LÝ THUYẾT CHUỗI

Đậu Thế Phiệt

Ngày 9 tháng 5 năm 2014

1 / 56

Nội dung

- 🚺 Khái niệm chung
- Chuỗi không âm
 - Định nghĩa
 - Tiêu chuẩn so sánh
 - Tiêu chuẩn d'Alembert
 - Tiêu chuẩn Cauchy
- 3 Chuỗi có dấu tuỳ ý
- Chuỗi đan dấu
- Chuỗi luỹ thừa
 - Định nghĩa
 - Dấu hiệu tìm bán kính hội tụ

LÝ THUYẾT CHUỐI

ĐỊNH NGHĨA VÀ VÍ DỤ

3 / 56

Khái niệm chung

Nhắc lại khái niệm dãy số

Một dãy số được hiểu như một danh sách của các con số được sắp thứ tự

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

Số a_n được gọi là phần tử thứ 'n' của dãy số. Với mỗi số nguyên dương n, tương ứng với một số a_n . Một dãy số $\{a_1,a_2,a_3,\ldots\}$ có thế được ký hiệu là

$$\{a_n\}$$
 hoặc $\{a_n\}_{n=1}^{\infty}$

Chú ý. n không nhất thiết bắt đầu từ n=1. Các khái niệm: bị chặn, hội tụ, phân kỳ, ...

Ví dụ.

1)
$$\left\{ \frac{n}{n+1} \right\}$$

$$a_{n} = \frac{n}{n+1}$$

$$\left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots \right\}$$
2)
$$\left\{ \frac{(-1)^{n}(n+1)}{3^{n}} \right\}$$

$$a_{n} = \frac{(-1)^{n}(n+1)}{3^{n}}$$

$$\left\{ \frac{-2}{3}, \frac{3}{9}, \frac{-4}{27}, \dots, \frac{(-1)^{n}(n+1)}{3^{n}}, \dots \right\}$$
3)
$$\left\{ \sqrt{n-3} \right\}_{n=3}^{\infty}$$

$$a_{n} = \sqrt{n-3}; n \ge 3$$

$$\left\{ 0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots \right\}$$
4)
$$\left\{ \cos \frac{n\pi}{6} \right\}_{n=0}^{\infty}$$

$$a_{n} = \cos \frac{n\pi}{6}$$

$$\left\{ 1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos \frac{n\pi}{6}, \dots \right\}$$

Khái niệm chuỗi số

Nếu ta lấy tổng tất cả các phần tử của một dãy vô hạn $\{a_n\}_{n=1}^{\infty}$, biểu diễn dưới

$$a_1 + a_n + a_n + \ldots + a_n + \ldots; (1)$$

tổng trên được gọi là một chuỗi vô hạn,(hoặc chuỗi) và được ký hiệu bởi.

$$\sum_{n=1}^{\infty} a_n \quad \text{hoặc} \quad \sum a_n$$

(chú ý trong cách biểu diễn tổng bên phải phải không gây nhầm lẫn giá trị bắt đầu của n)

KHI NÀO THÌ CHUỗI (1) CÓ TỐNG (HỮU HẠN)

6 / 56

Ta định nghĩa

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
...
 $S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i$

 S_n được gọi là tổng riêng thứ n của chuỗi (1), $\{S_n\}$ là một dãy số. Nếu giới hạn $\lim_{n\to\infty}S_n=S$ tồn tại, thì ta nói chuỗi (1) là chuỗi hội tụ; và S được gọi là tổng của chuỗi (1).

7 / 56

Định nghĩa

Cho chuỗi

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$$

và S_n là tổng riêng thứ n của chuỗi

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i$$

Nếu dãy $\{S_n\}$ hội tụ và $\lim_{n\to\infty}S_n=S$ là một số thực, thì ta nói chuỗi $\sum a_n$ hội tụ và viết

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = S$$
 hoặc $\sum_{n=1}^{\infty} a_n = S$

Số S được gọi là tổng của chuỗi. Ngược lại, nếu giới hạn không tồn tại, thì ta nói chuỗi phân kỳ.

Ví dụ.

Một trong những chuỗi số quan trọng là chuỗi cấp số nhân

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 $(a \neq 0)$

Nếu r=1, thì tống riêng $S_n=a+a+\ldots+a=na\to\pm\infty$. Do đó giới hạn $\lim_{n\to\infty}S_n$ không tồn tại, chuỗi phân kỳ.

Nếu $r \neq 1$, ta có

$$S_n = a+$$
 $ar + ar^2 + ... + ar^{n-1}$
 $rS_n = ar + ar^2 + ... + ar^{n-1} + ar^n$

Trừ hai phương trình trên ta có

$$S_n - rS_n = a - ar^n$$

 $S_n = \frac{a(1 - r^n)}{1 - r}$ (*)

$$S_n - rS_n = a - ar^n$$

$$S_n = \frac{a(1 - r^n)}{1 - r}$$
(*)

Với -1 < r < 1, từ (*) ta có $r^n \to 0$ khi $n \to \infty$, do đó

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r} - \frac{a}{1 - r} \lim_{n \to \infty} r^n$$
$$= \frac{a}{1 - r}$$

Do đó, với |r| < 1, chuỗi cấp số nhân hội tụ và có tổng là $S = \frac{a}{1-r}$. Với $r \le -1$ hoặc $r \ge 1$, dãy $\{r^n\}$ phân kỳ, do đó $\lim_{n \to \infty} S_n$ không tồn tại. Trong trường hợp này chuỗi cấp số nhân phân kỳ.

Quan trọng

Chuỗi cấp số nhân

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

hội tụ với |r| < 1 và có tổng là

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$
 (|r| < 1)

Nếu $|r| \ge 1$, chuỗi cấp số nhân phân kỳ.

Ví dụ 2.

Tính tổng của chuỗi

$$\sum_{n=0}^{\infty} x^n \qquad \qquad \text{(v\'oi } |x|<1\text{)}$$

Đây là một chuỗi cấp số nhân với số hạng đầu a=1, và công bội r=x. Do |r|=|x|<1, chuỗi hội tụ và có tổng

$$\sum_{n=0}^{\infty} = \frac{1}{1-x}.$$

Tính chất chuỗi hội tụ

Điều kiện cần: Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ thì lim $a_n = 0$.

Định lý. Cho $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ là các chuỗi hội tụ, khi ấy các chuỗi $\sum_{n=1}^{\infty} ca_n$ và

 $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ cũng hội tụ và

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

CHUỗI KHÔNG ÂM

Định nghĩa

Chuỗi không âm là chuỗi $\sum_{n=1}^{\infty} a_n$ với $a_n > 0 \quad (\forall n)$.

Do các phần tử $a_n>0$, dãy tổng riêng $\{S_n\}$ là dãy không giảm, vậy chuỗi không âm hội tụ $(S_n$ có giới hạn) khi và chỉ khi bị chặn trên.

Tiêu chuẩn so sánh 1

Hai chuỗi $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ thoả điều kiện

$$0 \le a_n \le b_n \qquad \forall n \ge n_0$$

Khi ấy

- **1** Nếu chuỗi $\sum_{n=1}^{\infty} b_n$ hội tụ thì $\sum_{n=1}^{\infty} a_n$ hội tụ.
- 2 Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ phân kỳ thì $\sum_{n=1}^{\infty} b_n$ phân kỳ.

16 / 56

Tiêu chuẩn so sánh 2

Hai chuỗi $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ thoả điều kiện

$$0 < a_n; b_n \qquad \forall n \geq n_0$$

Đặt

$$K = \lim_{n \to \infty} \frac{a_n}{b_n}$$

Khi ấy ta có

- K = 0: nếu chuỗi $\sum_{n=1}^{\infty} b_n$ hội tụ thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ.
- ② $K \neq 0, K \neq \infty$: chuỗi $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ cùng hội tụ hoặc phân kỳ.
- 3 $K=\infty$: nếu chuỗi $\sum\limits_{n=1}^{\infty}a_n$ hội tụ thì chuỗi $\sum\limits_{n=1}^{\infty}b_n$ hội tụ.

Ví dụ 1.

Khảo sát sự hội tụ của chuỗi

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\cos^2 n}{n(n+1)}.$$

Ta thấy $\sum a_n$ là một chuỗi dương và $\frac{\cos^2 n}{n(n+1)} \leq \frac{1}{n(n+1)} \leq \frac{1}{n^2}$.

Ta chọn chuỗi $\sum\limits_{n=1}^{\infty}b_n=\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ và áp dụng kết quả

$$\sum_{n=1}^{\infty} rac{1}{n^{lpha}}$$
 hội tụ với $lpha > 1$

Theo tiêu chuẩn so sánh 1, ta có $\sum a_n$ hội tụ.

Ví du 2.

Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{e^n + n^3}{2^n + \ln^3 n}$.

Ta thấy $\sum a_n$ là một chuỗi dương; khi n lớn ta có

$$\frac{e^n + n^3}{2^n + \ln^3 n} \simeq \frac{e^n}{2^n} = \left(\frac{e}{2}\right)^n$$

Chú ý: Ta viết " \simeq " khi *n* lớn đồng nghĩa với hai vô cùng lớn (VCL) tương đương

 $\lim_{n\to\infty}\frac{a_n}{h_n}=C\quad\text{v\'en}\ C\ \text{là một số thực khác 0 và khác }\infty.$

Chuỗi $\sum_{n=1}^{\infty} \left(\frac{e}{2}\right)^n$ là một chuỗi cấp số nhân và $|r|=\frac{e}{2}>1$. Do đó hai chuỗi cùng phân kỳ theo tiêu chuấn so sánh 2.

Tiêu chuẩn d'Alembert

Cho chuỗi dương

$$\sum_{n=1}^{\infty} a_n$$

và giới hạn

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=D$$

Khi ấy ta có

- 0 D < 1: chuỗi hội tụ.
- ② D > 1: chuỗi phân kỳ.

Tiêu chuẩn Cauchy

Cho chuỗi dương

$$\sum_{n=1}^{\infty} a_n$$

và giới hạn

$$\lim_{n\to\infty}\sqrt[n]{a_n}=C$$

Khi ấy ta có

- C > 1: chuỗi phân kỳ.

Khảo sát sự hội tụ của chuỗi

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n} \tag{*}$$

Ta có

$$a_{n+1} = \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}} = \frac{3 \cdot 3^n n! (n+1)}{(n+1)^n (n+1)} = \frac{3 \cdot 3^n n!}{(n+1)^n}$$
$$\frac{a_{n+1}}{a_n} = \frac{3 \cdot 3^n n!}{(n+1)^n} \cdot \frac{n^n}{3^n n!} = \frac{3}{\left(1 + \frac{1}{n}\right)^n} \xrightarrow{n \to \infty} \frac{3}{e} > 1$$

Áp dụng tiêu chuẩn d'Alembert, ta có chuỗi (*) phân kỳ.

Ví du 4.

Khảo sát sư hôi tu của chuỗi

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n^5 \left(\frac{3n+2}{4n+3} \right)^n \tag{*}$$

Ta có

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{3n+2}{4n+3} \sqrt[n]{n^5} = \frac{3}{4} < 1.$$

Theo tiêu chuẩn Cauchy ta có chuỗi (*) hội tụ. Chú ý.

$$\lim_{n\to\infty}\sqrt[n]{n}=1$$

Ví du 5.

Khảo sát sư hôi tu của chuỗi

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{e^n \cdot n!}{n^n} \tag{*}$$

Ta có

$$\frac{a_{n+1}}{a_n} = \frac{e^{n+1}(n+1)!}{(n+1)^{n+1}} \frac{n^n}{e^n n!} = \frac{e \cdot e^n n! (n+1)}{(n+1)^{n+1}} \frac{n^n}{e^n n!} = \frac{e}{\left(1 + \frac{1}{n}\right)^n} \xrightarrow{n \to \infty} 1$$

Ta chưa thể kết luận được sự hội tụ theo tiêu chuẩn d'Alembert. Tuy nhiên ta có: $\left(1+\frac{1}{n}\right)^n$ là một dãy đơn điệu tăng và $\left(1+\frac{1}{n}\right)^n < e$, do đó $\frac{a_{n+1}}{a_n} > 1$, $a_{n+1} > a_n$ nên $a_n \neq 0$. Vậy chuỗi trên phân kỳ.

Ví du 6.

Khảo sát sư hôi tu của chuỗi

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\cos \frac{1}{n} \right)^{n^3} \tag{*}$$

Ta có

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\left(\cos\frac{1}{n}\right)^{n^3}} = \lim_{n \to \infty} \left(\cos\frac{1}{n}\right)^{n^2}$$
$$= \lim_{n \to \infty} \left[\left(1 - \frac{1}{2n^2}\right)^{-2n^2}\right]^{-\frac{1}{2n^2}n^2} = e^{-\frac{1}{2}} < 1$$

Theo tiêu chuẩn Cauchy, chuỗi (*) hội tụ.

Các kết quả thường sử dụng

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e = \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{-n}$$

•
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

$$\bullet \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \quad \begin{cases} \text{hội tụ với } \alpha > 1 \\ \text{phân kỳ với } \alpha \leq 1 \end{cases}$$

$$\bullet \sum_{n=1}^{\infty} \frac{1}{\alpha^n} \quad \begin{cases} \text{hội tụ với } \alpha > 1 \\ \text{phân kỳ với } \alpha \leq 1 \end{cases}$$

Các VCL

$$\ln n \ll n^{\alpha} \ll a^n \ll n! \tag{a > 1}$$

Bài tập 1

Dùng các tiêu chuẩn so sánh

$$\sum_{n=1}^{\infty} \frac{n}{100n^2 + 2}$$

$$\sum_{n=1}^{\infty} \left(\frac{1+n}{1+n^2} \right)^2$$

$$\sum_{n=1}^{\infty} \frac{n-1}{n4^n}$$

$$\int_{n=1}^{\infty} \frac{1 + \cos n\pi}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1+n+n^2}{\sqrt{1+n^2+n^6}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

Bài tập 2

Dùng tiêu chuẩn d'Alembert, Cauchy

$$\sum_{n=1}^{\infty} \frac{n^2+5}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{(3n+1)!}{8^n n^2}$$

$$\sum_{n=1}^{\infty} \frac{7^n (n!)^2}{n^{2n}}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$$

$$\sum_{n=2}^{\infty} \left(\frac{n-1}{n+1} \right)^{n(n-1)}$$

$$\sum_{n=1}^{\infty} \left(\frac{2n^2 + 2n + 1}{5n^2 + 2n + 1} \right)^n$$

CHUỗI CÓ DẤU TUỲ Ý HỘI TỤ TUYỆT ĐỐI

Định nghĩa

Chuỗi $\sum_{n=1}^{\infty} a_n$ được gọi là hội tụ tuyệt đối nếu chuỗi $\sum_{n=1}^{\infty} |a_n|$ hội tụ.

Định lý.

Nếu chuỗi $\sum\limits_{n=1}^{\infty}|a_n|$ hội tụ thì chuỗi $\sum\limits_{n=1}^{\infty}a_n$ hội tụ.

Chú ý.

- Chuỗi hội tụ tuyệt đối thì hội tụ.
- Điều ngược lại không đúng, có những chuỗi hội tụ nhưng chuỗi tuyệt đối không hội tụ.

CHUỗI ĐAN DẤU

Định nghĩa

Chuỗi đan dấu là chuỗi có dạng

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

với mọi n, $a_n \ge 0$ hoặc với mọi n, $a_n \le 0$.

Chuỗi Leibnitz

Chuỗi đan dấu $\sum\limits_{n=1}^{\infty} (-1)^n a_n$ được gọi là chuỗi Leibnitz nếu nó thoả

- dãy $\{a_n\}_n^\infty$ là dãy giảm
- và $\lim_{n\to\infty} a_n = 0$.

Định lý. Chuỗi Leibnitz hội tụ và tổng của chuỗi này thoả $0 \le |S| \le a_1$.

Ví dụ 1.

Khảo sát sự hội tụ của chuỗi

$$\sum_{n=1}^{\infty} (-1)^n a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+2}}$$

Ta thấy chuỗi $\sum a_n = \sum \frac{1}{\sqrt{n+2}}$ phân kỳ, do đó chuỗi đan dấu trên không hội tụ tuyệt đối.

Ta kiểm tra các điều kiện

- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n+2}} = 0.$
- $\left\{\frac{1}{\sqrt{n+2}}\right\}$ là dãy giảm

từ hai điều kiện trên ta có chuỗi đan dấu là một chuỗi Leibnitz, do đó nó hôi tu.

Ví dụ 2.

Khảo sát sự hội tụ của chuỗi

$$\sum_{n=1}^{\infty} \frac{\arctan(-n)^n}{\sqrt[4]{n^6 + 3n + 1}}$$

Chú ý: $\{(-n)^n\}$ là một dãy đan dấu. Ta có

$$|a_n| = \frac{|\arctan(-n)^n|}{\sqrt[4]{n^6 + 3n + 1}} \le \frac{\pi/2}{2n^{3/2}} = \frac{\pi}{2n^{3/2}}$$

Do $\sum \frac{\pi}{2n^{3/2}}$ hội tụ nên chuỗi cần khảo sát hội tụ tuyệt đối.

Khảo sát sự hội tụ

- Kiểm tra điều kiện cần: Dãy a_n hội tụ hay phân kỳ?
- Chuỗi không âm
 - Trong a_n có giai thừa hoặc tích của n phần tử: tiêu chuẩn d'Alembert.
 - Nếu a_n có dạng $(b_n)^n$: tiêu chuẩn Cauchy.
 - Tiêu chuẩn so sánh.
- Chuỗi có dấu bất kỳ
 - Nếu là chuỗi đan dấu: kiểm tra chuỗi Leibnitz
 - Dấu bất kỳ (cos, sin): kiểm tra hội tụ tuyệt đối
- ???

Bài tập

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi/3)}{n!}$$

$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

$$\sum_{n=2}^{\infty} \left(\frac{-2n}{n+1} \right)^{5n}$$

6
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

$$1 - \frac{1.3}{3!} + \frac{1.3.5}{5!} - \dots + \\ (-1)^{n-1} \frac{1.3.5....(2n-1)}{(2n-1)!} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n e^{1/n}}{n^3}$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 2^n}{n!}$$

$$\sum_{n=1}^{\infty} (\sqrt[n]{2}) - 1$$

CHUỗI LUỸ THỪA

Dịnh nghĩa

Đinh nghĩa chuỗi luỹ thừa

Chuỗi luỹ thừa là chuỗi có dang

$$\sum_{n=1}^{\infty} a_n (x - x_0)^n \qquad a_n \in \mathbb{R}$$
 (1)

Trong chuỗi (1) ta thấy

- Với $x_0 = 0$ ta có chuỗi $\sum_{n=1}^{\infty} a_n x^n$, $a_n \in \mathbb{R}$ (*)
- Ta có thể đặt $X = x x_0$ và đưa chuỗi (1) về dạng chuỗi (*).
- ullet Cố định x=lpha, ta có chuỗi $\sum\limits_{n=0}^{\infty}a_{n}(lpha-x_{0})^{n}$

Ta xét các chuỗi luỹ thừa với $x_0 = 0$.

Miền hội tụ cuả chuỗi luỹ thừa

Miền hội tụ của chuỗi luỹ thừa là tập hợp các giá trị của x sao cho khi thay vào chuỗi (1), ta được chuỗi hội tụ.

Bổ đề Abel.

Nếu chuỗi $\sum_{n=1}^{\infty} a_n x^n$ hội tụ tại $x_0 \neq 0$ thì nó hội tụ tuyệt đối trong khoảng $(-|x_0|,|x_0|)$.

Định lý.

Cho chuỗi $\sum_{n=1}^{\infty} a_n x^n$, khi đó tồn tại duy nhất $0 \le R \le +\infty$ thoả

- Chuỗi hội tụ với mọi $x \in \mathbb{R}$; |x| < R.
- $oldsymbol{\circ}$ Chuỗi phân kỳ với mọi $x \in \mathbb{R}; |x| > R.$

Số R trên được gọi là bán kính hội tụ của chuỗi luỹ thừa.

Dấu hiệu d'Alembert

Cho chuỗi $\sum_{n=1}^{\infty} a_n x^n$, giả sử tồn tại n_0 sao cho với mọi $n \geq n_0$, $a_n \neq 0$ và

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$$

Khi đó bán kính hội tụ

$$R = \frac{1}{\rho}$$
.

Dấu hiệu Cauchy-Hadamard

Cho chuỗi $\sum_{n=1}^{\infty} a_n x^n$, giả sử tồn tại n_0 sao cho với mọi $n \geq n_0$, $a_n \neq 0$ và

$$\lim_{n\to+\infty}\sqrt[n]{|a_n|}=\rho$$

Khi đó bán kính hội tụ

$$R = \frac{1}{\rho}$$
.

Tìm miền hội tụ của chuỗi luỹ thừa

- Bước 1. Sử dung dấu hiệu d'Alembert hoặc Cauchy Hadamard để tìm bán kính hôi tu R của chuỗi luỹ thừa. Khi đó, miền hội tụ của chuỗi luỹ thừa sẽ chứa $(x_0 - R, x_0 + R)$.
- Bước 2. Khảo sát sự hội tụ của chuỗi tại $x = x_0 R$ và $x = x_0 + R$.

• Với
$$x=x_0+R$$
 ta có chuỗi $\displaystyle\sum_{n=1}^{\infty}a_nR^n$.
• Với $x=x_0-R$ ta có chuỗi $\displaystyle\sum_{n=1}^{\infty}a_n(-1)^nR^n$.

• Với
$$x = x_0 - R$$
 ta có chuỗi $\left| \sum_{n=1}^{\infty} a_n (-1)^n R^n \right|$

Ví du 1.

Tìm bán kính hội tụ và miền hội tụ của chuỗi $\left|\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{2n+1}\right|$

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{2n+1}$$

Ta có

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\left|\frac{(-1)^n}{2n+1}\right|} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{2n+1}} = 1 = \rho$$

Theo dấu hiệu Cauchy - Hadamard, bán kính hội tụ là $R = \frac{1}{
ho} = 1$.

- \bigstar Với x=-1, ta có chuỗi $\sum \frac{1}{2n+1}$ là chuỗi phân kỳ theo tiêu chuẩn so sánh.
- \bigstar Với x=1, ta có chuỗi $\sum \frac{(-1)^n}{2n+1}$ là chuỗi Leibnitz ($|a_n|$ giảm và hội tụ về 0) nên hội tụ.

Vậy miền hội tụ của chuỗi là

Ví du 2.

Tìm bán kính hội tụ và miền hội tụ của chuỗi $\left|\sum_{n=1}^{\infty} \frac{5^n + (-2)^n}{n+1} x^n\right|$ Ta có

$$\left[\sum_{n=1}^{\infty} \frac{5^n + (-2)^n}{n+1} x^n\right]$$
Ta

$$\lim_{n\to\infty} \sqrt[n]{|a|^n} = \lim_{n\to\infty} \sqrt[n]{\left|\frac{5^n + (-2)^n}{n+1}\right|} = 5 = \rho$$

Theo dầu hiệu Cauchy - Hadamard, ta có bán kính hội tụ $R = \frac{1}{a} = \frac{1}{5}$.

 \bigstar Với $x=\frac{1}{5}$, ta có chuỗi $\sum \frac{5^n+(-2)^n}{(n+1)5^n}$ là chuỗi phân kỳ theo tiêu chuẩn so sánh 2.

 \bigstar Với $x=-\frac{1}{5}$, ta có chuỗi $\sum \frac{5^n+(-2)^n}{(n+1)(-5)^n}$ là chuỗi hội tụ (một chuỗi Leibnitz và một chuỗi hội tụ theo tiêu chuẩn so sánh). Vậy miền hội tụ của chuỗi là

$$-\frac{1}{5} \le x < \frac{1}{5}$$

Ví du 3.

Tìm bán kính hội tụ và miền hội tụ của chuỗi $\left|\sum_{i=1}^{\infty} \frac{(x+1)^n}{\sqrt{n+1}} \ln \frac{3n-2}{3n+2}\right|$.

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n+1}} \ln \frac{3n-2}{3n+2}$$

Đặt X = x + 1. Ta có chuỗi $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} \ln \frac{3n-2}{3n+2} X^n$.

Khi
$$n \to \infty$$
, $\ln \frac{3n-2}{3n+2} = \ln(1-\frac{4}{3n+2}) \simeq -\frac{4}{3n+2}$ (*)

$$\lim_{n\to\infty} \sqrt[n]{|a|^n} = \lim_{n\to\infty} \sqrt[n]{\left|\frac{1}{\sqrt{n+1}}\ln\frac{3n-2}{3n+2}\right|} = 1 = \rho \Rightarrow \boxed{R = \frac{1}{\rho} = 1}$$

 \bigstar Với $X=\pm 1$, ta có chuỗi $\sum\limits_{n=1}^{\infty}\left|\frac{1}{\sqrt{n+1}}\ln\frac{3n-2}{3n+2}\right|$ là chuỗi hội tụ (sử dụng (*) và tiêu chuẩn so sánh). Chuỗi luỹ thừa hội tụ tuyệt đối với $X=\pm 1$. Vậy miền hội tụ của chuỗi là

$$-1 \le X \le 1 \Rightarrow \boxed{-2 \le x \le 0}$$

Ví dụ 4.

Tìm miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}.$

Đặt $X=x^2$. Ta có chuỗi $\sum\limits_{n=1}^{\infty} \frac{(-1)^n X^n}{2^{2n} (n!)^2}$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{2^{2(n+1)[(n+1)!]^2}} \cdot 2^{2n} (n!)^2 = \lim_{n \to \infty} \frac{1}{4(n+1)^2} = 0$$

Do đó, bán kính hội tụ $R=rac{1}{
ho}=\infty.$

Vậy miền hội tụ của chuỗi là $x \in (-\infty, \infty) = \mathbb{R}$

Tính chất chuỗi luỹ thừa

- 1 Tổng của chuỗi luỹ thừa là một hàm liên tục trên miền hội tụ của nó.
- Trong khoảng hội tụ, đạo hàm của tổng bằng tổng các đạo hàm

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} (n a_n x^{n-1})'$$

Trong khoảng hội tụ, tích phân của tổng bằng tổng các tích phân

$$\int_{0}^{x} \left(\sum_{n=0}^{\infty} a_{n} t^{n} \right) dt = \sum_{n=0}^{\infty} \int_{0}^{x} \left(a_{n} t^{n} \right) dt = \sum_{n=0}^{\infty} a_{n} \frac{x^{n+1}}{n+1}$$

Chuỗi Taylor - Maclaurint

Định nghĩa

Cho hàm số y=f(x) có đạo hàm vô hạn lần trong lân cận của điểm x_0 .

Chuỗi $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ được gọi là **chuỗi Taylor** của hàm số y = f(x) tại lân cận của x_0 .

Chuỗi Taylor trong lận cận của $x_0 = 0$ được gọi là **chuỗi Maclaurint**.

Định lý

Cho hàm y=f(x) cùng các đạo hàm mọi cấp của nó bị chặn trong một lân cận của điểm x_0 , tức là tồn tại số thực M sao cho với mọi x trong một lân cận của x_0 , ta có $f^{(n)} \leq M$ với mọi $n \in \mathbb{N}$, thì

$$f(y) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Chuỗi Maclaurint thông của một số hàm thông dụng

$$\bullet e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

miền hội tụ
$$\mathbb{R}$$
;

miền hội tụ
$$\left(-1,1\right]$$

miền hội tụ
$$\mathbb{R}$$
;

miền hội tụ
$$\mathbb{R}$$
;

miền hội tụ
$$(-1,1)$$
;

miền hội tụ
$$(-1,1)$$
;

Ví du

Tìm chuỗi luỹ thừa của hàm $y = \ln(2 + 3x)$ trong lân cận của $x_0 = 1$.

Đặt
$$X = x - 1$$
, ta có

$$y = \ln(2 + 3(X + 1)) = \ln(5 + 3X) = \ln 5 + \ln\left(1 + \frac{3X}{5}\right)$$

Khai triển Maclaurint ta có

$$y = \ln 5 + \ln \left(1 + \frac{3X}{5} \right) = \ln 5 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(3X/5)^n}{n}$$
$$= \ln 5 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(3^n(x-1)^n/5)^n}{n5^n}$$

Ví dụ

Tìm chuỗi Maclaurint của hàm $y=rac{1}{(1-x)^2}$ với |x|<1.

Ta có
$$\frac{1}{1-x} = \sum x^n$$
.

Lấy đạo hàm hai vế, ta có

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n$$

50 / 56

Ví dụ

Tính tích phân
$$I = \int_0^1 \ln \frac{1}{1-x} dx$$

Ta có
$$I = -\int_{0}^{1} \ln(1-x)dx = \int_{0}^{1} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} (-x)^{n} dx = \int_{0}^{1} \sum_{n=1}^{\infty} \frac{x^{n}}{n} dx$$
$$I = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} \Big|_{0}^{1} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Ví dụ

Tính tổng của
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

Ta có $\frac{1}{1-x}=\sum_{n=0}^{\infty}$ với $x\in (-1,1)$ Đạo hàm hai vế, ta có

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$$

Chọn $x = \frac{1}{3}$, ta có $\frac{9}{4} = \sum_{n=1}^{\infty} \frac{n}{3^{n-1}}$ Do đó

$$\frac{3}{4} = \sum_{n=1}^{\infty} \frac{n}{3^n}$$

Ví du

Tính tổng
$$I = \sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$$

$$I = \sum_{n=2}^{\infty} \frac{(-1)^n}{(n-1)(n+2)} = \frac{1}{3} \sum_{n=2}^{\infty} \frac{(-1)^n}{n-1} - \frac{1}{3} \sum_{n=2}^{\infty} \frac{(-1)^n}{n+2}$$

Dặt
$$N = n - 1$$
, $\sum_{n=2}^{\infty} \frac{(-1)^n}{n-1} = \sum_{N=1}^{\infty} \frac{(-1)^{N+1}}{N} = \ln(1+x)|_{x=1} = \ln 2$.

Đặt
$$N = n + 2$$

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n+2} = \sum_{N=4}^{\infty} \frac{(-1)^{N+2}}{N} = -\sum_{N=4}^{\infty} \frac{(-1)^{N+1}}{N}$$
$$= \ln(1+x) - (x - x^2/2 + x^3/3)|_{x=1} = 2/3 - \ln 2$$

4 D > 4 B > 4 E > 4 E > 9 Q P

Bài tập

Tìm miền hội tụ của chuỗi

- $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

- $\sum_{n=1}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1} \right) (x-2)^{2n}$$

$$\sum_{n=1}^{\infty} 2^{n^2} x^n$$

Bài tập

Tính tổng chuỗi

1
$$-2x + 4x^2 - 6x^5 + 8x^7 - \dots$$
 với $x \in (-1, 1)$

②
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$$
 với $x \in (-1, 1)$;

https://sites.google.com/site/thephiet251/