Semaine du 08/02 au 12/02

Espaces vectoriels de dimension finie

Famille de vecteurs Familles génératrices. Familles libres/liées. Bases. Base adaptée à une décomposition en somme directe. Cas particulier des familles de \mathbb{K}^n (pivot de Gauss).

Dimension d'un espace vectoriel Théorème de la base incomplète/extraite. Existence de bases. Définition de la dimension. Dans un espace de dimension $\mathfrak n$ une famille génératrice/libre possède au moins/au plus $\mathfrak n$ éléments. Si $\mathcal B$ est une famille de $\mathfrak n$ vecteurs d'un espace vectoriel de dimension $\mathfrak n$, alors $\mathcal B$ est une base ssi $\mathcal B$ est libre ssi $\mathcal B$ est génératrice.

Espaces vectoriels

Définition et exemples fondamentaux Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une struture de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.

Sous-espaces vectoriels Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.

Somme de sous-espaces vectoriels Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires. Si $E = F \oplus G$, définition du projeté de $x \in E$ sur F parallèlement à G. Somme d'un nombre fini de sous-espaces vectoriels. Somme directe d'un nombre fini de sous-espaces vectoriels.

Espaces vectoriels de dimension finie

Famille de vecteurs Familles génératrices. Familles libres/liées. Bases. Base adaptée à une décomposition en somme directe. Cas particulier des familles de \mathbb{K}^n (pivot de Gauss).

Dimension d'un espace vectoriel Théorème de la base incomplète/extraite. Existence de bases. Définition de la dimension. Dans un espace de dimension $\mathfrak n$ une famille génératrice/libre possède au moins/au plus $\mathfrak n$ éléments. Si $\mathcal B$ est une famille de $\mathfrak n$ vecteurs d'un espace vectoriel de dimension $\mathfrak n$, alors $\mathcal B$ est une base ssi $\mathcal B$ est libre ssi $\mathcal B$ est génératrice.

1 Méthodes à maîtriser

- ▶ Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- \blacktriangleright Savoir déterminer une partie génératrice d'une partie de \mathbb{K}^n définie par des équations linéaires.
- ▶ Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).
- ▶ Savoir montrer qu'un nombre fini de sous-espaces vectoriels sont en somme directe.
- ▶ Montrer qu'une famille est libre.
- \blacktriangleright Montrer qu'une famille de vecteurs de \mathbb{K}^n est libre, liée ou génératrice par pivot de Gauss.
- ▶ Déterminer la dimension d'un espace vectoriel en exhibant une base.
- ▶ Utiliser la dimension pour montrer qu'une famille libre/génératrice est une base.

2 Questions de cours

- ▶ Soit $(x_1, ..., x_n)$ une famille libre de vecteurs d'un \mathbb{K} -espace vectoriel E. Soit $(\alpha_1, ..., \alpha_n) \in \mathbb{K}^n$. On pose $y = \sum_{i=1}^n \alpha_i x_i$. Montrer que $(x_1 + y, ..., x_n + y)$ est libre \mathbf{si} et seulement \mathbf{si} $\sum_{i=1}^n \alpha_i \neq -1$.
- ▶ On pose $f_{\alpha}: x \mapsto e^{\alpha x}$ pour $\alpha \in \mathbb{R}$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.
- ▶ Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E en somme directe. Montrer que si $(f_1, ..., f_n)$ est une base de F et $(g_1, ..., g_p)$ est une base de F, alors $(f_1, ..., f_n, g_1, ..., g_p)$ est une base de F \oplus G.
- ▶ Si F est un sous-espace vectoriel d'un espace vectoriel E de dimension finie, alors F possède un supplémentaire dans E.