

ICSI431/ICSI531 Data Mining Lecture 4-B Classification

Feng Chen

fchen5@albany.edu

http://www.cs.albany.edu/~fchen/course/2016-ICSI-431-531

Classification Techniques

- Decision Tree based Methods
- Support Vector Machines
- Logistic Regression
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks

Mathematical Background

Mathematical Background

SVM is about the learning of a good separating line (hyper-plane) that separates objects into different classes!

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Lines
- Distance Between Parallel Lines
- Distance From a Point to a Line
- Separating Line

- In high school: slope + intercept
- Slope-intercept form
 - m is the slope or gradient of the line
 - b is the x_2 -intercept of the line

■ In class exercise 1

■ In class exercise 2

In class exercise 3

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

- In college: A parallel vector + A point
- Parametric form
 - $x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix}$ is any point on the line
 - $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is a vector parallel to the line

■ In class exercise 1

■ In class exercise 2

In class exercise 3

- In data mining class:
 - A perpendicular vector + A constant
- Vector form
 - w is a vector perpendicular to the line
 - |b|/||w|| is the distance from the line to the origin

Estimation of w and b

- Line representation: $x \cdot w + b = 0$
- How to calculate w and b?

Calculating w and b: Method 1

Step 1: Identify a perpendicular vector w

•
$$v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $w \cdot v = 0 \to \frac{w_1}{w_2} = \frac{-v_2}{v_1} = -\frac{1}{2} \to w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$

• Step 2: Given w and any point x^0 within the line, estimate b:

•
$$x^0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $w \cdot x^0 + b = 0 \to b = -w \cdot x = -\begin{bmatrix} -0.5 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1$

4

Calculating w and b: Method 2

Step 1: Find any three points within the line

•
$$x^1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
, $x^2 = \begin{bmatrix} -1 \\ 0.5 \end{bmatrix}$, $x^3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Step 2: Identify w and b by solving the system of three linear equations:
 - $w. x^1 + b = 0;$
 - $w. x^2 + b = 0$;
 - $w. x^3 + b = 0.$

Calculating w and b: Method 3

 Step 1: Find the representation based on slope and intercept

$$x_2 = m \cdot x_1 + b, m = \frac{1}{2}, b = 1$$

• Step 2: Rearrange x_1 and x_2 to the vector

form
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

•
$$\mathbf{w} = \begin{bmatrix} m \\ -1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \end{bmatrix}$$

$$b = 1$$

■ In class exercise 1

■ In class exercise 2

In class exercise 3

$$x_2 = 1 \cdot x_1 + 0$$

$$oldsymbol{x} = egin{bmatrix} 0 \ 0 \end{bmatrix} + \lambda \cdot oldsymbol{v} \ oldsymbol{v} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \lambda \in \mathbb{R}$$

$$\mathbf{w. x} + b = 0$$

$$\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, b = 0$$

$$x_2 = 0.5 \cdot x_1 + 0$$

$$x = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda \cdot v$$

$$v = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}, \lambda \in \mathbb{R}$$

$$\mathbf{w. x} + b = 0$$

$$\mathbf{w} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, b = 0$$

 x_2

$$x_2 = 1 \cdot x_1 + 1$$

$$oldsymbol{x} = egin{bmatrix} -1 \ 0 \end{bmatrix} + \lambda \cdot oldsymbol{v} \ oldsymbol{v} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \lambda \in \mathbb{R}$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

$$\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, b = 1$$

 x_2

$$x_2 = 0.5 \cdot x_1 + 1$$

$$x = \begin{bmatrix} -2\\0 \end{bmatrix} + \lambda \cdot v$$
$$v = \begin{bmatrix} 2\\1 \end{bmatrix}, \lambda \in \mathbb{R}$$

$$\mathbf{w. x} + b = 0$$

$$\mathbf{w} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, b = 1$$

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Line
- Distance Between Parallel Line
- Distance From a Point to a Line
- Separating Line

Perpendicular Line Equation

Question: What is the equation of the perpendicular line?

Perpendicular Line Equation

Question: What is the equation of the perpendicular line?

Perpendicular Line Equation

Question: What is the equation of the perpendicular line?

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Line
- Distance Between Parallel Line
- Distance From a Point to a Line
- Separating Line

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Line
- Distance Between Parallel Line
- Distance From a Point to a Line
- Separating Line

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Line
- Distance Between Parallel Line
- Distance From a Point to a Line
- Separating Line

Distance from a Point to a Line

Distance from a Point to a Line

Distance from a Point to a Line

Mathematical Background

- Straight Line
- Perpendicular Line
- Parallel Line
- Distance Between Parallel Line
- Distance From a Point to a Line
- Separating Line

Question: Where will be the best separating line located?

Question: What are the values of w and b?

$$d = \frac{|\boldsymbol{w}.\boldsymbol{x}^* + b|}{\sqrt{\boldsymbol{w}.\boldsymbol{w}}}$$

Separating Line

Question: What are the values of w and b?

Separating Line

Question: What is the margin width?

Separating Line

Separating Line

TO BE CONTINUED