

CSCE48503: Information Security

Week 3: Access Control

University of Arkansas

Jan 27, 2025

Schedule [Tentative]

*	Week 1: Intro, Syllabus, CIA (Expectations)	[13Jan2025]	
*	Week 2: Security Basics	[20Jan2025]	(MLK Holiday)
*	Week 3: Access Control	[27Jan2025]	
*	Week 4: Security Policies (Week 1)	[3Feb2025]	
*	Week 5: Security Policies (Week 2)	[10Feb2025]	(S4x25 Conf)
*	Week 6: Cryptography Basics (Week 1)	[17Feb2025]	
*	Week 7: Cryptography Basics (Week 2)	[24Feb2025]	
*	Week 8: Cryptography Basics (Week 3)	[3Mar2025]	
*	Week 9: Mid-Term Review and <u>Test</u>	[10Mar2025]	
*	Week 10: Operating Systems Security & Malware	[17Mar2025]	
*	Week 11: Spring Break! (Be Safe)	[24Mar2025]	(Spring Break)
*	Week 12: Network Security (Week 1)	[31Mar2025]	
*	Week 13: Network Security (Week 2)	[7Apr2025]	(IEEE DC)
*	Week 14: Web Security	[14Apr2025]	
*	Week 15: Advanced Topics	[21Apr2025]	
*	Week 16: FINAL Review	[28Apr2025]	
*	Week 17: FINAL Exam Respondus and in Classroom	[7May2025 @ 10:15a	m]

Recap

- * What is Confidentiality? Integrity? Availability? Nonrepudiation?
 - Which security property (or combinations of them) is/are violated?
 - Alice and Bob are students. Alice copies Bob's homework.
 - Give an example of a situation where a compromise of confidentiality leads to a compromise in integrity.

Common threats

Recap

- Understand prevention, detection, recovery, and mitigation
 - Give examples of following situations:
 - Prevention is more important than detection and recovery
- Understand assumptions & trust
 - Know that all security policies and mechanisms rest on assumptions
 - Trust involves the degree to which we have confidence that people or systems are behaving in the way we expect
- Understand the tradeoff between security & performance

Exams

Module 1 - Security basics

- What is confidentiality? What is integrity, including data integrity and origin integrity (i.e., authenticity)? What is availability? What is nonrepudiation?
- Understand common threats, including eavesdropping, masquerading, modification, and replay
- Understand prevention, detection, recovery, and mitigation
- Understand trust
- Know that security should be built into the design of a system, not added on to an already implemented/deployed system

Access control

- Access control system determines what rights an entity has over a set of objects
- Questions answered include
 - Does Alice have the right to write /etc/passwd?
 - Do you have the right to view the CSCE website?
 - Does Dr. Farnell have the right to change your grades?

www.qualityquotes.co.za

Terms

 Access control system determines what rights an entity has over a set of objects

- Subjects: active entities that do things
 - E.g., Alice, you, a program
- Objects: passive things that things are done to
 - E.g., EECS website, grades, data files
- * Rights: actions taken
 - E.g., read, write, execute, delete, create, search

Access Control Policy

Access control rule:

• S: subjects

P(S,O,R) -> { accept, deny }

- O: objects
- R: rights
- * Access control policy contains a lot of these rules
- Many ways to represent policy

Access Control Matrix

- Rows are subjects; columns are objects
- One table for each access right

	01	02	O3
S1	Accept	Accept	Deny
S2	Deny	Accept	Deny
S3	Deny	Deny	Accept

matrix.wikia.com

Access Control Matrix

- Rows are subjects; columns are objects
- One table for all access rights

	01	O2	O3
S1	RWX	-	R
S2	R	W	RW
S3	-	-	-

- Advantages: fast access
- Disadvantages: large size=#subjects * #objects

Exercise

- Users: Alice and Bob; Files: X.txt and Y.exe
- Alice owns X.txt and can read and write it, Bob can read but not write it.
- Bob owns Y.exe and can read, write, and execute it, and Alice can read and execute it, but not write it.
- Generate the access control matrix

Exercise

- Users: Alice and Bob; Files: X.txt and Y.exe
- Alice owns X.txt and can read and write it, Bob can read but not write it.
- * Bob owns Y.exe and can read, write, and execute it, and Alice can read and execute it, but not write it.

Generate the access control matrix

	X.txt	Y.exe
Alice		
Bob		

Security Policy

 Computer system: a finite-state automaton with a set of transition functions

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation

Security Policy

Secure system

- Starts in authorized state
- Never enters unauthorized state

s₁, s₂: authorized

Secure?

No, regardless of which authorized state it starts in, it can enter an unauthorized state

Secure when edge from s₁ to s₃ not present

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Both confidentiality & military policies protect confidentiality But, a confidentiality policy does NOT deal with integrity at all, while a military policy may

Types of Access Control

Discretionary Access Control (DAC)

• individual user sets access control (MAC) mechanism to allow or deny access to an object

- system mechanism controls access to object, and individual cannot alter that access
- E.g., The law allows a court to access driving records without the owners' permission.
 - A mandatory control: the rule-based access control owner of the record has no control over the court's accessing the information.

DAC vs MAC

Discretionary Access Control

- Access policy defined by users
- Users can pass rights to other subjects and programs
- Mandatory Access Control
 - Access policy defined by system
 - Subjects and their programs can't pass rights

What does it mean for Trojan horse?

Trojan Horse

 Rogue software. It contains a hidden code that performs illegitimate functions not known to the caller

Viruses and logic bombs are usually transmitted in the form of Trojan horse

<u>n.wikipedia.org</u>

DAC vs MAC

Discretionary Access Control

- Access policy defined by users
- Users can pass rights to other subjects and programs
- Mandatory Access Control
 - Access policy defined by system

Subjects and their programs can't pass rights

What does it mean for Trojan horse

DAC is vulnerable from Trojan horses exploiting access privileges of calling subject

DAC vs MAC: Trojan Horse

Trojan Horse Vulnerability of DAC

User B cannot read file F

ACL

File F

A: r

File G

B: r A: w

DAC vs MAC: Trojan Horse

Trojan Horse Vulnerability of DAC

User B can read contents of file F copied to file CL

- * DAC: vulnerable from Trojan horses exploiting access privileges of calling subject
- MAC: impose restrictions on subjects which cannot be bypassed by Trojan Horses

Reading

*** Chapter 1.2.1, 9.1.1, 9.1.2**