. The reduced row echelon form of A is I_n .
- e. *A* is a product of elementary matrices.
- f. rank(A) = n
- g. nullity(A) = 0
- h. The column vectors of *A* are linearly independent.
- i. The column vectors of *A* span \mathbb{R}^n .
- j. The column vectors of *A* form a basis for \mathbb{R}^n .
- k. The row vectors of *A* are linearly independent.
- 1. The row vectors of *A* span \mathbb{R}^n .
- m. The row vectors of A form a basis for \mathbb{R}^n .
- n. det $A \neq 0$
- o. 0 is not an eigenvalue of A.

p296 **Theorem 4.18**

Let *A* be a square matrix with eigenvalue λ and corresponding eigenvector \mathbf{x} .

- a. For any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \mathbf{x} .
- b. If A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector **x**.
- c. If A is invertible, then for any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \mathbf{x} .

p297 **Theorem 4.19**

Suppose the $n \times n$ matrix A has eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$. If \mathbf{x} is a vector in \mathbb{R}^n that can be expressed as a linear combination of these eigenvectors—say,

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m$$

then, for any integer k,

$$A^{k}\mathbf{x} = c_{1}\lambda_{1}^{k}\mathbf{v}_{1} + c_{2}\lambda_{2}^{k}\mathbf{v}_{2} + \cdots + c_{m}\lambda_{m}^{k}\mathbf{v}_{m}$$

p297 Theorem 4.20

Let *A* be an $n \times n$ matrix and let $\lambda_1, \lambda_2, ..., \lambda_m$ be distinct eigenvalues of *A* with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$. Then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ are linearly independent.

p302 **Theorem 4.21**

Let A, B, and C be $n \times n$ matrices.

- a. $A \sim A$
- b. If $A \sim B$, then $B \sim A$.
- c. If $A \sim B$ and $B \sim C$, then $A \sim C$.

p302 **Theorem 4.22**a. d b. A c. A d. A e. A

Let A and B be $n \times n$ matrices with $A \sim B$. Then

- a. $\det A = \det B$
- b. *A* is invertible if and only if *B* is invertible.
- c. A and B have the same rank.
- d. *A* and *B* have the same characteristic polynomial.
- e. A and B have the same eigenvalues.

p304 **Theorem 4.23**

Let *A* be an $n \times n$ matrix. Then *A* is diagonalizable if and only if *A* has *n* linearly independent eigenvectors.

More precisely, there exist an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$ if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors in P in the same order.

p306 **Theorem 4.24**

Let *A* be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of *A*. If \mathcal{B}_i is a basis for the eigenspace E_{λ_i} , then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$ (i.e., the total collection of basis vectors for all of the eigenspaces) is linearly independent.

p306 **Theorem 4.25**

If *A* is an $n \times n$ matrix with *n* distinct eigenvalues, then *A* is diagonalizable.

p307 **Lemma 4.26**

If *A* is an $n \times n$ matrix, then the geometric multiplicity of each eigenvalue is less than or equal to its algebraic multiplicity.

p307 **Theorem 4.27**

The Diagonalization Theorem

Let *A* be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \lambda_2, \dots, \lambda_k$. The following statements are equivalent:

- a. A is diagonalizable.
- b. The union \mathcal{B} of the bases of the eigenspaces of A (as in Theorem 4.24) contains n vectors
- c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.

p369 **Theorem 5.1**

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then these vectors are linearly independent.

p371 **Theorem 5.2**

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n and let \mathbf{w} be any vector in W. Then the unique scalars c_1, \dots, c_k such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

are given by

$$c_i = \frac{\mathbf{w} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$$
 for $i = 1, \dots, k$

p373 **Theorem 5.3**

Let $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k\}$ be an orthonormal basis for a subspace W of \mathbb{R}^n and let \mathbf{w} be any vector in W. Then

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{q}_1)\mathbf{q}_1 + (\mathbf{w} \cdot \mathbf{q}_2)\mathbf{q}_2 + \cdots + (\mathbf{w} \cdot \mathbf{q}_k)\mathbf{q}_k$$

and this representation is unique.

p374 **Theorem 5.4**

The columns of an $m \times n$ matrix Q form an orthonormal set if and only if $Q^TQ = I_n$.

p374 **Theorem 5.5**

A square matrix Q is orthogonal if and only if $Q^{-1} = Q^{T}$.

p375 **Theorem 5.6**

Let *Q* be an $n \times n$ matrix. The following statements are equivalent:

- a. Q is orthogonal.
- b. $||Q\mathbf{x}|| = ||\mathbf{x}||$ for every \mathbf{x} in \mathbb{R}^n .
- c. $Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for every \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

p376 **Theorem 5.7**

If *Q* is an orthogonal matrix, then its rows form an orthonormal set.

p376

Theorem 5.8

Let Q be an orthogonal matrix.

- a. Q^{-1} is orthogonal.
- b. det $Q = \pm 1$
- c. If λ is an eigenvalue of Q, then $|\lambda| = 1$.
- d. If Q_1 and Q_2 are orthogonal $n \times n$ matrices, then so is Q_1Q_2 .

p379

Theorem 5.9

Let *W* be a subspace of \mathbb{R}^n .

- a. W^{\perp} is a subspace of \mathbb{R}^n .
- b. $(W^{\perp})^{\perp} = W$
- c. $W \cap W^{\perp} = \{\mathbf{0}\}$
- d. If $W = \text{span}(\mathbf{w}_1, \dots, \mathbf{w}_k)$, then \mathbf{v} is in W^{\perp} if and only if $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all $i = 1, \dots, k$.

p379 **Theorem 5.10**

Let *A* be an $m \times n$ matrix. Then the orthogonal complement of the row space of *A* is the null space of *A*, and the orthogonal complement of the column space of *A* is the null space of A^T :

$$(row(A))^{\perp} = null(A)$$
 and $(col(A))^{\perp} = null(A^{T})$

p384 **Theorem 5.11**

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n and let \mathbf{v} be a vector in \mathbb{R}^n . Then there are unique vectors \mathbf{w} in W and \mathbf{w}^{\perp} in W^{\perp} such that

$$\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$$

p385 **Corollary 5.12**

If *W* is a subspace of \mathbb{R}^n , then

$$(W^{\perp})^{\perp} = W$$

p386 **Theorem 5.13**

If *W* is a subspace of \mathbb{R}^n , then

$$\dim W + \dim W^{\perp} = n$$

p386 **Corollary 5.14**

The Rank Theorem

If A is an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$

p389 **Theorem 5.15**

The Gram-Schmidt Process

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be a basis for a subspace W of \mathbb{R}^n and define the following:

$$\mathbf{v}_{1} = \mathbf{x}_{1}, \qquad W_{1} = \operatorname{span}(\mathbf{x}_{1})$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{v}_{1} \cdot \mathbf{x}_{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}, \qquad W_{2} = \operatorname{span}(\mathbf{x}_{1}, \mathbf{x}_{2})$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \left(\frac{\mathbf{v}_{1} \cdot \mathbf{x}_{3}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{v}_{2} \cdot \mathbf{x}_{3}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}, \qquad W_{3} = \operatorname{span}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3})$$

$$\vdots$$

$$\mathbf{v}_{k} = \mathbf{x}_{k} - \left(\frac{\mathbf{v}_{1} \cdot \mathbf{x}_{k}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{v}_{2} \cdot \mathbf{x}_{k}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} - \cdots$$

$$- \left(\frac{\mathbf{v}_{k-1} \cdot \mathbf{x}_{k}}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}}\right) \mathbf{v}_{k-1}, \qquad W_{k} = \operatorname{span}(\mathbf{x}_{1}, \dots, \mathbf{x}_{k})$$

Then for each $i = 1, ..., k, \{\mathbf{v}_1, ..., \mathbf{v}_i\}$ is an orthogonal basis for W_i . In particular, $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal basis for W.

p401 **Theorem 5.17**

If *A* is orthogonally diagonalizable, then *A* is symmetric.

p401 **Theorem 5.18**

If *A* is a real symmetric matrix, then the eigenvalues of *A* are real.

p402 **Theorem 5.19**

If *A* is a symmetric matrix, then any two eigenvectors corresponding to distinct eigenvalues of *A* are orthogonal.

p403 **Theorem 5.20**

The Spectral Theorem

Let *A* be an $n \times n$ real matrix. Then *A* is symmetric if and only if it is orthogonally diagonalizable.

p411 **Theorem 5.23**

The Principal Axes Theorem

Every quadratic form can be diagonalized. Specifically, if A is the $n \times n$ symmetric matrix associated with the quadratic form $\mathbf{x}^T A \mathbf{x}$ and if Q is an orthogonal matrix such that $Q^T A Q = D$ is a diagonal matrix, then the change of variable $\mathbf{x} = Q \mathbf{y}$ transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into the quadratic form $\mathbf{y}^T D \mathbf{y}$, which has no cross-product terms. If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ and $\mathbf{y} = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^T$, then

$$\mathbf{x}^{T}A\mathbf{x} = \mathbf{y}^{T}D\mathbf{y} = \lambda_{1}y_{1}^{2} + \cdots + \lambda_{n}y_{n}^{2}$$

p413 **Theorem 5.24**

Let A be an $n \times n$ symmetric matrix. The quadratic form $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is

- a. positive definite if and only if all of the eigenvalues of *A* are positive.
- b. positive semidefinite if and only if all of the eigenvalues of *A* are nonnegative.
- c. negative definite if and only if all of the eigenvalues of *A* are negative.
- d. negative semidefinite if and only if all of the eigenvalues of *A* are nonpositive.
- e. indefinite if and only if A has both positive and negative eigenvalues.

p414 **Theorem 5.25**

Let $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form with associated $n \times n$ symmetric matrix A. Let the eigenvalues of A be $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then the following are true, subject to the constraint $\|\mathbf{x}\| = 1$:

- a. $\lambda_1 \ge f(\mathbf{x}) \ge \lambda_n$
- b. The maximum value of $f(\mathbf{x})$ is λ_1 , and it occurs when \mathbf{x} is a unit eigenvector corresponding to λ_1 .
- c. The minimum value of $f(\mathbf{x})$ is λ_n , and it occurs when \mathbf{x} is a unit eigenvector corresponding to λ_n .