B+Tree Example

n=3

B+ tree in textbook's notation

$$n=3$$

Leaf:

Non-leaf:

Size of nodes:

```
n+1 pointers
n keys
```

(fixed)

Don't want nodes to be too empty

Use at least

```
Non-leaf: \lceil (n+1)/2 \rceil pointers
```

Leaf: \[\left(n+1)/2 \right] pointers to data

B+tree rules tree of order *n*

- (1) All leaves at same lowest level (balanced tree)
- (2) Pointers in leaves point to records except for "sequence pointer" (to next leaf)

(3) Number of pointers/keys for B+tree

	Max ptrs	Max keys	Min ptrs→data	Min keys
Non-leaf (non-root)	n+1	n	「(n+1)/2	\[(n+1)/2\]- 1
Leaf (non-root)	n+1	n	[(n+1)/2]	[(n+1)/2]
Root	n+1	n	1	1

Insert into B+tree

- (a) simple case (insert 32)
 - space available in leaf
- (b) leaf overflow (insert 7)
- (c) non-leaf overflow (insert 160)
- (d) new root (insert 45)

Deletion from B+tree

- (a) Simple case no example
- (b) Coalesce with neighbor (delete 50)
- (c) Re-distribute keys (delete 50)
- (d) Cases (b) or (c) at non-leaf (delete 37)

B+tree deletions in practice

- Often, coalescing is <u>not</u> implemented
 - Too hard and not worth it!

Variation on B+tree: B-tree (no +)

Idea:

- Avoid duplicate keys (leaf and non-leaf)
- Have record pointers in non-leaf nodes

B-tree example

n=2

B-tree example

n=2

• sequence pointers not useful now! (but keep space for simplicity) 85 105

Note on inserts

Say we insert record with key = 25

Note on inserts

Say we insert record with key = 25

