$12n_{0387} (K12n_{0387})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -2u^{14} + 3u^{13} - 7u^{12} + 6u^{11} - 13u^{10} + 6u^9 - 12u^8 - 9u^6 - 10u^5 + u^4 - 13u^3 + u^2 + b - 7u - 3, \\ &3u^{15} - 9u^{14} + \dots + 2a - 8, \ u^{16} - 3u^{15} + \dots + 2u + 2 \rangle \\ I_2^u &= \langle u^2 + b + u + 1, \ -u^3 + 2a + u + 2, \ u^4 + u^2 + 2 \rangle \\ I_3^u &= \langle -u^3 + au - u^2 + b + 1, \ -u^3 a - 2u^2 a + u^3 + a^2 - 2au - 2u^2 - 1, \ u^4 + u^3 + u^2 + 1 \rangle \\ I_4^u &= \langle -u^3 - u^2 + b + 1, \ -u^3 - u^2 + a - u, \ u^4 + 1 \rangle \\ I_5^u &= \langle b - u, \ a - 1, \ u^2 + 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2u^{14} + 3u^{13} + \dots + b - 3, \ 3u^{15} - 9u^{14} + \dots + 2a - 8, \ u^{16} - 3u^{15} + \dots + 2u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{3}{2}u^{15} + \frac{9}{2}u^{14} + \dots + 5u + 4 \\ 2u^{14} - 3u^{13} + \dots + 7u + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{15} + \frac{1}{2}u^{14} + \dots + \frac{3}{2}u^{3} + 1 \\ -u^{15} + 2u^{14} + \dots + u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{15} + \frac{1}{2}u^{14} + \dots - u^{2} + u \\ -u^{15} + 2u^{14} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{2}u^{15} + \frac{3}{2}u^{14} + \dots + \frac{3}{2}u^{3} - 3u^{2} \\ -4u^{15} + 9u^{14} + \dots + 7u + 5 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{9} - 2u^{7} - 3u^{5} - 2u^{3} - u \\ -u^{9} - u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{8} - u^{6} - u^{4} + 1 \\ -u^{10} - 2u^{8} - 3u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{15} - 8u^{14} + 12u^{13} - 18u^{12} + 18u^{11} - 28u^{10} + 12u^9 - 16u^8 - 2u^7 - 8u^6 - 30u^5 + 10u^4 - 20u^3 - 4u^2 - 10u - 20$$

Crossings	u-Polynomials at each crossing
c_1	$u^{16} + 31u^{15} + \dots + 18u + 1$
c_2, c_5, c_6 c_{11}, c_{12}	$u^{16} + u^{15} + \dots + 9u^2 - 1$
c_3,c_9	$u^{16} - 3u^{15} + \dots + 2u + 2$
c_4	$u^{16} + 15u^{15} + \dots + 1866u + 314$
c ₇	$u^{16} - 3u^{15} + \dots + 110u + 50$
c_8, c_{10}	$u^{16} - 5u^{15} + \dots + 20u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} - 119y^{15} + \dots - 66y + 1$
$c_2, c_5, c_6 \\ c_{11}, c_{12}$	$y^{16} - 31y^{15} + \dots - 18y + 1$
c_3, c_9	$y^{16} + 5y^{15} + \dots - 20y + 4$
c_4	$y^{16} - 7y^{15} + \dots - 540404y + 98596$
<i>c</i> ₇	$y^{16} - 75y^{15} + \dots + 55500y + 2500$
c_8, c_{10}	$y^{16} + 13y^{15} + \dots - 1008y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.742751 + 0.731255I		
a = 0.435126 + 1.127490I	-3.21485 + 0.54630I	-11.15141 - 2.56225I
b = -0.501292 + 1.155630I		
u = 0.742751 - 0.731255I		
a = 0.435126 - 1.127490I	-3.21485 - 0.54630I	-11.15141 + 2.56225I
b = -0.501292 - 1.155630I		
u = -0.054006 + 0.927701I		
a = 0.339113 - 0.403496I	2.06067 + 1.23650I	-2.66728 - 5.86350I
b = 0.356009 + 0.336387I		
u = -0.054006 - 0.927701I		
a = 0.339113 + 0.403496I	2.06067 - 1.23650I	-2.66728 + 5.86350I
b = 0.356009 - 0.336387I		
u = -0.893186		
a = -0.903219	-18.7411	-14.2280
b = 0.806743		
u = -0.714194 + 0.883170I		
a = 0.230746 + 0.032790I	-1.49390 + 2.73623I	-7.72446 - 2.31094I
b = -0.193757 + 0.180370I		
u = -0.714194 - 0.883170I		
a = 0.230746 - 0.032790I	-1.49390 - 2.73623I	-7.72446 + 2.31094I
b = -0.193757 - 0.180370I		
u = 0.698495 + 0.969553I		
a = -1.020710 - 0.642352I	-2.49093 - 6.04455I	-9.13130 + 8.50305I
b = -0.09016 - 1.43831I		
u = 0.698495 - 0.969553I		
a = -1.020710 + 0.642352I	-2.49093 + 6.04455I	-9.13130 - 8.50305I
b = -0.09016 + 1.43831I		
u = 0.948967 + 0.727783I		
a = -0.62477 - 2.29842I	16.2883 + 4.2323I	-14.03484 - 0.40975I
b = 1.07987 - 2.63582I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.948967 - 0.727783I		
a = -0.62477 + 2.29842I	16.2883 - 4.2323I	-14.03484 + 0.40975I
b = 1.07987 + 2.63582I		
u = -0.294487 + 1.168400I		
a = -0.864463 + 0.293623I	-14.6982 + 4.0602I	-9.52226 - 2.84200I
b = -0.088495 - 1.096510I		
u = -0.294487 - 1.168400I		
a = -0.864463 - 0.293623I	-14.6982 - 4.0602I	-9.52226 + 2.84200I
b = -0.088495 + 1.096510I		
u = 0.796357 + 1.060920I		
a = 2.12200 + 0.97725I	17.3459 - 10.6503I	-12.77445 + 4.89153I
b = 0.65309 + 3.02951I		
u = 0.796357 - 1.060920I		
a = 2.12200 - 0.97725I	17.3459 + 10.6503I	-12.77445 - 4.89153I
b = 0.65309 - 3.02951I		
u = -0.354580		
a = 0.669122	-0.628198	-15.7600
b = -0.237257		

II.
$$I_2^u = \langle u^2 + b + u + 1, -u^3 + 2a + u + 2, u^4 + u^2 + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u - 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} + \frac{1}{2}u - 1 \\ u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u - 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ -u^{2} - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 12$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
c_3, c_4, c_7 c_9	$u^4 + u^2 + 2$
c ₈	$(u^2+u+2)^2$
c_{10}	$(u^2 - u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2 + y + 2)^2$
c_8, c_{10}	$(y^2 + 3y + 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.676097 + 0.978318I		
a = -2.15417 - 0.28654I	-4.11234 - 5.33349I	-14.0000 + 5.2915I
b = -1.17610 - 2.30119I		
u = 0.676097 - 0.978318I		
a = -2.15417 + 0.28654I	-4.11234 + 5.33349I	-14.0000 - 5.2915I
b = -1.17610 + 2.30119I		
u = -0.676097 + 0.978318I		
a = 0.154169 - 0.286543I	-4.11234 + 5.33349I	-14.0000 - 5.2915I
b = 0.176097 + 0.344557I		
u = -0.676097 - 0.978318I		
a = 0.154169 + 0.286543I	-4.11234 - 5.33349I	-14.0000 + 5.2915I
b = 0.176097 - 0.344557I		

$$III. \\ I_3^u = \langle -u^3 + au - u^2 + b + 1, \ -u^3a - 2u^2a + u^3 + a^2 - 2au - 2u^2 - 1, \ u^4 + u^3 + u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} - au + u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}a - u^{3} + au - u^{2} + a + u + 1 \\ u^{2}a + au - u^{2} + u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - au + 2u^{2} - a \\ -u^{3}a - u^{2}a - au + u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2}a + u^{3} - au + 3u^{2} - a - u + 1 \\ -2u^{3}a - u^{2}a - 2u^{3} - au + 2u^{2} - a - 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{3} + 1 \\ 2u^{3} + 2u^{2} + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{3} \\ -2u^{3} - 2u^{2} + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
c_1	$u^8 + 13u^7 + \dots + 889u + 256$
c_2, c_5, c_6 c_{11}, c_{12}	$u^8 + u^7 - 6u^6 - 4u^5 + 21u^4 + 11u^3 - 27u^2 - 5u + 16$
c_3, c_9	$(u^4 + u^3 + u^2 + 1)^2$
c_4	$ \left (u^4 - 5u^3 + 7u^2 - 2u + 1)^2 \right $
C ₇	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_8, c_{10}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$y^8 + 3y^7 + \dots - 16689y + 65536$
$c_2, c_5, c_6 \\ c_{11}, c_{12}$	$y^8 - 13y^7 + \dots - 889y + 256$
c_3,c_9	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_4	$(y^4 - 11y^3 + 31y^2 + 10y + 1)^2$
c_7, c_8, c_{10}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -0.560363 + 0.369379I	-3.07886 - 1.41510I	-10.17326 + 4.90874I
b = -1.43601 + 0.67423I		
u = 0.351808 + 0.720342I		
a = -0.03038 + 1.97868I	-3.07886 - 1.41510I	-10.17326 + 4.90874I
b = -0.463219 - 0.273703I		
u = 0.351808 - 0.720342I		
a = -0.560363 - 0.369379I	-3.07886 + 1.41510I	-10.17326 - 4.90874I
b = -1.43601 - 0.67423I		
u = 0.351808 - 0.720342I		
a = -0.03038 - 1.97868I	-3.07886 + 1.41510I	-10.17326 - 4.90874I
b = -0.463219 + 0.273703I		
u = -0.851808 + 0.911292I		
a = 1.15548 - 1.61606I	-10.08060 + 3.16396I	-13.82674 - 2.56480I
b = -0.08923 - 2.75519I		
u = -0.851808 + 0.911292I		
a = -1.56474 + 1.56051I	-10.08060 + 3.16396I	-13.82674 - 2.56480I
b = 0.48846 + 2.42955I		
u = -0.851808 - 0.911292I		
a = 1.15548 + 1.61606I	-10.08060 - 3.16396I	-13.82674 + 2.56480I
b = -0.08923 + 2.75519I		
u = -0.851808 - 0.911292I		
a = -1.56474 - 1.56051I	-10.08060 - 3.16396I	-13.82674 + 2.56480I
b = 0.48846 - 2.42955I		

IV.
$$I_4^u = \langle -u^3 - u^2 + b + 1, -u^3 - u^2 + a - u, u^4 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + u^{2} + u \\ u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - u + 1 \\ -u^{3} + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u^{2} \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - u^{2} - u \\ -u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$(u-1)^4$
$c_3,c_4,c_7 \ c_9$	$u^4 + 1$
c_5, c_{11}, c_{12}	$(u+1)^4$
c_8, c_{10}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2+1)^2$
c_8, c_{10}	$(y+1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 2.41421I	-4.93480	-16.0000
b = -1.70711 + 1.70711I		
u = 0.707107 - 0.707107I		
a = -2.41421I	-4.93480	-16.0000
b = -1.70711 - 1.70711I		
u = -0.707107 + 0.707107I		
a = 0.414214I	-4.93480	-16.0000
b = -0.292893 - 0.292893I		
u = -0.707107 - 0.707107I		
a = -0.414214I	-4.93480	-16.0000
b = -0.292893 + 0.292893I		

V.
$$I_5^u = \langle b - u, a - 1, u^2 + 1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing	
c_1, c_5, c_{10} c_{11}, c_{12}	$(u-1)^2$	
c_2, c_6, c_8	$(u+1)^2$	
c_3, c_4, c_7 c_9	$u^2 + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_6, c_8, c_{10} c_{11}, c_{12}	$(y-1)^2$	
c_3, c_4, c_7 c_9	$(y+1)^2$	

Solutions to I_5^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000	0	-8.00000
b =	1.000000I		
u =	-1.000000I		
a = 1.00000		0	-8.00000
b =	-1.000000I		

VI.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	u-1
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u
c_5, c_{11}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	y-1	
c_3, c_4, c_7 c_8, c_9, c_{10}	y	

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u-1)^{11})(u^8+13u^7+\cdots+889u+256)(u^{16}+31u^{15}+\cdots+18u^{15}+\cdots+$	+1)
c_2, c_6	$((u-1)^5)(u+1)^6(u^8+u^7+\cdots-5u+16)$ $\cdot (u^{16}+u^{15}+\cdots+9u^2-1)$	
c_3,c_9	$u(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{4}+u^{3}+u^{2}+1)^{2}(u^{16}-3u^{15}+\cdots$	$\cdot + 2u + 2$
c_4	$u(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{4}-5u^{3}+7u^{2}-2u+1)^{2}$ $\cdot (u^{16}+15u^{15}+\cdots+1866u+314)$	
c_5, c_{11}, c_{12}	$((u-1)^6)(u+1)^5(u^8+u^7+\cdots-5u+16)$ $\cdot (u^{16}+u^{15}+\cdots+9u^2-1)$	
c_7	$u(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{4}+u^{3}+3u^{2}+2u+1)^{2}$ $\cdot (u^{16}-3u^{15}+\cdots+110u+50)$	
c_8	$u(u+1)^{2}(u^{2}+1)^{2}(u^{2}+u+2)^{2}(u^{4}-u^{3}+3u^{2}-2u+1)^{2}$ $\cdot (u^{16}-5u^{15}+\cdots+20u+4)$	
c_{10}	$ u(u-1)^{2}(u^{2}+1)^{2}(u^{2}-u+2)^{2}(u^{4}-u^{3}+3u^{2}-2u+1)^{2} $ $ \cdot (u^{16}-5u^{15}+\cdots+20u+4) $	

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{11})(y^8 + 3y^7 + \dots - 16689y + 65536)$ $\cdot (y^{16} - 119y^{15} + \dots - 66y + 1)$
c_2, c_5, c_6 c_{11}, c_{12}	$((y-1)^{11})(y^8 - 13y^7 + \dots - 889y + 256)(y^{16} - 31y^{15} + \dots - 18y + 1)$
c_3,c_9	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}(y^{4}+y^{3}+3y^{2}+2y+1)^{2}$ $\cdot (y^{16}+5y^{15}+\cdots-20y+4)$
c_4	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}(y^{4}-11y^{3}+31y^{2}+10y+1)^{2}$ $\cdot (y^{16}-7y^{15}+\cdots-540404y+98596)$
c_7	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}(y^{4}+5y^{3}+7y^{2}+2y+1)^{2}$ $\cdot (y^{16}-75y^{15}+\cdots+55500y+2500)$
c_8, c_{10}	$y(y-1)^{2}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{4}+5y^{3}+7y^{2}+2y+1)^{2}$ $\cdot (y^{16}+13y^{15}+\cdots-1008y+16)$