Gaussian Beam

(Lab Report)

Department of Physical Sciences Indian Institute of Science Education and Research (IISER) Mohali

September 27, 2021

Author-Sayar Mandal (MS19145)

Objective

The objective of this lab was to obtain the "Beam Waist" and "Divergence" of a He-Ne laser by fitting gaussian surfaces on different intensity profiles of the laser.

Contents

1	Definition	4
2	Procedure 2.1 Parameters	4 4
	2.3 Observations	5 6
3	Divergence (θ)	7
4	Beam Waist (w_o)	9
5	Error Analysis 5.1 Root mean squared error	9 9
6	Conclusion	10

1 Definition

In optics, a Gaussian beam is a highly monochromatic electromagnetic beam whose amplitude envelope in the transverse plane is given by a Gaussian function. it also has a Gaussian intensity (irradiance) profile. When such a beam is refocused by a lens, the transverse phase dependence is altered; this results in a different Gaussian beam. The electric and magnetic field amplitude profiles along any such circular Gaussian beam (for a given wavelength and polarization) are determined by a single parameter: the so-called waist w_o .

2 Procedure

2.1 Parameters

- 1. Distance between successive planes is 25 cm,
- 2. The focal length of the lens is 3 cm,
- 3. Diameter of collimated beam is approximately 2 mm.
- 4. The laser is a red He-Ne laser of wavelength 632 nm.
- 5. For images at z_1 and z_2 , 1 cm = 160 pixels.
- 6. For images at z_3 and z_4 , 1 cm = 236 pixels.

2.2 Setup

Figure 1: Ray Diagram of Setup

2.3 Observations

Figure 2: Images of Laser Beam at intervals of $25~\mathrm{cm}$.

2.4 Gaussian Fit

Figure 3: Gaussian Fit for all images.

Equation used for Gaussian surface:

$$f(x,y) = D + A \exp\left\{-\frac{(x-x_o)^2 + (y-y_o)^2}{2\sigma^2}\right\}$$
 (1)

where D is offset, A is amplitude, (x_o, y_o) is center, and σ is the standard deviation.

	A	x_o	y_o	σ	D
z_1	188.78 ± 0.0950	1.87 ± 0.0003	1.72 ± 0.0003	0.70 ± 0.0004	103.35 ± 0.0513
z_2	155.99 ± 0.0742	2.35 ± 0.0003	2.34 ± 0.0003	1.30 ± 0.0008	119.92 ± 0.0856
z_3	145.76 ± 0.0230	2.76 ± 0.0001	2.38 ± 0.0001	1.23 ± 0.0002	129.90 ± 0.0163
z_4	141.70 ± 0.0435	2.59 ± 0.0002	2.39 ± 0.0002	1.51 ± 0.0006	132.50 ± 0.0510

Table 1: Fitting parameters and there errors

Using the fitting parameters the following were determined:

$w(z_1)$	1.4097891328612377 cm
$w(z_2)$	2.614863530550012 cm
$w(z_3)$	2.4631081312127363 cm
$w(z_4)$	3.0368550386562196 cm

Table 2: Beam radius at different z values

3 Divergence (θ)

Let the distance between focus and z_1 be x cm. Then using similarity of triangles we can say,

$$\frac{x}{x+25} = \frac{w(z_1)}{w(z_2)}$$

$$\Rightarrow \frac{x}{x+25} = \frac{1.41}{2.61}$$

$$\Rightarrow \frac{x}{x+25} = 0.540$$

$$\Rightarrow (1-0.54)x = 13.50$$

$$\Rightarrow x = 29.36 \text{ cm}$$
(2)

Characterization of the laser beam - Gaussian beam

Figure 4: Geometric definitions of different Gaussian beam characteristics

We know,

$$\tan \theta = \frac{w(z_o)}{z_R} \tag{3}$$

Using similarity of triangles,

$$\tan \theta = \frac{w(z_1)}{x}$$

$$\Rightarrow \tan \theta = \frac{1.41}{29.36}$$

$$\Rightarrow \tan \theta = 0.048$$

$$\Rightarrow \theta = \arctan(0.048)$$

$$\Rightarrow \theta = 2.7^{\circ}$$
(4)

Hence divergence is 2.7° .

4 Beam Waist (w_o)

We know,

$$\tan \theta = \frac{w_o}{z_R} \text{ and } z_R = \frac{\pi w_o^2}{\lambda} \implies \tan \theta = \frac{\lambda}{\pi w_o}$$
 (5)

$$\Rightarrow 0.047 = \frac{632 \times 10^{-9}}{\pi w_o}$$

$$\Rightarrow w_o = 4.265 \times 10^{-6} \text{ m}$$

$$\Rightarrow w_o = 4.265 \times 10^{-3} \text{ mm}$$
(6)

5 Error Analysis

5.1 Root mean squared error

$RMS(z_1)$	13.202312326637943
$RMS(z_2)$	11.286342871310694
$RMS(z_3)$	7.887848068630636
$RMS(z_4)$	9.502495868079983

Table 3: RMS error at different z values

5.2 Coefficient of determination

$r^2(z_1)$	0.9298868479311381
$r^2(z_2)$	0.9224667491681414
$r^2(z_3)$	0.9589927045109969
$r^2(z_4)$	0.9301858936509008

Table 4: RMS error at different z values

6 Conclusion

Divergence $(\theta) = 2.7^{\circ}$ Beam Waist = 4.265×10^{-3} mm