CS601: Software Development for Scientific Computing

Autumn 2021

Week15:

Matrix Algebra

Course Progress..

- Last week: Matrix Algebra
 - Three fundamental ways to multiply two matrices
 - Commonly occurring algorithmic patterns
 - BLAS routines and categorization, Computational intensity
 - Efficiency considerations
 - Cache, Storage Layout, Data movement, Parallel Functional Units, Blocked Matrix Multiplication, Recursive Matrix Multiplication
- This week: Matrix algebra contd.

Matrix Structure and Efficiency

- Sparse Matrices
 - Banded matrices
 - Tridiagonal
 - Diagonal
 - Triangular
 - · etc.
- Symmetric Matrices

- Storage
- Computation

How can we exploit the matrix structure to optimize for storage and computation?

Sparse Matrices - Motivation

- Matrix Multiplication with Upper Triangular Matrices (C=C+AB)
 - The result, A*B, is also upper triangular

$$\begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{13} \end{bmatrix}$$

$$0 & a_{22}b_{22} & a_{22}b_{23} + a_{23}b_{33}$$

$$0 & 0 & a_{33}b_{33}$$

AB

Sparse Matrices - Motivation

 C=C+AB when A, B, C are upper triangular for i=1 to N

- Cost = $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j-i+1)$ flops (why 2? refer last week's slides)
- Using $\Sigma_{i=1}^{N} i \approx \frac{n^2}{2}$ and $\Sigma_{i=1}^{N} i^2 \approx \frac{n^3}{3}$
- $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j-i+1) \approx \frac{n^3}{3}$, 1/3rd the number of flops required for dense matrix-matrix multiplication

Sparse Matrices - Motivation

- Matrix Multiplication with Upper Triangular Matrices (C=C+AB)
 - Crude estimation of flop count = 1/3rd normal MatMul flop count.

$$a_{11}b_{11}$$
 $a_{11}b_{12}+a_{12}b_{22}$ $a_{11}b_{13}+a_{12}b_{23}+a_{13}b_{13}$ $a_{22}b_{23}+a_{23}b_{33}$ $a_{22}b_{23}+a_{23}b_{33}$ $a_{33}b_{33}$

AB

Sparse Matrices

Have lots of zeros (a large fraction)

```
        X
        X
        0
        0
        X
        0
        0
        X

        0
        X
        0
        0
        X
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```

- Representation
 - Many formats available
 - Compressed Sparse Row (CSR)
 - Two Vector of Vectors: vector<vector<double>> val;

```
    Three arrays: vector<vector<int>> ind;
    double *val; //size= NNZ
    int *ind; //size=NNZ
    int *rowstart; //size=M=Number of rows
```

Sparse Matrices - Example

Using Arrays

 A_{11} A_{12} A_{12} <t

double *val; //size= NNZ
int *ind; //size=NNZ
int *rowstart; //size=M=Number of rows

val:

														1									
	, ,	('		1		l				1			1		1	1		l				1	
	<u> </u>	1	_	1	1	1	~	1	1	1	1	1	1	1	1	1	1	1 ~	_	_	~	1	
- Id cold co	dcal	Id cal	ld ca	Id - ^	ld	Id- a	des	ldaa	l d 🗚	da	ldaa	ldac	l d a	daa	ldaa	ldaa	ldar	ldaa	d۱۸	d۹r	d۹	l daa	
/15681569	6/	63	1-62	J~59	155	154	-52	14/	ı ^{0.} 44	141	15.39	1 - 36	1 - 34	1 - 33	1 32	142/	1 - 25	ı ^{0.} 22	- 19	L ~ 15	-12	1 -11	
6	a	a ₆₃	a ₆₂	a ₅₉	a ₅₅	$ a_{54} $	a ₅₂	a ₄₇	$ a_{44}$	$ a_{41} $	$ a_{39} $	a_{36}	$ a_{34} $	a_{33}	a_{32}	a_{27}	a_{25}	$ a_{22}$	a_{19}	a ₁₅	a ₁₂	a ₁₁	

ind:

Sparse Matrices - Example

$$\mathbf{A} = \begin{pmatrix} 1.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2.3 & 0 & 1.4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3.7 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1.6 & 0 & 2.3 & 9.9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5.8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7.4 & 0 & 0 \\ 0 & 0 & 1.9 & 0 & 0 & 0 & 4.9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3.6 \end{pmatrix}$$

Using vectors:

vector<vector<double>> val;
vector<vector<int>> ind;

	ind	
1		
2 3 2 5 6	4	
3		
2	4	5
5		
6		
7	3	
8		

	val	
1.5		
2.3	1.4	
3.7		
-1.6	2.3	9.9
5.8		
7.4		
4.9	1.9	
3.6		

We represent a sparse matrix as two vectors of vectors: vector<vector<double> > to hold the matrix elements, vector<vector<int> > to hold the column indices.

Compressed-sparse-row (CSR) representation.

Sparse Matrices: y=y+Ax

Using arrays

```
for i=0 to numRows
  for j=rowstart[i] to rowstart[i+1]-1
  y[i] = y[i] + val[j]*x[ind[j]]
```

- Does the above code reuse y, x, and val ? (we want our code to reuse as much data elements as possible while they are in fast memory):
 - y ? Yes. Read and written in close succession.
 - x ? Possible. Depends on how data is scattered in val.
 - val ? Less likely for a sparse matrix.

Sparse Matrices: y=y+Ax

Optimization strategies:

```
for i=0 to numRows
  for j=rowstart[i] to rowstart[i+1]-1
  y[i] = y[i] + val[j]*x[ind[j]]
```

- Unroll the j loop // we need to know the number of non-zeros per row
- Move y[i] outside the loop //Possible only if y is not aliased.
- Eliminate ind[i] and thereby the indirect access to elements of x.
 Indirect access is not good because we cannot predict the pattern of data access in x. //We need to know the column numbers
- Reuse elements of x //The elements of val should be e.g. located closely

Sparse Matrices

Further reading:

Refer to Lecture 15 (Spring 2018) at

https://inst.eecs.berkeley.edu/~cs267/archives.html

Banded Matrices

- Special case of sparse matrices, characterized by two numbers:
 - Lower bandwidth p, and upper bandwidth q

```
- a<sub>ij</sub> = 0 if i > j+p
- a<sub>ij</sub> = 0 if j > i+q
- E.g. p=1, q=2
  for a 8x5 matrix
(x represents non-zero element)
```


Nikhil Hegde

Banded Matrices - Representation

Optimizing storage (specific to banded matrices)

a ₁₁	a ₁₂	a ₁₃	0	0	Г								
a ₂₁	a ₂₂	a ₂₃	a ₂₄	0	*	*	a ₁₃	a ₂₄	a ₃₅				
0	a ₃₂	a ₃₃	a ₃₄	a ₃₅	*	a ₁₂	a ₂₃	a ₃₄	a ₄₅				
0	0	a ₄₃	a ₄₄	a ₄₅	$\rangle \mid a_{11} \mid$	a ₂₂	a ₃₃	a ₄₄	a ₅₅				
0	0	0	a ₅₄	a ₅₅	a ₂₁	a ₃₂	a ₄₃	a ₅₄	a ₆₅				
0	0	0	0	a ₆₅									
0	0	0	0	0		Aband							

Α

$$A_{ij}=A$$
 band(i-j+q+1, j)
E.g. $A_{44}=A$ band₃₄

Banded Matrices: y= y + Aband x

A=Aband: optimizing computation and storage

```
for j=1 to n
   alpha1=max(1, j-q)
   alpha2=min(n, j+p)
   beta1=max(1, q+2-j)
   for i=alpha1 to alpha2
    y[i]=y[i] + Aband(beta1+i-alpha1,j)*x[j]
```

 Cost? 2(p+q+1) time! Much lesser than 2N² time required for regular y=y+Ax (assuming p and q are much smaller than n)

Banded Matrices

• Exercise: how much savings in memory do we get in Aband compared to the vector of vectors representation in slide 6? Assume that the matrix is 8x5.

Faster y=Ax: Discrete Fourier Transforms (DFT)

- Very widely used
 - Image compression (jpeg)
 - Signal processing
 - Solving Poisson's Equation
- Represent A with F, a Fourier Matrix that has the following (remarkable) properties:
 - F⁻¹ is easy to compute and consists of real numbers
 - Multiplications by F and F⁻¹ is fast.
- F has complex numbers in its entries.
 - Every entry is a power of a single number w such that wⁿ=1
 - Any entry of a Fourier matrix can be written using $f_{ij} = w^{ij}$ (row and col indices start from 0)

• **4x4**:
$$F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & 1 & w^2 \\ 1 & w^3 & w^2 & w^1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix}, i = \sqrt{-1}$$

- Here, w=i (also denoted as $w_4=i$). $w^4=1 \Rightarrow i$ is a root.

Here,
$$w = \frac{1+\sqrt{i}}{2}$$
 (sqrt of i)

1 $w^3 w^6 w^9 w^{12} w^{15} w^{18} w^{21}$

1 $w^4 w^8 w^{12} w^{16} w^{20} w^{24} w^{28}$

1 $W^5 W^{10} W^{15} W^{20} W^{25} W^{30} W^{35}$

1 $w^6 w^{12} w^{18} w^{24} w^{30} w^{36} w^{42}$

1 $w^7 w^{14} w^{21} w^{28} w^{35} w^{42} w^{49}$

 $1 w^3 w^6 w w^4 w^7 w^2 w^5$

1 w4 1 w4 1 w4 1 w4

1 $w^5 w^2 w^7 w^4 w^1 w^6 w^3$

1 w⁶ w⁴ w² 1 w⁶ w⁴ w²

1 $w^7 w^6 w^5 w^4 w^3 w^2 w^1$

```
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \omega & \omega^{3} & \omega^{5} & \omega^{7} \\ 1 & \omega^{4} & 1 & \omega^{4} & \omega^{2} & \omega^{6} & \omega^{2} & \omega^{6} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & \omega^{3} & \omega & \omega^{7} & \omega^{5} \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & -\omega & -\omega^{3} & -\omega^{5} & -\omega^{7} \\ 1 & \omega^{4} & 1 & \omega^{4} & -\omega^{2} & -\omega^{6} & -\omega^{2} & -\omega^{6} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & -\omega^{3} & -\omega & -\omega^{7} & -\omega^{5} \end{bmatrix}
```

(Writing columns 1,3,5,7 first and then columns 2,4,6,8 Also, using the fact that $w^4 = w^{2*} w^2 = i^*i = -1$)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \omega^{4} & \omega^{6} & \omega^{3} & \omega^{5} & \omega^{7} \\ 1 & \omega^{4} & 1 & \omega^{4} & \omega^{2} & \omega^{6} & \omega^{2} & \omega^{6} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & \omega^{3} & \omega & \omega^{7} & \omega^{5} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & -\omega & -\omega^{3} & -\omega^{5} & -\omega^{7} \\ 1 & \omega^{4} & 1 & \omega^{4} & -\omega^{2} & -\omega^{6} & -\omega^{2} & -\omega^{6} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & -\omega^{3} & -\omega & -\omega^{7} & -\omega^{5} \end{bmatrix}$$

(Partitioning into 4 matrix blocks of size 4x4.)

• So,
$$F_8 = \begin{bmatrix} F_4 & \Omega_4 F_4 \\ F_4 & -\Omega_4 F_4 \end{bmatrix}$$

FFT

- We can obtain 8 point DFT from 4 point DFT.
- How do we obtain the result of F_8x , i.e. y, from F_4 and x?
- y[1] to $y[4] = y^{top} + d * y^{bottom}$ - d=[1, w, w², w³] (note: w= $w_8 = \frac{1+\sqrt{i}}{2}$) $(x_{odd} = elements at odd numbered indices of vector x)$ $- y^{top} = F_4 x_{odd}$
 - $y^{bottom} = F_4 X_{even}$ $(x_{even} = elements at even numbered indices of vector x)$

Divide-and-Conquer FFT (D&C FFT)

```
FFT(v, \omega, m) ... assume m is a power of 2
  if m = 1 return v[0]
  else
    v_{even} = FFT(v[0:2:m-2], \varpi^2, m/2)
                                                       precomputed
    v_{odd} = FFT(v[1:2:m-1], \varpi^2, m/2)
    \varpi-vec = [\varpi^0, \varpi^1, \dots \varpi^{(m/2-1)}]
    return [v_{even} + (\varpi - vec .* v_{odd}),
               V_{\text{even}} - (\varpi\text{-Vec}.*V_{\text{odd}})
Matlab notation: ".*" means component-wise multiply.
Cost: T(m) = 2T(m/2)+O(m) = O(m log m) operations.
```

FFT

Refer to Lecture 20 (Spring 2018) at

https://inst.eecs.berkeley.edu/~cs267/archives.html

- Section 1.4, Matrix Computations, 4th Ed, Golub and Van Loan
- Section 3.5, Linear Algebra and Its Applications, 4th Ed, Gilbert Strang

Nikhil Hegde 24