МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт перспективной инженерии Департамент цифровых, робототехнических систем и электроники

Отчет по лабораторной работе № 6 «PaботаcJupyterNotebook, JupyterLab, GoogleColab» по дисциплине «Искусственный интеллект и машинное обучение»

Выполнил:

Гончаров Серафим Ростиславович 2 курс, группа ИВТ-б-о-23-1,09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Автоматизированные системы обработки информации и управления», очная форма обучения

Руководитель практики: Воронкин Роман Александрович Тема: Основные этапы исследовательского анализа данных.

Цель работы: Научиться применять методы обработки данных в pandas. Data Frame, необходимые для разведочного анализа данных (EDA), включая работу с пропусками, выбросами, масштабирование и кодирование категориальных признаков.

Порядок выполнения лабораторной работы:

Задание 1. Обнаружение пропусков в DataFrame.

Рисунок 1 – Обнаружение пропусков

Задание 2. Удаление пропущенных значений в DataFrame.

```
import pandas as pd
import numpy as np
data = {
"Имя": ["Анна", "Иван", "Ольга", "Петр", "Мария", "Дмитрий"],
"Bospact": [25, np.nan, 22, 40, 35, np.nan],
"Город": ["Москва", "СПб", пр.пап, "Новосибирск", "СПб",
"Екатеринбург"],
"Доход": [50000, 60000, np.nan, 70000, 65000, 55000]
df = pd.DataFrame(data)
print(df)
   Имя Возраст Город Доход
Анна 25.0 Москва 50000.0
Иван NaN СПб 60000.0
Ольга 22.0 NaN NaN
0
3 Петр 40.0 Новосибирск 70000.0
4 Мария 35.0 СПб 65000.0
5 Дмитрий NaN Екатеринбург 55000.0
df_cleaned = df.dropna()
print(df_cleaned)
Имя Возраст Город Доход
0 Анна 25.0 Москва 50000.0
    Петр
               40.0 Новосибирск 70000.0
4 Мария 35.0 СП6 65000.0
df_cleaned = df.dropna(how="all")
print(df_cleaned)
   Имя Возраст Город Доход
Анна 25.0 Москва 50000.0
Иван NaN СПб 60000.0
Ольга 22.0 NaN NaN
9
3 Петр 40.0 Новосибирск 70000.0
4 Мария 35.0 СПб 65000.0
5 Дмитрий NaN Екатеринбург 55000.0
df_cleaned = df.dropna(axis=1)
print(df_cleaned)
       Имя
       Анна
1
       Иван
```

Рисунок 2 – Удаление пропущенных значений

Задание 3. Заполнение пропусков в DataFrame с помощью .fillna().

```
[33]: df["Bospact"] = df["Bospact"].fillna(30)

[38]: mean_value = df["Доход"].mean()
    df["Доход"] = df["Доход"].fillna(mean_value)

[40]: median_value = df["Доход"].median()
    df["Доход"] = df["Доход"].fillna(median_value)

[42]: mode_value = df["Город"].mode()[0] # mode() возвращает Series
    df["Город"] = df["Город"].fillna(mode_value)

[48]: df["Возраст"] = df["Возраст"].ffill()

[50]: df["Возраст"] = df["Возраст"].bfill()

[54]: df.ffill (axis=0, inplace=True)

[68]: df["Возраст"] = df["Возраст"].ffill(limit=1)
```

Рисунок 3 – Заполнение пропусков

Задание 4. Интерполяция пропущенных значений в DataFrame с помощью .interpolate().

```
[70]: df = pd.DataFrame({
       "день": [1, 2, 3, 4, 5],
       "температура": [20.0, пр.пап, пр.пап, 24.0, 25.0]
       df["remneparypa_interp"] = df["remneparypa"].interpolate()
      print(df)
         день температура температура_interp
          1 20.0 20.000000
2 NaN 21.333333
      1 2
      2 3 NaN 22.666667
3 4 24.0 24.00000
4 5 25.0 25.000000
[72]: df["температура_poly"] = df["температура"].interpolate(method="polynomial", order=2)
[74]: dates = pd.date_range("2024-01-01", periods=5, freq="D")
      df = pd.DataFrame({
       "дата": dates,
       "уровень воды": [1.2, пр.пап, пр.пап, 1.8, 2.0]
       df.set_index("дата", inplace=True)
      df["интерполяция"] = df["уровень воды"].interpolate(method="time")
       print(df)
                 уровень воды интерполяция
       дата
      2024-01-01 1.2
2024-01-02 NaN
2024-01-03 NaN
2024-01-04 1.8
2024-01-05 2.0
                                         1.2
                                         1.4
                                         1.6
                                          1.8
                                         2.0
[80]: df = df.interpolate(limit=1, limit_direction="forward")
[78]: df.interpolate(method="linear", axis=0, inplace=True)
```

Рисунок 4 — Интерполяция пропущенных значений **Задание 5.** Обнаружение выбросов в данных.

```
[86]: Q1 = df["Доход"].quantile(0.25)
      Q3 = df["Доход"].quantile(0.75)
      IQR = Q3 - Q1
      outliers = df[(df["Доход"] < Q1 - 1.5 * IQR) |
      (df["Доход"] > Q3 + 1.5 * IQR)]
[88]: import matplotlib.pyplot as plt
      # Гистограмма (Возраст)
      plt.figure(figsize=(6, 4))
      plt.hist(df["Bospact"], bins=20, color='cornflowerblue',
      edgecolor='black')
      plt.title("Гистограмма: Возраст")
      plt.xlabel("Bospact")
      plt.ylabel("Частота")
      plt.grid(True)
      plt.tight_layout()
      plt.show()
```


Рисунок 5 — Обнаружение выбросов в данных **Задание 6.** Обработка выбросов в pandas.

```
import pandas as pd
import numpy as np
"Имя": ["Анна", "Иван", "Ольга", "Петр", "Мария", "Дмитрий",
"Баланс на счете": [50000, 60000, 45000, 70000, 65000, 400000,
450000]
df = pd.DataFrame(data)
print(df)
      Имя Баланс на счете
     Анна 50000
Иван 60000
0
1 Иван 60000
2 Ольга 45000
3 Петр 70000
4 Мария 65000
5 Дмитрий 400000
6 Елена 450000
1
Q1 = df["Баланс на счете"].quantile(0.25)
Q3 = df["Баланс на счете"].quantile(0.75)
IQR = Q3 - Q1
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR df_{emoved} = df[(df["Баланс на счете"] >= lower) & (df["Баланс на счете"] <= upper)]
print(df_removed)
      Имя Баланс на счете
              50000
60000
0
      Анна
1
      Иван
                     45000
2
    Ольга
                     70000
65000
3
     Петр
4 Мария 65000
5 Дмитрий 400000
    Елена
                       450000
```

Рисунок 6 – Обработка выбросов в pandas

Задание 7. Стандартизация признаков.

```
[112]: import pandas as pd
       data = {
       "Имя": ["Анна", "Иван", "Ольга", "Петр", "Мария"],
       "Возраст": [25, 30, 22, 40, 35],
       "Зарплата": [50000, 60000, 45000, 70000, 65000]
       df = pd.DataFrame(data)
       print(df)
          Имя Возраст Зарплата
       0 Анна 25 50000
         Иван
                    30
                   22
       2 Ольга
                          45000
       3 Петр
                  49 79999
       4 Мария 35 65000
[116]: df_standardized = df.copy()
       df_standardized["Bospact"] = (df["Bospact"] - df["Bospact"].mean()) / df["Bospact"].std()
       df_standardized["Зарплата"] = (df["Зарплата"] - df["Зарплата"].mean()) / df["Зарплата"].std()
       print(df_standardized)
          Имя Возраст Зарплата
       0 Анна -0.739657 -0.771589
      1 Иван -0.054789 0.192897
       2 Ольга -1.150577 -1.253831
       3 Петр 1.314945 1.157383
       4 Мария 0.630078 0.675140
[118]: from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       scaled_values = scaler.fit_transform(df[["Bospact", "3apnnata"]])
       df_scaled = df.copy()
       df_scaled[["Возраст", "Зарплата"]] = scaled_values
       print(df_scaled)
          Имя Возраст Зарплата
       0 Анна -0.826961 -0.862662
         Иван -0.061256 0.215666
      2 Ольга -1.286384 -1.401826
       3 Петр 1.470153 1.293993
       4 Мария 0.704448 0.754829
```

Рисунок 7 – Стандартизация признаков

Задание 8. Нормализация признаков.

```
df_normalized = df.copy()
df_normalized["Bospact"] = (df["Bospact"] - df["Bospact"].min()) / (df["Bospact"].max() - df["Bospact"].min())
df_normalized["Зарплата"] = (df["Зарплата"] - df["Зарплата"].min()) / (df["Зарплата"].max() - df["Зарплата"].min())
print(df_normalized)
    Имя Возраст Зарплата
0 Aнна 0.166667
1 Иван 0.444444
2 Ольга 0.000000
                      0.0
3 Петр 1.000000
                      1.0
4 Мария 0.722222
                     0.8
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(df[["Возраст", "Зарплата"]])
df_scaled = df.copy()
df_scaled[["Возраст", "Зарплата"]] = scaled_values
print(df_scaled)
    Имя Возраст Зарплата
0 Анна 0.166667 0.2
1 Иван 0.444444
                      0.6
2 Ольга 0.000000
                      0.0
                      1.0
3 Петр 1.000000
4 Мария 0.722222 0.8
```

Рисунок 8 — Нормализация признаков

Задание 9. Робастное масштабирование признаков.

```
[128]: import pandas as pd
         data = {
         "Имя": ["Анна", "Иван", "Ольга", "Петр", "Мария", "Дмитрий",
         "Возраст": [25, 30, 22, 40, 35, 120, 5], # выбросы: 120, 5
         "Зарплата": [50000, 60000, 45000, 70000, 65000, 100000, 10000] #быбросы: 1000000, 10000
         df = pd.DataFrame(data)
         print(df)
                Имя Возраст Зарплата
              Анна 25 50000
        1 Иван 30 60000
2 Ольга 22 45000
3 Петр 40 70000
4 Мария 35 65000
5 Дмитрий 120 1000000
6 Елена 5 10000
[133]: df_robust = df.copy()
         for col in ["Возраст", "Зарплата"]:
             median = df[col].median()
         q1 = df[col].quantile(0.25)
         q3 = df[col].quantile(0.75)
         iqr = q3 - q1
         df_robust[col] = (df[col] - median) / iqr
         print(df_robust)
               Имя Возраст Зарплата
        0 Анна 25 -0.50
1 Иван 30 0.00
2 Ольга 22 -0.75
3 Петр 40 0.50
4 Мария 35 0.25
5 Дмитрий 120 47.00
6 Елена 5 -2.50
```

Рисунок 9 – Робастное масштабирование признаков

Задание 10. Задание 1. Обнаружение и обработка пропущенных значений

- 1. Загрузите датасет titanic .
- 2. Определите количество пропущенных значений в каждом столбце.
- 3. Визуализируйте пропуски с помощью библиотеки missingno.
- 4. Заполните пропущенные значения:

признак age — средним значением;

признак embarked — наиболее частым значением;

признак deck — удалите.

5. Отобразите информацию о таблице до и после обработки (.info() , .isna().sum()).

```
import matplotlib.pyplot as plt
import missingno as msno
import pandas as pd
titanic = sns.load_dataset("titanic")
print("1. Датасет загружен:")
print(titanic.head())
print("\n2. Пропущенные значения ДО обработки:")
print(titanic.isna().sum())
plt.figure(figsize=(10, 5))
msno.matrix(titanic)
plt.title("Визуализация пропущенных значений (до обработки)")
plt.show()
titanic_processed = titanic.copy()
titanic_processed['age'] = titanic_processed['age'].fillna(titanic_processed['age'].mean())
mode_embarked = titanic_processed['embarked'].mode()[0]
titanic_processed['embarked'] = titanic_processed['embarked'].fillna(mode_embarked)
titanic_processed = titanic_processed.drop('deck', axis=1)
print("\n3. Информация ДО обработки:")
titanic.info()
print("\n4, Пропушенные значения ПОСЛЕ обработки:")
print(titanic_processed.isna().sum())
print("\n5. Информация ПОСЛЕ обработки:")
titanic processed.info()
plt.figure(figsize=(10, 5))
msno.matrix(titanic processed)
plt.title("Визуализация пропущенных значений (после обработки)")
plt.show()
      1. Датасет загружен:
          survived pclass
               1 3 female 26.0 0 0 7.9250
1 1 female 35.0 1 0 53.1000
0 3 male 35.0 0 0 8.0500
                                                                           S Third
S First
      3
                                                                           S Third
           who adult_male deck embark_town alive alone
          man True NaN Southampton no False
      1 woman
                      False C Cherbourg yes False
      2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True
      2. Пропущенные значения ДО обработки:
      survived 0
      pclass
                        9
      sex 0
      sibsp
      parch
      fare
      embarked
      class
      who
      adult_male
                        9
      deck
                     688
      embark town
      alive
      alone
      dtype: int64
       <Figure size 1000x500 with 0 Axes>
```


4. Пропущенные значения ПОСЛЕ обработки:

survived 0 pclass 0 sex 0 age sibsp parch 0 fare embarked class who adult male embark_town alive alone dtype: int64

5. Информация ПОСЛЕ обработки: <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 14 columns):

```
# Column
                 Non-Null Count Dtype
0
    survived
                  891 non-null
                                 int64
    pclass
1
                  891 non-null
                                 int64
                  891 non-null
    sex
                                 object
                  891 non-null
                                  float64
     age
 4
5
     sibsp
                  891 non-null
                                 int64
     parch
                  891 non-null
                                 int64
                                 float64
 6
     fare
                  891 non-null
     embarked
                  891 non-null
                                 object
     class
                  891 non-null
                                 category
    who
                  891 non-null
                                 object
 10 adult_male
                  891 non-null
                                 bool
 11 embark_town
                 889 non-null
                                 object
 12
    alive
                  891 non-null
                                 object
13 alone
                 891 non-null
                                 bool
dtypes: bool(2), category(1), float64(2), int64(4), object(5)
memory usage: 79.4+ KB
```

<Figure size 1000x500 with 0 Axes>

Рисунок 10 – Обнаружение и обработка пропущенных значений **Задание 11.** Задание 2. Обнаружение и удаление выбросов

- 1. Загрузите датасет penguins .
- 2. Постройте boxplot-графики для признаков bill_length_mm , bill_depth_mm , flipper_length_mm , body_mass_g .
- 3. Используя метод межквартильного размаха (IQR), выявите и удалите выбросы по каждому из указанных признаков.
- 4. Сравните размеры датасета до и после фильтрации.
- Постройте boxplot-график до и после удаления выбросов для одного из признаков.

```
[9]: penguins = sns.load_dataset('penguins')
     print("1. Датасет загружен. Размер до обработки:", penguins.shape)
     print(penguins.head())
      numeric_cols = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
     plt.figure(figsize=(12, 6))
      penguins[numeric_cols].boxplot()
     plt.title('Вохрlоt признаков до обработки')
      plt.xticks(rotation=45)
      plt.show()
      def remove outliers(df, column):
         Q1 = df[column].quantile(0.25)
          Q3 = df[column].quantile(0.75)
         IQR = Q3 - Q1
         lower_bound = Q1 - 1.5 * IQR
         upper_bound = Q3 + 1.5 * IQR
          return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
      penguins_clean = penguins.copy()
      for col in numeric_cols:
          penguins_clean = remove_outliers(penguins_clean, col)
     print("NPaswep датасета до обработки:", penguins.shape)
print("Размep датасета после обработки:", penguins_clean.shape)
     print(f"Удалено записей: {len(penguins) - len(penguins_clean)}")
      plt.figure(figsize=(10, 5))
     plt.subplot(1, 2, 1)
      sns.boxplot(y=penguins['flipper_length_mm'])
     plt.title('До обработки')
     plt.subplot(1, 2, 2)
     sns.boxplot(y=penguins_clean['flipper_length_mm'])
     plt.title('После обработки')
     plt.suptitle('Cpавнение flipper_length_mm до и после удаления выбросов')
     plt.tight_layout()
```


Сравнение flipper_length_mm до и после удаления выбросов

Рисунок 11 – Обнаружение и удаление выбросов

Задание 12. Задание 3. Масштабирование числовых признаков

- 1. Загрузите данные с помощью fetch california housing(as frame=True).
- 2. Преобразуйте данные в pandas. Data Frame.
- 3. Выполните:

стандартизацию признаков с помощью StandardScaler; нормализацию в диапазон [0, 1] с помощью MinMaxScaler (на копиитаблицы).

4. Постройте гистограммы распределения признака MedInc до и после масштабирования.

5. Сравните поведение шкал на гистограммах.

```
≮ 回 ↑ ↓ 盐 🗜
from sklearn.datasets import fetch_california_housing
 from sklearn.preprocessing import StandardScaler, MinMaxScaler
 california = fetch_california_housing(as_frame=True)
 print("1. Данные загружены. Описание:\n", california.DESCR[:500] + "...")
 df = california.frame
 print("\n2. Первые 5 строк DataFrame:")
 print(df.head())
 original_medinc = df['MedInc'].copy()
 scaler = StandardScaler()
 df_standardized = df.copy()
 df_standardized[df.columns] = scaler.fit_transform(df)
 minmax_scaler = MinMaxScaler()
 df_normalized = df.copy()
 df normalized[df.columns] = minmax_scaler.fit_transform(df)
 plt.figure(figsize=(15, 5))
 plt.subplot(1, 3, 1)
 plt.hist(original_medinc, bins=50, color='blue', alpha=0.7)
 plt.title('Исходное распределение MedInc')
 plt.xlabel('Median Income')
 plt.ylabel('Частота')
 plt.subplot(1, 3, 2)
 plt.hist(df standardized['MedInc'], bins=50, color='green', alpha=0.7)
 plt.title('Nocne StandardScaler (Z-score)')
 plt.xlabel('Стандартизированные значения')
 plt.ylabel('Частота')
 plt.subplot(1, 3, 3)
 plt.hist(df_normalized['MedInc'], bins=50, color='red', alpha=0.7)
 plt.title('Nocne MinMaxScaler ([0, 1])')
 plt.xlabel('Нормализованные значения')
 plt.ylabel('Частота')
plt.tight_layout()
plt.show()
print("\n5. Сравнение статистик MedInc:")
comparison = pd.DataFrame({
    'Original': original_medinc.describe(),
    'Standardized': df_standardized['MedInc'].describe(),
    'Normalized': df_normalized['MedInc'].describe()
print(comparison.round(2))
1. Данные загружены, Описание:
 .. _california_housing_dataset:
California Housing dataset
**Data Set Characteristics:**
:Number of Instances: 20640
:Number of Attributes: 8 numeric, predictive attributes and the target
:Attribute Information:
                 median income in block group
    - MedInc
    - HouseAge
                     median house age in block group
                  average number of rooms per household
    - AveRooms
                     average number of bedrooms per household
    - AveBedrms
    - Population block group popu...
2. Первые 5 строк DataFrame:
   MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude
0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88
1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86

    2
    7.2574
    52.0
    8.288136
    1.073446
    496.0
    2.802260

    3
    5.6431
    52.0
    5.817352
    1.073059
    558.0
    2.547945

    4
    3.8462
    52.0
    6.281853
    1.081081
    565.0
    2.181467

                                                                          37.85
                                                                          37.85
                                                                         37.85
   Longitude MedHouseVal
   -122.23 4.526
     -122.22
                     3,585
                   3.521
3.413
3.422
    -122.24
    -122.25
-122.25
```


Рисунок 12 — Масштабирование числовых признаков **Задание 13.** Задание 4. Кодирование категориальных признаков

- 1. Загрузите данные и отберите признаки: категориальные: education , marital-status , occupation ; целевой признак: income .
- 2. Проведите Label Encoding для признака education , предполагая, что уровни образования упорядочены.
- 3. Примените One-Hot Encoding к признакам marital-status и occupation.
- 4. Проверьте итоговую размерность таблицы до и после кодирования.
- 5. Убедитесь, что в one-hot-кодировании не присутствует дамми-ловушка.

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
                                                                                                                                          ★ 回 ↑ ↓ 盐 ♀
 from sklearn.datasets import fetch_openml
 adult = fetch_openml('adult', version=2, as_frame=True)
df = adult.frame[['education', 'marital-status', 'occupation', 'class']].copy()
df = df.rename(columns={'class': 'income'})
print("1. Исходные данные (первые 5 строк):")
print(df.head())
print("\пРазмерность до обработки:", df.shape)
 education_order =
     'Preschool', 'ist-4th', '5th-6th', '7th-8th', '9th', '10th', '11th', '12th', 'HS-grad', 'Some-college', 'Assoc-voc', 'Assoc-acdm', 'Bachelors', 'Masters', 'Prof-school', 'Doctorate'
education dict = {v: k for k, v in enumerate(education order)}
df['education'] = df['education'].map(education_dict)
print("\n2. После Label Encoding education:")
print(df['education'].value_counts().sort_index())
ohe = OneHotEncoder(drop='first', sparse_output=False) # Явно указываем dense output
encoded_features = ohe.fit_transform(df[['marital-status', 'occupation']])
encoded df = pd.DataFrame(
   encoded_features,
     columns=ohe.get_feature_names_out(['marital-status', 'occupation']),
    index=df.index
df_processed = pd.concat([
    df[['education', 'income']],
     encoded df
], axis=1)
```

```
print("\n3. После One-Hot Encoding:")
print(encoded_df.head())
print("\nРазмерность после обработки:", df_processed.shape)
print("\n4. Проверка на дамми-ловушку:")
print("Количество уникальных значений в marital-status:", df['marital-status'].nunique())
print("Количество столбцов после ОНЕ для marital-status:",
      sum(1 for col in encoded_df.columns if 'marital-status' in col))
1. Исходные данные (первые 5 строк):
    education
                 marital-status
                                         occupation income
         11th
                   Never-married Machine-op-inspct <=50K
      HS-grad Married-civ-spouse Farming-fishing <=50K
1
   Assoc-acdm Married-civ-spouse Protective-serv >50K
3 Some-college Married-civ-spouse Machine-op-inspct >50K
                                                NaN <=50K
4 Some-college
                    Never-married
Размерность до обработки: (48842, 4)
2. Nocne Label Encoding education:
education
      1389
      1812
      247
1
       509
2
      955
3
4
      756
11
      1601
10
      2061
     8025
15
      594
8
     15784
     2657
13
0
       83
14
      834
     10878
9
Name: count, dtype: int64
```

```
3. После One-Hot Encoding:
      marital-status_Married-AF-spouse marital-status_Married-civ-spouse
                                  0.0
   1
                                  0.0
   2
                                  0.0
                                                                    1.0
   3
                                  0.0
                                                                    1.0
                                  0.0
      marital-status_Married-spouse-absent marital-status_Never-married \
                                      0.0
   1
                                      0.0
                                                                    0.0
   2
                                      0.0
                                                                    0.0
   3
                                      0.0
                                                                   0.0
   4
                                      0.0
      marital-status_Separated marital-status_Widowed occupation_Armed-Forces
                          0.0
   1
                          0.0
                                                 0.0
                                                                          0.0
   2
                          0.0
                                                 0.0
   3
                          0.0
                                                 0.0
                                                                          0.0
   4
                          0.0
                                                 0.0
                                                                          0.0
      occupation_Craft-repair occupation_Exec-managerial \
                         0.0
                                                    0.0
   1
                         0.0
   2
                         0.0
                                                    0.0
                         0.0
                                                    0.0
   3
   4
                          0.0
                                                     0.0
      occupation_Farming-fishing occupation_Handlers-cleaners \
                            0.0
                            1.0
   1
                                                          0.0
   2
                            0.0
                                                         0.0
                            0.0
   3
   4
                            0.0
                                                         0.0
      occupation_Machine-op-inspct occupation_Other-service \
   0
                             1.0
   1
                              0.0
                                                       0.0
   2
                              0.0
                                                       0.0
   3
                              1.0
                                                       0.0
   4
                              0.0
                                                       0.0
  occupation_Priv-house-serv occupation_Prof-specialty \
                     0.0
                          9.9
                     0.0
                     0.0
                                          0.0
                     0.0
                                          0.0
                     0.0
  occupation_Protective-serv occupation_Sales occupation_Tech-support \
                         0.0
0.0
                     0.0
                                  0.0
0.0
                     1.0
                                                        0.0
                     0.0
                                                        0.0
                     0.0
                                   0.0
                                                        0.0
  occupation Transport-moving occupation nan
                            0.0
                    0.0
                      0.0
                                   0.0
                      0.0
                                  0.0
                      0.0
Размерность после обработки: (48842, 22)
4. Проверка на дамми-ловушку:
Количество уникальных значений в marital-status: 7
```

2

3

4

2

4

Рисунок 13 – Кодирование категориальных признаков Задание 14. Задание 5. Комплексный EDA

- 1. Обзор структуры данных (.info() , .describe()).
- 2. Обнаружение и обработка пропущенных значений.
- 3. Обнаружение и удаление выбросов по признакам: age , cholesterol ,restingbp , maxhr .
- 4. Масштабирование числовых признаков.
- 5. Кодирование категориальных признаков: sex , chestpain , exerciseangina ,restecg .
- 6. Подготовьте отчёт в виде Jupyter-ноутбука с комментариями к каждому этапу и промежуточными результатами.

```
import seaborn as sns
                                                                                                                            ≰ 厄 个 ↓ 古
import matplotlib.pyplot as plt
import missingno as msno
import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.datasets import fetch_openml
    df = pd.read_csv('heart.csv') # Предполагаем, что файл уже загружен
except FileNotFoundError:
    print("Файл не найден. Пожалуйста, загрузите данные с Kaggle и укажите правильный путь.")
    exit()
print("1, 0530P ДАННЫХ")
print("\nИнформация о датасете:")
print(df.info())
print("\nОписательная статистика:")
print(df.describe().transpose())
print("\n2. ОБРАБОТКА ПРОПУЩЕННЫХ ЗНАЧЕНИЙ")
print("\nКоличество пропусков до обработки:")
print(df.isna().sum())
plt.figure(figsize=(10, 5))
sns.heatmap(df.isna(), cbar=False, cmap='viridis')
plt.title("Визуализация пропущенных значений")
plt.show()
print("\nПропуски успешно обработаны")
print("\n3. OEPAEOTKA BHEPOCOB")
numeric cols = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR']
plt.figure(figsize=(15, 8))
for i, col in enumerate(numeric cols. 1):
   plt.subplot(2, 2, i)
   sns.boxplot(y=df[col])
   plt.title(col)
plt.suptitle("Распределение числовых признаков до обработки выбросов")
plt.tight layout()
plt.show()
def remove_outliers(df, column):
   Q1 = df[column].quantile(0.25)
   Q3 = df[column].quantile(0.75)
   IQR = Q3 - Q1
   lower_bound = Q1 - 1.5 * IQR
   upper_bound = Q3 + 1.5 * IQR
   return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
for col in numeric cols:
   df = remove outliers(df, col)
print("\nРазмер датасета после удаления выбросов:", df.shape)
print("\n4. МАСШТАБИРОВАНИЕ ЧИСЛОВЫХ ПРИЗНАКОВ")
scaler = StandardScaler()
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
print("\nПосле масштабирования:")
print(df[numeric_cols].describe().transpose())
print("\n5. КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ")
categorical_cols = ['Sex', 'ChestPainType', 'ExerciseAngina', 'RestingECG']
ohe = OneHotEncoder(drop='first', sparse_output=False)
encoded = ohe.fit_transform(df[categorical_cols])
encoded_df = pd.DataFrame(encoded, columns=ohe.get_feature_names_out(categorical_cols))
df_processed = pd.concat([df.drop(categorical_cols, axis=1), encoded_df], axis=1)
print("\nУникальные значения до кодирования:")
for col in categorical_cols:
   print(f"{col}: {df[col].unique()}")
print("\nПервые 5 строк после кодирования:")
print(df_processed.head())
df_processed.to_csv('processed_heart_disease.csv', index=False)
print("\nOбработанные данные сохранены в файл 'processed heart disease.csv'")
```

1. ОБЗОР ДАННЫХ

Информация о датасете:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
9	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtyp	es: float64(1),	int64(6), object	(5)
		1495	

memory usage: 86.2+ KB

None

Описательная статистика:

	count	mean	std	min	25%	50%	75%	max
Age	918.0	53.510893	9.432617	28.0	47.00	54.0	60.0	77.0
RestingBP	918.0	132.396514	18.514154	0.0	120.00	130.0	140.0	200.0
Cholesterol	918.0	198.799564	109.384145	0.0	173.25	223.0	267.0	603.0
FastingBS	918.0	0.233115	0.423046	0.0	0.00	0.0	0.0	1.0
MaxHR	918.0	136.809368	25.460334	60.0	120.00	138.0	156.0	202.0
Oldpeak	918.0	0.887364	1.066570	-2.6	0.00	0.6	1.5	6.2
HeartDisease	918.0	0.553377	0.497414	0.0	0.00	1.0	1.0	1.0

2. ОБРАБОТКА ПРОПУЩЕННЫХ ЗНАЧЕНИЙ

Количество пропусков до обработки:

0 Age Sex 0 ${\tt ChestPainType}$ 0 RestingBP 0 0 Cholesterol FastingBS 0 RestingECG 0 MaxHR B

- - -

Рисунок 14 – Комплексный EDA

Задание 15. Индивидуальное задание

1. Обзор структуры данных

Загрузите датасет.

Выведите общую информацию (.info() , .describe()).

Опишите: сколько признаков, каких типов, какова структура целевого признака.

2. Обнаружение и обработка пропусков

Определите, есть ли пропущенные значения.

Обоснуйте выбранный способ их устранения (удаление, заполнение средним/модой и т.д.). Примените выбранный способ.

3. Обнаружение и удаление выбросов

Выберите 3–5 числовых признаков. Используя метод IQR, удалите выбросы. Сравните объём данных до и после очистки.

4. Масштабирование числовых признаков

Выполните стандартизацию (z-преобразование) с помощью StandardScaler Объясните, зачем выполняется масштабирование.

5. Кодирование категориальных признаков

Выполните:

Label Encoding для порядковых признаков (при наличии);

One-Hot Encoding для номинальных признаков.

Проверьте, исключена ли дамми-ловушка.

6. Финальный набор данных

Убедитесь, что датасет не содержит пропусков, выбросов, категориальных данных в строковом виде.

Признаки приведены к числовому виду, масштабированы.

Представьте итоговый DataFrame , готовый к использованию в моделях.

```
import pandas as pd
                                                                                                                            长向个少去量
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
df = pd.read csv("heart.csv")
print("Первые 5 строк:")
display(df.head())
print("\nИнформация о данных:")
display(df.info())
print("\nОписательная статистика числовых признаков:")
display(df.describe())
def remove outliers(df, column):
   Q1 = df[column].quantile(0.25)
   Q3 = df[column].quantile(0.75)
   IQR = Q3 - Q1
   lower_bound = Q1 - 1.5 * IQR
   upper_bound = Q3 + 1.5 * IQR
   return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
print(f"Размер до удаления выбросов: {df.shape}")
df_clean = df.copy()
for col in ['RestingBP', 'Cholesterol', 'MaxHR']:
   df_clean = remove_outliers(df_clean, col)
print(f"Размер после удаления выбросов: {df_clean.shape}")
numerical_cols = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak']
scaler = StandardScaler()
df_clean[numerical_cols] = scaler.fit_transform(df_clean[numerical_cols])
print("\nПосле масштабирования:")
display(df clean.head())
categorical_cols = ['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina', 'ST_Slope']
df_encoded = pd.get_dummies(df_clean, columns=categorical_cols, drop_first=True)
print("\nПосле One-Hot Encoding:")
display(df_encoded.head())
print("Итоговый датасет (готов для модели):")
display(df_encoded.head())
print(f"\nРазмерность: {df_encoded.shape}")
```

```
print(f"\nPазмерность: {df_encoded.shape}")
sns.countplot(x='HeartDisease', data=df)
plt.title("Pacnpeделение HeartDisease")
plt.show()
plt.figure(figsize=(12, 8))
sns.heatmap(df_encoded.corr(), annot=False, cmap='coolwarm')
plt.title("Корреляционная матрица")
plt.show()
```

Первые 5 строк:

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Y	1.5	Flat	1
4	54	м	NAP	150	195	0	Normal	122	N	0.0	Up	0

Информация о данных:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917
Data columns (total 12 columns):

0000	corming (cornr	ar coronnay.	
#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	01dpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtype	es: float64(1),	int64(6), object	(5)
	96 3.	VP	

memory usage: 86.2+ KB

Описательная статистика числовых признаков:

	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease
count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000
mean	53.510893	132.396514	198.799564	0.233115	136.809368	0.887364	0.553377
std	9.432617	18.514154	109.384145	0.423046	25.460334	1.066570	0.497414
min	28.000000	0.000000	0.000000	0.000000	60.000000	-2.600000	0.000000
25%	47.000000	120.000000	173.250000	0.000000	120.000000	0.000000	0.000000
50%	54.000000	130.000000	223.000000	0.000000	138.000000	0.600000	1.000000
75%	60.000000	140.000000	267.000000	0.000000	156.000000	1.500000	1.000000
max	77.000000	200.000000	603.000000	1.000000	202.000000	6.200000	1.000000

Размер до удаления выбросов: (918, 12) Размер после удаления выбросов: (713, 12)

После масштабирования:

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	-1.341598	М	ATA	0.541580	0.984601	0	Normal	1.295650	N	-0.838056	Up	0
1	-0.398865	F	NAP	1.838897	-1.187295	0	Normal	0.639339	N	0.103684	Flat	1
2	-1.655842	М	ATA	-0.107079	0.865047	0	ST	-1.739787	N	-0.838056	Up	0
3	-0.503613	F	ASY	0.411848	-0.509823	0	Normal	-1.329593	Y	0.574554	Flat	1
4	0.124875	М	NAP	1.190239	-0.888410	0	Normal	-0.755321	N	-0.838056	Up	0

Рисунок 15 – Индивидуальное задание

https://github.com/GoncharovSerafim/

Ответы на контрольные вопросы:

1. Проблемы из-за пропущенных значений

Искажение статистик (среднее, дисперсия).

Ошибки в моделях (например, NaN не обрабатываются алгоритмами).

Уменьшение размера данных при .dropna().

2. Определение пропущенных значений в pandas

df.isna().sum() # Количество пропусков по столбцам df.isnull().any() # Есть ли хотя бы один пропуск

3. Meтод .dropna()

Удаляет строки/столбцы с NaN. Параметры:

axis=0 (строки) или axis=1 (столбцы).

how='any' (любой NaN) или 'all' (все значения NaN).

subset=['столбец'] — проверка только указанных столбцов.

Пример:

df.dropna(axis=0, how='any', subset=['Bo3pact'])

4. Заполнение средним, медианой, модой

Среднее — подходит для нормального распределения (чувствительно к выбросам).

Медиана — устойчива к выбросам.

Мода — для категориальных данных.

Пример:

df['Bospact'].fillna(df['Bospact'].median(), inplace=True)

5. Метод fillna(method='ffill')

Заполняет пропуски предыдущим значением (forward fill).

Применение: Временные ряды или данные с естественным порядком.

Пример:

df.fillna(method='ffill', inplace=True)

6. Метод .interpolate()

Заполняет пропуски, интерполируя значения (линейно, полиномиально и т.д.).

Отличие от fillna: Учитывает соседние значения, а не просто повторяет их.

Пример:

df['Цена'].interpolate(method='linear', inplace=True)

7. Выбросы и их влияние

Выбросы — аномальные значения, далекие от основного распределения.

Проблемы:

Искажают статистики (среднее, дисперсию).

Влияют на работу моделей (например, линейную регрессию).

8. Метод IQR (Interquartile Range)

Суть: Выбросы — значения за пределами:

Нижняя граница: Q1 - 1.5 * IQR

Верхняя граница: Q3 + 1.5 * IQR

где IQR = Q3 - Q1 (разница между 75% и 25% квантилями).

Пример:

Q1 = df['Bospact'].quantile(0.25)

```
Q3 = df['Bo3pact'].quantile(0.75) 
 IQR = Q3 - Q1 
 df = df[(df['Bo3pact'] >= Q1 - 1.5*IQR) & (df['Bo3pact'] <= Q3 + 1.5*IQR)]
```

9. Границы IQR и фильтрация

lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR df_clean = df[(df['Признак'] >= lower_bound) & (df['Признак'] \leq upper_bound)]

10. Метод .clip()

Ограничивает значения указанными границами:

df['Признак'].clip(lower=lower_bound, upper=upper_bound, inplace=True)

Применение: Альтернатива удалению выбросов.

11. Логарифмическое преобразование

Зачем: Сжимает большие значения, уменьшает влияние выбросов.

Пример:

import numpy as np

df['Зарплата'] = np.log1p(df['Зарплата'])

12. Графические методы для обнаружения выбросов

Boxplot (визуализация IQR).

Scatter plot (точечный график).

Пример:

import seaborn as sns

sns.boxplot(x=df['Bo3pact'])

13. Осторожность при удалении выбросов

Можно потерять важные аномалии (например, мошеннические операции).

Риск уменьшения размера данных.

14. Зачем масштабировать признаки?

Алгоритмы (KNN, SVM, градиентный спуск) чувствительны к масштабу. Ускоряет сходимость моделей.

15. Стандартизация vs Нормализация

Стандартизация (StandardScaler): (x - mean) / std \rightarrow среднее = 0, дисперсия = 1.

Нормализация (MinMaxScaler): (x - min) / (max - min) → диапазон [0, 1].

16. StandardScaler

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df_scaled = scaler.fit_transform(df[['Признак']])

17. MinMaxScaler

Когда использовать: Когда границы значений известны (например, изображения [0, 255]).

Пример:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

 $df_scaled = scaler.fit_transform(df[['Признак']])$

18. RobustScaler

Использует медиану и IQR вместо среднего/стандартного отклонения. Устойчив к выбросам.

Пример:

from sklearn.preprocessing import RobustScaler

scaler = RobustScaler()

 $df_scaled = scaler.fit_transform(df[['Признак']])$

19. Стандартизация вручную

df['Признак'] = (df['Признак'] - df['Признак'].mean()) / df['Признак'].std()

20. Модели, чувствительные к масштабу

Линейная регрессия.

Метод k-ближайших соседей (KNN).

Нейронные сети.

SVM.

21. Преобразование категориальных признаков

Модели работают только с числами. Категории нужно перевести в числовой формат.

22. Порядковый признак

Имеет естественный порядок. Пример: Оценка [1, 2, 3, 4, 5].

23. Номинальный признак

Без порядка. Пример: Цвет ['Красный', 'Синий'].

24. Метод .factorize()

Преобразует категории в числа:

```
df['Цвет_код'] = pd.factorize(df['Цвет'])[0]
```

Применение: Для номинальных данных без порядка.

25. Метод .map() для порядковых данных

```
order = {'Низкий': 0, 'Средний': 1, 'Высокий': 2} df['Уровень'] = df['Уровень'].map(order)
```

26. OrdinalEncoder из scikit-learn

Аналог .map(), но для нескольких столбцов:

from sklearn.preprocessing import OrdinalEncoder

encoder = OrdinalEncoder()

 $df[['Признак']] = encoder.fit_transform(df[['Признак']])$

27. One-Hot кодирование

Создает бинарные столбцы для каждой категории. Применение: Для номинальных данных.

Пример:

pd.get_dummies(df, columns=['Цвет'])

28. Как избежать дамми-ловушки

Удалить один столбец (например, drop_first=True в pd.get_dummies).

29. OneHotEncoder vs pd.get_dummies

OneHotEncoder — из sklearn, работает в пайплайнах.

pd.get_dummies — проще, но не сохраняет признаки для новых данных.

30. Target Encoding

Замена категории средним значением целевой переменной.

Риски: Переобучение (утечка информации).

Пример:

df['Город_код'] = df.groupby('Город')['Целевая'].transform('mean')

Вывод: в ходе лабораторной работы мы применяли методы обработки данных в pandas. DataFrame, необходимые для разведочного анализа данных (EDA), включая работу с пропусками, выбросами, масштабирование и кодирование категориальных признаков.