Math 797W Homework 4

Paul Hacking

December 1, 2014

Justify your answers carefully.

- (1) Let $f, g \in k[x, y]$ be irreducible polynomials and $X = V(f) \subset \mathbb{A}^2$, $Y = V(g) \subset \mathbb{A}^2$ be the corresponding affine plane curves. Compute the intersection multiplicity $(X \cdot Y)_p := \dim_k \mathcal{O}_{\mathbb{A}^2, p}/(f, g)$ of X and Y at p = (0, 0) in the following cases.
 - (a) $f = y^2 x^3$, $g = y \lambda x$, $\lambda \in k$.
 - (b) $f = y^2 x^3$, $g = y^2 x^5$.
- (2) (a) Let $X,Y \subset \mathbb{A}^2_{x,y}$ be affine plane curves with equations f,g as in Q1. Show that if $p \in X \cap Y$ and X is singular at p then $(X \cdot Y)_p \geq 2$
 - (b) Let $X \subset \mathbb{P}^2$ be an irreducible plane curve of degree 3. Show that X has at most one singular point.
 - (c) Let $p_1, \ldots, p_5 \in \mathbb{P}^2$ be 5 points in \mathbb{P}^2 . Show that there is a homogeneous polynomial $F \in k[X_0, X_1, X_2]$ of degree 2 such that $F(p_i) = 0$ for all i.
 - (d) Let $X \subset \mathbb{P}^2$ be an irreducible plane curve of degree 4. Show that X has at most three singular points.

[Hint: Use the Bezout theorem to deduce (b) and (d) from (a) and (c). Establish part (c) using linear algebra.]

[Remark: In general an irreducible plane curve $X \subset \mathbb{P}^2$ of degree d has at most $\frac{1}{2}(d-1)(d-2)$ singularities. This can be proved by understanding the difference between the genus of the normalization \tilde{X} of X

and the genus $\frac{1}{2}(d-1)(d-2)$ of a smooth plane curve of degree d in terms of the singularities of X.

(3) Let X be a smooth projective curve and D a divisor on X. Recall

$$L(D) := \{ f \in k(X)^{\times} \mid (f) + D \ge 0 \} \cup \{ 0 \}$$

and $l(D) := \dim_k L(D)$. Assume that $\deg D \ge 0$. Show that $l(D) \le \deg D + 1$, with equality iff X is isomorphic to \mathbb{P}^1 .

- (4) Let X be a smooth projective curve of genus 1 and D a divisor on X. Prove that if $n:=\deg D\geq 3$ then L(D) defines a closed embedding $f\colon X\to \mathbb{P}^{n-1}$ as a curve of degree n. Deduce that if n=3 then $X\simeq V(F)\subset \mathbb{P}^2$ where $F\in k[X_0,X_1,X_2]$ is an irreducible homogeneous polynomial of degree 3, and if n=4 then $X\simeq V(F,G)\subset \mathbb{P}^3$ where $F,G\in k[X_0,X_1,X_2,X_3]$ are irreducible homogeneous polynomials of degree 2.
- (5) Let X be a smooth projective curve of genus 1. Let $p_0 \in X$ be a point.
 - (a) Use the Riemann-Roch theorem to prove that the map

$$X \longrightarrow \ker(\deg \colon \operatorname{Cl}(X) \to \mathbb{Z}), \quad p \mapsto [p - p_0]$$

is a bijection of sets. Thus X inherits the structure of an abelian group (with identity element $0 := p_0 \in X$) from Cl(X).

- (b) Let $f: X \to \mathbb{P}^2$ be the embedding of X as a plane cubic given by $L(3p_0)$ (see Q4). Show that for three points $p, q, r \in X$ we have p+q+r=0 in the group law on X iff the divisor p+q+r is equal to f^*L for some line $L \subset \mathbb{P}^2$. In particular, if p, q, r are distinct then p+q+r=0 in the group law iff f(p), f(q), f(r) are collinear in \mathbb{P}^2 .
- (c) Use part (b) to give a geometric description of the group operation $X \times X \to X$ in terms of lines in \mathbb{P}^2 .

[Remark: This can be used to show that the group operation $X \times X \to X$ and the inverse map $X \to X$ are morphisms of varieties. We say X is an algebraic group.]

(6) Let X be a smooth projective curve and D a divisor on X. For $p \in X$ let $\nu_p(D)$ denote the coefficient of p in D. Define a sheaf $\mathcal{O}_X(D)$ of \mathcal{O}_X -modules on X by

$$\Gamma(U, \mathcal{O}_X(D)) = \{ f \in k(X)^{\times} \mid \nu_p(f) + \nu_p(D) \ge 0 \, \forall \, p \in U \} \cup \{ 0 \}$$

Thus the k-vector space of global sections $\Gamma(X, \mathcal{O}_X(D))$ equals L(D), the Riemann–Roch space of D.

- (a) Show that $\mathcal{O}_X(D)$ is a locally free \mathcal{O}_X -module of rank 1.
- (b) Let $p: L \to X$ be a line bundle. Let $s: U \to p^{-1}U$ be a nonzero section of L over some Zariski open set $U \subset X$. Define the divisor (s) of zeroes and poles of s (using local trivializations of L).
- (c) Now suppose L is the line bundle with sheaf of sections $\mathcal{L} = \mathcal{O}_X(D)$. Show that (s) is linearly equivalent to D.

[Remark: Let Pic X denote the set of isomorphism classes of line bundles on X (or locally free \mathcal{O}_X -modules of rank 1). Note Pic(X) is an abelian group with group law $(L, M) \mapsto L \otimes M$ and inverse $L \mapsto L^*$. Then we have an isomorphism of abelian groups $\operatorname{Cl}(X) \xrightarrow{\sim} \operatorname{Pic}(X)$ given by $[D] \mapsto \mathcal{O}_X(D)$, with inverse $L \mapsto [(s)]$ where s is a nonzero section of L over some open set $U \subset X$. (The same is true for a smooth variety X of arbitrary dimension.)]

(7) (a) Let X be a variety and $p: L \to X$ a line bundle (i.e. an algebraic vector bundle of rank 1). Suppose $s_i: X \to L$, i = 0, ..., N are global sections of L such that for all $q \in X$ we have $s_i(q) \neq 0 \in L_q := p^{-1}(q)$ for some i. Show that the s_i define a morphism

$$f\colon X\to \mathbb{P}^N$$

given by $f = (s_0 : s_1 : \cdots : s_N)$.

(b) Now suppose X is a smooth curve, D is a divisor on X, and L is the line bundle with sheaf of sections $\mathcal{L} = \mathcal{O}_X(D)$ (as defined in Q6. Show that if D satisfies l(D-p) = l(D)-1 for all $p \in X$, and $s_0, \ldots, s_N \in \Gamma(X, \mathcal{L}) = L(D)$ correspond to a basis of L(D), then the s_i satisfy the above condition and the morphism f coincides with the morphism defined earlier using the corresponding basis of L(D).

- (8) Let $n \in \mathbb{N}$ and $d \in \mathbb{Z}$. Recall the definition of the sheaf $\mathcal{O}_{\mathbb{P}^n}(d)$ of $\mathcal{O}_{\mathbb{P}^n}$ -modules: for $U \subset \mathbb{P}^n$ an open subset, $\Gamma(U, \mathcal{O}_{\mathbb{P}^n}(d))$ is the $\mathcal{O}_{\mathbb{P}^n}(U)$ -module consisting of elements $f \in k(X_0, \ldots, X_n)$ such that f = F/G for homogeneous polynomials $F, G \in k[X_0, \ldots, X_n]$ with $\deg F \deg G = d$ and $G(p) \neq 0$ for all $p \in U$.
 - (a) Show that $\mathcal{O}_{\mathbb{P}^n}(d)$ is a locally free sheaf of rank 1 on \mathbb{P}^n as follows: Write $U_i = (X_i \neq 0) \subset \mathbb{P}^n$ and describe a local trivialization

$$\psi_i \colon \mathcal{O}_{\mathbb{P}^n}(d)|_{U_i} \xrightarrow{\sim} \mathcal{O}_{U_i}$$

for each i.

- (b) Compute the transition functions $g_{ij} = \psi_j \circ \psi_i^{-1} \in \mathcal{O}_X^{\times}(U_i \cap U_j)$.
- (c) Determine the k-vector space of global sections $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ of $\mathcal{O}_{\mathbb{P}^n}(d)$ for each d.
- (d) Let $p: L \to \mathbb{P}^n$ be the tautological line bundle over \mathbb{P}^n . That is,

$$L = V(\lbrace x_i X_j - x_j X_i \mid 0 \le i < j \le n \rbrace) \subset \mathbb{P}^n_{(X_0: \dots: X_n)} \times \mathbb{A}^{n+1}_{x_0, \dots, x_n}$$

and $p: L \to \mathbb{P}^n$ is the restriction of the first projection

$$\operatorname{pr}_1 \colon \mathbb{P}^n \times \mathbb{A}^{n+1} \to \mathbb{P}^n.$$

(So, the fiber $p^{-1}(q)$ of p over a point $q = (a_0 : \ldots : a_n) \in \mathbb{P}^n$ is the corresponding line

$$l = \{\lambda \cdot (a_0, \dots, a_n) \mid \lambda \in k\} \subset \mathbb{A}^{n+1}.)$$

Let \mathcal{L} be the sheaf of sections of L. Show that the sheaf \mathcal{L} is isomorphic to $\mathcal{O}_{\mathbb{P}^n}(-1)$.

(9) Let $X = \mathbb{C}$ with the analytic (or Euclidean) topology. Let $\underline{\mathbb{Z}}$ be the constant sheaf on X with stalk \mathbb{Z} , \mathcal{O}_X the sheaf of holomorphic functions on X (with group operation addition), and \mathcal{O}_X^{\times} the sheaf of nowhere zero holomorphic functions on X (with group operation multiplication).

(a) Show that there is a short exact sequence of sheaves on X

$$0 \to \underline{\mathbb{Z}} \to \mathcal{O}_X \to \mathcal{O}_X^{\times} \to 0$$

where the first map α is the inclusion and the second map β is given by $f \mapsto e^{2\pi i f}$.

- (b) Show that the map $\beta_U \colon \mathcal{O}_X(U) \to \mathcal{O}_X^{\times}(U)$ is not surjective for some open set $U \subset X$.
- (10) Show that there is an exact sequence of sheaves

$$0 \to \mathcal{O}_{\mathbb{P}^1}(-2) \to \mathcal{O}_{\mathbb{P}^1} \to k(p_1) \oplus k(p_2) \to 0$$

where $p_1, p_2 \in \mathbb{P}^1$ are distinct points and k(p) denotes the *skyscraper* sheaf at p with stalk k, that is, $\Gamma(U, k(p)) = k$ if $p \in U$ and $\Gamma(U, k(p)) = 0$ if $p \notin U$. Deduce that $H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-2)) \neq 0$.

(11) Show that there is an exact sequence of sheaves of $\mathcal{O}_{\mathbb{P}^n}$ -modules (the Euler sequence)

$$0 \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n+1} \to \mathcal{T}_{\mathbb{P}^n} \to 0$$

Here $\mathcal{T}_{\mathbb{P}^n}$ denotes the (sheaf of sections of the) tangent bundle of \mathbb{P}^n (the dual of $\Omega_{\mathbb{P}^n}$), the first map is given by

$$s \mapsto s \cdot (X_0, \dots, X_n),$$

and the second map is given by

$$(s_0, .., s_n) \mapsto \sum s_i \frac{\partial}{\partial X_i}.$$

Deduce that the canonical line bundle $\omega_{\mathbb{P}^n} := \wedge^n \Omega_{\mathbb{P}^n} \simeq \mathcal{O}_{\mathbb{P}^n}(-n-1)$.

[Hint: If E is a vector bundle of rank r with transition functions g_{ij} then $\det E := \wedge^r E$ is a line bundle with transition functions $\det(g_{ij})$. If

$$0 \to E' \to E \to E'' \to 0$$

is an exact sequence of vector bundles then the identity

$$\det\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = (\det A) \cdot (\det C).$$

shows that $\det E \simeq \det E' \otimes \det E''$.]