2°. Необходимое условие интегрируемости.

Теорема 1.1. (*необходимое условие интегрируемости*). Если функция интегрируема по промежутку [a,b], то она необходимо ограничена на этом промежутке.

▶Предположим противное, что функция f(x) не является ограниченной на [a,b], но имеет конечный интеграл $J = \int_a^b f(x) dx$. Возьмем произвольное $\varepsilon > 0$. По определению интеграла существует число $\delta > 0$ такое, что при любом разбиении промежутка [a,b] на частичные промежутки и при выполнении условия $\lambda < \delta$ будет выполняться неравенство $|\sigma_n - J| < \varepsilon$, которое эквивалентно двойному неравенству

$$J - \varepsilon < \sigma_n < J + \varepsilon.$$
 (*)

Неравенство (*) выполняется при любом выборе точек ξ_k , $(k=0,1,\ldots,n-1)$ на частичных промежутках.

С другой стороны, неограниченная на [a,b] функция не ограничена хотя бы на одном частичном промежутке, пусть на $[x_m,x_{m+1}]$. Тогда за счет выбора точки ξ_m на этом частичном промежутке можно сделать значение функции $f(\xi_m)$ следовательно, и произведение $f(\xi_m)\Delta x_m$, а потому и всю интегральную сумму σ_n сколь угодно большой по модулю, в частности, выходящей за пределы интервала (*). Полученное противоречие доказывает теорему. \blacktriangleleft