

CSC 133Object-Oriented Computer Graphics Programming

Basic Graphics

Dr. Kin Chung Kwan Spring 2023

Computer Science Department
California State University, Sacramento

Display

Problem?

★☆☆☆ Only 21 inch not 24 inch

Reviewed in on 29 January 2021

Verified Purchase

I have not used it so far but I am giving rating just because it's not 24 inch. It is 21 inch monitor to which company is claiming of 24 inch.

Helpful

Report

Monitor Size and Resolution

Resolution

- 720p/i (HD): h = 720
- 1080p/i (FHD): h = 1080
- 2k: w ~ 2000
- 4k: w ~ 4000
- 8k: w ~ 8000

Look Closely

Pixels

- A 2D array of display units
- Usually, 3 colors
 - Red
 - Green
 - Blue
- Different lightness for different color

Retina Display

- Introduced by Apple
- About 300 Pixel-Per-Inch (PPI)
 - for 10 to 12 inches viewing distance
- Human cannot notice the pixel in such density

Type of Display

- Two types by their drawing properties
- 1. Random Scan Devices

2. Raster Scan Devices

Random Scan Devices

- Arbitrary movement
 - Draw any place that they want
- Example:

- Oscilloscopes, pen-plotters, searchlights, laser light

shows

Raster Scan Device

- Fixed ("raster") pattern
 - From left to right, and then top to bottom
 - OLEDs, Plasma panels, LCDs, CRTs

Cathode Ray Tube

CRT Monitor

- Shoot a color ray onto the screen

Liquid Crystal Display

LCD Monitor

- Each pixel has a light blocker to block the backlight

Light Emitting Diode

- LED Monitor
 - Replace the backlight by LED
 - Less power consumption

Quantum Dot LED

- QLED Monitor
 - Replace the color filter and use colored LED
 - Less color loss

LED Matrix

- Full of LEDs on a Grid
 - E.g., drone matrix, 3D display

Organic LED

- OLED Monitor
 - Small LED
- With RGBG
 - Bayer filter
 - Human is sensitive to green
- No backlight is needed
 - Can be very dark

Other Displays

Projector

Cave

Powerwall

Refresh rate

- Maximum frame per second (FPS)
 - Number of picture (frame) displayed per second

Response Time

- How many time it needs to draw one image.
 - i.e., time needed to change a color

Color

RGB

- Values represent intensity of light
 - 0 to 255

Green (0,255,0)Red (255,0,0)Black (0,0,0)

Image credit: http://en.wikipedia.org/wiki/RGB_color_model

Additive Color Model

- RGB is additive: more color = lighter

Color Representation

RGB representation never equal to actual color representation!

Actual Color

- From vision
- Natural

RGB

- Digital representation
- Human defined
- Try to approximate the actual color by mapping

Same Color?

- (255,255,255)
 - Always white?

- No

- The actual color output depends on your software, system, monitor

RGB to Wavelength Example

Negative Number

Why there is negative number in the graph?

Maxwell Color Matching

- 1850 by James Clerk Maxwell
 - Viewer control the RGB to match left and right

Negative Number

- Why there is negative number in the graph?

- RGB: 612nm, 525nm, and 445nm
 - Cannot reproduce every color
- Solution?
 - Add more color light sources
 - Or ignore it.

Need Every Color?

- Not necessary
- Only represent a subset of colors
 - Gamut

Color Distance

- The similarity of color, smaller = similar
 - Norm-2 distance

$$d = \sqrt{(R_1 - R_2)^2 + (G_1 - G_2)^2 + (B_1 - B_2)^2}$$

- Works but not fit to human perception

Different Color space

- There are different color space.
 - CMYK
 - HSL/ HSV
 - Lab
 - XYZ
 - sRGB
 - Etc.

CMYK

- Subtractive Color Model
 - Putting more color = darker

- For ink/printing

L*a*b*

- With the distance that "fit" to human perception
- Video from Wiki
 - <a href="https://upload.wikimedia.org/wikipedia/commons/transcoded/4/45/Visible_gamut_within_CIELAB_color_space_D65_whitepoint_mesh.webm/Visible_gamut_within_CIELAB_color_space_D65_whitepoint_mesh.webm.480p.vp9.webm

Interpolation

- For Color Changing e.g., fade
 - Weighting of two color for t = 0 to 1

$$C_t = t C_1 + (1-t)C_2$$

$$t = 0$$
 $(255,0,0)$

$$t = 0.5$$

$$t = 1$$
 (255,255,255)

$$R_{0.5} = 0.5 \times 255 + (1 - 0.5) \times 255 = 255$$

 $G_{0.5} = 0.5 \times 0 + (1 - 0.5) \times 255 = 128$
 $B_{0.5} = 0.5 \times 0 + (1 - 0.5) \times 255 = 128$

Mask

- Adding a new object on the image
 - Use mask to specify which parts are needed

Alpha

- RGBA

- Alpha is the transparency of the image

Luminance Perception

- Human perception is not linear
 - "Seems" most of the color changes are here

- Harder to tell the difference of other area

Better Representation

- Represent more "meaningful" colors

Gamma Correction

- "Correct" them to store more meaningful data

Data Representation Fixed (0-255) Measured Intensity
CSC 133 - Basic Graphics

Output correction

- On your monitor, there is "another" correction

Brightness vs Contrast

- Brightness = add/subtract all value
- Contrast = increase the range

Brightness vs Contrast

High Dynamic Range

- Most monitor can only display a range of light
 - What is the brightest?
 - As bright as sunlight which can hurt our eye
- Can your monitor display this strong light while keeping some area dark?

Problems for LDR

- Either too bright outside or too dark inside

Tone Mapping

- A way to compress the range of lighting

Tone mapped image from wiki

Frame Buffers

Frame Buffers

- Graphical Processing Unit (GPU) processes the commands sent from the drawing code and writes to the "frame buffer"
- The screen is refreshed from the frame buffer

Flicker

 Suppose the drawn output contains a triangle, continually changing location:

Double-Buffering

- Avoiding flicker:
 - Write to secondary or "back" buffer
 - Copy back buffer to "front" buffer when done

Page-Flipping

- Avoid copy() by changing a *pointer*

Tearing

- Problem: swapping ½ way through scan
- Result: "torn image"
- Solution: hold off swap until "VSync"

Tearing

Tearing example from wiki

VSync

Only flip with a fixed rate and after the buffer is fully drawn

Delayed Draw

It will not update if a frame is not readyi.e., Lag...

Triple-Buffering

- Adding more buffers

Delayed Draw

- Less affect on the frames

More Buffers?

Not good as there is time delay

More Buffers?

- More buffers = more time delayed
- Imagine what you see is rendered 3s before
 - Input response time will be longer
 - Not good for real-time applications

Any Questions?