

Boosting

Boosting: ideja

- Umesto da obučimo jedan (slab) klasifikator,
- obučićemo mnogo (slabih) klasifikatora
- koji su dobri na različitim delovima ulaznog prostora

Boosting: ideja

Ansambl (grupa) prediktora

- Obučavanje modela ansambla:
 - Članovi ansambla (klasifikatori): $h_1(x)$, $h_2(x)$, ..., $h_M(x)$
 - Koeficijenti: $w_1, w_2, ..., w_M$
- Predikcija:

$$y = \operatorname{sign}\left(\sum_{m=1}^{M} w_m h_m(x)\right)$$

- Kako:
 - 1. Prinuditi klasifikatore da nauče različite delove ulaznog prostora?
 - 2. Dodeliti težinu različitim klasifikatorima (w_i)?

Kako prinuditi klasifikatore da nauče različite delove ulaznog prostora?

Fokusiraćemo se na "teške" primere (one na kojima su prethodni klasifikatori pogrešili)

Fokusiranje na "teške" primere

- Krenuti od slabog prediktora (jedini uslov je da radi malo bolje od slučajnosti)
- Poboljšati prediktor fokusiranjem na teške slučajeve

Kako uvećati uticaj određenog primera?

- Sve instance su jednake, ali neke instance su jednakije od drugih
- ullet Svakom primeru $x^{(i)}$ iz trening skupa dodelićemo težinu $lpha_i$
 - Dajemo veću težinu "teškim" ili "važnim" primerima

- Obučavanje na otežinjenim podacima:
 - Primer *i* se računa kao α_i primera
 - Npr. $\alpha_i = 2 \rightarrow \text{računaj instancu } i \text{ dva puta}$
 - Ako bismo "resamplovali" podatke, dobili bismo više "teških"primera

Učenje na otežinjenim podacima

- 1. Ponovo uzorkovati skup podataka (resample)
- Iz skupa podataka (sa N instanci) na slučajan način uzorkovati N instanci

• Teži primeri (sa većim α) imaju veću verovatnoću selekcije i mogu biti selektovani više puta

Učenje na otežinjenim podacima

- Koristiti obučavajući algoritam koji može direktno da koristi težine primera
 - Logistička regresija

$$\theta_j^{(t+1)} \leftarrow \theta_j^{(t)} + \eta \sum_{i=1}^N \alpha_i h_j(x_i) \left(\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \right)$$

• Naivni Bajes (ili bilo koji MLE metod) – Redefinisati count(y=c) da bude otežinjen broj

Neotežinjeni podaci

Otežinjeni podaci

$$count(y = c) = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = c) \quad count(y = c) = \sum_{i=1}^{N} \alpha_i \mathbb{I}(y^{(i)} = c)$$

Boosting

- Boosting je pohlepan (*greedy*) algoritam za učenje ansambla iz podataka
 - Za algoritam kažemo da je pohlepan ako u svakom koraku bira lokalno optimalno rešenje (nadajući se da će na taj način doći do globalnog optimuma)
 - Odluka se donosi inkrementalno u malim koracima
 - Odluka u svakom koraku vodi ka popravljanju trenutnog stanja i pomeranju ka cilju
 - Ne vodi se računa o posledicama ranijih loših izbora

AdaBoost

- Jedan konkretan boosting algoritam
- Jedan od ranih boosting algoritama Freund and Schapire 1999
- Veoma efektivan, a jednostavan za implementaciju

AdaBoost

• $T = \{(x^{(i)}, y^{(i)}), i = 1, ..., N, y \in \{-1, +1\}\} - \text{trening skup}$ Ulaz • M – broj slabih prediktora ? **Postupak** Inicijalizovati težine primera tako da budu uniformne $\alpha_i =$ $\frac{1}{N}$, i = 1, ..., Nfor $m = 1, \dots, M$ Obučiti klasifikator $h_m(x) \to \{+1, -1\}$ koristeći težine α_i • Odrediti težinu klasifikatora w_m • Rekalkulisti težine instanci α_i Izlaz $\hat{y} = \operatorname{sign}\left(\sum_{m=1}^{M} w_m h_m(x)\right)$

Problem 1: kako odrediti koeficijente w_m ?

- Koliko verujemo klasifikatoru h_m ?
 - Ako je klasifikator h_m "dobar" on ima nisku trening grešku
- Kako da merimo grešku na otežinjenim podacima?
 - Ako smo dodelili veću težinu nekim primerima (zato što su teški) želimo da klasifikator dobro klasifikuje te primere
 - Za grešku ćemo uzeti otežinjen broj pogrešno klasifikovanih primera

$y^{(i)}$	$h_m(x^{(i)})$	α_i
+1	+1	1.2
-1	-1	1
+1	-1	0.5
-1	+1	1.1
+1	+1	0.8

Težina korektno klasifikovanih primera	1.2 + 1 + 0.8
Težina grešaka	0.5 + 1.1

Problem 1: kako odrediti koeficijente w_m ?

Ukupna težina grešaka:

$$\sum_{i=1}^{N} \alpha_i \mathbb{I}(h_m(x^{(i)}) \neq y^{(i)})$$

Ukupna težina instanci:

$$\sum_{i=1}^{N} \alpha_i$$

• Otežinjena greška:

$$\varepsilon = \frac{\text{ukupna težina grešaka}}{\text{ukupna težina instanci}} \in [0, 1]$$

- Najbolja vrednost ε je 0
- Najgora vrednost ε je 0.5

Problem 1: kako odrediti koeficijente w_m ?

• AdaBoost: računanje koeficijenta w_m za klasifikator $h_m(x)$ za koji je otežinjena greška ε_m

Problem 2: kako odrediti težine primera α_i ?

• AdaBoost: ažuriranje težina α_i bazirano na tome gde $h_m(x)$

pravi greške:

Pertentage correctly classified (weighted)

Ako je klasifikator dobar (veliko pozitivno w_m)

- smanjujemo težinu primera koje korektno klasifikuje
- povećavamo težinu onih na kojima greši

Normalizacija težina $lpha_i$

- Ako je primer $x^{(i)}$ "težak"
 - Mnogo klasifikatora greši na njemu
 - U svakoj iteraciji se težina primera uvećava
 - Težina α_i postaje veoma velika
- Ako je primer $x^{(i)}$ "lak"
 - Mnogi klasifikatori ga dobro klasifikuju
 - U svakoj iteraciji se težina primera smanjuje
 - Težina α_i postaje veoma mala
- · Ovo može dovesti do numeričke nestabilnosti nakon mnogo iteracija
- Rešenje je da u svakoj iteraciji normalizujemo težine primera da se sabiraju na 1:

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

AdaBoost sumarizacija

Ulaz $\{(x^{(i)}, y^{(i)}), i = 1, ..., N, y \in \{-1, +1\}\}$ – trening skup M – broj slabih prediktora ?Inicijalizovati težine primera tako da budu uniformne **Postupak** $\alpha_i = \frac{1}{N}, i = 1, ..., N$ for m = 1, ..., MObučiti klasifikator $h_m(x)$ koristeći težine α_i $|w_m| = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_m}{\varepsilon_m} \right)$ Izračunati koeficijent w_m Rekalkulisti težine α_i $\alpha_i \leftarrow \begin{cases} \alpha_i e^{-w_m}, & h_m(x_i) = y_i \\ \alpha_i e^{w_m} & h_m(x_i) \neq y_i \end{cases}$ Normalizovati težine α_{i} Izlaz $\hat{y} = \operatorname{sign}\left(\sum_{t=1}^{l} w_t f_t(x)\right)$

AdaBoost primer

AdaBoost primer 2

Svi podaci (trening + test skup)

Trening skup (sa šumom)

AdaBoost primer 2

- Najbolja trening tačnost pojedinačnog klasifikatora: 0.66
- Konačna trening tačnost boostinga: 1
- Najbolja test tačnost pojedinačnog klasifikatora: 0.65
- Konačna test tačnost boostinga: 0.85

AdaBoost greška na trening skupu

Ovo je tipična trening greška koju ćemo uočiti kod boostinga

AdaBoost teorema

$$E_{train} \rightarrow 0 \text{ kada } M \rightarrow \infty$$

 Pod uslovom: u svakoj iteraciji možemo pronaći (slab) klasifikator sa otežinjenom greškom manjom od 0.5

$$\varepsilon(h_m) < 0.5$$

- Ovaj uslov nije uvek moguće ispuniti
 - Npr. ne postoji klasifikator koji može razdvojiti 💴
 - Bez obzira na ovo, boosting često postiže veoma nisku grešku na trening skupu kada broj iteracija teži beskonačnosti (iako možda ne tačno 0)

AdaBoost greška na test skupu

Problem 3: određivanje M

kako M raste

 M je hiper-parametar koji pravi nagodbu između prilagođavanja podacima i kompleksnosti modela

