FIFO Preflow Push Algorithm

Proof of Theorem 17. Correctness: Theorem 15 ✓

Partition the examination of nodes into phases:

Phase 1: examination of nodes active after INITPREFLOW

Phase i, i > 1: examination of all nodes active ("in Q") when phase i - 1 is done.

Note: During each phase a node is examined at most once.

n = |V|:

Claim 1: the number of phases is $\leq 4n^2 + n$

Proof. potential function $\phi := \max\{h(u) \mid e(u) > 0\}$ Change of ϕ over an entire phase:

1st case: FIFO-PPA performs at least one Lift in the phase

$$h(u) \le 2n - 1 \quad \forall u \in V$$

at most 2n-1 LIFT operations per node. \leadsto total increase of ϕ over all such phases is at most $(2n-1) \cdot n < 2n^2$

2nd case: FIFO-PPA performs no Lift:

 \Rightarrow after examination of u: e(u) = 0Push(u, v): h(u) = h(v) + 1 $\Rightarrow \phi$ decreases by at least 1.

Initial value of ϕ : $\leq n$

 \Rightarrow total number of phases is at most $\underbrace{2n^2}_{\text{with Lift}} + \underbrace{2n^2 + n}_{\text{without Lift}} = 4n^2 + n$

In each phase:

- at most one non-saturating push per node
- each node is considered at most once in a phase

```
\Rightarrow \# \text{ non-saturating pushes} \leq n(4n^2 + n) = \mathcal{O}(n^3)
\# \text{ saturating pushes} \underset{\text{L18}}{=} \mathcal{O}(n \cdot m) = \mathcal{O}(n^3)
\# \text{ Lift } \underset{\text{C6}}{=} \mathcal{O}(n^3)
```

$$\Rightarrow$$
 total runtime $\mathcal{O}(n^3)$