Sbírka příkladů do MATu

Michal Šrubař xsruba03@stud.fit.vutbr.cz

4. února 2016

1 Proč

2 Logika

2.1 Důkazy výrokových formulí

2.1.1

Dokažte sestrojením důkazu, že pro libovolné formule B, C výrokové logiky platí

$$\vdash \neg B \Rightarrow (B \Rightarrow C)$$

Postupujte dle následujícího návodu:

- 1. $\neg B$ (předpoklad)
- 2. B (předpoklad)
- 3. $B \Rightarrow (\neg C \Rightarrow B)$ (axiom A1)
- 4. $\neg B \Rightarrow (\neg C \Rightarrow \neg B)$ (axiom A1)
- 5. pravidlo odloučení aplikované na formule 2,3
- 6. pravidlo odloučení aplikované na formule 1,4
- 7. axiom A3
- 8. pravidlo odloučení aplikované na 6,7
- 9. pravidlo odloučení aplikované na 2,8
- 10. formule 9 je dokazatelná z formulí 1,2
- 11. věta o dedukci
- 12. věta o dedukci.

2.2 Důkazy predikátových formulí

2.2.1

Proved'te důkaz formule

$$\varphi, (\forall x \varphi \to \psi) \vdash \forall x \psi$$

dle následujícího návodu:

- 1. Vezměte formuli φ jako předpoklad
- 2. užijte pravidlo zobecnění
- 3. vezměte formuli $\forall x\varphi \rightarrow \psi$ jako předpoklad
- 4. užijte pravidlo odloučení (modus ponens)
- 5. užijte pravidlo zobecnění.

2.2.2

Dokažte větu $\exists x(\neg\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$ Postup:

- 1. Použijte tautologii $\varphi \to \neg \neg \varphi$.
- 2. Proveď te distribuci kvantifikátoru ∀.
- 3. Užijte třetí axiom výrokové logiky ve tvaru $(A \to B) \to (\neg B \to \neg A).$
- 4. Aplikujte pravidlo odloučení.
- 5. Použijte tautologii $\neg(\forall x\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$.
- 6. Složte implikace ze (4) a (5).
- 7. Proveď te úpravu (nahraď te kvantifikátor $\forall x$ kvantifikátorem $\exists x$).

2.2.3

Napište důkaz věty $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$. Návod:

- 1. Vezměte formuli $\forall x \varphi$ jako předpoklad, pak užijte axiom substituce a následně pravidlo odloučení
- 2. Potom vezměte formuli $\forall x(\varphi \to \psi)$ jako předpoklad a opět užijte axiom substituce a následně pravidlo odloučení
- 3. Na formule získané v krocích 1) a 2) aplikujte pravidlo odloučení a na výslednou formuli pravidlo zobecnění
- 4. Poslední získaná formule je tedy dokazatelná z formulí, které byly vzaty jako předpoklady. Nyní užijte 2x větu o dedukci

2.2.4

Dokažte, že platí $\vdash (\varphi \land \exists x \psi) \Rightarrow \exists x (\varphi \land \psi)$. Návod:

- 1. Vezměte formuli $\neg(\exists x(\varphi \wedge \psi))$ jako předpoklad
- 2. axiom kvantifikátoru
- 3. pravidlo odloučení
- 4. získanou formuli převeď te do tvaru negace (formule)
- 5. poslddní formule je dokázána z formule předpokládané v 1, proto aplikujte na obě formule větu o dedukci
- 6. užijte třetí výrokový axiom
- 7. opět aplikujte větu o dedukci.

2.3 Realizace

2.3.1

Uvažujme jazyk L s jedním binárním predikátovým symbolem p a jedním binárním funkčním symbolem f.

- 1. Najděte nějakou realizaci jazyka L na množině {1,2,3}.
- 2. Nechť φ je následující formule jazyka L: $\forall z \forall y \exists z p(f(x,z),y)$

Uvažujme realizaci \Re jazyka L s univerzem N, kde p_{\Re} je relace uspořádání \leq a f_{\Re} je násobení přirozených čísel. Rozhodněte, zda \Re je modelem teorie φ a svoje rozhodnutí odůvodněte.

2.3.2

Buď φ nasledující formule: $\forall x \forall y (x < y \Rightarrow \exists z (x < z \land z < y))$. Bez použití spojky ¬ napiště negaci formule φ . Určete, zda je pravdiva formule φ nebo její negace, jestliže univerzem je množina \mathbb{Z} (celých čísel).

2.3.3

Uvažujme jazyk L s rovností, jedním binárním funkčním symbolem f a predikátovými symboly p a q arit 1 a 3. Nechť \Re je realizace jazyka L, kde univerzem je $P(\mathbb{N})$, tj. množina všech podmnožin množiny přirozených čísel, a symboly se realizují na množinách $A, B, C \subseteq N$ následovně:

$$f_{\Re}(A, B) = A \cap B$$
$$A \in P_{\Re} \Leftrightarrow A \neq \phi$$
$$(A, B, C) \in q_{\Re} \Leftrightarrow A \cap B \cap C$$

je konečná. Rozhodněte, zda jsou následující formule splněny v R:

- 1) $\forall x \forall y q(x, y f(x, y))$
- 2) $p(f(x,y)) \Rightarrow (p(x) \land p(y))$
- 3) $p(x) \wedge p(y) \Rightarrow \forall z q(x, y, z)$
- 4) $p(x) \Rightarrow q(x, f(x, x), x)$

2.3.4

Buď L jazyk predikátové logiky 1. řádu a rovností, jedním binárním predikátovým symbolem p a jedním unárním funkčním symbolem f. Nechť T je teorie 1. řádu s jazykem L daná následujícími dvěma speciálními axiomy:

$$p(f(x), x)$$
$$f(f(x)) = f(f(y)) \Rightarrow p(x, y)$$

Uvažujme realizaci $M=(\mathbb{Q},\leq,h)$ jazkyka L, kde $\leq p_M$ a operace $h=f_M$ na množině \mathbb{Q} je definována předpisem $h(a)=\frac{a}{2}$ pro libovolné $a\in\mathbb{Q}$. Rozhodněte, zda:

- a) M je modelem teorie T
- b) $f(f(x)) = f(f(y)) \Rightarrow p(f(x), y)$ je důsledkem teorie T.

2.4 Prenexní tvar

2.4.1

Převed te negaci formulce $\forall x \forall y \varphi(x,y) \Rightarrow \exists x (\psi(x) \Rightarrow \forall z \varphi(x,z))$ do prenexního tvaru.

2.4.2

Převeď te následující formuli do prenexního tvaru. Potom napište její negaci a upravte ji tak, aby se v ní nevyskytovala spojka \Rightarrow :

$$\forall x A(x) \Rightarrow (\forall x B(y) \Rightarrow \neg \forall x C(y,x))$$

2.4.3

Převedte formuli

$$\exists x \varphi(x, y) \to \forall x (\psi(x) \lor \chi(y, z)))$$

do prenexního tvaru. K získané formuli (v prenexním tvaru) napište její negaci a upravte ji tak, aby se spojka negace vyskytovala jen před (některými) φ, ψ, χ .

2.4.4

Převeď te negaci formule $(\forall xp(x,y) \to \exists x \forall yq(x,y)) \land \exists y(\forall xp(y,y) \to \forall xp(x,y))$ do prenexního tvaru.

2.4.5

Převeď te negaci následující formule do prenexního tvaru:

$$\neg(\forall x(\Phi(x) \Rightarrow \forall y \psi(x, y)) \Rightarrow \forall x \exists y \psi(x, y))$$

2.4.6

Negaci formule

$$\exists x (\neg(\varphi \land \neg \psi) \land \neg(\psi \land \neg \varphi)) \land (\forall x \chi)$$

převeď te do tvaru (ekvivalentní formule), ve kterém se nebude vyskytovat žádná ze spojek \wedge a \vee .

3 Algebra

3.1 Grupy, podgrupy, cyklické grupy

3.1.1

Na množině \mathbb{Z} všech celých čísel uvažujme binární operaci * definovanou takto: x*y = xy + x + y. Tato operace tvoří na množině \mathbb{Z} –1 komutativní grupu, ve které inverzní prvek K danému prvku Je:

- a) $\frac{1-x}{1+x}$
- b) $\frac{1}{-1+x}$
- c) $\frac{x}{-1+x}$
- $d) \frac{1}{1+x}$
- e) v jiném tvaru, než je uvedeno v (a)-(d).

3.1.2

Popiště:

- a) podgrupu grupy \Re s operací + generovanou množinou $\{3,11\}$,
- b) podtěleso tělesa \Re (s obvyklými operacemi sčítání a násobení) generované množinou $\{n\}$, kde n je celé nenulové číslo.

3.1.3

Buď $A=(\mathbb{Z},f)$ algebra typu (1) (\mathbb{Z} značí množinu celých čísel), kde f(z)=|z|-8 pro každé $z\in\mathbb{Z}$. Popište:

- 1. podalgebru $B = \langle -4 \rangle$ algebry A,
- 2. přímý součin algeber $B \times (0, 1, 2, g)$, kde g je permutace g = (1, 2) (v cyklickém zápisu).

3.1.4

Uvažujme univerzální algebru $A = (\mathbb{C}, +, conj, 1)$, kde + je binární operace sčítání komplexních čísel, conj je unární operace konjungace (komplexní sdruženost), tj. conj(a+bi) = a-bi, a 1 je nulární operace. Popište podalgebru $\langle \{i\} \rangle$ algebry A (tj. podalgebru generovanou jednoprvkovou množinou $\{i\}$).

3.1.5

Položme $P = \{f : \mathbb{R} \to \mathbb{R}; \exists a \in \mathbb{R} - \{0\} \forall x \in \mathbb{R} : f(x)\} = ax\}$. Dokažte, že (P, \circ) , kde \circ značí skládání zobrazení, je grupoid. Zjistěze, zda (P, \circ) je dokonce grupa (svůj závěr odůvodnětě).

3.2 Morfismy

3.2.1

Na množině \mathbb{C} komplexních čísel uvažujme operaci + obvyklého sčítání. Buď $f: \mathbb{C} \to \mathbb{C}$ zobrazení dané předpisem f(a+ib) = a-ib. Pak:

- a) $(\mathbb{C}, +)$ není grupa
- b) f je zobrazení grupy $(\mathbb{C}, +)$ do sebe, které není homomorfismem
- c) f je homomorfismus grupy $(\mathbb{C}, +)$ do sebe, který není izomorfismem
- d) f je izomorfismus grupy $(\mathbb{C}, +)$ na sebe (tedy automorfismus)
- e) neplatí žádná z uvedených možností

3.2.2

Uvažujme aditivní grupu reálných čísel (\mathbb{R}, \oplus) , kde operace \oplus je daná předpisem

$$a \oplus b = a + b - 1$$

- 1. Rozhodněte, zda grupoid (\mathbb{R}, \oplus) je monoid.
- 2. Rozhodněte, zda zobrazení $f: \mathbb{R} \to \mathbb{R}$ dané předpisem f(x) = 2x + 1 je homomorfismus grupidů $(\mathbb{R}, +) \to (\mathbb{R}, \oplus)$.

3.2.3

Nechť pro libovolné přirozené číslo m>0 značí symbol Z_m okruh zbytkových tříd modulo m a pro libovolné $x\in Z$ nechť symbol $[x]_m$ značí tu třídu kongruence modulo m (tedy prvek množiny Z_m), která obsahuje prvek x. Jaký musí být vztak mezi přirozenými čisly m,n>0, aby platilo $[x]_m\subseteq [x]_n$ pro všechna $z\in Z$? Je pak zobrazení $f:Z_m\to Z_n$ dané předpisem $f([x]_m)=[x]_n$ pro všechna $x\in Z$ homomorfismus?

3.2.4

Mějme grupu $M(n,\mathbb{R})$ všech čtvercových matic řádu $n(n \in \mathbb{N} - \{0\})$ nad \mathbb{R} s operací sčítání a grupu \mathbb{R} všech reálných čísel s operací sčítání. Definujeme zobrazení $f: M(n,\mathbb{R}) \to \mathbb{R}$ předpisem f(A) = tr(A) pro všechna $A \in M(n,\mathbb{R})$ (kde tr(A) značí stopu matice A, tj. součet prvků na hlavní diagonále matice A). Dokažte, že j je homomorfismus, popište třídy jádra $M(n,\mathbb{R})/f$ a určete normální podgrupu grupy $M(n,\mathbb{R})$ odpovídajicí jádru $M(n,\mathbb{R})/f$. Zjistěte, zda grupy $M(n,\mathbb{R})/f$ a \mathbb{R} jsou izomorfní.

3.3 Kongruence

3.3.1

Nechť \mathbb{C}^* značí multiplikativní grupu všech nenulových komplexních čísel a G její podgrupu všech komplexních čísel s absolutní hodnotou 1. Nechť $f:\mathbb{C}^*\to G$ je zobrazeni dane vztahem $f(z)=\frac{z}{|z|}$. Popište kongruenci na \mathbb{C}^* danou jádrem zobrazení f a určete jí odpovídající normální podgrupu grupy \mathbb{C}^* .

3.3.2

Mějme grupu regulárních matic řádu 2 nad tělesem reálných čísel \mathbb{R} spolu s operací násobení matic, označíme ji $(GL(2,\mathbb{R}),\cdot)$. Uvažujme binární relaci \sim na $(GL(2,\mathbb{R}),\cdot)$ definovanou předpisem $A \sim B \Leftrightarrow |A| = |B|$ (kde || značí determinant). Dokažte, že

- 1. \sim je kongurence na grupě $(GL(2,\mathbb{R}),\cdot)$ a
- 2. faktorová grupa $(GL(2,\mathbb{R})/\sim,\cdot)$ je izomorfní s grupou $(\mathbb{R}\setminus\{0\},\cdot)$ všech nenulových reálných čísel s násobením.
- 3. Definujte normální podgrupu grupy $(GL(2,\mathbb{R}),\cdot)$, která odpovídá kongruenci \sim .

3.3.3

Na multiplikativní grupě ($\mathbb{C}\setminus\{0\}$,·) všech nenulových komplexních čísel nechť jsou dva prvky v relaci \sim právě tehdy, když mají stejnou absolutní hodnotu. Dokažte, že relace \sim je kongruence na uvedené grupě, a graficky znázornětě třídy kongruence \sim a také normální podgrupu určenou kongruencí \sim .

3.3.4

Uvažujme algebru $A=(\mathbb{Z},t)$ s jednou unární operací t definovanou pro libovolné $x\in\mathbb{Z}$ předpisem t(x)=x+1.

- a) Popište všechny podalgebry algebry A.
- b) Uvažujme rozklad množiny \mathbb{Z} , jehož třídy jsou všechny dvouprvkové množiny tvaru $\{2k, 2k+1\}$, $k \in \mathbb{Z}$. Je příslušná ekvivalence kongruencí na algebře A?

3.4 Zbytkové třídy

3.4.1

Vypočtěte v tělese $(\mathbb{Z}_5,\cdot,+)$

$$(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}) \cdot \frac{1}{4}$$

3.4.2

V tělese \mathbb{Z}_7 vypočtěte $\frac{4}{3}(2-\frac{3}{4}-\frac{5}{3})$.

3.4.3

Vypočtěte v tělese \mathbb{Z}_7 zbytkových tříd modulo 7:

$$\frac{4(3+5)}{6} - \frac{2}{3}$$

4 Funkcionalni analýza

4.1 Metrické prostory

4.1.1

Ve vektorovém prostoru \mathbb{R}_3 s euklidovskou metrikou p definujeme vzdálenost libovolných dvou množin A a B vztahem $\delta(A,B)=\inf\{(p(a,b)|a\in A,b\in B)\}$. Rozhodněte, zda $(P(\mathbb{R}_3),\delta)$ tvoří metrický prostor (symbol $P(\mathbb{R}_3)$ značí množinu všech podmnožin množiny \mathbb{R}_3).

4.1.2

Na \mathbb{Z}^2 definujeme metriku δ následovně: $\delta((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$. Zakreslete kružnici určenou touto metrikou a poloměru 2 se středem v bodě (0, 0), tj. množinu

$$S_{\delta}(2) = \{(x, y) \in \mathbb{Z}^2 : \delta((x, y), (0, 0)) = 2\}$$

. Určete počet prvků množiny $S_{\delta}(2)$ a tyto prvky vypiště.

4.2 Normované prostory

4.2.1

V lineárním prostoru C[-1,1] všech (reálných) spojitých funkcí na intervalu [-1,1] uvažujme normu $||f|| = \max\{|f(t))|; t \in [-1,1]\}$ a funkci $h \in C[-1,1]$ danou vztahem h(t) = 1 - |t| pro všechna $t \in [-1,1]$. Určete všechny konstantní funkce $g \in C[-1,1]$ s vlastností p(g,h) = 1, kde p je metrika indukovaná danou normou. (Návod: Úlohu řeště graficky.)

8

4.3 Unitární prostory

4.3.1

Na reálném vektorovém prostoru \mathbb{R}^3 definujme skalární součin vztahem $(x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = x_1y_1 + x_2y_2 + x_3y_3$. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory 1, 2, -1), (1, 2, -3), (4, 8, -8), (3, 6, -9).

5 Grafy

5.1 Nazelezeni grafu

5.1.1

Je dán graf G=(U,H), kde $U=\{1,2,\ldots,2n\},\ n>0$ přirozené číslo a H má 15 prvků. Pro každé číslo $i=1,2,\ldots,n$ mají uzly i a n+i tentýž stupeň i. Určete hodnotu čísla n a pak graf G přehledně nakreslete.

5.1.2

Nakreslete všechny navzájem neizomorfní stromy se 6 uzly.

5.2 Nazeteni minimální kostry

5.2.1

Je dán graf G=(U,H), kde $U=\{a,b,c,d,e,f,g,h\}$ a H má 15 prvků s oceněním $v:H\to N$ takovým, že $v\{a,b\}=2,v\{a,c\}=1,v\{a,d\}=1,v\{b,c\}=1,v\{b,d\}=2,v\{c,d\}=3,v\{b,e\}=4,v\{d,e\}=3,v\{d,g\}=2,v\{e,f\}=4,v\{e,g\}=3,v\{e,h\}=2,v\{f,g\}=3,v\{f,h\}=1,v\{g,h\}=1.$ Nakreslete tento graf tak, že každá z následujících čtveřic (a,b,c,d), (b,d,e,g) a (e,f,g,h) tvoří vrcholy čtveřice a hrany jsou znázorněny úsečkami spojujícími příslušné vrcholy. Určete cenu minimální kostry tohoto grafu a jednu jeho minimální kostry nakreslete do obrázku.

5.2.2

Je dán graf G = (U, H), kde $U = \{a, b, c, d, e, f, g, h\}$ a H má 13 prvků s oceněním $v : H \to N$ takovým, že $v \{a, b\} = 2, v \{a, d\} = 5, v \{a, f\} = 1, v \{b, c\} = 0, v \{c, d\} = 5, v \{c, e\} = 1, v \{d, e\} = 10, v \{d, f\} = 0, v \{e, g\} = 3, v \{e, h\} = 3, v \{f, g\} = 1, v \{f, h\} = 2, v \{g, h\} = 6.$ Určete cenu minimální kostry tohoto grafu a jednu jeho minimální kostru nakreslete.