JEGYZŐKÖNYV

Operációs rendszerek BSc 2022. tavasz féléves feladat

Készítette: Kiss Bence

Neptunkód: BYO2P7

A feladat leírása:

Irjon C nyelvu programot, ami:
 letrehoz ket gyermekprocesszt
 ezek a gyermekprocesszek letrehoznak 3-3 tovabbi gyereket
 ezek az unokak varakoznak nehany masodpercet es szunjenek meg
 a szulok varjak meg a gyerekek befejezodeset es csak utana szunjenek meg.

A feladat elkészítésének lépései:

- 1. Szülő és két gyermekprocessz létrehozása
- 2. Három unokaprocessz létrehozása a gyermekprocesszeken belül
- 3. Unokák várakozása megírása sleep()-el
- 4. A szülők gyermekeinek megvárásának megírása wait()-el

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <sys/wait.h>
int main(int argc, char* argv[]) {
    int parent, child1, child2, grandchild1, grandchild2, grandchild3,
grandchild4;
    child1 = fork(); //gyermek1 létrejön
   if (child1 == 0) { //ha gyermek1
        //child1 kódja
        grandchild1 = fork(); //gyermek1 = unoka1 | unoka2 létrejön
        if (grandchild1 == 0) { //ha unoka2
```

```
sleep(2); //várakozik 2 másodpercet
    else { //ha unoka1
    //unoka1 kódja
        grandchild2 = fork(); //gyermek1 = unoka2 és unoka3 létrejön
        if (grandchild2 == 0) { //ha unoka3
            //unoka3 kódja
            sleep(2); //várakozik 2 másodpercet
        else { //ha unoka2
            //unoka2 kódja
            sleep(2); //várakozik 2 másodpercet
        sleep(2); //várakozik 2 másodpercet
    if (grandchild1 != 0) {
       wait(NULL);
else { //ha szülő
    child2 = fork(); //gyermek2 létrejön
    if (child2 == 0) { //ha gyermek2
        //child2 kódja
```

```
grandchild3 = fork();
   if (grandchild3 == 0) {
       sleep(2);
   else {
       grandchild4 = fork();
       if (grandchild4 == 0) {
          sleep(2);
       else {
           sleep(2);
       sleep(2);
   if (grandchild3 != 0) {
       wait(NULL);
else {
   if (child1 != 0) {
   wait(NULL);
```

```
return 0;
```

A futtatás eredménye:

```
PROMEMS OUTPUT DEBUGGOROUS TERMANA.

[1] + Done

"/usr/bin/gdb" --interpreter=mi --tty=$(ObgTerm) 0<"/tmp/Microsoft-MIEngine-In-ulosarjb.ekv" 1>"/tmp/Microsoft-MIEngine-Out-rvhy0rbf.rm2"

benceptinusMint:-5 []
```

B feladat leírása:

8. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=6, C=0,
 D=0. A rendszerben a P_USER = 60

Induláskor a p. usrpri A=60, B=65, C=60 és D=60.

Ha egy <u>processz</u> megkapja a CPU-t a <u>quantum-ában</u> végig használja (azaz 1 <u>quantum-ban</u>), a <u>p cpu</u> növekmény értéke 70. Mind a négy <u>processznél</u> a <u>p nice</u> érték 0.

Határozza meg öt <u>quantum-ban</u> hogyan változnak a prioritások és a <u>p. cpu</u>, melyik <u>processz</u>, milyen sorrendben kap CPU-t.

Igazolja az ütemező algoritmus leírásával, képlettel és számítással az eredményeket.

A feladat elkészítésének lépései:

- 1. Megadott értékek leírása
- 2. Képletek leírása
- 3. Értékek kiszámolása a képletekkel és futó processzek sorrendjének meghatározása

	T		T		T		1-		_	T			
	Process A		Process B	Process B		Process C		Process D		P_USER: 60	1		
Quantum	p-uspri	p-cpu	p-uspri	p-cpu	p-uspri	p-cpu	p-uspri	р-сри		p_cpu növekmény: 70			
	60	, C	0 65	.5 F	5	60 0	0 60	.0	0	p_nice: 0			
,	1												
1.	1	70								const1 = 2			
	77	7 35	5 60	.0 ?	3	60 0	J 6	60 (0	const2 = 2			
,	,									const3 = 2			
2.	1			73	3					p-cpu = p-cpu / const1			
,	68	8 17	7 78	78 36	5	60 0	J 6'	60 (ð	p-usrpri = P_USER + p-cpu / const2 + const3 * p-nice			
,	1												
3.	1					70	J						
	64	3 ,	8 69	59 18	3	77 35	5 6	60 (0				
,	1												
4.	,							70	0				
	62	_ /	4 64	4 9	3	68 17	/ 7	77 35	5				
,	1												
5.	1	74	4										
Számítások:	Process A				Process B				Process C			Process D	
(egész értékek)	c) p-uspri		p-cpu		p-uspri	p-uspri		p-cpu			p-cpu	p-uspri	p-cpu
1. Quantum	60		0		65		6		60		0	60	0
2. Quantum	60 + 35 / 2 + 2 * (0 = 77	70 / 2 = 35		60 + 1 / 2 + 2	∠*0 = 60	6 / 2 = 3		60 + 0 / 2 + 2	* 0 = 60	0 / 2 = 0	60 + 0 / 2 + 2 * 0 = 6	60 0 / 2 = 0
3. Quantum	60 + 17 / 2 + 2 * 0 = 68		35 / 2 = 17		60 + 36 / 2 + 1	60 + 36 / 2 + 2 * 0 = 78		73 / 2 = 36		2 * 0 = 60	0 / 2 = 0	60 + 0 / 2 + 2 * 0 = 0	60 0 / 2 = 0
4. Quantum	60 + 8 / 2 + 2 * 0	0 = 64	17 / 2 = 8		60 + 18 / 2 + 1	60 + 18 / 2 + 2 * 0 = 69		36 / 2 = 18		2 * 0 = 77	70 / 2 = 35	60 + 0 / 2 + 2 * 0 = 6	60 0 / 2 = 0
5. Quantum	60 + 4 / 2 + 2 * 0	o = 62	8 / 2 = 4		60 + 9 / 2 + 2	2 * 0 = 64	18 / 2 = 9	18 / 2 = 9		2 * 0 = 68	35 / 2 = 17	60 + 35 / 2 + 2 * 0 =	= 77 70 / 2 = 35