Phys 772: Week & Thursday * Yuleana sector, week vo, mans eigenstates ~ Weal NC * Electroneal sector of the Standard Model l_{t} $\begin{pmatrix} v_{e} \\ e^{-} \end{pmatrix}_{t}$ $\begin{pmatrix} v_{e} \\ e^{-} \end{pmatrix}_{t}$ $\begin{pmatrix} v_{e} \\ e^{-} \end{pmatrix}_{t}$ $\begin{pmatrix} v_{e} \\ v_{e} \end{pmatrix}$ $\begin{pmatrix} v_$ -> these are weak eigenstates with definitive weak isospin (3rd component) quantum numbers Higgs nechanism introduces Yukawa coupling terms Iretween $\varphi = (9^{\circ})$ and $\varphi = i6^{2}\varphi = (9^{\circ})$ and φ , ℓ , ℓ Lyuke = $-\sum_{m,n=1}^{\infty} (7^{\prime n} - \frac{\pi}{2}) \varphi_{mn} + \frac{\pi}{2} \varphi_{mn} + \frac{\pi}$ + Finn ligent + Thullyent)

the fort decay

the large Yukawa coupling with H Decay of H -> tt only allowed for MH>140GeV For lighter H: H > bb (diet, backgrounds) Since The, My are arbitrary, not symmetric:

must apply unitary transformations to L, R such
that Aut Mu Au = My = (mu

Aut Mu Au

-> Luk = - Sin uml (Aut Mu Au

unk

unk -> Ryuk =- \(\lambda \text{Luml} \mu \text{N} \text{D} \lambda \text{Rump} \text{Rump} moss eigenstates u'nt, u'nk

(Autume) = u'ne (i.e. d' = dcorde

+ s sinde

etc., s',...

Hour do me determine Au, Au etc?
i L
Mond is hernition, as is Mother
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$= \left(A_{L}^{+}M^{\alpha}A_{R}^{\alpha}\right)\left(A_{R}^{+}M^{+}A_{L}^{\alpha}\right) = M_{0}^{\alpha} = \begin{pmatrix} M_{0} & 2 \\ M_{0} & 2 \end{pmatrix}$
nut a man with who was my
= Aut Ma Mut Au = Aut Mut Mu Au ni
\rightarrow α
- eigenvalues problem for A' and A'R orthogonal eigenvectors with eigenvalues m', m', m', m',
onhogonal eigenveron min eigenbellies
mu, mc, mt
Meedon in whate of the can be used to
Freedon in whose of Au can be used to make sure that my is real and positive.
Kinetic Ferns: q̃iðqL + q̃riðqR
5! ix'a! . 5! ix'a!
9'L 18'9'L + 9'R 189'R
· · · · · · · · · · · · · · · · · · ·
since Aut Au = 1 = Aut Au
D = -(.x (, W))
-> Lemons = $\frac{\xi}{\eta} \left(i \beta - m \left(1 + \frac{H}{\sigma} \right) \right) q$
in terms of man eigenstates
an town of many expension
BUT: other terms in I that describe interaction with Wizz are still in terms of weak eigenstates & XCKM
with his one still in terms of weak
eigenstates D -> Vais
CKM

$$J_{z}^{r} = \sum_{m=1}^{F} t_{3}(\overline{t}_{x}^{r}(1-x^{s})t) - 2\sin^{2}\theta_{w} J_{w}^{r}$$

$$g \frac{\sin^{2}\theta_{w}}{\cos\theta_{w}} \rightarrow g^{r}\sin\theta_{w}$$

For Jr and Jr. only like fernions combine nass eigenstakes can be used

For JM, JM+:

V9 = VcKM = moduct of unitary transformation

2F2 variables, F2 unitarity contraints

Also have phases for each of the 2F fermions

set all to same phase, reduces 2F-1 d.of.

$$R = -\frac{GF}{\sqrt{2}} \left(\sqrt{y} t_{3y} \left(1 - y^{5} \right) \sqrt{y} \right) \left(\sqrt{e} \gamma r \left(g^{e} - g^{e} \gamma^{5} \right) e \right)$$
with $\left(\sqrt{g^{e}} - \frac{1}{2} + 2 \sin^{2} O_{W} \right)$ because $\sqrt{g^{2}} + 2 \sin^{2} O_{W}$ in the $\sqrt{g^{e}} - \frac{1}{2} + 2 \sin^{2} O_{W}$ common practice in experiments to write 4 fermion variety couplings:

$$V_{pe} = \frac{1}{2} \cdot \sqrt{y} \cdot c \rightarrow \int_{A} \frac{g^{2y}}{y^{2}} = 2 t_{3y} \cdot g^{e} = -\frac{1}{2} t_{2} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = 2 t_{3y} \cdot g^{2} = -\frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot \sqrt{g^{2}} \cdot \sqrt{g^{2}} = \frac{1}{2} t_{3} \sin^{2} O_{W}$$

$$= \frac{1}{2} \cdot$$

