Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.12

Key words: Decomposition in chains/antichains, Sperner's Thm

Recall:

- Hassa diagram of a poset $P \longrightarrow Graph G$
- $-\alpha(P) = \max \text{ size of antichain, } \alpha(P) = \alpha(G)$
- $-w(P) = \max \text{ size of chain, } w(P) = \chi(G)$
- $-\alpha(P)w(P) \ge |X|, \alpha(G)\chi(G) \ge |X|$

Fact:

- (1) Any finite poset P can be partitioned into w(P) antichains
- (2) If a poset P has a chain(antichan) of size r, then it can not be partitioned into fewer than r antichains(chains).

proof of Fact:

(1) Let Let $A_i = \{x \in P : \text{the longest chain with greatest element } x \text{ has size } i\}$. Then since w(P) = r, we have $A_i = \phi$ if $i \geq r+1$. so $P = A_1 \cup A_2 \cup \cdots \cup A_r$ is a partition (some of them may be empty). Show each A_i is an antichain. If not, say $x, y \in A_i, x < y$, then the largest chain with greatest element $x, x_1 < x_2 < \cdots < x_i = x$ can be prolonged to a longer chain $x_1 < x_2 < \cdots < x < y$, then the largest chain with greatest element y has size $y \notin A_i$. Contradiction!

(2) Use pigeonhole principle.

<u>Theorem</u> 1 (Dilworth's Decomposition Thm). If $\alpha(P) = r$, then P can be partitions into r chains.

proof:

 $\overline{\text{Induction on }}|P|.$

Assume the claim holds with any poset of size less than |P|. Let a be a maximal element of P. Let $P' = P \setminus a$ and assume $\alpha(P') = s$, then P' can be partitioned into s chains c_1, \dots, c_s

- (1) $\alpha(P) = r = s + 1$, then $c_1, \dots, c_s, \{a\}$ form a partition of P
- (2) $\alpha(P) = r = s$, let a_i be the maximal element in $\{x \in C_i : x \text{ belongs to some antichain of size } s\} \neq \phi$ and assume $a_i \in B_i$, where B_i is an antichain in P' of size s.

Then $A = \{a_1, \dots a_s\}$ is an antichain of P'. (If not, $\exists a_i < a_j, i \neq j, \dots \exists x \in B_j \cap c_i, \dots x \leq a_i < a_j$, then $x \leq a_j \in B_j$, a contradiction.)

 $\therefore \alpha(P) = s$, $\therefore a > a_i$ for some $i \in [s]$. Let $K = \{a\} \cup \{x \in c_i : x \leq a_i\}$, then K is a chain. $\alpha(P \setminus K) = s - 1$ since K breaks all antichains of size of s. By assumption, $P \setminus K$ is a union of s - 1 chains. Then P is a union of s chains.

Def: A set system (i.e. a family of subsets) \mathscr{F} is an antichain with inclusion order (or sperner system) if $A \neq B \in \mathscr{F}$, neither $A \subset B$ nor $B \subset A$.

Sperner's Thm: Let \mathscr{F} be a set system over [n], i.e. $\mathscr{F} \subset 2^{[n]}$. If \mathscr{F} is an antichain,then $|\mathscr{F}| \leq \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$.

Note:

(1)
$$P = (2^{[n]}, \subset), \ \alpha(P) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

(2) P can be partitioned into $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ symmetric chains.

LYM Inequality:

 \mathscr{F} is an antichain over [n], then $\sum_{A \in \mathscr{F}} \binom{n}{|A|}^{-1} \leq 1$.

Note: LYM Inequality \Rightarrow Sperner's Thm: since $\binom{n}{|A|} \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$

proof of LYM Inequality::

A permutation (x_1, x_2, \dots, x_n) , consider a maximal symmetric chain $\{\phi\}$ - $\{x_1\}$ - $\{x_1, x_2\}$ - \dots - $\{x_1, \dots, x_n\}$

Count $S = \{(A, C) : A \in \mathscr{F}, C \text{ is a a maximal symmetric chain, } A \in C\}$, fix $A, \exists |A|!(n-|A|)!$ permutations (x_1, \dots, x_n) s.t. $A = (x_1, \dots, x_{|A|})$, then $\exists |A|!(n-|A|)!$ maximal symmetric chains. Since \mathscr{F} is an antichain, then each maximal symmetric chain contains at most one $A \in \mathscr{F}$. Then

 $\sum_{A \in \mathscr{F}} |A|!(n-|A|)! = |S| \le |\{\text{maximal symmetric chains}\}| = n!$

$$\Rightarrow \sum_{A \in \mathscr{F}} \binom{n}{|A|}^{-1} \le 1.$$

Bollobás Thm: Let A_1, \dots, A_m and B_1, \dots, B_m be two sequence of sets, such that $A_i \cap B_j = \phi$ iff i = j. Then $\sum_{i=1}^m \binom{a_i + b_i}{a_i}^{-1} \leq 1$, where $|A_i| = a_i, |B_i| = b_i, i \in [m]$. In particular, if $a_i = a$ and $b_i = b$ for all $i \in [m]$, then $m \leq \binom{a+b}{a}$.

Note: Bollobás Thm \Rightarrow LYM Inequality \Rightarrow Sperner's Thm.

proof of Note:

Let $\mathscr{F} = \{A_1, \dots, A_n\} \subset 2^{[n]}, \ B_i = [n] \setminus A_i$, easily check $A_i \cap B_j = \phi$ iff i = j. By Bollobás Thm, $\sum_{i=1}^{m} \binom{n}{a_i}^{-1} \leq 1$

proof of Bollobás Thm:

Let $X = (\bigcup_{i=1}^m A_i) \cup (\bigcup_{i=1}^m B_i)$, suppose |X| = n. $\forall A, B \subset X$, and $A \cap B = \phi$, say a permutation (x_1, \dots, x_n) of X separates the pair (A, B) if no element of B precedes an element of A, i.e. if $x_k \in A$, $x_l \in B$, then k < l.

We claim that each permutation separates at most one pair (A_i, B_i) , $i \in [m]$. Indeed, suppose (x_1, \dots, x_n) separates (A_i, B_i) , (A_j, B_j) , $i \neq j$ and assume $\max\{k: x_k \in A_i\} \leq \max\{k: x_k \in A_j\}$. Since (x_1, \dots, x_n) separates (A_j, B_j) , we have $\min\{k: x_k \in B_j\} > \max\{k: x_k \in A_j\} \geq \max\{k: x_k \in A_i\}$ $\Rightarrow A_i \cap B_j = \phi$, a contradiction.

Now count the number N_i of permutations separated one fixed pair say (A_i, B_i) . First choose $a_i + b_i$ positions for $A \cup B$, there are $\binom{n}{a_i + b_i}$ choices. Then A occupy the first a_i positions, giving a_i ! choices for the order of A, and b_i ! choices for the order of B, the remaining elements can be arranged in $(n - a_i - b_i)$! ways. So $N_i = \binom{n}{a_i + b_i} a_i ! b_i ! (n - a_i - b_i) ! = n! \binom{a_i + b_i}{a_i}^{-1}$. Summing over all pairs, we have

$$\sum_{i=1}^{m} n! \binom{a_i + b_i}{a_i}^{-1} \le n! \Rightarrow \sum_{i=1}^{m} \binom{a_i + b_i}{a_i}^{-1} \le 1.$$