Key Concepts on Deep Neural Networks

1.

Question 1

What is stored in the 'cache' during forward propagation for latter use in backward propagation?

1/1 point

Expand

Correct

Yes. This value is useful in the calculation of $dW^{\{[l]\}}dW_{[l]}$ in the backward propagation.

2.

Question 2

Which of the following are "parameters" of a neural network? (Check all that apply.)

1/1 point

Expand

Correct

Great, you got all the right answers.

3.

Question 3

Which of the following statements is true?

1/1 point

Expand

Correct

4.

Question 4

We can not use vectorization to calculate $da^{[l]}da_{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False?

1/1 point

Expand

Correct

Correct. We can use vectorization in backpropagation to calculate $dA^{[I]}dA_{[I]}$ for each layer. This computation is done over all the training examples.

5.

Question 5

Assume we store the values for $n^{[l]}n_{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_xn_n, 4, 3, 2, 1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units, and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

0 / 1 point

Expand

Incorrect

No. This exceeds the number of layers on the neural network.

6.

Question 6

Consider the following neural network:

What are all the values of $n^{[0]}n_{[0]}, n^{[1]}n_{[1]}, n^{[2]}n_{[2]}, n^{[3]}n_{[3]}$ and $n^{[4]}n_{[4]}$?

1/1 point

Expand

Correct

Yes. The $n^{[l]}n[l]$ are the number of units in each layer, notice that $n^{[l]} = n_x n[0] = nx$.

7.

Question 7

During forward propagation, for the value of $A^{[l]}A_{[l]}$ the value is used of $Z^{[l]}Z_{[l]}$ with the activation function $g^{[l]}g_{[l]}$. During backward propagation we calculate $dA^{[l]}dA_{[l]}$ from $Z^{[l]}Z_{[l]}$.

0 / 1 point

Expand

Incorrect

Incorrect. Correct. During backward propagation we are interested in computing $dW^{[l]}dW_{[l]}$ and $db^{[l]}db_{[l]}$. For that we use $g'^{L}g'_{L}$, $dZ^{[l]}dZ_{[l]}$, $Z^{[l]}Z_{[l]}$, and $W^{[l]}W_{[l]}$.

8.

Question 8

A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?

1/1 point

Expand

Correct

Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

9.

Question 9

Consider the following 2 hidden layers neural network:

Which of the following statements are true? (Check all that apply).

1/1 point

Expand

Correct

Great, you got all the right answers.

10.

Question 10

In the general case if we are training with mm examples what is the shape of $A^{\{[1]\}}A_{[7]}$?

1/1 point

Expand

Correct

Yes. The number of rows in $A^{\{1\}}A_{[1]}$ corresponds to the number of units in the l-th layer.

1.

Question 1

What is stored in the 'cache' during forward propagation for latter use in backward propagation?

1/1 point

Expand

Correct

Yes. This value is useful in the calculation of $dW^{\{[1]\}}dW[I]$ in the backward propagation.

2.

Question 2

During the backpropagation process, we use gradient descent to change the hyperparameters. True/False?

0 / 1 point

Expand

Incorrect

Incorrect. During backpropagation, we use gradient descent to compute new values of $W^{[1]}W^{[1]}$ and $b^{[1]}b^{[1]}$. These are the parameters of the network.

3.

Question 3

Which of the following statements is true?

1/1 point

Expand

Correct

4.

Question 4

Vectorization allows you to compute forward propagation in an LL-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ..., L. True/False?

1/1 point

Expand

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines (a^{[2]} = g^{[2]}(z^{[2]})a_{[2]}=g_{[2]}(z_{[2]}), z^{[2]}=W^{[2]}z_{[2]}=W^{[2]}z_{[2]}=W_{[2]}a_{[1]}+b_{[2]},...) in a deeper network, we cannot avoid a for loop iterating over the layers: (a^{[1]} = g^{[1]}(z^{[1]})a_{[1]}=g_{[1]}(z_{[1]}), z^{[1]}=W^{[1]}a^{[1-1]}+b_{[1]},...).

5.

Question 5

Suppose W[i] is the array with the weights of the i-th layer, b[i] is the vector of biases of the i-th layer, and g is the activation layer used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.

1/1 point

Expand

Correct

Yes. Remember that the range omits the last number thus the range from 1 to L+1 gives the L necessary values.

6.

Question 6

Consider the following neural network:

How many layers does this network have?

1/1 point

Expand

Correct

Yes. The number of layers is the number of hidden layers + 1.

7.

Question 7

If L is the number of layers of a neural network then $dZ^{[L]} = A^{[L]} - YdZ_{[L]} = A_{[L]} - Y.$ True/False?

1/1 point

Expand

Correct

8.

Question 8

A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?

1 / 1 point

Expand

Correct

Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

9.

Question 9

Consider the following 2 hidden layers neural network:

Which of the following statements is true? (Check all that apply).

1/1 point

Expand

Correct

Great, you got all the right answers.

10.

Question 10

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer ll?

1/1 point

Expand

Correct

True