# 黄冈中学信息奥赛训练题

测试时间 8:30-12:00

### (请仔细阅读本页面内容)

#### 一. 题目概况

| 中文题目名称    | 打包                | 小鸟       | 包装           |
|-----------|-------------------|----------|--------------|
| 英文题目与子目录名 | packs             | bird     | envelope     |
| 可执行文件名    | packs             | bird     | envelope     |
| 输入文件名     | packs.in          | bird.in  | envelope.in  |
| 输出文件名     | packs.out         | bird.out | envelope.out |
| 每个测试点时限   | 1s                | 1s       | 1s           |
| 测试点数目     | 10                | 10       | 10           |
| 每个测试点分值   | 10                | 10       | 10           |
| 附加样例文件    | 有                 | 有        | 有            |
| 结果比较方式    | 全文比较(过滤行末空格及文末换行) |          |              |
| 题目类型      | 传统                | 传统       | 传统           |
| 运行内存上限    | 256M              | 256M     | 256M         |

#### 二. 提交源程序文件名

| 对于 C++文件 | packs.cpp | bird.cpp | envelope.cpp |
|----------|-----------|----------|--------------|
| 对于c文件    | packs.c   | bird.c   | envelope .c  |

#### 三. 编译命令(不包含任何优化开关)

| 对于 C++文件 | g++.exe %s.cpp -o %s.exe -lm |
|----------|------------------------------|
| 对于c文件    | gcc.exe %s.c -o %s.exe -lm   |

#### 注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中的函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 评测时可以使用万能头文件# include <bits/stdc++.h>,默认支持 c++14。
- 4. 提交的文件目录如图所示,HB-0088 为考生准考证号,date、robot、tax 为题目规定的英文名称,目录中只包含源程序,不能包含其他任何文件。



# 打包(packs)

#### 【题目描述】

小凯辛苦的搬回了两大箱货物。第一箱装的全是笔记本,而第二箱装的全是签字笔。但这些笔记本和签字笔都不是单独一本本或是一支支分开的,它们都被提前按一定数量打包好了。

小凯数了一下,在装笔记本的箱子中,一共有 N包;每一包里面的笔记本数量分别为 A1, A2, ···, AN;而在装签字笔的箱子中,一共有 M包,每一包里面的签字笔数量为 B1, B2, ···, BM。小凯想从两个箱子里面各挑选几包,使得笔记本的总数量和签字笔的总数量相等。他想知道,如果可能的话,最少能挑选几包?

### 【输入格式】

从文件 packs. in 中读入数据。

第一行首先一个正整数 N,代表笔记本的包数;后面接着 N 个正整数,代表 N 个包中每个包的笔记本数。

第二行首先一个正整数 M,代表签字笔的包数;后面接着 M 个正整数,代表者 M 个包中每个包的签字笔数。

### 【输出格式】

输出到文件 packs. out 中。

如果存在挑选的方案,输出一个整数,代表最小的包数;否则输出一行"impossible"(不含引号)。

### 【样例输入1】

4 10 10 10 10 10 8 8 8 12 12 12 8 8 12 12

## 【样例输出1】

4

### 【样例输入2】

4 7 7 14 7 3 11 22 11

## 【样例输出2】

impossible

## 【数据范围与约定】

对于 50%的数据, N, M≤10。 对于 100%的数据, N, M≤100, 1≤Ai, Bi≤1000。

## 小鸟 (bird)

#### 【题目描述】

Kirkland 市市中心由 R 条东西向的大街和 C 条南北向的大道组成的。今年初,科学家就对市中心的 N 只小鸟实行监测,并且惊奇地发现,对于每一只小鸟i,它可能的活动范围是一个长方形——准确地说,是从东西向 Xa 到 Xb 大街之间,南北向 Ya 到 Yb 大道之间。

今天,科学家决定再进行一次监测。他们在第 X 大街,第 Y 大道放置了一个监测仪;接下来,他们获得了若干组由小鸟发出的信号。每个信号都是由被监测的 N 只小鸟的其中一只发出的,但具体是哪一只并不清楚,而且信号上记录了这只小鸟到检测仪的曼哈顿距离。(所谓曼哈顿距离,(X, Y)到(Z, W)的距离 D=|X-Z|+|Y-W|,也就是两个地点的横向距离+纵向距离,如下图所示,蓝线表示曼哈顿距离,绿线代表欧几里得距离,红线和黄线代表和蓝线等效的曼哈顿距离)



很明显地,一只小鸟无论在自己的区域里怎么活动,都无法发出其中的一些信号(距离太近或者太远),于是监测人员想知道,对于每一个信号,找出哪些小鸟是可能发出这信号的;由于这个问题比较复杂,你只需要统计小鸟的数量即可。

## 【输入格式】

从文件 bird. in 中读入数据。

第一行两个整数 N 与 Q, 分别代表被监测小鸟的总数和接收到的信号数。

第二行两个整数 X 与 Y, 代表监测仪的位置。

接下来 N 行每行四个整数, Xa, Ya, Xb, Yb, 代表一只小鸟的活动区域。

接下来 Q 行每行一个整数 D, 代表信号所记录的曼哈顿距离。

## 【输出格式】

输出到文件 bird. out 中。

Q行,每行一个整数,代表可能发射信号的小鸟的数量。

### 【样例输入1】

# 【样例输出1】

# 【数据范围与约定】

对于 30%的数据,N $\leqslant$ 10,0 $\leqslant$ X, Y, Xa, Xb, Ya, Yb $\leqslant$ 1,000,0 $\leqslant$ D $\leqslant$ 2,000;对于另外 30%的数据,Q $\leqslant$ 10,0 $\leqslant$ X, Y, Xa, Xb, Ya, Yb $\leqslant$ 1,000,0 $\leqslant$ D $\leqslant$ 2,000;对于 100%的数据,N, Q $\leqslant$ 100,000,0 $\leqslant$ X, Y, Xa, Xb, Ya, Yb $\leqslant$ 1,000,000,0 $\leqslant$ D  $\leqslant$ 2,000,000。

# 包装(envelope)

#### 【题目描述】

为了准备课堂上的游戏,小凯提前买了N种不同的卡片。对于第i种卡片,小凯买了Ci张,每张卡片长Ai,宽Bi。

接下来他需要把这些卡片包进 K 个信封里。他规定,对于同一种卡片,都必须放进同一个信封里;并且对于一个信封里的所有卡片,它的长宽都不能大于信封的长宽。例如,假设小凯有 3 种卡片,大小分别为 10\*3,5\*11,7\*7,它们需要装进一个信封里,则信封的大小至少为 10\*11。(注意卡片的长宽不能调换)

对于每一张卡片,小凯都会计算它所浪费的空间:例如,在上述例子当中,每种卡片的浪费空间为10\*11-10\*3=80,10\*11-5\*11=55,10\*11-7\*7=61,假设每种卡片分别有3,6,5张,则浪费的空间总和为80\*3+55\*6+61\*5=875。

小凯想知道,他所能达到的浪费的空间最小是多少?

### 【输入格式】

从文件 envelope. in 中读入数据。

第一行两个整数,N和K,代表卡片的种数和信封数。

接下来N行,每行代表每种卡片的情况,三个整数Ai,Bi,Ci,代表卡片的长、宽与数量。

### 【输出格式】

输出到文件 envelope. out 中。

一个整数,代表浪费的最小空间。

## 【样例输入1】

5 2

10 10 5

9 8 10

4 12 20

12 4 8

2 3 16

### 【样例输出1】

1828

## 【样例输入2】

10 10

6 225 159

58 207 908

258 909 769

177 767 365

745 330 918

337 459 72

224 16 86

685 608 121

63 320 137

324 648 404

### 【样例输出2】

0

# 【数据范围与约定】

对于 20%的数据, K=1;

对于额外的 10%的数据, K=N;

对于 60%的数据, N≤10;

对于 100%的数据, N≤15, 1≤K≤N, 1≤Ai, Bi, Ci≤1000。