Joan Pau Condal Marco Homework 27/03

Apartat 1:

Siguin S_1, \ldots, S_k subespais d'E, la suma $S_1 + \cdots + S_k$ es defineix com

$$S_1 + \cdots + S_k = \{u_1 + \cdots + u_k, u_i \in S_i, i = 1, \dots, k\}$$

Anem a demostrar que la suma, amb aquesta definició és un subespai.

1. Considerem θ_E el vector nul de E, sabem per hipòtesi que $\theta_E \in S_i, i = 1, ..., k$, ja que S_i és subespai per tot i.

Aleshores, com que $\theta_E = \theta_E + \cdots + \theta_E$, sabem que $\theta_E \in S_1 + \cdots + S_k$; demostrant que $S_1 + \cdots + S_k \neq \emptyset$.

2. Considerem $u, v \in S_1 + \cdots + S_k$. Els podem descomposar de la següent manera:

$$u = u_1 + \dots + u_k, \ u_i \in S_i, \ i = 1, \dots, k$$

 $v = v_1 + \dots + v_k, \ v_i \in S_i, \ i = 1, \dots, k$

Aleshores, el vector u + v és

$$u + v = u_1 + \dots + u_k + v_1 + \dots + v_k =$$

= $u_1 + v_1 + \dots + u_k + v_k$

Com que S_i és subespai, aleshores $u_i + v_i \in S_i$, i = 1, ..., k, d'on queda demostrat que $u + v \in S_1 + \cdots + S_k$.

3. Considerem $\alpha \in \mathbb{R}$ i $v \in S_1 + \cdots + S_k$. Aleshores, podem escriure el vector αv

$$\alpha v = \alpha \cdot (v_1 + \dots + v_k) =$$
$$= \alpha v_1 + \dots + \alpha v_k$$

I com que S_1, \ldots, S_k són subespais, sabem que $\alpha v_i \in S_i$, $i = 1, \ldots, k$; per tant, $\alpha v \in S_1 + \cdots + S_k$.

Com que es compleixen les tres propietats, queda demostrat que $S_1 + \cdots + S_k$ és un subespai vectorial.

Apartat 2:

Sabent que $S_1 + \cdots + S_k$ és subespai vectorial, ara hem de demostrar que $S_1 + \cdots + S_k = \langle S_1 \cup \cdots \cup S_k \rangle$; on $\langle S_1 \cup \cdots \cup S_k \rangle$ és el subespai generat per tots els vectors de la unió $S_1 \cup \cdots \cup S_k$.

Per demostrar la igualtat, demostrarem les dues inclusions.

1. $S_1 + \cdots + S_k \subseteq \langle S_1 \cup \cdots \cup S_k \rangle$. Sigui $u \in S_1 + \cdots + S_k$. Aleshores, $\exists u_i \in S_i, i = 1, \ldots, k : u = u_1 + \cdots + u_k$.

$$u_i \in S_i \implies u_i \in S_1 \cup \dots \cup S_k, \ \forall i = 1, \dots, k.$$

$$\implies u_i \in \langle S_1 \cup \dots \cup S_k \rangle \implies u \in \langle S_1 \cup \dots \cup S_k \rangle$$

2. $\langle S_1 \cup \cdots \cup S_k \rangle \subseteq S_1 + \cdots S_k$. Sigui $u \in \langle S_1 \cup \cdots \cup S_k \rangle$. Aleshores $\exists \alpha_i \in \mathbb{R}, u_i \in S_i, i = 1, \ldots, k$ tal que $u = \alpha_1 u_1 + \cdots + \alpha_k u_k$. Com que S_i és subespai, aleshores sabem que $\exists v_i \in S_i : v_i = \alpha_i u_i, i = 1, \ldots, k$. Per tant, podem reescriure $u = v_1 + \cdots + v_k \implies u \in S_1 + \cdots + S_k$.

Al demostrar les dues inclusions anteriors, hem demostrat finalment la igualtat inicial.

Apartat 3:

L'última demostració del homework d'avui és provar que

$$\bigcap_{\substack{S \supset S_1 + \dots + S_k \\ Ssubespai}} S = S_1 + \dots + S_k$$

Anem a estudiar un moment el conjunt

$$I = \{S : S \text{ subespai i } S_1 + \dots + S_k \subset S\}$$

Podem veure que el mateix subespai $S_1 + \cdots + S_k \in I$, ja que com hem demostrat abans és subespai, i clarament $S_1 + \cdots + S_k \subset S_1 + \cdots + S_k$.

Si estudiem ara el conjunt $I' = I \setminus \{S_1 + \dots + S_k\}$, és fàcil veure que tots el seus elements seran estrictament majors que $S_1 + \dots + S_k$; i per definició de I, no hi haurà cap element de I' que tingui menys elements que $S_1 + \dots + S_k$.

Aleshores, podem veure que tots els elements de I' contindran $S_1 + \cdots + S_k$ i seran estrictament majors; cosa que significa que quan fem la intersecció $\bigcap I$ ens quedarà $S_1 + \cdots + S_k$, demostrant així l'últim apartat.