13. előadás

A Banach-féle fixponttétel (Egyenletek közelítő megoldása)

Feladat:

 $Adott \ egy \ g \in \mathbb{R} \to \mathbb{R} \ f\ddot{u}ggv\acute{e}ny.$

Keressünk olyan $x^* \in \mathcal{D}_g$ pontot, amelyre $g(x^*) = 0$.

Ekkor x^* a g(x) = 0 egyenlet **megoldása** vagy **gyöke**.

Problémák:

- 1º Van-e a g(x) = 0 egyenletnek megoldása, és ha van, akkor hány megoldás van?
- **2º** Hogyan lehet a megoldás(oka)t kiszámolni?

Bizonyos speciális esetekben a megoldásokat **explicit képlettel** számíthatjuk ki. A megoldások előállításához azonban sokszor valamilyen **közelítő módszerre** van szükségünk. Ez azt jelenti, hogy keresünk olyan $(x_n) \subset \mathcal{D}_g$ sorozatot, amelyik valamely megoldáshoz konvergál.

Miért van szükség közelítő módszerekre?

• Mert a pontos képlet nehézkes:

$$x^2-x-8=0,\,x_{1,2}=\tfrac{1\pm\sqrt{33}}{2};$$

$$x^3-x-8=0\;(\text{Cardano- vagy Tartaglia-k\'eplet})$$

$$x=\sqrt[3]{(\cdots)+\sqrt{\cdots}}+\sqrt[3]{(\cdots)-\sqrt{\cdots}}\;.$$

• Mert nincs pontos képlet: (l. Wikipédia)

$$x^5 - x - 8 = 0, \quad x = ?$$
.

• Egy meglévő közelítésből csinálunk egy jobbat **rekurzióval**.

A megoldás(ok) létezése.

A megoldás(ok) **létezésének** a vizsgálatához alkalmazhatjuk a

Bolzano-tételt (l. Analízis I. kurzus, 11. előadás):

Ha
$$g \in C[a, b]$$
 és $g(a) \cdot g(b) < 0$, akkor $\exists x^* \in [a, b] : g(x^*) = 0$.

A tétel a megoldások számáról semmit nem mond. Nyilván előfordulhat, hogy a g(x)=0 egyenletnek több megoldása is van.

Ennek felhasználásával $\mathbf{kereshet}$ ünk olyan intervallumo(ka)t, amely(ek)ben biztosan van megoldása az egyenletnek.

Például, ha $g(x):=x^5-x^2+2x+3$ $(x\in\mathbb{R})$, akkor $g'(x)=5x^4-2x+2>0$ $(x\in\mathbb{R})\Longrightarrow g\ \uparrow\mathbb{R}$ -en, ezért az

$$x^5 - x^2 + 2x + 3 = 0$$

egyenletnek pontosan egy valós gyöke van. Mivel $g \in C(\mathbb{R}), g(-1) = -1 < 0$ és g(0) = 3 > 0, ezért a gyök a [-1,0] intervallumban van.

Közelítő módszerek

• Intervallumfelezési eljárás:

Ha már tudjuk azt, hogy a g(x) = 0 egyenletnek az [a, b] intervallumban (g folytonos) pontosan egy gyöke van, akkor Bolzano-tétel bizonyításánál (l. az Analízis I. kurzus 11. előadását) alkalmazott módszerrel konstruálhatunk olyan (x_n) sorozatot, amelyik a szóban forgó gyökhöz konvergál.

• A Newton-módszer speciális esete:

Tekintsük a $g(x) := x^2 - 5 = 0$ egyenletet! Ennek egyetlen pozitív gyöke a $\sqrt{5}$.

Az Analízis I. kurzus 5. előadásán megmutattuk azt, hogy az

$$\begin{cases} x_0 = 2, \\ x_{n+1} := \frac{1}{2} \left(\frac{5}{x_n} + x_n \right) & (n \in \mathbb{N}) \end{cases}$$

rekurzióval értelmezett sorozat konvergens, és a határértéke $\sqrt{5}$.

• A fixpont-iteráció:

Ha egy g(x) = 0 egyenlet megoldását szeretnénk megkeresni, akkor megtehetjük azt is, hogy a feladatot először átírjuk egy vele ekvivalens

$$x = f(x)$$

fixpontalakba, és tekinthetjük az

$$x_0, \qquad x_{n+1} := f(x_n) \ (n \in \mathbb{N})$$

rekurzióval definiált ún. **iterációs sorozatot**, ha $\mathcal{D}_f \subset \mathcal{R}_f$.

Világos, hogy ekkor az f függvényt többféleképpen is előállíthatjuk. Például, $q(x) = x^2 - x - 2 = 0 \ (x \in \mathbb{R}) \iff$

$$x = x^2 - 2$$
 $(x \in \mathbb{R})$, tehát $f(x) = x^2 - 2$ $(x \in \mathbb{R})$

vagy

$$x=\sqrt{x+2} \ (x\geq -2), \quad \text{tehát} \ f(x)=\sqrt{x+2} \ (x\geq -2).$$

Tegyük fel, hogy $f, g \in C$ és az (x_n) iterációs sorozat konvergens.

Legyen $x^* := \lim (x_n)$. Ekkor az

$$x^* = f(x^*)$$

egyenlőség teljesül, és azt mondjuk, hogy x^* az f függvény fixpontja. Világos, hogy x^* a g(x)=0 egyenlet megoldása.

Most csak az x = f(x) fixpontegyenlet legegyszerűbb esetével foglalkozunk. Legyen $f: [a,b] \to [a,b] \ (a,b \in \mathbb{R},\ a < b).$

Ebben az esetben geometriai jelentést tudunk hozzárendelni a fixpontokhoz: az f függvény fixpontja a függvény grafikonja és az identikus függvény grafikonja metszéspontjának az x koordinátája.

Feladat:

Adott $egy \ f : [a, b] \rightarrow [a, b] \ (a, b \in \mathbb{R}, a < b) \ f \ddot{u} g g v \acute{e} n y.$

 $\textit{Keress\"{u}nk}$ olyan $x^* \in [a,b]$ pontot, amelyre $x^* = f(x^*)$.

Ekkor x^* az f függvény fixpontja.

Problémák:

- 1º A fixpont létezése.
- $\mathbf{2}^{o}$ Az (x_n) iterációs sorozat konvergenciája.

A fixpont létezése.

Egy elégséges feltétel.

Tétel. Ha az $f:[a,b] \rightarrow [a,b]$ függvény folytonos, akkor f-nek az [a,b] intervallumon van fixpontja.

Bizonyítás. Feltehetjük, hogy f(a) > a és f(b) < b, hiszen egyenlőség esetén maga az a, illetve b fixpont lenne.

Legyen h(x) := f(x) - x $(x \in [a, b])$. Ekkor $f \in C[a, b]$, továbbá h(a) > 0 és h(b) < 0. Ezért a Bolzano-tétel szerint a h függvénynek van $x^* \in (a, b)$ gyöke, azaz $h(x^*) = f(x^*) - x^* = 0$. Így $x^* = f(x^*)$, és ez azt jelenti, hogy x^* az f függvény fixpontja.

Az (x_n) iterációs sorozat konvergenciája.

Példa. Vizsgáljuk fixpont-iterációval a $g(x) := x^2 - x - 2 = 0 \quad (x \in \mathbb{R})$ egyenlet pozitív gyökét!

Megoldás. Mivel g(x)=(x-2)(x+1), ezért az egyenletnek x=2 az egyetlen pozitív gyöke. Írjuk át az egyenletet az x=f(x) fixpontalakba! 1. lehetőség. $x=x^2-2=f(x)$ $(x\in\mathbb{R})$.

Az f függvénynek $x^*=2$ az egyetlen pozitív fixpontja. Ekkor az iterációs sorozat:

$$x_0 > 0$$
 adott, $x_{n+1} = f(x_n) = x_n^2 - 2$ $(n \in \mathbb{N})$.

Ha $x_0 = 2 \Longrightarrow x_n = 2 \ (n \in \mathbb{N}) \Longrightarrow (x_n)$ konvergens, és az $x^* = 2$ fixpont a határértéke.

Ha
$$x_0 = 2 + \varepsilon > 2 \ (\varepsilon > 0)$$
, akkor $(x_n) \uparrow$ és $x_n > 2 + n\varepsilon \ (n \in \mathbb{N}^+) \Longrightarrow \lim (x_n) = +\infty$.

Így előfordulhat, hogy f-nekvan fixpontja, de az (x_n) iterációs sorozat \mathbf{nem}

konvergál a fixponthoz.

2. lehetőség. Tekintsük most a g(x)=0 egyenlettel a $[-2,+\infty)$ intervallumon ekvivalens $x=\sqrt{x+2}$ egyenletet! Legyen

$$f(x) := \sqrt{x+2} \quad (x \in [-2,4]).$$

Ekkor $f:[-2,4] \to [-2,4]$, és a függvénynek $x^*=2$ az egyetlen (pozitív) fixpontja. Tekintsük az

$$x_0 \in [-2, 4], \quad x_{n+1} = f(x_n) = \sqrt{x_n + 2} \ (n \in \mathbb{N})$$

iterációs sorozatot!

Könnyű megmutatni, hogy az $x_0 \in [-2,4]$ kezdőérték tetszőleges megválasztása esetén az iterációs sorozat az $x^*=2$ fixponthoz konvergál.

Valóban:

(i) Ha
$$x_0 = 2$$
, $\Longrightarrow x_n = 2 \ (n \in \mathbb{N}) \Longrightarrow \lim (x_n) = 2 = x^* = f(x^*)$. \checkmark

(ii) Ha
$$-2 \le x_0 < 2$$
, \Longrightarrow $(x_n) \uparrow$ és $x_n < 2$ $(n \in \mathbb{N}) \Longrightarrow (x_n)$ konvergens, és $\lim (x_n) = 2 = x^* = f(x^*)$. \checkmark

(iii) Ha
$$2 \le x_0 \le 4$$
, \Longrightarrow $(x_n) \downarrow$ és $2 < x_n \ (n \in \mathbb{N}) \implies (x_n)$ konvergens, és $\lim (x_n) = 2 = x^* = f(x^*)$. \checkmark

Az (ii) esetet szemlélteti az alábbi ábra:

Megjegyzés. Az $f:[a,b] \to [a,b]$ függvény folytonossága garantálja a fixpont létezését. Az előző példa azonban azt mutatja, hogy a folytonosság nem elegendő az iterációs sorozat konvergenciájához. Ehhez a folytonosságnál erősebb feltétel kell. Ezzel kapcsolatos a következő fogalom.

Definíció. $Az \ f : [a,b] \to [a,b] \ (a,b \in \mathbb{R}, \ a < b)$ függvény kontrakció $az \ [a,b]$ intervallumon, ha

$$\exists \ 0 \le \alpha < 1: \quad \forall \ x, y \in [a, b]: \ \left| f(x) - f(y) \right| \le \alpha |x - y|.$$

Egy elégséges feltétel a kontrakcióra.

Tétel. Ha az $f:[a,b] \to [a,b]$ $(a,b \in \mathbb{R}, a < b)$ függvény folytonosan deriválható az [a,b] intervallumon és

$$\alpha := \max_{x \in [a,b]} |f'(x)| < 1,$$

akkor f kontrakció [a, b]-n.

Bizonyítás. A Lagrange-féle középértéktétel szerint $\forall x,y \in [a,b], \ x < y$ esetén $\exists \xi \in (x,y) \colon f(x) - f(y) = f'(\xi) \cdot (x-y)$. Mivel $f' \in C[a,b]$, ezért $\left| f(x) - f(y) \right| = \left| f'(\xi) \right| \cdot |x-y| \le \max_{x \in [a,b]} |f'(x)| \cdot |x-y| = \alpha \cdot |x-y|$.

Tétel: A Banach-féle fixponttétel. Legyen $a, b \in \mathbb{R}$, a < b.

 $T.f.h. \ f:[a,b]
ightarrow [a,b] \ \emph{\'es} \ f \ \emph{kontrakci\'o}, \ azaz$

$$\exists \ 0 \le \alpha < 1: \ \forall \ x, y \in [a, b]: \ |f(x) - f(y)| \le \alpha |x - y|.$$

Ekkor:

1°
$$\exists$$
 egyetlen olyan $x^* \in [a,b]$: $x^* = f(x^*)$;

2º bármely $x_0 \in [a, b]$ esetén az

$$\begin{cases} x_0, \\ x_{n+1} := f(x_n), & n = 0, 1, 2, \dots \end{cases}$$

rekurzióval definiált ún. **iterációs sorozat** konvergens, és

$$\lim x_n = x^*;$$

 3° az (x_n) sorozatra az alábbi **hibabecslés** érvényes:

$$|x_n - x^*| \le \frac{\alpha^n}{1 - \alpha} \cdot |x_1 - x_0| \quad (n = 1, 2, ...).$$

Bizonyítás. 1º és 2º

1. lépés. Igazoljuk, hogy f folytonos [a, b]-n.

Legyen $x \in [a,b]$ és $\varepsilon > 0$ rögzített. Mivel f kontrakció, ezért $\forall \; x,y \in [a,b]$ esetén

$$|f(y) - f(x)| \le \alpha |y - x|$$
 és ez $< \varepsilon$,

ha $|y-x|<\frac{\varepsilon}{\alpha}$. Ez azt jelenti, hogy az x-beli folytonosság definíciója a $0<\delta<\frac{\varepsilon}{\alpha}$ választással teljesül, így $f\in C\{x\}$. Mivel x tetszőleges, azért $f\in C[a,b]$ valóban igaz. \checkmark

2. lépés. Megmutatjuk, hogy (x_n) Cauchy-sorozat.

Először azt látjuk be, hogy

$$|x_{n+1} - x_n| \le \alpha^n |x_1 - x_0| \quad (n \in \mathbb{N}).$$

Valóban, ha $n \in \mathbb{N}^+$, akkor

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le$$

$$\le \alpha |x_n - x_{n-1}| = \alpha |f(x_{n-1}) - f(x_{n-2})| \le$$

$$\le \alpha^2 |x_{n-1} - x_{n-2}| \le \dots \le \alpha^n |x_1 - x_0|. \checkmark$$

Legyen most $n, m \in \mathbb{N}^+$ és m > n. Ekkor

$$|x_{m} - x_{n}| \leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}| \leq$$

$$\leq \alpha^{m-1}|x_{1} - x_{0}| + \alpha^{m-2}|x_{1} - x_{0}| + \dots + \alpha^{n}|x_{1} - x_{0}| =$$

$$= \alpha^{n} \cdot (\alpha^{m-n-1} + \alpha^{m-n-2} + \dots + 1) \cdot |x_{1} - x_{0}| \leq$$

$$\leq (0 \leq \alpha < 1 \implies 1 + \alpha + \alpha^{2} + \dots = \frac{1}{1-\alpha}) \leq \frac{\alpha^{n}}{1-\alpha} |x_{1} - x_{0}|.$$

Mivel $0 \le \alpha < 1 \Longrightarrow \lim_{n \to +\infty} \alpha^n = 0$, ezért $\forall \ \varepsilon > 0$ -hoz $\exists \ N \in \mathbb{N}$:

$$|x_m - x_n| < \varepsilon$$
, ha $n, m \in \mathbb{N}$ és $m > n > N$.

Ez azt jelenti, hogy (x_n) valóban Cauchy-sorozat. \checkmark

3. lépés. A sorozatokra vonatkozó Cauchy-féle konvergenciakritérium szerint az (x_n) Cauchy-sorozat konvergens. Legyen

$$x^* := \lim_{n \to +\infty} x_n.$$

Mivel $x_n \in [a, b]$ minden $n \in \mathbb{N}$ -re, ezért $x^* \in [a, b]$ is igaz (ez az állítás indirekt módon egyszerűen igazolható).

4. lépés. Most azt látjuk be, hogy x^* az f függvény fixpontja, azaz $x^* = f(x^*)$.

Az (x_n) sorozatra vonatkozó rekurzív képletből, az f függvény x^* -beli folytonosságából, valamint a folytonosságra vonatkozó átviteli elvből következik, hogy

$$x_{n+1} = f(x_n)$$

$$\downarrow \qquad \qquad \text{ha } n \to +\infty$$

$$x^* = f(x^*)$$

Az x^* tehát valóban fixpontja f-nek. \checkmark

5. lépés. Most a fixpont egyértelműségét igazoljuk.

Ha az $x^{**} \in [a, b]$ pontra is igaz, hogy $x^{**} = f(x^{**})$, akkor

$$|x^* - x^{**}| = |f(x^*) - f(x^{**})| \le \alpha |x^* - x^{**}|,$$

más szóval $(1-\alpha)|x^*-x^{**}| \leq 0$. Itt $1-\alpha > 0$, ezért

$$(0 \le) |x^* - x^{**}| \le 0,$$

azaz $|x^* - x^{**}| = 0$. Tehát $x^* = x^{**}$.

Így az $\mathbf{1}^o$ és a $\mathbf{2}^o$ állításokat bebizonyítottuk.

A 3º hibabecslés igazolása. Tekintsük az előzőekben bebizonyított

$$|x_m - x_n| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0| \quad (m, n \in \mathbb{N}, \ m > n)$$

egyenlőtlenségeket. Rögzítsük az $n \in \mathbb{N}^+$ indexet, és vegyük az $m \to +\infty$ határátmenetet. Mivel $\lim_{m \to +\infty} x_m = x^*$, ezért azt kapjuk, hogy

$$|x^* - x_n| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0| \quad (n \in \mathbb{N}^+).$$

Ezzel a 3° állítást, és így a **Tétel** minden állítását bebizonyítottuk. \blacksquare

A fixpont-iterációs sorozatot szemlélteti az alábbi ábra:

Példa. Mutassuk meg, hogy az

$$x = \cos x$$

egyenletnek pontosan egy pozitív valós gyöke van! Fixpont-iterációval keressük meg ezt a gyököt!

Megoldás. Ha $x \ge \frac{\pi}{2}$, akkor $x > \cos x$, ezért a $\left[\frac{\pi}{2}, +\infty\right)$ intervallumon az egyenletnek nincs megoldása. Legyen

$$F(x) := x - \cos x \quad \text{ha} \quad \left[0, \frac{\pi}{2}\right].$$

Ekkor
$$F\in C^1\big[0,\frac{\pi}{2}\big],\,F(0)=-1<0,\,F\big[\frac{\pi}{2}\big]=\frac{\pi}{2}>0$$
és

 $F'(x) = 1 + \sin x > 0$, ha $x \in (0, \frac{\pi}{2})$, tehát $F \uparrow$, ezért az F(x) = 0, vagyis az $x = \cos x$ egyenletnek pontosan egy megoldása van a $[0, \frac{\pi}{2}]$ intervallumon.

Az $f(x) := \cos x \ \left(x \in \left[0, \frac{\pi}{2}\right] \right)$ választással a szóban forgó egyenlet

$$x = f(x) = \cos x$$

alakú fixpontegyenlet. Ekkor $f\in C^1\big[0,\frac{\pi}{2}\big]$ és

$$\max_{x \in \left[0, \frac{\pi}{2}\right]} |f'(x)| = \max_{x \in \left[0, \frac{\pi}{2}\right]} |-\sin x| = 1,$$

ezért f nem kontrakció $\left[0, \frac{\pi}{2}\right]$ -en.

Ezt az intervallumot **leszűkítve** azonban már kontrakciót kapunk. Tekintsük például a [0,1]-et! Könnyű meggondolni, hogy ez az intervallum is tartalmazza a fixpontot.

Másrészt $f(x) \in [0,1]$, ha $x \in [0,1]$, továbbá

$$\max_{x \in [0,1]} |f'(x)| = \max_{x \in [0,1]} |-\sin x| = \sin 1 < 0,8415 =: \alpha < 1$$

miatt f kontrakció [0,1]-en az $\alpha < 1$ kontrakciós együtthatóval.

A Banach-féle fixponttétel szerint f-nek pontosan egy fixpontja van [0,1]-en, és (például) az $x_0 = 0$, $x_{n+1} = f(x_n) = \cos x_n$ $(n \in \mathbb{N})$ iterációs sorozat a keresett x^* fixponthoz tart. A konvergencia "sebességére" az

$$|x^* - x_n| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0| \quad (n \in \mathbb{N}^+)$$

hibabecslés teljesül. Ezt felhasználva kiszámíthatjuk, hogy adott pontosság eléréséhez hány iterációs lépést kell alkalmaznunk.

Megjegyzések az egyenletek közelítő megoldásairól

- 1º Miért kellenek hibabecslések?
- 2º Miért kell több különböző közelítő eljárás?
- 3^o A Banach-féle fixponttételt messzemenően általánosítani lehet $\mathbb{R} \to \mathbb{R}$ típusú függvényekről más típusú függvényekre. Ezek felhasználásával állíthatjuk elő lineáris, illetve nemlineáris egyenletrendszerek, sőt differenciálegyenlet-rendszerek közelítő megoldásait.