

1 Decay Scheme

Tl-208 decays by beta minus emission to the Pb-208 excited levels. Le thallium 208 se désintègre par émission bêta moins vers les niveaux excités du plomb 208.

2 Nuclear Data

2.1 β ⁻ Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,18}^{-} \\ \beta_{0,17}^{-} \\ \beta_{0,16}^{-} \\ \beta_{0,15}^{-} \\ \beta_{0,13}^{-} \\ \beta_{0,13}^{-} \\ \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \end{array}$	521 (2) 618 (2) 643 (2) 678 (2) 690 (2) 705 (2) 718 (2) 739 (2) 821 (2) 876 (2) 1005 (3) 1040 (2) 1055 (2) 1081 (2) 1293 (2) 1526 (2)	0,053 (5) 0,017 (5) 0,045 (7) 0,005 (2) 0,076 (11) 0,048 (6) 0,030 (7) 0,002 (1) 0,231 (9) 0,18 (2) 0,007 (3) 3,26 (7) 0,048 (3) 0,64 (6) 24,1 (3)	1st Forbidden	6,67 7,4 7,05 8,1 6,93 7,16 7,4 8,6 6,71 6,91 8,5 5,92 7,77 6,69 5,39 5,69
,	1293 (2)	, , ,	1st Forbidden	5,3

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	α_M+	$lpha_T$
$\gamma_{5,4}(Pb)$	211,4 (2)	0,39 (2)	[M1+2%E2]	0,952 (29)	0,166 (5)	0,052 (2)	1,17 (4)
$\gamma_{4,3}(Pb)$	233,3(1)	0,59(2)	[M1+2%E2]	0,724(22)	0,125(4)	0,039(1)	0,888(27)
$\gamma_{7,4}(Pb)$	252,5(2)	1,34(4)	[M1+2%E2]	0,582(17)	0,100(3)	0,0310(9)	0,713(21)
$\gamma_{3,2}(Pb)$	277,37(3)	10,3(5)	[M1]	0,457(14)	0,078(2)	0,0240(7)	0,559(17)
$\gamma_{7,3}(Pb)$	485,8(1)	0,055(4)	[M1]	0,101(3)	0,0170(5)	0,0050(2)	0,123(4)
$\gamma_{4,2}(Pb)$	510,7(1)	25,0(2)	[M1+0,27%E2]	0,089(3)	0,0156(5)	0,0040(1)	0,108(3)
$\gamma_{2,1}(Pb)$	583,187 (2)	86,8 (1)	E2	0,0152(5)	0,0042(1)	0,00130(4)	0,0207(6)
$\gamma_{13,4}(\mathrm{Pb})$	587,8 (2)	0,060(21)	[M1]	0,0614 (18)	0,0102(3)	0,0032 (1)	0,0748 (22)
$\gamma_{9,3}(Pb)$	650,2(2)	0.05(2)	[M1]	0,0472(14)	0,0078(2)	0,00250 (8)	0,0575(17)
$\gamma_{10,3}(\mathrm{Pb})$	705,3(2)	0,023(4)	[M1]	0,0382 (11)	0,0063(2)	0,00200 (6)	0,0465(14)
$\gamma_{5,2}(\mathrm{Pb})$	722,0 (1)	0.25(4)	[M1+8,8%E2]	0,0337 (10)	0,0056(2)	0,00180(5)	0,0411 (10)
$\gamma_{6,2}(Pb)$	748,7(2)	0,0480 (31)	[M1]	0,0328 (10)	0,0054(2)	0,00170(5)	0,0399 (12)
$\gamma_{7,2}(Pb)$	763,2(1)	1,86 (3)	[M1+0.01%E2]	0,0312 (10)	0,0052(2)	0,00150(5)	0,0379 (11)
$\gamma_{12,3}({\rm Pb})$	808,3 (2)	0,030(7)					
$\gamma_{13,3}(Pb)$	821,1 (2)	0,042(4)	[M1]	0,0258(8)	0,0043(1)	0,00130(4)	0,0314(9)
$\gamma_{14,3}(Pb)$	835,9 (2)	0,076 (11)					
$\gamma_{3,1}(Pb)$	860,56 (3)	12,8 (1)	[M1+33,5%E2]	0,0176(5)	0,0030(1)	0,00100(3)	0,0216(6)
$\gamma_{16,3}({\rm Pb})$	883,4 (2)	0.032(3)	[M1]	0.0214(7)	0,0035(1)	0,00120(4)	0.0261(8)
$\gamma_{9,2}(\mathrm{Pb})$	927,6 (2)	0.128(1)	[M1]	0,0189 (6)	0,0031(1)	0,00100 (3)	0.0230(7)
$\gamma_{10,2}({\rm Pb})$	982,7(2)	0,209(8)	[M1]	0,0163(5)	0,00270(8)	0,00080(2)	0,0198 (6)
$\gamma_{4,1}(Pb)$	1093,9 (1)	0,43 (2)	E2	0,00455 (14)	0,00084 (3)	0,000270 (8)	0,00566 (17)
$\gamma_{15,2}(\mathrm{Pb})$	1125,7(4)	0,005(2)		. /		,	. ,
$\gamma_{16,2}(\mathrm{Pb})$	1160,8 (2)	0,011 (3)	[M1]	0,0107(3)	0,00160(5)	0,00060(2)	0,0129(4)
$\gamma_{17,2}(\mathrm{Pb})$	1185,2(3)	0.017(5)	[M1]	0,0101 (3)	0,00160(5)	0,00060 (2)	0,0123 (4)
$\gamma_{18,2}(\mathrm{Pb})$	1282,8 (3)	0.053(5)	[M1]	0,00830 (25)	0,00127(4)	0,00049 (2)	0,01006 (30)
$\gamma_{8,1}(\mathrm{Pb})$	1381,1 (5)	0,007(3)	[E2]	0,00297 (9)	0,00051(2)	0,000160 (5)	0,00364 (11)
$\gamma_{11,1}(\mathrm{Pb})$	1647,5(7)	0,002(1)		. ,	. ,	, ,	. ,
$\gamma_{16,1}(\mathrm{Pb})$	1743,9(2)	0,002 (1)	[M1]	0,00382 (11)	0,00057(2)	0,000160(5)	0,00455 (14)
$\gamma_{1,0}(\mathrm{Pb})$	2614,511 (10)	100,00 (1)	E3	0,00173 (5)	0,000290 (9)	0,000080 (2)	0,00210 (6)

3 Atomic Data

3.1 Pb

3.1.1 X Radiations

	Energy keV		Relative probability
X_{K} $K\alpha_{2}$ $K\alpha_{1}$ $K\beta_{3}$ $K\beta_{1}$ $K\beta_{5}^{"}$	72,8049 74,97 84,451 84,937 85,47	} } }	59,6 100 34,1

		Energy keV		Relative probability
	$K\beta_2$	87,238	}	
	$\mathrm{K}eta_4$	87,58	}	10,3
	$KO_{2,3}$	87,911	}	
${ m X_L}$				
	$\mathrm{L}\ell$	$9{,}184$		
	$L\alpha$	$10,\!45-10,\!551$		
	$\mathrm{L}\eta$	11,349		
	$L\beta$	$12{,}142-13{,}015$		
	${ m L}\gamma$	$14,\!765-15,\!216$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	56,03 - 61,67 $68,18 - 74,97$ $80,3 - 88,0$	100 56 7,8
Auger L	$5,\!26 - 10,\!40$	3020

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
$\mathrm{e_{AL}}$	(Pb)	5,26 - 10,40	5,23 (9)
e _{AK}	(Pb) KLL KLX KXY	, , , , , , , , , , , , , , , , , , , ,	0,28 (4) } } }
$\begin{array}{c} ec_{3,2} \text{ K} \\ ec_{3,2} \text{ L} \\ ec_{3,2} \text{ M} \\ ec_{4,2} \text{ K} \\ ec_{4,2} \text{ L} \\ ec_{2,1} \text{ K} \\ ec_{4,2} \text{ M} \\ ec_{2,1} \text{ L} \\ ec_{2,1} \text{ M} \end{array}$	(Pb) (Pb) (Pb) (Pb) (Pb) (Pb)	261,51 - 264,33 273,52 - 277,23 422,7 (1) 494,8 - 497,7	3,01 (9) 0,51 (2) 0,16 (1) 2,0 (1) 0,3 1,3 (1) 0,09 0,4 0,1
,	. ,	,	,

		Ene ke		Electrons per 100 disint.
$\beta_{0,18}^{-}$	max:	521	(2)	$0,053\ (5)$
$\beta_{0,18}^{-}$	avg:	155,1	(7)	
$\beta_{0,17}^{-}$	max:	618	(2)	0,017(5)
$\beta_{0,17}^{-}$	avg:	188,6	(7)	
$\beta_{0,16}^{-}$	max:	643	(2)	0,045 (7)
$\beta_{0,16}^{-}$	avg:	197,1	(7)	
$\beta_{0,15}^{-}$	max:	678	(2)	0,005(2)
$\beta_{0,15}^{-}$	avg:	209,5	(7)	
$\beta_{0,14}^{-}$	max:	690	(2)	0,076 (11)
$\beta_{0,14}^{-}$	avg:	213,9	(7)	
$\beta_{0,13}^{-}$	max:	705	(2)	0,048 (6)
$\beta_{0,13}^{-}$	avg:	219,2	(7)	
$\beta_{0,12}^{-}$	max:	718	(2)	0,030(7)
$\beta_{0,12}^{-}$	avg:	223,8	(7)	
$\beta_{0,11}^{-}$	max:	739	(2)	0,002(1)
$\beta_{0,11}^{-}$	avg:	231,4	(8)	
$\beta_{0,10}^{-}$	max:	821	(2)	0,231(9)
$\beta_{0,10}^{-}$	avg:	261,2	(7)	
$\beta_{0,9}^{-}$	max:	876	(2)	0,18(2)
$\beta_{0,9}^{-}$	avg:	281,5	(7)	
$\beta_{0,8}^{-}$	max:	1005	(3)	0,007(3)
$\beta_{0,8}^{-}$	avg:	330,4	(8)	
$\beta_{0,7}^{-}$	max:	1040	(2)	3,26 (7)
$\beta_{0,7}^{-}$	avg:	343,6	(8)	
$\beta_{0,6}^{-}$	max:	1055	(2)	0,048(3)
$\beta_{0,6}^{-}$	avg:	349,2	(8)	
$\beta_{0,5}^{-}$	max:	1081	(2)	0,64(6)
$\beta_{0,5}^-$	avg:	359,5	(8)	
$\beta_{0,4}^{-}$	max:	1293	(2)	24,1 (3)
$\beta_{0,4}^{-}$	avg:	442,3	(8)	
$\beta_{0,3}^{-}$	max:	1526	(2)	22,2 (7)
$\beta_{0,3}^{-}$	avg:	536,2	(8)	
$\beta_{0,2}^{-}$	max:	1803	(2)	49,0 (9)
$\beta_{0,2}^{-}$	avg:	650,3	(8)	

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9,184 — 15,216		2,89 (6)	
$XK\alpha_2 XK\alpha_1$	(Pb) (Pb)	72,8049 $74,97$		2,15 (6) 3,61 (9)	} Kα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5'' \end{array}$	(Pb) (Pb) (Pb)	84,451 84,937 85,47	} } }	1,23 (4)	$\operatorname{K}'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87,238 87,58 87,911	<pre>} } </pre>	0,373 (13)	$\operatorname{K}'\beta_2$

5.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
a((Db)	211 4 (2)	0,18 (1)
$\gamma_{5,4}(Pb)$	211,4(2)	0.31 (1)
$\gamma_{4,3}(Pb)$	$233,3 (1) \\ 252,5 (2)$, , ,
$\gamma_{7,4}(Pb)$		0.78(2)
$\gamma_{3,2}(Pb)$	277,37(3)	6,6 (3)
,	485,8 (1)	0,049 (4)
$\gamma_{4,2}(Pb)$	510,7 (1)	22,6 (2)
	583,187 (2)	85,0 (3)
$\gamma_{13,4}(Pb)$	587,8 (2)	0.06(2)
$\gamma_{9,3}(Pb)$	650,2(2)	0.05(2)
$\gamma_{10,3}(Pb)$	705,3(2)	0,022(4)
$\gamma_{5,2}(Pb)$	722,0 (1)	0,24(4)
$\gamma_{6,2}(Pb)$	748,7(2)	0.046(3)
$\gamma_{7,2}(Pb)$	763,2(1)	1,79(3)
$\gamma_{12,3}(Pb)$	808,3(2)	0,030(7)
$\gamma_{13,3}(Pb)$	821,1(2)	0,041(4)
$\gamma_{14,3}(Pb)$	835,9(2)	0,076 (11)
$\gamma_{3,1}(Pb)$	860,56 (3)	12,5(1)
$\gamma_{16,3}(\mathrm{Pb})$	883,4 (2)	0.031(3)
$\gamma_{9,2}(\mathrm{Pb})$	927,6 (2)	0,125(1)
$\gamma_{10,2}(\mathrm{Pb})$	982,7 (2)	0,205(8)
$\gamma_{4,1}(Pb)$	1093,9 (1)	0.43(2)
$\gamma_{15,2}(\mathrm{Pb})$	1125,7(4)	0,005(2)
$\gamma_{16,2}(Pb)$	1160,8 (2)	0,011 (3)
$\gamma_{17,2}(Pb)$	1185,2 (3)	0,017 (5)
$\gamma_{18,2}(Pb)$	1282,8 (3)	0,052 (5)
710,2()	, ()	, , ,

	Energy keV	Photons per 100 disint.
$ \gamma_{8,1}(Pb) $ $ \gamma_{11,1}(Pb) $ $ \gamma_{16,1}(Pb) $ $ \gamma_{1,0}(Pb) $	1381,1 (5) 1647,5 (7) 1743,9 (2) 2614,511 (10)	0,007 (3) 0,002 (1) 0,002 (1) 99,79 (1)

6 Main Production Modes

Bi $-212 \alpha \text{ decay}$

7 References

- D.L. BAULCH, H.A. DAVID, J.F. DUNCAN. Australian J. Chem. 10 (1957) 85 (Half-life)
- G. SCHUPP, H. DANIEL, G.W. EAKINS, E.N. JENSEN. Phys. Rev. 120 (1960) 189 (Beta-ray emission probabilities, gamma-ray emission probabilities)
- G.T. EMERY, W.R. KANE. Phys. Rev. 118 (1960) 755 (Beta-ray emission probabilities, gamma-ray emission probabilities)
- L. SIMONS, M. BRENNER, L. KÄLD, K-E. NYSTEN, E. SPRING. Soc. Sci. Fennica Comm. Phys. Math. 26 (1961) part 6

(Gamma-ray emission probabilities)

- H. OSTERTAG, K.H. LAUTERJUNG. Z. Phys. 199 (1967) 25 (Beta-ray emission probabilities)
- N.O. LASSEN, N. HORNSTRUP. Mat. Fys. Medd. Dan. Vit Selsk 36 (1967) No. 4 (Half-life)
- J.S. LARSEN, B.C. JORGENSEN. Z. Phys. 227 (1969) 65 (Gamma-ray emission probabilities)
- S.M. BRAHMAVAR, J.H. HAMILTON. Nucl. Instrum. Methods 69 (1969) 353 (Gamma-ray energies)
- A. PAKKANEN, J. KANTELE, P. SUOMINEN. Z. Phys. 218 (1969) 273 (Gamma-ray emission probabilities)
- G. AUBIN, J. BARRETTE, G. LAMOUREUX, S. MONARO. Nucl. Instrum. Methods 76 (1969) 85 (Gamma-ray emission probabilities)
- V.H. MUNDSCHENK. Radiochim. Acta 14 (1970) 72 (Half-life)
- R. ACKERHALT, P. ELLERBE, G. HARBOTTLE. Radiochem. Radioanal. Letters 8 (1971) 75 (Half-life)
- J. DALMASSO. FRNC-TH-441 (1972) (Gamma-ray emission probabilities)
- P. JAGAM, D.S. MURTY. Nucl. Phys. A197 (1972) 540 (Gamma-ray emission probabilities, multipolarity)
- J. DALMASSO, H. MARIA, C. YTHIER. Comp. Rend. Acad. Sci. (Paris) 277B (1973) 467 (Gamma-ray emission probabilities)
- M. KORTELAHTI, A. PAKKENAN, J. KANTELE. Nucl. Phys. A240 (1975) 87 (Gamma-ray emission probabilities, multipolarity)
- W. KURCEWICZ, E. RUCHOWSKA, N. KAFFRELL, N. TRAUTMANN. Nucl. Instrum. Methods 146 (1977) 613
 - (Gamma-ray energies)
- R.J. GEHRKE, R.G. HELMER, R.C. GREENWOOD. Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities)

- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data. Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- F.T. AVIGNONE, A.G. SCHMIDT. Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities)
- R.G. HELMER. Nucl. Instrum. Methods 164 (1979) 355 (Gamma-ray energies)
- S. SADASIVAN, V.M. RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)
- U. SCHÖTZIG, K. DEBERTIN. Int. J. Appl. Radiat. Isot. 34 (1983) 533 (Gamma-ray emission probabilities)
- R. VANINBROUKX, H.H. HANSEN. Int. J. Appl. Radiat. Isot. 34 (1983) 1395 (Gamma-ray emission probabilities)
- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isot. 35 (1984) 581 (Gamma-ray emission probabilities)
- M.J. MARTIN. Nucl. Data Sheets 47 (1986) 797 (Nuclear structure, energies)
- W-J. LIN, G. HARBOTTLE. J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities)
- O. EL SAMAD, J. DALMASSO, G. BARCI-FUNEL, G. ARDISSON. Radiochim. Acta 62 (1993) 65 (Gamma-ray emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q value)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-1999-1 (1999) (K-x ray)
- R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods A450 (2000) 35 (Gamma energy)

 γ Emission probabilities per 100 disintegrations

