Extinction risk from climate change: latitude

March 15, 2024

Load libraries and data

```
rm(list = ls())
 root.dir = "C:/Users/mcu08001/Documents/1New Research/CC MetaRisk2/Analysis"
#Load Libraries
library(coda); library(ggplot2); library(rstan); library(bayesplot); library(
shinystan); library(loo); library(rstanarm); library(dplyr); library(ggpubr)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = FALSE)
#Load data
dataP<-read.table("MetaRisk2 aggthres 5.txt",header=T); attach(dataP)</pre>
#other quantities
#betareg requires no 0s or 1s
koffset = 0.001 #the k that gives the best posterior predictive check
percent2 <- adj.percent</pre>
percent2[adj.percent == 0] = koffset;
percent2[adj.percent == 1] = 1 - koffset;
dataP$percent2 <- percent2;</pre>
data.use<-dataP
# Other quantities
N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies</pre>
Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
phi = data.use$Total.N
length(unique(dataP$Study))
## [1] 485
```

Test for effect of latitudinal band

Here I tested if extinction predictions change based on latitudinal band, represented by Antarctic, southern middle latitudes, tropics, northern middle latitudes, and Arctic regions. I predict that tropical regions will be characterized by the highest extinction risk.

```
betamat <- (model.matrix(~Antarctic + S.Middle + Tropics + N.Middle + Arctic,
data=data.use, contrasts.arg=list(Antarctic = "contr.sum", S.Middle = "contr.
sum", Tropics="contr.sum", N.Middle = "contr.sum", Arctic = "contr.sum"))) #r
elative to global mean
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
            chains = 3, warmup=7000, cores=3, iter=10000,
#
           init = init.fn, save_warmup = FALSE, control=list(adapt_delta = 0.
9, max_treedepth = 15))#
load("2all_lat.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                     2.5%
                                                               97.5%
                                           sd
                                                                        n eff
                  mean
                           se mean
## beta[1] -2.52181901 0.006836729 0.20764212 -2.92864266 -2.1129407 922.4315
## beta[2] -0.19524643 0.006944569 0.21558734 -0.60422639 0.2429012 963.7312
## beta[3] 0.00651311 0.003138724 0.08904241 -0.16866335 0.1765735 804.7994
## beta[4] 0.19330411 0.002553925 0.07695949 0.04367509 0.3421246 908.0467
## beta[5] 0.20565564 0.002981691 0.08842719 0.03100652 0.3777710 879.5214
## beta[6] 0.43739418 0.002851848 0.08568786 0.26841046 0.6033678 902.7885
##
               Rhat
## beta[1] 1.004543
## beta[2] 1.003377
## beta[3] 1.003805
## beta[4] 1.003503
## beta[5] 1.007029
## beta[6] 1.000777
#checks
traceplot(mod,pars=params.to.monitor2,inc warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```

```
- y
- y<sub>rep</sub>
```

```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
              7604.5
                       96.7
## p_loo
              1994.6 25.3
## looic
            -15209.0 193.4
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                             Count Pct.
                                            Min. ESS
##
## (-Inf, 0.7]
                  (good)
                             1381
                                  42.7%
                                            129
##
      (0.7, 1]
                  (bad)
                             1554
                                   48.0%
                                            <NA>
                  (very bad) 300
      (1, Inf)
##
                                     9.3%
                                            <NA>
## See help('pareto-k-diagnostic') for details.
#create data frame of looics from two models
load("2all_lat.rds")
loo.mod2=loo.mod # rename Loo.mod so can Load n
```

```
mod2 = mod
load("2all_interc.rds")

table.data<-data.frame(
   Model = c("Intercept-only model","Model including latitude"),
   LOOic = c(loo.mod$estimates[3],loo.mod2$estimates[3]),
   SE = c(loo.mod$estimates[6],loo.mod2$estimates[6])
)
knitr::kable(table.data, caption = "Table 1: Comparisons of LOOic between bas eline and Model with latitudinal bands", format = "markdown")</pre>
```

Table 1: Comparisons of LOOic between baseline and Model with latitudinal bands

```
Model     LOOic     SE
Intercept-only model    -15213.77     193.3243

Model including latitude    -15208.98     193.3504

Looic.diff = loo.mod2$estimates[3] - loo.mod$estimates[3]
cat("Difference in LOOic = ", Looic.diff)

## Difference in LOOic = 4.787947
```

Results

Latitudinal variation in extinction risk is not supported by model comparison.

```
# dataP<-read.table("MetaRisk2 aggthres 5.txt",header=T);</pre>
# attach(dataP) # need to eliminate NA s for pre-industrial rise or stat prog
rams crash
# #betareg requires no 0s or 1s
# koffset = 0.001 #the k that gives the best posterior predictive check
# percent2 <- adj.percent</pre>
# percent2[adj.percent == 0] = koffset;
# percent2[adj.percent == 1] = 1 - koffset;
# dataP$percent2 <- percent2;</pre>
#
# data.use<-dataP
# #use one
# betamat <- model.matrix(~Antarctic, data = data.use, contrasts.arg = list(A
ntarctic = "contr.sum")) # did models with all and individually. However, bec
ause factors are not independent,
# betamat <- model.matrix(~S.Middle, data = data.use, contrasts.arg = list(S.</pre>
Middle = "contr.sum")) # did models with all and individually. However, becau
se factors are not independent,
# betamat <- model.matrix(~Tropics, data = data.use, contrasts.arg = list(Tro
pics = "contr.sum")) # did models with all and individually. However, because
factors are not independent,
# betamat <- model.matrix(~N.Middle, data = data.use, contrasts.arg = list(N.
Middle = "contr.sum")) # did models with all and individually. However, becau
```

```
se factors are not independen
# betamat <- model.matrix(~Arctic, data = data.use, contrasts.arg = list(Arct
ic = "contr.sum")) # did models with all and individually. However, because f
actors are not independent,
# N = Length(data.use$percent2)
# n.Study <- Length(unique(data.use$Study)) #number of studies</pre>
# Studyint<-as.integer(unclass(factor(data.use$Study)))</pre>
# phi = data.use$Total.N
#
# #create model matrix for coefficients
# stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi
= phi, S = n.Study, P = ncol(betamat), Study = Studyint)
# params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
# init.beta=rep(0,ncol(betamat)-1)
# init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5, init.beta))
# }
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=5000, cores=3, iter=8000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max treedepth = 15))#
n.total <- nrow(data.use) #total N</pre>
#use common median threat
load("2all_interc.rds")
posterior2=as.data.frame(mod)
grand.mean = posterior2[["mu"]]
grand.mean.inv =invlogit(grand.mean)
r.mean.1 = grand.mean.inv
grand.mean.pred = quantile(grand.mean.inv,probs = c(0.025, 0.5, 0.975))
grand.mean.pred
                     50%
                               97.5%
## 0.06568248 0.07596676 0.08662260
load("2antarct.rds")
mod.Ant <- mod</pre>
posterior <- as.data.frame(mod.Ant)</pre>
p.Ant <- sum(Antarctic == "Y")/n.total #prop of yes</pre>
p.other <- sum(Antarctic == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] - posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
\#r.mean.1 = (p.other * beta.N + p.Ant * beta.Y)
beta.vs.r.mean.1 = (beta.Y) - (r.mean.1)
```

```
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.1" = beta.vs.r.mean.1
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
region.vals <- data.frame(</pre>
  region = "Antarctic",
  beta.Y.lo = pred.1[1,3],
  beta.Y = pred.1[2,3],
  beta.Y.hi = pred.1[3,3],
  beta.vs.mean.lo = pred.1[1,4],
  beta.vs.mean = pred.1[2,4],
  beta.vs.mean.hi = pred.1[3,4]
******
load("2s middle.rds")
#load("beta s.Middle.rds")
mod.SM <- mod
reg <- S.Middle
posterior <- as.data.frame(mod.SM)</pre>
p.Y <- sum(reg == "Y")/n.total #prop of yes
p.other <- sum(reg == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] - posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
\#r.mean.1 = (p.other * beta.N + p.Y * beta.Y)
beta.vs.r.mean.1 = beta.Y - r.mean.1
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.1" = beta.vs.r.mean.1
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
region.vals[2,] <- cbind("S.Middle", t(pred.1[,3]), t(pred.1[,4]))</pre>
******
load("2tropics.rds")
#load("beta tropics.rds")
mod.trop <- mod</pre>
```

```
reg <- Tropics
posterior <- as.data.frame(mod.trop)</pre>
p.Y <- sum(reg == "Y")/n.total #prop of yes
p.other <- sum(reg == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] - posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
\#r.mean.1 = (p.other * beta.N + p.Y * beta.Y)
beta.vs.r.mean.1 = beta.Y - r.mean.1
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.1" = beta.vs.r.mean.1
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
region.vals[3,] <- cbind("Tropics", t(pred.1[,3]), t(pred.1[,4]))
******
load("2n middle.rds")
mod.NM <- mod
reg <- N.Middle
posterior <- as.data.frame(mod.NM)</pre>
p.Y <- sum(reg == "Y")/n.total #prop of yes</pre>
p.other <- sum(reg == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] - posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
\#r.mean.1 = (p.other * beta.N + p.Y * beta.Y)
beta.vs.r.mean.1 = beta.Y - r.mean.1
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.1" = beta.vs.r.mean.1
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
region.vals[4,] <- cbind("N.Middle", t(pred.1[,3]), t(pred.1[,4]))
******
load("2arctic.rds")
mod.Arc <- mod
reg <- Arctic
```

```
posterior <- as.data.frame(mod.Arc)</pre>
p.Y <- sum(reg == "Y")/n.total #prop of yes</pre>
p.other <- sum(reg == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] - posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
\#r.mean.1 = (p.other * beta.N + p.Y * beta.Y)
beta.vs.r.mean.1 = beta.Y - r.mean.1
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.1" = beta.vs.r.mean.1
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
region.vals[5,] <- cbind("Arctic", t(pred.1[,3]), t(pred.1[,4]))</pre>
save(region.vals,file ="Latitudinal bands analysis results 2.rds")
knitr::kable(region.vals, caption = "Table 2: Extinction risk by regiona and
difference from mean, with 95% credible intervals", format = "markdown", digi
ts = 3)
```

Table 2: Extinction risk by regiona and difference from mean, with 95% credible intervals

				beta.vs.mean.		beta.vs.mean.
region	beta.Y.lo	beta.Y	beta.Y.hi	lo	beta.vs.mean	hi
Anta rctic	0.0249949401 60775	0.052633856 7046219	0.109086011 902341	- 0.052497246 410364	- 0.023023514 0343709	0.033578432 4863166
S.Mid dle	0.0687327691 11236	0.086038292 2771603	0.106918747 354409	- 0.010629685 0753243	0.010026463 9735213	0.033244853 2048658
Tropi cs	0.0617643807 765014	0.074058458 5066626	0.087860106 2055393	- 0.018152507 352489	- 0.001931240 60702644	0.015293308 5919268
N.Mi ddle	0.0542217675 28623	0.064120407 6880021	0.074605974 7758127	- 0.026127474 4151048	- 0.011766332 7521619	0.002664732 91247814
Arcti c	0.0285859124 004475	0.037645293 9766856	0.048975740 496411	- 0.052531251 0883054	- 0.038187580 8714051	- 0.023016344 2677905

Northern middle latitudes and Arctic appear to be characterized by lower predicted extinction risks than other regions.

```
#load("Latitudinal bands analysis results 2.rds")
#region.vals$region[1] = "Antarctic" #fix name
region.vals$beta.Y.lo <- as.numeric(region.vals$beta.Y.lo) # data is characte</pre>
```

```
r and needs to be numeric
region.vals$beta.Y <- as.numeric(region.vals$beta.Y)</pre>
region.vals$beta.Y.hi <- as.numeric(region.vals$beta.Y.hi)</pre>
region.vals$beta.vs.mean.lo <- as.numeric(region.vals$beta.vs.mean.lo)</pre>
region.vals$beta.vs.mean <- as.numeric(region.vals$beta.vs.mean)</pre>
region.vals$beta.vs.mean.hi<- as.numeric(region.vals$beta.vs.mean.hi)</pre>
region.vals$region <- factor(region.vals$region, levels = c("Antarctic", "S.M
iddle", "Tropics", "N.Middle", "Arctic"))
#Figures
Fig1a<-ggplot(data = region.vals)+
  geom vline(xintercept=grand.mean.pred[2]) +
  geom_errorbar(aes(y = region, xmin = beta.Y.lo, xmax = beta.Y.hi), width =
0) +
  geom point(stat = "identity", aes(y = region, x = beta.Y), color = "#416788
", size = 3, shape = 15) +
  xlab("Pre-industrial rise \n in temperature (C)") + <math>xlim(c(0,.2)) +
  theme_classic()+ scale_y_discrete(labels = c("Antarctic", "S. Middle", "Tro
pics", "N. Middle", "Arctic")) +
  theme(axis.title.y = element_blank(),axis.title=element_text(size=14),axis.
text = element text(size=12))+
  guides(size=F)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none
" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Fig1a
```


Fig. 1. Predicted extinction risk based on latitudinal bands.

```
#Differences from zero
glob.mean.over <- rep("n", nrow(region.vals))</pre>
glob.mean.over[region.vals$beta.vs.mean > 0 & region.vals$beta.vs.mean.lo > 0
1 = "v"
glob.mean.over[region.vals$beta.vs.mean < 0 & region.vals$beta.vs.mean.hi < 0</pre>
] = "y"
region.vals$glob.mean.over <- glob.mean.over
Fig1b<-ggplot(data = region.vals)+
  geom vline(xintercept=0) +
  geom_errorbar(aes(y = region, xmin = beta.vs.mean.lo, xmax = beta.vs.mean.h
i), width = 0) +
  geom_point(stat = "identity", aes(y = region, x = beta.vs.mean, color = glo
b.mean.over), size = 3, shape = 15) +
  scale_color_manual(values=c('grey','#5B507A'))+
  xlab("Percent difference \n from global mean") + xlim(c(-.1,.1)) +
  theme classic()+
  theme(axis.title.y = element_blank(),axis.ticks.y = element_blank(),axis.li
ne.y = element_blank(), axis.text.y = element_blank(),
        axis.title=element_text(size=14),axis.text = element_text(size=12),le
gend.position = "none")+
  guides(size=F)
Fig1b
```


Fig. 2. Predicted extinction risk based on latitudinal bands.

ggarrange(Fig1a, NULL, Fig1b, ncol=3, widths = c(4,.4, 2))

Fig. 3. Predicted extinction risk based on latitudinal bands.

```
#ggsave("Metarisk2 lat bands.png",width=6,height=5,unit="in",dpi="print")
#catalog sample sizes
N.1.st<-length(unique(dataP$Study[dataP$Antarctic == "Y"]))</pre>
N.1.mod<-length((dataP$Study[dataP$Antarctic == "Y"]))</pre>
N.2.st<-length(unique(dataP$Study[dataP$S.Middle == "Y"]))</pre>
N.2.mod<-length((dataP$Study[dataP$S.Middle == "Y"]))</pre>
N.3.st<-length(unique(dataP$Study[dataP$Tropics == "Y"]))</pre>
N.3.mod<-length((dataP$Study[dataP$Tropics == "Y"]))</pre>
N.4.st<-length(unique(dataP$Study[dataP$N.Middle == "Y"]))</pre>
N.4.mod<-length((dataP$Study[dataP$N.Middle == "Y"]))</pre>
N.5.st<-length(unique(dataP$Study[dataP$Arctic == "Y"]))</pre>
N.5.mod<-length((dataP$Study[dataP$Arctic == "Y"]))</pre>
table.data<-data.frame(</pre>
  Factor = c("Antarctic", "S. Middle", "Tropics", "N. Middle", "Arctic"),
  Studies = c(N.1.st, N.2.st, N.3.st, N.4.st, N.5.st),
  Models = c(N.1.mod, N.2.mod, N.3.mod, N.4.mod, N.5.mod)
knitr::kable(table.data, caption = "Table 3: Number of studies and models for
each factor", format = "markdown")
```

Table 3: Number of studies and models for each factor

Factor	Studies	Models	
Antarctic	17	213	
S. Middle	156	914	
Tropics	240	1753	
N. Middle	319	2131	
Arctic	93	748	

Conclusion

Latitudinal bands vary in risk, with lower risk in the Northern middle latitudes and Arctic.