Introduction to Clinical Chemistry

Prof. Victor Mwanakasale (BSc, MBChB, MSc, Dip, PhD)
MBS 240 (2024)

Objective.

 To introduce the students to the principles of clinical chemistry or chemical pathology.

Format of the lecture.

- 1. Concept of chemical pathology.
- 2. Aspects of Biochemistry
- 3. Laboratory investigations for biochemical disorders.
- 4. Steady state and compartmental analysis
- 5. Nature of clinical specimens for chemical pathology.
- 6. Normal range.

Clinical chemistry

- Chemical pathology:
- The study of the changes that occur in disease in:
- 1. Chemical constitution and
- 2. Biochemical mechanisms
- > of the body.

Biochemical disorders and chemicals*

- Primary
- Secondary

- Apply:
- 1. Physiology and
- 2. Biochemistry
- to understand the cause and nature of disease*.
- Analysis of body fluids and tissues for chemicals to aid the diagnosis and treatment of diseases.

Biochemistry:

- The study of the Structure, Composition, and Chemical reactions of substances in living systems.
- Areas covered:
- i. How living things obtain energy from food.
- ii. Chemical basis of heredity.
- iii. What fundamental changes occur in disease.

Incorporates:

- Molecular biology; immunochemistry; neurochemistry; and bioinorganic, bioorganic, and biophysical chemistry.
- Biochemistry also involves pharmacology, physiology, microbiology, and clinical chemistry

Laboratory investigations for Biochemical disorders/diseases.

Factors to consider in clinical chemistry:

- 1. State of patient when requesting investigations.
- 2. Reasons for requesting investigations.

State of patient.

- Requested in:
- 1. Resting state
- 2. Stressed state

Resting state.

- In general, biochemical investigations of function first performed in the resting state as the patient presents clinically.
- This applies whether the function is of:
- 1. Excretory organ such as the kidney or
- Secretory organ such as the pancreas, adrenal glands.

- Gross changes detected by such investigations.
- Minor abnormality may well be covered by compensatory mechanisms.

Stressed state.

- For investigation of minimal changes.
- Often necessary to test the function when stressed.
- Sometimes helpful in determining the physiological level of an abnormality.

Types of **stress** test:

- a) Extreme load of a normal metabolite e.g ammonium chloride to test the ability of the kidneys to acidify urine.
- b) Measure the **reserve ability** of a target organ to **respond** to a hormonal stimulus.

Reasons for requesting investigations.

- Either for:
- I. Selected tests.
- II. Screening tests.

Selected tests.

- Investigating a patient logical sequence as follows:
- I. Decide what information is needed.
- Choose the test(s) most likely to provide the information.
- III. Use the analytical procedure that best combines speed and quality.
- IV. Correlate the result(s) with the existing information.
- V. Decide whether *further* tests are needed.

- Laboratory investigations selected will give information of the following specific questions of individual patients:
- I. Anything wrong?
- II. What's wrong?
- III. How badly wrong?
- IV. What else is wrong?

Anything wrong?':

- Biochemical investigation being used as the extension of a clinical examination to determine the presence or absence of an abnormality.
- Biochemical test more sensitive than clinical approach.

What's wrong?'.

- A general clinical abnormality identified, but the specific diagnosis unknown.
- A discriminating biochemical test (or preferably and more usually a particular combination of tests) chosen.
- Different pattern of results in each of the several diseases of possible diagnosis.

'How badly wrong?'

- The specific diagnosis established.
- Necessary to use a biochemical test to assess progression or regression (monitoring)
- More sensitive than clinical observation.

'What else is wrong?'

A biochemical test used to detect:

- 1. Complication of the disease or
- An expected or unexpected side-effect of treatment, before it becomes evident clinically.

Screening tests.

- Biochemical screening tests of two types:
- I. Population screening
- II. Admission screening

Population screening.

- Testing a whole apparent healthy population for a particular disease.
- Disease present at *low* frequency.
- Disease detected at a subclinical phase by a specific biochemical test.

Admission screening.

- Testing all:
- 1. Hospital in-patient admissions,
- 2. Out-patient referrals,
- 3. 'Check-ups' in a clinic.
- Large number (10-20) of biochemical variables on plasma at the same time.
- Done irrespective of patients' presenting condition.

Steady-state.

- The body considered as a set of open steadystate systems.
- Composition varies regularly and irregularly.
- With factors meals, exercise, and circadian rhythms.
- A steady state a situation in which all state variables in the body are constant in spite of ongoing processes that strive to change them.

- Entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through in the system.
- The body compartments:
- 1. Plasma (main).
- 2. interstitial fluid (<u>(extracellular)</u>
- 3. Intracellular fluids,
- 4. Transcellular fluids such as lymph or intestinal contents.

- Each compartment different and slightly variable composition, and movement between the compartments is not necessarily free.
- The GIT -main site of intake and excretion, both of itself and because of the bile derived from the liver cells.
- The lungs -sites of intake and of excretion.

- The kidneys site of excretion and to a certain extent of synthesis.
- The sweat glands -only a site of excretion
- The plasma compartment exchanges its components with the blood cells and through the interstitial fluid with body cells.

A generalized picture of the exchanges between the exterior, the plasma, the extracellular fluid (ECF), and the intracellular fluid (ICF) that maintain the composition of the body compartments

Compartmental analysis

- Basis for chemical pathology
- 1. Plasma concentration.
- Measurement of only the *plasma* concentration of a body component in a disease **not** enough:
- a) A limited view of the *disturbed* rates of *flow* of the component between the body compartments,
- b) Limited view of any *changes* in the *size* of the compartmental pool.

Plasma concentration of a component in a sample analysed is:

the *Ratio*, at a given point in time, between its *total* content in the plasma compartment, and the *total volume* of the plasma compartment assuming *even* distribution.

- 2. Measurement of the actual secretion or production rate, usually of a hormone, difficult.
- 3. An alternative approach measure *intake* and *output* (urinary and/or faecal) of the *component* under study by a balance technique.

4. Measurement of *urinary excretion* of a substance: indicator of the *excretion rate* or *production rate* of that substance or of its *precursor*.

Mechanism of change in compartment*.

- Plasma concentration of a constituent remains unchanged as long as inward and outward flow are equal.
- Plasma conc rises when the rate of entry of the component exceeds the rate of disposal, provided that there is no_diminution of plasma water.

- Rise goes on until if possible a new steady state set up in which inward and outward flow are again equal.
- Reverse arguments apply to a fall in a concentration in plasma.

Types of tests in clinical chemistry.

- General or routine chemistry tests- commonly ordered blood chemistries (e.g., liver and kidney function tests).
- 2. Special chemistry elaborate techniques such as electrophoresis manual testing methods.
- 3. Clinical endocrinology- the study of hormones, and diagnosis of endocrine disorders.

- 4. Toxicology- the study of drugs of abuse.
- **5.** Therapeutic drug monitoring measurement of therapeutic medications blood levels to optimize dosage.
- 6. Urinalysis- chemical analysis of urine for a range of diseases,
- 7. Analysis of other fluids (e.g Cerebral Spinal Fluid, effusions such as peritoneal, synovial, pleural, and pericardial).
- 8. Stool examination— GIT and other biochemical disorders

Types of clinical specimens for clinical chemistry.

- 1. Blood (Plasma)
- Fluid in body cavities (Peritonium, Pleura, Pericardium, Cerebral Spinal fluid)
- Synovial fluid
- 3. Saliva
- 4. Urine
- 5. Stool
- 6. Various types of **solid tissue**, including specific cell types

Normal range and interpretation of clinical chemistry results.

- Reference range
- Defn: A set of values established as normal minimums and maximums for a given chemical in a body fluid.
- For any analysed body constituent, convenient but artificial concept.

- e.g:-Normal range for plasma sodium is 136-148 mmol/l means strict boundary between normal and abnormal.
- All normal subjects ('normal'- healthy general population) -plasma sodium values within that range,
- Abnormal to have a plasma sodium <136 or >148
- NR applied to all chemicals in all body fluids.

Factors affecting Normal range:

1. Methodology.

- Virtually for all substances analysed, no method either absolutely precise and reproducible, or absolutely accurate and specific.
- In Interpretation of possible clinical significance of changes in results: consideration of variability due to the method important.

2. Physiological (non-pathological) variations:

- a) Time of day
- b) Menstrual cycle,
- c) Recumbency (lying down),
- d) General diet,
- e) Specific meals.
- f) The existence of seasonal variations uncertain.

3. Racial.

Due to:

- Partly nutritional,
- Partly environmental (including endemic diseases),
- Possibly Genetic.
- 4. Age
- 5. Sex

Age & sex

 Main causes of variation in the normal range in a healthy population.

Age.

- Plasma concentrations usually tend to *rise* with age, probably due to **diminution** of renal clearance.
- > Except for albumin and iron.

Sex.

- In general, plasma conc in men are higher than in women.
- Difference is hormone-mediated, tends to disappear after menopause.
- Except for chloride, phosphate, & proteinbound iodine,

FIN