Vysoké učení technické v Brně Fakulta informačních technologií

Aukce - Existence ekvilibria v tajný aukci s první cenou projekt do predmetu THE

Obsah

1	Abstrakt	2
2	Slovník pojmov	2
3	$\acute{\mathbf{U}}\mathbf{vod}$	2
4	Krok č. 1 - diskretizácia sázok	2
5	Krok č. 2 - hranice ekvilibria pre nekončne malý inkrement sázky	4
6	Záver	5

1 Abstrakt

Práca sa zaoberá dôkazom existencie rýdzeho Nashovo ekvilibria(angl. Pure Nash Equilibrium) v tajnej aukcií s druhou cenou. Dôkaz čerpá z [1], je rozdelený do dvoch krokov a predpokladá asymetrické tajné ohodnotenia hráčmi.

2 Slovník pojmov

hráč - Bidder predmet aukcie - Auctioned item zisk - payoff označenie b - sázka - Bid b označenie X_j - hráčovo tajné ohodnotenie - Bidder's private value of the item

3 Úvod

Tajná aukcia s prvou cenou (angl. Sealed First-price auction)

4 Krok č. 1 - diskretizácia sázok

Predpokladajme N hráčov s nezávislým rozdelením ich privátnych ohodnotení predmetu aukcie ω_i . Hráč i má sázku X_i rozloženú na intervale $\chi_i = <0, \omega_i>$ na základe distribučnej funkcie F_i s funkciou hustoty f_i .

Nech maximálne privátne ohodnotenie spomedzi všetkých hráčov je $\omega = \max_i \omega_i$. Definujme potom priestor všetkých možných racionálnych sázok ako:

$$\beta^{T} = \{ \frac{t}{T}\omega : t = 0, 1, ..., T \}$$
 (1)

kde $\frac{\omega}{T}$ predstavuje hodnotu minimálneho inkrementu sázky.

Poznámka autora: V praxi sa najčastejšie stretávame s peňažnými ohodnoteniami, ktoré zpravidla majú nejaký minimálny inkrement(centy, haliere, pri väčších sumách zaokrúhlené a pod.).

Hodnotu konkrétnej sázky hráča i značíme:

$$b_i^t = \frac{t}{T}\omega \tag{2}$$

Stratégia hráča i s diskrétnymi sázkami je funkcia: $\beta_i: \chi_i \to \beta^T$. Pre konštantné stratégie β_j hráčov $j \neq i$ definujme $H_i(b^t)$, ako pravdepodobnosť, že hráč i so sázkou b^t , pre pevne zvolené t = 0, 1, ..., T, vyhrá:

$$H_i(b^t) = Prob[\max_{j \neq i} \beta_j(X_j) \le b^{t-1}] + \frac{1}{k+1} Prob[\max_{j \neq i} \beta_j(X_j) = b^t]$$
(3)

Prvý člen súčtu predstavuje pravdepodobnosť, že sázka b^t je jediná najvyššia spomedzi všetkých a druhý člen predstavuje pravdepodobnosť, kedy práve k hráčov vsadilo rovnakú sázku b^t a o víťazovi aukcie sa podľa jej definície rozhoduje náhodne spomedzi hráčov s najvyššou sázkou.

Sázka $b_i \in \beta^T$ je best response pri privátnom ohodnotení X_i hráča i práve vtedy, keď maximalizuje jeho zisk vhľadom ku sázkam ostatných hráčov β_{-i} , čo platí pre všetky ostatné racionálne sázky $b \in \beta^T \setminus \{b_i\}$.

$$H_i(b_i)(X_i - b_i) \ge H_i(X_i - b) \tag{4}$$

Označme ju ako $BR_i(x_i)$, teda množinu best responses pri privátnom ohodnotení X_i .

Lemma 4.1 neklesajúcosť $BR_i(X_i)$ pre rastúce X_i vyjadríme pre ľubovoľné β_{-i} a $0 < X_i' < X_i''$:

$$\min BR_i(X_i'') \ge \max BR_i(X_i'') \tag{5}$$

Proof Stanovme $b_i^{'} = \max BR_i(X_i^{'})$. Podľa definície pre všetky $b < b_i^{'}; b \in \beta^T$ platí:

$$H_i(b_i')(X_i' - b_i') \ge H_i(b)(X_i' - b)$$
 (6)

Po preusporiadaní dostávame:

$$H_i(b_i') - H_i(b)X_i' \ge H_i(b_i')b_i' - H_i(b)b$$
 (7)

Pre $b < b_i'$ musí platiť $H_i(b_i') - H_i(b) > 0$, nakoľko H_i je neklesajúca. Potom $b < b_i'$ implikuje $H_i(b_i') - H_i(b) \ge 0$.

V prípade, že $H_i(b_i') - H_i(b) = 0$ potom b_i' nemôže byť best response, nakoľko by to znamenalo, že hráč môže znížiť sázku b_i' na b_i , bez toho aby sa znížili jeho šance na výhru.

Z formule 7 pre $X_i^{''} > X_i^{'}$ a pre všetky $b < b_i^{'}; b \in \beta^T$ môžeme usudiť, že platí:

$$H_i(b_i') - H_i(b)X_i'' > H_i(b_i')b_i' - H_i(b)b$$
 (8)

Preto, keď je hráčovo privátne ohodnotenie $X_i^{''}$, je striktne dominantné vsadiť $b_i^{'}$ než inú menšiu sázku.

Z predošlého vyplýva, že akákoľvek best response keď privátne ohodnotenie je $X_i^{''}$, je prinajmenšom tak veľká ako $b_i^{'}$, formálne min $BR_i(X_i^{''}) \geq b_i^{'}$.

Stratégia hráča $i \beta : \chi_i \to \beta^T$ je best response na β_{-i} ak pre všetky X_i , $\beta_i(X_i)$ je best respone mať privátne ohodnotenie X_i .

Vzhľadom na formulu 3 je best response stratégia $\beta:\chi_i\to\beta^T$ neklesajúca funkcia s konečným počtom nespojitostí - tzv. schodová funkcia.

Preto táto funkcia má T bodov na intervale $<0, \omega_i>$, povedzme v usporiadaní $\alpha_i^1 \ge \alpha_i^2 \ge \ldots \ge \alpha_i^T$, pre ktoré platí:

$$\beta_i(X_i) = b^t \ if \ \alpha_i^t < X_i < \alpha_i^{t+1} \tag{9}$$

pričom podľa konvencií $\alpha_i^0=0$ a $\alpha_i^{T+1}=\omega_i$. Poznamenajme, že nie je uvedené, čo sa stane so stratégiou β_i pre privátne ohodnotenia rovné α_i^t teda pre $\beta_i(\alpha_i^t)$. V takomto prípade je hodnota β_i buď b^{t-1} alebo b^t , ale nakoľko je konečný počet takýchto bodov, očakávaný zisk nie je týmto výberom ovplyvnený. Preto, s výnimkou na konečný počet bodov je akýkoľvek β_i , ktorý je best response, úplne definovaný vektorom $\alpha_i=(\alpha_i^1,\alpha_i^2,...,\alpha_i^T)$. Zjednodušene, akákoľvek β_i , ktorá je best response môže byť reprezentovaná vektorom s konečným počtom dimenzií α_i .

Pre danú stratégiu β_i , ktorá je neklesajúca, ak nejaké α_i existuje, ktoré splňuje 9, potom $\alpha_i \leftrightarrows \beta_i$ značí vlastnosť, že β_i môžeme reprezentovať α_i a platí to aj opačne. V nasledujúcom texte je zápis α_i a β_i ekvivalentný a predstavuje stratégiu hráča i.

Pre stratégie protihráčov $\alpha_{-i} = (\alpha_j)_{j \neq i}$, označme $\Gamma_i(\alpha_{-i})$ množinu best response stratégií hráča i, zloženej z vektorov $\alpha_i \in [0, \omega_i]^T$.

Čo znamená, že existuje nejaké β_i , ktoré je best response na β_{-i} a $\alpha_i \leftrightarrows \beta_i$ a pre všetky $j \neq i; \alpha_j \leftrightarrows \beta_j$. Mapovanie $\Gamma_i(.)$ priraďuje každému elementu $\times_{j\neq i}[0,\omega_j]^T$ podmnožinu $[0,\omega_i]^T$ a zodpovedá to pojmu best response coserpondence.

Za prvé, pre všetky α_{-i} je množina best responses $\Gamma_i(\alpha_{-i})$ konvexná množina. Je to ekvivalentné tvrdenie ako, keď pre nejaké b_i je best response pri privátnom ohodnotení X' a aj pri privátnom ohodnotení X'', potom pre všetky $\alpha \in <0,1>$ je to taktiež best responses pre $\alpha X_i' + (1-\lambda)X_i''$ pozn. autora: definícia priamky medzi dvoma bodmy.. Vyplýva to z formule 4.

Za druhé poznamenajme, že ak je $(\alpha_i^n, \alpha_{-i}^n)$ postupnosť konvergujúca do (α_i, α_{-i}) a pre všetky n je $\alpha_i^n \in \Gamma_i(\alpha_{-i}^n)$, potom $\alpha_i \in \Gamma_i(\alpha_{-i})$.

Pre všetky n a všetky j označme β_j^n také, že $\alpha_j^n \leftrightarrows \beta_j^n$ a označme β_j také, že $\alpha_j \leftrightarrows \beta_j$. Definujeme $H_i^n(.)$ na zákalde formule 3 a reprezentuje to pravdepodobnosť výhry keď hráči $j \neq i$ hrajú stratégie β_j^n . Podobne definujme H^i na základe formule 3, kde hráči $j \neq i$ hrajú stratégie β_j . Nakoľko platí $\alpha_{-i}^n \to \alpha_{-i}$, a pre všetky $j \neq i, \beta_j^n \to \beta_j$, takže $H_i^n(.) \to H_i(.)$ v každom bode β^T . Následne platí, že ak pre všetky n, β_i^n je best response na β_{-i}^n a $(\beta_i^n, \beta_{-i}^n) \to (\beta_i, \beta_{-i})$, potom je β_i best response na β_{-i} . Z toho vyplýva, že $\alpha_i \in \Gamma_i(\alpha_{-i})$.

Definition Kakutani Fixed Point Theorem - Označme Z ako neprázdnu, kompaktnú(pozn. taká ktorá je uzavrená a ohraničená) a konvexnú množinu. A označme Γ reláciu korespondence, ktorá zobrazuje každý prvok $z \in Z$ na neprázdnu podmnožinu Z. Tento teorém postuluje, že v prípade ak Γ je konvexne ohodnotená, teda pre každě $z, \Gamma(z)$ je konvexná a Γ je uzvretá pre všetky z, teda pre všetky $(y^n, z^n) \to (y, z)$ a pre všetky $n, y^n \in \Gamma(z^n)$ implikuje, že $y \in \Gamma(z)$. Potom existuje pevný bod z^* , taký že $z^* \in \Gamma(z^*)$.

Definition Existencia ekvilibria - V našom kontexte, definujeme $Z = \times_i [0, \omega_i]^T$ a $\Gamma(\alpha) = \times_i \Gamma_i(\alpha_{-i})$, pričom každé Γ_i je hráča i best response correspondence. Nakoľko bolo argumentované, že Gamma je konvexne ohodnotená a má uzavretý graf. Kakutani fixed point theorem potom implikuje, že existuje pevný bod α^* , taký že $\alpha^* \in \Gamma(\alpha^*)$. Ak definujeme stratégiu β_i^* podľa formule 9, teda $\alpha_i^* \leftrightarrows \beta_i^*$, potom $\beta^* = (\beta_1^*, \beta_2^*, \dots, \beta_N^*)$ tvorí evilibrium tajnej aukcie s prvou cenou s diskrétnym univerzom sázok.

Proposition 4.2 Predpokladajme tajnú akciu s prvou cenou, kde všetky sázky ležia na množine β^T . Potom existuje ekvilibrium tejto aukcií, v ktorom sa každý hráč riadi neklesajúcimi stratégiami.

5 Krok č. 2 - hranice ekvilibria pre nekončne malý inkrement sázky

Táto časť dôkazu nie je z matematického dokazovania v čerpanom texte úplná, sú v nej spomenuté iba hlavné idey dôkazu. Nekonečne malý inkrement sázky budeme v tejto sekcií reprezentovať nekonečným univerzom T. Pre primentutie, univerzum sázok bol definovaný $\beta^T = \{\frac{t}{T}\omega : t = 0, 1, ..., T\}$, teda ako zlomok maximálnej sázky v aukcií.

Poznámka autora: V praxi sa, aj napriek prirodzenej diskretizácií peňažného ohodnotenia, dá generalizovať prípad sázkok X,Y;X << Y, tak že sázka Y je nekonečne veľká vzhľadom na sázku X. Vzhľadom na sázku Y je hodnota minimálneho inkrementu sázky nekonečne malá.

V predošlej sekcií sme obmedzovali hráčov hrať na univerze diskrétnych sázok. Ukázali sme, že pre ľubovoľne veľké takéto univerzum T existuje stratégia, ktorá je rýzdim nashovým ekvilibriom, označme ju $\beta^*(T)$, v ktorej každý hráč má neklesajúcu stratégiu jeho privátneho ohodnotenia. Táto sekcia sa zaoberá existenciou ekvilibria pre nekonečné veľké T.

V prvom rade je možné ukázať, že existuje postupnosť rýdzeho ekvilibria strategií, ktorá je podmnožinou $\beta^*(T)$. Táto postupnosť konverguje ku vektoru neklesajúcich stratégií β^* , v aukcií s neobmedzene veľkými sázkami. Navyše, konvergencia je rovnomerná takmer všade.

Za druhé, môžeme formulovať, že β^* je súčasťou ekvilibria aukcie s neobmedzenými sázkami.

Ak pre všetkých hráčov i, ich limitujúce stratégie β_i^* strikte rástli, tak predošlé platí. Je to pretože, v tomto prípade pozn. nejasný pojem väzieb(angl. ties) je väzba medzi dvoma hodnotami β_i^* nulová. Posledný a hlavný krok je, že postupnosť $\beta^*(T)$ konverguje do β^* rovnomerne, takmer všade.

Autor práce posledným úvahám dôkazu nie celkom rozumie.

6 Záver

Práca sa venovala hlavným krokom dôkazu existencie ekvilibria v tajnej aukcií s prvou cenou.

V prvom kroku bol zavedený diskrétny univerzum sázok a odvodený význam best response na ňom. Následne bola dokázaná neklesajúcosť best response s rastúcim privátným ohodnotením. Ďalej bol definovaný izomorfismus medzi univerzom stratégií a vektorom sázok. Nasledovalo odvodenie reláce korespondence na vektore stratégií, ako podmnožina kartézskeho súčinu vektoru best response strategií, hráča i na stratégie ostatných hráčov. Ďalej sa ukázalo, že definičný obor tak aj obor hodnôt tejto reláce je konvexná množina. Posledným úkonom bolo ukázanie, že táto relácia splňuje podmienky dané Kakutaniho fixed point theorémom o existencií pevných bodoch korespondencie. Tým bola existencia ekvilibria dokázaná.

V druhom kroku sa uvažovalo nekonečne veľké univerzum sázok a následne sa dokázalo, že funkcia best response konverguje do pevného bodu ekvilibria. Tejto časti dôkazu autor práce najmenel porozumel.

Do značnej miery je dodržiavaná forma a obsah textu, z ktorého bol dôkaz čerpaný. Za hlavný výsledok práce možno považovať vzdelávací prínos autora práce v oblasti teorie her, matematiky a metód dokazovania v spojení s uvedeným dôkazom. Taktiež sa néda vylúčiť, že preklad dôkazu do spisovnej slovenčiny nemôže byť pre niekoho prínosným.

Autor práce si je plne vedomý, že sa predpokladá preukázanie zvládnutia problematiky. A tento text nemusí byť toho dostatočným dôkazom.

Pokračovaním práce by mala byť identifikácia menej jasných krokov dôkazu treťou osobou a ich následný podrobnejší výklad. Uvedený dôkaz nie je kompletný a preto jedno z ďaľších pokračovaní je doplnenie chybajúcich krokov dôkazu z iných zdrojov, hlavne zo zdrojov ktoré uvádza autor článku.

Prácu by som hodnotil ako prínosnú, ale aj ako nie celkom úspešnú. Pretože sa mne, autorovi práce, nepodarilo porozumieť všetkým krokom dôkazu.

Literatúra

 $[1]\ {\it Vijay}\ {\it Krishna}.$ ${\it Auction\ theory},$ volume 2. Academic Press, Sep 2009. príloha G.