Deadline: Friday, Week 12.

Task: Given a data set (MNIST) containing images of handwritten digits, implement a simple classification algorithm (k-nearest neighbor), which labels a test image with "1", or "not 1"

Dataset:

• In this CW, the goal is to use images and labels in one dataset to predict labels of images in another dataset, where labels are NOT observed.

- As we mentioned in previous lectures/labs, images are stored as flattened matrices (in row/col major order) in the memory.
- Each image is stored as a vector in this coursework.

• In this CW, we are dealing with sets of images. Stacking all the image vectors together, you get a matrix.

• Specifically, there are two sets of images in this CW, so they are represented by two matrices X, T.

Part I, The Data Set

- CW folder contains 3 .matrix files storing 3 matrices.
 - \circ X.matrix stores an N by M^2 matrix X where each row is a grayscale M by M image stored in rowmajor order.
 - \circ T.matrix stores an L by M^2 matrix T where each row is an M by M test image in row major order.
 - \circ Y.matrix stores an N by 1 matrix Y where each row is a scalar, indicating whether the corresponding row in X is digit 1 or not.
 - $\circ \ X$ and Y together are called "training set" in machine learning, while T is the "testing set". Y is called the "labels" of X.

Part I, Data Structure

ullet If $Y_i=1$, then the image X_i is a handwritten digit 1. If $Y_i
eq 1$, the image X_i is NOT a handwritten digit 1.

Part I, Loading Dataset

 The code for loading these images from files have been provided to you. Matrices are represented by a matrix structure in this coursework.

```
struct matrix
{
    int numrow; //number of rows
    int numcol; //number of columns
    int *elements; // pointer pointing to an integer array
    // storing all entries in the matrix in row major order.
};
typedef struct matrix Matrix;
// now "Matrix" is an alias of "struct matrix"
```

- ullet By simply running the skeleton code, you should see some basic statistics of X,Y and T .
 - \circ What are M, N and L?
 - \circ How many images in the training set X are digit 1?

Part II Computing Distance Matrix D (40pt in total)

- ullet Construct an L by N matrix D, where the i,j-th element $D_{ij}={
 m dist}2(T_i,X_j)$
 - $\circ T_i$ is the i-th row of T.
 - $\circ \; X_j$ is the j-th row of X
- ${
 m dist}2(a,b)$ computes the squared euclidean distance between two vectors a and b with K elements.
 - $\circ \ \mathrm{dist} 2(a,b) := \sum_{k=1}^K (a_k b_k)^2.$

Part II (Computing D)

Part II.1 (15pt) Constructing D

Before your main function,

- 1. Write a few helper functions:
- int get_elem(Matrix M, int i, int j)
 returns the i, j th element of matrix M.
- void set_elem(Matrix M, int i, int j, int value)

assign value to the i, j th element of matrix M In this coursework, i, j are zero-based indices.

In your main function,

- 2. Allocate HEAP memory for D.
- 3. Declare and initialize a new matrix variable D.

Part II.2 Computing D (25pt)

Now, populate the matrix D with correct values.

- ullet Hint: Compare the computation of D and the matrix multiplication. What are the similarities and what are the dissimilarities?
 - \circ Can you modify the matrix multiplication code to compute matrix D?
- Hint, you can write a function

```
void pairwise_dist(Matrix T, Matrix X, Matrix D)
```

- \circ where D is the output, storing the outcome.
- Partial points will be given for correctly written code for computing ${\rm dist}2(a,b)$.

Part III.1 Guessing Labels (15%)

- For each row of matrix D, find the indices of the five smallest elements.
 - \circ Suppose the i-th row of D is [3,2,5,1,2,5,13,46,32],
 - The indices of the five smallest elements are [3,1,0,5,6].

Part III.2 Guessing Labels (15%)

- Now, suppose the array indices contains the indices of the five smallest elements in row i of matrix D.
 - Create a new array labels with length 5.
 - \circ Assign the value of $Y_{\mathrm{indices}[k],0}$ to the k-th element in labels .
 - Count the number of 1 in labels.
 - If the count >= 3, print out 1. Otherwise, print not
 1.
- ullet Repeat above for all rows in D.

Part III Guessing Labels (30pts total)

For each row in D, do:

Part III Guessing Labels

- At each row D_i , the print-out is your "guess" of the testing image T_i using 5-nearest neighbour algorithm.
 - \circ If the print-out is 1 , it means the algorithm thinks the image T_i is a digit 1.
- After your guess, you can optionally print the image stored in T_i to the console to validate your guess.

Part III Guessing Labels

• Hint: Write a helper function

```
void minimum5(int len, int a[], int indices[])
```

It takes an array a with length len as input, then fills indices[] with the indices of the five smallest elements.

 You might want to test your functions in a separate c file to ensure that they are correctly written.

Final Project: Marking Criteria

- Submitting correct code (10%)
 - Submitting a C file with the correct name.
 - Your code compiles and runs without major error such as crash, infinite loop.
 - It will be tested using gcc in the lab pack.
- Part II 40% (15% + 25%)
- Part III 30% (15% + 15%)
- Good Coding Practice (20%)
 - Good code format
 - Good variable naming scheme.
 - Apt comments

Final Project: Dos and Don'ts

- You can discuss with your classmates about general strategies but write your own code!
- Don't give your code to other students.
- Review relevant previous lab sessions before you start.
- You can use whatever material you can find to help you complete the task, but you need to add a reference in the comments.
- You are only allowed to use standard features of C.
 - You can use stdio.h, stdlib.h, limits.h and math.h.
 - If you want to use other libraries, consult with the lecturer or TA beforehand.

Final Project: Q&A

- We will answer questions posted on the Blackboard forum or answering them during the lab sessions.
- We will inspect the forum regularly and try to respond in 24 hours.