Lossy Trapdoor Functions

Giacomo Fenzi

ETH Zurich

22 April 2021

Motivation

- ► Trapdoor Functions are basic primitive, but hard to instantiate
- ► CCA Security from factoring and discrete log but not lattices

Results

- Introduce Lossy Trapdoor Functions (LTDFs)
- ▶ Realize LTDFs from factoring, discrete log and lattices
- Show LDTFs imply TDFs
- Black box construction of CCA-secure (witness recovering) cryptosystems, collision-resistant hash functions and oblivious transfer protocols.

Connections

Connections

Notation and Entropy

 \blacktriangleright λ is the security parameter, and we will abbreviate $n(\lambda) = \operatorname{poly}(\lambda)$ as simply n

Trapdoor Functions

Informally, a trapdoor function is family of functions that are hard to invert without access to some additional information called a trapdoor

Definition

A trapdoor function consists of three PPT algorithms $(S, {\cal F}, {\cal F}^{-1})$ such that:

- ► Easy to sample and invert with trapdoor. $S(1^{\lambda}) \to (s,t)$ such that F(s,-) is an injective function on $\{0,1\}^n$ and $F^{-1}(t,-)$ is its inverse
- ▶ Hard to invert without. For any PPT inverter \mathcal{A} we have that $\mathcal{A}(1^{\lambda}, s, F(s, x))$ outputs x with negligible probability.

Example of Trapdoor

RSA Encryption! In trapdoor form:

- $\blacktriangleright \ S(1^{\lambda})$ generates N,e,d as in RSA, set s=(N,e) and t=(d) and returns (s,t)
- ightharpoonup F(s,x) computes $x^e \mod N$
- $ightharpoonup F^{-1}(t,c)$ computes $c^d \mod N$