Prediction Assignment Writeup

Ignas

19/04/2020

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. The goal is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants who were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

Task

The goal of this project is to predict the manner in which they did the exercise and build prediction model to predict 20 different test cases.

Data preparation

Let's load necessary libraries and import the data.

```
library(rpart)
library(rattle)
library(caret)
library(randomForest)
set.seed(12345)

# Training and Testing data
TrainURL <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
TestURL <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"

# Download and clean the datasets
trainingdata <- read.csv(url(TrainURL), na.strings=c("NA","#DIV/0!",""))
testingdata <- read.csv(url(TestURL), na.strings=c("NA","#DIV/0!",""))</pre>
```

Dimensions of downloaded data

```
dim(trainingdata); dim(testingdata)
[1] 19622 160
[1] 20 160
Summary of the data (as the data is quite large, summary results are not provided).
str(trainingdata); str(testingdata)
```

Let's delete columns with NA values and delete unnecessary columns:

```
trainingdata <-trainingdata[,colSums(is.na(trainingdata)) == 0]
testingdata <-testingdata[,colSums(is.na(testingdata)) == 0]</pre>
```

```
trainingdata <-trainingdata[,-c(1:7)]
testingdata <-testingdata[,-c(1:7)]
dim(trainingdata); dim(testingdata)

[1] 19622 53
[1] 20 53</pre>
```

Data partition

In order to be able to apply cross-validation, data will be splitted into 70% of Training data and 30 percent of Testing data.

```
datapart <- createDataPartition(trainingdata$classe, p=0.7, list=FALSE)
trainingset <- trainingdata[datapart, ]
testingset <- trainingdata[-datapart, ]
dim(trainingset);dim(testingset)</pre>
## [1] 13737 53
```

```
## [1] 13737 5:
## [1] 5885 53
```

Now we can explore variable classe of the training data set:

```
## A B C D E
## 1674 1139 1026 964 1082
plot(testingset$classe)
```


We see that there are 5 classes where A is the most frequent and D is at least frequent. However, all of the 5 classes are distributed more or less the same.

Prediction

In order to generate predictions, we will use decision tree and random forest models.

1. Decision tree model

```
dtmod <- rpart(classe ~ ., data = trainingset, method = "class")</pre>
dtpred <- predict(dtmod, testingset, type = "class")</pre>
confusionMatrix(dtpred, testingset$classe)
## Confusion Matrix and Statistics
##
##
             Reference
                                     Ε
## Prediction
                 Α
                      В
                           C
                                D
            A 1498
                              106
                                    25
##
                    196
                          69
            В
                42
                    669
                                    92
##
                          85
                               86
            С
##
                43
                    136
                         739
                              129 131
##
            D
                33
                     85
                          98
                              553
                                    44
##
            Е
                58
                     53
                          35
                               90 790
##
## Overall Statistics
##
##
                  Accuracy: 0.722
##
                    95% CI: (0.7104, 0.7334)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.6467
##
##
  Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.8949
                                   0.5874
                                            0.7203 0.57365
                                                               0.7301
## Specificity
                          0.9060
                                   0.9357
                                            0.9097
                                                    0.94717
                                                               0.9509
## Pos Pred Value
                                            0.6273 0.68020
                          0.7909
                                   0.6869
                                                               0.7700
## Neg Pred Value
                          0.9559 0.9043
                                            0.9390 0.91897
                                                               0.9399
## Prevalence
                          0.2845
                                 0.1935
                                            0.1743 0.16381
                                                               0.1839
## Detection Rate
                          0.2545
                                            0.1256 0.09397
                                                               0.1342
                                   0.1137
## Detection Prevalence
                          0.3218
                                   0.1655
                                            0.2002 0.13815
                                                               0.1743
## Balanced Accuracy
                          0.9004
                                   0.7615
                                            0.8150 0.76041
                                                               0.8405
Decision tree:
fancyRpartPlot(dtmod)
```


Rattle 2020-Apr-19 15:10:06 Ignas

2. Random forest model

```
rfmod <- randomForest(classe ~., data=trainingset, method="class")
rfpred <- predict(rfmod, testingset, Type="class")
confusionMatrix(rfpred, testingset$classe)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                 Α
                            C
                                 D
## Prediction
                       В
##
            A 1673
                      10
                            0
                  1 1127
##
            В
                           11
                                 0
                                       0
##
            С
                       2 1015
                                13
##
            D
                  0
                       0
                            0
                               951
##
            Е
                                 0 1078
##
## Overall Statistics
##
##
                  Accuracy : 0.993
                     95% CI: (0.9906, 0.995)
##
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9912
##
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
```

```
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.9994
                                  0.9895
                                           0.9893
                                                    0.9865
                                                             0.9963
                                           0.9969
                                                    0.9992
                                                             1.0000
## Specificity
                         0.9976
                                  0.9975
## Pos Pred Value
                         0.9941
                                  0.9895
                                           0.9854
                                                    0.9958
                                                             1.0000
## Neg Pred Value
                         0.9998
                                           0.9977
                                                    0.9974
                                                             0.9992
                                0.9975
## Prevalence
                         0.2845
                                  0.1935
                                           0.1743
                                                    0.1638
                                                             0.1839
## Detection Rate
                         0.2843
                                  0.1915
                                           0.1725
                                                    0.1616
                                                             0.1832
## Detection Prevalence
                         0.2860
                                  0.1935
                                           0.1750
                                                    0.1623
                                                             0.1832
## Balanced Accuracy
                         0.9985 0.9935
                                           0.9931
                                                    0.9929
                                                             0.9982
```

Conclusion

Accuracy of decision tree model is 72.2% while using random forest is 99.3%. Out-of-sample error is 0.7% (calculated as 1-ACCURACY).

The results are as we have expected, i.e. random forest model performs better than decision tree.

Original test set prediction

Now the results will be applied on original test date (20 observations)

```
ftest <- predict(rfmod, testingdata, type = "class")
ftest

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
write.csv(ftest, "final_prediction.csv")</pre>
```